Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

0.751577V 0.3457

4934日18

JUN 2 2 1977

Summary of Cotton Fiber and Processing Test Results

unip of

1976

LIBRARY

PLANT VARIETY PROTECTION CATICAL U. S. DEPARTMENT OF AGRICULTO.

U.S. DEPARTMENT OF AGRICULTURE Agricultural Marketing Service Cotton Division June 1977

CONTENTS

Introduction	Page 3
Sampling procedures	3
Map: Distribution of production areas	4
Laboratory procedures	5
Test Results Table 1 - Area and U. S. summary Table 2 - State summary Table 3 - Grade and Staple summary. Table 4 - Variety and state summary. Table 5 - Short staple results. Table 6 - Medium staple results. Table 7 - Long staple results. Table 8 - Extra long staple results, American Pima. Simple Correlations	7 10 12 16 20 24 30 58 61
Table 9 - Results for short staple	63 65 67
Multiple Correlations Table 12 - Grade, staple, mike, "O" gage, unif short staple Table 13 - Color, nonlint, 2.5% length, mike - short staple Table 14 - 2.5% length, mike, 1/8" gage, unif., elong short staple Table 15 - Grade, staple, mike, "O" gage, unif medium staple Table 16 - Color, nonlint, 2.5% length, mike - medium staple Table 17 - 2.5% length, mike, 1/8" gage, unif., elong medium staple Table 18 - Grade, staple, mike, "O" gage, unif long staple, carded yarns.	70 72 74 76 78 80
Table 19 - Color, nonlint, 2.5% length, mike, - long staple carded yarns Table 20 - 2.5% length, mike, 1/8" gage, unif., elong long staple carded yarns	84
Table 21 - Grade, staple, mike, "O" gage, unif long staple combed yarns	88,
combed yarns	90 92
Measures used in statistical analysis	94
Basis for interpretation of test results	98 -
Table 24 - Standard machine settings and specifications for processing specified staple length groupings	116

SUMMARY OF COTTON FIBER AND PROCESSING TEST RESULTS CROP of 1976

INTRODUCTION

This report contains information on the fiber properties and spinning performance of cotton from major commercial production areas of the United States. Similar reports have been published annually since 1946. 1/2 These reports summarize and add supplemental information to the data published in biweekly reports which were titled "Cotton Fiber and Processing Test Results, Crop of 1976" and numbered 1 through 11.

The results of fiber and spinning tests made in connection with these annual surveys provide data for studies of the relationships between fiber properties, processing performance and product quality. The data are used to measure the effectiveness of the standards to be sure that they continue to reflect differences in spinning utility. Publication of the biweekly reports enables merchants and manufacturers to use the results to locate sources of cotton to meet their specific requirements. Farmers and breeders may also use the data as a source of quality information regarding the various varieties of cottons produced under commercial growing conditions.

SAMPLING PROCEDURES

The procedure for selecting samples for the 1976 survey was designed to provide test lots representing all major varieties in each of the territories served by Cotton Division classing offices. Variety selections were based on the predominant varieties planted in each classing office territory as reported by the Cotton Division in "Cotton Varieties Planted, 1972-1976". A production area was selected to represent the leading variety and one to represent each of the other varieties with an expected production of 10,000 bales or more in each classing office territory. Additional areas were selected for those varieties with a production of over 150,000 bales. One additional production area was selected for each 150,000 bales or portion thereof in excess of the first 150,000 bales. Production areas with at least 70 percent of one variety were designated as that variety with no attempt made to maintain the purity of the variety except by selection of representative production areas. However, in some cases, where there was unusual interest in a particular variety and a low percentage was planted in the area, the classing offices selected lots representing 100 percent of the variety. The locations of the 128 production areas selected for the 1976 survey are shown on figure 1.

1/ Copies of past summary reports may be obtained from the Standardization Section, Cotton Division, AMS, USDA, 4841 Summer Avenue, Memphis, Tennessee 38122 until supplies are exhausted.

Figure 1. Location of production areas selected for the 1976 Survey.

Test lots were collected from each production area at intervals of three weeks during the harvest season. Lots were selected to represent the predominant grade and staple being classed at the time of collection. For the most part, these areas produce the specified qualities in quantities large enough to enable buyers to obtain lots of even-running grade and staple. Obviously, other qualities of cotton are available in each area as a result of normal seasonal, soil, harvesting and other variations. Most production areas also produce cotton of varieties other than those included in the tests.

Each spinning lot used in this study was made up of 20 to 30 samples of the same grade and staple length from bales classed for growers under the Smith-Doxey Act. These even-running lots of samples were then tested at Cotton Division fiber and spinning laboratories. While this method of collecting samples does not provide data for all qualities in the crop, it does provide average test results for those qualities in largest supply during each three-week period.

LABORATORY PROCEDURES

Fiber, spinning, and chemical finishing tests were performed under standardized procedures at the Cotton Division spinning laboratory at Clemson, South Carolina. Most of the fiber tests were performed in the standard atmospheric conditions of 65 percent relative humidity at a temperature of 70 degrees F. Standard test procedures as outlined by the American Society for Testing and Materials were used in making tests. Tests not covered by ASTM were performed using commonly accepted procedures as recommended by the instrument manufacturer. Five subsamples were taken at random from each spinning lot to provide representative specimens for the fiber tests.

Yarn processing or spinning tests were performed by a technique developed in the Cotton Division laboratories for processing small lots of cotton on standard-type textile machines. The samples in each lot were thoroughly composited by hand-mixing before being fed to the first process picker. This hand-mixing is similar to the machine mixing normally obtained in cotton textile opening equipment. Observations were made at each process to measure processing behavior and the yarns produced were tested to measure product quality.

On the basis of average past performance, cottons were grouped according to the expected staple length for the specified variety. All cottons of the specified variety were spun in the same manner regardless of difference in staple length. This was done so that direct comparisons of different lots of cotton within a specified variety could be made. These samples were

carded at specified production rates and spun into numbers that reflect the manufacturing values of the varieties tested. In general, the rates of carding and yarn numbers spun from the 1976 crop are as follows:

- Group 1.--Short staple cottons, carded at 12-1/2 pounds per hour and spun into carded 8s and 22s yarns with a twist multiplier of 4.40 plus a carded yarn spinning potential test for all lots. This includes varieties which normally produce staple lengths 31/32 and shorter.
- Group 2.--Medium staple cottons, carded at 9-1/2 pounds per hour and spun into carded 22s and 50s yarns with a twist multiplier of 4.00 plus a carded yarn spinning potential test for all lots. This group includes varieties which normally produce cottons from 1 inch through 1-3/32 inches in staple length.
- Group 3.--Iong staple cottons, carded at 6-1/2 pounds per hour and spun into both carded and combed 22s and 50s yarns with a twist multiplier of 3.80 plus a carded yarn spinning potential test for all lots. This group includes upland varieties which normally produce cottons from 1-1/8 inches through 1-1/4 inches in staple length.
- Group 4.--Extra long staple cottons, carded at 4-1/2 pounds per hour and spun into combed 50s and 80s yarns with a twist multiplier of 3.60. This group includes all American Pima and American upland extra long staple varieties, which are usually 1-5/16 inches or longer in staple length.

Skeins of yarn from each spinning test lot were bleached and dyed by a technique developed in the Cotton Division laboratories for small scale finishing tests. Color tests were made on gray and chemically finished skeins of yarn as measures of the bleaching and dyeing behavior.

TEST RESULTS

U. S. AVERAGE - Upland Cotton

American upland spinning lots tested from the 1976 crop totaled 365, which includes short, medium and long staple cottons. This compares with 369 lots tested from the 1975 crop. Average fiber test results show 1976 cottons to have about the same fiber length, uniformity and strength as in 1975. These cottons were coarser than in 1975. Shirley Analyzer nonlint content was slightly lower, while picker and card waste was slightly higher in 1976. Yarns spun from these samples showed slightly weaker yarn strength, but fewer yarn imperfections. The average spinning potential yarn number was lower (Table 1).

Group 1.--Short Staple Cottons

A total of 59 short staple American upland spinning lots was tested from the 1976 crop compared to 65 in 1975. Average fiber test results show the 1976 cottons to be coarser and weaker at both zero and 1/8" gage strength tests. Shirley Analyzer nonlint content was much lower while picker and card waste was higher than a year ago. Yarns spun from these samples were considerably weaker, but appearance grades were higher than 1975 cottons. Yarn imperfections were fewer than a year ago. The average spinning potential yarn number was lower.

Group 2.--Medium Staple Cottons

American upland medium staple spinning lots tested from the 1976 crop totaled 286 compared with 263 from the 1975 crop. Average test results for the 1976 cottons tested showed these cottons to be slightly shorter and stronger at zero gage strength tests than in 1975. Shirley Analyzer nonlint content was slightly lower, while picker and card waste was higher than a year ago. Yarns spun from these samples were slightly stronger with lower appearance grades than in 1975. Yarn imperfections were lower in the 1976 cottons. Average spinning potential was slightly lower.

The <u>Southeastern</u> production area includes North Carolina, South Carolina, Georgia and Alabama. A total of 50 medium staple spinning lots was tested in 1976 compared to 44 in 1975. Average results in 1976 showed the cottons to be longer, more uniform, coarser and stronger than in 1975. Shirley Analyzer nonlint content was much lower in 1976. Yarns spun from these samples were much stronger with slightly higher appearance grades. Yarn imperfections were fewer than a year ago. Average spinning potential yarn number was higher.

The South Central production area includes the states of Tennessee, Missouri, Mississippi, Arkansas and Louisiana. A total of 124 medium staple lots was tested from this area compared to 114 in 1975. Average test results in 1976 showed these cottons significantly shorter, less uniform, finer and stronger at zero gage strength than in 1975. Shirley Analyzer nonlint content was lower, while picker and card waste was higher. Yarns spun from these samples were slightly stronger, but showed lower appearance grades than a year ago. Yarn imperfections were fewer. Average spinning potential yarn number was lower.

The Southwestern production area consists of the states of Oklahoma and Texas except far west Texas (served by the El Paso classing Office). A total of 39 medium staple American upland spinning lots was tested from the 1976 crop compared to 36 from the 1975 crop. Average results showed the 1976 cottons to be longer, more uniform, coarser and weaker at zero gage strength than the 1975 crop. Shirley Analyzer nonlint content was lower in 1976, while picker and card waste was considerably higher. Yarns spun from these samples showed higher appearance grades and fewer imperfections. Average spinning potential was slightly lower than a year ago.

The Western production area consists of California, Arizona, New Mexico and far west Texas. A total of 73 medium staple spinning lots was tested from this area in 1976 compared with 69 lots for the 1975 crop. Average test results from these medium staple samples show 1976 cottons to be slightly shorter, coarser and weaker at both zero and 1/8" gage strength tests than in 1975. Shirley Analyzer nonlint content was slightly lower, while picker and card waste was higher. Yarns spun from these samples show weaker yarn skein strength with lower appearance grades than in 1975. Yarn imperfections were fewer. Average spinning potential was lower in 1976.

Group 3.--Long Staple Cottons

American upland long staple spinning lots tested from the 1976 crop totaled 20 compared to 41 lots in 1975. Average results show 1976 cottons to be considerably longer, more uniform and coarser than a year ago. Both Shirley Analyzer nonlint content and picker and card waste were lower than a year ago. Yarns spun from these samples were much stronger with slightly fewer imperfections than a year ago. Average spinning potential was higher.

A total of 12 long staple American upland spinning lots was tested in 1976 from the <u>Southeastern</u> area compared to 18 lots in 1975. Average fiber test results from these long staple samples show 1976 cottons to be significantly longer, more uniform, coarser and stronger than a year earlier. Both Shirley Analyzer nonlint content and picker and card waste were significantly lower. Yarns spun from these samples were considerably stronger than a year ago. Yarn appearance grades were lower with more yarn imperfections. Average spinning potential yarn number was much higher.

A total of three long staple American upland spinning lots was tested in 1976 from the South Central area compared to 6 lots in 1975. Average fiber test results show the 1976 cottons to be slightly longer, less uniform, finer and stronger than a year ago. Both Shirley Analyzer nonlint content and picker and card waste were considerably lower than in 1975. Yarns spun from these samples show stronger yarn skein strength, but appearance grades were considerably lower. Yarn imperfections were fewer than a year ago. Average spinning potential yarn number was lower.

A total of five long staple American upland spinning lots was tested in 1976 from the <u>Western</u> area compared to 17 lots in 1975. Average fiber test results from these long staple lots show 1976 cottons to be longer, more uniform and slightly coarser than in 1975. Both Shirley Analyzer nonlint content and picker and card waste were much higher than a year ago. Yarns spun from these samples were stronger with higher appearance grades than a year ago. Yarn imperfections were fewer in 1976. Average spinning potential yarn number was higher.

Group 4.--Extra Long Staple

A total of 18 extra long staple American Pima spinning lots was tested from the <u>Western</u> area compared with 15 lots tested in 1975. Average fiber test results show 1976 extra long staple cottons to be longer, slightly less variable, and weaker at zero gage strength than 1975 cottons. Shirley Analyzer nonlint content, picker and card waste and comber waste were all lower than in 1975. Combed yarn spun from these samples were slightly weaker. Yarn appearance grades were higher than a year ago. Yarn imperfections were slightly fewer than in 1975.

Table 1.--Cotton: Average results of classification, fiber and processing tests from selected gin points, crops of 1975 and 1976

	1		1				-	10-			
	Spin.	Potent.	No.		743 740		53	59), % % R	(928
results	Yarn	imperf. 22s	No.		20 14		80	21 17	- ar	13 (1	19
Processing test	Appear-	ance 22s	Index		106		98	101	\	7 88	97
Proces	Skein	strength 22s	Lbs.		86 88		97	105	103	123 118	108
	Picker	& Card Waste	Pct.		9.9		6.9	7.0		ν.ν. υ ν.ω	ري 8 م
	Shirley	non- lint	Pct.		3.5		w w 0 d	w 0	, ww	, ma	w. 9.
1ts	Strength	1/8" gage	01		22 21		23 53	83 33		25	23
t results	Str	Zero gage	Mpsi		85 84		83	8 8 8 8 9	8 8 8	89 89	86 87
Fiber test		Mike	Rdg.		3.6		4.5	44	3.7	, t	. t. t
E	aph	50/2.5 unif.	Pct.		45 45		44 45	t t 2	43	7 7 5 5 5	45
	Fibrograph	2.5% span	In.		0.95		1.07	1.10	1.05	1.12	1.09
	Staple		32d in	þ	30.8	nd	34.1 34.3	34.8	33.5	35.3	34.6 34.5
	Grade		Index 32d	n uplan	91	American upland	81	92	91	5 58	93
	Lots		No.	American upland	65		14 20	o r al 114 124	36	69	263 286
	Area and Crop Year	•		SHORT STAPLE -	1976 1976	MEDIUM STAPLE -	Southeast 1975 1976	South Cent r al 1975 11 1976 12	Southwest 1975 1976	West 1975 1976	Average 1975 1976

r	1	,		1			-11-			
		Spin.	Potent.	No.	75	62 57	89	4 <i>L</i>	58	Comber Waste 18.4
	results	Yarn	imperi. 22s	No.	19	13	35	83 83	23 19	Yarn 3
	Processing test results	Appear-	ance 22s	Index	110	110	82 84		86 88	Combed 107 110
	Proces	Skein	strength 22s	Lbs.	91	104	.138 144	113	107	50's (67 67 65
		Picker	Waste	Pct.	9.6	9,0	8.7	9.1	6.3	7.4
		Shirley	non- lint	Pct.	3.7	3.8	3.1	w w v. w.	m m .0	3.0
	lts	Strength	1/8" gage	G/tex	23	23	26 27	56	88	34
	t resu	Str	Zero	Mpsi	85	88	93	89	86	104
	Fiber test results		М1ке	Rdg.	なな	4.0	33.3	8.0.	4.0	9.9
	Fi	aph	50/2.5 unif.	Pct.	43	t 23	45	45	45 45	ray 32 31
		Fibrograph	2.5% 5 span	In.	1.09	1.11	1.16	1.12	1.07	1.47 32 1.49 31
		Staple		32d in	34.2 35.2	35.3	36.5	35.4	34.0 33.9	Pima 44.3 44.9
		Grade		Index 32d	upland 87 93	46	98	92	92	- American -5 3
		Lots		No.	American upland 18 87 12 93	tral 6	17	41	369 365	——————————————————————————————————————
		Area and Crop Year			LONG STAPLE - A Southeast 1975 1976	South Central 1975 1976	West 1975 1976	Average 1975 1976	U. S. UPLAND AVG. 1975 3 1976 3	EXTRA LONG STAPLE West 1975

Table 1. -- Continued

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1975 and 1976

							-	12-							
an inning	Potential	No.	54	5,52	50	55	53	51 61	54 73	60	55	63 57	60	57 58	26
Picker	& card waste	Pet.	5.8	7.4	7.1	4.9 6.1	9.4 7.2	10.0	9.7	8.9 9.9	5.5 7.6	5.5	6.7 4.9	5.5	v.v.
stock	Com- posite	Index	88	95 85	88	. 88	93	៩%	88	88	100	100	99	8.8	88
of raw	Yellow- ness	No.	നന	നന	ოო	ოო	ma	ოო	നന	a 6	ma	લ લ	ળ ળ	mm	· m m
Color	Gray- ness	Ŋ.	m 01	നന	m a	તા તા	юн	.a α'		ma	ΝН	2 4	લ લ	α α	તા તા
Shirley Analyzer	non- lint	Pet.	3.3	4.6	3.8	0 0 0 0	3.9	4.0 4.1	3.8 4.8	2.6 3.1	0 œ .	9.8	ო ო ო ო	3.1 3.3	3.4
Elon-	gation 1/8"	Bet:	6.9	6.5	5.8 4.9	6.1	6.6	6.5	5.6	5.7	6.9	6.9	4.9	8.9	4.7
strength	1/8" gage	G/tex	23.23	สู่ธุ	정청	23 53	55 57 57	23 54	53 56	25 25	23.23	 ଅଅ	53	22	8 8
Fiber st	Zero gage	Mpsi	88.48	88 78	87 88	18 88	84 85	88	87 89	83 87	85 87	48 84	88	83 87	88
Micro-	naire	Rdg.	0.7.	7°7 7°4	7.7	4.5	8.4 9.5 6.4	4.4	1.1. 1.1	44.	1.4	4.1	E. 4.	4.3	r. r. 4
length	50/2.5 unif.	Pet.	44	45 46	24	45 45	41 43	ŧξ	9t 11	44.5	717 577	†† ††	44 44	47	45 45
Fiber	2.5% span	.ul	1.06	1.07	1.08	1.08	1.08	1.08	1.11	1.12	1.11	1.11	1.10	1.10	1.05
ication	Staple	32d in.	33.9 33.9	33.9 34.8	34.8 34.8	34.6 34.2	33.7 34.0	34.2 35.0	35.0 35.7	35.0 36.0	34.9 34.6	34.9	34.9	34.8 34.5	34.3 33.8
Classification	Grade	Index	8 8	88 88	ह्य	8,84	£8	87 91	83	\$ K	833	95	28	88	88
Spinning	lots tested	.cN	242	12 12	9 9	ıνœ	9 60	9 8	നന	m m	333	5 ⁷	45 48	12	15
Area	state and crop year	SOUTHEAST Medium staple:	Alabama 1975 1976	<u>Georgia</u> 1975 1976	North Carolina 1975 1976	South Carolina 1975 1976	Long staple: Alabama 1975 1976	Georgia 1975 1976	North Carolina 1975 1976	South Carolina 1975 1976	SOUTH CENTRAL Medium staple: Arkansas 1975 1976	Louisiana 1975 1976	Mississippi 1975 1976	Missouri 1975 1976	<u>Tennessee</u> 1 <i>9</i> 75 1 <i>9</i> 76

red yarn	Com- posite	Index	101	100	100	101	102 104	98 105	97 105	100	106	103	104 104	107	104
Color 22s dyed yarn	Blue- ness	위	25.6 26.4	25.3	25.3	25.5 26.4	25.5 26.1	25.2	25.2	25.5	26.3 26.5	25.9	26.0	26.6	26.0
Col	Reflect- ance	뛢	27.6 26.9	27.4 27.5	27.8 26.8	27.7	27.2 27.4	28.3	28.9	28.1 26.9	26.6 26.9	27.1	27.0	26.7	27.3
ed yarn	Com- posite	Index	106	105 98	101	104	110	104 42	103	108	105	106	106	106	104
Color 22s bleached yarn	Yellow- ness	₽I	۳. « « «	8.8 9.0	3.4	0.60	3.1	3.4	3.1 3.2	9.69 9.99	3.0 3.0	3.1	3.1	3. 3.1.	8.0°
Color 2	Reflect-	뗾	85.9 83.1	85.4 82.7	83.9 82.3	84.6 82.7	87.4 83.6	85.1 82.2	84.4 83.2	86.0 82.7	85.1 83.2	85.6	85.3 83.3	85.4 83.1	85.0 82.9
Yarn imprfctns	Second	No.	50s 22 17	20 14	18	16 16	91	13 14	18	1.2	15 15	17	16	15	16 14
Yarn in	22s on 27 tex	8	27	25 19	52	ର ଜ	8,8	17	25 16	13 26		22 16	21 16	18	21 18
Yarn appearance	Second	Index	50s 71 77	77	75 82	70 81	77 83	83	88	88	75	78	8 80	79	83
Yarn ap	22s or 27 tex	Index	35	88	105	8,8	103	115	103	120 97	197	99	101	10 2 95	104
elongation	Second	Pet.	50s 4.2 4.4	8.4 9.9	5.2 5.2	6.4 6.4	83.9 1.1	3.6	3.6	3.8	۳. ۲. ۲.	4.7	7°7	4.5	4.3
Yarn ele		Pet.	0.9	5.5	5.6	5.5	3.5	7°.5	4.9 5.8	5.9	80.0	6.4	6.1	6.3	6.0
Yarn strength	Second	Ibs.	50 <u>s</u> 31 34	35	29	32 35	34, 28	27	30 43	29 43	34 35	37	36	32 35	32 34
Yarn s	22s or £7 tex	Ibs.	99	93 105	38	100	92 104	86 113	94 121	98	104 108	111	106	100	101
	Spinning lots tested	No.	75 5†	1.2 1.2	99	ſνœ	9 m	9 m	നന	mm	333	6 42	45 48	12 12	15
Area	state and crop year	SOUTHEAST	Alabama 1975 1976	<u>Georgia</u> 1975 1976	North Carolina 1975 1976	South Carolina 1975 1976	Long staple: Alabama 1975 1976	<u>Georgia</u> 1975 1976	North Carolina 1975 1976	South Carolina 1975 1976	SOUTH CENTRAL Medium staple: Arkansas 1975 1976	Louisiana 1975 1976	Mississippi 1975 1976	Missouri 1975 1976	Tennessee 1975 1976

Table 2.--Cotton: Average results of classification, fiber tests, and carded yarn processing tests by state for American upland samples from selected gin points, crops of 1975 and 1976--Continued

- anioni	Potential	No.	57	36 36	54 T	94 36	60 58	56 55	52 49	57 49	72 74	89 99	8,51
8	Pote	žI	0 IV	3 4	44	-∄ M	ΦM	ľΔľΛ	₩.±	グユ		φ δν	ळळ
Picker	& card waste	Pct.	& & & &	5.7 7.4	6.8	4.9	4.7 6.0	7.4	8.2 7.9	5.7	4.5	8.8	8.8
tock	Com- posite	Index	100	100	8/8	88	97	101	. 100	103 102	103	104	103
of raw stock	Yellow- ness	No.	ળ ળ	1 1	44	4 %	നന	നന	wπ	ოო	ma	લ લ	ИH
Color	Gray-	શ્ર	aa	αm	വന	તા તા	21	н а	ณ ๓	нп	пп	0 1	нн
Shirley	non- lint	Pet.	4.1 3.6	9.0° 5.0°	0°4 1°8	3.8	9.6 9.0	3.0	1.4 7.4	4.0. 4.0.		8.4 8.3	3.6
Elon-	gation 1/8"	Pet.	5.6	6.0	6.5	6.7	6.9	6.5	6.9	6.9	7.0 6.0	0.9	5.7
strength	1/8" gage	G/tex	55 55 55 55 55 55 55 55 55 55 55 55 55	883	21	22.22	88	8181	ଅଷ	25 25	. 68	86	79 88 150 88
Fiber st	Zero gage	Mps1	89 91	88 85	1 8	83 86	81 81	82 81	98 ts	98 84	\$ %	8833	1 68
Micro-	naire	Rdg.	3.8	٦.٦. ٦.٦	3.4	3.7	4.4 6.0	4.0	9.60	ሳ .	0.0.	3.3 5.7	8 8 8 8 8 8
ber length	50/2.5 unif.	Pet.	64 44 74	†††	45 45	2 2	9 [†] 1	†††	14 14 14	1 11	22	24 54	44 44
Fiber	2.5% span	i	1.15	1.01	46.	88	1.08	1.07	1.02	1.10	1.12	1.16	1.17
ication	Staple	32d in.	37.0	32.0 31.0	30.3	31.2	34.2 33.6	33.9	32.7 33.2	35.1 34.8	35.4 35.6	36.3 37.0	37.0
Classification	Grade	Index	84	95	8,8	8.8	88	895	888	99	83	たお	88
Spinning	lots tested	No.	നന	15	38 41	9.60	18 18	99	15	15	54 148	3 8	ma
Area	state and crop year	SOUTH CENTRAL (Continued) Long staple:	Mississippi 1975 1976 SOUTHWEST Short stanler	Short Staple: Central Texas 1975 1976	Northwest Texas 1975 1976	<u>Oklahoma</u> 1975 1976	Medium staple: South Texas 1975 1976	Central Texas 1975 1976	Northwest Texas 1975 1976	WEST Medium staple: Arizona 1975 1976	California 1975 1976	Long staple: New Mexico 1975 1976	West Texas 1975 1976

											a				
dyed yarn	Com- posite	Index	102		108	102	106		106	105 104	98	107 104	102 103	105	104 102
Color 22s dy	Blue- ness	위	25.7		26.8 26.1	25.4	26.0		26.5 26.5	26.5	24.9 25.8	26.4 26.3	25.5	25.7	25.7
8	Reflect- ance	묎	27.2		26.8 27.8	26.9 26.8	25.8 27.0		27.1 27.2	27.2 27.7	27.7 27.2	26.3 27.4	27.2 27.4	26.2	26.6
d yarn	Com- posite	Index	108		107	100	100		108 104	107 104	102	105 103	104 103	105 103	102
Color 22s bleached yarn	Yellow- ness	₽	0.0		60 m	3.5	3.0		8.6 6.0	3.1 2.9	3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	3.1	8.0 6.0	w 0,	ლ თ თ დ
Color 2	Reflect-	묎	86.2 83.0		86.4 83.5	83.8 82.9	83.3 82.6		86.5 84.5	86.0 84.3	84.5 83.4	85.0 83.6	84.7 83.7	85.3 83.9	84.0 8 2. 8
Yarn imprfctns	Second	No. 50s	17 16	8 8	8,8	41 28	38	50s	18	17	37 28	16 15	17 16	33 31	26 18
Yarn im	22s or 27 tex	No.	20 20		17	20	17		18 18	S 75	45 36	20 18	83	53 4 t	31 25
Yarn appearance	Second	Index 50s	77	8 8	127 127	123 124	123 130	50s	82 81	74 72	63 67	76 07	73	65	70
Yarn ap	22s or 27 tex	Index	103 97		711	104	107		102	88	72 81	95 91	93 87	80	888
elongation	Second	Pet.	4.4	8 S	7.1	7.4	7.9	50s	4.6	2.4 4.2	4.3 6.4	τ. μ 1. μ	7.4 7.4	7.0 4.0	4.8 4.6
Yarn el	22s or 27 tex	Pct.	5.5		6.1	6.0	5.3		0.9	5.9	6.1		6.0	6.5	6.9
Yarn strength	Second	Lbs. 50s	36	8 S	328 275	301	306 264	50s	35	33	333	30	45 45	52 53	55 47
Yarn s	22s or 27 tex	Lbs.	411 109		103 85	88	833		103	102	104 102	107	128 123	138 145	141 141
Spinning	lots tested	. No.	ოო		15	38 41	0/ M		12 18	00	15	15 25	45 48	12 3	mα
Area	state and crop year	SOUTH CENTRAL (Continued) Long stable:	Mississippi 1975 1976	SOUTHWEST Short staple:	Central lexas 1975 1976	Northwest Texas 1975 1976	Oklahoma 1975 1976	Medium staple:	1975 1976	Central Texas 1975 1976	Northwest Texas 1975 1976	WEST Medium staple: Arizona 1975 1976	California 1975 1976	Long staple: New Mexico 1975 1976	West Texas 1975 1976

Table 3.--Cotton: Average results of fiber and carded yarn processing tests by grade and staple combinations for American upland samples from selected gin points, crop of 1976

Spinning	Poten- tial	No.		33 40	34 39	51		47 53 60	51 57	29	96	58 60	47 59 65	09	49 56 55	59 65 65
Picker	& card waste	Pet.		6.0	4.7	7.2		7.1	6.8	6.3	7.2	5.6	66.6 5.1.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	6.1	6.9 7.1 6.9	7.0.v 7.0.8
stock	Com- posite	Index		88	38	95		99 100 99	84	32	ż	10¼ 103	99 101 101	86	28E	102 101 101
Color of raw s	Yellow- ness	횙		4 K	<i>44</i>	4		m m m	44	4	ю	લ લ	ପରାପର	m	887	๗๓๓
COJC	Gray- ness	No.		લ લ	mα	m		йча	a พ	ю	т	٦ ٥	8 1 1 1	a a	พผผ	нчч
Shirley	Analyzer non- lint	Pet.		4°0°E	3.5	4.3		ู่ ผู้ผู้ ผู้	3.4	3.1	†• †	8.0 .0	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	3.0	+ d + d + d + d + d + d + d + d + d + d	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Elon-	gation 1/8"	Pet.		6.1	6.6	7.2		7.8 6.9 1.	7.0	6.7	9.9	7.6	7.99 7.099	6.7	5.8	66.9
strength	1/8" gage	G/tex		2 2	20	21		ଌଌୣ୷	ଖ ଶ	22	23	જ જ	\$\$\$\$\$	53	នេនន	23 23 23 23
Fiber s	Zero gage	Mpsi		98 88	86 85	81		83 48 78	8 2 85	83	98	- 88 86	87 88 87 88	98	91 88 88	79 84 81
Micro-	naire	Rdg.		4.6 5.1	44.5	3.5		4 t t . 5	4.5	0.4	9.4	4.4	4444	3.9	4.0	4.7.5
Fiber length	50/2.5 unif.	Pet.		45 45	, 45 45	94		45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	45 45	45	91	45 45	4445	‡	###	9 [†] 173 168
Fiber	2.5% span	il.		96.	.92 .97	.97		1.04	1.03	1.08	1.06	1.08	1.02 1.07 1.10 1.13	1.06	1.01	1.03 1.06 1.13
Spinning	lots tested	No.		നന	11	†		m 00 h	η 7	n	9	N 10	7 47 31 3	٣	273	ろろら
p,	taple	32d in.		30 31	30	32		33 34 35	33 34	34,	35	34 35	33 34 35 36	34	33 34 35	33 34 35
Staple group,	area, grade and staple	Code	ROUP	32	1,2	52	GROUP	14	1,2	143	51	31	141	742	51	14
Stapl	grade	Name	SHORT STAPLE GROUP	Southwest Mid Lt Sp	SLM Lt Sp	IM Lt Sp	MEDIUM STAPLE GROUP	Southeast	SIM It Sp	SIM Sp	LM	South Central Mid	NIS	SIM Lt Sp	MI	Southwest SIM

ed yarn	Com- posite	Index		107	103 104	107		105 106 103	105	108	104	108	103 105 106	107	100 103 103	105 107 106
Color 22s dyed yarn	Blue- ness	위		26.6 26.7	26.1 26.1	26.5		26.4 26.4 26.1	26.2 26.1	26.8	26.0	26.9 26.7	26.0 26.4 26.8 26.8	56.6	25.6 26.1 26.2	26.1 26.7 26.5
တိ	Reflect- ance	묎		26.7 26.7	27.4 27.3	26.5		26.9 27.0 27.5	26.8	26.7	27.4	26.8 27.0	27.5 27.2 27.1 26.7	26.4	28.3 27.5 27.6	27.3 27.2 27.2
ed yarn	Com- posite	Index		100	101	101		99 100 10 2	88	88	%	102 104	100 101 102 102	100	102 98 100	107 101 104
Color 22s bleached yarn	Yellow- ness	위		3°5° 8°5°	3.5	3.2		ww. v	3.5	3.5	3.6	9.9 9.9		3.0	6 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0
Color 2	Reflect- ance	RG		83.3 82.1	82.7 83.3	83.5		83.0 82.9 83.4	82.6 82.5	82.9	82.4	83.6 83.7	82.7 83.3 83.4 84.0	82.8	83.7 82.1 82.5	85.5 83.5 84.4
Yarn imprfctns	Second	No.		8s 16 19	8 8	38		50s 19 16 17	16 13	18	1,4	12	12 14 14 14	19	18 17 14	17 10 15
Yarn i	22s on 27 tex	No.		11	13	8		ର ର ର	20 16	52	18	13 13	15 16 17 18	27	25 18 18	8 11 8
Yarn appearance	Second	Index		8 <u>s</u> 127 127	125 128	120		77 77	8 88	8	83	88	81 79 77	29	70 77 76	98 28 28
Yarn ap	22s or 27 tex	Index		117	110	102		288	100	100	102	102	101	8	888	88 418
elongation	Second	Pet.		8s 6.8 7.1	6.9	7.8		50s 4.0 4.3	4.2	4.9	4.2	4.5	7 7 7 7 V	ካ • ካ	44.5	444
Yarn el	22s or 27 tex	Ret:		5.4	5.5	6.5		6.7 7.88.1	7, 7, 8, 8,	6.2	5.7	4.9	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	0.9	5.6	6.1.
Yarn strength	Second	Lbs.		88 284 273	267 275	302		20s 33 37	29 33	39	34	36	31 38 39	35	33 34 34	38
<u> </u>	22s or 27 tex	Ibs.		86 87	883 86	100		96 103 112	103	113	107	111	99 105 112	105	103 104 106	99 105 112
Solution	lots tested	No.		mm	113	7		763	1 1	m	9	N N	47 31 33	m	273	NNN
	Je	32d in.		30	30	32	ρų	33 34 35	33	34	35	34	32 34 33	34	33 34 35	33 34 35
100	a, stap		GROUP	32	142	52	GROU	[†] 1	5+ 1+2	1+3	51	31	141	p 42	12	t 1
atron of reado	area, area, grade and staple	Name Code	SHORT STAPLE GROUP	Southwest Mid Lt Sp	SLM Lt Sp	IM Lt Sp	MEDIUM STAPLE GROUP	Southeast SIM	SLM Lt Sp	ds Mis	IM	South Central Mid 31	SLM	SIM Lt Sp	IIM	Southwest

Table 3.--Cotton: Average results of fiber and carded yarn processing tests by grade and staple combinations for American upland samples from selected gin points, crop of 1976--(Continued)

Stapl	Staple group,		Spinning	Fiber	Fiber length	Mi oro.	Fiber strength	trength	Elon-	Shirley	Colo	Color of raw stock	ock	Picker	Spinning
g grade	area, grade and staple	aple	lots tested	2.5% span	50/2.5 unif.	naire	Zero	1/8" gage	gation 1/8"	non- lint	Gray- ness	Yellow- ness	Com- posite	waste	tial
Name	Code	32d in.	No.	넵	Pet.	Rdg.	Mpsi	G/tex	Pet.	Pet.	No.	<u>%</u>	Index	Pct.	No.
MEDIUM STAPLE GROUP (Continued)	GROUP	(Continue	d)												
Southwest SLM Lt Sp	75	34	m	1.09	94	4.2	82	23	6.8	3.9	α	4	66	8.9	59
West Mid	31	34 35	F-80 9	1.08 1.09 1.13	£443	5.4.4 5.4.4	48 48	8 63 8	4.9 4.9 4.9	2.0 1.8 1.8	110	๓๓๓	103 104 104	7.7.7. 7.0.E.	47 54 71
SIM+	04	36	7	1.12	94	4.0	76	27	6.1	2.1	٦,	α	103	5.4	77
SIM	14	35	18	1.11	94 44	1.4 1.0	88 8	25 27	6.5	p.9.3	нн	ന ന	100	6.0	49
LONG STAPLE GROUP	ROUP														
Southeast	Ľή	34	۳4	1.10	44 46	r.4 4.4	88	42,82	6.9	7.2 4.5	ㄷ ơ	a a	101	7.2	56 74
South Central	al 41	35	m	1.12	715	3.7	91	%	5.8	3.6	α	α	100	8.9	57

										-17-
ed yarn	Com- posite	Index		109	104 104 105	105	103		104 105	103
Color 22s dyed yarn	Blue- ness	위		27.0	86.3	26.3	26.0		26.1 26.2	25.9
Colc	Reflect- ance	낊		26.5	27.4 27.5 27.2	27.2	27.6		27.4	27.5
d yern	Com- posite	Index		101	102 104 103	103	103		103	101
Color 22s bleached yarn	Yellow- ness	위		3.3	9.9.9 9.9.8	3.0	20.0		3.3	3.0
Color 2	Reflect- ance	Rd		84.0	83.4 84.1 83.6	84.1	83.6 83.6		83.6 82.6	83.0
Yarn imprfctns	Second	No.		21	14 17	15	17		14 14	16
Yarn im	22s or 27 tex	No.		30	16 19 16	19	8 8		8 8	8
Yarn appearance	Second	Index		73	69 70 75	77	477 747		833	73
Yarn app	22s or 27 tex	Index		8	95 95	8	96		107	76
Yarn elongation	Second	Pet.		4.7	3.8	14.8	4.4		4.1 4.7	3.8
Yarn ele	22s or 27 tex	Pct.		6.3	6.59	6.1	6.0		5.5	5.3
Yarn strength	Second	Lbs.		37	£ 3.59	24	38 46		†† †*	36
Yarn s	22s or 2 7 tex	Lbs.		109	94 104 126	134	115		104 123	109
Spinning	lots	No		m	L 89	7	1.8		۳,4	m
	le	in.	inued)	34	34 35	36	35.		34	35
group	sa, l stap.	32d in.	(Cont	745	. 31	04	41	ROUP	47	al 1-1
Staple group,	area, grade and staple	Name Code	MEDIUM STAPLE (Continued)	Southwest SIM Lt Sp 42	West	+WIS	WIS	LONG STAPLE GROUP	Southeast SIM	South Central

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1976

Spring	Potential	No.	37 43	3 2 37	41 41		92	T9	59	52 54	ار د	9	54	61 60 62	59	
-		Pct.	7.5	7.5	7.8		5.8	5.6	6.1	6.8 5.8	4 . 8	9•9	8.1	6.1 5.5 6.0	5.8	
	Com-w	Index	53	82	94 97		101	102	8	88	g	8	8	102 10 2 101	102	
of raw stock	Yellow- ness	No.	⊅ €	3 4	4 E		a	m	ત્ય	_ ব ব	9	ন	. <u>r</u>	લા લા લા	Q	
Color	Gray-	No.	നന	ma	m a		1	1	Q	ma	<i>‡</i>	4	m	аеа	г	
Shirley	non- lint	Pet.	8. t.	3.5	%.0 %.0		2.3	ή . 2	3.5	9.9 9.9	6.4	3.6	5.3	ดูเล ซเกล	2.6	
Elon-	gation 1/8"	Pet.	6.6	6.9 9.0	0.9		6.2	6.1	6.9	6.5	9.9	e.5	9.9	7.8 7.4 7.3	η·9	
strength	1/8" gage	G/tex	23	19	ನ ನ		56	27	23	23 83	23	た	53	* ************************************	. 83	
Fiber st	Zero gage	Mpsi	81 80	88 863	888		91	%	ή8	88 87	83	8	81	8888	정	
Micro-	naire	Rdg.	4.0	4.4	9.4		3.9	3.9	3.6	7.4	3.5	ተ- ተ	3.2	44.1	4.7	
ber length	50/2.5 unif.	Pet.	77 97	149 149	43		91	911	1 /1	9t 24	141	44	41	445	24	
Fiber	2.5% span	il il	%%	ġġ.	1.00		1.13	1.12	1.08	1.03	1,11	1.05	1.09	1.10	1.09	
cation	Staple	32d in.	30.7	30.0	31.5		35.7	36.0	34.7	34.0	35.0	34.0	34.3	34.8 34.8 34.8	34.0	
Classification	Grade	Index	80	8/8	₫8		95	ま	91	88	79	89	82	8 8 8 8 8	ま	
Spinning	lots tested	No.	mm	നന	99		18	9	т	നന	т	α	т	9 9 8 1	т	
Processing group,	variety, and state	SHORT STÁPLE	Lankart 611 Central Texas Northwest Texas	Lankart 57 Central Texas Northwest Texas	Lankart LX571 Central Texas Northwest Texas	MEDIUM STAPLE	Acala SJ-2 California	Acala SJ-4 California	Auburn M Missouri	Coker 201 North Carolina South Carolina	Coker 312 Northwest Texas	Coker 417 South Carolina	Coker 5110 Northwest Texas	Deltapine 16 Arkansas Louisiana Mississippi	Deltapine 25 Louisiana	Deltapine 55

	4)															
ed yarn	Com- posite	Index	104	104 104	102 104		103	102	105	104 106	103	104	104	108 105 105	107	103
Color 22s dyed yarn	Blue- ness	위	26.2 26.3	26.4 26.0	26.1 26.2		26.0	25.8	zé.2	25.9	25.7	26.2	85.9	26.8 4.26.4	26.6	26.0
[00]	Reflect- ance	EG	27.6 27.3	27.8 27.0	27.9		27,4	27.5	27.0	26.6	27.0	27.8	56.9	26.7 27.2 27.3	27.0	27.6
ed yarn	Com- posite	Index	100	103	98		103	103	100	92	101	8.	100	102 103 103	102	102
Color 22s bleached yarn	Yellow- ness	₽I	3.3	3.3	33.4 4.4		6.9	8.8	3.1	2.9	3.3	μ.1	3.5	9.99	ø. 8	2.5
Color	Reflect- ance	묎	83.5 82.4	84.3 82.4	83.3 81.8		83.9	83.8	83,2	81,8 83,2	83,5	83.0	83,6	83.4 83.5 83.5	83.3	83.0
Yarn imprfctns	Second	No.	8s 18 40	9.6	88		508 16	17	18	19	e t	12	35	51 151	13	80
Yarn i	22s on 27 tex	No.	Yarns 13 21	13	15		23	23	2 	11 83	53	18	84	118	17	12
Yarn appearance	Second	Index	Carded 8s 127 120	127 130	128 125		50s 69	20	73	90	09	85	09	78 77 74	87	80
Yarn ap	22s or 27 tex	Index	110	107	112		98	88	83	107 97	70	110	70	288	107	103
Yarn elongation	Second	Pet.	8s 7.5	9.9	6.5		50s 4.8	4.8	9.4	3.8 4.1	9.4	г. _т	4.7	7.4 7.4 7.4	4.3	3.9
Yarn el	22s or 27 tex	Pet.	5.8	5.6	5.7.		6.2	6.2	6.5	5.5	6.1	5.6	6.5	4.4.4	5.9	5.6
Yarn strength	Second	Lbs.	8s 276 276	268 265	284 276		50s 45	84	36	30 34	35	37	36	37 37 38	37	34
Yarn s	22s or 27 tex	Lbs.	90	79	8,8		130	136) 110	97	105	112	110	411 111 411	113	107
Spinning	lots	No.	mm	നന	99		18	9	8	നസ	m	S	m	9.99	е	т
Processing group,	variety, and state	SHORT STAPLE	Lankart 611 Central Texas Northwest Texas	Lankart 57 Central Texas Northwest Texas	Lankart 1X571 Central Texas Northwest Texas	MEDIUM STAPLE	Acala SJ-2 California	Acala SJ-4 California	Auburn M Missouri	Coker 201 North Carolina South Carolina	Coker 312 Northwest Texas	Coker 417 South Carolina	Coker 5110 Northwest Texas	Deltapine 16 Arkansas Iouisiana Mississippi	Deltapine 25 Louisiana	Deltapine 55 Mississippi

Table 4.--Cotton: Average of classification, fiber tests, and yarn processing tests by variety for samples from selected 100 percent one-variety gin points, crop of 1976--Continued

	Spinning Potential													
	Spir Poter	No.	57 71 50 49	62 50	28	55 72 72 75 23 55 72 75 75 75 75 75 75 75 75 75 75 75 75 75	6† 6†	45	94	55		61 87 87 77		
7	& card waste	Pet.	0.00.00	6.8	6.9	7. 66. 7. 67. 67. 7.	7.0	9.9	8.3	4.60		7.0 6.1 6.8		6.9
stock	Com- posite	Index	102 101 101 103	8.8	88	88912889	99	86	101	103		10888		88
of raw	Yellow-	છુ	ณ ๗ ๓ ๗	നവ	ณ ค	± ผผผพฅ	ოო	m	m	aм		๛๛ฅ๗		νν
Color	Gray- ness	હ્યું	4440	ന്ന	ณ ณ	0 H H 0 0 H	21	Ø	7	3 ٢		ର ର ର ର		≯ €
Shirley	Analyzer non- lint	Pet.	1.9.9.1 2.9.1	9. † †	4.8 8.8	99999999999999999999999999999999999999	ળ ળ જ ળ	3.4	3.0	5.2		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3.0
5	gation 1/8"	Pet:	7.9 6.7 6.9	6.8 5.2	6.2	<u>, ο υ ο ο ο</u> σ υ σ σ τ σ	5.1	6.2	5.6	7.1		6.5 5.57 8		7.4
strength	1/8" gage	G/tex	\$ \$3 £8 \$	ಸ ಸ	3.63	ងួយសួលស	22	23	21	22		8688		35
Fiber st		Mpsi	88 86 85 85	87	87 89	88888 80000	90	89	88	76 83		85 89 87 91		105
	Micro- naire	Rigies	44 V4 6000	†•† †	9.4	, , , , , , , , , , , , , , , , , , ,	4.7 4.1	4.4	3.5	88. 7.4.		3.47		3.7
length	50/2.5 unif.	Bet.	2777	†† 12	74e 74e	44444 837244	77.7	45	42	64 62 42		20 20 20 20 20 20 20 20 20 20 20 20 20 2		32 29
Fiber		퇴	1.08	1.04	1.13	1.04	1.07	1.02	1.04	1.02		1.15		1.50 1.49
Classification	Staple	32d in.	34.7 34.3 35.0 34.7	35.0 33.0	35.7 34.0	33.0 34.7 34.2 34.2 33.7	34.0 34.0	33.3	34.0	33.0 31.3		35.0 35.7 36.0 35.0		45.0
Classif	Grade	Index	2558	85 85	8,8	885555	4 8	8	16	13.5		5885		⊅ €
o i un i un	lots tested	S	m m m m	ma	mm	28 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	mm	m	m	mm		๛๛๛๛	Pima	98
Decoration	rocessing group, variety, and state	MEDIUM STAPLE (Continued)	Deltapine 61 Louisiana Mississippi Arizona California	Dixie King III Georgia Mississippi	McNair 612 North Carolina South Carolina	Stoneville 213 Alabama Arkansas Louisiana Missisippi Missouri South Texas	Stoneville 256 Mississippi Arizona	Stoneville 603 Alabama	Stoneville 731N Arkansas	Tamcot SP37 South Texas Central Texas	LONG STAPLE	Coker 310 Georgia North Carolina South Carolina Mississippi	EXTRA LONG STAPLE - American Pima	Fina S-5 Arizona New Mexico

ed yarn	Com- posite	Index	105 108 102	103	106	105 106 104 106	102	104	102	105	105 105 103		104
Color 22s dyed yarn	Blue- ness	위	26.4 27.0 25.9 25.8	25.9	26.6 26.3	88888 88655 8865 8865 8865 8865 8865 88	25.8	25.9	25.7	26.3 25.8	86.33 86.33 86.33		26.3
Col	Reflect-	뀖	27.2 26.9 27.7 28.0	27.3 28.6	26.9 27.1	27.1 26.9 27.0 27.6 27.2 27.3	27.6	26.9	27.5	27.2	27.2 27.1 26.9 27.5		27.8
d yarn	Com- posite	Index	101 105 101 103	93 102	98	99 100 100 99 101	100	%	100	108	100 101		101
22s bleached yarn	Yellow- ness	₽	0.00.00 0.00.00	4.3 3.0	3.5		0.0	3.5	3.1	8.8 1.8	4 m m m m m m m m m m m m m m m m m m m		4.8
Color 2	Reflect- ance	낊	82.8 84.2 83.1 83.1	82.0 83.6	82.8 81.9	83.1 82.5 82.6 82.7	82.8 83.5	82.1	83.1	85.9 84.2	82.2 83.2 82.7 83.0		83.8 82.3
Yarn imprfctns	Second	No.	13 16 16	10	20 15	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	91	17	%	19	14 12 16		80s 1 S
Yarn in	22s on 27 tex	No.	15 13 19	12	28 19	21 13 20 12	11	55	31	24 33	17 16 26 20		50s 1
Yarn appearance	Second	Index	80 87 73	90	73 83	77 88 85 97 97	87 60	77	09	60	3888		80s 107 110
Yarn ap	22s or 27 tex	Index	103 103 97 87	107	93	100 96 102 106 95	107	93	. 77	80	107 107 97 97		50s 108 103
ngation	Second	Pct.	44 mw ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.4	4.6 6.4	w4 w w4 4 o w o o w w	3.4	3.6	3.9	4.7	444 8.444 8.444		808 1.6 4.6
Yarn elongation	22s or 27 tex	Pct.	50.00 50.00 50.00	5.5	5.7	~~~~~~ ~~~~~~~	5.0	5.3	5.4	5.5	~~~~ ~~~~~~		50s 5.4 5.6
Yarn strength	Second	Lbs.	36 41 32 31	37 34	40 35	27 32 32 33 34 35	30	27	30	33 27	36 36 36 36 36 36 36 36 36 36 36 36 36 3		80s 35 36
Yarn st	22s or 27 tex	Lbs.	110 121 101 98	114	119	92 107 103 101 106 106	88	. 63	76	. 8	113 121 121 109		50s 99 67
100	lots tested	No.	നനനന	m 01	mm	1833 1866 1868	mm	8	_ا	mm	ოოოო		9 m
	rrocessing group, variety, and state	MEDIUM STAPLE (Continued)	Deltapine 61 Louisiana Mississippi Arizona California	Dixie King III Georgia Mississippi	McNair 612 North Carolina South Carolina	Stoneville 213 Alabama Arkansas Louisiana Mississippi Missouri South Texas	Stoneville 256 Mississippi Arizona	Stoneville 603 Alabama	Stoneville 731N Arkansas	Tancot SP37 South Texas Central Texas	LONG STAPLE Coker 310 Georgia North Carolina South Carolina Mississippi	EXTRA LONG STAPLE	Pima S-5 Arizona New Mcxico

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1976

1/0 gation visible viotal Gray- religion- color color	ea, Digital	교	Fib	Fibrograph	Mi Charles		strength	Elon-		Analyzer	Color	of raw	stock	Picker
100 PERCENT Pet. Pet. No. No. Index Inde	and Classification 2.5% span 50/2.5 Micro-Zero Length unif.	span 50/2.5 Micro- th unif.	.5 Micro- f. naire		Zerc Gage	• "	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite	& Card waste
PERCENT 20 6.8 2.2 3.1 2 4 98 21 6.7 3.1 4.7 3 4 96 20 6.8 2.2 4 3.6 3 4 96 20 6.4 2.4 3.6 3.8 4 95 PERCENT 19 5.6 1.7 2.2 2.9 2 4 96 21 5.7 2.8 2.9 2 4 96 21 5.7 2.8 3.8 3 9 95 21 5.8 1.4 2.2 3 3.3 3 4 93 PERCENT 21 5.8 1.4 2.2 3 99 22 6.4 3.7 5.0 3 3 9 95 23 6.4 3.7 5.0 3 3 3 9 95 24 5.9 2.3 3.3 3 3 9 95 25 6.4 3.7 5.0 3 3 3 9 95 26 8.1 3.4 4.6 3 3 3 3 9 95 27 8.1 3.4 4.6 3 3 3 3 9 95 28 6.7 2.8 3.6 2 3 3 3 9 95 29 PERCENT 21 5.8 1.9 2.5 3.3 3 3 9 95 22 6.7 2.8 3.6 2 3 3 3 9 95 23 6.7 2.8 3.6 2 3 3 3 9 95 24 99 25 6.7 2.8 3.8 4 9 99 26 6.7 2.8 3.8 5 9 99 27 6.8 3.8 5.0 3 3 3 9 99 28 6.7 2.8 3.6 2 3 3 3 9 97 29 6.7 2.8 3.6 2 3 3 3 9 97 20 8.1 3.4 4.6 3 3 3 9 99 21 5.4 1.6 1.8 2.6 3 3 9 99 22 6.7 2.8 3.6 2 3 3 9 97	32d in. In. Pct. Rdg. Mpsi	Pct. Rdg.	Rdg.	,	Mpsi		G/tex	Pct.	Pet.	Pct.	No.	No.	Index	Pet.
20 6.8 2.2 3.1 2 4 98 21 6.7 3.1 4.7 3 4 96 20 6.4 2.4 3.6 3 4 96 PEKCENT 19 5.6 1.7 2.5 2 4 94 20 5.9 2.7 3.9 3 4 94 21 5.9 2.2 2.9 2 4 94 21 5.7 2.8 4.2 3 4 94 19 5.7 2.8 4.2 3 4 95 21 5.7 2.8 4.2 3 4 95 20 5.9 2.2 3.3 3 4 93 21 5.9 1.9 2.6 3.3 3 4 95 22 5.9 2.5 2.5 3.3 3 4 95 22 5.9	LANKART 611					10	O PERCENT							
PERCENT 19 5.6 1.7 2.5 2 4 97 20 6.0 2.3 3.2 3 4 99 PERCENT 21 5.4 2.2 2.9 2 4 98 21 5.7 2.8 4.2 3 4 99 PERCENT 21 5.8 1.4 2.2 3 4 99 21 5.9 2.3 3.3 3 4 99 PERCENT 22 6.4 2.6 3.7 5.0 3 99 PERCENT 23 8.1 2.5 3.8 4 99 PERCENT 24 2.6 3.7 5.0 3 99 PERCENT 25 6.4 6.6 3.7 5.0 3 99 PERCENT 26 8.1 2.5 3.8 4 99 PERCENT 27 6.4 2.6 3.8 4 4 99 PERCENT 28 8.1 2.5 3.8 3 99 PERCENT 29 8.1 2.5 3.8 3 99 PERCENT 21 8.1 2.5 3.8 3 99 PERCENT 22 6.7 2.8 1.0 4.0 9 3 99 PERCENT 23 8.1 2.5 3.6 4.9 3 3 99 PERCENT 24 99 25 6.7 2.8 3.6 2 3 99 26 6.7 2.8 3.6 2 3 3 99 27 6.8 3.6 2.9 3 99 28 6.7 2.8 3.6 2 3 3 99	31 0.98 45 4.3 79 31 0.97 43 3.9 80 30 0.91 44 3.8 84	45 4°3 43 3°9 44 3°8	4 W W	₩ Ç ₩	79 80 84		20 21 20	6.8	2.2 3.1 2.4	3.6	N W W	446	98 96 91	8 . 9 8 . 10 . 8
19 5.6 1.7 2.5 2 4 97 20 6.0 2.3 3.9 3 4 94 20 6.0 2.3 2.2 3.9 3 4 94 21 5.4 2.2 2.2 2.9 2 4 96 21 5.7 2.8 4.2 3 4 95 21 5.7 2.8 4.2 3 4 96 19 6.0 3.2 3.3 4 95 20 5.9 1.4 2.2 3 4 95 21 5.9 1.9 2.6 3.3 4 95 22 6.4 2.6 3.8 4 95 22 6.4 3.7 5.0 3 3 95 20 8.1 3.4 4.6 95 3 3 95 22 5.9 2.6 3.8	LANKART 57					10								
21 5.4 2.2 2.9 2 4 98 21 5.7 2.8 4.2 3 4 95 19 6.0 3.2 3.8 3 4 95 21 5.8 1.4 2.2 3 3 4 93 21 5.8 1.4 2.2 3 3 4 93 21 5.8 1.9 2.6 3 3 4 93 22 6.4 3.7 5.0 3 3 3 95 22 6.4 3.7 5.0 3 3 3 99 PERCENT 21 6.4 2.6 3.8 4 4 89 22 5.9 2.5 3.3 3 3 995 22 6.4 4.6 3.7 5.0 93 PERCENT 21 6.4 2.5 3.8 4 99 22 6.4 3.7 5.0 99 24 4.9 3 3 3 99 25 FRCENT 21 8.1 2.5 3.3 3 3 99 26 5.9 5.9 5.6 3.8 3 3 99 27 6.8 1.8 3.6 4.9 3 3 3 99 28 6.7 2.6 2.8 3.8 2 3 99 28 6.7 2.8 3.8 2 3 99 29 6.7 2.8 3.8 3.8 2 3 99 21 5.4 1.6 1.8 2.6 2 3 99 21 6.8 2.1 2.6 2 3 99	30 0.92 42 4.4 82 30 0.95 43 4.5 82 30 0.95 43 4.3 84	42 4°4 43 4°5 43 4°3	4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		82 82 84		19 19 20	5.6 5.9	1.72.72.3	2.5 3.9 3.2	~~~	444	97 94 95	6.7 8.2 6.8
21 5.4 2.2 2.9 2 4 98 19 6.0 3.2 4.2 3 4 95 19 6.0 3.2 3.8 3 4 95 21 5.9 2.3 3.3 4 95 20 5.9 2.3 3.3 4 95 21 5.9 2.3 3.3 4 93 PERCENT 1.9 2.6 3.8 4 93 22 6.4 3.7 5.0 3 3 95 22 6.4 3.7 5.0 3 3 95 22 6.4 3.7 5.0 3 3 95 21 8.1 2.5 3.3 3 95 21 7.6 3.6 4.0 3 3 95 22 8.1 1.6 4.0 3 3 95 22 6.7	LANKART LX571	ART LX571	1			10								
21 5.8 1.4 2.2 3 4 95 20 5.9 2.3 3.3 3 4 93 21 5.8 1.9 2.6 3 4 93 21 5.8 1.9 2.6 3 9 4 93 22 6.4 2.6 3.8 4 4 89 22 6.4 3.7 5.0 3 3 3 95 22 6.4 3.7 5.0 3 3 99 24 8.1 2.5 3.3 3 3 99 26 8.1 2.5 3.3 3 99 27 8.1 3.4 4.6 3 99 28 8.1 2.5 3.4 4.6 3 99 29 PERCENT 21 5.4 1.6 1.8 2 3 99 21 5.4 1.6 1.8 2.5 3 99 21 5.4 2.6 2 3 99 21 5.4 2.6 2.8 3.6 2 3 99 21 5.4 2.6 2.8 3.6 2 3 99	31 0.98 45 4.6 87 30 0.96 45 4.9 85 30 0.94 44 5.0 92	45 4°6 45 4°9 44 5°0	4 4 6 9 0 0	v 4 C	87 85 92		21 21 19	5.4		2.9 4.2 3.8	~~~	4 4 M	8 0 0 8 2 4	7.9 8.2 7.3
20 5.8 1.4 2.2 3 4 95 21 5.8 1.9 2.3 3.3 3 4 993 21 6.4 2.6 3.8 4 4 93 22 6.4 3.7 5.0 3 9 95 22 6.4 3.7 5.0 3 9 95 22 6.4 3.7 5.0 3 9 95 22 1 8.1 2.5 3.3 3 95 21 8.1 2.5 3.3 3 95 21 8.1 2.5 4.6 3 9 99 22 6.7 2.8 3.6 2 3 99 21 5.4 1.6 1.8 2 9 97 21 5.4 1.6 1.8 2.5 3 99 21 5.4 2.8 3.6 2 3 99 21 5.4 2.8 3.6 2 3 99 21 6.8 2.1 2.5 3 3 99	LANKART 57					6								
21 6.4 2.6 3.8 4 4 4 89 22 6.4 3.7 5.0 3 3 95 22 6.4 3.7 5.0 3 3 95 22 5.9 2.6 3.8 3 3 95 21 8.1 2.5 3.3 3 3 95 21 8.1 2.5 4.6 3 99 22 6.7 2.8 3.6 4.9 3 99 21 5.4 1.6 1.8 2 3 99 21 5.4 1.6 1.8 2 3 99 21 5.4 1.6 1.8 2 3 99 21 5.4 2.8 3.6 2 3 99 21 5.4 2.8 3.6 2 3 99	32 0.96 47 4.8 89 31 0.98 45 4.6 87 31 0.97 44 4.6 87	47 4.8 45 4.6 4.6	444 800		89 87 87		21 20 21	5 5 5 8	1.4 2.3 1.9	2°5 3°3 2°6	ттт	444	9 9 9	6.9
22 6.4 2.6 3.8 4 4 89 22 6.4 3.7 5.0 3 8 9 95 22 5.9 2.6 3.8 3 3 9 95 22 8.1 2.5 3.3 3 3 95 21 8.1 2.5 4.6 3 9 95 21 7.6 3.6 4.9 3 3 99 22 6.7 2.8 3.6 2 3 99 21 5.4 1.6 1.8 2 99 21 5.4 2.8 3.6 2 3 99 21 6.8 2.1 2.6 2 3 99	LANKART LX571			1	-	Ó	O PERCENT							
PERCENT 21 8.1 2.5 3.3 3 3 95 20 8.1 3.4 4.6 3 3 95 21 7.6 3.6 4.9 3 3 99 PERCENT 21 5.4 1.6 1.8 2 3 99 21 6.8 2.1 2.6 2 3 97	33 1.08 43 3.8 82 33 1.06 45 4.6 84 32 1.00 43 4.6 84	43 3.8 45 4.6 43 4.6	8°°4 9°8 9°8		82 84 84		21 22 22	5.0		w w w	ታ ጠጠ	4 m m	89 95 95	8.8
21 8.1 2.5 3.3 3 3 95 20 8.1 3.4 4.6 3 95 21 7.6 3.6 4.9 3 3 99 PERCENT 21 5.4 1.6 1.8 2 3 99 22 6.7 2.8 3.6 2 3 99 21 6.8 2.1 2.6 2 3 97	LANKART 611	611	1		-	ō	O PERCENT							
PERCENT 21 5.4 1.6 1.8 2 3 99 22 6.7 2.8 3.6 2 3 98 21 6.8 2.1 2.6 2 3 97	31 C _{0.97} 46 4 _{0.3} 81 32 O _{0.97} 47 4 _{0.2} 79 31 O _{0.94} 45 3 _{0.8} 79	46 4.3 47 4.2 45 3.8	44. 8.28		81 79 79		21 20 21	8.1 8.1 7.6		4 4 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9	ттт	m m m	95 95 92	7.0
5.4 1.6 1.8 2 3 99 6.7 2.8 3.6 2 3 98 6.8 2.1 2.6 2 3 97	LANKART LX571					10	O PERCENT							
	31 0.95 46 5.1 92 33 1.04 46 5.0 87 32 0.98 47 5.2 86	46 5.1 46 5.0 47 5.2	5.0		92 87 86		21 22 21	5.4 6.7 6.8	1.6 2.8 2.1	1.8 3.6 2.6	000	87 M M	99 98 97	6.8 6.5 6.2

 $\frac{1}{2}$ Reduced from 42 because of bark $\frac{2}{2}$ Reduced from 41 because of bark

Table 5a. --Cotton, American upland short staple: Quality characteristics by production areas, crop of 1976

Reflct-Blue- ance ness	lex Rd -b		01 26.7 26.8 108 04 27.4 26.2 104 96 28.7 25.7 99		08 27.4 26.5 105 99 27.8 26.6 105 01 28.3 26.2 102		03 27.7 26.1 103 96 27.4 25.9 103 97 28.0 25.8 101		00 28.5 25.7 100 00 27.7 25.5 101 00 27.5 26.2 104		00 27.8 26.4 104 02 28.0 26.2 103 00 28.3 26.0 101		98 27.5 26.2 104 00 27.2 26.5 106 96 27.1 26.3 105		93 27.1 26.5 106 97 27.2 26.6 106 00 27.0 26.5 106
eflct-Yel	P 1		84.2 3.5 10 84.6 3.0 10 81.7 3.4		86.2 3.1 10 83.5 3.7 83.1 3.0 10		84.5 3.3 10 81.6 3.3 82.8 3.7		83.3 3.3 1 83.4 3.3 1 83.3 3.4 1		83.9 3.7 10 83.8 3.0 10 83.2 3.3 10		82.5 3.3 83.0 3.0 10 81.6 3.3		81.3 3.9 81.6 3.0 82.5 2.9 10
ct-Yellow-	the Inde		.6 12.1 95 .4 12.0 92 .9 11.5 87		.5 12.0 92 .4 12.2 88 .2 11.7 90		.0 12.2 94 .0 12.2 92 .8 11.6 91		.4 12.1 90 .9 11.8 88 .8 11.6 87		.6 11.8 87 .2 11.4 89 .4 11.0 86		.0 · 10.8 87 .9 11.0 87 .9 10.8 87		.6 11.1 89 .8 10.8 88 .8 11.2 90
ning r Poten- x tial	o. No.	ż	9 42 67 14 40 66 16 29 64	LZ	10 31 66 14 37 64 15 28 66	N	17 35 67 15 34 66 12 32 66	- Z	15 31 65 12 33 64 14 31 64	N-1	17 49 64 14 45 66 16 50 65	L	19 42 66 24 46 65 20 41 65	N -	10 36 66 15 45 66 12 40 66
22s or 8s o 27 tex 7th t	Index No	100 PERCE	120 11 100 20 110 22	100 PERCE	110 14 110 17 100 18	100 PERCE	110 22 110 21 110 21	95 PERCE	110 21 120 20 100 17	100 PERCE	110 22 110 27 120 27	100 PERCE	100 36 100 44 100 41	100 PERCE	110 22 110 25 110 19
8s o 74 t	Pet. Inc		6.0 130 6.1 130 5.3 120		5.5 130 5.5 130 5.2 120		5.1 130 5.1 130 4.9 130		4.8 120 5.1 130 4.8 130		5.9 130 5.4 120 6.0 130		6.7 120 6.4 120 6.4 120		4.8 130 5.6 130 5.6 120
22s or	Lbs. P	LANKART 611	7 89 7.7 2 91 7.5 0 75 6.4	LANKART 57	3 78 6.8 3 86 6.8 9 74 6.3	LANKART LX571	6 83 6.4 3 86 5.9 4 82 6.0	LANKART 57	5 80 5.7 2 81 6.0 4 78 5.9	LANKART LX571	7 97 7.2 3 96 6.9 4 96 6.7	LANKART 611	0 88 7.7 4 93 7.5 4 88 7.3	LANKART LX571	9 84 5.8 5 95 7.9 2 90 6.8
8s 74	Grade Staple Code 32d in. Lbs.	OUTH WEST CENTRAL TEXAS BRANDON	LT SP 42 31 30 LT SP 42 31 27 LT SP 42 30 25		LT SP 32 30 28 LT SP 42 30 27 LT SP 42 30 24	ITASCA	LT SP 42 31 29 LT SP 52 30 27 LT SP 42 30 26	TEMPLE	LT SP 42 32 25 LT SP 42 31 26 LT SP 42 31 26		LT SP 52 33 29 LT SP 52 33 29 51 32 28	NORTHWEST TEXAS ANSON	LT SP 52 31 27 LT SP 52 32 28 LT SP 52 31 27	BURKBURNETT	SLM 41 31 269 LM 51 33 285 SLM LT SP 42 32 282
	8s or 22s or 8s or 22s or 8s or 22s or Poten- Reflet-Yellow-Com- Reflet-Yellow-Com- Reflet-Blue-	8s or 22s or 8s or 22s or 8s or 22s or 8s or 74 tex 77 tex 74 tex 77 tex 1ndex Index No. No. No. Rd +b Index Rd +b Index Rd -b	8s or 22s or 8s or 22s or 8s or 22s or 8s or 22s or Poten. Th tex 27 tex 7h tex 27 tex 7h tex 27 tex 7h tex 27 tex 1index No. No. Rd +b Index Rd +b I	8s or 22s or 8s or 22s or 8s or 22s or Poten- Poten- Reflet-Yellow-Com- Reflet-Yellow-Com- Reflet-Yellow-Com- Reflet-Houlow-Com- Reflet-Houlow-Com- <t< td=""><td>8s or 22s or 8s or 22s or 74 tex 77 tex 74 tex 27 tex 11s</td><td> Rotation Rotation</td><td> Reflect Fellow Com- Reflect Fellow Com- Reflect Fellow Com- Reflect Reflec</td><td> St. or 225 or St. or S</td><td> Se or 22s or 8 or 22s or 22s or 8 or 22s or 22s</td><td> State Compare State St</td><td> State Stat</td><td> State Compare Compare State State</td><td> Bo or 225 or Bo or </td><td> Part Part </td><td> Ba or 225 or 85 or 225 or 85 or 225 or 14 or 27 tex 131 15 or 27 tex 27 tex</td></t<>	8s or 22s or 8s or 22s or 74 tex 77 tex 74 tex 27 tex 11s	Rotation Rotation	Reflect Fellow Com- Reflect Fellow Com- Reflect Fellow Com- Reflect Reflec	St. or 225 or St. or S	Se or 22s or 8 or 22s or 22s or 8 or 22s	State Compare State St	State Stat	State Compare Compare State State	Bo or 225 or Bo or	Part Part	Ba or 225 or 85 or 225 or 85 or 225 or 14 or 27 tex 131 15 or 27 tex 27 tex

Table 5.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1976

State Production Area	n Area	Digital Fit	Fibrograph		Fiber a	atrenath		Shirley A	Analyzer	Color	of ress	stock	
	umpling		50/2.5	Micro-	. 1	1/8"	Elon- gation		Total	Gray-	Yellow	Composite	Picker & Card
Grade	Staple	_	unif.	naire	Gage	Gage	1/8"	waste	waste	ness	ness	color	Waste
Name Code	32d in.	in .	Pet.	Rdg.	Mps1	G/tex	Pct.	Pet.	<u>R</u> t:	No.	No.	Index	Pet:
SOUTH WEST NORTHWEST TEXAS HART	S	STRIPPER 31			80	80 PERCENT							
M SP 33 SLM SP 43 M SP 33	30 30	0.93 0.97 0.91	44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		83 83 89	21 22 22	7.2 7.0 7.1	2.7 3.2 2.3	4.1 4.2 3.3	440	9 9 M	90 64	7.5
LAMESA	18	8LIGHTMASTER	R A5		7.0	0 PERCENT							
1 SLM LT SP 32 1 SLM LT SP 42 1 SLM LT SP 42	31 31 31	0.95 0.96 0.97	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.6 3.4	87 80 84	21 20 20	6.4 7.5 8.2	2.7	3.98	2 1 2	W44	98 101 101	6.8 6.8 7.1
LOCKNEY	MC	MORCOT M70			80	O PERCENT							
2/ LM LT SP 32 2/ LM LT SP 52 2/ LM LT SP 52	30 32 32	0.90 0.95 0.97	44 45	4.8 3.6 3.1	89 83 82	21 20 22	6.1	1.7 2.6 4.2	5.52	ଧଳଳ	444	100 96 95	5.9 7.1 6.9
LOCKNEY	PA	PAYMASTER 18	80		06	O PERCENT							
M LT SP 32 SLM SP 43 3/ SLM SP 43	29 30 29	0.85 0.92 0.97	48 47 44	5.2 3.9 3.1	83 82 76	19 20 21	6.4	1.6 2.4 2.7	20 00 00 00 00 00 00 00 00 00 00 00 00 0	N#4	4100	97 93 86	7.6 8.1 7.4
L00P	7 d	PAYMASTER 18	8		06	O PERCENT							
14 SLM LT SP 42 SLM T SP 41 1√ SLM LT SP 42	29 29 30	0.91 0.87 0.88	47 47 47	4.8	84 83 87	21 19 19	6.4	2.0	2.3	211	446	99 101 100	7.1 6.9 7.1
LORENZO	PA	AYMASTER 90	606		06	O PERCENT							
M SP 33 M SP 33 SLM SP 43	31 32 32	0.99 1.00 0.98	2 7 4 7 4 7	3.1	83 81 76	21 22 22	6.3	1.5	3.0 8.0 8.0	๓๓๓	אטאט	97 95 93	. 6.1 6.0
LUBBOCK	1 d	PAYMASTER 90	606		75	5 PERCENT							
M SP 33	31 32 31	0.97 1.00 0.98	144 144 144	4.0 3.1 3.1	80 80 80	22 22 22	7.4	2.4	4.6.6	ммм	พพพ	96 94 97	6.1 7.3 5.6
1/ Reduced from 32 b 2/ Reduced from 42 b 3/ Reduced from 33 b 1/4/ Reduced from 32 b	because of ba because of ba because of ba because of gr	bark bark bark grass											

Table 5a. --Cotton, American upland short staple: Quality characteristics by production areas, crop of 1976

l e	1	1															
dyed yarn	Com- posite	Index		104 106 106		107 106 102		107 109 107		107 109 106		110 103 102		102 103 108		107 107 103	
22s	Blue- ness	위		25.7 26.2 26.3		26.7 26.4 25.5		26.3 26.8 26.4		26.6 26.6 26.0		27.2 26.1 25.7		25.7 25.8 26.5		26.6 26.4 25.9	
Color -	Reflct- ance	R _d		26.4 26.6 26.8		26.9 26.7 27.2		26.3 26.0 26.3		26.6 25.8 26.2		26.4 27.7 27.2		27.3 27.1 26.1		26.8 26.4 27.1	
blchd.yarn	Com- posite	Index		100 102 97		101 103 104		96 99 103		101 98 101		97 97 101		103 105 102		101 102 101	
	Yellow- ness	위		3.7		2.8		3.2 3.2 3.2		2.7 3.3 3.6		2.6 2.8 2.9		3.0 3.2 3.1		3.2	
Color-22s	Reflet-	Rd 		84.0 84.5 82.2		82.8 83.6 84.8		81.4 82.6 84.6		82.7 82.4 84.2		80.8 81.2 83.2		84.1 85.4 83.7		83.9 83.8	
yarn	Com- R	Index		80 83 86		9 6 4 6 4 6		93 86 86		90 87 83		93 94 92		86 81 80		84 87 89	
22s gray	ellow- (위		14.0 13.8 13.2		11.1 11.5 12.0		12.2 13.0 12.8		12.1 13.1 13.2		12.0 11.2 10.9		13.2 13.3 13.4		12.9 13.3 13.1	
Color -	Reflct-Mance	Rd		57.9 59.7 61.9		69.5 68.2 67.4		66.7 62.5 62.9		65.4 63.0 60.7		66.7 68.5 68.3		62.3 59.5 59.0		61.5 62.3 63.8	
Spin-	ning Poten- tial	No.		40 44 43		35 42 47		33 51 56		115/ 36 44		32 26 30		51 54 54		56 52 52	
imprfctns.	22s or 27 tex	No.	F.	21 16 14	F N	14 10 17	ENT	10 17 20	¥	15 23 38	IN	14 10 13	¥.	12 11 15	F N	13 19 17	
Yarn imp	8s or 74 tex	No.	O PERCENT	36 24 22	O PERCENT	23 17 27	O PERCE	14 36 36	O PERCENT	33 39 59	O PERCENT	29 14 26	0 PERCENT	22 26 28	5 PERCENT	24 35 34	
appearance	22s or 27 tex	Index	80	110	7	110 120 100	8	120 110 110	6	100	6	120 110 110	6	130 110 110	75	120 90 100	
Yarn appe	8s or 74 tex	Index		120 130 130		130 130 120		120 120 120		120 130 110		130 130 120		130 130 120		130 120 120	
	22s or 27 tex	Pct.		6.3		5.9		5.7		6.3 6.2		5.2		6.8 6.9 7.1		6.9	
Yarn elongation	8s or 74 tex	Pct.	31	7.4 7.8 7.1	STER AS	7.4 8.5 8.1	0.2	6.8	81 8	6.0	R 18	6.3	R 909	7.9 8.1 8.6	R 909	8.3	
	22s or 27 tex	Lbs.	STRIPPER	89 99 93	BL I GHTHAS TER	84 90 92	MORCOT M70	87 103 106	PAYMASTER	69 85 87	PAYMASTER	82 72 77	PAYMASTER 909	102 100 100	PAYMASTER	102 99 99	bark bark bark grass
Yarn strength	8s or 274 tex 2	Lbs.	S	279 303 285	18	2 66 279 284	Ĭ	279 308 313	d	248 269 275	۵	257 250 255	ď.	309 303 299	۵	307	
_		in.		30		31 31 31		30 32 32		29 30 29		29 29 30		31 32 32		31 32 31	becar becar becar becar limi
ion Ar	Staple	32d	EXAS	3 3 3 3		35 45 45		32 52 52		32 43 43		42 41 42		33		33 52 43	com 32 com 42 com 33 com 32 noable
State, Production Area Chronological sampling	and Classification Grade Stap	Name Code	SOUTH WEST NORTHWEST TEXAS HART	SLM SP	LAMESA	M LT SP 1/ SLM LT SP 1/ SLM LT SP	LOCKNEY	2/ LM LT SP 2/ LM LT SP	LOCKNEY	SLM SP	LOOP	1/ SLM LT SP	LORENZO	M SP M SP SLM SP	LUBBOCK	Z/ LM LT SP 3/ SLM SP	Reduced from 32 because of Reduced from 42 because of Reduced from 33 because of Feduced from 32 because of Up Reduced from 32 because of Selow spinnable limits

Table 5 .-- Cotton, American upland short staple: Quality characteristics by production areas, crop of 1976-- Continued

State, Production Area,	Area,	Digital Fibrograp	rograph		Fiber s	strength		Shirley Analyzer	alyzer	Color	of rew stock	ck	
Chronological sampling and Classification	on	2.5% span	50/2.5	Micro- naire	Zero	1/8"	Elon- gation	Visible	Total	Gray-	Yellow-	Composite	Picker & Card
Grade	Staple					9	2/-						
Name Code	32d in.	In.	Pct.	Rdg	Mpsi	G/tex	Pet.	Pet.	Pet.	No.	No.	Index	Pet.
SOUTH WEST NORTHWEST TEXAS OLNEY	LA	LANKART 57			æ	80 PERCENT							
M LT SP 32 M LT SP 32	31 31	0.94 0.97	4 4 5 5 5	5.2	92 86	20 21	7.3	1.7	2.8	2 2	mm	98	6.1
RULE	LA	LANKART LX571	-		10	100 PERCENT							
SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	32 31 31	1.02 0.96 0.95	7 E 7 7 T	4 4 4 8 7 4	87 89 87	20 21 21	6.9	1.8 2.1 2.3	2.7 3.0 3.4	2 # 2	ммм	96 96 96	6.6 6.8 8
SILVERTON	PA	PAYMASTER 18			6	5 PERCENT							
1/ LM SP 53 2/ SLM LT SP 42	30 31 30	0.89 0.95 0.91	444	4.6 4.0	87 81 83	20 21 20	6.6 7.2 7.5	1.3 2.8 1.7	2.5	N N M	2 ~ 2	98 96	5.5 7.9 5.7
TULIA	ST	STRIPPER 31			6	90 PERCENT							
SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	30	0.90 0.94 0.87	48 47 46	4000	88 86 90	22 21 21	6.5 7.5 7.2	2.5	33.6 4.0	3 2 8	4 4 W	99 100 97	8.0 7.8
VERNON	LA	LANKART 57			100	O PERCENT							
SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	30 31 31	0.91 0.92 0.99	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.0	88 85	20 20 20	6.7 6.4 7.7	2.0 1.8 2.2	3.3 3.0 3.1	822	ጠጠቁ	93 96 99	7.7 6.1 6.5
OKLAHOMA GRANDFIELD	LA	LANKART 57			6	95 PERCENT							
SLM LT SP 42 SLM LT SP 42 SLM LT SP 42	30 31 31	0.95 0.96 0.97	47	55 55 53 53 53 53 53 53	87 88 84	21 20 22	6.9	3.0 2.1 3.8	3°8 4°5 4°2	822	ታጠ ጠ	94 97 98	7.8 7.0 6.8
					,								

 $\frac{1}{2}$ Reduced from 43 because of bark $\frac{2}{2}$ Reduced from 32 because of bark

Table 51.--Cotton, American upland short staple: Quality characteristics by production areas, crop of 1976 -- Continued

1	rn	d.	×ı													
	dyed yarn	Com- posite	Index		110		104 101 101		109 104 107		107 106 103		104 104 105		102 105 108	
	22s	Blue- ness	위		27.2 26.3		26.4 25.8 25.7		27.0 25.7 26.5		26.9 26.4 25.8		25.9 26.0 26.2		25.8 26.4 26.6	
	Color -	Reflct- ance	Rd		26.2		27.7 27.9 27.9		26.3 26.3 26.4		27.1 26.8 26.9		26.9 27.1 27.0		27.5 27.2 26.3	
	.yarn	Com- F	Index		96		96 97 93		97 102 98		100 100 102		99 100 100		96 99 103	
	Color-22s blchd.yarn	Yellow-	₽		2.7		3.7		3.3		3.0		2.9 3.0 2.8		3.2 3.1 2.8	
	Color-2	Reflct-)	Rd		81.6		82.2 82.4 81.1		82.4 85.9 82.5		83.0 82.8 83.6		82.0 82.7 82.4		81.5 82.6 83.6	
	yarı	Com- F	Index		90		8 8 8		93 75 86		92 88 89		87 90 91		92 89 92	
	22s gray	Yellow- ness p	위		10.7		10.8 10.8 10.8		12.5 13.8 12.6		12.7 12.2 12.1		11.4		12.0 11.3 11.3	
	Color -	Reflct-	Rd		67.3		66.3 66.4 66.6		66.1 55.1 62.7		65.5 64.7 65.1		65.1 67.3 67.5		66.3 66.5 67.5	
⊢	ال-	ning Poten- tial	No.		45		4 t t t t t t t t t t t t t t t t t t t		35 49 38		36		33 40 39		35 32 41	
	retns.	22s or 1 27 tex	No.	-	6 10	-	999	-	10 42 22	-	11 13 12	-	8 01 9	-	12 13 11	
	Yarn imprfctns.	or	No.	PERCENT	19	PERCENT	23 21 22	PERCENT	21 77 37	PERCENT	17 21 19	PERCENT	20 20 20	PERCENT	24 19 21	
	_	s or 8s tex 74	Index	80	110	100	110	66	120 80 110	06	110 120 120	100	100 110 110	66	110	
١	appearance	228														
	Yarn a	8s or 74 tex	Index		120		130 110 130		130 100 120		130 130 120		130 130 130		130 130 130	
	gation	22s or 27 tex	Pct.		5.6		5.7		5.9 7.3 6.2		6.2 5.9 5.8		5.6		7.8 5.3	
1	Yarn elongation	8s or 74 tex	Pct.	57	6.6	172X.	7.1	۱ 18	6.8	31	6.9 7.1 7.2	57	6.3	57	6.3 6.5 6.8	
		22s or 27 tex	Lbs.	LANKART	87 91	LANKART LX571	90 83 87	PAYMASTER 18	92 93 88	STRIPPER	95 91 90	LANKART	77 88 86	LANKART	80 79 91	
	Yarn strength	or tex	Lbs.	LA	270	LA	278 272 268	PA	290 297 276	ST	297 278 278	LA	248 274 273	LA	265 256 272	
L			in. I		31		32 31 31		30 31 30		30		30 31 31		30 31 31	
	n Are	tion Staple	32d	CAS	32		41 42 42		32 53 42		45		45		45	
	uctic	ifica	Code	16)	SP 3		SP 4	Z	S P		SP		SP SP	10	SP	
	Prod	Classi	01	WEST WEST	55		55	SILVERTON	SP	A	555	NO	555	KLAHOMA GRANDF IELD	555	
	State, Production Area	and Classification Grade Stap	Name	SOUTH WEST NORTHWEST TEXAS OLNEY	II	RULE	SLM	SILV	L LM	TULIA	SLM	VERNON	SLM	OKLAHOMA GRANDFI	SLM	,
			, -,	0,												

 $\frac{1}{2}$ Reduced from 43 because of bark $\frac{2}{2}$ Reduced from 32 because of bark

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976

0:010	ricker & Card waste		Pet.		6.6 7.0 6.9		7.5 6.7 7.1		6.1 6.3 7.3		, v v v v v v v v v v v v v v v v v v v		N N N 0 00 4		5 5 6 5 6 6 8 6 6		6.1
-																	
k K	Composite		Index		101 99 95		96		66 66 66		97 101 96		101		102 101 104		100
r of raw stock	Yellow-		No.		w w 4		444		ጠቁጠ		m N m		m m m		m 0 m		m ~ m
Color	Gray-		No		3 2 1		777		N M N		2 1 2		212				2 2 1
Shirley Analyzer	Total		Pct.		3.9		1.6 3.0 3.3		3.3 3.3 2.3		2.3		2.9		2.9 1.8 2.0		2.5
Shirley	Visible		Pct.		1.9 3.2 3.0		1.6		3.1		1.3		2.5 1.5 1.7		1.7		2.3
- u° [3	gation 1/8"		Pct.	E	7.7 7.6 7.1	.	7.1 7.7 6.9	_	6.3 6.8	-	6.3 7.2 8.3	_	6.9 6.1 7.1	-	7.7 7.3	E	0 0 0 0 0 0 0
strength	1/8" Gage		G/tex	99 PERCENT	22 21 22	1CO PERCENT	22 22 21	100 PERCENT	23 24 24	80 PERCENT	23	80 PERCENT	24 23 23	80 PERCENT	22 23 22	95 PERCENT	25 24 24
Fiber	Zero	þ	Mpsi		82 79 84	ī	83 80 81	ì	92 89 85		87 81 76		83 83 80		79 84 79		90 92 91
	Micro- naire		Rdg		4.8		4.5		4.4 8.60		5.0		446		444		7.4 5.9
Fibrograph	50/2.5		Pet.	213	45	213	4 4 5 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	603	44 44 5	16	4 4 4 7 4 4 7 3 4 4		244	16	4 4 4 0 4 4		44 42 44 45
Digital Fi	2.5% span	þ	ln.	STONEVILLE	1.05	STONEVILLE	1.04	STONEVILLE	1.02	DELTAPINE	1.08	COKER 201	1.09	DELTAPINE	1.10	COKER 417	1.13 1.11 1.10
Area,	ton	Staple	32d in.	ST	33 34	ST	8.8.8 8.8.8	ST	3334	90	34 34 34	33	34	90	3 3 4 4	33	35 35 35
State, Production Area,	ronological samplin and Classification	Grade	Code	INA	41 SP 42 43	KEEN	41 SP 42 SP 42	NVILLE	41 SP 42 41	ERY	41 41 SP 42	וונ	41 41 51	кT	41 41 41	ורנ	41 41 41
State,	and	G	Name	SOUTH EAST ALABAMA BELLE MINA	SLM LT SLM LT SLM SP	HAZEL GREEN	SLM LT SLM LT SLM LT	MERIDIANVILLE	SLM LT SLM LT SLM	MONTGOMERY	SLM SLM SLM LT	MOUNDVILLE	SLM	NORTHPCRT	SLM SLM SLM	PRATTVILLE	SLM

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976

r.	e e		×I														
dyed yarn	Com- posite		Index		109 107 108		103 105 106		104 103 104		106 102 103		108 106 106		104 110 106		105 105 103
55s	Blue-		위		27.1 26.4 27.0		26.0 26.1 26.4		25.8 25.8 26.0		26.5 25.8 26.0		26.7 26.4 26.5		26.3 27.0 26.5		26.5 26.2 26.1
Color -	Reflct- ance		뀖		26.5 26.4 27.2		27.3 26.9 27.0		26.8 26.9 27.0		27.2 27.8 27.7		26.2 26.9 26.9		27.4 26.1 26.8		27.3 27.1 27.7
id. yarn	Com- posite		Index		98 66 100		96		94 95 100		99 104 102		98 97 101		103 102 106		99 103 106
Color-22s blchd.	Yellow- ness		위		33.38 3.38 5.39		3.7 3.3 3.7		3.8		3.2 2.6 2.6		3.5 3.1 2.9		3.0		3.3
olor-2	Reflet-		뀙		83.1 82.8 83.6		83.0 82.9 83.4		81.8 81.5 82.9		82.6 84.0 83.0		83.0 81.8 83.2		83.9 83.8 84.2		83.0 83.5 84.5
yarn	Com- R		Index		94 93 89		95 91 90		90 87 91		88 86 86		90 88		96 93 94		89 89 91
s gray	Yellow-C	۲	위		11.2		11.5 11.6 12.1		11.2		10.5		10.9 10.5 10.9		10.2 10.1 10.4		11.0
- 22s			+1														
Color	Reflet- ance		뀖		68.5 68.4 65.1		68.5 66.7 65.6		66.9 63.8 67.4		67.5 67.7 65.1		67.6 67.8 66.3		71.1 70.1 69.9		66.79 67.9 69.0
Spin-	ning Poten-		8		52 51 62		04		44 48 48		53 57 69		58 53 60		51 58 58		62 63
imprfctns.	50s or 12 tex		§	H	17 17 18	L N	22 12 16	F	13 18 19	L N	117 115 25	F	24 18 20	L N	13 13 19	TN	17
Yarn	22s or 27 tex		<u>%</u>	99 PERCENT	34 25 24	O PERCENT	28 17 17	O PERCENT	19 21 26	80 PERCENT	21 19 29	80 PERCENT	28 24 29	O PERCENT	16 15 20	5 PERCENT	21 17 15
Yarn appearance	50s or		Index	6	8 8 4	100	8 80 80	100	80 80 70	80	80 70	80	80 70 70	8	80 70 80	95	80 70
Yarn api	22s or 27 tex		Index		90 100 100		90 110 100		100 90 90		110 100 80		100 90 90		100 100 90		100
ngation	50s or		Pet:		7.0 0.0		3.8 3.8 4.1		3.5 3.5		7.4		4 4 6 . 3		444		444
Yarn elonga	22s or 27 tex		Pet.	.E 213	6.5	.E 213	5.4	E 603	5.5	91 =	6.3		5.7 5.6 6.2	91	6.1 6.3 6.2	_	5.5 5.6 5.6
	50s or	_	Ibs.	STONEVILLE 21	9 9 9 9	STONEVILLE	24 28 29	STONEVILLE	26 26 28	DEL TAP INE 16	33 38 38	COKER 201	35 35	DELTAPINE	35 35	COKER 417	38 40 39
Yarn strength	22s or	-	Ibs.	S	103 104 107	S	86 96 96	S	92 92 96	90	104 106 111	5	101 101 108	Ď	102 110 109	5	1117
rea,		Staple	32d In.		33 34		33		34 33		34 35 34		34 34		34 34		35 35 35
1on A	sampl	St			41 42 43	z	41 42 42	ILLE	41 41 41		41 41 P 42		41 41 51		41 41		41 41 41
roduct	gical assifi	de	Code	A P IN	LT SP SP	GREEN	LT SP	IANV	LT SP	OMERY	LT SF	VILLE		PCKT		171 A	
State, Production Area,	Chronological sampling, and Classification	Grade	Name	SOUTH EAST ALABAMA BELLE MINA	SLM	HAZEL	SLM SLM SLM	MERIDIANVILLE	SLM	MONTGOMERY	SLM	MOUNDVILLE	SLM SLM LR	NORTHPORT	SLM	PRATTVILLE	SLM SLM SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

Main Classification	State, Production Area,	on Area,	Digital Fibrograph	brograph		Fiber	strength	ا د ر	Shirley Analyzer	halyzer	Color	r of raw stock	ock	i
State Stat	enronological si and Classifica	ation	2.5% span		Micro- naire	Zero	1/8" Gage	gation 1/8"	Visible	Total	Gray-	Yellow-	Composite	& Card
The color Statistic The color The	Grade	Staple		_		b								
Name				Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Ret:	인	<u></u>	Index	Pet.
1 1 1 1 1 1 1 1 1 1	OUTH EAST ALABAMA SCOTTSBORO		DIXIE KING				m	-						
COKER ZOI COKER ZOI	S P	34	1.10 1.08 1.11	4 4 4 7 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.2 4.1 3.9	85 83 81	23 23 23	7.7	1.1	1.6 2.5 2.9	en en	ጠ 4 ໄປ	101 97 92	5.7 5.4 6.4
LM 51 34 1.00 45 4.8 6.9 2.3 6.0 3.5 4.4 3.5 3.5 3.5 4.5 3.5 3.5 4.5 3	GEORGIA ALLENTCWN		COKER 201				6	-						
Note 1		35 35 35	1.08	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 4 r 0 0 0 0	88 85 84	233333333333333333333333333333333333333	6.0	W Z W • • • • • • • • • • • • • • • • • • •	4 M 4	กลด	325	92 93 93	7.5
LM 51 35 1.03 46 4.5 87 24 6.5 3.8 5.0 4.5 3 3 3 93 LM 51 35 1.04 47 4.4 87 24 6.6 3.6 4.5 3 3 3 3 95 SHELLMAN 1 1.04 4.7 4.4 4.4 4.7 6.7 1.0 6.6 3.6 3.6 3.6 3.9 3 95 SLM 4.1 36 1.10 45 4.7 40 70 22 7.6 1.4 2.2 3 3 3 96 SLM 4.1 35 1.11 46 4.4	BOSTWICK		DIXIE KING	111			00 PERCEN	_						
SHELLMAN DELTAPINE 16 TO PERCENT SLM 41 34 1.10 45 4.7 80 22 7.6 1.9 2.7 2 3 3 98 SLM LT 35 1.08 45 4.9 79 22 6.7 1.4 2.2 3 3 96 SLM LT SP 22 6.7 1.4 2.2 3 3 96 SCIM LT SP 22 6.7 1.4 2.2 3 96 SCIM 41 35 1.01 46 4.4 84 24 6.4 2.5 3 96 SLM 41 35 1.01 45 4.7 84 23 6.1 3.4 3.9 3 96 RANTINGUE 1 35 1.11 45 4.5 85 22 6.8 4.2 5.0 5.9 3 96 SLM		35 35 35	1.03 1.04 1.06	46 47 47	4 4 4 0 4 4	87 88 88	24 23	6.5 6.6 7.2	8 9 0 ° 0	0.44 0.00	๓๓๓	๓๓๓	999	6.9 7.9
SUM 41 SP 42 35 11.08 45 4.7 80 22 7.6 11.9 1.4 1.8 3 98 SULIT SP 42 35 11.08 45 4.9 79 22 6.7 11.4 1.8 3 99 SULIT SP 42 35 11.08 45 4.9 79 22 6.7 11.4 1.8 3 99 SOCIAL CIRCLE MICHAIR 612 SUM 41 35 11.11 46 4.4 84 24 6.4 24 3.0 2 2 3 99 SULIT SP 42 35 11.11 47 4.7 4.7 84 24 6.4 5.0 5.1 2 5.1 2 99 SULIT SP 42 34 11.03 47 4.4 87 24 6.4 5.0 5.0 2.4 5.0 5.0 5.4 5.0 5.0 5.4 5.0 5.0 5.4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	SHELLMAN			91				_						
SUCTAL CIRCLE SLM 41 35 1-11 46 4.4 84 24 6.4 2.5 3.0 2 3 98 SLM 41 35 1-11 46 4.7 84 23 6.1 3.4 3.9 2 3 98 SLM CARDLINA LAURINBURG SLM 41 36 1.17 47 4.7 89 26 5.9 3.2 4.0 2 2 3 98 SLM LT SP 42 34 1.03 47 4.8 81 22 6.5 1.9 2.6 3.4 3 4 95 SLM LT SP 42 34 1.03 47 4.6 86 22 6.2 2.0 3.4 3 4 95 SLM LT SP 42 34 1.03 47 4.6 86 22 6.2 2.0 3.4 3 4 95 SLM LT SP 42 34 1.03 47 4.6 86 22 6.2 2.0 3.4 3 4 95 SLM LT SP 42 34 1.03 47 4.6 86 22 6.2 2.0 3.4 3 4 95	LT SP LT SP	34 35	1.10 1.08 1.11	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4°4 6°4 7°8	80 79 78	22 22 21	7.6 6.7 7.9	1.9	2.7 1.8 2.2	ณ๓๓	m m m	98 96 95	5.2
SLM 41 35 1-11 46 4.4 84 24 6.4 2.5 3.0 2 3.0 98 SLM 41 35 1.08 47 4.5 84 23 6.1 3.4 3.9 2 3.9 2 3 98 SLM CAROLINA LAURINBURG SLM LT SP 42 34 1.03 47 4.8 81 23 6.5 1.9 2.6 3.4 3.9 2 3.2 3.9 98 SLM LT SP 42 34 1.03 47 4.6 86 22 6.2 2.0 3.4 3.4 3.4 3.9 2.6 3.4 3.4 3.9 2.6 3.4 3.9 2.6 3.4 3.9 3.2 4.0 3.4 3.9 3.2 4.0 3.4 3.9 3.2 4.0 3.4 3.9 3.2 4.0 3.4 3.9 3.2 4.0 3.4 3.9 3.0 3.4 3.0 3.4 3.9 3.0 3.0 3.4 3.0 3.4 3.0 3.4 4.0 3.0 3.4 4.0 3.4 4.0 3.4 4.0 3.4 4.0 3.4 4.0 3.4 4.0 3.0 3.4 4.0 3.4 4.0 3.0 3.4 4.0 3.0 3.4 4.0 3.0 3.4 4.0 3.0 3.4 4.0 95 SLM LT SP 42 34 1.03 47 4.6 86 22 6.2 2.0 2.0 3.4 3.4 3.0 3.4 4.0 3.0 3.4 4.0 95 SLM LT SP 42 34 1.03 46 4.7 87 87 22 6.9 2.0 3.4 3.4 4.0 95	SOCIAL CIRCLE		MCNAIR 612				00							
36 1.17 47 4.7 89 26 5.9 3.2 4.0 2 2 99 36 1.17 47 4.4 87 24 6.4 5.0 5.4 2 98 35 1.10 47 4.8 91 23 6.5 1.9 2.6 3 34 1.03 47 4.6 86 22 6.9 2.0 3.4 3 4 95 34 1.03 46 4.7 87 22 6.9 2.0 3.4 3 4 95	SLM SLM LM	35 35 35	1.11	46	4.4	84 84 85	24 23 22	6.4 6.1 6.8	3.5		222	ммм	98 86 96	7.9
41 36 1.17 47 4.7 89 26 5.9 3.2 4.0 2 2 2 98 41 36 1.12 45 4.6 85 24 6.3 4.2 4.9 2 2 2 98 T SP 42 35 1.10 47 4.8 91 23 6.5 1.9 2.6 3 4 94 T SP 42 34 1.03 47 4.8 91 23 6.5 1.9 2.6 3 4 94 T SP 42 34 1.03 47 4.6 86 22 6.9 2.0 3.4 3 4 95 T SP 42 34 1.03 47 4.6 86 22 6.9 2.0 3.4 3 4 95	NORTH CAROLINA LAURINBURG		MCNAIR 612			1		-						
T SP 42 34 1.03 47 4.8 91 23 6.5 1.9 2.6 3 4 94 1 SP 42 34 1.03 47 4.6 86 22 6.2 2.0 2.7 3 4 95 1 SP 42 34 1.03 46 4.7 87 22 6.9 2.0 3.4 3 4 95	LT SP	36 35	1.17	47	4°4 4°4 4°4	89 85 87	26 24 24	5.9 6.3 6.4	3.2 4.2 5.0	44 N	222	226	666	4.6
LT SP 42 34 1.03 47 4.8 91 23 6.5 1.9 2.6 3 4 94 94 LT SP 42 34 1.03 47 4.6 86 22 6.2 2.0 2.7 3 4 95 LT SP 42 34 1.03 46 4.7 87 22 6.9 2.0 3.4 3 4 95	SHELBY		COKER 201			1								
	LT SP LT SP LT SP	34	1.03 1.03 1.03	74 74 76	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	91 86 87	23 22 22	6.5	1.92.0	2.6	๓๓๓	444	9 9 8 5 5	6.0 7.6 6.7

