Hierarchical Bayesian Analysis - Hierarchical logit and models of bounded rationality

Alina Ferecatu

Rotterdam School of Management, Erasmus University

> EMAC May 31st, 2018

Overview of models

• A choice model of buying decisions given price and promotions

Hierarchical binary logit example

• A bounded rationality model

Adaptive learning example

Hierarchical binary logit example

A choice model of buying decisions given price and promotions:

• 500 consumers with 10 purchase occasions each

$$y_{ijt} \sim \mathcal{B}(p_{ijt})$$
 $logit(p_{ijt}) \sim \mathcal{N}(x_{ijt}\beta_{ij})$
 $\beta_i \sim \textit{MultiNormal}(z_i\delta, \Sigma)$
 $\delta \sim \mathcal{N}(\delta_0, \sigma)$

Non-conjugate prior

$$\Sigma = diag(\tau) \Omega diag(\tau)$$
$$\tau \sim gamma(a, b)$$
$$\Omega \sim LKJcorr(\nu)$$

```
data {
int<lower=1> nvar; // number of parameters in the logit regression
int<lower=0> N: // number of observations
int<lower=1> nind: // number of individuals
int<lower=0.upper=1> v[N]:
int<lower=1.upper=nind> ind[N]: // indicator for individuals
row vector[nvar] x[N];
parameters {
vector[nvar] delta;
vector<lower=0>[nvar] tau:
vector[nvar] beta[nind]:
corr matrix[nvar] Omega: // Vbeta - prior correlation
model {
to vector(delta) ~ normal(0, 5);
to_vector(tau) ~ gamma(2, 0.5);
Omega ~ lki corr(2):
for (h in 1:nind)
beta[h]~multi normal(delta, guad form diag(Omega, tau)):
for (n in 1:N)
v[n] ~ bernoulli logit(x[n] * beta[ind[n]]);
```

Noncentered (Re)Parameterization - the "Matt Trick"

Consider a model case with a diagonal variance-covariance matrix

- Assume our intercept model: $\beta_i \sim \mathcal{N}(\delta, \tau)$
- We can decompose that into: $\mathcal{N}(\delta, \sigma) \stackrel{d}{=} \delta + \tau \mathcal{N}(0, 1)$
- The trick applies to other distributions in the location-scale family
- The transformation:
 - **1** declare α_i in the parameters block and β_i in the transformed parameters block
 - ② draw $\alpha_i \sim \mathcal{N}(0,1) \& \tau \sim gamma(a,b)$

Noncentered (Re)Parameterization - the multivariate case

- Assume our intercept model: $\beta_i \sim MultiNormal(\delta, \Sigma)$
 - If Σ_{kk} is small, then β_{ik} needs to fall into a small range, NUTS needs a small step size
 - If Σ_{kk} is large, then β_{ik} can fall into a wide range, NUTS needs a large step size/ lots of small steps
- The transformation:
 - declare α_i in the parameters block and β_i in the transformed parameters block
 - ② draw $\alpha_i \sim \mathcal{N}(0,1) \& \tau \sim gamma(a,b)$
 - **3** compute $\beta_i = \delta + \tau \mathbf{L} \alpha_i \sim \mathcal{N}(\delta, \tau^2 \mathbf{L} \mathbf{L}^T)$
 - where $\tau \mathbf{L}$ is the Cholesky factor of $\Sigma = \tau^2 \mathbf{L} \mathbf{L}^T$, and τ is the standard deviation of the errors.

Noncentered (Re)Parameterization - the implementation

$$y_{ijt} \sim \mathcal{B}(p_{ijt})$$

$$logit(p_{ijt}) \sim \mathcal{N}(x_{ijt}\beta_{ij})$$

$$\beta_{\mathbf{i}} = \delta + \tau \mathbf{L}\alpha_{\mathbf{i}}$$

$$\alpha_{i} \sim \mathcal{N}(0, 1)$$

$$\delta \sim \mathcal{N}(\delta_{0}, \sigma)$$

Non-conjugate prior

```
\tau \sim gamma(a, b)\Omega \sim LKJcorr(\nu)
```

```
data {
parameters {
matrix[nvar, nind] alpha; // nvar*H parameter matrix
row vector[nvar] delta;
vector<lower=0>[nvar] tau:
cholesky_factor_corr[nvar] L_0mega;
transformed parameters{
row vector[nvar] beta[nind];
matrix[nind.nvar] Vbeta reparametrized:
Vbeta_reparametrized = (diag_pre_multiply(tau, L Omega)*alpha)':
for (h in 1:nind)
beta[h]=delta+Vbeta reparametrized[h];
model {
. . . . . .
```

Choice of prior distribution of the variance components

Figure 1: Choice of prior for the variance τ

Traceplots of model parameters

The noncentered reparametrization helps tremendously

Figure 2: Traceplot of δ parameters (after burnin) under the centered (*left*) vs. the noncentered reparametrization (*right*), using package *bayesplot*

Summary statistics

Effective sample size and convergence properties

\$summary mean se_mean sd 2.5% 97.5% n_eff Rhat delta[1] -2.0464282 0.003151008 0.1725878 -2.3917852 -1.7207339 3000 1.001876 delta[2] -1.2073192 0.004632004 0.2537053 -1.6928554 -0.7322237 3000 1.002893 delta[3] 0.6915687 0.004494100 0.2461520 0.2134696 1.1791871 3000 1.001500

Figure 3: Density plot of δ parameters (after burnin) under the noncentered reparametrization, using package *bayesplot*

Individual level parameters

Most parameters are within the 95% highest density intervals

Figure 4: True values (black dots) and the 80% and 95% highest density intervals for the intercept, for the first 100 consumers

Model checking

Figure 5: Number of successes: posterior replications vs. true value

Model checking

Figure 5: Number of successes: posterior replications vs. true value

Figure 6: Switches between buying/ not buying: posterior replications vs. true value

Compute hit rates and MSEs based on posterior replications

Model comparison

Likelihood-based measures: Leave-one-out cross-validation

Table 1: Model comparison based on LOO-CV, using package loo

	Variance model		Full covariance model		NCP model	
	Estimate	SE	Estimate	SE	Estimate	SE
elpd_loo	-1874.3	43.1	-1871.9	43.2	-1871.2	43
p_loo	398.6	12.5	364.4	11.8	363.7	11.8
looic	3748.6	86.2	3743.7	86.4	3742.4	86.5

Figure 7: PSIS diagnostic plot, using package *loo*

