# EE211: Robotic Perception and Intelligence Lecture 3 Motion Planning

#### Jiankun WANG

Department of Electronic and Electrical Engineering Southern University of Science and Technology

Undergraduate Course, Sep 2025





#### Outline

- Overview of Motion Planning
- 2 Foundations
- 3 Complete Path Planners
- 4 Grid Methods
- 5 Virtual Potential Fields





#### Outline

- Overview of Motion Planning
- 2 Foundations
- Complete Path Planners
- 4 Grid Methods
- Virtual Potential Fields





## Formulating The Motion Planning Problem

#### The Piano Mover's Problem

#### Given

- A world  $\mathcal{W}$ , where  $\mathcal{W} = \mathbb{R}^2$  or  $\mathcal{W} = \mathbb{R}^3$ .
- A semi-algebraic obstacle region  $\mathcal{O} \subset \mathcal{W}$  in the world.
- A semi-algebraic robot  $\mathcal{R}$  in  $\mathcal{W}$ . It may be a rigid robot or a collection of m rigid elements (links).
- The configuration space C determined by specifying the set of all possible transformations that can be applied to the robot. Then  $C_{obs}$  and  $C_{free}$  are derived.
- A configuration  $q_l \in \mathcal{X}_{free}$  designated as initial configuration.
- ullet A configuration  $q_G \in \mathcal{X}_{\textit{free}}$  designated as goal configuration.

A complete algorithm must compute a continuous path  $\tau:[0,1]\to\mathcal{C}_{\textit{free}}$ , such that  $\tau(0)=q_{\textit{I}}$  and  $\tau(1)=q_{\textit{G}}$ , or correctly report that such path does not exist.

It has been shown that this problem is PSPACE-hard, which implies NP-hard. Hence, unless P=NP, it is a very hard problem to solve.

## Path Planning versus Motion Planning

- Subproblem of the general motion planning problem.
- Path planning is the purely geometric problem, without concern for the dynamics, the duration of motion, or constraints on the motion or on the control inputs.
- The path can be time scaled to create a feasible trajectory.



## Other Concepts

- Control inputs: m = n versus m < n. Incapable of following any path, even if they are collision-free. A car has n = 3 (the position and orientation of the chassis in the plane) but m = 2 (forward-backward motion and steering).
- Online versus offline: A motion planning problem requiring an immediate result, because obstacles appear, disappear, or move unpredictably, calls for a fast, online, planner.
- Optimal versus feasible: Objective function  $J = \int_0^T L(x(t), u(t)) dt$ .
- Exact versus approximate: Final state  $||x(T) x_{goal}|| < \epsilon$ .
- With or without obstacles: Can be challenging even in the absence of obstacles, particularly if m < n or optimality is desired.



## Properties of Motion Planners

- Multiple-query versus single-query planning: Type of problems.
- Anytime planning: Continue to look for better solutions after a first solution is found, until satisfying certain requirements.
- Completeness: A motion planner is said to be complete if it is guaranteed to find a solution in finite time if one exists, and to report failure if there is no feasible motion plan.
- Computational complexity: Characterizations of the amount of time the planner takes to run or the amount of memory it requires.



## Motion Planning Methods

- ullet Complete methods: Exact representations of the geometry of  $\mathcal{C}_{\mathit{free}}.$
- Grid methods: Discretize  $C_{free}$  into a grid.
- Sampling methods: A random or deterministic function to choose a sample from the C-space or state space.
- Virtual potential fields: Online implementation to avoid obstacles.
- Nonlinear optimization: Require an initial guess at the solution, then
  represent the trajectory or controls by a finite number of design
  parameters, such as the coefficients of a polynomial.
- Smoothing: Postprocessing to improve the smoothness.



#### Outline

- Overview of Motion Planning
- 2 Foundations
- 3 Complete Path Planners
- 4 Grid Methods
- 5 Virtual Potential Fields



## Configuration Space Obstacles

- Degree of C-space equals the degree of freedom of robot.
- Determining whether a robot at a configuration q is in collision with a known environment generally requires a complex operation involving a CAD model of the environment and robot.
- $C = C_{free} \cup C_{obs}$ .
- The explicit mathematical representation of a C-obstacle can be exceedingly complex, and for that reason C-obstacles are rarely represented exactly.



#### A 2R Planar Arm



- The joint angles of a 2R robot arm.
- The arm navigating among obstacles A, B, and C.
- The same motion in C-space. Three intermediate points, 4, 7, and 10, along the path are labeled.

