TF equivalence classes constructed from canonical decompositions

Sota Asai (Osaka University)

joint work with Osamu Iyama (the University of Tokyo)

2022/04/21, fdseminar

Motivation

Let A be a fin. dim. K-algebra over a field K.

- $K_0(\operatorname{proj} A)_{\mathbb{R}} := K_0(\operatorname{proj} A) \otimes_{\mathbb{Z}} \mathbb{R}$: the real Grothendieck group.
- Each $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$ gives an \mathbb{R} -linear form

$$\theta \colon K_0(\mathsf{mod}\,A)_{\mathbb{R}} \to \mathbb{R}$$

via the Euler form $K_0(\operatorname{proj} A)_{\mathbb{R}} \times K_0(\operatorname{mod} A)_{\mathbb{R}} \to \mathbb{R}$.

By using this duality, the following notions were introduced:

- θ -semistable modules $M \in \text{mod } A$ by [King]
 - \rightarrow Wall-chamber structures on $K_0(\text{proj }A)_{\mathbb{R}}$ by [BST, Bridgeland].
- Two numerical torsion pairs in $\operatorname{mod} A$ for each θ by [BKT]
 - \rightarrow TF equivalence on $K_0(\operatorname{proj} A)_{\mathbb{R}}$ by [A].

These two are strongly related to each other. To study them, silting theory is useful.

TF equiv. classes by presilting complexes

Let $U = \bigoplus_{i=1}^m U_i \in \mathsf{K}^\mathsf{b}(\mathsf{proj}\,A)$ be 2-term presilting with U_i : indec. We set the presilting cone of U by

$$C^+(U) := \sum_{i=1}^m \mathbb{R}_{>0}[U_i] \subset K_0(\operatorname{proj} A)_{\mathbb{R}}.$$

Proposition [Brüstle-Smith-Treffinger, Yurikusa, (A)]

For each $U \in 2$ -psilt A, $C^+(U)$ is a TF equivalence class.

However, presilting cones do not give all TF equivalence classes if A is not τ -tilting finite [Zimmermann-Zvonareva].

Today's theme

To obtain more TF equivalence classes, we use canonical decompositions by [Derksen-Fei].

Canonical decompositions

We use the presentation space for each $\theta \in K_0(\operatorname{proj} A)$:

$$\operatorname{\mathsf{Hom}}(\theta) := \operatorname{\mathsf{Hom}}_A(P_+, P_-),$$

where $\theta = [P_+] - [P_-]$ and add $P_+ \cap \operatorname{add} P_- = \{0\}$.

Each $f \in \text{Hom}(\theta)$ defines a 2-term complex

$$P_f := (P_- \xrightarrow{f} P_+) \in \mathsf{K}^\mathsf{b}(\mathsf{proj}\,A).$$

[Derksen-Fei] defined direct sums in $K_0(\text{proj }A)$:

$$\bigoplus_{i=1}^{m} \theta_i : \iff \begin{bmatrix} \text{For general } f \in \text{Hom}(\sum_{i=1}^{m} \theta_i), \\ \exists f_i \in \text{Hom}(\theta_i), P_f \cong \bigoplus_{i=1}^{m} P_{f_i} \end{bmatrix}.$$

This is called a canonical decomposition if each θ_i is indecomposable.

Theorem [DF, Plamondon]

Any $\theta \in K_0(\text{proj }A)$ admits a unique canon. decomp. $\bigoplus_{i=1}^m \theta_i$.

Our results

We introduced E-tame algebras in our study:

A: E-tame :
$$\iff \forall \theta \in K_0(\operatorname{proj} A), \theta \oplus \theta$$
.

All representation-tame algebras are E-tame [GLFS].

Today's main theorem [Al]

Assume that A is hereditary or E-tame.

Let $\theta = \bigoplus_{i=1}^m \theta_i$ be a canon. decomp. in $K_0(\operatorname{proj} A)$.

Then, $C^+(\theta) := \sum_{i=1}^m \mathbb{R}_{>0} \theta_i$ is a TF equiv. class in $K_0(\operatorname{proj} A)_{\mathbb{R}}$.

If $\theta_i \neq \theta_j$ for any $i \neq j$ in above, then $\theta_1, \dots, \theta_m$ are lin. independent.

Setting

Let A be a fin. dim. algebra over an alg. closed field K.

- proj *A*: the category of fin. gen. projective *A*-modules.
- P_1, P_2, \ldots, P_n : the non-iso. indec. proj. modules.
- $K^b(\text{proj } A)$: the homotopy cat. of bounded complexes over proj A.
- mod *A*: the category of fin. gen. *A*-modules.
- S_1, S_2, \ldots, S_n : the non-iso. simple modules (we may assume there exists a surj. $P_i \to S_i$).
- $D^b(\text{mod } A)$: the derived cat. of bounded complexes over mod A.
- $K_0(C)$: the Grothendieck group of C.
- $K_0(C)_{\mathbb{R}} := K_0(C) \otimes_{\mathbb{Z}} \mathbb{R}$: the real Grothendieck group.

The Euler form

 $K_0(\operatorname{proj} A)$ and $K_0(\operatorname{mod} A)$ are free abelian groups.

Proposition (see [Happel])

(1)
$$K_0(\operatorname{proj} A) = K_0(\mathsf{K}^{\mathsf{b}}(\operatorname{proj} A)) = \bigoplus_{i=1}^n \mathbb{Z}[P_i].$$

(2)
$$K_0(\text{mod } A) = K_0(\mathsf{D}^b(\text{mod } A)) = \bigoplus_{i=1}^n \mathbb{Z}[S_i].$$

(3) $\langle [P_i], [S_j] \rangle = \delta_{i,j}$, where

$$\langle \cdot, \cdot \rangle \colon K_0(\operatorname{proj} A) \times K_0(\operatorname{mod} A) \to \mathbb{Z}$$

is the Euler form.

These are naturally extended to the real Grothendieck groups. Via the Euler form, each $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$ induces the \mathbb{R} -linear form

$$\theta := \langle \theta, \cdot \rangle \colon K_0(\mathsf{mod}\,A)_{\mathbb{R}} \to \mathbb{R}.$$

Wall-chamber structures

Definition [King]

Let $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$.

- (1) $M \in \text{mod } A \colon \theta\text{-semistable} : \iff \theta(M) = 0 \text{ and } \theta(N) \ge 0 \text{ for any quotient } N \text{ of } M.$
- **(2)** $\mathcal{W}_{\theta} := \{\text{all } \theta\text{-semistable modules}\} \subset \text{mod } A.$

Definition [Brüstle-Smith-Treffinger, Bridgeland]

- (1) For $M \in \operatorname{mod} A \setminus \{0\}$, set $\Theta_M := \{\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}} \mid M \in \mathcal{W}_{\theta}\}$.
- (2) We consider the wall-chamber structure on $K_0(\operatorname{proj} A)_{\mathbb{R}}$ whose walls are Θ_M for all $M \in \operatorname{mod} A \setminus \{0\}$.

Remark

To get the wall-chamber structure, it suffices to consider indec. modules.

Example of walls

Let $A = K(1 \rightarrow 2)$, then the indec. modules are S_2 , P_1 , S_1 .

There are 5 chambers.

Example of walls

Let
$$A = K(1 \stackrel{\rightarrow}{\Rightarrow} 2)$$
.

There are infinitely many chambers.

TF equivalence

Definition [Baumann-Kamnitzer-Tingley]

Let $\theta \in K_0(\operatorname{proj} A)_{\mathbb{R}}$.

We define numerical torsion pairs $(\overline{\mathcal{T}}_{\theta}, \mathcal{F}_{\theta})$ and $(\mathcal{T}_{\theta}, \overline{\mathcal{F}}_{\theta})$ in mod A by

 $\overline{\mathcal{T}}_{\theta} := \{ M \in \operatorname{mod} A \mid \theta(N) \geq 0 \text{ for any quotient } N \text{ of } M \},$

 $\mathcal{F}_{\theta} := \{ M \in \operatorname{mod} A \mid \theta(L) < 0 \text{ for any submodule } L \neq 0 \text{ of } M \},$

 $\mathcal{T}_{\theta} := \{ M \in \operatorname{mod} A \mid \theta(N) > 0 \text{ for any quotient } N \neq 0 \text{ of } M \},$

 $\overline{\mathcal{F}}_{\theta} := \{ M \in \operatorname{mod} A \mid \theta(L) \leq 0 \text{ for any submodule } L \text{ of } M \}.$

Definition

 $\theta, \theta' \in K_0(\operatorname{proj} A)_{\mathbb{R}}$ are TF equivalent : \iff

$$(\overline{\mathcal{T}}_{\theta},\mathcal{F}_{\theta})=(\overline{\mathcal{T}}_{\theta'},\mathcal{F}_{\theta'}),\quad (\mathcal{T}_{\theta},\overline{\mathcal{F}}_{\theta})=(\mathcal{T}_{\theta'},\overline{\mathcal{F}}_{\theta'}).$$

Example of TF equiv. classes

Let $A = K(1 \rightarrow 2)$, $S_2 S_1$ are the indec. A-modules.

