Theorem 3.2.8 - pg 118

Let $x, y \in \mathbb{R}$

a. If $x \le y + \epsilon \ \forall \ \epsilon > 0$, then $x \le y$

b. If $|x-y| \le \epsilon \ \forall \ \epsilon > 0$, then |x-y| = 0 or, evidently, x = y

a)

If $x \le y + \epsilon \ \forall \ \epsilon > 0$, then $x \le y$

Proof.

Suppose that:

$$x > y$$
$$x - y > 0$$

Let

$$\epsilon = \frac{x+y}{2} > 0$$

See that

$$y + \epsilon$$

$$= y + \frac{x+y}{2}$$

$$= y + \frac{x}{2} - \frac{y}{2}$$

$$= \frac{x}{2} + \frac{y}{2}$$

$$< \frac{x}{2} + \frac{x}{2}$$

$$< x$$

$$y + \epsilon < x \quad (1)$$

Thus, by contrapositive, the result is true.

b)

If
$$|x-y| \le \epsilon \ \forall \ \epsilon > 0$$
, then $|x-y| = 0$ or, evidently, $x=y$

Proof.

Suppose that:

$$|x-y| > 0$$

Let

$$\epsilon = \frac{|x - y|}{2}$$

See that

$$\begin{aligned} 1 &> \frac{1}{2} \\ |x-y| &> \frac{1}{2}|x-y| \\ |x-y| &> \epsilon \end{aligned}$$

Thus, by contrapositive, the result is true.

Definition 3.2.9

If $x \in \mathbb{R}$,

$$|x| = \begin{cases} x, & \text{if } x \ge 0. \\ -x, & \text{if } x < 0. \end{cases}$$

Theorem **3.2.10**

Let $x, y \in \mathbb{R}$ and $a \ge 0$

Then

- a. $|x| \ge 0$
- b. $|x| \le a$ iff $-a \le x \le a$
- c. |xy| = |x||y|
- d. $|x+y| \le |x| + |y|$ (equality holds only if signs are the same)

a)

 $|x| \ge 0$

Proof.

Case:

- i) $x \ge 0$: then $|x| = x \ge 0$
- ii) $x < 0 \Rightarrow -x > 0$ then $|x| = -x \ge 0$

Hence, result

b)

$$|x| \le a \text{ iff } -a \le x \le a$$

Since it's a biconditional, first we prove $p \Rightarrow q$, then $q \Rightarrow p$.

Proof.

Notice that:

$$-a \le -|x|$$

Case:

i)
$$x \ge 0$$

then $0 \le x = |x|$
and $|x| \le a$
Also, since $x = |x| \ge 0$, $-a \le x$ or $-a \le 0$ $-a \le x \le a$

ii)
$$x < 0 |x| = -x \le ax \ge -a : -a \le x - a \le x \le a$$

Hence, result.

 \leftarrow

Conversely, we shall prove that $q \Rightarrow p$

Suppose: $-a \le x \le a$

Then:

- i) $x \ge 0$, then $|x| = x \le a$
- ii) x < 0, then $|x| = -x \le a$

Hence, result.

c)

$$|xy| = |x||y|$$

Notice that if x = 0 (p) or y = 0 (q), then |xy| = 0 = |x||y|.

WLOG, assume that not $[p \text{ or } q] = \text{not } p \cap \text{not } q$.

- i) x > 0 and y > 0 then |x| = x, |y| = y Also, xy > 0 So, |xy| = xy = |x||y|
- ii) x < 0, y < 0 then |x| = -x, |y| = -y, xy > 0 So, |xy| = xy = -|x|(-|y|) = |x||y|
- iii) x > 0, y < 0 OR y > 0, x < 0 WLOG, let x > 0, y < 0 |xy| = |x||y| |yx| = |y||x| |x| = x, |y| = -y, xy < 0 So, |xy| = -(xy) -[|x|(-|y|)] -[-|x||y|] |x||y|

d)

$$|x+y| \le |x| + |y|$$

Let: Z = x + y, and a = |x| + |y|If $a \ge 0$, then $|Z| \le a$ iff $-a \le Z \le a$

 $-(|x| + |y|) \le x + y \le |x| + |y|$

From b), since $|x| + |y| \ge 0$,

Want to show: $-(|x| + |y|) \le x + y \le |x| + |y|$

Notice: $-|x| \le x \le |x|$

$$|x| = x \text{ or } |x| = -x \text{ or } -|x| = x$$

Then

$$-|x| - |y| \le x + y \le |x| + |y|$$

$$-(|x| + |y|) \le x + y \le |x| + |y|$$

By b), this is equivalent to

$$|x+y| \le |x| + |y|$$