1. Markov random fields and Gibbs distributions

Let $\{\underline{X}_t : t \in T\}$ be a finite collection of random variables—a stochastic process—with X_t taking values in a finite set \underline{S}_t . For simplicity of notation, suppose the index set T is $\{1, 2, ..., n\}$ and $S_t = \{0, 1, ..., m_t\}$. The joint distribution of the variables is

$$\mathbb{Q}\{\mathbf{x}\} = \mathbb{P}\{X_t \equiv x_t \text{ for } t \in T\}$$
 where $\mathbf{x} = (x_1, \dots, x_n)$,

with $0 \le x_t \le m_t$. More formally, the vector $\mathbf{X} = (X_1, \dots, X_n)$ takes values in $\mathcal{X} = \prod_{t \in T} \mathcal{S}_t$, the set of all *n*-tuples $\mathbf{x} = (x_1, \dots, x_n)$ with $x_t \in \mathcal{S}_t$ for each t.

Suppose T is the set of nodes of a graph. Let \underline{N}_t denote the set of nodes (the neighbors of t) for which (t, s) is an edge of the graph.

- <1> Definition. The process is said to be a Markov random field if
 - (i) $\mathbb{Q}\{\mathbf{x}\} \ge 0$ for every \mathbf{x} in $\underline{\mathcal{X}}$
 - (ii) for each t and x,

$$\underline{\mathbb{P}}\{\underline{X_t} \equiv \underline{x_t} \mid \underline{X_s} \equiv \underline{x_s} \text{ for } \underline{s} \neq \underline{t}\} = \underline{\mathbb{P}}\{\underline{X_t} \equiv \underline{x_t} \mid \underline{X_s} \equiv \underline{x_s} \text{ for } \underline{s} \in \underline{\mathcal{N}_s}\}.$$

Property (ii) is equivalent to the requirement:

 $\underbrace{\text{(ii)}^t}_{only\ on\ x_s\ for\ s}\underbrace{\text{for}\ s}_{\underline{s}\ \underline{t}} \underbrace{\{\underline{t}\} \cup \underline{N}_t}_{\underline{t}} = \underline{x}_{\underline{t}} \mid \underline{X}_{\underline{s}} \equiv \underline{x}_{\underline{s}}\ \underline{\text{for}\ s} \in \underline{N}_{\underline{s}}\} \ \underline{\text{depends}}_{\underline{s}}$

A subset A of T is said to be *complete* if each pair of vertices in A defines an edge of the graph. Write \mathcal{C} for the collection of all complete subsets.

<2> **Definition.** The probability distribution \mathbb{Q} is called a *Gibbs distribution* for the graph if it can be written in the form

$$\mathbb{Q}\{\underline{\mathbf{x}}\} = \prod_{A \in \mathcal{C}} \underline{V_A}(\underline{\mathbf{x}}),$$

where each V_A is a positive function that depends on \mathbf{x} only through the coordinates $\{x_t : t \in A\}$.

The Hammersley-Clifford Theorem asserts that the process $\{X_t : t \in T\}$ is a Markov random field if and only if the corresponding \mathbb{Q} is a Gibbs distribution.

It is mostly a matter of bookkeeping to show that every Gibbs distribution defines a Markov random field.

<3> **Example.** With only a slight abuse of notation, we may write $V_A(\mathbf{x})$ as $V_A(x_{i_1}, \ldots, x_{i_k})$ if $A = \{i_1, \ldots, i_k\}$, ignoring the arguments that do not affect V_A . Suppose $\mathcal{N}_1 = \{2, 3\}$. Consider the variables x_j that actually appear in the conditional probability

$$\mathbb{P}\{X_1 = x_1 \mid X_2 = x_2, X_3 = x_3, \dots, X_n = x_n\}
= \frac{\mathbb{P}\{X_1 = x_1, X_2 = x_2, X_3 = x_3, \dots, X_n = x_n\}}{\mathbb{P}\{X_2 = x_2, X_3 = x_3, \dots, X_n = x_n\}}
= \frac{\prod_{A \in \mathcal{C}} V_A(x_1, x_2, \dots, x_n)}{\sum_w \prod_{A \in \mathcal{C}} V_A(w, x_2, \dots, x_n)}$$

For example, which terms actually involve the value x_4 ? By assumption, V_A depends on x_4 only if $4 \in A$. For such an A, we cannot also have $1 \in A$, because then we would have (1,4) as an edge of the graph, contradicting the assumption that $4 \notin \mathcal{N}_1$. For concreteness, suppose $A = \{4,7,19\}$. Then $V_A(x_4, x_7, x_{19})$ appears once as a factor in the numerator and once as a factor in each summand in the denominator. It cancels from the ratio.

The only factors that do not cancel are those for which $1 \in A$. By definition of a complete subset, those factors can depend only on x_j values for $j \in \{1\} \cup \mathcal{N}_1$.

It is slightly harder to show that every Markov random field corresponds to some Gibbs distribution. The simplest proof that I know depends on a general representation of a function as a sum of simpler functions.

