Deep Bayesian Generative Models for Knowledge Transfer and MRI Processing MLSS'19, Moscow

Evgeny Burnaev Evgenii Egorov Anna Kuzina

Skolkovo Institute of Science and Technology, Moscow, Russia ADASE group {e.burnaev, e.egorov, a.kuzina}@skoltech.ru

Outline

- 1 Overview
- 2 Bayesian generative models for knowledge transfer in DNN on 3D MRI data
- 3 Variational Inference via MaxEnt Pursuit
- 4 BooVAE: incremental learning for VAE

Overview

A probabilistic model considers the joint distribution over the

- A probabilistic model considers the joint distribution over the
 - observed variables x (training data)

- A probabilistic model considers the joint distribution over the
 - observed variables x (training data)
 - hidden variables θ (the parameters of interest)

- A probabilistic model considers the joint distribution over the
 - observed variables x (training data)
 - hidden variables θ (the parameters of interest)
- The Bayesian Inference estimate unknowns through the posterior distribution:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int\limits_{\Theta} p(x|\theta)p(\theta)d\theta}$$

- A probabilistic model considers the joint distribution over the
 - observed variables x (training data)
 - hidden variables θ (the parameters of interest)
- The Bayesian Inference estimate unknowns through the posterior distribution:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int\limits_{\Theta} p(x|\theta)p(\theta)d\theta}$$

Here

 $p(\theta)$ is the prior distribution, $p(x|\theta)$ is the assumed model

Probabilistic Machine Learning: Challenge

Benefits

■ Prior Knowledge/Structure Incorporation

Probabilistic Machine Learning: Challenge

Benefits

- Prior Knowledge/Structure Incorporation
- Ensembles and Uncertainty Estimation

iew Bayesian generative models for knowledge transfer in DNN on 3D MRI data Variational Inference via MaxEnt Pursuit BooVAE: incremental learning

Probabilistic Machine Learning: Challenge

Benefits

- Prior Knowledge/Structure Incorporation
- Ensembles and Uncertainty Estimation
- Coherent framework for the Sequential/Distributive Learning

Benefits

- Prior Knowledge/Structure Incorporation
- Ensembles and Uncertainty Estimation
- Coherent framework for the Sequential/Distributive Learning

Challenge

Evaluation of the posterior $p(\theta|x)$ is hard as require integration:

$$\int\limits_{\Omega} p(x|\theta)p(\theta)d\theta$$

E.g. Θ — high-dimensional space, $p(x|\theta)$ — Deep Neural Network

Probabilistic Machine Learning: Challenge

Benefits

- Prior Knowledge/Structure Incorporation
- Ensembles and Uncertainty Estimation
- Coherent framework for the Sequential/Distributive Learning

Challenge

Evaluation of the posterior $p(\theta|x)$ is hard as require integration:

$$\int\limits_{\Omega} p(x|\theta)p(\theta)d\theta$$

E.g. Θ — high-dimensional space, $p(x|\theta)$ — Deep Neural Network

Solution:

Approximate Inference

MCMC

Variational Inference

 Choose the **proposal** distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}

MCMC

- **1** Choose the **proposal** distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}
- Draw samples from a Markov chain with the $p(\theta|x)$ invariant distribution

Variational Inference

MCMC

- **1** Choose the **proposal** distribution $q_{\phi}(\theta)$ from the **tractable** family $Q_{\phi}(\theta)$
- Draw samples from a Markov chain with the $p(\theta|x)$ invariant distribution
- **Solution** Approximate expectations over $p(\theta|x)$ with averaging over the Markov chain samples

Variational Inference

MCMC

- **1** Choose the **proposal** distribution $q_{\phi}(\theta)$ from the **tractable** family $Q_{\phi}(\theta)$
- Draw samples from a Markov chain with the $p(\theta|x)$ invariant distribution
- **Solution** Approximate expectations over $p(\theta|x)$ with averaging over the Markov chain samples

Variational Inference

1 Choose the **surrogate** distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}

MCMC

- **1** Choose the **proposal** distribution $q_{\phi}(\theta)$ from the **tractable** family $Q_{\phi}(\theta)$
- Draw samples from a Markov chain with the $p(\theta|x)$ invariant distribution
- \blacksquare Approximate expectations over $p(\theta|x)$ with averaging over the Markov chain samples

Variational Inference

- **1** Choose the **surrogate** distribution $q_{\phi}(\theta)$ from the **tractable** family $Q_{\phi}(\theta)$
- Define the optimization problem by divergence minimization:

$$\mathcal{B}[p(x|\theta)p(\theta); q_{\phi}(\theta)]$$

MCMC

- **1** Choose the **proposal** distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}
- **2** Draw samples from a Markov chain with the $p(\theta|x)$ invariant distribution
- \blacksquare Approximate expectations over $p(\theta|x)$ with averaging over the Markov chain samples

