CAP 5 ANÁLISE DE SISTEMAS DE CONTROLE NO ESPAÇO DE ESTADOS

SUMÁRIO		
5.1.	INTRODUÇÃO	1
5.2.	REPRESENTAÇÃO NO ESPAÇO DE ESTADOS	1
5.3.	DIAGONALIZAÇÃO DA MATRIZ DE ESTADOS	1
5.4.	MATRIZ DE TRANSIÇÃO DE ESTADOS	3
5.5.	CONTROLABILIDADE E OBSERVABILIDADE DE ESTADOS	6
5.5.1.	FORMAS CANÔNICAS NO ESPAÇO DE ESTADOS	6
5.5.2.	CONTROLABILIDADE COMPLETA DE ESTADOS	12
5.5.3.	CONTROLABILIDADE DE SAÍDA	
5.5.4.	OBSERVABILIDADE COMPLETA DE ESTADOS	17
5.6.	PRINCÍPIO DA DUALIDADE	19
5.7.	MATLAB	
	LISTA DE EXERCÍCIOS	
5.9.	EXERCÍCIOS COMPLEMENTARES	20

5.1. INTRODUÇÃO

Sistemas modernos de controle, geralmente, possuem muitas entradas e muitas saídas que se inter-relacionam de uma maneira complexa. Para análises desses sistemas é necessário o uso de modelos que permitam a redução da complexidade das expressões matemáticas, bem como a adequação para uso em sistemas computacionais.

5.2. REPRESENTAÇÃO NO ESPAÇO DE ESTADOS

É apropriada para sistemas que possuem várias entradas e várias saídas.

CASO DISCRETO

$$\vec{q}_{n\times 1}[k+1] = A_{n\times n}\vec{q}_{n\times 1}[k] + B_{n\times r}\vec{x}_{r\times 1}[k]$$

$$\vec{y}_{m\times 1}[k] = C_{m\times n}\vec{q}_{n\times 1}[k] + D_{m\times r}\vec{x}_{r\times 1}[k]$$

5.3. DIAGONALIZAÇÃO DA MATRIZ DE ESTADOS

Tornar a matriz de estados, A, na forma diagonal pode ser útil para aumentar o desempenho computacional do modelo no espaço de estados.

O conjunto de variáveis de estado, $(q_1(t), q_2(t), \cdots, q_n(t))$ que compõem o vetor de estados, $\vec{q}(t)$, não é único, ou seja, existem diferentes vetores de estado que carregam a mesma informação sobre o comportamento do sistema.

Assim, pode existir uma matriz P tal que o vetor de variáveis de estado pode ser escrito como $\vec{q}(t) = P\vec{z}(t)$, ou seja, deve existir um conjunto de variáveis de estado $\vec{z}(t)$ que transformado linearmente por P resulte novamente em $\vec{q}(t)$.

Assim, se substituirmos $\vec{q}(t)$ por $P\vec{z}(t)$ no modelo de espaço de estados, temos:

$$\begin{cases} \dot{\vec{q}}(t) = A\vec{q}(t) + B\vec{x}(t) \\ \dot{\vec{y}}(t) = C\vec{q}(t) + D\vec{x}(t) \end{cases}$$

$$\begin{cases} P\dot{\vec{z}}(t) = AP\vec{z}(t) + B\vec{x}(t) \\ \dot{\vec{y}}(t) = CP\vec{z}(t) + D\vec{x}(t) \end{cases}$$

$$\begin{cases} \dot{\vec{z}}(t) = P^{-1}AP\vec{z}(t) + P^{-1}B\vec{x}(t) \\ \dot{\vec{y}}(t) = CP\vec{z}(t) + D\vec{x}(t) \end{cases}$$

Se escolhermos P de forma que $P^{-1}AP$ resulte em uma matriz diagonal, com os mesmos autovalores de A, então, P deverá ser a matriz dos autovetores de A.

$$AV = VD \rightarrow V^{-1}AV = D$$

A é a matriz de Estado, V é a matriz cujas colunas são os autovetores de A, e D é a matriz diagonal dos autovalores de A. Assim, a escolha que diagonaliza A é fazer P = V.

Exemplo 1 – Dado o sistema no espaço de estados abaixo, obtenha uma representação com a matriz de estado na forma diagonal.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & -2 \\ 1 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix} u$$
$$y(t) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

SOLUÇÃO

$$|sI - A| = 0$$

 $|s - 1| - 2| 0$
 $|-3| s + 1| 2| = 0$
 $|-1| 0| s + 3|$
 $(s^2 - 1)(s + 3) + 4 - 6(s + 3) = 0$
 $s^3 + 3s^2 - 7s - 17 = 0$

As raízes são:
$$\lambda_1 = 2,5047$$
 $\lambda_2 = -3,6400$ e $\lambda_3 = -1,8646$

O sistema não está na forma canônica controlável, assim, é necessário calcular os autovetores:

$$det(A - \lambda_1 I) = det \begin{pmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 3 & -1 & -2 \\ 1 & 0 & -3 \end{bmatrix} - \begin{bmatrix} 2,5047 & 0 & 0 \\ 0 & 2,5047 & 0 \\ 0 & 0 & 2,5047 \end{bmatrix} \end{pmatrix}$$
$$= det \begin{pmatrix} \begin{bmatrix} -1,5047 & 2 & 0 \\ 3 & -3,5047 & -2 \\ 1 & 0 & -5,5047 \end{bmatrix} \end{pmatrix} \neq 0$$

como o determinante é diferente de zero, o sistema homogêneo possui solução.

$$\begin{aligned} & (A - \lambda_1 I) \vec{p}_1 = 0 \\ & \begin{bmatrix} -1,5047 & 2 & 0 \\ 3 & -3,5047 & -2 \\ 1 & 0 & -5,5047 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \end{aligned}$$

$$\begin{cases} -1,5047x_1 + 2y_1 = 0 \to \boxed{y_1 = 0,7523x_1} \\ 3x_1 - 3,5047y_1 - 2z_1 = 0 \\ x_1 - 5,5z_1 = 0 \to \boxed{z_1 = 0,1817x_1} \end{cases}$$

A segunda equação produz as mesmas relações das equações primeira e terceira. Arbitrando valor para x_1 obtemos o autovetor \vec{p}_1 .

$$\vec{p}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix} = \begin{bmatrix} 10 \\ 7,523 \\ 1,817 \end{bmatrix}$$

Repetindo o procedimento para os outros dois autovetores, temos:

$$P = \begin{bmatrix} \vec{p}_1 & \vec{p}_2 & \vec{p}_3 \end{bmatrix}$$

$$P = \begin{bmatrix} 10 & 1 & 1\\ 7,523 & -1,432 & -2,320\\ 1,817 & 0,880 & -1,562 \end{bmatrix}$$

$$P^{-1} = \begin{bmatrix} 0.0719 & 0.0410 & -0.0149 \\ 0.1266 & -0.2927 & 0.5157 \\ 0.1549 & -0.1173 & -0.3667 \end{bmatrix}$$

