The NOAO Packages IRAF Version 2.10

noao:

artdata	-	Artificial data generation package	[up]
astrometry	-	Astrometry package	
astutil	-	Astronomical utilities package	[up]
digiphot	-	Digital stellar photometry package	[up]
focas	-	Faint object classification and analysis package	
imred	-	Image reductions package	[up]
mtlocal	-	Magtape i/o for special NOAO format tapes	[up]
nobsolete	-	Obsolete tasks to be phased out in a future release	[up]
nproto	-	Prototype (temporary, contributed) tasks	[up]
observatory	-	Examine and define observatory parameters	[up]
onedspec	-	One dimensional spectral red & analysis package	[up]
rv	-	Radial velocity analysis package	[up]
surfphot	-	Galaxy isophotal analysis package	
twodspec	-	Two dimensional spectral red & analysis package	[up]

• noao.artdata:

gallist - Make an artificial galaxies list mk1dspec - Make/add artificial 1D spectra

mk2dspec - Make/add artificial 2D spectra using 1D spectra templates

mkechelle - Make artificial 1D and 2D echelle spectra

mkexamples - Make artificial data examples mkheader - Append/replace header parameters

mknoise - Make/add noise and cosmic rays to 1D/2D images mkobjects - Make/add artificial stars and galaxies to 2D images

mkpattern - Make/add patterns to images starlist - Make an artificial star list

• noao.astutil:

airmass - Compute the airmass at a given elevation above the horizon

asttimes - Compute UT, Julian day, epoch, and siderial time

ccdtime - Compute time required to observe star of given magnitude

galactic - Convert ra, dec to galactic coordinates gratings - Compute and print grating parameters

pdm - Find periods in light curves by Phase Dispersion Minimization

precess - Precess a list of astronomical coordinates rycorrect - Compute radial velocity corrections

setairmass - Compute effective airmass and middle UT for an exposure

setjd - Compute and set Julian dates in images

• noao.digiphot:

apphot - Aperture Photometry Package

daophot - Dao Crowded-Field Photometry Package

photcal - Photometric Calibration Packageptools - Photometry Tools Package

• noao.digiphot.apphot:

aptest - Run basic tests on the apphot package tasks center - Compute accurate centers for a list of objects

centerpars - Edit the centering parameters

daofind - Find stars in an image using the DAO algorithm

datapars - Edit the data dependent parameters

fitpsf - Model the stellar psf with an analytic function

fitsky - Compute sky values in a list of annular or circular regions

fitskypars - Edit the sky fitting parameters

phot - Measure magnitudes for a list of stars
 photpars - Edit the photometry parameters
 polymark - Create polygon lists for polyphot

polyphot - Measure magnitudes inside a list of polygonal regions

polypars - Edit the polyphot parameters

qphot - Measure quick magnitudes for a list of stars
 radprof - Compute the stellar radial profile of a list of stars
 wphot - Measure magnitudes for a list of stars with weighting

lintran - Linearly transform a coordinate list

pexamine - Interactively examine or edit an apphot output file txdump - Dump select fields from an apphot output file

• noao.digiphot.daophot:

addstar - Add artificial stars to an image using the computed psf

allstar - Group and fit psf to multiple stars simultaneously

centerpars - Edit the centering algorithm parameters

daofind - Find stars in an image using the DAO algorithm

daopars - Edit the daophot algorithms parameter set daotest - Run basic tests on the daophot package tasks

datapars - Edit the data dependent parameters fitskypars - Edit the sky fitting algorithm parameters

group - Group stars based on positional overlap and signal/noise

nstar - Fit the psf to groups of stars simultaneously

peak - Fit the psf to single stars

phot - Compute sky values and initial magnitudes for a list of stars

photpars - Edit the photometry parameters psf - Fit the point spread function

seepsf - Compute an image of the point spread function substar - Subtract the fitted stars from the original image

pappend - Concatenate a list of daophot databases
pconvert - Convert a text database to a tables database

pdump - Print selected fields from a list of daophot databases grpselect - Select groups of a specified size from a daophot database

pexamine - Interactively examine and edit a daophot database

prenumber - Renumber stars in a daophot database select - Select records from a daophot database

psort - Sort a daophot database

• noao.digiphot.ptools:

istable - Is a file a table or text database file?

