Source: [KBhMATH401SubIndex]

1 | Series Convergence

1.1 | Geometric Series

In $\sum_{k=0}^\infty a(r^k)$, where |r|<1, the series converges to $\sum_{k=0}^\infty a(r^k)=\frac{a}{1-r}$ In $\sum_{k=0}^n a(r^k)$, $\sum_{k=0}^n a(r^k)=\frac{a-ar^{n+1}}{1-r}$

1.2 | nth term divergence test

If $\lim_{n\to\infty} a_n$ is not zero, the series **will** diverge. The inverse is not necessarily true; that is, if this fails, use another test to test convergence.

1.3 | Intergral Test

If the intergral to infinity is convergent, the sequence is convergent as long as the sequence is continuous, positive, and decreasing. The inverse applies, too.

1.4 | Power Series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

If a p-series has a p > 1, the p-series will converge

If a p-series has a p <= 1, the p-series will diverge

1.5 | Comparison Test

Pasted image 20210308082352.png

Pasted image 20210308082201.png

Also, if $\lim_{n \to \infty} \frac{a_n}{b_n} = C$ $(0 < c < \infty)$, the two series will either both converge or both diverge. So you only need to test one.

Both provided that $a_n, b_n \ge 0 \& a_n \le b_n$

1.6 | Alternating Series Test

Pasted image 20210309081249.png

1.7 | Ratio Test

In a geometric series, the common ratio is simply r.

If |r| < 1, then series converges. If $|r| \ge 1$, the series diverges.