

```
In [1]: # This Python 3 environment comes with many helpful analytics libraries installed
        # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-pyth
        # For example, here's several helpful packages to load
        import seaborn as sns
        import plotly.express as px
        import matplotlib.pyplot as plt
        import plotly.graph_objects as go
        from tqdm import tqdm_notebook
        import plotly.figure_factory as ff
        import numpy as np # linear algebra
        import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
        import warnings
        warnings.filterwarnings('ignore')
        plt.style.use('fivethirtyeight')
        %matplotlib inline
        # Input data files are available in the read-only "../input/" directory
        # For example, running this (by clicking run or pressing Shift+Enter) will list all file
        import os
        for dirname, _, filenames in os.walk('/kaggle/input'):
            for filename in filenames:
                print(os.path.join(dirname, filename))
        # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserv
        # You can also write temporary files to /kaggle/temp/, but they won't be saved outside o
```

```
In [2]: data=pd.read_csv('../input/water-potability/water_potability.csv')
    data.head()
```

:		ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes
	0	NaN	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970
	1	3.716080	129.422921	18630.057858	6.635246	NaN	592.885359	15.180013	56.329076
	2	8.099124	224.236259	19909.541732	9.275884	NaN	418.606213	16.868637	66.420093
	3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674
	4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993

EDA

Out[2]:

- ph-> pH of water
- · Hardness-> Capacity of water to precipitate soap in mg/L
- Solids-> Total dissolved solids in ppm
- Chloramines-> Amount of Chloramines in ppm
- Sulfate-> Amount of Sulfates dissolved in mg/L
- Conductivity-> Electrical conductivity of water in μ S/cm
- Organic_carbon-> Amount of organic carbon in ppm
- Trihalomethanes-> Amount of Trihalomethanes in μ g/L
- Turbidity-> Measure of light emiting property of water in NTU (Nephelometric Turbidity Units)
- Potability-> Indicates if water is safe for human consumption

In [3]: data.describe()

Out[3]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihak
count	2785.000000	3276.000000	3276.000000	3276.000000	2495.000000	3276.000000	3276.000000	31
mean	7.080795	196.369496	22014.092526	7.122277	333.775777	426.205111	14.284970	
std	1.594320	32.879761	8768.570828	1.583085	41.416840	80.824064	3.308162	
min	0.000000	47.432000	320.942611	0.352000	129.000000	181.483754	2.200000	
25%	6.093092	176.850538	15666.690297	6.127421	307.699498	365.734414	12.065801	
50%	7.036752	196.967627	20927.833607	7.130299	333.073546	421.884968	14.218338	
75%	8.062066	216.667456	27332.762127	8.114887	359.950170	481.792304	16.557652	
max	14.000000	323.124000	61227.196008	13.127000	481.030642	753.342620	28.300000	1

In [4]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):
     Column
                      Non-Null Count
                                       Dtype
- - -
 0
     ph
                       2785 non-null
                                       float64
                                       float64
 1
     Hardness
                       3276 non-null
 2
     Solids
                       3276 non-null
                                       float64
 3
     Chloramines
                      3276 non-null
                                       float64
 4
     Sulfate
                                       float64
                      2495 non-null
 5
     Conductivity
                      3276 non-null
                                       float64
                      3276 non-null
                                       float64
     Organic_carbon
 7
     Trihalomethanes 3114 non-null
                                       float64
     Turbidity
                       3276 non-null
                                       float64
 9
     Potability
                       3276 non-null
                                       int64
dtypes: float64(9), int64(1)
memory usage: 256.1 KB
```

In [5]: print('There are {} data points and {} features in the data'.format(data.shape[0], data.s

There are 3276 data points and 10 features in the data

Null Values

```
In [6]: sns.heatmap(data.isnull(),yticklabels=False,cbar=False,cmap='viridis')
Out[6]: <AxesSubplot:>
```


There are 162 null values in Trihalomethanes column

