Good Question

marcaas 202228000206085

2023年4月12日

1 880

问题 1.1. 设 f(x) 在 $(-\infty, +\infty)$ 内为连续的奇函数, a 为常数,则必为偶函数的是()

a)
$$\int_0^x du \int_a^u t f(t) dt$$

b) $\int_a^x du \int_0^u f(t) dt$

c)
$$\int_0^x du \int_a^u f(t) dt$$

d) $\int_a^x du \int_0^u t f(t) dt$

问题 1.2. 设数列 a_n 满足 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = q$,且 |q| < 1,证明: $\lim_{n\to\infty} a_n = 0$

问题 1.3. 设数列 $x_n = (1+a)^n + (1-a)^n$, 证明:

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \begin{cases} 1 + |a|, & a \neq 0, \\ 1, & a = 0, \end{cases}$$

问题 1.4. 证明: $\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_k^n} = \max\{a_1 \cdot a_2 \cdot \dots \cdot a_k\}$ $(a_i > 0, i = 1, 2, \dots, k)$

2 **ZY**

问题 2.1.

$$\lim_{x \to 0} \frac{\int_{\sin x}^{x} \sqrt{3 + t^2} \, dt}{x(e^{x^2} - 1)} =$$

问题 2.2.

$$\lim_{x\to 0} \frac{1}{x} (\cot x - \frac{1}{x}) =$$

问题 2.3. 求函数 $f(x) = \lim_{n \to \infty} \frac{x^{n+2} - x^{-n}}{x^n + x^{-n}}$ 的间断点,并判别间断点的类型。

问题 2.4. 设函数 $f(x) = \lim_{n \to \infty} \frac{x^2 + nx(1-x)\sin^2 \pi x}{1 - n\sin^2 \pi x}$,分析 f(x) 的间断情况。

问题 2.5. 设函数 $f(x) = \lim_{n \to \infty} \cos^n \frac{1}{n^x}$ $(0 < x < +\infty)$,则 f(x) 在其间断点处的值为?

问题 2.6. 记 $f(x) = 27x^3 + 5x^2 - 2$ 的反函数为 f^{-1} ,求极限

$$\lim_{x \to \infty} \frac{f^{-1}(27x) - f^{-1}(x)}{\sqrt[3]{x}}$$

问题 2.7.

$$\lim_{x \to 0} \frac{(1+x)^{\frac{2}{x}} - e^2[1 - \ln(1+x)]}{x}$$

问题 2.8.

$$\lim_{x \to 0} \frac{1 + \frac{1}{2}x^2 - \sqrt{1 + x^2}}{(\cos x - e^{\frac{x^2}{2}})\sin\frac{x^2}{2}}$$

问题 2.9.

$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - (1+2x)^{\frac{1}{2x}}}{\sin x}$$

问题 2.10. 设函数 $f(x) = (1+x)^{\frac{1}{x}}$ (x>0), 证明: 存在常数 A,B, 使得当 $x\to 0^+$ 时, 恒有

$$f(x) = e + Ax + Bx^2 + o(x^2)$$

并求常数 A, B.

问题 2.11. 设函数
$$f(x) = \begin{cases} \frac{\ln(1+x^3)}{\arcsin x - x}, & x < 0 \\ \frac{e^{-1} + \frac{1}{2}x^2 + x - 1}{x \sin \frac{x}{6}}, & x > 0 \end{cases}$$
 $g(x) = \frac{e^{\frac{1}{x}}\arctan \frac{1}{x}}{1 + e^{\frac{2}{x}}},$ 求 $\lim_{x \to 0} f[g(x)]$

问题 2.12. 设 $\alpha \ge 5$ 且为常数,则 k 为何值时极限

$$I = \lim_{x \to +\infty} [(x^{\alpha} + 8x^{4} + 2)^{k} - x]$$

存在,并求此极限值.

问题 2.13. 求
$$\lim_{n\to\infty} \left[\sqrt{n} (\sqrt{n+1} - \sqrt{n}) + \frac{1}{2} \right]^{\frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} - \sqrt{n}}}$$

问题 2.14. 设当 $a \le x \le b$ 时, $a \le f(x) \le b$, 并设存在常数 $k, 0 \le k < 1$, 对于 [a, b] 上的任意两点 x_1 与 x_2 , 都有

$$|f(x_1) - f(x_2)| \le k|x_1 - x_2|$$

证明:

- 1. 存在唯一的 $\epsilon \in [a,b]$ 使 $f(\epsilon) = \epsilon$;
- 2. 对于任意给定的 $x_1 \in [a,b]$ 定义 $x_{n+1} = f(x_n), n=1,2,\cdots,$ 则 $\lim_{n \to \infty} x_n$ 存在, 且 $\lim_{n \to \infty} x_n = \epsilon$.