ggplot2画图II

Huiping Sun(孙惠平) sunhp@ss.pku.edu.cn

课堂测试时间

课堂测试07

先用电脑完成 40分钟 然后誊抄纸上

- I、查看数据集mtcars,根据要求作图:
 - (I)分别使用qplot、ggplot函数画出mpg和wt关系的散点图;
 - (2)使用三种方式画出mpg列的直方图,同时在使用qplot和ggplot时指定每个小圆柱体的宽度是4;
 - (3)使用三种绘图函数画出mpg变量的密度曲线。
- 2、使用datasets包中的数据集pressure, 查看其数据并按要求画图:
 - (I)请画出pressure和temperature关系的曲线图;
 - (2)分别使用qplot和ggplot画出pressure和temperature关系的散点图和折线图。
- 3、使用datasets中的数据集ToothGrowth,完成如下的绘图要求:
 - (I)以supp变量作为分类,分别使用三种绘图函数画出len变量的箱型图。
- 4、使用ggplot2包中数据集mpg,完成练习:
 - (I)使用mpg数据集定义一个 ggplot对象,表示hwy与cty的关系;
 - (2) 画一个散点图,指定颜色有year列来指定,并在上边绘图的基础上画出平滑的拟合曲线;
 - (3)继续使用(I)中定义的ggplot对象画散点图,使用class来指定颜色,displ指定大小,透明度; 指定为0.5,position指定为抖动,在散点图的基础上添加拟合曲线;
 - (4)使用qplot画出hwy与cty的关系的散点图,并根据year变量分面,同时添加拟合曲线。

上次课程内容回顾

- ggplot2
- qplot():
 - * data; log; colour; shape; alpha;
- geom:
 - * point; smooth; jitter; boxplot;path; line; histogram; freqpoly; density; bar;
 - * binwidth; fill; weight; scale_y_continous(); smooth;
- facets:
- 复杂图形:

```
* +; geom_xxx;
```

用图层构建图形

图层

- 数据
- 一组图形属性映射
- 几何对象
- 统计变换
- 位置调整

- data
- mapping
- geom
- stat
- position

数据必须是数据框

默认参数 参数设定

aes()

layer()

```
ggplot(data = NULL,
    mapping = aes(),
    ...,
    environment = parent.frame())
```

layer() 自己查帮助


```
geom(mapping = NULL,
    data = NULL,
    stat = "identity"
    position = "identity"
    ...,
    na.rm = FALSE,
    show.legend = NA,
    inherit.aes = TRUE
)
```

见教材ggplot2的58页

```
geom_point()
geom_line()
geom_path()
geom_bar()
geom_histogram()
geom_smooth()
geom_density()
geom_jitter()
geom_text()
geom_hline()
geom_vline()
geom_blank()
geom_area()
geom_abline()
```

```
stat(mapping = NULL,
data = NULL,
geom/stat = ""
position = "identity"
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
```

见教材ggplot2的60页

```
stat_identity()
stat_smooth()
stat_function()
stat_boxplot()
stat_density()
stat_quantile()
stat_sum()
stat_summary()
stat_unique()
stat_bin()
stat_bindot()
```

layer()和geom_xxx()

summary()

```
> p <- ggplot(msleep, aes(sleep_rem / sleep_total, awake))</pre>
> summary(p)
data: name, genus, vore, order, conservation, sleep_total, sleep_rem,
  sleep_cycle, awake, brainwt, bodywt [83x11]
mapping: x = sleep_rem/sleep_total, y = awake
 faceting: facet_null()
> p <- p + geom_point()</pre>
> summary(p)
data: name, genus, vore, order, conservation, sleep_total, sleep_rem,
  sleep_cycle, awake, brainwt, bodywt [83x11]
mapping: x = sleep_rem/sleep_total, y = awake
faceting: facet_null()
geom_point: na.rm = FALSE
stat_identity: na.rm = FALSE
position_identity
```


aes()

图形属性 vs. 图层属性

p <- ggplot(mtcars, aes(mpg, wt))</pre>

p + geom_point(colour = "darkblue")

colour • darkblue

p + geom_point(aes(colour = "darkblue"))

