Droites et plans de l'espace

1. Vecteurs de l'espace

1.1 Définition d'un vecteur de l'espace

Proposition et définition.

Soit A et B deux points de l'espace. On associe le $\overrightarrow{vecteur}$ \overrightarrow{AB} à la translation qui transforme A en B. Deux vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si et seulement si est un parallélogramme (éventuellement aplati). On peut alors noter $\overrightarrow{u} = \overrightarrow{AB} = \overrightarrow{CD}$ et on dit que \overrightarrow{AB} et \overrightarrow{CD} sont des du vecteur \overrightarrow{u} .

Remarques.

- Deux vecteurs sont égaux s'ils ont même
- Lorsque A et B sont *confondus*, on dit que le vecteur \overrightarrow{AB} est et on le note $\overrightarrow{0}$.

Théorème admis. Soit \overrightarrow{u} et A un point de l'espace. Il existe un unique point M tel que $\overrightarrow{AM} = \overrightarrow{u}$ et on dit que \overrightarrow{AM} est le représentant de \overrightarrow{u} d'origine A.

Mini-exercice. On considère le cube ABCDEFGH représenté ci-dessous. Construire les points M et N tels que :

- $\overrightarrow{AM} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AE} + \frac{1}{2}\overrightarrow{EH}$.
- $\overrightarrow{AN} = \overrightarrow{AE} + \overrightarrow{AC} + \overrightarrow{HE}$.

2

1.2 Opérations sur les vecteurs de l'espace

Définition. Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace de représentants respectifs $\overrightarrow{u} = \overrightarrow{AB}$ et $\overrightarrow{v} = \overrightarrow{AC}$. La *somme* des vecteurs \overrightarrow{u} et \overrightarrow{v} est le vecteur noté $\overrightarrow{u} + \overrightarrow{v}$ de représentant \overrightarrow{AD} tel que \overrightarrow{ABDC} soit un parallélogramme.

Proposition (Relation de Chasles).

Pour tous points A, B et C de l'espace, $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Définition.

- Soit \overrightarrow{u} un vecteur non nul. Le vecteur $k\overrightarrow{u}$ est le vecteur qui a :
 - la *même direction* que le vecteur \overrightarrow{u} ;
 - le *même sens* que \overrightarrow{u} si k > 0, le *sens contraire* de \overrightarrow{u} si k < 0;
 - pour norme $|k| \times ||\overrightarrow{u}||$.
- Pour tout vecteur \overrightarrow{u} et pour tout réel k, $0\overrightarrow{u} = k\overrightarrow{0} = \overrightarrow{0}$.

Propriétés. Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace et k et k' deux réels.

- $k\overrightarrow{u} = \overrightarrow{0} \iff k = 0$ ou $\overrightarrow{u} = \overrightarrow{0}$.
- $k(k'\overrightarrow{u}) = kk'\overrightarrow{u}$.
- $(k+k')\overrightarrow{u} = k\overrightarrow{u} + k'\overrightarrow{u}$.
- $k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$.

Définition. Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs de l'espace. On dit que \overrightarrow{u} et \overrightarrow{v} sont *colinéaires* s'il existe un réel k tel que $\overrightarrow{u} = k \overrightarrow{v}$ ou $\overrightarrow{v} = k \overrightarrow{u}$.

Remarques.

- Deux vecteurs non nuls sont colinéaires si et seulement
- Le vecteur nul est colinéaire à tout vecteur.

Mini-exercice.

On considère le tétraèdre ABCD représenté ci-dessous.

- 1. Construire les points M et N tels que $\overrightarrow{BM} = \frac{1}{3}\overrightarrow{BA}$ et $\overrightarrow{CN} = 2\overrightarrow{BC}$.
- 2. Démontrer que les vecteurs \overrightarrow{MC} et \overrightarrow{AN} sont colinéaires.

2. Droites et plans de l'espace

2.1 Caractérisation vectorielle d'une droite

Définition.

Soit A et B deux points distincts de l'espace. La droite (AB) est l'ensemble des points M tels que les vecteurs \overrightarrow{AM} et \overrightarrow{AB} sont : on a donc $\overrightarrow{AM} = k\overrightarrow{AB}$ où $k \in \mathbb{R}$ et le vecteur \overrightarrow{AB} est un vecteur de la droite (AB).

2.2 Caractérisation vectorielle d'un plan

Définitions.

Soit \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace tels que \overrightarrow{u} et \overrightarrow{v} ne sont \overrightarrow{pas} colinéaires. \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont $\overrightarrow{coplanaires}$ lorsqu'il existe deux réels x et y tels que :

$$\overrightarrow{w} = x\overrightarrow{u} + y\overrightarrow{v}$$

On dit alors que le vecteur \overrightarrow{u} est une **combinaison linéaire** des vecteurs \overrightarrow{u} et \overrightarrow{v} .

Définitions.

• On dit que des points sont *coplanaires* s'il existe un plan qui contient ces plans.

Soit A, B et C trois points **non alignés** de l'espace.

• Le plan (ABC) est l'ensemble des points M tels que :

$$\overrightarrow{AM} = x\overrightarrow{AB} + y\overrightarrow{AC}$$
, où $x \in \mathbb{R}$ et $y \in \mathbb{R}$

• Les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont des *vecteurs directeurs* du plan (ABC), $(\overrightarrow{AB} \overrightarrow{AC})$ est une *base* de ce plan et $(A; \overrightarrow{AB}, \overrightarrow{AC})$ est un *repère* de ce plan.

