1 Syntax

```
:= \overline{cls} \ \overline{s}
program
cls
                                          ::= class \ C \ \{\overline{field} \ \overline{method}\}
                                          := T f;
field
                                          ::= T \ m(T \ x) \ contract \ \{\overline{s}\}
method
contract
                                          ::= requires \phi; ensures \phi;
                                          ::= int \mid C
                                          ::= x.f := y; \ | \ x := e; \ | \ x := \text{new} \ C; \ | \ x := y.m(z);
s
                                           | return x; | assert \phi; | release \phi; | T x;
                                          ::= true \mid e=e \mid e \neq e \mid acc(e.f) \mid \phi * \phi
φ
                                          := v \mid x \mid e.f
                                          := this | result | \langle other \rangle
\boldsymbol{x}
                                          ::= o \mid n \mid \mathtt{null}
                                           \in \mathbb{Z}
                                          \in \ (o \rightharpoonup (C, \overline{(f \rightharpoonup v)}))
H
                                          \in (x \rightharpoonup v)
                                          \in (x \rightharpoonup T)
Γ
                                          := \overline{(e,f)}
A_s
                                          := \overline{(o, f)}
A_d
S
                                          ::= (\rho, A_d, \overline{s}) \cdot S \mid nil
```

2 Assumptions

All the rules in the following sections are implicitly parameterized over a programp that is well-formed.

2.0.1 Well-formed program (program OK)

$$\frac{\overline{cls_i} \ \mathtt{OK}}{(\overline{cls_i} \ \overline{s}) \ \mathtt{OKProgram}}$$

2.0.2 Well-formed class (cls OK)

$$\frac{\text{unique } field\text{-names} \quad \text{unique } method\text{-names} \quad \overline{method_i \text{ OK in } C}}{\left(\text{class } C \text{ } \{\overline{field_i} \text{ } \overline{method_i}\}\right) \text{ OKCLASS}}$$

2.0.3 Well-formed method (method OK in C)

$$\frac{FV(\phi_1) \subseteq \{x, \text{this}\} \qquad FV(\phi_2) \subseteq \{x, \text{this}, \text{result}\}}{x: T_x, \text{this}: C, \text{result}: T_m \vdash \{\phi_1\}\overline{s}\{\phi_2\} \qquad \emptyset \vdash_{\texttt{sfrm}} \phi_1 \qquad \emptyset \vdash_{\texttt{sfrm}} \phi_2 \qquad \neg writesTo(s_i, x)}}{(T_m \ m(T_x \ x) \ \text{requires} \ \phi_1; \ \text{ensures} \ \phi_2; \ \{\overline{s}\}) \ \text{OK in } C} \ \text{OKMETHOD}}$$

3 Static semantics

3.1 Expressions $(A_s \vdash_{\mathtt{sfrm}} e)$

$$\frac{}{A \vdash_{\mathtt{sfrm}} x} \mathrm{WFVAR}$$

$$\frac{}{A \vdash_{\mathtt{sfrm}} v} \text{WFVALUE}$$

$$\frac{(e,f) \in A \qquad A \vdash_{\mathtt{sfrm}} e}{A \vdash_{\mathtt{sfrm}} e.f} \text{ WFFIELD}$$

3.2 Formulas $(A_s \vdash_{\mathtt{sfrm}} \phi)$

$$\frac{}{A \vdash_{\mathtt{sfrm}} \mathtt{true}} \mathtt{WFTRUE}$$

$$\frac{A \vdash_{\mathtt{sfrm}} e_1 \quad A \vdash_{\mathtt{sfrm}} e_2}{A \vdash_{\mathtt{sfrm}} (e_1 = e_2)} \text{ WFEQUAL}$$

$$\frac{A \vdash_{\mathtt{sfrm}} e_1 \qquad A \vdash_{\mathtt{sfrm}} e_2}{A \vdash_{\mathtt{sfrm}} (e_1 \neq e_2)} \text{ WFNEQUAL}$$

$$\frac{A \vdash_{\mathtt{sfrm}} e}{A \vdash_{\mathtt{sfrm}} \mathtt{acc}(e.f)} \mathsf{WFAcc}$$

$$\frac{A_s \vdash_{\mathtt{sfrm}} \phi_1 \qquad A_s \cup \lfloor \phi_1 \rfloor \vdash_{\mathtt{sfrm}} \phi_2}{A_s \vdash_{\mathtt{sfrm}} \phi_1 * \phi_2} \text{ WFSepOp}$$

3.2.1 Implication $(\phi_1 \Longrightarrow \phi_2)$

Conservative approx. of $\phi_1 \implies \phi_2$.

3.3 Footprint $(\lfloor \phi \rfloor = A_s)$

3.4 Type $(\Gamma \vdash e : T)$

$$\frac{}{\Gamma \vdash n : \mathtt{int}}$$
 STVALNUM

$$\frac{}{\Gamma \vdash \mathtt{null} : T} \; \mathsf{STValNull}$$

$$\frac{\Gamma(x) = T}{\Gamma \vdash x : T} \text{ STVAR}$$

$$\frac{\Gamma \vdash e : C \qquad \vdash C.f : T}{\Gamma \vdash e.f : T} \text{ STFIELD}$$

3.5 Hoare $(\Gamma \vdash \{\phi\}\overline{s}\{\phi\})$

$$\frac{\phi \implies \phi' \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi' \qquad x \not\in FV(\phi') \qquad \Gamma \vdash x : C \qquad \mathtt{fields}(C) = \overline{f}}{\Gamma \vdash \{\phi\}x := \mathtt{new} \ C\{\phi' * (x \neq \mathtt{null}) * \overline{\mathtt{acc}(x, f_i)}\}} \ \mathrm{HNEWOBJ}(x) = \frac{1}{\mathsf{new}} \ \mathrm{HNEWOBJ}$$

$$\frac{\phi \implies \operatorname{acc}(x.f) * (x \neq \operatorname{null}) * \phi' \qquad \emptyset \vdash_{\operatorname{sfrm}} \phi' \qquad \Gamma \vdash x : C \qquad \Gamma \vdash y : T \qquad \vdash C.f : T}{\Gamma \vdash \{\phi\} x.f := y \{\phi' * \operatorname{acc}(x.f) * (x \neq \operatorname{null}) * (x.f = y)\}} \text{ HFIELDASSIGN}$$

$$\frac{\phi \implies \phi' \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi' \qquad x \not\in FV(\phi') \qquad x \not\in FV(e) \qquad \Gamma \vdash x : T \qquad \Gamma \vdash e : T \qquad \llbracket e \rrbracket \subseteq \phi'}{\Gamma \vdash \{\phi\}x := e\{\phi' * (x = e)\}} \text{ HVARASSIGN}$$

$$\frac{\phi \implies \phi' \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi' \qquad \mathtt{result} \not\in FV(\phi') \qquad \Gamma \vdash x : T \qquad \Gamma \vdash \mathtt{result} : T}{\Gamma \vdash \{\phi\}\mathtt{return} \ x\{\phi' * (\mathtt{result} = x)\}} \ \mathrm{HRETURN}$$

$$\frac{\phi \implies \phi'}{\Gamma \vdash \{\phi\} \text{assert } \phi'\{\phi\}} \text{ HASSERT}$$

$$\frac{\phi \implies \phi_r * \phi' \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi'}{\Gamma \vdash \{\phi\}\mathtt{release} \ \phi_r \{\phi'\}} \ \mathtt{HRELEASE}$$

$$\frac{x \not\in \mathsf{dom}(\Gamma) \qquad \Gamma, x : T \vdash \{(x = \mathsf{defaultValue}(T)) * \phi\} \overline{s}\{\phi'\}}{\Gamma \vdash \{\phi\} T \; x; \overline{s}\{\phi'\}} \; \mathsf{HDeclare}$$

$$\frac{\Gamma \vdash \{\phi_p\} s_1 \{\phi_q\} \qquad \Gamma \vdash \{\phi_q\} s_2 \{\phi_r\}}{\Gamma \vdash \{\phi_p\} s_1; s_2 \{\phi_r\}} \text{ HSec}$$

3.5.1 Notation

$$\frac{\hat{\phi} \implies \hat{\phi}' \qquad x \not\in FV(\hat{\phi}') \qquad \Gamma \vdash x : C \qquad \mathtt{fields}(C) = \overline{f}}{\Gamma \vdash \{\hat{\phi}\}x := \mathsf{new} \ C\{\hat{\phi}' \ \hat{*} \ (x \neq \mathtt{null}) \ \hat{*} \ \overline{\mathtt{acc}(x, f_i)}\}} \ \mathrm{HNewOBJ}$$

$$\frac{\hat{\phi} \implies \hat{\phi}' \qquad x \not\in FV(\hat{\phi}') \qquad x \not\in FV(e) \qquad \Gamma \vdash x : T \qquad \Gamma \vdash e : T \qquad \llbracket e \rrbracket \subseteq \hat{\phi}'}{\Gamma \vdash \{\hat{\phi}\}x := e\{\hat{\phi}' \ \hat{*} \ (x = e)\}} \text{ HVARASSIGN}$$

$$\frac{\hat{\phi} \implies \hat{\phi}' \qquad \text{result} \not\in FV(\hat{\phi}') \qquad \Gamma \vdash x : T \qquad \Gamma \vdash \text{result} : T}{\Gamma \vdash \{\hat{\phi}\} \text{return } x \{\hat{\phi}' \ \hat{*} \ (\text{result} = x)\}} \text{ HRETURN}$$

$$\Gamma \vdash y : C \qquad \text{mmethod}(C, m) = T_r \ m(T_p \ z) \ \text{requires} \ \hat{\phi_{pre}}; \ \text{ensures} \ \hat{\phi_{post}}; \ \{_\}$$

$$\Gamma \vdash x : T_r \qquad \Gamma \vdash z' : T_p \qquad \hat{\phi} \implies (y \neq \text{null}) * \hat{\phi_p} * \hat{\phi'}$$

$$\underline{x \not\in FV(\hat{\phi'}) \qquad x \neq y \land x \neq z' \qquad \hat{\phi_p} = \hat{\phi_{pre}}[y, z'/\text{this}, z] \qquad \hat{\phi_q} = \hat{\phi_{post}}[y, z', x/\text{this}, z, \text{result}]}$$

$$\Gamma \vdash \{\hat{\phi}\}x := y.m(z')\{\hat{\phi'} * \hat{\phi_q}\}$$
 HAPP

$$\frac{\hat{\phi} \implies \phi'}{\Gamma \vdash \{\hat{\phi}\} \text{assert } \phi'\{\hat{\phi}\}} \text{ HASSERT}$$

$$\frac{\hat{\phi} \implies \phi_r * \hat{\phi}'}{\Gamma \vdash \{\hat{\phi}\} \text{release } \phi_r \{\hat{\phi}'\}} \text{ HRELEASE}$$

$$\frac{x \not\in \mathtt{dom}(\Gamma) \qquad \Gamma, x: T \vdash \{\hat{\phi} \ \hat{*} \ (x = \mathtt{defaultValue}(T))\} \overline{s} \{\hat{\phi'}\}}{\Gamma \vdash \{\hat{\phi}\} T \ x; \overline{s} \{\hat{\phi'}\}} \ \mathrm{HDeclare}$$

$$\frac{\Gamma \vdash \{\hat{\phi_p}\} s_1 \{\hat{\phi_q}\} \qquad \Gamma \vdash \{\hat{\phi_q}\} s_2 \{\hat{\phi_r}\}}{\Gamma \vdash \{\hat{\phi_p}\} s_1; s_2 \{\hat{\phi_r}\}} \text{ HSEC}$$

3.5.2 Deterministic

$$\frac{\hat{\phi}[\mathbf{w/o}\ x] = \hat{\phi}' \qquad \Gamma \vdash x : C \qquad \mathtt{fields}(C) = \overline{f}}{\Gamma \vdash \{\hat{\phi}\}x := \mathtt{new}\ C\{\hat{\phi}'\ \hat{*}\ (x \neq \mathtt{null})\ \hat{*}\ \overline{\mathtt{acc}(x,f_i)}\}} \ \mathrm{HNewOBJ}$$

$$\frac{\hat{\phi}[\mathbf{w/o}\ \mathsf{acc}(x.f)] = \hat{\phi}' \quad \hat{\phi} \implies \mathsf{acc}(x.f) * (x \neq \mathsf{null}) \quad \Gamma \vdash x : C \quad \Gamma \vdash y : T \quad \vdash C.f : T}{\Gamma \vdash \{\hat{\phi}\}x.f := y\{\hat{\phi}'\ \hat{*}\ \mathsf{acc}(x.f)\ \hat{*}\ (x \neq \mathsf{null})\ \hat{*}\ (x.f = y)\}} \\ \text{HFIELDASSIGNATION } = \frac{\hat{\phi}(x.f) \cdot \hat{\phi}(x.f) \cdot \hat{\phi}(x.f) \cdot \hat{\phi}(x.f)}{\Gamma \vdash \hat{\phi}(x.f) \cdot \hat{\phi}(x.f)} = \frac{\hat{\phi}(x.f) \cdot \hat{\phi}(x.f) \cdot \hat{\phi}(x.f)}{\Gamma \vdash \hat{\phi}(x.f)} = \frac{\hat{\phi}(x.f) \cdot \hat{\phi}(x.f)}{\Gamma \vdash \hat{\phi}(x.f)} = \frac{\hat{\phi}(x.f)}{\Gamma \vdash \hat{\phi}(x.f)} = \frac{\hat{\phi}$$

$$\frac{\hat{\phi}[\mathbf{w/o}\ x] = \hat{\phi'} \qquad x \not\in FV(e) \qquad \Gamma \vdash x : T \qquad \Gamma \vdash e : T \qquad \hat{\phi'} \implies \llbracket e \rrbracket}{\Gamma \vdash \{\hat{\phi}\}x := e\{\hat{\phi'}\ \hat{*}\ (x = e)\}} \text{ HVarAssign}$$

