Aluno: gioveni Hiroshi Sato 1. I indice de modulação em FM e dado par: Bf = SF DF e a dervis podrão B e a largure de banda E a indice de modulações em PM e abtido par. 2. casa B>1, e banda larga. Carse \$ 40,2, e' bande estreita 3. Pela regra de Carre, a larguro de banda em modulação Bw= 2 (β+1) fm A begue de banda e maior em relação à modulação 4. $\Theta(+) = O_f \int_{-\infty}^{+} m(+) d+$ = Of 5 + Am Cos (wm +) d+ = Of. Am . Sen(wmt) = B sen(wmt) g(+)= Ac exp[j=(+)]

= Ac exp [jp sen(wm+1)]

1

Como g(+) e uma função, periodias, pade ser representado por uma sorie de fourier. Lag:

$$C_{m} = \frac{1}{I_{m}} \int_{-T_{m}/2}^{T_{m}/2} g(t) \exp(-j_{m} w_{m} + j_{m} dt) = Ac. J_{m}(\beta)$$
Tomordo -t

Tomando a transformado de Fourier

Coma

temos que

$$S(f) = \frac{1}{2} \left[Ae \underbrace{S}_{Jm}(\beta) S(f - fe - fm) + Ae \underbrace{S}_{J}(\beta) S(-f - fe - fm) \right]$$

$$A) S(+) = Re \left[g(+) e^{j w c + j} \right]$$
rendo

5. a) S(+) = Re[g(+) eiwe+] rendo

Pela apreximaçõe de Taylor, temos:

Partanto,

= Ac . Re [(1+ ja(+1) (cos(wet) + j sun(wet))]

$$S(f) = \frac{A_c}{2} \left[S(f-f_c) + S(f+f_c) + j \left[O(f-f_c) - O(f+f_c) \right] \right]$$

$$\Theta_{max}(4) = O_f \int_0^{T_m/2} m(v) dv$$

$$\frac{4\pi}{180} = 0 \int_0^{\infty} \int_0^{\infty} dv = 0 \cdot 2 \cdot \frac{T_m}{2}$$

$$\frac{4\pi}{180} = 0$$
 . Tm 5.10^{-3}

$$O_{\xi} = \frac{9\pi}{180} \bullet 0,210^3 = 13,96$$

Sende SF doda por

S(4) =
$$A_c \cdot e^{j\Theta(4)}$$
 = $A_c \left[1 + \Theta(4)\right] A_c G(f) = A_c \left[S(f) + j\Theta(f)\right]$
ande
 $\Theta(4) = \frac{\pi}{18} \Delta(1004)$ $A_c G(f) = \frac{\pi}{180} sine^2 \left(\frac{1}{100}\right)$
Assim, a expectro do sind modulado e dado por;

$$S(f) = \frac{1}{2} \left[G(f-f_e) + G^*(f+f_e) \right]$$

$$= \frac{Ae}{2} \left[S(f-f_e) + S(f+f_e) + \frac{O_f}{2\pi} \left(M(f-f_e) - M(f+f_e) \right) \right]$$
and

ondo

$$C_{m} = \frac{1}{T_{m}} \int_{0}^{T_{m}} m(\star) \cdot e^{-jmw_{m} t} dt$$

$$= \frac{1}{T_{m}} \left[\int_{0}^{T_{m} l_{k}} 2e^{-jmw_{m} t} dt + \int_{0}^{t_{m}} 2e^{-jmw_{m} t} dt \right]$$

$$= 2(-j)^{n} \cdot \frac{\sin(n\pi l_{2})}{n \cdot \frac{\pi}{2}}$$

S(f) =
$$\frac{A_c}{2}$$
 [S(f+fe) + $\frac{O_f}{2\pi}$ $\frac{O_f}{2\pi}$ [S(f-fe-m/m) - S(f+fe-m/m)]]
C) Se $\beta > 1$, @ modulader e - banda laga
Se $\beta < 0,2$, e banda estruita