ANHANG: PHYSIK

by Bruno

1.1 La physique des particules

Le modele standard de la physique dans sa beauté incontestée.

1.2 Interaction gravitationelle

Definition

L'interaction gravitationnelle est une force toujours attractive qui agit sur tout ce qui possde une masse, mais avec une intensité extrmement faible (c'est l'interaction la plus faible). Son domaine d'action est l'infini.

Un corps est considéré ponctuel si sa taille $\leq \frac{\text{distance d'observation}}{100}$

$$\overrightarrow{F_g} = -\frac{G \cdot m_a \cdot m_b}{r^2} \cdot \overrightarrow{u_{AB}}$$

Si: r = AB $G = 6,67 \cdot 10^{-11} (\text{S.I})$ $\overrightarrow{u_{AB}} \rightarrow \text{vecteur norm\'e}$

1.2.1 Le champ de gravitation

Definition

Tout objet de Masse M et d'origine spaciale O crée autour de lui un champ gravitationnel.

En un point quelconque P, ce champ s'écrit $\overrightarrow{\mathcal{G}}_{(P)}$. Un deuxime objet de masse m placé en ce point P est soumis a la force de gravitation:

$$\vec{F}_{O/P} = m \cdot \vec{\mathcal{G}}_{(P)}$$

D'ou on peut tirer la formule pour le champ de gravitation d'un objet considéré ponctuel de masse M a une distance d:

$$\mathcal{G}_o = \frac{G \cdot M}{d^2}$$

Interaction électromagnétique 1.3

Definition

L'interaction éléctromagntique est une force attractive ou répulsive qui agit sur tout ce qui possde une charge éléctrique. Son domaine d'action est également l'infini.

1.3.1 Le champ électrique

Definition

La loi de Coulomb

Dans le vide, 2 corps ponctuels A et B de charges q_a et q_b exercent l'un sur l'autre des forces :

$$\vec{F}_{A/B} = K \cdot \frac{q_a \cdot q_b}{r^2} \cdot \vec{U}_{A/B}$$

avec

$$K = \frac{1}{4\pi\varepsilon_0} = 9, 0 \cdot 10^9 (S.I.)$$

 ε_0 : permittivité du vide (réponse d'un milieu donné a un champ électrique appliqué) $(8,85\cdot 10^9)$ \triangle [5ex] \overrightarrow{F} et \overrightarrow{E} n'ont pas forcément le meme sens, cela dépend de la charge q

La relation entre force électrique et champ électrique s'exprime avec q (Coulombs), charge de source:

$$\overrightarrow{F_e} = q \cdot \overrightarrow{E}$$

$$\Rightarrow F_e = |q| \cdot E$$

Le champ électrique s'exprime donc de cette maniere:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r^2} \cdot \vec{U}_{A/B}$$

$$m^2$$

 \overrightarrow{E} va dans le sens des potentiels décroissants

Les lignes de champ sont tangentes aux vecteurs champ électrique tandis que les équipotentielles relient les points ou le champ électrique possede la meme valeur(intensité)

Dans un condensateur plan, le champ électrique est uniforme (lignes de champ paralleles) et la valeur du champ électrique est

$$E = \frac{|U_{ab}|}{d} \frac{\phantom{|U_{ab}|} V}{m}$$

et, avec Q (charge totale) et S (surface des armatures)

1.3.2 Le champ magnétique

Definition

Dans une bobine: Soit B_i l'intensité du champ magnétique, I l'intensité du courant, N le nombre de spires (jointives) et l la longueur de la bobine,

$$B_i = \mu_0 \cdot \frac{N \cdot I}{l}$$

$$S.I.$$

avec la perméabilité du vide

$$\mu_0 = 4\pi \cdot 10^{-7}$$

On obtient deux bobines de Helmholz quand d=R; Le champ est donc uniforme

1.4 Mouvement, vitesse et accélération d'un systeme physique

Definition

Dans la base de Frenet: avec a_{τ} l'accélération tangentielle et a_{η} l'accélération normale et ρ le rayon de courbure,

$$a_{ au}=rac{dV}{dt}$$
 et $a_{\eta}=rac{v^2}{
ho}$ m
$$a=\sqrt{{a_{ au}}^2+{a_{\eta}}^2}$$

