ゼミノート #12

Quotients of Algebraic Spaces

七条彰紀

2019年8月6日

目次

1	Notes on Topology	1
1.1 1.2	Constructible Topology	1
	Equivalence Relation on Topological Space Induced by Groupoid	
2	Quotients	3
2.1	Definitions	3
2.2	Propositions: Paraphase	5

1 Notes on Topology

1.1 Constructible Topology

以下を参考にした.

- [2] §1
- $\bullet \ \mathtt{http://virtualmath1.stanford.edu/``conrad/Perfseminar/Notes/L3.pdf \ by \ B. Conrad \\$
- [4] 08YF https://stacks.math.columbia.edu/tag/08YF

定義 1.1

X :: topological space とする.

- (i) X の locally closed subset とは、closed subset と open subset の共通部分で表せる subset である.
- (ii) X の constructible set とは、X の有限個の locally closed subset の和集合で表せる subset のことである.
- (iii) $U \subseteq X$ が X の locally constructible set であるとは, U のある開被覆 $\{U_i\}$ について, 各 $U \cap U_i$ が constructible set である, ということ.
- (iv) X の constructible topology とは、X の constructible set を開基とする位相のことである。X の underlying set に X の constructible topology を与えた位相空間を $X_{\rm cons}$ と書く.

- (v) 有限個とは限らない X の constructible set の、和集合を ind-constructible subset と呼び、共通部分を pro-constructible subset と呼ぶ^{†1}.
- (vi) map of topological spaces :: $f: X \to Y$ について、 f^{cons} を constructible topology での map とする。 (map of sets としては $f = f^{\text{cons}}$ である。)

命題 1.2

X:: topological space > > > >

- (i) $X \mathcal{O}$ open subset \mathcal{E} closed subset \mathcal{E} constructible set \mathcal{E} as \mathcal{E} .
- (ii) 有限個の constructible set の和, 共通部分は constructible set である. constructible set の補集合も constructible set である.
- (iii) X の constructible topology に於ける open subset は ind-constructible subset に限る. 同様に, closed subset は pro-constructible subset に限る.
- (iv) map of topological spaces :: $f: X \to Y$ はついて, f^{cons} :: continuous.

(証明). 自明. ■

- 命題 1.3 (i) qcqs(=quasi-compact and quasi-separated) scheme の pro-constructible subset は, affine scheme からの射の像に限る.
 - (ii) locally of finite presentation morphism は constructible topology において open.
 - (iii) quasi-compact morphism は constructible topology において closed.

(証明). (i) は Rydh10 の Prop1.1 である. (ii) は Chevalley's theorem からの帰結. (iii) は locally に調べれば容易に分かる. (iv) は (ii), (iii) からの帰結である. ■

注意 1.4

constructible topology は spectral space $^{\dagger 2}$ と共に扱われることが多い。例えば qcqs scheme の underlying space は spectral である.

命題 1.5

- [2] Prop1.7 morphism of schemes :: $f: X \to Y, g: Y' \to Y$ を考え、f の g による pullback を f' と書く.
 - (i) P を open, closed, submersive のいずれかとする. q が submersive ならば、f' :: P と f :: P は同値.
 - (ii) P を universally open, universally closed, universally submersive, separated のいずれかとする. g が universally submersive ならば、f' :: $P \geq f$:: P は同値.
 - (iii) g^{cons} が universally submersive ならば、f':: quasi-compact と f:: quasi-compact は同値.

(証明). (TODO) (iii) だけ証明を与える.

^{†1 &}quot;ind-"は inductive limit を意味し, "pro-"は projective limit を意味する.

^{†2} spectral space とは、以下の性質をもつ位相空間: sober, quasi-compact, the intersection of two quasi-compact opens is quasi-compact, and the collection of quasi-compact opens forms a basis for the topology ([4] 08FG).

注意 1.6

おそらく,[3] はこの命題を利用するために,topological quotient に「 q^{cons} :: universal submersive」を要求している.より詳しく言うと以下の命題で使われている.

命題 1.7 ([3] Prop2.12 (ii))

 $R \rightrightarrows_t^s X$:: groupoid とし、 $q: X \to Y$ を topological quotient とする. j :: quasi-compact と、Y :: quasi-separated かつ $j_{/Y}$:: quasi-compact は同値.

これを経由して, $X \to S$:: quasi-separated ならば GC quotient :: $Y \to S$ が quasi-separated であることなどを示している (Prop4.7).

1.2 Equivalence Relation on Topological Space Induced by Groupoid

S :: algebraic space とし、groupoid in algebraic S-space :: $R \rightrightarrows_t^s X$ を考える、topological space :: |U| に、次のようにして同値関係 \sim_R を定義する.

定義 1.8

点 $x_1, x_2 \in |X|$ について,

$$x_1 \sim_R x_2 \iff \exists r \in |R|, \ |s|(r) = x_1, |t|(r) = x_2$$

と定義する.

 $|R \times_x R| \to |R| \times_{|X|} |R|$ が全射であることを用いると、groupoid の定義から、 \sim_R が同値関係であることが分かる.

定義 1.9

点 $x\in |X|$ の同値類を orbit と呼び,R(x) と書く.R(x) は $|t|(|s|^{-1}(x))$ と等しい. また, $W\subseteq |X|$ が R-stable であるとは,W が \sim_R について stable であること.すなわち,

$$\{x \in |X| \mid \exists w \in W, \ w \sim_R x\} = R$$

となること. これは $|s|^{-1}(W) = |t|^{-1}(W)$ in |R| とも同値.

