

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
22. September 2005 (22.09.2005)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2005/087771 A2

(51) Internationale Patentklassifikation⁷: **C07D 487/04**

(21) Internationales Aktenzeichen: PCT/EP2005/002425

(22) Internationales Anmeldedatum:
8. März 2005 (08.03.2005)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
10 2004 012 021.8 10. März 2004 (10.03.2004) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): **BASF AKTIENGESELLSCHAFT** [DE/DE]; 67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): **TORMO I BLASCO, Jordi** [ES/DE]; Carl-Benz-Str.10-3, 69514 Laudenbach (DE). **BLETTNER, Carsten** [DE/DE]; Richard-Wagner-Str.48, 68165 Mannheim (DE). **MÜLLER, Bernd** [DE/DE]; Stockinger Str. 7, 67227 Frankenthal (DE). **GEWEHR, Markus** [DE/DE]; Goethestr. 21, 56288 Kastellaun (DE). **GRAMMENOS, Wassilios** [GR/DE]; Alexander-Fleming-Str. 13, 67071 Ludwigshafen (DE). **GROTE, Thomas** [DE/DE]; Im Höhnhausen 18, 67157 Wachenheim (DE). **RHEINheimer, Joachim** [DE/DE]; Merziger Str.24, 67063 Ludwigshafen (DE). **SCHÄFER, Peter** [DE/DE]; Römerstr.1, 67308 Ottersheim (DE). **SCHIEWECK, Frank** [DE/DE]; Lindenweg 4, 67258 Hessheim (DE). **SCHWÖGLER, Anja** [DE/DE]; Heinrich-Lanz-Str. 3, 68165 Mannheim (DE). **WAGNER, Oliver** [DE/DE]; Im Meisental 50, 67433 Neustadt (DE). **NIEDENBRÜCK, Matthias** [DE/DE]; Albert-Einstein-Allee 3, 67117 Limburgerhof (DE). **SCHERER,**

Maria [DE/DE]; Hermann-Jürgens-Str.30, 76829 Godramstein (DE). **STRATHMANN, Siegfried** [DE/DE]; Donnersbergstr.9, 67117 Limburgerhof (DE). **SCHÖFL, Ulrich** [DE/DE]; Erlenstr. 8, 68782 Brühl (DE). **STERL, Reinhard** [DE/DE]; Jahnstr.8, 67251 Freinsheim (DE).

(74) Gemeinsamer Vertreter: **BASF AKTIENGESELLSCHAFT**; 67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: 5,6-DIALKYL-7-AMINO-TRIAZOLOPYRIMIDINES, METHOD FOR THEIR PRODUCTION, THEIR USE FOR CONTROLLING PATHOGENIC FUNGI AND AGENTS CONTAINING SAID COMPOUNDS

(54) Bezeichnung: 5,6-DIALKYL-7-AMINO-TRIAZOLOPYRIMIDINE, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG ZUR BEKÄMPFUNG VON SCHADPILZEN SOWIE SIE ENTHALTENDE MITTEL

(57) Abstract: The invention relates to 5,6-dialkyl-7-amino-triazolo[4,3-c]pyrimidines of formula (I), in which the substituents are defined as follows: R¹ represents alkyl or alkoxyalkyl; R² represents alkyl, R¹ and/or R² being substituted according to the description. The invention also relates to a method for producing said compounds, to agents containing the latter and to their use for controlling plant-pathogenic fungi.

(57) Zusammenfassung: 5,6-Dialkyl-7-amino-triazolo[4,3-c]pyrimidine der Formel (I) in der die Substituenten folgende Bedeutung haben: R¹ Alkyl oder Alkoxyalkyl, R² Alkyl, wobei R¹ und/oder R² gemäß der Beschreibung substituiert sein können; Verfahren zur Herstellung dieser Verbindungen, sie enthaltende Mittel sowie ihre Verwendung zur Bekämpfung von pflanzenpathogenen Schadpilzen.

WO 2005/087771 A2

5,6-Dialkyl-7-amino-triazolopyrimidine, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schadpilzen sowie sie enthaltende Mittel

Beschreibung

5

Die vorliegende Erfindung betrifft 5,6-Dialkyl-7-amino-triazolopyrimidine der Formel I

in der die Substituenten folgende Bedeutung haben:

10 R¹ C₁-C₅-Alkyl oder C₁-C₁₀-Alkoxy-C₁-C₁₀-alkyl,

R² C₅-C₁₂-Alkyl,

wobei R¹ und/oder R² durch eine bis drei der folgenden Gruppen substituiert sein können:

Cyano, Nitro, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₁₀-Alkylthio oder NR^aR^b,

R^a, R^b Wasserstoff oder C₁-C₁₀-Alkyl.

20

Außerdem betrifft die Erfindung Verfahren zur Herstellung dieser Verbindungen, sie enthaltende Mittel sowie ihre Verwendung zur Bekämpfung von pflanzenpathogenen Schadpilzen.

25 In GB 1 148 629 werden 5,6-Dialkyl-7-amino-triazolopyrimidine allgemein vorgeschlagen. Aus EP-A 141 317 sind einzelne fungizid wirksame 5,6-Dialkyl-7-amino-triazolopyrimidine bekannt. Ihre Wirkung ist jedoch in vielen Fällen nicht zufriedenstellend. Davon ausgehend, liegt der vorliegenden Erfindung die Aufgabe zugrunde, Verbindungen mit verbesserter Wirkung und/oder verbreitertem Wirkungsspektrum bereitzustellen.

