MOFs NMR DFT

Calculation of nmr parameters in paramagnetic metal-organic materials

Jure Lapajne

7. februar 2019

■ MOFs = Metal—organic frameworks

- MOFs = Metal—organic frameworks
- NMR what and why

- MOFs = Metal—organic frameworks
- NMR what and why
- 3 NMR parameter calculation

- MOFs = Metal—organic frameworks
- NMR what and why
- NMR parameter calculation
- O DFT

- MOFs = Metal—organic frameworks
- NMR what and why
- NMR parameter calculation
- O DFT
- Opening in the second of th

crystal structure: central metallic ions + organic ligands

DFT

- crystal structure: central metallic ions + organic ligands
- diversity: large number of possible combinations

- crystal structure: central metallic ions + organic ligands
- diversity: large number of possible combinations
- wide usage: gas storage, clean energy applications, nonlinear optics, catalysts

- crystal structure: central metallic ions + organic ligands
- diversity: large number of possible combinations
- wide usage: gas storage, clean energy applications, nonlinear optics, catalysts
- metallic ions commonly feature unpaired electrons

- crystal structure: central metallic ions + organic ligands
- diversity: large number of possible combinations
- wide usage: gas storage, clean energy applications, nonlinear optics, catalysts
- metallic ions commonly feature unpaired electrons
- NMR spectra feature large shifts caused by unpaired electrons

• strong external magnetic field: several T

- strong external magnetic field: several T
- nuclei with magnetic moment: lowest energy state splits

- strong external magnetic field: several T
- nuclei with magnetic moment: lowest energy state splits
- two new states ΔE apart

- strong external magnetic field: several T
- nuclei with magnetic moment: lowest energy state splits
- two new states ΔE apart
- radio frequency spectrum: excitations from low to high energy states

- strong external magnetic field: several T
- nuclei with magnetic moment: lowest energy state splits
- ullet two new states ΔE apart
- radio frequency spectrum: excitations from low to high energy states
- absorption peak at $\Delta E = \hbar \omega_{res}$
- ω_{res} depends on $B_{eff}(observed nucleus)$

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

• electronic structure - shielding of external magnetic field

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

- electronic structure shielding of external magnetic field
- spin-spin coupling to nearby nuclei and unpaired electrons

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

- electronic structure shielding of external magnetic field
- spin-spin coupling to nearby nuclei and unpaired electrons
- unpaired electrons: large paramagnetic shifts

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

- electronic structure shielding of external magnetic field
- spin-spin coupling to nearby nuclei and unpaired electrons
- unpaired electrons: large paramagnetic shifts
- calculation of nmr parameters: accurate knowledge of electronic wavefunction

MOFs: metal-organic frameworks

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

- electronic structure shielding of external magnetic field
- spin-spin coupling to nearby nuclei and unpaired electrons
- unpaired electrons: large paramagnetic shifts
- calculation of nmr parameters: accurate knowledge of electronic wavefunction

- MOFs: metal-organic frameworks
- transition metal atoms: unpaired electrons

Several parameters affect $B_{eff}(nucleus)$ and ω_{res} :

- electronic structure shielding of external magnetic field
- spin-spin coupling to nearby nuclei and unpaired electrons
- unpaired electrons: large paramagnetic shifts
- calculation of nmr parameters: accurate knowledge of electronic wavefunction

- MOFs: metal-organic frameworks
- transition metal atoms: unpaired electrons

Chemical and hyperfine shifts

Chemical and hyperfine shifts

Definition

Total shift tensor $\underline{\sigma}$ is defined by:

$$ec{B}_{eff} = ec{B}_0 \left(\underline{\underline{I}} - \underline{\underline{\sigma}}
ight).$$

Two sources of chemical shifts:

Chemical and hyperfine shifts

Definition

Total shift tensor $\underline{\sigma}$ is defined by:

$$ec{B}_{eff} = ec{B}_0 \left(\underline{\underline{I}} - \underline{\underline{\sigma}}
ight).$$

Two sources of chemical shifts:

- electron density change caused by applied external magnetic field
- depends on electron density $n(\vec{r})$

- coupling between unpaired electron and observed nuclei
- depends on spin density $n_{\uparrow}(\vec{r}_{nuclei}) - n_{\downarrow}(\vec{r}_{nuclei})$

Calculation of NMR parameters: accurate electronic wave function needed!

electronic wave function calculation

- direct solution of coupled pde not feasible
- at a given accuracy level: time needed grows exponentially as a function of number of particles

approximations

density functional theory — DFT

NMR