

CONVOLUTIONAL NEURAL NETWORKS (CNN)

Dr. Ram Prasad K VisionCog R&D

- DNN can learn only global features.
- They are not robust enough to capture large variations.
- To overcome this issue, we can increase the training set with several variations.
- DNN works reasonably well for small images only.

- In computer vision applications, we usually have to deal with complex variations and large images.
- Successful extraction of salient features is key for any computer vision task.
- A model which can learn local features will be robust enough in extracting salient features.
- Convolutional Neural Networks (CNN or ConvNets)
 - O DNN modified to capture local features

Intuition behind ConvNets

Building blocks of CNN

Convolutions

Mathematical operation which slides one function over the other and measures integral of pointwise multiplication (i.e., weighted sum of the inputs).

Strides

How quickly window slides.

Stride 2 means, window moves by 2 pixels at a time.

Pooling

Downsampling feature maps.

DNN

Fully connected DNN for classification

Convolutions

Feature
Map 2 Feature

Horizontal filter

1	0	0	0	0	0
0	1	1	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	0	0	1	0	1
0	0	1	0	0	1

	1	1	2	0
convolution	1	3	0	0
stride=1	2	0	0	3
	0	0	3	0

: kernel

	0	0	1
	0	1	0
\neg	1	0	0
0.00			_ (C

convolution

stride=1

0	0	0	1	0	0
0	1	0	0	0	0
0	0	1	1	1	0
0	0	0	i	0//	0
0	0		0	0	1
0	0	0	0	1	0

1	1	1	1
0	1	1	2
1	1	3	0
0	2	0	0

1	0	0	0	0	0
0	1	1	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	0	0	1	0	1
0	0	1	0	0	1

	1	1	2	0
convolution	1	3	0	0
stride=1	2	0	0	3
	0	0	3	0

1	1	2	0	
1	3	0	0	
2	0	0	3	
0	0	3	0	

pooling	3
stride=2	Q
	U

	M.	
) -		

)	0	0	1	0	0	32			2 C
_				_			1	0	0
							0	1	0
							U	U	1

: kernel	SIII u	ma

-	

0	0	0	1	0	0
0	1	0	0	0	0
0	0	1	1	1	0
0	0	0	i	0	0
0	0		0	0	1
0	0	0	0	1	0

	1	1	1	1
convolution	0	1	1	2
stride=1	1	1	3	0
	0	2	0	0

pooling	1	2
stride=2	2	3

Input Convolution

Pooling Convolution Pooling Fully connected

FLOWER CLASSIFICATION

Flower Classification

daisy

Flower Classification

dandelion

Flower Classification

rose

Flower Classification

sunflower

Flower Classification

tulip

http://download.tensorflow.org/example images/flower photos.tgz (3,670)

Tiny version

https://www.visioncog.com/rpk/tiny FR.zip (500)

Flower Classification (100 each, size of image varies)

- daisy
- dandelion
- rose
- sunflower
- tulip


```
# Original dataset
# http://download.tensorflow.org/example_images/flower_photos.tgz
# Download tiny version of the dataset from VisionCog website
# After download and unzip, remember to comment the following two lines.
```

!wget https://www.visioncog.com/rpk/tiny_FR.zip
!unzip tiny_FR.zip

... DRIVE
... DRIVE
... tiny_FR
... tiny_FR.zip Files X


```
Original dataset
 http://download.tensorflow.org/example images flower photos.tgz
 Download tiny version of the dataset from VisionCog website
# After download and unzip, remember to comment the following two lines.
#!wget https://www.visioncog.com/rpk/tiny FR.zip
#!unzip tiny FR.zip
```



```
# Install TensorFlow
try:
  # %tensorflow version only exists in Colab.
  %tensorflow version 2.x
except Exception:
  pass
import tensorflow as tf
print(tf. version
```



```
from tensorflow import keras
tf.random.set_seed(42)
```

import numpy as np
np.random.seed(42)

import matplotlib.pyplot as plt
%matplotlib inline

import glob
import PIL
from PIL Import Image


```
imgFiles = glob.glob("tiny FR/*/*.jpg")
for items in imgFiles[:5]:
  print(items)
 tiny FR/sunflower/1715303025 @7065327e2.jpg
  tiny FR/sunflower/2442985637 8748180f69.jpg
  tiny FR/sunflower/27466794 57e4fe5656.jpg
  tiny FR/sunflower/40411019 526f3fc8d9 m.jpg
  tiny FR/sunflower/253586685 ee5b5f5232.jpg
```



```
X = []
y = []
for fName in imgFiles:
  X i = Image.open(fName) # tiny FR/sunflower/1715303025 e7065327e2 pg
  X i = X i.resize((299,299)) # To make them approriate to Reption model when using Transfer Learning
  X_i = np.array(X_i) / 255.0 \# Normalize to range 0.0 to 1.0 (not stretching, only scaling)
  X.append(X i)
  label = fName.split("") # ['tiny FR', 'sunflower', '1715303025 e7065327e2.jpg']
                    sunflower'
  y.append(y i)
```



```
print(set(y))
# {'daisy', 'sunflower', 'dandelion', 'rose', 'tulip'}
from sklearn.preprocessing import LabelEncoder
lEncoder = LabelEncoder()
y = lEncoder.fit transform(y)
print(set(y))
# {0, 1, 2, 3, 4}
print(lEncoder.classes )
 ['daisp 'dandelion' 'rose' 'sunflower' 'tulip']
```



```
X = np.array(X)
 = np.array(y)
print(X.shape)
  (500, 299, 299, 3)
print(y.shape)
  (500,)
from sklearn.model_selection import train_test_split
X train, X test, y train, y test = train_test_split(X, y, test_size=0.2,
                                                     stratify=y, random state=42)
```



```
print("X train shape: {}".format(X train.shape))
# X train shape: (400, 299, 299, 3)
print("X test shape: {}".format(X test.shape))
# X test shape: (100, 299, 299, 3)
# Standard scaling
mu = X train.mean()
std = X train.std()
X train std = (X train-mu)/std
X test std = (X test-mu)/std
```



```
# Create the network using Functional API method
input = keras.layers.Input(shape = X train.shape[1:])
x = keras.layers.Conv2D(filters=32, kernel size=5, padding='same', activation='relu')(input)
x = keras.layers.MaxPool2D(pool size=2)(x)
x = keras.layers.Conv2D(filters=64, kernel size=3, padding='same', activation='relu')(x)
x = keras.layers.MaxPool2D(pool size=2)(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(units=1000, activation='relu')(x)
x = keras.layers.Dense(units=100, activation='relu')(x)
output = keras layers.Dense(units=5, activation='softmax')(x)
model CNN keras.models.Model(inputs=[input], outputs=[output])
```


model_CNN.summary()

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 299, 299, 3)]	0
conv2d (Conv2D)	(None, 299, 299, 32)	2432
max_pooling2d (MaxPooling2D)	(None, 149, 149, 32)	0
conv2d_1 (Conv2D)	(None, 149, 149, 64)	18496
max_pooling2d_1 (MaxPooling2	(None, 74, 74, 64)	ROLL A
flatten (Flatten)	(None, 350464)	0
dense (Dense)	(None, 1600)	350465000
dense_1 (Dense)	None, 100)	100100
dense_2 (Dense)	(None, 5)	505

Total params: 350,586,533 Trainable params: 350,586,533

Non-trainable params: 0

- d Developinent Pyte Litole


```
model CNN.compile(loss='sparse categorical crossentropy',
                       optimizer='adam', metrics=['accuracy'])
history CNN = model CNN.fit(x = X train std, y = y train, epochs=25,
                                    validation split=0.1, batch size=32)
        Train on 360 samples, validate on 40 samples
        Epoch 1/25
        360/360 [===]-7s 18ms/sample - loss: 215400 - accuracy: 0.2361 - val loss: 2.1541 - val accuracy: 0.0750
        Epoch 2/25
        360/360 [===]-2s 6ms/sample (055): 1.4595 - accuracy: 0.3083 - val loss: 1.5361 - val accuracy: 0.2250
        Epoch 3/25
        360/360 [===]-2s 6ms/sample - loss: 1.3308 - accuracy: 0.5194 - val loss: 1.4175 - val accuracy: 0.4250
        Epoch 24/25
        360/360 [===]-2s 6ms/sample - loss: 1.1731e-04 - accuracy: 1.0000 - val loss: 3.4437 - val accuracy: 0.3500
        Epoch 25/25
        360/360 [===]-2s 6ms/sample - loss: 1.0730e-04 - accuracy: 1.0000 - val loss: 3.4645 - val accuracy: 0.3500
```

Epoch 1/25

Train on 360 samples, validate on 40 samples

```
360/360 [===]-7s 18ms/sample - loss: 27.5400 - accuracy: 0.2361 - val_loss: 2.1541 - val_accuracy: 0.0750 Epoch 2/25
360/360 [===]-2s 6ms/sample - loss: 1.4595 - accuracy: 0.3083 - val_loss: 1.5361 - val_accuracy: 0.2250 Epoch 3/25
360/360 [===]-2s 6ms/sample - loss: 1.3308 - accuracy: 0.5194 - val_loss: 1.4175 - val_accuracy: 0.4250 ...

Epoch 24/25
360/360 [===]-2s 6ms/sample - loss: 1.1731e-04 - accuracy: 1.0000 - val_loss: 3.4437 - val_accuracy: 0.3500 Epoch 25/25
360/360 [===]-2s 6ms/sample - loss: 1.0730e-04 - accuracy: 1.0000 - val_loss: 3.4645 - val_accuracy: 0.3500
```



```
keys = ['accuracy', 'val accuracy']
progress = {k:v for k,v in history_CNN.history.items() if k in keys}
import pandas as pd
pd.DataFrame(progress).plot()
plt.xlabel("epochs")
plt.ylabel("accuracy")
                                             accuracy
plt.grid(True)
plt.show()
                                               0.4
                                               0.2
                                                                             accuracy
                                                                             val accuracy
                                                               10
                                                                      15
                                                                              20
                                                                 epochs
```



```
test loss, test accuracy = model CNN.evaluate(X test std, y test)
# 100/1 [===] - 0s 3ms/sample - loss: 5.2441 - accuracy: 0.5500
print("Test-loss: %f, Test-accuracy: %f % (test loss, test accuracy))
# Test-loss: 2.738503, Test-accuracy 0.550000
```