Commande d'un moteur à courant continu par modes glissants

Pierre Riedinger et Jérémie Kreiss

L'objectif de ce TP est de concevoir une loi de commande par modes glissants pour la machine à courant continu. La loi de commande doit être robustes aux incertitudes et limiter au maximum le "chattering" (le bruit induit par les commutations).

1 Modélisation

La machine à courant continu est composée d'une partie électrique et d'une partie mécanique.

La dynamique électrique concerne le courant circulant de le stator du moteur et permet d'appliquer un couple électro-mécanique sur l'arbre moteur. Grâce aux lois de Kirchhoff, on peut la modéliser par l'équation différentielle suivante :

$$L\frac{\mathrm{d}i}{\mathrm{d}t}(t) + Ri(t) = v_a(t) - K_e\dot{\theta}(t), \ t \in \mathbb{R}_{\geq 0}.$$
 (1)

 $L, R, K_e \in \mathbb{R}_{>0}$ sont respectivement l'inductance statorique, la résistance statorique et la constante de la force contre électromotrice. Le courant à l'instant t est noté i(t). A l'état initial, $i(0) = i_0 \in \mathbb{R}$. $v_a(t)$ est la tension d'entrée du moteur t. v_a constitue la commande du système.

Le couple moteur généré par le courant qui circule dans le stator est noté T et est donné par la relation suivante

$$T(t) = K_t i(t), \ t \in \mathbb{R}_{>0}, \tag{2}$$

où $K_t \in \mathbb{R}_{>0}$ est la constante de couple électro-mécanique.

Ce couple entraine l'arbre moteur dont la dynamique est obtenue par le principe fondamental de la dynamique. On obtient

$$J\ddot{\theta}(t) + b\dot{\theta}(t) = T(t), \ t \in \mathbb{R}_{>0}. \tag{3}$$

 $J, b \in \mathbb{R}_{\geq 0}$ sont respectivement le moment d'inertie et le coefficient de friction. La position de l'able à l'instant t est notée $\theta(t)$. A l'état initial, $\theta(0) = \theta_0 \in \mathbb{R}$ et la vitesse $\dot{\theta}(0) = 0$.

On considère que l'inductance et le moment d'inertie sont mal connus, de sorte qu'ils diffèrent de leur valeur nominale $(L_0$ et $J_0)$ par la relation suivante :

$$\xi_L = \frac{L_0 - L}{L}, \quad |\xi_L| < 0.1$$
 (4)

$$\xi_J = K_t \left(\frac{1}{J} - \frac{1}{J_0} \right), \quad |\xi_J| < 0.5$$
 (5)

Hypothèse 1.1. Le coefficient de friction est considéré négligeable, i.e. b=0.

Question 1. Sous l'hypothèse 1.1 et en prenant $x = [\theta, \dot{\theta}, i]^{\top}$ comme vecteur d'état, écrire le modèle sous représentation d'état :

$$\dot{x} = Ax + Bu + f(t, x, u).$$

Ax + Bu correspond au modèle nominal et f(t, x, u) regroupe les parties non linéaires et les incertitudes. Réaliser le schéma simulink du moteur.

Question 2. On remarque que (A, B) est sous forme compagne. Déterminer A_{11} , A_{12} , A_{21} , A_{22} , B_1 et B_2 ainsi que $f_u(t, x)$ et $f_m(t, x, u)$.

2 Choix d'une surface de glissement

Lorsqu'il y a glissement, on souhaite que les valeurs propres de la dynamique d'ordre réduit respectent :

$$\lambda^2 + 2\xi w_n \lambda + w_n^2 = 0$$

avec $\xi = 0.9$ et $w_n = 2 \text{ rad.s}^{-1}$.

Question 3. En déduire $M = [m_1, m_2]$.

Pour choisir la fonction de commutation, il reste à déterminer S_2 .

Question 4. Choisir S_2 le plus simplement possible de sorte que SB soit non-singulière. Sur le schéma simulink, réaliser le calcul de la fonction de commutation.

3 Choix de la loi de commande

En l'absence d'incertitudes, on souhaite rallier la surface de glissement (s(x) = 0) avec un temps de réponse $t_{r5\%} = 1$ s.

Question 5. En calculant la commande équivalente et avec le contrainte ci-dessus, déterminer la partie linéaire de la loi de commande. La réaliser sur simulink.

Finalement, il reste à déterminer la partie non-linéaire.

Question 6. Écrire la dynamique d'ordre réduit (s(x) = 0) lorsque la commande linéaire est appliquée. En déduire la nouvelle expression de $f_u(t, x)$.

On aimerait trouver $\rho(t, x)$ de sorte que la condition d'atteignabilité soit vérifiée sur tout l'espace d'état. D'après le cours, on sait que c'est le cas lorsque

$$\rho(t, x) \ge ||S_2|| (||M|| ||f_u|| + ||f_m||) + \delta_2$$

avec $\delta_2 > 0$. On procède par étape.

Question 7. Sachant que $|\xi_L| < 0.1$ et à l'aide de l'expression de $f_m(t, x, u)$, trouver $\rho_1(t, x)$ tel que

$$\rho_1(t, x, u) \ge ||f_m(t, x, u)||.$$

Question 8. Sachant que $|\xi_J|$ < 0.5 et à l'aide de l'expression de $f_u(t,x)$, trouver $\rho_2(t,x)$ tel que

$$\rho_2(t,x) \ge ||M|| ||f_u(t,x,u)||.$$

On rappelle l'expression de la commande que l'on souhaite mettre en œuvre :

$$u = u_l + u_n = u_l + \rho(t, x) ||(S_2 B_2)^{-1}|| \operatorname{sign}(s).$$

On remarque que ||u|| dépend de $\rho(t,x)$. On ne peut donc pas exprimer $\rho_1(t,x,u)$ en fonction de ||u||.

Question 9. Trouver une borne supérieure pour ||u|| qui fait apparaître $\rho(t, x)$ explicitement. En déduire la nouvelle expression de $\rho_1(t, x, u_l)$.

Question 10. En prenant $\rho(t,x) = \rho_1(t,x,u_l) + \rho_2(t,x) + \delta_2$, exprimer la valeur de $\rho(t,x)$. (Attention : $\rho(t,x)$ ne doit dépendre ni explicitement, ni implicitement de $\rho(t,x)$).

4 Simulation

Le moteur considéré a les valeurs numériques suivantes :

- $R = 1.2 \Omega$;
- $L_0 = 0.05 \text{ H};$
- $K_e = 0.6 \text{ V.s.rad}^{-1}$;
- $K_t = 0.6 \text{ N.m.A}^{-1}$;
- $J_0 = 0.135$;
- $\theta_0 = 3 \text{ rad};$
- $i_0 = 0 \text{ A}$

Question 11. A l'aide de Simulink, simuler le comportement du moteur commandé par la loi de commande obtenue, lorsque L=0.046 H et $K_t/J=6$. Commenter.