설문조사를 통한 지지정당 예측

행복 <mark>범주형자료분석팀</mark>

김찬영이혜인 김서윤 심은주 진수정

피드백 반영

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Imputation 변수 선택 알고리즘 ver.2.0 재정비 Solution 2

STEP1

Imputation을 위한 모델링에서 다중공선성을 최소화 하기위해 10개의 1:1 조합만 선택

	v1	v2
Comb1	Life_Q_livealone	ps_Q_LeftHanded
Comb2	Life_Q_watchTV	env_Q_p_spank
Comb3	Life_Q_gun	ps_Q_PowerOfPositive
Comb4	mo_Q_fulltimejob	mo_Q_minwage_job
Comb9	Life_Q_drink	re_Q_newromance
Comb10	ps_Q_Creative	re_Q_havesibling

이 때의 척도 역시 Gktau measure!

BUT, 비대칭성을 고려하여 선후관계가 바뀌어도 연관 있는 조합 중 1:1 조합을 선택

피드백 반영

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Solution 2 Imputation 변수 선택 알고리즘 ver.2.0 재정비

STEP2 각 조합에 포함된 변수와 Gktau measure가 낮은 질문 변수들을 선택하여 각 조합의 변수 15개로 완성

	v1	v2	V14(추가)	V15(추가)
Comb1	Life_Q_livealone	ps_Q_LeftHanded	re_Q_extendedfamilly	re_Q_meetoffline
Comb2	Life_Q_watchTV	env_Q_p_spank	Life_Q_ownTool	ps_Q_Socializing
Comb3	Life_Q_gun	ps_Q_PowerOfPositive	ps_Q_BetterAfter5y	mo_Q_has_debt
Comb4	mo_Q_fulltimejob	mo_Q_minwage_job	ex_Q_cry60D	ps_Q_SupportCharity
		•••		
Comb9	Life_Q_drink	re_Q_newromance	Life_Q_tabwater	ps_Q_BuyHappiness
Comb10	ps_Q_Creative	re_Q_havesibling	mo_Q_carpayment	Life_Q_glasses

피드백 반영

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Solution 3 인적변수들은 모두 MNAR로 가정, NA imputation 진행 X,

🔷 '무응답 ' 으로 처리

Age	Education Level	Income
20s	1	NA
30s	2	1
30s	NA	0.74
NA	2	0.74
40s	1	NA
NA	1	1

Age	Education Level	Income
20s	1	0
30s	2	1
30s	0	0.74
non_answer	2	0.74
40s	1	0
non_answer	1	1

무응답은 Ordinal Encoding 시에 O으로 처리

DATA 파생변수 생성 변수 선택 결측치 처리 최종 데이터셋

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의 • 파생변수 유의성 판단

새롭게 만든 파생변수 (조나단 파생변수, Life sum, Edu sum) 가 유의할까?

──→ 각각의 파생변수와 Y변수 'Party' (지지정당)간의 독립성 검정 시행

> chisq.test(train_mca_jo_sum\$Life_sum, train_mca_jo_sum\$Party)

Pearson's Chi-squared test

data: train_mca_jo_sum\$Life_sum and train_mca_jo_sum\$Party
X-squared = 2.3767, df = 4, p-value = 0.6669

Y와 독립이라면?

해당 파생변수는 유의하지 않으므로 제거하자!

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

• 질문 변수 선별

Gktau를 기준으로 서로 연관 있는 질문들의 조합을 탐색한 후에 그 중 Y와 연관성이 없는 질문 삭제

제거된 질문변수

데이터셋	Train_nonanswer	Train_rf, Train_mca, Train_mean, Train_NA
제거된 질문 변수	mo_Q_minwage_job, mo_Q_fulltimejob, Life_Q_collectHobby, mo_Q_has_enoughcash_now, re_Q_newromance, ps_Q_PowerOfPositive, edu_Q_parents_college, env_Q_single_parent,ps_Q_LikeFirstName, re_Q_likepeople, Life_Q_watchTV, ps_Q_LeftHanded,re_Q_havesibling	Nothing

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

"최종 데이터 분포 비교"

Mac or PC 변수 동질성 검정 결과

데이터 종류	P-value
NA 데이터	0.4598
Non_answer 데이터	0.8854
RF 데이터	0.7396
MCA 데이터	0.3453
Mean 데이터	0.4489

p-value > 0.05

: 모두 귀무가설 채택!

데이터 간의 분포가 동일

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

"찐최종데이터"

NA → 무응답 으로 처리한 데이터

가장 최적 값이 나온 nonanswer 데이터를 최종 데이터로 결정!

