

日 本 **JAPAN** PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2002年11月22日

REC'D 14 MAR 2003

POT

出願番号

Application Number:

特願2002-339239

[ST.10/C]:

[JP2002-339239]

出 人 Applicant(s):

東洋紡績株式会社

COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年 2月25日

特 許 庁 長 官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

CN02-0935

【提出日】

平成14年11月22日

【あて先】

特許庁長官 殿

【国際特許分類】

C08L 67/04

B29C 55/02

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

河原 恵造

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

吉田 成人

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

堤 正幸

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

秋友 由子

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

永良 哲庸

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

佐倉 大介

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

髙橋 則子

【特許出願人】

【識別番号】

000003160

【氏名又は名称】

東洋紡績株式会社

【代表者】

津村 準二

【先の出願に基づく優先権主張】

【出願番号】

特願2002- 821

【出願日】

平成14年 1月 7日

【手数料の表示】

【予納台帳番号】

000619

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】 易引裂き性脂肪族ポリエステル系延伸フィルム

【特許請求の範囲】

【請求項1】

縦方向及び横方向の端裂抵抗が22N以下であることを特徴とする易引裂き性 脂肪族ポリエステル系延伸フィルム。

【請求項2】

脂肪族ポリエステル系延伸フィルムの主成分が乳酸系ポリエステル樹脂である ことを特徴とする請求項1に記載の易引裂き性脂肪族ポリエステル系延伸フイル ム。

【請求項3】

脂肪族ポリエステル系延伸フイルムに活性線を照射することにより製造するこ とを特徴とする請求項1および2に記載の易引裂き性脂肪族ポリエステル系延伸 フイルム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は引裂き易い生分解性脂肪族ポリエステル系延伸フィルムに関する。特 に、耐熱性、保香性、耐水性、力学特性に優れ、且つ包装用フィルムや粘着テー プ用フィルムとして有用な易引裂き性とひねり固定性の良好な生分解性脂肪族ポ リエステル系延伸フィルムに関するものである。

[0002]

【従来の技術】

従来から、易引裂き性の優れたフィルムとしてセロハンフィルムが知られてい る。セロハンフィルムは、透明性、易引き裂き性、ひねり固定性等の特性が良好 であるため、食品や医薬品の包装材料、粘着テープ用素材等に広く用いられてい る。しかし、一方ではセロハンフィルムは吸湿性が高く、フィルムの特性が季節 により変動し一定の品質のものを常に供給することが困難である。また、セロハ ンフィルムは、その製造工程において硫酸、二硫化炭素といった毒性の髙い物質 を多量に使用するため、これらの流出時には、重大な環境汚染問題となる恐れが ある。

[0003]

一方、ポリエチレンテレフタレートフィルムを基材とした包装用袋や粘着テープは、フィルムの強靭性、耐熱性、耐水性、透明性は優れているが、一方で、包装用袋としては開封時に口が引き裂きにくい欠点やひねり固定性が劣るためにひねり包装用に用いることができないという欠点、粘着テープとしては手やディスペンサーで切りにくい等の欠点があった。

[0004]

上記欠点を解決する方法として、一軸方向に配向させたポリエステルフィルム (特公昭55-8551号公報) やジエチレングリコール成分などを共重合させたフィルム (特公昭56-50692号公報) や低分子量のポリエステル樹脂を用いたフィルム (特公昭55-20514号公報) などが提案されている。

[0005]

しかしながら、上記従来技術において、一軸方向に配向させる方法は、配向方向へは直線的に容易に切れるが、配向方向以外には切れにくい。また、ジエチレングリコール成分などを多量に共重合させる方法は、共重合によりポリエチレンテレフタレート本来の強靱性や耐熱性が失われるという欠点があった。又、低分子量のポリエステル樹脂を用いる方法では、延伸工程での破断のトラブルが発生しやすくなり、実用的ではなかった。

[0006]

これに対し特開平5-104618号公報では、ポリエステルフィルムを融点の異なるポリエステル樹脂からなる多層構成とし、製造工程において熱処理温度を制御することにより、耐熱性、保香性、耐水性、強靭性といった特性を維持しつつ、引裂き性とひねり固定性が良好なフィルムを得ている。又、延伸工程における破断トラブルも軽減させている。しかし、このフィルムでも引裂き性とひねり固定性は必ずしも十分ではない。又、生分解性も無いので、環境への負荷は考慮されていないという問題があった。

[0007]

一方、近年、廃棄物問題の深刻化から、より環境負荷の小さな包装用材料、粘着テープ材料の普及が望まれている。すなわち、ポリエチレンテレフタレートをはじめとするポリエステル等をフィルム、シートの形態で埋め立て廃棄した場合、これらが腐食、分解しにくいことから、自然環境下に残存し、環境汚染の一因となる。また、焼却処分においても、素材自体、あるいは積層材、添加剤の発熱量が高いためによる焼却炉の損傷や有害ガスの発生がもたらされ望ましくない。

