

TP 3: Perceptrón Simple y Multicapa

CAMILA SIERRA PÉREZ

IAN JAMES ARNOTT

JUAN ADOLFO ROSAUER HERRMANN

Ejercicio 1

Perceptrón simple con función de activación escalón

Operación AND

Operación AND

Operación XOR

Operación XOR

Conclusiones

El perceptrón simple escalón:

- Encuentra un hiperplano que separa las dos clases en la operación "AND" ya que las coordenadas son linealmente separables.
- No encuentra un hiperplano que separe bien las dos clases en la operación "XOR" ya que los coordenadas NO son <u>linealmente</u> <u>separables.</u>

Ejercicio 2

Perceptrón simple lineal y perceptrón simple no lineal

- Evaluar capacidad de aprendizaje
- Evaluar capacidad de generalización

Consideraciones

Para los perceptrones no lineales las imágenes de las funciones están acotadas:

- (-1;1) para tanh
- (0;1) para logística

Como las salidas esperadas de nuestros perceptrones se encuentran en todos los reales, se normalizó el valor de θ con el metodo Min-Max Feature Scaling.

Training Percentage: 0.8

Epochs: 5000

Bias: 1

Beta: 1

HYPERBOLIC

Training percentage: 0.8

Epochs: 5000

Bias: 1

Beta: 1

LOGISTIC

Training percentage: 0.8

Epochs: 5000

Bias: 1

Beta: 1

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

LOGISTIC

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

VEAMOS EL ERROR EN FUNCiÓN DE LA ÉPOCA AGRUPANDO POR BETA

HYPERBOLIC

Learning Rate: 0.01

Training percentage: 0.8

Epochs: 5000

Bias: 1

LOGISTIC

Learning Rate: 0.01

Training percentage: 0.8

Epochs: 5000

Bias: 1

VEAMOS EL ERROR DE TESTEO EN FUNCiÓN DEL TRAINING PERCENTAGE

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

LOGISTIC

Learning Rate: 0.01

Epochs: 5000

Bias: 1

Beta: 1

Conclusiones

- No hay una receta para elegir la mejor combinación de parámetros para una red neuronal.
 - Depende mucho del problema y del conjunto de datos de entrenamiento que se le pase al perceptrón
- Los dataset para aprendizaje y testeo tiene una gran influencia en el entrenamiento del perceptrón.
 - Un buen dataset, diverso y representativo, resultará en mejores resultados.
 - Con porcentajes muy bajos o muy altos se produce una pérdida de capacidad de generalización del perceptrón.

Perceptron Lineal vs Perceptron No lineal

- ¿Cómo se diferencia la capacidad de generalización para perceptrones lineales vs. no lineales?
 - El perceptrón lineal es más "naive", pues intenta ajustarse utilizando una función de activación lineal, cuando en la mayoría de los problemas reales los datos están dispersos y no se encuentran alineados.
 - Los perceptrones no lineales son capaces de ajustar sus pesos siguiendo los valores de funciones más "flexibles" (sigmoideales) como lo son la tangente hiperbólica y la logística, lo que permite una mayor adaptabilidad frente a los datos de testing, que no estuvieron presentes durante su entrenamiento.

Ejercicio 3

Funciones a implementar

- Función lógica "O exclusivo"
- Discriminación de números pares
- Determinar si el dígito se corresponde con la entrada a la red

FUNCIÓN XOR AHORA SE RESUELVE

FUNCIÓN XOR AHORA SE RESUELVE

DISCRIMINACIÓN DE NÚMEROS PAR

Learning Rate: 0.01

Training Percentage: 0.5

Epochs: 5000

Bias: 1

Beta: 1

Epsilon: 0.5

Activation: Sigmoid

DISCRIMINACIÓN DE NÚMEROS PAR

Al dividir el conjunto de datos en entramiento y testeo, estamos privando a la red de que aprenda la paridad de todos los números. Por lo que le cuesta ser eficiente a la hora de predecir la paridad de los números no aprendidos.

DISCRIMINACIÓN DE NÚMEROS PAR

Cuando se testea un número que nunca entreno es prácticamente aleatorio que logre acertar la paridad del mismo.

DISTINCIÓN DE NÚMEROS (0-9) X

Learning Rate: 0.001

Training Percentage: 1*

Epochs: 1000

Bias: 1

Beta: 1

Epsilon: 0.5

Optimizer: "ADAM"

^{*} Se testea con los mismos dígitos + ruido. El ruido implica invertir el valor de hasta 5 bits aleatorios

DISTINCIÓN DE NÚMEROS (0-9)

Con un poco de ruido, la red fue capaz de utilizar todos los datos como entrenamiento y testearse con datos nuevos.

DISTINCIÓN DE NÚMEROS (0-9)

Notamos que agregar más nodos y/o capas no implica una mayor precisión a la hora de clasificar.

Conclusiones

- Un conjunto acotado de datos no permite que la red entrene bien.
- En caso de tener un conjunto de datos acotado, podemos transformarlo un poco (ruido) para hacer más grande el conjunto disponible y asi permitir un mejor entrenamiento del perceptrón.
- La combinación de capas ideal de la red neuronal debe ser experimentada. No hay una receta (por ejemplo, más neuronas = mejor resultado)

Más Conclusiones

Tanto en el ejercicio 3.2 como en el 3.3, se observa que los resultados obtenidos son relativamente aleatorios.

- En el ejercicio 3.2, resulta lógico que los aciertos obtenidos se encuentren alrededor del 50%, ya que "adivinar" la paridad de un número es análogo a "lanzar una moneda".
- En el ejercicio 3.3, al ser imágenes de tan baja resolución (35 bits en total), agregarles ruido (cambiar hasta cinco 0's por 1's, y viceversa) afecta mucho el desempeño del modelo a la hora de discriminar un número. Por esto, a pesar de que la diagonal en la matriz de confusión se encuentre resaltada, en promedio se tiene un acierto de entre el 50 y 60%, lo que no es significativamente distinto del azar.