人臉分析之核保應用

第二次進度匯報

GROUP 2

吳東儒 王沛璇 葉宜儒 周欣儒 張以臻

國泰人壽題目二

主題:人臉分析之核保應用

題目訴求:

投保因子分析(人臉核保、身體健康、財務健康、道德風險、法令規範)、痛點分析(準備大量資料)、了解完整業務流程、影像處理基礎、經驗交流優化、模型建議

實作方向:

特徵分類、影像辨識、機器學習、模型回歸、保險業務流程優化

介紹影片: http://reurl.cc/8y0Eag

目錄

分工狀況

業務場景

模型展現 2

2 Q&A

分工狀況

各組員的分工狀況

•與業師約開會的時間(東儒)

0428

0504

- •修改模型(宜儒)
- •嘗試利用sagemaker studio的環境跑模型(沛璇)
- •摸索Figma, 之後再跟組員傳達該如何使用(東儒、沛璇)
- •對交易模式與非交易模式做發想(以臻、欣儒)

- •往非交易模式去發想(以臻、欣儒)
- •嘗試透過網頁把照片傳送到資料庫,並且傳回結果(宜儒、東儒)
- •重新訓練模型(宜儒)
- •摸索Figma, 之後再跟組員傳達該如何使用(東儒、沛璇)

人臉辨識 流程

- 人臉檢測(Face Detection)
- Dlib庫從完整圖像中截取人臉範圍(矩形)
- 人臉校正(Face Alignment)
- 關鍵點指導下旋轉人臉至同一位置, 可能可以改善分類器性能
- 特徵提取(Feature extraction)
- 通過卷積層, 對圖片進行降維, 產生Feature Map
- 分類(Classifier)
- 通過全連接層, 建立Feature Map和Label之間的關係。

分類器架構選擇 骨幹CNN

- AlexNet
- 2012年ImageNet LSVRC競賽冠軍, 使CNN在CV上開始受到重視。
- 使用ReLu作激活函數, 使用Data Augmentation和Drop out來防止過擬合。

Alex Krizhevsky & Ilya Sutskever & Geoffrey E. Hinton. (2012)

- VGGNet
- 2014年ILSVRC 分類競賽第二名。
- 整體結構和AlexNet相似, 但加深的網絡層數。

Karen Simonyan& Andrew Zisserman. (2015)

- ResNet
- 通過殘差的設計, 使得可以進一步提高網絡的深度, 而不至於發生梯度消失的問題。

Kaiming He & Xiangyu Zhang & Shaoqing Ren & Jian Sun (2015).

訓練CNN網絡參數調約

- AlexNet
- ResNet-18
- ResNet-34
- ResNet-50
- ResNet-101
- VGG-11
- VGG-16
- VGG-19

- batch_size:16,32,64,128
- epochs:20~50
- lr:
 - 5e-05 ~0.001
 - opt: adam, sgd, rmsprop, adagrad
 - opt_scheduler:coswarmup, cos, none
 - warmup:3~10
 - weight_decay:0.0001~0.001

Network	Top-1 error	Top-5 error
ResNet-18	30.24	10.92
ResNet-34	26.70	8.58
ResNet-50	23.85	7.13
ResNet-10	22.63	6.44
AlexNet	43.45	20.91
VGG-11	30.98	11.37
VGG-13	30.07	10.75
VGG-16	28.41	9.62
VGG-19	27.62	9.12

訓練CNN 網絡參數調教

• 骨幹CNN: VGG11_BN

batch_size: 32
epochs: 27
Ir: 0.0006691

• opt_scheduler: cos • warmup: 7 • weight_decay: 0.0008301

Test Dataset: ACC: 47~49%

opt: adagrad

Test Dataset: ACC: 51~54%

訓練CNN 網絡參數調教

• 骨幹CNN: ResneXt

batch_size: 4

•epochs: 22 •Ir: 0.000917 •opt: sgd

• opt_scheduler: coswarmup • warmup: 7 • weight_decay: 0.0009953

測試結果分析 TODO

從較為簡單的AlexNet到ResNeXt, 即使使用Pre-train, 分類效果也沒有太大區別

數據集

時間關係暫時還未對人臉做校正,如果使用可能會有一定幫助

真實數據測試

是否可以請老師使用當前算法在真實數據中做測試, 以了解實際Acc

方案一交易模式

方案二非交易模式