[0008]

このような問題に対処するため、自然界に存在する微生物に分解される生分解性素材の開発が進められている。中でも乳酸系ポリエステルフィルムは耐熱性、保香性、透明性、強靭性、成形加工性に優れ、包装用素材、粘着テープ素材、容器、電子部品関連材料など広範囲にわたる用途展開が実現されつつある。

[0009]

【特許文献1】

特公昭55-8551号公報

【特許文献2】

特公昭56-50692号公報

【特許文献3】

特公昭55-20514号公報

【特許文献4】

特開平5-104618号公報

[0010]

【発明が解決しようとする課題】

本発明は、セロハンフィルムの特長である易引裂き性、ひねり固定性、透明性 を有し、且つ脂肪族ポリエステル系延伸フィルムの特長である耐熱性、保香性、 強靭性等を合わせて有する環境対応型の生分解性フィルムを提供することを目的 としたものである。

[0011]

【発明を解決するための手段】

本発明者らは、上記目的を達成するために鋭意検討した結果、本発明に到達し

た。本発明は、縦方向及び横方向の端裂抵抗が22N以下であることを特徴とする易引裂き性脂肪族ポリエステル系延伸フィルムである。好ましい態様は、上記脂肪族ポリエステル系延伸フィルムの主成分が乳酸系ポリエステル樹脂であることを特徴とする上記易引裂き性脂肪族ポリエステル系延伸フイルムである。また、好ましい態様は、脂肪族ポリエステル系延伸フイルムに活性線を照射することにより製造することを特徴とする上記易引裂き性脂肪族ポリエステル系延伸フィルムに活性線を照射することにより製造することを特徴とする上記易引裂き性脂肪族ポリエステル系延伸フィルムである。

[0012]

【発明の実施の形態】

本発明の易引裂き性脂肪族ポリエステル系延伸フィルムを得るための原料樹脂としては、例えば、ポリブチレンサクシネート、ポリヒドロキシブチレート、ポリ乳酸等の脂肪族ジカルボン酸と脂肪族ジオール又は脂肪族のヒドロキシカルボン酸や脂肪族のラクチドから得られる脂肪族ポリエステル樹脂が挙げられる。これらの脂肪族ポリエステル樹脂は、共重合することも可能である。又、これらの樹脂に相溶性の樹脂又は非相溶性の樹脂を混合することも可能である。特に乳酸系ポリエステル樹脂は得られるフィルムが、耐熱性、保香性、透明性、強靭性、成形加工性に優れているので好ましい。乳酸系ポリエステル樹脂としては、Lー乳酸重合体、Dー乳酸重合体、またはそのブレンド体、その共重合体、更にそれらとポリヒドロキシブチレート等との共重合体、その他の樹脂との混合体を挙げることができる。

[0013]

脂肪族ポリエステル樹脂の分子量は、例えば、乳酸系ポリエステル樹脂の場合は、重量平均分子量で、1万以上50万以下が好ましく、特に好ましくは3万以上30万以下である。重量平均分子量が1万未満の場合、安定した押出しやキャスティングを行うことが困難となりやすく、逆に50万を越えると、押出し機内での圧力上昇のために溶融押出しが困難となりやすい。

[0014]

なお、本発明の脂肪族ポリエステル系延伸フィルムには、本発明の効果を阻害 しない範囲で、公知の各種添加剤、例えば滑剤、顔料、熱安定化剤、酸化防止剤

、帯電防止剤、耐衝撃性改良剤等が添加されていてもよい。

[0015]

本発明の脂肪族ポリエステル系延伸フィルムは、まず、脂肪族ポリエステル樹脂を押出機等で融点以上の温度で溶融し、ダイス出口から押し出して未延伸フィルムを得る。該未延伸フィルムを、更に一軸延伸または二軸延伸を行い、必要に応じて熱固定処理をすることによって得られる。特に二軸延伸フィルムは厚み斑が少なく、また引裂き方向性の均一なフィルムが得られ易い点で好ましい。

[0016]

本発明の脂肪族ポリエステル系延伸フィルムは、単層フィルムでも積層フィルムでもよく、積層フィルムである場合は、例えば、複数の押出機で融点以上の温度で別々に溶融し、ダイス出口から押し出して成形した未延伸フィルム同士を加温状態でラミネートする方法、又、一方の未延伸フィルムの表面に、他方の溶融フィルムを溶融ラミネートする方法、共押出し法により、フィードブロック内やダイス内で樹脂を溶融状態で積層させダイス出口より押し出して冷却固化する方法等で未延伸フィルムを得ることができる。ダイスはフラットダイ、環状ダイのいずれでも構わない。