Have $\hat{*}$ take care of necessary congruent rewriting of e in order to preserve self-framing!

$$\frac{\hat{\phi}[\mathbf{w/o} \; \mathbf{result}] = \hat{\phi}' \qquad \Gamma \vdash x : T \qquad \Gamma \vdash \mathbf{result} : T}{\Gamma \vdash \{\hat{\phi}\} \mathbf{return} \; x \{\hat{\phi}' \; \hat{*} \; (\mathbf{result} = x)\}} \; \mathbf{HRETURN}$$

$$\begin{split} \hat{\phi}[\mathbf{w/o}\ x][\mathbf{w/o}\ \lfloor\hat{\phi}_p\rfloor] &= \hat{\phi}' \\ \Gamma \vdash y : C \quad \text{mmethod}(C,m) &= T_r\ m(T_p\ z)\ \text{requires}\ \phi_{\hat{p}re};\ \text{ensures}\ \phi_{\hat{p}ost};\ \{_\} \quad \Gamma \vdash x : T_r \quad \Gamma \vdash z' : T_p \\ \hat{\phi} &\Longrightarrow \hat{\phi_p} \mathbin{\hat{*}} (y \neq \text{null}) \quad x \neq y \land x \neq z' \quad \hat{\phi_p} &= \hat{\phi_{pre}}[y,z'/\text{this},z] \quad \hat{\phi_q} &= \hat{\phi_{post}}[y,z',x/\text{this},z,\text{result}] \\ \Gamma \vdash \{\hat{\phi}\}x := y.m(z')\{\hat{\phi}' \mathbin{\hat{*}} \hat{\phi_q}\} \end{split}$$

$$\frac{\hat{\phi} \implies \phi'}{\Gamma \vdash \{\hat{\phi}\} \text{assert } \phi'\{\hat{\phi}\}} \text{ HASSERT}$$

$$\frac{\hat{\phi}[\mathbf{w/o}\ \lfloor \phi_r \rfloor] = \hat{\phi}' \qquad \hat{\phi} \implies \phi_r}{\Gamma \vdash \{\hat{\phi}\} \text{release}\ \phi_r \{\hat{\phi}'\}} \text{ HRELEASE}$$

$$\frac{x \not\in \mathsf{dom}(\Gamma) \qquad \Gamma, x : T \vdash \{\hat{\phi} \; \hat{*} \; (x = \mathsf{defaultValue}(T))\} \overline{s} \{\hat{\phi'}\}}{\Gamma \vdash \{\hat{\phi}\} T \; x; \overline{s} \{\hat{\phi'}\}} \; \mathsf{HDeclare}$$

$$\frac{\Gamma \vdash \{\hat{\phi_p}\} s_1 \{\hat{\phi_q}\} \qquad \Gamma \vdash \{\hat{\phi_q}\} s_2 \{\hat{\phi_r}\}}{\Gamma \vdash \{\hat{\phi_p}\} s_1; s_2 \{\hat{\phi_r}\}} \text{ HSEC}$$

3.5.3 Gradual

$$\frac{\widetilde{\phi}[\mathbf{w/o}\ x] = \widetilde{\phi}' \qquad \Gamma \vdash x : C \qquad \mathtt{fields}(C) = \overline{f}}{\Gamma \ \widetilde{\vdash} \{\widetilde{\phi}\}x := \mathtt{new}\ C\{\widetilde{\phi}'\ \widetilde{\ast}\ (x \neq \mathtt{null})\ \widetilde{\ast}\ \overline{\mathtt{acc}(x,f_i)}\}} \ \mathrm{HNewOBJ}$$

$$\frac{\widetilde{\phi}[\mathbf{w/o}\ \mathrm{acc}(x.f)] = \widetilde{\phi}' \qquad \widetilde{\phi} \Longrightarrow \mathrm{acc}(x.f) * (x \neq \mathrm{null}) \qquad \Gamma \vdash x : C \qquad \Gamma \vdash y : T \qquad \vdash C.f : T}{\Gamma \vdash \widetilde{\{\phi\}} x.f := y \{\widetilde{\phi}'\ \widetilde{*}\ \mathrm{acc}(x.f)\ \widetilde{*}\ (x \neq \mathrm{null})\ \widetilde{*}\ (x.f = y)\}} \\ \text{HFIELDASSIGN}(x,f) = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}}{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}}{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}}{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}}{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}}{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'}{\widetilde{\phi}' \times \widetilde{\phi}'} = \frac{\widetilde{\phi}' \times \widetilde{\phi}' \times \widetilde{\phi}'$$

$$\frac{\widetilde{\phi}[\mathbf{w/o}\ x] = \widetilde{\phi'} \qquad x \not\in FV(e) \qquad \Gamma \vdash x : T \qquad \Gamma \vdash e : T \qquad \widetilde{\phi'} \Longrightarrow \llbracket e \rrbracket}{\Gamma\ \widetilde{\vdash} \{\widetilde{\phi}\}x := e\{\widetilde{\phi'}\ \widetilde{\ast}\ (x = e)\}} \ \mathrm{HVarAssign}$$

Let $\tilde{*}$ behave like $\hat{*}$ if first operand is static - otherwise its regular concatenation.

$$\frac{\widetilde{\phi}[\mathbf{w/o} \ \mathbf{result}] = \widetilde{\phi'} \qquad \Gamma \vdash x : T \qquad \Gamma \vdash \mathbf{result} : T}{\Gamma \ \widetilde{\vdash} \{\widetilde{\phi}\} \mathbf{return} \ x \{\widetilde{\phi'} \ \widetilde{*} \ (\mathbf{result} = x)\}} \ \mathrm{HRETURN}$$

$$\begin{split} \widetilde{\phi}[\mathbf{w/o}\ x][\mathbf{w/o}\ \widetilde{\lfloor\phi_p\rfloor}] &= \widetilde{\phi'} \\ \Gamma \vdash y : C \quad \text{mmethod}(C,m) &= T_r\ m(T_p\ z)\ \text{requires}\ \widetilde{\phi_{pre}};\ \text{ensures}\ \widetilde{\phi_{post}};\ \{_\} \quad \Gamma \vdash x : T_r \quad \Gamma \vdash z' : T_p \\ \widetilde{\underline{\phi}} \Longrightarrow \widetilde{\phi_p}\ \widetilde{\ast}\ (y \neq \text{null}) \quad x \neq y \land x \neq z' \quad \widetilde{\phi_p} &= \widetilde{\phi_{pre}}[y,z'/\text{this},z] \quad \widetilde{\phi_q} &= \widetilde{\phi_{post}}[y,z',x/\text{this},z,\text{result}] \\ \Gamma \vdash \{\widetilde{\phi}\}x := y.m(z')\{\widetilde{\phi'}\ \widetilde{\ast}\ \widetilde{\phi_q}\} \end{split}$$

