ECONOMIA ED ORGANIZZAZIONE AZIENDALE

a.a. 2017/2018 **28/06/2018**

Esercizio 1

La Mariotti SpA sta valutando un nuovo investimento pari al vostro numero di matricola la cui vita utile stimata è di 10 anni. Sapendo che:

- all'anno 0 è concentrato l'intero esborso,
- i NCF crescono ad un tasso annuo del 10%,
- sono necessari X anni e Y¹ mesi per recuperare interamente l'investimento iniziale,

Rispondere alle seguenti domande:

- a) Determinare i NCF,
- b) Indicare se il PBT attualizzato calcolato per questo stesso investimento sia maggiore, minore o uguale al PBT non attualizzato. Giustificare brevemente la risposta

Esercizio 2

Si guardi il grafico in figura in cui viene rappresentata la funzione MDCT =f(RT) per l'impresa Beta, che attualmente produce Q_0 unità di prodotto.

A seguito dell'accettazione da parte di Beta di un ordine aggiuntivo pari a ΔQ unità, l'azienda si trova in corrispondenza del punto A. Si risponda alle seguenti domande:

- a) Quali sono le caratteristiche dell'ordine: prezzo dell'ordine, MDCu e MDCT dell'ordine e variazione dei CV a seguito dell'accettazione dell'ordine?
- b) Se lo stesso ordine ΔQ fosse venduto al prezzo normalmente praticato e quindi non quello dell'ordine di cui al punto a) - rappresentare sul grafico il nuovo punto B relativo a questa nuova condizione, facendo ben vedere dove è posizionato B rispetto al punto A e indicando anche il più precisamente possibile i valori dell'ascissa e dell'ordinata del punto B.

Ad esempio, se il numero di matricola fosse 241009, si dovranno mettere in ordine crescente le cifre, ottenendo pertanto: 001249. Quindi:

¹ Per costruire X e Y mettere in ordine crescente le 6 cifre del numero di matricola. Fatto questo, allora:

[•] X è in posizione 6, ovvero è la cifra più grande;

[•] Y è in posizione 5, ovvero la cifra immediatamente a sinistra rispetto alla cifra più grande determinata sopra;

[•] X=9;

Y=4.

Soluzione esercizio 1

 N° matricola = NCF₁ (anno 1) + NCF₁*1,1 (anno 2) + NCF₁*1,1² (anno 3; continuare così fino a X anni: l'X-esimo anno avrà esponente X-1) + NCF₁*1,1^{X*}(Y/12)

Ad esempio se X=3 e Y=9 $I_0 = NCF_1 + NCF_1*1,1 + NCF_1*1,1^2 + NCF_1*1,1^{3*}(3/4)$ N.matricola = NCF₁*(1 + 1,1 + 1,1² + (3/4)*1,1³) $1.000.000 = NCF_1*4,31$ NCF₁ = 232.019

Da qui è possibile calcolare i NCF successivi (dall'anno 2 in poi): semplicemente tendendo conto del tasso di crescita annuo. Nell'esempio:

 $NCF_2 = 232.019*(1 + 0,1) = 255.221$ $NCF_3 = 255.221*(1 + 0,1) = 280.743$ $NCF_4 = 280.743*(1 + 0,1) = 308.817$

E così via

Soluzione esercizio 2

Punto a)

Prezzo dell'ordine

Poiché MDCT = $40Q_0$ e poiché RT = $100Q_0$,

 $MDCT = RT - CV = 40Q_0 = 100Q_0 - CvuQ_0$,

40 = 100 - Cvu

CVu = 60

p = 100

MDCu

Il MDCu è nullo perché il nuovo prezzo (60) è uguale a CVu (60)

MDCT

Essendo MDCu = 0 allora anche MDCT = 0. Infatti:

 $MDCT = MDCu \cdot Q = 0$

Variazione dei CV

I CV aumentano in misura pari a $60 \cdot \Delta Q$

