Image Processing and Computer Vision Notes

by Mattia Orlandi

2. Image Formation and Acquisition

An imaging device gathers the light reflected by 3D objects to create a representation in 2D of the scene; Computer Vision tries to invert such a process, so as to infer knowledge on the objects from one or more digital images. This requires studying:

- the geometric relationship between scene points and image points;
- the radiometric relationship between the brightness of image points and the light emitted by scene points;
- the image digitalization process.

Pinhole camera

It's the simplest imaging device, light goes through the very small pinhole and hits the image plane, in which a film sensible to light captures the image (flipped).

2.1. Perspective Projection

It's the geometric model of image formation in a pinhole camera.

M: scene point

m: corresponding image point

I: image planeC: optical centre

Line through *C* and orthogonal to *I*:

optical axis

c: intersection between optical axis and image plane (image centre or piercing point)

f: focal length
F: focal plane

Using the following reference system the equations mapping scene points into image points are:

$$rac{u}{x} = rac{v}{y} = -rac{f}{z} \Rightarrow \left\{ egin{aligned} u = -x \cdot f/z \ v = -y \cdot f/z \end{aligned}
ight.$$

The image plane can be thought of as lying in front of rather than behind the optical centre, so that the flipping does not happen:

$$\left\{egin{aligned} u = x \cdot f/z \ v = y \cdot f/z \end{aligned}
ight.$$

where:

- x, y are the lateral coordinates;
- z is the depth coordinate;
- · the equations are non-linear;
- points far from the optical centre are more scaled in the resulting image than the points near it;
- the mapping is not a bijection: in fact, in the process of representing a 3D subject in a 2D image there is a loss of information (an image point is mapped into a 3D line, thus it is not possible to recover the 3D structure).

Stereo Images

Stereo Images, captured by two cameras, allow to infer 3D information; in fact, given correspondences between the two resulting images, 3D data can be recovered by triangulation.

Standard Stereo Geometry

Given:

- two reference systems O_L (left) and O_R (right) with parallel ${\it y}$ and ${\it z}$ axes;
- · same focal length for both reference systems;
- coplanar image planes;

then the transformation is just a translation along the \boldsymbol{x} axis:

$$\left\{egin{aligned} p_L = egin{bmatrix} x_L & y_L & z_L \ p_R = egin{bmatrix} x_R & y_R & z_R \ \end{bmatrix} &\Rightarrow p_L - p_R = egin{bmatrix} b & 0 & 0 \ \end{bmatrix} \end{aligned}
ight.$$

$$\left\{egin{aligned} v_L = v_R = y \cdot f/z \ u_L = x_L \cdot f/z & \Rightarrow u_L - u_R = b \cdot f/z = d \ u_R = x_R \cdot f/z \end{aligned}
ight.$$

where d is called **disparity**.

Given the focal length, the translation between the two cameras and the disparity, it's possible to compute the depth of an image:

$$z = b \cdot f/z$$

Given a point P_L in the left image, to compute the disparity one must be able to determine which point P_R on the right image is the projection of the same 3D point P (stereo correspondence problem). In case of two cameras with perfectly parallel axes, two corresponding points lie on the same row (1D search space).

In real-world scenarios, it's impossible to make sure that the cameras have perfectly parallel axes \Rightarrow epipolar geometry.

Epipolar Geometry

The two cameras have not parallel axes:

- given a point P, the line connecting it to the optical center of the left camera O_L is seen as a point by the left camera, since it is in line with its optical center;
- that line is seen by the right camera as a line, which is called **epipolar line**;
- the same holds for the opposite case;
- all the epipolar lines in an image meet at the *epipole*, that is the projection of the optical center of the other image.

Therefore, an epipolar line is a function of the position of point P in the 3D space: as P varies, a set of epipolar lines is generated in both image planes.

Given a point P_L in the left image, the corresponding point P_R in the right image lie on the respective epipolar line, so the search space is still 1D, but search would be performed on oblique lines \Rightarrow images are warped as if they were acquired through a standard stereo geometry, i.e. both images have horizontal and collinear conjugate epipolar lines (homography known as **rectification**).

Properties of Perspective Projection

• The farther objects are from the camera, the smaller they appear in the image; a line with real length L parallel to the image plane at distance z will exhibit a length $l=L\frac{f}{z}$.

- · Perspective Projection maps 3D lines into image lines.
- Ratios of lengths are not preserved, unless scene is planar and parallel to image plane.
- Parallelism between 3D lines is not preserved (unless lines are parallel to image plane).

Vanishing points

- When parallel 3D lines are projected into the image plane, the corresponding 2D lines meet at a
 point called *vanishing point*, which is the projection of a 3D point infinitely distant from optical
 center.
- If the 3D lines are parallel to image plane, then the vanishing point will be at infinity.
- · Given the following line:

$$M = M_0 + \lambda D = egin{bmatrix} x_0 \ y_0 \ z_0 \end{bmatrix} + \lambda egin{bmatrix} a \ b \ c \end{bmatrix}$$

where M_0 is a point on the line and D is the direction cosine vector, the vanishing point is calculated by projecting a generic point of the line:

$$m=\left[egin{aligned} u\vlaple v \end{aligned}
ight],\; u=frac{x_0+\lambda a}{z_0+\lambda c},\; v=frac{y_0+\lambda b}{z_0+\lambda c}$$

and then by considering the limit of the point tending towards infinity:

$$m_{\infty} = \left[egin{aligned} u_{\infty} \ v_{\infty} \end{aligned}
ight], \; u_{\infty} = \lim_{\lambda o \infty} u = frac{a}{c}, \; v_{\infty} = \lim_{\lambda o \infty} v = frac{b}{c} \end{aligned}$$

The vanishing point depends on the orientation of the line only and not on its position. When the line is parallel to image plane (c=0) it goes to infinity, and in that case the 3D line and the corresponding 2D line have the same orientation:

$$\begin{cases} u_{\infty} = f \frac{a}{c} \\ v_{\infty} = f \frac{b}{c} \\ a^2 + b^2 + c^2 = 1 \end{cases}$$

$$\Leftrightarrow c^2(u_{\infty}^2 + v_{\infty}^2) = f^2(1 - c^2) \Leftrightarrow c = \frac{f}{\sqrt{u_{\infty}^2 + v_{\infty}^2 + f^2}}$$

$$\Leftrightarrow a = \frac{u_{\infty}}{\sqrt{u_{\infty}^2 + v_{\infty}^2 + f^2}}, b = \frac{v_{\infty}}{\sqrt{u_{\infty}^2 + v_{\infty}^2 + f^2}}$$

$$\Leftrightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{1}{\sqrt{u_{\infty}^2 + v_{\infty}^2 + f^2}} \begin{bmatrix} u_{\infty} \\ v_{\infty} \\ f \end{bmatrix}$$

2.2. Lenses

- A scene point is *on focus* when all its light rays gathered by the camera hit the image plane at the same point.
- In a pinhole camera every scene point is on focus because of the very small size of the hole ⇒
 infinite Depth of Field (DoF).

- Small aperture ⇒ very limited amount of light ⇒ very long exposure times.
- To avoid this, cameras rely on lenses to gather more light from a scene point and focus it on a single image point ⇒ smaller exposure times, but limited DoF (only points across limited range of distances are on focus at the same time).

Thin lens equation

 Approximate model featuring only one lens (in real-world scenarios, cameras feature complex optical systems with multiple lenses).

P: scene point

p: corresponding focused image point

u: distance from P to the lens

v : distance from p to the lens

f: focal length (parameter of the lens)

C: centre of the lens

F: focal point (or focus) of the lens

- ullet Rays parallel to the optical axis are deflected to pass through F.
- ullet Rays passing through C are undeflected.
- If image is on focus, image formation process obeys to perspective projection model, with the center of the lens being the optical center and the distance v acting as the effective focal length of the projection ($\neq f$, focal length of the lens).

Circles of Confusion

- Distance of the image plane v and distance of the focusing plane u are bounded:
 - $\circ~$ With v fixed (distance of image plane): $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}\Rightarrow u=\frac{vf}{v-f}$
 - $\circ~$ With u fixed (distance of scene points): $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}\Rightarrow v=\frac{uf}{u-f}$
- Given the chosen position of image plane v, scene points in front of the focusing plane or behind
 it will be out-of-focus, appearing as circles rather than points (*Circles of Confusion* or *Blur Circles*).

P belongs to the focusing scene plane P_1 lies closer to the lens than $P(u_1 < u)$ P_2 is farther away to the lens than $P(u_2 > u)$

- As long as such circles are smaller than the size of photosensing elements, image will still look on-focus.
- The range of distances across which the image appears on-focus determines the DoF of the lens.
- An adjustable diaphragm (iris) enables to control the amount of light gathered through the
 effective aperture of the lens: closer diaphragm aperture ⇒ smaller size of blur circles ⇒ larger
 DoF.
- The *F-number* is the ratio, expressed in discrete units (called *stops*), of the focal length to the effective aperture of the lens: higher stop ⇒ closer diaphragm aperture ⇒ larger DoF.

Focusing mechanism

• To focus an object at diverse distances, a mechanism allows the lens to translate along the optical axis w.r.t. the fixed position of image plane.

• At one end position (v = f) the camera is focused at infinity, whereas at the other end position (where v is maximum) the focusing distance is minimum.

