

Akademia Górniczo-Hutnicza w Krakowie Wydział FiIS Fizyka techniczna

Zespół nr 3: 1.Kulig Mateusz 2.Ryś Przemysław 3.Jusięga Paweł

AGH	Fizyka	3.Jusięga Paweł						
Laboratorium Podstaw Fizyki Ciała Stałego								
Rok akademic	cki: 2022/2023	Semestr V	Grupa laboratoryjna: 1					
Temat ćwicze	Temat ćwiczenia:							
Podatność magnetyczna								
Data wykonania ćwiczenia		Data oddania sprawozdania	Ocena					
15.12.2022		23.01.2023						

1 Wstęp teoretyczny

1.1 Prawo indukcji Faradaya

Prawo indukcji elektromagnetycznej Faradaya mówi, że w zamkniętym obwodzie elektrycznym znajdującym się w zmiennym polu magnetycznym pojawia się siła elektromotoryczna indukcji ε , której wartość jest równa szybkości zmian strumienia indukcji pola magnetycznego Φ_B przechodzącego przez powierzchnię rozpiętą na tym obwodzie. Oznacza to, że w obwodzie popłynie prąd elektryczny. Matematycznie prawo to zapisać możemy jako

$$\varepsilon = -\frac{d\Phi_B}{dt},\tag{1}$$

gdzie minus oznacza że powstała siła elektromotoryczna przeciwdziała zmianom strumienia pola magnetycznego zgodnie z regułą Lenza.

1.2 Definicja momentu magnetycznego, namagnesowania i podatności magnetycznej.

Moment magnetyczny to wielkość która opisuje pole magnetyczne wytwarzane przez dane ciało. Dla elektronu moment magnetyczny składa się z części spinowej $\vec{\mu}_s = -g_{el} \frac{e}{2m} \hbar \cdot \vec{s}$ i orbitalnej $\vec{\mu}_l = \frac{e}{2m} \hbar \cdot \vec{l}$, które pochodzą odpowiednio od spinu elektronu i obiegu jądra przez elektron. Gdy rozważymy cały kryształ możemy zdefiniować wielkość jaką jest namagnesowanie \vec{M} . Jest to suma momentów magnetycznych pochodzących od atomów na jednostkę objętości kryształu. Namagnesowanie kryształu zmienia się, jeśli znajdzie się on w polu magnetycznym o natężeniu H. zależność tą opisuje wzorem $\vec{M} = \chi \vec{H}$, w którym wielkość χ to podatność magnetyczna. Jest ona zależna od materiału z którego zbudowany jest kryształ oraz na przykład temperatury.

1.3 Rodzaje uporządkowania magnetycznego i wynikająca z nich wielkość podatności magnetycznej.

Magnetyki występują w kilku rodzajach uporządkowania które jest tym co określa ich właściwości magnetyczne. Istotny jest znak podatności magnetycznej χ oraz jej zależność od temperatury. Wyróżnia się:

- Ferromagnetyki, w których namagnesowanie ustawia się zgodnie z polem zewnętrznym od którego jest większe, wynika z układania się momentów magnetycznych w materiale w tę samą stronę i oznacza $\chi >> 1$.
- Antyferromagnetyki; w nich za sprawą oddziaływania wymiany które można policzyć analogicznie jak dla ferromagnetyków korzystając z uproszczonego hamiltonianu Heisenberga, korzystniejszym energetycznie układem w obliczu przyłożonego pola magnetycznego jest ustawienie się momentów magnetycznych niejako naprzemiennie w kierunkach zgodnym z zewnętrznym polem i do niego odwrotnym. Skutkiem tego jest zerowa podatność magnetyczna,
- Diamagnetyki. W nich podatność magnetyczna jest nieznacznie ujemna, ale na moduł mniejsza od jedności.
 Powstaje za sprawą elektronów które mogą ustawiać swoje momenty magnetyczne w kierunku przeciwnym do przyłożonego pola,
- Paramagnetyki o $\chi > 0$, przypominają ferromagnetyki ale ich momenty magnetyczne nie wykazują tak daleko idącej jednomyślności w obieraniu swojego kierunku i zwrotu co skutkuje mniejszym χ . Naturalnie materiał taki musi posiadać atomy lub jony obdarzone momentem magnetycznym.
- Nadprzewodniki. W nich zachodzi idealna zależność $\chi=-1$ co oznacza że indukowane w nich jest dokładnie przeciwne pole niż przyłożone. Jest to diamagnetyk idealny, gdyż jakkolwiek niższa podatność magnetyczna skutkowałaby powstaniem pewnego rodzaju perpetuum mobile. Nadprzewodniki wykazują zdolność do lewitacji w polu magnetycznym zwaną efektem Meissnera.

