El Diodo

ELEMENTOS ACTIVOS EL-2207

Objetivos

- El diodo: (1.5 semanas)
 - Modelo del diodo real.
 - Línea de carga y punto de operación, resistencia estática y dinámica.
 - Circuitos rectificadores.
 - Diodo Zener y diodos de aplicación especial.

Objetivo:

 Conocer el modelo del diodo, sus principales parámetros, así como aplicaciones fundamentales

El Diodo

El diodo ideal actúa como un corto circuito para corrientes de polarización directa y como un circuito abierto para corrientes de polarización inversa

El Diodo

Característica IV real

Característica IV ideal

- Comportamiento real definido por:
 - Resistividad del semiconductor
 - Efecto de avalancha y efecto Zener
 - Corriente de saturación reversa

Modelos de Gran Señal

Aplicaciones de los Diodos

- Algunas aplicaciones de los diodos
 - Rectificación
 - Conformado de señales
 - Regulación de voltaje (Zener)
 - Indicadores lumínicos (LED)
 - Fotodetectores
- Tipos de diodo
 - Diodo PN (normal)
 - Diodo emisor de luz (light emitting diode, LED)
 - Diodos láser
 - Diodo Zener
 - Diodo Schottky
 - Diodo de avalancha
 - Diodo túnel

Rectificador de Media Onda

Rectificador de Media Onda con Filtro

 $v_{s}(t)$ On Diode off On

(b) Voltage waveforms $i_D(t)$ $i_L(t)$

Cálculo de capacitancia de filtrado

$$C = \frac{I_L T}{V_r}$$

Voltaje de carga:
$$V_{L} \cong V_{m} - \frac{V_{r}}{2}$$

Rectificador de Onda Completa

Figure 10.28 Diode-bridge full-wave rectifier.

de salida promedio

$$V_{o,promedio} = \frac{2V_{m}}{\pi}$$

V_m= valor pico de la tensión de entrada

Rectificador de Onda Completa

Figure 10.28 Diode-bridge full-wave rectifier.

Cálculo de capacitor de filtrado:

$$C = \frac{I_L T}{2V_r}$$

Recortador Serie

Recortador Paralelo

Recortador

Sujetador de Voltaje (Cambiador de Nivel)

- Semiciclo negativo, diodo activo
- Semiciclo positivo, diodo inactivo

Doblador de Voltaje

Semiciclo negativo: D1 conduce, C1 se carga al voltaje de la fuente, D2 no conduce

Semiciclo positivo: D1 no conduce, D2 conduce, $V_{C2} = 2 \text{ Vp}$

En estado estable, la salida es aproximadamente 2Vp

Caso real: salida es 2Vp-2V_D

Ecuación de Shockley

Curva característica (IV) descrita por la ecuación de Shockley (ecuación del diodo)

$$I_D = I_s(e^{(V_D/nV_t)} - 1)$$

Con V_t: voltaje térmico, n=1..2, depende de características constructivas del diodo

I_s: corriente de saturación de reversa, depende de características físicas del diodo

$$I_S = qA \left[\frac{D_n}{L_n} \cdot n_{p0} + \frac{D_p}{L_p} \cdot p_{n0} \right]$$

A: área transversal del diodo, D: coeficiente de difusión

L: longitud de difusión de portadores minoritarios

n_{p0}: concentración de electrones del lado P, en equilibrio

p_{p0}: concentración de huecos del lado N, en equilibrio

Curva Característica

- Efecto de Ruptura = breakdown
 - Un voltaje de polarización inversa alto puede causar una alta corriente fluyendo por el diodo
 - Puede deberse a:
 - Efecto Zener
 - Efecto de avalancha
 - Ambos efectos son reversibles
 - no daña la unión PN si la potencia no excede la potencia máxima del diodo

Efecto de Avalancha

Efecto de avalancha: portadores minoritarios en la zona de agotamiento son acelerados por el campo eléctrico, creando pares electrón-hueco por medio de ionización por impacto.

•Aumento de portadores de carga libres aumenta la corriente que puede contribuir a la ionización por impacto

Efecto Zener

Efecto Zener:

Electrones pasan de la banda de valencia del material P a la banda de conducción del material N (generación) y crean altas corrientes en el diodo

Paso de electrones debido a efecto túnel: requiere altos niveles de dopado para disminuir el ancho de la zona de agotamiento

Efectos de la Temperatura

- Diodos PN
 - Corriente aumenta con T
 - Aumento en vibración, mayor cantidad de portadores de carga creados por generación térmica
- Diodos operando en región de avalancha
 - Magnitud de voltaje de ruptura aumenta con T
 - Aumento en vibración, aumento en dispersión, disminuye trayectoria media libre, menor energía transferida en colisiones
 - Debe aumentar el campo para crear avalancha
- Diodos Zener
 - Magnitud de voltaje de ruptura disminuye con T
 - Aumento en vibración, aumento en energía de electrones en banda de valencia, facilita ruptura de enlaces
 - Requiere menor energía del campo para extraer electrones de sus posiciones en la red cristalina

