## Competition on Real-Parameter Single Objective Computationally expensive Optimization

CEC 2015, Sendai Japan, May 2015

#### Contents

- Test suite and ranking
- Competition results
- Performance analysis

## Test suite and ranking

- Test Suite
  - 15 functions
  - -2 dimensions: 10d, 30d
  - -4 types
    - Unimodal functions: TF1, TF2
    - Simple Multimodal functions: TF3-TF9
    - Hybrid functions: TF10, TF11, and TF12
    - Composition functions: TF13, TF14, and TF15

## Test suite and ranking

#### Ranking

- F\* removed from the function objectives
- mean values and median values
- all 15 problems for 10 and 30 dimensions
- favor those algorithm can solve complicate problems

$$Total \ score = \left. \sum_{i=1}^{15} mean(\mathbf{f}_a) \right|_{D=10} + \left. \sum_{i=1}^{15} mean(\mathbf{f}_a) \right|_{D=30} + \left. \sum_{i=1}^{15} median(\mathbf{f}_a) \right|_{D=10} + \left. \sum_{i=1}^{15} median(\mathbf{f}_a) \right|_{D=30} + \left. \sum_{i=1}^$$

$$f_a = 0.5 \times \left( f_{MaxFEs} + f_{0.5MaxFEs} \right)$$

# Ranking results

| Paper ID | Algorithm  | Score              |  |  |
|----------|------------|--------------------|--|--|
| E-15035  | MVMO       | 3,062,550.15       |  |  |
| E-15487  | TunedCMAES | 203,324,192.51     |  |  |
| E-15664  | CMAS-ES_QR | 475,807,278.19     |  |  |
| E-15667  | iSRPSO     | 9,213,589,132.86   |  |  |
| E-15682  | humanCog   | 106,093,535,263.79 |  |  |

### Unimodal functions



### Unimodal functions























## Composition functions



## Composition functions



## Composition functions



## Performance analysis

- Comparison for different types
  - Unimodal functions: TF1, TF2
  - Simple Multimodal functions: TF3-TF9
  - Hybrid functions: TF10, TF11, and TF12
  - Composition functions: TF13, TF14, and TF15
- Dimension factor

#### Unimodal functions

|            | Т        | F1       | TF2      |          |  |
|------------|----------|----------|----------|----------|--|
|            | 10d      | 30d      | 10d      | 30d      |  |
| MVMO       | 1.93E+02 | 2.09E+03 | 1.68E-02 | 6.93E-03 |  |
| TunedCMAES | 1.17E+06 | 1.52E+06 | 4.78E+04 | 1.44E+05 |  |
| CMAS-ES_QR | 4.43E+06 | 8.50E+05 | 2.58E+04 | 9.17E+04 |  |
| iSRPSO     | 7.40E+06 | 7.19E+08 | 3.19E+04 | 7.67E+04 |  |
| humanCog   | 3.27E+09 | 4.74E+10 | 7.80E+04 | 1.13E+05 |  |

#### For TF1

- narrow ridge
- •all 5 algorithms fail to achieve small objective in 50\*D evaluation

#### For TF2

Only MVMO get good result

|            | TF3      |          | Ti       | <del>-</del> 4 | TF5      |          |
|------------|----------|----------|----------|----------------|----------|----------|
|            | 10d      | 30d      | 10d      | 30d            | 10d      | 30d      |
| MVMO       | 9.40E+00 | 3.79E+01 | 4.65E+02 | 1.43E+03       | 1.13E+00 | 1.68E+00 |
| TunedCMAES | 7.62E+00 | 2.43E+01 | 1.34E+03 | 6.11E+03       | 2.77E+00 | 3.13E+00 |
| CMAS-ES_QR | 2.79E+00 | 1.15E+01 | 1.73E+03 | 6.68E+03       | 3.20E+00 | 4.55E+00 |
| iSRPSO     | 6.60E+00 | 2.57E+01 | 9.25E+02 | 5.41E+03       | 2.46E+00 | 4.24E+00 |
| humanCog   | 1.12E+01 | 4.13E+01 | 2.09E+03 | 7.99E+03       | 2.82E+00 | 4.39E+00 |

