Performance of CNN in PMT PDE Evaluation

- based on the onsite PMT testing data

Email: zhaor25@mail2.sysu.edu.cn

School of Physics

Outline

Brief Introduction

2 traing and test of CNN

Summary

traditional methods of PDE evaluation

Calculate the expected p.e by "cut" or "fiting" of chagre spectrum.

\bigsilon: fit using a PMT photon response model

waveform classification using CNN

CNN can perform a powerful PSD and classify the waveforms, then we could get explicit p.e during one test.

图: tags of typical waveform from CNN

图: classification of events in one test

the expected photon number

If we do a "cut" is the charge spectrum@0.25 spe, the averager photon number μ can be acquired by 1

$$\mu = -\ln(\frac{N_0}{N})\tag{1}$$

where N_0 is the number of pedestal (0 p.e) events, N is the total event number.

However, if we know explicitly the photon number of specific event, the μ value is :

$$\mu = 1 \times \mathbf{n}_1 + 2 \times \mathbf{n}_2 + \dots + \mathbf{N} \times \mathbf{n}_{\mathbf{N}} \tag{2}$$

where n_N is the number of N p.e events.

¹E. H. Bellamy et al /Nucl. Instr. and Meth. m Phys . Res. A 339 (1994) 468-476

input of CNN

training data slecetion:

- random selection from different PMTs^a
- 1.5<QDC<1.7 for 1p.e
- 3.1<QDC<3.3 for 2p.e
- 4.7<QDC<4.9 for 3p.e
- 81ns ROI \rightarrow 9×9 2D map

aboth NNVT and HAMAMATSU

Output waveforms of PMT @ $Gain = 10^7$

The 2-D waveform histogram contains all the recorded waveforms, we can clearly see the "delayed signals" of HAMMATSU PMT and "big signals" of NNVT PMTs.

图: all frames of NNVT PMT

calculation of PDE

we can obtain the average photon number μ_{test} from charge spectrum, along with the $drawer_{factor}^2$, the PDE result from container system is:

$$PDE_{c} = \mu_{test} \times drawer_{factor}$$
 (3)

Then we map the PDE from container to the final PDE value with the help of container f_{cs}^3 :

$$PDE = PDE_c.f_{cs} + constant (4)$$

²Calibrate the drawer factor using PMT tested in the drawer which has vendor QE value.

³linear correlation factor

statistical results

Mean value of parameters for HAMAMATSU-PMT and NNVT-PMT⁴:

parameters (mean)	HAMAMATSU	NNVT
DCR(kHz)	15.38	41.24
rise time(ns)	7.4	3.2
fall time(ns)	10.36	15.9
PV	3.39	3.19
resolution	0.28	0.35
HV@1E7(V)	1861	1783
FWHM(ns)	9.08	5.8

⁴For the parameter TTS, we need to test the internal time resolution firstly, since we found the TTS results is highly drawer related.

ief Introduction traing and t

summary

- the charge and amplitude stability of HAMAMATSU PMT is better.
- ~6k NNVT PMTs and 5k HAMAMATSU PMTs has been tested in container system, test results and test reports are avaliable from PMTDataBase⁵.
- we reject or accept one PMT according to its performance test results from container and scanning station.
- we need to study the "delay signal" of HAMAMATSU PMT and "big signal" of NNVT PMT⁶ in detail⁷.
- the expected mean PDE value is 30.4% and mean DCR value is $\sim 34 \text{kHz}^8$ in CD.

⁵pmtdb.juno.ihep.ac.cn

⁶especially when PMT working in the multi-photon case

⁷one option is to transport several PMTs to SYSU for detailed study

⁸will decrease after installation

THANKS

BACK-UP

TTS of HAMAMATSU PMT

TTS calculation of NNVT PMT

