

Empirical Research Methods 1 P-value. Descriptive and inferential statistics and diagrams

Instructor: Albulene Grajcevci

Tutors: Shravani & Piumal

Agenda

- > Data distribution, normal distribution, and parametric tests
- > P-value
- Statistics: descriptive and inferential
- > Applied descriptive statistics:
 - > Frequencies
 - Measures: central tendency (mean, median, and mode) and dispersion (standard deviation and variance)
 - Types of graphs
 - Calculating descriptive statistics (frequencies, mean, median, mode, SD, etc.) and graphs on SPSS
 - Self-paced activities

Data distribution, normal distribution, and parametric tests

Data distribution, normal distribution, and parametric tests

- Fancy definition: "A data distribution is a function or a listing which shows all the possible values (or intervals) of the data." (Stephanie from Statistics How To, 2017)
- Simplified definition: "A distribution is a visual way to see all the probable values of our data." (Me, 2020)

Normal distribution

A.k.a. Gaussian or Gauss or Laplace–Gauss distribution or Bell curve

- Data that produces (or fits) a normal distribution can be called "normal data" (e.g. intelligence scores)
- It is a probability distribution that is symmetrical, unimodal, and the probabilities for values further away from the mean taper off equally in both directions. Extreme values in both tails of the distribution are similarly unlikely.
- Normality is a basic assumption/ requirement for parametric tests. Therefore, we want normal data because we want parametric tests!

Normal distribution

Normal distribution

- You will see lots of distributions, with different values, numbers or letters which may be confusing
- However, most data distributions represent the following information:

Parametric tests

We mentioned that we want normal data because we want (to use) parametric tests. But what are parametric tests?

- 1. A parametric test is a statistical test which makes certain assumptions about the distribution of the unknown parameter of interest and thus the test statistic is valid under these assumptions.
- 2. Parametric tests need to ensure four basic assumptions for the test to be accurate:
 - 1. A normally sampling distribution
 - 2. Homogeneity of variance
 - 3. Interval or ratio data
 - 4. Independence

Why do we want parametric tests? Because they have more power.

Parametric tests

- -Homogeneity of variance: the assumption that the variance of one variable is stable (i.e. relatively similar) at all levels of another variable
- -Independence: the assumption that one data point does not influence another. When data come from people, it basically means that the behaviour of one person does not influence the behavior of another. Sometimes also refered as "independence of observations"

Understanding the p-value

P value

- A p-value is a measure of the probability that an observed difference could have occurred just by random chance. That's why we want p-values to be as small as possible.
- A p-value indicates evidence against the null hypothesis, indicating the probability the null is correct (and the results are random).
- In social sciences, a p-value of ≤ 0.05 normally signifies a statistically significant result. It indicates strong evidence against the null hypothesis, as there is less than a 5% probability the null is correct (and the results are random).
- > Therefore, we reject the null hypothesis, and accept the alternative hypothesis.
- ➤ However, this does not mean that there is a 95% probability that the research hypothesis is true. The p-value is conditional upon the null hypothesis being true is unrelated to the truth or falsity of the research hypothesis.

P value

P value- QUESTIONS

- 1. How does the alpha level and the p-value relate?
- 2. What does "setting the alpha to 1%" mean and what would that imply for the p-value?
- 3. With what you know so far about hypothesis testing (H0 and HA), alpha level/error, and p-values, why do you think we need to phrase all of our statistic result decisions in terms of accepting or rejecting the H0?
- 4. Do you think there are cases when we would want our p-value to be bigger than our alpha?