Table 6a .-- Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976 -- Continued

dyed yarn Com- Com- Dosite Dosite	108 104 107	102 109 101
26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	26.9 26.2 26.6	25.4 26.9 25.3
Color - Color - Ance Ance Ance 26.3 26.3 27.5 27.5 27.5 27.5 27.5 28.0 28.0 28.0 28.0 28.4 26.9 27.3 27.8	26.8 27.3 26.7	26.8 26.1 26.9
1. yarn Com- posite 98 99 96 99 96 99 99 99 99 99 99 99 99 99	100 99 96	95 93
2s blchd rellow— 13.7 3.0 2.8 3.7 3.0 2.8 4.3 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4
Color-22s ance ne B3.4 3 3 4 3 82.2 4 82.9 3	83.4 83.4 81.6	81.2 82.0 82.2
yarn yarn om- site 86 86 83 85 86 88 88 88 88 88 88 88 88 88 88 88 88	91 90 89	88 98 98 98
22s gray rellow for ness po 10.9 10.5 10.5 11.1 11.1 11.0 10.6 10.6 10.6 10.6	10.6 10.4 11.3	12.2 11.8 11.2
Color - Reflect-Reflec	68.2 68.1 66.2	64.5
Spin- ning Poten- tial 172 67 67 67 63 63 63 69	65 65	53 6
Lent Lent Limprfectus. Transparent Light	T 21 18 22 7	0110
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PERCENT 27 27 31	8 12 12
100 or 122 13 13 13 13 13 13 13 13 13 13 13 13 13	100 90 70 60	06
100 100 100 100 100 100 100 100 100 100	000	000
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	-	
Yarn elongation 22s or 50s or 12 tex Pct. Pct. 6.7 4.9 5.9 4.8 6.2 4.8 5.3 3.8 5.9 4.4 5.8 4.2 6.1 4.3 6.2 4.3 6.2 4.3	44.0	8 8 8 9 8 8
228 or 228 or 227 text 201	612 6.0 5.3 5.9	5.2
50s or 22s or 12 tex 27 tex 27 tex 27 tex 27 tex 27 tex 29 5.9 41 6.2 29 5.3 29 5.3 29 5.3 29 5.3 29 5.3 29 5.3 29 5.3 37 5.8 37 6.1 0ELTAPINE 16 31 5.8 30 6.2 34 5.7 34 34 5.7 34 34 34 34 34 34 34 3	42 39 40 COKER 201	29 31 30 ark
Yarn strength 22s or 50s or 27 tex 12 tex 103. 12 tex 113 38 114 39 114 39 117 36 97 29 96 29 96 29 97 29 97 29 97 29 97 29 97 31 111 37 11	129 114 114	SLM LT SP 42 34 97 3 SLP LT SP 42 34 102 3 SLM LT SP 42 34 93 3 Reduced from 41 because of bark
	36 35	34 34 34 becau
lon Are samplification Are strion 31 Stay 43 32d 443 442 551	41 41 42 42	42 42 42 om 41
oductions of the control of the cont	BURG T SP	LT SP LT SP LT SP ced fro
State, Production Area, Chronological sampling, and Classification Grade Staple SOUTH EAST ALABAMA SCOTTSBCRO SLM SP 43 34 SLM SP 43 34 SLM SP 43 34 CEORCIA LM 51 35 SLM LT SP 42 35 SLM LT SP 42 34 SLM LT SP 42 35 SLM LT SP 41 35 SLM LT SP 41 35	LAURINBURG SLM 41 SLM 41 SLM LT SP 42 SHELBY	SLM L SLM L SLM L

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

Di.	Digital Fibrograph	0.0	Fiber st	strength	Elon-	Shirley Analyzer	alyzer	Color	of raw stock	ock	Picker
2.5% span 50/2.5 length unif.		Micro- naire	Zero Gage	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite color	& Card waste
In. Pet. Re	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Rdg.	Mpsi	G/tex	Pct.	Pet.	Pct.	No.	No.	Index	Pet.
MCNAIR 612			100) PERCENT							
1.08 46 5.2 1.07 45 4.8 1.10 45 4.6	5.2		92 86 88	23	5.9 5.9	1.8 1.6 2.8	3.5	2 1 2	923	97 101 96	6.1
COKER 417			100	O PERCENT							
1.05 45 4.6 1.05 44 4.3	4.6		90	25	5.9	3.3	6 6 6 6 6 6 6	4 M	4 M	94	6.6
COKER 201			100	O PERCENT							
1.08 45 5.0 1.12 47 4.8 1.13 46 4.4	0.44		8 8 9 4 4	23 23	5.5 6.2 6.2	1.3 2.0 1.7	2.8 2.8 2.9	325		100 98 95	5.9
DELTAPINE 16			100	100 PERCENT							
1.14 45 4.6 1.13 44 4.4 1.14 43 3.9	4.6		87 91 8 6	25 25 24	7.6 7.8 7.3	2.5 2.5 5.5	3.53		0 0 0	102 102 103	6.0 8.4.0
STONEVILLE 213			100	D PERCENT							
1.11 45 4.2 1.09 43 4.0 1.07 43 3.4	4.5		89 87 85	23	6.6 6.5	2°8 3°0 4°9	3.5 4.0 6.1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	222	101 102 96	6.3
STONEVILLE 213			100	D PERCENT							
1.08 48 4.9 1.10 45 4.2 1.11 45 4.3	4.9		88 84 87	24 23 23	6.0 6.0	1.1 1.7 1.9	1.6 2.7 2.7	7	m ~ ~	103 162 99	6.03
STONEVILLE 213			100	D PERCENT							
1.11 46 4.5 1.12 42 4.2 1.07 45 4.2	4.5		88 93 89	24 23 23	6.3 6.4 6.1	2.1 1.9 2.1	2.9 2.8 2.9	777	000	98 66 100	5.2

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

1.	1																
dyed yarn	Com-		Index		104 103 108		103		105 105 109		114 104 110		105 111 106		108 111 108		110 104 104
22s	Blue-		위		26.3 26.0 26.7		26.2		26.6 26.3 26.9		27.9 26.1 27.1		26.2 27.4 26.4		27.0 27.3 27.0		27.0 26.3 26.3
Color -	Reflct-	41100	烙		27.6 27.4 26.3		28.0		27.8 27.2 26.3		25.8 27.1 26.4		26.8 26.2 26.8		27.1 25.9 27.1		25.9 27.4 27.6
. yarn	Com- Dosite		Index		94 98 100		96		102 99 103		103 102 104		102 102 95		105 102 100		97 100 99
s blchd	Yellow-		위		3.5		4.2		2.7 3.0 3.0		2.8 2.8 2.7		3.2 3.1		2.7 2.3 2.9		3.7 2.9 3.1
Color-22	Reflet-h		뀖		80.9 82.4 82.5		83.3		83.2 82.4 84.1		83.6 83.5 83.8		84.1 83.6 81.0		84.4 82.5 82.7		82.7 82.5 82.5
gray yarn Color-22s blchd, yarn Color	Com-		Index		993		84 85		989		92 93 92		96 96 90		96		980
22s gra	Yellow-		위		11.0		11.4		11.1 10.2 12.6		10.3 9.8 9.8		10.7 10.6 10.5		10.6 10.4 10.1		10.7 10.2 10.1
Color -	Reflct-Y		Rd		66.4		63.7		66.7 68.4 63.2		69.2 70.3 69.8		70.0 70.5 67.9		69.8 70.9 7.69		67.0 68.5 68.7
	ning Poten- R		No.		55 6		62 6 58 6		48 55 60 60		62 6 61 7 61 6		63 7 53 7 50 6		56 6 57 7 58 6		59 6 54 6 52 6
L	50s or P		No.		11 14 20		11		20 19 17		22 17 13		11 13 12		9 10 16		19 16 10
n Impri	22s or 50		No.	100 PERCENT	14 20 22	PERCENT	15	PERCENT	25 20	100 PERCENT	25 21 16	PERCENT	16 16 16	PERCENT	8 13 19	PERCENT	25 19 17
ce Yar		_		100 P	1 2 2	100 P		100 P		100 P		100 p		100 P		100 P	
pearan	50s or	75.00	Index		90 80		90		80		70 80 70		80 70 80		90 80 70		70 70 80
Yarn appearance Yarn imprfetns.	22s or	Z	Index		100 90 90		120		100 100 90		9 6 6		100 90 100		110		90 30 100
gation	50s or	7 CCA	Pct.		4.2 4.1 4.5		4.1		4.4		4.7		4.5		4.5		4 6 4
Yarn elongat	22s or		Pct.	2	55.6		5.6		5.2	16	6.5	E 213	55.55 5.85 5.85	E 213	5.7 6.1 6.0	E 213	5.9
		_		IR 612		417		102		DELTAPINE 16		STONEVILLE		STONEVILLE 21		STONEVILLE	
trengt	50s or	77	Lbs.	MCNA IR	333	COKER	38	COKER	31 35 35	DELTA	39 39	STONE	8 8 8	STONE	36	STON	35
Yarn strength	22s or	V	Lbs.		106 102 110	,	115		99 108 109		120 117 112		117 109 102		112 106 109		111 107 110
rea,		Staple	32d In.		34 34		34		34 35 35		35 35 35		36 35 35		34 35 35		35 35 35
ion A	sampl catio	St		INA	932 41		24 0	1,,,	31 41 33	AL.	41		41 41 51		31 41 41		41 41 41
roduct	gical	de de	Code	AST CAROL VILLE	LT SP	ER	LT SP	VILLE	SP	ENTR. AS IMER		œ				S	
State, Production Area,	Chronological sampling, and Classification	Grade	Name	SOUTH EAST SOUTH CAROLINA BLACKVILLE	SLM	CHESTER	SLM	MAYESVILLE	SLM	SOUTH CENTRAL ARKANSAS ALTHEIMER	SLM	DRIVER	SCH	DUMAS	SLM	HUGHES	SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

State, Production Area,	uction A	Trea,	Digital Fibrograph	brograph		Fiber s	strength	- mo [4	Shirley Analyzer	nalyzer	Color	r of raw stock	ock	10.50
Chronological Sampling, and Classification	at sampi ificatio	on or	2.5% span	50/2.5 unif.	Micro- naire	Zero	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray-	Yellow- ness	Composite	& Card
Grade		Staple))							
Name C	Code	32d in.	ü	Pet.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
SOUTH CENTRAL ARKANSAS		ć												
KEISER		DE	DELTAPINE 16	0		3	100 PERCENT							
SLM A	41 31 41	36	1.10	4 4 4 4	4.1	89 89	26 23	7.7	1.2	2.1	100	225	102	0.0
HVILLE	•		LE	213	, ,		100 PERCENT				ı	ı		
SLM 4	41	36 34	1.13	4 4 3 3	4.1	87 86	24	9.9	1.9	2.5	2	ოო	100	5.8
	41	34	1.08	45	4.2	84	23	6.3	1.8	2.2	2	2	44	6.5
мсбенее		ST	STONEV ILLE	213		. 10	100 PERCENT							
SLM SLM SLM	41 41 41	34 34 34	1.08 1.08 1.09	4 4 4 N 0 4	444	87 88	23 23	6.4 5.9	1.6 1.6 1.9	2.2.5 2.4.5 2.4.5	1 2 1 1	m m N	101	7.6
OSCEOLA		ST	STONEVILLE	731N		10	00 PERCENT							
SLM SLM	41 41 51	34 34	1.05 1.03 1.05	42 41 42	3.2	89 92 83	21 22 21	ሌ ሌ ሌ ፋ ሌ ወ	2.3 2.2	ოთ დ ო თ დ	1 1 2	m m N	103 101 99	4.6
PROCTOR		SI	STONEVILLE	213		100	30 PERCENT							
SLM . SLM	41 41 41	3 to 10 to 1	1.06	43 43	4°.4 3°.8 3°.9	87 87 84	22 23 23	6.7 6.8 6.8	1.6 1.3 1.3	2.8 1.7 2.1		m m 2	103 103 103	6.6 6.3 6.1
MANN		DE	DELTAPINE 1	16		10	100 PERCENT							
SLM SLM	41 31 41	34 34 34	1.06 1.08 1.05	44 40 44	4.0 4.2 4.1	91 89 86	25 24 23	8.0 8.0 7.7	1.9 2.2 2.7	ഗ യ് യ ം ം ം ത യ സ		w 0 0	103 103 100	64.0
LOUISIANA EPPS		DE	DEL TAP INE 1	16		10	100 PERCENT							
SLM	41 31 31	33.24 55.24	1.09	444	4.1	89 92 87	24 25 25	7.3	1.5	2.2	101	m 12 m	102	46.0

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976-Continued

l g	1	١														
dyed yarn	Com- posite	Index		110 108 107		108 104 103		105 103 105		103 101 102		104 104 108		107 108 105		105 106 106
22s	Blue- ness	위		27.2 26.9 26.5		26.9 25.8 25.8		26.2 26.2 26.1		25.5 25.9 25.8		26.2 26.2 26.8		26.7 26.8 26.4		26.5 26.6 26.4
Color -	Reflct- ance	뀖		26.4 26.8 26.6		26.8 26.8 27.2		26.8 27.8 26.6		26.7 28.5 27.4		27.2 27.6 26.7		27.1 26.7 27.1		27.6 27.0 26.9
d. yarn	Com- posite	Index		104 102 101		100 99 98		101 99 101		102 101 97		101 102 102		100		103 105 103
2s blchd	Yellow- ness	₽		3.0		3.4		3.1 2.9 3.0		3.2		3.0		3.2 2.9 2.8		3.0
Color-22s	Reflct- ance	뀖		84.4 83.5 83.2		83.6 82.8 82.7		83.5 82.3 83.2		84.0 83.2 82.0		83.1 83.7 84.2		83.3 82.5 83.0	•	83.9 84.1 83.1
yarn	Com- posite	Index		944		93 91 89		90 92 90		96 36 30		96		95 93 89		95 96 90
22s gray	Yellow- ness p	위		10.5		11.2 10.6 10.2		10.9 10.7 10.4		10.6		10.4 10.5 10.3		11.11 10.4		10.4
Color -	Reflet-	찖		70.0		68.1 68.4 67.7		67.5 68.5 68.2		70.7 69.5 68.3		70.5		69.2 69.6 68.5		69.0 70.4 68.8
Spin-	ning Poten- tial	N		70 64 67		61 55 53		51 50 59		45 43 50		46 52 49		56 54 53		58 62 62
imprfctns.	50s or 12 tex	일 :	F	15 11 12	L	15 12 18	L N	16 12 15	L N	26 23 29	T.	15 17 14	₽.	17	F	10 12 11
	22s or 27 tex	No.	1CO PERCENT	18 12 17	DERCENT	20 15 23) PERCENT	21 14 19	PERCENT	29 28 36	DERCENT	17 22 14	PERCENT	21 15 14) PERCENT	15 12 17
appearance Yarn	50s or 12 tex	Index	100	70 80 70	100	80 80 70	100	70 80 90	100	09 09 09	100	02 02 70	100	90	100	80 70 80
Yarn app	22s or 27 tex	Index		90 100 100		90 1000 90		100		70 80 80		900		100		1000
gation	50s or 12 tex	Ret.		4.6		5.7 4.5		8 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		9.8 9.9		4.3		4.4		4.8
Yarn elongation	22s or 27 tex	Pet.	91	6.6	E 213	6.3 5.7 5.7	E 213	7.00 4.00 4.00	E 731N	5.33	E 213	5.8	16	0.0 0.0 0.0	16	5.9 6.9 6.5
	50s or 2	Ibs.	DELTAPINE 16	41 37 35	STONEVILLE 213	334	STONEVILLE 213	30	STONEVILLE	29 29 32	STONEVILLE 213	33	DELTAPINE 16	37 36 34	DELTAPINE 16	38 37 37
Yarn strength	22s or 9	Lbs.	90	122 116 111	ST	117 107 102	ST	103 98 109	ST	91 92 99	ST	101 104 102	90	115 109 108	DE	113 112 115
-		32d In.		36 34 34		36 34 34		34 35		34 34		34 34 34		34 34 34		34 35 35
ion Ar	sampli cation Sta	1	_	41 31 41		1111		41		41 41 51		41 41 41		41 31 41		41 31 31
State, Production Area,	Chronological sampling, and Classification Grade Staple	Code	SOUTH CENTRAL ARKANSAS KEISER	SLM M SLM	LEACHVILLE	SLM SLM SLM	MCGEPEE	SLM SLM SLM	OSCEOLA	SLM SLM LM	PROCTOR	SLM SLM SLM	NNA	SLM	LOUISIANA EPPS	SLA
State	Chron	Name	SOUT ARK KE	S S	LE	SSS	¥	SSS	0.8	SS	PR	SSS	7	s s	LOU	VI

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

	ard e			*	L 9 9		000		ल य य ें		S = 6		N B V		7 9 1		0 m &
2	e & Card		Pet.		5.6		6.0		6.1		N.00 N.10		5.5 4.8		5.6		7.3
stock	Composite		Index		101 102 103		101 103 101		103 102 102		102 101 102		97 103 99		100 102 103		100 101 101
Color of raw st	Yellow-	2	No.		222		w 2 2		m N N		222		m 0 0		mum		m n n
Cole	Gray-		No.										000		1 1 1		11.5
Analyzer	Total waste		Pet.		3.1		2.2		1.7		2.4		2.6 1.9 3.4		1.7 2.4 1.8		3.3
Shirley Analyzer	Visible		Pct.		3.0		1.6 2.6 2.1		0.8 1.2 1.4		1.9 2.4 1.7		1.7		0.9 1.6 1.0		2.3
- H	gation 1/8"		Pct.	-	8.0 7.6 7.5	_	5.6	_	8.0 7.7	-	6.6	-	7.2	_	7.5 6.4 7.7	_	6.5.3
strength	1/8" Gage	ρ,	G/tex	100 PERCENT	24 24 23	100 PERCENT	23 23	00 PERCENT	24 24 24	100 PERCENT	22 23 23	76 PERCENT	22 22 22 22	100 PERCENT	23 24 23	100 PERCENT	22 24 22
Fiber	Zero) }	Mpsi	-	87 91 86	-	89 90 82		85 86 85	-	88 94 91		83 80 82		888 886 96	-	87 92 93
	Micro- naire		Rdg		4.4		4.9 5.1 4.6		5.4 6.8 6.6		4 0 4 6 4 8		4 4 6 3 0 8 8 8		4.6		4 4 4
Digital Fibrograph	50/2.5		Pct.	16	4 4 4 70 4	213	4 4 4 0	61	4 4 4 8 9 4	25	94 94 74	213	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	16	4 4 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	213	4 4 4 6 6 6
Digital F	2.5% span	P	In.	DEL TAP INE	1.14	STONEVILLE	1.07	DELTAPINE	1.08 1.08 1.09	DELTAPINE	1.10	STONEVILLE	1.09	DELTAPINE	1.09	STONEVILLE	1.08
Area,	lon	Staple	32d in.		35 35	v	34		35 35	6	34 4	V	34 34 34		34 35 35	6	34
State, Production Area,	and Classification	Grade	Code	RAL IV IDENCE	41	PROV IDENCE	4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		41	je.	144	SI	41	RT	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SLAND	111
State,	and (G.	Name	SOUTH CENTRAL LOUISIANA LAKE PROVIDENCE	SLM SLM SLM	LAKE PRO	SLM SLM SLM	MONROE	SLM	OAK RIDGE	SLM SLM SLM	OPELOUSAS	SLM	SHREVEPCRT	SLM SLM SLM	SICILY ISLAND	SLM SLM SLM

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

dyed yarn	Com- posite		Index		109 107 105		109 106 106		106 104 105		1111 105 104		108 105 105		98 105 108		105 104 108
22s	Blue-		위		27.1 26.7 26.3		26.9 26.4 26.4		26.8 26.1 26.2		27.3 26.5 26.1		27.0 26.7 26.5		25.2 26.4 26.7		26.2 26.4 27.3
Color -	Reflct- ance		웹		26.8 27.1 27.2		26.5 26.7 26.9		27.5 27.3 26.8		26.3 27.6 27.0		26.8 27.7 27.3		28.2 27.3 26.6		27.1 27.7 27.4
l. yarn	Com-		Index		101 105 104		95 100 99		101 103 100		102 102 102		99 105 104		99 104 101		100 99 101
2s blchc	Yellow-		위		2.7 2.4 2.9		3.6 2.8 2.6		2.8		3.2 2.6 2.5		3.3 2.1 2.4		3.2 2.6 3.0		3.2 2.9
Color-22s blchd. yarn Color	Reflet-		뀖		82.8 84.1 84.5		81.7 82.4 81.8		82.9 83.6 81.8		84.1 83.0 82.9		82.8 83.4 83.4		82.8 83.9 83.3		83.3 82.7 83.0
gray yarn (Com-		Index		94 95 91		88 95 90		95 93 92		97 93 91		90		87 94 89		93
22s gra	Yellow-		위		10.3 10.2 10.1		11.11.11.0.8		10.3 10.2 9.6		11.5 10.4 10.1		10.7 9.9 10.2		10.3 10.2 10.6		11.2 10.9 10.5
Color -	Reflct-		湿		70.3 70.8 69.0		66.3 69.9 68.3		70.5 69.6 70.1		69.5 69.4 68.9		67.6 71.3 70.3		66.7 70.1 67.6		68.8 68.8 68.9
T.	ning Poten-		No.		68 61 67		52 50 55		59		61 57 60		57 57 56		53		53
fctns.	50s or 12 tex		No.	_	8 10 17	-	20 13 16	-	12 11 15	-	13 11 14	_	12 10 20	-	7 113 10	-	7 8 10
Yarn imprfctns.	22s or 5		No.	100 PERCENT	12 13 21	PERCENT	25 21 25	PERCENT	13 14 19	100 PERCENT	19 12 20	PERCENT	16 10 23	PERCENT	ج 15 15	PERCENT	11
1	s or		Index	100	980	100	0 0 0	100	90	100	0 0 0 0	16	800	100	80 80	100	00
Yarn appearance	or 50				100		000		110 110 90		110		100		1100		1100 1000 120
\vdash	228	ī	Index				1										
ongatic	50s or		Pet.		5.0		3.88		4.9		4.3		4.4		3.7		3.9
Yarn elongation	22s or	17	Pct.	E 16	6.9	LE 213	6.4	E 61	6.1 6.5 6.1	E 25	6.1 5.6 6.0	STONEVILLE 213	6.1 6.7 6.0	E 16	5.7	LE 213	5.4
ength	50s or	15 00	Lbs.	DELTAPINE 16	41 38 39	STONEVILLE	31 32 34	DELTAPINE	35 36 38	DELTAPINE 25	39 38	TONEV IL	32 34 30	DELTAPINE 16	30 32 37	STONEVILLE	32 32 28
Yarn strength	22s or	1	Lbs.	90	120 114 118	S	103 104 106	0	106 112 113	0	116 109 114	S	101 104 97	ā	99 103 109	is	102 107 97
-		Staple	32d In.		35 35	ш	34		35 35 34		34 34 34		34		34 35 35		34
tion A	sampli	Ste		AL IDENCE	41 41 41	PRCVIDENCE	4114		31 41 41	,	41 41 41		41 41 41	-	41 41 41	ISLAND	41 41 41
State, Production Area,	Chronological sampling, and Classification	Grade	Code	SOUTH CENTRAL LCUISIANA LAKE PROVIDENCE	III		I, I, I	MONROE	EEE	OAK RICGE	SLM	OPELOUSAS	SLM	SHREVEPORT	SLM	SICILY IS	SLM
State	Chron		Name	SOUTH LCUI LAK	SLA	LAKE	SLM	MOM	SLM	OAK	SLM	0 PE	22.22	SHE	22.22	\$10	25.22

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

Masi Gage 1/8" Sation Visible Total Gray- Res. Res. Color Color Masi Gylex Pet. Pet. Pet. Mo. Mo. Index 100 PERCENT	State,	State, Production Area,	n Area,	Digital Fibrograph	ibrograph		Fiber	strength	٦	Shirley Analyzer	Analyzer	Color	r of raw stock	ock	ä
Standard	and C	logical sa lassificat	mpiing, tion	2.5% span		Micro- naire	Zero	1/8"	gation 1/8"	Visible	Total	Gray-	Yellow-	Composite	& Card
Section The property	G	ade.	Staple	,	_		5								
## 1 35 1.07	Name	Code	32d in.	In.	Pct.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
HILL	JUTH CENT MISSISSIF ARCOLA	RAL	Õ		55		1	00 PERCENT	_						
11 34 1.04 46 4.8 91 24 6.1 2.1 2.9 2 1 1 1 1 1 4 1 1 1 4 1 1	SLM SLM SLM	7 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 4 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	1.07	4 4 4 4 4 4	**************************************	88 9.5 4.	23 23 23	6.3 5.9 5.7	3 ° 4 1 ° 8 1 ° 8	2.1 4.6 2.4	1 2 2	1 5 5	101 99 99	6.0
HILL 41 34 1-04 46 4.8 91 24 7.5 2.3 3.0 2 3.0 2 6.4 6.4 6.4 6.5 3.7 84 24 7.5 2.3 3.0 2 3.0 2 1 2 101 6.4 6.4 6.4 1.1 6.4 1.	BELZONI		O		16		1		_						
HILL 41	SLM	41 41 51	34 35	1.04	4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.8 3.9	91 84 85	24	6.1 7.5 7.3	2.1 2.3 3.6	2.9 3.0 4.5	212	153	97 101 98	6.4
41 34 1.10 45 4.2 4.2 86 24 7.4 1.1 2.0 2 3 100 4.8 41 34 1.05 45 4.2 88 22 8.2 1.4 1.9 1.9 1.0 41 34 1.05 45 4.2 88 22 8.2 1.4 1.9 1.9 1.0 51 34 1.08 46 4.7 93 24 5.3 2.8 3.4 4.0 2 101 6.2 51 35 1.07 46 4.4 9.9 21 5.4 3.3 4.0 2 1.0 41 35 1.11 44 3.9 89 26 8.0 1.3 2.2 0 2 104 5.1 41 35 1.11 43 44 3.9 89 26 8.0 1.3 2.8 0 2 1.0 41 35 1.11 43 44 3.9 89 25 7.7 2.1 2.8 0 2 1.0 51 35 1.10 4.2 3.9 89 2.5 7.7 2.1 2.8 0 2 1.0 51 35 1.08 43 4.0 89 2.5 7.7 3.4 4.5 2.5 2 1.0 51 35 1.08 43 4.0 89 2.4 7.1 3.4 4.5 2.5 2 1 51 33 1.03 45 4.0 98 2.4 7.1 3.4 4.5 3.5 2 51 33 1.02 44 3.9 95 2.3 5.2 3.4 4.6 3.5 3.4 4.6 3.5 3.4 4.6 3.5 3.4 4.6 3.5		ب	Q		16				_						
STONEVILLE 731N 100 PERCENT 100 PERCEN	SLM	411	34 34	1.10	44 45 50 50 50 50 50 50 50 50 50 50 50 50 50	4°3 3°9	86 86 83	24 22 21	7.4 8.2 7.6	1.1	2.0 1.9 2.6	2 1 2	8 N N	100 102 97	6.9
SI 34 1.08 46 4.7 92 24 5.5 1.4 2.4 1 2 100 6.9 41 35 1.07 45 4.2 93 23 23 5.3 1.4 2.4 1 2 100 6.9 41 35 1.13 44 3.9 89 26 8.0 1.3 2.1 2.8 0 2 104 5.1 41 34 1.09 42 3.9 89 23 7.4 1.0 1.8 1 2 100 5.8 51 34 1.09 42 3.5 88 25 7.3 3.4 4.5 2 2 1 99 6.1 51 33 1.03 45 44 3.9 95 23 5.1 3.4 4.5 3.5 3.4 4.5 3	GLENDORA	_	S	TONEVILLE	731N		-		_						
31 35 1-13 44 3.9 89 26 8.0 1.3 2.2 0 2 104 5.1 4.0 4.2 87 25 7.7 2.1 2.8 0 2 104 5.1 4.0 4.2 87 25 7.7 2.1 2.8 0 2 104 5.1 4.0 5.1 1.0 PERCENT DELTAPINE 16 100 PERCENT 110 PERCENT DELTAPINE 16 51 34 1.09 42 3.5 88 25 7.3 2.3 3.4 11 2 100 5.8 5.1 1.0 DIXIE KING III DIXIE KING III 33 1.03 45 44 3.9 98 24 5.1 3.4 4.6 3 3 2 90 6.5 5.5 3.4 4.6 3 3 2 90 6.5 5.5 3.4 4.6 3 3 2 90 6.5 5.5 3.4 4.6 3.9 95 2.3 3.4 4.6 3 3 2 90 6.5 5.5 3.4 4.6 3 3 2 90 6.5 5.5 5.5 3.4 4.6 3.9 95 2.3 3.4 4.6 3.9 95 2.3 3.4 4.6 3.9 95 2.3 3.4 4.6 3.9 95 2.3 3.4 4.6 3.9 95 2.3 3.4 4.6 3.9 95 2.3 3.4 4.6 3.9 95 2.3 3.4 4.6 3.9 95 2.3 3.4 4.6 3.8 3.4 4.6 3.8 3.4 4.6 3.9 95 2.3 3.4 4.6 5.9 95 2.3 3.4 4.6 5.0 95 2.3 3.4 4.6 5.0 95 2.3 3.4 4.6 5.0 95 2.3 3.4 4.6 5.0 95 2.3 3.4 4.6 5.0 95 2.3 3.4 4.6 5.0 95 2.3 3.4 4.6 5.0 95 2.3 3.4 4.6 5.0 95 2.3 3.4 4.6 5.0 95 2.3 3.4 4.6 5.0 95	SLM SLM LM	51 41 51	354 35	1.08	46 45 46	4.27	92 93 90	24 23 21	55.5 5.4 5.4	2.8 1.4 3.3	3.6 4.0 4.0	1 2 2 7	1 2 2	101 100 96	6.9
31 35 1-13 44 3.9 89 26 8.0 1-3 2.2 0 2 104 5.1 4.9 5.1 4.4 4.4 4.2 87 25 7.7 2.1 2.1 2.8 0 2 104 5.1 4.9 5.1 4.0 4.2 87 25 7.7 2.1 2.1 2.8 0 2 104 5.1 10.2 1.1 4.3 4.2 87 25 7.7 2.1 2.1 2.8 0 2 104 5.1 10.2 1.1 4.3 4.2 85 2.3 7.4 1.0 1.0 PERCENT 41 34 1.09 42 3.5 88 25 7.3 2.3 3.4 4.5 2 2 1 99 6.1 5.8 5.1 1.1 4.2 3.4 4.5 2 2 1 99 6.1 5.8 5.1 1.1 4.2 3.4 4.5 3.4 4.5 3.4 4.5 5.2 2 1 97 6.6 5.5 5.1 1.0 PERCENT 51 33 1.03 45 44 3.9 95 2.3 5.2 3.4 4.6 3.9 95 2.3 5.2 3.4 4.6 3.9 95 6.5 5.2 3.4 4.6 6.5 5.0 5.0 90 6.5 5.5 5.2 3.4 4.6 6.5 5.2 3.4 4.6 5.2 3.4 4.6 5.2 3.4 4.6 5.2 3.4 4.6 5.2 3.4 4.6 5.2 3.4 4.6 5.2 3.4 4.6 5.2 3.4 4.6 5.2 3.4 4.6 5.2 3.4 4.6 5.2 3.4 4.6	GREENVIL	.te	0		16		-	00 PERCENT							
41 34 1.09 42 3.5 88 25 7.3 2.3 3.4 1 2 100 5.8 5.1 35 1.08 43 4.0 89 23 7.4 3.4 4.5 2 1 99 6.1 5.8 5.1 34 1.11 42 3.6 83 24 7.1 3.4 4.5 2 2 1 97 6.6 5.1 3.4 4.5 2 2 2 97 6.6 5.1 3.4 4.5 2 2 2 97 6.6 5.1 3.4 4.5 3 2 94 6.9 5.1 3.4 4.5 3 2 94 6.9 5.1 3.4 4.2 3 3.4 4.6 3 3 2 90 6.5 5.1 3.4 4.6 3 3 2 90 6.5 5.1 3.4 4.6 3 3 2 90 6.5 5.1 3.4 4.6 3 3 2 90 6.5 5.1 3.4 4.6 3 3 2 90 6.5 5.5 3.4 4.6 3 3 2 90 6.5 5.5 5.1 3.4 4.6 3 3 2 90 6.5 5.5 5.1 3.4 4.6 3 3 2 90 6.5 5.5 5.1 3.4 4.6 3 3 2 90 6.5 5.5 5.1 3.4 4.6 3 3 2 90 6.5 5.5 5.1 3.4 4.6 3 3 2 90 6.5 5.5 5.1 3.4 4.6 90 6.5 5.5 5.2 3.4 4.6 90 6.5 5.5 5.2 3.4 4.6 90 6.5 5.5 5.2 3.4 4.6 9.	SLM	31 40 41		1.13 1.14 1.11	7 7 F 7 7 7 7	3.9 3.9	89 87 85	26 25 23	8.0 7.7 7.4	1.3 2.1 1.0	2.2 2.8 1.8	001	222	104 104 102	5.1
41 34 1.09 42 3.5 88 25 7.3 3.4 1 2 100 5.8 51 3.4 4.5 5 2 1 00 5.8 51 3.4 4.5 5 2 1 1 00 5.8 51 3.4 4.5 5 2 1 1 00 5.8 51 3.4 4.5 5 2 2 1 0 99 6.1 5.8 51 3.4 4.5 5 2 2 1 0 99 6.1 5.8 51 3.4 4.5 5 2 2 2 1 0 99 6.1 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	HOLLANDA	ıLE	O		16		-		_						
51 33 1.02 44 98 24 5.1 3.4 4.2 3 2 94 6.9 51 33 1.02 44 3.9 95 23 5.2 3.4 4.6 3 2 90 6.5	EER	41 51 51	3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.09 1.08 1.11	43.5.	3.6 3.6	88 89 83	25 23 24	7.3	2.3 3.4 3.4	W 4.4 4 R R	1 2 2 2	212	100 99 97	5.8 6.1
51 33 1.03 45 4.0 98 24 5.1 3.4 4.2 3 2 94 6.9 51 33 1.02 44 3.9 95 23 5.2 3.4 4.6 3 2 90 6.5	INDIANCL	4	Q	IXIE KING			-		_						
	55	51 51	33	1.03	44	4°0 3°9	98	24	5.1	3.4	4.6	m m	2 2	76	6.92

2/ Cotton stuck to processing rolls

Table 6a, -- Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976 -- Continued

yarn	Com- Dosite		Index		102 103 104		102 101 104		107		105 103 102		107 107 106		104 105 107		4 9	
dyed yarn					182		0 4 4		8 12 24		4 - 6		60 60 v0		299		4 104 0 96	
- 22s	Blue-	-	위		26.		26.		9 26. 9 26. 0 26.		4 26. 5 26. 5 25.		26.		26.		26.	
Color	Reflet	_	묎		28.3 27.2 27.4		27.8 27.5 27.6		26.9		27.9		27.2 27.2 27.4		27.2 27.6 26.6		28.0	
d. yarn	Com- posite		Index		104		101 103 102		102 102 104		102 101 100		104 104 103		105 101 100		102	
2s blchd	Yellow- ness		위		2.5		2.8		3.3		2.9		2.9		2.5		3.1	
Color-22s	eflct-		뀖		84.4 81.4 83.2		82.8 83.4 83.6		84.1 83.2 83.3		83.4 82.5 82.5		84.2 83.5 83.8		84.7 82.5 83.2		83.8	
yarn	Com-		Index	,	93 91 88		94,		93		93 91 89		96 96		90 91 88		84	
22s gray	(ellow-		위		9.9		10.4		11.0		10.6 9.8 9.4		9.8 10.1 9.5		10.4		11.0	
Color -	Reflct-		堀		70.0		68.3 70.9 68.8		68.6 71.2 69.2		69.1 69.6 69.3		71.8 71.4 69.8		68.0 69.4 67.5		66.0	
Spin-	ning Poten-	LIGHT	No.		51 52 57		45 63 60		57 56 59		54 47 53		64 67 66		63 64 65		52	
rfctns.	50s or		No.	Ė	9 20 10	L N	9 11 14	L	9 8 19	L N	11 10 16	L Z	9111	TN	18 17 23	TN	10	
(arn imp	22s or		No.	PERCENT	10 10 114	PERCENT	13 18 19	PERCENT	12 7 18	PERCENT	13 13 19	PERCENT	13 14 19	PERCENT	26 24 27	PERCENT	15	
arance	50s or 2	,	Index	100	70 90 80	100	90	06	90	100	90 20 20	100	80 80 70	100	02 02 02	100	70	
Yarn appearance Yarn imprfctns	22s or 5	<u>.</u>	Index		100		110		120 110 110		1000		100 90 90		900		110	
l li	50s or 2%		Pet. I		3.7		3.9		4.5		3.6		5.0		4.5		3.6	
Yarn elongation		_								NIE						=		
Yarn	22s or	2	Pct.	NE 55	5.7	NE 16	5.3 6.1 6.4	NE 16	6.0	LLE 7	5.4	NE 16	6 . 8 6 . 8	NE 16	6.2	ING	5.2	
ength	50s or	75 CCA	Lbs.	DELTAPINE 55	32 34 36	DELTAPINE 16	31 39 37	DELTAPINE 16	35	STONEVILLE 731N	33	DELTAPINE 16	41 40 38	DELTAPINE 16	37 38 38	DIXIE KING III	35	
Yarn strength	22s or		Lbs.	0	104	0	96 115 111	٥	107 106 102	S	108 103 102	۵	122 120 116	D	115	۵	106	,
_			32d In.		35 34 35		34 35		34		34 35		35 35		34		33	
ion Ar	sampli	Staple		7_	411		41 41 51		1111		51 41 51	ш	31 40 41	ш	41 51 51		51	-
State, Production Area,	Chronological sampling, and Classification	Grade	Code	SOUTH CENTRAL MISSISSIPPI ARCOLA	EZZ	BELZONI	555	DUCK HILL	SLM SLM SLM	GLENDORA	C.C.C.	GREENVILLE	SLM+ SLM+	HOLLANDALE	SLM	INDIANOLA	55	n. 5 6
State,	Chronc	9	Name	SOUTH MISS ARC	SLM	BEL	SLA	DOC	SLM	GLE	∏ SI L	GRE	2.2	НО	S	Z		7/

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

1	er rd	į.			~ m m		0.40		~ ~ ~		21 - 22				224		
- 7	& Card	2	Pet		6.3		7.0		5.7		7.2 5.7 6.3		4.1 5.6 6.E		6.9		6.1
ock	Composite	JOTOS	Index		94		100 97 97		102 103 103		102 102 101		101 103 98		96 86 66		102 93 93
Color of raw stock	Yellow-	a con	No.		m m N		23		777		211		2 7 1		777		~~~
Colo	Gray-	a con	No.		226		222						1 1 2		777		m m
nalyzer	Total	200	Pet.		3.7		3.2		2.5 3.1 2.8		2.8		2.5		3.1 2.4 2.8		4.0 0.0 0.0
Shirley Analyzer	Visible	200	Pct.		2.8 3.5		2.6 2.4 2.4		2.2 2.1 2.0		1.9 2.5 2.4		1.7		2.2		2.7 3.1 3.2
המסרת	gation 1/8"		Pct.		6.0		6.4 6.3 6.1		6.0 7.0 6.7		7.6		7.4 8.4 7.7		6.0 5.9 6.3		7.9 5.8
strength	1/8"	9	G/tex	100 PERCENT	25 23 23	100 PERCENT	24 23 23	85 PERCENT	23 21 24	100 PERCENT	24 23 24	100 PERCENT	26 24 25	100 PERCENT	22 23 23	100 PERCENT	25 25 23
Fiber :	Zero	9	Mpsi	10	93 93 91	10	91 89 90	-	83 80 80	01	87 85 87	01	91 84 84	10	900	10	88 68 68
	Micro- naire		Rdg.		444 6.00 0.00		444 886		4.3 4.2 4.1		4 6 6 0 8 8		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		4.6 4.3		4.0 4.9
Fibrograph	50/2.5		Pet.	213	44 42 42	213	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	213	44 43 43	16	43 42	19	7 4 4 4 4 4	213	44 41 43	213	45
Digital F	2.5% span		il.	STONEVILLE	1.04	STONEVILLE	1.07 1.03 1.05	STONEVILLE	1.07	DELTAPINE	1.13	DELTAPINE 6	1.10	STONEVILLE	0.99 1.01 1.05	STONEVILLE	1.07
Area,	on on	Steple	32d in.	ST	34 34 34	ST	34 35	ST	34 35	DE	35 35	DE	34 35	ST	8 8 8 8 8 8	ST	34
State, Production Area,	and Classification	de	Code	AL I	50 51		41 41 51		411	BURN	41 41		14 11 11		41		51
State, I	and Cl	Grade	Name	SOUTH CENTRAL MISSISSIPPI INDIANOLA	LM+ SLM LM	LYON	SLM SLM LM	NATCHEZ	SLM SLM SLM	PANTHER B	SLM SLM SLM	SCOTT	SLM SLM SLM	SUNFLOWER	SLM SLM SLM	TRIBBETT	SLM LM LM

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

dyed yarn	Com-		Index		108 98 98		106 103 100		107 104 107		107 106 105		112 110 103		102 105 105		112 103 102
22s	Blue-		위		26.9 25.0 25.4		26.7 26.1 25.6		26.9 26.1 26.7		26.9 26.7 26.6		27.7 27.2 26.2		25.7 26.6 26.3		27.6 26.0 26.2
Color -	Reflct-		Rd		27.0 27.8 28.6		27.6 27.9 28.4		27.2 27.4 27.0		27.1 27.4 27.6		26.2 26.6 27.8		27.6 27.6 27.3		26.2 27.5 28.3
d. yarn	Com- posite		Index		102 99 100		102 102 102		105 105 107		104 103 105		104 107 105		94 98 100		105 95 97
2s blch	Yellow-		위		3.0 3.1 2.7		2.5		2.8 2.6 2.3		2.5		3.0		3.8		3.2
Color-22s blchd.	Reflet-		묎		83.6 82.7 82.3		83.4 82.7 82.9		84.5 84.3 84.7		83.7 82.9 84.1		84.3 84.5 83.8		81.5 82.1 82.3		84.8 81.2 81.5
gray yarn	Com-		Index		90 92 86		93 92 89		95		92 91 92		93		88 88 89		96 83 84
22s gra	Yellow-		위		10.7 10.1 10.0		10.7 10.4 9.6		10.6 10.2 10.5		9.6		10.2 9.9 10.0		10.4 10.1 9.6		10.2 10.0 9.9
Color -	Reflet-		찙		67.8 69.7 66.8		68.9 69.0 68.6		70.2 71.7 70.0		70.3		69.7 71.1 69.0		66.2 67.7 69.0		71.1 64.8 65.2
Spin-	ning Poten-	tial	No.		58 57		643		54 52 61		58 64 60		72 72 69		445 59		53
rfctns.	50s or		No.	<u> </u>	10	<u>-</u>	9	Ė	12 12 12	Ė	20 17 16	<u>=</u>	9 10 14	<u> </u>	10 11 17	<u> </u>	8 11 15
Yarn imprfctns.	22s or		No.	100 PERCENT	14 8 15	PERCENT	11 12	PERCENT	17 18 14	PERCENT	23 22 18	PERCENT	11 12 16	PERCENT	14 15 15	PERCENT	9 16 19
	50s or		Index	100	8 9 9	100	0 0 0	. 85	9 8 0	100	000	100	8 0 0 0 0 0	100	80 00 00 00 00 00	100	900
Yarn appearance	22s or 5	4	Index		110 100 110		100 110 100		100 100 100		06		1100		110		120 90 110
g	50s or 2	4	Pct. I		4.0		3.4		4.4 4.9 9.9		4.9 5.1 4.6		5.3		4 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		4.8
Yarn elongatic				113		113		213						213		213	
	r 22s or	_	Pct.	ILLE 2	5.2	ILLE 2	40.4		5.0	INE 16	6.7 6.8 6.1	INE 61	4.9		5.3		6.4 5.5 5.1
Yarn strength	50s or	דק הב	Lbs.	STONEVILLE 21	37 32 33	STONEVILLE 21	31 28 28	STONEV ILLE	32 32 36	DELTAPINE 16	37 38 37	DELTAPINE	41 42 39	STONEVILLE	27 29 35	STONEVILLE	36 33 33
Yarn s	22s or	V	Lbs.		114 100 106		101 90 96		105 102 111		114 116 109		121 122 121		92 97 104		113 103 100
rea,		Staple	32d In.		34 34		34 34 35		34 34 35		35		34 34 35		8 8 8 8 8 8 8 8		34
tion A	samplication	St		AL I	50 41 51		41 41 51		4114	BURN	411		411		41		41 51 51
State, Production Area,	Chronological sampling, and Classification	Grade	Name Code	SOUTH CENTRAL MISSISSIPPI INDIANCLA	KH +	LYON	SLM	NATCHEZ	SLM	PANTHER B	SLM	SCOTT	SLM	SUNFLOWER	SLM	TRIBBETT	SLH LH

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

1.			1												,		
2	& Card		Pct.		6.6 8.3 6.1		6.0		5.3		9.9		5.1 5.8 6.1		5.2		6.0 5.0 6.1
ock	Composite		Index		66 86 66		103 101 102 97		106 98 96		100 94 94		101		100 101 95		100 101 101 100
of raw stock	Yellow-		No.		888		0000		N N 4		N m m		N N 4		822		m N m m
Color	Gray-		No.		222		2 2		950				7 7 7		3 = 2		
nalyzer	Total		Pct.		2.8		5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3		2.0		N N N		1.8 2.0 2.3		2.8		2.5 3.7 3.0
Shirley Analyzer	Visible		Pct.		2.0 2.1 2.0		1.8 2.0 2.2 3.8		1.2 2.0 2.1		4.0		1.2		1.9 1.8 3.8		2.4 2.1 2.1
- u) [II	gation 1/8"		Pct.	-	5.2	_	7.6 7.6 7.1	-	6.6 6.5 6.1	_	7.2 5.8 6.3	_	7.1 6.4 6.0	_	6.7 7.6 6.5	-	7.0 8.0 7.5
strength	1/8"	5	G/tex	100 PERCENT	22	90 PERCENT	24 23 23	100 PERCENT	23 23	100 PERCENT	24 22 22	80 PERCENT	23 23	100 PERCENT	22 22 22	95 PERCENT	24 23 22
Fiber	Zero	ρ	Mpsi	1	87 92 91		88 85 83 79		90 86 86	1	91 89 90		92 85 87	A	86 86 81		91 86 87 80
	Micro- naire		Rdg.		4.7		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		3.6		4°0 3°4 9°3		4.0		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4.0 4.0 5.0 7.0
Fibrograph	50/2.5 unif.		Pet.	256	455	16	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	213	41 42 42	213	44 44 33 33 33 33 33 33 33 33 33 33 33 3	16	44 45 45		4 4 4 6 4 5 4 6 4 6 4 6 4 6 6 6 6 6 6 6	16	1111
Digital Fi	2.5% span	ρ	.ul	STONEVILLE	1.06	DELTAPINE 1	1.02 1.00 1.00 0.99	STONEV ILLE	1.07	STONEVILLE	1.08	DELTAPINE 1	1.10	AUBURN M	1.09	DELTAP INE 1	1.07 1.04 1.05 1.03
Area,	lon	Staple	32d in.	ST	34	06	# # # # # # # # # # # # # # # # # # #	ST	34	ST	35	DE	35 35 35	AU	35 34	DE	3 3 3 3 4 8
State, Production Area,	Chronological sampling, and Classification	Grade	Code	RAL	41 41 41	VALLEY	4446	>	31 41 SP 42		41 SP 52 SP 52		31 41 SP 32		41 51		41 41 41 SP 42
State,	Chrono. and (5	Name	SOUTH CENTRAL MISSISSIPPI TRIBBETT	SLM SLM SLM	WATER VA	SLM	MISSOURI BELL CITY	SLM LT	CATRON	SLM LM LT LM LT	HAYTI	SLM M LT	SENATH	SLM SLM LM	T ENNESSEE Braden	SLM SLM SLM SLM LT

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976 --Continued

=																
dyed yarn	Com- posite	Index		100		104 103 103		107 100 108		104 102 103		109 106 105		106 105 104		1111 105 109 106
22s dy	Blue- ness	위		25.6 26.2 25.6		27.1 26.3 26.0 25.5		26.8 25.6 26.8		26.3 25.6 25.7		27.0 26.6 25.9		26.5 26.2 26.0		27.3 26.3 27.2 26.4
Color -	Reflct- ance	묎		28.2 27.4 27.2		27.2 27.8 27.5 27.5		27.1 28.0 26.4		27.6 27.4 26.7		26.5 27.0 26.5		26.9 27.0 27.0		26.2 27.1 26.7 26.7
d. yarn	Com- posite	Index		9.6		104 104 101 103		103		100 93 97		105		104		97 101 102 102
2s blchd.	Yellow- ness	₽		3.4 3.1 2.6		3.0 2.9 2.8		3.0 3.1		3.0		3.0		3.5		3.5 2.8 2.5
Color-22s	eflct-	집		82.7 82.7 82.9		84.5 84.4 82.9 83.8		84.2 82.9 83.1		82.9 81.5 81.8		84.1 84.7 82.5		84.5 84.2 81.0		82.2 83.0 83.0
yarn	Com- R posite	Index		92 89 89		944 94		91		96 87 84		96 91 87		89 92 85		94 93 89 89
22s gray	Yellow- (위		10.4 10.5 9.8		10.3 10.4 9.7 10.4		10.7		10.8		10.2 10.5 11.5		10.5 10.4 10.3		10.4 10.9 10.6 10.8
Color -	Reflct-	묎		69.0 67.6 68.4		70.8 69.9 71.3 67.2		71.2 68.0		70.0 65.1 63.4		71.2 68.3 65.2		67.7 69.1 65.4		69.8 68.5 67.5 67.2
Spin-	ning Poten- tial	No.		45 51 54		48 43 41		58 58		533		61 60 73		62 61 55		52 52 51 50
imprfctns.	50s or 12 tex	No.	I N	9 01	IN.	13 13 17 29	INT	20 18 14	INT	9 12 23	INT	111 111 6	INT	17 19 18	FN	12 8 16 12
Yarn	22s or 27 tex	No.	O PERCENT	===	O PERCENT	114 22 35	00 PERCENT	21 24 21	00 PERCENT	111 20 26	O PERCENT	111	O PERCENT	22 25 25	95 PERCENT	13 12 16 17
earance	50s or 12 tex	Index	100	8 9 9	90	0000	101	900	10	922	80	980	100	80 70 70	6	80 60 80 0 0 0 0
Yarn appearance	22s or 27 tex	Index		110		90 100 90 70		066		1000		110 100 110		90		100 100 110 100
ngation	50s or 12 tex	Pet.		9.50		4.3 9.9 1.3		444		3.7		5.5		4 6 4 4 6 7		4444
Yarn elonge	22s or 27 tex	Pct.	LE 256	5.0 5.0	E 16	6.3 5.9 6.1 6.4	LE 213	6.9	LE 213	5.4	E 16	6.0		6.5	E 16	5.9 6.3 6.3
	50s or 12 tex	Lbs.	STONEVILLE	26 32 31	DELTAPINE 16	31 28 29 31	STONEVILLE	36 31 35	STONEVILLE	36 32 33	DELTAPINE	37	AUBURN H	39 37 31	DELTAPINE	34 35 32
Yarn strength	22s or 27 tex	Lbs.		96	0	105 95 98 100	S	110 103 106	S	112 99 103	٥	115 108 120	4	119 112 100	٥	112 107 108 101
		티		34		4 m m m		34 34		35		35 35		35 35		33.3
tion Ar	sampling, ication Staple	le 32d In	YAL YI	444	VALLEY	41 41 51 51		31 41 SP 42		41 SP 52 SP 52		31 41 SP 32		41 41 51		41 41 5P 42
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH CENTRAL MISSISSIPPI TRIBBETI	SLM	WATER VAL	SCH	MISSOURI BELL CITY	SLH LT S	CATRON	SLM LT S	HAYTI	SLH H LT S	SENATH	SLM SLM	TENNE SSEE 8RADEN	SLM SLM SLM SLM LT

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

L	_	waste	Pet.	ν. α	5.2	4. v	7.5	5. 5. 5. 6.	N. 9	4 c	6.1	, r.	9.00	5.2 5.6	1.9	6.3	7.6
stock	Composite	color	Index	100	101	104	63	102	103	100	102	101	66	102	95	102	101
of raw	1 3	מושמא אין	· O	2 6	6	നഗ	ľ	2 6	7	4 6	æ	6 2	m	m m :	m	2 0	. 2
Color	Gray-			1 2	2	7	m		-	1 2	-		2		n	10	-
Analyzer	Total	Pct		3.2	2.9	1.9	7.7	1.8	2•3	4°.6	3.6	1.6	2.1	2.2	:	2.6 3.1	5.1
	Visible waste	Pct.		1.8	7*7	1.2	7:1	1.1.	1+3	3.9	3.2	1.0	1.4	1.5		2.0	0.4
Elon-	gation 1/8"	Pct.		9.9	•	8.4 7.3	*	7.1		7.0	•	6 6 3	•	6.0 6.0		7.1	v.
, -	1/8" Gage	G/tex	80 PERCENT		0	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	1 000	21 21 21 21			۵.	24 22 21			PERCENT		
	Zero	Mpsi		8 8 8 5 5 5 6	60	85 85 85	-	75	91	79 83 80	100	75 83 83	06	82 87 83	95	82	69
Micro-	naire	Rdg.		4°9 9°9		4.5		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		4.7		5.2 4.7 5.1		4°6 3°9		w w w	in
L	50/2.5 unif.	Pet.	213	4 4 4 7 9 4	25	46 47 43		43 43	9	44	213	64 64 74	7.A	48 44 46		6 4 4 4 4 4 4	00 percent
7	2.5% span length	il ii	STONEVILLE	1.06 1.07 1.05	DELTAPINE 2	1.06 1.06 1.05	TAMCOT SP37	1.04 1.03 1.03	DELTAPINE 16	1.10 1.13 1.13	STONEVILLE	1.04 1.05 1.03	STONEVILLE 7	1.07 1.06 1.06	TAMCOT SP37	1.01 1.03 1.04	less than 100 percent
jon jon	Staple	32d in.	S	34	0	34 34 33	1		DE	34 35 35	ST	33 34 34	STI	34	TAP	m m m	
and Classification	Grade	Code	TRAL E RG	41 SP 42 SP 42	SVILLE	31 43 43	AS LLE	41 41 41		SP 42 41 41	ILLE	31 41 41		41 41 SP 52		41 51 51	100 percent selected for tests, Reduced from 42 because of bark Reduced from 21 because
and	5	Name	SOUTH CENTRAL TENNESSEE DYERSBURG	SLM LT SLM LT SLM LT	MCLEMORESVILLE	SLM SP	SOUTH WEST SOUTH TEXAS BROWNSVILLE	SLM SLM SLM	DANEVANG	SLM LT	RAYMONDVILLE	SLM	RIO FONDO	SLM SLM LM LT S	ROBSTOWN	SC# C#	100 percent s Reduced from Reduced from

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976

Charactive mathematics State Sta	State, Production Area,	on Ares		Yarn strength	\neg	Yarn elongation	-	Yarn app	appearance	Yarn	imprictns.		COTOL -	ZZS gray	yarn	COTOL - CES	DICTIO	. yar 11	- 10100	na macro	or yarıı
Condition Cond	onological sand Classifice	ampling ation					tex.	tex	50s or 12 tex	or		ning Poten-	ct-	Yellow- ness		Reflct-	Yellow- ness	- 41	Reflct- ance		Com- posite
	Grade	Stapl		_		-															
STONEVILLE 213 STONEVILLE 213 SO PERCENT 12 4 105 35 5.9 12 5.9 12 5.9 13 4 105 35 5.9 14 13 4 105 35 5.9 14 13 4 105 36 5.9 15 5.9 16 5.9 17 5.9 18 5.9	Name Code	32d 1		bs.	Lbs.	Pct.		Index	Index	No.	No.	No.	찙		Index	뀙	위	Index	윤	위	Index
SVILLE SCHINGLY SCHINGLY	DUTH CENTRAL TENNESSEE DYERSBURG			S	ronev1L	21			€	0	L N										
SVILLE SELTAPLIE SELTAPLIA SELTAPLIE SELTAPLIE SELTAPLIE SELTAPLIE SELTAPLIE SELTAPLI SELTAPLIE SELTAPLI SELT	55	41 42 42		103	32 36 35	5.9	4.4 0 m 4	100 90 90	80 70 70	18 35 24	14 26 18	50 59 62	6.20		889	25.3		100	27.2 26.8 26.1	9 9 9	105 105 109
11 14 10 36 6.6 4.8 110 90 90 26 16 20 10.7 90 10.4 90 26.6 10.2 10.5 90 10.7 90 10.4 90 25.4 27.2 111 11 11 11 11 11 11 11 11 11 11 11 1	CLEMORESV	TLLE		10	ELTAPIN	1E 25			ω)	0	ENT										
LLE 41 33 99 34 6.3 4.48 80 60 22 16 54 69 10.5 95 86.6 2.7 110 27.3 26.8 1 41 33 99 34 6.3 4.48 80 60 22 16 54 69 10.8 95 82.8 100 27.1 26.0 1 41 35 110 39 6.1 4.8 100 90 24 19 62 67.9 11.6 94 84.4 3.4 102 25.6 27.3 11.4 11.5 99 83.2 2.9 107 27.3 26.1 1 41 35 110 39 6.1 4.8 100 90 24 19 62 67.9 11.6 94 84.4 3.4 102 26.6 26.7 1 41 34 112 40 6.0 4.4 110 90 12 11 8 53 68.0 10.9 92 83.1 2.9 101 27.5 26.5 11.1 1 51 31 112 40 6.0 4.4 110 90 12 11 8 53 68.0 10.9 93 84.0 3.2 101 27.6 27.0 1 51 33 104 36 6.3 4.4 110 90 12 18 59 66 33.4 11.2 89 84.5 2.8 102 27.0 1 51 33 104 36 6.3 4.4 110 90 12 19 66 63.4 11.2 89 84.0 3.2 102 27.0 1 51 33 104 36 6.3 4.4 110 90 12 19 66 63.4 11.2 89 84.0 3.2 10 27.6 27.0 1 51 31 104 36 6.3 4.4 110 90 12 19 66 63.4 11.2 89 84.0 3.2 10 27.6 27.0 1 51 31 104 36 6.3 4.4 110 90 12 19 66 63.4 11.2 89 84.0 3.2 10 27.6 27.0 1 51 31 104 36 6.3 4.4 110 90 12 9 66 70.1 10.8 95 84.0 3.2 10 2 28.0 27.1 27.0 1 51 31 104 36 6.3 4.4 110 90 12 9 66 70.1 10.8 95 84.0 3.2 10 2 28.0 27.1 27.0 1 51 31 104 36 6.3 4.4 110 90 70 24 71.6 10.5 97 84.7 2.7 10 2.8 10 2.9 27.2 17.0 10.5 97 84.7 2.7 10 2.9 27.2 17.0 10.5 9.0 10.5 97 84.7 2.7 10.5 9.0 10.5				109 107 110	35 34 36	6.6		110 110 100	90	8 20 16	8 15 12	58 60 64	70.9 60.9 62.2	2.5	97 82 84	899		102 99 99		27.1 27.2 26.6	110 112 107
SLM (1) 33 99 34 6.3 4.8 80 6.0 22 16 19 58 10.2 10.5 99 86.6 2.7 110 27.3 26.8 110 10.0 10.0 10.0 10.0 10.0 10.0 10.	JTH WEST SUTH TEXAS IROWNSVILLI	w		2		SP 37			10												
SLM L SP 42 42 110 39 6.1 4.8 100 90 24 19 62 67.9 11.6 94 84.4 3.4 102 25.6 27.9 25	SLM SLM SLM		3333	96	34 33	6.5	444	80 80 80	000	21 22 28	19 16 21	58 54 52			95 95 96	91010		110 107 106		999	107 104 104
SLM LT SP 42 34 110 39 6.1 4.8 100 90 21 117 69 69.3 11.5 96 83.7 3.1 102 26.9 26.9 21. SLM 41 35 118 41 6.4 5.0 100 90 21 17 69 69.3 11.5 96 83.7 3.1 102 26.5 26.9 26.9 21. SLM 41 35 118 41 6.4 5.0 100 90 12 17 69 69.3 11.5 99 85.2 2.9 106 26.5 26.9 26.9 26.9 21. AYMONDVILLE	ANEVANG			0	ELTAPIN	4E 16			v		TN										
AYMONDVILLE H 31 33 103 36 5.3 3.8 110 90 14 10 52 68.5 11.0 93 83.4 3.2 101 26.5 27.0 1 SLH 41 34 103 36 5.0 4.8 120 100 12 11 8 53 68.0 10.9 92 83.1 2.9 101 27.7 26.5 1 SLH 41 34 100 33 5.8 4.4 100 90 10 11 8 53 68.0 10.9 92 83.1 2.9 101 27.7 26.5 1 SLH 41 34 107 39 5.5 4.4 100 90 10 10 8 65 68.3 11.0 93 84.0 3.3 102 26.6 27.3 1 SLH 41 34 107 39 5.5 4.4 110 90 12 8 65 70.1 10.8 96 84.5 2.8 105 27.1 27.0 1 SLH 41 34 107 39 5.5 5 4.4 110 90 12 8 65 70.1 10.8 96 84.5 2.8 105 27.1 27.0 1 SLH 41 33 100 32 6.3 4.5 90 70 18 20 53 70.4 10.5 97 86.7 2.7 110 26.9 1 SLH 41 33 100 32 6.3 4.5 90 70 24 19 54 71.6 11.3 100 84.6 3.3 103 28.3 25.8 1 SLH 41 34 105 because of bark Reduced from 12 because of bark	ב	42 41 41		110 118 114	39 41 39	6.1		100	90 80	24 21 18	19 17 14	69			96	* 60 10	3.4 3.1 2.9	102 102 106		6.	112 109 108
No. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AYMONDVIL	LE		S	TONEVIL	21			10	PERC	ENT										
SLM	SLM			103 103 100	36	5.03		110 120 120	90 100 100		1108	52 55 53	888		93 92 92		3.2 2.9 3.1	101 101 100		6.	000
SLM 41 34 107 39 5.5 4.4 100 90 10 8 65 68.3 11.0 93 84.0 3.3 102 26.6 27.3 SLM 41 34 112 40 6.0 4.4 110 90 12 9 66 70.1 10.8 96 84.5 2.8 105 27.1 27.0 Inchest of bark 113 100 bercent in the area Reduced from 13 because of bark Reduced from 13 because of bark Reduced from 14 because of bark Reduced from 14 because of bark Reduced from 15 because of	STO HONDO			S	TONEVIL	LLE 7A			σ.	O PERC	LNS	,									
SLM 41 33 100 32 6.3 4.5 90 70 18 20 53 70.4 10.6 96 85.0 2.8 106 27.4 26.7 1	5	41 41 52		107	39 40 41	5.0		100 110 110	900	2.0 11.2 2.3		65 66 68		-6-1	93 96 83	84.0 84.5 84.0		102 105 102			110 108 102
SLM 41 33 100 32 6.3 4.5 90 70 18 20 53 70.4 10.6 96 85.0 2.8 106 27.4 26.7 1 LM 51 33 104 36 6.3 4.5 90 70 24 19 54 71.6 10.5 97 86.7 2.7 110 26.9 27.2 1 LM 51 33 105 33 6.4 4.5 90 70 22 14 52 71.6 11.3 100 84.6 3.3 103 28.3 25.8 1 Reduced from 42 because of bark Reduced from 31 because of bark Reduced from 41 because of bark Reduced from 42 because of bark	ROBSTOWN			-		SP37			5	5	ENT										
100 percent selected for tests, less than 100 percent in the Reduced from 42 because of bark Reduced from 31 because of bark Reduced from 41 because of bark				100	32 34 33	6.3	4 4 4 0 • 0 0	06	70 70 70	18 24 22	20 19 14	53		00.	96 97 100	85.0 86.7 84.6		106 110 103		26.7 27.2 25.8	106 109 101
	* 100 percent 1/ Reduced fro 2/ Reduced fro 3/ Reduced fro	selector 42 box 31 box 41 box 41 box	ted forecause	or test of ba	rk rrk rrk rrk	than 100	percent	in the	area												

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

State, Production Area,	n Area,	Digital Fib	Fibrograph		Fiber s	strength	F10n-	Shirley A	Analyzer	Color	of raw stock	ck	Dickor
Chronological sampling, and Classification	mpiing, tion	2.5% span	50/2.5 unif.	Micro- naire	Zero	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite color	& Card
Grade	Staple				9								
Name Code	32d in.	· In.	Pct.	Rdg.	Mpsi	G/tex	Pet.	Pct.	Pct.	No.	No.	Index	Pct.
SOUTH WEST SCUTH TEXAS SAN JUAN		TPSA 1633			•	88 PERCENT							
SLM 41 SLM LT SP 42	33 34 33	1.06 1.08 1.06	4 4 4 5 5 5 5	4 4 4 5 3 3	84 86 83	23 22 21	6.1 6.1	1.8 2.5 3.2	3.4	328	ጠጠቁ	100 100 95	5.8
CENTRAL TEXAS AQUILLA		TAMCOT SP37			10	100 PERCENT							
SG0 61 2/ SG0 61 2/ LM LT SP 52	32 31 31	1.01	45 43	3.3 3.3 8.8	008	20 22 21	6.2 6.4 6.2	4.5 3.6	7.0 4.5	335	ммм	9 4 6 9 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9.6 10.0 8.9
BATESVILLE		STONEVILLE 2	213		-	90 PERCENT							
3/ SLM 41 M 31 SLM LT SP 42	35 34 34	1.13	999	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	78 80 81	22 22 22	6.5 6.4 7.1	2.8 1.6 1.7	3.6 1.9 2.5	1 2 2	ታ ጠጠ	102 104 98	6.50
NAVASOTA	_	DELTAPINE 16	9		6	5 PERCENT							
M 31 SLM 41 SLM 41	35 35	1.14 1.14 1.11	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.8	81 80 83	22 24 24	7.1	1.3	1.7 2.3 2.8	121	m m =	104	3.9 5.8
NORTHWEST TEXAS HALE CENTER	Ç	GSA71			_	70 PERCENT							
14 SLM LT SP 42 5 SLM SP 43 2 LM LT SP 52	32 32 32	0.97 0.95 0.95	45	4°0 3°4 3°6	84 85 86	22 21 22	7.4	1.9 2.0 2.6	3.2	N 4 E	404	99	6.7 8.1 8.2
L00P	J	GSA71			_	75 PERCENT							
M LT SP 32 SLM 41 14/ SLM LT SP 42	31 32 32	0.90	4 4 4 20 0	4.3	85 85 85	21 22 22	6.4 7.3 6.9	2.0	3.0 3.0 9.9	315	404	101 102 96	7.6
LUBBOCK		COKER 312			10	100 PERCENT*	*						
2/ LM LT SP 52 5/ SLM SP 43 6/ LM SP 53	33 35 35	1.12 1.06 1.16	45 40 40	3.04	8 8 8 8 5	24 23	6.6	3.6	5.1 5.3	m 4 4	NOO	97 89 88	8.8 7.5 8.9
100 percent Reduced from Reduced from	selected for tests, 51 because of bark 42 because of bark	bark bark		percent in the	area								
from 32 from 33 from 43	of of	bark bark bark		7									

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976-Continued

C St	State, Production Area, Chronological sampling, and Classification	tion A sampl:		Yarn strength	rength 50s or	Yarn elol 22s or		۰ ا _۲		rarn 22s o		Spin- ning Poten-	Reflet-	Yellow-	- II	Reflet-Ye	Yellow-	COM-	Reflet-	Blue	- COM-
1	grade Grade	St	ple	27 tex	12 tex	27 tex	12 tex	27 tex	12 tex	27 tex	12 tex	tial	ance	ness		ance ness	ness	posite	ance	ness	posite
R	Name Code	le 32d	in In	Lbs.	Lbs.	Pet.	Pct.	Index	Index	No.	No.	<u>양</u>	묎	위	Index	뀖	위	Index	묎	쉬	Index
Sos	SOUTH REST SOUTH TEXA: SAN JUAN	SI		-	TPSA 1633	5			œ.	8 PERCENT	F Z										
	SLM SLM SLM SLM	41 41 SP 42	33 34 33	101	34	5.4.3	8 8 6 8 6 8	110	9 8 0	12 12 19	9 12 15	55 58 55	68.1 68.1 65.9	10.9 10.6 11.2	93 91 88	84.8 82.7 84.2	3.7	106 97 103	27.4 27.1 28.1	26.3 26.7 26.0	104 107 102
0	CENTRAL TE	TEXAS		-	TAMCOT S	SP 37			10	O PERC	ENT										
70	SGO SGO LM LT S	61 61 5P 52	32 31 31	95 96 80	28 30 24	5.9	8 8 4 8 8 4	02 06 06	900	40 34 26	30 31 20	49	68.2 67.0 66.7	11.6	94 91 91	84.6 85.1 82.9	3.2	103 103 101	27.8 28.5 28.2	25.9 25.6 26.0	102 99 102
	BATESVILLE	щ		S	STONEVILLE 21	LE 213			, 6	O PERCE	L N										
2	SLM P SLM LT S	41 31 SP 42	35 35 34	106	37 32 32	6.5	4.4	90 100 100	70 80 70	26 23 24	17 15 16	60 54 54	68.9 70.3 66.4	12.5 11.6 11.5	06 66	86.1 84.5 84.4	2.9	108 105 104	26.3 27.0 27.4	27.4 26.7 27.2	111 107 108
	NAVASOTA			٥	DELTAP INE	4E 16			6	S PERCE	L N										
	SLM	31 41 41	35 35	111111111111111111111111111111111111111	36 37 37	6.5	4.8	100 100 90	90 07	13 14 20	8 12 15	65 61 63	70.2 68.3 70.5	11.2	97 91 92	84.3 83.5 83.3	2.9	104 103 103	27.2 28.4 28.3	26.4 25.4 26.1	105 99 102
~	NORTHWEST TEXAS HALE CENTER	TEXAS		0	GSA71				7	O PERCENT	r z										
मिलिल	SLM LT S SLM SP LM LT S	SP 42 43 SP 52	32 32 32	98 93 102	31 30 33	5.8 6.0 6.0	4.3	80 80 90	80 60 70	16 29 22	12 22 18	4 # 4 2 # 4	63.9 60.9 62.7	12.6 13.3 12.4	88 84 85	83.4 84.8 83.7	3.5	99 104 102	27.7 27.2 27.1	25.9 25.8 25.4	102 103 100
	LOOP			Ü	GS A 7 1				7	5 PERCE	L										
7	SLM LT S	SP 32 41 SP 42	31 32 32	96 66 96	29 32 29	5.9 6.1 5.9	4 4 4	110 90 90	80 80 70	16 21 20	14 17 17	4 4 4 6 4 6 9	66.8 71.9 66.6	12.4 9.9 11.2	96 89	82.5 81.6 83.0	3.0 2.8 2.9	96 98 101	26.7 28.0 27.9	25.9 26.0 25.7	104 102 101
	LUBBOCK			Ū	COKER 31	312			10	OO PERCE	*****										
लाजिल * लिलाज	CH L SLM S LM S 100 perc Reduced Reduced	7 SP 52 P 43 P 53 cent selec from 51 b from 42 b	35 35 35 35 ted for ecause	43 35 108 43 35 101 53 35 106 selected for tests, 51 because of bark	37 34 35 1ess	6.0 6.4 6.0 than 100 p	4.6 4.6 4.5 percent in	70 70 70 the ar	69 60 69 69	58 57 43	52 31	55 55 55	54.5 57.2 58.9	13.0 13.3 13.4	91 77 80	82.7 84.3 83.6	0 m m	100	26.8 27.4 26.7	26.0 25.4 25.8	101
Colore	Reduced Reduced Reduced	from 32 b from 33 b from 43 t	32 because of the thick of the	of bark of bark of bark	선생생건																

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

Dicker	& Card waste		Pct.		7.8 8.0 8.6		5.8 6.2 6.1		5.6 5.7 6.3		5.8 5.6 1		5.2 6.6		6.0		6.0 5.8 tt/	
	Composite		Index		66 65 67		102 104 105		102 99 101		103 105 103		101 98 97		100 102 99		98 107 104	
of raw stock	Yellow- ness		No.		4 3 N		ቀጠጠ		തതന		m 21 21		m m N		ৰ্বল			
Color	Gray- ness		No.		04m		0		1 5 1		101		1 2 2		2 2		700	
Analyzer	Total waste		Pct.		4.3 5.8 7.1		2.4		2.0		2.8 1.8 2.2		1.7 2.2 3.0		1.5		2.6	
Shirley An	Visible waste		Pct.		3.4 4.5 4.1		1.8 1.3 1.4		1.4		2.4 1.3 1.7		0.9 1.5 2.0		1.2		2.0 1.3 0.8	
- ao [∓	gation 1/8"		Pct.		6.2 6.2 7.3		7.3 8.2 7.4		7.1 6.2 6.8		7.9		4.6		5.9 6.0 5.9		5.2 5.2 5.9	
strength	1/8" Gage		G/tex	100 PERCENT	23 24 22	94 PERCENT	22 20 20	O PERCENT	24 23 23	3 PERCENT	22 22 22	70 PERCENT	22 22 21	3 PERCENT	22 22 21	O PERCENT	21 20 21	
Fiber s	Zero Gage		Mpsi	10	85 82 77	6	83 77 83,	100	87 86 86	6	82 80 81	7	85 86 84	6	87 84 85	100	87 88 83	
	Micro- naire		Rdg.		3.5 2.9		3.7		5.0 5.0		4.9		4.6 4.1		0.04		4. w 0. w 0. w	
Fibrograph	50/2.5 unif.		Pet.		4 0 0 4 0 0 4	213	7 4 4 7 4 4 7 4 4	1	4 4 4 4 4 0	1	4 4 4 4 4 5 4	9	43 43	213	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	256	43 41 42	
Digital Fi	2.5% span length	,	п	COKER 5110	1.08 1.11 1.09	STONEVILLE	1.06	DELTAPINE 61	1.10	DELTAPINE 61	1.14	DELTAPINE 66	1.08	STONEVILLE	1.03	STONEVILLE	1.10	8
Area,	jon	Staple	32d in.	00	34 35	ST	35 34 34	DE	35 35	DE	36 35	30	33 35 35	ST	344	ST	34 34	Reduced from 32 because of bark Reduced from 33 because of bark Reduced from 43 because of bark Cotton stuck to processing rolls
State, Production Area,	Unronological sampling and Classification	Grade	Code	TEXAS	SP 42 43 53		SP 32 31		4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NDE	41 41 41		31 41 41	Q	31 31 41	ALLEY	41 31 31	Reduced from 32 because of Reduced from 33 because of Reduced from 43 because of Cotton stuck to processing
State,	and C	G	Name	SOUTH WEST NORTHWEST LUBBOCK	SCH LT SP LM SP 3/ LM SP	WEST ARIZONA BOWIE	ZZZ C	BUCKEYE	SLM	CASA GRANDE	SLM	ELOY	SLM	GILA BEND	SLM	MOHAVE VALLEY	SLM	1/ Reduced from 32 2/ Reduced from 33 3/ Reduced from 43 4/ Cotton stuck to

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

yarn	t.	χĮ														
dyed ya	Com- posite	Index		108 101 102		103 108 104		107 99 100		108 107 102		106 103 102		105 103 102		104 109 103
- 22s	Blue-	위		26.6 25.4 25.7		26.0 26.9 26.1		26.8 25.4 25.4		26.8 26.8 26.0		26.6 26.0 25.5		26.6 26.0 26.0		26.2 27.1 25.8
Color	Reflct- ance	Ma		26.4 27.1 27.2		27.5 26.9 27.0		27.1 28.3 27.8		26.7 27.1 28.0		27.1 27.5 27.5		27.8 27.4 27.9		27.4 26.6 27.2
d. yarn	Com- posite	Index		98 101 101		102 104 103		98 100 104		105 105 107		104 101 101		101 101 104		98 104 103
2s blchd	Reflct-Yellow- ance ness	위		3.4		2.6		3.3 3.2 2.6		2.6 2.6 2.1		2.7 2.8 2.5		3.1		3.4
Color-22s	Reflct- ance	뀙		83.1 84.2 83.6		83.6 83.8 83.5		82.5 83.0 83.7		84.2 84.1 84.2		83.8 82.9 82.5		83.2 82.4 84.2		82.7 83.8 84.0
y yarn	Com- posite	Index		90 82 83		99		98 95 93		97 97 89		98 92 91		97 93 96		89 98 95
22s gray	Yellow- ness	위		12.2 13.8 13.6		11.5		10.8 10.6 10.6		11.2 10.2 9.5		10.8 11.0 10.4		11.8 11.2 10.8		10.8 10.2 9.6
Color -	Reflct- ance	湿		65.4 59.2 60.1		70.5 70.6 71.8		71.3 70.0 69.3		70.3 71.7 68.9		71.7 68.2 68.7		68.9 68.3 70.3		67.2 72.3 71.8
Spin-	ning Poten- tial	No.		61 51 50		46 46 51		53 47 51		62 55 53		52 49 54		36 42 41		42 50 50
imprfctns.	50s or 12 tex	No.	E	29 40 37	F	21 18 12	L N	17 15 16	T	9 12 15	Ι	10 8 15	N T	12 18 14	TN	16 17 15
Yarn im	22s or 27 tex	No.	100 PERCENT	41 52 51	PERCENT	24 20 16	PERCENT	21 17 18	3 PERCENT	14 14 19	PERCENT	01 61	3 PERCENT	12 17 17	PERCENT	20 22 16
appearance	50s or 12 tex	Index	100	0 9 9	46	555	100	70 70 80	6	90 80 70	70	80 70 70	6	02 02 02	100	0 9
Yarn app	22s or 27 tex	Index		70 70 70		06 06		100 90 100		110 100 90		90 1000 90		100 90 90		90
gation	50s or 12 tex	Pct.		044		4.5		4.9 3.5 9.9		4.4		3.6		3.8 3.8 8.8		3.4 9.4
Yarn elongati	22s or 27 tex	Pct.	0	6.6 6.1 6.7	E 213	6.4 5.9	61	5.3	61	6.3	99	5.5	E 213	4.8 5.2 5.3	.E 256	4.9
_	50s or 12 tex	Lbs.	COKER 5110	39 35	STONEVILLE	29 29 29	DELTAPINE	36 27 32	DELTAPINE 61	37 34 33	DELTAPINE	32 29 34	STONEVILLE	25 29 27	STONEVILLE	23 28 29
Yarn strength	22s or 27 tex	Lbs.	8	115 106 108	ST	94 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	DE	107 96 101	DE	112 104 100	DE	102 97 104	ıs	85 92 91	IS	79 92 93
		in		34 35		35 35		35 35		36 36 35		35 35 35		34 34		34 34
ion A	catio	32d	EXAS	42 43 53		31 31 31		41 41 41	Ä	41 41 41		31 41 41		31 31 41	VALLEY	41 31 31
State, Production Area,	Chronological sampling, and Classification Grade Staple	Name Code	SOUTH WEST NORTHWEST TEXAS LUBBOCK	SLM LT SP	WEST ARIZONA BOWIE	M LT SP	BUCKEYE	SLM SLM SLM	CASA GRANDE	SLM	ELOY	SLM	GILA BEND	SLAM	MOHAVE VAL	SEX

1/ Reduced from 32 because of bark
2/ Reduced from 33 because of bark
3/ Reduced from 43 because of bark

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976 -- Continued

1 sami	Chronological sampling,	1 101917	Digital ribiograph	7,7		-	- Elon-	,	,				Picker
and Classification	lon	2.5% span length	50/2.5 unif.	Micro- naire	Zero	1/8" Gage	gation 1/8"	Visible waste	Total waste	Gray- ness	Yellow- ness	Composite	& Card waste
	Staple												
Code	32d in.	삡	Pet.	Rdg.	Mpsi	G/tex	Pct.	Pct.	Pct.	No.	No.	Index	Pct.
	0	DELTAPINE 6	61			95 PERCENT	_						
41 41 31	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.12 1.11 1.09 1.11	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4404 	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	23 23 23	7.8 7.1 6.6 7.6	1.6 1.6 1.2	2.6 2.5 1.7 2.4	0 1 1 1	ммми	100 101 104 105	7.2 6.8 6.7 6.3
	Q	DELTAPINE 1	16			90 PERCENT	_						
31 31 21	3 2 4 3 5 5 6	1.10 1.11 1.11	4 4 4 4 4 4	444	84 80 82	22 22	7.6 7.6 8.2	1.0	1.9 1.8	1100	m m N	102 104 107	5.1
	∢	ACALA SJ-2				100 PERCENT	-						
41 41 41	36 36 36	1.16 1.15 1.12	4 4 4 2 7 70	4.0 9.9 9.8	89 91 89	27 25 26	6.9 6.3	1.5	2.2	1 2 2	m m N·	98 100 100	7.6 6.5 6.4
	⋖	ACALA SJ-2				99 PERCENT	-						
41 41 31	35 35 35	1.13 1.11 1.11	4 4 4 N N N	0.4 0.0 3.9	88 92 84	27 25 24	6.6	2.7 0.7 1.2	3.3 2.0	110	m N m	101 101 105	5.5 5.6 5.2 1
	4	ACALA SJ-2				98 PERCENT	-						
41 41 41	35 35	1.14	4 4 4 N N N	4.0	93 90 89	29 26 26	6.5 5.9	11.8	2.2	2 1 2	N M M	99 101 98	4.0 6.0 4.0
BUTTONWILLOW	•	ACALA SJ-2			_	100 PERCENT	-						
41 31	36	1.16 1.13 1.13	2 4 4 2 6 5	3.6 4.0 4.1	87 89 92	26 26 26	6.4	1.9 1.2 0.9	2.6 1.4 1.8	100	226	102 105 105	4.9
	•	ACALA SJ-2			1	100 PERCENT	b						
40 40 51	36 36 36	1.11	4 4 5 5 6 5	4 4 6 0 . 0 8 . 0	97 96 93	27 27 25	50.00 50.00	1.6	2.2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	m ~ ~	101 103 96	N N N 8 4 8
to pro	Cotton stuck to processing rolls	olls											

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

State, Production Area,		Yarn str	strength	Yarn elo	elongation	Yarn app	appearance	Yarn im	imprfctns.	Spin-	Color -	22s gra	ay yarn	Color-22s	2s blchd	d. yarn	Color	- 22s dy	dyed yarn
ronological sampling and Classification		22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	ning Poten- tial	Reflct- ance	Yellow-	Com- posite	Reflct- ance	Yellow- ness	Com- posite	Reflct- ance	Blue- ness	Com- posite
~ 1 ' 1	Staple 32d In. L	-	Lbs.	Pct.	Pet.	Index	Index	No.	No.	No.	Rd	위	Index	묎	₽	Index	Rd	ନା	Index
		DE	DELTAPINE	E 61			6	5 PERCENT	F Z										
ω ω ω ω	NNNN	100 100 96 95	31 32 30	5.5 5.5 6.0	4.3 4.0 4.1	8 8 6 8 0 0 0 0	60 70 60 60	26 22 22 25 25	21 16 17 19	50 53 50	70.7 69.9 69.8 71.6	10.9 10.6 10.5 9.1	97 94 94 93	84.1 83.9 83.5 84.8	2.7 3.0 2.6 2.5	104 103 103 107	27.8 28.0 27.1 28.1	26.4 26.0 26.6 26.6	104 102 106 103
		DE	DELTAPINE 16	E 16			90) PERCENT	FN.										
9 9 9	4 NV NV	101 103 103	32 33	6.5	4.4 4.4	100 80 90	70 70 70	14 15	12 14 11	41 52 55	70.9 71.1 74.0	11.0	98 97 98	83.4 84.5 83.3	3.0	101 106 104	27.7 27.7 26.7	26.7 26.0 26.7	105 103 107
		AC	ACALA SJ-2	-2			100) PERCENT	F										
200	36 1 36 1 36 1	128 124 124	44 43 43	6.2 6.1 6.1	4.8	90	70 70 70	25 21 21	17 14 14	73 75	67.9 69.0 68.8	11.0 11.3 10.6	92 95 92	84.4 83.1 83.6	3.3	103 102 103	27.7 27.4 27.5	25.8 25.9 25.6	102 103 101
		AC	ACALA SJ-	-5			6	9 PERCENT	,										
$\omega \omega \omega$	36 1 35 1 35 1	125 123 120	44 45 45 45	5.7	4.7	90	70 70 70	22 24 19	19 17 14	74 72 72	67.5 69.2 71.8	11.0	91 94 98	83.5 83.0 84.7	3.2 3.0 2.6	101 100 100	27.4 28.0 27.3	25.7 25.8 26.3	102 101 105
		A	ACALA SJ	J2			8	8 PERCENT	F										
וח נח נח	36 1 35 1 35 1	133 125 124	48 43 45	5.6	4.7	90	80 60 70	21 24 17	17 18 17	11 11	67.4 68.0 66.6	10.8 11.3 11.0	90 93 89	83.1 84.3 82.7	3.1 2.9 2.9	100	28.0 28.1 28.0	25.6 25.6 25.3	100
		A	ACALA SJ	5.1-2			100	D PERCENT	-										
רח נח נח	36 1 36 1	134 132 128	4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6.5	5.0	80 100 100	60 80 70	26 16 14	22 12 13	77 78 71	70.7 71.3 71.4	11.1	98 99 98	84.8 83.7 82.4	3.2	104 103 97	27.6 27.8 27.5	26.3 26.0 26.0	104 102 103
		A	ACALA SJ	5.1-2			10(O PERCEI	۲ <u>-</u>										
וחוחויי	36 1 36 1	133 131 130	7 4 4 4 5 2 4 5 4 5 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6	6.3	444	06	70 90 80	22 13 17	22 14 15	76 72 78	68.8 69.8 65.6	10.6	92 95 85	84.4 84.3 83.1	2.6 2.9 2.7	105 104 102	27.1 27.2 27.2	26.4 26.4 25.5	105 105 102
Ď	ecanse	Reduced from 41 because of bark	,																

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976 --Continued

1	H P		1					,									
	& Card		Pct.		5.1		4 9 8		5.9		4 2 4 4		5.1		N N -0		5.4 4.4 8.8
oc k	Composite		Index		104		95 103 102		103 103 103		104 102 97		103 104 100		101 101 103		103
Color of raw stock	Yellow-		<u>%</u>		mvm		226		m N m		226		222		m 01 m		622
Colo	Gray-		No.		000		6				7 1 0		101				115
alyzer	Total		Pct.		2.2 2.3 2.7		3.0 2.0 1.7		1.7 2.4 2.3		1.8		2.7 1.9 3.2		2.2		2.1 2.1 2.7
Shirley Analyzer	Visible		Pct.		1.3 1.5 1.7		2.1 1.6 1.2		1.1		1.2		1.4		1.2		1.6 1.3
5	gation 1/8"		Pct.		5.8 6.3		6.4		6.1 5.8 6.2		6.6		6.0		6.0		5.9 5.8 6.1
strength	1/8" Gage	0	G/tex	92 PERCENT	28 27 28	100 PERCENT	26 27 26	98 PERCENT	27 27 26	96 PERCENT	29 26 27	O PERCENT	27 27 26	85 PERCENT	28 27 27	99 PERCENT	27 26 25
Fiber	Zero Gage	,	Mpsi	•	93 97 95	10	90 92 91	6	91 93 91	6	94 89 90	100	89 92 87	•	95	5	92 91 89
	Micro- naire		Rdg.		7 7 4 0 0 0 0 0 4		3.2 3.8 8.8		4.2		6 4 4 8 0 6		3.9		1.1		
orograph	50/2.5 unif.		Pet.		7 4 4 7 8 8		9 # 4 7 M P		45		46 74 74		4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7.4 7.4		4 4 4 W W W
Digital Fibrogr	2.5% span	P	In.	ACALA SJ-4	1.13 1.10 1.15	ACALA SJ-2	1.16 1.13 1.13	ACALA SJ-2	1.12	ACALA SJ-2	1.10	ACALA SJ-2	1.16 1.13 1.15	ACALA SJ-2	1.14	ACALA SJ-2	1.12 1.10 1.12
Area,	ion ion	Staple	32d in.	AC	36 36	AC	35 36	AC	36 36	AC	3 8 8 3 6 3 6	AC	36 35 36	AC	3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	AC	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
State, Production Area,	Chronological sampling, and Classification	Grade	Code	A LA	31 41 41		41 40 40	I	31 40 41	NTS	4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		04 4 04 1		41	rs	4117
State,	Chrono. and (Ğ	Name	WEST CALIFORNIA CHOWCHILLA	SLM	COALINGA	SLM + SLM + SLM +	FIREBAUGH	SLM+ SLM+	FIVE POINTS	SLM+	HURON	SLM+ SLM+ SLM+	KERMAN	SLE	LOST HILLS	SLM

Table 6a. --Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

rn	ψ	1	×I														
dyed yarn	Com-		Index		104 103 104		107 105 105		105 103 109		106 107 103		103 102 101		100 106 107		105 102 102
22s d	Blue- ness		9		26.1 26.1 26.1		26.5 26.3 26.4		26.1 26.0 26.8		26.3 26.6 25.5		26.1 25.7 25.8		25.7 26.5 26.7		26.4 25.7 25.9
Color -	Reflct- ance		Rd		27.0 27.7 27.2		26.6 27.2 27.2		26.9 27.3 26.3		26.8 26.7 26.6		27.5 27.5 28.1		28.3 27.0 27.0		27.5 27.6 27.6
d. yarn	Com-		Index		104 98 103		106 104 103		103 98 100		104		102 101 105		104 104 104	•	100 104 105
es blchd.	Yellow-		위		2.6 3.4 2.7		3.0		3.7		2.6 3.1 3.0		3.3		3.0		3.0
Color-22s	Reflct-		R		84.0 82.6 83.5		85.1 84.6 84.1		83.5 83.0 83.0		84.0 83.3 82.9		84.3 83.7 84.3		84.4 84.0 84.1		82.4 84.6 84.1
	Com- Re		Index		95 95 84		96 96		96 96		98 95 88		99 97 87		95		95 98 92
gray yarn	-				11.0 10.9 10.4		11.4 10.8 11.2		10.9 10.6 10.7		10.9 10.7 10.6		11.0 10.6 10.1		10.7 10.9 11.1		10.8 10.5 10.5
- 22s	t-Yellow		위														
Color	Reflct- ance		Rd		69.5 69.4 65.1		68.8 70.2 69.3		70.5		71.4 69.9 66.6		71.6 71.2 67.1		70.9 69.7 69.0		69.9 71.9 69.0
Spin-	ning Poten-	C T G T	No.		73 73 85		84 82 76		72 72 72		87 80 78		77 79 79		79 81 76		66 67 73
Yarn imprfctns.	50s or 12 tex		No.	ĮN.	13 9 19	LN.	20 16 13	TN	17 14 13	TN	15 11 15	TN	13 16 14	L N	16 16 18	IN	19 12 15
Yarn im	22s or		No.	92 PERCENT	13 13 24	00 PERCENT	30 16 16	8 PERCENT	18 20 21	96 PERCENT	21 14 19	O PERCENT	19 23 20	S PERCENT	21 18 18	9 PERCENT	25 18 22
Yarn appearance	50s or		Index	6	880 088	10	60 60 70	6	70 80 70	6	80 80 70	100	80 70 70	80	80 80 70	6	70 70 70
Yarn ap	22s or	- 1 von	Index		100 100 100		70 90 80		80 90 90		90 100 80		100 80 80		80 90 90		80 90 80
ngation	50s or	15 0CM	Pet.		4.6		5.0		4.6		5.2		5.2		5.0		444
Yarn elongati	22s or	ZI CCA	Pet.	4	5.8 6.0 4.4	5.1-2	6.8 5.9	5 J-2	5.8	1-2	6.4 6.0 5.8	J-2	6.3	J-2	6.5	5.1-2	5.7
rength	50s or	V20 71	Lbs.	ACALA SJ-4	4 4 5 0 5 0	ACALA S.	41 42 45	ACALA S.	7 7 7 7 7	ACALA SJ-2	4 4 8 3 5 2 4 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ACALA SJ-2	41 41	ACALA SJ-2	64 94 94	ACALA S	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Yarn strength	22s or	<u>.</u>	Ibs.	,	136 135 141		128 135 130		125 127 123		147 133 126		133 132 133		134 134 132		123 120 123
<u> </u>		Staple	32d In.		36 36		35 35 36		36 36 36		36 36 36		36 35		36 36		35 35 35
ion A	sampl.	St	1	4	31 41 41		41 41 40		31 40 41	TS	40 41 41		40 40 41		41 41 31	S	41 41 41
State, Production Area,	Chronological sampling, and Classification	Grade	Name Code	WEST CALIFORNIA CHOWCHILLA	SLM	COAL INGA	SLM SLM SLM	FIREBAUGH	SLA	FIVE POINTS	SLM SLM SLM	HURON	SL#+ SL#+ SL#+	KERMAN	SLM	LOST HILLS	SLM

Table 6.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

	& Card Waste		Pct.			400		5.1 5.4 1/	F • C	(5.41/	5.3		5.8	4.5
	Composite		Index			104		101	ř.		100	66		101	104
Color of raw stock	Yellow- ness		No.			21 65 65		m 04 m	n	•	. w	2		6 6	1 72
Color	Gray-		No.			011			٧	•	7 1	7		-0	0
nalyzer	Total waste		Pet.			2.2 2.0 2.1		2.5	7•7	,	2.3	2.4		1.8	1.9
Shirley Analyzer	Visible waste		Pct.			1.2		1.1	7 • 1		1.6	2.1		1.1	1.3
- 40 E	gation 1/8"		Pct.		.	6.3 6.4	_	5.6			0.0	5.9		6.1	7.1
Fiber strength	1/8" Gage)	G/tex		100 PERCENT	27 28 27	100 PERCENT	28 26	20 100 BEBSENT	No. 1	27	56	100 PERCENT	24	24
Fiber s	Zero Gage)	Mpsi		10	95	11	6 8 6			94	96	10	80 80 80 44	83
	Micro- naire		Rdg.			3.9 4.3		400		•	3.7	4.0		0.4	4.6
brograph	50/2.5 unif.		Pct.			45 47		7 4 4 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	U	,	4 4 7	94	5.1	44	44
Digital Fibrograph	2.5% span length)	ln.		ACALA SJ-4	1.11 1.13 1.13	ACALA SJ-2	1.12	1.12 ACA1 A C 1-4	יייי אורי	1.12	1.13	DELTAPINE 61	1.07	1.10
Area,	ion	Staple	32d in.		A	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	A	20 20 50 50 50 50 50 50 50 50 50 50 50 50 50			36 36	36	۵	3.55	34
State, Production Area,	Chronological Sampling, and Classification	Grade	Code	⋖	L S	40 41 41		41	,	,	41	41	AND	M LT SP 32	31
State,	Chronol and C	5	Name	WEST CALIFORNIA	LOST HILLS	SLM+ SLM SLM	SHAFTER	SLM	SL#	10 EN E	SLA	SLM	WESTMORLAND	MM	Ξ

1/ Cotton stuck to processing rolls

Table 6a.--Cotton, American upland medium staple: Quality characteristics by production areas, crop of 1976--Continued

,											
22s dyed yarn	Com- posite		Index		106 105 102		102 103 104		96 101 102		102
22s dy	Blue-		위		26.6 26.3 25.5		25.9 26.2 26.1		24.9 25.6 25.8		26.0 26.0 25.5
Color -			묎		27.0 26.9 27.0		27.8 27.7 27.3		28.8 27.6 27.7		27.9 28.2 28.0
gray yarn Color-22s blohd, yarn Color	Com- F		Index		105 101 101		102 102 105		104		104 102 102
s blchd	ellow-	- 1	₽		2.8		2.6 3.1 2.8		2.8 3.1 2.5		2.6 2.6 2.7
olor-22	Reflct-Yellow- Com- ance ness posit		뀖		84.5 82.9 83.4		82.8 83.8 84.5		84.3 83.6 83.8		83.7 83.1 83.3
yarn	Com- Roposite	-	Index		98 97 94		92 93 89		93 94 87		91 95 95
22s gray	ellow-		위	-	10.8 10.8 11.1		10.8 10.6 11.2		10.8 10.5 10.6		10.9 9.4 9.5
Color - 2	Reflct-Yellow-	-	Rd		71.2 70.6 68.6		68.4 69.2 66.7		68.7 69.8 66.3		67.8 72.1 71.9
Gmin-		_	No.		77 7 1 82 7 77 6		74 6 72 6 76 6		77 6 78 6 82 6		47 6
	- 14	-1	No.	_	17 17 19	_	19 20 23		15 12 21	_	119
Yarn imprfctns.	r 50		ZI	RCENI		RCENI		RCENI		RCENI	
			No.	100 PERCENT	19 22 24 24	100 PERCENT	25 25 28	100 PERCENT	19 17 27	100 PERCENT	21 22 14
earance	50s or		Index	31	07 07 07	01	09	21	02 07 07	21	80 70 80
Yarn appearance	22s or	-	Index		06 06 06		80 80 70		900		06 8 6.
			Pet.		4.8		9 4 7 . 4		8.4.4		3.9
Yarn elongation)r 5	_			m ×* 01		01 -			_	ታ ታ ነበ
Yarn		_	Pct.	4-1	6.4	J-2	6.1 6.2 6.4	4-0	6.1	NE 6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
renoth	50s or	450 Jt	Lbs.	ACALA SJ-4	0 6 4 6 8	ACALA SJ-2	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ACALA SJ-4	44 47 49	DELTAPINE 61	30 32 31
Yarn strength	22s or		Lbs.		139 139 136		130 125 126		135 133 134	_	99
	1 cu ci		32d In.		36 36		35 35		36 36		35
on Ar	ampli	Staple			4 t t t t t t t t t t t t t t t t t t t		41		41	۵	M LT SP 32 M 31 M 31
oduct.	ical s	0)	Code	RNIA		8		ш		DRLAN	LT SF
State Production Area.	Chronological sampling, and Classification	Grade	Name	WEST CALIFORNIA LOST HILLS	SLM+ SLM+ SLM	SHAFTER	SLM	TULARE	SLM	WESTMORLAND	EEE

Table 7.--Cotton, American upland long staple: Quality characteristics by production areas, crop of 1976

1			1														
	Ficker & Card	N C C C C C C C C C C C C C C C C C C C	Pet.		0 8 0 0 4 4		6.9 7.1 7.1		5.7 6.0 6.7		5.9		6.6	*	6.4 7.7 14.4		7.8
stock	Composite	TOTOS	Index		102 102 100		96 95 76		98 100 100		100		101		103 104 102		103
of raw	Yellow-	II SS DII	No.		822		ጠጠቁ		๓๛๓		m N m		8 2 3		000		2 1
Color	Gray-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	No.				N & N		777				7 7 7		H 0 H		11
Analyzer	Total	ນ ລ ช ຮ	Pct.		3.7		3.7		1.8		3.18		3.3 4.1		2.9 4.0 5.1		3.6
Shirley A	Visible	9	Pet.		1.6 2.6 1.6		2.7 2.9 3.2		1.4		2.1 2.4 2.5		2.4 2.6 3.0		2.6 3.1 4.6		3.0
	Elon- gation	0/1	Pct.		5.7 5.6 7.7		6.4 6.2 7.0		6.6 7.0 6.5		9 9 9 9 4 9 9		5.6 6.1 5.6		6.3 6.7 6.2		6.1
strength	1/8") 20 50 50	G/tex	95 PERCENT	26 23 24	100 PERCENT	25 23 23	100 PERCENT	27 25 25	O PERCENT	26 26 24	O PERCENT	27 26 24	96 PERCENT	26 26 29	90 PERCENT	26 29
Fiber s	Zero		Mpsi	o	96 79	10	88 84 57	01	92 84 90	100	90 84 87	100	91 91 92	•	89 44 90	6	85
	Micro- naire		Rdg.		4.9		444 004		444		444		3.7 3.8 3.7				3.5
orograph	50/2.5	• • • • • • • • • • • • • • • • • • • •	Pet.		44 423		4 4 4 3 7 7 6		4 4 4 0 7 4		4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		41 43	>	44 47 45	02	4 4 5
Digital Fibrograph	2.5% span	TellBull	n.	COKER 310	1.10 1.09 1.10	COKER 310	1.14 1.14 1.16	COKER 310	1.18 1.14 1.13	COKER 310	1.19 1.19 1.16	COKER 310	1.11 1.13 1.12	ACALA 1517-V	1.20 1.18 1.19	ACALA 1517-70	1.18
Area,	on on	Staple	32d in.	J	444 6000	J	35 35 35	U	36 35 35	U	36 36 36	ပ	35 35 35	∢	37 37 37	A	36
State, Production Area,	Chronological sampling and Classification	Grade	Code		41 41 41		41 SP 42 SP 42	CAROLINA	41 41 41	OL INA LE	41 41 SP 42	RAL PI MORANT	41 41 41	0	40 41 50	SI	41 50
State,	Chronol and C	Cr	Name	SOUTH EAST ALABAMA ALBERTA	SLM SLM SLM	GEORGIA MADISON	SLM LT SLM LT	NORTH CAR	SLM SLM SLM	SOUTH CAROLINA Hartsville	SLM SLM SLM LT SP	SOUTH CENTRAL MISSISSIPPI LAKE CORMORANT	SLM	WEST NEW MEXICO TULAROSA	SLM SLM SLM	WEST TEXAS CLINT	SLM

of 1976
crop c
areas,
by production
characteristics
Quality
long staple:
long
upland
American uj
7aCotton,
Table

1	ا ج																	
	dyed yarn	Com- posite	Index			104 103 105		104 107 104		109 102 105		106 103 105		104		105 106 103		103
8	- 22s ¢	Blue- ness	위			26.1 26.0 26.3		26.2 26.7 26.1		26.8 26.0 26.1		26.3 25.9 26.3		26.1 26.2 25.4		26.2 26.2 25.7		25.7
,	Color	Reflct- ance	낊			27.2 27.7 27.2 27.2		27.2 27.0 27.3		26.3 28.0 26.9		26.6 27.2 27.0		27.0		27.1 26.2 26.9		27.1
- 1	d. yarn	Com- posite	Index			103 103 104		95 91 97		96 101 103		95 102 100		105 99 98		101 105 103		101
	2s blchd	Yellow- ness	위			3.0		3.7 4.9 3.6		3.8 3.0 2.8		3.8 3.3		2.8 3.0 3.1		2.8 2.7 3.1		2.9
	Color-22s	Reflct-Yellow ance ness	뀖			84.0 83.4 83.3		82.0 82.1 82.4		82.3 83.4 83.9		81.9 82.8 83.3		84.7 82.2 82.1		82.9 84.4 84.4		82.8
	y yarn	Com- posite	Index			95		91 85 89		89 92 92		91 92 86		93 89 89		97 97 94		96
1	22s gray	rellow- ness	위			11.1110.4		11.1		11.0 10.2 10.8		10.6 10.1 11.7		10.3 10.1 9.9		10.6 10.2 10.5		10.2
- 1	Color -	Reflct- ance	P			69.3		67.5 64.2 66.0		66.8 69.5 68.5		68.1 69.3 64.3		69.4 67.9 68.5		71.6		71.2
	Spin-	ning Poten- tial	No.			56 56 57		66 59 57		11 01		75		55		103 103 105		97
	imprfctns.	50s or 12 tex	No.		F	8 24 10	, L	14 13 16	<u> </u>	100	- 2	17 17 26	F	16 13 18	r L	22 28 43	L Z	14
	Yarn imp	22s or 27 tex	No.		PERCENT	24 26 11	PERCENT	19 15 17	PERCENT	14 16 19	PERCENT	28 20 30	PERCENT	11 15 27	PERCENT	30 37 60	PERCENT	19 31
	appearance	50s or 12 tex	Index		95	90 80 80	100	90	100	100 90 90	100	80 90 70	100	80 80 60	96	70 70 60	90	70
	Yarn appe	22s or 5	Index			110 90 120		110		110 110 100		100 100 90		100 100 90		90 80 70		100
-	elongation Y	50s or 2	Pet.			3.8 4.6		4.5		5.0		9.4		33.3		5.0 5.0 5.0		5. 5. 5. 5.
	Yarn elong	22s or 57	Pet.			5.1		~ ~ ~ ~		5.9 5.9 8.9		6.0		5.5 5.0 5.3	>-7	6.3	7-70	6.5
1	\neg	50s or 2	Lbs.		COKER 310	34 35	ER 310	40 36 39	ER 310	46 42 42	ER 310	4 7 7 4 7 7 4 7 7	ER 310	37 37 33	ACALA 1517-V	533	ACALA 1517-70	52 55
	n strength				COK	106 104 102	COKER	116	COKER	127 118 119	COKER	125 121 118	COKER	1113 109 104	ACA	147 143 146	ACA	139
L	Yarn	22s or 27 tex	I.bs.					35 1 35 1 35 1		36 1 36 1 35 1		36 1 36 1 36 1		35 1 35 1 35 1		37 1 37 1 37 1		36 1 36 1
	Area	tion Staple	32d In.			1 34 1 34 1 34			4	41 3 41 3 41 3	4	41 3 42 3	INT			40 3 41 3 50 3		41 3 50 3
	uction	ificat	Code 3	þ.		41 41 41		5P 42 SP 42	CAROLINA	444	ROLIN	SP 4	I P P I	444	0 4	440	CAS	4. RJ
	State, Production Area,	on Classification Grade Stap	Neme	SOUTH EAST	ALBERTA	SLM SLM SLM	GEORGIA MAD ISON	SLM LT SLM LT SLM LT	NORTH CA	SLM SLM SLM	SOUTH CAROLINA HARTSVILLE	SLM SLM LT SP SOUTH CENTRAL	MISSISSIPPI LAKE CORMORANT	SLM SLM SLM	WEST NEW MEXICO TULAROSA	SCH.	WEST TEXAS CLINT	SLM SLM

Table 7b.--Cotton: Combed yarn processing test results for long staple varieties, by state and market area for samples of modal quality, collected at triweekly intervals, crop of 1976

ate, Production Arronological Sampliand Classification Grade	State, Production Area, Chronological Sampling and Classification Grade Staple	Comber	Yar 22s or 27 tex	n skein strength 50s or B	ength Average Break Factor	Yarn elongation 22s or 50s (27 tex 12 to	ngation 50s or 12 tex	22s or 27 tex	Yarn appearance 50s or 12 tex	nce Average	Yarn imp 22s or 27 tex	Yarn imperfections 2s or 50s or 7 tex 12 tex
Code	32d in.	Pct.	Lbs.	Lbs.	No.	Pet.	Pct.	Index	Index	Index	No.	No.
		COKER 310				95 PERCENT	ENT					
41 41	34 34	18.3 18.1 16.6	130 127 123	43	2605 2472 2428	5.7 6.9	4 4 70 3 8 6.	120 110 120	100 90 110	110 100 115	& O O	4 co N
		COKER 310				100 PERCENT	ENT					
41 42 42	35 35 35	, 16.2 15.1 14.7	136 131 129	46 46 47	2721 2591 2594	0 0 0 0 0	5.2 4.9	120 120 110	100 100 100	110 110 105	10 8 8	r 9 S
NORTH CAROLINA DUNN		COKER 310				100 PERCENT	ENT					
41 41 41	36 36 35	13.6 15.8 15.6	148 140 138	53 49 51	2953 2765 2793	\$ \$ \$ \$ \$ \$	5.2 5.2 5.1	130 120 110	110 100 100	120 110 105	9 9 01	667
SOUTH CAROLINA Hartsville		COKER 310				100 PERCENT	ENT					
SLM 41 SLM 41 SLM LT SP 42 SOUTH CENTRAL	36 36	15.3 15.5 15.1	144 141 140	52 51 50	2884 2826 2790	6.3	6.9 5.1 5.1	120 110 100	100 100 90	110 105 95	12 6 13	11 %
LAKE COMMORANT		COKER 310				100 PERCENT	ENT					
41 41 41	35 35 35	22.0 19.6 19.2	141 136 134	50 49 47	2801 2721 2649	5.52	5.1 4.5 4.7	100 110 100	90 80	95 100 90	9 8 13	10
		ACALA 1517-V	V-7			96 PERCENT	ENT					
40 41 50	37 37 37	11.8 12.7 14.2	162 165 176	63 61 66	3357 3340 3586	7.1 6.8 7.5	5.6 6.3	100 90 90	90 90 07	95 90 80	112 20 25	9 20
		ACALA 1517-70	1-70			90 PERCENT	ENT					
41 50	36 36	13.7	161	99	3246	6.9	5.4	06	90	95	8 17	14

Table 8.--Cotton: American upland extra long staple: Quality characteristics by production areas, crop of 1976

									-61-					
	Comberwaste	Pet.		15.1 15.9 17.1		16.3 14.6 15.5		16.4 17.9 17.2		16.2 13.7 16.0		16.5 14.2 17.9		14.8 15.3 16.7
	Picker & card waste	Pet.		7.2 6.6 7.5	,	6.1 7.4 7.0		5.5 7.4 7.2		6.8		6.2 7.0 7.2		6.65 6.66 6.66
stock	Com- posite	Index		888		88 89 89		889 899 899		89 95 95		888		ままね
of raw	Yellow- ness	No.		200		00 L		うろう		200		00 LV		ろろう
Color	Gray- ness	No.		a ೯೧ a		44 4		444		## E		キのキ		# m m
Analyzer	Total	Pet.		9.9.6. 0.0.0.		4.6 3.5 4.5		9.0.6 0.00		4 6.0 4 6.0		다 라 다 라		2.0
Shirley Analyzer	Visible	Pet.	rcent	1.9	Percent	1.8	Percent	1.8	Percent	1.5	85 Percent	1.7	Percent	0.0
	Elon- gation 1/8"	Pet.	100 Percent	7.2	93 Pe	7.5	100 Pe	7.1 7.1 7.9	94 Pe	7.5	85 Pe	7.5	100 Pe	7.7
strength	1/8" gage	G/tex		35 36 37		34 35 36		#### ####		37,73		33 34 33		35.55
Fiber s	Zero	Mpsi		103 105 108		104 103 102		106 103 104		.100		105 99 104		101
	Micro- naire	Rdg.	-5	8.64 8.64	57	3.44	-5	33.6	ij. 2	333.4 4.6.6.	켔	0.00 0.00	8-5	4.6. 0.7.6.
length	Coeff.	Pet.	Pima S-	3333	Pima S-	28 32 31	Pima S-	33333	Pima S-	33 33	Pima S-	35,30	Pima S	8,88
Array length	Upper Quartile	녜		1.50		1.49		1.48		1.44 1.48 1.47		1.44 1.51 1.43		1.45
8	Staple	32d in.		222		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		### ###		4 4 4 4		4 4 4		ድድዩ
State, Production Area,	Chronological Sampling and Classification Grade		Casa Grande	೨ ೧೨	Safford	m ಈ ಈ	Wenden	크 크크	NEW MEXICO Columbus	mmm	WEST TEXAS	m m →	Tornillo	നനന

Table 8.--Cotton, American Pima extra long staple: Quality characteristics by production area, crop of 1976--(Continued)

į								- 6	2-					
dyed yarn	Com- posite	Index		105 101 102		109 107 109		104 105 104		107 106 105		106 106 105		107 109 106
Color - 50s	Blue- ness	위		26.5 25.8 25.8		27.3 27.0 27.1		86.5 86.5 5.5		26.7 26.1 26.1		8,4.8 8,4.8 9,4.8		888 8.8.7.
Co)	Reflect. ance	踞		27.6 27.9 27.8		26.9 27.6 26.6	,	28.1 27.6 28.0		27.0 8.9 9.9		27.7 26.8 27.3		26.9 26.3 27.2
ed yarn	Com-	Index		102 101 98		888		10 2 101 101		97 100 102		888		828
s bleach	Yellow-	₽I		 4.7.7.		3.5		 		9.8.6 6.6.6		000 000 000 000		0.00 0.40
Color-50s bleached yarn	Reflect. ance	묎		84.2 84.0 82.6		82.6 83.5 84.0		83.9 84.1 83.7		82.4 83.7 84.5		83.1 83.3 83.8		81.4 82.1 83.4
yarn	Com- F posite	Index		884		8888		888		8887		98 88 87		98 88 88
50s gray	Yellow-	위	t	13.1 13.3 13.1	nt	13.4 13.1 12.8	tl	13.3 12.7 12.8	nt Int	13.2 13.3 12.4	tl	13.5 13.5 13.2	nt	12.6 12.7 12.3
Color - 5	Reflect-	묎	100 Percent	63.7 64.5 64.2	93 Percent	62.8 62.3 62.8	100 Percent	64.2 64.7 65.4	94 Percent	63.2 62.1 65.4	85 Percent	63.2 62.7 62.5	100 Percent	63.2 62.9 64.6
	80s or R	No.		ппп		п 02 г		0 H 0		081		01 01 2 1		-1 сл сл
Yarn imprfctns	50s or 8	No.		2 1 1		5 1 1		181		a H a		01 H 10		ଷଳଷ
-	80s or 57.4 tex 1	Index		110 110 100		120 110 110		110		120 120 110		0011		120 110 100
arn appearance	50 s or 80	Index		110 110 110		110 110 120		110		120 110 120		1100		110
gation Y	80s or 5	Pct.	Pina S-5	4.5 4.6 4.7	Pima S-5	44.7	Pima S-5	4.6 4.4 4.7	Pima S-5	4.8 4.9	Pima S-4	4.5 4.7 4.9	Pina S-5	4.4 4.8 4.7
Yarn elongation	50s or 8	Pct.	P	57.5	됩	5.5.5	딦	5.5 5.4 5.5	됩	7.7.7 6.68	ᆈ	55.5	됩	5.5
-	80s or 7.4 tex	Lbs.		35 34 35		33 34 35		35 34 34		35 36		32 35 36		33 37 37
Yarn strength	50s or 8	Lbs.		67 65 66		7 4799		64 65 65		49 99 49		61 65 67		69 69 69
Area,	ø	32d in.		9 ¹ 9 ¹ ,		1 99		444		444		444		ድድድ
State, Production Area,	Chronological Sampling and Classification Grade Stapl	J	WEST ARIZONA <u>Casa Grande</u>	ታ ጥታ	Safford	೯44	Wenden	444	NEW MEXICO	നനന	WEST TEXAS El Paso	ww4	Tornillo	നനന

-63-

Spinning Potential +.62 +.62 +.61 39.9 £.÷ ±.÷ +.75 +.36 41.8 -.21 +.31 +.33 + + + 58 -.25 & card Picker +.01 90.00 -.18 -.18 90.-+.22 Waste Rt. 7.0 6.5 -.21 -.29 +.10 888 +.21 -.16 -.88 -.32 -.20 +.42 -.62 95.7 -.30 80.--.11 +.68 -.60 +.29 Index posite Color of raw stock Yellow--.41 +.23 +.29 ÷.15 +.55 -.43 -.29 8 +.27 +.47 +.92 -.53 +.34 No. ness Gray-ness +.36 +.10 +.33 +.55 +.36 -.46 +.61 +.55 +.39 No. +,31 +.24 Total waste Shirley Analyzer 3.41 .79 +.21 +.15 †††** +.43 +.43 4.94 +.51 88.7 E. 4 -.21 Visible Waste 2.40 Pct. +.32 +.38 +.36 +.50 +.36 +.30 -.13 +.09 ま。ま +.31 +.33 gation 1/8" Elon-+.19 +.09 Pet. +.22 +.50 +.28 +.72 -.30 +.35 -.27 +.14 -.32 +.16 +.03 -.23 6.7 +.46 +.19 +.61 +.38 +.01 +.01 +.09 G/tex -.13 +.35 +.31 .03 +.54+ .00 +.15 +.08 Fiber strength 20.7 +.21 +.21 +.58 -.13 -.43 -.33 -.41 +.36 -.09 -.41 -.65 +.23 64.-+.43 7.7 84.4 Zero gage Mpsi +.43 +.58 -.29 -.62 -.62 -.60 Micro--.72 +.45 -.02 +.41 -.55 +.77 -.38 +.28 naire 4.3 -.45 +.21 -.09 -.39 +.39 -.32 -.18 +.06 -.44 +.35 -.02 +.23 50/2.5 unif. +.43 +.01 -.21 1.5 Pct. Fiber length from selected gin points, crop of 1976 -.42 +.46 25.45 -.t. -.2t +.46 +.10 +.32 +.25 -.07 +.62 +.33 +°.08 +.05 -.89 +.29 +.24 2.5% span i 32d in. +.83 -.22 -.1 +.24 +.10 +.62 +.148 +.03 -.18 +.20 +.17 +.33 803 Staple 30.8 -.62 -.40 44.--.31 -.33 -.60 +.36 +.13 +.51 -.27 88.3 Index Grade Staple.....32d inches
Fiber length: 2.5% span...inches
50/2.5...ppt 8s (74 tex).....pounds 22s (27 tex)....pounds 8s (74 tex).....pct Yarn appearance:
8s (7t tex).....index
22s (27 tex).....index Reflectance....Rd Blueness....-b Mean.....Standard deviation (±).... Grade....index Zero gage......grams/tex 1/8" gage.....grams/tex Elongation (1/8")....pct Visible wastepct Total waste....pct Composite....index Picker & card waste pct Reflectance....Rd Yellowness....+b Composite....index Reflectance.....Rd Yellowness....+b Composite....index Composite....index Micronaire.....reading Spinning Potential.....No. Color-22s bleached yarn: Color - 22s dyed yarn: (arn skein strength: Correlation Coef. for: Color of raw stock: Sample Distribution: Shirley Analyzer: Yarn elongation: Fiber strength: Classification: Item

								-0	-								
yarn	Com- posite	Index	104.8	90.+	14 +.41 01	19 +.09 +.25	+.03	20 +.17 +.18	21	+.14	+ + 29 29	+.30	+.07	+.12	+ + + 03 + 03	+	+.86
22s dyed yarn	Blue- ness	위	26.2	+.1 ⁴ +.02	05 +.35 +.22	06 +.01 +.03	03	36 12 29	17	00.	+.17	+ 03	+.22 +.17	12	+.18 05 +.22	30	94
Color -	Reflect- ance	쮦	27.1	+.03	+.24 35 +.28	+.26 14 42	90	20. 54. 20.	+.21	25	34	45	+.16	37	+.36 47 +.21	08 +.14 14	46 83
led yarn	Com- posite	Index	2.9	08	+.19 27 41	44 +.10 +.20	+.18 +.24	+.12 +.34 .00	†0°+	+.26	+.40	+.46 +.43	90	+.08 +.14	+.37 +.08	+.88	14 08 +.03
Color-22s bleached yarn	Yellow- ness	위	d.e.	+.08	+.22 40 38	04 +.08 13	+.06	+.57 +.34 60	+.12	+ . 24	+.24 +.16	+.06 +.11	22	+.36	50 50	+.20	+.14 30 26
Color-22	Reflect- ance	踞	83.0	+.20	+.29	44 +.14 +.16	+.22	+.39 +.50 27	+,10	+.38	+.52	+.50	21 18	+.25 +.34	46 +.52 30	+ +	08
yarn	Com-	Index	88.6	+.41	21 +.27 +.63	+.36	17	76 53 +.73	03	50	32	04	+,44	63	+.90	30	+.22 +.22 +.03
22s gray yarn	Yellow- ness	위	0.60	20	06	40 +.31 +.14	+.09	+.55 +.91 39	90*+	+.33	+.53	4°+7 74°+	20	+.39	+.83	+.52 +.30 +.37	+.47
Color -	Reflect.	Rd.	65.0	+.36	09 +.23 +.77	+.43	15	77	90	-•47	9ħ	48	+ .40	62	+ + 90	46	+.36
rfctns	Fine 1	No.	14.8	61	+ .09	4.1. 4.1. 4.2.	+.33	+.67 +.54 69	+.31	+.25	+.17	+.36	65	+.92	61 +.45 58	+.34 +.42 +.14	26
Yarn imprfctns	Coarse 8s	No.	25.5	60	+.05	47 +.15 +.35	+.31 +.43	+.61 +.48 62	+.22	+.31	+.20 +.24	+.40	68	+.92	62 63	+.36	37
arance	Fine (22s	Index	109.3	90	04 +.16 +.27	+.27	22	38 13 +.46	29	00.	+.12	13	+.51	59	+.26 07 +.31	18 27 06	.00.
Yarn appearance	Coarse 8s	Index	6.5	+.39	+.08 +.06 +.4.1	+.23 05	13	-,46 -,29 +,42	90	4r	90	24	+.51	68	4.4. 4.4.	21 22 09	+.16 +.22 +.07
ngation	Fine 22s	Pet.	5.8	+.28	+.26 23	62 +.43 +.72	+.29	+.31 +.48 17	19	+.78	6.7°+ 97.+	+.92	30	+.45	+.148	+.49	+43
Yarn elongation	Coarse 8s	Pet.	7.0	+.33	+.33 18	+.38 +.71	+.30	+.24 +.47 11	18	+.75	+.70	+.92	2 [‡]	4.40	4.148 -147 -140	+ + + 90.+ 1.46	+.09 +.30
	Fine 22s	Ibs.	88.4	+.56	+.51 17 59	+ + + .433	+.39 +.44	+.29	19	+.92	8.	+.73	05	+.24 +.17	46 46 47	+.36 +.16 +.27	36 +.15 +.29
Yarn strength	Coarse 8s	Lbs.	278.5 17.3	31 +.48	+.46 21 60	+ - 38	+.26 +.31	+ + - 1 64.1 108	18	+.82	8.	4.70	+.12	+.20	46 +.53 32	+ .52+ + .54+	34 +.17 +.29
	Item	Sample Distribution:	$n(\pm)$	Graphe32d inches	2.5% spaninches 50/2.5pct Micronairereading Fiber strength:	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct Shirley Analyzer:	Visible wastepct Total wastepct Color of raw stock:	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 8s (74 tex)pounds 22s (27 tex)pounds Yarn elongation:	8s (74 tex)pct 22s (27 tex)pct Yarn appearance:	8s (7h tex)index 22s (27 tex)index Yarn imperfections:	8s (74 tex)No. 22s (27 tex)No. Color - 22s gray varn:	ReflectanceRd Yellowness+b Compositeindex Color-22s bleached yarn:	ReflectanceRd Yellowness+b Compositeindex Color - 22s dyed Yarn:	ReflectanceRd Bluenessb Compositeindex

Results of simple correlation analyses for the fiber and processing tests performed on 286 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1976 Table 10. -- Cotton:

								-6	55-								
	Spinning Potential	No.	58.4 10.3	+.15 +.64	+.67	+.36 +.76 03	17	21	-,41		ή6°+ 4°6°+	74°+ 74°+	13	01	+.11	+.23	+.06
	Picker & card waste	Pet.	6.22	59	40 19 18	14	+.60	+.47 +.23 48		41	36	25	16	+.43	38 +.26 34	17 +.20 23	+.13
stock	Com- posite	Index	3.4	+.77	+ + + + 03 + 06	+.04 +.17 +.22	56	93	64	+.19	+.23 +.21	+.28	03	29	+.82 44 +.81	+.31 45 +.49	11 +.33 +.28
Color of raw stock	Yellow- ness	N	2.7	30	17 +.02 04	22	+.08 +.13	+.50	+.23	17	19	09	12	+.35	63 +.83 32	05 +.41 25	18
Colo	Gray- ness	No.	1.6	72	32	09	+.53	+.50	4.47	21	26 24	24	+.04	+.30	83 51 77	4°34 74°+ 48	+.06
nalyzer	Total	Pct.	2.86	73 24	25	19	%:+	+.55 +.13 59	+.62	18	17	13	08	+.41	45 +.25 43	16 +.27 27	+.05
Shirley Analyzer	Visible waste	Pct.	2.06	71	23	08 19	%.+	+.53	09.+	17	16	13	02	+.37	42 +.22 41	18 +.27 27	+.02
	Elon- gation 1/8"	Pct.	.76	60.+	+.04 16 07	18	11	21	17	03	05	+.65	+.01	06	+.17 10 +.15	+.20	18 +.30 +.28
trength	1/8" gage	G/tex	23.4 1.8	+.23	+ + . 5 4.34 80	+.63	19	20	31	+.76	+.85	+.18	1 ⁴	02	+.13 07 +.14	+.09	+ · · · · · · · · · · · · · · · · · · ·
Fiber strength	Zero	Mpsi	86.7 4.6	+.15	+.19 +.24 +.03	+.63	.08	09 +.04	14	+.36	+.50	23	 	23	+.08 15 +.03	23	+.14
	Micro- naire	Rdg.	4. G.Z.	+.32	+.02	+.03	22		18	23	23	37	+.51	44 45	+.12 18 +.04	32 +.05 24	03 +.17 +.13
ngth	50/2.5 unif.	Pet.	1.6	+.17	+.14 +.51	+.24	12	02 +.02 +.03	19	+.34	+.34	05	+.39	31	+.01 +.05 +.05	11 +.15 16	11 +.12 +.13
Fiber lengt	2.5% span	il El	1.08	+.32	+.14 +.02	+.19 +.56 +.04	23	32 17 +.31	04	4.67	+.65	+.36	19	+.06	+.24	+ : - 88	11 +.17 +.17
	Staple	32d in.	34.5	+.33	+.79 +.21 +.02	+.37	23 24	20	35	†9°+	+.68	+.25	13	03 04	+.23	+.11	+.02
	Grade	Index	92.8	+*33	+.32 +.17 +.32	+.15 +.23 +.09	71	72	59	+.15	+.18	+.11	+.12	45	+.68	+.15	04 +.22 +.17
	Item	Sommle Distribution.	Mean Mean Standard deviation (±) Correlation Coef. for	Grade32d inches	2.5% span inches 50/2.5	Zero szeregenMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible Wastepct Total Wastepct	GraynessNo. YellownessNo. Compositeindex	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elongation:	22s (27 tex)pct 50s (12 tex)pct	22s (27 tex)index 50s (12 tex)index Xarn imperfections:	22s (27 tex)No. 50s (12 tex)No. Color - 22s gray varn:	ReflectanceRd Yellowness+b Composite+b Color-20s bleached varn.	ReflectanceRd Yellowness	ReflectanceRd Bluenessb Compositeindex

				5.0	~ m m	rýΦæ	Ø.≠		- -	0	ထက	0.6	45		816 7	0 ~ 0	~ +
d yarn	Com- posite	Index	104.7 3.0	+.17	+.17 +.13 +.13	1.15	09 1 ⁴	22 01 +.28	21	+.10	+°08 +°08	+.30	+.21 +.15	1.1	+.13 +.05 +.21	+.09	77
. 22s dyed yarn	Blue- ness	위	26.3	+.22	+.17 +.12 +.17	12	12	27 11 +.33	20	90*+	+.07	+.30	+.25	17	+.27 05 +.28	+.33 11 +.24	52
Color -	Reflect- ance	Rd	27.2	04	11	+.1 ⁴ +.02 18	+.02	+.06 18 11	+.13	15	10	24	70	40 03	+.10 21 03	+.15 14 +.12	52
Color-22s bleached yarn	Com- posite	Index	3.2	+.31	+.29 16 24	13 +.09 +.23	27	48 25 +.49	23	+,21	+ + 53	+.36	23	+.06	+, [†] , [†] +, [†] , [†] +, [†] , [†]	+.81	+.12 +.24 +.12
2s bleac	Yellow- ness	위	3°0°	35	22 +.15 +.05	02	+.27	+.47 +.41 45	+.20	11	12		+.09	40°+	46 32	33	41
Color-2	Reflect- ance	찖	83.4	+.15	+.28	. 4 + 4	18	34 05 +.31	17	+.23	+.20	+.36	27	+.11	+.29 +.02 +.37	+.81	+.15 +.33 +.09
y yarn	Com- posite	Index	91.8	+.63	+ + +	+.03	41 43	77	3⅓	+.13	+.16	+.19	05	27	+.88	+.37 32 +.44	03 +.28 +.21
22s gray yarn	Yellow- ness	위	10.7	43	13 +.05 18	15	+.22	+.51 +.83 44	+.26	03	40	+.05	15	+,42	66	+.02 +.48 25	21 +.05 +.05
Color -	Reflect- ance	뗾	68.4	+.68	+.2 ¹ +.01 +.12	+.08 +.13 +.17	42 45	+	38	+,11	+.1 ⁴ .11	+.16	+.02	40	66	+.29 +.46 +.44.+	+.10 +.27 +.13
prfetns	Fine 50s	S S	15.3	41 04	+.02	21 02 05	+.32	+ + .35	+,43	• 03	01 +.03	+ + 17	68	†6 ° +	39 +.39 27	+.13	03 16
Yarn imprfctns	Coarse 22s	No.	19.3 7.4	45	+.06 31 44	23	+.37	+ + 35	+.43	01	+.01	+.12 +.13	68	ま・	40 +.42 27	+.11 +.09 +.02	04
arance	Fine 50s	Index	75.8 9.4	+.11 04	+.51	+.11	01	+.03	21	01	+.01	11	92.+	61	+.01	26 +.13 22	+.15
Yarn appearance	Coarse 22s	Index	95.1	+.12	19 +.39 +.51	+.11 14 +.01	02	+.04	16	13	13	19	92.+	68	+.02	27 +.09 21	+.25 +.25
ngation	Fine 50s	Pet.	4.4	+.11	+,48 +,13 -,35	04 +.42 +.45	11	24 05 +.25	30	69.+	+.69	+.83	21	+.13	+.12 +.05 +.18	+.36 +.32 +.34	86 29
Yarn elongation	Coarse 22s	Pet.	6.0	+.11	+.36	23 +.18 +.65	13	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	25	¿†°+	9†°+ 2†°+	+.83	19	+.12 +.11	+.16 01 +.19	+.36	+ + .30
	Fine 50s	Lbs.	35.7	+.15	+.64	+.43	15	2 ⁴ 15 +.21	37	+.95	+ 98	+.46 +.71	16	+.05	+.11	+.25	+.05
Yarn strength	Coarse 22s	Lbs.	109.2	+.18 +.68	+.65 +.34 23	+ + 50	16	+.26 +.29	36	±6.+	*6*	74°+ 74°+	13	+.01	+.14 04 +.16	2000	10 +.07 +.08
	Item	Sample Distribution:	Mean Mean Standard deviation (±). Correlation Coef. for:	Gradeindex Staple32d inches Fiber length:	2.5% spaninches 50/2.5pct Micromairereading Fiber strength:	Zero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct	Grayness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds	228 (27 tex)pct 50s (12 tex)pct	,	22s (27 tex)No. 50s (12 tex)No. Color - 22s gray varn:	ReflectanceRd Yellownesstb Compositeth	ReflectanceRd Yellownesstb Compositeindex	ReflectanceRd Bluenessbd Compositeindex

Table 11. --Cotton: Results of simple correlation analyses for the fiber and processing tests performed on 20 long staple samples, collected at triweekly intervals from selected gin points, crop of 1975

	Spinning Potential	No. 72.6 16.9	+.02	+ + + . 63	01 +.64 +.13	ή ζ. +	43	†††* +		* + +	+.88	62 52	95.++	+.47 21 +.50	+.16	- 42 - 22 + . 05
	Picker & card waste	Pet. 7.3	44	+.20 11	+.14 +.45 20	+.81	23 +.30		ካተ* +	+,44	+.35	71	+.82	+ .22	+ .36	02 47 31
stock	Com- posite	Index 100.0	+,48	+.16	+.05	+.11	88	+*30	+.54	+.51	+.47	42	+,42	+.93	+.72	94
Color of raw stock	Yellow- ness	No.	24	17	+.07 42 +.07	19	+.45	33	64	39	9ħ	+,48	31	63 +.83 31	10 +.55 38	28 +.53 +.48
Color	Gray-	No. 1.5	46	18 08 +.48	+.10 +.48 +.06	10	+.45	23	43	42	41 28	+.28	36	. +	†9:+ †9:+	+.24 +.34 +.14
nalyzer	Total	3.37 .93	42	+.17 21 48	+.17 +.10 30	¥°.+	02	+.74	+.2 ⁴	+.26	+.11	64	+.62 +.72	.00. +.07 +.04	+.08 +.10 05	+.01 44 34
Shirley Analyzer	Visible waste	Pct. 2.55	04.+	+.35	+.15 +.22 24	₹6°+	10	+.81	۰۲۰+	+,43 +,40	+.28	75	+.72	+.07	+.11 +.07 .00	.00
	Elon- gation 1/8"	Pct. 6.36 .53	14 +.15	+.24 +.48 +.41	63 14	24	+.06	20	+.13	+.08	+.37	+.37	21 14	11 01 19	.00	20 +.34 +.32
trength	1/8" gage	G/tex 25.5 1.7	+.08	+.51	+.30	+.22	48	+.45	+.64	+ +	+.46	ης·	+.49	+.45	+.29	34 26 05
Fiber strength	Zero	Mpsi 87.3 3.5	+.17	+.04	+.30	+.15	+.10 +.07 +.05	+.14	01	+.07	24	36	+.25 +.24	+ .06	+ .08	04
	Micro- naire	Rdg. 4.0	+.06	29	31	60	+.48	62	59	58	42	88.	59	54 +.51 40	32 +.41 40	177°+
ength	50/2.5 unif.	Pct. 44.6 1.8	+.19	+.69	16 +.20 +.48	11	08	11	+.63	+.61	+.61 +.64	40°+	+.16	+ + 08	21 +.20 22	56 +.41 +.56
Fiber length	2.5% span	In. 1.15	+.89	+.69	+.04 +.51 +.24	+.35	18	+.20	+.82	+.85	+.72	42	+.43	+.11 +.03 +.18	+.15	47
	Staple	32d in. 35.5	02	+.89	+.11 +.55 +.15	+.40	22	+.30	+.86	+.89	+.75	58	+.57	+.25	+.10 +.01 +.03	43
	Grade	Index 93.0 2.3	02	+.19	+.17 +.08 14	 54	+	44	+.02	000.	90	+.25 +.14	23	+.63	+.06	+.03
	Item	Sample Distribution: Mean. Standard deviation (±) Correlation (oof, for:	Gradeindex Staple32d inches	2.5% spaninches 50/2.5pct Micronairereading	Zero eggeMpsi 1/8" gagegrams/tex Elongation (1/8")pct	Visible wastepct Total wastepct	Grayness	Picker & card wastepct	Spinning PotentialNo.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elongation:	22s (27 tex)pct 50s (12 tex)pct	22s (27 tex)index 50s (12 tex)index Yarn imperfections:	22s (27 tex)No. 50s (12 tex)No. Color - 22s grav varn:	ReflectanceRd Yellownesstb Compositeindex Color - 22s bleached varn	Reflectance	ReflectanceRd Bluenesshc

,																	
yarn	Com- posite	Index	104.2 2.0	01 +.12	+.20	02	32	+.14 +.48 26	31	+.05	+.11 +.10	+°°+ +°°+	+.26	21	36 +.48 16	08 +.47 30	78 +.92
22s dyed yarn	Blue- ness	위	26.1	01	03 +.41 +.66	10 26 +.34	44°-	+.34 +.53 46	74	22	17	19	+ + + 65	41	50 53	1 ⁴ +.53 39	15
Color -	Reflect- ance	뀖	27.1	+.03	74 56	0 ⁴ 3 ⁴ 20	.00.	+.2 ⁴ 28 09	02	-,42	94 94	34	+.14	21	+.03 26 16	17 22 +.03	51
ned yarn	Com- posite	Index	100.1 3.8	+.33	20 22 40	+.28	.00	64 38 +.74	+.22	+.18	+.1 ⁴ +.15	+.27	23	+.27	+.70 47 +.65	+.8 ⁺	+.03
Color-22s bleached yarn	Yellow- ness	위	3.1	48	+.15 +.20 +.41	+.08	+.07	+.6 ⁴ +.55 72	60	18	10 14	27	+.16	14 18	76 +.65 60	90	22 +.53 +.47
Color-22	Reflect- ance	Rd	83.0	90°+	19	05 +.29 11	+.11 +.08	46 10 +.55	+.36	+,16	+.17 +.16	+.2Ĭ +.13	30	+.39	+.46 12 +.54	55 +.84	17 14 08
yarn	Com-	Index	91.5	+.60	+,18 +,16 -,40		+.10 +.04	82 31 +.87	+.19	+.50	+ 50	+,41	24 22	+.36	+.89	+.5 ⁴ 60 +.65	16 33 16
22s gray yarn	Yellow- ness	-위	10.6	43	+.03 +.09 +.51	+.06	.00.	+.83	12	21	14 17	27	+ + 19 + + 19	05	71	12 +.65 47	26 + . 53 + . 48
Color -	Reflect- ance	Rd.	68.6	+.63	+.11 +.08 54	05 +.45 11	÷.07	88 63 +.93	+.22	74°+	7†°+	+.45	27	+.30	71	94°+ 94°-	+.03
rfetns	Fine 1	No.	18.0	33 +.56	+. ⁺ . +.09 60	+.24 +.36 14	+.80 +.72	27	+,81	+.56	+.56	94°+	8.8	+.92	+.20 +.24 +.24	+.40 18 +.29	20 36 18
Yarn imprfctns	Coarse 22s	No.	23.8	23	+.43 +.16 59	+.25	+.72	36 31 +.42	+.82	09*+	95.+	4°+ 4°+	86	+.92	+.30	+.39 14 +.27	21 41 21
arance	Fine 50s	Index	79.5	+.1 ⁴	+ +	16 34 +.22	63	+.32+.61	09	52	-,46 -,45	48	+.78	68	38 +.14 22	18 +.34 29	10 +.65 +.50
Yarn appearance	Coarse 22s	Index	98.0 12.4	+.25	24 06 +.80	36	75 64	+ + 58	72	62	61	44 43	+.78	98:-	27 +.19 24	30 +.16 23	+.14+.45
ngation	Fine 50s	Pet.	9.4	06 +.78	+.77 +.64 38	+.53	+.31	28 44 +.38	04.+	+.91	+.88 +.91	+.95	41 40	94°+	+.38 19 +.37	+.13	29 19 +.01
Yarn elongation	Coarse 22s	Pct.	5.8	.00.	+.72 +.61 42	2 ⁺ +.46 +.37	+.28 +.11	41 46 +.47	+.35	+*88	+.85	+.95	\$\frac{1}{2} \cdot \frac{1}{2}	64°+	+.45	+.21	34 19 +.04
	Fine 50s	Lbs.	42.5 7.4	+.87	+.85 +.61 57	+.02 +.68 +.18	+.40	04° +	+,43	+.98	66.+	+.87 +.91	57	+.5¢ +.54	+.42 17 +.46	+.16 14 +.15	46 18 +.10
Yarn strength	Coarse 22s	Lbs.	,121.2 14.9	.00.+	+.85 +.61 58	+ + .07	+.43	42	†††*+	+.98	÷ 99	+.85	61	+.60	+.4.4 14 +.50	+.17 10 +.14	48 17 +.11
	Item	Sample Distribution:	i(±)	Gradeindex Staple32d inches	2.5% spaninches 50/2.5pct Micronairereading Fiber strength:	Zero gageMpsi 1/8" gagegrams/tex Elongation [1/8")pct	Visible Wastepct Total Wastepct	Crayness	Picker & card wastepct	Spinning Potential No.	Yarn skein strength: 22s (27 tex)pounds 50s (12 tex)pounds Yarn elonastion:	22s (27 tex)pct 50s (12 tex)pct	22s (27 tex)index 50s (12 tex)index Yarn imperfections.	22s (27 tex)No. 50s (12 tex)No. Color - 29s gray varn:	ReflectanceRd Yellowness+b Composite+b	Reflectancehd Yellownessh Compositehdex Color - 22s dved varn:	ReflectanceRd Bluenessb Compositeindex

Table lla--Cotton: Results of simple correlation analyses for the fiber and processing tests performed on combed yarns from 20 long staple samples from selected gin points, crop of 1976

	Picker					Combed	Combed Yarn Values				
Statistical Items	& Card	Comber	Yarn strength	ength	Yarn elongation	gation	Yarn appearance	arance	Yarn imperfections	fections	1
	Waste		228	508	22s	508	22s	508	22s	50s	1
Sample Distribution:	Pct.	Pet.	Lbs.	Lbs.	Pct.	Pct.	Index	Index	No.	No.	
MeanStandard deviation (±)	7.30	15.9	143.3	51.8	6.5	5.5	108.5	93.5	10.7	9.6	
Correlation Coeff. for											
Classification: Gradeindex Staple32d inches	+.30	+.13 69	01	+.02 +.87	04 +.53	09	+.20 49	+ 28	34 +.58	26	
2.5% spaninches 50/2.5 unifpct	+.20	78	+.77 +.48	+.79	74°+ 74°+	+.61 +.50	+.12	25 +.23	+.42	+.05	
Micronairereading	62	+.05	69	99	36	47	+.87	+.89	69	75	
Lero gageMpsi 1/8" gagegrams/tex Elongation (1/8")pct	+.14+.45	+.28 15 ¹ 48	+.18 +.77 05	+.17 +.75 03	12 +.35 +.33	12 +.59 +.25	14 40 +.26	+ - + - + - + - + - +	+.21 +.48 13	+ +.25	
Visible wastepct Total wastepct	+.81 +.74	19	+.52	+.52	+,45	+,49	72	92	92.+	92.+	
Grayness	23 +-30	+.10 +.10 13	45 46 +.56	- 144 - 140 + . 55	31 37 +.33	- 40 - 41 + 43	+.38 +.48 51	+.22 +.55 39		36	
Picker & card wastepct		16	+.57	+.53	+.57	+.62	09	75	6L°+	+.77	
Comber wastepct	-,16		58	62	61	63	+,13	02	32	18	
22s (27 tex)pounds 50s (12 tex)pounds Combed yarn elongation:	+.57	58	66*+	66*+	+.63 +.64	+.83	66	61	+.72	+.72	
22s (27 tex)pct 50s (12 tex)pct Combed yarn appearance:	+.57	61	+.63	+.64	+.91	+,91	04	33 44	+.56 +.64	+.53	
22s (27 tex)index 50s (12 tex)index Combed yarn imperfections:	60	+.13 02	66	65	40	45	+.86	+*86	76		
22s (27 tex)No. 50s (12 tex)No.	77.+	32	+.72	+ + .70	+.56	+.64	76	77	+.95	+*65	

-70-

Table 12.--Cotton: Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 59 short staple samples, collected at triweekly intervals from selected gin points, crop of 1976

													-	70-																		
	yarn	Dyed	Index	105	30.8	e. 48	45	5.4.6	.97	3.7	9.9	01	1 4	70.	70 +	05	+04*		9T•/.OT+	+.02	2.58		.08	+.05	₹ •	*90*+	***************************************	10	+T00.04	+.03	16	17.1
	Color of 22s y	Bleached	Index	100	30.8	€. 148	45	0.5 0.4	76.	3.7	08	<u></u>	17:-	.17	00	+.15	+.16*	, ,	TO:92+	01	2.82		94.	+.19	+.18	+.20*	+.18*		S. 10+	+.11	-1.83	T()
	CoJ	Gray	Index	86	30°8	6. 48	145	0.4°0	.97	3.7	+,41	+ + +	12.1	. 42	+, 37	05	+*,40	0.1	±69.48	+.29	3.61		-65	+.15	+.55	+.13*	*LO	2 1	4/0.07		4.8	30.0
		Spinning Potential	No.	9	30°.	e. ±#8	45	4.5°	.97	3.7	‡ °2+	62 41	.36	99•	000	+.55	24*		1.9-1.9-	- 38 + 58	6.34		.82	+.02	+.67	+01+	+.55	6	-01.34	+.02	88	20.1
	Yarn imperfections	Fine 22s	읾	15	30 . 8	6. 48	45	6.1 5.4	.97	3.7	61	- 1 84. 64.	. L.	19.	-,67	±8	72		+141.43	81	4.53		t ₁ L.	57			28*		- '	61	-3.00	200
les		Coarse 8s	일.	%3	30°8	£. 48	45	11.0	.97	3.7	60	55	7 0.	.63	-,63	25	*88	1000	+223.74	-1.38	8.50		.71	52	26 140	52	21*		7612.71	-1.05 -2.34	-5.09	71-1
Dependent Variables	earance	Fine 22s	Index	109	30 . 8	6. 48	45	8 4. 6.4.	.97	3.7	94°+	+ .27	÷ 10	84.	+,47	†T.+	+.51	, ;	40 . 01	+.78	7.28		84.	+.41	+.13 +.07	+,48	+.13*		40.69	+.73	92.+	04
Depend	Yarn appearance	Coarse 8s	Index	125	30°8	6.4. 84	45	5.5	.97	3.5	+.39	4 + +		.41	-t-1	+.13	+.44+	, 2	10.164	+ +	5.95		64.	+.28	+.13 +.29	+.31*	+ 12*	j.	20.00	+.37	+2.55	>
	elongation	Fine 22s	Pet.	5.8	30°8	6.4 84	45	.66 5.4	.97	3.7	+ -	62	3:-	.37	%:-	+.18	26*	00	4.09	+.12	.61		.78	+,12	+.30 74	*60°+	+.21*	- 9	13.40	+.01 +.14	68	+
	Yarn el	Coarse 8s	Ret.	0.7.0	30.8 30.8	4•3 84	45	.76 5.4	.97	3.7	33	265-	OT .	04.	23	+2.+	* * * * * * + * * * * * * * * * * * * *	, T	44.T2	03 +.19	.70		92.	+,13	+.36	+,10*	+.27*		76.7	+.01 +.21	47	
	strength	Fine 22s	Ibs.	88 8	30.8	6.4 84	45	8 7.5 4.7	.97	3.7	+ .39	33		.59	23	+ 64.	+.49	, ככ	-10.93	31 +4.11	09.9		.77	90*+	+.59	+*00+	+.51	100	-64.1)	+.07 +.28	-6.00 -00.00	nificant
	Yarn skein	Coarse	Lbs.	278	30°8	£. 48	45	17.3 5.4	.97	3.7	33 +.48	9%.	17:-	.50	-,16	+,41	15* +.42		10%	45 . 7+	14.98		.73	+.15	62	+*13*	÷. 	+68 l,7	+	+.40 +7.92	+.22 -13.90 -6.00 .63 11.76 5.25	cally insig
	2010	& card	Pct.	0.7.0	30°8	4.3 84	54	.76 5.4	.97	3.7	40	20.1		.53	51	37	54	100 1.7	} + • > > .	80 80 80	.65		.50	54 25.	÷.	+9	37	900	R	68	+.22	*statisti
	Statistical Items		Mean Volume for.	Dependent variable	Grade index	Micronaire Fiber strength (O gage)	Uniformity ratio Standard Deviations (\pm) for:	Dependent variable	Staple length	Fiber strength (0 gage) Uniformity ratio	Grade indexStanle length	Micronaire Fiber strength (0 gage)	Multiple Cor. Data for: DEPENDENT VARIABLE with	Multiple Cor. Coef	Partial Cor. Coef. for: Grade index	Staple length	Grade index.	Regression Equation:	Constant (a) Regression Coef. for:	Grade indexStaple length	Standard error (±) DEPENDENT VARIABLE with	GRADE INDEX, STAPLE LENGTH, MICRONAIRE	Multiple Cor. Coef	Grade index	Micronaire	Grade index	Staple lengthMicronaire	Regression Equation:	Regression Coef. for:	Grade indexStaple length	MicronaireStandard Error (+)	

						Depend	Dependent Variables	les					
Statistical Items	Diokon	Yarn skein strength	strength	Yarn el	elongation	Yarn app	Yarn appearance	Yarn imp	Yarn imperfections		[OD	Color of 22s	yarn
	& card waste	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed yern
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROMAINE, FIBER STRENGTH	Pct.	Lbs.	Ibs.	Pet.	Pet.	Index	Index	<u>N</u>	્રે	No.	Index	Index	Index
(O GAGE) Multiple Cor. Coef Partial Coef. for:	• 56	.73	77.	-82	.82	.50	84.	.71	.75	.82	.65	.55	.27
Grade index. Staple length. Micronaire. Fiber str. (O gage). Reta Coefficients for	47 39 +.17 +.08	+ + 1. 56 56 56	+.0 ⁺ +.59 +.02 +.02	++ 30 14.+ 14 1.60	+.27 +.36 65	+ + 114	+.33 +.13 +.05 +.03	47 25 33	52 35 37	+.06 +.67 58	+.16 08 +.52 07	+.35 +.23 27	+ 1 + 1 200 200 200 200 300 300 300 300 300 300
Grade index. Staple length. Micronaire. Fiber str. (O gage). Regression Equation:	71 38 +.18* +.08*	+ 16*	+.0\.\ +.5155 +.01*	+.23* +.30 54 11	+.20* +.20* 62 33	+++133*	+.46* +.13* +.05* +.03*	49 20* 32*	52 27* 34*	+.05*	+.17* 07* +.59	+.44. +.21. 29* 40*	+.30* 02* 33*
Constant (a)Regression Coef. for:	+22.71	+64.85	-25.03	+6.25	+5.90	+62.56	+6.83	+219.85	+139.09	-75.90	+78.19	+90.71	+111.57
Grade index Staple length. Micronaire. Fiber str. (0 gage). Standard Error (±). DEFUNDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROWAIRE, FIBER STREWGTH, (0 GAGE), UNIFORMITY RATIO		+.50 +8.00 -13.36 23 11.74	+ .06 + .27 -6.07 + .03 5.25		+ .02 + .16 54 06 38	+ + + + + 89 +3.08 -23 5.66	+.70 +.61 +.61 7.26	-1.00 -2.27 -4.65 -1.19	-1.59 -2.76 -100 -100	+.07 +.81 -5.82 16 1.78	+.12 27 +3.14 07 3.01	-1.12 -1.12 -33 2.38	
Multiple Cor. Coef	.57	.75	67.	-85	.83	51	64.	.73	.75	.82	.65	.56	.5 ⁴
Grade index. Staple length Micromaire. Fiber str. (O gage). Uniformity ratio. Beta Coefficients for:	1 + + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ + 19 + . 19 58 + . 21	++.4.02	+.36 +.51 66 +.35	+ + +	+ + + 32	+.34 +.16 01 +.03 +.13	45 21 39 07 23	51 37 07 +.06	+ .07 + .67 56 10 + .06	+.16 08 +.49 07	+ +	++- 1.10 1.29 1.48
Grade index. Staple length Micromaire. Fiber str. (O gage) Uniformity ratio. Regression Equation:	72 40 +.23* 11*	+ 1.18*	+.07* +.055 +.02* +.02*	+.27* +.35 64 41 +.23*	+.23* +.27 70 32 +.17*	+.37* +.11.* +.40.* 13*	++.15* +1.03* +1.13*	1.16 1.16 1.06 1.19	* * * * * * * * * * * * * * * * * * *	+.05* 56 07*	**17* **00 **59 **00	++.43*	+ + .38* 33* + .53
Constant (a)Regression Coef. for:	+25.70	-38.43	-91.28		+1.69	+87.32	-32.73	+144.23	+129.10	-87.39	64.77+	+98.35	+61.34
Grade index. Staple length. Micronaire. Fiber str. (0 gage). Uniformity ratio. Standard Error (±).	10 32 +.23 +.02 05 63 *Statistic	10 +.58 +. 32 +8.61 +4. +.23 -15.13 -7. +.02 +1.87 +1. 05 +1.87 +1. 63 11.48 5.	+.11 +4.66 -7.21 +.03 +1.20 5.00 ificant	+ + + + + + + + + + + + + + + - +	+ + 1 1 + + 36	+ + + + + + + + + + + + + + + + + + + +	+.73 +1.30 07 +.07 +.72	94 -1.82 -5.95 -1.19 -7.55	1.1.58 1.1.4 1.18 1.18 1.04	+ .08 -6.02 -6.02 -1.16 -7.7	+.13 +3.12 +.07 +.01	2.31 2.31 2.38	2. + +

Table 13.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 59 short staple samples, collected at triweekly intervals from selected gin points, crop of 1976

	rn	Dyed yarn	Index 105 3 4 4 3.4 .95	2.6		-72- 01.	+.37	-*t7* +*t7*	+104.35	-1.52 +1.12 2.37	.43	40 +.37 +.17	54 +.14 +.14 +.18*	+102.94	-1.88 +1.20 +.60 2.33
	Color of 22s yarn	Bleached	Index 100 3 4 3.4 .95	2.9 1.0 1.0 1.0 1.0	34 24 19	.35	08 +.33	*68.+	+96.02	37 +1.17 2.68	†‡.	+ + .29	27* +.44 +.31*	+93.37	-1.05 +1.33 +1.12 2.57
	Color	Gray I	Index 89 3 4 4 3.4 695	4.0 1.0 1.0 1.0 1.0 1.0 1.0	76 53 28 +.63	77.	66	67	+100.74	-3.61 66 2.55	.77	63 18 +.11	72 14* +.08*	92.66+	-3.86 60 +.41 2.53
		Spinning Potential	No. 140	8.1.7.1.0.1.0.4.0.4.27.	+ + + + + + + + + + + + + + + + + + +	.37	+.26 +.10	+.30*	+27.09	+3.41 7.84 7.84	64.	+.07 +.16 +.34	+.09* +.17* +.37*	+17.73	+1.01 +1.50 +3.96 7.36
	rfections	Fine 22s	NO. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	6.1 7.0 1.0 .8 .04	+ + + + + + + + + + + + + + + + + + +	02.	+.53	+.53	-3.11	4.39 +1.57 4.35	•72	+.40 +.32 +.24	+,42 +,28* +,20*	-6.77	+3.45 +1.79 +1.55 4.21
es	Yarn imperfections	Coarse 8s	86. 33. 4.5. 4.3.	11.0	61 + + + + + + 505 - 55	•63	+.47	+ + +	-3.28	+7.4.7 +2.27 8.52	99•	+ .25	+ .38* + .23* + .21*	-10.31	+5.67 +2.68 +2.98 8.27
Dependent Variables	arance	Fine 22s	Index 109 3 4 3.4 3.4	8.3 1.0 .8 .04		.39	37	-,44,* +,11*	+118.55	4.97 7.62 7.62	04.	+ - 29	+.09* +.10*	+121,121+	-4.29 +.82 -1.10 7.58
Depende	Yarn appearance	Coarse 8s	Index 125 3 4 3.4 3.4 4.3	6.5 1.0 1.0 .04 .04	- 1.29 - 2.29 - 2.29 - 4.08 - 1.11		38	414		-3.89 -32 5.78	L4.	34 04 +.01	**†0	+136.63	-3.93 31 +.07 5.78
	elongation	Fine 22s	7 7 8 8 4 7 8 4 5 7 8 8 4 5 7 8 8 4 5 7 8 8 9 7 8 8 9 7 8 8 9 7 8 8 9 7 8 8 9 7 8 8 9 7 8 9 9 7 8 9 9 7 8 9 9 7 8 9 9 9 7 8 9 9 9 9		. + . + . +	64.	+.05	+.05*	94.4+	+.05 +.31 .57	09.	16 +.48 +.41	18* +.52 +.41	+3.65	. + + . 35 . 525
	Yarn el	Coarse 8s	Pet 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.76 	+ .24 + .39 + .39 + .72	84.	03 +.42	*†0°-	+5.56	+0.0+ +0.39 -67	.61	26 +.51 +.44	*52.+	+4.55	. + + . + + 50 . 60
	strength	Fine 22s	110s. 88 33 4,4 3.4	8.2 1.0 1.0 .04	. + + + + + + + + + + + + + + + + + + +	.35	+.15	+.17*	+75.63	+1.86 +1.97 7.69	.51	+.40 +.40	+,430*	+64.92	89 +2.60 +4.54 7.04 ificant
	Yarn skein strength	Coarse 8s	278 278 3.4 4.5 5.95	17.3 1.0 1.0 .8 .04	+ + + + + + + + + + + + + + + + + + +	5 ⁴ .	+.03 +.35	+.03*	+247.26	+.71 +7.37 15.67	.50	12 +.40 +.30	14* +.46 +.31*	+231.24	+.20 -3.4085 13 +8.30 +2.60 +.42 +6.78 +4.54 .65 14.98 7.04 *Statistically insignificant
	Dicker	& card	Pet.	.76 .1.0 .8. .04 .75	+.31 .00 +.51 .07	.37	+.37	+†††.+ +.24*	+6.53	+,46 -19 -71	.53	+.17	+.20*	+5.52	+.20 13 +.42 .65 *Statisti
	Statistical Items		Mean Values for: Dependent variable. Grayness. Yellowness Nonlint content (S.A.). 2.5% span length. Micronaire	Oppondent variable. Grayness. Yellowness Nonlint content (S.A.). 2.5% span length. Micronaire. Simple Correlation Coef. for:	Grayness. Vellowness Nonlint content (S.A.). 2.5% span length. Micronalre Mittiple Cor. Data for DEPRUBNIT VARIABLE with GRAYNESS. VELLOWNESS	Multiple Cor. Coef	GraynessYellownessBeta Coefficients for:	Grayness Yellowness	Constant (a) Regression Coef. for:	Grayness Yellowness Standard Error (+) DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS,	Multiple Cor. Coef	Grayness Yellowness Nonlint (S.A.) Beta Coefficients for:	Grayness Yellowness Nonlint (S.A.) Regression Equation:	Constant (a)Regression Coef. for:	Grayness Yellowness Nonlint (S.A.). Standard Error (±)

						Depend	Dependent Variables	les					
Statistical Items	Diokon	Yarn skei	Yarn skein strength	Yarn el	elongation	Yarn api	Yarn appearance	Yarn imp	Yarn imperfections		C0]	Color of 22s yarn	arn
	& card	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Coarse 8s	Fine 22s	Spinning Potential	Gray	Bleached	Dyed yarn
DEPENDENT VARIABLE with GRAYMESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN I.ENGTH	Pct.	Lbs.	Lbs.	Pct.	Pet.	Index	Index	્રે	NO.	No.	Index	Index	Index
Multiple Cor. Coef Partial Cor. Coef. for:	09.	.70	.70	.71	99.	.51	.41	19.	.72	. 7 ¹	.77	.50	.43
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Beta Coefficients for:	+.30	30 +.57 +.25 +.57	21 + + + 39 + 56	37 +.61 +.42 +.45	+ + + + 32	+ - + + + + + + + + + + + + + + + + + +	 	+.36 +.21 +.25	+ + + + + + + + + + + + + + + + + + +	- + + + 32 64	57 20 +.13 11	- + + + 25.43 26.55	36 +.36 +.17 01
Grayness Yellowness Nonlint (S.A.). 2.5% span length Regression Emation:	+ .38* + .49* 31*	32* +.22* +.52*	21* +.46 +.35	**************************************	28* +.37 +.28*	**************************************	44* 13* 12* 11*	**************************************	+.44,	+.36 +.27* +.60	67 17* +.09* 08*	+ + 52 + + 27 * + + 25 * * + 25 * * + 25 * + 25 * + 25 * + 25 * * 25 * * 25 * 25	+.444*
Constant (a)Regression Coef. for:	+10.32	+31.78	-27.21	-1.88	25	+107.08	+102.24	+12.20	90.+	-91.96	+105.91	+78.41	+103.71
Grayness. Yellowness. Nonlint (S.A.) 2.5% span length Standard Error (±) DEPENDENY VARIABLE with GRAYNESS, YELLOWNESS, NOWLINT (S.A.), 2.5% SPAN IENGTH, MICRONARRE	+ - 39 - 51 - 54,47 - 61	-7.44 +11.30 +4.80 +214.85 12.28	7.96 7.96 7.96 7.85 7.85			+1.5 +1.15 +33.00 5.62	-4.95 +1.12 +1.12 -1.29 +21.10 7.54	46.43 42.33 43.21 8.21 8.21	43.67 11.68 11.62 17.58 14.20	83 +3.14 +2.88 +117.11 5.68	-3.62 -4.148 -6.93 -2.52	-1.18 +1.56 +1.97 -116.46 2.48	1.85 1.19 1.66 1.86 2.33
Multiple Cor. Coef	•65	92.	92.	.83	.81	.56	.43	.68	.73	.82	.80	.52	‡.
Grayness Yellowness Nonlint (S.A.). 2.5% span length Micronaire Beta Coefficients for:	+.34	11.55	+ + . 15 + + . 26 - + . 53	. + + +	. + + 12 - + + 25 - 25 - 63	39 +.19 +.28 +.27	30 16 07 13	+.35 +.07 +.19 15	+ + + + + + + + + + + + + + + + + + +	18 01 +.15 +.63	+		. + . + +
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length Micronaire. Regression Equation:	+,42*	38* +.33* +.09* 47	28* +.116* +.21* 45	. 455* + 1.25* + 1.29 72	. + + +		+ +	+,4,1, +,1,08* -,13*	+,43 +,20* +,18* -,07*		**************************************	+.19* +.19* +.21* 28*	+ + + + + + + 13*
Constant (a)Regression Coef. for:	. +6.22	+140.89	+26.00	+5.21	9.94	+74.43	+83.63	+39.77	+8.14	-26.73	489.48	+88.76	+99.29
Crayness Yellowness Nonlint (S.A.). 2.5% span length Micronaire Standard Error (±)	+.43 01 +.58 -4.40 +.43 .58	+,43 -8.90 -3.10 01 +5.93 +1.35 +.58 +1.94 +2.25 -14.40 +1.88,03 +85.03 +.43 -11.28 -5.49 .58 11.22 5.33 *Statistically insignificant	-3.10 +1.35 +2.25 +85.03 -5.49 5.33	51 +.20 +.18 +5.12 73	4. + + + + + + + + + + + + + + + + + + +	-4.62 -4.1.09 -4.1.09 -4.1.09	4-7-64-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	+6.13 +2.49 -31.90 -2.87 8.11	+3.58 +1.28 +1.41 -9.58 +1.19	-1.75 07 +1.18 +101.11 -6.73 4.85	-3.46 +.91 -2.85 +1.72 2.40	-1.60 +1.04 +.70 +13.90 -1.08 2.44	-1.81 +1.41 +.72 +.23 +.46

Table 14.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 59 short staple samples, collected at triweekly intervals from selected gin points, crop of 1976

														-7	74-															
	yarn	Dyed	Index	105	4.3	45	2.6	57.	v.1.	: 7	14 01	+.09 +.41	+.25		.14	14	±0°-	* 170	+113.49	, (d.y.z		8.	+.02	+.17	22* +.02*	+.20*	+105.53	-13.29 +.07 + 56	2.52
	of 22s	Bleached	Index	100	4.3	45	0. 0.	52.	7.1 7.0	-	+.19 41	+.10	+.20		.43	+.12	39	+.12*	+98.83	. !	-1.48		44.	+.17	13	+.17*	14*	4104.79	+11.19 -1.64	2.57
	Color	Gray yarn	Index	89	21.	45	0.4	.75	2.5		7.5 +.63	35	32		[†] 19°	11	+.62	*.09* +.61	+82,46	Č			1 9•	+ .58	12	+.58	11*	+89.26	-4.18 +3.08	e 8
	L	Spinning Potential	No.	40	4.3	45	4.8	52.	2.1	- \	+.62 62	+.61	+.50		.80	+,65	-*65	+.52	-30.87	. (+100.70 -5.88 5.02		.83	+.56	+.36	+,42 -,45	+.26*	-64.08	+80.79	4.68
	rfections	Fine 22s	ે!	15	21,	45	6.1		2.1 2.5	- !	+ <u>-</u>	+.1 ⁴ 13	+.24		.58	02	57	02*	+37.76	. (4.73 4.73 4.73		.58	+.02	10	+.02* 61	*60:-	94.94+	4.24.	± ± ±
es	Yarn imperfections	Coarse 8s)	26.	4.3	45 6.7	0,11	52.	v.1.	. !	+.05 55	+.15	+.35		.56	Ĺ0*-	56	*,06*	474.60		-14.10 -8.29 9.13		•56	₹5	₩0	*40	*40	+81.62	-9.89 -8.47	9.12
Dependent Variables	appearance	Fine 22s	Index	109	4.3	45	80 6.0	52.	v.1 2.5		+.27	6	21		.27	+*01	+.26	+.01*	494.78		+1.86 +2.97 -2.98	-	.29	+.29	+.12	04* +.31*	+.13*	+77.95	-8.23 +3.40	7.92
Depend	Yarn app	Coarse 8s	Index	125	21.	45	6.5	.75	v.1 07.	- 1	+ + 	+ .05	-*30		∄.	+,18	††† * +	+.16*	+85.09		+24.61 +3.88 5.85		-45	+.14 +.43	90 ° +	+,14*	*90°+	+78.63	+20.73 +4.05	5.84
	elongation	Fine 22s	Bct.	5.8	4.3	45	99.	7.5	7.1 27.	-	92 . -	+.43	+.72		.77	+.18	75	+.12*	46.88	å	79 19		.78	+.09	+.19	*90.+	+,15*	+5.41	+ . 4 61	24.
	Yarn el	Coarse 8s	Pet.	7.0	4.3	45	92.	.75	 	-	+.33	+.38 18	+.71		+77.	+.28	71	+.20*	49.94			,	.75	+.2 ⁺ 68	90 . +	+,18*	*†0°+		£ . 4	
	strength	Fine 22s	Lbs.	88	21.	45	8.0	.75	v.1.		+.51	+.65	+*,43		.72	+.51	59	+,41	+38.18	, i	+/8.13 -5.66	•	62.	+.35	L+•+	+.26*	+.39	-10.45	-1.28 +105.11 +48.97 04 -10.75 -4.40	5.04 5.04 ignificant
	Yarn skein	Coarse 8s	Lbs.	278	4.3 21	45	17.3	.75	v.:1 07.		÷ ;	+.5 ⁴ 21	+.28		.70	+,45	59	+.36	4194.90		+143.51 -12.41 12.34	1	.73	+.33	+.28	+.26* 47	+.24*	+130.86	+105.11 -10.75	11.83 ically insi
	2	& card waste	Pet.	7.0	21.	45	92.	.75	7.1 7.0	-	07	03 +.01	23		.08	- 08	03	*80	+8,41	,	-1.36 03 .76		.08	07	01	*40°-	01*	+8.54	-1.28	.76 *Statist
	Statistical Ttems		Moor Voluce for.	Dependent variable	Micronaire Fiber str. (1/8" gage)	Uniformity ratio Elongation (1/8" gage) Standard Deviation (+) for:	Dependent variable	Micronaire	Finer Str. (1/0 gage) Uniformity ratio Elongation (1/8" gage)	Simple Correlation Coef. for:	2.5% span Length	Fiber str. (1/8" gage) Uniformity ratio	Elongation (1/8" gage)	DEPENDENT VARIABLE with 2.5% SPAN LENGTH MICRONAIRE	Multiple Cor. Coef	2.5% span length	Micronalre	2.5% span lengthMicronaire	Regression Equation: Constant (a)	Regression Coef. for:	A:7% Span tengun Micronaire Standard Error (±)	DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONALRE PITRE STR. (1/8", date)	Multiple Cor. Coef	2.5% span length	Fiber str. (1/8" gage) Beta Coefficients for:	2.5% span length	Fiber Str. (1/8" gage) Regression Equation:	Constant (a)Regression Coef. for:	2.5% span length Micronaire Fiber str. (1/8" gage)	Standard Error (+)

		We are	1,7			Depend	Dependent Variables	les			1		
Statistical Items	Picker & card waste	Coarse	Coarse Fine	Coarse	Fine 22s	Coarse Fine	Fine 22s	Coarse 8s	Coarse Fine	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with 2.5% SPAN LENCTH, MICRONAIRE FIBER STR. (1/8" GAGE),	Pet.	Libs.	<u>Lbs.</u>	Pet.	Pet.	Index	Index	No	No.	No.	Index	Index	Index
UNIFORMITY RATIO Multiple Cor. Coef	80.	t ₁ 2.	.81	.78	62.	94.	.29	.61	.61	.84	ή9°	777.	94.
2.5% span length. Micronaire. Fiber str. (1/8" gage) Uniformity ratio.	06 01	+ - + .38 21 21	+.44 57 +.39 +.29	+.34 73 07 +.36	+.15 71 +.12 +.21	+.11 +.43 +.09	03 +.24 +.10 +.03	+.03 60 14 +.31	+.07 59 16	+.56 +.31 +.14	05 +.53 12	+.15 35 04	+ + + 19
2.5% span length	08* 03* 01*	+ .133 + .18* + .18*	+.35 50 +.31 +.22*	+.26* 80 05* +.30*	+.11* 77 +.09* +.17*	+.11.* +.52 +.10.* 12.*	0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	+.03* 72 +.32*	+.06* 70 16* +.21*	+ + + + + + + + + + + + + + + + + + +	*50. *11. *00.	+.16* 41* 04*	09* 21* +.04* +.51
Regression Equation: Constant (a)	+8.71	+41.98	-65.10	+.22	+2.52	+98.99	+70.62	-7.69	+15.10	-88.40	+89.15	+107.74	+70.98
2.5% span length Micronaire Fiber str. (1/8" gage). Uniformity ratio Standard Error (‡) DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE FIBER STR. (1/8" GAGE), UNIFORMITY RATIO, ELONGATION	-1.32 03 01 .76	+129.87 -12.69 +3.41 +2.14 11.56	466.89 -5.52 -7.52 1.23 4.82	4.53 	+1.61 67 +.07 +.07 +.1	116.54 4.4.4 1.5.4 1.5.4 1.0.8 1.0.8	-6.71 +3.23 +1.09 +.19 7.92	+7.87 -10.62 -1.72 +2.37 8.68	+8.54 -5.71 -1.05 +.84 t.84	+88.59 -5.53 +2.05 +5.55 +64	1.15 1.15 1.18 3.04 3.04	+10.59 -1.57 38 08	-5.17 73 +.11 +.88 2.29
Multiple Cor. Coef. for:	.30	.75	.82	.87	-89	74.	.32	.61	.61	.87	.65	44.	74.
2.5% span length. Micronaire Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage) Beta Coefficients for:	03 18 04 12	+ + + 52	+ + + + + + + + + + + + + + + + + + +		+	+ + + + .33 - + + .05 05	- + +	+.03 52 +.27 +.04	+	+ · · + · · + · · · · · · · · · · · · ·	40. + + 1.04 44. + 1.12 + 1.03	+.15 28 10 05	1.10 1.10 1.34 1.12
2.5% span length. Micronaire Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Regression Equation:	04* 05* +.15* 35*	+ + 58 + 13* 	+ .13 + .16* + .16*		+,04* -,45 +,15* -,07*	**************************************	02* +.19* +.11* 16*	+.03* 10* +.30* +.04*	+.07* 16 +.125* 09*	+ + + + + + + + + + + + + + + + + + +	04* +.53 12* +.04*	+1.15*	- 13* + 1.05* + 1.13*
Constant (a)Regression Coef. for:	74°8+	+39.91	-61.78	+.63	+2.99	+98.15	+69.37	-7.30	414.69	-81.60	+88.85	+107.89	+71.45
2.5% span length Micronaire	63 25 04 +.08 38 38	63 +133.66 +61.61 25 -13.52 -4.59 04 +3.28 +2.93 +.08 +2.45 +1.89 38 -1.42 +1.59 .73 11.52 +1.73 *Statistically insignificant	+61.61 -4.59 +2.93 +.88 +1.59 4.73 snificant	+3.54 -0.53 +0.4 -0.5 -38	+ 39 39 	+18.89 +3.79 +.62 -1.28 5.75	-3.31 +2.15 +.92 +.60 -1.85	+6.70 -10.23 -1.66 +2.22 +.66 8.68	+9.82 -6.15 -1.11 +1.00 +1.82	+77.57 -3.54 +2.36 -20 -20 +3.42 4.19	-3.37 -52 -1.52 -1.10 -1.42 3.03	+10.17 -1.43 36 13 +.24 2.56	-6.23 -1.44 -1.15 -1.49 -1.49

Table 14. -- Continued

Table 15.--Cotton: Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 286 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1976

	yarn	Dyed yarn	Index	105	34.5	4.2	45	3.0	66.	24.	1.6	+.17	+.13	+.13	-	.18	+.18 04	+.19	+98.75	+11	2.98	.19	+.14	+ 1	+,16*	*40.+	04.76+	60°+	- 10 + + 48	
	of 22s	Bleached	Index	101	34·5	4.2 87	45	w r g r	66.	24°	1.6	+.31	24 13	16		.31	+.28	+ .05*	+78.56	+.18	+.17 3.04	84.	04.+	+.02	+.43	38	+85.81	+.27	+.05 -2.57	1 0 1
	Color	Gray yarn	Index	8	34.5	4.2 87	45	4.1	66.	5.4 7.4	1.6	+ +	+°°+ +°°+	+.05		.63	+.61	*50°-	+47.39	+,5	3.15	99•	+.64	04	2.4	18	+51.85	+.56	-1.58	22.0
		Spinning Potential	No.	58	34.5	4.2 87	45	10.3	6.	5 [†] 1.	1.6	+ + 15 + 64	+23	+.34	;	1 9•	09 +.63	*70	-166.99	-, 1	7.84	69.	+.02	+.64	+*05*	- 25	-151.46	†0°+	+6.67 -5.52	7+
	imperfections	Fine 50s	No.	15	34.5	4.2 87	45	5.7	. 6.	.4. 7.4.	1.6	 0	45	36		. ⁴ 2	42 +.11	+11.+	+38.78	64.	+.64 5.17	.53	32	÷ ÷ .	32	35	+50.59	36	+ + 7 -4-20 -4-80	40.4
2 4	Yarn	Coarse 22s		19	34.5	4.2 87	45	7.4 r s	6.	2+1 9*4	1.6	45	4 ⁴	31		94.	46 +.14	49	+50.93	- 70	6.53	.55	37	34	38	-32	+65.10	立:	+.74 -5.03	CT•0
Denendent Variable	appearance	Fine 50s	Index	92	34.5	4.2 87	45	9.4	. 6.	4.6	1.6	 1.4	+.53	+.51		•1 ₁	+.13 08	+.14*	+80.43	+, 25	9.27	.53	90	+.52	**00-	+.54	449.98	-,10	32 +10.81 7.93	
Denen	Yarn ap	Coarse 22s	Index	83	34.5	4.2 87	45	10.9	. 65.	4.6	1.6	+.12	+.51	+*39		83.	+.17	+.18*	+131.94	+ 30	-2.11 10.63	.53	8.	15 +.50	*00*	+.52	+98.29	00.	+11.95	7.60
	elongation	Fine 50s	Pct.	ካ • ካ	34.5	4.2 87	7+5	74°	6.	24° 6	1.6	+.11	35	+.13		.41	†0°- †0°-	*40"+	-2.25	00.	24.	.55	+.11	04	+.10*	6	-1.16	+.01	+ 18 - 38 - 38	
	Yarn e	Coarse 22s	Pet.	0.9	34.5	4.2 87	45	74.	66.	24.	1.6	+.11	37	05		.25	+.03	+.03*	+1.82	00	+.11	84.	+.18	+.21	+ +		+3.04		+ • • • • • • • • • • • • • • • • • • •	
	strength	Fine 50s	Lbs.	36	34.5	4.2 87	45	5.6	6.	9.4	1.6	+.15	25 +.43	+.35	,	.65	+.60. +0.+	*20*-	-89.14	80	+3.85 4.26	02.	+.02	+.65	**0°*+	27	-80.19	+.02	±.53 183.75	<u> </u>
	Yarn skein	Coarse 22s	Lbs.	109	34.5	4.2 87	45	12.1	6.	4.6	1.6	+ + - +	+ - 503	+.34	,	. 68	19°+	*90	-172.43	13	+8.54 8.84	.72	†0°+	+.67	+.03*	26	-153.89	80.+	18 +8.23 +3.70 01 -6.58 -3.18	
	7	& card	Pet.	. 8.9	34.5	4.2 87	45	1.00	6.	24.	1.6	59	18 14	19		-,62	 48.	53	+22.06	10	.18	.62	52		53	*00.	+22.08	10	01 01	:
	Statistical Tems	6		Mean Values for: Dependent variable	Staple length	Micronaire Fiber strength (O gage)	Uniformity ratioStandard Deviations (±) for:	Dependent variable	Staple length.	Fiber strength (O gage)	Uniformity ratio	Grade index	Micronaire Fiber strength (O gage)	Uniformity ratio	GRADE INDEX, STAPLE LENGTH	Multiple Cor. Coef Partial Cor. Coef. for:	Grade index	Grade index. Staple length	Regression Equation: Constant (a)	Regression Coef. for: Grade index	Staple length Standard Error (±) DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH,	MICRONAIRE Multiple Cor. Coef	Grade index	Staple length Micronaire Beta Coefficients for:		:	or:	:		

						Depend	Dependent Variables	les					
Statistical Items	100	Yarn skein strength	strength	Yarn el	Yarn elongation	Yarn ap	Yarn appearance		Yarn imperfections		[0]	Color of 22s	yern
	k card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENGTH	Pet.	Ibs.	Lbs.	Pet.	Pet.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef.	-62	.77	.73	.59	.59	• 56	.54	.59	.57	.70	99•	.51	.26
Grade index Staple length Micronaire. Fiber str. (Ogage)	52			+ + 16 + 15 + 15 - 138	+.10 +.45 41	00	05 08 +.52 +.14	39 35 35	33 +.16 37 23	+.01 +.59 32 +.20	+.64 02 22 07	+.40 +.10 38	+ + + + . 1.08
Grade index. Staple length. Micronaire. Fiber str. (0 gage).	53 18 00*	*00. +.57 26 +.29	.00* +.57 27 +.23	+.15*	+.09* +.47 38	.00* 20 +.51 +.17	05* 08* +.54 +.13*		32 +.15* 34	+.01* +.58 26 +.15	+.70 01* 18	+.42 +.09* 38	+.17* +.08* 19
Regression Equation: Constant (a)	+22.04	-167.39	-85.64	+4.35	74	+86.02	+42.21	475.48	+58.12	-158.86	+53.21	+90.52	+100.44
Grade index. Staple length Micronaire. Fiber str. (0 gage). Standard Error (1). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICROMAIRE, FIBER STRENGTH, O GAGE) INTERDMETTY PARTOR	 				+ +	+.01 -2.24 +11.89 +.41 9.04	09 76 +10.77 +.27 7.85	54 +1.37 -4.97 37 5.93	+ - 36 - 4 - 189 - 4 - 15 - 27 - 69	+.02 +6.09 -5.57 +.31 7.31	+.56 -1.57 05 3.07	-2.55 -2.55 -1.55 -1.55 -1.55	+.10 +.11 +.50 12 2.92
Multiple Cor. Coef. for:	-62	.84	. 82	.62	29.	.58	.61	09.	.58	62.	99.	.52	.28
Grade index Staple length Micronaire Fiber str. (0 gage) Uniformity ratio	52 18 +.05 09	+	+++	+ + 1.18 + - 1.49 + - 1.23	+++ 44+ 45+	+24	1.4.4.	39 +.21 25 23	34 +.19 24 20	+ +	+.64 03 22 08 08	+ + 39 + 10 32 22 02	+.16 +.01 00 20 12
Grade index Staple length. Micronaire. Fiber str. (0 gage) Uniformity ratio. Regression Funation	1.05* 1.05* 1.09*	+.04* +.50 48 +.22 +.41	+.04*	+ + - 1.16 - 1.55 - 1.40 - 1.40	+ 1.12* + 1.59 + 1.39	+ 24 +		39 +.20 26 21	34 +.18 25 18	+.05* +.51 50 +.07* +.45	+.71 02* 02* 07* +.06*	+,41 +,10* -,37 -,21 -,02*	+.18* +.01* 00* +.14*
or:	+23.43	-244.04	-125.28	+2.76	-3.22	+53.86	-5.21	+87.36	+72.82	-229.95	+49.39	+91.37	+93.81
	11 17 +.10 +.01 06 .79	11 +.10 +.05 17 +6.11 +2.79 +.10 -12.28 -6.12 +.01 +.57 +.18 06 +3.06 +1.59 .79 6.54 3.21 *Statistically insignificant	+.05 +2.79 -6.12 +.18 +1.59 3.21	++.01 +1.05 +0.04 +0.07	+.01 +.19 59 03 35	+.04 -2.60 +9.47 +1.32 11.32 8.87	05 -1.30 +7.22 +.14 +1.95	- 1.55 - 1.50 - 4.09 - 34 - 1.49 - 1.49 - 1.49	-3.05 -3.05 23 60	+.10 +5.31 -10.79 +.16 +2.87 6.25		+ 26 + 31 - 2.49 - 15 - 15 - 04	2.57

-78-

Table 16.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests on 286 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1976

	yarn	Dyed yarn	Index	105	a m	2.9 90	4.4	3.0	ي ن	76. 70.	Č		+1.16	+*T3	.25	25	29 +.14*	+1014.96		.25	21 +.12 .00	29 +.114 *00.	+104.98	2.14 2.148 2.93	
	of 22s	Bleached	Index	101	N M	2.0 0.0	4.2	3.0	٥٠٠	. 97 40. 74.	0,1		+ 29	†Z	84.	42 01	47	+104.11	-1.69 05 2.81	84.	.36	01* 01* 01*	4104.19	-1.67 05 03 2.81	
	Color	Gray yarn	Index	98	N M	2.9 0.0	4.4	4.1	نامن	76. 40. 74.		- 1. - 32. - 1.	. + -	+ +	.77	74 +.11	81 +.08*	+96.43	-3.69 +.39 2.59	.77	67 +.11 +.01	**************************************	04.96+	-3.70 + +39 2.59	
		Spinning Potential	No.	28	N M	2.9	4.2	10.3	, o.	79. 40. 74.	5	-17	4.67	₹.	.22	15	17*	+64.12	-1.95 -1.00 10.00	,2 ⁴	07	09* 11* 12*	+67.05	-1.07 -1.27 -1.26 9.95	
	Yarn imperfections	Fine 50s	N	15	N M	2.5 0.5	4.2	5.7	نان	40°	a -	+ + + 535	, + , 0, 1	C+••	.37	+.13	+,1¼ +,28	+8.87	+.91 +1.86 5.29	74.	+.32	+ + .35	90*4+	+2.30 +2.06 5.02	
a S	Yarn impe	Coarse 22s	임	19	N M	2.9	4.	7.4	ب ن	.04 40.	+	+ +	790 • +	† •	.38	+.16 +.24	+.17*	+11,12	+1.42 +2.22 6.83	.51	+ + .31 34 36	09* +.34 +.41	+3.85	77 +2.88 +3.11 6.36	
Dependent Variables	appearance	Fine 50s	Index	92	N M	2.9	4.2	4.6	, o. !	76.	+		. i .	+.53	.12	+.08	+.09*	+78,22	+.99 -1.48 9.29	.16	+.13 14	+.18*	+81.15	+1.87 -1.74 -1.26 9.24	
Depende	Yarn appe	Coarse 22s	Index	95	N W	2.5 0.5	4.2	10.9	, o. {	76. 40. 71.	+	112	61.	+•3T	91.	+.11	+.13*	+98.75	+1.56 -2.26 10.74	.22	+.18	+.25 21 18*	+103.56	+3.01 -2.70 -2.06 10.61	
	elongation	Fine 50s	Pet.	† . †	N W	2.9 0.1	4.2	74.	, o. !	70° 70° 74°	ī		4.48		.26	25 +.08	.29 +.09*	64.4+	15 +.05 45	.26	+ + .09 + .04	32 +.10* +.05*	-4-43	-17 +.06 +.02	
	Yarn el	Coarse 22s	Pet.	0.9	N m	2.9	4.2	24.	ي ن	76. 40. 74.	C	60.	+ 36		.29	28	32	+6.13	-17 +.04 .45	•30	+.07 +.04	***************************************	46.08	19 +.05 +.02	
	strength	Fine 50s	Lbs.	36	NM	2.9 1.08	4.2	5.6	, o. (. 45. 40.	ĺ	115	75.+	C3:-	.2 ^l 4	19	 *.0	+38.56	-1.35 27 5.46	,2 ⁴	†† †o • •	19* 05* 05*	+39.17	-1.17 32 26 5.46	ificant
	Yarn skein	Coarse 22s	Lbs.	109	N m	2.9 1.08	4.2	12.1	بَ نَ نِ	76. 40. 74.	70	-19	+ 65	53	.27	19	09*	+116.93	-2.91 -1.21 11.62	.27	13	18* 10* 05*	+118.51	+.13 -2.44 -1. +.11 -1.3668	cally insign
	0:0	& card waste	Pet.	6.2	N m	2.9	4.2	1.00	, oʻ	76.	1,1	- KO	04.) •	74.	+,42	+.47	+5.42	+.53 01 .89	.65	+.11 +.50	+.12*	+14.11	+.13 +.11 +.56 77	ADTACIBLE
	Statistical Items		Mean Values for:	Dependent variable	Yellowness	Nonlint content (S.A.) 2.5% span length	MicronaireStandard Deviation (±) for:	Dependent variable	Yellowness	Wonlint concent (5.4.) 2.5% span length	Simple Correlation Coef. for Grayness	Yellowness	2.5% span length	Multiple Cor. Data for: DEPENDENT VARIABLE with GRAYNESS. YELLOWNESS	Multiple Cor. Coef	GraynessYellowness	Grayness	regression Equation: Constant (a)	Grayness Yellowness Standard Error (±). DEPENDEW VARIABLE with GRAYNESS, YELLOWNESS,	Multiple Cor. Coef.	Grayness. Yellowness. Nonlint (S.A.). Beta Coefficients for:	Grayness. Yellowness. Nonlint (S.A.). Regression Funation:	Constant (a)Regression Coef. for:	Grayness. Yellowness. Nonlint (S.A.). Standard Error (±).	

						Depen	Dependent Variables	les						
Statistical Items	D: 040	Yarn skei	Yarn skein strength	Yarn e	Yarn elongation	Yarn ap	Yarn appearance	Yarn imp	Yarn imperfections		Co.	Color of 22s yarn	rarn	
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed	
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN INFORM	Pct.	Lbs.	Lbs.	Pct.	Pct.	Index	Index	No.	NO.	No.	Index	Index	Index	
Multiple Cor. Coef Partial Cor. Coef. for:	•68	99•	t ₉ •	. 42	.51	•30	.19	45.	.50	.68	.77	.50	.27	
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Reta Coeffinients for:	+.08 +.10 +.50	+ + - + + .08	+ + - 03	17 +.09 +.08 +.31	11 +.12 +.09 +.45	+.11 19 21	+.10 14 12	+ + 01 + + 33 + + 23 + 23	01 +.33 +.17	+.09	67 00 04	31 01 +.01 +.16	17 +.12 +.01 +.10	
Grayness Yellowness. Nonlint (S.A.). 2.5% span length. Regression Emption:	+.08* +.09* +.52 23	+.03* +.01* +.63	* * * * * * * * * * * * * * * * * * *	23* +.09* +.09*	13* +.12* +.10* +.46	+,15* 22 21 22	+.14* 16* 10*	+.01* +.34 +.43 +.21	01* +.35 +.16*	+.10* 08* 05* +.67	* * * * * * * * * * * * * * * * * * *	41 01* +.01* +.15*	25* +.14* +.01* +.11*	
Constant (a) Regression Coef, for:	+10.09	-79.69	-53.32	+2.29	-1.19	+165.41	+105.01	-36.51	-19.99	-110.78	+99.59	+91.72	94.96+	
Grayness. Yellowness. Nonlint (S.A.) 2.5% span length. Standard Error (±). DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (\$.A.), 2.5% SPAN LENGTH, MICROVATRE	+ + + +	+,45 -1.03 +1.18 +1.75.76 9.10	+.21 17 +.14 +81.97 4.30	- 12 + 05 + 3.34 - 12		+1.85 -2.80 -2.33 -54.50 10.38	+1.46 -1.78 -1.36 -21.07 9.20	+.08 +2.95 +3.29 +35.43 6.19	07 +2.34 +2.16 +21.16 4.95	+1.12 98 48 +1.58.27	-3.75 +3.39 -2.82 -2.59	-1.47 03 +.02 +11.03 2.78	8. 4. 4. 7. 9. 9.	- 79 -
Multiple Cor. Coef.	.68	.71	.70	.57	.62	.57	.55	₹9•	.61	•73	-77	.57	•30	
Grayness. Yellowness. Yollowness. Nonlint (S.A.). 2.5% span length. Micronaire. Beta Coefficients for:	++++.108	+ · · · · · · · · · · · · · · · · · · ·	+ 1 1 + 1	. +		+.05	+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	+ + + + + 133	+ + + 05 + + + 18 - 18 - + 11	+.15 13 17 +.68	+	28 10 16 32	+ + 13 + 05 + 11 + 11	
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire.	+.08* +.51 23 03*	+.08* 10* 09* 63	* * * * * * * * * * * * * * * * * * * *	16* 06* 07* 41	**00.+ **00.+ *40 *4.5	+	* * * 0° + + 10° + + 10° + + 10° + + 10° +	+ + + + + .32 - + + + 32 - 35	. + + . 532 + 1532 - 1533 - 154 - 15	+.15* 11* 15* 29	* * * * * * * * * * * * * * * * * * * *	36 103* 29	27 +.15* +.11* +.13*	
Constant (a)Regression Coef. for:	+10.36	94.44-	-36.36	+4.31	99*+	+106.07	+50.91	-9.18	+2.73	-79.36	+ 43°66+	+101.75	+92,44	
Grayness Yellowness Nonlint (S.A.) 2.5% span length. Mcronaire Standard Error (±).	+.10 +.10 +.52 -5.37 05 *Statisti	+.10 +1.11 +.5; +.10 -1.343; +.52 -1.0714 -5.37 +173.87 +81.0 05 -6.97 -3.3; .73 8.55 4.0	+.53 47 +81.05 -3.39 -3.39 h.02		40. + . 05 + . 05 + 86 +	+.75 -2.27 20 -51.28 +11.85 8.91	+ + 44 -1.30 +.58 -18.14 +10.80 7.82	+ + 259 + 22.70 + 23.31 - 5.45 - 5.45	+.35 +2.13 +1.35 +19.93 +1.54 +.51	+1.71 -1.26 -1.61 +156.57 -6.28 7.01	-3.75 +.39 -2.82 +.01 2.59	-1.28 12 34 +10.49 2.00 2.63	92 +.53 +.18 +7.67 +.82 2.89	

-80-

Table 17.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurement with processing tests performed on 286 medium staple samples, collected at triweekly intervals from selected gin points, crop of 1976

															-	80-																	
	yarn	Dyed yarn	Index	105	1.08	23	6.7	3.0	74.	1.68	•	+.16 +.13	+.13	+.28		.20	+,16	+.12	+ 16*		+89.19	+11.27	2.%		.5%	+.23	+.10 17	+.28	+.10* 20*	96.88+	+19.28	9 7 7 8 8 8 8 8	->-
	Color of 22s	Bleached yarn	Index	101	1.08	23	6.7	3.0	74.	 2	•	 	+.09	+.23		.38	0£ * +	26	+.29		+85.17	+21.52 -1.69	2.%		.39	+.31	27	+.37	26 14*	+85.01	+27.19	- 1	
	Co	Gray yarn	Index	95	1.08	23	6.7	4.1	74.	1.6	•	55. + +	+.14	+.15		. 22	+.22	†0°+	+.22+		+68.52	+20.20	3.97		.22	+.17	+ .02	+.20*	**0°+ +*00°+	+68.56	+18.68	+ + + 06 + 06 + 07	
		Spinning Potential	No.	58	1.08	23	6.7	10.3	74.	1.6	•	+.67	+.76 +.34	03		.72	+.70	34	+ .68	Ì -	-92.46	+160.46	7.14		+8.	+.50	+.62	+.38	20	94.06-	+90.37	. 4 r.	
	Yarn imperfections	Fine 50s	 }	15	1.08	23	6.7	5.7	74.	1.6	<u>.</u>	+.02 45	02	05		.45	†o.+	45	+.03*		+33.31	+4.52 -5.43	5.09		94.	60.+	46	+,10*	46	+33.06	+13.36		
les	Yarn impe	Coarse 22s	No.	19	1.08	23	6.7	7.4	74.	1.6	2	9.‡ •	02 31	90:-		54.	+.07	††† 	*47		+36.31	+11.27	6.59		94.	+.13	47	+,14*	14*	+35.93	+24.53	56.54	· · · · · · · · · · · · · · · · · · ·
Dependent Variables	appearance	Fine 50s	Index	92	1.08	23	6.7	4.6	74.	1.6	<u> </u>	+.53		+.02		.54	11	+.53	10*		+53.85	-20.71 +10.50	7.91		•55	17	+.14	18*	+.14*	+54.35	-38.33	+74+	
Depen	Yarn ap	Coarse 22s	Index	95	1.08	23	6.7	10.9	24.	1.6	- 1	19 +.51	1 ⁴ +.39	+.01		.55	2 ^l	+.53	- 20 +		+99.31	-50.60 +11.98	9.07		.55	15	+ + 05	21	******	04.66+	-53.77	+ 13	
	elongation	Fine 50s	Pct.	4.4	1.08	23	6.7	74.	74.	1.6		+.46	+.42 +.13	+*45		09.	+.52	-,41	+.49	, ,	9T • +	+5.29	.37		.62	+.38	+ 18	04.+	34 +.17*	+.19	+4.25	+°°+	
	Yarn e	Coarse 22s	Pct.	0.9	1.08	23	6.7	74.	74.	1.6	- 1	+.30	+.18	+.65		.53	04.+	41	+.37	1 7	+3 . 24	38 38	04.		.53	+.38	80.1	+,42	*60:-	+3.23	+4.53	100	
	Yarn skein strength	Fine 50s	Lbs.	36	1.08	23	6.7	5.6	747	1.6		+.04	+.81	90:-		69.	4.67	34	+.65	5	-41.99	+83.93	4.05		.87	+,43	+.72	+.29	+.63	-40.67	+37.44	t1.96	nificant
	Yarn skei	Coarse 22s	Lbs.	109	1.08	25	6.7	12.1	74.	1.6		÷ ;	+ + 34	05		02.	+.67	33	+.66	(3 (7	-01.54	+182.27	99.8		689	†† , +	+.78	+.27	+.68	-58.49	+75.41	6.14 12.44 60 90.14 13.45 2.80	cally insig
	Diokor	& card waste	Pct.	6.2			6.7	1.00	74.	1.6	-	18	31 19	17		.43	04	18	39	17 5	+C. }T.	-9.05	.91		54.	27	14	31	15*	417.49	-7.08	88.	*Statisti
	Statistical Items		Mean Values for:	Dependent variable	Z.5% span Length	Fiber str. (1/0 gage) Uniformity ratio	Elongation (1/8" gage)	Dependent variable	Micronaire	Uniformity ratio Elongation (1/8" gage)	Simple Correlation Coef. for:	Micronaire	Fiber str. (1/8" gage) Uniformity ratio	Elongation (1/8" gage) Multiple Cor. Data for:	DEPENDENT VARIABLE with 2.5% SPAN LENGTH.MICROWAIRE	Multiple Cor. Coef	2.5% span length	MicronaireBeta Coefficients for:	2.5% span length	Regression Equation: Constant (a)	Regression Coef. for:	2.5% span length Micronaire	DEPENDENT VARIABLE with	FIBER STR. (1/8" GAGE)	Multiple Cor. Coef. for:	2.5% span length	Fiber str. (1/8" gage) Beta Coefficients for:	2.5% span length	Fiber str. (1/8" gage) Regression Equation:	Constant (a)Regression Coef. for:	2.5% span length	Fiber str. $(1/8" \text{ gage})$. Standard Error (\pm)	

						Depen	Dependent Variables	oles						
Statistical Items	Diokow	Yarn skei	Yarn skein strength	Yarn e.	Yarn elongation	Yarn ap	Yarn appearance	Yarn imp	Yarn imperfections		Color	or of 22s yarn	ırn	
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed	
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIRER STR. (1/8° GAGE),	Pct.	Lbs.	Lbs.	Pct.	Pet.	Index	Index	<u>%</u>	No.	No.	Index	Index	Index	
UNIFORMITY RATIO Multiple Cor. Coef	.45	.92	8.	.55	19.	.59	.61	24.	.148	.88	.22	04.	.30	
2.5% span length	26 16 12	+.53	+.53 59 +.64 +.51	+.29 44 16	+ - 31 + .32 + .32	28 +.35 08	+.32 +.32	+.15 35 08	+.14 32 03	+ · · · 56 64. · · · + 64	+.16 +.04 +.03 01	+.31 20 09	+.15 +.01 21 +.14	
Beta Coefficients for: 2.5% span length Micronaire. Fiber str. (1/8" gage) Uniformity ratio.	31	+ -31	+ - + + + 1.48 + 1.48	+.33 50 +.20	+ .32. + .02* + .33	+.38 +.09* +.25	+ .35 + .35 + .35	+.18*	+.17* 37 04*	+ .42 39 +.36	+.21* +.05* +.04*	+.39 23 11*	+.20* +.01* 28 +.17*	
Constant (a)	+17.50	-124.72	-77.85	+2.67	-1.40	02.62+	+27.91	+40.83	+40.36	-161.47	+69.01	+86.30	+85.84	
Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Standard Error (1). DEFENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIRER STR. (1/8" GAGE). UNIFORMITY RATIO, ELONGATION	-7.07 39 08 00 00	+84.89 -8.59 -43.68 -4.82	4.58 -4.58 11.50 11.15 2.11	t. 1 + 50 39 68 39 68	+	-78.36 +8.79 56 +1.71 8.82	-64.93 6.91 08 7.41	+30.56 -6.32 39 42 6.52	+21.80 -4.42 13 61 5.00	199.81 -8.60 -7.05 -1.88 -1.88	+19.23 + 4.2 + 08 - 04 3.97	+29.05 -1.54 -1.12 -1.12 -1.2	13.99 + 04 - 47 - 47 2.89	
Multiple Cor. Coef	64.	.92	8.	.83	.81	.59	-62	.48	64.	. 888	.27	.43	.39	
2.5% span length Micronaire Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage). Beta Coefficients for:	22 18 17 01	+ .51 + .48 + .16	+ + - 52 + - 54 + - 51 + 10	+.22 +.01 +.31 +.74			30 +.34 +.02 +.33	+.18 36 09	+.17 33 16 14	+.55	+ + 13 + 105 + 106 + 116	+ 1.28 + 1.04 + 1.04 + 1.19	+.11 +.02 16 +.16	
2.5% span length. Micronaire. Fiber Str. (1/8" gage) Uniformity ratio. Elongation (1/8" gage) Regression Fountion.	25 20 21* 01*	+ + + + + + + + + + + + + + + + + + +	* + + + + + + + + + + + + + + + + + + +	+.17 45 +.01* +.24 +.65	+ - 16 + - 16 + - 16 + + 19 + 19	+ + .33 + .26 + .26 + .08*	33 +.36 +.02* +.36	+.21 41 14* 10*	+.20* 37 18*	+ + + + + + + + + + + + + + + + + + + +	+ 17*	+.35 06* +.18	+.13* +.19* +.27	
Constant (a)	+19.35	-132.05	-80.29	4.07	-3.41	+72.36	+18.62	+49.39	+46.62	-166.97	+63.32	+81.33	+78.88	
2.5% span length Micronaire	-5.89 42 12 01 28 .87 *Statist:	-5.89 +81.01 +41.67 -12 +8.46 -4.54 -12 +3.80 +1.54 -01 +2.09 +1.16 -28 +1.03 +34 .87 4.76 2.40 *Statistically insignificant	+41.67 -4.54 +1.54 +1.16 +34 2.40 gnificant	+1.88 45 00 +.07 +.40	+2.11 - 148 + .04 + .10 + .30 + .30	-83.11 +8.92 42 +1.74 +1.12 8.78	-70.86 +7.07 +0.09 +2.07 +1.40 7.34	+36.10 -6.48 55 46 -1.30 6.45	+25.83 -4.53 -24 -63 -95 -95	+96.88 -8.50 +2.15 +2.26 +7.77	+15.55 + 52 + 19 + 19 + 86 3.92	+25.80 -1.45 -10 -10 -10 -10 -10 -10	+9.39 +.17 34 +1.07 2.78	

Table 18.--Cotton: Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 20 long staple samples, carded yarns, collected at triweekly intervals from selected gin points, crop of 1976

,				10.		0.5	12 C	10.00	۲ o	i 쿠 0		82- N	44	* *.	Н	L # 2	.=+	10 10 m	* * *	1		
	arn	Dyed	Index	10 ⁴ 93 35.5	87 87 45	0.0		3.5	1 +	44.+	+	.12	01 +.11	01* +.11*	14.%+	01 +.24 1.95	45·	+.53	*40+	+73.51	70	1.65
	Color of 22s yarn	Bleached	Index	100 93 35.5	87 87 4.5	8 0	26.	13.5	+.33	94	25	•33	+.33 +.04	+*33* +*0*+	+43.08	+.55 +.15 3.56	56	+.39 16 47	+.36*	480.05	9.+	-3.64
	Col	Gray yarn	Index	35.5	87 45	۳ م د م	.50	3.5	+.60	190	+.16	69.	+.65	+.61 +.34*	-33.53	+.90 +1.17 2.39	77.	70 427 427	+.63	-8.86	+.93	-2.43 2.11
		Spinning Potential	No.	73 93 35.5	87 45	16.9	.95	13.7	4.02	59	+•63	.86	+.08 +.86	**************************************	-503.92	+.29 +15.49 8.52	.91	+.13 +.85 55	+.05*	47.004-	+,41 +13,40	-10.16
	Yarn imperfections	Fine 50s	 	18 93 35.5	87 4.5	8.1	.95	13.5	33	. .04	60*+	49.	38 +.58	32*	-44.05	-1.14 +4.73 6.22	92.	41 +.47 52	29* +.38* 44.	+27.63	-1.05	5.30
bles	Yarn im	Coarse 22s	No.	24 93 35.5	87.	2.2	.50	13.	23	+ - 59	+.16	.61	27 +.58	22	-111.85	-1.07 +6.61 8.68	.73	+ . + . + . + . + . + . + . + . + . + .	19* +.41* 42*	-17.85	95	7.55
Dependent Variables	Yarn appearance	Fine 50s	Index	80 93 35.5	87 45	2.2	96.	3.5	+.14 40	+.80	†o.+	24.	+°17† -°140	+.13*	+192.58	+.68 -4.96 10.82	.81	+.15 16 +.77	+.09* 10* +.76	+10.26	-1.28	+17.96
Depen	Yarn ap	Coarse 22s	Index	98 93 35.5	87 45	12.4	56.	3.5	+.25	+.80 36	90	.63	+.28	+.23*	+248.21	+1.28 -7.57 9.65	.88	+.37	+.19*	+81.83	+1.07	+16.39
	elongation	Fine 50s	Pct.	4.6 33.5 11.0	87 45	.61	88	3.5	06 +.78	38	†9 . +	.78	07 +.78	*40*-	-12.29	01 +.51 .38	62.	06 +.74 13	*40	-11.16	01	.38
	Yarn	Coarse 22s	Pet.	35.5 35.5	87 45	.49 2.2	.50	3.5	.00	4.5	+.61	.75	+.02	+.01*	-8.23	.33	92.	+.03 +.70 21	+.02* +.69 15*	02.9-		15
	Yarn skein strength	Fine 50s	Libs	42 93 35.5	87 45	7.4	56.	3.5	+.87	+.02	+.61	.87	+.87	02* +.87	-192.46	05 +6.76 3.62	.91	.00.	.00* +.76 27	-152.02	+5.93	2.14 -8.25 -3.98 1.27 5.57 3.12 *Statistically insignificant
	Yarn skei	Coarse . 22s	Ibs.	121 93 35.5	87 45	14.9	88	13.5	+ 89	58 +.07	+.61	.89	+ .06 + .89	+.03*	-396.11	+.18 +14.10 6.75	.93	+.11 +.89 56	+.04* +.79 28*	-312.36	+.28 +12.41	-8.25 5.57 ally insigni
	Diokon	& card waste	Pct.	7.3 93.5 14.0	87 45	1.89	88	3.5	4.30	62 +.14	-: II:-	.53	46 +.32	+,28*	+21.33	37 +.57 1.61	.7 ⁴	+.09	41* +.07* 57	+43.02	34 +.13	-2.14 1.27 *Statistic
	Statistical Items		Mean Values for:	Dependent variable	Fiber strength (0 gage) Uniformity ratio Standard Deviation (±) for	Dependent variable	Staple length	Fiber strength (O gage) Uniformity ratio Sim.le Correlation Coef. for:	Grade index	Micronaire Fiber strength (0 gage)	Unlicementy Fatto	Multiple Cor. Coef	Grade indexStaple length	Grade index	Constant (a)	Grade index Staple length. Standard Error (±). DEENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH	Multiple Cor. Coef Partial Cor. Coef. for:	Grade index	Grade index. Staple length. Micronaire.	Regression Equation: Constant (a)Regression Coef. for:	Grade indexStaple length	MicronaireStandard Error (±)

		Vous aleasi	140000	,		Depen	Dependent Variables	les						
Statistical Items	Picker	rarn skei	Yarn skein strength	Yarn e	Yarn elongation	Yarn ap	Yarn appearance	Yarn imp	Yarn imperfections		လိ	Color of 22s y	yarn	
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed	
DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MIGNORIRE, FIBER STRENGTH	Pet.	Ibs.	Lbs.	Pct.	Pet.	Index	Index	No.	No.	No.	Index	Index	Index	
(U CACE) Multiple Cor. Coef Partial Cor. Coef. for:	47.	ħ6·	.92	98.	98.	.89	.82	±77.	.77	.93	.81	49.	.56	
Grade index. Staple length. Micronaire. Fiber str. (0 gage)	+ - + - 50	+.15 62 31	+ + .06	+.15 +.78 45	+.04 +.80 35	+.43 55 +.76 34	+.11 16 +.77 +.14	30 +.48 44 +.17	- 44 + 48 - 47 + 18	+ + 1.9	+.67	+ + 1 1.18 1.18 1.38	07 +.35 +.55 +.16	
Grade index. Staple length. Micronaire. Fiber str. (0 gage).	42* +.07* 56* +.03*	+.05*	+.02*	+.08* +.68 30*	+.02* +.7 [‡] 22* 38*	+.22* +.61 18*	+.07* 10* +.79 +.08*	22* +.41* 38* +.12*	32* +.38* 40* +.13*	+.07* +.75 37 22*	+.19* 46* 29*	+ .35*	06* +.34* +.63* +.15*	
Constant (a)Regression Coef. for:	+42.12	-266.73	-123.40	-1.95	-6.05	+128.88	-8.44	-43.23	+9.35	-304.90	+28.68	+117.32	+67.10	
Grade index. Staple length. Micronaire. Fiber str. (O gage). DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIRER STRENGTH, O CACED INTERCEMENT OF THE CONTROL OF THE CON	35 -2.10 02 1.27	+12.39 -9.49 -5.45 54	+ 08 +5.93 -4.84 -337 2.87	+ +	+.01 +.48 26 07 31	11.22 -4.24 -14.96 62 5.63	+.35 -1.27 +18.63 +.29 6.88	-1.09 -4.73 -6.38 -4.39 7.45	-1.17 +3.29 -6.38 +30 5.21	+.52 +13.36 -12.65 -1.08 6.18	+ + .81 + .66 -3.05 27 1.92	+ .58 -4.47 -36 -36	05 +2.44 +.08 1.63	-83-
Multiple Cor. Coef	±47.	%	.95	.89	.89	. 89	.82	t ₁ L.	77.	76.	.83	01.	.75	
Grade index. Staple length. Micronaire. Fiber str. (0 gage). Uniformity ratio. Beta Coefficients for:		07 61 76 +.57	+ .53 + .53 + .56 + .56	01 +.33 59 +.43	. 133 1.52 1.53 1.43	+ · + · + · · · · · · · · · · · · · · ·	+1.1. -101 -11.1.	+ + 1.39 + 1.17 + 0.5		+	4.69 4.69 4.60 6.7 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7	+ + 51 - 32 - 47	33 +.21 +.37 +.59	
Grade index. Staple length. Micronaire. Fiber str. (O gage) Uniformity ratio. Regression Equation:	*44		06* 52 11* 12*	* * * * * * * * * * * * * * * * * * *	+ .388*	+.24. 26. +.64. 19*	+.09* +.01* +.07* 10*	- 524* - 135* - 133* - 106*	+.431* +.12* 05*	03* +.31* 60 14* +.50	+.59 35* 33*	+ + + + + + + + + + + + + + + + + + +	- 1.25* + + 22* + + 294*	
Constant (a)Regression Coef. for:	+45.10	-174.56	-73.34	+1.38	-1.92	+114.73	-28.45	-32.02	+2.19	-171.09	+17.31	+84.93	60.76+	
Grade index. Staple length. Micronaire. Fiber str. (O gage). Uniformity ratio. Standard Error (±).	37 02 -2.25 +.03 +.09 1.27 *Statisti	371520 02 +7.07 +3.10 -2.25 -14.62 -7.57 +.032828 +.09 +3.19 +1.70 1.27 4.34 *Statistically insignificant	20 +3.10 -7.57 23 +1.70 2.38		28 + 1 - 1 + 1 - 06	+1.31 -3.44 +5.73 66 48	+.47 17 -19.68 +.24 65 6.85		1.12 4.63 4.88 5.12 5.23	21 -25.54 -20.18 70 70 +4.68 +.29	+	+.75 +1.36 -2.57 -1.18 -1.18	-1.00 +.80 +.17 +1.02	

Table 19.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 20 long staple samples, carded yarn, collected at triweekly intervals from selected gin points, crop of 1976

															0 +										
	yarn	Dyed yarn	Index	104	- - - - -	1.15		90.1	- 6.0	50	+.14	+ - 34	† * +		84.	10 +.47	+.52*	+100.93	24 +1.49	1.72	.57	10	09* +.50* 31*	+103.26	24 +1.42 65 1.61
	Color of 22s	Bleached	Index	100	- n (1) n	1.15	α α	0,00,1	· • •	.50	49	200	04		-65	57 14	59*	+106.06	-2.92 64	% %	.65	57	59* 12* 07*	+107.06	-2.91 67 28 2.85
	ပိ	Gray yarn	Index	92	 	1.15	c c	0.00.	- 0.7	.50	- 82	+ • • • • • • • • • • • • • • • • • • •	04		.82	80	85	+96.18	-3.69	1.89	.82	+.11 +.05	85 +.07* +.03*	+95.83	-3.69 +.36 +.10
		Spinning Potential	No.	73	<u>-</u> n (1) n	1.15	9 91	, w. r	- 6.5	.50	43	+ + + 22.	59		·54	27	26*	+103.56	-5.84 -9.07	14.27	•58	28 +.24	26* 35* +.21*	+90.08	-5.89 -8.69 +3.75 13.84
	Yarn imperfections	Fine 50s	<u>№</u> .	18		1.15		18.	· o. ð.	. 50	27	30 +-72 +-41	09		.33	16	17*	+27.07	-1.79	ć9°.).	.78	24 23 +.74	18* 17* +.70	06.4+	-1.87 -2.01 +6.17 5.10
es	Yarn impe	Coarse 22s	№	†Z	~ n (1) u	1.15	0 [[0.00.1	- 0,0	.50	36	+ + -	- 59		04.	26	28*	+37.07	-4.01	10.09	.72	34 18 +.66	28* 14* +.61	+11.21	-4.10 -2.27 +7.20 7.59
Dependent Variables	appearance	Fine 50s	Index	80	- - - - -	1.15	0.11	v. 6.	- 6.7	50.	+.32	52.	+ 8		.61	+.06	+.05*	+53.40	+.86 +10.13	۶. 4.	.77	+.08	+.06*	475.47	+.94 +9.52 -6.14 7.54
Depend	Yarn api	Coarse 22s	Index	80	- - - - -	1.15	1 10 م	±.8.	-0.7	.50	+.28	49	+ 80		64.	+ + 08	+*08*	+76.32	+1.23 +8.10	10.63	.78	+.12	+.08* +.40* 61	+105.58	+1.34 +7.29 -8.14 7.78
	elongation	Fine 50s	Pet.	9.4		1.15	- 5		- 6.0	.50	28	44 +.15 +.77	-38		.45	10	10*	+5.57	08	çç.	94.	11 36 +.13	11* 38* +.12*	+5.29	45 45 45
	Yarn e	Coarse 22s	Pet.	8.0	7 (1) (1)	1.15	Ьη	, ω. r	- 0, 0	.50	-,41	+.11	,42		.51	25	25*	69*9+	16	Z+.	.52	25	25*	+6.55	16 25 +.04 42
	strength	Fine 50s	Lbs.	40	 	1.15	7.4	100 1	- 0.0	.50	04	+ + + 85	57		74.	27	28*	+53.76	-2.71 -2.94	0	.52	28 26 +.23	28* 26* +.21*	+47.88	-2.73 -2.78 +1.64 6.30
	Yarn skein	Coarse 22s	Lbs.	121	 	1.15	6.4۲	18.	- 0.0	.50	42	+ + + 26	58		24.	30	31*	+143.39	-6.02	13.17	.53	31 23 +.27	31* 23* +.24*	+129.70	26 -6.07 -2.77 65 -5.01 -2.76 +1.47 +3.81 +1.61 1.14 12.69 6.36
	Diolega	& card waste	Pet.	7.3	1016	1.15	1.89	0.00	- 6.0	.50	23	+ + + 20	62		•34	09	10*	+9.63	2 ⁴	0)	.80	15	10* 24* +.72	+4.33	26 65 +1.47 1.14 *Statisti
	Statistical Items		Wean Values for:	Dependent variable	Yellowness	2.5% span length.	Standard Deviation (±) for: Dependent variable	Grayness.	Nonlint content (S.A.). 2.5% span length.	Micronaire. Simple Correlation Coef. for:	Grayness.	Nonlint content (S.A.)2.5% span length	Micronaire	DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS	Multiple Cor. Coef	GraynessYellownessReta Coefficients for	Grayness	Regression Equation: Constant (a)	Grayness Yellowness Standard Error (+)	DEFENDENT VARIABLE (-/-) GRAYNESS, YELLOWNESS, NONLINT (S.A.)	Multiple Cor. Coef	Grayness. Yellowness. Nonlint (S.A.). Beta Coefficients for:	Grayness Yellowness Nonlint (S.4.) Regression Equation:	Constant (a). Regression Coef. for:	Grayness. Yellowness. Nonlint (S.A.). Standard Error (±)

						Depen	Dependent Variables	les						
		Yarn skein strengt	n strength	Yarn e	Yarn elongation	Yarn al	Yarn appearance	Yarn imp	Yarn imperfections		သိ	Color of 22s y	yarn	
Statistical items	Picker & card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray yarn	Bleached	Dyed	
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NORLINT (S.A.), 2.5% SPAN	Pct.	. TDs.	Lbs.	Pct.	Pct.	Index	Index	No.	No.	No.	Index	Index	Index	
Multiple Cor. Coef	. 8	.91	.91	.81	.83	.82	.78	27.	.81	.91	-82	.73	99.	
Grayness Yellowness Nonlint (S.A.) 2.5% span length Beta Coefficients for:	15 33 +.76 +.04	40 31 +.26 +.87	35 35 +.19 +.87	26 39 05	03 44 +.01 +.77	+.07	+.07 +.61 59	30 16 +.65 +.37	19 +.75 +.37	+ + 1 . 33		63 02 12	05 53 +.10 +.40	
Grayness Yellowness Nonlint (S.A.). 2.5% span length	10* 23* +.72 +.02*	20* 15* +.11* +.77	18* 18* +.08* +.77	17* 28* 03* +.65	02* 31* 00* +.71	+.04* +.38* 57	+ + + + + + + + + + + + + + + + + + +	23* +.56 +.27*	13* 15* +.66 +.24*	17* 28* +.09* +.72	**************************************		04* +.53* +.34*	
Constant (a)	+2.88	-242.53	-136.11	-3.78	-8.80	+207.69	+105.76	-84.26	-59.03	-307.75	+91.88	04.741+	+81.65	
Crayness Yellowness Yellowness Yellowness Nonlint (S.A.) 2.5% span length Standard Error (‡). DEPENDENT VARIABLE with GRAYMESS, YELLOWNESS, NONLINT (S.A.), 2.5% SPAN IENGTH. MICRONAIRE	65 65 1.14 1.126 1.14	-3.96 -3.30 +1.80 +322.89 6.16	-1.74 -1.93 +.64 +159.68 3.10	20 02 02 02 02 02	02 28 00 +12.24 34	+ 71 +6.82 -7.59 -88.49 7.16	+.8 -5.98 -26.31 7.48	-3.37 -1.83 +6.68 +82.57 7.04	-1.37 -1.72 +5.82 +55.28 4.74	-3.74 -6.86 +3.45.25 7.14	-3.67 +.37 +.08 +3.44 1.88	-3.14 -3.14 -34.99 2.58	11 +1.52 77 +18.74 1.48	-85-
Multiple Cor. Coef.	.81	.93	.92	.81	.83	.88	†8.	.77	.82	.92	.82	-75	.67	
Grayness Vellowness. Nonlint (S.A.). 2.5% span length Micronaire. Beta Coefficients for:	08 17 +.65 +.01		23 07 10 +.88 42	25 34 +.73 +.02	06 41 +.05 +.77 +.08	+	+.35 33 05 +.51	25 05 +.53 14	+ + +		77 +.14 01 +.05 07		+	
Grayness Yellowness Nonlint (S.A.) 2.5% span length Micronaire	05* 14* +.63 +.01*	13* 02* +.74 30*	11* 04* 05* +.75	18* 29* +.65 +.02*	04* 35* +.03 +.72 +.07*	+ 1.09* + 1.08* + 1.55*		20* +.50* +.25* 15*	09* +.007* +.23* 15*	11* 17* 01* +.70	83 +.11* 01* +.03*	56* 14* 36*	08* +.16* +.29* +.35*	
Constant (a)Regression Coef. for:	46.74	-195.87	-113.50	-3.90	-9.26	+137.72	+39.21	-67.27	-46.31	-268.54	+94.16	+158.86	+78.45	
	13 39 +1,29 +.31 75 1,12 *Statistic	13 -2.53 -1.0 391617 +1.29293 +.31 +311145 +154.11 75 -9.03 -4.3 1.12 5.54 2.8 *Statistically insignificant	-1.05 41 37 +154.14 -4.37 2.81	 	1.03 1.2.31 1.02 1.09 1.09	1.43 4.46 -7.135 -7.35 -7.35 -7.91	1.26 1.3.00 1.0.00 1.2.88 6.42	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		-2.54 -4.22 -16 +335.64 -7.59 6.77	-3.65 -4.53 -5.53 -4.53 -53 -53 -53 -53 -53 -53 -53 -53 -53 -	-2.79 -37.80 -2.22 -2.50	+1.31 +1.33 62 +1.9.53 +.62 1.46	

-86-

Table 20.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 20 long staple samples, carded yarn, collected at triweekly intervals from selected gin points, crop of 1976

Particle							Depend	Dependent Variable	les					
	1 Items	Dioker	Yarn skein	strength		longation	Yarn ap	pearance	Yarn impe	rfections	1	Col	lor of 22s 3	arn
Feet		& card	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed yarn
1.15		Pet.	Lbs.	Ibs.	Pct.	Pet.	Index	Index	임.) 등	No.	Index	Index	Index
1. 1. 1. 1. 1. 1. 1. 1.	able	7.3	121	42 1.15	5.8	4.6	98	80	24	18	73	92	100	401
1.89		26.0	26.0	56.4	26.4	26.0.) o . 4 . 92	26.1	26.4	26.4	26.4	26.4.0	26	26.0
1.00		4.9	4.9	4.5 6.4	4.5	45	45 6.4	4.5 6.4	4.5 6.4	4.5 6.4	4.9	4.5	4.5 6.4	4.9
1.00		1.89	14.9	7.4	64.	.61	12.4	11.9	11.0	8.1	16.9	3.3	3.8	2.0
1.72 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73	gth	4° 5°	÷0.	÷ 0.	\$ C.	±°0.	÷0.	÷ 0°.	÷ 05	÷ 05.	50.	÷0.	÷0.	. ot
-53 -53 <td>/8" gage)</td> <td>1.73</td>	/8" gage)	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73	1.73
- 1.00	/8" gage)	.53	.53	.53	.53	•53	.53	.53	.53	.53	.53	.53	.53	.53
MATE	gth	+.20	+ 85	+.85	+.72	+.77	54	26	+,43	+,41	+.82	+,18	20	+ 50
MATINE	/8" gage)	+,45	. +	+.68	94°+	. + . 53 . 4	8.4 + -	9.4°	+ + 0 64.	60 +.36	+ - 59	04.+	40 +.28	+.44
1.00	./8" gage)	11	+.08	+.61	+.61 +.37	+.64 +.39	06 +.37	+°0+ +°55	+.16 21	+.09 14	+.63 +.13	+.16 19	22	+ +
	Data for: ABLE with													
+.04 +.88 +.87 +.69 +.74 +.03 +.33 +.31 +.84 +.84 +.04 54 <th< td=""><td>Coef.</td><td>.62</td><td>.92</td><td>16.</td><td>.75</td><td>.78</td><td>.83</td><td>.80</td><td>.65</td><td>.65</td><td>8.</td><td>.41</td><td>.52</td><td>.56</td></th<>	Coef.	.62	.92	16.	.75	.78	.83	.80	.65	.65	8.	.41	.52	.56
60	coei. lor: ength	±0.+	+*88	+.87	4.69	4.74	34	05	+.33	+.31	+8+	4.07	36	+.38
+.03* +.75 +.75 +.65 +.72 21* 03* +.28* +.28* +.28* +.28* +.23* +.39* 34* 3	ents for:	09	67	†9°-	32	26	+.78	+.79	54	56	1 9	37	64	+.53
+14.68 -195.99 -114.63 +16.36 -31.00 -14.47 -262.93 +94.66 +156.66 +1.64.68 +13.50 +124.68 +10.83 +16.36 +16.36 +6.75 +58.14 +336.90 +6.07 -35.99 -2.30 -13.49 +3.66 +124.14 +10.83 +86.75 +58.14 +336.90 +6.07 -35.99 -1.49 -5.87 -2.97 -3.28 -18.27 +18.81 +6.75 +58.44 +336.90 +6.07 -35.99 -1.49 -5.87 -2.97 -3.28 -6.98 -14.2 -12.26 -13.00 -14.5 -13.50 -13.77 -13.77 -13.77 -13.77 -13.77 -13.77 -13.77 -13.77 -14.55 <td>ength</td> <td>+.03*</td> <td>+.75</td> <td>+.75</td> <td>+.65</td> <td>+.72</td> <td>21* +.7⁴</td> <td>03*</td> <td>+.28*</td> <td>+.253*</td> <td>+.71</td> <td>+.07*</td> <td>34*</td> <td>+.35*</td>	ength	+.03*	+.75	+.75	+.65	+.72	21* +.7 ⁴	03*	+.28*	+.253*	+.71	+.07*	34*	+.35*
-1.6 +3.3 +1.6 +9.0 +1.2 -1.0 48.7 +6.7 +68.1 +36.9 -2.53 -3.77 -2.3 -10.8 +1.2 -1.1.2 -8.5 -1.3 -2.53 -3.77 -2.3 -10.8 -1.1.2 -1.1.2 -1.5 -1.5 -2.53 -3.77 -2.4 -5.19 -2.2 -1.2 +18.2 +18.2 +6.9 -2.53 -3.77 -2.8 -5.8 -7.9 -7.9 -8.4 -8.5 -1.5 -7.9 -2.53 -3.77 -2.8 -5.8 -7.9 -8.4 -8.9 -6.5		+14.68	-195,99	-114.63	-3.66	-8.74	+109.89	+16.36	-31,00	74. לו-	£6, 696 -	+9h. 68	+156.66	+73, 3 th
-2.30		4) 69	13.50	गुप्र गुप्त (+	40 OF	- 66 017	ונר ונצר	10.82	186 75	(1 83+	00 900+	5 7	00 40	, ac
63 92 75 84 82 12 21 +27 +35 +80 43 93 43 93 43 93 43 93 43 45 45 55 93 43 45 57 45 53 43 45 57 43 45 57 45 45 45 45 45 43 47	ror (±)	-2.30	-10.87	2.97	 		+18.27 6.98	+18.81 7.10	-11.22 8.35	6.15	7.49	3.01	3.22	+2.13 1.63
63 93 93 94 84<	BLE With H, MICRONAIRE, " GAGE)													
02 +.84 +.85 +.65 +.694221 +.27 +.35 +.80034343233232323232323	oef.	.63	.93	.92	.75	.79	[†] 8°	.83	.65	99*	96.	54.	.56	.57
e) +12 + 29 + 2802 + 12 + 28 + 34 + 1777 + .15 + .20 + .25 + .35 +		02	+.84	+.84	+.65	+.69	-,42	র. •	+.27	+.35	+.80	- 03	43	+ +
02* +.69 +.69 +.66 +.6829*14* +.25* +.32* +.6703*45*45*54* +.32* +.6703*45*54*55*24*13* +.85 +.9347*62*34*36*35*45*35* +.13* +.16*02* +.10* +.22* +.29* +.29* +.29* +.29* +.29* +.20*36* +.10*20*36* +.10*20*36*10* +.10*24*16*10*20*36*10* +.10*24*16*10*20*35*45* +.29*20*	./8" gage)	+.12	+.29	+ 28	02	+.12	+ 58	†£.+	4.07	17	+.15	. +.	+ 25	+.17
+13.4 +16* +16* -102* +10* +122* +129* +108* -118* +109* +126* +130* +130* +130* +116* -102* +116* -102* +116* -102* +116* -102* +116* -102* +116* -102* +116* -103* -103* -130* +149* -170* -2.65* +149* -185* -185* -19* -18* -19* -18* -19* -18* -19* -18* -19* -18* -19* -19* -18* -19* -19* -2.65* -19* -19* -19* -19* -19* -19* -19* -19	lgth.	02*	+.69	+.69	+.66	+.68	+.85	1 ⁴ *	+.25*	+.35*	+.67	03*	45*	+.28*
+13.03 -211.97 -122.41 -3.59 -9.15 +92.12 -6.22 -36.64 -4.94 -273.19 +89.06 +149.09 -149.04 -273.19 +89.06 +149.09 -149.09 -149.09 -139 +288.33 +142.39 +9.15 +11.68 -102.14 +46.41 +77.87 +73.16 +320.74 -2.78 -47.93 -2.65 -2.05 -8.51 -4.04 -2.4 -1.6 +20.90 +22.14 -10.39 -9.99 -1.148 -1.70 -2.65 +1.49 +68 -1.148 -1.55 +1.97 +4.99 -6.83 +1.49 +68 +1.49 +68 +1.49 +1.65 +1.49 +1.57 +1.5	1/8" gage)	+.13*	+91.+	+,16*	**00	+.10*	+.22*	+.29*	*80*+	18*	*60°+	+.26*	+.30*	+.19*
99 +288.33 +142.39 +9.15 +11.68 -102.14 -46.41 +77.87 +73.16 +320.74 -2.78 -47.93 -2.05 -8.51 -4.042416 +20.90 +22.14 -10.39 -9.99 -11.48 -1.70 -2.65 +1.49 +.6801 +.04 +1.55 +1.97 +4.4983 +.89 +.49 +.66 +1.65 +1.57 +1.97 +1.4983 +.89 +.49 +.66 +1.68 +1.49 +1.68 +1.49 +1.68 +1.49 +1.68 +1.49 +1.68 +1.49 +1.68 +1.49 +1.	:	+13.03	-211.97	-122,41	-3.59	-9.15	+92.12	-6.22	-36.64	46.4-	-273.19	90.68+	+149.09	+70.83
+.14 +1.39 +.6801 +.04 +1.55 +1.97 +.4983 +.89 +.49 +.66 +.66 +.66 +.66 +.66 +.66 +.66 +.6	length.	-2.05	+288.33	+142.39	+9.15 24	+11.68	-102.14 +20.90	-46.41 +22.14	+77.87	+73.16	+320.74 -11.48	-2.78	-47.93 -2.65	+15.41
	(1/8" gage)	1.48	. 5.61 . 5.61	2.85	.32	+.0+ -38	+1.55 -6.71	+1.97 6.67	+.49 8.33	83 6.07	+.89 7.41	+ <u>.</u> 49 2.95	+.66 3.12	+.22 1.61

					1	Deper	Dependent Variables	bles					
Statistical Items	Di obos	Yarn skein streng	n strength	Yarn e	elongation	Yarn a	Yarn appearance	Yarn imp	Yarn imperfections		S)	Color of 22s	yarn
	& card waste	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Coarse 22s	Fine 50s	Spinning Potential	Gray	Bleached	Dyed
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE),	Pct.	<u>Lbs</u> .	Lbs.	Pct.	Pet.	Index	Index	No.	No.	No.	Index	Index	Index
Multiple Cor. Coef. for:	.63	%	• 95	.82	48.	.84	48.	99.	99•	%	.53	.58	29.
2.5% span length Micronaire Fiber str. (1/8" gage) Uniformity ratio	+.04 41 +.12 07	+ . + . 60 + . 34 + . 68	+.59 71 +.31 +.62	+ - 50	+.31 39 +.10 +.47	19 +.76 +.29 14	+.06 +.37 24	+.10 45 +.07 +.12	+.21 51 17 +.03	+.46 82 +.15 +.77	26 35 +.19 +.31	41 36 +.25 +.17	13 +.35 +.15 +.43
2.5% span length Micronaire Fiber Str. (1/8" gage) Uniformity ratio.	+.05* 51* +.114* 08*	+	+.38* 44 +.14* +.39	+.21* 47* 05* +.54*	+.31*	19* +.90 +.22* 12*	+.06* +1.03 +.30* 22*	+.13* 54 +.07* +.15*	+.29* 64* 18* +.04*	+ + + + + + + + + + + + + + + + + + +	***************************************	64* 45* +.29*	17* +.39* +.16* +.57
Constant (a)	+11.97	-178.74	-107.63	-1.80	-7.63	+80.34	-28.08	-26.64	-2.80	-230.88	+96.81	+154.03	+76.43
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Standard Error (±). DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), UNIFORMITY RATIO, ELONGATION	+2.75 -1.92 +.15 09	+150.00 -13.80 +1.19 +3.41 4.13	778.96 -6.49 + 59 + 58 2.58 2.24	2; - 1; - 1; - 1; - 1; - 1; - 1; - 1; -	45.26 - 403 - 116 - 33	-64.87 +22.21 +1.59 +1.59 84 6.64	118.74 424.38 42.05 -1.44 6.47	+40.72 -11.76 + .44 + .89 8.27	+65.67 -10.26 84 +.18 6.06	+120.08 -19.41 +.60 +5.11 4.75	-36.25 -2.99 -4.14 -4.83 -2.80	-67.87 -3.40 +.63 +.49 3.07	-9.36 +1.54 +1.18 +.62 1.45
Multiple Cor. Coef.	.63	%	%:	88.	.89	98.	ή8.	29*	99*	%	.54	₹9.	.68
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage) Beta Coefficients for:	+ · + · + . +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + 58	+ .19		+ + + + + + + + + + + + + + + + + + +	+ + .06 + .36 21 13	 		+ .46 83 + .17 + .75 + .24	24 31 +.18 +.34 15	+++++++++++++++++++++++++++++++++++++++	. + + +
2.5% span length Micronaire Fiber str. (1/8" gage) Uniformity ratio Elongation (1/8" gage) Regression Equation:	+.04*	+.36* 47 +.14* +.41 +.01*	+.36* +.15* +.15* +.16*	+.17* 60 02* +.42* +.37*	+	. 21* + 24* - 20* + 22*	+1.06 +1.06 +2.24 -1.19*	+ 15* - 19* - 19* - 13*	*.29* +.1.18* *********************************	* + .07 * + .07 * + .07 * + .07 * + .07 * + .08 * * * .08 * * .08 * * .08 * .0	40* +.22* +.51* 16*	+ + + + + + + + + + + + + + + + + + +	* * * * * * * * * * * * * * * * * * *
Constant (a)Regression Coef. for:	+12.25	-178.53	-104.88	-1.47	-7.11	+8th. th8	-29.36	-29.39	-2.75	-227.28	+95.59	4156.79	476.07
Z.5% span length Micronaire	+2.24 -2.02 +.16 12 +.28 1.47 *Statistic	+2.24 +149.66 +74.41 -2.02 -13.87 -7.28 +1.6 +1.20 +5.6 +1.20 +1.30 +2.2 +3.40 +1.33 +2.2 +1.47 +2.2 1.47 +2.2 1.47 +2.2 *Statistically insignificant	+74.44 -7.28 +.64 +1.36 +2.21 2.03	+2.30 59 01 +.11 +.34	4.1.1.2.4.2.4.2.4.2.4.2.4.2.4.2.2.4.2.2.3.2.3	-73.51 +20.32 +1.71 -1.36 +5.24 6.25	+21.70 +25.07 +25.00 -1.25 -1.91 6.42	+45.63 -10.82 +.38 +1.14 -2.61 8.19	+65.56 -10.28 84 +.17 +.06 6.06	+114,40 -20.37 +.66 +4.85 +2.66 4,62	-34.25 -2.64 -4.42 -33 -38	-72.54 -1.25 +.68 +.26 +26.36 2.90	-8.78 +1.64 +1.18 +.65 1.45

Results of multiple correlation analyses for the relationship of classification and supplemental fiber test measurements with processing tests performed on 20 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1976 Table 21. -- Cotton:

1	ı	ı	1								-89-														
	Yarn imperfections	50s or 12 tex	No.	48.	98	69 +.12	- 23*	+.07*	+9.20	-43 +1.47	-4.87 +.08 2.27		. 84	+.35	. +	20	*55*	+.40*	* * 800.	+3.73	04	+1.76	20.+	2.27	
	Yarn impe	22s or 27 tex	No.	.82	47	61 +.10	32*	**90*+	+19.61	+1.95	-5.03 +.09 2.84		.83	51 +.14	62	+.23	37*	+.T.>+	+.10*	+41.03	83	+.80	71.	+.69 2.77	
	earance	50s or 12 tex	Index	.93	+.52	4.89 34	+.23*	+,81	-22.30	+1.11	40.4 54 40.4		.93	+.45	+.82	+ 58	+,19*	+.72	+.20*	+11,80	+.93	-2.54 +15.66	1.35	3.88	
	Yarn appearance	22s or 27 tex	Index	.91	+.21	+.87	+.10*	+.83	+27.01	+.51	+19.62 + .41 4.95		.93	+.03	+ + .78	+•43	+01*	* 89° +	+.17*	+99.23	4.07	-6.02 +16.00	+.59	74.4	
	ngation	50s or 12 tex	Pct.	.80	- 69 - 4	 	01*	32*	52	0.62.	85. 40.		.81	12 +.29	84	+.27	*80.1	- 16*	24* +.31*	+1.70	-,02	+.16 40	03	.25	
Dependent Variables	Yarn elongation	22s or 27 tex	Pct.	.61	+ + .02 74.+	- 58	**9†*+	*56*	+2.49	%.±.	33 13 13		89.	13	1,4°-	+.38	*10*	52*	+.58*	+6.57	02	02	02	.32	
ререг	kein strength	50s or 12 tex	Lbs.	46.	+ +	72	+.07*	 05*	-116.55	+.20	-5.23 09 20		.95	+.05	76	+,41	+.02*	.52	+.26*	94.68-	+.05	+3.46 -6.74	+ +	2.01	
	Yarn skeir	22s or 27 tex	Lbs.	%	+.12 +.91	79	*†o.+ +.7.	*†0 *0	-206.11	+24+11.07	-12.00 17 4.35		%.	+ - 03	81 02	+,41	01*	54 54	*00*	-151.33	90.1	+7.94 -15.70	02	.99 3.97 *Statistically insignificant	
		Comber waste	Pct.	62.	+.13	+ .43	+*00*+	17*	+65.37	+.09 -2.08	1.52		.92	+.52	+.37	92	+.26*	+.23*	+.17*	+29.47	+.29	-,05 +1.12	+.12	.99 *Statistical	
	+ + + + + + + + + + + + + + + + + + +	Dearistical teems	DEPENDENT VARIABLE with GRADE INDEX, STAPLE LENGTH, MICRONAIRE, FIBER STRENGTH	Multiple Cor. Coef	Grade index. Staple length	Fiber str. (O gage)	Grade index. Staple length.	Micronaire	Constant (a)	Grade indexStaple length	Fiber str. (0 gage). Standard Error (±). DEPENDENT VARIABLE With	ORANDE INDEA, STAFTLE LENGIH, MICRONAIRE, FIBER STRENGTH, (O CAGE), UNIFORMITY RATIO	Multiple Cor. Coef	Grade indexStaple length	Micronaire Fiber str. (O gage)	Uniformity ratioBeta Coefficients for:	Grade index	Micronaire	Fiber str (O gage)	Regression Equation: Constant (a)	Grade index	Micronaire	Fiber str. (O gage)	Standard Error (±)	

-90-

Table 22. --Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 20 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1976

I	1	l	1															- 90 -														
	rfections	50s or 12 tex	No.	9.8	QI	CU (٠. م.د	1.4	6.4	100		v.o.	.50	-36	14. -	4.40	<u>:</u>	94.		30	22*	,	+15.06	-1.23	3.72		.80	33 36 +.75	23*	*98•+	+4.27	-1.27 -1.59 -2.48
	Yarn imperfections	22s or 27 tex	No.	10.7	: 01	CU (3.4 7. [4.0	5.0	, ∞	7.	v.g.	.50	30	+ • 66	+,42	60.	.37		19	20*	į	+16.88	-1.29	-1.73 4.65		47.	42+	20*	19* +.65	46.4+	11.34 21.38 3.35 3.35
	rance	50s or 12 tex	Index	46	, QI	cu (۰. ۲۰۲	7.0.4	9.01		2.		• 50	+.22	 66	25		.55		+.52	**00*+	·	+72.15	51	9.03		.83	+.65. +.64.	*60*-	+.52	+98.41	- 41 - 731 - 731 - 6.06
	Yarn appearance	22s or 27 tex	Index	108	61	CV (٠, د ۶. د	0.4	11.8	000	<u>, , , , , , , , , , , , , , , , , , , </u>	v. •	• 50	+ 38	61 61	-33		.51	:	+,21 +,37	+.21*	,	+87.52	+3.21	10.16		•77.	+ + + + 68	+.21*	***************************************	+114.20	43.31 7.43 7.43
	ngation	50s or 12 tex	Pet.	5.2	, CU	CV (٠. ١٦٠	10.4	7.	- ∞	2.	v.g.	.50	01	+.35	+.61	† • •	84.	ì	28 28	*27*	Ì	+5.85	-15	.38 .38		.58	- 28 + 37 + 37	27*	27* +.33*	+5.30	1.15 1.15 35.35
Dependent Variables	Yarn elongation	22s or 27 tex	Pct.	6.5	Q	:- (V (3.4 7. L	4.0	77.	- Φ.	2.	, ō.	.50	31	+.36	+. 74.	on. •	04.	`	16	17*	·	+7.10	10	.39		.53	18 27 +.37	17*	27* +.34*	+6.53	10 17 +.16 .37
Depen	strength	50s or 12 tex	Lbs.	52	ผ	cu r	٠. ٩.٢	4.0	9.9	ο Φ	2.	v.ą.	.50	₹†. -	+.35	4.79) - •	64.		32	33*	Ì	+61.92	-2.84	5:71		.59	34 24 +.37	33*	23* +.33*	+53.61	-2.87 -2.16 +2.31 5.30
	Yarn skein strength	22s or 27 te x	Lbs.	143	O (VI	CU (٠. ۲- ر	4.0	74.7	- 00	2.	v. o.	.50	24	÷ + 3	+.77	60.	.53	•	32	30*	}	+168.87	-5.83	-6.07 12.49		.62	32	*30*	**************************************	+150,01	+.23 -5.90 +.23 -6.35 12 +5.25 2.48 11.51
		Comber waste	Pct.	15.9	. 21		4. در ر	4.0	2.50	i Næ	7.	, ō.	.50	01.+	05 05	78) :	.12		99. + +	*40.+	-	+14.95	+ 5	2,48		.12	90°+	*LO*+	*********	+15.36	+.23 +.23 12 2.48 *Statistica
	Statistical Items		Mean Values for.	Dependent variable	Grayness	Yellowness	2.5% span length	Micronaire	Dependent variable	Grayness	Yellowness	2.5% span length	Micronaire	Grayness	Nonlint (S.A.)	2.5% span length	Multiple Cor. Data for: DEPENDENT VARIABLE with	GRAINESS, YELLOWNESS Multiple Cor. Coef	Partial Cor. Coef. for:	Grayness	Grayness. Yellowness.	Regression Equation:	Constant (a)Regression Coef. for:	Grayness	Standard Error (±)	GRAYNESS, YELLOWNESS NONLINT (S.A.)	Multiple Cor. Coef	Grayness. Yellowness. Nonlint (S.A.) Reference of the conference o	Grayness	Nonlint (S.A.) Regression Equation:	Constant (a) Regression Coef for:	Grayness Yellowness Nonlint (S.A.) Standard Error (±)

