

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina Probabilidade e Estatística AD2 1° semestre de 2008

1 - Primeira questão (2,5 pontos)

Dado o gráfico abaixo:

a) Demonstre que f(x) é uma densidade; (0,5 pontos)

Da figura tiramos que os valores da função apresentada são positivos em todo o intervalo de definição, o que cumpre uma das condições de ser densidade de probabilidade. Dividindo a figura abaixo em três regiões teremos a primeira como um retângulo de medidas 1 por 1/5, depois um trapézio de bases 1/5 e 1/3 e a outra dimensão igual a 1 e finalmente um trapézio de bases 1/3 e 1/5 por 2. O total dá área 1.

b) Escreva a expressão como função; (0,5 pontos)

$$f(x) = \begin{cases} 1/5 ; x \in [0,1] \\ (2x+1)/15 ; x \in [1,2] & \text{i.i.} \\ (-x+7)/15 ; x \in [2,4] \end{cases}$$

c) Calcule o valor médio; (0,5 pontos)

Usando a definição do valor médio no intervalo de definição da densidade:

$$\mu = \int_{0}^{4} x f(x) dx$$

Basta agora substituir a função descrita no item a para termos a expressão:

$$\mu = \int_{0}^{1} x f(x) dx + \int_{1}^{2} x f(x) dx + \int_{2}^{4} x f(x) dx$$

ou

$$\mu = \int_{0}^{1} x \frac{1}{5} dx + \int_{1}^{2} x \frac{(2x+1)}{15} dx + \int_{2}^{4} x \frac{(-x+7)}{15} dx$$

ou ainda

$$\mu = \frac{x^2}{10} \Big|_0^1 + \left[\frac{2x^3}{45} + \frac{x^2}{30} \right]_1^2 + \left[\frac{-x^3}{45} + \frac{7x^2}{30} \right]_2^4 = \frac{1}{10} - \frac{50}{45} + \frac{87}{30} = \frac{17}{9} = 1,888$$

d) Calcule a variância;

(0,5 pontos)

$$\sigma^2 = \int_0^4 x^2 f(x) dx$$

e daí

$$\sigma^{2} = \int_{0}^{1} x^{2} f(x) dx + \int_{1}^{2} x^{2} f(x) dx + \int_{2}^{4} x^{2} f(x) dx$$

ou

$$\sigma^{2} = \int_{0}^{1} x^{2} \frac{1}{5} dx + \int_{1}^{2} x^{2} \frac{(2x+1)}{15} dx + \int_{2}^{4} x^{2} \frac{(-x+7)}{15} dx$$

ou ainda

$$\sigma^{2} = \frac{x^{3}}{15} \Big|_{0}^{1} + \left[\frac{x^{4}}{30} + \frac{x^{3}}{45} \right]_{1}^{2} + \left[\frac{-x^{4}}{60} + \frac{7x^{3}}{45} \right]_{2}^{4} = \frac{1}{15} - 3,5 + \frac{399}{45} = 5,433$$

e) Calcule a moda.

(0,5 pontos)

A moda é o valor para o qual temos a maior probabilidade. No caso é o ponto 2.

2 - Segunda questão (2,0 pontos)

Uma função densidade de uma variável aleatória é dada por uma parábola que vale a zero na origem e também zero em x = 1. Fora do intervalo [0, 1] a função densidade vale zero.

a) Determine a expressão da densidade de probabilidade (0,5 pontos)

Se expressamos a parábola por $y(x)=ax^2+bx+c$, sabemos do enunciado que

$$y(0)=a 0^2+b0+c=0$$

$$y(1)=a 1^2+b1+c=0$$

Da primeira tiramos que c = 0 e da segunda que a = -b. Logo,

$$y(x)=-bx^2+bx$$

com a concavidade da curva escolhida para que a função seja não negativa dentro do intervalo [0, 1].

Se esta função é densidade de probabilidade a sua integral no intervalo [0, 1] deve ser igual a 1. Assim,

$$\int_{0}^{1} b(-x^2+x) dx = 1$$

ou seja, temos que achar a tal que isto se satisfaça. Assim,

$$b\int_{0}^{1} (-x^{2} + x) dx = b\left[\frac{-x^{3}}{3} + \frac{x^{2}}{2}\right]_{0}^{1} = b\left[\frac{-1}{3} + \frac{1}{2}\right] = 1 \Rightarrow b = 6$$

e a distribuição terá a forma

$$v(x) = 6(-x^2 + x)$$

Calcule:

b)
$$P(X > 1/2)$$
 (0,5 pontos)

$$6\int_{0}^{1/2} \left(-x^{2}+x\right) dx = 6\left[\frac{-x^{3}}{3}+\frac{x^{2}}{2}\right]_{0}^{1/2} = 6\left(-\frac{1}{3}\frac{1}{8}+\frac{1}{2}\frac{1}{4}\right) = \frac{1}{2}$$

O mesmo resultado poderia ser obtido observando qua a distribuição é simétrica em relação ao ponto médio do intervalo.

c)
$$P(X < 1/3)$$
 (0.5 pontos)

$$6\int_{0}^{1/3} \left(-x^{2}+x\right) dx = 6\left[\frac{-x^{3}}{3}+\frac{x^{2}}{2}\right]_{0}^{1/3} = 6\left(-\frac{1}{3}\frac{1}{27}+\frac{1}{2}\frac{1}{9}\right) = \frac{7}{27} = 0,2592$$

d)
$$P(1/3 < X < 1/2)$$
 (0,5 pontos)

$$6\int_{1/3}^{1/2} (-x^2 + x) dx = P(X < 1/2) - P(x < 1/3) = \frac{1}{2} - \frac{7}{27} = 0,2407$$

