

KI Labor - Sommersemester 2022

Reinforcement Learning
Sprintwechsel & Vorstellung Assignment

Schedule

Datum	Thema	Inhalt	Präsenz	
18.03.22	Allg.	Organisation, Teamfindung, Vorstellung CV	Ja	
25.03.22	CV	Q&A Sessions	Nein	
01.04.22	CV	Sprintwechsel, Vorstellung Assignment	Ja	
08.04.22	CV	Q&A Sessions	Nein	
05.04.22	Ostern	Ostern		
22.04.22	CV / NLP	Abgabe CV, Vorstellung NLP	Ja	
29.04.22	NLP	Q&A Sessions	Nein	
06.05.22	NLP	Sprintwechsel, Vorstellung Assignment	Ja	
13.05.22	NLP	Q&A Sessions	Nein	
20.05.22	NLP / RL	Abgabe NLP, Vorstellung RL	Ja	
27.05.22	RL	Sprintwechsel, Vorstellung Assignment	Nein	
03.06.22	Ausfall	Ausfall		
10.06.22	Pfingsten (H-	Pfingsten (H-KA zu)		
17.06.22	RL	Q&A Sessions (Brückentag)	Nein	
24.06.22	RL	Abgabe RL, Abschluss KI Labor	Ja	

Agenda

> Theorie

- Deep Q-Network
- Experience Replay
- Target Model
- Vorverarbeitung für Pixel-basierte Atari Games (Framestacking, etc.)

> Praxis

- CartPole Gym mit Deep Q-Learning (Aufgabe 3)
- Pong (Pixel-basiert) mit Deep Q-Learning (Aufgabe 4)
- Assignment

Reinforcement Learning

Meilensteine im Reinforcement Learning

Recap

Zustände & Aktionen diskret

Zustände kontinuierlich & Aktionen diskret

Zustände & Aktionen kontinuierlich

Was bisher geschah ... Diskretisierung

Beispiel Cliffwalking

$$\hat{v}(s,\theta) \approx v_{\pi}(s), \theta \in \mathbb{R}^d$$

Beispiel CartPole: Forward-Pass

Beispiel CartPole: Backward-Pass

RL mit Neuronalen Netzen

- > TD-Gammon (1995)
 - erste erfolgreiche Anwendung von NNs in RL
 - ähnliche Ansätze für andere Spiele nicht erfolgreich
 - etwa 20 Jahre keine Fortschritte in diesem Bereich
- Ansatz erfährt durch Deep Learning und Fortschritte in Computer Vision wieder Aufmerksamkeit
 - RL kann Ende-zu-Ende gelernt werden (direkter Input von Bildern anstelle von erstellten Featuren) -> großer Fortschritt

Atari 2600 Spiele

Deep Q-Network

Pixel-basierte Atari Games

Deep Q-Network

- Approximation der Q-Funktion mit NN
 - Optimierung mit stochastic gradient descent (SGD)
 - Minimierung des Abstands zwischen Schätzer und Target

$$\underline{L_i(\theta_i)} = \mathbb{E}_{\underbrace{(s,a,r,s') \sim U(D)}}[\underbrace{(y_i - \hat{q}(s,a,\theta_i))^2}]$$
 Loss Weights Experience Target approximierter in Iteration i Replay Q-Value Q-Value

Target Network

- > Kopie der eigentlichen Architektur mit fixen Gewichten
- > Update alle c Iterationen

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim U(D)}[\underline{(y_i - \hat{q}(s,a,\theta_i))^2}]$$
 Q-Network
$$r + \gamma \max_{a'} Q(s',a',\theta_i^-)$$

Target Network

Experience Replay

Problem

 Starke Korrelation der States erschwert das Lernen

Lösung

- Letzte N Experiences werden in Replay Memory gespeichert
- Random Uniform Sampling

Replay Memory

Deep Q-Learning

Algorithmus

```
Algorithm 1 Deep Q-learning with Experience Replay
```

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
     Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
     for t=1,T do
           With probability \epsilon select a random action a_t
           otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
           Execute action a_t in emulator and observe reward r_t and image x_{t+1}
           Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
           Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}

Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
          Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
     end for
end for
```


Beispiele für Preprocessing

Warp Frame

- > Konvertierung der Frames in Graustufen
- > Downsampling / Cropping

Framestakking

- mehrere aufeinanderfolgende Frames als Eingabe, um Bewegung nachvollziehen zu können und für kürzeres Training
- > Ausführung der gewählten Aktion für gesamten Framestack

Evaluierung von Deep RL

- > Im Vergleich zu Supervised Learning deutlich herausfordernder (kein
 - Vergleich von training und validation möglich)
- > Zwei grundlegende Metriken:
 - Average Reward: mittlerer, erzielter Reward je Episode
 - Average Q-Value: mittlerer Q-Wert für eine vor dem Training zufällig gewählte Menge an Zuständen je Episode

Deep Q-Network

Beispiel für eine gelernte Q-Funktion

Deep Q-Network

Pixel-basierte Atari Games

Aufgaben

Aufgaben

- Aufgabe 3: CartPole Gym mit Deep Q-Learning (freiwillig)
- Aufgabe 4: Pong mit Deep Q-Learning (freiwillig)
- Aufgabe 5: Assignment (Bewertungsgrundlage)

Aufgabe 3: CartPole Gym mit Deep Q-Learning

- > Freiwillige Bearbeitung als Vorbereitung auf Assignment
- Jupyter Lab Notebook

Aufgabe 4: Pong mit Deep Q-Learning

> Freiwillige Bearbeitung als Vorbereitung auf Assignment

Jupyter Lab Notebook

Aufgabe 5: Assignment

- Assignment dient als Bewertungsgrundlage = Pflicht
- zwei Atari Spiele zur Auswahl
 - Enduro (Notebook 5a)
 - Breakout (Notebook 5b)
- Jupyter Lab Notebook
- > Freie Wahl des Ansatzes

Infomaterial

- Kostenlose "Standard"-Lektüre für den Einstieg in RL: Reinforcement Learning: An Introduction (Sutton and Barto), siehe http://incompleteideas.net/book/RLbook2018.pdf
- Ausführlich und gut erklärter Einstieg in RL (Video-Lektionen): UCL Course on RL (David Silver, Google DeepMind), siehe https://www.davidsilver.uk/teaching/
- Algorithms in Reinforcement Learning von Csaba Szepesvári, siehe https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
- Blog mit Videos zum Einstieg in RL und Q-Learning, DQN und vieles mehr: Reinforcement Learning – Introducing Goal Oriented Intelligence, siehe https://deeplizard.com/learn/video/nyjbcRQ-uQ8
- David Silver AlphaGo, AlphaZero, and Deep Reinforcement Learning, siehe Lex Fridman Podcast #86 https://lexfridman.com/david-silver/

Feedback

https://forms.gle/4UeEVTWmHGpRGYkm9

