FPGA2024

PROJEKT CÍME: Led Strip Control

HALLGATÓ NEVE: Gyöngyösi Róbert

SZAK: Távközlés IV.

PROJEKT LEAÁDSÁNAK IDŐPONTJA: 2025.01.07 3:00

A) Projekt célja

A projekt célja egy LED szalag vezérlő megvalósítása FPGA segítségével, amely biztosítja az RGB LED-ek színének és intenzitásának dinamikus beállítását a megfelelő időzítések betartásával. A vezérlő támogatja az animációkat, az adatok pontos továbbítását, és egyedileg vezérelhető LED-eket valósít meg, követve a WS2813 protokoll előírásait.

Az FPGA alapú megoldás lehetővé teszi a nagy pontosságú időzítést és a párhuzamos vezérlési logikát, amely szükséges a Worldsemi HC-F5V-90L-90LED-B-WS2813 IP20 LED szalag megfelelő működtetéséhez. A vezérlés a Digilent Nexys A7 100T fejlesztőlap segítségével került implementálásra, amely biztosítja a szükséges erőforrásokat és interfészeket a projekt számára.

Célrendszer jellemzői:

- Hardver alap: Digilent Nexys A7 100T FPGA fejlesztőlap.
- Kimeneti eszköz: Worldsemi HC-F5V-90L-90LED-B-WS2813 IP20 LED szalag (90 LED-es RGB szalag).
- Kommunikációs protokoll: WS2813, amely precíz időzítést és redundáns adatvonalat biztosít.

B) Követelmények

a. Funkcionális követelmények

Adatkommunikáció LED szalaggal

A vezérlőnek kompatibilisnek kell lennie a WS2813 protokollal, amely a LED-ek vezérlését időzített jeleken keresztül valósítja meg. Az FPGA vezérlő biztosítja, hogy az adatokat megfelelően továbbítsa a szalagon található 90 RGB LED számára.

LED szalag színek és fényerő vezérlése

A vezérlő támogatja egy 24 bites színkód (8 bit vörös, 8 bit zöld, 8 bit kék) továbbítását az egyes LED-ekhez, és lehetőséget nyújt a színek egyedi beállítására.

Animációs lehetőségek támogatása

A vezérlő képes egyszerűbb animációk futtatására, például:

- · Színek folyamatos görgetése (rainbow effect).
- Pulzálás vagy színváltás előre definiált minták szerint.

Állapotvezérlés

A rendszer különböző állapotokban működik

Adatok ciklikus frissítése

A vezérlő támogatja az adatok folyamatos frissítését valós idejű működés érdekében, biztosítva az animációk és színváltások folytonosságát.

b. Nem funkcionális követelmények

Pontosság

Az FPGA vezérlőnek biztosítania kell az időzítések precíz betartását a WS2813 protokoll követelményei szerint:

- T0H: Logikai 0 magas szintű időtartama (220–380 ns).
- T0L: Logikai 0 alacsony szintű időtartama (580–1600 ns).
- T1H: Logikai 1 magas szintű időtartama (580–1600 ns).
- T1L: Logikai 1 alacsony szintű időtartama (220–420 ns).

Teljesítmény

A vezérlőnek biztosítania kell az adatok időben történő továbbítását a teljes szalag számára, lehetővé téve a valós idejű működést, legalább 30 FPS frissítési sebességgel.

Megbízhatóság

A vezérlőnek garantálnia kell az adatok hibamentes továbbítását a LED szalagra, a protokoll által megkövetelt redundáns vonal (backup data line) kihasználásával, amely a WS2813 szalag egyik jellemzője.

Fejleszthetőség és bővíthetőség

A vezérlő rendszert modulárisan kell megtervezni, hogy lehetővé tegye a bővítést több LED vezérlésére vagy összetettebb animációk implementálására.

Hardver kompatibilitás

A rendszer kompatibilis kell, hogy legyen a Digilent Nexys A7 100T FPGA fejlesztőlappal, amelynek erőforrásai (pl. 100 000 logikai cella) biztosítják a vezérlő logika implementálását.