Variational Inference

- **1** Choose the **surrogate** distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}
- Define the optimization problem by divergence minimization:

$$\mathcal{B}[p(x|\theta)p(\theta); q_{\phi}(\theta)]$$

MCMC

- **1** Choose the **proposal** distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}
- **2** Draw samples from a Markov chain with the $p(\theta|x)$ invariant distribution
- \blacksquare Approximate expectations over $p(\theta|x)$ with averaging over the Markov chain samples

Variational Inference

- **1** Choose the **surrogate** distribution $q_{\phi}(\theta)$ from the **tractable** family $Q_{\phi}(\theta)$
- Define the optimization problem by divergence minimization:

$$\mathcal{B}[p(x|\theta)p(\theta);q_{\phi}(\theta)]$$

"Tractable"

MCMC

- **1** Choose the **proposal** distribution $q_{\phi}(\theta)$ from the **tractable** family $Q_{\phi}(\theta)$
- **2** Draw samples from a Markov chain with the $p(\theta|x)$ invariant distribution
- \blacksquare Approximate expectations over $p(\theta|x)$ with averaging over the Markov chain samples

Variational Inference

- **1** Choose the **surrogate** distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}
- Define the optimization problem by divergence minimization:

$$\mathcal{B}[p(x|\theta)p(\theta);q_{\phi}(\theta)]$$

"Tractable"

Easy to sample from

MCMC

- **Theorem 1** Choose the **proposal** distribution $q_{\phi}(\theta)$ from the **tractable** family $Q_{\phi}(\theta)$
- **2** Draw samples from a Markov chain with the $p(\theta|x)$ invariant distribution
- \blacksquare Approximate expectations over $p(\theta|x)$ with averaging over the Markov chain samples

Variational Inference

- Choose the **surrogate** distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}
- Define the optimization problem by divergence minimization:

$$\mathcal{B}[p(x|\theta)p(\theta);q_{\phi}(\theta)]$$

"Tractable"

- Easy to sample from
- Easy to evaluate log-density

MCMC

- **1** Choose the **proposal** distribution $q_{\phi}(\theta)$ from the **tractable** family $Q_{\phi}(\theta)$
- **2** Draw samples from a Markov chain with the $p(\theta|x)$ invariant distribution
- \blacksquare Approximate expectations over $p(\theta|x)$ with averaging over the Markov chain samples

Variational Inference

- Choose the **surrogate** distribution $q_{\phi}(\theta)$ from the **tractable** family Q_{ϕ}
- Define the optimization problem by divergence minimization:

$$\mathcal{B}[p(x|\theta)p(\theta);q_{\phi}(\theta)]$$

6 / 46

"Tractable"

- Easy to sample from
- Easy to evaluate log-density
- **.**..

MCMC

Variational Inference

Pros

- Allow to trade computation time for increased accuracy
- Asymptotically unbiased
- Provide samples

MCMC

Variational Inference

Pros

- Allow to trade computation time for increased accuracy
- Asymptotically unbiased
- Provide samples

Cons

- Sensitive to proposal selection
- Convergence diagnostic is hard
- Bad scalability (both on data and dimension)
- Provide only samples

MCMC

Pros

- Allow to trade computation time for increased accuracy
- Asymptotically unbiased
- Provide samples

Cons

- Sensitive to proposal selection
- Convergence diagnostic is hard
- Bad scalability (both on data and dimension)
- Provide only samples

Variational Inference

Pros

- Scalability: Fine with stochastic optimization and amortization
- Easy to incorporate the structure of the problem to efficient optimization
- Flexible Q_λ families parametrized by DNN
- Provide approximations with density

MCMC

Pros

- Allow to trade computation time for increased accuracy
- Asymptotically unbiased
- Provide samples

Cons

- Sensitive to proposal selection
- Convergence diagnostic is hard
- Bad scalability (both on data and dimension)
- Provide only samples

Variational Inference

Pros

- Scalability: Fine with stochastic optimization and amortization
- Easy to incorporate the structure of the problem to efficient optimization
- Flexible Q_{λ} families parametrized by DNN
- Provide approximations with density

Cons

- Biased (underestimating the posterior variances)
- Optimization is hard

Bayesian generative models for knowledge transfer in DNN on 3D MRI data

https://arxiv.org/abs/1908.05480

Magnetic resonance imaging (MRI) — medical imaging technique used in radiology to form pictures of the body anatomy

MRI with labelled brain tumor

Magnetic resonance imaging (MRI) — medical imaging technique used in radiology to form pictures of the body anatomy

