Universidad de San Carlos de Guatemala.

Centro Universitario de Occidente.

División de Ciencias de la Ingeniería.

Lenguajes Formales y de Programación.

Sección "A".

Ing. Oliver Sierra Pac.



# "PRÁCTICA I"

Diego José Maldonado Monterroso.

Carné: 201931811.

Quetzaltenango, Guatemala.

06 de octubre de 2021.

## DEFINICIÓN DE EXPRESIONES REGULARES

#### Identificador.

$$(\;[a\text{-}z]\;|\;[A\text{-}Z]\;)\text{+}(\;(\;[A\text{-}Z]\;|\;[a\text{-}z]\;)\;|\;(\;[0\text{-}9]\;)\;)^*$$

Por conveniencia:

Letra "L" = 
$$[A-Z]$$
 ó  $[a-z]$ .

Digito "D" = 
$$[0-9]$$
.

Expresión regular: L+( L|D )\*

#### Número.

$$[0-9]+$$

Por conveniencia:

Expresión Regular: D+

#### Decimal.

Por conveniencia:

Expresión Regular: D+[.]D+

#### Puntuación.

Expresión Regular: ( [:] | [;] | [,] | [.] )+

#### Operador.

Expresión Regular: ( [+] | [-] | [\*] | [/] | [%] )+

## Signo Agrupación.

Expresión Regular: ( [(] | [)] | [{] | []} | [[] | []] )+

## AFD EXPRESIONES REGULARES

## CREACION AFD IDENTIFICADOR

Expresión regular: L+( L|D )\*



| No. | Σ  | Siguiente (No.) |  |  |
|-----|----|-----------------|--|--|
| 1   | L  | 1,2,3,4         |  |  |
| 2   | L  | 2,3,4           |  |  |
| 3   | D  | 2,3,4           |  |  |
| 4   | \$ | -               |  |  |

$$S0 = \{1\}$$

Siguiente(1) = 
$$\{1,2,3,4\} -> S1$$

$$\delta(S0,L) = S1$$

Siguiente(2) = 
$$\{2,3,4\} -> S2$$

$$\delta(S1,L) = S2$$

Siguiente(3) = 
$$\{2,3,4\} -> S2$$

$$\delta(S1,D) = S2$$

#### Tabla de Transiciones:

| Q\ Σ | L  | D  |
|------|----|----|
| S0   | S1 | -  |
| S1   | S2 | S2 |
| S2   | S2 | S2 |

#### Definición Formal AFD Identificador.



- 1.  $Q = \{S0, S1, S2\}$
- 2. S0
- 3.  $\Sigma = \{L, D\}$
- 4.  $F = \{S1, S2\}$
- 5. Función de Transición:

$$\delta(S0,L) = S1$$

$$\delta(S1,L) = S2$$

$$\delta$$
(S1,D) = S2

$$\delta(S2,L) = S2$$

$$\delta(S2,D) = S2$$

# CREACIÓN AFD NÚMERO

Expresión Regular: D+



| No. | Σ  | Siguiente (No.) |
|-----|----|-----------------|
| 1   | D  | 1,2             |
| 2   | \$ | -               |

$$S0=\{1\}$$

Siguiente(1) = 
$$\{1,2\} -> S1$$

$$\delta(\text{S0,D}) = \text{S1}$$

## Tabla de Transiciones:

| $Q \setminus \Sigma$ | D  |
|----------------------|----|
| S0                   | S1 |
| S1                   | S1 |

#### Definición Formal AFD Número.



- 1.  $Q = \{S0, S1\}$
- 2. S0
- 3.  $\Sigma = \{ D \}$
- 4.  $F = \{S1\}$
- 5. Función de Transición:

$$\delta(\text{S0,D}) = \text{S1}$$

$$\delta(S1,D) = S1$$

# CREACIÓN AFD DECIMAL

Expresión Regular: D+[.]D+



| No. | Σ  | Siguiente (No.) |
|-----|----|-----------------|
| 1   | D  | 1,2             |
| 2   |    | 3               |
| 3   | D  | 3,4             |
| 4   | \$ | -               |

$$S0 = \{1\}$$

Siguiente(1) = 
$$\{1,2\} -> S1$$

$$\delta(\text{S0,D}) = \text{S1}$$

Siguiente(2) = 
$$\{3\}$$
 -> S2

$$\delta(S1,.) = S2$$

Siguiente(3) = 
$$\{3,4\}$$
 -> S3

$$\delta(S2,D) = S3$$

#### Tabla de Transiciones:

| $Q \setminus \Sigma$ | D  |    |
|----------------------|----|----|
| S0                   | S1 | -  |
| S1                   | -  | S2 |
| S2                   | S3 | -  |
| S3                   | S3 | S3 |

#### Definición Formal AFD Decimal.



- 1.  $Q = \{S0, S1, S2, S3\}$
- 2. S0
- 3.  $\Sigma = \{ D, . \}$
- 4.  $F = \{S3\}$
- 5. Función de Transición:

$$\delta(S0,D) = S1$$

$$\delta(S1,.) = S2$$

$$\delta(\text{S2,D}) = \text{S3}$$

$$\delta$$
(S3,D) = S3

# CREACIÓN AFD SIGNO PUNTUACIÓN

Expresión Regular: ( [:] | [;] | [,] | [.] )+



| No. | Σ  | Siguiente (No.) |
|-----|----|-----------------|
| 1   | :  | 1,2,3,4,5       |
| 2   | ;  | 1,2,3,4,5       |
| 3   |    | 1,2,3,4,5       |
| 4   | ,  | 1,2,3,4,5       |
| 5   | \$ | -               |

$$S0 = \{1\}$$

Siguiente(1) = 
$$\{1,2,3,4,5\} -> S1$$

$$\delta(S0, :) = S1$$

Siguiente(2) = 
$$\{1,2,3,4,5\} \rightarrow S1$$

$$\delta(S0,\,;)=S1$$

Siguiente(3) = 
$$\{1,2,3,4,5\} \rightarrow S1$$

$$\delta(S0, .) = S1$$

Siguiente(4) = 
$$\{1,2,3,4,5\} \rightarrow S1$$

$$\delta(S0, ,) = S1$$

#### Tabla de Transiciones:

| $Q \setminus \Sigma$ | :  | ;  | •  | ,  |
|----------------------|----|----|----|----|
| S0                   | S1 | S1 | S1 | S1 |
| S1                   | S1 | S1 | S1 | S1 |

#### Definición Formal AFD Puntuación.



- 1.  $Q = \{S0, S1\}$
- 2. S0
- 3.  $\Sigma = \{:,;,,.\}$
- 4.  $F = \{S1\}$
- 5. Función de Transición:

$$\delta(S0,:)=S1$$

$$\delta(S1,:) = S1$$

$$\delta(S0, ;) = S1$$

$$\delta(S1, ;) = S1$$

$$\delta(S0, .) = S1$$

$$\delta(S1,.)=S1$$

$$\delta(S0, ,) = S1$$

$$\delta(S1, ,) = S1$$

# CREACIÓN AFD OPERADOR

Expresión Regular: ( [+] | [-] | [\*] | [/] | [%] )+



| No. | Σ  | Siguiente (No.) |
|-----|----|-----------------|
| 1   | +  | 1,2,3,4,5,6     |
| 2   | -  | 1,2,3,4,5,6     |
| 3   | *  | 1,2,3,4,5,6     |
| 4   | /  | 1,2,3,4,5,6     |
| 5   | %  | 1,2,3,4,5,6     |
| 6   | \$ | -               |

$$S0 = \{1\}$$

Siguiente(1) = 
$$\{1,2,3,4,5,6\} -> S1$$

$$\delta(S0, +) = S1$$

Siguiente(2) = 
$$\{1,2,3,4,5,6\} -> S1$$

$$\delta(S0, -) = S1$$

Siguiente(3) = 
$$\{1,2,3,4,5,6\} -> S1$$

$$\delta(S0, *) = S1$$

Siguiente(4) = 
$$\{1,2,3,4,5,6\} -> S1$$

$$\delta(S0, /) = S1$$

Siguiente(5) = 
$$\{1,2,3,4,5,6\} -> S1$$

$$\delta(S0, \%) = S1$$

#### Tabla de Transiciones:

| $Q \setminus \Sigma$ | +  | -          | *          | /          | %  |
|----------------------|----|------------|------------|------------|----|
| S0                   | S1 | S1         | S1         | S1         | S1 |
| S1                   | S1 | <b>S</b> 1 | <b>S</b> 1 | <b>S</b> 1 | S1 |

