Quiz 11 by Björn Bokelmann

Given that $X_n = AN(n, 2n)$, why does $\frac{n-1}{n}X_n = AN(n, 2n)$ hold and why is $\frac{n^{1/2}-1}{n^{1/2}}X_n \not\sim AN(n, 2n)$?

First we define $a_n = \frac{n-1}{n}$, $b_n = 0$, $\mu_n = n$, $\sigma_n = \sqrt{2n}$. Then $X_n = AN(\mu_n, \sigma_n)$. Further it holds

$$a_n = \frac{n-1}{n} = 1 + \frac{1}{n} \stackrel{n \to \infty}{\to} 1$$

and

$$\frac{\mu_n(a_n-1)+b_n}{\sigma_n}=\frac{n(\frac{n-1}{n}-1)}{\sqrt{2n}}=\frac{-1}{\sqrt{2n}}\stackrel{n\to\infty}{\to}0.$$

After Lemma 23 $\frac{n-1}{n}X_n$ is $AN(\mu_n, \sigma_n)$.

Given that $X_n = AN(n, 2n)$, why does $\frac{n-1}{n}X_n = AN(n, 2n)$ hold and why is $\frac{n^{1/2}-1}{n^{1/2}}X_n \not\sim AN(n, 2n)$?

Again we define $a_n=\frac{n^{1/2}-1}{n^{1/2}},\ b_n=0,\ \mu_n=n,\ \sigma_n=\sqrt{2n}.$ Then it holds

$$\frac{\mu_n(a_n-1)+b_n}{\sigma_n} = \frac{n(\frac{n^{1/2}-1}{n^{1/2}}-1)}{\sqrt{2n}} = \frac{n-n^{1/2}-n}{\sqrt{2n}} = -\frac{1}{\sqrt{2}} \stackrel{n\to\infty}{\not\to} 0$$

Again after Lemma 23 we can conclude that $a_n X_n \nsim AN(n, 2n)$.

An example for a sequence $X_n \sim AN(n, 2n)$ is

$$X_n = 3\sum_{i=1}^n Y_n$$
 with $Y_n \sim Ber(\frac{1}{3})$.

Proof.

Because $E[3Y_i] = 3 \cdot \frac{1}{3} = 1$ and $Var[3Y_i] = 9 \cdot \frac{1}{3}(1 - \frac{1}{3}) = 2$ it holds after the Central Limit Theorem

$$\frac{\sum_{i=1}^{n} 3Y_{n} - n}{\sqrt{2n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$

Thus
$$X_n = \sum_{i=1}^n 3Y_n \sim AN(n, 2n)$$
.

