Physics 129: Particle Physics Lecture 24: Weak Neutral Currents and the ${\cal Z}$

Nov 17, 2020

- Suggested Reading:
 - ► Thomson 12.2-12.3, 15.4, 16.1-16.2
 - Griffiths 10.6-10.7
- Some reordering of material for remaining lectures: updated syllabus has been posted
- Will post final project information later this week

Our Weak Interaction Roadmap

- Unlike strong and EM, weak interactions don't conserve parity
 - Vertex selects left-handed state for of particles (and right handed state for anti-particles)
 - Discussed Nov 3
- W^{\pm} coupling to leptons respect flavor familes $(e, \, \mu, \, \tau)$ but coupling to quarks do not
 - Coupling not diagonal in quark flavor: Need to change basis
 - Discussed Nov 5
 - Introduction of this change in basis gives new phenomenology, including mixing and CP violation
 - Mixing discussed Nov 10
 - CP Violation discussed Nov 12
- W^{\pm} has charge, so it couples to photon
 - ► Cannot write down a weak theory independent of QED
 - lacktriangle Unified electroweak theory includes Z^0 as well as W^\pm and γ
 - ullet Today: Why we need the Z
 - Thursday: Experimental observations of W and Z and their couplings
- Need mechanism to give W^{\pm} and Z^0 mass
 - ► This is the Higgs mechanism
 - Discuss Tues Nov 24

Neutral Currents: Introduction

- So far, have limited Weak Interactopm discussion to exchange of W bosons ("charged current (CC) interactions")
- But we know that Z boson also exists!
- While β -decay observed in 1896 described by Fermi in the 1930s, nambiguous observation of neutral current (NC) exchange only occured in 1970's
- Why was it so difficult to see NCs?
 - ightharpoonup GIM mechanism: If $\mathcal L$ diagonal in strong basis, is diagonal in weak basis
 - \rightarrow no FCNC
 - ightarrow Z couples to $f\overline{f}$ pairs
 - ▶ NC interactions of charged particles can occur via photon exchange
 - \rightarrow in general, at low q^2 , EM interactions swamp WI
- Strategies for observing NC before the discovery of the Z:
 - Neutrino scattering
 - Parity violating effects in interactions of charged leptons
 - Parity violating effects in interactions of quarks

 2^{nd} and 3^{rd} strategies above rely in interference between weak and EM diagrams that contribute to the same process

Overview of History of Standard Model Development

- Glashow, Weinberg, Salam developed unified, gauge theory of Electroweak interactions in 1960's
 - ► Called the Weinberg-Salam (WS) model
- First observation of NC's in ν and e interactions occurred after WS model proposed
- NC measurements supported WS
- WS model predicted:
 - Existence of Z
 - M_W and M_Z as function of one parameter $\sin(\theta_W)$
 - lacksquare sin $(heta_W)$ could be measured using u interactions (before W and Z themselves were observed)
- W and Z discovered at $Sp\overline{p}S$ in 1982,1983
- ullet Precision NC measurements at LEP/SLC $(e^+e^-
 ightarrow Z)$ starting in 1989

Today, will begin by reviewing NC measurements of the 1970's Then, on to WI Lagrangian

Thurs: Observations of the W and Z

Some Observations

- ullet Charged current interactions observed to be (V-A) couplings with universal strength (once CKM matrix accounted for)
- This does not mean that neutral currents must also be left-handed
 - And in fact, they are NOT
- In original formulation of EW theory and in our discussions, we will assume neutrinos are massless (although we know now that they do have small mass)
 - lacktriangle Take as a postulate that all u are left-handed and all u are right-handed
 - Quarks and charged leptons have mass and exist both in left- and right-handed states
 - ► To full define the theory, need to measure the coupling of the neutral weak boson (the Z) to:
 - Left-handed ν and right-handed $\overline{\nu}$
 - Left-handed ℓ and right-handed $\overline{\ell}$
 - Right-handed ℓ and left-handed $\bar{\ell}$
 - Left-handed q and right-handed \overline{q}
 - Right-handed q and left-handed \overline{q}
- That means we need to use all 3 strategies listed on page 3 in order to fully define the model

Discovery of Neutral Currents: Gargamelle (I)

- Gargamelle bubble chamber filled with freon
- 83,000 pictures with ν_{μ} beam, 207,000 with $\overline{\nu}_{\mu}$
- Look for:

CC Events :
$$\begin{array}{cc} \nu_{\mu} + N \rightarrow \mu^{-} + X \\ \overline{\nu}_{\mu} + N \rightarrow \mu^{+} + X \end{array}$$