pappend - Concatenate a list of apphot/daophot databases

pconvert - Convert from an apphot/daophot text to tables database
pdump - Print selected columns of a list of daophot/apphot databases

prenumber - Renumber a list of apphot/daophot databases

pexamine - Interactively examine and edit an apphot/daophot database
 Select records from a list of apphot/daophot databases

psort - Sort a list of apphot/daophot databases
 pttest - Run basic tests on the ptools package tasks

tbappend - Concatenate a list of apphot/daophot tables databases
tbdump - Print selected columns of a list of tables databases
tbrenumber - Renumber a list of apphot/daophot tables databases

tbselect - Select records from a list of apphot/daophot tables databases

tbsort - Sort a list of apphot/daophot tables databases

txappend - Concatenate a list of apphot/daophot text databases

txdump - Print selected columns of a list of apphot/daophot text databases

txrenumber - Renumber a list of apphot/daophot text databases

txselect - Select records from a list of apphot/daophot text databases

txsort - Sort a list of apphot/daophot text databases

• noao.imred:

argus - CTIO ARGUS reduction package bias - General bias subtraction tools ccdred - Generic CCD reductions

ctioslit - CTIO spectrophotometric reduction package

dtoi - Density to Intensity reductions for photographic plates

echelle - Echelle spectra reductions (slit and FOE)

generic - Generic image reductions tools

hydra - KPNO HYDRA (and NESSIE) reduction package

iids - KPNO IIDS spectral reductions
 irred - KPNO IR camera reductions
 irs - KPNO IRS spectral reductions

kpnocoude - KPNO coude reduction package (slit and 3 fiber)

kpnoslit - KPNO low/moderate dispersion slits (Goldcam, RCspec, Whitecam)

specred - Generic slit and fiber spectral reduction package vtel - Solar vacuum telescope image reductions

• noao.imred.argus:

apall - Extract 1D spectra (all parameters in one task)

apdefault - Set the default aperture parameters

apedit - Edit apertures interactively

apfind - Automatically find spectra and define apertures

aprecenter - Recenter apertures apresize - Resize apertures apsum - Extract 1D spectra

aptrace - Trace positions of spectra

bplot - Batch plots of spectra
continuum - Fit the continuum in spectra
dispcor - Dispersion correct spectra
dopcor - Doppler correct spectra

identify - Identify features in spectrum for dispersion solution

msresp1d - Create 1D response spectra from flat field and sky spectra refspectra - Assign wavelength reference spectra to other spectra

reidentify - Automatically identify features in spectra sapertures - Set or change aperture header information

sarith - Spectrum arithmetic

scombine - Combine spectra having different wavelength ranges scopy - Select and copy apertures in different spectral formats compute effective airmass and middle UT for an exposure

setjd - Compute and set Julian dates in images

slist - List spectrum header parameters specplot - Stack and plot multiple spectra splot - Preliminary spectral plot/analysis

doargus - Process ARGUS spectra demos - Demonstrations and tests

• noao.imred.bias:

colbias - Fit and subtract an average column bias linebias - Fit and subtract an average line bias

