What is R-squared – Most Memorable Visualizations?

February 4, 2022, Jill Wang

What is R^2 ?

In a regression model, the Total Sum of Square (**TSS**) is a measurement of the sum of squared difference between the observed dependent variable and its mean, $\sum_{i=1}^{n} (y_i - \bar{y})^2$. It can be split into two components:

- 1. The amount of variability in the response that is explained by a regression model. It is called Explained Sum of Squares or Regression Sum of Squares, abbreviated as **ESS**. It is the sum of squared difference between the predicted value and the mean of the dependent variable, $\sum_{i=1}^{n} (\widehat{y}_i \overline{y})^2$.
- 2. The amount of variability that is unexplained by a regression model. It is known as Residual Sum of Squares or Error Sum of Squares, abbreviated as **RSS**. It is the sum of squared difference between the observed value and the predicted value, $\sum_{i=1}^{n} e_i^2$.

R-squared is the proportion of variability in Y that can be explained by a linear model using X. To calculate R^2 , we use the following formula

$$R^2 = \frac{Explained\ Variation}{Total\ Variation} = 1 - \frac{RSS}{TSS}$$

The larger the R-squared, the great amount of explainable variation, and the better the regression model that fits your observations.

install.packages ("correlation")
install.packages ("ggplot2")
install.packages ("patchwork")

library (correlation)
library (ggplot2)
library (patchwork)

Understanding R-squared is super useful, especially while building a more complex model. Let us plot multiple R-squared values in R – the graphs that you will never forget.

Graph 1. $R^2 = 0\%$

Graph 2. $R^2 = 10\%$

Graph 3. $R^2 = 50\%$

Graph 4. $R^2 = 70\%$

Graph 5. $R^2 = 90\%$

Graph 6. $R^2 = 100\%$

Graph 7. A merge graph from multiple graphs

Reference

[1] The Elements of Statistical Learning