

Week 8

Assignment Project Exam Help

FIT5202 Big Data Processing

https://powcoder.com

Add WeChat powcoder

Collaborative Filtering using ALS

Week 8 Agenda

- Week 7 Review
 - K-means clustering
 - Model Selection Signment Project Example Persistence Model Persistence
- Use case: Music Recommendation https://powcoder.com

Add WeChat powcoder

Recommender Approaches

Memory-Based Approach

Implicit vs Explicit Feedback

- Explicit:
 - when we have some sort of Rating (i.e. users provide items' rating explicitly)

 Assignment Project Exam Help
- Implicit:
 - data is gathered from user behaviour, e.g. how many times a song is played or a movie is watched tps://powcoder.com
 - Advantage : more data
 - Disadvantage: Nois Addd, Wgelvhatfpewscoolout known

Matrix Factorization

Matrix Factorization – with Explicit Rating

Matrix Factorization – with Implicit Feedback

Alternating Least Square (ALS) – Implicit Rating

- Confidence: $c_{ui} = 1 + \alpha r_{ui}$
 - Quantify confidence of how much user *u likes* the item *i* of the user from the implainment Project Exam Help
- Alpha α
 - The rate (linear scaling tops of power effer.com
- Optimizing alternately taking WeChat powcoder
 - Randomly initialize U and V
 - Iterating the following steps:
 - Fixing U → Optimizing V
 - Fixing V → Optimizing U

Train/Test Split

Evaluation metrics

For explicit feedback

For implicit feedback

ROEM (Rank Ordering Error Metric)

 $\frac{\sum_{i=1}^{N}(Predicted_{i}-Actual_{i})^{2}}{Assignment Project Exam Help, i r_{ui}^{t} rank_{ui}}$ (8)

RMSE may not be appropriate for

measuring prediction for implicit feedback nttps://po

user_id	artist_id	playcount	prediction
++			·
1001440	463	2	
1046559	463	782	0.6918464
1059765	463	793	-0.045939725
1024631	833	5	0.8736501
2010008	833	185	1.0421734
1029563	833	3	0.38790843
2010008	2366	4	0.16086206
2023686	3175	1	0.19943924
2102019	1004021	28	0.043972284
1059765	1007972	21	0.46731347
1024631	1012617	1	0.03206493
1024631	1014191	3	0.38790256
2023686	1014191	3	0.16714399
2023686	1014690	2	0.24097718
1017610	1019303	68	0.42512476
1024631	1028228	1	0.1952564
1059637	1048726	1	0.0038849264
2069889	1048726	2	-0.032158498
1072684	1076507	2	0.97082245
2023686	1084951	1	-0.027778534
++			

Lower values of \overline{rank} are more desirable, as they indicate ranking actually watched shows closer to the top of the recommendation lists. Notice that for random predictions, the expected value of $rank_{ui}$ is 50% (placing i in the middle of

Add WeChat bpowicoder > 50% indicates an algorithm

user_id artist_id	+ playcount	+ prediction	+ percent_rank		
1059637 1233770	+ 613	+ 6.226111	+		
2020513 754	1993	4.6966453	2.032520325203252E-4		
1072684 1330	154	4.677941	4.065040650406504F-4		
1059334 228	112	4.4809046	6.097560975609756E-4		
1059637 1000130	19129	3.7980416	8.130081300813008E-4		
2069889 1000263	177	3.6094182	0.0010162601626016261		
1070641 1004294	12	3.5892177	0.0012195121951219512		
1007308 393	12	3.5190763	0.0014227642276422765		
2023686 1285410	13	3.4317646	0.0016260162601626016		
1047812 718	10	3.3937335	0.001829268292682927		
1031009 4163	17	3.271598	0.0020325203252032522		
1055449 407	139	3.1267304	0.0022357723577235773		
1055449 1194	1119	3.109819	0.0024390243902439024		
2023686 2884	1	3.0556219	0.0026422764227642275		
1058890 1233770	38	3.0266361	0.002845528455284553		
2023686 1270	26	3.0264745	0.003048780487804878		
2005710 1001412	1575	2.981335	0.0032520325203252032		
2062243 1000323	241	2.9571671	0.0034552845528455283		
1059637 1000926	1	2.9293735	0.003658536585365854		
2023686 1002262	39	2.9215589	0.003861788617886179		
+					
only showing top 20 rows					

From paper 'Collaborative Filtering for Implicit Feedback Datasets'

Cold-Start Problem

- Cold-start: New users will have no to little information about them to be compared with other users.
- Cold starts occur when we attempt to predict a rating for users and/or items in the test dataset that were not present during training the model ASSIGNMENT Project Exam Help

Two strategies for handling this problem powcoder.com

"NaN" - return an empty variable.

- Spark assigns NaN predictions during Acaded transform when a user and/or item factor is not present in the model.
- In development however, this result prevents us from calculating a performance metric to evaluate the system.

"drop" - this option simply removes the row/column from the predictions that contain NaN values. Our result will therefore only contain valid numbers that can be used for evaluation.

Use Case: Music Recommendation

Thank You!

See you next week.

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder