

三通道 LED 恒流驱动芯片 (V3.0)

天利半导体有限公司

TERALANE SEMICONDUCTOR INC.

地址:深圳市南山区科技园南区高新南一道中国科技开发院3号塔楼7楼

电话: 86-755-8630 9506 传真: 86-755-8630 9523

芯片描述:

TLS3001 是单线传输、三通道 LED 恒流驱动芯片,内置 12 位灰阶控制的 PWM 调制功能。3 个恒流输出通道所输出的电流值不受输出端负载电压影响,并提供恒定一致的输出电流,用户可以选择不同的外接电阻来调整输出电流,调整范围从 0 到 30mA。内置电压调节器,使芯片正常工作在 5~17V 的较宽电压范围内,输出端口最大耐压达到 17V。

主要性能:

- 3路恒流输出通道,恒流输出不受输出端负载电压影响
- 输出电流范围: 0~30mA
- 典型电流为20mA,外接电阻为620 Ω
- 曼彻斯特通信接口
- 可支持双通道数据传送,提高系统的可靠性
- 超强级联驱动能力,单线最大级联数达1024
- 4096级PWM灰阶控制
- 输出通道交错时间迟滞80ns,使系统瞬态电流及由此产生的噪声降低到最小
- 精确的输出电流精度: 通道之间 ±1.5%, 芯片之间 ±3%
- 较宽的数据传送速率范围: 100KHz~1.5MHz
- 较宽的工作电压范围: 5~17V
- 低耗电量: <100mW
- 较高的刷新速率, PWM 输出频率可达 1000Hz 以上
- 极强的抗干扰能力, ESD > 7KV

典型应用:

- 单像素点光源
- 柔性灯带
- 护栏管
- 招牌字
- 条形屏

封装信息:

- ♦ SOP14
- ◆ SSOP10
- ◆ SOP8 (仅应用于 5V 应用)
- ◆ 客户定制

功能框图

电气特性

● 最大限定范围

特性	代表符号		最大工作范围	单位
电源电压	V	DD	17	V
输入端电压(SDI)	V	V _{IN}	$-0.4 \sim V_{cap} + 0.4$	V
输出端电流	I	DUT	30	mA
输出端耐受电压	V	DS	17	V
接地端电流	I_{GND}		95	mA
数据时钟频率	F_{D}	OCLK	0.1~2	MHz
	SOP14		0.87	
承受功耗	PDmax	SSOP10	0.625	W
	SOP8		0.625	
工作温度	${ m T_{opr}}$		-45 ~ +85	$^{\circ}$
存贮温度	T _{stg}		−55 ~ +125	$^{\circ}$ C

● 直流特性

特性	代表符号	测量条件	最小值	一般值	最大值	单位
电源电压	VDD		5		17	V
CAP之输	V_{cap}		3.1	3.15	3.32	V
出电压	▼ cap		3.1	3.13	3.32	•
输出电流	I_{OUT}		0	20	30	mA
电流偏移		I _{out} =20mA VR=				
量(通道	$\mathrm{dI}_{\mathrm{OUT1}}$	461 mV		±1.5	±3	%
间)		R=620Ω				
电流偏移		I _{out} =20mA VR=				
量(芯片	$\mathrm{dI}_{\mathrm{OUT2}}$	461 mV		±3	±6	%
间)		R=620Ω				
电流偏移						
量 vs 电	%/dVDD	电源电压=5~17V		±0.2	±0.5	%/V
源电压						

● 动态特性

特性	代表符号	最小值	一般值	最大值	单位
内建时钟频率	OSC	13		27	MHz
时钟高电平宽度		19		38	ns
时钟低电平宽度		19		38	ns
输出通道间的交错迟滞时间			80		ns
电流输出电位上升时间			300n		ns
电流输出电位下降时间			600n		ns

恒流特性

- 1) 通道间的电流差异小于±1.5%,芯片间的电流差异小于±3%。
- 2) 具有不受负载端电压影响的电流输出特性,如下图所示,输出电流稳定性将不受LED顺向电压(VF)变化影响

调整输出电流

通道的输出电流由外接电阻确定,对应关系如下图所示:

套用下面公式可以计算输出电流值:

Iout = (Vref/R)*2*13.8

Vref ≈ 0.46 V

当电阻是 620Ω的时候,输出电流约为 20mA

数据通讯协议

送给 SDI 脚的输入信号必须遵循下列定义:

- a. 有效输入数据必须为曼彻斯特编码,信号从高到低跳变表示"1",从低到高 跳变表示"0"
- b. 在芯片上电后必须先发一次同步帧,以便芯片检测通讯的波特率。同步帧的格式为: 15' b111111111111111+4' b0001+11' b000000000000,在发送同步帧后必须延时一段时间再发送数据帧,这样做是为了每个芯片都能准确检测到通讯的波特率,延时时间(us)大于:连接芯片数÷通讯波率(MHz)×30
- c. 在发送若干帧数据后,重新发送一次复位帧,等待 1ms 之后,再发送一次同步 帧,以便芯片消除积累误差,复位帧格式为:15'b1111111111111+4'b0100

