Predicting Traffic Stop Outcomes

Sri Santhosh Hari, Ker-Yu Ong, Masha Vasilenko, Yi Qiang Zhao MSAN 697 Final Project

Objective

Our goal for this analysis was to predict whether or not a traffic or pedestrian stop would result in an arrest or citation.

We hypothesized that attributes related to the driver and/or traffic police are predictive of stop outcome.

This is interesting from a sociological perspective and can be used as an awareness tool to address bias in policing.

Data Description

- 8.6M traffic stops from 2009-2016 in Washington State
- Source: The Stanford Open Policing Project
- Format: csv
- Sample fields: stop_date, driver_gender, driver_age, driver_race, officer_gender, officer_race, violation, contraband_found, highway_type, stop_outcome,

Exploratory Data Analysis

Officer Gender and Stop Locations

Compare Gender in Stop Outcome Stop Outcome Driver Gender F M 350K 300K 250K Number of Records 200K 150K 100K 50K OK

Verbal/Written Warning

Arrest or Citation

Compare Race in Stop Outcome

Comparison of Search Rates for Minority and White Drivers

Comparison of Hit Rates for Minority and White Drivers

Data Analytics Pipeline

Data in S3

MongoDB

To set up our MongoDB database for this project, we:

- Set up an EC2 instance via the AWS console
- Installed and configured MongoDB on the server
- Copied data from S3 and loaded it into the database

MongoDB

Sample query: pull one record where driver_race = "Black":

```
[ec2-user@ip-172-31-3-149 ~] $ mongo
MongoDB shell version: 3.2.18
connecting to: test
> use dc project
switched to db dc project
> db.wa data.find({driver race: "Black"}).limit(1)
{ " id" : ObjectId("5a57f1afcea7149791716b43"), "id" : "WA-2009-0000009", "state" : "WA", "stop
date" : "2009-01-01", "stop_time" : "00:00", "location_raw" : "", "county_name" : "", "county_fi
ps": "", "fine grained location": "C-017-991", "police department": "", "driver gender": "M"
, "driver age raw" : 33, "driver age" : 33, "driver race raw" : "African American", "driver race
": "Black", "violation raw": "Lane Travel, License Susp/Rev 3rd Deg, Signal", "violation": "Lic
ense,Safe movement", "search_conducted" : "FALSE", "search_type_raw" : "No Search", "search_type
": "", "contraband found": "FALSE", "stop outcome": "Arrest or Citation", "is arrested": "",
 "violations": "185,16,12", "officer id": 650, "officer gender": "M", "officer race": "White
", "highway_type" : "C", "road_number" : 17, "milepost" : 991, "lat" : "", "lon" : "", "contact
type" : "Self-Initiated Contact", "enforcements" : "1,3,3", "drugs related stop" : "FALSE" }
```

MongoDB

Sample query: find all violation types where driver_race = "Black"

```
db.wa data.distinct("violation")
      "Equipment",
      "Speeding",
      "License, Lights, Paperwork",
      "Safe movement",
      "DUI, License, Speeding",
      "License, Safe movement",
      "Paperwork, Safe movement, Speeding",
      "Lights, Paperwork",
      "Lights, Safe movement, Speeding",
      "Paperwork",
      "Safe movement, Seat belt",
      "DUI, Safe movement",
      "DUI, Safe movement, Speeding",
      "Lights",
      "Safe movement, Speeding",
      "DUI, Paperwork, Safe movement",
      "Equipment.License.Other.Paperwork.Registration/plates.Safe movement"
```

Data Processing Goals

- Handle missing data: excluding records, mean/median imputation
- Split fields with concatenated values: e.g. multiple violations concatenated
- Create additional features: e.g. extract date/time parts from stop_date and stop_time, flags for officer-driver gender/race similarity
- Encode categorical variables appropriately for analysis: numerical and binary encoding

RDD/Data Frame Creation

To begin our analysis, we read our data from MongoDB into a Spark

```
conf = SparkConf().setMaster("local").setAppName(app_name)
sc = SparkContext(conf = conf)
sqlContext = SQLContext(sc)
df_raw = sqlContext.read.format("com.mongodb.spark.sql.DefaultSource")\
                    option("uri", "mongodb://34.216.30.252/dc_project.wa_1m")\
                    .load()
print df_raw.show(5)
```

RDD/Data Frame Creation

To begin our analysis, we read our data from MongoDB into a Spark

_id .ocation highway_type raw state stop_date	id is_arr stop_outcome stop	_time	location_raw violation	violation_raw	officer_gende violations	er officer_id of	ficer_race po	olice_depar	tment road_num	ber searc	h_conducted s	earch_type se	earch_t
+			+	+ ++		-+							
++ 5a590efedb95ca7e		FALSE	+- 	+ 	 16.0	16.0	MI	White	White		FALSE	1,3,3,3,3	
	A-2015-0516111		1			M 539	White			27	FALSE		١
				ane Change, Lane 13				tot ta i	vot + e - e		E		
5a590efedb95ca7e Se 01-252 SIW	1f-Initiated Co A-2015-0516112	FALSE 48.105721	53009	Clallam County -123.357797 252	32.0	32.0 MI 411	M Whitel	White	White	1011	FALSE FALSE	",	Ι,
		20:001	Speedingl	-123.357797 252 Speed - Radar	ε		MILLE			101	FALSE		1
5a590efedb95ca7e Se		FALSE	Specuring	Speed Radai	27.01	27.01	MI	Whitel	Whitel		FALSEI	3,3	
	A-2015-05161131		'			MI 5241	Whitel		1	321	FALSEI	,,,,	ı
ch WA 2015-05-08	Verbal Warning	20:00 Paperwo	, rk,Speeding 0	per Licence - I,	6,181								
5a590efedb95ca7e Se	lf-Initiated Co	FALSE	53027 G	rays Harbor County	46.0	46.0	M	Asian	East Indian		FALSE	1	
S-008-2 S W	A-2015-0516114	47.018939	Grays Harbor	-123.350639 2		M 732	White			8	FALSE		ı
		20:00	Speeding	Speed - Radar	6								
5a590efedb95ca7e	Emphasis patrol	FALSE	53037		20.0	20.0	MI	White	White		FALSE	1,3	
	A-2015-0516110	47.054229		-120.666276 102		M 40	White			90	FALSE		1
ch WA 2015-05-08 Ar	rest or Citation	20:00 Safe move	ment,Spe L	ane Change, Speed	6,37	1							

SparkSQL

Next, we explore features, handle missing values...

```
# Explore features
print df_raw.groupBy(df_raw["driver_gender"]).count().orderBy("count",ascending=False).show()
print df_raw.select("driver_gender").distinct().count()

# Replace empty values with null
def blank_as_null(x):
    return when(col(x) != "", col(x)).otherwise(None)

df_raw2 = df_raw1.cache()

for c in df_raw2.columns:
    df_raw2.withColumn(c, blank_as_null(c))
```

```
# Count missing values
df_raw2.select([count(when(isnan(c) | col(c).isNull(), c)).alias(c) for c in df_raw2.columns]).show()
```

SparkSQL

... Perform feature engineering

SparkSQL

... And make corresponding changes to the data frame

Machine Learning

- Logistic regression model to classify traffic and pedestrian stops
- Analysis of regression coefficients suggest, holding all other variables constant
 - Collision/aggressive driving are more likely to lead to an arrest (duh....)
 - Female officers are 15% less likely to make an arrest
 - Stops on Interstate highway are 30% more likely to lead to an arrest
 - Asian american officers are 20% less likely to make an arrest
 - Driver-Officer gender/race difference has little impact

Processing Time Comparison

Property / Task	Local Machine	EMR Cluster (3 - m3.xlarge)			
Data Volume	1 Mil rows	1 Mil rows	~8.6 Mil rows		
Clean data and write to MongoDB	6m07.68s	3m39.22s	26m18.10s		
Encoding, Logistic Regression and Model Saving	3m48.24s	3m12.19s	26m10.19s		
Encoding, Random Forest Classification and Model Saving	19m05.75s	27m42.42s	-		

Lessons Learned - Distributed Computing

- Data wrangling on the cluster is much faster than on a local machine and scales linearly without any additional tuning
- Tree based models on small datasets may not see a performance boost due to expensive optimizations/approximation techniques used

Lessons Learned - Machine Learning

- Data leakage: look closely for the sources of data leakage! We initially included 'violation_type', 'contraband_found' and 'enforcement_type' as predictive features and got unrealistically high accuracy rates. We had to drop these variables as they directly pointed to the outcome.
- Areas for further research: dependencies between the variables 'search_conducted', 'drugs_related_stop', 'contraband_found' and driver/officer/location characteristics.

References

- Data source:
 - https://www.kaggle.com/stanford-open-policing/stanford-open-policing-project-washington-state/data
- 2. E. Pierson, C. Simou, J. Overgoor et al. (October 2017). *A large-scale analysis of racial disparities in police stops across the United States.* Retrieved from https://openpolicing.stanford.edu/publications/