Applications of reweighting techniques with XGBoost in BESIII analysis

Beijiang Liu, Xiaoyan Shen, Xian Xiong

Institute of High Energy Physics

Outline

- Introduction
- Two use cases
 - Efficiency calculation
 - Background estimation
- Summary

Introduction

- Efficiency calculation
 - Monte-Carlo(MC) consistent with Real data(RD) is needed
- Background estimation
 - MC: describe Background shape accurately in real data

- Structures in data
- PHSP MC can not describe the data in most of the cases
- PWA results may not be available

• How to get data-like MC?

Typical method for reweighting

- Easy to correct one distribution of 1D or 2D to another distribution
- Reweighting with bins:

$$weight factor_{bin} = \frac{\omega_{bin,RD}}{\omega_{bin,MC}}$$

- Difficult for a high-dimension reweighting
 - Higher statistics are needed
 - correlations among variables

Reweighting with Machine Learning

Density ratio in reweighting [1]:

$$\frac{f_{RD}(x)}{f_{MC}(x)}$$

Classifier to distinguish Data and MC provide probabilities $p_{RD}(x)$ and $p_{MC}(x)$

weight factor
$$w(x) = \frac{f_{RD}(x)}{f_{MC}(x)} \sim \frac{p_{RD}(x)}{p_{MC}(x)}$$

- We utilize this approach with XGBOOST algorithm
- Define symmetrized χ^2 by binning the multi-dimensional space^[2]:

$$\chi^{2} = \Sigma_{bin} \frac{\left(w_{bin,original} - w_{bin,target}\right)^{2}}{w_{bin,original} + w_{bin,target}}$$

Finding regions with high difference by maximizing χ^2 and give the weights directly

*applications in LHCb, e.g.^[3]

[1] Martschei, D., Feindt, M., Honc, S., & Wagner-Kuhr, J. (2012). Advanced event reweighting using multivariate analysis. Journal of Physics: Conference Series, 368(1), 012028. https://doi.org/10.1088/1742-6596/368/1/012028

Introduction for ML

- Machine learning:
 - Algorithms: learn from and make predictions on data
 - Supervised learning: Classification, Regression, ...
 - Unsupervised learning: Clustering, ...
- Decision Tree:
 - Continuously split according to a certain parameter to form a Decision Tree
 - Ability to predict in the unseen data

Introduction for XGBoost

- XGBoost : eXtreme Gradient Boosting
 - Boosting: additive training of Decision Tree
 - Gradient: first and second derivative
 - High flexibility: DIY loss function, multi-variables input
 - More robust: L1 and L2 penalty factors
 - Faster: multi-thread parrallel
 - Adaptive splitting: $Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \gamma$

G,H: first and second derivative λ , γ :para reflect the complexity of tree

Input:
High dimension
Output:
low dimension

For both classification and regression problem

Use case 1: Efficiency calculation

- Many structures in the data
- PHSP MC cannot describe the data

Observation of $\psi' \to \Lambda \bar{\Sigma}^{\pm} \pi^{\mp} + c.c.$

To get the efficiency:

- Solution
 - do a "quick" PWA, e.g. BESIII Phys.Rev. D88, 112007 (2013)
- New solution
 - reweighting

A test with $J/\psi \rightarrow pn\pi$

- Input: 'Data' (DIY MC) and PHSP MC sample
- Use a XGBoost classifier to get the probabilities of $p_{RD}(x)$ and $p_{MC}(x)$
- weight factor: $w(x) = \frac{p_{RD}(x)}{p_{MC}(x)}$
- Efficiency with reweighting:

$$\epsilon = \frac{\sum_{i=1}^{N_{phsp}} w_i^{phsp}}{\sum_{i=1}^{N_{truth}} w_i^{truth}}$$

- Number of d.o.f: 4
- Input Variables:
 - Four-momentum of p, n and π
 - $M(pn), M(p\pi), M(n\pi)$

Results

Original distribution

After reweighting

- 'Data' (DIY MC)(blue)
- PHSP(brown)

	Efficiency
'Data'(DIY MC)	(68.42±0.16)%
PHSP MC	(75.71±0.08)%
Reweighting	67.94%

- Reweighted PHSP MC can describe the 'data' (DIY MC as pseudo data)
- Efficiency of reweighted PHSP MC is consistent with the input

Results

Performance

- 10-fold cross validation:
- Decrease the uncertainties caused by sample division

Performance

- ROC curve: a metric to evaluate the goodness of a classifier
- If two samples are same:
 - Classifier can't discriminate
 - ROC curve will close to dash line

Performance

- ullet For comparison, the symmetrized χ^2 approach with GBDT is also performed
- The performance has been checked
 - The discrepancy of PHSP and data can be significantly reduced with both approach
 - It seems that the results of GBDT can be slightly improved by the our implementation

Use case 2: Background estimation

- BG estimation is important, especially in PWA
- In the analysis of $J/\psi \to \gamma \pi^0 \pi^0 \pi^0$, there's a dominate irreducible BG $J/\psi \to \gamma \eta \pi^0 \pi^0$
 - rich structures
 - can't be subtracted with sideband
- How to model an irreducible BG?
 - Perform another PWA to $J/\psi \rightarrow \gamma \eta \pi^0 \pi^0$ first?

Can we get the contribution of $J/\psi \to \gamma \eta \pi^0 \pi^0$ to $J/\psi \to \gamma \pi^0 \pi^0 \pi^0$ from the selected $J/\psi \to \gamma \eta \pi^0 \pi^0$ events?

Background estimation in $J/\psi \to \gamma \pi^0 \pi^0 \pi^0$

• Reweight $J/\psi \to \gamma \eta \pi^0 \pi^0$ PHSP MC to obtain a data-like MC, N.dof=7

 $J/\psi \to \gamma \eta \pi^0 \pi^0$ events after $J/\psi \to \gamma \eta \pi^0 \pi^0$ event selection

 $J/\psi \rightarrow \gamma \eta \pi^0 \pi^0$ events after $J/\psi \rightarrow \gamma \pi^0 \pi^0 \pi^0$ event selection

The reweighted MC can describe the "data" (DIY MC) well

Background estimation in $J/\psi \to \gamma \pi^0 \pi^0 \pi^0$

Summary

- High dimensional rewighting problem can be solved with ML methods
- We implement a reweighter with XGBoost:
 - Works fine in high dimensional use cases of BESIII analysis:
 - Efficiency calculation
 - Background estimation

 Available on Github: https://github.com/rhineryan/rewighting/blob/master/DoReweight_final.ipynb

Backup

Efficiency correction with $J/\psi \to pn\pi$ three body decay

Original distribution

After reweighting

Efficiency correction with $J/\psi \rightarrow pn\pi$ three body decay

- Input sample: DIY MC and PHSP MC
- Output : probabilities belongs to DIY or PHSP
- weight factor: $w(x) = \frac{p_{DIY}(x)}{p_{MC}(x)}$
- Efficiency after reweighting:

$$\epsilon = \frac{\sum_{i=1}^{N_{phsp}} w_i^{phsp}}{\sum_{i=1}^{N_{truth}} w_i^{truth}}$$

Efficiency correction with $J/\psi \rightarrow \gamma \eta \pi^0 \pi^0$ four body decay

Background estimation in $J/\psi \rightarrow \gamma \pi^0 \pi^0 \pi^0$

- $J/\psi \to \gamma \eta \pi^0 \pi^0$ events contribute to the $J/\psi \to \gamma \pi^0 \pi^0 \pi^0$ analysis
- Strategy:

