Exer	Exercices							
1.	 3.3.1 Cochez les réponses correctes. Une diode Zener ne peut être utilisée que da Il existe des LED de couleurs bleue, verte, ro Plus la lumière est intense, plus grande est la photo résistance (LDR). Le courant dans un thyristor ne peut circuler Un triac permet de contrôler le passage du ce Le transistor peut être utilisé pour amplifier un 	ouge e a résis que d ourant	t bland stance ans ur t dans	che. d'une n sens		Eaux	(0,5 par rép)	
2.	3.1.1 Analyse d'un circuit logique de commande LOGO Déterminer l'état (1 ou 0) des sorties Q1 et Q2 de combinaison possible des 3 entrées I1, I2 et I3. Complétez la table de vérité.	u circu	uit, pou vrir mer	ur cha	que Solut	ion ·	4	
		I 1	12	13	Q1	Q2		
		0	0	0	0	0		
		0	0	1	0	1		
			1	0	0	0		
		0						
		0	1	1	0	1		
		1	0	0	0	0		
		1	0	1	0	1		
		1	1	0	1	0		
		1	1 (Par	1 ligne	1 correcte	0 (0.5)		
			۱. ۵۱			,.,		

Exer	cices	Nombre d maximal	e points obtenus
3.	3.1.2 Dans un couloir de 2,5m de largeur, les supports pour un éclairage LED sont montés à une hauteur de 0,3 m du sol. Les supports sont répartis à gauche et à droite du couloir de sorte que le rayon produit par une lampe effleure le rayon produit par la lampe suivante. L'angle d'ouverture des lampes est de 35 ° (voir le croquis). A quelle distance x, les lampes doivent-elle être montées ?	3	
	Mur gauche Distance x		
	Distance x Mur gauche Mur droite	(2)	
	$tan(17,5^{\circ}) = \frac{y}{2,5m} \implies y = tan(17,5^{\circ}) \cdot 2,5m = 0,79m$ Distance $x = 2 \cdot y = 2 \cdot 0,79m = 1,58m$	(1)	
4.	3.2.5 Cochez les réponses correctes. - Un champ magnétique est produit par un électro-aimant dont l'alimentation est coupée.	2	
	 Un champ magnétique est produit par la circulation d'un courant dans un conducteur. Un champ électrique est produit par deux électrodes de charges différentes. Un champ électrique est produit par la circulation d'un courant dans un conducteur. 	(0,5 par rép)	

rcices	Nombre o	de points obtenu
$3.5.5$ Une batterie de pile se compose de deux modules plats couplés en parallèle. Chaque module a une résistance interne R_i = 1 Ω et une force électromotrice (tension à vide) E = 4,5 V .	3	
Calculez le courant de décharge pour lequel la tension aux bornes de la batterie chute à 4 V.		
Solution:		
$R_{iTot} = \frac{R_i}{2} = \frac{1\Omega}{2} = 0.5 \Omega; E_{Tot} = E = 4.5 V$		
$I = \frac{U_i}{R_{iTot}} = \frac{E - U}{R_{iTot}} = \frac{4,5 V - 4 V}{0,5 \Omega} = \frac{1A}{E}$		
3.5.3		
Quel est le moment du couple produit à l'axe d'un moteur ayant une puissance utile de 3,5 kW et une vitesse de rotation de 1'440 min ⁻¹ ?	3	
Solution:		
$\omega = 2 \cdot \pi \cdot n = 2 \cdot \pi \cdot \frac{1'440 \text{min}^{-1}}{60 \frac{\text{S}}{\text{min}}} = 150,80 \text{s}^{-1}$	(1)	
min		
Nivo		
$M = \frac{P_{utile}}{\omega} = \frac{3'500 \frac{Nm}{s}}{150,80 s^{-1}} = \frac{23,21Nm}{s}$	(2)	

Exercic	es	Nombre d	le points obtenus
7. Un ph 4'1 Ca	5.2 ne partie de l'énergie renouvelable sera produite dans le futur par des cellules otovoltaïques. Dans notre région, on compte une énergie lumineuse de l'30 MJ par m² de cellules et par année. alculez l'énergie électrique moyenne en kWh produite annuellement par une stallation de 5m². Le rendement de l'installation d'énergie est de 17%.	2	obietius .
So	olution :		
	$V_{\text{Electrique annuelle de l'inst.}} = A \cdot W_{\text{Lumineuse annuelle } 1\text{m}^2} \cdot \eta = 5 \text{m}^2 \cdot 4' 130 \frac{\text{MJ}}{\text{m}^2 \cdot \text{a}} \cdot 0,17$ $3' 510,5 \text{MJ} = 3' 510,5 \text{MWs} \Rightarrow \underline{975,1 \text{kWh}}$		
	(Si pas en kWh -0,5)		
R = Six Qu cha	5.4 in chauffe-eau a un corps de chauffe dont la résistance est de = 26,45 Ω. Il est branché au le réseau 230 V. It itres d'eau sont portés à ébullition (100 $^{\circ}$ C) en 25 minutes. Unelle est la température de l'eau froide, sachant que le auffe-eau a un rendement de 75 % ? $\frac{J}{kg \cdot K}$	3	
	plution : $ F_{\text{Fournie}} = P \cdot t = \frac{U^2}{R} \cdot t = \frac{(230 \text{V})^2}{26,45 \Omega} \cdot 1'500 \text{s} = 3'000 \text{kWs} $	(1)	
Q	$_{ ext{Utile}} = \mathbf{Q}_{ ext{Fournie}} \cdot \boldsymbol{\eta} = \mathbf{3'000kWs} \cdot 0,75 = \mathbf{2'250kWs}$	(1)	
	$u_{\text{tile}} = \mathbf{m} \cdot \mathbf{c} \cdot \Delta \mathcal{G} \Rightarrow \Delta \mathcal{G} = \frac{\mathbf{Q}_{\text{Utile}}}{\mathbf{m} \cdot \mathbf{c}} = \frac{\mathbf{2'250 kWs}}{6 kg \cdot 4,19 \frac{kJ}{kg \cdot K}} = 89,5 K$ $= \mathcal{G}_2 - \Delta \mathcal{G} = 100 ^{\circ} \mathbf{C} - 89.5 K = \underline{10,5 ^{\circ} \mathbf{C}}$	(1)	

