Discrete Mathematics Sets

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2014

License

© 2001-2014 T. Uyar, A. Yayımlı, E. Harmancı

You are free to:

- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material

Under the following terms:

- Attribution You must give appropriate credit, provide a link to the license. and indicate if changes were made.
- NonCommercial You may not use the material for commercial purposes.
- ▶ ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

For more information:

https://creativecommons.org/licenses/by-nc-sa/4.0/

Read the full license:

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Topics

Sets

Introduction Subsets Set Operations Principle of Inclusion-Exclusion

Counting Sets

Infinite Sets

Set

Definition

- set: a collection of elements that are
 - distinct
 - unordered
 - non-repeating

Set Representation

- ightharpoonup explicit representation elements are listed within braces: $\{a_1,a_2,\ldots,a_n\}$
- implicit representation elements that validate a predicate: {x | x ∈ G, p(x)}
- ▶ Ø: empty set
- ▶ let S be a set, and a be an element
 - ▶ $a \in S$: a is an element of S
 - a ∉ S: a is not an element of S
- ▶ |S|: number of elements in S (cardinality)

/20

Explicit Representation Example

Example

 $\{3, 8, 2, 11, 5\}$ $11 \in \{3, 8, 2, 11, 5\}$ $|\{3, 8, 2, 11, 5\}| = 5$

6/38

Implicit Representation Examples

Example

$$\{x \mid x \in \mathbb{Z}^+, \ 20 < x^3 < 100\} \equiv \{3, 4\}$$

 $\{2x - 1 \mid x \in \mathbb{Z}^+, \ 20 < x^3 < 100\} \equiv \{5, 7\}$

Example

$$A = \{x \mid x \in \mathbb{R}, \ 1 \le x \le 5\}$$

Example

$$E = \{ n \mid n \in \mathbb{N}, \exists k \in \mathbb{N} [n = 2k] \}$$

$$A = \{ x \mid x \in E, 1 \le x \le 5 \}$$

Set Dilemma

There is a barber who lives in a small town. He shaves all those men who don't shave themselves. He doesn't shave those men who shave themselves.

Does the barber shave himself?

- ▶ yes → but he doesn't shave men who shave themselves
- \blacktriangleright no \rightarrow but he shaves all men who don't shave themselves \rightarrow yes

7/38

Set Dilemma

▶ let *S* be the set of sets that are not an element of themselves $S = \{A \mid A \notin A\}$

- ▶ $S \in S$ → but the predicate is not valid → no
- ▶ $S \notin S$ → but the predicate is valid → yes

Subset

Definition

 $A \subseteq B \Leftrightarrow \forall x \ [x \in A \rightarrow x \in B]$

▶ set equality:

 $A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$

▶ proper subset: $A \subset B \Leftrightarrow (A \subseteq B) \land (A \neq B)$

∀S [Ø ⊂ S]

10/38

Subset

 $A \nsubseteq B$

$$\begin{split} A \nsubseteq B & \Leftrightarrow \quad \neg \forall x \ [x \in A \rightarrow x \in B] \\ & \Leftrightarrow \quad \exists x \ \neg [x \in A \rightarrow x \in B] \\ & \Leftrightarrow \quad \exists x \ \neg [\neg (x \in A) \lor (x \in B)] \\ & \Leftrightarrow \quad \exists x \ [(x \in A) \land \neg (x \in B)] \\ & \Leftrightarrow \quad \exists x \ [(x \in A) \land (x \notin B)] \end{split}$$

Power Set

Definition power set: P(S)

the set of all subsets of a set,

including the empty set and the set itself

Example

 $\mathcal{P}(\{1,2,3\}) = \{\emptyset,\ \{1\},\ \{2\},\ \{3\},\ \{1,2\},\ \{1,3\},\ \{2,3\},\ \{1,2,3\}\}$

if a set has n elements, its power set has 2" elements

11/38

.