$$\frac{\widetilde{\phi} \Longrightarrow \phi'}{\Gamma \widetilde{\vdash} \{\widetilde{\phi}\} \text{assert } \phi' \{\widetilde{\phi}\}} \text{ HASSERT}$$

$$\frac{\widetilde{\phi}[\mathbf{w}/\mathbf{o}\ \lfloor \phi_r \rfloor] = \widetilde{\phi}' \qquad \widetilde{\phi} \Longrightarrow \phi_r}{\Gamma\ \widetilde{\vdash} \{\widetilde{\phi}\} \text{release}\ \phi_r \{\widetilde{\phi}'\}} \text{ HRELEASE}$$

$$\frac{x \not \in \mathsf{dom}(\Gamma) \qquad \Gamma, x : T \vdash \{\widetilde{\phi} \ \widetilde{*} \ (x = \mathsf{defaultValue}(T))\} \overline{s} \{\widetilde{\phi'}\}}{\Gamma \ \widetilde{\vdash} \{\widetilde{\phi}\} T \ x; \overline{s} \{\widetilde{\phi'}\}} \ \mathsf{HDeclare}$$

$$\frac{\Gamma \widetilde{\vdash} \{\widetilde{\phi_p}\} s_1 \{\widetilde{\phi_q}\} \qquad \Gamma \widetilde{\vdash} \{\widetilde{\phi_q}\} s_2 \{\widetilde{\phi_r}\}}{\Gamma \widetilde{\vdash} \{\widetilde{\phi_p}\} s_1; s_2 \{\widetilde{\phi_r}\}} \text{ HSec}$$

4 Dynamic semantics

4.1 Expressions $(H, \rho \vdash e \Downarrow v)$

$$\overline{H, \rho \vdash x \Downarrow \rho(x)} \ \text{EEVAR}$$

$$\overline{H, \rho \vdash v \Downarrow v} \ \text{EEVALUE}$$

$$\underline{H, \rho \vdash e \Downarrow o}$$

$$\overline{H, \rho \vdash e \Downarrow f} \ \text{EEACC}$$

4.2 Formulas $(H, \rho, A \vDash \phi)$

$$\overline{H, \rho, A \vDash \mathtt{true}} \overset{\text{EATrue}}{}$$

$$\frac{H, \rho \vdash e_1 \Downarrow v_1 \qquad H, \rho \vdash e_2 \Downarrow v_2 \qquad v_1 = v_2}{H, \rho, A \vDash (e_1 = e_2)} \overset{\text{EAEQUAL}}{}$$

$$\frac{H, \rho \vdash e_1 \Downarrow v_1 \qquad H, \rho \vdash e_2 \Downarrow v_2 \qquad v_1 \neq v_2}{H, \rho, A \vDash (e_1 \neq e_2)} \overset{\text{EANEQUAL}}{}$$

$$\frac{H, \rho \vdash e \Downarrow o \qquad (o, f) \in A}{H, \rho, A \vDash \mathtt{acc}(e.f)} \overset{\text{EAAcc}}{}$$

$$\frac{A_1 = A \backslash A_2 \qquad H, \rho, A_1 \vDash \phi_1 \qquad H, \rho, A_2 \vDash \phi_2}{H, \rho, A \vDash \phi_1 * \phi_2} \overset{\text{EASEPOP}}{}$$

We give a denotational semantics of formulas as $\llbracket \phi \rrbracket = \{ (H, \rho, A) \mid H, \rho, A \vDash \phi \}$ Note: ϕ satisfiable $\iff \llbracket \phi \rrbracket \neq \emptyset$

4.2.1 Implication $(\phi_1 \implies \phi_2)$

$$\phi_1 \implies \phi_2 \iff \forall H, \rho, A : H, \rho, A \vDash \phi_1 \implies H, \rho, A \vDash \phi_2$$

Drawn from def. of entailment in "A Formal Semantics for Isorecursive and Equirecursive State Abstractions".

4.2.2 Implying inequality

 $= \neg \text{sat} (\phi * (e_1 = e_2))$

$$\phi*(e_1=e_1)*(e_2=e_2) \implies (e_1\neq e_2)$$

$$= \forall H, \rho, A: H, \rho, A \vDash \phi*(e_1=e_1)*(e_2=e_2) \implies H, \rho, A \vDash (e_1\neq e_2)$$

$$= \forall H, \rho, A: (\exists v_1, v_2: H, \rho \vdash e_1 \Downarrow v_1 \land H, \rho \vdash e_2 \Downarrow v_2 \land H, \rho, A \vDash \phi) \implies (\exists v_1, v_2: H, \rho \vdash e_1 \Downarrow v_1 \land H, \rho \vdash e_2 \Downarrow v_2 \land H, \rho, A \vDash \phi)$$

$$= \forall H, \rho, A, v_1, v_2: (H, \rho \vdash e_1 \Downarrow v_1 \land H, \rho \vdash e_2 \Downarrow v_2 \land H, \rho, A \vDash \phi) \implies (\exists v_1, v_2: H, \rho \vdash e_1 \Downarrow v_1 \land H, \rho \vdash e_2 \Downarrow v_2 \land (v_1 \iff v_1, v_2 \iff v_2, v_2 \iff v_2, v_3 \iff v_1, v_2 \iff v_2 \iff v_2, v_3 \iff v_1, v_2 \iff v_2, v_3 \iff v_3, v_4 \iff v_1, v_2 \implies v_2, v_3 \iff v_1, v_2 \iff v_2, v_3 \iff v_1, v_2 \implies v_2, v_3 \iff v_3, v_4 \iff v_1, v_2 \implies v_2, v_3 \iff v_3, v_4 \implies v_3, v_4 \implies v_3, v_4 \implies v_3, v_4 \implies v_4, v_4 \implies v_3, v_4 \implies v_4, v_4 \implies v_4 \implies v_4, v_4 \implies v_4 \implies v_4, v_4 \implies v_$$

4.3 Footprint $(\lfloor \phi \rfloor_{H,\rho} = A_d)$

$$\begin{array}{ll} \lfloor \mathsf{true} \rfloor_{H,\rho} & = \emptyset \\ \lfloor e_1 = e_2 \rfloor_{H,\rho} & = \emptyset \\ \lfloor e_1 \neq e_2 \rfloor_{H,\rho} & = \emptyset \\ \lfloor \mathsf{acc}(x.f) \rfloor_{H,\rho} & = \{(o,f)\} \text{ where } H, \rho \vdash x \Downarrow o \\ \lfloor \phi_1 * \phi_2 \rfloor_{H,\rho} & = \lfloor \phi_1 \rfloor_{H,\rho} \cup \lfloor \phi_2 \rfloor_{H,\rho} \end{array}$$