O novo sistema será:

$$\dot{\vec{z}}(t) = P^{-1}AP\vec{z}(t) + P^{-1}B\vec{u}(t)$$
$$\dot{\vec{y}}(t) = CP\vec{z}(t) + D\vec{u}(t)$$

Então

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_3 \end{bmatrix} = \begin{bmatrix} 2,5447 & 0 & 0 \\ 0 & -1,8646 & 0 \\ 0 & 0 & -3,6400 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} + \begin{bmatrix} 0,0336 \\ 2,2157 \\ -2,5520 \end{bmatrix} u$$
$$y(t) = \begin{bmatrix} 17,5233 & -0,4323 & -1,3200 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

5.4. MATRIZ DE TRANSIÇÃO DE ESTADOS

A solução da equação diferencial apresentada no modelo de Espaço de Estados linear e invariante no tempo:

$$\vec{q}_{n\times 1}(t) = A_{n\times n}\vec{q}_{n\times 1}(t) + B_{n\times r}\vec{x}_{r\times 1}(t)$$

dado um vetor de condições iniciais não nulas, $\vec{q}(t_0)$, é bastante útil na solução de sistemas de controle. Assim, retirando da equação a sua função de forçamento, resta a sua parte homogênea:

$$\vec{q}_{n\times 1}(t) = A_{n\times n}\vec{q}_{n\times 1}(t)$$

A Matriz de Transição de Estados, $\Phi(t)$, é definida como a matriz que atende a essa equação de estado linear, logo, ela representa a resposta livre (ou natural) do sistema, respondendo apenas pelas condições iniciais não nulas e entradas nulas.

Assim, a Matriz de Transição de Estados, $\Phi(t)$, define completamente a transição dos estados de um tempo inicial $t_0 = 0$ para um tempo t quando as entradas são iguais a zero, ou seja,

$$\vec{q}(t) = \Phi(t)\vec{q}(0)$$

que é a solução para a equação de estado homogênea.

Fazendo a Transformada de Laplace da equação homogênea, considerando as condições iniciais:

$$s\vec{Q}(s) - \vec{q}(0) = A\vec{Q}(s)$$

 $\vec{O}(s) = (sI - A)^{-1}\vec{q}(0)$

Fazendo a transformada inversa de Laplace,

$$\vec{q}(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}\vec{q}(0)$$

Portanto,

$$\Phi(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}\$$

Ou seja, a Matriz de Transição de Estados, $\Phi(t)$, é obtida fazendo a transformada inversa de Laplace da equação característica. Assim,

$$\mathcal{L}^{-1}\{(sI - A)^{-1}\} = \mathcal{L}^{-1}\left\{\frac{I}{s} + \frac{A}{s^2} + \frac{A^2}{s^3} + \cdots\right\} = I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \cdots = \sum_{k=0}^{\infty} \frac{A^kt^k}{k!}$$

$$\sum_{k=0}^{\infty} A^k t^k$$

$$\sum_{k=0}^{\infty} \frac{A^k t^k}{k!} = e^{At}$$

$$\Phi(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\} = e^{At}$$

Por outro lado,

$$\Phi(s) = \mathcal{L}\{e^{At}\} = (sI - A)^{-1}$$

A solução completa da equação diferencial envolvendo tanto a parte homogênea quanto a parte forçada pode ser obtida efetuando-se o mesmo procedimento, e resulta na equação:

$$\vec{q}(t) = \Phi(t)\vec{q}(0) + \int_0^t \Phi(t-\tau)B\vec{x}(\tau)d\tau$$

Propriedades da Matriz de Transição de Estados

- 1. $\Phi(0) = I$
- $2. \quad \Phi^{-1}(t) = \Phi(-t)$
- 3. $\Phi^{n}(t) = \Phi(nt)$
- 4. $\dot{\vec{x}}(t) = \dot{\Phi}(t)\vec{x}(0)$
- 5. $\dot{\Phi}(t) = A\Phi(t)$
- 6. $\Phi(t_1 + t_2) = \Phi(t_1)\Phi(t_2) = \Phi(t_2)\Phi(t_1)$

MÉTODOS PARA CÁLCULO DE e^{At}

Método 1: Se a matriz A pode ser transformada em diagonal pela matriz P, então $e^{At} = Pe^{\lambda t}P^{-1}$

onde

$$e^{\lambda t} = \begin{bmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & e^{\lambda_n t} \end{bmatrix}$$

Método 2: Transformada inversa de Laplace $e^{At} = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$

Exemplo 2 – Para o sistema abaixo, determine a matriz de transição de estados e o vetor de estados quando a entrada for um degrau unitário

$$\begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x(t)$$

SOLUÇÃO

Matriz de Transição de Estados

$$\Phi(t) = \mathcal{L}^{-1}\{(sI - A)^{-1}\}$$

$$\Phi(t) = \mathcal{L}^{-1}\left\{\begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix} - \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}\right\}^{-1}$$

$$\Phi(t) = \mathcal{L}^{-1}\left\{\begin{bmatrix} s & -1 \\ 2 & s+3 \end{bmatrix}^{-1}\right\}$$

$$\Phi(t) = \mathcal{L}^{-1}\left\{\frac{1}{s^2 + 3s + 2}\begin{bmatrix} s + 3 & 1 \\ -2 & s \end{bmatrix}\right\}$$

$$\Phi(t) = \begin{bmatrix} \mathcal{L}^{-1}\left\{\frac{s + 3}{s^2 + 3s + 2}\right\} & \mathcal{L}^{-1}\left\{\frac{1}{s^2 + 3s + 2}\right\} \\ \mathcal{L}^{-1}\left\{\frac{-2}{s^2 + 3s + 2}\right\} & \mathcal{L}^{-1}\left\{\frac{s}{s^2 + 3s + 2}\right\} \end{bmatrix}$$

$$\Phi(t) = \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}$$

Vetor de Estados

$$\begin{split} \vec{q}(t) &= \Phi(t) \vec{q}(0) + \int_0^t \Phi(t-\tau) B \vec{x}(\tau) d\tau \\ \vec{q}(t) &= \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix} \vec{q}(0) + \int_0^t \begin{bmatrix} 2e^{-(t-\tau)} - e^{-2(t-\tau)} & e^{-(t-\tau)} - e^{-2(t-\tau)} \\ -2e^{-(t-\tau)} + 2e^{-2(t-\tau)} & -e^{-(t-\tau)} + 2e^{-2(t-\tau)} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} d\tau \\ \vec{q}(t) &= \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix} \vec{q}(0) + \int_0^t \begin{bmatrix} e^{-(t-\tau)} - e^{-2(t-\tau)} \\ -e^{-(t-\tau)} + 2e^{-2(t-\tau)} \end{bmatrix} d\tau \\ \vec{q}(t) &= \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix} \vec{q}(0) + \begin{bmatrix} 0.5 - e^{-t} + 0.5e^{-2t} \\ e^{-t} - e^{-2t} \end{bmatrix} \quad t \ge 0 \end{split}$$

5.5. CONTROLABILIDADE E OBSERVABILIDADE DE ESTADOS

Um sistema é *controlável* no instante t_c se for possível transferir o sistema de qualquer estado $\vec{q}(t_c)$ para qualquer outro estado em um intervalo de tempo finito.

Uma maneira de verificar se um sistema pode ser controlável é desenhar o diagrama de fluxo de sinais do sistema e verificar se existe um percurso entre o sinal de controle, x(t), e cada uma das variáveis de estado.

Um sistema é *observável* no instante t_o se, com o sistema no estado $\vec{q}(t_o)$, for possível determinar esse estado a partir da observação da saída durante um intervalo de tempo finito.

Ou ainda, a observabilidade refere-se à capacidade de se estimar uma variável de estado. É útil na solução de problemas de reconstrução de variáveis de estado não mensuráveis (não acessíveis para medição direta) a partir de variáveis mensuráveis.

Uma maneira de verificar se um sistema pode ser *observável* é desenhar o diagrama de fluxo de sinais do sistema e verificar se existe um percurso entre cada uma das variáveis de estado e o sinal de saída, y(t).

5.5.1. FORMAS CANÔNICAS NO ESPAÇO DE ESTADOS

Como visto na Análise e Modelagem de Sistemas, uma forma de obter a função de transferência de sistemas no espaço de estados é a través da relação:

$$\frac{Y(s)}{U(s)} = C(sI - A)^{-1}B + D$$

Todavia, existem formas diretas de transformação entre EE e FT, essas formas são conhecidas como formas canônicas.

Considere um sistema definido como

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

A forma Canônica Controlável, usada para representar um sistema controlável no espaço de estados, é:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_{n} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_{n} & -a_{n-1} & -a_{n-2} & \cdots & -a_{1} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$

$$y = [(b_{n} - a_{n}b_{0}) \mid (b_{n-1} - a_{n-1}b_{0}) \mid \cdots \mid (b_{1} - a_{1}b_{0})] \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n-1} \\ x_{n} \end{bmatrix} + b_{0}u$$

ou seja, se um sistema for controlável, então ele pode ser colocado na forma canônica controlável.

Exemplo 3 – Obtenha uma representação em espaço de estados da função de transferência abaixo.

$$G(s) = \frac{s^2 + 2s}{s^3 + 11s - 6}$$

SOLUÇÃO

Colocando o sistema na forma canônica controlável: $b_0=0;\ b_1=1;\ b_2=2;\ b_3=0;$

$$a_{0} = 1; \ a_{1} = 0; \ a_{2} = 11; \ a_{3} = -6$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

OBS: Se a matriz A estiver na <u>forma canônica controlável</u>, então a matriz P que diagonaliza A pode ser construída a partir dos autovalores de A da seguinte forma:

$$P = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{bmatrix}$$

Essa escolha de P só é válida se os autovalores de A forem distintos. Se houver autovalores múltiplos, então P deve ser escolhida de forma que A resulte na forma de Jordan.

Exemplo 4 – Dada a representação no espaço de estados obtenha uma representação com a matriz de estado na forma diagonal.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix} u$$
$$y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

As raízes são: $\lambda_1 = -1$, $\lambda_2 = -2$ e $\lambda_3 = -3$

A matriz A está na forma canônica controlável, então P será:

$$P = \begin{bmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -2 & -3 \\ 1 & 4 & 9 \end{bmatrix}$$

$$P^{-1} = \begin{bmatrix} 3 & 5/_2 & 1/_2 \\ -3 & -4 & -1 \\ 1 & 3/_2 & 1/_2 \end{bmatrix}$$

O novo sistema será:

$$\dot{\vec{z}}(t) = P^{-1}AP\vec{z}(t) + P^{-1}B\vec{u}(t)$$
$$\vec{y}(t) = CP\vec{z}(t) + D\vec{u}(t)$$

Então

$$\begin{bmatrix}
\dot{z}_1 \\
\dot{z}_2 \\
\dot{z}_3
\end{bmatrix} = \begin{bmatrix}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{bmatrix} \begin{bmatrix}
z_1 \\
z_2 \\
z_3
\end{bmatrix} + \begin{bmatrix}
3 \\
-6 \\
3
\end{bmatrix} u$$

$$y(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

Exemplo 5 – Dadas as funções de transferência abaixo:

$$G_1(s) = \frac{12s + 6}{s^3 + 6s^2 + 12s + 6}$$
$$G_2(s) = \frac{2s + 1}{s^3 + s^2 + 2s + 1}$$

- a) Obtenha uma representação na forma canônica controlável para cada FT.
- b) Compare os resultados.

SOLUÇÃO

SOLUÇÃO
a)

$$b_0 = b_1 = 0 b_2 = 12 b_3 = 6$$

$$a_0 = 1 a_1 = 6 a_2 = 12 a_3 = 6$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -12 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y(t) = \begin{bmatrix} 6 & 12 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$b_0 = b_1 = 0$$
 $b_2 = 2$ $b_3 = 1$
 $a_0 = 1$ $a_1 = 1$ $a_2 = 2$ $a_3 = 1$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y(t) = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

b)

Multiplicar (ou dividir) a última linha da matrizes A e a matriz C do modelo na forma canônica controlável pela mesma constante não altera o modelo desde que $b_0 = 0$ (ou seja, que o grau do polinômio do numerador seja menor que o do denominador).

Exemplo 6 – Dadas as formas canônicas abaixo:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix} u$$
$$y(t) = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y(t) = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

- a) Obtenha a FT para cada representação na forma canônica controlável.
- b) Compare os resultados.

SOLUÇÃO

a)

Observe que no primeiro modelo a matriz B está multiplicada por 6, portanto, o sistema não está na forma canônica. A solução é:

$$G_1(s) = C(sI - A)^{-1}B + D = 6\left(\frac{s^2 + 2s + 1}{s^3 + 1s^2 + 2s + 1}\right)$$

$$b_0 = 0$$
 $b_1 = 1$ $b_2 = 2$ $b_3 = 1$ $a_0 = 1$ $a_1 = 1$ $a_2 = 2$ $a_3 = 1$

$$G_2(s) = \frac{s^2 + 2s + 1}{s^3 + s^2 + 2s + 1}$$

b)

A constante que aparece na matriz B corresponde a um ganho na entrada do sistema.

A forma Canônica Observável, usada para representar um sistema observável no

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_n \\ 1 & 0 & \cdots & 0 & -a_{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -a_2 \\ 0 & 0 & \cdots & 1 & -a_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} + \begin{bmatrix} b_n - a_n b_0 \\ b_{n-1} - a_{n-1} b_0 \\ \vdots \\ b_2 - a_2 b_0 \\ b_1 - a_1 b_0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} + b_0 u$$

ou seja, se um sistema for observável, então ele pode ser colocado na forma canônica observável.

Exemplo 7 – Obtenha uma representação em espaço de estados da função de transferência abaixo.

$$G(s) = \frac{s^2 + 2s}{s^3 + 11s - 6}$$

SOLUÇÃO

Colocando o sistema na forma canônica observável: $b_0 = 0$; $b_1 = 1$; $b_2 = 2$; $b_3 = 0$;

$$a_{0} = 1; \ a_{1} = 0; \ a_{2} = 11; \ a_{3} = -6$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

A forma Canônica Diagonal é usada para representar o sistema abaixo no espaço de estados.

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{(s + p_1)(s + p_2)(s + p_3) \dots (s + p_n)}$$

$$\frac{Y(s)}{U(s)} = b_0 + \frac{c_1}{s + p_1} + \frac{c_2}{s + p_2} + \dots + \frac{c_n}{s + p_n}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_{n-1} \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} -p_1 & 0 & \cdots & 0 & 0 \\ 0 & -p_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -p_{n-1} & 0 \\ 0 & 0 & \cdots & 0 & -p_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} c_1 & c_2 & \cdots & c_{n-1} & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} + b_0 u$$

$$y = \begin{bmatrix} c_1 & c_2 & \cdots & c_{n-1} & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} + b_0 u$$

Exemplo 8 – Obtenha uma representação em espaço de estados da função de transferência abaixo.

$$G(s) = \frac{s^2 + 3s + 2}{s^3 + 15s^2 + 71s + 105}$$

SOLUÇÃO

$$G(s) = \frac{s^2 + 3s + 2}{s^3 + 15s^2 + 71s + 105} = \frac{(s+1)(s+2)}{(s+3)(s+5)(s+7)}$$

Colocando o sistema na forma canônica diago

Expandindo em frações parciais:

Expandindo em frações parciais:
$$G(s) = \frac{0.25}{(s+3)} - \frac{3}{(s+5)} + \frac{3.75}{(s+7)}$$

$$b_0 = 0; \ c_1 = 0.25; \ c_2 = -3; \ c_3 = 3.75; p_1 = 3; \ p_2 = 5; \ p_3 = 7$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0.25 & -3 & 3.75 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

A forma Canônica de Jordan é usada para representar o sistema abaixo no espaço de estados, ou seja, sistemas com raízes múltiplas.

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{(s + p_1)^3 (s + p_4) (s + p_5) \dots (s + p_n)}$$

$$\frac{Y(s)}{U(s)} = b_0 + \frac{c_1}{(s + p_1)^3} + \frac{c_2}{(s + p_1)^2} + \frac{c_3}{s + p_1} + \frac{c_4}{s + p_4} + \dots + \frac{c_n}{s + p_n}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} -p_1 & 1 & 0 & 0 & \cdots & 0 \\ 0 & -p_1 & 1 & \vdots & & \vdots \\ 0 & 0 & -p_1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & -p_4 & & 0 \\ \vdots \\ 0 & \cdots & 0 & 0 & & -p_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ \vdots \\ 0 \\ \vdots \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + b_0 u$$

Exemplo 9 – Obtenha uma representação em espaço de estados da função de transferência abaixo.

$$G(s) = \frac{s^2 + 3s + 2}{s^4 + 18s^3 + 116s^2 + 318s + 315}$$

SOLUÇÃO

$$G(s) = \frac{s^2 + 3s + 2}{s^4 + 18s^3 + 116s^2 + 318s + 315} = \frac{(s+1)(s+2)}{(s+3)^2(s+5)(s+7)}$$

Colocando o sistema na forma canônica diagonal.

Expandindo em frações parciais:

$$G(s) = -\frac{0,5625}{(s+3)} + \frac{0,25}{(s+3)^2} + \frac{1,5}{(s+5)} - \frac{0,9375}{(s+7)}$$

$$b_0 = 0; \ c_1 = -0,5625; \ c_2 = 0,25; \ c_3 = 1,5; \ c_4 = -0,9375; \ p_1 = 3; \ p_3 = 5; \ p_4 = 7$$

$$\vec{x} = \begin{bmatrix} -3 & 1 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 7 \end{bmatrix} \vec{x} + \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} -0,5625 & 0,25 & 1,5 & -0,9375 \end{bmatrix} \vec{x}$$

5.5.2. CONTROLABILIDADE COMPLETA DE ESTADOS

Se todo estado do sistema for controlável, então o sistema será considerado de estado completamente controlável.

A determinação da controlabilidade completa de estados se verifica de várias maneiras:

 Através do posto (ou rank) da matriz de controlabilidade completa de estados (MCE).

Definição: Um sistema será de estado completamente controlável se e somente se a matriz de controlabilidade completa de estados,

$$MCE = [B \mid AB \mid \cdots \mid A^{n-1}B]_{n \times nr}$$

tiver posto n.

OBS: Esse método não se aplica se o sistema estiver representado na forma canônica controlável.

- Se os autovetores de A não são distintos, então o sistema não é de estado completamente controlável. Uma matriz A com todos os autovalores distintos possui também seus autovetores distintos, todavia, uma matriz com autovetores distintos pode possuir múltiplos autovalores, ou seja, a recíproca não é verdadeira.
- Se a matriz $P^{-1}B$ tiver pelo menos uma linha nula, então a variável correspondente a essa linha não pode ser controlada por nenhuma das entradas, portanto, o sistema não será de estado completamente controlável.
- Se a matriz A for diagonal com autovalores distintos e a matriz B não possuir linha de zeros, então o sistema será de estado completamente controlável.
- Se ocorrerem cancelamentos de polos e zeros na função de transferência, ou na matriz de transferência, então o sistema não será de estado completamente controlável.

Exemplo 10 – Para o sistema abaixo, verifique se é de estado completamente controlável.

tema abaixo, verifique se é de estado con
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + u$$

SOLUÇÃO

Solução 1: A matriz A é diagonal e com autovalores distintos, então, como a matriz B não possui linha nula, então o sistema é de estado completamente controlável.

