ICS 421 Spring 2010 Parallel & Distributed Databases 2

Asst. Prof. Lipyeow Lim
Information & Computer Science Department
University of Hawaii at Manoa

Shared-Nothing Architecture

Logical Parallel DBMS Architecture

Horizontal Fragmentation: Range Partition

sid	sname	rating	age
22	dustin	7	45
29	brutus	1	33
31	lubber	8	55
32	andy	4	23
58	rusty	10	35
64	horatio	7	35

	4 * 4 *		_
ഥവ	rtiti	\mathbf{n}	
Га	rtiti	UH	
		• • • •	

sid	sname	rating	age
29	brutus	1	33
32	andy	4	23

Partition 2

Range Partition on rating column

• Partition 1: 0 <= rating < 5

• Partition 2: 5 <= rating <= 10

sid	sname	rating	age
22	dustin	7	45
31	lubber	8	55
58	rusty	10	35
64	horatio	7	35

Range Partition: Query Processing

- Which partitions?
- Better than non-parallel?

SELECT * **FROM** Sailors S

SELECT * **FROM** Sailors S **WHERE** rating = 2

SELECT * **FROM** Sailors S **WHERE** age > 30

SELECT *
FROM Sailors S
WHERE rating < 2 and age < 30

Partition 1

sid	sname	rating	age
29	brutus	1	33
32	andy	4	23

sid	sname	rating	age
22	dustin	7	45
31	lubber	8	55
58	rusty	10	35
64	horatio	7	35

Horizontal Fragmentation: Hash Partition

sid	sname	rating	age
22	dustin	7	45
29	brutus	1	33
31	lubber	8	55
32	andy	4	23
58	rusty	10	35
64	horatio	7	35

sid	sname	rating	age	
31	lubber	8	55	
32	andy	4	23	
58	rusty	10	35	

Partition 2

- Hash partitioning using hash function
 - Partition = ratingmod 2

sid	sname	rating	age
22	dustin	7	45
29	brutus	1	33
64	horatio	7	35

Hash Partition: Query Processing

- Which partitions?
- Better than non-parallel?

SELECT * **FROM** Sailors S

SELECT * **FROM** Sailors S **WHERE** rating = 2

SELECT * **FROM** Sailors S **WHERE** age > 30

SELECT *
FROM Sailors S
WHERE rating < 2 and age < 30

sid	sname	rating	age	
31	lubber	8	55	
32	andy	4	23	
58	rusty	10	35	

Partition 2

sid	sname	rating	age	
22	dustin	7	45	
29	brutus	1	33	
64	horatio	7	35	

Vertical Fragmentation/Partition

sid	sname	rating	age
22	dustin	7	45
29	brutus	1	33
31	lubber	8	55
32	andy	4	23
58	rusty	10	35
64	horatio	7	35

sid	sname	rating		
22	dustin	7		
29	brutus	1		
31	lubber	8		
32	andy	4		
58	rusty	10		
64	horatio	7		

Partition 1

sid	age
22	45
29	33
31	55
32	23
58	35
64	35

- Vertical partitioning
 - Use sid as row identifier

Vertical Partition: Query Processing

- Which partitions?
- Better than nonparallel?

SELECT * **FROM** Sailors S

SELECT sname FROM Sailors S

SELECT * **FROM** Sailors S **WHERE** rating = 2

sid sname rating dustin 22 brutus 29 lubber 31 32 andy 58 rusty 10 horatio 64

Partition 1

Partition 2

SELECT sid FROM Sailors S WHERE age > 30 SELECT sid FROM Sailors S WHERE rating < 2 and age < 30

Fragmentation & Replication

- Suppose table is fragmented into 4 partitions on 4 nodes
- Replication stores another partition on each node
 - What happens when 1 node fails ? 2 nodes ?
 - What happens when a row needs to be updated?

What about joins?

SELECT R.sid, R.bid FROM Sailors S, Reserves R WHERE S.sid=R.sid AND rating > 8

- Sailors: hash
 - part = rating mod 2
- Reserves: hash
 - part = sid mod 2
- Where to perform join ?
- What data to ship?

						F	Partitic	n
			Reserves					
	sid	sname	rating	age	sid	bid	day	
	31	lubber	8	55	31	101	<u>uay</u>	
	32	andy	4	23	29	101	•••	
	58	rusty	10	35	23	103	•••	

		Sailors					artitio
sid	sname		age		Reserves		
	dustin	7	45		<u>sid</u>	<u>bid</u>	<u>day</u>
29	brutus	1	33		64	105	
64	horatio	7	35		58	103	