Solve the differential equation by separation of variables.

$$1. \ \frac{dy}{dx} = 2x^3y$$

$$2. \ \frac{dy}{dx} = 2y - 4$$

3.
$$(2+x)y' = 3y$$

4.
$$yy' = \sin x$$

5.
$$\sqrt{1-4x^2}y' = x$$

$$6. \quad y \ln x - xy' = 0$$

Find the particular solution that satisfies the given initial condition.

7.
$$yy'-e^x=0$$
, $y(0)=4$

8.
$$\sqrt{x} + \sqrt{y}y' = 0$$
, $y(1) = 4$

9.
$$\frac{dy}{dx} = \frac{x^2}{y}$$
 when y = -5 and x = 3

10.
$$\frac{dy}{dx} = 6x^2y \text{ when } x = 0 \text{ and } y = 4$$

11.
$$\frac{dy}{dx} = -xy^2$$
, $y(1) = -0.25$

12.
$$y' = \frac{1+x}{\sqrt{y}}$$
, $y(2) = 9$

13. Which of the following is the solution to the differential equation $\frac{dy}{dx} = 2\sin x$ with the initial condition $y(\pi) = 1$?

(A)
$$y = 2\cos x + 3$$

(B)
$$y = 2\cos x - 1$$

$$(C) \quad y = -2\cos x + 3$$

(D)
$$y = -2\cos x + 1$$
 (E) $y = -2\cos x - 1$

(E)
$$v = -2\cos x - 1$$

14. If a function y = f(x) satisfies the differential equation $\frac{dy}{dx} = -4y$ and f(0) = 6, then f(x) = 6

(A)
$$-2x^2 + 6$$

(B)
$$-\frac{x}{4} + 6$$

(C)
$$6e^{-4x}$$

(D)
$$e^{-4x} + 5$$

(D)
$$e^{-4x} + 5$$
 (E) $-\frac{1}{4} \ln(x + e^{-24})$

15. The solution to the differential equation $\frac{dy}{dx} = \frac{x}{\cos y}$ with the initial condition y(1) = 0 is

(A)
$$y = \sin^{-1}\left(\frac{x^2 - 1}{2}\right)$$
 (B) $y = \sin^{-1}\left(\frac{x^2}{2}\right)$ (C) $y = \cos^{-1}(x^2 - 2)$ (D) $y = \ln[\cos(x - 1)]$ (E) $y = \ln(\sin x)$

(B)
$$y = \sin^{-1} \left(\frac{x^2}{2} \right)$$

(C)
$$y = \cos^{-1}(x^2 - 2)$$

(D)
$$y = \ln[\cos(x-1)]$$

(E)
$$y = \ln(\sin x)$$

16. A particle moves along the y-axis with velocity given by $v(t) = 4(y+5)t^3$ and an initial velocity of y(0) = 8. Which of the following is an expression for the position of the particle over time v(t)?

(A)
$$v(t) = 8e^{t^4} - 5$$

(B)
$$v(t) = 13e^{t^4} - 5$$

(A)
$$y(t) = 8e^{t^4} - 5$$
 (B) $y(t) = 13e^{t^4} - 5$ (C) $y(t) = \ln |8t^4 - 5|$ (D) $y(t) = 13t^4 - 5$ (E) $y(t) = 12t^2 - 8$

(D)
$$v(t) = 13t^4 - 5$$

(E)
$$y(t) = 12t^2 - 8$$

16. A calf that weighs 60 pounds at birth gains weight at the rate of $\frac{dw}{dt} = (1200 - w)$ where w is weight in pounds and t is time in years.

(A) Find an expression that gives the weight, \it{W} , of the calf over time \it{t} .

(B) If the animal is sold when its weight reaches 800 pounds, find the time of sale.