Задача 1.

Задача 1. Найдите все нормальные подгруппы группы перестановок S_4 .

Лемма 1. Каждая перестановка из S_n разлагается в произведение непересекающихся циклов единственным образом.

Доказательство. Пусть $\sigma \in S_n$. Рассмотрим группу $H = \langle \sigma \rangle$. Подействуем H на $\{1, \ldots, n\}$ посредством применения функции из H к элементам из $\{1, \ldots, n\}$. Орбитами при этом действия будут подмножества вида $Hk = \{\sigma^i(k) | \forall i \in \{1, \ldots, n\}, k \in \{1, \ldots, n\}\}$ Так как орбиты - это разбиение множества $\{1, \ldots, n\}$, существуют элементы $k_1, \ldots, k_r \in \{1, \ldots, n\}$ такие, что $1, \ldots, n = \sqcup Hk_i$. Значит $\forall x \in \{1, \ldots, n\}$ $\sigma(x) = \sigma^i(k_j)$ для некоторых i и j. Поэтому $\sigma = (\sigma(k_1)\sigma^2(k_1)\ldots\sigma^{i_1}(k_1))\ldots(\sigma(k_r)\sigma^2(k_r)\ldots\sigma^{i_r}(k_r))$.

Определение 1. *Циклическим типом перестановки* называется упорядоченный по убыванию набор длин циклов в её разложении на непересекающиеся циклы.

Лемма 2. Пусть $\tau \in S_n$ и $\tau = (i_1 \dots i_{k_1}) \dots (i_1 \dots i_{k_p})$ - разложение τ в произведение не пересекающихся циклов. Пусть $\sigma \in S_n$. Тогда $\sigma \tau \sigma^{-1} = (\sigma(i_1) \dots \sigma(i_{k_1})) \dots (\sigma(i_1) \dots \sigma(i_{k_p}))$.

Доказательство. Так как Ad_{σ} - это автоморфизм S_n , нам достаточно доказать, что $\sigma(i_1 \dots i_n)\sigma^{-1} = (\sigma(i_1) \dots \sigma(i_n))$. Пусть $x \in \{1, \dots, n\}$, тогда возможны два варианта

$$x = \sigma(i_k)$$
, для некоторого k . $x = \sigma(y)$, где $y \notin i_1, \ldots, i_n$

Разберём сначала первый. Пусть $x = \sigma(i_k)$, для некоторого k. $\sigma \tau \sigma^{-1}(x) = \sigma \tau \sigma^{-1}(\sigma(i_k)) = \sigma(i_{k+1 \ mod \ n})$ Теперь второй. Пусть $x = \sigma(y)$, где $y \notin i_1, \ldots, i_n$, тогда $\sigma \tau \sigma^{-1}(\sigma(y)) = \sigma(y)$.

Следствие 1. S_n сопряжением действует транзитивно на циклических типах.

Теперь можно перейти к решению задачи. Предположим, что $H \leq S_4$. Пусть $(ij) \in H$. Тогда $H = S_n$, так как транспозиции порождают S_4 . Значит H не содержит транспозиций. Пусть $(ijk) \in H$. Тогда H содержит все 3-циклы и кроме того содержит (123)(234) = (12)(34), а значит и содержит все элементы с цикличиским типом (2,2). Так как, (ijk) = (ij)(jk) все 3-циклы лежат в A_4 . Значит группа порождённая всеми 3-циклами содержится в A_4 . Однако элементов циклического типа (2,2) и (3,1) - 11. Вместе с Id - 12. А значит $H = A_4$. Так как $[A_4:S_4] = 2$, A_4 - нормальна. Теперь, пусть H содержит элементы циклического типа (2,2). $H \leq A_4$. Из леммы 2 очевидно следует, что подгруппа состоящая из элементов циклического типа (2,2) и Id нормальна. Таким образом, мы получили, что в S_4 только две нормальных подгруппы: подгруппа порождённая эле-

Обозначение 1. Обозначим нормальную подгруппу из 4 элементов как V_4

Задача 2

Задача 2. Докажите, что $Z_{S_n} = e \ npu \ n \geq 3$.

ментами циклического типа (2,2) и A_4 .

