DTC P2759 TORQUE CONVERTER CLUTCH PRESSURE CONTROL SOLENOID CONTROL CIRCUIT ELECTRICAL (SHIFT SOLENOID VALVE SLU)

CIRCUIT DESCRIPTION

The amount of current flow to the solenoid is controlled by the (*) duty ratio of the ECM output signal. The higher the duty ratio becomes, the higher the lock-up hydraulic pressure becomes during the lock-up operation.

(*) Duty Ratio

The duty ratio is the ratio of the period of continuity in one cycle. For example, if A is the period of continuity in one cycle, and B is the period of non-continuity, then Duty Ratio = $A/(A+B) \times 100(\%)$.

DTC No.	DTC detection condition	Trouble Area
P2759	(1	Open or short in shift solenoid valve SLU circuit Shift solenoid valve SLU ECM

MONITOR DESCRIPTION

When an open or short in a shift solenoid valve (SLU) circuit is detected, the ECM determines there is a malfunction. The ECM will turn on the MIL and store this DTC.

WIRING DIAGRAM

INSPECTION PROCEDURE

1 | INSPECT[TRANSMISSION[WIRE(SLU)

- (a) Disconnect in eliminam sion wire connector from the transaxle.
- (b) Measure[the[resistance[according[to[the[value(s)]]n[the table[below.

Standard:

Tester@onnection	Specified[Condition 20°C[[68°E]
12[[SLU+) - [] 4[[[SLU-)	5.0∏o[\$.6[<u>\</u> 2

(c) Measure[the[resistance[according[to[the[value(s)]]n[the table[below.

Standard[Check[for[short):

Tester Connection	Specified[Condition
12[[SLU+) -[Body[ground	10 kΩ[þr[ħigher
4[[SLU-) -[Body[ground	1

NGD Go[to[step[3

ОК

2 | CHECK[HARNESS[AND[CONNECTOR(TRANSMISSION[WIRE - [ECM)

- (a) Connect[the[transmission[wire[connector[to[the[transaxle.
- (b) ☐ Disconnect The ECM connector.
- (c) Measure[the[resistance[according[to[the[value(s)]]n[the table[below.

Standard:

Tester[Connection	Specified[Condition 20°C[[68°E]
E7 - 13[[SLU+) -[£7 - 12[[SLU-)	5.0¶o[\$.6[]2

d) Measure[the[resistance]according[to[the[value(s)]]n[the table[below.

Standard[Check[for[short):

Tester@onnection	Specified[Condition
E7 – 13[[SLU+) –[Body[ground	10 kΩ[þr[ħigher
E7 – 12[[SLU-] –[Body[ground	1

NG

REPAIR OR REPLACE HARNESS OR CONNECTOR SEE PAGE 1-44)

OK

REPLACE[ECM[(SEE[PAGE 10-21)

3∏ INSPECT[\$HIFT[\$OLENOID[VALVE(SLU)

- (a) Remove the shift solenoid valve LU.
- (b) Measure[the[resistance[according[to[the[value(s)]]n[the table below.

Standard:

Tester[Connection	Specified[Condition 20°C[[68°E])
1 – 2	5.0¶o[\$.6[<u>\0</u> 2

Connect[]he[positive[]+)[]ead[vith[a[21]]V[bulb[]o[]erminal (c)∏ 2[and]the[negative[]-)[]ead[]o[]terminal 1[of[]the[]solenoid valve_connector, then_check_the_movement_of_the_valve.

OK:

The solenoid makes an operating noise.

NG∏

REPLACE[\$HIFT[\$OLENOID[YALVE(SLU)

OK

REPAIR OR REPLACE TRANSMISSION WIRE SEE PAGE 40-28)