30

Demgemäß wurden die eingangs definierten Verbindungen gefunden. Des weiteren wurden Verfahren und Zwischenprodukte zu ihrer Herstellung, sie enthaltende Mittel sowie Verfahren zur Bekämpfung von Schadpilzen unter Verwendung der Verbindungen I gefunden.

35

Die Verbindungen der Formel I unterscheiden sich von den aus den oben genannten Schriften durch die spezielle Ausgestaltung des Substituenten in der 5-Position des Triazolopyrimidin-Gerüstes.

Die Verbindungen der Formel I weisen eine gegenüber den bekannten Verbindungen erhöhte Wirksamkeit gegen Schadpilze auf.

- 5 Die erfindungsgemäßen Verbindungen können auf verschiedenen Wegen erhalten werden. Vorteilhaft werden die erfindungsgemäßen Verbindungen erhalten, indem man substituierte β -Ketoestern der Formel II mit 3-Amino-1,2,4-triazol der Formel III zu 10 7-Hydroxytriazolopyrimidinen der Formel IV umsetzt. Die Gruppen R¹ und R² in Formeln II und IV haben die Bedeutungen wie für Formel I und die Gruppe R in Formel II bedeutet C₁-C₄-Alkyl, aus praktischen Gründen ist Methyl, Ethyl oder Propyl darin bevorzugt.

Die Umsetzung der substituierten β -Ketoester der Formel II mit den Aminoazolen der Formel III kann in Gegenwart oder Abwesenheit von Lösungsmitteln durchgeführt werden.

- 15 Vorteilhaft ist es, solche Lösungsmittel zu verwenden, gegenüber denen die Einsatzstoffe weitgehend inert sind und in denen sie ganz oder teilweise löslich sind. Als Lösungsmittel kommen insbesondere Alkohole wie Ethanol, Propanole, Butanole, Glykole oder Glykolmonoether, Diethylenglykole oder deren Monoether, aromatische Kohlenwasserstoffe, wie Toluol, Benzol oder Mesitylen, Amide wie Dimethylformamid, 20 Diethylformamid, Dibutylformamid, N,N-Dimethylacetamid, niedere Alkansäuren wie Ameisensäure, Essigsäure, Propionsäure oder Basen, wie Alkalimetall- und Erdalkalimetallhydroxide, Alkalimetall- und Erdalkalimetallocxide, Alkalimetall- und Erdalkalimetallhydride, Alkalimetallamide, Alkalimetall- und Erdalkalimetallcarbonate sowie Alkalimetallhydrogencarbonate, metallorganische Verbindungen, insbesondere Alkalimetallalkyle, Alkylmagnesiumhalogenide sowie Alkalimetall- und Erdalkalimetallalkoholate und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin, Tributylamin und N-Methylpiperidin, N-Methylmorpholin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine und Mischungen dieser Lösungsmittel mit Wasser in Frage. Als Katalysatoren kommen Basen, wie voranstehend genannt, oder Säuren, wie Sulfonsäuren oder Mineralsäuren in Frage. Besonders bevorzugt wird die Umsetzung ohne Lösungsmittel oder in Chlorbenzol, Xylool, Dimethylsulfoxid, N-Methylpyrrolidon durchgeführt. Besonders bevorzugte Basen sind tertiäre Amine wie Tri-isopropylethylamin, Tributylamin, N-Methylmorpholin oder N-Methylpiperidin. Die Temperaturen liegen zwischen 50 und 300°C, vorzugsweise bei 50 bis 180°C, wenn in Lösung gearbeitet wird [vgl. EP-A 770 615; Adv. Het. Chem. Bd. 57, S. 81ff. (1993)].

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuss oder gegebenenfalls als Lösungsmittel verwendet werden.

- 5 Die so erhaltenen Kondensationsprodukte der Formel IV fallen aus den Reaktionslösungen meist in reiner Form aus und werden nach dem Waschen mit dem gleichen Lösungsmittel oder mit Wasser und anschließendem Trocknen mit Halogenierungsmitteln, insbesondere Chlorierungs- oder Bromierungsmittel zu den Verbindungen der Formel V, in der Hal für Chlor oder Brom, insbesondere für Chlor steht, umgesetzt.
- 10 Bevorzugt erfolgt die Umsetzung mit Chlorierungsmitteln, wie Phosphoroxychlorid, Thionylchlorid oder Sulfurylchlorid bei 50°C bis 150°C vorzugsweise in überschüssigem Phosphoroxitrichlorid bei Rückflußtemperatur. Nach dem Verdampfen des überschüssigen Phosphoroxitrichlorids wird der Rückstand mit Eiswasser gegebenenfalls unter Zusatz eines mit Wasser nicht mischbaren Lösungsmittels behandelt. Das aus der getrockneten organischen Phase gegebenenfalls nach Verdampfung des inerten Lösungsmittels isolierte Chlorierungsprodukt ist meist sehr rein und wird anschließend mit Ammoniak in inerten Lösungsmitteln bei 100°C bis 200°C zu den 7-Amino-triazolo[1,5-a]-pyrimidinen umgesetzt. Die Reaktion wird vorzugsweise mit 1- bis 10-molarem Überschuss an Ammoniak unter Druck von 1 bis 100 bar durchgeführt.
- 15 20 Die neuen 7-Amino-azolo[1,5-a]-pyrimidine werden gegebenenfalls nach Verdampfen des Lösungsmittels durch Digerieren in Wasser als kristalline Verbindungen isoliert.