Then, $\overline{\mathcal{T}}_{\theta}$ and $\overline{\mathcal{F}}_{\theta}$ are given as follows.

(●: belong, o: not belong)

Example of TF equiv. classes

Let $A=K(1\to 2), \ \frac{P_1}{S_2-S_1}$ are the indec. A-modules. There are exactly 11 TF equivalence classes.

Walls and TF equiv. classes

Proposition [A]

Let $\theta \neq \theta' \in K_0(\operatorname{proj} A)_{\mathbb{R}}$, then TFAE.

- (a) θ and θ' are TF equivalent.
- **(b)** $W_{\theta''}$ is constant for $\theta'' \in [\theta, \theta']$.
- (c) $\nexists S \in \text{brick } A, [\theta, \theta'] \cap \Theta_S \text{ is one point.}$

Example

If $A = K(1 \stackrel{\rightarrow}{\Rightarrow} 2)$, then the TF equivalence classes are

- {0},
- $\mathbb{R}_{>0}(i,-(i+1)), \mathbb{R}_{>0}(i+1,-i),$
- $\bullet \ \ \mathbb{R}_{>0}(i,-(i+1)) + \mathbb{R}_{>0}(i+1,-(i+2)), \, \mathbb{R}_{>0}(i+1,-i) + \mathbb{R}_{>0}(i+2,-(i+1)),$
- $\mathbb{R}_{>0}(1,-1)$

where we consider all $i \in \mathbb{Z}_{>0}$.

Presilting complexes

Definition [Keller-Vossieck]

Let $U = (U^{-1} \to U^0) \in \mathsf{K}^\mathsf{b}(\mathsf{proj}\,A)$ be a 2-term complex.

- (1) U: presilting : \iff Hom_{K^b(proj A)}(U, U[1]) = 0.
- (2) U: silting : $\iff U$: presilting, thick_{Kb(proj A)} $U = K^b(proj A)$.
- 2-psilt $A := \{ \text{basic 2-term presilting complexes} \}/\cong$.
- 2-silt $A := \{ \text{basic 2-term silting complexes} \}/\cong$.

Proposition [(1) Aihara, (2) Adachi-Iyama-Reiten]

- (1) $\forall U \in 2\text{-psilt } A, \exists T \in 2\text{-silt } A \text{ s.t.}$ U is a direct summand of T.
- (2) $U \in 2$ -silt $A \iff U \in 2$ -psilt A, |U| = n (|U| means the number of non-iso. indec. direct summands of U).

Presilting and func. fin. torsion pairs

For each $U \in 2$ -psilt A, we set

$$\begin{split} &(\overline{\mathcal{T}}_U,\mathcal{F}_U):=({}^\perp H^{-1}(\nu U),\operatorname{Sub}H^{-1}(\nu U)),\\ &(\mathcal{T}_U,\overline{\mathcal{F}}_U):=(\operatorname{Fac}H^0(U),H^0(U)^\perp). \end{split}$$

Then, $\mathcal{T}_U \subset \overline{\mathcal{T}}_U$ and $\mathcal{F}_U \subset \overline{\mathcal{F}}_U$.

Theorem [Smalø, Auslander-Smalø, AIR]

Let $U \in 2$ -psilt A.

- (1) $(\overline{\mathcal{T}}_U, \mathcal{F}_U), (\mathcal{T}_U, \overline{\mathcal{F}}_U)$ are func. fin. torsion pairs.
- (2) All func. fin. torsion(-free) classes are obtained in this way.

Presilting cones

Let $U = \bigoplus_{i=1}^m U_i \in 2$ -psilt A with U_i : indec.

Proposition [Aihara-lyama]

 $[U_1], \ldots, [U_m] \in K_0(\operatorname{proj} A)$ are linearly independent. If $U \in \operatorname{2-silt} A$, they are a \mathbb{Z} -basis of $K_0(\operatorname{proj} A)$.

Definition

We define the presilting cone $C^+(U)$ in $K_0(\operatorname{proj} A)_{\mathbb{R}}$ by

$$C^+(U) := \sum_{i=1}^m \mathbb{R}_{>0}[U_i].$$

Proposition [Demonet-Iyama-Jasso]

If $U \neq U' \in 2$ -psilt A, then $C^+(U) \cap C^+(U') = \emptyset$.

