Bio-Inspired Artificial Intelligence

Lecture 6: Evolutionary Computing

http://www.informatik.uni-hamburg.de/WTM/

Motivation

- Problem solving is a central theme in computer science
 - Many new and more complex problems
 - Time for analysis and algorithms development decreases
 - More universal algorithms with automatic adaptation needed
 - "good" solutions within acceptable time are often satisfying
- Most powerful problem solvers in nature:
 - The (human) brain
 ... that created "the wheel, New York, wars and so on" [Adams 1978]
 - The evolutionary mechanism
 ... that created the human brain [Darwin 1895]

Computational Approach: Evolutionary Algorithms

Motivating Example

Goal of this lecture

- Learn about an approach to approximate problem solving based on the theory of evolution
- Get a deeper understanding of Evolutionary Algorithms

- Slides are mainly based on:
 - Introduction to Evolutionary Computing by Eiben and Smith, Springer 2003.
 - Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies by Floreano & Mattiussi, MIT 2008

The 4 pillars of Evolution

All species derive from common ancestor

Charles Darwin, 1859
On the Origins of Species

Population

Group of several individuals

Diversity

Individuals have different characteristics

- Heredity
 - Characteristics are transmitted over generations
- Selection
 - Individuals produce more offspring than the environment can support
 - Better at food gathering = better at surviving = make more offspring

Evolutionary Computing

- Trial-and-error problem solving method
- Population of individuals with reproduction and mutation
- "Survival of the fittest" (Darwin)
- "Diversity drives change" (Darwin)
- Inspired by natural evolution:

Evolution		Problem Solving
Environment	\leftrightarrow	Problem
Individual	\longleftrightarrow	Candidate solution
Fitness	\longleftrightarrow	Quality

History

1948	Turing proposes "genetical or evolutionary search"				
1962	Bremermann runs first computer experiments on "optimization through evolution and recombination"				
1964	Rechenberg and Schwefel introduce evolution strategies (ES)				
1965	Fogel, Owens and Walsh introduce evolutionary programming (EP)				
1975	Holland introduces genetic algorithms (GA)				
1992	Koza introduces genetic programming (GP)				
1997	Launch of European EC Research Network EvoNet				

- All techniques use same technology & ideas but differ in details
- Research area Evolutionary Computing deals with Evolutionary Algorithms

Biological Background

- Genotype determines Phenotype
- Genes: complex mapping
 - One gene may affect many traits (features)
 - Many genes may affect one trait
 - Small changes in the genotype lead to large changes in the organism (e.g. Height, hair colour)
 - Encoded in strands of DNA
- Human DNA is organised into chromosomes
 - Characterised by Alleles (allele is one of two or more forms of a gene or a gene locus)
 - Together define the physical attributes of the individual

Phenotype & Genotype

- Phenotype: Manifestation of the organism (appearance, behavior, etc.).
 - Selection operates on the phenotype;
 - It is affected by environment, development, and learning
- Genotype: The genetic material of that organism.
 - It is transmitted during reproduction;
 - It is affected by mutations;
 - Selection does not operate directly on it
- Genetics: Structure and operation of genes
- Functional genomics: Role of genes in the organism
- To what extent are we determined by genotype and phenotype?

Jean-Felix & Auguste Piccard

DNA (DesoxyriboNucleic Acid)

- Long molecule, twisted in a spiral and compressed
- Humans have 23 pairs of DNA molecules (chromosomes)
- DNA is composed of 2 complementary sequences (strands) of 4 nucleobases (A, T, C, G), which bind together in pairs (A-T and C-G)

 A gene is a sequence of several nucleotides that produce a protein

Cell Replication

- Cells replicate in two ways:
 - Mitosis: during growth/maintenance of the organism
 - Meiosis: during production of gametes (egg / sperm cells)

Division into identical daughter cells

Mitosis

Meiosis

Cell Replication (cont.)

