Final Project Submission

- Neal lyer
- Self Pace/Flex

Data Introduction Summmary

Introduce Data before presenting it in code below

First step is to import pandas and matplot lib in order to run the code needed to analyze the data.

Importing Pandas and Opening Datafile to Inspect and analyze elements

```
In [2]:
```

```
# Import Pandas and Matplotlib
import pandas as pd
import matplotlib.pyplot as plt
```

In [3]:

```
planes_df = pd.read_csv('Aviation_Data.csv')
planes_df.sort_values(by=('Total.Fatal.Injuries'), ascending=False)

C:\Users\neali\AppData\Local\Temp\ipykernel_9152\1510018960.py:1: DtypeWarning: Columns (
6,7,28) have mixed types. Specify dtype option on import or set low_memory=False.
    planes_df = pd.read_csv('Aviation_Data.csv')
```

Out[3]:

	ypc	Accident.Number	Event.Date	Location	Country	Latitude	Longitude	Airport
020124X00116	Accident	DCA97WA007B	1996-11- 12	New Delhi, India	India	NaN	NaN	
020124X00116	Accident	DCA97WA007A	1996-11- 12	New Delhi, India	India	NaN	NaN	
140718X92314	Accident	DCA14RA127	2014-07- 17	Hrabove, Ukraine	Ukraine	NaN	NaN	
001213X27403	Accident	DCA89RA014	1988-12- 21	LOCKERBIE, United Kingdom	United Kingdom	NaN	NaN	
011130X02321	Accident	DCA02MA001	2001-11- 12	Belle Harbor, NY	United States	NaN	NaN	
NaN	15-12-2022	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	15-12-2022	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	15-12-2022	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	20-12-2022	NaN	NaN	NaN	NaN	NaN	NaN	
NaN	20-12-2022	NaN	NaN	NaN	NaN	NaN	NaN	
1	020124X00116 040718X92314 001213X27403 011130X02321 NaN NaN NaN	020124X00116 Accident 040718X92314 Accident 001213X27403 Accident 011130X02321 Accident NaN 15-12-2022 NaN 15-12-2022 NaN 15-12-2022 NaN 20-12-2022	Description Description Description	D20124X00116 Accident DCA97WA007B 12 D20124X00116 Accident DCA97WA007A 1996-11-12 140718X92314 Accident DCA14RA127 2014-07-17 17 D01213X27403 Accident DCA89RA014 1988-12-21 1011130X02321 Accident DCA02MA001 2001-11-12 12 NaN 15-12-2022 NaN NaN NaN 15-12-2022 NaN NaN NaN 15-12-2022 NaN NaN NaN 15-12-2022 NaN NaN NaN NaN NaN NaN	Accident DCA97WA007B 12 India	Accident DCA97WA007B 12 India India	120124X00116	120124X00116

4

After viewing the layout of the data, it is time to further filter and identify the different columns and datatypes of the file.

Þ

```
In [4]:
planes df.info
planes df.dtypes
planes df.columns
Out[4]:
Index(['Event.Id', 'Investigation.Type', 'Accident.Number', 'Event.Date',
       'Location', 'Country', 'Latitude', 'Longitude', 'Airport.Code', 'Airport.Name', 'Injury.Severity', 'Aircraft.damage',
       'Aircraft.Category', 'Registration.Number', 'Make',
       'Amateur.Built', 'Number.of.Engines', 'Engine.Type', 'FAR.Description',
       'Schedule', 'Purpose.of.flight', 'Air.carrier', 'Total.Fatal.Injuries',
       'Total.Serious.Injuries', 'Total.Minor.Injuries', 'Total.Uninjured',
       'Weather.Condition', 'Broad.phase.of.flight', 'Report.Status',
       'Publication.Date'],
      dtype='object')
In [5]:
planes df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 90348 entries, 0 to 90347
Data columns (total 31 columns):
   Column
                            Non-Null Count Dtype
____
   Event.Id
                             88889 non-null object
0
    Investigation. Type
 1
                             90348 non-null object
 2
    Accident.Number
                             88889 non-null object
                             88889 non-null object
 3
   Event.Date
 4
   Location
                             88837 non-null object
 5
                            88663 non-null object
    Country
                            34382 non-null object
 6
   Latitude
 7
   Longitude
                            34373 non-null object
 8 Airport.Code
                            50249 non-null object
 9 Airport.Name
                            52790 non-null object
10 Injury.Severity
                            87889 non-null object
11 Aircraft.damage
                            85695 non-null object
12 Aircraft.Category 32287 non-null object
13 Registration.Number 87572 non-null object
14 Make
                            88826 non-null object
                            88797 non-null object
15 Model
                            88787 non-null object
16 Amateur.Built
                           82805 non-null float64
    Number.of.Engines
17
18 Engine. Type
                             81812 non-null object
    FAR.Description
                             32023 non-null object
19
                             12582 non-null object
 20
    Schedule
21 Purpose.of.flight 82697 non-null object
                             16648 non-null object
22 Air.carrier
23 Total.Fatal.Injuries 77488 non-null float64
24 Total.Serious.Injuries 76379 non-null float64
25 Total.Minor.Injuries 76956 non-null float64
26 Total.Uninjured 82977 non-null float6
27 Weather.Condition 84397 non-null object
                            82977 non-null float64
28 Broad.phase.of.flight 61724 non-null object
                       82508 non-null object
73659 non-null object
29 Report.Status
30 Publication.Date
dtypes: float64(5), object(26)
```

As we can see, most columns are objects, with a few float64 (integer) columns. Now, I will create an adittional column titled "Total Injuries" that acts as a weighted measure of total fatal injuries, total serious injuries, and total minor injuries.

memory usage: 21.4+ MB

ialai ilijuileo, lulai selluus ilijuileo, allu lulai iliiliui ilijuiles.