MRI semantic segmentation applications in medicine:

Tumors (e.g. brain, liver) analysis and monitoring

MRI with labelled brain tumor

Magnetic resonance imaging (MRI) — medical imaging technique used in radiology to form pictures of the body anatomy

MRI semantic segmentation applications in medicine:

- Tumors (e.g. brain, liver) analysis and monitoring
- Multiple sclerosis plagues detection

MRI with labelled brain tumor

Magnetic resonance imaging (MRI) — medical imaging technique used in radiology to form pictures of the body anatomy

MRI semantic segmentation applications in medicine:

- Tumors (e.g. brain, liver) analysis and monitoring
- Multiple sclerosis plaques detection
- White matter hyperintesities detection

MRI with labelled brain tumor

Main challenges of the area

1. Scarce data

- Expensive annotation
- Privacy concerns
- Bad performance of transfer learning due to disease specificity

Main challenges of the area

1. Scarce data

- Expensive annotation
- Privacy concerns
- Bad performance of transfer learning due to disease specificity

2. High dimensionality

- 3D images
- Memory issues

Main challenges of the area

1. Scarce data

- Expensive annotation
- Privacy concerns
- Bad performance of transfer learning due to disease specificity

Solution for 1:

Transfer Learning under Bayesian Approach

2. High dimensionality

- 3D images
- Memory issues

Overview Bayesian generative models for knowledge transfer in DNN on 3D MRI data Variational Inference via MaxEnt Pursuit BooVAE: incremental learning

Variational Autoencoder

Variational Autoencoder

Deep Weight Prior

Main Idea

Use VAE model to learn implicit prior distribution over convolutional filters of each layer

Main Idea

Use VAE model to learn implicit prior distribution over convolutional filters of each layer

Algorithm

Train network on the bootstrapped source dataset (\mathcal{D}_1)

Deep Weight Prior

Main Idea

Use VAE model to learn implicit prior distribution over convolutional filters of each layer

Algorithm

- Train network on the bootstrapped source dataset (\mathcal{D}_1)
- Collect learned filters

Main Idea

Use VAE model to learn implicit prior distribution over convolutional filters of each layer

Algorithm

- Train network on the bootstrapped source dataset (\mathcal{D}_1)
- Collect learned filters
- Train implicit prior distribution (VAE)

Main Idea

Use VAE model to learn implicit prior distribution over convolutional filters of each layer

Algorithm

- Train network on the bootstrapped source dataset (\mathcal{D}_1)
- Collect learned filters
- Train implicit prior distribution (VAE)
- Use trained prior for variational inference on the target dataset (\mathcal{D}_2)

Experimental Set-Up

Datasets

- 285 MRI of patients with brain tumor (BRATS18)
- 170 MRI of patients with multiple sclerosis (MS)

Prepocessing:

- Scaling
- Alignment
- Scull-stripping

Experimental Set-Up

Datasets

- 285 MRI of patients with brain tumor (BRATS18)
- 170 MRI of patients with multiple sclerosis (MS)

Prepocessing:

- Scaling
- Alignment
- Scull-stripping

Task: Binary semantic segmentation

Experimental Set-Up

Datasets

- 285 MRI of patients with brain tumor (BRATS18)
- 170 MRI of patients with multiple sclerosis (MS)

Prepocessing:

- Scaling
- Alignment
- Scull-stripping

Task:

Binary semantic segmentation

Metrics:

Dice Similarity Coefficient:

$$DSC = \frac{2TP}{2TP + FP + FN}$$

Intersection over Union:

$$IOU = \frac{TP}{TP + FP + FN}$$

Example of MRI slices and ground truth segmentation

Figure: MS dataset

Experimental Set-Up [2]

- Train Unet models on the full MS dataset
 - Use bootstrapped sample from the initial dataset
 - Weights are randomly initialized

Experimental Set-Up [2]

- Train Unet models on the full MS dataset
 - Use bootstrapped sample from the initial dataset
 - Weights are randomly initialized
- Collect filters from the trained models
 - Use cycling learning rate to expand set of learned filters

Experimental Set-Up [2]

- Train Unet models on the full MS dataset
 - Use bootstrapped sample from the initial dataset
 - Weights are randomly initialized
- Collect filters from the trained models
 - Use cycling learning rate to expand set of learned filters
- Train VAE for each layer / set of consecutive layers

- Train Unet models on the full MS dataset
 - Use bootstrapped sample from the initial dataset
 - Weights are randomly initialized
- Collect filters from the trained models
 - Use cycling learning rate to expand set of learned filters
- Train VAE for each layer / set of consecutive layers
- Do variational inference with implicit prior (VAE) on subset of BRATS18 dataset (5-20 images)

