Assignment 2

- 1. Consider the alphabet $\Sigma = \{0, 1\}$. Give regular expressions generating the following languages.
 - (a) $\{w \in \Sigma^* \mid w \text{ begins with a } 0 \text{ and ends with a } 1\}$
 - (b) $\{w \in \Sigma^* \mid w \text{ contains at least four } 0s\}$
 - (c) $\{w \in \Sigma^* \mid w \text{ contains the substring } 1101\}$
 - (d) $\{w \in \Sigma^* \mid w \text{ has length at least 4 and its third symbol is a 0}\}$
 - (e) $\{w \in \Sigma^* \mid w \text{ begins with a } 0 \text{ and has even length, or begins with a } 1 \text{ and has odd length}\}$
 - (f) $\{\epsilon, 0\}$
 - (g) The empty set
 - (h) All strings over Σ
 - (i) All strings over Σ except the empty string
- 2. Consider the alphabet $\Sigma = \{a, b\}$. For each of the following languages, give two strings that are members and two strings that are *not* members.
 - (a) b^*a^*
 - (b) a(ab)*b
 - (c) $a^+ \cup b^+$
 - (d) $(aba)^*$
 - (e) $\Sigma a \Sigma^* b \Sigma^* a \Sigma$
 - (f) $aba \cup bab$
 - (g) $b(\epsilon \cup a)b$
 - (h) $\Sigma^*(a \cup ba \cup bb)\Sigma^*$
- 3. Consider the alphabet is $\Sigma = \{a, b, c\}$. For each of the following languages, specify if the language is regular or non-regular. You must support your answer: if the language is non-regular, explain why; if the language is regular design a finite automaton that accepts the language.
 - (a) $\{a^{2i}b^j \mid i, j \ge 1\}$
 - (b) $\{a^n b^m c^k \mid n, m, k \ge 1\}$
 - (c) $\{a^n b^{n+m} c^m \mid n, m \ge 1\}$