UNIVERSITY OF CALIFORNIA

College of Engineering

Department of Electrical Engineering and Computer Sciences

EE40 Frank Liao Summer 09

MIDTERM EXAMINATION #2 Time allotted: 100 minutes

NAME:			
(print)	Last	First	Student ID#

Days / Time

I acknowledge that the UC rules on academic honesty apply	
	Signature

INSTRUCTIONS:

LAB SECTION:

- 1. SHOW YOUR WORK. Partial credit will be given only if your methods are clear to the grader.
- 2. Clearly mark (BOX or UNDERLINE) your answers.
- 3. Specify the units on answers whenever appropriate. Points will be deducted for missing units.
- 4. Closed book, closed notes. You are allowed TWO 8.5" x 11" sheet of notes. Calculators are allowed.

PHYSICAL CONSTANTS

<u>Description</u>	<u>Symbol</u>	<u>Value</u>	PROPERTIES OF S	ILICON A	T 300K
Electronic charge	q	1.6×10 ⁻¹⁹ C	<u>Description</u>	Symbol	<u>Value</u>
Boltzmann's constant	k	$8.62 \times 10^{-5} \text{ eV/K}$	Intrinsic carrier concentration	$n_{\rm i}$	10^{10}cm^{-3}
Thermal voltage at 300K	$V_{\rm T} = kT/q$	0.026 V	Dielectric permittivity	$\mathcal{E}_{\mathrm{Si}}$	$1.0 \times 10^{-12} \text{ F/cm}$

SCORE:	1/ 10
	2/ 20
	3/30
	4/ 20
	5/ 20
TO	TAL:/ 100

Problem 1 [10 points]: Basic concepts and EE Technology

- a) True/False and Multiple Choice. Select only ONE choice. No credit will be given to multiple answers. [2 pts each]
- T F LCD stands for <u>Liquid Capacitance Display.</u>
- T F The MEMS accelerometer uses a differential capacitance to detect motion.
- T F If an RC circuit has a large time constant, τ , then it takes a long time for the capacitor in that circuit to charge and discharge.
- 4) What kind of filter is this?

- b) Highpass
- c) Bandpass
- d) Bandreject

- 5) What is v_1 , the voltage drop across C_1 ?
- a) 4 V
- b) 8 V
- c) -4 V
- d) -8 V

Problem 2 [20 points]: Phasor Analysis

In the circuit below, $v_{in}(t) = 2 \cos (0.1 t + 30^{\circ})$.

a.) What is $v_{out}(t)$ in cosine form? [10 pts]

b.) If $v_{out} / v_{in} = (20 + j2\omega) (40 + j\omega) / j10\omega$, sketch the bode plot of the magnitude of the transfer function, $\mathbf{H}(\omega)$. Label the axes appropriately, denoting critical angles, slopes and plateau values. [10 pts]

<u>Problem 3</u> [30 points]: First-Order Transients Consider the circuit below:

a.) Find the expression for $v_o(t)$ (piecewise expressions are acceptable) and plot $v_o(t)$ for 0 msec $\leq t \leq 10$ msec. Label the values of $v_o(0^+)$, $v_o(5^-)$, and $v_o(5^+)$. [20 pts]

Show your work below. (Space for your answer is on the next page)

Answer:

Expression for $v_o(t)$:

b.) Suppose we modify the circuit and apply a different input voltage.

On the axes below, plot for $v_C(t)$ and $v_o(t)$. Use the large signal model for the diode with a turn-on voltage, V_D =0.7 V. Label the following values: (1) the final voltage of v_C , (2) the time, t, when v_C reaches its final voltage, (3) the final voltage of v_o , and (4) the time, t, when v_o reaches its final voltage. [10 points]

Space for work:

Problem 4 [20 points]: Doping and Carrier Concentrations

Consider a Si sample maintained under thermal equilibrium conditions at T = 300K, doped with phosphorous at a concentration of 2×10^{16} cm⁻³.

a.) Is this material n-type or p-type? What are the majority and minority carrier concentrations? [4 pts]

b.) Suppose this sample is additionally doped with boron at a concentration of 10^{16} cm⁻³. How will the carrier concentrations change? [3 pts]

Write your answers here:

new majority concentration:

new minority carrier concentration:

c.) Find the resistivity of this sample (with the boron doping). [4 pts]

Problem 5 [20 points]: Diode Circuits

Consider the following diode circuit:

a.) Using the large-signal model, plot V_{out} as function of V_{in} of the circuit below. Remember, a diode about to turn on carries zero current but sustains V_D . For full credit, you must label all important points on the graph (e.g. slope or cross-over points).

b.) Suppose $R_1 = 2 \text{ k}\Omega$, $R_2 = 2 \text{ k}\Omega$, and $V_D = 0.7 \text{ V}$ and V_{in} is given by the waveform shown below. Plot V_{out} on the given axes.