Results

17 / 46

- Unet-RI (orange): without transfer learning
- Unet-PR (green): fine-tuning of the whole network
- Unet-PRf (red): fine-tuning of the input and output block

Results

- Unet-RI (orange): without transfer learning
- Unet-PR (green): fine-tuning of the whole network
- Unet-PRf (red): fine-tuning of the input and output block

Additional Results

 Hypothesis: transfer learning between different parts of the human body is possible

Additional Results

- Hypothesis: transfer learning between different parts of the human body is possible
- Experiment: from CT scans of the liver to spleen on the CT scans for 41 patients

Additional Results

- Hypothesis: transfer learning between different parts of the human body is possible
- Experiment: from CT scans of the liver to spleen on the CT scans for 41 patients

	Task09_Spleen		
Train size	UNet-DWP (ours)	UNet-RI	UNet-PR
5	0.275	0.284	0.209
10	0.328	0.293	0.052
15	0.389	0.306	0.243
20	0.353	0.336	0.156

Table: Mean Dice Similarity Score for the subsets of Task03_Liver and Task09_Spleen datasets.

Results

- DWP was successfully transfered to 3D
- We perform transfer learning by implicit prior training
- Proposed solutions outperforms other approaches

DWP Conclusion

Results

- DWP was successfully transfered to 3D
- We perform transfer learning by implicit prior training
- Proposed solutions outperforms other approaches

Next Step

How to update our prior with a new dataset, i.e. perform incremental learning for VAE?

Appendix: lower bound on KL-divergence for DWP

$$\begin{split} \mathsf{KL}(q_{\theta}(W)||p(W)) &= \sum_{l,i,j} \mathsf{KL}(q_{\theta_{ij}^{l}}(w_{ij}^{l})||p(w_{ij}^{l})|) \leq \\ &\leq \sum_{l,i,j} \left(-\mathsf{H}(q_{\theta_{ij}^{l}}(w_{ij}^{l})) + \mathbb{E}_{q_{\theta_{ij}^{l}}(w_{ij}^{l})} \mathsf{KL}(r(z|w_{i,j}^{l})||p^{l}(z)) + \mathbb{E}_{r(z|w_{i,j}^{l})} \log p(w_{i,j}^{l}|z) \right) = \mathsf{KL}_{bound} \\ & \mathcal{L}(\theta) = L_{D} - \mathsf{KL}(q_{\theta}(W)||p(W)) \geq L_{D} - \mathsf{KL}_{bound} \rightarrow \mathsf{max} \end{split}$$

Figure: VAE for learning DWP

Appendix: DWP loss illustartion

Bayesian Inference

21 / 46

Variational Inference via MaxEnt Pursuit

https://arxiv.org/abs/1905.07855

Solution Plan

■ Select family of simple "base learners" $h(\theta) \in Q_{\lambda}$, e.g. Normal Densities

Solution Plan

- Select family of simple "base learners" $h(\theta) \in Q_{\lambda}$, e.g. Normal Densities
- Iteratively improve the approximation by additive convex update $q_T(\theta) = (1 \alpha)q_{T-1}(\theta) + \alpha h(\theta)$

Solution Plan

- Select family of simple "base learners" $h(\theta) \in Q_{\lambda}$, e.g. Normal Densities
- Iteratively improve the approximation by additive convex update $q_T(\theta) = (1 \alpha)q_{T-1}(\theta) + \alpha h(\theta)$
- Perform functional gradient descent over KL-divergence to select each component

Solution Plan

- Select family of simple "base learners" $h(\theta) \in Q_{\lambda}$, e.g. Normal Densities
- Iteratively improve the approximation by additive convex update $q_T(\theta) = (1 \alpha)q_{T-1}(\theta) + \alpha h(\theta)$
- Perform functional gradient descent over KL-divergence to select each component

Challenges

Solution Plan

- Select family of simple "base learners" $h(\theta) \in Q_{\lambda}$, e.g. Normal Densities
- Iteratively improve the approximation by additive convex update $q_T(\theta) = (1 \alpha)q_{T-1}(\theta) + \alpha h(\theta)$
- Perform functional gradient descent over KL-divergence to select each component

Challenges

Avoid degenerate solution (mixture of delta functions)

Solution Plan

- Select family of simple "base learners" $h(\theta) \in Q_{\lambda}$, e.g. Normal Densities
- Iteratively improve the approximation by additive convex update $q_T(\theta) = (1 \alpha)q_{T-1}(\theta) + \alpha h(\theta)$
- Perform functional gradient descent over KL-divergence to select each component

Challenges

- Avoid degenerate solution (mixture of delta functions)
- Keep inference data scalable and computationally efficient

