# Sprawozdanie 4

## Eksploracja danych

## Kacper Szmigielski, 282255 i Mateusz Wizner, 277508

## 2025-06-23

## Spis treści

| 1                                                                          | Zadanie 1 |                                                               |   |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------|-----------|---------------------------------------------------------------|---|--|--|--|--|--|--|--|
|                                                                            | 1.1       | a) Wybór i zapoznanie się z danymi                            | 2 |  |  |  |  |  |  |  |
| 2                                                                          | zada      | zadanie 2                                                     |   |  |  |  |  |  |  |  |
|                                                                            | 2.1       | a) Wybór i przygotowanie danych                               | 2 |  |  |  |  |  |  |  |
|                                                                            | 2.2       | b) Grupowanie i wizualizacja                                  | 3 |  |  |  |  |  |  |  |
|                                                                            |           | 2.2.1 Grupowanie za pomocą metody PAM                         | 3 |  |  |  |  |  |  |  |
|                                                                            |           | 2.2.2 Podział hierarchiczny                                   | 4 |  |  |  |  |  |  |  |
| 2.3 c) Ocena jakości grupowania. Wybór optymalnej liczby skupień i porówna |           |                                                               |   |  |  |  |  |  |  |  |
|                                                                            |           | metod                                                         | 4 |  |  |  |  |  |  |  |
|                                                                            |           | 2.3.1 Wskaźniki wewnętrzne                                    | 4 |  |  |  |  |  |  |  |
|                                                                            |           | 2.3.2 Wskaźniki zewnętrzne                                    | 5 |  |  |  |  |  |  |  |
|                                                                            | 2.4       | d) Interpretacja wyników grupowania – charakterystyki skupień | 6 |  |  |  |  |  |  |  |

#### 1 Zadanie 1

#### 1.1 a) Wybór i zapoznanie się z danymi

Opis zmiennych w zbiorze danych Wine

| Kolum | naNazwa zmiennej     | Opis                                                |  |  |  |  |
|-------|----------------------|-----------------------------------------------------|--|--|--|--|
| V1    | Alcohol              | Zawartość alkoholu (%)                              |  |  |  |  |
| V2    | Malic acid           | Zawartość kwasu jabłkowego (g/l)                    |  |  |  |  |
| V3    | Ash                  | Zawartość popiołu (g/l)                             |  |  |  |  |
| V4    | Alcalinity of ash    | Zasadowość popiołu (g/l)                            |  |  |  |  |
| V5    | Magnesium            | Zawartość magnezu (mg/l)                            |  |  |  |  |
| V6    | Total phenols        | Zawartość fenoli ogółem (g/l)                       |  |  |  |  |
| V7    | Flavanoids           | Zawartość flawonoidów (g/l)                         |  |  |  |  |
| V8    | Nonflavanoid phenols | Zawartość fenoli nienależących do flawonoidów (g/l) |  |  |  |  |
| V9    | Proanthocyanins      | Zawartość proantocyjaninów (g/l)                    |  |  |  |  |
| V10   | Color intensity      | Intensywność koloru (od 0 do 13)                    |  |  |  |  |
| V11   | Hue                  | Odcień barwy                                        |  |  |  |  |
| V12   | OD280/OD315 of       | Absorbancja przy długości fali 280 nm do 315 nm     |  |  |  |  |
|       | diluted wines        | (rozcieńczone wino)                                 |  |  |  |  |
| V13   | Proline              | Zawartość proliny (mg/l)                            |  |  |  |  |

#### 2 zadanie 2

#### 2.1 a) Wybór i przygotowanie danych

Do analizy skupień wykorzystano zbiór danych **Glass Identification**, zawierający informacje chemiczne na temat różnych rodzajów szkła. Celem analizy jest identyfikacja naturalnych skupień w danych na podstawie składu chemicznego próbek, bez użycia etykiet klas. Zbiór ten jest często wykorzystywany w badaniach klasyfikacyjnych i klasteryzacyjnych jako benchmark

Pełny zbiór zawiera **214 próbek szkła** oraz **9 zmiennych numerycznych**, opisujących zawartość chemicznych pierwiastków (m.in. Na, Mg, Al, Si, Ca). Dodatkowo zawiera zmienną Type, określającą rzeczywisty typ szkła (klasa 1–7).

Zmienna Type zawiera informację o rodzaju szkła i pełni rolę etykiety klasowej. Ponieważ celem analizy skupień jest znalezienie naturalnych grup bez nadzoru (tzn. bez znajomości klas), zmienna ta została usunięta przed procesem grupowania.

