רשתות זרימה

רשת זרימה N היא גרף מכוון עם משקלים אי-שליליים, שיש בו 2 קודקודים מסוימים:

- . מקור source s, קודקוד עם צלעות יוצאות בלבד.
 - יעד sink t, קודקוד עם צלעות נכנסות בלבד. •

.c(e) מסומן **.capacity – קיבולת אקיבולת**

 $f: E \to \mathbb{R}$, such that $0 \le f(e) \le c(e)$ פונקציית זרימה נותנת ערכים לכל צלע:

ומקיימת את **כלל השימור**: בכל קודקוד, סכום הזרימה הנכנסת שווה לסכום הזרימה היוצאת. פורמלית, נסמן:

$$\sum_{e \in E^-(v)} f(e) = \sum_{e \in E^+(v)} f(e)$$

$$E^-(v) \coloneqq \text{incoming edges, } E^+(v) \coloneqq \text{outgoing edges}$$

 $|f|\coloneqq \sum_{e\in E^+(s)} f(e)$ ערך פונקציית הזרימה: מוגדר

 $\chi = (V_s, V_t)$ such that $s \in V_s, t \in V_t$ הוא חלוקה N **חתך** של

 $.v \in V_s, \ u \in V_t$ כך ש: (u,v) כך ש: $u,v \in V_s, \ v \in V_t$ בלע קדימה היא צלע (u,v) כך ש: אם שני הקודקודים באותה קבוצה, הצלע לא מוגדרת.

קיבולת של חתך מוגדרת סכום הקיבולות של צלעות קדימה בחתך.

זרימה מעבר לחתך היא סכום הזרימה בצלעות קדימה, פחות סכום הזרימה בצלעות אחורה.

למה 1: הזרימה של כל חתך שווה |f|:

: $V_{\rm s}$ ל- $V_{\rm t}$ ל- מחתך שבו אינדוקציה. נתחיל מחתך שבו $V_{\rm s}=\{{\rm s}\}$. נתבונן מה קורה כשקודקוד עובר מ-

נתבונן במצב לפני המעבר: יש 4 קטגוריות של צלעות שמחוברות לv:

נכנסות: צלעות קדימה (b), לא מוגדרות (a). יוצאות: צלעות אחורה (d), לא מוגדרות (c).

b-d נשים לב שמתקיים v לערך הזרימה היא v לערך מה שנכנס שווה לסכום מה שיוצא. אז ה"תרומה" של v לערך הזרימה היא אחרי המעבר:

.c – a נהיה לא מוגדר, a נהיה צלעות אחורה, c נהיה צלעות קדימה, d נהיה לא מוגדר. התרומה של v לערך הזרימה היא b נהיה לא מוגדר. התרומה של v לנהיה לא משתנה. מסקנה: בפונקציית סה"כ השינוי היה -a-b+c+d=0. אז אם נוסיף קודקודים אחד-אחד, ערך הזרימה לא משתנה. מסקנה: בפונקציית זרימה תקינה, מה שיוצא מs שווה מה שנכנס לt.

בכל חתך מתקיים: ערך הזרימה הוא לכל היותר קיבולת החתך.

e = (u, v) קיבולת שיורית של צלע: כמה מהקיבולת לא מנוצלת. עבור צלע

.(כמה אפשר להוסיף זרימה קדימה) ביווע (כמה ער השיורית ביווע u ightarrow סיא: $\Delta_{\mathrm{f}}(\mathrm{u},\mathrm{v})\coloneqq\mathrm{c}(\mathrm{e})-\mathrm{f}(\mathrm{e})$

.(כמה אפשר להוריד זרימה אחורה) ביוון $\Delta_f(v,u) \coloneqq f(e)$ היא: $v \rightarrow u$ הקיבולת השיורית בכיוון

רשת שיורית לכל צלע הוא הקיבולת השיורית שלה. $G_f = (V, E_f)$ היא גרף שנבנה לפי הקיבוליות השיוריות: המשקל של כל צלע הוא הקיבולת שלה. $E_f \coloneqq \{e: f(e) < c(e)\} \cup \{e^r: f(e) > 0\}$

יהי π מסלול כלשהו $\Delta_f(\pi) \coloneqq \min \{\Delta_f(e)\}$ הקיבולת השיורית. הקיבולת השיורית. ברשת השיורית. הקיבולת השיורית א $\Delta_f(\pi) = \delta$ הקיבולת השיורית. ברשת השיורית. ברשת השיורית. ברשת השיורית. ברשת השיורית של השלול. בדוגמה לעיל, $\Delta_f(\pi) = \delta$

מסלול $t \mapsto t$ ברשת השיורית ייקרא מסלול מגדיל אם הקיבולת השיורית שלו גדולה מ0, ובמצב הזה אפשר להוסיף את הקיבולת השיורית לכל צלע במסלול ובעצם להגדיל את הזרימה במסלול בגרף המקורי.

למה g: יהי π מסלול מגדיל של פונקציית זרימה f ברשת זרימה n. אז קיימת פונקציית זרימה f' כך שf' כך שf' ו $f'(e)=f(e)+\Delta_f(\pi)$. ברשת זרימה $f'(e)=f(e)+\Delta_f(\pi)$. עבור צלע אחורה, $f'(e)=f(e)+\Delta_f(\pi)$. עבור צלע אחורה, $f'(e)=f(e)+\Delta_f(\pi)$. במסלול יש רק (כיוון הצלעות הוא יחסית למה שיש ברשת המקורית). ניזכר שערך הזרימה שווה סכום הזרימה שיוצאת מ-s. במסלול יש רק צלע אחת שיוצאת מ- $f'(e)=f(e)+\Delta_f(\pi)$.

משפט המסלול המגדיל: פונקציית זרימה היא מקסימלית אמ"מ אין מסלולים מגדילים. משפט זרימה מקסימלית-חתך מינימלי: ערך הזרימה המקסימלית שווה קיבולת החתך המינימלי.

כדי להוכיח את שני המשפטים, נוכיח שההיגדים הבאים שקולים:

- 1) הפונקציה f מקסימלית
- f אין מסלול מגדיל עבור (2
- $|f| = c(\chi)$: קיים חתך χ כך ש
- .-- 2) זאת ההגדרה של פונקציה מקסימלית.
- ...> 1) הראנו שערך הפונקציה חסום בקיבולת. אז אם הגענו לשוויון זה המקסימום ש f יכולה להיות.
 - .f נניח שאין מסלול מגדיל עבור (3 <-- 2

נתבונן ב G_f וניקח חתך χ כך ש: V_s זה כל הקודקודים שאפשר להגיע אליהם מ- χ זה כל שאר הקודקודים. (מכיוון שאין מסלול מגדיל, יש קודקודים כאלה).

בגרף G, בהתייחסות לחתך χ: לכל צלע קדימה יש זרימה מקסימלית

V_s-(כי אחרת, היא הייתה צלע ברשת השיורית והיא הייתה מחברת בין הקבוצות בחתך, וזה היה "מכניס" את הקודקוד השני ל כי זה מאפשר להגיע אליו. ואז הצלע בעצם לא חוצה את החתך אז היא לא צלע קדימה).

ולכל צלע אחורה יש זרימה 0 (מאותה סיבה).

אז יוצא שערך הזרימה מעבר לחתך שווה לקיבולת החתך, כנדרש.

דוגמה: בגרף שראינו, נגדיל את המסלול לפי השיטה: ברשת השיורית המעודכנת, אין מסלול מגדיל:

שיטת **פורד-פולקרסון – Ford Fulkerson method:** שיטה כללית בלבד, לא מגדירה איך לבחור את המסלול. נתחיל עם זרימה 0 בכל צלע. בכל שלב נחשב את הרשת השיורית ונגדיל לפי הקיבולת השיורית. נמשיך עד שאין מסלול מגדיל. הבעיה: אם כל הקיבולות הן מספרים טבעיים, זה יכול לקחת |*f| צעדים, (*f היא הזרימה המקסימלית):

אם הקיבולות אי-רציונליים, זה יכול להמשיך אינסוף צעדים ואפילו לא להתכנס לזרימה המקסימלית. הבעיה היא בבחירת המסלול.