1.4 Zależność temperaturowa podatności magnetycznej dla różnych klas związków (paramagnetyki, ferromagnetyki, antyferromagnetyki, diamagnetyki, nadprzewodniki).

Wymienionym powyżej rodzajom uporządkowania odpowiadają różne własności podatności magnetycznej od temperatury. W diamagnetykach zależności temperaturowe są bardzo słabe. Paramagnetyki dobrze opisywane pod tym względem są przez prawo Curie-Weissa 2. Ferromagnetyki posiadają niemal stałą podatność magnetyczną poniżej temperatury Curie, zaś powyżej — w obszarze paramagnetycznym — są posłusznie prawu Curie-Weissa. Antyferromagnetyki poniżej temperatury Neéla znajdują się w stanie antyferromagnetycznym i zupełnie nie podlegają prawu Curie-Weissa; ich podatność maleje wraz ze spadkiem temperatury, w stanie paramagnetycznym podobnie jak miało to miejsce w przypadku ferromagnetyków działa prawo Curie-Weissa. Odróżnić paramagnetyk, ferromagnetyk oraz antyferromagnetyk na wykresie $1/\chi$ (T) można szukając punktu przecięcia prostej ekstrapolowanej z obszaru paramagnetycznego z osią temperatury — ferromagnetyk dokona przecięcia w jakiejś dodatniej temperaturze, antyferromagnetyk w temperaturze ujemnej a paramagnetyk w zerze. Nadprzewodniki mogą wykazywać rozmaite zależności podatności od temperatury co wynika choćby z faktu że nadprzewodnictwo z reguły może być utrzymane jedynie w niskich temperaturach.

1.5 Prawo Curie-Weissa.

Prawem Curie-Weissa nazywamy zależność podatności magnetycznej ferromagnetyków w temperaturze powyżej temperatury Curie, kiedy to ferromagnetyk staje się paramagnetykiem. Opisuje ono również zależność ferroelektryków, które analogicznie po przekroczeniu temperatury Curie stają się paraelektrykami. Podatność magnetyczna jest opisana wtedy wzorem 2

$$\chi_m = \frac{C}{T - T_C},\tag{2}$$

gdzie: ${\cal C}$ - stała Curie-Weissa, ${\cal T}$ - temperatura, ${\cal T}_{\cal C}$ - temperatura Curie.

Stała Curie niesie informacje o wartości efektywnego momentu magnetycznego μ_{eff} wyrażonego jako wielokrotność magnetonu Bohra $\mu_B = \frac{e\hbar}{2m_e} \approx 9,2741 \cdot [{\rm Am}^2].$

$$C = \frac{\mu_0 N \mu_B^2 \mu_{eff}^2}{3k_B} \tag{3}$$

gdzie N oznacza liczbę momentów magnetycznych przypadających na jednostkę objętości. Wartość efektywnego momentu magnetycznego μ_{eff} można wyrazić jako:

$$\mu_{eff} = g_L \cdot \sqrt{J(J+1)} \tag{4}$$

W temperatura Curie zawarta jest z kolei informacja o sile oddziaływań wymiennych, co więcej jest ona proporcjonalna do całki wymiany w hamiltonianie Heisenberga. Dla temperatur znacznie większych od krytycznej temperatury Curie, prawo to asymptotycznie przechodzi w zwykłe prawo Curie, wzór 5.

$$\chi_m = \frac{C}{T},\tag{5}$$

1.6 Magnetyczne przejścia fazowe – temperatury Curie i Neéla.

Analizując Prawo Curie dochodzimy do wniosku, iż niektóre paramagnetyki w miarę zmniejszania temperatury stają się ferromagnetykami, a co za tym idzie następuje porządkowanie magnetyczne materiału. Jeżeli mamy do czynienia z ferromagnetykiem ($T_C > 0$) porządkowanie spinów następuje już dla temperatury Curie , czyli właśnie T_C , jeżeli natomiast do czynienia mamy z antyferromagnetykiem ($T_C < 0$), wówczas porządkowanie następuje w temperaturze Neéla oznaczanej T_N . Jeżeli w układzie nie ma oddziaływań między momentami magnetycznymi, wtedy $T_C = 0$ i mamy zwykłe prawo Curie dla paramagnetyka.

1.7 Zasada pomiaru podatności magnetycznej przy użyciu woltomierza fazoczułego.

Metoda pomiaru podatności magnetycznej bazuje na zjawisku indukcji namagnesowania w próbce umieszczonej w zmiennym polu magnetycznym o możliwie dużej jednorodności przestrzennej. Uzyskujemy takowe przy użyciu cewek Helmholtza. Cewka główna o liczbie zwojów N oplata pozycję próbki. Ponadto, połączona jest ona z dwóch stron do cewek pomocniczych o liczbie zwojów N/2, które nawinięte są w kierunku przeciwnym do cewki głównej. Mamy więc N zwojów nawiniętych zgodnie i N zwojów przeciwnie do ruchu wskazówek zegara połączonych szeregowo. W momencie, kiedy w układzie nie ma próbki, natomiast cewki Helmholtza generują zmienne pole magnetyczne, w cewce głównej indukowana jest siła elektromotoryczna, która znosi się z siłą elektromotoryczna indukowana w cewkach pomocniczych. Jeżeli w układzie pomiarowym zawrzemy teraz próbkę, to mimo zerowania się zewnętrznego pola pozostanie czynnik

związany z namagnesowaniem próbki M i efektywny zbierany sygnał jest do niego proporcjonalny, z czego dalej wynika proporcjonalność do podatności magnetycznej:

$$U^{sk} = C\omega\chi H_0^{sk} V = C\omega\chi_0 H_0^{sk} m, \tag{6}$$

gdzie C – stała związana m.in. z geometrią cewek, V – objętość próbki, m – masa próbki, χ – podatność, χ_0 – podatność właściwa.

Korzystając z tej formuły jesteśmy w stanie wyznaczyć podatność magnetyczną względem materiału wzorcowego o innej podatności.

2 Analiza danych

2.1 Pomiar próbki niklowej

Otrzymano do analizy próbkę zawierającą niklową kulkę o masie m=160,3 g i objętości $V_{kulki}=18$ mm³. Z racji tego, że nikiel jest w temperaturze pokojowej silnym ferromagnetykiem można z jego pomocą dokonać cechowania aparatury, wykorzystując zależność związaną z tak zwanym czynnikiem demagnetyzacji $\chi_0^{Ni} \cdot m_{Ni} = 3V_{kulki}$ oraz wzór (6). Można wówczas wyliczyć stałe związane z geometrią aparatury oraz dobranymi parametrami prądu wytwarzającego pole magnetyczne; upraszcza to obliczenia i poprawia ich dokładność, zważywszy na niedokładność wykonania aparatury wprowadzającą znaczną niepewność do obliczeń. Celem takiej kalibracji jest oczywiście wykorzystanie jej wyników w jakimś poznawczym celu. Można wyprowadzić wzór pozwalający bezpośrednio wyliczać podatność χ_0^x badanego materiału

$$\chi_0^x = \frac{U_x^{sk}}{U_{Ni}^{sk}} \frac{3V_{kulki}}{m_x}. (7)$$

W tym wzorze U_{Ni}^{sk} jest napięciem zmierzonym w pomiarze kalibracyjnym, po wsadzeniu do aparatury próbki niklowej i odpowiednim jej ustawieniu w ramach pionowego stopnia swobody oferowanego przez układ pomiarowy. Zgodnie z teorią elektromagnetyzmu ferromagnetyk umieszczony w cewce zwiększa jej indukcyjność.

$$L = \mu_0 \mu_r \frac{N^2 A}{l} \tag{8}$$

Zatem umieszczenie próbki niklu dokładnie w środku cewki pomiarowej spowoduje zwiększenie indukowanego w niej za sprawą zewnętrznego, w przybliżeniu jednorodnego, zmiennego pola napięcia i w konsekwencji powstanie niezerowej siły elektromotorycznej w obwodzie z cewkami; pomiarową oraz pomocniczymi. W przypadku umieszczenia próbki w innym miejscu niż środek cewki pomiarowej indukowane wypadkowe napięcie będzie co do wartości bezwzględnej niższe, w szczególności dla pozycji odpowiadającym środkom cewek pomocniczych będzie miało zarówno niższą na moduł wartość oraz przeciwny znak. Obrazowo przedstawia to poniższy rysunek. [2]

Rys. 1: Spodziewana zależność prądu indukowanego w obwodzie zawierającym cewkę pomiarową. [2] Całość znajduje się w zmiennym polu magnetycznym generowanym przez cewki Helmholtza współosiowe z cewkami na rysunku.