Reporting p-values

- appeared to be marginally significant (p<0.10)
- approached acceptable levels of statistical significance (p=0.054)
- approached but did not quite achieve significance (p>0.05)
- approached but fell short of significance (p=0.07)
- approached conventional levels of significance (p<0.10)
- approached near significance (p=0.06)
- approached our criterion of significance (p>0.08)
- approached significant (p=0.11)
- approached the borderline of significance (p=0.07)
- approached the level of significance (p=0.09)
- approached trend levels of significance (p0.05)
- approached, but did reach, significance (p=0.065)
- approaches but fails to achieve a customary level of statistical significance (p=0.154)
- approaches statistical significance (p>0.06)
- approaching a level of significance (p=0.089)
- approaching an acceptable significance level (p=0.056)
- approaching borderline significance (p=0.08)
- approaching borderline statistical significance (p=0.07)
- approaching but not reaching significance (p=0.53)
- approaching clinical significance (p=0.07)
- approaching close to significance (p<0.1)
- approaching conventional significance levels (p=0.06)
- approaching conventional statistical significance (p=0.06)
- approaching formal significance (p=0.1052)
- approaching independent prognostic significance (p=0.08)
- approaching marginal levels of significance p<0.107)
- approaching marginal significance (p=0.064)
- approaching more closely significance (p=0.06)
- approaching our preset significance level (p=0.076)
- approaching prognostic significance (p=0.052)

- narrowly avoided significance (p=0.052)
- narrowly eluded statistical significance (p=0.0789)
- narrowly escaped significance (p=0.08)
- narrowly evaded statistical significance (p>0.05)
- narrowly failed significance (p=0.054)
- narrowly missed achieving significance (p=0.055)
- narrowly missed overall significance (p=0.06)
- narrowly missed significance (p=0.051)
- narrowly missed standard significance levels (p<0.07)
- narrowly missed the significance level (p=0.07)
- narrowly missing conventional significance (p=0.054)
- near limit significance (p=0.073)
- near miss of statistical significance (p>0.1)
- near nominal significance (p=0.064)
- near significance (p=0.07)
- near to statistical significance (p=0.056)
- near/possible significance(p=0.0661)
- near-borderline significance (p=0.10)
- near-certain significance (p=0.07)
- nearing significance (p<0.051)
- nearly acceptable level of significance (p=0.06)
- nearly approaches statistical significance (p=0.079)
- nearly borderline significance (p=0.052)
- nearly negatively significant (p<0.1)
- nearly positively significant (p=0.063)
- nearly reached a significant level (p=0.07)
- nearly reaching the level of significance (p<0.06)

STATISTICS: DESCRIPTIVE AND INFERENTIAL

Descriptive and inferential statistics

- 1. Collecting
- 2. Organizing and
- 3. Interpreting data

	Descriptive	Inferential
Input values	Values that describe the characteristics of a sample or population	Values that infer results of a sample to the population from which the sample is drawn
Goals	Organize, simplify, summarize and describe data to help us know how our sample is and its characteristics	Provide information for testing our hypothesis/ -es and reach a decision in terms of p-value, significan and the H0 Provide certainty about how generalizable the results from our samply apply to its population
Limitations	Only allow you to make summations about the people or objects that you have actually measured	A degree of uncertainty even in terms of the accuracy of the results (i.e. Type 1 and 2 errors)

APPLIED DESCRIPTIVE STATISTICS

Frequencies • Measures: central tendency (mean, median, and mode) and dispersion (standard deviation and variance) • Types of graphs • SPSS calculations of frequencies and graphs

Measures: Frequencies

- Absolute Frequency: total number of occurrences of a datapoint in our dataset
- 2. Relative Frequency: absolute frequency divided by the total

number of occurrences

Example. Dataset_1 contains the following datapoints for the variable 'Age':

22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26

Age	Absolute Frequency	Relative Frequency	Percent in %
22	1	0.067	6.6
23	3	0.2	20
24	4	0.267	26.7
25	5	0.333	33.3
26	2	0.133	13.3
Total	15	1	100

Measures: Frequencies

Age	Absolute Frequency	Relative Frequency	Percent in %
22	1	0.067	6.6
23	3	0.2	20
24	4	0.267	26.7
25	5	0.333	33.3
26	2	0.133	13.3
Total	15	1	100

Relative frequency calculation:

→ of value "23"

→ of value "24" 4/15 = 0.267

Percentage calculation:

→ of value "23"

→ of value "24" 0.267 * 100 = 26.7%

Measures: Frequencies

Measures of central tendency

- Most common: mean, median and mode
- Important symbols: Commonly found in publications

```
\mu = Population mean \bar{x}, x_bar, x bar = Sample mean
```

