Problem 2.

Theorem: For every integer m, if m is even then 3m + 5 is odd

Proof.

Let $m \in \mathbb{Z} \ni m$ is even

By definition of even, m = 2k for some $k \in \mathbb{Z}$

$$3m + 5 = 3(2k) + 5$$
 by substitution
= $6k + 5$ by algebra
= $2(3k + 2) + 1$ by factoring out 2

Let t = 3k + 2

 $t \in \mathbb{Z}$ because $3, 2, k \in \mathbb{Z}$ and \mathbb{Z} are closed under sums and products.

Therefore, 3m + 5 = 2t where $t \in \mathbb{Z}$, so 3m + 5 is odd.

Problem 9.

Theorem: If an integer greater than 4 is a perfect square, then the immediately preceding integer is not prime

Proof.

Let $n \in \mathbb{Z}$ with $n > 4 \ni n$ is a perfect square

By definition of a perfect square, $\exists \, n = k^2 \ni k \in \mathbb{Z}$

$$n-1=k^2-1 \qquad \qquad \text{by substitution}$$

$$=(k-1)(k+1) \qquad \qquad \text{by algebra}$$

$$k^2>4 \qquad \qquad \text{by substitution}$$

$$k>2 \qquad \qquad \text{by algebra}$$

$$k-1>1\ \&\ k+1>3 \qquad \qquad \text{by algebra}$$

 $k^2 - 1$ is the product of two integers greater than 1.

Therefore, the immediately preceding integer is composite by definition of composite.

Problem 23.

Theorem: The product of any even integer and any integer is even.

True

Proof.

Let $a \in \mathbb{Z} \ni a$ is even and $b \in \mathbb{Z}$.

By definition of even, $\exists n \in \mathbb{Z} \ni a = 2n$

Then

$$ab = 2n \times b$$
$$= 2(n \times b)$$

by substitution by factoring out 2

Let $t = n \times b$.

Then $t \in \mathbb{Z}$ because the products of integers are integers.

Hence, ab = 2t, thus ab is even by definition of even.