Exercices		Nombre d maximal	le points obtenus
	électricien reçoit le mandat de remplacer les cinq lampes à installées dans un bar par des ampoules LED.	3	
Lampe LED:	descence : $P_{Linc} = 40 W$, $\Phi_{Linc} = 430 Im$. BIOLEDEX® VEO 8 W E27 600 Im, 230 V.		
obtenir au incandesc	d'ampoules LED doivent être installées pour moins le même flux lumineux des ampoules à ence ? L'efficacité lumineuse des 2 types de		
Solution :	5 420lm	(1)	
$n_{LED} = \frac{n_{Linc} \cdot q}{\Phi_{LEI}}$	$\frac{D_{\text{Linc}}}{D_{\text{D}}} = \frac{5.430 \text{Im}}{600 \text{Im}} = 3.6 \Rightarrow \frac{4 \text{pces}}{D_{\text{D}}} \text{ LED sont installées}$		
b)		(2)	
$ \eta_{Linc} = \frac{\Phi_{Linc}}{P_{Linc}} = \frac{P_{Linc}}{P_{Linc}} $	$= \frac{430 lm}{40 W} = \underbrace{\frac{10,75 lm}{W}}; \; \eta_{LED} = \frac{\Phi_{LED}}{P_{LED}} = \frac{600 lm}{8 W} = \underbrace{\frac{75 lm}{W}}$		
	Total	26	

Exer	cices	Nombre d maximal	e points obtenus
1.	3.2.1 Nommez trois moyens permettant de produire une tension électrique et expliquez pour chacun d'eux le principe utilisé.	3	
	Réponses possibles:		
	Par échauffement. Si l'on chauffe le point de soudure de 2 métaux différents, une différence de potentiel apparaît entre les extrémités libres.	(1 par rép.)	
	Par induction magnétique. Une spire, en rotation sur son axe, placée dans un champ magnétique est le siège d'une tension induite.		
	Par transformation chimique. Deux métaux de nature différente plongés dans un électrolyte provoquent un déplacement d'ions entre les deux électrodes.		
	Par la lumière. Lorsque de la lumière atteint une matière semi-conductrice, il en résulte une tension électrique aux bornes de ce semi-conducteur.		
	Par pression. Une pression exercée sur un quartz génère à ses bornes une tension.		
	Par friction Le frottement de deux corps l'un contre l'autre provoque la séparation des charges électriques positives et négatives, d'où l'apparition d'une tension.		
2.	3.2.4 Quelle est l'énergie consommée par une plaque de cuisson vitrocéramique absorbant une puissance moyenne de 1500W sachant que la préparation d'un repas pour quatre personnes dure exactement 99 minutes?	2	
	Solution:		
	$t = \frac{99 \text{min}}{60 \frac{\text{min}}{\text{h}}} = 1,65 \text{h}$		
	h	(1)	
	$W = P \cdot t = 1500 \text{ W} \cdot 1,65 \text{ h} = 2475 \text{ Wh} = 2,48 \text{ kWh}$		
		(1)	

ercices	Nombre d maximal	e point
3.2.5		23.5110
Un courant électrique circule dans une spire. Celle-ci est placée dans un champ magnétique.	3	
a) Dessinez le sens de flux magnétique produit par les pôles.	(0,5 par	
b) Dessinez le sens de flux magnétique produit par chaque conducteur de la	rép.)	
spire.		
c) Indiquez à l'aide de flèches les zones présentant un renforcement ou un		
affaiblissement du champ magnétique.		
d) Indiquez le sens de rotation de la spire sachant que celle-ci est montée sur un		
axe.		
e) Comment peut-on augmenter la force sur les conducteurs de la spire?		
f) Quel type de moteur fonctionne selon ce principe?		
Solution: Affaiblissement Renforcement		
N S		
Renforcement its Affaiblissement		
a port		
Sens		
d) Dans le sens horaire (Une flèche suffit).		
d) Dans le sens noraire (one neche sunit).		
e) Augmentation de l'induction des pôles ou augmentation du courant		
dans la spire ou augmentation du nombre de spires ou augmentation de		
la longueur de conducteur actif (dans le champ magnétique).		
f) Moteur universel ou moteur à courant continu et autres.		

Exer	rcices	Nombre o	de points obtenus
4.	3.1.2 Le mât d'une construction provisoire est assuré avec un câble de 5m de longueur. A quelle distance par rapport au sommet du mât de 7 m	2	
	doit-on fixer le câble de sorte à avoir un angle de 60° entre le sol et le câble? Solution:		
	Opp = Hyp · sin60° = 5 m · 0,866 = 4,33 m $y = I_{M\hat{a}t} - Opp = 7 m - 4,33 m = 2,67 m$		
5.	3.2.6 Une ligne de cuivre de 75 m est chargée par un courant maximum de 12 A. La chute de tension en ligne ne doit pas dépasser 4% de la tension de départ (230 V / 50 Hz). Calculez la section normalisée minimale que vous devez utiliser pour cette ligne afin de respecter la chute de tension maximale. $\rho_{\text{Cuivre}} = 0,0175 \frac{\Omega \cdot \text{m} \text{m}^2}{\text{m}}$	3	
	Solution: $\Delta U = \frac{4\% \cdot U}{100\%} = \frac{4\% \cdot 230 \text{ V}}{100\%} = 9,2 \text{ V}$		
	$A = \frac{2 \cdot I \cdot \rho \cdot I}{\Delta U} = \frac{2 \cdot 12 A \cdot 0,0175 \frac{\Omega \cdot m m^2}{m} \cdot 75 m}{9,2 V} = 3,42 m m^2$		
	ou $R_{L} = \frac{\Delta \cdot U}{I} = \frac{9.2 \text{ V}}{12 \text{ A}} = 0.76 \Omega$	(2)	
	$A = \frac{\rho \cdot l \cdot 2}{R_L} = \frac{0,0175 \frac{\Omega \cdot m m^2}{m} \cdot 75 m \cdot 2}{0,76 \Omega} = 3,45 m m^2$	(1)	
	Il faut utiliser un conducteur de <u>4 mm²</u> .		