```
In [7]: for i in data.columns:
    if data[i].isnull().sum()>0:
        print("There are {} null values in {} column".format(data[i].isnull().sum(),i))

There are 491 null values in ph column
There are 781 null values in Sulfate column
```

Handling Null Values

```
In [8]: data['ph'].describe()
                   2785.000000
          count
 Out[8]:
                      7.080795
          mean
          std
                      1.594320
          min
                      0.000000
                      6.093092
          25%
          50%
                      7.036752
          75%
                      8.062066
                     14.000000
          max
          Name: ph, dtype: float64
          Filling the missing values by mean
 In [9]:
          data['ph_mean']=data['ph'].fillna(data['ph'].mean())
          data['ph_mean'].isnull().sum()
In [10]:
Out[10]:
In [11]:
          fig = plt.figure()
          ax = fig.add_subplot(111)
          data['ph'].plot(kind='kde', ax=ax)
          data.ph_mean.plot(kind='kde', ax=ax, color='red')
          lines, labels = ax.get_legend_handles_labels()
          ax.legend(lines, labels, loc='best')
          plt.show()
                                                           ph
            0.4
                                                           ph mean
            0.3
          Density
            0.2
            0.1
            0.0
                    -5
                             0
                                             10
                                                     15
                                                              20
          The distribution is not uniform
          Filling the data with random values
In [12]:
          def impute_nan(df, variable):
              df[variable+"_random"]=df[variable]
              ##It will have the random sample to fill the na
              random_sample=df[variable].dropna().sample(df[variable].isnull().sum(),random_state=
              ##pandas need to have same index in order to merge the dataset
              random_sample.index=df[df[variable].isnull()].index
              df.loc[df[variable].isnull(), variable+'_random']=random_sample
```

In [13]:

In [14]:

impute_nan(data, "ph")

ax = fig.add_subplot(111)

data['ph'].plot(kind='kde', ax=ax)

fig = plt.figure()

```
data.ph_random.plot(kind='kde', ax=ax, color='green')
data.ph_mean.plot(kind='kde', ax=ax, color='red')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')
plt.show()
```


Uniform distribution with random initialization

plt.show()

```
In [15]: impute_nan(data, "Sulfate")

In [16]: fig = plt.figure()
    ax = fig.add_subplot(111)
    data['Sulfate'].plot(kind='kde', ax=ax)
    data["Sulfate_random"].plot(kind='kde', ax=ax, color='green')
    #data.ph_mean.plot(kind='kde', ax=ax, color='red')
    lines, labels = ax.get_legend_handles_labels()
    ax.legend(lines, labels, loc='best')
```



```
In [17]: impute_nan(data, "Trihalomethanes")
In [18]: fig = plt.figure()
ax = fig.add_subplot(111)
```

```
ax = fig.add_subplot(111)
data['Trihalomethanes'].plot(kind='kde', ax=ax)
data.Trihalomethanes_random.plot(kind='kde', ax=ax, color='green')
lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')
plt.show()
```



```
data=data.drop(['ph', 'Sulfate', 'Trihalomethanes', 'ph_mean'], axis=1)
In [19]:
In [20]:
          data.isnull().sum()
         Hardness
                                     0
Out[20]:
          Solids
                                     0
          Chloramines
                                     0
         Conductivity
                                     0
          Organic_carbon
                                     0
          Turbidity
                                     0
          Potability
                                     0
          ph_random
                                     0
          Sulfate_random
                                     0
          Trihalomethanes_random
                                     0
          dtype: int64
```

Check for Correlation

```
In [21]: plt.figure(figsize=(20, 17))
    matrix = np.triu(data.corr())
    sns.heatmap(data.corr(), annot=True,linewidth=.8, mask=matrix, cmap="rocket",cbar=False)
```


There are no correlated columns presebt in the data

