Contents

Introduction to Multiple Linear Regression (Ch.6)	1
Statistical Inference in Multiple Linear Regression (Ch. 6, cont.)	3
General Linear Tests: Extra Sum of Squares and Partial F-test (Ch. 7)	6
Standardized Regression Model (Ch. 7, cont.)	8

Introduction to Multiple Linear Regression (Ch.6)

Data for Multiple Linear Regression:

- \triangleright Y_i is the response variable.
- \succ $X_{i,1}, X_{i,2}, ..., X_{i,p-1}$ are p-1 predictor (i.e., explanatory, independent) variables.
- \triangleright Cases denoted by i = 1, 2, ..., n.

Statistical Model

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$
.

- \triangleright Y_i is the value of the response variable for the *i*-th case.
- \nearrow $X_{i,k}$ is the value of the k-th predictor (i.e., explanatory) variable for the i-th case.
- \triangleright β_0 is the intercept, β_1 , β_2 , ..., β_{p-1} are the regression coefficients for the explanatory variables.
- $\triangleright \varepsilon_i$'s are independent, normally distributed random errors with mean 0 and variance σ^2 .
- ➤ In simple linear regression, p=2.

The predictors can be:

- Separate variables.
- > Dummy codes for categorical (i.e., qualitative) variables (more in Ch.8).
- Polynomial terms.
- Transformed variables.
- Interaction terms.
- > A combination of the above.

Parameters are:

- \triangleright β_0 , β_1 , β_2 , ..., β_{p-1} , and σ^2 .
- \triangleright β_0 , β_1 , β_2 , ..., β_{p-1} are estimated using OLS (also MLE under the Normal assumption).
- \triangleright The OLS and MLE lead to the same estimates when ε_i 's are i.i.d. Normal).

The computational algorithms have to be expressed in matrix notation.

Q: What does the "linear" mean?

Statistical Inference in Multiple Linear Regression (Ch. 6, cont.)

The basic approach to statistical inference in multiple linear regression is the same as in simple linear regression. The **main differences** are:

- 1. Degree of freedoms will change: $df_{Reg} = p 1$, $df_{Error} = n p$. This will change the degree of freedoms used in the t-statistic (CI, test for parameters, etc.) and the F-statistic (ANOVA).
- 2. More computationally intensive (yet, it will be taken care of by the software).

Inferences concerning regression coefficients

> Sampling distribution of b_k (i.e., $\hat{\beta}_k$, the estimate of the k-th slope)

Under the Normal assumption, the OLS (same as MLE) estimator b_1 has distribution

$$\frac{(b_k - \beta_k)}{se(b_k)} \sim t(df = df_E = n - p)$$

where:

 β_k is the unknown true value of the slope; $se(b_k)$ (or $s(b_k)$) is the standard error of b_k ;

Confidence Interval for β_k is constructed as (k=0,1,...,p-1):

$$b_k \pm t_{(1-\alpha/2,n-p)}se(b_k)$$
,

where:

 b_k is the estimate of β_k ;

 $t_{(1-\alpha/2,n-p)}$ is the critical value for df = n-p at (1- α)100% confidence level; $se(b_k)$ is the standard error of b_k .

 \triangleright **Test of significance for** β_k is constructed as:

$$H_0: \beta_k = \beta_{k0} \text{ vs } H_a: \beta_k \neq \beta_{k0}$$

$$t_{obs} = \frac{(b_k - \beta_{k0})}{se(b_k)}$$

 $p - value = 2 * P(t > |t_{obs}|)$, where $t \sim t(n - p)$

Reject H_0 if p-value $< \alpha$.

Or, use critical value, reject H_0 if $|t_{obs}| \ge t_{crit}, t_{crit} = t(1 - \alpha/2, n - p)$

where:

 β_{k0} is the "hypothesized" value for the slope (often, $\beta_{10} = 0$).

If H_a is one-sided, adjust the p-value computation is one-sided as well.

- If Ha: beta > 0, then p-value = P($t_{(df = n-p)} > t_{obx}$)
- If Ha: beta < 0, then p-value = P($t_{(df = n-p)} < t_{obx}$)
- If the distribution of ε_i is not normal but is relatively symmetric, then the CIs and significance tests are reasonable approximations.

Confidence Interval and Prediction Interval

- The difference between mean response (E(Y_h) = μ_{h} , or Y_{mean}) and a single response (Y_{h(new)}) at (X_{h,1}, X_{h,2}, ..., X_{h,p-1}).
- > Same point estimation: $\hat{\mu}_h(ie, \hat{Y}_{mean}) = \hat{Y}_{h(new)} = b_0 + b_1 X_{h,1} + \dots + b_{p-1} X_{h,p-1}$
- ightharpoonup Different standard errors: $se(\hat{Y}_{h(new)}) = \sqrt{\left[se(\hat{Y}_{mean})\right]^2 + MSE}$
- The CI (for mean response) and PI (for single response) are: (point est.) \pm (critical value)(std.err of the point est.) where the critical value is $t_{(1-\alpha/2,n-p)}$. (Recall that $df_E = n p$.)

The ANOVA table

Partitioning sums of squares:

$$SSTO = SSR + SSE$$

Total variation (measured by Sum of Squares) in Y: $SSTO = \sum (Y_i - \overline{Y})^2$

Variation in Y that can be explained by X: $SSR = \sum (\hat{Y}_i - \overline{Y})^2$

Variation due to randomness (unexplained variation): $SSE = \sum (Y_i - \hat{Y}_i)^2$

Partitioning Degrees of Freedom:

$$df_{Total}$$
 (n-1) = df_{Reg} (p-1) + df_{Error} (n-p)

> The ANOVA table (note the change in df)

Source	Sum of Squares	df	Mean Squares	F	P-value
Regression(Mod el)	SSR	p-1	MSR=SSR/df _R	F=MSR/MSE	P(F _(dfR, dfE) > F)
Error(Residual)	SSE	n-p	$MSE=SSE/df_E$		
Total	SSTO	n-1	_		

> The "Global" F-test in the ANOVA table

$$H_0$$
: $\beta_1 = \beta_2 = ... = \beta_{p-1} = 0$

 H_a : $\beta_k \neq 0$, for at least one β , k=1,., p-1 (ALOI)

Under H_0 , the F-ratio follows F-distribution with degree of freedoms (df_R , df_E).

Coefficient of multiple determination

- $ightharpoonup R^2 = SSR/SSTO$ is the proportion of the variation in Y (measured by the sum of squares) that can be determined/explained by the current multiple linear regression model using $X_{i,1}, ..., X_{i,p-1}$.
- ightharpoonup R² is between (0, 1).
- ➤ R² is meaningful when the current model is appropriate. Be sure to check the model assumptions regardless of R² value.
- ➤ Models with small R² can still provide meaningful insight about the data.
- ➤ For models with the same number of predictors, a larger value of R² is preferred. However, note that R² increases when more predictors are added to the model. (Adjusted-R² will be introduced in multiple linear regression.)
- Adjusted-R²: $adj R^2 = R_a^2 = 1 \frac{n-1}{n-p}(1-R^2) = 1 (n-1)\frac{MSE}{SST}$

Simultaneous CI

- Change the critical value to adjust for the family confidence.
- The Bonferroni method:
 - Split the family α -level to g members in the family. I.e., use $\alpha^* = \alpha/g$ for each CI or test in the family.
 - $B = t_{(1-\alpha/(2g),n-p)}$.
 - Still use the t-distribution, but with adjusted level.
 - Can be applied to simultaneous/joint Cl's for β_k 's, simultaneous/joint Cl's for mean predictions, and simultaneous/joint Pl's for individual predictions.
- ➤ Working-Hotelling for simultaneous/joint Cl's for mean predictions:

$$\hat{\mu}_h \pm W \times se(\hat{Y}_{mean})$$
, where $W = \sqrt{pF_{(1-\alpha; p, n-p)}}$.

> Scheffé's method for simultaneous/joint PI's for individual predictions:

$$\hat{Y}_{h(new)} \pm S \times se(\hat{Y}_{h(new)}), \text{ where } S = \sqrt{gF_{(1-\alpha; g, n-p)}}.$$

Be aware of hidden extrapolation!

- ➤ Why "hidden?"
- We will introduce a numerical measure later.

General Linear Tests: Extra Sum of Squares and Partial F-test (Ch. 7)

Consider a linear regression with 5 predictors (X_1 , X_2 , X_3 , X_4 , X_5):

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3} + \beta_4 X_{i,4} + \beta_5 X_{i,5} + \varepsilon_i$$

The hypotheses:

 H_0 : $\beta_4 = \beta_5 = 0$

 H_1 : β_4 and β_5 are not both 0

The Full and Reduced Model:

To test the above hypothesis, consider the following 2 models:

> F: The Full Model (Includes all of the predictors)

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3} + \beta_4 X_{i,4} + \beta_5 X_{i,5} + \varepsilon_i$$

➤ R: The Reduced Model: (Plug H₀ into the Full Model and "reduce")

$$Y_i = \beta_0 + \beta_1 X_{i,1} + \beta_2 X_{i,2} + \beta_3 X_{i,3} + 0 \cdot X_{i,4} + 0 \cdot X_{i,5} + \varepsilon_i$$

After cleaning up the equation, we have the following model:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i,1} + \beta_{2}X_{i,2} + \beta_{3}X_{i,3} + \varepsilon_{i}$$

Look at the difference between the reduced model and the full model

- in SSE (reduce unexplained SS), or
- in SSR (increase explained SS)
- ➤ Since SSR+SSE=SST, the change in SSE and the change in SSR are equivalent, as long as the Y-values are NOT changed.
- ➤ However, in some cases (see Examples in the Lab note), only SSE should be used.

The Partial F-test

$$F^* = \frac{(SSE(R) - SSE(F))/(df_E(R) - df_E(F))}{SSE(F)/df_E(F)}$$

Let $df_1=df_E(R)-df_E(F)$, $df_2=df_E(F)$. P-value = $P(F_{(df1, df2)} > F^*)$. Reject H_0 if p-value < α , or $F^* > F_{(1-\alpha, df1, df2)}$.

Q. Why?

A. Cochran's Theorem. (Stat 616, Generalized Linear Models)

Write down the reduced models for each of the following hypotheses:

- \triangleright H₀: β₄ = β₅, vs., H₁: β₄ \neq β₅
- \triangleright H₀: $\beta_4 = 1$, $\beta_5 = 2$, vs., H₁: At Least One Inequality

Notation for Extra Sum of Squares

- \triangleright SSE(X₁,X₂,X₃,X₄,X₅) is the SSE for the *full* model, SSE(F).
- \triangleright SSE(X₁,X₂,X₃) is the SSE for the <u>reduced</u> model, SSE(R).
- \triangleright SSE(X₄,X₅ | X₁,X₂,X₃) is the difference in the SSE: SSE(X₁,X₂,X₃) SSE(X₁,X₂,X₃,X₄,X₅).
- The Extra Sum of Square measures the "marginal" contribution of (X_4,X_5) when (X_1,X_2,X_3) are already in the regression model.

Special Cases and other applications of Extra Sum Square

- \triangleright Compare models that differ by one predictor variable (H₀: β_4 = 0), F(1,n-p)= t^2 (n-p)
 - This is equivalent to the t-test.
- \triangleright Compare the full model against the null model ($Y_i = \beta_0 + \varepsilon_i$)
 - This is testing H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$, and is equivalent to the "Global" F-test in ANOVA.
- Add one variable at a time (Type I Sum of Square)
 - SSR (X₁)
 - SSR (X₂ | X₁)
 - SSR (X₃ | X₁, X₂)
 - SSR (X₄ | X₁, X₂, X₃)

$$SSR(X_1) + SSR(X_2 \mid X_1) + SSR(X_3 \mid X_1, X_2) + SSR(X_4 \mid X_1, X_2, X_3) = SSR(X_1, X_2, X_3, X_4)$$

- Coefficients of partial determination and coefficients of partial correlation.
 - See text Ch.7.4 (p. 268)
 - We will revisit this topic when we introduce "added variable plots" (aka. "partial regression plot") in Ch.10.

Standardized Regression Model (Ch. 7, cont.)

The Procedure:

- 1. Standardize Y and each X by subtracting the mean and then dividing by the standard deviation of each variable. I.e., get z-scores for Y and each X, respectively. Then divide the results by $\sqrt{n-1}$. (This step can be optional.)
- 2. The regression coefficients on the above transformed variables are the standardized regression coefficients.

The result:

- The standardized regression model does not have intercept. I.e. intercept = 0.
- It put regression coefficients in common units. (In comparison, the units for the usual coefficients are units for Y divided by units for X.)
- Interpretation is that a one standard deviation increase in X corresponds to a (standardized beta)x(standard deviation of y) increase in Y.

Multicollinearity

What is Multicollinearity?

Why is Multicollinearity problematic?

- \triangleright The numerical analysis problem is that the matrix X^TX is close to singular and is therefore difficult to invert accurately.
- The statistical problem is that there is too much correlation among the explanatory variables. As a result, it is difficult to determine the association of 1 predictor vs. the response (i.e., the regression coefficient) while other predictors are in the model.
- In data analysis, regression coefficients and their standard errors are not well estimated and may be meaningless.
- R² and predicted values are usually ok, though.

Solving the statistical problem may solve the numerical problem as well.

- We want to refine a model that currently has redundancy in the explanatory variables.
- \triangleright The above should be done regardless of whether X^TX can be inverted without difficulty.

We will discuss this topic again in model diagnostics.