SINTEZE DE BACALAUREAT - TERMODINAMICĂ SI TEORIA CINETICO - MOLECULARĂ

1. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ FUNDAMENTALE, ÎN SISTEMUL INTERNAȚIONAL

NR.	DENUMIREA MĂRIMII FIZICE (SIMBOLUL)	UNITATEA DE MĂSURĂ (SIMBOLUL)
1.	Lungimea (I)	metrul (m)
2.	Masa (m)	kilogramul (kg)
3.	Timpul (t)	secunda (s)
4.	Temperatura (T)	Kelvinul (K)
5.	Intensitatea curentului electric (I)	Amperul (A)
6.	Intensitatea luminoasă (I)	candela (cd)
7.	Cantitatea de substanţă(μ)	kmolul (kmol)

TERMODINAMICĂ SI TEORIA CINETICO-MOLECULARĂ

2. MĂRIMI SI UNITĂTI DE MĂSURĂ DERIVATE. ÎN SISTEMUL INTERNATIONAL. FORMULE UTILZATE

	2. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ DERIVATE, ÎN SISTEMUL INTERNAȚIONAL. FORMULE UTILZATE					
NR.	DENUMIREA MĂRIM		FORMULA	OBSERVAŢII		
	MĂRIMI TERMODINAMICE ȘI CINETICO-MOLECULARE					
1.	Numărul de kmoli (v)		$v = \frac{m}{\mu} = \frac{N}{N_A} = \frac{V}{V_{\mu}}$	m – masa de substanță; μ – masa molară N – nr. total de molecule N_A – nr. lui Avogadro – nr. de molecule dintrun kmol V – volumul gazului; V_μ – volumul molar		
2.	Presiunea unui gaz. Formula fundamentală a teoriei cinetico-moleculare		$p=rac{1}{3}nm_0\overline{v^2}$	$\begin{array}{ll} p-\text{presiunea gazului} \\ n=\frac{N}{V} & \text{- concentrația moleculelor} \\ m_0-\text{masa unei molecule} \\ \hline \overline{v^2}-\text{viteza pătratică medie} \end{array}$		
3.	Energia cinetică medie de translație a unei molecule ($\overline{m{arepsilon}}$)		$\overline{\varepsilon} = \frac{m_0 \overline{v^2}}{2}$			
4.	Grad de libertate		i	Posibilitatea unui sistem de a se deplasa pe o anumită direcție. În conformitate cu spațiul real, există 3 grade de libertate pentru translație și 3 grade de libertate pentru rotație.		
5.	Energia cinetică medie de translație în funcție de gradele de libertate. i = 3 gaz ideal monoatomic i = 5 gaz ideal biatomic i = 6 gaz ideal poliatomic		$\overline{arepsilon} = i \cdot rac{kT}{2}$	Teorema echipartiției energiei în funcție de gradele de libertate: fiecărui grad de libertate al unei molecule îi corespunde o energie cinetică egală cu $\frac{kT}{2}$. k — constanta lui Boltzman T — temperatura gazului		
6.	Ecuația termică de stare a gazului ideal		p = nkT			
7.	Ecuația calorica de stare a gazului ideal		$U = \frac{i}{2} \nu RT$	$R=k\cdot N_A$ - constanta universală a gazelor. U= $v\cdot N_A\overline{\varepsilon}$ — energia internă gazului		
8.	Viteza termică		$\mathbf{v}_T = \sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{\mu}}$			
		LEGI, MĂRIMI FIZ	ZICE ȘI FORMULE ÎN TERMOI	DINAMICĂ		
1.	Legea Boyle - Mariotte sau legea transformării izoterme (t=const., m=const.)	$p \cdot V = const.$	Presiunea unui gaz aflat la temperatură constanta variază invers proporțional cu volumul gazului.			
2.	Legea Gay - Lussac sau legea transformării izobare (p=const., m=const.)	$rac{V}{T} = const.$ sau: V=V $_0 lpha$ T	Volumul unui gaz, aflat la presiune constantă, creste liniar cu temperatura. $\alpha = \frac{1}{T_0} = \frac{1}{273,15} \ grd^{-1} \ \text{coeficientul de dilatare izobară}$			
3.	Legea Charles sau legea transformării izocore (V=const., m=const.)	$\frac{p}{T} = const.$ sau: $p = p_0\beta T$	Presiunea unui gaz, aflat la volum constantă, creste liniar cu temperatura β = α			
4.	Ecuația generala a gazelor. Ecuația Clapeyron Mendeleev	$rac{p \cdot V}{T} = const.$ sau: $p \cdot V = vRT$				
5.	Principiul I al termodinamicii	ΔU=Q-L	Variația energiei interne de de starea inițială și finală, fi independentă de proces.			

