Uitwerking van opgave 5 bij paragraaf 1.5 van Huth&Ryan

Te bewijzen is dat de relatie \equiv (semantische equivalentie) een equivalentierelatie is. Dat wil zeggen, dat \equiv reflexief, symmetrisch en transitief is. Er is gedefiniëerd dat:

$$\phi \equiv \psi \iff \phi \models \psi$$
 èn
$$\psi \models \phi$$

- (a) Reflexiviteit We willen laten zien dat voor iedere ϕ geldt: $\phi \models \phi$ (en andersom, wat in dit geval niet uit maakt). Dit is zo, wanneer voor iedere waardetoekenning waarbij ϕ waar is ook ϕ waar is en dat is natuurlijk het geval.
- (b) Symmetrie De relatie \equiv is symmetrisch als $\phi \equiv \psi \Rightarrow \psi \equiv \phi$. We nemen aan dat $\phi \equiv \psi$ en dus weten we dat $\phi \models \psi$ en $\psi \models \phi$. Maar dan weten we ook dat $\psi \equiv \phi$.
- (c) Transitiviteit Ten slotte is \equiv transitief wanneer gegeven $\phi \equiv \psi$ en $\psi \equiv \eta$ ook $\phi \equiv \eta$ waar is.

We weten dat voor iedere waardetoekenning waarbij ϕ waar is ook ψ waar is (want $\phi \models \psi$). Maar voor iedere waardetoekenning waarbij ψ waar is, is ook η waar (want $\psi \models \eta$). Dus is bij iedere waardetoekenning die ϕ waar maakt ook η waar en hebben we $\phi \models \eta$. Op dezelfde manier kunnen we beredeneren dat $\eta \models \phi$ en dus is $\phi \equiv \eta$ waar.