Voici les trois formules magiques pour un mouvement rectiligne uniformément varié:

$$a_x = cste$$

$$v_x = a_x \cdot t + v_{x0}$$

$$x = \frac{1}{2}a_x \cdot t^2 + v_{x0} + x_0$$

Dans un mouvement circulaire de rayon R, avec $\omega=\frac{\Delta\theta}{\Delta t}$ étant la vitesse angulaire,

$$V = \omega \cdot R$$
 rad/s

La fréquence f est définie

$$f(\mathrm{Hz}) = \frac{1}{T(\mathrm{s})} = \frac{\omega \, (\mathrm{rad/s})}{2\pi (\mathrm{rad})}$$

1.5 Les 3 lois de Newton

1.5.1 1^{ere} loi

Definition

Dans un référentiel galiléen, le centre d'inertie d'un solide isolé ou pseudo-isolé est animé d'un mouvement **rectiligne uniforme** (et réciproquement) :

$$\sum \vec{F}_{ext} = \vec{0}$$
 \Leftrightarrow Mvt rect. uniforme

1.5.2 2^{eme} loi

Definition

Dans un référentiel galiléen, le PFD prédit que

$$\sum \overrightarrow{F}_{ext} = m \cdot \overrightarrow{a}$$

1.5.3 3^{eme} loi

Definition

C'est le principe de l'action et de la réaction. Soient A et B deux centres d'inertie de deux objets dans un référentiel galiléen :

$$\vec{F}_{A \to B} = -\vec{F}_{B \to A}$$

1.6 Énergies et TEC

Definition

L'énergie fait bouger des choses... Il existe plusieures formes d'énergie :

- E_c L'énergie cinétique, Vitesse v : $E_c = 1/2 \cdot m \cdot v^2$
- E_{pp} L'énergie potentielle de pesanteur, Altitude z : $E_{pp} = m \cdot g \cdot z$
- ullet E_{th} L'énergie thermique, Température T
- E_c L'énergie potentielle électrique : $E_c = 1/2 \cdot C \cdot U_c^2$
- E_m L'énergie potentielle magnétique : $E_m = 1/2 \cdot L \cdot i^2$
- ullet Les énergies physique, chimique et nucléaire, Masse des corps m

L'énergie peut cependant changer de forme par un travail, transfert d'énergie :

- travail mécanique W_m (force) : $W_{A\to B}(\vec{F}) = W_{AB}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB} = F \cdot AB \cdot \cos \alpha$
- travail électrique W_e (courant électrique) : $W_{A \to B}(\overrightarrow{F}_e) = q \cdot (V_A V_B)$
- travail rayonnant W_r (rayonnement)
- chaleur Q (chaleur)

On retient aussi:

$$W_{AB}(\vec{P}) = m \cdot g \cdot (z_A - z_B)$$

$$W_{AB}(\vec{f}) = -f \cdot \widetilde{AB}$$

$$W_{AB}(\vec{R}_n) = 0$$

$$W_{AB}(\vec{F}_R) = 1/2 \cdot k \cdot (x_B^2 - x_A^2)$$

La puissance moyenne mesure la quantité d'énergie transférée par seconde :

$$P_m(\vec{F}) = \frac{W_{AB}(\vec{F})}{\Delta t}$$

La puissance instantanée:

$$P(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{v} = F \cdot v \cdot \cos \alpha$$

Le TEC:

$$\Delta E_{cA\to B} = \sum W_{AB}(\vec{F}_{ext})$$

1.7 L'analyse dimensionnelle

Definition

Les différentes dimensions sont :

- Longueur L
- \bullet Masse M
- Durée T
- Température θ
- Intensité électrique I
- Intensité lumineuse J
- Quantité de matière N

Il ne faut pas oublier les grandeurs sans dimensions, comme les angles ou les facteurs...

1.8 Mouvements dans le champ de pesanteur uniforme

Definition

La force de frottement du fluide sur le corps peut être donnée par l'expression:

$$f = k \cdot v^n$$

où k contient le coefficient de pénétration du corps et la nature du fluide et n est réel. Ce sont des coefficients seulement déterminables par des expériences.

Pour des petites vitesses (quelques cm/s), n=1, la force de frottement est donc proportionnelle à la vitesse du corps. Dans le cas d'une sphère de rayon R et η la viscosité,

$$f = (6\pi \cdot \mathbb{R} \cdot \eta) \cdot v$$

Pour des vitesses plus grandes (quelques m/s), n=2 convient mieux. Si S est la section, C_x le coefficient de trainée, ρ_{fluide} la masse volumique,

$$f = \frac{1}{2}C_x \cdot \rho_{fluide} \cdot S \cdot v^2$$

Dans une chute non libre, le régime **permanent** est atteint quand $\vec{P} = -\vec{f}$, donc quand $a = \frac{dv}{dt} = 0$.

1.9 Mouvements de satellites et des planètes

Definition

L'accélération d'un satellite terrestre est égal au champ de gravitation:

$$\vec{a} = \vec{\mathcal{G}}$$

Des formules souvent retrouvées sont :

$$g_0 \approx \mathcal{G}_0 = \frac{G \cdot M_T}{R_T^2} \Leftrightarrow G \cdot M_T = g_0 \cdot R_T^2$$

$$a = a_n = \frac{G \cdot M_T}{r^2} = \frac{v^2}{r} \Leftrightarrow v = \sqrt{\frac{G \cdot M_T}{r}} = \sqrt{\frac{g_0 \cdot R_T^2}{(R_T + h)}}$$

$$V = \frac{d}{t} = \frac{2\pi r}{T} \Leftrightarrow T = \frac{2\pi r}{v} = \frac{2\pi r}{\sqrt{\frac{G \cdot M_T}{r}}} = 2\pi \cdot \sqrt{\frac{r^3}{G \cdot M_T}} = 2\pi \cdot \sqrt{\frac{(R_T + h)^3}{g_0 \cdot R_T^2}}$$

1.9.1 Les 3 lois de Kepler

Definition

 $1^{\text{\`ere}}$ loi :

La trajectoire d'un astre (solaire) est une éllipse dont le soleil est un des foyers

 $2^{\mathsf{ème}}$ lo :

Si la planète met la mème durée pour aller de $A \to B$ que de $C \to D$, alors $\mathcal{A}_{AMB} = \mathcal{A}_{CMD}$

3ème loi:

$$\frac{T^2}{a^3} = cste$$

1.10 Systèmes oscillants

Definition

A COMPLETER APRES AVOIT FAIT LES OSCILLATEURS ÉLECTRIQUES La période propre d'un pendule simple, non amorti est :

$$T_0 = 2\pi \sqrt{\frac{l}{g}}$$

Bien que T_0 est aussi proportionnel à l'amplitude θ , ce facteur peut être négligé dans nos calculs

La période propre d'un pendule élastique horizontal non amorti est :

$$T_0 = 2\pi \sqrt{\frac{m}{k}}$$

On remarque que la **pulsation propre** ω_0 d'un pendule élastique horizontal non amorti est un peu comme la vitesse angulaire pour un oscillateur :

$$\omega_0 = \frac{2\pi}{T_0} = \sqrt{\frac{k}{m}}$$

Dans le cas d'un système oscillant amorti, on distingue entre un régime **pseudo-périodique** et un régime **apériodique** (aucune oscillation)

1.11 Oscillateurs mécaniques en régime forcé

Definition

La bande passante est l'intervalle des fréquences pour lesquelles le résonnateur donne une réponse importante en amplitude. Elle est déterminable sur le graphique de l'amplitude en fonction de la fréquence. On fait $\frac{X_{mres}}{\sqrt{2}}$ et on retrouve la largeur de la bande passante $\Delta f = f_2 - f_1$. Il en résulte le facteur de qualité Q:

$$Q = \frac{f_{res}}{\Delta f} \approx \frac{f_0}{f_2 - f_1}$$

1.12 Émission, propagation et réception des ondes

Definition

La célérité (vitesse de propagation) de l'onde est constante dans un milieu non dispersif.

$$v = \frac{d}{\Delta t} = \frac{\lambda}{T} = \lambda \cdot f$$

Une onde est périodique dans l'espace et dans le temps. Dans un moment donné, les points P_1 et P_2 du milieu (en gros, deux courbes d'onde) sont en phase si

$$d(P_1; P_2) = k \cdot \lambda \quad ; k \in \mathbb{Z}$$

et ils sont en opposition de phase si

$$d(P_1; P_2) = (2k+1) \cdot \frac{\lambda}{2}; \in \mathbb{Z}$$

L'indice de réfraction n et la célérité v_{Φ} des ondes électromagnétiques sont proportionnels:

$$v_{\Phi} = \frac{c}{n}$$

1.13 Diffraction des ondes

Definition

Il y a seulement diffraction si l'obstacle de l'onde a une dimension du même ordre de grandeur que celle-ci.