#### A Circular Planar Mobile Robot



- A circular mobile robot (open circle) and a workspace obstacle (gray triangle). The configuration of the robot is represented by (x, y), the center of the robot.
- In the C-space, the obstacle is "grown" by the radius of the robot and the robot is treated as a point. Any (x, y) configuration outside the bold line is collision-free.

#### A Circular Planar Mobile Robot



 The "grown" C-space obstacles corresponding to two workspace obstacles and a circular mobile robot. The overlapping boundaries mean that the robot cannot move between the two obstacles.

#### A Planar Mobile Robot That Translates and Rotates







#### A Planar Mobile Robot That Translates and Rotates



- A triangular mobile robot that can both rotate and translate, represented by the configuration  $(x, y, \theta)$ .
- The C-space obstacle when the robot is restricted to  $\theta = 0$ .
- Full 3-dimensional C-space obstacle shown in slices at 10° increments

#### Distance to Obstacles and Collision Detection

- Given a C-obstacle  $\mathcal B$  and a configuration q, let  $d(q,\mathcal B)$  be the distance between robot and obstacle, then
  - $d(q, \mathcal{B}) > 0$ , no contact with the obstacle;
  - $d(q, \mathcal{B}) = 0$ , contact;
  - $d(q, \mathcal{B}) < 0$ , penetration.
- A distance-measurement algorithm determines  $d(q, \mathcal{B})$ .
- A collision-detection routine determines whether  $d(q, \mathcal{B}_i) \leq 0$  for any C-obstacle  $\mathcal{B}_i$ .
- A collision-detection routine returns a binary result and may or may not utilize a distance-measurement algorithm at its core.



#### Distance to Obstacles and Collision Detection

- Approximate the robot and obstacles as unions of overlapping spheres.
- Given a robot at q represented by k spheres of radius  $R_i$  centered at  $r_i(q)$ , i = 1, ..., k, and an obstacle  $\mathcal{B}$  represented by l spheres of radius  $\mathcal{B}_i$  centered at  $b_i$ , j = 1, ..., l, the distance

$$d(q,\mathcal{B})=\min_{i,j}||r_i(q)-b_j||-R_i-B_j.$$





### Graphs and Trees

- Many motion planners explicitly or implicitly represent the C-space or state space as a graph.
- Node  $\rightarrow$  configuration or state; edge  $\rightarrow$  the ability to move from  $n_1$  to  $n_2$  while satisfying all constraints.
- Directed or undirected.
- Weighted or unweighted.
- A tree is a digraph: (1) no cycles; (2) each node has at most one parent node.









## **Graphs Search**

- Once the free space is represented as a graph, a motion plan can be found by searching the graph for a path from the start to the goal.
- Breadth-first search (BFS).
- Depth-first search (DFS).
- Uniform-cost search (UCS).
- Greedy search.
- A\* search.



#### Outline

- Overview of Motion Planning
- 2 Foundations
- Complete Path Planners
- 4 Grid Methods
- 5 Virtual Potential Fields





## Complete Path Planners

- Complete path planners rely on an exact representation of the free C-space  $\mathcal{C}_{free}$ . Mathematically and algorithmically sophisticated, impractical for many real systems.
- Reachability: From every point  $q \in \mathcal{C}_{free}$ , a free path to a point  $q' \in R$  can be found trivially (e.g., a straight-line path).
- Connectivity: For each connected component of  $C_{free}$ , there is one connected component of Roadmap R.
- While constructing a roadmap of  $C_{free}$  is complex in general, some problems admit simple roadmaps.
- A suitable roadmap is the weighted undirected visibility graph, with nodes at the vertices of the C-obstacles and edges between the nodes that can "see" each other.

## Complete Path Planners





#### Outline

- Overview of Motion Planning
- 2 Foundations
- Complete Path Planners
- 4 Grid Methods
- Virtual Potential Fields



- A search algorithm like A\* requires a discretization of the search space. The simplest discretization of C-space is a grid.
- For n-dimensional configuration space, we desire k grid points along each dimension, the C-space is represented by  $k^n$  grid points.
- Move in axis-aligned directions or multiple dimensions simultaneously?
- ullet If only axis-aligned motions o Manhattan distance.
- A grid-based path planner is resolution complete: it will find a solution if one exists at the level of discretization of the C-space.





- A 4-connected grid point and an 8-connected grid point for a space n = 2.
- Grid points spaced at unit intervals. The Euclidean distance between the two points indicated is  $\sqrt{5}$  while the Manhattan distance is 3.
- A grid representation of the C-space and a minimum-length Manhattan-distance path.







## Multi-Resolution Grid Representation

- Any cells that are in contact with a C-obstacle are subdivided further, up to a specified maximum resolution.
- Use only 10 cells to represent an obstacle at the same resolution as a fixed grid that uses 64 cells.



#### Outline

- Overview of Motion Planning
- 2 Foundations
- 3 Complete Path Planners
- 4 Grid Methods
- 5 Virtual Potential Fields





- Inspired by potential energy fields in nature, such as gravitational and magnetic fields.
- E.g., the potential energy of a mass m in height h is mgh and the force acting on it is -mg. The force will cause the mass to fall to the Earth's surface.
- In robotics, the goal is assigned a low virtual potential and obstacles are assigned a high virtual potential.
- Typically the gradient of the field can be calculated quickly, so the motion can be calculated in real time (reactive control) instead of planned in advance.
- The robot can get stuck in local minima of the potential field, away from the goal, even when a feasible motion to the goal exists.

• Assume a point robot in its C-space.  $q_{goal}$  is typically encoded by a quadratic potential energy "bowl" with zero energy at the goal

$$\mathcal{P}_{goal}(q) = rac{1}{2}(q - q_{goal})^{\mathsf{T}} \mathcal{K}(q - q_{goal}),$$

where K is a symmetric positive-definite weighting matrix.

• The force induced by this potential is

$$F_{goal}(q) = -rac{\partial \mathcal{P}_{goal}}{\partial q} = K(q_{goal} - q),$$

an attractive force proportional to the distance from the goal.



• The repulsive potential induced by a C-obstacle  $\mathcal{B}$  can be calculated from the distance  $d(q,\mathcal{B})$  to the obstacle

$$\mathcal{P}_{\mathcal{B}}(q) = \frac{k}{2d^2(q,\mathcal{B})},$$

where k > 0 is a scaling factor,  $d(q, \mathcal{B}) > 0$ .

• The force induced by the obstacle potential is

$$F_{\mathcal{B}}(q) = -\frac{\partial \mathcal{P}_{\mathcal{B}}}{\partial q} = \frac{k}{d^3(q,\mathcal{B})} \frac{\partial d}{\partial q}.$$



 The total potential is obtained by summing the attractive goal potential and the repulsive obstacle potentials,

$$\mathcal{P}(q) = \mathcal{P}_{ extit{goal}}(q) + \sum_{i} \mathcal{P}_{\mathcal{B}_{i}}(q),$$

yielding a total force

$$F(q) = F_{goal}(q) + \sum_i F_{\mathcal{B}_i}(q).$$













• To actually control the robot using the calculated F(q), we treat the calculated force as a commanded velocity:

$$u = F(q)$$
.

- Using the simple obstacle potential, even distant obstacles have a nonzero effect on the motion of the robot.
- To speed up evaluation of the repulsive terms, distant obstacles could be ignored.

$$U_{\mathcal{B}}(q) = egin{cases} rac{k}{2} (rac{d_r - d(q,\mathcal{B})}{d_r d(q,\mathcal{B})})^2 & ext{if } d(q,\mathcal{B}) < d_r, \ 0 & ext{otherwise}. \end{cases}$$



## Navigation Functions (Option)

- A significant problem with the potential field method is local minima.
- An approach to local-minimum-free gradient following is based on replacing the virtual potential function with a navigation function.
- ullet A navigation function  $\phi(q)$  is a type of virtual potential function that
  - is smooth (or at least twice differentiable) on q;
  - has a bounded maximum value on the boundaries of all obstacles;
  - has a single minimum at q<sub>goal</sub>;
  - has a full-rank Hessian  $\partial^2 \bar{\phi}/\partial q^2$  at all critical points q where  $\partial \phi/\partial q=0$ .



# Navigation Functions (Option)

- A significant problem with the potential field method is local minima.
- An approach to local-minimum-free gradient following is based on replacing the virtual potential function with a navigation function.
- ullet A navigation function  $\phi(q)$  is a type of virtual potential function that
  - is smooth (or at least twice differentiable) on q;
  - has a bounded maximum value on the boundaries of all obstacles;
  - has a single minimum at q<sub>goal</sub>;
  - has a full-rank Hessian  $\partial^2 \bar{\phi}/\partial q^2$  at all critical points q where  $\partial \phi/\partial q=0$ .



## Q & A

- Overview of Motion Planning
- 2 Foundations
- 3 Complete Path Planners
- 4 Grid Methods
- 5 Virtual Potential Fields