Aby dokonać kalibracji aparatury przy pomocy próbki niklowej należy odszukać jej położenie odpowiadające maksymalnemu napięciu wyindukowanemu w obwodzie z cewką pomiarową. Wyniki tych pomiarów znajdują się w poniższej tabeli:

Tab. 1: Wyniki pomiarów napięcia skutecznego U_{Ni}^{sk} [μ V] w obwodzie z cewkami pomiarowymi w zależności od jej pionowego położenia, odmierzanego pełnymi obrotami n pokrętła regulującego wysokość, gdzie n=1 odpowiada jak najwyższemu położeniu.

U_{Ni}^{sk}	n	U_{Ni}^{sk}	n	U_{Ni}^{sk}	n	U_{Ni}^{sk}
-34.5	10	55.5	19	186.3	28	-105
-51.5	11	102	20	173	29	-104
-74.5	12	138.5	21	145.5	30	-88.5
-97	13	170	22	108.6	31	-68.5
-108.4	14	186	23	65	32	-46.5
-103.8	15	190	24	22	33	-27
-80	16	188	25	-20	34	-15
-41.5	17	186.3	26	-60	35	-5
3.5	18	190.5	27	-89	36	1.3
	-34.5 -51.5 -74.5 -97 -108.4 -103.8 -80 -41.5	-34.5 10 -51.5 11 -74.5 12 -97 13 -108.4 14 -103.8 15 -80 16 -41.5 17	-34.5 10 55.5 -51.5 11 102 -74.5 12 138.5 -97 13 170 -108.4 14 186 -103.8 15 190 -80 16 188 -41.5 17 186.3	-34.5 10 55.5 19 -51.5 11 102 20 -74.5 12 138.5 21 -97 13 170 22 -108.4 14 186 23 -103.8 15 190 24 -80 16 188 25 -41.5 17 186.3 26	-34.5 10 55.5 19 186.3 -51.5 11 102 20 173 -74.5 12 138.5 21 145.5 -97 13 170 22 108.6 -108.4 14 186 23 65 -103.8 15 190 24 22 -80 16 188 25 -20 -41.5 17 186.3 26 -60	-34.5 10 55.5 19 186.3 28 -51.5 11 102 20 173 29 -74.5 12 138.5 21 145.5 30 -97 13 170 22 108.6 31 -108.4 14 186 23 65 32 -103.8 15 190 24 22 33 -80 16 188 25 -20 34 -41.5 17 186.3 26 -60 35

Rys. 2: Punkty pomiarowe otrzymane dla próbki niklowej poruszanej w górę i w dół wzdłuż osi cewek aparatury. Widać że maksimum jest bardzo szerokie, wręcz zbyt szerokie zważywszy na to że w samym centrum lekko opada. Wynika to z geometrii układu pomiarowego. Oprócz tego widać zgodność z teorią.

Oprócz tych pomiarów należy zmierzyć tło aparatury, to jest wskazanie bez obecności wewnątrz niej jakiegokolwiek ferromagnetyka, wynikające z jej niedoskonałego wykonania i odjąć od wszelkich wykonywanych później pomiarów. Otrzymano wartość 19,4 μ V. Z czterech najwyższych punktów wyciągnięto wartość średnio-maksymalną z odjęciem tła $\overline{U}_{Ni}^{sk_{max}}=169,3~\mu$ V, ale do następnych obliczeń podatności właściwej zgodnie ze wzorem (7), w wierze że trafione zostanie jedno z maksimów, podstawiono wartość jednego z nich pomniejszoną o pomiar tła, równą 170.6 μ V.