3 - Terceira questão (1,5 pontos)

Um sistema de tratamento de águas está sendo analisado quanto a contaminação por metais pesados. Foram colhidas amostras em 16 horas e os valores dos contaminantes (em unidades arbitrárias UA) são apresentados abaixo

Н	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
UA	1,23	2,31	2,39	2,21	2,92	2,21	1,22	1,67	1,81	1,71	2,32	2,14	1,78	1,61	1,10	1,11

A média máxima de contaminantes admitida é de 2,10 UA numa média diária. Faça as hipóteses cabíveis à situação e calcule com fator de certeza de 5% se podemos considerar que o índice de contaminação foi ultrapassado.

A média amostral é
$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{29,74}{16} = 1,8587$$
 enquanto a estimativa para a

variância amostral é dada por

$$\sigma^2 = \frac{1}{n-1} \left(\sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right) = \frac{1}{15} (59,4978 - 55,2762) = 0,26385$$

Assim,

$$\alpha = P(\bar{X} < x_c | \mu = 1,8587) = P\left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} < \frac{x_c - 1,8587}{0,26385}\right) = P(Z < z_c)$$

$$z_c = \frac{x_c - 1,8587}{0,26385} \Rightarrow x_c = 1,8587 + z_c 0,26385$$

Com o fator igual a 5%, temos pela tabela da distribuição Normal o valor -1,64 que nos dá para x_c = 1,42598, ou seja, a contaminação está abaixo dos limite máximo.

4 - Quarta questão (1,0 ponto)

Identifique as hipóteses testadas em cada situação apresentada abaixo:

a) Uma concessionária de energia elétrica está em investigação falhas em suas linhas. Pela análise do sistema, se suspeita que o modelo mais adequado para analisar o caso seja o Exponencial. (0,5 pontos)

Se a hipótese é verdadeira deveremos ter uma diferença pequena (sob algum critério) entre a distribuição exponencial e todas as amostras. Podemos, por exemplo, adotar avaliar a "distância" entre a freqüência observada o_i e os valores da distribuição exponencial e_i usando a expressão

$$S^2 = \sum_{i=1}^n \frac{\left(0_i - e_i\right)^2}{e_i}$$

b) Um carregamento de amendoim está sob suspeita de contaminação por aflatoxina. A carga foi parcialmente vendida e foram colhidas apenas 40 % das amostras necessárias para a checagem padrão. (0,5 pontos)

A partir da média e da variância amostrais avaliamos a média verdadeira com um certo nível de significância.

5 – Quinta questão (1,5 pontos)

Foi medido o nível de oxigenação durante um teste de esforço num grupo de pessoas em checkup. Numa amostra de 25 pessoas verificou-se o valor de 4,8 UAO (unidades arbitrárias de oxigenação) com variância amostral de 3,1. Deseja-se testar, ao nível de significância de 10%, se a média é igual ou é menor que 5,1.

Aqui temos que a amostra nos dá 4,8 para o valor médio e variância amostral 3,1. Vamos supor que a distribuição seja Normal. Como foram 25 pessoas teremos a distribuição

 $N(4,8;3,1/\sqrt{25})=N(4,8;0,62)$. Aqui teremos uma hipótese unilateral para a média ser menor ou igual a 5,1.

$$\alpha = P(\bar{X} < x_c | \mu = 5, 1) = P\left(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} < \frac{x_c - 5, 1}{0,62}\right) = P(Z < Z_c)$$

No caso

$$z_c = \frac{x_c - 5.1}{0.62} \Rightarrow x_c = 5.1 + z_c 0.62$$

Como aqui α =0,1 , determinamos z_c procurando na tabela normal o complemento de 0,1 o que nos dá -1,28. Assim temos x_c =4,30, logo a a média estimada se encontra abaixo de 5,1 com 10% de significância.

6 – Sexta questão (1,5 pontos)

Uma distribuição Normal tem média 2,35 e desvio padrão igual 0,8. Calcule as probabilidades abaixo:

a)
$$P(2,1 \le X \le 2,40)$$
 (0,5 pontos)

$$P(2,1 < X < 2,40) = P\left(\frac{2,1-2,35}{0,8} < \frac{\bar{X}-\mu}{\sigma} < \frac{2,40-2,35}{0,8}\right)$$

$$P(2,1 < X < 2,40) = P(-0,3125 < Z < 0,0625) =$$

b)
$$P(X > 2.30)$$
 (0.5 pontos)

$$P(X>2,30) = P\left(\frac{X-2,30}{0,8} > \frac{2,30-2,35}{0,8}\right) = P(Z>-0,0625)$$

$$P(X>2,30)=P(Z>-0,0625)=0,5+0,0239=0,5239$$

c)
$$P(X < 2,25)$$
 (0,5 pontos)

$$P(X < 2,25) = P\left(\frac{X-2,30}{0,8} < \frac{2,25-2,35}{0,8}\right) = P(Z > -0,125)$$

$$P(X<2,25)=P(Z<-0,125)=0,5+0,0478=0,5478$$

Tabela da distribuição Normal N(0,1)

Z _c	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	*0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,476
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	*0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997

Atribua o valor 0,5 para valores maiores ou iguais a 3,4.