Parseo y Generación de Código – 2^{do} semestre 2016 Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Práctica 10 Asignación de registros

Ejercicio 1. Para cada uno de los siguientes programas, construir el grafo de interferencia G y determinar el mínimo k tal que G es k-coloreable. Reescribir el programa para que utilice solamente k registros.

1. mov t1, 0 mov t2, 1 loop1: t1 := t1 + 1t2 := t2 + t1 ${\tt jumpIf}_<~{\tt t1}~{\tt 100}~{\tt loop1}$ mov t3, 0loop2: t3 := t3 + 1 t2 := t2 + t3jumpIf < t2 100 loop2 t4 := 2 * t2loop_start: jumpIf == t1 1 loop_end t2 := t1 mod 2 jumpIf == t2 0 label_else t3 := 3 * t1 t4 := t3 + 1t5 := t4 jump label_endif label_else: t6 := t1 / 2 t5 := t6 label_endif: t1 := t5jump loop_start loop_end:

Ejercicio 2. Considerar la siguiente familia de programas P_n definidos inductivamente:

■ El programa P_0 se define como:

```
t_0 := 0

t_1 := 1
```

■ El programa P_{n+1} se define como:

```
P_n \mathbf{t}_{n+2} := \mathbf{t}_{n+1} + \mathbf{t}_n
```

Por ejemplo, el programa P_4 es:

```
\begin{array}{llll} t_0 & := & 0 \\ t_1 & := & 1 \\ t_2 & := & t_1 + t_0 \\ t_3 & := & t_2 + t_1 \\ t_4 & := & t_3 + t_2 \\ t_5 & := & t_4 + t_3 \end{array}
```

- 1. Describir cómo es el grafo de interferencia del programa P_n para cada n > 0.
- 2. Mostrar que el grafo de interferencia de \mathcal{P}_n es 2-coloreable para todo n.
- 3. Definir inductivamente, para cada $n \geq 0$, un programa Q_n equivalente a P_n que utilice solamente dos registros.