

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

ENTHUSIAST COURSE

PHASE: MEA,B,C,D,L,M,U,N,O,P,Q & MEPS

TARGET: PRE-MEDICAL 2025

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 21-11-2024

	N				W	EV	
/ 1	١,	9	Ġ.	ı	M	EY	

Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	3	1	4	3	2	4	3	2	2	3	3	4	3	4	1	1	4	1	3	1	3	4	3	3	4	4	4	3	4	4
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	2	2	1	3	2	4	4	1	2	2	2	1	1	3	3	2	3	3	2	2	4	2	1	2	1	1	1	3	1	4
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	2	3	3	3	2	2	2	4	2	3	4	3	3	1	3	1	1	3	3	4	2	3	3	2	2	2	1	1	4	1
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	3	2	3	1	2	2	4	3	3	3	1	2	2	1	3	2	4	3	2	1	1	2	4	4	4	3	1	4	3	2
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	4	1	2	2	3	2	1	2	1	2	3	4	3	1	1	2	3	3	4	3	4	2	3	3	3	3	4	3	3	2
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	3	2	4	3	3	4	3	1	4	1	1	2	1	4	3	3	2	4	2	3	3	4	1	3	1	2	3	3	3	3
Q.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200										
A.	4	2	2	3	4	2	3	2	3	3	4	2	2	1	1	3	2	1	3	3										

HINT - SHEET

SUBJECT: PHYSICS

SECTION - A

1. Ans (3)

[Tension] =
$$[MLT^{-2}]$$

[surface tension] = $\frac{[MLT^{-2}]}{[L]}$ = $[ML^0T^{-2}]$

2. Ans (1)

Kilogram is a unit

3. Ans (4)

$$\begin{split} [E] &= [ML^2T^{-2}], [m] = [M] \\ [L] &= [ML^2T^{-1}], [G] = [M^{-1}L^3T^{-2}] \\ & \therefore \left[\frac{EL^2}{m^5G^2} \right] = \frac{[ML^2T^{-2}][M^2L^4T^{-2}]}{[M^5][M^{-2}L^6T^{-4}]} \\ &= [M^0L^0T^0] \end{split}$$

As angle has no dimensions, therefore $\frac{EL^2}{m^5G^2}$ has the same dimensions as that of angle.

4. Ans (3)

Dimension of angles are always zero.

∴
$$[B] = L^{-1}$$

∴ $[D] = T^{-1}$
 $[DB] = [L^{-1}T^{-1}]$

5. Ans (2)

Given,
$$T \propto G^a m_s^b r^c$$

 $[T] = T$
 $[G] = \left[\frac{Fr^2}{m^2}\right] = M^{-1}L^3T^{-2}$
 $[m_s] = m$
 $[r] = L$
 $\therefore [T] \propto [M^{-1} L^3 T^{-2}]^a [M]^b [L]^c$
 $\Rightarrow [T] \propto [M]^{-a+b} [L]^{3a+c} [T]^{-2a}$
 $-a+b=0$...(1)
 $3a+c=0$...(2)
& $-2a=1$...(3)
solving, $a=b=\frac{-1}{2}$, $C=\frac{3}{2}$
 $\therefore a+b+2c=-\frac{1}{2}-\frac{1}{2}+3=2$

6. Ans (4)

If the digit to be rounded off is 5 then the preceding digit is increased by one if it is odd.

7. Ans(3)

$$\begin{split} \frac{\Delta \rho}{\rho} \times 100 &= \left[\frac{\Delta M}{M} + \frac{\Delta V}{V}\right] \times 100 \\ &= \left[\frac{0.05}{5} + \frac{0.05}{1}\right] + 100 = 6\% \end{split}$$

