

SOLID STATE MATTARELLI: 340134 OPTOELECTRONICS

#11F1, (H11F2,) H11F3

Photon Coupled Bilateral Analog FET

The General Electric H11F family consists of a gallium arsenide infrared emitting diode coupled to a symmetrical bilateral silicon photo detector. The detector is electrically isolated from the input and performs like an ideal isolated FET designed for distortion-free control of low level A.C. and D.C. analog signals.

FEATURES:

As a Remote Variable Resistor -

- $\leq 100\Omega$ to ≥ 300 M Ω
- ≥ 99.9% Linearity
- ≤ 15 pF Shunt Capacitance
- ≥ 100G Ω I/O Isolation Resistance

As An Analog Signal Switch -

- · Extremely Low Offset Voltage
- 60V pk-pk Signal Capability
- No Charge Injection or Latchup
- $t_{\rm on}, t_{\rm off} \le 15 \mu {\rm sec.}$

Absolute Maximum Ratings: (25°C Unless Otherwise Specified)

INFRARED EMITTING DIODE	4	
Power Dissipation	$T_A = 25^{\circ}C$	*150 milliwatts
Forward Current (Continuous)		⋒60 milliamps
Forward Current (Peak)		and the same of th
(Pulse Width 100µsec 100 pps)		500 milliamps
Forward Current (Peak)		
(Pulse Width 1µsec 300 pps)		3 amps
Reverse Voltage		6 volts
*Derate 2.0 mW/°C above 25°C.		·

PHOTO DETECTOR	
Power Dissipation Breakdown Voltage	$T_A = 25^{\circ}C$ **300 milliwatts
H11F1 - H11F2 H11F3	± 30 volts
Detector Current (Continuous) **Perate 4.0 mW/°C above 25°C	± 15 volts # ±100 milliamps

TOTAL DEVICE		
Storage Temperature Operating Temperature		-55 to +150°C -55 to +100°C
Lead Soldering Time (at	260°C),	10 Seconds
Surge Isolation Voltage (H11F1-H11F2	Input to Output) 2500 V _(peak)	1770 V _(RMS)
H11F3 Steady-State Isolation Vo	1500 V(pagk)	1060 V
H11F1-H11F2	1500 V _(peak)	1060 V _(RMS)
H11F3	1000 V _(peak)	700 V _(RMS)

SYMBOL -	MILLIMETERS		LIMETERS INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.	NOTES
A	8.38	8.89	.330	.350	
В	7.62	7.62 REF.		REF.	1
C	-	8.64	-	.340	2
D	.406	.508	.016	.020	1
E	-	5.08	-	.200	3
F	1.01	1.78	.040	.070	
G	2.28	2.80	.090	.110	
Н	-	2.16	-	.085	4
J	.203	.305	.008	.012	
K	2.54	-	.100	-	
M	-	15°	-	15°	
N	381	-	.015	-	
P	-	9.53	*	.375	
R	2.92	3.43	.115	.135	
S	6.10	6.86	.240	.270	

NOTES:

- 1. INSTALLED POSITION LEAD-CENTERS.
- 2. OVERALL INSTALLED DIMENSION.
- 3. THESE MEASUREMENTS ARE MADE FROM THE SEATING PLANE.
- 4. FOUR PLACES.

TYPICAL LOW LEVEL OUTPUT CHARACTERISTIC

SuCovered under U.L. component recognition program, reference file E51868

VDE Approved to 0883/6.80 0110b Certificate # 35025

INFRARED EMITTING DIODE	TYP.	MAX.	UNITS
Forward Voltage (I _F = 16 mA)	1.1	1.75	volts
Reverse Current (V _R = 6V)	-	10	microamps
Capacitance (V = 0, f = 1 MHz)	50		picofarads