```
In [22]: sns.pairplot(data, hue="Potability", palette="husl");
```



```
In [23]: def distributionPlot(data):
    """
    Creates distribution plot.
    """
    fig = plt.figure(figsize=(20, 20))
    for i in tqdm_notebook(range(0, len(data.columns))):
        fig.add_subplot(np.ceil(len(data.columns)/3), 3, i+1)
        sns.distplot(
            data.iloc[:, i], color="lightcoral", rug=True)
        fig.tight_layout(pad=3.0)
    plot_data = data.drop(['Potability'], axis =1)
    distributionPlot(plot_data)
```


Hardness

```
data['Hardness'].describe()
In [24]:
                   3276.000000
         count
Out[24]:
                    196.369496
         mean
         std
                     32.879761
                     47.432000
         min
         25%
                    176.850538
         50%
                    196.967627
         75%
                    216.667456
                    323.124000
         max
         Name: Hardness, dtype: float64
In [25]:
          plt.figure(figsize = (16, 7))
          sns.distplot(data['Hardness'])
          plt.title('Distribution Plot of Hardness\n', fontsize =
          plt.show()
```

Distribution Plot of Hardness

Solids

```
data['Solids'].describe()
In [28]:
         count
                   3276.000000
Out[28]:
                  22014.092526
         mean
         std
                   8768.570828
         min
                     320.942611
         25%
                  15666.690297
         50%
                  20927.833607
         75%
                  27332.762127
         max
                  61227.196008
         Name: Solids, dtype: float64
In [29]:
         plt.figure(figsize = (16, 7))
         sns.distplot(data['Solids'])
         plt.title('Distribution Plot of Solids\n', fontsize = 20)
         plt.show()
```

Distribution Plot of Solids

Potability=1

Chloramines

```
In [33]:
          data['Chloramines'].describe()
                     3276.000000
          count
Out[33]:
                        7.122277
          mean
          std
                        1.583085
          min
                        0.352000
          25%
                        6.127421
          50%
                        7.130299
          75%
                        8.114887
          max
                       13.127000
          Name: Chloramines, dtype: float64
In [34]:
          plt.figure(figsize = (16, 7))
          sns.distplot(data['Chloramines'])
plt.title('Distribution Plot of Chloramines\n', fontsize = 20)
           plt.show()
```

Distribution Plot of Chloramines

fig.show()

Conductivity

```
data["Conductivity"].describe()
In [37]:
                  3276.000000
         count
Out[37]:
         mean
                   426.205111
         std
                    80.824064
         min
                   181.483754
         25%
                   365.734414
         50%
                   421.884968
         75%
                   481.792304
                   753.342620
         max
         Name: Conductivity, dtype: float64
         plt.figure(figsize = (16, 7))
In [38]:
         sns.distplot(data['Conductivity'])
         plt.title('Distribution Plot of Conductivity\n', fontsize =
         plt.show()
```

Distribution Plot of Conductivity


```
In [40]: group_labels = ['distplot'] # name of the dataset

fig = ff.create_distplot([data['Conductivity']], group_labels)
fig.show()
```


Organic_carbon

```
In [41]: data['Organic_carbon'].describe()
         count
                   3276.000000
Out[41]:
         mean
                     14.284970
         std
                      3.308162
                      2.200000
         min
         25%
                     12.065801
         50%
                     14.218338
         75%
                     16.557652
         max
                     28.300000
         Name: Organic_carbon, dtype: float64
In [42]: group_labels = ['Organic_carbon'] # name of the dataset
         fig = ff.create_distplot([data['Organic_carbon']], group_labels)
          fig.show()
```



```
In [43]: dt_5=data[data['Organic_carbon']<5]
    dt_5_10=data[(data['Organic_carbon']>5)&(data['Organic_carbon']<10)]
    dt_10_15=data[(data['Organic_carbon']>10)&(data['Organic_carbon']<15)]
    dt_15_20=data[(data['Organic_carbon']>15)&(data['Organic_carbon']<20)]
    dt_20_25=data[(data['Organic_carbon']>20)&(data['Organic_carbon']<25)]
    dt_25=data[(data['Organic_carbon']>25)]

x_Age = ['5', '5-10', '10-15', '15-20', '25+']
    y_Age = [len(dt_5.values), len(dt_5_10.values), len(dt_10_15.values), len(dt_15_20.value len(dt_25.values)]

px.bar(data_frame = data, x = x_Age, y = y_Age, color = x_Age, template = 'plotly_dark', title = 'Number of passengers per Age group')
```


Turbidity

```
3.966786
         mean
         std
                      0.780382
                      1.450000
         min
         25%
                      3.439711
                      3.955028
         50%
         75%
                      4.500320
                      6.739000
         max
         Name: Turbidity, dtype: float64
In [46]: group_labels = ['Turbidity'] # name of the dataset
         fig = ff.create_distplot([data['Turbidity']], group_labels)
          fig.show()
```

3276.000000

count

Out[45]:


```
In [47]: data['turbid_class']=data['Turbidity'].astype(int)
In [48]: data['turbid_class'].unique()
Out[48]: array([2, 4, 3, 5, 6, 1])
In [49]: px.scatter(data_frame = data, x = 'Turbidity', y = 'turbid_class', color = 'Potability',
```



```
In [51]: data=data.drop(['turbid_class'],axis=1)
```

ph_random

```
In [52]:
         data['ph_random'].describe()
         count
                  3276.000000
Out[52]:
         mean
                     7.071639
                     1.607991
         std
         min
                     0.000000
         25%
                     6.081460
         50%
                     7.029490
         75%
                     8.063147
                    14.000000
         max
         Name: ph_random, dtype: float64
In [53]: group_labels = ['ph_random'] # name of the dataset
         fig = ff.create_distplot([data['ph_random']], group_labels)
         fig.show()
```


Potability=1

Sulfate_random

```
In [56]:
         data['Sulfate_random'].describe()
         count
                   3276.000000
Out[56]:
         mean
                    333.430954
         std
                     41.026947
         min
                    129.000000
         25%
                    307.523159
         50%
                    332.879578
         75%
                    359.710517
         max
                    481.030642
         Name: Sulfate_random, dtype: float64
In [57]: group_labels = ['distplot'] # name of the dataset
          fig = ff.create_distplot([data['Sulfate_random']], group_labels)
          fig.show()
```


Trihalomethanes_random

```
Out[59]:
                    66.419200
         mean
         std
                    16.184832
         min
                     0.738000
         25%
                    55.861675
         50%
                    66.639068
         75%
                    77.384166
                    124.000000
         max
         Name: Trihalomethanes_random, dtype: float64
         group_labels = ['Trihalomethanes_random'] # name of the dataset
In [60]:
         fig = ff.create_distplot([data['Trihalomethanes_random']], group_labels)
          fig.show()
```

3276.000000

count


```
In [61]: fig = px.box(x = 'Trihalomethanes_random', data_frame = data, template = 'plotly_dark')
         fig.update_layout(title='Trihalomethanes_random')
         fig.show()
```


Potability

```
In [63]:
         data['Potability'].describe()
         count
                  3276.000000
Out[63]:
         mean
                     0.390110
         std
                     0.487849
         min
                     0.000000
         25%
                     0.000000
         50%
                     0.000000
         75%
                     1.000000
         max
                     1.000000
         Name: Potability, dtype: float64
         px.histogram(data_frame = data, x = 'Potability', color = 'Potability', marginal = 'box'
In [64]:
                       template = 'plotly_dark')
```


Data Preprocessing

