Neural Networks 1: Multilayer Perceptron

Multiple layers Universal Approximation The Neural Network

The Neural Network - Biologically Inspired

Planes Don't Flap Wings to Fly

Engineering success may start with biological inspiration, but then take a totally different path.

XOR: A Limitation of the Linear Model

Decomposing XOR

$$f = h_1 \overline{h_2} + \overline{h_1} h_2$$

$$h_1(\mathbf{x}) = \operatorname{sign}(\mathbf{w}_1^{\mathrm{T}}\mathbf{x})$$

$$h_2(\mathbf{x}) = \operatorname{sign}(\mathbf{w}_2^{\mathrm{T}}\mathbf{x})$$

Perceptrons for OR and AND

$$OR(x_1, x_2) = sign(x_1 + x_2 + 1.5)$$

$$AND(x_1, x_2) = sign(x_1 + x_2 - 1.5)$$

Representing f Using or and and

$$f = h_1 \overline{h_2} + \overline{h_1} h_2$$

Representing f Using or and and

$$f = h_1 \overline{h_2} + \overline{h_1} h_2$$

Representing f Using or and and

$$f = h_1 \overline{h_2} + \overline{h_1} h_2$$

The Multilayer Perceptron (MLP)

More layers allow us to implement f

These additional layers are called $hidden\ layers$

Universal Approximation

Any target function f that can be decomposed into linear separators can be implemented by a 3-layer MLP.

Universal Approximation

A sufficiently smooth separator can "essentially" be decomposed into linear separators.

Approximation Versus Generalization

The size of the MLP controls the approximation-generalization tradeoff.

More nodes per hidden layer \implies approximation \uparrow and generalization \downarrow

Minimizing $E_{\rm in}$

A combinatorial problem even harder with the MLP than the Perceptron.

 $E_{\rm in}$ is not smooth (due to sign function), so cannot use gradient descent.

 $sign(x) \approx tan(x) \longrightarrow gradient descent to minimize E_{in}$.

The Neural Network

hidden layers $0 < \ell < L$

input layer $\ell=0$

14

output layer $\ell = L$

The Neural Network

Zooming into a Hidden Node

layer ℓ parameters

signals in	$\mathbf{s}^{(\ell)}$	$d^{(\ell)}$ dimensional input vector
outputs	$\mathbf{x}^{(\ell)}$	$d^{(\ell)} + 1$ dimensional output vector
	$\mathrm{W}^{(\ell)}$	$(d^{(\ell-1)}+1)\times d^{(\ell)}$ dimensional matrix
weights out	$W^{(\ell+1)}$	$(d^{(\ell)} + 1) \times d^{(\ell+1)}$ dimensional matrix

layers $\ell=0,1,2,\ldots,L$ layer ℓ has "dimension" $d^{(\ell)}\implies d^{(\ell)}+1$ nodes

$$\mathbf{W}^{(\ell)} = \begin{bmatrix} \mathbf{w}_1^{(\ell)} & \mathbf{w}_2^{(\ell)} & \cdots & \mathbf{w}_{d^{(\ell)}}^{(\ell)} \\ & & & \vdots & & \end{bmatrix}$$

The Linear Signal

Input $\mathbf{s}^{(\ell)}$ is a linear combination (using weights) of the outputs of the previous layer $\mathbf{x}^{(\ell-1)}$.

$$\mathbf{s}^{(\ell)} = (W^{(\ell)})^T \mathbf{x}^{(\ell-1)}$$

$$\begin{bmatrix} s_1^{(\ell)} \\ s_2^{(\ell)} \\ \vdots \\ s_j^{(\ell)} \\ \vdots \\ s_{d^{(\ell)}}^{(\ell)} \end{bmatrix} = \begin{bmatrix} (\mathbf{w}_1^{(\ell)})^{\mathrm{T}} & \dots & \\ (\mathbf{w}_2^{(\ell)})^{\mathrm{T}} & \dots & \\ & \vdots & & \\ (\mathbf{w}_j^{(\ell)})^{\mathrm{T}} & \dots & & \\ \vdots & & & \vdots \\ (\mathbf{w}_{d^{(\ell)}}^{(\ell)})^{\mathrm{T}} & \dots & & \end{bmatrix} \mathbf{x}^{(\ell-1)}$$

$$s_j^{(\ell)} = (\mathbf{w}_j^{(\ell)})^{\mathrm{T}} \mathbf{x}^{(\ell-1)}$$

(recall the linear signal $s = \mathbf{w}^{\scriptscriptstyle \mathrm{T}} \mathbf{x}$)

$$\mathbf{s}^{(\ell)} \xrightarrow{\theta} \mathbf{x}^{(\ell)}$$

Forward Propagation: Computing $h(\mathbf{x})$

$$\mathbf{x} = \mathbf{x}^{(0)} \xrightarrow{\mathbf{w}^{(1)}} \mathbf{s}^{(1)} \xrightarrow{\theta} \mathbf{x}^{(1)} \xrightarrow{\mathbf{w}^{(2)}} \mathbf{s}^{(2)} \xrightarrow{\theta} \mathbf{x}^{(2)} \cdots \xrightarrow{\mathbf{w}^{(L)}} \mathbf{s}^{(L)} \xrightarrow{\theta} \mathbf{x}^{(L)} = h(\mathbf{x}).$$

Forward propagation to compute $h(\mathbf{x})$:

$$\mathbf{x}^{(0)} \leftarrow \mathbf{x}$$

[Initialization]

1:
$$\mathbf{x}^{(0)} \leftarrow \mathbf{x}$$
2: $\mathbf{for} \ \ell = 1 \ \mathrm{to} \ L \ \mathbf{do}$

[Forward Propagation]

$$\mathbf{s}^{(\ell)} \leftarrow (\mathbf{W}^{(\ell)})^{\mathrm{T}} \mathbf{x}^{(\ell-1)}$$

$$\mathbf{x}^{(\ell)} \leftarrow egin{bmatrix} 1 \ heta(\mathbf{s}^{(\ell)}) \end{bmatrix}$$

end for
$$h(\mathbf{x}) = \mathbf{x}^{(L)}$$

[Output]

Minimizing $E_{\rm in}$

$$E_{\text{in}}(h) = E_{\text{in}}(W) = \frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}_n) - y_n)^2$$
 $W = \{W^{(1)}, W^{(2)}, \dots, W^{(L)}\}$

Using $\theta = \tanh$ makes $E_{\rm in}$ differentiable so we can use gradient descent \longrightarrow local minimum.

Gradient Descent

$$W(t+1) = W(t) - \eta \nabla E_{in}(W(t))$$

Gradient of $E_{\rm in}$

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} e(h(\mathbf{x}_n), y_n)$$

$$\frac{\partial E_{\rm in}(\mathbf{w})}{\partial \mathbf{W}^{(\ell)}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \mathbf{e}_n}{\partial \mathbf{W}^{(\ell)}}$$

We need

$$\frac{\partial e(\mathbf{x})}{\partial W^{(\ell)}}$$

Numerical Approach

$$\frac{\partial \mathbf{e}(\mathbf{x})}{\partial \mathbf{W}_{ij}^{(\ell)}} \approx \frac{\mathbf{e}(\mathbf{x}|\mathbf{W}_{ij}^{(\ell)} + \Delta) - \mathbf{e}(\mathbf{x}|\mathbf{W}_{ij}^{(\ell)} - \Delta)}{2\Delta}$$

approximate inefficient

Example Data

