topologia lista 4

karolochmanmilarski

1 zadanie 13

Możemy założyć, że $T \subseteq [0,1]$. Ile jest par (q, P) - liczby wymiernej q i przedziału o końcach wymiernych P? Q^3 , bo wybieramy liczbe q i dwie liczby na końce przedziału P. Ile jest krotek n takich par? - Q^{3n} . A zbiorów n takich par może być tylko mniej, wiec też jest ich przeliczalnie wiele. Czyli n-elementowych zbiorów takich par jest przeliczalnie wiele, wiec rodzina zbiorów par (liczba wymierna, przedział wymierny) jest przeliczalna, bo jest to przeliczalna rodzina zbiorów przeliczalnych (dla każdej n jest przeliczalnie wiele zbiorów). Z tej rodziny weźmy podzbiór, tych zbiorów przedziałów, w których przedziały sa ze soba rozłaczne. Oznaczmy $\mathcal A$ - czyli to jest zbiór skończonych zbiorów par (liczba, przedział). Z tego zróbny zbiór funkcji $F z [0,1]^T$ w wiadomy sposób - dla każdego zbioru $A \in \mathcal{A}$ niech w F bedzie funkcja f taka, że wartość f na przedziałach z A bedzie równa odpowiadajacym liczbom wymiernym, a poza nimi niech bedzie równa np. 0. Dokładniej, jeśli $A = \{(q_1, P_1), (q_2, P_2), ..., (q_n, P_n)\}$ to f(x) = 0, jeśli x nie należy do żadnego z $P_1, ..., P_n$ i $f(x) = q_k$, jeśli x należy do P_k (przypomnienie: zbiory P_k sa rozłaczne). F jest przeliczalny i w każdym elemencie bazy w $[0,1]^T$ jest jakiś element z F, czyli domkniecie F to cały zbiór, czyli F jest gesty, a przestrzeń jest ośrodkowa. Sprawdźmy. Zbiory bazowe w $[0,1]^T$ to zbiory zawierające wszystkie funkcje h takie, że $h(x_1) \in U_1 \wedge h(x_2) \in U_2 \wedge ... \wedge h(x_n) \in U_n$ dla ustalonych skończenie wielu $x_k \in [0,1]$ i $U_k \subseteq [0,1]$ otwartych. No to weźmy taki zbiór bazowy. W każdym zbiorze U_k jest jakaś liczba wymierna q_k i każdy punkt x_k możemy otoczyć jakimś przedziałem wymiernym P_k do tego tak, żeby te przedziały były rozłaczne. A w zbiorze F jest funkcja, która przyjmuje wartość q_k właśnie na przedziale P_k , czyli w szczególności dla x_k . Czyli ta funkcja jest w danym zbiorze bazowym.