Presilting cones are TF equiv. classes

Theorem (⇒): [Yurikusa, Brüstle-Smith-Treffinger], (⇐): [A]

Let $U = \bigoplus_{i=1}^m U_i \in 2$ -psilt A with U_i indec.

Then, $C^+(U)$ is a TF equiv. class such that

$$\eta \in C^+(U) \iff \overline{\mathcal{T}}_\eta = \overline{\mathcal{T}}_U, \ \overline{\mathcal{F}}_\eta = \overline{\mathcal{F}}_U.$$

Theorem [A]

The following sets coincide.

- The set of chambers in the wall-chamber structures.
- The set of TF equiv. classes whose interiors are nonempty.
- $\{C^+(T) \mid T \in 2\text{-silt } A\}.$

Example of presilting and TF equiv. classes

Let $A = K(1 \stackrel{\rightarrow}{\Rightarrow} 2)$.

The TF equivalence classes in $K_0(\operatorname{proj} A)_{\mathbb{R}}$ are

- $C^+(U)$ for all $U \in 2$ -psilt A,
- $\mathbb{R}_{>0}(1,-1)$ (this does not come from 2-psilt A).

Presentation spaces

Definition [Derksen-Fei]

Let $\theta \in K_0(\operatorname{proj} A)$.

- (1) Take $P_+, P_- \in \operatorname{proj} A$ (unique up to iso.) such that $\theta = [P_+] [P_-]$ and $\operatorname{add} P_+ \cap \operatorname{add} P_- = \{0\}.$
- (2) $\operatorname{Hom}(\theta) := \operatorname{Hom}_A(P_-, P_+)$: the presentation space of θ .
- (3) For each $f \in \text{Hom}(\theta)$, set $P_f := (P_- \xrightarrow{f} P_+) \in \text{K}^b(\text{proj } A)$ (the terms except -1st and 0th ones vanish).

 $Hom(\theta)$ is an irreducible algebraic variety.

Convention

"Any general $f \in \operatorname{Hom}(\theta)$ satisfies (P)" means "there exists $X \subset \operatorname{Hom}(\theta)$: nonempty and open (thus dense) such that any $f \in X$ satisfies (P)".

Direct sums in $K_0(\text{proj } A)$

Definition [DF]

We say a direct sum $\bigoplus_{i=1}^m \theta_i$ holds in $K_0(\operatorname{proj} A)$ if

$$\text{for general } f \in \operatorname{Hom}\left(\sum_{i=1}^m \theta_i\right), \, \exists f_i \in \operatorname{Hom}(\theta_i), \, P_f \cong \bigoplus_{i=1}^m P_{f_i}.$$

In this case, we also write $\sum_{i=1}^{m} \theta_i = \bigoplus_{i=1}^{m} \theta_i$.

This condition can be checked pairwisely.

Proposition [DF]

$$\bigoplus_{i=1}^m \theta_i \iff \forall i \neq j, \ \exists (f,g) \in \mathsf{Hom}(\theta_i) \times \mathsf{Hom}(\theta_j),$$

$$\text{Hom}(P_f, P_g[1]) = 0$$
, $\text{Hom}(P_g, P_f[1]) = 0$.

Canonical decompositions

Definition

 θ : indecomposable in $K_0(\operatorname{proj} A) : \iff$ for any general $f \in \operatorname{Hom}(\theta), P_f \in \operatorname{K}^{\operatorname{b}}(\operatorname{proj} A)$ is indec.

Theorem [DF, Plamondon]

Any $\theta \in K_0(\operatorname{proj} A)$ admits a decomposition unique up to reordering

$$\theta = \bigoplus_{i=1}^{m} \theta_i$$
 (θ_i : indecomposable).

We call it the canonical decomposition of θ .

Our results 1

Theorem 1 [AI] (with Demonet)

Let $\bigoplus_{i=1}^m \theta_i$ in $K_0(\operatorname{proj} A)$. Then,

$$\eta \in \sum_{i=1}^m \mathbb{R}_{>0} \theta_i \Longrightarrow \overline{\mathcal{T}}_{\eta} = \bigcap_{i=1}^m \overline{\mathcal{T}}_{\theta_i}, \ \overline{\mathcal{F}}_{\eta} = \bigcap_{i=1}^m \overline{\mathcal{F}}_{\theta_i}.$$

Thus, for any $i, \mathcal{T}_{\theta_i} \subset \mathcal{T}_{\eta} \subset \overline{\mathcal{T}}_{\eta} \subset \overline{\mathcal{T}}_{\theta_i}, \mathcal{F}_{\theta_i} \subset \mathcal{F}_{\eta} \subset \overline{\mathcal{F}}_{\eta} \subset \overline{\mathcal{F}}_{\theta_i}$.