Die β -Ketoester der Formel II können hergestellt werden wie in Organic Synthesis Coll. Vol. 1, S. 248 beschrieben, bzw. sind kommerziell erhältlich.

Alternativ können die neuen Verbindungen der Formel I erhalten werden, indem man substituierte Acylcyanide der Formel VI, in der R¹ und R² die oben angegebenen Bedeutungen haben, mit 3-Amino-1,2,4-triazol der Formel III umsetzt.

- 30 35 Die Umsetzung kann in Gegenwart oder Abwesenheit von Lösungsmitteln durchgeführt werden. Vorteilhaft ist es, solche Lösungsmittel zu verwenden, gegenüber denen die Einsatzstoffe weitgehend inert sind und in denen sie ganz oder teilweise löslich sind. Als Lösungsmittel kommen insbesondere Alkohole wie Ethanol, Propanole, Butanole, Glykole oder Glykolmonoether, Diethylenglykole oder deren Monoether, aromatische Kohlenwasserstoffe wie Toluol, Benzol oder Mesitylen, Amide wie Dimethylformamid, Diethylformamid, Dibutylformamid, N,N-Dimethylacetamid, niedere Alkansäuren wie

Ameisensäure, Essigsäure, Propionsäure oder Basen, wie voranstehend genannt, und Mischungen dieser Lösungsmittel mit Wasser in Frage. Die Umsetzungstemperaturen liegen zwischen 50 und 300°C, vorzugsweise bei 50 bis 150°C, wenn in Lösung gearbeitet wird.

5

Die neuen 7-Amino-triazolo[1,5-a]-pyrimidine werden gegebenenfalls nach Verdampfen des Lösungsmittels oder Verdünnen mit Wasser als kristalline Verbindungen isoliert.

Die für die Herstellung der 7-Amino-azolo[1,5-a]-pyrimidine benötigten substituierten Alkylcyanide der Formel VI sind teilweise bekannt oder können nach bekannten Methoden aus Alkylcyaniden und Carbonsäureestern mit starken Basen, z.B. Alkalihydri-
den, Alkalimetallalkoholaten, Alkalihamiden oder Metallalkylen, hergestellt werden (vgl.: J. Amer. Chem. Soc. Bd. 73, (1951) S. 3766).

15 Sofern einzelne Verbindungen I nicht auf den voranstehend beschriebenen Wegen zugänglich sind, können sie durch Derivatisierung anderer Verbindungen I hergestellt werden.

20 Sofern bei der Synthese Isomerengemische anfallen, ist im allgemeinen jedoch eine Trennung nicht unbedingt erforderlich, da sich die einzelnen Isomere teilweise während der Aufbereitung für die Anwendung oder bei der Anwendung (z.B. unter Licht-, Säure- oder Baseneinwirkung) ineinander umwandeln können. Entsprechende Umwandlungen können auch nach der Anwendung, beispielsweise bei der Behandlung von Pflanzen in der behandelten Pflanze oder im zu bekämpfenden Schadpilz erfolgen.

25

Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:

30 Halogen: Fluor, Chlor, Brom und Jod;

Alkyl: gesättigte, geradkettige oder ein- oder zweifach verzweigte Kohlenwasserstoffreste mit 1 bis 4, oder 5 bis 12 Kohlenstoffatomen, z.B. C₁-C₆-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Di-methylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Tri-methylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

Cycloalkyl: mono- oder bicyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 6 Kohlenstoffringgliedern, wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl;

- 5 Alkoxyalkyl: gesättigte, geradkettige oder ein-, zwei- oder dreifach verzweigte Kohlenwasserstoffkette, die durch ein Sauerstoffatom unterbrochen ist, z. B. C₂-C₁₁-Alkoxyalkyl: Kohlenwasserstoffkette wie voranstehend beschreiben mit 2 bis 11 Kohlenstoffatomen, die durch ein Sauerstoffatom an beliebiger Stelle unterbrochen sein kann, wie Methoxy-ethyl, Ethoxy-ethyl, Propoxy-ethyl, Butoxy-ethyl, Pentoxy-ethyl, Hexyloxy-ethyl, Heptyloxy-ethyl, Octyloxy-ethyl, Nonyloxy-ethyl, 3-(3-Ethyl-hexyloxy)-ethyl, 3-(2,4,4-Trimethyl-pentyloxy)-ethyl, 3-(1-Ethyl-3-methyl-butoxy)-ethyl, Methoxy-propyl, Ethoxy-propyl, Propoxy-propyl, Butoxy-propyl, Pentoxy-propyl, Hexyloxy-propyl, Heptyloxy-propyl, Octyloxy-propyl, Nonyloxy-propyl, 3-(3-Ethyl-hexyloxy)-propyl, 3-(2,4,4-Trimethyl-pentyloxy)-propyl, 3-(1-Ethyl-3-methyl-butoxy)-propyl, Methoxy-butyl, Ethoxy-butyl, Propoxy-butyl, Butoxy-butyl, Pentoxy-butyl, Hexyloxy-butyl, Heptyloxy-butyl, Octyloxy-butyl, Nonyloxy-butyl, 3-(3-Ethyl-hexyloxy)-butyl, 3-(2,4,4-Trimethyl-pentyloxy)-butyl, 3-(1-Ethyl-3-methyl-butoxy)-butyl, Methoxy-pentyl, Ethoxy-pentyl, Propoxy-pentyl, Butoxy-pentyl, Pentoxy-pentyl, Hexyloxy-pentyl;
- 10
- 15
- 20 In dem Umfang der vorliegenden Erfindung sind die (R)- und (S)-Isomere und die Razemate von Verbindungen der Formel I eingeschlossen, die chirale Zentren aufweisen.

