Numerical Methods

Lev Leontev

February 10, 2023

Contents

1	Tay	lor series	1
2	Nur	nber representation	5
	2.1	Errors	5
	2.2	Base representation	5
	2.3	Euclid's algorithm	6
	2.4	Horner's scheme	6
	2.5	Floating point representation	7

Definition 1 (Numerical Methods). Numerical Methods are algorithmic approaches to numerically solve mathematical problems. We use them often when it is hard/difficult/impossible to solve a problem analytically.

1 Taylor series

Given a function $f: \mathbb{R} \to \mathbb{R}$ (that is hard to evaluate for some $x \in \mathbb{R}$), but f and $f^{(n)}$ are known for a value c, which is close to x. Can we use this information to approximate f(x)?

We know values for $\cos^{(n)}(0)$.

$$\begin{cases} f(0) = \cos(0) = 1\\ f'(0) = -\sin(0) = 0\\ f''(0) = -\cos(0) = -1 \end{cases}$$
 for $c = 0$

Can we get $\cos(0.1)$ from this?

Definition 1 (Taylor series). Let $f : \mathbb{R} \to \mathbb{R}$, differentiable infinitely many times at $c \in \mathbb{R}$. So we have $f^{(k)}(c), k = 1, 2, \ldots$ Then the Taylor series of f at c is:

$$f(x) \approx f(c) + \frac{f(c)}{1!}(x-c)^1 + \frac{f''(c)}{2!}(x-c)^2 + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}}{k!}(x-c)^k$$

Remark. Taylor series is a power series.

Remark. For c=0 also known as Maclaurin series

Remark. A power series has an interval/radius of convergence. You can only evaluate the series if $x \in \text{interval}$ of convergence.

Example 1. What is the Taylor series for $f(x) = e^x$ at c = 0? We have $f^{(k)}(x) = e^x$, so $f^{(k)}(0) = 1$. Thus:

$$\sum_{k=0}^{\infty} \frac{1}{k!} x^k$$

and the radius of convergence is ∞ .

I.e. for any $x \in \mathbb{R}$:

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

For an algorithm we need a finite amount of terms. For example,

$$e^x \approx \frac{1}{0!}x^0 + \frac{1}{1!}x^1 + \frac{1}{2!}x^2 = 1 + x + \frac{x^2}{2}$$

This is a polynomial!

Example 2. Let's calculate Taylor series of a polynomial.

$$f(x) = 4x^2 + 5x + 7, \ c = 2$$

 $f(2) = 33, \ f'(2) = 8x + 5 \Big|_{x=2} = 21, \ f''(2) = 8$

Taylor series:

$$33 + 21(x - 2) + \frac{8}{2}(x - 2)^2 = 4x^2 + 5x + 7 = f(x)$$

Taylor series of a polynomial is itself.

Theorem 1 (Taylor theorem). Let $f \in C^{n+1}([a,b])$ (i.e. f is (n+1)-times continuously differentiable). Then for any $x \in [a,b]$ we have that

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^k + \frac{f^{(n+1)}(\xi_x)}{(n+1)!} (x-c)^{n+1}$$

where ξ_x is a point that depends on x and which is between c and x.

The first sum is called truncated Taylor series, the remainder is called the error.

Example. For n = 0:

$$f(x) = f(c) + f'(\xi_x)(x - c)$$

Choose c = a, x = b:

$$f(b) = f(a) + f'(\xi_x)(b - a) \iff f'(\xi_x) = \frac{f(b) - f(a)}{b - a}$$

This is the mean value theorem!

Figure 1: Mean value theorem illustration

Definition 2. We say that the Taylor series *represents* the function f at x if the Taylor series converges at that point, i.e. the remainder tends to zero as $n \to \infty$.

