# Tutorial – Mathematics for Social Scientists

Winter semester 2024/25

**Functions and Relations** 

#### To do

- Weekly recap
- Real world applications
- Hands on practice
- Questions

• Upcoming Deadline: 19.11.2024 10:00 AM CET | Problem Set 01 | Algebra

## Chapter 3 | Functions and Relations

#### **Functions**

#### Functions $f(x): A \rightarrow B$

- 'f maps A into B'
- describe the relationship between two variables as a unique one-to-one mapping where each value of the domain A is mapped to one value of the codomain B
  - → if this mapping is NOT unique, we are talking about a correspondence
- values reached by  $x \in A$  are known as **image** 
  - → the **image** is a subset of the **codomain B**

### Function composition

- We are 'sending' the result of f(x) through g(x)
- $\rightarrow$  ,g of f of x'
- NOTE: keep domain conditions in mind! some functions might be defined for e.g.  $\mathbb{R}^+$

$$(g \circ f)(x) = g(f(x))$$

• Example:

$$f(x) = 3x - 4$$
 and  $g(x) = x^2$  for  $x = 2$   
 $g(f(x)) = (3x - 4)^2$   
 $g(f(2)) = (3 \cdot 2 - 4)^2 = (2)^2 = 4$ 

## Hands on – Function composition

**Task:** Solve g(f(x))for x = 2!

1) 
$$f(x) = 6x$$
 and  $g(x) = x^3$ 

2) 
$$f(x) = x + \frac{3}{4}$$
 and  $g(x) = x + 2$ 

## Hands on – Function composition

#### **Solution:**

1) 
$$g(f(2)) = (6 \cdot 2)^3 = 12^3 = 1728$$

2) 
$$g(f(2)) = (x + \frac{3}{4}) + 2 = (2 + \frac{3}{4}) + 2 = 2.75 + 2 = 4.75$$

**Further practice:** https://www.mathsisfun.com/sets/functions-composition.html

## Inverse and Identity functions

#### Inverse functions – 'Inverse'

- functions that return identity function when composed with their original functions
- $f^{-1}(x)$ :  $B \to A$
- 'invertible functions' have an inverse!

#### **Identity function**

• returns value of input **argument x**: f(x) = x

$$rac{>} f(5) = 5$$
  
 $rac{>} f(-5) = -5$ 



#### Inverse functions

**Algorithm** for 
$$f^{-1}(x)$$
:  $B \to A$ 

- 1) replace f(x) with y in original function
- 2) 'switch' instances of x and y (any variables) in original function
- 3) solve for y
- 4) change y to  $f^{-1}(x)$

**Example**: find  $f^{-1}(x)$  of f(x) = 3x - 4

#### Inverse functions

**Example:** Find  $f^{-1}(x)$  of f(x) = 3x - 4!

- 1) replace f(x) with y in original function y = 3x 4
- 2) 'switch' instances of x and y (any variables) in original function x = 3y 4
- 3) solve for y  $x + 4 = 3y \mid \div 3$   $y = \frac{x+4}{3}$
- 4) change y to  $f^{-1}(x)$   $f^{-1}(x) = \frac{x+4}{3}$

#### Hands on – Inverse functions

Task: Find the respective inverse of the following functions!

1) 
$$f(x) = 2x + 6$$

2) 
$$g(x) = x^2 - 1$$

3) 
$$h(x) = \frac{1}{3}x + 10$$

#### Hands on – Inverse functions

#### **Solution:**

1) 
$$f^{-1}(x) = \frac{x-6}{2}$$

2) 
$$g^{-1}(x) = \sqrt{x+1}$$
  $\leftarrow$  Note: We typically imply both  $\sqrt{x+1}$  and  $-\sqrt{x+1}$ 

3) 
$$h^{-1}(x) = 3x - 30$$

**Further practice:** https://www.mathsisfun.com/sets/function-inverse.html

## Hands on – Inverse functions & function composition

**Task:** Are these functions inverses of each other? Show using function composition! Check, if the composed functions produce the identity function!

1) 
$$f(x) = 2x - 4$$
 and  $g(x) = \frac{x+4}{2}$ 

2) 
$$f(x) = 4x + 3$$
 and  $g(x) = \frac{x-4}{3}$ 

## Hands on – Inverse functions & function composition

#### **Solution:**

1) Yes!

$$f(g(x)) = 2\left(\frac{x+4}{2}\right) - 4 = x$$

2) No!

$$\rightarrow f(g(x)) = \frac{4x}{3} - \frac{16}{3} + 3 \neq x$$

### Injective, bijective, surjective functions...

... are classes of functions that describe, how arguments x are mapped to images y



### Injective, bijective, surjective functions







"Injective" (one-to-one)

#### A function f is...

- injective if and only if whenever f(x) = f(y), x = y
- surjective iff f(A) = B or for every y in B, there is at least one x in A such that f(x) = y
- **bijective** (from set A to B) if, for every y in B, there is exactly one x in A such that f(x) = y

https://www.mathsisfun.com/sets/injective-surjective-bijective.html

#### Monotonicity

#### Monotonicity is a concept to describe order:

- a function f is called **monotonically increasing**, if for every  $x \le y, f(x) \le f(y)$  so that f preserves order
- a function f is called **monotonically decreasing**, if for every  $x \ge y, f(x) \ge f(y)$  so that f preserves order