Im Hinblick auf ihre bestimmungsgemäße Verwendung der Triazolopyrimidine der Formel I sind die folgenden Bedeutungen der Substituenten, und zwar jeweils für sich allein oder in Kombination, besonders bevorzugt:

- Verbindungen I werden bevorzugt, in denen die Gruppen R¹ und R² in der Summe maximal 14 Kohlenstoffatome aufweisen.
- 30 Die Alkylgruppen in R¹ und R² in Formel I stellen bevorzugt unverzweigte oder ein-, zwei- oder dreifach verzweigte Alkylgruppen dar.
- Verbindungen I sind bevorzugt, in denen R¹ für Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl oder n-Pentyl steht, insbesondere Methyl oder Ethyl, wobei R¹ wie eingangs definiert substituiert sein können.
- 35 Bevorzugt sind Verbindungen I, in denen R¹ und R², die keine Substituenten tragen.
- Verbindungen I sind besonders bevorzugt, in denen R¹ für C₅-C₁₂-Alkoxyalkyl steht, wobei die Kohlenstoffketten unsubstituiert sind oder wie eingangs definiert substituiert sein können.
- 40

In einer Ausgestaltung der Verbindungen I bedeutet R¹ Alkoxyalkyl.

In einer anderen Ausgestaltung der Verbindungen I bedeuten beide Gruppen R¹ und R² Alkyl, welches wie eingangs definiert substituiert, oder bevorzugt unsubstituiert ist.

5

Bevorzugt sind Verbindungen I, in denen R² für eine unverzweigte oder eine ein- oder zweifach verzweigte C₅-C₁₂-Alkylgruppe steht, die keine weiteren Substituenten trägt.

In einer anderen Ausgestaltung der Verbindungen der Formel I weist R² am α-

10 Kohlenstoffatom eine Verzweigung auf. Sie werden durch Formel Ia beschrieben:

in der R²¹ C₃-C₁₀-Alkyl oder C₂-C₁₀-Alkenyl und R²² C₁-C₄-Alkyl, insbesondere Methyl, bedeuten, wobei R²¹ und R²² gemeinsam nicht mehr als 12 Kohlenstoffatome aufweisen und unsubstituiert sind oder wie R¹ in Formel I substituiert sein können.

15

Sofern R¹ oder R² eine Cyanogruppe enthält, steht diese bevorzugt am endständigen Kohlenstoffatom.

Besonders bevorzugt sind Verbindungen I, in denen R² für n-Pentyl, 1-Methylbutyl,

20 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl oder 1-Ethyl-2-methylpropyl steht.

25

In einer weiteren bevorzugten Ausgestaltung der Verbindungen der Formel I bedeutet R² n-Heptyl, 1-Methylhexyl, n-Octyl, 1-Methylheptyl, n-Nonyl, 1-Methyloctyl, n-Decyl, 1-Methylnonyl, n-Undecyl, 1-Methyldecyl, n-Dodecyl oder 1-Methylundecyl.

30 Insbesondere sind im Hinblick auf ihre Verwendung die in den folgenden Tabellen zusammengestellten Verbindungen I bevorzugt. Die in den Tabellen für einen Substituenten genannten Gruppen stellen außerdem für sich betrachtet, unabhängig von der Kombination, in der sie genannt sind, eine besonders bevorzugte Ausgestaltung des betreffenden Substituenten dar.

35

Tabelle 1

Verbindungen der Formel I, in denen R¹ Methyl bedeutet und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 2

Verbindungen der Formel I, in denen R¹ Ethyl bedeutet und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 3

Verbindungen der Formel I, in denen R¹ n-Propyl bedeutet und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10 **Tabelle 4**

Verbindungen der Formel I, in denen R¹ iso-Propyl bedeutet und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 5

15 Verbindungen der Formel I, in denen R¹ n-Butyl bedeutet und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 6

20 Verbindungen der Formel I, in denen R¹ iso-Butyl bedeutet und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 7

Verbindungen der Formel I, in denen R¹ sek.-Butyl bedeutet und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 8

Verbindungen der Formel I, in denen R¹ n-Pentyl bedeutet und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30 **Tabelle A**

