3000788 Intro to Comp Molec Biol

Lecture 27: Supervised learning

November 17, 2022

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Machine learning paradigms

Qian, B. et al. "Orchestrating the Development Lifecycle of Machine Learning-Based IoT Applications: A Taxonomy and Survey"

Identify robust patterns that can be generalized to new data

The cores of supervised learning

Objective / Loss Function

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y_i})^2 \qquad MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y_i}|}{y_i} \times 100$$

$$Crossentropy = -\frac{1}{n} \sum_{i=1}^{n} y_i \ln(\hat{y_i}) + (1 - y_i) \ln(1 - \hat{y_i})$$

Learning Algorithm

https://towardsdatascience.com/top-machine-learning-algorithms-for-classification-2197870ff501

Supervised learning is all about control

https://en.wikipedia.org/wiki/Bull_riding

Likelihood

- **Likelihood**: Probability of observing data x from a model with parameters θ
- Probability of getting two heads in a row, given a fair coin
 - $P(HH \mid p_H = 0.5) = 0.5 \times 0.5 = 0.25$
- Probability of getting two heads in a row, given a biased coin
 - $P(HH \mid p_H = 0.8) = 0.8 \times 0.8 = 0.64$
- Maximum Likelihood Estimate (MLE): find θ that maximize the likelihood

Statistical control of overfitting

- Better model achieves higher likelihood
- Complex model has more parameters
- Information Criterion
 - Akaike (AIC) = $2k 2 \cdot \ln(\hat{L})$, where \hat{L} is the likelihood
 - Bayesian (BIC) = $\ln(n) k 2 \cdot \ln(\hat{L})$, where n is the sample size
- Nested model testing
 - Simple model has n parameters, fit the data with likelihood $\widehat{L_1}$
 - Complex model has m > n parameters, fit the data with likelihood $\widehat{L_2} > \widehat{L_1}$
 - Is the improvement $\frac{\widehat{L_2}}{\widehat{L_1}}$ worth the increase in m-n parameters?

Linear and logistic regression

Linear regression (Ordinary Least Square)

Model:
$$\hat{y_i} = b_0 + b_1 x_i$$

- Minimize MSE:
$$\frac{1}{n}\sum_{i}(\mathbf{y_i} - [b_0 + b_1x_i])^2$$

$$-\frac{\delta MSE}{\delta b_0} = -2\sum_i y_i - 2b_1\sum_i x_i - 2nb_0$$

$$\frac{\delta MSE}{\delta b_1} = -2\sum_{i} x_i y_i - 2b_1 \sum_{i} x_i^2 - 2b_0 \sum_{i} x_i$$

$$b_0 = \frac{\sum xy \sum x - \sum x^2 \sum y}{(\sum x)^2 - n \sum x^2}$$

$$-b_1 = \frac{\sum y \sum x - n \sum xy}{(\sum x)^2 - n \sum x^2}$$

Ordinary Least Square interpretation

- Observed value = True value + Normally-distributed noise
- **Assumption**: Noises are identical and independent across samples
- Model: $(y_i \widehat{y}_i) \sim N(0, \sigma^2)$ Density: $P(y_i \widehat{y}_i) = \varepsilon_i \mid \sigma^2 \propto e^{\frac{-\varepsilon_i^2}{2\sigma^2}}$
- Likelihood: $\prod_{i} P(y_{i} \widehat{y}_{i} = \varepsilon_{i} \mid \sigma^{2}) \propto e^{\frac{-\sum_{i} \varepsilon_{i}^{2}}{2\sigma^{2}}}$
- MSE: $\frac{1}{n}\sum_{i}(y_i \widehat{y}_i)^2 = \frac{1}{n}\sum_{i} \varepsilon_i^2$
- Minimizing MSE is the same as maximizing likelihood

Logistic regression

- Classification output = 0 or 1
- Linear regression outputs $-\infty$ to ∞
- Probability of success p
- Log odd: $\ln\left(\frac{p}{1-p}\right)$

 - $\ln\left(\frac{p}{1-p}\right) \to -\infty \text{ as } p \to 0$ $\ln\left(\frac{p}{1-p}\right) \to \infty \text{ as } p \to 1$
- Transform linear regression output with log odd!

Logistic regression

- Model:
$$\ln\left(\frac{\widehat{y_i}}{1-\widehat{y_i}}\right) = f(x_i) = b_0 + b_1 x_{i,1} + \dots + b_n x_{i,n}$$

$$- \widehat{y}_{i} = \frac{e^{b_0 + b_1 x_{i,1} + \dots + b_n x_{i,n}}}{1 + e^{b_0 + b_1 x_{i,1} + \dots + b_n x_{i,n}}}$$

- When $x_i \to \infty$, $\widehat{y}_i \to 1$
- When $x_i \to -\infty$, $\widehat{y}_i \to 0$
- Can we keep using MSE as the loss function?
 - Brier score = $\frac{1}{N}\sum_{i}(y_{i}-\widehat{y}_{i})^{2}$
 - But this does not interpret logistic output as probability

Likelihood for logistic regression

- Likelihood: $P(y_i \mid x_i) = \widehat{y_i}^{y_i} (1 \widehat{y_i})^{1-y_i}$
 - v_i is either 0 or 1
 - When y_i is 0, the likelihood is $1 \hat{y}_i$
 - When y_i is 1, the likelihood is \hat{y}_i
- Log likelihood: $y_i \ln(\hat{y}_i) + (1 y_i) \ln(1 \hat{y}_i)$
 - This is the cross-entropy loss function!
 - Maximizing likelihood is the same as minimizing cross-entropy

Impact of large coefficients

- Model: $\hat{y}_i = b_0 + b_1 x_{i,1} + \dots + b_n x_{i,n}$
- If there are two models (two sets of b'_js) that achieve similar performance, we should prefer the model with smaller magnitudes of b'_is
- Prevent overfitting to an input feature
 - Magnitude of b_k = influence of the k^{th} input feature on the model
- Robustness to future inputs
 - Measurement error of 1 unit in $x_{i,k}$ will be amplified to b_k units in \widehat{y}_i

Regularization of linear model

- L1 regularization (LASSO): MSE + $\alpha \sum_{k} |b_{k}|$
- L2 regularization (Ridge): MSE + $\alpha \sum_{k} b_{k}^{2}$
- α is the hyperparameter that controls the regularization strength
- Hyperparameter must be tuned
 - Split data into Training-Validation-Test
 - Try many values of α while training the model on the **Training** set
 - Select α that results in highest performance on the **Validation** set
 - Report model performance with selected α on the **Test** set

Tuning regularization strength

L1 versus L2 regularization

https://www.linkedin.com/pulse/regularization-episode-1-amr-mahmoud/

Decision tree

Decision tree

Source: Programming collective intelligence by Toby Segaran

Decision tree behaviors

Miller, C. "Screening meter data: Characterization of temporal energy data from large groups of non-residential buildings"

Tree building

Pick a feature & a criterion, but how?

Splitting quality

- Gini impurity: $\sum p(1-p)$
- Entropy: $-\sum p \ln(p)$
 - Minimal at p = 0 or 1 → Perfect split
 - Maximal at p = $0.5 \rightarrow 50-50$ split
- Search for feature and cutoff that yield lowest impurity or entropy

Control mechanisms for tree building

1. Too few samples to make a split

3. Impurity or entropy does not change much after the split

2. Too few samples on either branch

- Limit the tree size
- Limit the improvement in quality
- Limit the number of samples that support a split

Tree pruning (post-processing)

Patel, N. and Upadhyay, S. "Study of Various Decision Tree Pruning Methods with their Empirical Comparison in WEKA" IJCA 2012

Image from scikit-learn,org

Regularization on features

- Linear model: $\widehat{y}_i = b_0 + b_1 x_{i,1} + \cdots + b_n x_{i,n}$
 - LASSO
- Tree model:
 - Repeatedly using the same feature
 - Early decision affects the rest
- Feature bagging
 - Look at only *N* features at each step
 - Force model to use diverse features