Remarque: trois points sont *toujours* coplanaires.

Propriété. Soit \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs de l'espace tels que $\overrightarrow{u} = \overrightarrow{AB}$, $\overrightarrow{v} = \overrightarrow{AC}$ et $\overrightarrow{w} = \overrightarrow{AD}$. \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont *coplanaires* si et seulement si les points A, B, C et D sont *coplanaires*.

Exemple. $\overrightarrow{u} = \overrightarrow{AH}$, $\overrightarrow{v} = \overrightarrow{BC}$ et $\overrightarrow{w} = \overrightarrow{BF}$. On a $\overrightarrow{v} = \overrightarrow{AD}$ et $\overrightarrow{w} = \overrightarrow{AE}$. Or A, D, H et E sont quatre points coplanaires donc les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires.

3. Positions relatives de droites et de plans

3.1 Positions relatives de deux droites

Définitions. Soit d une droite de vecteur directeur \overrightarrow{u} et d' une droite de vecteur directeur $\overrightarrow{u'}$.

- d et d' sont parallèles lorsque \overrightarrow{u} et $\overrightarrow{u'}$ sont
- d et d' sont *coplanaires* lorsqu'il existe un plan qui contient d et d' et non coplanaires sinon.

Propriétés. Soit A, B, C et D quatre points distincts de l'espace.

- Les droites (AB) et (CD) sont *coplanaires* si les points A, B, C et D sont *coplanaires*, c'est-à-dire s'il existe un plan contenant les quatre points A, B, C et D.
- Deux droites sont *coplanaires* si et seulement si elles sont *sécantes* ou *parallèles*.
- Si deux droites sont *non coplanaires*, alors leur intersection est *vide*.

Exemples.

3.2 Positions relatives d'une droite et d'un plan

Définitions et propriétés.

- Une droite est *parallèle à un plan* lorsqu'elle admet un vecteur directeur colinéaire à un vecteur directeur de ce plan.
- Si une droite n'est pas parallèle à un plan, alors elle a un

Exemples.

3.3 Positions relatives de deux plans

Définition et propriétés.

- Deux plans sont *parallèles* lorsqu'ils admettent un même couple de vecteurs directeurs non colinéaires.
- Deux plans non parallèles sont sécants suivant une droite.
- Lorsque deux plans sont parallèles, tout plan coupant l'un coupe l'autre et les droites d'intersection sont parallèles.
- Théorème du toit. Soit d une droite parallèle à deux plans \mathscr{P} et \mathscr{P}' sécants en une droite Δ . Alors d est parallèle à Δ .

4. Repères de l'espace

4.1 Base de l'espace

Définition. Une *base de l'espace* est formée d'un triplet de vecteurs $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ non coplanaires.

Propriété et définition. Soit $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ une base de l'espace.

Pour tout vecteur \overrightarrow{u} de l'espace, il existe un unique triplet (x; y; z) tel que $\overrightarrow{u} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$.

$$(x\,;\,y\,;\,z)$$
 sont les **coordonnées** de \overrightarrow{u} dans cette base et on note $\overrightarrow{u} \left(egin{array}{c} x \\ y \\ z \end{array} \right)$.

4.2 Repère de l'espace

Définition. Un *repère de l'espace* est formé d'un point donné O et d'une base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. On note $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ un tel repère et O est l'*origine* du repère.

Proposition et définition.

Soit $(O;;\overrightarrow{i};\overrightarrow{j};\overrightarrow{k})$ un repère de l'espace. Pour tout point M de l'espace, il existe un unique triplet (x;y;z) tel que $\overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$, ce triplet (x;y;z) ou encore $\begin{pmatrix} x\\y\\z \end{pmatrix}$ est le triplet **de coordonnées** du point M dans le repère $(O;\overrightarrow{i};\overrightarrow{j};\overrightarrow{k})$ et z est appelée la cote de M.

Propriétés.

On se place dans un repère $(O\,;\,;\overrightarrow{i}\,;\,\overrightarrow{j}\,;\,\overrightarrow{k})$ de l'espace.

- 1. Pour deux points $A\begin{pmatrix} x_A \\ y_A \\ z_A \end{pmatrix}$ et $B\begin{pmatrix} x_B \\ y_B \\ z_B \end{pmatrix}$ on a : $\overrightarrow{AB}\begin{pmatrix} x_B x_A \\ y_B y_A \\ z_B z_A \end{pmatrix}$
- 2. Coordonnées de K milieu de [AB] : $\left(\begin{array}{c} 2 \\ \frac{y_B + y_A}{2} \\ \frac{z_B + z_A}{2} \end{array} \right)$
- 3. Si $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ alors $\overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$ et pour tout réel λ on a $\lambda \overrightarrow{u} \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda z \end{pmatrix}$

Exercice. On considère le cube ABCDEFGH donné ci-contre :

1. Soit $\overrightarrow{u} = \overrightarrow{AB}$, $\overrightarrow{v} = \overrightarrow{AC}$ et $\overrightarrow{w} = \overrightarrow{AE}$. Justifier que $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ est une base de l'espace.

.....

- 2. Exprimer les vecteurs suivants en fonction de \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} . En déduire leurs coordonnées dans la base $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$.
 - (a) \overrightarrow{AH}

.....

(b) \overrightarrow{BH}