NA → Mean 으로 채운 데이터

NA → RF 로 채운 데이터

넘모 슬퍼,,우리의 1주차 고생 다 어디에,,

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Logistic with Lasso penalty

최적의 파라미터 조합

- Log lambda : -4.677

- Cutoff: 0.526

Test Accuracy -

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Random Forest Classifier

- 모델에 사용할 변수 선택
 - → RFE를 적용해서 선택!

RFE(Recursive Feature Elimination)란?

모든 변수를 다 포함시킨 후 반복해서 학습을 진행하면서 중요도가 낮은 변수를 하나씩 제거하는 방식

→ 일종의 Backward Selection 방법

선택된 변수들

careness
fairness
ps_Q_Feminist
Life_Q_medipray
Life_Q_gun
Life_Q_MacPC
Ps_Q_LifePurpose

:

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Random Forest Classifier

변수 선택

최적의 파라미터 조합

RFE를 통해 200개의 변수 선택

- n_estimators: 1200
- max_features: 'sqrt'
- max_depth: 30
- min_samples_split: 16
- min_samples_leaf: 9

Test Accuracy -

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

최적의 파라미터 조합

- max_depth:4

- min_child_weight: 1

- learning_rate: 0.1

- n_estimators: 100

- gamma:0

- reg_lambda: 20

Test Accuracy

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Light Gradient Boosting Model

최적의 파라미터 조합

- learning_rate:0.003

- n_estimators: 900

- num_leaves: 30

- reg_alph:0

reg_lambda: 40

- colsample_bytree: 0

- bagging_fraction:0.0002

- feature_fraction: 0.7

- min_child_weight: 40

- max_bin: 800

Test Accuracy

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

최적의 파라미터 조합

- iterations: 400

- depth: 7

- random_strength : 0.099234

- learning_rate 0.018487

- I2_leaf_reg: 8

Test Accuracy -

0.64367

20-2학기 주제분석 | 범주형자료분석팀

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Ensemble Ensemble

사용한 모델

- Random Forest
- XGBoost
- Lasso Regression
- Logistic Regression
- CatBoost
- Extra Tree Classifier
- LGBM
- SVM

meta model : XGBoost Test Accuracy

0.65517

찢어따,,, 앙상블,,,

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

SHAP Value Shapley value

특정 결과에 각 특성이 얼마나 영향을 미쳤는지 나타내는 수치

→ 게임이론에서 파생된 개념으로 확고한 이론적인 기반을 갖는다!

$$\varphi_i(v) = \frac{1}{number\ of\ players} \sum_{coalitions\ excluding\ i}$$

marginal contribution of i to coalition number of coalitions excluding i of this size

(갓키피디아에서 shap value의 예시를 수식으로 나타낸 것을 첨부했다!)

→ 직관적으로 보자면, [A라는 플레이어의 행위를 포함한 결과]에서 [marginal 하게 A 플레이어의 행위를 제외한 결과]를 뺀 값

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Shapley value

What is shap.summary plot?

shap, summary plot

타겟 변수에 대한 X변수들의 평균적인 영향력을 나타낸 Plot

Class 0 → Democrat

Class 1 → Republicans

Y축: 영향력이 높은 순서대로 변수 나열

X축: mean|Shap value|

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Shapley value

What is shap.force plot?

- → 각 설문 참여자의 응답결과를 shap value를 활용하여 시각화한 plot
- → 각 설문 참여자들의 예측 결과에 대한 해석이 가능해진다!

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

SHAP Value Shapley value

shap.force plot 해석 : 민주당 지지자

(기존 범주가 Republican이므로 음의 영향력을 가지는 질문과 대답이 민주당의 특성을 반영한다!)

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의

Shapley value

What is shap.dependence plot? & 해석

shap.dependence plot

X변수들 간의 연관성을 shap value를 통해 나타낸 Plot

교육수준에 따른 권위에 대한 복종심은 큰 차이가 없다!

높은 교육수준은 Republican에 대해 음의 영향력을 가진다!

(즉, 민주당의 특성을 반영한다!)

우리의 한계와 의의는?

의의

01. 1주차 피드백

02. DATA 정리

03. 모델링

04. 결과 해석

05. 한계와 의의 범주가 <u>범-주</u> 했다 (100개 이상의 범주형 변수 ^_^)

팀원 모두 한 개 이상의 모델을 이용한 모델링 진행!

R과 Python 모두 마-스터 ��

그 외 오조 오억 개

워라밸 최고 행복 범-주♡