Simularity reduction

$$\begin{aligned} & \text{Vr}\left[S_{-}, P_{-}, t_{-}\right] := M \; \text{H}\left[P \, / \, M, \, t\right]; (\star P = e \; M \star) \\ & \text{Simplify}\left[\left(FKE \, / \cdot \, V \to Vr \, / \cdot \, P \to e \; M\right) == 0\right] \\ & 2 \; \text{r} \; \text{H}\left[e, \, t\right] == 2 \; \text{H}^{\left(0, 1\right)}\left[e, \, t\right] + 2 \; \text{e} \; \text{r} \; \text{H}^{\left(1, 0\right)}\left[e, \, t\right] + e^{2} \; \text{q}^{2} \; \text{s}^{2} \; \text{H}^{\left(2, 0\right)}\left[e, \, t\right] \\ & FKE2 = \; \text{H}^{\left(0, 1\right)}\left[e, \, t\right] + \; \text{e} \; \text{r} \; \text{H}^{\left(1, 0\right)}\left[e, \, t\right] + e^{2} \; \text{q}^{2} \; \text{s}^{2} \; \text{H}^{\left(2, 0\right)}\left[e, \, t\right] / \; 2 - r \; \text{H}\left[e, \, t\right]; \end{aligned}$$

End Condition

```
V(S,P,T)=M H (P/M,t) = (P-M)^{+} \Rightarrow H(e) = (-e-1)^{+}
```

Passport Options

für konvexe payoffs und also $\mathtt{H}^{(2,0)}$ [e, t]>0 ist die optimale strategie q' das q, welches diesen ausdruck maximiert:

StrategiePayoff = Simplify [(FKE2 - (FKE2 /.
$$q \rightarrow 0$$
))]
$$\frac{1}{2} e^2 q^2 s^2 H^{(2,0)} [e,t]$$

Für ausschließich Long-Positionenmit AnfangskapitalM und Payoff max(P(t),0)

also $0 \le q \le (P+M)/S$

$$\begin{aligned} &\text{oq1 = Simplify} \left[A \left[V^{\left(0,2,0\right)} \left[S,P,t \right], 2 V^{\left(1,1,0\right)} \left[S,P,t \right], 0, \frac{M+P}{S} \right] \right] \\ & \left[\frac{M+P}{S} \quad \text{Abs} \left[\frac{V^{\left(1,1,0\right)} \left[S,P,t \right]}{V^{\left(0,2,0\right)} \left[S,P,t \right]} \right] < \text{Abs} \left[\frac{M+P}{S} + \frac{V^{\left(1,1,0\right)} \left[S,P,t \right]}{V^{\left(0,2,0\right)} \left[S,P,t \right]} \right] \\ & 0 \quad \text{True} \end{aligned} \right.$$

Für Long- und Short Positionen, Anfangskapital M und aufs Kapital limitierte Short positionen und Payoff max(P(t),0)

also -(P+M)/
$$S \le q \le (P+M)/S$$

$$\begin{aligned} &\text{oq2 = Simplify} \left[\mathbf{A} \left[\mathbf{V}^{\left(0,2,0\right)} \left[\mathbf{S}, \, \mathbf{P}, \, \mathbf{t} \right], \, 2 \, \mathbf{V}^{\left(1,1,0\right)} \left[\mathbf{S}, \, \mathbf{P}, \, \mathbf{t} \right], \, - \left(\mathbf{P} + \mathbf{M} \right) \, / \, \mathbf{S}, \, \frac{\mathbf{M} + \mathbf{P}}{\mathbf{S}} \, \right] \right] \\ & \left[\begin{array}{l} \frac{\mathsf{M} + \mathsf{P}}{\mathsf{S}} & \mathsf{Abs} \left[\frac{\mathsf{M} + \mathsf{P}}{\mathsf{S}} \, - \, \frac{\mathsf{V}^{\left(1,1,0\right)} \left[\mathsf{S}, \, \mathsf{P}, \, \mathsf{t} \right]}{\mathsf{V}^{\left(0,2,0\right)} \left[\mathsf{S}, \, \mathsf{P}, \, \mathsf{t} \right]} \, \right] \, < \, \mathsf{Abs} \left[\frac{\mathsf{M} + \mathsf{P}}{\mathsf{S}} \, + \, \frac{\mathsf{V}^{\left(1,1,0\right)} \left[\mathsf{S}, \, \mathsf{P}, \, \mathsf{t} \right]}{\mathsf{V}^{\left(0,2,0\right)} \left[\mathsf{S}, \, \mathsf{P}, \, \mathsf{t} \right]} \, \right] \\ & - \frac{\mathsf{M} + \mathsf{P}}{\mathsf{S}} & \mathsf{True} \end{aligned} \right.$$

Payoff = Simplify [P/S/. V
$$\rightarrow$$
 Vr /. P \rightarrow e \ast S] e StrategiePayoff = Simplify [(FKE - (FKE /. q \rightarrow 0)) /S/s^2 \ast 2 \ast 2 /. V \rightarrow Vr /. P \rightarrow e \ast S] q (-2 e + q) H^(2,0) [e, t]

Hier kann $H^{(2,0)}$ [e, t]>0 angenommen werden, da H(e,T)=max(e,0). Dann gilt:

$$\begin{aligned} & \text{oq3 = Simplify} \left[A \left[V^{\left(0, 2, 0 \right)} \left[S, P, t \right], 2 \, V^{\left(1, 1, 0 \right)} \left[S, P, t \right], -M, M \right] /. \, V \rightarrow Vr \, /. \, P \rightarrow e * S \right] \\ & \left[\begin{matrix} M & \text{Abs} \left[e + M \right] < \text{Abs} \left[e - M \right] \\ -M & \text{True} \end{matrix} \right] \\ & \text{oq3'} = \left\{ \begin{matrix} 1 & e < 0 \\ -1 & \text{True} \end{matrix} \right\} \end{aligned}$$

Gewinn durch nicht optimales Verhalten des Optionshalters

Hedged man nach der optimalen Formel, so wird pro Zeiteinheit folgender deterministische Gewinn erzielt, wobei oq die optimale und q die tatsächliche Strategie darstellt. Er errechnet sich aus der differenz der discontierten hedging portfolio (mit tatsächlichem q) und dem discontierten options preis (der sich nach Ito auch mit dem tatsächlichen q bewegt. Da bleiben aber nur dt-Terme übrig. Setzt man hier jetzt ein, dass der Optionspreis einer Gleichung genügt, die den optimalen q

Simplify [(dDV /. q
$$\rightarrow$$
 oq) - dDV /. dW \rightarrow 0]
 $\frac{1}{2}$ dt (oq-q) s² S² ((oq+q) V^(0,2,0) [S, P, t] + 2 V^(1,1,0) [S, P, t])

Boundary conditions

Für ausschließich Long-Positionenmit AnfangskapitalM und Payoff max(P(t),0)

$$v(S, P, T) = P^{+}$$

 $v(0, P, t) = P^{+}$
 $v(S, -M, t) = 0$
 $\lim_{P \to \infty} v(S,P,t)/P=1$
 $v(S > P, P, t) = P^{+}$
Für -1 <= q <= 1

$$v(S, P, T) = P^{+}$$

 $v(0, P, t) = P^{+}$
 $v(S, \infty, t) = 0$
 $\lim_{P \to \infty} v(S, P, t) / P = 1$
 $v(\infty, P, t) = P^{+}$