

Space Technology-5 Lithium-Ion Battery Design, Qualification and Integration and Testing

Gopalakishna M. Rao, Karen Stewart, Syed Ameen¹, and Peter K. Banfield² NASA Goddard Space Flight Center Greenbelt, Maryland 20771

¹Muniz Engineering Inc., Greenbelt, Maryland 20771 ²Capitol College, Laurel, Maryland 20708

Contents

- Background
- Battery Description
- Testing
- Qualification (Environmental)/Acceptance
- Integration and Testing
- Conclusions

Mission Overview

- ST-5 is a New Technology Mission to further investigation of Space Weather and validation of new technologies
- coatings, ultra low power logic, miniature transponder, autonomous - Lithium-Ion battery, cold gas micro-thruster, variable emittance ground system software
- Scheduled to launch in February 2006 from Vandenberg
- Polar elliptical, Sun synchronous orbit
- Octagonal spinning satellite
- 3 satellite constellation
- Use of triple junction GaAs solar cells at 28% efficiency
- 8.4 V (low voltage compared to nominal 28 V) power bus

Battery Specific Requirements

Battery Voltage Limits:

- Maximum End-of-Charge Voltage 8.4 V

- Minimum End-of-Discharge Voltage 6.0 V

Battery Capacity (C): 7.5 Ah

Battery Energy: 54 Wh

Minimum Voltage after Peak Load: 6.0 V

Battery Self Discharge: <=8% per month

Charge retention after 72 hrs of open circuit > 98% x C

Charge Management:

- Constant current charge (C/5) to voltage clamp at the battery level

Charge Capability: Max charge 1C

Impedance: 90 mΩ

Mission Specific Requirements

- Polar elliptical orbit, sun synchronous

- 2.27 hrs Orbit (seasonal eclipses up to 22 minutes)

Mission Phases:

- Storage: 3 Years

- Ground Test: 100 cycles

- Mission Life: 3 months requirement with a goal of 6 months

Thermal: -10 to 40°C

Charge / Discharge

- Ground: 3 years, 100 cycles @ 100% DoD

- Flight: (Approximately six months) 400 cycles @ 60% DoD

Max. Discharge load: 12 W

Discharge Capability: 12 W for 22 mins and 14 W for 15 mins during eclipse season

Battery Description

- AEA Technology plc. assembled battery using twelve individual SONY 18650 1.5 Ah cells
- Arranged in a S-P system topology
- 6 parallel strings, each containing 2 cells in series
- 2 cells in series string provide battery voltage (6 to 8.4 V)
- 6 parallel strings provide 7.5 Ah capacity when discharged at 3.75 A to 6 V at 20°C
- Four thermistors for temperature telemetry
- 3 on different cell locations, 1 on baseplate
- One multi-pin connector
- To combine power and signal, and to save mass

Battery Mechanical Design

- Fray assembly using two sheets of Glass Fiber Reinforced Plastic
- Isotropic high strength, electrical solator & low density material
- Cells are bonded into counter bored holes using REDUX adhesive
- Provides a structure that is highly Shear rigidity provided by cross rigid, high bending resistance
- Mechanical interface through lower GFRP tray and 4 titanium feet

bracing using thin aluminium sheet

Dimensions: 12.4 cm x 6.3 cm x 8.6 cm Mass: 0.643 Kg

Battery Mechanical Design, continued

- Cells reversed in orientation to make string using nickel shim tab
- Interconnects between cells preformed (provides stress relief)
- Four separate spot welds using robotic spot welder.
- Wiring brought through holes in upper tray and assembled into
- Electrical connector attached to upper tray using heli-coiled threaded holes

Battery Assembly Photos

Battery Materials

- Cells: Nickel Plated Steel
- Top / bottom plates: Glass Fiber Reinforced Plastic (GFRP)
- Side / end plates: Aluminum Alloy
- Mounting bush: Titanium
- Tags & Bonding Strips: Nickel
- 26 pin Connector: ITT Cannon (GFE)
- Thermistors: Yellow Stone International (GFE)
- Fasteners: M3 M2.5 Stainless Steel
- Adhesive: Redux

Battery Materials, continued

- validated/qualified by AEA Technology on space missions All battery parts, materials and processes have been such as PROBA, STRV, MARS Express, Beagle.
- Fotal Mass Loss < 1.0%, Collectable Volatile Condensed Materials < 0.1%, generally specified for space battery Most of the materials meet the outgassing requirement hardware.
- Nonmagnetic materials will be used for all components with the exception of the SONY cell cases which are nickel plated steel.
- All EEE parts supplied to AEA from GSFC.

