Q.1) Create following table using SQL statements.

Client table

Field name Data type Attributes

Clientno char(6) Primary key

Name Varchar(20) Not Null

City Varchar(50) Not Null

Pin Number

Mobile Char(10)

Answer:-

create table clienttable (Field_Name varchar(100), Clientno char(20), name varchar(100) not null, city varchar(100) not null, pinNumber numeric(30), mobile char(100), primary key(Clientno));

Q.2) write sql queries for the following:

1.create table grocery(item_no int, item_name varchar(20), mfd varchar (10), expdate varchar(12), address varchar(20), city varchar(10));

Ans:- create table grocery(item_no numeric(30), item_name varchar(20), mfd varchar (10), expdate varchar(12), address varchar(20), city varchar(10));

2.To drop the above created table

Ans:-

drop table grocery;

Q.3) write sql query for the following:

1. create database - emp

ANS:- create database emp;

Note:- For Using This database execute below query

use emp;

2.create table - employee with 4 columns

Ans:- create table employee(id numeric(20), name varchar(100), age numeric(20), address(100));

3.To see table structure

ANS:- desc employee;

Syntax:- desc tableName;

Desc:- describe.

Q.4)

eid	ename	esalary	email	dob
1	XYZ	3000.89	xyz@gmail.com	1990-08-30
2	ABC	2300.90	abc@gmail.com	1980-03-21

^{1]} Write Query to insert 2 Records in above table using single query.

Ans:- create table employee(eid numeric(20), ename varchar(100), esalary decimal(10,2), email varchar(100), dob varchar(100));

```
insert into employee values(1,'XYZ',3000.89,'xyz@gmail.com','1990-08-30'),(2,'ABC',2300.90,'abc@gmail.com','1980-08-21');
```

2]Write Query to update esalary to 4000.68 and dob to 1993-08-30 of employee whose eid is 1 in a single query.

update employee set esalary=4000.68, dob='1993-08-30' where eid=1;

3] Write Query to delete all records from the table in single query.

Ans:- truncate table employee;

4) create a table called CUSTOMERS and adds four columns, three of which, ID, NAME and AGE specify not to accept NULL.fourth column address accepts null value.

```
Ans:- CREATE TABLE CUSTOMERS (
ID numeric NOT NULL,

NAME VARCHAR(255) NOT NULL,

AGE numeric NOT NULL,

ADDRESS VARCHAR(255)
);
```

- 5) create a database called CARSHOWROOM having the schema as defined below it has the following four relations:
- 1) INVENTORY: Stores name, price, model, year of manufacturing, and fuel type for each car in inventory of the showroom,
- 2) CUSTOMER: Stores customer id, name, address, phone number and email for each customer,
- 3) SALE: Stores the invoice number, car id, customer id, sale date, mode of payment, sales person's employee id and selling price of the car sold,
- 4) EMPLOYEE: Stores employee id, name, date of birth, date of joining, designation and salary of each employee in the showroom.

Ans:-

```
CREATE TABLE INVENTORY (
    car_id numeric PRIMARY KEY,
    name VARCHAR(255),
    price DECIMAL(10, 2),
    model VARCHAR(255),
    year_of_manufacturing numeric,
    fuel_type VARCHAR(255)
);

CREATE TABLE CUSTOMER (
    customer_id numeric PRIMARY KEY,
    name VARCHAR(255),
```

address VARCHAR(255),

```
phone_number VARCHAR(20),
  email VARCHAR(255)
);
CREATE TABLE EMPLOYEE (
  employee_id numeric PRIMARY KEY,
  name VARCHAR(255),
  date_of_birth DATE,
  date_of_joining DATE,
  designation VARCHAR(255),
  salary DECIMAL(10, 2)
);
CREATE TABLE SALE (
  invoice_number numeric PRIMARY KEY,
  car_id numeric,
  customer_id numeric,
  sale_date DATE,
  mode_of_payment VARCHAR(255),
  employee_id numeric,
  selling_price DECIMAL(10, 2),
  FOREIGN KEY (car_id) REFERENCES INVENTORY(car_id),
  FOREIGN KEY (customer_id) REFERENCES CUSTOMER(customer_id),
  FOREIGN KEY (employee_id) REFERENCES EMPLOYEE(employee_id)
);
```