surintensité a à la section d Extrait du tab Courant en a	BT, une canalis										maximal
Selon les NIE surintensité a à la section d Extrait du tab Courant en a	ayant un courar										maximal
surintensité a à la section d Extrait du tab Courant en a	ayant un courar	ation d	loit être	protéd	iée en	amo	nt pai	r un c	oupe	_	3
à la section d Extrait du tab Courant en a											
Extrait du tab Courant en a	ies conaucieur								•		
Courant en a											
	oleau 5.2.3.1.1.	15.2.2									
	impère pour les	s mode	s de pos	se de l	référe	nce A	1, A2	2, B1,	B2, (C, D,	
∃ et F, isolati	ion PVC / ligne										
	C / température						•	•			
•	·										
	nbre Courant de		ement assi	gné [A] c	lu coupe	surinte	ensité ir	séré er	n amon	t de	
pose de de référence circi	la canalisatio	1 16	20 25	32	40	50	63	80	100	125	
	1 1,5	2,5	4	6	10	16	25	35	50	70	
A2	1 1,5	2,5	4 6		10	16	25	35	50	70	
B1	1 1,5		2,5 4	6	1	10	16	25	35	50	
B2	1 1,5		2,5 4	6	1	10	16	25	35	50	
52	2 1,5	2,5	4 6		10	16	25	35	50	95	
,	ez, en fonction								•		
	tés suivants. Le				est util	isé po	our le	circu	it.		
Calculer é	également la de	ensité c	de coura	nt.							
											
Protection	Section		ensité d								
[A]	[mm ²]		courant								
ניין	[]		[A/mm ²]								
16											
50											
Solution:											
	$=\frac{16A}{1.5 \text{mm}^2} = 1$	0,67_ n	$\frac{A}{nm^2}$	J ₅₀ = -	50 A	$\frac{1}{n^2} = \frac{1}{2}$	$5\frac{A}{mm}$	<u> 1²</u>			
	$=\frac{16 \mathrm{A}}{1,5 \mathrm{mm}^2} = 1$	0,67 <u>n</u>	A nm², `	$J_{50}=rac{1}{1}$	50 A I 0 m n	$\frac{\Lambda}{n^2} = \frac{\Lambda}{2}$	5 <u>A</u> mn	<u>1²</u>			
$J = \frac{I}{A}, J_{16}$	n Section	D	ensité d	е	50 <i>A</i> I0mr	$\frac{\Lambda}{m^2} = \frac{\Lambda}{2}$	5 <u>A</u>	<u>1²</u>			(0,5 par
$J = \frac{I}{A}$, J_{16}		D	ensité d courant	е	50 A I Omr	$\frac{\lambda}{n^2} = \frac{\lambda}{2}$	5 <u>A</u>	<u>1²</u>			(0,5 par rép.)
$J = \frac{I}{A}$, J_{16} Protection [A]	n Section [mm²]	D	ensité d courant [A/mm²]	е	50 A I Omn	$\frac{\Lambda}{n^2} = \frac{1}{2}$	5 <u>A</u>	<u>1²</u>			
Protection	n Section	D	ensité d courant	е	50 <i>A</i> I0mr	$\frac{\Lambda}{n^2} = \frac{\Lambda}{2}$	5 <u>A</u>	<u>1²</u>			

Exer	cices	Nombre o	le points obtenus
7.	3.5.2 Un monte-charge de bâtiment s'élève de 18 m en 23 secondes. La cage du monte-charge pèse 0,7 tonne et peut transporter une charge de 1,4 tonne. Calculez la puissance électrique absorbée (en kW) sachant que le monte-charge complet (Moteur et système de levage) a un rendement de 75%?	3	
	$\begin{split} P_{\text{mec}} &= \frac{m \cdot g \cdot h}{t} = \frac{(700 \text{kg} + 1'400 \text{kg}) \cdot 9,81 \frac{m}{s^2} \cdot 18 m}{23 \text{s}} = 16'122,5 \frac{\text{Nm}}{\text{s}} \\ &= 16'122,5 \text{W} \\ \\ P_{\text{el}} &= \frac{P_{\text{mec}}}{n} = \frac{16'122,5 \text{W} \cdot 100 \%}{75 \%} = 21'496,7 \text{W} = \underbrace{21,50 \text{kW}}_{} \end{split}$	(2)	
	^{ει} η 75% <u></u>	(1)	
	(Calcul sans la masse de la cage -1 Pt)		
8.	3.5.5 Un accumulateur Ni-MH (Nickel-Hydrure métallique) a les caractéristiques suivantes: $E=1,2\ V;\ R_i=0,36\ \Omega;\ Q=1'200\ mAh.$ Trois accumulateurs sont couplés en parallèle et produisent ensemble un courant de 1,5 A.	3	
	a) Calculez la tension aux bornes du couplage. Solution: $R_{iTot} = \frac{R_i}{n} = \frac{0,36\Omega}{3} = 0,12\Omega$ $U_{Bornes} = E - R_{iTot} \cdot I = 1,2V - 0,12\Omega \cdot 1,5A = \underline{1,02V}$	(2)	
	 b) Calculez le temps de décharge complet de ce couplage (Hypothèse : Le courant de décharge est constant). Solution: Q_{Tot} = n · Q₁ = 3 · 1,2 Ah = 3,6 Ah Q₋ 3 6 Ah 	(1)	
	$t = \frac{Q_{Tot}}{I} = \frac{3.6 \text{ Ah}}{1.5 \text{ A}} = \frac{2.4 \text{ h}}{1.5 \text{ A}}$		