Modelos del Diodo

- Dos modelos:
 - De gran señal (CD)
 - De pequeña señal (AC)
- Modelo de gran señal:
 - En un punto de operación específico
 - ⇒ punto de operación Q
- Modelo de pequeña señal
 - Pequeña variación alrededor de un punto de operación
 - Considera sólo el efecto de fuentes de CA
- Aplicaciones de modelo de pequeña señal
 - Análisis de CA, respuesta de frecuencia

Modelos de Gran Señal

Modelo Lineal Por Tramos (CD)

- Resistencia estática del diodo
 - Resistencia en el punto de operación Q

$$r_D = \frac{V_D}{I_D}\bigg|_Q = \frac{V_D}{I_D}$$

- Punto de operación Q
 - Punto de polarización
 - Punto quiesciente (estable)

Modelo de Pequeña Señal del Diodo

$$r_d = \left(\frac{\partial i_D}{\partial v_D}\right)^{-1} \bigg|_{Q}$$

$$r_d = \frac{nV_t}{I_D}$$

r_d: resistencia dinámica del diodo

C: capacitancias del diodo= Capacitancia de agotamiento C_j + Capacitancia de difusión C_D

$$C_{j} = \frac{dq_{j}}{dV_{R}} \bigg|_{Q}$$

$$C_j = \frac{C_{j0}}{(1 + \frac{V_R}{V_{bi}})^m}; C_j = 2C_{j0}$$

$$C_d = \frac{\tau_T}{V_t} I; \ \tau_T : ns...10^4 \, ns$$

Polarización - Línea de Carga

Figure 10.6 Load-line analysis of the circuit of Figure 10.5.

Diodo Zener

Los diodos que operan en la región de ruptura (por avalancha o efecto Zener), se conocen como diodos de ruptura y comúnmente como diodos ZENER.

Curva característica del diodo Zener ideal

Ejemplo de aplicación: regulador de voltaje

Regulador de Voltaje con Diodo Zener

R: resistencia de limitación de corriente

Corriente de operación del diodo Zener:

$$I_{\text{Zmin}} \approx 0.1~I_{\text{Zmax}}$$

 I_{Zmax} determinada por máxima potencia del diodo Zener

$$I_{Zmax} = \frac{P_{Zmax}}{V_Z}$$

Regulador de Voltaje con Diodo Zener

- 2 Posibilidades:
 - V_{in} variable

$$V_{in} > V_Z \Rightarrow V_{in} \uparrow, V_Z = \text{constante} \Rightarrow V_R, I_R \uparrow$$
pero $V_L = V_Z = \text{constante} \Rightarrow V_L \text{ y } I_L \text{ son constantes} \Rightarrow I_Z \uparrow$
 $I_{R \max} = I_{Z \max} + I_L$

- R_I variable

$$V_{in} > V_Z \Rightarrow R_L \downarrow, I_L \uparrow$$

pero $V_Z y V_{in}$ son constantes $\Rightarrow I_R = \text{constante} \Rightarrow I_Z \downarrow$

R calculada para las condiciones de operación del Zener

$$R = \frac{V_{in\,\mathrm{min}} - V_Z}{I_{Z\,\mathrm{min}} + I_{L\,\mathrm{max}}} \qquad \text{y también} \qquad R = \frac{V_{in\,\mathrm{max}} - V_Z}{I_{Z\,\mathrm{max}} + I_{L\,\mathrm{min}}}$$

Línea de Carga- Regulador Zener

Línea de Carga- Regulador Zener

Línea de Carga- Regulador Zener

Regulador de Tensión Zener

- a) Dibuje las líneas de carga en la curva característica del diodo Zener para el caso de máximo y mínimo voltaje de entrada y calcule la corriente, el voltaje y la potencia en todos los elementos.
- b) Dibuje U_A en función del tiempo
- c) Calcule la corriente a través de R_V cuando la magnitud del voltaje de entrada es máximo y está conectada al circuito de polaridad opuesta

Curva Característica del Diodo Zener

Línea de Carga del Regulador Zener

Línea de Carga del Regulador Zener

Línea de Carga del Regulador Zener

Ejemplo de Regulador de Tensión Zener

Ejemplo Regulador Zener

Sean R=220 Ω , V_Z=10V, P_{Zmax}=400mW, V_{in}=20V

- Determine V_1 , I_1 e I_R para el circuito de la figura si $R_1 = 180\Omega$
- Determine el valor de R_L que establecerá las condiciones máximas de potencia para el diodo Zener
- Determine el valor mínimo de R_L para asegurar que el diodo Zener opere en la región de ruptura
- Si la resistencia de carga R_L es máxima, ¿cuánto puede disminuirse la tensión de entrada manteniendo al diodo Zener en la región de ruptura?

Línea de Carga del Regulador Zener (1)

Línea de Carga del Regulador Zener (2)

Línea de Carga del Regulador Zener (3)