```
In [66]:
         from sklearn.preprocessing import StandardScaler
          from sklearn.model_selection import train_test_split
         X=data.drop(['Potability'], axis=1)
In [67]:
         y=data['Potability']
         Since the data is not in a uniform shape, we scale the data using standard scalar
In [68]: scaler = StandardScaler()
         x=scaler.fit_transform(X)
In [69]:
         # split the data to train and test set
          x_train,x_test,y_train,y_test = train_test_split(x,y,train_size=0.85,random_state=42)
          print("training data shape:-{} labels{} ".format(x_train.shape,y_train.shape))
          print("testing data shape:-{} labels{} ".format(x_test.shape,y_test.shape))
         training data shape:-(2784, 9) labels(2784,)
         testing data shape:-(492, 9) labels(492,)
```

Modeling

Logistic Regression

```
In [70]: from sklearn.linear_model import LogisticRegression
    log = LogisticRegression(random_state=0).fit(x_train, y_train)
    log.score(x_test, y_test)

Out[70]: 0.6219512195121951

In [71]: # Confusion matrix
    from sklearn.metrics import confusion_matrix
    # Make Predictions
    pred1=log.predict(np.array(x_test))
    plt.title("Confusion Matrix testing data")
    sns.heatmap(confusion_matrix(y_test, pred1), annot=True, cbar=False)
    plt.legend()
    plt.show()
```

Confusion Matrix testing data

K Nearest Neighbours

```
In [72]: from sklearn.neighbors import KNeighborsClassifier
In [73]: knn = KNeighborsClassifier(n_neighbors=2)
# Train the model using the training sets
knn.fit(x_train,y_train)
#Predict Output
predicted= knn.predict(x_test) # 0:Overcast, 2:Mild
```

```
In [74]: # Confusion matrix
from sklearn.metrics import confusion_matrix
# Make Predictions
pred1=knn.predict(np.array(x_test))
plt.title("Confusion Matrix testing data")
sns.heatmap(confusion_matrix(y_test, pred1), annot=True, cbar=False)
plt.legend()
plt.show()
```

Confusion Matrix testing data 2.6e+02 44 1.4e+02 43

SVM

from sklearn import svm

In [75]:

Confusion Matrix testing data

Decision Tree

```
In [78]: from sklearn import tree from sklearn.metrics import accuracy_score
```

```
In [79]: tre = tree.DecisionTreeClassifier()
    tre = tre.fit(x_train, y_train)

y_pred = tre.predict(x_test)
    print(accuracy_score(y_test,y_pred))
```

0.5487804878048781

```
In [80]: # Confusion matrix
    from sklearn.metrics import confusion_matrix
    # Make Predictions
    pred1=tre.predict(np.array(x_test))
    plt.title("Confusion Matrix testing data")
    sns.heatmap(confusion_matrix(y_test, pred1), annot=True, cbar=False)
    plt.legend()
    plt.show()
```

Confusion Matrix testing data

Random Forest

```
In [81]: from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score
```

```
In [82]: # create the model
model_rf = RandomForestClassifier(n_estimators=500, oob_score=True, random_state=100)

# fitting the model
model_rf=model_rf.fit(x_train, y_train)

y_pred = model_rf.predict(x_test)
print(accuracy_score(y_test,y_pred))
```

0.6788617886178862

```
In [83]: # Confusion matrix
    from sklearn.metrics import confusion_matrix
    # Make Predictions
    pred1=model_rf.predict(np.array(x_test))
    plt.title("Confusion Matrix testing data")
    sns.heatmap(confusion_matrix(y_test, pred1), annot=True, cbar=False)
    plt.legend()
    plt.show()
```

Confusion Matrix testing data

XG Boost

plt.xlabel("Predicted class") plt.ylabel("Actual class")

