

Darko Popovic

Seminar aus maschinellem Lernen WS 2007/2008

Klassifizierung

Day	Temperature	Outlook	Humidity	Windy	Play Golf?
07-05	hot	sunny	high	false	no
07-06	hot	sunny	high	true	no
07-07	hot	overcast	high	false	yes
07-09	cool	rain	normal	false	yes
07-10	cool	overcast	normal	true	yes
07-12	mild	sunny	high	false	no
07-14	cool	sunny	normal	false	yes
07-15	mild	rain	normal	false	yes
07-20	mild	sunny	normal	true	yes
07-21	mild	overcast	high	true	yes
07-22	hot	overcast	normal	false	yes
07-23	mild	rain	high	true	no
07-26	cool	rain	normal	true	no
12-30	mild	rain	high	false	yes

today	cool	sunny	normal	false	?
tomorrow	mild	sunny	normal	false	3

Klassifikatoren

- Binärer Klassifikator
- Multi-class Klassifikator
 - → eine Klasse pro Instanz
- Multi-label Klassifikator
 - → mehrere Label pro Instanz

Gliederung

- Motivation
- Grundlagen
- Multi-class Klassifikator
- Multi-label Klassifikator
- Experimente und Ergebnisse
- Fazit

Motivation

- Große Bedeutung der Multi-label Klassifizierung
 - (z.B. Text-, Genklassifikation,...)
- Wenig erforscht!
- Herausforderungen:
 - "small disjuncts"
 - Abhängigkeiten zwischen Labels

Grundlagen

- Class association rule (CAR)

 Regel der Form: $F \xrightarrow{\sigma,\theta} l$ F=Menge von Features, I=Label
- Support σ support(F→I) = P(F U I)
- Confidence θ confidence(F→I) = P(I|F)

Beispiel: CARs

Trainingsdaten:

ID	Label	Title	Actors
1	Drama/Mystery	Solaris	G. Clooney
2	Drama/Thriller	Syriana	G. Clooney, M. Damon
3	Crime/Thriller	Ocean's Eleven	G. Clooney, M. Damon
4	Crime/Thriller	Out of Sight	G. Clooney
5	Thriller	The Peacemaker	G. Clooney
6	Action	Desperado	Q. Tarantino

G. Clooney \rightarrow Drama

support (G. Clooney \rightarrow Drama) = 2/6 = 0.33

confidence (G. Clooney \rightarrow Drama) = 2/5 = 0.4

G. Clooney $\xrightarrow{0.33;0.4}$ Drama

Alle CARs

- G. Clooney $\xrightarrow{0.33;0.4}$ Drama
- G. Clooney $\xrightarrow{0.17;0.2}$ Mystery
- G. Clooney $\xrightarrow{0.67;0.8}$ Thriller
- G. Clooney $\xrightarrow{0.33;0.4}$ Crime
- G. Clooney & M. Damon $\xrightarrow{0.17;0.5}$ Drama
- G. Clooney & M. Damon $\xrightarrow{0.33;1}$ Thriller
- G. Clooney & M. Damon $\xrightarrow{0.17;0.5}$ Crime
 - M. Damon $\xrightarrow{0.17;0.5}$ Drama
 - M. Damon $\xrightarrow{0.33;1}$ Thriller
 - M. Damon $\xrightarrow{0.17;0.5}$ Crime
 - Q. Tarantino $\xrightarrow{0.17;1}$ Action

Multi-class Klassifikator

CAR in Modell aufnehmen, falls:

$$\sigma \geq \sigma_{\min}$$
 und $\theta \geq \theta_{\min}$

■ Modell mit $\sigma_{min} = 0.2$ und $\theta_{min} = 0.4$

G. Clooney & M. Damon $\xrightarrow{0.33;1}$ Thriller

G. Clooney
$$\xrightarrow{0.67;0.8}$$
 Thriller

G. Clooney
$$\xrightarrow{0.33;0.4}$$
 Drama

G. Clooney
$$\xrightarrow{0.33;0.4}$$
 Crime

M. Damon
$$\xrightarrow{0.33;1}$$
 Thriller

Multi-class Klassifikator

Klassifiziere einem Film mit G. Clooney:

G. Clooney
$$\xrightarrow{0.67;0.8}$$
 Thriller $s(Thriller)=0,54$
G. Clooney $\xrightarrow{0.33;0.4}$ Drama $s(Drama)=0,13$
G. Clooney $\xrightarrow{0.33;0.4}$ Crime $s(Crime)=0,13$

Thriller oder Drama oder Crime?

Definiere Score-Funktion:

$$s(l_i) = \sum_{F \xrightarrow{\sigma,\theta} l_i \in M} \sigma \times \theta$$

F = Teilmenge von Testinstanz

Multi-label Klassifikator (IEAC)

- Unabhängiger Klassifizierer für jedes Label
- Definiere Wahrscheinlichkeits-Funktion:

$$f(l_i) = \frac{s(l_i)}{\max_l s(l)}$$

Weise Label l_i zu, falls $f(l_i) = \delta \ge \delta_{min}$

Beispiel: IEAC-small disjuncts

Trainingsdaten:

ID	Label	Title	Actors
1	Drama/Mystery	Solaris	G. Clooney
2	Drama/Thriller	Syriana	G. Clooney, M. Damon
3	Crime/Thriller	Ocean's Eleven	G. Clooney, M. Damon
4	Crime/Thriller	Out of Sight	G. Clooney
5	Thriller	The Peacemaker	G. Clooney
6	Action	Desperado	Q. Tarantino

Modell: $\sigma_{min} = 0.2$; $\theta_{min} = 0.67$; $\delta_{min} = 0.5$

G. Clooney & M. Damon 33;1 Thriller

G. Clooney 0.67;0.8 Thriller

M. Damon $\xrightarrow{0.33;1}$ Thriller

Testinstanz:

	7	?[Action]	From Tusk till Dawn	Q. Tarantino, M. Damon
--	---	-----------	---------------------	------------------------

→ Thriller

Starke Assoziation von Q. Tarantino zu Action (ID 6)!

Tarantino → Action ist ein "small disjunct"

Multi-label Klassifikator (ILAC)

- Modell abhängig von Instanz erzeugen
 - → benutze Instanz als Filter

Original-Trainingsdaten:

ID	Label	Title	Actors
1	Drama/Mystery	Solaris	G. Clooney
2	Drama/Thriller	Syriana	G. Clooney, M. Damon
3	Crime/Thriller	Ocean's Eleven	G. Clooney, M. Damon
4	Crime/Thriller	Out of Sight	G. Clooney
5	Thriller	The Peacemaker	G. Clooney
6	Action	Desperado	Q. Tarantino

Gefilterte Trainingsdaten:

ID	Label	Title	Actors
2	Drama/Thriller	Syriana	M. Damon
3	Crime/Thriller	Ocean's Eleven	M. Damon
6	Action	Desperado	Q. Tarantino

Testinstanz:

7	?[Action]	From Tusk till Dawn	Q. Tarantino, M. Damon
---	-----------	---------------------	------------------------

Beispiel: ILAC

Gefilterte Trainingsdaten:

ID	Label	Title	Actors
2	Drama/Thriller	Syriana	M. Damon
3	Crime/Thriller	Ocean's Eleven	M. Damon
6	Action	Desperado	Q. Tarantino

Testinstanz:

7	?[Action]	From Tusk till	Q. Tarantino,
L'	[Action]	Dawn	M. Damon

s(Thriller)=0,67; s(Action)=0,33

f(Thriller)=1; f(Action)=0,5

→ Thriller/Action

ILAC findet das "small disjunct"

Modell: $\sigma_{min} = 0.2$; $\theta_{min} = 0.67$; $\delta_{min} = 0.5$

M. Damon $\xrightarrow{0.67;1}$ Thriller

Q. Tarantino $\xrightarrow{0.33;1}$ Action

Beispiel: abhängige Label

Testinstanz:

8 ?[Thriller/Crime] Welcome to Collinwood G. Clooney

Gefilterte Trainingsdaten:

ID	Label	Title	Actors
1	Drama/Mystery	Solaris	G. Clooney
2	Drama/Thriller	Syriana	G. Clooney
3	Crime/Thriller	Ocean's Eleven	G. Clooney
4	Crime/Thriller	Out of Sight	G. Clooney
5	Thriller	The Peacemaker	G. Clooney

Modell: $\sigma_{min} = 0.2$; $\theta_{min} = 0.4$; $\delta_{min} = 0.5$

G. Clooney
$$\xrightarrow{0.8;0.8}$$
 Thriller

G. Clooney
$$\xrightarrow{0.4;0.4}$$
 Drama

G. Clooney
$$\xrightarrow{0.4;0.4}$$
 Crime

f(Thriller)=1; $f(Drama)=f(Crime)=0.25 \rightarrow Thriller$

Rang von Drama und Crime gleich bewertet

Abhängigkeiten zwischen Labels nicht aufgedeckt

Multi-label Klassifikator (CLAC)

- Zugewiesene Label als Feature benutzen
- Multi-label class association rule (MCAR)

Regel der Form: $F \cup L \xrightarrow{\sigma,\theta} l_i$ L=Menge von Labels ohne l_i

Progressive label focusing

- Heuristik zur Erforschung des Suchraums für MCARs
 - 1. Iteration:
 - Zu Beginn L=Ø
 - Modell M_1 mit Regeln der Form: $F \xrightarrow{\sigma,\theta} l_i$
 - Bestimme Label I₁
 - 2. Iteration:
 - L={I₁}
 - Modell M_2 mit Regeln der Form: $F \cup \{l_1\} \xrightarrow{\sigma,\theta} l_i$
 - Bestimme Label I₂
 - 3. Iteration:
 - $L = \{ I_1, I_2 \}$
 - Modell M_3 mit Regeln der Form: $F \cup \{l_1, l_2\} \xrightarrow{\sigma, \theta} l_i$
 - Bestimme Label I₃
 - ... bis keine MCARs mehr gebildet werden können

Beispiel: CLAC

Testinstanz:

8 ?[Thriller/Crime] Welcome to Collinwood G. Clooney

Gefilterte Trainingsdaten:

ID	Label	Title	Actors
1	Drama/Mystery	Solaris	G. Clooney
2	Drama/Thriller	Syriana	G. Clooney
3	Crime/Thriller	Ocean's Eleven	G. Clooney
4	Crime/Thriller	Out of Sight	G. Clooney
5	Thriller	The Peacemaker	G. Clooney

Modell: $\sigma_{min} = 0.2$; $\theta_{min} = 0.4$; $\delta_{min} = 0.5$

G. Clooney $\xrightarrow{0.8;0.8}$ Thriller

G. Clooney $\xrightarrow{0.4;0.4}$ Drama

G. Clooney $\xrightarrow{0.4;0.4}$ Crime

 $\rightarrow I_1$ =Thriller

Neue Testinstanz:

8 ?[Crime] Welcome to Collinwood G. Clooney ^ Thriller

Beispiel: CLAC

Testinstanz:

8	?[Crime]	Welcome to Collinwood	G. Clooney ^ Thriller
---	----------	-----------------------	-----------------------

Gefilterte Trainingsdaten:

ID	Label	Title	Actors		
2	Drama	Syriana	G. Clooney ^ Thriller		
3	Crime	Ocean's Eleven	G. Clooney ^ Thriller		
4	Crime	Out of Sight	G. Clooney ^ Thriller		

