Lecture 3

6.2

Joint Probability Density Functions

Let X_1, \dots, X_n have a joint pdf $f: \mathbb{R}^n \mapsto \mathbb{R}$ Let $B \subset \mathbb{R}^n$

Then $P((X_1,...,X_n) \in B) = S. S. S. f(X_1,...,X_n) dx_1...dx_n$

integrate over the Space B

Properties:

- D f(x,,..., Xn) >0

$$f(k_1, \ldots, k_n) \neq P(x_1 = k_1, \ldots, x_n = k_n) = 0$$

$$f(x,y)=Ce^{-(x+2y)}$$
2 for some 270 and $x,y \in [0, 6)$
Find C S.t. this is a pdf.

$$5e^{-2y^{2}}dy = -\frac{1}{22}e^{-y^{2}}dy = \frac{1}{27}$$

If
$$X \text{ vexp(2)} \Rightarrow f(x) = 7e^{-x^2}$$

So
$$S_{2e} \times 2 dx = 1 \Rightarrow S_{e} \times 2 dx = \frac{1}{2}$$

$$\frac{8}{5}e^{-2y^{2}}dy=\frac{1}{22}$$

Expec-	tation					
a ti	nction	IK"+	→\ Z	joint pdf		
Then	Elg	(X,,	, x _n)) =	S. Sq(X,	,,×,)·f(x,,	, X _n) dX ₁ d× _n
Margin	ial F	PDF's				
f_{X_j}	(x)=	\$	5 -2 -2	X,,,X,,Xn) q x'''' q x'	j-1 d X j+1 d Xn
=>			ntegrals			
	integr	ak	00+	the other	variables	
	integr	ak	00+	the other	variables	
	integr	ak	00+	the other	variables	
	integr	ak	00+	the other	variables	
	IN +e gr	ak	00+	the other	variables	
	IN +e gr		00+	the other	variables	
	IN He gr		00+	the other	variables	
	IN He gr	ak	00+	the other	variables	
	IN He gr		00+	the other	variables	
	IN He gr			the other	variables	
	IN He gr			the other	variables	

Uniform Distributions

Let (X,..., Xn) EIR" be uniformly distributed

over a space A c 1Rn.

Then $f(X_1, \dots, X_n) = \frac{1}{C}$ where

 $C = S \dots S dx_1 \dots dx_n$

Ex) $R': f(x)=\frac{1}{length}=\frac{1}{b-a}$ for Unif(a,b)

 IR^2 : f(x): \underline{I} area

 $\int_{0}^{3} f(x) = \int_{0}^{1} \int_{0}^{$