```
In [84]:
         from xgboost import XGBClassifier
         from sklearn.metrics import r2_score
         xgb = XGBClassifier(colsample_bylevel= 0.9,
                             colsample_bytree = 0.8,
                              gamma=0.99,
                              max_depth = 5,
                             min_child_weight= 1,
                              n_estimators= 8,
                              nthread= 5,
                              random_state= 0,
         xgb.fit(x_train,y_train)
         [14:31:40] WARNING: ../src/learner.cc:1095: Starting in XGBoost 1.3.0, the default evalu
         ation metric used with the objective 'binary:logistic' was changed from 'error' to 'logl
         oss'. Explicitly set eval_metric if you'd like to restore the old behavior.
         XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=0.9,
Out[84]:
                       colsample_bynode=1, colsample_bytree=0.8, gamma=0.99, gpu_id=-1,
                       importance_type='gain', interaction_constraints='',
                       learning_rate=0.300000012, max_delta_step=0, max_depth=5,
                       min_child_weight=1, missing=nan, monotone_constraints='()',
                       n_estimators=8, n_jobs=5, nthread=5, num_parallel_tree=1,
                       random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1,
                       subsample=1, tree_method='exact', validate_parameters=1,
                       verbosity=None)
In [85]: print('Accuracy of XGBoost classifier on training set: {:.2f}'
               .format(xgb.score(x_train, y_train)))
         print('Accuracy of XGBoost classifier on test set: {:.2f}'
               .format(xgb.score(x_test, y_test)))
         Accuracy of XGBoost classifier on training set: 0.72
         Accuracy of XGBoost classifier on test set: 0.63
In [86]: from sklearn.metrics import confusion_matrix
         conf_matrix = confusion_matrix(y_true=y_test, y_pred=y_pred)
         plt.figure(figsize = (15, 8))
         sns.set(font_scale=1.4) # for label size
         sns.heatmap(conf_matrix, annot=True, annot_kws={"size": 16},cbar=False, linewidths = 1)
         plt.title("Test Confusion Matrix")
```


SVM tuned

```
In [87]:
         from sklearn.svm import SVC
          from sklearn.model_selection import GridSearchCV
          svc=SVC()
          param_grid={'C':[1.2,1.5,2.2,3.5,3.2,4.1],'kernel':['linear', 'poly', 'rbf', 'sigmoid'],
          gridsearch=GridSearchCV(svc,param_grid=param_grid,n_jobs=-1,verbose=4,cv=3)
          gridsearch.fit(x_train,y_train)
         Fitting 3 folds for each of 240 candidates, totalling 720 fits
          [Parallel(n_jobs=-1)]: Using backend LokyBackend with 4 concurrent workers.
          [Parallel(n_jobs=-1)]: Done 17 tasks
                                                      | elapsed:
                                                                     2.9s
          [Parallel(n_jobs=-1)]: Done 90 tasks
                                                       | elapsed:
                                                                     7.5s
          [Parallel(n_jobs=-1)]: Done 213 tasks
                                                      | elapsed:
                                                                    15.3s
                                                      | elapsed:
          [Parallel(n_jobs=-1)]: Done 384 tasks
                                                                    26.8s
          [Parallel(n_jobs=-1)]: Done 605 tasks
                                                      | elapsed:
                                                                    42.5s
          [Parallel(n_jobs=-1)]: Done 720 out of 720 | elapsed: 51.0s finished
         GridSearchCV(cv=3, estimator=SVC(), n_jobs=-1,
Out[87]:
                       param_grid={'C': [1.2, 1.5, 2.2, 3.5, 3.2, 4.1],
                                    'degree': [1, 2, 4, 8, 10], 'gamma': ['scale', 'auto'], 'kernel': ['linear', 'poly', 'rbf', 'sigmoid']},
                       verbose=4)
In [88]:
         y_pred=gridsearch.predict(x_test)
          from sklearn.metrics import confusion_matrix
          conf_matrix = confusion_matrix(y_true=y_test, y_pred=y_pred)
          plt.figure(figsize = (15, 8))
          sns.set(font_scale=1.4) # for label size
          sns.heatmap(conf_matrix, annot=True, annot_kws={"size": 16},cbar=False, linewidths = 1)
          plt.title("Test Confusion Matrix")
          plt.xlabel("Predicted class")
          plt.ylabel("Actual class")
          plt.savefig('conf_test.png')
          plt.show()
```

