Examen partiel

Département de génie électrique et de génie informatique

GEL-3000 – Électronique des composants intégrés

Le 13 mars 2018

Documentation permise : 1 feuille de notes recto-verso et 1 calculatrice.

Durée de l'examen : 1 heure 50 (10h30 – 12h20).

1. (30 points) Questions à courts développements

- a) Soit le circuit montré à la Figure 1, donnez sa fréquence de coupure due aux imperfections petit signal de l'ampli-op, si $R_2=50R_1$. Note : l'ampli-op possède un produit gain-bande passante de $2\pi\cdot15$ Mrad/s.
- b) Soit le circuit montré à la Figure 2, donnez v_0 en fonction de v_1 et v_2 .
- c) Soit le circuit montré à la Figure 3, expliquez son rôle et son fonctionnement, et donnez la valeur de V_{reg} .
- d) Expliquez le rôle du circuit à impédance négative (NIC) vue en classe et illustrez votre explication à l'aide d'un schéma.
- e) Soit le circuit montré à la Figure 4, avec $R_2=2R_1$ et $v_I=v_s\cos(\omega t)$. Tracez v_I et v_o en fonction du temps sur le même graphique.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

2. (30 points) Analyse de circuits

Soit le circuit montré à la Figure 5, avec $R_1=1$ k Ω , $R_2=10$ k Ω , et $R_3=R_4=1$ k Ω .

- a) Donnez l'impédance d'entrée Z_{in} et le gain en mode commun A_{cm} du <u>premier étage</u> $(v_{o1}/v_{Icm} \text{ ou } v_{o2}/v_{Icm}).$
- b) Si v_{Id} =0.1cos(2 π f₁t), v_{Icm} =1.5cos(2 π f₂t) et que le TRMC de <u>l'amplificateur différentiel</u> est de 80 dB, calculez les tensions aux points v_1 , v_2 , v_{o1} , v_{o2} et v_{o} .
- c) En tenant compte du TRMC de l'amplificateur différentiel mentionné en (b), calculez le TRMC de l'amplificateur <u>d'instrumentation au complet</u>?
- d) Modélisez les imperfections DC du circuit de l'amplificateur différentiel uniquement (tension de décalage V_{OS} et courants de polarisation I_{B1} et I_{B2}) et calculez leur effet sur la tension de sortie V_{out} .
- e) On remplace la résistance R₁ par un condensateur C₁ et les résistances R₄ par des condensateurs C₄. Calculez la nouvelle fonction de transfert v_o/v_{Id} dans le domaine de Laplace de ce nouveau circuit.

Figure 5.

3. (40 points) Conception d'un filtre passe-bande

Concevez un filtre passe-bande d'ordre 2 constitué de sections Sallen-Key cascadées. Le filtre doit respecter les spécifications suivantes :

- Une fréquence de coupure passe haut f_1 de 100 Hz.
- Une fréquence de coupure passe bas f_2 de 10000 Hz.
- Utilisez des sections Sallen-Key pour lesquelles $R_1 = R_2 = R_A = R$.
- La section passe-haut et la section passe-bas possèdent toutes deux des réponses Butterworth.
- Les deux réponses possèdent des $A_{max} = 3dB$ (voir la Figure A1).
- Note 1 : Référez-vous à la Figure A1 et utilisez la Table A1 pour déterminer le polynôme Butterworth à utiliser.
- Note 2 : n'utilisez que des condos de 10 nF.
- a) Donnez le polynôme Butterworth normalisé, le facteur de qualité Q et la fréquence de dénormalisation de la <u>section passe-bas.</u>
- b) Donnez la fonction de transfert dénormalisée de la section <u>passe-bas</u> et calculez les valeurs de tous les éléments passifs ainsi que le gain de cette section.
- c) Donnez le polynôme Butterworth normalisé, le facteur de qualité Q et la fréquence de dénormalisation de la section passe-haut.
- d) Donnez la fonction de transfert dénormalisée de la section <u>passe-haut</u> et calculez les valeurs de tous les éléments passifs ainsi que le gain de cette section.
- e) Donnez la fonction de transfert dénormalisée complète du filtre et dessinez son schéma complet.

Bonne chance!

Benoit Gosselin

Aide mémoire

Full power bandwidth:

$$f_{M} \le \frac{SR}{2\pi V_{omax}}$$

Réponse en fréquence de l'ampli inverseur/non-inverseur:

$$\frac{V_{o}(s)}{V_{i}(s)} \cong \frac{1 + R_{2} / R_{1}}{1 + (s / \omega_{t}) \left(1 + \frac{R_{2}}{R_{1}}\right)}$$

Pour un ampli-op en <u>boucle ouverte</u> : $\omega_t = A_o \omega_b$ où ω_b est la fréquence de coupure.

Pour un ampli-op en <u>boucle fermée</u> : $\omega_{-3dB} = \beta \omega_{\rm t}$ où ω_{-3dB} est la fréquence de coupure.

Approximations de filtres

Figure A1.