7. FILTER IT FOR MUMBAI LOCATION

ID	NAME	DEPARTMENT	SALARY	LOCATION	
1	Jay	HR	5000	Mumbai	
2	Yash	Management	7000	Pune	
3	Annand	Training	6000	Chennai	
4	Ruhi	Sales	4000	Delhi	
5	Pratik	Admin	3000	Pune	
6	Raj	Training	5000	Mumbai	

Ans:- Crate table and Insert Value:- create table employee(id numeric(20), name varchar(100), department varchar(100), salary numeric(30),location varchar(100));

```
insert into employee values
```

```
(1,'Jay','HR',5000,'Mumbai'),
```

(2,'Yash','Management',7000,'Pune'),

(3, 'Ann and', 'Training', 6000, 'Channai'),

(4,'Ruhi','Sales',4000,'Delhi'),

(5,'Pratik','Admin',3000,'Pune'),

```
(6,'Raj','Training',5000,'Mumbai');
```

2. SHOW EMPLOYEES

Ans :- select * from employee;

3. UPDATE EMPLOYEE SALARY

Ans:-update employee set salary=89000 where id=1;

4. UPDATE EMPLOYEE DEPARTMENT

Ans:- update employee set department='Development' where id=2;

5. DELETE EMPLOYEE

Ans:- delete from employee where id=1;

6. SORT BY SALARY.

Ans:- select * from employee order by salary;

7. FILTER IT FOR MUMBAI LOCATION

Ans:- select location from employee where department='IT'

Q.8)

id	name	price
1	TV	45000
2	Bike	85000
3	Washing Machine	40000
4	Fan	18000
5	Car	95000

ANS: ANS:-

```
create table products (
id numeric(10),
name VARCHAR(100),
price numeric (32),
quantity numeric(10)
```

INSERT INTO products (id, name, price, quantity)

VALUES

);

```
(1, 'TV', 45000, 3),
```

(2, 'Bike', 85000, 2),

(3, 'Washing Machine', 40000, 4),

(4, 'Fan', 18000, 10),

(5, 'Car', 95000, 2);

1. Display all records with name and price fileds.

SELECT name, price FROM products;

2. display records of product with 20% discount on price

Ans:- SELECT name, price * 20/100 AS discounted_price

FROM products;

3. find the records of product whose price is less than 60000/-

Ans:- select * from products where price<60000;

4. find the records of product whose quantity is between 3 to 10

Ans:- select * from products where quantity between 3 and 10;

Consider a students table having different columns and values mentioned below:

Stu_id Stu_name Stu_address Stu_phno Stu_percentage

1 Rahul Agra 9557806625 85 2 Ankit Delhi 8855664471 75

3 Shailendra Noida 7213457896 92

Write SQL queries for the following:

CREATE TABLE students (

Stu_id INT,

Stu_name VARCHAR(255),

Stu_address VARCHAR(255),

Stu_phno VARCHAR(255),

Stu_percentage numeric

);

INSERT INTO students (Stu_id, Stu_name, Stu_address, Stu_phno, Stu_percentage)

VALUES (1, 'Rahul', 'Agra', '9557806625', 85);

INSERT INTO students (Stu_id, Stu_name, Stu_address, Stu_phno, Stu_percentage)

VALUES (2, 'Ankit', 'Delhi', '8855664471', 75);

INSERT INTO students (Stu_id, Stu_name, Stu_address, Stu_phno, Stu_percentage)

VALUES (3, 'Shailendra', 'Noida', '7213457896', 92);

1. Retrieve student id, student name, address, and percentage of all those students who scored more than 80 percent.

SELECT Stu_id, Stu_name, Stu_address, Stu_percentage

FROM students

WHERE Stu_percentage > 80;

2. Update the percentage of Rahul by 2 percent.

update students set stu_percentage=2 where stu_name='Rahul';

