授课题目 与实数理论有关的三个基本定理 教学目的 理解三个基本定理,并应用其证明和计算数列极限 重点难点 定理的内容与应用

第三次习题课

1 基础知识

- 1. 单调有界原理
 - 条件: I 数列单调; II 数列有界(可推广到 N₀ 以后单调有界).
 - 结论: 满足条件 I 和 II 的数列必有极限.
- 2. 闭区间套定理
 - \$\psi: I $[a_n, b_n] \supset [a_{n+1}, b_{n+1}], n \in N^*;$ II $\lim_{n \to \infty} (b_n a_n) = 0.$
 - 结论: 存在唯一的一点 $c \in [a_n, b_n] (n \ge 1)$, 使得 $c = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.
- 3. 确界原理
 - 上确界: 对于一个有上界的数集 X, 如果存在最小的上界 M, 则称 M 为 X 的上确界, 记为 $M = \sup X$. 具两层意义:

I 上界: $\forall x \in X$, 都有 $x \leq M$. II 最小元: $\forall \varepsilon > 0$, 都存在 $x_{\varepsilon} \in X$, s.t. $x_{\varepsilon} > M - \varepsilon$.

• 下确界: 对于一个有下界的数集 X, 如果存在最大的下界 m, 则称 m 为 X 的下确界, 记为 $m = \inf X$. 具两层意义:

I 下界: $\forall x \in X$, 都有 $x \ge m$. II 最大元: $\forall \varepsilon > 0$, 都存在 $x_{\varepsilon} \in X$, s.t. $x_{\varepsilon} < m + \varepsilon$.

- 定理内容: I 任何非空有上界数集必有上确界; II 任何非空有下界数集必有下确界.
- 确界性质: 假设X, Y均为有界数集, $\{x_n\}$, $\{y_n\}$ 为有界数列, 下面结论成立
 - (1) 有界性: $\inf X \le x \le \sup X$, $\forall x \in X$; $\inf_{n \in N^*} x_n \le x_n \le \sup_{n \in N^*} x_n$, $\forall n \in N^*$.
 - (2) 四则运算

加法性质: $\sup(X+Y) = \sup X + \sup Y$, $\inf(X+Y) = \inf X + \inf Y$;

减法性质: $\sup(X - Y) = \sup X - \inf Y$, $\inf(X - Y) = \inf X - \sup Y$;

乘法性质: 若 X, Y 中元素非负, 则 $\sup(XY) = \sup X \sup Y$, $\inf(XY) = \inf X \inf Y$;

除法性质: 若
$$X$$
 中元素非负, Y 有正下界, 则 $\sup(\frac{X}{Y}) = \frac{\sup X}{\inf Y}$, $\inf(\frac{X}{Y}) = \frac{\inf X}{\sup Y}$.

(3) 序关系: $\inf(X+Y) \le \inf X + \sup Y \le \sup(X+Y)$;

若 $X \subset Y$, 则 inf $Y \leq \inf X \leq \sup X \leq \sup Y$;

若 $\forall x \in X, y \in Y$,都有 $x \le y$,则 $\sup X \le \inf Y$;

若
$$x_n \le y_n$$
, $\forall n \in N^*$, 则 $\sup_{n \in N^*} x_n \le \sup_{n \in N^*} y_n$, $\inf_{n \in N^*} x_n \le \inf_{n \in N^*} y_n$.

4. 三个定理的等价性

确界原理 ⇒ 单调有界原理 ⇒ 闭区间套定理 ⇒ 确界原理.

$\mathbf{2}$ 习题

1. 证明数列

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1} - \ln n,$$

 $y_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} - \ln n$

都收敛且极限相等. 此极限值记为c, 称为Euler常数, 值为

$$c = 0.5772156649 \cdots$$

- 2. 利用上题结论证明: $\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} \right) = \ln 2;$
- 3. 给定有界数集 $A,\,B,\,$ 记 $S=A\cup B=\left\{x\in S,x\in A$ 或 $x\in B\right\},$ 证明
 - (1) $\sup S = \max \{ \sup A, \sup B \},$ (2) $\inf S = \min \{ \inf A, \inf B \}.$
- 4. 求下列数集或数列的上下确界
 - (1) $\{\arctan x; x \in R\},\$

- $(2) \{ \frac{1}{x}; x \ge 1 \& x \in R \}.$
- (3) $x_n = \frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2}$,
- (4) $x_n = 1 + \frac{n}{n+1} \cos \frac{n\pi}{2}$
- 5. 设数集 S 有上界 $\xi = \sup S$. 求证: 若 $\xi \notin S$, 则存在严格递增数列 $\{a_n\} \subset S$, 使 $\lim_{n \to \infty} a_n = \xi$.
- 6. 确界四则运算性质证明(以下确界为例, 上确界类似).

加法性质: $\inf(X+Y) = \inf X + \inf Y$.

减法性质: $\inf(X - Y) = \inf X - \sup Y$.

乘法性质: $\inf(XY) = \inf X \inf Y, \forall x \ge 0, y \ge 0$;

除法性质: $\inf(\frac{X}{Y}) = \frac{\inf X}{\sup Y}, \, \forall \, x \geq 0, \ y \geq c > 0.$