[0017]

得られた単層または複層の未延伸のフィルムは、脂肪族ポリエステル樹脂の融点以下の温度で一軸延伸または二軸延伸を行うことが好ましい。例えば、乳酸系ポリエステル樹脂の場合は、40℃~170℃で延伸する。延伸倍率は、一軸延伸の場合は少なくとも1.5倍以上、好ましくは3~5倍であり、二軸延伸の場合は面積倍率で10倍以上、好ましくは16倍以上である。延伸倍率が低いと、延伸フィルムの易引裂き性や厚みの斑が悪化する。延伸倍率が高すぎると、引裂きの方向性が強くなる点、生産中の破断が多くなり生産性が悪化する点で問題となる。又、二軸延伸する場合は、逐次延伸法、同時延伸法のいずれでも構わない。延伸方法もロール延伸法、テンター延伸法、インフレーション法いずれでも構わない。

[0018]

本発明の脂肪族ポリエステル系延伸フィルムは、延伸した後、更に熱固定処理

や熱弛緩処理等の熱処理を行なうことが好ましい。熱処理温度は、例えば、脂肪族ポリエステル樹脂の融点より0~50℃低い温度で行う。例えば、乳酸系ポリエステル樹脂の場合は130℃~170℃で熱処理するのが好適である。熱処理温度が低すぎると分子配向を崩すことができず、良好な引裂き性のフィルムを得ることができない場合がある。熱処理温度が融点以上では、フィルムに穴空きが生じ、破断が多発して製膜が困難となる。また、熱固定処理の後、熱弛緩処理を行なうと熱寸法安定性が改善されるので好ましい。

[0019]

適切な延伸条件や熱処理条件、積層厚み構成の選択によって、易引き裂き性や ひねり固定性を改善できる。該方法を取り入れることも何ら制限を受けない。

[0020]

また、本発明の易引裂き性脂肪族ポリエステル系延伸フィルムは、製膜工程に おいて公知のコーティング方法によって接着性や印刷性等を改良するために表面 加工してもよい。また、脂肪族ポリエステル系延伸フィルムの表面の濡れ性、接 着性を向上させるためにコロナ処理、プラズマ処理、火炎処理等の表面加工を施 しても構わない。

[0021]

また、本発明の易引裂き性脂肪族ポリエステル系延伸フィルムは、包装用素材として、ドライラミネート、押出しラミネート等の公知の方法を用いてヒートシール性を有する樹脂層を積層させ、ヒートシール性を付与することができる。この場合、生分解性の観点からは、各種生分解性樹脂層を積層させることが好ましい。

[0022]

本発明の易引裂き性脂肪族ポリエステル系延伸フイルムは、縦方向及び横方向の端裂抵抗が22N以下である必要があり、20N以下が更に好ましく、18N以下が特に好ましい。該端列抵抗が22Nを越えた場合は、易引裂き性やひねり固定性が悪化するので好ましくない。一方、端裂抵抗が小さすぎるとフィルムを加工する工程等で破断が発生する場合があるので、2N以上が好ましい。

[0023]

[0024]

上記した活性線による照射処理の方法としては、フィルム製膜時のインライン 処理でも、フィルム製膜後のバッチ処理でもよく、その方法は限定されない。

[0025]

【実施例】

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例中で示される特性は、以下の方法で測定・評価したものである。

[0026]

(1) 融点

マックサイエンス社製DSC3100Sを用い、試料 (10mg) をパンに入れ、220 \mathbb{C} で10分間溶融後、急冷した後、室温から220 \mathbb{C} まで10 \mathbb{C} /分の昇温速度で融解による吸熱ピークを測定し、ピーク温度を融点とした。

[0027]

(2) 重量平均分子量

標準物質としてポリスチレン(東ソー製)溶液を調製し、GPC較正曲線を作成し、GPC(昭和電工製Shodex-System-21)を用い、カラムはGMH×1本・GMH×1本・G2000H×1本(東ソー製)を直列接続して使用し、展開液溶媒はクロロホルム、カラム温度は40℃とし、RI検知で測

定した。データはシステムインスルメント製SIC-480でデータ処理し、重 量平均分子量を算出した。

[0028]

(3) 端裂抵抗

JIS C2318-1975に準じて測定した。値が小さいほど引裂き易い

[0029]

(4) 易引裂き性

官能評価を行った。幅15mmのテープ状サンプルを縦方向、横方向について切り出し、それぞれの方向のサンプルを手で切断した時に、容易に手で引き裂けるものを〇、多少劣るが容易に引裂けるものを〇、容易には手で引裂けないものを Δ 、手で引裂けないものを×とした。

[0030]