Modell:
$$\sigma_{min} = 0.2$$
; $\theta_{min} = 0.4$; $\delta_{min} = 0.5$

G. Clooney
$$\land$$
 Thriller $\xrightarrow{0.67;0.67}$ Crime

$$\rightarrow$$
 I_2 =Crime

Keine MCARs mehr → Thriller/Crime

Experimente und Ergebnisse

Datensätze:

Datensatz	Klassifizierungsart	# Instanzen	# Label	Features
ACM-DL (first level)	Toytklassifikation	01 251	11	Titel, Abstract,
ACM-DL (second level)	Textklassifikation	81.251	81	Zitierung, Autoren
YEAST	Genklassifikation	2.417	14	Mikroarray-Daten, Phylogenetisches Profil

Evaluationskriterien

- 10 x 10-fold cross-validation
- One-error (O)
 Relative Häufigkeit, dass Instanz dem echten Top-Label nicht zugeordnet wurde
- Hamming loss (H)
 Anteil falsch zugewiesener Labels
- Ranking loss (R)Anteil falsch geordneter Labelpaare

Ergebnisse

Ergebnisse für YEAST:

	BoosTexter	ADTBoost.MH	Rank-SVM	IEAC	ILAC	CLAC
О	0.278	0.244	0.217	0.232	0.213	0.213
Н	0.220	0.207	0.196	0.203	0.191	0.179
R	0.186	-	0.163	0.178	0.164	0.150

Ergebnisse für ACM-DL:

	First Level				Second Level			
	Rank-SVM	IEAC	ILAC	CLAC	Rank-SVM	IEAC	ILAC	CLAC
О	0.244	0.304	0.238	0.238	0.348	0.427	0.331	0.331
Н	0.225	0.295	0.222	0.187	0.327	0.419	0.319	0.285
R	0.194	0.276	0.216	0.179	0.299	0.378	0.294	0.273

Fazit

- Erhöhte Klassifizierungsgenauigkeit durch:
 - Behandlung von "small disjuncts"
 - Untersuchen von Abhängigkeiten zwischen Labels
- Beste Ergebnisse mit CLAC
 - CLAC scheint den bekannten Verfahren überlegen zu sein

Fragen?

Evaluationskriterien

- Ranking-Funktion $f:(X \times L) \to \mathbb{R}$ bzgl. $f(x,\cdot)$
 - → Ranking:

$$R = \{l_1, l_2, ..., l_n\} \text{ mit } f(x, l_1) \ge f(x, l_2) \ge ... \ge f(x, l_n)$$

■ Testmenge: $T = \langle (x_1, L_1), ..., (x_n, L_n) \rangle$ $L_i = \text{echte Labels für Testinstanz } x_i$

$$\operatorname{Sexp} r := \begin{cases} 1, \text{ falls expr wahr} \\ 0, \text{ sonst} \end{cases}$$

Evaluationskriterien

■ One-error (O) Multi-class Klassifikator: $C(x) = arg max_l f(x, l)$

$$O_T(C) = \frac{1}{n} \sum_{i=1}^{n} \{C(l_i) \notin L_i$$

Hamming loss (H)

$$H_{T}\left(f\right) = \frac{1}{|\mathbf{Y}|^{n}} \sum_{i=1}^{n} \sum_{j=1}^{|\mathbf{Y}|} \mathbf{G}_{j} \in f\left(x_{i}\right) \wedge l_{j} \notin L_{i} \mathbf{G} + \mathbf{G}_{j} \notin f\left(x_{i}\right) \wedge l_{j} \in L_{i} \mathbf{G}$$

Ranking loss (R)

$$R_{T}(f) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{|L_{i}||L-l_{i}|} \left| \left\{ (l_{0}, l_{1}) \in L_{i} \times (L-L_{i}) : f(x, l_{1}) \leq f(x, l_{0}) \right\} \right|$$