Example 1. Back to e^x : $f(x) = e^x$, c = 0, ξ_x is between c and x.

$$e^x = \sum_{k=0}^{n} \frac{x^k}{k!} + \frac{e^{\xi_x}}{(n+1)!} x^{n+1}$$

For any $x \in \mathbb{R}$ we find $s \in \mathbb{R}_0^+$ (\mathbb{R}_0^+ are all real, positive numbers including 0) so that $|x| \leq s$, and $|\xi_x| \leq s$ because ξ_x is between c and x.

Because e^x is monotone increasing, we have $e^{\xi_x} \leq e^s$, thus

$$\lim_{n \to \infty} \left| \frac{e^{\xi^x}}{(n+1)!} x^{n+1} \right| \le \lim_{n \to \infty} \left| \frac{e^s}{(n+1)!} \right| s^{n+1} = e^s \lim_{n \to \infty} \frac{s^{n+1}}{(n+1)!} = 0$$

Because (n+1)! will grow faster than any power of $s \implies \lim_{n\to\infty} \left| \frac{e^{\xi x}}{(n+1)!} x^{n+1} \right| = 0$. Thus e^x is represented by its Taylor series.

Example 2.

$$f(x) = \log(1+x), \ c = 0$$

$$f'(x) = \frac{1}{1+x} = (1+x)^{-1}$$

$$f''(x) = -(1+x)^{-2}$$

$$f'''(x) = +2(1+x)^{-3}$$

$$f^{(k)}(x) = (-1)^{k+1}(k-1)! \frac{1}{(1+x)^k}$$

So $f^{(k)}(0) = (-1)^{k-1}(k-1)!$ for $k \ge 1$, $f(0) = \log(1) = 0$.

Taylor series:

$$f(x) = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^k + \frac{(-1)^k}{n+1} \frac{1}{(1+\xi_x)^{n+1}} \cdot x^{n+1} \quad \left(\frac{n!}{(n+1)!} = \frac{1}{n+1}\right)$$

$$E_n(x) = \frac{(-1)^k}{n+1} \frac{1}{(1+\xi_x)^{n+1}} \cdot x^{n+1} \quad \text{the remainder}$$

Question: for which x does $\lim_{n\to\infty} E_n(x) = 0$?

$$\lim_{n \to \infty} E_n(x) = \lim_{n \to \infty} \frac{(-1)^n}{n+1} \left(\frac{x}{\xi_x + 1}\right)^{n+1} \text{ for } \xi_x \in (c, x) \ (c = 0)$$

Such a limit converges to 0, if the fraction is less than 1.

$$0 < \frac{x}{\xi_x + 1} < 1 \iff x < \xi_x + 1 \iff x - \xi_x < 1 \text{ with } \xi_x \in (0, x) \iff x \leqslant 1$$

Consequence. $\lim_{n\to\infty} E_n(x) = 0$ if $0 < x \le 1$. This means that the Taylor series represents $\log(x+1)$ for $x \in [0,1]$. We can extend this to show $x \in (-1,1]$.

Example 3. Let's compute cos(0.1). Let's approximate it with Taylor series with c=0 (around zero).

$$cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} \pm \dots + remainder$$

Consequence.

$$\left|\cos(x) - \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k!)}\right| = \left|(-1)^{n+1} \cos(\xi_x) \frac{x^{2(n+1)}}{(2(n+1))!}\right| \leqslant \frac{0.1^{2(n+1)}}{2(n+1)!} \underset{n \to \infty}{\longrightarrow} 0$$

$$\begin{array}{c|cccc} n & \text{Taylor polynomial} & |error| \leqslant \\ \hline 0 & 1 & \frac{(0.1)^2}{2} = 0.0005 \\ 1 & 0.995 & \frac{0.0001}{24} \\ 2 & 0.99500416 & \frac{0.000001}{6!} \\ \end{array}$$

Error depends on choice of |x-c| and n.

Example 4. Compute $\log(2)$ using $f(x) = \log(x+1)$

$$\log(2) = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

Keeping 8 terms (until n = 8) we get $\log(2) \approx 0.63452$, the actual solution is $\log(2) = 0.693147$. Not so accurate. Can we improve?

We can use Taylor series of $\log(\frac{1+x}{1-x})$ instead, since $\log(\frac{1+x}{1-x}) = \log(1+x) - \log(1-x)$. We choose $x = \frac{1}{3}$ instead of x = 1. Since x is closer to zero, both of the logarithms converge quicker.

$$\left(\log\left(\frac{1+1/3}{1-1/3}\right) = \log(2)\right)$$

We then get

$$\log(2) = 2 \cdot \left(\frac{1}{3} + \frac{1}{3^3 \cdot 5} + \dots\right)$$

We only need 4 terms to get $\log 2 \approx 0.69313$.

Theorem 2 (Reformulation of Taylor's theorem). $f \in C^{n+1}([a,b])$. We change c to x and the old x to x+h from previous version \implies get for $x, x+h \in [a,b]$:

$$f(x+h) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k} + \frac{f^{(n+1)}(\xi_{x})}{(n+1)!} h^{n+1} \text{ where } \xi_{x} \in (x, x+h), \ h > 0$$

We can write error term as

$$f(x+h) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^k = \mathcal{O}(h^{n+1})$$

Remark. Let's recall what the \mathcal{O} -notation means. $a(h) = \mathcal{O}(b(h))$ if $\exists c > 0$ such that $\frac{a(j)}{b(j)} \leqslant c$ as $h \to 0$. So, for n = 1 the error decreases with h^2 (quadratic convergence). n = 2: error decreases cubically, i.e. h^3 , etc.

Summary of Taylor series:

- Problem: Evaluate f(x) with a given error bound.
- Required: $f \in \mathbb{C}^{n+1}$, values of derivatives $f^{(k)}(a)$.
- Check interval of convergence: does Taylor series expansion work?
- Estimate the maximum error for n terms of the Taylor polynomial.
- Choose n, such that the error bound is low enough.
- Evaluate the Taylor polynomial.

2 Number representation

2.1 Errors

There are different error types:

- 1. An error in data (partly due to roundoff).
- 2. Roundoff errors (during computation). For example, multiplication increases the amount of needed significant digits, and we can't store them all on a computer.
- 3. Truncation error, that is inherent to numeric methods. For example, if we take a finite number of terms in our Taylor series.

Definition 1. Let \tilde{a} be an approximation of a. Then $|\tilde{a} - a|$ is the absolute error, and $\left|\frac{\tilde{a} - a}{a}\right|$ is the relative error. The error bound is the magnitude of admissable error.

Example. 0.00123 with error $0.000004 = 0.4 \cdot 10^{-5}$. The error is below $\frac{1}{2} \cdot 10^{-t}$ with t = 5, so there's 5 correct digits and 3 significant digits (the number of non-leading zeros).

Example. 0.00123 with error $0.000006 = 0.06 \cdot 10^{-4} > \frac{1}{2} \cdot 10^{-5}$. Only has 2 significant digits, because we have to round the error up.

Theorem 1. In addition/subtraction the bounds for absolute errors are added, in multiplication/division the relative errors are added.

Example. Solve $x^2 - 56x + 1 = 0$:

$$x = 28 - \sqrt{783} \approx 28 - 27.982$$
 (5 significant digits) = $0.018 \pm \frac{1}{2} \cdot 10^{-3}$

We end up with 2 significant digits in the answer, despite that we used to have 5. That's why computers use floating point numbers, as leading zeros are bad.

Definition 2 (Error propagation). If y(x) is smooth, than the derivative |y(x)'| can be interpreted as the sensitivity of y(x) to errors in x. We can generalize this to functions of multiple variables:

$$|\Delta y| \leqslant \sum \left| \frac{\partial y}{\partial x_i} \right| \cdot |\Delta x_i|$$
, where $\Delta y = \tilde{y} - y$, $\Delta x_i = \tilde{x}_i - x_i$

This is an empirical inequality that is only valid for small Δx_i . It is used a lot in physics.

2.2 Base representation

Definition 3 (Base representation). Every number $x \in \mathbb{N}$ can be written in the following form as a unique expansion with respect to the base b, where $b \in \mathbb{N} \setminus \{1\}$:

$$x = a_0 b^0 + a_1 b^1 + a_2 b^2 + \dots + a_n b_n = \sum_{i=0}^n a_i b^i$$

$$a \in \mathbb{N}_0, \ a_i < b, \ a_i \in \{0, \dots, b-1\}$$

Here b is called the base, a_i are called the digits. Humans usually use base 10. But, for example, computers can use base 2.

For a real number $x \in \mathbb{R}$ we can write:

$$x = \sum_{i=0}^{n} a_i b^i + \sum_{i=1}^{\infty} a_{-i} b^{-i}$$

Example.
$$b = 2$$
: $1011 = 1 \cdot 2^0 + 1 \cdot 2^1 + 0 \cdot 2^2 + 1 \cdot 2^3 = (11)_{10}$

There are different algorithms that convert number systems.

2.3 Euclid's algorithm

Euclid's algorithm converts $(x)_{10}$ to $(y)_b$.

- 1. Input $(x)_{10}$.
- 2. Determine the smallest n, such that $x < b^{n+1}$.
- 3. For i = n to 0 do:

$$a_i := x \text{ div } b^i \text{ (integer division)}$$

 $x := x \text{ mod } b^i \text{ (the remainder)}$

4. Output result $a_n a_{n-1} a_{n-2} \dots a_0 = (y)_b$.

Example. 1. $(x)_{10} = (13)_{10} \rightarrow (y)_2$

- 2. n = 3 since $13 < 2^4$.
- 3.

$$i = 3$$
: $a_3 = 13 \text{ div } 2^3 = 1$, $x = 13 \text{ mod } 2^3 = 5$
 $i = 2$: $a_2 = 5 \text{ div } 2^2 = 1$, $x = 5 \text{ mod } 2^2 = 1$
 $i = 1$: $a_1 = 1 \text{ div } 2^1 = 0$, $x = 1 \text{ mod } 2^1 = 1$
 $i = 0$: $a_0 = 1 \text{ div } 2^0 = 1$, $x = 1 \text{ mod } 2^0 = 0$

4. Output: $(1101)_2 = (13)_{10}$.

Two problems of the Euclid's algorithm:

- 1. Step 2 is inefficient
- 2. Division by large numbers can be problematic.

2.4 Horner's scheme

Horner's scheme is a more efficient algorithm. The idea is to represent the number as follows:

$$(a_n a_{n-1} \dots a_0)_b = a_0 + b(a_1 + b(a_2 + b(a_3 + \dots + b(a_n))) \dots)$$

The algorithm is the following:

- 1. Input $(x)_{10}$.
- 2. i := 0.

3. While x > 0 do:

$$a_i \coloneqq x \mod b$$

 $x \coloneqq x \operatorname{div} b$
 $i \coloneqq i + 1$

4. Output result $a_n a_{n-1} a_{n-2} \dots a_0 = (y)_b$.

Remark. The algorithm is very similar to the Euclid's algorithm — the difference is that we execute it in reverse. We no longer have divisions by large numbers, and thus it runs faster.

General remarks:

- A number with simple representation in one base may be complicated to represent in another base. For example, $(0.1)_{10} = (0.0001100110011...)_2$.
- Base 2 is called binary, base 8 is octal, base 16 is hexadecimal.
- \bullet To convert from a base b to base 10 we can just perform the following computation:

$$(42)_8 = 4 \cdot 8^1 + 2 \cdot 8^0 = (34)_{10}$$

• Conversion 2 and 8. $8 = 2^3$: three consecutive bits represent one octal digit, e.g.

$$(551.624)_8 = (101101001.110010100)_2$$

- Conversion 2 and $16 = 2^4$: just four bits to one hexadecimal digit.
- Horner's scheme algorithm does not need estimate of n and does not divide by large numbers.
- It is applicable to real numbers, but one needs a critireon to stop if the representation with the new base is infinite.
- On computers we only have finite precision (the number of digits/bits).

2.5 Floating point representation

Definition 4. Normalized floating point representation with respect to a base b stores any number x as follows:

$$x = 0.a_1 a_2 \dots a_k \cdot b^n$$
 where $a_i \in \{0, 1, \dots, b-1\}$

 a_i are called digits, k is called precision, n is called exponent, $a_1 \dots a_k$ is called mantissa, $a_1 \neq 0$ is called normalization, which makes the representation unique.

Remark. Leading zeros are essentially a waste of space. That's why floating points are useful when you add/subtract/divide numbers — as you're able to move the decimal point.

Example 1. Base 10: $32.213 = 0.32213 \cdot 10^2$.

Base 2: $x = \pm 0.b_1b_2...b_k \cdot 2^n$ We need another bit to define the sign of the number.

Example 2. For single precision floating-point numbers: 4 bytes = 32 bits.

• 1 bit sign mantissa.

- 1 bit sign exponent.
- 7 bits for exponent (integer).
- 23 bits for mantissa (24 effectively, since the first digit is always 1).

7 bits allow for the largest exponent of 127, i.e. $2^{127} \approx 10^{38}$. Anything above that is infinity. So, we have the range of $10^{-38} < |x| < 10^{38}$.

Since $2^{-24} \approx 10^{-7}$, we can represent 7 significant digits.

We can have a better representation, e.g. with double precision (8 bytes).

Issues with floating-point numbers:

- Adding numbers is not commutative, i.e. x + y does not necessarily equal to y + x.
- It's not associative, i.e. (x + y) + z does not necessarily equal to x + (y + z). You usually try to add small numbers together first, in hopes that they will become big enough to become significant.

Example 1. Take x = y = 0.000000033, z = 0.00000034, w = 1.00000000. We compute x + y + z + w, and in that order we get 1.000001. Reversed order gets 1.000000 with base 10. Why is that? That's because we only have 7 significant digits.

Example 2.

$$\sum_{1}^{10^{7}} 1 + 10^{7} = 1 + \dots + 1 + 10^{7}$$

The order of summation will make a difference. You will either get 10^7 or $2 \cdot 10^7$, because 1 + 1 = 2, but $1 + 10^7 = 10^7$ due to roundoff.

Consequence. Avoid adding numbers of different order of magnitude. Add numbers in increasing order of their size.

Example 3. Compute $x - \sin x$ for x close to 0, e.g. x = 1/15. Assume k = 10 precision.

$$x = 0.6666666667 \cdot 10^{-1}$$

$$\sin x = 0.6661729492 \cdot 10^{-1}$$

$$x - \sin x = 0.0004937175 \cdot 10^{-1} = 0.4937175\underline{000} \cdot 10^{-4}$$

Notice the three zeros at the end — that is a sign of a precision loss (unless the number actually ends with zeros).

Consequence. Avoid subtracting numbers of similar size, because it leads to a loss of precision.

A potential solution in this case would be to use Taylor series expanison:

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$
$$x - \sin x = +\frac{x^3}{3!} - \frac{x^5}{5!} + \dots$$

Using 3 terms we get: $0.4937174328 \cdot 10^{-4}$. The error of the Taylor series with 3 terms will be $\leq 10^{-13}$ (which is needed for "full" precision for $0....\cdot 10^{-4}$).

Theorem 2. Let x, y be two normalized floating point numbers with x > y > 0 and base b = 2. If there exist $p, q \in \mathbb{N}_0$ such that

$$2^{-p} \leqslant 1 - \frac{y}{x} \leqslant 2^{-q}$$

Then at most p and at least q significant bits (digits base 2) are lost during subtraction.