9. Ans (2)

Least count of vernier callipers

$$= \left(1 - \frac{9}{10}\right) \times 1 \text{mm} = 0.1 \text{mm}$$

Zero error = $VSR \times LC = 3 \times 0.1 = 0.3 \text{ mm}$

Reading =
$$MSR + VSR \times LC$$

$$= 13$$
mm $+ 7 \times 0.1$ mm $= 13.7$ mm

Correct reading = Reading - Zero error

$$= 13.7 - 0.3 \text{ mm} = 13.4 \text{ mm}$$

10. Ans (3)

Volume of cylinder V = $\frac{\pi d^2 L}{4}$

∴ Percentage error in volume

$$\Rightarrow \frac{\Delta V}{V} \times 100 = \frac{2\Delta d}{d} \times 100 + \frac{\Delta l}{l} \times 100$$
$$= 2\left(\frac{0.01}{2.0}\right) \times 100 + \frac{0.1}{5.0} \times 100$$
$$= 3\%$$

11. Ans (3)

Pitch =
$$\frac{\text{distance moved on main scale}}{\text{no. of rotation}}$$
Pitch =
$$\frac{0.01}{1} = 0.01 \text{ cm}$$
L.C. =
$$\frac{\text{Pitch}}{\text{No. of division}} = \frac{0.01}{100}$$
L. C. =
$$10^{-4} \text{ cm}$$

12. Ans (4)

Least count of screw gauge = $\frac{0.5}{50}$ mm = 0.01 mm ∴ Reading = [Main scale reading + circular scale reading × L.C.] – (zero error)

$$= [3 + 35 \times 0.01] - (-0.03) = 3.38 \text{ mm}$$

13. Ans (3)

The correct value of diameter is upto 3 digits after the decimal as the least count is 0.001 cm

14. Ans (4)

$$\vec{V}(A) = V \hat{i}$$

$$\vec{V}(A) = V \hat{i}$$

$$\vec{V}(B) = \frac{V}{2} \hat{i} - \frac{V}{2} \hat{j}$$

$$\vec{V}_A + \vec{V}_{wind} = \frac{V}{2} \hat{i} - \frac{V}{2} \hat{j}$$

$$\vec{V}_{wind} = -\frac{V}{2} \hat{i} - \frac{V}{2} \hat{j}$$
direction: south-west

15. Ans (1)

$$v = 10 \text{ m/s}$$

$$u = 5 \text{ m/s}$$

16. Ans (1)

$$V_R \sin 30^\circ = V_M = 10$$

$$\therefore$$
 V_R = 20 km/hr

$$\vec{V}_{RM} = 20 \times \frac{\sqrt{3}}{2} = V_R \cos 30^\circ$$

$$\dot{V}_{RM} = 10\sqrt{3} \text{ km/hr}$$

17. Ans (4)

$$[\vec{r}_{final}]_{A} = [\vec{r}_{final}]_{B}$$

$$\vec{r}_{A} + \vec{V}_{A}t = \vec{r}_{B} + \vec{V}_{B}t$$

$$(4\hat{i} + 6\hat{j}) + (6\hat{i} - 2\hat{j})t = (12\hat{i} + 14\hat{j}) + (x\hat{i} - 10\hat{j})t$$

$$4 + 6t = 12 + xt \qquad ...(i)$$

$$6 - 2t = 14 - 10t \qquad(ii)$$

$$\Rightarrow t = 1 \text{ sec}$$

$$\Rightarrow x = 10 - 12 = -2$$

18. Ans (1)

$$\begin{aligned} |\vec{v}_{BA}| &= \sqrt{20^2 + 20^2} = 20\sqrt{2} \text{ kmph} \\ \text{distance OB} &= 100 \text{ cos}45^\circ = 50\sqrt{2} \text{km} \\ \text{Time taken to reach the shortest distance} \\ \text{between A \& B} &= \frac{50\sqrt{2}}{|\vec{v}_{BA}|} = \frac{50\sqrt{2}}{20\sqrt{2}} \\ t_{sn} &= 2.5 \text{ hrs.} \end{aligned}$$