שיטת פורד-פולקרסון הומצאה ב-1956, והפתרון הראשון הומצא ב-1969 ע"י יפים דניץ. עוד פתרון הומצא ב-1972:

אלגוריתם אדמונדס-קארפ – Edmonds-Karp: (פחות יעיל מדיניץ, אבל יותר פשוט)

נעשה BFS כדי למצוא את המסלול הכי קצר (מספר צלעות, בלי התייחסות למשקל) מ-t-t. זה המסלול המגדיל. סיבוכיות האלגוריתם תלויה במספר הפעמים שאפשר למצוא מסלול מגדיל. ננסה לחסום את מספר המסלולים:

טענה: המסלול המגדיל לא מתקצר: נוכיח ע"י טענות עזר:

טענת עזר 1: אם נגדיל את הזרימה לפי מסלול מגדיל, אז δ(s,t) ברשת השיורית, גדל (או נשאר אותו דבר): הוכחה: נתבונן ב"שכבות" של קודקודים בגרף, לפני ההגדלה:

כל צלע יכולה להתקדם רק שכבה אחת כל פעם (אחרת הקודקוד השני היה בשכבה מוקדמת יותר). כשמגדילים לפי מסלול, יש 2 שינויים אפשריים:

צלע נמחקת אם מילאנו את הקיבולת שלה. צלע הפוכה מופיעה אם הוספנו זרימה במקום חדש.

שני השינויים לא יקצרו את המרק מ-s ל-t.

מספר הגדלות: צלע (u,v) במסלול מגדיל P תקרא **קריטית** אם היא הצלע בעלת הקיבולת השיורית הכי קטנה (זאת שהגדירה את הקיבולת השיורית של המסלול).

טענת עזר 2: צלע יכולה להיות קריטית לכל היותר n/2 פעמים.

הוכחה: נשים לב שצלע קריטית תמיד תיעלם מהרשת השיורית אחרי ההגדלה, כי מוסיפים לה את הקיבולת השיורית שלה אז היא מתמלאת. (או שהיא הייתה צלע אחורה ואז היא מתרוקנת).

:נתבונן בצלע (u, v) כלשהי

- בשלב מסוים, הצלע קריטית. כלומר היא על המסלול המגדיל, שהוא המסלול הקצר. $\delta_{\rm f}({
 m s,v})=\delta_{\rm f}({
 m s,u})+1$ אז מתקיים:
 - הצלע נמחקת.
 - בינתיים, צלעות אחרות נהיות קריטיות ונמחקות.
- בשלב מסוים הצלע (u, v) מופיעה שוב. זה קורה רק אם הצלע ההפוכה (u, v) בשלב מסוים הצלע $\delta_{f'}(s,u) = \delta_{f'}(s,v) + 1$ התקיים:

 $\delta_{f'}(s,u) = \delta_{f'}(s,v) + 1 \geq^1 \delta_f(s,v) + 1 = \delta_f(s,u) + 2$:3 גדל בלפחות $\delta_{f'}(s,u) = \delta_{f'}(s,v) + 1 \geq^1 \delta_f(s,v) + 1 = \delta_f(s,u) + 2$:4 גדל בלפחות (1- מסקנה מלמה 1)

כלומר, בין כל 2 פעמים שהצלע הזאת קריטית, המסלול הקצר s → t גדל בלפחות 2. אורך המסלול יכול להיות לכל היותר n-1 צלעות (מסלול פשוט בגרף). אז זה יכול לקרות לכל היותר n/2 פעמים.

