In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

In [2]:

```
training_data = pd.read_csv("../Data/aps_failure_training_set.csv", na_values="na")
training_data.head()
```

Out[2]:

	class	aa_000	ab_000	ac_000	ad_000	ae_000	af_000	ag_000	ag_001	ag_002	
0	neg	76698	NaN	2.130706e+09	280.0	0.0	0.0	0.0	0.0	0.0	
1	neg	33058	NaN	0.000000e+00	NaN	0.0	0.0	0.0	0.0	0.0	
2	neg	41040	NaN	2.280000e+02	100.0	0.0	0.0	0.0	0.0	0.0	
3	neg	12	0.0	7.000000e+01	66.0	0.0	10.0	0.0	0.0	0.0	
4	neg	60874	NaN	1.368000e+03	458.0	0.0	0.0	0.0	0.0	0.0	

5 rows × 171 columns

In [3]:

```
sns.set_style('whitegrid')
```

Preprocessing and data cleaning

In [4]:

```
#for fininding missing values
#this headmap is illustrating the missing values with yellow bars

plt.figure(figsize=(20,12))
sns.heatmap(training_data.isnull(),yticklabels=False,cbar=False,cmap='viridis')
```

Out[4]:

<matplotlib.axes._subplots.AxesSubplot at 0x19068d7fd68>

Missing value handling

We are going to use different approches with missing values:

- 1. Removing the column having more than 10,000 missing values (**Ref)
- 2. Removing the column having 80% missing values (**Self intuition)
- 3. Keeping all the features
- 4. Later, we will try to implement some feature engineering

For the rest of the missing values, we are replacing them with their mean() for now (Ref)

First Approach

In [5]:

```
missing_data = training_data.isna().sum().to_frame()

plt.figure(figsize=(10,7))
ax= sns.distplot(missing_data[0],kde = False,bins = 20,color='b')
ax.set(xlabel='Missing values', ylabel='Number of features')
plt.show()
```


In [6]:

missing_data[missing_data[0]>10000]

Out[6]:

	0
ab_000	46329
ad_000	14861
bk_000	23034
bl_000	27277
bm_000	39549
bn_000	44009
bo_000	46333
bp_000	47740
bq_000	48722
br_000	49264
cf_000	14861
cg_000	14861
ch_000	14861
co_000	14861
cr_000	46329
ct_000	13808
cu_000	13808
cv_000	13808
cx_000	13808
cy_000	13808
cz_000	13808
da_000	13808
db_000	13808
dc_000	13808
ec_00	10239

we are dropping the columns that have more than 10,000 missing values

In [7]:

```
#sample_data varible holds the data for approach one
temp = "ab_000 ad_000 bk_000 bl_000 bm_000 bn_000 bo_000 bp_000 bq_000 br_000 cf_000 cg_000
temp = temp.split()

sample_data = training_data.drop(temp,axis=1)
sample_data.head()
```

Out[7]:

	class	aa_000	ac_000	ae_000	af_000	ag_000	ag_001	ag_002	ag_003	ag_004	
0	neg	76698	2.130706e+09	0.0	0.0	0.0	0.0	0.0	0.0	37250.0	
1	neg	33058	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	18254.0	
2	neg	41040	2.280000e+02	0.0	0.0	0.0	0.0	0.0	0.0	1648.0	
3	neg	12	7.000000e+01	0.0	10.0	0.0	0.0	0.0	318.0	2212.0	
4	neg	60874	1.368000e+03	0.0	0.0	0.0	0.0	0.0	0.0	43752.0	

5 rows × 146 columns

In [8]:

```
#after dropping columns having more than 10,000 missing values
plt.figure(figsize=(20,12))
sns.heatmap(sample_data.isnull(),yticklabels=False,cbar=False,cmap='viridis')
```

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x190005c4278>

Here we can see much improvement in the heatmap

For the rest of the values we are going to replace them with their mean() -- (**Ref)

In [9]:

```
sample_data.fillna(sample_data.mean(),inplace=True)
```

After mean(), the heatmap for missing values will look like

In [10]:

```
plt.figure(figsize=(20,12))
sns.heatmap(sample_data.isnull(),yticklabels=False,cbar=False,cmap='viridis')
```

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x190001adbe0>

So we have handled the missing value problem in this approach

Now We need to handle the classification variables(class) by taking a dummy value instead of a string

In [11]:

```
#as all the other values are numerical except Class column so we can replace them with 1 an
sample_data = sample_data.replace('neg',0)
sample_data = sample_data.replace('pos',1)
sample_data.head(15)
```

Out[11]:

	class	aa_000	ac_000	ae_000	af_000	ag_000	ag_001	ag_002	ag_003	ag_004
0	0	76698	2.130706e+09	0.0	0.0	0.0	0.0	0.0	0.0	37250.0
1	0	33058	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	18254.0
2	0	41040	2.280000e+02	0.0	0.0	0.0	0.0	0.0	0.0	1648.0
3	0	12	7.000000e+01	0.0	10.0	0.0	0.0	0.0	318.0	2212.0
4	0	60874	1.368000e+03	0.0	0.0	0.0	0.0	0.0	0.0	43752.0
5	0	38312	2.130706e+09	0.0	0.0	0.0	0.0	0.0	0.0	9128.0
6	0	14	6.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	1202.0
7	0	102960	2.130706e+09	0.0	0.0	0.0	0.0	0.0	0.0	2130.0
8	0	78696	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	458.0
9	1	153204	1.820000e+02	0.0	0.0	0.0	0.0	0.0	11804.0	684444.0
10	0	39196	2.040000e+02	0.0	0.0	0.0	0.0	0.0	0.0	4352.0
11	0	45912	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	2106.0
12	0	2104	3.600000e+01	0.0	0.0	0.0	0.0	9744.0	13148.0	98310.0
13	0	118950	1.390000e+03	0.0	0.0	0.0	0.0	0.0	0.0	40932.0
14	0	24416	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	556.0

15 rows × 146 columns

Model implementation

First Approach

As our data is ready, so here we are going to try to model and fit our dataset with logistic regression model

In [12]:

```
#here the predictors (X) and responce (y) is separated from the sample_data for this model

X = sample_data.drop('class',axis=1)
y = sample_data['class']
```

```
In [13]:
```

X.head()

Out[13]:

	aa_000	ac_000	ae_000	af_000	ag_000	ag_001	ag_002	ag_003	ag_004	ag_005
0	76698	2.130706e+09	0.0	0.0	0.0	0.0	0.0	0.0	37250.0	1432864.0
1	33058	0.000000e+00	0.0	0.0	0.0	0.0	0.0	0.0	18254.0	653294.0
2	41040	2.280000e+02	0.0	0.0	0.0	0.0	0.0	0.0	1648.0	370592.0
3	12	7.000000e+01	0.0	10.0	0.0	0.0	0.0	318.0	2212.0	3232.0
4	60874	1.368000e+03	0.0	0.0	0.0	0.0	0.0	0.0	43752.0	1966618.0

5 rows × 145 columns

In [14]:

```
y.head()
```

Out[14]:

- 0 6
- 1 0
- 2 0
- 3 0
- 4 0

Name: class, dtype: int64

Although we have our separate test data, but for chekcking this time we are going to split out training data into (train,test) where test data will have 30% portion of the entire training data

In [15]:

```
from sklearn.model_selection import train_test_split
```

In [16]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)
```

In [17]:

```
from sklearn.linear_model import LogisticRegression
```

In [18]:

```
logmodel = LogisticRegression()
```

In [19]:

```
#fitting the data
logmodel.fit(X_train,y_train)
```

Out[19]:

In [20]:

```
prediction = logmodel.predict(X_test)
```

In [21]:

from sklearn.metrics import classification report

In [22]:

print(classification_report(y_test,prediction))

		precision	recall	f1-score	support
	0	0.99	1.00	1.00	17691
	1	0.78	0.61	0.68	309
micro	avg	0.99	0.99	0.99	18000
macro	avg	0.89	0.80	0.84	18000
weighted	avg	0.99	0.99	0.99	18000

Here we can see, Negative class prediction is about 99% correct , where Positive class prediction guarantees upto 78%

Now, for the cost

In [23]:

```
from sklearn.metrics import confusion_matrix
```

In [52]:

```
tn, fp, fn, tp = confusion_matrix(y_test,prediction).ravel()
```

In [70]:

```
cost = 10*fp+500*fn
```

In [72]:

```
values = {'Score':[cost],'Number of Type 1 faults':[fp],'Number of Type 2 faults':[fn]}
pd.DataFrame(values)
```

Out[72]:

	Score	Number of Type 1 faults	Number of Type 2 faults
0	61530	53	122

By observing this, we can see that estimation for "Number of Type 1 faults" is quite good, on the other hand estimation for "Number of Type 2 faults" is not that good

Visualization

Classification Report

In [102]:

```
from sklearn.naive_bayes import GaussianNB
from yellowbrick.classifier import ClassificationReport
```

In [178]:

```
# Instantiate the classification model and visualizer
bayes = GaussianNB()
visualizer = ClassificationReport(bayes, classes=["negative", "positive"], support=True)

visualizer.fit(X_train, y_train) # Fit the visualizer and the model
visualizer.score(X_test, y_test) # Evaluate the model on the test data
g = visualizer.poof() # Draw/show/poof the data
```


In [165]:

temp =sample_data.columns.tolist()

aa_000

In [182]:

```
for i in range(10):
   plt.figure(figsize=(7,5))
   sns.jointplot(temp[i+1],'class',data = sample_data)
   print()
```

<Figure size 504x360 with 0 Axes>

<Figure size 504x360 with 0 Axes>

<Figure size 504x360 with 0 Axes>

<Figure size 504x360 with 0 Axes>

<Figure size 504x360 with 0 Axes>

<Figure size 504x360 with 0 Axes>

<Figure size 504x360 with 0 Axes>

<Figure size 504x360 with 0 Axes>

<Figure size 504x360 with 0 Axes>

<Figure size 504x360 with 0 Axes>

In []: