EDA-R

Danilo A C Souto

Amostragem

Amostragem é uma técnica para remover amostras de um conjunto de dados. Pode ser utilizado para facilitar uma análise primária. Mas lembro que, sempre que possível, deve-se utilizar o conjunto todo de dados para as análises.

Para retirar uma amostra pode-se utilizar a função sample(x, size, replace = FALSE, prob = NULL) sample(airquality\$Temp, size=15, replace = TRUE)

```
## [1] 66 86 81 93 79 82 90 61 83 81 74 82 76 82 82
```

Amostra sem reposição

```
sample(airquality$Temp, size=15, replace = FALSE)
```

```
## [1] 93 66 76 80 77 82 64 73 84 88 86 92 72 67 81
```

Caso queira amostrar todos os atributos do data frame pode-se utilizar a técnica de selecionar pelo índice.

```
i <- 1:nrow(airquality)
s <- sample(i, size = 5)</pre>
```

	Ozone	Solar.R	Wind	Temp	Month	Day
24	32	92	12.0	61	5	24
34	NA	242	16.1	67	6	3
11	7	NA	6.9	74	5	11
88	52	82	12.0	86	7	27
138	13	112	11.5	71	9	15

Estrutura dos dados

Uma forma de visualizar a estrutura de dados é a partir do comando str(). Desta forma podemos ver todos os atributos e o tipo de cada atributo.

Ozone	Solar.R	Wind	Temp	Month	Day
41	190	7.4	67	5	1
36	118	8.0	72	5	2
12	149	12.6	74	5	3
18	313	11.5	62	5	4
NA	NA	14.3	56	5	5
28	NA	14.9	66	5	6
23	299	8.6	65	5	7
19	99	13.8	59	5	8
8	19	20.1	61	5	9
NA	194	8.6	69	5	10

```
str(airquality)

## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
nas <- airquality[is.na(airquality$Ozone),]</pre>
```

	Ozone	Solar.R	Wind	Temp	Month	Day
5	NA	NA	14.3	56	5	5
10	NA	194	8.6	69	5	10
25	NA	66	16.6	57	5	25
26	NA	266	14.9	58	5	26
27	NA	NA	8.0	57	5	27
32	NA	286	8.6	78	6	1
33	NA	287	9.7	74	6	2
34	NA	242	16.1	67	6	3
35	NA	186	9.2	84	6	4
36	NA	220	8.6	85	6	5

Variável Categórica

Para variáveis categóricas podemos utilizar as tabelas de frequência. A função table() faz a contagem dos elementos.

knitr::kable(mtcars[1:10,])

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4

```
table(df$am)

##
## Automático Manual
## 19 13

freq <- table(df$am)
freq

##
## Automático Manual
## 19 13</pre>
```

Para criar a frequência relativa, podemos utilizar a funçõ prop.table()passando como argumento o resultado da função table()

```
m_freq <- cbind(freq,r=prop.table(table(mtcars$am)))
m_freq</pre>
```

```
## freq r
## Automático 19 0.59375
## Manual 13 0.40625
```

Gráfico de Barras

Outra ferramenta bastante útil bara uma visualização rápida desse dados é o gráfico de barras. Com ele temos uma boa ideia das escalas e dimensões de cada categoria.

Automático Manual Também

pode-se utilizar a frequência relativa para construir o gráfico de barras como pode ser visto a seguir.

fico de Setores

Outra forma de exibir os dados é pelo gráfico de setores popularmente conhecido como gráfico de pizza.

```
pie(freq, main = "Pizza")
```

Pizza

Variáveis categóricas ordinais

Para as variáveis categóricas ordinais também podem ser visualizadas pelo gráfico de barras

barplot(prop.table(table(df\$cyl)), ylab = "Frequência relativa", ylim = c(0, .6))

fico de Setores

O gráfico de setores deve-se ser evitado quando há muitas categorias pois é fácil perdermos a referência sobre a dimensões de cada categoria.

pie(table(df\$cyl))

Tabela de frequência

É usual utilizar a tabela de frequencia junto com a frequência relativa

```
tabela <- cbind(f=table(df$cyl))
tabela <- cbind(tabela, "F"=cumsum(tabela[,1]))
tabela <- cbind(tabela, r=prop.table(table(df$cyl)))
tabela <- cbind(tabela, "R"=cumsum(tabela[,3]))</pre>
```

	f	F	\mathbf{r}	R
4 cilindros	11	11	0.34375	0.34375
6 cilindros	7	18	0.21875	0.56250
8 cilindros	14	32	0.43750	1.00000

Também é usual adicionar os totais nessas tabelas. addmargins().

```
carb.tb <- table(mtcars$carb)
tb <- cbind("f" = addmargins(carb.tb), "p"=addmargins(prop.table(carb.tb)), "F"=c(cumsum(carb.tb), NA), "...</pre>
```

	f	p	F	R
1	7	0.21875	7	0.21875
2	10	0.31250	17	0.53125
3	3	0.09375	20	0.62500
4	10	0.31250	30	0.93750
6	1	0.03125	31	0.96875
8	1	0.03125	32	1.00000
Sum	32	1.00000	NA	NA

Variáveis Numéricas Discretas

Gráfico de Linhas

Para variáveis discretas utiliza-se o gráfico de barras mas as barras são finas. Na verdade linhas apenas nos números pois assim representa-se a não continuidade.

```
plot(carb.tb, ylab = "Frequência Absoluta", xlab="Carburadores")
```


Gráfico para frequências acumuladas

Neste caso utiliza-se o gráfico do tipo Step. Basta colotar type = "S"

plot(cumsum(carb.tb), type="S", ylab="Frequência Absoluta Acumulada", xlab="Carburadores")

Variáveis Numéricas Contínuas

Variáveis contínuas podem ser discretizadas caso seja necessário. Para isso precisamos da Amplitude Total e k. Com isso podemos calcular os pontos de quebra

```
mpg <- sort(mtcars$mpg)
AT <- max(mpg) - min(mpg)</pre>
```

```
k <- sqrt(length(mpg))
AT/k

## [1] 4.154252
(quebra <- seq(10, 36, 4))

## [1] 10 14 18 22 26 30 34
quebra</pre>
```

```
## [1] 10 14 18 22 26 30 34
```

Para cortar os dados em intervalos utilizamos a função cut() passando os pontos de quebra.

```
classes <- cut(mpg, breaks = quebra, right = FALSE)
classes.tb <- table(classes)</pre>
```

Aqui podemos ver os intervalos já com suas frequências

classes	Freq
$\overline{[10,14)}$	3
[14,18)	10
[18,22)	10
[22,26)	3
[26,30)	2
[30,34)	4

E calcular a tabela completa.

	f	r	F	R	Dens
$\overline{[10,14)}$	3	0.09375	3	0.09375	0.01875
[14,18)	10	0.31250	13	0.40625	0.06250
[18,22)	10	0.31250	23	0.71875	0.06250
[22,26)	3	0.09375	26	0.81250	0.01875
[26,30)	2	0.06250	28	0.87500	0.01250
[30,34)	4	0.12500	32	1.00000	0.02500
Sum	32	1.00000	NA	NA	NA

Gráfico de disperção

O gráfico de dispersão pode ser utilizado para visualizar uma variável numérica. Pode nos fornecer informações quanto à sua dispersão. O valor da variável fica no eixo y enquanto no x fica somente o índice.

plot(mtcars\$mpg, ylab="Milhas por Galão", xlab="Índice")

Se

necessário também será útil ordenar pelos valores.

plot(sort(mtcars\$mpg), ylab="Milhas por Galão", xlab="Índice")

Histograma

Esta ferramenta é útil para visualizar a distribuição dos dados. Ele agrupa os valores por intervalos para poder contar.

hist(mpg, main = "")

Aqui

temos o mesmo histograma mas em vez de utilizarmos frequência, utilizamos densidade.

hist(mpg, freq = F, main = "")

Medidadas de Centralidade

Mediana

median(mpg)

[1] 19.2

Quando os dados possuem valores NA a mediana não é calculada

median(airquality\$0zone)

[1] NA

Para forçar o cálculo temos mo argumento na.
rm = T

median(airquality\$0zone, na.rm = T)

[1] 31.5

Média

mean(mpg)

[1] 20.09062

Quando os dados possuem valores NA a média não é calculada

mean(airquality\$0zone)

[1] NA

Para forçar o cálculo temos mo argumento na.rm = T

mean(airquality\$0zone, na.rm = T)

[1] 42.12931

Medidas de dispersão

Amplitude

Amplitude é a diferença entre o maximo e mínimo

AMP <- max(airquality\$Temp) - min(airquality\$Temp)</pre>

Desvio Médio

$$DM = \frac{\sum_{i=1}^{n} |x_i - \bar{x}|}{n}$$

sum(abs(airquality\$Temp - mean(airquality\$Temp)))/ length(airquality\$Temp)

[1] 7.568627

Variância

var(mpg)

[1] 36.3241

Desvio Padrão

sd(mpg)

[1] 6.026948

Coeficiente de Variação

Com o coeficiente de variação podemos comparar a variação de diferentes atributos.

$$CV = \frac{s}{\bar{x}}.100\%$$

```
cbind(
  mpg=(sd(mtcars$mpg)/mean(mtcars$mpg))*100,
  wt=(sd(mtcars$wt)/mean(mtcars$wt))*100)
```

```
## mpg wt
## [1,] 29.99881 30.41285
```

Quartil

O quartil sera os dados em 4 conjuntos iguais ou muito próximos. O segundo quartil possui 50% dos dados para cada lado. É a mediana.

```
quantile(mpg)
```

```
## 0% 25% 50% 75% 100%
## 10.400 15.425 19.200 22.800 33.900
```

Podemos utilizar a função cut() e table() para calcular as frequências de cada classe.

```
cbind(freq=table(cut(mpg, breaks = quantile(mpg), right = F)))
```

```
## freq
## [10.4,15.4) 8
## [15.4,19.2) 7
## [19.2,22.8) 8
## [22.8,33.9) 8
```

Decil

O quartil sera os dados em 10 conjuntos iguais ou muito próximos.

```
quantile(mpg, probs = seq(0,1,0.1))
```

```
## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% ## 10.40 14.34 15.20 15.98 17.92 19.20 21.00 21.47 24.08 30.09 33.90
```

Percentil

O quartil sera os dados em 100 conjuntos iguais ou muito próximos.

```
quantile(mpg, probs = seq(0,1,0.01))
```

```
##
       0%
               1%
                      2%
                              3%
                                     4%
                                             5%
                                                    6%
                                                            7%
                                                                   8%
                                                                           9%
                                                                                 10%
## 10.400 10.400 10.400 10.400 11.096 11.995 12.894 13.470 13.780 14.090 14.340
##
      11%
              12%
                     13%
                             14%
                                    15%
                                            16%
                                                   17%
                                                           18%
                                                                  19%
                                                                          20%
                                                                                 21%
##
   14.464 14.588 14.709 14.802 14.895 14.988 15.054 15.116 15.178 15.200 15.200
      22%
              23%
                     24%
                                    26%
                                                                  30%
##
                             25%
                                            27%
                                                   28%
                                                           29%
                                                                          31%
                                                                                 32%
## 15.200 15.239 15.332 15.425 15.518 15.611 15.704 15.797 15.980 16.166 16.352
##
      33%
              34%
                     35%
                             36%
                                    37%
                                            38%
                                                   39%
                                                           40%
                                                                  41%
                                                                          42%
                                                                                 43%
## 16.607 16.886 17.165 17.380 17.535 17.690 17.827 17.920 18.013 18.112 18.298
      44%
              45%
                     46%
                             47%
                                    48%
                                            49%
                                                   50%
                                                           51%
                                                                  52%
                                                                          53%
                                                                                 54%
## 18.484 18.670 18.830 18.985 19.140 19.200 19.200 19.200 19.260 19.415 19.570
```

```
##
      55%
             56%
                     57%
                            58%
                                   59%
                                           60%
                                                  61%
                                                          62%
                                                                 63%
                                                                        64%
                                                                                65%
## 19.765 20.168 20.571 20.974 21.000 21.000 21.000 21.088 21.212 21.336 21.400
##
      66%
             67%
                     68%
                            69%
                                   70%
                                           71%
                                                  72%
                                                          73%
                                                                 74%
                                                                        75%
                                                                                76%
  21.400 21.400 21.408 21.439 21.470 21.513 21.916 22.319 22.722 22.800 22.800
##
##
      77%
             78%
                     79%
                            80%
                                   81%
                                           82%
                                                  83%
                                                          84%
                                                                 85%
                                                                        86%
                                                                                87%
## 22.800 23.088 23.584 24.080 24.576 25.072 25.568 26.052 26.455 26.858 27.261
                     90%
                                   92%
                                                  94%
##
      88%
             89%
                            91%
                                           93%
                                                          95%
                                                                 96%
                                                                        97%
                                                                                98%
## 28.168 29.129 30.090 30.400 30.400 30.680 31.300 31.920 32.505 32.970
##
      99%
            100%
## 33.435 33.900
```

As cinco Medidas

Medidas muito importantes para resumir os dados temos a função fivenum()

```
fivenum(mpg)
## [1] 10.40 15.35 19.20 22.80 33.90
ou summary()
summary(mpg)
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                 Max.
                                                33.90
##
     10.40
             15.43
                      19.20
                               20.09
                                       22.80
```

Aqui vamos gerar as cinco medidas para o conjunto de dados que analisa o número de insetos mortos por cada tipo de inseticida.

```
fn <- rbind(
A=fivenum(InsectSprays[InsectSprays[,2]=="A",1]),
B=fivenum(InsectSprays[InsectSprays[,2]=="B",1]),
C=fivenum(InsectSprays[InsectSprays[,2]=="C",1]),
D=fivenum(InsectSprays[InsectSprays[,2]=="D",1]),
E=fivenum(InsectSprays[InsectSprays[,2]=="E",1]),
F=fivenum(InsectSprays[InsectSprays[,2]=="E",1]))
colnames(fn) <- c("Min","Q1","Q2","Q3","Max")</pre>
```

	Min	Q1	Q2	Q3	Max
A	7	11.0	14.0	18.5	23
В	7	12.0	16.5	18.0	21
\mathbf{C}	0	1.0	1.5	3.0	7
D	2	3.5	5.0	5.0	12
\mathbf{E}	1	2.5	3.0	5.0	6
F	9	12.0	15.0	23.0	26

Podemos ver que apesar de termos as informações calculada fica difícil a visualização das informações. ### Box plot

Para uma melhor visualizar as mesmas informações de uma maneira muito mais rápida temos o diagrama de caixas

Gráfico de linhas

Outro gráfico bastante utilizado para dados contínuos é o de linhas

plot(airquality\$Temp, type="l", ylab = "Temperatura", xlab="Índice")

 Extra

Vocabulário de Gráficos

 $A\ parte \ de\ visualização\ de\ gráficos\ \'e\ muito\ importante\ da\ estatística\ para\ comunicar\ a\ informação.$

Para ajudar na escolha temos o guia a seguir Vocabulário de gráficos

##

Biblioteca de gráficos

O ggplot2 é um pacote integrante do tidyverse muito eficaz na contrução de gráficos. Ela trabalha de uma forma um pouco diferente do modo normal e utiliza a chamada grammar of graphics.

Segue o link para consulta ggplot2

Gráficos no R

Aqui segue um guia com inúmeros gráficos a serem utilizados e seu guia. Além desses gráficos existem outras bibliotecas para gráficos.

Segue o guia Tipos de graficos

Toolbox

Existem vários pacotes de EDA

verifique o DataExplorer

 $install.packages("DataExplorer") library(DataExplorer) create_report(df)$