FOCS Notes Lecture 1/28/2020

Α	gen	da:

- What is induction?
- What do we need it for
- The principle of induction. "Toppling the dominos"
- The template for proof by Induction
- Examples
- Induction and the well-ordering principle, with an example of the smallest counter-example

Contents

	Introduction 1.1 Dispensing postage using 5 and 7 cent stamps	1
2	Statements we may prove by Induction 2.1 Is $4^n - 1$ divisible by 3 if $n \ge 1$?	2
3	Template for Proof by Induction	2
4		3
	$4.1 \sum_{i=1}^{\infty} i \dots $	
	4.2 $S(n) = 1^2 + 2^2 + \dots + n^2$	3
		J
9	Induction and Axioms	4

1 Introduction

1.1 Dispensing postage using 5 and 7 cent stamps

19 cents: 5, 7, 7 20 cents: 5 5 5 5 21 cents: 7 7 7 22 cents: 5 5 5 7 23 cents: ?

Claim: 23 cents cannot be achieved using 5 and 7 cent stamps $\iff \forall (x,y) \in \mathbb{N}_0 : 23 \neq 5x + 7y$

Proof. Direct proof, by enumeration. Clearly x must be ≤ 5 if it solves the equation, so consider $x \in \{0, 1, ..., 5\}$ and show that the corresponding y is non-integral.

From tinkering, we convince ourselves that any amount of postage greater than 23 cents can be written using 5 and 7 cent stamps

$$\forall n \in \mathbb{N}, n > 23 : (\exists (x, y) \in \mathbb{N}_0 : n = 5x + 7y)$$

2 Statements we may prove by Induction

Predicate	Proposition
(i) $P(n)$: "5 and 7 cent stamps can make postage n "	$\forall n \ge 24 : P(n)$
(ii) $P(n)$: " $n^2 + n + 41$ is a prime number"	$\forall n \geq 1 : P(n)$
(iii) $P(n)$: " $4^n - 1$ is divisible by 3"	$\forall n > 1 : P(n)$

2.1 Is $4^n - 1$ divisible by 3 if n > 1?

Last class we proved: If $4^n - 1$ is divisible by 3 then $4^{n+1} - 1$ is divisible by 3

We proved, therefore $\forall n \in \mathbb{N} : P(n) \to P(n+1)$ (*)

We also see that P(1) is true

This together with (*) allows us to see P(2) is true, then P(3) is true, ...

To make the leap that P(1) true and $\forall n: P(n) \to P(n+1)$ implies $\forall n: P(n)$, we use the principle of induction

Principle of Induction

- (i) If P(n) is a predicate on \mathbb{N} , and
- (ii) $\forall n \geq b : P(n) \rightarrow P(n+1)$, and \leftarrow induction step
- (iii) P(b) is true \leftarrow base step

then we conclude that $\forall n \geq b : P(n)$.

Using the principle of induction, we conclude that $4^n - 1$ is divisible by 3 for all $n \ge 1$

3 Template for Proof by Induction

 $\forall n \ge 1 : P(n)$

Proof

- (1) We use proof by induction to prove $\forall n \geq 1 : P(n)$
- (2) Establish that P(1) is true
- (3) Show that $P(n) \to P(n+1)$. Prove this implication directly of by contraposition <u>Direct</u>
 - Assume P(n) is true
 - Via mathematically valid derivations conclude P(n+1) is true

Contrapostion

- Assume P(n+1) is false
- ullet Via valid derivations show P(n) is false as well
- (4) State that by the principle of induction, $\forall n \geq : P(n)$

4 Examples

4.1
$$\sum_{i=1}^{n} i$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Proof. We prove this via induction. First, we establish out base case. Let $n = 1, P(1) : \sum_{i=1}^{1} i = \frac{1(1+1)}{2} = 1$ so our base case is true. We now establish our inductive step, then $P(n) \to P(n+1)$.