#### Definición Formal AFD Operador.



- 1.  $Q = \{S0, S1\}$
- 2. S0
- 3.  $\Sigma = \{+, -, *, /, \%\}$
- 4.  $F = \{S1\}$
- 5. Función de Transición:

$$\delta(S0, +) = S1$$

$$\delta(S1, +) = S1$$

$$\delta(S0, -) = S1$$

$$\delta(S1,\,\text{-})=S1$$

$$\delta(S0, *) = S1$$

$$\delta(S1, *) = S1$$

$$\delta(S0, /) = S1$$

$$\delta(S1, /) = S1$$

$$\delta(S0,\,\%)=S1$$

$$\delta(S1, \%) = S1$$

## CREACIÓN AFD SIGNO AGRUPACIÓN

Expresión Regular: ( [(] | [)] | [{] | []} | []] )+



| No. | Σ  | Siguiente (No.) |
|-----|----|-----------------|
| 1   | (  | 1,2,3,4,5,6,7   |
| 2   | )  | 1,2,3,4,5,6,7   |
| 3   | {  | 1,2,3,4,5,6,7   |
| 4   | }  | 1,2,3,4,5,6,7   |
| 5   | [  | 1,2,3,4,5,6,7   |
| 6   | ]  | 1,2,3,4,5,6,7   |
| 7   | \$ | -               |

$$S0 = \{1\}$$

Siguiente(1) = 
$$\{1,2,3,4,5,6,7\} \rightarrow S1$$

$$\delta(S0, () = S1$$

Siguiente(2) = 
$$\{1,2,3,4,5,6,7\} -> S1$$

$$\delta(S0, ) = S1$$

Siguiente(3) = 
$$\{1,2,3,4,5,6,7\} -> S1$$

$$\delta(S0, \{ ) = S1$$

Siguiente(4) = 
$$\{1,2,3,4,5,6,7\} -> S1$$

$$\delta(S0, \}) = S1$$

Siguiente(5) = 
$$\{1,2,3,4,5,6,7\} -> S1$$

$$\delta(S0, [\ ) = S1$$

Siguiente(6) = 
$$\{1,2,3,4,5,6,7\} -> S1$$

$$\delta(S0, ]) = S1$$

#### Tabla de Transiciones:

| $Q \setminus \Sigma$ | (  | )  | {  | }  | [  | ]  |
|----------------------|----|----|----|----|----|----|
| S0                   | S1 | S1 | S1 | S1 | S1 | S1 |
| S1                   | S1 | S1 | S1 | S1 | S1 | S1 |

#### Definición Formal AFD Signo de Agrupación.



- 1.  $Q = \{S0, S1\}$
- 2. S0
- 3.  $\Sigma = \{ (,), \{,\}, [,] \}$
- 4.  $F = \{S1\}$
- 5. Función de Transición:

$$\delta(S0, () = S1$$

$$\delta(S1, () = S1$$

$$\delta(S0, ) ) = S1$$

$$\delta(S1, ) ) = S1$$

$$\delta(S0, \{\ ) = S1$$

$$\delta(S1, \{ ) = S1$$

$$\delta(S0, \}) = S1$$

$$\delta(S1, \}) = S1$$

$$\delta(S0, [) = S1$$

$$\delta(S1, [\ ) = S1$$

$$\delta(S0, ]) = S1$$

$$\delta(S1, ]) = S1$$

## CONVENIOS PARA CREACIÓN AFD FINAL

Por conveniencia se hacen los siguientes arreglos para simplificar un poco el Autómata:

Letra: L = [A-Z] o [a-z].

Digito: D = [0-9].

Puntuación: P = [: |; |, |.].

Operador: O = [+ | - | \* | / | %].