#### For TF3 and TF 5

- •TF3 differentiable only on a set of points
- •TF5 differentiable nowhere

#### For TF4

•Local optima count is huge and far from the global optimum

|            | TF6      |          | Т        | TF7      |          | TF8      |          | TF9      |  |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|--|
|            | 10d      | 30d      | 10d      | 30d      | 10d      | 30d      | 10d      | 30d      |  |
| MVMO       | 3.26E-01 | 5.20E-01 | 6.37E-01 | 4.39E-01 | 4.14E+01 | 4.03E+02 | 4.01E+00 | 1.34E+01 |  |
| TunedCMAES | 6.00E-01 | 7.16E-01 | 6.31E-01 | 7.28E-01 | 3.68E+01 | 2.84E+01 | 4.17E+00 | 1.39E+01 |  |
| CMAS-ES_QR | 4.17E-01 | 7.28E-01 | 5.52E-01 | 7.47E-01 | 4.68E+00 | 1.74E+01 | 3.96E+00 | 1.34E+01 |  |
| iSRPSO     | 5.29E-01 | 6.35E-01 | 5.71E-01 | 5.68E-01 | 5.03E+00 | 6.26E+02 | 3.95E+00 | 1.36E+01 |  |
| humanCog   | 3.63E+00 | 5.03E+00 | 2.74E+01 | 8.86E+01 | 7.77E+03 | 5.24E+06 | 4.16E+00 | 1.39E+01 |  |

#### For TF6, TF7, TF8, and TF9

- Top 4 algorithm have equivalent performance
- Acceptable results obtained by top 4 algorithm within 50\*d evaluation

|            | TF10     |          | TF       | 11       | TF12     |          |
|------------|----------|----------|----------|----------|----------|----------|
|            | 10d      | 30d      | 10d      | 30d      | 10d      | 30d      |
| MVMO       | 4.97E+02 | 9.29E+04 | 1.17E+01 | 1.43E+02 | 2.00E+02 | 8.60E+02 |
| TunedCMAES | 5.38E+05 | 4.89E+06 | 7.45E+00 | 2.11E+01 | 2.39E+02 | 7.66E+02 |
| CMAS-ES_QR | 2.25E+05 | 3.25E+06 | 7.63E+00 | 2.46E+01 | 2.35E+02 | 6.27E+02 |
| iSRPSO     | 3.53E+05 | 6.83E+06 | 7.26E+00 | 5.09E+01 | 1.82E+02 | 7.36E+02 |
| humanCog   | 1.19E+06 | 5.60E+07 | 2.16E+01 | 2.76E+02 | 3.08E+02 | 1.60E+03 |

#### For TF10

•Dimension effect are more obvious

#### For TF11 and TF12

•All algorithms have equivalent performance

## Composite functions

|            | TF13     |          | TF       | 14       | TF15     |          |
|------------|----------|----------|----------|----------|----------|----------|
|            | 10d      | 30d      | 10d      | 30d      | 10d      | 30d      |
| MVMO       | 3.16E+02 | 3.44E+02 | 2.06E+02 | 2.76E+02 | 4.76E+02 | 1.19E+03 |
| TunedCMAES | 3.47E+02 | 4.15E+02 | 2.05E+02 | 2.47E+02 | 4.42E+02 | 8.01E+02 |
| CMAS-ES_QR | 3.26E+02 | 3.80E+02 | 1.97E+02 | 2.35E+02 | 3.79E+02 | 4.90E+02 |
| iSRPSO     | 3.31E+02 | 4.00E+02 | 2.01E+02 | 2.65E+02 | 3.00E+02 | 9.51E+02 |
| humanCog   | 4.33E+02 | 8.35E+02 | 2.15E+02 | 3.94E+02 | 4.74E+02 | 1.49E+03 |

For TF13, TF14, and TF15

- Dimension effect are not obvious
- •All algorithms have equivalent performance