BRITIR Copy .

266806

REPORT No. 1142

AUGUST 1961

FREE RADICALS BIBLIOGRAPHY AND SURVEY OF PUBLICATIONS (up to 1959)

GEORGE I. LAVIN ARTHUR D. COATES JOHN A. RAKACZKY

Department of the Army Project No. 599-04-002
Ordnance Management Structure Code No. 5610.11.703
BALLISTIC RESEARCH LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

ASTIA AVAILABILITY NOTICE

Qualified requestors may obtain copies of this report from ASTIA.

Printed in USA. Price \$5.00. Available from the Office of Technical Services, Department of Commerce, Washington 25, D.C.

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1142

AUGUST 1961

FREE RADICALS BIBLIOGRAPHY AND SURVEY OF PUBLICATIONS (up to 1959)

George I. Lavin Arthur D. Coates John A. Rakaczky

Terminal Ballistics Laboratory

Reproduction of this report may be made only with the permission of the Ballistic Research Laboratories.

TECHNICAL LIBRARY. BRANCH NO. 1

Department of the Army Project No. 599-04-002 Ordnance Management Structure Code No. 5610.11.703

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

REPORT NO. 1142

GLavin/ACoates/JRakaczky/bjk Aberdeen Proving Ground, Md. August 1961

FREE RADICALS
BIBLIOGRAPHY AND SURVEY OF PUBLICATIONS
(up to 1959)

ABSTRACT

A survey has been made of the free radical literature published up to and including the year 1959. Approximately 2200 references are presented in the form of the title of the paper, author, and a brief description of the work where the title is not self-explanatory.

Page intentionally blank

Page intentionally blank

Page intentionally blank

ACKNOWLEDGEMENTS

The authors wish to express their appreciation to the American Chemical Society for their permission to publish this compilation, which has been derived primarily from Chemical Abstracts.

Levige & Lavin
GEORGE I. LAVIN

ARTHUR D. COATES

John a. Rakaczky

Page intentionally blank

Page intentionally blank

Page intentionally blank

INTRODUCTION

In the course of the evolution of chemical philosophy the term radical has been used in varying senses, and survivals of earlier significance persist in present day usage. The original concept long antedated clear-cut ideas on molecular structure and the nature of valence forces. It is, perhaps, a fair approximation to state that the word radical originally signified an atomic aggregate or molecular fragment capable of surviving as an entity throughout a series of chemical transformations.

Free radicals, as usually defined in terms of modern valency concepts, are individual atoms of groups of atoms of electronic configuration such that it includes at least one unpaired electron. Such a definition is broad enough to include atoms (other than those of the noble gases), polyatomic molecular fragments such as the long-lived triaryl methyl radicals described by Gomberg, as well as the short-lived alkyl radicals of the Paneth type.

Free radicals thus are fragments of matter which for the most part have only a fleeting existence. They are present in an ordinary flame, in an electric arc, in the atmosphere in the stars and even in the cold interstellar dust. These highly reactive fragments can initiate and sustain a chain reaction among comparatively inactive substances. A relatively small number of free radicals (as few as one per thousand) can maintain a chain reaction. If we understood their behavior fully we would have a master key to the chemistry of the universe.

This survey covers the period up to and including 1959. The bibliography contains approximately 2200 items each of which consists of the author, subject, journal reference and a short abstract if the title of the paper is not self-explanatory. The references are listed alphabetically by the last name of the senior author. An author index also is included. This bibliography was compiled during the course of free radical investigations being conducted at these Laboratories. It is our wish that it will be as useful to others as it has been to us. It is also hoped that it will act as a catalyst in furthering future free radical research.

Page intentionally blank

Page intentionally blank

Page intentionally blank

- Abel, E.
 Hydrogen Peroxide Polymer-zation.
 Monatash.,83, 841-4 (1952).
 C. A., 47, 3670 (1953).
- 2. Aberdeen University Press (1953). The Reactivity of Free Radicals. C. A., 48, 10420 (1954).
- Aboul-Saad, I.A.
 Effect of Viscosity on Radical Formation and Recombination.
 Univ. Microfilms (Ann Arbor, Mich.), L. C. Card No. Mic 58-2862, 104pp.; Dissertation Abstr., 19, 451 (1958).
 C. A., 53, 3854 (1959).
- 4. Abraham, R.J., Ovenall, D.W. & Whiffen, D.H.
 Electron-Spin Resonance of Free Radicals in Irradiated Polymers.
 Arch. sci. (Geneva), 10, Spec. No., 81-3 (1957) (in French). C. A., 52, 1757 (1958).
- 5. Abraham, R.J., Ovenall, D.W. & Whiffen, D.H.
 Electron Resonance Spectrometer for the Investigation of Organic Free Radicals.
 Trans. Faraday Soc., 54, 1128-32 (1958).
 C. A., 53, 10972 (1959).
- 6. Abrahamson, E.W.
 Identification of Short-Lived
 Species in Chemical Reactions.
 Use of Flash Photolysis and
 Rigid Glassed Solvents in Identification and Rate Studies of
 Reaction Intermediates.
 Anal.Chem., 27, 1695-8 (1955).
 C. A., 50, 7001 (1956).

- 7. Aburto, S., Daudel, R., Gallardo, R., Lefebvre, R., & Munoz, R. Study of the Radical BeH by the Self-Consistent Field Method.

 Compt. rend., 247, 1859-60 (1958).

 C. A., 53, 10939 (1959).
- 8. Ackerman, M., Chiltz, G., Goldfinger, P., & Martens, G.
 The Specificity of Atomic Halogenations.
 VI. Competitive Reactions.
 Bull.soc.chim. Belges, 63, 325-44 (1957).
 C. A., 51, 16111 (1957).
 C. A., 50, 16407 (1956).
 C. A., 51, 9469 (1957).
- 9. Adam, G.
 Influence of Gas Atmosphere
 on Surface Recombination in
 Germanium (0₂/0₃) Mixtures
 and Moist Nitrogen.
 Z.Naturforsch, 12a, 574-82
 (1957).
 C. A., 51, 16080 (1957).
- Adams, G.E., Baxendale,
 J.H., & Sedgwick, R.D.
 Radical and Molecular Yields in the γ-Irradiation of Some Organic Liquids.
 J. Phys. Chem., 63, 854-8 (1959).
 C. A., 53, 21093 (1959).
- 11. Adams, G.K., Parker, W.G. & Wolfhard, H.G.
 Radical Reactions of NO in Flames.
 Discussions Faraday Soc., 1953, No. 14, 97-103.
 C. A., 48, 1120 (1954).

- 12. Adams, J.
 Free Radicals.
 Field & Lab., 9,
 8-16 (1941),
 C. A., 35, 5757 (1941),
- 13. Adams, M., Blois, M.S., Jr., & Sands, R.H.
 Paramagnetic Resonance
 Spectra of Some Semiquinone Free Radicals.
 J.Chem.Phys., 28, 774-6
 (1958).
 C. A., 52, 14335 (1958).
- 14. Aditya, S., & Willard, J.E. Halogen Atom Reactions Initiated by Nuclear Processes in Hydrocarbon Solutions.

 J. Am. Chem. Soc., 79, 3367-71 (1957).

 C. A., 51, 14428 (1957).
- M.
 Rotational Temperature in the CH Band (3889Å) of the Bunsen Burner Flame.
 Comun. Acad. rep. populare Romine, 5, 1263-9 (1955).
 C. A.,50, 16377 (1956).
- 16. Agladze, R.I., & Babitskii, G.B.
 Fixation of Atomospheric Nitrogen by Means of Electrical Discharges.
 Trudy Inst. Metal. i Gornogo Dela., Akad. Nauk Gruzin. S.S.R., 8, 223-50 (1957).
 C. A.,53, 12857 (1959).
- 17. Agnew, J.T., Agnew, W.G., & Wark, K., Jr.
 Comparison of Emission
 Spectra of Low Temperature
 Combustion Reactions Produced
 in an Engine and in a FlatFlame Burner.
 Symposium on Combustion, 6th,
 Yale Univ., New Haven, Conn.,
 894-902 (1956).
 C. A.,52, 4144 (1958).

- 18. Agnew, W.G., & Agnew, J.T. Visible Emission Spectra of Two-Stage Flames of Diethyl Ether Produced in Flat-Flame Burners.
 Ind. Eng. Chem., 48, 2224-31 (1956)C. A., 51, 4139 (1957).
- 19. Alder, D.G., Pratt, M.W.T.

 2 Gray, P.

 The Formation and Fission of Alkoxy Radicals during the Pyrolysis of the Alkyl Nitrates.

 Chem. & Ind. (London), 1955, 1517-19.

 C. A.,51, 6502 (1957).
- 20. Aleksandrova, Ya. A., Huan, Y., Pravednikov, A.N., & Medvedev., S.S.
 Reactions of Oxygen-Containing Radicals of Type RO.
 Doklady Akad. Nauk S.S.S.R., 123, 1029-32 (1958).
 C. A., 53, 7736 (1959).
- 2i. Alexander, P. & Fox, M.
 The Role of Free Radicals in
 the Degradation of High Polymers by Ultrasonics and by
 High Speed Stirring.
 J. Polymer Sci., 12, 533-41
 (1954).
 C. A., 48, 5545 (1954).
- 22. Alger, R.S., Anderson, T.H. and Webb, L.A.
 Irradiation Effects in Simple Organic Solids.
 J. Chem. Phys., 30, 695-706 (1959).
 C. A.,53, 14718 (1959).
 Information concerning ionization products and associated electronic processes was obtained by optical absorption and electron paramagnetic resonance.

- 23. Allen, A.O., & Bawn, C.E.H.
 The Formation of Free Radicals
 by the Interaction of Sodium
 Vapor and Organic Halides.
 Trans. Faraday Soc., 34, 463-7
 (1938).
 C. A., 32, 4056 (1938).
 Hartel & Polanyi, C. A., 25,
 17261 (1931).
 Paneth, C. A., 29, 3301 (1935).
- 24. Allen, A.O.
 Radiation Chemistry of Aqueous Solutions.
 J. Phys. & Colloid Chem., 52, 479-90 (1948).
 C. A., 42, 4454 (1948).
- 25. Allen, H.C., Jr., Blaine, L.R. & Plyler, E.L.
 The Emission Spectrum of OH from 2.8 to 4.lu.
 Spectrochim. Acts, 9, 126-32 (1957).
 C. A.,51, 14419 (1957).
- 26. Allen, R.L. & Stone, F.S.
 Nature of the Product Condensed at Low Temperatures from Dissociated Peroxide Vapor.
 Nature, 180, 752-3 (1957).
 C. A., 52, 2630 (1958).
- Theories of the Biological Action of Ionizing Radiations.

 Brit. J. Radiology, 21, 72-4 (1948).

 C. A., 42, 8847 (1948).

 Weiss, C. A., 38, 5725 (1944).

 Lea, C. A., 40, 3485 (1946).

 Burton, C. A., 41, 3690 (1947).
- 28. Allsopp, C.B.
 Radiation Chemistry in Relation to Radiobiology.
 Brit. J. Radiology, 24, 413-16 (1951).
 C. A., 46, 543 (1952).

- Alyea, H.N.
 Chain Reactions Produced by
 Light and by λ-Radiation.
 J. Am. Chem. Soc., 52, 27435 (1930).
 C. A., 24, 4711 (1930).
- 30. Amdur, I.
 The Recombination of
 Atomic Hydrogen.
 Phys. Rev., 43, 208 (1933).
 C. A.,27, 4992 (1933).
 Steiner & Wicke, C. A.,
 26, 1178 (1932).
 Smallwood, C. A.,23,
 4397 (1929).
 Amdur & Robinson, C. A.,
 27, 3388 (1933).
- 31. Anderson, J.M., Kavadas, A.D. & McKay, R.W. Decay of the Nitrogen Afterglow.

 Proc. Phys. Soc. (London), 70A, 877-86 (1957).

 C. A.,52, 15265 (1958).
- 32. Anderson, J.M.
 The Nature of Active Nitrogen.

 Proc. Phys. Soc. (London), 70A, 887-99 (1957).
 C. A., 52, 15265 (1958).
- Anderson, L.C.
 Absorption Spectra of Free Radicals.
 J. Am. Chem. Soc., <u>57</u>, 1673-6 (1935).
 C. A., <u>29</u>, 7314 (1935).
- M. & Baird, J.G., Jr.
 Optical Polarization of Atomic Hydrogen.
 Phys.Rev.Letters, 1, 229-30 (1958).
 C. A.,53, 53 (1959).

- Anderson, R.D., Davison, S., & Burton, M.
 The Reaction of Methyl Radicals with Hydrogen.
 Discussions Faraday Soc., 1951, No. 10, 136-43.
 C. A., 46, 3377 (1952).
- 36. Angier, D.J., Ceresa, R.J., & Watson, W.F.

 Mechanical Degradation of High Polymers.

 Chem. & Ind. (London), 1958, 593-4.

 C.A.,53, 1821 (1959).

 Pike & Watson, C.A.,47, 5154 (1953).
- 37. Anschutz, L.
 Twin Tubes for Experiments with
 Free Radicals.
 Ber, 71B, 1902 (1938).
 C. A.,32, 8843 (1938).
- 38. Anson, P.C., Fredericks, P.S., & Tedder, J.M.
 Free-Radical Substitution in Aliphatic Compounds.

 I. Halogenation of n-Butane and Isobutane in the Gas Phase.
 J. Chem. Soc., 1959, 918-22.
 C. A.,53, 14915 (1959).
- 39. Antonovskii, V.L., & Berezin, I.V.

 Kinetics of the Isotope Effect of Hydrogen Reaction of Benzene-t with the Methyl Radical.

 Nauch. Doklady Vysshei Shkoly, Khim.i Khim. Tekhnol., 1958, No. 2,320-3e
 C. A.,52, 17917 (1958).

- 40. Antonovskii, V.L. & Berezin, I.V.
 Estimation of the Reactivity of the Hydrogen Atoms in Organic Compounds. Kinetic Isotopic Effects of Tritium in the Radical Reactions of Cycloparaffins.
 Nauch. Doklady Vysshei Shkoly, Khim.i Khim. Tekhnol., 1958, 731-5.
 C. A.,53, 8020 (1959).
- 41. Appalanarasimham, N. Spectroscopic Studies of Ozonizer Discharges.

 III. Effect of Irradiation on the Intensity Distribution of the Second Positive Nitrogen Band.

 Indian J. Phys., 26, 512-18 (1952).

 C. A.,51, 7849 (1957).
 Sci. Abstr., 57A, 422 (1954).
 C. A.,48, 6249 (1954).
- 42. Appalanarasimham, N. Spectral Characteristics of Ozonizer Discharge in Pure Nitrogen at 20mm Pressure.
 Indian J. Phys., 27, 31-8 (1953).
 C. A.,51, 7848 (1957).
 Sci. Abstr., 57A, 421-2 (1954).
- 43. Armstrong, D.A., & Winkler, C.A.
 Comparative Production of Active Nitrogen from Nitrogen, Nitric Oxide, and Ammonia, at Different Discharge Potentials.
 J. Phys. Chem., 60, 1100-2 (1956).
 C. A.,51, 90 (1957).
 Freeman & Winkler, C. A., 49, 11372 (1955).

- 44. Armstrong, D.A. & Winkler, C.A. The Reaction of Active Nitrogen with Mercury Diethyl. Can. J. Chem., 34, 885-7 (1956), C. A.,51, 3458 (1957).
- 45. Aroeste, H. & Benton, W.C. Emissivity of Hydrogen Atoms at High Temperatures.

 J. Appl. Phys., <u>27</u>, 117-21 (1956).

 C. A., 50, 12650 (1956).
- 46. Arthur, J.R.
 Some Reactions of Atomic
 Hydrogen in Flames.
 Nature, 165, 557-8 (1950).
 C. A., 44, 8751 (1950).
- 47. Ascah, R.G., Barton, M., Ricci, J.E. & Davis, T.W. Free Radical Determination in Biacetyl Photolysis. J. Chem. Phys., 14, 487-94 (1946).

 C. A., 40, 6343 (1946).
 Spence & Wild, C. A., 31, 4598 (1937), Spence & Wild C. A., 36, 968 (1942).
- 48. Ashmore, P.G.
 Sensitized Ignitions in Mixtures of Hydrogen and Nitrogen Dioxide.
 Research Correspondence, Suppl. to Research (London), 7, No. 6, 535-6 (1954).
 C. A.,50, 9739 (1956).
- 49. Ashmore, P.G. & Levitt, B.P.
 Thermal Decomposition of Nitrogen Dioxide.
 Research Correspondence, 9,
 No. 6, 525-6 (1956).
 C. A., 52, 1742 (1958).

- 50. Ashmore, P.G., & Levitt, B.P.
 Thermal Reaction between Hydrogen and Nitrogen Dioxide. III. Further Experimental Work on the Kinetics. Reaction Mechanisms. Trans. Faraday Soc., 53, 945-54 (1957).
 C.A., 52, 7826 (1958).
- 51. Ashmore, P.G.
 Changes in the Concentration of Radicals before
 Sensitized Ignitions.
 Chem. Soc. (London), Spec.
 Publ. No. 9, 227-39 (1957).
 C. A.,53, 10915 (1959).
- 52. Aston, J.G., Frity, J.J. & Seki, S. Organic Free Radicals in the Solid State.

 J. Am. Chem. Soc., 79, 1000 (1957).

 C. A., 51, 8494 (1957).
- 53. Aten, A.H.W., Jr.
 Organic Radicals in Chain
 Reactions.
 Kem.Maanedsblad, 19, 97-101
 (1938).
 Chem.Zentr., 1938, II, 2576.
 C. A., 34, 5821 (1940).
 C. A., 33, 5280 (1939).
- 54. Aten, A.H.W., Jr.
 Reactions of Hydroxyl Radicals.
 J. chim. phys., 48, 231-2 (1951).
 C. A., 46, 830 (1952).

- 55. Atherton, N.M., Melville, H.W. & Whiffen, D.H.
 Electron Spin Resonance Studies of Radicals Trapped in Polymers.
 J. Polymer Sci., 34, 199-207 (1959).
 C. A.,53, 6770 (1959).
- 56. Atherton, N.M., Melville, H.W. & Whiffen, D.H.
 Estimation of Free Radicals Trapped in a Polymer Gel by Electron Spin Resonance Spectroscopy.
 Trans. Faraday Soc., 54, 1300-3 (1958).
 C. A.,53, 11999 (1959).
- 57. Audubert, R. & Calmar, G. Half-Life of Active Nitrogen. Compt. rend., 244, 349-51 (1957). C. A., 51, 9356 (1957).
- 58. Audubert, R. & Calmar, G. Half-Life of Active Nitrogen.
 J. chim. phys., 54, 324-31 (1957).
 C. A.,51, 13581 (1957).
- 59. Ausloos, P. & Steacie, E. W.R.
 The Photochemical Decomposition of Azoethane.
 Bull. soc. chim. Belges,
 63, 87-99 (1954).
 C. A., 48, 8658 (1954).
- 60. Ausloos, P. & Steacie, E. W.R.

 The Reaction of Methyl Radicals with H₂CCFO and H₂CCDO. Can. J. Chem., 33, 31-8 (1955).
 C. A., 49, 5973 (1955).

- 61. Ausloos, P. & Steacie, E.W.R.
 The Photolyis of Biacetyl.
 Can.J.Chem., 33, 39-46
 (1955).
 C. A.,49, 5973 (1955).
 Bell, C. A.,48, 453 (1954).
- 62. Ausloos, P. & Steacie, E.W.R.
 Some Complicating Factors in the Photolysis of Acetone.
 Can.J.Chem., 33, 47-55 (1955).
 C. A., 49, 5973 (1955).
- 63. Ausloos, P. & Steacie, E.W.R.
 The Reactions of Methyl and Ethyl Radicals with Diethyl Ketone.
 Can.J.Chem., 32, 593-7 (1954).
 C. A., 49, 9497 (1955).
- 64. Ausloos, P. & Steacie, E.W.R. Photolysis of Methyl Ethyl Ketone. Can.J.Chem., 33, 1062-8 (1955). C. A., 49, 12972 (1955).
- 65. Ausloos, P. & Steacie, E.W.R.
 The Vapor-Phase Photolysis of Acetic Acid.
 Can.J.Chem., 33, 1530-5 (1955).
 C. A.,50, 9159 (1956).
- 66. Ausloos, P.
 Gas-Phase Photolysis of Acetic Acid and Propionic Anhydride.
 Can. J. Chem., 34, 1709-13 (1956).
 C. A.,51, 6358 (1957).

- 67. Ausloos, P. & Paulson,
 J.
 Reactions of Methyl Radicals with Water on Quartz
 and Pyrex Surfaces,
 J.Phys.Chem., 62, 501-2
 (1958).
 C. A., 52, 14306 (1958).
- 68. Austen, D.E.G. & Ingram, D.J.E.
 The Correlation between
 Adscription and Free-Radical Concentration in Activated Carbons.
 Chem. & Ind. (London), 1956,981-2.
 C. A., 51, 4091 (1957).
- 69. Austen, D.E.G., Ingram, D.J.E., & Tapley, J.G.
 Free Radicals Trapped in Low-Temperature Carbons.
 Trans.Faraday Soc., 54, 400-8 (1958).
 C. A.,52, 17868 (1958).
- 70. Austen, D.E.G., Given, P.H., Ingram, D.J.E. & Peover, M.E. Electron Resonance Study of the Radicals Produced by Controlled Potential Electrolysis of Aromatic Substances.

 Nature, 182, 1784-6 (1958).

 C.A., 53, 9854 (1959).
- 71. Austen, D.E.G., Given, P.H., Ingram, D.J.E. & Peover, M.E. Electron Resonance Study of the Free Radicals Produced by Electrolysis of Solvent Extracts of a Coal.

 Fuel, 38, 309-14 (1959).
 C.A.,53, 20753 (1959).

- 72. Avramenko, L.I.
 Reactions of Hydroxyl with
 Other Molecules. I. The
 Reaction of Hydroxyl with
 Carbon Monoxide.
 J.Phys.Chem (U.S.S.R), 21,
 1135-42 (1947).
 C. A., 42, 2495 (1948).
- 73. Avramenko, L.I. & Lorentso, R.V.

 Reactions between Free Hydroxyl and Hydrocarbons.

 Doklady Akad Nauk S.S.S.R., 67, 867-9 (1949).

 C. A., 43, 8820 (1949).
- 74. Avramenko, L.I.
 Preparation of Atomic Oxygen in a Discharge in Water Vapor and Some of Its Reactions.
 Zhur.Fiz. Khim., 23, 790-9 (1949).
 C. A., 43, 8823 (1949).
 C. A., 42, 2495 (1948).
- 75. Avramenko, L.I. & Kolesnikova, R.V.

 Elementary Reactions of Atomic Oxygen with Methane.

 Doklady Akad. Nauk S.S.S.R., 91, 107-9 (1953).

 C. A., 49, 6701 (1955).

 C. A., 47, 953 (1953).
- 76. Avramenko, L.I. & Kolesnikova, R.V.

 The Experimental Determination of the Sequence for the Elementary Reactions of Atoms and Radicals.

 Doklady Akad.Nauk. S.S.S.R., 92, 349-52 (1953).

 C. A., 49, 6701 (1955).

- 77. Avramenko, L.I. & Kolesnikova, R.V.
 Reactions of Atoms of Oxygen with Unsaturated Hydrocarbons.
 Voprosy Khim.Kinetiki, Kataliza i Reaktsionnoi Sposobnosti, Akad.Nauk S.S.S.R., Otdel.Khim.Nauk, 1955, 7-17
 C. A.,50, 7050 (1956).
- 78. Avramenko, L.I. & Kolesnikova, R.V.
 The Mechanism of the Formation of Hydrogen Peroxide from Atoms and Radicals.
 Zhur. Fiz. Khim., 30, 763-8
 (1956).
 C. A.,50, 16302 (1956).
- 79. Avramenko, L.I., Kolesnikova, R.V. & Postnikov,
 L.M.
 New Method for Determining
 the Rate Constant for Elementary Reactions of Atoms
 and Radicals.
 Izvest, Akad.Nauk S.S.S.R.,
 Otdel.Khim.Nauk, 1958, 277-84.
 C. A., 52, 15208 (1958).
- 80. Avramenko, L.I. & Kolesnikova, R.V.
 Reaction of Free Ethyl Radicals with Molecular Oxygen.
 Izvest. Akad. Nauk S.S.S.R.,
 Otdel. Khim. Nauk, 1958, 11928.
 C. A.,53, 7734 (1959).
- 81. Avramenko, L.I. & Kolesnikova, R.V.
 The Mechanism of Formation
 of Water and Hydrogen Peroxide in the Reaction of
 Atomic Hydrogen with Molecular Oxygen.
 Zhur. Fiz. Khim., 32, 2780-6
 (1958).
 C. A.,53, 13744 (1959).

- 82. Avramenko, L.I. & Kolesnikova, R.V.
 Reaction of Atomic Hydrogen with Ethylene.
 Izvest. Nauk S.S.S.R., Otdel. Khim. Nauk, 1959, 7468.
 C. A.,53, 21605 (1959).
- 83. Avramenko, V.A. & Neiman,
 M.B.

 Effect of Acetone on the
 Cool and Hot Flame of Butane.

 Acta Physicochim. U.S.S.R.,
 10, 601-16 (1939) (In English),
 J.Phys.Chem. (U.S.S.R.), 13,
 356-65 (1939).
 C. A., 34, 3569 (1940).
 C. A., 23, 8017 (1939).
- 84. Ayrey, G. & Moore, C.G.
 Radiochemical Studies of
 Free-Radical Vinyl Polymerizations. I. The
 Nature of the Initiation
 and Termination Processes
 in Methyl Methacrylate and
 Styrenel Polymerizations by
 Using C Labeled Initiators.
 J. Polymer. Sci., 36, 41-54
 (1959).
 C. A.,53, 19441 (1959).
- 85. Ayscough, P.B. & Steacie, E.W.R.
 Reactions of Trifluoromethyl Radicals with Propane, Butane and Isobutane.
 Can.J.Chem., 34, 103-7 (1956).
 C. A.,50, 9113 (1956).
- 86. Ayscough, P.B. & Steacie, E.W.R. Photolysis of Hexafluoracetone. Proc.Roy. Soc. (London), 234A, 476-88 (1956). C. A.,50, 9159 (1956).

- 87. Ayscough, P.B.
 The Rate of Recombination of Radicals. II.
 The Rate of Recombination of Trifluoromethyl Radicals.
 J. Chem. Phys., 24, 944-946 (1956).
 C. A.,50, 12660 (1956).
- 88. Ayscough, P.B. & Polanyi, J.C.
 The Reactions of Trifluoromethyl Radicals with Hydrogen Isotopes.
 Trans. Faraday Soc., 52, 960-970 (1956).
 C. A.,51, 5570 (1957).

- 89. Baccaredda, M. & Butt,
 E.
 Alterations of Structure
 and Mechanical Properties
 of Polythene by Atomic
 Radiations.
 Chim.e ind. (Milan), 40, 98392 (1958).
 C. A.,53, 12785 (1959).
- 90. Bachman, G.B., Addison, L.M., Hewett, J.V., Kohn, L., & Millikan, A.G.
 Nitration Studies. I. General Mechanism of Vapor-Phase Nitration.
 J. Org. Chem., 17, 906-13 (1952).
 C. A., 47, 3789 (1953).
- 91. Bachman, G.B., Hass, H.B., & Addison, L.M.
 Nitration Studies. II. Effect of Oxygen on the Vapor-Phase Nitration of Butane.
 J. Org. Chem., 17, 914-27 (1952). C. A.,47, 3789 (1953).
- 92. Bachman, G.B., Hass, H.B., & Hewett, J.V.
 Nitration Studies. III. Effect of Oxygen on the Vapor-Phase Nitration of Propane with Nitrogen Dioxide.
 J. Org. Chem., 17, 928-34 (1952).
 C. A., 47, 3790 (1953).
- 93. Bachman, G.B., Hewett, J.V., & Millikan, A.G.
 Nitration Studies. IV. Effect of Bromine in the Vapor-Phase Nitration of Propane.
 J. Org. Chem., 17, 935-41 (1952).
 C. A., 47, 3790 (1953).
- 94. Bachman, G.B. & Kohn, L.
 Nitration Studies, V. Effect
 of Chlorine in Vapor-Phase
 Nitration with Nitric Acid,
 J. Org. Chem., 17, 942-54 (1952),
 C. A., 47, 3790 (1953).

- 95. Backstrom, H.L.J., Steneryn,
 A. & Perlmann, P.
 Photochemical Reaction
 between Nitric Oxide and 2Propanol, Sensitized by Benzophenone.
 Acta Chem. Scand., 12, 8-23
 (1958) (in English).
 C. A., 52, 19505 (1958).
- 96. Badin, E.J.
 The Atomic Hydrogen-Molecular Oxygen Reaction and Hydrocarbon Oxidation Initiated by Atomic Hydrogen.
 Third Symposium on Combustion and Flame and Explosion Phenomena, 382-5 (1948).
 C. A., 46, 11624 (1952).
- 97. Bagaryatskii, B.A.
 Hydrogen Emission in the
 Spectra of Polar Radiations.
 Usekhi Fiz. Nauk, 65, 63164 (1958).
 C. A.,53, 2761 (1959).
- 98. Bailey, H.C., & Norrish, R.G.W.
 The Oxidation of Hexane in the Cool-Flame Region. Proc. Roy. Soc. (London), A 212, 311-30 (1952).
 C. A., 46, 7853 (1952).
- 99. Bailey, P.S.
 The Reactions of Ozone
 with Organic Compounds.
 Chem. Revs., 58, 925-1010
 (1958).
 C. A.,53, 3027 (1959).
- 100. Baillie, J.C.
 Organometallic Radicals.
 Iowa State Coll. J.Sci.,
 14, 8-10 (1939).
 C. A., 34, 6241 (1940).

- 101. Bair, E.J., Lund, J.T. & Cross, P.C.
 Detection of Free Radical Absorption Spectra by Chemical Modulation.
 J. Chem. Phys., 24, 961-965 (1956).
 C. A., 50, 11117 (1956).
- 102. Balandin, A., & Lieberman, A. Free Radicals in the Process of Pyrolysis in the Electrical Discharge.

 Uchenuie Zapiski (Moscow State Univ.), 2, 209-11 (1934).

 Chem.Zentr., 1935, II, 1525.

 C. A.,30, 6322 (1936).
- 103. Baldwin, R.R. & Simmons, R.F. Inhibition of the First Limit of the Hydrogen-Oxygen Reaction by Ethane.

 Nature, 175, 346-7 (1955).

 C. A., 49, 10022 (1955).
- 104. Baldwin, R.R. & Simmons, R.F. Inhibition of the Second Limit of the Hydrogen + Oxygen Reaction by Ethane.

 Trans. Faraday Soc., 51, 680-93 (1955).
 C. A., 49, 15404 (1955).
 C. A., 46, 5292, 7739 (1952).
 C. A., 49, 10022 (1955).
- 105. Baldwin, R.R., Corney, N.S., & Simmons, R.F.
 The Inhibition of the Hydrogen-Oxygen Reaction by Hydrocarbons.
 5th Symposium on Combustion, Pittsburg, 1954, 502-10 (Fub. 1955).
 C. A., 49, 16384 (1955).
 C. A., 49, 1540 (1955).

- 106. Baldwin, R.R.
 Chain Termination with
 Surfaces of Intermediate
 Efficiency.
 Trans. Faraday Soc., 52,
 1337-44 (1956).
 C. A.,51, 6293 (1957).
 G.v. Elbe & B. Lewis,
 C. A.,31, 6538 (1937).
 N.N. Semenov, C. A.,38,
 3189 (1944).
- 107. Baldwin, R.R.
 The First Limit of the
 Hydrogen + Oxygen Reaction
 in Potassium Chloride-Coated
 Vessels.
 Trans. Faraday Soc., 52, 134454 (1956).
 C. A.,51, 6293 (1957).
 C. A.,49, 15404 (1955).
- 108. Bamford, C.H. & Jenkins, A.D.
 Studies in Polymerization.
 VI. Acrylonitrile: The Behaviour of Free Radicals in Heterogeneous Systems.
 Proc. Roy. Soc., (London), A216, 515-39 (1953)
 C. A., 47, 7818 (1953).
 C. A., 44, 2276 (1950).
- 109. Bamford, C.H. & Jenkins, A.D.

 The Occlusion of Free Radicals by Polymers:
 Physical Factors Determining the Concentration and Behaviour of Trapped Radicals.
 Proc.Roy.Soc. (London), A 228, 220-37 (1955).

 C. A., 49, 7941 (1955).
 C. A., 49, 7285 (1955).

- 110. Bamford, C.H., Jenkins, A.D., Ingram, D.J.E. & Symons, M.C.R.

 Detection of Free Radicals in Polyacrylonitrile
 by Paramagnetic Resonance.
 Nature, 175, 894-5 (1955).
 C. A., 49, 12895 (1955).
- 111. Bamford, C.H., Jenkins, A.D., Symons, M.C.R. & Townsend, M.G.
 Trapped Radicals in Heterogeneous Vinyl Polymerization.
 J. Polymer Sci., 34, 181-98 (1959).
 C. A.,53, 7724 (1959).
- 112. Bamford, D.A. & Bamford, C.H.
 Photolysis of Organic
 Nitrogen Compounds.
 III. Methyl Isocyanate.
 J. Am. Chem Soc., 30-4 (1941).
 C. A., 35, 3970 (1941).
 C.H. Bamford, C. A., 33, 2809 (1939).
- 113. Banbury, D.L., Williams, R.R., Jr., & Hamill, W.H. Diffusion and Hot Radical Kinetics in the Photolysis of Liquid Ethyl Iodide.
 J. Am. Chem. Soc., 78, 6228-33 (1956)
 C. A., 51, 5569 (1957).
- 114. Banus, J., Emeleus, H.J. & Haszeldine, R.N.
 Reactions of Perfluoro-alkyl Radicals.
 J.Chem.Soc., 1950, 3041-5.
 C. A., 45, 5605 (1951).

- 115. Barak, M. & Taylor, H.S.
 Photochemical, Mercury
 Sensitized Reactions between
 Hydrogen, Oxygen and
 Carbon Monoxide.
 Trans. Faraday Soc., 28,
 569-81 (1932).
 C. A.,26, 5013 (1932).
- 116. Baranaer, M.K., Zinov 'er, Yu.M., Skripach, T.K., & Soborovskii, L.Z. Synthesis of Organophosphorus Compounds from Hydrocarbons and Their Derivatives. VIII. Oxidation of Phosphorus Trichloride by Oxygen. Zhur.Obshchei Khim., 28, 1628-31 (1958). C. A.,53, 1117 (1959).
- 117. Barb, W.G.
 Effect of Nonterminal Monomer Units on the Reactivity of Polymeric Free Radicals.
 J. Polymer Sci., 11, 117-26 (1953).
 C. A., 48, 2408 (1954).
- 118. Barbier, D.
 Analysis of the Spectrum
 of the Night Sky.
 Ann. geophys., 11, 181-208
 (1955).
 C. A., 49, 14478 (1955).
- 119. Barbier, D. & Glaume, J.
 The Structure of the Night
 Sky Layer Which Emits the
 5577 Ray.
 Ann. geophys., 15, 266-71
 (1959).
 C. A.,53, 21134 (1959).

- 120. Barbier, D.

 Systematic Variations in Intensity of the Principal Radiations of the Light of the Night Sky at the Observatory of Haute-Provence.

 Ann. geophys., 15, 412-14 (1959).

 C. A.,53, 21134 (1959).
- 121. Barker, R.S., Snow, R.L. & Eyring, H.
 Energy Calculations of
 Multiple Hydrogen-Atom
 Systems by VB and MO Methods.
 J. Chem. Phys., 23, 16861689 (1955).
 C. A.,50, 664 (1956).
- 122. Barnard, D., Bateman, L., Cole, E.R. & Cunneen, J.I. Sulfoxides and Thiosulfinates as Inhibitors of Autoxidation and Other Free Radical Reactions.

 Chem. & Ind. (London), 1958, 918-19.

 C. A., 53, 1108 (1959).
 - 123. Barr, D.A., Francis, W.C. & Haszeldine, R.N.
 Perfluoroalkoxy Radicals.
 Nature, 177, 785-6 (1956).
 C. A., 50, 9883 (1956).
 - 124. Barr, N.F. & Allen, A.O.
 Hydrogen Atoms in the Radiolysis of Water.
 J. Phys. Chem., 63, 928-31
 (1959).
 C. A.,53, 21096 (1959).

- 125. Barrere, M. & Barrere, S. Spectrographic Study of a Flame Stabilized in a Gas Stream.

 Recherche Aeronaut. (Paris), No. 67, 11-20 (1958).

 C.'A.,53, 11960 (1959).
- 126. Barron, G.
 The Role of Free Radicals in Biological Oxidations.
 Ann. N.Y. Acad. Sci., 67, 648-60 (1957).
 C. A.,51, 16636 (1957).
- 127. Barson, C.A., Bevington, J.C. & Eaves, D.E.
 Reactivities of Monomers towards the Benzoyloxy Radical.
 Trans. Faraday Soc., 54, 1678-83 (1958).
 C. A.,53, 15727 (1959).
- 128. Barth, C.A. & Kaplan, J. Herzberg Oxygen Bands in "Air" Afterglows and the Night Airglow.
 J. Chem. Phys., 26, 506-10 (1957).
 C. A., 51, 93-8 (1957).
- 129. Burtt, B.P. & Zahlan,
 A.B.

 \(\alpha\)-Induced Decomposition of Ammonia II. Effects of Variations in Intensity and Pressure.

 J. Chem. Phys., 26, 846-50 (1957).
 C. A., 51, 12670 (1957).
 C. A., \(\frac{49}{49} \), 10087 (1955).

- 130. Barusch, M.R., Crandall,
 H.W., Payne, J.Q., & Thomas,
 J.R.
 Preflame Combustion of Hydrocarbons: Identification of
 β-Dicarbonyl Compounds,
 Ind. Eng. Chem., 43, 2764-6
 (1951).
 C. A.,46, 2266 (1952).
- 131. Barusch, M.R., Neu, J.T.,
 Payne, J.Q., & Thomas, J.R.
 Preflame Combustion of Hydrocarbons: Possible Intermediates to \$\beta\$-Dicarbonyl Formation.

 Ind. Eng. Chem., 43, 2766-9 (1951).
 C. A., 46, 2266 (1952).
- 132. Basevich, V.Ya.
 Spectroscopic Investigation of a Turbulent Flame.
 Zhur. Fiz.Khim., 32, 1077-80 (1958).
 C. A.,52, 19391 (1958).
- 133. Bass, A.M. & Broida, H.P. Spectra Emitted from Solid Nitrogen Condensed at 4.2°K from a Gas Discharge. Phys. Rev., 101, 1740-7 (1956). C. A.,50, 9869 (1956). C. A.,48, 11932 (1954). C. A.,49, 5973 (1955). C. A.,50, 6915 (1956).
- 134. Bates, D.R., & Witherspoon, A.E. The Photochemistry of Some Minor Constituents of the Earth's Atmosphere (CO₂, CO, CH₄, N₂O). Monthly Notices Roy. Astrom. Soc., 112, 101-24 (1952). C. A., 46, 8528 (1952).

- 135. Bates, D.R. & Nicolet, M.
 Photochemistry of Atmospheric
 Water Vapor.
 J.Geophysical Research, 55,
 301-27 (1950).
 C. A., 46, 8528 (1952).
- 136. Bates, J.R.
 The Reaction of Hydrogen
 Atoms with Oxygen Molecules
 and the Lifetime of HO₂.
 Z. physik Chem., <u>B22</u>, 469-70
 (1933).
 C. A.,28, 25 (1934).
 C. A.,27, 4469 (1933).
- 137. Bauer, E.
 Cross Sections of Dissociative Recombinations.
 Can.J. Phys., 34, 1436-47 (1956).
 C. A., 51, 3270 (1957).
- 138. Bauer, S.H., Schott, G.L., & Duff, R.E.
 Kinetic Studies of Hydroxyl
 Radicals in Shock Waves.
 I. The Decomposition of
 Water between 2400 and 3200°K.
 J.Chem.Phys., 28, 1089-96 (1958).
 C. A.,52, 16845 (1958).
- 139. Bauman, R.G. & Born, J.W. Mechanism of Radiation Damage to Elastomers.

 I. Chain Scission and Antirad Action.

 J. Appl. Polymer Sci., 1, 351-5 (1959).

 C. A.,53, 23031 (1959).

- Partition Function and Free Enthalpy of the OH Radical. Z.physik.Chem. (Frankfurt), 14, 173-83 (1958). C. A.,52, 9690 (1958).
- 141. Bawn, C.E.H.
 Stability of Free Radicals.
 Trans.Faraday Soc., 34, 598607 (1938).
 C. A.,32, 5773 (1938).
- 142. Bawn, C.E.H. & Hunter, R.F. Trimethylene Biradical. Trans. Faraday Soc., 34, 608-13 (1938).
 C. A.,32, 5773 (1938).
- 143. Bawn, C.E.H. & Milsted, J. Stability of Hydrocarbon Biradicals and Their Reactions. Trans.Faraday Soc., 35, 889-99 (1939).
 C. A., 33, 9280 (1939).
- 144. Bawn, C.E.H. & Tipper, C.F.H.
 Reactions of Free Radicals in
 the Gas Phase.
 Discussions Faraday Soc., 1947,
 No. 2, 104-11.
 C. A., 43, 5270 (1949).
 CH₃, CH₂, C₂H₅, N, and H.
- 145. Bawn, C.E.H. & Whitby, F.J. Formation and Reactions of Free Radicals in Solution at Low Temperatures.

 Discussions Faraday Soc., 1947, No. 2, 228-36.

 C. A., 43, 5732 (1949).

- 146. Bawn, C.E.H.
 The Structure and Reactivity
 of Free Radicals.
 J. Chem.Soc., 1949, 1042-50.
 C. A., 44, 2832 (1950).
- 147. Bawn, C.E.H.
 Free Radicals.
 Trans.Faraday Soc., 49, 558-64 (1953).
 C. A., 48, 9 (1954).
- 148. Bawn, C.E.H.
 Free Radical Reactions in
 Solution Initiated by Heavy
 Metal Ions.
 Discussions Faraday Soc.,
 1953, No. 14, 181-90.
 C. A.,48, 432 (1954).
- 149. Bawn, C.E.H.
 Peroxy Radicals and Oxidation of Hydrocarbons.
 Chem. Soc. (London), Spec.
 Publ. No. 9, 65-77,
 discussion 78-80 (1957).
 C. A.,53, 10914 (1959).
- 150. Baxendale, J.H. & Wilson, J.A.
 Photolysis of Hydrogen
 Peroxide at High Light Intensities.
 Trans. Faraday Soc., 53,
 344-56 (1957).
 C. A.,51, 13581 (1957).

- 151. Baxendale, J.H. & Thomas, J.K.

 Degradation of Polymethacrylic Acid by Ultraviolet and X-Irradiation.

 Trans. Faraday Soc., 54, 1515-25 (1958).

 C. A.,53, 12858 (1959).
- 152. Bay, Z. & Steiner, W.
 A Spectroscopic Method for the
 Detection of Unstable Intermediate Products in Active Gases
 and its Application to Active
 Oxygen, Nitrogen, and Hydrogen.
 Z. Physik.Chem,Abt.B, 3, 149-61
 (1929).
 C. A., 23, 3627 (1929).
- 153. Becker, E.D. & Pimentel, G.C. Spectroscopic Studies of Reactive Molecules by the Matrix Isolation Method.

 J.Chem.Phys., 25, 224-8 (1956).
 C. A.,50, 15244 (1956).
 C. A.,49, 2158 (1955).
- 154. Becker, E.D., Pimental, G.C. & Van Theil, M.

 Matrix Isolation Studies: Infrared Spectra of Intermediate Species in the Photolysis of Hydrozoic Acid.

 J. Chem. Phys., 26, 145-50 (1957).

 C. A., 51, 7160 (1957).

 C. A., 50, 15244 (1956).
- 155. Beckey, H.D.

 Mass Spectrometric Examinations of the Reactions and Properties of Free Radicals and Atoms.

 Angew. Chem., 70, 327-39 (1958).

 C. A.,52, 16843 (1958).

 A review is given with 49 references.

- 156. Beeck, 0.
 Atom Collisions.
 I. Production of Slow
 Atomic Beams by Discharge and Their Measurement with a Thermoelement.
 Ann. Physik, 19, 121-8 (1934).
 C. A., 28, 2261 (1934).
- 157. Beeck, O. & Wayland, H. Atom Collisions II. Ionization of Argon by Neutral Argon.
 Ann. Physik, 19, 129-42 (1934).
 C. A., 28, 2261 (1934).
 Weizel & Beeck, C. A., 26, 5829 (1932).
- 158. Beeck, O. & Rust, F.F.
 On the Polymerization of
 Ethylene and Propylene by
 Free Alkyl Radicals (Methyl
 and Ethyl).
 J.Chem.Phys., 9, 480-3 (1941).
 C. A., 35, 4729 (1941).
- 159. Behrens, H.
 Soot Formation and Radical Equilibria in Flames.
 Z.physik.Chem., 199, 1-14
 (1952).
 C. A., 46, 11633 (1952).
- 160. Belchetz, L.

 Thermal Catalytic Decomposition of Methane.

 Trans.Faraday Soc., 30, 170-9 (1934).

 C. A., 28, 2321 (1934).

 C. A., 26, 1232-3 (1930).

 Paneth method used for detection.
- 161. Bell, E.R., Dickey, F.H.,
 Raley, J.H., Rust, F.F.
 & Vaughan, W.E.
 Oxidation of Hydrocarbons
 Catalyzed by Hydrogen
 Bromide. Oxidation of
 Branched-Chain Compounds.
 Ind.Eng.Chem., 41, 25972604 (1949).
 C. A., 44, 1886 (1950).

- 162. Bell, E.R., Raley, J.H.,
 Rust, F.F., Seubold, F.H.
 & Vaughan, W.E.
 The Reaction of Free Radicals Associated with LowTemperature Oxidation of
 Paraffins.
 Discussions Faraday Soc.,
 1951. No. 10, 242-9.
 C. A.,46, 3378 (1952)
- 163. Bell, J.
 Spectrographic Studies of
 the Explosive Combustion
 of Methane.
 Proc.Roy.Soc. (London), A158,
 429-454 (1937).
 C. A.,31, 2823 (1937).
- 164. Bellamy, E.H. & Hogg, W.R. Columnar Recombination in Nitrogen. Phil. Mag., 1, (8),722-4 (1956). C. A.,51, 9340 (1957).
- 165. Beltrame, P. & Simonetta, M.

 Energy of Atomization and Geometry of Methyl and Methylene Radicals.

 Rend. ist. lombardo sci., Pt.I., Classe sci. mat. e nat., 91, 849-56 (1957).

 C. A.,53, 3803 (1959).
- 166. Benedict, W.S., Plyer, E.K. & Humphreys, C.J.
 Vibration-Rotation Lines of OH in Flame Spectra.
 Phys. Rev., 79, 203 (1950).
 C. A., 46, 6926 (1952).
- 167. Benington, F.
 The Capture of Gas Phase Free
 Radicals with Organic Free
 Radical Reagents (H and CH₃).
 Third Symposium on Combustion
 and Flame and Explosion Phenomena.
 Univ. of Wisconsin, 1948,
 148-52.
 C. A., 46, 11625 (1952).

- 168. Benkeser, R.A. & Schroeder, W. Free-Radical Aromatic Substitution by Triphenylmethyl. J. Am. Chem Soc., 80, 3314-22 (1958). C. A.,53, 6148 (1959).
- 169. Benson, S.W. & Falterman, C.W. Free Radical Processes in the Photolysis of Acetone.
 J.Chem.Phys., 20, 201-2 (1952).
 C. A., 46, 6941 (1952).
 Feldman, et al., C. A., 40, 16 (1946).
- 170. Benson, S.W. & Axworthy,
 A.E., Jr.
 A Detailed Formulation of
 Kinetic Processes.
 II. The Role of Collision
 Processes.
 J.Chem.Phys., 21, 428-33
 (1953).
 C. A., 47, 5225 (1953).
- 171. Benson, S.W.
 Pyrolysis of Dimethyl
 Ether.
 J.Chem.Phys., 25, 27-31
 (1956).
 C. A.,50, 14331 (1956).
- 172. Benson, S.W.
 Photon-Propagated Chain
 Reactions and the Short
 Wavelength Photolysis of
 Ozone.
 J. Chem. Phys., 26, 1351-2
 (1957).
 C. A.,51, 14427 (1957).
- 173. Benson, S.W. & Axworthy, A.E., Jr. Mechanism of the Gas-Phase Thermal Decomposition of Ozone.

 J.Chem.Phys., 26, 1718-26 (1957).

 C. A., 51, 17361 (1957).
 C. A., 47, 5225 (1953).

- 174. Benson, S.W. & Buss, J.H. Halogen-Catalyzed Decomposition of N₂O and the Role of the Hypohalite Radical (C1-O-O).

 J.Chem. Phys., 27, 1382-4 (1957).
 C. A., 52, 5945 (1958).
- 175. Bergaust, E.
 How Good are Free Radicals.
 Missiles & Rockets, 3, 78-80
 (1958).
 C. A.,52, 20986 (1958).
- 176. Bergel' son, L.D.
 Radical Addition of Hydrogen
 Bromide to 1-Bromoacetylenes.
 Izvest. Akad. Nauk S.S.S.R.,
 Otdel. Khim. Nauk, 1958, 14991500.
 C. A.,53, 7969 (1959).
- 177. Beringer, R. & Heald, M.A. Electron Spin Magnetic Moment in Atomic Hydrogen. Phys.Rev., 95, 1474-81 (1954). C. A., 48, 13463 (1954).
- 178. Berisford, R. & LeRoy, D.S. Reaction of Deuterium Atoms with Ethane: Mechanism of Methane Exchange.

 Can. J. Chem., 36, 983-9 (1958).

 C. A.,52, 16016 (1958).
- 179. Berko, S. & Zuchelli, A.J. Free Radical Quenching of Positron Lifetimes. Phys. Rev., 102, 724-8 (1956). C. A.,50, 12690 (1956). Bell & Graham, C. A.,47, 9805 (1953).
- 180. Berkowitz, J., Chupka, W.A. & Kistiakowsky, G.B.

 Mass Spectrometric Study of the Kinetics of Nitrogen Afterglow.

 J. Chem. Phys., 25, 457-66 (1956).

 C. A., 51, 872 (1957).

- 181. Berkowitz, J.

 A New Phenomenon in Activated Nitrogen.

 Proc. Phys. Soc. (London), 70A, 480-3 (1958).

 C. A., 52, 11574 (1958).

 C. A., 49, 14481 (1955).
- 182. Berlie, M.R. & LeRoy, D.J.
 Reaction of Atomic Hydrogen
 with Ethane.
 J. Chem. Phys., 20, 200-1
 (1952).
 C. A., 46, 7411 (1952).
 C. A., 45, 6023 (1951).
- 183. Berlie, M.R. & LeRoy, D.J.
 The Reactions of Atomic
 Hydrogen with Ethanes
 Discussions Faraday Soc.,
 1953, to. 14. 50-4.
 C. A.,48, 1121 (1954).
 C. A.,46, 7411 (1952).
- 184. Berlie, M.R. & LeRoy, D.J.

 Kinetics of the Reaction
 H + CH₄ = CH₃ + H₂.

 Can.J.Chem., 32, 650-9 (1954).
 C. A., 48, 11887 (1954).

 Studied in temp. range 991630 by exptl. method of Berlie
 and LeRoy, C.A., 48, 1121 (1954).
- The Chemiluminescence of Hydrazides.
 II. Mechanism of the Phenomenon.
 Buil. Soc. Chem. France, 1951, 329-33.
 C. A., 46, 37 (1952).
 C. A., 44, 10521 (1950).
- 186. Bertheir, G. & Pullman, B. Autoxidation of Olefins. Bull.Soc.Chim.France, 1949, 85-8.
 C. A., 43, 5733 (1949).

- 187. Berthet, G.
 The Hyperfine Structure
 and Electronic Paramagnetic
 Resonance of Organic Free
 Radicals.
 Arch. sci (Geneva), 10, Spec.
 No., 98-104 (1957).
 C. A.,52, 1756 (1958).
- 188. Berthet, G.
 Paramagnetic Electronic
 Resonance and the Structure
 of Free Organic Stable Radicals.
 Ann. Phys., (13), 3, 629-81
 (1958).
 C. A.,53, 7767 (1959).
- 189. Bessy, W.H. & Simpson, O.C.
 Recent Work in Molecular
 Beams.
 Chem. Rev., 30, 239-79 (1942).
 C. A., 36, 4755 (1942).
 A review with 279 references.
 A table of nuclear moments
 is included.
- 190. Bevington, J.C.
 Themodynamics of Interradical
 Reactions.
 Trans. Faraday Soc., 48, 1045-51
 (1952)...
 C. A.,47, 5223 (1953).
- 191. Bevington, J.C. & Ghanem, N.A.
 The Mechanism of Inhibition
 and Retardation in Radical Polymerizations. V. The Effects of
 Picric Acid and m-Dinitrobenzene
 on the Sensitized Polymerization
 of Styrene.
 J. Chem. Soc., 1959, 2071-5.
 C. A.,53, 17930 (1959).
- 192. Bhattacharya, R. & Basu, S. Localization Energy and Radical Reactivity in Vinyl Polymerization.

 Trans. Faraday Soc., 54, 1223-6 (1958)...
 C.A.,53, 10868 (1959)...

- 193. Bichowsky, F.R. & Copeland, L.C.
 An Active Form of Oxygen.
 Nature, 120, 729 (1927).
 C. A., 22, 2703 (1928).
- 194. Bichowsky, F.R. & Copeland, L.C.
 Heat of Formation of Molecular Hydrogen.
 J. Am. Chem. Soc.,50, 1315-22 (1928).
 C. A.,22, 2703 (1928).
- 195. Bickel, A.F. & Waters, W.A.
 Properties and Reactions of
 Free Alkyl Radicals in Solution. I. Some Reactions
 of 2-Cyano- and 2-Carbomethoxy2-Propyl Radicals with Quinones.
 J. Chem. Soc., 1950, 1764-9.
 C. A.,45, 1065 (1951).
- 196. Bickel, A.F. & Kooijman, E.C. The Interaction of Free Radicals and Aromatics. I. Reaction of Anthracene and of Pyrene with 2-Cyano-2-Propyl Radicals.

 Rec. trav. chim.,71, 1137-44 (1952) (in English).
 C. A.,47, 8058 (1953).
- 197. Bijl, D., Kainer, H. & Rose-Innes, A.C.
 Stabilization of Free Radicals by Adsorption; Detection by Paramagnetic Resonance.
 Nature, 174, 830-1 (1954).
 C. A., 49, 5120 (1955).
- 198. Bijl, D., & Rose-Innes, A.C. Preparation of Solid Solutions of Free Radicals at Room Temperature.

 Nature, 175, 82-3 (1955).

 C. A., 49, 6734 (1955).

- 199. Bijl, D., Kainer, H., & Rose-Innes, A.C.
 Biradical Molecular Compounds: A Study by Electron Spin Resonance.
 J. Chem. Phys., 30, 765-70 (1959).
 C. A., 53, 15678 (1959).
 C. A., 49, 4351 (1955).
- 200. Bingel, W.
 Electron Structure and
 Light Absorption of the
 Benzyl Radical.
 Z. Naturforsch., 10a.,
 462-76 (1955).
 C. A., 51, 3289 (1957).
- 201. Biondi, M.A.
 Processes Involving Ions
 and Metastable Atoms in
 Mercury Afterglows.
 Phys. Rev., 90, 730-7 (1953).
 C. A., 47, 9782 (1953).
- 202. Birrell, R.N., Smith, R.F.,
 Trotman-Dickenson, A.F. & Wilkie, H.
 Photodecomposition of Acetaldehyde
 Catalyzed by Thiols.
 J. Chem. Soc., 1957, 2807-10.
 C. A.,51, 12668 (1957).
- 203. Birss, F.W., Danby, C.J. & Hinshelwood, C.

 The Thermal Dissociations of tert-Butyl Peroxide in the Presence of Nitric Oxide.

 Proc. Roy. Soc. (London), A239, 154-64 (1957).

 C. A.,51, 15225 (1957).
- 204. Blacet, F.E. & Calvert, J.G. The Photolysis of Aliphatic Aldehydes. XIV. The Butyraldehydes.

 J. Am. Chem. Soc., 73, 661-7 (1951).

 C. A.,45, 4562 (1951).
 C. A.,45, 3721 (1951).

- 205. Blacet, F.E. & Bell, W.E.
 The Mechanism of Biacetyl Photolysis.
 Discussion Faraday Soc., 1953,
 No. 14, 70-6.
 C. A., 48, 453 (1954).
- 206. Black, R.A.

 Mercury Photosensitized Decomposition of η-Pentane.

 Trans. Faraday Soc., 54, 512-19 (1958).

 C. A., 52, 19506 (1958).
- 207. Blackwood, J.D. & McTaggart, F.K.
 Oxidation of Carbon with Atomic Oxygen.
 Australian J. Chem., 12, 114-21 (1959).
 C. A.,53, 15723 (1959).
- 208. Blanc, M.V., Guest, P.G.,
 Elbe, G.v. & Lewis, B.
 Ignition of Explosive Gas
 Mixtures by Electric Sparks.
 I. Minimum Ignition Energies
 and Quenching Distances of
 Mixtures of Methane, Oxygen,
 and Inert Gases.
 J. Chem. Phys., 15, 798-802
 (1947).
 C. A., 42, 762 (1948).
- 209. Blanchard, L.P. & LeGoff, P.
 Mass Spectrometer with a Low-Temperature Ionization Chamber. To Study Heterogeneous Reactions of Atoms and Free Radicals: Example, Iodine Atoms.
 Can. J. Chem., 37, 515-19 (1959).
 C. A.,53, 14714 (1959).

- 210. Blase, F.E.
 Radiation Chemistry of LowMolecular-Weight Organic
 Solvents.
 Univ. Microfilms (Ann Arbor,
 Mich.), L.C. Card No. Mic 585266, 120pp.; Dissertation
 Abstr., 19, 965-6 (1958).
 C.A.,53, 5885 (1959).
- 211. Blodgett, K.B.
 Cleanup of Atomic Hydrogen.
 J. Chem. Phys., 29, 39-43
 (1958).
 C. A.,52, 17969 (1958).
- 212. Bockris, J.O.M., & Parsons, D.F.
 An Improved Rankine Magnetic-Susceptibility Balance for Use in Free Radical Determinations.
 J.Sci.Instr., 30, 362-3 (1953).
 C. A., 48, 9118 (1954).
- 213. Bodson, E. & Nisoli, F.E.

 Behavior of Certain Diatomic

 Molecules in Stellar Atmospheres.

 Bull. sci. acad. roy. Belg., 21,

 922-6 (1935).

 C. A., 30, 2433 (1936).
- 214. Boehm, E. & Bonhoeffer, K.F.
 The Gaseous Reactions of
 Active Hydrogen.
 Z. physik. Chem., 119, 385-99
 (1926).
 C. A., 20, 1926 (1926).
 C. A., 20, 3645 (1926).
- 215. Boelhouwer, C., Heertjes, P.M., Houtman, J.P.W., Steenis, J. van & Waterman, H.I.

 The Action of Atomic Hydrogen on 1-Hexadecane, Hexadecane and Linseed Oil.

 Rec. trav. chim., 69, 769-86 (1950) (In English).

 C. A., 44, 8852 (1950).

- 216. Boelhouwer, C., Steenis, J. van & Waterman, H.I.
 Preparation of Hydrogen
 Atoms in an Electrical Discharge Tube.
 Rev.trav.chim.,70, 361-4
 (1950) (in English).
 C. A.,45, 6087 (1951).
 C. A.,17, 231 (1923).
 C. A.,16, 529 (1922).
 H prep. by method of Wood.
- 217. Boggess, A., III.

 The Emission Spectrum of H₂+.

 Astrophys. J.,129, 432-6 (1959).

 C. A.,53, 14677 (1959).
- 218. Boldt, G.
 Recombination-and "minus" Continuum of Oxygen Atoms.
 Z. Physik, 154, 319-29 (1959).
 C. A., 53, 8816 (1959).
- 219. Bonch-Bruevich, V.L.
 Surface Recombination
 Soviet Phys. Tech. Phys.,
 1, 1111-14 (1957).
 C. A.,51, 13558 (1957).
 (English Translation).
 C. A.,50, 13591 (1956).
- Bone, W.A. 220. Free Radicals in the Thermal Decomposition and Combustion of Hydrocarbons. Trans.Faraday Soc.,30, 148-52 (1934)。 C・A.,28, 2319 (1934). The reaction for the decomposition of CH_{ll} is probably: $CH_1 \longrightarrow : CH_2 + H_2.$ Spectroscopic evidence for free radicals originating in hydrocarbon flames is based on decomposing molecules of alcohols, aldehydes, etc., by thermal means.

- 221. Bonet-Maury, P.
 Radiation Chemistry in
 Relation to Radiobiology.
 III. Hydrogen Peroxide
 Formation in Water Exposed
 to Ionizing Radiations.
 Brit. J. Radiology, 24, 422-8 (1951).
 C. A., 46, 543 (1952).
- 222. Bonhoeffer, K.F.

 The Behavior of Active
 Hydrogen.

 Z. physik. Chem., 113, 199219 (1924).

 C. A., 19, 915 (1925).

 Prepared by electrical discharge; Wood, C. A., 17, 231
 (1923).

 Z. physik. Chem., 113, 422
 (1924).
- 223. Bonhoeffer, K.F.
 Chemiluminescence with
 Active Hydrogen.
 Z. physik. Chem., 116, 391-400 (1925).
 C. A., 19, 2915 (1925).
- 224. Bonhoeffer, K.F. & Loeb, S.
 The Formation of Hydrogen
 Peroxide from Detonating
 Gas by Optically Activated
 Mercury Atoms.
 Z. physik. Chem., 119, 474-6
 (1926).
 C. A.,20, 3646 (1926).
 The work of Taylor, Marshall,
 and Bates, C. A.,20, 2792 (1926),
 on the direct formation
 of H₂O₂ from H and O is confirmed.
- 225. Bonhoeffer, K.F. & Harteck, P. Experiments on Para and Ortho Hydrogen.
 Naturwissenshaft., 17, 182 (1929).
 C. A., 23, 2614 (1929).

- 226. Bonhoeffer, K.F., Farkas, A. & Rummel, K.W.
 Heterogeneous Catalysis of the Para-Hydrogen Conversion. Z. physik. Chem., B21, 225-34 (1933).
 C. A., 27, 3875 (1933).
- 227. Bonhoeffer, K.F.
 Optical Studies of Flames.
 Z. Elektrochem., 42, 449-57 (1936).
 C. A., 30, 7042 (1936).
- 228. Bonhoeffer, K.F. & Eggert, J. Photographic Studies of the Bunsen Flame.

 Z. Angew Phot., 1, 43-7 (1939).
 C. A., 34, 6874 (1940).
- 229. Boocock, G. & Pritchard, H.D. Kinetic Studies with Para-Hydrogen.
 J. Phys. Chem., 60, 1329-31 (1956).
 C. A.,51, 3247 (1957).
- 230. Boord, C.E.
 Relation of Properties to
 Molecular Structure for
 Petroleum Hydrocarbons.
 Advances Chem. Ser. No. 5,
 Progress Petroleum
 Technol., 353-71 (1951).
 C. A., 45, 9840 (1951).
- 231. Boozer, C.E. & Hammond, G.S.

 Molecular-Complex Formation in Free Radical Reactions (Action of Inhibitors in Initiated Hydrocarbon Reactions).

 J. Am. Chem. Soc., 76, 3861-2 (1954).

 C. A., 49, 15719 (1955).
 C. A., 7548 (1952).

- 232. Born, M. & Schönberg, A.
 Demonstrability of the
 Photochemical Formation
 of Biradicals by Magnetic
 Methods.
 Nature, 166, 307 (1950).
 C. A., 45, 1873 (1951).
- 233. Boudart, M. & Dubois,
 J.T.
 Stabilization of EnergyRich Molecules. I. Energy
 Transfer with Hydrogen.
 J. Chem. Phys., 23, 223-229
 (1955).
 C. A., 49, 6717 (1955).
- 234. Boutaric, A.
 Life Period of Diverse
 Chemical Entities.
 Industrie chimique, 33,
 197-9 (1946).
 C. A.,41, 1915 (1947).
 Reference is made to the
 temporary existence of
 free radicals.
- 235. Bowden, S.T. Free Radical Terminology. Nature, 142, 879 (1938). C. A.,33, 2481 (1939).
- 236. Boyd, M.E.
 The NH Radical by the
 L.C.A.O. S.C.F. Molecular Orbital Method.
 J. Chem. Phys., 29, 108-15
 (1958).
 C. A.,52, 17941 (1958).
 Roothaan, C. A.,46, 7382
 (1952).
 Higuchi, C. A.,50, 9134
 (1956).

- 237. Boynton, C.F., Jr. & Taylor, H.A.
 Photolysis of Methyl
 Bromide in the Presence
 of Mercury.
 J. Chem. Phys., 22, 192933 (1954).
 C. A.,49, 2194 (1955).
 C. A.,74, 7661 (1950).
- 238. Bradley, J.N., Melville,
 H.W. & Robb, J.C.
 The Kinetics and Chemistry
 of the Interaction of
 Alkyl Radicals.
 I. The Disproportionation
 and Combination of Ethyl
 Radicals.
 Proc. Roy. Soc. (London), A236,
 318-32 (1956).
 C. A., 50, 15184 (1956).
- 239. Bradley, J.N., Melville,
 H.W. & Robb, J.C.
 The Kinetics and Chemistry of
 the Interaction of Alkyl Radicals. II. The Collision Efficiency for Interaction of
 Ethyl Radicals.
 Proc. Roy. Soc. (London), A236,
 333-8 (1956).
 C. A., 50, 15184 (1956).
- 240. Bradley, J.N., Melville, H.W. & Robb, J.C.

 The Kinetics and Chemistry of the Interaction of Ethyl Radicals. III. The Disproportionation and Combination of Propyl Radicals.

 Proc. Roy. Soc. (London), A236, 339-42 (1956).

 C. A., 50, 15184 (1956).

- 241. Bradley, J.N., Melville, H.W. & Robb, J.C.

 The Kinetics of the Interaction of Atomic Hydrogen with Olefins. VII. The Competitive Removal of Hydrogen Atoms by Ethylene and Propylene.

 Proc. Roy. Soc. (London), A236, 454-63 (1956).

 C. A., 51, 318 (1957)
- 242. Bradley, J.N., Melville, H.W., & Robb, J.C.

 The Reaction of Alkyl Radicals with Metal Oxides.

 I. The Reaction of Ethyl Radicals with Molybdenum

 Trioxide.

 Proc. Roy. Soc. (London), A236, 446-53 (1956).

 C. A.,51, 4261 (1957)

 Also caused H + H recombination.
- 243. Branscomb, L.M.
 Emission of the Atmospheric
 Oxygen Bands in Discharges
 and Afterglows.
 Electrodeless Discharge
 in O₂ at One cm.
 Phys. Rev., 86 258 (1952).
 C. A.,46, 5964 (1952).
 The rotational temp. is
 710 ± 10 K; the vibrational
 temp is 670 ± 80 K.
- 244. Branscomb, L.M.
 Photodetachment of Atmospheric
 Negative Ions.
 Threshold of Space, Proc. Conf.
 Chem. Aeron., 1956, 101-10
 (1957).
 C. A.,52, 13442 (1958).
- 245. Branscomb, L.M., Burch,
 D.S., Smith, S.J. & Geltman,
 S.
 Photodetachment Cross Section
 and the Electron Affinity of
 Atomic Oxygen.
 Phys. Rev., 111, 504-13 (1958).
 C. A., 52, 19438 (1958).

- 246. Branscomb, L.M.
 Calculated Calibration Points
 for Negative Ion Appearance
 Potentials.
 J. Chem. Phys.,29, 452-3
 (1958).
 C. A.,53, 64 (1959).
- 247. Bray, R.C., Malmstrom, B.G. & Vanngard, T.
 Chemistry of Xanthine Oxidase.
 V. Electron-Spin Resonance of Xanthine Oxidase Solutions.
 Biochem. J., 73, 193-7
 (1959).
 C. A., 53, 22110 (1959).
- 248. Brietenbach, J.W. & Schindler, A.

 The Thermal Dissociation of Organic Compounds into Radicals.

 Monatosh, 84, 820-2 (1953).

 C. A., 48, 1783 (1954).
- 249. Brietenbach, J.W. & Frittum, H.

 Azoxy Compounds as Photochemical Sources of Radicals.

 J. Polymer Sci., 24, 300-1 (1957).

 C. A., 51, 8536 (1957).
- 250. Bresler, S.E., Saminskii, E.M. & Kazbekov, E.N.

 Paramagnetic Resonance Microwave Spectrometer for the
 Study of Chemical Reactions.
 Soviet Phys. Tech. Phys.,2,
 2357-74 (1957) (English Trans.);
 Zhur. Tekh. Fiz., 27, 253553.
 C. A.,52, 17965 (1958).
- 251. Brickstock, A. & Pople, J.A.
 Resonance Energies and Charge
 Distributions of Unsaturated
 Hydrocarbon Radicals and Ions.
 Trans. Faraday Soc., 50,
 901-11 (1954).
 C. A., 49, 3647 (1955).
 C. A., 47, 4157 (1953).

- 252. Briegleb, G.
 Effective Radii of Atoms in
 Molecules.
 Fortschr. Chem. Forsch, 1,
 642-84 (1950).
 C. A.,45, 4977 (1951).
 Wooden atomic and molecular
 models of the Magot-Stuart
 type are reviewed.
- 253. Briner, E. & Ricca, M.
 The Chemical Action of
 Electric Discharges.
 XXXIX. General Review on
 the Production of Ozone
 Obtained by Silent Discharges.
 Helv. Chim. Acta, 38, 340-8
 (1955) (In French).
 C. A.,49, 5975 (1955).
- 254. Briner, E., Minzhuber, A. & Ricca, M.
 Photochemical Production of Ozone: Yields of Ozone from Mercury Vapor Lamps Acting on Air or Oxygen. Helv. chim. Acta, 42, 360-2 (1959) (In French).
 C. A.,53, 12858 (1959).
- D.A.

 Decomposition of Di-tertButyl Peroxide and Kinetics
 of the Gas Phase Reaction
 of tert-Butoxy Radicals in
 the Pressure of Ethylenimine.
 J. Chem. Phys., 20, 25-8 (1952).
 C. A., 46, 6473 (1952).
 Mechanism and activation
 energy are discussed.
- 256. Brinton, R.K. & Volman, D.H. Induced Decomposition of Acetaldehyde by Radicals.
 J. Chem. Phys., 20, 1053-4 (1952).
 C. A., 46, 10814 (1952).
 C. A., 46, 2398 (1952).

- 257. Brinton, R.K.
 The Photolysis of Acetaldazine.
 J. Am. Chem. Soc., 77,
 842-6 (1955).
 C. A., 49, 7988 (1955).
- 258. Brinton, R.K. & Steacie, E.W.R.
 Photolysis of Diethyl Ketone at Low Pressures.
 The Pressure Dependence of the Combinations of Ethyl Radicals.
 Can. J. Chem., 33, 1840-52 (1955).
 C. A.,50, 7602 (1956).
 C. A.,49, 5973 (1955).
 C. A.,47, 5257 (1953).
 Reaction mechanisms and reaction intermediates.
- 259. Brinton, R.K.
 Reaction of Methyl Radicals
 with Ethylene.
 J. Chem. Phys., 29, 781-6
 (1958).
 C. A.,53, 3851 (1959).
- 260. Britton, D., Davidson, N., Gehman, W. & Schott, G. Shock Waves in Chemical Kinetics: Further Studies on the Rate of Dissociation of Molecular Iodine.

 J. Chem. Phys., 25, 804 (1956).

 C. A., 51, 4106 (1957).
 C. A., 49, 10026 (1955).
- 261. Britton, D. & Davidson, N. Shock Waves in Chemical Kinetics: Rate of Dissociation of Molecular Bromine.

 J. Chem. Phys., 25, 810-13 (1956)...
 C. A.,51, 4106 (1957).

- 262. Broida, H.P.
 Rotational Temperatures of
 OH in Methane-Air Flames.
 J. Chem. Phys., 19, 1383-90
 (1951).
 C. A., 46, 2401 (1952).
 Also in a methane 0, flame.
- 263 Broida, H.P. & Shuler,
 K.E.
 Kinetics of OH Radicals
 from Flame Emission Spectra.
 IV. A Study of the HydrogenOxygen Flame.
 J. Chem. Phys., 20, 168-174
 (1952).
 C. A., 46, 6495 (1952).
 C. A., 46, 346 (1952).
- 264. Broida, H.P. & Ialos, G.I.
 Rotational Temperatures of
 Several Flames.
 J. Chem. Phys., 20, 1466-71
 (1952).
 C. A., 47, 9770, (1953).
- 265, Broida, H.P.
 Effects of Self-Absorption
 on Rotational Temperatures
 of OH in Flames.
 J. Chem. Phys., 21, 1165-9
 (1953).
 C. A., 47, 9770 (1953).
 C. A., 46, 10834 (1952).
- 266. Broida, H.P. & Gaydon, A.G. Mechanism of Formation of OH, CH, and HCO in Flame Spectra with Deuterium as Tracer.

 Proc. Roy. Soc. (London), A218, 60-9 (1953).

 C. A., 47, 9780 (1953).

- 267. Broida, H.P.
 Distribution of OH.
 Rotational Intensities in
 Flames.
 Natl. Bur. Standards (U.S.)
 Circ., 523, 23-34 (1954).
 C. A., 48, 6840 (1954).
- 268. Broida, H.P. & Gaydon, A.G. Luminous Reaction between Carbon Monoxide and Atomic Oxygen.

 Trans. Faraday Soc., 49, 1190-3 (1953).
 C. A., 48, 6841 (1954).
 The spectrum shows the CO bands.
- 269. Broida, H.P. & Pellam, J.R. Preparation of Solid Ozone and Atomic Oxygen.
 J. Chem. Phys., 23, 409 (1955).
 C. A., 49, 5973 (1955).
 C. A., 48, 11932 (1954).
- 270. Broida, H.P.
 Abundance of Free Atoms in
 Solid Nitrogen Condensed at
 4.20K from a Gas Discharge.
 J. Chem. Phys., 24, 485-5
 (1956).
 C. A.,50, 6857 (1956).
 C. A.,48, 11932 (1954).
- 271. Broida, H.P. & Kostkowski, H. J.
 Experimental Proof for the Existence of Nonthermal Rotational Distributions of OH (2_c+) in Flames.
 J. Chem. Phys., 25, 676-80 (1956).
 C. A.,51, 2389 (1957).
 C. A.,49, 10021 (1955).

- 272. Broida, H.P. & Heath, D.F. Spectroscopic Survey of Energy Distribution of OH, C2, and CH Radicals in Low Pressure Acetylene-Oxygen Flames.

 J. Chem. Phys., 26, 223-9 (1957).

 C. A.,51, 7852 (1957).

 C. A.,50, 2301 (1956).

 Evidence was presented for the existence of a newly discovered region at the base of the flame.
- 273. Broida, H.P. & Heath, D.F. Luminous Reaction between Carbon Monoxide and Atomic Nitrogen.
 J. Chem. Phys., 26, 1352 (1957).
 C. A.,51, 14429 (1957).
- 274. Broida, H.P.
 Stabilization of Free Radicals at Low Temperatures.
 Ann. N.Y. Acad. Sci., 67, 530-45 (1957).
 C. A.,51, 16112 (1957).
- 275. Broida, H.P. & Peyron, M. Evaporation of Active Species Trapped in a Solid Condensed from Discharged Nitrogen.
 J. Chem. Phys., 28, 725-6 (1958).
 C. A.,52, 12562 (1958).
 C. A.,51, 16112 (1957).
- 276. Broida, H.P.
 Spectroscopic Studies of
 Solids Condensed at 4.2°K from
 Electric Discharge through
 Nitrogen, Oxygen, Hydrogen,
 Water, and Ammonia.
 Threshold of Space, Proc.
 Conf. Chem. Aeron., 1956,
 194-9 (Pub. 1957).
 C. A.,52, 13415 (1958).

- 277. Broida, H.P.
 Luminescence of Solid
 Nitrogen (4.2°K) Containing Atoms or Free Radicals.
 Effect of Dilution with
 Argon.
 J. phys. radium, 18, 593-5
 (1957).
 C. A., 53, 4894 (1959).
- 278. Broida, H.P. & Peyron, M. Luminescence of Solid Nitrogen (4.2°K) Containing Some Atoms or Free Radicals. Effect of Traces of Oxygen, Hydrogen, and Water Vapor.

 J. phys. radium, 19, 480-4 (1958).

 C. A.,53, 7756 (1959).
- 279. Broida, H.P. & Pellam, J.R. Formation and Stabilization of Atoms and Free Radicals. U.S. 2,892,766, June 30, 1959. C. A.,53, 18646 (1959).
- 280. Brokaw, R.S. & Pease, R.N. Effect of Water on the Burning Velocities of Cyanogen-Oxygen-Argon Mixtures.
 J. Am. Chem. Soc., 75, 1454-7 (1953),
 C. A., 47, 10972 (1953).
- 281. Brook, J.H.T.
 Reactions of Hydrocarbons with
 tert-Butoxy Radicals.
 Trans. Faraday Soc., 53,
 327-32 (1957).
 C. A.,51, 14574 (1957).
- 282. Brown, B.R., Grice, J.O.
 Hammick, D.L.L. & Thewlis, B.H.
 Free Radical Reactions of
 Halomethyl Quinolines.
 J. Chem. Soc., 1951, 1145-9.
 C. A.,46, 2056 (1952).

- 283. Brown, H.C. & Russell, G.A.
 The Photochlorination of
 2-Methyl Propane-2-d and
 α-Di-Toluene. The Question
 of Free Radical Rearrangement or Exchange in Substitution Reactions.
 J. Am. Chem. Soc., 74, 3995-8
 (1952).
 C. A., 47, 4852 (1953).
- 284. Brown, L.O. & Miller, N. Light Emitted during the Irradiation of Aqueous Media with α Particles. Trans. Faraday Soc., 51, 1623-32 (1955). C. A.,50, 11827 (1956).
- 285. Brown, R.D.
 A Quantum-Mechanical Treatment
 of Aliphatic Compounds. I. Paraffins.
 (Including Free Radicals).
 J. Chem. Soc., 1953, 2615-21.
 C. A., 48, 1743 (1954).
- 286. Bruin, P., Bickel, A.F. & Kooyman, E.C.
 Free-Radical Reactions
 Involving Sulfur Compounds.
 I. The Interaction of
 2-Cyano-2-Propyl Radicals
 and Thiols.
 Rec. trav. chim., 71, 111523 (1952) (In English).
 C. A., 47, 9908 (1953).
- 287. Bryan, R.B., Holt, R.B. & Oldenberg, O.
 Recombination and Afterglow in Nitrogen and Oxygen.
 Phys. Rev., 106, 83-6 (1957).
 C. A.,51, 16090 (1957).
 Measured by microwave cavity technique.

- 288. Bryant, W.M.D.
 Free Energies of Formation
 of Hydrocarbon Free Radicals.
 I. Application to the Mechanism of Polythene Synthesis.
 J. Polymer. Sci., 6, 359-70
 (1951).
 C. A., 45, 5015 (1951).
- 289. Bryce, W.A. & Ingold, K.U. Reaction of Methyl Radicals with Nitric Oxide.

 J. Chem. Phys., 23, 1968 (1955).

 C. A.,50, 1424 (1956).
- 290. Buben, N. Ya., Voevodskii, V.V., Koritskii, A.T., Molin, Yu. N., Chkheidze, I.I., & Shamshev, V.N.
 Investigation of Free Radicals, Formed in the Process of Irradiation with Fast Electrons, by the Resonance Method.
 Optika i Spektroskopiya, 6, 806-7 (1959).
 C. A., 53, 19565 (1959).
- 291. Buchanan, A.S.
 Kinetics of the Photolysis
 of Acetaldehyde.
 II. Rate of Production of
 Methyl Radicals.
 J. Chem. Soc., 1951, 2317-20.
 C. A., 46, 1355 (1952).
 C. A., 45, 10067 (1951).
 The reactions in the photolysis
 of acetaldehyde above 200°C are
 given using the rate of formation of methyl radicals, determined by reaction with I2.

- 292. Buckler, E.J. & Norrish, R.G.W.

 A Study of Sensitized Explosions. II. Ignition Phenomena in Mixtures of Carbon Monoxide and Oxygen, Sensitized by Hydrogen. Proc. Roy. Soc. (London), A176, 292-318 (1938).

 C. A.,33, 4425 (1939).
 C. A.,31, 4878 (1937).
- 293. Buckley, R.P. & Szwarc, M.
 Methyl Affinities of Ethylene,
 Tetrafluoroethylene and Tetrachloroethylene.
 J. Am. Chem. Soc., 78, 5996-7
 (1956).
 C. A.,51, 1701 (1957).
 C. A.,50, 6890 (1956).
 C. A.,49, 4396, 15379 (1955).
- 294. Bulewicz, E.M., James, C.G. & Sugden, T.M. Photometric Investigations of Alkali Metals in Hydrogen Flame Gases. II. The Study of Excess Concentrations of Hydrogen Atoms in Burnt Gas Mixtures. Proc. Roy. Soc. (London), 235A, 89-106 (1956). C. A.,<u>50</u>, 12609 (1956). $C. A., \overline{49}, 7375 (1955).$ Photometric measurements of alkali metals in $H_2 - 0_2$ flame gases, diluted with N2, are interpreted as giving a measure of the concentration of free H atoms that persist in these gases for several milliseconds after primary combustion. The conclusions reached are supported by experimental evidence.

- 295. Bulewicz, E.M. & Sugden, T.M.

 Recombination of Hydrogen
 Atoms and Hydroxyl Radicals in Hydrogen Flame Gases.

 Trans. Faraday Soc., 54, 1855-60 (1958).

 C. A.,53, 15724 (1959).
 C. A.,51, 7114 (1957).
 C. A.,50, 12609 (1956).
- 296. Bulewicz, E.M. & Sugden, T.M.
 Studies of Oxygen Atoms at High Temperatures.
 Chem. Soc. (London), Spec.
 Publ. No. 9, 81-96 (1957).
 C. A.,53, 18606 (1959).
- 297. Buraway, A.

 The Light Absorption of
 Organic Compounds and the
 Nature of Unsaturated Linkages.

 J. Chem. Soc., 1939, 1177-88.
 C. A., 33, 8561 (1939).
 C. A., 32, 1668 (1938).
 The absorption of light and
 the nature of unsaturated
 linkages for such radicals
 as triphenylmethyl.
- 298. Burdom, M.C., Burgoyne,
 J.H. & Weinberg, F.J.
 The Effect of Methyl
 Bromide on the Combustion
 of Some Fuel-Air Mixtures.
 5th Symposium on Combustion,
 Pittsburgh, 1954, 647-51.
 (Pub. 1955).
 C. A.,49, 16387 (1955).
 (Pub. 1955).

- 299. Burgess, H.J.

 Double Resonance Experiments on the Free
 Radical (SO₂) NO.
 J. phys. radium, 19,
 845-9 (1958) (In French).
 C. A.,53, 8814 (1959).
- 300. Burgess, R.H. & Robb, J.C.
 Mercury-Photosensitized
 Hydrogen + Oxygen Reaction.
 Trans. Faraday Soc., 54,
 1008-14 (1958).
 C. A.,53, 8830 (1959).
- 501. Burkitt, F.H., Coulson, C.A., & Longuet-Higgins, H.C.
 Free Valance in Unsaturated
 Hydrocarbons.
 Trans. Faraday Soc., 47, 553-64 (1951).
 C. A., 46, 1953 (1952).
 C. A., 73, 5241 (1949).
- 302. Burnett, G.M.
 Rate Constants in Radical
 Polymerization Reactions.
 Quart. Revs. (London), 4,
 292 326 (1950),
 C. A., 48, 4935 (1954),
 A review with 89 references.
- 503. Burnett, G.M. & Melville, H.M. Determination of the Concentration of Intermediates and of Rate Constants in Radical Reactions.

 Chem.Rev., 54, 225-88 (1954).

 C. A., 48, 7961 (1954).
- 304. Burnett, G.M. & Cowley, P.R.E.J.
 Retardation Kinetics in Polymerization and Depolymerization
 Processes.
 Trans.Faraday Soc., 49, 1490-5
 (1953).
 C. A.,48, 7999 (1954).

- 305. Burnett, G.M. & Loan, L.D.
 Solvent Participation in Radical Chain Reactions.
 I. Kinetic Analysis.
 Trans.Faraday Soc., 51, 214-18 (1955).
 C. A., 49, 12097 (1955).
- 306. Burnett, G.M. & Loan, L.D. Solvent Participation in Radical Chain Reactions. II. Rates of Polymerization in Benzene Solution. Trans. Faraday Soc., 51, 219-25 (1955). C. A., 49, 12097 (1955).
- 307. Burnett, G.M. & Loan, L.D.
 Solvent Participation in Radical
 Chain Reactions. III. Factors in
 Solution Polymerization.
 Trans. Faraday Soc., <u>51</u>, 226-30
 (1955).
 C. A., 49, 12097 (1955).
- 308. Burns, A.E., & Muraca, R.F.
 Determination of Hydroxyl
 Concentration in Polypropylene
 Glycols by Infrared Spectroscopy.
 Anal. Chem., 31, 397-9 (1959).
 C. A.,53, 9902 (1959).
- 309. Burns, J.F.
 The Heat of Dissociation of
 Nitrogen.
 J. Chem. Phys., 23, 1347 (1955).
 C. A., 49, 13766 (1955).
 C. A., 746, 3849 (1952).
- 310. Burrell, C.M., Majury, T.G., & Melville, H.W.
 A Dielectric-Constant Method of Following the Non-stationary State in Polymerization.
 I. The Theory of the Method.
 Proc.Roy.Soc. (London), A205, 309-22 (1951).
 C. A.,46, 329 (1952).

- 311. Burton, M.
 Photolysis of Acetic
 Acid.
 J. Am. Chem. Soc., 58,
 692 (1936).
 C. A., 30, 3327 (1936).
- 312. Burton, M.
 Studies in the Mechanism of Decomposition.

 I. The Vapor Phase Photolysis of Acetic Acid.

 J. Am. Chem. Soc., 58, 1645-54 (1936).

 C. A., 30, 8029 (1936).
- 313. Burton, M.
 Studies in the Mechanism of Decomposition. II.
 Note on the Photolysis of Formic Acid.
 J. Am. Chem. Soc., 58, 1655-7 (1936).
 C. A., 30, 8029 (1936).
- J14. Burton, M., Ricci, J.E. & Davis, T.W. Free Radicals in the Pyrolysis of Acetaldehyde.

 J. Am. Chem. Soc., 62, 265-7 (1940).

 C. A., 34, 2710 (1940).
- 315. Burton, M.
 Effects of High Energy Radiation on Organic Compounds.
 J. Phys. & Colloid Chem.,
 51, 786-97 (1947).
 C. A.,41, 5801 (1947).
- Radiation Chemistry in Relation to Radiobiology.II. Elementary Processes in the Radiation Chemistry of Water and Implications for Radiobiology.

 Brit. J. Radiology, 24, 416-22 (1951).
 C. A., 46, 543 (1952).

- M.
 Rates of Pyrolysis and
 Bond Energies of Substituted Organic Iodides. I.
 Trans. Faraday Soc., 39,
 19-36 (1943).
 C. A., 37, 2643 (1943).
 C. A., 29, 3901 (1935).
- 318. Butler, J.A.V., & Smith, K.A.

 Degradation of Desoxyribonucleic Acid by Free Radicals (OH from H₂O₂), Nature, 165, 847-8 (1950).

 C. A., 44, 7899 (1950).
- Butler, J.A.V. & Conway,
 B.E.
 Action of Photochemically
 Generated Radicals from Hydrogen
 Peroxide on Desoxyribose
 Nucleic Acid and Simple
 Model Substances.
 Proc. Roy. Soc. (London),
 B141, 562-80 (1953).
 C.A.,47, 11272 (1953).
- 320. Byram, E.T., Chubb, T.A. & Friedman, H.
 Dissociation of Oxygen at
 High Altitudes.
 Threshold of Space, Proc.
 Conf. Chem. Aeron., Cambridge,
 Mass., 1956, 211-16 (Pub. 1957).
 C. A., 52, 16897 (1958).
- 321. Byr'Ko, V.M., Kruglyakova, K.E. & Lukovnikov, A.F. Chemical Mechanism of the Oxidation of Propane in the Gas Phase.

 Doklady Akad. Nauk S.S.S.R., 108, 1093-5 (1956).

 C. A.,51, 4104 (1957).

- 322. Byrne, J.F.
 A Study of the Recombination Reactions of Active
 Particles Produced by an
 Electric Discharge in Water
 Vapor.
 Third Symposium on Combustion
 and Flame and Explosion Phenomena, pp. 481-4.
 Univ. of Wisconsin, Madison,
 Sept. 7-11 (1948) (Pub. 1949,
 Williams and Wilkins Company,
 Baltimore, Md.).
- Byron, S.R.
 Measurement of the Rate of Dissociation of Oxygen.
 J. Chem. Phys., 30, 1380-92 (1959).
 C. A.,53, 19536 (1959).
- 324. Bywater, S. & Steacie, E.W.R. Mercury (P₁) Sensitized Decomposition of Butane and Isobutane at High Temperature.

 J. Chem. Phys., 19, 172-5 (1951).

 C. A.,45, 6496 (1951).

 Decomposition products: butane and isobutane. The Hg (P₁)-sensitized decomposition of butane and isobutane results in the formation of decomposition products of butyl radicals at temperatures above 250°C.
- 325. Bywater, S. & Steacie, E.W.R.
 The Mercury (³P₁) Photosensitized Decomposition of Propane at High Temperatures.
 J. Chem. Phys., 19, 319-25 (1951).
 C. A., 45, 8897 (1951).
 C. A., 45, 6496 (1951).

- 326. Bywater, S. & Steacie, E.W.R. Mercury (⁵P₁)-Photosensitized Reaction of Ethane at High Temperatures.
 J. Chem. Phys., 19, 326-9 (1951).
 C. A., 45, 8897 (1951).
- R.
 Temperature-Independent
 Factors of Hydrogen Abstraction Reactions in the Gas Phase with H and CH₂.
 Can. J. Chem., 30, 773-8 (1952).
 C. A., 47, 4176 (1953).

- 328. Cagle, F.W.
 Thermal Decomposition of
 Methane.
 J. Chem. Phys., 25, 1300-1
 (1956).
 C. A.,51, 6293 (1957).
 C. A.,42, 3244 (1948).
 C. A.,29, 723 (1935)
- 329. Cain, C.K. & Wiselogle, F.Y. Bivalent Nitrogen.

 I. The Rate of Dissociation of Tetraphenylhydrazine.

 J. Am. Chem. Soc., 62, 1163-9 (1940).

 C. A., 34, 6240 (1940).

 Free Phon radicals.
- 530. Calingaert, G. & Beatty, H.A. Redistribution Reaction.
 I. The Random Intermolecular Exchange of Organic Radicals.
 J. Am. Chem. Soc., 61, 2748-54 (1939).
 C. A., 34, 373 (1940).
- 331. Calingaert, G., Beatty, H.A. & Neal, H.R.
 Redistribution Reaction.
 II. The Analysis of Metal Alkyl
 Mixtures and the Confirmation
 of Random Distribution.
 J. Am. Chem. Soc., 61, 2755 (1939).
 C. A., 34, 373 (1940).
- 332. Calingaert, G., Soross, H. & Thompson, G.W.
 Redistribution Reaction.
 VIII. The Reactive Affinity
 of Mercury and Lead for
 Methyl and Ethyl Radicals.
 J. Am. Chem. Soc., 62, 154245 (1940).
 C. A., 34, 6219 (1940).
- 733. Callear, A.B. & Robb, J.C.
 Thermal Effects in MercuryPhotosensitized Reactions. II
 Interaction of Atomic Hydrogen
 with Olefins.
 Trans. Faraday Soc., 51, 638-48
 (1955),
 C. A., 49, 15501 (1955).
 C. A., 49, 9388, 14390 (1955).

- 734. Callear, A.B. & Robb, J.C.
 Thermal Effects in MercuryPhotosensitized Reactions. III.
 Reactions in Hydrogen and Oxygen
 Mixtures.
 Trans. Faraday Soc., 51, 649-56
 (1955).
 C. A., 49, 15501 (1955).
 C. A., 49, 9388, 14390 (1955).
- 335. Callear, A.B. & Cvetanovic, R.J.
 Isotopic Effects and Collisional Deactivation in the Mercury Photosensitized Decomposition of Ethylene.
 J. Chem. Phys., 24, 873-8 (1956).
 C. A., 50, 9882 (1956).
- 336. Callomon, J.H. & Ramsay, D.A. The Flash Photolysis of Diacetylene.
 Can. J. Phys., 35, 129-33 (1957).
 C. A.,51, 5569 (1957).
- Jr. & Thompson, D.D.

 Primary Quantum Efficiency
 of Free Radical Formation
 in Acetaldehyde Photolysis
 at 313A.
 J. Am. Chem. Soc., 78, 423942 (1956).
 C. A.,51, 871 (1957).
 Quantum yields and reaction mechanism are discussed.
- 738. Calvert, J.G.
 The Decomposition Reactions of the Formyl and Acetyl
 Free Radicals.
 J. Phys. Chem., 61, 1206-13 (1957).
 C. A., 52, 849 (1958).
 The rate constants for the reactions HCO + M = H + CO + M, CH₃CO + M = CH₃ + CO + M were estimated using dependable data.

- 339. Calvert, J.G.
 Stability of the Formyl Radical.
 J. Chem. Phys., 29, 954-5 (1958).
 C. A.,53, 4842 (1959).
- 340. Calvert, J.G. & Sleppy,

 W.G.

 Kinetic Study of the

 Propyl Radical Decomposition Reaction.

 J. Am. Chem. Soc., 81, 1544-6 (1959).

 C. A.,53, 13745 (1959).

 Thermally equilibrated Pr

 radicals were generated homogeneously through the selective photolysis of azo-methane at 3660A in butyraldehyde-azo-methane mixtures.
- 341. Camagni, P. & Lanzi, G.
 Preliminary Determination of
 the Paramagnetic Resonance of
 Some New Free Radicals.
 Intern. Conf. Mesons and
 Recently Discovered Particles
 e 43 Congr. nazl. fis., PaduaVenice, 1957, XII, 4-5.
 C. A.,53, 17672 (1959).
 The electron spin resonances of
 phenothiazine perchlorate and
 quinoxaline hydrobisulfate in
 the solid state at room temperature have been studied with
 klystron-generated microwaves.
- 342. Campbell, C.E. & Johnson, I. Flash Spectroscopy of Radicals in the Shock Tube.

 J. Chem. Phys., 27, 316-7 (1957).

 C. A.,51, 17465 (1957).

 C. A.,45, 10065 (1951).

- 343. Careri, G.

 Note on the Rate of Recombination of Free Atoms.

 J. Chem. Phys., 21, 749-50 (1953).

 C. A., 47, 6744 (1953).

 Reply: O.K. Rice.
 Ibid., 750-1.
- 344. Cario, G. & Reinecke, L. Energy of Dissociation of Nitrogen Molecules and Luminosity of Active Nitrogen.
 Angew. Chem., 62, 48 (1950). C. A., 47, 5747 (1953).
- Absorption of Oxygen by Rubbers.
 Ind. Eng. Chem., 39, 187-94 (1947).
 Discussion Faraday Soc., London, 1945.
 C. A., 41, 3651 (1947).
 C. A., 39, 1562 (1945).
 C. A., 37, 4362 (1943).
 The results are in accordance with a free radical chain reaction mechanism.
- 346. Carrington, T. & Davidson, N.

 Shock Waves in Chemical Kinetics. The Rate of Dissociation of N₂O₁.

 J. Phys. Chem., 57, 418-27 (1953).

 C. A., 47, 7300 (1953).
 C. A., 46, 4336 (1952).

- 347. Carrington, T. & Broida, H.P. Wall Effects on Rotational Population of OH²∈+ in a Microwave Discharge.

 J. Mol. Spectroscopy, 2, 273-86 (1958).

 C. A.,52, 15239 (1958).

 The wall plays a determining role in the sensitivity of the spectrum to changes in discharge conditions.
- 348. Carter, R.J., Hamill, W.H. & Williams, R.R., Jr.
 Kinetics of Hot Deuterium
 Atoms in the Photolysis of
 Deuterium Iodide.
 J. Am. Chem. Soc., 77, 645760 (1955).
 C. A., 50, 4645 (1956).
 Photolysis of gaseous DI.
- 349. Cashion, J.K. & IeRoy, D.J.
 Free Radical Mechanisms in
 the Mercury-Photosensitized
 Reaction of Hydrogen with
 Acetylene.
 Can. J. Chem., 32, 906-17 (1954).
 C.A.,49, 2194 (1955).
 The results are interpreted
 in terms of elementary reactions
 in which vinyl and ethyl radicals play an important part.
- 350. Castellion, G.A. & Noyes, W.A., Jr. Photochemical Studies.
 II. Nitrous Oxide Ethane System.
 J. Am. Chem. Soc., 79, 290-3 (1957).
 C. A., 51, 6357 (1957).
- 351. Catalano, E. & Milligan, D.E. Infrared Spectra of H₂O, D₂O, and HDO in Solid Argon, Krypton, and Xenon.

 J. Chem. Phys., 30, 45-7 (1959).
 C. A.,53, 9812 (1959).
 A systematic study of the spectra were obtained as a function of concentration at 4.2-20°K.

- 352. Cauchois, Y.
 Energy Levels of
 Atoms with Z below
 70.
 J. phys. radium, 16,
 253-62 (1955).
 C. A., 49, 12107 (1955).
 C. A., 47, 400 (1953).
- 353. Cawthon, T.M., Jr. &
 McKinley, J.D., Jr.
 Near Infrared Spectrum
 of the H, O₃ Reaction.
 J. Chem. Phys., 25,
 585-6 (1956).
 C.A.,51, 81 (1957).
 Wave-length measurements
 were reported of the OH
 bands in the H, O₃ emission.
- 354. Cerfontain, H. & Kutschke, K.O.
 The Photolysis of Azoethane.
 Can. J. Chem., 36, 344-53 (1958).
 C. A.,52, 7875 (1958).
 C. A.,48, 8658 (1954).
 By visible light.
- 355. Chalvet, O. & Daudel, R. Bond-length Calculation in Conjugated Molecules.
 J.Phys. Chem., 56, 365-7 (1952).
 C. A., 46, 6881 (1952).
 The method of spin states was applied to N₂O₁ for which interatomic distances were calculated.
- Calculation of the Ground
 State and Ionization Potential of Certain Ions, Free Radicals and Molecules by the Method of Configuration Interactions.

 Evaluation of Certain Activation Energies.

 Compt. rend., 235, 960-1 (1952).
 C. A., 47, 4187 (1953).

- 357. Chamberlain, J.W.
 Blue Airglow Spectrum.
 Astrophys. J.,128, 71317 (1958).
 C. A.,53, 5860 (1959).
 Recent spectrograms of the blue region of the night-sky spectrum shows clearly resolved the rotational structure of the Open bands due to the A eu X eg system.
- 358. Chambers, E.S.
 Reflex Discharges in Hydrogen.
 U. S. Atomic Energy Comm.
 UCRL-4830, 20 pp. (1957).
 C. A.,51, 13557 (1957).
 Electric discharge in a magnetic field.
- 359. Chanmugam, J. & Burton, M.
 Reactions of Free Methylene.
 Source of CH₂. Photolysis
 of Ketene in Presence of
 Other Gases.
 J. Am. Chem. Soc., 78, 509-19
 (1956).
 C. A., 50, 7601 (1956).
 Reaction mechanism.
- 360. Chanmugam, J. & Burton, M. Photolysis of Ketene in the Presence of Hydrogen. Can. J. Chem., 34, 1021-2 (1956). C. A.,50, 13615 (1956). C. A.,50, 8335 (1956). C. A.,50, 7601 (1956). CH₃ + CH₂D = C₂H₃D is used to test proposed mechanisms.

- 361. Chapiro, A., Cousin, Ch., Landler, Y. & Magat, M. The Study of Polymerization Initiated by Nuclear Radiation.
 Rec. trav.chim.,68, 1037-68 (1949).
 C. A.,44, 6192 (1950).
 C. A.,45, 6915 (1949).
 Dainton, C. A.,42, 4455 (1948).
- The Spatial Distribution of Free Radicals Formed in Radiochemical Processes. Compt. rend.,237, 245-50 (1953).

 C. A.,48, 454 (1954).
 Discussions Faraday Soc., 12, 98 (1952).
 Rates of formation and recombination of solns. of diphenylpicrylhydrozyl solns. with y rays from COOO.
- The Action of γ Rays on Polymers in the Solid State. II. Degradation of Poly (Methyl Methacrylate) and Cellulose Acetate.

 J. chim. phys., 53, 295-305 (1956).

 C. A., 50, 8336 (1956).

 C. A., 49, 11427 (1955).

- Determination of Free-Radical Yields in the Radiolysis of Mixtures by the Polymerization Method.

 J. Phys. Chem., 63, 801-7 (1959).

 C. A., 53, 21092 (1959).

 Free-radical yields are derived from all available data and the results were compared with yields obtained by other methods.
- 365. Chapman, S. Speculations on the Atomic Hydrogen and the Thermal Economy of the Upper Atmosphere. Threshold of Space, Proc. Conf. Chem. Aeron., Cambridge, Mass., 1956, 65-72 (Pub. 1957). J. Geophys. Res., 61, 350 (1956). C. A.,52, 19293 (1958). The height at which neutral atomic H becomes the major constituent of air is estimated tentatively at between 1000 and 2000 Km.
- Charton, M. & Laffitte, P.
 Emission Spectroscopy of
 Flames of Mixtures of Normal
 Butane and Air at Low Pressure.
 Compt. rend.,242, 640-2 (1956).
 C. A.,50, 6915 (1956).
 Variation of ratios of band
 intensity of C₂ and CH in region
 3000-4500A.
- 367. Charton, M. & Gaydon, A.G.
 Excitation Spectra of OH in
 Hydrogen Flames and Its Relation
 to Excess Concentrations of
 Free Atoms.
 Proc. Roy. Soc. (London),
 A245, 84-92 (1958).
 C. A., 52, 19440 (1958).

- 368. Chen, M.C. & Taylor, H.A. Photolysis of Water Vapor. J. Chem. Phys., 27, 857-63 (1957). C. A., 52, 2566 (1958).
- Oxidation of Sulfur
 Dioxide by Photochemical
 Reaction and Photosensitization.
 Hua Hsleh Hsleh Pao, 24,
 187-93 (1958) (in Chinese).
 C. A.,53, 5884 (1959).
- 370. Cherednichenko, V.I.
 The Dissociation and Ionization of the Molecules of Comets in the Field of Photon and Corpuscular Radiation of the Sun.
 Astron. Zhur., 36, 254-63 (1959).
 C. A., 53, 16683 (1959).
- 771. Cherniak, E.A., Collinson, E., Dainton, F.S. & Meaburn, G.M.
 Ferric Chloride as a Radical Scavenger in the Radiolysis of Organic Compounds. Proc. Chem. Soc., 1958, 54. C. A., 52, 9785 (1958).
- 372. Chernyak. N. Ya., Bubnov.,
 N.N., Voevodskii, V.V., Polak,
 L.S. & Tsvetkov., Yu. D.
 Free-Radical and Atom Formation during Radiolysis of
 Hydrocarbons at 77°K.
 Doklady Akad. Nauk S.S.S.R.,
 120, 346-8 (1958).
 C. A.,53, 11001 (1959).
- 373. Chesnut, D.B.
 Molecular-Orbital Treatment
 of Isotropic Hyperfine Interactions in Simple Aliphatic
 Radicals.
 J. Chem. Phys., 29, 43-7 (1958).
 C. A., 52, 17966 (1958).

- 574. Child, E.T.
 Free Radical Decay Mechanisms
 in Flames.
 Univ. Microfilms (Ann Arbor, Mich.),
 Publ. No. 24958, 220 pp.; Dissertation
 Abstr.,18, 982 (1958).
 C. A.,52, 11537 (1958).
- 375. Chilton, H.T.J. & Gowenlock, B.G.
 Reaction of Nitric Oxide with Gaseous Hydrocarbon Free Radicals.
 Nature, 172, 73 (1953).
 C. A., 48, 6955 (1954).
 Hg CHMe, was pyrolyzed in a flow System with a carrier gas of N and No. The No is rapidly removed by reaction with isopropyl radicals.
 Analysis of reaction products.
- 376. Chilton, H.T.J. & Gowenlock, B.G.
 Pyrolysis of Organometallic Compounds.
 I. Mercury Di-Isopropyl.
 Trans. Faraday Soc., 49, 1451-8 (1953).
 C. A., 48, 7953 (1954).
 Diagussion of reaction.
 Mechanism and activation energy necessary to break the Hg-C bond.
- 377. Chilton, H.T.J. & Gowenlock, B.G.
 Reactions of Nitric Oxide with Gaseous Hydrocarbon Free Radicals.
 I. Isopropyl Radical.
 J. Chem. Soc., 1953, 3232-6.
 C. A., 48, 13615 (1954).
 C. A., 48, 6955 (1954).
 Absorption spectra and chemical spot tests.

- 378. Chilton, H.T.J. & Gowenlock, B.G.
 Pyrolysis of Organometallic Compounds.

 II. Mercury Dipropyl.
 Trans. Faraday Soc., 50, 824-9 (1954).
 C. A., 49, 2840 (1955).
 C. A., 48, 7953 (1954).
- 379. Chilton, H.T.J. & Gowenlock, B.G.
 Reaction of Nitric Oxide with Gaseous Hydrocarbon Free Radicals.
 II. Radicals Produced by Pyrolysis of Dibutyl Mercury.
 J.Chem.Soc.,1954, 3174-8.
 C. A.,49, 6822 (1955).
 C. A.,48, 13615 (1954).
 The blue color produced is shown to be due to the monomer, while the dimer is colorless.
- 380. Chilton, H.T.J., Gowenlock, B.G. & Trotman, J.

 A New Form of Dimeric Nitroso Methane.
 Chem. & Ind. (London), 1955, 538-9.
 C. A.,50, 3261 (1956).
 MeNO is produced by pyrolysis of Me_CONO. Absorption spectra of the process is given.
- 381. Chinmayandam, B.R. & Melville, H.W.
 Photosensitization of Polymerization Reactions.
 Trans. Faraday Soc., 50, 73-82 (1954).
 C. A., 48, 10439 (1954).

- 382. Chirkov, A.K. & Matevosyan, R.O.
 Paramagnetic Resonance in New Organic Radicals.
 Zhur. Eksptl. i Teoret Fiz., 33, 1053-4 (1957).
 C. A.;52, 2529 (1958).
- 383. Chirkov, A.K. & Kokin, A.A.
 Paramagnetic Resonance of
 Free Radicals in Weak
 Fields.
 Zhur. Eksptl. i Teoret Fiz.,
 35, No. 1, 50-5 (1958).
 C. A.,52, 19468 (1958).
- 384. Chiusoli, G.P. & Minisci, F.
 The Reaction of Free Radicals
 with Carbon Monoxide and
 Nitrous Oxide.
 Atti accad.nazl.Lincei Rend.,
 Classe sci. fis. mat. e nat.,
 23, 140-3 (1957).
 C. A.,53, 1135 (1959).
 The radicals formed by hydroperoxides in the presence of
 heavy metal salts react with
 CO and NO.
- Chiusoli, G.P. & Minisci, F. Radical Reactions of Nitric Oxide. Nitrated Acids from Nitric Oxide and Peroxide. Gazz. chim. ital.,88, 261-70 (1958).C. A.,53, 18883 (1959). C. A.,53, 2085 (1959). The mechanism of the reaction of NO with radicals proceeding from the decomposition of peroxides is similar to that on the Grignard reagent and the products correspond to the addition compounds of one or two mols. NO and the radical from the decomposition.

- 386. Christie, M.I., Norrish, R.G.W. & Porter, G.
 The Recombination of Atoms.
 I. Iodine Atoms in the Rare Gases.
 Proc. Roy. Soc. (London), 216A, 152-65 (1953).
 C. A., 47, 5743 (1953).
 C. A., 5743 (1939).
 C. A., 6, 1896 (1922).
 The recombination of I atoms in the presence of five rare gases was studied by the flash technique.
- 387. Christie, M.I., Harrison,
 A.J., Norrish, R.G.W. &
 Porter, G.
 The Recombination of Atoms.
 II. Causes of Variation
 in the Observed Rate Constant
 for Iodine Atoms.
 Proc. Roy. Soc. (London),
 A231, 446-57 (1955).
 C.A.,50, 656 (1956).
 C.A.,47, 5743 (1953).
- 388. Christie, M.I.

 Elementary Reactions in
 the Photochemical Oxidation
 of Methyl Iodide.
 Proc. Roy. Soc. (London),
 A244, 411-23 (1958).
 C.A.,52, 19503 (1958).
 The I produced is measured
 by its light absorption.

- 389. Chu, T.L., Pake, G.E., Paul, D.E., Townsend, J., & Weissman, S.I. Paramagnetic Resonance Absorption of Free Radicals.

 J. Phys. Chem., 57, 504-7 (1953).

 C. A., 47, 8435 (1953).
- 390. Cier, H.E.
 Photochemical Production
 of Branched Paraffinic
 Hydrocarbons.
 U.S. 2,640,023, May 26,
 1953.
 C. A.,47, 8359 (1953).
- 391. Clark, T.P.
 Studies of OH, CO, CH
 and C, Radiation from
 Laminar and Turbulent
 Propane-Air and EthyleneAir Flames.
 Natl.Advisory Comm.Aeronaut.
 Tech.Note No. 4266, 23pp.
 (1958).
 C. A.,52, 15207 (1958).
 Grating monochromator and photomultiplier tube.
 Measurements on 1 mm sections of flame column.
- 392. Cleaver, C.S., Blosser, L.G., & Coffman, D.D.
 Synthesis by Free-Radical
 Reactions.
 IX. Use of Free Radicals
 from Flames.
 J. Am. Chem. Soc., 81, 1120-6
 (1959).
 C. A.,53, 15943 (1959).
 C. A.,53, 2137 (1959).
- 393. Clouston, J.G. & Cook, C.L. Absorption Spectra Arising from the Photolysis (Flash) of Lead Tetramethyl.

 Nature, 179, 1240-1 (1957).

 C. A.,51, 17468 (1957).

 C. A.,50, 14370 (1956).

- Clouston, J.G., & Cook, C.L. Flash Photolysis of Lead Tetramethyl.

 Trans. Faraday Soc., 54, 1001-7 (1958).

 C. A.,53, 8830 (1959).

 Pb Me₁ vapor was studied by using a high-intensity light flash and absorption spectroscopy.
- 395. Clusius, K., & Schumacher, H.

 Reactions with Nitrogen-15.

 XXXI. Slow and Explosive
 Decomposition of Metal Azides
 M (N¹⁴ N¹⁵ N¹⁴) m of 96% N¹⁵

 Content.

 Helv. Chim. Acta, 41, 2264-73
 (1958) (in German).

 C. A.,53, 9794 (1959).

 N₂O was allowed to react
 with Ca (NH₂)₂ to give
 nearly pure Ca (N¹⁴ N¹⁴)₂.
- 396. Cochran, E.L., Bowers, V.A., Foner, S.N. & Jen., C.K.
 Multiple Trapping Sites for Hydrogen Atoms in Solid Argon. Phys. Rev. Letters 2, 43-5 (1959).
 C. A.,53, 8812 (1959).
- 397. Codrington, R.S., Olds, J.D. & Torrey, H.C.

 Paramagnetic Resonance in Organic Free Radicals at Low Fields.

 Phys.Rev., 95, 607-8 (1954).

 C. A., 50, 10509 (1956).
- 398. Coffin, F.D.
 Production of Atoms by
 a Glow Discharge in Dry
 Hydrogen.
 J. Chem. Phys., 30, 593-4
 (1959).
 C. A.,53, 12773 (1959).
 Hydrogen atoms are produced
 in a glow discharge in dry
 hydrogen, contrary to statements appearing in the literature.

- 599. Coffman, D.D., Jenner, E.I. & Lipscomb, R.D.
 Syntheses by Free-Radical
 Reactions.
 I. Oxidative Coupling Effected
 by Hydroxyl Radicals.
 J. Am. Chem. Soc., 80, 286472 (1958).
 C. A.,52, 18204 (1958).
- 400. Cohen, D., Lowe, R. & Hampson, J.
 Infrared Emission from High Frequency Discharges in CO₂.
 J. Appl. Phys., 28, 737-41 (1957).
 C. A.,51, 15273 (1957).
- 401. Cole, E.R.
 Photodecomposition of Lead
 Tetraacetate.
 Chem. & Ind. (London), 1959,
 544.
 C. A.,53, 21094 (1959).
 The results indicate a radical decomposition with further attack on the nucleus and side chain.
- 402. Cole, P. & McConnell, H.M.

 Zero Field Splittings in Atomic
 Nitrogen at 4.2°K.

 J. Chem. Phys., 29, 451 (1958).

 C. A.,53, 54 (1959).

 C. A.,52, 872 (1958).

 Triplet signals and four wellresolved satellites were observed.
- 403. Coleman, E.H. & Gaydon, A.G.
 The Radicals BrO and CBr in
 Flames.
 Discussions Faraday Soc., 1947,
 No. 2, 166-9.
 C. A., 43, 5312 (1949).
 Spectral bands from flames of MeBr
 and Br vapor are reported.

- 404. Collin, J. & Lossing, F.P.
 Free Radicals by Mass Spectrophotometry. XIII. The Mercury Photosensitized Decomposition of Allene and Butadiene. The C₂H₂ Radical.
 Can. J. Chem., 35, 77887 (1957).
 C. A.,52, 1780 (1958).
 C. A.,51, 10246 (1957).
- HO5. Collin, J.

 Ionization and Dissociation of Molecules by Monoenergetic Electrons.

 III. The Existence of a Bent Excited State of NO2.

 J. Chem. Phys., 30, 1621 (1959).

 C. A., 53, 19558 (1959).

 C. A., 52, 15265 (1958).

 By using monoenergetic electrons, the ionization efficiency curve of NO2 obtained from MeNO2 was produced.
- 406. Combet-Farnoux, F. & Berthier, G. Electron Structure of Conjugated Monocyclic Hydrocarbons. Compt. rend., 248, 688-90 (1959). C. A.,53, 14675 (1959).
- 407. Commoner, B., Heise, J.J., Lippincott, B.B., Norberg, R.E., Passoneau, J.V. & Townsend, J. Biological Activity of Free Radicals. Science, 126, 57-63 (1957). C. A., 51, 16590 (1957).

- 408. Commoner, B., Lippincott, B.B. & Passonneau, J.V. Electron-Spin Resonance Studies of Free-Radical Intermediates in Oxidation-Reduction Enzyme Systems. Proc. Natl. Acad. Sci. U. S., 44, 1099-110 (1958). c. A., $\overline{53}$, 7263 (1959). Lactic oxidative decarboxylase activity is invariably associated with the presence of free radicals as evidenced by the detection of electronspin resonance (ESR) signals when enzyme, substrate, and 0, are mixed together.
- 409. Commoner, B. & Lippincott, B.B.
 Light-Induced Free Radicals in Flavine Mononucleotide (FMN) and Flavoprotein Enzymes.
 Proc. Natl. Acad. Sci. U.S., 44, 1110-16 (1958).
 C. A.,53, 7263 (1959).
- 410. Comstock, A.A. & Rollefson, G.K.

 The Reaction of Radicals Produced by the Action of Sodium on Alkyl Iodides.

 J. Chem. Phys., 19, 441-6 (1951).

 C. A., 46, 877 (1952).

 Reactions of Na vapor with MeI and EtI.
- 411. Conger, A.D. & Randolph,
 M.L.
 Magnetic Centers (Free Radicals)
 Produced in Cereal Embryos by
 Ionizing Radiation.
 Radiation Research, 11, 54-66
 (1959).
 C. A.,53, 22289 (1959).

- 412. Convery, R.J. & Price, C.C.
 Further Data on the Free Radical Phenylation of 2,4-Dinitrotritrobenzene.

 J. Am. Chem. Soc., 80, 4101
 (1958).
 C. A.,53, 31101 (1959).
 C. A.,51, 14631 (1957).
- 413. Convery, R.J.

 Reaction of Methyl Radicals with α-Deuterioisobutyryl Chloride.

 Reaction of Methyl Radicals with α-Deuteriohexahydrobenzoyl Chloride.

 Reaction of Phenyl Radicals with 2,4-Dinitrotritiobenzene.

 Univ. Microfilms (Ann Arbor, Mich.), L. C.

 Card No. Mic 59-2226, 62

 pp.; Dissertation Abstr., 20, 74-5 (1959).

 C. A.,53, 17957 (1959).
- 414. Cook, C.L. & Clouston,
 J.G.
 Absorption Spectra Arising
 from the Photolysis of Lead
 Tetramethyl.
 Nature, 177, 1178-9 (1956).
 C. A.,50, 14370 (1956).
 Photochemical decomposition
 of lead tetramethyl using
 flash photolysis.
- 415. Cook, G.A. & Bates, J.R.
 The Photo-Oxidation of
 Hydrogen and Deuterium
 Iodides.
 J. Am. Chem. Soc., 57,
 1775-8 (1935).
 C. A.,29, 7809 (1935).
 It is established that
 the reaction of hydrogen
 atoms with oxygen molecules
 is a three-body process.

- Coops, J., Galenkamp, H., Haantjes, J., Luirink, H.L. & Nauta, W.T. Energy Data on the Carbon -Carbon Bond. IV. Energy of Activation, Arrhenius Constant, and Half-Life for the Radical Dissociation Reaction of Six Hydrocarbons of the Penta Phenylethane Type in O-Dichlorobenzene as a Solvent. Rec. trav. chim., 67, 469-83 (1948). C. A., 43, 5387 (1949).
- 417. Coppinger, G.M.
 Detection of HO₂ Radical
 in Metal Ion.
 Catalyzed Decomposition of
 Hydrogen Peroxide.
 J. Am. Chem. Soc., 79, 27589 (1957).
 C. A.,51, 14637 (1957).
- 418. Cosgrove, S.L. & Waters, W.A. Oxidation of Phenols with the Free Hydroxyl Radical.
 J. Chem. Soc., 1951, 1726-30.
 C. A., 44, 4878 (1950).
- 419. Costa, G., Camus, A.M. & Pauluzzi, E. Copper Methyl. Gazz. chim. ital., 86, 997-1013 (1956). C. A.,53, 1122 (1959).
- 420. Costain, C.C.

 A Free Space Absorption Cell
 for Microwave Spectroscopy.
 (Zeeman Modulation Spectrometer
 for the Study of Free Radicals).
 Can. J. Phys., 35, 241-7 (1957).
 C. A.,51, 7868 (1957).
- 421. Coulson, C.A.
 Theory of the Structure of
 Free Radicals.
 Discussions Faraday Soc., 1947,
 No. 2, 9-18.
 C. A., 43, 5241 (1949).

- 422. Coulson, C.A., Craig, D.P.
 Maccoll, A. & Pullman, A.
 P-Quinodimethane and Its
 Diradical.
 Discussion Faraday Soc.,
 1947, No. 2, 36-8.
 C. A.,43, 5759 (1949).
- 423. Coulson, C.A.
 Factors Affecting the
 Bond Lengths in Conjugated
 and Aromatic Molecules.
 J. Phys. Chem., 56, 31116 (1952).
 C. A., 46, 6881 (1952).
- 424. Courty, C. Calculation of the Coefficient of Diamagnetic Magnetization of Free Atoms. Compt. rend., 248, 2179-81 (1959). C. A.,<u>53</u>, 16625 (1959). By using a screening constant deduced from the experimental energies of the primary ionization of atoms, the coefficient of magnetization of He, Ne, Ar, Xe, F, Cl, Br, and I are calculated.
- D.W.
 The Luminosities of the Flames of Some Individual Chemical Compounds, Alone and Mixed.
 Third Symposium on Combustion and Flame and Explosion Phenomena, Univ. of Wisconsin, Madison, Sept. 7-11 (1948), Pub. 1949, Williams & Wilkins, Baltimore, Maryland.
 C. A., 46, 11625 (1952).

- 426. Crabtree, J. & Biggs, B.S. Cracking of Stressed Rubber by Free Radicals.
 Rubber Chem. & Technol., 27, 456 (1954).
 C. A., 49, 9951 (1955).
 C. A., 48, 3055 (1954).
- 427. Cramer, P.L. & Campbell, J.M.
 Combustion of Hydrocarbons.
 Free-Radical Chain Reactions.
 Ind.Eng.Chem., 41, 893-7 (1949).
 C. A., 43, 5576 (1949).
 C. A., 32, 5772 (1938).
- 428. Crist, R.H. & Wertz, J.E. Kinetics of the Oxidation of Hydrogen Sensitized by Nitrogen Dioxide.
 J.Chem.Phys., 7, 719-24 (1939).
 C. A., 33, 8091 (1939).
 The results are explained on the assumption that NO3 is an important intermediate in both the CO and H oxidations. The effect of adsorption by the walls is emphasized.
- 429. Cristescu, G.D. & Grigorovici, R.
 R.
 Study of the High Frequency
 Torch,
 IV. Spectroscopic Observations.
 Comun. acad.rep.populare
 Romaine, 5, No. 3, 515-22
 (1955).
 C. A., 50, 15213 (1956).
 C. A., 57, 2657 (1943).
 Spectroscopic probe-pressure
 of OH.

- 430. Croatto, U., Giacomello, G. & Maddock, A.G.
 Chemical Reactions of Nascent Carbon¹⁴.
 Ricerca sci., 21, 1598-1601 (1951).
 C. A., 48, 10527 (1954).
 It is suggested that free radicals or biradicals are formed which capture C¹⁴ or radicals containing it.
 The mechanism of the reaction is discussed.
- 431. Cullis, C.F., & Smith, L.S.A.
 Thermal Oxidation of the
 Aliphatic Amines.
 Trans. Faraday Soc., 46,
 42-55 (1950).
 C. A., 44, 5798 (1950).
 In certain cases, free
 NH₂ radicals appear to
 be liberated.
- 432. Cullis, C.F. & Waddington, D.J.

 The Gaseous Oxidation of Tertiary Aliphatic Amines.

 II. Trimethylamine.

 Proc. Roy. Soc. (London), A246, 91-8 (1958).

 C. A.,53, 1111 (1959).

 The absence of primary amines may be due to the fact that for steric reasons intramolecular attack of intermediate peroxy radicals derived from Me₂N cannot occur.

- 433. Cunningham, J.P. & Taylor, H.S.

 The Decomposition of Mercury Dimethyl.

 J. Chem. Phys., 6, 359-67 (1938).

 C. A., 32, 6156 (1938).

 Thermal and photochemical decomposition of HgMe2.

 The activation energy of the reaction CHz + Hz = CH₁ + H is 9 2 Kg. cal.
- 434. Cvetanovic, R.J. & Steacie, E.W.R.
 Photolysis of Acetone-Hydrogen Chloride Mixtures.
 Can. J. Chem., 31, 158-70 (1953).
 C. A., 47, 4205 (1953).
- 435. Cvetanovic, R.J., Raal, F.A. & Steacie, E.W.R.
 Photolysis of Mixtures of
 Acetone and Some Chlorinated
 Methanes.
 Can. J. Chem., 31, 171-80 (1953).
 C. A., 47, 4205 (1953).
- 436. Cvetanovic, R.J. & Whittle, E. Effect of Fluctuations of Free Radical Concentrations on the Calculation of Relative Rate Constants.

 Can. J. Chem., 32, 63-70 (1954).

 C. A., 48, 6215 (1954).
- 437. Cvetanovic, R.J.
 Reaction of Oxygen Atoms with
 Ethylene.
 J. Chem. Phys., 23, 1375-80
 (1955).
 C. A., 49, 15402 (1955).
 C. A., 49, 13787 (1955).

- 438. Cvetanovic, R.J.

 Mercury Photosensitized
 Decomposition of Ethylene
 Oxide.

 Can. J. Chem., 33, 1684-95
 (1955).
 C. A.,50, 8335 (1956).
 C. A.,49, 12938, 13787,
 13788 (1955).
 C. A.,48, 431, 5618 (1954).
 C. A.,44, 4793 (1950).
 C. A.,42, 1514 (1948).
 H, CH₃, CHO, C₂H₅, and
 CH₂ play an important
 role in the process.
- 439. Cvetanovic, R.J.

 Mechanism of the Interaction of Oxygen Atoms
 with Olefins.
 J. Chem. Phys., 25, 376-7
 (1956).
 C. A., 50, 16213 (1956).
- 440. Cvetanovic, R.J.
 Reaction of Oxygen Atoms
 with Acetaldehyde.
 Can. J. Chem., 34, 775-84
 (1956).
 C. A.,51, 219 (1957).
 C. A.,49, 15402 (1955).
- Doyle, L.C.
 Mercury-Photosensitized
 Decomposition of Butylene
 Oxide.
 Can. J. Chem., 35, 605-12
 (1957).
 C. A.,51, 12668 (1957).
 Possible reaction mechanisms are discussed.
- 442. Cvetanovic, R. J.

 Molecular Rearrangements
 in the Reactions of Oxygen
 Atoms with Olefins.
 Can. J. Chem., 36, 623-34
 (1958).
 C.A., 52, 15415 (1958).

- 443. Dacey, J.R. Photolysis of Trifluoromethyl Iodide. Discussions Faraday Soc., 1953, No. 14, 84-8. C. A., 48, 453 (1954), It is probable that the primary process is the division of the molecule into a trifluoromethyl radical and an atom with an efficiency of unity.
- 444. Dain, Ya. B., A Utilization of Electron Phototransfer for Free Radical Production in Solution. Voprosky Khim. Kinetiki, Kataliza i Reaktsionnoi Sposobnosti, Akad. Nauk S.S.S.R., <u>1955</u>, 54-8. C. A.,50, 9883 (1956).
- 445. Dainton, F.S. The Existence of Free Atoms and Radicals in Water and Aqueous Solutions Subjected to Ionizing Radiation. J. Phys. and Colloid Chem., 52, 490-517 (1948). C. A., 42, 4455 (1948).
- 446. Dainton, F.S. & Miller, N. Radiation Chemistry of Water and Aqueous Solutions. Proc. Intern. Congr. Pure and Applied Chem. (London), 11, 77-86 (1947) (in English). C. A., 44, 7661 (1950).
- 447. Dainton, F.S. Radiation Chemistry in Relation to Radiobiology. IV. A Review of the Evidence for the Production of Free Radicals in Water Consequent on the Absorption of Ionizing Radiations. Brit. J. Radiology, 24, 428-33 (1951).
 - C. A., 46, 544 (1952).

- 448 Dainton, F.S. & Ivin, The Instability of Large Free Radicals. Discussions Faraday Soc., 1953, No. 14, 199-207. C. A., 48, 431 (1954). Breakdown in terms of accompanying heat content and free-energy changes.
- 449. Dainton, F.S. & Rowbottom, J. Primary Radical Yield in Water. Comparison of the Photolysis and Radiolysis of Solutions of Hydrogen Peroxide. Trans. Faraday Soc., 49, 1160-73 (1953). C. A., 48, 6841 (1954).
- 450. Dainton, F.S. & McElcheran, Reaction, $CH_3 + CD_h = CH_3D +$ Trans. Faraday Soc., 51, 657-64 (1955). C. A., 49, 15501 (1955). CHz radicals were generated from acetone photochemically in presence of CD₁. A recording mass spectrometer was used to identify and measure the products formed.
- 451. Dainton, F.S. Primary Quantum Yield in the Photolysis of H₀0 at 3130A and the Primary Radical Yield in the X- and γ-Radiolysis of Water. J. Am. Chem. Soc., 78, 1278-9 (1956). c. A.,50, 9882 (1956).

- Photochemical Electron Transfer and Some Related Phenomena in Aqueous Solutions of Reducing Ions Containing Polymerizable Monomers.

 Trans. Faraday Soc., 54, 649-63 (1958).

 C. A.,53, 1929 (1959).

 Visible and ultraviolet absorption spectra were determined for aqueous solutions of a range of cationic and anionic species and also mixtures with vinyl compounds.
- 453. Dainton, F.S., Ivin, K.J. & Wilkinson, F.
 The Isotopic Exchange Reactions between Methyl Radicals and Methane.
 Chem. Soc. (London), Spec. Publ. No. 9, 187-94, discussion 195 (1957).
 C. A.,53, 10914 (1959).
- 454. Dalby, F.W.

 The Spectrum and Structure of the HNO Molecule.

 Can.J.Phys., 36, 1336-71 (1958),

 C. A.,53, 47 (1959).

 The absorption spectrum of HNO in the region 6500-7700 A. was photographed on a 35 ft. grating. The lifetime of the HNO was about 1/10 sec under the experimental conditions.
- A55. Dale, W.M.

 Radiation Chemistry in Relation to Radiobiology.

 V. Some Aspects of the Biochemical Effects of Ionizing Radiations.

 Brit. J. Radiology, 24, 433-35 (1951).

 J. chim. phys., 48, 245-8 (1951).

 C. A., 46, 544 (1952).

- 456. Dalgarno, A & Lewis, J. T. Dipole and Quadrupole Polarizabilities of Atoms and Molecules.

 Proc. Roy. Soc. (London), A240, 284-92 (1957).
 C. A., 51, 15196 (1957).
- 457. Dalgarno, A. & McDowell,
 M.R.C.
 Charge Transfer and the
 Mobility of H Ions in
 Atomic Hydrogen.
 Proc. Phys. Soc. (London),
 A69, 615-23 (1956).
 C. A.,51, 15246 (1957).
 Interaction energy, charge
 transfer and diffusion cross
 section.
- 458. Dalgarno, A. Altitudes and Excitation Mechanisms of the Night Airglow. Ann. geophys., 14, 241-52 (1958).C. A.,53, 3871 (1959). A review of the excitation mechanisms for, and the methods of, determining the altitudes at which the allowed and forbidden radiations of 0, Na, OH, 0_{2}^{+} , and N_{2}^{+} , and a continuum, appear in the spectrum of the night sky.
- 459. Daly, E.F. & Sutherland, G.B.B.M.

 "Instantaneous" Presentation of Infrared Spectra on a Cathode-Ray Screen.

 Nature, 157, 547 (1946).

 C. A., 40, 4602 (1946).

 An apparatus is described briefly by means of which infra-red spectra are presented as steady pictures on a cathode screen.

- Damodaran, K.K.
 Dissociation of Molecular
 Hydrogen Ions (H₂ +) in
 Gases.
 Proc. Roy. Soc. (London),
 A239, 382-93 (1937).
 C. A.,51, 15251 (1957).
- 461. Danby, C.J. & Hinshelwood, C.N.

 The Polymerization of Olefins Induced by Free Radicals.

 Proc. Roy. Soc. (London), A179, 169-93 (1941).

 C. A.,36, 344 (1942).

 Discussion of mechanism.
- A Table of Quantum Yields in Experimental Photochemistry.
 J. Phys. Chem., 42, 713-32 (1938).
 C. A., 32, 8942 (1938).
 A complete review, tabulating the quantum yields of some 120 photochemical reactions in gas, liquid and solid phases at various temperatures.
- Experimental Technique in Photochemistry.
 J. Phys. Chem., 42, 701-11 (1938).
 C. A., 32, 8943 (1938).
 A review of light sources, filters, monochrometers, radiation measurements, reaction cells, absorption spectra, and the use of isotopic tracers and free radicals valuable in photochemical studies.
- 464. Dannley, R.L. & Gippin, M.
 Free Radical Aromatic Substitution.
 I. The Reaction of Benzoyl Peroxide with Naphthalene Derivatives.
 J. Am. Chem. Soc., 74, 332-4 (1952).
 C. A., 47, 8050 (1953).

- 465. Danti, A. & Lord, R.C.
 Pure Rotational Absorption
 of Ozone and Sulfur Dioxide from 100 to 200 Microns.
 J. Chem. Phys., 30, 1310-13
 (1959).
 C. A.,53, 17667 (1959).
 C. A.,53, 4901 (1959).
 The pure rotational absorption spectra were
 correlated with the microwave reciprocal moments
 and the distortion.
- 466. Danusso, F.
 Criteria for the Comparison
 of Initiators and Their
 Mixtures in Free Radical
 Polymerization.
 Chimica e industria (Milan),
 37, 183-9 (1955).
 C. A.,49, 12097 (1955).
 Calculation of specific
 rate constants.
- 467. Darmois, E. Free Radicals (A Lecture), Bull. soc. chim. (5), 2, 2053-67 (1935). C. A., 30, 1764 (1936). Lecture on free radicals of various types, long-life radicals such as PhzC, short life of the type of Me and Et, and radicals discovered by mass and ordinary spectrographic methods. The use of these methods for the determination of molecular dimensions and vibrations and the calculation of energies of dissociation was discussed and the importance of the study of free radicals was stressed. Thirty references.

- 468. Daudel, R. Free Radicals by the Molecular Diagram Method. Discussions Faraday Soc.,1947, No. 2, 25-6-C.A.,43, 5732 (1949). A comparison of molecular diagrams for the free radicals, C3H5, C.H. and C.H., according to the molecular-orbital system and the mesomeric system shows good agreement and a consideration of free valency index and bond index values indicates that the more reactive parts of a radical are its two ends.
- 469. David, W.T. & Pugh, B.
 Influence of Hydrogen and
 Water Vapor upon the Combustion of Carbon Monoxide
 Mixtures.
 Nature, 140, 1098 (1937).
 C. A., 32, 1533 (1938).
 C. A., 31, 2885 (1937).
- 470. Davison, S. & Burton, M. Reaction of Methyl Radicals with Hydrogen and Deuterium.

 J. Am. Chem. Soc., 74, 2307-12 (1952).

 C. A., 46, 8479 (1952).

 C. A., 45, 6472 (1951).

 C. A., 45, 455 (1951).

 Gaseous products were determined by mass spectrograph.

- 471. Deb, S.
 Nitrogen in the Upper
 Atmosphere.
 J. Atom. & Terrest. Phys.,
 2, 309-23 (1952).
 C. A., 47, 2553 (1953).
- 472. Degens, P.N., Jr.
 The Incomplete Combustion of Methane.
 Rec. trav. chim., 58, 39-57 (1939) (In English),
 C. A., 33, 2310 (1939).
 The decomposition and oxidation reactions of the intermediate products which may occur during the oxidation of CH, were studied.
- 473. DeJager, J. & Neven, L.
 The Abundances of Diatomic
 Molecules of Hydrogen, Carbon, Nitrogen, Cxygen, and
 Water in Stellar Atmospheres.

 Mem. soc. roy. sci. Liege,
 18, 357-9 (1957).

 C. A.,51, 16090 (1957).
 The molecules considered
 are H₂, CH, NH, OH, C₂,
 CN, CO, N₂, O₂, and H₂O.
- 474. Dejardin, G.
 Atmospheric Ozone.
 Rev. trimestr. can., 21,
 373-91 (1935).
 C. A., 30, 2434 (1936).
 An address reviewing
 present-day knowledge
 of the presence and
 function of Oz in the
 atmosphere, more particularly with regard to
 its light filtering action.

- 475. Dejardin, G. & Bernard, R. Bands of OH in the Night Sky.

 Compt. rend., 206, 1747-9 (1938).

 C. A., 32, 6150 (1938).

 C. A., 32, 4077 (1938).
- Peyron, M.
 Rotation-Vibration Bands of the OH Molecule in Oxyhydrogen and Oxyacetylene Flames.
 Compt. rend., 234, 1866-8 (1952).
 C. A., 46, 8521 (1952).
 About 70 OH bands, measured in the interval 7000-9500A, are tabulated together with their assignments.
- 477. Dekabrun, L.L. & Purmal, A.P. Observation of Free Radicals by the Nuclear Resonance Method.

 Doklady Akad. Nauk, S.S.S.R., 116, 983-5 (1957)...

 C. A.,52, 19463 (1958).
- 478. Delabay, P., Pourboix, M. & Rysselberghe, P., Van. Electrochemical Behaviour of Oxygen H₂O₂ and of the Radicals OH and HO₂.

 Ind. chim. belge, 16, 396-400 (1951).

 C. A., 46, 3373 (1952).

 In aqueous solutions.
- 479. DeLaMare, A.E. & Vaughan, W.E. Chemistry of Organic Free Radicals in the Vapor Phase.

 J. Chem. Educ., 34, 10-21 (1957).

 C. A.,51, 4262 (1957).

 Review with 66 references.

- 480. Delsemme, A.H. & Swings, P. Gaseous Hydrates in the Nuclei of Comets and in Interstellar Particles.

 Ann. astrophys., 15, 1-6 (1952).
 C. A.,46, 8956, (1952).
 OH, NH, CH, CH, NH₂, C₂ and CN.

 A discussion of the presence of the above mentioned in the particles and their origin.
- 481. Derbyshire, D.H. & Steacie, The Photolysis of Dimethyl Mercury in Hexane Solution at Low Temperatures. Can. J. Chem., 32, 457-64 (1954). C. A.,48, 9813 (1954) The photolysis of DiMe-Hg in solution of n-hexane has been studied over the temperature range +25°C to -80°C. The results indicate that methane is produced by an abstraction reaction involving the solvent, and ethane. is produced by dimerization of Me-radicals. The mechanism of the reaction is discussed, and it is concluded that the abstraction reaction involves radicals.

- 482. Devins, J.C.

 Mechanism of Ozone Formation
 in the Silent Electric Discharge.

 J. Electrochem. Soc., 103, 460-6
 (1956).

 C. A., 50, 16308 (1956).
 C. A., 31, 38 (1937).
- 483. Devonshire, A.F.
 The Interaction of Atoms and
 Molecules with Solid Surfaces.
 VIII. The Exchange of Energy
 Between a Gas and a Solid.
 Proc. Roy. Soc. (London), A158,
 269-279 (1937).
 C. A.,31, 2897 (1937).
 Formula for accommodation coefficient of a monatomic gas
 on a solid.
- 484. Dewhurst, H.A. & Burton, M.
 Radiolysis of Aqueous Solutions
 of Hydrazine.
 J. Am. Chem. Soc., 77, 5781-5
 (1955).
 C. A.,50, 13617 (1956).
 H and OH.
- 485. Dewing, J. & Cvetanovic, R.J.
 The Decomposition of Nitrous
 Oxide at Low Pressures on
 Nickel Oxide Catalysts.
 Can. J. Chem. 36, 678-85 (1958).
 C. A.,52, 14305 (1958).
- 486. Dhar, N.R.

 Formation of Hydroxyl Radical
 from the Photolysis of Water*
 and the Generation of Formaldehyde.

 Trans. Faraday Soc., 30, 142-8
 (1934).*
 C. A.,28, 2270 (1934).

 *Water vapor in upper atmosphere.

- 487. Dibeler, V.H. & Mohler, F.L.

 The Dissociation of Diborane by Electron Impact.

 J. Am. Chem. Soc., 70, 987-9 (1948).

 C. A., 42, 5333 (1948).

 As determined by the mass spectrograph.
- 488. Dibeler, V.H. Ionization and Dissociation of Trifluoromethyl Halides by Electron Impact (CF Radical). J. Res. Natl. Bur. Stand., <u>57</u>, 113-18 (1956), C. A.,<u>51</u>, 3271 (1957). Research Paper 2700. These data combined with recent thermochemical and spectroscopic studies permit a new calculation of the ionization potential of the CF_3 radical $(9.3 \pm$ 0.2 e.v.),
- 489. Dibeler, V.H., Franklin, J.L. & Reese, R.M. Electron Impact Studies of Hydrazine and the Methyl Substituted Hydrazines.
 J. Am. Chem. Soc., 81, 68-73 (1959).
 C. A.,53, 7781 (1959). Heats of formation of the radical ions and probable ionization-dissociation processes are tabulated.

- 490. Dickerman, S.C., Megna, I.S. & Skoultchi, M.M.
 Relative Aryl Radical Affinities of Monomers.
 J. Am. Chem. Soc., 81, 2270-1 (1959).
 C. A., 53, 19858 (1959).
 C. A., 52, 16259 (1958).
 The possibility that competitive Meerwein reactions might provide a means for determining relative rate constants for the addition of aryl radicals to olefins was realized.
- 491. Dickey, F.P. & Hoffman, J.M. Emission Spectrum of the OH Radical in an Oxyacetylene Flame.

 J. Chem. Phys., 28, 1253 (1958).

 C. A., 52, 17948 (1958).

 C. A., 50, 14368 (1956).
- 492. Dickinson, R.G.
 Some Comparisons between
 Photochemical Processes in
 Gases and Solutions.
 J. Phys. Chem., 42, 739-48
 (1938).
 C. A.,32, 8942 (1938).
- 493. Dickson, A.D., Crawford, B.L., Jr. & Rotenberg, D.L.
 Infrared Spectra of Propellant Flames.
 Ind. Eng. Chem., 48, 759-61 (1956).
 C. A.,50, 9875 (1956).
 For detection of intermediates in flames.
- 494. Diederichsen, J. & Wolfhard, H.G. Spectrograph Examination of Gaseous Flames at High Pressure. Proc. Roy. Soc. (London), A236, 89-103 (1956).

 C. A.,50, 15241 (1956).

 The CO flame continuum and the H flame continuum are readily distinguished. The second continuum is due to OH + OH = H₂O₂ + hw.

- H.G.
 Burning Velocity of Methane
 Flames at High Pressure.
 Trans. Faraday Soc., 52, 11029 (1956).
 C. A., 51, 6292 (1957).
- 496. Diesen, R.W.
 Unimolecular Decomposition of Vibrationally Excited Secondary Butyl Radicals.
 Univ. Microfilms (Ann Arbor, Mich.), L. C. Card No. Mic 58-3271, 146pp.;
 Dissertation Abstr., 19, 685 (1958).
 C. A.,53, 3854 (1959).
- 497. Dignam, M.J., Forbes, W.G. & LeRoy, D.J.
 Kinetics of the Photochlorination of Monochloromethyl Chloroformate
 in the Gas Phase.
 Can. J. Chem., 35, 1341-50
 (1957).
 C. A.,52, 2562 (1958).
- No. Dingle, J.R. & LeRoy, D.J.

 Kinetics of the Reaction of Atomic Hydrogen with Acetylene.

 J. Chem. Phys., 18, 1632-7 (1950).

 C. A., 45, 6023 (1951).

 C. A., 43, 472 (1949).
- 499. Dintses, A.I.

 Thermal Decomposition of Hydrocarbons at Various Pressures.

 Uspekhi Khim., 7, 404-35 (1938).

 C. A., 33, 4855 (1939).

 The kinetics and the products of the decompositions of C₂^H₆, C₃^H₈, C₄^H₁₀, and

iso - $C_1 10_{10}$ with references to a possible free radical mechanism.

- 500. Dixon, J.K. & Steiner, W. Reaction of Ammonia with Active Nitrogen and Existence of Free NH and OH Radicals. Z. physik.Chem.;B17, 327-52 (1932). C. A.,26, 4231 (1932). $C. A., \overline{25}, 5807 (1931).$ It has proved impossible to draw off OH from water vapor through which a discharge is passing. It is probable that NH is either resolved into N and H by the discharge, or is decomposed by chemical reaction in the region of the discharge.
- 501. Dixon, J.K.

 The Reactions of Hydrogen
 Atoms with Hydrazine and
 with Ammonia.

 J. Am. Chem. Soc.; 54, 426271 (1932).

 C. A., 27, 5, (1933).

 H + N₂H₁ = H₂ + N₂H₃

 2N₂H₃ = 2NH₃ + N₂

 H + NH₃ = NH₂ + H₂ + 10Kg.Cal.
- 502. Dobrinskaya, A.A. & Neiman, M.B. Mechanism of the Oxidation of Olefins in the Gas Phase. Doklady Akad. Nauk S.S.S.R.,58, 1969-72 (1947). C. A.,46, 8605 (1952).
- 503. Dodd, R.E. & Waldron, J.D.
 Association Reaction of Methyl
 Radicals.
 Nature, 167, 655-6 (1951).
 C. A., 45, 7434 (1951).
 The presence of C.H. was
 established, indicating the
 terminating process to be
 CH₃ + CH₃ = C.H₆.
 Other possible chain terminating
 mechanisms are discussed.

- 504. Dodd, R.E.

 Reaction of Methyl

 Radicals with Acetaldehyde.

 Can.J.Chem., 33, 699704 (1955).

 C. A.,49, 7988 (1955).

 C. A.,48, 8058 (1954).

 Possible mechanisms.
- 505. Dodd, R.E. & Smith, J.W. Abstraction of Hydrogen by Trifluoromethyl Radicals.

 Research Correspondence, Suppl. to Research (London),8, No. 12, 563-4 (1955).*

 C. A.,50, 13714 (1956).
- 506. Dodd, R.E.
 Activation Energy of
 Hydrogen Abstraction
 Reactions.
 J. Chem. Phys., 26, 1353-4
 (1957)..
 C. A., 51, 14386 (1957).
 Reactions such as:
 CH₃ + RH = CH₄ + R
- 507. Dodd, R.E. & Smith, J.W. The Photolysis of Trifluoroacetaldehyde.

 J. Chem. Soc., 1957, 1465-73.

 C. A., 51, 17468 (1957).

 A consideration of the reaction mechanism.
- 508. Dogadkin, B.A. & Belyaeva, E.N.

 The Role of Free Radicals in the Process of Low-Temperature Cross-Linking (Vulcanization) of Rubber.

 Vysokomolekulyarnye
 Soedineneya, Vsesoyuz.

 Khim. Obshchestvo im. D.

 I. Mendeleeva, 1, No. 2, 315-23 (1959).

 C. A.;53, 20881 (1959).

- 509. Dolgoplosk, B.A., Korotkina, D.S., Parfenova, G.A., Erusalimskii, B.L. & Milooskaya, E.B.

 The Inhibition Mechanism of Radical Chain Reactions, Vaprosy Khim.Kinetiki, Kataliza i Reaktsionnoi Sposobnotsi, Akad.Nauk
 S.S.S.R., 1955, 303-21.
 C. A., 50, 10491 (1956).
 A review of recent Russian and Foreign research.
- Donaldson, D.M. & Miller, N. Radical Yield Measurements in Irradiated Aqueous Solutions. I. Radical Yields with Cobalt-60 γ-Irradiation. Radiation Research, 9, 487-97 (1958) C. A.,<u>53</u>, 3902 (1959). The rise in apparent radical yields with increasing solute concentration is a manifestation of scavenger action in the primary mol. products reactions: H + H=H₂, OH = H_2O_2 , and $H + OH = H_2O$.
- Dondes, S. Radiation Chemistry of the Nitrogen-Oxygen System at Low Pressures. Threshold of Space, Proc. Conf. Chem.Aeron., 1956, 116-23 (Pub. 1957). C. A.,52, 13443 (1958). The methods of radiation chemistry are successfully used to correlate photo-chemical processes in the N-O system at low pressures, and explanations for some of the basic reactions occurring in the upper atmosphere are suggested. This method also makes it possible to obtain kinetic radiation equilibria not normally obtainable by other experimental processes. Quartz reaction vessels for use in the pile are described and graphical data for the decomposition of N_0 , N_0 , N_0 - 0, and air are given.

- Donn, B. & Urey, H.C. **512.** Chemical Heating Processes in Astronomical Objects. Mem. Soc. Roy. Sci. Liege, 18, 124-31 (1957). C. A.,51, 15263 (1957). C. A.,50, 9147 (1956). Modification of the original proposals on the chemical heating by recombination of atoms, free radicals or energetic molecules as a satisfactory source of energy for the flaring of comets and for the melting of the materials of meteorites.
- 513. Donnet, J.B. & Henrich, G. The Radical Character of Carbon Black.

 Compt. rend., 246, 3230-2 (1958).

 C. A.,52, 17885 (1958).
- 514. Donnet, J.B. & Henrich, G.
 Radical Properties of
 Carbon Black. Inhibition
 of Radical Polymerization.
 Compt. rend., 246, 3341-4
 (1958).
 C. A.,53, 838 (1959).
 The inhibitory properties
 of carbon black on radical
 polymerization were proved
 during the polymerization
 of styrene and acrylonitrile.
- 515. Donnet, J.B., Henrich, G., & Geldreich, L.
 Influence of the Nature of Carbon Black on Its Free-Radical Character.
 Compt. rend., 249, 97-8 (1959).
 C. A., 53, 23032 (1959).
 No relation exists between free-radical concentration and either specific surface or H content.
 Reinforcement due to mutual combination of the free radicals was disproved.

- 516. Dorfman, L.M. & Gomer, R. The Preexponential Factor for Some Reactions of Methyl Radicals.

 Chem. Rev., 46, 499-505 (1950).

 C. A., 44, 8212 (1950).

 H₂C + RH = CH₁ + R

 Collision cross sectionsteric factor.
- 517. Dorfman, L.M.
 Radiolysis of Ethane: Isotopic and Scavanger Studies.
 (Electron).
 J. Phys. Chem.,62, 29-33
 (1958).
 C. A.,52, 7877 (1958).
 At least half of the CH₄
 found did not originate
 from CH₃ radical reactions.
- 518. Dorman, F.H. & Buchanan, A.S. Photolysis of Gaseous Aldehydes. I. Production of Ethane and Hydrogen in the Photolysis of Acetaldehyde.

 Australian J. Chem., 9, 25-33 (1956).

 C. A.,50, 10541 (1956).
- 519. Dorman, F.H. & Buchanan, A.S. Photolysis of Gaseous Aldehydes. II. Decomposition of Formyl and Acetyl Radicals.

 Australian J. Chem., 9, 34-40 (1956).

 C. A., 50, 10541 (1956).
- 520. Dorman, F.H. & Buchanan, A.S. Photolysis of Gaseous Aldehydes. III. Formaldehyde and Mixture of Formaldehyde with Acetaldehyde, Acetone, and Carbon Dioxide. Australian J. Chem., 9, 41-8 (1956).

 C. A.,50, 10541 (1956).

- 521. Dorman, F.H. & Buchanan, A.S. Photolysis of Gaseous Aldehydes. IV. Mixtures of Acetaldehyde with Formaldehyde and Acetone and the Photolysis of Glyoxal. Australian J. Chem., 9, 49-53 (1956).

 C. A.,50, 10541 (1956).
- 522. Dose, K. & Ettre, K. Radiochemical Synthesis of Amino Acids and Related Compounds. Z. Naturforsch., 13b, 784-8 (1958). C. A.,<u>53</u>, 12859 (1959). The ability of x-rays to form amino acids and related compounds from mixtures of NH_3 , H_2O , CH_4 , H, CO_2 , and N is of interest from the point of view of the origin of life, and also because it demonstrates the synthetic possibilities of ionizing radiation.
- 523. Douglas, A.E. & Herzberg, G. CH⁺ in Interstellar Space and in the Laboratory.
 Astrophys. J.,94, 381 (1941).
 C. A.,36, 31 (1942).
 Three interstellar lines at 4232.58, 3957.72, and 3745.33A are now attributed to CH⁺.
- 524. Dousmanis, G.C., Sanders, T.M., Jr. & Townes, C.H. Microwave Spectra of the Free Radicals, OH and OD. Produced by Discharge Tube. Phys. Rev., 100, 1735-54 (1955).
 C. A., 50, 4642 (1956).

- 525. Dubrovai, K.K.

 The Structure of Organic Compounds.

 Sotzialist. Rekonstruktziya i Nauka, 1935, No. 4, 17-32.

 C. A.,30, 1355 (1936).

 The hydrocarbon radicals are considered as tetrahedral systems with a central C atom and with free valances where the interconnection of the radicals takes place.
- A Brief Outline of the
 Development of Electronic
 Spectroscopy of Polyatomic
 Molecules.
 J. phys. radium, 7, 97-104
 (1946).
 C. A.,41, 337 (1947).
 The use of spectra for the
 solution of problems and
 especially for the study
 of free radicals is discussed.
- The Relations between Interatomic Forces and Electronic Structure of Polyatomic Molecules.

 Acad. roy. Belg. Classe sci.

 Mem.,26, No. 7, 3-43 (1952).

 C. A.,46, 6882 (1952).

 An interpretation of interatomic distances, bond forces, electric moments, and chemical reactivity of molecules.
- Dufay, J.

 Research on the Raffety Band and the 3157A Band of the CH Molecule in the Solar Spectrum.

 Cahiers Phys., 1941, No. 2, II, 30-4.

 C. A., 37, 830 (1943).

- 529. Dufay, J.
 Emission Bands of the Molecules
 OH and Op in the Night Sky Spectrum
 between 9000A and 11,000A.
 Ann. Geophys., 7, 1-8 (1951).
 C. A., 44, 10495 (1950).
 C. A., 44, 9245 (1950).
- 750. Duffey, G.H.

 The Methylene Radical.

 J. Chem. Phys., 17, 840-1
 (1949).

 C. A., 44, 1885 (1950).

 C. A., 43, 5241 (1949).

 Theoretical discussion of bond angle.
- 531. Dull, M.F. & Simons, J.H.
 Free Phenyl Radicals in
 the Gas Phase.
 J. Am. Chem. Soc.,55,
 3898 (1933).
 C. A.,27, 5067 (1933).
 Decomposition of PbPh;
 in an electric furnance
 gave PH₂ + HgPh₂ (from
 the gaseous products and
 Hg). This would indicate
 the presence of free Ph
 radicals.
- 532. Dunford, B., Evans, H.G.V. & Winkler, C.A.

 The Reaction of Active
 Nitrogen with Alkyl Chlorides.
 Can. J. Chem., 34, 1074-82
 (1956).
 C. A., 51, 221 (1957).
 C. A., 45, 395 (1951).
 C. A., 44, 2341 (1950).
- 533. Durham, R.W., Martin, G.R. & Sutton, H.C.
 A Radioactive Tracer Method for the Analysis of Mixtures of Short-Lived Free Radicals.
 Nature, 164, 1052-3 (1949).
 C. A., 44, 3375 (1950).
 Reaction with eight-day 1131.

- 534. Durham, R.W. & Steacie, E.W.R. The Reaction of Methyl Radicals with Nitric Oxide and the Rate of Combination of Methyl Radicals.

 J. Chem. Phys., 20, 582-5 (1952).

 C. A., 46, 10812 (1952).

 C. A., 45, 6470 (1951).

 C. A., 35, 6503 (1941).
- 535. Durie, R.A.
 The Excitation and Intensity
 Distribution of CH Bands in
 Flames.
 Proc. Phys. Soc. (London), A65,
 125 (1952).
 C. A.,46, 10897 (1952).
- 536. Dwyer, R.J. & Oldenberg, O.
 The Dissociation of H₂O into
 H and OH.
 J. Chem. Phys., 12, 351-61
 (1944).
 C. A., 38, 6181 (1944).
 C. A., 23, 5402 (1929).
 Spectrographic method derived
 from the method of Bonhoeffer
 and Reichardt.
- 537. Dyatkina, M.E. & Syrkin, Y.K. Biradical State of Hydrocarbons. Bull. acad. sci. U.R.S.S. Classe sci. chim., 543-55 (1945). (In English). C. A.,40, 6047 (1946).
- 538. Dyatkina, M.E. & Syrkin, Y.K. Biradicals.
 Uspekhi Khim.,16, 29-68 (1947).
 C. A.,41, 4980 (1947).
 C. A.,40, 6047 (1946).
 Review of chemical and magnetic properties and of theories; transitions between singlet and doublet states of molecules. 61 references.

- 539. Dyne, P.J. & Style, D.W.G.
 Radical Spectra in Fluorescence.
 Discussions Faraday Soc., 1947,
 No. 2, 159-61.
 C. A., 43, 5312 (1949).
 Light from a H are screened
 by a fluorite window produces
 fluorescence in HCHO at low
 pressures (a few tenths mm.Hg)
 discernable by very weak bands
 for long periods (1-6 hours).
 The emitter is identified as
 CHO.
- 540. Dyne, P.J.

 The Absorption Spectra of
 Free Radicals Formed in an
 Electric Discharge.

 Can. J. Phys., 31, 453-7 (1953).

 C. A., 47, 5793 (1953).

 When white light was passed
 thru tubes containing the
 vapors of H₂O, H₂S, CS₂ (CN)
 or NH₂ excited by discharges
 from a radio frequency oscillator, the absorption bands
 of the radicals OH, SH, CS,
 CN and NH₂ were observed
 superimposed on the continuum.
- 541. Dyne, P.J. Emission Spectra of Polyatomic Free Radicals. Natl. Bur. Stand. (U.S.) Circ., 523, 19-22 (1954). C. A., 48, 6840 (1954). Expts. are described for exciting the spectra of polyatomic radicals and suppressing those of diatomic molecules. A high frequency electrodeless discharge excites the spectra of polyatomic molecules at a pressure of about 0.1 mm. but the amount of precise unequivocal spectroscopic data on polyatomic free radicals is still small.

- Uncertainties in the
 Measurement of the Oscillator Strength of the
 Ultraviolet Bands of OH.
 J. Chem. Phys., 28, 999-1000
 (1958).
 C. A., 52, 15239 (1958).
 Calculations indicated that
 the lines are almost purely
 Doppler broadened and showed
 little pressure broadening.
- 543. Dyne, P.J. & Kennedy, J.M.
 The Kinetics of Radical
 Reactions in the Tracks of
 Fast Electrons. A Detailed
 Study of the Samuel-Magee Model
 for the Radiation Chemistry of
 Water.
 Can. J. Chem., 36, 1518-36
 (1958).
 C. A., 53, 8832 (1959).
 An electronic computer was used to
 study the Samuel Magee model
 for the radiation decomposition
 of H₂O.

- 544. Ebert, M.
 The Radiation Chemistry
 of Water, a Guide to
 Radiation Biology.
 Angew. Chem., 67, 169-73
 (1955).
 C. A., 49, 7018 (1955).
 A review covering physical
 primary processes, indirect
 effects, reactions of free
 radicals and inactivation
 of bacteriophages.
 30 references.
- 545. Edgecombe, F.H.C., Norrish, R.G.W. & Thrush, B.A.
 The Flash Photolysis of Chlorine Monoxide.
 Proc. Roy. Soc. (London), A243, 24-32 (1957).
 C.A.,52, 9785 (1958).
 A short-chain reaction scheme, with ClO and Cl as chain carriers. Consts. are derived for the ClO decay.
- 546. Edwards, F.G. & Mayo, F.R. Reactions of Free Radicals Formed from Thermal Decomposition of Acetyl Peroxide. J. Am. Chem. Soc., 72, 1265-9 (1950).
 C. A.,44, 5313 (1950).
- 547. Egerton, A.C. & Pidgeon, L.M. Absorption Spectra of Burning Hydrocarbons.

 Proc. Roy. Soc. (London), A142, 26-39 (1933).

 C. A., 28, 44 (1934).
 - (1) Continuous U.V. absorption down to 2000A.
 - (2) Bands beginning near 3500A identified with those of formaldehyde.
 - (3) In higher hydrocarbons-cont. abs. max. at 2600A.

- 548. Egerton, A.C., Minkoff, G.J. & Salooja, K.C.
 The Slow Oxidation of Methane. The Role of the Surface on the Course of the Oxidation of Methane.

 Combustion & Flame, 1, 25-52 (1957).
 C. A.,51, 7820 (1957).
 Role of intermediates such as HO, and OH.
- 549. Einstman, R.V.
 Relative Efficiencies of
 the Isomeric Butenes in
 the Removal of Free
 Methyl Radicals.
 Univ. Microfilms (Ann
 Arbor, Mich.), Publ. No.
 18322, Dissertation
 Abstr., 16, 1593 (1956).
 C. A., 51, 2366 (1957).
- 550. Eklund, K.E. & Bent, R.D.

 Search for a 0- 0+ Pair

 Transition in Oxygen-16.

 Phys. Rev., 112, 488-9

 (1958).

 C. A.,53, 2851 (1959).

 Electron-positron transition

 from 10.98 m.e.v. 0-016 state

 to 0+ ground state was looked

 for in F19 (p,α) 016 * by

 intermediate-image pair

 spectrometer.
- 551. Eley, D.D. & Inokuchi, H.
 Organic Solids and Heterogeneous Catalysis. Electron Transfer in 2,2-Diphenyl-1-Picrylhydrazl.

 Z. Elektrochem.,63, 29-34
 (1959) (In English).
 C. A.,53, 7741 (1959).
 The unpaired electrons of the solid free radical, 2,2-diphenyl-1-picrylhydrazyl, convert para H at low temps.

- felder, J.O.

 Approximate Natural Spin
 Orbitals for the Hydrogen
 Molecule.
 J. Chem. Phys., 30, 1397404 (1959).
 C. A., 53, 18617 (1959).
 Approximate natural spin
 orbitals and the corresponding occupation numbers were
 obtained over a wide range
 of internuclear separations
 for the legt ground state
 and the 3eut excited state
 of the H molecule.
- 8 Wilen, E.L., Welvart, Z.

 & Wilen, S.H.
 Isotope Effects in the
 Free Radical Arylation of
 Aromatic Hydrocarbons.
 J. Org. Chem.,23, 1821-2
 (1958).
 C. A.,53, 21796 (1959).
 Data were reported indicating
 that there is an isotopic effect
 in the free radical arylation
 and alkylation of PhD, at least
 with certain peroxides and under
 certain experimental conditions.
- 554. Elsasser, W.M.
 The Far-Infrared Water
 Bands and Heat Transfer
 in the Atmosphere.
 Phys. Rev., 56, 855-6 (1939).
 C. A., 35, 4684 (1941).
- 555. Eltenton, G.C.
 The Detection of Free Radicals by Means of a Mass
 Spectrometer.
 J. Chem. Phys.; 10, 403 (1942).
 C. A., 36, 4418 (1942).

555. Cont.

Since the ionization potentials of the free radicals are lower than the appearance potentials of the same ions produced by electron dissociation of the parent molecule. It is possible to select a value of the electron voltage such that when no chemical reaction occurs no ions of the given mass are formed. Methyl and ethyl radicals have been detected at pressures up to 120mm.

- 556. Eltenton, G.C.
 The Study of Reaction
 Intermediates by Means
 of a Mass Spectrometer.
 I. Apparatus and Method.
 J. Chem. Phys., 15, 455-65 (1947).
 C. A., 41, 6119 (1947).
- 557. Eltenton, G.C.
 The Study of Reaction
 Intermediates by Means
 of a Mass Spectrometer.
 II. The Thermal Decomposition of Some Lower
 Hydrocarbons.
 J. Chem. Phys., 15, 46574 (1947).
 C. A.; 41, 6119 (1947).
- 558. Eltenton, G.C.

 The Study of Reaction
 Intermediates by Means
 of a Mass Spectrometer.

 III. Low Pressure Flames.
 J. Chem. Phys., 15, 474-81
 (1947).
 C. A., 41, 6120 (1947).
 HO₂, MeO, CH₂O, C₂H₂, and
 CH₃, and traces of OH.

- Detection of Intermediate
 Reaction Products by Mass
 Spectroscopy.
 Rev. inst. franc petrole, 4,
 468-76 (1949).

 C. A., 44, 7647 (1950).
 In a burning O₂ CH₁₄ mixture,
 the following occurs in
 consecutive zones starting
 from the interior of the
 flame; O₂, CH₂, CHO, CO, CH₁₄,
 and CH₂O. The concn. of CH₂
 is greater in CH₁₄ than in
 C₃H₈ flames. The intermediate
 HO₂ is postulated and discussed.
- 560. Emschwiller, G.

 The Chemical Action of Ultraviolet Light on the Alkyl
 Iodides. (Liquid),
 Compt. rend., 192, 799-802 (1931).
 C.A., 25, 2921 (1931).
 C.A., 24, 5634 (1930).
- Engel, R. & Boedewadt, U.T.

 Effect of Recombination (Free Radical) on Rocket Performance.

 Recherche aeronaut. (Paris),

 1950, No. 18, 23-33,

 C. A., 46, 265 (1952).

 Recombination of free radicals in the exit gases has been supposed to reduce efficiency below theoretical values.

 Detailed calculations are given for a typical fuel (alcohol-02) which shows the net thrust is actually greater.

- 562. Enikolopyan, N.S.
 Stable Intermediate
 Products in Complex
 Chain Reactions.
 Doklady Akad. Nauk.
 S.S.S.R., 112, 93-6
 (1957).
 C. A.,51, 14387 (1957).
 C. A.,50, 16303 (1956).
 Autocatalysis by intermediate and final products.
- 563. Erben, M.T. & Isfendiyaroglu, A.N.

 The Extent of the Abnormal Recombination of Cyanoisopropyl Free Radicals from 2,2'-Azobisisobutyronitrile.

 Can. J. Chem., 36, 1156-8 (1958).

 C. A.,53, 4112 (1959).

 At 80° in toluene 54.4% of cyanoisopropyl radicals recombine to form the ketenimine intermediate.
- 564. Erhard, K.H.L. & Norrish, R.G.W.
 Studies of Knock and Antiknock by Kinetic Spectroscopy.

 Proc. Roy. Soc. (London)
 234A, 178-9 (1956).
 C. A.,50, 13417 (1956).
- 565. Etingof, E.I. & Stepukhovich, A.D.

 Steric Factors of Simple
 Reversible Reactions between
 Hydrogen and Methyl Radicals
 with the Simplest Olefins.
 Doklady Akad. Nauk.S.S.S.R.,99,
 815-18 (1954).
 c.f. Doklady Akad.Nauk.S.S.S.R.,
 92, 127 (1953).
 C. A.,49, 15392 (1955).
 C. A.,47, 4707 (1953).

- Seaman, M.G., Gergely, J., & Seaman, E.C.
 Factors Influencing the Activation Energies of Reactions Involving Double Bonds and Radicals.
 J.Polymer Sci., 3, 866-79 (1948).
 C. A., 44, 1782 (1950).
- 567. Evans, M.G. & Szwarc, M.
 Magnitude of the Probability
 Factors in Radical Reactions.
 Trans. Faraday Soc., 45, 940-6
 (1949).
 C. A., 44, 2344 (1950).
 Rate constants and temp. coeff.
- 568. Evans, M.G.
 Hydrocarbon Structure and
 Bond Properties. Introductory
 Paper.
 Discussions Faraday Soc., 1951,
 No. 10, 1-9.
 C. A., 46, 3339 (1952).
 Stability of radicals in terms
 of resonance energies, mobile
 electrons in π electron mols.
 and temp.-independent factors.
- 569. Evans, M.G.
 A Discussion on Bond Energies and Bond Lengths. Introduction to the Discussion.

 Proc. Roy. Soc. (London), A207, 1-5 (1951).
 C. A., 46, 5377 (1952).
- 570. Everett, A.J. & Minkoff, G.J. Spark-Ignited Explosions in Chilled Vessels.

 I. Hydrogen + Oxygen Mixtures. Trans. Faraday Soc., 52, 971-9 (1956).

 C. A., 51, 5423 (1957).

- 571 .. Evering, B.L. Thermal Decomposition of Petroleum Hydrocarbons into Free Radicals. J. Am. Chem. Soc., 61, 1400-5 (1939)• C. A., 33, 6573 (1939). The free-radical concentration in a stream of cracked hydrocarbon vapor was measured as a function of pressure, over a range of 0.25-6.0 mm by the rate of reaction with a Pb surface. Petroleum "octane" and "hexane" cuts, C_5 H_{12} , C_4 H_{10} , and C_3 H_8 were studied.
- 572. Ewald, A.H., Hamann, S.D. & Stutchbury, J.E. Effect of Pressure on Some Free-Radical Reactions of 1, 2-Dichloroethylene. Trans. Faraday Soc., 53, 991-6 (1957).
 C. A., 52, 7831 (1958).
- 573. Ewald, H. & Henglein, A.
 Observation of Ionic Dissociation by Means of a
 (Thomson) Parabola (Mass)
 Spectrograph.
 Z. Naturforsch., 6a, 463-4 (1951).
 C. A., 46, 6929 (1952).
- 574. Eyrand, C., Domanski, B. & Bussiere, P.
 The Oxidation of Methane by Active Oxygen or Air in Homogeneous Phase over Incandescent Platinum. Compt. rend., 243, 905-7 (1956).*
 C. A.,51, 4802 (1957).

- 575. Fabian, D.J. & Robertson, A.J.B.

 Sensitivity of Propyl Radicals to Surface Collision in a Mass Spectrometer.

 Trans. Faraday Soc., 53, 363-7 (1957).

 C. A.,51, 13580 (1957).

 The only important reaction removing propyl radicals was a first order dehydrogeneration of the radicals on the filament.
- 576. Fabrikant, V.A.

 Excitation of Atoms in a
 Gas Discharge.

 Compt. rend. acad. sci. U.S.S.R.,
 23, 224-8 (1939) (In English).

 C. A.,33, 8102 (1939).

 C. A.,33, 6137 (1939).

 C. A.,33, 6137 (1939).

 Diffusion problems connected
 with excitation of atoms in
 a gas discharge.
- 577. Fadner, T.A., Rubin, I. & Morawetz, H.

 The Mechanism of Free-Radical Polymerization in the Crystalline State.

 J. Polymer Sci., 37, 549-51 (1959).

 C. A.,53, 21095 (1959).

 Crystalline acrylamide, irradiated at -70° with γ-rays at 200,000 and 800,000 r.e.p., polymerized at 25° for periods up to six months.
- 578. Fairbarn, A.R. & Gaydon, A.G. Spectra Produced by Shock Waves, Flames, and Detonations. Proc. Roy. Soc. (London), A239, 464-75 (1957).

 C. A.,51, 15268 (1957).

- 579. Faire, A.C. & Champion,
 K.S.W.

 Measurements of Dissociative Recombination and
 Diffusion in Nitrogen at
 Low Pressures.
 Phys. Rev., 113, 1-6 (1959).
 C. A.,53, 12857 (1959).
 Spectra emitted were
 studied with a monochromator, a photomultiplier,
 and with basic microwave
 techniques.
- 580. Farkas, A.
 Orthohydrogen, Parahydrogen
 and Heavy Hydrogen.
 The MacMillan Co., New York
 (1935).
 C. A., 29, 2454 (1935).
- 581. Farkas, A.
 Activation of Hydrogen in Catalytic Reactions of Hydrocarbons.
 Trans. Faraday Soc. 35, 906-17 (1939).
 C. A. 33, 9103 (1939).
 In exchange reactions, the hydrocarbons are partially split into H atoms and hydrocarbon radicals on the surface.
- 582. Farkas, L. & Sachsse, H. Homogeneous Catalysis of the Para-Ortho Hydrogen Conversion by Paramagnetic Substances.
 Sitzber. preuss. Akad. Wiss. Physik-math. Klasse, 1933, 268-79.
 C. A., 27, 3874 (1933). The conversion in the presence of O2, NO or NO2 is first order.

- 583. Farkas, L.

 Para and Ortho Hydrogen.

 Ergeb. d. exakt. Naturwiss., 12, 163-218 (1933).

 C. A.,28, 3957 (1934).

 C. A.,27, 387 (1933).

 Application to measurement
 of concentration of hydrogen
 atoms in reacting gas mixtures.
- Farkas, L. & Sachsse, H.

 Recombination of Hydrogen
 Atoms and Their Reaction with
 Oxygen and Carbon Monoxide.
 Z. physik Chem., B27, 111-29
 (1934)...
 C. A., 29, 684 (1935).
 H atoms produced by CarioFranck method in presence of
 H, O, A, N, and CO. For pure
 hydrogen, three body collisions resulted in the recombination of H atoms.
- 585. Farkas, L.
 Estimation of Semiquinones
 by the Conversion of ParaHydrogen.
 Ann. N.Y. Acad.Sci.,40, Art.
 2, 129-32 (1940).
 C. A.,35, 2757 (1941).
 A simple description of the method.
- 586. Farmer, E.H.
 Ionic and Radical Mechanisms
 in Olefinic Systems with
 Special Reference to Processes, of Double-Bond
 Displacement, Vulcanization
 and Photogelling.
 Trans.Faraday Soc.; 38,
 5pp (1942). Preprint.
 C. A., 36, 5768 (1942).

- 587. Farmer, E.H. & Michael, S.E. Rubber, Polyisoprenes and Allied Compounds. II. The Molecule-Linking Capacity of Free Radicals and its Bearing on the Mechanism of Vulcanization and Photogelling Reactions.

 J.Chem.Soc., 1942, 513-19.
 C. A., 37, 795 (1943).
 C. A., 3697 (1942).
- 588. Farmer, E.H. & Moore, C.G.
 Radical Mechanisms in Saturated and Olefinic Systems.
 I. Liquid-Phase Reaction of the Tert-Butoxy Radical with Olefins and with Cyclohexane.
 J. Chem. Soc.,1951, 131-41.
 C.A.,45, 8437 (1951).
- 589. Farmer, E.H. & Moore, C.G.
 Radical Mechanisms in
 Saturated and Olefinic
 Systems. II. Disubstitutive Carbon-Carbon CrossLinking by Tert-Alkoxy
 Radicals in Isoprenic Olefins and Rubber.
 J. Chem. Soc., 1951, 142-8.
 C. A., 45, 8438 (1951).
- 590. Farmer, E.H. & Moore, C.G.
 Radical Mechanisms in Saturated and Olefinic Systems.
 III. The Reaction of
 Hydroxyl Radicals with Olefins.
 J. Chem. Soc., 1951, 149-53.
 C. A., 45, 8439 (1951).
- 591. Farmer, E.H. & Moore, C.G. The Reaction of OH with Olefins.

 J.Chem.Soc.,1951, 131-41.

 J.Chem.Soc.,1951, 142-48.

 J.Chem.Soc.,1951, 149-53.

 C. A.,46, 8437 (1952).

- 592. Farmer, E.H. & Moore, C.G. Radical Mechanisms in Saturated and Olefinic Systems. II. Disubstitutive Carbon-Carbon Cross-Linking by Tertiary Alkoxy Radicals in Isoprenic Olefins and Rubber.
 Rubber Chem. & Technol., 24, 777-86 (1951).
 C. A., 47, 95 (1953).
 C. A., 45, 8438 (1951).
- 593. Farmer, J.B. & Lossing, F.P. Free Radicals by Mass Spectrometry. VII. Ionization Potentials of Ethyl, Isopropyl and Propargyl Radicals and the Appearance Potentials of the Radical Ions in Some Derivatives. Can. J. Chem., 33, 861-9 (1955).C. A.,49, 12060 (1955). $C.A.,\overline{49}$, 52 (1955). Measured by electron impact on radicals produced by thermal decomposition of appropriate compounds.
- 594. Farmer, J.B., Lossing, F.P.,
 Marsden, D.G.H. & Steacie,
 E.W.R.
 Mass Spectrometric Detection
 of Radicals in the Mercury
 Photosensitized Decomposition
 of Acetone.
 J. Chem. Phys., 23, 1169 (1955).
 C. A., 49, 12137 (1955).
 Low pressure Hg lamp, quartz
 reactor, and mass spectrometer.
- 595. Farmer, J.B., Henderson, I.H.S., Lossing, F.P. & Marsden, D.G.H.
 Free Radicals by Mass Spectrometry.
 IX. Ionization Potentials of CF₂ and CCl₂ Radicals and Bond Dissociation Energies in Some Derivatives.
 J. Chem. Phys., 24, 348=52 (1956).
 C.A., 50, 7577 (1956).
 C.A., 50, 6181 (1956).

- 596. Farmer, J.B., Matsunaga, Y. & McDowell, C.A.
 Electron Spin Resonance Absorption Spectrum of Pummerer's Oxygen Radical.
 Can. J. Chem., 37, 634-7 (1959).
 C.A., 53, 14693 (1959).
- 597. Fava, A., Sogo, P.B. & Calvin, M.
 Chemistry and Spin-Resonance Spectroscopy of Radicals from Thio Aromatic Compounds.*
 U. S. Atomic Energy Comm., UCRL-3531, 16pp. (1956).
 C. A.,51, 6359 (1957).
- 598. Fedorova, N.I.

 Hydroxyl Radiation of
 the Upper Atmosphere.

 Ivest. Akad. Nauk S.S.S.R.,
 Ser. Geofiz.,1959, 836-46.
 C. A.,53, 21136 (1959).
- 599• Feldman, M.H., Ricci, J.E. & Burton, M. Counting of Free Alkyl Radicals. Application to the Photolysis of Acetone. J. Chem. Phys., 10, 618-23 (1942).C. A.,<u>36</u>, 6893 (1942). $C. A., \overline{29}, 3301 (1935).$ Long, and heavy Pb mirrors are deposited in a reactor tube and metal is transported therefrom by free radicals according to the Paneth method. The Pb alkyl is collected and the Pb is determined by a micro-method. The method is applied to work on the photolysis of Me CO at 2537A.

- 600. Feldman, M.H., Burton, M., Ricci, J.E. & Davis, T.W. Determination of Free Radicals in Acetone Photolysis.
 J. Chem. Phys., 13, 440-7 (1945).
 C. A., 40, 16 (1946).
- 601. Fellion, Y. & Vebersfeld, J. Hyperfine Structures of the Free Radicals of the Phenazine Series.

 Arch. sci. (Geneva), 10, Spec. No., 95-7 (1957) (in French). C. A.,52, 1756 (1958).
- Determination of Oxygen Atoms in Lean, Flat, Premixed Flames by Reaction with Nitrous Oxide.

 J.Phys.Chem., 62, 178-83 (1958).

 C. A.,52, 9728 (1958).

 Adding N₂O to the reactants and assuming that NO is formed only by O + N₂O = 2 NO.
- 603. Fenimore, C.P. & Jones, G.W. Determination of Hydrogen Atoms in Rich, Flat Premixed Flames by Reaction with Heavy Water.

 J.Phys. Chem., 62, 693-7 (1958).
 C. A., 52, 16016 (1958).
- 604. Ferguson, R.E.
 The Origin of the Electronically
 Excited C2 Radical in Hydrocarbon
 Flames.
 J.Chem.Phys., 23, 2085-9 (1955).
 C. A., 50, 3042 (1956).
- 605. Fessenden, R.W. & Schuler, R.H.

 The Use of Iodine as a Radical Detector in Hydrocarbon Radiolysis.

 J. Am. Chem. Soc., 79, 273-6 (1957).

 C. A.,51, 13582 (1957).

 C. A.,50, 77 (1956).

- 606. Finch, G.I.
 Steam in the Ring Discharge.
 Atoms and Free Radicals
 Production.
 Phys. Soc. (London) Proceedings, Sec. A., 62, 465-482.
 C. A., 44, 939 (1950).
- 607. Finch, J.N.
 Hydrogen Bond SystemsTemperature Dependence of
 OH Frequency Shifts and
 OH Band Intensities.
 Univ. Microfilms (Ann
 Arbor, Mich), Publ. No.
 20385, 132 pp.;
 Dissertation Abstr., 17,
 754 (1957).
 C. A., 51, 11069 (1957).
- 608. Finch, J.N. & Lippincott, E.R.
 Hydrogen Bond SystemsTemperature Dependence of OH Frequency Shifts and OH Band Intensities.
 J. Phys. Chem., 61, 894902 (1957).
 C. A.,51, 17448 (1957).
 C. A.,50, 9878 (1956).
- 509. Finkelstein, A. & Noyes, W.A., Jr.

 The Reactions of Radicals from Diethyl Ketone with Oxygen. I. Discussion Faraday Soc., 1953, No. 14, 76-8.

 C. A., 48, 9909 (1954).

 There are short chains at all temps. At 200° the results are complicated by purely thermal reactions.

- 610. Fiquet-Fayard, F.

 Correlations among H₂0,
 H₂ + 0 and OH + H.
 J. chim. phys., 54, 27481 (1957).
 C. A., 51, 12576 (1957).
 Mass spectroscopy.
- Fite, W.L.
 Free Hydrogen Atom Collision
 Cross Sections of Interest
 in Controlled Thermonuclear
 Research.
 Proc. U.N. Intern. Conf.
 Peaceful Uses At. Energy,
 2nd, Geneva, 32, 405-8
 (1958).
 C. A.,53, 21219 (1959).
 Results are reported for
 ionization, electron impact,
 Lyman-α radiation excitation,
 and elastic scatter cross
 sections for H atoms.
- 612. Fitzgerald, M.E., Griffing, V. & Sullivan, J.
 Chemical Effects of Ultrasonics; Hot Spot Chemistry.
 J. Chem. Phys., 25, 926-33 (1956).
 C. A.,51, 4101 (1957).
 C. A.,49, 10067 (1955).
 In water solutions, the reaction is the production of radicals by the thermal decomposition of H₂O, probably OH radicals.
- 613. Fleming, S.W.

 Detection of Free Radicals
 from the Heterogeneous
 Decomposition of Butane
 by a Tracer Technique.
 Univ. Microfilms (Ann Arbor,
 Mich.). Publ. No. 7787,
 Dissertation Abstr., 14, 933-3
 (1954).
 C. A., 49, 5259 (1955).

- 614. Fleming, S.W. & Krieger, K.A. Free Radicals from the Heterogeneous Decomposition of Butane.

 J. Am. Chem. Soc., 79, 4003-7 (1957).

 C. A.,51, 17371 (1957).
- 615. Fletcher, C.J.M. & Rollefson, G.K.

 The Production of Free Radicals from Ethylene Oxide and the Catalysis of Other Reactions by Them.

 J. Am. Chem. Soc., 58, 2135-40 (1936).

 C. A.,31, 936 (1937).

 The small amounts of free radicals catalyze the decomposition of the Ach by a chain mechanism.
- 616. Fletcher, C.J.M. & Rollefson, G.K.

 Presence of Free Radicals in the Thermal Decomposition of Diethyl Ether.

 J. Am. Chem. Soc., 58, 2129-35 (1936).

 C. A., 31, 1004 (1937).

 The ether decomposition is interpreted in terms of the three simultaneous processes of molecular rearrangement, free radical formation, and chain decomposition.

- 617. Fogarty, B.B. & Wolfhard, H.G.
 Spectra of Flames Burning as Oxides of Nitrogen.
 Nature, 168, 1122 (1951).
 C. A., 46, 8518 (1956).
 The overall spectra of the hydrocarbon flames were similar with CH, CN, NH, OH and C2 bands present.
- 618. Fogel, Y.M., Ankudinov, V.A., Pilipenko, D.V. & Topolya, N.V.

 Electron Capture and Loss in Collisions of Hydrogen Atoms with Gas Molecules.

 Zhur. Eksptl. i. Teoret. Fiz., 34, 579-92 (1958).

 C. A.,52, 9783 (1958).

 The H atom beam was obtained by neutralization of a proton beam passing through Hg vapor.
- 619. Fogel, Y.M., Ankudinov, V.A., & Pilipenko, D.V.
 Capture and Loss of an Electron in Collisions of Fast Carbon and Oxygen Atoms with Gas Molecules.

 Zhur. Eksptl. i. Teoret. Fiz., 35, 868-74 (1958).

 C. A.,53, 2818 (1959).
 A beam of fast C and O atoms was obtained by neutralization of C⁺ and O⁺ ions in a Hg vapor chamber.
- Nalbandyan, A.B. & Shtern, V. Ya.
 Mechanism of the Mercury-Sensitized
 Photochemical Oxidation of Propane.
 Doklady Akad. Nauk S.S.S.R., 67,
 499-501 (1949).
 C. A., 43, 7825 (1949).
 Evidently, the primary process
 is the formation of peroxides.

- 621. Fok, N.V. & Nalbandyan, A.B. Mercury-Sensitized Photochemical Oxidation of Propane at Low Temperatures.

 Doklady Akad. Nauk S.S.S.R., 86, 589-92 (1952).

 C. A., 47, 3124 (1953).
- 622. Fok, N.V. & Nalbandyan, A.B. The Photochemical Oxidation Mechanism of Gaseous Hydrocarbons (Methane, Ethane, Propane Voprosy Khim. Kinetiki, Kataliza i. Reaktsionnoi Sposobnosti, Akad. Nauk. S.S.S.R., 1955, 219-31, C. A., 50, 9882 (1956). C. A., 49, 15502 (1955). C. A.,47, 3124 (1953). The initiation of the gaseous hydrocarbon oxidation reactions is connected with the primary formation of alkyl radicals.
- 623. Foner, S.N. & Hudson, R.L. The Detection of Atoms and Free Radicals in Flames by Mass Spectrometric Techniques. J. Chem. Phys., 21, 1374-82 (1953)• C. A.,47, 11961 (1953). A mass-spectrometric method was developed for the detection of atoms and radicals in chemical reactions. In the $CH_{h} = 0$, flame, the stable intermediates include CoHo, CO, CH₂O. The CH₃ radical was identified, HO, could not be found.

- 624. Foner, S.N. & Hudson, R.L.
 Ionization Potential of the
 Free HO₂ Radical and the
 H O₂ Bond Dissociation
 Ruergy.
 J. Chem. Phys., 23, 1364-5
 (1955).
 C. A., 49, 13766 (1955).
 C. A., 47, 11961 (1953).
 The bond dissociation energy
 of H O₂ was estimated to
 be 2.04 e.v.
- 625. Foner, S.N. & Hudson, R.L.
 OH, HO, and E₂O₂ Production
 in the Reaction of Atomic
 Hydrogen with Molecular Oxygen.
 J. Chem. Phys., 23, 1974-5
 (1955).
 C. A.,50, 2340 (1956).
 C. A.,49, 13766 (1955).
- 626. Foner, S.N. & Hudson, R.L.

 Metastable Oxygen Molecules
 Produced by Electrical Discharges.

 J. Chem. Phys.,
 25, 601-2 (1956).

 C. A.,51, 73 (1957).

 Electrical discharge products of pure O was analyzed with a mass spectrometer.
- 627. Foner, S.N. & Hudson, R.L.
 Ionization Potential of the
 OH Free Radical by Mass
 Spectrometry.
 J. Chem. Phys., 25, 602-3
 (1956).
 C. A.,51, 73 (1957).
 Avg. value for the ionization
 potential of OH was 13.18 e.v.

- 628. Foner, S.N., Cochran, E.L., Bowers, V.A. & Jen, C.K. Electron Spin Resonance. Spectra of the NH₂ and ND₂ Free Radicals at 4.2°K. Phys. Rev. Letters, 1, 91-2 (1958).

 C. A., 52, 16035 (1958). Condensed on a liquid Hecooled sapphire rod.
- 629. Foner, S.N. & Hudson, R.L.

 Mass Spectrometric Detection
 of Triazene and Tetrazene
 and Studies of the Free
 Radicals, NH₂ and N₂H₃.

 J. Chem. Phys., 29, 442-3
 (1958).

 C. A.,52, 19516 (1958).

 C. A.,52, 11589 (1958).

 Study of ionization potentials and dissociation
 energies.
- 630. Fontana, B.J.
 Thermometric Study of the
 Frozen Products from the
 Nitrogen Microwave Discharge.
 J. Appl. Phys., 29, 166873 (1958).
 C. A., 53, 3812 (1959).
- 631. Ford, H.W. & Endow, N.
 Rate Constants at Low
 Concentrations. III.
 Atomic Oxygen Reactions
 in the Photolysis of
 Nitrogen Dioxide at
 3660A.
 J. Chem. Phys., 27, 115660 (1957).
 C. A.,52, 4333 (1958).

- 632. Ford, M. C. & Waters, Wm. A. Properties and Reactions of Free Alkyl Radicals in Solution. II. Reactions with Iodine, Bromine, and Sulfuryl Chloride.

 J. Chem. Sec., 1951, 1851-5.
 C. A., 46, 890 (1952).
 C. A., 45, 1065 (1951).
- 633. Ford, M. C. & Waters, Wm. A. Properties and Reactions of Free Alkyl Radicals in Solution. III. Some Reactions with Organic Halogen Compounds. J. Chem. Soc., 1952, 2240-5. C. A., 47. 1045 (1953). C. A., 46, 890 (1952).
- 634. Ford, R. A.
 Photochemical Processes in
 Solids at Room Temperature.
 Free Radicals Formed in Nylon
 Film by Irradiation with Hg
 Arc.
 Nature, 176, 1023-4 (1955).
 C. A.,50, 6198 (1956).
 C. A.,48, 6262 (1954).
 Change in absorption spectra
 with irradiation.
- 635. Ford, R. A.

 Photochemical Processes in Solids.

 The Kinetics of Free Radical Reactions in Nylon.

 J. Colloid Sci.,12, 271-82 (1957).

 C. A.,51, 14428 (1957).

 C. A.,50, 6198 (1956).

 Kinetics were studied by using a spectrophotometric technique.
- 636. Forst, G.
 Energy Distribution of Hydrogen
 Ions from a High-Frequency Ion
 Source.
 Z. angew. Phys., 10,
 546-51 (1958).
 C. A., 53, 3888 (1959).

- 636. Cont.
 - The energy distribution of H ions extracted from a high frequency in source was measured by magnetic separation and counter-field lens.
- 637. Forst, W. & Winkler, C. A.
 The Reaction of Hydrogen
 Atoms with Methyl Cyanide.
 Can. J. Chem., 33, 1814-18 (1955).
 C. A.;50, 5412 (1956).
 H atoms produced in a discharge tube were allowed to react with CH, CN to produce HCN as the main product and CH, and CoH6 as secondary products.
- 638. Forst, W. & Winkler, C. A.
 Reaction of Active Nitrogen with
 Methyl Cyanide.
 J. Chem. Phys.,60, 1424-7 (1956).
 C. A.,51, 4152 (1957).
 C. A.,50, 5412 (1956).
 Active nitrogen prepared by
 electrodeless discharge.
- 639. Forst, W., Evans, H.G.V. & Winkler, C. A.

 The Kinetics of Nitrogen
 Atom Reactions Accompanied by Catalyzed Recombination of Atoms.

 J. Phys. Chem., 61, 320-5 (1957).
 C. A., 51, 9274 (1957).
 Reactions of active nitrogen with temperature dependence of organic molecules.

- Inhibition by Hydrogen Percuride of the Second Explosion Limit of the Hydrogen-Oxygen Reaction.

 J. Phys. Chem., 62, 340-3 (1958).

 C. A.,52, 11537 (1958).

 The simplest scheme that accounts for the results is obtained by adding the two reactions, H₂O₂ + H = H₂O + OH and H₂O₂ + OH = H₂O + HO₂.
- 641. Forsyth, J.S.A. Reaction of Free Methyl Radicals with Nitric Oxide. Trans. Faraday Soc., 37, 312-18 (1941)• c. A.,<u>35</u>, 6503 (1941). The rate of decay of free CHz radical produced by thé pyrolysis of a stream of ether at low pressure, both alone and in the presence of small quantities of NO was investigated. The Paneth mirror technique was used. Activation energy and lifetime of the radicals are discussed.
- 642. Fowler, A. & Gaydon, A.G.

 Spectrum of the Afterglow of
 Carbon Dioxide.

 Proc. Roy. Soc. (London),
 A142, 362-9 (1933).

 C. A.,28, 970 (1934).

 Discharge tube with an off-on
 shutter-spectrograph.

 Under the conditions which
 gave rise to the afterglow,
 there was no evidence of dissociation of the CO₂ other than
 into neutral molecules of CO
 and O₂.

- 643. Fraenkel, G.K., Hirshon, J.M. & Walling, C.

 Detection of Polymerization
 Radicals by Paramagnetic
 Resonance.

 J. Am. Chem. Soc., 76, 3606
 (1954)...
 C. A., 49, 9358 (1955).

 For detection and identification of the intermediates in free-radical process.
- 644. Fraenkel, G.K.

 Paramagnetic Resonance of
 Free Radicals.

 Ann. N.Y. Acad. Sci., 67,
 546-69 (1957).

 C. A.,51, 16092 (1957).

 Methyl-substituted semiquiones. The interpretation
 of line widths and of the
 spectra of solids and gases
 is reviewed. 85 references.
- 645. Francis, S.A.
 Intensities of Bands Due
 to Free and Bonded Hydroxyl
 Groups in the 3-μ Region.
 J. Chem. Phys., 19, 505-6
 (1951).
 C. A., 45, 7433 (1951).
 C. A., 45, 37 (1951).
 Absorption of PrOH in CCl₄
 solns.
- 646. Franck, J. & Rabinowitsch, E. Free Radicals and the Photochemistry of Solutions.

 Trans. Faraday Soc., 30, 120-131 (1934).

 C. A., 28, 2269 (1934).

 Discussion of mechanism of reaction.
- 647. Frankland, E.
 The Isolation of Organic Radicals.
 Ann. de. Chemie, 71, 171 (1849).

- 648. Frankland, E. Investigation of Organic Radicals.
 Ann. de Chemie, 74, 41 (1850).
- 649. Franklin, J.L. & Field, F.H.

 The Resonance Energies of Certain Organic Free Radicals and Ions.

 J. Am. Chem. Soc., 75, 2819-21 (1953).

 C. A., 47, 9146 (1953).
- 650. Franklin, J.L.

 Calculation of the Heats
 of Formation of Gaseous
 Free Radicals and Ions.
 J. Chem. Phys., 21, 202933 (1953).
 C. A., 48, 1793 (1954).
 C. A., 47, 9146 (1953).
- 651. Franklin, J.L. & Shepherd, G.R.L.
 Free Radical Displacement Reactions.
 J. Am. Chem. Soc., 76, 609-10 (1954).
 C. A., 49, 10829 (1955).
 C. A., 28, 1657 (1934).
 Me radicals were produced by the reaction of Na vapor and MeBr.
 Todine displacement was detected by Ag gauze.
- 652. Franklin, J.L. & Broida, H.P.
 Trapped Energetic Radicals.
 Ann. Rev. Phys. Chem., (H.
 Eyring, editor, Annual Reviews, Inc.) 10, 145-68 (1959).
 C. A., 53, 19551 (1959).

- 653. Fraser, R.G.J. Possible Application of Molecular Ray Technique to the Study of Free Radicals. Trans. Faraday Soc., 30, 182-7 (1934). C. A., 28, 2270 (1934). C. A., 28, 34 (1934). The method of Estermann and Stern is suggested. The method could be used by combining it with a magnetic analysis of the mixed beam. It could be used to analyze the products of the thermal decomposition of CH, and CSHC.
- T.N.
 Ionization Potentials of
 Free Radicals.
 Phys. Rev., 50, 1091 (1936).
 C. A.,31, 603 (1937).
 C. A.,29, 1009 (1935).
 The ionization potentials
 of the free radicals, Me
 and Et, were determined by a molecular-beam method to be
 11.1 and 10.6 v. with limits
 of error of + 0.5 v.
- 655. Fredericks, P.S. & Tedder,
 J.M.
 A Stereospecific Free Radical.
 Proc. Chem. Soc. (London),
 1959, 9-10.
 C. A.,53, 16928 (1959),
 Chlorination of EtCHClMe was
 studied.

- 656. Freeman, A.J.
 Configuration Interaction
 Study of the Electronic
 Structure of the OH Radical by the Atomic and
 Molecular Orbital Methods.
 J. Chem. Phys., 28, 230-43
 (1958).
 C. A., 52, 7842 (1958).
- 657. Freeman, G.R., Van Cleave, A.B. & Spinks, J.W.T. Irradiation of Aqueous Chloral Hydrate Solutions with Cobalt⁶⁰ γ-Rays. Average Lifetime of the Free-Radical Chains. Can. J. Chem., 32, 322-6 (1954) c. A., 48, 12577 (1954). c. A.,48, 3808 (1954). The average lifetime of the chains is 0.1 sec. as obtained by the rotating sector.
- 658. Freeman, G.R. & Winkler, C.A.
 The Reaction of Active
 Nitrogen with Methylamine.
 J. Phys. Chem., 59, 780-2
 (1955).
 C. A.,50, 34 (1956).
 C. A.,49, 11372 (1955).
 The reaction products are
 HCN, H₂, and a polymer,
 with smaller amounts of
 NH₃ and C₂ hydrocarbons.
- 659. Freeman, G.R. & Winkler, C.A.
 The Reaction of Active
 Nitrogen with Hydrazine.
 Can. J. Chem., 33, 692-8
 (1955).
 C. A.,50, 9114 (1956).
 Probable reaction mechanisms. Excited nitrogen
 molecules do not make a
 large contribution to the
 reactivity of active nitrogen.

- 660. Freymann, M. & Freymann, R.

 Nuclear Magnetic Resonance
 and Intra- and Inter- Molecular
 Influences upon the CH-Group
 Protons in Pyrrole and Similar
 Compounds.
 Compt. rend., 248, 677-9 (1959).
 C. A.,53, 14694 (1959).
 The measurements were carried
 on by means of the spinning
 tube method and the sideband technique.
- 661. Friedman, H.
 The Solar Spectrum Below 2000A.
 Ann. geophys., 11, 174-80 (1955).
 C. A., 49, 14478 (1955).
- 662. Friedman, R. & Johnson, W.C.
 Pressure Dependence of Quenching
 Distance of Normal Heptane,
 Isobctane, Benzene, and Ethyl
 Ether Flames.
 J. Chem. Phys., 20, 919-20
 (1952).
 C. A., 46, 11633 (1952).
 C. A., 74, 10292 (1950).
- 663. Friel, P.J. & Krieger, K.A. Reactions of the High Voltage Discharge Products of Water Vapor. J. Am. Chem. Soc., 80, 4210-15 (1958). C. A.,52, 17922 (1958). The recombination of the highvoltage discharge products of water vapor on the surface of Si O₂ gel was investigated. The reactions of the water vapor discharge products in a liquid trap were also studied. A mechanism leading to the observed product distribution is also discussed.

- 664. Friel, P.J. Hydrogen Peroxide Manufacture from Water by High-Voltage Discharge. U.S. 2,842,490, July 8, 1958. C. A.,53, 12895 (1959). H 0 is dissociated in a vacuum of 1.0mm Hg by means of a high-voltage discharge tube into H and OH. OH radicals pass a liquid-air trap and are condensed to \mathbb{H}_{2}^{0} .
- Luminescence of Vapor and Gas Mixtures.
 Uchenye Zapiski Leningrad.
 Gosudarst. Univ., 3, No. 17, 133-48 (1937).
 C. A., 33, 8102 (1939).
 The spectra of Na-Zn, Na-Cd, and NaMg mixtures were photographed with a glass prism spectrograph. 13 References.
 Consideration of intensities and excitation potentials.
- A.A.

 Flame-Zone Studies. IV. Microstructure and Material Transport in a Laminar Propane-Air Flame Front.

 Combustion and Flame, 1, 217-28 (1957).

 C. A.,51, 13530 (1957).

 C. A.,51, 7812 (1957).

 Microprobe used in conjunction with mass spectrograph.

- oldenberg, O.

 A Photometric Comparison
 of Absorption Lines. (Free
 Radical Determination),
 J. Opt. Soc. Am., 27, 147-9
 (1937).
 C. A., 31, 4204 (1937).
 An apparatus is described wherewith the intensities of absorption lines belonging to a molecular band may be matched for
 this purpose.
- 668. Frost, A.A. & Pearson, R.G. Kinetics and Mechanism.
 A Study of Homogeneous Chemical Reactions.
 John Wiley and Sons, New York (1953).
 C. A., 47, 3681 (1953).
- 669. Frost, D.C. & McDowell, C.A.
 Negative Ion Formation by an
 Electron Capture Process in
 Nitric Oxide. Dissociation
 Energy of the Nitric Oxide
 Molecule.
 J. Chem. Phys., 29, 1424-5
 (1958).
 C. A.,53, 6786 (1959).
 Ionization efficiency curves
 for the formation of SFZ from
 SF6 and of O- from NO were
 presented.
- 670. Frost, D.C. & McDowell, C.A.
 The Ionization and Dissociation
 of Oxygen by Electron Impact.
 J. Am. Chem. Soc., 80, 61837 (1958).
 C. A.,53, 13796 (1959).
 The retarding p.d. method of
 obtaining virtually monoenergetic electrons was used
 to study ionization and dissociation of 02.

- 671. Frost, W.E. & Linnett, J.W.

 Mechanism of Spark Ignition.

 II. Carbon Monoxide-Oxygen

 Mixtures.

 Trans. Faraday Soc., 44, 41621 (1948).

 C. A., 40, 1035 (1946).

 H + 0₂ = OH + O
 O + H₂O = 2 OH
 OH + CO = CO₂ + H:
- 672. Frost, W.E. & Linnett, J.W.

 Mechanism of Spark Ignition.

 III. Effect of Adding Organic Vapors to Hydrogen-Oxygen Mixtures.

 Trans. Faraday Soc., 44, 421-27 (1948):

 C. A., 43, 406 (1949).

 The organic substances, because of their weight and size, compete with the H and O for the radicals which are responsible for the chain-branching.
- 673. Fryburg, G.C.
 Enhanced Oxidation of Platinum
 in Activated Oxygen.
 J. Chem. Phys., 24, 175-80
 (1956).
 C. A., 50, 7554 (1956).
 Oxidation with 0 atoms occurred
 400 times more rapidly than with
 0, molecules.
- 674. Fueki, K., Yasumori, I. & Shida, S.

 Treatment of Atomic Adsorption by Use of a Linear Atomic Chain Model.

 II. Adsorption of Atomic Hydrogen on Alkali Metal Surfaces.

 Atomic Orbital Method.

 J. Chem. Soc., Japan, Pure Chem. Sect., 76, 625-31 (1955).

 C. A., 50, 5343 (1956).

 C. A., 47, 6213 (1953).

- 675. Fueki, K., Shida, S. & Kuri, Z. Flash Photochemistry. II. Flash Photolysis of the Aqueous Solution of Hydrogen Peroxide. Nippon Kagaku Zasshi,77, 1532-6 (1956). C. A.,51, 9332 (1957). C. A.,50, 3093 (1956). The quantum yield is found to be independent of the intensity of light and of concentration, the value being 1.35 ± 0.1.
- 676. Fueki, K. & Higuchi, J. Electronic States of the C₂ Radical.
 Bull. Chem. Soc., Japan, 29, 331-6 (1956).
 C. A.,51, 12633 (1957).
 C. A.,34, 675 (1940).
 The dissociation energy of C₂ is calculated to be 5.7 e.v.
- 677. Fueno, T. & Furukawa, J.

 A Molecular-Orbital Consideration of the Radical
 Reactivity of Quinones.
 Bull. Inst. Chem. Research,
 Kyoto Univ., 36, No. 4, 81-6
 (1958), Pub. 1959.
 C. A.,53, 9751 (1959).
 The localization energies
 of a number of quinones were
 calculated at the positions
 of O and the nuclear C atoms.

- 678. Fujimoto, M. & Ingram, Electron Resonance Studies of the Change in Free-Radical Spectra of Solid Alcohols with Variation of Temperature and Time of Ultra-violet Irradiation. Trans. Faraday Soc., 54, 1304-15 (1958): C. A.,53, 12002 (1959). The concentration of H₂O₂ added to the alcohol and the time of irradiation determined the magnitude and the rate of increase of the electron resonance signals.
- 679. Fuller, G.L. & Rust, F.F.
 Free-Radical Addition of
 Cyclopentane and Cyclohexane
 to Formaldehyde.
 J. Am. Chem. Soc., 80, 6148-9
 (1958).
 C. A.,53, 8020 (1959).
 A mechanism for the reaction
 is proposed.
- Fuoss, R.M.
 Ionic Association.
 III. The Equilibrium between Ion Pairs and Free Ions.
 J. Am. Chem. Soc., 80, 5059-61 (1958).
 C. A.,53, 1898 (1959).
 Application of a method devised by Boltzmann to the equil. between ion pairs and free ions leads directly to the mass action equation (1-γ) = K_Acγ²f².

681. Fuson, N., Josien, M.L., Deschamps, J., Garrigou-Lagrange, C. & Forel, M.T. Vibrations of the Methyl Group. II. Aromatic Molecules with a Single Methyl Group. Bull. soc. chim. France, 1959, 93-7. C. A.,53, 14688 (1959). The infrared spectra of $p-MeC_6H_4X(X=H, NH_2, OH,$ SH, CN, I, Br, Cl, F, NO2) are obtained in the region from 2700-3000 cm-1 in the gas phase and in CCl_h solutions.

- 682. Gadsden, M. & Salmon, K.
 Presence of 6707-A Radiation in the Twilight Sky.
 Nature, 182, 1598-99 (1958).
 C. A., 53, 9809 (1959).
 The presence of a strong emission line in the region of 6705 A in the twilight sky is reported, where a feeble line at 6707 + 2 A was observed and shown by the use of a negative ultraviolet filter to be a line in the first-order spectrum.
- 683. Gallup, G.A.
 Structure of CH.
 J.Chem.Phys., 282, 1252 (1958).
 C. A.,52, 17942 (1958).
- 684. Ganguly, A.K. & Magee, J.L.
 Theory of Radiation Chemistry.
 III. Radical Reaction Mechanism in the Tracks of Ionizing Radiations.
 J. Chem. Phys., 25, 129-34 (1956).
 C. A., 50, 14371 (1956).
 C. A., 47, 9177 (1953).
- 685. Garif'y nov, N.S., Kozyrev, B.M. & Krivovyaz, I.M. Formation of Free Radicals during Baking of Angren Coal. Khim. E. Tekhnol. Toplova i Masel, 1957, No. 2, 29-32. C. A., 51, 9123 (1957).
- 686. Garner, F.H., Grigg, G.H.,
 Morton, F. & Reid, W.D.
 Preflame Reactions in Diesel
 Engines, III.
 J. Inst. Petroleum, 42, 69-94
 (1956).
 C. A.,50, 7421 (1956).
 C. A.,46, 7751, 7752 (1952).
 Photomultiplier, sampling, and peroxy radical are discussed.

- 687. Garrison, W.M. & Burton, M.

 Mechanism of the Photolysis of Propionaldehyde,
 Paneth Method (Mirror),
 J. Chem. Phys., 10, 730-9 (1942).
 C. A., 37, 834 (1943).
 Photolysis carried out at 2537A, 2900A, and 3200A. Ethyl radicals only are produced; no hydrogen was detected.
- 688. Gartaganis, P.A. & Winkler, C.A.

 Reactions of Active Nitrogen with Methane and Ethane.
 Can. J. Chem., 34, 1457-63 (1956).
 C. A.,51, 5705 (1957).
 C. A.,46, 2889 (1952).

 HCN was the only product other than hydrogen. A detailed diagram of apparatus is given.
- 689. Gartlein, C.W. & Sprague,
 G.
 Hydrogen in Auroras,
 J. Geophys. Research, 62,
 521-6 (1957).
 C. A., 52, 16030 (1958).
 The velocity of incoming
 protons, as deduced from
 the Doppler shift, has been
 used to calculate the penetration of the protons into
 the atmosphere.

- 690. Garvin, D. & McKinley, J.D., Rate of the Reaction, $H + O_3 =$ OH + 02. An Analysis of a Product Emitter Flame. J. Chem. Phys., 24, 1256 (1956). C. A.,50, 11119 (1956). C. A., $\overline{50}$, 3855 (1956). C. A., 49, 11408 (1955). The near infrared emission spectrum of OH was photographed. If it is assumed that reaction occurs on every collision, an average life for vibrationaly excited OH^* of 8 x 10^{-5} sec. is obtained.
- 691. Garzuly-Janke, R.
 Regularities in the Organic
 Metallic Compounds.
 J. Prakt. Chem., 142, 141-4
 (1935).
 C. A., 29, 2910 (1935).
 A discussion of the compounds
 HgMe2, TlMez, PbMe4, and SbMe5
 and the radicals obtained
 therefrom.
- 692. Gaspar, R.
 United Atom Treatment of the
 Hydrogen-Molecule.
 Acta Phys. Acad. Sci. Hung., 7,
 447-54 (1957) (In English),
 C. A., 52, 7842 (1958).
 C. A., 51, 15246 (1957).
- 693. Gates, D.M., Murcray, D.G., Shaw, C.C. & Herbold, R.J. Near-Infrared Solar Radiation Measurements by Balloon to an Altitude of 100,000 Feet. J. Opt. Soc. Am., 48, 1010-16 (1958).

 C. A.,53, 3871 (1959).

 The total absorption in the 1.9-μ water-vapor absorption band and in the 2.0μ CO₂ absorption bands was measured as a function of altitude.

- 694. Gaudemaris, G. de Formation of Polymers in the Irradiation of 2,4,4-Trimethyl-1-pentene. Compt. rend., 247, 2131-4 (1958). C. A.,<u>53</u>, 12859 (1959). Polymers containing eight monomeric units were produced when deoxygenated 2,4,4-trimethyl-1-petene was irradiated at 30-kv. electrons from an accelerator capable of delivering 200 w. of energy to the target liquid.
- 695. Gavrilov, B.G. & Vol'nova, I.S.
 Equilibrium of the Radical Displacement Reaction in Isopropylbenzene.
 Vestnik Leningrad. Univ., 14, No. 4, Ser. Fiz. i
 Khim. No. 1, 107-11 (1959).
 C. A.,53, 14652 (1959).
 The thermocatalytic conversion of isopropylbenzene in the temperature interval of 152.4-250° was investigated.
- 696. Gaydon, A.G. The Spectra of Chilled Hydrocarbon Flames. Proc. Roy. Soc. (London), A179, 439-50 (1942). C. A.,36, 3098 (1942). C. A.,29, 1324 (1935). Spectra of the outer cones of hydrocarbon flames struck back in a water-cooled steel burner show the bands in the U.V. region usually called the ethylene bands. Occurrence of bands is associated with a peroxide (chem. tests), probably alkyl peroxide.

- 697. Gaydon, A.G.
 Applications of Spectroscopy to Combustion.
 Phys. Soc. Rept. Progress
 Phys., 8, 50-70 (1941).
 C. A., 36, 6899 (1942).
 A progress report.
- 698. Gaydon, A.G. The Flame Spectrum of CO. III. The Cool Flame. Proc. Roy. Soc. (London), A182, 199-206 (1943). C. A., 38, 3906 (1944). The cool flame exhibits the same banded spectrum as the normal flame with more clearly developed structure. The OH bands are absent, but Na appears strongly. The absence of OH bands is significant, since it indicates the absence of electronically excited OH radicals.
- 699. Gaydon, A.G.
 Dissociation Energy of
 N.
 Nature, 153, 407-8 (1944).
 C. A., 38, 5729 (1944).
 A discussion of dissociation energy derived from band spectra observations.
 9.764 e.v. as derived from band spectra observations.
- 700. Gaydon, A.G.
 Continuous Spectra in Flames.
 The Role of Atomic Oxygen in
 Combustion.
 Proc. Roy. Soc. (London), A183,
 lll (1944).
 C. A., 39, 24 (1945).
 It is possible to test for the
 presence of atomic oxygen in
 a flame by admitting nitric
 oxide and observing if a
 yellow-green emission results.

- 701. Gaydon, A.G. Role of Atomic Oxygen in Combustion. Trans. Faraday Soc., 42, 292-7 (1946). C. A.,41, 2224 (1947). C. A., 39, 24 (1945). Very little atomic oxygen is liberated during the early stages of hydrocarbon combustion. The evidence favors the peroxidation mechanism. The test for 0 in a flame is the appearance of the yellow-green continuous emission after the introduction of NO.
- 702. Gaydon, A.G. & Wolfhard, H.G.
 Free Radicals in LowPressure Flames.
 Discussions Faraday Soc.,
 1947, No. 2, 161-6.
 C. A.,43, 5312 (1949).
 Bands of OH, CH, C2, NH, and NH2.
- 703. Gaydon, A.G. & Wolfhard,
 H.G.
 Predissociation in the
 Spectrum of OH. The Vibrational and Rotational Intensity in Flames.
 Proc. Roy. Soc. (London),
 A208, 63-75 (1951).
 C. A.,46, 5964 (1952).
 The predissociation is
 observed in a discharge,
 from the reaction zone of
 an oxyscetylene flame at
 low pressure, and in a
 flame at atmospheric pressure

- 704. Gaydon, A.G. & Wolfhard,
 H.G.
 The Spectrum Line Reversal
 Method of Measuring Flame
 Temperature,
 Proc.Phys.Soc. (London), 65A,
 19-24 (1952).
 C. A.,46, 10912 (1952).
 Electronic excitation in
 flames is discussed. The
 lack of radiative equilibrium
 in flames causes measured
 temperatures to be low. For
 hot flames OH is advantageous
 for measurement.
- 705. Gaydon, A.G. & Wolfhard,
 H.G.
 Spectroscopic Studies of Low
 Pressure Flames.
 Third Symposium on Combustion
 and Flame and Explosion Phenomena,
 Univ. Wisconsin, Sept. 7-11
 (1948) (Pub. 1949), Williams
 & Wilkins Co., Baltimore, Md.
 C. A.,46, 11625 (1952).
- 706. Gaydon, A.G.

 Use of Spectroscopy in Elucidating Reaction Mechanism.

 Combustion Colloq., Cambridge
 Univ., 1953 132-43.

 C. A., 48, 10438 (1953).

 Formation of C, OH, CH and HCO in flames.
- 707. Gaydon, A.G. & Wolfhard,
 H.G.
 Mechanism of Formation of
 CH, C, OH and HCO Radicals
 in Flames.
 4th Symposium on Combustion,
 Cambridge, Mass., 1952, 211-18
 (Pub. 1953).
 C. A.,49, 5808 (1955).
 A summary of the previous
 six years. Views on various
 controversial points are
 discussed.

- 708. Gaydon, A.G., Moore, N.P.W. & Simonson, J.R. Chemical and Spectroscopic Studies of Blue Flames in the Autoignition of Methane. Proc. Roy. Soc. (London), A230, 1-19 (1955).

 C. A.,49, 14490 (1955).
 Discussion of the presence of OH, CH, CHO bands.
- 709. Gaydon, A.G., & Moore, N.P.W. Spectra of Cool Flames and Preignition Glows. Proc. Roy. Soc. (London), A233, 184-94 (1955).

 C. A.,50, 4644 (1956).

 CH₂, C₂, HCO, CH, HCHO, and OH as sources of emission.
- 710. Gehman, H., Goldfinger, G. & Kolczynski, J.R.

 Details on the Half-life of Polymeric Free Radicals.

 J. Polymer Sci., 32, 207-13 (1958).

 C. A.,53, 1903 (1959).
- 711. Geib, K.H. & Harteck, P.
 Action of Atoms on Molecular Hydrogen.
 Z. physik. Chem. Bodenstein-Festband, 849-62 (1931).
 C. A.,26, 655 (1932).
 Description of an apparatus in which H atoms were allowed to react with Parahydrogen. It could be used as a test for presence of H atoms.

- 712. Geib, K.H. & Harteck, P.

 Detection of Hydrogen
 Atoms in Reaction of
 Hydrogen with Chlorine.

 Z. physik. Chem., B15,
 116-20 (1931).

 C. A.,26, 1861 (1932).

 C. A.,26, 655 (1932).

 The H-atom concentration
 in the photochemical
 union of H2, and Cl2 was
 determined by following the
 reaction: H2 para + H =
 H2 normal + H, by thermal
 conductivity measurements.
- 713. Geib, K.H. & Harteck, P. Addition Reactions with Hydrogen Atoms and Oxygen Atoms at Low Temperature. Ber., 66B, 1815-25 (1933). C. A., 28, 983 (1934). The reactions of H atoms at -1900 with HCN, (CH)2, SO_2 , C_2H_2 , C_2H_4 , and $C_6\overline{H}_6$ were studied. H atoms did not react with NHz, NO2, and MeNH₂. O atoms did not react with HCN, NoO and Ho. No evidence was found for the existence of an oxide of Xe.
- 714. Geib, K.H. & Harteck, P. Addition Reactions of Hydrogen and Oxygen Atoms at Low Temperatures.

 Trans. Faraday Soc., 30, 131-4 (1934).
 C. A., 28, 1943 (1934).
 C. A., 28, 983 (1934).
- 715. Geib, K.H.

 The Decomposition of Hydrogen Peroxide by Hydrogen Atoms.

 Z. physik Chem., A169, 161-72 (1934).

 C. A., 28, 6614 (1934).

 H + H_2O_2 = H_2O + OH.

- 716. Geib, K.H. & Harteck, P.
 Oxidation Reactions with
 the Aid of Uncoupled Hydrogen
 Atoms.

 Z. physik. Chem., A170, 1-19
 (1934).
 C. A.,28, 7121 (1934).
 H + O₂ + H₂ = H₂O + OH
 H + O₂ + CO = CO₂ + OH.
- 717. Geib, K.H. & Steacie, E.W.R. Exchange Reactions with Deuterium Atoms.

 Z. physik. Chem., B29, 215-24 (1935),
 J. Am. Chem. Soc., 57, 383 (1935).

 C.A., 29, 7141 (1935),
 Studied in a Wood discharge tube between D atoms and H.O, NH₃, C₂H₂, and CH₄.
 Results are in contradiction to those obtained by Taylor, Morikawa and Benedict.
- 718. Geib, K.H. & Steacie, E.W.R. Exchange Reactions Involving Atomic Deuterium.

 Trans. Roy. Scc. Canada, (3), 29, III, 91-103. (1935).

 C. A.,30, 2434 (1936).
- 719. Geib, K.H.

 Water Vapor (Electric) Discharge and Hydrogen Peroxide Formation.

 J: Chem. Phys., 4, 391 (1936).

 C. A., 30, 4765 (1936).

 C. A., 28, 6614 (1934).

 W + H = WH

 WH + O₂ = WHO₂

 WHO₂ + H = W + H₂O₂.
- 720. Geib, K.H.

 Spectroscopic Studies of
 Flames with Atomic Oxygen.
 Z. Elektrochem., 47, 275-6
 (1941).
 C. A.,35, 5032 (1941).
 Oxygen atoms mixed with
 H₂0₂ produce no OH emission
 bands.

- 721. Geib, K.H. & Vaidya, W.M. Spectroscopic Observations on Hydrocarbon Flames in Atomic Oxygen. Proc. Roy. Soc. (London), A178, 351-5 (1941). C. A.,36, 33 (1942). The apparatus is described. Flames of acetylene, ethylene, benzene, methyl alcohol, and formaldehyde are studied. The free radicals CH, C2, OH, and HCO are present. (Spectroscopic evidence). The cool-flame band spectrum of ether is also faintly observable.
- 722. George, P., Rideal, E.K. & Robertson, A.
 Oxidation of Hydrocarbons at Low Temperatures.
 Nature, 149, 601-2 (1942).
 C. A., 36, 5083 (1942).
- 723. George, P. & Robertson, A. A Review of the Mechanism of the Oxidation of Liquid Hydrocarbons.

 J. Inst. Petroleum, 32, 382-91 (1946).
 C. A., 41, 83 (1947).
 The chain carriers may be either free radicals or energy rich molecules. Thermal oxidation in which hydroperoxide acts catalytically, increases the over-all rate of oxidation.
- 724. George, P.
 Liquid Phase Oxidation of
 Hydrocarbons. I. Free Radical Character of the Surface Catalyzed Oxidation
 of Tetralin.
 Trans. Faraday Soc., 42, 21016 (1946).
 C. A.,41, 2410 (1947).
 C. A.,40, 6954 (1946).

- 725. George, P. & Robertson, A.
 Liquid Fhase Oxidation of
 Hydrocarbons. II. Free
 Radical Character of the
 Heavy Metal Catalyzed Oxidation.
 Trans. Faraday Soc., 42,
 217-24 (1946).
 C. A.,41, 2410 (1947).
- 726. Gerischer, H.

 Mechanism of Electrolytic
 Discharge of Hydrogen and
 Adsorption Energy of
 Atomic Hydrogen.
 Bull. soc. chem. Belges,
 67, 506-27 (1958) (In German).
 C. A.,53, 5833 (1959).
 The transition-state theory
 is applied to various possible
 pathways for the electrolytic
 discharge of H₂ at a metal
 surface.
- 727. Germain, J.E. & Vaniscotte, C.
 Cracking of Methane in a Tubular Reactor.
 Bull. soc. chim. France, 1958, 319-23.
 C. A.,52, 10543 (1958).
 C. A.,51, 12464 (1957).
 It is suggested that the cracking of methane is a short-chain free-radical reaction.
- 728. Gesser, H. & Steacie, E.W.R.
 Photolysis of Ketene in the
 Presence of Hydrogen.
 Can. J. Chem., 34, 113-22
 (1956).
 C. A.,50, 8335 (1956).
 Reaction mechanism and
 activation energy are discussed.

- 729. Gesser, H., Mullhaupt, J.T. & Griffiths, J.E.

 The Photolysis of Trimethylamine.

 J. Am. Chem. Soc., 79,

 4834-6 (1957).

 C. A.,52, 2562 (1958).

 In the range-78 to 175°C,
 the products of the reaction were H2, methane,
 ethane, and a liquid which
 was not analyzed.
- 730. Ghormley, J.A. & Stewart, A.C.

 Effects of Gamma Radiation on Ice.

 J. Am. Chem. Soc., 78, 2934-9 (1956).

 C. A.,50, 12661 (1956).

 The results are ascribed to the effect of temp. on the diffusion of H and OH free radicals within the solid.
- 731. Ghormely, J.A.
 Lifetime of Intermediates in
 Water Subjected to Electron
 Irradiation.
 Radiation Research, 5, 24751 (1956).
 C. A., 50, 16406 (1956).
- 732. Giacometti, G.
 Recent Progress in the Direct
 Investigation of Free Radicals.
 Ricerca Sci., 28, 1591-1603 (1958).
 C. A.,53, 2752 (1959).
 A review with 50 references.
- 733. Giacometti, G. & Steacie, E.W.R.

 Gas-Phase Reactions of Perfluoro-n-Propyl Radicals with Methane and Ethane.

 Can. J. Chem., 36, 1493-1500 (1958).

 C. A.,53, 6788 (1959).

 Photolysis of C.F.CO C.F. in the presence of CH, or C.H. provides a convenient method of obtaining n-C.F. radicals and studying their reaction with the admixed hydrocarbon.

- 734. Gibson, J.F., Ingram, D.J.E., Symons, M.C.R., & Townend, M.G.
 Electron Resonance Studies of Different Radical Species Formed in Rigid Solutions of Hydrogen Peroxide after U.V. Irradiation.
 Trans.Faraday Soc., 53, 914-20 (1957).
 C. A., 52, 6948 (1958).
- 735. Giddings, J.C.
 Relaxation-Time Model for
 Free Radical Concentration.
 J. Chem. Phys.,26, 1210-15
 (1957).
 C. A.,51, 14386 (1957).
 Examination of the kinetic
 processes in a flame front.
 A simple expression was
 derived for the radical
 concentration.
- 736. Giguere, P.A. & Secco, E.A. Spectroscopic Study of an Isomer of H₀.
 J.phys.radium, 15, 508-10 (1954).
 G. A., 50, 9882 (1956).
 Products of an electric discharge are frozen at liquid N₂ temperature.
 Spectrographic evidence supports the evidence of H₂0-0.
- 737. Giguere, P.A. & Harvey, K.B. The Presumed Spectroscopic Evidence for Trapped HO₂ Radicals.
 J.Chem.Phys., 25, 373 (1956).
 C. A.,50, 16385 (1956).
 Evidence presented in C. A.,49, 3712 (1955) is questioned.

- 738. Giguere, P.A. & Liu, I.D. Kinetics of the Thermal Decomposition of Hydrogen Peroxide Vapor. Can. J. Chem., 35, 283-94 (1957). C. A.,51, 11824 (1957). The following mechanism is suggested:

 - (1) $H_2 \cdot 0_2 = 2 \text{ OH}$ (2) $20H^2 + H_20_2 = 2H_20 + 0_2$ (3) $H0_2 + H0_2 = H_20_2 + 0_2$ (4) $H0_2^2 + 0H = H_20 + 0_2$
- Gilman, H. & Apperson, L.D. 739• Reactions between Organolead Compounds and Some Metallic Halides.
 - J. Org. Chem., 4, 162-8 (1939). C. A., 33, 5819 (1939).

 - C. A., $\overline{33}$, 129 (1939).
 - C. A., 19, 2473 (1925). C. A., 26, 4801 (1932).
- 740. Giuliano, C.R., Schwartz, N. & Wilmarth, W.K. The Aqueous Chemistry of Inorganic Free Radicals. II. Peroxydisulfate-Induced Exchange of Oxygen and Evidence Regarding the Acidity Constant of the Hydroxyl Radical. J. Phys. Chem., 63, 353-8 (1959). C. A.,53, 13752 (1959). The radical-catalyzed exchange of O_2^{10} between water and molecular oxygen was studied at 600, with the thermal decomposition of S₂0₈-ion as a means of generating the radicals.

- 741. Glazebrook, H.H. & Pearson, Free Radicals and Atoms in Primary Photochemical Processes. The Free Propyl Radical from Diisopropyl Ketone. J. Chem. Soc., 1936, 1777-9. C. A.,31, 1356 (1937).
- 742. Glazebrook, H.H. & Pearson, T.G. Free Radicals and Atoms in Primary Photochemical Processes. The Dissociation of Aliphatic Ketones: The Acetyl Radical. J. Chem. Soc., 1937, 567-71. C. A.,31, 4598 (1937). The relative quantities of radicals present during the photolysis of Me₂CO and MeEtCO have been measured. Also a comparison of lifetime.
- 743. Glazebrook, H.H. & Pearson, T.G. Photochemical Decomposition of Aromatic Ketones. The Phenyl Radical. J. Chem. Soc., 1939, 589-93. C. A., 33, 5385 (1939). C. A.,<u>31</u>, 4598 (1937). Photolysis of Phyco yields active fragments which react with Te mirrors.
- Glocker, G. 744. Estimates of Average Bond Energies and Resonance Energies of Hydrocarbons. Discussions Faraday Soc., 1951, No. 10, 26-35. C. A.,46, 3339 (1952). C-C and C-H distances in C2H2, C2H4, and C2H6.

- 745. Glocking, F.
 The Formation of
 1-Isobutenyl Radicals from 1-Isobutenyl-Silver. II.
 J. Chem. Soc., 1956,
 3640-2.:
 C. A.,51, 3433 (1957)C. A.,49, 12277 (1955).
- 746. Golden, J.A. & Myerson, A.L.

 Recombination of Atomic Oxygen Observed by Means of the Flash Spectroscopy of Molecular Oxygen in the Vacuum Ultraviolet.

 J. Chem. Phys., 28, 978-9 (1958).

 C. A.,52, 15267 (1958).

 For a mixture containing 7mm of A with 3mm of 0, no vibrationally excited 0 appeared and the 0 continuum was not extended to the longer wave length.
- 747. Golden, S.
 Free Radical Stabilization
 in Condensed Phases.
 J. Chem. Phys., 29, 61-71
 (1958).
 C. A.,52, 17983 (1958).
 The basis for stabilization
 was considered to be isolation.
- 748. Goldfinger, G. & Heffelfinger, C.

 The Half Life of the Styrene Free Radical. I. Photopolymerization in a Free Falling Stream.

 Polymer Sci., 13, 123-30 (1954). C. A., 48, 10439 (1954). C. A., 23, 5159 (1929).

- 749. Goldfinger, P., Letort, M. & Niclause, M.
 Relations between the Mechanism and the Order of a Reaction; Rules Governing the Initiation and the Termination of Chains in the Homogeneous Pyrolysis of Organic Vapors.
 Contrib. etude structure mol. Vol. commem.
 Victor Henri, 1947/48, 283-96.
 C. A., 43, 2849 (1949).
 Free radical chain mechanism.
- 750. Goldfinger, P., LeGoff, P. & Letort, M.
 Chemical and Spectroscopic Evidence for the Free Radical Methylene.
 C. A., 46, 11625 (1952).
 Third Symposium on Combustion and Flame and Explosion, Univ. of Wisconsin, Madison, Sept. 9-11 (1948).
 (Pub. 1949, Williams and Wilkins Co., Baltimore, Md.).
- 751. Goldfinger, P.
 Elementary Rate Constants
 of Some Atomic Chlorination
 Reactions.
 J. chim. phys., 55, 234-45
 (1958).
 C. A.,52, 17915 (1958).
- 752. Gomer, R. & Noyes, W.A., Jr. Photochemical Studies.

 XLII. Ethylene Oxide.

 (Me Radicals with (CH₂)₂0),

 J. Am. Chem. Soc., 72, 101-8

 (1950).

 C. A., 44, 4793 (1950).

 C. A., 44, 941 (1950).

 C. A., 42, 3674 (1948).

- 753. Gomer, R.
 The Reaction of Methyl
 Radicals with Butane.
 J. Am. Chem. Soc., 72,
 201-3 (1950).
 C. A., 44, 5197 (1950).
 Activation energy.
- 754. Gomer, R.
 The Rate Constant of the
 Methyl-Radical Recombination
 Reaction.
 J. Chem. Phys., 18, 998 (1950).
 C. A., 44, 7662 (1950).
 C. A., 44, 941 (1950).
- 755. Gomer, R. & Dorfman, L.M. The Steric Factor of Free Radical Reactions.
 J. Chem. Phys., 19, 136 (1951).
 C. A., 45, 3695 (1951).
 C. A., 45, 935 (1951).
 C. A., 44, 8212 (1950).
 Photochemical studies indicate that the steric factors are of the order of 10-3 to 10-4.
- 756. Gomer, R. & Kistiakowsky, G.B.
 Rate Constant of Ethane
 Formation from Methyl Radicals.
 J. Chem. Phys., 19, 85-91 (1951).
 C. A., 45, 6495 (1951).
 C. A., 44, 5197 (1950).
 The rotating-sector technique has been applied to a determination of the rate constant of methyl radical recombination in the photochemical decompositions of acetone and Hg dimethyl.

- 757. Gomer, R.
 Wall Reactions of Radicals and
 Diffusion in Static and Flow
 Systems.
 J. Phys. Chem., 19, 284-9 (1951).
 C. A., 45, 8859 (1951).
 The distribution of radicals
 at steady state was computed
 for simple systems subject
 to heterogeneous and homogeneous reactions.
- 758. Goodeve, C.F. & Kitchner, J.A.

 The Mechanism of Photosensitization by Solids.

 Trans. Faraday Soc., 34,
 902-12 (1938).

 C. A.,32, 8943 (1938).

 C. A.,32, 5305 (1938).

 The process is discussed from the standpoints of the light-absorbing species, the mechanism of transfer of the absorbed energy and potentially reactive center.
- 759. Gorbaney, A.I., Kaitmazov, S.D., Prokhorov, A.M. & Tsentsiper, A.B. Paramagnetic Resonance of the Products Formed at a Low Temperature from the Dissociation of H₂O, H₂O₂, and D_oO Vapors in a Glow Dischärge. Zhur. Fiz. Khim., 31, 515 (1957). C. A.,51, 17430 (1957). The spectrum of the paramagnetic resonance was studied and it was shown that 0 was given off from the reaction, $H_2O_2 + O_2$. The observed absorption line was attributed to the radical, HO2.

- 760. Gordy, W. & Shields, H. Electron-Spin Resonance Studies of Radiation Damage to Proteins. Radiation Research, 9, 611-25 (1958).

 C. A., 53, 7274 (1959). Electron-Spin resonance of free radical produced by x irradiation of a number of various types of proteins gave two types of resonance pattern either separately or in combination.
- 761. Gordy, W.
 Electron Spin Resonance
 of Free Radicals in Irradiated
 Biochemicals.
 Radiation Research, Suppl. I,
 491-510 (1959).
 C. A.,53, 10318 (1959).
- 762. Gordy, W.
 Electron Spin Resonance
 in the Study of Radiation
 Damage.
 Symposium Inform. Theory Biol.,
 Gatlinburg, Tenn., 1956, 241-61
 (Pub. 1958).
 C. A.,53, 17217 (1959).
 Different amino acids form various
 types of free radicals by ionizing
 radiations.
- 763. Gorin, E.
 Photolysis of Aldehydes and Ketones in the Presence of Iodine Vapor.
 J. Chem. Phys., 7, 256-64 (1939).
 C. A.,33, 6720 (1939).
 C. A.,33, 4524 (1939).
 The primary processes consist in splitting off of a methyl radical and a hydrogen atom.

- 764. Gorin, E., Kauzmann, W., Walter, J. & Eyring, H. Reactions Involving Hydrogen and the Hydrocarbons.
 J. Chem. Phys., 7, 633-45 (1939).
 C. A.,33, 8094 (1939).
 C. A.,51, 1297 (1937).
 The activation energies of the reactions,
 H + CH₄ = CH₃ + H₂ and
 D + CH₄ = CH₃D + H
 were calculated to be
 9.5 and 37 kg./cal.,
 respectively.
- 765. Gotz, F.W.P. & Nicolet, M.
 Observations of the Ultraviolet Limit of the
 Spectrum of the Night
 Sky.
 J. Geophys. Research, 56,
 577-82 (1951) (In French).
 C. A., 46, 8956 (1952).
 An analysis of the ultraviolet limit of the airglow spectrum is given.
 Indications of the presence of the electronic system of OH are compared with the results obtained by identification of Herzberg's bands.
- 766. Gouarne, R. & Yvan, P.
 Comparison of the Orbital
 Molecular Diagrams of
 Linear Polyene Chains
 with Certain of their
 Nitrogen Derivatives.
 Compt. rend., 228, 13457 (1949).
 C. A., 43, 6479 (1949).

- 767. Gowenlock, B.G., Polanyi, J.C. & Warhurst, E.

 The Nature of Mercury-Carbon
 Bonds in Mercury-alkyl
 Radicals.
 Proc. Roy. Soc. (London),
 A219, 270-80 (1953).
 C. A.,48, 9314 (1954).
- 768. Graf, P.E.
 Photochemistry of the Reactions of Bromine with
 Tetrachloroethylene and
 Dibromotetrachloroethylene.
 Flash Photolysis Study
 of the Recombination of
 Bromine Atoms.
 Univ. Microfilms (Ann Arbor,
 Mich.). Publ. No.18399,
 Dissertation Abstr., 17,
 248-9 (1957).
 C. A.,51, 12668 (1957).
- 769. Gragerov, I.P.
 The Study of Radical Mobility by the Isotope
 Method.
 Doklady Akad.Nauk.S.S.S.R.,99,
 101-4 (1954).
 C. A.,49, 12094 (1955).
 The methods of production
 of heavy-hydrogen organic
 compounds is described.
- 770. Graham, J.H., Brown, A.R.G., Hall, A.R., & Watt, W. Rates of Reaction of Carbon and Graphite Materials with Combustion Gases at High Temperatures. Ind. Carbon and Graphite, Papers Conf., London, 1957, 309-20 (Pub. 1958). C. A.,53, $109\overline{24}$ (1959). The reaction rates of six common carbon and graphite materials with combustion Asses $(H_0 0 50\% \text{ and } C0, CO_2, H_2, \text{ and }$ No the balance) at 27000K were investigated at gas velocities of 19.1 to 52.9 m./sec.

- 771. Grant, P.M., Ward, R.B., & Whiffen, D.H. Electron Spin Resonance Spectra of the Carboxyhydroxymethyl Radical Trapped after the γ -Irradiation of Glycolic J. Chem. Soc., 1958, 4635-7. C. A.,53, 5885 (1959) Electron spin resonance spectroscopy was used to identify the radical formed by γ -irradiation of cryst. glycolic acid and Ca glycolated as the carboxyhydroxymethyl radical (HOCHCO₂H).
- 772. Graven, W.M. & Long, F.J. Kinetics and Mechanisms of the Two Opposing Reactions of the Equilibrium CO + H.O = CO + H.O. J. Am. Chem. Soc., 76, 2602-7 (1954).

 C. A., 48, 10410 (1954).

 CH + CO = H + CO2
 H + H₂O = OH + H₂.
- 773. Gray, B.F.
 Structure of CH₂.
 J.Chem. Phys., 28, 1252
 (1958).
 C. A., 52, 17941 (1958).
 Gallup, C. A., 51, 10219
 (1957).
- 774. Gray, P. & Yoffe, A.D.
 Inflammation of Methyl
 and Ethyl Nitrate Vapors:
 Characteristics of the
 Explosion Process and
 Intermediate Reactions
 Involving Nitrogen Dioxide,
 J. Chem. Soc., 1950, 3180-5,
 C. A., 46, 25 (1952).

- 775. Gray, P. & Rogers, G.T. Explosion and Decomposition of Methyl Nitrate in the Gas Phase.

 Trans. Faraday Soc., 50, 28-36 (1954).
 C. A., 48, 10410 (1954).
 Radicals are essential intermediates in the explosive decomposition.
- 776. Gray, P.
 Chemistry of Free Radicals
 Containing Oxygen.

 I. The Thermochemistry of
 the Alkoxy Radical RO
 and Dissociation Energies
 of Oxygen Bonds.

 Trans. Faraday Soc., 52,
 344-353 (1956).
 C. A.,50, 14340 (1956).
- 777. Gray, P. Free Radicals in Combustion Processes: Thermochemistry of the Alkoxy Radicals RO. 5th Symposium on Combustion, Pittsburgh, 1954, 535-40 (Pub. 1955). C.A., 49, 16385 (1955). Values for the enthalpies of formation in the gaseous state of a number of alkoxy radicals have been deduced from the measured activation energies of dissociation of the corresponding alkyl nitrates, nitrites, and peroxides.

- 778. Gray, P., Hall, A.R. & Wolfhard, H.G.
 Decomposition Flame of Methyl Nitrite.
 Nature, 176, 695-6 (1955).
 C. A., 50, 4595 (1956).
 The burning of CH₃NO₂ vapor and some of its decomposition products are described.
- 779. Gray, P., Hall, A.R. & Wolfhard, H.G. Stationary Flames of Methyl Nitrite. Proc. Roy. Soc. (London), A232, 389-403 (1955). C. A.,50, 4596 (1956).
- 780. Gray, P. & Williams, A.
 The Chemistry of Free
 Alkoxy Radicals.
 Chem. Soc. (London), Spec.
 Publ. No. 9, 97-118,
 discussion 119 (1957).
 C. A.,53, 10914 (1959).
 A review with 75 references.
- 781. Gray, P.
 The Thermochemistry and
 Reactivity of Alkoxy Radicals.
 Chem. Rev., 59, 239-328
 (1959).
 C. A.,53, 14671 (1959).
 Review. 309 references.
- 782. Gray, T.J. & Travers, M.W. Kinetics of the Thermal Decomposition of Tetramethyl Methane (Neopentane), Trans. Faraday Soc., 35, 868-74, 1089 (1939). C. A.,33, 9099 (1939).

- 783. Green, J.H.S., Harden, G.D.,
 Maccoll, A. & Thomas, P.J.
 Unimolecular Decomposition
 of Some Alkyl Bromides.
 J. Chem. Phys., 21, 178 (1953).
 C. A., 47, 9121 (1953).
 C. A., 45, 8334 (1951).
 A free radical process may
 follow the breaking of the
 C-Br bond.
- 784. Greenwood, H.H.
 Localization of π Electrons and the Mechanism of Free Radical Reactions.

 J. Am. Chem. Soc., 79, 5365-7 (1957).

 C. A.,52, 2564 (1958).
- 785. Gregg, R.A. & Mayo, F.R. Chain Transfer in the Polymerization of Styrene.

 III. Reactivities of Hydrocarbons toward the Styrene Radical.

 Discussions Faraday Soc., 1947, No. 2, 328-37.

 C. A., 43, 5731 (1949).

 C. A., 42, 8785 (1948).

 C. A., 43, 1340 (1949).
- 786. Griffing, V.

 The Interaction between
 Stable Molecules and
 Atoms.

 I. A Molecular-Orbital
 Theory of the Activation
 Energy between Molecules
 and Atoms.

 J. Chem. Phys., 23, 1015-23
 (1955).

 C. A., 49, 13761 (1955).

 Consideration of the symmetry properties of molecular
 orbitals.

- 787. Griffing, V. & Wehner, J.F. The Interaction between Stable Molecules and Atoms. II. Interaction between Two Helium Atoms.
 J. Chem. Phys., 23, 1024-8 (1955).
 C. A., 49, 13761 (1955).
 C. A., 46, 7382 (1952).
 Use of the equations of Roothaan.
- 788. Griffing, V. & Macek, A. The Interaction between Stable Molecules and Atoms. III. A Molecular-Orbital Treatment of the Quadratic Form of H₄.

 J. Chem. Phys., 23, 1029-34 (1955).

 C. A., 49, 13761 (1955).

 Owing to large nuclear repulsion, the quadratic H₄ is not a probable structure for the transition state of the molecular reaction.
- 789. Griffing, V. & Vanderslice, J.T.

 The Interaction between Stable Molecules and Atoms.

 IV. The Energy of the Linear H₁ Complex.

 J. Chem. Phys., 23, 1035-8 (1955).

 C. A., 49, 13761 (1955).

 The linear combination of atomic orbitals-SCF treatment was applied to the linear system H₁ complex.

- 790. Griffing, V. & Vanderslice, J.T. The Interaction between Stable Molecules and Atoms. V. Molecular-Orbital Approach to the $H + H_2$ Reaction. J. Chem. Phys., 23, 1039-42 (1955). C. A.,49, 13762 (1955). By the use of the simple mol.-orbital theory, a correlation diagram can be set up connecting the energy levels of the initial, intermediate and final stages of the H + H2 process. By the LCAO mol.-orbital method, an activation energy for the reaction of 8.76K cal. is obtained.
- 791. Griffing, V., Hoare, J.P. & Vanderslice, J.T.
 Interaction between Atoms and Stable Molecules.
 VI. The Interaction of a Beryllium Atom with a Hydrogen Molecule.
 J. Chem. Phys., 24, 71-6 (1956).
 C. A., 50, 5343 (1956).
 The reaction can proceed through a triangular degenerate complex into a linear molecule.
- 792. Gromov, V.A.
 Excitation of the Spectrum in the Atomic Beam.
 Optika i Spektroskopyi,1,
 669-71 (1957).
 C. A.,51, 16091 (1957).
- 793. Gromova, I.I.
 The Photodissociation of
 Nitrogen.
 Optika i Spektroskopia,1,
 433-4 (1956).
 C. A.,51, 4819 (1957).
 An analysis of potential
 energy curves.

- 794. Groth, W. & Suess, H.
 The Photochemistry of the Atmosphere.
 Naturwissenschaften, 26, 77 (1938).
 C. A., 32, 5305 (1938).
 C. A., 32, 51 (1938).
 C. A., 28, 1928 (1934).
 CO₂ + hv = CO + O
 H₂O + hv = H + OH.
- 795. Groth, W. & Harteck, P. Photochemical Investigations in the Schumann Ultraviolet Region.

 VI. The Mechanism of the Photochemical H-O Reaction and its Relation to the Thermal Hydrogen-Ozone Reaction.

 Z. Elektrochem., 44, 621-7 (1938).

 C. A., 32, 8943 (1938).

 C. A., 32, 2839 (1938).
- 796. Groth, W.
 Evolution and Detection
 of Free Radicals in Gas
 Reactions.
 Z. physik. Chem. Unterricht,
 52, 157-63 (1939).
 C. A.,33, 9100 (1939).
 A review from 1900 to 1938.
 - 797. Groth, W.E. & Scharfe, G.
 Photochemical Investigations
 in the Schumann Ultraviolet.
 X. Photochemical Decomposition of Propane.
 Z.physik: Chem. (N.F.) (Frankfurt), 2, 142-59 (1954).
 C. A., 49, 729 (1955).
 Resonance wavelength of
 Xe 1470A and 1295A.

- 798. Groth, W.E. & Schierholz, H.
 Photochemical Formation of Nitrous Oxide.
 J. Chem. Phys., 27, 973-4 (1957).
 C. A.,52, 2562 (1958).
 Mixtures of N₂ + O₂ were irradiated with 1470A to 1295A (Xe). About 0.01% of the 0 atom reacted with N₂ to form N₂O.
- 799. Groth, W. & Schierholz,
 H.

 The Photochemical Formation
 of Nitrous Oxide in Mixtures
 of Nitrogen and Oxygen.
 Chem. Ber., 90, 987-91 (1957).
 C. A., 52, 5949 (1958).
 C. A., 48, 9132 (1954).
 Irradiation of mixtures of
 O₂ + N₂ by the resonance
 wavelengths of Xe at 1470
 and 1295A.
- 800. Groth, W. & Weyssenhoff, H.V. Photochemical Formation of Organic Compounds from Mixtures of Simple Gases.

 Ann. Physik, (7), 4, 69-77 (1959).

 C. A.,53, 21088 (1959).

 Mixtures of CH₄, NH₅, and water vapor were irradiated in a circulating system, and the reaction products identified by paper chromatography.
- 801. Gruver, J.T. & Calvert, J.G.
 The Vapor Phase Photolysis of
 2-Methylbutanol at Wavelength
 3130A.
 J. Am. Chem. Soc., 78, 5208-13
 (1956).*
 C. A., 51, 2404 (1957).
 Source of sec-butyl radicals.

- 802. Gruver, J.T. & Calvert, J.G.

 The Vapor Phase Photolysis of (+)-2-MethylbutanalIodine Mixtures at Wavelength 3130A.

 J. Am. Chem. Soc., 80, 3524-7 (1958).

 C. A.,52, 19507 (1958).
- 803. Guenoche, H.

 The Detonation and
 Deflagration of Gas
 Mixtures.
 Rev. inst. franc petrole,
 4, 17-37, 48-69 (1949)
 C. A., 43, 5576 (1949).
 C. A., 28, 2979 (1934).
 The general experimental
 procedure from the measurement of deflagration and
 explosion wave velocities
 in gas mixtures is critically examined.
- 804. Guentner, W.S., Hardwick, T.J, & Nejak, R.P.
 The Decrease in Hydrogen Yield during Cyclohexane Radiolysis.
 J. Chem. Phys., 30, 601 (1959).
 C. A.,53, 12859 (1959).
 The initial hydrogen yield obtained when cyclohexane was irradiated with 2.9-m.e.v. electrons was 5.4 moles./100 e.y.

- 805. Guillet, J.E. & Norrish, R.W.G.
 Photolysis of Polymethyl Vinyl Ketone: Formation of Block Polymers.
 Nature, 173, 625-7 (1954).
 C. A., 48, 10439 (1954).
 Degradation products of the photolysis of the polymer.
- 806. Gunning, H.E. & Steacie, E.W.R.

 The Mercury-Photosensitized Reactions of 1-Butene and 2-Butene.

 J. Chem. Phys., 14, 581-5 (1946).

 C. A., 41, 1560 (1947).

 C. A., 40, 7004 (1946).

 An activated molecule mechanism is proposed which accounts for the essential aspects of the reaction.
- 807. Gunning, H.E.
 Study of Free Radical Reactions through Photochemistry.
 J. Chem. Educ., 34, 121-6
 (1957).
 C. A.,51, 7115 (1957).
 A review with 17 references.
- 808. Gunning, H.E.
 Primary Processes in Reactions Initiated by Photoexcited
 Mercury Isotopes.
 Can. J. Chem., 36, 8995 (1958).
 C. A.,52, 19506 (1958).
 Formation of solid mercury
 compounds.
- 809. Gur'ev, M.V. & Tikhomirov,
 M.V.
 2-Deuteriooctane Dissociation
 by Electron Impact.
 Zhur. Fiz. Khim., 32, 2731-8
 (1958).
 C. A.,53, 12857 (1959).
 C8H18-2-d was discussed,
 assuming several dissociation
 mechanisms.

- 810. Gurvich, A.M. & Frost, A.V. Structure, Frequencies of Normal Vibrations, and Thermodynamic Functions of CH₃, CH₂, CH, and C₂ Free Radicals. Uchenye Zapiski Moskov. Gosudarst. Univ. im.M.V.Lomonosova, No. 164, 129-43 (1953). C. A.,49, 12107 (1955). A comprehensive review with 45 references. Thermodynamic functions of CHz and CH, radicals were calculated. 298.16 - 5000°K.
- 811. Gur'yanova, E.N., & Egorova, L.A.
 The Accelerating Action of Amines on Isotope Exchange of Sulfur in Organic Polysulfides.
 Zhur. Obshchei Khim., 28, 1745-52 (1958).
 C. A.,53, 1108 (1959).
 Amines with aromatic radicals are generally ineffective.
- 812. Gutowsky, H.S., Ray, B.R., Rutledge, R.L. & Unterberger, Carbonaceous Free Radicals in Crude Petroleum. J. Chem. Phys., 28, 744-5 (1958). C. A.,52, 12482 (1958). Electron-spin resonance experiments were performed on fractions obtained from a sample of crude oil. A solid sediment, obtained by centrifugation, yielded a value of 8 x 1018 free spins/g. The resonance was attributed to incomplete C bonds in the condensed aromatic structure of the asphaltene particles present in the sediment.

- 813. Gutowsky, H.S., Kusumoto, H., Brown, T.H., & Anderson, D.H.
 Proton Magnetic Resonance and Electron Spin Densities of Hydrazyl.

 J. Chem. Phys., 30, 860-1 (1959).

 C. A.,53, 14694 (1959).

 The electron spin densities are positive on the ortho and para carbons and negative on the metacarbon of polycrystalline hydrazyl at 77 K.
- 814. Guzman, E.S.
 The Role of Free Radicals
 in Reactions Produced by
 Ionizing Reactions.
 Radiation Research,1,
 109-24 (1954).
 C. A.,48, 5893 (1954).
 C. A.,47, 2801, 2802, 8154
 (1953).
 OH, HO, and H. 59 references.
- 815. Guzman, G.M.
 Polymerization by Radicals in Homogeneous Phase.
 Ion, 18, 314-23 (1958).
 C. A.,53, 1093 (1959).
 A review.
- 816. Guzman, G.M.
 Structure and Reactivity
 in Free Radical Polymerization.
 Rev. cienc. apl. (Madrid), 11,
 289-300 (1957).
 C. A.,53, 18845 (1959).
 A review with 14 references.

- 817. Haar, L. & Friedman,
 A.S.
 High Speed Machine Computation of Ideal Gas
 Thermodynamic Functions.
 II. The Diatomic Free
 Radicals of the Isotopic
 Hydrides of Oxygen and
 Sulfur.
 J. Chem. Phys., 23, 869-75
 (1955).
 C. A., 49, 12107 (1955).
 C. A., 49, 4346 (1955).
- 818. Haines, R.M. & Waters, W.A.

 Properties and Reactions of Alkyl Free Radicals in Solution. XI. Further Water-Soluble Radicals.
 J. Chem. Soc., 1958, 3221-2.
 C. A.,53, 15943 (1959).
 C. A.,52, 19997 (1958).
 2-oxocyclopentylacetic acid, m. 53°, was characterized as the Et ester 2,4-dinitrophenylhydrazone.
- 819. Haissinsky, M. & Prudhomme, R.O.

 The Mechanism of Chemical Reactions Produced by Ultrasonics.

 J. chim. phys., 47, 925-6 (1950).

 C. A., 45, 6467 (1951).

 C. A., 44, 8244 (1950).

 It is suggested that the mechanism is similar to that found with α-rays involving H, OH and OH, radicals.

- 820. Haissinsky, M.
 Indirect-Action-Aqueous
 Systems with Single Solute
 Mechanism of Radiochemical
 Transformations in Aqueous
 Dilute Solutions.
 Discussions Faraday Soc.,
 1952, No. 12, 133-43.
 C. A.,47, 7329 (1953).
 Review of exptl. results
 with 57 references.
- 821. Hall, A.R. & Wolfhard,
 H.G.
 Hydrazine Decomposition
 Flames at Sub-Atmospheric
 Pressures.
 Trans. Faraday Soc., 52,
 1520-1526 (1956).
 C. A.,51, 7113 (1957).
 Reaction kinetics. Spectroscopic observations.
- 822. Ham, N.S. & Ruedenberg, K. Energy Levels, Atom Populations, and Bond Populations in the L.C.A.O.M.O. Model and in the Free-Electron M.O. Model. A Quantitative Analysis. J. Chem. Phys., 29, 1199-1214 (1958). C. A.,53, 5857 (1959). Quant. results for 14 org. mols. were derived and analyzed on the basis of the L.C.A.O. mol. orbital model and on the basis of the free-electron mol. orbital model.
- 823. Hamill, W.H., Williams,
 R.R., Jr. & Voiland, E.E.
 Detection and Identification of Free Radicals
 by the Use of Radiohalogens.
 Brookhaven Conf.Rept.Chem.
 Conf., No. 4, 78-91 (Jan. 1950).
 C. A., 45, 3796 (1951).

- 824. Hamill, W.H. & Schuler,
 R.H.
 Hot-Radical Reactions in
 the Photolysis of Methyl
 and Ethyl Iodides in the
 Liquid Phase.
 J. Am. Chem. Soc., 73,
 3466-70 (1951).
 C. A.,45, 8896 (1951).
 The photolysis of liquid MeI
 and EtI at 2537A with
 added radio iodine is accompanied by isotopic exchange.
- 825. Hammer, J.M.
 Low-Energy Elastic
 Scattering of Electrons
 by Atomic Hydrogen.
 Univ. Microfilms (Ann
 Arbor, Mich.),
 Publ. No. 18056;
 Dissertation Abstr., 17,
 380 (1957).
 C. A.,51, 12635 (1957).
- 826. Hanst, P.L. & Myerson,
 A.L.
 Absorption Spectroscopy of
 Explosions.
 Rev. Sci. Inst., 25, 469-70
 (1954).
 C. A., 48, 13435 (1954).
 An adaptation of the NorrishPorter flash technique.
 Proc. Roy. Soc. (London), A200,
 284 (1950).
 Proc. Roy. Soc. (London), A210,
 439 (1952).
- 827. Hanst, P.L. & Calvert, J.G.
 Oxidation of Methyl Radicals
 at Room Temperature.
 J. Phys. Chem., 63, 71-7
 (1959).
 C.·A.,53, 7782 (1959).
 Me radicals were produced by photolysis of azomethane.

- 828. Hanst, P.L.
 Properties of Gaseous
 Free Radicals.
 Univ. Microfilms (Ann
 Arbor, Mich.), L.C. Card
 No. Mic 59-379, 75pp;
 Dissertation Abstr., 19,
 2240-1 (1959).
 C. A.,53, 10879 (1959).
- 829. Hardy, G. Autoinhibition in the Radical Polymerization of Furancarboxylic Acid Vinyl Ester. Acta Chim. Acad. Sci., Hung., <u>17</u>, 121-4 (1958). C. A.,53, 8691 (1959). Mixtures of vinyl acetate and ozodiisobutyronitrile with furnancarboxylic acid vinyl ester were polymerized in sealed dilatometers at 600 in the absence of 0.
- 830. Harkins, W.D.
 Free Radicals in Electrical
 Discharge.
 Trans. Faraday Soc., 30,
 221-7 (1934).
 C. A., 28, 2272 (1934).
 C. A., 27, 2096 (1933).
- 831. Harkins, W.D.
 Relations of C and Its
 Compounds.
 J. Org. Chem., 1, 52-64
 (1936).
 C. A., 30, 4753 (1936).
 The effects of electric
 discharges and the evidence
 for the existence and stability of free radicals of
 short life.

- 832. Harle, O.L. & Thomas, J.R. Detection of Free Radical Intermediates in the Action of Oxidation Inhibitors. J. Am. Chem. Soc., 79, 2973-4 (1957). C. A.,51, 14652 (1957). C. A.,50, 4089 (1956). C. A.,50, 14329 (1956).
- 833. Harmon, J., Ford, T.A.,
 Hanford, W.E. & Joyce,
 R.M., Jr.
 Free Radical-Initiated
 Reaction of Ethylene with
 Halo-Methanes.
 J. Am. Chem. Soc., 72, 221316 (1950).
 C. A., 44, 7218 (1950).
- 834. Harned, B.W.
 Interferometric Study of
 C-H Radical Spectroscopic
 Line Intensity Profiles
 from an Atmospheric Pressure
 Oxyacetylene Flame.
 Univ. Microfilms (Ann Arbor,
 Mich.).
 Publ. No. 20824;
 Dissertation Abstr., 17, 1095
 (1957).
 C. A.,51, 11082 (1957).
- 835. Harris, G.M. & Tickner, A.W. Detection of Free Radicals (Metal Mirrors) in Hydrogen-Atom Reactions with Organic Molecules.

 Can. J. Research, 26B, 343-55 (1948).

 C. A., 42, 5416 (1948).

 C. A., 41, 7180 (1947).

 Technique.

- 836. Harris, G.M.

 Some Aspects of the Physical Chemistry of Free Radicals.

 Roy. Australian Chem.

 Inst. J. & Proc., 17, 227-36 (1950).

 C. A., 44, 10397 (1950).

 C. A., 41, 6119 (1947).

 A review.
- 837. Harris, G.M. & Willard, J.E..
 Photochemical Reactions in the System.
 Methyl Iodide-Iodine-Methane; the Reaction C¹⁴H₃ + CH₁ = C¹⁴H₁ + CH₃.
 J. Am. Chem. Soc., 76, 4678-87 (1954)...
 C. A.,49, 3668 (1955).
- 838. Hart, E.J., Gordon, S., & Hutchison, D.A.
 Free-Radical-Initiated Ol6 Ol8 H₂Ol6 Exchange Reaction in Aqueous Solutions.
 J. Am. Chem. Soc., 74, 5548-9 (1952).
 C. A., 47, 10972 (1953).
- 839. Harteck, P. Hydrogen Atoms, Oxygen Atoms and the Hydroxyl Radical. Trans. Faraday Soc., 30, 134-41 (1934) • C. A.,28, 2270 (1934). H atoms were found to be stable in presence of Op for at least 0.1 sec. They do not react with H₀0 vapor or with N2 or NH3. CO and CO, react very slowly. Cl, and Br, react very rapidly, H2S is rapidly decomposed and \bar{S} is deposited.

- 840. Harteck, P., Groth, W. & Faltings, K.
 The Photochemistry of Carbon Monoxide.
 Z. Elektrochem., 44,
 621 (1938).
 C. A., 32, 8943 (1938).
 Using 1470A and 1295A,
 the analysis of the reaction products of a stream of CO-H₂ mixture showed the presence of HO₂.
- 841. Harteck, P. & Dondes, S. Decomposition of Nitric Oxide and Nitrogen Dioxide by the Impact of Fission. Fragments of Uranium 235.
 J. Chem. Phys.,
 27, (2), 546-51 (1957).
 C. A.,52, 894 (1958).
- 842. Harteck, P. & Dondes, S.
 Nitrogen Pentoxide Formation
 by Ionizing Radiation.
 J. Chem. Phys., 28, 975-6
 (1958).
 C. A.,52, 15267 (1958).
 The existence of N₂O₅ can
 explain the poor yield of
 N₂O in the early stages of
 the radiation-induced N O
 reaction.

- 843. Harteck, P., Reeves, R. & Mannella, G.
 Rate of Recombination of Nitrogen Atoms.
 J. Chem. Phys., 29, 608-10 (1958).
 C. A.,53, 1929 (1959).
 The rate of recombination of N atoms by three-body collision was determined at room temp. and 0.5-1.3 mm pressure.
- 844. Hartel, H.v.
 Creation of Free Radicals
 in Highly Diluted Gas
 Reactions.
 Trans. Faraday Soc., 30,
 187-9 (1934).
 C. A.,28, 2320 (1934).
 Vapor of an alkali metal +
 organic halogen compound.
- 845. Harvey, K.B. & Bass, A.M. Infrared Absorption of Oxygen Discharge Products and Ozone at 4°K.

 J. Mol. Spectroscopy, 2, 405-10 (1958).

 C. A.,52, 19503 (1958).

 C. A.,52, 10717 (1958).

 Concentration of atomic oxygen in the solid was estimated as 3%.
- 846. Haser, L.
 Production of Free Radicals in Comets.
 (A New Process).
 Bull. classe. sci. Acad.
 roy. Belg., 42, 813-16
 (1956) (In French).
 C. A.,51, 1729 (1957).

- 847. Haszeldine, R.N.
 Reactions of Fluorocarbon
 Radicals. I. The Reaction
 of Iodotrifluoromethane with
 Ethylene and Tetrafluoroethylene.
 J.Chem. Soc., 1949, 2856-61.
 C. A., 44, 3875 (1950).
- 848. Haszeldine, R.N.
 Reactions of Fluorocarbon
 Radicals. II. The Reaction
 of Trifluoroiodomethane with
 Acetylene.
 J. Chem. Soc., 1950, 2789-92
 and 3037-41.
 C. A., 45, 6155 (1951).
 C. A., 44, 3875 (1950).
- 849. Haszeldine, R.N. & Steele, B.R.
 Addition of Free Radicals to Unsaturated Systems.
 Chem. & Ind., 1951, 684-5.
 C. A., 46, 2477 (1952).
 C. A., 44, 3875 (1950).
 C. A., 45, 6155 (1951).
 C. A., 46, 414 (1952).
- 850. Haszeldine, R.N.
 Reactions of Fluorocarbon
 Radicals.
 V. Alternative Synthesis
 for Trifluoropropyne and
 the Influence of Polyfluoro
 Groups on Adjacent Hydrogen
 and Halogen Atoms.
 J. Chem. Soc., 1951, 2495504.
 C. A., 46, 7990 (1952).
 C. A., 45, 8965 (1951).

- 851. Haszeldine, R.N.
 Addition of Free Radicals
 to Unsaturated Systems.
 I. The Direction of Radical Addition to 3,3,3-Trifluoropropene.
 J. Chem. Soc., 1952, 2504-13.
 C. A.,47, 1032 (1953).
 C. A.,46, 2477 (1952).
- 852. Haszeldine, R.N.
 Reactions of Fluorocarbon
 Radicals.
 VIII. Alternative Syntheses
 for 4,4,4-Trifluorocrotonic
 Acid.
 J. Chem. Soc., 1953, 922-3.
 C. A.,48, 5085 (1954).
 C. A.,47, 6858 (1953).
- 853. Haszeldine, R.N., Leedham, K. & Steele, B.R.
 Addition of Free Radicals to Unsaturated Systems.
 IX. The Direction of Free Radical Addition to Allene and Allyl Chloride.
 J. Chem. Soc., 1954, 2040-2.
 C. A., 48, 10528 (1954).
 C. A., 48, 7534 (1954).
- 854. Haszeldine, R.N. & Kidd, J.M.
 Reactions of Fluorocarbon Radicals.
 XI. Synthesis and Some Reactions of Trifluoromethanethicland and Trifluoromethanesulfenyl Chloride.
 J. Chem. Soc., 1953, 3219-25.
 C. A.,48, 12668 (1954).
 C. A.,48, 8165 (1954).

- Nyman, F.
 Oxidation of Polyhalo
 Compounds. IV. Photochemical Oxidation and
 Autoxidation of Chlorotrifluoroethylene.
 J. Chem. Soc., 1959,
 1084-90.
 C. A.,53, 12858 (1959).
 CF₂: CFCl, and O₂ react
 very slowly in the dark,
 especially in the presence
 of H₂0.
- 856. Hausser, K.H.
 Temperature Dependence
 of Magnetic and Optic
 Properties of Organic
 Nitrogen Radicals.
 Z.Naturforsch., 11a,
 20-23 (1956).
 C. A.,51, 4783 (1957).
- 857. Havinga, E. & Oosterhoff, L.J.
 Free Radicals.
 Chem. Weekblad, 47, 49-54, 69-74 (1951).
 C. A., 45, 4501 (1951).
 A review with 22 references.
- 858. Heffelfinger, C.J.
 Determination of the Half
 Life of Polymeric Free Radicals.
 Univ. Microfilms (Ann Arbor,
 Mich.), Publ. No. 5119, 32pp.;
 Dissertation Abstr., 13,
 316 (1953).
 C. A.,47, 9124 (1953).

- 859. Heidt, L.J.
 The Photolysis of Dry
 Ozone at 2080A, 2540A
 2800A and 3130A. II.
 Reaction Kinetics.
 J. Am. Chem. Soc., 57,
 1710-16 (1935).
 C.A.,29, 7810 (1935).
 C.A.,29, 406 (1935).
- 860. Heil, M.

 Kinetic Theory Relative
 to the Flow of Dissociating
 Gases.

 Breennstoff-Warme-Kraft, 10,
 298-9 (1958).
 C. A.,52, 17861 (1958).
- 861. Heims, S.P.

 Effect of Oxygen Recombination on One-Dimensional
 Flow at High Mach Numbers.

 Natl. Advisory Comm.

 Aeronaut.,
 Tech. Note No. 4144, 52 pp (1958).

 C. A.,52, 6903 (1958).

 A theoretical analysis was made of air flow in a channel in which O2 dissociation and recombination occurs.
- 862. Hein, F. & Mesee, H.J.
 Radical Formation in the
 Thermal Cleavage of Benzene
 and Toluene and Its
 Detection with Metal Vapors.
 Ber., 76B, 430-47 (1943).
 C. A.,37, 6250 (1943).
 React. with metal vapors,
 Hg, As, Pb determined iodometrically.

- 863. Heineken, F.W. & Schimmel, F.M. Paramagnetic Resonance of the Products of the Reaction of the Free Radical.
 Tri-p-nitrophenyl Methyl with Oxygen.
 Arch.sci. (Geneva).
 10, Spec. No.,93-4
 (1957).
 C. A.,52, 1757 (1958).
- 864. Heise, R.
 Supermobility of H₃O+
 and OH⁻ Ions of Water
 near the Freezing Point.
 Z. Naturforsch., 13a,
 547-51 (1958).
 C. A.,53, 3844 (1959).
 The supermobility of the
 ions in the temp. range
 between + 10° and -6°
 was determined by cond.
 measurements of dil. HCl,
 NaOH, and NaCl solutions.
- 865. Heitler, W.
 The Dissociation Energy
 of Hydrocarbons.
 J. chim. phys., 54, 2658 (1957).
 C. A.,51, 11835 (1957).
- 866. Heller, C.A. & Gordon,
 A.S.

 Isopropyl Radical Reactions.
 I. Photolysis of Diisopropyl Ketone.
 J. Phys. Chem., 60, 1315-18 (1956).
 C. A.,51, 3296 (1957).
 The kinetics were explained by a primary break of the ketone to give iso-propyl radicals.

- 867. Heller, C.A. & Gordon,
 A.S.
 Isopropyl Radicals Reactions.
 II. Photolysis of Diisopropyl
 Ketone d².
 J. Phys. Chem., 62, 709-13
 (1958).
 C. A., 52, 16047 (1958).
- 868. Helmreich, W.
 Reaction of Thiyl Radicals
 with Olefins.
 Univ. Microfilms (Ann Arbor,
 Mich.), L.C. Card No. Mic 582685, 63pp.; Dissertation
 Abstr., 19, 229 (1958).
 C. A.,53, 3034 (1959).
- 869. Henbest, H.B., Meakins, G.D., Nicholls, B. & Taylor, K.J. Detection of the Epoxide Group by Infrared Spectroscopy.

 J. Chem. Soc., 1957, 1459-62.

 C. A.,51, 14421 (1957).
 A characteristic C-H stretching bond can be detected in the 2832-2815 cm⁻¹ region of the I.R. spectrum.
- 870. Henbest, H.B., Meakins, G.D., Nicholls, B. & Wagland, A.A.

 The C-H Stretching Bonds of Methoxyl Groups.

 J. Chem. Soc., 1957, 1462-4.

 C. A.,51, 14421 (1957).

 In the aromatic compounds, the bands above 3000 cm⁻¹ are due to the aromatic C-H stretching and those at 2832 cm⁻¹ are again associated with methoxyl.

- 871. Henne, A.L. & Nager, M.
 Influence of a CF₂ Group
 on an Adjacent Double
 Bond.
 III. Free Radical Additions.
 J. Am. Chem. Soc., 73, 55278 (1951).
 C. A., 47, 479 (1953).
 C. A., 46, 414 (1952).
 C. A., 45, 1007 (1951).
- 872. Henri, V.
 Electronic States of Radicals in Polyatomic Molecules.
 Compt. rend., 203, 67-9 (1936).
 C. A., 30, 5882 (1936).
 C. A., 29, 48 (1935).
- 873. Henrici-Olive, G. & Olive, S. Induced Reaction between Initiator Radical and Polymer Molecule.

 Makromol. Chem., 28, 176 (1958).
 C. A.,53, 3855 (1959).
 C. A.,52, 17915 (1958).
 A correction is given for an equation in the original paper.
- 874. Hentz, R.R.

 Oxidation of the Radicals

 Produced in Acetone Photolysis.

 J. Am. Chem. Soc., 75, 5810-14
 (1953).

 C. A., 48, 4982 (1954).

 C. A., 45, 6994 (1951).

 Photooxidation of acetone proceeds through Ac and Me radical oxidation at 50-200°. Above 200°

 AcCH2 radical oxidation in a short-chain reaction becomes significant.
- 875. Heppner, J.P. & Meredith, L.H. Nightglow Emission Altitudes from Rocket Measurements.
 J. Geophys. Research, 63, 51-65 (1958).
 C. A., 52, 16030 (1958).
 OH emission.

- 876. Hermans, P.H.
 Ancient and Modern Radical
 Chemistry.
 Chem. Weekblad, 33, 442-50
 (1936).
 C. A.,30, 6615 (1936).
 An address with 56 references.
- 877. Heron, S., McWhirter, R.W.P. & Rhoderick, E.H. Measurements of Lifetimes of Excited States of Helium Atoms. Proc. Roy. Soc. (London), A234, 565-583 (1956). C. A.,50, 9863 (1956). A short pulse (10-8s duration and 10 kc/s repetition rate) of low-voltage electrons causes atoms of a gas to be raised to excited states. The subsequent decay to lower states is observed by intercepting the emitted photons with a photomultiplier, those belonging to the desired transition being selected by means of a filter.
- 878. Herron, J.T., Franklin, J.L., Bradt, P. & Dibeler, V.H. Kinetics of Nitrogen Atom Recombination.
 J. Chem. Phys., 29, 230-1 (1958).
 C. A.,52, 19503 (1958).
 The concentration of N atoms in the afterglow was titrated by injecting NO at various distances from the generating source.

- 879. Herron, J.T. & Schiff, H.I. A Mass Spectrometric Study of Normal Oxygen and Oxygen Subjected to Electrical Discharge. Can. J. Chem., 36, 1159-70 (1958). C. A.,<u>53</u>, 877 (1959). A mass spectrometric study was made of 0 activated by microwave and by a.c. glow discharge. Appearance potential curves for normal 0, at masses 16 and 32, indicate the occurance of multiple electron impact processes.
- 880. Herron, J.T., Franklin, J.L., Bradt, P. & Dibeler, V.H. Kinetics of Nitrogen Atom Recombination.

 J. Chem. Phys., 30, 879-85 (1959).

 C. A., 53, 15724 (1959).

 C. A., 52, 19503 (1959).

 The rate of recombination of N atoms in the N afterglow was measured in a flow system using NO as a titrant and determining the NO content continously by mass spectrometry.
- 881. Herzberg, G.
 Evidence for the Presence
 of CH₂ Molecules in Comets.
 Rev. Mod.Phys.,14,
 195-7 (1942).
 C. A.,37, 829 (1943).
 C. A.,36, 6896 (1942).
 The structure of the group
 of bands at 4050A, observed
 in the spectra of comets,
 indicates that their emitter
 is a polyatomic rather than
 a diatomic molecule. Recent
 lab work attributes them to
 CH₂.

- 882. Herzberg, G. Atmospheres of the Planets. J. Roy. Astron. Soc. Canada. <u>45</u>, 100-23 (1951). C. A.,45, 10046 (1951). A review of the spectroscopic investigations of the atmospheres of the planets including the earth. The significance is discussed of OH in the earth's upper atmosphere, of CO2 in the atmospheres of \overline{V} enus and Mars, and of CH_h in the atmospheres of the major planets.
- 883. Herzberg, G. & Ramsay, D.A.
 The 7500-4500A Absorption
 System of the Free HCO Radical Formyl.
 Proc. Roy. Soc. (London),
 A233, 34-54 (1955).
 C.A.,50, 4636 (1956).
- 884. Herzberg, G. & Shoosmith,
 J.
 Absorption Spectrum of
 Free CH_Z and CD_Z Radicals.
 Can. J. Phys., 34, 523-5
 (1956).
 C. A., 50, 9870 (1956).
 Produced by flash photolysis.
- 885. Herzfeld, C.M. & Broida, H.P.
 Interpretation of Spectra of Atoms and Molecules in Solid Nitrogen Condensed at 4.2°K.

 Phys. Rev., 101, 606-11 (1956).
 C.A., 50, 6915 (1956).
 C.A., 48, 11932 (1954).

- 886. Heusinger, H., Woods, R.J. & Spinks, J.W.T.
 Radiolysis of Bromal
 Hydrate Solutions Using
 Carbon-14-Iabeled Bromal.
 Can. J. Chem., 37, 1127-31
 (1959).
 C. A.,53, 21094 (1959).
 CO₂ formed by a side reaction that is not part
 of the chain unaffected by
 dissolved O₂ or dose rate.
- 887. Hey, D.H.

 Some Recent Developments
 in the Chemistry of Free
 Radical Reactions in
 Solution.
 J. Chem. Soc., 1952, 1974-84.
 C. A., 46, 7413 (1952).
- 888. Hickling, A. & Hill, S.
 Note on the Standard Potentials of the Hydroxyl
 Radical and Atomic Oxygen.
 Trans. Faraday Soc., 46,
 557-9 (1950).
 C. A., 45, 50 (1951).
 C. A., 42, 8669 (1948).
- 889. Higuchi, J.
 Electronic States of the
 BH and CH Radicals.
 Bull. Chem. Soc., Japan,
 26, 1-6 (1953).
 C. A., 47, 11975 (1953).
 C. A., 46, 8508 (1952).
 The atomic orbital method
 was used with overlap
 intergrals and all permutations for 2s and
 2p electrons included.

- 890. Higuchi, J.
 Lower Electronic States
 of the Free NH₂ Radical.
 J. Chem. Phys., 22, 14678 (1954).
 C. A., 48, 13298 (1954).
 The spatial configuration
 of the radical was assumed
 to be an isosceles triangle.
- 891. Higuchi, J.

 Electronic Structures of
 NH, NH₂ and NH₃.

 J. Chem. Phys., 24, 53545 (1956).

 C. A., 50, 9134 (1956).

 Linear combination of
 atomic orbitals (ICAO) and
 molecular orbitals were
 calculated for the ground
 states (at various bond
 angles) by using the ICAOself-consistent field method.
- 892. Higuchi, J.
 Lower Excited States in the Free Amine Radical.
 Bull. Chem. Soc., Japan, 28, 238-43 (1955).
 C. A., 52, 4305 (1958).
- 893. Hilferding, K. & Steiner, W.

 The Rate of Recombination of Bromine Atoms.

 Z. physik.Chem., B30, 399-439 (1935).

 C. A.,30, 2471 (1936).

 C. A.,15, 1440 (1921).

 Photochemical recombination of Br atoms in a vessel so designed that the wall effect was eliminated.

- 894. Hill, T.L.

 Note on Steric Factors
 for Some Reaction Involving Free Radicals.
 J. Chem. Phys., 17, 503-4
 (1949).
 C. A., 43, 7795 (1949).
 Calculated from the
 theory of absolute reaction rates.
- 895. Hinshelwood, C.N.

 The Influence of Substituents on the Oxidation of Hydrocarbons.

 Discussions Faraday Soc.,

 1951, No. 10, 266-8.

 C. A.,46, 3378 (1952).

 A general discussion.
- 896. Hinshelwood, C.N.
 Thermal Reactions Involving Free Radicals.
 Chem. Soc. (London),
 Spec. Publ. No. 9, 49-60, discussion 61-3
 (1957).
 C.A.,53, 11962 (1959).
- 897. Hipple, J.A. & Stevenson, D.P. Ionization and Dissociation by Electron Impact: The Methyl and Ethyl Radicals. Phys. Rev., 63, 121-6 (1943). c. A.,37, 1923 (1943). PbMel and PbEth were decomposed to yield free CH3 and C2H5 radicals in a specially designed furnace built into the ionization chamber of a 1800 mass spectrometer tube. The ionization potentials were found to be: Me = $10.0_0 + 0.1$ e.v. and Et = $8.6_0 + 0.1 e.v.$

- 898. Hirshfeld, M.A. & Miller, C.D. Instantaneous Ultraviolet Knock Spectra Correlated with High-Speed Photographs. Natl. Advis. Comm. Aeron., Tech. Note No. 1408, 15pp (1947). C. A.,41, 6812 (1947). Absorption spectra, and schlieren motion pictures.
- 899. Hirschfelder, J.O.
 Chemical Reactions Produced
 by Ionization Processes.
 J. Phys. and Colloid Chem.,
 52, 447-50 (1948).
 C. A.,42, 4453 (1948).
 C. A.,30, 6648, 7040 (1936).
 C. A.,33, 1218 (1939).
 Mass spectrographic results
 compared with data obtained
 from photochemical studies.
- 900. Hirschfelder, J.O., Curtiss, C.F. & Campbell, D.E.
 The Theory of Flame Propagation.IV.
 J. Phys. Chem., 57, 403-14 (1953).
 C. A., 47, 9298 (1953).
- 901. Hirt, R.C.
 Sources of Information
 on Ultraviolet Absorption
 Spectrophotometry.
 J. Chem. Educ.,29
 301-3 (1952).
 C. A.,46, 6927 (1952).
- 902. Hoare, D.E.
 Reproducibility of the
 Slow Combustion of Methane.
 Trans. Faraday Soc., 1953,
 No. 14, 97-103.
 C. A., 48, 1120 (1954).
 Adsorption of hydrogen
 atoms on SiO₂ surfaces
 during combustion processes.

- 903. Hoare, D.E.
 The Role of an
 Inert Gas in the
 Photolysis of
 Acetone.
 Trans. Faraday Soc.,
 53, 791-9 (1957).
 C. A.,52, 5987 (1958).
 The CH₃ radicals had
 no appreciable surface
 reactions.
- 904. Hoare, D.E. & Walsh,
 A.D.

 Reaction of Methyl Radicals with Oxygen and Comparison with Other ThirdOrder Reactions.

 Trans. Faraday Soc., 53,
 1102-10 (1957).
 C. A.,52, 7874 (1958).

 Radicals produced by
 photolysis of Me, CO.
- 905. Hoare, D.E. & Walsh,
 A.D.
 Trimolecular Free Radical Reactions.
 Chem. Soc. (London), Spec.
 Publ. No. 9, 17-28,
 Discussion 29-33 (1957).
 C. A.,52, 19368 (1958).
 Discussion of mechanism.
- 906. Hodgins, J.W. & Haines, R.L. Formation of Trifluoromethyl Radicals in the Gas Phase.
 Can.J.Chem., 30, 473-81 (1952).
 C. A.,46, 7853 (1952).
 C. A.,43, 3694 (1952).

- 907. Hodgson, W.G., Neaves, A. & Parker, C.A.
 Detection of Free Radicals in Sodium Dithionite by Paramagnetic Resonance.
 Nature, 178, 489 (1956).
 C. A., 51, 7210 (1957).
- 908. Hoey, G.R., & Kutschke, K.O.
 The Photoöxidation of Azomethane.
 Can.J.Chem., 33, 496-506 (1955).
 C. A.,49, 12138 (1955).
 Azomethane as a source of methyl radicals.
- 909. Hoey, G.R. & LeRoy, D.J. The Mercury Photosensitized Hydrogenation of Propylene and the Activation Energy of the Reaction $C_3H_7 + H_2 =$ $C_{3}H_{8} + H.$ Cán. J. Chem., 33, 580-8 (1955). C. A.,50, 9159 (1956). c. A., $\overline{42}$, 828 (1948). The ratio Kcombination/ Kdisproportionation is estimated to be approx. 2.0 at room temp. in the case of isopropyl radicals.
- 910. Holland, R., Style, D.W.G.,
 Dixon, R.N., & Ramsay, D.A.
 Emission and Absorption
 Spectra of NCO and NCS.
 Nature, 182, 336-7 (1958).
 C. A., 53, 47 (1959).
 Emission and absorption studies
 of EtNCO, MeNCS, MeSCN, and
 HNCO were made by using
 apparatus described earlier,
 C. A., 50, 4636 (1956). The
 spectra were assigned to the
 NCO and NCS.

- 911. Hollis, A. & Paneth, F.A.
 Radiochemical Studies on
 Free Radicals (Bi Mirror),
 Nature, 169, 618 (1952).
 C. A., 46, 9448 (1952).
 C. A., 25, 5889 (1931).
 The distribution of radioactivity along the mirror can be measured by taking sectional counts.
- 912. Holmes, J.C. & Morrell, F.A.
 Oscillographic Mass-Spectrometric Monitoring of Gas
 Chromatography.
 Appl. Spectroscopy, 11, 86-7
 (1957).
 C. A., 51, 14329 (1957).
 The presence of intermediate
 compounds formed during a
 reaction can be detected
 quickly.
- 913. Holroyd, R.A. & Noyes, W.A.,
 Jr.
 Photochemical Studies.
 I. The Ketene-Oxygen System
 at Higher Temperature.
 J. Am. Chem. Soc., 78, 4831-6
 (1956).
 C. A.,51, 2404 (1957).
 C. A.,48, 13440 (1954).
 Mechanism of the decomposition.
- 914. Holroyd, R.A. & Blacet, F.E.
 The Photolysis of Dimethyl
 Ketene Vapor.
 J. Am. Chem. Soc., 79, 4830-4
 (1957).
 C. A., 52, 2561 (1958).
 Isopropylidene radicals isomerize to propane but do not decompose. Hexane is a product at 3660A, is probably formed by attack of isopropylidene radicals on dimethyl ketene.

- 915. Horie, T., Nagura, T. & Otsuka, M. Radiative Collisions between Electronic and Molecular Beams.

 I. Angular Momentum Distribution among OH* Radicals Resulting from H₂O Molecules.

 J. Phys. Soc. Japan, 11, 1157-70 (1956).

 C. A.,51, 5570 (1957).
- 916. Horie, T., Nagura, T. & Otsuka, M.
 Radiative Collisions of Electronic and Ionic Beams with Water Molecules.
 Ann Rept. Sci. Works, Far. Sci., Osaka Univ., 4, 11-43 (1956).
 C. A.,51, 11846 (1957).
- 917. Horie, T., Otsuka, M. & Nagura, T.
 Radiative Collisions between Molecular and Electron Beams. II. Angular Momentum Distribution of OH Radicals Splitting from the H₂O₂ Molecule.
 J. Phys. Soc. Japan, 12, 500-5 (1957).
 C. A.,51, 13568 (1957).
 C. A.,52, 3518 (1958).
- 918. Horn, E., Polanyi, M. & Style, D.W.G.
 The Isolation of Free Methyl and Ethyl by the Reaction of Sodium Vapor with Methyl and Ethyl Bromide.
 Z. physik. Chem., B23, 291-304 (1933).
 C. A., 28, 1013 (1934).

- 919. Horn, E., Polanyi, M. & Style, D.W.G.
 The Isolation of Free Methyl and Ethyl by the Reaction between Sodium Vapor and Methyl Bromide and Ethyl Bromide.
 Trans. Faraday Soc., 30, 189-99 (1934).
 C. A., 28, 1657 (1934).
 C. A., 28, 1013 (1934).
- 920. Hornbeck, G.A. & Herman, R.C.
 Vibration-Rotation Bands of Hydroxyl in the Photographic Infrared.
 J. Chem. Phys., 19, 512 (1951).
 C. A., 45, 6487 (1951).
 C. A., 44, 10496 (1950).
- 921. Hornbeck, G.A. & Herman, R.C. Hydrocarbon Flame Spectra. Ind. Eng. Chem., 43, 2739-57 (1951). C. A., 46, 2397 (1952). Co, CH, OH, OD, CO, Oo, H20, and hydrocarbon flame bands from CoHo + The spectra of the above are discussed. Effects of fuel-0, ratio are studied. Comments are made concerning kinetic mechanisms. Several new electronic OH bands are reported.
- 922. Hornig, D.F.

 The Production of Unstable Species in Shock Waves.

 Ann. N.Y. Acad. Sci., 67, 463-76 (1957).

 C. A.,51, 16056 (1957).

 CN + CN = C₂ + N₂.

- 923. Horrex, C. & Miles, S.E.
 The Pyrolysis of Bibenzyl.
 Discussions Faraday Soc.,
 1951, No. 10, 187-97.
 C. A.,46, 3378 (1952).
 Benzyl radical.
- 924. Howland, A.H. & Simmons, W.A.

 A Mechanism of Intense Gaseous Combustion.

 J. Inst. Fuel, 24, 252-6 (1951).

 C. A., 46, 265 (1952).

 Mixing of active species obtained from combustion.
- 925. Howlett, K.E. & Burton, D.H.R. Use of Acetaldahyde for the Detection of Chain Reactions. (Free Radicals), Trans. Faraday Soc., 45, 735-8 (1949). C. A.,44, 1018 (1950). The use of the AcH decomposition is solely a method for detecting the presence of free radicals and does not prove to what extent a compound actually decomposes by a free-radical mechanism.
- 926. Huang, R.L.

 The Reactions of Tertiary
 Benzylamines with Free
 Tert-Butoxy Radicals.

 J. Chem. Soc., 1959, 181619.

 C. A.,53, 19966 (1959).
 PhCH₂NRR' (R and R' =
 PhCH₂, Ph, or Et) and
 Me₃CO₂ heated in a
 sealed tube gave the
 dimer (PhCHNRR')₂ and,
 when R = PhCH₂, the anil
 PhCH:NR'.

- 927. Hückel, E.
 Theory of Free
 Radicals of Organic
 Chemistry.
 Trans. Faraday Soc.,
 30, 40-52 (1934).
 C. A.,28, 1919 (1934).
 C. A.,28, 414 (1934).
- 928. Hudson, F.P., Williams, R.R., Jr. & Hamill, W.H. Moderation of Hot Methyl Radicals in Photolysis of Methyl Iodide.
 J. Chem. Phys., 21, 1894 (1953).
 C. A., 48, 1162 (1954).
 C. A., 44, 7661 (1950).
 Effect of temperature, light intensity, pressure, and surface.
- 929. Hueter, T.F.
 The Mechanism of Biological
 Effects Produced by Ultra
 Sound.
 Mass. Inst. Tech., Cambridge,
 Mass.
 Chem. Eng. Progress Symposium
 Sec.
 Ultrasonics, 47, No. 1, 62
 (1951).
 C. A., 46, 546 (1952).
- 930. Hulburt, E.O.
 The Upper Atmosphere of the Earth.
 J. Optical Soc. Am., 37, 405-15 (1947).
 C. A., 41, 5795 (1947).

- 931. Hunaerts, J.
 Interpretation of the
 Emission Spectrum of OH
 in Comets.
 Mem. soc. roy. sci. Liege,
 13, 99-136 (1953).
 C. A.,47, 8510 (1953).
- 932. Hunt, H. & Schumb, W.C.
 Dissociation of Carbon
 Dioxide in the Electrodeless Discharge.
 J. Am. Chem. Soc., 52,
 3152-9 (1930).
 C. A., 24, 4980 (1930).
 Results do not agree
 with the mass law,
 because Kp decreases with
 increase of pressure.
 Inert gases (He) favor
 decomposition, while increase in pressure, reduces it.
- 933• Hunt, J.P. & Taube, H. The Photochemical Decomposition of Hydrogen Peroxide. Quantum Yields, Tracer, and Fractionation Effects. J. Am. Chem. Soc., 74, 5999-6002 (1952). C. A.,47, 3704 (1953). The determined fractionation effects, associated with the non-chain process for decomposition, appear to be incompatible with OH radicals as the sole net products of the primary act.

- 934. Hurle, I.R. & Sugden,
 T.M.
 Microwave Spectrometer
 for the Study of Free
 Radicals.
 J. Sci. Instr., 35,
 319-23 (1958).
 C. A.,53, 3885 (1959).
 A microwave spectrometer
 suitable for the study
 of short-lived molecules in
 the gas phase, in particular
 free radicals, is described.
- 935. Hurst, G.S. & Bortner, T.E. Negative Ions of Oxygen. Radiation Research, Suppl. I, 547-57 (1959). C. A.,53, 10319 (1959).
- 936. Hutchinson, C.A., Jr.,
 Kowalsky, A., Pastor, R.C.
 & Wheland, G.W.
 The Detection of Free Radicals by Means of Paramagnetic Resonance. Biradicals.
 J. Chem. Phys., 20, 1485-6 (1952).
 C. A., 47, 9693 (1953).
 Magnetic susceptibility.
- 937. Hylleraas, E.A.

 Some Critical Remarks

 Concerning Bailli Nilsen's

 Paper: On the Theory of

 Free Radicals and OrganoAlkali Compounds.

 J. Chem. Phys., 3, 313-14

 (1935).

 C. A.,29, 4255 (1935).

 C. A.,29, 1317 (1935).

- 938. Imoto, M., Takeyaki, Y., Imoto, E. & Ogahara, S. A Symposium on Radical Reactions. Theoretical. Kagaku, 10, 456-8, 458-71, 471-9, 479-81(1955). C. A., 49, 15318 (1955). Reviews with references.
- 939• Ingold, C.K. Relation between Chemical and Physical Theories of the Source of the Stability of the Organic Free Radicals. Trans. Faraday Soc., 30, 52-60 (1934). c. A.,28, 2319 (1934). $c.A.,\overline{27}, 5713 (1933)$ A discussion of the stability of free radicals in relation to the general theory of organic chemical reactivity.
- 940. Ingold, K.U. & Lossing, F.P. Rate of Combination of Methyl Radicals.

 J. Chem. Phys., 21, 368 (1953).
 C. A., 47, 8487 (1953).
 C. A., 47, 2034 (1953).
 HgMe₂ decomp. in a furnace.
 Probe removes samples for mass spectrographic analysis.
- 941. Ingold, K.U. & Lossing, F.P. Free Radicals by Mass Spectrometry.

 III. Radicals in the Thermal Decomposition of Some Benzene Derivatives.

 Can. J. Chem., 31, 30-41 (1953).

 C. A., 47, 9121 (1953).

 C. A., 47, 2034 (1953).

- 942. Ingold, K.U. & Lossing, F.P. Free Radicals by Mass Spectrometry. IV. The Rate of Combination of Methyl Radicals.

 J. Chem. Phys., 21, 1135-44 (1953).
 Disc. Faraday Soc., 14, 34 (1953).
 C. A., 47, 9760 (1953).
 C. A., 47, 9121 (1953).
- 943. Ingold, K.U., Henderson, I.H.S. & Lossing, F.P. The Rate of Combination of Methyl Radicals.
 J. Chem. Phys., 21, 2239 (1953).
 C. A., 48, 4296 (1954).
 C. A., 47, 9760 (1953).
 Corrections to earlier work. Effects of pressure are made.
- 944. Ingold, K.U. & Bryce, W.A.

 Mass Spectrographic Investigation of the HydrogenOxygen and Methyl-Oxygen
 Reactions.

 J. Chem. Phys., 24, 360-4
 (1956).

 C. A.,50, 7577 (1956).
 C. A.,47, 9760 (1953).

 Radicals detected were OH,
 HO2, CH3O, CH3O2, and CH2.
 Rough value for collision
 efficiency of O + CH3 was
 10-3 to 10-4.
- 945. Ingram, D.J.E. & Tapley, J.G.
 The Study of Free-Radical
 Reactions by Paramagnetic
 Resonance.
 Chem. & Ind. (London),
 1955, 568-9.
 C. A.,49, 12095 (1955).

- 946. Ingram, D.J.E. & Gibson, J.F.
 Paramagnetic Resonance of Free Radicals Produced by Ultraviolet Radiation. Arch. sci. (Geneva), 10, Spec. No., 93-4 (1957). C. A., 52, 1757 (1958).
- 947. Ingram, D.J.E., Symons, M.C.R. & Townsend, M.G. Electron-Resonance Studies of Occluded Polymer Radicals.

 Trans. Faraday Soc., 54, 409-15 (1958).
 C. A.,52, 17917 (1958).
- 948. Ingram, D.J.E.
 The Investigation of Free
 Radicals by Electron Resonance
 Chem. Soc. (London), Spec.
 Pub. No. 12, 145-69 (1958).
 C. A.,53,53 (1959).
- 949. Ingram, D.J.E.
 Free Radicals as Studied
 by Electron-Spin Resonance.
 New York Academic Press,
 Inc., 1958, New York, New York.
 C. A.,53, 882 (1959).
- 950. Ingram, D.J.E., Fujimoto, M. & Gibson, J.F.
 Free Radicals at Low Temperatures. Arch. sci. (Geneva), 11, Spec. No., 170-6 (1958).
 C. A., 53, 21177 (1959).
 The theory of configurational interaction is found to be applicable to the allyl alc. radical for which the spectrum has four lines.

- 951. Inoue, E. & Matsuda, T.
 Dissociation Rate of Oxygen
 Molecule in Silent Electrical
 Discharge.
 Denki Kagaku, 25, 25-6 (1957).
 C. A.,51, 15281 (1957).
 Kinetics and mechanism.
- 952. Inoue, R., Ouchi, S. & Yashira, S. Radical Chain Reaction of Degradation. IV. Thermal Degradation of Polyethylene. Chem. High Polymers (Japan), 13, 38-44 (1956). C. A.,51, 3254 (1957). The results of the mass spectrometric analysis are reasonably explained by intramolecular chain transfer of short range owing to the greater flexibility of polyethylene.
- 953. Isenberg, I. & Szent-Gyorgyi, A.
 Free-Radical Formation in Riboflavine Complexes.
 Proc. Natl. Acad. Sci. U.S., 44, 857-62 (1958).
 C. A.,53, 16262 (1959).
 If an aqueous solution containing 10-3M tryptophan and 10-3M riboflavine-5'-phosphate is frozen, the resultant sample has a red appearance instead of the yellow shown by riboflavine alone.
- 954. Itoh, T., Ohno, K. & Kotani, M.

 The Valence Theory of the Methyl Radical.

 J. Phys. Soc. Japan, 8, 41-9 (1953).

 C. A., 47, 9136 (1953).

 C. A., 30, 7001 (1936).

 C. A., 31, 5635 (1937).

- 955. Ivanon, O.A., Fok, N.V. & Voevodskii, V.V. The Reaction of Methyl Radicals Obtained in the Polanyi Reaction with Deuterium. Doklady Akad. Nauk. s.s.s.R.,11,1142-5(1958). C. A.,53, 197 (1959). c. A., $\overline{25}$, 1726 (1931). The Me radicals were obtained by the polanyi reaction MeI + Na = Me +NaI in the presence of D, which acted as a carrier gas for the vapors produced at 450°.
- 956. Ivash, E.V.
 Dissociation of the Hydrogen Molecule Ion by Electron Impact.
 Phys. Rev., 112, 155-8 (1958).
 C. A.,53, 2819 (1959).
 Dissociation cross section of H₂ for electrons was investigated.
- 957. Ivin, K.J. & Steacie, E.W.R.
 The Disproportionation and
 Combination of Ethyl Radicals:
 The Photolysis of Mercury
 Diethyl.
 Proc.Roy.Soc. (London), A208,
 25-42 (1951).
 C. A.,46, 5977 (1952).
- 958. Ivin, K.J., Wijnen, M.H.J. & Steacie, E.W.R.
 Reactions of Ethyl Radicals.
 J.Phys.Chem., 56, 967-72
 (1952).
 C. A.,47, 3094 (1953).
 Mechanisms are reviewed for some gas-phase photochem.
 reactions involving free C₂H₅.

- 959. Jackson, C., Harker, H. & Wynne-Jones, W.F.K.
 Electron-spin Resonance in Carbons. A New Oxygen Effect.
 Nature, 182, 1154-5 (1958).
 C. A.,53, 5874 (1959).
 Electron-spin resonance signal (free radical concns.) in C samples prepared from Ocontaining materials were decreased by oxidizing in air.
- 960. Jackson, J.L. & Montroll, E.W.
 Free Radical Statistics.
 J. Chem. Phys., 28, 1101-9 (1958).
 C. A.,52, 16843 (1958).
 On the basis of a simplified statistical model, average concentrations of trapped free radicals condensed from a gaseous mixture were calculated.
- 961. Jackson, J.L. Stabilized Free Radicals. J. Washington Acad. Sci., 48, 181-5 (1958). C. A.,52, 19387 (1958) Methods of stabilizing free radicals and of studying them are reviewed. Microwave discharge produced N, O, and H; H also was formed by irradiation of HClOh and H_00 . Detection was by colorimetry, chem. analysis, infrared absorption (at liquid He temps), and spin resonance. Higher concentrations of 0 (1-16%) than N (0.2-6) are obtained and for H(0.01-0.1%).

- 962. Jain, D.V.S.
 Kinetic Studies of Some
 Atom and Free Radicals.
 Thermal Decomposition of
 Dimethyl Ether.
 Univ. Microfilms (Ann Arbor,
 Mich.) L. C. Card No.
 Mic 59-865, 77 pp.
 Dissertation Abstr. 20,
 114-15 (1959).
 C. A.,53, 18608 (1959).
- 963. James, C.G. & Sugden, T.M.
 Use of the Nitric OxideOxygen Continuum in the
 Estimation of the Relative
 Concentrations of Oxygen
 Atoms in Flame Gases.
 Nature, 175, 252-3 (1955).
 C. A., 49, 7989 (1955).
 This technique (green continuum) is proposed as a quantitative tool for studying atomic oxygen in flames.
- 964. James, D.G.L. & Steacie, E.W.R. Reactions of the Ethyl Radical. I. Metathesis with Unsaturated Hydrocarbons. Proc. Roy. Soc. (London), A245, 470-80 (1958).

 C. A.,53, 191 (1959).

 A kinetic study is made of the abstraction of the Hatom from hydrocarbons by the ethyl radical.
- 965. James, D.G.L. & Steacie, E.W.R.
 Reactions of the Ethyl
 Radical. III. The Effect of Deuteriation upon the Metathetical Reaction.
 Proc. Roy. Soc. (London), A245, 470-80 (1958).
 C. A.,53, 1174 (1959).
 C. A.,53, 191 (1959).
 The photolysis of 3-pentanone-d₁₀ was studied over the temperature range 25-314°.

- 966. Janin, J., Parisot, G. & Gavarini, A.

 Spectrophotometric Study of the Luminescent Discharge across an Equimolecular Mixture of Methane and Gaseous Ammonia.

 Compt. rend., 245, 837-9 (1957).
- 967. Jaquiss, M.T., Roberts, J.S., & Szwarc, M.

 The Reaction of Methyl Radicals with Acetone.

 J. Am. Chem. Soc., 74, 6005-7 (1952).

 C. A., 47, 11125 (1953).
 C. A., 455, 455 (1951).
- 968. Jarre, G.
 Rate of Dissociation of
 a Diatomic Gas.
 Atti acad. Nazl. Lincei Rend.,
 Classe sci. fis., mat. e nat.,
 23, 124-33 (1957).
 C. A.,52, 17938 (1958).
- 969. Jarrett, H.S.

 Paramagnetic Resonance
 Absorption: Hyperfine
 Structure in Dilute Solutions
 of Hydrazyl Solutions.
 J. Chem. Phys., 21, 761-2
 (1953)...
 C. A., 47, 7271 (1953).
- 970. Just, T. & Wagner, H.G.
 Reaction Zone in Gas Detonations. I.
 Z. physik. chem. (Frankfurt),
 13, 241-3 (1957).
 C. A.,52, 2410 (1958).
 Density, OH concentration, and
 temps. in the reaction zone
 of oxyhydrogen were determined
 by absorption spectra.

- 971. Jatar, D.P.

 Space Charge Relations for
 the Low-Frequency Silent
 Electric Discharge in Hydrogen.
 Can. J. Phys., 36, 1551-6 (1958).
 C. A.,53, 1924 (1959).
 The current-potential characteristics in H under the lowfrequency silent elec. discharge.
- 972. Jatar, D.P.

 New Mechanism of the
 Silent Electric Discharge and the Joshi
 Effect under A.-C.
 Excitation.
 Saugar Univ. J. Pt.
 II, 1, No. 5, 95-101
 (1955-56).
 C. A.,53, 8817 (1959).
 The silent electric
 discharge process and
 the phenomena associated
 with it are examined.
- 973. Jen, C.K., Foner, S.N., Cochran, E.L. & Bowers, V.A. Electron Spin Resonance of Atomic and Molecular Free Radicals Trapped at Liquid-Helium Temper-Phys. Rev., 112, 1169-82 (1958). C. A.,53, 6770 (1959). Electron spin resonance spectra were observed and interpreted for H, D, N, and CHz trapped in solid matrixés at liquid-He temps.
- 974. Jennings, K.R. & Linnett, J.W. Active Nitrogen. Quart. Revs. (London),12, 116-32 (1958). C. A.,52, 16897 (1958). A review with 43 references.

- 975. Jennings, K.R. & Linnett, J.W. Production of High Concentrations of Hydrogen Atoms. Nature, 182, 597-8 (1958). C. A.,53, 2796 (1959). High concentrations (50-60%) of atomic hydrogen, was measured by a Wrede gage, were produced in flowing gas at a pressure of 0.12mm Hg by an electrodeless discharge maintained by microwave radiation.
- 976. Jesson, J.P. & Thompson,
 H.W.

 Vibrational Band Intensities
 of the C:N Group in Aliphatic Nitriles.

 Spectrochim. Acta,13, 217-22
 (1958).
 C. A.,53, 6759 (1959).

 The vibrational frequency
 (2200-2270 cm⁻¹) and band
 intensity of the C:N group
 in a large number of aliphatic
 nitriles were measured.
- 977. John, R.R., Wilson, E.S. & Summerfield, M.
 Studies of the Mechanism of Flame Stabilization by a Spectral-Intensity Method. Jet Propulsion, 25, 535-7 (1955).
 C. A.,50, 1425 (1956).
 Isolation of various portions of the flame-determination of CH/C ratios.
- 978. Johnson, C.Y., Heppner, J.P., Holmes, J.C. & Meadows, E.B. Results Obtained with Rocket-Brone Ion Spectrometers.

 Ann. geophys., 14, 475-82 (1958).
 C. A.,53, 4892 (1959).
 Positive ion peak for mass 28+ (N2).

- 979. Johnson, F.S., Purcell, J.D. & Tousey, R.

 Measurements (Spectrographic) of the Vertical Distribution of Atmospheric Ozone From Rockets. (V2).

 J. Geophys. Research, 56, 583-94 (1951).

 C. A., 46, 8910 (1952).
 Instrumentation and results.
- 980. Johnson, W.C. & Fernelius, W.C.
 Liquid Ammonia as a Solvent and the Ammonia System of Compounds.

 VII. The Nature of Free Radicals, Their Preparation and Properties, as Revealed by Studies in Liquid Ammonia Solutions.

 J.Chem.Ed., 7, 2600-8 (1930).

 C. A., 25, 1724 (1931).
 C. A., 24, 3486 (1930).
- 981. Johnston, H.L. & Grilly, E.R.
 The Thermal Conductivities of Eight Common Gases between 80° and 380°K.
 J. Chem. Phys., 14, 233-8 (1946).
 C. A., 40, 3951 (1946).
- 982. Johnston, H.S., Foering, L., Tao, Yu-Sheng & Messerly, G.H.

 The Kinetics of the Thermal Decomposition of HNO₃ Vapor.

 J. Am. Chem. Soc., 73, 2319-21 (1951).

 C. A., 45, 7417 (1951).

 HNO₃ = OH + NO₂

 A mechanism is proposed.

- 983. Johnston, H.S. Interpretation of the Data on the Thermal Decomposition of Nitrous Oxide. J. Chem. Phys., 19, No. 6, 663 (1951). c. A., 46, 328 (1952). The data on the thermal decomposition of nitrous oxide, anomalous in many respects, are examined. At low concentrations of nitrous oxide- heterogeneous first-order reaction - low energy of activation is important.
- 984. Jolley, J.E.
 Photobxidation of Diethyl
 Ketone.
 J. Am. Chem. Soc., 79, 153742 (1957).
 C. A.,51, 9331 (1957).
 It is thought that chains are
 propagated mainly by EtO and
 CoH₄CO Et Radicals.
- 985. Jones, M.H. & Steacie, E.W.R.
 The Reactions of Methyl Radicals
 with Isobutane.
 Can. J. Chem., 31, 505-10 (1953).
 C. A., 48, 4433 (1954).
 C. A., 45, 9455 (1948).
 Me formed by photolysis of MeoNo.
- 986. Jones, R.A. & Winkler, C.A.
 Reactions in Dissociated Water
 Vapor.
 Can. J. Chem., 29, 1010 (1951).
 C. A., 46, 2891 (1952).
 C. A., 26, 5866 (1932).
 Consideration of products from discharge tube.

- 987. Jones, T.T. & Melville, H. W.
 The Free Radical Polymerization
 of the Vapors of Certain Vinyl
 Derivatives.
 Proc. Roy. Soc. (London), A187,
 37-53 (1946).
 C. A.,41, 1999 (1947).
 Methyl radicals from the
 photodecomposition of acetone used in the polymerization of the vapors of
 vinyl chloride, acrylonitrile,
 styrene and butadiene.
- 988. Jones, T.T. & Melville, H. W. The Photochemical Polymerization of Methyl Vinyl Ketone Vapor into Free Radicals. Proc. Roy. Soc. (London), A187, 19-36 (1946).

 C. A.,41, 2000 (1947).
 Energy of activation, wall effects.
- 989. Jost, W.
 Problems of Ignition and
 Flame Propagation.
 Z. Elektrochem., 42, 461-7
 (1936).
 C. A., 30, 6919 (1936).
 The following is discussed:
 1. Autoignition of a heated
 explosive mixture.
 - 2. Spark ignition.
 - 3. Dependence of ignition on energy of igniting spark.
 - 4. Significance of the production of free atoms and radicals.
 - 5. Thermal action of the spark.

- 990. Jost, W., Miffling, L.v. & Rohrmann, W.

 Mechanism of the Oxidation of Hydrocarbons.

 Z. Elektrochem., 42, 488-97 (1936).

 C. A.,30, 7016 (1936).

 A generalized chain reaction for hydrocarbon oxidation and inhibition is advanced and discussed.
- 991. Joyce, R.M., Hanford, W.E. & Harmon, J.
 Free-Radical-Initiated Reaction of Ethylene with Carbon Tetrachloride.
 J. Am. Chem. Soc., 70, 2529-32 (1948).
 C. A., 43, 109 (1949).
 C. A., 41, 4769 (1947).
- 992. Jugaku, J.
 Ratio of Helium to Hydrogen
 in the Atmospheres of the
 B Stars.
 Univ. Microfilms (Ann Arbor,
 Mich.), L. C. Card No.
 Mic 58-3681, 144pp.;
 Dissertation Abstr., 19,
 409-10 (1958).
 C. A.,53, 2770 (1959).
- 993. Jungers, J.C. & Yeddanappalli, L.M.
 Polymerization of Ethylene by Alkyl Radicals.
 Trans. Faraday Soc., 36, 483-93 (1940).
 C. A., 34, 4339 (1940).
 The disappearance results from saturation through capture of an H atom and by bimolecular recombination of radicals produced photochemically.

994. Jungers, J.C. & Joris, G.G. The Action of Ethyl Radicals upon the Isotopes of Ethylene and of Acetylene. Bull. soc. chim. Belg., 50, 61-6 (1951). C. A., 36, 394 (1942). Results obtained at 245°, 200°, 110°, and 80° with CoHi and CoDi show that there is approximately no difference between the velocities of addition of the two isotopic molecules to the ethyl radical.

- 995. Kaitmazov, S.D. & Prokhorov, Paramagnetic Resonance of Free Radicals Obtained by Freezing out an HoS Plasma. Zhur. Eksptl. i. Teoret. Fiz., 35, 551 (1958)-C. A.,53, 54 (1959). An electrodeless, 40-Mc frequency, 120-W discharge was generated in HoS at 0.3mm pressure and the dissociation products were frozen out with liquid nitrogen. The condensate was dark green and has the appearance of snow. lines were observed at 1300 Mc and at 9400Mc. The lines are attributed to two different radicals.
- 996. Kaitmazov, S.D. & Prokhorov, A.M.

 Electron Paramagnetic Resonance Spectra in Frozen OH Radicals. Zhur. Eksptl. i.Teoret. Fiz., 36, 1331-2 (1959).

 C. A.,53, 12836 (1959).

 A study was made of the spectrum of radicals obtained by irradiating frozen H₂O₂ (73°K) with ultraviolet light.
- 997. Kaitmazov, S.D., Prokhorov, A.M., & Tsentsiper, A.B.
 Electron Paramagnetic Resonance of Radicals Obtained from Water and Hydrogen Peroxide.
 Proc. All-Union Conf. Radiation Chemistry, 1st, Moscow, 1957, Pt. 1, 21-3 (English Translation). Pub. 1959.
 C. A., 53, 19574 (1959). Discussion.

- 998. Kamenetskaya, S.A. & Pshezhetskii, S. Ya. Critical Conditions for the Ignition of Gaseous Ozone.

 Zhur. Fiz. Khim., 32, 1122-30 (1958).

 C. A.,53, 5834 (1959).

 The ignition of gaseous Ozone was studied under static conditions in a heated vessel using a spark ignition.
- 999. Kandel, R.J. & Taylor, H.A.
 Photolysis of Acetic Anhydride.
 J.Chem.Phys., 19, 1250-4 (1951).
 C. A., 46, 1355 (1952).
 C. A., 5, 3412 (1911).
 Probably by 1849A.
- 1000. Kane, W.R. & Broida, H.P.
 Rotational Temperatures of OH in Diluted Flames.
 J.Chem.Phys., 21, 347-54 (1953).
 C. A., 47, 4176 (1953).
- 1001. Kaplan, J.
 Active Oxygen.
 Nature, 159, 673 (1947).
 C. A., 41, 5796 (1947).
 During a study of the auroral afterglow, in the infrared, the atmospheric bands of O
 A' \(\) = X' \(\) were observed in emission in the afterglow.

- 1002. Kaplan, L.
 The Mercury Photosensitized Reactions of Tritium with Acetylene and Ethylene.
 J. Am. Chem. Soc., 76, 1448-9 (1954).
 C. A., 49, 3776 (1955).
- 1003. Kapustinskii, A.F.
 Properties of Atoms
 under Extremely High
 Pressures.
 Izvest. Akad. Nauk S.S.S.R.,
 Otdel. Khim. Nauk, 1956,
 No. 4, 427-34.
 C. A.,50, 14280 (1956).
 An electronic isomerization
 of atoms takes place under
 pressures in the order of
 50,000 120,000 atmospheres.
- 1004. Kapustinskii, A.F.
 Properties of Atoms under
 Extremely High Pressures.
 Bull. Bead. Sci. U.S.S.R.,
 Div. Chem. Sci., 1956, 41723 (English Translation).
 C. A.,51, 3210 (1957).
 C. A.,50, 14280 (1956).
- 1005. Karagunis, G. & Drikes, G.
 The Stereochemistry of the Free Triarylmethyl Radicals. A Total Asymmetrical Synthesis.
 Naturwissenschaften, 21, 607 (1933).
 Nature, 132, 354 (1933).
 C. A., 28, 144 (1934).
- 1006. Karpenko, A.S., Markevich, A.M. & Ryabinin, Y.N. Electric Conductivity of Gases at High Temperatures and Pressures.

 Zhur. Eksptl. i Teoret. Fiz., 23, 468-76 (1952).

 C. A., 47, 3063 (1953).

- 1007. Karplus, M.
 Interpretation of the
 Electron-Spin Resonance
 Spectrum of the Methyl
 Radical.
 J. Chem. Phys., 30, 15-18
 (1959).
 C. A.,53, 9816 (1959).
 The valence-bond calculation of the proton
 hyperfine splitting in
 the electron-spin resonance
 spectrum of the Me radical
 was carried out.
- 1008. Karyakin, A.V.

 Spectral Investigation of Photochemical Reactions
 Proceeding at High Light Intensities.

 Uspekhi Fiz. Nauk, 53,
 413-32 (1954).

 C. A., 49, 729 (1955).

 C. A., 47, 9779, 9781 (1953).

 C. A., 47, 7318, 7809 (1953).

 A review of 31 references, mainly of the work of Norrish, Porter, and Ramsay. Radicals produced by flash photolysis.
- 1009. Kaskan, W.E. The Concentration of Hydroxyl and of Oxygen Atoms in Gases from Lean Hydrogen-Air Flames. Combustion and Flame, 2, 286-304 (1958). C. A.,53, 679 (1959). Measurements of OH concentrations in flame gases from lean H-air flames held on porous burners are reported. The light-producing reaction is probably NO + O = NO₂ + hv. By means of this test, it is shown that under all of the conditions studied 0 atoms and hydroxyl radicals are equilibrated according to the reaction, $20H = H_2O + O$.

- 1010. Kaskan, W.E.
 Hydroxyl Concentrations
 in Rich Hydrogen-Air
 Flames Held on Porous
 Burners.
 Combustion and Flame,
 2, 229-43 (1958).
 C. A.,53, 691 (1959).
 Method is described
 for determining quantitatively the concentration
 of the OH radical in flame
 gases.
- Line Widths and Integrated Absorption Coefficients for the Ultraviolet Bands of OH.

 J. Chem. Phys., 29, 1420-1 (1958).

 C. A.,53, 6751 (1959).

 C. A.,32, 7346 (1938).

 Evidence was summarized which supports the integrated absorption coefficients as reported by Oldenberg and Rieke.
- 1012. Kaskan, W.E.
 The Source of the Continuum
 in Carbon Monoxide-HydrogenAir Flames.
 Combustion and Flame, 3, 3948 (1959).
 C. A.,53, 8583 (1959).
 The source of the continuum
 from flames containing CO and
 O has been investigated by
 measuring both the emission
 intensity and OH in the flame
 gases from rich CO-H-air flames.

- 1013. Kaskan, W.E. Excess Radical Concentrations and the Disappearance of Carbon Monoxide in Flame Gases from Some Lean Flames. Combustion and Flame, 3, 49-60 (1959). c. A.,53, 8583 (1959). Both the concentrations of (OH) and the intensities of the CO-O continuum have been measured in a series of lean H-CO-air, H-CO, and CoH4 - air flames burning on cooled porous metal burners.
- 1014. Kassel, L.S. The Role of Methyl and Methylene Radicals in the Decomposition of Methane. J. Am. Chem. Soc., 57, 833-4 (1935)~ C. A., 29, 4325 (1935). C. A.,26, 5797 (1932). C. A.,29, 723 (1935). The exptl. kinetics of CH_h decomposition cannot be explained by any mechanism which involves CHz radicals. It can be explained by Kassel's previous methylene mechanism. Kassel deems it unwise to follow Rice and Dooley in discarding this theory on the basis of their experimentally uncertain results obtained with Te mirrors.

- 1015. Kato, S. & Mashio, F.

 Hydrogen Abstraction Reactions in Free Radical
 Chemistry.

 Kagaku no Ryoiki, 12, 3145, 98-108, 177-86 (1958).

 C. A.,53, 192 (1959).

 A review with 131 references.
- 1016. Kato, T.

 Ozone Formation by Silent
 Electric Discharge. I. Determination of Oxygen Concentration
 Factor.
 Nippon Kagaku Zasshi, 78, 550-3
 (1958).
 C. A.,53, 3943 (1959).
 Tentative theory of mechanism of
 Oz formation by silent electric
 discharge Presented.
- 1017. Kaufman, F. & Kelso, J.R. Excitation of Nitric Oxide by Active Nitrogen.
 J.Chem.Phys., 27, 1209-10 (1957).
 C. A.,52, 4326 (1958).
- 1018. Kaufman, F. & Kelso, J.R.
 Vibrationally Excited Ground
 State Nitrogen in Active
 Nitrogen.
 J.Chem.Phys., 28, 510-11 (1958).
 C. A.,52, 9758 (1958).
- 1019. Kaufman, F.
 Origin of Afterglows in
 Mixtures of Nitrogen
 and Oxygen.
 J.Chem.Phys., 28, 992 (1958).
 C. A., 52, 15266 (1958).
 C. A., 52, 4326 (1958).
 It appears probable that the
 continuum due to 0 + NO is a
 simple recombination spectrum
 whereas the discrete emission
 results from another excited
 state of NO which is populated
 in three-body collisions.

- 1020. Kaufmann, H.P. & Korehage, L.
 Molecular Enlargement
 in the Field of Fats.
 VII. Influence of
 Catalysts on the Drying of Oils.
 Fette u. Seifen, 55,
 281-4 (1953).
 C. A., 47, 12832 (1953).
- 1021. Kautsky, H. & Kautsky, H., Jr.
 The Application of High Tension Short Circuit Sparks in Chemical Synthesis.
 Chem.Ber., 89, 571-81 (1956).
 C. A., 50, 9885 (1956).
 C. A., 51, 1267 (1940).
 Vaporization and dissociation of substances to atoms and radicals.
- Voevodskii, V.V.
 The Role of Hydrogen
 Atoms in the Catalytic
 Oxidation of Hydrogen
 on Palladium.
 Proc. Acad.Sci. USSR,
 Sect.Phys.Chem., 116,
 627-30 (1957) (English
 Trans.).
 C. A.,52, 17927 (1958).
 C. A.,52, 12530 (1958).
- 1023. Kazarnovskii, I.A., Lipikhin, N.P. & Tikhomirov, M.V.
 Isotope Exchange of Oxygen
 between Free Hydroxyl Radicals and Water.
 Zhur. Fiz. Khim., 30, 1429-30 (1956).
 C. A.,51, 7117 (1957).
 C. A.,51, 53 (1957).

- 1024. Kazarnovskii, I.A., Lipikhin, N.P. & Tikhomirov,
 M.V.
 Oxygen-Isotope Exchange
 between Free Hydroxyl
 Radicals and Water.
 Doklady Akad. Nauk S.S.S.R.,
 120, 1038-41 (1958).
 C. A.,53, 11960 (1959).
 C. A.,51, 7117 (1957).
- Kazitsyna, L.A., Likshin, B.V., Polstyanko, L.L. & Terent'ev, A.P. Infrared Spectra of a Few Internal Complexes in the Region of N-H Valence Oscillations. Vestnik. Moskov. Univ., Ser. Mat., Mekh., Astron., Fiz., i Khim.,13, No. 6, 207-13 (1958) C. A.,53, 15767 (1959). Data on the infrared absorption spectra of internal complexes in the region of NH-valence oscillations are given for various compounds.
- 1026. Kebarle, P. & Lossing, F.P.
 Free Radicals by Mass Spectrometry. XV. Mercury-Photosensitized Decomposition of Formic Acid, Acetic Acid, and Methyl Formate.

 Can. J. Chem., 37, 389-402 (1959).
 C. A.,53, 19535 (1959).
 C. A.,52, 1780 (1958).
 C. A.,53, 8828 (1959).
 Free radicals are formed by the reactions:

 RCOOR + hv = RCO + OR and RCOOR + hv = R + COOR.
- 1027. Keller, J.
 Electronic Configuration of the Atoms.
 Ciencia (Mex.), 16, 86-8 (1956).
 C. A.,51, 6313 (1957).

- 1028. Kemball, C. The Use of Exchange Reactions for the Study of the Nature and Behavior of Adsorbed Radicals in Catalytic Reactions. Bull. soc. chim. Belges, 67, 373-98 (1958) (In English). c. A.,53, 5842 (1959). Review of available data on the exchange of D and H atoms in hydrocarbons over various catalysts leads to certain generalizations about the nature and reactivity of adsorbed radicals.
- 1029. Kemula, W. & Grabowska, A. Reactivity of Aromatic Hydrocarbons in the Excited Triplet State. I. Absorption Spectra and Photochemical Reactions of Benzene and Naphthalene in the Presence of Nitric Oxide. Bull. acad. polon. sci., Ser. sci. chim., geol. et. geograph., 6, 747-53 (1958) (In English). C. A.,53, 12858 (1959). Absorption spectra of 0free benzene and 2.5M naphthalene in benzene, saturated with NO at room temp., were examined at 280-380 and 380-550 mμ., resp., before and after irradiation at 290-366 and 430-450 mu., resp.

- 1030. Kendall, C.E.
 Autoxidation of Rubber and the Mechanism of Antioxidant Action.
 Proc. XIth. Intern.
 Congr. Pure and Appl.
 Chem. (London), 5,
 343-54 (1947).
 (Pub. 1953).
 C. A., 47, 10262 (1953).
- 1031. Kenty, C.
 Active Nitrogen in the
 Rare Gases and Its
 Excitation of Metal
 Vapors. (Spectra of).
 J. Chem. Phys., 23,
 1555-6 (1955).
 Phys. Rev., 98, 563
 (1955).
 C. A., 49, 15476 (1955).
- 1032. Kenty, C.
 Streamer and Brush Flames
 Excited by Active Nitrogen
 in the Rare Gases.
 J. Chem. Phys., 23, 1556-7
 (1955).
 C. A., 49, 15476 (1955).
- 1033. Kenyon, A.S.
 Reactions of Methyl Radicals
 (Gas Phase) with Sec-Butyl
 Chloride. Photolysis of Me₂,
 CO and Deuterated Me₂CO.
 J. Am. Chem. Soc., 74, 33725 (1952).
 C. A., 47, 7432 (1953).
- 1034. Kerr, J.A. & Trotman-Dickenson, A.F.
 The Reaction of Methyl Radicals with Thiols.
 J. Chem. Soc., 1957, 3322.
 C.A., 51, 17366 (1957).
 Kinetics and mechanism.

- 1035. Kerr, J.A. & Trotman-Dickenson, A.F. The Combination of Unlike Radicals in the Gas Phase. Chem. and Ind. (London), 1959, 125. C. A.,53, 12803 (1959). The ratio (R) of the rate constant for the combination of two unlike radicals to the product of the rate constants for the combinations of each of the like radicals raised to the 1/2 power should equal two for the simple collision theory.
- 1036. Ketelaar, J.A.A., Haas, C.,
 Hooge, F.N. & Broekhuijsen,
 R.
 Far Infrared Emission Spectrum of Flames. Rotational
 Spectrum of OH Radicals and
 Determination of Flame
 Temperatures.
 Physica, 21, 695-700 (1955).
 (In English),
 C. A., 50, 8323 (1956).
- 1037. Kharasch, M.S. & Buchi, G. Reactions of Atoms and Free Radicals in Solution.

 XXIV. The Reactions of Acetyl Peroxide with Chloroand Dichloro Alkanes.

 J. Am. Chem. Soc., 73, 632-42 (1951).

 C. A., 46, 413 (1952).

 C. A., 45, 7950 (1952).

 Decomposition of Acoo.
- 1038. Kharasch, M.S., Nudenberg, W. & Mantell, G.J.
 Reactions of Atoms and Free Radicals in Solution.
 XXV. The Reactions of Olefins with Mercaptans in the Presence of Oxygen.
 J. Org. Chem., 16, 524-32 (1951).
 C. A., 46, 1483 (1952).
 C. A., 46, 413 (1952).

- 1039. Kharasch, M.S. & Mosher, R.A.
 Reactions of Atoms and Free
 Radicals in Solution.
 XXVIII. The Addition of
 N-Chlorosulfonylphthalimide
 to Olefins.
 J. Org. Chem., 17, 453-6 (1952).
 C. A., 47, 1656 (1953).
- 1040. Khitrin, L.

 Process of Flame Propagation in Constant-Pressure
 Bombs.

 Tech. Phys. U.S.S.R., 3, 1028-33 (1936) (In English).

 C. A., 31, 4864 (1937).

 C. A., 18, 2267 (1924).

 C. A., 20, 2749 (1926).

 C. A., 22, 2058, 4821 (1928).

 C. A., 24, 1982 (1930).
- 1041. Khokhlov, M.Z.

 The Hydroxyl Band (3064A) as a Possible Means for Temperature Measurement of the Channel in a Torch Discharge.

 Zhur. Eksptl. i Teoret. Fiz., 29, 645-50 (1955).

 C. A.,50, 4622 (1956).

 C. A.,50, 15213 (1956).
- 1042. Khokhlov, M.Z.
 The Hydroxyl Band (3064A°) as
 a Possible Means for Temperature Measurement of the Channel
 in a Torch Discharge.
 Soviet Phys. JETP,2, 559-64
 (1956) (English Trans.).
 C.A.,50, 15213 (1956).
 C.A.,50, 4622 (1956).
- 1043. Kice, J.L. & Parham, F.M.
 The Reaction of Free Radicals with
 Non-Benzenoid Aromatic Hydrocarbons. I. 6-Phenylfulvenes
 and Benzofulvenes.
 J. Am. Chem. Soc., 80, 3792-7
 (1958).
 C. A.,53, 10121 (1959).

1043. Cont.

The reaction of free radicals with 6-phenylfulvents and benzofulvenes has been studied by kinetic methods previously employed for the dibenzofulvenes and by a product study of the reactions of diphenylfulvene with 2-cyano and 2-propyl radicals.

- 1044. Kien, T.
 Intensity of the CH band at
 4300A in Stellar Spectra of
 Classes F.G.K. and M.
 Compt. rend.,232, 40-2 (1951).
 C. A.,45, 5513 (1951).
- 1045. Kiess, N.H. & Broida, H.P. Spectrum of the C. Molecule between 3600A and 4200A. Can. J. Phys., 34, 1471-9 (1956).
 C. A.,51, 3286 (1957).
 Emission spectrum of an C2H2 O flame.
- 1046. Kilham, J.K. & Garside, 54th Report of the Joint Research Committee of the Gas Research Board and the University of Leeds. The Theoretical Aspects of Heat Transfer from Flames. Gas World, 130, 632-3. C. A.,43, 7805 (1949). A suitable technique for the measurement of surface was developed and the flame temperature was measured by the spectralline reversal method. Recombination of atoms and radicals would contribute about 24% of the total heat transfer.

- 1047. Kippenhan, C.J. & Croft,
 H.O.
 The Effect of High Frequency Sound Waves on
 Air-Propane Flame.
 Trans. Am. Soc. Mech. Engrs.,
 74, 1151-5 (1952).
 C. A.,46, 11633 (1952).
- 1048. Kistiakowsky, G.B. & Gershinowitz, H.

 The Thermal Dissociation of Cyanogen into Cyanide Radicals.
 J. Chem. Phys.,1, 432-9
 (1933).
 C. A.,27, 4474 (1933).
 Spectroscopic and thermochemical data permitted calculation of the energies of the C-H and C-C bonds, and of the heat of sub-
- 1049. Kistiakowsky, G. B.
 Photochemical Formation
 and Reactions of Radicals
 and Atoms.
 Cold Spring Harbor Symposia
 Quant. Biol., 3, 44-8 (1935).
 C. A., 30, 6649 (1936).
 A general survey of types
 of photochemical primary
 processes.

limation of C.

1050. Kistiakowsky, G.B. & Rosenberg, N.W.

Photochemical Decomposition of Ketene (CH, Radicals).

J. Am. Chem. Soc.,72, 321-6 (1950).

C. A.,44, 4792 (1950).

C. A.,28, 4314 (1934).

C. A.,43, 5732 (1949).

The energy change in the reaction H₂C = CH₂ + H was estimated to be 80K cal.

- 1051. Kistiakowsky, G.B. & Roberts, E.K.
 Rate of Association of Methyl Radicals.
 J.Chem.Phys.,21, 1637-43 (1953).
 C. A.,48, 1123 (1954).
 C. A.,45, 6495 (1951).
 Measured by the intermittent illumination method. The recombination rate of deuteriated Me had a substantially identical value. Recent literature data on the recombination of Me radicals are reviewed.
- 1052. Kistiakowsky, G.B. & Mahan, B.H. Stability of Ethylidene Radicals. J. Chem. Phys., 24, 922 (1956). C. A., 50, 9883 (1956).
- 1053. Kistiakowsky, G.B. & Sauer, K.

 Rate and Mechanism of Some Reactions of Methylene.

 J. Am. Chem. Soc., 78, 5699-700 (1956).

 C. A.,51, 2404 (1957).

 C. A.,46, 2915 (1952).

 Flash photochemical decomposition of ketene.
- 1054. Kistiakowsky, G.B. & Mahan, B.H. Photolysis of Methyl Ketene. J. Am. Chem. Soc., 79, 2412-19 (1957). C. A.,51, 11861 (1957). C. A.,50, 9883 (1957).
- 1055. Kistiakowsky, G.B. & Sauer, K.

 The Reactions of Methylene.
 II. Ketene and Carbon Dioxide.
 J. Am. Chem. Soc., 80, 1066-71 (1958).
 C. A., 52, 11591 (1958).

- 1056. Kistiakowsky, G.B. & Tabbutt, F.D. Gaseous Detonations. XII. Rotational Temperatures of the Hydroxyl Free Radicals. J. Chem. Phys., 30, 577-81 (1959). C. A.,<u>53</u>, 13744 (1959). An apparatus is described that permits photography of the ultraviolet absorption spectrum of the OH free radicals in gaseous detonation waves with a time resolution of a few microseconds.
- 1057. Kleimenov, N.A., Antonova, I.N., Markevich, A.M. & Nalbandyan, A.B.
 Methane Oxidation with the Oxygen Atoms Formed during the Thermal Decomposition of Ozone.

 Zhur. Fiz. Khim., 30, 794-7 (1956).
 C. A.,50, 16314 (1956).
- 1058. Klein, M.M. & Brueckner, K.A. Interaction of Slow Electrons with Atomic Oxygen and Atomic Nitrogen. Phys. Rev., 111, 1115-20 (1958). C. A.,53, 64 (1959). Polarization potential for an electron in the field of an O atom was determined from experimental O binding energy; that for N was calculated by polarization theory extrapolation of O results. Photodetachment cross section for 0 and scatter cross sections for 0 and N were then calculated.
- 1059. Klein, R., Scheer, M.D. & Schoen, L.J.
 The Pyrolysis of Formaldehyde.
 J. Am. Chem. Soc., 78, 50-2 (1956).
 C. A.,50, 16301 (1956).
 H + H₂CO = H₂ + HCO.
 Activation energy is calculated to be 5.7 K cal/gm-mole.

- 1060. Klein, R. & Schoen, L.J.
 Photodecomposition of Formaldehyde; Stability of the HCO
 Radical.
 J. Chem. Phys., 24, 1094-6 (1956).
 C. A., 50, 16407 (1956).
 C. A., 50, 16301 (1956).
- 1061. Klein, R. & Scheer, M.D. The Reaction of Hydrogen Atoms with Solid Olefins at -1950. J. Phys. Chem. 62, 1011-14 $(1958)_{\bullet}$ C. A.,53, 832 (1959). Hydrogen atoms, produced on the surface of a hot tungsten ribbon, react readily with certain olefins condensed at -195°. Possibility of alkyl-radical stabilization in sizeable concentrations is indicated.
- 1062. Klein, R. & Schoen, L.J.
 Energy of Dissociation
 of the Carbon-Hydrogen
 Bond in the Formyl Radical.
 J. Chem. Phys., 29, 953-4
 (1958).
 C. A.,53, 4842 (1959).
 Photodissociation limit,
 electron impact, and spectroscopic data all lead to
 the high value for D(H CO)
 in the formyl radical.
- 1063. Kleman, B.
 Laboratory Excitation of
 the Blue-Green Bands Observed in the Spectra of
 N-type Stars.
 Astrophys. J., 123, 162-5
 (1956).
 C. A.,50, 7580 (1956).
 Si heated in an electric
 furnace, also C atoms.
 The emitter of the bands
 is probably Si-C-C.

- 1064. Knewstubb, P.F. & Sugden, T.M.

 The Kinetics of the Ionization of Alkali Metals in Flame Gases.

 Trans. Faraday Soc., 54, 372-80 (1958).

 C. A.,52, 17918 (1958).

 Flame temp. recombination coefficients.

 A+ + OH- = A + OH.
- 1065. Knewstubb, P.F. & Sugden, T.M.

 Mass Spectrographic Observations of Ions in Hydrocarbon Flames.

 Nature, 181, 1261 (1958).

 C. A., 52, 19391 (1958).

 Examination of products at atmospheric pressure.
- 1066. Knox, J.H. & Trotman-Dickenson, A.F.

 The Reactions of Chlorine Atoms. A Test of the Transition State Theory.

 J. Phys. Chem., 60, 1367-9 (1956).

 C. A., 51, 3247 (1957).

 C. A., 50, 13713 (1956).

 C. A., 49, 1137 (1955).

 Serious discrepancies between experiment and theory were found.
- 1067. Knox, J.H. & Trotman-Dickenson, A.F.

 The Study of Radical Reactions by Competitive Methods.

 Chem. Soc. (London), Spec. Publ.

 No. 9, 35-45;
 Discussion 46-7 (1957).

 C. A.,53, 829 (1959).

 Treatment of kinetics and mechanism.

- 1068. Kodama, S., Takezaki, Y. & Yoshida, J.
 Reaction of Methyl Radical with Methanol.
 J. Chem. Soc. Japan, Pure Chem. Sect., 71, 173-7 (1950).
 C. A., 45, 6567 (1951).
 Reaction mechanism.
- 1069. Kodama, S., Takezaki, Y. & Fujie, R.
 The Reaction of Methyl Radicals with Di-Methyl Ether.
 J. Chem. Soc. Japan, Pure Chem. Sect., 72, 892-7 (1951).
 C. A., 47, 1578 (1953).
 C. A., 45, 6567 (1951).
- 1070. Kodama, S. & Takezaki, Y.

 Reaction of Methyl Radicals with Formaldehyde.

 J. Chem. Soc. Japan, Pure Chem. Sect., 73, 13-18
 (1952).

 C. A., 47, 3229 (1953).

 C. A., 47, 6567 (1951).

 C. A., 47, 1578 (1953).
- 1071. Kodama, S., Takezaki, Y. & Yamanaka, T.

 Mechanism of the Reaction of the Methyl Radical with Ethanol.

 J. Chem. Soc. Japan, Pure Chem. Sect., 73, 440-3 (1952).

 C. A., 47, 9912 (1953).

- 1072. Kohanenko, P.N.
 The Mechanism of Catalytic Reactions. I. The Luminescence of Phosphorescent Substances in Acetone Decomposition.
 Acta Physicochim. U.S.S.R., 9, 93-102 (1938).
 C. A., 33, 2416 (1939).
- 1073. Kokando, H., Mori, Y. & Tanaka, I.
 Formation of Benzyl Radicals by Electron Impacts in Glow Discharge through Toluene. I. Influence of Gas Pressure on the Radiated Light.
 Nippon Kagaku Zasshi, 78, 1053-7 (1957).
 C. A., 51, 16112 (1957).
- 1074. Kokhanenko, P.N.
 The Mechanism of Catalytic
 Reactions.
 I. Luminescence of Phosphorescing
 Substances during the Decomposition of Acetone.
 J. Phys. Chem. U.S.S.R., 12,
 131-6 (1938).
 C. A., 35, 3151 (1941).
 The phosphorescing substances
 can be used as indicators
 for free radicals in the absence of atomic hydrogen.
- 1075. Kolesnikov, P.A. & Petrochenko, E.I. Free Radicals in Peroxidase Oxidation and Photo-oxidation of p-Cresol. Doklady Akad. Nauk S.S.S.R., 127, 1297-300 (1959). C. A.,53, 22279 (1959). Colorless oxidation products of p-cresol were obtained by: illumination in the presence of riboflavine, action of crystalline peroxidase, or that of K3Fe(CN)6. A form of free-radical reaction.

- 1076. Kondo, M.
 Studies on the Decomposition
 Reaction of Cyanogen Compounds
 by Electric Discharge.
 VI. Decomposition of
 HCN by High Frequency Electrodeless Discharge.
 J. Chem. Soc. Japan, Pure Chem.
 Sect., 77, 298-300 (1956).
 C. A., 50, 9884 (1956).
 C. A., 48, 4983 (1954).
- 1077. Kondrat'ev, E. & Kondrat'ev, V.

 Investigation of the Flame of Carbon Monoxide and Oxygen.

 VI. Photochemical Oxidation of Carbon Monoxide near the Region of Self-Ignition.

 Acta Physiochim. U.S.S.R.,

 10, 805-12 (1939) (In English).

 C. A.,33, 8091 (1939).

 C. A.,33, 4523 (1939).
- 1078. Kondrattev, V. Mechanism of the Recombination of the Hydroxyl Radical in the Electric Discharge through Water Vapor. Acta Physicochim. U.S.S.R., 10, 791-804 (1939) (In English). C. A.,33, 8112 (1939). C. A.,33, 4129 (1939). It is concluded that: $20H + M = H_2O_2 + M$ and $OH + H + M = H_2O + M$ are of equal importance for the disappearance of the hydroxyl radical in the electric discharge from room temp. to 300°.

- 1079. Kondrat'ev, V. Spectroscopic Study of the Intermediate Substances Formed during the Oxidation of Hydrogen Gas, Carbon Monoxide and Carbon Disulfide. Bull. acad. sci. U.S.S.R., Classe sci. chim., 1940, 501-8, 509 (In English). C. A.,35, 3149 (1941). The OH radical was detected in the flame of H by the spectroscopic method of analysis (the method of linear absorption); H2O2 was detected in the zone of the oxidation of H.
- 1080. Kooijman, E.C.
 The Nature of the Cessation Reaction in Free Radical Initiated Additions of CCl₁₄ to α-Olefins.
 Rec. trav. chim., 69, 492-5 (1950).
 (In English).
 C. A., 144, 6805 (1950).
- 1081. Kooijman, E.C.
 Structural Factors Governing
 the Reactivities of α-Methylenic Groups towards Active
 Free Radicals.
 Discussions Faraday Soc.,
 1951, No. 10, 163-74.
 C. A.,46, 3377 (1952).
 The over-all results indicate
 that H abstraction from hydrocarbons by free radicals is
 governed by heats of reaction.

- 1082. Kossiakoff, A. & Rice, F.O. Thermal Decomposition of Hydrocarbons, Resonance Stabilization, and Isomerization of Free Radicals. Formation of Free Radicals. J. Am. Chem. Soc., 65, 590-5 (1943) C. A.,37, 3323 (1943). A theoretical approach is made to the problem of finding a rule for calculating the relative rates of the removal of the H atom from the hydrocarbon in an effort to account for the differences in behavior of the three types of C-H bonds.
- 1083. Kostkowski, H.J. & Broida, H.P.
 Spectral Absorption Method for Determining Population Temperatures in Hot Gases.
 J. Opt. Soc. Am., 46, 246-54 (1956).
 C. A., 50, 8323 (1956).
- 1084. Krasovskii, V.I.

 The Nature of Emission of the Upper Atmosphere.

 Ann. geophys., 14, 395-413 (1958).

 C. A.,53, 4892 (1959).

 A critical review is given as the inadequacies are cited of the various mechanisms proposed for the observed emissions of OH, O2, H2, O 1 and Na 1, and the continuum in the spectra of the night sky and auroras.

- 1085. Krasovskii, V.I.
 Cold Interstellar Gas
 and Light Absorption.
 Astron. Zhur., 35, 8258 (1958).
 C. A., 53, 10944 (1959).
 Cold interstellar gases
 of neutral molecules form
 envelopes around ions.
- 1086. Kraus, F. Conditions of Excitation and Intensity Relations of Infrared Hydroxyl Bands. Z. Naturforsch., 12a, 479-89 (1957). c. A.,53, 856 (1959). Various excitation conditions that could lead to the OH rotation-vibration band prevalent in the infrared emission from the night sky were examined in the laboratory. Only the excitation through the reaction, $0_3 + H =$ 0, + OH, was successful and gave an intensity distribution corresponding to the one observed in the night-sky emission. The rotation temperature was found to be 700° K, that of the night sky 200°K.
- 1087. Kraus, J.W.
 Disproportionation and Combination Reactions of Butyl Free Radicals.
 Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 22801, 100pp;
 Dissertation Abstr., 17, 2167-8 (1957).
 C. A., 52, 1739 (1958).
- 1088. Krautz, E.
 New Apparatus for Photochemical Reactions Using Large
 Light Intensities.
 Abhandl. braunschweig. wiss. Ges.,
 4, 5-11 (1952) (English Summary).
 C. A.,48, 4312 (1954).

- 1089. Krenz, F.H.
 The Mechanism of Indirect
 Action. (H and OH),
 J. chim. phys., 48, 23740 (1951).
 Discussion, 240-1 (In English).
 C. A., 46, 830 (1952).
 In solution-mathematical
 discussion.
- 1090. Kriche, J.A. & Herman, L. Population of the Vibration Levels of the Electronic State B²e⁺ of the CN Molecule Excited in the Presence of Active Nitrogen. Compt. rend., 244, 1024-6 (1957).

 C. A.,51, 9308 (1957).
- 1091. Kroepelin, H. & Neumann, K. Calculation of the Thermal Plasma of Carbon-Hydrogen Mixtures. Optik,14, 311-18 (1957). c. A.,52, 846 (1958). The composition of the thermal plasma in terms of C, C⁺, H, H⁺, and e was calculated for CH2 and CH4 in the temperature region 5000° to 15,000°K. This is used for the determination of the temperature of small arcs burning under liquid hydrocarbons. A temperature of 10,700°K was obtained for a 15 amp. 70v. arc of 2 mm.length by determining the intensity ratio of Cu_{TT} and $Cu_{\overline{I}}$ lines.

- 1092. Kryukov, A.I. & Ashkinazi, M.S. Formation of Free Radicals in the Photoreduction of Ferric Pheophytin. Ukrain. Khim. Zhur.,25, 309-11 (1959) (In Russian). C. A.,<u>53</u>, 21088 (1959). Photoreduction of ferric pheophytin in the presence of MeO2CCMe:CH2 or CH2: CHCN initiates their polymerization and so involves free-radical formation.
- 1093. Kuri, Z.
 Flash Photochemistry.
 I. Trial Manufacture of the Apparatus and the Polymerization of Acetylene.
 J. Chem. Soc. Japan, Pure Chem. Sect., 76, 944-51 (1955).
 C. A., 50, 3093 (1956).
 C. A., 48, 2028 (1954).
 C. A., 45, 10065 (1951).
- 1094. Kutschke, K.O. & McElcheran, D.E. Photolysis of Acetone in the Absence of Mercury. J. Chem. Phys., 24, 618-19 (1956).c. A.,50, 8334 (1956). C. A., $\frac{49}{49}$, 2194 (1955). C. A., 45, 455 (1951). Quantitative results on the photolysis of acetone in the absence of Hg were in excellent agreement with those of Trotman-Dickenson and Steacie. Hg does not influence Me radical reactions to any extent.

1095. Kutschke, K.O. & Steacie, E.W.R.
A Reply to Long on the Activation Energy of CH₃ + H₂.
J. Phys. Chem.,62, 866-7 (1958).
C. A.,52, 19367 (1958).
C. A.,51, 14386 (1957).

- 1096. Laffitte, P.
 Free Radicals in Flames.
 Rev. inst. franc. petrol,
 3, 27-41 (1948).
 C. A., 42, 6671 (1948).
 C. A., 36, 4418 (1942).
 The mass-spectrographic approach of Eltenton is discussed.
- 1097. Iaidler, K.J.

 Mechanism of Some Elementary
 Surface Reactions.
 Pittsburg Intern. Conf. on
 Surface Reactions, 1948, 51-9.
 C. A., 42, 8595 (1948).
 Production and recombination
 of atoms and radicals at
 surfaces.
- 1098. Laidler, K.J. & Casey, E.J.
 The Electronic State of the
 Methylene Radical.
 J. Chem. Phys., 17, 213-14
 (1949).
 Discussions Faraday Soc.,
 1947, No. 2, 18-25.
 C. A., 43, 5241 (1949).
 Does not agree with Walsh.
- 1099. Laidler, K.J. & Casey, E.J.
 Heats of Dissociation of
 Carbon-Hydrogen Bonds in
 Methane and Its Radicals.
 J. Chem. Phys.,17, 1087-91
 (1949)...
 C. A.,44, 2362 (1950).
 C. A.,42, 7153 (1948).
- 1100. Laidler, K.J.

 Mechanism of Surface Reactions Involving Hydrogen.
 J. Phys. and Colloid Chem.,
 55, 1067-77.
 C. A.,46, 26 (1952).
 C. A.,38, 15 (1944).
 The combination of H atoms on surfaces, the production of H atoms at hot metallic surfaces, the hydrogenation of olefins and exchange reactions are discussed.

- 1101. Laidler, K.J.
 Elementary Processes in
 the Radiation Chemistry
 of Water.
 J. Chem. Phys.,22, 1740-5
 (1950)..
 C. A.,49, 2195 (1955).
 C. A.,45, 5509 (1951).
- The Direct Radiolysis
 and the Radiation-Sensitized Hydrogenation of
 Ethylene.
 Radiation Research, 10,
 691-701 (1959).
 C. A., 53, 21091 (1959).
 The mechanism of the reaction is discussed in terms of molecular-ion and free-radical reactions.
- 1103. Landers, L.C. & Volman, D.H. The Free Radical Initiated Polymerization of Gaseous Unsaturated Hydrocarbons.
 J. Am. Chem. Soc., 79, 2996-9 (1957).
 C. A., 51, 15232 (1957).
 Proposed reaction mechanism.
- 1104. Langer, A., Hipple, J.A.
 & Stevenson, D.P.
 Ionization and Dissociation
 by Electron Impact: Methylene,
 Methyl, and Methane.
 J. Chem. Phys.,22, 1836-44
 (1954).
 Phys. Rev.,87, 195 (1952).
 C. A.,49, 2182 (1955).
- 1105. Lapidus, L., Rosen, J.B. & Wilhelm, R.H.
 Flame-Propagation Rates.
 Chemical Nature of Attachment Surface.
 Ind. Eng. Chem., 49, 1181-86 (1957).
 C. A., 51, 15094 (1957).

- 1106. Iaporte, M.

 A New Method for the Study of Rapid Chemical Reactions by Cine Spectrography.

 Compt. rend.,226, 1902-3 (1948).

 C. A.,42, 7638 (1948).

 Absorption spectra of the reaction medium illuminated by periodic flashes of very short duration.
- 1107. Laurie, C.M. & Long, L.H.
 Pyrolysis of DimethylMercury. I. Dissociation
 Energies of the MercuryCarbon Bonds.
 Trans. Faraday Soc., 51,
 665-72 (1955).
 C. A., 49, 15406 (1955).
- 1108. Lavin, G.I. & Stewart, F.B. Indication of Hydroxyl in a Water-Vapor Discharge Tube. Nature, 123, 607 (1929). C. A., 23, 4136 (1929).
- 1109. Lavin, G.I. & Stewart, F.B. Production of Hydroxyl by the Water-Vapor Discharge. Proc. Natl. Acad. Sci.,15, 829-32 (1929).
 C. A.,24, 1034 (1930).
 C. A.,23, 4136 (1929).
- 1110. Lavin, G.I. & Bates, J.R. The Exit Gas from an Ammonia Discharge Tube. Nature, 125, 709 (1930). C. A., 24, 3441 (1930). When NHz is passed through a discharge tube under the same conditions as those used to prepare atomic hydrogen, an active gas is obtained. The experiments seem to indicate the presence of atomic hydrogen, along with a compound, probably NH or NH, in the active gas.

- llll. Lavin, G.I. & Reid, E.E. Effect of Dissociated Water Vapor on Certain Vegetable Oils. J. Am. Chem. Soc., 52, 2454-5 (1930). C. A.,24, 3666 (1930). Cotton-seed oil is attacked by the active gas from a H₀0 discharge tube. Fibrous substances are produced which are insoluble in Et₂0 and other organic solvents. Olive, linseed, and castor oils yield similar compounds.
- 1112. Iavin, G.I. & Jackson, W.F.
 Oxidation of Carbon
 Monoxide by Dissociated
 Water Vapor.
 J. Am. Chem. Soc., 53,
 383-4 (1931).
 C. A., 25, 864 (1931).
 C. A., 24, 5612 (1930).
- 1113. Iavin, G.I. & Jackson, W.F.
 Surface Reactions of
 Atoms and Radicals.
 J. Am. Chem. Soc.,53,
 4772 (1931).
 C. A.,25, 4772 (1931).
 Specificity of catalytic
 surfaces for recombination
 of atoms and radicals.
- ll14. Iavrovskaya, G.K., Mardaleishvili, R.E. & Voevodskii, V.V.
 Isotope Exchange of Hydrogen in Free Radicals. Vaprosy Khim. Kinetiki, Kataliza i Reaktsionnois Sposobnosti, Akad. Nauk S.S.S.R., Otdel. Khim. Nauk, 1955, 40-53. C. A., 50, 4598 (1956).

- 1115. Lawton, E.J., Balwit, J.S. & Powell, R.S. Electron Irradiation of Hydrocarbon Polymers. I. Influence of Physical State on Reactions Occurring in Polyethylene during and following the Irradiation. J. Polymer Sci., 32, 257-75 (1958). C. A.,<u>53</u>, 1815 (1959) Radicals are trapped in the crystal regions and react with 0 to give carbonyl groups rather than crosslinks.
- 1116. Lawton, E.J., Powell, R.S. & Balwit, J.S.

 II. Trapped Radicals in Hydrocarbon Polymers.
 J. Polymer Sci., 32, 277-290 (1958).

 C. A., 53, 1815 (1959).
 Infrared absorption at 5.8µ, electron paramagnetic resonance, and gas uptake by the irradiated polymer were all used to study trapped radicals.
- Absence of Cracking of Stressed Rubber by Free Radicals.
 J. Polymer Sci., 37, 545-6 (1959).
 C. A.,53, 23030 (1959).
 In the presence of air and free radicals, there is cracking of the stressed rubber.
- 1118. Leach, S. & Migirdicyan, E. Trapped Radicals: The Photochemical Decomposition of Benzene at 77°K.

 J. Chem. Phys., 54, 643-54 (1957).
 C. A., 52, 4334 (1958).

- 1119. Leach, A.S., Rounthwaite, C. & Bradley, D. Atomic Oxygen in Carbon-Monoxide Explosions. Phil. Mag., 41, 478-494 (1950).C. A.,45, 861 (1951). Catalytic heating on plain platinum wires has been studied and has been ascribed to the presence of high concentrations of atomic oxygen within the reaction zone of 10 per cent 0, + 90 per cent CO gaseous explosions carried out in a large spherical explosion vessel.
- N.
 The Estimation of Atomic Oxygen in Open Flames and the Measurement of Temperature.
 Fourth Symposium (International) on Combustion, (1952), pg. 274-285.
 Pub. 1953.
 C. A., 49, 9251 (1955).
- 1121. LeBlanc, F.J., Tanka, Yi.
 & Jursa, A.

 New Band System in the
 Afterglow of Nitrogen.
 J. Chem. Phys., 28, 979-81
 (1958).
 C. A., 52, 15265 (1958).
 By cooling the afterglow
 tube with liquid N, the
 lst pos. bands were suppressed.

- 1122. Lecher, H.Z. The Radical Dissociation of Aryl Disulfides. Science, 120, 220-2 (1954) C. A., 48, 13365 (1954). A review of existing data pertinent to the disagreement concerning the reversible dissociation of aryl disulfides (I) into longlife radicals. Consideration with respect to paramagnetic susceptibility, temperature behaviour, chemical reactions, thermochromism, Beer's law observance, and the study of short-life radicals are presented. It is concluded that (I) dissociates into short-life radicals.
- 1123. LeClerc, A.M., Mondy, J., Douzou, P. & Lissitzky, S. Demonstration of the Free Radical of Pyrocatechol by Photochemical or Enzymic Oxidation. Biochim. et Biophys. Acta, 32, 499-504 (1959) (In French). C. A.,53, 19944 (1959). The absorption spectrum of pyrocatechol was determined in 96% EtOH at 15° and -173° after brief, but intense, ultraviolet irradiation at this temperature.
- Photodissociation and Photoionization of Oxygen (O₂) as Inferred from Measured Absorption Coefficients. J. Opt. Soc. Amer., 45, 703-9 (1955). C. A.,49, 15476 (1955).

- 1125. Lee, W.E.
 Free-Radical Processes in
 the Chemical Shock Tube.
 Univ. Microfilms (Ann Arbor,
 Mich.), L. C. Card No. Mic
 59-2743, 184 pp.; Dissertation Abstr., 20, 498-9
 (1959).
 C. A.,53, 21076 (1959).
- 1126. Leedham, K. & Hazeldine,
 R.N.
 Addition of Free Radicals
 to Unsaturated Systems.
 VIII. The Direction of
 Radical-Addition to Alkyland Perfluoroalkyl-Acetylenes.
 J. Chem. Soc., 1954, 1634-8.
 C. A., 49, 4495 (1955).
 C. A., 49, 1540 (1955).
- 1127. Leermakers, J.A. The Effect of Ethyl Radicals on the Thermal Decomposition of Azomethane. The Kinetics of the Thermal Decomposition of Tetraethyllead Ethyl Radicals and Hydrogen. J. Am. Chem. Soc., 55, 4508-18 (1933). c. A.,28, 739 (1934) Ethyl radicals react very little, if at all, with Ho, at 2750. The activation energies of bimolecular reactions of ethyl radicals with Ho or I are calculated to be greater than 15 Kg.cal.
- 1128. Lefort, M. & Haissinsky,
 M.
 Role of Oxygen Radicals
 in the Oxidations and
 Reductions Produced by
 Ionizing Radiations.
 II. The Mechanism of
 Reaction by Analysis
 of the Gaseous Products.
 J. chim. phys., 48, 368-71
 (1951).
 C. A., 46, 2916 (1952).

- 1129. Lefort, M. & Tarrago, X.
 Decomposition of Aqueous
 Solutions of Hydroxylamine by γ-Rays.
 Compt. rend.,247, 454-6
 (1958).
 C. A.,53, 2822 (1959).
 The γ-rays of CO⁶⁰ decompose H₂NOH to NH₃, N₂, and
 H₂N₂O₂.
- 1130. LeGoff, P.

 Mass-Spectrometric Detection
 of Free Radicals Formed in
 Heterogeneous Reactions.
 J. chim. phys.,50, 423-5
 (1953).
 C. A.,48, 3137 (1954).
- 1131. LeGoff, P. & Letort, M.
 Mass Spectrometric Study
 of the Mechanism of Production and Disappearance
 of Methyl Radicals at Metal
 Surfaces.
 J. chim. phys.,53, 480-92 (1956).
 C. A.,51, 5511 (1957).
- 1132. Leigh, C.H. & Szwarc, M.
 The Pyrolysis of Propylbenzene and the Heat of Formation of Ethyl Radical.
 J. Chem. Phys., 20, 403-6 (1952).
 C. A., 46, 7413 (1952).
 C. A., 45, 8250 (1949).
 Toluene carrier technique.
- 1133. Leigh, C.H. & Szwarc, M.
 The Pyrolysis of Butylbenzene and the Heat of
 Formation of Propyl Radical.
 J. Chem. Phys.,20, 407-11
 (1952).
 C. A.,46, 7414 (1952).
 The pyrolysis of butylbenzene results in its dissociation into benzyl and propyl radicals:

- 1133. Cont.
 - By the use of the toluene carrier technique, it was possible to measure the rate of reaction. By measuring the rate of formation of C_2H_1 the activation energy of reaction was thus determined at 65 Kcal./mole.
- 1134. Leigh, C.H. & Szwarc, M.
 The Pyrolyses of Cumene,
 Tert-Butylbenzene, and
 P-Cymene and the Relevant
 Bond Dissociation Energies.
 J. Chem. Phys., 20, 844-7
 (1952).
 C. A., 47, 2021 (1953).
 C. A., 43, 8250 (1949).
- 1135. Leigh, C.H., Szwarc, M. & Bigeleisen, J.

 The Rate of Decomposition of Ethane into Methyl Radicals.

 J. Am. Chem. Soc., 77, 2193-4 (1955).

 C. A., 49, 9368 (1955).

 Toluene Carrier technique using C.

 Decomposition was first order in respect to ethane.
- 1136. Leighton, P.A.
 The Mechanism
 of Aldehyde and Ketone
 Photolysis.
 J. Phys. Chem., 42, 749-61
 (1938).
 C. A., 32, 8942 (1938).
 Evidence presented indicates
 that free radicals are
 largely responsible for the
 photopolymerization.

- 1137. Leighton, P.A. & Perkins, W.A.

 Photochemical Secondary Reactions in Urban Air.

 Air Pollution Foundation (Los Angeles) Rept., 24, 212pp. (1958).

 C. A.,53, 3558 (1959).

 Among the reactions of definite and possible significence are those of 0 atoms with 02 to form 03, of 03 with NO, and olefins.
- Pople, J.A.
 A Survey of the Principles
 Determining the Structure
 and Properties of Molecules.
 I. The Factors Responsible
 for Molecular Shape and
 Bond Energies.
 Discussions Faraday Soc.,
 1951, No. 10, 9-18.
 C. A., 46, 3339 (1952).
 C. A., 45, 5986, 5987 (1951).
- 1139. Lennard-Jones, J. & Hall, G.G. A Survey of the Principles Determining the Structure and Properties of Molecules. The Ionization Potentials and Resonance Energies of Hydrocarbons. Discussions Faraday Soc., 1951, 18-26. C. A., 46, 3339 (1952). The theory of molecular orbitals is used in the calculation of ionization potentials of saturated and unsaturated hydrocarbons; and the calculation of resonance energies by this theory and older methods are compared.

- 1140. Lennard-Jones, J.E.

 Electronic Structure and the Interaction of Some Simple Radicals.

 Trans. Faraday Soc., 30, 70-93 (1934).

 C. A., 28, 2270 (1934).

 C. A., 24, 4220 (1930).

 C. A., 27, 2374 (1933).

 The method of non-localized molecular orbitals, as developed by Mulliken, is applied to a series of simple radicals.
- 1141. Iennard-Jones, J.E. & Devonshire, A.F.
 The Interaction of Atoms and Molecules with Solid Surfaces.
 VI. The Behaviour of Adsorbed Helium at Low Temperatures.
 Proc. Roy. Soc. (London), A158, 242-252 (1937).
 C. A.,31, 2897 (1937).
 C. A.,30, 7413 (1936).
- Devonshire, A.F.
 The Interaction of Atoms and Molecules with Solid Surfaces.
 VII. The Diffraction of Atoms by a Surface.
 Proc. Roy. Soc. (London),
 A158, 253-268 (1937).
 C. A.,31, 2897 (1937).
 Intensities of diffracted beam-He on Lif.

- 1143. Letort, M.
 Discussion of the Mechanism of the Homogeneous
 Thermal Decomposition of
 Gaseous Acetaldehyde.
 J. chim. phys., 34,
 355-85 (1937).
 C. A.,31, 6954 (1937).
 C. A.,28, 2320 (1934).
 C. A.,28, 1655 (1934).
 C. A.,27, 4469 (1933).
 The presence of free radicals in the thermal decomposition of AcH was proved by the Paneth method.
- Letort, M. & Duval, X. 1144. Free Radicals in Methane Subjected to an Electric Discharge. Compt. rend., 219, 452-4 (1944). C. A.,40, 1736 (1946). The disappearance of a Te mirror, when CHh is passed through an electric discharge, is evidence of the formation of free radicals. A consideration of the properties of material, collected at -195°C, leads to the conclusion that the free radical formed in the discharge is CH, rather than CH3.
- 1145. Levy, M., Steinberg, M. & Szwarc, M. Addition of Methyl Radicals to Benzene. J. Am. Chem. Soc., 76, 3439-41 (1954). C. A., 48, 12015 (1954). Thermal decomposition of Ac,02. Methyl radicals were generated by thermal decomposition of Ac₂O₂ in purified C6H6, cyclohexane, and in isooctane at concentrations of 7×10^{-2} to $4 \times 10^{-3} M$ and $65.0 ^{\circ} C$.

- 1146. Levy, M. & Szwarc, M.
 Kinetics of the Thermal
 Decomposition of Diacetyl
 Peroxide. III. The Reactions Produced in the
 Decomposition.
 J. Am. Chem. Soc., 76,
 5981-5 (1954).
 C. A., 49, 4387 (1955).
- 1147. Levy, M. & Szwarc, M.
 Methyl Affinities of
 Aromatic Compounds.
 J. Chem. Phys., 22, 1621-2
 (1954).
 C. A.,49, 12323 (1955).
 Me radicals were generated
 by the thermal decomposition
 of Ac₂O₂ in a dil. soln. in
 isooctane.
- Lewis, B. & Friauf, J.B. 1148. Explosions in Detonating Gas Mixtures. I. Calculation of Rates of Explosions in Mixtures of Hydrogen and Oxygen and the Influence of Rare Gases. J. Am. Chem. Soc., 52, 3905-20 (1930)*-*C. A. 24, 6018 (1930). Velocities of detonation wave in explosion mixtures of H₂ and O₂ with several gases were calculated on the basis of the Chapman-Jouget theory (Phil. Mag., 47, 90 (1899); J. de Mathematique, 1905, 347; 1906, 6) on the assumption that composition of burned gases corresponds to complete combustion, or to chemical equilibrium for HoO vapor dissociated into H and O and into H and OH, and dissociation of H_2 to 2H.

- Il49. Lewis, B. & Elbe, G.v.
 Ignition of Explosive
 Gas Mixtures by Electric
 Sparks. II. Theory
 of the Propagation of
 Flame from an Instantaneous Point Source of
 Ignition.
 J. Chem. Phys., 15,
 803-8 (1947).
 C. A., 42, 762 (1948).
 Distribution effect of
 H atoms and free radicals.
- 1150. Lewis, G.N. & Lipkin, D.
 Reversible Photochemical
 Processes in Rigid Media.
 The Dissociation of Organic
 Molecules into Radicals
 and Ions.
 J. Am. Chem. Soc.,64,
 2801-8 (1942).
 C. A.,37, 833 (1943).
 C. A.,36, 343, 6081 (1942).
- 1151. Ley, K., Müller, E., Mayer, R. & Scheffler, K. Oxygen Radicals. IX. Dimerizing Dehydrogenation of Phenols with 2,4,6-Tritert-Butylphenoxyls. Chem. Ber., 91, 2670-81 (1958).C. A.,53, 8046 (1959). The various stages of the dehydrogenation with 2,4,6-MezCzCfHoO of sterically strongly hindered phenols, having H, Cl, Br, or I in the p-position, were investigated.
- Lichten, W.
 Lifetime Measurements
 of Metastable States in
 Molecular Nitrogen
 J. Chem. Phys., 26,
 306-13 (1957).
 C. A.,51, 7849 (1957).

Improvements in molecular beam technique, differential pumping, control of energy of bombarding electrons, and use of a movable detector.

- 1153. Lieber, E. & Somasekhara, S.

 Alkali Metal-Induced Free Radical Formation of Tetrasubstituted Hydrazines.

 Chem. & Ind. (London), 1958, 1262-3.

 C. A.,53, 7107 (1959).

 Control No. of the production of Tetrasubstituted Hydrazines.

 Chem. & Ind. (London), 1958, 1262-3.

 C. A.,53, 7107 (1959).

 Close The radicals generated by the homolytic cleavage of a potassium salt.
- 1154. Lind, S.C. & Schultze, G-R-Chemical Effect of Electrical Discharge in Gaseous Hydrocarbons. IX. Condensation of Ethane, Propane, Butane, and Propylene as a Function of Time and Comparison of the Rates of Condensation of the Lower Members of the Paraffin, Olefin, and Acetylene Series. J. Phys. Chem., 42, 547-58 (1938).C. A., <u>32</u>, 4444 (1938). c. $A.,\overline{25}$, 5854 (1931).

- 1155. Linder, B. & Hirschfelder, J.O.
 Energy of Interaction
 between Two Excited
 Hydrogen Atoms in
 Either 2s or 2p-States.
 J. Chem. Phys.,28,
 197-207 (1958).
 C. A.,52, 7841 (1958).
- 1156. Lindholm, E.

 Ionization and Fragmentation of Nitrogen by

 Bombardment with Atomic
 Ions.

 Dissociation Energy of
 Nitrogen.

 Arkiv. Fysik.,8, 257-64
 (1954).

 C. A.,51, 6324 (1957).
- 1157. Lindner, L., Scott, W.E. & Stephens, E.R. Formation and Excitation of Atomic Sodium in Hydrogen Diffusion Flames. J. Chem. Phys.; 21, 161-2 (1953). C. A., 47, 8483 (1953). C. A., 45, 445 (1951). C. A., 35, 3902 (1941).
- 1158. Lindsey, R.V., Jr. & Peterson, M.L. Synthesis by Free-Radical Reactions. X. Electrochemical Additive Dimerizations. J. Am. Chem. Soc., 81, 2073-4 (1959).C. A.,53, 18687 (1959). C. A.,53, 15943 (1959).• Electrochemical additive dimerizations are brought about by electrolyzing a solution of a diene, a carboxylic acid, and an alkali salt of the acid in a suitable solvent.

- 1159. Linnett, J.W.
 Force Constants of Chemical
 Bonds.
 Quart. Revs. (London), 1,
 No. 1, 73-90 (1947).
 C. A.,42, 1090 (1948).
 C. A.,59, 4547 (1945).
 Methods and applications
 are reviewed.
- 1160. Linnett, J.W. & Wheatley, P.J.
 Effect of Pressure on Burning Velocity.
 Nature, 164, 403-4 (1949).
 C. A.,44, 7129 (1950).
- 1161. Linnett, J.W. & Marsden, D.G.H.

 Kinetics of the Recombination of Oxygen Atoms at a Glass Surface.

 Proc. Roy. Soc. (London), 234A, 489-504 (1956).

 C. A.,50, 9095 (1956).

 Results show that the diffusion of O atoms, down the side arm, is balanced by a wall removal process that is first order.
- 1162. Linnett, J.W. & Marsden, D.G.H. Recombination of Oxygen Atoms at Salt and Oxide Surfaces. Proc. Roy. Soc. (London), A234, 504-516 (1956). C. A.,50, 9095 (1956). The degree of efficiency is determined with which surfaces of KCl, LiCl, PbO, and MoOz cause the removal of 0 atoms produced in the gas phase by an electrodeless discharge. The process, occurring at KCl and LiCl surfaces, is first order.

- Equivalent Orbitals and the Shapes of Excited Species.

 Can. J. Chem., 36, 24-30 (1958).

 C. A.,52, 19423 (1958).

 The electron distributions in the ground states of C₂H₂, HCO, and NH₂ and in one excited state of each species are considered by transforming the simple mol. orbitals into equivalent ones.
- 1164. Linschitz, H., Berry, M.G. & Schweitzer, D.
 Identification of Solvated
 Electrons in Rigid Solutions
 of Photooxidized Organic
 Molecules Recombination
 Luminescence in Organic
 Phosphors.
 J. Am. Chem. Soc., 26, 5833-9
 (1954).
 C. A., 49, 2193 (1955).
- 1165. Lipscomb, F.J., Norrish, R.G.W. & Thrush, B.A.
 The Study of Energy Transfer by Kinetic Spectroscopy.
 I. The Production of Vibrationally Excited Oxygen.
 Proc. Roy. Soc. (London), A233, 455-464 (1955).
 C. A., 50, 6930 (1956).
- 1166. Littman, F.E., Carr, E.M. & Brady, A.P.
 The Action of Atomic Hydrogen on Aqueous Solutions.
 I. Effect on Silver, Cysteine and Glutathione Solutions.
 Radiation Research, 7, 107-19 (1957).
 C. A.,51, 17364 (1957).

- The Vibrational Numbering of the A²II X² & Bands of N₂⁺.

 Astrophys. J., 129, 516-17 (1959).

 C. A., 53, 14678 (1959).

 C. A., 46, 3394 (1952).

 The agreement between the observed isotopic shifts and those calculated for the bandheads in the A²II X² & systems of 1 N₂ and 15N₂ shows that Meinel's revised numbering of the vibrational levels is correct.
- 1168. Lochte-Holtgreven, W.
 Radiation of the Hydrogen
 Negative Ion.
 Izvest. Akad. Nauk S.S.S.R.,
 Ser. Fiz., 22, 1297-1301
 (1958).
 C. A.,53, 2771 (1959).
 Daylight coming from the
 sun is attributed to H
 radiation.
- Neiss, J.
 Chemical Actions of Ionizing Radiations on Aqueous Solutions. V. Hydroxylation of Nitrobenzene by Free Radicals Produced by X-Rays. J.Chem.Soc., 1950, 2704-9.
 C. A., 45, 6496 (1951).
 C. A., 44, 7660 (1950).
 The action of X-rays on dilute aqueous solutions of PhNO2 leads to the same product by the H2O2-Fe++ reagent (Stein and Weiss, C. A., 44, 7660).

- 1170. Loffler, H.J. & Henrici, Measurement of Surface Temperatures with Vapor-Deposited Resistance Thermometers. Chem. Ing. Tech., 30, 708-14 (1958). C. A.,53, 2704 (1959). c. A., 49, 7898 (1955). The mean temp. of heattransfer surfaces can readily be determined with thin metal films deposited on the glass or ceramic heat-transfer surface as proposed by Winding, et al.
- The Heats of Formation of Free CN and Free CH₂ and the Relationship between D(CO), D(CN), and D(N₂). Proc. Roy. Soc. (London), A198, 62-81 (1949).

 C. A., 44, 1788 (1950).
 C. A., 42, 2180 (1948).
 Gaydon Dissociation energies and spectra of diatomic molecules (1947).
- 1172. Long, L.H. Valence States of Carbon and the Heats of Dissociation of Carbon Monoxide, Cyanide, and Nitrogen. Research (London), 3, 291-3 (1950).C. A., 44, 8711 (1950). c. a.,44, 1788 (1950). C. A., 43, 8254 (1949). Evidence regarding the dissociation energies of CO, CN, and N₂ were reexamined and indicated the high value 11.11 e.v. for D(CO) is not correct.

- 1173. Long, L.H.
 Pyrolysis of DimethylMercury. II. Reaction
 Mechanism.
 Trans. Faraday Soc., 51,
 673-9 (1955).
 C. A.,49, 15406 (1955).
- 1174. Long, L.H.
 A Possible Explanation
 of the Paradox Involving
 the Activation Energies
 of the Reversible Reaction.
 CH₃ + H₂ = CH₄ + H.
 J. Phys. Chem., 61, 8122 (1957).
 C. A.,51, 14386 (1957).
 C. A.,51, 8565 (1957).
 C. A.,47, 2583 (1953).
 C. A.,46, 8479 (1952).
- 1175. Longfield, J.E. & Walters, W.D. The Radical Sensitized Decomposition of Mixtures of Acetaldehyde and Formaldehyde. J. Am. Chem. Soc., 77, 810-12 (1955). C. A.,49, 10023 (1955). The decomposition of AcH proceeds by way of an initial split to form radicals that induce the chain decomposition of AcH and HoCO to approx. the same extent.
- 1176. Longfield, J.E. & Walters, W.D.

 The Radical Sensitized Decomposition of Formaldehyde.

 J. Am. Chem. Soc., 77,
 6098-6103 (1955).

 C. A., 50, 4597 (1956).
 C. A., 49, 10023 (1955).

 Kinetics, activation energy, and wall effect.

- 1177. Longuet-Higgins, H.C. & Pople, J.A.

 The Electronic Spectra of Aromatic Molecules. IV.

 Excited States of Odd Alternant Hydrocarbon Radicals and Ions.

 Proc.Phys.Soc.(London), 68A, 591-600 (1955).

 C.A.,49, 13776 (1955).
- 1178. Longuet-Higgins, H.C.
 The Nature of Free Radicals.
 Chem.Soc. (London), Spec.
 Publ. No. 9, 5-13,
 Discussion 14-16 (1957).
 C.A.,52, 19298 (1958).
 The properties of radicals,
 radical-radical interactions,
 radical energies of formation
 and relative radical stabilities
 are reviewed. Diradicals are
 also discussed.
 19 references.
- 1179. Longuet-Higgins, H.C.
 Electronic and Nuclear Paramagnetic Resonance in Chemistry.
 Chem. Soc. (London), Spec. Publ.
 No. 12, 131-8 (1958).
 C. A.,53, 53 (1959).
- 1180. Lortie, Y. Absorption and Fluorescence Spectra of Radicals Obtained by High-Frequency Discharge in Some Aromatic Vapors, and Stabilized at Low Temperatures. J. phys. radium, 18, 520-2 (1957). C. A.,53, 5865 (1959). Ultraviolet and visible absorption spectra were determined for the radicals produced in toluene, ethylbenzene, and benzylamine vapors, condensed by liquid nitrogen.

- 1181. Losev, S.A. The Oxygen-Dissociation Process behind a Strong Shock Wave. Doklady Akad. Nauk S.S.S.R., 120, 1291-3 (1958). C. A.,53, 11960 (1959). The velocity of thermal dissociation of 0_2 behind a strong shock wave was studied in a shock tube, Glass and Patterson, J. Aeronaut. Sci., 22, No. 2. 73 (1955), by examining the absorption of 2200-2600-A radiation by 0, heated to 3000-36000°K by passage of a shock wave.
- 1182. Lossing, F.P. & Tickner, A.W. Free Radicals by Mass Spectrometry.

 I. The Measurement of Methyl-Radical Concentrations.

 J. Chem.Phys., 20, 907-14 (1952).

 C. A.,47, 2034 (1953).
 C. A.,44, 2354 (1950).

 A method for measuring the partial pressure of Me radicals in thermally decomposing gas.
- 1183. Lossing, F.P., Ingold,
 K.U. & Tickner, A.W.
 Free Radicals by Mass
 Spectrometry. II.
 The Thermal Decomposition
 of Ethylene Oxide, Propylene Oxide, Dimethyl
 Ether, and Dioxane.
 Discussions Faraday Soc.,
 1953, No. 14. 34-44.
 C. A.,48, 451 (1954).
 C. A.,47, 2034, 9760 (1953).
 Thermal decomposition in a
 stream of He.

- 1184. Lossing, F.P., Ingold, K.U. & Henderson, I.H.S. Free Radicals by Mass Spectrometry. V. The Ionization Potentials of Methyl, Allyl, and Benzyl Radicals. J. Chem. Phys.;22, 621-5 (1954). C. A.,48, 7995 (1954). C. A.,47, 9760 (1953). The ionization potentials of CD₃ and CH₃ were the same within the limits of measurement.
- 1185. Lossing, F.P.
 Study of Free Radicals
 by Mass Spectrometric
 Methods.
 Industrie chim. belge, 19,
 613-17 (1954).
 (In English).
 C. A., 48, 13295 (1954).
 C. A., 48, 7995 (1954).
- 1186. Lossing, F.P., Ingold, K.U. & Henderson, I.H.S. Free Radicals by Mass Spectrometry.

 VI. The Bond Dissociation Energies of Some Methyl, Allyl, and Benzyl Compounds by Electron Impact.

 J. Chem. Phys., 22, 1489-92 (1954).

 C. A., 49, 52 (1956).

 C. A., 48, 7995 (1954).
- 1187. Lossing, F.P., Marsden, D.G.H. & Armer, J.B.
 Free Radicals by Mass
 Spectrometry.
 XI. The Mercury Photosensitized Decomposition of C₂ C Olefins.
 Can. J. Chem., 34, 701-715 (1956).
 C. A.,50, 15245 (1956).
 C. A.,50, 13602 (1956).

The mercury photosensitized, HgP, decomposition of olefins has been examined using a reactor coupled to a mass spectrometer. The primary split of ethylene has been shown to be predominantly molecular, and that of propylene mainly into an allyl radical and a hydrogen atom. With 1butene, the split is predominantly at a C-C band giving allyl and methyl radicals, although a rupture of a C-H band occurs as well. With 2butene and isobutene, a C-H band is broken. It is concluded that the allyl and methallyl radicals produced have large cross sections for reaction with excited mercury atoms.

1188. Lossing, F.P. Free Radicals by Mass Spectrometry. XII. Primary Steps in the Mercury-Photosensitized Decompositions of Acetone and Acetaldehyde. Can. J. Chem., 35, 305-14 (1957).C. A.,51, 10245 (1957). C. A.,50, 15245 (1956).The primary step in the Hg $(\operatorname{Hg} P_1) = \operatorname{photosensitized}$ decomposition of acetone at 55°C results in the formation of methyl and acetyl radicals.

- 1189. Lossing, F.P.

 Mass Spectrometry of Free
 Radicals.

 Ann. N.Y. Acad. Sci.,67,
 499-517 (1957).

 C. A.,51, 16084 (1957).

 C. A.,51, 10246 (1957).

 H, OH, CH, Me, CD, CH, =
 CH,ET,CH,CCH, CH, CHCH,
 Pr(Iso), IsoPr,CH; C+CHCH,
 Pr(Iso), IsoPr,CH; C-(Me)
 CH, MeCH: CHCH, PH, Pho,
 Bz,PhCH, PhN,p-xglyl, O-Xylyl,
 m-Xylyl,MeS,CCl,HO,CHO,
 MeO,MeO,O,N,O,3,O4.
- J.B.
 Free Radicals by Mass
 Spectrometry. XIV. Ionization Potentials of Propyl
 and Butyl Free Radicals.
 J. Am. Chem. Soc.,81, 281-5
 (1959).
 C. A.,53, 8828 (1959).
 Free radicals were generated
 by pyrolysis of alkyl nitrites and admitted to the
 ionization chamber of a
 mass spectrometer.
- 1191. Lott, P.

 Kinetics and Mechanism of the Thermal Decomposition of Gaseous Methyl Isopropyl Ketone.

 Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 18330;
 Dissertation Abstr., 16, 1595 (1956).

 C. A.,51 2366 (1957).
- 1192. Lovelock, J.E.

 Measurement of Low Vapor
 Concentrations by Collisions
 with Excited Rare Gas Atoms.
 Nature, 181, 1460-2 (1958).
 C. A., 52, 19312 (1958).
 A spark discharge at atmospheric pressure.

- 1193. Low, M.J.D. & Taylor,
 H.A.
 Enhanced Surface Reactions.
 J. Electrochem. Soc., 104,
 439-42 (1957).
 C. A.,51, 13509 (1957).
 Effect of an electrodeless discharge on the
 rates of adsorption of
 gases on surfaces.
- 1194. Low, W. & Ramberg, Y.

 A Microwave Spectrometer
 for the Study of the
 Spectra of Free Radicals.
 Bull.Research Council
 Israel, 5A, 40-5 (1955).
 C. A., 50, 8331 (1956).
 The spectrometer is based
 on Zeeman modulation
 technique. A detailed
 description of the absorption cell and assorted
 components is given.
- 1195. Lowry, T.M.
 Free Radicals and Ions
 as Factors in Chemical
 Change.
 Trans.Faraday Soc., 30,
 3-9 (1934).
 C. A., 28, 2269 (1934).
 The majority of photochemical reactions and
 thermal decompositions
 appear to depend on
 the formation and interaction of neutral free
 radicals.
- 1196. Lucas, V.E. & Rice, O.K. The Chain Breaking Process in Acetaldehyde Photolysis.

 J. Chem. Phys., 18, 993-4 (1950).

 C. A., 44, 7662 (1950).

 C. A., 56, 5429 (1942).

 C. A., 28, 5337 (1934).

 2CH₃ = C₂H₆.

- 1197. Lucchesi, P.J., Tarmy,
 B.L., Leng, A.B., Baeder,
 D.L. & Longwell, J.P.
 High-Temperature Radiation Chemistry of Hydrocarbons.
 Ind. Eng. Chem., 50, 879-84 (1958).
 C. A., 52, 14348 (1958).
- 1198. Luft, N.W. & Cohen, L. Flat Flames of Ammonia in Air.
 J. Chem. Phys., 22, 348 (1954).
 C. A., 48, 5657 (1954).
 Discussion of reaction mechanism involving H, OH, NH2, and HO2.
- 1199. Lundberg, J.L. & Nelson, L.S.
 High Intensity Flash
 Irradiation of Polymers.
 Nature, 179, 367-8 (1957).
 C. A., 51, 12669 (1957).
- Lunel, M.
 Atmospheric Absorption
 in the Near Infrared.
 Compt. rend., 247, 490-3
 (1958).
 C. A.,53, 2770 (1959).
 Measurements, with a PbS
 cell of the absorption
 of the atmosphere in the
 near infrared, have yielded
 improved values for the
 optical density due to
 molecular diffusion, principally by H₂O.
- 1201. Lupinski, J.H.
 Electron Spin Resonance
 Absorption Spectra of
 Some Organic Free Radicals.
 Triphenylmethyl.
 J. Chem. Phys., 26, 1766
 (1957).
 C. A., 51, 17436 (1957).

- 1202. Lutze, E.
 A Simplified Apparatus
 for Paramagnetic Resonance
 Measurements.
 Z. angew. Phys., 8, 61-9
 (1956).
 C. A.,50, 8321 (1956).
 9200 Mc.
- 1203. Lyons, L.E.
 Zinc Mirrors.
 Australian J. Sci., 11,
 29 (1948).
 C. A., 43, 447 (1949).
 A technique is described
 for producing Zn mirrors
 within quartz tubes in
 a form suitable for estimation of free radicals
 in gases.
- 1204. Lyons, L.E. Action of Photochemically Produced Radicals on Acetylene. J. Proc. Roy. Soc. N.S. Wales, 83, 275-8 (1949). C.·A.,45, 8896 (1951). Acetylene was polymerized by Me radicals from acetone and Et radicals from EtoZn with equal efficiency to give a volatile substance and a non-crystallizable solid, 2.2 mol. of (I) polymerized per radical produced and one of every two radicals initiated a chain.

- 1205. McAlpine, I.M. & Ongley, P.A. Determination of Active Hydrogen Atoms.
 Anal. Chem., 27, 55-8 (1955).
 C. A., 49, 5206 (1955).
- 1206. McBay, H.C., Tucker, O. & Milligan, A.
 Reactions of the Methyl and Ethoxy Free Radicals in a Graded Series of Solvents.
 J. Org. Chem., 19, 1003-17 (1954)...
 C. A., 49, 6890 (1955).
 A correlation of the nature of the free radical and the solvent molecule.
- 1207. McBay, H.C., Tucker, O. & Groves, P.T. Reactions of Methyl and Ethoxy Free Radicals in Chlorohydrocarbons: A Comparative Study of the Use of Diacetyl Peroxide and Diethyl Peroxydicarbonate as Agents for Linking Alpha Carbon to Alpha Carbon in Some Chloro-Substituted Aralkyls. J. Org. Chem., 24, 536-45 (1959). C. A.,53, 21808 (1959). Acoo reacts with approximately equal facility with the chloro-substituted aralkyls, 3,4-dichlorotoluene, 2,6-dichlorotoluene, and α , α -dichlorotoluene, benzal chloride to give the corresponding chlorosubstituted bibenzyls derived from the dimerizations at the alpha positions.

- 1208. McCarthy, R.L.
 Chemical Synthesis from
 Free Radicals Produced
 in Microwave Fields.
 J. Chem. Phys.,22, 1360=5
 (1954).*
 C. A.,48, 13421 (1954).
 The chemical effects of
 a 2450-Mc/sec glow discharge were studied on
 N2, H2, O2 air and CH4.
- 1209. McCauley, C.E. & Schuler, R.H.
 Radical Production in the Radiolysis of Liquid Butane.
 J. Am. Chem. Soc., 79, 4008-11 (1957).
 C. A., 52, 894 (1958).
- 1210. McConnell, H.M. Indirect Hyperfine Interactions in the Paramagnetic Resonance Spectra of Aromatic Free Radicals. J. Chem. Phys., 24, 764-6 (1956). c. A.,50, 9869 (1956). An equation is developed which relates the protonspin - electron-spin hyperfine coupling constants to the π-distribution of the odd electron in the aromatic free radicals.
- 1211. McConnell, H.M. & Robertson, R.E.

 Spectroscopic Splitting Factors in Aromatic Radicals.

 J. Phys. Chem., 61, 1018 (1957).

 C. A., 52, 77 (1958).

- 1212. McConnell, H.M. & Chesnut, D.B.

 Negative Spin Densities in Aromatic Radicals.

 J. Chem. Phys.,27, 984-5 (1957).

 C. A.,52, 2529 (1958).
- 1213. McConnell, H.M.
 Spin Density Matrix of
 the Allyl Radical.
 J. Chem. Phys.,29,
 244-5 (1958).
 C. A.,52, 19425 (1958).
 C. A.,50, 7567 (1956).
- 1214. McConnell, H.M.

 Free Rotation in Solids
 at 4.2 K.

 J. Chem. Phys.,29, 1422
 (1958).

 C. A.,53, 6770 (1959).

 The lines in a triplet
 group of the paramagnetic
 resonance of the NH, radical in an Ar matrix at 4.2 K
 are of approximate comparable
 intensity.
- 1215. McCoubrey, J.C.
 Deviation Parameters in the
 Intermolecular Force Fields
 of Hydrocarbon Molecules.
 Fuel, 35, 343-6 (1956).
 C. A., 50, 12570 (1956).
 C. A., 49, 14405 (1955).
 Vapor pressure, entropy of
 vaporization, and compressibility data used to calculate deviation parameters.
- 1216. McDonald, G.E. & Schalla, R.L. Effect of Free Methyl Radicals on Slow Oxidation of Propane and Ethane.

 Natl. Advisory Comm. Aeronaut, Research Mem, E52G 17 (1952).

 Fuel Abstr.,13, No. 3, 32 (1953).

 C. A.,49, 9904 (1955).

The study was made by means of a photochemical decomposition reaction in a static system.

- 1217. McDowell, C.A. & Thomas, J.H.

 The Mechanism of the Initiation of the Oxidation of Acetaldehyde in the Gas Phase.

 J. Chem. Phys., 17, 588-9 (1949).

 C. A., 43, 8820 (1949).

 It is assumed:

 H_CCHO + O₂ = CH_CO+HO₂.
- 1218. McDowell, C.A., Lossing, F.P., Henderson, I.H.S. & Farmer, J.B.
 Free Radicals by Mass Spectrometry. X. Ionization Potentials of Methyl Substituted Allyl Radicals.
 Can. J. Chem., 34, 345-53 (1956).
 C. A.,50, 13602 (1956).
 C. A.,50, 7578 (1956).
- 1219. McDowell, C. A. & Sharples, L.K.

 Photochemical Oxidation of Aldehydes in the Gaseous Phase. III. The Absolute Values of the Velocity Constants for the Propagating and Terminating Steps in the Photochemical Oxidation of Acetaldehyde and Propionaldehyde.

 Can. J. Chem., 36, 268-78 (1958).

 C. A., 53, 2821 (1959).

It is possible to determine rates of initiation for each photobxidation; also chain lifetimes.

- 1220. McElcheran, D.E., Wijnen, M.H.J & Steacie, E.W.R. Photolysis of Methyl Cyanide at 1849 A.

 Can. J. Chem., 36, 321-9 (1958).

 C. A., 52, 7875 (1958)
- 1221. McEwan, W. S. & Skolnik, S. An Analog Computer for Flame Gas Composition. CO, CO, O, O, H, NO, N, OH, H₂6 and H. Rev. Sci. Instr., 22, 125-32 (1951). C. A., 45, 7381 (1951). The computer simulates electrically the conditions of temperature, pressure and composition of combustion products, which are imposed as resistance in a series of interlocking wheatstone bridges.
- 1222. McGrath, W.D. & Norrish, R.G.W. The Study of Energy Transfer and Energy Distributions in Fast Chemical Reaction by Flash Photolysis and Kinetic Spectroscopy. Z. physik. Chem., 15, 245-61 (1958).C. A.,<u>52</u>, 11591 (1958). Review on the methods and their applications for studying reactions with energy transfer involving molecules with considerable vibrational excitation, e.g., 6-20 quanta. 34 references.

- 1223. McGrath, W.D. & Norrish, R.G.W.
 Production of Vibrationally Excited Oxygen Molecules in the Flash Photolysis of Ozone.
 Nature, 180, 1272-3 (1957).
 C. A., 52, 5987 (1958).
- 1224. McGrath, W.D. & Norrish, R.G.W.

 The Flash Photolysis of Ozone.

 Proc. Roy Soc. (London), A242, 265-76 (1957).

 C.A.,52, 6948 (1958).

 The only reasonable reaction for producing excited 0 is 0 + 0 = 02* + 02.

 Studies on the rate of decay of 02 with time are reported.
- Isolation of HO from the Hydrogen-Oxygen Diffusion Flame.

 J. Chem. Phys., 22, 1258 (1954).

 C. A., 48, 12560 (1954).

 C. A., 47, 3092 (1953).

 The chemical evidence for the existence of H₂O₁ can be adequately explained in terms of nitrous acid.
- 1226. McKinley, J.D., Jr.
 Garvin, D. & Boudart, M.J.
 Production of Excited Hydroxyl
 Radicals in the Hydrogen
 Atom-Ozone Reaction.
 J. Chem. Phys., 23, 784-6 (1955).
 C. A., 49, 11408 (1955).
 The production in the lab.
 of a spectrum is very similar
 to that of the night sky which
 offers direct support to the
 second mechanism, suggested
 by Herzberg.

- 1226. Cont.
 - C. A.,45, 10046 (1951). In the reaction: $H + O_2 = O_2 + OH^* (2\pi)$, it appears that the OH radical carries the bulk of the reaction energy.
- Garvin, D.

 Reactions of Atomic
 Hydrogen with O₃ and O.
 J. Am. Chem. Soc., 77,
 5802-5 (1955).
 C. A.,50, 3855 (1956).
 Yields of H₂O, H₂O₂
 agreed with the view
 that recombination of
 radicals occurred in
 the cold trap. Hydroxyl
 was believed to be the
 precursor of water.
- 1228. McKinley, J.D., Jr. & Polanyi, J.C. Chemiluminescence in the System Atomic Sodium Plus Atomic Hydrogen. Can. J. Chem., 36, 107-13 (1958).
 C. A., 52, 19495 (1958).
 - (1) $Na+H+H_0 = NaH+H_0$
 - (2) Na+Na+H = NaH+Na*
 with collision yield
 4 x 10⁻³.
 - (3) Na+H+H = H₂+Na* with collision yield 1 x 10⁻⁵. Preliminary experiments suggest that the nonluminescent reaction is (1) and (2) or (3).
- 1229. McIachlan, A.D.
 Hyperconjugation in the
 Electron Resonance.
 Mol. Phys.,1, 233-40
 (1958).
 C. A.,53, 6770 (1959).

- 1229. Cont.
 - The electron resonance hyperfine splitting is produced by protons of a Me group which is attached to one of the aromatic C atoms of a π-electron radical and is calculated by the valence bond method, by treating the exchange interaction between the odd electron and the Me groups as a perturbation.
- 1230. McMillan, G. & Wijnen, M.H.J.
 Reactions of Alkoxy Radicals.
 V. Photolysis of Di-tert-Butyl
 Peroxide.
 Can. J. Chem., 36, 1227-32
 (1958).
 C. A., 53, 5120 (1959).
 Photolysis of di-tert-butyl
 peroxide at 25-79 gives
 mainly acetone. First step
 gives two tert-butoxy radicals.
- 1231. McNesby, J.R., Davis, T.W. & Gordon, A.S.
 Pyrolysis of Mixtures of Acetone and Acetone-d.6.
 J. Am. Chem. Soc., 76, 823-7 (1954).
 C. A., 48, 6213 (1954).
 C. A., 47, 8483 (1953).
 C. A., 28, 1655 (1934).
- 1232. McNesby, J.R. & Gordon, A.S. Photolysis of Acetone.
 J. Am. Chem. Soc., 76,
 1416-18 (1954).
 C. A., 48, 6213 (1954).
 C. A., 47, 7432 (1953).
 The reaction between CD, and mixtures of deuterated and normal acetone was studied as a function of temperature.

- 1233. McNesby, J.R. & Gordon,
 A.S.
 The Photolysis of Acetoned₆ in the Presence of
 Ethane and of Acetone in
 the Presence of Ethaned₆.
 J. Am. Chem. Soc., 77,
 4719-25 (1955).
 C. A., 50, 3092 (1956).
 C. A., 49, 1413 (1955).
- 1234. McNesby, J.R., Gordon,
 A.S. & Smith, S.R.
 Reaction of Methyl Radicals with Deuterium.
 J. Am. Chem. Soc., 78,
 1287-91 (1956).
 C. A., 50, 10543 (1956).
 An acetone-D mixture in ratio D/acetone = 1.977,
 is photolyzed by Hg arc in temp. range 140-248;
 effect of surface to volume ratio studied.
- 1235. McNesby, J.R., Drew, C.M. & Gordon, A.S.

 Mechanism of the Decomposition of Primary and Secondary Butyl Free Radicals.

 J. Chem. Phys., 24, 1260 (1956).

 C. A., 50, 12612 (1956).

 Photolysis and pyrolysis of acetone in the presence of butane 2,2,3,3-dh.

- 1236. McNesby, J.R. & Gordon,
 A.S.
 Photolysis of Acetoned₆ in the Presence of
 n-Butane and n-Butene2,2,3,3-d₁.
 J. Am. Chem. Soc.,78,
 3570-3 (1956).
 C. A.,50, 16410 (1956).
 The abstraction of primary and secondary hydrogen
 by methyl radicals.
- 1237. McNesby, J.R. & Gordon, Reactions of CD, Radicals with the Butenes. J. Am. Chem. Soc., 79, 5902-6 (1957). c. A.,52, 3533 (1958). Photolysis of acetone-d in the presence of each of the four butenes was carried out. The product analysis is interpreted in terms of two mechanisms, (1) addition of CD, to each C atom comprising the double bond, and (2) the abstraction by CD, of the H atoms of the butene.
- 1238. McVeigh, P.A.
 Free Radical Phenylation
 of Monosubstituted Benzenes.
 Univ. Microfilms (Ann
 Arbor, Mich.), L. C.
 Card No. Mic 58-7761,
 154pp.; Dissertation
 Abst., 19, 1206 (1958).
 C. A., 53, 5187 (1959).

- Mador, I.L. & Williams, 1239. M.C. Stabilization of Free Radicals from the Decomposition of Hydrazoic Acid. J. Chem. Phys., 22, 1627-8 (1954).C. A., 49, 42 (1955). C. A., 47, 4746 (1953). NHz vapor was decomposed by an electric discharge and the products frozen. The failure to obscure any increase in the NH_LN₃ band intensities or any other products above 1480K indicated that the concentrations of the NH and NH, radicals stabilized at the lower temperatures are very small.
- 1240. Mador, I.L.
 The Stabilization of Methyl
 Radical.
 J. Chem. Phys., 22, 1617 (1954).
 C. A., 49, 56 (1955).
 C. A., 47, 4746 (1954).
 The glassy films formed, photolyzed at 40K, changed color upon warming; this was attributed to exothermic radical-recombination reactions.
- Maess, R. 1241. The Role of Free Radical in the Oxidation of Heptane. Oel Kohle Erdoel Teer, 15, 299-306, 321-6 (1939). C. A.,34, 3570 (1940). Thermal decomposition and oxidation of heptane are accelerated by the introduction of free radicals obtained from the thermal decomposition of azomethane and from the photochemically initiated decomposition of azomethane and acetone.

- Mahiev, A.M., Martens, G. & Chiltz, G. Photochlorination of Chloroform.
 Nature, 180, 1068-9 (1957).
 C. A., 52, 6948 (1958).
- 1243. Majury, T.G. & Melville, H.W.

 A Dielectric-Constant Method of Following the Non-Stationary State in Polymerization.

 II. The Operation and Performance of the Instrument.

 Proc. Roy. Soc. (London), A205, 323-35 (1951).

 C. A., 46, 329 (1952).
- 1244. Majury, T.G. & Melville,
 H.W.

 A Dielectric-Constant
 Method of Following the
 Non-Stationary State in
 Polymerization and of
 Radical Lifetimes.
 Proc. Roy. Soc. (London),
 A205, 496-516 (1951).
 C. A.,46, 329 (1952).
- 1245. Majury, T.G. & Steacie, E.W.R.

 Reaction of Methyl and Methyl-d₃ Radicals with Hydrogen and Deuterium.

 J. Chem. Phys., 20, 197-8 (1952).

 C. A., 46, 7412 (1952).

 Reactions of the type:

 CH₃ + H₂ = CH₄ + H were effected and the energies of activation and steric factors were determined.

- 1246. Majury, T.G. & Steacie,
 E.W.R.
 The Reactions of Methyl and
 Methyl-d, of Radicals with
 Hydrogen and Deuterium.
 Can. J Chem., 30, 800-14
 (1952).
 C. A., 47, 2582 (1953).
 C. A., 46, 7412 (1952).
- 1247. Majury, T.G & Steacie, E.W.R.

 The Reactions of Methyl Radicals with the Hydrogen Isotopes.

 Discussions Faraday Soc., 1953, No. 14, 45-9

 C. A.,48, 431 (1954)

 CH₃ and CD₃ were prepared by photolysis of the appropriate acetone and their reactions with H and D studied in the range 130-300°C.
- 1248. Mal'tsev, V.A., Rustin, A.D. & Tatevskii, V.M.

 The Spectroscopic Investigation of Combustion Reactions. Zhur. Fiz. Khim., 31, 1175-6 (1957).

 C. A., 52, 55 (1958).

 The combusion of H₂ + 0₂ was investigated spectroscopically by the changes in OH concentration during the reaction.
- 1249. Mandelcorn, L. & Steacie, E.W.R. Methyl, Ethyl, and Ketone in the Photolysis of Acetone Vapor. Can. J. Chem., 32, 79-82 (1954). C. A., 48, 5656 (1954).

The reactions

2 Me = C₂H₆

Me + AcMe = CH₁ + CH₂COMe

Me + CH₂COMe = EtCOMe

Accounted for approx. 95% of
the methyl radicals disappearing
during the photolysis. No evidence for the reaction

AcCH₂ = CH₂CO + Me was found
over the temp. range investigated, 100-285°.

- 1250. Mandelcorn, L. & Steacie, E.W.R. Addition of Methyl Radicals to Unsaturated Hydrocarbons.

 Can. J. Chem., 32, 474-84
 (1954).

 C A., 49, 6813 (1955).

 The rates of addition of methyl radicals, produced by the photolysis of Me₂CO between 140° and 240°, to unsaturated hydrocarbons were determined.
- Diffusion Process in the Thermosphere.

 Ann. geophys., 11, 153-68 (1954).

 C. A.; 49. 14478 (1955).

 Description of the distribution of the various constituents of the atmosphere depending on diffusion, turbulence and photochemical processes.
- 1252. Mann, D.E., Broida, H.P. & Squires, B.E.
 The Decomposition of Carbon Tetraflouride in Flames.
 J. Chem. Phys., 22, 348 (1954).
 C. A., 48, 5657 (1954).
 The spectra of acetyleneO and H-O flames, in the presence of CFh, were qualitatively described.

- 1253. Manson, N. The Theory of Burning Velocities in Gas Mixtures. J. Chem. Phys., 17, 837-8 (1949).C. A.,44, 1784 (1950). Considerations are elaborated that show the theory of shock and combustion waves supplemented by the hypothesis of the projection of the H atoms, which explains the pressure drop in the combustion zone, yields a rather complete interpretation of the effect of various factors on the burning velocities in gas mixtures.
- Manson, N. & Guenoche, H.
 New Values of Equilibrium
 Constants of Hydrocarbon
 Combustion Products.
 Rev. inst. franc. petrole, 5,
 17-24 (1950).
 C. A., 45, 934 (1951).
- Marcotte, F.B. & Noyes, 1255. W.A., Jr. The Reaction of Radicals from Acetone with Oxygen. Discussions Faraday Soc., 1951, No. 10, 236-41. C. A., 46, 3378 (1952). Photochemical decomposition up to 2000 is discussed and a mechanism proposed involving HCO as an intermediate in the formation of CO or CO2 from the indirect reaction of CH3 and 0_2 .

- 1256. Marcus, R.A. & Steacie, E.W.R.

 The Steric Factor in the Recombination of Methyl Radicals.

 Z. Naturforsch, 4a, 332-4 (1949).

 C. A., 44, 8213 (1950).

 Dimethyl Hg decomposed photochemically in the presence of NO.
- 1257. Marcus, R.A. & Rice, O.K. Session on Free Radicals. The Kinetics of the Recombination of Methyl Radicals and Iodine Atoms. J. Phys. & Colloid Chem., 55, 894-908 (1951). C. A., 45, 10012 (1951). C. A., 29, 6490 (1936).
- 1258. Marcus, R.A. Lifetimes of Active Molecules. I. J. Chem. Phys., 20, 352-354 (1952). C. A., 46, 7851 (1952). The specific dissociation constants for various vibrational excited molecules, CH4, C2H6, C3H8, are inferred from an interpretation of experimental data on atomic cracking reactions and on the deuterization of free radicals.

- Lifetimes of Active
 Molecules. II.
 J. Chem. Phys., 20, 355359 (1952).
 C. A., 46, 7851 (1952).
 Experimental data on the
 atomic cracking of C₃H₇
 radicals and on the
 deuterization of CH₃
 radicals are compared
 with some theoretical
 calculations.
- 1260. Marcus, R.A.
 Unimolecular Dissociations and Free Radicals. Recombination Reactions.
 J. Chem. Phys., 20, 359-64 (1952).
 C. A., 46, 7851 (1952).
 C. A., 45, 10012 (1951).
- Recombination of Methyl
 Radicals and Atomic Cracking
 of Ethyl Radicals.
 J. Chem. Phys., 20, 364-368
 (1952).
 C. A., 46, 7851 (1952).
 The characteristics of this
 atomic cracking and of the
 pressure and steric effects,
 associated with the recombination of CH₂ radicals,
 are all intimately related.
- 1262. Marcus, R.A.
 Studies of Chemical Reactions of Excited Species by Using Intense Light Sources.
 Can. J. Chem., 36, 102-6 (1958).
 C. A., 52, 19507 (1958).
 Flash photolysis.

- Mardaleishvili, R.E.,
 Pariiskii, G.B., Poltorak,
 V.A. & Voewodskii, V.V.
 Reaction of Deuterium
 Atoms with Alkenes.
 Relation of Deuteriation
 of Methane to the Concentration of Deuterium
 Atoms in the System.
 Izvest. Akad. Nauk S.S.S.R.,
 Otdel. Khim. Nauk, 1956,
 516-24.
 C. A.,51, 2366 (1957).
 C. A.,46, 1852 (1952).
- Margrave, J.L.
 The Chemical Importance
 of Unusual Molecules Observed at High Temperatures.
 Ann. N.Y. Acad. Sci., 67,
 619-32 (1957).
 C. A.,51, 16056 (1957).
- 1265. Mark, G.V.
 The Luminous Mantle of
 Fuel-Rich Oxyacetylene
 Flames. I. Spectroscopic
 Temperature Measurements.
 Can. J. Phys., 35, 1265-74
 (1957).
 C. A.,52, 1758 (1958).
 Self-absorption is shown
 to occur for OH and C2, and
 is indicated for CH.
- 1266. Mark, G.V.
 The Luminous Mantle of
 Fuel-Rich Oxyacetylene
 Flames. II. Free Radical
 and Continuum Intensities
 and Their Influence on C
 Emission.
 Can. J.Phys.,35, 1275-83
 (1957).
 C.A., 52, 1758 (1958).

- 1267. Mark, G.V.
 Possible Reaction Mechanisms
 Associated with Emission
 of the C₃ Radical in Laboratory and Astrophysical
 Sources.
 Pubs. Astron. Soc. Pacific,
 70, 197-201 (1958).
 C. A.,52, 14321 (1958).
- 1268. Marsden, D.G.H. & Linnett,
 J.W.
 Recombination of Oxygen
 Atoms on Surfaces.
 Fifth Symposium on Combustion,
 Pittsburgh, 1954, 685-692.
 Pub. 1955.
 C. A., 49, 15412 (1955).
 Describes a preliminary investigation of the variation of several catalysts' efficiencies for oxygen-atom recombination over a range of temperatures.
- Marshall, A.L.

 Mechanism of Reactions Photosensitized by Mercury Vapor.

 J. Phys. Chem., 30, 1078-99
 (1926).

 C. A., 20, 3645 (1926).

 A method is developed for measuring the amount of energy absorbed by mercury vapor from a H₂O cooled quartz-Hg arc, and for calculating the energy radiated by arc.
- 1270. Marshall, R. & Davidson, N.R.
 Photoelectric Observation of the Rate of Recombination of Iodine Atoms.
 J. Chem. Phys., 21, 659-64 (1953).
 C. A., 47, 6260 (1953).

- J.A.

 Nuclear Magnetic Shielding of a Hydrogen Atom in an Electric Field.

 Mol. Phys.,1, 199-202 (1958).

 C. A.,53, 8813 (1959).

 The nuclear magnetic screening constant σ of a H atom in a uniform electric field is calculated by neglecting electron spin.
- Martin, D.G.
 Flame Speeds of Mixtures Containing Several
 Combustible Components
 or a Known Quantity of
 Diluent.
 Fuel, 35, 352-8 (1956).
 C. A.,50, 12609 (1956).
 C. A.,41, 6037 (1947).
 Adiabatic flame temps.
 and equilib. concentrations of 0, OH, and H
 were calculated.
- 1273. Martin, G.R. & Sutton,
 H.C.
 Radioactive Tracer Studies
 of Free Radical Mechanisms.
 I. Photolysis of Acetone
 and Iodine Mixtures.
 Trans. Faraday Soc., 48,
 812-23 (1952).
 C. A.,47, 3123 (1953).
 The photolysis was carried
 out in the presence of I
 vapor labeled with I¹³¹.

- Martin, G.R. & Sutton,
 H.C.
 Radioactive Tracer Studies
 of Free Radical Mechanisms.
 II. Photolysis of MethylEthyl Ketone and Iodine
 Mixtures.
 Trans. Faraday Soc., 48,
 823-8 (1952).
 C. A., 47, 3123 (1953).
- 1275. Martin, H. & Diskouski, H.

 The Process H + Cl₂ = HCl + Cl as a Molecular-Beam Reaction.

 Z. Electrochem., 60, 964-7 (1956).

 C. A.,51, 6293 (1957).

 C. A.,47, 4703 (1953).
- 1276. Martin, R.B. & Noyes, W.A., Jr. Photochemical Studies. XLVIII. The Reactions of Methyl Radicals with Oxygen. J. Am. Chem. Soc., 75, 4183-5 (**1**953). C. A., 48, 4982 (1954). C. A., $\frac{47}{10352}$ (1953). C. A., 46, 5439 (1952). Me_Hg-0 and MeI-0 mixtures were photolyzed with a Hg arc in experiments at several temperatures and reactant concentrations.
- 1277. Martin, R.H.
 Reactions of Short-Lived Free
 Radicals in the Liquid Phase.
 Industrie Chim. Belge, 15,
 194-202 (1950).
 Chem. Zentr., 1951, I, 1716.
 C. A., 47, 9124 (1953).

- 1278. Martin, T.W. & Pitts, J.N., Jr. Structure and Reactivity in the Vapor Phase Photolysis of Ketones. II. Methyl Neopentyl Ketone. J. Am. Chem. Soc., 77, 5465-8 (1955). c. A.,50, 6932 (1956). A mechanism is presented by which the major products arise from a primary intramolecular process, and the minor products arise from secondary thermal reactions of radicals formed in primary free radical processes.
- 1279. Marvel, C.S. & Vest,
 R.D.
 The Formation of a Cyclic
 Recurring Unit in Free
 Radical Polymerization. II.
 J. Am. Chem. Soc., 81, 984-6 (1959).
 C.A.,53, 13997 (1959).
 Derivatives of unsaturated
 dicarboxylic acids were
 prepared and polymerized.
- 1280. Mason, E.A. & Vanderslice, J.T.
 Interactions of Hydrogen
 Ions and Atoms with Neon, Argon, and Hydrogen.
 J. Chem. Phys., 28, 1070-4 (1958).
 C. A.,52, 16896 (1958).
 C. A.,52, 7841 (1958).

- 1281. Masson, C.R. & Steacie, E.W.R.

 Primary Step in the o Mercury Photosensitized, 2537A,
 Decomposition of Propane and of Hydrogen.

 J. Chem. Phys., 18, 210-12 (1950).
 C. A., 44, 7661 (1950).
 C. A., 58, 1426 (1944).
 Mechanism of the production of excited HgH.
- 1282. Masson, C.R. & Steacie,
 E.W.R.
 Mercury-Photosensitized
 Decomposition of Methyl
 Chloride.
 J. Chem. Phys., 19, 183-9
 (1951).
 C. A., 45, 6496 (1951).
 Calculation of the quenching
 cross section of MeCl.
- 1283. Masuda, K. & Suita, T.
 Electron Spin Resonance Study
 of the γ-Ray Radiation
 Effects in High Polymers.
 Technol. Rept. Osaka Univ.,
 8, 227-32 (1958).
 C. A.,53, 15771 (1959).
 Electronic structure changes
 of high polymers irradiated
 by γ-rays were studied by
 means of electron spin resonance.
- 1284. Matheson, M.S., Auer, E.E., Bevilacqua, E.B. & Hart, E.J. Rate Constants in Free Radical Polymerizations.

 J. Am. Chem. Soc., 73, 5395-5400 (1951).

 C. A., 46, 1852 (1952).
 C. A., 45, 6867 (1951).

- 1285. Matthews, D.L.
 Interferometric Measurement in the Shock Tube of the Dissociation Rate of Oxygen.
 Phys. Fluids, 2, 170-8 (1959).
 C. A., 53, 13744 (1959).
 The dissociation of 0 was observed behind shock waves over a temperature range of 3000-5000 K.
- 1286. Maulkin, Z.M.
 Cleavage of Radicals
 from Metallo-Organic
 Compounds of Group IV.
 VII. Cleavage of Radicals
 under the Influence
 of BCl₃ on Compounds
 R₁₄M where M is Silicon.
 J. Gen. Chem. (Russian),
 20, 2004-8 (1950).
 C. A.,45, 5611 (1951).
 C. A.,42, 6742 (1948).
- 1287. May, L., Taylor, H.A. & Burton, M. Free Radicals in the Photolysis of Propionaldehyde. J. Am. Chem. Soc., 63, 249-54 (1941). C. A.,<u>35</u>, 1320 (1941). Free alkyl radicals, and Paneth mirror method. Free H less than 2% of mirror active particles. Free formyl radicals are stable up to temps. of 100°.

- 1288. May, P.D., Ridgway, J.A., Jr. & Wadsworth, Primary Mercaptans by Free-Radical-Catalyzed Reaction of Hydrogen Sulfide with Olefinic Hydrocarbons. U.S. 2,865,965, Dec. 23, 1958. C. A.,53, 10001 (1959). Faster reaction rates, higher percentages of conversion, and greater selectivity in producing mercaptans instead of sulfides are achieved by conducting the reaction in the presence of HoO in an amount of 0.01-10 and more, preferably O.1-1, moles H₂O/mole hydrocarbon, preferably at a ph less than 7, particularly 1-3 and preferably in a ferrous metal reactor not passivated with HNOz,
- Mayo, F.R., Lewis, F.M. & Walling, C.
 Copolymerization. Effect of Structure on the Reaction of Ethylenic Double Bonds with Free Radicals.
 Discussions Faraday Soc.,
 1947, No. 2, 285-95.
 C. A., 43, 5732 (1949).
 C. A., 42, 8032 (1948).
- 1290. Mayo, F.R.
 The Oxidation of Unsaturated Compounds. V. The
 Effect of Oxygen Pressure
 on the Oxidation of
 Styrene.
 J. Am. Chem. Soc., 80, 246580 (1958).
 C. A.,53, 3106 (1959).
 The reaction of styrene at
 50° in the presence of O.OlM
 2,2'-azobis, 2-methylpropionitrile has been studied at
 0 pressures of O-3200mm.

- Mayo, F.R. & Miller,
 A.A.

 The Oxidation of Unsaturated Compounds.

 VI. The Effect of
 Oxygen Pressure on
 the Oxidation of
 α-Methylstyrene.
 J. Am. Chem. Soc.,
 80, 2480-93 (1958).
 C. A.,53, 3106 (1959).
 Studied in the presence
 of 0.01M 2,2'-azobis(2-methylpropionitrile)
 at 0 pressures from
 0-3200 mm.
- 1292. Mayo, F.R. & Miller,
 A.A.
 The Oxidation of Unsaturated Compounds.
 VII. The Oxidation
 of Methacrylate Esters.
 J. Am. Chem. Soc.,80,
 2493-7 (1958).
 C. A.,53, 3107 (1959).
 The reaction of methyl
 methacrylate with 0 was
 studied at 50 in the
 presence of 0.01 M
 2,2'-azobis (2-methylpropionitrile) at 0
 pressures from 0-3100
 mm.
- 1293. Mayo, F.R., Miller, A.A. & Russell, G.A. The Oxidation of Unsaturated Compounds. IX. Effects of Structure on the Rates and Products of Oxidation of Unsaturated Compounds. J. Am. Chem. Soc.,80, 2500-07 (1958). C. A.,53, 3108 (1959). Rates of reaction of unsaturated compounds with one atom O investigated using one monomer at a time and two monomers at a time to yield a terpolymer with 0.

- 1294. Mayor, Y. The Application of the Theory of Free Radicals to the Investigation of the Pyrolysis of Cyclic Hydrocarbons. Rev.chim.ind. (Paris) 49, 118-23 (1940). Chem.Zentr., 1941, I, 2233. C. A.,37, 4359 (1943). C. A.,37, 4319 (1943). A brief review of the development of the concept of radicals and their first isolation, the first chemical detection of acylic free radicals by the method of Paneth, their detection spectroscopically, the connection between the existence of free radicals and the new conception of valence, p electrons and π electrons, as well as known measurements of the concentration; and average life of free radicals.
- 1295. Mead, B., Jr.
 Photoelectric and Surface
 Potential Studies of
 Reactions of Atoms and
 Radicals with Solid
 Surfaces.
 Univ.Microfilms (Ann Arbor,
 Mich.),
 Pub. No. 6823, 111 pp.;
 Dissertation Abstr., 14, 245-6 (1954).
 C. A., 48, 6211 (1954).

- 1296. Mecke, R. Free Radicals and Spectroscopy. Trans. Faraday Soc., 30, 200-14 (1934). C. A.,28, 2269 (1934). A general discussion of pos. ray analysis, band spectroscopy, mol. dimensions, mol. vibrations and dissociation energies. Radicals were found to retain their dimensions in their stable compounds. A purely spectroscopic stereochemistry is predicted.
- 1297. Meda, F. Infrared Spectra of 16α , 17α -Epoxysteroids. II. Influence of a Hydroxyl or Acetyl Group in Position 208. Gazz. chim. ital..87, 52-7 (1957). C. A.,53, 14690 (1959). Study of infrared absorption maximum was made to identify the presence of the steroid molecule in the 16α , 17α epoxide ring and the effect of an OH or Ac group in position 20β.
- 1298. Medvedev, S.S.
 Role of Peroxides in the Oxidation of Hydrocarbons.
 Acta Physiochim. U.S.S.R.,
 9, 395-420 (1938).
 C. A.,33, 8090 (1939).

- 1299. Medvedeva. N., Neiman, M. & Torsoueva, H. Formation of Ethane during the Pyrolysis of Propane. Compt. rend., 243, 1203-5 (1956).C. A.;51, 11981 (1957). The kinetics of the decomposition of propane was studied by use of C14 as a tracer. The ethane is formed principally by the hydrogenation of ethylene not by the recombination of metnyl radicals.
- Complementary Study of the Kinetics of the Slow Combustion of Methane. Rapport travaux inst.natal. mines
 Frammeries-Paturages, 1948,
 (In Ann. mines) Belg., 48,
 51-9 (1949)).
 C. A., 45, 6470 (1951).
- 1301. Meisels, G.G., Hamill, W.H. & Williams, R.R., Jr. Ion-Molecule Reactions in Radiation Chemistry. J. Chem. Phys., 25, 790 (1956).c. A.,51, 872 (1957). With large amounts of added D, the formation of nonequilibrium amounts of both Ho and HD indicated the formation of both molecular and atomic hydrogen from the methane. $CH_{2}I_{2}$ was formed when I was . Debba
- 1302. Melidoni, A.
 Light Activation of
 Chlorination of Benzene
 to Obtain Hexachlorocyclohexane.
 Rev. Fac. Cienc. Quim.,
 23, 7-14 (1948).
 C. A., 47, 12002 (1953).

- 1303. Melville, H.W. & Birse, E.A.B.
 Photochemistry of Ammonia.
 Nature, 142, 1080 (1938).
 C. A., 33, 1597 (1939).
 Discussion of mechanism.
- Melville, H.W. & Tuckett, R.F.
 Photochemical Polymerization of Vinyl Acetate Vapor.
 J. Chem. Soc., 1947, 1201-10.
 C. A., 42, 2844 (1948).
 C. A., 41, 4956 (1947).
 Kinetics under influence of 2500A.
- 1305. Melville, H.W. & Tuckett, R.F. Radical Sensitized H and CHz. Polymerization of Vinyl Acetate Vapor. J. Chem. Soc. (London), 1947, 1211-17. C. A., 42, 2845 (1948). Kinetics of the polymerization of vinyl acetate vapor initiated by H atoms and CH radicals was investigated. Both the photoand radical-sensitized reactions proceed by a free radical mechanism; data given at some length.
- 1306. Melville, H.W. & Robb,
 J.C.
 Kinetics of the Interaction
 of Atomic Hydrogen with
 Olefins.
 I. Apparatus and Use of
 Parahydrogen Techniques.
 Proc. Roy. Soc. (London),
 A196, 445-65 (1949).
 C. A.,44, 1784 (1950).
 A special reaction system
 is described with a variable
 path length for a H atom
 before removal on the oxide
 layer.

- 1307. Melville, H.W. & Robb,
 J.C.
 The Kinetics of the
 Interaction of Atomic
 Hydrogen with Olefins.
 II. Diffusion Theory.
 Proc. Roy. Soc. (London),
 A196, 466-78 (1949).
 C.A.,44, 1785 (1950).
 A system is described in
 which diffusion of a hydrogen atom takes place effectively in one direction.
- J.C.
 The Kinetics of the Interaction of Atomic Hydrogen with Olefins.
 III. Theory and Technique Involved in the Use of the Oxides of Molybdenum and Tungsten as Hydrogen Atom Removers.
 Proc. Roy. Soc. (London), A196, 479-93 (1949).
 C.A.,44, 1785 (1950).
- 1309. Melville, H.W. & Robb,
 J.C.
 The Kinetics of the
 Interaction of Atomic
 Hydrogen with Olefins.
 IV. Results Obtained by
 the Foregoing Techniques.
 Proc. Roy. Soc. (London),
 A196, 494-509 (1949).
 C.A.,44, 1785 (1950).
 Values of velocity constants, collision efficiency and effective
 diameters are given.

- 1310. Melville, H.W. & Majury,
 T.G.
 Dielectric Constant Method
 for Following the Nonstationary State of Radical
 Reactions.
 Nature, 165, 642 (1950).
 C. A.,44, 7105 (1950).
 An apparatus sensitive to one
 part in 10 of dielectric
 constant and having a response
 time of 10 sec was applied in
 the liquid-phase polymerization
 of vinyl acetate.
- 1311. Melville, H.W. & Robb,
 J.C.
 Reaction of Hydrocarbon
 Radicals.
 Rev. inst. franc. petrole,
 4, 477-97 (1949).
 C. A.,44, 7130 (1950).
 The number of H atoms reaching
 the metal oxide, MoO_x or WO_x,
 surface is proportional to the
 rate of blueing of the oxide
 correcting for the blueing by
 radicals.
- Measurement of Radical Concentration.

 Angew. Chem., A60, 67 (1948).

 C. A., 44, 8752 (1950).

 Available methods for determining the concentration of free radicals taking part in oxidation and polymerization reactions are reviewed.

- 1313. Melville, H.W.
 The Reactivity of
 Free Radicals in
 Solution.
 Endeavour, 9, 98-101
 (1950).
 C. A., 45, 25 (1951)
 A review of methods of
 determination of radical
 concentrations and lifetimes.
- 1314. Melville, H.W. & Robb,
 J.C.
 The Kinetics of the
 Interaction of Atomic
 Hydrogen with Olefins.
 V. Results Obtained for
 a Further Series of Compounds.
 Proc. Roy. Soc. (London),
 A202, 181-202 (1950).
 C. A., 45, 6023 (1951).
 C. A., 44, 1785 (1950).

The efficiency of interaction of a H atom with a series of olefins was determined, the olefins being members of the series obtained by progressively replacing the H atoms of ethylene by methyl radicals.

1315. Melville, H.W., Robb,
J.C. & Tutton, R.C.
The Kinetics of the
Interaction of Trichloremethyl Radicals
with Cyclohexane.
Discussions Faraday
Soc.,1951, No. 10,
154-63.
C. A.,46, 3377 (1952).
The photochemically induced reaction between
CCl_, Br, and cyclohexane
was studied by a dilatometric method.

- 1316. Melville, H.W. & Robb, J.C. Fast Reactions of Atomic Hydrogen. The Reactivity of Olefins is Related to Their Structure. Research Council Israel, Spec. Pub. No. I, (L. Farkas Mem. Vol.), 124-43 (1952).C. A.,50, 34 (1955). A new method was developed for studying fast reactions of atomic hydrogen with olefins in the gas phase. H atoms are generated by the Hg photosensitized decomposition of Ho. These atoms are then trapped by a thin layer of molybdenum oxide or tungsten oxide, which turns blue.
- 1317. Menzies, A.C.

 New Lamp and New Spectrograph
 for the Raman Effect.

 Proc. 1st. Intern. Conf.

 Spectroscopy at Radiofrequencies,
 Amsterdam, Sept., 1950; Physica,
 17, 131-45 (1951).

 (In French).
 C. A., 45, 8871 (1951).
- 1318. Michel, A.
 Spectroscopic Identification of
 the Benzyl and Benzylidene Radicals.
 Z. Naturforsch, 10a, 459-62 (1955).
 C. A., 51, 3288 (1957).
- 1319. Michel-Levy, A. & Muraour, H. Photographs of Phenomena Accompanying Explosion of a Shattering Explosive.

 Compt. rend., 204, 571-9 (1937).

 C. A., 31, 2823 (1937).

 C. A., 50, 3311 (1936).

- 1320. Mignolet, J.C.P.
 The Adsorption of
 Hydrogen Atoms
 and Molecules on
 Platinum.
 J. chim. phys., 54,
 19-26 (1957).
 C. A., 51, 8505 (1957).
 C. A., 48, 6238 (1954).
- 1321. Mignonac, G. & Miquel, R. Decomposition of Acetone Vapor at Low Pressure by Means of a High-Frequency Electric Spark.
 Bull. soc. chem. France, 1956, 1727-36.
 C. A., 51, 5570 (1957).
- 1322. Miklukhin, G.P. & Rekasheva, A.F. Investigation of Oxidation-Reduction Reactions of Organic Compounds Employing Deuterium. Problemy Kinetiki i Kataliza, Akad. Nauk S.S.S.R., Inst. Fiz. Khim., Soveshchanie, Moscow, 1956, 9, 117-23. (Pub. 1957). c. A.,53, 9998 (1959). The use of D in the study of catalytic oxidation-reduction reactions or organic compounds, associated with transfer of H, gave a possibility of tracing details of the process by the direct method.

- 1323. Miller, D.M. & Steacie, E.W.R.
 The Recombination of Methyl Radicals.
 J. Chem. Phys., 19, 73-7 (1951).
 C. A., 45, 6470 (1951).
 Photolysis of HgMe2 in the presence of NO.
- 1324. Miller, D.M. & Winkler, C.A. The Measurement of the Absolute Rates of Removal of Lead and Tellurium Mirrors by a Free Radical Stream. Can. J. Chem., 29, 537-43 (1951).C. A.45, 8403 (1951). Two new methods for measuring the absolute rates of removal of lead and tellurium mirrors in a Paneth apparatus have been developed.
- 1325. Miller, E. The Nature and Importance of Free Radicals. Angew. Chem., 64, 233-47 (1952).c. A., 46, 6882 (1952). A comprehensive treatise covering the following subjects: free radicals with long life. causes of the stability of free radicals, biradicals, free radicals with short life, chain reactions of free radicals with saturated compounds and with unsaturated compounds.

- 1326. Miller, G.H., Pritchard, G.O. & Steacie, E.W.R. Photolysis of Perflourodipropyl Ketone.

 Z. physik. Chem., 15, 262-9 (1958).
 C. A.,52, 11591 (1958).
 Photolysis of (C₃F₇)₂ CO with light of 3130 A has been investigated. The initial step involves formation of C₃F₇ radicals, the only products being CO and C₆F₁4.
- 1327. Miller, G.H. & Steacie, E.W.R. The Reactions of Perfluoro-n-Propyl Radicals with Hydrogen and Deuterium.

 J. Am. Chem. Soc., 80, 6486-9 (1958).

 C. A., 53, 11193 (1959).

 The reactivity of n-C₃H₇ radicals toward H, D, and blends of H and D was studied at 398-570 K.
- 1328. Miller, N.
 The Analogy between the Chemical Action of Ionizing Radiation and That of Ultrasonics on Aqueous Solutions.
 J. chim. phys., 48, 242-4 (1951); (In English).
 C. A., 46, 830 (1952).
 C. A., 45, 23 (1951).
- 1329. Miller, N. Radical Yield Measurements in Irradiated Aqueous Solutions. II. Radical Yields with 10.9-m.e.v. Deuterons, 21.3-and 3.4 m.e.v. α -Particles, and B (N, α) Li Regoil Radiations.

Radiation Research, 9, 633-46 (1958). C. A.,53, 3902 (1959). C(H) + \overline{G} (OH) is measured in 0.01N H₂SO₁₄ irradiated by 10.9-m.e.v. deuterons, 3.4-m.e.v. γ -Particles and B¹⁰ (n, α) (Li) recoils.

Milligan, D.E., Brown, H.W. & Pimentel, G.C.
Infrared Absorption by the N₃ Radical.
J. Chem. Phys.,25, 1080 (1956).
C. A.,51, 3290 (1957).
A discharge was maintained in N₂ gas at a pressure of 200M and the products were condensed on a C I window maintained at 4 K. The band at 2150 cm was assigned as the asymmetrical stretching of the linear N₃ radical.

1331. Mills, D.H.
Lifetimes for Decomposition
of Vibrationally Excited
Dideuterioethyl Radicals.
Univ. Microfilms (Ann
Arbor, Michigan), Publ. No.
21201, 97pp;
Dissertion Abstr., 17,
1229 (1957).
C. A.,51, 13581 (1957).

- 1332. Milovskaya, E.B., Erusalimskii, B.L. & Dolgoplosk, B.A. Reactions of Free Radicals in Solutions. The Reactions of Free Radicals with Internal and External Double Doklady Akad. Nauk s.s.s.r.,120, 336-8 (1959).C. A.,53, 21591 (1959). The data on the reactions of free radicals were obtained and used to characterize the relative activity of internal and external double bonds.
- 1333. Minder, W.
 Radiation Chemistry in
 Relation to Radiobiology.
 VI. Radiation Chemistry
 of Organic Halogen Compounds.
 Brit. J. Radiology, 24,
 435-10 (1951).
 C. A., 46, 544 (1952).
- Minkoff, G.J., Everett,
 A.J. & Broida, H.P.
 Ultraviolet Spectrophotometry of Low
 Pressure Explosions.
 Fifth Symposium on
 Combustion, Pittsburgh,
 1954, 779-85. Pub. 1955.
 C. A., 49, 16437 (1955).
 Explosions at a few cm.
 pressure of H2-O2, CH4O2 and CO-O2; spectroscopy
 of reaction in termediates.

- 1335. Minkoff, G.J. Recent Developments Concerning Free Radicals. Combustion and Flame, 2, 193-207 (1958). C. A.,52, 14294 (1958). Experimental techniques are reviewed, together with the present status of knowledge of several of the smaller radicals and atoms with particular reference to those that take part in combustion processes. 117 references.
- 1336. Minkoff, G.J. & Scherber, F.I.

 Energy Release from Discharged Monatomic Gases
 Trapped at 4°K.
 J. Chem. Phys., 28, 992-3 (1958).
 C. A.,52, 15266 (1958).
- 1337. Minkoff, G.J.
 Excited States of Acetylene
 and Their Role in Pyrolysis.
 Can. J. Chem., 36, 131-6
 (1958).
 C. A.,53, 828 (1959).
 C. A.,52, 234 (1958).
- 1338. Minkoff, G.J., Scherber, F.I. & Gallagher, J.S.
 Energetic Species Trapped at 4.2°K from Gaseous Discharges.
 J. Chem. Phys.,30, 753-58 (1959).
 C. A.,53, 15680 (1959).
 A calorimeter was described in which the deposit from a gaseous discharge was heated rapidly to 40-50°K by a small heating coil.

- 1339. Minkoff, G.J.
 Frozen Free Radicals.
 Prog. in Cryogenics, 1,
 137-78 (1959).
 C. A.,53, 17606 (1959).
- 1340. Miolati, A.
 Organic and Biological
 Chemistry.
 Rend. accad. nazl. XI (Soc.
 ital. sci.) (Rome), 27, 37
 (1948).
 C. A.,51, 15281 (1957).
 A review and discussion of
 some recent developments in
 the fields of organic and
 biological chemistry interpreted in terms of free
 radicals and intermediate
 labile compounds. 47 references.
- 1341. Mitra, A.P.
 Atomic Nitrogen as a
 Constituent for Region F.
 Indian J. Phys., 28,
 269-84 (1954).
 Sci. Abstr., 57A, 1477
 (1954).
 C. A., 51, 7844 (1957).
- 1342. Miyagawa, I., Gordy, W., Watabe, N.U. & Wilbur, K.M. Nature of Free Radicals Detected by Paramagnetic Resonance in Biological Substances. Proc. Natl. Acad. Sci. U. S., 44, 613-17 (1958). C. A., $\overline{53}$, 2325 (1959). Weak but relatively sharp electron spin resonance signal observed in many lyophilized biological materials can arise from peroxide radicals, ROC, or trapped mol. 02.

- 1343. Miyanishi, M.

 Mechanism of Gas Combustion.

 Oyo Butsuri Applied Phys.,

 12, 353-9 (1943).

 C. A.,41, 4908 (1947).

 Spectroscopic study of the combustion of paraffins.

 CH, CH₂ wall reaction.
- 1344. Miyanishi, M.
 A Spectroscopic Study of Ignition of Hydrocarbons. Sci. Papers Inst. Phys. Chem. Research Tokyo, 40, 364-9 (1943).
 C. A.,41, 6696 (1947).
 Bands associated with Cand CH were observed.
- 1345. Miyanishi, M. & Murata, K.
 A Spectroscopic Study of the
 Effect of Various Compounds
 on the Oxidation of Normal
 Heptane at Low Temperature. I.
 Sci. Papers Inst. Phys.
 Chem.Research Tokyo, 41,
 99-107 (1943).
 C. A.,41, 6696 (1947).
- 1346. Miyazaki, S. & Takahashi, S. Formation of Hydrogen Cyanide by Electric Discharge. VI. Nippon Kagaku Zasshi, 77, 1642-7 (1956).

 C. A., 51, 9335 (1957).

 C. A., 50, 14371 (1956).

 The mechanism of formation is discussed.
- 1347. Miyazaki, S. & Takahashi, S. Chemical Reaction Caused by Torch Discharge.

 I. Decomposition of Methyl Alcohol.

 Nippon Kagaku Zasshi, 77, 1647-51 (1956).

 C. A.,51, 9335 (1957).

- 1348. Miyazaki, S. & Takahashi, S. The Decomposition of Water by High-Frequency Glow Discharge. I. 40-Mc.
 Nippon Kagaku Zasshi, 78, 219-22 (1957).
 C. A.,51, 15281 (1957).
- 1349. Moccia, R. & Califano, S. Infrared Study of the OH Group of Phenols. Relation between Intensity of Absorption, Substituents Constants, and Molecular Structure. Gazz. chim. ital.,88, 342-54 (1958).C. A.,<u>53</u>, 15767 (1959). C. A., 51, 15277 (1957). The infrared spectrographic behaviour of meta and para phenolic OH groups was investigated by calculation of the true band intensities of absorption.
- 1350. Moffitt, W.E. & Coulson, C.A.
 Free Radicals CH₂, CH_{2m-1} and CH₂.
 Trans. Faraday Soc., 44, 81-4 (1948).
 C. A., 42, 5730 (1948).
 C. A., 29, 5743 (1935).
 The stretching force constants of some OH and NH links were calculated from fundamental frequencies.
- 1351. Moffitt, W.E.
 Aspects of Hybridization.
 Proc. Roy. Soc. (London),
 A202, 548-64 (1950).
 C. A., 45, 4500 (1951).
 Bond properties of CH, NH, and
 OH and electronegativity are
 discussed.

- 1352. Gamboa, J.M. Molera, M.J., & Guijarro, E.G. Detection of Free Radicals with Mirrors of Lead-212. Anales real soc. espan. fis. y quim. Madrid, 54B, 553-8 (1958).c. A.,53, 8943 (1959). c. A., 29, 3301 (1936). Radicals from the thermal decomposition of acetone and methyl-ethyl ketone at 550-700 were detected by the method of Paneth.
- 1353. Moore, C.E.
 Atomic Spectra for the
 Astrophysicist.
 Science, 113, 669-73 (1951).
 C. A., 45, 10046 (1951).
- 1354. Moore, G.E., Shuler, K.E., Silverman, S. & Herman, R. The Reactions of Ammonia and Hydrazine with Oxygen Atoms and Hydrogen Atoms in Atomic Flames.

 J. Phys. Chem., 60, 813-15 (1956).

 C. 'A., 50, 13615 (1956).

 Spectroscopic and chemical analysis of trapped products were made.
- 1355. Moore, R.A.
 Interaction of a Proton and a Helium Atom.
 Univ. Microfilms (Ann Arbor, Mich.), L. C. Card No. Mic 59-172, 80pp;
 Dissertation Abstr., 19, 2368 (1959).
 C. A., 53, 10937 (1959).

- 1356. Moore, W.J. & Wall, L.A.
 The Mercury-Photosensitized
 Hydrogenation of the Butenes
 and the Photolysis of Dibutyl
 Mercury.
 J. Chem. Phys., 17, 1325-7
 (1949).
 C. A., 44, 4792 (1950).
 C. A., 42, 8087 (1948).
- Doublet States of
 Benzyl Radical.
 J. Phys. Chem., 24,
 1253 (1956).
 C. A., 50, 11097 (1956).
 Energy levels were studied and calculated by taking into account interactions between electronic configurations.
- 1358. Morris, D.F.C. & Schmeising, H.N.
 The Electron Affinity of Atomic Oxygen.
 Nature, 182, 249-50 (1958).
 C. A.,53,5856 (1959).
 Discusses the determinations of electron affinities by extrapolation of ionization potential of isoelectronic ions.
- 1359. Moseley, F. & Robb. J.C. Direct Determination of the Rate Constants for Radical -Radical Interactions in the Gas Phase. I. The Technique of Investigation. Proc. Roy. Soc. (London), A243, 119-29 (1957). C. A.,52, 7826 (1958). Pressure changes are measured with a sensitive menometer. The apparatus is described in detail. Photosensitized decomp, of acetone vapor.

- 1360. Moses, H.E. A Self-Consistent Calculation of the Dissociation of Oxygen in the Upper Atmosphere. II. Three-Body Recombinations. Phys. Rev., 91, 1408-9 (1953). c. A., 47, $1\overline{19}67$ (1953). The densities of atomic and molecular oxygen were calculated as functions of the altitude, assuming the main recombination process is a thru-body non-radiative process.
- 1361. Mosher, W.A.

 Ions and Radicals in Biochemical Process.

 J. Franklin Inst., 251, 665-74 (1951).

 C. A., 45, 10263 (1951).

 A discussion of free radical formation, ionic oxidation of organic compounds, and effect of X-irradiation, and free radicals on nucleic acids.
- 1362. Mott, N.F. & Massey, H.S.W. The Theory of Atomic Collisions. Second Edition. Oxford Univ. Press, 1949. C. A., 44, 954 (1950).
- 1363. Moyer, J.W. & Bass, A.M.
 Free Radical Chemistry.
 Chem. Eng. News, 37,
 No. 34, 50-6 (1959).
 C. A.,53, 19535 (1959).
 A program initiated by the
 U. S. Department of Defense
 to speed up the rate of
 learning about the formation
 and properties of trapped radicals is outlined, and the more
 significant results are reported.

- 1364. Mulcahy, M.F.R.
 Oxidation of Hydrocarbons.
 Some Observations on the
 Induction Period.
 Trans. Faraday Soc., 45,
 575-84 (1949).
 C. A., 43, 7798 (1949).
 Chain initiation is
 assumed to occur by the
 reaction:
 RH + O₂ = R + HO₂.
- 1365. Mulcahy, M.F.R.

 The Kinetics of Oxidation of Hydrocarbons in the Gas Phase. A Theory of the Low-Temperature Mechanism.

 Discussions Faraday Soc., 1951, No. 10, 259-65

 C. A., 46, 3378 (1952).

 An approximate rate equation is developed for the reaction and predictions of the theory based on initial pressures and conc. of reactants.
- 1366. Muller, E. & Neuhoff, H.

 Magnetochemical Investigation of Organic Substances.

 XVII. A True Hydrocarbon
 Bi Radical with Para Free
 Valencies.
 Ber.,72B, 2063-75 (1939).
 C. A.,34, 5329 (1940).
 C. A.,35, 6241 (1939).

 Measurement of magnetic
 susceptibility.
 Concerns complex organic
 substances of the type:
 2,6,21, 61-tetrachloro-441 dibenzoylbiphenyl.
- 1367. Muller, E.
 The Radical State of
 Unsaturated Compounds.
 Fortschr. Chem. Forsch,
 1, 325-416 (1949).
 C. A., 44, 8180 (1950).
 A review.

- 1368. Muller, E.
 The Nature and Importance
 of Free Radicals.
 Angew. Chem., 64, 233-47
 (1952).
 C. A., 46, 6882 (1952).
 A review with 121 references.
- 1369. Muller, E., Ley, K. & Schlechte, G. Oxygen Radicals. VIII. The Dehydrogenation of Phenols. Chem. Ber., 90, 2660-72 (1957).C. A.,53, 2142 (1959). C. A.,49, 1239 (1955). Stable phenoxy radicals such as 2,4,6-tri-tert-butyl= phenoxyl react with 0.5 mole of a phenol, naphthol, or resorcinol derivative with disappearance of the color of I, to give dimers II, according to: Ari I + RH = Arlt + R; R + Ar. = ArR II.
- 1370. Muller, E., Gunter, F., Scheffler, K. & Fettel, Dissociation of Hexamesityldiplumbane into Free Organo-Lead Radicals. Chem. Ber., 91, 2888-9 (1958).C. A.,53, 4910 (1959). The measurement of the electron paramagnetic resonance of dilute solutions of hexamesityldiplumbane in CaHa does not even show a trace of an organic-Pb radical.

- 1371. Müller, E. & Ley, K.
 Preparation of Stable
 Hydrogen Radicals and
 Their Mesomeric Behavior.
 Elektronentheorie Homobpolaren Bindung, Hauptjahrestag. Chem. Ges. Deut.
 Demokrat. Rep., 1955,
 146-51. Pub. 1956.
 C. A.,53, 6132 (1959).
 An address and discussion.
- 1372. Müller, N. & Mulliken, R.S. Strong or Isovalent Hyperconjugation in Some Alkyl Radicals and Their Positive Ions.

 J. Am. Chem. Soc., 80, 3487-97 (1958).

 C. A., 52, 19299 (1958).

 C. A., 49, 1430 (1955).

 Hyperconjugation energies for the ethyl, isopropyl, tert-butyl, and alkyl radicals were calculated by a semiempirical ICAO mol.-orbital method.
- 1373. Mulliken, R.S.
 Energy Levels of the
 Nitrogen Molecules.
 Threshold of Space,
 Proc. Conf. Chem.
 Aeron., 1956, 169-79.
 Pub. 1957.
 C. A.,52, 13415 (1958).
 Dissociation products
 are listed.
- 1374. Murphy, G.M. & Schoen, L. Isotope Effect in the Hydrocarbon Flame Spectra. J. Chem. Phys., 19, 380-1 (1951).

 C. A., 45, 6484 (1951).

 C. A., 45, 3249 (1951).

 CD, CH, OD, and OH are the most prominent (HCO).

 The bands are attributed to HCO by Herman, et al.

- 1375. Murray, J.D. & McGee, R.X. A New Hydrogen Cloud in Pyxis-Hydra. Observatory, 78, 242-4 (1958).C. A.,53, 12821 (1959). With a new multichannel receiver, capable of producing a complete profile of the 21-cm line of H every two min. a new discrete cloud of neutral H was discovered in the paysis-hydra region, located between longitudes 210 and 230 in mid-galactic latitudes.
- 1376. Murrell, J.N.
 Electronic Spectra of
 the Triarylmethyl Radicals.
 J. Chem. Phys., 26, 1738-41
 (1957).
 C. A., 51, 17439 (1957).
- 1377. Myasnikov, I.A. Electrical Conductivity of p-Semiconductors during the Chemisorption of Atoms and Radicals. Doklady Akad. Nauk S.S.S.R., 120, 1298-301 (1958). C. A.,53, 10987 (1959). The chemisorption effects of atoms on the electrical conductivity of ZnO- and TiO - type semiconductors was investigated to explain the behavior of atoms and radicals on the changes of the semiconductor condition.
- 1378. Myerson, A.L., Taylor, F.R. & Hanst, P.L.
 Ultraviolet Absorption Spectra and the Chemical Mechanism of Carbon Disulfide-Oxygen Explosisons.
 J. Chem. Phys., 26, 1309-20 (1957).
 C. A., 51, 13582 (1957).
 Absorption spectra of reaction intermediates.

- 1379. Nakada, K., Sato, S. & Shida, S. Recombination of Hydrogen Atoms on Copper Surfaces. Proc. Japan Acad.,31, 449-54 (1955). c. A.,<u>50</u>, 6863 (1956). c. A., $\overline{49}$, 13723 (1955). Results agreed well with activation energies calculated by Eyring's semiempirical method for both the Rideal and the Langmuir-Hinshelwood mechanisms.
- 1380. Nakane, R. Fractionation of Nitrogen Isotopes by Oxidation of Ammonium'Ion. Rikagaku Kenkyusho Hokoku, <u>34</u>, 203-5 (1958). C. A.,<u>53</u>, 19614 (1959). N15H1 is oxidized by Bro ion more rapidly than N14Hh in aqueous solution. Reaction is probably due to higher stability of some intermediate N15 radicals compared with the corresponding N14 radicals. Concentration of radicals determines rate of oxidation.
- 1381. Nakatsuka, K.
 Polymerization of Acrylonitrile in Solution.

 III. Kinetics of Acrylonitrile Polymerization.

 Kobunshi Kagaku, 15, 43-8
 (1958).

 C. A.,53, 9798 (1959).

 The mechanism of polymerization reaction of acrylonitrile in toluene is studied.

- 1382. Nalbandyan, A.B.
 Photochemical MercurySensitized Oxidation of
 Methane. The Intermediate Products CH₃
 and OH.
 Doklady Akad. Nauk
 S.S.S.R., 60, 607-10
 (1948).
 C. A., 42, 8588 (1948).
- 1383. Naldrett, S.N.
 Free Radical Recombination in the Photolysis of Acetone.
 Can. J. Chem., 33, 750-4 (1955).
 C. A., 49, 12971 (1955).
 Use of radioactive biacetyl I-Cl4.
- 1384. Napier, K.H. & Green, J.H. Free Radical Measurements in the Radiolysis of Liquid Hydrocarbons. Proc. Australian At. Energy Symposium, 1958, 570-3. C. A.,53, 18845 (1959), Molecular iodine labeled with iodine 131 was used as a detector for the radicals produced in the initial ionizing event in hydrocarbon liquids under high vacuum.
- 1385. Narasimham, N.A.

 The Emission Spectrum
 of the PH+ Molecule.
 Can. J. Phys., 35, 900-11
 (1957).
 C. A., 51, 15269 (1957).

- Nawrocki, P.J., Raley,
 J.H., Rust, F.F. &
 Vaughan, W.E.
 Oxidation of Hydrocarbons
 Catalyzed by Hydrogen
 Bromide. Oxidation of
 Straight Chain Compounds
 in Gas Phase.
 Ind.Eng. Chem., 41, 26048 (1949).
 C. A., 44, 1887 (1950).
- 1387. Needham, D.P. & Powling, The Flame Decomposition of Ethyl Nitrate. Proc. Roy. Soc. (London), 232, 337-350 (1955). C. A.,50, 4596 (1956). Ethyl nitrate is destroyed mainly by reaction with NO2 and HONO, the latter being postulated as chain carriers. Destruction of the radical, CoH, ONO, resulting from these reactions could give rise to the observed primary reaction products. Gas samples obtained with fine SiO₂ probes were analyzed by infrared absorption spectra supplemented by chemical methods.
- Neiman, M.B. 1388. Role of Peroxides in the Formation of Cold and Hot Hydrocarbon Flames. Uspekhi Khim., 7, 341-84 (1938). c. A.,33, 4855 (1939). Discussed from the standpoint of the Semenov theory of chain initiation and chain branching. Also the possibility of the use of cold-flame reactions as a possible means for the preparation of certain types of organic substances, especially of aldehydes.

- 1389. Neiman, M.B. & Serdyuk, N.K. Degradation Rate of Acetyl Radical and Its Reaction with Free Oxygen. Trudy Vsesoyuz. Nauch .-Tekh. Konf. Primenen. Radioaktiv. i Stabil. Izotopov i Isluchenii v Narod. Khoz. i Nauke, Izotopy i Izluchen. v Khim., 1957, 35-41. Pub. 1958. c. A.,53, 19537 (1959). Behavior of acetyl radical, formed during oxidation and decomposition reaction of AcH was investigated by use of labeled CH3C14HO.
- 1390. Nekrasova, V.A.
 Photochemical Chlorination
 of Hexane.
 Ukrain. Khim. Zhur.,
 23, 623-5 (1957).
 C. A.,52, 9942 (1958).
- 1391. Nelson, L.S. & Ramsay, Flash Photolysis Experiments with a Sapphire Flash Lamp. J. Chem. Phys., 25, 372 (1956).C. A.,50, 16409 (1956), Positive evidence was obtained that CN radicals were formed during the photolysis of HCN. Attempts to obtain the absorption spectra of free radicals during the flash photolysis of CHoCN and HoO were not successful.

- D.A.
 Absorption Spectra of Free Radicals Produced by Flash Discharges.
 J. Chem. Phys., 25, 372-3 (1956).
 C. A.,50, 16410 (1956).
 Free radical spectra of H₂O, H₂S, NH₃, N₂H₄, PH₃, SiH₄, B₂H₆, C6H₆, HCN, and CH₃CN.
- 1393. Nenquim, G., Thomas, P. & Van Tiggelen, A. Interpretation of Some Flame Spectra in Terms of Reaction Kinetics. Bull. soc. chim. Belges, 65, 1072-81 (1956)*.* In English. C. A.,53, 14653 (1959). Activation energies E* were calculated from flame spectrum band intensities at various reactant ratios and dilutions with inert gas by the method described. OH, NH, NO, CH, or C2 radicals.
- Nesmeyanov, A.N., Freidlina, R.Kh. & Zakharkin, L.I.
 Rearrangement of a Free Radical in Solution.
 Doklady Akad. Nauk
 S.S.S.R., 81, 199-202
 (1951).
 C. A., 47, 3789 (1953).

1394. Cont.

Heating CH₂: CHCCl₃ with Bz₂O₂ in BrCCl₃ 4.5-5.0 hrs. at 100° gave: 1,1,1, 4,4-pentachloro-3-butene, an unknown C₃H₃Cl₁Br, and 1,1,1,3, 4,4-hexachloro-4-bromo-butane. Reaction mechanism discussed.

- 1395. Neuimin, H. & Popov, B. Photochemical Reaction of Oxygen with Hydrogen in the Schumann Region. Z. physik. Chem., B27, 15-27 (1934). C. A.,29, 684 (1935). $0_2 + hv = 0 + 0$ $0^2 + H_2 = 0H + H$ $OH + \overline{H}_2 = \underline{H}_2O + \underline{H}$ $\mathbf{M} + \mathbf{OH} + \mathbf{M} = \mathbf{H}_2 \mathbf{O}_2 + \mathbf{M}$ The excited OH radicals have vibrational energy up to two electron-volts. Other processes lower the stationary concentration of metastable 0 atoms such as recombination, loss of energy on collision with 0_{9} , or the walls and radiation. Photodissociation takes place below 3000A.
- Newton, A.S. & McDonell, W.R.

 The Radiolysis Products from Ethyl Alcohol.

 Effect of Total Energy Input on the Radiolysis Products.

 J. Am. Chem. Soc., 78, 4554-5 (1956).

 C. A., 51, 1738 (1957).

 The results are discussed in terms of mechanisms involving charge or excitation and radical traps.

- 1397. Nicholls, R.W. & Parkinson, W.H.

 Shock Excitation of Atomic and Molecular Spectra.

 J. Chem. Phys., 26, 423-4 (1957).

 C. A., 51, 7852 (1957).

 C. A., 49, 7970 (1955).
- 1398. Nicholls, R.W. The Interpretation of Intensity Distributions in the CN-Violet, Co - Swan, OH-Violet, and 0_2 -Schumann Range Bond Systems by Use of their r-Centroids and Franck-Condon Factors. Proc. Phys. Soc. (London),69A, 741-53 (1956). C. A., 51, 14415 (1957). The intensity distributions in these bond systems are considered to determine in each case the dependence of the electron transition moment upon the nuclear spin.
- 1399. Nicholls, R.W.
 Transition Probabilities and
 Molecular Excitation.
 Ann geophys., 14, 208-23 (1958).
 (In English).
 C. A., 52, 19441 (1958).
 The basic concepts and
 parameters used to describe
 the radiation from atoms
 and mols. are given.
- 1400. Nicholson, A.J.C.
 Photolysis of Acetone.
 Diffusion of Methyl Radicals from the Light Beam and the Activation Energy of Hydrogen Abstraction.
 J. Am. Chem. Soc., 73, 3981-6 (1951).
 C. A., 45, 9374 (1951).

- 1401. Niimi, M.
 The Sensitivity of
 Explosives.
 J. Soc. Ordn. and
 Expl.,30, 106-11 (1936).
 Japan J. Eng.,16, 62.
 C. A.,33, 4423 (1939).
 A mathematical treatment involving the chemical constitution and activation energy.
- 1402. Nikitin, E.R.
 Deviations from the
 Boltzmann Distribution
 in the Dissociation of
 Diatomic Molecules.
 Soviet Phys. "Doklady",
 2, 435-6 (1957) (English
 Transl).; Doklady Akad.
 Nauk S.S.S.R., 116, 584-7.
 C. A.,52, 17842 (1958).
- 1403. Nikolaev, L.A.
 Benzene as an Indicator of Free Radicals in a Catalytic Process.
 Khim. Naka i Prom.,2, 266-7 (1957).
 C. A.,51, 17369 (1957).
- Ninomiya, M.
 Rotational Intensity
 Distribution of the OH Band.
 J. Phys. Soc. Japan, 970-4 (1956).
 C. A.,51, 7848 (1957).
 An OH band 2ε 2π at 3064A observed in a glow-discharge tube shows an anomalous double intensity maximum. This is explained by the two existence of unstable excited states of H₂O molecules yielding excited OH radicals.

- 1405. Norman, I. & Porter, G.

 Trapped Atoms and Radicals in a Glass Cage.
 Nature, 174, 508-9 (1954).
 C. A., 49, 2876 (1955).
 A general method for the preparation of highly reactive free radicals and atoms, which permits their observation for an indefinitely long period.
- 1406. Norman, I. & Porter, G.
 Trapped Atoms and Radicals
 in Rigid Solvents.
 Proc. Roy. Soc. (London),
 A230, 399-414 (1955).
 C. A.,49, 14490 (1955).
 C. A.,49, 2876 (1955).
 Detected by absorption
 spectra in hydrocarbon
 glasses at temp. of
 liquid N.
- 1407. Norman, I. & Pitts, J.N., Structure and Reactivity in the Vapor-Phase Photolysia of Ketones. III. Methyl Cyclobutyl Ketone. J. Am. Chem. Soc., 77, 6104-7 (1955). C. A.,50, 10542 (1956). C. A., 49, 13118 (1955). C. A., 48, 4312 (1954). The photolysis at 2654A is chiefly free radical in nature with CO, C2H1 and cyclo ChHo as the major products. Cyclobutyl radicals are postulated to dissociate into $C_{\mathcal{O}}H_{h}$ and vinyl radicals with an apparent activation energy of 14 kcal.

- 1408. Norris, T.H.
 Isotopic-Exchange Reactions in Liquid Sulfur
 Dioxide and Related Nonaqueous Systems.

 J. Phys. Chem., 63, 383-9 (1959).
 C. A., 53, 14655 (1959).

 Although sulfite exchanges
 readily with solvent SO₂,
 thionyl halides show no
 significant exchanges;
 this indicates the nonformation of thionyl ions.
- 1409. Norrish, R.G.W. Primary Photochemical Production of Some Free Radicals. Trans. Faraday Soc., 30, 103-20 (1934). C. A.,28, 2270 (1934). C. A.,27, 5645 (1933). Light absorbed by one group may cause a reaction in a different part of a molecule by processes of reso-The photochemical production and stability of free alkyl radicals and the CH and CHo radicals are discussed. A new type of predissociation in acetone is described.
- 1410. Norrish, R.G.W. & Porter, G. Structure of Methylene. Discussions Faraday Soc., 1947, No. 2, 97-104. C. A., 43, 5732 (1949). Photolysis of ketene-Ag. mirror. 34 references.
- 1411. Norrish, R.G.W. & Patnaik, D. Effect of Light on the Combustion of Hydrocarbons. Nature, 163, 883-5 (1949). C. A., 43, 7825 (1949). The hydrocarbons are first oxidized to HCHO which is dissociated by light into free radicals.

- 1412. Norrish, R.G.W. & Porter, G.
 Chemical Reactions Produced by Very High Light Intensities.
 Nature, 164, 658 (1949).
 C. A., 44, 3799 (1950).
 Gas-discharge and flash-lamp technique.
- 1413. Norrish, R.G.W.
 Evidence Relating to the
 Combustion of Hydrocarbons.
 Discussions Faraday Soc.,
 1951, No. 10, 269-78.
 C. A.,46, 3378 (1952).
 Oxidation of hydrocarbons
 can take place through
 attack by OH radicals
 with intermediate aldehydes as the most important
 branching agents.
- 1414. Norrish, R.G.W., Porter, G. & Thrush, B.A. Detection of Diatomic-Radical Absorption Spectra during Combustion-CH, Co, CN, NH, OH. Nature, 169, 582-3 (1952). C. A., 46, 8527 (1952). Apparatus to follow the absorption spectra of explosions at intervals of 20 microsec. from 30 microsec. after the beginning of the initiating flash. Acetylene - 0, at 20 mm pressure sensitized by 1.5 mm NO2 were studied. Bands have been observed for CN, NH, C2, and all the three known systems of CH. Applications of method are discussed.
- 1415. Norrish, R.G.W. & Porter, Spectroscopic Studies of the Hydrogen-Ozygen Explosion Initiated by the Flash Photolysis of Nitrogen Dioxide. Proc. Roy. Soc. (London), A210, 439-60 (1952). C. A.,46, 10898 (1952). The method of flash photolyhas been used to sis initiate the reaction between hydrogen and oxygen, using a small amount of nitrogen di-oxide as sensitizer. The dependence of the ignition limits on total pressure, capacity and the pressure of nitrogen dioxide have been studied, as well as the flash photochemical decomposition of nitrogen dioxide alone.
- 1416. Norrish, R.G.W., Porter, G. & Thrush, B.A. Studies of Explosive Combustion of Hydrocarbons by Kinetic Spectroscopy. I. Free Radical Absorption Spectra in Acetylene Combustion. Proc. Roy. Soc. (London), 216, 165-83 (1953). C. A.,47, 5804 (1953). The explosive oxidation of acetylene, initiated homogeneously by the flash photolyof a small quantity of NO2 has been investigated by flash spectroscopy.

- 1417. Norrish, R.G.W., Porter, G. & Thrush, B.A.
 Chemiluminescent Phenomena during Hydrocarbon Combustion.
 Nature, 172, 71-2 (1953).
 C. A., 47, 9779 (1953).
 C. A., 46, 8527,10898 (1952).
 Flash photolysis technique to induce explosions in C.H. O. mixtures photosensitized by NO. Emission spectra corresponding to C2, CH, and CN were observed.
- 1418. Norrish, R.G.W. Photochemical Processes at Very High Light Intensity. Z. Elektrochem., 56, 705-12 (1952). c. A.,47, 9781 (1953). Discharge of a condenser between W-electrodes in a quartz tube yields flashes of 1000 Joules at a duration of 10-4 The method is also sec. suitable to study explosions because a homogeneous ignition takes place over the entire length of the tube. The reactions and lifetimes of atoms and radicals Cl, Br, I, ClO, HS, CS, CH₂, CH₃, CH₃CO, NH, OH, C₂ can be followed by photographing their absorption spectra by means of timed secondary flashes.
- 1419. Norrish, R.G.W. Free Radicals in Explosions Studied by Flash Photolysis. Discussions Faraday Soc., 1953, No. 14, 16-22 C. A., 48, 371 (1954). C. A.,47, 5804 (1953): The application of the technique of flash photolysis to the spectroscopic study of explosions is described. The method yields valuable evidence as to the nature of the short lived intermediates taking part, and in some cases, of their elementary reactions within This is achieved the flame. by observations of the relevant absorption spectra and their change with time.
- 1420. Norrish, R.G.W., Porter, G. & Thrush, B.A. Studies of the Explosive Combustion of Hydrocarbons by Kinetic Spectroscopy. II. Comparative Investigations of Hydrocarbons and a Study of the Continuous Absorption Spectra. Proc. Roy. Soc. (London), A227, 423-33 (1955). C. A.,49, 7391 (1955). C. A.,47, 5804 (1953). The occurence of the diat.-radical spectra is qualitatively similar in the four hydrocarbons, but there are important quantative differences in the stoichiometry of the mixtures.

- 1421. Norrish, R.G.W. & Porter, G. The Application of Flash Techniques to the Study of First Reactions. Discussions Faraday Soc., No. 17, 40-6 (1954). C. A., 49, 9387 (1955). Techniques include electronic for induction and photographic photoelectric, infrared and microwave absorption for detection. A discussion of means of inducing and following reactions with rates varying from a few seconds to a few microseconds is given.
- 1422. Norrish, R.G.W., Porter, G. & Thrush, B.A. Kinetic Studies of Gaseous Explosions. Fifth Symposium on Combustion, Pittsburg, 1954, 651-6. Pub. 1955. C. A., 49, 16437 (1955). Flash photolysis techniques are described. The reaction products being observed in both emission and absorption, with resolution times of about a microsecond. Some results with CoHo - 0 mixtures photosensitized with NO are given.
- 1423. Norrish, R.G.W. & Taylor, G.W. The Oxidation of Benzene. Proc. Roy. Soc. (London), A234, 160-177 (1956). C. A.,50, 12446 (1956). The oxidation has been shown to proceed via successive hydroxylation of the ring to the dihydroxy stage; the ring then breaks, the fission products being rapidly degraded to Co hydrocarbons, formaldehyde, carbon oxides, hydrogen, and water. A mechanism based on the instability of a phenol precussor in the region of ignition has been proposed.
- 1424. Norrish, R.G.W. & Zeelenberg, A.P. The Combustion of Hydrogen Sulfide Studied by Flash Photolysis and Kinetic Spectroscopy. Proc. Roy. Soc. (London), A240, 293-303 (1957). C. A.,51, 15279 (1957). The reaction has been shown to take place in steps in which the radicals SH and OH participate. A light emission has been observed which is attributed to $SO + O = SO_O + hv$. A mechanism for the combustion of HoS is derived.

- 1425. Norrish, R.G.W. & Purnell, H. Decomposition of n-Hexane. I. By Mercury Photosensitization. Proc. Roy. Soc., A243, 435-48 (1958). C. A.,52, 10863 (1958).
- 1426. Norrish, R. G. W. & Purnell, H. Decomposition of n-Hexane.
 II. By Reaction with Atomic Hydrogen.
 Proc. Roy. Soc., A243, 449-57 (1958).
 C. A.,52, 10863 (1958).
- 1427. Norvick, I.
 Interchange of Heavy
 Atoms in Organo Metallic
 Compounds.
 Nature, 135, 1038-9 (1935).
 C. A.,29, 6207 (1935).
 Organic radicals are liberated from their compounds
 by Bi.
- 1428. Noyes, R.M. Wall Effects in Photochemically Induced Chain Reactions. J. Am. Chem. Soc., 73, 3039-43 (1951). c. A., <u>45</u>, 8896 (1951). A mathematical treatment to determine the applicability of kinetic theory to determine the probability that an atom or radical striking the wall of the vessel will undergo recombination.

- 1429. Noyes, R.M. Photochemical Space Intermittency. A proposal for Measuring Diffusion Coefficients of Reactive Free Radicals. J. Am. Chem. Soc., 81, 566-70 (1959). c. A.,53, 8829 (1959). Mathematical discussion of the distribution in space, in a cell illuminated with a pattern of light and dark areas, of radicals that are produced photochemically and destroyed by a secondorder process.
- 1430. Noyes, W.A., Jr.
 Free Radicals, Activated
 Molecules, and Wall Effects
 in Photochemical Systems.
 J. Phys. and Colloid Chem.,
 55, 925-38 (1951).
 Discussion, 939, (1951).
 C. A.,46, 37 (1952).
 C. A.,42, 6225 (1948).
 The factors which affect the
 reliability of conclusions
 about rates of radical reactions are reviewed.
- 1431. Noyes, W.A., Jr.

 The Photochemical Study of the Reaction of Simple Alkyl Radicals with Oxygen.

 Festchr. Arthur Stoll, 1957, 64-71 (In English).

 C. A.,52, 15266 (1958).

 A review with numerous references.

- 1432. Nozaki, K.
 The Reactivity of Free
 Radicals in Polymerization
 Reactions.
 Discussions Faraday Soc.,
 1947, No. 2, 337-42.
 C. A.,43, 5731 (1949).
 C. A.,41, 4000-(1947).
- 1433. Nozaki, K.
 Initiating Free-Atom and
 Free-Radical Chain Reactions.
 U. S. 2,852,565, Sept. 16,
 1958.
 C. A.,53, 19838 (1959).
 The reactions are initiated
 by use of 0.5-5.0% linear
 polymer mol. yt. from 7 x
 10 to 7 x 10 and applying
 shear stresses in excess
 of values determined by
 the formula: 1 x 10 / mol.
 wt. = shear stress in dynes/
 sq. cm.

- 1434. Ochkur, V.I.
 Collisions of Slow
 Electrons with Hydrogen
 Atoms.
 Vestnik Leningrad. Univ.,
 13, No. 4, Ser. Fiz. i
 Khim. No. 1, 53-68 (1958).
 C. A.,53, 21137 (1959).
 Equations describing the
 excitation of H atoms were
 obtained by the variation
 principle and solved
 numerically for the 2s,
 2p, 3s, 3p, 3d, 4s, and
 4f states in the energy
 range from 13.5 to 65 e.v.
- 1435. Oda, R. & Tsaruta, T.
 Activation of Alkyl Radicals by Nitro Radicals. II.
 Repts. Chem. Research
 Tast., Kyoto Univ., 16,
 6-8 (1947).
 C. A., 46, 950 (1952).
- 1436. Ogg, R.A., Jr. & Polanyi,
 M.
 Substitution by Free
 Atoms and Walden Inversion.
 The Decomposition and
 Racemization of Optically
 Active Sec Butyl Iodide
 in the Gaseous State.
 Trans. Faraday Soc., 31,
 482-95 (1935).
 C. A.,29, 2906 (1935).
 Mechanism and rate constants.
- 1437. Ohnishi, S., Kashiwagi,
 M. & Nitta, I.
 Electron Spin Resonance
 Study of Irradiated Poly
 Vinyl Alcohol.
 Doitai to Hoshasen,1, 209-10
 (1958) (In English).
 C. A.,53, 7657 (1959).

1437. Cont.

Poly vinyl alc.(PVA) powder is irradiated by CO^{6O} γ-rays under vaccuum 10⁻⁵mm Hg and its electron spin resonance is investigated at 9500 Mc/sec. with a reflection type microwave bridge apparatus and Varian model V-500 spectrometer.

- 1438. Okabe, H. & Noyes, W.A., Jr.
 Relative Intensities of Fluorescence and Phosphorescence in Biacetyl Vapor.
 J. Am. Chem. Soc., 79, 801-6 (1957).
 C. A.,51, 7872 (1957).
 C. A.,50, 7563 (1956).
- 1439. Okabe, H. & Steacie,
 E.W.R.
 Fluorescence and Its
 Relation to Fhotolysis
 in Hexafluoracetone
 Vapor.
 Can. J. Chem., 36, 137-46
 (1958).
 C. A.,52, 19506 (1958).
 Irradiation by 3130A gives
 rise to fluorescence in
 region 3470 6000A; mechanism of reaction is
 discussed.
- 1440. Oki, K.
 Radical Reactions and the
 Stability of Molecular
 and Atomic Orbitals.
 Kagaku Science, 22, 420-1
 (1952).
 C. A.,46, 9903 (1952).
 Considerations of reactivity
 and unpaired electrons.

- 1441. Oki, M., Iwanura, H. & Urushibara, Y. Intramolecular Interaction between Hydroxyl Group and Aromatic Nucleus in 2 -Hydroxy= 4 -Nitrobiphenyl. Bull. Chem. Soc. Japan, 31, 769-70 (1958). C. A.,53, 9794 (1959). In the course of a study of the ultraviolet spectra of biphenyl derivatives, a phenomenon was observed that may be interpretable from the intermolecular interaction involving a participation of the aromatic nucleus, which led to study of the absorption spectra of 2 -hydroxy- 4 -hitrobiphenyl, and 4'-nitroisomer.
- 1442. Okubo, J. & Hamada, H. Dark Modification of Active Nitrogen.
 Phil. Mag., 15, 103-13 (1933).
 C. A.,27, 3662 (1933).
 C. A.,24, 2050 (1930).
 Did not confirm results published by Cario and Kaplan.
- 1443. Ol'dekop, Yu.A.
 Reactions of Some Alkyl,
 Aryl, and Acyloxy Radicals
 in the Liquid Phase.
 Sbornik Nauch. Rabot,
 Akad. Nauk Beloruss.
 S.S.S.R. Inst. Khim., 1958,
 No. 6, 243-65.
 C. A.,53, 9999 (1959).
 The interactions of a
 variety of radicals with
 themselves and with solvents are extensively
 studied.

- 1444. Oldenberg, 0.
 A Test for Free Radicals of Short Life.
 J. Chem. Phys., 2, 713-14 (1934).
 C. A., 28, 7166 (1934).
 C. A., 28, 6631 (1934).
 The gradual disappearance of OH absorption bands was determined at various time intervals after interrupting an electric discharge through water vapor. Some absorption remains after 1/8 sec.
- 1445. Oldenberg, O. Absorption Spectrum as a Test for Free Radicals. J. Phys. Chem., 41, 293-7 (1937). C. A.,31, 4598 (1937). C. A.,31, 4570 (1937). The advantages, limitations, and technical difficulties in the use of abs. spec. as a test for free radicals and atoms are discussed especially for the OH radical.
- 1446. Oldenberg, O. & Rieke, F.F.

 Kinetics of OH Radicals as Determined by their Absorption Spectrum.

 V. A Spectroscopic Determination of a Rate Constant.

 J. Chem. Phys., 7, 485-92 (1939).

 C. A.,33, 6720 (1939).

 C. A.,32, 7346 (1938).

- 1447. Oldenberg, O. The Energy of Dissociation, $H_00 = H + OH$. J. Chem. Phys., 17, 1059-61 (1949). C. A.,44, 2344 (1950). The various lines of evidence regarding the energy of dissociation $H_00 = H + OH$ are critically discussed. This gives a basis for discussing the energy of activation of the process: $OH + OH = H_2 + O_2$
- 1448. Olson, A.R. & Meyers,
 C.H.
 Hydrogen-Ethylene Reaction in the Presence
 of Excited Mercury Atoms.
 J. Am. Chem. Soc., 49,
 3131-4 (1927).
 C. A., 22, 379 (1928).
- 1449. Onishi, S. & Seki, S.
 Development of Physical
 Chemistry of Free Radicals.
 Kagaku no Ryoiki, 12,
 325-38 (1958).
 C. A.,52, 19367 (1958).
 A review with 71 references.
- 1450. Onyszchuk, M. & Sivertz,
 C.
 Photoinitiated Addition of
 Mercaptans to Olefins.
 II. Kinetics of the
 Addition of Butyl Mercaptan
 to 1-Pentene.
 Can. J. Chem., 33, 1034-42
 (1955).
 C. A., 50, 9159 (1956).
 C. A., 49, 7506 (1955).

- 1451. Orlov, M. Ya.
 Anomalous Excitation
 of Hydrogen in the
 Atmosphere of α Bootis.
 Astron. Zhur., 35, 75562 (1958).
 C. A.,53, 5862 (1959).
 This is a theoretical
 discussion of the observed anomalous excitation of H in the
 atm. of α bootis.
- R.

 Mass Spectrographic Investigations of Wall
 Reactions of Organic Molecules at High Temperatures.
 Z. physik Chem. (Frankfurt)
 (N.F.),4, 264-85 (1955).
 C. A.,49, 12952 (1955).
 Free CHz radicals, originating from Pb (CHz),4 have also been measured using this technique.
- Oster, G. & Mark, H.
 The Production of Organic
 Free Radicals by Light.
 J. Opt. Soc. Am., 43,
 283-9 (1953).
 C. A., 47, 6261 (1953).
 Experimental technique.
- 1454. Oster, G.K.
 Flash Photolysis of
 Gaseous Acetone.
 Univ. Microfilms (Ann
 Arbor, Mich.), Publ.
 No. 18352, 117 pp.;
 Dissertation Abstr., 16,
 1809 (1956).
 C. A., 51, 10245 (1957).

- 1455. Oster, G.K. & Marcus, R.A.

 Exploding Wire as a Light Source on a Flash Photolysis.

 J. Chem. Phys., 27, 189-92 (1957).

 C. A.,51, 17460 (1957).
- 1456. Oster, G.K. & Marcus,
 R.A.
 Photochemical Studies
 in Flash Photolysis.
 I. Photolysis of Acetone.
 J. Chem. Phys., 27, 4725 (1957).
 C. A.,52, 893 (1958).
 Exploding wire as light source.
- 1457. Osugi, J. The Kinetics of Methyl Free Radicals. I. The Mechanism of the Association Reaction between the Methyl Radical and the Iodine Atom. Rev. Phys. Chem. Japan, <u>21</u>, 86-91 (1951). C. A.,46, 3860 (1952). The rate of decomposition of CHzI upon irradiation with 2950A from a high pressure Hg lamp was studied by means of thermal conduction.
- 1458. Oswin, H.G., Rebbert, R.E. & Steacie, E.W.R.
 Photolysis of Acetone in the Presence of Mercury Dimethyl.
 Can. J. Chem., 33, 472-9 (1955).
 C. A., 49, 12137 (1955).
 Kinetics and energetics.

- 1459. Ouchi, K. & Takamatsu, T.

 The Chemical Reaction
 Induced by the Glow
 Discharge in Ammonia
 Gas. XIV.

 J. Electrochem.Soc. Japan,
 21, No. 8, 376-83 (1953).

 C. A., 48, 13406 (1954).
 C. A., 47, 12408 (1953).
 Spectroscopic observation
 of an ammonia discharge
 tube. H, N₂, NH, and N₂
 were detected.
- 1460. Ouchi, S., Inoue, R. & Yasuhira, S. Radical Chain Reaction of Degradation. III. Thermal Degradation of Polyisobutene. Chem. High Polymers Japan. 13, 31-7 (1956). C. A.,51, 3254 (1957). The relation between the yield of monomer and the average degree of polymerization of the polymer remainder is derived from a statistical consideration of the chain mechanism, and the experimental results are analyzed.
- 1461. Ouellet, L. & Ouellet, C.

 The Cool Flame of Ether.
 Can. J. Chem., 29, 76-88
 (1951) (In French).
 C. A., 45, 6492 (1951).
 C. A., 44, 9261 (1950).
 Description of apparatus.

1462. Overberger, C.G. & Gainer,
H.

Azo Compounds. XXIII. NeophylType Azo Compounds. Their
Decomposition and Rearrangement of the Neophyl-Type Free
Radical.
J. Am. Chem. Soc., 80, 4561-5
(1958).
C. A.,53, 5165 (1959).
The thermal decomposition of
the azo compounds (P-RC₆H₄CMe₂CHMeN:)₂ (R=H) (I),
(R=H) (I), (R=MeO) (II), and
(R=AcNH) (III) in solution
generated neophyl radicals.

- 1463. Padovani, C.
 The Chemical Utilization of
 Natural Gas.
 Riv.Combustibiliti, 6, 84104 (1952).
 C. A., 46, 8350 (1952).
 Conditions for the formation
 of CH, CH2, and CH3.
- 1464. Pake, G.E., Weissmann, S.I. & Townsend, J.
 Paramagnetic Resonance of Free Radicals.
 Discussions Faraday Soc., 19, 147-58 (1955).
 C. A.,50, 9869 (1956).
 Discussion of equipment and applications.
- 1465. Palazzo, F.C. & Palazzo, G.
 The Chemistry of Methylene and Free Radicals in the Chlorphyllis Cell.
 Boll.sci.facolta chim. ind.
 Bologna, 9, 55-77 (1951).
 C. A., 46, 3121 (1952).
 A lecture.
- 1466. Pallen, R.H. & Silvertz, C. The Photoinitiated Addition of Mercaptans to Olefins. III. The Kinetics of the Addition of Thiophenol to Styrene and to \$\mu\$-0ctene. Can. J. Chem., \(\frac{35}{35}\), 723-33 (1957). C. A.,\(\frac{51}{50}\), 9159 (1956).
- Palmer, H.B.
 Emission and Two-Body Recombination in Bromine.
 J. Chem. Phys., 26, 648-54 (1957).
 C. A.,51, 10245 (1957).
 C. A.,50, 3082 (1956).

- 1468. Paneth, F. A.& Peters, K. The Condensation and Re-Evaporation of Activated Hydrogen. Z. Elektrochem, 30, 504-8 (1924). C. A.,19, 753 (1925). The literature describing the two forms of active hydrogen, Hz and H, is reviewed. Methods of preparation and detection are described. When passed through a glass tube cooled by liquid air, Hz is held back quantitatively. It evaporates again when the temperature is raised.
- 1469. Paneth, F.
 Active Hydrogen.
 Z. Elektrochem., 30, 504-7 (1924).
 C. A., 19, 1996 (1925).

Prepared by two methods: (1) Incandescent Nernst filament, (2) H₂ is passed under reduced pressure through a Pd capillary heated to redness. Paneth supposes that the active hydrogen is H_{3} . All the active H formed was retained by a U-tube dipping in liquid air and was given off again when the refrigerant was removed.

- 1470. Paneth, F.A. & Hofeditz, W. Preparation of Free Methyl. Ber.,62B, 1335-47 (1929). C. A.,23, 5159 (1929). Preparation from Pb (CH₂), and detection by means of Bi, Sb, and Zn Mirrors.
- 1471. Paneth, F.A. & Hofeditz, W. Free Organic Residues in the Gaseous State.

 II. Preparation of Free Ethyl.

 Ber.,64B, 2702-7 (1931).

 C. A.,26, 1232 (1932).

 C. A.,25, 5889 (1931).

 C. A.,23, 5159 (1929).
- 1472. Paneth, F.A.
 Use of Free Methyl and
 Ethyl in Chemical Synthesis.
 Trans. Faraday Soc., 30,
 179-81 (1934).
 C. A., 28, 2320 (1934).
 C. A., 26, 1232-2 (1932).
 Compounds of Sb and Bi.
- 1473. Paneth, F.A. & Ioleit, H. Free Organic Radicals in the Gaseous State.

 IV. Synthesis of Antimony Cacodyl and Related Substances by the Use of Free Methyl and Free Ethyl.

 J. Chem. Soc., 1935, 366-71.

 C. A., 29, 3301 (1935).
 C. A., 26, 1232 (1932).

- 1474. Paneth, F.A., Hofeditz, W. & Wunch, A.
 Free Organic Radicals in the Gaseous State.
 V. The Reaction Products of Free Methyl in Hydrogen and Helium.
 J. Chem. Soc., 1935, 372-9.
 C. A., 29, 3301 (1935).
- 1475. Paneth, F.A., & Lautsch, W. Free Organic Radicals in the Gaseous State.

 VI. Attempts to Prepare Various Free Radicals.

 The Existence of Free Benzyl (PhCH₂).

 J. Chem. Soc.;1935, 380-3.

 C. A.,29, 3301 (1935).
- 1476. Pannetier, G. & Gaydon, A.G. Emission Spectra of a Methyl Chloride-Oxygen Flame Burning in Air.

 Compt. rend., 225, 1139-40 (1947).

 C. A., 42, 2177 (1948).

 C. A., 56, 33 (1942).

 The interior greenish blue cone contains C₂, CH, OH + CCl radicals. The exterior lilac-blue cone shows bands due to CH and (weakly) Clo.
- 1477. Pannetier, G. & Gaydon, A.G. Reaction Mechanism Involving the Free Radicals, C₂, CH and OH. Compt. rend.,225, 1300-2 (1947). C. A.,42, 2846 (1948).

- 1478. Pannetier, G. & Laffitte, P. A Reaction Mechanism Involving the Free Radicals, C2, CC1 and CBr.

 Compt. rend., 226, 72-4 (1948).

 C. A., 42, 5347 (1948).

 C. A., 42, 2177 (1948).
- 1479. Pannetier, G.
 Explanation of the Inhibitory Action of
 Sulfur Dioxide in the
 Formation of Carbon
 during Combustion by
 Reactions between Free
 Radicals.
 Compt. rend., 228, 478-9
 (1949).
 C. A., 43, 4145 (1949).
 C. A., 42, 5347 (1948).
- 1480. Pannetier, G. Spectrography of the Explosions of Chlorine Dioxide, ClO2, and the Mechanism of the Explosive Decomposition. Compt. rend., 231, 1495-6 (1950). C. A., 45, 4562 (1951). A continuous emission spectrum results with a maximum near 4740A which can be explained if the atoms recombine in the following manner: $Cl + Cl = Cl_2 + hv (non$ quantized) $0 + 0 = 0_2 + hv (non$ quantized)

- 1481. Pannetier, G.
 Free Radicals in Flames
 and Explosions.
 Cahiers Phys.,50, 54-84
 (1954).
 C. A.,49, 49 (1956).
 A review concerning interpretation of flame
 spectra including some
 theoretical discussion.
- 1482. Pannetier, G. & Guenebaut. H. Spectral Study of the Chemiluminescence Produced during the Decomposition of Anhydrous Hydrazine. New Considerations on the Origin of the & Band of Amonia. Compt. rend., 243, 1205-7 (1956). C. A.,51, 10245 (1957). Additional evidence is presented to substantiate the theory that the & band of NHz is due to the NH2 radical.
- 1483. Pannetier, G.
 The Role of Spectroscopy in the Study of
 Combustion.
 Congr.groupe avance
 methodes anal. spectrog.
 prod. met., 18, 1-39
 (1955).
 C. A., 52, 3483 (1958).
 Free radicals CH and OH.
 in the inner flame
 cone and possible mechanism.

- 1484. Paoloni, L.
 Nature of the Hydrogen
 Bond.
 J. Chem. Phys., 30, 104558 (1959).
 C. A., 53, 18615 (1959).
 The case of weak H bonds
 was developed in detail,
 with the 0-H... 0 bond as
 an example.
- 1485. Papazian, H.A. Free Radical Formation in Solids by Ion Bombardment. J. Chem Phys., 29, 44809 (1958). C. A.,52, 19516 (1958). c. A., $\frac{52}{52}$, 1712 (1958). The colors formed in condensed NHz, MeOH or MeI by use of a Tesla coil were the result of bombardment of both positively and negatively charged particles. The necessary electron bombarding energy was estimated to be = 20 kv
- 1486. Parker, C.A., Bridge, K. & Porter, G.
 Wave Length Effect in Flash Photolysis.
 Nature, 182, 130 (1958).
 C. A.,53, 65 (1959).
 C. A.,52, 19504 (1958).
 2500-3990A and 3600-4400A.
- 1487. Parker, C.A.
 Photoreduction of
 Methylene Blue. Preliminary Experiments of Flash
 Photolysis.
 J. Phys. Chem., 63, 26-30 (1959).
 C. A., 53, 7782 (1959).
 Semiquinone free radical produced by electron transfer
 from a water molecule.

- 1488. Parker, W.G. & Wolfhard, H.G. Carbon Formation in Flames.
 J. Chem. Soc., 1950, 2038-49.
 C.A., 45, 934 (1951).
- 1489. Parker, W.G. & Wolfhard, H.G. Radical Reactions of NO in Flames.
 Discussion Faraday Soc., 1953, No. 14, 97-103.
 C. A.,48, 1120 (1954).
 A preliminary study of combustion systems involving N oxides as oxidants has shown that reactions of NO with free radicals play an important part in determing the properties of these systems.
- 1490. Parr, R.G. & Crawford, B.L., Jr.
 A Physical Theory of Burning
 of Double-Base Rocket Propellants. I.
 J. Phys. & Colloid Chem., 54, 929-54
 (1950).
 C. A., 44, 8660 (1950).
 A model for a double-base propellant burning in three zones
 (foam, fizz, and flame) is
 heated theoretically. Radiation
 and diffusion are ignored and
 pressure is assumed constant
 throughout the reaction zone.
- 1491. Parravano, G.
 Free Radicals and Heterogeneous
 Catalysis.
 Chimica e industria (Milan),
 36, 85-90 (1954).
 C. A., 48, 8007 (1954).
 C. A., 74, 915 (1950).

- Parravano, G.
 Formation of Atoms
 and Free Radicals during
 the Corrosion of Metals.
 Rend. acad. sci. fis. e.
 mat., (Soc. nazl. sci.
 Napoli), 20, 293-8 (1953).
 C. A., 48, 13600 (1954).
 C. A., 47, 9740 (1953).
 C. A., 45, 5501 (1951).
 Recently formed metallic
 surfaces act as potential
 source of free electrons.
- 1493. Pars, H.G.
 Reaction of Nitrous
 Acid with Tertiary
 Nitrogen.
 Univ. Microfilms (Ann
 Arbor, Mich.), L. C.
 Card No. Mic 58-3720,
 148pp.; Dissertation
 Abstr., 19, 674-5 (1958).
 C. A., 53, 2913 (1959).
- 1494. Parti, Y.P. & Samuel, R. Absorption Spectra and Photodissociation of Simple Organic Molecules. Current Sci., 5, 386-7 (1937).
 C. A., 31, 3385 (1937).
- 1495. Patat, F. & Sachsse, H.

 Thermal Decomposition of Acetaldehyde and Propionaldehyde.

 Naturwissenschaften, 23, 247-8 (1935).

 C. A., 29, 5071 (1935).

 C. A., 28, 1655 (1934).

 The radical chain theory of Rice and Herzfeld is incorrect.

- 1496. Patat, F. & Sachsse, H.
 The Presence of Radicals
 in the Thermal Decomposition
 of Organic Molecules.
 Z. physik. Chem., B31, 10524 (1935).
 C. A.,30, 2471 (1936).
 The para-H method was used
 to investigate the H atom
 concentration in the thermal
 decomposition of Me₂CO, MeCHO,
 and EtCHO.
- 1497. Patat, F. The Radical Concentration in the Homogeneous Thermal Decomposition of Organic Molecules. Calculation of the I. Radical Concentration Found by the Para Hydrogen Method and the Reaction- $H_3C + H_2$. Z. physik.Chem., <u>B32</u>, 274-93 (1936). C. A.,30, 5104 (1936). C. A.,30, 2471 (1936). c. A., $\overline{29}$, 7809 (1935).
- 1498. Patat, F. The Radical Concentration in the Homogeneous Thermal Decomposition of Organic Molecules. The Radical Concentration in the Decomposition of Dimethyl Ether, Propane, and Discussion of the Experimental Method. Z. physki. Chem.; B32, 294-304 (1936). C. A.,30, 5105 (1936). The para-hydrogen method was used to determine the stationary-H concentration.

- 1499. Patat, F. Appearance of Radicals in Thermal Decomposition of Molecules and the Reaction, $CH_{x} + H_{0}$ Naturwissenschaften, 24, 62-3 (1936). C. A.,30, 7990 (1936). C. A.,28, 1655 (1934). All of the results indicate that the concentration of free radicals in homogeneous thermal decomposition of several substances is at most 1/1000 of that expected. The hydrocarbon decomposition mechanism proposed by Rice is discussed.
- 1500. Paterson, W.G. & Gesser, H. The Photolysis of Ketene at Low Temperatures. Can. J. Chem., 35, 1137-8 (1957).C. A.,<u>52</u>, 13443 (1958). c. A., $\frac{50}{50}$, 8335 (1956). The photochemical decomposition of CH_CO at 2700A was studied at -78°C. The quantum yield of CO was 2. Conclusions are (1) that the recombination of CH radicals does not occur appreciably at this temperature, (2) that the reaction $CH_0 + CH_0CO = C_0H_1 +$ CO has a very low activation energy, and (3) that under these conditions the primary dissociation of CH₂CO does not involve an excited state.
- 1501. Patrick, C.R. & Robb, J.C.
 Initiation Step in the
 Thermal Hydrogen + Oxygen
 Reaction.
 Trans.Faraday Soc.,51,
 1697-1703 (1955).
 C. A., 50, 11797 (1956).
 Poisoning of active centers
 by H₂O. Mechanism of thermal
 reaction is compared to that
 of Hg photosensitized reaction.

- 1502. Patrick, T.M., Jr.
 The Free Radical Addition of Aldehydes to α, β-Unsaturated Ketones.
 J. Org. Chem., 17, 1269-75 (1952).
 C. A., 47, 8018 (1953).
 RCHO are added to α, β-unsaturated ketones under free radical conditions to give diketones.
- 1503. Patsevich, I.V., Topchiev, A.V. & Shtern, V. Ya. Reaction of Alkyl Radicals with Nitrogen Dioxide. Doklady Akad. Nauk S.S.S.R., 123, 696-99 (1958). C. A.,53, 6986 (1959). The alkyl radicals derived from the interaction of Ho and CoH, formed in a tube connected with the discharge generator for the production of atomic H, were brought into contact with NO, in a directly adjoining reactor vessel.
- 1504. Pauling, L. & Wheland, G.W. The Nature of the Chemical Bond. V. The Quantum-Mechanical Calculation of the Resonance Energy of Benzene, Naphtalene, and the Hydrocarbon Free Radicals. J. Chem. Phys.,1, 362-74 (1932). C. A.,27, 3877 (1933). C. A.,26, 5461 (1932). Dissociation of substituted ethanes into free radicals is not due to a weak C-C bond, but to resonance among structures in which the unpaired electron is on the MeC and those where it is on other atoms.

- 1505. Pauling, L. & Wheland, G.W. Remarks on the Theory of Aromatic Free Radicals.
 J. Chem. Phys., 3, 315 (1935)
 C. A., 29, 4255 (1935).
 The quantum-mech. treatment of the phenylmethyl radical is discussed.
- 1506. Pauling, L.
 Light Absorption and Fluorescence of Triarylmethyl
 Free Radicals.
 J. Am. Chem. Soc.,66, 1985
 (1944).
 C. A.,39, 244 (1945).
 C. A.,38, 6200 (1944).
- 1507. Pavlov, D.A., Semanov, N.N. & Emanuel, N.M.

 Spectroscopic Examination of the Intermediate Products during Slow Oxidation of H.S. Bull. acad.sci.U.R.S.S., Classe sci. chim., 1942, 98-105.

 (English Summary).

 C. A., 38, 4498 (1945).

 C. A., 35, 2779 (1941).
- 1508. Pearson, T.G., Robinson, P.L., & Stoddart, E.M. Free Ethyl.

 Nature, 129, 832 (1932).

 C. A., 26, 4299 (1932).

 C. A., 25, 1232=2 (1932).

 C. A., 25, 5889 (1931).

 A confirmation of the work of Paneth and Lautsch; also Paneth and Herzfeld.

- 1509. Pearson, T.G., Robinson,
 P.L. & Stoddart, E.M.
 The Behavior of Metals,
 Particularly Lead and Bismuth
 in Atomic Hydrogen and Attempts to Prepare Atomic Hydrogen from Hydrides.
 Proc. Roy. Soc. (London),
 A142, 275-85 (1933).
 C. A.,28, 24 (1934).
 C. A.,24, 3750 (1930).
 C. A.,25, 5159 (1929).
 Repetition and confirmation
 of the experiments of Paneth.
- 1510. Pearson, T.G. Free Radicals and Atoms in Primary Photochemical Processes. The Photodissociation of Aliphatic Ketones and Aldehydes. J. Chem. Soc., 1934, 1718-22. C. A.,29, 2450 (1935). C. A., 28, 2270 (1934). C. A., 25, 5627 (1931). C. A., 23, 5159 (1929). Sb, Te, and Pb mirrors. Free radicals are found in the photolytic products of acetone, MeEtCO and Et_COI, but none with MeBuCO, AcH or EtCHO. These results agree with the different mechanisms suggested for ketones and aldehydes.

- R.H.

 The Free Propyl Radical.
 Nature, 136, 221 (1935).
 C. A., 29, 7277 (1935).
 Pr₂CO was streamed through unfiltered Hg arc radiation.
 Free radicals produced removed Hg mirrors at the edge of the radiated zone with the formation of propylmercuric bromide.
- 1512. Pearson, T.G. & Purcell, R.H. Free Radicals and Atoms in Primary Photochemical Processes. The Photodissociation of Aliphatic Aldehydes and Ketones. J. Chem. Soc., 1935, 1151-6. C. A.,29, 7809 (1935). c. A., $\overline{29}$, 2450 (1935). The formation of free radicals was studied by their reactions with metallic mirrors.
- Pearson, T.B. & Purcell, 1513. Free Radicals and Atoms in Primary Photochemical Processes. The Free Propyl Radical. J. Chem. Soc., 1936, 253-6. C. A.,<u>30</u>, 3326 (1936). C. A., 29, 7809 (1935). The Pr radical of halflife period 2.3x 10⁻³ sec. is formed during the photodissociation of ProCO in U.V.; detected by its action on As, Sb, Te, and Pb; are identified through conversion into rHgBr with precautions to exclude the excitation of the Hg used in identification.

- Pearson, T.G., Purcell, R.H. & Saigh, G.S.

 Methylene Preparation of CH₂ by the Thermal Dissociation of Me₂CO.

 J. Chem. Soc., 1938, 409-24,

 C. A.,32, 5367 (1938).
- 1515. Pearson, T.G.
 The Development of the Experimental Study of Free Radicals.
 School Sci. Rev., 20, 181-93 (1938).
 C. A., 33, 4477 (1939).
- 1516. Pease, R.N. Mechanism of the Slow Oxidation of Propane. J. Am. Chem. Soc., 57, 2296-9 (1935). C. A.,30, 1356 (1936). c. A., $\overline{23}$, 3436 (1929). The indicated stoichiometric equation is: $C_3H_8+2O_2 = MeOH + HCHO+ CO+H_2O.$ The mechanism is discussed in terms of Rice's radical chain theory, with MeO and CzH7 as the chain carriers. The starting and stopping of the chains is considered.
- 1517. Pecker, J.C. & Peuchot,
 M.
 Dissociation Constants
 of Diatomic Molecules of
 Astrophysical Interest.
 Mem. soc. roy. sci. Liege,
 18, 352-5 (1957).
 C. A.,51, 16027 (1957).
 The dissociation constants
 of the diatomic molecules,
 H, C2, N2, O2, CH, CN,
 CO, NH, and OH are calculated for a variety
 of conditions.

- The Kinetics and Mechanism of the Reaction between Methyl Radicals and Nitric Oxide.

 Univ. Microfilms (Ann Arbor, Mich.), Pub. No. 6336;
 Dissertation Abstr.,
 13, 1005-6 (1953),
 C. A.,48, 4296 (1954).
- 1519. Peltier, D., Pichevin, A., Dizabo, P. & Josien, M.L. Valence Frequencies of the Carbonyl Radical in a Series of Monoand Disubstituted Benzoic Acids and Esters. Relation with pK of the Acids. Compt. rend., 248, 1148-50 (1959) C. A.,53, 17954 (1959). Valence frequencies of CO group measured in CClh solutions at concentrations equal to or less than 0.01 M.
- 1520. Penkin, N.P. & Palladin,
 M.N.

 Determination of the Concentration of Excited Mercury
 Atoms in Discharge Tubes
 Containing Mercury Vapor
 and Inert Gases.

 Vestnik Leningrad Univ., 10,
 No. 8, Ser. Mat., Fiz. i
 Khim., No. 3, 113-22 (1955).
 C. A.,50, 13605 (1956).
 C. A.,50, 3885 (1956).

A schematic drawing of the experimental set-up and detailed data are given.

- 1521. Penkin, N.P.
 Concentration of Excited
 Atoms in the Discharge of
 Cadmium Vapors in Neon.
 Optika i Spektroskopiya,2,
 545-56 (1957).
 C. A.,51, 16077 (1957).
 Conditions of equilibium in
 plasma.
- 1522. Penner, S.S.

 Experimental Evidence for Anomalous Population Temperatures of OH in Flames.

 J. Chem. Phys., 20, 1334-5 (1952).

 C. A., 46, 10834 (1952).

 There is at present no direct and unequivocal evidence for the existence of anomalous rotational or vibrational temps. of OH flames.
- 1523. Penner, S.S., Gilbert, M. & Weber, D.
 Spectroscopic Studies of Low-Pressure Combustion Flames.
 J. Chem. Phys., 20, 522-23 (1952).
 C. A., 48, 6840 (1954).
 C. A., 46, 8962 (1952).
 Emission spectra from the luminous zone of a propane-oxygen flame burning at a pressure of 5 mm.
- 1524. Penner, S.S., Gilbert,
 M. & Weber, D.
 Spectroscopic Studies
 of Low-Pressure Combustion Flames.
 Natl. Bur. of Stand.
 U.S. Circ., 523, 35-7
 (1954).
 C. A.,48, 6840 (1954).
 Temperature determination by use of the
 rotational states of
 the propane molecule.

- 1525. Penner, S.S. & Thomson, A.

 Determination of Equilibrium Infrared Gas Emissivities from Spectroscopic
 Data.

 Transport Properties in
 Gases.
 Proc. Gas Dynamics
 Symposium, 2nd., Evanston,
 1957, 151-73.
 Pub. 1958.

 C. A.,52, 11567 (1958).
 A review with 68 references.
- 1526. Peyron, M.

 The Spectroscopic Study of the OH Molecule in Flames at Atmospheric Pressure.

 Ann. Univ. Lyon. Sci., Sect. B,1957, No. 9, 88 pp.

 C. A.,52, 12551 (1958).

 An analysis of the vibration-rotation bands of OH in the region 7200 9500A.
- 1527. Peyron, M.
 Atoms and Free Radicals
 Stabilized at Very Low
 Temperatures.
 Chim. mod.,4, No. 25,
 5-13 (1959).
 C. A.;53, 10867 (1959).
 Recent advances in preparing
 and studying free radicals
 are discussed for the purpose
 of showing the potential of
 phys.-chem. methods.
- 1528. Pfordte, K.
 The Formation of Hexachloroethane from Carbontetrachloride.
 J. prakt. Chem.,5, (4), 196-9 (1957).
 C. A.,52, 11592 (1958).

- 1529. Phelps, A.V.
 Studies of the Lifetimes
 of Metastable Atoms in
 the After-glow of RareGas Discharges.
 Phys. Rev.,82, 556-7 (1953).
 C. A.,46, 6926 (1952.)
- 1530. Phelps, A.V. & Pack, J.L.

 Measurement of Time-Varying
 Optical Absorption.

 Rev. Sci. Instr.,26, 45-9 (1955).

 C. A.,49, 12972 (1955).

 For the study of the kinetics
 of metastable atoms following
 a pulsed discharge.
- 1531. Phibbs, M.K. & Darwent, B. de B. Active Methyl Radicals in the Photolysis of Dimethyl Mercury. Trans. Faraday Soc.,45,541-5 (1949).
 C. A.,43, 7825 (1949).
- 1532. Phibbs, M.K. & Darwent, B. de B. The Reactions of Methyl Radicals with Cyclopropane, Ethylene Oxide, Methanol, and Dimethyl Ether.

 Can. J. Research, 28B, 395-402 (1950).

 C. A., 45, 2387 (1951).

 C. A., 43, 7825 (1949).

 C. A., 53, 5743 (1939).

 Me radicals produced by photochemical decomposition of Meo Hg.

- 1533. Phillips, G.O., Moody, G.J. & Mattok, G.L. Radiation Chemistry of Carbohydrates. I. Action of Ionizing Radiation on Aqueous Solutions of D-Glucose. J. Chem. Soc., 1958, 3522c. A.,53, 2655 (1959). Dilute aqueous solutions of D-glucose were irradiated with 1-m.e.v. electrons and Co 60 y-rays to determine degradation products.
- Pickup, K.G. & Trapnell, B.M.W.

 Recombination of Hydrogen Atoms at Metal Surfaces.

 J. Chem. Phys., 25, 182 (1956).

 C. A.,50, 15169 (1956).

 If an electronic factor operates in recombination, the rate determining step must involve chemisorbed H on a metal surface.
- 1535. Pieck, R. & Steacie, E.W.R. The Photolysis of Acetone in the Liquid Phase. The Gaseous Products.

 Can. J. Chem., 33, 1304-15 (1955).

 C. A., 50, 66 (1956).
- 1536. Pietsch, E. & Seuferling, F.
 Method of Determining the Activity of Mixed Catalysts. Recombination of H Atoms.
 Z. physik. Chem.,1931, 523-32.
 C. A.,25, 5076 (1931).
 The recombination of H atoms on a Pb-KCl and on a Pb-Tl surface was studied.

- 1537. Pietsch, E. & Seuferling, Systematic Investigation of the Activity of Multi-Component Catalysis for Recombination of H Atoms. Z. Elektrochem., 37, 655-65 (1931). C. A., 26, 363 (1932). c. A., $\frac{25}{25}$, 5076 (1931). Catalytic activity of Pb-Tl and Pb-KCl mixtures. The reaction was followed by a silver-constantin thermocouple embedded in the thin layer of catalyst used.
- 1538. Pietsch, E. & Seuferling, F.
 Solid Silver Hydride
 Prepared by Treating a
 Silver Plate with Atomic
 Hydrogen.
 Naturwissenschaften, 19,
 573-4 (1931).
 C. A., 26, 1535 (1932).
 C. A., 25, 2051 (1931).
 C. A., 22, 1262 (1928).
 C. A., 19, 1375 (1925).
- 1539. Pietsch, E. & Seuferling, F.
 Volatile Thallium and Lead Hydrides by Reduction with Atomic Hydrogen.
 Naturwissenschaften, 19, 574 (1931).
 C. A., 26, 1535 (1932).

A volatile Tl hydride can be prepared if a TlCl coating of Ag is used as a target for atomic hydrogen. Pb films give similar results on treatment with hydrogen.

- 1540. Piggott, M.R. The Reduction of Oxide Films by Atomic Hydrogen. Acta Cryst., 10, 364-8 (1957) C. A.,51, 11798 (1957). Thin films of oxides of Cu, Fe, Pb, and Ni were investigated by means of electron diffraction to determine the crystal state and composition of the film before and after the action of atomic hydrogen.
- 1541. Pinder, J.A. & LeRoy, D.J.
 Addition of Ethyl Radicals
 to Ethylene.
 Can. J. Chem., 35, 588-94
 (1957).
 C. A.,51, 12668 (1957).
- 1542. Piskunov, A.K., Manenkov, A.A. & Bagdasar'yan, Z.A. Paramagnetic Resonance of Potassium Ozonide. Zhur. Eksptl. i Teoret. Fiz., <u>37</u>, 302-4 (1959). C. A.,53, 19572 (1959). The paramagnetic resonance of polycrystalline samples containing 90% KOz was investigated at 2580, 9375, 12,000, and 37,000 Mc. at room and at liquid-air temperature. The 05 ion has the magnetic moment of a free radical.
- 1543. Pitts, J.N., Jr., Tolberg, R.S. & Martin, T.W.
 Vapor Phase Free Radical Addition-Elimination: Replacement of Acetyl by Methyl.
 J. Am. Chem. Soc., 76, 2843-4 (1954).
 C. A.,49, 8098 (1955).

- 1544. Pitts, J.N., Jr., Thompson, D.D. & Woolfolk, R.W. Free Radical Displacement Processes: Reactions of CHz and CDz Radicals with Crotonaldehyde and Methyl Propenyl Ketone.

 J. Am. Chem. Soc., 80, 66-70 (1958).

 C. A., 52, 5942 (1958).
- 1545. Platy, W.V.
 Organic Compounds of
 Thallium.

 I. The Pseudo-Metallic
 Character of the Radical
 RoT1.
 Helv. chim. acta, 17,
 1073-6 (1934).
 C. A.; 29, 1402 (1935).
- 1546. Poe, J.E.
 Kinetics of the Formation
 of Free Radicals.
 Univ. Microfilms (Ann Arbor,
 Mich.), Pub. No. 2045, 99pp;
 Microfilm Abstracts, 10,
 No. 4, 43-4 (1950).
 C. A., 45, 10187 (1951).
- 1547. Polanyi, M.
 Atomic Reactions.
 Z. angew. Chem., 44,
 597-602 (1931).
 C. A., 26, 346 (1932).
 A lecture.
- 1548. Polanyi, M.
 Developments of the Theory of Chemical
 Reactions.
 Naturwissenschaften,
 20, 289-96 (1932).
 C. A.,26, 4231 (1932).
 A review, principally
 of the Heitler-London
 theory as applied to the
 H + H₂ para = H₂ ortho +
 H reaction.

- 1549. Polanyi, M. & Style, D.W.G. An Active Product of the Reaction of Sodium Vapor with Alkyl Halides. Naturwissenschaften, 20, 401-2 (1932). C. A.,26, 4579 (1932). With a No stream, a few mm pressure, charged with Na vapor (10-'mm) passing into a reaction space filled with alkyl halide, it was found that a rapid gas reaction takes place which evidently yields free alkyl radicals, methyl or ethyl.
- 1550. Polanyi, M.
 Atomic Reactions.
 London: Williams and
 Norgate, Ltd.
 C. A.,27,891 (1933).
- 1551. Polanyi, M.
 Resonance and Chemical
 Reactivity.
 Nature, 151, 96-8
 (1943).
 C. A, 37, 2642 (1943).
 Activation energy for the
 pyrolysis of vinyl, Ph,
 Me, Et, Pr, Bu, Iso-Pr,
 tert-Bu, Allyl, Ac, Benzoyl,
 acetonyl and benzyl radicals.
- 1552. Pollard, W.G.
 Use of Surface States
 to Explain Activated
 Adsorption.
 Phys. Rev., 56, 32436 (1939).
 C. A., 33, 8101 (1939).
 The interaction of H atoms
 with surface, and electron
 states is investigated.

- 1553. Poltorak, V.A. & Voevodskii, V.V.
 A Single Chain Free
 Radical Mechanism for
 the Thermal Decomposition
 of Hydrocarbons.
 Doklady Akad. Nauk S.S.S.R.,
 91, 589-91 (1953).
 C. A.,49, 11265 (1955).
- 1554. Polyak, S.S. & Shtern, V. Ya.

 Mechanism for the Oxidation of Hydrocarbons in the Gas Phase.

 III. Radical-Chain Scheme for the Oxidation of Propylene.

 Zhur. Fiz. Khim., 27, 950-9 (1953).

 C. A., 49, 5937 (1955).
 C. A., 48. 13306 (1954).
- 1555. Polyakov, M.V. Mechanism of the Formation of Hydrogen Peroxide during the Catalytic Oxidation of Marsh Gas. Ber. Inst. physik. Chem., Akad. Wiss. Ukr. S.S.R., 8, 99-109 (1938); Khim. Referat. Zhur., 1, No. 11-12, 3-4. C.A.,33, 8482 (1939). A review of literature on the photochemical formation of water from marsh gas, and of different theories of the role of Hoo, in this process.

- 1556. Poole, H.G. Atomic Hydrogen. I. Calorimetry of Hydrogen Atoms. Proc. Roy. Soc. (London), A163, 404-14 (1937). C. A.,32, 2419 (1938). A continuous-flow calorimeter for the measurement of hydrogen atoms is described. Accuracy and errors are discussed. The heat of dissociation of H₂ at 300°K is 103,680 cals. per gram mole.
- Atomic Hydrogen.

 II. Surface Effects in the Discharge Tube.
 Proc. Roy. Soc. (London),
 A163, 415-23 (1937).
 C. A.,32, 2419 (1938).
 Constant and reproducible output is obtained by the use of a metaphosphoric acid lining of the discharge tube, in contrast to water on glass or water on silica surfaces.
- Atomic Hydrogen.

 III. Energy Efficiency of Atom Production in a Glow Discharge.

 Proc. Roy. Soc. (London), A163, 424-54 (1938).

 C. A.,32, 2419 (1938).

 High pumping speed, large cathode chamber and widebore vacuum system are desirable. The theory is critically considered in detail.

- 1559. Pople, J.A. & Nesbet, R.K. Self-Consistent Orbitals for Radicals.
 J. Chem. Phys., 22, 571-2 (1954).
 C. A., 48, 7417 (1954).
 C. A., 46, 7382 (1952).
 The iterative method of Roothaan.
- Higgins, H.C.
 Theory of the Renner
 Effect in the NH₂ Radical.
 Mol. Phys., 1, 372-83 (1958).
 C. A.,53, 19556 (1959).
 The observations of Dressler and Ramsay on the vibronic absorption spectrum of NH₂ are interpreted quantitatively in terms of a strong coupling between electronic and vibrational motions.
- 1561. Potter, A.E., Jr. & Berlad, A.L.
 The Quenching of Flames of Propane-Oxygen-Helium Mixtures.
 J. Phys. Chem., 60, 97-101 (1956).
 C. A., 50, 6155 (1956).
 C. A., 49, 2802 (1955).

A thermal quenching equation satisfactorily predicted the effect on quenching distance of replacement of argon by helium. A similar quenching equation, based on diffusion effects, did not.

- 1562. Porter, G. Flash Photolysis and Spectroscopy. A New Method for the Study of Free-Radical Reactions. Proc. Roy. Soc. (London), A200, 284-300 (1950). C. A.,45, 10065 (1951). A new technique of flash photolysis and spectroscopy has been developed by using gas-filled discharge tubes of very high power. An apparatus is described which produces a very great photochemical change, 80% or more, in one twenty-thousandth of a second.
- 1563. Porter, G. & Norrish,
 R.G.W.
 Spectroscopic Studies
 of the Hydrogen-Oxygen
 Explosion Initiated by
 the Flash Photolysis
 of Nitrogen Dioxide.
 Proc. Roy. Soc. (London),
 A210, 439-60 (1952).
 C. A.,46, 10898 (1952).
- 1564. Porter, G. & Wright, F.J. Studies of Free Radical Reactivity by the Methods of Flash Photolysis. The Photochemical Reaction between Chlorine and Oxygen. Discussions Faraday Soc., 1953, No. 14, 23-34. C. A.,48, 453 (1954). C. A., $\frac{47}{9}$, 12000 (1947). $C1 + O_2 + hv = C10 + C1$ $C1 + C\overline{10} = 2C10$ The mechanism of the reaction is discussed.

- 1565. Porter, G. & Wright,
 F.J.
 Primary Photochemical
 Process in Aromatic
 Molecules.
 II. Observations on
 the Triplet State in
 Aromatic Vapors.
 Trans. Faraday Soc., 51,
 1205-11 (1955).
 C. A.,50, 4645 (1956).
 C. A.,49, 15469 (1955).
 Spectroscopic observations
 by the flash photolysis
 technique.
- M.W.

 Spectroscopic Studies of the Phosphorescent States of Aromatic Hydrocarbons.

 Molecular Spectroscopy,
 Rept. Conf. Inst. Petroleum, London, 1954, 6-19 (1955).

 C. A.,50, 7600 (1956).

 Flash photolysis and spectroscopy for detection of labile molecules.
- 1567. Porter, G.
 Problems in the Spectroscopy of Free Radicals.
 J. phys. radium, 15, 497-9 (1954).
 C. A.,50, 9870 (1956).
 Most of the discussion deals with work in the visible and ultraviolet regions. Mention is made of work in the infrared and microwave regions.

- 1568. Porter, G. & Wright, F.J.
 Primary Photochemical
 Processes in Aromatic
 Molecules.
 III. Absorption Spectra
 of Benzyl, Anilino, Phenoxy,
 and Related Free Fadicals.
 Trans. Faraday Soc., 51,
 1469-74 (1955).
 C. A., 50, 10541 (1956).
 C. A., 50, 4645 (1956).
 C. A., 49, 14490 (1955).
- 1569. Porter, G. & Windsor, M.W. Observations on Short-Lived Free Radicals in Solution. Nature, 180, 187-8 (1957). C. A., 52, 57 (1958). C. A., 50, 10541 (1956).
- 1570. Porter, G.

 Metastable States in Photochemistry.

 Threshold of Space, Proc. Con.
 Chem. Aeron., 1956, 94-8 (1957).
 C. A.,52, 13441 (1958).
 Discussion of the mechanism
 of absorption of light by 02N2,
 also by anthracene and
 naphthalene in the vapor phase.
- 1571. Porter, G.
 Free Radicals and Triplet
 States in Aromatic Vapors.
 Chem. Soc. (London), Spec.
 Publ. No. 9, 139-49, discussion 150 (1957).
 C. A.,53, 11986 (1959).
 Benzyl and benzyl-type radicals were formed in the
 gas phase by flash photolysis
 of various aromatic molecules.

- 1572. Porter, G.
 Recent Progress in Free
 Radical Spectroscopy.
 Spectrochim. Acta, 14,
 261-70 (1959).
 C. A.,53, 14673 (1959).
 A review with 37 references.
- 1573. Porter, G.B. & Benson, S.W. The Reaction of Carbon Monoxide with Free Radicals.

 J. Am. Chem. Soc., 75,

 2773-4 (1953).

 C. A., 48, 1120 (1954).

 1. Me + CO = MeCO

 2. Ac + Me = COMe

 3. Me + Ac = Me COMe

 4. Me₂CO + CO = Me₂C + CO

 Radioactive CO provides a means of measurement of three and four.
- 1574. Porter, G.B.
 Tetramethylammonium
 Amalgam Detection of CH₃.
 J. Chem. Soc., 1954,
 760-1.
 C. A., 48, 6792 (1954).
- 1575. Porter, G.B.
 Photolysis of Ketene at
 Low Pressure.
 J. Am. Chem. Soc., 79,
 827-8 (1957).
 C. A., 51, 7873 (1957).
 At the lowest concentrations
 the yield of ethylene decreases, probably because of
 heterogeneous disappearance
 of methylene radicals.

- 1576. Porter, G.B.
 The Photolysis of
 Ketene at 3650A in
 the Presence of Oxygen.
 J. Am. Chem. Soc.,79,
 1878-80 (1957).
 C. A.,51, 11994 (1957).
 Oxygen virtually eliminates
 the dissociation of ketene
 into CO and methylene radicals at room temperature.
- 1577. Pottie, R.F., Hamill, W.H. & Williams, R.R., Jr. Diffusion and Hot Radicals Kinetics in the Photolysis of Methyl Iodide in Cyclohexane. J. Am. Chem. Soc., 80, 4224-30 (1958). C. A.,52, 19505 (1958). Solns. of MeI in cyclohexane were photolyzed at 2537A. The product, CH,, is attributed to reaction of hot Me radical with solvent and to reaction of thermal Me radicals with HI.
- 1578. Pravednikov, A.N. & Medvedev, S.S. Formation of Cross Links by Irradiation of Polyethylene with Ionizing Radiation. Trudy Pervogo Vsesoyuz. Soveshchaniya po Radiatsion. Khim., Akad. Nauk S.S.S.R., Otdel. Khim. Nauk, 1957, 269-73, Pub. 1958. C. A., 53, 7657 (1959). Processes occurring in polyethylene on irradiation with ionizing radiation were discussed.

- 1579. Pressman, J., Aschenbrand,
 L.M., Marmo, F.F., Jursa,
 A. & Zelikoff, M.
 Synthetic Atmospheric
 Chemiluminescence Caused
 by the Release of Nitric
 Oxide at 106 Km.
 Threshold of Space, Proc.
 Conf. Chem. Aeron., Cambridge,
 Mass., 1956, 235-40.
 C. A., 52, 16897 (1958).
- 1580. Prevorsek, D. Bands Due to the Vibrations of the NH Group in the N, N'-Disubstituted Acetamidines. Bull. soc. chim. France, 1958, 788-95. C. A.,53, 18630 (1959). C. A.,51, 12659 (1957). The NH absorption bands at 3440 and 3380 cm 1 in N. N'-disubstituted acetamidines are shifted by H bonding in the solid state to the region of 3250 to 2100 cm
- 1581. Price, C.C.
 Influence of Structure on the Relative Reactivity of Free Radicals in Polymerization Systems.
 Discussions Faraday Soc., 1947, No. 2, 304-9.
 C. A., 43, 5629 (1949).
- 1582. Price, C.C. & Morita, H. The Reaction of Methyl Radicals with Isobutyryl and α-Deuterioiso Butyl Chlorides.

 J. Am. Chem. Soc.,75, 3686-8 (1953).
 C. A.,48, 10560 (1954).

- 1583. Price, S.J.W. & Trotman-Dickenson, A.F.
 Kinetics of Reaction
 of Methyl Radicals
 with Toluene.
 J. Chem. Soc.,1958,
 4205-7.
 C. A.,53, 2752 (1959).
 Pyrolysis of a metal
 alkyl in the presence
 of a large excess of
 toluene gives CH₁ by
 the reaction CH₂ +
 toluene = CH₁ + PhCH₂,
 and C₂H₆ by the reaction, 2CH₃ = C₂H₆.
- 1584. Prilezhaeva, N.
 The Detection of Iodine
 Atoms in the Optical
 Dissociation of the
 Vapors of Iodine Salts.
 Physik. Z. Sowjetunion,
 1, 189-202 (1932).
 C. A.,26, 5013 (1932).
 HgI₂ + hv = HgI' + I.
- 1585. Prilezhaeva, N. & Terenin, A.N. Free Radicals in the Photodissociation of Gaseous Metal Alkyls. Trans. Faraday Soc., 31, 1483-7 (1935). C. A.,30, 963 (1936). c. A., $\overline{28}$, 5758 (1934). Disappearance of metal layers under action of free radicals, Me CO, Me CO, Me Hg and EtP64; most effective radiation 2000 - 2100A.
- 1586. Prilezhaeva, N.A.
 The Decomposition of
 Tetraethyl Lead in the
 Glow Discharge.
 Compt. rend. acad. sci.
 U.R.S.S., 2, 252-4,
 In English, 254-5 (1934).
 C. A., 28, 7166 (1934).

- 1587. Pritchard, G.O., Pritchard,
 H.O. & Trotman-Dickenson, A.F.
 The Reactions of Methyl Radicals
 with Acetone, Di-Ethyl Ketone,
 and Di-Tert-Butyl Peroxide.
 J. Chem. Soc., 1954, 1425-8.
 C. A., 49, 4506 (1955).
 C. A., 42, 2844 (1948).
- 1588. Pritchard, G.O., Pritchard, H.O., Schiff, H.I. & Trotman-Dickenson, A.F.
 Reactions of Trifluoromethyl Radicals.
 Trans. Faraday Soc., 52, 849-57 (1956).
 C. A.,51, 1739 (1957).
 Photolysis and activation energy of the process.
- 1589. Pritchard, G.O. & Steacie, E.W.R. The Gas-Phase Reaction of Methyl Radicals with Hexafluroacetone.

 Can. J. Chem., 35, 1216-24 (1957).

 C. A., 52, 5286 (1958).

 The mechanism of the photolytic and thermal decomposition of (MeN.) in the presence of (F₃C²)2 CO and related reactions is discussed.
- 1590. Pritchard, H.O., Pyke, J.B. & Trotman-Dickenson, A.F.
 A Method for the Study of Chlorine Atom Reactions.
 The Reaction, Cl + CH₁ = CH₂ + HCl.
 J. Am. Chem. Soc., 76,
 1201-2 (1954).
 C. A., 48, 5618 (1954).
 A direct estimate of Cl atom concentration was not necessary.

- 1591. Pritchard, H.O.
 Interpretation of the
 Kinetics of Mercury Alkyl
 Pyrolysis.
 J. Chem. Phys., 25, 26770 (1956).
 C. A., 50, 16311 (1956).
 The concept of localization of activation
 energy within critical
 bonds.
- 1592. Proisy, P.
 Analysis of the NH₂
 Bonds Observed in
 the Visible Region of
 the Spectrum with
 Respect to a Study of
 the Spectra of Comets.
 Compt. rend., 243, 13057 (1956).
 C. A.,51, 4138 (1957).
- 1593. Proisy, P.
 Bands I and II of
 NH2 Observed in the
 Spectrum of Ammonia.
 Compt. rend., 244, 27845 (1957).
 C. A., 51, 14416 (1957).
 The bands I and II usually
 observed in the spectra
 of comets, have been observed in weakly excited
 NH3.
- 1594. Proisy, P.

 NH and NH₂ in the Spectrum of Ammonia.

 Mem. soc. roy. sci. Liège, 18, 454-70 (1957).

 C. A.,51, 16093 (1957).

 A discussion of the interpretation of the α-bands of NH₃ as belonging to NH and NH₂.

- 1595• Prokudina, V.S. Determination of the Rotation Temperature of Hydroxyl in the Upper Atmosphere. Izvest. Akad. Nauk S.S.S.R., Ser. Geofiz., 1959, No. 4, 629-31. C. A.,53, 16684 (1959). The temperature was determined from the emission spectrum of OH, for which rotationvibration bands in the ²II - ²II state were observed in the glow of the night sky.
- 1596. Provotorov, B.N. Chemical Reactions of Atoms with an Energy Comparable with the Activation Energy. Doklady Akad. Nauk s.s.s.r.,<u>12</u>0, 838-40 (1958).c. A.,<u>53</u>, 10914 (1959). A method of expressing the probability of a chemical reaction for the calculation of the specific velocity of a chemical reaction was derived analytically when the atomic activation energy was comparable to the activation energy of the chemical reaction.
- 1597. Pucheault, J.
 Molecular and Radical
 Yields by α-Particle
 Radiolysis of Aqueous
 Solutions.
 Compt. rend., 246, 409-12
 (1958).
 C. A., 52, 9786 (1958).

- 1598. Pullman, A. & Berthier, G.
 Electronic Structure of Free Radicals and Biradicals.
 Bull. soc. Chim. France, 1948, 1056-61.
 C. A., 43, 2511 (1949).
 The electronic structures of various free radicals are determined by the methods of mesomerism and molecular orbitals.
- 1599. Pullman, A.
 Electronic Structure
 of Some Free Radicals.
 Discussions Faraday
 Soc., 1947, No. 2,
 26-35.
 C. A., 43, 5732 (1949).
 C. A., 43, 2511 (1949).
 C. A., 41, 647 (1947).
 Agreement is good for
 the bond order of link
 and for the free valence
 of the C atoms.
- 1600. Pullman, B. & Berthier, G. Electronic Structure and Chemical Properties of Hydrocarbons with Cumulative Double Bonds. Allenic Type. Bull. soc. chim. France, 1949, 145-50. C. A.,43, 5733 (1949). The molecular orbital method is applied to hydrocarbons containing series of adjacent double bonds.

- 1601. Pullman, B.
 The Mechanism of Radical
 Reactions in Conjugated
 Organic Molecules.
 V. The Methyl Affinity
 of Dienes.
 J. chim. phys., 55, 790-2
 (1958).
 C. A.,53, 8058 (1959).
 The Me affinities of dienes
 can be correlated with the
 radical localization energies
 calculated for these compounds.
- 1602. Purmalis, A.
 Activation Energy of
 Radical Reactions.
 Zhur. Fiz. Khim.,30,
 172-6 (1956).
 C. A.,50, 10490 (1956).
 A method for a comparative
 estimation of the activation
 energies of radical reactions
 is discussed and shown
 to be useful in certain
 cases.
- 1603. Pushkareva, Z.V. & Radina, Preparation and Properties of Phenazinium Salts. Relation between Chemical Structure and Ability to Form Free Radicals of Nitrogen. Doklady Akad. Nauk S.S.S.R., 123, 301-4 (1958). C. A.,53, 7184 (1959). Phenazine is capable of forming free radicals of N which are not analogs of AroN type, but are of phenazinium salt type.

1604. Putnam, A.A. & Smith, L.R.
The Extinction Limit of Laminar Flames.
4th Symposium on Combustion, Cambridge, Mass., 1952, 708-14 (1953).
C. A.,49, 9253 (1955).
Dependence on radical concentration.

- 1605. Raal, F.A. & Danby,
 C.J.
 The Reaction of
 Methyl Radicals with
 Olefins.
 I. The Temperature
 Coefficients of the
 Induced Polymerization
 of Ethylene. 3000A.
 J. Chem. Soc., 1949,
 2219-22.
 C. A., 44, 2834 (1950).
 C. A., 36, 344 (1942).
- 1606. Raal, F.A. & Danby,
 C.J.
 The Reaction of Methyl
 Radicals with Olefins.
 II. The Comparison
 of the Reactivity of
 Different Olefins.
 J. Chem. Soc., 1949,
 2222-5.
 C. A., 44, 2834 (1950).
 Effect of increasing
 molecular weight of
 the olefin.
- 1607. Raal, F.A., Danby, C.J. & Hinshelwood, C.N. The Reaction of Methyl Radicals with Olefins. III. Reaction with Mixtures of Ethylene and Higher Olefins. J. Chem. Soc., 1949, 2225-30. C. A.,44, 2834 (1950). Radicals derived from the higher olefins added to the CoH4 and regenerated CHz groups under conditions where they would normally be isomerized and thereby terminate the chain.

- 1608. Raal, F.A. & Danby, C.J. The Reaction of Methyl Radicals with Olefins. IV. The Reaction with Tetrafluoroethylene and Vinyl Fluoride. J. Chem. Soc., 1950, 1596-9. C. A., 45, 1413 (1951). C. A., 44, 2834 (1950). A chain polymerization was assumed to be initiated by methyl radicals from the AcH photolysis.
- 1609. Raal, F.A. & Steacie, E.W.R.

 The Reaction of Methyl Radicals with Some Halogenated Methanes.

 J. Chem. Phys., 20, 578-81 (1952).

 C. A., 46, 10811 (1952).

 C. A., 45, 9455 (1951).

 Methyl radicals produced by the photolysis of (CH₃)₂ CO.
- Diesen, R.W.
 Unimolecular Decomposition
 of Chemically Activated
 Sec-Butyl Radicals from
 H Atoms Plus Cis-2-Butene.
 J. Chem. Phys., 30, 73547 (1959).
 C. A.,53, 15726 (1959).
 Chemically activated secBu radicals were produced
 at -103° and 25° by reaction of H atoms with
 cis-2-butene.

- 1611. Radina, L.B., Pushkareva, Z.V. & Kososhko, Z. Yu. Structure, Properties, and Ability to Dissociate into Free Radicals of Some Hydrazine Derivatives. The Problem of Connection between Chemical Structure and Ability to Form Free Radicals of Nitrogen. Doklady Akad. Nauk S.S.S.R. 123, 483-6 (1958). C. A.,53, 7064 (1959). Steric factors appear to be important among others in the determination of ability of tetraarylhydrazines to form free radicals of nitrogen.
- 1613. Raik, S.E.
 The Mechanism of the
 Catalytic Transformations
 of Polymethylene Hydrocarbons.
 J. Gen. Chem. U.S.S.R., 11,
 324-30 (1941).
 C. A.,35, 5853 (1941).
 Isomerization and aromatization of the hydrocarbons
 go through intermediate
 free radicals.
- 1612. Raizer, Yu. P.
 Air Glow during a Strong
 Explosion and the Minimum
 Brightness of the Fireball.
 Zhur. Eksptl. i. Teoret.
 Fiz., 34, 483-93 (1958).
 C. A.,52, 9792 (1958).
 Optical, shockwave, and chemical effects of a nuclear explosion.

- 1614. Rajewsky, B., Six, E. & Wolf, I. Importance of Excitations and Ionizations for the Effects of Ultraviolet Light and Soft X-Rays on Biological Materials. Proc. Intern. Photobiol. Congr. 1st, Amsterdam, 1954, 347-51. In German. C. A.,53, 5884 (1959). To elucidate further the effect of radiation on organic materials: 1. The primary acts during irradiation of H₂0. 2. The changes of abscrption subsequent to irradiation of aq. solns. of organic substances were investigated.
- 1615. Rajhenback, A. & Szwarc, M.

 Abstraction of Hydrogen Atoms from Bridgehead Positions by Methyl Radicals.

 Proc. Chem. Soc., 1958, 347.

 C. A.,53, 14969 (1959).

 Relative rate constants k½/k1 of abstraction per active H by Me radicals are measured and compared.
- 1616. Raley, J. H., Rust,
 F. F. & Raughan, W. E.
 Decomposition of DiTert-Alkyl Peroxides.
 I. Kinetics.
 J. Am. Chem. Soc.,
 70, 88-94 (1948).
 C. A., 42, 2844 (1948).

- 1617. Raley, J.H., Rust,
 F.F. & Vaughan, W.E.
 Decomposition of DiTert-Alkyl Peroxides.
 II. Reactions of the
 Resultant Free Radicals.
 J. Am. Chem. Soc., 70,
 95-9 (1948)...
 C. A., 42, 2844 (1948).
- 1618. Raley, J.H., Rust,
 F.F. & Vaughan, W.E.
 Some Free Radical Reactions of Hydrogen
 Chloride.
 J. Am. Chem. Soc., 70,
 2767-70 (1948).
 C. A., 42, 8588 (1948).
 C. A., 40, 2106 (1946).
 The effect of radiation
 from a hydrogen lamp
 on HCl-C₂H₁ mixtures
 was studied at two
 temperatures.
- 1619. Raley, J.H., Porter, L.M., Rust, F.F. & Vaughan, W.E. The Oxidation of Free Methyl Radicals. J. Am. Chem. Soc., 73, 15-17 (1951). C. A., 45, 6994 (1951). The oxidation, 120-68°, of free methyl radicals obtained by decomposition of tert-Bu₀0 produces меон, со, нсбон, нсно, CO₂, H₂, and fraces of H. Since no CH₄ C₂H₆ is formed, it was concluded that the only significant reaction of free Me is a combination with 0 to form the MeOO free radical.

- 1619. Cont.
 - The major reactions of the HCO radical probably involve Hatom donation to other free radicals and oxidation.
- D.O.
 Formation of Ether by
 Association of Alkyl
 and Alkoxy Free Radicals.
 J. Am. Chem. Soc., 74,
 1606-7 (1952).
 C. A., 48, 108 (1954).
 Pyrolysis of MeOOCEtMe
 yielded MeOEt. Other
 radical reactions predominate over ether
 formation.
- 1621. Ramsey, D.A. Absorption Spectra of Free Radicals in Continuously Irradiated Photochemical Systems. J. Chem. Phys. 21, 165-6 (1953). C. A.,47, 7903 (1953). An apparatus is described in which the absorption spectra of stationary-state concns. of NH, radicals from NHz were obtained with an exposure time of two min. Approx. 40 lines of the 0,0 band of CN were obtained in the same apparatus.
- 1622. Ramsey, D.A.
 Electronic Spectrum and
 Structure of the Free NH₂
 Radical.
 J. Chem. Phys., 25, 188-9
 (1956).
 C. A., 50, 14362 (1956).
 C. A., 47, 7318 (1953).
 Flash photolysis apparatus.

- Absorption Spectra
 of Free PH, and PD,
 Nature,178, 374-5
 (1956).
 C. A.,51, 850 (1957).
 C. A.,50, 4636 (1956).
 Photographed in the
 second order of a 21 ft.
 grating spectrograph
 during flash photolysis
 of PH, and PD, at about
 5 mm.
- 1624. Ramsey, D.A. Electronic Spectra of Polyatomic Free Radicals. Ann. N.Y. Acad. Sci., <u>67</u>, 485-98 (1957). C. A.,51, 16093 (1957). A review of the spectra of NH2, C2, CF2, and other free radicals. Spectra of BrO and PH_z were observed after flash photolysis. Spectra of HCO, HNO, NH, and PH, are discussed.
- 1625. Range, F.
 Reaction Chains in the
 Photochemical Reaction
 of Oxalyl Chloride and
 of Phosgene with Hydrocarbons.
 Z. Elektrochem.,60, 9568 (1956).
 C. A.,51, 6358 (1957).
 The radicals react with
 (COC1)₂ to form carboxylic
 acids but do not react
 with COC1₂.
- 1626. Ransil, B.J.
 Application of Configuration Interaction to the H₃ Complex.
 J. Chem. Phys., 26, 971 (1957).
 C. A., 51, 12633 (1957).

- 1627. Rao, K.S.R.
 Active Nitrogen. A
 Review of Experiments
 and Theories.
 J. Karnatak Univ., I,
 No. 1, 143-56 (1956).
 C. A., 52, 5062 (1958).
 39 references.
- 1628. Rayleigh, L.
 Oxygen Afterglow.
 Proc. Roy. Soc., A150,
 34-6 (1935).
 C. A., 29, 5021 (1935).
- 1629. Rayleigh, L.
 New Studies on
 Active Nitrogen.
 I. Brightness of the Afterglow under Varied Conditions
 of Concentration and Temperature.
 Proc. Roy. Soc. (London),
 A176, 1-15 (1940).
 C. A.,35, 692 (1941).
- 1630. Rayleigh, L. Further Studies on Active Nitrogen. III. Experiments to Show Traces of Oxygen or Other Impurity Affect Primarily the Walls of the Vessel, and Not the Phenomena. in the Gas Space. Proc. Roy. Soc. (London),A180, 123-39 (1942). C. A., 36, 5094 (1942). When a minute 0 tributary is added to the N gas stream it takes longer to assert its action than the time needed to change the gas composition. which indicates that the effect of the O₂ is on the walls of the tube. Also, the effect of treating the vessel is examined.

- 1631. Razumovskii, V.V.
 Electronic Structure and Reactivity of Organic Free Radicals.
 Zhur. Obshchei Khim.,
 27, 1215-17 (1957).
 C. A.,52, 2729 (1958).
 In light of the probable electron demand or supply by the groups attached to the atom bearing the odd electron.
- 1632. Razuvaev, G. &
 Fetyukova, V.
 The Reaction of
 Radical Cleavage
 from Completely
 Assymetrical Derivatives of Tin.
 J. Gen. Chem.,
 U.S.S.R., 21, 110712 (1951).
 English Trans.
 C. A., 46, 7518 (1952).
 C. A., 46, 1479 (1952).
- 1633• Razuvaev, G.A. & Brilkina, T.G. Free-Radical Reactions of M (B PHu). Doklady Akad. Nauk s.s.s.r.,85,815-18 (1952).C. A.,47, 3744 (1953). Reactions of LiBPh, in respect to the possibility of radical fission, were studied with metallic Hg as the radical-fixation reagent.

- Vasileiskaya, N.S.
 Free Radical Reactions
 of Carbon Tetrachloride,
 CCl₁₄.
 Uspekhi Khim., 22, 36-61
 (1953).
 C. A., 48, 431 (1954).
 A review with 105 references
 on the properties and
 reactions of CCl₃ radical.
- 1635. Razuvaev, G.A., Ol'dekop, Yu. A., Sorokin, Yu. A. & Tverdova, V.M.
 Free Radical Reactions of Lead Tetraacetate.
 J. Gen. Chem. U.S.S.R., 26, 1887-8 (1956).
 English Translation.
 C. A.,51, 14547 (1957).
 C. A.,51, 4268 (1957).
- 1638. Razuvaev, G.A., Osanova, N.A. & Shlyapnikova, I.A. Radical Reaction of Pentaphenylphosphorus.

 IV. Reactions of Pentaphenylphosphorus with Methyl Iodide. Mechanism of Radical Reactions of Pentaphenylphosphorus Studied by Means of Diphenylpierylhydrazine and Diphenylpicrylhydrazyl.

J. Gen. Chem. U.S.S.R., 27, 1539-42 (1957). English Translation. C. A.,53, 4176 (1959). C. A.,52, 3715 (1958).

- 1637. Rebbert, R.E. &
 Steacie, E.W.R.
 The Photolysis of
 Mercury Dimethyl
 in the Presence of
 Hydrocarbons.
 J. Chem. Phys.,21,
 1723-6 (1934).
 Can. J. Chem.,31,
 631 (1953).
 C. A.,48, 452 (1954).
 CH₃ + RH = CH_h + R.
- 1638. Rebbert, R.E. & Steacie, E.W.R. Photolysis of Mercury Dimethyl with Deuterium. Can. J. Chem., 32, 113-16 (1954).C. A., 48, 5656 (1954). C. A., 48, 2481 (1954). A study of the photolysis of Hg dimethyl with D in the temperature range 27-253°C showed that the activation energies for the two reactions Me + D_0 = MeD + D and 2Me=C2H6 were related by equation E1- $1/2 E_2 = 12.7 - 0.5 K$ cal/mole.
- 1639. Reed, J.F. & Rabinovitch, B.S. The Sodium Diffusion Flame Method for Fast Reactions. II. Reactions of Fluorinated Methyl Chlorides. J. Phys. Chem., 61, 598-605 (1957). C. A.,<u>51</u>, 13530 (1957). C. A., 49, 7935 (1955). The reaction of Na atoms with CH₃Cl, CFH₂Cl, CF₂HCl, and CF3C1.

- 1640. Reed, R.I.
 Pyrogenic Formation of
 Ketones.
 J. Chem. Phys., 21, 377-8
 (1953)...
 C. A., 48, 5082 (1954).
 C. A., 47, 2024 (1953).
- 1641. Rehner, J., Jr.
 Relation between Rate
 Constants, Frequency
 Factors, and Activation
 Energies in Polymerization
 Reactions.
 J. Polymer Sci.,10,
 442-5 (1953).
 C. A.,47, 7301 (1953).
 The propagation rate is
 treated as a diffusion
 process.
- 1642. Reilly, C.A. & Rabinovitch, B.S.
 Use of a Low-Temperature
 Bolometer for Detecting
 a Beam of Free Radicals.
 J. Chem. Phys., 19, 2489 (1951).
 C. A., 45, 6491 (1951).
 C. A., 41, 905 (1947).
 A platinum strip was used as the recombining surface.
- 1643. Reinecke, L.H.

 Mechanism of the LewisRayleigh Afterglow of
 Active Nitrogen.
 Z. Physik.,135, 361-75
 (1953).
 C.A.,47, 12000 (1953).
 Experiments were conducted
 in which the dependence of
 afterglow on wall temperature
 and on foreign gases were
 studied.

- 1644. Reitz, D.C. & Weissman, S.I.
 Spin Exchange in a Biradical.
 J. Chem. Phys., 27, 968 (1957).
 C. A., 52, 2529 (1958).
- 1645. Reitz, D.C.
 Intramolecular Spin
 Exchange in Some Organic
 Free Radicals.
 Univ. Microfilms (Ann
 Arbor, Mich.), L.C.
 Card No. Mic 59-1748,
 77pp.; Dissertation Abstr.,
 20, 525-6 (1959).
 C. A.,53, 21178 (1959).
- 1646. Rekers, R.G. & Villars, Flame-Zone Spectroscopy of Solid Propellants. II. Double Base Propellant, JPN. J. Opt. Soc. Am., 46, 534-7 (1956). C. A.,<u>50</u>, 11817 (1956). C. A., 48, 13435 (1954). A continuous spectrum extending to 3200A. Lines due to Na, K, Ca, Cu, and Fe. Bands attributed to Co were observed. bands originate from surrounding atmos.
- 1647. Rembaum, A. & Szwarc, M.
 Kinetics of the Thermal
 Decomposition of Diacetyl
 Peraxide.

 I. Gaseous Phase.
 J. Am. Chem. Soc., 76,
 5975-8 (1954).

 C. A., 49, 4387 (1955).
 The reaction was investigated between 90 and 190 in a flow system in the presence of toluene or benzene and obeyed first-order kinetics.

- 1648. Ricca, M. & Briner, E. The Chemical Action of Electric Discharges. XXXVIII. Calorimetric, Electric, and Oscillographic Measurements of Ozone Production by Silent Discharges in Oxygen at Different Temperatures, Pressures, and Frequencies Varying from 11 to 1380 Cycles/ Sec. Helv. Chim. Acta, 38, 329-39 (1955). In French. C. A., <u>49</u>, 5974 (1955). C. A., $\frac{47}{47}$, 11040 (1953).
- 1649. Rice, F.O.
 Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals.
 I. Saturated Hydrocarbons.
 J. Am. Chem. Soc., 53, 1959-72 (1931).
 C. A., 25, 2967 (1931).
- 1650. Rice, F.O., Johnston, W.R. & Evering, B.L. Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. II. Experimental Evidence of the Decomposition of Organic Compounds into Free Radicals. J. Am. Chem. Soc., 54, 3529-43 (1932). c. A.,<u>26</u>, 5289 (1932). c. A., 25, 2967 (1931). C. A., $\overline{23}$, 5159 (1929). A condensable gas such as water vapor or COp can be substituted for the permanent gas used in the experiments of Paneth and Hofeditz.

- 1651. Rice, F.O.
 Thermal Decomposition
 of Organic Compounds
 from the Standpoint of
 Free Radicals.
 III. The Calculation
 of the Products Formed
 from Paraffin Hydrocarbons.
 - J. Am. Chem. Soc., 55, 3035-40 (1933).
 C. A., 27, 3910 (1933).
 C. A., 26, 5289 (1932).
 A quantative calculation of the decomposition products of paraffin hydrocarbons.
- B.L.
 Formation of Free Radicals from Aliphatic Azo Compounds.

 J. Am. Chem. Soc., 55, 3898-9 (1933).

 C. A.,27, 5057 (1933).

 Decomposition of azoisopropane in Me₂CO at 450-550°. Formation of a fragment of comparatively long life; iso-Pr was not identified.
- 1653. Rice, F.O. & Dooley, M.D. Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. IV. The Dehydrogenation of Paraffin Hydrocarbons and the Strength of the C-C Bond. J. Am. Chem. Soc., 55, 4245-7. c. A.,<u>27</u>, 5713 (1933). c. A., 27, 3910 (1933). Activation energy kinetics of the reaction, strength of the C-C bond.

- 1654. Rice, F.O. & Glas brook, A.L. Free Methylene Radical.

 J. Am. Chem. Soc., 55, 4329-30 (1933).

 C. A., 27, 5714 (1933).

 Reaction with mercury of the products of thermal decomposition of Et₂O CH₂N₂.
- 1655. Rice, F.O. & Johnston, Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. V. The Strength of Bonds in Organic Molecules. J. Am. Chem. Soc., 56, 214-19 (1934). C. A., 28, 1655 (1934). C. A., 27, 5713 (1933). The activation energy of the decomposition of ${\rm C_{2}H_{6}}$, ${\rm Me_{2}CO_{3}}$, ${\rm C_{3}H_{8}}$, ${\rm C_{4}H_{10}}$, ${\rm C_{5}H_{12}}$, ${\rm C_{7}H_{16}}$, ${\rm Me_{2}CO}$, AcH, EtOH, Et₂O, ${\rm Me_{2}O}$, C_2H_4 , 0, Me₃N, and Me₂NH into free radicals. Paneth method.
- 1656. Rice, F.O. & Herzfeld, K.F.
 Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals.
 VI. The Mechanism of Some Chain Reactions.
 J. Am. Chem. Soc., 56, 284-9 (1934).
 C. A., 28, 1655 (1934).
 Discussion of mechanism.

- 1657. Rice, F.O.
 Elementary Organic Reactions.
 J. Am. Chem. Soc., 56,
 488-90 (1934).
 C. A., 28, 1655 (1934).
 Activation energy for reactions involving H,
 CH₃, and CH₂.
- 1658. Rice, F.O. Decomposition of Organic Compounds into Free Radicals. Trans. Faraday Soc., 30, 152-69 (1934). C. A., 28, 2319 (1934). Paneth method-metallic mirrors. When the strength of bonds in organic molecules is known, a plausible mechanism can be worked out for a variety of organic decompositions, by means of which the products can be predicted, both qualitatively and quantitatively.
- Rice, F.O. & Glasebrook, 1659. A.L. Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. The Ethylidene VII. Radical, MeCH. J. Am. Chem. Soc., 56 741-3 (1934). C. A.,28, 2672 (1934). c. A., $\frac{28}{1655}$, 1655 (1934). C. A., 27, 5714 (1933). The decomposition of MeCH; NN:CHMe was studied, 60% appearing to decompose to C2H and N2; the remaining 40% gave a non-volatile oil, some HCN and probably CH,.

- 1660. Rice, F.O. & Whaley, F.R. Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. VIII. Comparison of the Thermal and Electrical Decomposition of Organic Compounds into Free Radicals. J. Am. Chem. Soc., 56, 1311-13 (1934). C. A.,28, 6697 (1934). C. A.,28, 2672 (1934). Removal on being heated of Pb and Sb mirrors.
- 1661. Rice, F.O. & Evering, B.L.

 Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals.

 IX. The Combination of Methyl Groups with Metallic Mercury.

 J. Am. Chem. Soc., 56, 2105-7 (1934).

 C. A., 29, 447 (1935).
 C. A., 28, 6697 (1934).

 Thermal decomposition of propane or butane.
- 1662. Rice, F.O. & Glasebrook, A.L. The Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. XI. The Methylene, CH, Radical. J. Am. Chem. Soc., <u>56</u>, **23**81**-**3 (1934). C. A., 29, 723 (1935). The CH radical reacts with the metals: Te, Se, As, and Sb, but not at all with Zn, Cd, Hg, Tl, Pb, or Bi. The methyl group, CH_z, reacts with all the metals listed, thus affording a conclusive test as to whether CH or CH have been formed.2

- 1663. Rice, F.O. & Dooley, Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. XII. The Decomposition of Methane. J. Am. Chem. Soc., 56, 2747-9 (1934). J. Am. Chem. Soc., 56, 2381-3 (1934). C. A.,<u>29</u>, 723 (1935). No HCH Te is formed, thus proving the absence of CH, radicals in the gases leaving the furnace. No hydrides of Te were detected in the liquid air trap indicating the absence of atomic hydrogen among the fragments leaving the furnace. The experiments indicate that CH, undergoes a primary dissociation into CH_z and H; the H disappears before reaching the mirror, either on the wall or by reaction with the CH_h to form CH_z and Ho.
- 1664. Rice, F.O. & Glasebrook, Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. The Identification of Methyl Groups as Dimethyl Ditelluride. J. Am. Chem. Soc., 56, 2472 (1934). C. A.,29, 723 (1935). C. A.,29, 447 (1935). Methyl groups are the only fragments that escape from the furnace when $C_{l_1}H_{10}$, Me₂CO, or Et₂O is decomposed at low pressures in the range, 800-900.
- 1665. Rice, F.O. & Rodowskas, E.L. Thermal Decomposition of Organic Compounds from the Standpoint of Free Radicals. XIII. The Decomposition of Ethyl Nitrite. J. Am. Chem. Soc., 57, *350-2* (1935). C. A.,29, 1772 (1935). C. A.,29, 723 (1935). When pure EtNO vapor at low pressure is decomposed in a flowing system, cold metallic mirrors are not affected by the gases leaving the furnace. On the other hand, if the EtNO is diluted with an inert gas, mirrors are readily removed, even when the furnace is at temperatures as low as 425°C. This behavior may be explained by assuming that the interaction of a free radical with EtNO results in the production of molecules only. The activation energy of the primary dissociation of EtNO, is 34.3 + 3 cal.
- 1666. Rice, F.O. & Rice, K.K.
 The Aliphatic Free Radicals.
 The John Hopkins Press,
 (1935).
 C. A., 29, 2546 (1935).

- 1667. Rice, F.O. & Polly, O.L. Formation of Alicyclic Hydrocarbons from Free Radicals.
 Ind. Eng. Chem., 27, 915-16 (1935).
 C. A., 29, 6578 (1935).
 The mechanism of cracking is discussed from the free radical standpoint.
- 1668. Rice, F.O.
 Decomposition of
 Organic Compounds from
 The Standpoint of
 Free Radicals.
 Chem. Rev., 17, 53-63 (1935).
 C. A., 29, 7767 (1935).
 C. A., 28, 2319 (1934).
 A review.
- 1669. Rice, F.O. & Polly, O.L.
 The Inhibition of Homogeneous Organic Decompositions. Free Radical Mechanism.
 J. Chem. Phys., 6, 273-9 (1938).
 C. A., 32, 4937 (1938).
 C. A., 28, 1655 (1934).
 C. A., 28, 1655 (1934).
 C. A., 25, 2967 (1931).
- 1670. Rice, F.O. & Teller, E.

 The Role of Free Radicals in Elementary Organic Reactions.
 J. Chem. Phys., 6, 489-96 (1938).
 C.A., 32, 7405 (1938).

 The relationship between molecular structure and reactivity.

- 1671. Rice, F.O. & Teller, E.

 Corrections to Paper, The Role of Free Radicals in Elementary Organic Reactions.

 J. Chem. Phys., 7, 199 (1939).

 C. A., 33, 3327 (1939).

 C. A., 32, 7405 (1938).
- 1672. Rice, F.O. & Herzfeld, K.F. The Mechanism of Some Chain Reactions. J. Chem. Phys.,7, 671-4 (1939). C. A.,33, 8090 (1939). C. A., 33, 4113 (1939). The mechanism of the CoH decomposition is dIsčussed. A modification of the original scheme by Kuchler and Thiele is examined in detail.
- 1673. Rice, F.O. & Polly, O.L. Decomposition of Hydrocarbons Induced by Free Radicals. Trans. Faraday Soc., 35, 850-4 (1939). C. A.,33, 9102 (1939). An exptl. method is outlined in which addnl. free radicals are generated in a static system wherein the substrate is mixed with various quantities of promoters. The free radical theory is discussed in relation to the thermal decomposition of pure organic compounds.

- 1674. Rice, F.O., Walters, W.D. & Ruoff, P.M. Reactions of Free Radicals with Organic Compounds Containing Atoms with Unshared Electron Pairs. J. Chem. Phys., 8, 259-62 (1940). C. A., 34, 2710 (1940). C. A., $\frac{32}{32}$, 7405 (1938). An experimental test for the reaction: Me + MeOEt = Me $_{2}$ 0 + Et.
- 1675. Rice, F.O.
 Free Radicals and
 Surface Reactions.
 In Recent Developments
 in the Theory of
 Chemical Bonds and Reaction Rates.
 12th Report Comm. on
 Catalysis National
 Research Council, 1940.
 C. A., 34, 4968 (1940).
- 1676. Rice, F.O. & Walters, W.D.
 Thermal Reactions Promoted by Biacetyl.
 J. Am. Chem. Soc., 63, 1701-6 (1941).
 C. A., 35, 5097 (1941).
 A chain mechanism is proposed.
- 1677. Rice, F.O. & Herzfeld, K.F.
 The Mechanism of Some Chain Reactions. Free Radical.
 J. Phys. and Colloid Chem., 55, 975-85 (1951).
 J. Phys. and Colloid Chem., 55, 986-7 (1951).
 C. A., 46, 26 (1952).
 C. A., 28, 1655 (1934).

- 1678. Rice, F.O. & Varnerin, R.E.

 The Mechanism of the Thermal Decomposition of Ethane-d₆.

 J. Am. Chem. Soc., 76, 324-7 (1954).

 C. A.,48, 6215 (1954).

 C. A.,28, 1655 (1934).
- Rice, F.O. & Varnerin, R.E.

 Activation Energies of Reactions of Methyl Radicals with Organic Molecules.

 J. Am. Chem. Soc., 77, 221-4 (1955).

 C. A., 49, 5088 (1955),
- 1680. Rice, F.O. & Grelecki, C.

 The Imine Radical.

 J. Am. Chem. Soc., 79, 1880-1 (1957).

 C. A.,51, 9335 (1957).

 C. A.,47, 5291 (1953).

 Spectroscopic identification of NH_hN₃.
- Rice, F.O. & Grelecki, 1681. An Active Species Formed in the Electrical Decomposition of Dimethylamine. J. Phys. Chem., 61, 824-5 (1957). C. A.,51, 15280 (1957). MeoNH was decomposed in the field of a high-frequency oscillator and the products were condensed as a green solid at -1960. The composition of the green solid could not be determined. The resulting radical, CHzNHCHo, is stabilized on the cold finger.

- 1682. Rice, F.O. & Grelecki, C.J.

 The Methyl Imino Radical.
 J. Phys. Chem.,61, 830-1 (1957).

 C. A.,51, 15280 (1957).

 Me azide was passed through a gravity tube held at 900 at a pressure of O.1 mm.

 The products were frozen out. A mechanism for the reaction is proposed.
- 1683. Rice, F.O. & Vanderslice, T.A.

 Relative Activation Energies of Removal of Primary, Secondary and Tertiary Hydrogen Atoms by Methyl Radicals.

 J. Am. Chem. Soc., 80, 291-3 (1958).

 C. A., 52, 7827 (1958).

 Spectrophotometric determination of CH, CH, D ratios at a series of temperatures.
- 1684. Rice, O.K.
 The Recombination
 of Iodine and Bromine
 Atoms.
 J. Chem. Phys.,9,
 258-62 (1941).
 C. A.,35, 3149 (1941).
 In the presence of
 He, A, H, N, O, CH₄,
 CO₂, and C₆H₆; effective
 collision radii.
- 1685. Rice, O.K. & Ginell, R. Theory of the Burning of Double-Base Rocket Powders.

 J. Phys. and Coll. Chem., 54, 885-917 (1950).
 C. A., 44, 8660 (1950).
 C. A., 44, 1784 (1950).
 A qualitative mechanism of the burning process is presented.

- 1686. Richards, R.E. Force Constants of Some OH and NH Links. Trans. Faraday Soc., 44, 40-4 (1948).
 C. A., 42, 5730 (1948).
- 1687. Ridge, M.J. & Steacie, E.W.R.
 Photolysis of Acetone in the Presence of HBr.
 Can. J. Chem., 33, 383-91 (1955).
 C.A., 49, 5973 (1955).
 The products of the photolysis of Me₂CO in the presence of HBr are mainly CH₄ and CO.
- 1688. Ridge, M.J. & Steacie, E.W.R.
 Photolysis of Mixtures of Acetone and Some Halogenated Hydrocarbons. Can. J. Chem., 33, 396-9 (1955).
 C. A., 49, 5974 (1955).
 C. A., 46, 10811 (1951). The kinetic treatment of Raal and Steacie is discussed.
- 1689. Ridgway, J.A., Jr.
 Free-Radical Alkylation
 of Isobutane with Ethylene.
 Ind. Eng. Chem., 50, 15316 (1958).
 C. A., 53, 6055 (1959).
 In the free-radical alkylation of isobutane with
 C₂H₁, the nonhexane
 yield is limited by competitive reactions leading to heavy alkylate.

- 1690. Riding, F., Scanlon, J. & Warhurst, E.

 Rates of Reaction of Sodium Atoms with Bromatic Halide.

 Trans. Faraday Soc., 52, 1354-62 (1956).

 C. A.,51, 6292 (1957).

 C. A.,46, 2441 (1952).

 C. A.,32, 1549 (1938).

 C. A.,25, 1726 (1931).
- 1691. Riesenfeld, E.H.
 The Thermal Dissociation of Oxygen.
 Z. anorg. allgem. Chem.,
 242, 47-8 (1939).
 C. A.,33, 8090 (1939).
- 1692. Ritchie, M. & Winning, W.I.H.
 Photochlorination.
 I. The Photochlorination of Toluene Vapor.
 J. Chem. Soc., 1950, 3579-83.
 C. A., 45, 4140 (1951).
- 1693. Robb, J.C. & Melville, H.W. The Measurement of Fast Reactions of Atomic Hydrogen. Discussion Faraday Soc., 1947, No. 2, 132-7. C. A.,43, 6053 (1949). A description is given of the use of MoOz as a quantative reagent for the removal of atomic hydrogen generated in a special apparatus devised so as to permit variation of the halflife period of the hydrogen atom.

- 1694. Roberts, J.D., Streitwieser, A., Jr. & Regan,
 C.M.
 Small-Ring Compounds.
 X. Molecular Orbital
 Calculations of Properties
 of Some Small-Ring Hydrocarbons and Free Radicals.
 J. Am. Chem. Soc., 74,
 4579-82 (1952).
 C. A., 47, 10487 (1953).
 C. A., 47, 502 (1953).
- H.A.
 Dissociation Energies
 of Carbon Bonds and
 Resonance Energies in
 Hydrocarbon Radicals.
 Trans. Faraday Soc.,
 45, 339-57 (1949).
 C. A.,43, 6479 (1949).
 Me, Et, Pr, sec-Pr, tertBu, allyl, benzyl, acetyl,
 formyl, vinyl, phenyl C = CH C = N, OH, and NH₂.
- 1696. Robertson, A.J.B.
 The Pyrolysis of Methane,
 Ethane, and Butane on a
 Platinum Filament.
 Proc. Roy. Soc. (London),
 A199, 394-411 (1949).
 C. A.,44, 2354 (1950).
 Construction of a mass
 spectrometer for the
 detection of free radicals.
- 1697. Robertson, A.J.B.
 The Detection of Free
 Radicals.
 Mass Spectrometry (Institute of Petroleum,
 London), 1950, 47-64.
 C. A.,46, 9971 (1952).
 Ionization by a beam of low energy electrons.

- I.
 Temperature Coefficient of the Recombination of Hydrogen Atoms.
 J. Am. Chem. Soc., 55, 2615 (1933).
 C. A., 27, 3365 (1933).
 A small but seemingly positive temp. coeff. corresponding to an apparent energy of activation of about 900 cal; further evidence of a wall reaction.
- McCarty, M., Jr.
 Radical Spectra at
 Liquid-Helium Temperatures.
 Can. J. Phys., 36,
 1590-1 (1958).
 C. A.,53, 1915 (1959).
 Spectra of NH2, HNO,
 OH, and NH in the
 first order of a
 2m. 15,000-line/inch
 spectrograph are
 shown.
- 1700. Robinson, G.W. & McCarty, M., Jr. Trapped NH, Radicals at 4.2°K. J. Chem. Phys., 30, 999-1005 (1959). c. A.,53, 16715 (1959). C. A., 53, 1915 (1959). C. A., 52, 8725 (1958). The NH radical was produced in a microwave discharge of Ar mixed with a small amount of NHz or NoH,, and was trapped on a liquid-He-cooled surface.

- 1701. Robinson, L.B.
 Elastic Scattering of
 Low-Energy Electrons
 by Atomic Nitrogen and
 Atomic Oxygen.
 Phys. Rev., 105, 922-7
 (1957).
 C. A.,51, 11843 (1957).
- 1702. Rodebush, W.H. Reactions of Oxygen and Hydrogen at Low Pressures. J. Phys. Chem., 41, 283-91 (1937). C. A.,31, 4571 (1937). A consideration of the reactions: 1. 0 atoms with H_2 . 2. H atoms with 0_2 . 3. Formation of H₂O₂ from water vapor. 4. From mixed 2H₂ + 02 in the electrodeless discharge indicates that reaction or formation of O atoms is not involved in the reaction of H and 0.
- 1703. Roebber, J.L., Rollefson, G.K. & Pimentel, G.C. High-Intensity Photolysis of Acetone. J. Am. Chem. Soc., 80, 255-61 (1958)~ C. A., <u>52</u>, 6948 (1958). C. A.,50, 9159 (1956). C. A., $\overline{50}$, 7563 (1956). The photolysis of Me₂CO was investigated at absorbed intensities of the order of 10²² quanta/1.-sec (greater by a factor of about 100 than those normally used).

- 1704. Rogers, F.E.
 Free Radical Reactions
 of Perhaloalkanes and
 Unsaturated Alcohols-Preparation and Reactions
 of Some Halogenated Cyclobutanecarboxylic Acids.
 Univ. Microfilms (Ann Arbor,
 Mich.), L. C. Card No.
 Mic 59-836, 144pp.; Dissertation Abstr., 19,
 2480 (1959).
 C. A., 53, 14964 (1959).
- Afterglow Study of the Dissociative Recombination of Molecular Ions.
 Univ. Microfilms (Ann Arbor, Mich.), L. C.
 Card No. Mic 58-2036, 104pp; Dissertation Abstr., 18, 2179 (1958).
 C. A., 52, 16897 (1958).
- 1706. Roginskii, S. & Shekhter, Α. Chemical Reactions in Electrical Discharges. III. Investigation of the Heterogeneous Recombination of Atomic J. Phys. Chem. (U.S.S.R.), 9, 780-9 (1937). c. A.,31, 8331 (1932). A study of the recombinations of H atoms and of N atoms on W and Pt surfaces was made. At all temps. from 2980 to 2000° Abs. the H atom recombination has a pos. temp. coeff. corresponding to E = 3000 cal. on both Pt and W.

- Reaction by Metastable Atoms and Depression of Breekdown in Inert Gases.

 Z. Fnysik, 115, 257-95 (1940).

 C. A., 34, 7723 (1940).

 C. A., 27, 3663 (1933).

 The effect of metastable atoms on sparking potentials. In molecular gases, dissociation products must also be considered.
- 1708. Rohr, T.M. & Noyes, W.A., Jr.

 Photochemical Behavior in the System NO₂ C₂H₆.

 Can. J. Chem., 33, 843-8 (1955).

 C. A., 49, 12971 (1955).

 At temperatures above 100° 0 atoms react with nitroethane but at a slower rate than with C₂H₆.
- 1709. Rollefson, G.K.
 The Nature of the Primary Process in Photochemical Reactions.
 J. Phys. Chem., 42, 733-7 (1938).
 C. A.,32, 8942 (1938).
- 1710. Rosen, I. & Stallings,
 J.P.
 Radiation-Induced Chlorination of Toluene and
 Butyric Acid.
 Ind. Eng. Chem., 50,
 1511-12 (1958).
 C. A.,53, 1929 (1959).
 The ultraviolet-andradiation-initiated chlorinations of toluene yield
 the same products when the
 initiations are done at 0°.

- 1711. Rosen, J. B.
 Theory of Laminar Flame
 Stability. II. General
 Numerical Method and
 Application to Typical
 System.
 J. Chem. Phys., 22,
 '743-8 (1954).
 C.A., 48, 10320 (1954).
- 1712. Rossetti, M.T.
 Energy Considerations
 on the Reactions of
 Various Organic Radicals in the Free
 State.
 Atti. inst. Veneto
 sci., Pt II, 100,
 429-47 (1941).
 Chem. Zentr., 1943,
 I, 2482.
 C. A., 38, 4498 (1944).
 C. A., 53, 8090 (1939).
 C. A., 28, 1655 (1934).
 Me, Et, and Pr.
- 1713. Rossikhin, V.S. & Tsykora, I.L. Spectroscopic Study of High Frequency Discharges in Gases and Flames at Atmospheric Pressure. Izvest. Akad. Nauk S.S.S.R., Sec. Fiz., 19, 18 (1955). C. A.,50, 3885 (1956). Discharges of 1.6 Mc. and 28.5 Mc. in air, CO_2 , C_2H_2 , and in a CoHo - air flame. Co, CH, OH were observed. C2+OH = CH + CO.

- 1714. Rossikhin, V.S. & Tsykora, I.L.

 Spectroscopic Investigation of High-Frequency Electric Discharges in Gases and Flames at Atmospheric Pressure.

 Zhur. Fiz. Khim., 29, 1080-6 (1955).

 C. A.,51, 817 (1957).

 C. A.,50, 3885 (1956).

 The most probable mechanism of formation of CH in a flame is C2 + OH = CH + CO.
- 1715. Rossikhin, V.S. & Tsykora, I.L. The Mechanism for the Formation of Certain Radicals in a High-Frequency Discharge. Zhur. Fiz. Khim., 30, 453-6 (1956). C. A.,<u>51</u>, 3271 (1957). C. A.,50, 3885 (1956). A mechanism is proposed for the formation of the radicals C2, CH, CN, and OH on the basis of the spectroscopic study of a high-frequency discharge in CO2, CCl4, and in their mixtures with H_2 and N_2 .
- 1716. Rowbottom, J.
 Primary-Radical Yield
 in Irradiated Water.
 Science, 119, 904-5 (1954).
 C. A., 48, 13441 (1954).
 The absorption of energy
 gives rise to two groups
 of radicals. The radicals of the first are
 derived from the ions,
 while the second group
 are formed from the excited molecules.

- 1717. Roy, J.C., Nash, J.R., Williams, R.R., Jr. & Hamill, W.H.
 Diffusion Kinetics. The Photolysis of Azodiisobutyronitrile.
 J. Am. Chem. Soc., 78, 519-21 (1956).
 C. A., 50, 7601 (1956).
 Isobutyronitrile radical.
- 1718. Royal, J.K. & Rollefson, G.K.

 The Photolysis of Simple Alkyl Ketones.

 J. Am. Chem. Soc., 63, 1521-5(1941).

 C. A., 35, 5032 (1941).
- 1719. Rueherwein, R.A. & Hashman, J.S. Formation of Ozone from Atomic Oxygen at Low Temperatures.
 J. Chem. Phys., 30, 823-6 (1959).
 C. A., 53, 16764 (1959).
 Oxygen was passed through an electrodeless discharge and was condensed, either alone or mixed with diluent gas, at liquid He temperature.
- 1720. Ruiter, E. de & Tschamler, H.

 Change of Radical Concentration of a Vitrite, a Glass, and Acetylated Vitrite on Heating to 200°.

 Breenstoff-Chem., 40, 41-3 (1959).

 C. A., 53, 9615 (1959).

 Paramagnetic resonance measurements were used for the detection of stable free radicals.

- 1721. Russell, G.A. Electron Transference in the Attack of Atoms or Radicals upon Carbon-Hydrogen Bonds. Tetrahedron, 5, 101-2 (1959). C. A.,<u>53</u>, 14914 (1959). C. A., $\overline{52}$, 18183 (1958). C. A., $\overline{50}$, 13718 (1956). In reactions where C-H bonds are broken and allkyl free radicals generated, it is believed that electron transference should be considered as a stabilizing factor in the transition state rather than the demanded reaction path.
- 1722. Rust, F.F. & Vaughan, W.E.

 Oxidation of Hydrocarbons Catalyzed by Hydrogen Bromide.

 Ind. Eng. Chem., 41, 2595-7 (1949).

 C. A., 44, 1885 (1950).

 Oxidation of branchedchain compounds.
- Rutledge, R.L.
 Radiofrequency Spectroscopy-Electron Spin
 Resonance in Free Radicals-Nuclear Magnetic
 Resonance in Heterocylic Compounds.
 Univ. Microfilms (Ann
 Arbor, Mich.), L. C.
 Card No. Mic 58-5485,
 67pp.; Dissertation
 Abstr.,19, 969 (1958).
 C. A.,53, 5874 (1959).

- 1724. Sachsse, H. & Patat, F. The Concentration of Hydrogen Atoms and the Mechanism of the Thermal Dissociation of Some Organic Molecules. Z. Elektrochem., 41, 493-4 (1935). C. A.,29, 7134 (1935). An experimental test of the free radical mechanism for the thermal dissociation of organic compounds of Rice. The measured hydrogen atom concentration was much less than that demanded by the free-radical mechanism. The comparison of these two quantities makes possible an estimate of the fraction of the reaction that proceeds through free radicals.
- The Thermal Decomposition of Ethane.

 I. The Probability of Decomposition into 2CH₃ and into Ethylene and Hydrogen.

 Z. physik. Chem., B31, 79-86 (1935).

 C. A.,30, 2471 (1936).

 C. A.,26, 655 (1932).
- The Thermal Decomposition of Ethane.

 II. Collision Yield by Activation and Average Lifetime in the Activated State.

 Z. physik. Chem., B31, 87-104 (1935).

 C. A., 30, 2471 (1936).
 C. A., 26, 655 (1932).

- 1727. Sahasrabudhey, R.H. & Bokil, I.
 A New Class of Free Radicals.
 Current Sci. India, 21, 247
 (1952).
 C. A., 47, 10968 (1953).
- 1728. Sakata, S. & Morita, Mechanism of the Exchange Reaction of Oxygen Atoms between Gaseous Oxygen and Water Vapor Catalyzed by Calcium Oxide. Bull. Chem. Soc. Japan, 29, 824-9 (1956). C. A.,51, 5521 (1957). C. A.,50, 11090 (1956). The results indicate that the oxygen is adsorbed with dissociation and that the rate-controlling step is either the dissociative adsorption of the 0 to desorption. Both show an activation energy of 33 K cal/mol., as compared to 30.6 K cal/mol. for the overall exchange.
- 1729. Sakata, S. & Morita,
 N.
 Exchange of Oxygen Atoms
 between Gaseous Oxygen
 and Chromium Oxide
 Catalyst.
 Mem. Fac. Eng. Nagoya
 Univ., 8, 131-6 (1956).
 C. A., 51, 15235 (1957).
 Calculations based on
 mass-spectrometer
 measurements.

- 1730. Salie, N.

 Calculation of the Lowest 3P, 1D, and 1S Terms of C, N⁺, 0⁺⁺, F⁵⁺, and Ne⁴⁺ by Means of the Variation Method.

 Ann. Physik, (7), 3, 48-54 (1959).

 C.A., 53, 10937 (1959).

 Energy values and eigenfunctions for the three lowest states of the above atoms and ions were calculated.
- J.L.
 Theory of Radiation
 Chemistry.

 II. Track Effects in
 Radiolysis of Water.
 J. Chem. Phys., 21,
 1080-7 (1953).
 C. A., 47, 9177 (1953).
 C. A., 45, 8918 (1951).
 Radicals are formed in
 pairs at the approximate
 sites of the original
 ionizations.
- 1732. Sancier, K.M., Fredericks, W.F. & Wise, H. Luminescence of Solids Produced by Surface Recombination of Atoms. J. Chem. Phys., 30, 1355-6 (1959). C. A.,<u>53</u>, 17683 (1959). Luminescence of activated CaO phosphors CaO:Bi, CaO: Sb, and CaO:NN was produced by atoms of hydrogen, oxygen, and nitrogen. The intensity of luminescene decreased with increasing temperature.

- 1733. Saporoschenko, M.

 Ions in Nitrogen.

 Phys. Rev., 111, 1550-3

 (1958).

 C. A.,53, 2819 (1959).

 N⁺, N¹/₂, N¹/₃, and N¹/₄ were identified as mass-spectrometrically in N₂ at ion-source pressures of 0.001-0.6mm.
- 1734. Sato, M.

 Recombination of Hydrogen
 Atoms on Metal Surfaces.

 IV. Recombination on the
 Surface of Copper.
 Nippon Kagaku Zasshi, 77,
 940-7 (1956).
 C. A.,51, 7819 (1957).
 C. A.,50, 3814, 6892 (1956).
- 1735. Sato, M.
 Recombination of
 Hydrogen Atoms On
 Metal Surfaces.
 V. Theoretical Treatment by Means of Potential Energy Surfaces.
 Nippon Kagaku Zasshi,
 77, 1202-8 (1956).
 C. A.,51, 10209 (1957).
 C. A.,51, 7819 (1957).
- 1736. Sato, S., Nakada, K. & Shida, S.
 Recombination of Hydrogen Atoms on Metal Surfaces.
 II. Mechanism of Recombination on the Surface of Platinum.
 J. Chem. Soc. Japan,
 Pure Chem. Sect., 76,
 1308-13 (1955).
 C. A., 50, 6892 (1956).
 The mechanism of recombination differs below and above 400°.

- Anomalous Band Features of O-H Groups due to Hydrogen Bonding.
 Nippon Kagaku Zasshi, 79, 1384-9 (1958).
 C. A.,53, 6761 (1959).
 The intensity curves of OH absorption of phenol which is H bonded with diethyl ketone, EtO, Ac, acetone, or pyridine as a proton acceptor can be broken down into two gaussian curves.
- 1738. Satterfield, C.N. & Wilson, R.E. Partial Oxidation of Propane: The Role of Hydrogen Peroxide.

 Ind. Eng. Chem., 46, 1001-7 (1954).

 C. A., 48, 9050 (1954).

 The reaction presumably proceeds through initial formation of propyl free radicals.
- Reid, R.C.

 Kinetics of the Reactions of the Propyl Radical with Oxygen.

 J. Phys. Chem., 59, 283-5 (1955).

 C. A., 49, 7936 (1955).

 Three probable reactions are postulated and considered.

- 1740. Satterfield, C.N. & Reid, R.C.
 The Role of Propylene in the Partial Oxidation of Propane.
 5th Symposium on Combustion, Pittsburgh, 1954, pp. 511-20.
 Pub. 1955.
 C. A., 49, 16384 (1955).
 Speculation on the free radical mechanism in light of end products of reaction.
- 1741. Sayed, M.F.A.E. & Wolfgang, R.

 Chemical Reaction of Recoil Tritium with Gaseous Alkanes.

 J. Am. Chem. Soc., 79, 3286 (1957).

 C. A.,51, 14428 (1957).

 C. A.,51, 102 (1957).
- 1742. Scheer, M.D. & Taylor,
 H.A.
 The Azomethane-Induced
 Oxidation of Propane by
 CHz Radicals.
 Cool Flames.
 J. Chem. Phys., 20,
 653-7 (1952).
 C. A., 46, 10854 (1952).
- 1743. Scheer, M.D.

 Kinetics of the Gas
 Phase Oxidation of
 Formaldehyde.

 5th Symposium on
 Combustion, Pittsburgh,
 1954, 435-46.

 Pub. 1955.

 C. A.,50, 2255 (1956).

 H, O, HCO, HO₂, mass
 spectrometric measurement, reaction mechanisms.

- 1744. Schenck, G.O.
 Phototropic-Dimeric Diradicals as Reactive Intermediate Substances of Photochemical Reactions.

 Z. Naturforsch, 3b, 59-60 (1948).
 C. A., 42, 7639 (1948).
 Diradicals arising from the action of sensitizer on a reaction participant play an essential role in the case of many photochemical reactions.
- 1745. Schiff, H.I. & Steacie, E.W.R. The Reactions of Hydrogen and Deuterium Atoms with Cyclic and Paraffin Hydrocarbons. Can. J. Chem., 29, 1-12 (1951). C. A., 45, 4538 (1951). Discharge tube method. H atoms react with hydrocarbons to produce hydrocarbon radicals, which then undergo rapid atomic cracking reactions.
- 1746. Schimmel, F.M. & Heineken, F.W.

 Paramagnetic Resonance of the Reaction Products of the Free Radical Tris, P-Nitrophenyl, Methyl, and Oxygen.

 Physica, 22, 781-4 (1957).

 C. A., 52, 2529 (1958).
- 1747. Schissler, D.O., Thompson, S.O. & Turkevich, J.
 Behavior of Paraffin Hydrocarbons on Electron Impact.
 Synthesis and Mass Spectra of Some Deuteriated Paraffin Hydrocarbons.
 Discussions Faraday Soc., 1951, No. 10, 46-53.
 C. A., 46, 3340 (1952).

- 1748. Schissler, D.O. & Stevenson, D.P.

 Reactions of Gaseous Molecule Ions with Gaseous Molecules.

 J. Chem. Phys., 24, 926 (1956).

 C. A., 50, 9835 (1956).

 C. A., 49, 13713 (1955).

 Gaseous and ionic reactions are given.
- 1749. Schleyer, P.V.R. & Robert, W. Comparison of Covalently Bonded Electronegative Atoms as Proton-Acceptor Groups in Hydrogen Bonding. J. Am. Chem. Soc., 81, 3164-5 (1959). C. A.53, 19492 (1959). Spectroscopic evidence is presented that demonstrates decrease in the relative electron donor abilities of the alkyl halides in the order I>Br>CL>F.
- 1750. Schmerling, L.

 The Mechanism of the Reactions of Aliphatic Hydrocarbons.

 J. Chem. Ed., 28, 562-71 (1951).

 C. A., 46, 3380 (1952).

 Certain of the reactions involve free radicals.

 48 references.
- 1751. Schmid, R. & Gero, L.
 Energies of Formation
 and Dissociation of Carbon
 Compounds and Groups. I.
 Math. naturw. Anz. ungar.
 Akad. Wiss., 56, 865-83
 (1937).
 C. A., 32, 4841 (1938).
 The formation and dissociation energies of
 CH, CH2, CH2 etc., band
 convergiencies, continuous
 and predissociation spectra
 are discussed.

- 1752. Schmid, R. & Gero,
 L.
 The Energies of
 Formation and Dissociation of Carbon
 Compounds and Radicals.
 II.
 Math. naturw. Anz. ungar.
 Akad. Wiss., 57, 637-51
 (1938).
 C. A.,33, 2035 (1939).
 C. A.,32, 4841 (1938).
- 1753. Schneider, E.E. Paramagnetic Resonance in X-Irradiated Plastics and in Plastic Solutions of Free Radicals. Discussions Faraday Soc., 19, 158-65 (1955). C. A.,50, 9869 (1956). It is suggested that the unpaired electrons responsible for the resonance are created as a final result of the X-radiation by a breaking of C-C bonds in polymer chain and are essentially localized in p-orbitals on C atoms.
- 1754. Schönberg, A. & Rupp, E. A New Class of Free Radicals.
 Naturwissenschaften, 21, 561 (1933).
 C. A., 28, 126 (1934).
 The free radicals are named thiyls; they bind heavy metals at room temp., free radicals with trivalent C and alighatic diazo compounds.
- 1755. Schönberg, H.
 A New Class of Free Radicals.
 Trans. Faraday Soc., 30,
 17-18 (1934).
 C. A.,28, 2319 (1934).
 C. A.,28, 126 (1934).

- 1756. Schönberg, A. & Mustafa, A.

 Dehydrogenation Reactions by the Action of Free Radicals.

 J. Am. Chem. Soc., 73, 2401 (1951).

 C. A., 46, 931 (1952).

 Having to do with large organic molecules.
- 1757. Schubert, C.C. & Schüler, R.H.
 The Effect of Iodine on the Radiolysis of the Hydrocarbons.
 J. Chem. Phys., 20, 518-19 (1952).
 C. A., 46, 8977 (1952).
- 1758. Schuldiner, S. Mechanism of Hydrogen-Producing Reactions on Palladium. VI. Atomic Hydrogen Over-voltage on an y Pd-H Bielectrode. J. Electrochem. Soc., 106, 440-4 (1959). C. A.,53, 12883 (1959). An electrochemical system was evolved in which the only reaction occurring on the cathode and anode surfaces of an 7 Pd-H bielectrode were the formation and ionization of atomic hydrogen, respectively.
- 1759. Schuler, H. & Reinebeck,
 L.
 Direct Proof of the Existence
 of Short-Lived Aromatic Radicals by Their Emission Spectra.
 Z. Naturforsch., 4a, 577-81
 (1949).
 C. A., 44, 4332 (1950).
 Evidence for the existence
 of radicals could also be
 found in the absorption spectra
 of benzaldehyde and p-tolualdehyde.

- 1760. Schüler, H. & Michel, A.

 A New Band System of the OH Radical or Ion.

 Z. Naturforsch, 11a, 403-6 (1956).

 C. A.,51, 6333 (1957).

 λ = 2545-2249.
- 1761. Schüler, H. & Krimmel, E. Flash Photolysis with a One-Tube System.

 Z. Naturforsch, 12a, 528-9 (1957).

 C. A.,51, 17467 (1957).
- 1762. Schüler, H. & Lutz, E.
 Organic Molecules in the
 Glow Discharge.
 III. Spectrographic
 Studies on the Behavior
 of Benzene, Toluene,
 Benzyl Chloride, Biphenyl
 and Chlorobenzene.
 Spectrochim Acta, 10, 61-9
 (1957).
 C. A.,52, 9771 (1958).
- 1763. Schüler, H. & Stockburger, M. Dissociation Processes of Benzene and Benzene Derivatives in Corona Discharge.

 Z. Naturforsch, 14a, 229-39 (1959).

 C. A., 53, 12827 (1959).

 The properties are described of a corona discharge tube containing He as carrier gas and the vapor of organic molecules.
- 1764. Schüler, R.H.
 Radical Production in
 Hydrocarbons by HeavyParticle Radiations.
 J. Phys. Chem.,63,
 925-8 (1959).
 C. A.,53, 21097 (1959).

1764. Cont.

Experiments were performed on the scavenging by I of free radicals produced in hydrocarbons

by α -rays.

- 1765. Schüler, R.H.
 Scavanger Methods for
 Free Radical Detection
 in Hydrocarbon Radiolysis.
 J. Phys. Chem., 62, 37-41
 (1948).
 C. A.,52, 7875 (1958).
 Technique.
- 1766. Schulz, G.J. Measurement of Atomic and Molecular Excitation by a Trapped-Electron Method. Phys. Rev., 112, 150-4 (1958).C. A.,<u>53</u>, 2819 (1959). A new method using elec .magnetic field rejection of an elastic-collision electrons has close to unit collection efficiency for 0.0.1-e.v. electrons, and O efficiency for higher energy electrons.
- 1767. Schulz, G.V. & Wittig, G.
 Initiation of Chain Polymerization By
 Free Radicals.
 Naturwissenschaften, 27, 387-8 (1939).
 C. A.,33, 8090 (1939).

- 1768. Schulz, G.V.
 The Stimulation of
 Polymerization Reactions by the
 Free Radicals.
 Z. Elektrochem., 47
 618-19 (1941).
 C. A., 36, 3724 (1942).
 C. A., 35, 5023 (1941).
- 1769. Schulz, R.D. & Taylor, H.A.
 The Photolysis of Methyl Iodide.
 J. Chem. Phys., 18, 194-7, 760 (1950).
 C. A., 44, 7661 (1950).
 C. A., 32, 4437 (1938).
 Under varying conditions of light intensity and temperature.
- 1770. Schwab, G.M.
 Atomic Bromine.
 Z. physik. Chem., B27,
 452-9 (1934).
 C. A.,29, 2450 (1935).
 C. A.,27, 5631 (1933).
 Produced in a discharge at 0.1 mm, identified spectroscopically.
 Recombination followed by means of a thermocouple. Mean life of Br atoms in streaming thru a tube is 1.8 x
 10-3 sec.
- 1771. Schwab, G.M. & Agallidis, E.

 The Effect of Organic
 Radicals on Para-Hydrogen.
 Z. physik. Chem., B41,
 59-70 (1938).
 C. A.,33, 28 (1939).
 In solutions of Ph₃C, the method is applied to the determination of the degree of dissociation of other free radicals.

- 1772. Schwab, G.M. & Voitlander, J.
 Parahydrogen Conversion by Biradicals.
 Naturwissenschaften, 40, 439 (1953).
 C. A., 48, 7400 (1954).
 C. A., 35, 3148 (1941).
- 773. Schwarz, H.A., Caffrey, J.M., Jr. & Scholes, G. Radiolysis of Neutral Water by Cyclotron Produced Deutrons and Helium Ions. J. Am. Chem. Soc., 81, 1801-9 (1959). c. A.,<u>53</u>, 19616 (1959). The yields of H2, H2O2, H, and OH in neutral aqueous solutions were determined for 18-m.e.v. deuterons, 32-m.e.v. He ions, and ll-m.e.v. He ions. Results are interpreted in terms of a radical-diffusion mechanism. The mechanism, whereby radiation decomp. water into free radicals, is discussed.
- 1774. Searle, L. Recombination Spectrum of Nebular Hydrogen. Astrophys. J., 128, 489-96 (1958).c. A.,53, 4892 (1959). Recombination of electrons with protons in gaseous nebulas at temperatures of 10,000 and $15,000^{\circ}$. Also given are transition probabilities, parameters for the recombination coeffs. and equil. populations, and the Balmer decrements for energystates of H up to n = 10.

- 1775. Seaton, M.J. The Chemical Composition of the Interstellar Gas. Monthly Notices Roy. Astron. Soc.. 111, 368-76 (1951). c. A.,46, 3394 (1952). The coeffs. of ionization and recombination of neutral H, C, Na, K, and of singly ionized He, Na, K, and Ca in instellar clouds are calculated and tabulated for electron temps. of 10^2 , 10^3 , and 10⁴⁰K.
- 1776. Seaton, M.J.
 Theories of the Airglow Spectrum.
 Ann. geophys., 11, 232-48 (1955).
 C. A., 49, 14478 (1955).
 Photodissociation of molecules in the upper atmosphere provides the most abundant source of photochemical energy.
- 1777. Secco, E.A.

 Dissociation of Water
 Vapor in Electric Discharge. High Frequency
 Electrodeless.

 J. Chem. Phys., 23, 1734
 (1955).

 C. A., 50, 49 (1956).

 C. A., 49, 2195 (1955).

 C. A., 48, 469 (1954).

 H₂0 + e = H + OH⁺ + e
 H₂0 + e = OH + H⁺ + 2e
 These involve energy
 changes of the order
 found.

- 1778. Seel, F.
 The Quantum Theoretical
 Basis of the Stability
 of Carbon Radicals.
 Naturwissenschaften,
 32, 48 (1945).
 C. A.,40, 2044 (1946).
 C. A.,38, 3885 (1944).
 Stability of certain
 C radicals is due to
 a combination of mesomeric and steric effects.
- 1779. Seel, F.
 Application of the
 Valence Theory to the
 Problem of Hydrocarbon
 Biradicals.
 Z. Elektrochem., 52,
 182-93 (1948).
 C. A., 43, 6604 (1949).
 C. A., 42, 2593 (1948).
- 1780. Seferian, D.
 The Atomic Hydrogen
 Flame Dissociation of
 Gases in the Arc.
 Chaleur et ind., 19,
 76-83 (1938).
 C. A.,32, 5302 (1938).
 Also nitrogen, ammonia,
 and nitrogen-hydrogen
 arc-gas mixtures.
- M.
 The CH₂: CHCH₂ CH₃
 Bond Dissociation Energy and the Heat of Formation of the Allyl Radical.
 Proc. Roy. Soc. (London),
 A202, 263-76 (1950).
 C. A.,45, 6024 (1951).
 The pyrolysis of 1-butene is investigated by a flow technique, toluene being used as a carrier of gas.

- 1782. Sekihara, K., Murai, K. & Kano, M. Distribution of Ultraviolet Sky Radiation. VIII. Effect of Ozone Absorption Layer. Papers Meteorol and Geophys. (Tokyo), 8, 292-301 (1958). C. A.,53, 1872 (1959). By use of a photomultiplier tube and filter, intensities of ultraviolet radiation from various directions were measured at Mt. Norikuma in the summer of 1957. A new method of determining the vertical distribution of atmospheric Oz is suggested by the analysis of the results.
- 1783. Semenov, N.N. Determination of the Probability of Energy Transfer during Collisions. Trans. Faraday Soc., 30, 227-30 (1934). C. A.,28, 2269 (1934). A method is presented for determining the probability that a quantum of oscillatory energy will be transmitted based on a study of the recombination of free radicals.
- 1784. Semerano, G. & Riccoboni, L.
 Silver Alkyls and Their
 Use for the Liberation of Free Alkyl Radicals at Low-Temperatures.
 Ricerca Sci., 11, 269-70 (1940).
 Chem. Zentr., 1941, I, 350.
 C. A., 37, 71 (1943).
 C. A., 36, 4801, 4802 (1942).

- 1785. Semerano, G. & Riccoboni, Preparation and Reactions of Free Methyl and at Low Temperatures. Z. physik. Chem., A189, 203-18 (1941). Chem. Zentr., 1942, I, 1863. C. A.,37, 3043 (1943). The free methyl radical under these conditions reacts only by dimerization. There is an extended theoretical discussion.
- 1786. Senftlben, H. & Germer, E.
 The Detection of Dissociation of Halogen
 Molecules Caused by
 Radiation.
 Ann. Physik.,(5),2,847-64 (1929).
 C. A.,23,5407 (1929).
- 1787. Senftleben, H. &
 Riechemeier, O.
 Study of the Course
 of Reaction during
 Formation of Molecular Hydrogen from
 Atoms.
 Phys. Fiz., 30, 74550 (1929).
 C. A., 24, 2033 (1930).
- 1788. Senftleben, H. &
 Riechemeier, O.
 The Course of the
 Reaction during
 Formation of
 Molecular Hydrogen
 from the Atoms.
 Naturwissenschaften,
 18, 645 (1930).
 Ann. Phys., (5), 6,
 105-28.
 C. A.,24, 4980 (1930).
 C. A.,24, 2033 (1930).

- 1789. Sen Gupta, P.K. Energy of Dissociation of Cyanogen. Indian J. Phys.,25, 313-16 (1951). C. A.,46, 830 (1952). From known spectroscopic and thermochemical data, the energy of dissociation of CN, into $C(^{5}P)$ and $N(^{4}S)$, was estimated to be 6.02 e.v.
- 1790. Sen Gupta, P.K. Nature of Active Nitrogen. Science and Culture (India), 19, 414-16 (1954). C. A., 48, 8658 (1954). The main spectroscopic features of active nitrogen are interpreted with the postulate that active nitrogen consists of highly excited metastable N molecules.
- 1791. Serewicz, A. & Noyes, W.A., Jr. The Photolysis of Ammonia in the Presence of Nitric Oxide. J. Phys. Chem., 63, 843-5 (1959). C. A.,53, 21089 (1959). The products of the photolysis of NHz in the presence of NO are N, N_20 , H_20 , and H. The following mechanism was proposed: 1. $NH_3 + hv = NH_2 + H$ 2. HNO = H + NO3. H + NO = HNO
 - 4. HNO = H + NO5. $2HNO + N_2O + H_2O$
 - 6. H + HNO = H₂ + NO

- 1792. Seubold, F.H., Jr., Rust, F.F. & Vaughan, W.E. The Vapor-Phase Decomposition of Tert-Butyl Hydroperoxide and Reactions of the Tert-Butylperoxide Radical. J. Am. Chem. Soc., 73. 18-20 (1951). C. A.,45, 6995 (1951). The results indicate that MezCOOH readily loses a H atom upon free radical attack to yield a Me₃COO radical.
- 1793. Sexton, M.C. & Craggs, J.D. Recombination in the Afterglows of Argon and Helium by Microwave Techniques. J. Electronics and Control, 4, 493-502 (1958).c. A.,52, 16030 (1958). Pulsed electrodeless discharge.
- 1794. Shantarovich, P.S. & Pavlov, B.V. The Mechanism of the Decomposition of Methane. Zhur. Fiz. Khim.,30, 811-20 (1956). c. A.,50, 1630 (1956). $CH_{3} = \overline{CH}_{2} + H$ $CH_3 + CH_2 = CH_3 + H_2$ $CH_3 + H + M = CH_1 + M$
- 1795.Shantarovich, P.S. Kinetics Decomposition of Diazomethane in a Stream of Nitrogen. Proc. Acad. Sci. U.S.S.R., Sect. Phys. Chem., 116, 607-10 (1957). English Trans. C. A.,52, 17921 (1958). c. $A_{1},\overline{52}$, 12527 (1958).

- 1796. Sheats, G.F. & Noyes, W.A., Jr.
 Photochemical Studies.
 LI. Photochemistry of Biacetyl at 3650A and 4358A and Its Relation to Fluorescence.
 J. Am. Chem. Soc., 77, 1421-6 (1955).
 C. A., 49, 7988 (1955).
 C. A., 48, 13439, 13440 (1954).
- 1797. Snepp, A.
 Rate of Recombination
 of Radicals. I. A
 General Sector Theory.
 A Correction to the
 Methyl Radical Recombination Rate.
 J. Chem. Phys., 24, 93943 (1956).
 C. A., 50, 12660 (1956).
 C. A., 48, 1123 (1954).
- 1798. Shepp, A. & Kutschke, K.O. Rate of Recombination of Radicals. III. Rate of Recombination of Ethyl Radicals. J. Chem. Phys., 26, 1020-8 (1957). C. A.,51, 13533 (1957). c. A.,50, 12660 (1956). The rate constants for the recombination (K2) and disproportionation of ethyl radicals was determined by applying the theory of the rotating sector to the photolysis of Et,CO.

1798. Cont.

A simplified transitionstate-theory calculation of K₂ is offered, based on the change in the number of degrees of freedom from radicals to activated complex.

- 1799. Sheridan, J.

 Recent Progress in
 the Microwave Spectroscopy of Gases.
 Bull. sci. fac. chim.
 ind. Bologna, 16, 71-9
 (1958).
 C. A.,53, 1911 (1959).
 A review with 39 references.
- 1800. Sheridan, J.
 Some Contributions of
 Microwave Spectroscopy
 to Chemistry.
 Ricerca Sci., 28, 1801-16
 (1958).
 C. A.,53, 2761 (1959).
 A lecture with 19 references.
- Shida, S.
 Study of the Recombination Reaction of Free Atoms by the Thermal Analysis of the Budde Effect. I. The Recombination of Hydrogen Atoms.

 Proc. Impt. Acad.
 (Tokyo), 17, 495-500 (1941).
 C. A., 43, 8819 (1949).
 C. A., 52, 1550 (1938).

- 1802. Shida, S.
 Free Radicals in
 Combustion.
 Kogyo Kagaku Zasshi, 60,
 94-9 (1957).
 C. A.,53, 3655 (1959).
 A review of free-radical
 theories on gaseous combustion is given, particularly on H-O, C₂H₂-O, and
 NO₂-O.
- 1803. Shidei, T. & Yano, S.

 Study on the Hydrogen
 Bond in NH₁HF₂ by
 Nuclear Magnetic Resonance.

 J. Chem. Phys., 30, 1109-10 (1959).

 C. A.,53, 16701 (1959).

 The lines of H¹ and F¹⁹
 nuclear resonances were
 measured in powdered NH₁HF₂
 at room temperature.
- 1804. Shlyapintokh, I. Ya. & Emanuel, N.M.
 Initiation of the Oxidation of 2,7-Dimethyloctane by Free Radicals Formed in the Photolysis of Salts of Metals with a Variable Valence.
 Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci., 1957, 801-5. English Translation. C. A.,53, 4927 (1959).

- Shostakovskii, M.F. & 1805. Kulibekov, M.R. Reaction of Exchange of Hydroxyl Radicals for Hydrocarbon Radicals of Organomagnesium Compounds. IV. Reaction of Grignard Reagent with Acylals. Zhur. Obshchei Khim., 28, 2339-41 (1958). C. A.,<u>53</u>, 3123 (1959). Results of reacting Bu Mg. Br from 4g. Mg, and MeCH-(OBu)OAc.
- 1806. Shostakovskii, M.F., Prilizhaeva, E.N. & Uvarova, N.I. Free-Radical Polymerization and Copolymerization of the Thio Vinyl Ethers. Soobshcheniya Nauch. Rabot. Vsesoyuz. Khim. Obshchestva ion. Mendeleeva, 1955, No. 3, 21-4; Referat. Zhur. Khim., 1956, Abstr. No. 43425. C. A.,53, 6678 (1959). Thio ethers of the type RSCH: CH, where R=Et, Pr, Bu, Iso-C₅H., Ph, HOCH, CH, and C4HOCH2CH2, are polymerized much faster than the corresponding vinyl alkyl ethers.

- 1807. Shtern, V. Ya. & Polyak, S.S.
 Cold-Flame and Upper-Temperature Oxidation of Propylene.
 Doklady Akad. Nauk.
 S.S.S.R., 65, 311-14 (1949).
 C. A., 43, 5268 (1949).
 Discussion of reaction mechanism involving intermediate products such as aldehydes and peroxides.
- 1808. Shtern, V.Y. Mechanism of Oxidation of Hydrocarbons in the Gas Phase. VI. Radical-Chain Scheme of Oxidation of Propane. Zhur. Fiz. Khim., 28, 613-28 (1954). C. A.,50, 155 (1956). C. A., $\overline{49}$, 6698 (1955). Formation of alcohols and aldehydes proceeds by decomposition of the free radicals PrOO* and iso-Proo*. The reactions are discussed from the point of view of activation energy. 20 references.
- 1809. Shuler, K.E. & Laidler, K.J.

 The Kinetics of Heterogeneous Atom and Radical Reactions.

 I. The Recombination of Hydrogen Atoms on Surfaces.

 J. Chem. Phys., 17, 1212-17 (1949).

 C. A., 44, 4760 (1950).

 C. A., 43, 6897 (1949).

- 1810. Shuler, K.E. & Laidler, K.J.
 The Kinetics of Heterogeneous
 Atom and Radical Reactions.
 II. The Recombination of Hydroxyl
 Radicals.
 J.Chem. Phys., 17, 1356-7 (1949).
 C.A., 44, 4760 (1950).
- 1811. Shuler, K.E. Kinetics of Hydroxyl Radicals from Flame Emission Spectra. I. Vibrational Transition Probabilities, Intensities, and Equilibrium in the $2\epsilon - 2\pi$ Transition. J. Chem. Phys., 18, 1221-6 (1950). C. A., 45, 2773 (1951). Shuler, K.E. Erratum: Kinetics of Hydroxyl Radicals From Flame Emission Spectra. J. Chem. Phys., 19, 139 (1951). C. A.,45, 2774 (1951).
- 1812. Shuler, K.E.
 Kinetics of OH Radicals
 from Flame-Emission
 Spectras.

 II. Rotational and
 Distribution Functions
 and Temperature Determinations in the 2ε 2π
 Transition of OH.
 J. Chem. Phys., 18,
 1466-70 (1950).
 C. A., 45, 3715 (1951).
 C. A., 45, 2773 (1951).
- 1813. Shuler, K.E. & Broida,
 H.P.
 Kinetics of OH Radicals
 from Flame Emission
 Spectra.
 V. A Study of the
 Acetylene-Oxygen Flame.
 J. Chem. Phys., 20,
 1383-8 (1952).
 C. A., 47, 9770 (1953).
 C. A., 46, 6495 (1952).

- 1814. Sidorov, A.N. & Nikitin, V.A. Answer to S.P. Zhdanov's Paper. The Role of Surface Hydroxyl Groups of Porus Glass in the Adsorption of Water. Zhur. Fiz. Khim., <u>32</u>, 1667-8 (1958). C. A.,<u>52</u>, 19335 (1958). C. A., 52, 14278 (1958). The active centers in the glass surface are different according to its degree of hydration.
- 1815. Sieger, R.A. & Calvert, J.G.
 The Vapor-Phase Photolysis of Trifluoro-acetone at 3130A.
 J. Am. Chem. Soc., 76, 5197-5201 (1954).
 C. A., 49, 13079 (1955).
- The Kinetics of the Thermal Polymerization of Acetylene.

 Proc. Roy. Soc. (London), A242, 411-29 (1957).

 C. A.,25, 7827 (1958).

 Thermal reactions of C₂H₂ are studied in tubes from 352 472°C. A radical chain mechanism is proposed.
- 1817. Silverman, S.
 Energy Distribution
 of CO Molecules in
 CO-O₂ Flames.
 Natl. Bur. of Stand.,
 US Circ., 523, 51-6
 (1954).
 C. A.,48, 6841 (1954).
 Spectroscopy.

- 1818. Simha, R., Wall, L.A. & Bram, J. High-Speed Computations in the Kinetics of Free-Radical Degradation. I. Random Initiation. J. Chem. Phys., 29, 894-904 (1958). c. A.,53, 4872 (1959). The theory of free-radical degradation leads to large sets of differencedifferential equations for the reacting species that can be solved analytically for practical purposes only in the extremes of preponderant chain depropagation and random or terminal scission.
- <u>1</u>819. Simha, R. Kinetics of Free-Radical Degradation. Trans. Faraday Soc., 54, 1345-54 (1958). C. A.,53, 11965 (1959). The essential differences between different degrading vinyl polymers are the result of different extents of competition between random sission resulting from intermolecular transfer and zip, which arise from inherent structural differences.
- 1820. Simmons, R.F. & Wolfhard, H.G.
 The Light Emission of Halogen Flames.
 Z. Elektrochem.,61,601-9 (1957).
 C.A.,51, 16112 (1957).

- Simon, D.M.
 Flame Propagation.
 Active Particle Diffusion Theory.
 Ind. Eng. Chem., 43, 2718-21 (1951).
 C. A.,46, 1851 (1952).
 C. A.,42, 1410 (1948).
 Burning velocity correlated with equil. flame temp. for 58 hydrocarbons.
- 1822. Simonoff, G.
 The Action of Ionizing
 Radiation on Aqueous
 Solutions of Permanganate.
 J. chim. phys., 55, 547-58
 (1958).
 C. A.,53, 2822 (1959).
 The irradiation of aqueous
 MnO₄ solutions with a 60-c.
 source was studied.
- 1823. Simons, J.H. & Dull, M.F.
 Two Reactions of Gaseous
 Methyl and Ethyl.
 J. Am. Chem. Soc., 55,
 2696-701 (1933).
 C. A., 27, 3910 (1933).
 A transitory existence of
 the free radicals, Et and
 Me, is shown by the thermal
 decomposition of PbEt, and
 PbMe, giving (1) NaEt and
 NaMe with Na, and (2) EtI
 and MeI with CIh.
- 1824. Sivertz, C., Andrew, W., Elsdon, W. & Graham, K.

 Mechanism of Free Radical Attack on Double Bonds.

 J. Polymer Sci., 19, 587-8 (1956).

 C. A.,51, 11015 (1957).

- 1825. Sivertz, C. Photoinitiated Addition of Mercaptans to Olefins. IV. General Comments on the Kinetics of Mercaptan Addition Reactions to Olefins Including Cis-Trans Forms. J. Phys. Chem., 63, 34-8 (1959). C. A.,53, 7736 (1959). Problems in free-radicals kinetics were illustrated with particular reference to termination.
- 1826. Skerrett, N.P. & Thompson, N.W. Photolysis of Mercaptans. Trans. Faraday Soc., 37, 81-2 (1941). C. A.,35, 3175 (1941). The overall reaction: $2CH_3SH + hv = (CH_3)_2$ S₂ 7 H₂ A concurrent, but less important: $CH_{z}SH = CH_{h} + S$ The quantum yield is about 1.7 mol. of MeSH decomp. per quantum.
- 1827. Skirrow, G. & Wolfhard, H.G. Chlorine Trifluoride Flames.
 Proc. Roy. Soc. (London), A232, 78-87 (1955).
 C. A., 50, 4596 (1956).
 Flame reactions of C2, CN, OH, CH, H-lifetime of these in flames.

- 1828. Slaugh, L.H.

 Rearrangement of the
 Two-Phenylethyl Free
 Radical.
 J. Am. Chem. Soc., 81,
 2262-6 (1959).
 C. A.,53, 21724 (1959).
 Tracer techniques show
 that the 2-PhEt-1-Cl4
 radical undergoes partial
 rearrangement to the
 2-PhEt-2-Cl4 radical.
- E.C.
 Radiation Protection and Free Radicals.
 Nature, 183, 539-40 (1959).
 C. A., 53, 15190 (1959).
 D₂0-grown yeast suspended in H₂O was irradiated at liquid-N temperatures in a Co⁶⁰ γ-chamber.
- 1830. Smallwood, H.M.
 Rate of Recombination
 of Atomic Hydrogen.
 J. Am. Chem. Soc.,
 51, 1985-99 (1929).
 C. A.,23, 4397 (1929).
 Measured by measuring
 the heat effect of
 recombination on Pt foil.
- 1831. Smallwood, H.M.
 Rate of Recombination
 of Atomic Hydrogen.
 J. Am. Chem. Soc., 56,
 1542-9 (1934).
 C. A.,28, 5318 (1934).
 C. A.,23, 4397 (1929).
 The rate of recombination of atomic hydrogen
 was studied in a static
 system by following the
 pressure decrease as the
 reaction proceeded.

- After elimination of the wall reaction by flowing atomic hydrogen through the reaction bulb, the rate is proportional to the third power of the atomic hydrogen concentration.
- Carpenter, N.
 The Estimation of
 Atomic Oxygen in
 Open Flames and
 the Measurement of
 Temperature.
 4th Symposium on
 Combustion, Cambridge,
 Mass., 1952, 274-85.
 Pub. 1953.
 C. A., 49, 9251 (1955).
- 1833. Smid, J. & Szwarc,
 M.

 Ethyl and Radical Affinities of Aromatic and
 Olefinic Compounds.
 J. Am. Chem. Soc., 78,
 3322-5 (1956).
 C. A.,50, 15186 (1956).
 The rates of addition
 relative to its rate
 of reaction with isobetane.
- 1834. Smid, J. & Szwarc, M.
 Kinetics of Decomposition
 of Isobutyl Peroxide and
 Reactions of Isopropyl
 Radicals.
 J. Chem. Phys., 29, 432-7
 (1958).
 C. A.,52, 19365 (1958).
 Energy is supplied to
 the 0-0 bond by the decarboxylation of the
 radical resulting from
 the dissociation of the
 peroxide.

- 1835. Smidt, J. & van Krevelen Chemical Structure and Properties of Coal. XXIII. Electron-Spin Resonance of Vitrains. Fuel,38, 355-68 (1959). C. A.,53, 20755 (1959). C. A.,53, 11798 (1959). By using the technique of electron-spin resonance, the following quantities were measured in air and in vacuo on a series of vitrains with 71.7-96.5%C: spin-lattice relaxation time, number of free radicals/g., and the second moment of the absorption curve.
- 1836. Smith, A.L. & Johnston, H.L.
 The Magnetic Susceptibility of Liquid Nitric Oxide and the Heat of Dissociation of NO₂.
 J. Am. Chem. Soc., 74, 4696-8 (1952).
 C. A., 47, 1445 (1953).
 C. A., 30, 5112 (1936).
- 1837. Smith, E.C.W.
 The Emission Spectrum of
 Hydrocarbon Flames.
 Proc. Roy. Soc. (London),
 A174, 110-25 (1940).
 C. A., 34, 2258 (1940).
 Emission spectra of ethylene
 and of propane in air and in
 oxygen. Mechanism and a
 description of apparatus
 and procedure.
- 1838. Smith, H.A. & Naprovnik,
 A.
 The Photochemical Oxidation
 of Hydrogen.
 J. Am. Chem. Soc., 62, 385-93
 (1940).
 C. A., 34, 2257 (1940).
 C. A., 29, 4675 (1935).

- 1838. Cont.
 - C. A.,24, 4224 (1930). C. A.,23, 4855 (1929). 1719 - 1725A, 1140-95mm
- 1839. Smith, J.O., Jr. & Taylor, H.S. The Reaction of Methyl Radicals with Deuterium, Ethane, Neopentane, Butane, and Isobutane. J. Chem. Phys., 7, 390-6 (1939). C. A.,33, 5743 (1939). c. A., $\frac{32}{52}$, 6156 (1938). Me radicals from the photodecomposition of HgMe, reacted with the element and compds. listed at 100 - 300. Kinetics and energetics.
- 1840. Smith, J.R.E. & Hinshelwood, C.N.

 The Detection and Inhibition of Free-Radical Chain Reactions.

 Proc. Roy. Soc. (London),

 A180, 237-56 (1942).

 C. A.,36, 5082 (1942).

 Nitric acid and propylene are compared as inhibitors.
- 1841. Smith, J.R.E. & Hinshelwood, C.N.

 The Thermal Decomposition of Acetone.

 Proc. Roy. Soc. (London),

 A183, 33-7 (1944).

 C. A.,39, 14 (1945).

 The inhibiting effect of propylene is used to prove the existence of free radical chains in the thermal decomposition.

- 1842. Smith, J.W.
 Recent Advances in
 Science: General and
 Physical Chemistry.
 Science Progr., 41, 648-59 (1953).
 C. A.,47. 11921 (1953).
 A review of recent investigations on the kinetics of gaseous reactions involving methyl radicals.
- P.M., Pinder, J.A. & IeRoy, D.J.
 Combination and Disproportionation of Ethyl Radicals-Influence of the Reaction: H + C₂H₅ = C₂H₆.
 Can. J. Chem., 33, 821-9 (1955).
 C.A.,49, 12971 (1955).
 Hg. photosensitized.
- 1844. Smith, S.R., Gordon, A.S. & Hunt, M.H.
 Diffusion Flames.
 III. The Diffusion Flames of the Butanols.
 J. Phys. Chem., 61, 553-8 (1957).
 C. A., 51, 13530 (1957).
 C. A., 51, 25 (1957).
 A quartz probe technique in conjunction with mass-spectrometer and gas chromatographic analysis.
- 1845. Smith, W.V.
 The Surface Recombination of Hydrogen Atoms and OH Radicals.
 J. Chem. Phys., 11, 110-25 (1943).
 C. A., 37, 2645 (1943).

1545. Cont.

A diffusion method of investigating surface recombination of atoms by substances of low catalytic power is presented. Surfaces considered were: quartz, glass, K₂SiO₃, KCl, KOH, K₂CO₃, HPO₃, Na₃PO₄, Al₂O₃, ZnO, Cr₂O₃, and Pt.

- 1846. Sobolev, N.N., Potapov, A.V., Kitaeva, V.F., Faizullov, F.S., Alyamovskii, V.N., Antropov, S.T. & Isaev, I.L. Spectroscopic Investigation of the State of the Gas behind a Shock Wave. Izvest. Akad. Nauk S.S.S.R., Ser. Fiz., 22, 730-6 (1958). C. A.,53, 1878 (1959). Ionization and state of the gas can be calculated from thermodynamic data for the high-temp. region at the boundary of high-pressure and rarefied gas.
- 1847. Sogo, P.B., Jost, M. & Calvin, M. Evidence for Free-Radical Production in Photosynthesizing Systems.

 Radiation Research, Suppl. I, 511-18 (1959).
 C. A., 53, 10318 (1959).

- 1848. Sokolik, A.S. Mechanism of the Predetonation Acceleration of the Flame. Zhur. Eksptl. i Theoret. Fiz., 21, 1164-71. c. A.,47, 3093 (1953). Detonation is interpreted as arising from a series of alementary shock waves produced by the flame itself. That is, by the expansion of the gas in combustion.
- 1849. Sokolow, N.D.
 Theory of the Hydrogen
 Bond.
 Elektronentheorie HomBopolaren Bindung,
 Hauptjahrestag.
 Chem. Ges. Deut. Demokrat. Rep., 1955, 10-19.
 Pub. 1956.
 C. A.,53, 3802 (1959).
 A discussion with 38
 references.
- 1850. Sonnerskog, S.
 Preparation and Properties of Free Radicals. Inorganic Chemistry.
 Svensk. Kem. Tidskr., 70,
 15-29 (1958).
 C. A., 52, 7113 (1958).
 A review with 60 references.
- 1851. Souffie, R.D., Williams, R.R., Jr., & Hamill, W.H. Hot Radical Reactions in the Photolysis of Methyl Iodide Vapor. J. Am. Chem. Soc., 78, 917-20 (1956). C. A., 50, 7601 (1956). Photolysis of CH₃I vapor by 2537A radiation.

- 1852. Sowden, R.G. & Davidson, Photochemical Studies with Rigid Hydrocarbon Solvents at Low Temperatures. J. Am. Chem. Soc., 78, 1291-4 (1956) c. A.,50, 9883 (1956). Formation of new bands on irradiation. Techniques, irradiation of acetophenone, diphenylmercury, tetramethyltetrazine (Me) $_{2}$ N_z and (Me) N radicals postulated as intermediates.
- 1853. Spall, B.C. & Steacie, E.W.R. The Mechanism of the Photolysis of Acetamide. Proc. Roy. Soc. (London), A239, 1-15 (1957). C. A, 51, 15280 (1957). 2500A region was used. The primary process is the breakdown of the molecule into CH_3 and CONHo radicals. Secondary processes yield CHzCN and H₂O. Methyl reacts both with acetamide and CONHo to give methane and recombine to ethane.
- 1854. Spence, R. & Wild, W.

 Mechanism of the Photodecomposition of Acetone.

 Nature, 138, 206 (1936).

 C. A., 30, 7041 (1936).

 The primary photochemical
 process is (H₃C)₂ CO + hv =
 CH₃ + CH₃ + CH₃CO. The
 acetyl radical is shortlived at higher temperatures.

- 1855. Spence, R. & Wild, W.

 Photodecomposition of Gaseous Acetone.
 J. Chem. Soc., 1937, 352-61.
 C. A., 31, 4598 (1937).
 C. A., 30, 7041 (1936).
 The primary process is (CH₃)₂ CO + hv = CH₂ + CH₂CO. The acetyl radicals are stable at 0°, but are all decomposed at 60°.
- 1856. Spier, J.L. & Smit-Miessen, M.M. Temperature Determination with the Help of the Unresolved CN Bands 3883% and 3871A . Physica, 9, 422-32 (1942).Chem. Zentr.,1942, II. 2236. c. A.,38, 2532 (1944). The temp. is detd. from a comparison of the observed intensity profile of an unresolved band with the profiles estd. for various temps. The relation of temp. and line width is shown graphically. Variations of the method are described by which the criteria become independent of the width and shape of the rotational lines.
- 1857. Spinks, J.W.T.
 Photoreactions Sensitized
 by the Halogens.
 Chem. Rev., 26, 129-39
 (1940).
 C. A., 34, 2711 (1940).

- 1857. Cont.
 - All of the halogensensitized photoreactions known can be explained by a chemical mechanism involving halogen atoms.
- 1858. Spitzer, L., Jr. The Dynamics of the Interstellar Medium. II. Radiation Pressure. Astrophys. J., 94, 232-40 (1941). C. A.,36, 32 (1942). C. A.,35, 4678 (1941). The medium will behave as a uniform homogeneous gas, and all its constituents will be repelled by the radiation pressure of the star, but the effect on the atoms will be much less than on the dust particles.
- 1859. Stadnik, P.M.
 Oxidation of Hydrogen
 in a Diffusion Flame.
 Doklady Akad. Nauk
 S.S.S.R., 87, 445-8
 (1952).
 C. A., 47, 3092 (1953).
 C. A., 46, 6909 (1952).
 The HO₂ resulting from
 the dissociation of
 H₂O₄ should be titratable
 with KMnO_h.
- 1860. Stanley, C.R.

 A New Phenomenon Associated with Active Nitrogen.
 Proc. Phys. Soc. (London),
 68A, 709-16 (1955).
 C. A.,49, 14481 (1955).
 An orange afterglow
 of properties is described.

- 1861. Stanton, H.E.
 High-Energy Methyl
 Ions from Propane
 under Electron Impact.
 J. Chem. Phys., 30,
 1116-17 (1959).
 C. A.,53, 16714 (1959).
 Theory postulated
 to explain the formation of high energy
 CH\$\frac{1}{3}\$ ions obtained from electron bombardment
 of C3H8.
- 1862. Steacie, E.W.R. & Phillips, N.W.F. Reactions of Deuterium Atoms with Methane and Ethane.

 J. Chem. Phys., 4, 461-8 (1936).

 C. A., 30, 6648 (1936).

 C. A., 30, 2471 (1936).

 C. A., 30, 2434 (1936).

 C. A., 29, 7141 (1935).

 C. A., 29, 5072, 6878 (1935).

 Reaction kinetics, activation energy.
- 1863. Steacie, E.W.R. & Alexander, W.A. The Use of Deuterio Compounds as Indicators for the Presence of Free Radicals in Organic Decomposition Reactions. J. Chem. Phys., 5, 372 (1937) C. A.,31, 4571 (1937). c. A.,31, 936 (1937). The rapid decomposition of HCHO formed from Me₂0 is due to a sensitized decomposition by methyl radicals is discussed.

- 1864. Steacie, E.W.R. & Alexander, W.A. Free Radicals in Organic Decomposition Reactions. I. The Thermal Decomposition of Mixtures of Methyl Ether and Deuterioacetone (Acetone, d_{ζ}). Can. J. Research, 15B, 295-304 (1937). C. A.,31, 8508 (1937). C. A.,31, 4571 (1937). C. A.,30, 6648 (1936). A new method of obtaining information concerning the partieipation of free radicals in decomposition reactions is described.
- 1865. Steacie, E.W.R. The Kinetics of the Decomposition of the Lower Paraffins. Can. Chem. Process Inds., 22, 325-7 (1938)C. A., 32, 7806 (1938). A review of existing kinetic data on the role of free radicals in organic decomposition reactions. The activation energies of the splitting into radicals are given. For the higher members of the paraffin series the primary step may be a split into radicals, followed by the setting up of very short chains.

- 1866. Steacie, E.W.R. & Parlee, N.A.D. Reactions of Hydrogen Atoms with Propane and the Mechanism of the Paraffin Decompositions. Trans. Faraday Soc., 35, 854-60 (1939). C. A.,33, 9101 (1939). C. A.,31, 4571 (1939). H atoms produced by Wood-Bonhoeffler method. The reactions of CoH6 and of ethyl radicals with H atoms are reviewed and the importance of $H + C_2H_E = 2CH_Z$ is emphasized.
- 1867. Steacie, E.W.R.
 The Quenching of Mercury
 Resonance Radiation by
 Ethylene.
 Can. J. Research, 18B,
 44-6 (1940).
 C. A., 34, 2711 (1940).
 A cross section of
 48 + 5 x 10 sq. cm.
- 1868. Steacie, E.W.R. & Potvin, R. Cadmium-Photosensitized Reactions of Ethylene.

 Can. J. Research, 18B, 47-54 (1940).

 C. A., 34, 2711 (1940).

 C. A., 35, 483, 8502 (1939).

 H + C₂H₄ = C₂H₅

 H + C₂H₅ = C₂H₆

 H + C₂H₅ = 2CH₃

 C₂H₄ + C₂H₅ = C₂H₉

- Steacie, E.W.R. & Shane, G. The Kinetics of the Decomposition Reactions of the Lower Paraffins, from the Point of View of Free Radical Mechanism. VI. Ethane.

 Can. J. Research, 18B, 203-16 (1940).

 C. A.,34, 6873 (1940).

 C. A.,352, 5686 (1938).

 C. A.,28, 1655 (1934).
- 1870. Steacie, E.W.R.
 Atomic and Free Radical
 Reactions. The Kinetics
 of the Gas-Phase Reactions
 Involving Atoms and
 Organic Radicals.
 Am. Chem. Soc. Monograph No. 102,
 Reinhold Pub. Co., N.Y.
 (1946).
 C. A.,40, 2160 (1946).
- 1871. Steacie, E.W.R.
 Free Radical Mechanisms
 Am. Chem. Soc. Monograph No. 102,
 Reinhold Pub. Co., N.Y.
 (1946).
 C.A., 40, 5755 (1946).
- 1872. Steacie, E.W.R.
 The Relation of Radiation Chemistry to Photochemistry.
 J. Phys. and Colloid Chem., 52, 441-6 (1948).
 C. A., 42, 4453 (1948).
 Free radicals formed in radiation chem. reactions. Detected by mass spectroscopy.

- 1873. Steacie, E.W.R., Darwent, D. de B. & Trost. W.R. Elementary Reactions Involving Lower Paraffins. Discussions Faraday Soc., 1947, No. 2, 80-7. C. A.,43, 5270 (1949). Reactions of the type: $H + RH = R + H_2$ and $H_{\mathsf{A}}C + RH = R + CH_{\mathsf{h}}$ are discussed from the viewpoint of the activation energies and steric factors involved in primary, secondary and tertiary CH bonds.
- 1874. Steacie, E.W.R. & Szwarc, M. Note on the Temperature-Independent Factors of Elementary Reactions.
 J. Chem. Phys., 19, 1309-10 (1951).
 C. A., 46, 1852 (1952).
 Bimol. and free radical reactions are discussed.
- 1875. Steacie, E.W.R.
 Atomic and Free Radical Reactions.
 Am. Chem. Soc. Monograph No. 125,
 Reinhold Pub. Co.,
 N.Y. (1954).
 C. A.,48, 11176 (1954).
- 1876. Steacie, E.W.R.
 Reactions of Radicals
 in Gaseous Systems.
 J. Chem. Soc., 1956,
 3986-96.
 C. A.,51, 53 (1957).
 An address.

- 1877. Stein, G. & Weiss,
 J.
 Chemical Actions of
 Ionizing Radiations
 on Aqueous Solutions.
 II. The Formation of
 Free Radicals. The
 Action of X-Rays on
 Benzene and Benzoic
 Acid.
 J. Chem. Soc., 1949,
 3245-54.
 C. A., 44, 7660 (1950).
 C. A., 44, 4345 (1950).
- 1878. Stein, G. & Weiss,
 J.
 Chemical Actions of
 Ionizing Radiations
 on Aqueous Solutions.
 III. The Action of
 Neutrons and of α-Particles on Benzene.
 J. Chem. Soc., 1949,
 3254-6.
 C. A., 44, 7660 (1950).
- 1879. Stein, G. & Weiss,
 J.
 IV. The Action of
 X-Rays on Some Amino
 Acids.
 J. Chem. Soc., 1949,
 3256-63.
 C. A.,44, 7660 (1950).
- 1880. Stein, G.
 Some Aspects of the
 Radiation Chemistry of
 Organic Solute.
 Discussions Faraday Soc.,
 1952, No. 12, 227-34.
 C. A.,47, 9813 (1953).

- 1881. Steiner, W.
 Oxygen Molecules as
 Radicals. Interaction
 of Oxygen Molecules.
 Trans. Faraday Soc.,
 30, 34-9 (1934).
 C. A.,28, 2269 (1934).
 C. A.,27, 1824 (1933).
 Absorption spectra in 0 at
 20°C and 6-30 atmospheres in
 columns 250-750 cm were
 investigated.
- 1882. Stepukhovich, A.D.
 The Kinetic Equation
 of A.V. Frost and
 A.I. Dintes.
 Zhur. Fiz. Khim.,28,
 1882-8 (1954).
 C. A.,50, 7552 (1956).
 C. A.,49, 7936 (1955).
 C. A.,48, 13379 (1954).
 C. A.,29, 2058 (1935).
 A discussion of the
 breakdown kinetics of
 hydrocarbons is given.
- 1883. Stepukhovich, A.D.
 Steric Factors of Radical Reactions in Chemical Kinetics.
 Uspekhi Khim., 25, 263-87 (1956).
 C. A., 50, 9113 (1956).
 Detailed review with 43 references through 1954. Tables of experimental values of the steric factors for H and CH₃ are presented.

- 1884. Stepukhovich, A.D. Equilibria in Free Radical Reactions. Zhur. Fiz. Khim.,28, 2088-94 (1954). C. A., <u>50</u>, 16294 (1956). The equilibrium constant for the reaction C_0H_5 = C2H4 + H is calculated by using Nernst's heat theorem and evaluating the heat capacity of the ethyl radical. It is shown that the equilibrium for this reaction is displaced toward the left which should be taken into account in the cracking of hydrocarbons.
- 1885. Stepukhovich, A.D. Equilibriums in the Hydrogen and Methyl Radical Addition and Substitution Reactions with Unsaturated and Saturated Hydrocarbons. Zhur. Fiz. Khim., 30, 2387-90 (1956). C. A.,51, 10201 (1957). C. A.,50, 16294 (1956). C. A.,49, 12948 (1955). Semenov, N.N. Some Problems in Chemical Kinetics and Reactivity. Pergamon Press, (1958).

- 1886. Stepukhovich, A.D. & Brusilovskaya, Yu. S. Steric Factors of the Reversible Combination of Atomic Hydrogen with Propylene. Uchenye Zapiski Saratov. Univ.,36, 41-9 (1954). Referat. Zhur., Khim., 1956, Abstr. No. 3424. c. A.,52, 846 (1958). Calculated by the method of transition state on the basis of geometrical models and the vibration frequencies of the molecules of propylene and propane, steric factors for the reaction (CH_z)₂CH CzHc + H agree well with the experimental data of Melville and Robb (C.A., 44, 1784).
- 1887. Stepukhovich, A.D. & Brusilovskaya, Yu. S. Rate and Equilibrium Constants for the Reversible Reaction of Binding Atomic Hydrogen by Propylene. Uchenye Zapiski Saratov. Univ.,36, 51-8 (1954). Referat. Zhur., Khim., 1956, Abstr. No. 12404. C. A.,52, 846 (1958). On the basis of calculation of stereochemical factors s of the reversible reaction CH_z CH CH_z = C_zH_c + H, the rate and equilibrium constants were calculated at various temperatures, both kinetic and thermodynamic methods being used. Calculated entropies of activation for the reaction in both directions agree with values for s.

- 1888. Stepukhovich, A.D. The Nature of the Negative Temperature Coefficient of the Recombination Velocity of Radicals. Zhur. Fiz. Khim.,32, 2415-17 (1958). C. A.,53, 10916 (1959). Reactions, R₁ + R₂ = M. + M₂ frequently proceed as disproportionation reaction with the formation of saturated and unsaturated hydrocarbon molecules.
- 1889. Sternheimer, R.M. Effect of an Electric Dipole Moment of the Proton on the Energy Levels of the Hydrogen Phys. Rev., 113, 828-34 (1959). C. A.,53, 15747 (1959). Perturbations of H atom energy levels by a possible electric dipole moment of the proton were calculated as well as Ho energy level shifts by a possible electric dipole moment of the deuteron.

- 18**90.** Steubing, W. & Lebowsky, F. Electric and Magnetic Effect of the Hydrogen Line H_B at Perpendicularly Crossed Fields. Z. Physik, 153, 64-95 (1958).**C.** A.,53, 2771 (1959). The splitting of the H line H_B in crossed electric and magnetic fields is calculated by means of wave mechanics, and the results compared with experiments.
- 1891. Stevels, J.M.
 Cold Flames. I.
 Chem. Weekblad, 36, 63642 (1939).
 C. A.,33, 9647 (1939).
 A review with 22 references.
- 1892. Stevels, J.M.
 Cold Flames.II.
 Chem. Weekblad, 36, 654-7 (1939).
 C. A., 34, 1175 (1940).
 A review of recent
 developments in coldflame technique. 18
 references.
- 1893. Stevels, J.M.
 Cold Flames.III.
 Chem. Weekblad.36,
 657-63 (1939).
 C. A.,34, 1176 (1940).
 A review of the importance of cold flame theories in the investigation of chemical union.
 32 references.

- 1894. Stevenson, D.P.
 Ionization and Dissociation by Electronic Impact. Ionization
 Potentials and Energies of Formation of Secpropyl and Tert-Butyl Radicals.
 Discussions Faraday Soc., 1951, 34-45.
 C. A., 46, 3339 (1952).
- 1895. Stevenson, D.P.
 Ionization and Dissociation by Electron
 Impact of Normal
 Alkanes, C₁ C₈.
 Dissociation Energies
 of D (C₂H₇-H) and D
 (C₁H₀-H) and the Ionization Potential of
 Propyl Radical.
 Trans. Faraday Soc.,
 49, 867-78 (1953.
 C. A.,48, 4961 (1954).
 C. A.,46, 3339 (1952).
- 1896. Stewart, D.T.
 Spectroscopic Evidence
 for the Presence of
 Atoms in Active Nitrogen.
 Proc. Phys. Soc. (London),
 69B, 956-7 (1956).
 C. A.,51, 14412 (1957).
- 1897. Stoddart, E.M.
 Preparation of Free
 Hydroxyl.
 Phil. Mag., 18, 409-21
 (1934).
 C. A., 28, 7166 (1934).
 C. A., 25, 5807 (1931).
 C. A., 23, 4136 (1929).
 Results in contradiction
 to Lavin and Steward.
 O₃ + H₂O = O₂ + H₂O₂

- 1898. Storch, H.H.
 Acetylene Formation
 in Thermal Decomposition
 of Hydrocarbons.
 Ind. Eng. Chem., 26,
 56-60 (1934).
 C. A., 28. 1014 (1934).
- 1899. Strong, J.D. & Burr,
 J.G.
 Radiolysis of Organic
 Solutions. Acetone
 as a Trap for Hydrogen
 Atoms.
 U.S. At. Energy Comm.,
 NAA-SR-3163, 22pp. (1959).
 C. A.,53, 21094 (1959).
 C. A.,53, 11011 (1959).
- 1900. Strong, R.L., Chein, J.C.W., Graf, P.E. & Willard, J.E. Studies of Iodine Atom and Bromine Atom Recombination Following Flash Photolysis of Gaseous I, and Br. J. Chem. Phys., 26, 1287 (1957) C.A.,<u>51</u>, 135**8**0 (1957) The method of flash photolysis was used to determine the rate constant for the combination of I atoms in A, and of Br atoms In A, $O_{\mathcal{S}}$, and $N_{\mathcal{S}}$.
- 1901. Stubbs, F.J. & Hinshel-wood, C.N.
 The Thermal Decomposition of Hydrocarbons.
 Discussions Faraday Soc., 1951, No. 10, 129-36.
 C.A.,46, 3377 (1952).

- 1902. Sugden, S. Magnetism of Free Radicals. Trans. Faraday Soc., 30, 18-24 (1934). C. A.,28, 2261 (1934). A discussion of magnetic susceptibility in its relation to the number of electrons in the molecule and as a test for free radicals. The method makes possible an approximate estimate of a magnetic moment when the concentration of the free radical is 3-5%. It is suitable only for free radicals of long life. Some data on the ketyls are given.
- 1903. Suhrmann, R., Dierk, E.A.,
 Engelke, B., Hermann, H.
 & Schuly, K.
 The Interaction between
 the Surface of a Transparent
 Film of Nickel Obtained
 by Evaporation and the
 Adsorbed Xenon Atoms.
 J. chim. phys.,54, 15-18
 (1957).
 C. A.,51, 7841 (1957).
- 1904. Sulzer, F.
 The Behavior of Aqueous
 Ozone Solutions.
 Scheweiz. Z. Hydrol.,20,
 16-29 (1958).
 C. A.,53, 5961 (1959).
 Three different methods
 for the determination of
 Ozone Solutions were
 employed in an effort to
 study the behavior of
 this gas soln.

- 1905. Sun, C.E.
 Activation Energies
 of Some Reactions Involving Free Radicals.
 J. Chinese Chem. Soc.,
 3, 293-5 (1935).
 C. A.,30, 2083 (1936).
 C. A.,25, 4769 (1931).
 The activation energies
 of three reactions involving free Me radicals
 were calculated by the method
 of Eyring.
- 1906. Surugue, I.

 The Stabilized Core
 of a Flame Held by
 an Obstruction.
 Brennstoff WarmeKraft,10, 274-8 (1958).
 C. A.,52, 16844 (1958).
 The CH and C₂ radicals
 were determined spectroscopically.
- 1907. Sushchinskii, M.M.
 Vibrational Spectra
 in the Region of CH
 Valence Vibrations.
 Izvest. Akad. Nauk
 S.S.S.R., Ser. Fiz.,22,
 1063-7 (1958).
 C. A.,53, 859 (1959).
 The interpretation of
 CH Raman spectra is
 based mainly on the
 comparison of lines
 in similar compounds.
- 1908. Suslov, A.K.
 The Spectrum of the
 Oxygen Molecule.
 Trudy Sektora Astrobotan.,
 Akad. Nauk Kazakh. S.S.S.R.,
 6, 65-76 (1958).
 C. A.,53, 17665 (1959).
 A discussion of the
 modern theory of spectra
 of diatomic molecules,
 particularly of the
 oxygen molecule.

- 1909. Sutton, H.C. & Rotblat, J. Dose-Rate Effects in Radiation-Induced Chemical Reactions. Nature, 180, 1332-3 (1957).c. A.,52, 5988 (1958). If the radiation intensity from a 15-m.e.v. linear accelerator is increased to such a degree that the reaction zones of the clusters of radicals overlap, the yield of the reaction shows a dose-rate dependence.
- 1910. Suzuki, M., Miyazaki, S. & Takahashi, S. The Decomposition of Ammonia Gas by Glow Discharge.
 J. Chem. Soc., Japan, Pure Chem. Sect., 77, 134-9 (1956).
 C.A.,50, 9884 (1956).
- 1911. Suzuki, M., Miyazaki, S. & Takahashi, S. Formation by Electric Discharge.
 Nippon Kagaku Zasshi, 77, 1152-8 (1956).
 C. A., 51, 9335 (1957).
 C. A., 50, 7624 (1956).
- 1912. Suzuki, M., Miyazaki, S. & Takahashi, S.
 The Decomposition of Ammonia Gas by High Frequency Glow Discharge.
 Nippon Kagaku Zasshi, 77, 1176-80 (1956).
 C. A.,51, 9335 (1957).
 C. A.,51, 7874 (1957).

- 1913. Suzuki, M., Miyama, H. & Fujimoto, S. Ignition of Hydrogen-Oxygen Mixture of Shock Wave. I. Condition for Shock Ignition for Hydrogen-Oxygen Mixture. Bull. Chem. Soc. Japan, 31, 816-19 (1958). C. A.,53, 15724 (1959). Using a shock tube, the minimum ignition pressure (P_1) for H_2 - O_2 mixtures was measured by varying the pressure.
- 1914. Sverdlov, L.M., Borisov, M.G. & Klochkovskii, Yu. Theory of Vibrational Spectra of Unsaturated Compounds. Izvest. Akad. Nauk S.S.S.R., Ser. Fiz., 22, 1023-5 (1958).. C.A.,53, 859 (1959). Theoretical calculations made for 39 different molecules of the ethylene structure. Results show: Replacement of hydrogen in ethylene molecule by alkyl radicals does not change fields of force.
- 1915. Sverdlov, Z.M.

 New Method of Investigation of the Absorption and Luminescence of Micro Objects at Low Temperatures.

 Doklady Akad. Nauk

 S.S.S.R.,69, 543-6

 (1949).

 C. A.,45, 6492 (1951).

 Fogging of the micro objects in air is prevented by using a vacuum camera.

- 1916. Swallow, A.J.
 The Preparation of
 Stable Free Radicals
 in Solution by Means
 of Ionizing Radiation.
 J. Chem. Soc., 1957,
 1553-5..
 C. A.,51, 15281 (1957).
- 1917. Sweeny, R.F. Improved Method of Calculating Reaction Rate Constants for Free Radicals. J. Chem. Phys., 27, 987-8 (1957). C. A.,52, 3482 (1958). Attention is directed to the increased accuracy possible in estimating reaction rate constants and half-life values for free radicals if corrections are made in the previously assumed linear pressure drop in the effluent from a reaction tube.
- 1918. Sweeny, R.F.
 Orientation and Reactivity in Aromatic
 Free Radical Substitution.
 Attack by P-Nitrophenyl
 Radicals on Nitrobenzene
 and Anisole.
 Univ. Microfilms (Ann Arbor,
 Mich.), L. C. Card No. Mic
 59-968, 142pp.; Dissertation
 Abstr.,19, 3135 (1959).
 C. A.,53, 17049 (1959).
- 1919. Swensson, B.
 Observations on the Amount
 of Ozone by Dobson Spectrophotometer during the Solar
 Eclipse of June 30, 1954.
 Arkiv. Geofysik, 2, 57394 (1958).
 C. A., 52, 11494 (1958).

- 1920. Swings, P. & Struve, O.
 II. Spectroscopic Observations of Peculiar Stars.
 Astrophys. J., 94, 291-319
 (1941).
 C. A., 36, 32 (1942).
 C. A., 54, 5751 (1940).
 Very intense forbidden lines of Fe VII appear in emission in addition to the emission lines of H, HcI, HeII, and other ionized atoms.
- 1921. Sworski, T.J. & Burton, M.

 Free Radicals in the Pyrolysis of Propionaldehyde.

 J. Am. Chem. Soc., 73, 3194-5 (1951).

 C. A., 46, 886 (1952).

 A study of the pyrolysis of EtCHO by the Hgmirror technique indicates the production of a mixture of free Me and Et radicals.
- 1922. Sychev, V.P. Dependence of the Band Intensity of Nitrogen Mixed with Argon on the Electron Temperature in the Glow Discharge. Izvest. Vysshikh Ucheb. Zavedenii, Fiz., 1958, No. 6, 60-5. C. A.,53, 11983 (1959). The influence of the electron temperature on the excitation of nitrogen bands in the glow discharge of N-Ar mixtures was investigated.

- 1923. Symons, M.C.R. & Townsend, M. Electronic Spectrum of Trapped Ethane Radicals.
 J. Chem. Phys., 25, 1299 (1956).
 C. A.,51, 6359 (1957). The violet color was attributed to MeCHOH radicals.
- 1924. Szabo, Z.G. Stabilization of Free Radicals. Its Importance in Reaction Kinetics. Nature, 170, 246-7 (1952). c. A.,47, 10978 (1953). Paramagnetic free radicals having an odd number of electrons, like atomic nitrogen, atomic hydrogen or free methyl can add to paramagnetic molecules like 02 or NO to form less reactive radicals. Some may even be stable substances, e.g. ClO2. In the chain decomposition of org. vapors addition of NO stabilizes the chain-carrying radicals. Heterogeneous catalysis of reactions proceeding through a radical mechanism may occur thru stabilization of radicals by paramagnetic atoms on the catalyst surface. magnetic properties of catalyst surface are very important.

- 1925. Szabo, Z.G.
 Stabilization of
 Free Radicals.
 Importance in
 Reaction Kinetics.
 Acta Chim. Acad.
 Sci. Hung., 3, 13956 (1953).
 C. A., 47, 11914 (1953).
 C. A., 47, 2351 (1951).
- 1926. Szabo, Z.G., Huhn, P. & Bergh, A. Mechanism of Homogeneous Chain Catalysis and Inhibition. Advances in Catalysis, <u>9</u>, 343-53 (1957). C. A.,53, 833 (1959). The principle of the stabilization of free radicals is used in interpreting the mechanism of catalyzed and inhibited chemical reactions. Mathematical details are given and applied to data for the decomposition of propylaldehyde and the decomposition of Et₂O as influenced by NO.
- 1927. Szwarc, M.

 The Kinetics of the Thermal Decomposition of Propylene.

 J. Chem. Phys., 17, 284-91 (1949).

 C. A., 43, 5270 (1949).

 C. A., 42, 2825 (1948).

- 1928. Szwarc, M.
 The Kinetics of the Thermal Decomposition of Isobutene.
 J. Chem. Phys., 17, 292-5 (1949).
 C. A., 43, 5270 (1949).
 Thermal decomposition of propylene.
- 1929. Szwarc, M.
 The Dissociation
 of the First NH
 Bond in Ammonia.
 J. Chem. Phys., 17,
 505-7 (1949).
 C. A.,43, 7797 (1949).
- 1930. Szwarc, M. & Sheon,
 A.H.
 The Dissociation
 Energies of the C-H
 Bond in Propylene and
 the C-C Bond in 1-Butene.
 J. Chem. Phys., 18, 237-8
 (1950).
 C. A., 44, 6248 (1950).
 C. A., 45, 5370 (1949).
 The heat of formation
 of the allyl radical.
- 1931. Szwarc, M. & Roberts, J.S.
 The O-O Bond Dissociation Energy in Tert-Butyl Peroxide.
 J. Chem. Phys., 18, 561-2 (1950).
 C. A.,44, 6248 (1950).
 C. A.,42, 2844 (1948).

- 1932. Szwarc, M. & Roberts,
 J.S.
 Activation Energy
 and the Steric Factor
 of the Reaction between
 Methyl Radicals and
 Toluene.
 Trans. Faraday Soc., 46,
 625-9 (1950).
 C. A., 45, 935 (1951).
 - Activation energy for the reaction C_6H_5 CH_3 + CH_3 =
 - CoH₂ CH₂ + CH₁ is 12[±] 2Kcal/mole. The steric factor for this reaction as well as that of CH₃ + CH₃ = C₂H₆ is normal, i.e. of the order of 10¹¹ to 10¹² cm²/sec. mole. The work provides evidence in favor of a normal steric factor for radical reactions.
- 1933. Szwarc, M. Calculating the Rates of Some Radical Reactions. J. Chem. Phys., 19, 256-7 (1951). C. A.,45, 4120 (1951). Mathematical and theoretical methods are described for determining the relative rate constants for two competing reactions in which the same radical or atom participates.

- 1934. Szwarc, M. Factors Influencing Bond Dissociation Energies. J. Chem. Phys., 18, 1660-3 (1950). C. A.,45, 5986 (1951). C. A.,44, 10396 (1950)。 Consideration of bond energies leads to experimental resonance energies of radicals and to an evaluation of a strengthening effect affecting the undissociated molecule. The new approach is one of several possible variants that might be used to arrive at a better understanding of energetic relations in molecules.
- 1935• Szwarc, M. Reply to a Letter to the Editor Entitled Concerning the Steric Factor of Free-Radical Reactions by Gomer and Dorfman. J. Chem. Phys., 19, 380 (1951). c. A.,45, 6020 (1951). C. A., 45, 3695 (1951). The rates of radical reactions are governed by the same factors as the rates of reactions involving molecules only. Therefore the temperatureindependent factors should be approximately the same for both types of reaction.

- 1936. Szwarc, M.
 The Frequency Factors of Unimolecular Dissociation Processes.
 J. Phys. and Colloid Chem., 55, 939-47 (1951), discussion 947-9 (1951).
 C. A., 46, 27 (1952).
 C. A., 42, 6183 (1948).
 Probability factors in association processes involving atoms or radicals.
- 1937. Szwarc, M.
 The Thermal Stability
 and Reactivity of Hydrocarbon Radicals.
 Discussions Faraday Soc.,
 1951, No. 10, 143-54.

 C. A.,46, 3377 (1952).
 Bond dissociation energies.
 Effects of substitution
 on thermal stability.
- 1938. Szwarc, M.
 A Discussion on Bond
 Energies and Bond
 Lengths. Experimental
 Methods for Measurement
 of Bond Dissociation
 Energies and Heats
 of Formation of Radicals.
 Proc. Roy. Soc. (London),
 A207, 5-13 (1951).
 C.A.,46,5377 (1952).
- 1939. Szwarc, M.

 Energy Problems of
 Molecular Formation
 Processes. Free Radicals.
 J. Phys. Chem., 56,
 368-72 (1952).
 C. A.,46, 6883 (1952).
 Tenative values of resonance energy of radicals are derived from variations in bond dissociation energies.

- 1940. Szwarc, M. & Williams, D.

 Heat of Formation of Phenyl Radical and the Related Bond Dissociation Energies.

 J. Chem. Phys., 20, 1171-2 (1952).

 C. A.,46, 10840 (1952).
- 1941. Szwarc, M. & Taylor, J.W. Pyrolyses of Benzyl Benzoate, Acetate, and Formate. J. Chem. Phys., 21, 1746**-**9 (1953). C. A.,48, 1123 (1954). C. A.,47, 2581 (1953). Studied in a flow system in presence of an excess of toluene: $PhCH_2OOCPH = PhCH_2 - +$ PhCOO-The bond dissociation energy was less than 69 K cal./mole. decompositions were accompanied by the formation of smaller molecules.
- 1942. Szwarc, M. Reactions of Methyl Radicals and Their Applications to Polymer Chemistry. J. Polymer Sci., 16, 367-82 (1955).• C. A.,49, 15379 (1955). $CH_3 + A = CH_3A$, where A is an aromátic or olefinic molecule. The method can be used to obtain relative chain-transfer data for CHz radicals.

- 1943. Szwarc, M.

 The Character of Bonding of Radicals to Aromatic and Olefinic Compounds.

 J. Phys. Chem., 61, 40-5 (1957).

 C. A., 51, 7077 (1957).

 C. A., 49, 15379 (1955).
- 1944. Szwarc, M. & Heck,
 L.
 Pseudo Energy Transfer
 in Some Unimolecular
 Decompositions.
 J. Chem. Phys., 29,
 438-40 (1958).
 C. A.,52, 19365 (1958).
 The unimolecular decomposition of molecules involving rupture of a bond and formation of unstable radicals is discussed.
- 1945. Szwarc, M. & Binks, J.H. Behavior of Radicals in Addition and Abstraction Reactions. Theoret. Org. Chem., Papers Kekule Symposium, London, 1958, 262-90. Pub. 1959. c. A.,<u>53</u>, 21601 (1959). Rates of radical addition reactions are governed by the localization energy of the reactive centers, and depend on the nature of that center.

- 1946. Tagirov, R.B. The Existence of the HO2 Radical. Zhur. Fiz. Khim., 30, 949**-**50 (1956). C. A.,50, 16387 (1956). The radical existence at normal pressures and high temperatures must be considered to be established since nothing else $(0_{\overline{3}}, H_20,$ H_2O_2 , and OH) has an absorption band at $\nu = 1305/cm$.
- Takezaki, Y.
 The Mechanism of the Reaction of Methyl
 Radicals with Some
 Oxygen Containing
 Organic Compounds.
 Bull. Inst. Chem.
 Research, Kyoto Univ.,
 26, 1-25 (1951).
 C. A.,47, 3229 (1953).
 C. A.,47, 1578 (1953).
 C. A.,45, 6567 (1951).
- 1948. Takezaki, Y.
 The Free Radicals
 in Gas Reactions.
 Kagaku no Ryoiki, 5,
 563-73 (1951).
 C. A.,48, 10396 (1954).
 A review.
- 1949. Takezaki, Y., Miyazaki, T. & Nakahara, N.
 Photolysis of Dimethyl
 Peroxide.
 J. Chem. Phys., 25, 53642 (1956).
 C. A., 51, 872 (1957).
 Dimethyl peroxide photolyzed in the vapor phase
 by light of 2537A. A
 reaction mechanism is
 proposed.

- 1950• Tal'roze, V.L. Chemical Nature of the Traps Formed during Radiation Action and Their Role in Radiation. Chemical Reactions. Izvest. Akad. Nauk., S.S.S.R., Otdel. Khim. Nauk, 1959, 369. c. A.,53, 21187 (1959). Irradiation of hydrocarbons, such as polythene, yields unsaturated products which act as traps owing to their low ionization potential.
- 1951. Tanaka, I.
 Photoisomerization of
 Cyclobctatetrene.
 J. Chem. Soc. Japan,
 Pure Chem. Sect., 75,
 100-3 (1954).
 C. A., 48, 4984 (1954).
 Effect of CHz.
- 1952. Tanaka, I., Inowaki, S. & Akabane, N.
 The Absorption Spectra of the Conjugated Radicals and the Active Conjugated Molecules.
 J. Chem. Soc. Japan, Pure Chem. Sect., 75, 609-13 (1954).
 C. A.,48, 8658 (1954).
- 1953. Tanaka, I.
 Conjugated Radicals.
 Kagaku no Ryoiki (J.
 Japan. Chem.), 8, 30-5
 (1954).
 C. A., 48, 11127 (1954).
 A review with 37 references chiefly on the electron state of free radicals such as allyl, PhCH₂, PhCH, Ph₃C, and 1-(or 2) napthylmethyl.

- 1954. Tanaka, O. Infrared Spectra of Anthraguinone Derivatives. I. The Effect of Hydroxyl, Acetoxyl, Methoxyl, and Methyl Substitutions on the CO Stretching Frequency. Chem. Pharm. Bull. (Tokyo), 6, 18-24 (1958). c. A.,53, 3882 (1959). The infrared spectra of about 80 anthraquinone derivatives containing HO, AcO, MeO, or Me groups were measured in the solid state and in dioxane solution.
- 1955. Tanaka, 0. Infrared Spectra of Anthraquinone Derivatives. II. The Relation Between the Absorption Bands in the Region of 1480 to 1620 cm.^{-1} and Hydroxyl, Methoxyl, Acetoxyl, and Methyl Substitution. Chem. Pharm. Bull. (Tokyo), 6, 24-30 (1958)*•* c. a.,53, 3882 (1959). Infrared spectra for some 80 anthraquinoes were measured under the same experimental conditions as above in region $1480-1620 \text{ cm}^{-1}$.
- 1956. Tanaka, Y., Jursa, A. & Ie Blanc, F.J.
 Vacuum Ultraviolet
 Spectra of the Afterglows of Pure Nitrogen
 and a Mixture of
 Nitrogen and Oxygen.
 Threshold of Space
 Conf. Chem. Aeron.,
 1956, 89-93, Pub. 1957.
 C. A., 52, 13415 (1958).

- 1957. Tanford, C. & Pease, R.N. Equilibrium Atom and Free-Radical Concentrations in Carbon Monoxide Flames and Correlation with Burning Velocities. J. Chem. Phys., 15, 431-3 (1947) C. A.,41, 6037 (1947). Calculations are made of equilibrium concentrations of OH radicals and of H and O in moist CO flames. There is a close correlation between observed burning velocities and the calculated H-atom concentrations. There is only a slight correlation with OH-radical concentrations and none at all with calculated O-atom concentrations.
- Theory of Burning Velocity. I. Temperature and Free Radicals Concentration near the Flame Front. Relative Importance of Heat Conduction and Diffusion. J. Chem. Phys., 15, 433-9 (1947) C. A.,41, 6037 (1947). The local nonequilibrium concentration of H atoms, which is caused by diffusion from the flame front into unburnt gas, falls only slowly with distance. Diffusion plays a more important role than heat transfer.

Tanford, C.

1958.

- 1959. Tanford, C. The Role of Free Atoms and Radicals in Burner Flames. Third Symposium on Combustion and Flame and Explosion Phenomena. Univ. of Wisconsin. Madison, Sept. 7-11 (1948), Pub. 1949, Williams and Wilkins Co., Baltimore, Md. C. A.,46, 11622 (1952). The diffusion of atoms and free radicals play an important part in flames. The burning velocity of a series of mixtures can be represented by a product of terms, of which the most important is the square root of the sum of equil. free radical concns. each multiplied by its coefficient for diffusion into unburned gas. Burning velocities of mixtures containing CO and H do not fall to zero when the stationary concentration of H atoms and other radicals tend to zero.
- 1960. Tanner, K.N. & King, R.L. Infrared Spectra of Free Radicals.

 Nature, 181, 963-5 (1958).
 C. A., 52, 14327 (1958).
 Hydrazine was photolyzed at flash energies of greater than 3000 joules in the search for free NH, appearing at the 3.125µ band.

- 1961. Tarutina, L.I. A Study of the Photodecomposition of Certain Amines Using Their Infrared Absorption Spectra. Primenenie Metodov Spektroskopii v Prom. Prodovol stven. Tovarov i Sel'sk. Khoz., Leningrad. Gosudarst. Univ. im. A.A. Zhdanova, Materialy Soveshchaniya, Leningrad, 1955, 170-2. Pub. 1957. C. A.,53, 21094 (1959). Diphenylamine and phenyl-2-naphthylamine were exposed to the light of a quartz Hg-vapor lamp, and the decomposition of the NH group was studied.
- 1962. Taylor, F.R. Study of Explosions by Flash Absorption Spectroscopy. J. Franklin Inst., 265, 501-2 (1958). C. A.,<u>52</u>, 17714 (1958). $CS_2 + \overline{O_2}$ and $C_3H_8 + NO_2$. The technique can be applied to almost any rapid reaction where the participating chemical species have visible or ultraviolet absorption bands.
- 1963. Taylor, G.W.
 Gas-Phase Reactions
 of Phenyl Radicals.
 Can. J. Chem., 35,
 739-41 (1957).
 C. A.,51, 15469 (1957).
 Products of pyrolysis
 reactions.

- 1964. Taylor, H.A. & Burton, The Reactions between Methyl Radicals. J. Chem. Phys., 7, 675-82 (1939). C. A.,33, 8094 (1939). C. A.,33, 1217, 5743. (1939). Methyl radicals combine only in three-body collisions. The energy of activation of which may be as high as 22 Kgcal. Me radicals do not readily enter into twobody reactions with hydrogen molecules.
- Photochemical Reactions Leading to Unstable Species.
 Ann. N.Y. Acad.
 Sci., 67, 477-84 (1957).
 C. A., 51, 16111 (1957).
 The general mechanism of photochemical reactions is discussed.
- 1966. Taylor, H.A. & Chen, M.C.
 The Photolysis of Water Vapor.
 Threshold of Space, Proc. Conf. Chem. Aeron., 1956, 111-15. Pub. 1957.
 C. A., 52, 13441 (1958).
 O2 free water was photolyzed in both static and flow systems, by using a H2 discharge source which was particularly strong at 1650A.

- 1967. Taylor, H.D. The Detection of Free Radicals and Atoms in Gaseous Systems. Bull. Brit. Coal Utilization Research Assoc., 14, 445-53 (1950). C. A.,46, 1345 (1952). A review covering detection at reactive surfaces, photochemical methods, spectroscopy, high intensity radiation, the mass spectrometer, and its use in the investigation of low pressure flames and chemical methods. 28 references.
- 1968. Taylor, H.S. &
 Lavin, G.I.
 Surface Reactions
 of Atoms and Radicals.
 I. A New Approach
 to the Problem of
 Specific Surface
 Action.
 J. Am. Chem. Soc.,
 52, 1910-18 (1930).
 C. A., 24, 3159 (1930).
- 1969. Taylor, H.S. & Rosenblum, C.

 The Photolysis of Acetone in Presence of Hydrogen.
 J. Chem. Phys., 6, 119-23 (1938).

 C. A., 32, 3267 (1938).

 A mechanism to account for quantum yields less than unity in the lowtemp. range, consistent with primary dissociation into radicals is proposed.

- 1970. Taylor, H.S.
 The Secondary Process in the Photodecomposition of Ammonia and Hydrazine.
 J. Phys. Chem., 42, 783-8 (1938).
 C. A., 32, 8942 (1938).
 Discussion of probable mechanisms.
- 1971. Taylor, H.S.
 Secondary Processes in the Photochlorination of Carbon Monoxide and Hydrogen.
 J. Phys. Chem., 42, 789-94 (1938).
 C. A., 32, 8943 (1938).
 Progress report since the second report of the committee on photochemistry.
- 1972. Taylor, H.S. & Smith,
 J.O., Jr.
 The Reactions of Methyl
 Radicals with Benzene,
 Toluene, Diphenylmethane,
 and Propylene.
 J. Chem. Phys., 8, 543-6
 (1940).
 C. A., 34, 5731 (1940).
 C. A., 35, 5743 (1939).

radicals with CoH, PhMe, Ph_Ch_, and CoH, to yield CH, were studied from 100 to 260°.

Contrary to accepted views, there may be marked differences in C-C and C-H bond strengths among the various hydrocarbons

studied.

The reactions of methyl

- 1973. Taylor, H.S.
 Hydrocarbon Free Radicals in Photoprocesses.
 J. Phys. Chem., 42,
 763-72 (1938).
 C. A., 42, 8942 (1938).
 Photolysis of alkyl
 iodides, photodecomposition
 of metal alkyls, the
 Hg-sensitized hydrogenation of unsaturated
 and decomposition of
 saturated hydrocarbon.
- 1974. Taylor, R.P. & Blacet, F.E.
 Photochemical Oxidation of Biacetyl by Molecular Oxygen.
 Ind. Eng. Chem., 48, 1505-8 (1956).
 C. A.,51, 1739 (1957).
 A reaction mechanism is postulated and discussed.
- 1975. Taylor, W.J. & Johnston, H.L.

 An Improved Hot-Wire
 Cell for Accurate Measurements of Thermal Conductivities of Gases over a Wide Temperature Range.
 Results with Air between 87° and 375°K.
 J. Chem. Phys., 14, 219-33 (1946).
 C. A.,40, 3951 (1946).
- 1976. Tcheng, M.

 Measurement of the
 Quantity of Ozone in
 the Atmosphere by Photographic Spectrophotometry
 of the Blue Sky in the
 Zenith.
 Ann. Geophys., 7, 45-58
 (1951).
 C. A., 45, 8349 (1951).

- 1977. Temkin, M.I.
 The Reactivity and
 the Mutual Effect
 of Adsorbed Atoms
 and Radicals.
 Voprosy Khim. Kinetiki
 Kataliza i Reaktsionnoi
 Sposobnosti, Akad.
 Nauk S.S.S.R., 1955,
 484-95.
 C. A.,50, 10499 (1956).
- Terenin, A.N. 1978. Optical Methods in Organic Chemistry. Trudy Sessii Akad. Nauk Org. Khim., 1939, 284-8. C. A.,<u>34</u>, 7723 (1940). C. A., $\overline{29}$, 3301 (1935). The main difficulty is the extremely low concn. of free radicals for which the usual Paneth method is not sensitive enough. Better results were obtained by the use of a photoelectric device. In the dissociation of hydrocarbons in vapor phase under ultraviolet irradiation, free hydroxyl, amino, etc. radicals were measured in concns. as low as 10° to 10¹⁰ particles per cc. Direct optical analysis of reactions is as yet in the tenative stage.
- 1979 Terenin, A.N.
 The Nature of the
 Photochemical Action
 in the Sensitized
 Oxygen Oxidation Reactions and Hydroperoxide Breakdown
 Reactions.
 Vaprosy Khim. Kinetiki,
 Kataliza i Reaktsionnoi
 Sposobnosti, Akad. Nauk
 S.S.S.R., 1955, 85-91.
 C. A., 50, 9882 (1956).
 A review.
- 1980. Theilacker, W.
 Free Radicals.I.
 Chem. Ztg., 65, 125-9
 (1941).
 C. A., 36, 393 (1942).
 A review with 91 references.
- 1981. Theilacker, W.
 Free Radicals. II.
 Chem. Ztg., 65,138-9(1941).
 C.A., 36, 393 (1942).
 A review with 91 references.
- 1982. Thom, H.G., Wahler,
 B.E. & Schoffa, G.
 Paramagnetic Resonance
 of Free Radicals.
 I. Diaryl Nitrogen
 Oxide Radicals.
 Z. Naturforsch., 13a,
 552-6 (1958).
 C. A.,53, 2794 (1959).
 Paramagnetic resonance
 absorption at 9270 Mc.
 was measured for various
 nitrogen oxides.

- 1983. Thomas, J.R. & Crandall, H.W. Preflame Combustion of Hydrocarbons: Spectroscopic Studies of Reaction Intermediates. Ind. Eng. Chem., 43, 2761-3 (1951). C. A.,46, 2266 (1952). The time-dependence of the optical density during cool flame reaction was measured with an ultraviolet spectrophotometer. An intermediate-absorbing at about 2600A was observed.
- 1984. Thomas, N., Gaydon,
 A.G. & Brewer, L.
 Cyanogen Flames and
 the Dissociation Energy
 of N₂.
 J. Chem. Phys., 20,
 369-374 (1952).
 C. A.,46, 7434 (1952).
 C. A.,45, 8351 (1951).

The behavior of C₂N₂ flames under a variety of conditions has been observed. Both the reaction zone and mantle of completely combusted gases were observed spectroscopically.

1985. Thompson, F.W. & Ubbelohde, A.R.

The Attack of Metals by Free Radicals and Atoms.
J. Appl. Chem. (London),
3, 27-36 (1953).
C. A., 47, 9231 (1953).
A review of container corrosion from a thermophysical and kinetic viewpoint.
53 references.

- 1986. Thompson, H.W. &
 Frewing, J.J.
 Absorption Spectra
 of Substances Containing
 Alkyl Radicals.
 Nature, 135, 507-8 (1935).
 C. A., 29, 3602 (1935).
 C. A., 28, 5334 (1934).
 Absorption spectra in
 the region 2000 5000A
 are given for Hg Et,
 Zn Et, Hg Me, GeMe,
 PbMe, PbEt, NEt,
 PbMe, PbEt, NEt,
 PEtz, NMez, Me20, Et20,
 Et28, H2S, and EtSH.
- 1987. Thompson, H.W. & Jameson, D.A. Vibrational Frequency and Band Intensity of the Carbonyl Group. Spectrochim. Acta, 13, 236-47 (1958). C.A.,53, 6758 (1959). The frequencies and intensities of the fundamental and overtone bands of the carbonyl group vibration in a large number of compounds were measured between 1600 and 3500 cm.
- 1988. Thorp, C.E., Kinney,
 L.C. & Gaynor, A.J.
 Ozone.
 U.S. 2,876,188, Mar. 3,
 1959.*
 C. A.,53, 8896 (1959).
 In a method of producing
 O3 from O2, free of
 oxidizable substances,
 is introduced into a
 ozonizer chamber that
 has condensing wall surfaces surrounding spaced
 electrodes.

- Thrush, B.A.
 The Homogenity of
 Explosions Initiated
 by Flash Photolysis.
 Presence of Diatomic
 Radicals.
 Proc. Roy. Soc. (London),
 A233, 147-51 (1955).
 C. A.,50, 4595 (1956).
 The presence of a very
 short-lived intense
 emission from the
 diatomic radicals
 was confirmed.
- Thrush, B.A.
 The Detection of Free
 Radicals in the High
 Intensity Photolysis of
 Hydrogen Azide.
 Proc. Roy. Soc. (London),
 235A, 143-7 (1956).
 C. A.,50, 12660 (1956).
 The absorption spectra
 of NH and NH₂ were observed
 in the flash photolysis
 of NH₃ in the presence of
 an excess of inert gas.
- 1991. Thrush, B.A.

 Spectrum of the Cyclopentadienyl Radical.

 Nature, 178, 155-6
 (1956).

 C. A.,51, 7160 (1957).

 Gas phase flash photolysis.

- 1992. Thrush, B.A. Kinetic Spectroscopy in the Far Ultraviolet and Flash Photolysis of Ethyl Compounds. Proc. Roy. Soc. (London), A243, 555-60 (1958). C. A.,52, 7873 (1958). An apparat. is described for recording ultraviolet absorption spectra-down to 1250A - of transient species. The flash photolysis of HgEto and PbEth yield appreciable amounts of methyl radical. Plausable mechanisms are discussed.
- 1993. Tickner, A.W. & LeRoy, D.J. Preparation and Reactions of Free Vinyl Radicals.

 J. Chem. Phys., 19, 1247-9 (1951).

 C. A., 46, 1852 (1952).

 C₂H₃ + H₂ = C₂H₄ + H.
- 1994. Tikhomirova, N.N. & Voevodskii, V.V. Reactivity of Free Alkyl Radicals. Doklady Akad. Nauk S.S.S.R., 79, 993-6 (1951). J. Chem. Phys., 19, 329 (1951). C. A., 45, 9940 (1951). C. A., 44, 9782 (1950).

- 1995. Tinyakova, E.I., Khrennikova, E.K. & Dolgoplosk, B.A. Reactions of Free Radicals in Solution. XIV. Formation of Free Radicals in Decomposition of Hydrogen Disulfide and Their Reactions with α and β Olefins. Zhur. Obshchei Khim., 28**,** 1632-7 (1958). C. A.,53, 1177 (1959). Thermal decomposition of H₂S₂ in hydrocarbons yields HS radicals and HS2 radicals which react most readily with 1-alkenes and less readily with 2-alkenes.
- 1996. Tinyakova, E.I., Dolgoplosk, B.A. & Rabinovich, M.B. Oxidation-Reduction Systems for Initiation of Radical Processes. IV. Oxidation-Reduction Systems for Initiation of Polymerization in Hydrocarbon Media. Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci., 1957, 719-27. English Translation. C. A.,53, 4105 (1959). c. A.,52, 2774 (1958).
- 1997. Toby, S. & Schiff, H.I.
 The Reaction of Deuterium
 Atoms with Ethylene.
 Can. J. Chem., 34,
 1061-73 (1956).
 C. A.,50, 16308 (1956).
 C. A.,48, 469 (1954).

- 1997. Cont.
 - D was dissociated on a hot W filament and the atomic concentration was measured by isothermal calorimetry. Recombination on glass surface coated with HPO₃.
- 1998. Toby, S. & Kutschke, K.O. Reaction of Methyl Radicals with Formaldehyde. Can. J. Chem., 37, 672-8 (1959). C. A.,53, 19853 (1959). Me radicals produced by photolysis of Me No in a quartz cell placed in an insulated box at constant temperatures in the range $80-180^{\circ}$ + 10, using a Hg arc giving radiation at approximately 3660A. with an intensity of about 1014 quanta cm-3 sec-1 were treated with CH20 and CD20(99.4 atom % D).
- 1999. Todd, N. & Witcher, S.L.

 Effect of Oxygen on a Radio-Reduction
 Reaction.
 J. Chem. Phys., 20, 1172-3 (1952).
 C. A., 46, 9429 (1952).
 The reaction, H + 0 = HO₂, is believed to be important in the presence of air.

- 2000. Travers, M.W.

 New View of the

 Nature of the

 Covalent Linkage

 and the Formation

 of Free Radicals.

 Trans. Faraday Soc.,

 30, 100-2 (1934).

 C. A.,28, 1943 (1934).

 The applicability of

 ordinary formulas

 to molecules in free

 space is questioned.
- 2001. Trotman-Dickenson, A.F. & Steacie, E.W.R.
 The Reactions of Methyl
 Radicals with Hydrocarbons.
 J. Am. Chem. Soc., 72,
 2310-11 (1950).
 C. A., 44, 8851 (1950).
 C. A., 42, 6244 (1948).
 Photolysis of six different
 hydrocarbons in presence
 of Me₂CO. Effect of temp.
 pressure and light intensity.
- 2002. Trotman-Dickenson, A.F. & Steacie, E.W.R. Reactions of Methyl Radicals.
 J. Chem. Phys., 18, 1097-1100 (1950).
 C. A., 45, 454 (1951).
 C. A., 44, 8851 (1950).
 C. A., 42, 7161 (1948).
- 2003. Trotman-Dickenson, A.F.
 The Decomposition of
 Radicals Produced by
 Mercury Photosensitization.
 J. Chem. Phys., 19,
 261 (1951).
 C. A., 45, 4140 (1951).
 C. A., 44, 9262 (1950).

- 2004. Trotman-Dickenson, A.F.,
 Birchard, J.R. & Steacie,
 E.W.R.
 The Reactions of Methyl
 Radicals.
 II. The Abstraction of
 Hydrogen Atoms from
 Paraffins.
 J. Chem. Phys., 19,
 163-8 (1951).
 C. A., 45, 9455 (1951).
 C. A., 45, 455 (1951).
- 2005. Trotman-Dickenson, A.F., & Steacie, E.W.R. The Reactions of Methyl Radicals. III. The Abstraction of Hydrogen Atoms from Olefins. J. Chem. Phys., 19, 169-71 (1951).C. A.,<u>45</u>, 9455 (1951). C. A., 45, 455 (1951). The abstraction of H atoms from eight olefins by deuteriomethyl radicals formed in the photolysis by deuterioacetone has been investigated over the temperature range 180-340⁰.
- 2006. Trotman-Dickenson, A.F. & Steacie, E.W.R. The Reactions of Methyl Radicals. IV. The Abstraction of Hydrogen Atoms from Cyclic Hydrocarbons, Butynes, Amines Alcohols, Ethers, and Ammonia. J. Chem. Phys.,19, 329-36 (1951). C. A.,46, 877 (1952). C. A, $\overline{45}$, 9455 (1951). The photolysis of Me_oCO in presence of various compounds.

- 2007. Trotman-Dickenson, A.F. & Steacie, E.W.
 The Reactions of Methyl Radicals.
 J. Phys. and Colloid Chem., 55, 908-22 (1951).
 Discussion Colloid Chem., 55, 922-4 (1951).
 C. A.,46, 3488 (1952).
 C. A.,46, 877 (1952).
 C. A.,45, 455 (1951).
- 2008. Trotman-Dickenson, A.F. Entropy Changes in Free Radical Reactions. J. Chem. Phys., 21, 211-14 (1953) c. A.,47, 3667 (1953). Alkyl and other simple free radicals. The method provides a means of obtaining knowledge about reactions that are not readily susceptible to direct experimental investigation.
- 2009. Trotman-Dickenson, A.F. Free Hydrocarbon Radicals. Their Reactions in the Gas Phase. II. Petroleum (London), 21, 406-8 (1958). C. A.,53, 6052 (1959). Disproportionation reactions, decomposition of radicals, addn. of radical to double bonds, isomerization of radical, and reactions of biradicals are discussed.

- 2010. Trotman-Dickenson, A.F. Free Radicals. An Introduction.

 New York: John Wiley and Sons, 1959, 142 pp. C. A., 53, 14915 (1959).
- 2011. Tsukervanik, I.P. & Mel'kanovitskaya, S.G. Radical and Ionic Alkylation of the Aromatic Nucleus.

 IV. Benzylation of Guaiacol, Toluene, and Benzene.

 J. Gen. Chem. U.S.S.R., 27, 963-7 (1957).

 English Translation.

 C. A., 53, 4225 (1959).
- 2012. Tsukida, K.
 Some Aspects of Photochemical Reactions.
 Kagaku no Ryoiki, 13,
 365-74 (1959).
 C. A.,53, 21089 (1959).
 A review with 66 references.
 Topics include photochemical oxidation and
 photochemical rearrangement of organic compounds.
- 2013. Tuker, H. & Rideal,
 E.K.
 Photodecomposition of
 Carbon Dioxide and of
 Ammonia.
 J. Chem. Soc., 1957,
 1058-61.
 C. A.,51, 10245 (1957).
 C. A.,47, 4206 (1948).

- 2014. Tung, T. & Chern, S.
 Studies on Organic Amido
 Phosphorus Compounds.
 II. The Influence of
 the Alkyl Radicals of
 Dialkyl Phosphites on
 the Preparation of Dialkyl Amidophosphonates.
 Hua Hsüch Hsuch Pao, 24,
 30-5 (1958).
 C. A.,53, 3113 (1959).
- Cvetanovic, R.J.
 Isotopic and HotRadical Effects in
 the Reaction of
 Hydrogen Atoms with
 Ethylene.
 Can. J. Chem., 37,
 1075-81 (1959).
 C. A.,53, 18607 (1959).
 Results for H + C₂D₁,
 D + C₂H₁, and H + C₂H₁
 were obtained at various
 pressures.
- 2016. Turner, D.T.
 Radiation Cross-Linking
 of Rubber. Effect of
 Additives.
 J. Polymer Sci., 27, 50314 (1958).
 C. A.,53, 9709 (1959).
 The effect of a range of
 additives on the crosslinking of rubber by pile
 and y-radiation is reported.

- 2017. Tverdokhlebov, V.I. Probe Investigation of a Rarefied Flame. Zhur. Exptl. i Teoret. Fiz., 30, 252-5 (1956). C. A.,50, 10491 (1956). The electrical properties of an C_2H_2 (7%) - air flame at 30-50 mm. pressure were investigated by a probe method. The bright green reaction zone contains positive ions, negative ions, and hydroxyl radicals.
- 2018. Twade, N.R. & Laude, в.в. Spectroscopic Study of Some Alcohol Flames: Flame Temperatures and Their Influence on the Intensity Changes in Various Bands. Symposium on Combustion, 6th, Yale Univ., New Haven, Conn., 143-9 (1956). Pub. 1957. c. a.,52, 85**01** (1958). The variation of Na line reversal temp. and the intensities of OH, CH, C2, and HCO bands with fuel and air ratio in EtOH bands is reported.

- 2019. Ubbelohde, A.R.
 The Combustion of
 Hydrocarbons.
 I. The Influence
 of Molecular Structure
 on Hydrocarbon.
 Proc. Roy. Soc. (London),
 A152, 354-78 (1935).
 C. A.,30, 2167 (1936).
- 2020. Ubbelohde, A.R.
 The Combustion of
 Hydrocarbons. II. Absorption Spectra and
 Chemical Properties of
 Intermediates.
 Proc. Roy. Soc. (London),
 A152, 378-402 (1935).
 C. A.,30, 2167 (1936).
 A mechanism involving
 peroxide radicals and
 molecules. Chain breaking.
- 2021. Ubbelohde, A.R.

 The Mechanism of the Combustion of Hydrocarbons.

 Z. Elektrochem., 42, 468-71 (1936).

 C. A., 30, 6920 (1936).

 C. A., 30, 2167 (1936).

 A consideration of the part played in the combustion mechanism by chain carriers such as the aldehyde peroxide radical. (RC (:0) 00).

- 2022. Ubbelohde, A.R. The Role of Free Radicals in the Mechanism of Gaseous Explosions. Chemistry and Industry, 1940, 657-9. C. A., 35, 319 (1941). A theoretical discussion of the types of free radicals which may play a part in explosion mechanisms, and the effect of their instability on the propagation of explosions. Bibliography.
- 2023. Uebersfeld, J. & Erb, E. Paramagnetic Resonance of Charcoal.

 Detection of a Free Radical Unstable in Air.

 J. phys. radium, 16, 340 (1955).

 C. A., 50, 7583 (1956).
- 2024. Uebersfeld, J.
 A Paramagnetic Resonance
 Spectrometer Study of
 Free Radicals in Irradiated Substances (α rays)
 and Coals.
 Ann. Phys.,(13),1, 395461 (1956).
 C. A.,50, 11107 (1956).
- 2025. Ueno, T. & Takezaki, Y. Some Observation on the Photolysis of Dimethyl Disulfide.

 Bull. Inst. Chem. Research, Kyoto Univ.,36, 19-23 (1958).

 C. A.,53, 2820 (1959). Reactions of C₂H₄ and C₂H₂, induced by the photolysis of Me-SS-Me, were studied.

- 2026. Urbanski, T. Hydrogen Bonds between the Nitro Group and the Hydroxyl or Amino Groups in Substituted Nitro-Paraffins. Tetrahedron, 6, 1-9 (1959). C. A.,53, 16934 (1959). C. A., $\overline{49}$, 11414 (1955). The ultraviolet absorption spectra of many nitroparaffin derivatives containing HO or NH2 groups do not show a maximum (260-70 mu) typical of the NO2 group.
- 2027. Urey, H.C. & Lavin, G.I. Reactions of Dissociated Water Vapor.

 J. Am. Chem. Soc., 51, 3290-3 (1929).

 C. A., 24, 771 (1930).
- 2028. Urey, H.C. & Lavin, G.I. Some Reactions of Atomic Hydrogen.
 J. Am. Chem. Soc., 51, 3286-90 (1929).
 C. A., 24, 797 (1930).
- 2029. Urey, H.C. & Brewer,
 A.W.
 Fluorescence in Planetary Atmospheres.
 Proc. Roy. Soc. (London),
 A241, 37-43 (1957).
 C. A.,51, 15261 (1957).
 Ions and free radicals
 will exist in the high
 atmospheres of the
 planets. These ions will
 absorb and fluoresce in
 the visible and near
 ultraviolet radiations.

2029. Cont.

Applications are discussed of this effect to the problem of the color of Venus, the blue haze of Mars, the variation of brightness of Jupiter and the haze of Mercury.

2030. Uri, N.
Chlorophyll-Photosensitized Polymerization and Free Radical Intermediates in Photosynthesis.
J. Am. Chem. Soc., 74, 5808-9 (1952).
C. A., 47, 11364 (1953).

Photochemical experiments were carried out in the presence of CH_CHMeCO_Me and (a) chlorophyll, (b) chloroplast suspensions, and (c) photosynthesizing algae.

2031. Uri, N. Free Radical Intermediates in Photobiological Systems. Proc. Intern. Photobiol. Congr., 1st, Amsterdam, 1954, 173-6. In English. c. A.,53, 8309 (1959). A method which detects free radical intermediates by their ability to induce polymerization of vinyl compounds has indicated the participation of free radicals intermediates in chlorella in vivo and of chlorophyll in vitro.

- 2032. Urry, W.H. & Juveland, 0.0.

 Free Radical Additions of Amines to Olefins.

 J. Am. Chem. Soc., 80, 3322-8 (1958).

 C. A., 53, 357 (1959).

 The free radical chain additions of amines to olefins in the presence of peroxides or light yield higher homologous amines which are products of α-c alkylation.
- 2033. Vaidya, W.M.
 Flame Spectra of
 Some Aliphatic
 Halides.
 I. Methyl Iodide.
 Proc. Indian Acad.
 Sci., 6A, 122-8 (1937).
 C. A., 32, 50 (1938).
 Not due to CH, C2, or
 OH. The emitter is
 believed to be the
 molecule IO.
- 2034. Vaidya, W.M. A Spectroscopic Investigation of Hydrocarbon Flames. Proc. Roy. Soc. (London), C. A.,<u>36</u>, 33 (1942). The flames of CH3C and CCl₄ give spectrá which include C2, CH, OH, and the A and B groups of the HCO bands. The slow and explosive combustions are considered. The three theories are: 1. Hydroxylation 2. Peroxidation 3. Chain mechanism are discussed. It is suggested that the

Co is produced through

collisions of CH.

- 2035. Valatin, J.G.

 Dissociation Energy of
 the Carbon Monoxide Molecule and the Role of Excited Atoms and Radicals
 from the Chemical Bond
 Viewpoints.
 Rev. Sci., 86, 135-40
 (1948).
 C. A., 43, 2830 (1949).
 C. A., 42, 6635 (1948).
 A review with 31 references.
- 2036. Val'nev, P.E.
 The Photodesorption
 and Photodissociation
 of Molecules Adsorbed
 by Metals.
 Zhur. Fiz. Khim., 130815 (1956).
 C. A., 51, 6357 (1957).

A manometric method is described for studying the optical properties of molecules adsorbed on metals and the photoprocesses which take place on such surfaces.

Vanderslice, J.T., 2037• Mason, E.A. & Lippincott, E.R. Interaction between Ground-State Nitrogen Atoms and Molecules. The N-N, N-N, and No-NO Interactions. J. Chem. Phys.,30, 129-36 (1959). C. A.,<u>53</u>, 10939 (1959). Potential-energy curves for N-N interactions corresponding to the $X \in g^+$, $A^3 \in \mu^{+5}$, $\in g^{+7}$, $\in \mu^+$, B3IIg, C3IIµ, and allig states of the N molecule were calculated, as well as curves for the N-No and No-No interactions. 2038. Vanhaeren, L. & Jungers, J.C.
Hydrogenation and
Polymerization of
Ethylene and Acetylene
Photosensitized by
Mercury Vapor.

Bull. Soc. Chim.
Belg., 54, 236-64
(1945). (In French).
C. A.,41, 1987 (1947).
Discussion of reaction intermediates.

- 2039. Vanpee, M.
 The Kinetics of the Slow Combustion of Methane.
 Rapport travaux inst.
 natl. mines Frameries-Paturages, 1947 (In Ann. mines Belg., 47, 111-49 (1947-1948), C. A., 45, 6470 (1951).
- 2040. Vanpee, M.
 The Role of Water in the Slow Combustion of Methane.
 Rapport travaux inst.
 natl. mines FrameriesPaturages, 1948 (In
 Ann. mines Belg., 48,
 44-50 (1949)).
 C. A., 45, 6470 (1951).
- 2041. Vanpee, M. & Grard, F.
 The Properties of Radicals Intervening in the Combustion of Methane. The Action of Methane. The Action of Methane.

 Rapport travaux inst.

 natl. mines FrameriesPaturages, 1949 (In Ann. mines Belg., 49, 37-45 (1950))...

 C. A., 45, 6470 (1951).

- 2042. Vanpee, M.
 The Combustion of
 Methane. The Transition
 between Slow and Rapid
 Combustion.
 Rapport travaux inst.
 natl. mines FrameriesPaturages, 1949. (In
 Ann. mines Belg., 49,
 46-50 (1950)).
 C. A., 45, 6470 (1951).
- 2043. Vanpee, M. & Grard, F. Photolysis of Ketene in the Presence of Methane.

 Bull. soc. chim. belges, 60, 208-26 (1951).

 Ann. mines Belg., 49, 701 (1950).

 C. A., 46, 829 (1952).
- 2044. Vanpee, M. & Grard, F.
 The Properties of Radicals Intervening in the Combustion of Methane.
 The Action of Methylene Radicals on Methane.
 Ann. Mines Belg., 49, 701-9 (1950).
 C. A.,46, 1312 (1952).
 C. A.,45, 6470 (1951).
- 2045. Vanpee, M.

 The Combustion of
 Methane. The Transition
 between Slow and Rapid
 Combustion.

 Ann. mines Belg., 49,
 710-14 (1950)...
 C. A., 46, 1312 (1952).
 C. A., 45, 6470 (1951).

- 2046. Van Roggen, A., Van Roggen, L. & Gordy, W.

 Paramagnetic Resonance of Free Radicals at Millimeter Wave Frequencies.

 Phys. Rev., 105, 50-5 (1957).

 C. A.,51, 7847 (1957).

 Results for various single crystals and solid solutions.
- 2047. Vansheidt, A.A. & Gruz, R.I. Influence of Free Radicals of the Triphenylmethyl Type on Styrene Polymerization. Khim. i. Fiz. Khim. Vysokomolekul. Soedineni, Doklady 7- oi Konf. Vysokomolekul. Soedineniyam, 1952, 80-2 C. A.,47, 7819 (1953). Ph₃C radicals(prepared in soln. of PH3C-CPH3 in styrene from PH3C-Cl and Ag), polymerization of styrene is accelerated.
- 2048. Van Tassel, R.
 Radicals in the Chemical Decomposition of
 Alkyl Iodides.
 Naturw. Tijdschi, 20,
 83-5 (1938).
 C. A., 32, 7806 (1938).
 The reaction between
 EtI and C₂H₄ in the
 presence of Hg is analogous to photochemical
 polymerization.

- 2049. Van Tiggelen, A. & Deckers, J. Chain Branching and Flame Propagation. Symposium on Combustion, 6th, New Haven, Conn., 1956, 61-5.

 Pub. 1957.
 C. A.,52, 3482 (1958).
 A high concentration of free radicals must be maintained in the reaction zone.
- 2050. Varnerin, L.J. & Carmichael, J.H. Trapping of Helium Ions and the Reemission of Trapped Atoms from Molybdenum.

 J. Appl. Phys., 28, 913-19 (1957).
 C. A.,51, 16079 (1957).
- 2051. Varnerin, R.E.

 Metathetical Reactions
 of Methyl Radicals with
 Ethane, Dimethyl Ether,
 Acetone, and Propylene.
 J. Am. Chem. Soc., 77,
 1426-9 (1955).
 C. A.,50, 8446 (1956).
 CDz radicals produced
 by thermal decomposition
 of CDzCDO.
- 2052. Varney, R.N.

 Reactions of Nitrogen
 Activated by Electric
 Discharge.
 J. Chem. Phys., 23,
 866-8 (1955).
 C. A., 49, 12139 (1955).
 C. A., 47, 7311 (1953).

- 2053. Vasileiskaya, N.S.
 Reactions of Polyhalogen
 Compounds with Alcohols.
 Zhur. Obshchei Khim.,
 28, 1738-42 (1958).
 C. A.,53, 1102 (1959).
 C. A.,48, 11291 (1954).
 The radical mechanism
 of the reactions is discussed at length.
- Absorption Coefficients of Air in the Ultraviolet.
 Compt. rend., 212, 439-42 (1941).
 C. A., 36, 35 (1942).
 Hydrogen discharge tube used as light source. Experimental data for 101 lines are given. The measurements permit determination of the energy distribution of the solar spectrum.
- 2055. Vassy, A.T.

 The Formation of Ozone
 by Electrical Discharges
 in the Atmosphere:
 Experimental Results
 and the General Aspects.
 Threshold of Space, Proc.
 Conf. Chem. Aeron.,
 Cambridge, Mass., 1956,
 73-7.
 Pub. 1957.
 C. A.,52, 19293 (1958).
 C. A.,49, 4345 (1955).

- 2056. Vassy, A.T.
 Concentration of Ozone
 in the Air at the Jungfraujoch Scientific
 Station. The Influence
 of Cold Fronts.
 Compt. rend., 247, 240911 (1958).
 C. A.,53, 12768 (1959).
 The station is located
 3457m. above sea level,
 with an apparatus for
 continuous measurement
 of atmospheric ozone.
- Vedencev, V.I., Gerasimov, G.N. & Purmal, A.P.
 Photochemical Decomposition of Hydrogen
 Peroxide.

 Zhur. Fiz. Khim., 31, 1216-26 (1957).

 C. A.,52, 2566 (1958).

 C. A.,51, 119 (1957).

 The production of OH and HO2 radicals, the latter reacting with (H2O2)2 to form H2O4, and OH.
- 2058. Venkateswalu, K. & Sundaram, S. Force Constants of Some Radicals of XY6 Type.
 Current Sci. (India), 25, 354 (1956).
 C. A.,51, 5554 (1957).
 C. A.,51, 2345 (1957).

- 2059. Versteeg, J. & Winkler, C.A.

 The Reaction of Active Nitrogen with Acetylene.

 Can. J. Chem., 31, 129-33 (1953).

 C. A., 47, 4707 (1953).

 C. A., 47, 3671 (1953).

 Description of apparatus and technique. Analytical results and conclusions.
- 2060. Vialiard, R. & Magat, M.

 The Fragmentation of
 Linear C Chains by Electron
 Impact.

 Compt. rend.,228, 1:18-20
 (1949)..

 C. A.,43, 5280 (1949).

 Influence of molecular structure.
- 2061. Vivo, J.L.

 Electron Spin Resonance
 of Lattice Defects and
 Free Radicals.
 Univ. Microfilms (Ann Arbor, Mich.),
 Pub. No. 17885, 175pp;
 Dissertation Abstr., 16, 1811-12 (1956).
 C.A., 51, 10231 (1957).
- 2062. Voevodskii, V.V. & Tal'roze, V.L. Effect of Water Additions and the Dimensions of the Reaction Vessel on the Second Limit of Ignition of Hydrogen-Oxygen Mixtures. Zhur. Fiz. Khim. (J. Phys. Chem.),22, 1192-204 (1948).

 C. A.,43, 1246 (1949).

 C. A.,42, 7148 (1948).

 C. A.,36, 4397 (1942).

 H + 0 + H₂ 0 = HO₂ + H₂0

 HO₂ + H₂ = H₂O₂ + H

- 2063. Voevodskii, V.V. &

 Kondrat'ev, V.N.

 Radicals in Chain

 Reactions.

 Uspekhi Khim.,19,

 673-96 (1950)..

 C. A.,45, 4121 (1951).

 Review with 45 references.
- 2064. Voevodskii, V.V.

 Empirical Equations for the Calculation of the Dissociation Energies of C-H and C-C Bonds in Molecules of Saturated Hydrocarbons and Free Aliphatic Radicals.

 Doklady Akad. Nauk S.S.S.R., 79, 455-8 (1951).

 C. A., 45, 9940 (1951).
- 2065. Voevodskii, V.V.,
 Lavrovskaya, G.K.
 & Mardaleishvili,
 R.E.
 Mechanism of the
 Exchange between
 Hydrocarbon Radicals
 and Molecular Deuterium.
 Doklady Akad. Nauk
 S.S.S.R.,81, 215-18
 (1951).
 C. A.,46, 1852 (1952).
- 2066. Voevodskii, V.V., Vol'Kenshtein, F.F. & Semenov, N.N. The Role of Free Valencies in Hetrogeneous Catalysis. Voprosky Khim. Kinetiki, Kataliza i Reaktsionnoi Sposobnsosti, Akad. Nauk S.S.S.R., 1955, 423-40. C. A.,50, 10499 (1956). In all catalytic reactions, the process is caused and directed by free valencies and the catalyst plays a role not unlike that of a radical.

- 2067. Voevodskii, V.V. Reactivity of Free Hydrocarbon Radicals. Problemy Mekhanizma Org. Reakstii, Akad. Nauk Ukr. S.S.R., Otedel. Fiz.-Mat. i. Khim. Nauk, 1953, 58-77. C. A.,50, 16327 (1956). The main types of reactions characteristic of hydrocarbon radicals in the gas phase are briefly described and detailed calculations are given for energies of bond rupture, energies of activation and application of thermal data to radical reactions. 18 references through 1951.
- 2068. Voigt, D.
 Conditions of
 Existence and
 Physical Properties of Free
 Radicals.
 Bull. Soc. Chim.
 France, 1949, 679-83.
 C. A.,44, 2832 (1950).
 Review and discussion of radicals of long life.
- 2069. Vol'Kenshtein, F.F.

 Mechanism for the
 Dissociation of
 Diatomic Molecules
 Adsorbed on the
 Surface of a Semiconductor.
 Izvest. Akad. Nauk
 S.S.S.R., Odtel. Khim.
 Nauk, 1957, 143-56.
 C. A., 51, 14343 (1957).
 Theoretical consideration
 of adsorption of ionic
 crystals.

- 2070. Vol'Kenshtein, F.F.

 Mechanism for the
 Dissociation of Diatomic Molecules Adsorbed on the Surface
 of a Semiconductor.
 Bull. Acad. Sci. USSR
 Div. Chem. Sci., 1957,
 151-66. English Translation.
 C. A.,52, 14277 (1958).
 C. A.,51, 14343 (1957).
- 2071. Volman, D. H.
 The Photochemical
 Polymerization of
 Butadiene.
 J. Chem. Phys., 14,
 467-74 (1946).
 C. A., 40, 6343 (1946).
 C. A., 28, 226 (1934).
 The Hg-photosensitized polymerization of butadiene and butadiene-Me₂CO mixtures were studied in the gas phase.
- 2072. Volman, D.H.
 The Mercury-Photosensitized Reaction
 between Hydrogen
 and Oxygen.
 J. Chem. Phys., 14,
 707-13 (1946).
 C. A.,41, 1560 (1947).
 Reaction mechanism
 and quantum yield.
- 2073. Volman, D.H., Leighton,
 P.A., Blacet, F.E.
 & Brinton, R.K.
 Free Radical Formation
 in the Photolysis of
 Some Aliphatic Aldehydes, Acetone, Azomethane, and Diazoethane.
 J. Chem. Phys., 18, 2036 (1950).
 C. A., 44, 7661 (1950).
 Paneth technique.

- 2074. Volman, D.H.

 Methyl Radical-Induced
 Polymerization of
 Gaseous Butadiene.
 J. Chem. Phys., 19,
 668-70 (1951).
 C. A.,46, 2478 (1952).
 C. A.,40, 6343 (1946).
 Reaction kinetics.
- 2075. Volman, D.H. & Graven, W.M.

 Primary Process in Acetone Photolysis and Activation Energy for the Decomposition of Acetyl Radical.

 J. Chem. Phys., 20, 919 (1952).

 C. A., 46, 6941 (1952).

 C. A., 44, 7661 (1950).
- 2076. Volman, D.H. &
 Brinton, R.K.
 Reactions of Free
 Radicals with Aldehydes. The Reaction of Methyl and
 Tert-Butoxy Radicals with Acetaldehyde
 and Acrolein.
 J. Chem. Phys., 20,
 1764-8 (1952).
 C. A.,48, 1249 (1954).
- 2077. Volman, D.H. & Graven, W.M.
 Photochemical Reactions in the Gas-Phase Systems:
 Di-Tert-Butyl Peroxide, Peroxide-Butadiene, and Acetone-Butadiene.
 J. Am. Chem. Soc., 75, 3111-16 (1953).
 C. A.,48, 7538 (1954).
 C. A.,45, 4563 (1951).

- 2077. Cont.

 The results are consistent with a completely free-radical mechanism for Me₂CO photolysis.
- 2078. Volman, D.H. & Brinton, R.K. Reactions of Free Radicals with Aldehydes. The Reactions II. of Methyl Radicals with Propionaldehyde. J. Chem. Phys., 22, 929-33 (1954). C. A.,48, 12523 (1954). c. A., $\overline{48}$, 1249 (1954). Derived from thermal decomposition of tertbutyl peroxide with propionaldehyde in gas phase.
- 2079. Volman, D.H., Chen, J.C. & Swanson, L.W. An Olefinic Free-Radical Scavenger for Photochemical Studies in Aqueous Solutions: Application to the Photolysis of Hydrogen Peroxide and Acetone at 2537A. J. Am. Chem. Soc., 81, 756-7 (1959). c. A.,53, 11961 (1959). The use is reported of albyl alcohol, which is water-soluble and transparent at 2537A., as a scavenger for free radicals formed in the photolysis of H₂O₂ and acetone in aqueous solutions.

- 2080. Von Elbe, G. & Lewis,
 B.

 Mechanism of Complex
 Reactions and the
 Association of H
 and O₂.

 J. Chem. Phys., 7,
 710-18 (1939).
 C. A.,33, 8092 (1939).
 C. A.,27, 4469 (1933).
 C. A.,27, 5385 (1933).
 Formation of HO₂; H +
 O₂ + M = HO₂.

 Its destruction on surfaces and its ability to
 propagate chains by gas
 phase reactions with H₂.
- 2081. Von Karman, T. The Present Status of the Theory of Laminar Flame Propagation. Symposium on Combustion, 6th, New Haven, Conn., 1956, 1-11. (Pub. 1957). C. A.,52, 3303 (1958). A review with 30 references. In particular, data concerning the distribution of radicals in the flame zone are needed.

2082. Vries, E. de & Allen, A.O. Radiolysis of Liquid Pentane. J. Phys. Chem., 63, 879-81 (1959). C. A.,53, 21090 (1959). The various branchedand straight-chain products, heavier than pentane, contain little or no unsaturation, and their relative yields are consistent with their being formed by random combination of free radicals produced by breakup of pentane without rearrangement.

- 2083. Wagner, C.D., Wadsworth, P.A. & Stevenson, D.P. The Reaction of CH₄ with Methane.

 J. Chem. Phys., 28, 517 (1958).
 C. A., 52, 9783 (1958).
- 2084. Wagner, H.Gg. Spectra of the Detonations of Oxygen with Hydrogen, Carbon Monoxide, and Hydrocarbons. Symposium on Combustion, 6th., Yale Univ.,1956, 366-70. Pub. 1957. C. A.,52, 15239 (1958). Observations of the OH bands in the gases immediately behind a H-O detonation wave show no deviation of the rotational temp. from the calculated adiabatic temp. The CO flame bands are absent in the CO-O2 detonations. In hydrocarbon-0, detonations, a continuum is observed, which is tenatively ascribed to particles of soot.
- 2085. Waldron, J.D.
 Ionization and Dissociation of Methyl
 Radicals on Electron
 Impact.
 Trans. Faraday Soc.,
 50, 102-6 (1954).
 C. A.,48, 13408 (1954).

- 2086. Walker, P.L., Jr.
 Correlation of
 Equilibrium Atom
 and Free Radical
 Concentrations in
 Flames of Carbon
 Monoxide, Hydrocarbon, and Air
 with Burning Velocities and Flame
 Stabilities.
 Fuel, 35, 146-153
 (1956).
 C. A., 50, 8304 (1956).
- 2087. Wall, F.T., Hiller, L.A., Jr. & Mazur, J. Statistical Computation of Reaction Probabilities. J. Chem. Phys., 29, 255-63 (1958). C. A.,52, 19368 (1958). Calcns. on a high speed electronic digital computer to determine statistically the transition probability for a single chem. reaction. By using the London-Eyring-Polanyi form for the potential energy of the colinear system H + H2, the equations of motion were solved.
- 2088. Wall, L.A. & Moore, W.J. Pyrolysis of Mixtures of Ethane and Ethane-d6. Mass Spectrometer.
 J. Am. Chem. Soc., 73, 2840-4 (1951).
 C. A., 45, 7858 (1951).

- 2089. Wall, L.A., Brown, D.W. & Florin, R.E. Electron Spin Resonance Spectra from \(\gamma - \text{Irra-} \) diated Solid Nitrogen. J. Chem. Phys., 30, 602-3 (1959). C. A.,53, 12837 (1959). Evidence was presented which ruled out the possibility that the seven-line spectrum of the condensed discharge products of No was due to three equiv. N atoms.
- 2090. Walling, C.
 The Role of Free
 Radicals in Organic
 Reaction Mechanisms.
 Ann. N.Y. Acad. Sci.,
 67, 633-47 (1957).
 C. A.,51, 15391 (1957).
 Particular attention
 is given to halogenation
 and polymerization.
 42 references.
- 2091. Walling, C. & Mayahi, Solvent and Structural Effects in Free Radical Chlorination. J. Am. Chem. Soc., 81, 1485-9 (1959)• C. A.,53, 16194 (1959). Competitive photochemical chlorinations were carried out from -75° to 68° in sealed tubes using 5-10 fold excess of substrates with or without CS2, CCl4, or C6H6 as solvent.

- 2092. Walling, C. & Helmreich, W.

 Reactivity and Reversibility in the Reaction of Thiyl Radicals with Olefins.

 J. Am. Chem. Soc., 81, 1144-8 (1959).

 C. A.,53, 17929 (1959).

 Reaction of thiyl radicals (RS.) with olefins were proven to be reversible.
- 2093. Walsh, A.D.
 Properties of Bonds
 Involving Carbon.
 CH, CH2, CH3, and CH1X.
 Discussions Faraday
 Soc., 1947, No. 2, 1825.
 C. A., 43, 5241 (1949).
 A correlation of bond
 properties is made on
 the basis of the s and
 p character induced
 in the carbon atom by
 electronegative and
 polar atoms.
- 2094. Walsh, A.D.
 Factors Affecting
 Bond Strengths.
 Proc. Roy. Soc.,
 A207, 13-30 (1951).
 C. A., 46, 5377 (1952).

Force constants and bond energies (calculated from data given in the literature) are given for a large number of compounds and molecules.

- 2095. Walsh, A.D.

 Efficiencies of Third

 Bodies in the Reaction:

 H + 0₂ + M = H0₂ + M.

 Fuel, 33, 247-9 (1954).

 C. A., 48, 6216 (1954).

 A theoretical explanation
 is given of the abnormal efficiencies of

 CO₂, H₂O, N₂O, and CO

 molecules as third
 bodies in the above
 reaction, based on
 vibration frequencies.
- 2096. Warhurst, E.

 Modified Form of
 the Life Period
 Method Applied to
 the Reaction of
 Sodium Vapor with
 Brombenzene.
 Trans. Faraday Soc.,
 35, 674-80 (1939).
 C. A.,33, 5730 (1939).
 C. A.,28, 1594 (1934).
- 2097. Warhurst, E.
 The Ionic Character
 of Bonds and Bond
 Properties.
 Proc. Roy. Soc., A207,
 32-49 (1951).
 C. A.,46, 5377 (1952).
 OH, OCH3, NH, NH2, Me,
 Et, Pr, iso-Pr, tertBu.

- 2098. Warren, D.R.
 Surface Effects in
 Combustion Reactions.
 I. Effects of Wall
 Coating on the H₂ +
 O₂ Reaction.
 Trans. Faraday Soc.,
 53, 199-205 (1957).
 C. A.,51, 12622 (1957).
 C. A.,46, 10814 (1952).
 The ability of 24 surfaces to produce or
 destroy various chaincarriers and intermediates was examined.
- 2099. Warren, D.R. Surface Effects in Combustion Reactions. II. Activity of Surfaces towards Some Possible Chain-Carriers and Combustion Intermediates. Trans. Faraday Soc., 53, 206-9 (1957). C. A.,51, 12622 (1957). The efficiency of surfaces in recombining H atoms was closely paralled by their relative efficiencies in combining 0 atoms.

- 2100. Waters, W.A. A Connection between Fluorescence and Free Neutral Radicals. Nature, 128, 905-6 (1931).C. A.,26, 1860 (1932). Association of fluorescence of neutral free atoms to form diatomic molecules. It is suggested that fluorescence is a form of chemiluminescence associated with the recombination of neutral free atoms to form diat. mols. Evidence for the suggestion is found in dissocn. of fluorescent inorg. mols. into free neutral radicals such as NO.
- 2101. Waters, W.A.

 Mechanism and Kinetics
 of Reactions Involving
 Free Radicals.

 Trans. Faraday Soc.,
 37, 770-80 (1941).
 C. A.,36, 3419 (1942).
- 2102. Waters, W.A.

 Some Recent Developments in the Chemistry of Free Radicals.

 J. Chem. Soc., 1946, 409-15.

 C. A., 40, 5009 (1946).

 The 1946 Tilden lecture.

 40 references.
- 2103. Waters, W.A.
 The Chemistry of
 Free Radicals.
 London: Oxford Univ.
 Press (1946).
 C. A.,40, 7226 (1946).

- 2104. Waters, W.A.
 Chemical Reactions
 Involving Free Radicals.
 Science Progress, 35,
 23-35 (1947).
 C. A.,41, 1915 (1947).
 A summary dealing with the theoretical technique and biological aspects.
- 2105. Waters, W.A.
 The Chemistry of Free
 Radicals. Second Edition.
 Oxford Univ. Press.
 C. A.,42, 5922 (1948).
- 2106. Waters, W.A.

 The Mechanism of
 Oxidation in Organic
 Chemistry.
 Acad. rep. populare
 Romine, Studii cercetari
 chim.,6, 351-61 (In
 Romanian), 363-73 (In
 English)(1958).
 C. A.,53, 16921 (1959).
 Electronic nature of
 oxidation is discussed.
 Formation of free radicals and their properties
 are also discussed.
- 2107. Waters, W.A. & Watson, D.H.

 Reaction of Phenazine with Free Benzyl Radicals.

 J. Chem. Soc., 1959, 2085-7.

 C. A.,53, 18054 (1959).

 A chemical synthesis is given.

- 2108. Watson, J.S. & Darwent, B.deB.

 Mercury-Photosensitized Oxidation of Ethane.

 J. Phys. Chem., 61, 577-81 (1957).

 C. A.,51, 12668 (1957).

 The reaction is not a chain process.
- 2109. Webb, G.A. & Black, G.S.

 Determining Hydrogen in Gases with a Thermal Conductivity Apparatus. Ind. Eng. Chem., Anal. Ed., 16, 719-20 (1944). C. A., 39, 474 (1945).
- 2110. Weeks, J.L. &

 Matheson, M.S.

 Primary Quantum

 Yield of H₂O₂,

 Decomposition.

 J. Am. Chem. Soc.,

 78, 1273-8 (1956).

 C.A.,50, 9882 (1956).

 When the aq. H₂O₂
 formic soln. is

 decomposed by Co⁶⁰

 y-rays into H₂ and

 OH, the O₂ consumed

 is a measure of the

 radical yield.
- 2111. Weiss, J.
 Interaction of OH
 Radicals and of
 Similar Free Radicals.
 Trans. Faraday Soc.,
 36, 856-62 (1940).
 C. A., 34, 7705 (1940).

- 2111. Cont.
 - Radicals that possess a permanent dipole moment very often recombine. This is often the case if a H or an electron has to be transferred to form two saturated reaction products.

 OH and C_{OH5}NH radicals are discussed in detail.
- The Free Radicals Produced by Ionizing Radiation in an Aqueous Medium.

 J. chim. phys., 48, 233-5, 235-6 (1951).

 C. A.,46, 830 (1952).

 Benzene, benzene derivatives, nucleic acids.
- Chemical Concepts
 of Catalytic Cracking.
 The Free Radical Mechanism in the Reactions
 of Hydrogen Peroxide.
 Chemistry in Canada, 4,
 343-65 (1952).
 C. A., 46, 7749 (1952).
- Theory of the Ozone
 Molecule.
 Univ. Microfilms (Ann
 Arbor, Mich.), L. C.
 Card No. Mic 58-7158,
 137pp.; Dissertation
 Abstr., 19, 1795 (1959).
 C.A., 53, 6749 (1959).

- 2115. Weissler, A. The Formation of Hydrogen Peroxide by Ultrasonic Waves: Free Radicals. J. Am. Chem. Soc., 81, 1077-81 (1959). C. A.,53, 11960 (1959). In order to study the role of free radicals in chem. reactions caused by ultrasonic waves, the ultrasonic yield of H₂O₂ was measured in Ho that contained radical scavengers in various concentrations and also was saturated with either Op or Ar.
- 2116. Weniger, S. & Herman, R. Extension of the $A^{j}II \in X^{j} \in Of$ OH+ J. phys. radium 19, 582-9 (1958). C. A.,53, 10946 (1959). A strong emission spectrum of the OH+ molecule, together with that of the OH radical and of the H atom, were photographed in the near ultraviolet.
- 211.7. Wentinik, T., Jr.,
 Sullivan, J.O. &
 Wray, K.L.
 Nitrogen Atomic Recombination at Room
 Temperature.
 J. Chem. Phys., 29,
 231-2 (1958).
 C. A.,52, 19504 (1958).
 Recombination rates
 were measured by
 resistance thermometry.

- 2118. West, W. Use of the Ortho-Para Hydrogen Conversion in the Detection of Free Radicals in Photo-Dissociation. J. Am. Chem. Soc., 57, 1931-4 (1935). C. A., 29, 7809 (1935). MeI and acetone vapors, when photochemically decomposed, give paramagnetic substances which bring about the ortho-para conversion. It is concluded that these substances are free Me radicals and I atoms. Benzene and propionaldehyde when illuminated did not cause conversion.
- Mechanism of the Decomposition of Ethylene When Photosensitized by Metal Vapors.

 Can. J. Chem., 35, 565-9 (1957).

 C. A.,51, 14427 (1957).

 A detailed mechanism is given for the Hg photosensitized decomposition of C₂H₄ into C₂H₂ and H₂.
- 2120. Wharton, W.W., Violett, T.D. & Miller, E.
 Spectroscopic Investigation of Butane-NO₂ Flames.
 Symposium on Combustion, 6th, Yale Univ., New Haven, Conn., 1956, 173-7. Pub. 1957.
 C. A.,52, 9551 (1958).
 OH, CH, CN, and NH.

- 2121. Whiffen, D.H.
 Electron Resonance
 Spectroscopy of Free
 Radicals.
 Quart. Revs. (London),
 12, 250-64 (1958).
 C. A.,53, 864 (1959).
 A review with 59 references.
- 2122. White, J.U.
 Lifetime of the Free
 CN Radical.
 J. Chem. Phys., 6, 294
 (1938).
 C. A., 32, 4881 (1938).
 Relative concentrations
 of the CN radicals were
 determined at different
 times after the end
 of the discharge. The
 longest life observed
 was 0.006 sec.
- 2123. White, J.U.

 Spectroscopic Measurements of Gaseous CN.

 I. Dissociation in the Electric Discharge.

 J. Chem. Phys., 8, 79-90 (1940).

 C. A., 34, 1564 (1940).

 Free CN radicals formed in elec. discharge through cyanogen.

 Spectrum analysis.
- 2124. White, J.U.

 Spectroscopic Measurements of Caseous CN.

 II. Thermal Dissociation of Cyanogen.

 J. Chem. Phys., 8,

 459-65 (1940).

 C. A., 34, 4987 (1940).

 The absorption spectrum of free CN radicals was observed at 1500°K.

- 2125. Whiteway, S.G. & Masson, C.R.
 Carbon Monoxide
 Quantum Yield in
 the Photolysis of
 Diisopropyl Ketone.
 J. Am. Chem. Soc.,
 77, 1508-9 (1955).
 C. A.,49, 7988 (1955).
 Propyl radical recombination.
- 2126. Whiteway, S.G. & Masson, C.R. Rate of Association of n-Propyl Radicals. J. Chem. Phys., 25, 233-7 (1956). C. A.,50, 15242 (1956). Photolysis of di-n-propyl ketone in intermittent light. Rate of association of n-propyl radicals has been measured by studying the photolysis of din-propyl ketone in intermittent light. A value of $h_2 = 1 \times 10^{-8} \text{cc}$ mole. sec. at 1000 has been obtained.
- 2127. Whittingham, G.
 A New Technique for
 Following the Attack
 of Metallic Mirrors by
 Free Radicals.
 Nature, 160, 671-2 (1947).
 C. A., 42, 1132 (1948).
 An electro-conductivity
 method. The half-life
 of the ethyl radical was
 found to be 1.4 x 10⁻² sec.

- 2128. Whittingham, G.
 Spectrum of the
 Glow of Burning
 Carbon.
 Fuel,29, 244 (1950).
 C. A.,45, 327 (1951).
 A banded spectrum
 superimposed on a
 continuous background.
 No OH bands. Strong
 sodium D lines and
 some probably due to
 Boron. Dry air passed
 thru a cylinder of
 carbon at 850°C.
- 2129. Whittle, E. & Steacie, E.W.R.

 The Reactions of Methyl Radicals with the Hydrogen Isotopes.

 J. Chem. Phys., 21, 993-9 (1953).

 C. A., 47, 9121 (1953).

 A study of acetone photolysis in the temperature range 1300 420°C.
- 2130. Wieland, K. Absorption Spectra of Gaseous Radicals in Thermal Equilibrium. Z. Physik, 133, 229-36 (1952).C. A.,47, 4185 (1953). Based on a brief review of the literature given here. The conclusion is reached that the thermal behavior of numerous diatomic and some polyatomic radicals can be studied quantitatively with the help of their spectra, especially their absorption spectra.

- 2131. Wieland, K.

 Occurrence and Detection
 of Free Radicals in
 Gas Equilibriums at
 High Temperatures.
 Osters. Chem. Ztg.,55,
 329-32 (1954).
 C. A.,51, 11823 (1957).
 A review with emphasis
 on calculations of the
 high-temperature equilibruim between graphite
 and hydrogen.
- M.

 Decomposition of Methane in an Electrical Discharge.

 J. Am. Chem. Soc., 75, 5815-23 (1953).

 C. A., 48, 3147 (1954).

 According to the suggested mechanism, methyl radical is the principle species excited and CH₂ produced therefrom is the species present in important concentration.
- 2133. Wijnen, M.H.J. & Steacie, E.W.R.

 The Reaction of Ethyl Radicals with Deuterium.

 J. Chem. Phys., 20, 205-7 (1952).

 C. A., 46, 7412 (1952).

 Et radicals produced by photodecomposition of Et₂CO. Activation energies were calculated.

- 2134. Wijnen, M.H.J. The Reaction of Methyl Radicals with Aceto and Propionitrile. J. Chem. Phys., 22, 1074-6 (1954) c. A.,48, 12560 (1954). c. A.,46, 7412 (1952). Photodecomposition of $acetone-d_6$; $CD_3 + MeCN =$ $CD_3H + CH_2CN$. $CD_3 + EtCN =$ $CD_3H + C_2H_LCN.$ Activation energies of 10 + 0.5 K cal/mole and8.5 + 0.5 K cal/mole.respectively, were obtained.
- 2135. Wijnen, M.H.J.
 Reaction of Methyl Radicals with Methane and
 Ethane.
 J. Chem. Phys., 23, 1357
 (1955).
 C. A., 49, 12972 (1955).
 C. A., 48, 12972 (1954).
 Investigation of reaction of CD3 radicals.
- 2136. Wijnen, M.H.J.
 Photolysis of Ethane
 at 1470A.
 J. Chem. Phys., 24,
 851-4 (1956).
 C. A.,50, 9882 (1956).
 C2H6 + hv = C2H5 + H.
- 2137. Wijnen, M.H.J.
 Reactions of Alkoxy
 Radicals.
 I. Photolysis of
 Methyl Acetate.
 J. Chem. Phys., 27,
 710-15 (1957).
 C. A.,52, 1781 (1958).

- 2138. Wijnen, M.H.J.

 Reactions of Alkoxy
 Radicals.

 III. Photolysis of
 Methyl-d₂ Acetate
 below 100°.

 J. Chem. Phys., <u>28</u>,
 271-7 (1958).

 C. A.,52, 8751 (1958).

 C. A.,52, 1781 (1958).
- 2139. Wijnen, M.H.J.
 Reactions of Alkoxy
 Radicals.
 II. Photolysis of
 Ethyl Propionate.
 J. Am. Chem. Soc.,
 80, 2394-400 (1958).
 C. A.,52, 14347 (1958).
- 2140. Wijnen, M.H.J.
 Reactions of Alkoxy
 Radicals.
 IV. Photolysis
 of Methyl-d3 Acetate
 at High Temperatures.
 J. Chem. Phys., 28,
 939-43 (1958).
 C. A.,52, 15266 (1958).
 C. A.,52, 8751 (1928).
 Mechanism and activation
 energy for the reactions
 are discussed.
- 2141. Wijnen, M.H.J.
 Photolysis of Propyl
 and Isopropyl Propionate.
 Can. J. Chem., 36, 691-4
 (1958).
 C. A., 52, 17982 (1958).
 The reactions were studied in the temperature range 30-180° at different intensities of light from a Hg arc; mechanism of the reactions is discussed.

- 2142. Wild, J.P. The Radiofrequency Line Spectrum of Atomic Hydrogen and Its Application in Astronomy. Astrophys. J., 115, 206-21 (1952). c. A.,46, 6930 (1952). C. A.,46, 3392 (1952). The hyperfine-structure line at 1420 Mc./sec. due to magnetic dipole radiation from the ground state $1^2S1/2$, has already been observed in interstellar radiation. It is, therefore, important in studying the distribution and concentration of H in space.
- 2143. Wildt, R. Photochemistry of Planetary Atmospheres. Astrophys. J., 86, 321-36(1937). C. A.,32, 50 (1938). The secondary chemical reactions are investigated that can occur to reunite the products of dissociation and thereby maintain the observed stationary composition of planetary atmospheres composed of poly-atomic molecules dissociated under the influence of solar radiation. A satisfactory procedure is traced out for CHL and CO2; but NHz remains unexplained.

- Viles, D.M. & Winkler, C.A.

 The Reaction of Active Nitrogen with Hydrogen Chloride.

 Can. J. Chem., 35, 1298-1303 (1957).

 C. A., 52, 2631 (1958).

 C. A., 51, 9274 (1957).

 A mechanism is proposed in which HCl is decomposed in catalyzing the recombination of N atoms.
- 2145. Wilfong, R.E., Penner, S.S. & Daniels, F. Hypothesis for Propellant Burning. J. Phys. and Coll. Chem., 54, 863-72 (1950).C. A.,44, 8659 (1950). It is assumed that the rate-determining step is a solid-phase reaction involving the breaking of 0-N bonds at the extreme surface, which is assumed to be at about 1000°.
- 2146. Wilkinson, D.H.

 Molecules, Atoms,
 and Nuclear Structure.
 Sci. Progr., 47, 1-19
 (1959).
 C. A.,53, 14721 (1959).
 A review.

- 2147. Wilkinson, G.R., Ford, M.A. & Price, W.C.
 Emission Spectra of Molecules and Radicals in the Infrared.
 Molecular Spectroscopy, Rept. Conf. Inst. Petroleum, London, 1954, 192-202. Pub. 1955.
 C. A.,50, 7584 (1956).
 Excited by a radiofrequency discharge in the region 1 to 5.5µ.
- 2148. Wilkinson, P.G. & Mulliken, R.S. Dissociation Processes in Oxygen above 1750A.
 Astrophys. J.,125, 594-600 (1957).
 C. A.,51, 12648 (1957).
- 2149. Willbourn, A.H. & Hinshelwood, C.N. Mechanism of the Hydrogen-Oxygen Reaction.

 I. The Third Explosion Limit.

 Proc. Roy. Soc. (London),
 A185, 353-69 (1946).

 C. A.,41, 640 (1947).

 Effect of coating surface. (KC1)
- 2150. Willbourn, A.H. & Hinshelwood, C.N. Mechanism of the Hydrogen-Oxygen Reaction.

 II. The Reaction Occurring between the Second and Third Limits. Proc. Roy. Soc. (London), A185, 369-76 (1946).

 C. A.,41, 641 (1947).

 The chains are probably initiated by H₂ + M = 2H.

- 2151. Willbourn, A.H. & Hinshelwood, C.N. Mechanism of the Hydrogen-Oxygen Reaction. III. The Influence of Salts. Proc. Roy. Soc. (London), A185, 376-80 (1946). C. A., 41, 641 (1947). The influence of various salts (as vessel coatings) on the explosion limits and reaction rate of the H2-02 system was examined. Effects of the salts are probably due to specific chemical interactions.
- 2152. Willey, E.J.B.
 Free Radicals in the
 Electric Discharge.
 Trans. Faraday Soc.,
 30, 230-48 (1934).
 C. A.,28, 2272 (1934).
 A general discussion of
 CH, OH, and NH radicals
 with a large bibliography.
- 2153. Williams, D., Geusic, J.E., Wolfrom, M.L. & McCabe, L.J. Paramagnetic Resonance Study of Irradiation Damage in Crystalline Carbohydrates. Proc. Nat. Acad. Sci. U.S.,44, 1128-36 (1958). C. A.,53, 7784 (1959). Study of the hyperfine structure in the paramagnetic resonance spectra may suggest the nature of the radicals produced by the radiation.

- 2154. Williams, K.G., Johnson, J.E. & Carhart, W.H. Sampling Studies of Cool Flames. Ind. Eng. Chem., 47, 2528-32 (1955). C. A.,50, 4595 (1956). It is virtually impossible to study cool flames in the absence of surfaces. The surface reactions must be regarded as an important factor in past studies made on cool flames. Surface reactions of intermediates.
- 2155. Williams, R.R., Jr. & Hamill, W.H. Identification of Free Radicals by Radiohalogens in the Radiolysis of Hydrocarbons. J. Am. Chem. Soc., 72, 1857-8 (1950). C. A., 46, 6012 (1952). The α -irradiation of gaseous pentane in the presence of I131 produced radioactive halides corresponding to the free radicals formed.
- 2156. Wilmshurst, J.K.
 Sensitive Methyl Vibrational Frequencies and Their Relation to Electronegativity and the Inductive Effect.
 J. Chem. Phys., 26, 426-7 (1957).
 C. A., 51, 7859 (1957).

- 2157. Wilmshurst, J.K.
 Electronegativity of
 Radicals.
 A Method of Calculation.
 J. Chem. Phys.,27,
 1129-31 (1957).
 C. A.,52, 4306 (1958).
 C. A.,52, 2538 (1958).
 C. A.,40, 5335 (1946).
 The group electronegativity of a radical
 was calculated by the
 expression of Gordy.
- 2158. Wilson, D.J. &
 Johnston, H.S.
 Theoretical Preexponential Factors
 for Hydrogen-Atom
 Abstraction Reactions.
 J. Am. Chem. Soc., 79,
 29-32 (1957).
 C. A., 51, 6293 (1957).
 C. A., 48, 5618 (1954).
- 2159. Wittig, G. The Occurrence of Free Radicals in Organic Reactions. Angew. Chem., 52, 89-96 (1939).C. A.,33, 2883 (1939). 200 references. Reactions in the gas phase cover thermal and photochemical decomposition of AcH and homologous aldehydes, of acetone and homologous ketones, of MeN; NMe, of CH, and homologs; photohalogenation; action of Na upon alkyl and aryl halides.

- 2160. Wohl, K. & Welty,
 F.
 Spectrophotometric
 Traverses through
 Flame Front.
 5th Symposium on Combustion, Pittsburgh,
 1954, 746-53. Pub. 1955.
 C. A., 49, 16388 (1955).
 Emission bands characteristic of certain
 free radicals are OH3110A, CH-4315A, C24500A, CHO-3505A.
- Wolfhard, H. G. 2161. Temperature Equilibruim and Excess Temperature Measurement in Flames. Z. Physik, 112, 107-28 (1939). C. A., 33, 6599 (1939). Observation of Co bands in the inner cones both for absorption and emission. Also absorption bands of OH. The temperatures of the flames can also be measured from the OH bands by the reversal method.
- 2162. Wolfhard, H. G. & Parker, W. G. Emissivity of Small Particles in Flames. Nature, 162, 259 (1948). C. A., 43, 499 (1949). Spectroscopic examination of flames showed a strong continuum from the red into the ultraviolet consisting of weak AlO bands. Color temperature was about 3600°C.

- 2163. Wolfhard, H. G. & Parker, W. G. Temperature Measurements of Flames Containing Incandescent Particles. Proc. Phys. Soc. (London), 62B, 523-9 (1949). C. A.,44, 1298 (1950). C. A., $\frac{43}{43}$, 499 (1949). c. A., $\overline{26}$, 2848 (1932). The true temperature of stationary flames of all flakes suspended in air was determined by a line-reversal method. The two-color method of Hottel and Broughton for temperature measurements in hydrocarbon flames is examined. MgO bands were rather weak in the spectrum of the Mg flame.
- Parker, W. G. & Parker, W. G. A New Technique for the Spectroscopic Examination of Flames at Normal Pressures. Proc. Phys. Soc. (London), 62A, 722-30 (1949).

 C. A.,44, 1298 (1950). A burner in which emission or absorption spectra can be obtained of the reaction zone.

- 2165. Wolfhard, H.G. & Parker, W.G.
 Influence of Sulfur on Carbon Formation in Diffusion Flames. Fuel, 29, 235-40 (1950). C. A., 45, 327 (1951). Spectrographic examination of the flat hydrocarbonoxygen diffusion flame on introduction of SO₂.
- 2166. Wolfhard, H.G. &
 Parker, W.G.
 A Spectroscopic Investigation into
 the Structure of
 Diffusion Flames.
 Proc. Phys. Soc.
 (London),65A, 2-19
 (1952).
 C. A.,46, 19832 (1952).
- Parker, W.G.

 Parker, W.G.

 Spectra and Combustion

 Mechanism of Flames

 Supported by the Oxides

 of Nitrogen.

 5th Symposium on Com
 bustion, Pittsburgh,

 1954, 718-28 (1955).

 C. A.,49, 16387 (1955).

 NH, NH, C2, CH, and CN.

- 2168. Wood, R.W. Spontaneous Incandescence of Substances in Atomic Hydrogen Gas. Proc. Roy. Soc. (London), 102A, 1-9 (1922). C. A., 17, 231 (1923). Metals, oxides, and other substances are raised to incandescence when introduced into a stream of atomic hydrogen. Explanation of the necessity for presence of water in the hydrogen to poison the wall and prevent catalytic recombination.
- 2169. Woods, L.W.
 Free Radicals in
 the Decomposition
 of Organo-Metallic
 Compounds.
 Iowa State Coll. J.
 Sci.,19, 61-3 (1944).
 C. A.,39, 693 (1945).
 Free radicals are
 produced as intermediates
 when organometallic
 compounds are decomposed
 by thermal, electrolytic,
 and photochemical methods.

- 2170. Woolley, H.W. Thermodynamic Properties of Gases at High Temperature. I. Chemical Equilibrium among Molecules, Atoms, and Atomic Ions Considered as Clusters. J. Research Natl. Bur. Standards, 61, 469~90 (1958). Research Paper No. 2916. C. A., <u>53</u>, 12775 (1959). c. A., $\overline{21}$, 2408 (1927). The equilibrium thermodynamic properties of gaseous mixtures at high temperatures are treated by an extension of the cluster theory of Ursell, by omitting the assumption of additivity of pair energies.
- 2171. Wright, A.N., Jamieson, J.W.S. & Winkler, C.A.
 The Reactions of Methylamine and Ethylamine with Atomic Hydrogen.
 J. Phys. Chem., 62, 657-9 (1958).
 C. A., 52, 18186 (1958).
- 2172. Wu, T.-Y.
 The Fundamental Frequencies of CH₂, CHD,
 CD₂, CHCl, CDCl, and
 Cis and Trans C₂H₂D₂, and
 -C₂H₂Cl₂.
 J. Chem. Phys.,5,
 392-8 (1937).
 C. A.,31, 4901 (1937).

- 2173. Yakovleva, A.V. Luminescence of the Cyanogen Radical due to Photodissociation of Cyanogen Molecules. J. Exptl. Theoret. Phys. (U.S.S.R.),9, 302-6 (1939) (In Russian); Acta Physicochim. U.R.S.S., 10, 433-40 (1939). (In English). C. A., 33, 8112 (1939). Spectra obtained when dicyanogen is irradiated by Schumann rays, 1700A and 2500-3000A, from a hydrogen discharge.
- 2174. Yamashita, S., Furukawa, J. & Yamawaki, T. The Action of Free Radicals on Rubber. XIII. The Action of Diazosulfide on Rubber. Nippon Gomu Kyokaishi, 31, 594-601 (1958). C. A.,53, 20876 (1959). C. A.,52, 19220 (1958). The action of diazosulfide derivatives on rubber was investigated. Effective masticating might give a powerful radical and a weak radical, and that the former would act as an initiator and the latter as a transfer agent for the autoxidative decomposition of rubber in the presence of 0.

- 2175. Yamashita, S., Furukawa, J., Yamamoto, R. & Kakogawa. G. The Action of Free Radicals on Rubber. XIV. Aromatic Sulfenyl Chloride as a New Prevulcanization Inhibitor. Nippon Gomu Kyckaishi, 31, 6**01-**8 (1958). C. A.,53, 20876 (1959). The action of radicals such as H, Cl, etc. is more important than that of the benzothiazolesulfonyl radical in vulcanization.
- 2176. Yamazaki, H. & Shida, S.
 Radical Diffusion
 Theory of Radiation
 Chemistry in Solution.
 Kogyo Kagaku Zasshi, 60, 837-40 (1957).
 C. A.,53, 9796 (1959).
 A theory is advanced on the radical diffusion in aqueous systems with two kinds of free radicals.
- 2177. Yamazaki, K. Burning Velocity of Premixed Gases in Relation to Rate of Active Radical Formation. Kogyo Kagaku Zasshi, 60, 121-3 (1957).°C. A.,53, 3655 (1959). A theory was advanced to relate the rate of active radical formation in gaseous combustion with the changes: activation free energy, entropy, and enthalpy.

- 2178. Yang, J.Y., McEwen,
 W.E. & Kleinberg, J.
 Anodic Reductions.
 IV. Reduction of
 Nitrobenzene, Nitrosobenzene, Azoxybenzene, and Azobenzene.
 J. Am. Chem. Soc.,
 80, 4300-3 (1958).
 C. A.,53, 7823 (1959).
 A free-radical chain
 mechanism of corrosion
 is postulated.
- 2179. Yeddanapalli, L.M., Srinivasan, R. & Paul, V.J. Kinetics of Thermal Decomposition of Gaseous Mercury Dimethyl.

 J. Sci. Ind. Research (India), 13B, 232-9 (1954).

 C. A., 49, 4387 (1955).
 C. A., 32, 6156 (1938).
- 2180. Yoneda, Y., Makishima, S. & Hirasa, K. Exchange of Oxygen Atoms among Carbon Dioxide, Carbon Monoxide, and Oxide Catalysts of Spinel Type. J. Am. Chem. Soc., 80, 4503-7 (1958). C. A.,<u>53</u>, 2759 (19<u>5</u>9). The exchange of 018 between CO2, CO, and oxide catalysts of the spinel type, Zn AlpOu, Zn Cr₂O₁, and Zn Fe₂O₁, was studied at 200-450°.

- 2181. Young, T.H.Y.
 Recombination between
 Positive Ions of
 Cesium and Negative
 Ions of Iodine in
 the Afterglow.
 J. Electronics and
 Control,5, 307-12
 (1958).
 C. A.,53, 1928 (1959).
 A discharge tube having
 a Pt mesh as an inside
 electrode was made to
 oscillate by 7.5-Mc.
 pulses.
- Charge Exchange in the Afterglow of an Iodine Discharge.

 J. Electronics and Control, 5, 313-18 (1958).

 C. A.,53, 1928 (1959).

 A Pt or W probe was introduced in the center of a vessel between two electrodes in a pulsed discharge.

- 2183. Zabolotskii, T.V.
 The Activation of
 the Oxidation Reaction of Nitrogen
 in the Electric
 Discharge.
 Izvest. Vostoch.
 Filial Akad. Nauk
 S.S.S.R., 1957, No. 1,
 70-80.
 C. A., 52, 4326 (1958).
- 2184. Zel'dovich, Ya. B.
 Comments on the Article
 of A.S. Sokolik.
 Mechanism of the Predetonation Acceleration
 of the Flame.
 Zhur. Eksptl. i
 Teoret. Fiz.,21,
 1172-5 (1951).
 C. A.,47, 3093 (1953).
 Sokolik has not considered the actual shock
 wave but a hypothetical
 one.
- Zelikoff, M. & Aschenbrand, L.M.
 Photochemistry of
 Nitrous Oxide in the
 Far Ultraviolet.
 Threshold of Space,
 Proc. Conf. Chem.
 Aeron.,1956, 99-100.
 Pub. 1957.
 C. A.,52, 13442 (1958).
 The photolysis of N₂0
 was investigated at
 1849A, 1470A, and
 1236A.

- 2186. Zelikoff, M., Marmo, F.F., Pressman, J., Manning, E.R., Aschenbrand, L.M. & Jursa, A.S. J. Geophys. Research, <u>63</u>, 31**-**7 (1958). C. A.,52, 16029 (1958). The observations, color photography, indicate that the lower cloud was caused by the reaction of CoH, and atomic nitrogen. The upper cloud was caused by the reaction of C₂H_h with atomic oxygen.
- 2187. Zelinskii, N.D.

 New Syntheses of
 Hydrocarbons from
 Carbon Monoxide.
 Intermediate Formation of CH.

 Doklady Akad. Nauk
 S.S.S.R.,60, 235-7
 (1948).
 C. A.,42, 6510 (1948).
 C. A.,41, 3741 (1947).
- 2188. Zemany, P.D. & Burton,
 M.
 Free Radicals in the
 Photolysis and Pyrolysis
 of Acetaldehyde.
 J. Phys. and Colloid
 Chem.,55, 949-63 (1951).
 J. Phys. and Colloid
 Chem.,55, 964 (1951).
 C. A.,46, 3491 (1952).
 C. A.,34, 2711 (1940).

- 2189. Ziegler, K. Chemistry of Radicals with Trivalent Carbon. Trans. Faraday Soc., 30, 10-17 (1934) C. A., 28, 2320 (1934). The tendency to dissociate depends not only on the unsaturated character of the ethane substituents, but also on their volumes.
- Zimm, B.H. & Bragg, 2190. Mechanism of Biradical Initiated Polymerizations. J. Polymer Sci.,9, 476-8 (1952). C. A.,47, 2574 (1953). Calculations are presented which seem to show that the competition between self-termination of the two radical chain ends and the chain propagation would prevent the formation of a high polymer.
- 2191. Zimmer, K.B.
 Evidence for Free-Radical Production in Living
 Cells Exposed to Ionizing Radiation.
 Radiation Research, Suppl.
 I, 519-29 (1959).
 C. A.,53, 10318 (1959).

AUTHOR	ABSTRACT NO.
Abel, E.	1
Aberdeen University Press	2
Aboul - Saad, I. A.	3
Abraham, R. J.	4,5
Abrahamson, E. W.	6
Aburto, S.	7
Ackerman, M.	8
Adam, G.	9
Adams, G. E.	10
Adams, G. K.	11
Adams, J.	12
Adams, M.	13
Addison, L. M.	90, 91
Aditya, S.	14
Agallidis, E.	1771
Agirbiceanu, I.	15
Agladze, R. I.	16
Agnew, J. T.	17, 18
Agnew, W. G.	17, 1 8
Akabane, N.	1952
Alder, D. G.	19
Aleksandrova, Ya. A.	20
Alexander, P.	21
Alexander, W. A.	1863, 1864
Alger, R. S.	22
Allen, A. O.	23, 24, 124, 2082
Allen, H. C., Jr.	25
Allen, R. L.	26
Allsopp, C. B.	27, 28
Alyamovskii, V. N.	1846

AUTHOR	ABSTRACT NO.
Alyea, H. N.	29
Amdur, I.	30 , 1698
Anderson, D. H.	813
Anderson, J. M.	31 , 3 2
Anderson, L. C.	33
Anderson, L. W.	34
Anderson, R. D.	35
Anderson, T. H.	22
Andrew, W.	1824
Angier, D. J.	36
Ankudinov, V. A.	618, 619
Anschutz, L.	37
Anson, P. C.	38
Antonova, I. N.	1057
Antonovskii, V. L.	39, 40
Antropov, S. T.	1846
Appalanarasimham, N.	41, 42
Apperson, L. D.	739
Armer, J. B.	1187
Armstrong, D. A.	43, 44
Aroeste, H.	45
Arthur, J. R.	46
Ascah, R. G.	47
Aschenbrand, L. M.	1579, 2186, 2187
Ashkinazi, M. S.	1092
Ashmore, P. G.	48, 49, 50, 51
Aston, J. G.	52
Aten, A. H. W., Jr.	53, 54
Atherton, N. M.	55, 56
Audubert, R.	57, 58

AUTHOR	ABSTRACT NO.
Auer, E. E.	1284
Ausloos, P.	59, 60, 61, 62, 63, 64, 65, 66, 67
Austen, D. E. G.	68, 69, 70, 71
Avery, E. C.	1829
Avramenko, L. I.	72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Avramenko, V. A.	83
Axworthy, A. E., Jr.	170, 173
Ayery, G.	84
Ayscough, P. B.	85, 86, 8 7 , 88
Babitskii, G. B.	16
Baccaredda, M.	89
Bachman, G. B.	90, 91, 92, 93, 9 ⁴
Backstrom, H. L. J.	95
Badin, E. J.	96
Baeder, D. L.	1197
Bagaryatskii, B. A.	97
Bagdasar'yan, Z. A.	1542
Bailey, H. C.	98
Bailey, P. S.	99
Baillie, J. C.	100
Bair, E. J.	101
Baird, J. G., Jr.	34
Balandin, A.	102
Baldwin, R. R.	103, 104, 105, 106, 107
Balwit, J. S.	1115, 1116
Bamford, C. H.	108, 109, 110, 111, 112
Bamford, D. A.	112
Banbury, D. L.	113
Banus, J.	114

AUTHOR	ABSTRACT NO.
Barak, M.	115
Baranaer, M. K.	116
Barb, W. G.	117
Barbier, D.	118, 119, 120
Barker, R. S.	121
Barnard, D.	122
Barr, D. A.	123
Barr, N. F.	124
Barrere, M.	125
Barrere, S.	125
Barron, G.	126
Barson, C. A.	127
Barth, C. A.	128
Barton, M.	47
Bartt, B. P.	129
Barusch, M. R.	130, 131
Basevich, V. Ya.	132
Bass, A. M.	133, 845, 1363
Basu, S.	192
Bateman, L.	122
Bates, D. R.	134, 135
Bates, J. R.	136, 415, 1110
Bauer, E.	137
Bauer, S. H.	138
Bauman, R. G.	139
Baumann, G.	140
Bawn, C. E. H.	23, 141, 142, 143, 144, 145, 146, 147, 148, 149
Baxendale, J. H.	10, 150, 151
Bay, Z.	152

AUTHOR	ABSTRACT NO.
Beatty, H. A.	330, 331
Beatty, P. M.	1843
Becker, E. D.	153, 154
Beckey, H. D.	155
Beeck, O.	156, 157, 158
Behrens, H.	159
Belchetz, L.	160
Bell, E. R.	161, 162
Bell, J.	163
Bell, W. E.	205
Bellamy, E. H.	164
Beltrame, P.	165
Belyaeva, E. N.	508
Benedict, W. S.	166
Benington, F.	167
Benkeser, R. A.	168
Benson, S. W.	169, 170, 171, 172, 173, 174, 1573
Bent, R. D.	550
Benton, W. C.	45
Bereslavskii, B. B.	620
Berezin, I. V.	39, 40
Bergaust, E.	175
Bergel'son, L. D.	176
Bergh, A.	1926
Beringer, R.	177
Berisford, R.	178
Berko, S.	179
Berkowitz, J.	180, 181
Berland, A. L.	1561

AUTHOR	ABSTRACT NO.
Berlie, M. R.	182, 183, 184
Bernanose, A.	185
Bernard, R.	475
Berry, M. G.	1164
Bertheir, G.	186, 406, 1598, 1600
Berthet, G.	187, 188
Bessy, W. H.	189
Bevilacqua, E. B.	1284
Bevington, J. C.	127, 190, 191
Bhattacharya, R.	192
Bichowsky, F. R.	193, 194
Bickel, A. F.	195, 196, 286
Bigeleisen, J.	1135
Biggs, B. S.	426
Bijl, D.	197, 198, 199
Bingel, W.	200
Binks, J. H.	1945
Biondi, M. A.	201
Birchard, J. R.	2004
Birrell, R. N.	202
Birse, E. A. B.	1303
Birss, F. W.	203
Blacet, F. E.	204, 205, 914, 1974, 2073
Black, G. S.	2110
Black, R. A.	206
Blackwood, J. D.	207
Blaine, L. R.	25
Blanc, M. V.	208
Blanchard, L. P.	209

AUTHOR	ABSTRACT No.
Blase, F. E.	210
Blodgett, K. B.	211
Blois, M. S., Jr.	13
Blosser, L. G.	392
Bodson, E.	213
Boedewadt, U. T.	561
Boehm, E.	214
Boekris, J. O. M.	212
Boelhouwer, C.	215, 216
Boggess, A., III	217
Bokil, I.	1727
Boldt, G.	218
Bonch - Bruevich, V. L.	219
Bone, W. A.	220
Bonet - Maury, P.	221
Bonhoeffer, K. F.	214, 222, 223, 224, 225, 226, 227, 228
Boocock, G.	229
Boord, C. E.	230
Boozer, C. E.	231
Borisov, M. G.	1914
Born, J. W.	139
Born, M.	232
Bortner, T. E.	935
Boudart, M.	233
Boudart, M. J.	1226
Boutaric, A.	234
Bowden, S. T.	235
Bowers, V. A.	396, 628, 973
Boyd, M. E.	236

AUTHOR	ABSTRACT NO.
Boynton, C. F., Jr.	237
Bradley, D.	1119
Bradley, J. N.	238, 239, 240, 241, 242
Bradt, P.	878, 880
Brady, A. P.	1166
Bragg, J. K.	2191
Bram, J.	1818
Branscomb, L. M.	243, 244, 245, 246
Bray, R. C.	247
Breitenbach, J. W.	248, 249
Bresler, S. E.	250
Brewer, A. W.	2029
Brewer, L.	1984
Brickstock, A.	251
Bridge, K.	1486
Briegleb, G.	252
Brilkina, T. G.	1633
Briner, E.	253, 254, 1648
Brinton, R. K.	255, 256, 257, 258, 259, 2073, 2076, 2078
Britton, D.	260, 261
Broekhuijsen, R.	1036
Broida, H. P.	133, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 347, 652, 885, 1000, 1045, 1083, 1252, 1334, 1813
Brokaw, R. S.	280
Brook, J. H. T.	281
Brown, A. R. G.	770
Brown, B. R.	282

AUTHOR	ABSTRACT NO.
Brown, D. W.	2089
Brown, H. C.	283
Brown, H. W.	1330
Brown, L. O.	284
Brown, R. D.	285
Brown, T. H.	813
Bruekner, K. A.	1058
Bruin, P.	286
Brusilovskaya, Yu. S.	1886, 1887
Bryan, R. B.	287
Bryant, W. M. D.	288
Bryce, W. A.	289, 944
Buben, N. Ya.	290
Bubnov, N. N.	372
Buchanan, A. S.	291, 518, 519, 520, 521
Buchi, G.	1037
Buckler, E. J.	292
Buckley, R. P.	293
Bulewicz, E. M.	294, 295, 296
Buraway, A.	297
Burch, D. S.	245
Burdom, M. C.	298
Burgess, H. J.	299, 300
Burgoyne, J. H.	298
Burkitt, F. H.	301
Burnett, G. M.	302, 303, 304, 305, 3 06, 307
Burns, A. E.	308
Burns, J. F.	309
Burr, J. G.	1899

AUTHOR	ABSTRACT NO.
Burrell, C. M.	310
Burton, D. H. R.	925
Burton, M.	35, 311, 312, 313, 314, 315, 316, 359, 360, 470, 484, 599, 600, 687, 1287, 1921, 1964, 2133, 2189
Buss, J. H.	174
Bussiere, P.	574
Bulter, E. T.	317
Bulter, J. A. V.	318, 319
Butt, E.	89
Byram, E. T.	320
Byr'ko, V. M.	321
Byrne, J. F.	322
Byron, S. R.	323
Bywater, S.	324, 325, 326, 327
Caffrey, J. M., Jr.	1773
Cagle, F. W.	328
Cain, C. K.	329
Califano, S.	1349
Calingaert, G.	330, 331, 332
Callear, A. B.	333, 334, 335
Callomon, J. H.	336
Calmar, G.	57, 5 8
Calvert, J. G.	204, 337, 338, 339, 340, 801, 802, 827, 1815
Calvin, M.	597, 1847
Camagni, P.	341
Campbell, C. E.	342
Campbell, D. E.	900 -
Campbell, J. M.	427

AUTHOR	ABSTRACT NO.
Camus, A. M.	419
Careri, G.	343
Carhart, W. H.	2155
Cario, G.	344
Carmichael, J. H.	2050
Carpenter, A. S.	345
Carpenter, N.	1120, 1832
Carr, E. M.	1166
Carrington, T.	346, 347
Carter, R. J.	348
Casey, E. J.	1098, 1099
Cashion, J. K.	349
Castellion, G. A.	350
Catalano, E.	351
Cauchois, Y.	352
Cawthon, T. M., Jr.	353
Ceresa, R. J.	36
Cerfontain, H.	354
Chalvet, O.	355 , 356
Chamberlain, J. W.	357
Chambers, E. S.	358
Champion, K. S. W.	579
Chanmugam, J.	359, 360
Chapiro, A.	361, 362, 363, 364
Chapman, S.	365
Charton, M.	366, 367
Chein, J. C. W.	1900
Chen, J. C.	2079
Chen, M. C.	368, 1966
Chen, S.	369

AUTHOR	ABSTRACT NO.
Cherednichenko, V. I.	370
Chern, S.	2014
Cherniak, E. A.	371
Chernyak, N. Ya.	372
Chesnut, D. B.	373, 1212
Child, E. T.	374
Chilton, H. T. J.	375, 376, 377, 378, 379, 380
Chiltz, G.	8, 1242
Chinmayandam, B. R.	381
Chirkov, A. K.	382, 383
Chiusoli, G. P.	384, 385
Chkheidze, I. I.	290
Christie, M. I.	386, 387, 388
Chu, T. L.	389
Chubb, T. A.	3 20
Cier, H. E.	390
Clark, T. P.	391
Cleaver, C. S.	392
Clouston, J. G.	393, 394, 414
Clusius, K.	395
Cochran, E. L.	396, 628, 973
Codrington, R. S.	397
Coffin, F. D.	398
Coffman, D. D.	392, 399
Cohen, D.	400
Cohen, L.	1198
Cole, E. R.	122, 401
Cole, P.	402
Coleman, E. H.	403

AUTHOR	ABSTRACT NO.
Collamer, D. O.	1620
Collin, J.	404, 405
Collinson, E.	371
Combet - Farnoux, F.	406
Commoner, B.	407, 408, 409
Comstock, A. A.	410
Conger, A. D.	411
Convery, R. J.	412, 413
Conway, B. E.	319
Cook, C. L.	393, 394, 414
Cook, G. A.	415
Coops, J.	416
Copeland, L. C.	193, 194
Coppinger, G. M.	417
Corney, N. S.	105
Cosgrove, S. L.	418
Costa, G.	419
Costain, C. C.	420
Coulson, C. A.	301, 421, 422, 423, 1350
Courty, C.	424
Cousin, Ch.	361
Coward, H. F.	425
Cowley, P. R. E. J.	304
Crabtree, J.	426
Craggs, J. D.	1793
Craig, D. P.	422
Cramer, P. L.	427
Crandall, H. W.	130, 1983
Crawford, B. L., Jr.	493, 1490
Crist, R. H.	428

AUTHOR	ABSTRACT NO.
Cristescu, G. D.	429
Croatto, V.	430
Croft, H. O.	1047
Cross, P. C.	101
Cullis, C. F.	431, 432
Cunneen, J. I.	122
Cunningham, J. P.	433
Curtiss, C. F.	900
Cvetanovic, R. J.	335, 434, 435, 436, 437, 438, 439, 440, 441, 442, 485, 2015
Dacey, J. R.	443
Dain, Ya. B.	<u> </u>
Dainton, F. S.	371, 445, 446, 447, 448, 449, 450, 451, 452, 4 5 3
Dalby, F. W.	454
Dale, W. M.	455
Dalgarno, A.	456, 457, 458
Daly, E. F.	459
Damodaran, K. K.	460
Danby, C. J.	203, 461, 1605, 1606, 1607, 1608
Daniels, F.	462, 463, 2146
Dannley, R. L.	464
Danti, A.	465
Danusso, F.	466
Darmois, E.	467
Darwent, B. deB.	1531, 1532, 1873, 2109
Daudel, R.	7, 355, 356, 468
David, W. T.	469
Davidson, N.	260, 261, 346, 1852

AUTHOR	ABSTRACT NO.
Davidson, N. R.	1270
Davis, T. W.	47, 314, 600, 1231
Davison, S.	35, 470
Deb, S.	471
Deckers, J.	2049
Degens, P. N., Jr.	472
DeJager, J.	473
Dejardin, G.	474, 475, 476
Dekabrun, L. L.	477
Delabay, P.	478
DelaMare, A. E.	479
Delsemme, A. H.	480
Derbyshire, D. H.	481
Deschamps, J.	681
DeSousa, J. B.	1190
Devins, J. C.	482
Devonshire, A. F.	483, 1141, 1142
Dewhurst, H. A.	484
Dewing, J.	485
Dhar, N. R.	486
Diazbo, P.	1519
Dibeler, V. H.	487, 488, 489, 878, 880
Dickerman, S. C.	490
Dickey, F. H.	161
Dickey, F. P.	491
Dickinson, R. G.	492
Dickson, A. D.	493
Diederichsen, J.	494, 495
Dierk, E. A.	1903
Diesen, R. W.	496, 1610

AUTHOR	ABSTRACT NO.
Dignam, M. J.	497
Dingle, M. J.	498
Dintses, A. I.	499
Diskouski, H.	1275
Dixon, J. K.	500, 501
Dixon, R. N.	910
Dobrinskaya, A. A.	502
Dodd, R. E.	503, 504, 505, 506, 507
Dogadkin, B. A.	508
Dolgoplosk, B. A.	509, 1332, 1995, 1996
Domanski, B.	574
Donaldson, D. M.	510
Dondes, S.	511, 841
Donn, B.	512
Donnett, J. B.	513, 514, 515
Dooley, M. D.	1653, 1663
Dorfman, L. M.	516, 517, 755
Dorman, F. H.	518, 519, 520, 521
Dose, K.	522
Douglas, A. E.	523
Dousmanis, G. C.	524
Douzou, P.	1123
Doyle, L. C.	441
Drew, C. M.	1235
Drikes, G.	1005
Dubois, J. T.	233
Dubrovai, K. K.	525
Duchesne, J.	526, 527
Dufay, J.	528, 529
Duff, R. E.	138

AUTHOR	ABSTRACT NO.
Duffey, G. H.	530
Dull, M. F.	531, 1823
Dunford, B.	532
Durham, R. W.	533, 534
Durie, R. A.	535
Duval, X.	1144
Dwyer, R. J.	536
Dyatkina, M. E.	537, 538
Dyne, P. J.	539, 540, 541, 542, 543
Eaves, D. E.	127
Ebert, M.	544
Edgecombe, F. H. C.	545
Edwards, F. G.	546
Egerton, A. C.	54 7 , 548
Eggert, J.	228
Egorova, L. A.	811
Einstman, R. V.	549
Eklund, K. E.	550
Elbe, G. V.	208, 1149
Eley, D. D.	551
Eliason, M. A.	552
Eliel, E. L.	553
Elsasser, W. M.	554
Elsdon, W.	1824
Eltenton, G. C.	555, 556, 557, 558, 559
Emanuel, N. M.	1507, 1804
Emeleus, H. J.	114
Emschwiller, G.	560
Endow, N.	631
Engel, R.	561

AUTHOR	ABSTRACT NO.
Engelke, B.	1903
Enikolopyan, N. S.	562
Erb, E.	2023
Erben, M. T.	563
Erhard, K. H. L.	564
Erusalimskii, B. L.	509,.1332
Etingof, E. I.	565
Ettre, K.	522
Evans, H. G. V.	532, 639
Evans, M. G.	566, 567, 568, 569
Everett, A. J.	570, 1334
Evering, B. L.	571, 1650, 1652, 1661
Ewald, A. H.	572 , 573
Eyrand, C.	574
Eyring, H.	121, 764
Fabian, D. J.	575
Fabrikant, V. A.	576
Fadner, T. A.	577
Fairbain, A. R.	578
Faire, A. C.	579
Faizullov, F. S.	1846
Falterman, C. W.	169
Faltings, K.	840
Farkas, A.	226, 580, 581
Farkas, L.	582, 583, 584, 585
Farmer, E. H.	586, 587, 588, 589, 590, 591, 592
Farmer, J. B.	593, 594, 595, 596, 1218
Fava, A.	597
Fedorova, N. I.	598

AUTHOR	ABSTRACT NO.
Feldman, M. H.	599, 600
Fellion, Y.	601
Fenimore, C. P.	602, 603
Ferguson, R. E.	604
Fernelius, W. C.	980
Fessenden, R. W.	605
Fettel, H.	1370
Fetyukova, V.	1632
Field, F. H.	649
Finch, G. I.	606
Finch, J. N.	607, 608
Finkelstein, A.	609
Fiquet - Fayard, F.	610
Fite, W. L.	611
Fitzgerald, M. E.	612
Fleming, S. W.	613, 614
Fletcher, C. J. M.	615, 616
Florin, R. E.	2089
Foering, L.	982
Fogarty, B. B.	617
Fogel, Y. M.	618, 619
Fok, N. V.	620, 621, 622, 955
Foner, S. N.	396, 623, 624, 625, 6 26, 627, 628, 629, 973
Fontana, B. J.	630
Forbes, W. G.	497
Ford, H. W.	631
Ford, M. A.	2148
Ford, M. C.	632, 633
Ford, R. A.	634, 635

AUTHOR	ABSTRACT NO.
Ford, T. A.	833
Forel, M. T.	681
Forst, G.	636
Forst, W.	637, 638, 639, 640
Forsyth, J. S. A.	641
Fowler, A.	642
Fox, M.	21
Fraenkel, G. K.	643, 644
Francis, S. A.	645
Francis, W. C.	123
Franck, J.	646
Frankland, E.	647, 648
Franklin, J. L.	489, 649, 650, 651, 652, 878, 880
Fraser, R. G. J.	653, 654
Fredericks, P. S.	38, 655
Fredericks, W. F.	1732
Freeman, A. J.	656
Freeman, G. R.	657, 658, 659
Freidlina, R. K.	1394
Frewing, J. J.	1986
Freymann, M.	660
Fremann, R.	660
Friauf, J. B.	1148
Friedman, A. S.	817
Friedman, H.	320, 661, 662
Friel, P. J.	663, 664
Frish, S. E.	664
Fristrom, R. M.	666
Frittum, H.	249

AUTHOR	ABSTRACT NO.
Frity, J. J.	52
Frost, A. A.	667, 668
Frost, A. V.	810
Frost, D. C.	669, 670
Frost, W. E.	671, 6 7 2
Frybrug, G. C.	673
Fueki, K.	674, 675, 676
Fueno, T.	677
Fujie, R.	1069
Fujimoto, M.	678, 950
Fujimoto, S.	1913
Fuller, G. L.	679
Fuoss, R. M.	680
Furukawa, J.	677, 2175, 2176
Fuson, N.	681
Gadsden, M.	682
Gainer, H.	1462
Galenkamp, H.	416
Gallagher, J. S.	1338
Gallardo, R.	7
Gallup, G. A.	683
Gamboa, J. M.	1352
Ganguly, A. K.	684
Garif'ganov, N. S.	685
Garmer, F. H.	686
Garrigou - Lagrange, C.	681
Garrison, W. M.	687
Garside, J. E.	1046
Gartaganis, P. A.	688
Gartlein, C. W.	689

AUTHOR	ABSTRACT NO.
Garvin, D.	690, 1226, 1227
Garzuly - Janke, R.	691
Gaspar, R.	692
Gates, D. M.	693
Gaudemaris, G. de.	694
Gavarini, A.	966
Gavrilov, B. G.	695
Gaydon, A. G.	266, 268, 367, 403, 578, 642, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 1476, 1477, 1984
Gaynor, A. J.	1988
Gehman, H.	710
Gehman, W.	260
Geib, K. H.	711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721
Geldreich, L.	515
Geltman, S.	245
George, P.	722, 723, 724, 725
Gerasimov, G. N.	2057
Gergely, J.	566
Gerischer, H.	726
Germain, J. E.	727
Germer, E.	1786
Gero, L.	1751, 1752
Gershinowitz, H.	1048
Gesser, H.	728, 729, 1500
Geusic, J. E.	2154
Ghanem, N. A.	191
Ghormley, J. A.	730, 731

430
1,50
732, 733
734, 946, 950
735
640, 736, 737, 738
1523, 1524
739
1685
464
740
70, 71
1654, 1659, 1662, 1664
119
741, 742, 743
744
745
746
747
710, 748
8, 749, 750, 751
516,752,753,754,755, 756,757
758
759
866, 867, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1844
838
760, 761, 762, 1342, 2046
763,764
765

AUTHOR	ABSTRACT NO.
Gouarne, R.	766
Gowenlock, B. G.	375, 376, 377, 378, 379, 380, 767
Grabowska, A.	1029
Graf, P. E.	768, 1900
Gragerov, I. P.	769
Graham, J. H.	770
Graham, K.	1824
Grant, P. M.	771
Grard, F.	2041, 2043, 2044
Graven, W. M.	772, 2075, 2077
Gray, B. F.	773
Gray, P.	19, 774, 775, 776, 777, 778, 779, 780, 781
Gray, T. J.	782
Green, J. H.	1384
Green, J. H. S.	783
Greenwood, H. H.	784
Gregg, R. A.	7 85
Grelecki, C. J.	1680, 1681, 1682
Grice, J. O.	282
Griffing, V.	612, 786, 787, 788, 789, 790, 791
Griffiths, J. E.	729
Grigg, G. H.	686
Grigorovici, R.	429
Grilly, E. R.	981
Gromov, V. A.	792
Gromova, I. I.	793
Groth, W.	794, 795, 796, 797, 798, 799, 800, 840

AUTHOR	ABSTRACT NO.
Groves, P. T.	1207
Gruver, J. T.	801, 802
Gruz, R. I.	2047
Guenebaut, H.	1482
Guenoche, H.	803, 1254
Guentner, W. S.	804
Guest, P. G.	208
Guijarro, E. G.	1352
Guillet, J. E.	805
Gunning, H. E.	806, 807, 808
Gunter, F.	1370
Gurtev, M. V.	809
Gurvich, A. M.	810
Gur'yanova, E. N.	811
Gutowsky, H. S.	812, 813
Guzman, E. S.	814
Guzman, G. M.	815, 816
Haantjes, J.	416
Haar, L.	817
Haas, C.	1036
Hagiescu, M.	15
Haines, R. L.	906
Haines, R. M.	818
Haissinsky, M.	819, 820, 1128
Hall, A. R.	770, 778, 779, 821
Hall, G. G.	1139
Ham, N. S.	822
Hamada, H.	1442
Hamann, S. D.	572
Hamill, W. H.	113, 348, 823, 824, 928, 1301, 1577, 1717, 1851, 2156

AUTHOR	ABSTRACT NO.
Hammer, J. M.	825
Hammick, D. L. L.	282
Hammond, G. S.	231
Hampson, J.	400
Hanford, W. E.	833, 991
Hanst, P. L.	826, 827, 828, 1378
Harden, G. D.	783
Hardwick, T. J.	804
Hardy, G.	829
Harker, H.	959
Harkins, W. D.	830, 831
Harle, O. L.	832
Harmon, J.	833, 991
Harned, B. W.	834
Harris, G. M.	835, 836, 837
Harrison, A. J.	387
Hart, E. J.	838, 1284
Harteck, P.	225, 711, 712, 713, 714, 716, 795, 839, 840, 841, 843
Hartel, H. V.	844
Harvey, K. B.	737, 845
Haser, L.	846
Hashman, J. S.	1719
Hass, H. B.	91, 92
Haszeldine, R. N.	114, 123, 847, 848, 849, 850, 851, 852, 853, 854, 855, 1126
Hausser, K. H.	856
Havinga, E.	857
Heald, M. A.	177

AUTHOR	ABSTRACT NO.
Heath, D. F.	272, 273
Heck, L.	1944
Heertjes, P. M.	215
Heffelfinger, C.	748
Heffelfinger, C. J.	858
Heidt, L. J.	859
Heil, M.	860
Heims, S. P.	861
Hein, F.	862
Heineken, F. W.	863, 1746
Heise, R.	864
Heisse, J. J.	407
Heitler, W.	865
Heller, C. A.	866, 867
Helmreich, W.	868, 2092
Henbest, H. B.	869, 870
Henderson, I. H. S.	595, 943, 1184, 1186, 1218
Henglein, A.	5 7 3
Henne, A. L.	871
Henri, V.	872
Henrich, G.	513, 514, 515
Henrici, H.	1170
Henrici - Olive, G.	8 7 3
Hentz, R. R.	874
Heppner, J. P.	875, 978
Herbold, R. J.	693
Herman, L.	1090
Herman, R.	1354, 2117
Herman, R. C.	920, 921

AUTHOR	ABSTRACT NO.
Hermann, H.	1903
Hermans, P. H.	876
Heron, S.	877
Herron, J. T.	878, 879, 880
Herzberg, G.	523, 881, 882, 883, 884
Herzfeld, C. M.	885
Herzfeld, K. F.	1656, 1672
Heusinger, H.	886
Hewett, J. V.	90, 92, 93
Hey, D. H.	887
Hickling, A.	888
Higuchi, J.	676, 889, 890, 891, 892
Hilferding, K.	893
Hill, S.	888
Hill, T. L.	894
Hiller, L. A., Jr.	2087
Hinshelwood, C.	203
Hinshelwood, C. N.	461, 895, 896, 1607, 1840, 1841, 1901, 2150, 2151, 2152
Hipple, J. A.	897, 1104
Hirasa, K.	2181
Hirshfeld, M. A.	898
Hirschfelder, J. O.	552, 899, 900, 1155
Hirshon, J. M.	643
Hirt, R. C.	901
Hoare, D. E.	902, 903, 904, 905
Hoare, J. P.	791
Hodgins, J. W.	906
Hodgson, W. G.	907
Hoey, G. R.	908, 909

AUTHOR	ABSTRACT NO.
Hoffman, J. M.	491
Hogg, W. R.	164
Holland, R.	910
Hollis, A.	911
Holmes, J. C.	912, 978
Holroyd, R. A.	913, 914
Holt, R. B.	287
Hooge, F. N.	1036
Horie, T.	915, 916, 917
Horn, E.	918, 919
Hornbeck, G. A.	920, 921
Hornig, D. F.	922
Horrex, C.	923
Houtman, J. P. W.	215
Howland, A. H.	924
Howlett, K. E.	925
Huan, Y.	20
Huang, R. L.	926
Huckel, E.	927
Hudson, F. P.	928
Hudson, R. L.	623, 624, 625, 626, 627, 629
Hueter, T. F.	929
Huhn, P.	1926
Hulbert, E. O.	930
Humphreys, C. J.	166
Hunaerta, J.	931
Hunt, H.	932
Hunt, J. P.	933
Hunt, M. H.	1844
Hunter, R. F.	142

AUTHOR	ABSTRACT NO.
Hurle, I. R.	934
Hurst, G. S.	935
Hutchinson, C. A., Jr.	936
Hutchinson, D. A.	838
Hylleraas, E. A.	937
Imoto, E.	938
Imoto, M.	938
Ingold, C. K.	939
Ingold, K. U.	289, 940, 941, 942, 943, 944, 1183, 1184, 1186
Ingram, D. J. E.	68, 69, 70, 71, 110, 678, 734, 945, 946, 947, 948, 949, 950
Inokuchi, H.	551
Inoue, E.	951
Inoue, R.	952, 1460
Inowaki, S.	1952
Isaev, I. L.	1846
Isenberg, I.	953
Isfendiyaroglu, A. N.	563
Itoh, T.	954
Ivanon, O. A.	955
Ivash, E. V.	956
Ivin, K. J.	448, 453, 957, 958
Iwanura, H.	1441
Jackson, C.	959
Jackson, J. L.	960, 961
Jackson, W. F.	1112, 1113
Jain, D. V. S.	962
James, C. G.	294, 963
James, D. G. L.	452, 964, 965

AUTHOR	ABSTRACT NO.
Jameson, D. A.	1987
Jamieson, J. W. S.	2172
Janin, J.	476, 966
Jaquiss, M. T.	967
Jarre, G.	968
Jarrett, H. S.	969
Jast, T.	970
Jatar, D. P.	971, 972
Jen, C. K.	396, 628, 973
Jenkins, A. D.	108, 109, 110, 111
Jenner, E. I.	399
Jennings, K. R.	974, 975
Jesson, J. P.	976
Jewett, T. N.	654
John, R. R.	977
Johnson, C. Y.	978
Johnson, F. S.	979
Johnson, I.	342
Johnson, J. E.	2155
Johnson, W. C.	662, 980
Johnston, H. L.	981, 1836, 1975
Johnston, H. S.	982, 983, 2159
Johnston, W. R.	1650, 1655
Jolley, J. E.	984
Jones, G. W.	602, 603
Jones, M. H.	985
Jones, R. A.	986
Jones, T. T.	987, 989
Joris, G. G.	994
Josien, M. L.	681, 1519

AUTHOR	ABSTRACT NO.
Jost, M.	1847
Jost, W.	989, 990
Joyce, R. M.	991
Joyce, R. M., Jr.	833
Jugaku, J.	992
Jungers, J. C.	993, 994, 2038
Jursa, A.	1121, 1579, 1956
Jursa, A. S.	2187
Juveland, 0. 0.	2032
Kainer, H.	197, 199
Kaitmazov, S. D.	995, 996, 997
Kakogawa, G.	2176
Kamenetskaya, S. A.	998
Kandel, R. J.	999
Kane, W. R.	1000
Kano, M.	1782
Kaplan, J.	128, 1001
Kaplan, L.	1002
Kapustinskii, A. F.	1003, 1004
Karagunis, G.	1005
Karpenko, A. S.	1006
Karplus, M.	1007
Karyakin, A. V.	1008
Kashiwagi, M.	1437
Kaskan, W. E.	1009, 1010, 1011, 1012, 1013
Kassel, L. S.	1014
Kato, S.	1015
Kato, T.	1016
Kaufman, F.	1017, 1018, 1019

AUTHOR	ABSTRACT NO.
Kaufmann, H. P.	1020
Kautsky, H.	1021
Kautsky, H., Jr.	1021
Kauzmann, W.	764
Kavadas, A. D.	31
Kazanskii, V. B.	1022
Kazarnovskii, I. A.	1023, 1024
Kazbekov, E. N.	250
Kazitsyna, L. A.	1025
Kebarle, P.	1026
Keller, J.	1027
Kelso, J. R.	1017, 1018
Kemball, C.	1028
Kemula, W.	1029
Kendall, C. E.	1030
Kennedy, J. M.	543
Kenty, C.	1031, 1032
Kenyon, A. S.	1033
Kerr, J. A.	1034, 1035
Ketelaar, J. A. A.	1036
Kharasch, M. S.	1037, 1038, 1039
Khitrin, L.	1040
Khokhlov, M. Z.	1041, 1042
Khrennikova, E. K.	1995
Kice, J. L.	1043
Kidd, J. M.	854
Kien, T.	1044
Kiess, N. H.	1045
Kilham, J. K.	1046
King, R. L.	1960

AUTHOR	ABSTRACT NO.
Kinney, L. C.	1988
Kippenham, C. J.	1047
Kistiakowsky, G. B.	756, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056
Kitaeva, V. F.	1846
Kitchner, J. A.	758
Kleimenov, N. A.	1057
Klein, M. M.	1058
Klein, R.	1059, 1060, 1061, 1062
Kleinberg, J.	2179
Kleman, B.	1063
Klochkovskii, Yu. V.	1914
Knewstubb, P. F.	1064, 1065
Knox, J. H.	1066, 1067
Kodama, S.	1068, 1069, 1070, 1071
Kohanenko, P. N.	1072
Kohn, L.	90, 94
Kokando, H.	1073
Kokhanenko, P. N.	1074
Kokin, A. A.	383
Kolczynski, J. R.	710
Kolesnikov, P. A.	1075
Kolesnikova, R. V.	75, 76, 77, 78, 79, 80, 81, 82
Kondo, M.	1076
Kondrat'ev, E.	1077
Kondrat'ev, V.	1077, 1078, 1079
Kondratiev, V. N.	2063
Kooijman, E. C.	196, 1080, 1081
Kooyman, E. C.	286
Korehage, L.	1020

AUTHOR	ABSTRACT NO.
Koritskii, A. T.	290
Korotkina, D. S.	509
Kososhko, Z. Yu.	1611
Kossiakoff, A.	1082
Kostkowski, H. J.	271, 1083
Kotani, M.	954
Kowalsky, A.	936
Koyyrev, B. M.	685
Krasovskii, V. I.	1084, 1085
Kraus, F.	1086
Kraus, J. W.	1087
Krautz, E.	1088
Krenz, F. H.	1089
Kriche, J. A.	1090
Krieger, K. A.	614, 663
Krioovyay, I. M.	685
Kroepelin, H.	1091
Kruglyakova, K. E.	321
Kryukov, A. I.	1092
Kulibekov, M. R.	1805
Kuri, Z.	6 7 5, 1093
Kusumoto, H.	813
Kutschke, K. O.	354, 908, 1094, 1095, 1798, 1998
Laffitte, P.	366, 1096, 1478
Laidler, K. J.	1097, 1098, 1099, 1100, 1101, 1809, 1810
Lalos, G. I.	264
Lampe, F. W.	1102
Landers, L. C.	1103
Landler, Y.	361

AUTHOR	ABSTRACT NO.
Langer, A.	1104
Lanzi, G.	341
Lapidus, L.	1105
Laporte, M.	1106
Laude, B. B.	2018
Laurie, C. M.	1107
Lavin, G. I.	1108, 1109, 1110, 1111, 1112, 1113, 1968, 2027, 2028
Lavrovskaya, G. K.	1114, 2065
Lawton, E. J.	1115, 1116
Layer, R. W.	1117
Leach, S.	1118
Leah, A. S.	1119, 1120
LeBlanc, F. J.	1121, 1956
Lebowsky, F.	1890
Lecher, H. Z.	1122
LeClerc, A. M.	1123
Lee, P.	1124
Lee, W. E.	1125
Leedham, K.	853, 1126
Leermakers, J. A.	1127
Lefebvre, R.	7
Lefort, M.	1128, 1129
LeGoff, P.	209, 750, 1130, 1131
Leigh, C. H.	1132, 1133, 1134, 1135
Leighton, P. A.	1136, 1137, 2073
Leng, A. B.	1197
Lennard - Jones, J.	1138, 1139
Lennard - Jones, J. E.	1140, 1141, 1142
LeRoy, D. J.	182, 183, 184, 349, 498, 909, 1843, 1993

AUTHOR	ABSTRACT NO.
LeRoy, D. S.	178, 1541
Letort, M.	749, 750, 1131, 1143, 1144
Levitt, B. P.	49, 50
Levy, M.	1145, 1146, 1147
Lewis, B.	208, 1148, 1149, 2080
Lewis, F. M.	1289
Lewis, G. N.	1150
Lewis, J. T.	456
Ley, K.	1151, 1369, 1371
Lichten, W.	1152
Lieber, E.	1153
Lieberman, A.	102
Likshin, B. V.	1025
Lind, S. C.	1154
Linder, B.	1155
Lindholm, E.	1156
Lindner, L.	1157
Lindsey, R. V.	1158
Linnett, J. W.	671, 672, 974, 975, 1159, 1160, 1161, 1162, 1163, 1268
Linschitz, H.	1164
Lipikhin, N. P.	1023, 1024
Lipkin, D.	1150
Lippincott, B. B.	407, 408, 409
Lippincott, E. R.	608, 2037
Lipscomb, F. J.	1165
Lipscomb, R. D.	399
Lissitzky, S.	1123
Littman, F. E.	1166
Liu, I. D.	738, 1167

AUTHOR	ABSTRACT NO.
Loan, L. D.	305, 306, 307
Lochte - Haltgreven, W.	1168
Loeb, S.	224
Loebl, H.	1169
Loffler, H. J.	1170
Long, F. J.	7 7 2
Long, L. H.	1107, 1171, 1172, 1173, 1174
Longfield, J. E.	1175, 1176
Longuet - Higgins, H. C.	301, 1177, 1178, 1179, 1560
Longwell, J. P.	1197
Lord, R. C.	465
Lorentso, R. V.	73
Lortie, Y.	1180
Losev, S. A.	1181
Lossing, F. P.	404, 593, 594, 595, 940, 941, 942, 943, 1026, 1182, 1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1218
Lott, P.	1191
Lovelock, J. E.	1192
Low, M. J. D.	1193
Low, W.	1194
Lowe, R.	400
Lowry, T. M.	1195
Lucas, V. E.	1196
Lucchesi, P. J.	1197
Luft, N. W.	1198
Luirink, H. L.	416
Lukovnikov, A. F.	321

AUTHOR	ABSTRACT NO.
Lund, J. T.	101
Lundberg, J. L.	1199
Lunel, M.	1200
Lupinski, J. H.	1201
Lutz, E.	1762
Lutze, E.	1202
Lyons, L. E.	1203, 1204
McAlpine, I. M.	1205
McBay, H. C.	1206, 1207
McCabe, L. J.	2154
McCarthy, R. L.	1208
McCarty, M., Jr.	1699, 1700
McCauley, C. E.	1209
McConnell, H. M.	402, 1210, 1211, 1212, 1213, 1214
McCoubrey, J. C.	1215
McDonald, G. E.	1216
McDonell, W. R.	1396
McDowell, C. A.	596, 669, 670, 1217, 1218, 1219
McDowell, M. R. C.	457
MeElcheran, D. E.	450, 1094, 1220
MeEwan, W. S.	1221
McEwen, W. E.	2179
McGee, R. X.	1375
McGrath, W. D.	1222 , 1 223 , 1224
McKay, R. W.	31
McKinley, J. D., Jr.	353, 690, 1225, 1226, 1227, 1228
McLachlan, A. D.	1229
McMillan, G.	1230

AUTHOR	ABSTRACT NO.
McNesby, J. R.	1231, 1232, 1233, 1234, 1235, 1236, 1237
McTaggart, F. K.	207
McVeigh, P. A.	1238
McWhirter, R. W. P.	877
Maccoll, A.	422, 783
Macek, A.	788
Maddock, A. G.	430
Mador, I. L.	1239, 1240
Maess, R.	1241
Magat, M.	361, 2060
Magee, J. L.	684, 1731
Mahan, B. H.	1052, 1054
Mahieu, A. M.	1242
Majury, T. G.	310, 1243, 1244, 1245, 1246, 1247, 1310
Makishima, S.	2181
Malmstrom, B. G.	247
Mal'tsev, V. A.	1248
Mandelcorn, L.	1249, 1250
Mange, P.	1251
Mann, D. E.	1252
Mann, D. W.	667
Mannella, G.	843
Mannenkov, A. A.	1542
Manning, E. R.	2187
Manson, N.	1253, 1254
Mantell, G. J.	1038
Marcotte, F. B.	1255
Marcus, R. A.	1256, 1257, 1258, 1259, 1260, 1261, 1262, 1455, 1456

AUTHOR	ABSTRACT NO.
Mardaleishvíli, R. E.	1114, 1263, 2065
Margrave, J. L.	1264
Mark, G. V.	1265, 1266, 1267
Mark, H.	1453
Markevich, A. M.	1006, 1057
Marmo, F. F.	1579, 2187
Marsden, D. G. H.	594, 595, 1161, 1162, 1187, 1268
Marshall, A. L.	1269
Marshall, R.	1270
Marshall, T. W.	1271
Martens, G.	8, 1242
Martin, D. G.	1272
Martin, G. R.	533, 1273, 1274
Martin, H.	1275
Martin, R. B.	1276
Martin, R. H.	1277
Martin, T. W.	1278, 1543
Marvel, C. S.	1279
Mashio, F.	1015
Mason, E. A.	1280, 2037
Massey, H. S. W.	1362
Masson, C. R.	1281, 1282, 2126, 2127
Masuda, K.	1283
Matevosyan, R. O.	382
Matheson, M. S.	1284, 2111
Mathews, D. L.	1285
Matsuda, T.	951
Matsunaga, Y.	596
Mattok, G. L.	1533

AUTHOR	ABSTRACT NO.
Maulkin, Z. M.	1286
May, L.	1287
May, P. D.	1288
Mayahi, M. F.	2091
Mayer, R.	1151
Mayo, F. R.	546, 785, 1289, 1290, 1291, 1292, 1293
Mayor, Y.	1294
Mazur, J.	2087
Meaburn, G. M.	371
Mead, B., Jr.	1295
Meadows, E. B.	978
Meakins, G. D.	869, 870
Mecke, R.	1296
Meda, F.	1297
Mededev, S. S.	20, 1298, 1578
Medvedeva, N.	1299
Meersche, M. van.	1300
Megan, I. S.	490
Meisels, G. G.	1301
Melidoni, A.	1302
Mel'kanovitskaya, S. G.	2011
Melville, H. M.	303, 310
Melville, H. W.	55, 56, 238, 239, 240, 241, 242, 381, 987, 988, 1243, 1244, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1693
Menzies, A. C.	1317
Meredith, L. H.	875
Mesee, H. J.	862

AUTHOR	ABSTRACT NO.
Messerly, G. H.	982
Meyers, C. H.	1448
Michael, S. E.	587
Michel, A.	1318, 1760
Michel - Levy, A.	1319
Migirdicyan, E.	1118
Mignolet, J. C. P.	1320
Mignonac, G.	1321
Miklukhin, G. P.	1322
Miles, S. E.	923
Miller, A. A.	1291, 1292 , 1 293
Miller, C. D.	898
Miller, D. M.	1323, 1324
Miller, E.	1325, 2121
Miller, G. H.	1326, 1327
Miller, N.	284, 446, 510, 1328, 1329
Milligan, A.	1206
Milligan, D. E.	351, 1330
Millikan, A. G.	90, 93
Mills, D. H.	1331
Milooskaya, E. B.	509
Milovskaya, E. B.	1332
Milsted, J.	143
Minder, W.	1333
Minisci, F.	384, 385
Minkoff, G. J.	548, 570, 1334, 1335, 1336, 1337, 1338, 1339
Miolati, A.	1340
Miquel, R.	1321
Mitra, A. P.	1341
Miyagawa, I.	1342

AUTHOR	ABSTRACT NO.
Miyama, H.	1913
Miyanishi, M.	1343, 1344, 1345
Miyazaki, S.	1346, 1347, 1348, 1910, 1911, 1912
Miyazaki, T.	1949
Moccia, R.	1349
Moffitt, W. E.	1350, 1351
Mohler, F. L.	487
Molera, M. J.	1352
Molin, Yu. N.	290
Mondy, J.	1123
Montroll, E. W.	960
Moody, G. J.	1533
Moore, C. E.	1353
Moore, C. G.	84, 588, 589, 590, 591, 592
Moore, G. E.	1354
Moore, N. P. W.	708, 709
Moore, R. A.	1355
Moore, W. J.	1356, 2088
Morawetz, H.	577
Mori, Y.	1073, 1357
Morita, H.	1582
Morita, N.	1728, 1729
Morrell, F. A.	912
Morris, D. F. C.	1358
Morton, F.	686
Moseley, F.	1359
Moses, H. E.	1360
Mosher, R. A.	1039
Mosher, W. A.	1361

AUTHOR	ABSTRACT NO.
Mott, N. F.	1362
Moyer, J. W.	1363
Muffling, L. V.	990
Mulcahy, M. F. R.	1364, 1365
Muller, E.	1151, 1366, 1367, 1368, 1369, 1370, 1371
Muller, N.	1372
Mullhaupt, J. T.	729
Mulliken, R. S.	1372, 1373, 2149
Munoz, R.	7
Munzhuber, A.	254
Muraca, R. F.	308
Murai, K.	1782
Muraour, H.	1319
Murata, K.	1345
Murcray, D. G.	693
Murphy, G. M.	1374
Murray, J. D.	1375
Murrell, J. N.	1376
Mustafa, A.	1756
Myasnikov, I. A.	1377
Myerson, A. L.	746, 826, 1378
Nager, M.	871
Nagura, T.	915, 916, 917
Nakada, K.	1379, 1736
Nakahara, N.	1949
Nakane, R.	1380
Nakatsuka, K.	1381
Nalbandyan, A. B.	620, 621, 622, 1057, 1382
Naldrett, S. N.	13 83
Napier, K. H.	1384

AUTHOR	ABSTRACT NO.
Naprovnik, A.	1838
Narasimham, N. A.	1385
Nash, J. R.	1717
Nauta, W. T.	416
Nawrocki, P. J.	1386
Neal, H. R.	331
Neaves, A.	907
Needham, D. P.	1387
Neiman, B.	1299
Neiman, M. B.	85, 502, 1388, 1389
Nejak, R. P.	804
Nekrasova, V. A.	1390
Nelson, L. S.	1199, 1391, 1392
Nenquim, G.	1393
Nesbet, R. K.	1559
Nesmeyanov, A. N.	1394
Neu, J. T.	131
Neuhoff, H.	1366
Neuimin, H.	1395
Neumann, K.	1091
Neven, L.	473
Newton, A. S.	1396
Nicholls, B.	869, 870
Nicholls, R. W.	1397, 1398, 1399
Nicholson, A. J. C.	1400
Niclause, M.	749
Nicolet, M.	135, 765
Niimi, M.	1401
Nikitin, E. E.	1402
Nikitin, V. A.	1814
Nikolaev, L. A.	1403

AUTHOR	ABSTRACT NO.
Ninomiya, M.	1404
Nisoli, F. E.	213
Nitta, I.	1437
Norberg, R. E.	407
Norman, I.	1405, 1406, 1407
Norris, T. H.	1408
Norrish, R. G. W.	98, 292, 386, 387, 545, 564, 805, 1165, 1222, 1223, 1224, 1409, 1410, 1411, 1412, 1413, 1414, 1415, 1416, 1417, 1418, 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1563
Norwick, I.	1427
Noyes, R. M.	1428, 1429
Noyes, W. A., Jr.	350, 609, 752, 913, 1255, 1276, 1430, 1431, 1438, 1708, 1791, 1796
Nozaki, K.	1432, 1433
Nudenberg, W.	1038
Nyman, F.	855
Ochkur, V. I.	1434
Oda, R.	1435
Ogahara, S.	938
Ogg, R. A., Jr.	1436
Ohnishi, S.	1437
Ohno, K.	954
Okabe, H.	1438, 1439
Oki, K.	1440
Oki, M.	1441
Okubo, J.	1442
Ol'dekop, Yu. A.	1443, 1635
Oldenberg, O.	287, 5 <i>3</i> 6, 667, 1444, 1445, 1446, 1447

AUTHOR	ABSTRACT NO.
Olds, J. D.	397
Olive, S.	873
Olson, A. R.	1448
Ongley, P. A.	1205
Onishi, S.	1449
Onyszchuk, M.	1450
Oosterhoff, L. J.	857
Orlov, M. Ya.	1451
Osanova, N. A.	1636
Osberghaus, O.	1452
Oster, G.	1453
Oster, G. K.	1454, 1455, 1456
Osugi, J.	1457
Oswin, H. G.	1458
Otsuka, M.	915, 916, 917
Ouchi, K.	1459
Ouchi, S.	952, 1460
Ouellet, C.	1461
Ouellet, L.	1461
Ovenall, D. W.	4, 5
Overberger, C. G.	1462
Pack, J. L.	1530
Padovani, C.	1463
Pake, G. E.	389, 1464
Palladin, M. N.	1520
Palazzo, F. C.	1465
Palazzo, G.	1465
Paneth, F. A.	911, 1468, 1469, 1470, 1471, 1472, 1473, 1474, 1475
Pannetier, G.	1476, 1477, 1478, 1479, 1480, 1481, 1482, 1483

AUTHOR	ABSTRACT NO.
Paoloni, L.	1489
Papazian, H. A.	1485
Parfenova, G. A.	509
Parham, F. M.	1043
Pariiskii, G. B.	1263
Parisot, G.	966
Parker, C. A.	907, 1486, 1487
Parker, W. G.	11, 1488, 1489, 2163, 2164, 2165, 2166, 2167, 2168
Parkinson, W. H.	1397
Parlee, N. A. D.	1866
Parr, R. G.	1490
Parravano, G.	1491, 1492
Pars, H. G.	1493
Parsons, D. F.	212
Parti, Y. P.	1494
Passoneau, J. V.	407, 408
Pastor, R. C.	936
Patat, F.	1495, 1496, 1497, 1498, 1499, 1724
Paterson, W. C.	1500
Patnaik, D.	1411
Patrick, C. R.	1501
Patrick, T. M., Jr.	1502
Patsevich, I. V.	1503
Paul, D. E.	389
Paul, V. J.	2180
Pauling, L.	1504, 1505, 1506
Paulson, J.	67
Pauluzzi, E.	419
Pavlov, B. V.	1794

AUHTOR	ABSTRACT NO.
Pavlov, D. A.	1507
Payne, J. Q.	130, 131
Pearson, R. G.	668
Pearson, T. G.	741, 742, 743, 1508, 1509, 1510, 1511, 1512, 1513, 1514, 1515
Pease, R. N.	280, 1516, 1957
Pecker, J. C.	1517
Pellam, J. R.	269, 279
Pellin, R. A.	1518
Peltier, D.	1519
Penkin, N. P.	1520, 1521
Penner, S. S.	1522, 1523, 1524, 1525, 2146
Peover, M. E.	70, 71
Perkins, W. A.	1137
Perlmann, P.	95
Peterson, M. L.	1158
Petrochenko, E. I.	1075
Peuchot, M.	1517
Peyron, M.	275, 278, 476, 1526, 1527
Pfordte, K.	1528
Phelps, A. V.	1529, 1530
Phibbs, M. K.	1531, 1532
Phillips, G. O.	1533
Phillips, N. W. F.	1862
Pichevin, A.	1519
Pickup, K. G.	1534
Pidgeon, L. M.	547
Pieck, R.	1535
Pietsch, E.	1536, 1537, 1538, 1539

AUTHOR	ABSTRACT NO.
Piggot, M. R.	1540
Pilipenko, D. V.	618, 619
Pimentel, G. C.	153, 154, 1330, 1703
Pinder, J. A.	1541, 1843
Pipkin, F. M.	34
Pisku'nov, A. K.	1542
Pitts, J. N., Jr.	337, 1278, 1407, 1543, 1544
Platy, W. V.	1545
Plyer, E. K.	166
Plyer, E. L.	25
Poe, J. E.	1546
Polak, L. S.	372
Polanyi, J. C.	88, 767, 1228
Polanyi, M.	317, 918, 919, 1436, 154 7, 1548, 1549, 1550, 1551
Pollard, W. G.	1552
Polly, O. L.	1667, 1669, 1673
Polstyanko, L. L.	1025
Poltorak, V. A.	1263, 1553
Polyak, S. S.	1554, 1807
Polyakov, M. V.	1555
Poole, H. G.	1556, 1557, 1558
Pople, J. A.	251, 1138, 1177, 1271, 1559, 15 6 0
Popov, B.	1395
Porter, G.	386, 387, 1405, 1406, 1410, 1412, 1414, 1415, 1416, 1417, 1420, 1421, 1422, 1486, 1562, 1563, 1564, 1565, 1566, 1567, 1568, 1569, 1570, 1571, 1572
Porter, G. B.	1573, 1574, 1575, 1576
Porter, L. M.	1619

AUTHOR	ABSTRACT NO.
Postnikov, L. M.	79
Potapov, A. V.	1846
Potter, A. E., Jr.	1561
Pottie, R. F.	1577
Potvin, R.	1868
Pourboix, M.	478
Powell, R. S.	1115, 1116
Powling, J.	1387
Pratt, M. W. T.	19
Pravednikov, A. N.	20, 1578
Pressman, J.	1579, 2187
Prevorsek, D.	1580
Price, C. C.	412, 1581, 1582
Price, S. J. W.	1583
Price, W. C.	2148
Prilizhaeva, E. N.	1806
Prilezhaeva, N.	1584, 1585, 1586
Pritchard, G. O.	1326, 1587, 1588
Pritchard, H. O.	299, 1587, 1588, 1590, 1591
Proisy, P.	1592, 1593, 1594
Prokhorov, A. M.	759, 995, 996, 997
Prokudina, V. S.	1595
Provotorov, B. N.	1596
Prudhomme, R. O.	819
Pshezhetskii, S. Ya.	998
Pucheault, J.	1597
Pugh, B.	469
Pullman, A.	422, 1598, 1599
Pullman, B.	186
Purcell, J. D.	979

AUTHOR	ABSTRACT NO.
Purcell, R. H.	1511, 1512, 1513, 1514
Purmal, A. P.	477, 2057
Purnell, H.	1425, 1426
Pushkareva, Z. V.	1603, 1611
Putnam, A. A.	1604
Pyke, J. B.	1590
Raal, F. A.	435, 1605, 1606, 1607, 1608, 1609
Rabinovich, M. B.	1996
Rabinovitch, B. S.	1610, 1639, 1642
Rabinowitsch, E.	646
Radina, L. B.	1603, 1611
Raik, S. E.	1612
Raizer, Yu. P.	1613
Rajewsky, B.	1614
Rajhenback, A.	1615
Raley, J. H.	161, 162, 1386, 1616, 1617, 1618, 1619, 1620
Ramberg, Y.	1194
Ramsay, D. A.	336, 883, 910, 1391, 1392, 1621, 1622, 1623, 1624
Randolph, M. L.	411
Range, F.	1625
Ransil, B. J.	1626
Rao, K. S. R.	1627
Ray, B. R.	812
Rayleigh, L.	1628, 1629, 1630
Razumovskii, V. V.	1631
Razuvaev, G. A.	1632, 1633, 1634, 1635, 1636
Rebbert, R. E.	1458, 1637, 1638

AUTHOR	ABSTRACT NO.
Reed, J. F.	1639
Reed, R. I.	1640
Reese, R. M.	489
Reeves, R.	843
Regan, C. M.	1694
Rehner, J. Jr.	1641
Reid, E. E.	1111
Reid, R. C.	1739, 1740
Reid, W. D.	686
Reilly, C. A.	1642
Reinebeck, L.	1759
Reinecke, L.	344
Reinecke, L. H.	1643
Reitz, D. C.	1644, 1645
Rekasheva, A. F.	1322
Rekers, R. G.	1646
Rembaum, A.	1647
Rhoderick, E. H.	877
Ricca, M.	253, 254, 1648
Ricci, J. E.	47, 314, 599, 600
Riccoboni, L.	1784, 1785
Rice, F. O.	1082, 1649, 1650, 1651, 1652, 1653, 1654, 1655, 1656, 1657, 1658, 1659, 1660, 1661, 1662, 1663, 1664, 1665, 1666, 1667, 1668, 1669, 1670, 1671, 1672, 1673, 1674, 1675, 1676, 1677, 1678, 1679, 1680
Rice, K. K.	1666
Rice, O. K.	1196, 1257, 1684, 1685
Richards, R. E.	1686
Rideal, E. K.	722, 2013

AUTHOR	ABSTRACT NO.
Ridge, M. J.	1687, 1688
Ridgway, J. A., Jr.	1288, 1689
Riding, F.	1690
Riechemeier, 0.	1787, 1788
Rieke, F. F.	1446
Riesenfeld, E. H.	1691
Ritchie, M.	1692
Robb, J. C.	238, 239, 240, 241, 242, 300, 333, 334, 1306, 1307, 1308, 1309, 1311, 1314, 1315, 1316, 1359, 1501, 1693
Robert, W.	1749
Roberts, E. K.	1051
Roberts. J. D.	1694
Roberts, J. S.	967, 1695, 1931, 1932
Roberts, R.	327
Robertson, A.	723
Robertson, A. J. B.	575, 1696, 1697
Robertson, H.	725
Robertson, R. E.	1211
Robinson, A. L.	1698
Robinson, G. W.	1699, 1700
Robinson, L. B.	1701
Robinson, P. L.	1508, 1509
Rodebush, W. H.	1702
Rodowskas, E. L.	1665
Roebber, J. L.	1703
Rogers, F. E.	1704
Rogers, G. T.	775
Rogers, W. A.	1705
Roginskii, S.	1706
Rogowski, W.	1707

AUTHOR	ABSTRACT NO.
Rohr, T. M.	1708
Rollefson, G. K.	410, 615, 616, 1703, 1709, 1718
Rose - Innes, A. C.	197, 198, 199
Rosen, I.	1710
Rosen, J. B.	1105, 1711
Rosenberg, N. W.	1050
Rosenblum, C.	1969
Rossetti, M. T.	1712
Rossikhin, V. S.	1713, 1714, 1715
Rotblat, J.	1909
Rotenberg, D. L.	493
Rounthwaite, C.	1119
Rowbottom, J.	449, 1716
Roy, J. C.	1717
Royal, J. K.	1718
Rubin, I.	577
Ruedenberg, K.	822
Rueherwein, R. A.	1719
Ruiter, E. de.	1720
Rummel, K. W.	226
Ruoff, P. M.	1674
Rupp, E.	1754
Russell, G. A.	283, 1293, 1721
Rust, F. F.	158, 161, 162, 679, 1386, 1616, 1617, 1618, 1619, 1722, 1792
Rustin, A. D.	1248
Rutledge, R. L.	812, 1723
Ryabinin, Y. N.	1006
Rysselberghe, P. van.	478

AUTHOR	ABSTRACT NO.
Sachsse, H.	582, 584, 1495, 1496, 1724, 1725, 1726
Sahasrabudhey, R. H.	1727
Saigh, G. S.	1514
Sakata, S.	1728, 1729
Salie, N.	1730
Salmon, K.	682
Salooja, K. C.	548
Saminskii, E. M.	250
Samuel, A. H.	1731
Samuel, R.	1494
Sancier, K. M.	1732
Sanders, T. M., Jr.	524
Sands, R. H.	13
Saporoschenko, M.	1733
Sato, M.	1734, 1735
Sato, S.	1379, 1736
Sato, Y.	1737
Satterfield, C. N.	1738, 1739, 1740
Sauer, K.	1053, 1055
Sayed, M. F. A. E.	1741
Scanlon, J.	1690
Schalla, R. L.	1216
Scharfe, G.	797
Scheer, M. D.	1059, 1061, 1742, 1743
Scheffler, K.	1151, 1370
Schenck, G. O.	1744
Scherber, F. I.	1336, 1338
Schierholz, H.	798 , 799
Schiff, H. I.	879, 1588, 1745, 1997

AUTHOR	ABSTRACT NO.
Schimmel, F. M.	863, 1746
Schindler, A.	248
Schissler, D. O.	1747, 1748
Schlechte, G.	1369
Schleyer, P. V. R.	1749
Schmeising, H. N.	1358
Schmerling, L.	1750
Schmid, R.	1751, 1752
Schneider, E. E.	1753
Schoen, L.	1374
Schoen, L. J.	1059, 1060, 1062
Schoffa, G.	1982
Scholes, G.	1773
Schonberg, A.	232, 1754, 1755, 1756
Schott, G.	260
Schott, G. L.	138
Schroeder, W.	168
Schubert, C. C.	1757
Schuldiner, S.	1758
Schuler, H.	1759, 17 6 0, 1761, 1762, 1763
Schuler, R. H.	605, 824, 1209, 1757, 1764, 1765
Schultze, G. R.	1154
Schuly, K.	1903
Schulz, G. J.	1766
Schulz, G. V.	1767, 1768
Schulz, R. D.	1769
Schumacker, H.	395
Schumb, W. C.	932
Schwab, G. M.	1770, 1771, 1772

AUTHOR	ABSTRACT NO.
Schwartz, N.	740
Schwarz, H. A.	1773
Schweitzer, D.	1164
Scott, W. E.	1157
Seaman, E. C.	566
Searle, L.	1774
Seaton, M. J.	1775, 1776
Secco, E. A.	736, 1777
Sedgwick, R. L.	10
Seel, F.	1778, 1779
Seferian, D.	1780
Sehon, A. H.	1781
Seki, S.	52, 1449
Sekihara, K.	1782
Semanov, N. M.	1507
Semenov, N. N.	1783
Semerano, G.	1784, 1785
Senftlben, H.	1786, 1787, 1788
Sen Gupta, P. K.	1789, 1790
Serdyuk, N. K.	1389
Serewicz, A.	1791
Seubold, F. H.	162
Seubold, F. H., Jr.	1792
Seuferling, F.	1536, 1537, 1538, 1539
Sexton, M. C.	1793
Shamshev, V. N.	290
Shane, G.	1869
Shantarovich, P. S.	1794, 1795
Sharples, L. K.	1219
Shaw, C. C.	693

AUTHOR	ABSTRACT NO.
Sheats, G. F.	1796
Shekhter, A.	1706
Sheon, A. H.	1930
Shepherd, G. R. L.	651
Shepp, A.	1797, 1798
Sheridan, J.	1799, 1800
Shida, S.	674, 675, 1379, 1736, 1801, 1802
Shidei, T.	1803
Shields, H.	760
Shlyapintokh, I. Ya.	1804
Shlyapnikova, I. A.	1636
Shoosmith, J.	884
Shostakovskii, M. F.	1805, 1806,
Shtern, V. Ya.	620, 1503, 1554, 1807, 1808
Shuler, K. E.	263, 1354, 1809, 1810, 1811, 1812, 1813
Sidorov, A. N.	1814
Sieger, R. A.	1815
Silcocks, G. S.	1816
Silverman, S.	1354, 1817
Simha, R.	1818, 1819
Simmons, R. F.	103, 104, 105, 1820
Simmons, W. A.	924
Simon, D. M.	1821
Simonetta, M.	165
Simonoff, G.	1822
Simons, J. H.	531, 1823
Simonson, J. R.	708
Simpson O. C.	189
Sivertz, C.	1450, 1824, 1825

AUTHOR	ABSTRACT NO.
Six, E.	1614
Skerrett, N. P.	1826
Skinner, H. A.	1695
Skirrow, G.	1827
Skolnik, S.	1221
Skoultchi, M. M.	490
Skripach, T. K.	116
Slaugh, L. H.	1828
Sleppy, W. G.	340
Smaller, B.	1829
Smallwood, H. M.	1830, 1831
Smeeton, A. L.	1832
Smid, J.	1833, 1834
Smidt, J.	1835
Smith, A. L.	1836
Smith, E. C. W.	1837
Smith, H. A.	1838
Smith, J. O., Jr.	1839, 1972
Smith, J. R. E.	1840, 1841
Smith, J. W.	505, 507, 1842
Smith, K. A.	318
Smith, L. R.	1604
Smith, L. S. A.	431
Smith, M. J.	1843
Smith, R. F.	202
Smith, S. J.	245
Smith, S. R.	1234, 1844
Smith, W. V.	1845
Smit - Miessen, M. M.	1856
Snow, R. L.	121

MOLION	TIDEX
AUTHOR	ABSTRACT NO.
Sobolev, N. M.	1846
Soborovskii, L. Z.	116
Sogo, P. B.	59 7,1 84 7
Sokolik, A. S.	1848
Sokolow, N. D.	1849
Somasekhara, S.	1153
Sonnerskog, S.	1850
Sorokin, Yu. A.	1635
Soross, H.	332
Souffie, R. D.	1851
Sowden, R. G.	1852
Spall, B. C.	1853
Spence, R.	1854, 1855
Spier, J. L.	1856
Spinks, J. W. T.	657, 886, 1857
Spitzer, L., Jr.	1858
Sprague, G.	689
Squires, B. E.	1252
Srinivasan, R.	2180
Stadnik, P. M.	1859
Stallings, J. P.	1710
Stanley, C. R.	1860
Stanton, H. E.	1861
Steacie, E. W. R.	59, 60, 61, 62, 63, 64, 65, 85, 86, 258, 324, 325, 326, 434, 435, 481, 534, 594, 717, 718, 728, 733, 806, 957, 958, 964, 965, 985, 1095, 1220, 1245, 1246, 1247, 1249, 1250, 1256, 1281, 1282, 1323, 1326, 1327, 1439, 1458, 1535, 1590, 1609, 1637, 1638, 1687, 1688, 1745, 1853, 1862, 1863, 1864, 1865, 1866, 1867, 1868, 1869, 1870, 1871, 1872, 1873, 1874, 1875, 1876, 2001, 2002, 2004, 2005, 2006, 2007, 2130, 2134

AUTHOR	ABSTRACT NO.		
Steele, B. R.	849, 853		
Steenis, J. van.	215, 216		
Stein, G.	1169, 1877, 1878, 1879, 1880		
Steinberg, M.	1145		
Steiner, W.	152, 500, 893, 1881		
Steneryn, A.	95		
Stephens, E. R.	1157		
Stepukhovich, A. D.	565, 1882, 1883, 1884, 1885, 1886, 1887, 1888		
Sternheimer, R. M.	1889		
Steubing, W.	1890		
Stevels, J. M.	1891, 1892, 1893		
Stevenson, D. P.	897, 1104, 1748, 1894, 1895 2083		
Stewart, A. C.	730		
Stewart, D. T.	1896		
Stewart, F. B.	1108, 1109		
Stockburger, M.	1763		
Stoddart, E. M.	1508, 1509, 1897		
Stone, F. S.	26		
Storch, H. H.	1898		
Streitwieser, A., Jr.	1694		
Strong, J. D.	1899		
Strong, R. L.	1900		
Struve, 0.	1920		
Stubbs, F. J.	1901		
Stutchbury, J. E.	572		
Style, D. W. G.	539, 910, 918, 919, 1549		
Suess, H.	794		
Sugden, S.	1902		

AUTHOR		ABSTRACT NO.	
Sugden, T. M.		294, 295, 296, 934, 963, 1064, 1065	
Suhrmann, R.		1903	
Suita, T.		1283	
Sullivan, J.		612	
Sullivan, J. O.		2118	
Sulzer, F.		1904	
Summerfield, M.		977	
Sun, C. E.		1905	
Sundaram, S.		2058	
Surugue, J.		1906	
Sushchinskii, M. M.		1907	
Suslov, A. K.	1908		
Sutherland, G. B. B. M.		459	
Sutton, H. C. 533, 1273, 1274, 1909		533, 1273, 1274, 1909	
		1910, 1911, 1912, 1913	
Sverdlov, L. M.	•		
Sverdlov, Z. M. 1915		1915	
Swallow, A. J.	ow, A. J. 1916		
Swanson, L. W.		2079	
Sweeny, R. F.		1917, 1918	
Swensson, B.		1919	
Swings, P.		480, 1920	
Sworski, T. J.		1921	
Sychev, V. P.	•		
Symons, M. C. R.		110, 111, 734, 947, 1923	
Syrkin, Y. K.		537 , 538	
Szabo, Z. G. 1924, 1925, 1926		1924, 1925, 1926	
Szent - Gyorgyi, A.		953	
Szwarc, M.		293, 567, 967, 1132, 1133, 1134, 1135, 1145, 1146, 1147, 1615, 1647, 1781, 1833, 1834, 1874, 1927, 1928, 1929, 1930, 1931, 1932, 1933, 1934, 1935, 1934, 1935,	
	374	1931, 1932, 1933, 1934, 1935, 1936, 1937, 1938, 1939, 1940, 1941, 1942, 1943, 1944, 1945	

AUTHOR	ABSTRACT NO.		
Tabbutt, F. D.	1056		
Tagirov, R. B.	1946		
Takahashi, S.	1346, 1347, 1348, 1910, 1911, 1912		
Takamatsu, T.	1459		
Takezaki, Y.	938, 1068, 1069, 1070, 1071, 1947, 1948, 1949, 2025		
Tal'roze, V. L.	1950, 2062		
Tanaka, I.	1073, 1951, 1952, 1953		
Tanaka, 0.	1954, 1955		
Tanaka, Y.	1956		
Tanford, C.	1957, 1958, 1959		
Tanka, Yi.	1121		
Tanner, K. N.	1960		
Tao, Yu-Sheng	982		
Tapley, J. G.	69, 945		
Tarmy, B. L.	1197		
Tarrago, X.	1129		
Tarutina, L. I.	1961		
Tatevskii, V. M.	1248		
Taube, H.	933		
Taubert, R.	1452		
Taylor, F. R.	1378, 1962		
Taylor, G. W.	1423, 1963		
Taylor, H. A.	237, 368, 999, 1193, 1287, 1742, 1769, 1964, 1965, 1966		
Taylor, H. D.	1967		
Taylor, H. S.	115, 433, 1839, 1968, 1969, 1970, 1971, 1972, 1973		
Taylor, J. W.	1941		
Taylor, K. J.	869		
Taylor, R. P.	1974		

AUTHOR	ABSTRACT NO.	
Taylor, W. J.	1975	
Tcheng, M.	1976	
Tedder, J. M.	38 , 655	
Teller, E.	1670, 1671	
Temkin, M. I.	1977	
Terenin, A. N.	1585, 1978, 1979	
Terentiev, A. P.	1025	
Theilacker, W.	1980, 1981	
Thewlis, B. H.	282	
Thiel, M. van.	154	
Thom, H. G.	1982	
Thomas, J. H.	1217	
Thomas, J. K.	151	
Thomas, J. R.	130, 131, 832, 1983	
Thomas, N.	1984	
Thomas, P.	1393	
Thomas, P. J.	783	
Thompson, D. D.	337, 1544	
Thompson, F. W.	1985	
Thompson, G. W.	332	
Thompson, H. W.	976, 1986, 1987	
Thompson, N. W.	1826	
Thompson, S. O.	1747	
Thomson, A.	1525	
Thorp, C. E.	1988	
Thrush, B. A.	545, 1165, 1414, 1416, 1417, 1420, 1422, 1989, 1990, 1991, 1992	
Tickner, A. W.	835, 1182, 1183, 1993	
Tikhomirov, M. V.	809, 1023, 1024	
Tikhomirova, N. N.	1994	

AUTHOR	ABSTRACT NO.	
Tinyakova, E. I.	1995, 1996	
Tipper, C. F. H.	144	
Toby, S.	1997, 1998	
Todd, W.	1999	
Tolberg, R. S.	1543	
Topchiev, A. V.	1503	
Topolya, N. V.	618	
Torrey, H. C.	397	
Tousey, R.	979	
Townend, M. G.	73 ¹ 4	
Townes, C. H.	524	
Townsend, J.	389, 407, 1464	
Townsend, M.	1923	
Townsend, M. G.	111, 947	
Trapnell, B. M. W.	1534	
Travers, M. W.	782, 2000	
Trotman, J.	380	
Trotman - Dickenson, A. F.	202, 1034, 1035, 1066, 1067, 1583, 1587, 1588, 1590, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010	
Tsaruta, T.	1435	
Tschamler, H.	1720	
Tsentsiper, A. B.	7 59,997	
Tsukervanik, I. P.	2011	
Tsukida, K.	2012	
Tsvetkov, Yu. D.	372	
Tsykora, I. L.	1713, 1714, 1715	
Tucker, 0.	1206, 1207	
Tuckett, R. F.	1304, 1305	
Tuker, H.	2013	

AUTHOR	ABSTRACT NO.		
Tung, T.	2014		
Turkevich, J.	1747		
Turner, A. H.	2015		
Turner, D. T.	2016		
Tutton, R. C.	1315		
Tverdokhlebov, V. I.	2017		
Tverdova, V. M.	1635		
Twade, N. R.	2018		
Ubbelohde, A. R.	1985, 2019, 2020, 2021, 2022		
Uebersfeld, J.	2023, 2024		
Ueno, T.	2025		
Unterberger, R. R.	812		
Urbanski, T.	2026		
Urey, H. C.	512, 2027, 2028, 2029		
Uri, N.	2 03 0, 2031		
Urry, W. H.	2032		
Urushibara, Y.	<u>1</u> 441		
Uvarova, N. I.	1806		
Vaidya, W. M.	721, 2033, 2034		
Valatin, J. G.	2035		
Val'nev, P. E.	2036		
Van Cleave, A. B.	657		
Vanderslice, J. T.	789, 790, 791, 1280, 2037		
Vanderslice, T. A.	1683		
Vanhaeren, L.	2038		
Vaniscotte, C.	727		
Van Krevelen, D. W.	1835		
Vanngard, T.	247		
Vanpee, M.	2039, 2040, 2041, 2042, 2043, 2044, 2045		

AUTHOR	ABSTRACT NO.	
Van Roggen, A.	2046	
Van Roggen, L.	2046	
Vansheidt, A. A.	2047	
Van Tassel, R.	2048	
Van Tiggelen, A.	1393, 2049	
Varerin, L. J.	2050	
Varnerin, R. E.	1678, 2051	
Varney, R. N.	20 52	
Vasileiskaya, N. S.	1634, 2053	
Vassy, A.	2054	
Vassy, A. T.	2055, 2056	
Vaughan, W. E.	161, 162, 479, 1386, 1616, 1617, 1618, 1619, 1722, 179	
Vebersfeld, J.	601	
Vedeneev, V. I.	2057	
Venkateswalu, K.	2058	
Versteeg, J.	2059	
Vest, R. D.	1279	
Viallard, R.	2060	
Villars, D. S.	1646	
Violett, T. D.	2121	
Vivo, J. L.	2061	
Voevodskii, V. V.	290, 372, 955, 1022, 1114, 1263, 1553, 1994, 2062, 2063, 2064, 2065, 2066, 2067	
Voigt, D.	2068	
Voiland, E. E.	823	
Voitlander, J.	1772	
Vol'kenshtein, F. F.	2066, 2069, 2070	
Volman, D. A.	255, 256	
Volman, D. H.	1103, 2071, 2072, 2073, 2074, 2075, 2076, 2077, 2078, 2079	

AUTHOR	ABSTRACT NO.	
Vol'nova, I. S.	695	
Von Elbe, G.	2080	
Von Karman, T.	2081	
Vries, E. de.	2082	
Waddington, D. J.	432	
Wadsworth, P. A.	2083	
Wadsworth, T.	1288	
Wagland, A. A.	870	
Wagner, C. D.	2083	
Wagner, H. G.	970, 2084	
Wahler, B. E.	1982	
Waldren, J. D.	503, 2085	
Walker, P. L., Jr.	2086	
Wall, F. T.	2087	
Wall, L. A.	1356, 1818, 2088, 2089	
Walling, C.	643, 1289, 2090, 2091, 2092	
Walsh, A. D.	905, 2093, 2094, 2095	
Walter, J.	764	
Walters, W. A.	2096	
Walters, W. D.	1175, 1176, 1674, 1676	
Ward, R. B.	771	
Warhurst, E.	767, 1690, 2097, 2098	
Wark, K.,Jr.	17	
Warren, D. R.	2099, 2100	
Watabe, N. V.	1342	
Waterman, H. I.	215, 216	
Waters, W. A.	195, 418, 632, 633, 818, 2101, 2102, 2103, 2104, 2105, 2106, 2107, 2108	
Watson, D. H.	2108	
Watson, J. S.	2109	

AUTHOR	ABSTRACT NO.		
Watson, W. F.	36		
Watt, W.	770		
Wayland, H.	157		
Webb, G. A.	2110		
Webb, L. A.	22		
Weber, D.	1523, 1524		
Weeks, J. L.	2111		
Wahner, J. F.	787		
Weinberg, F. J.	298		
Weiss, J.	1169, 1877, 1878, 1879, 2112, 2113, 2114		
Weiss, J. A.	2115		
Weissler, A.	2116		
Weissman, S. I.	389, 1644		
Weissmann, S. I.	1464		
Welty, F.	2161		
Welvart, Z.	553		
Weniger, S.	2117		
Wentinik, T., Jr.	2118		
Wertz, J. E.	428		
West, W.	2119		
Westenberg, A. A.	666		
Weyssenhoff, H. V.	800		
Whaley, F. R.	1660		
Whalley, E.	2120		
Wharton, W. W.	2121		
Wheatley, P. J.	1160		
Wheland, G. W.	936, 1504, 1505		
Whiffen, D. H.	4, 5, 55, 56, 771, 2122		
Whitby, F. J.	145		

AUTHOR	ABSTRACT NO.	
White, J. U.	2123, 2124, 2125	
Whiteway, S. G.	2126, 2127	
Whittingham, G.	2128, 2129	
Whittle, E.	436, 2130	
Wieland, K.	2131, 2132	
Wiener, H.	2133	
Wijnen, M. H. J.	958, 1220, 1230, 2134, 2135, 2136, 2137, 2138, 2139, 2140, 2141, 2142	
Wilbur, K. M.	1342	
Wild, J. P.	2143	
Wild, W. *	1854, 1855	
Wildt, R.	2144	
Wilen, S. H.	553	
Wiles, D. M.	2145	
Wilfong, R. E.	2146	
Wilhelm, R. H.	1105	
Wilkie, H.	202	
Wilkinson, D. H.	2147	
Wilkinson, F.	453	
Wilkinson, G. R.	2148	
Willard, J. E.	14, 837, 1900	
Wilkinson, P. G.	2149	
Willbourn, A. H.	2150, 2151, 2152	
Willey, E. J. B.	2153	
Williams, A.	780	
Williams, D.	1940, 2154	
Williams, K. G.	2155	
Williams, M. C.	1239	
Williams, R. R., Jr.	113, 348, 823, 928, 1301, 1577, 1717, 1851, 2156	

AUTHOR	ABSTRACT NO.	
Wilmarth, W. K.	740	
Wilmshurst, J. K.	2157, 2158	
Wilson, D. J.	2159	
Wilson, E. S.	977	
Wilson, J. A.	150	
Wilson, R. E.	1738	
Windsor, M. W.	1566, 1569	
Winkler, C. A.	43, 44, 532, 637, 638, 639, 658, 688, 986, 1324, 2059, 2145, 2172	
Winning, W. I. H.	1692	
Wise, H.	1732	
Wiselogle, F. Y.	329	
Witcher, S. L.	1999	
Wittig, G.	1767, 2160	
Wohl, L.	2161	
Wolf, I.	1614	
Wolfgang, R.	1741	
Wolfhard, H. G.	11, 494, 495, 617, 702, 703, 704, 705, 707, 778, 779, 821, 1488, 1489, 1820, 1827, 2162, 2163, 2164, 2165, 2166, 2167, 2168	
Wolfrom, M. L.	2154	
Wood, R. W.	2169	
Woodhead, D. W.	425	
Woods, L. W.	2170	
Woods, R. J.	886	
Woolfolk, R. W.	1544	
Woolley, H. W.	2171	
Wray, K. L.	2118	
Wright, A. N.	2172	

AUTHOR	ABSTRACT NO.
Wright, F. J.	1564, 15 65 , 1568
Wu, T. Y.	2173
Wynne - Jones, W. F. K.	959
Yakovleva, A. V.	2174
Yamamoto, R.	2176
Yamanaka, T.	1071
Yamashita, S.	2175, 2176
Yamawaki, T.	2175
Yamazaki, H.	2177
Yamazaki, K.	2178
Yang, J. Y.	2179
Yano, S.	1803
Yashira, S.	952
Yasuhira, S.	1460
Yasumori, I.	674
Yeddanappalli, L. M.	993, 2180
Yoffe, A. D.	774
Yoneda, Y.	2181
Yoshida, J.	1068
Young, T. H. Y.	2182, 2183
Yvan, P.	766
Zabolotskii, T. V.	2184
Zahlan, A. B.	129
Zakharkin, L. I.	1394
Zeelenberg, A. P.	1424
Zeldovich, Ya. B.	2185
Zelikoff, M.	1579, 2186, 2187
Zelinskii, N. D.	2188
Zemany, P. D.	2189
Ziegler, K.	2190

AUTHOR	ABSTRACT NO.
Zimm, B. H.	2191
Zimmer, K. B.	2192
Zinov'er, Yu. M.	116
Zuchelli. A. J.	179

Page intentionally blank

Page intentionally blank

Page intentionally blank

No. of Copies	Organization	No. of Copies	Organization
copies	<u>Organization</u>	OOPICS	or Berning of Ott
4	Chief of Ordnance ATTN: ORDTB - Bal Sec, Mr. George Stetson ORDTB - F & L Sec ORDTN - Mr. Ray Thorkildsen	4	Defence Research Member Canadian Joint Staff 2450 Massachusetts Avenue, N.W. Washington 8, D.C.
,	ORDTU - Mr. Walter Grimm Department of the Army Washington 25, D.C.	3	Chief, Bureau of Naval Weapons ATTN: DIS-33 Department of the Navy Washington 25, D.C.
1	Commanding Officer Diamond Ordnance Fuze Laboratories ATIN: Technical Information Office Branch O41 Washington 25, D.C.		Chief of Naval Research Department of the Navy Washington 25, D.C.
	washing oon 2), 2.0.	2	Director
1	Commanding Officer Diamond Ordnance Fuze Laboratories ATIN: Dr. J.H. Van Trump Washington 25, D.C.		U.S. Naval Research Laboratory ATTN: Dr. H. Friedman Technical Information Office Washington 25, D.C.
10	Commander Armed Services Technical Information Agency ATIN: TIPCR Arlington Hall Station Arlington 12, Virginia	1	Commander U.S. Naval Ordnance Test Station ATTN: Technical Library China Lake, California Commander U.S. Naval Weapons Laboratory
10	Commander British Army Staff British Defence Staff (W) ATTN: Reports Officer 3100 Massachusetts Avenue, N.W. Washington 8, D.C.	1	Dahlgren, Virginia Commanding Officer U.S. Naval Air Development Center Johnsville, Pennsylvania
	Of Interest to:	1	Commander Naval Ordnance Laboratory White Oak, Silver Spring 19, Maryland
	Dr. George Porter Sheffield University Department of Chemistry England	4	Commander Air Force Systems Command Andrews Air Force Base Washington 25, D.C.
	Dr. F.S. Dainton The University Leeds 2 England	1	Commander Air Proving Ground Center Eglin Air Force Base, Florida

No. of Copies	Organization	No. of Copies	Organization
1	Commander Air Force Cambridge Research Laboratory L.G. Hanscom Field Bedford, Massachusetts	3	Commanding Officer Picatinny Arsenal ATTN: Library Feltman R&E Laboratories Dover, New Jersey
1	Director Air University Library ATTN: AUL (3T-AUL-60-118) Maxwell Air Force Base, Alabama	1	Commanding Officer Watertown Arsenal Watertown 72, Massachusetts
1	Commander Air Force Missile Test Center Patrick Air Force Base, Florida	1	Commanding General Army Ballistic Missile Agency Redstone Arsenal, Alabama
1	Commander Rome Air Development Center Griffiss Air Force Base Rome, New York	1	Commanding General Army Rocket & Guided Missile Agency ATTN: Technical Library Redstone Arsenal, Alabama
1	Commander Aeronautical Systems Division ATTN: Technical Library Wright-Patterson Air Force Base Ohio	1	Commanding General ATTN: Dr. Thomas Zandstra White Sands Missile Range, New Mexico Chief Signal Officer ATTN: Mr. W. Morton (SIFWL)
3	Commander Air Force Office of Scientific Research ATTN: Director of Intelligence Chemistry Division Technical Library Washington 25, D.C.	2	Department of the Army Washington 25, D.C. Commanding General U.S. Army Signal Engineering Laboratories Fort Monmouth, New Jersey
1	Chief of Staff U.S. Air Force Washington 25, D.C.	1	Director Evans Signal Corps Laboratory (SCEL) Belmar, New Jersey
3	Commanding General Frankford Arsenal ATTN: Dr. H. Smith	1	Chief of Engineers Department of the Army Washington 25, D.C.
	Library Branch, 0270, Bldg b Pitman-Dunn Laboratories Philadelphia 37, Pennsylvania	10 1	Commanding General Engineer Research and Development Laboratories Fort Belvoir, Virginia

No. of Copies	Organization	No. of Copies	Organization
			Diversion
2	Chief Chemical Officer	1	Director NASA Goddard Space Flight Center
	Department of the Army		4555 Overlook Avenue, S.W.
	Washington 25, D.C.		Washington 25, D.C.
,	Commanding Officer	-	washing wit 25, D.C.
1	U.S. Army Chemical Warfare Laborat	l ories	Director, Marshall Space Flight Center
	ATTN: Technical Library	OTICS	Redstone Arsenal, Alabama
	Army Chemical Center, Maryland		, , , , , , , , , , , , , , , , , , , ,
	in my one minute to more y in a grant	1	Director
3	Commanding Officer		National Aeronautics and
J	U.S. Army Research Office (Durham)		Space Administration
	Box CM, Duke Station		ATTN: Mr. Robert L. Kreiger - Chief
	Durham, North Carolina		Wallops Station
			Temperanceville, Virginia
1	Committee Advisory to OOR		
	National Research Council	1	Director
	2101 Constitution Avenue		National Aeronautics and
	Washington 25, D.C.		Space Administration
-	Discoston Bereamb Analysis Company	tion	Ames Research Center Moffett Field, California
1	Director, Research Analysis Corpora ATIN: Librarian	CION	Mollett Field, California
	Department of the Army	1	Director
	6935 Arlington Road	_	National Aeronautics and
	Bethesda, Maryland		Space Administration
	Washington 14, D.C.		Langley Research Center
			Langley Field, Virginia
1	Central Office		
	U.S. Weather Bureau	1	Director
	ATTN: Dr. Harry Wexler		National Aeronautics and
	24th and M Streets		Space Administration Lewis Research Center
	Washington 25, D.C.		Cleveland Airport
1	U.S. Army Research and		Cleveland, Ohio
1	Development Liaison Group		olevelana, onlo
	USAREUR, Northern Area Command	1	U.S. Atomic Energy Commission
	APO 757, New York, New York	_	ATIN: Technical Reports Library -
			Mrs. J. O'Leary for Division
1	Director		of Military Application
	National Aeronautics and		Washington 25, D.C.
	Space Administration		
	ATTN: Librarian	1	U.S. Atomic Energy Commission
	Colemont Building		Los Alamos Scientific Laboratory
	Silver Spring, Maryland		P.O. Box 1663
			Los Alamos, New Mexico

No. of Copies	<u>Organization</u>	No. of Copies	Organization
1	U.S. Atomic Energy Commission Sandia Corporation P.O. Box 5800 Albuquerque, New Mexico	4	Director of Defense Research and Engineering (OSD) ATTN: Director/Ordnance Director/Science Dr. Harold Laniar
1	University of California Lawrence Radiation Laboratory Technical Information Division ATTN: Clovis G. Craig P.O. Box 808 Livermore, California	1	Washington 25, D.C. Applied Physics Laboratory The Johns Hopkins University 8621 Georgia Avenue Silver Spring, Maryland
1	National Academy of Science ATTN: Dr. J. Kaplan 2101 Constitution Avenue, N.W. Washington 25, D.C.	2	Director, Jet Propulsion Laboratory ATTN: Dr. P. Nichols Dr. G.J. Mills 4800 Oak Grove Drive Pasadena, California
1	Director National Bureau of Standards ATTN: Dr. Hilsenrath Thermodynamics Section Washington 25, D.C.	1	Librarian Marine Biological Laboratory Woods Hole, Massachusetts
1	Director National Bureau of Standards U.S. Department of Commerce	1	Oak Ridge National Laboratory ATTN: Technical Library Oak Ridge, Tennessee
1	Boulder Laboratories Boulder, Colorado Bureau of Mines	1	Columbia University 632 West 125th Street New York 27, New York
1	U.S. Department of Interior ATIN: Mr. R.W. Van Dolah 4800 Forbes Street Pittsburgh, Pennsylvania	1	New York University ATTN: Librarian University Heights New York 53, New York
1	Chief, Defense Atomic Support Agend ATTN: Radiation Division Washington 25, D.C.	ey l	University of California at Los Angeles ATTN: Librarian 405 Hilgard Avenue
1	Chief of Research & Development ATTN: Army Research Office Department of the Army Washington 25, D.C.	1	Los Angeles, California University of Colorado ATTN: Librarian High Altitude Observatory Boulder, Colorado

No. of Copies		No. of Copies	Organization
1	University of Michigan ATIN: Librarian Ann Arbor, Michigan	1	Thickol Chemical Corporation ATTN: Mr. Orville D. Reed Elkton Division Elkton, Maryland
1	Aerojet-General Corporation 6352 N. Irwindale Avenue Azusa, California	1	Dr. V.M. Abers Penn State College Department of Physics
3	American Chemical Society ATTN: Charles S. Dicker, Jr. 1155 Sixteenth Street, N.W. Washington 6, D.C.	1	State College, Pennsylvania Dr. G.C. Akerlof Princeton University
1	Arthur D. Little, Inc. ATTN: Dr. B. Vonnegut - Atmospheric Research 30 Memorial Drive	1	Forrestal Research Center Princeton, New Jersey Dr. L.B. Aldrich Smithsonian Institute
1	Cambridge 42, Massachusetts Atlantic Research Corporation ATTN: Mr. Arch Scurlock Shirley Highway at Edsall Road Alexandria, Virginia	1	Washington 25, D.C. Dr. J.A. Van Allen State University of Iowa Department of Physics Iowa City, Iowa
1	Battelle Memorial Institute 505 King Street Columbus 1, Ohio	1	Dr. H.N. Alyea Princeton University Department of Chemistry
1	Geophysics Corporation of America ATTN: Dr. M. Zelickoff 700 Commonwealth Avenue Boston 15, Massachusetts	1	Princeton, New Jersey Dr. I. Amdur Massachusetts Institute of Technology Cambridge 39, Massachusetts
1	General Electric Company Missile & Ordnance Systems Departme ATTN: Dr. V.G. Szebehely 3198 Chestnut Street Philadelphia, Pennsylvania	nt l	Dr. C.B. Anfinsen National Heart Institute Bethesda 14, Maryland Dr. L.L. Antes
1	Lockheed Aircraft Corporation Missile Systems Division Van Nuys, California		Applied Physics Branch Aeronautical Research Laboratory Wright-Patterson Air Force Base Ohio
1	The Rand Corporation 1700 Main Street Santa Monica, California	1	Dr. John D. Baldeschwieler Harvard University Department of Chemistry Cambridge 38, Massachusetts

No. of Copies	Organization	No. of Copies	Organization
1	Dr. A.M. Bass National Bureau of Standards Washington 25, D.C.	1	Dr. W. Von Braum National Aeronautics and Space Administration Marshall Space Flight Center
1	Dr. John R. Bates Sun Oil Company 1608 Walnut Street Philadelphia 3, Pennsylvania	1	Redstone Arsenal, Alabama Dr. S.R. Brinkley, Jr. Combustion & Explosives Research, Inc. Oliver Building
1	Professor J.W. Beams University of Virginia Department of Physics McCormic Road Charlottesville, Virginia	1	Pittsburgh 22, Pennsylvania Dr. W.R. Brode Department of State Washington 25, D.C.
1	Dr. L.V. Berkener Associated Universities Inc. 10 Columbus Circle New York 19, New York	1	Dr. Herbert P. Broida National Bureau of Standards 232 Dynamometer Building Washington 25, D.C.
1	Dr. J.A. Bierlein Aeronautical Systems Division Wright-Patterson Air Force Base Ohio	1	Dr. Detlev W. Bronk Rockefellow Institute of Medical Research 66th Street and York Avenue New York 21, New York
1	Dr. F.E. Blacet University of California at Los Angeles Los Angeles 24, California	1	Dr. D.L. Brooks Operations Evaluation Group 4D 541 Pentagon Building Washington 25, D.C.
1	Professor W. Bleakney Princeton University Palmer Physical Laboratory Princeton, New Jersey	1	Dr. Dirk Brouwer Yale University Observatory Box 2023, Yale Station New Haven 11, Connecticut
1	Dr. J.P. Blewett Brookhaven National Laboratory Upton, New Jersey	1	Dr. J.W. Buchta National Science Foundation University of Minnesota
1	Dr. N.E. Bradbury Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, New Mexico	1	Minneapolis, Minnesota Dr. M. Burton University of Notre Dame
1	Dr. W.H. Brattain Bell Telephone Laboratories, Inc. Murray Hill, New Jersey		Department of Chemistry Notre Dame, Indiana

No. of Copies	Organization	No. of Copies	Organization
1	Dr. R. Keith Cannan National Research Council 2101 Constitution Avenue Washington 25, D.C.	1	Dr. B.D. Donn NASA Goddard Space Flight Center 4555 Overlook Avenue, S.W. Washington 25, D.C.
1	Dr. A.W. Carpenter 943 Genesee Road Akron 3, Ohio	1	Dr. L.G. Dunn Space Technology Laboratories, Inc. 5730 Arbor Vitae Los Angeles 45, California
1	Dr. Joseph V. Charyk Princeton University Department of Aeronautics Princeton, New Jersey	1	Dr. W.D. Drinkwater Aerojet-General Corporation Liquid Rocket Plant Sacramento, California
1	Dr. John T. Clapp Aerojet-General Corporation Sacramento 9, California	1	Dr. M.D. Earle The Johns Hopkins University Radiation Laboratory
1	Dr. G.L. Clark University of Illinois Department of Chemistry Urbana, Illinois	1	Baltimore 2, Maryland Dr. Paul H. Emmett The Johns Hopkins University Department of Chemistry
1	Dr. R.K. Clark Argonne National Laboratory Box 299	1	Baltimore 18, Maryland Dr. Titus C. Evans
1	Lemont, Illinois Dr. A.P. Cleaves		State University of Iowa College of Medicine Iowa City, Iowa
	Operations Analysis Office Strategic Air Command Offutt Air Force Base, Nebraska	1	Dr. R.D. Evans Massachusetts Institute of Technology Cambridge 39, Massachusetts
1	Dr. F.D. Coffin National Aeronautics and Space Administration Lewis Research Center Cleveland Airport	1	Dr. Henry Eyring University of Utah Salt Lake City, Utah
1	Cleveland, Ohio Dr. S. Dondes Rensselaer Polytechnic Institute Troy, New York	1	Dr. G. Failla Argonne National Laboratory Radiological Physics Division Lemont, Illinois

No. of Copies	<u>Organization</u>	No. of Copies	Organization
ı	Dr. M.H. Feldman Westinghouse Atomic Power Division Box 1468	ı	Dr. S. Gordon Picatinny Arsenal Dover, New Jersey
1	Pittsburgh 30, Pennsylvania Dr. Paul C. Fine U.S. Atomic Energy Commission 1901 Constitution Avenue Washington 25, D.C.	1	Dr. Walter Gordy Duke University Department of Physics Durham, North Carolina
1	Dr. W.A. Fowler California Institute of Technology Department of Physics		Dr. D.I. Graham, Jr. Army Rocket & Guided Missile Agency Redstone Arsenal, Alabama
1	Pasadena 4, California Dr. A.A. Frost Northwestern University	1	Dr. J.L. Greenstein California Institute of Technology Mount Wilson Observatory Pasadena 4, California
	Department of Chemistry Evanston, Illinois	1	Dr. G. Grimminger Directorate of Research & Development
1	Dr. J.S. Fruton Yale University School of Medicine New Haven 11, Connecticut		U.S. Air Force Washington 25, D.C.
1	Dr. N.H. Furman Princeton University Department of Chemistry Princeton, New Jersey	1	Dr. A.T. Gwathmey University of Virginia Cobb Chemical Laboratory Charlottesville, Virginia
I	Dr. James E. Garvey Office of Ordnance Research Pasadena Branch Pasadena, California	1	Dr. E.G. Haas Air Force Systems Command Regional Office c/o Department of the Navy Room 2305 Munitions Building Washington 25, D.C.
1	Dr. L.C. Gibbons National Aeronautics and Space Administration Lewis Research Center Cleveland Airport Cleveland, Ohio	1	Dr. K.P. Hall Princeton University Forrestal Research Center Princeton, New Jersey
1	Dr. Sherwood Githens, Jr. U.S. Army Research Office (Durham) Box CM, Duke Station Durham, North Carolina	1	Dr. E.J. Hart Argonne National Laboratory Box 299 Lemont, Illinois

No. of		No. of	0
Copies	Organization	Copies	Organization
1	Dr. M.A. Heaslet National Aeronautics and Space Administration Ames Research Center Moffett Field, California	1	Dr. Stanley Klainer Bendix Aviation Corporation Research Laboratories Division P.O. Box 5115 Detroit 35, Michigan
1	Dr. C.M. Herget U.S. Army Chemical Warfare Laboratories Army Chemical Center, Maryland	1	Mr. N.L. Klein Office, Chief of Ordnance (ORDTX) Department of the Army Washington 25, D.C.
1	Dr. C.M. Herzfeld National Bureau of Standards 232 Dynamometer Building Washington 25, D.C.	1	Dr. W.S. Koski The Johns Hopkins University Department of Chemistry Baltimore 18, Maryland
1	Professor J.O. Hirschfelder University of Wisconsin Department of Chemistry Madison, Wisconsin	1	Dr. Robert D. Kracke U.S. Army Chemical Warfare Laboratories Army Chemical Center, Maryland
1	LCDR W.S. Houston Office of Naval Research - Code 41 Department of the Navy Washington 25, D.C.	1	Dr. Paul H. Kratz National Science Foundation Mathematical, Physical and Engineering Sciences Division Washington 25, D.C.
1	Dr. C.K. Jen Applied Physics Laboratory The Johns Hopkins University 8621 Georgia Avenue Silver Spring, Maryland	1	Dr. J.B. Levy U.S. Naval Ordnance Laboratory White Oak, Silver Spring 19, Maryland Dr. Bernard Lewis
1	Dr. S. Katzoff National Aeronautics and Space Administration Langley Research Center Langley Field, Virginia	1	Combustion Explosives Research, Inc. 200 Alcoa Building Pittsburgh 19, Pennsylvania Dr. W.F. Libby
1	Dr. G.B. Kistiakowsky Harvard University Department of Chemistry Cambridge 38, Massachusetts		University of Chicago Institute for Nuclear Studies Chicago 37, Illinois

No. of Copies	Organization	No. of Copies	Organization
1	Dr. R. Livingston Oak Ridge National Laboratory Oak Ridge, Tennessee	1	Dr. H.F. Mark Director, Polymer Research Institute Polytechnic Institute of Brooklyn Brooklyn, New York
1	Dr. A.L. Loomis 14 Wall Street New York 5, New York	ı	Dr. L.I. Meisel Naval Air Experimental Station U.S. Naval Base
1	Dr. P.H. Lowry Research Analysis Corporation Department of the Army	1	Philadelphia 12, Pennsylvania Dr. Charles F. Metz
	6935 Arlington Road Bethesda, Maryland Washington 14, D.C.		Los Alamos Scientific Laboratory Box 1663 Los Alamos, New Mexico
1	Dr. Edward Mack, Jr. Ohio State University Department of Chemistry Columbus 10, Ohio	1	Dr. D.J. Metz Brookhaven National Laboratory Upton, New York Dr. J.H. Meltzer
1	Dr. I.L. Mador U.S. Industrial Chemical Company 1275 Section Road Cincinnati 37, Ohio	-	Electric Storage Battery Company P.O. Box 5723 Philadelphia 20, Pennsylvania
1	Dr. S.J. Magram U.S. Army Chemical Warfare Laboratories Army Chemical Center, Maryland	1	Dr. Lewis E. Miller, Code 9223 National Aeronautics and Space Administration Anacostia Naval Station Washington 25, D.C.
1	Dr. Randolph T. Major University of Virginia Department of Chemistry Charlottesville, Virginia	1	Dr. D.E. Milligan Mellon Institute 4400 Fifth Avenue Pittsburgh 13, Pennsylvania
1	Dr. N.S. Marans Hercules Powder Company Delaware Trust Building Wilmington 99, Delaware	1	Dr. R.M. Milton Linde Air Products Company Union Carbide & Carbon Corporation East Park & Woodward Streets Tonawanda, New York
1	Dr. L.D. Marinelli Argonne National Laboratory Box 299 Lemont, Illinois	1	Dr. G.V. Mock Advanced Research Projects Agency Department of Defense Washington 25, D.C.

No. of Copies	Organization	No. of Copies	Organization
1	Dr. G. Moe Aerojet-General Corporation 15416 Giordano Street Puente, California	1	Dr. J.H. Northrop University of California Department of Bacteriology Berkeley 4, California
1	Dr. G.T. Moeller University of Illinois Department of Chemistry Urbana, Illinois	1	Dr. M.D. O'Day Air Force Cambridge Research Laboratory L.G. Hanscom Field Bedford, Massachusetts
1	Dr. William Mosher University of Delaware Department of Chemistry Newark, Delaware	1	Dr. C.B. Palmer National Aeronautics and Space Administration 1520 H Street, N.W. Washington 25, D.C.
1	Dr. W.J. Murphy American Chemical Society 1155 16th Street Washington 6, D.C.	1	Dr. Hans A. Panofsky Pennsylvania State University Department of Meterology University Park, Pennsylvania
1	Dr. H.O. McMahon Arthur D. Little, Inc. 30 Memorial Drive Cambridge 42, Massachusetts	1	Dr. C.H. Payne-Gaposchkin Harvard University Harvard Observatory Cambridge 38, Massachusetts
1	Dr. M. McCarty, Jr. The Johns Hopkins University Department of Chemistry Baltimore 18, Maryland	1	Dr. R. Penndorf Atmospheric Physics Laboratory Air Force Cambridge Research Laboratory L.G. Hanscom Field
1	Dr. Homer E. Newell National Aeronautics and Space Administration 1520 H Street Washington 25, D.C. Dr. Carl G. Niemann	1	Bedford, Massachusetts Dr. S.S. Penner California Institute of Technology Department of Jet Propulsion Pasadena 4, California
1	California Institute of Technology Department of Chemistry Pasadena, California	1	Dr. G.C. Pimental University of California Department of Chemistry Berkeley 4, California
1	Dr. A.O. Nier University of Minnesota Department of Physics Minneapolis 14, Minnesota	1	Dr. E.R. Piore Office of Naval Research Department of the Navy Washington 25, D.C.

No. of Copies	Organization	No. of Copies	Organization
1	Dr. K.S. Pitzer University of California Department of Chemistry Berkeley 4, California	1	Dr. Ralph Roberts Office of Naval Research Department of the Navy Washington 25, D.C.
1	Dr. W.B. Plum U.S. Naval Radiological Defense Laboratory San Francisco 24, California	1	Dr. M.W. Rosen U.S. Naval Research Laboratory Rocket Development Branch Washington 25, D.C.
1	Dr. W.G. Pollard Oak Ridge Institute of Nuclear Studies Oak Ridge, Tennessee	1	Commander M.D. Ross Office of Naval Research Department of the Navy Washington 25, D.C.
1	Dr. P. Pomerantz National Bureau of Standards 232 Dynamometer Building Washington 25, D.C.	1	Dr. A.T. Rossing Air Force Systems Command Andrews Air Force Base Washington 25, D.C.
1	Dr. T.C. Poulter Stanford Research Institute Menlo Park, California	1	Dr. H.M. Roth Atomic Energy Commission Box E Cak Ridge, Tennessee
1	Dr. N.F. Ramsey Harvard University Department of Physics Cambridge 38, Massachusetts	1	Dr. G.T. Seaborg University of California Department of Chemistry Berkeley 4, California
1	Dr. V.H. Regener University of New Mexico Department of Physics Albuquerque, New Mexico	1	Dr. Raymond Seeger National Science Foundation Washington 25, D.C.
1	Dr. John T. Rettaliata Armour Research Foundation Illinois Institute of Technology Center Chicago 16, Illinois	1	Dr. H.S. Seifert California Institute of Technology Department of Physics Pasadena, California
1	Dr. F.O. Rice Catholic University of America Department of Chemistry Washington 17, D.C.	1	Dr. P.W. Selwood Northwestern University Department of Chemistry Evanston, Illinois

_	No. of Copies	Organization	No. of Copies	Organization
	1	Dr. Russell B. Scott National Bureau of Standards Boulder, Colorado	1	Dr. W.M. Stanley University of California Biochemistry & Virus Laboratory Berkeley 4, California
	1	Dr. D.V. Sickman Naval Ordnance Laboratory White Oak, Silver Spring 19, Maryl	l land	Dr. James E. Stitt National Aeronautics and Space Administration
	1	Dr. S. Silverman Applied Physics Laboratory The Johns Hopkins University	,	Langley Research Center Langley Field, Virginia
		8621 Georgia Avenue Silver Spring, Maryland	1	Dr. J.D. Strong The Johns Hopkins University Laboratory of Astrophysics and
	1	Dr. S.F. Singer University of Maryland Department of Physics College Park, Maryland	1	Physical Meteorology Baltimore 18, Maryland
	1	Dr. C.P. Smyth Princeton University	1	Dr. W. Stuhlinger National Aeronautics_and Space Administration Marshall Space Flight Center
		Department of Chemistry Princeton, New Jersey	1	Redstone Arsenal, Alabama Dr. C.G. Suits
	1	Dr. V. Soumi University of Wisconsin Madison, Wisconsin		General Electric Research Laboratory P.O. Box 1088 Schenectady, New York
	1	Dr. D.A.F. Spilhaus University of Minnesota Institute of Technology Minneapolis 14, Minnesota	1	Dr. H.S. Taylor Princeton University Department of Chemistry Princeton, New Jersey
7	1	Dr. Lyman Spitzer, Jr. Princeton University Observatory Princeton, New Jersey	1	Dr. Clyde W. Tombaugh White Sands Missile Range, New Mexico
•	1	Dr. H. Sponer-Franck Duke University Department of Physics	1	Dr. F.M. Uber U.S. Navy Electronics Laboratory San Diego 52, California
		Durham, North Carolina	1	Dr. H.C. Urey University of California La Jolla, California

No. of Copies	Organization
1.	Dr. A.T. Waterman National Science Foundation Washington 25, D.C.
1	Dr. T.J. Webb Merck and Company, Inc. Rahway, New Jersey
1	Dr. F.L. Whipple Harvard Observatory 60 Garden Street Cambridge 38, Massachusetts
1	Dr. E.B. Wilson, Jr. Harvard University Department of Chemistry Cambridge 38, Massachusetts
1	Dr. Rex C. Wood General Mills, Inc. Mechanical Division 1620 Central Avenue Minneapolis 13, Minnesota
1	Dr. David D. Woodbridge Army Ballistic Missile Agency Redstone Arsenal, Alabama
1	Dr. John H. Yoe University of Virginia Department of Chemistry Charlottesville, Virginia

Atom and free radi-UNCLASSIFIED Free radicals cal reactions Bibliography AD
Ballistic Research Laboratories, ARG
FREE RADICALS - BIBLIOGRAPHY AND SURVEY OF PUBLICATIONS George I. Lavin, Arthur D. Coates and John A. Rakaczky

BRL Report No. 1142 August 1961

DA Froj No. 599-04-002, CASC No. 5610.11.705 UNCIASSIFIED Report

A survey has been made of the free radical literature published up to and including the year 1959. Approximately 2200 references are presented in the form of the title of the paper, author, and a brief description of the work where the title is not self-explanatory.

FREE RADICALS - BIBLIOGRAPHY AND SURVEY OF FUBLICATIONS George I. Lavin, Arthur D. Coates and John A. Rakaczky AD Accession No. Ballistic Research Laboratories, APG (up to 1959)

:

.

Atom and free radi-UNCLASSIFIED cal reactions Bibliography Free radicals

BRL Report No. 1142 August 1961

DA Proj No. 599-04-002, OMSC No. 5610.11.705 UNCLASSIFIED Report

A survey has been made of the free radical literature published up to and including the year 1959. Approximately 2200 references are presented in the form of the title of the paper, author, and a brief description of the work where the title is not self-explanatory.

> Ballistic Research Indonatories, APG FREE RADICALS - BIBLIOGRAPHY AND SURVEY OF FUBLICATIONS George I. Lavin, Arthur D. Coates and John A. Rakaczky Accession No. (up to 1959)

DA Proj No. 599-04-002, CMSC No. 5610.11.703 BRL Report No. 1142 August 1961

A survey has been made of the free radical literature published up to and including the year 1959. Approximately 2200 references are presented in the form of the title of the paper, author, and a brief description of the work where the title is not self-explanatory. UNCLASSIFIED Report

AD

Accession No.

Ballistic Research Laboratories, APG
FREE RADICALS - BIBLICGRAPHY AND SURVEY OF FUBLICATIONS George I. Lavin, Arthur D. Coates and John A. Rakaczky (up to 1959)

Atom and free radi-

cal reactions Bibliography

UNCLASSIFIED

Free radicals

Atom and free radi-

Free radicals UNCIASS IF IED

cal reactions Bibliography

BRL Report No. 1142 August 1961

Proj No. 599-04-002, OMSC No. 5610.11.703 DA Proj No. 599-04-0 UNCLASSIFIED Report A survey has been made of the free radical literature published up to and including the year 1959. Approximately 2200 references are presented in the form of the title of the paper, author, and a brief description of the work where the title is not self-explanatory.