19. Ans (3)

$$H = \frac{1}{2}g(5)^{2} = \frac{1}{2}(10)(5)^{2} = 125m$$

$$h_{1} = \frac{1}{2}g(3)^{2} = 45m$$

$$h_{2} = H - h_{1} = 80m$$
But $h_{2} = \frac{1}{2}g(t_{1} - 3)^{2}$
So, $80 = \frac{1}{2}(10)(t_{1} - 3)^{2}$

$$\Rightarrow t_{1} - 3 = 4 \Rightarrow t_{1} = 7s$$

20. Ans (1)

$$S = t^{3} - 3t^{2} + 2$$

$$v = 3t^{2} - 6t$$

$$a = 6t - 6 = 0$$

$$t = 1 \text{ sec}$$

$$s(t = 1) = (1)^{3} - 3(1)^{2} + 2 = 0$$

$$a = \frac{udM/dt}{M_0 - tdm/dt}$$
$$= \frac{5000 \times 10}{1500 - 500} = \frac{5000 \times 10}{1000} = 50 \text{ m/s}^2$$

22. Ans (4)

Linear Momentum $p = (3t^2 - 4t + 6) \text{ kg m/s}$ Initial Momentum (at t = 0) $\Rightarrow p_i = 3(0)^2 - 4(0) + 6 = 6 \text{ kg m/s}$ Final Momentum (at t = 2)

$$\Rightarrow$$
 p_f = 3(2)² - 4(2) + 6 = 10 kg m/s

So Average force $F_{avg} = \frac{\Delta p}{\Delta t} = \frac{p_f - p_i}{t_f - t_i}$ = $\frac{10 - 6}{2 - 0} = \frac{4}{2} = 2$ Newton

23. Ans (3)

If body is stationary $\vec{F}_{net} = \vec{0}$

24. Ans (3)

$$T = F\left(1 - \frac{x}{L}\right) = 5\left(1 - \frac{1}{5}\right)$$
$$T = 5 \times \frac{4}{5} = 4 \text{ N}$$

26. Ans (4)

Contact force and weight cancel each other.

27. Ans (4)

$$a_{1} = g sin \theta = g/\sqrt{2}$$

$$a_{2} = g sin \theta - kg cos \theta = \frac{g}{\sqrt{2}} - \frac{kg}{\sqrt{2}}$$

$$t_{2} = nt_{1} \& a_{1}t_{1}^{2} = a_{2}t_{2}^{2}$$

$$\frac{g}{\sqrt{2}}t_{1}^{2} = \left(\frac{g}{\sqrt{2}} - \frac{kg}{\sqrt{2}}\right)n^{2}t_{1}^{2}$$

$$k = 1 - \frac{1}{n^{2}}$$

28. Ans (3)

$$F = 0.3 \times 300 \text{ g} + 0.2 \times 100 \text{ g}$$
$$= 900 + 200$$
$$= 1100 \text{ N}$$

29. Ans (4)

$$\left(\frac{dm}{dt}\right)' = n^2 \left(\frac{dm}{dt}\right)$$

$$\rho A v' = n^2 (\rho A v)$$

$$v' = n^2 v$$

$$\therefore P = \rho A v^3$$

$$Now, P' = \rho A v'^3$$

$$P' = \rho A n^6 v^3$$

$$P' = n^6 (\rho A v^3)$$

$$P' = n^6 P$$

So, the power of motor should be increased n⁶ times.

30. Ans (4)

Net work done = $KE_f - KE_i$

(F) (5) (-1) =
$$\frac{1}{2}$$
m $\left(\frac{v}{2}\right)^2 - \frac{1}{2}$ mv²
- F × 5 = $\frac{1}{2}$ mv² $\left(\frac{-3}{4}\right)$ (i)

