Name: ABID ALI

Student_No: 2019380141

Assignment 8.1

- **7.5** Prove each of the following assertions:
- **a**. α is valid if and only if True $|= \alpha$.
- **b**. For any α , False $\mid = \alpha$.
- **c**. $\alpha \models \beta$ if and only if the sentence $(\alpha \Rightarrow \beta)$ is valid.
- **d**. $\alpha \equiv \beta$ if and only if the sentence $(\alpha \Leftrightarrow \beta)$ is valid.
- **e**. $\alpha \models \beta$ if and only if the sentence $(\alpha \land \neg \beta)$ is unsatisfiable.

Solution:

- a) a is valid and only if True = a Here True = a means True entails a it and only if a is true in each model where True is true for a statement to be valid, it must be true in every model. Hence a is valid if and only if True |= a.
- b) For any a, false = a Here, False = a means False entails aif and only if in every model where False is true, a must be true Since false x false in every model, for any d, Fulse |=d.
- c) a = B if and only if sentence a => B is valid (piven)
 (implication elimination) Now, a=> B= true - (a) UB = true

~ (True) UB= true

Thus, if $a \Rightarrow \beta$ then $a \mid = \beta$ Now,

a = B means a entails B if only if in every model where a is true, & must be true.

Let M=M1 UM2 Whene for M2, a=False and for M1, a=true For every mEM1, a is true in m, B is true in m

a=>B=>dUB

= False UTrue

(semantics of u) For every mEM2, a is False imm, B is False in m x ⇒ P = ¬a UB

```
= True U False
      = True (Semantics of U)
 Therefore, if a |= B, then a => B is true
 Thus, a |= B if and only if sentence a => B is valid.
d) d=Bif and only if the sentence (a => B) is valid.
    According to defination of logical equivalence, d=B, if they are
    true in the same set of models.
    i.e, d= & then a |= B and B|= a
    as d=> B is true and B=> a is true by defination, d=>B is true
    now if \alpha = \beta, \alpha \Rightarrow \beta
    Thus if a = β (d ⇔ β) is valid.
    (\alpha = \beta)^{\wedge}(\beta = \alpha) (Biconditional elimination)
    so, we can say that α=β if and only if the sentence (a⇔β) is valid
e) a = B if and only if the sentence (ans) is valid.
    a = B is true if and only if a ⇒ B
                       (given)
    a => B = true
   (-avB)=true (implication elimination)
  -(-dvB) = -(true) (-on both side)
   (a -B) = false (De Mongan)
    Thus, if a = B then (a - B) is unsatisfiable
     Now, (d-B) = false
                          (given)
      (- a v B) = - (false)
        d => B= true
```

7.10 Decide whether each of the following sentences is valid, unsatisfiable, or neither. Verify your decisions using truth tables or the equivalence rules of Figure 7.11 (page 249).

- a. Smoke ⇒ Smoke
- **b**. Smoke \Rightarrow Fire
- c. (Smoke \Rightarrow Fire) \Rightarrow (\neg Smoke $\Rightarrow \neg$ Fire)
- **d**. Smoke ∨ Fire ∨ ¬Fire
- e. ((Smoke \land Heat) \Rightarrow Fire) \Leftrightarrow ((Smoke \Rightarrow Fire) \lor (Heat \Rightarrow Fire))
- **f**. (Smoke \Rightarrow Fire) \Rightarrow ((Smoke \land Heat) \Rightarrow Fire)
- **g**. Big \lor Dumb \lor (Big \Rightarrow Dumb)

Solution:

a) smoke => smoke

smoke	s moke=) snoke
True	True
Laise	True

Thus, statement is valid as it is true in all models.

b) somoke => fire

smoke	fire	smoke => fine	
Toue	True	Troue	
Troue	False	False	
False	True	Truc	
Talse	False	True	

Hence, the statement can be true and can be false, it is neither satisfiable non unsatisfiable.

c) (smoke => fire) => (-smoke => -fire)

(rsmoke V fire) => (smoke V -fire) (implication elimination)

-(smoke V fire) V (smoke V -fire) (implication elimination)

(rsmoke V fire) V (smoke V -fire)

(rsmoke ^ -fire) V (smoke V -fire)

(rsmoke V - fire) (Implication elimination)

(rsmoke V - fire) V (smoke V - fire)

(rsmoke V - fire) V (smoke V - fire)

(rsmoke V - fire) (-fire V smoke V - fire)

(semantics of V)

True^ (-fire V smoke)

- fire V smoke

(semantics of C)

	- D	- time V smoke
smoke	A STATE OF THE STA	True
True		False
False	False	
True	True	True
	True False	True False False

False	T = 1	Truc	True
14150	tement can be true a	1 1-0	false it i
	1 1 1 - 0	nd can be	talse, ic

```
a) smoke Vfire V-fire
                                 (semantics of v)
   smoke V True
    True (semantics of v)
Hence, as the statement is true for all models, it is valid.
e) ((smoke heat) => fire) ((smoke => fire) V (heat=> fire))
   (-(smoke heat) V fine) ((-(smoke V fine) V (-heat v fine)) (implication elimination)
  (-is make Vaheat v fine) (-smoke Vfire Vaheat vfire) (De Morgan)
   (-smoke V-heat vfire) (-smike V-heat vfire) (semantics of V)
  ((-smoke V-heat Vfine) (-smoke V-heat Vfine)) (Biconditional eli-
mination)
     ((-smoke V-heat vfire) => (- smoke V-heat vfire))
                                                           (a=) a is True)
  (True) ^ (True)
                                                          (semantics of 1)
    True
    Hence, as the statement is true for all models, it is valid.
 f) (smoke =>fine) => ((smoke nheat) => fire)
                                                    (implication elimination)
    (-smoke V fire) => (-(smoke heat) V fire)
                                                    (De Morgan)
    (-smoke vfine) => (-smoke v-heat v fine)
                                                    (implication dimination)
    7(75moke vfine) V (75moke V - heat vfine)
                                                     (De Morgan)
    (smoke "fine) V (smoke V sheat v fine)
    (smoker (-smoke v-heat v fine)) (-fine v (-smoke v-heat v fine) (4ssocia-
((smoke v-smoke) v-heat v fine) ((-fine v fine) v (-smoke v-heat) (4ssocia-
     (True V-heat V fine) (True V - smoke V-heat) (semantics of V)
                                                           (semantics of v)
      Hence, as the statement is true for all models, it is valid.
      (True) ^ (True)
```

g) big V dumb V (big => dumb)

big V olumb V (-big V dumb) (implication elimination)

big V-big V (dumb V dumb) (Associativity of V)

True V dumb (semantics of V)

True

True

True

Hence, as the statement is true for all models, it is valid.