• noao.imred.ccdred:

badpiximage - Create a bad pixel mask image from a bad pixel file

ccdgroups - Group CCD images into image lists

ccdhedit - CCD image header editor

ccdinstrument - Review and edit instrument translation files

ccdlist - List CCD processing information

ccdproc - Process CCD images

ccdtest - CCD test and demonstration package

combine - Combine CCD images

cosmicrays - Detect and replace cosmic rays

darkcombine - Combine and process dark count images flatcombine - Combine and process flat field images

mkfringecor - Make fringe correction images from sky images mkillumcor - Make flat field illumination correction images

mkillumflat - Make illumination corrected flat fields
mkskycor - Make sky illumination correction images
mkskyflat - Make sky corrected flat field images

setinstrument - Set instrument parameters

zerocombine - Combine and process zero level images

ADDITIONAL HELP TOPICS

ccdgeometry - Discussion of CCD coordinate/geometry keywords

ccdtypes - Description of the CCD image types flatfields - Discussion of CCD flat field calibrations

guide - Introductory guide to using the CCDRED package

instruments - Instrument specific data files
package - CCD image reduction package
subsets - Description of CCD subsets

• noao.imred.ccdred.ccdtest:

artobs - Create an artificial CCD observation

demo - Run a demonstration of the CCD reduction package mkimage - Make or modify an image with simple values subsection - Create an artificial subsection CCD observation

• noao.imred.ctioslit:

apall - Extract 1D spectra (all parameters in one task)

apdefault - Set the default aperture parameters

apedit - Edit apertures interactively

apfind - Automatically find spectra and define apertures

aprecenter - Recenter apertures
apresize - Resize apertures
apsum - Extract 1D spectra

aptrace - Trace positions of spectra

bplot - Batch plot of spectra with SPLOT

calibrate - Apply extinction and flux calibrations to spectra continuum - Fit and normalize the continuum of multispec spectra

deredden - Apply interstellar extinction corrections

dispcor - Dispersion correct spectra dopcor - Doppler correct spectra

identify - Identify arc lines and determine a dispersion function

refspectra - Assign reference spectra to object spectra

reidentify - Reidentify arc lines and determine new dispersion functions

sarith - Spectrum arithmetic scombine - Combine spectra

scopy - Copy spectra including aperture selection and format changes

sensfunc - Create sensitivity function

setairmass - Compute effective airmass and middle UT for an exposure

setid - Compute and set Julian dates in images

slist - List spectral header elements specplot - Stack and plot multiple spectra splot - Plot and analysis spectra

standard - Identify standard stars to be used in sensitivity calc

doslit - Process CTIO slit spectra demos - Demonstrations and tests

• noao.imred.dtoi:

dematch - Match a list of density values to exposure values

hdfit - Fit a curve to density, log exposure values

hdshift - Align related HD curves

hdtoi - Apply DTOI transformation to density image selftest - Self test program to check DTOI transformation

spotlist - Generate a list of calibration spot values

• noao.imred.echelle:

apall - Extract 1D spectra (all parameters in one task)
 apdefault - Set the default aperture parameters and apidtable

apedit - Edit apertures interactively

apfind - Automatically find spectra and define apertures
 apfit - Fit 2D spectra and output the fit, difference, or ratio

apflatten - Remove overall spectral and profile shapes from flat fields

apmask - Create an IRAF pixel list mask of the apertures

apnormalize - Normalize 2D apertures by 1D functions

aprecenter - Recenter apertures apresize - Resize apertures

apscatter - Fit and subtract scattered light

apsum - Extract 1D spectra

aptrace - Trace positions of spectra

bplot - Batch plots of spectra

calibrate - Apply extinction and flux calibrations to spectra

continuum - Fit the continuum in spectra

deredden - Apply interstellar extinction corrections

dispcor - Dispersion correct spectra dopcor - Doppler correct spectra

ecidentify - Identify features in spectrum for dispersion solution

ecreidentify - Automatically reidentify features in spectra

refspectra - Assign wavelength reference spectra to other spectra

sarith - Spectrum arithmetic scombine - Combine spectra

scopy - Select and copy apertures in different spectral formats

sensfunc - Compute sensitivity function

setairmass - Compute effective airmass and middle UT for an exposure

setjd - Compute and set Julian dates in images

slist - List spectrum header parameters specplot - Stack and plot multiple spectra splot - Preliminary spectral plot/analysis

