1

Assignment-1 CHAPETR-11

Limits, Continuity and Differentiability

EE24BTECH11048-NITHIN.K

I. C:MCQs with One Correct Answer

- 1) Let $g(x) = \frac{(x-1)^n}{\log \cos^m(x-1)}$; 0 < x < 2, m and n are integers, $m \ne 0$, n > 0, and let p be the left hand derivative of |x-1| at x = 1. If $\lim_{x \to 1^+} g(x) = p$, then (2008)
 - a) n = 1, m = 1
 - b) n = 1, m = -1
 - c) n = 2, m = 2
 - d) n > 2, m = n
- 2) If $\lim_{x\to 0} [1 + x \ln(1 + b^2)]^{\frac{1}{x}} = 2b \sin^2 \theta$, b > 0 and $\theta \in (-\pi, \pi]$, then the value of θ is
 - a) $\pm \frac{\pi}{4}$

 - b) $\pm \frac{\pi}{3}$ c) $\pm \frac{\pi}{6}$ d) $\pm \frac{\pi}{2}$
- 3) If $\lim_{x\to\infty} \left(\frac{x^2 + x + 1}{x + 1} ax b \right) = 4$, then (2012)
 - a) a = 1, b = 4
 - b) a = 1, b = -4
 - c) a = 2, b = -3
 - d) a = 2, b = 3
- 4) Let $f(x) = \begin{cases} x^2 |cos\frac{\pi}{x}| &, x \neq 0 \\ 0 &, x = 0 \end{cases}$, $x \in \mathbb{R}$ then f is
 - a) differentiable both at x = 0 and at x = 2
 - b) differentiable at x=0 but not differentiable at
 - c) not differentiable at x=0 but differentiable at x=2
 - d) differentiable neither at x=0 nor at x=2
- 5) Let $\alpha(a)$ and $\beta(a)$ be the roots of the equation $(\sqrt[3]{1+a}-1)x^2+(\sqrt[2]{1+a}-1)x+(\sqrt[6]{1+a}-1)x$ 1) = 0 where a > -1. then $\lim_{a\to 0^+} \alpha(a)$ and $\lim_{a\to 0^+} \beta(a)$ are (2012)

- a) $-\frac{5}{2}$ and 1 b) $-\frac{7}{2}$ and 1 c) $-\frac{7}{2}$ and 2 d) $-\frac{9}{2}$ and 3

II. D:MCQs with One or More than One Correct

- 6) If x + |y| = 2y, then y as a function of x is (1984-3marks)
 - a) defined for all real x
 - b) continuous at x = 0
 - c) differentiable for all x
 - d) such that $\frac{dy}{dx} = \frac{1}{3}$ for x < 0
- 7) If $f(x) = x(\sqrt{x} \sqrt{x+1})$, then-(1985-2marks)
 - a) f(x) is continuous but not differentiable at x = 0
 - b) f(x) is differentiable at x = 0
 - c) f(x) is not differentiable at x = 0
 - d) none of these
- 8) The function f(x) = 1 + |sin x| is (1986-2marks)
 - a) continuous nowhere
 - b) continuous everywhere
 - c) differentiable nowhere
 - d) not differentiable at x = 0
 - e) not differentiable at infinite number of points
- 9) Let [x] denote the greatest integer less than or equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is (1986-2marks)
 - a) continuous at x = 0
 - b) continuous in (-1,0)
 - c) differentiable at x = 1

- d) differentiable in (-1,1)
- e) none of these
- 10) The set of all points where the function f(x) = $\frac{x}{(1+|x|)}$ is differentiable, is (1987-2marks)
 - a) $(-\infty, \infty)$
 - b) $[0, \infty)$
 - c) $(-\infty, 0) \cup (0, \infty)$
 - d) $(0, \infty)$
 - e) None
- 11) The function

$$f(x) = \begin{cases} |x-3| & ,x \ge 1\\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & ,x < 1 \end{cases}$$
, is (1988-2 marks)

- a) continuous at x=1
- b) differentiable at x=1
- c) continuous at x=3
- d) differentiable at x=3
- 12) If $f(x) = \frac{1}{2}x 1$, then on the interval $[0, \pi]$ (1989-2marks)

 - a) tan[f(x)] and $\frac{1}{f(x)}$ are both continuous b) tan[f(x)] and $\frac{1}{f(x)}$ are both discontinuous c) tan[f(x)] and tangle f(x) are both continuous

 - d) tan[f(x)] is continuous but $\frac{1}{f(x)}$ is not
- 13) The value of $\lim_{x\to 0} \frac{\sqrt{\frac{1}{2}(1-\cos 2x)}}{x}$ (1991-2marks)
 - a) 1
 - b) -1
 - c) 0
 - d) none of these
- 14) The following functions are continuous on $(0,\pi)$ (1991-2marks)
 - a) tanx

 - b) $\int_0^x t \sin \frac{1}{t} dt$ c) $\begin{cases} 1 & 0 < x \le \frac{3\pi}{4} \\ 2 \sin \frac{2}{9}x & \frac{3\pi}{4} < x < \pi \end{cases}$ d) $\begin{cases} x \sin x & 0 < x \le \frac{\pi}{2} \\ \frac{\pi}{2} \sin(\pi + x) & \frac{\pi}{2} < x < \pi \end{cases}$
- 15) Let $f(x) = \begin{cases} 0 & , x < 0 \\ x^2 & , x \le 0 \end{cases}$ then for all x (1994)

- a) f^{\dagger} is differentiable
- b) f is differentiable
- c) f^{\dagger} is continuous
- d) f is continuous