Day 1 - Linux Learning Summary

1. Installing WSL on Windows

- WSL (Windows Subsystem for Linux) allows running a Linux environment on Windows without a virtual machine.
- Installed WSL and set up the Linux distribution.

2. Basic Linux Commands

a) Navigation & Directory Operations

- pwd → Prints the current working directory.
- $1s \rightarrow Lists$ files and directories in the current location.
- mkdir <dir name> → Creates a new directory.
- mkdir -p <dir1/dir2/dir3> -> Creates nested directories (parent-child structure).
- cd $\langle path \rangle \rightarrow Changes directory.$
- $cd ... \rightarrow Moves one level up in the directory hierarchy.$

b) Exploring File System

- cd /mnt/c/ \rightarrow Navigates to the C drive in Windows from Linux.
- 1s -1rt → Lists files in long format (-l), sorted by modification time (-t), in reverse order (-r).

3. Hands-on with File & Directory Operations

- Created a new directory: mkdir LinuxPractise
- Navigated into it: cd LinuxPractise/
- Created a new file using vi: vi a.txt (Opened in Vim editor)
- Created a deep directory structure:
- mkdir -p a/b/c/d/e/f/g/h/i/j/k/l/m/temp.txt
- Used touch to create files:
- touch c406.txt
- touch {1..5}.txt # Creates files: 1.txt, 2.txt, 3.txt, 4.txt, 5.txt
- touch {a..z}.txt # Creates files: a.txt, b.txt, ..., z.txt
- Deleted all files in the directory: rm -rf *
- Copied files and directories:
- cp -rf b.txt /mnt/c/Users/srs33/ # Copies b.txt to a Windows directory
- cp -rf a /mnt/c/Users/srs33/ # Copies folder "a" to Windows directory

4. Understanding File Permissions in Linux

In Linux, every file and directory has permissions associated with three categories:

- 1. **Owner** The user who owns the file.
- 2. **Group** A group of users who share the same permissions.
- 3. **Others** All other users.

Each category has three types of permissions:

- Read $(4) \rightarrow$ Allows viewing the file's content.
- Write $(2) \rightarrow$ Allows modifying or deleting the file.
- **Execute** (1) \rightarrow Allows running the file as a program or script.

Permission Representation in Binary & Numeric Form

Read	Write	Execute	Permission Description
1	1	1	Read, Write, Execute (Full permissions)
1	1	0	Read and Write only
1	0	1	Read and Execute only
0	1	1	Write and Execute only
0	0	1	Execute only
0	1	0	Write only
1	0	0	Read only
0	0	0	No permission given

Example: Changing File Permissions

- chmod 755 filename \rightarrow Sets permissions to:
 - o **Owner:** Read, Write, Execute $(7 \rightarrow 4+2+1)$
 - o **Group:** Read, Execute $(5 \rightarrow 4+0+1)$
 - o **Others:** Read, Execute $(5 \rightarrow 4+0+1)$
- 1s -1 filename → Displays the file's permissions in rwx format.

5. Using grep Command

- grep is used for searching text patterns in files.
- Example:
- man grep # Opens manual for grep command
 - Common Grep Usage:
 - grep "pattern" filename \rightarrow Searches for "pattern" inside filename.
 - \blacksquare grep -i "pattern" filename \rightarrow Case-insensitive search.
 - grep -r "pattern" /path/ \rightarrow Recursively searches in directories.