Exercices	Nombre of maximal	de points obtenus
3.3.2Nommez quatre grandeurs physiques pouvant être contrôl en technique du bâtiment.	lées par des capteurs 2	
Réponses possibles:		
- Température - Pression - Vent - Pluie - Lumière (Luminosité) - Niveau d'un liquide - Mouvement - (Etat logique ou ouvert/fermé) sera également a	accepté	
Total	24	

Exer	cices	Nombre d maximal	le points obtenus
1.	3.1.2 Un conteneur de forme cylindrique est rempli de 10 litres d'eau. Quelle est la hauteur du cylindre, sachant que son diamètre intérieur est de 220 mm ?	2	
	Solution: $V = \frac{d^2 \cdot \pi}{4} \cdot h \to h = \frac{4 \cdot V}{d^2 \cdot \pi} = \frac{4 \cdot 10 \text{ dm}^3}{(2, 2 \text{ dm})^2 \cdot \pi} = \frac{2,63 \text{ dm}}{2, 3 \text{ dm}} = \frac{26,3 \text{ cm}}{2, 3 \text{ cm}}$		
2.	3.2.1 Le rotor d'un générateur (symbolisé par le conducteur) coupe les lignes de forces du champ magnétique produit par l'aimant permanent.	3	
	a) Dessinez la direction du déplacement du rotor (Effet générateur). N S	(1)	
	b) Dessinez le sens du courant dans le conducteur (un point ou une croix) sachant qu'il se déplace dans la direction indiquée par le vecteur (Effet générateur).	(1)	
	c) Indiquez la polarité des pôles (Effet générateur). N S	(1)	

Exer	cices							Nombre o	le points obtenus
3.	3.2.4 Une charge a une puis Calculez la puissance supérieure à la tensior	de cette charge						2	
	Solution:								
	$P_2 = \frac{P_1 \cdot U_2^2}{U_1^2} = \frac{1 \text{ kV}}{1 \text{ kV}}$	$\frac{V \cdot (230 \text{ V} \cdot 1, 0)}{(230 \text{ V})^2}$	$\frac{(5)^2}{} = \underline{1,10 \text{ k}}$	<u>w</u>					
4.	3.2.7 4. La résistance, la bobine et le condensateur sont connectés successivement à une tension de 12 V / 50 Hz et à une tension de 12 V DC. Pour chacun des trois composants, un courant a été mesuré. Déterminez l'évolution du courant pour la deuxième mesure (? A). Sur chacune des lignes, vous devez cocher une des 4 cases.							3	
				Le courant augmente	Le courant diminue	Le courant reste le même	II n'y a pas de courant		
		12 V/50 Hz 1 A	12 V DC ? A			х		(1)	
		12 V/50 Hz ? A	12 V DC 0,5 A		х			(1)	
		12 V/50 Hz ? A	12 V DC 0 A	х				(1)	

Exer	cices	Nombre o	le points obtenus
	3.3.1	maximai	Obtenus
5.	Charge ohmique L Potentiomètre Condensateur N	2	
	a) Quel est le nom du circuit représenté ?		
	Variateur à découpage de phase	(1)	
	b) Citez un exemple d'application utilisant ce circuit.		
	Variateur de lumière, régulateur de vitesse, variateur	(1)	
6.	3.5.2 Une pompe refoule 3 m³ d'eau par minute d'une profondeur de 50 m. Calculer la puissance utile du moteur électrique relié à la pompe sachant que le rendement de la pompe est de 75%.	3	
	Solution:		
	$P_{2 Pompe} = \frac{W_{2 Pompe}}{t} = \frac{m \cdot g \cdot h}{t} =$		
	$\frac{3'000 \text{ kg} \cdot 9,81 \frac{\text{m}}{\text{s}^2} \cdot 50 \text{ m}}{60 \text{ s}} = \underline{24,53 \text{ kW}}$	(2)	
	$P_{1 Pompe} = P_{2 Moteur} = \frac{P_{2 Pompe}}{\eta} = \frac{24,53 \text{ kW}}{0,75} = \underline{\frac{32,7 \text{ kW}}{1}}$	(1)	

Exer	cices					Nombre d	e points obtenus
9.	3.5.7	†		8 m		3	
		E					
		5	E	E	E -		
	Pour la salle à manger illustrée, un client e six tables. Il désire utiliser comme moyen par table (fluocompacte) de 20 W / 1'150 Le rendement de cet éclairage est de 40%	ďé lm.					
	a) Quel sera l'éclairement moyen obtenu	cor	mpte tenu de	es désirs du	client ?	(1)	
	Solution:						
	$E_m = \frac{\Phi_L \cdot n \cdot \eta}{A} = \frac{1'150 \ lm \cdot 6 \cdot 0, 4}{8 \ m \cdot 5 \ m} =$	<u>69</u>	<u>lx</u>				
	 b) Comment évaluez-vous le niveau d'écl Cochez une réponse. 	laira	age de la piè	ece?		(1)	
	L'éclairement moyen est bien chois						
	L'éclairement moyen est trop faible L'éclairement moyen est trop grand						
	c) Par quel facteur se modifie l'éclaireme installe deux ampoules économiques ?		noyen, si suı	r chaque tal	ble on	(1)	
	L'éclairement moyen est doublé.						