2.2 Pomiar podatności magnetycznej gadolinu

Następnie wykonaliśmy pomiary dla gadolinu. Otrzymana próbka miała masę $m_{gadolinu}=75$ mg. Próbkę ustawiliśmy tak, aby położenie było takie samo jak dla maksymalnego napięcia dla niklu, czyli $U_{niklu}=190~\mu\mathrm{V}$. Następnie ochłodziliśmy próbkę ciekłym azotem i za pomocą grzałki stopniowo zwiększaliśmy temperaturę. Otrzymane wyniki przedstawiliśmy w tabeli 4 w aneksie. Za pomocą odpowiedniej tabeli przeliczyliśmy zmierzone napięcie na temperaturę. Za pomocą wzoru 7 obliczyliśmy właściwą podatność magnetyczną gadolinu, zatem by uzyskać podatność magnetyczną pomnożyliśmy ją przez gęstość gadolinu $\rho=7901~\mathrm{\frac{kg}{m^3}}$.

Na podstawie wyników z tabeli 4 i przygotowanej wielomianowej mapy tabelki zawierającej zależność temperatury T od napięcia T_u :

$$T \; [\mathrm{K}] = 0.0005067 \cdot T_u^7 + 0.005552 \cdot T_u^6 + 0.02321 \cdot T_u^5 + 0.0231 \cdot T_u^4 + 0.05125 \cdot T_u^3 - 0.8563 \cdot T_u^2 + 25.99 \cdot T_u + 2731 \cdot T_u^2 + 0.0005067 \cdot T_u^3 + 0.0005067 \cdot T_u^2 + 0.0005067 \cdot T_u^3 + 0.000067 \cdot T$$

dokonano obliczeń zgodnie z opisem powyżej których wyniki znajdują się w poniższej tabeli:

Tab. 2: Wyniki obliczeń podatności od temperatury dla gadolinu.

T[K]	χ	$1/\chi$	T [K]	χ	$1/\chi$	T [K]	χ	$1/\chi$
100.77	24.262	0.0412	195.78	26.196	0.0382	263.02	19.227	0.052
107.86	24.295	0.0412	197.4	26.163	0.0382	264.35	18.96	0.0527
110.32	24.462	0.0409	199.02	26.063	0.0384	265.68	18.793	0.0532
112.74	24.496	0.0408	200.63	26.129	0.0383	267	18.76	0.0533
115.13	24.496	0.0408	202.22	26.296	0.038	268.32	18.493	0.0541
117.48	24.529	0.0408	203.81	26.296	0.038	269.63	18.46	0.0542
119.8	24.529	0.0408	205.39	26.229	0.0381	270.94	18.26	0.0548
122.08	24.696	0.0405	206.96	26.296	0.038	272.25	18.16	0.0551
124.34	24.596	0.0407	208.53	26.33	0.038	273.55	18.093	0.0553
126.57	24.662	0.0405	210.08	26.229	0.0381	274.84	17.993	0.0556
128.77	24.729	0.0404	211.63	26.129	0.0383	276.13	17.793	0.0562
130.94	24.796	0.0403	213.17	26.129	0.0383	277.42	17.626	0.0567
133.09	24.696	0.0405	214.7	26.196	0.0382	278.7	17.56	0.0569
135.21	24.762	0.0404	216.22	26.029	0.0384	279.98	17.493	0.0572
137.31	24.762	0.0404	217.74	25.996	0.0385	281.26	17.326	0.0577
139.39	25.096	0.0398	219.25	26.063	0.0384	282.53	17.093	0.0585
141.45	25.162	0.0397	220.75	25.996	0.0385	283.79	16.759	0.0597
143.48	25.196	0.0397	222.24	25.863	0.0387	285.06	16.293	0.0614
145.5	25.396	0.0394	223.73	25.663	0.039	286.32	15.692	0.0637
147.5	25.563	0.0391	225.21	25.529	0.0392	287.57	14.892	0.0671
149.47	25.463	0.0393	226.69	25.396	0.0394	288.83	14.025	0.0713
151.43	25.596	0.0391	228.15	25.229	0.0396	290.08	12.424	0.0805
153.37	25.596	0.0391	229.61	25.129	0.0398	291.32	8.0229	0.1246
155.3	25.629	0.039	231.07	24.962	0.0401	292.57	4.4883	0.2228
157.21	25.563	0.0391	232.52	24.696	0.0405	293.81	2.8877	0.3463
159.1	25.629	0.039	233.96	24.329	0.0411	295.05	2.0207	0.4949
160.97	25.563	0.0391	235.4	23.962	0.0417	296.29	1.6539	0.6046
162.83	25.629	0.039	236.83	23.629	0.0423	297.52	1.3872	0.7209
164.68	25.729	0.0389	238.25	23.395	0.0427	298.76	1.2204	0.8194
166.51	25.763	0.0388	239.67	22.928	0.0436	299.99	0.9537	1.0486
168.33	25.763	0.0388	241.09	22.728	0.044	301.22	0.9203	1.0866
170.14	25.696	0.0389	242.5	22.428	0.0446	302.45	0.8203	1.2191
171.93	25.863	0.0387	243.9	21.961	0.0455	303.69	0.6536	1.5301
173.71	25.763	0.0388	245.3	21.761	0.046	304.92	0.6869	1.4558
175.47	25.929	0.0386	246.69	21.428	0.0467	306.15	0.5869	1.7039
177.23	25.796	0.0388	248.08	21.161	0.0473	307.39	0.5202	1.9224
178.97	25.963	0.0385	249.46	20.894	0.0479	308.63	0.5869	1.7039
180.7	25.963	0.0385	250.84	20.627	0.0485	309.87	0.4202	2.3801
182.42	25.863	0.0387	252.21	20.594	0.0486	311.12	0.4202	2.3801
184.12	25.929	0.0386	253.58	20.261	0.0494	312.37	0.4535	2.2051
185.82	25.963	0.0385	254.94	20.127	0.0497	313.63	0.3201	3.1239
187.51	25.996	0.0385	256.3	19.927	0.0502	314.9	0.3535	2.8292
189.18	25.963	0.0385	257.66	19.861	0.0504	316.17	0.4202	2.3801
190.85	25.963	0.0385	259.01	19.694	0.0508	317.46	0.2534	3.9459
192.5	26.096	0.0383	260.35	19.394	0.0516	318.75	0.2534	3.9459
194.14	26.029	0.0384	261.69	19.227	0.052	320.06	0.3535	2.8292

