Contents & 1 特征值与特征向量的完义

§ 1	特征值与特征向量的定义	2
§ 2	特征值、特征向量的性质与重要结论	2
	特征值的性质与重要结论	2
	特征值、特征向量的性质与重要结论	2
	常用矩阵的特征值与特征向量	2
§ 3	矩阵相似	2
	定义	2
	相似矩阵性质	2
	重要结论	3
	相似的判别与证明	3
§ 4	矩阵相似对角化	3
§ 4	定义	3
	矩阵可相似对角化的条件	3
	求可逆矩阵 P ,使得 $P^{-1}AP = \Lambda$	3
	由特征值、特征向量反求 A	4
	求 $A^k,f(A)$	4
§ 5	实对称矩阵的相似对角化	4
30	实对称矩阵性质	4
	实对称矩阵相似对角化基本步骤	4
	施密特正交化公式	4

§ 1 特征值与特征向量的定义

设A是n阶矩阵, λ 是一个数,如果存在非零向量 ξ 使得

$$A\xi = \lambda \xi$$

则称 λ 是A的一个特征值, ξ 是对应于 λ 的特征向量。

§ 2 特征值、特征向量的性质与重要结论

特征值的性质与重要结论

- 1. λ_0 是**A**的特征值 $\Leftrightarrow |\lambda_0 E A| = 0$; λ_0 不是**A**的特征值 $\Leftrightarrow |\lambda_0 E A| \neq 0$

$$\begin{cases} |\mathbf{A}| = \lambda_1 \lambda_2 ... \lambda_n \\ \operatorname{tr}(\mathbf{A}) = \lambda_1 + \lambda_2 + ... + \lambda_n \end{cases}$$

特征值、特征向量的性质与重要结论

- 1. $\xi(\neq 0)$ 是**A**的属于特征值 λ 的特征向量 $\Leftrightarrow \xi$ 是($\lambda_0 E A$)x = 0的非零解
- 2. k重特征值最多只有k个线性无关的特征向量
- 3. 若 ξ_1, ξ_2 是A的属于不同特征值 λ_1, λ_2 的特征向量,则 ξ_1, ξ_2 线性无关
- 4. 若 ξ_1 , ξ_2 是A的属于同一特征值 λ 的特征向量,则 $k_1\xi_1+k_2\xi_2$ 仍是A的属于特征值 λ 的特征向量(k_1,k_2 为任意常数)
- 5. 若 ξ_1, ξ_2 是A的属于不同特征值 λ_1, λ_2 的特征向量,则当 $k_1 \neq 0, k_2 \neq 0$ 时, $k_1 \xi_1 + k_2 \xi_2$ 不是A的任何特征值的特征向量
- 6. 设 λ_1, λ_2 是**A**的两个不同特征值,**\xi**是对应于 λ_1 的特征向量,则 ξ 不是对应于 λ_2 的特征向量

常用矩阵的特征值与特征向量

矩阵	\boldsymbol{A}	kA	A^k	f(A)	A^{-1}	A^*	$P^{-1}AP$
特征值	λ	$k\lambda$	λ^k	$f(\lambda)$	$\frac{1}{\lambda}$	$\frac{ A }{\lambda}$	λ
对应的特征向量	ξ	ξ	ξ	ξ	ξ	ξ	$P^{-1} \xi$

§3 矩阵相似

定义

设A, B是n阶方阵,如果存在可逆矩阵P使得 $A = P^{-1}BP$,则称A与B相似,记作 $A \sim B$ 。

相似矩阵性质

若 $A \sim B$,则:

1. |A| = |B|

2.
$$r(A) = r(B)$$

3.
$$\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{B})$$

4.
$$\lambda_A = \lambda_B$$

5.
$$r(\lambda \mathbf{E} - \mathbf{A}) = r(\lambda \mathbf{E} - \mathbf{B})$$

6. A, B各阶主子式之和分别相等

重要结论

- 1. 若 $A \sim B$, 则 $A^k \sim B^k$, $f(A) \sim f(B)$
- 2. 若 $A \sim B$ 且A可逆,则 $A^{-1} \sim B^{-1}$
- 3. 若 $A \sim B$,则 $A^* \sim B^*$
- 4. 若 $A \sim B$ 则 $A^{\mathsf{T}} \sim B^{\mathsf{T}}$
- 5. 若 $A \sim C, B \sim D, 则\begin{pmatrix} A & O \\ O & B \end{pmatrix} \sim \begin{pmatrix} C & O \\ O & D \end{pmatrix}$

