DISZKRÉT MATEMATIKA

3. feladatsor

- **1.** Legyenek adottak a következő halmazok: $A = \{1,2,3\}$, $B = \{\otimes, \oplus\}$, $C = \{w, x, y, z\}$. Adja meg a P(A), P(B) és P(C) halmazokat!
- **2.** Adja meg elemeivel a $P(\emptyset)$, $P(P(\emptyset))$ és $P(P(P(\emptyset)))$ halmazokat!
- **3.** Legyen $A = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$. Döntse el, hogy az alábbi állítások közül melyik igaz és melyik nem igaz:

$$\varnothing \in A \text{ , } \varnothing \subseteq A \text{ , } \{\varnothing\} \in A \text{ , } \{\varnothing\} \subseteq A \text{ , } \{\{\varnothing\}\} \in A \text{ , } \{\{\varnothing\}\} \subseteq A \text{ , } \{\{\varnothing\},\varnothing\} \in A \text{ , } \{\{\varnothing\},\varnothing\} \subseteq A \text{ . } \{\{\varnothing\},\varnothing\} \subseteq A \text{ .$$

- **4.** Mivel egyenlő a $H = (A \cap (\overline{C} \setminus B)) \cup (A \setminus (B \cup C))$ halmaz, ha $A = \{ n \in N ; n \text{ páratlan} \}$, $B = \{ n \in N ; 15 \le n \}$ és $C = \{ n \in N ; n \text{ oszthat\'o h\'aronmal} \}$
- **5.** Mit mondhatunk el az A és B halmazokról, ha tudjuk, hogy A Δ B = \emptyset
- **6.** Igazolja grafikusan, elemekre való hivatkozással és azonosságokkal, hogy tetszőleges A, B halmazokra fennállnak az alábbi egyenlőségek:
 - a) $A \Delta (A \Delta B) = B$
 - b) $A \setminus B = (A \cup B) \setminus B = A \setminus (A \cap B) = A \cap (A \setminus B)$
 - c) $A \cap B = A \setminus (A \setminus B)$
 - d) $A = A \setminus (B \setminus A) = (A \cup B) \setminus (B \setminus A) = (A \cap B) \cup (A \setminus B)$
 - e) $(\overline{A} \cup B) \cap A = A \cap B$
 - f) $(A \Delta B) \Delta (A \cap B) = A \cup B$
- **7.** Igazolja grafikusan, elemekre való hivatkozással és azonosságokkal, hogy tetszőleges A, B, C halmazokra fennállnak az alábbi egyenlőségek:
 - a) $A \cap (B \setminus C) = (A \setminus C) \cap (B \setminus C)$
 - b) $(A \cap B) \setminus (A \cap C) = (A \cap B) \setminus C$
 - c) $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$
 - d) $(A \setminus B) \setminus C = A \setminus (B \cup C)$
 - e) $A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$
 - f) $A \cup (B \cap C) = (A \cup B) \cap C$, ha $A \subseteq C$
 - g) $((A \cap C) \cup B) \setminus B = (A \cap C) \setminus B$
 - h) $(A \cap B) \setminus (B \setminus (A \cup C)) = A \cap B$
 - i) $A \cap (B \cup (A \cap C)) = (A \cap B) \cup (A \cap C)$
 - j) $A \setminus (A \setminus (B \setminus C)) = A \cap B \cap C$
 - k) $\overline{A \setminus (B \cup C)} = \overline{A} \cup B \cup C$
 - 1) $(A \setminus C) \cup (B \setminus C) = \overline{(A \cup B)} \cup C$
 - m) $(A \cap B) \cup (A \cap C) = A \setminus (\overline{B} \cap \overline{(A \cap C)})$

- $n) \quad A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- o) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$
- p) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$
- q) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$
- r) $(A \mid B) \cap C = (A \cap C) \mid B$