ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Александр Андреевич Харитонов, Подкидышев Алексей Сергеевич Студенты факультета инноваций и высоких технологий (группа 792)

Лабораторная работа 1.3

«Эффект Рамзауэра - рассеяние медленных электронов на атомах»

Долгопрудный 15 декабря 2019 г.

Содержание

1	Описание работы		
	1.1 Установка		
	1.2 Теоритическая часть		
2 Ход работы			
_			
	2.1 ВАХ тиратрона $I_a = f(U_c)$ на экране осциллографа С1-83		
	2.2 BAX в статическом режиме		

1 Описание работы

1.1 Установка

В нашей работе для изучения эффекта Рамзауэера используется татрон, заполненный инертным газом. Схематическое изображение тратрона и его конструкция приведены на рис. 1.

Электроны, эмитируемые катодом тиратрона, ускоряется напряжением V, приложенным между катодом и ближайшей к нему сеткой. Затем электроны рассеиваются на атомах инертногояза. Все сетки 1,2,3 соединены между собой и имеют одинаовый оптенциал, примерно равный потенциалу анода 6. Поэтому между первой сеткой 1 и андом практические нет поля.

Рис. 1: Схема тиратрона (слева) и его конструкция (справа): 1, 2, 3 сетки, 4 внешней металлический цилиндр, 5 катод, 6 анод, 7 накаливаемая спираль

Рассеяные электроны отколняются в сторону и уходят на сетку, а оставшаяся часть электронов достигает анода и создаёт анодный ток I_a . Таким образом, поток электронов N(x) на расстоянии x от ускоряющей сетки уменьшается с ростом x от начального значения N_0 у катода до нектороного значения N_a у анода.

1.2 Теоритическая часть

ВАХ тиратрона: Выделим в газе на расстоянии x тонкий слой с площадью поперчного сечения S и толщиной dx. Этот слой содержит $\nu = n_a S dx$ атомов газа.

Суммарная рассеивающая поверхность: $\Delta = \nu \cdot \Delta_a, \ \Delta_a$ - площадь поперчного сечения атома.

Вероятность рассеяния электрона в слое:

$$-\frac{dN}{N(x)} = n_a \Delta_a \omega(V) dx.$$

Итоговое уравнение для ВАХ:

$$I_a = I_0 \cdot e^{-C\omega(V)}, C = Ln_a \Delta_a,$$

где $I_0 = eN_0$ ток катода, $I_a = eN_a$ анодный ток.

Согласно классическим представлениям, сечение рассеяния элетрона на атоме должно падать монотонно с ростом V (обратно пропорционально квадратному корню из энергии электрона), а значит ВАХ будет монотонно возрастающей функцией, как это показано на рис. 2а. По квантовым соображениям вероятность рассеяния электронов и соответствующая ВАХ должны иметь вид, показанный на рис. 2б.

По измеренной BAX тиратрона можно определить зависимость вероятности рассеяния электрона от его

Рис. 2: Вероятность рассеяния электрона атомом инертного газа и ВАХ таратрона при классическом (а) и квантовом (б) рассмотрении

энергии из соотношения:

$$w(V) = -\frac{1}{C} \ln \frac{I_a(V)}{I_0}.$$

Схема для изучения эффекта Рамзауэра приведена на рисунке. На лампу Л подается синусоидальное напряжение частоты 50 Гц от источника питания ИП, С — стабилизированный блок накала катода; исследуемый сигнал подается на электронный осциллограф (ЭО); цифрами обозначеный номера ножек лампы.

Реально на экране ЭО удается наблюдать лишь один (первый) миниум в сечении рассеяния электронов и следующий за ним максимум. Дело в том, что уже при

Рис. 3: Схема включения тиратрона

n=2 напряженность поля очень высока и происходит пробой тиратрона.

Схема экспериментальной установки, изображенная на рис. 8 в нашей работе конструктивно осуществлена следющим образом. Лампа-тиратрон TГ3001/1.3Б, заполненная инертным газом, расположена непосредственно на корпусе блока источника питания (БИП). Напряжение к электродам лампы подается от источников питания, находящихся в корпусе прибора. Регулировка напряжения и выбор режима работы установки производится при помощи ручек управления, выведенных на лицевую панель БИП (рис. 4).

Рис. 4: Блок-схема экспериментальной установки

2 Ход работы

2.1 ВАХ тиратрона $I_a = f(U_c)$ на экране осциллографа С1-83

- 1. Поставим переключатель «РЕЖИМ» в положение «ДИНАМИЧ».
- 2. Установим напряжение накала лампы $V_{\text{накала}} = 2,95 \text{ B}.$
- 3. Измерим на экране осциллографа напряжение между катодом и сеткой, соответствующее первому минимуму и максимуму на осциллограмме, при максимальном ускоряющем напряжении. Также оценим напряжение пробоя.

$$\Delta V = 60$$
мВ, $V_{\text{пробоя}} = 18$ В.

4. Чувствительность канала Х: 2 В/дел.

Рис. 5: Осциллограмма при $V_{\text{накала}} = 2,95 \text{ B}$

5. Повторим измерения при $V_{\text{накала}} = 2{,}56 \text{ B}$:

$$\Delta V = 12 \text{ мB}, V_{\text{пробоя}} = 20 \text{ B}.$$

Рис. 6: Осциллограмма при $V_{\mbox{\tiny HAKAJA}} = 2{,}56~\mbox{B}$

Расчитаем размер электронной оболочки по формуле:

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}.$$

Получим $l = 2.8 \cdot 10^{-10} \text{ м}, \varepsilon_l = 7\%.$

2.2 ВАХ в статическом режиме

$V_{\mathbf{катода}}$	$I_{\mathbf{a}\mathbf{h}\mathbf{o}\mathbf{d}\mathbf{a}}, 10^{-6}$
1,50	0,10
1,74	1,07
1,98	4,07
2,01	5,30
2,20	7,46
2,40	8,40
2,64	7,82
2,80	6,70
3,08	5,58
3,38	5,00
3,78	4,42
4,20	4,00
4,74	3,75
5,47	3,70
6,34	3,60
7,34	3,50
8,20	3,53
8,90	3,77
9,70	3,93
10,10	4,44

$V_{\mathbf{катода}}$	$I_{\text{анода}}, 10^{-6}$
1,60	0,1
1,83	1,09
1,85	1,20
2,03	2,70
2,10	3,70
2,24	3,78
2,46	3,74
2,64	3,30
2,70	3,23
2,92	2,80
3,20	2,40
3,50	2,06
4,18	1,84
4,54	1,74
5,25	1,57
6,10	1,45
6,46	1,42
7,37	1,35
8,10	1,39
9,60	1,54

Рис. 7: ВАХ в статическом режиме

Рис. 8: ВАХ в статическом режиме при $V_{\rm накала}=2{,}95~{\rm B}$

Рис. 9: ВАХ в статическом режиме при $V_{\rm накала} = 2{,}56~{\rm B}$

Рис. 10: Зависимости вероятности рассеяния электронов от энергии

Рис. 11: Зависимости вероятности рассеяния электронов от энергии