Convergence analysis using steepest descent algorithm

Basheer Ahammad Ragimanu

2023

1 Introduction

This report presents an analysis of the Steepest Descent Algorithm applied to an optimization problem. The algorithm aims to find the optimal filter coefficients in a signal processing problem. We will describe the problem, the algorithm, and visualize its performance.

2 Problem Description

We consider an optimization problem where we want to find the filter coefficients $\mathbf{w} = [w_1, w_2]$ that minimize a cost function $J(\mathbf{w})$. The optimization problem can be formulated as follows:

$$\min_{\mathbf{w}} J(\mathbf{w}) = \sigma_d^2 - \mathbf{p}^T \mathbf{w} + \mathbf{w}^T \mathbf{R} \mathbf{w}$$
 (1)

where

 $\mathbf{w} = [w_1, w_2]$ is the vector of filter coefficients,

 σ_d^2 is the variance of the desired signal,

 $\mathbf{p} = [0, 0.2939]$ is the cross-correlation vector,

$$\mathbf{R} = \begin{bmatrix} 1 & 0.4045 \\ 0.4045 & 1 \end{bmatrix}$$
 is the autocorrelation matrix.

We want to minimize $J(\mathbf{w})$ by adjusting the values of w_1 and w_2 .

3 Algorithm Description

The Steepest Descent Algorithm is used to find the optimal filter coefficients **w**. The algorithm iteratively updates the coefficients according to the following rule:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \mu(\mathbf{R}\mathbf{w}_k - \mathbf{p}) \tag{2}$$

where

 \mathbf{w}_k is the filter coefficients at iteration k,

 μ is the step size parameter.

The algorithm continues for a specified number of iterations until convergence.

4 Results

The algorithm's performance is visualized in Figure 1. The figure shows the error performance surface and the convergence path of the Steepest Descent Algorithm.

Error Performance Surface and Convergence Path of Steepest Descent Algorithm

Figure 1: Error Performance Surface and Convergence Path of Steepest Descent Algorithm

5 Conclusion

The Steepest Descent Algorithm successfully finds the optimal filter coefficients \mathbf{w} that minimize the cost function $J(\mathbf{w})$. This optimization technique can be applied to various signal-processing problems.