PHOTO-DETECTOR (Either Polarity)	MIN.	MAX.	UNITS
Breakdown Voltage- $V_{(BR)}$ 46 $(I_{46} = 10\mu A; I_F = 0)$ - F1,2 - F3 Off-State Dark Current - I_{46} $(V_{46} = 15V; I_F = 0; T_A = 25^{\circ}C)$ $(V_{46} = 15V; I_F = 0; T_A = 100^{\circ}C)$	30 15	50	volts volts
Off-State Resistance $- r_{46}$ $(V_{46} = 15V; I_F = 0)$ Capacitance $- C_{46}$ $(V_{46} = 0, I_F = 0, f = 1 MHz)$	300	50	microamps megohms picofarads

Coupled Electrical Characteristics: (25°C)

On-State Resistance - r46	**	MIN.	TYP.	MAX.	UNITS
$(I_F = 16 \text{mA}, I_{46} = 100 \mu\text{A})$ On-State Resistance $-I_{6A}$	H11F1 H11F2 H11F3	. 111	1.11	200 330 470	ohms ohms ohms
$(I_F = 16 \text{ mA}, I_{64} = 100 \mu\text{A})$ Isolation Resistance (Input to Output) $(V_{11O} = 500V)$	H11F1 H11F2 H11F3	- - - - -	111	200 - 330 470	ohms ohms ohms
Input to Output Capacitance (V _{IO} = 0, f = 1 MHz)		100	-	-	gigohms
Furn-On Time $-t_{on}$ (I _F = 16mA, R _L = 50 Ω , V ₄₆ = 5V)		-	-	2	picofarads
Furn-Off Time $-t_{off}$ ($I_F = 16 \text{mA}, R_L = 50 \Omega, V_{46} = 5 V$)		-	-	15	microseconds
Resistance, Non-Linearity and Asymmetry $(I_F = 16 \text{ mA}, i_{46} = 25 \mu \text{A RMS}, f = 1 \text{ KHz})$		-		15	microseconds
, and a second	*		-	0.1	percent

TYPICAL CHARACTERISTICS (25°C) - EITHER POLARITY

2. OUTPUT CHARACTERISTICS

H11F1, H11F2, H11F3

3. RESISTANCE VS. TEMPERATURE

4. REGION OF LINEAR RESISTANCE

5. OFF-STATE CURRENT VS. TEMPERATURE

6. FORWARD VOLTAGE VS. FORWARD CURRENT

7. RESISTIVE NON-LINEARITY VS. D.C. BIAS

AS AN ANALOG SIGNAL SWITCH

ISOLATED SAMPLE AND HOLD CIRCUIT

ISOLATED VARIABLE ATTENUATORS

Distortion free attenuation of low level A.C. signals is accomplished by varying the IRED current, I_F. Note the wide dynamic range and absence of coupling capacitors; D.C. level shifting or parasitic feedback to the controlling function.

V_{IN} V_{OUT} IF V_{OUT} IF V_{OUT} IF

Accuracy and range are improved over conventional FET switches because the H11F has no charge injection from the control signal. The H11F also provides switching of either polarity input signal up to 30V magnitude.

AUTOMATIC GAIN CONTROL

This simple circuit provides over 70db of stable gain control for an AGC signal range of from 0 to 30mA. This basic circuit can be used to provide programmable fade and attack for electronic music and can be modified with six components to a high performance compression amplifier.

MULTIPLEXED, OPTICALLY-ISOLATED A/D CONVERSION

The optical isolation, linearity and low offset voltage of the H11F allows the remote multiplexing of low level analog signals from such transducers as thermocouplers, Hall effect devices, strain gauges, etc. to a single A/D converter.

ACTIVE FILTER FINE TUNING/BAND SWITCHING

The linearity of resistance and the low offset voltage of the H11F allows the remote tuning or band-switching of active filters without switching glitches or distortion. This schematic illustrates the concept, with current to the H11F1 IRED's controlling the filter's transfer characteristic.

TEST EQUIPMENT - KELVIN CONTACT POLARITY

In many test equipment designs the auto polarity function uses reed relay contacts to switch the Kelvin Contact polarity. These reeds are normally one of the highest maintenance cost items due to sticking contacts and mechanical problems. The totally solid-state H11F eliminates these troubles while providing faster switching.