注意 1.10

|4| 04XJ には, $S = |X| \times_{|[X/R]|} |X|$ とすると位相空間として |[X/R]| = |X|/S,という命題が有る.

2 Quotients

以降は引き続き S :: algebraic space とし、groupoid in algebraic S-space :: $R \rightrightarrows_t^s X$ を考える.

2.1 Definitions

定義 2.1 (equivariant morphism)

morphism :: $q: X \to Y$ について、 $q \circ s = q \circ t$ であるとき、q を equivariant morphism という.

定義 **2.2** (j, j_Y)

 $s,t: R \to X$ から $X \times_S X$ の普遍性により得られる射 $:: R \to X \times_S X$ を j と書く.

また、equivariant morphism :: $q:X\to Y$ について、s,t から $X\times_Y X$ の普遍性により得られる射 :: $R\to X\times_Y X$ を $j_{/Y}$ と書く.

stabilizer はまたの機会に定義する.

注意 2.3

fiber product の普遍性から、 $j_{/Y}$ に $X \times_Y X \to X \times_S X$ を合成すると j に一致する.

注意 2.4

equivariant morphism :: $R \rightrightarrows_t^s X \to Y$ は、quotient stack からの射 $[X/R] \to Y$ に一対一に対応する. (TODO: proof)

定義 2.5

equivariant morphism :: $q: X \to Y$ を考える.

Zariski quotient

Constructible quotient

Topological quotient

Strongly topological quotient

Geometric quotient

Strongly geometric quotient

定義 2.6 (universal, uniform quotient)

 $q: X \to Y$ を上記のいずれかの quotient とする.

- 任意の射 $Y' \to Y$ による pullback :: $q' \colon X \times_Y Y' \to Y'$ も同じ種類の quotient であるとき, q は universal であると言う.
- 任意の flat 射 $Y' \to Y$ による pullback :: $q' \colon X \times_Y Y' \to Y'$ も同じ種類の quotient であるとき,q は uniform であると言う.

注意 2.7

 $j_{/Y}\colon X\times_Y X \to X\times_S X$ が universally submersive であることは, $X\times_Y X$ に適切な位相が入っていることを意味する.

注意 2.8

geometric quotient in [1]

- \bullet q :: surjective and equivariant.
- $\mathcal{O}_Y = (q_* \mathcal{O}_X)^R$.
- 任意の点 $y \in Y$ について, $q^{-1}(y)$ はただ一つの orbit からなる.
- $W_1, W_2 \subseteq X$:: disjoint closed subset について $\operatorname{cl}_Y(q(W_1)), \operatorname{cl}_Y(q(W_2))$:: disjoint.

以下のように言い換えても良い.

- \bullet q :: Zariski quotient.
- $\bullet \mathcal{O}_Y = (q_* \mathcal{O}_X)^R.$
- qの open immersion による pullback も上記を満たす.

ref. E.Viehweg "D. Mumford's Geometric Invariant Theory". なお, [1] の初版では q :: universally submersive を仮定している.

2.2 Propositions: Paraphase

命題 2.9 ([3], Prop2.3)

R-equivariant morphism :: $q: X \to Y$ を考える. 以下の $3 \times 3 = 9$ 個の命題を考える.

- (i) 任意の体 k と射 $y: k \to Y$ ^{†3}について $|X \times_Y k|$ は、 少なくとも 1 つの / 多くとも一つの / 丁度一つの、 $(R \times_Y k)$ -orbit を含む.
- (ii) q :: surjective / $j_{/Y}$:: surjective / $q, j_{/Y}$:: surjective.
- (iii) 任意の代数閉体 K について, $\bar{q}_K \colon X(K)/R(K) \to Y(K)$ †4は surjective / injective / bijective.

この時, $(iii) \implies (ii) \iff (i)$ がそれぞれ成り立つ. さらに $q,j_{/Y}$:: locally of finite type or integral ならば, $(iii) \iff (ii)$ も成り立つ.

(証明).

注意 2.10

したがって quotient の定義の幾つかは次のように書き換えられる.

q:: univ. Zariski \iff q:: univ. submersive and $j_{/Y}::$ surjective. q:: topological \iff $q,q^{\mathrm{cons}}::$ univ. submersive and $j_{/Y}::$ surjective.

q:: strongly topological \iff $q, q^{cons}, j_{/Y}::$ univ. submersive

補題 2.11

Remark 2.5 when univ. Zariski quot. is top. quot.?

命題 2.12

Prop2.10

参考文献

[1] David Mumford, John Fogarty, and Frances Kirwan. Geometric Invariant Theory (Ergebnisse der Mathematik und ihrer Grenzgebiete 34). Springer-Verlag, 3rd ed. edition, 1992.

 $^{^{\}dagger 3}$ Spec k を k と略した.

 $^{^{\}dagger 4}$ X(K)/R(K) は R(K) $\rightrightarrows_{t_K}^{s_K} X(K)$ の coequalizer で、 \bar{q}_K は coequalizer による $q_K \colon X(K) \to Y(K)$ の一意な分解である.

- [2] David Rydh. Submersions and effective descent of étale morphisms. Bulletin de la Société Mathématique de France, Vol. 138, No. 2, pp. 181–230, 2010.
- [3] David Rydh. Existence and properties of geometric quotients. *Journal of Algebraic Geometry*, Vol. 22, pp. 629–669, 08 2013.
- [4] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2019.