PCFS: A Power Credit based Fair Scheduler under DVFS for Multi-core Virtualization Platform

Chengjian Wen, Jun He, Jiong Zhang, Xiang Long

School of Computer Science and Technology Beihang University Beijing 100191, P.R. China

Outline

- Introduction
- Related Work
- Design Goals for Power Efficient Scheduler
- Design and Implementation
- Evaluation
- Conclusions

Introduction

- The necessity of power efficiency management on multicore virtualization platform has become increasingly evident.
- How to make further use of multicore virtualization platform for better performance per watt becomes a focus of green computing.
- However, most current approaches on energy management are developed for standard, legacy OSes and not suitable for virtual machine monitor (VMM).
- In order to integrate DVFS policy to a hypervisor scheduler, we propose the approach of Power Credit based Fair scheduler (PCFS for short).

Related Work

- 1. Power management
 - DVFS
 - Linux CPU Governor Policy
 - OpenSolaris Project Tesla: CPU Power Management

2. Online performance prediction and energy model

- 3. Combine the virtualization and power management
 - Intel Open Source Technology Center: Xenpm

Design Goals for Power Efficient Scheduler (1/5)

- In the virtualization environment, the basic unit of scheduling is VCPU. The role of scheduler is to assign physical processor cores to each VCPU.
- General processors have multiple P-states and C-states. The higher the frequency and voltage, the more energy will be consumed.

$$P \propto fV^2$$

Design Goals for Power Efficient Scheduler (2/5)

P-states and C-states Examples

Core 2 Extreme X6800				Athlon A64 X2 4800+					
P-States	Clock Ratio	Clock	Voltage	Load	P-States	Clock Ratio	Clock	Voltage	Load
P0	11x	2.93 GHz	1.2875 V	81-100 %	P0	12x	2.4 GHz	1.35 V	81-100 %
P1	10x	2.67 GHz	1.2500 V	71-80 %	P1	11x	2.2 GHz	1.35 V	61-80 %
P2	9x	2.40 GHz	1.2250 V	51-70 %	P2	10x	2.0 GHz	1.325 V	51-60 %
P3	8x	2.13 GHz	1.2125 V	31-50 %	P3	9x	1.8 GHz	1.30 V	41-50 %
P4	7x	1.87 GHz	1.2000 V	11-30 %	P4	8x	1.6 GHz	1.25 V	31-40 %
P5	6x	1.60 GHz	1.1750 V	0-10 %	P5	7x	1.4 GHz	1.20 V	21-30 %
					P6	6x	1.2 GHz	1.15 V	11-20 %
					P7	5x	1.0 GHz	1.10 V	0-10 %
Core 2 Duo E6300				Athlon 64 X2 3600+					
P-States	Clock Ratio	Clock	Voltage	Load	P-States	Clock Ratio	Clock	Voltage	Load
P0	7x	1.87 GHz	1.2500V	31 - 100 %	P0	9x	1.8 GHz	1.30 V	81-100 %
P1	6x	1.60 GHz	1.2250V	0 - 30 %	P1	8x	1.6 GHz	1.25 V	61-80 %
					P2	7x	1.4 GHz	1.20 V	41-60 %
					P3	6x	1.2 GHz	1.15 V	21-40 %
					P4	5x	1.0 GHz	1.10 V	0-20 %
	_	101-1	ro IIIn					Con	bo Loc

Power State	Execution	Wake-Up Time	CPU Power	Platform	Core Voltage	Cache Shrink	Loss Of Context
C0	Yes	0ns	large	normal	normal	no	no
C1	No	10ns	30%	normal	normal	no	no
C2	No	100ns	30%	no I/O buffer	normal	no	no
C3	No	50,000ns	30%	I/O + no snoop	normal	no	no
C4	No	160,000ns	2%	I/O + no snoop	C4_VID	yes	no
C5	No	200,000ns	N/A	N/A	C4_VID	L2 = 0KB	no
C6	No	N/A	N/A	N/A	C6_VID	L2 = 0KB	yes

Source: http://www.techarp.com/showarticle.aspx?artno=420

Design Goals for Power Efficient Scheduler (3/5)

- Xen Credit Scheduler
 - 2 VCPU priority: OVER and UNDER fair share.
 - Period (30ms)
 - Every VM has a weight and cap.
 - Each core can provide 300 credit and these credit will be shared by all active VCPUs.
 - If a running VCPU does not have any runnable task, it will be blocked and leave the run queue.
 - VCPUs in the UNDER state are always run before those run in the OVER state.

Design Goals for Power Efficient Scheduler (4/5)

- Xen Credit Scheduler
 - Shortage
 - Its design is oriented to whole system performance fairness between different VMs and load balance between processors.
 - Thus, the processor cores get little chance to enter a more power-saving state.
 - An efficient power-aware scheduler needs to know the full information about the topology of system. But Xen Credit Scheduler does not support it very well.

Design Goals for Power Efficient Scheduler (5/5)

- Design principles:
 - 1. Take energy as a kind of system resource, and distinguish statistics of VCPU running time at different frequencies.
 - 2. Scheduler monitors the load of physical cores and select the frequency according to historical trends not only to the static mapping relations between load and frequency.
 - 3. Fairly schedule the guest OSes on cores at the higher frequency to meet the fairness requirements of guest OSes.
 - 4. Fairly schedule frequency levels on the same core to satisfy the physical core cooling limitations.

Design and Implementation (1/5)

• The PCFS framework

- Feedback controller
- DVFS selector
- CPU topology & Power zone management
- Credit Scheduler

Design and Implementation (2/5)

- Feedback controller
 - It is the entry of the entire scheduler.
 - It is in charge of choosing one action from DVFS selector and power zone management.
 - Judge whether one core has the load sample under 20% for 8 times
 - If yes, turn to power zone management.

 Migrate the load of this core to the other core running at highest frequency. Then set this core to a more power saving state.
 - If no, turn to DVFS selector. Choose the frequency which can keep CPU load on 90%.

Design and Implementation (3/5)

- DVFS selector
 - Define the up-threshold: 95%
 - If the load is decreased under the threshold, we choose the frequency which can keep CPU load on 90%.

Design and Implementation (4/5)

- CPU topology & Power zone management
 - Power zone is a set of processor cores which run with the same frequency and their workloads would be kept balanced by the scheduler of hypervisor.
 - Only when a power zone is idle, we'll take further power saving measurement such as offline a core or whole physical package according to the topology.
 - When a temperature threshold at one core is reached, the associated power zone will search for lower frequency and substitute the overheated core.
 - When one core has the load sample under 20% for 8 times, it will migrate the load of this core to the other core running at highest frequency.

Design and Implementation (5/5)

- Credit Scheduler
 - Power credit
 - Every CPU has P-states: $P_0, P_1, P_{...}, P_{n-1}$ (P_0 is the highest frequency)
 - Frequency of core number i is denoted by f_i .

•
$$Credit_{total} = \sum_{i=1}^{m} \frac{f_i}{p_0}$$

Consumed by VCPU

•
$$\lambda = \left(\frac{P_i}{P_0}\right)^2$$
, $i = 1, 2, ..., m$

- $Credit_{consumed} = \lambda * 100$
- $Credit_{left} = Credit_p Credit_{consumed}$

Evaluation (1/7)

- Evaluation objectives:
 - 1. How effective PCFS can use DVFS as power saving measurement.
 - 2. Whether PCFS utilizes the variety of power saving measurements in the context of performance conservation.
 - 3. Whether PCFS can improve equal sharing capability of the high frequency core?
 - 4. Whether PCFS can schedule high frequency on cores to avoid some core become over heated?

Evaluation (2/7)

• CPU: Intel Core i5 Quad-core

RAM: 4GB

Each core supports 10 P-state and 4 C-state. The maximum frequency is 2.267Ghz, and the frequency step is 133MHz.

- The version of Xen hypervisor is 3.4.3 while domain0 and domainU both use Linux 2.6.32-5 kernel.
- The virtualized guest operating system is Debian 5.0 squeeze.
- Three kinds of applications are selected as benchmarks workload which are listed below.

Benchmark	Type	Usage	
Spec2006	CPU-bound	nearly 100% workload	
Splash2	Parallel application	virtual smp workload	
Httperf	Network application	changing workload	
Netperf	IO-bound	low workload	

Evaluation (3/7)

Evaluation (4/7)

Average power while VM1 running these three applications

Evaluation (5/7)

when VM 2 has burst load cpu1 is running at high frequency and has more run time.

Evaluation (6/7)

Evaluation (7/7)

- Temperature balance between physical cores
 - 3 VMs (Each one has 1 VCPU)
 - VM1 runs SPEC2006
 - VM2 runs netperf (Average 20% workload)
 - VM3 runs httperf (Average 80% load)
 - If the CPU exceeded 73°C, an interrupt is triggered.
 - The scheduler will firstly search the low frequency power zone and migrate the VCPU on that heated core to one core of that power zone.
 - Finally it sets the according frequency in the target power zone.

Conclusions

- PCFS could keep some cores running at higher frequency and the other at lower frequency as long as possible.
- Experiments show that PCFS can make good use of these power saving measures.
- In the future, we will improve the PCFS to adapt to the heterogeneous multicore system and virtual SMP guest operating system.