Sporządzono rysunki $\chi(T)$ oraz $1/\chi(T)$.

Rys. 3: Wykres podatności od temperatury $\chi(T)$ dla próbki gadolinu. Widoczny jest hiperboliczny kształt w obszarze paramagnetycznym i trudne do określenia kształty w obszarze ferromagnetycznym. Widać również że, zgodnie z definicją ferromagnetyka, jego podatność poniżej temperatury Curie jest znacznie większa niż 1.

Rys. 4: Wykres odwrotności podatności od temperatury $1/\chi(T)$ dla próbki gadolinu. Widać że prawo Curie-Weissa jest spełnione.

Można do powyższego wykresu $1/\chi(T)$ w obszarze paramagnetycznym dopasować prostą o równaniu

$$y = 0.122x - 35.607$$

i obliczyć z tego temperature Curie

$$T_C = 292(30) \text{ K},$$

co w pełni zgadza się z wartością teoretyczną. [3]

3 Pomiar podatności magnetycznej nadprzewodnika

Podobne pomiary jak dla próbki gadolinowej wykonano dla próbki wykonanej z nieznanego nadprzewodnika wytworzonego gdzieś, kiedyś, w murach AGH. W poniższej tabeli znajdują się wyniki pomiarów po obliczeniach. Ze względu na nieznaną gęstość nadprzewodnika ustalono taką jej wartość ($5100~{\rm kg/m^3}$), żeby znormalizować minimalną wartość podatności w okolicach wartości nieco większych niż -1, z pewnym marginesem gwarantującym nierówność ostrą. Ten margines został przyjęty metodą na oko, ze względu na fakt niezbyt poprawnego przechowywania nadprzewodnika w sali laboratoryjnej degradujący jego właściwości.

Tab. 3: Wyniki pomiarów i obliczeń przeprowadzonych na próbce nadprzewodnika.

T [K]	$U_{ind} [\mu V]$	χ	$1/\chi$
89.45	-40.70	-0.9777	-1.0228
92.22	-41.03	-0.9856	-1.0146
94.95	-40.20	-0.9657	-1.0355
97.62	-40.77	-0.9794	-1.0210
100.25	-40.40	-0.9705	-1.0304
102.83	-40.00	-0.9609	-1.0407
105.37	-40.51	-0.9731	-1.0276
107.86	-40.68	-0.9772	-1.0233
110.32	-40.07	-0.9626	-1.0389
112.74	-40.31	-0.9683	-1.0327
115.13	-38.77	-0.9313	-1.0737
117.48	-36.52	-0.8773	-1.1399
119.80	-34.52	-0.8293	-1.2059
122.08	-31.97	-0.7680	-1.3021
124.34	-30.03	-0.7214	-1.3862
126.57	-27.27	-0.6551	-1.5265
128.77	-20.77	-0.4989	-2.0042
130.94	-7.65	-0.1838	-5.4416
133.09	0.60	0.0144	69.3798
135.21	0.86	0.0207	48.4045
137.31	1.30	0.0312	32.0215
139.39	0.61	0.0147	68.2424
141.45	0.22	0.0053	189.2177
143.48	0.51	0.0123	81.6233
145.50	-0.18	-0.0043	-231.2660
147.50	0.10	0.0024	416.2789

