148 -> RessIr 152 Lecture / Single - Bourd Mizro east of the single board.

milroprosessor, Ilo, clock RAM Arduino - Open - hardmare - Stand IIO vraneaut -> stackfolde shield, - disital = 10 - andos input - masley out put -> DAC > pwm (Pulse Wilth mobility) - Atmel AVR (8-5.7 Reduced Instruction divide (40)

(Mizro controller) ** * Prooning: C/C++ 8e top () { ... } + [wing]
[100p () { ... } (Library)

Microproussor Q: Whit is a mizroprocessor? All modern Cpus are microprocessors: -> Single IC contring CPU Q: Whit is a CPU? Control Unit + Arithmetic Logic Unit Flexed Programs Menory ALU CPU Von Neum Architecture Mensy Input Mato

55 Cs 137 56 Bq 137 55 Cs 137 : 136, 90709 56 B. 137 : 130, 905 82 Dm = ~ 0,0012 and (1 anu) c2 = 931 x10 eV -1, Ameu

, 5 MeU /c2

Radio-active Decay nucleus deays, (when homens!) -> Equally prosible that my nucleus nill deary at any time (unlike homes) (Nuclei unt set old and die!) $\frac{dN}{dE} = - K N$ $N(t) = N \exp(-kt)$ $N(0) = N_0$ $N(4/2) = N_0/2$ N(+) = Wo exp (-k+) N(T1/2) = No exp(-kT1/2) = No/2 => 2 = exp(k7112) 10,2 = k71/2 K = 1022 7 1/2 N(+) = No exp (-t 105(2) 71/2

Chylos 1-3

U	η	C	6	~	tai	+	101
---	---	---	---	---	-----	---	-----

-7 Scientist believe (or inspire) they are parfect (

Error # Miltile

Error = Uncertainty

- -> Why are uncertainting useful?
 - -> Report the pracision of the
 - Menurement and be compared to other presourcements
 - -> Measurement can be compared to tracony predictions

"Conservative" Error Estimation Suppose we are very this scientist we are 100% certain, In this eve . x tox menns true value at x lies in range (x-5x x+5x) with 100 % certainty $\delta x = \frac{x_{max} - x_{min}}{2}$

 $\delta(x+y) = \delta x + \delta y$

$$x/y?$$

$$x/y = \frac{x+Jx}{y-Jy}$$

$$x/y = \frac{x-Jx}{y-Jy}$$

$$x/y = \frac{x+Jx}{y-Jy}$$

$$x/y = \frac{x+Jx}{y-Jy}$$

$$x/y = \frac{x+Jx}{y-Jy}$$

$$x/y = \frac{Jx}{x} + \frac{Jy}{y}$$

$$x/y = \frac{Jx}{x} + \frac{Jy}{y}$$

$$x/y = \frac{Jx}{x} + \frac{Jy}{y}$$

$$x/y = \frac{Jx}{y} + \frac{Jy}{y}$$

Convertions:

best estante = uncertanty

- (D) Round uncertainty to one significant Figure (except 1 or 2)
- 3 Value should be stated such that LSF is some under ar uncertainty

Calculate $132.572 \pm 0.36/$ Write; $132.6 \pm 0.4/$

Non he need to understant

what there uncertainties mean,

in a practical sense,

Less Conveniting Error Estimiting, In reality, we are never 100% X± 5x will men tore vilve is m [x-5x x+5x] with some prossibility (in fact 68,5%) Halmany assur: Jx Conjeruting J(x+y) = Jx + Jy Jy Recklace X S(x+4) = | 5x - 59 | JBX+5)