			Depe	Dependent Variables						1
		Yarn skei	kein strength	Yarn el	Yarn elongation	Yarn api	Yarn appearance	Yarn impe	Yarn imperfections	ı
Statistical Items	Comber	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	1
DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NOWLINT (S.A.), 2.5% SPAN TENTER	Pct.	<u>lbs.</u>	Ibs.	Pct.	Pet.	Index	Index	No.	No.	1
Multiple Cor. Coef	.78	.89	. 89	.62	.75	62.	.83	.78	.83	
Grayness Yellowness. Nonlint (S.A.). 2.55 span length.	04 03 +.14 78	34 40 43 81	38 4,4,2 82	15 26 +.34 +.39	- 26 - 28 + 34 + 59	+ + + + + + + + + + + + + + + + + + + +		 	28 + . 74 - 35	
Crayness Yellowness Yonlint (S.A.). 2.55 span length.	* * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 19* + 28* + 65*	21* 16* +.22* +.68	- 13* - 24* + 28* + 34*	25* + . 25* + . 50	+.19* +.33* 56	04* +.52 61 07*	16* 16* +.26*	18* 24* +.63 +.22*	
Constant (a) Regression Coef. for:	+80.08	-162.87	-92.03	+1,81	-1.70	+171.09	+122.17	-37.97	-25.43	
Grayness. Yellowness Nonlint (Sa,) 2.5% span length Standard Error (±) DEPENDENT VARIABLE with GRAYNESS, YELLOWNESS, NONLINT (\$.4.), 2.5% SPAN LENGTH, MICROWAIRE	09 07 56.20 1.55	-3.68 -4.91 +3.56 +270.84 6.77	-1.85 -1.49 -1.53 +126.08 3.05	08 15 +.13 +4.11		72.99 75.60 -7.12 -49.35 7.30	-,54 -8,19 -7,18 -20,63 -022	-1.02 -1.19 +3.26 +36.61 3.11	-1.01 -1.45 +2.84 +25.65 2.32	- 91-
Multiple Cor. Coef	.81	.92	.92	ħ9°	.75	8.	.95	.82	%.	
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire. Beta Coefficients for:	+.07 +.16 07 80		24 07 98 52		2866 23.286 33.2866 30.599	+.02 05 11 +.12 +.72		. + + +	15	
Grayness. Yellowness. Nonlint (S.A.). 2.5% span length. Micronaire.	+.05* 05* 33*	**************************************	- 1.12* - 1.04* - 1.65 - 1.13*	19* 36* +.36* +.36*	**************************************	+.01* 03* 24* 08* +.75		. 33* + 105* + 105* + 105*		
Constant (a)Regression Coef. for:	+68.44	-100.18	-64.45	4.67	-2.01	+79.95	+36.27	-18.03	-8.72	
Orayness Yellowness Nonlint (S.A.). 2.5% span length Micronaire. Standard Error (±).	+.17 +.49 14 -58.25 -1.62 1.47 *Statisticall	+.17 -1.79 +.4970 14 +.75 -58.25 +255.49 -1.62 -12.12 1.47 5.72 *Statistically insignificant	-1.02 +.36 +.29 +119.33 -5.33		- 1.16 + 1.13 + 6.15 - 29	+.20 53 -3.04 -27.01 +17.63 5.05	-3.18 -5.14 -3.33 -16.62 3.40	42 +.15 +2.37 +31.73 -3.85 -3.89	52 33 -21.56 -3.23 -3.11	

-92-

Table 23.--Cotton: Results of multiple correlation analyses for the relationship of selected fiber test measurements with processing tests performed on 20 long staple samples, combed yarn, collected at triweekly intervals from selected gin points, crop of 1976

			Дере	Dependent Variables						
0+2+1 [20,1+2+2)		Yarn skein	kein strength	Yarn elo	elongation	Yarn appe	appearance	Yarn imperfections	fections	
	Comber waste	22s or 27 te x	50s or 12 tex	22s or 27 te x	50s or 12 tex	22s or 27 te x	50s or 12 tex	22s or . 27 tex	50s or 12 tex	
Mean Values for:	Pct.	<u>lbs.</u>	Lbs.	Pet.	Pct.	Index	Index	No.	No.	
Dependent variable	15.9	143	52	6.5	5.2	108	ま	10.7	8.6	
2.5% span length	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	
Fiber str. (1/8" gage)	26	26	56 4.0	56 26	26 26	26.	26	26.	* 92	
Uniformity ratio	45	45	45	45	45	45	45	14.5 	45	
Standard Deviation (\pm) for:	÷.	† . 0	÷.0	÷.0	÷.0	† . 0	•	†* 0	†°0	
Dependent variable	2.50	14.7	9.9	7.	4.	11.8	10.9	5.0	4.2	
2.5% span length	†O.	†O•	†O•	70°	₹0.	†O•	70.	₹.	†0°	
Fiber str. (1/8" gage)	1.7	٠٠.١	1.7		000.	1.7	٥٠٠١	05.	200	
Uniformity ratio	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	
Elongation (1/8" gage)	.53	•53	.53	•53	.53	•53	•53	.53	•53	
2.5% span length	78	+.77	62. +	+,45	+.61	33	25	+.42	04*+	
Micronaire	+.05	69	99.	-36	24	+.87	+ 86 -	69:	75	
Uniformity ratio	- T) / + + +	+ + 5 - E	+ + 32	+ + + + + + + + + + + + + + + + + + +	- - +	+ 23	+ + 7-	+ 54.+	
Elongation (1/8" gage)	- 48	- 05		+ 33	+ .25	+ 26	94.+	-13	61.	
Multiple Cor. Data for: DEPENDENT VARIABLE with										
2.5% SPAN LENGTH, MICRONAIRE										
Multiple Cor. Coef.	.80	.91	.91	.51	69.	.88	.89	.73	77.	_
Partial Cor. Coel. Tor:	- S	+ 83	+ 83	06 +	+ 57	α. :	8	+	\chi_c +	
Micronaire	563:	- 77	47	256	- 600	98. • +	+	65	72	
Beta Coefficients for:	, d	: \	. ,							
2.5% span length	. 83	+,62	+.65	*38*+	+.52*	*60.+	*00.+	+.25*	*50.+	
Regression Equation:		17:-	† •	"(3·-	36	50.1	60.	70°-	80°-	
Constant (a)	+86.98	-93.22	-62.35	+5.04	-1.02	+63.14	+15.34	-4.35	40.4+	
Regression Coef. for:	21, 83,	י פשכ ו	טא טטנד	7 4	90	C	5	7	10	
Micronaire	#. %:-	-15.07	-6.19	21	5.50	-30.05 +19.96	+19.33	-34.32	15.76	
Standard Error (±)	1.50	5.95	2.73	.37	.32	5.65	1.83	3.45	2.65	
DEFENDENT VARIABLE WITH 2.5% SPAN LENGTH, MICRONAIRE,										
FIBER STR. (1/8" GAGE)	d									
Multiple Cor. Coef	£83	ま・	• 93	.51	.71	8.	68.	.73	.77	
2.5% span length	82	4.79	+.79	+.35	94.+	38	90*-	+30	+.27	
Micronaire	90	65	9:	22	22	+ .	÷.86	59	99	
Fiber str. (1/8" gage) Beta Coefficients for:	+.37	64*+	‡ +	+.01	+.26	4.45	. *. 14	03	01	
2.5% span length	95	+.52	+.56	+*38*	+24.+	*82	*60*-	+56*	+.21*	
Micronaire. Fiber str. (1/8" gage)	***************************************	** *** **	+ - 35	*†30.+	*50.+	- +1°00 +1°00 +1°00	** + +	*******	*[0	
Regression Equation:		} •	1						. TO • •	
Constant (a)	+81.89	-120.25	-73.41	+5.02	-1.77	+39.36	90*6+	-3.38	+4.22	
2.5% span length	44.99-	+215.57	+103,37	+4,58	+5,17	-67.75	-9.50	+36.06	+24.35	
Micronaire	21	-11.08	4. 5.56	21	17	+23.47	+20.25	-6.28	-5.78	
Standard Error (±)	1.40	5.18		.37	300.	5.03	4.22	3.4.5	2.65	
	*Statistica	*Statistically insignificant								

				Dependent Variables						1 1
Statistical Items	,	Yarn skeir	Yarn skein strength	Yarn elongation	ngation	Yarn appearance	earance .	Yarn impe	Yarn imperfections	1
	Comber waste	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	22s or 27 tex	50s or 12 tex	l
DEPENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), UNIFORMITY RATIO	Pet.	Lbs.	Lbs.	Pct.	Pct.	Index	Index	NO.	No.	1
Multiple Cor. Coef	.91	%.	.95	.65	.77	.91	8.	.74	.78	
2.5% span length	-1.19 + +37	+ · · +	+ - + 76	1.1. 144.	+ · +	+ + + + + + + + + + + + + + + + + + + +	25 +.81 5.4	+.03	+.14 62	
Uniformity ratio	69	+.61	+.59	74°+	+.43	+ 10	+ - 58	. 53.	90:+	
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio.	1.18 1.34 1.34 1.03	+.21* +.26* +.35	* * * * * * * * * * * * * * * * * * *	17* 53* 03* +.67*	+ .04*	- 26* + + + + 30* + 07*	. 20. + + + +	* * * * * * * * * * * * * * * * * * * *	+.15*	
Constant (a)	+52.21	-79.68	-57.62	+3.85	81	66*87+	+21.91	+5.14	+5.95	
negression ocei. 107. 2.5% span length	-12.79 +1.14 +1.49 87	488.63 -15.52 -2.19 -2.09	+47.77 -6.58 -4.89 1.31	-2.07 45 +.16 33	+.53 +.06 +.12 73	-86.96 22.73 2.04 7.17 7.01	-60. <i>97</i> +18.30 +4.47 +1.26	7.38 -7.38 13 +.71	+18.09 -6.01 02 +.15 2.64	-93-
DEFENDENT VARIABLE with 2.5% SPAN LENGTH, MICRONAIRE, FIBER STR. (1/8" GAGE), UNIFORMITY RATION, ELONGATION (1/8" GAGE)	5	}	ţ	ł	ć		:	1	,	
Multiple Cor. Coel	£.	8	.95	.73	. 82	.91	.91	t ₁ 2.	.78	
2.5% span length	- 21 + . 46 + . 53 67	. + + - 1.40 55 13	44 + 4			. + + + . . + + + . . 1555	28 +1.79 + .23 23	+ · · · · · · · · · · · · · · · · · · ·	+.13 62 01 +.04 +.07	
2.5% span length. Micronaire. Fiber str. (1/8" gage). Uniformity ratio. Elongation (1/8" gage).	+, 29* +, 33* -, 57	+.22* 51 +.25* 04*	* * * * * * * * * * * * * * * * * * *			25* +1.00 +.29 +.11*	21* +.08* +.17* +.12*	+ .04 76 + .24 + .04 + .04	**************************************	
Constant (a)Regression Coef. for:	+53.25	-80.64	-58.15	+4.18	-,45	+41.42	+24.67	+5.56	04.9+	
2.5% span length Micronaire. Fiber str. (1/8" gage). Uniformity ratio Elongation (1/8" gage). Standard Error (1).	12.85 +1.14 +1.47 +1.47 -1.78 -1.87	+90.65 -15.07 +2.16 +2.98 -1.24 -1.24	+48.775 -6.39 -1.38 -1.36 -1.54	-2.66 57 57 +.13 33	+ + + 25 60 60 52 53	-82.67 +23.50 +1.99 + .68 -2.13	-65.66 +17.45 +1.53 +1.08 +2.38 +2.38	5.14 -7.54 -1.12 -1.12 -1.67 -1.67 -1.67 -1.67	+17.28 -6.17 -01 +.10 +.44	
	*Statistical	*Statistically insignificant		n	Ì			1		

MEASURES USED IN STATISTICAL ANALYSIS

Some of the statistical concepts used in this study may be unfamiliar to many who will find the information in this report useful. Results reported in this study include the means, standard deviations, simple and multiple correlation coefficients, beta values, partial correlation coefficients and regression equations for each cotton quality measurement. Formulas of each of these results may be found in any good textbook on statistical correlation. However, for those not familiar with these concepts the following common language explanation is given for each item as it is used in this report:

- (1) <u>Mean Value</u> is the simple arithmetical average of each measured property for the spinning lots included in the study.
- (2) Standard deviation is a measure of dispersion around the mean value, expressed in the same terms as the variable. For a normal distribution, approximately 68 percent of the values will be within plus or minus one standard deviation of the mean, 95 percent within plus or minus two standard deviations, and nearly all values will be within plus or minus three standard deviations.

Example: (from Table 15, column 1, page 76)
The mean or average value for picker and card waste, the dependent variable is 6.2 percent and the standard deviation is 1.00 percent. This indicates that 68 percent of the lots tested in the medium staple group should contain between 5.2 and 7.2 percent waste (6.2 ± 1.00) . Ninety-five percent of the lots tested would have from 4.2 to 8.2 percent waste (6.2 ± 2.00) and nearly all of the test lots would show values between 3.2 and 9.2 percent (6.2 ± 3.00) .

(3) Simple correlation coefficient (r) is a measure of the linear relationship between two variables, ie. how one variable is associated with the other. A correlation coefficient of O indicates no relationship, and 1.0 indicates a perfect relationship. A plus sign before the correlation coefficient indicates that the values for both variables change in the same direction, whereas a minus sign indicates that they change in opposite directions.

Example: (from Table 15, column 1, page 76)
The simple correlation coefficient (r) of grade index with picker and card waste is -.59. This indicates that grade index and picker and card waste are related. It further indicates by the - sign that as one goes up or down the other goes in the opposite direction.

(4) Multiple correlation coefficient (R) is a measure of the linear relationship between one dependent variable and two or more independent variables. It has no plus or minus sign because one independent variable may contribute positively, and another negatively, in explaining the variation in the dependent variable. The multiple R may fall between 0 and 1.0, with 0 indicating no relationship and 1.0 a perfect relationship.

Example: (from Table 15, column 1, page 76)
The multiple R for the dependent variable of picker and card waste with independent variables of grade index, staple length and micronaire is .62.
This indicates that the combination of grade index, staple length and micronaire shows a definite relationship to picker and card waste. It does not explain, however, whether grade index, staple length and micronaire contribute postively or negatively to picker and card waste or which of the three is most important.

(5) Although the coefficient of determination $(R^2, or r^2)$ is not given, it may be easily obtained by squaring the simple r's or multiple R's and multiplying by 100. This gives the percentage of variation explained, a measure of the amount of variation in the dependent variable which is explained by variation in the independent variables.

Example:

The multiple R in the example above is .62. When squared and multiplied by 100 the result is 38.4. This means that 38.4 percent of the variation in picker and card waste is explained by grade index, staple length and micronaire. The remaining 61.6 percent of the variation is unexplained.

(6) Partial correlation coefficient (r) in a multiple analysis is similar to a simple correlation coefficient. The simple r indicates the statistical relationship between two variables without any control of other variables. In a multiple analysis, the partial correlation coefficient is one measure of the net relationship between one independent variable and the dependent variable while the influence of the other independent variables are statistically removed.

Example: (from Table 15, column 1, page 76)
The partial correlation coefficients (r) for picker and card waste with grade index, staple length and micronaire are: -.52 for grade index, -.20 for staple length and .00 for micronaire. This shows that picker and card waste is related to grade index and that when one goes up or down the other goes in the opposite direction. It further shows that staple length and micronaire have less affect on picker and card waste than grade index since the values for these two variables are much smaller.

(7) Beta coefficients (B) in a multiple correlation are sometimes preferred over use of partial r's. A Beta coefficient is another measure of the relative importance of a variable in a multiple correlation, with the influence of the other variables removed. Quite often, only one of these measures (Beta or partial r) is used for interpretation; both are included in this report. An asterisk beside the Beta value indicates that the result is statistically insignificant (less than three times its standard error).

Example:
The Beta (B) coefficients in the above example are -.53 for grade index,
-.18 for staple length and .00* for micronaire. This shows the same relative results as the partial correlation coefficients (r) and the * further indicates that the .00 Beta value for micronaire is statistically insignificant.

(8) Regression equation or estimating equation is used to predict changes in the dependent variable which will result from changes in the independent variable or variables. It is written:

$$Y = a + b_1X_1 + b_2X_2 + ... b_NX_N$$

where Y is the dependent variable and the X's are independent variables.

The constant "a" indicates the starting point or height of the regression line when it is to be plotted on a graph or to be used in calculating changes in the dependent variable. The regression coefficient "b" indicates the change in the dependent variable that is associated with each unit change in the independent variable. The spread or scatter of the data around the regression line is measured by the standard error. The standard error has the same relationship to the regression line as the standard deviation has to the mean value. (see paragraph (2) above)

Example: (from Table 15, column 1, page 76)

Regression equation for picker and card waste:

Constant (a)	+22.08
Regression coefficients (b)	
Grade index	10
Staple length	18
Micronaire	01
Standard error	±.79

With regression coefficients (b) of -.10 for grade index, -.18 for staple length and -.01 for micronaire reading the following average conditions should exist:

- 1. With any unit change in grade index, picker and card waste percentage should change .10 in the opposite direction.
- 2. With any unit change (32nd) in staple length, picker and card waste percentage should change .18 in the opposite direction.
- 3. With any unit change (1.0) in micronaire reading, picker and card waste percentage should change .0l in the opposite direction.

Expressing this equation algebraically we have:

Estimated picker and card waste (percent) = 22.08 - .10 (grade index) - .18 (staple length) - .01 (micronaire)

Thus if we wished to predict the amount of picker and card waste from a bale of cotton of Strict Low Middling (94 index), a staple length of 1-1/16 inches (34 32ds) and a micronaire of 4.3, the equation would be:

Estimated picker and card waste = 22.08 - .10(94) - .18(34) - .01(4.3)

Estimated picker and card waste = 6.52%

The standard error of the equation of $\pm .79$ indicates that actual picker and card waste obtained from this kind of cotton would be within plus or minus .79 percent (between 5.73 and 7.31) 68 times in 100.

A check on the accuracy of this figure can be made from the average results for SLM grade, 1-1/16 inch staple, in Table 3 for the different Areas.

Regression equations are given in the tables for multiple relationships only. Equations for simple relationships may be calculated by using the formula:

$$Y = a + bX$$

where $a = Mean Y - b(Mean X)$
 $b = r \frac{Std. Dev. Y}{Std. Dev. X}$

INTERPRETING STATISTICAL DATA

In referring to the data presented in the tables of this report, it is well to keep in mind several factors which influence the results and could lead to erroneous conclusions.

Correlation values are significantly influenced by the specific variables included, and by their number. This is due to the interrelationships of fiber properties. As interrelated properties are added to a correlation, the specific contribution of a given property may decrease sharply while at the same time the overall correlation will increase. For example, a correlation of staple length with yarn strength usually shows a good relationship, with a large amount of the variation in yarn strength explainable by differences in staple length. But, as other measures are taken into consideration, particularly fiber strength at 1/8-inch gage, the importance of staple length in explaining the total variation in yarn strength decreases rather sharply, even though the total variation explained is increased. This situation occurs because fiber strength is more closely related to yarn strength than is staple length. Yet, when fiber strength is not included in the correlation, some of the effects of strength are evidenced through the interrelation of strength and staple length.

Perhaps the most important fact to be kept in mind is that the use of only one statistic, such as a multiple R, a partial r, or a Beta value, can lead to erroneous conclusions. In order to determine the importance of any variable, all of the statistical items for each study should be considered.

BASIS FOR INTERPRETATION OF TEST RESULTS

The following explanation of the data published in Tables 1 through 8 of this report may be helpful in the interpretation of test results:

Classification

Classification was made in accordance with the official Cotton Standards for grade and staple length. These results are presented under the usual terms for the individual lots but the grade values were converted to an index for averaging in the summary tables.

Grade index, as reported in the summary tables is designed to reflect differences in market value and provides a method for averaging the grade for a number of individual lots. Middling grade is used as the basis of 100, and higher or lower index numbers reflect higher or lower average market values, respectively. Index values for the various grades of upland cotton are shown below:

	:_	Grade Index											
Grade Name		Plus		White:S		d:S		ed:	T inge	d:		:	Gray (6)
Good Middling	(1):			105	103		101				99		93
Strict Middling	(2):			104	102		99	46	91		98		91
Middling	(3):	102		100	97		93		82		92		84
Strict Low Middling	(4):	97		94	89		83		75		85		75
Low Middling	(5):	90		85	80		75		68				
Strict Good Ordinary	(6):	81		76					•				
Good Ordinary	(7):	73		70									
Below Grade	(8):			60									

The grade of cotton is obtained by evaluating color, leaf and preparation in relation to the official standards. Grade provides an indication of fiber color and the waste content of a sample of cotton. Experience has shown the average relationship between picker and card waste and various grades of upland cotton to be approximately as given in the tabulation shown in the

subsequent section on manufacturing waste. In comparing these average grade figures with the picker and card waste data, it should be understood that variations from the averages for individual samples are attributable to the nature of the extraneous material present in the cotton, the characteristics of the fiber, and whether the grade designation was low because of poor color.

Staple length is the length of a typical portion of the fibers in the samples as determined by the classer in comparison with official standards. Uniformity of fiber length, as well as other fiber properties, influence to some extent the classer's selection of the typical portion of the fibers on which the staple length designation is based. In general, there is a fairly close relationship between the staple length as designated by the classer and the fineness and strength of the yarn that can be manufactured from the cotton. These relationships, however, are also influenced by other fiber properties, the measurements of which will be discussed in the paragraphs which follow.

Fiber Tests

Fiber length data were obtained by the Digital Fibrograph method for the short, medium and long staple American upland samples and by the array method for the extra long American Pima and upland samples. Briefly, the Digital Fibrograph method consists of placing representative specimens of cotton weighing approximately 30 centigrams at random on a pair of combs, parallelizing the beards of cotton extending from one side of the combs, and scanning these beards photoelectrically on the instrument at 3 length intervals beginning at 0.15 inch from the teeth of the combs and ending near the outer fringe. The 2.5 percent span length and the 50/2.5 uniformity ratio values reported for each lot are based on five specimens tested by each of two technicians.

The Digital Fibrograph 2.5 percent span length values reported indicate the length which will be spanned by 2.5 percent of the fibers when they are parallel and randomly distributed. It is also the length where the amount of fibers indicated by the instrument is 2.5 percent of the amount at the starting point of 0.15 inch. The Digital Fibrograph 2.5 percent span length values are closely related to staple length designations.

The Digital Fibrograph 50/2.5 uniformity ratio values reported indicate the relative uniformity of fiber length in the samples. They represent the ratios between the 50 percent span length and the 2.5 percent span length, expressed as percentages. Larger values indicate more uniform fiber length distribution. Unusually low fiber length uniformity tends to increase manufacturing waste, to make processing more difficult, and to lower the quality of the product. The following adjective descriptions will serve to classify cottons from the standpoint of 2.5 percent span length and fiber length uniformity:

2.5 percent	span length	50/2.5 un	iformity ratio
Below 1.00 1.00 - 1.14 1.15 - 1.29 Above 1.29	Long	Below 41 41 - 43 44 - 46 47 - 48 Above 49	Very low Low Average High Very high

Data source - 2076 American upland lots tested from the crops of 1971-75.

Array tests for the extra long staple American Pima and upland samples were performed on the Suter-Webb fiber sorter. Briefly, this method consists of parallelizing the fibers in a representative 75-milligram specimen of cotton through a series of combs, separating the fibers into length groups at 1/8-inch intervals, and weighing the fibers in each length group. The upper quartile length and coefficient of variation values reported are based on one specimen tested by each of two technicians.

The array upper quartile length values reported indicate the length which is exceeded by 25 percent of the weight of the fibers in the samples. They are closely related to and longer than both the Fibrograph and the classer's staple designations. This relationship may vary, however, because the methods measure different fiber length characteristics.

The array coefficient of length variation values reported indicate the relative variability of fiber length in the samples. They represent the standard deviation of the weight-length frequencies expressed as a percentage of the mean length. Smaller values indicate more uniform fiber length distributions. Excessive fiber length variation tends to increase manufacturing waste, to make processing more difficult, and to lower the quality of the product. It is, therefore, considered desirable for a cotton to have a low coefficient of variation. The following adjective descriptions will serve to classify cottons from the standpoint of upper quartile length and fiber length variation:

Upper Quartile	Length	Coefficient of F	Fiber Length Variation
Below 1.10 1.10 - 1.24	Short Medium	Below 26 26 - 29	Very low variation Low variation
1.25 - 1.39 Above 1.39	Long Extra Long	30 - 33 34 - 37 Above 37	Average variation High variation Very high variation

Data source - 830 American upland lots tested from the crops of 1958-60 (more recent data not available).

Fiber fineness and maturity in combination were determined by the micronaire test. This is an instrument test which measures the resistance of a plug of cotton to air flow. A representative standard weight of cotton fibers is placed in the instrument specimen holder and compressed to a fixed

volume. Air at a known pressure is forced through the specimen and the amount of flow is indicated by a direct reading scale. Readings obtained are relative measures of either the weight per unit length, or the cross sectional size of the fibers. Because the instrument measures may differ from the actual weight per inch, depending upon the fiber characteristics of the sample, the results are reported in terms of "micronaire reading" instead of micrograms per inch. These readings are taken from the curvilinear scale adopted in 1950, and now in international use. Fiber fineness contributes to yarn strength, particularly when fine numbers are spun, but it also tends to increase neppiness and to require a reduced rate of processing.

Fiber maturity, also an important factor affecting the appearance of yarns and fabrics, is a desirable characteristic from the standpoint of low picker and card waste. Immature fibers are susceptible to the formation of neps, and contribute to lower yarn appearance grades. The desirability of micronaire reading, therefore, depends on the specific end product or use of the cotton.

Several instruments, including the Micronaire, Fibronaire, and Port-Ar, may be used for these tests. All instruments now use the same scale and report results in the same terms, i.e. "micronaire reading". The micronaire reading is now a part of the official standards for upland cotton along with grade and staple length.

Fiber strength is an important factor in determining yarn strength. Cottons with good fiber strength usually give less trouble in the manufacturing processes than the weak fibered cottons. Tests for fiber strength were made without a space between the clamp jaws (0 gage) using the Pressley flat bundle tester, and with a 1/8-inch spacer between the clamp jaws (1/8-inch gage) using the Stelometer. Strength results from both the Pressley and the Stelometer were controlled at the same level by use of standard calibration cottons. Use of the Stelometer also provides a measure of fiber elongation. Comparative tests have shown that the results of the 1/8-inch gage tests are more highly correlated with yarn strength than the results of the zero gage tests. Results for both methods are reported, however, because the zero gage tests are widely used by the cotton industry.

The results for the Pressley zero gage test are reported in terms of thousand pounds per square inch, as calculated by the use of Formula 1. These results may be converted to other methods of expressing fiber strength by use of Formulas 2, 3, and 4:

(1) Thousand pounds per square inch (Mpsi) =

breaking load in 1b x 10.81 bundle weight in mg

(2) Grams per tex (gm/tex) = Mpsi x 0.496

- (3) Strength-weight ratio = Mpsi : 10.81
- (4) Strength-weight ratio = gm/tex : 5.36

The results of the 1/8-inch gage tests are reported in terms of grams per tex in accordance with the recommendations of the American Society for Testing and Materials (ASTM), and the International Standards Organization (ISO). A tex unit is equal to the weight in grams of 1000 meters of the material. There is a correlation between the 1/8-inch gage strength test results and fiber length. Cottons with short lengths tend to have lower average strength values than long staple cottons. Results for 1/8-inch gage tests are calculated by use of Formula 5. Stelometer results are adjusted to Pressley level by use of calibration cottons.

(5) Grams per tex = $\frac{\text{breaking load (kg) x 15}}{\text{bundle weight in mg}}$

The following descriptive terms may be applied to the data shown in this report:

Staple length group and descriptive designation	Zero gage strength (thousand psi)	1/8-inch gage strength (grams per tex)
Short staple: Low Average High	75 - 79 80 - 84 85 - 89	18 - 19 20 - 21 22 - 23
Medium staple: Low Average High	74 - 80 81 - 87 88 - 94	19 - 21 22 - 24 25 - 27
Long staple: Low Average High	77 - 83 84 - 90 91 - 97	20 - 22 23 - 25 26 - 28
Extra-long staple: Low Average High	95 - 98 99 - 102 103 - 106	29 - 31 32 - 34 35 - 37

Data source - 317 short staple, 1,565 medium staple, 194 long staple, and 100 extra-long staple lots of cotton tested from the crops of 1971-75.

Fiber elongation results were obtained in connection with the 1/8-inch gage fiber strength tests by using the Stelometer instrument. The following adjective ratings will assist in the interpretation of the fiber elongation results reported:

Descriptive designation	Fiber elongation (percent)
Very low Low · Average	5.2 and below 5.3 - 6.1 6.2 - 7.0
High Very high	7.1 - 7.9 8.0 and above

Data source - 2076 American upland lots tested from the crops of 1971-75.

Color measurements were made on samples of raw stock from each lot by using the Nickerson-Hunter Colorimeter. The basic color values reported are in terms of grayness and yellowness scales designed especially for cotton. The grayness scale ranges from 0 for the brightest samples (no gray) through 9 for the darkest color. The yellowness scale ranges from 0 for the lightest color (no yellow) to 9 for the yellowest color. In other words, the larger the number reported the darker or yellower the cotton becomes. The relationship of these new cotton color scales to Rd and +b values and to the color of the Universal Grade Standards for upland cotton is shown in Figure 2 and for American Pima cotton in Figure 3.

The color of raw cotton is also reported as a single index number. The relationship of the index number to Rd and +b and the color of the Universal Grade Standards for upland cotton is shown in Figure 4.

Fig. 2--Colorimeter diagram for upland cotton

Figure 3.--Colorimeter diagram for American Pima cotton.

Fig. 4--Conversion diagram for converting raw cotton color to color index

Nonlint content for the various lots was determined by the use of the Shirley Analyzer which separates the lint from the foreign matter. The total nonlint values reported include both visible and invisible loss. These results are distinguished from total picker and card waste in that practically no fiber is included, whereas textile mill wastes include appreciable amounts of fiber. Tests performed in previous years show the following average relationship of Shirley Analyzer nonlint to grade:

American upland grade	Code	Average nonlint content (percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	(21) (31) (41) (51) (61) (71)	1.8 2.2 3.0 4.2 5.4 6.7

Data source - 4656 American Upland Color and Trash Survey samples tested from crops of 1971-75.

The following scale has been developed to represent the average nonlint content for grades of American Pima cotton:

American Pima grade	Average nonlint content (percent)
2	2.4
3	2.7
Ĭ ₄	3.5
5	4.3
6	5.8
7	7.3
8	9.6
9	10.6

Data source - 1329 American Pima Color and Trash Survey samples tested from the crops of 1971-75.

Differences between results obtained for individual lots and the average percentages shown for the grades may be caused by: (1) Grade is a combination of color, leaf and preparation; any one of which may be the limiting factor, (2) there is a range of trash allowable within each specific grade and (3) these data are based on weight and do not take into consideration the nature of the trash, which may be as important as weight in determining the final grade.

Yarn Processing Tests

The results of yarn processing tests reported in this summary were obtained by procedures adopted in 1962 which include heavier weights for laps, slivers and rovings than those used in previous years. These procedures also include spinning from single roving instead of double roving for the two standard yarn numbers and the spinning of a third yarn number on all the samples to provide a small-scale measure of spinning end-breakage or spinning performance. In 1965, metallic card clothing was installed on the carding machines to replace the conventional fillet clothing used previously, and in 1966, crusher rolls were installed on the card machines. These changes reflect similar changes that have taken place in the cotton textile industry including increased emphasis on running quality since the mid-1940's when long-draft systems were adopted for both the roving and spinning processes in the routine laboratory spinning test procedures. These changes were designed to bring the laboratory processing procedures more in line with current textile mill practices and thus make the processing evaluations more applicable to present day mill operations.

The card production rate employed and the yarn numbers spun for each cotton were selected on the basis of the staple length expected in the specified area of growth as described in the earlier section on test procedures. Four different length groupings were used to cover the range of cottons grown in this country and to approach commercial practices in processing these cottons. The spinning twist multipliers were selected to provide maximum yarn strength on the basis of staple length. Details of the spinning test procedures are shown at the end of this section of the report (Table 24). Results of previous tests show that decreasing the card production rate results in fewer neps, improved yarn appearance grades, and removal of more waste at the card. Results of tests on the various lots should therefore be compared directly for only those lots in the same length group which were processed in a comparable manner.

Manufacturing waste reported for a sample of cotton is important because excessive waste increases the cost of cotton products. The percentage of waste extracted by the picking and carding processes in performing a spinning test provides a measure of manufacturing waste. There is an average relationship between this waste and grade as discussed in the previous section on the grade of cotton. The rate at which the cotton is carded, however, affects the picker and card waste values because the more thorough carding action obtained when the carding rate is decreased extracts a larger quantity of waste. The longer staple cottons are generally carded at a lower rate than the shorter cottons in order to obtain acceptable yarn quality. Tests performed in recent years show the following average relationship of picker and card waste to grade:

American upland grade	Code	Average picker and card waste (percent)	American Pima	Average picker and card waste (percent)
Strict Middling Middling Strict Low Middling Low Middling Strict Good Ordinary Good Ordinary	(21) (31) (41) (51) (61) (71)	5.0 5.3 5.9 6.9 7.8 8.8	2 3 4 5 6 7 8 9	7.7 7.9 8.4 8.8 9.7 10.6 12.0

Data source - 4656 samples of American upland cotton and 1329 samples of American Pima cotton tested for Shirley Analyzer nonlint content from the crops of 1971-75 and picker and card waste calculated from its relationship to Shirley Analyzer nonlint content.

The percentage of waste removed by the comber is reported in addition to the picker and card waste for cottons processed into combed yarn. The shorter staple cottons are processed through the comber with a closer setting than for the longer staple cottons because smaller comber waste percentages are usually extracted from this cotton in commercial practice.

Yarn strength is perhaps the most important and reliable test of yarn quality. Yarn strength not only determines the range of the usefulness of a given cotton, but is also an indication of spinning and weaving performance. The yarn strength test is performed on 120 yard skeins (80 turns on a 1.5 yard reel). Results reported are based on the average of 25 skeins for each yarn number. Yarn strength is reported in terms of skein strength since studies have shown that such strength values are more closely related to fabric strength as well as to fiber properties than single strand yarn strength. Skein strength data for the two numbers spun are reported for each lot. Length, strength and fineness influence yarn strength more than other fiber properties.

The following descriptive terms may be of help in determining the relative level of yarn strength in their report:

Kind of yarn staple length group and description	Yarn skein str in pounds for specified yarn	the
Carded yarns: Short staple group: Low Average High	8s 268 - 288 289 - 309 310 - 330	22s 79 - 87 88 - 96 97 - 105
Medium staple group: Low Average High	<u>22s</u> 86 - 98 99 - 111 112 - 124	50s 26 - 32 33 - 39 40 - 46
Long staple group: Low Average High	22s 90 - 106 107 - 123 124 - 140	50s 27 - 35 36 - 44 45 - 53
Combed yarns: Long staple group: Low Average High	22s 108 - 124 125 - 141 142 - 158	50s 36 - 44 45 - 53 54 - 62
Extra-long staple group: Low Average High	50s 61 - 63 64 - 66 67 - 69	80s 32 - 34 35 - 37 38 - 40

Data source - 317 short staple, 1565 medium staple, 194 long staple and 100 extra-long staple lots of cotton tested from the crops of 1971-75.

Yarn elongation results were obtained in connection with yarn skein strength tests. Elongation in the yarn is highly correlated with fiber elongation. Yarns with high elongation give less end breakage in weaving than yarns with low elongation.

The following descriptive terms may be of some help in determining the relative levels of yarn elongation:

Kind of yarn, staple length group, and description	Yarn elon in percent specified ya	for the
Carded yarns: Short staple group: Low Average High	8s 6.4 - 7.0 7.1 - 7.7 7.8 - 8.4	22s 5.3 - 5.9 6.0 - 6.6 6.7 - 7.3
Medium staple group: Low Average High	<u>22s</u> 5.2 - 5.8 5.9 - 6.5 6.6 - 7.2	50s 3.6 - 4.2 4.3 - 4.9 5.0 - 5.6
Long staple group: Low Average High	22s 5.4 - 5.8 5.9 - 6.3 6.4 - 6.8	50s 4.1 - 4.5 4.6 - 5.0 5.1 - 5.5
Combed yarns: Long staple group: Low Average High	22s 5.9 - 6.3 6.4 - 6.8 6.9 - 7.3	50s 4.5 - 4.9 5.0 - 5.4 5.5 - 5.9
Extra-long staple group: Low Average High	50s 5.2 - 5.4 5.5 - 5.7 5.8 - 6.0	80s 4.5 - 4.7 4.8 - 5.0 5.1 - 5.3

Data source - 317 short staple, 1565 medium staple, 194 long staple and 100 extra-long staple lots of cotton tested from the crops of 1971-75.

Yarn Appearance refers to the relative evenness, smoothness and freedom from foreign material of the yarn as evaluated by a visual comparison of the yarn with the latest standards adopted by the American Society for Testing and Materials. Since appearance is very important in many types of cotton products, high yarn appearance grades are desirable. The following descriptive terms may be of help in determining the relative levels of yarn appearance in this report.

Kind of yarn, staple length group, and description	Yarn appears for th specified yar	ne
Carded yarns: Short staple group: Low Average High	8s 107 - 115 116 - 124 125 - 133	22s 88 - 100 101 - 113 114 - 126
Medium staple group: Low Average High	22s 86 - 98 99 - 111 112 - 124	<u>50s</u> 66 - 76 77 - 87 88 - 98
Long staple group: Low Average High	22s 79 - 93 94 - 108 109 - 123	50s 63 - 73 74 - 84 85 - 95
Combed yarns: Long staple group: Low Average High	22s 90 - 104 105 - 119 120 - 13 ¹ 4	50s 72 - 84 85 - 97 98 - 110
Extra-long staple group: Low Average High	<u>50s</u> 99 - 107 108 - 116 117 - 125	80s 97 - 107 108 - 118 119 - 129

Data source - 317 short staple, 1565 medium staple, 194 long staple and 100 extra-long staple lots of cotton tested from the crops of 1971-75.

Yarn Appearance Grades

Grade	Index
A	130
B+	120
В	110
C+	100
C	90
D+	80
D	70
Below D	60

Yarn imperfections are reported for the two yarn numbers spun for each lot of cotton. These results were obtained on "Neptel" instruments which electronically count the abrupt changes in the silhouette of the yarn while passing it through a beam of light. They are expressed as the number of imperfections per 50 yards of yarn and are based on the average of 10 determinations. This value is an instrument measure of product quality which is associated with the characteristics of the cotton. It is more highly correlated with fiber properties than either neps in card web or yarn appearance grade. The following descriptive terms may be of help in determining the relative level of yarn imperfections in this report:

Kind of yarn, staple length group, and description	Yarn imperf for th specified yar	е
Carded yarns: Short staple group: Low Average High	8s 9 - 31 32 - 54 55 - 77	22s 7 - 19 20 - 32 33 - 35
Medium staple group: Low Average High	22s 5 - 15 16 - 26 27 - 37	50s 3 - 11 12 - 20 21 - 29
Iong staple group: Low Average High	<u>22s</u> 7 - 17 18 - 28 29 - 39	50s 5 - 13 14 - 22 23 - 31
Combed yarns: Long staple group: Low Average High	22s 1 - 7 8 - 14 15 - 21	50s 0 - 5 6 - 12 13 - 19
Extra-long staple group: Low Average High	50s 0 - 1 2 - 4 5 - 7	80s 0 1 - 3 4 - 6

Data source - 317 short staple, 1565 medium staple, 194 long staple and 100 extra-long staple lots of cotton tested from the crops of 1971-75.

Spinning potential yarn number indicates the finest yarn number that can be spun from a cotton sample without any end-breakage when using specific processing procedures. In performing these tests, new travelers, draft gears. and twist gears are installed for the selected yarn number and it is spun for a 15-minute trial period. The yarn number selected is considered acceptable if there is an end-breakage involving 5 to 15 of the 96 spindles employed during the trial run. If end-breakages occur on less than 5 or more than 15 of the 96 spindles during the trial period, a different yarn number is selected to be spun for another 15-minute trial period until the acceptable end-breakage rate is obtained. The acceptable trial period is also used for a warm-up period which is followed by a l-hour test period. The spinning potential yarn number is calculated from the deviation of the actual yarn number spun from the desired yarn number and the number of spindles with endbreakages during the 1-hour test run. The following descriptive terms may be of help in determining the relative level of spinning potential yarn numbers in this report:

Spinning Potential (SPY No.)

	Short staple group	Medium staple group	Long staple group
Low	32 - 38	49 - 57	51 - 65
Average	39 - 45	58 - 66	66 - 80
High	46 - 52	67 - 75	81 - 95

Data source - 317 short staple, 1565 medium staple and 194 long staple lots of cotton tested from the crops of 1971-75.

Chemical Finishing Tests

Information with respect to the bleaching and dyeing properties of different varieties and growths of cotton is of particular significance to textile manufacturers from the standpoint of providing a basis for avoiding problems that may result from blending different varieties and growths having different dyeing properties. Data with respect to the chemical finishing properties of the principal varieties and growths of cotton as herein reported may thus be used as a basis for selecting cottons of similar finishing properties. Details of the chemical finishing tests are described in Agricultural Information Bulletin No. 167 - "Bleaching, Dyeing, and Mercerizing Test Results on Some Varieties of Cotton Grown by Selected Cotton Improvement Groups, Crop of 1955".

Color measurements of cotton yarn samples were made on a Gardner Automatic Color Difference Meter. These values are reported in terms of $R_{\rm d}$ and b, two of the three scales on the instrument. The $R_{\rm d}$ scale measures percentages of diffuse reflectance from 0 to 100. The b scale provides a measure of yellowness in the direction of +b and of blueness in the direction of -b. The degree of either yellowness or blueness increases as the scale numbers increase. These data when plotted with $R_{\rm d}$ on the vertical ordinate and with

b on the horizontal ordinate are similar to the color values for raw cotton when plotted in relation to the official grade standards as described in the earlier section on color of raw stock.

While the color factors R_d and b are not independent of each other and should be considered together in any overall interpretation, for many purposes it would be convenient in evaluating results to have them in terms of a single number. For raw cotton the grade index provides one way to do this in a straightforward manner. A similar method has been followed in developing conversion formulae and diagrams for each form of cotton measured for color as a part of the chemical finishing studies of the Cotton Division. In each, the index for Middling is held at 100 and that for Good Ordinary is held close to 70. By use of such indexes the color measurements of raw stock, gray yarns, bleached yarns, and bleached and dyed yarns may be converted to a single number specification. For details see "Grade and Color Indexes Developed for Evaluating Results of USDA Cotton Finishing Tests", (AMS-245, June 1958).

Table 24--Cotton: Standard machine settings and specifications for processing specified staple length groupings

	Process	Staple length groups			
	rrocess	Short	Medium	Long	Extra long
1.	PICKER				· · · · · · · · · · · · · · · · · · ·
	Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	60	60	60	60
	Each test lot is processed through a finisher type				
	picker twice to produce the specified weight of				
	lapounces per yard	14	14	14	11
	Type of beater	Kirschner	Kirschner	Kirschner	Kirschner
	Beater speedr.p.m. Settings:	1,000	1,000	1,000	1,000
	Feed roll to beaterinches	3/16	3/16	3/16	3/8
	Grids to beater, topinches	5/16	5/16	5/16	9/16
	Grids to beater, bottominches	11/16	11/16	11/16	11/16
		,	, -	,	/
≥.	CARD				
	Standard atmospheric conditions:	7 5	75		
	Temperaturedegrees F. Relative humiditypercent	75	75	75	75
	Picker lap fedounces per yard	60 14	60 14	60 14	60 11
	Sliver deliveredgrains per yard	50	50	50	40
	Production ratepounds per hour	12-1/2	9-1/2	6-1/2	4-1/2
	Doffer speedr.p.m.	11	á '-	6	4 -/ -
	Cylinder speedr.p.m.	165	165	165	165
	Flat speedinches per minute	2-7/8	2-7/8	2-7/8	2-7/8
	Licker-in spcedr.p.m.	435	435	435	435
	Clothing:	25	25	05	05
	Cylinder, Hollingsworth metallicnumber Doffer, Hollingsworth metallicnumber	35 29	35 2 9	25 29	25 29
	Flats, Filletnumber	110	110	130	130
	Settings:	110	110	130	130
	Feed plate to licker-ininches	0.010	0.010	0.010	0.017
	Mote knife to licker-in, topinches	.012	.012	.012	.012
	Mote knife to licker-in, bottominches	.010	.010	.010	.010
	Licker-in screen, frontinches	.029	.029	.029	.029
	Licker-in screen, backinches	.017	.017	.017	.017
	Licker-in to cylinderinches	.007 .009	.007 .009	.007 .009	.007
	Flats to cylinder, back, center, and frontinches Back plate to cylinder, topinches	.029	.029	.029	.029
	Back plate to cylinder, bottominches	.034	.034	.034	.034
	Front plate to cylinder, topinches	.029	.029	.029	.029
	Front plate to cylinder, bottominches	.034	.034	.034	.034
	Doffer to cylinderinches	.007	.007	.007	.007
	Cylinder screen, backinches	.029	.029	.029	.029
	Cylinder screen, centerinches	.034	.034	.034	.034
	Cylinder screen, frontinches Doffer comb to dofferinches	3/16 .022	3/16 .022	3/16 .022	3/16 .022
	Crusher rolls pressurepounds	281	281	281	281
	or action to can be considered to the control of th				
3.	SLIVER LAPPER (combed only)				
	Standard atmospheric conditions:			75	75
	Temperaturedegrees F.			75 60	75 60
	Relative humiditypercent Sliver fed, 20 eachgrains per yard			50	40
	Lap deliveredgrains per yard			595	525
	Speedyards per minute			46	46
	Roll settings (center to center):				
	First to secondinches plus fiber length 1/			5/16	5/16
	Second to thirdinches plus fiber length $1/1$			9/16	9/16

 $[\]underline{\mathbb{I}}$ Allowances listed are in addition to fiber lengths in terms of "pulls" made on card sliver. These pulls are estimated from Fibrograph length tests except for extra long staple cottons.

Table 24--Cotton: Standard machine settings and specifications for processing specified staple length groupings--Continued

	Process	Staple length groups			
	FIOCESS	Short	Medium	Long	Extra long
4.	RIBBON LAPPER (combed only)				
	Standard atmospheric conditions:				
	Temperaturedegrees F.			75	75
	Relative humiditypercent			60	60
	Laps fed, 4grains per yard			595	525
	Laps deliveredgrains per yard			610	610
	Speedyards per minute Roll settings (center to center):			47	47
	First to secondinches plus fiber length 1/			4/16	4/16
	Second to thirdinches plus fiber length $1/$			7/16	7/16
	Third to fourthinches plus fiber length 1/			10/16	10/16
5.	COMBER (Model D-4) Standard atmospheric conditions:				•
	Temperaturedegrees F.	 .		75	75
	Relative humiditypercent			60	60
	Laps fed, 8 eachgrains per yard			610	610
	Sliver deliveredgrains per yard			50	40
	Production per hourpounds			16	13
	Setting of cushion plate to detaching rollinches			.48	•54
	Nominal wastepercent			16 to 17	16 to 17
6.	DRAWING FRAME (synthetic top rolls) Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent First process:	60	60	60	60
	Sliver fed, 6 eachgrains per yard	50	50	50	40
	Sliver deliveredgrains per yard	60	53	53	42
	Second process:				
	Sliver fed, 6 eachgrains per yard	60	53	53	42
	Sliver deliveredgrains per yard	70	55	55	44
	Speedyards per minute	36	36	36	36
	Roll settings (center to center):	1 /20	1 1-6	1 /- 6	1.45
	First to secondinches plus fiber length 1/	4/16	4/16	4/16	4/16
	Second to thirdinches plus fiber length 1/	7/16	7/16	7/16	7/16
	Third to fourthinches plus fiber length	10/16	10/16	10/16	10/16
7.	LONG DRAFT ROVING (8 x 4, 2 apron type)				
	Standard atmospheric conditions: Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	75 60	60	60	60
	Sliver fedgrains per yard	70	55	55	44
	Roving deliveredhank	1.10	1.80	1.80	4:25
	Spindle speedr.p.m.	1235	1235	1235	1235
	Roll settings (center to center):	1237	- L3/		
	First to second, standardinches	2-1/4	2-1/4	2-1/4	2-1/4
	Third to fourthinches plus fiber length 1/	1/4	1/4	1/4	1/4
8.	LONG DRAFT SPINNING (2 apron type) Standard atmospheric conditions:				
	Temperaturedegrees F.	75	75	75	75
	Relative humiditypercent	65	65	65	65
	Roving fed single	1.10	1.80	1.80	4.25
	Twist multipliernumber	4.4	4.0	3.8	3.6
	Carded yarnsnumber 2/	8s & 22s	22s & 50s	22s & 50s	
	Combed yarnsnumber			22s & 50s	50s & 80s
	Spindle speed	9000	9000	9000	9000
	Roll settings (center to center):				
	First to second, standardinches	2-1/16	2-1/16	2-1/16	2-1/16
	Second to third, standardinches	1-3/4	1-3/4	1-3/4	1-3/4

^{2/} Additional yarn is spun on a 96 spindle wide gage frame at 9,000 r.p.m. spindle speed to determine the spinning potential yarn number or the finest yarn number that can be spun without end-breakage.

^{3/} All standard yarn numbers are spun on narrow gage frames with spindle speeds of 9,000 r.p.m. except for δs , which are spun on a wide gage frame with spindle speed of 5,500 r.p.m.