standard - Identify standard stars to be used in sensitivity calc

doecslit - Process Echelle slit spectra

dofoe - Process Fiber Optic Echelle (FOE) spectra

demos - Demonstrations and tests

• noao.imred.generic:

background - Fit and subtract a line or column background

cosmicrays - Detect and replace cosmic rays

darksub - Scale and subtract a dark count image

flat1d - Make flat field by fitting a 1D func. to the lines or columns

flatten - Flatten images using a flat field

normalize - Normalize images

normflat - Create a flat field by normalizing and replacing low values

• noao.imred.hydra:

apall - Extract 1D spectra (all parameters in one task)

apdefault - Set the default aperture parameters

apedit - Edit apertures interactively

apfind - Automatically find spectra and define apertures

aprecenter - Recenter aperturesapresize - Resize apertures

apscatter - Fit and remove scattered light

apsum - Extract 1D spectra

aptrace - Trace positions of spectra

bplot - Batch plots of spectra
continuum - Fit the continuum in spectra
dispcor - Dispersion correct spectra
dopcor - Doppler correct spectra

identify - Identify features in spectrum for dispersion solution
msresp1d - Create 1D response spectra from flat field and sky spectra
refspectra - Assign wavelength reference spectra to other spectra

reidentify - Automatically identify features in spectra sapertures - Set or change aperture header information

sarith - Spectrum arithmetic

scombine - Combine spectra having different wavelength ranges
scopy - Select and copy apertures in different spectral formats
setairmass - Compute effective airmass and middle UT for an exposure

setjd - Compute and set Julian dates in images slist - List spectrum header parameters specplot - Stack and plot multiple spectra

splot - Preliminary spectral plot/analysis

dohydra - Process HYDRA spectra demos - Demonstrations and tests

• noao.imred.iids:

addsets - Add subsets of strings of spectra
batchred - Batch processing of IIDS/IRS spectra

bplot - Batch plots of spectra

bswitch - Beam-switch strings of spectra to make obj-sky pairs

calibrate - Apply sensitivity correction to spectra

coefs - Extract mtn reduced coefficients from henear scans

coincor - Correct spectra for detector count rates

continuum - Fit the continuum in spectra

deredden - Apply interstellar extinction corrections

dispcor - Dispersion correct spectra dopcor - Doppler correct spectra

extinct - Use BSWITCH for extinction correction

flatdiv - Divide spectra by flat field

flatfit - Sum and normalize flat field spectra

identify - Identify features in spectrum for dispersion solution

lcalib - List calibration file data mkspec - Generate an artificial spectrum

names - Generate a list of image names from a string

powercor - Apply power law correction to mountain reduced spectra

process - A task generated by BATCHRED

refspectra - Assign reference spectra to object spectra reidentify - Automatically identify features in spectra

scombine - Combine spectra having different wavelength ranges

sensfunc - Create sensitivity function

setairmass - Compute effective airmass and middle UT for an exposure

setid - Compute and set Julian dates in images

sinterp - Interpolate a table of x,y pairs to create a spectrum

slist1d - List spectral header elements

specplot - Stack and plot multiple spectrasplot - Preliminary spectral plot/analysis

standard - Identify standard stars to be used in sensitivity calc

subsets - Substract pairs in strings of spectra

sums - Generate sums of object and sky spectra by aperture

noao.imred.irred:

center - Compute accurate centers for a list of objects

centerpars - Edit the centering parameters
datapars - Edit the data dependent parameters
flatten - Flatten images using a flat field
iralign - Align the image produced by irmosaic

irmatch1d - Align and intensity match the image produced by irmosaic (1D) irmatch2d - Align and intensity match the image produced by irmosaic (2D)

irmosaic - Mosaic an ordered list of images onto a grid
 mosproc - Prepare images for quick look mosaicing
 txdump - Select fields from the center task output text file

