Attention is All You Need: From Words to Worlds

Muhan Zhang April 26, 2024, Group Seminar University of North Texas

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez*†

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin*

illia.polosukhin@gmail.com

Outline

- Background
- Highlights of Transformer Model
- Self-Attention and Multi-Head Attention
- Model Architecture
- Experimental Results
- Summary

Background:

- Sequence transduction models have traditionally relied on complex CNN or RNN architectures
- CNNs have difficulty capturing long-range dependencies
- RNNs suffer from limited computational parallelism and slow training
- There is a need for more efficient and parallelizable models

Highlights of Transformer Model:

- Entirely based on attention mechanism, without using convolution or recurrence
- Highly parallelizable computation, allowing for very fast training
- Surpasses previous models (including ensembles) on machine translation tasks
- Generalizes well to other tasks such as English constituency parsing

Self-Attention and Multi-Head Attention:

Can be either input or a hidden layer

Find the relevant vectors in a sequence

$$\hat{\alpha}_{1,i} = exp(\alpha_{1,i}) / \sum_{j} exp(\alpha_{1,j})$$

$$\alpha'_{1,3} \qquad \alpha'_{1,4}$$

$$q^1 = W^q a^1$$

$$k^2 = W^k a^2$$

$$k^3 = W^k a^3$$

$$k^4 = W^k a^4$$

$$k^1 = W^k a^1$$

Self-attention Extract information based on attention scores

$$m{b^1} = \sum_i lpha'_{1,i} m{v}_i$$

Can be either input or a hidden layer

Multi-head Self-attention

(2 heads as example)

Multi-head Self-attention

(2 heads as example)

Multi-head Self-attention (2 heads as example)

$$\begin{array}{c} \boldsymbol{b^i} = W^O \\ \hline \boldsymbol{b^{i,1}} \\ \end{array}$$

Positional Encoding

- No position information in self-attention.
- Each position has a unique positional vector e^i
- hand-crafted
- learned from data

Each column represents a positional vector e^i

Model Architecture

Sequence to Sequence Learning with Neural Networks https://arxiv.org/abs/1409.3215

Transformer https://arxiv.org/abs/1706.03762

Encoder

Encoder

Transformer's Encoder

Decoder

Self-attention → Masked Self-attention

Can be either input or a hidden layer

Self-attention → Masked Self-attention

Autoregressive

Stop at here!

Encoder-Decoder

Experimental Results:

Machine Translation

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0\cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3\cdot 10^{19}$	$1.4\cdot 10^{20}$
ConvS2S [9]	25.16	40.46	$9.6\cdot 10^{18}$	$1.5\cdot 10^{20}$
MoE [32]	26.03	40.56	$2.0\cdot 10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0\cdot 10^{20}$
GNMT + RL Ensemble [38]	26.30	41.16	$1.8\cdot 10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble [9]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$	
Transformer (big)	28.4	41.8	$2.3\cdot 10^{19}$	

English Constituency Parsing

Parser	Training	WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37]	WSJ only, discriminative	88.3
Petrov et al. (2006) [29]	WSJ only, discriminative	90.4
Zhu et al. (2013) [40]	WSJ only, discriminative	90.4
Dyer et al. (2016) [8]	WSJ only, discriminative	91.7
Transformer (4 layers)	WSJ only, discriminative	91.3
Zhu et al. (2013) [40]	semi-supervised	91.3
Huang & Harper (2009) [14]	semi-supervised	91.3
McClosky et al. (2006) [26]	semi-supervised	92.1
Vinyals & Kaiser el al. (2014) [37]	semi-supervised	92.1
Transformer (4 layers)	semi-supervised	92.7
Luong et al. (2015) [23]	multi-task	93.0
Dyer et al. (2016) [8]	generative	93.3

Summary:

- The Transformer is the first sequence transduction model based entirely on self-attention
- Strong parallel computing capability, extremely fast training speed
- Achieves SOTA results on tasks like machine translation, demonstrating the power of attention mechanisms
- Validates that attention is all you need to build efficient models