(F) (x) (-1) =
$$0 - \frac{1}{2} m \left(\frac{v}{2}\right)^2$$

$$-F.(x) = -\frac{1}{2} \text{ mv}^2 \left(\frac{1}{4}\right) ...(ii)$$

$$\Rightarrow \frac{5}{x} = 3 \Rightarrow x = \frac{5}{3}$$
 cm

31. Ans (2)

By COME : loss in gravitation PE = gain in spring PE

$$5 \times 10 \times 10 = \frac{1}{2} \times (40)x^{2}$$

$$x^{2} = 25$$

$$x = 5 \text{ m}$$

32. Ans (2)

$$W = \frac{1}{2} k \left[x_f^2 - x_i^2 \right]$$

$$W = \frac{1}{2} \times 800 \left[\left(\frac{15}{100} \right)^2 - \left(\frac{5}{100} \right)^2 \right]$$

$$W = \frac{1}{2} \times 800 \times \frac{2}{100} = 8J$$

33. Ans (1)

$$U = \frac{1}{2}kx^2$$

⇒ parabolic curve

34. Ans (3)

$$E = \frac{p^2}{2m}$$

$$\sqrt{E} \propto p, X \propto \frac{1}{y}$$

 \Rightarrow graph between \sqrt{E} & $\frac{1}{p}$ is rectangular hyperbola.

35. Ans (2)

$$W = \int F dx$$

$$W = \int_{0}^{2} (1x + 1x^{2}) dx$$

$$W = \left| \frac{x^{2}}{2} + \frac{x^{3}}{3} \right|_{0}^{2}$$

$$W = \left(\frac{4}{2} + \frac{8}{3} \right) - (0)$$

$$= 2 + \frac{8}{3} = \frac{14}{3} \text{ Joule}$$

SECTION - B

36. Ans (4)

$$\begin{aligned} &n_1 u_1 = n_2 u_2 \\ &1 \ M_1 L_1^{-1} T_1^{-2} = n_2 M_2 L_2^{-1} T_2^{-2} \\ &n_2 = \left[\frac{1}{4}\right]^1 \left[\frac{1}{10}\right]^{-1} \left[\frac{1}{1}\right]^{-2} = \frac{5}{2} \end{aligned}$$

37. Ans (4)

Addition/substraction or exp/log or trigonometric terms cannot be revealed using diemensional analysis.

39. Ans (2)

MSD = 0.05 cm, VSD =
$$\frac{2.45}{50}$$

Vernier constant = 1 MSD -1 VSD
= $\frac{1}{50}$ MSD (where 1 MSD = 0.5 mm)
LC = $\frac{1}{50} \times \frac{1}{2}$ mm = $\frac{1}{100}$ mm = 0.001cm
Reading =5.10+VC×24=5.10+0.024=5.124cm

40. Ans (2)

Given that, 25 VSD = 24 MSDor, $1 \text{ VSD} = \frac{24}{25} \text{ MSD}$ or, 1 VSD = 0.96 MSD

Now, least count of vernier calipers, is LC = 1

$$MSD - 1 VSD$$

or,
$$LC = 0.04 MSD$$

1 cm is divided into 20 parts. Hence, 1 main scale division is $\frac{1}{20}$ cm = $\frac{1}{2}$ mm

Using this, LC =
$$\frac{0.04}{2}$$

or, LC = 0.02 mm is our required least count.

ALLEN®

41. Ans (2)

$$R = 3 \times 1 \text{ mm} + 25 \times 0.01 \text{ mm}$$

 $R = 3 \text{ mm} + 0.25 \text{ mm} = 3.25 \text{ mm}$

42. Ans (1)

Pitch =
$$\frac{P \text{ mm}}{N}$$

$$LC = \frac{P \text{ itch}}{No. \text{ of division}}$$

$$LC = \frac{P}{N(100)} \text{ mm}$$

$$Reading = \frac{2P}{N} \text{mm} + \frac{45P}{100N} \text{mm}$$

43. Ans (1)

To catch the ball, person speed $\left(\frac{v_0}{2}\right)$ should be exactly equal to the horizontal component of velocity of ball ($v_0 \cos \theta$).

44. Ans (3)

Because time of flight only depends on the vertical component of velocity.

45. Ans (3)

For
$$0 < x < 100$$

v = kx

We know,
$$a = \frac{vdv}{dx} = kx \times \frac{d(kx)}{dx}$$

 $\therefore a = k^2x \Rightarrow [a \propto x]$

for,
$$100 < x < 200$$
.

