1 E-R Diagrams

1.1

Many-to-many mapping between A and B

Solution : There are no non-trivial dependencies, unless you consider a more complex case. Consider having a database that tracks artists, artwork, and medium. Although multiple artists can use multiple mediums and the same medium can be used by multiple artists, there could be a non-trivial dependency such that certain mediums are only used by certain artists. However this is extremely non-trivial.

1.2

Many-to-one mapping between A and B

 $\textbf{Solution}: F = \{a \rightarrow b\}$

1.3

One-to-many mapping between A and B

Solution : $F = \{b \rightarrow a\}$

1.4

One-to-one mapping between A and B

Solution : $F = \{a \rightarrow b, b \rightarrow a\}$

2 Rules

Union

Solution : The Union rule states that if $a \to b$ holds on R and $a \to g$ holds on R, then $a \to bg$ holds on R. Using only Armstrong's axioms, we can derive:

$$a o b, \ a o g$$
 given $aa o ag$ augmentation $ag o bg$ augmentation $aa o bg$ transitivity $\therefore a o bg$ equivalence

Decomposition

Solution : The Decomposition rule states that if $a \to bg$ holds on R, then $a \to b$ holds on R and $a \to g$ holds on R. Using only Armstrong's axioms, we can derive:

$$a
ightarrow bg \qquad given$$
 $bg
ightarrow b, \ bg
ightarrow g \qquad reflexivity$ $\therefore a
ightarrow b \qquad transitivity$ $\therefore a
ightarrow g \qquad transitivity$

Pseudotransitivity

Solution : The Pseudotransitivity rule states that if $a \to b$ holds on R and $gb \to d$, then $ag \to d$ holds on R. Using only Armstrong's axioms, we can derive:

$$a o b, \ gb o d$$
 given
$$ag o bg \qquad augmentation$$
 $\therefore ag o d \qquad equivalence, transitivity$

3 Functional Dependencies

$$R = (A, B, C, D, E)$$

$$F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$$

3.a

Solution : We can first trivially find all single attribute superkeys by traversing through the functional dependencies:

 $\alpha = A$, $\alpha^+ = A$ (identity):

- $A \rightarrow BC$, so $\alpha^+ = ABC$ (union)
- $B \rightarrow D$, so $\alpha^+ = ABCD$ (union)
- $CD \rightarrow E$, so $\alpha^+ = ABCDE$ (union) \checkmark

 $\alpha = B$, $\alpha^+ = B$ (identity):

• $B \rightarrow D$, so $\alpha^+ = BD$ (union) X

 $\alpha = C$, $\alpha^+ = C$ (identity) X

 $\alpha = D$, $\alpha^+ = D$ (identity) **X**:

 $\alpha = E$, $\alpha^+ = E$ (identity):

- $E \rightarrow A$, so $\alpha^+ = AE$ (union)
- same logic as for A, so $\alpha^+ = ABCDE$ (union) \checkmark

So we have that A, E are single key candidate keys. Now, let us consider having a set of two attributes. We know that we cannot have any set of attributes containing A or E, as these would not be simple candidate keys.

$$\alpha = BC$$
, $\alpha^+ = BC$ (identity):

- $B \rightarrow D$, so $\alpha^+ = BCD$ (union)
- $CD \rightarrow E$, so $\alpha^+ = BCDE$ (union)
- $E \rightarrow A$, so $\alpha^+ = ABCDE$ (union) \checkmark

• Attribute set closures:

$$B^+ = BD$$
 (from above) $C^+ = C$ (from above) \checkmark

$$\alpha = BD$$
, $\alpha^+ = BD$ (identity):

•
$$B \rightarrow D$$
, so $\alpha^+ = BD$ (union) X

$$\alpha = CD$$
, $\alpha^+ = CD$ (identity):

- $CD \rightarrow E$, so $\alpha^+ = CDE$ (union)
- $E \rightarrow A$, so $\alpha^+ = ACDE$ (union)
- $A \rightarrow BC$, so $\alpha^+ = ABCDE$ (union) \checkmark
- Attribute set closures:

$$C^+ = C$$
 (from above)

$$D^+ = D$$
 (from above) \checkmark

Therefore, we find the final set of candidate keys to be $\{A, BC, CD, E\}$

3.b

Describe all functional dependencies that will appear in the closure F^+ of F.