Regression tree

Image from saedsayad.com

Use decision tree to group data points and predict the average

Regression tree in action

- Low depth = less complex = smoother prediction values
- High depth can lead to overfitting

Image from scikit-learn,org

Decision tree with regression model

For each group of samples, use the data to fit a regression model

Ensemble approaches

Training and aggregating multiple models

- Bagging: Generate random sets of samples to train multiple models
- Boosting: The k-th model address the errors made by earlier models

Impact of ensemble

https://realkm.com/2018/04/23/optimization-and-complexity-the-cost-of-complexity-systems-thinking-modelling-series/

Random forest

- Sample 80% of the dataset to train each decision tree
- Each tree may overfit to different part of the dataset
- But the consensus should be correct

Boosting for classification = weight the error

- Ensemble predictor = weighted average
 - $C_n(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_n f_n(x)$
- Adaptive Boosting (AdaBoost)
- Exponential loss: $\sum_{y_i \neq f_n(x_i)} e^{-y_i C_{n-1}(x_i)}$
 - Weight error made by n-th model using the error made by the first n-1 models
- α_n is based on the performance of $f_n(x)$

Boosting for regression = fit the residual directly

Controlling the boosting process

- Learning rate: how much to trust the next update
 - $C_n(x) = \alpha_1 f_1(x) + \alpha_2 f_2(x) + \dots + \alpha_n f_n(x)$
- Too low → slow training process → many models → computational cost
- Too high → overshoot the optimal point

Early stopping with validation set

Model validation

Train-Val-Test

- Training data determines the best coefficients / weights
- **Validation** data determine the best hyperparameters
- **Test** data determine performance on new datasets

Source: medium.com

Regression metrics

- Mean Square Error
- Mean Absolute Error
- Mean Absolute Percentage Error
- R² (Coefficient of Determination)
- Select to match use case
 - MAPE = 15%
 - MAE = 1 unit
 - MSE penalize outliers more

Classification metrics

Predicted

Actual

	Negative	Positive
Negative	True Negative	False Positive
Positive	False Negative	True Positive

Predicted < 0.5

Predicted > 0.5

- Accuracy = (TN + TP) / total
- Precision = TP / (TP + FP) = Positive predictive value
- Recall = TP / (TP + FN) = Sensitivity
- Specificity = TN / (TN + FP)

Classification metric use cases

- Screening for secondary inspection
 - Recall: Missed samples cannot be recovered
 - Improve precision during secondary inspection
- Taking action based on prediction
 - Precision
 - Whether to perform surgery
 - Negative-class precision
 - Whether to send patient home
 - Whether the patient will be allergic to drug

Threshold-free metrics

- Sensitivity-specificity at every output threshold
- Area under the ROC curve (AUROC, AUC)
 - Random guess = 0.5
 - Perfect model = 1.0
- Pick threshold based on use case
 - Specificity >0.9
 - Sensitivity > 0.9

Precision-Recall curve

https://acutecaretesting.org/en/articles/precision-recall-curves-what-are-they-and-how-are-they-used

The best model can depend on use case

Explainability / Interpretability

Feature importance

- Coefficients of linear, logistic, and SVM models
- Average improvement in impurity or entropy in tree models
- Model-level explanation

Change in performance after dropping a feature

- Compare performance with and without each input feature
- Big drop = important

Shapley value

Change in predicted value from adding a feature i

$$- \varphi_{i}(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(n-|S|-1)!}{n!} [v(S \cup \{i\}) - v(S)]$$

Sample-level explanation

Explainability is needed for complex model

Overall summary

- Machine learning vs statistics = data driven vs hypothesis driven
- ML components = model architecture + objective + learning algorithm
- Heart of ML = balancing between data fitting and generalization
- Explainability/interpretability is key

Any question?

See you next week on November 22nd 9-10:30am