

K. S. INSTITUTE OF TECHNOLOGY

#14, Raghuvanahalli, Kanakapura Main Road, Bengaluru-560109

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Course : Syste	em Mod	lelling and	Simulation						
Type: Elective			Course Code: 18CS645			Semester and Section : VI A& B			
Course Incha	rge : Dr	Rekha B		Academi		2020-21			
	-		No of Hours	s per wee	ek				
•		Practical	/Field Work/Allied	1	Total/Week		Total teaching		
(Lecture Class)			Activities				hours		
3+1=4			5		3+1=4			40	
			Mar						
Internal Assessment			Examination			Total	C	redits	
40			60			100		3	
Aim/Objective This course en									
Course Learn After completi	ing Out	tcomes:	ulation which are use		del deve	lopment in eng	ineering a	pplication	
Bloom's Leve									
18CS645.1	Identify the System components and apply analytical modeling methods to simulate the activities of systems- Queuing, inventory & reliability. Applying (K3)								
18CS645.2	Make use of the characteristics of a Discrete system and Event scheduling time advance algorithm to model the Single Queuing Simulation in Java. Identify useful statistical models, discrete and continuous distributions. Applying (K3)								
18CS645.3	Model the behaviour of M/G/1 queue behaviour with measures of performance of queuing systems, Random number and variate generation, Tests for random numbers. Applying (K3)						ing (K3)		
18CS645.4	Identify the steps in Input Modelling by choosing parameters, Solve Goodness of fit tests problems.					Applying (K3)			
18CS645.5	Apply effective verification, calibration and validation of methods, Plan Optimization through Simulation.					Applyi	Applying (K3)		
			Syllabus (Content:					
and disadvanta	ges of S	Simulation;	e appropriate tool an Areas of applicati	on, Syste	ems and	system envir	onment;	CO1 8 hrs	
Models, Discret	te-Event	System Sin	e and continuous s nulation examples: b oncepts in Discrete-I	Simulation	n of que	euing systems.	General	PO1-3 PO2-1	

/ Time-Advance Algorithm, Manual simulation Using Event Scheduling	PO3-1
LO: At the end of this session the student will be able to, 1. Demonstrate the system concept and apply functional modeling method to model the activities of a static system	
Module 2: Statistical Models in Simulation :Review of terminology and concepts, Useful statistical models, Discrete distributions. Continuous distributions, Poisson process, Empirical distributions. Queuing Models: Characteristics of queuing systems, Queuing notation, Long-run measures of performance of queuing systems, Long-run measures of performance of queuing systems cont., Steady-state behaviour of M /G/1 queue, Networks of queues, LO: At the end of this session the student will be able to, 1. Describe the behavior of a dynamic system and create an analogous model for a dynamic system.	CO2 8h hrs. PO1-3 PO2-1 PO3-1 PO9-2
Module 3: Random-Number Generation: Properties of random numbers; Generation of pseudo-random numbers, Techniques for generating random numbers, Tests for Random Numbers, Random-Variate Generation: ,Inverse transform technique Acceptance-Rejection technique. LO: At the end of this session the student will be able to, 1. Identify different techniques to generate random numbers and variates as required for simulation.	CO3 8 hrs PO1-3 PO2-2 PO3-3 PO9-2
Module 4: Input Modeling: Data Collection; Identifying the distribution with data Parameter estimation, Goodness of Fit Tests, Fitting a non-stationary Poisson process, Selecting input models without data, Multivariate and Time-Series input models. Estimation of Absolute Performance: Types of simulations with respect to output analysis ,Stochastic nature of output data, Measures of performance and their estimation, Contd LO: At the end of this session the student will be able to, 1. Apply the tests for Goodness of Test and finding their appropriateness in different circumstances.	CO4 8 hrs PO1-3 PO2-3 PO3-3 PO9-2
Module 5: Measures of performance and their estimation, Output analysis for terminating simulations Continued, Output analysis for steady-state simulations. Verification, Calibration And Validation: Optimization: Model building, verification and validation, Verification of simulation models, Verification of simulation models, Calibration and validation of models, Optimization via Simulation. LO: At the end of this session the student will be able to, 1. Simulate the operation of a dynamic system and make improvement according to the simulation results after validation	CO5 8 hrs PO1-3 PO2-1 PO3-1
Text Books: - Jerry Banks, John S. Carson II, Barry L. Nelson, David M. Nicol: Discrete-Event System Simulation, 5 th Edition, Pearson Education, 2010.	

Reference Books:

1. Lawrence M. Leemis, Stephen K. Park: Discrete – Eve nt Simulation: A First Course, Pearson Education, 2006.

2. Averill M. Law: Simulation Modeling and Analysis, 4th Edition, Tata McGrawHill, 2007

Useful Journals

1. International Journal of System Modeling and Simulation Vol 4 No 1 (2019): Online ISSN: 2518-0959 This is an open access issue under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/) Published: 2019-03-31

2. International Journal of Engineering Systems Modelling and Simulation

Editors in Chief Prof. Xiaogang Yang, Dr. Zoubir Zouaoui ISSN online1755-9766 ISSN print 1755-9758

Useful Links

https://nptel.ac.in/courses/112107220/

Teaching and Learning Methods:

- 1. Lecture class: 40 hrs.
- 2. Self-study: 5 hrs.
- 3. Field visits/Group Discussions/Seminars: 5hrs

Assessment:

Type of test/examination: Written examination

Continuous Internal Evaluation(CIE): 40 marks (Average three tests will be

considered)

Semester End Exam(SEE): 60 marks (students have to answer all main questions)

Test duration: 1:30 hr Examination duration: 3 hrs

PO6: Engineer & Society

CO - PO MAPPING

PO1: Science and engineering PO7:Environment and Society

Knowledge PO8:Ethics

PO2: Problem Analysis PO9:Individual & Team Work

PO3: Design & Development

PO10: Communication

PO4: Investigations of Complex

PO11: Project Mngmt & Finance
PO12: Life long Learning

Problems Problems Problems

PO5: Modern Tool Usage

PSO1: Graduate should be able to understand the fundamentals in the field of Electronics & Communication and apply the same to various areas like Signal

processing, embedded systems, Communication & Semiconductor technology.

PSO2: Graduate will demonstrate the ability to design, develop solutions for Problems in Electronics & Communication Engineering using hardware and software tools with social concerns.

CO#	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
18CS645.1	3	2	1	-	-	-	-	-	-	-	-	-
18CS645.2	3	2	1	-	-	-	-	-	2	-	-	-
18CS645.3	3	1	2	-	-	-	-	-	2	-	-	-
18CS645.4	3	1	1	-	-	-	-	-	1	-	-	-
18CS645.5	3	1	1	-	-	-	-	-	1	-	-	-
18CS645	3	1.4	1.2	-	-	-	-	-	1.5	-	-	-

CO	PSO1	PSO2
18CS645.1	2	1
18CS645.2	2	1
18CS645.3	2	2
18CS645.4	2	2
18CS645.5	2	2
18CS645	2	1.6

3	Substantial (High) Correlation
2	Moderate (Medium) Correlation
1	Slight (Low) Correlation
-	No correlation.

Signature of Course in-Charge

Signature of Module Coordinator

Signature of HOD