L'écart angulaire pour la diffraction par une fente est, avec a largeur de la fente, θ , mesuré entre le milieu de la tache centrale et la première extinction :

$$\theta = \frac{\lambda}{a}$$

1.14 Particules chargées dans un champ électrique ou magnétique

Definition

La force magnétique s'exerçant sur une particule de charge q est

$$\vec{F}_m = q \cdot (\vec{v} \times \vec{B})$$

, d'après la loi de Lorentz. On utilise la règle de la main droite pour le produit vectoriel. Et dans la plupart des cas, α vaut 90

$$\Rightarrow F_m = |q| \cdot v \cdot B \cdot \sin(\alpha)$$

La trajectoire d'une particule chargée dans un champ magnétique est circulaire, lorsqu'on reste dans un plan. La trajectoire dans un champ électrique est une parabole. La trajectoire rectiligne suivant l'accélération dans E passe par le milieu d'une des faces du condensateur.

1.15 Action d'un champ magnétique sur un circuit parcouru par un courant

Definition

L'intensité instantanée dans un circuit électrique est définie par :

$$i = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

Un conducteur rectiligne de longueur l, parcouru par un courant continu d'intensité I et placé dans un champ magnétique uniforme \vec{B} (\vec{l} : pouce, \vec{B} : index, $\vec{F_l}$: majeur):

$$\vec{F_l} = I \cdot (\vec{l} \times \vec{B})$$

Le flux magnétique dans une bobine a l'unité Weber (Wb) :

$$\Phi = N \cdot \vec{B} \cdot \vec{S} = N \cdot B \cdot S \cdot \cos \alpha$$

La fem d'induction suite a une variation du flux :

$$e = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

$$\Rightarrow i = \frac{e}{R} = -\frac{1}{R} \cdot \frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

1.16 Dipôles dans un circuit

1.16.1 Lois générales de dipôles

Definition

La loi d'Ohm généralisée, avec e, force électromotrice éventuelle

$$U_{AB} = R_{AB} \cdot I_{AB} - e_{AB}$$

La puissance électrique instantanée aux bornes d'un dipôle AB est exprimée en Watt (W) :

$$\mathcal{P} = U_{AB} \cdot i_{AB}$$

La puissance électrique instantanée (la bobine reçoit un travail électrique W) :

$$P = \frac{\mathrm{d}W}{\mathrm{d}t}$$

1.16.2 Le dipôle (R,L)

Definition

La Loi de Faraday-Lenz, avec L, inductance de la Bobine (Henri H)

$$e = -L \cdot \frac{\mathrm{d}i}{\mathrm{d}t}$$

Le flux propre appelé flux d'autoinduction de la bobine (WB)

$$\Phi = L \cdot i$$

La constante de temps τ :

$$\tau = \frac{L}{R}$$

La tension aux bornes d'une Bobine avec une résistance propre r si $i_{A \to B}$

$$u_{AB} = r \cdot i + L \cdot \frac{\mathrm{d}i}{\mathrm{d}t}$$

L'équation différentielle à établir aura toujours des +

$$U_G = R_T \cdot i + L \cdot \frac{\mathrm{d}i}{\mathrm{d}t}$$

L'énergie (potentielle) magnétique emmagasinée par une bobine est :

$$E_m = \frac{1}{2} \cdot L \cdot i^2$$

1.16.3 Le dipôle (R,C)

Definition

La capacité du condensateur C (Farad F) est sa capacité à acquérir une certaine charge :

$$q = C \cdot U_c$$

La capacité C en fonction de l'aire de la surface des armatures A, de la distance entre les armatures d et la permittivité absolue de l'isolant ε . ε_0 est la permittivité du vide et ε_r la permittivité relative ou constante diéléctrique du matériau utilisé :

$$C = \frac{\varepsilon_0 \cdot \varepsilon_r \cdot A}{d}$$

Lors de l'association en série, l'inverse des capacités est additionné :

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$$

Branchés en parallèle, les capacités des condensateurs sont additionnées.

La constante de temps τ : $\tau = R \cdot C$

L'intensité aux bornes du condensateur lors de la charge et de la décharge :

$$i = C \cdot \frac{\mathrm{d}U_C}{\mathrm{d}t} = C \cdot \frac{\mathrm{d}U_{AB}}{\mathrm{d}t}$$

L'équation différentielle à établir aura toujours des +

$$U_G = \frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{RC}$$

L'énergie (potentielle) électrique emmagasinée par le condensateur initialement déchargé est :

$$E_c = \frac{1}{2} \cdot C \cdot U_c^2$$

1.16.4 Le dipôle (R,L,C) et les oscillations électriques

Definition

On rappelle la pulsation propre $\omega_0=rac{2\pi}{T_0}$

La période propre T_0 des oscillations électriques est :

$$T_0 = 2\pi\sqrt{LC}$$

$$\Rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$$