Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 12 Martie 2011 CLASA a IX-a

Problema 1. Pe laturile $AB,\ BC,\ CD,\ DA$ ale paralelogramului $\overrightarrow{ABCD} \text{ se consideră punctele } \overrightarrow{M}, N, P, \text{ repectiv } Q, \text{ astfel încât } \overrightarrow{MN} + \overrightarrow{QP} = \overrightarrow{AC}. \text{ Arătați că } \overrightarrow{PN} + \overrightarrow{QM} = \overrightarrow{DB}.$

Problema 2. Pentru fiecare număr natural nenul n considerăm mulțimea A_n a tuturor numerelor de forma $\pm 1 \pm 2 \pm \cdots \pm n$; de exemplu, $A_2 = \{-3, -1, 1, 3\}$ și $A_3 = \{-6, -4, -2, 0, 2, 4, 6\}$. Determinați numărul elementelor mulțimii A_n .

Problema 3. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție cu proprietatea că f(f(x)) = [x], oricare ar fi numărul real x. Arătați că există numerele reale distincte a și b astfel încât $|f(a) - f(b)| \ge |a - b|$.

Notă. [x] reprezintă partea întreagă a numărului real x.

Problema 4. Considerăm un număr real nenul a cu proprietatea că $\{a\} + \{\frac{1}{a}\} = 1$. Arătaţi că $\{a^n\} + \{\frac{1}{a^n}\} = 1$, oricare ar fi numărul natural nenul n.

 $Not \check{a}$. $\{x\}$ reprezintă partea fracționară a numărului real x.

Timp de lucru 3 ore. Se acordă în plus 30 de minute pentru întrebări. Fiecare problemă este notată cu 7 puncte.