NC Events :
$$\begin{array}{c} \nu_{\mu} + N \rightarrow \nu_{\mu} + X \\ \overline{\nu}_{\mu} + N \rightarrow \overline{\nu}_{\mu} + X \end{array}$$

• Remove bckgrnd from neutrons created in chamber walls from ν interactions ("Stars")

Discovery of Neutral Currents: Gargamelle (II)

- Stars show exponential fall-off along beam axis
 - Consistent with background
- NC event-rate flat and consistent with CC event-rate vs distance along beam axis
- Event Rates:

$$(NC/CC)_{\nu} = 0.21 \pm 0.03$$

 $(NC/CC)_{\overline{\nu}} = 0.45 \pm 0.09$

- We'll see later that these ratios agree with SM predictions
- Difference in ratios for ν and $\overline{\nu}$ shows that NC are not V-A

Discovery of Neutral Currents: Gargamelle (III)

• Also observed $\nu_{\mu}e
ightarrow \nu_{\mu}e$

Neutral Current Interactions with Charged Leptons: $e^+e^- \rightarrow \mu^+\mu^-$

- ullet For $q^2 << M_Z$, Weak Interaction matrix element much smaller than EM
- Observation of Weak Interaction requires looking for terms not allowed by EM
 - → Parity Violating Effects
- Easiest signature: $e^+e^- \to \mu^+\mu^-$ angular distribution

You have already studied this on Problem Set #8

Neutral Current Interactions: Quark-Lepton Interactions

- Look for interference between weak (NC) and EM scattering amplitudes
- First unambiguous measurement from *e*-Deuteron scattering:

$$e(polarized) + d(unpolarized) \rightarrow e + X$$

Measure

$$A \equiv (\sigma_L - \sigma_R)/(\sigma_L + \sigma_R)$$

· General form using parton model

$$A/Q^2 = a_1 + a_2 [1 - (1 - y)^2] / [1 + (1 - y)^2]$$

for isoscalar target, a_1 and a_2 constant

- Measuring A as fn of y allows determination of a_1 and a_2
- ullet These constants depend on quark and lepton couplings to Z

Polarized eD Scattering (I)

- ullet Polarization obtained from laser optical pumping of Gallium Arsenide (photoemission of e)
- Can change circular polarization of laser to change polarization (two methods)

Polarized eD Scattering (II)

- Good agreement with SM predictions
- ullet Provides estimate of the one parameter of the model: $\sin(heta_W)$
 - ► To understand this statement, we need to build up the SM description of EW interactions

Building the SM Lagrangian (WS Model)

Start with CC interactions

$$J_{\mu} = \overline{\nu}\gamma_{\mu}(\frac{1-\gamma_{5}}{2})e = \overline{\nu}_{L}\gamma_{\mu}e_{L}$$

$$J_{\mu}^{\dagger} = \overline{e}_{L}\gamma_{\mu}\nu_{L}$$

 Can write these 2 currents in terms of raising and lowering operators of weak isospin: A new SU(2) quantum number

$$\chi_L \equiv \begin{pmatrix} \mu \\ e^- \end{pmatrix}_L \tau_+ = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \tau_- = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$J_\mu = \overline{\chi}_L \gamma_\mu \tau_+ \chi_L \quad J_\mu^\dagger = \overline{\chi}_L \gamma_\mu \tau_- \chi_L$$

• Since these are 2 components of an SU(2) triplet, there must also be a 3^{rd} component

$$J^0 = \overline{\chi}_L \gamma_\mu \tau_3 \chi_L$$

• Can J^0 be the Weak Neutral Boson (the Z)?

No! (see next page)

Why isn't J^0 the Z?

- We know there are Right Handed Weak Neutral Currents:
 - \blacktriangleright $\nu,\overline{\nu}$ NC scattering rate not consistent with V-A
 - $ightharpoonup e_R D$ scattering not zero
- How can this be?
- In addition to WI, there is EM, which is also NC
- • If we unify WI and EM, have 2 neutral currents and can create Z and γ from linear combinations of these
- Expand our gauge group to include both: $SU(2)_L \times U(1)$
 - ightharpoonup Two coupling constants g and g'
 - Four gauge bosons:

```
\begin{array}{ccc} W^1_\mu,\,W^2_\mu,\,W^3_\mu & SU(2))_L \text{ triplet} & \text{coupling } g \\ B_\mu & U(1) \text{ singlet} & \text{coupling } g' \end{array}
```