We can recover the following sign-coherence.

Proposition [Plamondon]

Let $\theta \oplus \theta'$ in $K_0(\operatorname{proj} A)$, $\theta = \sum_{i=1}^n a_i[P_i]$ and $\theta' = \sum_{i=1}^n a_i'[P_i]$. Then, $a_i a_i' \geq 0$ for all i.

$$\therefore$$
 If $a_i > 0$ and $a'_i < 0$, then $S_i \in \mathcal{T}_{\theta} \cap \mathcal{F}_{\theta'} \subset \mathcal{T}_{\theta+\theta'} \cap \mathcal{F}_{\theta+\theta'} = \{0\}$.

Our results 2

By Theorem 1, if $\theta = \bigoplus_{i=1}^m \theta_i$ is a canon. decomp. in $K_0(\text{proj }A)$, then

$$C^+(\theta) := \sum_{i=1}^m \mathbb{R}_{>0} \theta_i$$

is contained in some TF equiv. class in $K_0(\operatorname{proj} A)_{\mathbb{R}}$. Is $C^+(\theta)$ really a TF equiv. class?

Theorem 2 [AI]

Assume that

- A is a hereditary algebra; or
- A is E-tame, i.e. $\theta \oplus \theta$ holds for any $\theta \in K_0(\operatorname{proj} A)$.

If $\theta = \bigoplus_{i=1}^m \theta_i$ is a canon. decomp. in $K_0(\operatorname{proj} A)$, then $C^+(\theta)$ is a TF equiv. class in $K_0(\operatorname{proj} A)_{\mathbb{R}}$.

E-tame algebras

Though it is not easy to check the E-tameness, we have the following.

Theorem [Geiss-Labardini-Fragoso-Schröer, (Plamondon-Yurikusa)]

Let A be representation-finite or tame.

Then, A is E-tame.

Why did we assume E-tameness?

Because our proof of Theorem 2 uses the following result.

Theorem [Fei]

If $\theta \in K_0(\operatorname{proj} A)$ and $M \in \operatorname{mod} A$, then TFAE.

- (a) $M \in \overline{\mathcal{F}}_{\theta}$.
- **(b)** $\exists l \in \mathbb{Z}_{\geq 1}, \exists f \in \text{Hom}(l\theta), \text{Hom}_A(\text{Coker } f, M) = 0.$

Moreover, we may let l = 1 if $\theta \oplus \theta$.

Example of Theorem 2

Let Q be an extended Dynkin quiver, and A := KQ.

- Consider an indec. module $M \in \text{mod } A$ in a regular homog. tube.
- Take the min. proj. resol. $P_1^M \to P_0^M \to M \to 0$, and set $\eta := [P_0^M] [P_1^M]$.
- $E := \{U \in \operatorname{2-psilt} A \mid [U] \oplus \eta\}.$
 - $[U] \oplus \eta \iff [U] \in \Theta_M \iff H^0(U), H^{-1}(\nu U)$ are regular.

Proposition

Under the setting above, the TF equiv. classes in $K_0(\operatorname{proj} A)_{\mathbb{R}}$ are

- $C^+(U)$ for all $U \in 2$ -psilt A and
- $C^+([U] \oplus \eta) = C^+(U) + \mathbb{R}_{>0}\eta$ for all $U \in E$.

In particular, all TF equiv. classes come from canon. decomp.

Final remark

In general, even if A is E-tame,

Theorem 2 does not necessarily give all TF equiv. classes.

- We cannot obtain any TF equiv. class E ⊂ K₀(proj A)_R such that E ∩ K₀(proj A) = Ø from Theorem 2.
- The following gentle algebra admits a TF equiv. class $\mathbb{R}_{>0}(1-t,-1+2t,-t)$ for each $t \in [0,1] \setminus \mathbb{Q}$:

$$A = K(1 \xrightarrow{\alpha \atop \beta} 2 \xrightarrow{\gamma \atop \delta} 3)/\langle \alpha \delta, \beta \gamma \rangle.$$

Thank you for your attention.

s-asai@ist.osaka-u.ac.jp