相似的判别与证明

- 1. 定义法: 若存在可逆矩阵P, 使得 $P^{-1}AP$,则 $A \sim B$
- 2. 传递性: 若 $A \sim B$, $B \sim C$, 则 $A \sim C$

§ 4 矩阵相似对角化

定义

设A为n阶矩阵,若存在n阶可逆矩阵P,使得 $P^{-1}AP = \Lambda$,其中 Λ 是对角矩阵,则A可相似对角化,记 $A \sim \Lambda$,称 Λ 是A的相似标准形。

矩阵可相似对角化的条件

由定义可知,若A可相似对角化,在 $P^{-1}AP = \Lambda$ 两端同时左乘P,有 $AP = P\Lambda$

n阶矩阵A可相似对角化 $\Leftrightarrow A$ 有n个线性无关的特征向量 $\Leftrightarrow A$ 对应与每个 k_i 重特征值都有 k_i 个线性无关的特征向量

n阶矩阵A有n个不同特征值 $\Rightarrow A$ 可相似对角化

n阶矩阵A为实对称矩阵 $\Rightarrow A$ 可相似对角化

求可逆矩阵P, 使得 $P^{-1}AP = \Lambda$

已知4可相似对角化的条件下

- 1. 求**A**的特征值
- 2. 求A的对应于特征值的特征向量

3.
$$P = [\boldsymbol{\xi}_1, \boldsymbol{\xi}_2, ..., \boldsymbol{\xi}_n] 则 P^{-1} A P = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \\ & & & \lambda_n \end{bmatrix}$$

P中特征向量 ξ ,的顺序可以任意,但特征值 λ ,的顺序必须与 ξ ,对应,即 λ ,是 ξ ,对应的特征值。

由特征值、特征向量反求A

$$A = P\Lambda P^{-1}$$

$$m{A}^k = m{P}egin{bmatrix} \lambda_1^k & & & \ & \lambda_2^k & & \ & \ddots & & \ & & \lambda_n^k \end{bmatrix} m{P}^{-1}$$

$$f(\boldsymbol{A}) = \boldsymbol{P} \begin{bmatrix} f(\lambda_1) & & & \\ & f(\lambda_2) & & \\ & & \ddots & \\ & & f(\lambda_n) \end{bmatrix} \boldsymbol{P}^{-1}$$

§ 5 实对称矩阵的相似对角化

实对称矩阵性质

- 1. 实对称矩阵的特征值都是实数,特征向量是实向量
- 2. 实对称矩阵的属于不同特征值的特征向量相互正交
- 3. 对于任意n阶实对称矩阵A,存在n阶正交矩阵Q,使得

$$oldsymbol{Q}^{\mathsf{T}}oldsymbol{A}oldsymbol{Q} = egin{bmatrix} \lambda_1 & & & & \ & \lambda_2 & & \ & & \ddots & \ & & & \lambda_n \end{bmatrix}$$

实对称矩阵相似对角化基本步骤

- 1. 求特征值
- 2. 求特征值对应的特征向量
- 3. 正交化,单位化得 $\eta_1, \eta_2, ..., \eta_n$
- 4. 令 $Q = [\eta_1, \eta_2, ..., \eta_n]$,则Q是正交矩阵,且 $Q^{-1}AQ = Q^{\mathsf{T}}AQ = \Lambda$

施密特正交化公式

设 $\alpha_1, \alpha_2, \alpha_3$ 线性无关但不正交,令

$$\boldsymbol{\beta}_1 = \boldsymbol{\alpha}_1, \boldsymbol{\beta}_2 = \boldsymbol{\alpha}_2 - \frac{(\boldsymbol{\beta}_1, \boldsymbol{\alpha}_2)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1, \boldsymbol{\beta}_3 = \boldsymbol{\alpha}_3 - \frac{(\boldsymbol{\beta}_1, \boldsymbol{\alpha}_3)}{(\boldsymbol{\beta}_1, \boldsymbol{\beta}_1)} \boldsymbol{\beta}_1 - \frac{(\boldsymbol{\beta}_2, \boldsymbol{\alpha}_3)}{(\boldsymbol{\beta}_2, \boldsymbol{\beta}_2)} \boldsymbol{\beta}_2$$