Set Operations

complement

 $\overline{A} = \{x \mid x \notin A\}$

intersection $A \cap B = \{x \mid (x \in A) \land (x \in B)\}$

▶ if $A \cap B = \emptyset$ then A and B are disjoint

union

 $A \cup B = \{x \mid (x \in A) \lor (x \in B)\}$

Set Operations

difference $A - B = \{x \mid (x \in A) \land (x \notin B)\}$

 $A - B = A \cap \overline{B}$

▶ symmetric difference: $A \triangle B = \{x \mid (x \in A \cup B) \land (x \notin A \cap B)\}$

14/38

Cartesian Product

Definition

Cartesian product:

 $A \times B = \{(a,b) \mid a \in A, b \in B\}$

$$A \times B \times C \times \cdots \times K = \{(a, b, \dots, k) \mid a \in A, b \in B, \dots, k \in K\}$$

 $\blacktriangleright |A \times B \times C \times \cdots \times K| = |A| \cdot |B| \cdot |C| \cdots |K|$

Cartesian Product Example

Example

let $A = \{a_1, a_2, a_3, a_4\}$ and $B = \{b_1, b_2, b_3\}$ $A \times B = \{(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_1, b_3$

 $(a_1, b_1), (a_1, b_2), (a_2, b_3), (a_3, b_1), (a_3, b_2), (a_3, b_3), (a_4, b_1), (a_4, b_2), (a_4, b_3)$

-- --

Equivalences

Double Complement

 $\overline{\overline{A}} = A$

Commutativity $A \cap B = B \cap A$

 $A \sqcup B = B \sqcup A$

Associativity Idempotence

 $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$

$A \cap A = A$

 $A \cup A = A$

Inverse

 $A \cap \overline{A} = \emptyset$ $A \cup \overline{A} = \mathcal{U}$

Equivalences

Identity

 $A \cap \mathcal{U} = A$ $A \sqcup \emptyset = A$

Domination

 $A \cap \emptyset = \emptyset$ $A \cup \mathcal{U} = \mathcal{U}$

Distributivity

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Absorption

 $A \cap (A \cup B) = A$ $A \cup (A \cap B) = A$

DeMorgan's Laws

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$

DeMorgan's Law

Theorem $\overline{A \cap B} = \overline{A} \sqcup \overline{B}$

Proof

$$\overline{A \cap B} = \{x | x \notin (A \cap B)\}$$

$$= \{x | \neg (x \in (A \cap B))\}$$

=
$$\{x | \neg ((x \in A) \land (x \in B))\}$$

$$= \{x | \neg (x \in A) \lor \neg (x \in B)\}$$

$$= \{x | (x \notin A) \lor (x \notin B)\}$$

=
$$\{x | (x \in \overline{A}) \lor (x \in \overline{B})\}$$

$$= \{x | (x \in \overline{A}) \lor (x \in \overline{B})\}$$
$$= \{x | x \in \overline{A} \cup \overline{B}\}$$

$$= \{x | x \in A \cup B\}$$

Example

Theorem

$$A\cap (B-C)=(A\cap B)-(A\cap C)$$

Proof

$$\begin{aligned} (A \cap B) - (A \cap C) &= (A \cap B) \cap \overline{(A \cap C)} \\ &= (A \cap B) \cap \overline{(A \cup C)} \\ &= ((A \cap B) \cap \overline{(A)} \cup ((A \cap B) \cap \overline{(C)}) \\ &= \emptyset \cup ((A \cap B) \cap \overline{(C)}) \end{aligned}$$

$$= (A \cap B) \cap \overline{C}$$
$$= A \cap (B \cap \overline{C})$$

$$= A \cap (B - C)$$

Example

Theorem

$$A \subseteq B$$

$$\Leftrightarrow A \cup B = B$$

$$\Leftrightarrow A \cap B = A$$

 $\Leftrightarrow \overline{B} \subseteq \overline{A}$

 ${\sf Example}$

$$A \subseteq B \Rightarrow A \cup B = B$$
.
 $A \cup B = B \Leftrightarrow A \cup B \subseteq B \land B \subseteq A \cup B$

$$x \in A \cup B \Rightarrow x \in A \lor x \in B$$

$$B \subseteq A \cup B \qquad \qquad x \in A \cup B \Rightarrow x \in A \lor x$$

22/3

п

Example

 $A \cap B \subseteq A$

$$A \cup B = B \Rightarrow A \cap B = A$$
.

