CLAIMS

. We Claim:

1 A method for searching a database for data satisfying a property specified 1. 2 by a query, the database containing data within an application domain and encoded in a 3 group theory representation, comprising: 4 formulating the query in terms of the group theory representation; 5 executing the query on the data in the database within the application domain 6 and encoded in the group theory representation to identify zero or 7 more database elements and group elements in the group theory 8 representation satisfying the query; and 9 outputting the zero or more database elements and group elements satisfying 10 the query. 1 2. The method of claim 1, wherein the data within the application domain are 2 represented as one or more augmented clauses, where each augmented clause has a pair 3 (c,G) including a database element c and an associated group G of group elements g 4 acting on c. 1 3. The method of claim 2, wherein the group elements g are permutations. 1 4. The method of claim 2, wherein the query is of a type "find an element x 2 that satisfies a property P" and wherein formulating the query in terms of the group 3 theory representation comprises: 4 formulating the query as a type "find database element c and element g of the 5 associated group G, such that g(c) satisfies property P."

1	5. The method of claim 1, wherein outputting the zero or more database				
2	elements and group elements satisfying the query comprises:				
3	converting the zero or more database elements and group elements satisfying				
4	the query from the group theory representation to a native				
5	representation of the data within the application domain; and				
6	outputting the zero or more converted database elements satisfying the query.				
1	6. The method of claim 5, wherein a database element satisfying the query				
2	includes a database element c and a group element g of an associated group G , wherein				
3	the converting comprises:				
4	constructing $g(c)$ to produce the database element in its native representation.				
1	7. The method of claim 1, wherein the query comprises a high-level query,				
2	the method further comprising:				
3	generating one or more low-level queries from the high-level query, wherein				
4	the formulating step formulates the low-level queries in the group				
5	theory representation and wherein the executing step executes the low-				
6	level queries on the data in the database.				
1	8. The method of claim 7, the method further comprising:				
2	generating one or more additional low-level queries responsive to one or more				
3	results of one or more previously-executed low-level queries, wherein				
4	the formulating step formulates the one or more additional low-level				
5	queries in the group theory representation and wherein the executing				
6	step executes the one or more additional low-level queries on the data				
7	in the database.				
1	9. The method of claim 1, further comprising:				
2	representing the zero or more database elements and group elements satisfying				
3	the query as a subgroup, wherein some elements are described				

5	explicitly and remaining elements are described in terms of the explicitly described group elements.				
1	10. The method of claim 1, wherein the data within the application domain				
2	describe a digital logical device and wherein the query performs a verification and/or test				
3	of the device.				
1	11. A system for using group theory to manipulate data in a database,				
2	comprising:				
3	a query execution module for executing a query on the data in the database,				
4	wherein the data in the database are within an application domain and				
5	are encoded in a group theory representation and wherein the query				
6	specifies a search for database elements and group elements satisfying				
7	a property specified by the query.				
1	12. The system of claim 11, further comprising:				
2	a database construction module for receiving input data within the application				
3	domain in a native representation and for encoding the input data in a				
4	group theory representation.				
1	13. The system of claim 12, wherein the input data in the group theory				
2	representation include one or more augmented clauses, where each augmented clause has				
3	a pair (c,G) including a database element c and a group G of group elements g acting on				
4	c.				
1	14. The system of claim 13, wherein the group elements g are permutations.				
1	15. The system of claim 13, further comprising:				
2 .	a query formation module for receiving an input query, the input query				
3	specifying a search for database elements satisfying a property in a				
4	native representation of the data, and for converting the input query				

)	into a search for equivalent database elements and associated group				
6	elements in the group theory representation of the data.				
1	16. The system of claim 15, wherein the input query is of a type "find an				
2	element x that satisfies property P " and wherein the converted input query is of a type				
3	"find database element c and element g of an associated group G , such that $g(c)$ satisfies				
4	property P."				
1	17. The system of claim 11, wherein the query execution module identifies				
2	zero or more database elements and group elements satisfying the query and further				
3	comprising:				
4	a result construction module for converting the zero or more database				
5	elements and group elements satisfying the query from the group				
6	theory representation to a native representation of the data within the				
7	application domain.				
1	. 18. The system of claim 17, wherein a database element satisfying the query				
2	includes a database element c and a group element g of an associated group G , and				
3	wherein the result construction module constructs $g(c)$ to produce the database element in				
4	its native representation.				
1	19. The system of claim 11, further comprising:				
2	a query formation module for receiving a high-level input query, and for				
3	generating one or more low-level queries responsive to the high-level				
4	input query, the one or more low-level queries specifying searches for				
5	database elements and group elements in the group theory				
6	representation of the data.				
1	20. The system of claim 19, wherein the query formation module is further				
2	adapted to generate one or more additional low-level queries in response to one or more				
3	results of one or more previously-executed low level queries.				

1	21. The system of claim 11, wherein the query execution module identifies		
2	zero or more database elements and group elements satisfying the query and further		
3	comprising:		
4	a result construction module for representing the zero or more database		
5	elements and group elements satisfying the query as a subgroup,		
6	wherein some elements are described explicitly and remaining		
7	elements are described in terms of the explicitly described group		
8	elements.		
1	22. The system of claim 11, wherein the data within the application domain		
2	describe a digital logical device and wherein the query performs a verification and/or te	st	
3	of the device.		
1	23. A computer program product comprising:		
2	a computer-readable medium having computer program code embodied		
3	therein for encoded thereon computer program modules for using		
4	group theory to manipulate data in a database, the computer program	1	
5	modules comprising:		
6	a query execution module for executing a query on the data in the		
7	database, wherein the data in the database are within an applicati	on	
8	domain and are encoded in a group theory representation and		
9	wherein the query specifies a search for database elements and		
10	group elements satisfying a property specified by the query.		
1	24. The computer program product of claim 23, the computer program		
2	modules further comprising:		
3	a database construction module for receiving input data within the application	n	
4	domain in a native representation and for encoding the input data in	a	
5	group theory representation.		

1	25.	The computer program product of claim 24, wherein the input data in the	
2	group theory representation include one or more augmented clauses, where each		
3	augmented clause has a pair (c,G) including a database element c and a group G of		
4	group elemen	ts g acting on c .	
1	26.	The computer program product of claim 25, wherein the group elements g	
2	are permutation	ons.	
1	27.	The computer program product of claim 25, the computer program	
2	modules further comprising:		
3	ac	query formation module for receiving an input query, the input query	
4		specifying a search for database elements satisfying a property in a	
5		native representation of the data, and for converting the input query	
6		into a search for equivalent database elements and associated group	
7		elements in the group theory representation of the data.	
1			
1	28.	The computer program product of claim 27, wherein the input query is of	
2	a type "find an element x that satisfies property P" and wherein the converted input query		
3		and database element c and element g of an associated group G , such that	
4	g(c) satisfies j	property P."	
1	29.	The computer program product of claim 23, wherein the query execution	
2	module identi	fies zero or more database elements and group elements satisfying the	
3	query, the cor	nputer program modules further comprising:	
4	a r	result construction module for converting the zero or more database	
5		elements and group elements satisfying the query from the group	
6		theory representation to a native representation of the data within the	
7		application domain.	
1	30.	The computer program product of claim 29, wherein a database element	
2		query includes a database element c and a group element g of an associated	
_		-1 J & unimone of the mid a Broap element & of an associated	

3	group G , and wherein the result construction module constructs $g(c)$ to produce the		
4	database element in its native representation.		
1	31. The computer program product of claim 23, the computer program		
2	modules further comprising:		
3	a query formation module for receiving a high-level input query, and for		
4	generating one or more low-level queries responsive to the high-level		
5	input query, the one or more low level queries specifying searches for		
6	database elements in the group theory representation of the data.		
1	32. The computer program product of claim 31, wherein the query formation		
2	module is further adapted to generate one or more additional low-level queries in		
3	response to one or more results of one or more previously-executed low-level queries.		
1	33. The computer program product of claim 23, wherein the query execution		
2	module identifies zero or more database elements and group elements satisfying the		
3	query and further comprising:		
4	a result construction module for representing the zero or more database		
5	elements and group elements satisfying the query as a subgroup,		
6	wherein some elements are described explicitly and remaining		
7	elements are described in terms of the explicitly described group		
8	elements.		
1	34. The computer program product of claim 23, wherein the data in the		
2	application domain describe a digital logical device and wherein the query performs a		
3	verification and/or test of the device.		