In [6]: #create new column documenting total injuries, fatal + major + minor planes df['Total.Fatal.Injuries'].fillna(0, inplace=True)

planes df['Total.Serious.Injuries'].fillna(0,inplace=True) planes df['Total.Minor.Injuries'].fillna(0,inplace=True) planes df['Total Injuries'] = planes df['Total.Fatal.Injuries'] * 0.6 + planes df['Total .Serious.Injuries'] * 0.4 + planes df['Total.Minor.Injuries'] * 0.2 planes df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 90348 entries, 0 to 90347 Data columns (total 32 columns):

Column Non-Null Count Dtype 0 Event.Id 88889 non-null object Investigation.Type 90348 non-null object Accident.Number 88889 non-null object Event.Date 88889 non-null object 1 Event.Date 3 4 Location 88837 non-null object 5 Country 88663 non-null object 5 Country 88663 non-null object 6 Latitude 34382 non-null object 7 Longitude 34373 non-null object 8 Airport.Code 50249 non-null object 9 Airport.Name 52790 non-null object 10 Injury.Severity 87889 non-null object 11 Aircraft.damage 85695 non-null object 12 Aircraft.Category 32287 non-null object 13 Registration.Number 87572 non-null object 14 Make 88826 non-null object 15 Model 88797 non-null object 15 Model 88797 non-null object 15 Model 88797 non-null object
16 Amateur.Built 88787 non-null object
17 Number.of.Engines 82805 non-null float64
18 Engine.Type 81812 non-null object
19 FAR.Description 32023 non-null object
20 Schedule 12582 non-null object
21 Purpose.of.flight 82697 non-null object
22 Air.carrier 16648 non-null object
23 Total.Fatal.Injuries 90348 non-null float64
24 Total Serious Injuries 90348 non-null float64 24 Total.Serious.Injuries 90348 non-null float64 25 Total.Minor.Injuries 90348 non-null float64 26 Total.Uninjured 82977 non-null float64 27 Weather.Condition 84397 non-null object 28 Broad.phase.of.flight 61724 non-null object 29 Report.Status 82508 non-null object 30 Publication.Date 73659 non-null object 31 Total Injuries 90348 non-null float64 dtypes: float64(6), object(26)

memory usage: 22.1+ MB

Data Analysis

At this step in the process, we will begin compartmentalizing data and taking detailed looks at each aspect we want to investigate further in order to discover appropriate stakeholder solutions.

First step- analyze number of total injuries per Number of Engines.

```
In [20]:
```

```
num eng = planes df.groupby('Number.of.Engines')['Total Injuries'].sum().reset index()
num eng sorted = num eng.sort values(by='Total Injuries', ascending=False)
num eng sorted
```

Out[20]:

	Number.of.Engines	Total Injuries
1	1.0	22399.8
2	2.0	8586.8
4	4.0	1193.8
3	3.0	894.8
0	0.0	522.6
6	8.0	9.0
5	6.0	0.0

Create Visualization highlighting above analysis

In [26]:

```
# Define a list of colors, one for each bar
colors = ['red', 'blue', 'green', 'orange', 'purple', 'brown', 'pink']
# Plotting
plt.figure(figsize=(10, 6))
plt.scatter(num_eng_sorted['Number.of.Engines'], num_eng_sorted['Total Injuries'], color=
colors) # Create a scatter plot
# Adding title and labels
plt.title('Total Injuries by Number of Engines')
plt.xlabel('Number of Engines')
plt.ylabel('Total Injuries')
# Set x-axis ticks to show each integer interval
plt.xticks(range(int(num eng sorted['Number.of.Engines'].min()), int(num eng sorted['Number.of.Engines'].min())
er.of.Engines'].max()) + 1))
# Optional: Add text labels next to each point for clarity
for i, txt in enumerate(num_eng_sorted['Total Injuries']):
    plt.annotate(f"{txt:.1f}", (num_eng_sorted['Number.of.Engines'].iat[i], num_eng_sorte
d['Total Injuries'].iat[i]))
# Show the plot
plt.show()
```

Total Injuries by Number of Engines

Analyzing Safest and Most Injury Producing Commercial and Military Aircrafts

Next step is to filter further and investigate the most dangerous Commercial and Military Aircrafts. The assumption being made is that most aircrafts with over 2 engines are commercial and military, also based on the Make (Airbus and Boeing are commercial, Lockheed is military)

```
In [8]:
```

Out[8]:

	Number.of.Engines	Make	Total Injuries sum	Total Injuries count	Injury Percentage
444	3.0	TUPOLEV	53.4	1	53.400000
369	2.0	SUKHOI	26.4	1	26.400000
40	2.0	Aviocar CASA	10.8	1	10.800000
422	3.0	BOEING	50.8	6	8.466667
299	2.0	Mil	7.8	1	7.800000
423	3.0	BRITTEN NORMAN	7.2	1	7.200000
163	2.0	Embraer Aircraft	6.0	1	6.000000
349	2.0	Robertson	11.4	2	5.700000
480	8.0	Lindstrand	5.6	1	5.600000
272	2.0	M7Aero	5.0	1	5.000000
246	2.0	Jetstream	14.4	3	4.800000
471	4.0	Mcdonnell Douglas	109.2	24	4.550000
11	2.0	AIRBUS INDUSTRIE	95.2	21	4.533333
56	2.0	BOEING-VERTOL	4.2	1	4.200000
454	4.0	Boeing	723.8	175	4.136000
37	2.0	Atr	46.4	13	3.569231
478	8.0	Cameron	3.4	1	3.400000
62	2.0	BRITISH AEROSPACE	10.2	3	3.400000
436	3.0	Lockheed	132.2	40	3.305000
23	2.0	Aerostar, S.a	3.0	1	3.000000
401	2.0	Textron Aviation	6.0	2	3.000000
243	2.0	Indonesian Aerospace	3.0	1	3.000000
463	4.0	Douglas	200.6	67	2.994030
448	4.0	Airbus Industrie	11.4	4	2.850000
9	2.0	AIRBUS	383.8	135	2.842963

28	Number.of.Engines	Airbus Industrie	Total Injuries sum	Total Injuries count	Injury Percentage 2.540426
26	2.0	Airbus	79.8	32	2.493750
63	2.0	BRITTEN NORMAN	7.4	3	2.466667
331	2.0	Pilatus Britten-norman	2.4	1	2.400000
289	2.0	Martin Company	4.8	2	2.400000
51	2.0	BHI H60 HELICOPTERS LLC	2.4	1	2.400000
322	2.0	PIPER AIRCRAFT INC	2.4	1	2.400000
470	4.0	Lockheed	69.2	31	2.232258
313	2.0	PARTENAVIA	4.4	2	2.200000
440	3.0	Mcdonnell Douglas	236.2	113	2.090265
473	4.0	Piasecki Acft. Corp.	2.0	1	2.000000