Solution Plan

- Select family of simple "base learners" $h(\theta) \in Q_{\lambda}$, e.g. Normal Densities
- Iteratively improve the approximation by additive convex update $q_T(\theta) = (1 \alpha)q_{T-1}(\theta) + \alpha h(\theta)$
- Perform functional gradient descent over KL-divergence to select each component

Challenges

- Avoid degenerate solution (mixture of delta functions)
- Keep inference data scalable and computationally efficient
- Avoid model specific work

MPVI: Toy example

MPVI: Toy example

MPVI: Toy example

 \blacksquare Given some approximation of the posterior distribution q_t

- \blacksquare Given some approximation of the posterior distribution q_t
- Goal is to improve accuracy of the approximation in terms of the KL-divergence by using the additive mixture:

$$q_{t+1} = (1 - \alpha)q_t + \alpha h, \ \alpha \in (0, 1), \ h \in Q$$

- \blacksquare Given some approximation of the posterior distribution q_t
- Goal is to improve accuracy of the approximation in terms of the KL-divergence by using the additive mixture:

$$q_{t+1} = (1 - \alpha)q_t + \alpha h, \ \alpha \in (0, 1), \ h \in Q$$

Hence, using Maximum Entropy Approach we state the following optimization problem:

$$\max_{h \in \mathcal{Q}} \mathcal{H}[h], s.t.$$
 $\mathcal{F}[q_{t+1}] - \mathcal{F}[q_t] > 0.$

- \blacksquare Given some approximation of the posterior distribution q_t
- Goal is to improve accuracy of the approximation in terms of the KL-divergence by using the additive mixture:

$$q_{t+1} = (1 - \alpha)q_t + \alpha h, \ \alpha \in (0, 1), \ h \in Q$$

Hence, using Maximum Entropy Approach we state the following optimization problem:

$$\max_{h \in \mathcal{Q}} \mathcal{H}[h], s.t.$$

 $\mathcal{F}[q_{t+1}] - \mathcal{F}[q_t] > 0.$

■ Here $\mathcal{F}[q]$ is ELBO (accuracy of approximation)

$$\mathcal{F}[q] = \mathbb{E}_q \left[rac{oldsymbol{p}(oldsymbol{x}, heta)}{oldsymbol{q}(heta)}
ight]$$

Bayesian Inference 26 / 46

Optimization problem:

$$\max_{h \in \mathcal{Q}} \mathcal{H}[h], s.t.$$

 $\mathcal{F}[q_{t+1}] - \mathcal{F}[q_t] > 0.$

Optimization problem:

$$\max_{h \in \mathcal{Q}} \mathcal{H}[h], s.t.$$

 $\mathcal{F}[q_{t+1}] - \mathcal{F}[q_t] > 0.$

Using Taylor expansion, we obtain the constraint in the following form:

$$\mathcal{F}[q_{t+1}] - \mathcal{F}[q_t] = \alpha \left\langle h - q_t, \log \frac{p(x,\theta)}{q_t} \right\rangle - \alpha^2 \int \frac{(h - q_t)^2}{q_t} d\theta + \dots$$

Optimization problem:

$$\max_{h \in \mathcal{Q}} \mathcal{H}[h], s.t.$$

 $\mathcal{F}[q_{t+1}] - \mathcal{F}[q_t] > 0.$

Using Taylor expansion, we obtain the constraint in the following form:

$$\mathcal{F}[q_{t+1}] - \mathcal{F}[q_t] = \alpha \left\langle h - q_t, \log \frac{p(x, \theta)}{q_t} \right\rangle - \alpha^2 \int \frac{(h - q_t)^2}{q_t} d\theta + \dots$$

Considering the first order terms, we get the following optimization problem:

$$\max_{h \in Q} \mathcal{H}[h] + \lambda \left\langle h, \log \frac{p(x, \theta)}{q_t} \right\rangle.$$

$$\max_{h \in Q} \mathcal{H}[h] + \lambda \left\langle h, \log \frac{p(x, \theta)}{q_t} \right\rangle$$

Problem Proprieties

■ Strictly concave over h

$$\max_{h \in Q} \mathcal{H}[h] + \lambda \left\langle h, \log \frac{p(x, \theta)}{q_t} \right\rangle$$

Problem Proprieties

- Strictly concave over h
- Could be solved by stochastic gradient optimization, i.e. scalable over dataset size

$$\max_{h \in Q} \mathcal{H}[h] + \lambda \left\langle h, \log \frac{p(x, \theta)}{q_t} \right\rangle$$