בכל פעם שנבצע הגדלת מסלול, לפחות צלע אחת תהיה קריטית. אז נוכל לבצע לכל היותר mn/2 הגדלות מסלול. O(m) הכל פעם זה BFS, סיבוכיות (m+n). במקרה הזה ידוע שהגרף קשיר, אז $m \ge n-1$ ולכן זה O(m+n). אז סיבוכיות האלגוריתם: $m \ge n-1$

אם יש **מקורות מרובים**, פשוט נוסיף מקור שמחובר לכל המקורות עם צלעות בקיבולת אינסוף. (כנ"ל לגבי יעדים מרובים).

זיווג דו"צ מקסימלי: בהינתן גרף קשיר לא מכוון, זיווג הוא תת קבוצה $M\subseteq E$ של צלעות כך שכל קודקוד מחובר לכל היותר $M\subseteq E$ איותג ברף קשיר לא מכוון, זיווג הוא תת קבוצה $V=L\cup R,\ L\cap R=\emptyset$ וכל צלע היא בין L \rightarrow R לצלע אחת בMב נרצה למצוא זיווג מקסימלי בגרף דו"צ: גרף שבו L \rightarrow R ונמצא את הזרימה המקסימלית.

פורד-פולקרסון נותנת זרימה מקסימלית שהיא מספר טבעי. זה נובע מכך שבכל שלב מגדילים לפי קיבולת של צלע, וזה תמיד טבעי. אז הזרימה המקסימלית היא כמספר הצלעות המקסימלי שיכול לעבור מL ל-R, שזה בדיוק הזיווג המקסימלי. נתונה רשת זרימה עם קיבולות שלמים ופונקציית זרימה מקסימלית. מגדילים את הקיבולת של צלע e ב-1. כדי למצוא את פונקציית זרימה מקסימלית ביעילות, איטרציה אחת של פורד-פולקרסון תספיק. כי יש מסלול מגדיל רק דרך הצלע הזאת, והיא תקבע את הקיבולת השיורית.

.t. s מ-t. צ"ל את המספר המינימלי של **קודקודים** שצריך להוריד כדי לנתק את s מ-t. בגרף קשיר לא מכוון, נתונים קודקודים $v_{\rm in},v_{\rm out}\in V'$ לכל קודקוד נייצר $v_{\rm in},v_{\rm out}\in V'$. ונייצר צלעות:

$$E' = \left\{ \underbrace{(u, v_{in})}_{c = \infty} | (u, v) \in E \right\} \cup \left\{ \underbrace{(v_{out}, u)}_{c = \infty} | (v, u) \in E \right\} \cup \left\{ \underbrace{(v_{in}, v_{out})}_{c = 1} | v_{in}, v_{out} \in V' \right\}$$

הזרימה המקסימלית זה מספר הצלעות שצריך להוריד. הסבר: אם קיים חתך עם קיבולת C, זה אומר שיש חתך עם C צלעות שחוצות את החתך. זרימה מקסימלית שווה חתך מינימלי.

מפעל: אם יש מכונות $M_1\cdots M_n$ במפעל, וכל מכונה יכולה לעבוד a_i שעות במצטבר. לא כל מכונה יכולה לבצע כל מטלה. ש מסלות $T_1\cdots T_n$, לכל אחת צריך b_i שעות. נרצה לחלק את העבודה כדי לבצע כמה שיותר מטלות. נרצה לחלק את העבודה כדי לבצע כמה שיותר מטלות. נבנה גרף שיתאר את המצב בצורה כזו:

יהיה קודקוד לכל מכונה, לכל מטלה, קודקוד מקור S המחובר לכל המכונות, וקודקוד יעד T המחובר לכל המטלות. משקל הצלעות מ-s ל-M הוא a_i, משקל הצלעות ממטלה T לקודקוד בור הוא b_i, משקל שאר הצלעות יוגדר אינסוף.

	T_1	T_2	T_3	T_4	a_i
M_1					6
M_2					7
M ₃					3
b_j	10	3	4	6	·

הזרימה המקסימלית מתארת את חלוקת העבודה האופטימלית.