Определение 2. $H \subset G$, тогда $C_G(g) \stackrel{df}{=} \{g \in G \mid ghg^{-1} = h \ \forall h \in H\}$

Лемма 3. Пусть G конечная группа и действует на себе сопряжением. Тогда $\#Gh = [G: C_G(h)]$

Доказательство. Пусть $g \in \tau C_G(h)$, тогда $ghg^{-1} = (\tau h_k)h(\tau h_k)^{-1} = \tau h \tau^{-1}$. То есть сопряжение элементами из одного смежного класса переводит h в один тот же элемент. Теперь пусть $g_1hg_1^{-1} = g_2hg_2^{-1}$, что равносильно тому, что $g_2^{-1}g_1hg_2^{-1}g_1^{-1} = h$, т.е. $g_1 = g_2(g_2^{-1}g_1)$, где $g_2^{-1}g_1 \in C_G(h)$, т.е. $g_1 \in g_2C_G(h)$. Значит, сопряжение двумя элементами равно тогда и только тогда, когда они лежат в одном и том же смежном классе. Таким образом определена иньективная и сюрьективная функция $gC_G(h) \mapsto ghg^{-1}$.

Утверждение 1. Пусть $(i_1 \dots i_m) \in S_n$, тогда $[G:C_G((i_1 \dots i_m))] = \frac{n!}{m(n-m)!}$

Доказательство. Посчитаем $\#S_n h$ при действии S_n на себя сопряжением. По лемме $2 S_n h$ состоит из всех элементов циклического типа такого, как у h. То есть в нашем случае, достаточно посчитать количество т циклов. По комбинаторным соображениям оно равно $C^n_m(m-1)!$, так как мы сначала выбираем m элементов из п-элементного множества, а потом рассматриваем их с точностью до всех перестановок, кроме циклических, которых ровно m.

Утверждение 2. Пусть $(i_1 \dots i_m) \in S_n$, тогда $C_G((i_1 \dots i_m)) = \{(i_1 \dots i_m)^k \sigma | \sigma \in S_{\{1,\dots,n\}-\{i_1,\dots,i_r\}} \leq S_n\}$

Доказательство.

$$\#[G:C_G(h)] = \frac{\#G}{\#C_G(h)} = \frac{n!}{\#C_G(h)} = \frac{n!}{m(n-m)!}$$

Откуда $\#C_G(h) = m(n-m)!$.

Очевидно, что $\{(i_1\dots i_m)^k\sigma|\sigma\in S_{\{1,\dots,n\}-\{i_1,\dots,i_r\}}\leq S_n\}\subset C_G((i_1\dots i_m))$. При чём $\#\{(i_1\dots i_m)^k\sigma|\sigma\in S_{\{1,\dots,n\}-\{i_1,\dots,i_r\}}\leq S_n\}=m(n-m)!$ Откуда и получаем искомое равенство множеств.

Утверждение 3. $Z_G = \bigcap_{g \in G} C_G(g)$

Предварительная подготовка закончена, можно переходить собственно к доказательству утверждения в задаче.

По утверждению $3 Z_{S_n} \subset \bigcap_{i=1}^n C_{S_n}((ii+1))$

$$C_{S_n}(12) = \{(12)\sigma \mid \sigma \in S_{\{1,\dots,n\}-\{1,2\}}\}$$

$$C_{S_n}(23) = \{(23)\tau \mid \tau \in S_{\{1,\dots,n\}-\{2,3\}}\}$$

$$C_{S_n}(12) \cap C_{S_n}(23) = S_{\{1,\dots,n\}-\{1,2,3\}}$$

Продолжая аналогичным образом для (ii+1) получаем $\bigcap_{i=1}^n C_{S_n}((ii+1)) = S_{\{1,\dots,n\}-1,\dots,n} = \{e\}$

Задача 3

Задача 3. Постройте изоморфизмы $\mathbb{S}^1/\mu_n \simeq \mathbb{S}^1$ и $\mathbb{R}/\mathbb{Q} \simeq \mathbb{S}^1/\mu$.

Утверждение 4. $\mathbb{S}^1 \simeq \mathbb{R}/2\pi\mathbb{Z}$

Доказательство. $\mathbb{S}^1 \leq \mathbb{C}$, при чём $\mathbb{S}^1 = \{e^{i\phi} \mid \phi \in [0, 2\pi)\}$. Заметим, что $e^{i\phi_1}e^{i\phi_2} = e^{i(\phi_1 + \phi_2 \mod 2\pi\mathbb{Z})}$ и $\forall \phi \in \mathbb{R} \ e^{i\phi} = e^{i(\phi \mod 2\pi\mathbb{Z})}$.

Тогда отображение $e^{i\phi}\mapsto \phi$ является гомоморфизмом и биекцией, то есть изоморфизмом.

Обозначение 2. Обозначим изоморфизм из доказательства утверждения κ ак ϕ .

Утверждение 5.

$$g_{\frac{n}{2\pi}}: \mathbb{R}/2\pi\mathbb{Z} \to \mathbb{R}/n\mathbb{Z}$$
$$g_{\frac{n}{2\pi}}: \overline{x} \mapsto \frac{\overline{n}}{2\pi}x$$

д - изоморфизм абелевых групп.

Утверждение 6. $\phi(g(\mu_n)) = \mathbb{Z}/n\mathbb{Z}$

Доказательство.

$$\mu_n = \{ e^{\frac{2\pi k}{n}} \in \mathbb{S}^1 \mid k \in 0, \dots, n-1 \}$$

$$g(\mu_n) = \{ \frac{2\pi k}{n} \in \mathbb{R}/2\pi \mathbb{Z} \mid k \in 0, \dots, n-1 \}$$

$$\phi(g(\mu_n)) = \{ \overline{k} \in \mathbb{Z}/n \mathbb{Z} \subset \mathbb{R}/n \mathbb{Z} \mid k \in 0, \dots, n-1 \}$$

Утверждение 7 (Третья теорема об изоморфизме). $A/B \simeq (A/C)/(B/C)$

Таким образом, $\mathbb{S}^1/\mu_n \simeq (\mathbb{R}/n\mathbb{Z})/(\mathbb{Z}/n\mathbb{Z}) \simeq \mathbb{R}/\mathbb{Z} \simeq \mathbb{S}^1$

Утверждение 8. $\overline{x} \in \mathbb{R}/\mathbb{Z}$ лежит в \mathbb{Q}/\mathbb{Z} iff $\exists n \in \mathbb{Z} \mid nx \in \mathbb{Z}$.

Доказательство. Необходимость: Пусть $\overline{x} \in \mathbb{Q}/\mathbb{Z}$, тогда $x = \frac{p}{q}$, а значит $qx \in \mathbb{Z}$. Достаточность: Пусть $nx = k, \ k \in \mathbb{Z}$, тогда $x = \frac{k}{n} \in \mathbb{Q}$.

Замечание 1. Это равносильно тому, что $g_{\frac{1}{2}}(\mu) = \mathbb{Q}/\mathbb{Z}$

Теперь, $\mathbb{R}/\mathbb{Q} \simeq (\mathbb{R}/\mathbb{Z})/(\mathbb{Q}/\mathbb{Z}) \simeq \mathbb{S}^1/\mu$.

Задача 4

Задача 4. Докажите, что группа перестановок S_n порождена транспозициями вида (ii+1), где $i=1,\ldots,n-1$.

По индукции:

Для n=2 очевидно утверждение выполняется.

Пусть выполняется для S_k . Тогда заметим, что $S_{k+1} = \langle S_{\{1,\dots,k\}}, S_{\{2,\dots,k+1\}} \rangle$. В свою очередь, по предположению индукции

$$S_{\{1,\dots,k\}} = \langle \{(ii+1) \mid i \in \{1,\dots,k-1\}\} \rangle$$

$$S_{\{2,\dots,k+1\}} = \langle \{(ii+1) \mid i \in \{2,\dots,k\}\} \rangle$$

что и доказывает шаг индукции.

Задача 5

Задача 5. Докажите, что при $n \geq 3$ группа S_n порождена элементами (12) и (12 . . . n).

$$(12...n)(ii+1)(12...n)^{-1} = (i+2i+3).$$

Отсюда получаем, что $\forall i \in \{1, \dots, n-1\} \ (ii+1) \in \langle (12), (12 \dots n) \rangle$. А значит по результату предудыщей задачи $\langle (12), (12 \dots n) \rangle = S_n$.

Задача 6

Задача 6. Пусть $n \geq 3$. Докажите, что для любого k = 2, ..., n-1 в группе S_n найдётся минимальная система из k образующих.

По результату предыдущей задачи $S_{1,\dots,n-1}=\langle (12),(12\dots n-1)\rangle$. Тогда $\langle (12),(12\dots n-1),(1n)\rangle=S_n$, при чём это минимальная система образующих по построению. То есть мы выполнили задачу для k=2,3. Таким же образом, конструкция распространяется на остальные k: $S_n=\langle (12),(12\dots n-(k-2)),(1n-(k-1)),\dots,(1n)\rangle$ и это минимальная система образующих.

Задача 7

Задача 7. Постройте эпиморфизм $S_4 o S_3$ и найдите его ядро.

$$S_3 \stackrel{i}{\hookrightarrow} S_4 \stackrel{\pi}{\rightarrow} S_4 / V_4$$

i - вложение. $i(S_3) \cap \ker \pi = i(S_3) \cap V_4 = e$. Значит $\ker(\pi i) = e$, что равносильно тому, что πi - мономорфизм. А так как $\#S_3 = \#S_4 \diagup V_4$, πi ещё и эпиморфизм, а значит и изоморфизм. То есть искомый эпиморфизм $\pi(\pi i)^{-1}$ и его ядро V_4 .