Score: _____ out of 10.

PICK ONE OF THE FOLLOWING:

Please indicate which problem you do NOT want me to grade by putting an X through it, otherwise I will grade the first problem worked on:

Show all work clearly and in order. Please box your answers. 10 minutes.

1. Solve the following differential equation by variation of parameters:

$$y'' - 4y = \frac{e^{2x}}{x}$$

Find yc:
$$y'' - 4y = 0$$

 $m^2 - 4 = 0$
 $(m = 2)(m + 2) = 0$
 $m = 2$, $m = -2$
 $y_c = c_1 e^{2x} + c_2 e^{-2x}$
 $y_n = \frac{7}{2}$
Find yc: by variation of parameters
 $standard Form = f(x) = e^{2x}$
 $W = \begin{vmatrix} e^{2x} & e^{-2x} \\ 2e^{2x} & -2e^{2x} \end{vmatrix} = -2e^{2x} e^{-2x} - e^{2x} 2e^{2x}$
 $= -2e^0 - 2e^{4x}$

$$U_{1} = \int \frac{-y_{2} f(x)}{w} dx = \int \frac{e^{-2x} e^{2x}}{x(-4)} = + \frac{1}{4} \int \frac{1}{x} = \frac{1}{4} \ln(x)$$

$$U_{2} = \int \frac{y_{1} f(x)}{w} dx = \int \frac{e^{2x} e^{2x}}{x(-4)} = -\frac{1}{4} \int \frac{e^{-4x} dx}{x} = -\frac{1}{4} \int \frac{e^{-4x} e^{-2x}}{x(-4)} = -\frac{1}{4} \int \frac{e^{-4x} e^{-2x}}{x(-4)} = -\frac{1}{4} \int \frac{e^{-4x} e^{-2x}}{x(-4)} dx = -\frac{1}{4} \int \frac{$$

$$y = c_{1} e^{2x} + c_{2} e^{-2x} + \frac{1}{4} \ln(x) e^{2x} - \frac{1}{4} \left[\sum_{n=0}^{\infty} \frac{y^{n} \times n}{n! \cdot n} \right] + \ln(x)$$
General Solution:
$$y = c_{1} e^{2x} + c_{2} e^{-2x} + \frac{1}{4} \ln(x) e^{2x} - \frac{1}{4} \operatorname{Ei}(4x)$$

2. Solve the following Cauchy-Euler equation:

$$x^2y'' + 10xy' + 8y = x^2$$

Sol: Find yc:
$$a=1$$
, $b=10$, $c=8$
 $am^2 + (b-a)m + c = 0$
 $m^2 + 9m + 8 = 0$
 $(m+8)(m+1) = 0$
 $m=-8$, $m=-1$
 $y_c = C_1 x^{-1} + C_2 x^{-8}$
 y_1
 y_2

Find yp: by Variation of parameters

Standard Form: $y'' + \frac{10}{x}y' + \frac{8}{x^2}y = 1$
 $W = \begin{vmatrix} x^{-1} & x^8 \\ -x^{-2} & -8x^{-4} \end{vmatrix} = -8x^{-1}x^{-9} - (-x^{-2})(x^{-8})$
 $= -8x^{-10} + x^{-10} = -7x^{-10}$
 $u_1 = \int -\frac{y_2}{W} \frac{f(x)}{dx} dx = \int -\frac{x^{-8}(1)}{-7x^{-10}} dx = \frac{11}{7} \int x^{-8}(-\infty) dx$
 $= \frac{11}{7} \int x^2 dx$
 $= \frac{11}{7} \int x^2 dx$
 $= \frac{11}{7} \int x^3 = -\frac{x^3}{21}$
 $u_2 = \int \frac{y_1}{W} \frac{f(x)}{W} dx = \int \frac{x^{-1}(1)}{-7x^{-10}} dx = -\frac{1}{7} \int x^9 dx = -\frac{x^{-10}}{70}$
 $y_1 = u_1 y_1 + u_2 y_2 = \left(\frac{+x^2}{21}\right)(x^{-1}) + \left(\frac{x^{-10}}{70}\right)(x^{-8})$
 $= \frac{x^2}{30}$

General Solution:
$$y = c_1 \times^{-1} + c_2 \times^{-8} + \frac{x^2}{30}$$