Réponse Butterworth:

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega}{\omega_p}\right)^{2N}}}$$

Réponse Chebyshev:

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \cos^2[N \cos^{-1}(\omega / \omega_p)]}}, \ \omega \le \omega_p$$

$$|T(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \cosh^2[N \cosh^{-1}(\omega / \omega_p)]}}, \ \omega \ge \omega_p$$

Atténuation maximum d'un filtre dans la bande passante :

$$A_{\text{max}} = 20\log\sqrt{1+\varepsilon^2}$$

Dénormalisation:

$$\omega_0 = \omega_p (1/\varepsilon)^{1/N}$$

L'atténuation ($|T(j\omega)|^{-1}$) d'un filtre à $\omega = \omega_s$:

$$A(j\omega_s) = -20\log\left[1/\sqrt{1+\varepsilon^2(\omega_s/\omega_p)^{2N}}\right]$$
$$= 10\log\left[1+\varepsilon^2(\omega_s/\omega_p)^{2N}\right]$$

Table A1. Réponse Butterworth: polynôme normalisé

n	Polynôme normalisé				
1	(1+s)				
2	$(1+1.414s+s^2)$				
3	$(1+s)(1+s+s^2)$				
4	$(1+0.765s+s^2)(1+1.848s+s^2)$				
5	$(1+s)(1+0.618s+s^2)(1+1.618s+s^2)$				
6	$(1+0.518s+s^2)(1+1.414s+s^2)(1+1.932s+s^2)$				
7	$(1+s)(1+0.445s+s^2)(1+1.247s+s^2)(1+1.802s+s^2)$				
8	$(1+0.390s+s^2)(1+1.111s+s^2)(1+1.663s+s^2)(1+1.962s+s^2)$				
9	$(1+s)(1+0.347s+s^2)(1+s+s^2)(1+1.532s+s^2)(1+1.879s+s^2)$				
10	$(1+0.313s+s^2)(1+0.908s+s^2)(1+1.414s+s^2)(1+1.782s+s^2)(1+1.975s+s^2)$				

Conception de filtres

Filtre passe-bas à base d'inductance simulée:

Figure A2.

$$T(s) = \frac{1/LC}{s^2 + s(1/RC) + (1/LC)} = \frac{KR_2 / C_4 C_6 R_1 R_3 R_5}{s^2 + s(1/R_6 C_6) + (R_2 / C_4 C_6 R_1 R_3 R_5)}$$

où $R = R_6$, $C = C_6$ et $L = C_4 R_5 R_3 R_1 / R_2$.

Filtre passe-bande à base d'inductance simulée:

Figure A3.

$$T(s) = \frac{s / CR}{s^2 + s(1/RC) + (1/LC)} = \frac{Ks / C_6 R_6}{s^2 + s(1/R_6 C_6) + (R_2 / C_4 C_6 R_1 R_3 R_5)}$$

où $R = R_6$, $C = C_6$ et $L = C_4 R_5 R_3 R_1 / R_2$.

Filtre Sallen-Key passe-bas:

Figure A4.

$$T(s) = \frac{aKG_{1}G_{2} / C^{2}}{s^{2} + s[G_{1} + G_{2}(2 - K)] / C + G_{1}G_{2} / C^{2}} = \frac{a_{0}}{s^{2} + s(\omega_{0} / Q) + \omega_{0}^{2}}$$
où
$$Q = \sqrt{G_{1}G_{2}} / [G_{1} + G_{2}(2 - K)]$$

Par ailleurs, si $R_1 = R_2 = R$, on obtient K = 3-1/Q.

Or,
$$K = 1 + R_B/R_A$$
, soit $R_B = (2-1/Q)R_A$.

Fonctions d'ordre 1 :

Filter Type and <i>T(s)</i>	s-Plane Singularities	Bode Plot for T	Passive Realization	Op Amp–RC Realization
(a) Low pass (LP) $T(s) = \frac{a_0}{s + \omega_0}$	jω O at ∞ ω ₀	$20 \log \frac{ T , dB}{ \omega_0 } -20 \frac{dB}{decade}$ $0 \omega_0 \omega(\log)$	$ \begin{array}{cccc} & & & & & & & & & & & \\ & & & & & & &$	R_{2} R_{1} V_{i} $CR_{2} = \frac{1}{\omega_{0}}$ $DC gain = -\frac{R_{2}}{R_{1}}$
(b) High pass (HP) $T(s) = \frac{a_1 s}{s + \omega_0}$	$ \begin{array}{c} \downarrow \\ \downarrow \\$	$20 \log a_1 + 20 \frac{dB}{decade}$ $0 \omega_0 \omega(\log)$	C C C C C C C C	$R_1 \qquad C \qquad R_2$ $V_i \qquad V_0 \qquad V_0$ $CR_1 = \frac{1}{\omega_0}$ $High-frequency gain = -\frac{R_2}{R_1}$
(c) General $T(s) = \frac{a_1 s + a_0}{s + \omega_0}$	$ \begin{array}{c c} & \downarrow & j\omega \\ \hline \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \hline \frac{a_0}{a_1} & \downarrow & \downarrow \\ \end{array} $	$ \begin{array}{c c} & T , dB \\ 20 \log \left \frac{a_0}{\omega_0} \right & -20 \frac{dB}{decade} \\ 20 \log \left \frac{a_1}{\omega_0} \right & & & \\ & & & & \\ & & & & \\ 0 & & & & \\ & & & & \\ & & & & \\ 0 & & & & \\ & & & & \\ 0 & & & & \\ & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & & & \\ 0 & & \\$	C_{1} R_{1} R_{2} C_{2} C_{0} C_{1} C_{2} C_{1} C_{1} C_{2}	R_1 R_2 C_1 R_1 C_2 R_1 R_2 C_2 R_1 R_2 R_2 R_3 R_4 R_2 R_4 R_5 R_7

Fonctions d'ordre 2 :