Addry is Quadrature:

$$J(x-y) = \sqrt{5x^2 + 5y^2}$$

$$\frac{\delta(x,y)}{xy} = \sqrt{\frac{\delta y^2}{x}^2 + \left(\frac{\delta y}{y}\right)^2}$$

$$\frac{F(x(y))}{x(y)} = \sqrt{\frac{(\sigma x)^2}{x}} + (\frac{\sigma y}{2})^2$$

$$f(x,y) = x + y$$

$$\frac{\partial f}{\partial \lambda} = \frac{\partial f}{\partial y} = 1$$

$$\delta(xy) = \sqrt{x^2 \delta x^2 + x^2 \delta y^2}$$

$$\frac{\sigma(x_3)}{x_9} = V(\frac{\sigma x}{2})^2 + (\frac{\sigma y}{9})^2$$

$$f(x,y) = xy$$

$$\frac{\sigma(\frac{x}{3})}{\frac{x}{3}} = \sqrt{\frac{\sigma(x)^2}{x^2} + (\frac{\sigma_3}{3})^2}$$

Error Proprystun

$$f(x \pm 5x) \sim f(x) + f'(x) \delta x$$

$$\mathcal{F}(f(x)) = \mathcal{F}'(x) \mathcal{F}(x)$$

Consine with addition is quidate

$$\delta(f(x,y)) = \sqrt{\left(\frac{\partial f}{\partial x}(x)\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 \delta_{y^2}}$$

Mon Production + beeny

A Nicleur Interior

Tt > nt Val

TO > VY

ut = et

1 Ininsteron 2 at E~ 4.GeV

LD Prof of relativity

Muon Lab Ledure

Decay Rule:

is fordamental porticle - discoursed padioacture decay it decays at a fixed rate dN = - N(+) A at $= \mathcal{N}(t) = \mathcal{N}_0 \exp\left(-t/\gamma\right)$ 7 = litetime = = (Relate to hott-like): $N(t_{1/2}) = \frac{1}{2}N_0 = N_0 \exp(-t_{1/2})$ 7. log(2) = t1/2 /

Plan:

nuon

of post know

And 10 21

muon dock

to there

Does it moter?

 $dW = -\lambda N_0 \exp(-\lambda t)$ $dW = -\lambda \exp(-\lambda t)$

(prob of sink

Scindillator

2 ad traited

Many Mechanisms

Post Interest in with

other volenets

A Flourescence

A Vibrational modes

State

Only Fraction of Enersy of

4

-

. • ...

. .

PMTS

Shower

Photo

Ophoto

Cathole

Cathole

(a)

More Positive

Electrole)

Gan is valling sopendary but typically 100,000 to I william.

(that to application)

Backs round:

equally likely to arrive in any siven the interval... FLAT

M+/m- differences

1- 8 (+7)

in each occupy save exhibit of

1+p -> n + Vu

this promises additional decay
for un not possible by until

s. the secry rates:

We resure à restted sueve,

and of the control of

$$(\lambda) = \sum_{N+1}^{N+1} \lambda + \sum_{N+1}^{N+1} \lambda + \sum_{N+1}^{N+1} \lambda$$

$$0 \in F_{in} = \sum_{N+1}^{N+1} \lambda + \sum_{N+1}^{N+1} \lambda + \sum_{N+1}^{N+1} \lambda$$

$$(x) = (0+1)$$

$$x + x = x$$

$$x + y = x$$

Solve for P

Histogras + Uncertante

Histograns
Have students prek number from 1 to 4.
Tally the results and build a histogram
243
(Probably will be biased toward 3!)
Aside: Con mention (as notivation) statistical uncertainty of VN to check for 6 as.
Q: How to hadle data like:
15.4, 11.3, 12.1, 6.5, 10.1, 17.3
ett)
0 5 10 15 20
Note: Now each by has a width and a number of
(2 thys to keep the Lof)
well assum (for now) all have sure width

Predictor: # of events in a particular big Result: # of event in a particular sin. This would tend to men our theory (which predicts sot comes of experiments) depends explicity on our choice of bins. Also, it Not pretty / We get a lot from frixing this our theory woold better tell us sometwo like! p(x) = produbility to menue x Except must deservet work Whit is probability to recorde exacty the value "1,2357 6125212 A: 0. Probabilities are only non-zero over non-infiniterial over some ande.