6.	Capacitatea calorică	$C=rac{Q}{\Delta T}$ sau Q=C Δ T	Reprezintă cantitatea de căldură necesară unui corp pentru a-și modifica temperatura cu un grad.	[C] _{si} =1J·K ⁻¹
7.	Căldura molară	$C = rac{Q}{ u \cdot \Delta T}$ sau $Q = vC\Delta T$	Reprezintă cantitatea de căldură necesară unui kmol dintr-un corp pentru a-și modifica temperatura cu un grad.	[C] _{si} =1J·kmol ⁻¹ ·K ⁻¹ OBS. C=vC
8.	Căldura specifică	$c=rac{Q}{m\Delta T}$ sau Q=mc Δ T	Reprezintă cantitatea de căldură necesară unui kilogram dintr-un corp pentru a-și modifica temperatura cu un grad.	[c] _{si} =1J·kg ⁻¹ ·K ⁻¹ OBS. μc=C

OBSERVAȚIE. Pentru gaze, valoarea coeficienților calorici este diferită după cum gazul este încălzit la volum constant sau la presiune constantă.

	1		
9.	Relația lui Robert	C_P - C_V = R	C _p , c _p , respectiv C _v , c _v coeficienții calorici la presiune, respectiv volum
	Mayer	c_P - $c_V = \frac{R}{\mu}$	constant.
10.	Indicele adiabatic	$\gamma = \frac{C_p}{C_V}$	OBSERVAȚIE. Într-un proces adiabatic sistemul nu schimbă căldură cu mediul exterior.
11.	*Randamentul unui motor termic	$\eta = rac{L}{Q_1} = 1 - rac{Q_2}{Q_1}$ (1) sau $\eta = 1 - rac{T_2}{T_1}$ (2)	L – lucrul mecanic efectuat. Q_1 – căldura primită, Q_2 – căldura pierdută, cedată mediului exterior. T_1 - temperatura sursei calde, T_2 – temperatura sursei reci. OBSERVAȚIE. Rel. (2) reprezintă randamentul unui motor Carnot.

Reprezentări grafice ale proceselor termodinamice simple în coordonate pV, pT și VT.

*Motoare termice

Transformare izocoră: *V = const., m = const.*

$$\Delta V = 0$$
, $L = p \cdot \Delta V = 0$, $\Delta U = Q_V = \nu C_V \Delta T$

Transformare izobară: p = const., m = const.

$$L = p \cdot \Delta V = \nu R \Delta T$$
, $Qp = \nu C p \Delta T$, $\Delta U = Qp - L = \nu C_V \Delta T$

Transformare izotermă: *T = const., m= const.*

$$\Delta$$
U=0, $L=Q=\nu RT \ln \frac{V_2}{V_1}=2,3\nu RT \lg \frac{V_2}{V_1}$
Transformare adiabatică: $Q=0, m=const.$

$$\Delta \mathbf{U} = -\mathbf{L} = \nu \mathbf{C}_{\mathbf{V}} \Delta \mathbf{T}$$

OBSERVAȚIE: 1. Învelișul adiabatic este un înveliș care permite variația energiei interne a sistemului decât prin schimb de lucru mecanic cu mediul exterior.

2. Ecuația transformării adiabatice este dată de relația: $pV^{\gamma} = const.$