Nr.	R ²
A-1	CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-2	CH(CH ₃)CH ₂ CH ₂ CH ₃
A-3	CH ₂ CH(CH ₃)CH ₂ CH ₃
A-4	CH ₂ CH ₂ CH(CH ₃)CH ₃
A-5	CH ₂ CH ₂ CH(CH ₃) ₂
A-6	CH(CH ₃)CH(CH ₃)CH ₃
A-7	CH(CH ₃)CH(CH ₃) ₂
A-8	CH ₂ C(CH ₃) ₃

Nr.	R ²
A-9	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-10	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-11	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-12	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-13	CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂
A-14	CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂
A-15	CH(CH ₃)CH(CH ₃)CH ₂ CH ₃
A-16	CH(CH ₃)CH ₂ CH(CH ₃) ₂
A-17	CH ₂ CH ₂ C(CH ₃) ₃
A-18	CH(CH ₃)CH ₂ CH(CH ₃)CH ₃
A-19	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-20	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-21	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-22	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-23	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-24	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₃
A-25	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂
A-26	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₃
A-27	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₃
A-28	CH ₂ CH ₂ CH ₂ C(CH ₃) ₃
A-29	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₃
A-30	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₃
A-31	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₃
A-32	CH ₂ CH ₃
A-33	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-34	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-35	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-36	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-37	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-38	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂
A-39	CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₃
A-40	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃

Nr.	R ²
A-41	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₃
A-42	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₃
A-43	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-44	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₃
A-45	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-46	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂
A-47	CH ₂ CH ₃
A-48	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-49	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-50	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-51	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-52	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-53	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₃
A-54	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-55	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-56	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CH ₃
A-57	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-58	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-59	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-60	CH(CH ₃)CH ₂ CH ₂ CH ₂ C(CH ₃) ₃
A-61	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH(CH ₃) ₃
A-62	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂
A-63	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂
A-64	CH ₂ CH ₃
A-65	CH(CH ₃)CH ₂ CH ₃
A-66	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-67	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-68	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂
A-69	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-70	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₃ CH ₂
A-71	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-72	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃

Nr.	R ²
A-73	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-74	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-75	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-76	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-77	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-78	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-79	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂
A-80	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) CH ₃
A-81	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) CH ₃
A-82	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₃
A-83	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ C(CH ₃) ₃
A-84	CH ₂ CH ₃
A-85	CH(CH ₃)CH ₂ CH ₃
A-86	CH ₂ CH(CH ₃)CH ₂ CH ₃
A-87	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-88	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-89	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-90	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₃
A-91	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-92	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-93	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-94	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-95	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-96	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-97	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-98	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-99	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-100	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂
A-101	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-102	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-103	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂
A-104	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₃

Nr.	R ²
A-105	CH ₂ CH ₃
A-106	CH(CH ₃)CH ₂ CH ₃
A-107	CH ₂ CH(CH ₃)CH ₂ CH ₃
A-108	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-109	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂
A-110	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-111	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-112	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-113	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-114	CH ₂ CH(CH ₃)CH ₂ CH ₃
A-115	CH ₂ CH(CH ₃) ₂
A-116	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-117	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-118	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-119	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-120	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-121	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-122	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
A-123	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₃
A-124	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-125	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-126	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₃
A-127	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-128	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₃
A-129	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₃
A-130	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-131	CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-132	CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-133	CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-134	CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-135	CH(CH ₃)CH(CH ₃)CH ₂ CN
A-136	CH(CH ₃)CH(CH ₃)CH ₂ CN

Nr.	R ²
A-137	CH ₂ C(CH ₃) ₂ CH ₂ CN
A-138	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-139	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-140	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-141	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-142	CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CH ₂ CN
A-143	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-144	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CN
A-145	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CN
A-146	CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN
A-147	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CN
A-148	CH ₂ CN
A-149	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-150	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-151	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-152	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-153	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-154	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-155	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-156	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CN
A-157	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN
A-158	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-159	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CN
A-160	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-161	CH ₂ CN
A-162	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-163	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-164	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-165	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-166	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-167	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-168	CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN

Nr.	R ²
A-169	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-170	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-171	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CN
A-172	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-173	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-174	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-175	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-176	CH ₂ CN
A-177	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-178	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-179	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-180	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-181	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-182	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CN
A-183	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-184	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-185	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CN
A-186	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-187	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-188	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-189	CH(CH ₃)CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN
A-190	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH(CH ₃) ₂ CH ₂ CN
A-191	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-192	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-193	CH ₂ CN
A-194	CH(CH ₃)CH ₂ CH ₂ CN
A-195	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-196	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-197	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-198	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-199	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN
A-200	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN

Nr.	R ²
A-201	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-202	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CN
A-203	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-204	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-205	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-206	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-207	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-208	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-209	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃)CH ₂ CN
A-210	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-211	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN
A-212	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN
A-213	CH ₂ CN
A-214	CH(CH ₃)CH ₂ CH ₂ CN
A-215	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-216	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-217	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-218	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-219	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN
A-220	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-221	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-222	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-223	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-224	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-225	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-226	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-227	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-228	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-229	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN
A-230	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-231	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-232	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CN

Nr.	R ²
A-233	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN
A-234	CH ₂ CN
A-235	CH(CH ₃)CH ₂ CH ₂ CN
A-236	CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-237	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-238	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-239	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-240	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-241	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-242	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-243	CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-244	CH ₂ CH(CH ₃)CH ₂ CN
A-245	CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-246	CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-247	CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-248	CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-249	CH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CN
A-250	CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-251	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CN
A-252	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CN
A-253	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-254	CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-255	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-256	CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-257	CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CN
A-258	CH ₂ CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C(CH ₃) ₂ CH ₂ CN

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen aus der Klasse der Ascomyceten, Deuteromyceten, Oomyceten und Basidiomyceten, insbesondere aus der Klasse der Oomyceten. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als Blatt-, Beiz- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbissen, sowie an den

5 Samen dieser Pflanzen.

Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

- *Alternaria*-Arten an Gemüse und Obst,
- *Bipolaris*- und *Drechslera*-Arten an Getreide, Reis und Rasen,
- 10 • *Blumeria graminis* (echter Mehltau) an Getreide,
- *Botrytis cinerea* (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
- *Bremia lactucae* an Salat,
- *Erysiphe cichoracearum* und *Sphaerotheca fuliginea* an Kürbisgewächsen,
- *Fusarium*- und *Verticillium*-Arten an verschiedenen Pflanzen,
- 15 • *Mycosphaerella*-Arten an Getreide, Bananen und Erdnüssen,
- *Peronospora*-Arten an Kohl und Zwiebelgewächsen,
- *Phakopsora pachyrhizi* und *P. meibomiae* an Soja,
- *Phytophthora infestans* an Kartoffeln und Tomaten,
- *Phytophthora capsici* an Paprika,
- 20 • *Plasmopara viticola* an Reben,
- *Podosphaera leucotricha* an Äpfeln,
- *Pseudocercosporella herpotrichoides* an Weizen und Gerste,
- *Pseudoperonospora*-Arten an Hopfen und Gurken,
- *Puccinia*-Arten an Getreide,
- 25 • *Pyricularia oryzae* an Reis,
- *Pythium aphanidermatum* an Rasen,
- *Rhizoctonia*-Arten an Baumwolle, Reis und Rasen,
- *Septoria tritici* und *Stagonospora nodorum* an Weizen,
- *Uncinula necator* an Reben,
- 30 • *Ustilago*-Arten an Getreide und Zuckerrohr, sowie
- *Venturia*-Arten (Schorf) an Äpfeln und Birnen.

Insbesondere eignen sie sich zur Bekämpfung von Schadpilzen aus der Klasse der *Oomyceten*, wie *Peronospora*-Arten, *Phytophthora*-Arten, *Plasmopara viticola* und

35 *Pseudoperonospora*-Arten.

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie *Pae-ciliomyces variotii* im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz.

- 5 Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.
- 10 Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 0,5 und 90 Gew.-% Wirkstoff.

Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

- 15 Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 1 bis 1000 g/100 kg, vorzugsweise 5 bis 100 g/100 kg Saatgut benötigt.
- 20 Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Qubikmeter behandelten Materials.
- 25 Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.
- 30 Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:
 - Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylol), Paraffine (z.B. Erdölfractionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butyrolacton), Pyrrolidone (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,
 - Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emul-
- 35
- 40

giermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

- 5 Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfonierte Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des
10 Naphthalins bzw. der Naphthalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethoxyoctylphenoletether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkylarylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfitablaugen und Methylcellulose in Betracht.
15

- Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfractionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylool, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

- 25 Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

- Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

- Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind: 1. Produkte zur Verdünnung in Wasser

A Wasserlösliche Konzentrate (SL)

10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Wasser oder einem
5 wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfs-
mittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.

B Dispergierbare Konzentrate (DC)

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Cyclohexanon unter
10 Zusatz eines Dispergiermittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Was-
ser ergibt sich eine Dispersion.

C Emulgierbare Konzentrate (EC)

15 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylol unter Zusatz von
15 Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdün-
nung in Wasser ergibt sich eine Emulsion.

D Emulsionen (EW, EO)

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylol unter Zusatz von
20 Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung
wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer
homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emul-
sion.

25 E Suspensionen (SC, OD)

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Disper-
gier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer
Rührwerkskugelmühle zu einer feinen Wirkstoffsuspension zerkleinert. Bei der Verdün-
nung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs.

30

F Wasserdispergierbare und wasserlösliche Granulate (WG, SG)

50 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Disper-
gier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion,
Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate
35 hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lö-
sung des Wirkstoffs.

G Wasserdispergierbare und wasserlösliche Pulver (WP, SP)

75 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Disper-
40 gier- und Netzmitteln sowie Kieselsäuregel in einer Rotor-Strator Mühle vermahlen. Bei
der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirk-
stoffs.

2. Produkte für die Direktapplikation

H Stäube (DP)

5 5 Gew.-Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95 % feinteiligem Kaolin innig vermischt. Man erhält dadurch ein Stäubemittel.

I Granulate (GR, FG, GG, MG)

10 0.5 Gew.-Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95.5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtrocknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.

J ULV- Lösungen (UL)

15 10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einem organischen Lösungsmittel z.B. Xylol gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.

20 Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

25 Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

30 35 Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

- 5 Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt werden.