 $v = -kx + x_0$ (velocity is decreasing with distance)

$$a = \frac{vdv}{dx} = (-kx + x_0)\frac{d}{dx}(-kx + x_0)$$

$$a = -k (-kx + x_0)$$

$$a = k^2 x - kx_0 \Rightarrow [a \propto x]$$

Since velocity is decreasing with distance for 100 < x < 200, acceleration is negative for this range.

46. Ans (2)

Let
$$m_1 = m$$
; $m_2 = M$;

given:
$$m < < M$$
;

$$: T = \frac{2m_1m_2g}{m_1 + m_2} = \frac{2mMg}{M\left(1 + \frac{m}{M}\right)}$$

$$\therefore$$
 T = 2mg

$$\frac{\mathbf{m}}{\mathbf{M}} \approx 0$$

47. Ans (3)

Speed along the string at every point is same.

$$v_1 \cos \theta_1 = v_2 \cos \theta_2$$

$$\frac{\mathbf{v}_1}{\mathbf{v}_2} = \frac{\cos \theta_2}{\cos \theta_1}$$

48. Ans (3)

$$F \propto S^{1/3}$$

$$m\left(v\frac{dv}{ds}\right) \propto S^{1/3}$$

$$v^2 \propto S^{4/3}$$

$$v \propto S^{2/3}$$

$$P = FV$$

$$P \propto (S^{1/3}) S^{2/3}$$

$$P \propto S^1$$

49. Ans (2)

(A) Area =
$$ax = \frac{v^2 - 4^2}{2}$$

$$\frac{v^2 - 4^2}{2} = 2 \times 4 + \frac{1}{2} \times 4 \times 2$$

$$v^2 = 40$$
 (1)

$$\therefore \text{ K.E} = \frac{1}{2} \times 1 \times 40 = 20 \text{ J}$$

∴ K.E =
$$\frac{1}{2}$$
 × 1 × 40 = 20 J
(B) W_C = $-\Delta U = -[(-120) - (120)]$
= 240 J

(C)
$$W = \Delta K.E =$$

$$\frac{1}{2}$$
m $(v^2 - u^2) = \frac{1}{2} \times (40 - 16) = 12$ J

(D)
$$W_{Ext} = \Delta K.E - W_C = 12 - 240$$

50. Ans (2)

SUBJECT: CHEMISTRY

SECTION - A

54. Ans (2)

$$2H_2 + O_2 \rightarrow 2H_2O$$

 $n = \frac{64}{2} = 32, \frac{64}{32} = 2$
at 't' $32 - 2x \ 2 - x \ 2x$
 $LR = \text{oxygen} \therefore x = 2$
 $\therefore 28 \text{ mol } H_2$ 4 mol H_2O
 $= 28 \times 2 = 56g$ 4 × $18 = 72 \text{ g}$

57. Ans (1)

NCERT-XI, Pg. # 244, Part-1 Disproportionation reaction is that redox reaction in which same element is getting oxidized as well as reduced simultaneously.

59. Ans (1)

63. Ans (3)

$$\Delta n_g = + ve$$

64. Ans (3)

$$K_p = K_c \times RT$$
 ... (i)
 $K_p = 2 \times K_c$ (ii)
 $RT = 2$
 $\Rightarrow T = \frac{2}{R} = \frac{2}{0.0821} = 2 \times 12.18 = 24.36 \text{ K}$

66. Ans (2)

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

$$5 \qquad 1 \qquad 1$$

$$Q = \frac{1 \times 1}{5} = 10^{-2}$$

$$Q > K_C \Rightarrow \text{ reaction goes backward}$$

71. Ans (4)

$$H_2NCOONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$$

 $2x$ x
 $K_p = (2x)^2x = 4x^3$
 $\Delta G^\circ = -RT \ln K_p$
 $\Delta G^\circ = -RT \ln 4x^3$
 $= -RT \ln 4 - 3RT \ln x$