Whilever my you think about it, you nust remember to account for mormalization of prediction to mornalization p(x).(2cm). (00 # even (theory Perspending frac ests N. DX

There are lots of mys to think about $N_{\text{bleg}} = b(x) \cdot \nabla x \cdot V$ prosteda for particular and number experime of mayurements made (exp dependent) Q! Suppose x is a necurrent of "cm" st p(x)? What are dimension [p(n)] = 1 ! A) en in jerert prob (x end x + dx) 0 P(x, x.) Book wiles: p(x) dx = pris (x to x+dx)

We can do a lot with not predicting p(x) which is called a probability distribution Function (PDF). $T) \qquad \left(\begin{array}{c} p(x) & dx & = \\ \end{array} \right)$ $\overline{I}) \quad \overline{X} = \int x \, p(x) \, dx$ is there prediction for overse value III) RMS! $6\lambda^2 = \int_{-\infty}^{\infty} (x - \overline{x})^2 f(x) dx$ (It will turn out Bx is related to uncertainty. =) Now some specific ひられいいかい ・ INTRODUCE, will prove later

Into to Poisson Distribution:

 $P_{n}(n) = e^{-n} \frac{m^{n}}{n!}$

$$p(x) \sim \exp\left(\frac{-(x-x_0)^2}{26^2}\right)$$

$$p(x) = N \cdot \exp\left(-\frac{(x-x_0)^2}{26^2}\right)$$

$$1 = \int_{-\infty}^{\infty} p(x) dx = N. \int_{-\infty}^{\infty} e^{-(x-x_0)^2} dx$$

$$\frac{1}{N} = \int_{-\infty}^{\infty} e^{x} o\left(-\frac{(x-x_0)}{2\sigma^2}\right) dx$$

$$x' = \frac{x - x_0}{\sqrt{26}} \qquad dx' = \frac{dx}{\sqrt{26}} \Rightarrow 1$$

$$\sqrt{2No} = \int_{-\infty}^{\infty} \exp(-\frac{\lambda^2}{2}) d\lambda$$

Trick For:
$$I = \int_{-\pi}^{\pi} dx \exp(-x^2)$$

$$I^{2} = \int_{-\infty}^{\infty} dx \exp(-x^{2}) \cdot \int_{-\infty}^{\infty} dy \exp(-y^{2})$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx \, dy \, \exp\left(-\left(x^2 + y^2\right)\right)$$

$$= \int_{0}^{2\pi} \int_{0}^{\infty} r d\theta dr \exp\left(-r^{2}\right)$$

$$= 2\pi \int_0^{\infty} dr \operatorname{rexp}(-r^2)$$

$$X = r^2 \qquad dx = 2r dr$$

$$= \pi \int_{0}^{\infty} dx \, \exp(-x)$$

$$= n - exp(-x)/o$$

$$\overline{X} = \int_{-\sigma}^{\infty} dx \times p(x) = \int_{-\sigma}^{\infty} dx \times \frac{\exp(-(x-x)^{2}/26^{2})}{6\sqrt{2\pi}}$$

$$y = x - x, \qquad dy = \partial x \qquad x = y + x,$$

$$\overline{X} = \int_{-\sigma}^{\infty} (y + x_{0}) \exp(\frac{-y^{2}}{26^{2}}) / 6\sqrt{2\pi}$$

$$= x_{0} \int_{-\sigma}^{\infty} \exp(\frac{-y^{2}}{26^{2}}) + \int_{-\sigma}^{\infty} dy \cdot y \exp(\frac{-y^{2}}{26^{2}})$$

$$\overline{X} = x_{0}$$

$$\overline{X} = x_{0}$$

$$RMS = Q^{2} = \int (x - \overline{x})^{2} p(x) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx \frac{1}{\sqrt{2\pi}} dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dy \frac{1}{\sqrt{2\pi}} dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dy$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dy$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dy$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dy$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dy$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dy$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dy$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2} e^{x} p(\frac{-(x - x_{0})^{2}}{2 e^{2}}) dx$$

$$= \int (x - x_{0})^{2}$$

$$\frac{A_{\lambda} \lambda_{c}}{do} = y \exp\left(-\frac{y^{2}}{2}\right) \qquad \forall z \qquad y$$

$$U = -\frac{e^{2}}{e^{2}} \qquad \forall u = dy$$

$$\int_{-\infty}^{\infty} y^{2} \exp\left(-\frac{y^{2}}{2}\right) = \int_{-\infty}^{\infty} \sqrt{du} = uv - \int u du$$

$$= -y \exp\left(-\frac{y^{2}}{2}\right) / - \int_{-\infty}^{\infty} \exp\left(-\frac{y^{2}}{2}\right) dy$$

$$= 0 + \sqrt{2\pi}$$

Reup: - Carry

Binonial Coefficients $(a+b)^2 = a + 245 + 5$ (4+5)3 = (a+6) x (2+24) + 63) $= q^{3} + 2q^{2}b + qb^{2} + bq^{2} + 2qb^{2} + b^{3}$ $= a^3 + 3 a^2 b + 3 a^{52} + b^3$ $(a+b)^{0} = \sum_{i=0}^{\infty} (i)^{0} a^{i}b^{0} = i$ 1st choice: 2nd choice (n-2) v chice (n-(1)) Total Possibilities: n.(n-1).(n-2) ... (n-(v-1)) But, order observed matter, V Items v! orderins.

Assume
$$\binom{n}{n} = \frac{n!}{n! \binom{n-n}{n}!} = \frac{n!}{n! \binom{n-n}{n-n}!} = \frac{n!}{n!} = \frac{n!}{$$

$$\frac{1}{1}\left(\frac{1}{1}\right) = \frac{1}{1}\left(\frac{1}{1}\right)$$

Binonial Distribution

Suppose you have efficiency E of succeeding at a task?

Q: Whit is probability at tailure?

A: (- E)

Branial Distribution is

P(V successes in n trials)

= (# combinations of v success) x (Prob of I such com)

 $= \left(\begin{array}{c} 0 \\ \end{array}\right) \times \left(\begin{array}{c} \times \\ \end{array}\right) \left(\begin{array}{c} -1 \\ \end{array}\right)$

 $= \frac{1}{(n-v)!} \frac{2}{n!} \frac{2}{(1-z)} \frac{2}{n-v}$

Now me have this distribution me must to calculate V and of $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \left(\frac{1}{\sqrt{2}}\right) \times \left(\frac{1}{\sqrt{2}}$ We use a trick: $(p+q)^{2} = \frac{2}{2} (2) p q^{2}$ This is true for all pand q. So we can fix a and differentiate with $\frac{1}{100} \left(\frac{1}{100} \right) = \frac{1}{100} \left(\frac{1}{100} \right) \sqrt{\frac{1}{100}} = \frac{1}{1$ then on Hiply by p: $np(p+q)^{n-1} = \frac{n}{2}(n) v p q^{n-v}$ The RHS looks much like whit we wat if p > 2 2 -> 1-2 Mircele: p+2 = 2+1-2 = 1 = 2 (?) V E ((-E) ?-V = n p V = np

nogog men samellinde de minute (EV 1920)	Poissay Distribution from Binomial
Minimal designation of the speciment of	
	7
A. Section 11 - Section 21 - Se	
	Insise over some the interval, we expect
management of the company of the com	2 e-ents.
enemys 1994 to recognize primarious ab absolute	We are divide this internal into
	of having an event
	of having an event
and the state of t	
	$p = \frac{\lambda}{\alpha}$
	We take a constant,
	(a, b) p → 0)
	2.7)

$$p(v) = \binom{n}{v} \sum_{i=1}^{N} \binom{n-i}{i} \binom{n-i}{$$

Proof; 0 (0-1) - (0-v+1)which all you to 1 in lin na co. -.