10

- Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

15 Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

- 20
- Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
 - Aminderivate wie Aldimorph, Dodine, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Spiroxamin, Tridemorph
 - 25 • Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyprodinil,
 - Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin,
 - Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Enilconazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Flutriafol,
 - 30 • Hexaconazol, Imazalil, Ipconazol, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Simeconazol, Tebuconazol, Tetraconazol, Triadimenon, Triadimenol, Triflumizol, Triticonazol,
 - Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin,
 - 35 • Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb,
 - Heterocyclische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenamidon, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol, Picobenzamid, Probenazol, Proquinazid, Pyrifenoxy, Pyroquilon, Quinoxifen, Silthiofam, Thiabendazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine,

40

- Kupferfungizide wie Bordeaux Brühe, Kupferacetat, Kupferoxychlorid, basisches Kupfersulfat,
 - Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl
 - Phenylpyrrole wie Fenpiclonil oder Fludioxonil,
- 5 • Schwefel,
- Sonstige Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlothalonil, Cyflufenamid, Cymoxanil, Diclomezin, Diclocymet, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Phosphorige Säure, Fosetyl, Fosetyl-Aluminium, Iprovalicarb, Hexachlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid,
 - Strobilurine wie Azoxystrobin, Dimoxystrobin, Enestroburin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin oder Trifloxystrobin,
- 10 • Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolyfluanid
- 15 • Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.

Synthesebeispiele

- 20 Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in der anschließenden Tabelle mit physikalischen Angaben aufgeführt.
- 25 Beispiel 1: Synthese von 1-Methyl-2-oxo-octan-1-nitril

Eine Lösung von 8,25 g (0,15 mol) Propionsäurenitril in 200 ml wasserfr. Tetrahydrofuran (THF) wurde bei -75°C innerhalb 1 Std. mit 100 ml einer 15 Gew.-%igen Butyllithium-Lösung in Hexan versetzt. Diese Temperatur wurde weiter gehalten; nach 30 2 Std. röhren wurden 21,6 g (0,15 mol) Heptansäuremethylester innerhalb 1 Std. zuge tropft. Nach weiteren 2 Std. röhren wurde die Lösung während ca. 14 Std. auf ca. 20-25°C erwärmen gelassen. Bei 5-10°C wurde die Reaktionsmischung mit 50 ml Wasser versetzt und der pH-Wert mit ½ konz. Salzsäure auf 1-2 eingestellt. Die organische Phase wurde abgetrennt und mit Wasser und verd. wässr. NaHCO₃-Lösung neutral 35 gewaschen. Nach Trocknung wurde das Lösungsmittel abdestilliert. Es wurden 26,0 g der Titelverbindung als braunes Öl erhalten.

Beispiel 2: Herstellung von 5-Hexyl-6-Methyl-7-aminotriazolopyrimidin [I-2]

- 40 Eine Suspension von 10,0 g (60 mmol) des Nitrils aus Bsp. 1, 3,8 g (45mmol) 3-Amino-1,2,4-triazol und 1,7 g (9mmol) p-Toluolsulfonsäure in 50 ml Mesitylen wurde bei 190 °C für 4 Std. am Wasserabscheider erhitzt. Dann wurde das Mesitylen abdestilliert

und der Rückstand aus Dichlormethan/Wasser digeriert. Der Rückstand wurde abfiltriert, getrocknet und an Kieselgel mit Dichlormethan/Essigester chromatographiert. Man erhielt 0,5 g der Titelverbindung in Form farbloser Kristalle.

5 Tabelle I – Verbindungen der Formel I

Nr.	R ¹	R ²	Phys. Daten (Fp. [°C])
I-1	CH ₃	(CH ₂) ₄ CH ₃	222-223
I-2	CH ₃	(CH ₂) ₅ CH ₃	193-194
I-3	CH ₃	(CH ₂) ₆ CH ₃	182-183
I-4	CH ₃	(CH ₂) ₇ CH ₃	191-192
I-5	CH ₃	(CH ₂) ₈ CH ₃	181-182
I-6	CH ₃	(CH ₂) ₉ CH ₃	187-188
I-7	CH ₂ CH ₃	(CH ₂) ₇ CH ₃	184-185
I-8	CH ₂ CH ₃	(CH ₂) ₈ CH ₃	178-179
I-9	CH ₂ CH ₃	(CH ₂) ₉ CH ₃	180-181
I-10	CH ₂ CH ₂ CH ₃	(CH ₂) ₇ CH ₃	162-163
I-11	CH ₂ CH ₂ CH ₃	(CH ₂) ₈ CH ₃	161-162
I-12	CH ₂ CH ₂ CH ₃	(CH ₂) ₉ CH ₃	151-152
I-13	CH ₂ CH ₂ CH ₂ CH ₃	(CH ₂) ₆ CH ₃	152-156

Beispiele für die Wirkung gegen Schadpilze

10 Die fungizide Wirkung der Verbindungen der Formel I ließ sich durch die folgenden Versuche zeigen:

Die Wirkstoffe wurden als eine Stammlösung aufbereitet mit 25 mg Wirkstoff, der mit einem Gemisch aus Aceton und/oder DMSO und dem Emulgator Uniperol® EL (Netzmittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) im 15 Volumen-Verhältnis Lösungsmittel-Emulgator von 99 zu 1 ad 10 ml aufgefüllt wurde. Anschließend wurde ad 100 ml mit Wasser aufgefüllt. Diese Stammlösung wurde mit dem beschriebenen Lösungsmittel-Emulgator-Wasser Gemisch zu der unten angegebenen Wirkstoffkonzentration verdünnt.