- f. 数据先发送 MSB(最高位)
- g. SDI 输入脚在空闲状态时,必须保持低电平
- h. 同一帧数据发送过程中,必须连续发送,中间不能有中断,发送频率也不能 改变。

基本时序

双通道通讯功能

TLS3001 具备双数据通路通讯功能。当两个通道同时接收到有效数据信息时,芯片会默认选择通道 1 数据为有效数据; TLS3001 会在数据通路空闲时,定时检测数据通路状况,一旦检测到数据通路有断路情况,将自动将数据通路切换到另一条数据通路,这样大大提高了系统的可靠性。具体应用如下:

双通道数据格式如下:

输出端的交错延迟时间

● 本芯片内置延迟电路机制,0UT1、0UT2、0UT3依照80ns的延迟时间依序输出电流,使系统瞬态电流及由此产生的噪声降低到最小。

程序设计参考流程图

建议根据数据发送波特率,发完 M 帧数据需要大概 3 秒钟的时候发送一次复位帧,然后延时 1ms,再发送同步帧,延时 Nms。

封装说明

● SOP14 封装信息和管脚图

1	VREF/NC	OUT 1 14
2	VANA/NC	OUT2 13
3	SDI1	OUT 3 12
4	SDO2	VDD 11
5	OSC/NC	SD01 10
6	VR	SDI2 9
7	GND	CAP 8

> SOP14引脚分配定义

序号	Pin名称	类型	功能
1	VREF / NC	输出	测试端/未连接
2	VANA / NC	输出	测试端/未连接
3	SDI1	输入	串行数据输入端1
4	SDO2	输出	串行数据输出端2
5	OSC / NC	输出	测试端/未连接
			外接电阻输入端, 可调
6	VR	输入	节输出电流大小,默认
			电阻为620Ω
7	GND	电源	芯片地
8	CAP	输出	外接1uF的稳压电容
9	SDI2	输入	串行数据输入端2
10	SDO1	输出	串行数据输出端1
11	VDD	电源	芯片电源
12	OUT3	输出	恒流输出端,外接LED
13	OUT2	输出	恒流输出端,外接LED
14	OUT1	输出	恒流输出端,外接LED

3 通道 LED 恒流驱动芯片

➤ SOP14封装信息

0	Dimen	sions In Milli	meters	Dime	ensions In Inc	ches
Symbol	Min	Nom	Max	Min	Nom	Max
Α	1.30	1.50	1.70	0.051	0.059	0.067
A1	0.08	0.16	0.24	0.003	0.006	0.009
b		0.40			0.016	
С		0.25			0.010	
D	8.25	8.55	8.85	0.325	0.337	0.348
E	3.75	3.95	4.15	0.148	0.156	0.163
е		1.27			0.050	
Н	5.70	6.00	6.30	0.224	0.236	0.248
L	0.45	0.65	0.85	0.018	0.026	0.033
θ	o°		8	0°		8°

● SSOP10 封装信息和管脚图

1	оптз	\bigcirc	VDD	10
2	OUT2		SDO	9
3	OUTI		CAP	8
4	VREF		GND	7
5	SDI		VR	6

> SSOP10 引脚分配定义

序号	Pin名称	类型	功能
1	OUT3	输出	LED驱动输出3
2	OUT2	输出	LED驱动输出2
3	OUT1	输出	LED驱动输出1
4	VREF		测试端/未连接
5	SDI	输入	串行数据输入端
			外接电阻输入端, 可调
6	VR	输入	节输出电流大小,默认
			20mA电阻为620Ω
7	GND	电源地	芯片地
8	CAP	输出	外接1uF的稳压电容
9	SDO	输出	串行数据输出端
10	VDD	电源	芯片电源

3 通道 LED 恒流驱动芯片

▶ SSOP10 封装信息

SYMBOL	MI	LLIMET	ER			
	MIN	NOM	MAX			
A	-	-	1.75			
Al	0.10	1	0.25			
A2	1.30	1.40	1.50			
A3	0.60	0.65	0.70			
ь	0.39	1	0.48			
b1	0.38	0.41	0.43			
С	0.21		0.26			
c1	0.19	0.20	0.21			
D	4.70	4.90	5.10			
Е	5.80	6.00	6.20			
El	3.70	3.90	4.10			
е		1.00BSC)			
L	0.50	_	0.80			
Ll	1.05BSC					
θ	0	_	8°			
L/F载体尺寸 (mil)		95*110				

● SOP8 封装信息和管脚图

> 引脚分配定义

序号	Pin名称	类型	功能
1	SDI	输入	串行数据输入端
2			外接电阻输入端, 可调
	VR	输出	节输出电流大小,默认
			20mA电阻为620Ω
3	GND	电源地	芯片地
4	SDO	输出	串行数据输出端
5	VDD	电源	芯片电源【3001-8脚工作
			电压范围为4.5~7.5V】
6	OUT3	输出	LED驱动输出3
7	OUT2	输出	LED驱动输出2
8	OUT1	输出	LED驱动输出1