- Gametes: Sperm or egg cell
 - Contain only one single chromosome complement of chromosomes
 - Formed by a special form of cell splitting: Meiosis
 - During meiosis, pairs of chromosomes undergo crossing-over

 Occasionally some of the genetic material changes very slightly (replication error): Mutations

Example: Evolution of Camouflage

Chris Schneider, Boston University

General Characteristics of Evolutionary Algorithms (EA)

Evolutionary Algorithms are:

- generate-and-test algorithms
- population-based
- stochastic
- inspired by natural evolution
- search procedures:
 - guided by fitness
 - driven by variation and selection operators
- anytime algorithms: stop at any time with a (suboptimal) solution

General Scheme of EAs

General Categories of EAs

- Variation operators (recombination & mutation) depend on candidate representation
- Selection operators only require fitness value
 - "universal" operators
- EAs follow same basic scheme
 - differ mainly in technical details, e.g. representation of candidate solutions:

Algorithm Class	Candidate Representation
Genetic Algorithm string over finite alphabet, e.g. 01	
Evolution Strategies	real-valued vectors, e.g. (0.1,0.4,12.3)
Evolutionary Programming	application specific, e.g. FSM
Genetic Programming	trees

Representation

- Cover all possible solutions
- Encoding should only allow valid solutions (not always possible)
- Choose appropriate representation:
 - Bit-string can decode integers or real numbers
 - Problems: e.g. mutation changes values significantly (workaround: Gray coding: two successive values differ by 1 bit
 - Better direct representation of numbers
 - Bit-string often fine
- Two meanings of representation:
 - Mapping between phenotype & genotype space: de-/encoding
 - Data structure used in genotype space

Fitness Function

- Represents requirements to adapt to
- Basis for selection
- Assigns quality measure to genotypes
- Synonyms: evaluation or objective function

Example:

- Context: Minimize x²
- Phenotype: $x \in IN$
- **Genotype**: z: binary representation of x
- Fitness Function: fitness f(z) of genotype z is defined as 1 divided by square of its corresponding phenotype, e.g.

$$z = 0010 \rightarrow \text{phenotype: } x = 2 \rightarrow f(z) = 1/x^2 = 0.25$$

Fitness Landscape Metaphor

Usually of a very high dimension

 Local optimum: solution better than neighbouring solutions

Global optimum: best solution in landscape

- Uni-modal problem: only one local optimum
- Multi-modal problem: several local optima

Parent Selection

- Select individuals to create offspring
- Population level
- Often probabilistic:
 - Individuals with high fitness more likely to become parents
 - "Weak" individuals might also become parents (with low probability) to avoid local optima
 - Sum over all probabilities is 1.0
- Parent selection in ES: often chosen randomly from parent population
- Parent selection supports process of evolving better solutions over time

Parent Selection – Fitness Proportional Selection (FPS)

- Absolute fitness of individual vs. absolute fitness of population
- Probability to select i from population of size

$$\mu: \Pr(i) = f_i / \sum_{i=1}^{\mu} f_i$$

- Premature convergence
- Nearly equal fitness values result in no selection pressure
- Selection probabilities change for transposed fitness values
- Fitness scaling, e.g. $f(i) \beta^t$ with $\beta = \min_{y \in P^t} f(y)$ (subtract minimum fitness in current population)

Parent Selection – Ranking Selection

- Inspired by problems of Fitness Proportional Selection
- Rank individuals by fitness
- Assign selection probabilities based on rank
- Different implementations of Pr(i)
- Problem: Can lead to slower convergence

Example: Linear Rank (LR)

$$P_{LR}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

	Fitness	Rank	P _{selFP}	P _{selLR} (s=2)	P _{selLR} (s=1.5)
Α	1	1	0.1	0	0.167
В	5	3	0.5	0.67	0.5
С	4	2	0.4	0.33	0.33
Sum	10		1.0	1.0	1.0

Parent Selection – Roulette Wheel

- FPS and Ranking Selection define probability distributions for selecting individuals
- How to sample these distributions?
 - Roulette Wheel (RW)!
- Sampling quality of RW in practice:
 - High variance from theoretical distribution
 - Expensive to calculate in
 - distributed systems
 - if number of parents μ is large

Parent Selection – Tournament Selection

- Tournament Selection only requires order between individuals (relative fitness) and no global knowledge
 - Previous methods use knowledge over entire population
- Idea:
 - randomly select k individuals into a group G of contestants
 - individual *i* with $f(i) = \max_{i \in G} f(i)$ wins the tournament
 - add i to parent set
 - repeat until µ parents are selected

k is the tournament size (larger size = larger selection pressure)

Variation: Recombination

- Variation operator: create new individual(s) from parents
 - Synonym: crossover operator
 - Distinguishes EA from other optimization techniques
 - Merge information from parents into offspring
 - Aims for diversity,
 but sometimes a destructive jump in fitness landscape
- Crossover applied with probability p_c , e.g. $p_c \in [0.5, 1.0]$; otherwise parents are copied
- Implementation depends on representation form

Variation: Recombination – *n*-Point Crossover

- Split parents at n points and recombine segments
- Positional bias:
 - n-Point Crossover tends to keep together genes located close to each other
 - One-Point can never keep together genes from opposite ends
 - Knowledge on problem structure often not available

Example One-Point Crossover

Variation: Recombination – Uniform Crossover

- Swap genes based on vector of random values
 - Process generates first child
 - Second child: inverse process
- Distributional bias:
 - Genes are distributed among children instead of transferring larger sets of co-adapted genes to one child

Example: p=0.5, x = (0.3, 0.7, 0.4, 0.2, 0.6, 0.9, 0.1, 0.8)

Variation: Recombination – Further operators

- Arithmetic Recombination:
 - Powerful for floating-point representations
 Example: Simple arithmetic recombination

- Permutation:
 - Powerful if exchange of substrings is a constraint
 Example: Partially Mapped Crossover (PMX)

Variation: Mutation

- Variation operator: create new individual(s) from old ones
- Slightly mutates one individual
- Always stochastic: random and unbiased changes
- Implementation depends on representation form
- Many different implementations
- Like recombination, mutation plays different roles in different EAs

Variation: Mutation – Change of Allele Values

- Bitwise mutation
 - For every position: flip bit with probability p_m

- Random resetting / Uniform mutation
 - For every position: change value to random value from the corresponding domain with probability p_m

Variation: Mutation – Permutation

- Swap mutation
 - Randomly choose two positions and swap their allele values

- Insert mutation
 - Shuffle value of a second position towards the first position

- Scramble mutation
 - For a chosen subset scramble their positions

Survivor Selection

- Similarly to parent selection, survivor selection selects individuals based on quality
- Role: reduce μ parents and λ offspring to μ individuals that constitute the next generation
 - Fitter individuals more likely to survive
 - Weak individuals may also survive
- Selection often deterministic based on age and/or fitness
 - Age-based: Choose μ best from offspring only
 - Fitness-based: Choose µ best from parents and offspring
 - Elitism: Keep the $\kappa < \mu$ best, replace the rest by offspring
- Synonyms: environmental selection, replacement

Initialization

- Random initialization
- Heuristics:
 - might be used for higher quality initialization
 - additional time for implementation & computational effort
- EA should reach level of heuristic-based initialization after some k generations

Termination Condition

• Optimum value known: stop if reached, or if only a small $\varepsilon > 0$ away

- Problem: EAs are stochastic and may never fulfill that condition
- Other possible criteria include:
 - CPU time elapsed

- No fitness improvement within last t generations
- Diversity of population too small

Exploration vs. Exploitation

- Exploration: generate individuals in unexplored regions of the solution space
- Exploitation: generate individuals in regions with high fitness
- Trade-off:
 - too much exploration: inefficient search
 - too much exploitation: risk of getting stuck in local optima

Hybrid Evolutionary Algorithms

- Issue: For some problems an EA converges very slowly to a good solution
- But: Some knowledge about solutions is available
- Idea: Looking to improve EA search for good solutions
 - Hybridise EAs with Local Search operators that work within the EA loop
 - → Memetic Algorithm

Applications

- Civil, mechanical, and industrial engineering
- Optimal cutting
- Power systems
- Control systems
- Signal processing
- Rule for artificial player in computer games
- Machine learning
- ... and many more

Example: Travelling Salesman Problem

Example: Antenna for Nanosatellites

- ST5 mission: Measure effect of solar activity on the Earth's magnetosphere
 - 3 nanosatellites (50 cm)
 - Design of antenna to send data to ground station

[Lohn, Hornby, Linden, 2004]

Genetic Representation

- Tree-based Encoding
- Execute instructions from root to leaves
- Evaluate fitness according to specs in simulation
- Build best and test in anechoic chamber

Function Set

f = forward (length, radius) r x/y/z = rotate x/y/z **Terminal Set** Length, radius, x, y, z

Constraint:

max. 3 branches for each f node

Comparison human/evolved

Human

Evolved

Example: Evolving of Vehicle Structures

BoxCar 2D

http://boxcar2d.com/

Home | Designer | Best Cars | Forum | News | FAQ | The Algorithm | Versions | Contact

Computation Intelligence Car Evolution Using Box2D Physics (v3.2)

Discussion

Pros:

- General heuristic
- Able to find good solutions in feasible computing time
- Distributed execution possible

Cons:

- Cannot guarantee optimal solutions
- Long runtimes
- Success depends also on used parameters

Further Readings:

 Eiben, A.E., Smith, J.E., Introduction to Evolutionary Computing, Springer, 2003

Outlook: Evolving of Creatures

Motivating Example – new Perspective

