### **EUF**

# Exame Unificado das Pós-graduações em Física

Para o primeiro semestre de 2016 14 de outubro de 2015 Parte 1

#### Instruções

- Não escreva seu nome na prova.
   Ela deverá ser identificada apenas através do código (EUFxxx).
- Esta prova contém problemas de: eletromagnetismo, física moderna e termodinâmica. Todas as questões têm o mesmo peso.
- O tempo de duração desta prova é de 4 horas.
   O tempo mínimo de permanência na sala é de 90 minutos.
- Não é permitido o uso de calculadoras ou outros instrumentos eletrônicos.
- Resolva cada questão na página correspondente do caderno de respostas. As folhas serão reorganizadas para a correção. Se precisar de mais espaço, utilize as folhas extras do caderno de respostas. Não esqueça de escrever nas folhas extras o número da questão (Qx) e o seu código de identificação (EUFxxx). Folhas extras sem essas informações não serão corrigidas. Use uma folha extra diferente para cada questão. Não destaque a folha extra.
- Se precisar de rascunho, use as folhas identificadas como **rascunho**, que se encontram no fim do caderno de respostas. Não as destaque. As folhas de rascunho serão descartadas e questões nelas resolvidas não serão consideradas.
- Não escreva nada no formulário.
   Devolva-o ao fim da prova, pois será utilizado na prova de amanhã.

Q1. Definindo-se o vetor de Hertz  $\vec{Z}$  pelas expressões:

$$\vec{\nabla} \cdot \vec{Z} = -\phi; \qquad \vec{A} = \mu_0 \epsilon_0 \frac{\partial \vec{Z}}{\partial t}, \tag{1}$$

onde  $\phi$  e  $\vec{A}$  são, respectivamente, os potenciais escalar e vetor.

a) Mostre que os potenciais satisfazem o calibre de Lorentz:

$$\vec{\nabla} \cdot \vec{A} + \mu_0 \epsilon_0 \frac{\partial \phi}{\partial t} = 0; \tag{2}$$

b) Demonstre que para um meio sem fontes ( $\rho=0,\ \vec{J}=0$ ) e de  $\mu=\mu_0$  o vetor  $\vec{Z}$  satisfaz às seguintes expressões:

$$\nabla^2 \vec{Z} - \frac{1}{c^2} \frac{\partial^2 \vec{Z}}{\partial t^2} = -\frac{\vec{P}}{\epsilon_0}; \quad \vec{B} = \frac{1}{c^2} \vec{\nabla} \times \frac{\partial \vec{Z}}{\partial t}; \quad \vec{E} = \vec{\nabla} \times \vec{\nabla} \times \vec{Z} - \frac{\vec{P}}{\epsilon_0}, \quad (3)$$

onde  $\vec{P}$  é o vetor de polarização.

Q2. Considere um disco vazado muito fino, com raio interno  $r_1$  e raio externo  $r_2$ , deitado sobre o plano xy e com o eixo centrado em z = 0 (conforme ilustrado na figura 1).



Figura 1: Disco vazado.

O anel tem densidade superficial de carga dada por:

$$\sigma(r) = \frac{\sigma_0}{r},\tag{4}$$

onde  $r = \sqrt{x^2 + y^2}$ .

- a) Encontre o campo elétrico  $\vec{E}(x=y=0,z)$  sobre o eixo z;
- b) Suponha agora que o anel comece a girar com velocidade angular  $\omega_0$ . Encontre a densidade de corrente  $\vec{J_s} = \sigma \vec{v}$ , onde  $\vec{v}$  é a velocidade linear;
- c) Encontre o campo magnético  $\vec{H}(x=y=0,z)$  sobre o eixo z, gerado pela densidade de corrente  $\vec{J}_s$ .

- Q3. Um píon positivo  $\pi^+$  pode decair segundo a reação  $\pi^+ \to \mu^+ + \nu_\mu$ , ou seja, ele pode decair em um múon positivo  $\mu^+$  acompanhado por um neutrino muônico  $\nu_\mu$ . Desprezando a massa  $m_\nu$  do neutrino e considerando um píon inicialmente em repouso num referencial inercial S, determine, no mesmo referencial, em termos das massas do píon  $(m_\pi)$  e do múon  $(m_\mu)$ :
  - a) O módulo do momentum linear do múon.
  - b) A energia total do múon.
  - c) A velocidade do múon.
  - d) A distância que, em média, um múon percorre (no vácuo) antes de também decair. Use o símbolo  $\tau$  para o tempo de vida médio do múon medido no próprio referencial da partícula.
- Q4. Considere uma partícula não relativística, de massa m, executando um movimento harmônico simples com frequência  $\nu$ .
  - a) Determine, em termos de  $\nu$ , os níveis de energia E permitidos para esta partícula a partir da regra de quantização de Bohr-Sommerfeld  $\oint p_q dq = nh$ .
  - b) Considere um sistema contendo um grande número destas partículas em equilíbrio térmico. A partir dos níveis de energia permitidos para cada partícula, determinados no ítem anterior, calcule a energia total média  $\langle E \rangle$ , onde  $P(E_n) = Ae^{-E_n/k_BT}$  é a função de distribuição.
- Q5. Considere uma máquina de Carnot operando com um paramagneto ideal, cuja equação de estado é dada pela lei de Curie

$$M = D \frac{H}{T},$$

sendo M a magnetização, H o campo magnético, T a temperatura e D uma constante. A variação de energia interna é dada em termos da variação da entropia e da magnetização por  $dU = T \, dS + H \, dM$  (o termo  $H \, dM$  é análogo ao termo  $-P \, dV$  para o gás ideal), e vale também que  $dU = C_M \, dT$ , com  $C_M$  constante.

- a) Determine a relação que vincula os valores iniciais da magnetização e da temperatura  $M_i$ ,  $T_i$  aos valores finais  $M_f$ ,  $T_f$  em uma transformação adiabática, em termos de  $C_M$  e D.
- b) Represente o ciclo, composto por duas transformações adiabáticas e duas transformações isotérmicas, em um diagrama H-M. As isotermas correspondem respectivamente a uma temperatura mais alta,  $T_Q$ , e outra mais baixa,  $T_F$ . Indique os quatro estados nos vértices do diagrama como  $(M_1, H_1)$  (início do ciclo, no valor mais alto para a magnetização e à temperatura  $T_Q$ ),  $(M_2, H_2)$ ,  $(M_3, H_3)$ ,  $(M_4, H_4)$ .
- c) Calcule o trabalho total realizado no ciclo, em função de  $M_1,\,M_2,\,T_Q,\,T_F$  e da constante D.
- d) Obtenha a eficiência do ciclo, dada pela razão entre o trabalho total realizado e o calor absorvido (à temperatura  $T_Q$ ).

#### **EUF**

# Exame Unificado das Pós-graduações em Física

Para o primeiro semestre de 2016 15 outubro 2015

Parte 2

### Instruções

- Não escreva seu nome na prova.
   Ela deverá ser identificada apenas através do código (EUFxxx).
- Esta prova contém problemas de: mecânica clássica, mecânica quântica e mecânica estatística. Todas as questões têm o mesmo peso.
- O tempo de duração desta prova é de 4 horas.
   O tempo mínimo de permanência na sala é de 90 minutos.
- Não é permitido o uso de calculadoras ou outros instrumentos eletrônicos.
- Resolva cada questão na página correspondente do caderno de respostas. As folhas serão reorganizadas para a correção. Se precisar de mais espaço, utilize as folhas extras do caderno de respostas. Não esqueça de escrever nas folhas extras o número da questão (Qx) e o seu código de identificação (EUFxxx). Folhas extras sem essas informações não serão corrigidas. Use uma folha extra diferente para cada questão. Não destaque a folha extra.
- Se precisar de rascunho, use as folhas identificadas como **rascunho**, que se encontram no fim do caderno de respostas. Não as destaque. As folhas de rascunho serão descartadas e questões nelas resolvidas não serão consideradas.
- Não é necessário devolver o formulário.

Q6. Um disco de raio R é composto por duas metades cada uma com densidades superficiais de massa respectivas de  $1\rho$  e de  $2\rho$ .