We will use a direct proof. Assume P(n) is true, that is, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. We now have that $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{1}{2}n(n+1) + (n+1) = \frac{1}{2}(n^2+n) + (n+1) = \frac{1}{2}(n^2+n+2n+2) = \frac{1}{2}(n+1)(n+2)$. Therefore, P(n+1) is true. By the principle of induction, $\forall n \geq 1 : P(n)$

4.2
$$S(n) = 1^2 + 2^2 + \dots + n^2$$

$$S(n) = 1^2 + 2^2 + \dots + n^2 = \sum_{i=1}^{n} i^2$$

Q: what is S(n) equal to?

To build an intuition, consider $\sum_{i=1}^{n} i$ geometrically

The sum of the natural numbers can be represented as the area of a triangle. Duplicating and reflecting that triangle forms a rectangle with area n(n+1), therefore the area of the two triangles is $\frac{n(n+1)}{2}$. Higher dimensions work similarly. Suggest that $S(n) = a_0 + a_1 n + a_2 n^2 + a_3 n^3$.

How to guess the coefficients? Plug in values of n to get constraints and solve for the a_i

$$S(1) = 1 = a_0 + a_1 + a_2 + a_3$$

$$S(2) = 5 = a_0 + 2a_1 + 4a_2 + 8a_3$$

$$S(3) = 14 = a_0 + 3a_1 + 9a_2 + 27a_3$$

$$S(4) = 30 = a_0 + 4a_1 + 16a_2 + 64a_3$$

solve
$$\longrightarrow a_0 = 0, a_1 = \frac{1}{6}, a_2 = \frac{1}{2}, a_3 = \frac{1}{3}$$

Conjecture
$$\forall n \ge 1 : S(n) = \sum_{i=1}^{n} i^2 = \frac{1}{6}n + \frac{1}{2}n^2 + \frac{1}{3}n^3 = \frac{1}{6}n(n+1)(2n+1)$$

Proof. We prove that $\forall n: S(n) = \frac{1}{6}n(n+1)(2n+1)$ by induction. First we establish the base case, that is, P(1). P(1) is the claim that $S(1) = \frac{1}{6}1(1+1)(2*1+1) = 1$. This is trivially true.

Next we establish our inductive implication, $P(n) \to P(n+1)$, using direct proof. Assume P(n) is true, that is, $S(n) = \frac{1}{6}n(n+1)(2n+1)$. We want to show P(n+1) is also true, that is, $S(n+1) = \frac{1}{6}(n+1)(n+2)(2n+3)$. To show this, note that $S(n+1) = \sum_{i=1}^{n+1} i^2 = S(n) + (n+1)^2 = \frac{1}{6}n(n+1)(2n+1) + (n+1)^2 = \frac{1}{6}(n+1)(n+2)(2n+3)$ [algebra not shown]. Therefore P(n+1) is true.

By the principle of induction, $\forall n \geq 1 : P(n)$, that is, $\forall n \geq 1 : S(n) = \frac{1}{6}n(n+1)(2n+1)$.

4.3 Generalized Example

<u>Fact</u>:

Can use the principle of induction to prove $\forall n \geq b : P(n)$

Let Q(n) = P(n + (b-1))Then use principle of induction to establish $\forall n \geq 1 : Q(n)$

5 Induction and Axioms

Recall the Well-Ordering Principle Any non-empty set of natural numbers has a smallest element

Face

The Principle of Induction is equivalent to the Well-Ordering Principle (WOP). Full proof online

Well-ordering Principle \rightarrow The Principle of Induction

Proof. We prove it by contradiction. We assume that the Well-Ordering Principle holds and the principle of induction does not. That is, there is a predicate P on the natural numbers for which P(1) is true, $\forall n : P(n) \to P(n+1)$, but there exists an m such that P(m) is not true.

Let $S = \{k : P(k) \text{ is not } true\} \subseteq \mathbb{N}$. Since $m \in S$, S is non-empty and by WOP, there is $n_* \in S$ such that n_* is the smallest element in s. That is, n_* is the smallest number such that $P(n_*)$ is false. Since $P(n_*-1) \to P(n_*)$ is false, it is the case that $P(n_*-1)$ is also false. This means $n_*-1 \in S$. Since $n_*-1 < n_*$ this contradicts the minimality of n_* . These derivations were all mathematically sound, so one of the assumptions must be false. We conclude that if WOPhods, then the principle of induction holds.