• noao.imred.irs:

addsets - Add subsets of strings of spectra batchred - Batch processing of IIDS/IRS spectra

bplot - Batch plots of spectra

bswitch - Beam-switch strings of spectra to make obj-sky pairs

calibrate - Apply sensitivity correction to spectra

coefs - Extract mtn reduced ceofficients from henear scans

continuum - Fit the continuum in spectra

deredden - Apply interstellar extinction corrections

dispcor - Dispersion correct spectra dopcor - Doppler correct spectra

extinct - Use BSWITCH for extinction correction

flatdiv - Divide spectra by flat field

flatfit - Sum and normalize flat field spectra

identify - Identify features in spectrum for dispersion solution

lcalib - List calibration file data mkspec - Generate an artificial spectrum

names - Generate a list of image names from a string

process - A task generated by BATCHRED

refspectra - Assign reference spectra to object spectra reidentify - Automatically identify features in spectra

scombine - Combine spectra having different wavelength ranges

sensfunc - Create sensitivity function

setairmass - Compute effective airmass and middle UT for an exposure

setjd - Compute and set Julian dates in images

sinterp - Interpolate a table of x,y pairs to create a spectrum

slist1d - List spectral header elements
specplot - Stack and plot multiple spectra
splot - Preliminary spectral plot/analysis

standard - Identify standard stars to be used in sensitivity calc

subsets - Substract pairs in strings of spectra

sums - Generate sums of object and sky spectra by aperture

• noao.imred.kpnocoude:

apall - Extract 1D spectra (all parameters in one task)

apdefault - Set the default aperture parameters

apedit - Edit apertures interactively

apfind - Automatically find spectra and define apertures

aprecenter - Recenter apertures
apresize - Resize apertures
apsum - Extract 1D spectra

aptrace - Trace positions of spectra

bplot - Batch plot of spectra with SPLOT

calibrate - Apply extinction and flux calibrations to spectra continuum - Fit and normalize the continuum of multispec spectra

deredden - Apply interstellar extinction corrections

dispcor - Dispersion correct spectra dopcor - Doppler correct spectra

identify - Identify arc lines and determine a dispersion function msresp1d - Create fiber response spectra from flat field and sky spectra

refspectra - Assign reference spectra to observations

reidentify - Reidentify arc lines and determine new dispersion functions

sapertures - Set or change aperture header information

sarith - Spectrum arithmetic scombine - Combine spectra

scopy - Copy spectra including aperture selection and format changes

sensfunc - Create sensitivity function

setairmass - Compute effective airmass and middle UT for an exposure

setid - Compute and set Julian dates in images

slist - List spectrum headers

specplot - Stack and plot multiple spectrasplot - Plot and analyze spectra

standard - Identify standard stars to be used in sensitivity calc

do3fiber - Process KPNO coude three fiber spectra

doslit - Process KPNO coude slit spectra

demos - Demonstrations and tests

• noao.imred.kpnoslit:

apall - Extract 1D spectra (all parameters in one task)

apdefault - Set the default aperture parameters

apedit - Edit apertures interactively

apfind - Automatically find spectra and define apertures

aprecenter - Recenter apertures
 apresize - Resize apertures
 apsum - Extract 1D spectra
 aptrace - Trace positions of spectra

bplot - Batch plot of spectra with SPLOT

calibrate - Apply extinction and flux calibrations to spectra continuum - Fit and normalize the continuum of multispec spectra

deredden - Apply interstellar extinction corrections

dispcor - Dispersion correct spectra dopcor - Doppler correct spectra

identify - Identify arc lines and determine a dispersion function

refspectra - Assign reference spectra to observations

reidentify - Reidentify arc lines and determine new dispersion functions

sarith - Spectrum arithmetic scombine - Combine spectra

scopy - Copy spectra including aperture selection and format changes

sensfunc - Create sensitivity function

setairmass - Compute effective airmass and middle UT for an exposure

setjd - Compute and set Julian dates in images

slist - List spectrum headers

specplot - Stack and plot multiple spectra

splot - Plot and analyze spectra

standard - Identify standard stars to be used in sensitivity calc

doslit - Process slit spectra
demos - Demonstrations and tests

• noao.imred.specred:

apall - Extract 1D spectra (all parameters in one task)
 apdefault - Set the default aperture parameters and apidtable

apedit - Edit apertures interactively

apfind - Automatically find spectra and define apertures
 apfit - Fit 2D spectra and output the fit, difference, or ratio
 apflatten - Remove overall spectral and profile shapes from flat fields

apmask - Create and IRAF pixel list mask of the apertures

apnormalize - Normalize 2D apertures by 1D functions

aprecenter - Recenter aperturesapresize - Resize apertures

apscatter - Fit and subtract scattered light

apsum - Extract 1D spectra

aptrace - Trace positions of spectra

bplot - Batch plot of spectra with SPLOT
 calibrate - Extinction and flux calibrate spectra

continuum - Fit the continuum in spectra

deredden - Apply interstellar extinction correction

dispcor - Dispersion correct spectra dopcor - Doppler correct spectra fitprofs - Fit gaussian profiles

identify - Identify features in spectrum for dispersion solution
msresp1d - Create 1D response spectra from flat field and sky spectra
refspectra - Assign wavelength reference spectra to other spectra

reidentify - Automatically reidentify features in spectra sapertures - Set or change aperture header information

sarith - Spectrum arithmetic scombine - Combine spectra

scopy - Select and copy apertures in different spectral formats
sensitivity from standard stars
compute effective airmass and middle UT for an exposure

setjd - Compute and set Julian dates in images sfit - Fit spectra and output fit, ratio, or difference skysub - Sky subtract extracted multispec spectra

slist - List spectrum header parameters specplot - Scale, stack, and plot multiple spectra splot - Preliminary spectral plot/analysis

standard - Tabuluate standard star counts and fluxes

dofibers - Process fiber spectra doslit - Process slit spectra

• noao.imred.vtel:

destreak - Destreak He 10830 grams.

destreak5 - First pass processing CL script for 10830 grams.

dicoplot - Make dicomed plots of carrington maps.

fitslogr - Make a log of certain header parameters from a FITS tape.

getsqib - Extract the squibby brightness image from a full disk scan.

makehelium - Cl script for processing destreaked 10830 grams(second pass).

Cl script for processing magnetograms into projected maps

merge - Merge daily grams into a Carrington map.

mrotlogr - Log some header parameters from a FITS rotation map tape.
mscan - Read all sector scans on a tape and put them into images.

pimtext - Put text directly into images using a pixel font.

putsqib - Merge a squibby brightness image into a full disk image.

quickfit - Fit an ellipse to the solar limb.

readvt - Read a full disk tape and produce an IRAF image.
rmap - Map a full disk image into a 180 by 180 flat image.
syndico - Make dicomed print of daily grams 18 cm across.

tcopy - Tape to tape copy routine.

trim - Set all pixels outside the limb to 0.0 (use sqib for limb).

Remove effects of data wraparound on continuum scans.

Vtblink - Blink daily grams on the IIS to check for registration.

Examine a vacuum telescope tape, print headers and profile.

viexamme - Examme a vacuum terescope tape, print neaders and pro

writetape - Cl script to write 5 full disk grams to tape.

writevt - Write an IRAF image to tape in vacuum telescope format.

• noao.mtlocal:

ldumpf - List the permanent files on a Cyber DUMPF tape r2df - Convert a CTIO 2-d frutti image into an IRAF image rcamera - Convert a CAMERA image into an IRAF image

rdumpf - Convert IPPS rasters from a DUMPF tape to IRAF images ridsfile - Convert IDSFILES from a DUMPF tape to IRAF images ridsmtn - Convert mountain format IDS/IRS data to IRAF images ridsout - Convert a text file in IDSOUT format to IRAF images

rpds - Convert a PDS image into an IRAF image

rrcopy - Convert IPPS rasters from an RCOPY tape to IRAF images widstape - Convert ONEDSPEC spectra to IDSOUT text format

