Digits of Pi CP220 Project Phase II Lovette Oyewole - 190888960 Fall 2020

Creating Equations

Truth Table

Table 1 is a truth table for the Digits of Pi

Decimal places	a ₁	a ₂	a 3	a 4	Pi number	p 1	p ₂	p ₃	p ₄
0	0	0	0	0	3	0	0	1	1
1	0	0	0	1	1	0	0	0	1
2	0	0	1	0	4	0	1	0	0
3	0	0	1	1	1	0	0	0	1
4	0	1	0	0	5	0	1	0	1
5	0	1	0	1	9	1	0	0	1
6	0	1	1	0	2	0	0	1	0
7	0	1	1	1	6	0	1	1	0
8	1	0	0	0	5	0	1	0	1
9	1	0	0	1	3	0	0	1	1
10	1	0	1	0	5	0	1	0	1

Table 1: Truth Table

The truth tabl	e containing on	y binary quant	ities is s	shown in T	able 2
1110 010111 00001		, 0111001, 0 0001110	711100 10 0		

a ₁	\mathbf{a}_2	a ₃	a 4	p ₁	p ₂	p ₃	p 4
0	0	0	0	0	0	1	1
0	0	0	1	0	0	0	1
0	0	1	0	0	1	0	0
0	0	1	1	0	0	0	1
0	1	0	0	0	1	0	1
0	1	0	1	1	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	1	1	0
1	0	0	0	0	1	0	1
1	0	0	1	0	0	1	1
1	0	1	0	0	1	0	1

Table 2: Truth Table showing only binary inputs and outputs

Output p₁

a ₁	\mathbf{a}_2	a ₃	a 4	p ₁
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0

Table 3: Truth Table for p₁

	p_1	a ₃ a ₄				
		00	01	11	10	
	00	0	0	0	0	
a_1a_2	01	0	1	0	0	
	11	0	0	0	0	
	10	0	0	0	0	

Table 4: Karnaugh Map Table for p_1 The terms given by the group will be $p_1 = a_1'a_2a_3'a_4$

Output p₂

a ₁	\mathbf{a}_2	a ₃	a ₄	p ₂
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1

Table 5: Truth Table for p₂

Output p₃

a ₁	a ₂	a ₃	a ₄	p ₃
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0

Table 7: Truth Table for p₃

	p_2	a ₃ a ₄				
		00	01	11	10	
	00	0	0	0	1	
a_1a_2	01	1	0	1	0	
	11	0	0	0	0	
	10	1	0	0	1	

Table 6: Karnaugh Map Table for p_2 The terms given by the group will be $p_2 = a_2'a_3a_4' + a_1a_2'a_4' + a_1'a_2a_3'a_4' + a_1'a_2a_3'a_4'$

	p ₃	a ₃ a ₄				
		00	01	11	10	
	00	1	0	0	0	
a ₁ a ₂	01	0	0	1	1	
	11	0	0	0	0	
	10	0	1	0	0	

Table 8: Karnaugh Map Table for p_3 The terms given by the group will be $p_3 = a_1a_2'a_3'a_4 + a_1'a_2a_3 + a_1'a_2'a_3'a_4'$

Output p₄

a ₁	\mathbf{a}_2	a ₃	a ₄	p ₄
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1

Table 9: Truth Table for p4

	p ₄	a ₃ a ₄				
		00	01	11	10	
	00	1	1	1	0	
a_1a_2	01	1	1	0	0	
	11	0	0	0	0	
	10	1	1	0	1	

Table 10: Karnaugh Map Table for p_4 (first grouping) The terms given by the group will be $a_1'a_3' + a_2'a_3'$

	p ₄	a ₃ a ₄				
		00	01	11	10	
	00	1	1	1	0	
a_1a_2	01	1	1	0	0	
	11	0	0	0	0	
	10	1	1	0	1	

Table 11: Karnaugh Map Table for p₄ (first grouping)
The terms given by the group will be

This will produce $p_4 = a_1'a_3' + a_2'a_3' + a_1a_2'a_4' + a_1'a_2'a_4$

Equation Testing

The equations were tested with Maxima

Output p₁

- (%i1) p1: not a1 and a2 and not a3 and a4;
- (%o1) $\neg a_1 \land a_2 \land \neg a_3 \land a_4$
- (%i2) p1, a1 = false, a2 = false, a3= false, a4 = false;
- (%o2) false
- (%i3) p1, a1 = false, a2 = false, a3= false, a4 = true;
- (%o3) **false**
- (%i4) p1, a1 = false, a2 = false, a3= true, a4 = false;

0

0

- (%o4) false
- (%i5) p1, a1 = false, a2 = false, a3= true, a4 = true;
- (%o5) **false**
- (%i6) p1, a1 = false, a2 = true, a3= false, a4 = false;
- (%06) **false**
- (%i7) p1, a1 = false, a2 = true, a3= false, a4 = true;
- (%o7) **true**
- (%i8) p1, a1 = false, a2 = true, a3= true, a4 = false;
- (%08) false
- (%i9) p1, a1 = false, a2 = true, a3= true, a4 = true;
- (%o9) **false**
- (%i10) p1, a1 = true, a2 = false, a3= false, a4 = false;
- (%o10) false
- (%ill) p1, a1 = true, a2 = false, a3= false, a4 = true;
- (%o11) **false**
- (%i12) p1, a1 = true, a2 = false, a3= true, a4 = false;
- (%o12) **false**

Figure 1: Test of p₁

This matches the truth table, so the equation for p_1 is correct.

