

Mere kvaliteta modela

Procena kvaliteta i selekcija modela

 Procena kvaliteta modela se bavi ocenom greške predviđanja modela

 Selekcija modela se bavi izborom jednog od više mogućih modela

- Zasnivaju se na:
 - Merama kvaliteta (npr. tačnost)
 - Tehnikama evaluacije i izbora (npr. podela na trening/test skup)

Važnost numeričke evaluacije

- Idealno: kvalitet modela izražen je jednim realnim brojem
- Recimo da pokušavamo da utvrdimo da li da reči discount/discounts/discounted/discounting tretiramo kao istu reč
 - Sve reči počinju sa istim nizom slova pa nam to može pokazati da su bliske
 - Ali možemo i pogrešiti, npr. <u>univers</u>e/<u>univers</u>ity
 - Da li koristiti ovaj prisup ili ne je jako teško reći analizom grešaka modela. Jedini način da to uradimo jeste da isprobamo i vidimo šta bolje radi
 - Za ovo nam treba numerička evaluacija (npr. greška na validacionom skupu)
 - Recimo da sa ovim pristupom dobijemo grešku 3%, a bez njega 5% → izgleda da ovaj pristup jeste dobra ideja
- Takođe, analiza grešaka modela zahteva vreme. Ako isprobavamo mnogo stvari (naročito u početku), lakše je da imamo brz način evaluacije

Mere kvaliteta

Zavise od problema

- Za klasifikaciju:
 - Tačnost
 - F_1 mera
 - Preciznost/odziv
- Za regresiju:
 - Koren srednjekvadratne greške *RMSE*
 - Koeficijent determinacije R^2

Tačnost

- Nije dobar izbor u slučaju neizbalansiranih (skewed) kategorija
- Slučaj gde je jedna (ili više) kategorija u skupu podataka mnogo više zastupljena u odnosu na ostale
- Npr. treba da razvijemo model za detekciju raka
 - Trenirali smo model i na test skupu dobili tačnost od 99%
 - Međutim, recimo da utvrdimo da svega 0.5% pacijenata u našem skupu podataka ima rak
 - greška od 1% više ne deljuje impresivno jer bi model koji sve pacijente klasifikuje u kategoriju y=0 imao 99.5% tačnosti, a ovaj model ne radi ništa korisno!
- Dakle, u slučaju neizbalansiranih klasa, tačnost nije dobra metrika i treba je zameniti nekom drugom

Tabela kontigencije (contingency table)

	Tačna klasa		
cija		1	0
Predikcija	1	tp	fp
	0	fn	tn

- Obično se za y = 1 uzima ređa klasa
- **tp** (*true positive*): broj instanci za koje je model predvideo y=1 i stvarna klasa tih instanci je zaista 1
- **fp** (*false positive*): broj instanci za koje je model predvideo y=1, a stvarna klasa tih instanci je 0
- tn (true negative): broj instanci za koje je model predvideo y=0 i stvarna klasa tih instanci je 0
- fn (false negative): broj instanci za koje je model predvideo y=0, a stvarna klasa tih instanci je 1

Deo pacijenata za koje je $\hat{y}=1$ i zaista imaju rak y=1

	Tačna klasa		
cija		1	0
redikcija	1	tp	fp
Pre	0	fn	tn
7			

Svi pacijenti za koje je model predvideo $\hat{y} = 1$ (ima rak)

Deo pacijenata za koje je $\hat{y}=1$ i zaista imaju rak y=1

Preciznost

Da li smo greškom za zdravog pacijenta predvideli da ima rak?

$$precision = \frac{tp}{tp + fp}$$

Svi pacijenti za koje je y = 1 (zaista imaju rak)

Ledikcija 1 0 tp fp o tn		Tačna klasa			
1 tp fp 0 fn tn	ej a		1		0
0 fn tn	dike	1	tp		fp
	Pre	0	fn		tn

Deo pacijenata za koje je $\hat{y}=1$ i zaista imaju rak y=1

Preciznost

Da li smo greškom za zdravog pacijenta predvideli da ima rak?

$$precision = \frac{tp}{tp + fp}$$

Odziv

Da li smo promašili da detektujemo rak kod nekog pacijenta?

$$recall = \frac{tp}{tp + fn}$$

Dobar model ima i veliku preciznost i veliki odziv

$$accuracy = \frac{tp + tn}{tp + fp + tn + fn}$$
 $precision = \frac{tp}{tp + fp}$ $recall = \frac{tp}{tp + fn}$