Solução 2: A matriz A é diagonal, logo, A = D. Assim, a matriz V que satisfaz a igualdade $A \times V = V \times D$

$$A \times V = V \times A \rightarrow A \times I = I \times A \rightarrow V = I$$

logo, as colunas de *V* (autovetores de *A*) são distintas, portanto, como os autovalores são distintos e *B* não possui linha de zeros, o sistema *é de estado completamente controlável*.

Solução 3:

Matriz de Controlabilidade de Estado:

$$MCE = [B \mid AB \mid A^2B \mid \cdots \mid A^{n-1}B]_{nxnr}$$

O sistema possui dimensão 3, ou seja, n=3, assim, a matriz de controlabilidade de estado fica: $\begin{bmatrix} B & AB & A^2B \end{bmatrix}$

$$MCE = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & 4 \\ 1 & -3 & 9 \end{bmatrix}$$

$$posto \begin{pmatrix} 1 & -1 & 1 \\ 1 & -2 & 4 \\ 1 & -3 & 9 \end{pmatrix} = 3, \text{ pois } det \begin{pmatrix} 1 & -1 & 1 \\ 1 & -2 & 4 \\ 1 & -3 & 9 \end{pmatrix} \neq 0$$

logo, o sistema *é de estado completamente controlável*, pois o posto é igual ao número de linhas da matriz de controlabilidade de estado.

Exemplo 11 – Para o sistema abaixo, verifique se é de estado completamente controlável.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + u$$

SOLUÇÃO

Solução 1: Matriz que diagonaliza *A*.

Os autovalores de A são: $\lambda_1 = -1$, $\lambda_2 = -2$, $\lambda_3 = -3$.

A matriz *P* que diagonaliza *A* é:

$$P = \begin{bmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -2 & -3 \\ 1 & 4 & 9 \end{bmatrix}$$

Como os autovalores são distintos, então P possui inversa que é:

$$P^{-1} = \begin{bmatrix} 3 & 5/_2 & 1/_2 \\ -3 & -4 & -1 \\ 1 & 3/_2 & 1/_2 \end{bmatrix}$$

A matriz $P^{-1}B$ é:

$$P^{-1}B = \begin{bmatrix} 3 & 5/_2 & 1/_2 \\ -3 & -4 & -1 \\ 1 & 3/_2 & 1/_2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/_2 \\ -1 \\ 1/_2 \end{bmatrix}$$

Como a matriz $P^{-1}B$ não possui linha nula, então o sistema \acute{e} de estado completamente controlável.

Solução 2: Os autovalores de A são os polos do sistema, ou seja, as raízes da equação característica, logo,

$$det(sI - A) = 0$$

$$det \begin{pmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{pmatrix} - \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix} = 0$$

$$det \begin{pmatrix} \begin{bmatrix} s & -1 & 0 \\ 0 & s & -1 \\ 6 & 11 & s+6 \end{bmatrix} \end{pmatrix} = s^3 + 6s^2 + 11s + 6 = 0$$

As raízes são $\lambda_1 = -1$, $\lambda_2 = -2$ e $\lambda_3 = -3$.

Os autovalores de A (polos do sistema) são distintos, logo essa condição apenas não é suficiente para afirmar que o sistema é de estado completamente controlável)

Solução 3: A matriz *V* que satisfaz a igualdade

$$A \times V = V \times D$$

onde, a matriz diagonal com os autovalores de A,

$$D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

$$V = \begin{bmatrix} -0.577 & 0.218 & -0.104 \\ 0.577 & -0.436 & 0.314 \\ -0.577 & 0.872 & -0.943 \end{bmatrix}$$

logo, as colunas de V (autovetores de A) são distintas (posto = 3; $det \neq 0$), então, como os autovalores também são distintos, o sistema é de estado completamente controlável.

Solução 4: Matriz de Controlabilidade de Estado. O sistema foi apresentado na forma canônica controlável, logo não é possível utilizar o teste pela MCE.

Exemplo 12 – Para o sistema abaixo, verifique se é de estado completamente controlável.

stema abaixo, verifique se e de estado con
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -9 & -15 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + u$$

SOLUÇÃO

Solução 1: Matriz que diagonaliza A.

Os autovalores de A são: $\lambda_1 = -1$, $\lambda_2 = -3$, $\lambda_3 = -3$.

A matriz *P* que diagonaliza *A* é:

$$P = \begin{bmatrix} 1 & 1 & 1 \\ \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_1^2 & \lambda_2^2 & \lambda_3^2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -3 & -3 \\ 1 & 9 & 9 \end{bmatrix}$$

A matriz é singular, logo não há inversa de *P*, portanto, não podendo utilizar este método.

Solução 2: Os autovalores de *A* são os polos do sistema, ou seja, as raízes da equação característica, logo,

$$det(sI - A) = 0$$

$$det \begin{pmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{pmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -9 & -15 & -7 \end{bmatrix} = 0$$

$$det \begin{pmatrix} s & -1 & 0 \\ 0 & s & -1 \\ 9 & 15 & s + 7 \end{bmatrix} = s^3 + 7s^2 + 15s + 9 = 0$$

As raízes são $\lambda_1 = -1$, $\lambda_2 = -3$ e $\lambda_3 = -3$.

Os autovalores de *A* (polos do sistema) não são distintos, logo o sistema *não é de estado completamente controlável*)

Solução 3: A matriz *V* que satisfaz a igualdade

$$A \times V = V \times D$$

onde, a matriz diagonal com os autovalores de A,

$$D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

é:

$$V = \begin{bmatrix} 0,577 & 0,105 & 0,105 \\ -0,577 & -0,314 & -0,314 \\ 0,577 & 0,943 & 0,943 \end{bmatrix}$$

logo, as colunas de V (autovetores de A) são distintas (posto = 3; $det \neq 0$), porém, os autovalores não são distintos, então o sistema não \acute{e} de estado completamente controlável.

Solução 4: Matriz de Controlabilidade de Estado. O sistema foi apresentado na forma canônica controlável, logo não é possível utilizar o teste pela MCE.

5.5.3. CONTROLABILIDADE DE SAÍDA

No projeto prático de sistemas de controle, pode-se desejar controlar a saída, ao invés dos estados do sistema. A controlabilidade completa de estados não é necessária nem suficiente para controlar a saída do sistema.

Um sistema será de saída controlável se for possível construir um vetor de controle de entrada $\vec{u}(t)$ não limitado que transfira qualquer saída inicial, $\vec{y}(t_0)$, para qualquer saída final, $\vec{y}(t_1)$ em um intervalo de tempo finito $t_0 \le t \le t_1$.

A determinação da controlabilidade de saída de um sistema se verifica no posto da *matriz de controlabilidade de saída (MCS)*.

Definição: Um sistema será de saída controlável se e somente se a matriz de controlabilidade de saída,

$$MCS = [CB \mid CAB \mid CA^{2}B \mid \cdots \mid CA^{n-1}B \mid D]_{m \times (n+1)r}$$

tiver posto m.

Exemplo 13 – Verifique se o sistema abaixo é de saída completamente controlável.

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 4 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 2u(t)$$

SOLUÇÃO

Matriz de Controlabilidade de Saída:

logo, o sistema *é de saída completamente controlável*, pois o posto é igual ao número de linhas da matriz de controlabilidade de saída.

5.5.4. OBSERVABILIDADE COMPLETA DE ESTADOS

Se todo estado do sistema puder ser determinado pela observação da saída durante um intervalo de tempo finito, então o sistema será considerado de estado completamente observável.

A determinação da observabilidade completa de estados se verifica de várias maneiras:

 Através do posto (ou rank) da matriz de observabilidade completa de estados (MOE).

Definição: Um sistema será de estado completamente observável se e somente se a matriz de observabilidade,

$$MOE = \begin{bmatrix} C \\ - \\ CA \\ - \\ \vdots \\ - \\ CA^{n-1} \end{bmatrix}_{nm \times n}$$

tiver posto n.

OBS: Esse método não se aplica se o sistema estiver representado na forma canônica observável.

- Se a matriz CP tiver pelo menos uma coluna nula, então a variável de estado correspondente a essa coluna não vai aparecer na equação de saída, logo não podendo ser determinada pela observação de y(t), portanto, o sistema não será de estado completamente observável.
- Se ocorrerem cancelamentos de polos e zeros na função de transferência, ou na matriz de transferência, então o sistema não será de estado completamente observável.

Exemplo 14 – Verifique se o sistema abaixo é de estado completamente observável.

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 4 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 2u(t)$$

SOLUÇÃO

Solução 1: Matriz de Observabilidade de Estados

$$MOE = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 5 \end{bmatrix}$$

$$posto(\begin{bmatrix} 0 & 1 \\ 2 & 5 \end{bmatrix}) = 2$$

logo, o sistema *é completamente observável*, pois o posto é igual ao número de colunas da matriz de observabilidade de estados.

Solução 2: Os autovalores de *A* são os polos do sistema, ou seja, as raízes da equação característica, logo,

$$det(sI - A) = 0$$

$$det \begin{pmatrix} \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \end{pmatrix} = 0$$

$$det \begin{pmatrix} \begin{bmatrix} s - 1 & -3 \\ -2 & s - 5 \end{bmatrix} \end{pmatrix} = s^2 - 6s - 1 = 0$$

As raízes são $\lambda_1 = -0.16$ e $\lambda_2 = 6.16$.

A matriz P, que diagonaliza A, é a matriz dos autovetores de A, (veja Seção 5.3):

$$P = \begin{bmatrix} -0.93 & -0.5 \\ 0.36 & -0.86 \end{bmatrix}$$

A matriz *CP* é:

$$CP = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} -0.93 & -0.5 \\ 0.36 & -0.86 \end{bmatrix} = \begin{bmatrix} 0.36 & -0.86 \end{bmatrix}$$

Como a matriz *CP* não possui coluna nula, então o sistema *é de estado completamente observável*.

OBSERVAÇÕES:

- Seja o sistema na forma canônica diagonal.
- Um *sistema não controlável* possui um subsistema que é fisicamente desconectado da entrada.
- Para sistemas parcialmente controláveis, se os modos não controláveis forem estáveis e os modos instáveis forem controláveis, o sistema será considerado estabilizável. Ex: O sistema definido por

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$

não é de estado controlável, pois a variável de estado $x_2(t)$ não é conectada à entrada u(t). O modo estável, que corresponde ao autovalor 1 – 1, não é controlável ($x_2(t)$ é desconectado da entrada). O modo instável, que corresponde ao autovalor 1, é controlável ($x_1(t)$ é conectado à entrada). Esse sistema pode ser estabilizado pelo uso de uma realimentação apropriada, logo, o sistema é estabilizável.

• Para sistemas parcialmente observáveis, se os modos não observáveis forem estáveis e os modos instáveis forem observáveis, o sistema será considerado detectável (dual ao conceito de estabilizável).

 1 Observe no exemplo que a matriz A é diagonal, logo, seus autovalores estão representados na matriz. Os autovalores são as raízes da equação característica e, para um sistema estável, eles devem ser negativos (polos no semiplano esquerdo do plano s)

5.6. PRINCÍPIO DA DUALIDADE

Sejam os sistemas

onde:

 $\vec{s}(t)$ e $\vec{y}(t)$ são vetores de saída

 $\vec{z}(t)$ e $\vec{q}(t)$ são vetores de estado

 A^* , B^* e C^* são as matrizes transpostas conjugadas de A, B e C respectivamente.

O princípio da dualidade estabelece que o sistema S_1 será de estado completamente controlável (observável) se e somente se o sistema S_2 for de estado completamente observável (controlável).

5.7. MATLAB

Funções importantes: ss, tf2ss, ss2tf, obsv, ctrb, det, inv, residue, roots, eye, eig.

5.8. LISTA DE EXERCÍCIOS

OGATA 4^aed: B11.1 a B11.17, B12.1 e B12.2 OGATA 5^aed: B9.1 a B9.17, B10.1 e B10.2

5.9. EXERCÍCIOS COMPLEMENTARES

Exemplo 1 – Um helicóptero militar de alto desempenho, mostrado na figura abaixo, necessita de um controle do ângulo de arfagem θ ajustando-se o ângulo δ do rotor. As equações do movimento do helicóptero são:

$$\frac{d^2\theta}{dt^2} = -\sigma_1 \frac{d\theta}{dt} - \alpha_1 \frac{dx}{dt} + n\delta$$
$$\frac{d^2x}{dt^2} = g\theta - \alpha_2 \frac{d\theta}{dt} - \sigma_2 \frac{dx}{dt} + g\delta$$

onde x é a translação na direção horizontal. Determine uma representação desse sistema em variáveis de estado e verifique, para os valores:

$$\sigma_1 = 0.415$$
 $\alpha_1 = 0.0111$ $n = 6.27$ $\sigma_2 = 0.0198$ $\alpha_2 = 1.43$ $g = 10$

se o sistema é de estado controlável.