3. Student Ankit has left the school, so delete the whole record of him from the table.

DELETE FROM students WHERE Stu_name = 'Ankit';

ID	NAME	DEPARTMENT	SALARY	LOCATION
1	Jay	HR	5000	Chennai
2	Yash	Management	7000	Pune
3	Annand	Training	6000	Chennai
4	Ruhi	Sales	4000	Delhi

```
Based on above table write SQL queries to:
-- Create table
CREATE TABLE employees (
  ID numeric
  NAME VARCHAR(50),
  DEPARTMENT VARCHAR(50),
  SALARY numeric
  LOCATION VARCHAR(50)
);
-- Insert data
INSERT INTO employees (ID, NAME, DEPARTMENT, SALARY, LOCATION)
VALUES
  (1, 'Jay', 'HR', 5000, 'Chennai'),
  (2, 'Yash', 'Management', 7000, 'Pune'),
  (3, 'Annand', 'Training', 6000, 'Chennai'),
  (4, 'Ruhi', 'Sales', 4000, 'Delhi'),
  (5, 'Pratik', 'Admin', 3000, NULL);
   1. Display details employees whose name start with P
       Ans:- SELECT * FROM employees WHERE NAME LIKE 'P%';
   2. Display names of employees getting paid in range 3000-5000
       Ans:- SELECT NAME FROM employees WHERE SALARY BETWEEN 3000 AND 5000;
   3. Display all records in the decreasing order of salary
       Ans:- SELECT * FROM employees ORDER BY SALARY DESC;
   4. Display name as ENAME and Department As Dept for the first 2 records
```

Ans:- SELECT NAME AS ENAME, DEPARTMENT AS Dept FROM employees LIMIT 2;

 Display details employees whose name has 'a' as second last letter Ans:- SELECT * FROM employees WHERE NAME LIKE '%a_';

Admin

5

Pratik

ID	NAME	DEPARTMENT	SALARY	LOCATION
1	Jay	HR	5000	Chennai
2	Yash	Management	7000	Pune
3	Annand	Training	6000	Chennai
4	Ruhi	Sales	4000	Delhi
5	Pratik	Admin	3000	NULL

NULL

3000

Based on above table write SQL queries to:

```
-- Create table

CREATE TABLE employees (

ID numeric,

NAME VARCHAR(50),

DEPARTMENT VARCHAR(50),

SALARY numeric,

LOCATION VARCHAR(50)
);

-- Insert data

INSERT INTO employees (ID, NAME, DEPARTMENT, SALARY, LOCATION)

VALUES

(1, 'Jay', 'HR', 5000, 'Chennai'),

(2, 'Yash', 'Management', 7000, 'Pune'),

(3, 'Annand', 'Training', 6000, 'Chennai'),
```

```
(4, 'Ruhi', 'Sales', 4000, 'Delhi'),
     (5, 'Pratik', 'Admin', 3000, NULL);
  1. Display Id and Name employees working in chennai or mumbai or pune.
      Ans:- SELECT ID, NAME FROM employees
      WHERE LOCATION IN ('Chennai', 'Mumbai', 'Pune');
  2. Display name of employee whose location is not entered.
      Ans:- SELECT NAME
      FROM employees
      WHERE LOCATION IS NULL;
  3. Display the list of employee in ascending order of their salary.
  Ans:- SELECT * FROM employees ORDER BY SALARY ASC;
Consider the following MOVIE table and write the SQL
queries based on it.
          MovieName Category ReleaseDate ProductionCost BusinessCost
MovieID
001
                                                                     130000
            Hindi_Movie
                          Musical
                                     2018-04-23
                                                   124500
```

```
O05 Telugu_Movie Action - 100000 - 006 Punjabi_Movie Comedy - 30500 - CREATE TABLE MOVIE (
MovieID numeric,
MovieName VARCHAR(100),
Category VARCHAR(100),
ReleaseDate DATE,
ProductionCost numeric(30),
BusinessCost numeric(30)
);
```

2016-05-17

2017-08-06

112000

245000

72000

118000

360000

100000

INSERT INTO MOVIE (MovieID, MovieName, Category, ReleaseDate, ProductionCost, BusinessCost)