75. Ans (3)

$$W = -P (V_2 - V_1) = -0.6 (0.3 - 0.5)$$

= 0.12 L-atm = 12.156 J
$$\Delta E = W + Q = 12.156 - 10 = 2.156 J$$

76. Ans (1)

NCERT-XI, Pg. # 172
$$\frac{1}{2}H_{2(g)} + \frac{1}{2}X_{2(g)} \rightarrow HX_{(g)}\Delta H = -50 \text{ kJ}$$

$$\Delta H = \Sigma(B. \text{ E.})_{\text{Reactants}} - \Sigma(B. \text{ E.})_{\text{Products}}$$

77. Ans (1)

(i)
$$\text{CuSO}_4(s) \rightarrow \text{CuSO}_4(\text{aq.}) \Delta H = -15.89$$

(ii) CuSO_4 . $5\text{H}_2\text{O}(s) \rightarrow \text{CuSO}_4(\text{aq.}) \Delta H = 2.80$
(iii) $\text{CuSO}_4(s) \rightarrow \text{CuSO}_4$. $5\text{H}_2\text{O}(s)$
 $\text{eq}(\text{iii}) = \text{eq}(\text{i}) - \text{eq}(\text{ii})$
 $= -15.89 - 2.80$
 $\Rightarrow -18.69 \text{ kcal}$

79. Ans (3)

Liquid is more stable have more attraction force So in case of liquid formation more heat is release So Q_2 is more than Q_1

$$WA + SB \Rightarrow pH \text{ range} \Rightarrow 7-11 \Rightarrow HPh$$

$$\alpha = 1 \text{ for NaOH}$$

NaOH(aq) $\longrightarrow \text{Na}^+(\text{aq}) + \text{OH}^-(\text{aq})$

Ni(OH)₂(s) $\rightleftharpoons \text{Ni}^{+2}_{s'}(\text{aq}) + 2\text{OH}^-(\text{aq})$

Ionic product = (S') (0.1 + 2S')²
 $2 \times 10^{-15} = \text{S'}(0.1)^2$

S' = 2×10^{-13} M

SECTION - B

- 90. Ans (1) $IO_3^- + 5I^- + 6H^+ \rightarrow 3H_2O + 3I_2$
- 92. Ans (2)
 Smaller the value of dissociation constant, stable will be the reactant.
- 94. Ans (1) $w = -2.303 \text{ nRT } \log_{10} \frac{V_2}{V_1}$
- 96. Ans (2) $A(g) + 2B(g) \rightarrow C(g)$ $\Delta n_g = 1 - 3 = -2$ $\Delta H = \Delta U + \Delta n_g RT$ $= -10 + \frac{(-2) \times 2 \times 500}{1000} = -12 \text{ kcal}$ $\Delta G = \Delta H - T\Delta S$ $\Delta G = -12 - \frac{500 \times (-20)}{1000}$ = -12 + 10 = -2 kcal/mol
- 99. Ans (3) For ppt $(Q_{SP} > K_{SP})$ $BaF_{2(s)} \rightleftharpoons Ba^{+2} + 2F^{-}$ S = 0.3 $K_{sp} = [Ba^{+2}][F^{-}]^{2}$ $1 \times 10^{-6} = S \times (0.3)^{2}$ $[Ba^{+2}] \Rightarrow S = 1.1 \times 10^{-5}$

SUBJECT: BOTANY

SECTION - A

- **101. Ans (1)** NCERT-XI, Pg # 8
- **102. Ans (2)** NCERT-XI, Pg. # 8
- **103. Ans (2)** NCERT-XI, Pg. # 6 & 7
- **104. Ans (1)** NCERT Pg # 5, 8
- 105. Ans (3) NCERT Pg.# 8
- **106.** Ans (2) NCERT XI Pg.# 10, 11
- **107. Ans (4)** NCERT-XI, Pg # 11
- **108.** Ans (3) NCERT XI, Pg # 15