SOLUÇÃO

Fazendo
$$\frac{d^2\theta}{dt^2} = \dot{y}_1(t)$$
, temos $\frac{d\theta}{dt} = y_1(t)$
Fazendo $\frac{d^2x}{dt^2} = \dot{y}_2(t)$, temos $\frac{dx}{dt} = y_2(t)$
Fazendo $\theta(t) = y_3(t)$, temos $\dot{y}_3(t) = y_1(t)$

Reescrevendo as equações do problema com as novas variáveis, temos:

$$\dot{y}_1(t) = -\sigma_1 y_1(t) - \alpha_1 y_2(t) + n\delta$$

$$\dot{y}_2(t) = g y_3(t) - \alpha_2 y_1(t) - \sigma_2 y_2(t) + g\delta$$

$$\dot{y}_3(t) = y_1(t)$$

Representando no espaço de estados, temos:

$$\begin{bmatrix} \dot{y}_1(t) \\ \dot{y}_2(t) \\ \dot{y}_3(t) \end{bmatrix} = \begin{bmatrix} -\sigma_1 & -\alpha_1 & 0 \\ -\alpha_2 & -\sigma_2 & g \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} + \begin{bmatrix} n \\ g \\ 0 \end{bmatrix} \delta(t)$$

$$\theta(t) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix}$$

Matriz de Controlabilidade de Estado:

$$MCE = [B \quad | \quad AB \quad | \quad A^2B \quad | \quad \cdots \quad | \quad A^{n-1}B]_{nxnr}$$

$$\begin{split} \mathit{MCE} &= \begin{bmatrix} n \\ g \\ 0 \end{bmatrix} \ | \ \begin{bmatrix} -\sigma_1 & -\alpha_1 & 0 \\ -\alpha_2 & -\sigma_2 & g \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} n \\ g \\ 0 \end{bmatrix} \ | \ \begin{bmatrix} -\sigma_1 & -\alpha_1 & 0 \\ -\alpha_2 & -\sigma_2 & g \\ 1 & 0 & 0 \end{bmatrix}^2 \begin{bmatrix} n \\ g \\ 0 \end{bmatrix} \\ \mathit{MCE} &= \begin{bmatrix} 6.27 \\ 10 \\ 0 \end{bmatrix} \ | \ \begin{bmatrix} -0.415 & -0.0111 & 0 \\ -1.43 & -0.0198 & 10 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 6.27 \\ 10 \\ 0 \end{bmatrix} \ | \ \begin{bmatrix} -0.415 & -0.0111 & 0 \\ -1.43 & -0.0198 & 10 \\ 1 & 0 & 0 \end{bmatrix}^2 \begin{bmatrix} 6.27 \\ 10 \\ 0 \end{bmatrix} \\ \mathit{MCE} &= \begin{bmatrix} 6.27 & -2.7131 & 1.2276 \\ 10 & -9.1641 & 66.7611 \\ 0 & 6.27 & -2.7131 \end{bmatrix} \Rightarrow posto(\mathit{MCE}) = 3 \end{split}$$

logo, o sistema *é de estado completamente controlável*, pois o posto é igual ao número de linhas da matriz de controlabilidade de estado.

Exemplo 2 – Para o sistema abaixo,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -2 & -3 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Verifique:

- a. A controlabilidade de saída
- b. A observabilidade de estado

SOLUÇÃO

a) A matriz de controlabilidade de saída para esse sistema com n=3 é $MCS = \begin{bmatrix} CB & CAB & CA^2B & D \end{bmatrix}$ logo,

$$\begin{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & -3 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & -3 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 5 & 0 \end{bmatrix}$$
Assim,
$$posto(\begin{bmatrix} 0 & 0 & 5 & 0 \end{bmatrix}) = 1$$

logo, o sistema *é de saída completamente controlável*, pois o posto é igual ao número de linhas da matriz de controlabilidade de saída.

b) A matriz de observabilidade para esse sistema com n = 3 é

$$MOE = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix}$$

logo,

$$MOE = \begin{bmatrix} & & \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} & & \\ & & & \begin{bmatrix} -2 & -3 & -4 \end{bmatrix} \\ & & & \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} & 0 \\ & & & 1 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & -3 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Assim,

$$posto\left(\begin{bmatrix}0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0\end{bmatrix}\right) = 3$$

logo, o sistema *é observável*, pois o posto é igual ao número de colunas da matriz de observabilidade.

Exemplo 3 – Para o sistema abaixo,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & -3 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + 2u$$

Verifique:

- a. A controlabilidade de saída.
- b. A observabilidade de estado.

SOLUÇÃO

a) A matriz de controlabilidade de saída para esse sistema com n = 3 é

$$MCS = \begin{bmatrix} CB & CAB & CA^2B & D \end{bmatrix}$$

logo,

$$\begin{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} & \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -3 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} & \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -3 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^2 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 5 & -1 & 2 \end{bmatrix}$$

Assim,

$$posto([0 \ 5 \ -1 \ 2]) = 1$$

logo, o sistema *é de saída completamente controlável*, pois o posto é igual ao número de linhas da matriz de controlabilidade de saída.

b) A matriz de observabilidade para esse sistema com n = 3 é

$$MOE = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix}$$

logo,

$$MOE = \begin{bmatrix} [-1 & 0 & 1] \\ -1 & -3 & -4 \\ [-1 & 0 & 1] \begin{bmatrix} -1 & -3 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \\ [-1 & 0 & 1] \begin{bmatrix} -1 & -3 & -4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^{2} \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & 4 & 4 \\ 3 & 1 & -4 \end{bmatrix}$$

Assim,

$$posto\left(\begin{bmatrix} -1 & 0 & 1\\ 1 & 4 & 4\\ 3 & 1 & -4 \end{bmatrix}\right) = 3$$
, pois o determinante é diferente de zero.

logo, o sistema *é observável*, pois o posto é igual ao número de colunas da matriz de observabilidade.

Exemplo 4 – Para o sistema abaixo, encontre a função de transferência.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + u$$

SOLUÇÃO

O sistema está na forma diagonal, logo

$$\begin{aligned} p_1 &= 1, & p_2 &= 2, & p_3 &= 3 \\ c_1 &= 1, & c_2 &= 2, & c_3 &= 1 \\ b_0 &= 1 & & \\ \frac{Y(s)}{U(s)} &= b_0 + \frac{c_1}{s+p_1} + \frac{c_2}{s+p_2} + \dots + \frac{c_n}{s+p_n} \\ \frac{Y(s)}{U(s)} &= 1 + \frac{1}{s+1} + \frac{2}{s+2} + \frac{1}{s+3} \end{aligned}$$

$$\frac{Y(s)}{U(s)} = \frac{s^3 + 9s^2 + 23s + 17}{s^3 + 6s^2 + 11s + 6}$$

Exemplo 5 – Represente no espaço de estados a FT, $\frac{V_0(s)}{I(s)}$, do circuito abaixo.

