000000

Formalizing Typing Rules for Natural Languages using Effects

Matthieu Boyer

18th April 2025 at CLaY

Plan

Introduction

Mathematical Background

Effects, Semantics

La suite

What the hell am I doing?

A semantic theory for natural language is generally defined by three components:

► A syntax, for the generation of grammatical expressions, which we will not really discuss

A semantic theory for natural language is generally defined by three components:

- A syntax, for the generation of grammatical expressions, which we will not really discuss
- ► A lexicon, for defining the meanings of individual expressions, which we will discuss by necessity

A semantic theory for natural language is generally defined by three components:

- A syntax, for the generation of grammatical expressions, which we will not really discuss
- ► A lexicon, for defining the meanings of individual expressions, which we will discuss by necessity
- ▶ A theory of composition, describing how the meanings of complex expressions are built from their parts.

A semantic theory for natural language is generally defined by three components:

- A syntax, for the generation of grammatical expressions, which we will not really discuss
- ► A lexicon, for defining the meanings of individual expressions, which we will discuss by necessity
- ▶ A theory of composition, describing how the meanings of complex expressions are built from their parts.

We will call the pair (syntax, lexicon) the language.

However this generates new difficulties:

- (1) Every planet shines.
- (2) A planet shines.
- (3) No planet shines.

This means in particular that **Every**, **A** and **No** should all have the same type \mathbf{e} since **shines** has type $\mathbf{e} \to \mathbf{t}$.

However this generates new difficulties:

- (4) Every planet shines.
- (5) A planet shines.
- (6) No planet shines.

This means in particular that **Every**, **A** and **No** should all have the same type \mathbf{e} since **shines** has type $\mathbf{e} \to \mathbf{t}$. We will in this presentation provide a computable extension of usual theories of composition, based on a type and effect system to avoid this issue, based on [?].

Plan

Introduction

Mathematical Background

Effects, Semantics

La suite

Plan

Mathematical Background Category Theory

Definition 2.1 — **Category.** A (small) *category* is described by the following data:

0 A class of objects (nodes of a graph).

Definition 2.2 — **Category.** A (small) *category* is described by the following data:

- 0 A class of objects (nodes of a graph).
- 1 For a pair A,B of objects, a set $\mathrm{Hom}(A,B)$ of functions from A to B called *morphisms*, *maps* or *arrows*. We denote it by $f:A\to B$ or $A\xrightarrow{f}B$.

Definition 2.3 — **Category.** A (small) *category* is described by the following data:

- 0 A class of objects (nodes of a graph).
- 1 For a pair A,B of objects, a set $\mathrm{Hom}(A,B)$ of functions from A to B called *morphisms*, *maps* or *arrows*. We denote it by $f:A\to B$ or $A\xrightarrow{f}B$.
- 2 For all triplets A, B, C, a composition law $\circ_{A,B,C}$:

$$\operatorname{Hom}(B,C) \times \operatorname{Hom}(A,B) \to \operatorname{Hom}(A,C)$$

 $(g,f) \mapsto g \circ f$

Definition 2.4 — **Category.** A (small) *category* is described by the following data:

- 0 A class of objects (nodes of a graph).
- 1 For a pair A,B of objects, a set $\operatorname{Hom}(A,B)$ of functions from A to B called *morphisms*, *maps* or *arrows*. We denote it by $f:A\to B$ or $A\xrightarrow{f}B$.
- 2 For all triplets A, B, C, a composition law $\circ_{A,B,C}$:

$$\operatorname{Hom}(B,C) \times \operatorname{Hom}(A,B) \to \operatorname{Hom}(A,C)$$

 $(g,f) \mapsto g \circ f$

2 For all objects A, an identity map $id_A \in Hom(A, A)$.

Definition 2.5 — **Category.** A (small) *category* is described by the following data:

3 Associativity: $f \circ (g \circ h) = (f \circ g) \circ h = f \circ g \circ h$

Definition 2.6 — **Category.** A (small) *category* is described by the following data:

- 3 Associativity: $f \circ (g \circ h) = (f \circ g) \circ h = f \circ g \circ h$
- 3 Unitarity: $f \circ id_A = f = id_B \circ f$.

A few examples of categories are:

Set whose objects are Sets and arrows are functions between sets.

A few examples of categories are:

- Set whose objects are Sets and arrows are functions between sets.
- Top whose objects are Topological Spaces and arrows are continuous maps between those.

A few examples of categories are:

- Set whose objects are Sets and arrows are functions between sets.
- Top whose objects are Topological Spaces and arrows are continuous maps between those.
- Grp whose objects are Groups and arrows are Group Homomorphisms.