<4> Lemma. Let g be any real-valued function on \underline{X} . For each subset $\underline{A} \subseteq \underline{S}$ define

$$\underline{g}_{\underline{A}}(\underline{\mathbf{x}}) \equiv \underline{g}(\underline{\mathbf{y}})$$
 where $\underline{y}_{\underline{i}} \equiv \begin{cases} \underline{x}_{\underline{i}} & \text{if } \underline{i} \in \underline{A} \\ 0 & \text{if } \underline{i} \in \underline{A} \end{cases}$

and

$$\underline{\Psi}_{\underline{A}}(\underline{\mathbf{x}}) \equiv \sum_{\underline{B} \subseteq \underline{A}} (-\underline{1})^{\underline{\#(\underline{A} \setminus \underline{B})}} g_{\underline{B}}(\underline{\mathbf{x}}).$$

Then

(i) the function $\underline{\Psi}_{\underline{A}}$ depends on \mathbf{x} only through those coordinates x_j with $j \in A$ (in particular, $\underline{\Psi}_{\emptyset}$ is a constant)

(ii) for $A \neq \emptyset$, if $x_i \equiv 0$ for at least one i in A then $\Psi_A(\mathbf{x}) \equiv 0$

$$\underline{\text{(iii)}} \ \ g(\mathbf{x}) \equiv \sum_{\underline{A} \subseteq \underline{T}} \underline{\Psi}_{\underline{A}}(\mathbf{x})$$
 x can be looked as a constant in this equal

Proof. Assertion (i) is trivial: every g_B appearing in the definition of $\Psi_A(\mathbf{x})$ does not depend on the variables $\{x_i : j \notin A\}$.

For (ii), divide the subsets of A into two subcollections: those that contain i and those that do not contain i. For each B of the first type there is a unique set, $\tilde{B} = \{i\} \cup B$, of the second type. Note that $g_B(\mathbf{x}) = g_{\tilde{B}}(\mathbf{x})$ because $x_i = 0$. The contributions to $\Psi_A(\mathbf{x})$ from the sets B, \tilde{B} cancel, because one of the two numbers $\#A \setminus B$ and $\#A \setminus \tilde{B}$ is odd and the other is even.

For (iii), note that the coefficient of g_B in the double sum

$$\sum_{A\subseteq T} \Psi_A(\mathbf{x}) = \sum_{A\subseteq T} \sum_{B\subseteq A} (-1)^{\#(A\setminus B)} g_B(\mathbf{x})$$

equals

$$\sum\nolimits_{A}\{B\subseteq A\subseteq T\}(-1)^{\#(A\backslash B)}=\sum\nolimits_{E\subset B^{c}}(-1)^{\#E}.$$

For B equal to T, the last sum reduces to $(-1)^0$ because \emptyset is the only subset of T^c . For $B^c \neq \emptyset$, half of the subsets E have #E even and the other half have #E odd, which reduces the coefficient to 0. Thus the double sum <5> simplifies to $g_T(\mathbf{x}) = g(\mathbf{x})$.

Applying the Lemma with $g(y) \equiv \log \mathbb{Q}\{y\}$ gives

$$\mathbb{Q}\{\underline{\mathbf{x}}\} = \exp\left(\sum_{A\subseteq\mathbb{I}} \underline{\Psi}_{\underline{A}}(\underline{\mathbf{x}})\right)$$

To show that the expression on the right-hand side is a Gibbs distribution, we have only to prove that $\underline{\Psi}_{\underline{A}}(\underline{\mathbf{x}}) \equiv \underline{0}$ when \underline{A} is not a complete subset of the graph.

<7> Theorem. For a Markov random field, the term $\underline{\Psi}_{\underline{A}}$ in $\underline{<6>}$ is identically zero if A is not a complete subset of T.

Proof. For simplicity of notation, suppose $1, 2 \in A$ but nodes 1 and 2 are not connected by an edge of the graph, that is, they are not neighbors. Consider the contributions to $\Psi_A(\mathbf{x})$ from pairs B, \tilde{B} , where $1 \notin B$ and $\tilde{B} = B \cup \{1\}$. The numbers $\#A \setminus B$ and $\#A \setminus B$ differ by 1; the pair contributes $\pm \left(g_{\tilde{B}}(\mathbf{x}) - g_B(\mathbf{x})\right)$ to the sum. Define

$$y_i = \begin{cases} x_i & \text{if } i \in B \\ 0 & \text{if } i \in B^c \end{cases}$$

<<u>6</u>>

< 5>

15 February 2004

for any B < T, the sum = $1 + (-1)C_{\#B^c}^1 +$

= 0

(-1)^2C_{#B^c}^2 + ...

 $= (1-1)^{HB^c}$

Then

$$g_{\tilde{B}}(\mathbf{x}) - g_{B}(\mathbf{x}) = \log \frac{\mathbb{P}\{X_{1} = x_{1}, X_{2} = y_{2}, \dots, X_{n} = y_{n}\}}{\mathbb{P}\{X_{1} = 0, X_{2} = y_{2}, \dots, X_{n} = y_{n}\}}$$
$$= \log \frac{\mathbb{P}\{X_{1} = x_{1} \mid X_{2} = y_{2}, \dots, X_{n} = y_{n}\}}{\mathbb{P}\{X_{1} = 0 \mid X_{2} = y_{2}, \dots, X_{n} = y_{n}\}}$$

A common factor of $\mathbb{P}\{X_2=y_2,\ldots,X_n=y_n\}$ has cancelled from numerator and denominator.

The Markov property ensures that the conditional probabilities in the last ratio do not depend on the value y_2 . The ratio is unchanged if we replace y_2 by 0. The same argument works for every B, \tilde{B} pair. Thus $\Psi_A(\mathbf{x})$ is unchanged if we put x_2 equal to 0. From Lemma <4> (ii), deduce that $\Psi_A(\mathbf{x}) = 0$ for all \mathbf{x} , as asserted.

References

Griffeath, D. (1976), *Introduction to Markov Random Fields*, Springer. Chapter 12 of *Denumerable Markov Chains* by Kemeny, Knapp, and Snell (2nd edition).