

. Download: Download full-size image

Download: Download full-size image

COORDINATION CHEMISTRY REVIEWS

Solver: A R.P. LEVER:

make story

* Science Circuit

Strike puries to now desire and bridge to

1. Download: Download full-size image

COORDINATION CHEMISTRY REVIEWS

Better ARP LEVER

Standard Street of

S ScienceOlived

Deliver purpose to many alternate many began but

Very fast exchange 0.5 x0.5 Cu²⁺ O2N. $\delta_F = 46.0 \text{ ppm}$ HLq^{NO2}

O2N t-Bu O₂N t-Bu CIO3O-

0.5 x

$$h_2$$
Lq^{NO2}

$$h_3$$
CN
$$h_3$$
CN
$$h_4$$
CN
$$h_5$$
Fast e
$$k = 30$$

Fast exchange $k = 3000 \text{ s}^{-1}$

(A) From Free Energy to Potential

 ΔG°_{f} (kcal mol⁻¹): -5.01

 ΔG°_{f} (kcal mol⁻¹): +1.59

 $\Delta G^{\circ}_{\text{rxn}} = +6.6$ (kcal mol⁻¹) $\Delta G^{\circ}_{\text{rxn}} = +6.6$ $n = 2 e^{-}, F = 96,485 \ C \ mol^{-1},$ $1 \ kcal \ mol^{-1} = 4.184 \ kJ \ mol^{-1}$

(C) Synthetically Relevant Oxidants ΔE° (V vs SHE)

	(c) Cyntholically Relevant Caldants AL	(7 73 011
SHE:	2 H ⁺ + 2 e ⁻ H ₂	0.00
	$O_2 + 4 H^+ + 4 e^- \implies 2 H_2 O$	1.23
	$O_2 + 2 H^+ + 2 e^- \implies H_2 O_2$	0.68
	$H_2O_2 + 2 H^+ + 2 e^- \implies 2 H_2O$	1.78
1.	$O_3 + 2 H^+ + 2 e^- \implies O_2 + H_2O$	2.08
2.	$S_2O_8^{2-} + 2 e^{-} \implies 2 SO_4^{2-}$	2.01
3.	TBHP + 2 e ⁻ + 2 H ⁺ → ^t BuOH + H ₂ O	~1.7
4.	$MnO_4^- + 8 H^+ + 5 e^- \implies Mn^{2+} + 4 H_2O$	1.51
5.	$Cr_2O_7^{2-} + 14 H^+ + 6 e^- \implies 2 Cr^{3+} + 7 H_2O$	1.36
6.	Br _{2(aq)} + 2 e = 2 Br _(aq)	1.09
7.	$NO_2 + 2 H^+ + 2 e^- \implies NO + H_2O$	1.05
8.	TEMPO ⁺ + 2 e ⁻ + 2 H ⁺ \Longrightarrow TEMPOH ₂ ⁺	0.91 ^a
9.	$DDQ + 2e^{-} + 2H^{+} \longrightarrow DDH_{2}Q$	0.89 ^a
10.	$BQ + 2 H^+ + 2 e^- \implies H_2Q$	0.64 ^a
11.	I _{2(aq)} + 2e ⁻ == 2 I ⁻ _(aq)	0.54

(B) Organic Reaction Redox Potentials -∆E° (V vs SHE)

Alcohol Oxidation

a.	EtOH	-	acetaldehyde + 2 H ⁺ + 2 e ⁻	0.28
b.	EtOH + H ₂ O		acetic acid + 4 H ⁺ + 4 e ⁻	0.06

d. iPrOH
$$\Longrightarrow$$
 acetone + 2 H⁺ + 2 e⁻ 0.12

Alkene Oxidation

f. propene +
$$H_2O \longrightarrow$$
 acetone + $2 H^+ + 2 e^-$ 0.09
g. propene + $H_2O \longrightarrow$ propanal + $2 H^+ + 2 e^-$ 0.23

g. propene +
$$H_2O \rightleftharpoons$$
 propanal + 2 H^+ + 2 e^- 0.23
h. ethylene + $H_2O \rightleftharpoons$ acetaldehyde + 2 H^+ + 2 e^- 0.26

sp3 C-H Oxidation

k.	propane =	propene + 2 H ⁺ + 2 e ⁻	0.45
l.	pyrrolidine + H ₂ O =	 γ-lactam + 4 H ⁺ + 4 e ⁻	0.02

m.
$$CH_4 + H_2O \implies methanol + 2 H^+ + 2 e^-$$
 0.63

n.
$$CH_4 + 2 H_2 O \implies CO_2 + 8 H^+ + 8 e^-$$
 0.17

0.53

0.21

0.10

Arene C-H Oxidation

q. benzene +
$$H_2O \implies$$
 phenol + $2H^+ + 2e^-$ 0.32

(D) Potentials for Organic Oxidations and Oxidants

Free Energy, pH, p K_a , Redox Potentials, and Equilibria

0.06

0.16

0.26

0.36

0

needed to initiate single-electron transfer (SET), but these values are very different from the thermodynamic potentials for net two-electron redox reactions of interest to organic chemists.

b

(A) Proplyene Epoxidation vs. Methane Oxidation

Standard Potential \(\Delta E^\circ\) + 2 H^+ + 2 e^ CO_2 + 8 H^+ + 8 e^-

CH₄

0.17 V

0.76 V

(B) O2 and H2O2 Reduction

(A) Overpotential in Chemical Redox Reactions

(B) Overpotential in Electrochemical Reactions

Shono-Type Carbamate Oxidation

(A) Redox Reactions in Organic Chemistry

(B) Electron Transfer Reactions and Electrochemical Potentials

(D) Reference Electrodes