Solution:

- $A \rightarrow ABCDE$, and all dependencies generated from this by applying the Decomposition Rule (above)
- $E \rightarrow ABCDE$, and all dependencies generated from this by applying the Decomposition Rule (above)
- $BC \rightarrow ABCDE$, and all dependencies generated from this by applying the Decomposition Rule (above)
- $CD \rightarrow ABCDE$, and all dependencies generated from this by applying the Decomposition Rule (above)
- $B \rightarrow D$ (given), $B \rightarrow BD$ (union)
- All trivial dependencies $\alpha \to \beta$ where $\alpha = \{ABCDE\}$ and $\beta \subseteq \alpha$ (identity, decomposition)

• All trivial dependencies $\alpha\beta \to \gamma$ where $\alpha = \{A, BC, CD, E\}$, $\beta \in \{ABCDE\}$, and $\gamma \subseteq R$

4 Functional Dependencies

$$R(A,B,C,D,E,G)$$

$$F = \{A \to E, BC \to D, C \to A, AB \to D, D \to G, BC \to E, D \to E, BC \to A\}$$

4.a

Compute a canonical cover F_c of F.

Solution:

$$F_{c} = \{A \rightarrow E, BC \rightarrow ADE, C \rightarrow A, AB \rightarrow D, D \rightarrow EG\} \qquad (union)$$

$$BC \rightarrow AB \qquad (augmentation)$$

$$BC \rightarrow D \qquad (transitivity)$$

$$\therefore F_{c} = \{A \rightarrow E, BC \rightarrow AE, C \rightarrow A, AB \rightarrow D, D \rightarrow EG\} \qquad (BC \rightarrow D \ extraneous)$$

$$BC \rightarrow AB \qquad (augmentation)$$

$$BC \rightarrow A \qquad (decomposition)$$

$$\therefore F_{c} = \{A \rightarrow E, BC \rightarrow E, C \rightarrow A, AB \rightarrow D, D \rightarrow EG\} \qquad (BC \rightarrow A \ extraneous)$$

$$BC \rightarrow AB \qquad (augmentation)$$

$$BC \rightarrow D \qquad (transitivity)$$

$$BC \rightarrow E \qquad (transitivity, decomposition)$$

$$\therefore F_{c} = \{A \rightarrow E, C \rightarrow A, AB \rightarrow D, D \rightarrow EG\} \qquad (BC \rightarrow E \ extraneous)$$

There are no more simplifications to be made, so we now have the final canonical cover F_c of F.

4.b

Find a candidate key for R.

Solution : We can find a candidate key for R to be BC.

 $(BC)^+$:

• $\alpha^+ = BC$

- $C \rightarrow A$, so $\alpha^+ = ABC$ (transitivity, union)
- $AB \rightarrow D$, so $\alpha^+ = ABCD$ (transitivity, union)
- $D \rightarrow EG$, so $\alpha^+ = ABCDEG$ (transitivity, union) \checkmark

 B^+ :

• $\alpha^+ = B X$

 C^+ :

- $\alpha^+ = C$
- $C \rightarrow A$, so $\alpha^+ = AC$ (transitivity, union)
- $A \rightarrow E$, so $\alpha^+ = ACE$ (transitivity, union) **X**

Therefore, we have shown that we satisfy all requirements for BC to ba candidate key.

4.c

Decompose *R* into a BCNF schema. Prove that each of your final relation-schemas is indeed in BCNF.

Solution:

- $A \rightarrow E$, so we have $R_1(\underline{A}, E)$ and $R_2(A, B, C, D, G)$
- $C \rightarrow A$, so we have $R_1(\underline{A}, E)$, $R_2(\underline{C}, A)$, and $R_3(B, C, D, G)$
- $D \rightarrow G$, so we have $R_1(\underline{A}, E)$, $R_2(\underline{C}, A)$, $R_3(\underline{D}, G)$, and $R_5(B, C, D)$

Since BC is a candidate key, we can determine that our final relation-schemas are:

$$R_1(\underline{A}, E), R_2(\underline{C}, A), R_3(\underline{D}, G), \text{ and } R_4(\underline{B}, \underline{C}, D)$$

It is clear that we do not preserve the relations of $AB \rightarrow D$ *and* $D \rightarrow E$.

We know that our final relation-schemas are in BCNF. This is trivial for R_1 , R_2 , and R_3 as each of A, C, D is on the left hand side of the relation and is a primary key. For R_4 this is trivial since BC is a candidate key and a primary key.

4.d

Using the 3NF schema synthesis algorithm, create a 3NF schema for R.