 σ^2 = Population variance s^2 = Sample variance

 σ = Population standard deviation s or SD = Sample standard deviation

> N = Population size n = Sample size

Measures of central tendency- Understanding the MEAN

• The mean is sensitive to extreme scores (outliers) in a dataset

> Some other symbols commonly found in the mean formula:

"µ": population mean

"x": sample mean

- -	23 + 22 + 24 + 23 + 26 + 25 + 24 + 26 + 24 + 25 + 25 + 23 + 25 + 25 + 24	- 24 27
Χ -	15	- 44.4/

Dataset					
Participant	Age				
1	23				
2	22				
3	24				
4	23				
5	26				
6	25				
7	24				
8	26				
9	24				
10	25				
11	25				
12	23				
13	25				
14	25				
15	24				

Measures of central tendency- Understanding the MEDIAN

Median = midpoint

The median is a better representative of a sample when scores are extreme, not sensitive to extreme scores

How to determine the median:

- From all the values of a varaible in your dataset, order them from lowest to highest
- 2. Once ordered, the median is the value in the middle
 - a) If you have an odd amount of values, the value in the middle is the median

b) b) If you have an even amount of values, the average of the two values in the

middle is the median

Age	Frequency
22	1
23	3
24	4
25	5
26	2
Total	15

Measures of central tendency- Understanding the MODE

- Mode: the value that appears most frequently in a dataset
- Specially useful for nominal and ordinal scale data
- Several modes? Yes!

More than one mode is possible Visual depictions of modes: Single mode,

bi modal, multi-modal (>2 peaks)

Age	Absolute Frequency
22	1
23	3
24	4
25	5
26	2
To	tal 15

From the variable age, what is the value with the highest absolute frequency?

Mode = 25

Activity 1

> Calculate the mean, mode and median of the following data:

2, 3, 4, 5, 5, 6, 7, 8, 8, 8, 9, 1, 1

Measures – dispersion: Key definitions of variance and standard deviation (SD)

- ➤ Variance (s²) = sum of the squared deviations of the mean, divided by N
- Standard deviation (SD or s) = square root of the variance. Normally reported in publications
- > The variance describes dispersion of data points from the mean value
- ➤ It is the average of the squared differences from the mean
 - Steps for calculating variance
 - 1. Determine the mean of your dataset
 - For each number in your dataset (X), subtract the mean (X) and square the result (squared difference). Sum the squared results
 - Divide the sum of squared results (or sum of squares) by "n-1" (for sample SD) or by "N" (for population SD)

$$S^2 = \frac{\sum (X - \overline{X})^2}{N - 1}$$

Measures – dispersion: standard deviation

- ➤ The standard deviation describes how much variation exists from average/mean.
- Measures variability and shows how spread-out numbers are Its formula is the square root of the variance
- Standard deviation is the most frequently used measure of dispersion or variability and is sensitive to extreme values
- ➤ Is depicted as a bell curve with the center showing the normal distribution that is 1 standard deviation of the mean
 - Low standard deviation: data is in a cluster, showing a narrower curve
 - High standard deviation: data is more spread out and varied, showing a wider curve
 High Standard Deviation

Measures – dispersion: standard deviation

- The standard deviation describes how much variation exists from average/mean.
- Measures variability and shows how spread-out numbers are Its formula is the square root of the variance
- Standard deviation is the most frequently used measure of dispersion or variability and is sensitive to extreme values
- ➤ Is depicted as a bell curve with the center showing the normal distribution that is 1 standard deviation of the mean
 - Low standard deviation: data is in a cluster, showing a narrower curve
 - High standard deviation: data is more spread out and varied, showing a wider curve
 High Standard Deviation

Understanding the difference between variance and SD

	Variance	Standard deviation
Definition	The variance is a measure of variability of values from the average	Standard deviation looks at how spread out a group of numbers is from the average
Purpose	Useful when doing certain math calculations	Describes variability of data of figures that are quite large; more meaningful than variance
Calculation	Average of the squared differences from the mean	Root of the average of the squared differences from the mean
Unit	Squared units	Same unit as values

Example

We want to calculate the mean, variance and standard deviation of the following sample data: 5, 4, 5, 2

mean =
$$\bar{x} = \frac{5+4+5+2}{4} = 4$$

$$s^2 = \frac{\sum (X - \bar{X})^2}{N-1} = s^2 = \frac{(5-4)^2 + (4-4)^2 + (5-4)^2 + (2-4)^2}{4-1} = \frac{1+0+1+4}{3} = \frac{6}{3} = 2$$
Variance (s²) = 2

Standard deviation (s) = $\sqrt{2}$ = 1,4

APA reporting of data

they posted. The control group (M = 36.6, SD = 9.91) and individual preparation-no script (M = 30.86, SD = 9.26) posted more, followed by argumentation scripts (M = 19.19, SD = 6.84) and the combination condition (M = 15.26, SD = 6.11). To take these differences

Tsovaltzi, D., Judele, R., Puhl, T., & Weinberger, A. (2017). Leveraging social networking sites for knowledge co-construction: Positive effects of argumentation structure, but premature knowledge consolidation after individual preparation. Learning and Instruction, 52, 161-179.

Table 1. Formal argumentative dimension by experimental group: Mean percentages and standard deviations of grounds and counterarguments.

	Grounds		Counterarguments	
Experimental group	M	SD	M	SD
Control group	12.08 %	11.48	2.46 %	3.67
Script for the construction of single arguments	33.80 %	11.19	5.36 %	8.07
Script for the construction of argumentation sequences	16.36 %	17.78	5.99 %	3.95
Combined condition	30.64 %	6.10	13.00 %	6.59

APA reporting of data

they posted. The control group (M = 36.6, SD = 9.91) and individual preparation-no script (M = 30.86, SD = 9.26) posted more, followed by argumentation scripts (M = 19.19, SD = 6.84) and the combination condition (M = 15.26, SD = 6.11). To take these differences

Tsovaltzi, D., Judele, R., Puhl, T., & Weinberger, A. (2017). Leveraging social networking sites for knowledge co-construction: Positive effects of argumentation structure, but premature knowledge consolidation after individual preparation. Learning and Instruction, 52, 161-179.

Table 1. Formal argumentative dimension by experimental group: Mean percentages and standard deviations of grounds and counterarguments.

	Grounds		Counterarg	numents
Experimental group	M	SD	M	SD
Control group	12.08 %	11.48	2.46 %	3.67
Script for the construction of single arguments	33.80 %	11.19	5.36 %	8.07
Script for the construction of argumentation sequences	16.36 %	17.78	5.99 %	3.95
Combined condition	30.64 %	6.10	13.00 %	6.59

Weinberger, A., Stegmann, K., & Fischer, F. (2005). Computer-Supported Collaborative Learning in Higher Education: Scripts for Argumentative Knowledge Construction in Distributed Groups. In The Next 10 Years! Proceedings of the 2005 Conference on Computer Support for Collaborative Learning, CSCL '05 (pp. 717–726).

TYPES OF GRAPHS

Types of graphs- Bar Graph

- Divided into different categories
- Shows amount in each category
- Categorical data on the X axis

Types of graphs- Histograms

Use a histogram when:

The data are numerical (interval or ratio)

You want to see the shape of the data's distribution, especially when determining whether the output of a process is distributed approximately normally

Helpful when wanting to communicate the distribution of data quickly and

easily to others

Types of graphs- Line graph

- Graph shows data on a line
- > Demonstrates trends or numbers that are interconnected

Types of graphs- Scatterplot

- > Displays data as dots that are scattered across the page
- > Helps to uncover overall trends among variables and outliers

Types of graphs- Boxplot

- > The boxplot is another way to show how data is distributed
- Not recommended when having less than 20 data points per group
- > Preferably to be used for visualizing multiple distributions at once.
- Also useful when having categorical grouping variable and a continuous outcome variable

Types of graphs- Boxplot

Maximum: a.k.a. Q₄ or 100th percentile. Highest data point of the dataset excluding outliers. Often covered by the upper whisker

Third quartile: a.k.a. Q₃, 75th percentile or upper quartile. Median of the upper half of the dataset

Median: a.k.a. Q₂ or 50th percentile. Middle value of the dataset

First quartile: a.k.a. Q₁, 25th percentile or lower quartile. Median of the lower half of the dataset

Minimum: a.k.a. Q₀ or 0th percentile. Lowest data point excluding outliers. Often covered by the lower whisker

Types of graphs- Boxplot

In the main window, go to:

Analyze > Descriptive Statistics > Frequencies...