Exer	cices		Nombre of maximal	de points obtenus
3.	3.1.2 Une plaque de protection rectangulaire aver quatre perçages est réalisée en acier. Ses dimensions sont 200 mm x 120 mm et une épaisseur de 2,5 mm. Calculez la masse exacte de cette plaque $(\rho = 7.2 \ \frac{\mathrm{kg}}{\mathrm{dm}^3})$	elle a	3	Storido
	Masse des 4 perçages $m_{perçages} = 4 \cdot \rho \cdot \frac{d^2 \cdot \pi}{4} \cdot s = 4 \cdot 7, 2 \frac{kg}{dm}$ $= 8,14 g$	$\frac{g}{3} \cdot \frac{(0, 12 \text{ dm})^2 \cdot \pi}{4} \cdot 0,025 \text{ dm}$	(1)	
	Masse totale de la plaque $m_{Plaque} = \rho \cdot l \cdot b \cdot s = 7, 2 \; \frac{kg}{dm^3} \cdot 2 \; dm$	$1, 2 \text{ dm} \cdot 0, 025 \text{ dm} = 432 \text{ g}$	(1)	
	Masse de la plaque $m=m_P-m_B=432g-8,14g=423$	$,86 g = \underline{0,424 kg}$	(1)	
4.	3.2.1 En quelle forme d'énergie utile les appareil électrique consommée ? a) Perceuse b) Tube lumineux à décharge (TL) c) Plaque vitrocéramique d) Moteur électrique	ls suivants transforment-t-ils l'énergie → Energie mécanique → Energie rayonnante (lumineuse) → Energie calorifique → Energie mécanique	2 (0,5 chacun)	

rcices			Nombre maximal	de point obtenu
3.2.5			maxifilat	obtent
	ndez aux questions suivantes	S.	2	
a)		luction restant dans un matériau champ magnétisant disparaît ?		
	Induction rémanente		(0,5)	
b)	matériaux magnétiques du	e les matériaux magnétiques doux et les rs. Indiquez si l'on utilise des matériaux pour les applications suivantes.		
	Noyau de transformateur	→ matériaux magnétiques doux	(0,5	
	Aimant permanent	→ matériaux magnétiques dur	chacun)	
	Electroaimant	→ matériaux magnétiques doux		
60 m p d'une La por absorb	olus haut. Les pertes dans la diminution de pression), alor mpe est directement couplée pée est de 45 kW.	d'eau par seconde dans un réservoir situé a canalisation montante sont de 10 % (il s'agit es que le rendement de la pompe est de 80 %. e à un moteur électrique dont la puissance	3	
Calcul	ez le rendement du moteur.			
η _{Globa}		$\frac{50 \text{ kg} \cdot 9,81 \frac{\text{N}}{\text{kg}} \cdot 60 \text{ m}}{45'000 \text{W} \cdot 1\text{s}} = \underline{0,654}$	(2)	
	$\mathbf{q}_{\mathrm{H}} = rac{\mathbf{W}_{\mathrm{Utile}}}{\mathbf{W}_{\mathrm{Absorb\acute{e}e}}} = rac{\mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}}{\mathbf{P}_{\mathrm{el}} \cdot \mathbf{t}} = \mathbf{g}$		(2)	
η_{Globa}	$\mathbf{W}_{\mathbf{M}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{W}_{\mathbf{U}_{\mathbf{t}}\mathbf{i}\mathbf{l}\mathbf{e}}}{\mathbf{W}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{m}\cdot\mathbf{g}\cdot\mathbf{h}}{\mathbf{P}_{\mathbf{e}\mathbf{l}}\cdot\mathbf{t}} = 0$			
η_{Globa}	$\mathbf{W}_{\mathbf{M}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{W}_{\mathbf{U}_{\mathbf{t}}\mathbf{i}\mathbf{l}\mathbf{e}}}{\mathbf{W}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{m}\cdot\mathbf{g}\cdot\mathbf{h}}{\mathbf{P}_{\mathbf{e}\mathbf{l}}\cdot\mathbf{t}} = 0$			
η_{Globa}	$\mathbf{W}_{\mathbf{M}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{W}_{\mathbf{U}_{\mathbf{t}}\mathbf{i}\mathbf{l}\mathbf{e}}}{\mathbf{W}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{m}\cdot\mathbf{g}\cdot\mathbf{h}}{\mathbf{P}_{\mathbf{e}\mathbf{l}}\cdot\mathbf{t}} = 0$			
η_{Globa}	$\mathbf{W}_{\mathbf{M}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{W}_{\mathbf{U}_{\mathbf{t}}\mathbf{i}\mathbf{l}\mathbf{e}}}{\mathbf{W}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{m}\cdot\mathbf{g}\cdot\mathbf{h}}{\mathbf{P}_{\mathbf{e}\mathbf{l}}\cdot\mathbf{t}} = 0$			
η_{Globa}	$\mathbf{W}_{\mathbf{M}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{W}_{\mathbf{U}_{\mathbf{t}}\mathbf{i}\mathbf{l}\mathbf{e}}}{\mathbf{W}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{m}\cdot\mathbf{g}\cdot\mathbf{h}}{\mathbf{P}_{\mathbf{e}\mathbf{l}}\cdot\mathbf{t}} = 0$			
η_{Globa}	$\mathbf{W}_{\mathbf{M}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{W}_{\mathbf{U}_{\mathbf{t}}\mathbf{i}\mathbf{l}\mathbf{e}}}{\mathbf{W}_{\mathbf{M}_{\mathbf{S}}}} = rac{\mathbf{m}\cdot\mathbf{g}\cdot\mathbf{h}}{\mathbf{P}_{\mathbf{e}\mathbf{l}}\cdot\mathbf{t}} = 0$			