Central Cinit Theorem:
1) We derived an example: Poisson bistribution -> Gaussia Distribution for large N.
2) In Scipy, we saw that may rinder nowbers in CO, 27 lead to Equasia distribution
Generally CLT says prithnetic man of independent randon variables with finite variance converses to a Grussian distribution in limit at large w.
In case of foision we saw this consequence on se very fast, (Wall)
In practice: this news the most likely distribution re will encounter is the Grussian distribution.
Therefore; when we know no -better we goowne our PDF is Baussian

Uncertainties: Gaussin probability true value" G= 8X Xbest Converting Xbest I JX meins POF is Gayersia with Why? 1) CLT 2) Simple! 2 permeters! men inderjons 3) Math is easy as we will see, extracting best unling of ix and 6 is just

- rons

Error Function Suppose we never the speed of light 3.3 ± 0,2 × 10 8 m/s How consistent is this with the generally accepted unte 3,0 × 10 % ~/s First ensuer: 3.3-3.0 - (1.5 signa) But what if we want to know probility raclosed within ± t.6. (-te erf(t) = Jan No waly the salution, so we just define to function and tobulate

it.

Why Do Errors Add in Quanture?

$$P(x) = \sqrt{2q^2} \qquad (assume x_0 = 0)$$

$$P(y) = \frac{1}{\sqrt{2\pi b}} \exp\left(-\frac{y^2}{2b^2}\right)$$
 (a) sum $y_0 = 0$)

$$P(x,y) = P(x) \cdot P(y) = \frac{1}{2\pi ab} \exp\left(-\left(\frac{x^2}{2a^2} + \frac{y^2}{2b^2}\right)\right)$$

$$P(u) = \int dx dy P(x,y) \delta(x+y-u) (optional)$$

$$= \int dx P(x, u-x)$$

$$= \frac{1}{2\pi ab} \int dx \exp \left(\frac{1}{2} \left[\frac{x^2}{a^2} + \left(\frac{x^2}{b^2} \right) \right] \right)$$

$$= \frac{1}{2\pi a^{\frac{1}{2}}} \int dx \quad \exp\left(-\frac{1}{2} \frac{1}{a^{2}b^{2}} \left\{ b^{2}x^{2} + a^{2}(v-x)^{2} \right\} \right)$$

$$\begin{cases} \begin{cases} = (a^{2} + b^{2}) \times x^{2} - 2 \cdot a^{2} \cdot ux + a^{2} \cdot u^{2} \\ = (a^{2} + b^{2}) \left[x^{2} - \frac{2 \cdot a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot u^{2} \\ = (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux \\ = (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux \\ = (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux \\ = (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux \\ = (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux \\ = (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux \\ = (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux \\ = (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux \\ = (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] - \frac{a^{4}}{a^{2} + b^{2}} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{a^{2}}{a^{2} + b^{2}} \cdot ux \right] + a^{2} \cdot ux$$

$$= (a^{2} + b^{2}) \left[x - \frac{$$

$$\begin{bmatrix} \frac{2}{2} & \frac{3^2}{2^2} & 0x & \frac{3^2}{2^2} \\ \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} \\ \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} \\ \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} \\ \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} \\ \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} \\ \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} & \frac{3^2}{2^2} \\ \frac{3^2}{2^2} & \frac{3^2}{2^2}$$

$$\frac{Conglete Square:}{(x + Au)^2 = x^2 + 2Aux + A^2u^2}$$

$$\left[\begin{array}{c} \left(x - \frac{q^2}{c^2} \right)^2 - \frac{q^4}{c^4} \right]^2 + \frac{q^2}{c^2}$$

$$\frac{a^{3} b^{3}}{c^{3}} = \frac{a^{3} b^{3}}{c^{3}} = \frac{a^$$

$$\left(1-\frac{\alpha^{2}}{c^{2}}\right)=\left(\frac{c^{2}-\alpha^{2}}{c^{2}}\right)=\left(\frac{\alpha^{2}+5^{2}-\alpha^{2}}{c^{2}}\right)=\frac{6^{2}}{c^{2}}$$

$$P(u) = \exp(-\frac{1}{2}u^{2}) \cdot \frac{1}{2\pi a^{2}} \cdot \int_{-\rho}^{a} dx \exp(-\frac{1}{2}\frac{(x-\frac{a^{2}}{c^{2}})^{2}}{(5/c)^{2}})^{2}$$

The integral is just a Gaussian (uniformalized!)

$$\int \exp(-\frac{1}{2}\frac{(x-x_{0})^{2}}{6^{2}})$$

with $x_{0} = \frac{1}{c^{2}}u$

and $\delta = \frac{ab}{c}$

It's integral is therefore $\sqrt{2\pi \cdot 6} = \sqrt{2\pi} \cdot ab/c$

Hence

$$P(u) = \frac{1}{2\pi \cdot ab} \cdot \sqrt{2\pi} \cdot \frac{ab}{c} \cdot \exp(-\frac{1}{2}\frac{u^{2}}{c^{2}})$$

$$= \sqrt{2\pi} \cdot \sqrt{2\pi} \cdot \frac{ab}{c} \cdot \exp(-\frac{1}{2}\frac{u^{2}}{c^{2}})$$

$$= \sqrt{2\pi} \cdot \left(\frac{1}{6x^{2}} + 6y^{2}\right) = \exp(-\frac{1}{2}\frac{(x+y)^{2}}{6x^{2}} + 6y^{2})$$

Fourier Series:

$$S(x) = \frac{a_0}{2} + \frac{2\pi nx}{2} \left(a_n \cos \frac{2\pi nx}{2} + b_n \sin \frac{2\pi nx}{2} \right)$$

'sin + cas are co-plete: new

any periodic function can be expressed

a infinite veries of sines and cosines (no prost)

(hell see as example shortly)

Preface!

(1) Good Simple Idea w/

powerful results -> many different versions of some idea (2) Show weethr analogy for -> orthogonality

-> Completeness.

sin + cos are orthogonal Fretus! too! Sin L Sin L dr= 5mn 2 Sin Cos Cos (No Prost) is, if me think of each $\cos\left(\frac{2\pi}{L}\right)$ and $\sin\left(\frac{2\pi}{L}\right)$ as a vector, each reader is artaisonal to every atter mentar

$$S(x) = \sum_{m=1}^{\infty} a_m cos \frac{2\pi m x}{L}$$

$$\int_{-\infty}^{\infty} \frac{2\pi n x}{L} \cdot S(x) dx$$

$$= \int_{-\infty}^{\infty} \frac{2\pi n x}{L} \cdot S(x) dx$$

$$= \sum_{m=1}^{\infty} a_m \int_{-\infty}^{\infty} \frac{2\pi n x}{L} dx$$

$$= \sum_{m=1}^{\infty} \frac{2\pi n x}{L} \int_{-\infty}^{\infty} \frac{2\pi n x}{L} dx$$

$$= \sum_{m=1}^{\infty} \frac{2\pi n x}{L} \int_{-\infty}^{\infty} \frac{2\pi n x}{L} dx$$

$$= \sum_{m=1}^{\infty} \frac{2\pi n x}{L} \int_{-\infty}^{\infty} \frac{2\pi n x}{L} dx$$

$$= \sum_{m=1}^{\infty} \frac{2\pi n x}{L} \int_{-\infty}^{\infty} \frac{2\pi n x}{L} dx$$

$$= \sum_{m=1}^{\infty} \frac{2\pi n x}{L} \int_{-\infty}^{\infty} \frac{2\pi n x}{L} dx$$

$$= \sum_{m=1}^{\infty} \frac{2\pi n x}{L} \int_{-\infty}^{\infty} \frac{2\pi n x}{L} dx$$

$$= \sum_{m=1}^{\infty} \frac{2\pi n x}{L} \int_{-\infty}^{\infty} \frac{2\pi n x}{L} dx$$

$$= \sum_{m=1}^{\infty} \frac{2\pi n x}{L} \int_{-\infty}^{\infty} \frac{2\pi n x}{L} dx$$

$$= \sum_{m=1}^{\infty} \frac{2\pi n x}{L} \int_{-\infty}^{\infty} \frac{2\pi n x}{L} dx$$

Continuos Case

If function not periodic, we take L-700

 $F(t) = \int dv F_c(v) \cos(2\pi vt) + F_s(v) \sin(2\pi vt)$

A cilulation would stay

 $\int |F(+)|^2 dt = \int (|F_c(v)|^2 + |F_s(v)|^2) dv$

Power at freezery

Fourier Transform Ermple dr cos 2Trt. sin 27/2

Connection of Sine / Cosine to Fourier Transforms.