4.4 Small-step $((H, S) \rightarrow (H, S))$

$$\frac{H, \rho \vdash x \Downarrow o \quad H, \rho \vdash y \Downarrow v_y \quad (o, f) \in A \quad H' = H[o \mapsto [f \mapsto v_y]]}{(H, (\rho, A, x.f := y; \overline{s}) \cdot S) \to (H', (\rho, A, \overline{s}) \cdot S)} \text{ ESFIELDASSIGN}$$

$$\frac{H, \rho \vdash e \Downarrow v \qquad \rho' = \rho[x \mapsto v]}{(H, (\rho, A, x := e; \overline{s}) \cdot S) \to (H, (\rho', A, \overline{s}) \cdot S)} \text{ ESVARASSIGN}$$

$$\frac{\text{fields}(C) = \overline{T} \ \overline{f} \qquad \rho' = \rho[x \mapsto o] \qquad A' = A * \overline{(o,f_i)} \qquad H' = H[o \mapsto \overline{[f \mapsto \text{defaultValue}(T)]}]}{(H,(\rho,A,x := \text{new } C; \overline{s}) \cdot S) \to (H',(\rho',A',\overline{s}) \cdot S)} \\ \text{ESNewObstantial} = \frac{(H,(\rho,A,x := \text{new } C; \overline{s}) \cdot S) \to (H',(\rho',A',\overline{s}) \cdot S)}{(H,(\rho,A,x := \text{new } C; \overline{s}) \cdot S) \to (H',(\rho',A',\overline{s}) \cdot S)}$$

$$\frac{H, \rho \vdash x \Downarrow v_x \qquad \rho' = \rho[\mathtt{result} \mapsto v_x]}{(H, (\rho, A, \mathtt{return} \ x; \overline{s}) \cdot S) \to (H, (\rho', A, \overline{s}) \cdot S)} \text{ ESRETURN}$$

$$H, \rho \vdash y \Downarrow o$$

$$H, \rho \vdash z \Downarrow v \qquad H(o) = (C, _) \qquad \text{mmethod}(C, m) = T_r \ m(T \ w) \ \text{requires} \ \phi; \ \text{ensures} \ _; \ \{\overline{r}\}$$

$$\frac{\rho' = [\text{result} \mapsto \text{defaultValue}(T_r), \text{this} \mapsto o, w \mapsto v] \qquad H, \rho', A \vDash \phi \qquad A' = \lfloor \phi \rfloor_{H, \rho'}}{(H, (\rho, A, x := y.m(z); \overline{s}) \cdot S) \rightarrow (H, (\rho', A', \overline{r}) \cdot (\rho, A \setminus A', x := y.m(z); \overline{s}) \cdot S)} \ \text{ESAPP}$$

$$\frac{H(o) = (C, \underline{\hspace{0.5cm}}) \quad \text{mpost}(C, m) = \phi \quad H, \rho', A' \vDash \phi \quad A'' = \lfloor \phi \rfloor_{H, \rho'} \quad H, \rho' \vdash \text{result} \Downarrow v_r}{(H, (\rho', A', \emptyset) \cdot (\rho, A, x := y.m(z); \overline{s}) \cdot S) \rightarrow (H, (\rho[x \mapsto v_r], A * A'', \overline{s}) \cdot S)} \quad \text{ESAPPFINISH}(A, \rho', A', \rho', A',$$

$$\frac{H, \rho, A \vDash \phi}{(H, (\rho, A, \mathsf{assert} \ \phi; \overline{s}) \cdot S) \to (H, (\rho, A, \overline{s}) \cdot S)} \text{ ESASSERT}$$

$$\frac{H,\rho,A\vDash \phi \qquad A'=A\setminus \lfloor \phi\rfloor_{H,\rho}}{(H,(\rho,A,\mathtt{release}\ \phi;\overline{s})\cdot S)\to (H,(\rho,A',\overline{s})\cdot S)}\ \mathrm{ESRELEASE}$$

$$\frac{\rho' = \rho[x \mapsto \mathtt{defaultValue}(T)]}{(H, (\rho, A, T \; x; \overline{s}) \cdot S) \to (H, (\rho', A, \overline{s}) \cdot S)} \; \mathtt{ESDECLARE}$$

5 Gradualization

5.1 Syntax

5.1.1 Gradual formula

$$\widetilde{\phi} ::= \phi \mid ? * \phi$$

Note: consider? in other positions as "self-framing delimiter", but with semantically identical meaning. As long as? is only legal in the front though: $\phi_1 * \widetilde{\phi_2}$ propagates the? to the very left in case $\widetilde{\phi_2}$ contains one.

5.1.2 Self-framed and satisfiable formula

$$\hat{\phi} \in \{ \phi \mid \vdash_{\mathtt{sfrm}} \phi \land \mathtt{sat} \phi \}$$

5.2 Concretization

$$\gamma(\hat{\phi}) = \{ \hat{\phi} \}
\gamma(? * \phi') = \{ \hat{\phi} \mid \hat{\phi} \implies \phi' \} \text{ if } \phi' \text{ satisfiable}
\gamma(\phi) \text{ undefined otherwise}
\widetilde{\phi_1} \sqsubseteq \widetilde{\phi_2} : \iff \gamma(\widetilde{\phi_1}) \subseteq \gamma(\widetilde{\phi_2})$$

5.3 Abstraction

$$\alpha(\overline{\phi}) \hspace{3cm} = \min_{\sqsubset} \; \{ \; \widetilde{\phi} \; | \; \overline{\phi} \subseteq \gamma(\widetilde{\phi}) \; \}$$

Equivalent to:

$$\begin{array}{ll} \alpha(\{\phi\}) & = \phi \\ \alpha(\overline{\phi}) & = \dot{\alpha}(\overline{\phi}) := \sup_{\sqsubseteq} \{ ? * \phi \mid \phi \in \overline{\phi} \} \end{array}$$

Proved:

- partial function
- sound
- optimal
- $\alpha(\gamma(\widetilde{\phi})) = \widetilde{\phi}$
- does this make $\langle \gamma, \alpha \rangle$ a (partial) "galois insertion"?