Agrupación:  $A = [(|)|{\{|\}}|[|]].$ 

#### Expresiones Regulares:

Identificador:  $L+(L \mid D)^*$ 

Número: D+

Decimal: D+[.]D+

Signo Puntuación: P+

Operador: O+

Agrupación: A+

## CREACIÓN AFD FINAL

( ( L+(L|D)\* )\* ( D+ )\* ( D+[.]D+ )\* ( P+ )\* ( O+ )\* ( A+ )\* )+



| No. | Σ  | Siguiente (No.)     |
|-----|----|---------------------|
| 1   | L  | 1,2,3,4,5,8,9,10,11 |
| 2   | L  | 2,3,4,5,8,9,10,11   |
| 3   | D  | 2,3,4,5,8,9,10,11   |
| 4   | D  | 4,5,8,9,10,11       |
| 5   | D  | 5,6                 |
| 6   |    | 6,7                 |
| 7   | D  | 7,8,9,10,11         |
| 8   | P  | 8,9,10,11           |
| 9   | 0  | 9,10,11             |
| 10  | A  | 10,11               |
| 11  | \$ | -                   |

$$S0 = \{1\}$$

Siguiente(1) = 
$$\{1,2,3,4,5,8,9,10,11\} \rightarrow S1$$

$$\delta(S0, L) = S1$$

Siguiente(2) = 
$$\{2,3,4,5,8,9,10,11\} -> S2$$

$$\delta(S1,L) = S2$$

Siguiente(3) = 
$$\{2,3,4,5,8,9,10,11\} -> S2$$

$$\delta(S1,D) = S2$$

Siguiente(4) = 
$$\{4,5,8,9,10,11\} -> S3$$

$$\delta(\text{S0,D}) = \text{S3}$$

Siguiente(5) = 
$$\{5,6\}$$
 -> S4

$$\delta(S0,\,D\,\,)=S4$$

Siguiente(6) = 
$$\{6,7\}$$
 -> S5

$$\delta(S4, ...) = S5$$

Siguiente(7) = 
$$\{7,8,9,10,11\} -> S6$$

$$\delta(S5, D) = S6$$

Siguiente(8) = 
$$\{8,9,10,11\} -> S7$$

$$\delta(S0, P) = S7$$

Siguiente(9) = 
$$\{9,10,11\} -> S8$$

$$\delta(S0, O) = S8$$

Siguiente(10) = 
$$\{10,11\} -> S9$$

$$\delta(S0, A) = S9$$

#### Tabla de Transiciones:

| $Q \setminus \Sigma$ | L  | D      | •  | P  | О  | A          |
|----------------------|----|--------|----|----|----|------------|
| S0                   | S1 | S3, S4 | -  | S7 | S8 | <b>S</b> 9 |
| S1                   | S2 | S2     | -  | -  | -  | -          |
| S2                   | S2 | S2     | -  | -  | -  | -          |
| S3                   | -  | S3     | -  | -  | -  | -          |
| S4                   | -  | -      | S5 | -  | -  | -          |
| S5                   | -  | S6     | -  | -  | -  | -          |
| S6                   | -  | S6     | -  | -  | -  | -          |
| S7                   | -  | -      | -  | S7 | -  | -          |
| S8                   | -  | -      | -  | -  | S8 | -          |
| S9                   | -  | -      | -  | -  | -  | <b>S</b> 9 |

#### Definición Formal AFD Final.



- 1.  $Q = \{S0, S1, S2, S3, S4, S5, S6, S7, S8, S9\}$
- 2. S0
- 3.  $\Sigma = \{ L, D, .., P, O, A \}$
- 4.  $F = \{S1, S2, S3, S6, S7, S8, S9\}$
- 5. Función de Transición:

$$\delta(S0, L) = S1$$

$$\delta(S1, D) = S2$$

$$\delta(S1, L) = S2$$

$$\delta(S2, L) = S2$$

$$\delta(S2, D) = S2$$

$$\delta(S0, D) = S3$$

$$\delta(S3, D) = S3$$

$$\delta(S0, D) = S4$$

$$\delta(S4, D) = S4$$

$$\delta(S4,.) = S5$$

$$\delta(S5, D) = S6$$

$$\delta(S6, D) = S6$$

$$\delta(S0, P) = S7$$

$$\delta(S7, P) = S7$$

$$\delta(S0, O) = S8$$

$$\delta(S8, O) = S8$$

$$\delta(S0, A) = S9$$

$$\delta(S9, A) = S9$$

## OPTIMIZACIÓN AFD FINAL

Agrupación Estados de Aceptación.