A few examples of categories are:

- Set whose objects are Sets and arrows are functions between sets.
- Top whose objects are Topological Spaces and arrows are continuous maps between those.
- Grp whose objects are Groups and arrows are Group Homomorphisms.
- Vec whose objects are Vector Spaces on a field k and arrows are Linear Maps.

Commuter Rail, basically

The right language for categories is the commutative diagram one. The associativity rewrites as:

Commuter Rail, basically

In Set we have the following commutative diagram:

$$\begin{array}{ccc} \mathbb{R} & \xrightarrow{\times 2} & \mathbb{R} \\ .^2 \downarrow & & \downarrow .^2 \\ \mathbb{R}^+ & \xrightarrow{\times 4} & \mathbb{R}^+ \end{array}$$

Commuter Rail, basically

In Set we have the following commutative diagram:

$$\mathbb{R} \xrightarrow{\times 2} \mathbb{R}$$

$$.^{2} \downarrow \qquad \qquad \downarrow .^{2}$$

$$\mathbb{R}^{+} \xrightarrow{\times 4} \mathbb{R}^{+}$$

It simply states that:

$$\forall x \in \mathbb{R}, \left(2x^2\right) = 4x^2$$

Of wolf, and man.

Definition 2.7 Let \mathcal{A}, \mathcal{B} be two categories. A functor $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ is:

- 0 An object $F(A) \in \mathcal{B}$ for each object A of \mathcal{A} .
- 1 For each pair $A_1, A_2 \in \mathcal{A}$, a function:

$$F_{A_1,A_2}: \operatorname{Hom}_{\mathcal{A}}(A_1,A_2) \to \operatorname{Hom}_{\mathcal{B}}(FA_1,FA_2)$$

 $f \mapsto F(f)$

Of wolf, and man.

We ask the following equations to be satisfied:

$$F(g\circ f)=F(g)\circ F(f),$$
 that is

$$\begin{array}{ccc} A & \xrightarrow{g} & B & \xrightarrow{f} & C \\ \downarrow_F & & \downarrow_F & & \downarrow_F \\ FA & \xrightarrow{Fg} & FB & \xrightarrow{Ff} & FC \end{array}$$

and
$$F(\mathrm{id}_A) = \mathrm{id}_{F(A)}$$

0000000

O.K. Corral

Definition 2.8 A natural transformation is a functor in the category of small categories and functors. If $F,G:\mathcal{A}\Rightarrow\mathcal{B}$ are functors, a natural transformation θ from F to G is, for each object of \mathcal{A} a function θ_A such that the following diagram commutes for all $f:A\to B$.

$$\begin{array}{ccc}
FA & \xrightarrow{Ff} & FB \\
\theta_A \downarrow & & \downarrow \theta_B \\
GA & \xrightarrow{Gf} & GB
\end{array}$$

O.K. Corral

Definition 2.9 An adjunction $L\dashv R$ between two functors $L:\mathcal{A}\to\mathcal{B}$ and $R:\mathcal{B}\to\mathcal{A}$ is a pair of natural transformations $\eta:\mathrm{Id}_{\mathcal{A}}\Rightarrow R\circ L$ and $\varepsilon:L\circ R\Rightarrow\mathrm{Id}_{\mathcal{B}}$ verifying the zigzag equations:

Plan

Introduction

Mathematical Background

Category Theory

Type Theory

Effects, Semantics

La suite

000000 000000

Yu-Gi-Oh

Definition 2.10 A product of two objects A and B in a category φ is a triplet

$$(A \times B, \pi_1 : A \times B \to A, \pi_2 : A \times B \to B)$$

$$A \xrightarrow{\pi_1} B$$

such that for all pair of arrows $X \xrightarrow{f} A$ et $X \xrightarrow{g} B$, there is a unique $h: X \to A \times B$ such that $f = \pi_1 \circ h, g = \pi_2 \circ h$.

00000 000000

Magic

Definition 2.11 A terminal object $\mathbb{1}$ in a category $\Gamma \vdash$ is an object such that for all A in $\Gamma \vdash$ there is one and only one arrow $A \to \mathbb{1}$.

An initial object is the same thing with the arrows reversed.

Definition 2.12 A category is cartesian if all products exist and it has a terminal object 1.

Cartesian products and terminal objects are unique, up to isomorphism.

Go Fish

Definition 2.13 A cartesian closed category is a cartesian category where we define for each object A a functor $A\Rightarrow\Gamma\vdash\to\Gamma\vdash$ right adjunct to $A\times\Gamma\vdash\to\Gamma\vdash$. This means we have bijections $\Phi_{X,Y}:\operatorname{Hom}(A\times X,Y)\to\operatorname{Hom}(X,A\Rightarrow Y)$ called currification bijections..