Wykonano wykres $\chi(T)$ znajdujący się poniżej. Wykres $1/\chi(T)$ po nim następujący niestety nie przedstawił żadnej ciekawej zależności.

Rys. 5: Wykres $\chi(T)$ dla próbki nadprzewodnika. Widać że istotnie w niskich temperaturach zachodzi zjawisko nadprzewodnictwa. Temperatura przejścia do stanu nadprzewodzącego wynosi w tym przypadku około 110 K.

Rys. 6: Wykres $\frac{1}{\chi(T)}$ dla próbki nadprzewodnika.

4 Literatura

- 1 Łukasz G., Marcin S., Joanna C. Laboratorium Fizyki Fazy Skondensowanej
- 2 A. Zięba Pomiar podatności magnetycznej metodą zmiennoprądową
- ${\tt 3 https://en.wikipedia.org/wiki/Curie_temperature}\\$

Aneks

Tab. 4: Wyniki pomiarów dla próbki gadolinowej. U_{ind} jest odczytem z cewki pomiarowej, natomiast temperatura T_u jest odczytem z woltomierza który można było korzystając z tabelki dostępnej na stanowisku pomiarowym przetłumaczyć na kelwiny.

T_u [mV]	$U_{ind} [\mu V]$	$T_u [mV]$	$U_{ind} [\mu V]$	$T_u [mV]$	$U_{ind} [\mu V]$
-5.94	747	-3.55	805	-1.25	596
-5.8	748	-3.5	804	-1.2	588
-5.75	753	-3.45	801	-1.15	583
-5.7	754	-3.4	803	-1.1	582
-5.65	754	-3.35	808	-1.05	574
-5.6	755	-3.3	808	-1	573
-5.55	755	-3.25	806	-0.95	567
-5.5	760	-3.2	808	-0.9	564
-5.45	757	-3.15	809	-0.85	562
-5.4	759	-3.1	806	-0.8	559
-5.35	761	-3.05	803	-0.75	553
-5.3	763	-3	803	-0.7	548
-5.25	760	-2.95	805	-0.65	546
-5.2	762	-2.9	800	-0.6	544
-5.15	762	-2.85	799	-0.55	539
-5.1	772	-2.8	801	-0.5	532
-5.05	774	-2.75	799	-0.45	522
-5	775	-2.7	795	-0.4	508
-4.95	781	-2.65	789	-0.35	490
-4.9	786	-2.6	785	-0.3	466
-4.85	783	-2.55	781	-0.25	440
-4.8	787	-2.5	776	-0.2	392
-4.75	787	-2.45	773	-0.15	260
-4.7	788	-2.4	768	-0.1	154
-4.65	786	-2.35	760	-0.05	106
-4.6	788	-2.3	749	0	80
-4.55	786	-2.25	738	0.05	69
-4.5	788	-2.2	728	0.1	61
-4.45	791	-2.15	721	0.15	56
-4.4	792	-2.1	707	0.2	48
-4.35	792	-2.05	701	0.25	47
-4.3	790	-2	692	0.3	44
-4.25	795	-1.95	678	0.35	39
-4.2	792	-1.9	672	0.4	40
-4.15	797	-1.85	662	0.45	37
-4.1	793	-1.8	654	0.5	35
-4.05	798	-1.75	646	0.55	37
-4	798	-1.7	638	0.6	32
-3.95	795	-1.65	637	0.65	32
-3.9	797	-1.6	627	0.7	33
-3.85	798	-1.55	623	0.75	29
-3.8	799	-1.5	617	0.8	30
-3.75	798 708	-1.45	615	0.85	$\frac{32}{27}$
-3.7 2.65	798	-1.4 1.25	610	0.9	27 27
-3.65 3.6	802	-1.35	601 506	0.95	27 30
-3.6	800	-1.3	596	1	30