NCERT 11.9.2 Q7

EE23BTECH11204- Ashley Ann Benoy*

Question: Find the sum of n terms of the A.P. whose kth term is 5k + 1.

TABLE 0 GIVEN DATA

	Symbol	Value	Parameter
	<i>x</i> (0)	1	First Term
	<i>x</i> (<i>k</i>)	5k + 1	kth Term
ĺ	d	5	Common Difference
ĺ	S(n)	?	Sum of N terms

Given:

kth term of AP: $a_k = 5k + 1$

Sequence Representation: The given arithmetic progression (AP) can be represented as:

$$x(n) = (5n + 1)u(n)$$
 (1)

where u(n) is the unit step function.

Z-transform: Apply the Z-transform to x(n):

$$X(z) = \frac{5z^{-1}}{(1 - z^{-1})^2} + \frac{1}{(1 - z^{-1})} \quad |z| > 1$$
 (2)

Sum of First n + 1 Terms: Express the sum of the first n + 1 terms (y(n)) in terms of x(n) using the convolution:

$$y(n) = x(n) * u(n)$$
(3)

Applying Z transform on both sides

$$Y(z) = X(z)U(z) \tag{4}$$

$$= \frac{1}{(1-z^{-1})^2} + \frac{5z^{-1}}{(1-z^{-1})^3}$$
 (5)

Using contour integration to find inverse Z transform:

$$y(n) = \frac{1}{2\pi j} \oint_C Y(z)z^{n-1}dz$$

$$= \frac{1}{2\pi j} \oint_C \left[\frac{1}{(1-z^{-1})^2} + \frac{5z^{-1}}{(1-z^{-1})^3} \right] z^{n-1} dz$$
 (7)

The sum of the terms of the sequence is computed using the residue theorem, expressed as R_i , which represents the residue of the Z-transform at z = 1 for the expression Y(z).

$$R_i = R_1 + R_2 \tag{8}$$

 R_1 and R_2 are residues calculated at the poles of the Z-transform.

$$R_1 = \frac{1}{(2-1)!} \left. \frac{d(z^{n+1})}{dz} \right|_{z=1} \tag{9}$$

$$= (n+1) \tag{10}$$

$$R_2 = \frac{1}{(3-1)!} \left. \frac{d^2(5z^{n+1})}{dz^2} \right| \tag{11}$$

$$=\frac{5}{2}(n+1)(n) \tag{12}$$

$$S(n) = R_1 + R_2 (13)$$

$$= (n+1) + \frac{5}{2}(n+1)(n) \tag{14}$$