The Unified Gauge Interaction Lagrangian (I)

 Boson fields: Energy tensor of same form as Classical E&M but taking into account boson-boson interactions

$$\mathcal{L}_{gauge} = -\frac{1}{4}\vec{F}_{\mu\nu} \cdot \vec{F}^{\mu\nu} - \frac{1}{4}f_{\mu\nu}f^{\mu\nu}$$

$$\vec{F}_{\mu\nu} = \partial_{\mu}\vec{W}_{\nu} - \partial_{\nu}\vec{W}_{\mu} + g\vec{W}_{\mu} \times \vec{W}_{\mu}$$

$$f_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

- Lepton fields: incorporate what we know from charged current weak interactions:
 - lacktriangle Left-handed e and u couple to W

$$\chi_L \equiv \left(\begin{array}{cc} \nu \ e \end{array}\right)_L \quad \text{where} \quad \begin{array}{cc} \nu_L = \frac{1}{2}(1-\gamma_5)\nu \\ e_L = \frac{1}{2}(1-\gamma_5)e \end{array}$$

▶ No RH ν exists, but RH e does: $\chi_R \equiv e_R = \frac{1}{2}(1+\gamma_5)e$

LH members are weak iso-doublets and the RH charged leptons are weak iso-singlets. There is no RH neutrino

• We'll come back to the quarks later

The Unified Gauge Interaction Lagrangian (II)

For Strong Interactions we saw

$$Q = I_3 + \frac{B+S}{2} \equiv I_3 + \frac{Y}{2}$$

Postulate a similar "weak hypercharge" and require same relation to hold.

$$Y_L = -1 \ Y_R = -2$$

(constructed to give the leptons the right charge)

$$Q = I_3 + \frac{Y}{2}$$

$$\chi_L \equiv (\nu e)_L \qquad \qquad Q(\nu_L) = \frac{1}{2} + \frac{-1}{2} = 0$$

$$Q(e_L) = -\frac{1}{2} + \frac{-1}{2} = -1$$

$$\chi_R \equiv e_R = \frac{1}{2}(1 + \gamma_5)e \qquad \qquad Q(e_R) = 0 + \frac{-2}{2} = -1$$

ullet This choice has additional advantage that by giving all members of a multiplet the same Y we have $[I_3,Y]=0$ and both are simultaneouly observable

Q is a conserved quantum number!

The Unified Gauge Interaction Lagrangian (III)

Lepton terms in LaGrangian (kinetic plus interaction):

$$\mathcal{L}_{leptons} = \overline{\chi}_R i \gamma^\mu \left(\partial_\mu + i g' B_\mu \frac{Y}{2} \right) \chi_R +$$

$$\overline{\chi}_L i \gamma^\mu \left(\partial_\mu + i g' B_\mu \frac{Y}{2} + i g \frac{\vec{\tau}}{2} \cdot \vec{W}_\mu \right) \chi_L$$

- Note: Need to introduce the Higgs to add mass terms. We'll postpone that discussion!
- ullet The neutral interaction terms in the LaGrangian are from B_{μ} and W_3

$$\begin{split} \mathcal{L}_{NC} &= -\left[\overline{\chi}_R\gamma^{\mu}\left(g'B_{\mu}\frac{Y}{2}\right)\chi_R + \overline{\chi}_L\gamma^{\mu}\left(g'B_{\mu}\frac{Y}{2} + g\frac{\tau_3}{2}(W_3)_{\mu}\right)\chi_L\right] \\ &= -\left[\overline{\chi}\gamma^{\mu}\left(gI_3(W_3)_{\mu} + g'B_{\mu}\frac{Y}{2}\right)\chi\right] \end{split}$$

where $I_3= au_3/2$ and we have used the fact that $I_3=0$ for χ_R

Changing Basis

- We have two neutral fields: A and B_3
- Before we introduce the Higgs, both are massless. They can mix
 - ► Such mixing is normal in degenerate perturbation theory
 - ► Higgs will give mass to one of these states, breaking degeneracy
 - ightharpoonup But the massive state is a linear combination of A and B_3
- We can identify one of the neutral bosons as the photon
 - ► This state must remain massless when Higgs introduced
- Can identify which combination is the photon: it must couple to charge:

$$Q = I_3 + \frac{Y}{2}$$

The Weinberg Angle θ_W

- We have two couplings: g and g'
- · Can always express the ratio as

$$\tan \theta_W = \frac{g}{g'}$$

Then

$$\sin \theta_W = \frac{g}{\sqrt{g^2 + g'^2}}$$

$$\cos \theta_W = \frac{g'}{\sqrt{g^2 + g'^2}}$$

And our LaGrangian becomes:

$$\mathcal{L}_{NC} = -\left[\overline{\chi}\gamma^{\mu}\left(gI_{3}(W_{3})_{\mu} + g'B_{\mu}\frac{Y}{2}\right)\chi\right]$$
$$= -\sqrt{g^{2} + g'^{2}}\left[\overline{\chi}\gamma^{\mu}\left(\sin\theta_{W}I_{3}(W_{3})_{\mu} + \cos\theta_{W}B_{\mu}\frac{Y}{2}\right)\chi\right]$$

 Now we can pick out the piece that couples to charge and identify it with the photon

The photon, the Z and the W^{\pm}

Define photon field as piece that couples to charge

$$A_{\mu} = B_{\mu} \cos \theta_W + (W_3)_{\mu} \sin \theta_W$$

The Z is the orthogonal combination

$$Z_{\mu} = -B_{\mu} \sin \theta_W + (W_3)_{\mu} \cos \theta_W$$

• Because photon couples to charge, we can relate e to the couplings and θ_W :

$$e = g\sin\theta_W = g'\cos\theta_W$$

• The W^{\pm} bosons are

$$W^{\pm} = \frac{W_1 \pm iW_2}{\sqrt{2}}$$

and their coupling remains g. Using standard conventions

$$\frac{g^2}{8} = \frac{G_F M_W^2}{\sqrt{2}}$$

• $\sin \theta_W$ is a parameter to be measured (many different techniques)

$$\sin^2 \theta_W \sim 0.23$$

How about the quarks?

- Follow same prescription as for the leptons
- W_μ coupling is left handed: $\gamma_\mu (1-\gamma^5)/2$, B coupling is left-right symmetric: γ_μ
 - Left handed weak isodoublets, right handed weak isosinglets
 - $lackbox{ }Y$ value for multiplets chosen to enforce $Q=I_3+Y/2$

fermion	Q	I_3^L	Y_L	Y_R
$ u_{\ell}$	0	$\frac{1}{2}$	-1	-
ℓ	-1	$-\frac{1}{2}$	-1	-2
u, c, t	$+\frac{2}{3}$	$+\frac{1}{2}$	$+\frac{1}{3}$	$+\frac{4}{3}$
d, s, b	$-\frac{1}{3}$	$-\frac{1}{2}$	$+\frac{1}{3}$	$-\frac{2}{3}$

Predicted Z Couplings to Fermions

The Z current specified by

$$Z_{\mu} = -B_{\mu} \sin \theta_W + (W_3)_{\mu} \cos \theta_W$$

Together with the LaGrangian from page 18 this gives (with some math)

$$J_{\mu}^Z = J_{\mu}^3 - \sin^2 \theta_W j_{\mu}^{EM}$$

- The neutral weak coupling is NOT (V-A) but rather $C_V \gamma_\mu + C_A \gamma_m u (1-\gamma^5)$
- Values of C_V and C_A can be calculated from $\sin^2 \theta_W$
- Weak NC vector and axial vector couplings are:

f	Q_f	C_A	C_V
ν	0	$\frac{1}{2}$	$\frac{1}{2}$
e	-1	$-\frac{1}{2}$	$-\frac{1}{2} + 2\sin^2\theta_W$
u	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{2} - \frac{4}{3}\sin^2\theta_W$
d	$-\frac{1}{3}$	$-\frac{1}{2}$	$\frac{\frac{1}{2} - \frac{4}{3}\sin^2\theta_W}{-\frac{1}{2} + \frac{2}{3}\sin^2\theta_W}$

Summary of all SM Feynman diagrams (I)

We have now defined all quark and lepton interactions with gauge bosons

- ▶ Gluon-fermion vector interaction with strength $\frac{g_s}{2}$ only fermions with color (quarks)
- W^{\pm} -fermion left handed (V-A) interaction with strength $\frac{g_W}{\sqrt{2}}$
- ► Z-fermion interaction with vector and axial vector couplings that depend on the weak isospin and weak hypercharge assignments of the fermion
- Propagators and full set of vertices, including three and four boson ones are shown on the next page

Except for explaining how the W and Z get mass, this is the full standard model

Summary of all SM Feynman diagrams (II)

Propagators:

Vertices:

electroweak bosons such that charge is conserved.

