VERIFICATION OF BOOLEAN IDENTITIES

$pavan\ goud\ manchan pally (FWC 22125)$

June 1, 2023

1

 $\mathbf{2}$

Contents

- 1 Problem
- 2 Components
- 3 Introduction
- 4 Truth Table
- 5 Implementation
- 6 Procedure
- 7 Code

1 Problem

(GATE CS-2018) Q.4 Let \oplus and \odot denote the Exclusive OR and Exclusive NOR operations,respectively. Which one of the following is NOT CORRECT?

(A)
$$(P \oplus Q)' = (P \odot Q)$$

(B)
$$(P' \oplus Q) = (P \odot Q)$$

(C)
$$(P' \oplus Q') = (P \oplus Q)$$

(D)
$$(P \oplus P') \oplus Q = (P \odot P') \odot Q'$$

2 Components

Component	Value	Quantity
Arduino	UNO	1
Bread board	-	1
Jumper wires	M-M	8
LED	-	2
Resistor	150ohms	2

3 Introduction

An "identity" is merely a relationship that is always

- 1 true, regardless of the values that any variables involved might take on; similar to laws or properties.
- 1 Many of these can be analogous to normal multiplication and addition, particularly when the symbols 0,1
- 1 are used for FALSE, TRUE.

4 Truth Table

The Truth Table for the above identities is as follows:

(A)
$$(P \oplus Q)' = (P \odot Q)$$

where $Y1 = (P \oplus Q)', Y2 = (P \odot Q)$

P	Q	Y 1	Y2
0	0	1	1
0	1	0	0
1	0	0	0
1	1	1	1

Table 1

(B)
$$(P' \oplus Q) = (P \odot Q)$$

where $Y1 = (P' \oplus Q), Y2 = (P \odot Q)$

P	Q	Y 1	Y2
0	0	1	1
0	1	0	0
1	0	0	0
1	1	1	1

Table 2

(C)
$$(P' \oplus Q') = (P \oplus Q)$$

where $Y1 = (P' \oplus Q'), Y2 = (P \oplus Q)$

P	Q	Y 1	Y2
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

Table 3

7 Code

The assembly code can be downloaded from the below link.

(D)
$$(P \oplus P') \oplus Q = (P \odot P') \odot Q'$$

where $Y1 = (P \oplus P') \oplus Q, Y2 = (P \odot P') \odot Q'$

P	${f Q}$	Y 1	$\mathbf{Y2}$
0	0	1	0
0	1	0	1
1	0	1	0
1	1	0	1

Table 4

Here, Except (**D**) identity all other identies are valid according to the mentioned truth tables.

5 Implementation

Table 5: connections

Arduino pin	INPUT	OUTPUT
5	P	
6	Q	
2		С
3		R

6 Procedure

- 1. Connect the circuit as per the above table.
- 2. Connect the output pins to Display.
- 3. Connect inputs to Vcc for logic 1, ground to logic 0.
- 4. Execute the circuit using below code.
- 5. And verify the truth table.