- **109.** Ans (2) NCERT-XI, Page # 20
- 110. Ans (1) NCERT XI, Pg # 17,18
- 111. Ans (1) NCERT Pg # 16
- 112. Ans (2) NCERT-XI, Pg. # 20, 21
- 113. Ans (4) NCERT Pg. # 15
- **114. Ans (4)** NCERT Pg. # 18
- 115. Ans (4) NCERT Pg. # 91
- **116. Ans (3)** NCERT Pg. # 91
- **117. Ans (1)** NCERT-XI, Pg. # 14
- **118. Ans (4)** NCERT-XI, Pg. # 15 & 16
- 119. Ans (3) NCERT, Pg. # 28
- **120.** Ans (2) NCERT-XI, Pg # 27,28
- 121. Ans (4) NCERT XI Page # 27,28
- **122. Ans (1)** NCERT-XI, Pg # 24,29,30,32
- 123. Ans (2) NCERT XI Pg. # 30
- **124. Ans (2)** NCERT Pg. # 28
- **125. Ans (3)** NCERT Pg. # 30, 32
- **126. Ans (2)** NCERT-XII Pg#32,33
- **127. Ans (1)** NCERT XI Page No. # 32
- 128. Ans (2) NCERT Pg. # 30
- **129.** Ans (1) NCERT-XI, Page # 33
- **130.** Ans (2) NCERT, Pg # 32,33

ALLEN®

- **131. Ans (3)** NCERT-XI Pg. # 32,33
- **132. Ans (4)** NCERT Page # 32
- 133. Ans (3) NCERT page No. # 32,33
- **134. Ans (1)** NCERT XI Pg # 32,33
- **135. Ans (1)** NCERT-XI, Pg # 29,30,33

SECTION - B

- **136. Ans (2)** NCERT-XI, Pg. # 3, 4, 5 (old)
- **137. Ans (3)** NCERT Page No. 23
- **138. Ans (3)** NCERT-XI, Pg # 13
- 139. Ans (4) NCERT XI Pg # 18
- **140. Ans (3)** NCERT-XII, Pg. # 14-16
- 141. Ans (4) NCERT, Pg. # 20
- **142. Ans (2)** NCERT Pg. # 17,18
- **143. Ans (3)** NCERT-XI, Pg. # 17
- **144. Ans (3)** NCERT-XI, Pg. # 15
- **145. Ans (3)** NCERT XI, Pg # 27
- **146. Ans (3)** NCERT XI, Pg # 27
- 147. Ans (4) NCERT-XI Pg. # 25,33 Red Algae
- **148. Ans (3)** NCERT Pg. # 30,36
- **149.** Ans (3) NCERT, Pg. # 29,30,32
- 150. Ans (2) NCERT XI Pg. # 32

SUBJECT: ZOOLOGY

SECTION - A

- **162.** Ans (2) NCERT XI, Pg # 58 to 60
- **164. Ans (4)** NCERT, Pg # 49,50
- **165. Ans (3)** NCERT, Pg # 46, 48
- 167. Ans (2) NCERT, Pg # 8
- **169. Ans (2)** NCERT Pg. # 80
- **170. Ans (3)** NCERT Pg. # 117-119
- **173. Ans (1)** NCERT-XI, Pg # 101
- **175. Ans (1)** NCERT Pg. # 40,41,42
- **176. Ans (2)** NCERT-XI, Pg. # 49-50
- **182. Ans (2)** NCERT-XII, Pg. # 119
- **185. Ans (4)** NCERT Pg. # 79,80

SECTION - B

- **187. Ans (3)** NCERT Pg.# 113
- 188. Ans (2) NCERT-XII, Pg. # 114
- **192. Ans (2)** NCERT-XII, Pg. # 40
- 193. Ans (2) NCERT Pg.#56
- 196. Ans (3)
 Module
- 197. Ans (2) NCERT XI Pg # 101, Para 7.1.1, Fig. 7.1 (a), (b), (c) and (d)
- **198. Ans (1)** NCERT Pg. # 114