➤ SOP8 封装信息

Cumbal	Dimensions In Millmeters			Dimensions In Inches		
Symbol	Min	Nom	Max	Min	Nom	Max
Α	1.30	1.50	1.70	0.051	0.059	0.067
A1	0.06	0.16	0.26	0.002	0.006	0.010
b	0.30	0.40	0.55	0.012	0.016	0.022
С	0.15	0.25	0.35	0.006	0.010	0.014
D	4.72	4.92	5.12	0.186	0.194	0.202
E	3.75	3.95	4.15	0.148	0.156	0.163
е		1.27			0.050	
Н	5.70	6.00	6.30	0.224	0.236	0.248
L	0.45	0.65	0.85	0.018	0.026	0.033
θ	0°		8°	0°		8°

典型应用电路

● SOP8 应用电路【注意 3001-SOP8 只能用在 5V 带一组 RGB 的 应用场合,灯的电压也只能用 5V】

● SOP14 典型 5V 单通道应用电路

• SOP14 典型 12V 单通道应用电路

注意: 输出端 $V_{OUT1,\ 2,\ 3}$ 开启时(即通道打开灯亮的时候)电压应控制在 $1\sim2\ V$ 之内,保证芯片良好的恒流输出特性,同时使芯片自身功耗尽可能低, OUTX 串联分压电阻使恒流输出时的电压尽量接近 1.5V,串联电阻大小 Rx=(VDD-Vled(串接 LED 导通电压)-1.5) / <math>Iled(LED 导通电流).

● SOP14 典型 5V 双通道应用电路

• SOP14 典型 12V 双通道应用电路

注意: 输出端 $V_{OUT1,\ 2,\ 3}$ 开启时(即通道打开灯亮的时候)电压应控制在 $1\sim2$ V之内,保证芯片良好的恒流输出特性,同时使芯片自身功耗尽可能低, OUTX 串联分压电阻使恒流输出时的电压尽量接近 1.5 V,串联电阻大小 Rx=(VDD-Vled(串接 LED 导通电压)-1.5) / <math>Iled(LED 导通电流).

● SSOP10 典型 5V 应用电路

● SSOP10 典型 12V 应用电路

注意:输出端 $V_{OUT1,\ 2,\ 3}$ 开启时(即通道打开灯亮的时候)电压应控制在 $1\sim2$ V之内,保证芯片良好的恒流输出特性,同时使芯片自身功耗尽可能低, OUTX 串联分压电阻使恒流输出时的电压尽量接近 1.5 V,串联电阻大小 Rx=(VDD-Vled(串接 LED 导通电压)-1.5) / <math>Iled(LED 导通电流).

应用注意事项:

● VDD供电电压范围:

SOP14和SSOP10供电电压范围: 5-17V,

SOP8供电电压范围: 4.5-7.5V

VDD和GND之间须有一个0.1uF的滤波电容

TLS3001-10脚和TLS3001-14脚输出引脚耐压可达17V,

- 输入数据的时钟频率须在100KHz~1MHz之间,为了信号能够传输更多的节点,建议数据的发送频率在1M以内
- SDI信号输入引脚的电压最大不能超过5.5V
- SDO输出信号高电平为3.3V
- SDI、SDO的输入输出线路分布电容尽可能小,以便传输更多的节点
- 输出端V_{OUT1}. 2. 3开启时(即通道打开灯亮的时候)电压应控制在1~2 V之内,保证芯片良好的恒流输出特性,同时使芯片自身功耗尽可能低, OUTX 串联分压电阻使恒流输出时的电压尽量接近1.5V,串联电阻大小Rx = (VDD Vled (串接LED导通电压) 1.5) / Iled(LED导通电流)
- 在发送若干帧数据后,重新发送一次复位帧延时 1ms 再发送同步帧,再延时 Nms,提高系统的抗干扰能力.
- 双通道模式下当双通道信号都为有效时,芯片会自动默认通道 1 信号为显示信息。第二通道发送的数据顺序应该按像素信息与第一通道的首尾倒置
- SOP14 封装单通道使用模式下,必须选择信号通道 1(即选用 SDI1 和 SDO1), 不使用的通道输入端应该接上拉或悬空.

免责声明:

TLS3001 是设计用来做可视化显示、亮化工程、灯光装饰的 LED 驱动芯片,不建议用于 医疗设施、核电控制系统、灾难犯罪设备等不合理的应用场合。天利半导体将不负任何 因为这些不合理的应用场合和错误的应用而导致的责任.任何人和任何单位购买此款产品,有上述意图或不按规格书上面的要求设计的错误应用造成财产损失,应自负全责和赔偿。天利半导体以及代理商的管理者以及员工必捍卫己方抵拒所有赔偿,诉讼.以及所 有因上诉意图或错误应用而衍生的损坏成本及费用。