Problem Proprieties

- Strictly concave over h
- Could be solved by stochastic gradient optimization, i.e. scalable over dataset size
- Exact solution is $h^* = \frac{1}{Z(\lambda)} \left[\frac{p(x, \theta)}{q_t} \right]^{\lambda}$

$$\max_{h \in Q} \mathcal{H}[h] + \lambda \left\langle h, \log \frac{p(x, \theta)}{q_t} \right\rangle$$

Problem Proprieties

- Strictly concave over h
- Could be solved by stochastic gradient optimization, i.e. scalable over dataset size
- Exact solution is $h^* = \frac{1}{Z(\lambda)} \left[\frac{p(x, \theta)}{q_t} \right]^{\lambda}$

Since h^* is intractable, we can find it by optimizing

$$h^* = \arg\min_{h \in \mathcal{Q}} \mathit{KL}\left(h \Big\| rac{1}{Z(\lambda)} \left[rac{p(x, heta)}{q_t}
ight]^{\lambda}
ight).$$

For $\lambda = 1$ **MPVI** optimization problem:

$$rg \max_{h \in Q} \mathcal{H}[h] + \left\langle h, \log rac{p(x, heta)}{q_t}
ight
angle =$$

For $\lambda = 1$ **MPVI** optimization problem:

$$\arg\max_{h\in Q}\mathcal{H}[h] + \left\langle h, \log\frac{p(x,\theta)}{q_t} \right\rangle = \arg\max_{h\in Q}\underbrace{\int h \log\frac{p(x,\theta)}{h}d\theta}_{\text{term (1)}} - \underbrace{\int h \log q_t d\theta}_{\text{term (2)}}$$

For $\lambda = 1$ **MPVI** optimization problem:

$$\arg\max_{h\in\mathcal{Q}}\mathcal{H}[h] + \left\langle h, \log\frac{p(x,\theta)}{q_t} \right\rangle = \arg\max_{h\in\mathcal{Q}}\underbrace{\int h\log\frac{p(x,\theta)}{h}d\theta}_{\text{term (1)}} \underbrace{-\int h\log q_t d\theta}_{\text{term (2)}}$$

We can note than:

 Term (1) corresponds to the standard Variational Inference objective (ELBO)

For $\lambda = 1$ **MPVI** optimization problem:

$$\arg\max_{h\in\mathcal{Q}}\mathcal{H}[h] + \left\langle h, \log\frac{p(x,\theta)}{q_t} \right\rangle = \arg\max_{h\in\mathcal{Q}}\underbrace{\int h\log\frac{p(x,\theta)}{h}d\theta}_{\text{term (1)}} \underbrace{-\int h\log q_t d\theta}_{\text{term (2)}}$$

We can note than:

- Term (1) corresponds to the standard Variational Inference objective (ELBO)
- Term (2) plays the role of **similarity penalty** with the current solution q_t

MPVI | Weight Optimization

After getting h for given q_t , we should select α in a

$$q_{t+1}(\theta) = (1 - \alpha)q_t(\theta) + \alpha h(\theta)$$

MPVI | Weight Optimization

After getting h for given q_t , we should select α in a

$$q_{t+1}(\theta) = (1 - \alpha)q_t(\theta) + \alpha h(\theta)$$

For that we solve

$$\min_{\alpha \in (0;1)} KL((1-\alpha)q_t(\theta) + \alpha h(\theta)||p(\theta|x))$$

Theoretical solution

■ Convex problem

MPVI | Weight Optimization

After getting h for given q_t , we should select α in a

$$q_{t+1}(\theta) = (1 - \alpha)q_t(\theta) + \alpha h(\theta)$$

For that we solve

$$\min_{\alpha \in (0;1)} KL((1-\alpha)q_t(\theta) + \alpha h(\theta)||p(\theta|x))$$

Theoretical solution

Convex problem

Implementation

In practice we use stochastic gradient descent over α

Bayesian Inference 30 / 46

MPVI Incremental Learning

Problem: Neural Networks suffer from Catastrophic Forgetting

Solution: $p(\theta|x, x^{\text{new}}) \approx (1 - \alpha)q(\theta|x) + \alpha q(\theta|x^{\text{new}})$

Experiment

Dataset: MNIST, 10 classes classification

Incremental setting: pair classes arrive: 0 vs 1, 2 vs 3. etc.

Neural Network: LeNet-5Prior: Factorized Normal

Metric: Accuracy

Bayesian Inference 31 / 46

BooVAE: incremental learning for VAE

Anna Kuzina, Evgenii Egorov, Evgeny Burnaev. BooVAE: A scalable framework for continual VAE learning under boosting approach

https://arxiv.org/abs/1908.11853

Boosting for Incremental Learning: VAE

Optimal Prior for VAE¹

$$p^*(z) = \arg\max_{p(\cdot)} \mathcal{L}(\textit{Data}, p) = \frac{1}{N} \sum_{n=1}^{N} q_{\phi}(z|x_n)$$
 $q_{\phi}(z|x)$ \mathcal{Z} $p_{\theta}(x|z)$

$$q_{\phi}(z|x)$$
 Z $p_{\theta}(x|z)$

¹Tomczak, J. M., Welling, M. (2017). VAE with a VampPrior

Boosting for Incremental Learning: VAE

Optimal Prior for VAE¹

$$p^*(z) = \arg\max_{p(\cdot)} \mathcal{L}(\textit{Data}, p) = \frac{1}{N} \sum_{n=1}^{N} q_{\phi}(z|x_n)$$
 $q_{\phi}(z|x)$ \mathcal{Z} $p_{\theta}(x|z)$

- We approximate $p^*(z)$ via boosting
- \blacksquare Given p_T from the previous task, learn a new component h to update the learned prior for the new task T+1:

$$KL(\alpha h + (1 - \alpha)p_T||p^*) \rightarrow \min_{h,\alpha}$$

¹Tomczak, J. M., Welling, M. (2017). VAE with a VampPrior

k = 1

$$k = k + 1$$

end if
end while
return p_K , θ^* , ϕ^*

Require: Dataset $\{(x_i)\}_{i=1}^N$ Require: λ , Maximal number of components KChoose random subset $\mathcal{M} \subset \mathcal{D}$ Initialize prior $p_0 = q_{\phi^*}(z|u_0)$ $\{\theta^*, \phi^*, u_0\} = \arg\max \mathcal{L}(p_0, \theta, \phi)$ k = 1while not converged do Update network parameters $\theta^*, \phi^* = \arg\max \mathcal{L}(p_{k-1}, \theta, \phi)$ if k < K then

$$k = k + 1$$

end if
end while
return p_K , θ^* , ϕ^*

```
Require: Dataset \{(x_i)\}_{i=1}^N

Require: \lambda, Maximal number of components K

Choose random subset \mathcal{M} \subset \mathcal{D}

Initialize prior p_0 = q_{\phi^*}(z|u_0)

\{\theta^*, \phi^*, u_0\} = \arg\max \mathcal{L}(p_0, \theta, \phi)

k = 1

while not converged do

Update network parameters \theta^*, \phi^* = \arg\max \mathcal{L}(p_{k-1}, \theta, \phi)

if k < K then

Update optimal prior p^*(z) = \frac{1}{n} \sum_{x \in \mathcal{M}} q_{\phi^*}(z|x)
```

$$k=k+1$$
 end if end while return p_K , θ^* , ϕ^*

```
Require: Dataset \{(x_i)\}_{i=1}^N

Require: \lambda, Maximal number of components K

Choose random subset \mathcal{M} \subset \mathcal{D}

Initialize prior p_0 = q_{\phi^*}(z|u_0)

\{\theta^*, \phi^*, u_0\} = \arg\max\mathcal{L}(p_0, \theta, \phi)

k = 1

while not converged do

Update network parameters \theta^*, \phi^* = \arg\max\mathcal{L}(p_{k-1}, \theta, \phi)

if k < K then

Update optimal prior p^*(z) = \frac{1}{n} \sum_{x \in \mathcal{M}} q_{\phi^*}(z|x)

Add new component p_k = \alpha^* h^* + (1 - \alpha^*) p_{k-1}
```

$$k = k + 1$$

end if
end while
return p_K , θ^* , ϕ^*

```
Require: Dataset \{(x_i)\}_{i=1}^N
Require: \lambda, Maximal number of components K
   Choose random subset \mathcal{M} \subset \mathcal{D}
   Initialize prior p_0 = q_{\phi^*}(z|u_0)
    \{\theta^*, \phi^*, u_0\} = \arg\max \mathcal{L}(p_0, \theta, \phi)
   k = 1
   while not converged do
        Update network parameters \theta^*, \phi^* = \arg\max \mathcal{L}(p_{k-1}, \theta, \phi)
        if k < K then
             Update optimal prior p^*(z) = \frac{1}{n} \sum_{x \in \mathcal{M}} q_{\phi^*}(z|x)
             Add new component p_k = \alpha^* h^* + (1 - \alpha^*) p_{k-1}
                    h^* = \arg\min KL \left( h \middle\| \left\lceil \frac{p^*}{p_{k-1}} \right\rceil^{\lambda} \right)
                    \alpha^* = \arg\min KL(\alpha h + (1 - \alpha)p_{k-1}||p^*)
             k = k + 1
        end if
   end while
   return p_K, \theta^*, \phi^*
```