Anwendungsbeispiel 1: Aktivität gegen die Krautfäule an Tomaten verursacht durch *Phytophthora infestans* bei protektiver Behandlung

Blätter von getopften Tomatenpflanzen wurden mit einer wässrigen Suspension der
5 Wirkstoffe bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Blätter mit einer
wässrigen Sporangienaufschwemmung von *Phytophthora infestans* infiziert. An-
schließend wurden die Pflanzen in einer wasserdampfgesättigten Kammer bei Tempera-
turen zwischen 18 und 20°C aufgestellt. Nach 6 Tagen hatte sich die Krautfäule auf den
unbehandelten, jedoch infizierten Kontrollpflanzen so stark entwickelt, dass der Befall
10 visuell in % ermittelt werden konnte.

In diesem Test zeigten die mit 250 ppm der Verbindungen I-1, bzw. I-2 behandelten
Pflanzen maximal 10 % Befall, während die unbehandelten Pflanzen zu 90 % befallen
waren.

15 Anwendungsbeispiel 2 - Wirksamkeit gegen Rebenperonospora verursacht durch
Plasmopara viticola bei 5 Tage protektiver Anwendung

Blätter von Topfreben wurden mit wässriger Suspension in der unten angegebenen
20 Wirkstoffkonzentration bis zur Tropfnässe besprüht. Fünf Tage nach der Applikation
wurden die Unterseiten der Blätter mit einer wässrigen Sporangienaufschwemmung
von *Plasmopara viticola* inkuliert. Danach wurden die Reben zunächst für 48 Stunden
in einer wasserdampfgesättigten Kammer bei 24°C und anschließend für fünf Tage im
Gewächshaus bei Temperaturen zwischen 20 und 30°C aufgestellt. Nach dieser Zeit
25 wurden die Pflanzen zur Beschleunigung des Sporangienträgerausbruchs abermals für
16 Stunden in eine feuchte Kammer gestellt. Dann wurde das Ausmaß der Befalls-
entwicklung auf den Blattunterseiten visuell ermittelt.

30 In diesem Test zeigten die mit 250 ppm der Wirkstoffe I-1, I-2, I-10, bzw. I-13 behan-
delten Pflanzen maximal 10 % Befall, während die unbehandelten Pflanzen zu 80 %
befallen waren.

Patentansprüche

1. Triazolopyrimidine der Formel I

5 in der die Substituenten folgende Bedeutung haben:

R¹ C₁-C₅-Alkyl oder C₁-C₁₀-Alkoxy-C₁-C₁₀-alkyl,

10 R² C₅-C₁₂-Alkyl,

wobei R¹ und/oder R² durch eine bis drei der folgenden Gruppen substituiert sein können:

15 Cyano, Nitro, Hydroxy, C₃-C₆-Cycloalkyl, C₁-C₆-Alkylthio, NR^aR^b;

R^a, R^b Wasserstoff oder C₁-C₆-Alkyl.

20 2. Verbindungen der Formel I gemäß Anspruch 1, worin R¹ und R² unsubstituiert sind und gemeinsam maximal 14 Kohlenstoffatome aufweisen.

25 3. Verbindungen der Formel I gemäß Anspruch 1, worin R¹ für Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl oder n-Pentyl steht, wobei die Kohlenstoffketten unsubstituiert sind oder gemäß Anspruch 1 substituiert sein können.

4. Verbindungen der Formel I gemäß Anspruch 1, worin R² für n-Heptyl, n-Octyl, n-Nonyl oder 1-Methyloctyl steht.

5. 6-Methyl-5-pentyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;

30 5-Hexyl-6-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;

5-Heptyl-6-methyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;

6-Methyl-5-octyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;

6-Methyl-5-nonyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;

6-Ethyl-5-octyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;

6-Ethyl-5-nonyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;

35 5-Decyl-6-ethyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin;

5-Octyl-6-propyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin ;

5-Nonyl-6-propyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin ;

5-Decyl-6-propyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ylamin.

6. Verfahren zur Herstellung von Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man β -Ketoester der Formel II,

in der R für C₁-C₄-Alkyl steht, mit 3-Amino-1,2,4-triazol der Formel III

5

zu 7-Hydroxytriazolopyrimidinen der Formel IV

umsetzt, welche zu Verbindungen der Formel V,

10

in der Hal für Chlor oder Brom steht, halogeniert werden, und V mit Ammoniak umgesetzt wird.

7. Verfahren zur Herstellung von Verbindungen der Formel I gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man Acylcyanide der Formel VI,

15

mit 3-Amino-1,2,4-triazol der Formel III gemäß Anspruch 6 umgesetzt.

8. Fungizides Mittel, enthaltend einen festen oder flüssigen Träger und eine Verbindung der Formel I gemäß einem der Ansprüche 1 bis 5.

20

9. Saatgut, enthaltend eine Verbindung der Formel I gemäß einem der Ansprüche 1 bis 5 in einer Menge von 1 bis 1000 g pro 100 kg.

25

10. Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, dadurch gekennzeichnet, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materialien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der Formel I gemäß einem der Ansprüche 1 bis 5 behandelt.