分组


```
p <- ggplot(Oxboys,</pre>
                                                         170 -
                 aes(age,
                      height,
                                                          160 -
                      group = Subject)
                                                       height
120
 p + geom_smooth(aes(group = Subject),
                                                         140 -
                              method="lm",
                              se = F)
                                                          130 -
                                                                                               0.5
                                                             -1.0
                                                                         -0.5
                                                                                                           1.0
                                                                                    0.0
                                                                                    age
 170 -
                                                                  p <- ggplot(Oxboys,
                                                                                aes(age,
 160 -
                                                                                     height,
                                                                                     group = Subject)
height
150 -
 140 -
                                                                p + geom\_smooth(aes(group = 1),
                                                                                            method="lm",
 130 -
                                                                                             se = F)
                   -0.5
                                             0.5
                                                          1.0
                                0.0
      -1.0
```

age

工具箱

图层用途

- 展示数据本身
- 展示数据的统计摘要
- 添加额外的元数据、上下文信息和注解

- geom_area(): 面积图
- geom_bar(stat="identity"): 条形图
- geom_line():线条图

• geom_text():添加标签

- geom point(): 散点图
- geom_tile(): 色深图、水平图

```
> df <- data.frame(
+    x = c(3, 1, 5),
+    y = c(2, 4, 6),
+    label = c("a","b","c")
+ )
> p <- ggplot(df, aes(x, y, label = label)) +
+    xlab(NULL) + ylab(NULL)</pre>
```

散点图

> p + geom_point() + labs(title = "geom_point")

条形图

```
p + geom_bar(stat="identity") +
  labs(title = "geom_bar(stat=\"identity\")")
  geom_bar(stat="identity")
 2-
```

线条图

> p + geom_line() + labs(title = "geom_line")

> p + geom_area() + labs(title = "geom_area")

> p + geom_path() + labs(title = "geom_path")

添加标签

> p + geom_text() + labs(title = "geom_text")

色深图 / 水平图

> p + geom_tile() + labs(title = "geom_tile")

多边形图

> p + geom_polygon() + labs(title = "geom_polygon")

钻石数据集

carat	cut	color	clarity	depth	table	price	х	у	z
0.2	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
0.2	Premium	\mathbf{E}	SI1	59.8	61.0	326	3.89	3.84	2.31
0.2	Good	\mathbf{E}	VS1	56.9	65.0	327	4.05	4.07	2.31
0.2	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
0.2	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
0.2	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48

carat: 克拉重量

cut: 切工

color: 颜色

clarity: 净度

depty: 深度

table: 钻面宽度

depth = z depth / z * 100table = table width / x * 100

> qplot(depth, data=diamonds, geom="histogram")

> qplot(depth, data=diamonds, geom="histogram", xlim=c(55, 70), binwidth=0.1)

分面直方图

```
> depth_dist <- ggplot(diamonds, aes(depth)) + xlim(58, 68)
> depth_dist +
+ geom_histogram(aes(y = ..density..), binwidth = 0.1) +
+ facet_grid(cut ~ .)
```


频率多边形图

```
> depth_dist + geom_histogram(aes(fill = cut), binwidth = 0.1,
+ position = "fill")
```


条件密度图

```
> depth_dist + geom_freqpoly(aes(y = ..density.., colour = cut),
+ binwidth = 0.1)
```


使用点的大小

```
> df <- data.frame(x = rnorm(2000), y = rnorm(2000))
```

- > norm <- ggplot(df, aes(x, y))</pre>
- > norm + geom_point()
- > norm + geom_point(shape = 1)
- > norm + geom_point(shape = ".") # Pixel sized

使用点的透明度

```
> norm + geom_point(colour = alpha("black", 1/3))
> norm + geom_point(colour = alpha("black", 1/5))
> norm + geom_point(colour = alpha("black", 1/10))
```


使用分箱计数

> d <- ggplot(diamonds, aes(carat, price)) + xlim(1,3) +
+ theme(legend.position = "none")
> d + stat_bin2d()

 $> d + stat_bin2d(bins = 10)$

> d + stat_bin2d(binwidth=c(0.02, 200))

- > library(maps)
- > data(us.cities)
- > big_cities <- subset(us.cities, pop > 500000)
- > qplot(long, lat, data = big_cities) + borders("state", size = 0.5)


```
> qplot(long, lat, data = choro, group = group,
+   fill = assault / murder, geom = "polygon")
```


long

```
> library(plyr)
> ia <- map_data("county", "iowa")</pre>
> mid_range <- function(x) mean(range(x, na.rm = TRUE))</pre>
> centres <- ddply(ia, .(subregion),
    colwise(mid_range, .(lat, long)))
> ggplot(ia, aes(long, lat)) +
    geom_polygon(aes(group = group),
      fill = NA, colour = "grey60") +
    geom_text(aes(label = subregion), data = centres,
      size = 2, angle = 45)
                                          표 42 -
```

标度、坐标系和图例

定位

提问时间!

孙惠平 sunhp@ss.pku.edu.cn

练习

Learn R, in R.

swirl teaches you R programming and data science interactively, at your own pace, and right in the R console!

- ggplot2的4-7章,熟悉所有例子。
- R数据可视化手册的6-I3章,熟悉所有例子。
- 教材RIA(第二版)的第19章,熟悉所有例子。

● 看R Graphs Cookbook所有章节

谢谢!

孙惠平 sunhp@ss.pku.edu.cn