WHAT IS CLAIME. S:

1	1. A method of fabricating a semiconductor device in a silicon on		
2	insulator (SOI) substrate comprising the steps of:		
3	 a) providing a semiconductor body including a silicon supporting 		
4	substrate, a silicon oxide layer supported by the substrate, and a silicon layer overlying the		
5	silicon oxide layer;		
6	b) forming a semiconductor component in the silicon layer over a portion		
7	of the silicon oxide layer;		
8	c) forming an etch mask on a surface of the substrate opposite from the		
9	component;		
10	d) applying a preferential etchant to selectively etch the silicon in the		
11	substrate underlying the portion of the silicon oxide layer; and		
12	e) providing a metal layer in the etched portion of the substrate to provide		
	heat removal from the component during operation of the component.		
<u></u>	2. The method as defined by claim 1 wherein the metal layer comprises a		
<u>F</u> 2	refractory metal.		
_	The method as defined by claim 2 wherein the metal layer further		
# 2	comprises gold, copper or aluminum over the refractory metal.		
	The state of the refractory metal		
1	4. The method as defined by claim 3 wherein the refractory metal		
2	comprises titanium tungsten or titanium nitride.		
1	5. The method as defined by claim 1 wherein step c) includes forming a		
2	silicon nitride layer on the surface of the substrate and then preferentially masking and		
3	etching the silicon nitride layer to expose the silicon in the substrate underlying the portion of		
4	the silicon oxide layer.		
1	6. The method as defined by claim 5 wherein the silicon nitride layer is		
2	preferentially etched with a dry plasma, and the silicon is preferentially etched with		
3	potassium hydroxide.		
3	17		
1	7. The method as defined by claim 6 wherein the silicon nitride is		
2	preferentially etched with a plasma and the silicon is preferentially etched with a plasma.		
	I		

1	8.	The method as defined by claim 5 and further including a step after	
2	step d) of preferentia	ally etching the exposed portion of the silicon oxide layer.	
1	9.	The method as defined by claim 8 wherein the silicon oxide layer is	
2	etched with a buffer		
2	etched with a buller	cum acid.	
1	10.	The method as defined by claim 8 wherein the silicon oxide layer is	
2	etched with an ion p	olasma.	
	11	The method as defined by claim 1 and further including a step after	
1	11.	1	
2	step d) of preferenti	ally etching the exposed portion of the silicon oxide layer.	
1	12.	The method as defined by claim 1 and further including a step before	
2	step c) of abrading	the substrate surface opposite from the component to reduce the thickness	
3	of the supporting substrate.		
] Fi	13.	The method as defined by claim 1 wherein step a) includes providing a	
2	bonded silicon on in	nsulator wafer.	
	14.	The method as defined by claim 1 wherein step a) comprises providing	
2	a silicon wafer with	implanted silicon oxide layer therein.	
-il≥	2		
1	SUB 15.	A semiconductor device comprising:	
1 2 3	A1 / a)	a semiconductor body including a silicon supporting substrate, a	
3	silicon layer suppor	rted by the substrate, and a silicon layer overlying the silicon oxide layer,	
4	b)	a semiconductor component formed in the silicon layer overlying a	
5	portion of the subst	trate which has been removed by etching, and	
6	c)	a metal layer in the portion of the substrate removed by etching, the	
7	metal layer providi	ng heat removal from the component.	
	16	The semiconductor device as defined by claim 15, wherein the silicon	
1	16.		
2		ng the portion of the substrate is removed, the metal layer abutting the	
3	silicon layer.		
1	17.	The semiconductor device as defined by claim 16, wherein the metal	
2	layer comprises a r	refractory metal.	

1	18.	The semiconductor device as defined by claim 17, wherein the metal
2	layer comprises gold,	aluminum or copper over the refractory metal.
1	19.	The semiconductor device as defined by claim 17, wherein the
2	refractory metal is tit	anium tungsten or titanium nitride.
1	20.	The semiconductor device as defined by claim 15, wherein the metal
2	layer abuts the silicor	oxide layer.
15	21.	The semiconductor device as defined by claim 20, wherein the metal
2	layer comprises a refi	ractory metal.
1	22.	The semiconductor device as defined by claim 21, wherein the metal
2	layer comprises gold	over the refractory metal.
1	23.	The semiconductor device as defined by claim 21, wherein the
	refractory metal comp	prises titanium tungsten.
ļ,		
·		
ali:		