VALUES

002

003

004

Tamil_Movie

English_Movie Horror

Action

Bengali_Movie Adventure 2017-01-04

```
('001', 'Hindi_Movie', 'Musical', '2018-04-23', 124500, 130000),

('002', 'Tamil_Movie', 'Action', '2016-05-17', 112000, 118000),

('003', 'English_Movie', 'Horror', '2017-08-06', 245000, 360000),

('004', 'Bengali_Movie', 'Adventure', '2017-01-04', 72000, 100000),

('005', 'Telugu_Movie', 'Action', NULL, 100000, NULL),

('006', 'Punjabi_Movie', 'Comedy', NULL, 30500, NULL);
```

a) Display all the information from the Movie table.

SELECT * FROM Movie;

b) List business done by the movies showing only

MovieID, MovieName and Total_Earning. Total_

Earning to be calculated as the sum of ProductionCost

and BusinessCost.

Ans:- SELECT MovieID, MovieName, (ProductionCost + BusinessCost) AS Total_Earning FROM Movie;

b) List the different categories of movies.

Ans: SELECT DISTINCT Category FROM Movie;

d) Find the net profit of each movie showing its

MovieID, MovieName and NetProfit. Net Profit is to be

calculated as the difference between Business Cost

and Production Cost.

Ans:- SELECT MovieID, MovieName, (BusinessCost - ProductionCost) AS NetProfit FROM Movie;

Write sql queries and explain the functions to perform the

following operations:

i) To display the day like "Monday", "Tuesday",

from the date when India got independence.

Ans:- SELECT DATE_FORMAT('1947-08-15', '%W') AS independence_day;

ii) To display the specified number of characters

from a particular position of the given string.

Ans:- SELECT SUBSTRING('Hello World', 7, 5) AS substring_result;

iii) To display the name of the month in which

you were born.

Ans:- SELECT DATE_FORMAT('1990-05-15', '%M') AS birth_month;

iv) To display your name in capital letters.

Ans:- SELECT UPPER('your_name') AS capitalized_name;

1. Write a query to concat strings "MySQL", "is", "Fun"

Ans:- SELECT CONCAT('MySQL', ' ', 'is', ' ', 'Fun') AS concatenated_string;

2. Write query to replace "Coding" with "MySQL" in the sentence:

"I Love Coding"

Ans:- SELECT REPLACE('I Love Coding', 'Coding', 'MySQL') AS replaced_sentence;

3. Write a query to display the number of characters from "I Love India"

Ans:- SELECT LENGTH('I Love India') AS character_count;

Write commands in SQL for (i) to (iii) and output for (iv) and (v).

Table : Store

StoreId	Name	Location	City N	loOfEmp	DateOpen	SalesAmt
S101	Planet					
	Fashion	Bandra	Mumbai	7	2015-10-10	6 40000
S102	Vogue	Karol				
		Bagh	Dell	ni 8	2015-	07-14 120000
S103	Trends	Powai	Mumbai	10	2015-06-24	30000
S104	Super					
	Fashion	Thane	Mumbai	11	2015-02-06	45000
S105	Annabelle	South Extr	n. Delhi	8	2015-04-09	60000
S106	Rage	Defence				
		Colon	y De	lhi 5	2015-03-	01 20000

```
CREATE TABLE Store (
```

Storeld VARCHAR(10),

Name VARCHAR(50),

Location VARCHAR(50),

City VARCHAR(50),

NoOfEmp numeric,

DateOpen DATE,

SalesAmt numeric

);

INSERT INTO Store (StoreId, Name, Location, City, NoOfEmp, DateOpen, SalesAmt)

VALUES

('S101', 'Planet Fashion', 'Bandra', 'Mumbai', 7, '2015-10-16', 40000),

('S102', 'Vogue', 'Karol Bagh', 'Delhi', 8, '2015-07-14', 120000),

('S103', 'Trends', 'Powai', 'Mumbai', 10, '2015-06-24', 30000),

('S104', 'Super Fashion', 'Thane', 'Mumbai', 11, '2015-02-06', 45000),

('S105', 'Annabelle', 'South Extn. Delhi', 'Delhi', 8, '2015-04-09', 60000),

('S106', 'Rage', 'Defence Colony', 'Delhi', 5, '2015-03-01', 20000);

(i) To display names of stores along with Sales Amount of those stores that are located in Mumbai.

Ans:- SELECT Name, SalesAmt FROM Store WHERE City = 'Mumbai';

(ii) To display the details of store in alphabetical order of name.

Ans:- SELECT * FROM Store ORDER BY Name;

(iii) To display the City and the number of stores located in that City, only if

number of stores is more than 2.

Ans:- SELECT City, COUNT(*) AS NumOfStores FROM Store GROUP BY City HAVING COUNT(*) > 2;

(iv) SELECT MIN(DATEOPEN) FROM STORE;

Ans:- SELECT MIN(DateOpen) FROM Store;

(v) SELECT COUNT(STOREID), NOOFEMP FROM STORE GROUP BY

NOOFEMP HAVING MAX(SALESAMT)<60000;

Ans:- SELECT COUNT(StoreId), NoOfEmp

FROM Store

GROUP BY NoOfEmp

HAVING MAX(SalesAmt) < 60000;

ITEMS_ORDERED:

customerid	order_date	item	quantity	price
10330	30-Jun-1999	Pogo stick	1	28.00
10101	30-Jun-1999	Raft	1	58.00
10298	01-Jul-1999	Skateboard	1	33.00
10101	01-Jul-1999	Life Vest	4	125.00
10299	06-Jul-1999	Parachute	1	1250.00
10339	27-Jul-1999	Umbrella	1	4.50
10449	13-Aug-1999	Unicycle	1	180.79

CUSTOMERS:

customerid	firstname	lastname	city	state
10101	John	Gray	Lynden	Washington
10298	Leroy	Brown	Pinetop	Arizona
10299	Elroy	Keller	Snoqualmie	Washington
10315	Lisa	Jones	Oshkosh	Wisconsin
10325	Ginger	Sch	ultz Pocatello	Idaho
10329	Kelly	Mendoza k	Kailua	Hawaii
10330	Shawn	Dalto	on Car	non Beach Oregon
10338	Michael	Howell	Tillamook	Oregon
10339	Anthony	Sanchez	Winslow	Arizona
10408	Elroy	Cleaver	Globe	Arizona
_				

 \longrightarrow

CREATE TABLE ITEMS ORDERED (

customerid INT,

```
item VARCHAR(50),
  quantity INT,
  price DECIMAL(10, 2)
);
INSERT INTO ITEMS_ORDERED (customerid, order_date, item, quantity, price)
VALUES
  (10330, '1999-06-30', 'Pogo stick', 1, 28.00),
  (10101, '1999-06-30', 'Raft', 1, 58.00),
  (10298, '1999-07-01', 'Skateboard', 1, 33.00),
  (10101, '1999-07-01', 'Life Vest', 4, 125.00),
  (10299, '1999-07-06', 'Parachute', 1, 1250.00),
  (10339, '1999-07-27', 'Umbrella', 1, 4.50),
  (10449, '1999-08-13', 'Unicycle', 1, 180.79);
-----→
CREATE TABLE CUSTOMERS (
  customerid INT,
  firstname VARCHAR(50),
  lastname VARCHAR(50),
  city VARCHAR(50),
  state VARCHAR(50)
);
INSERT INTO CUSTOMERS (customerid, firstname, lastname, city, state)
VALUES
  (10101, 'John', 'Gray', 'Lynden', 'Washington'),
  (10298, 'Leroy', 'Brown', 'Pinetop', 'Arizona'),
  (10299, 'Elroy', 'Keller', 'Snoqualmie', 'Washington'),
  (10315, 'Lisa', 'Jones', 'Oshkosh', 'Wisconsin'),
  (10325, 'Ginger', 'Schultz', 'Pocatello', 'Idaho'),
  (10329, 'Kelly', 'Mendoza', 'Kailua', 'Hawaii'),
  (10330, 'Shawn', 'Dalton', 'Cannon Beach', 'Oregon'),
  (10338, 'Michael', 'Howell', 'Tillamook', 'Oregon'),
  (10339, 'Anthony', 'Sanchez', 'Winslow', 'Arizona'),
  (10408, 'Elroy', 'Cleaver', 'Globe', 'Arizona');
1. How many people are in each unique state in the customers table? Select the state and display the number of people in each. Hint: count is used to count
rows in a column, sum works on numeric data only.
Ans:- SELECT state, COUNT(*) AS number_of_people
FROM CUSTOMERS
GROUP BY state;
```