5.4 Dominator Theory

Theorem:

For every ϕ , there exists a finite set of "dominators" $dom(\phi)$, such that

$$\gamma(? \ * \ \phi) = \bigcup_{\hat{\phi} \in \text{dom}(f(\phi))} \gamma(? \ * \ \hat{\phi})$$

8

Consequence:

$$?*\phi = \alpha(\gamma(?*\phi))$$

$$= \dot{\alpha}(\gamma(?*\phi))$$

$$= \dot{\alpha}(\bigcup_{\hat{\phi} \in \text{dom}(\phi)} \gamma(?*\hat{\phi}))$$

$$= \dot{\alpha}(\bigcup_{\hat{\phi} \in \text{dom}(\phi)} \{\hat{\phi}\})$$

$$= \dot{\alpha}(\text{dom}(\phi))$$

Analogous, for monotonic f:

$$\begin{split} &\alpha(\overline{f}(\gamma(?\ *\ \phi)))\\ &=\dot{\alpha}(\overline{f}(\gamma(?\ *\ \phi)))\\ &=\dot{\alpha}(\overline{f}(\bigcup_{\hat{\phi}\in\mathrm{dom}(\phi)}\gamma(?\ *\ \hat{\phi})))\\ &=\dot{\alpha}(\overline{f}(\bigcup_{\hat{\phi}\in\mathrm{dom}(\phi)}\{\hat{\phi}\}))\\ &=\dot{\alpha}(\overline{f}(\mathrm{dom}(\phi))) \end{split}$$

Lemmas:

- $\bullet \ \operatorname{dom}(\phi) \subseteq \gamma(? \ * \ \phi)$
- $\max \gamma(? * \hat{\phi}) = \hat{\phi}$
- $\bullet \ f: \phi \to \phi \ \text{monotonic} \ \Longrightarrow \ \max \overline{\phi} = \phi' \ \Longrightarrow \ \max \overline{f(\phi)} = f(\phi')$
- $\max \overline{\phi} = \phi' \implies \alpha(\overline{\phi}) \in \{? * \phi', \phi'\}$

Corollary:

$$f: \phi \to \phi \text{ monotonic } \implies \alpha(\overline{f}(\gamma(?\, *\, \hat{\phi}))) = ?\, *\, f(\hat{\phi})$$

What is necessary to generalize this as $\alpha(\overline{f}(\gamma(?*\phi))) = ?*f(\phi)?$

$$? * f(\phi) = \dot{\alpha}(\operatorname{dom}(f(\phi))) \\ = \sup_{\sqsubseteq} \left\{ \; ? * \; \phi' \; | \; \phi' \in \operatorname{dom}(f(\phi)) \; \right\}$$

$$\begin{split} \alpha(\overline{f}(\gamma(?\ *\ \phi))) &= \dot{\alpha}(\overline{f}(\mathtt{dom}(\phi))) \\ &= \sup_{\sqsubseteq} \left\{\ ?\ *\ f(\phi') \mid \phi' \in \mathtt{dom}(\phi)\ \right\} \end{split}$$

$$\forall \phi' \in \gamma(?*f(\phi)), \exists \phi'' \in \gamma(?*\phi), \phi' \in \gamma(?*f(\phi'')) \\ \Longrightarrow \\ \forall \phi' \in \gamma(?*f(\phi)), \exists \phi'' \in \gamma(?*\phi), ?*\phi' \sqsubseteq ?*f(\phi'') \\ \Longrightarrow \\ \forall \phi' \in \operatorname{dom}(f(\phi)), \exists \phi'' \in \operatorname{dom}(\phi), ?*\phi' \sqsubseteq ?*f(\phi'') \\ \Longrightarrow \\ \forall \phi' \in \operatorname{dom}(f(\phi)), ?*\phi' \sqsubseteq \sup_{\sqsubseteq} \{?*f(\phi') \mid \phi' \in \operatorname{dom}(\phi) \} \\ \Longleftrightarrow \\ \sup_{\sqsubseteq} \{?*\phi' \mid \phi' \in \operatorname{dom}(f(\phi)) \} \sqsubseteq \sup_{\sqsubseteq} \{?*f(\phi') \mid \phi' \in \operatorname{dom}(\phi) \} \\ \nearrow f(\phi) \sqsubseteq \alpha(\gamma(?*f(\phi))) \\ \Longrightarrow \\ \forall \phi' \in \operatorname{dom}(\phi), ?*f(\phi') \sqsubseteq \alpha(\gamma(?*f(\phi))) \\ \Longleftrightarrow \\ \sup_{\sqsubseteq} \{?*f(\phi') \mid \phi' \in \operatorname{dom}(\phi) \} \sqsubseteq \alpha(\gamma(?*f(\phi))) \\ \Longrightarrow \\$$

5.5 Liftable Functions

We call a function liftable iff $\tilde{f}(?*\phi) = ?*f(\phi)$ holds for all ϕ . This property is very desirable as it allows treating gradual formulas the same way you would treat static formulas. Note that $\tilde{f}(\phi) = f(\phi)$ holds anyway, so we have $\tilde{f}(\tilde{\phi}) = f(\tilde{\phi})$, with f simply being applied to the static part of $\tilde{\phi}$.

For a function f to be liftable, the following properties are sufficient:

- Monotonicity
- $\forall \phi' \in \gamma(? * f(\phi)), \exists \phi'' \in \gamma(? * \phi), \phi' \in \gamma(? * f(\phi''))$

5.5.1 Liftable composition

Given liftable functions f and g, is $g \circ f$ liftable? Monotonicity is obviously preserved. Other condition:

$$\begin{array}{c} \alpha(\operatorname{dom}(f(\phi))) \sqsubseteq \alpha(\overline{f}(\operatorname{dom}(\phi))) \\ \Longrightarrow \\ \alpha(\overline{g}(\operatorname{dom}(f(\phi)))) \sqsubseteq \alpha(\overline{g}(\overline{f}(\operatorname{dom}(\phi)))) \\ \Longrightarrow \\ \alpha(\operatorname{dom}(g(f(\phi)))) \sqsubseteq \alpha(\overline{g}(\overline{f}(\operatorname{dom}(\phi)))) \\ \Longrightarrow \\ \alpha(\operatorname{dom}((q \circ f)(\phi))) \sqsubseteq \alpha(\overline{(q \circ f)}(\operatorname{dom}(\phi))) \end{array}$$

5.6 Gradual Lifting

5.6.1 Self framing

$$\frac{A \vdash_{\mathtt{sfrm}} \phi}{A \vdash_{\mathtt{sfrm}} \phi} \text{GSFRMNonGrad}$$

$$\widetilde{A \vdash_{\mathtt{sfrm}} ? * \phi}$$
 GSFRMGRAD

5.6.2Implication

$$\frac{\phi_1 \implies \phi_2}{\phi_1 \implies \widetilde{\phi_2}}$$
 GIMPLNONGRAD

$$\frac{\hat{\phi_m} \implies \phi_2 \qquad \hat{\phi_m} \implies \phi_1}{? * \phi_1 \stackrel{\frown}{\Longrightarrow} \widetilde{\phi_2}} \text{GIMPLGRAD}$$

 $\hat{\phi_m}$ is evidence!

Consistent transitivity

While \implies is transitive, $\stackrel{\frown}{\Longrightarrow}$ is generally not.

But maybe not even necessary with smarter hoare rules?

