Chapitre

Régime sinuosidal forcé

6. Notation complexes

6.1. Définitions

Soit $u(t)=u_m\cos(\omega t+\varphi_u)$. On définit $\underline{U(t)}=U_me^{j(\omega t+\varphi_u)}=\underline{U_m}e^{j\omega t}$ avec $U_m=U_me^{j\varphi_u}$.

Le module de $\underline{U_m}$ est l'amplitude et son argument est la phase à l'origine.

Cela ne fonctionne que pour des circuits linéaires.

Dérivées de grandeurs complexes

On peut montrer que dériver par rapport au temps c'est multiplier par $j\omega$, intégrer c'est diviser par cette quantité.

6. Impédance des dipoles classiques

6.2. Définition de l'impédance

En régime sinusoidal forcé, on pourra toujours trouver une relation de type loi d'ohm pour tout les dipoles, c'est à dire $\underline{U}=\underline{zi}$. \underline{z} est l'impédance du dipole.

6.2. Propriétés

L'impédance vérifie les mêmes propriétés d'association que les résistances.

6.2. Impédance des dipoles élémentaires

Dipole	Impédance
Résistance	R
Condensateur	$\frac{1}{jc\omega}$
Bobine	$jL\omega$

6. Puissance en régime sinusoidal forcé

6.3. Définition

Notations : $i = I\cos(\omega t - \varphi) = I_e\sqrt{2}\cos(\omega t - \varphi)$ et $u = U\cos(\omega t) = U_e\sqrt{2}\cos(\omega t)$.

π Définition 3.1 : Puissance

La puissance instantannée : $p = u(t) \times i(t)$.

La puissance moyenne $p_m=\frac{1}{T}=\int_0^T p(t)\mathrm{d}t$ avec $T=\frac{2\pi}{\omega}$ ou $P_m=U_eI_e\cos(\varphi)$ avec le cosinus appelé facteur de puissance.

On a aussi $P_m=R imes I_e^2$

En effet, en résolvant l'intégrale : $\frac{1}{T}\int 2I_eU_e\cos(\omega t-\varphi)\cos(\omega t)\mathrm{d}t=I_eU_e(\cos(\varphi)+\cos(2\omega t-\varphi))$. Donc $P_m=U_eI_e\cos(\varphi)$ avec le cosinus appelé facteur de puissance.

 $\cos(\varphi)=\frac{R}{|z|}.$ La puissance consommée est celle consommée par la partie résistive (réelle) de z.