Discrete Structures

IIIT Hyderabad

Monsoon 2020

Tutorial 14

November 6, 2020

Introduction

- Questions
 - Question 1
 - Question 2
 - Question 3

Question 1

- 1.1: Construct Cayley table for

 - $2 S = \mathbb{Z}_3, Op = \times.$
 - * $S = \{R_{\theta}, \theta = 60k\}$ (rotation by multiples of 60 degrees) , Op = Composition .
- **1.2:** Let $G = \langle \mathbb{Z}_9^*, \times \rangle$, find
 - e(identity)
 - 2 4^{-1}
 - 5 × 8
 - g (generator).

Recall that Z_N^* was the set of numbers co-prime to N.

3/6

Question 2

Show the following -

- Let a group $G = \langle S, * \rangle$, show that $(a * b)^{-1} = b^{-1} * a^{-1}$ if $a, b \in S$.
- (ab)⁻¹ = $a^{-1}b^{-1} \iff$ group is Abelian.
- **1** In a semi-group $G = \langle S, * \rangle$, say if a is any element. For every element x , there are elements u, v such that

$$a * u = v * a = x$$

Show that there is an identity element in G.

4/6

Question 3

Use the following numbers for the next question -

- Groupoid
- Semi-group
- Ocyclic Semi-group
- Monoid
- Ocyclic Monoid
- Group
- Cyclic Group
- Quasi-Group

5/6

For the given sets and operations (Opn), mark the correct ticks. For all the cyclic groups, find the generators. -

Set	Opn	1	2	3	4	5	6	7	8
\mathbb{Z}_7	+								
\mathbb{Z}	_								
\mathbb{Z}_5^*	^								
$\mathbb{Q}-\{0\}$	÷								
\mathbb{Z}_{11}^*	×								
\mathbb{Z}_{12}^*	×								
2 × 2 Matrices	×								
2 × 2 Matrices	+								
N	÷								
[*] Reflection lines in <i>n</i> -gon	Composition								