 $A \cap B = A \Leftrightarrow A \cap B \subseteq A \land A \subseteq A \cap B$

$$y \in A \Rightarrow y \in A \cup B$$

$$A \cup B = B \Rightarrow y \in B$$

$$\Rightarrow y \in A \cap B$$

$$\Rightarrow A \subseteq A \cap B$$

Example

$$A \cap B = A \Rightarrow \overline{B} \subseteq \overline{A}$$
.

$$z \in \overline{B} \implies z \notin B$$

$$\implies z \notin A \cap B$$

$$A \cap B = A \implies z \notin A$$

$$\implies z \in \overline{A}$$

$$\implies \overline{B} \subseteq \overline{A}$$

Example

 $\overline{B} \subseteq \overline{A} \Rightarrow A \subseteq B$.

$$\begin{array}{ll} \neg(A\subseteq B) & \Rightarrow & \exists w \ [w\in A \land w\notin B] \\ & \Rightarrow & \exists w \ [w\notin \overline{A} \land w\in \overline{B}] \\ & \Rightarrow & \neg(\overline{B}\subseteq \overline{A}) \end{array}$$

Principle of Inclusion-Exclusion

- ▶ $|A \cup B| = |A| + |B| |A \cap B|$
- $\blacktriangleright |A \cup B \cup C| = |A| + |B| + |C| (|A \cap B| + |A \cap C| + |B \cap C|) + |A \cap B \cap C|$

Theorem

$$\begin{aligned} |A_1 \cup A_2 \cup \cdots \cup A_n| &=& \sum_i |A_i| - \sum_{i,j} |A_i \cap A_j| \\ &+ \sum_{i,j,k} |A_i \cap A_j \cap A_k| \\ &\cdots + -1^{n-1} |A_i \cap A_i \cap \cdots \cap A_n| \end{aligned}$$

/20

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

- ▶ a method to identify prime numbers
- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30
- 2 3 5 7 9 11 13 15 19 21 23 25 27 29
- 2 3 5 7 11 13
- 19 23 25 29 2 3 5 7 11 13

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

- ▶ number of primes between 1 and 100
- ▶ number of printes between 1 and 100 ▶ numbers that are not divisible by 2, 3, 5 and 7
 - A₂: set of numbers divisible by 2
 - ► A₃: set of numbers divisible by 3
 - ► A₅: set of numbers divisible by 5
- A₇: set of numbers divisible by 7

$$\blacktriangleright |A_2 \cup A_3 \cup A_5 \cup A_7|$$

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

$$|A_2| = \lfloor 100/2 \rfloor = 50$$

- |A₃| = |100/3| = 33
- |A₅| = |100/5| = 20 $|A_7| = |100/7| = 14$
- $|A_2 \cap A_3| = |100/6| = 16$
- $|A_2 \cap A_5| = |100/10| = 10$ $|A_2 \cap A_7| = |100/14| = 7$
- $|A_3 \cap A_5| = |100/15| = 6$
- $ightharpoonup |A_3 \cap A_7| = \lfloor 100/21 \rfloor = 4$ $|A_5 \cap A_7| = |100/35| = 2$

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

- $|A_2 \cap A_3 \cap A_5| = |100/30| = 3$
- $|A_2 \cap A_3 \cap A_7| = |100/42| = 2$
- $|A_2 \cap A_5 \cap A_7| = |100/70| = 1$
- $|A_3 \cap A_5 \cap A_7| = |100/105| = 0$
 - $|A_2 \cap A_3 \cap A_5 \cap A_7| = |100/210| = 0$

