

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

Факультет «Машиностроительные технологии» Кафедра «Электронные технологии в машиностроении»

Домашнее задание «Расчет освещения производственного помещения» Вариант 18

Выполнил:

студент группы ИУ7-73Б

Светличная Алина

Москва

2023

Содержание

Исходные данные	3
1. Определение нормированной освещенности E _н	
2. Выбор системы освещения	4
3. Выбор источника света (лампы)	5
4. Выбор светильника (осветительной установки, осветительных приборов)	5
5. Определение размещения светильников и их подвеса	5
6. Формулы расчета светового потока лампы $\Phi_{\scriptscriptstyle m I}$ по методу коэффициента использова	RИH
светового потока	6
6.1. Выбор коэффициентов k и Z	6
6.2. Выбор и рачет коэффициента использования светового потока η	6
7. Подбор стандартной лампы	8
8. Определение потребной мощности всей осветительной установки	9

Исходные данные

Таблица 1 – Исходные данные для расчёта

№ вари-	Характеристика помещения		Характеристика зрительных работ			
	Тип	А х В, м (длина х ширина)	Рассматриваемый объект			Цвет
анта			Вид работ	Размер объекта, мм	Цвет объекта	фона
	Кабинет					
18	директора	8x5	Документы	0,8	Черный	Белый
	завода					

1. Определение нормированной освещенности Ен

Так как тип помещения «кабинет начальника цеха» относится к производственным помещениям общественных зданий, а также сопутствующим им производственным помещениям, то необходимо определять $E_{\rm H}$ по следующей таблице.

Таблица 2 — Нормативные показатели освещения рабочих мест в помещениях общественных зданий, а также сопутствующих им производственных помещениях.

	Плоскость (Г -	Искусственное освещение			
	горизонтальная, В -	O			
	вертикальная)	при комбинированном освещении			
Помещения	нормирования			только при	
	освещенности и КЕО,	всего	в т.ч. от общего	общем	
	высота плоскости над			освещении	
	полом, м				
1	2	3	4	5	
1) Кабинеты и					
рабочие комнаты,	Γ-0,8	400	200	300	
офисы					

Выберем общее освещение, так как в этом помещении не будут выполняться точные работы и помещение является конторским.

Выбрано помещение №1 (кабинет начальника цеха) при системе комбинированного освещения с нормой освещенности от общего освещения – $E_{\rm H}=200$ лк, при системе только общего освещения – $E_{\rm H}=300$ лк.

2. Выбор системы освещения

Для нашего варианта задания будем использовать только рабочее освещение (предусматривается для всех помещений зданий, а также участков открытых пространств, предназначенных для работы, прохода людей и движения транспорта).

Подбираем искусственное освещение, так как его устраивают в помещениях производственных, бытовых и вспомогательных зданий промышленных предприятий, а также в местах работы на открытых пространствах (территории промышленных предприятий, строительных площадок и т.д.). Естественного освещения будет недостаточно из-за того, что свет не будет в достаточном количестве доходить до рабочего места.

Используем общее равномерное освещение из-за того, что в исходных данных нет особых или точных работ, требующих дополнительного локального освещения.

Для выбранной системы общего освещения норма освещенности $E_{\rm H} = 300$ лк.

3. Выбор источника света (лампы)

Как источник света возьмем **люминесцентную лампу**, а не ДРЛ, так как лампа ДРЛ, как правило, не применяются в административно-управленческих помещениях (кабинетах) из-за небольшой высоты помещения, легкости доступа к светильнику, отсутствию работ с поверхностями без выраженной цветности, отсутствия специальных требований к качеству помещения, а также нормальной комнатной температуре (+23° C). Также люминесцентные лампы имеют лучший, по сравнению с ДРЛ, спектральный состав света, равномерный световой поток и меньшие пульсации света.

4. Выбор светильника (осветительной установки, осветительных приборов)

Так как мы имеем рабочее помещение – кабинет директора завода, тип лампы – ЛЛ, а выбранная система освещения – общее освещение, то наиболее подходящим вариантов в качестве светильника будет светильник потолочный. Выбор аргументирован следующими параметрами: удобный монтаж плоского невысокого светильника; симметричное светораспределение, что удовлетворяет требованиям для помещения – кабинета начальника цеха; небольшая блескость вследствие наличия светлого помещения и рассеянного света от источника света; экономичность светильника – недорогие лампы и простая конструкция светильника.

5. Определение размещения светильников и их подвеса

Согласно рекомендациям, расстояние от стены должно быть L/3, тогда для нашего помещения схема будет выглядеть следующим образом, как на рис.1.

Рисунок 1 – Схема расположения светильников в помещении

Для данной схемы получаем:

$$\frac{A}{3} + A + A + \frac{A}{3} = 8000 \rightarrow \frac{8A}{3} = 8000 \rightarrow A = 3000 \text{MM} = 3 \text{M}$$

$$\frac{B}{3} + B + \frac{B}{3} = 5000 \rightarrow \frac{5B}{3} = 5000 \rightarrow B = 3000 \text{MM} = 3 \text{M}$$

Число светильников N=6, число ламп в светильнике n=4, общее число ламп

$$n \cdot N = 24$$

Тогда для нашего помещения получаем следующую конфигурацию светильников.

Рисунок 3 – Схема расположения светильников в помещении исходя из расчетов

6. Формулы расчета светового потока лампы $\Phi_{\rm n}$ по методу коэффициента использования светового потока

6.1.Выбор коэффициентов к и Z

Выбор коэффициента осуществляется по таблице 3 согласно типу помещения и типу осветительной лампы. Для кабинетов и рабочих помещений, офисных помещений, жилых комнат, учебных помещений, лабораторий, читальных залов, залов совещаний, торговых залов и т.д. коэффициент запаса k=1,4.

Выбираем коэффициент минимальной освещенности Z =1,1.

6.2.Выбор и рачет коэффициента использования светового потока п

Коэффициенты использования светового потока η для принятого типа светильника определяют по индексу помещения і и коэффициентам отражения ρ потолка (ρ_{π}), стен (ρ_{c}). Для выбора этих коэффициентов воспользуемся таблицей 4.

Таблица 4 – Приблизительные значения коэффициентов отражения стен и потолка

Характер отражающей поверхности	Коэффициент
	отражения, %
Побеленный потолок; побеленные стены с окнами, закрытыми белыми	70
шторами.	
Побеленные стены при незавешенных окнах; побеленный потолок в сырых	50
помещениях; чистый бетонный и светлый деревянный потолок.	
Бетонный потолок в грязных помещениях; деревянный потолок; бетонные	30
стены с окнами; стены, оклеенные светлыми обоями.	
Стены и потолок в помещениях с большим количеством темной пыли;	10
сплошное остекление без штор; красный кирпич не оштукатуренный; стены	
с темными обоями.	
Белая фаянсовая плитка	70

Так как мы имеем помещения типа кабинета, то предполагаем, что помещение побелено на потолке (имеется белый фон исходя из условий задания), а также имеются побеленные стены при незавешанных окнах, поэтому $\rho_{\pi} = 70\%$, $\rho_{c} = 50\%$.

Индекс помещения і рассчитывают по формуле:

$$i = \frac{A \cdot B}{H_{\Pi}(A+B)}$$

где:

А и В – характерные размеры помещения, м;

 H_{π} – высота подвеса светильников, м.

$$i = \frac{8 \cdot 5}{3(8+5)} = 1,026.$$

Коэффициент использования светового потока η для принятого типа светильника выбирается из таблицы 5.

Таблица 5 - Коэффициент использования светового потока для ARS/R418

Тип светильника	ARS/R418			
ρπ, %	70	50	30	
ρ _c ,%	50	30	10	
Индекс помещения і	Коэффициент использования η, %			
0,5	27	21	18	
0,6	32	25	22	
0,7	36	30	26	
0,8	39	33	29	
0,9	42	37	32	
1,0	45	40	35	

1,1	48	42	38
1,25	50	45	40
1,5	54	49	45
1,75	57	52	48
2	59	55	51
2,25	62	57	53
2,5	63	58	55
3	65	61	58
3,5	67	62	60
4	68	64	61
5	70	67	65

Для нашего индекса помещения считаем путем интерполяции точек из таблицы:

$$\eta = \frac{48 - 45}{1,1 - 1,0}(1,026 - 1,0) + 45 = 45,78$$

Для расчета F будут использованы следующие параметры:

$$F_{\text{pac}} = \frac{E_{\text{H}} \cdot S \cdot k \cdot Z}{\eta \cdot N \cdot n};$$

 $E_{\rm H} = 300\,{\rm лk} - {\rm нормированная}$ освещенность;

 $S = 8 \cdot 5 = 40 \text{ м}^2$ – освещаемая площадь;

k = 1,4 - коэффициент запаса;

Z = 1,1 – коэффициент минимальной освещенности;

N = 6 шт - количество принятых светильников;

n = 4 шт – число ламп в светильнике;

 $\eta = 45{,}78\%$ — коэффициент использования светового потока.

$$F = \frac{300 \cdot 40 \cdot 1,4 \cdot 1,1}{0,4578 \cdot 6 \cdot 4} = 1682 \text{ лм}.$$

7. Подбор стандартной лампы

Подбираем по рассчитанному Φ_{π} из таблицы 2 стандартную ЛЛ лампу.

По данной таблице подбираем наиболее близкое значение к $F_{\rm pac}=1682$ лм. А значит подбираем лампу ЛД30, у которой световой поток $F_{\rm факт}=1640$ лм.

Проверим правильность подбора ламп. Отклонение $\Delta \mathcal{E}_E$ от нормируемого значения освещенности подсчитывается по формуле:

$$\Delta \mathcal{E}_{E} = \frac{|E_{H} - E_{\varphi}|}{E_{H}} \cdot 100\%,$$

где:

 $E_{\rm H} = 300~{\rm л}{\rm K}$ - нормированная освещенность;

 E_{Φ} – фактическая освещенность, лк.

Рассчитаем фактическую освещенность лампы по формуле:

$$E_{\Phi} = \frac{n \cdot N \cdot \eta \cdot \Phi_{\Phi \text{akt}}}{S \cdot k \cdot Z}$$

где:

 $S = 40 \text{ м}^2 - \text{освещаемая площадь};$

k = 1,4 - коэффициент запаса;

Z = 1,1 -коэффициент минимальной освещенности;

 $F_{\phi {
m akt}} = 1640 \ {
m лм}$ - фактическая освещенность лампы;

N = 6 шт - количество принятых светильников;

n = 4 шт – число ламп в светильнике;

 $\eta = 45,78\%$ — коэффициент использования светового потока.

$$E_{\phi} = \frac{4 \cdot 6 \cdot 0,4578 \cdot 1640}{40 \cdot 1,4 \cdot 1,1} = 292,5$$
 (лк).

Тогда для $\Delta \mathcal{E}_E$ получаем:

$$\Delta E_E = \frac{|300 - 292,5|}{300} \cdot 100\% = 2,5\% < 10\%$$

Так как $\Delta \mathcal{E}_E$ не выходит за допустимые пределы погрешности, значит выбранная система освещения с подобранными стандартными лампами ЛД30 удовлетворяет исходным данным.

8. Определение потребной мощности всей осветительной установки

Рассчитаем потребную мощность всей осветительной системы P_{Σ} по формуле:

$$P_{\Sigma} = P \cdot \mathbf{n} \cdot \mathbf{N},$$

где:

N = 6 шт - количество принятых светильников;

n = 4 шт – число ламп в светильнике;

 $P_{\pi} = 20 \ B_{T} -$ мощность одной лампы.

Тогда для потребной мощности всей осветительной системы получаем:

$$P_{\Sigma} = 20 \cdot 4 \cdot 6 = 480 \text{ (BT)}.$$