Simple Linear Regression

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import rc, font_manager
from sklearn import linear_model
ticks_font = font_manager.FontProperties(family='Times New Roman', style='normal',
    size=12, weight='normal', stretch='normal')
plt.style.use('seaborn-white')
ax=plt.gca()
## Loading Data ##
df=pd.read_csv('D:\Python\edx\Machine Learning\FuelConsumptionCo2.csv')
with open('LinearReg.txt', 'a') as f:
    print(df.head(),file=f)
    print(df.describe(),file=f)
f_col=['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS']
X=df[f_col]
with open('LinearReg.txt', 'a') as f:
    print(X.head(),file=f)
## Histogram ##
viz=X[['CYLINDERS', 'ENGINESIZE', 'CO2EMISSIONS', 'FUELCONSUMPTION_COMB']]
viz.hist()
## Scatter Plot vs CO2 emissions ##
plt.figure()
plt.scatter(X.FUELCONSUMPTION_COMB, X.CO2EMISSIONS,color='blue')
plt.title('Scatter Plot - Fuel Consumption vs Emissions', fontname='Times New Roman',
          fontsize=12)
plt.ylabel('Emissions',fontname='Times New Roman',fontsize=12)
plt.xlabel('Fuel Consumption',fontname='Times New Roman',fontsize=12)
plt.figure()
plt.scatter(X.ENGINESIZE, X.CO2EMISSIONS,color='blue')
plt.ylabel('Emissions',fontname='Times New Roman',fontsize=12)
plt.xlabel('Engine Size',fontname='Times New Roman',fontsize=12)
plt.figure()
```

```
plt.scatter(X.CYLINDERS, X.CO2EMISSIONS,color='blue')
plt.ylabel('Emissions',fontname='Times New Roman',fontsize=12)
plt.xlabel('Number of Cylinders',fontname='Times New Roman',fontsize=12)
## Train/Test Split Data ##
mask=np.random.rand(len(df)) < 0.8
train=X[mask]
test=X[~mask]
##Train Distr. ##
plt.figure()
plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS,color='blue')
plt.ylabel('Emissions',fontname='Times New Roman',fontsize=12)
plt.xlabel('Engine Size',fontname='Times New Roman',fontsize=12)
Lreg=linear_model.LinearRegression()
train_x=np.asanyarray(train[['ENGINESIZE']])
train_y=np.asanyarray(train[['CO2EMISSIONS']])
Lreg.fit(train_x,train_y)
with open('LinearReg.txt', 'a') as f:
    print('Coeff: ', Lreg.coef_,file=f)
    print('Intercept: ',Lreg.intercept_,file=f)
### With fit line ##
plt.figure()
plt.scatter(train.ENGINESIZE, train.CO2EMISSIONS, color='blue')
plt.plot(train_x, Lreg.coef_[0][0]*train_x + Lreg.intercept_[0], '-r')
plt.ylabel('Emissions',fontname='Times New Roman',fontsize=12)
plt.xlabel('Engine Size',fontname='Times New Roman',fontsize=12)
### Evaluation ###
from sklearn.metrics import r2_score
test_x = np.asanyarray(test[['ENGINESIZE']])
test_y = np.asanyarray(test[['CO2EMISSIONS']])
test_y_ = Lreg.predict(test_x)
with open('LinearReg.txt', 'a') as f:
    print("Mean absolute error: %.2f" % np.mean(np.absolute(test_y_ - test_y)),file=f)
    print("Residual sum of squares (MSE): %.2f" % np.mean((test_y_ - test_y) ** 2),file=
    print("R2-score: %.2f" % r2_score(test_y_ , test_y),file=f)
##Display plot##
for label in ax.get_xticklabels():
    label.set_fontproperties(ticks_font)
```

```
for label in ax.get_yticklabels():
    label.set_fontproperties(ticks_font)
plt.show()
```

Solution:

	MODELYEAR	MAKE	 FUELCONSUMPTION_COMB_MPG	CO2EMISSIONS
0	2014	ACURA	 33	196
1	2014	ACURA	 29	221
2	2014	ACURA	 48	136
3	2014	ACURA	 25	255
4	2014	ACURA	 27	244

[5 rows x 13 columns]

	MODELYEAR	ENGINESIZE	 FUELCONSUMPTION_COMB_MPG	CO2EMISSIONS
count	1067.0	1067.000000	 1067.000000	1067.000000
mean	2014.0	3.346298	 26.441425	256.228679
std	0.0	1.415895	 7.468702	63.372304
min	2014.0	1.000000	 11.000000	108.000000
25%	2014.0	2.000000	 21.000000	207.000000
50%	2014.0	3.400000	 26.000000	251.000000
75%	2014.0	4.300000	 31.000000	294.000000
max	2014.0	8.400000	 60.000000	488.000000

[8 rows x 8 columns]

	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_COMB	CO2EMISSIONS
0	2.0	4	8.5	196
1	2.4	4	9.6	221
2	1.5	4	5.9	136
3	3.5	6	11.1	255
4	3.5	6	10.6	244

Coeff: [[38.59248093]]
Intercept: [126.77496723]
Mean absolute error: 22.38

Residual sum of squares (MSE): 863.51

R2-score: 0.71