SOLUÇÃO

$$V_C(s) = V_L(s) + V_0(s) (i)$$

$$I(s) = I_C(s) + I_L(s)$$
 (ii)

$$V_0(s) = RI_L(s)$$
 (iii)

$$V_0(s) = RI_L(s) \tag{iii}$$

Resolvendo (i) e (ii):

$$V_C(s) = sLI_L(s) + RI_L(s) = (sL + R)I_L(s)$$
 (iv)

$$I(s) = sCV_C(s) + I_L(s)$$
 (v)

Substituindo (iv) em (v):

$$I(s) = sC(sL + R)I_L(s) + I_L(s) = (CLs^2 + CRs + 1)I_L(s)$$
 (vi)

De (iii) e (vi), temos:

$$\frac{V_0(s)}{I(s)} = \frac{RI_L(s)}{(CLs^2 + CRs + 1)I_L(s)}$$

$$\frac{V_0(s)}{I(s)} = \frac{\frac{R}{CL}}{s^2 + \frac{R}{L}s + \frac{1}{CL}}$$

$$\frac{V_0(s)}{I(s)} = \frac{\frac{R}{CL}}{s^2 + \frac{R}{L}s + \frac{1}{CL}}$$

Assim.

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

$$a_1 = \frac{R}{L}$$
 $a_2 = \frac{1}{CL}$ $b_0 = b_1 = 0$ $b_2 = \frac{R}{CL}$

Da Forma Canônica Controlável, temos:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_2 & -a_1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} (b_2 - a_2b_0) & (b_1 - a_1b_0) \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + b_0 u(t)$$

Substituindo as variáveis:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{CL} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} \frac{R}{CL} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Exemplo 6 – Verifique se o sistema abaixo é de estado completamente controlável

$$G(s) = \frac{s+1}{s(s^2+s+1)}$$

SOLUÇÃO

Representando o sistema na forma canônica observável, temos:

Representando o sistema na forma canonica observavel,
$$b_0 = b_1 = 0; \ b_2 = b_3 = 1 \qquad a_1 = a_2 = 1 \qquad a_3 = 0$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Matriz de Contr. de Estado (MCE): $[B \mid AB \mid A^2B \mid \cdots \mid A^{n-1}B]_{nxnr}$

$$MCE = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad | \quad \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad | \quad \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}^2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Rank (MCE) = 3

logo, o sistema *é de estado completamente controlável*, pois o posto é igual ao número de linhas da matriz de controlabilidade de estado.

Exemplo 7 – Verifique se o sistema abaixo é de estado completamente observável

$$R(s) \longrightarrow \boxed{\frac{2s^2 + s + 1}{s(s^2 + 6s + 25)}} \longrightarrow C(s)$$

SOLUÇÃO
$$FTMF = \frac{2s^2 + s - 1}{s^3 + 8s^2 + 26s - 1}$$

Para verificar a observabilidade não podemos colocar o sistema na forma canônica observável, pois, tornaria a resposta sempre observável, assim, representando o sistema na forma canônica controlável, temos:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -26 & -8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Matriz de Observabilidade de Estado (MOE):

$$MOE = \begin{bmatrix} -1 & 1 & 2 \\ -2 & -2 & -2 \\ -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -26 & -8 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 2 \\ 2 & -53 & -15 \\ -15 & 392 & 67 \end{bmatrix}$$
$$\begin{bmatrix} -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -26 & -8 \end{bmatrix}^{2}$$

Rank (MOE) = 3

logo, o sistema é completamente observável, pois o posto é igual ao número de colunas da matriz de observabilidade de estados.

Exemplo 8 – Dado o sistema abaixo

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$$
$$v(t) = 2x_2(t)$$

- a. Obtenha a FT
- b. Determine se o sistema é de saída completamente controlável.
- c. Determine se o sistema é de estado completamente observável.

SOLUÇÃO

a) O sistema está na forma canônica controlável, logo, da equação abaixo, temos:

$$\frac{Y(s)}{U(s)} = \frac{b_0 s^n + b_1 s^{n-1} + \dots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}$$

$$a_1 = 3 \qquad a_2 = 0$$

$$b_0 = 0 \qquad b_2 + a_2 b_0 = 0 \Rightarrow b_2 = 0 \qquad b_1 + a_1 b_0 = 2 \Rightarrow b_1 = 2$$

Assim,
$$\frac{Y(s)}{U(s)} = \frac{2s}{s^2 + 3s}$$
 \Rightarrow $\frac{Y(s)}{U(s)} = \frac{2}{s+3}$

b) Controlabilidade de Saída

Matriz de Controlabilidade de Saída:

$$\begin{bmatrix} CB & | & CAB & | & CA^2B & | & \cdots & | & CA^{n-1}B & | & D \end{bmatrix}$$

$$= \begin{bmatrix} [0 & 2] \begin{bmatrix} 0 \\ 1 \end{bmatrix} & | & [0 & 2] \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} & | & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -6 & 0 \end{bmatrix}$$

$$posto(\begin{bmatrix} 2 & -6 & 0 \end{bmatrix}) = 1$$

logo, o sistema *é de saída completamente controlável*, pois o posto é igual ao número de linhas da matriz de controlabilidade de saída.

c) Observabilidade de Estado:

Matriz de Observabilidade de Estado: $\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$ $= \begin{bmatrix} \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & -6 \end{bmatrix}$ $posto(\begin{bmatrix} 0 & 2 \\ 0 & -6 \end{bmatrix}) = 1$

logo, o sistema *não é completamente observável*, pois o posto é diferente do número de colunas da matriz de observabilidade de estados.

Exemplo 9 – Coloque o sistema abaixo na forma canônica controlável

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + 2u$$

SOLUÇÃO

O sistema está na forma diagonal, logo a função de transferência é:

$$p_1 = 1$$
, $p_2 = -2$, $p_3 = -3$
 $c_1 = -1$, $c_2 = 1$, $c_3 = 0$
 $b_0 = 2$

$$\frac{Y(s)}{U(s)} = b_0 + \frac{c_1}{s+p_1} + \frac{c_2}{s+p_2} + \dots + \frac{c_n}{s+p_n}$$
$$\frac{Y(s)}{U(s)} = 2 - \frac{1}{s+1} + \frac{1}{s-2} + \frac{0}{s-3}$$

Resolvendo a equação, temos:

$$\frac{Y(s)}{U(s)} = 2 - \frac{1}{s+1} + \frac{1}{s-2}$$

$$\frac{Y(s)}{U(s)} = \frac{2(s+1)(s-2) - (s-2) + (s+1)}{(s+1)(s-2)}$$

$$\frac{Y(s)}{U(s)} = \frac{2s^2 - 2s - 4 - s + 2 + s + 1}{s^2 - s - 2}$$

$$\frac{Y(s)}{U(s)} = \frac{2s^2 - 2s - 1}{s^2 - s - 2}$$

Assim, a forma canônica controlável é obtida da FT acima.

$$b_0 = 2, \quad b_1 = -2, \quad b_2 = -1, \quad b_3 = 0$$

$$a_1 = -1, \quad a_2 = -2, \quad a_3 = 0$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & -3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + 2u$$

ou

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 2u$$