

NEARLY-TIGHT AND OBLIVIOUS ALGORITHMS FOR EXPLAINABLE CLUSTERING

Buddhima Gamlath, Xinrui Jia, Adam Polak, Ola Svensson

Classic clustering

Given a set of points $X \subseteq \mathbb{R}^d$, find a set of *k* centers *C* that

• *k*-medians:

• *k*-means:

 $\sum_{c \in C} \min_{c \in C} \ell_2^2(x, c).$

There exist constant factor approximation algorithms.

But how can we explain why a point belongs to a particular cluster?

Explainable clustering [Dasgupta, Frost, Moshkovitz, Rashtchian, ICML'20]

Clustering explained by axis-aligned threshold cuts.

Paths from root to leaf in the **threshold tree** explain why points belong to a cluster. Price of explainability: How much more expensive is an explainable clustering?

Previous and concurrent work

		k-medians	<i>k</i> -means	ℓ_p -norm	
-	Algorithms	O(k)	$O(k^2)$		Dasgupta et al.
		$O(d \log k)$	$O(kd \log k)$		Laber and Murtinho
		$O(\log^2 k)$	$O(k \log^2 k)$	$O(k^{p-1}\log^2 k)$	This paper
		$O(\log k \log \log k)$	$O(k \log k \log \log k)$		Makarychev and Shan
		$O(\log k \log \log k)$	$O(k \log k)$		Esfandiari et al.
		$O(d\log^2 d)$			Esfandiari et al.
			$O(k^{1-2/d}\operatorname{polylog} k)$		Charikar and Hu
	Lower bounds	$\Omega(\log k)$	$\Omega(\log k)$		Dasgupta et al.
			$\Omega(k)$	$\Omega(k^{p-1})$	This paper
			$\Omega(k/\log k)$		Makarychev and Shan
		$\Omega(\min(d, \log k))$	$\Omega(k)$		Esfandiari et al.
			$\Omega(k^{1-2/d}/polylogk)$		Charikar and Hu

Algorithm for explainable k-medians

- 1. Start with a non-explainable clustering.
- 2. Compute bounding box of centers. $L = \sum_{i=1}^{d} L_i$, the sum of all side lengths.
- 3. Keep sampling random threshold cuts (i, θ)
- *i* with probability L_i/L ,
- $\theta \in L_i$ uniformly at random.

In the stream of random cuts, take a cut if it separates some centers, until a threshold tree is formed, i.e. each center has its own leaf.

The algorithm is oblivious to data points, and runs in time $\tilde{O}(kd)$.

Summary and open problems

We have a nearly tight understanding of the price of explainability:

 $\Omega(k^{p-1}) \cdot OPT \leq \mathbf{cost}$ of explainable clustering $\leq O(k^{p-1}\log^2 k) \cdot OPT$.

Conjecture. The expected cost of our algorithm for *k*-medians is at most $(1 + H_{k-1}) \cdot OPT \leq O(\log k) \cdot OPT$.

What's next?

- Generalize the notion of explainability, e.g., allow in each node hyperplanes in a small number of dimensions.
- Define natural clusterability assumptions under which the price of explainability is lower.

Analysis of the algorithm

Warm up: two centers

 $\Pr[\text{random cut separates } x \text{ from its center } c(x)]$ $\leq \ell_1(x,c(x))/L$

 $\mathbb{E}[\# \text{ of points that get separated}]$ $\leq \sum_{x} \ell_1(x, c(x))/L = OPT/L$

Cost increase for each separated point $\leq L$

 \Rightarrow Cost of explainable clustering $\leq 2OPT$

A naive bound for *k* centers

We may need k-1 cuts to separate k centers \Rightarrow $OPT + (k-1) \cdot \frac{OPT}{I} \cdot L = k \cdot OPT$

A refined bound for *k* centers

How many random cuts to separate all centers?

- Let C_{max} be the largest distance between two centers, C_{min} the smallest
- For a fixed pair of centers at least $C_{\text{max}}/2$ apart,

Pr[random cut does not separate them] $\leq 1 - C_{\text{max}}/2L$

• Take $100 \cdot (2L/C_{\text{max}}) \cdot \log k$ successive random cuts

$$\left(1 - \frac{C_{\max}}{2L}\right)^{100 \cdot (2L/C_{\max}) \cdot \log k} \leq \frac{1}{k^{100}}$$

⇒ With high probability, all such pairs of centers are separated

How much these cuts cost?

• Cost increase of $O(L/C_{\text{max}} \cdot \log k)$ cuts?

$$O\left(\frac{L}{C_{\max}} \cdot \log k\right) \cdot \frac{OPT}{L} \cdot C_{\max} = O(\log k) \cdot OPT$$

- Going from $C_{\text{max}} \to C_{\text{max}}/2$ increases cost by $O(\log k) \cdot OPT$
- Repeating $O(\log(C_{\text{max}}/C_{\text{min}}))$ times gives

$$O(\log(C_{\max}/C_{\min}) \cdot \log k) \cdot OPT$$

How to get $O(\log^2 k) \cdot OPT$?

- Automatic if C_{max} and C_{min} are polynomially related
- Otherwise, forbid cuts that separate centers that are too close
- While reducing $C_{\text{max}} \to C_{\text{max}}/2$, forbid separating center pairs closer than C_{max}/k^4