order_date DATE,

2.From the items_ordered table, select the item, maximum price, and minimum price for each specific item in the table. Hint: The items will need to be broken up into separate groups.

SELECT item, MAX(price) AS maximum_price, MIN(price) AS minimum_price

FROM ITEMS_ORDERED

GROUP BY item;

3. How many orders did each customer make? Use the items_ordered table. Select the customerid, number of orders they made, and the sum of their orders

SELECT customerid, COUNT(*) AS number_of_orders, SUM(quantity * price) AS total_order_amount

FROM ITEMS_ORDERED

GROUP BY customerid;

create two tables UNIFORM (UCode, UName, UColor) and COST (UCode, Size, Price) in the SchoolUniform database. UCode is Primary Key in table UNIFORM.

UCode and Size is the Composite Key in table COST. Therefore, Ucode is a common attribute between the two tables which can be used to fetch the common data from both the tables.

Uniform table:

Ucode	Uname	Ucolor
1	Shirt	White
2	Pant	Grey
3	Tie	Blue
Cost table:	Size	Price
Ocode	Size	riice
1	L	580
1	M	500
2	L	890
2	M	810

Write the following sql queries to List the UCode, UName, UColor, Size and Price of related tuples of tables UNIFORM and COST.

-- Create the UNIFORM table

);

```
CREATE TABLE UNIFORM (

UCode numeric PRIMARY KEY,

UName VARCHAR(50),

UColor VARCHAR(50)
```

-- Insert records into the UNIFORM table

INSERT INTO UNIFORM (UCode, UName, UColor)

```
VALUES (1, 'Shirt', 'White'),
(2, 'Pant', 'Grey'),
```

-- Create the COST table

(3, 'Tie', 'Blue');

```
CREATE TABLE COST (
  UCode numeric
  Size VARCHAR(10),
  Price DECIMAL(10, 2),
  PRIMARY KEY (UCode, Size),
  FOREIGN KEY (UCode) REFERENCES UNIFORM(UCode)
);
-- Insert records into the COST table
INSERT INTO COST (UCode, Size, Price)
VALUES (1, 'L', 580),
   (1, 'M', 500),
   (2, 'L', 890),
   (2, 'M', 810);
   a) Using condition in where clause
      Ans:- SELECT UNIFORM.UCode, UNIFORM.UName, UNIFORM.UColor, COST.Size, COST.Price
      FROM UNIFORM, COST
      WHERE UNIFORM.UCode = COST.UCode;
   b) Explicit use of JOIN clause
      Ans:- SELECT UNIFORM.UCode, UNIFORM.UName, UNIFORM.UColor, COST.Size, COST.Price
      FROM UNIFORM
      JOIN COST ON UNIFORM.UCode = COST.UCode;
   c) Explicit use of NATURAL JOIN clause
      SELECT UNIFORM.UCode, UNIFORM.UName, UNIFORM.UColor, COST.Size, COST.Price
      FROM UNIFORM
       NATURAL JOIN COST;
ITEMS_ORDERED:
```

