

دانشگاه صنعتی امیرکبیر دانشکده مهندسی کامپیوتر و فناوری اطلاعات

بهینهسازی و کاربرد آن در شبکههای کامپیوتری تمرین دوم

پرهام الوانی

۲۳ آذر ۱۳۹۶

۱ سوال اول

۱.۱ الف

این مجموعه یک مجموعه محدب نیست و برای نشان دادن این موضوع از مثال نقض استفاده میکنیم.

$$x_{1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$x_{2} = \begin{bmatrix} -8 \\ -2 \end{bmatrix}$$

$$\frac{1}{2} * x_{1} + \frac{1}{2} * x_{2}$$

$$= \begin{bmatrix} -4 \\ -1 \end{bmatrix} \notin A$$

$$(1.1)$$

۲.۱ ب

این مجموعه محدب است زیرا تابع:

$$\begin{cases} \lambda_1^3 & \lambda_1 \ge 2 \\ -\lambda_1 + 10 & \lambda_1 < 2 \end{cases}$$
 (Y.1)

یک تابع محدب بوده بنابراین مجموعه B که epi-graph این تابع میباشد یک مجموعه محدب خواهد بود. برای اثبات محدب بودن این تابع میتوان از hessian آن استفاده کرده که در تمام نقاط دامنه یک ماتریس PD میباشد.

۲ سوال دوم

١.٢ الف

یکی از راهها برای بررسی محدب بودن توابع بررسی ماتریس hessian آنها است. اگر این ماتریس یک ماتریس نیمه مثبت معین یا مثبت معین باشد تابع محدب بوده و در غیر این صورت محدب نخواهد بود.

$$\nabla^2 f = \begin{bmatrix} 0 & x_3 & x_2 \\ x_3 & 0 & x_1 \\ x_1 & x_2 & 0 \end{bmatrix}$$
 (1.Y)

برای بررسی مثبت معین بودن ماتریس فوق از تعریف استفاده کرده و خواهیم داشت:

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} 0 & x_3 & x_2 \\ x_3 & 0 & x_1 \\ x_1 & x_2 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$= 2x_3ab + 2x_2ac + 2x_1bc$$
(Y.Y)

اگر رابطهی فوق $x_1=x_2=x_3=1$ و $x_1=x_2=x_3=1$ حاصل منفی میگردد بی dessian پس ماتریس مثبت معین نیست و تابع محدب نمیباشد.

۲.۲ ب

یکی از راهها برای بررسی محدب بودن توابع بررسی ماتریس hessian آنها است. اگر این ماتریس یک ماتریس نیمه مثبت معین یا مثبت معین باشد تابع محدب بوده و در غیر این صورت محدب نخواهد بود.

$$\nabla^2 f = \begin{bmatrix} \frac{2}{x_1^3 x_2 x_3} & \frac{1}{x_1^2 x_2^2 x_3} & \frac{1}{x_1^2 x_2 x_3^2} \\ \frac{1}{x_1^2 x_2^2 x_3} & \frac{2}{x_1 x_2^3 x_3} & \frac{1}{x_1 x_2^2 x_3^2} \\ \frac{1}{x_1^2 x_2 x_2^2} & \frac{1}{x_1 x_2^2 x_2^2} & \frac{2}{x_1 x_2 x_3^2} \end{bmatrix}$$
 (٣.٢)

برای بررسی مثبت معین بودن ماتریس فوق از تعریف استفاده کرده و خواهیم داشت:

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} \frac{2}{x_1^3 x_2 x_3} & \frac{1}{x_1^2 x_2^2 x_3} & \frac{1}{x_1^2 x_2 x_3^2} \\ \frac{1}{x_1^2 x_2^2 x_3} & \frac{2}{x_1 x_2^3 x_3} & \frac{1}{x_1 x_2^2 x_3^2} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$= \frac{1}{x_1 x_2 x_3} (\frac{a}{x_1} + \frac{c}{x_3})^2 + \frac{1}{x_1 x_2 x_3} (\frac{a}{x_1} + \frac{b}{x_2})^2 + \frac{1}{x_1 x_2 x_3} (\frac{b}{x_2} + \frac{c}{x_3})^2$$

$$($$
F.Y $)$

عبارت فوق به صورت مجموع تعدادی مربع کامل با ضرایب مثبت نوشته شده است. بنابراین این عبارت همواره یک مقدار مثبت خواهد داشت و تابع محدب خواهد بود.

۳.۲ ج

این تابع محدب نیست و برای اثبات این موضوع از مثال نقض زیر استفاده میکنیم:

$$x_1 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, y_1 = 2^1 + 1^2 = 3$$

$$x_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, y_2 = 1^2 + 2^1 = 3$$

$$\frac{1}{2}x_1 + \frac{1}{2}x_2 = \begin{bmatrix} 1.5 \\ 1.5 \\ 1.5 \end{bmatrix}, f(\frac{1}{2}x_1 + \frac{1}{2}x_2) = 1.5^{1.5} + 1.5^{1.5} = 3.67$$

$$\frac{1}{2}f(x_1) + \frac{1}{2}f(x_2) = 3$$

$$f(\frac{1}{2}x_1 + \frac{1}{2}x_2) = 1.5^{1.5} + 1.5^{1.5} = 3.67 > \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2) = 3$$

$$L(x,\lambda)$$

$$= (x_1-6)^2+(x_2-4)^2 \ + \lambda_1(3-x_1)+\lambda_2(x_1+x_2-8)+\lambda_3(x_1-x_2)$$
 (1.17)

۴ سوال چهارم

۱.۴ الف

ام i پهنای باند اختصاصیافته به تقاضای iمیگذرد u,v میزان جریانی که از تقاضای iام از لینک $f_i(u,v)$

$$\max_{x} \quad \sum_{i=1}^{3} \log(x_i)$$

s.t.

$$\sum_{i=1}^{3} f_i(u, v) \le c(u, v), \forall (u, v) \in 1, 2, 3, 4, 5, 6, 7$$

$$\sum_{v} f_1 u, v - \sum_{v} f_1 v, u = \begin{cases} 0 & \forall u \in 2, 3, 4, 6, 7 \\ x_1 & u = 1 \\ -x_1 & u = 5 \end{cases}$$
 (1.4)

$$\sum_{v} f_2 u, v - \sum_{v} f_2 v, u = \begin{cases} 0 & \forall u \in 1, 3, 4, 5, 7 \\ x_2 & u = 2 \\ -x_2 & u = 6 \end{cases}$$

$$\sum_{v} f_{1}u, v - \sum_{v} f_{1}v, u = \begin{cases} 0 & \forall u \in 2, 3, 4, 6, 7 \\ x_{1} & u = 1 \\ -x_{1} & u = 5 \end{cases}$$

$$\sum_{v} f_{2}u, v - \sum_{v} f_{2}v, u = \begin{cases} 0 & \forall u \in 1, 3, 4, 5, 7 \\ x_{2} & u = 2 \\ -x_{2} & u = 6 \end{cases}$$

$$\sum_{v} f_{3}u, v - \sum_{v} f_{3}v, u = \begin{cases} 0 & \forall u \in 1, 2, 3, 5, 7 \\ x_{3} & u = 4 \\ -x_{3} & u = 6 \end{cases}$$