Bayesian Inference 35 / 46

Boosting: experimental set-up [1]

- Tasks are arriving sequentially, one at a time
- **Datsets**: MNIST, fashion MNIST (10 classes each)

Fashion MNIST

Boosting: experimental set-up [2]

- For task in {1... *K*}:
 - Train VAE on the images from the current task

- For task in {1 . . . *K*}:
 - Train VAE on the images from the current task
- NLL metric on the whole test set:

$$\log p(x) pprox \log rac{1}{K} \sum_{i=1}^K rac{p_{ heta}(x|z_i)p(z_i)}{q_{\phi}(z_i|x)}, \quad z_i \sim q_{\phi}(z|x)$$

- For task in {1... *K*}:
 - Train VAE on the images from the current task
- NLL metric on the whole test set:

$$\log p(x) pprox \log rac{1}{K} \sum_{i=1}^K rac{p_{ heta}(x|z_i)p(z_i)}{q_{\phi}(z_i|x)}, \quad z_i \sim q_{\phi}(z|x)$$

$$\sum_{k=1}^{K} \mathsf{KL}\left(u||\widehat{x}\right), \ u \sim \mathsf{Be}\left(\frac{1}{K}\right), \ \widehat{x} \sim \mathsf{Be}\left(\frac{N_k}{N}\right)$$

 N_k — number of images from class k among N generated.

MNIST results

Below: the smaller the better

height# tasks	Standard	Standard + EWC	MoG	Boo (ours)	Boo (ours) + EWC
2	343.54 (26.38)	256.55 (8.38)	96.50 (1.95)	100.11 (1.39)	97.49 (0.40)
3	122.05 (2.31)	121.91 (1.31)	107.78 (3.59)	104.33 (1.34)	102.90 (0.95)
4	146.06 (0.32)	142.00 (2.28)	123.95 (5.05)	118.78 (1.45)	117.07 (0.46)
5	197.02 (5.68)	192.84 (0.12)	143.44 (8.05)	132.08 (0.64)	130.80 (0.87)
6	164.29 (3.78)	159.80 (3.14)	143.33 (2.49)	135.42 (1.64)	131.83 (1.24)
7	205.21 (5.58)	187.43 (5.20)	163.14 (9.02)	142.21 (1.85)	137.38 (1.57)
8	213.25 (9.22)	189.06 (4.72)	172.00 (12.93)	140.80 (2.42)	138.47 (2.50)
9	171.04 (3.64)	160.47 (2.53)	164.18 (9.49)	141.70 (0.97)	140.13 (2.67)
10	186.79 (2.32)	170.26 (2.20)	181.53 (29.02)	142.92 (1.99)	140.68 (1.86)

Table: NLL Results on MNIST.

Fashion MNIST results

height# tasks	Standard	Standard + EWC	MoG	Boo (ours)	Boo (ours) + EWC
2	262.22 (2.92)	271.14 (6.05)	239.43 (2.76)	227.83 (3.34)	229.81 (2.31)
3	289.45 (2.72)	287.45 (3.87)	266.18 (1.87)	255.85 (1.61)	256.47 (2.16)
4	274.08 (2.42)	272.82 (1.02)	264.35 (3.16)	248.96 (0.85)	249.08 (1.40)
5	272.87 (1.80)	270.44 (0.98)	264.51 (1.93)	253.12 (1.43)	253.26 (1.20)
6	487.05 (43.78)	417.81 (7.44)	282.00 (4.06)	250.87 (2.12)	250.64 (1.18)
7	274.72 (2.93)	272.09 (6.25)	292.93 (9.16)	250.87 (0.69)	253.50 (2.59)
8	1827.62 (489.47)	565.81 (22.94)	448.55 (103.92)	260.05 (5.25)	250.30 (0.48)
9	321.49 (17.36)	289.17 (2.43)	321.72 (14.11)	256.42 (1.00)	256.33 (0.78)
10	964.90 (237.27)	427.83 (21.19)	440.96 (49.75)	284.86 (21.21)	256.58 (1.27)

Table: NLL Results on fashion MNIST.

MNIST: KL divergence between uniform and generated distribution

Bayesian Inference 40 / 46

fashion MNIST: KL divergence between uniform and generated distr.

Bayesian Inference

Standard prior: Samples after training on 10 tasks incrementally

Bayesian Inference 42 / 46

Standard + EWC: Samples after training on 10 tasks incrementally

Bayesian Inference 43 / 46

MoG: Samples after training on 10 tasks incrementally

Bayesian Inference

44 / 46

Boo: Samples after training on 10 tasks incrementally

Bayesian Inference 45 / 46

Boo + EWC: Samples after training on 10 tasks incrementally

Bayesian Inference