Inclusion-Exclusion Example

Example (sieve of Eratosthenes)

$$\begin{aligned} |A_2 \cup A_3 \cup A_5 \cup A_7| &= (50+33+20+14) \\ &- (16+10+7+6+4+2) \\ &+ (3+2+1+0) \\ &- (0) \\ &= 78 \end{aligned}$$

▶ number of primes: (100 - 78) + 4 - 1 = 25

References

Required Reading: Grimaldi

- ► Chapter 3: Set Theory
 - ▶ 3.1. Sets and Subsets
 - ▶ 3.2. Set Operations and the Laws of Set Theory
- Chapter 8: The Principle of Inclusion and Exclusion
 - ▶ 8.1. The Principle of Inclusion and Exclusion

Supplementary Reading: O'Donnell, Hall, Page

► Chapter 8: Set Theory

Subset Cardinality

- A ⊂ B ⇒ |A| < |B|</p>
- > this doesn't necessarily hold for infinite sets

Example

 $\mathbb{Z}^+ \subset \mathbb{N}$

hut

 $|\mathbb{Z}^+| = |\mathbb{N}|$

how can we compare the cardinalities of infinite sets?

Infinite Sets

- in order to compare the cardinalities two sets.
 - let's pair off the elements of the sets
- ▶ if every element can be paired, then they have the same cardinality

$$|\mathbb{Z}^+| = |\mathbb{N}|$$
 \mathbb{Z}^+ 1 2 3 4 5 6 7 ...
 \mathbb{N} 0 1 2 3 4 5 6 ...

Infinite Sets

$$|\mathbb{Q}| = |\mathbb{N}|$$

	1	2	3	4	5	
1	1/1	2/1	3/1	4/1	5/1	
2	1/2	2/2	3/2	4/2	5/2	
3	1/3	2/3	3/3	4/3	5/3	
4	1/4	2/4	3/4	4/4	5/4	
5	1/5	2/5	3/5	4/5	5/5	
	1					
	1 :					

pair off row-wise:

pair on row-wise:
$$1/1 \rightarrow 0$$
 $2/1 \rightarrow 1$ $3/1 \rightarrow 2$ $4/1 \rightarrow 3$ $5/1 \rightarrow 4$...

pair off diagonally:

Infinite Sets

$$|\mathbb{R}| \stackrel{?}{=} |\mathbb{N}|$$

▶ consider the set $\{x \mid x \in \mathbb{R}, 0 < x < 1\}$

> no element is represented by an expansion that terminates: $0.4\overline{9}$ instead of 0.5

$$\begin{array}{cccc} 0.a_{11}a_{12}a_{13}a_{14}\dots & \to & 0 \\ 0.a_{21}a_{22}a_{23}a_{24}\dots & \to & 1 \\ 0.a_{31}a_{32}a_{33}a_{34}\dots & \to & 2 \end{array}$$

$$0.a_{31}a_{32}a_{33}a_{34}... \rightarrow 2$$

 \vdots
 $0.a_{n1}a_{n2}a_{n3}a_{n4}... \rightarrow n-1$

$$b_k = \begin{cases} 3 & \text{if } a_{kk} \neq 3 \\ 7 & \text{if } a_{kk} = 3 \end{cases}$$

$$\blacktriangleright \ \forall k \in \mathbb{N} \ r \neq r_k$$

► Cantor's Diagonal Construction

Infinite Sets

- real numbers can not be counted
- ▶ |R| > |N|
- ▶ let C be the set of all possible computer programs
- ▶ let P be the set of all possible problems
- $|C| = |\mathbb{N}|$
- |P| = |ℝ|
- $\,\blacktriangleright\,$ there are problems which cannot be solved using computers

References

Required Reading: Grimaldi

► Appendix 3: Countable and Uncountable Sets

7/38