(5) ひねり固定性

官能評価を行った。幅30mmのテープ状サンプルを手でひねった時、ひねった状態で元に戻らないものを〇、ひねった状態を維持できないものを×とした。

[0031]

(実施例1)

融点が175℃、重量平均分子量17万のL-乳酸系共重合体を2軸押出機(スクリュー径=35 φ、L/D=45:東芝機械製TEM)で溶融し、Tダイより200℃で押出し、未延伸フィルムを得た。

[0032]

該未延伸フィルムをまずロール延伸機で縦方向に75℃で3.4倍、次いでテンター延伸機で横方向に85℃で5.5倍延伸した後、155℃で熱固定処理を行い、降温過程で3%の弛緩処理を行ない25 μ mのフィルムを得た。尚、本フィルム製膜中は、破断等のトラブルはなく、生産性は良好であった。

[0033]

該フィルムを、殺菌灯(東芝製殺菌ランプGL20-A)を露光器(JEA2 SS:日本電子精機製)に装着した紫外線照射処理器で、3分間紫外線照射処理

をした。紫外線照射処理後のフィルムについて易引裂き性とひねり固定性の官能 試験を実施した。紫外線照射処理後のフィルムは、あらゆる方向に対して良好な 易引裂き性を持っていた。また、ひねり固定性も良好であった。

[0034]

(実施例2)

紫外線照射処理を10分間実施した以外は、実施例1と同じ方法で延伸フィルムを得た後、紫外線照射処理したフィルムを得た。紫外線照射処理後のフィルムは、あらゆる方向に対して良好な易引裂き性を持っていた。また、ひねり固定性も良好であった。

[0035]

(実施例3)

紫外線照射処理を20分間実施した以外は、実施例1と同じ方法で延伸フィルムを得た後、紫外線照射処理したフィルムを得た。紫外線照射処理後のフィルムは、あらゆる方向に対して良好な易引裂き性を持っていた。また、ひねり固定性も良好であった。

[0036]

(実施例4および5)

実施例1の方法において、実施例1と同様の方法で得た脂肪族ポリエステル系延伸フイルムを紫外線照射することなく、電子線照射装置に導入し200KVでそれぞれ15および20Mradのエネルギーの電子線を照射することにより、実施例4および5の易引き裂き性脂肪族ポリエステル系延伸フイルムを得た。これらの実施例で得られたフイルムは、あらゆる方向に対して良好な易引裂き性を持っていた。また、ひねり固定性も良好であった。

[0037]

(比較例1)

実施例1において紫外線照射処理する前のフィルムについて、易引裂き性とひねり固定性の官能試験を実施した。横方向は、セロハンフィルムより引裂きにくく、縦方向には切断することができなかった。また、フィルムをひねると、ひねった状態を維持できなかった。

実施例ならびに比較例で得られたフィルムの評価結果を表1に示す。

【表1】

		実施例	実施例 2	実施例 3	実施例 4	実施例 5	比較例 1
フィルム 厚さ	μm	25	25	25	25	25	25
融点	r	175	175	175	175	175	175
熱処理 温度	°C	155	155	155	155	155	155
UV照射 時間	分	3	10	20		-	' 未処理
電子線 照射エネ ルギー	Mrad				15	20	未処理
端裂抵抗	N	15	10	5	13	7	55
引裂き性 (横)	_	0	0	0	0	0	Δ
引裂き性 (縦)	. –	0	0	0	0	0	×
ひねり 固定性	_	0	0	. ©	0	0	×

[0039]

【発明の効果】

本発明によって得られた脂肪族ポリエステル系延伸フィルムは、セロハンフィルムの特長である易引裂き性、ひねり固定性、透明性を有し、かつ脂肪族ポリエステルフィルムの持つ耐熱性、保香性、強靭性を合わせもつ環境対応型の生分解性フィルムであるので、食品、医薬品、電子部品等の包装材料、あるいは粘着テープ素材として好適である。

【書類名】 要約書

【要約】

【課題】 本発明は、セロハンフィルムの特長である易引裂き性、ひねり固定性、透明性を有し、かつ脂肪族系ポリエステル系延伸フィルムの特長である耐熱性、保香性、強靭性等を合わせて有する環境対応型の生分解性フィルムを提供することを目的としたものである。

【解決手段】 本発明の易引裂き性脂肪族ポリエステル系延伸フイルムは、縦方向及び横方向の端裂抵抗が22N以下であることを特徴としている。また、該易引裂き性脂肪族ポリエステル系延伸フイルムは、脂肪族ポリエステル系フイルムに活性線を照射することにより製造されることを特徴としている。

【選択図】なし

出願人履歴情報

識別番号

[000003160]

1. 変更年月日 1990年 8月10日

[変更理由] 新規登録

住 所 大阪府大阪市北区堂島浜2丁目2番8号

氏 名 東洋紡績株式会社