Wartości cech w zbiorze różnią się skalą – np. zawartość sodu (Na) czy wapnia (Ca) występuje w innych zakresach niż zawartość żelaza (Fe) czy baru (Ba). Aby zapobiec dominacji zmiennych o większym rozrzucie w macierzy odległości zmienne zostały ustandaryzowane.

#### 2.2 b) Grupowanie i wizualizacja

#### 2.2.1 Grupowanie za pomocą metody PAM





Na podstawie analizy wykresu można stwierdzić, że uzyskane skupienia wykazują **umiarkowany poziom separacji** – **najlepiej odseparowany jest klaster nr 6**, natomiast pozostałe częściowo się nakładają. Sugeruje to, że niektóre obserwacje mogą być trudne do jednoznacznego przypisania do jednej grupy.

Pomimo częściowego pokrywania się skupień, wykazują one **dobrą zwartość** – obiekty należące do tego samego klastra są do siebie **stosunkowo podobne**, co świadczy o spójności wewnętrznej grup.

Z drugiej strony, zaobserwowano **niską jednorodność klas pod względem etykiet rzeczywistych** – obiekty należące do różnych klas (oznaczone różnymi kolorami) **mieszają się wewnątrz tych samych skupień**. Szczególnie wyraźne jest to w przypadku **niebieskiej**, **zielonej i czerwonej**.

- ## Direct agreement: 1 of 6 pairs
- ## Iterations for permutation matching: 120
- ## Cases in matched pairs: 42.06 %
- ## Dokładność przypisania klastrów do klas: 42.06 %

W wyniku analizy zgodności przypisań klastrów do klas rzeczywistych, obliczono tzw. wskaźnik zgodności (purity). Niestety, uzyskana wartość wyniosła jedynie 42.06%, co należy uznać za niski poziom dopasowania.

Taki wynik wskazuje, że grupowanie metodą PAM nie odzwierciedla w sposób satysfak-

cjonujący rzeczywistej struktury klas w danych. **Zastosowanie tego rodzaju podejścia klasteryzacyjnego** do zbioru *Glass* **nie jest w tym przypadku uzasadnione**, ponieważ prowadzi do znacznego nakładania się klas i nie pozwala na ich skuteczne rozróżnienie.

#### 2.2.2 Podział hierarchiczny



W przypadku metody **single linkage** zaobserwowano wystąpienie tzw. **efektu łańcuchowego** (*chaining effect*). Zjawisko to polega na tym, że kolejne obserwacje są stopniowo dołączane do jednego dużego skupienia na podstawie minimalnych odległości między pojedynczymi punktami, co prowadzi do **tworzenia wydłużonych, sztucznie połączonych struktur**, zamiast wyraźnych, zwartych klastrów.

Przyczyną wystąpienia tego efektu w analizowanych danych jest duży rozrzut obserwacji oraz obecność wartości odstających. Te same czynniki wpłynęły również negatywnie (leczw o wiele mniejszym stopniu) na wyniki uzyskane za pomocą metody average linkage, w której efekt łańcuchowy również jest widoczny, choć w nieco łagodniejszej formie.

W przypadku metody **complete linkage**, zjawisko łańcuchowe **również występuje**, jednak jego **intensywność jest znacząco mniejsza**. Klastery są **bardziej zwarte i lepiej odseparowane**, co przekłada się na **większą równowagę w podziale danych** oraz **lepszą zgodność z rzeczywistym podziałem klas**.

# 2.3 c) Ocena jakości grupowania. Wybór optymalnej liczby skupień i porównanie metod.

#### 2.3.1 Wskaźniki wewnętrzne

W celu dokładniejszego porównania działania poszczególnych algorytmów, ocena została przeprowadzona na oryginalnych (niestandaryzowanych) danych.





Pomimo że zbiór danych Glass zawiera aż 6 rzeczywistych klas, najwyższa średnia wartość współczynnika silhouette została uzyskana dla podziału na 2 klastry. Wskazuje to, że dane te posiadają wyraźniejszą, dwugrupową strukturę wewnętrzną, niezależną od etykiet klas przypisanych z góry. Współczynnik silhouette mierzy spójność wewnętrzną klastrów oraz ich separację względem siebie, dlatego może preferować mniejszą liczbę skupień, jeśli podział taki lepiej odzwierciedla naturalne różnice między obserwacjami.

#### 2.3.2 Wskaźniki zewnętrzne

Funkcja matchClasses() (z pakietu e1071) zakłada, że liczba klastrów w obu porównywanych partycjach (czyli przewidywanych i rzeczywistych etykietach) jest taka sama.

Dlatego pomimo uzyskania najlepszego współczynnika sillhouse dla 2 klastróq, wskaźniki zewnętrzne będziemy porównywać dla 7 klastrów

```
## Direct agreement: 0 of 6 pairs
```

## Iterations for permutation matching: 720

## Cases in matched pairs: 37.85 %

## Direct agreement: 1 of 6 pairs

## Iterations for permutation matching: 120

## Cases in matched pairs: 36.45 %

## Direct agreement: 1 of 6 pairs

## Iterations for permutation matching: 120

## Cases in matched pairs: 40.65 %

## Direct agreement: 1 of 6 pairs

## Iterations for permutation matching: 120

## Cases in matched pairs: 42.06 %

# 2.4 d) Interpretacja wyników grupowania – charakterystyki skupień

Na podstawie przeprowadzonych analiz, takich jak **współczynnik silhouette** oraz **do-kładność dopasowania**, ustalono, że optymalna liczba skupień wynosi **K=2**. Aby lepiej zrozumieć charakterystykę poszczególnych skupień, przeprowadzono porównanie **średnich wartości cech** oraz analizę ich rozkładów za pomocą **wykresów pudełkowych** dla wybranych zmiennych.

Tabela 2: Średnie wartości cech w skupieniach

| Cluster | RI   | Na    | Mg   | Al   | Si    | K    | Ca    | Ba   | Fe   |
|---------|------|-------|------|------|-------|------|-------|------|------|
| 1       | 1.52 | 13.43 | 2.74 | 1.43 | 72.70 | 0.44 | 8.92  | 0.16 | 0.06 |
| 2       | 1.52 | 12.26 | 0.00 | 2.29 | 70.29 | 3.28 | 10.85 | 0.79 | 0.13 |













#### ## numeric(0)

Jak pokazują **boxploty** oraz **tabela średnich wartości** (na danych bez standaryzacji, dla zachowania ich interpretowalności), **największe różnice między klastrami** dotyczą zmiennych **Ba (bar)** oraz **Mg (magnez)**. W szczególności w **klastrze 1** wartości obu

tych cech są wyraźnie wyższe, przy czym dla  $\mathbf{M}\mathbf{g}$  obserwuje się również istotne **wartości** odstające.

Co ciekawe, **mediana Ba** w **klastrze 2** przewyższa tę z klastra 1, co prowadzi do **prawie idealnej separacji grup** w wymiarze tej zmiennej. Sugeruje to, że **Ba i Mg są kluczowymi czynnikami różnicującymi strukturę klastrów**.

Zbliżone różnice obserwujemy również dla zmiennych K, Ri i Al, gdzie klaster 2 cechuje się wyższymi wartościami średnimi.

Taki rozkład jest spójny z oczekiwaniami – w kontekście klasyfikacji typu szkła, **zawartość baru i magnezu** to jedne z najistotniejszych parametrów różnicujących próbki, co potwierdzają zarówno analizy statystyczne, jak i wizualne.

Dodatkowo warto przyjrzeć się **medoidom** wyłonionym metodą **PAM** (**Partitioning Around Medoids**), by zrozumieć, które obserwacje najlepiej reprezentują klastry oraz jakie cechy je wyróżniają na tle pozostałych. Pozwoli to lepiej uchwycić **typowe profile obserwacji** w każdej z grup.

Tabela 3: Analiza meoidów dla metody PAM

|     | RI      | Na    | Mg   | Al   | Si    | K    | Ca   | Ba   | Fe |
|-----|---------|-------|------|------|-------|------|------|------|----|
| 36  | 1.51567 | 13.29 | 3.45 | 1.21 | 72.74 | 0.56 | 8.57 | 0.00 | 0  |
| 212 | 1.52065 | 14.36 | 0.00 | 2.02 | 73.42 | 0.00 | 8.44 | 1.64 | 0  |

Medoid pierwszego skupienia (rekord nr 36) charakteryzuje się wyraźnie podwyższonymi stężeniami magnezu i potasu, przy jednoczesnym obniżeniu poziomów baru i glinu. Natomiast medoid drugiego skupienia wykazuje odwrotną tendencję – wartości magnezu i potasu są niższe, natomiast stężenia baru i glinu wyższe, przy zachowaniu porównywalnych poziomów pozostałych pierwiastków.

Warto podkreślić, że średnie stężenie żelaza (Fe) w obu medoidach wynosi 0. Wskazuje to, że pierwiastek ten najprawdopodobniej występuje jedynie w śladowych ilościach. Nieliczne wyższe wartości można uznać za obserwacje odstające lub wynikające z przypadkowego zanieczyszczenia próbek.