Exercices	Nombre de points maximal obtenus
 3.5.3 7. Une clé dynamométrique est réglée sur 120 Nm. Quelle force doit être applique sur la clé sachant que son bras de levier a une longueur de 430 mm? 	uée 2
$M = F \cdot r \rightarrow F = \frac{M}{r} = \frac{120 \text{ Nm}}{430 \cdot 10^{-3} \text{ m}} = \frac{279, 1 \text{ N}}{1000 \text{ M}}$	
3.5.7	
8. Un réparateur a installé, il y a 10 ans, un éclairage composé de 12 lampes halogènes basse tension de 35 W. L'efficacité lumineuse des lampes halogèr basse tension est de 21 lm/W. Il désire remplacer cet éclairage par des lampes LED pour économiser de l'énergie. Les lampes LED ont une puissance de 7 W et une efficacité lumineu de 70 lm/W. Combien de lampes LED doit-il installer si le flux lumineux doit rester le même Le facteur de vieillissement est négligé.	use
$P_{\text{tot Hal}} = \mathbf{n} \cdot P_{1 \text{ Hal}} = 12 \cdot 35 \text{ W} = 420 \text{ W}$	
$\Phi_{tot Hal} = \Phi_{tot LED} = \eta_{Hal} \cdot P_{tot Hal} = 21 \cdot \frac{lm}{W} \cdot 420 W = \underline{8'820 lm}$	(1)
$P_{tot \ LED} = \frac{\Phi_{tot \ LED}}{\eta_{LED}} = \frac{8'820 \ lm}{70 \ \frac{lm}{W}} = \underline{126 \ W}$	(1)
$n = \frac{P_{tot LED}}{P_{1 LED}} = \frac{126 \text{ W}}{7 \text{ W}} = \underline{\frac{18 \text{ lampes}}{18 \text{ lampes}}}$	(1)
Total	18

Exe	cices	Nombre maximal	de points obtenus
5.	3.1.1 Une plaque de cuivre a une largeur de 17 cm, une longueur de 270 mm et une épaisseur de 10 mm. Elle a un trou de fixation de 12 mm de diamètre, dans chacun des quatre coins.	3	
	Masse volumique du cuivre : $8.9 \frac{kg}{dm^3}$		
	Calculez la masse de cette plaque de cuivre.		
	Solution:		
	$A_{Plaque 1} = l \cdot b = 1,7 \text{ dm} \cdot 2,7 \text{ dm} = 4,59 \text{ dm}^2$	(0,5)	
	$A_{Trous} = (d^2 \cdot \frac{\pi}{4}) \cdot 4 = (0, 12 \text{ dm})^2 \cdot 0, 7854 \cdot 4 = \underline{0, 0452 \text{ dm}^2}$	(0,5)	
	$A_{Plaque} = A_{Plaque 1} - A_{Trous} = 4,59 \text{ dm}^2 - 0,0452 \text{ dm}^2 = 4,545 \text{ dm}^2$	(0,5)	
	$m = \rho \cdot A \cdot h = 8,9 \frac{kg}{dm^3} \cdot 4,545 dm^2 \cdot 0,1 dm = \underbrace{4,045 kg}_{\underline{}}$	(1,5)	
	3.2.5		
6.	Soulignez la bonne réponse.	1	
	Pour un signal électrique alternatif, le temps d'une période correspond au temps :		
	a) d'une alternance négative.		
	b) entre la valeur maximale positive et la valeur maximale négative.		
	c) d'une alternance positive.		
	d) de l'écoulement d'une oscillation complète.		
	Solution :		
	a) d'une alternance négative.		
	b) entre la valeur maximale positive et la valeur maximale négative.		
	c) d'une alternance positive.		
	d) de l'écoulement d'une oscillation complète.		

Exercices	Nombre maximal	de points obtenus
 3.2.6 7. Quelle est la longueur maximale d'une ligne de cuivre de 1,5 mm² de sorte que pour un courant de charge de 8 A, la chute de tension en ligne ne dépasse pas 4 % de la tension de réseau (230 V) ? 	3	
Solution:		
$\Delta \mathbf{U} = \frac{\Delta \mathbf{U}_{[\%]} \cdot \mathbf{U}}{100\%} = \frac{4\% \cdot 230 \mathbf{V}}{100\%} = \underline{9,2 \mathbf{V}}$	(0,5)	
$R = \frac{\Delta U}{I} = \frac{9,2 V}{8 A} = \underline{1,15 \Omega}$	(0,5)	
$l_{Cond.} = \frac{R \cdot A}{\rho} = \frac{1,15 \ \Omega \cdot 1,5 \ mm^2}{0,0175 \ \frac{\Omega \cdot mm^2}{m}} = \frac{98,57 \ m}{}$	(1)	
Longueur de la ligne = $\frac{l_{Cond.}}{2} = \frac{98,57 \text{ m}}{2} = \frac{49,29 \text{ m}}{2}$	(1)	
 3.3.2 Un signal sinusoïdal est appliqué à un redresseur en pont (redresseur à double alternance). 	3	
a) Tracez le signal de sortie (tension aux bornes de la résistance de charge).b) Calculez la valeur maximale de la tension de sortie si le signal d'entrée a une valeur efficace de 6 V.		
(Remarque : La tension de seuil des diodes de redressement au silicium est de 0,7 V)		
u A		
t		
Solution :		
a) u	(1)	
b) $\widehat{\mathbf{U}_{E}} = \sqrt{2} \cdot \mathbf{U} = \sqrt{2} \cdot 6 \mathbf{V} = \underline{8,485 V}$	(1)	
$\widehat{U_A} = 8,485 \text{ V} - 1,4 \text{ V} = \frac{7,09 \text{ V}}{2000 \text{ (Pont de Graetz, 4 diodes)}}$	(1)	
Total	17	