2.3. Image Digitalization

- The image plane of a camera consists of a planar sensor which converts the amount of light incident to any point (*irradiance*) into an electric quantity (e.g. voltage).
- Such a continuous "electric" image is sampled and quantized to end up with a digital image suitable to visualization and processing by a computer:
 - \circ **Sampling**: planar continuous image is sampled evenly along horizontal and vertical directions to pick up a 2D array (matrix) of $N \times M$ samples known as *pixels*:

$$I(x,y) \Rightarrow egin{bmatrix} I(0,0) & \dots & I(0,M-1) \ dots & \ddots & dots \ I(N-1,0) & \dots & I(N-1,M-1) \end{bmatrix}$$

- \circ **Quantization**: the continuous range of values associated with pixels is quantized into $l=2^m$ discrete levels known as gray-levels, where m is the number of bits used to represent a pixel (usually, m=8); thus, the memory occupancy in bits of a gray-scale image is $B=N\cdot M\cdot m$ (colour digital images are instead represented using three bytes per pixel, one for each RGB channel).
- The more bits are used for its representation, the higher the quality of a digital image.

Digitalization in detail

- The sensor is a 2D array of photodetectors, and during exposure time each of them converts incident light into a proportional electric charge.
- The companion circuitry reads-out the charge to generate the output signal, digital (ADC necessary) or analog (for legacy systems).

- There is never a continuous image since it is sensed directly as a sampled image.
- In analog cameras the native sampling is lost in the generation of the analog output, which is
 then sampled and quantized by a dedicated circuitry known as analog frame grabber: as a
 result, pixels in digital image coming from analog cameras do not correspond to those sensed by
 photodetectors.
- The two main sensor technologies are CCD (Charge Coupled Devices) and CMOS (Complementary Metal Oxide Semiconductor).

Camera Parameters

• Signal-to-Noise Ratio (SNR):

- Intensity measured at a pixel under perfectly static conditions varies due to random noise ⇒
 pixel value not deterministic but rather a random variable;
- Main noise sources:
 - Photon Shot Noise: time between photon arrivals at a pixel governed by Poisson statistics ⇒ number of photons collected during exposure time not constant.
 - *Electronic Circuitry Noise*: generated by electronics which reads-out charge and amplifies resulting voltage signal.
 - Quantization Noise: related to final ADC conversion (in digital cameras).
 - Dark Current Noise: random amount of charge due to thermal excitement observed at each pixel even though sensor is not exposed to light.
- It quantifies the strength of the true signal w.r.t unwanted fluctuations induced by noise (the higher, the better).
- Expressed in decibels or bits:

$$SNR_{dB} = 20 \cdot log(SNR); SNR_{bit} = ln(SNR)$$

Dynamic Range (DR):

- o If sensed amount of light is too small, true signal cannot be distinguished from noise.
- \circ Given minimum detectable irradiation E_{min} and saturation irradiation E_{max} (amount of light that would fill the photodetectors' capacity), the DR is defined as $\mathrm{DR} = \frac{E_{max}}{E_{min}}$, specified in decibels or bits.
- The higher the DR, the better is the ability of the sensor to simultaneously capture both dark and bright structures of the scene.
- High Dynamic Range (HDR) combines a sequence of images of the same subject taken with different exposure times.
- Sensitivity (Responsivity): amount of signal that sensor can deliver per unit of input optical energy.
- **Uniformity (spatial or pattern noise)**: due to manufacturing tolerances both the response to light and the amount of dark noise vary across pixels.

Sensors

- CCD provides higher SNR, higher DR and better uniformity.
- CMOS provides more compactness, less power consumption and lower system cost (thanks to the fact that electronic circuitry is integrated within the same chip as the sensor ⇒ "one chip camera"); moreover, it allows an arbitrary window to be read-out without having to receive the full image (useful to inspect at higher speed a small Region of Interest, or ROI, within the image).
- CCD/CMOS are sensitive to light ranging from near-ultraviolet (200 nm) through visible spectrum (380-780 nm) up to near-infrared (1100 nm).

- Sensed intensity at a pixel results from the integration over the range of wavelengths of the spectral distribution of incoming light multiplied by the spectral response function of the sensor
 CCD/CMOS cannot sense colour.
- To create a colour sensor, an array of optical filters (Colour Filter Array) is placed in front of
 photodetectors, so as to render each pixel sensitive to a specific range of wavelengths (in Bayer
 CFA, green filters are twice as much as red and blue ones to mimic higher sensitivity of human
 eyes in the green range); to obtain an RGB triplet at each pixel, missing samples are interpolated
 from neighbouring pixels (*de-mosaicing*).
- True resolution of the sensor is smaller due to the green channel being subsampled by a factor of 2, the red and blue ones by 4.
- A more expensive full resolution colour sensor can be achieved by using an optical prism to split incoming light beam into 3 RGB beams sent to 3 distinct sensors equipped with corresponding filters.
- CCD/CMOS sensors come in different sizes specified in inches for the sake of legacy.

Size (inch)	Width (mm)	Height (mm)	Diagonal (mm)	VGA Pixel Size (m)
1	12.8	9.6	16	20
2/3	8.8	6,6	11	13.8
1/2	6.4	4.8	8	10
1/3	4.8	3.6	6	7.5
1/4	3.2	2.4	4	5