CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516

Office hours T 11:15-11:45/2:15-2:45 or by appointment

Announcements

Groups

Today

Intro to machine Learning

What is "machine learning"?

- "Machine"=autonomous system
 - No (or limited) human intervention
 - Robots, software agents, etc.

What is "Learning"?

"Learning denotes <u>changes</u> in the system that enable the system to do the same <u>task</u> more <u>effectively</u> the next time."

- —Herbert Simon (1916-2001)
 - Also, how to do related tasks more effectively

A Specification for a Learning System

Given: Learning task goal, task examples E, performance measure P

- Do: Produce a concept that is good with respect to P on all examples of the task
 - Measured by proxy on E

Example

- Learning Task: Learn to play chess
- Performance measure?
 - Games won/lost
- Examples?
 - Games played (sequences of moves till win/loss)
- Concept?
 - Some function mapping current state of game to suitable moves to play

Idea

- If the learning system plays/sees enough games,
- And it produces a mapping from game state to moves (concept),
- And this concept does well with respect to the measure of "number of games won",
- Then the system has "learned to play chess"

Other Examples

- Learn to recognize lions
 - E: animals, annotated "lion" or "not-lion"
 - P: fraction of animals correctly recognized as lion/not-lion
- Learn to drive
 - E: sequence of road/traffic conditions and correct vehicle operation
 - P: distance traveled without accident

Two Phases of Learning

- "Learning" or "Training" phase
 - Reason about the examples E
 - Formulate a concept that does well w.r.t. P on E
 - Could also use any prior knowledge

- "Evaluation" or "Testing" phase
 - Use learned concept on future, novel examples

Online and Batch (Offline) Learning

 Batch/Offline Learning: one learning phase, with a large set of examples, followed by a testing phase

 Online learning: Examples arrive one at a time (or in small groups); learning and evaluation phases are iterated

Inductive Generalization

- In all learning problems, need to reason from specific examples to a general case
 - Memorization ≠ Learning

- Other kinds of reasoning
 - deduction (general to specific)
 - abduction (most likely cause)

Target Concept

- The unknown underlying concept that solves the learning task
 - E.g., "has-fur" and "long-teeth" and "looks-scary" → "lion"

 Typically, P will be a measure of difference between the learner's concept and the target concept, with respect to E

Hypothesis Space

- Defines the space of general concepts the learning system will consider
 - E.g., all possible conjunctions of animal properties
 - "has-fur" and "long-teeth" and "looks-scary", "has-fur" and "long-teeth" and NOT-"looks-scary", "has-fur" and NOT-"long-teeth" and "looks-scary"
- Ideally, target concept is a member of this space
 - What if it isn't?
 - Maybe we should include all possible hypotheses?

No "Tabula Rasa" Learning

- A space that includes all possible hypotheses also
 - Contains many overly complex concepts
 - Contains the concept that memorizes E
 - Indistinguishable from target by any P (w.r.t. E)
 - May be too big to search feasibly

- For effective inductive generalization
 - Must restrict hypothesis space
 - while still (hopefully) keeping the target concept in it

Inductive Bias

 The set of assumptions used by a learning system to restrict its hypothesis space

 The more assumptions made, the "stronger" the bias

Can quantify this (later)

Supervised Learning

• Examples *E* are annotated with target concept's output by a teacher/oracle

 Learning system must find a concept that matches annotations (P)

Example: learn to recognize animals

Supervised Learning

tiger

cow

elephant

starfish

Note: Annotation received by learner does not need to be correct!!

Other Learning Paradigms

- Unsupervised Learning
- Semi-supervised Learning
- Active Learning
- Transductive Learning
- Transfer Learning
- Structured Prediction
- Reinforcement Learning
- Preference Learning (Ranking)
- "Few-shot" learning

Example Representation

What is the *internal representation* of an example in a learning system?

 Representation choice affects reasoning and the choice of hypothesis space, and the cost of learning

Feature Vector Representation

- Examples are attribute-value pairs (note "feature"=="attribute")
- Number of attributes are fixed
- Can be written as an n-by-m matrix

	Attribute ₁	Attribute ₂	Attribute ₃	
Example ₁	Value ₁₁	Value ₁₂	Value ₁₃	
Example ₂	Value ₂₁	Value ₂₂	Value ₂₃	Feature Vectors
Example ₃	Value ₃₁	Value ₃₂	Value ₃₃	

Example

	Has-fur?	Long-Teeth?	Scary?
Animal ₁	Yes	No	No
Animal ₂	No	Yes	Yes
Animal ₃	Yes	Yes	Yes

Types of Features

Discrete, Nominal

Continuous

Discrete, Ordered

Hierarchical

- Color ∈ (red, blue, green)
- Height

- Size ∈ (small, medium, large)
- $Shape \in closed$ polygon continuous

 square triangle circle ellipse

Feature Space

We can think of examples embedded in an n dimensional vector space

Other Example Representations

- Relational representation
- Multiple-instance representation
- Sequential representation
- Multi-view representation

The Binary Classification Problem

Simplest supervised learning problem

 Target concept assigns one of two labels ("positive" or "negative") to all examples---the class label

 Can extend to "multiclass", "regression", "multi-label" problems

Example

	X			— <i>Y</i> —	
	Has-fur?	Long-Teeth?	Scary?	Lion?	
Animal ₁	Yes	No (<i>x</i> _{ij})	No	No	(x_i, y_i)
Animal ₂	No	Yes	Yes	No	
Animal ₃	Yes	Yes	Yes	Yes	

Example in Feature Space

The Learning Problem

Given: A binary classification problem

 Do: Produce a "classifier" (concept) that assigns a label to a new example

Binary Classifier Concept Geometry

• (Union of) N-dimensional volume(s) in feature space (possibly a disjoint collection)