Exer	cices	Nombre maximal	de points obtenus
_	3.2.3		o o o o o o o o o o o o o o o o o o o
3.	Calculez dans le circuit suivant:	3	
	a) le courant total I	1	
	b) la tension aux bornes de R ₃	1	
	c) la résistance R ₁	1	
	$0.8 A$ R_1 R_2 R_3 R_2 R_3		
	Solution:		
	a) $I = I_1 + I_2 = 0.8 A + 1.2 A = \underline{\underline{2 A}}$		
	b) $\mathbf{U}_3 = \mathbf{R}_3 \cdot \mathbf{I} = 4 \Omega \cdot 2 \mathbf{A} = \underline{8 \mathbf{V}}$		
	c) $R_1 = \frac{U - U_3}{I_1} = \frac{40 V - 8 V}{0.8 A} = \frac{40 \Omega}{0.8 A}$		
4.	3.2.4 A l'aide d'un ohmmètre, un installateur-électricien mesure la résistance de boucle d'un câble dont les conducteurs en cuivre ont une section de 1,5 mm². L'ohmmètre indique 1,2 Ω entre L et N. $ (\rho = 0,0175 \ \frac{\Omega \cdot mm^2}{m}) $ Calculez:	2	
	a) la longueur du câble	1	
	b) la chute de tension en volts lorsqu'un courant de 8,5 A circule dans le câble	1	
	Solution:		
	a) $L = \frac{A \cdot R_L}{\rho \cdot 2} = \frac{1,5 \text{ mm}^2 \cdot 1,2 \Omega}{0,0175 \frac{\Omega \cdot \text{mm}^2}{\text{m}} \cdot 2} = \frac{51 \text{ m}}{}$		
	b) $U_v = I \cdot R_L = 8,5 A \cdot 1,2 \Omega = 10,2 V$		

Exer	cices			maximal	obtenus
5.	3.3.1 Le graphique ci-dessous montre la caractéristique d Quelle affirmation est correcte?	'une résista	ance non-linéaire.	1	
	Graphique R/Ω 10^5 R_E R_E R_R				
	Affirmations	juste			
	Caractéristique d'une thermistance NTC				
	Caractéristique d'une thermistance PTC				
	Solution:				
	Affirmations	juste			
	Caractéristique d'une thermistance NTC				
	Caractéristique d'une thermistance PTC				
6.	3.5.5 Sur une batterie de piles 4,5 V, la tension aux borne batterie débite un courant de 0,6 A. Calculez: a) la chute de tension aux bornes de la résistance in		-,3 V lorsque la	2	
	b) la résistance interne R _i			1	
	Solution:				
	a) $U_{Ri} = E - U = 4,5 V - 4,3 V = 0,2 V$				
	b) $R_i = \frac{U_{Ri}}{I} = \frac{0.2 \text{ V}}{0.6 \text{ A}} = \underline{0.333 \Omega = 333 \text{ m}\Omega}$				

Exer	cices	Nombre maximal	de points obtenus
7.	3.5.1 Une grue soulève une charge de 120 kg en 6 secondes à une hauteur de 8 m. $g=9.81~\frac{m}{s^2};~g=9.81~\frac{N}{kg}$	3	
	Calculez:		
	a) la puissance utile (puissance mécanique)	2	
	b) la puissance absorbée sur le réseau électrique, sachant que le système de levage a un rendement de 71 % et le moteur a un rendement de 81 %.	1	
	Solution: a) $P_{utile} = \frac{m \cdot h \cdot g}{t} = \frac{120 \text{ kg} \cdot 8 \text{ m} \cdot 9,81 \frac{N}{\text{kg}}}{6 \text{ s}} = \underline{1570 \text{ W}}$		
	b) $P_{abs} = \frac{P_{ab}}{\eta_{G} \cdot \eta_{M}} = \frac{1570 \text{ W}}{0,71 \cdot 0,81} = \underline{\frac{2730 \text{ W}}{0,71 \cdot 0,81}}$		
8.	3.5.6 Un local de bricolage de 18 m² de surface au plancher est éclairé avec 3 lampes halogène à basse tension ayant chacune les caractéristiques suivantes: $P = 50 \text{ W}, \ \Phi = 950 \text{ lm}$	2	
	Le rendement de l'éclairage est de 45 %.		
	Calculez l'éclairement moyen E_M .		
	Solution:		
	$\Phi_{N,1 \; lampe} = \eta_B \cdot \; \Phi = 0,45 \cdot 950 \; lm = \underline{427,5 \; lm}$	0,5	
	$\Phi_{N,total} = 3 \cdot \Phi_{N,1 \text{ lampe}} = 3 \cdot 427,5 \text{ lm} = \underline{1282,5 \text{ lm}}$	0,5	
	$E_{M} = \frac{\Phi_{N,total}}{A} = \frac{1282,5 \text{ lm}}{18 \text{ m}^{2}} = \underbrace{71,25 \frac{\text{lm}}{\text{m}^{2}} = 71,25 \text{ lx}}_{}$	1	

Exercices		Nombre maximal	de points obtenus
suivantes : 700 W /	e d'une bouilloire, on trouve les informations 230 V. rieure de 5% par rapport à la tension nominale.	3	
Calculez :			
a) La tension effective.		1	
$U_2 = \frac{U_1 \cdot 95 \%}{100 \%} = \frac{230 \text{ V}}{100 \%}$	$\frac{.95\%}{0\%} = \underline{218,5 \text{ V}}$		
b) la puissance effective.		1	
$P_2 = \frac{U_2^2}{R} = \frac{(218, 5 \text{ V})^2}{75, 57 \Omega} =$	631,8 W		
$R = \frac{U_1^2}{P_1} = \frac{(230 \text{ V})^2}{700 \text{ W}} = \frac{75}{100 \text{ W}}$	5, 57 Ω		
ou			
$P_2 = \frac{P_1 \cdot U_2^2}{U_1^2} = \frac{700 \text{ W} \cdot (2)}{(230)^2}$	$\frac{(218,5 \text{ V})^2}{(3 \text{ V})^2} = \underline{\frac{631,8 \text{ W}}{}}$		
c) la diminution de puissanc	e en watts.	1	
$\Delta P = P_1 - P_2 = 700 \text{ W} -$	$631,8 W = \underline{68,2 W}$		
	coup de foudre est de 18,3 kA. d'un conducteur d'un diamètre de 4,8 mm. rant dans ce parafoudre ?	2	
$A = d^2 \cdot \frac{\pi}{4} = (4, 8 \text{ mm})^2 \cdot \frac{\pi}{4}$	·	(1)	
$J = \frac{I}{A} = \frac{18'300 \text{ A}}{18, 1 \text{ mm}^2} = \underline{\frac{101}{18}}$	$\frac{1}{\frac{A}{mm^2}}$	(1)	

Exercices	Nombre of maximal	de points obtenus
 3.1.1/3.1.2/3.1.3 Deux parois parallèles sont distantes l'une de l'autre de 6,5 m. Une paroi a une hauteur de 7 m et l'autre de 4,08 m. 	3	
Calculez la longueur du canal d'installation nécessaire à relier les deux paro (longueur indiquée en gras sur le dessin).	is	
7,00 m Canal d'installation 6,50 m 4,08 m		
$G_{canal} = 7,00 \text{ m} - 4,08 \text{ m} = 2,92 \text{ m}$	(1)	
$l = \sqrt{A_{canal}^2 + G_{canal}^2} = \sqrt{(6, 50 \text{ m})^2 + (2, 92 \text{ m})^2} = \underline{7, 13 \text{ m}}$	(2)	
 3.2.5/ 3.2.6/ 3.2.7 7. La résistance de boucle d'un câble TT LNPE d'une longueur de 75 m ne doit dépasser 1,12 Ω. 	t pas 3	
a) Calculez la section du conducteur.	1	
$A = \frac{\rho \cdot l}{R} = \frac{0.0175 \frac{\Omega \cdot mm^2}{m} \cdot 150 m}{1.12 \Omega} = \underline{\frac{2.34 \ mm^2}{1.000000000000000000000000000000000000$		
b) Calculez la chute de tension en ligne si un courant de 8 A parcourt le câbl	e. 1	
$Uv = R \cdot I = 1, 12 \Omega \cdot 8 A = \underbrace{8,96 V}_{}$		
c) Quelle section normalisée doit être choisie pour cette ligne?	1	
$A = \underbrace{2,5 \text{ mm}^2}$		

Exer	cices	Nombre maximal	de points obtenus
4.	3.2.3/ 3.2.4 Une grue de construction soulève une charge de 600 kg à une hauteur de 15 m en 10 secondes.	1	
	Calculez la puissance utile de cette grue.		
	$P_{U} = \frac{m \cdot g \cdot h}{t} = \frac{600 \text{ kg} \cdot 9,81 \frac{N}{\text{kg}} \cdot 15 \text{ m}}{10 \text{ s}} = \underline{8829 \text{ W}}$		
	3.2.5/ 3.2.6/ 3.2.7		
5.	Un câble 3 x 1,5 mm² Cu (LNPE) mesure 65 m. Calculez le courant de ligne maximum sachant que la tension d'alimentation est de 230 V et que la chute de tension en ligne ne doit pas dépasser 4 %. $ \rho = \ 0.0175 \ \frac{\Omega \cdot mm^2}{m} $	3	
	$\Delta U = \frac{\Delta u \cdot U}{100 \%} = \frac{4 \% \cdot 230 \text{ V}}{100 \%} = \frac{9,2 \text{ V}}{}$	(1)	
	$R_{ligne} = \frac{\rho \cdot \ell \cdot 2}{A} = \frac{0.0175 \frac{\Omega \cdot mm^2}{m} \cdot 65 m \cdot 2}{1.5 mm^2} = \underline{1.517 \Omega}$	(1)	
	$I = \frac{\Delta U}{R_{ligne}} = \frac{9,2 \text{ V}}{1,517 \Omega} = \frac{6,07 \text{ A}}{1,517 \Omega}$	(1)	
	(Note pour les experts : calcul avec la résistance d'un seul conducteur de 65 m - 0,5 Pt)		
6.	3.2.2 Une tension est-elle induite dans le conducteur lorsque celui-ci se déplace dans le sens de la flèche ?	1	
	S		
	□ OUI ☑ NON		

Exer	Exercices					
7.	3.3.1/3.3.2/3.3.3/3.3.4 7. Complétez ce tableau.					
	Symbole	Description				
		Diode zener				
		Thyristor	0,5			
		Diode électroluminescente LED	0,5			
		Transistor	0,5			
		Diac	0,5			
8.	3.5.5 Une batterie génère une tension à vide U _o = 6,3 V. Lorsque celle-ci produit un courant de 0,6 A, la tension U à ses bornes chute à 6,1 V.					
	$\begin{array}{c} O_0 = 6.3 \text{ V} \\ O_1 = 0.9 \text{ V} \\ O_2 = 0.3 \text{ V} \\ O_3 = 0.3 \text{ V} \\ O_4 = 0.3 \text{ V} \\ O_5 =$	R				
	Calculez :					
	a) la résistance interne de la batterie.					
	$U_i = U_o - U = 6,3 V - 6,1 V = 0,2 V$					
	$R_{i} = \frac{U_{Ri}}{I} = \frac{0.2 \text{ V}}{0.6 \text{ A}} = \underline{0.333 \Omega = 333 \text{ m}\Omega}$					
	b) la tension aux bornes de la batterie lorsqu'elle produit un courant de 2 A.					
	$\mathbf{U}_{i} = \mathbf{\Gamma} \cdot \mathbf{R}_{i} = 2 \mathbf{A} \cdot 0, 333 \Omega = \underline{0, 6666 \mathbf{V}}$					
	$U = U_0 - U_{Ri} = 6.3 V - 0.6666 V = 5.63 V$					
	c) le courant de court-circuit.					
	$I_{cc} = \frac{U_o}{R_i} = \frac{6,3 \text{ V}}{0,333 \Omega} = \underline{18,9 \text{ A}}$					
		Total	16			