Convention of Definition:

$$F(v) = \int e^{-2\pi \ell} v^{+} f(t) dt$$

$$F(t) = \int e^{2\pi i v^{+}} F(v) dv$$

$$= \int \left[\cos(2\pi i v^{+}) + i \sin(2\pi i v^{+}) \right] f(t)$$

$$= \frac{1}{2} f_{c}(v) + i \frac{1}{2} f_{s}(v)$$

Why do me preter the?

uns really about phus (Some and Come are some function white by a phase)

The Likewise F(v) by two parts: $(re^{i\phi})$ $r: |F(v)| \rightarrow anditide (fc + fs^2)$

\$: physe

Note that (F(r)) = F2(v) + F3(v)

Corplcheres, of F.T.

$$F(v) = \int_{-\infty}^{\infty} dt e^{-i2\pi vt} f(t)$$

$$f(t) = e^{i2\pi vt}$$

$$F(v) = \int_{-\infty}^{\infty} dt e^{2\pi i(v'-v)t} dt$$

$$F(v) = \lim_{n \to \infty} \int_{-\infty}^{\infty} dt e^{2\pi i(v'-v)t} dt$$

$$e^{2\pi i(v'-v)t} = \frac{e^{2\pi i(v'-v)t}}{2\pi i(v'-v)} = \frac{e^{2\pi i(v'-v)t}}{2\pi i(v'-v)}$$

$$= \frac{e^{2\pi i(v'-v)t}}{2\pi i(v'-v)}$$

$$= \frac{e^{2\pi i(v'-v)t}}{2\pi i(v'-v)}$$

$$= \frac{e^{2\pi i(v'-v)t}}{2\pi i(v'-v)}$$

$$= \int \frac{\sin(2\pi(v-v)T)}{2\pi((v-v)T)}$$

$$\sim \delta((v-v))$$

$$\sim \int (v-v)$$

Smiler 5(+1-+) (es-pleturess)

Best Estimates for X:

Suppose a nake a menurements
"drawn from a Gaussian distribution"

X, X2, X3, --- X

Whit is our best estimate for the "true value" of x?

For a true value of X and an uncertainty of each rensurement B, the probability of rensureing within Dx of X; is

 $P(x_1) = \frac{1}{\sqrt{2\pi} 6} e \times p\left(-\frac{(x_1 - \hat{X})^2}{2 e^2}\right) \Delta x$

The combined probability of our chile

 $P = P(x_1) - P(x_2) - P(x_3) - P(x_n)$

$$= \left(\frac{5x}{5\pi 6}\right)^{N} e \times \rho \left(-\frac{(x-x)}{26^{2}}\right) \cdot e \times \rho \left(-\frac{(x-x)}{26^{2}}\right) - - -$$

$$= \left(\frac{\Delta x}{2\pi 6}\right)^{N} \exp\left(-\frac{2(x_{i}-x)^{2}}{26^{2}}\right)$$

The min technique (not "trick" because

-c will use it may true) is to

musicise probability by setting

$$\frac{dP}{dX} = 0$$

$$\frac{dP}{dX} = \frac{P}{dX} \left(-\frac{Z}{Z} (x_1 - X)^2 \right)$$

$$= -\frac{P}{26^2} \cdot Z (x_1 - X)$$
Only my $\frac{dP}{dX} = 0$ is

$$\frac{Z}{Z} (x_1 - X) = 0$$

Best Estimite for 6
$$P = \frac{1}{6N} \exp\left(-\frac{7(x_1-x_1)^2}{76^2}\right)$$

