PUNTOS NOTABLES I

• DEFINICIÓN DE PUNTOS NOTABLES.

- BARICENTRO.
- INCENTRO.
- EXCENTRO.

DEFINICIÓN:

Son aquellos puntos de concurrencia de líneas notables de la misma especie.

TENER EN CUENTA:

<u>PUNTO DE INTERSECCIÓN</u>
 Es aquel punto en común de dos líneas.

P: punto de intersección

• <u>PUNTO DE CONCURRENCIA</u> Es aquel punto en común de tres a más líneas.

P: punto de concurrencia

PUNTOS NOTABLES I

NOTA:

Si en un triangulo trazamos altura, mediana y una ceviana concurrentes en un punto, dicho punto es notable?

 Para que sea punto notable, las líneas tienen que ser de la misma especie. Bien alturas, bien medianas o bien bisectrices, pero no se pueden combinarse.

Por lo tanto P no es punto notable.

BARICENTRO:

Es aquel punto de concurrencia de las tres medianas en todo triángulo.

PUNTOS NOTABLES I

DEMOSTRACIÓN:

Para demostrar que P es baricentro, debemos demostrar que \overline{AR} es mediana.

Trazamos \overline{CL} // \overline{PQ} y como AQ=QC=a: \overline{PQ} : Base media del ΔCAL .

EI ΔPBR \cong ΔCLR (ALA): Con respecto a α :

m=n

 \overline{AR} es mediana

P: Baricentro

PUNTOS NOTABLES I

Del gráfico \overline{AP} , \overline{BQ} Y \overline{CR} son medianas de longitudes 9, 12 y 15 respectivamente. Calcule medida del ángulo menor entre \overline{AP} y \overline{CR} .

RESOLUCIÓN:

Nos piden la medida del ángulo menor entre \overline{AP} y \overline{CR} : X

Dato: \overline{AP} , \overline{BQ} Y \overline{CR} son medianas:

G: Baricentro

$$m \not \triangleleft PGC = X$$

Además: AG = 2(GP) AG=6 GP=3

BG = 2(GQ) BG=8 GQ=4 CG = 2(GR) CG=10 GR=5

- Prolongamos \overline{AP} hasta T, tal que PT=3.
- El \triangle GPB \cong \triangle TPC (LAL): Con respecto a α :

Entonces el △GTC es notable de 37° y 53°:

INCENTRO:

Es aquel punto de concurrencia de las tres bisectrices interiores en todo triángulo.

O: Incentro

r: Inradio

PUNTOS NOTABLES I

DEMOSTRACIÓN:

P: Incentro

PUNTOS NOTABLES I

Del gráfico, I es incentro del ⊿ABC. Si AM=MC y m∢IMA=45°. Calcule m∢ICA

RESOLUCIÓN:

Nos piden $m \not\subset ICA = \theta$

AM=MC=a*m*∢*IMA=45*°

> Como I es incentro del △ABC: **BI** Y **CI** son bisectrices interiores

$$m \not\triangleleft ABI = m \not\triangleleft IBC = 45^{\circ}$$

 $m \not\triangleleft ACI = m \not\triangleleft ICB = \theta$

Por lo tanto MIBC es inscriptible: $m \leq IBM = \theta$

En el ⊿ABC como AM=MC=a, por mediana relativa a la hipotenusa:

El ΔBMC es isósceles:

$$m \not \land MBC = 2\theta$$

Finalmente: $2\theta + \theta = 45^{\circ}$

$$\theta = 15^{\circ}$$

PUNTOS NOTABLES I

EXCENTRO:

Es aquel punto de concurrencia de dos bisectrices exteriores y una interior en todo triángulo.

Si \overline{BE} y \overline{CE} son bisectrices externas:

 \overline{AE} : Bisectriz interna

E: Excentro

• Si la \mathcal{C} es exinscrita al $\triangle ABC$ relativa al lado \overline{BC} :

O: Excentro r: Exradio

 α

Si $m \not \triangleleft BPC = 90^{\circ} - \frac{\theta}{2}$ \overline{CP} es bisectriz:

P: Excentro

PUNTOS NOTABLES I

RESOLUCIÓN:

Nos piden $m \triangleleft DAC = X$

• Analizando las medidas en B y C, prolongamos \overline{AB} y \overline{AC} :

• Por lo tanto \overline{BD} y \overline{CD} son bisectrices exteriores del $\triangle ABC$.

D: Excentro

• Entonces \overline{AD} es bisectriz interior:

$$m \triangleleft BAD = m \triangleleft DAQ = X$$

• En el ΔABC:

$$2X + 80^{\circ} + 70^{\circ} = 180^{\circ}$$

 $\therefore X = 15$

TEOREMAS ADICIONALES:

• Si I es incentro $\triangle ABC$ y prolongamos \overline{BI} tal que interseca en P a la G circunscrita al $\triangle ABC$.

$$a = b = c$$

PUNTOS NOTABLES I

• Si I es Incentro E es Excentro

A, I y E: Colineales

$$\theta$$
 = 90°

P es punto medio de \overline{IE}

X = Y