- a) Qual é o momento de inércia em relação ao eixo (perpendicular ao plano do disco) que passa pelo seu centro geométrico G?
- b) Encontre as coordenadas  $x_1$  e  $x_2$  do centro de massa do disco.
- c) Qual é o momento de inércia em relação ao eixo (perpendicular ao plano do disco) que passa pelo seu centro de massa?
- d) Considere o movimento em linha reta do disco sobre um plano horizontal perpendicular ao plano do disco, sem deslizar. Encontre  $\lambda(\theta)$ , implicitamente definido por

$$v(t) = \lambda(\theta) R \frac{d\theta}{dt},$$

onde  $\theta$  é o ângulo entre o eixo vertical e a reta que passa pelo centro geométrico e o centro de massa (veja a figura), v(t) é o módulo da velocidade do centro de massa, e  $\frac{d\theta}{dt}$  é o módulo da velocidade de rotação do disco.



Q7. Considere um objeto de massa M que se desloca sob ação de uma força central do tipo coulombiana modificada por uma força proporcional ao inverso de  $r^3$ ,

$$F(r) = -\frac{k}{r^2} - \frac{q}{r^3},$$

onde r é a coordenada radial, e k e q são constantes positivas. Considere que a energia total do sistema é descrita por

$$E = \frac{M}{2} \dot{r}^2 + \frac{M}{2} r^2 \dot{\theta}^2 - \frac{k}{r} - \frac{q}{2r^2},$$

1

e que o momento angular, do sistema é dado por  $L=M\,r^2\,\dot{\theta}.$ 

- a) Para o caso em que o objeto descreva uma órbita circular (de equilíbrio) encontre o raio da órbita em função dos parâmetros k, q, M e L, do sistema.
- b) Para as mesmas condições do item a), encontre a energia total, E, em função dos parâmetros  $k,\,q,\,M$  e L, do sistema.
- c) Ao identificar o potencial efetivo para o movimento radial como

$$V_{ef}(r) = \frac{L^2}{2mr^2} - \frac{k}{r} - \frac{q}{2r^2},$$

verifique sob quais condições sobre as constantes q, L e M, a coordenada radial da órbita circular obedece uma configuração de equilíbrio estável.

- d) No caso da coordenada radial da partícula se deslocar da condição de equilíbrio (estável) e passar a oscilar de forma aproximadamente harmônica (em torno do raio da órbita circular), encontre a relação entre o período de oscilação radial e o período de revolução (movimento angular) em função das constantes q, M e L.
- Q8. Seja um sistema composto por um par  $\mathbf{A}$  e  $\mathbf{B}$  de spins 1/2 descrito pelo estado

$$|\psi\rangle = \alpha |\mathbf{A}_{+}\rangle \otimes |\mathbf{B}_{-}\rangle + \beta |\mathbf{A}_{-}\rangle \otimes |\mathbf{B}_{+}\rangle + \gamma |\mathbf{A}_{-}\rangle \otimes |\mathbf{B}_{-}\rangle + \delta |\mathbf{A}_{+}\rangle \otimes |\mathbf{B}_{+}\rangle$$

(com  $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ ) pertencente ao espaço de Hilbert  $\mathcal{H}_{\mathbf{A}} \otimes \mathcal{H}_{\mathbf{B}}$ , onde o estado  $|\mathbf{A}_{\pm}\rangle$  satisfaz  $\langle \mathbf{A}_{\pm} | \mathbf{A}_{\pm} \rangle = 1$ ,  $\langle \mathbf{A}_{\pm} | \mathbf{A}_{\mp} \rangle = 0$  e

$$\hat{S}_z^{\mathbf{A}}|\mathbf{A}_{\pm}\rangle = \pm \frac{\hbar}{2}|\mathbf{A}_{\pm}\rangle, \quad \hat{S}_{\mp}^{\mathbf{A}}|\mathbf{A}_{\pm}\rangle = \hbar|\mathbf{A}_{\mp}\rangle, \quad \hat{S}_{\pm}^{\mathbf{A}}|\mathbf{A}_{\pm}\rangle = 0.$$

E analogamente para  $|\mathbf{B}_{+}\rangle$ . Lembrando que

$$\hat{S}_z \equiv \hat{S}_z^{\mathbf{A}} \otimes \hat{I}^{\mathbf{B}} + \hat{I}^{\mathbf{A}} \otimes \hat{S}_z^{\mathbf{B}}$$

assim como

$$\hat{S}_x \equiv \hat{S}_x^{\mathbf{A}} \otimes \hat{I}^{\mathbf{B}} + \hat{I}^{\mathbf{A}} \otimes \hat{S}_x^{\mathbf{B}}, \quad \hat{S}_y \equiv \hat{S}_y^{\mathbf{A}} \otimes \hat{I}^{\mathbf{B}} + \hat{I}^{\mathbf{A}} \otimes \hat{S}_y^{\mathbf{B}}$$

com  $I^{\mathbf{A}}$ ,  $I^{\mathbf{B}}$  sendo operadores identidade atuando nos respectivos espaços de Hilbert, responda:

- a) Qual é a dimensão do espaço de Hilbert  $\mathcal{H}_{\mathbf{A}} \otimes \mathcal{H}_{\mathbf{B}}$  do par de spins  $\mathbf{A}$  e  $\mathbf{B}$ ?
- b) Seja o estado  $|\psi\rangle$  com  $\alpha=\beta=\gamma=0$ . Qual é o valor de  $\delta\in\mathbb{C}$  mais geral que normaliza  $|\psi\rangle$ .
- c) Seja o estado  $|\psi\rangle$  com  $\alpha=-\beta=1/\sqrt{2}$  e  $\gamma=\delta=0$ . Qual é o valor esperado do operador  $\hat{S}_z$  nesse estado?
- d) Seja o estado  $|\psi\rangle$  com  $\alpha=\beta=1/\sqrt{2}$  e  $\gamma=\delta=0$ . Determine se  $|\psi\rangle$  é um auto-estado do operador de spin  $\hat{S}^2\equiv\hat{S}_x^2+\hat{S}_y^2+\hat{S}_z^2$ . Se for, qual é o auto-valor correspondente? (Sugestão: lembrar que  $\hat{S}_{\pm}=\hat{S}_x\pm i\hat{S}_y$  e que  $\left[\hat{S}_x,\hat{S}_y\right]=i\hbar\hat{S}_z$ .)

Q9. Seja um oscilador harmônico com frequência  $\omega$ , massa m e com hamiltoniana

$$\hat{H} = (1/2 + \hat{n})\hbar\omega,\tag{5}$$

onde  $\hat{n} \equiv \hat{a}^{\dagger} \hat{a}$  com  $\hat{n} | n \rangle = n | n \rangle$  e lembramos que os operadores de abaixamento e levantamento satisfazem

$$\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$$

$$\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$$

Supondo que o oscilador esteja em um estado coerente  $|z\rangle$  definido por

$$\hat{a}|z\rangle = z|z\rangle,$$

responda

- a) Qual é o valor de  $\langle z|\hat{n}|z\rangle$  para  $z=\frac{1}{2}\exp(i\pi/4)$ , supondo que  $|z\rangle$  esteja normalizado?
- b) Supondo que em t=0 o oscilador esteja no estado fundamental  $|0\rangle$ , calcule a forma do estado no instante t=1/10 s para  $\omega=5\pi$  s<sup>-1</sup>.
- c) Quanto vale  $c_n$  (como função de n e z) para que o estado coerente  $|z\rangle = \sum_{n=0}^{+\infty} c_n |n\rangle$  (expandido na base de auto-estados  $|n\rangle$  do operador número  $\hat{n}$ ) esteja normalizado? (Lembrese que  $e^x = \sum_{n=0}^{+\infty} x^n/n!$ )
- d) Use o resultado do item anterior e calcule o valor numérico de  $|\langle z'|z\rangle|^2$  para  $z=1/2\exp(i\pi/4)$  e  $z'=1/4\exp(i\pi/4)$ .
- Q10. Considere um sistema de N spins 1/2 não-interagentes, com momento de dipolo magnético de módulo  $\mu$ , na presença de um campo magnético uniforme B.
  - a) Escreva a hamiltoniana do sistema.
  - b) Considerando o sistema em equilíbrio térmico a temperatura inversa  $\beta = 1/k_BT$ , calcule a função de partição  $Z(\beta, B)$ .
  - c) Calcule a magnetização M como função de T e B.
  - d) Obtenha a expressão para M no limite de altas temperaturas e campo magnético fraco.