Output p₂

```
(%il) p2: ( not a2 and a3 and not a4) or (a1 and not a2 and not a4) or (not a1 and a2 and not a3 and not a4) or (not a1 and a2 and a3 and a4);
(%01) \neg a_2 \wedge a_3 \wedge \neg a_4 \vee a_1 \wedge \neg a_2 \wedge \neg a_4 \vee \neg a_1 \wedge a_2 \wedge \neg a_3 \wedge \neg a_4 \vee \neg a_1 \wedge a_2 \wedge a_3 \wedge a_4
(%i2) p2, a1 = false, a2 = false, a3= false, a4 = false;
                                                                     0
(%o2) false
(%i3) p2, a1 = false, a2 = false, a3= false, a4 = true;
(%o3) false
(%i4) p2, a1 = false, a2 = false, a3= true, a4 = false;
                                                                     1
(%o4) true
(%i5) p2, a1 = false, a2 = false, a3= true, a4 = true;
                                                                     0
(%o5) false
(%i6) p2, a1 = false, a2 = true, a3= false, a4 = false;
(%i7) p2, a1 = false, a2 = true, a3= false, a4 = true;
                                                                     0
(%o7) false
(%i8) p2, a1 = false, a2 = true, a3= true, a4 = false;
                                                                     0
(%o8) false
(%i9) p2, a1 = false, a2 = true, a3= true, a4 = true;
(%o9) true
(%i10) p2, a1 = true, a2 = false, a3= false, a4 = false;
(%o10) true
(%i11) p2, a1 = true, a2 = false, a3= false, a4 = true;
(%o11) false
(%i12) p2, a1 = true, a2 = false, a3= true, a4 = false;
(%o12) true
```

Figure 2: Test of p₂

This matches the truth table, so the equation for p₂ is correct.

Output p₃

```
(%il) p3: (not al and not a2 and not a3 and not a4) or (al and not a2 and not a3 and a4) or (not al and a2 and a3);
(%o1) \neg a_1 \land \neg a_2 \land \neg a_3 \land \neg a_4 \lor a_1 \land \neg a_2 \land \neg a_3 \land a_4 \lor \neg a_1 \land a_2 \land a_3
(%i2) p3, a1 = false, a2 = false, a3= false, a4 = false;
                                                                   1
(%o2) true
(%i3) p3, a1 = false, a2 = false, a3= false, a4 = true;
(%o3) false
(%i4) p3, a1 = false, a2 = false, a3= true, a4 = false;
                                                                   0
(%o4) false
(%i5) p3, a1 = false, a2 = false, a3= true, a4 = true;
                                                                   0
(%i6) p3, a1 = false, a2 = true, a3= false, a4 = false;
                                                                   0
(%06) false
(%i7) p3, a1 = false, a2 = true, a3= false, a4 = true;
                                                                   0
(%o7) false
(%i8) p3, a1 = false, a2 = true, a3= true, a4 = false;
(%08) true
(%i9) p3, a1 = false, a2 = true, a3= true, a4 = true;
                                                                   1
(%o9) true
(%i10) p3, a1 = true, a2 = false, a3= false, a4 = false;
                                                                   0
(%o10) false
(%i11) p3, a1 = true, a2 = false, a3= false, a4 = true;
(%i12) p3, a1 = true, a2 = false, a3= true, a4 = false;
                                                                   0
(%o12) false
```

Figure 3: Test of p₃

This matches the truth table, so the equation for p₃ is correct.

Output p4

```
(%i1) p4: (not a1 and not a3) or (not a2 and not a3) or (a1 and not a2 and not a4) or (not a1 and not a2 and a4);
(%o1) \neg a_1 \land \neg a_3 \lor \neg a_2 \land \neg a_3 \lor a_1 \land \neg a_2 \land \neg a_4 \lor \neg a_1 \land \neg a_2 \land a_4
(%i2) p4, a1 = false, a2 = false, a3= false, a4 = false;
                                                                 1
(%o2) true
(%i3) p4, a1 = false, a2 = false, a3= false, a4 = true;
                                                                 1
(%o3) true
(%i4) p4, a1 = false, a2 = false, a3= true, a4 = false;
                                                                 0
(%o4) false
(%i5) p4, a1 = false, a2 = false, a3= true, a4 = true;
                                                                 1
(%o5) true
(%i6) p4, a1 = false, a2 = true, a3= false, a4 = false;
(%o6) true
(%i7) p4, a1 = false, a2 = true, a3= false, a4 = true;
                                                                 1
(%o7) true
(%i8) p4, a1 = false, a2 = true, a3= true, a4 = false;
                                                                 0
(%08) false
(%i9) p4, a1 = false, a2 = true, a3= true, a4 = true;
                                                                 0
(%o9) false
(%i10) p4, a1 = true, a2 = false, a3= false, a4 = false;
(%o10) true
(%i11) p4, a1 = true, a2 = false, a3= false, a4 = true;
(%o11) true
(%i12) p4, a1 = true, a2 = false, a3= true, a4 = false;
(%o12) true
```

Figure 4: Test of p₄

This matches the truth table, so the equation for p₄ is correct.

Summary

The equations for the outputs are:

$$\begin{aligned} p_1 &= a_1'a_2a_3'a_4 \\ p_2 &= a_2'a_3a_4' + a_1a_2'a_4' + a_1'a_2a_3'a_4' + a_1'a_2a_3'a_4' \\ p_3 &= a_1a_2'a_3'a_4 + a_1'a_2a_3 + a_1'a_2'a_3'a_4' \\ p_4 &= a_1'a_3' + a_2'a_3' + a_1a_2'a_4' + a_1'a_2'a_4 \end{aligned}$$

These equations have been tested and verified to be correct