Solution : $F_c = \{A \rightarrow E, C \rightarrow A, AB \rightarrow D, D \rightarrow EG\}$

- 1. $A \rightarrow E$, so we have $R_1(\underline{A}, E)$
- 2. $C \rightarrow A$, so we have $R_2(\underline{C}, A)$
- 3. $AB \rightarrow D$, so we have $R_3(\underline{A}, \underline{B}, D)$
- 4. $D \to EG$, so we have $R_4(\underline{D}, E, G)$

Candidate key BC is not in any schema, therefore we have: $R_5(\underline{B},\underline{C})$

5 (actually 6) Functional Dependencies

```
R(\text{course\_id}, \text{section\_id}, \text{dept}, \text{units}, \text{course\_level}, \text{instructor\_id}, \text{term}, \text{year}, \text{meet\_time}, \text{room}, \text{num\_students})
F = \{
                                      \{\text{course\_id}\} \rightarrow \{\text{dept, units, course\_level}\}
          {course_id, section_id, term, year} → {meet_time, room, num_students, instructor_id}
               {room, meet_time, term, year} → {instructor_id, course_id, section_id}
}
Shorthand labeling:
  A. course_id
   B. section_id
  C. dept
  D. units
   E. course_level
   F.
  G. instructor_id
  H. term
   I. year
   J. meet_time
  K. room
   L. num_students
```

6.a

Find all candidate keys of R.

```
Solution: There are two candidate keys for R. \alpha_1 = (ABHI)
• \alpha_1^+ = ABHI (identity)
• A \to CDE, so \alpha_1^+ = ABCDEHI (transitivity, union)
```

• $ABHI \rightarrow JKLG$, so $\alpha_1^+ = ABCDEGHIJKL$ (transitivity, union) \checkmark

$$\alpha_2 = (KJHI)$$

- $\alpha_2^+ = HIJK$ (identity)
- $KJHI \rightarrow GAB$, so $\alpha_2^+ = ABGHIJK$ (transitivity, union)
- $A \rightarrow CDE$, so $\alpha_2^+ = ABCDEGHIJK$ (transitivity, union)
- $ABHI \rightarrow JKLG$, so $\alpha_2^+ = ABCDEGHIJKL$ (transitivity, union) \checkmark

Therefore, the candidate keys for R are $\{ABHI, KJHI\}$, which can also be represented as $\{\{course_id, section_id, term, year\}, \{room, meet_time, term, year\}\}$

6.b

Identify all canonical covers F_c for the above set of functional dependencies.

Solution : It is trivial that the instructor_id is extraneous in in one of the two relations it is involved in, producing two possible canoncial covers given below:

$$\begin{array}{lcl} F & = & \{A \rightarrow CDE, ABHI \rightarrow JKLG, KJHI \rightarrow GAB\} \\ F_c^1 & = & \{A \rightarrow CDE, ABHI \rightarrow JKL, KJHI \rightarrow GAB\} \\ F_c^2 & = & \{A \rightarrow CDE, ABHI \rightarrow JKLG, KJHI \rightarrow AB\} \end{array}$$

For the context of our problem, it will probably be more appropriate to use F_c^2 , since it will most likely be more helpful to associate the course id, section id, term, and year with an instructor id versus a room, meet time, term, and year. You want to know what professor teaches what, and it will likely be more rare to try to directly find the instructor within a certain room.

6.c

Suggest both a normal form and a schema decomposition that would be best for actual use in a course management system. Briefly explain your rationale.

Solution : *BCNF*:

- $A \rightarrow CDE$, so we have $R_1(\underline{A}, C, D, E)$ and $R_2(A, B, G, H, I, J, K, L)$
- $ABHI \rightarrow JKLG$, so we have $R_1(\underline{A}, C, D, E)$ and $R_2(\underline{A}, \underline{B}, \underline{H}, \underline{I}, G, J, K, L)$.

3NF:

- 1. $A \rightarrow CDE$, so we have $R_1(\underline{A}, C, D, E)$
- 2. $ABHI \rightarrow JKLG$, so we have $R_2(\underline{A}, \underline{B}, \underline{H}, \underline{I}, J, K, L, G)$
- 3. $KJHI \rightarrow AB$, all of ABHIJK already in R_2

We trivially get the same schema representation. There are only two different schemas. We should enforce all restraints since any of the room, instructor_id, meet_time, and num_students could change for any course over different years, terms, or sections.