Theorem: 11.4 (Approximation Theorem)

Suppose \mathcal{A} is a semiring, and μ is a measure on $\mathcal{F} := \sigma(\mathcal{A})$, and μ is σ -finite on \mathcal{A} . Take $\varepsilon > 0$ and any $B \in \mathcal{F}$. Then

(i) There exists a disjoint sequence $A_1, A_2, \ldots \in \mathcal{A}$ (maybe finite with empty sets) such that $B \subseteq \bigcup_n A_n$ and

$$\mu\left(\bigcup_n A_n \setminus B\right) < \varepsilon.$$

(ii) If $\mu(B) < \infty$, there exists a finite disjoint sequence $A_1, A_2, \dots, A_n \in \mathcal{A}$ such that

$$\mu\left(B\Delta\left(\bigcup_{i=1}^n A_i\right)\right) < \varepsilon.$$

Note. Recall $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

12: Measures in Euclidean Space

Example. Consider \mathbb{R} . Let \mathcal{A} be the collection of half intervals (a,b]. We saw from last time that \mathcal{A} is a semiring. Define a measure λ as $\lambda(\emptyset) = 0$ and $\lambda((a,b]) = b-a$. Note that λ is defined on the field \mathbb{R} . Then $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R})$ since the Borel sets can be generated by these half intervals. By Theorem 11.3, λ can be extended to a measure on $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R})$. Since \mathcal{A} is a π -system, \mathcal{A}, λ is σ -finite, Theorem 10.3 tells us that the extension of λ from \mathcal{A} to $\sigma(\mathcal{A})$ is unique. So there is no other measure on $\mathcal{B}(\mathbb{R})$ that will assign measure (b-a) to (a,b]. But Lebesgue measure assigns (b-a) to (a,b], then λ must be Lebesgue measure.

Example. In \mathbb{R}^k , the analogy is let

$$R = \{(x_1, \dots, x_k) : a_i < x_i \le b_i \text{ for } i = 1, \dots, k\},$$

$$\lambda(\mathbb{R}) \coloneqq \prod_{i=1}^{k} (b_i - a_i)$$

and assign $\lambda(\emptyset) = 0$. Then this extend to all of \mathbb{R}^k so we can define Lebesgue measure on \mathbb{R}^k .

Property.

1) Translation invariance: For $A \in \mathcal{B}(\mathbb{R}^k)$ and any $\mathbf{x} \in \mathbb{R}^k$, define the set $A + \mathbf{x}$ as

$$A + \mathbf{x} = \{ \mathbf{a} + \mathbf{x} : \mathbf{a} \in A \}.$$

Then

- (i) $A + \mathbf{x} \in \mathcal{B}(\mathbb{R}^k)$.
- (ii) $\lambda(A) = \lambda(A + \mathbf{x}).$

Note. $A \in \mathcal{B}(\mathbb{R}^k)$ does not have to be a rectangle.

Proof

(i) Let $\mathcal{G} = \{A \subseteq R^k : A + \mathbf{x} \in \mathcal{B}(\mathbb{R}^k) \ \forall \ \mathbf{x} \in \mathbb{R}^k\}$. We can show that \mathcal{G} is a σ -field. Let \mathcal{A} be the class of half open rectangles in \mathbb{R}^k . Then $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R}^k)$ by the definition of $\mathcal{B}(\mathbb{R}^k)$. We can show that $\mathcal{A} \subseteq \mathcal{G}$. Thus,

$$A \subseteq \sigma(A) = \mathcal{B}(\mathbb{R}^k) \subseteq \mathcal{G}.$$

Therefore, by the definition of \mathcal{G} , $A \in \mathcal{B}(\mathbb{R}^k) \subseteq \mathcal{G} \Rightarrow A + \mathbf{x} \in \mathcal{B}(\mathbb{R}^k)$.

2) For a linear mapping $T: \mathbb{R}^k \to \mathbb{R}^k$,

- (i) $A \in \mathcal{B}(\mathbb{R}^k) \Rightarrow T(A) \in \mathcal{B}(\mathbb{R}^k)$.
- (ii) $\lambda(T(A)) = |\det(T)| \cdot \lambda(A) \ \forall \ A \in \mathcal{B}(\mathbb{R}^k).$

Note. A linear map $T:\mathbb{R}^k\to\mathbb{R}^k$ can be written as $T(\mathbf{x})=T\mathbf{x}$ where T is a $k\times k$