5.6.3Equality

$$\frac{\phi_1 = \phi_2}{\phi_1 \approx \phi_2} \text{ GEQSTATIC}$$

at least one of
$$\widetilde{\phi_1}$$
 or $\widetilde{\phi_2}$ contains?
$$\frac{\widetilde{\phi_1} \Longrightarrow \widetilde{\phi_2} \qquad \widetilde{\phi_2} \Longrightarrow \widetilde{\phi_1}}{\widetilde{\phi_1} \approx \widetilde{\phi_2}} \text{ GEQGRADUAL}$$

5.6.4 Append

by definition:

$$\widetilde{\phi} \ \widetilde{\ast} \ \phi_p = \alpha(\gamma(\widetilde{\phi}) \overline{\ast} \phi_p)$$

equivalent to:

$$\widetilde{\phi} \ \widetilde{\ast} \ \phi_p = \widetilde{\phi} \ast \phi_p \qquad \qquad \text{if } \forall \widehat{\phi_1}, (\widehat{\phi_1} \implies \phi \ast \phi_p) \implies \exists \widehat{\phi_2}, (\widehat{\phi_2} \implies \phi \land \widehat{\phi_1} \implies \widehat{\phi_2} \ast \phi_p)$$

$$\text{if } \forall \widehat{\phi_1} \in \gamma(\widetilde{\phi} \ast \phi_p), \exists \widehat{\phi_2} \in \gamma(\widetilde{\phi}), \widehat{\phi_1} \implies \widehat{\phi_2} \ast \phi_p$$

$$\widetilde{\phi} \ \widetilde{\ast} \ \phi_p \ \textit{undefined} \qquad \qquad \text{otherwise}$$

Gradual Hoare: minimal static rule approach

Example:

$$\frac{\mathbf{e} \vdash \widetilde{\phi} \Longrightarrow \widetilde{\phi}'}{\mathbf{\phi}'} \qquad x \not \in FV(\widetilde{\phi}') \qquad x \not \in FV(e) \qquad \mathbf{e} \vdash \widetilde{\phi} \vdash x : T \qquad \mathbf{e} \vdash \widetilde{\phi} \vdash e : T \qquad \mathbf{e} \vdash \lfloor \widetilde{\phi}' \rfloor \vdash_{\mathtt{sfrm}} e}{\vdash \{\widetilde{\phi}\}x := e\{\widetilde{\phi}' * (x = e)\}}$$
 GHVARASSIGN

Collapsing (hidden) gradual implications into a single one:

$$\underbrace{\frac{\epsilon \vdash \widetilde{\phi} \Longrightarrow (x:T) * \llbracket e:T \rrbracket_C * \widetilde{\phi}' \qquad \emptyset \vdash_{\mathtt{sfrm}} \llbracket e:T \rrbracket_C * \widetilde{\phi}' \qquad x \not\in FV(\widetilde{\phi}') \qquad x \not\in FV(e) \qquad [e:T]_C}_{\vdash \{\widetilde{\phi}\}x := e\{\llbracket e:T \rrbracket_C * \widetilde{\phi}' * (x=e)\}}$$
 GHVARASSIGNATION OF THE CONTRACT GRAVEN GRAVEN STATEMENT OF THE CONTRACT GRAVEN GRAV GRAVEN GRAVEN GRAV GRAVEN GRAV GRAV GRAV GRAV GR

When shifting implication responsibility to GHSec:

$$\frac{x \notin FV(\widetilde{\phi'}) \quad x \notin FV(e) \quad [e:T]_C}{\vdash \{(x:T) * \llbracket e:T \rrbracket_C * \widetilde{\phi'} \} x := e\{\llbracket e:T \rrbracket_C * \widetilde{\phi'} * (x=e)\}} \text{ GHVARASSIGN}$$

Example derivation:

$$\begin{aligned} & \{(x:T)*(y:C)*\mathrm{acc}(y.a)*\mathrm{acc}(y.a.b)*\mathrm{acc}(y.a.b.c)*\tilde{\phi}'\} \\ & \{(x:T)*[\![y.a.b.c:T]\!]_C*\tilde{\phi}'\} \\ & x \not\in FV(\tilde{\phi}') \\ & x \not\in FV(y.a.b.c) \\ & [y.a.b.c:T]\!]_C = \ \vdash C_y = C \ \land \ \vdash C_y.a:C_a \ \land \ \vdash C_a.b:C_b \ \land \ \vdash C_b.c:T \\ & \{[\![y.a.b.c:T]\!]_C*\tilde{\phi}'*(x=y.a.b.c)\} \\ & \{(y:C)*\mathrm{acc}(y.a)*\mathrm{acc}(y.a.b)*\mathrm{acc}(y.a.b.c)*\tilde{\phi}'*(x=y.a.b.c)\} \end{aligned}$$

5.7.1 GHFieldAssign

$$\frac{\widetilde{\phi_1} \approx (x:C)*(y:T)*(x \neq \texttt{null})*\phi* \texttt{acc}(x.f)}{\widetilde{\phi_1} \approx (x:C)*(x:C)*(x \neq \texttt{null})*(x.f = y)*\phi} \xrightarrow{\widetilde{\Gamma}\{\widetilde{\phi_1}\}x.f := y\{\widetilde{\phi_2}\}} \text{GHFIELDATE Constants}$$

5.7.2 GHSec - sound but obviously not complete!

$$\frac{\widetilde{\vdash}\{\widetilde{\phi_p}\}s_1\{\widetilde{\phi_{q1}}\} \qquad \phi_{q1} \implies \phi_{q2} \qquad \emptyset \vdash_{\mathtt{sfrm}} \phi_{q2} \qquad \widetilde{\vdash}\{\phi_{q2}\}s_2\{\widetilde{\phi_r}\}}{\widetilde{\vdash}\{\widetilde{\phi_p}\}s_1; s_2\{\widetilde{\phi_r}\}} \text{ GHSEC}$$

5.8 Gradual Hoare: minimal HSec approach (implications per rule)

$$\frac{\phi_1 \implies (x:C)*(y:T)*\phi*\operatorname{acc}(x.f)}{\phi_1 \implies (x:C)*(y:T)*\phi*\operatorname{acc}(x.f)} \quad \phi_2 = (x:C)*\operatorname{acc}(x.f)*(x.f = y)*\phi}{\vdash \{\phi_1\}x.f := y\{\phi_2\}} \text{ HFIELDASSIGN}$$

$$\frac{\widetilde{\phi_1} \xrightarrow{} (x:C)*(y:T)*\phi*\mathrm{acc}(x.f)}{\widetilde{\varphi_1} \xrightarrow{} (x:C)*(x.f)*\widetilde{\phi_2} \approx (x:C)*\mathrm{acc}(x.f)*(x.f=y)*\phi}{\widetilde{\vdash} \{\widetilde{\phi_1}\}x.f:=y\{\widetilde{\phi_2}\}} \text{ GHFIELDASSIGN}$$

Note: With this alternative rule design \Longrightarrow is consistently used with static formulas as second argument. This plays nicely with the fact that \Longrightarrow does not care about the gradualness of that argument. Might make sense to define lifting of \Longrightarrow as lifting on only the first parameter in the first place.

