ΘΕΜΑ 4

4.1. Οι δύο σφαίρες εκτελούν οριζόντια βολή και φτάνουν ταυτόχρονα στο έδαφος σε χρόνο: $t=\sqrt{\frac{2H}{g}}=0,5sec.$ Οι οριζόντιες αποστάσεις που διανύουν οι σφαίρες είναι:

$$x_{1=} u_1 \bullet t = 1m \text{ kai: } x_{2=} u_2 \bullet t = 5m.$$

Άρα, η απόσταση των σφαιρών στο έδαφος:

$$\Delta x = x_2 - x_1 = 4m$$

Μονάδες 6

4.2. Την χρονική στιγμή t_1 η σφαίρα m_1 έχει μετατοπιστεί κατακόρυφα κατά:

$$h=\frac{1}{2}\bullet g\bullet t_1^2=0.2m\;.$$

Άρα απέχει από το έδαφος: y = H - h = 1,05m

Μονάδες 6

4.3. Την χρονική στιγμή $t_1=0.2\,s$ η μεταβολή της ταχύτητας της σφαίρας m_1 οφείλεται στην κίνηση του σώματος μόνο στην κατακόρυφη διεύθυνση, ενώ δεν μεταβάλλεται η ταχύτητα στην οριζόντια διεύθυνση. Συγκεκριμένα:

$$u_{1y} = g \bullet t_1 = 2m/s$$
 και $u_{1\chi} = u_1 = 2m/s$.

Οπότε:
$$u = \sqrt{u_{1x}^2 + u_{1y}^2} = 2\sqrt{2} \ m/s$$
 και:

$$arepsilon au heta = rac{u_{1y}}{u_{1\chi}} = 1$$
 , δηλαδή $heta$ = 45 $^{\circ}$

Άρα, το διάνυσμα της ταχύτητας u σχηματίζει γωνία 45° προς τα κάτω, σε σχέση με την οριζόντια διεύθυνση.

4.4. Η ορμή των σφαιρών μεταβάλλεται μόνο στην κατακόρυφη διεύθυνση.

Για τη σφαίρα
$$m_1$$
 ισχύει: $\Delta p_1=m_1\,ullet\,u_{1y}-\ 0=m_1\,ullet\,g\,ullet\,\sqrt{rac{2H}{g}}=30kg\,ullet\,m/s$

Για τη σφαίρα
$$m_2$$
 ισχύει: $\Delta p_2=~m_2~\bullet u_{2y}-~0=m_2~\bullet g \bullet \sqrt{\frac{2H}{g}}=10kg \bullet m/s$

Μονάδες 7