Replace all duplicate values

In [9]:

```
grouped_data["Make"] = grouped_data["Make"].replace("Boeing", "BOEING")
grouped_data["Make"] = grouped_data["Make"].replace("BOEING-VERTOL", "BOEING")
grouped_data["Make"] = grouped_data["Make"].replace("Airbus Industrie", "AIRBUS")
grouped_data["Make"] = grouped_data["Make"].replace("AIRBUS INDUSTRIE", "AIRBUS")
grouped_data["Make"] = grouped_data["Make"].replace("Airbus", "AIRBUS")
grouped_data['Make'] = grouped_data['Make'].str.strip()
grouped_data.sort_values(by=('Total Injuries sum'), ascending=False)
```

Out[9]:

	Number.of.Engines	Make	Total Injuries sum	Total Injuries count	Injury Percentage
454	4.0	BOEING	723.8	175	4.136000
9	2.0	AIRBUS	383.8	135	2.842963
28	2.0	AIRBUS	238.8	94	2.540426
440	3.0	Mcdonnell Douglas	236.2	113	2.090265
463	4.0	Douglas	200.6	67	2.994030
436	3.0	Lockheed	132.2	40	3.305000
471	4.0	Mcdonnell Douglas	109.2	24	4.550000
11	2.0	AIRBUS	95.2	21	4.533333
26	2.0	AIRBUS	79.8	32	2.493750
470	4.0	Lockheed	69.2	31	2.232258
444	3.0	TUPOLEV	53.4	1	53.400000
422	3.0	BOEING	50.8	6	8.466667
37	2.0	Atr	46.4	13	3.569231
369	2.0	SUKHOI	26.4	1	26.400000
246	2.0	Jetstream	14.4	3	4.800000
448	4.0	AIRBUS	11.4	4	2.850000
349	2.0	Robertson	11.4	2	5.700000
40	2.0	Aviocar CASA	10.8	1	10.800000
62	2.0	BRITISH AEROSPACE	10.2	3	3.400000
299	2.0	Mil	7.8	1	7.800000
63	2.0	BRITTEN NORMAN	7.4	3	2.466667

	Number.of.Engines	Make	Total Injuries sum	Total Injuries count	Injury Percentage
423	3.0	BRITTEN NORMAÑ	7.2	1	7.200000
163	2.0	Embraer Aircraft	6.0	1	6.000000
401	2.0	Textron Aviation	6.0	2	3.000000
480	8.0	Lindstrand	5.6	1	5.600000
272	2.0	M7Aero	5.0	1	5.000000
289	2.0	Martin Company	4.8	2	2.400000
313	2.0	PARTENAVIA	4.4	2	2.200000
56	2.0	BOEING	4.2	1	4.200000
478	8.0	Cameron	3.4	1	3.400000
243	2.0	Indonesian Aerospace	3.0	1	3.000000
23	2.0	Aerostar, S.a	3.0	1	3.000000
331	2.0	Pilatus Britten-norman	2.4	1	2.400000
51	2.0	BHI H60 HELICOPTERS LLC	2.4	1	2.400000
322	2.0	PIPER AIRCRAFT INC	2.4	1	2.400000
473	4.0	Piasecki Acft. Corp.	2.0	1	2.000000

In [10]:

```
consolidated_data = grouped_data.groupby(['Make', 'Number.of.Engines']).agg({
    'Total Injuries sum': 'sum',
    'Total Injuries count': 'sum'
}).reset_index()

# Calculate Injury Percentage
consolidated_data['Injury Percentage'] = consolidated_data['Total Injuries sum'] / consolidated_data['Total Injuries count']
consolidated_data.sort_values(by=('Injury Percentage'), ascending=False)
```

Out[10]:

	Make	Number.of.Engines	Total Injuries sum	Total Injuries count	Injury Percentage
31	TUPOLEV	3.0	53.4	1	53.400000
30	SUKHOI	2.0	26.4	1	26.400000
4	Aviocar CASA	2.0	10.8	1	10.800000
7	BOEING	3.0	50.8	6	8.466667
24	Mil	2.0	7.8	1	7.800000
11	BRITTEN NORMAN	3.0	7.2	1	7.200000
14	Embraer Aircraft	2.0	6.0	1	6.000000
29	Robertson	2.0	11.4	2	5.700000
17	Lindstrand	8.0	5.6	1	5.600000
20	M7Aero	2.0	5.0	1	5.000000
16	Jetstream	2.0	14.4	3	4.800000
23	Mcdonnell Douglas	4.0	109.2	24	4.550000
6	BOEING	2.0	4.2	1	4.200000
8	BOEING	4.0	723.8	175	4.136000
3	Atr	2.0	46.4	13	3.569231
12	Cameron	8.0	3.4	1	3.400000
9	BRITISH AEROSPACE	2.0	10.2	3	3.400000
18	Lockheed	3.0	132.2	40	3.305000
32	Textron Aviation	2.0	6.0	2	3.000000

15	Indonesian Aeromake	Number.of.Engine9	Total Injuries surfi	Total Injuries count	Injury Persentage
2	Aerostar, S.a	2.0	3.0	1	3.000000
13	Douglas	4.0	200.6	67	2.994030
1	AIRBUS	4.0	11.4	4	2.850000
0	AIRBUS	2.0	797.6	282	2.828369
10	BRITTEN NORMAN	2.0	7.4	3	2.466667
21	Martin Company	2.0	4.8	2	2.400000
26	PIPER AIRCRAFT INC	2.0	2.4	1	2.400000
28	Pilatus Britten-norman	2.0	2.4	1	2.400000
5	BHI H60 HELICOPTERS LLC	2.0	2.4	1	2.400000
19	Lockheed	4.0	69.2	31	2.232258
25	PARTENAVIA	2.0	4.4	2	2.200000
22	Mcdonnell Douglas	3.0	236.2	113	2.090265
27	Piasecki Acft. Corp.	4.0	2.0	1	2.000000

Filter out Outliers (any Makes with only 1 incident)

In [11]:

```
Consolidated_filter = consolidated_data[consolidated_data['Total Injuries count'] >= 4]
Consolidated_filter.sort_values(by=('Injury Percentage'), ascending=False)
```

Out[11]:

	Make	Number.of.Engines	Total Injuries sum	Total Injuries count	Injury Percentage
7	BOEING	3.0	50.8	6	8.466667
23	Mcdonnell Douglas	4.0	109.2	24	4.550000
8	BOEING	4.0	723.8	175	4.136000
3	Atr	2.0	46.4	13	3.569231
18	Lockheed	3.0	132.2	40	3.305000
13	Douglas	4.0	200.6	67	2.994030
1	AIRBUS	4.0	11.4	4	2.850000
0	AIRBUS	2.0	797.6	282	2.828369
19	Lockheed	4.0	69.2	31	2.232258
22	Mcdonnell Douglas	3.0	236.2	113	2.090265

Construct Graph visualizing above findings on Commercial and Military Aircrafts with highest Injury Percentage with at least 4 total incidents

```
In [12]:
```

```
pivot_df = Consolidated_filter.pivot_table(index='Make', columns='Number.of.Engines', values='Injury Percentage', aggfunc='sum', fill_value=0)

# Plot the stacked bar chart
ax = pivot_df.plot(kind='bar', stacked=True, figsize=(10, 6))
plt.title('Stacked Bar Chart - Make vs Number of Engines vs Injury Percentage')
plt.xlabel('Make')
plt.ylabel('Injury Percentage')
plt.legend(title='Number of Engines', title_fontsize='12')
plt.show()
```

Stacked Bar Chart - Make vs Number of Engines vs Injury Percentage

The above graph shows that Boeing aircrafts have the highest injury percentage per crash with both 3 and 4 engine planes. Mcdonnell Douglas also has a high injury percentage with their 4 engine aircrafts. A business takeaway from this display could be to go with AIRBUS for commercial and Lockheed for Military, respectively.

The next task is to filter the data to display highest injury rates per non commercial and military aircrafts.

In [13]:

```
import pandas as pd
# Group by specified columns and aggregate Total Injuries
outcome = planes df.groupby(['Number.of.Engines', 'Purpose.of.flight', 'Make'])['Total I
njuries'].agg(['sum', 'count']).reset index()
# Rename columns
outcome.columns = ['Number.of.Engines', 'Purpose.of.flight', 'Make', 'Total Injuries', '
Total Incidents']
# Calculate Injury Percentage
outcome['Injury Percentage'] = outcome['Total Injuries'] / outcome['Total Incidents']
# Sort the DataFrame by 'Injury Percentage' in descending order
outcome = outcome[(outcome['Total Incidents'] > 10) & (outcome['Number.of.Engines'] <= 2
) ]
outcome = outcome.sort values(by='Total Injuries', ascending=False)
outcome["Make"] = outcome["Make"].replace("CESSNA", "Cessna")
outcome['Make'] = outcome['Make'].str.strip()
outcome["Make"] = outcome["Make"].replace("PIPER", "Piper")
outcome['Make'] = outcome['Make'].str.strip()
```

```
outcome["Make"] = outcome["Make"].replace("BEECH", "Beech")
outcome['Make'] = outcome['Make'].str.strip()

# Display the result
outcome
```

Out[13]:

	Number.of.Engines	Purpose.of.flight	Make	Total Injuries	Total Incidents	Injury Percentage
3279	1.0	Personal	Cessna	3660.4	12044	0.303919
6687	1.0	Personal	Piper	2776.2	6942	0.399914
2782	1.0	Personal	Beech	957.6	1942	0.493100
3089	1.0	Personal	Cessna	708.8	2541	0.278945
1561	1.0	Instructional	Cessna	592.6	4169	0.142144
2214	1.0	Personal	AMERICAN LEGEND AIRCRAFT CO	0.8	11	0.072727
6921	1.0	Personal	ROCKWELL INTERNATIONAL	0.6	12	0.050000
8716	1.0	Positioning	De Havilland	0.6	13	0.046154
3913	1.0	Personal	EVEKTOR-AEROTECHNIK AS	0.4	15	0.026667
10177	2.0	Unknown	Dornier	0.0	11	0.000000

474 rows × 6 columns

Display Count of each Make with 2 or less Engines based on Total Injuries and Total Incidents and filter out any makes with incident count less than 500.

In [14]:

```
sum_outcome = outcome.groupby(['Make', 'Number.of.Engines'])[['Total Injuries', 'Total I
ncidents', 'Injury Percentage']].sum().reset_index()
sum_outcome = sum_outcome[sum_outcome['Total Incidents'] > 500]
sum_outcome['Injury Percentage'] = sum_outcome['Total Injuries'] / sum_outcome['Total In
cidents']
sum_outcome.sort_values(by='Injury Percentage', ascending=False)
```

Out[14]:

	Make	Number.of.Engines	Total Injuries	Total Incidents	Injury Percentage
40	Beech	2.0	1028.8	1804	0.570288
69	Cessna	2.0	1189.2	2119	0.561208
165	Piper	2.0	1016.0	1969	0.515998
39	Beech	1.0	1426.2	3051	0.467453
155	Mooney	1.0	459.0	1064	0.431391
43	Bell	1.0	670.0	1738	0.385501
164	Piper	1.0	4310.2	12061	0.357367
45	Bellanca	1.0	284.8	850	0.335059
131	Hughes	1.0	207.4	734	0.282561
68	Cessna	1.0	6420.4	23435	0.273966
184	Robinson	1.0	225.8	838	0.269451
118	Grumman	1.0	150.0	978	0.153374
24	Air Tractor	1.0	82.0	547	0.149909

Visualize the above data in a graph best fitting

```
In [64]:
```

```
# Plot 1: Bar Plot for Total Injuries
plt.figure(figsize=(12, 8))
bar plot = sum outcome.groupby(['Make', 'Number.of.Engines'])['Total Injuries'].sum().un
stack().plot(kind='bar', stacked=True)
plt.title('Total Injuries by Make and Number of Engines')
plt.xlabel('Make')
plt.ylabel('Total Injuries')
plt.legend(title='Number of Engines')
plt.show()
# Plot 2: Bar Plot for Total Incidents and Injury Percentage
# Pivot the data for stacked bar chart
pivot df2 = sum outcome.pivot table(index='Make', columns='Number.of.Engines', values=['
Total Incidents', 'Injury Percentage'], aggfunc='sum', fill value=0)
# Plot the stacked bar chart with secondary y-axis for Injury Percentage
fig, ax1 = plt.subplots(figsize=(14, 8))
# Plot Total Incidents on primary y-axis
pivot df2['Total Incidents'].plot(kind='bar', stacked=True, ax=ax1, color=['pink', 'blue
'], position=1, width=0.4)
# Create a secondary y-axis for Injury Percentage
ax2 = ax1.twinx()
pivot df2['Injury Percentage'].plot(kind='bar', stacked=True, ax=ax2, color=['green', 'r
ed'], position=0, width=0.4)
# Set labels and title
ax1.set title('Stacked Bar Chart - Make vs Number of Engines vs Total Incidents and Injur
y Percentage')
ax1.set xlabel('Make')
ax1.set ylabel('Total Incidents', color='black')
ax2.set ylabel('Injury Percentage', color='black')
# Set legends
ax1.legend(title='Number of Engines', title fontsize='12', loc='upper left')
ax2.legend(title='Number of Engines', title fontsize='12', loc='upper right')
plt.show()
# Plot 3: Stacked Bar Graph for Injury Percentage
# Create a stacked bar graph
pivot df3 = sum outcome.pivot(index='Make', columns='Number.of.Engines', values='Injury
Percentage')
pivot df3.plot(kind='bar', stacked=True, colormap='viridis')
# Add labels and title
plt.xlabel('Make')
plt.ylabel('Injury Percentage')
plt.title('Stacked Bar Graph of Make, Number of Engines, and Injury Percentage')
# Show the plot
plt.show()
```

<Figure size 1200x800 with 0 Axes>

Total Injuries by Make and Number of Engines

Stacked Bar Graph of Make, Number of Engines, and Injury Percentage

The Above cell shows that amongst personal aircrafts (2 engines or less), Cessnas have the most total injuries but also the most total incidents, meaning Cessna's are used much more frequently. The results also show that although Cessna's have the most total injuries, Cessna's overall injury perentage is much lower than the other Aircraft Make's with both 1 and 2 engines, including Cessna 2 Engine Planes. Thus, a conclusion could be made that Cessna 1 engine aircrafts are the safest to use.

Step 2- Analyze data to show highest rates of injuries among Phase of Flights

Next, we will analyze safest and most dangerous aircrafts based on Phases of flight (Cruise, Takeoff, Maneuvering, Landing, etc)

```
In [60]:
```

```
# Group by specified columns and aggregate Total Injuries
num_phase = planes_df.groupby(['Broad.phase.of.flight'])['Total Injuries'].agg(['sum', 'count']).reset_index()

# Rename columns
num_phase.columns = ['Broad.phase.of.flight', 'Total Injuries', 'Total Incidents']

# Calculate Injury Percentage
num_phase['Injury Percentage'] = num_phase['Total Injuries'] / num_phase['Total Incident s']

num_phase.sort_values(by='Total Injuries', ascending=False)
```

Out[60]:

	Broad.phase.of.flight	Total Injuries	Total Incidents	Injury Percentage
2	Cruise	5483.2	10269	0.533957
9	Takeoff	4828.6	12493	0.386504
6	Maneuvering	4354.6	8144	0.534700
0	Approach	3578.4	6546	0.546654
1	Climb	1492.0	2034	0.733530
5	Landing	1446.2	15428	0.093739
3	Descent	936.6	1887	0.496343
4	Go-around	631.8	1353	0.466962
11	Unknown	472.4	548	0.862044
8	Standing	272.4	945	0.288254
10	Taxi	205.8	1958	0.105107
7	Other	60.4	119	0.507563

Create Visualization of above Data on Broad Phase of Flights

```
In [62]:
```

```
import numpy as np
filtered_num_phase = num_phase[num_phase['Broad.phase.of.flight'] != 'Unknown']
```

```
# Color
num_colors = len(filtered_num_phase['Broad.phase.of.flight'])
colors = plt.cm.viridis(np.linspace(0, 1, num_colors))

# Plotting
plt.figure(figsize=(10, 8))
bar = plt.barh(filtered_num_phase['Broad.phase.of.flight'], filtered_num_phase['Total Injuries'], color=colors)
plt.xlabel('Total Injuries')
plt.ylabel('Broad Phase of Flight')
plt.title('Total Injuries per Broad Phase of Flight')
plt.grid(axis='x')

# Show
plt.show()
```


Now that we have a general outline of Injury percentages based on phase of flight, we are going to delve deeper and filter the data by make and number of engines. The idea behind this is to understand which Aircrafts have the highest and lowest injury percentage per phase of flight in order to determine an appropriate resolution for stakeholders.

```
In [59]:
```

```
# Group by specified columns and aggregate Total Injuries
phase_counts = planes_df.groupby(['Broad.phase.of.flight', 'Number.of.Engines', 'Make'])
['Total Injuries'].agg(['sum', 'count']).reset_index()

# Rename columns
phase_counts.columns = ['Broad.phase.of.flight', 'Number.of.Engines', 'Make', 'Total Injuries', 'Total Incidents']

# Calculate Injury Percentage
phase_counts['Injury Percentage'] = phase_counts['Total Injuries'] / phase_counts['Total
```

```
Incidents']
# Sort the DataFrame by 'Injury Percentage' in descending order
phase_counts = phase_counts[(phase_counts['Total Incidents'] > 10) & (phase_counts['Numb
er.of.Engines'] <= 8)]
phase_counts.sort_values(by='Total Injuries', ascending=False)</pre>
```

Out[59]:

	Broad.phase.of.flight	Number.of.Engines	Make	Total Injuries	Total Incidents	Injury Percentage
1419	Cruise	1.0	Cessna	1321.0	3170	0.416719
4114	Maneuvering	1.0	Cessna	1072.6	1750	0.612914
5439	Takeoff	1.0	Cessna	970.2	3540	0.274068
1893	Cruise	1.0	Piper	959.4	1732	0.553926
6211	Takeoff	1.0	Piper	753.8	2105	0.358100
2965	Landing	1.0	Christen Industries	0.0	14	0.000000
6947	Taxi	2.0	Douglas	0.0	11	0.000000
2850	Landing	1.0	American Champion (acac)	0.0	15	0.000000
3104	Landing	1.0	Fairchild	0.0	14	0.000000
2914	Landing	1.0	Boeing Stearman	0.0	22	0.000000

393 rows × 6 columns

Filter dataframe "phase counts" for Total Incidents over 500 to remove outliers

In [70]:

```
#create filtered_phase to show injury percentage per phase of flight for incident counts
over 500
filtered_phase = phase_counts.groupby(['Broad.phase.of.flight', 'Number.of.Engines', 'Mak
e'])[['Total Injuries', 'Total Incidents', 'Injury Percentage']].sum().reset_index()
filtered_phase = filtered_phase[filtered_phase['Total Incidents'] > 500]
filtered_phase['Injury Percentage'] = filtered_phase['Total Injuries'] / filtered_phase[
'Total Incidents']
filtered_phase.sort_values(by='Injury Percentage', ascending=False)
```