Minimum runtime checks: For $\widetilde{\phi_1} \Longrightarrow \widetilde{\phi_2}$ to hold at runtime, practically just ϕ_2 needs to hold. So that would be a valid assertion to check. Yet, we know statically that ϕ_1 holds, so we can remove everything from the runtime check that is implied by ϕ_1 . So in a sense, we only need to check $\phi_2 \setminus \phi_1$ at runtime (the operator can be an approximation).

5.9 Gradual Hoare: deterministic approach

5.9.1 HFieldAssign

$$\frac{\phi_1 \implies (x:C)*(y:T)*\mathrm{acc}(x.f)}{\phi_2 = (x:C)*\mathrm{acc}(x.f)*(x.f = y)*\phi_1[\mathbf{w/o}\ \mathrm{acc}(x.f)]}{\vdash \{\phi_1\}x.f := y\{\phi_2\}}$$
 HFIELDASSIGN

Note: $\phi[\mathbf{w}/\mathbf{o} \ \mathsf{acc}(x.f)]$ removes $\mathsf{acc}(x.f)$ and all uses of x.f from ϕ . The result is self-framed given that ϕ is.

Attention: This version is weaker than the other (pairwise equivalent) versions of HFieldAssign! Explanation: Above operator may remove more information than necessary from ϕ . Example:

• Given:
$$\phi_1 = acc(x.f) * (x.f = a) * (x.f = b)$$

- Goal: $\phi_2 \implies (a=b)$
- not provable with this deterministic version of HFieldAssign
- provable with all other versions

Probably it's possible to apply the operator without information loss after expanding formula using equalities (transitive hull).

5.9.2 GHFieldAssign

(= gradual lifting of GHFieldAssign as function)

$$\frac{\widetilde{\phi_2} = \alpha(\{\phi_2 \mid \phi_1 \in \gamma(\widetilde{\phi_1}) \ \land \ \vdash \{\phi_1\}x.f := y\{\phi_2\}\ \})}{\widetilde{\vdash}\{\widetilde{\phi_1}\}x.f := y\{\widetilde{\phi_2}\}} \text{ GHFIELDASSIGN}$$

Which should be equivalent to this:

$$\begin{array}{c} \vdash C.f:T\\ \phi_1 \implies (x:C)*(y:T)*\mathrm{acc}(x.f)\\ \frac{\phi_2 = (x:C)*(y:T)*\mathrm{acc}(x.f)*(x.f=y)*\phi_1[\mathbf{w/o}\;\mathrm{acc}(x.f)]}{\widetilde{\vdash}\{\phi_1\}x.f:=y\{\phi_2\}} \;\mathrm{GHFA1} \end{array}$$

$$\begin{split} & \vdash C.f: T \\ ? * \phi_1 \xrightarrow{\Longrightarrow} _{\phi_m} (x:C) * \operatorname{acc}(x.f) \\ \frac{\phi_2 = (x:C) * \operatorname{acc}(x.f) * (x.f = y) * \phi_m[\mathbf{w/o} \ \operatorname{acc}(x.f)]}{\widetilde{\vdash} \{? * \phi_1\} x.f := y \{? * \phi_2\}} \text{ GHFA2} \end{split}$$

Which should be summarizable as this:

$$\begin{split} & \vdash C.f:T \\ \widetilde{\phi_1} & \Longrightarrow_{\widetilde{\phi_m}} (x:C) * (y:T) * \mathrm{acc}(x.f) \\ \widetilde{\phi_2} &= (x:C) * \mathrm{acc}(x.f) * (x.f = y) * \widetilde{\phi_m} [\mathbf{w/o} \ \mathrm{acc}(x.f)] \\ \widetilde{\vdash} \{\widetilde{\phi_1}\} x.f := y \{\widetilde{\phi_2}\} \end{split}$$
 GHFA

Which for well-formed programs is equivalent to:

$$\begin{split} & \vdash C.f:T \\ \phi_1 \implies (x:C)*(y:T) & \widetilde{\phi_1} \overset{}{\Longrightarrow} \operatorname{acc}(x.f) \\ & \underbrace{\widetilde{\phi_2} = (x:C)*(y:T)*\operatorname{acc}(x.f)*(x.f=y)*\widetilde{\phi_1}[\mathbf{w/o}\ \operatorname{acc}(x.f)]}_{\widetilde{\vdash}\{\widetilde{\phi_1}\}x.f:=y\{\widetilde{\phi_2}\}} & \mathrm{GHFA} \end{split}$$

Observations:

- \bullet ϕ_m is the interior (first argument) of the implication, effectively the meet of first and second argument.
- for the gradual rules to work, the \mathbf{w}/\mathbf{o} -operator **must** be implemented with minimal information loss

5.10 Theorems

5.10.1 Soundness of α

$$\forall \overline{\phi} : \overline{\phi} \subseteq \gamma(\alpha(\overline{\phi}))$$

5.10.2 Optimality of α

$$\forall \overline{\phi}, \widetilde{\phi}: \overline{\phi} \subseteq \gamma(\widetilde{\phi}) \implies \gamma(\alpha(\overline{\phi})) \subseteq \gamma(\widetilde{\phi})$$

- 6 Theorems
- **6.1** Invariant $invariant(H, \rho, A_d, \phi)$
- 6.1.1 Phi valid

$$\vdash_{\mathtt{sfrm}} \phi$$

6.1.2 Phi holds

$$H, \rho, A_d \vDash \phi$$

6.1.3 Types preserved

$$\forall e, T : \phi \vdash e : T$$

 $\Longrightarrow H, \rho \vdash e : T$

6.1.4 Heap consistent

$$\begin{split} \forall o, C, \mu, f, T : H(o) &= (C, \mu) \\ &\implies \texttt{fieldType}(C, f) = T \\ &\implies H, \rho \vdash \mu(f) : T \end{split}$$

6.1.5 Heap not total

$$\exists o_{min}:$$
 $\forall o \geq o_{min}: o \not\in \text{dom}(H)$ $\land \ \forall f, (o, f) \not\in A$

- 6.2 Soundness
- 6.2.1 Progress

$$\forall \dots : \vdash \{\phi_1\}s'\{\phi_2\}$$

$$\implies invariant(H_1, \rho_1, A_1, \phi_1)$$

$$\implies \exists H_2, \rho_2, A_2 : (H_1, (\rho_1, A_1, s'; \overline{s}) \cdot S) \rightarrow^* (H_2, (\rho_2, A_2, \overline{s}) \cdot S)$$

6.2.2 Preservation

$$\forall \dots : \vdash \{\phi_1\}s'\{\phi_2\}$$

$$\implies invariant(H_1, \rho_1, A_1, \phi_1)$$

$$\implies (H_1, (\rho_1, A_1, s'; \overline{s}) \cdot S) \rightarrow^* (H_2, (\rho_2, A_2, \overline{s}) \cdot S)$$

$$\implies invariant(H_2, \rho_2, A_2, \phi_2)$$