Testing - Qualification/Acceptance

Identical flow of tests for both Qualification & Acceptance program, testing at appropriate levels.

Testing - Qualification/Acceptance Data

	Physical & F	Physical & Functional Test	
Mass		9.0	0.643 Kg
Dimension: L $x \mathbf{W} x \mathbf{H}$ (cm)	H (cm)	12.35 x (12.35 x 6.26 x 8.55
Battery Voltage (0%SoC)	SoC)	5.	5.92V
Electrolyte Leak Check	ck	No	No leak
Isolation) <i>I</i> <	$> 100M\Omega$
Bonding		< 9.51	< 9.5 m D max.
Thermistor Resistance	je.		
TH01	TH02	TH03	TH04
2.50 K\Q	2.50 K.Q	2.49 K\O	2.50 K\O

	Capacity Measurement	easurement		
AEA SCM (C/10 Discharge)	harge)	8		
SCM #1	SCM #2	1 #2	SCM #3	
(Pre-Vibration)	(Post-Vibration)	bration)	(Post-Charge Retention)	tention)
8.56 Ah	8.48 Ah	Ah	8.32 Ah	
GSFC SCM (C/2 Discharge)	harge)			
1 st 20°C	-10°C	40°C	2 nd 20°C	0° C
7.67 Ah	6.68 Ah	7.81 Ah	7.60 Ah	Ah

Axis Resonance Peak Grms Q Factor X 974 Hz 33.8 g 10.9 Y 1034 Hz 27.6 g 6.4 Z > 2000 Hz 14.2 g 1.2		Vibrati	Vibration Test	
33.8 g 27.6 g 14.2 g	Axis	Resonance	Peak Grms	Q Factor
27.6g 14.2g	X	974 Hz	33.88	10.9
	Y	1034 Hz	27.6g	6.4
	Z	> 2000 Hz	14.28	1.2

Testing - Battery Qualification/Acceptance Data - contd. GSF

VT <	
54 5	K0D V
	VT <

	Thermal V	Thermal Vacuum Test	
Tool Carola Toot			
I nermai Cycie I cat		3	
No. of Thermal Cycles	S	40°C	
Max. Temperature		0,01	
Min. Temperature			
Performance Cycle Test	est		
No of Darformance Cycles	Cycles	3	
140.0110101		EoDV (12W for 60 min)	
Temperature	Cycle 1		Cycle 3
JOOK	8.07 V	8.08 V	8.08 V
100	7.86 V	7.85 V	7.84 V
Besidual Cas Analyzer (RGA) Monitor (leak check)	er (RGA) Monitor (
Mass Number Range		11	
Mass ramines		No	
Electrolyte I race			

Testing - Qualification (Environmental)

- Ign Pilerbud brat)

1000

ern Frank

Bestreuer (B1)

Integration and Testing

- Comprehensive Performance Check
- Temperature Performance

Integration and Testing- Comprehensive ask

Performance Check

- Wiring verification and voltage measurements
- Capacity check
- Mission orbit cycles with typical loads (Room Temp).
- Magnetics Testing
- I&T batteries used on spacecraft through environmental testing
- Flight batteries integrated just prior to launch

Integration and Testing-Temperature

Performance

- To meet the peak load demand
- Small solar ray area restricted by spacecraft size constraint
- Temperature excursion between -10 to 20°C
- Determine the available capacity at the lower temperature and between the temperature excursion
- Capacity
- 1.5 A charge rate, with 8.4 V clamp and less than 100 mA taper current
- 1.5 A discharge rate, down to 6 V
- Develop an in-orbit Charge Management and Mission Planning

Integration and Testing-Temperature Performance - data

Battery Capacity

Charge and Discharge Cycles

ntegration and Testing-Temperature Performance - data

Conclusions

- AEA Technology plc. Built, Qualification/Acceptance Tested and Delivered six (6) ST-5 batteries to GSFC
- Integration and Testing progressing toward the scheduled February 2006 launch
- As expected nominal performance at 20°C and above, and lower capacity below 20°C
- Available capacity strongly influenced by the predischarge temperature exposure history
 - Mission Planning using the Integration and Test data is in Development of an in-orbit Charge Management and