### Monotonicity

Table 3.2: Monotonic Function Terms

| Term                  | Meaning                                    |
|-----------------------|--------------------------------------------|
| Increasing            | Function increases on subset of domain     |
| Decreasing            | Function decreases on subset of domain     |
| Strictly increasing   | Function always increases                  |
|                       | on subset of domain                        |
| Strictly decreasing   | Function always decreases                  |
|                       | on subset of domain                        |
| Weakly increasing     | Function does not decrease                 |
|                       | on subset of domain                        |
| Weakly decreasing     | Function does not increase                 |
|                       | on subset of domain                        |
| (Strict) monotonicity | Order preservation;                        |
|                       | function (strictly) increasing over domain |

Moore & Siegel, 2013, p.51

NOTE: ALL strictly monotonic functions are invertible due to a strict one-to-one mapping!

### Real world applications - Monotonicity

## Monotonicity describes strength of relationships between variables!

- think about correlation and probability theory!
- if X is a RV, its cumulative distribution function is a monotonically increasing function!
- $F_X(x) = P(X \le x)$



## Linear functions & equations

- **linear equations** in slope-intercept form f(x) = mx + b
  - consist only of terms like  $x^1$  and  $x^0 = 1$  multiplied by constants
  - are also called 'affine function'
- **linear functions** are of the same form but additionally satisfy ... because they are fixed at the origin! f(x) = mx + 0
  - additivity superposition  $f(x_1 + x_2) = f(x_1) + f(x_2)$
  - scaling homogeneity  $f(ax) = a \cdot f(x)$  for all a
- Note: We often call the equation above a 'linear function' even though it does not satisfy the scaling and additivity properties!

## Linear functions & equations - Additivity

Linear functions  $y = f(x) = \beta(x)$ 

$$f(x_1 + x_2) = \beta L x_1 + x_2) = \beta x_1 + \beta x_2$$
  
 $f(x_1) + f(x_2) = \beta x_1 + \beta x_2$ 

$$x \neq 0$$
  
 $y = f(x) = x + \beta x$   
Linear equations/affine functions

$$f(x_1 + x_2) = x + \beta(x_1 + x_2) = x + \beta x_1 + \beta x_2$$
  
 $f(x_1) + f(x_2) = (\beta x_1 + x_2) + (\beta x_2 + x_1)$ 

x + 2x

## Linear functions & equations - Scaling

Linear functions y = f(x) = B(x)

$$f(\alpha x) = \beta(\alpha x) = \alpha \beta(x)$$

$$\alpha f(x) = \alpha \beta(x)$$

$$x \neq 0$$

$$y = f(x) = x + \beta x$$

**Linear equations/affine functions** 

$$f(ax) = x + (\beta(ax)) = x + \alpha\beta x$$

$$af(x) = ax + a\beta x$$

$$x + \alpha\beta x + a\beta x$$

$$x + \alpha\beta x$$

$$x + \alpha\beta x$$

## Real world applications – linear equation

**But don't you worry**, there are many applications of linear equations, including your potentially favorite one – random variables!

#### Distribution of parameters of random variables:

- Let X be a RV with expected value E(X) and variance Var(X)  $\rightarrow$  generate a new RV using the linear transformation of X:
- Y = a + bX with expected value  $E(Y) = a + b \cdot E(X)$  and  $Var(Y) = b^2 \cdot Var(X)$
- $\rightarrow$  if X is distributed normally, Y will be distributed normally, too!

## Exponents, roots, logarithms

Idea: Let's look at  $b^n$ 

- How do I solve for x in  $b^n = x$ ?
  - $\rightarrow$  exponents
- How do I solve for n in  $b^{n} = x$ ?
  - → logarithms
- How do I solve for  $b \text{ in } b^n = x$ ?
  - → radicals/roots

#### Exponentials

$$x^1 = x$$

$$x^0 = 1$$

$$x^{-1} = \frac{1}{x}$$

$$x^m x^n = x^{m+n}$$

$$\frac{x^m}{x^n} = x^{m-n}$$

$$(x^m)^n = x^{mn}$$

$$(xy)^n = x^n y^n$$

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

$$x^{-n} = \frac{1}{x^n}$$

$$x^{\frac{m}{n}} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m$$

## Logarithms

Logarithmic form:  $log_b m = x$ 

**Exponential form**:  $b^x = m$ 

$$\ln x = \log_{e^x}$$

$$\ln e^x = x$$

$$\log 10^x = x$$

$$log_n n^x = x$$

$$log_b(x) = log_b(n) \rightarrow x = n$$

$$log_b(m) + log_b(n) = log_b(mn)$$

$$log_b(m) - log_b(n) = log_b\left(\frac{m}{n}\right)$$

$$k \cdot log_b(m) = log_b(m^k)$$

$$\log_b(m) = \frac{\log m}{\log b}$$

## Radicals/Roots

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m-n]{a}$$

$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

$$\sqrt{a^n} = (\sqrt{a})^n = a^{\frac{n}{2}}$$

→ even more rules (you probably won't need): https://www.mathwords.com/s/square\_root\_rules.htm

## Time for your questions

- Any questions during the week?
  - joerdis.strack@uni-konstanz.de

