Math 297 Discussion 8*

Annie Xu

March 15, 2019

Path-connectedness

Intermediate value theorem

Examples and Counterexamples

- 1. Give an example of a closed and bounded metric space which is not sequentially compact.
- 2. Give an example of a topological space that is not Hausdorff.
- 3. Can we make \mathbb{R} disconnected? Consider the following topology: take a basis of the topology to be all intervals of the form [a, b) with $a < b \in \mathbb{R}$. Why is \mathbb{R} under this topology disconnected?
- 4. Is the union of two connected subsets connected? How about intersection?
- 5. Give an example of an infinite union of open sets that is closed.
- 6. Give an example of a union of compact spaces that is not compact.
- 7. Give an example of a topology of \mathbb{N} such that there are exactly n open sets in this space.

Exercises

- 1. (Basis) Show that the set of rational balls $\mathbb{B} = \{B(r,q)|r \in \mathbb{Q}^n, q \in \mathbb{Q}\}$ is a basis for \mathbb{R}^n (with Euclidean topology).
- 2. (Connectedness) Prove the *Intermediate Value Theorem*: Let (X, \mathcal{T}) be a connected topological space and $f: X \to \mathbb{R}$ be a continuous map. For all $x, y \in X$, and for all t between f(x) and f(y), there exists $z \in X$ such that f(z) = t.
- 3. (Homeomorphism) Prove that \mathbb{R} and \mathbb{R}^n are not homeomorphic. (Hint: What properties are preserved by homeomorphism? You may also find the following lemma helpful.)
- 4. (Lemma, take it for free) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces, and let $f: X \to Y$ be a homeomorphism. Let $A \subset X$ and $B = f(A) \subset Y$. Then the restriction map $f|_A: A \to B$ is a homeomorphism $f|_A: (A, \mathcal{T}_A) \to (B, \mathcal{T}_B)$, where \mathcal{T}_A and \mathcal{T}_B are the subspace topologies of A and B repectively. (You may try to prove this lemma. It will help you understand subspace topology better).

^{*}Reference: James Munkres. Topology. Prentice Hall, NJ, 2000.

Product Topology

Product Topology

The leading question: suppose we have two topological spaces X and Y, we can easily get their Cartesian product as a set $X \times Y = \{(x,y) | x \in X, y \in Y\}$. Can we put a topology on $X \times Y$ to make it a "meaningful" topological space?

Definition 0.1. Suppose (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces. We define a topology $\mathcal{T}_{X\times Y}$ on $X\times Y$ in the following way: $W\in \mathcal{T}_{X\times Y}$ if for all $(x,y)\in W$, there exist $U_x\in \mathcal{T}_X$ and $V_y\in \mathcal{T}_Y$ such that $(x,y)\in U_x\times V_y\subset W$. We call $\mathcal{T}_{X\times Y}$ the **product topology** on $X\times Y$.

Projection maps

Suppose (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces. We equip $X \times Y$ with the product topology defined above. Let $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ be maps given by $\pi_X(x, y) = x$ and $\pi_Y(x, y) = y$.

Exercises

- 1. Show that $\mathcal{T}_{X\times Y}$ defined above is actually a topology. Can you give a basis for it?
- 2. What properties can be preserved by taking a product? (Hausdorffness? Compactness? Connectedness? Path-connectedness?)
- 3. Are the projection maps continuous? open? closed? Prove or disprove.