SP:	SS Statistics	File Edi	it View	Data T	ransform	Analyze	Graphs	Utilities	Extensions	Windo	w Help	
Beispieldatensatz					Power Analysis > ditor							
8 k			1	*	μ	Reports	s otive Statis	tics	- }	Q	requencies	
	Name	Туре	Width	Decimals	Labe	Bayesia	n Statistic	s			Descriptives	
1	vpnr	Numeric	3	0		Tables			•	A E	xplore	1
2	sex	Numeric	1	0	Geschlecht		re Means		>	## 0	Prosstabs	
3	age	Numeric	2	0			l Linear Mo			E	URF Analysis	
4	bed	Numeric	1	0	Verarbeitui	Genera Mixed N	lized Linea	ir Models			Ratio	
			-			Correla				The second second	P-P Plots	
,	negativ	Numeric	3	0	erinnerte n	Regres					Q-Q Plots	
6	neutral	Numeric	3	0	erinnerte n				4	ight		
7	positiv	Numeric	3	0	erinnerte d	Logline	er.			aht	A Scale	-

In the "Frequencies" window, move the variables you want to the "Variable(s)" box.

Afterwards, click on Statistics...

Once in the "Frequencies: Statistics" window, mark the checkboxes for the options shown and click on Continue

Percentile Values Quartiles		Central Tendency ☑ Mean
Cut points for	10 equal groups	✓ Median
Percentile(s):		☑ Mode
Add		Sum
Change		
Remove		
		Values are group midpoints
Dispersion	1000	Distribution
Std. deviation	Minimum	Skewness
Variance	Maximum	Kurtosis
Range	S.E. mean	
		Cancel Continue

Once back in the "Frequencies" window, click on OK

Results are shown in the Output Window

Statistics

Valid	150		
Missing	0		
	21.87		
dian 21.00			
	20		
viation	3.123		
ce	9.754		
m	18		
Maximum			
	Missing		

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	18	1	.7	.7	.7
	19	24	16.0	16.0	16.7
	20	39	26.0	26.0	42.7
	21	22	14.7	14.7	57.3
	22	19	12.7	12.7	70.0
	23	12	8.0	8.0	78.0
	24	9	6.0	6.0	84.0
	25	8	5.3	5.3	89.3
	26	7	4.7	4.7	94.0
	27	3	2.0	2.0	96.0
	28	2	1.3	1.3	97.3
	29	2	1.3	1.3	98.7
	35	1	.7	.7	99.3
	42	1	.7	.7	100.0
	Total	150	100.0	100.0	

age

For this example we will create a histogram!

In the main window, click go to:

Graphs > Chart Builder

You may get this pop-up window reminding you that you need to set up your variable types correctly as well as labelling your nominal variables. Otherwise, your chart/graph won't be displayed correctly. After you have ensured your data set is correctly set-up, click on "OK"

- 1. Once in the "Chart Builder" window, go to the Gallery tab, and from there select the "Histogram" option.
- 2. Click and hold the first graph icon, dragging it to the box above.

- Now with the histogram template in the box, select a variable and drag it to the "X-Axis?" box
- 2. After that, you will notice that the "Y-Axis?" auto-fills and now says "Histogram"
- 3. Click on OK

You will find the histogram in the Output Window

Self-paced Activity 2: Which values are significant?

$$1. p = .50$$

$$2. p = .03$$

$$3. p = .27$$

$$4. p = .006$$

$$5. p = .051$$

Self-paced Activity 3: Modes

(uni-)modal, bimodal, or multimodal???

REMAINING QUESTIONS? Contact me via e-mail, in teams or come to my office hours