| Estados No Aceptación |    |    |  |  |  |
|-----------------------|----|----|--|--|--|
| S0                    | S4 | S5 |  |  |  |

| Estados Aceptación |    |    |            |            |            |            |
|--------------------|----|----|------------|------------|------------|------------|
| <b>S</b> 1         | S2 | S3 | <b>S</b> 6 | <b>S</b> 7 | <b>S</b> 8 | <b>S</b> 9 |

Función Transición.

| $\delta(S0, L)=S1$   | $\delta(S1, D)=S2$ | δ(S2, D)=S2        | $\delta(S3, D) = S3$ | δ(S4, D) =S4 | δ(S5, D)=S6  |
|----------------------|--------------------|--------------------|----------------------|--------------|--------------|
| $\delta(S0, D) = S3$ | $\delta(S1, L)=S2$ | $\delta(S2, L)=S2$ |                      | δ(S4, . )=S5 |              |
| $\delta(S0, D) = S4$ |                    |                    |                      |              |              |
| δ(S0, P)=S7          |                    |                    |                      |              |              |
| δ(S0, O)=S8          |                    | δ(S6, D )=S6       | δ(S7, P)=S7          | δ(S8, O)=S8  | δ(S9, A )=S9 |
| δ(S0, A)=S9          |                    |                    |                      |              |              |

Tabla Estados.

|   |            |        |          |   | Estados Aceptación |    |            |            |    |            |            |
|---|------------|--------|----------|---|--------------------|----|------------|------------|----|------------|------------|
|   | Estados    | No Ace | eptación |   | <b>S</b> 1         | S2 | <b>S</b> 3 | S6         | S7 | S8         | S9         |
|   | S0         | S4     | S5       | _ |                    |    |            |            | •  |            | -          |
| L | S1         | -      | -        |   | S2                 | S2 | -          | -          | -  | -          | -          |
| D | S3         | S4     | S6       |   | S2                 | S2 | <b>S</b> 3 | <b>S</b> 6 | -  | -          | -          |
|   | -          | S5     | -        |   | -                  | -  | -          | -          | -  | -          | -          |
| P | S7         | -      | -        |   | -                  | -  | -          | -          | S7 | -          | -          |
| O | S8         | -      | -        |   | -                  | -  | -          | -          | -  | <b>S</b> 8 | -          |
| A | <b>S</b> 9 | -      | -        |   | -                  | -  | -          | -          | -  | -          | <b>S</b> 9 |

## Misma transiciones $\delta(S3,D)$ =S3 y $\delta(S4,D)$ =S4 , También se puede eliminar S2

#### Nueva Tabla de Transiciones:

| $\delta(S0, L)=S1$   | $\delta(S1, D)=S1$ | $\delta(S2, D) = S2$ | $\delta(S3, D) = S4$ | δ(S4, D)=S4          |
|----------------------|--------------------|----------------------|----------------------|----------------------|
| $\delta(S0, D) = S2$ | $\delta(S1, L)=S1$ | $\delta(S2, .)=S3$   |                      |                      |
| $\delta(S0, P) = S5$ |                    |                      |                      |                      |
| δ(S0, O)=S6          |                    | $\delta(S5, P) = S5$ | δ(S6, O)=S6          | $\delta(S7, A) = S7$ |
| $\delta(S0, A) = S7$ |                    |                      |                      |                      |

#### Definición Formal AFD Final.



1. 
$$Q = \{S0, S1, S2, S3, S4, S5, S6, S7, S8\}$$

- 2. S0
- 3.  $\Sigma = \{ \mathbf{L}, \mathbf{D}, .., \mathbf{P}, \mathbf{O}, \mathbf{A} \}$
- 4.  $F = \{S1, S2, S3, S5, S6, S7, S8\}$
- 5. Función de Transición:

| $\delta(S0, L)=S1$   | $\delta(S1, D)=S1$ | $\delta(S2, D) = S2$ | $\delta(S3, D) = S4$ | δ(S4, D)=S4          |
|----------------------|--------------------|----------------------|----------------------|----------------------|
| $\delta(S0, D) = S2$ | $\delta(S1, L)=S1$ | δ(S2, . )=S3         |                      |                      |
| $\delta(S0, P) = S5$ |                    |                      |                      |                      |
| δ(S0, O )=S6         |                    | δ(S5, P)=S5          | δ(S6, O)=S6          | $\delta(S7, A) = S7$ |
| $\delta(S0, A) = S7$ |                    |                      |                      |                      |