

Compressing Pre-trained Models of Code into 3 MB

School of Computing and Information Systems

Jieke Shi, Zhou Yang, Bowen Xu, Hong Jin Kang, David Lo

Overview

Motivation:

- Pre-trained models of code achieved great success but have huge model sizes and high response latency;
- For modern IDE or editor design, 3 MB model size and 0.1 second latency are preferred modern IDE or editor design [1, 2].

Contribution:

- *Compressor*, a novel compression method via genetic algorithm (GA)-guided model simplification and knowledge distillation.
- Evaluate *Compressor* with CodeBERT and GraphCodeBERT across two downstream tasks. The results validate the effectiveness.

Methodology

The overview of Compressor

Hyperparameter	Pre-trained Models	Search Space
number of network layers	12	[1, 12]
dimensionality of network layers	768	[16, 768]
number of attention heads	12	1, 2, 4, 8
dimensionality of feed-forward layers	3072	[32, 3072]
vocabulary size	50265	[1000, 50000]

Search space of GA-guided model simplification

$$Fitness(s) = GFLOP |s - |t_s - T|$$

Fitness function of GA-guided model simplification

$$\mathcal{L} = -\frac{1}{n} \sum_{i}^{n} softmax(\frac{p_{i}}{T}) \log \left(softmax(\frac{q_{i}}{T}) \right) T^{2}$$

Knowledge distillation loss function

Experiment Results

Model —	Vulnerability Prediction		Clone Detection	
Model	Accuracy (%)	Drop (%)	Accuracy (%)	Drop (%)
CodeBERT (481 MB)	61.82	<u>-</u>	96.20	
$BiLSTM_{soft} (7.5 MB)$	57.86	3.96	83.93	12.27
Compressor (3 MB)	59.44 (96.15%)	2.38 (-39.90%)	95.43 (99.20%)	0.77 (-93.72%)
GraphCodeBERT (481 MB)	61.38	-	96.62	_
BiLSTM _{soft} (7.5 MB)	58.02	3.36	84.08	12.54
Compressor (3 MB)	59.99 (97.74%)	1.39 (-58.63%)	94.22 (97.52%)	2.4 (-80.86%)
Average Maintained Accuracy/Improvements	96.95%	-49.27%	98.36%	-87.29%

RQ1: Can *Compressor* result in small accuracy loss when extremely compressing the pre-trained model? **Answer:** Compressed models maintain 96.95% and 98.36% of the original performance on the two tasks.

Model	Vulnerability	Clone	
Model	Prediction	Detection	
	Latency (ms)		
CodeBERT (481 MB)	1507	2675	
Compressor (3 MB)	347 (-76.97%)	625 (-76.64%)	
GraphCodeBERT (481 MB)	1209	1788	
Compressor (3 MB)	429 (-64.52%)	326 (-81.77%)	
Average Improvements	-70.75%	-79.21%	

Prediction	Detection	
Time Cost (min)		
49	124	
13 (26.53%)	47 (37.90%)	
73	243	
25 (34.25%)	88 (36.21%)	
30.39%	37.06%	
	Time Co 49 13 (26.53%) 73 25 (34.25%)	

Vulnerability

RQ3: How fast is *Compressor* in compressing pre-trained models? **Answer:** *Compressor* only incurs 30.39% and 37.06% additional time to the fine-tuning time, which we believe to be reasonable.

RQ2: How much efficiency improvement can the compressed models obtain?

Answer: Compressed CodeBERT and GraphCodeBERT are 4.31× and 4.15× faster than the original model at inference.

Reference

- [1] Alexey Svyatkovskiy, Sebastian Lee, et al. "Fast and memory-efficient neural code completion." MSR 2021.
- [2] Gareth Ari Aye, and Gail E. Kaiser. "Sequence model design for code completion in the modern IDE." arXiv, 2020.

Artifacts:

Preprint:

Our Group:

Clone