Since
$$\frac{\partial}{\partial G} = \frac{1}{6^N + 1} = \frac{1}{6^N} \left(\frac{-N}{6} \right)$$

$$\frac{d}{d6} = \frac{2}{6^3}$$

$$\frac{dP}{dG} = P\left(-\frac{N}{G} + \frac{\sum_{i}(x_{i}-X)^{2}}{G^{3}}\right)$$

$$= 0$$

$$= Z(x_1 - X)$$

$$= Z(x_1 - X)$$

** To describe a distribution
by a Gaussia, need only
enledge

mean > X

RMS -> G

Studend Deurtin of the mean
Suppose me mile N mensurements of
a quantity x each nith uncertainty
We calculate the men:
$X = \frac{X_1 + X_2 + \cdots + X_n}{N}$
Note that as each Xi is centered
on the true value X our F will
also be centered of X, but with better uncertainty!
Just use error propagation
$6x = \sqrt{\left(\frac{3x}{3x}, 6\right)^2 + \cdots + \left(\frac{3x}{3x}, 6\right)^2}$
But each $\frac{\partial x}{\partial x_i} = \frac{1}{N}$ so we have
$6x = \sqrt{\left(\frac{1}{N}6\right)^2} + \cdots + \left(\frac{1}{N}6\right)^2$
$= G \cdot \left \sqrt{N, \frac{1}{N^2}} \right = \left \frac{G}{\sqrt{N}} \right $
Repenting Mensurement N times reduces on certainty by a treker

X2. Tests	
Want to understand how likely a set of data:	inde (NAC and Advance B) or \$10 million and a citizen debter 1981), the paper was respectively a transcription of the citizen and the citizen debter 1981 and the citizen and citizen and the citizen and the citizen and the citizen and the
$\{x_1 \pm 6, x_2 \pm 6_2, x_3 \pm 6_3, \dots\} \equiv$	X126
is the result of a correspondity theo prediction:	and the common of the common o
{y, y2,, yn } = y;	
Hoove Gaussin uncertainties on X ten probability of one recourement / is just a Gaussin PDF	
$P_{i} = \frac{1}{\sqrt{2\pi}} \frac{1}{6i} \exp\left(-\frac{1}{2} \frac{(y_{i} - x_{i})}{6i^{2}}\right)$	1
The probability for the complete set of and is 5-st the probability and is sost the probability	
$\int_{2\pi}^{2\pi} \int_{2\pi}^{2\pi} \int_{2$	$\frac{(y;-x;)^2}{8!^2}$
clibal (md mbat Follows) is nore general, we could have in some circumstances, and Libelihard Function)	

- Since suns are enythm products, and los to month with therewing 109 2 Since we physicists trink about a minimization (as opposed to maximization) - log 2 Since there is an among factor of to in exponent, scale - 2 109 2 Leto calculate it; $\frac{\sum_{i}^{2} \left(y_{i}^{2} - x_{i}^{2}\right)^{2}}{A^{G_{i}^{2}}}$ -2 los 2 =-2> log(2#6!) Does not depend on $\frac{3}{3}\chi^2$ xi or y, , only a constité de pensandin, on precion or apperiment $\chi^2 = \frac{2}{5} \frac{(y_1^2 - x_1^2)^2}{6i^2}$ = -2 log 2 + cont) Large Probability SMALL X2 => Jetz and predicting Giz A Ni asrec X¿ ~> N!

$$\chi^{2} = \frac{\left(\chi_{prel} - \chi_{res}\right)^{2}}{6i}$$

$$\chi^2 = \frac{2}{2} \left(\frac{a \times b - y_i}{B_i^2} \right)^2$$

$$\frac{\partial x^2}{\partial a} = \frac{2(ax_i + b - y_i) \cdot x_i}{6i^2} = 0$$

$$\frac{\partial \gamma^2}{\partial b} = \frac{2(ax_i + b - g_i)}{\partial z^2} = 0$$

$$a(x^2) + b(x) - (xy) = 0$$

$$\alpha \langle x \rangle + bN - \langle y \rangle = 0$$

$$a (x^2)(x) + b (x)^2 - (xy)(x^2) = 0$$

$$a (x) (x^2) + b N (x^2) - (y)(x^2) = 0$$