

CHIMIE NIVEAU MOYEN ÉPREUVE 1

Jeudi 10 mai 2007 (après-midi)

45 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Le tableau périodique est inclus pour référence en page 2.

•	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
٢		9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
ts 4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
lémen 3		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
e des é				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
iodiqu				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
on péri				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 C m (247)
ificatio				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
ı classi				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
u de la				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
Le tableau de la classification périodique des éléments 3	Numéro atomique	Element Masse atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
Le	Numéro	Eler Masse a		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
			•	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 S c 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	÷-	** **
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

1.	Le méthane, CH ₄ , brûle dans le díoxygène pour former du dioxyde de carbone et de l'eau. Combien de
	moles de dioxyde de carbone seront produites lors de la combustion de 8,0 g de méthane?

- A. 0,25
- B. 0,50
- C. 1,0
- D. 2,0

2. Quelle est la formule brute d'un composé qui contient 50 % en masse de l'élément X ($A_r = 20$) et 50 % en masse de l'élément Y ($A_r = 25$) ?

- A. XY
- B. X_3Y_2
- C. X_4Y_5
- D. X_5Y_4

3. En considérant que la réaction est complète, quel volume de solution d'hydroxyde de sodium (KOH(aq)) $0,200 \text{ mol dm}^{-3}$ est nécessaire pour neutraliser $25,0 \text{ cm}^3$ d'acide sulfurique ($H_2SO_4(aq)$) $0,200 \text{ mol dm}^{-3}$?

- A. 12,5 cm³
- B. $25,0 \text{ cm}^3$
- C. 50.0 cm^3
- D. $75,0 \text{ cm}^3$

4. On considère la réaction suivante :

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Si la réaction est totale, quel volume d'ammoniac (en dm³) peut être préparé à partir de 25 dm³ d'azote et 60 dm³ d'hydrogène ? Tous les volumes sont mesurés à la même température et sous la même pression.

- A. 40
- B. 50
- C. 85
- D. 120
- 5. Quelle est la différence entre deux atomes neutres représentés par les symboles $^{210}_{84}$ Po et $^{210}_{85}$ At ?
 - A. Le nombre de neutrons uniquement
 - B. Le nombre de protons et d'électrons uniquement
 - C. Le nombre de protons et de neutrons uniquement
 - D. Le nombre de protons, de neutrons et d'électrons
- **6.** Quelles propositions sont correctes à propos du spectre d'émission de l'atome d'hydrogène ?
 - I. Les raies convergent aux énergies plus basses.
 - II. Les transitions électroniques vers n = 1 sont responsables des raies dans la région UV.
 - III. Les raies sont produites lorsque des électrons passent de niveaux d'énergie plus élevée vers des niveaux d'énergie plus basse.
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III

- 7. Quelle est la proposition correcte à propos du groupe des halogènes ?
 - A. Les ions halogénure sont tous des agents réducteurs, l'ion iodure étant le plus faible.
 - B. Les halogènes sont tous des agents oxydants, le chlore étant le plus fort.
 - C. Les ions chlorure peuvent être oxydés en chlore par le brome.
 - D. Les ions iodure peuvent être oxydés en iode par le chlore.
- **8.** Quelles sont les propositions correctes ?
 - I. Les températures de fusion diminuent de $Li \rightarrow Cs$ pour les métaux alcalins.
 - II. Les températures de fusion augmentent de $F \rightarrow I$ pour les halogènes.
 - III. Les températures de fusion diminuent de Na → Ar pour les éléments de la 3^{ème} période.
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III
- 9. Quand C_2H_4 , C_2H_2 et C_2H_6 sont classés dans l'ordre **croissant** de la longueur de la liaison C-C, quel est l'ordre correct ?
 - A. C_2H_6 , C_2H_2 , C_2H_4
 - B. C_2H_4, C_2H_2, C_2H_6
 - C. C_2H_2 , C_2H_4 , C_2H_6
 - D. C_2H_4 , C_2H_6 , C_2H_2

- 10. Quel composé renferme à la fois des liaisons ioniques et des liaisons covalentes ?
 - A. MgCl₂
 - B. HCl
 - C. H₂CO
 - D. NH₄Cl
- 11. Quand les espèces BF_2^+ , BF_3 et BF_4^- sont rangées dans l'ordre **croissant** de la valeur de l'angle de liaison F-B-F, quel est l'ordre correct ?
 - $A. \quad BF_{\!_{3}}\,,BF_{\!_{4}}^{\scriptscriptstyle -}\,,BF_{\!_{2}}^{\scriptscriptstyle +}$
 - B. BF_4^-, BF_3, BF_2^+
 - C. BF_2^+ , BF_4^- , BF_3
 - D. BF_2^+ , BF_3 , BF_4^-
- 12. Quelle est l'espèce ayant une forme trigonale plane?
 - A. CO_3^{2-}
 - B. SO_3^{2-}
 - C. NF₃
 - D. PCl₃

- 13. On double la température en Kelvin et on triple la pression d' 1,0 dm³ d'un gaz parfait. Quel est, en dm³, le volume final du gaz ?
 - A. $\frac{1}{3}$
 - B. $\frac{2}{3}$
 - C. $\frac{3}{2}$
 - D. $\frac{1}{6}$
- 14. 1 mole d'hydrogène, 2 moles d'oxygène et 3 moles de dioxyde de carbone sont placées dans une enceinte fermée, à 298 K. Dans quel rapport se distribuent les énergies cinétiques **moyennes** de chacun des gaz dans ces conditions ?
 - A. 1:2:3
 - B. 3:2:1
 - C. 1:1:1
 - D. 1:2:1
- 15. On considère les capacités calorifiques spécifiques (massiques) des métaux suivants :

Métal	Capacité calorifique spécifique (massique) / J kg ⁻¹ K ⁻¹
Cu	385
Ag	234
Au	130
Pt	134

Quel métal subira l'élévation de température la plus forte, si 50 J de chaleur sont fournis à un échantillon de 0,001 kg de chacun de ces métaux initialement à la même température ?

- A. Cu
- B. Ag
- C. Au
- D. Pt

16. On considère les réactions suivantes :

$$S(s) + 1\frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 $\Delta H^{\Theta} = -395 \text{ kJ mol}^{-1}$

$$SO_2(g) + \frac{1}{2}O_2(g) \to SO_3(g)$$
 $\Delta H^{\Theta} = -98 \text{ kJ mol}^{-1}$

Quelle est la valeur de ΔH^{Θ} (en kJ mol⁻¹) pour la réaction ci-dessous ?

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

17. La réaction suivante est spontanée uniquement à des températures supérieures à 850 °C.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Quelle est la combinaison correcte pour cette réaction à 1000 °C?

	ΔG	ΔH	ΔS
A.		_	-
B.	+	+	+
C.	_	+	+
D.	+	_	_

- **18.** Quelle proposition est correcte à propos d'une réaction endothermique ?
 - A. Les liaisons sont plus fortes dans les produits que dans les réactifs.
 - B. Les liaisons sont plus fortes dans les réactifs que dans les produits.
 - C. L'enthalpie des produits est inférieure à celle des réactifs.
 - D. La réaction est spontanée à de basses températures mais devient non-spontanée à des températures élevées.

- 19. En général, tous les facteurs suivants peuvent augmenter la vitesse d'une réaction, à l'exception d'un seul d'entre eux. Lequel ?
 - A. Une augmentation de température
 - B. Une augmentation de l'énergie d'activation
 - C. Une augmentation de la concentration des réactifs
 - D. Une augmentation de la surface de contact des réactifs
- **20.** À 25 °C, on ajoute 100 cm³ d'une solution d'acide chlorhydrique 1,0 mol dm⁻³ à 3,5 g de carbonate de magnésium. Quelle combinaison de facteurs **n'augmentera pas** la vitesse initiale de la réaction effectuée avec la même masse de carbonate de magnésium ?

	Volume d'HCl / cm ³	Concentration d'HCl / mol dm ⁻³	Température / °C	
A.	200	1,0	25	
B.	100	2,0	25	
C.	100	1,0	35	
D.	200	2,0	25	

21. On considère la réaction suivante, à l'équilibre dans une enceinte fermée, à 350 °C.

$$SO_2(g) + Cl_2(g) \rightleftharpoons SO_2Cl_2(g)$$
 $\Delta H^{\ominus} = -85 \text{ kJ}$

Quelle proposition est correcte?

- A. Une diminution de la température augmentera la quantité de $SO_2Cl_2(g)$.
- B. Une augmentation du volume de l'enceinte augmentera la quantité de $SO_2Cl_2(g)$.
- C. Une augmentation de la température augmentera la quantité de $SO_2Cl_2(g)$.
- D. L'addition d'un catalyseur augmentera la quantité de SO₂Cl₂(g).

- **22.** Parmi les équilibres suivants, quel est celui qui **ne serait pas** influencé par des modifications de la pression à température constante ?
 - A. $4HCl(g) + O_2(g) \rightleftharpoons 2H_2O(g) + 2Cl_2(g)$
 - B. $CO(g) + H_2O(g) \rightleftharpoons H_2(g) + CO_2(g)$
 - C. $C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$
 - D. $PF_3Cl_2(g) \rightleftharpoons PF_3(g) + Cl_2(g)$
- **23.** Parmi les mélanges suivants, lequel produirait un mélange tampon lors de sa dissolution dans 1,0 dm³ d'eau ?
 - A. $0.30 \text{ mol de NH}_3(\text{aq}) \text{ et } 0.30 \text{ mol d'HCl(aq)}$
 - B. $0.30 \text{ mol de NH}_3(aq) \text{ et } 0.15 \text{ mol d'HCl(aq)}$
 - C. $0.30 \text{ mol de NH}_3(aq) \text{ et } 0.60 \text{ mol d'HCl(aq)}$
 - D. $0.30 \text{ mol de NH}_3(\text{aq}) \text{ et } 0.15 \text{ mol de H}_2\text{SO}_4(\text{aq})$
- **24.** Des solutions d'acide chlorhydrique (HCl(aq)) et d'acide éthanoïque (CH₃COOH (aq)) de même concentration réagissent complètement avec 5,0 g de carbonate de calcium dans des récipients différents. Quelle est la proposition correcte ?
 - A. CH₃COOH (aq) réagit plus lentement, car son pH est inférieur à celui de HCl(aq).
 - B. Le volume de CO₂(g) obtenu est plus faible avec CH₃COOH (aq) qu'avec HCl(aq).
 - C. Le volume de CO₂(g) obtenu est plus élevé avec CH₃COOH(aq) qu'avec HCl(aq).
 - D. Le volume de CO₂(g) obtenu est le même avec CH₃COOH (aq) qu'avec HCl(aq).

25. On considère les réactions spontanées suivantes :

Fe(s) + Cu²⁺ (aq)
$$\rightarrow$$
 Fe²⁺ (aq) + Cu(s)
Cu(s) + 2Ag⁺ (aq) \rightarrow Cu²⁺ (aq) + 2Ag(s)
Zn(s) + Fe²⁺ (aq) \rightarrow Zn²⁺ (aq) + Fe(s)

Quelle est la combinaison correcte de l'agent oxydant le plus fort et de l'agent réducteur le plus fort ?

	Agent oxydant le plus fort	Agent réducteur le plus fort		
A.	Ag(s)	Zn(s)		
B.	Ag ⁺ (aq)	Zn(s)		
C.	Zn ²⁺ (aq)	Ag(s)		
D.	Zn(s)	Ag ⁺ (aq)		

- **26.** Dans quelle transformation l'azote subit-il une oxydation ?
 - A. $NO_2 \rightarrow N_2O_4$
 - B. $NO_3^- \rightarrow NO_2$
 - C. $N_2O_5 \rightarrow NO_3^-$
 - $D. \quad NH_3 \rightarrow N_2$
- **27.** Quelle est la proposition correcte?
 - A. Les réactions redox spontanées produisent de l'électricité dans une cellule électrolytique.
 - B. L'électricité est utilisée pour produire une réaction redox non-spontanée dans une cellule voltaïque.
 - C. L'oxydation se produit à l'électrode négative dans une cellule voltaïque et à l'électrode positive dans une cellule électrolytique.
 - D. L'oxydation se produit à l'électrode négative dans une cellule voltaïque, mais la réduction se produit à l'électrode positive dans une cellule électrolytique.

28. Le Nylon est un polymère de condensation obtenu à partir de l'acide hexanedioïque et du 1,6-diaminohexane. Quel type de liaison est présent dans le Nylon?

-12-

- A. Amide
- B. Ester
- C. Amine
- D. Carboxyle
- 29. Quel est le nom conforme aux conventions de l'UICPA du composé suivant ?

- A. 3,3,4-triméthylhexane
- B. 3,4,4-triméthylhexane
- C. 4-éthyl-3,4-diméthylpentane
- D. 2-éthyl-2,3-diméthylpentane

30. Combien y-a-t-il d'atomes de carbone chiral dans une molécule de glucose ?

- A. 1
- B. 2
- C. 3
- D. 4