Classification Unsupervised Learning

講者:Isaac

Outline

- ▶ K-means
- DBSCAN
- ► EM

K-means

What's k-means

\blacktriangleright k-means is a popular algorithm for clustering data

- partition n observations into k clusters
- each observation belongs to the cluster with the nearest mean

 k initial "means" (in this case k=3) are randomly generated within the data domain (shown in color).

 k clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

 The centroid of each of the k clusters becomes the new mean.

 Steps 2 and 3 are repeated until convergence has been reached.

Example and Practice

Example

- K-means
 - example/unsupervised learning

Practice

- Try to cluster the dataset and predict category of data point (12, 14)
 - dataset/xclara.csv
 - practice/unsupervised learning

DBSCAN

What's DBSCAN

- Density-based spatial clustering of applications with noise(DBSCAN) is a data clustering algorithm
 - it groups together points that are closely packed together (points with many nearby neighbors)
 - It is resistant to noise data

Terminology in DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

Core, Border and Noise Points

- Directly reachable
 - A point q is directly reachable from p if point q is within distance ε from point p and p must be a core point.
- A point q is reachable from p if there is a path $p_1, ..., p_n$ with $p_1 = p$ and $p_n = q$, where each p_{i+1} is directly reachable from p_i (all the points on the path must be core points, with the possible exception of q).
- Outliers
 - All points are not reachable from any other point

Points B and C are not core points, but are reachable from A (via other core points)

Point N is a noise point that is neither a core point nor directly-reachable

cluster points that satisfy these two properties:

- All points within the cluster are mutually density-connected.
- A point is density-reachable from any point of the cluster

In this case, all red points and yellow points are in the same cluster!

Find core, border, and noise points

original points

core, border and noise points

$$Eps = 10$$
, $MinPts = 4$

Cluster points that are reachable each other

Some Note about DBSCAN

DBSCAN with varying densities data doesn't work well

Original Points

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

Example and Practice

- Example
 - DBSCAN
 - example/unsupervised learning
- Practice
 - Try to cluster the dataset and print the # of cluster and category of each data(including noise points)
 - dataset/iris.csv
 - practice/unsupervised learning

EM

What's EM

Expectation—Maximization (EM) algorithm is an iterative method to find maximum likelihood of parameters in models

Normal distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

EM

Likelihood Estimation

Assume students' height is normal distribution

Student ID	1	2	3	4	5
Height (cm)	162	164	170	168	166

What's mean of the normal distribution?

Assume students' height is normal distribution

Student ID	1	2	3	4	5
Height (cm)	162	164	170	168	166

Intuitively:

mean =
$$(162+164+170+168+166)/5 = 166$$

But why.....?

Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a technique used for estimating the parameters of a given distribution, using some observed data

Given probability distribution f that have some unknown parameters θ x1, x2, ..., xn are observation f rom f

Likelihood function: $f(x1, x2, ..., xn | \theta) = f(x1 | \theta) * f(x2 | \theta) * ... * f(xn | \theta)$

Maximum Likelihood Estimation

Usually, we use Maximum log likelihood because Maximum likelihood is hard to calculate

Likelihood function: $f(x_1, x_2, ..., x_n | \theta) = f(x_1 | \theta) * f(x_2 | \theta) * ... * f(x_n | \theta)$

$$Log\ Likelihood\ function: f(x1, x2, ..., xn|\ \theta) = \sum_{i=1}^{n} \log(f(x_i|\ \theta))$$

Assume apple weights is normal distribution

We got three apples and their weights are 9, 9.5,11 respectively

Our goal is to estimate the mean/std of total apples on the tree

$$P(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

We want to maximize likelihood(the following equation)

$$P(9, 9.5, 11; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9.5-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right)$$

But it is hard to derivative on this equation!

maximize likelihood equivalent to maximize log likelihood

$$P(9, 9.5, 11; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(9.5-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right) \times \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(11-\mu)^2}{2\sigma^2}\right)$$

$$\ln(P(x;\mu,\sigma)) = \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(9-\mu)^2}{2\sigma^2} + \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(9.5-\mu)^2}{2\sigma^2} + \ln\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(11-\mu)^2}{2\sigma^2}$$

$$\frac{\partial \ln(P(x;\mu,\sigma))}{\partial \mu} = \frac{1}{\sigma^2} \left[9 + 9.5 + 11 - 3\mu \right].$$

$$\mu = \frac{9 + 9.5 + 11}{3} = 9.833$$

Likelihood Estimation Table

Distribution	Estimated parameters
$\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\pi)^2}{2\sigma^2}}$	$\mu = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}$ $\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$
$\lambda e^{-\lambda x}$	$\lambda = \frac{1}{\bar{x}}$
$\frac{e^{-\lambda}\lambda^k}{k!}$	$\lambda = \bar{x}$
•	•

EM

- E step (expectation)
 - Fill in values of latent variables according to posterior given data
- M step (maximization)
 - Maximize likelihood as if latent variables were not hidden.

EM

Assume we have data like the following, we want to cluster these data points into two cluster(a or b class)

1D dataset

Assume data of each of category is normal distribution

random initial each of distribution's parateter (mean/std in this case)

E-step

Calculate each data point probability $P(a|x_i)$ and $P(b|x_i)$

M-step

maximize likelihood

Note that we use weighted average when calculating maximize likelihood

2D example

Class 1

Class 2

Different cluster method

Example and Practice

- Example
 - **EM**
 - example/unsupervised learning
- Practice
 - Try to cluster the dataset and print the category of each data
 - dataset/iris.csv
 - practice/unsupervised learning