Imamo 100 pacijenata od kojih 5 zaista ima rak

Model koji predviđa da nijedan pacijent nema rak:

	Tačna klasa		
e ji		1	0
Predikcija	1	0	0
	0	5	95

$$accuracy = 99.5\%$$

 $precison = 0$
 $recall = 0$

Model koji predviđa da svi pacijenti imaju rak:

	Tačna klasa		
Predikcija		1	0
	1	5	95
	0	0	0

$$accuracy = 0.5\%$$

 $precison = 0.05$
 $recall = 1$

$$\hat{y} = \begin{cases} 1, & h_{\theta} \ge 0.5 \\ 0, & h_{\theta} < 0.5 \end{cases}$$

1. Predviđamo $\hat{y} = 1$ samo ako smo sigurni u predikciju

$$\hat{y} = \begin{cases} 1, & h_{\theta} \ge 0.7 \\ 0, & h_{\theta} < 0.7 \end{cases}$$

 Izbegavamo fp – naći ćemo malo pacijenata sa rakom, ali smo za te pacijente sigurni da imaju rak

- Veća preciznost
- Manji odziv

Izbegavamo da promašujemo previše slučajeva raka

$$\hat{y} = \begin{cases} 1, & h_{\theta} \ge 0.3 \\ 0, & h_{\theta} < 0.3 \end{cases}$$

- Izbegavamo fn naći ćemo gotovo sve pacijente sa rakom, ali ćemo za dosta njih koji nemaju rak (pogrešno) predvideti da ga imaju
- Manja preciznost
- Veći odziv

• Za jedan model $h_{ heta}$ možemo da balansiramo između preciznosti i odziva:

$$\hat{y} = \begin{cases} 1, & h_{\theta} \ge \text{ts} \\ 0, & h_{\theta} < \text{ts} \end{cases}$$

• Veći *threshold* → veća preciznost. Manji *threshold* → veći odziv

• Za jedan model h_{θ} možemo da balansiramo između preciznosti i odziva:

$$\hat{y} = \begin{cases} 1, & h_{\theta} \ge \text{ts} \\ 0, & h_{\theta} < \text{ts} \end{cases}$$

• Veći *threshold* → veća preciznost. Manji *threshold* → veći odziv

Za poređenje bi nam bilo lakše da preciznost i odziv sumarizujemo u jedinstven broj

	Preciznost (P)	Odziv (R)	(P+R)/2	F ₁ mera
Model 1	0.5	0.4	0.45	0.444
Model 2	0.7	0.1	0.4	0.175
Model 3	0.02	1.0	0.51	0.0392
Prosek nije najbolje rešenje.			šenje.	Kombinuje

$$F_1score = 2 \frac{PR}{P+R}$$
 imamo jako veliko R i jako malo P

• Model nije dobar a ipak ima najveću vrednost od tri poređena modela

- Ovaj model stalno predviđa y = 1 pa
- vrednost od tri poređena modela

Kombinuje preciznost i odziv, ali je bliže manjoj od te dve mere

Ako je ili P ili R jednako nuli, i F_1 mera je jednaka nuli Ako je P = 1 i R = 1 (savršen model), onda je $F_1 = 1$ F_1 mera nije osetljiva na neizbalansiranost klasa

Koren srednjekvadratne greške (*RMSE*)

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2}$$

- Poput standardne devijacije, ali ne u odnosu na prosek, već u odnosu na model
- Izražava se u istim jedinicama kao i ciljna promenljiva
- Posebno korisna ako znamo prihvatljivu veličinu greške u razmatranoj primeni

Koeficijent determinacije R^2

$$R^{2} = 1 - \frac{MSE}{Var} = 1 - \frac{\sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}}{\sum_{i=1}^{N} (\bar{y} - y^{(i)})^{2}}$$

- U rasponu $(-\infty,1]$ meri udeo varijanse ciljne promenljive koji je objašnjen modelom
 - Na primer, ako predviđamo cenu kuće (y) na osnovu kvadrature (x) i dobijemo $R^2=0.8$, to znači da je približno 80% varijabilnosti u cenama kuća objašnjeno pomoću informacija o kvadraturi tih kuća
- Pogodnija za poređenja nego kao apsolutna mera