noao.nproto:

binpairs - Bin pairs of (x,y) points in log separation findgain - Estimate the gain and readnoise of a CCD

findthresh - Estimate a CCD's sky noise from the gain and readnoise

iralign - Align the mosaiced image produced by irmosaic

irmatch1d - Align and intensity match image produced by irmosaic (1D) irmatch2d - Align and intensity match image produced by irmosaic (2D)

irmosaic - Mosaic an ordered list of images onto a grid

linpol - Calculate polarization frames and Stoke's parameters

slitpic - Generate IRAF image of aperture slit mask

• noao.onedspec:

bplot - Batch plots of spectra

calibrate - Apply extinction and flux calibrations to spectra

continuum - Fit the continuum in spectra

deredden - Apply interstellar extinction correction dispaxis - Dispersion axis parameters for 2D images

dispcor - Dispersion correct spectra dopcor - Apply doppler corrections fitprofs - Fit gaussian profiles

identify - Identify features in spectrum for dispersion solution

lcalib - List calibration file data

mkspec - Generate an artificial spectrum

names - Generate a list of image names from a string ndprep - Make neutral density filter calibration image

refspectra - Assign wavelength reference spectra to other spectra

reidentify - Automatically identify features in spectra sapertures - Set or change aperture header information

sarith - Spectrum arithmetic

scombine - Combine spectra having different wavelength ranges scopy - Select and copy apertures in different spectral formats

sensfunc - Create sensitivity function

setairmass - Compute effective airmass and middle UT for an exposure

setjd - Compute and set Julian dates in images sfit - Fit spectra and output fit, ratio, or difference

sinterp - Interpolate a table of x,y pairs to create a spectrum

slist - List spectrum header parameters specplot - Stack and plot multiple spectra splot - Preliminary spectral plot/analysis

standard - Identify standard stars to be used in sensitivity calc

ADDITIONAL HELP TOPICS

package - Discussion and overview of package including sections on:

spectral formats, dispersion coordinates, and units

noao.rv:

continpars - Edit continuum subtraction parameters filtpars - Edit the filter function parameters

fxcor - Radial velocities via Fourier cross correlation

keywpars - Translate the image header keywords used in RV package

rvcorrect - Compute radial velocity corrections

noao.twodspec:

apextract - Aperture Extraction Package

longslit - Longslit Package

• noao.twodspec.apextract:

apall - Extract 1D spectra (all parameters in one task)
 apdefault - Set the default aperture parameters and apidtable

apdemos - Various tutorial demonstrationsapedit - Edit apertures interactively

apfind - Automatically find spectra and define apertures
 apfit - Fit 2D spectra and output the fit, difference, or ratio
 apflatten - Remove overall spectral and profile shapes from flat fields

apmask - Create and IRAF pixel list mask of the apertures

apnormalize - Normalize 2D apertures by 1D functions

aprecenter - Recenter aperturesapresize - Resize apertures

apscatter - Fit and subtract scattered light

apsum - Extract 1D spectra

aptrace - Trace positions of spectra

ADDITIONAL HELP TOPICS

apbackground - Background subtraction algorithms approfiles - Profile determination algorithms

apvariance - Extractions, variance weighting, cleaning, and noise model package - Package parameters and general description of package

• noao.twodspec.longslit:

background
 extinction
 Fit and subtract a line or column background
 Apply atmospheric extinction corrections to images

fitcoords - Fit user coordinates to image coordinates

fluxcalib - Apply flux calibration to images

identify - Identify features

illumination - Determine illumination calibration

reidentify - Reidentify features

response - Determine response calibration

setairmass - Compute effective airmass and middle UT for an exposure

setjd - Compute and set Julian dates in images

transform - Transform longslit images to user coordinates

Many of the tasks in the NOAO packages are visible in several different packages. Although these are the same tasks and provide the same functionality, the default parameters are often set differently to account for different instruments or uses.