Листок 4

Доп. задачи из книг "Сборник задач по математическому анализу". Том 1. Кудрявцев Л. Д., Y Кутасов А. Д., Y Чехлов Y В. И., Y Шабунин Y И. Y ФИЗМАТЛИТ, 2003 год ([1]); "Maтематический анализ в задачах и упражнениях". Том 1. Виноградова И. А., Олехник С. Н., Садовничий В. А. МЦНМО, 2017 год ([2]).

- **1.** Что является подпоследовательностью последовательности $a_n = n$?
- а) $\{2,3,4,9,...,2^n,3^n,...\}$; б) $\{1,1,2,2,3,3,...,n,n,...\}$; в) $\{3,2,9,4,...,3^n,2^n,...\}$; г) арифметическая прогрессия с разностью 5 и первым элементом 101.

См. [1], с. 150, №109 – №112; [2], №3. 2 – №3. 6.

2. Найти: **a**) $\sup \left\{ \frac{2+m}{3+n} | m, \ n \in \mathbb{N}, \ m \le n \right\};$ **б**) $\inf \left\{ \frac{m^2}{2m^2 - 4m + 3} | m \in \mathbb{N} \right\}.$

См. [1], c. 21, №8 – №11; [2], №3.170 – №3.172.

3. Найти $\sup_{n\in\mathbb{N}}a_n$ и $\inf_{n\in\mathbb{N}}a_n$, если: а) $a_n=\frac{n^2}{2^n}$; б) $a_n=\frac{100^n}{n!}$; в) $a_n=1+\frac{n}{n+1}\cos\frac{\pi n}{2}$.

См. [1], с. 151 - c. 152, M123 - M133; [2], M3.182 - M3.187.

- 4. Найти $\overline{\lim}_{n\to\infty} a_n$, $\underline{\lim}_{n\to\infty} a_n$, $\sup_{n\in\mathbb{N}} a_n$ и $\inf_{n\in\mathbb{N}} a_n$, если: а) $a_n = (-1)^n + \frac{1}{n}$;
- **б)** $a_n = r_5(n) + \frac{n}{n^2}$, где $r_5(n)$ остаток от деления числа n на 5;
- **B)** $a_n = (1 + \cos \frac{\pi n}{4})(1 \cos \frac{\pi n}{6});$
- $a_n = (-1)^n \left(1 + \frac{1}{n}\right)^n + \sin \frac{\pi n}{3}$.

Все дополнительные номера, рекомендованные выше.

- 5. Найти все частичные пределы, точные верхние и точные нижние грани последовательности a_n :
- a) $a_n = r_4(n) + \frac{(-1)^{n+1}}{n^2};$ 6) $a_n = \sqrt{4^{(-1)^n} + 2};$
- $\mathbf{B})\ \left\{1,\frac{1}{2},\frac{2}{2},\frac{3}{2},\frac{1}{4},\frac{2}{4},\frac{3}{4},\frac{4}{4},...,\frac{9}{4},...,\frac{1}{2^n},\frac{2}{2^n},...,\frac{3^n}{2^n},...\right\};$
- Γ)* $a_n = \sin n$.

Cm. [1], c. 153, N_{\bullet} 139, N_{\bullet} 140, c. 165 – c. 166, N_{\bullet} 260, N_{\bullet} 261, N_{\bullet} 272; [2], N_{\bullet} 3.188, 3. 190, 3.191, 3.192.

- 6. Привести пример последовательности, множество частичных пределов которой равно:
- a) $\{0\}$; 6) $\{1\} \cup \{e\} \cup \{\pi\}$; B) $\{0\} \cup \{-1\} \cup \{1\} \cup \{\frac{(-1)^{n+1}}{n} + (-1)^n, n \in \mathbb{N}\}$; Γ) \mathbb{R} . См. [1], с. 152, N_{\bullet} 134 – N_{\bullet} 138; [2], 3.189.
- 7. Могут ли следующие множества являться множествами всех частичных пределов какой-нибудь последовательности? Если нет, то указать наименьшее множество, содержащее данное, которое является множеством предельных точек некоторой последовательности, а также привести пример самой такой последовательности:
- a) $\{\frac{1}{n}, n \in \mathbb{N}\};$ **6)** [0, 1); **B)** $[a, b] \cap \mathbb{Q}, a < b.$ См. [1], с. 152, № 136, №137; [2], №3.189.
 - **8. а)** Доказать, что если для любого натурального $n \ge 2$ выполнено неравенство

$$|a_{n+1} - a_n| \le q|a_n - a_{n-1}|,$$

где $q \in (0,1)$, то последовательность $\{a_n\}_{n=1}^{\infty}$ имеет предел.

- **б)** Для последовательности $\{a_n\}$ при каждом $n \in \mathbb{N}$ выполнено условие $|a_{n+1} a_n| < 2^{-n}$. Обязана ли последовательность a_n сходиться?
- в) Привести пример такой не имеющей конечного предела последовательности $\{a_n\}_{n=1}^{+\infty}$,

что при любом $p\in\mathbb{N}$ $\lim_{n\to+\infty}|a_{n+p}-a_n|=0.$ См. [1], c. 153 – c. 154, N 145, N 146, N 148; [2], N 3.64, N 3.65.

9. Выяснить с помощью критерия Коши, имеют ли пределы последовательности:

a)
$$a_n = \sum_{k=1}^n \frac{\cos(k^2)}{2^k}$$
; 6) $a_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$; B)* $a_n = \sum_{k=1}^n \frac{\cos\sqrt{k}}{\sqrt{k}}$.

См. [1], с. 153 - c. 154, № 141, № 143, № 149, № 150; [2], №3.56 - №<math>3.63.

Домашнее задание 4.

- **1.** Найти: **a)** sup $\left\{ \frac{1+m}{3+2n} | m, \ n \in \mathbb{N}, \ m \le n \right\}$; **б)** inf $\left\{ \frac{m^2}{m^2+3m+5} | m \in \mathbb{N} \right\}$.
- **2.** Найти $\overline{\lim_{n\to\infty}} a_n$, $\underline{\lim_{n\to\infty}} a_n$, $\sup_{n\in\mathbb{N}} a_n$ и $\inf_{n\in\mathbb{N}} a_n$, если: **a)** $a_n = (-1)^{n-1} \left(2 + \frac{3}{n}\right)$; **б)** $a_n = \frac{n^2}{n^2+1} \cos \frac{2\pi n}{3}$.
- **3.** Найти все частичные пределы последовательности a_n а также их точные верхние и
- а) $\left\{1,\frac{1}{2},\frac{2}{2},\frac{3}{2},\frac{1}{4},\frac{2}{4},\frac{3}{4},\frac{4}{4},\frac{5}{4}...,\frac{1}{2^n},...,\frac{2^n+1}{2^n},...\right\};$ б) $a_n=\frac{(1-(-1)^n)2^n+1}{2^n+3};$ в) $a_n=2^{(-1)^nn}n;$ д)* пусть $s_n=a_1+a_2+...+a_n\to +\infty, a_k>0$ при любом $k,\lim_{n\to +\infty}a_n=0.$ Найти множество предельных точек дробных частей элементов s_n .
- 4. Исследовать на сходимость с помощью критерия Коши следующие последовательности: **a)** $a_n = \sum_{k=1}^n \frac{\cos(2^k)}{k^2}$; **б)** $a_n = \sum_{k=1}^n \frac{\cos(\ln k)}{k}$.