Out[70]:

	Broad.phase.of.flight	Number.of.Engines	Make	Total Injuries	Total Incidents	Injury Percentage
234	Maneuvering	1.0	Cessna	1072.6	1750	0.612914
72	Cruise	1.0	Beech	302.6	513	0.589864
258	Maneuvering	1.0	Piper	578.4	991	0.583653
98	Cruise	1.0	Piper	959.4	1732	0.553926
302	Takeoff	1.0	Beech	262.4	538	0.487732
24	Approach	1.0	Piper	445.8	970	0.459588
76	Cruise	1.0	Cessna	1321.0	3170	0.416719
230	Maneuvering	1.0	Bell	246.4	600	0.410667
327	Takeoff	1.0	Piper	753.8	2105	0.358100
11	Approach	1.0	Cessna	629.4	1807	0.348312
128	Descent	1.0	Cessna	197.4	576	0.342708
142	Go-around	1.0	Cessna	188.4	564	0.334043
306	Takeoff	1.0	Cessna	970.2	3540	0.274068
120	l andina	1 0	Dinar	1/12 6	2333	U UE3E0E

```
100
                Lanung
                                              FIPCI
                                                            170.0
                                                                            ____
                                                                                          U.UUUUUU
     Broad.phase.of.flight Number.of.Engines
                                                                  Total Incidents
                                              Make
                                                     Total Injuries
                                                                                 Injury Percentage
168
                                                                                          0.036250
367
                    Taxi
                                        1.0 Cessna
                                                             23.2
                                                                             640
```

In [85]:

```
import matplotlib.pyplot as plt
# Assuming filtered phase, pivot incidents, pivot injuries, and pivot percentage are alre
ady defined as per your code
# Creating subplots for three plots
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(12, 15))
# Plotting Total Incidents with labels
pivot incidents.plot(kind='bar', stacked=True, ax=axes[0], title='Total Incidents by Mak
e and Broad Phase of Flight')
axes[0].set ylabel('Total Incidents')
axes[0].legend(loc='upper right')
for container in axes[0].containers:
    axes[0].bar label(container, label type='center')
# Plotting Total Injuries with labels
pivot injuries.plot(kind='bar', stacked=True, ax=axes[1], title='Total Injuries by Make
and Broad Phase of Flight')
axes[1].set ylabel('Total Injuries')
axes[1].legend(loc='upper right')
for container in axes[1].containers:
    axes[1].bar label(container, label type='center')
# Plotting Injury Percentage with percentage labels
pivot percentage.plot(kind='bar', stacked=True, ax=axes[2], title='Injury Percentages by
Make and Broad Phase of Flight')
axes[2].set ylabel('Injury Percentage')
axes[2].legend(loc='upper left')
for container in axes[2].containers:
   axes[2].bar label(container, label type='center')
plt.tight layout()
plt.show()
```


Based on the above data and charts, Cessna has the highest overall injury percentage for the 5 most prevalent common phases of flight.

One may also deduce that, based on the findings, both Cessna and Piper are safest with their landing procedures, as both have the highest incident count and lowest injury totals for all "landing" phases of flight.

Contrastingly, Cessna's "Maneuvering" phase of flight has the highest injury percentage by far with the lowest amount of incidents.

Apart of "Maneuvering" resulting in many injuries, it appears that the "Cruise" phase of flight results in a large percentage of injuries for both Cessna and Piper, with Cessna's largest amount of injuries and second highest percentage all coming from flights in the "Cruise" phase of flight.

Next, an Analysis on Injuries based on Engine Type

```
In [45]:
```

```
# Group by 'Engine.Type' and aggregate 'Total Injuries'
engine_injure = planes_df.groupby('Engine.Type')['Total Injuries'].agg(['sum', 'count'])
.reset_index()

# Calculate Injury Percentage correctly
# 'sum' refers to the total injuries, and 'count' refers to the number of incidents
engine_injure['Injury Percentage'] = engine_injure['sum'] / engine_injure['count']

# Rename columns to make them more descriptive
engine_injure.columns = ['Engine.Type', 'Total Injuries', 'Total Incidents', 'Injury Percentage']
engine_injure.sort_values(by='Total Injuries', ascending=False)
```

Out[45]:

Engine.Type Total Injuries Total Incidents Injury Percentage

6	Reciprocating	23033.8	69530	0.331279
7	Turbo Fan	4152.2	2481	1.673599

12	Engine.Type Unknown	Total Injuries 3065.0	Total Incidents 2051	Injury Percentage 1.494393
9	Turbo Prop	1992.0	3391	0.587437
10	Turbo Shaft	1816.4	3609	0.503297
8	Turbo Jet	684.6	703	0.973826
3	LR	9.0	2	4.500000
5	None	7.0	19	0.368421
0	Electric	1.6	10	0.160000
2	Hybrid Rocket	0.8	1	0.800000
11	UNK	0.4	1	0.400000
1	Geared Turbofan	0.0	12	0.000000
4	NONE	0.0	2	0.000000

Create Visualization to display above initial findings

```
In [58]:
```

```
plt.figure(figsize=(12, 8)) # Adjust the size as needed
# Assuming Engine filtered['Engine.Type'] is categorical and you want each category to ha
ve its own color
# First, ensure 'Engine.Type' is sorted if it isn't already, as you've done
Engine filtered = engine injure.sort values(by='Engine.Type')
Engine filtered = Engine filtered[~Engine filtered['Engine.Type'].str.lower().isin(['none
', 'unk', 'unknown'])]
# Plot each point individually
for i, row in Engine filtered.iterrows():
   plt.plot(row['Engine.Type'], row['Total Injuries'], marker='o', linestyle='', color=
colors2[i % len(colors2)])
plt.xlabel('Engine Type') # X-axis label
plt.ylabel('Total Injuries') # Y-axis label
plt.title('Total Injuries by Engine Type (Line Plot)') # Chart title
# Fix for the xticks error: manually set the ticks and labels
ticks = range(len(Engine filtered['Engine.Type'].unique()))
labels = Engine filtered['Engine.Type'].unique()
plt.xticks(ticks, labels, rotation=45, ha="right")
# Adding text labels for each marker
for i, txt in enumerate(Engine filtered['Total Injuries']):
    # Adjusting the annotation to align with the corrected ticks
    plt.annotate(f"{txt:.1f}", (ticks[i % len(ticks)], txt), textcoords="offset points",
xytext=(0,10), ha='center')
plt.tight_layout() # Adjust layout to not cut off labels
plt.show()
```

23033.8

Total Injuries by Engine Type (Line Plot)

15000

Investigate further by analyzing total injuries, incidents, and injury percentage by engine type with make and number of engines

In []:

```
#Group by specified columns and aggregate Total Injuries
engine t outcome = planes df.groupby(['Number.of.Engines', 'Engine.Type', 'Make'])['Tota
1 Injuries'].agg(['sum', 'count']).reset index()
# Rename columns
engine_t_outcome.columns = ['Number.of.Engines', 'Engine.Type', 'Make', 'Total Injuries'
  'Total Incidents']
# Calculate Injury Percentage
engine t outcome['Injury Percentage'] = engine t outcome['Total Injuries'] / engine t ou
tcome['Total Incidents']
engine t outcome = engine t outcome[(engine t outcome['Total Injuries'] > 200) & (engine
t outcome['Number.of.Engines'] >= 1)]
engine t outcome["Make"] = engine t outcome["Make"].replace("CESSNA", "Cessna")
engine t outcome['Make'] = engine t outcome['Make'].str.strip()
engine t outcome["Make"] = engine t outcome["Make"].replace("PIPER", "Piper")
engine t outcome['Make'] = engine t outcome['Make'].str.strip()
engine t outcome["Make"] = engine t outcome["Make"].replace("BEECH", "Beech")
engine t outcome['Make'] = engine t outcome['Make'].str.strip()
engine t outcome["Make"] = engine t outcome["Make"].replace("Boeing", "BOEING")
engine_t_outcome['Make'] = engine_t_outcome['Make'].str.strip()
engine t outcome.sort values(by='Total Injuries', ascending=False)
```

Out[]:

	Number.of.Engines	Engine.Type	Make	Total Injuries	Total Incidents	Injury Percentage
1372	1.0	Reciprocating	Cessna	5373.2	19642	0.273557
4972	1.0	Reciprocating	Piper	3612.0	9893	0.365107
843	1.0	Reciprocating	Beech	1172.8	2522	0.465028
1170	1.0	Reciprocating	Cessna	931.6	3499	0.266247
7566	2.0	Reciprocating	Cessna	913.4	1680	0.543690
7654	2.0	Reciprocating	Piper	854.0	1704	0.501174
8122	4.0	Turbo Fan	BOEING	709.4	144	4.926389
7553	2.0	Reciprocating	Beech	634.6	1169	0.542857
7705	2.0	Turbo Eon	DOEING	£40 0	401	4 460004

1120 -4814	Number.of.Engines	Engine.Type Reciprocating	Make Piper	Total Injuries 615.0	Total Incidents	Injury Percentage 0.311866
7366	1.0	Turbo Shaft	Bell	610.2	1217	0.501397
4475	1.0	Reciprocating	Mooney	465.8	1076	0.432900
8074	3.0	Turbo Fan	BOEING	353.6	178	1.986517
7892	2.0	Turbo Prop	Beech	308.0	459	0.671024
870	1.0	Reciprocating	Bellanca	293.2	875	0.335086
7792	2.0	Turbo Fan	Mcdonnell Douglas	281.8	145	1.943448
7715	2.0	Turbo Fan	BOEING	251.4	188	1.337234
7710	2.0	Turbo Fan	Airbus Industrie	238.2	86	2.769767
5428	1.0	Reciprocating	Robinson	230.6	858	0.268765
8085	3.0	Turbo Fan	Mcdonnell Douglas	230.6	101	2.283168
592	1.0	Reciprocating	Beech	213.2	481	0.443243

Filter overall results by best fitting cases which, in this instance, is Total Injuries over 200

```
In [ ]:
```

```
engine_t_filter_outcome = engine_t_outcome.groupby(['Number.of.Engines', 'Engine.Type', '
Make'])[['Total Injuries', 'Total Incidents', 'Injury Percentage']].sum().reset_index()
engine_t_filter_outcome = engine_t_filter_outcome[engine_t_filter_outcome['Total Injuries
'] > 200]
engine_t_filter_outcome['Injury Percentage'] = engine_t_filter_outcome['Total Injuries']
/ engine_t_filter_outcome['Total Incidents']
engine_t_filter_outcome.sort_values(by='Injury Percentage', ascending=False)
```

Out[]:

	Number.of.Engines	Engine.Type	Make	Total Injuries	Total Incidents	Injury Percentage
16	4.0	Turbo Fan	BOEING	709.4	144	4.926389
10	2.0	Turbo Fan	Airbus Industrie	238.2	86	2.769767
15	3.0	Turbo Fan	Mcdonnell Douglas	230.6	101	2.283168
14	3.0	Turbo Fan	BOEING	353.6	178	1.986517
12	2.0	Turbo Fan	Mcdonnell Douglas	281.8	145	1.943448
11	2.0	Turbo Fan	BOEING	870.2	609	1.428900
13	2.0	Turbo Prop	Beech	308.0	459	0.671024
8	2.0	Reciprocating	Cessna	913.4	1680	0.543690
7	2.0	Reciprocating	Beech	634.6	1169	0.542857
6	1.0	Turbo Shaft	Bell	610.2	1217	0.501397
9	2.0	Reciprocating	Piper	854.0	1704	0.501174
0	1.0	Reciprocating	Beech	1386.0	3003	0.461538
3	1.0	Reciprocating	Mooney	465.8	1076	0.432900
4	1.0	Reciprocating	Piper	4227.0	11865	0.356258
1	1.0	Reciprocating	Bellanca	293.2	875	0.335086
2	1.0	Reciprocating	Cessna	6304.8	23141	0.272451
5	1.0	Reciprocating	Robinson	230.6	858	0.268765

Filter by Total Injuries, High to low

engine_t_filter_outcome = engine_t_outcome.groupby(['Number.of.Engines', 'Engine.Type', '
Make'])[['Total Injuries', 'Total Incidents', 'Injury Percentage']].sum().reset_index()
engine_t_filter_outcome = engine_t_filter_outcome[engine_t_filter_outcome['Total Incident
s'] > 500]
engine_t_filter_outcome['Injury Percentage'] = engine_t_filter_outcome['Total Injuries']
/ engine_t_filter_outcome['Total Incidents']
engine_t_filter_outcome.sort_values(by='Total Injuries', ascending=False)

Out[]:

	Number.of.Engines	Engine.Type	Make	Total Injuries	Total Incidents	Injury Percentage
2	1.0	Reciprocating	Cessna	6304.8	23141	0.272451
4	1.0	Reciprocating	Piper	4227.0	11865	0.356258
0	1.0	Reciprocating	Beech	1386.0	3003	0.461538
8	2.0	Reciprocating	Cessna	913.4	1680	0.543690
11	2.0	Turbo Fan	BOEING	870.2	609	1.428900
9	2.0	Reciprocating	Piper	854.0	1704	0.501174
7	2.0	Reciprocating	Beech	634.6	1169	0.542857
6	1.0	Turbo Shaft	Bell	610.2	1217	0.501397
3	1.0	Reciprocating	Mooney	465.8	1076	0.432900
1	1.0	Reciprocating	Bellanca	293.2	875	0.335086
5	1.0	Reciprocating	Robinson	230.6	858	0.268765

In []:

```
engine_t_filter_outcome = engine_t_outcome.groupby(['Number.of.Engines', 'Engine.Type', 'Make'])[['Total Injuries', 'Total Incidents', 'Injury Percentage']].sum().reset_index()
engine_t_filter_outcome = engine_t_filter_outcome[engine_t_filter_outcome['Total Incidents'] > 500]
engine_t_filter_outcome['Injury Percentage'] = engine_t_filter_outcome['Total Injuries']
/ engine_t_filter_outcome['Total Incidents']
engine_t_filter_outcome.sort_values(by='Injury Percentage', ascending=False)
```

Out[]:

	Number.of.Engines	Engine.Type	Make	Total Injuries	Total Incidents	Injury Percentage
11	2.0	Turbo Fan	BOEING	870.2	609	1.428900
8	2.0	Reciprocating	Cessna	913.4	1680	0.543690
7	2.0	Reciprocating	Beech	634.6	1169	0.542857
6	1.0	Turbo Shaft	Bell	610.2	1217	0.501397
9	2.0	Reciprocating	Piper	854.0	1704	0.501174
0	1.0	Reciprocating	Beech	1386.0	3003	0.461538
3	1.0	Reciprocating	Mooney	465.8	1076	0.432900
4	1.0	Reciprocating	Piper	4227.0	11865	0.356258
1	1.0	Reciprocating	Bellanca	293.2	875	0.335086
2	1.0	Reciprocating	Cessna	6304.8	23141	0.272451
5	1.0	Reciprocating	Robinson	230.6	858	0.268765

Create visualization to represent

In []:

```
import numpy as np
```

```
# Creating a new column for the X-axis labels
engine_t_filter_outcome['Label'] = engine_t_filter_outcome['Make'] + ' | ' + engine t fi
lter outcome['Engine.Type'] + ' | ' + engine t filter outcome['Number.of.Engines'].astyp
e(str)
# Use a colormap to generate a list of colors based on the number of unique labels
colors = plt.cm.viridis(np.linspace(0, 1, len(engine t filter outcome['Label'])))
# Plotting
plt.figure(figsize=(14, 8)) # Adjust the size as needed
plt.bar(engine t filter outcome['Label'], engine t filter outcome['Total Injuries'], colo
          # Pass the list of colors here
r=colors)
plt.xlabel('Make | Engine Type | Number of Engines')
plt.ylabel('Total Injuries')
plt.xticks(rotation=45, ha="right") # Rotate labels to avoid overlap
plt.title('Total Injuries by Make, Engine Type, and Number of Engines')
plt.tight layout() # Adjust layout to make room for the rotated x-axis labels
plt.show()
```


In []:

```
# Creating a new column for the X-axis labels
engine t filter outcome['Label'] = engine t filter outcome['Make'] + ' | ' + engine t fi
lter outcome['Engine.Type'] + ' | ' + engine t filter outcome['Number.of.Engines'].astyp
e(str)
# Use a colormap to generate a list of colors based on the number of unique labels
colors = plt.cm.viridis(np.linspace(0, 1, len(engine_t_filter_outcome['Label'])))
# Plotting
plt.figure(figsize=(14, 8)) # Adjust the size as needed
plt.bar(engine t filter outcome['Label'], engine t filter outcome['Injury Percentage'], c
olor=colors) # Pass the list of colors here
plt.xlabel('Make | Engine Type | Number of Engines')
plt.ylabel('Injury Percentage')
plt.xticks(rotation=45, ha="right") # Rotate labels to avoid overlap
plt.title('Injury Percentage by Make, Engine Type, and Number of Engines')
plt.tight layout() # Adjust layout to make room for the rotated x-axis labels
plt.show()
```


Based on the above data on enginge types, although Cessna Reciprocating 1 engine planes have the most injuries, they appear to also be the safest to fly based on the amount of incidents and resulting low injury percentage (just under 30%)

Conclusion

The main takeaways one could assume based on the above data and visualizations are as follows:

- -Airbus appears to be the safest choice for Commercial Airline travel and Lockheed for Military Travel/Transport, as Boeing and Mcdonnell Douglas both have high injury percentages for multiple engine type air carriers.
- -Cessna 1 Engine and both Cessna and Piper 2 Engine appear to be the safest choices for personal aircraft travel, with Cessna 1 engine planes having a high injury total but the lowest injury percentage, and Cessna and Piper 2 engine planes having the lowest injury percentage amongst the respective group.
- -When it comes to phase of flight, both Cessna and Piper are safest with their landing procedures, as both have the highest incident count and lowest injury totals for all "landing" phases of flight. Contrastingly, Cessna's "Maneuvering" phase of flight has the highest injury percentage by far with the lowest amount of incidents. Apart of "Maneuvering" resulting in many injuries, it appears that the "Cruise" phase of flight results in a large percentage of injuries for both Cessna and Piper, with Cessna's largest amount of injuries and second highest percentage all coming from flights in the "Cruise" phase of flight.
- -One solution to this issue would be to implement more training programs for pilots pertaining to the "Maneuvering" phase of flight, as Cessna aircrafts have the highest injury percentage in this phase by far.
- -Finally, regarding engine type, although Cessna Reciprocating 1 engine planes have the most injuries, they appear to also be the safest to fly based on the amount of incidents and resulting low injury percentage (just under 30%)