Energiahatékonyság

A vezérlő áramkörének optimalizáltnak kell lennie az alacsony energiafogyasztás érdekében, különösen nagyobb számú LED vezérlése esetén.

Időzítési követelmények ábrája:

Logikai 0 (T0):

Logikai 1 (T1):

- 0: T0H = 220-380 ns, T0L = 580-1600 ns
- 1: T1H = 580-1600 ns, T1L = 220-420 ns

C) Tervezés

Főkomponensek

Bemenetek:

- clk: Órajel.
- reset: Reset jel.
- start: Indítási jel.
- data_in: 24 bites bemeneti adat.

Kimenet:

• pulse_out: Kimeneti impulzus.

Főmodulok:

- Állapotgép (state machine): A vezérlési logikát valósítja meg.
- Számlálók: Az időzítések kezelésére szolgálnak.
- Bit indexelés (bit_index): A bejövő adat bitjeinek feldolgozásához.
- LED vezérlő (led_out): A LED szalag vezérléséhez szükséges jelek előállítása.

Állapotgép

Az állapotgép az alábbi állapotokat tartalmazza:

- IDLE: Várakozás a start jelre.
- INIT: A változók inicializálása.
- PROCESSING: Az adatfeldolgozás elkezdése.
- T0H_STATE, T0H_DONE, T0L_STATE, T0L_DONE: Logikai 0 jel generálása.
- T1H_STATE, T1H_DONE, T1L_STATE, T1L_DONE: Logikai 1 jel generálása.
- BIT_CHECK_STATE: Ellenőrzés, hogy minden bit ki lett-e küldve.
- DONE: Az adatküldés vége, visszatérés az IDLE állapotba.

Funkcionális blokkok

- Adatfeldolgozás: A data in bemeneti adat bitenkénti feldolgozása.
- Időzítések kezelése: Számlálók segítségével az egyes impulzusok időzítésének biztosítása.
- Kimeneti vezérlés: A pulse out jel generálása az állapotgép és időzítések alapján.

D) Tervezés lépései

1) LED szallag működésének megértése:

• **Megj.:** A LED szallag több kisebb egységből épül fel, minden egységet egy IC vezérel meg, amely ha a bemeneten(DI) adatot kapva megvilágítja az adott számú LED-et a 24 bites adat szerint, majd ha újabb adatot

kap a bemenetén(DI), akkor az előbbi adatot továbbítja a kimenetén(DO) az utánna következő, sorba kötött LED egységre.

2) Állapotgép tervezése:

• Az állapot logika megrajzolása

- Megj.: A rajz az iniciális elképzelést ábrázolja.
- Állapotlogika javítása

- Megj.: A rajz a végleges logikát szemlélteti.
 - 3) Művelet automaták:

Állapot automata:

• Megj.: Ez az automata felelős a megfelelő állapot kiválasztásáért.

Számláló automata:

• Megj.: Ez az automata az időzítésért felelős, hogy a jelek pontosan generálodjanak.

LED impulzus automata:

• Megj.: Ez az automata felel a kimeneten való helyes impulzus kiküldéséről.

Bit index automata:

 Megj.: Ez az automata végzi el az indexelést, hogy a 24 bites adatot fel lehessen dolgozni eggyessével, bittenként.

4) Fázisműveletek:

current_state	start	reset	counter_next	: led_out_next	bit_index_next
IDLE	0	1	0	0	0
INIT	1	0	0	led_out	bit_index
PROCESSING	1	0	1	led_out	bit_index
TOH_STATE	1	0	counter+1	0	bit_index
TOH_DONE	1	0	0	led_out	bit_index
TOL_STATE	1	0	counter+1	0	bit_index
TOL_DONE	1	0	0	led_out	bit_index
T1H_STATE	1	0	counter+1	0	bit_index
T1H_DONE	1	0	0	led_out	bit_index
T1L_STATE	1	0	counter+1	1	bit_index
T1L_DONE	1	0	0	led_out	bit_index
BIT_CHECK_STATE	Ξ1	0	0	led_out	bit_index-1
DONE	1	0	0	led_out	0

E) Tesztelés:

VHDL Test Bench kód:

Lépések:

- **Reset aktíválása néhány órajelig **
- **A kiküldendő adat beolvasása **
- **Start aktíválása amíg a folyamat befejeződik és minden adat kiküldésre kerül **

```
-- Tesztelési folyamat
stim proc: process
begin
    -- Reset állapot
   reset <= '1';
   wait for clk_period;
    reset <= '0';
    -- Adat küldése és start jel generálása
   wait for clk_period;
   data in <= "101010101010101010101010";
   wait for clk_period;
   start <= '1';
   wait for clk_period * 5;
    start <= '0';
    -- Várakozás a folyamat befejezésére
    wait for clk_period * 100;
    wait;
end process;
```

• Megj.: Az adott kódrészlet a rendszer szimulációját teszi lehetővé.

Üzembe helyezés:

Hardver követelmények

- FPGA fejlesztőpanel (Digilent Nexys A7 100T).
- Programozó kábel az FPGA konfigurálásához.
- 5V-os LED szalag (pl. WS2812 vagy kompatibilis).
- · Tápellátás a LED szalaghoz.
- Ellenállás (330–470 Ω) a LED szalag adatvonalának védelmére (opcionális, de ajánlott).
- Kondenzátor (1000 μF, 6.3V vagy nagyobb) a LED szalag tápvonalának stabilizálására (opcionális, de ajánlott).

Szoftver követelmények

FPGA fejlesztőeszköz (Vivado).

Kód letöltése és fordítása

- 1. Nyisd meg az FPGA fejlesztőeszközt (Vivado).
- 2. Töltsd be a VHDL projektet.

- 3. Fordítsd le a projektet a céleszközre optimalizálva.
- 4. Töltsd fel a generált bitfájlt az FPGA-ra a programozó kábellel.

LED szalag csatlakoztatása

1. Adatvonal csatlakoztatása:

Kösd a LED szalag adat bemenetét (DIN) az FPGA megfelelő GPIO kimenetére, amelyhez a pulse_out jel van rendelve.

 Tápellátás: Kösd a LED szalag VCC és GND pontjait megfelelő feszültségforráshoz. (Opcionális) Használj 1000 μF kondenzátort a stabilizálás érdekében.

3. (Opcionális) Védelmi komponensek:

Illessz be egy 330–470 Ω -os ellenállást a GPIO kimenet és a LED szalag adatbemenete közé.

Rendszer indítása

1. Resetelés:

Indításkor állítsd reset bemenetre az 1 értéket a start kapcsoló melletti kapcsoló segítségével néhány órajelciklusig, majd vissza 0 értéket.

2. Start jel:

Állítsd a start bemeneti jelet 1-re az adatküldés elindításához a kapcsoló 1-es pozicióba tételével.

3. Adatok betöltése:

Töltsd be a data_in bemenetbe a 24 bites színt adatként, RGB formátumban (pl. data_in => "11111111111111111111" a fehér színhez).

4. Figyeld a pulse_out jelet:

Ez jelzi az FPGA által generált időzítéseket a LED szalag számára.

További megjegyzések

- Ha nagyobb LED szalagot használsz, ügyelj a tápellátás megfelelő méretezésére.
- Szükség esetén bővítsd a vezérlő logikát, hogy több LED-et is kezeljen sorosan.
- Ezzel a lépéssorozattal a LED Strip Controller működése üzembe helyezhető és ellenőrizhető.

Bibliográfia:

Brassai Sándor Tihamér: Újrakonfigurálható digitális áramkörök tervezési és tesztelési módszerei

Link (https://real.mtak.hu/122602/1/Brassai%20Tihamer UKDA REAL.pdf)

Digilent Nexys A7 100T

<u>Link (https://digilent.com/reference/programmable-logic/nexys-a7/reference-manual?</u> <u>srsltid=AfmBOopPYkZFi67oxJ9jNAWAI1rlxKJ0XegoVE1j3H7AwfHHe00-izdG)</u>

Worldsemi LED

<u>Link (https://www.tme.eu/ro/details/hcbaa90b/surse-de-lumina-benzi-cu-led-uri/worldsemi/hc-f5v-90l-90led-b-ws2813-ip20/)</u>