Go Fish

Definition 2.14 A cartesian closed category is a cartesian category where we define for each object A a functor $A\Rightarrow\Gamma\vdash\to\Gamma\vdash$ right adjunct to $A\times\Gamma\vdash\to\Gamma\vdash$. This means we have bijections $\Phi_{X,Y}:\operatorname{Hom}(A\times X,Y)\to\operatorname{Hom}(X,A\Rightarrow Y)$ called currification bijections.

Set is a cartesian closed category, where currification is defined by the partial application of high arity functions to a subset of their arguments.

Type Theory

Use the Types, Luke

Use the Types, Luke

Definition 2.16 We give ourselves a set of type variables TyVar and define types by:

$$\begin{array}{rcl} A,B & ::= & \alpha \in TyVar \\ & \mid & A \times B \\ & \mid & \mathbb{1} \\ & \mid & A \Rightarrow B \end{array}$$

A context $M = x_1 : A_1, \dots, x_n : A_n$ is a list of pairs $x_i : A_i$ with a variable x_i and a type A_i , all the variables being different.

0000000 0000000

Fudge Supreme

Definition 2.17 A typing $\Gamma \vdash M: A$ is a triplet composed of a context Γ , a λ -term M and a type A, such that all free variables of M are in Γ . A proof tree for a typing judgement is constructed inductively from a set of rules of the form:

$$\frac{}{x:A \vdash x:A}$$
 Var

$$\frac{\Gamma \vdash M : A \Rightarrow B \qquad \Delta \vdash N : A}{\Gamma, \Delta \vdash App(M,N) : B} \quad \mathsf{App}$$

Abstract Concrete

We will place ourselves in the functional programming paradigm, where everything is a function. Let $(\mathcal{C},\times,\perp,\Rightarrow)$ be a cartesian closed category. The type variables are the object of our category.

 $\tilde{O}\tilde{O}\tilde{O}\tilde{O}\tilde{O}\tilde{O}$

Abstract Concrete

We will place ourselves in the functional programming paradigm, where everything is a function. Let $(\mathcal{C}, \times, \perp, \Rightarrow)$ be a cartesian closed category. The type variables are the object of our category. The type of an arrow $A \xrightarrow{f} B$ is $A \Rightarrow B \in \mathcal{C}$. For constants of type A in our language, we can also say their type is $\bot \to A$ to keep the function interpretation.

Plan

Introduction

Mathematical Background

Effects, Semantics

La suite

Plan

Introduction

Mathematical Background

Effects, Semantics
Integrating Effects

Handling Effects and Non-Determinism

La suite

Underfull hbox

A side-effect is something that results from a computation without it being its actual return value. It could be:

A side-effect is something that results from a computation without it being its actual return value. It could be:

The printing of a value to the console;

Underfull hbox

A side-effect is something that results from a computation without it being its actual return value. It could be:

- The printing of a value to the console;
- ► The modification of a variable in memory;

A side-effect is something that results from a computation without it being its actual return value. It could be:

- The printing of a value to the console;
- The modification of a variable in memory;
- Non-determinism in the result.

A side-effect is something that results from a computation without it being its actual return value. It could be:

- The printing of a value to the console;
- The modification of a variable in memory;
- Non-determinism in the result.

A way to model effects when in a typing category is by using functors [?].

Liberty

Let \mathcal{L} be our language:

- \triangleright $\mathcal{O}(\mathcal{L})$ is the set of words in the language whose semantic representation is a function.
- \triangleright $\mathcal{F}(\mathcal{L})$ the set of words whose semantic representation is a functor.

Let \mathcal{C} be a cartesian closed category adapted for our language.

Liberty

Let \mathcal{L} be our language:

- $ightharpoonup \mathcal{O}\left(\mathcal{L}
 ight)$ is the set of words in the language whose semantic representation is a function.
- $ightharpoonup \mathcal{F}(\mathcal{L})$ the set of words whose semantic representation is a functor.

Let $\mathcal C$ be a cartesian closed category adapted for our language.

Let $\bar{\mathcal{C}}$ the free categorical closure of $\mathcal{F}\left(\mathcal{L}\right)\left(\mathcal{O}\left(\mathcal{L}\right)\right)$.

Then our types are defined as: $\star = \mathrm{Obj}\left(\bar{\mathcal{C}}\right)/\mathcal{F}\left(\mathcal{L}\right)$.

Let
$$\star_0 = \mathrm{Obj}(\mathcal{C})$$
.

We get a subtyping relationship based on the procedure used to construct $\bar{\mathcal{C}}$.