customerid	order_date	item	quantity	price	
10330	30-Jun-1999	Pogo stick	1	28.00	
10101	30-Jun-1999	Raft	1	58.00	
10298	01-Jul-1999	Skateboard	1	33.00	
10101	01-Jul-1999	Life Vest	4	125.00	
10299	06-Jul-1999	Parachute	1	1250.00	
10339	27-Jul-1999	Umbrella	1	4.50	
10449	13-Aug-1999	Unicycle	1	180.79	
10439	14-Aug-1999	Ski Poles	2	25.50	
10101	18-Aug-1999	Rain Coat	1	18.30	
CUSTOMERS:					
customerid	firstname	lastname	city	state	
10101	John	Gray	Lynden	Washingtor	ı
10298	Leroy	Brown	Pinetop	Arizona	
10299	Elroy	Keller	Snoqualmie	Washington	
10315	Lisa	Jones	Oshkosl	h Wisconsin	
10325	Ginger	Schultz	Pocatello	Idaho	
10329	Kelly	Mendoza	Kailua	Hawaii	
10330	Shawn	Dalt	on	Cannon Beach	
10338	Michael	Howell	Tillamook	Oregon	

10339 Anthony Sanchez Winslow Arizona 10408 Elroy Cleaver Globe Arizona

1. Write a query using a join to determine which items were ordered by each of the customers in the customers table. Select the customerid, firstname, lastname, order_date, item, and price for everything each customer purchased in the items_ordered table.

Ans:- SELECT c.customerid, c.firstname, c.lastname, io.order_date, io.item, io.price

FROM customers c

JOIN items_ordered io ON c.customerid = io.customerid;

2.Repeat exercise #1, however display the results sorted by state in descending order.

Ans:- SELECT c.customerid, c.firstname, c.lastname, io.order date, io.item, io.price

FROM customers c

JOIN items_ordered io ON c.customerid = io.customerid

ORDER BY c.state DESC;

SUBQUERIES:

CUSTOMER TABLE:

CUST_ID	NAME	OCCUPATION	AGE
101	PETER	ENGINEER	32
102	JOSEPH	DEVELOPER	30
103	JOHN	LEADER	28
104	STEPHEN	SCIENTIST	45
105	SUZI	CARPENTER	26
106	ВОВ	ACTOR	25
107	NULL	NULL	NULL

ORDERS TABLE:

ORDER_ID	CUST_ID	PROD_NAME	ORDER_DATE
1	101	LAPTOP	2022-01-10
2	103	DESKTOP	2022-02-11
3	106	IPHONE	2022-03-13
4	104	MOBILE	2022-03-05
5	102	TV	2022-03-20

1. Find the details of the customers whose details is not in the customer table.

Ans:- SELECT * FROM CUSTOMER

WHERE CUST_ID NOT IN (SELECT CUST_ID FROM ORDERS);

2. The customer details who have not placed an order.

Ans:- SELECT * FROM CUSTOMER WHERE CUST_ID NOT IN (SELECT CUST_ID FROM ORDERS);

3. Find the name of the customers who has purchased laptop.

SELECT NAME FROM CUSTOMER

WHERE CUST_ID IN (SELECT CUST_ID FROM ORDERS WHERE PROD_NAME = 'LAPTOP');

4. Find the details of customers who purchased iphone.

FROM CUSTOMER

WHERE CUST_ID IN (SELECT CUST_ID FROM ORDERS WHERE PROD_NAME = 'IPHONE');

5. Find the details of the customers whose details is not in the orders table.

Ans:- SELECT *
FROM CUSTOMER
WHERE CUST_ID NOT IN (SELECT CUST_ID FROM ORDERS);

 How many customers from customers table has made an order. Ans:-SELECT COUNT(DISTINCT CUST_ID) AS num_customers FROM ORDERS;

Create following table named as Student_info: sid is primary key auto_incremented

sid	name	dept	percentage
1	Harry	IT	95.26
2	Mac	CS	98.45
3	Rox	Mechanical	75.69
4	Shree	IT	85.65
5	Ramesh	CS	89.45

Assume there are 1000 records of the student in the student_info table and solve the following questions.

Find the records of the students scoring the highest percentage.

Ans:- SELECT * FROM Student_info WHERE percentage = (SELECT MAX(percentage) FROM Student_info);

Find the information of the students who are having the second highest percentage in the table.

Ans:- SELECT * FROM Student_info WHERE percentage = (SELECT MAX(percentage) FROM Student_info WHERE percentage < (SELECT MAX(percentage) FROM Student_info));