LAB 2 CSE 307

Presented by: Dr. Amandeep Singh

STRAIGHT-THROUGH Registered Jack-45

SIDE ONE

SIDE TWO

- White Orange
- 2. Orange
- 3. White Green
- Blue

- 5. White Blue
- 6. Green
- 7. White Brown
- 8. Brown

- 1. White Orange
- Orange
- 3. White Green
- Blue

- 5. White Blue
- Green
- 7. White Brown
- 8. Brown

CROSSOVER

SIDE ONE

SIDE TWO

- White Orange
- 2. Orange
- 3. White Green
- 4. Blue

- White Blue
- Green
- White BrownBrown

- White Green
- Green
- White Orange
- 4. Blue

- 5. White Blue
- Orange
- White Brown
- 8. Brown

Uses of cable

	HUB	SWITCH	ROUTER	PC
HUB	Crossover	Crossover	Straight	Straight
SWITCH	Crossover	Crossover	Straight	Straight
ROUTER	Straight	Straight	Crossover	Crossover
PC	Straight	Straight	Crossover	Crossover

Type of IP address

Class	Start range	End range Use		
A	1.0.0.0	127.255.255.255	For Internet Communication	
В	128.0.0.0	191.255.255.255	For Internet Communication	
С	192.0.0.0	223.255.255.255	For Internet Communication	
D	224.0.0.0	239.255.255.255	Reserved for multicasting	
Е	240.0.0.0	255.255.255.255	Reserved for Research & Experime	

Poll

- D class of internet is used for internet communication
- A. True
- B. False

Network address 172.19.0.0 with /16 network mask

Network	Network	Host	Host
172	19	0	0

Poll

- IP address contain network address along with host address
- A. True
- B. False

Network address 172.19.0.0 with /16 network mask

Network	Network	Host	Host
172	19	0	0

Using Subnets: subnet mask **255.255.255.0** or /24

	Network	Network	Subnet	Host
Network Mask: 255.255.0.0 or /16	11111111	11111111	00000000	00000000
Subnet Mask: 255.255.255.0 or /24	11111111	11111111	11111111	0000000

- Applying a mask which is larger than the default subnet mask, will divide your network into subnets.
- Subnet mask used here is 255.255.255.0 or /24

Class B address 172.19.0.0 with /16 network mask

Using Subnets: **subnet mask** 255.255.255.0 or /24

Network	Network	Subnet	Hosts		sts Idresses
172	19	0	1	→	254
172	19	1	1	→	254
172	19	2	1	→	254
172	19	3	1	→	254
172	19	etc.	1	→	254
172	19	254	1	→	254
172	19	255	Host		ach subnet has 54 hosts, 2 ⁸ – 2

Network address 172.19.0.0 with /16 network mask

Using Subnets: **subnet mask** 255.255.255.0 or /24

Network	Network	Subnet	Host
172	19	0	255
172	19	1	255
172	19	2	255
172	19	3	255
172	19	etc.	255
172	19	254	255
1-0	1.0		
172	19	255	255

Broadcast Addresses

255 Subnets

 $2^8 - 1$

Cannot use last subnet as it contains broadcast address

Poll

last subnet Cannot be used as it contains broadcast address

A. True

B. False

Single router network

CLI Router (command line interface)

- --- System Configuration Dialog ---
- Would you like to enter the initial configuration dialog? [yes/no]: no
- Press RETURN to get started!
- Router>en
- Router#config terminal (privilege mode)
- Enter configuration commands, one per line. End with CNTL/Z.
- Router(config)#interface GigabitEthernet0/1 (or Router(config)#interface g0/1)
- Router(config-if)#ip add 20.0.0.1 255.0.0.0
- Router(config-if)#no shutdown

- Router#config terminal
- Enter configuration commands, one per line. End with CNTL/Z.
- Router(config)#interface g0/0
- Router(config-if)#ip add 10.0.0.1 255.0.0.0
- Router(config-if)#no shutdown

FLSM subnetting (fixed length subnet mask)

- Step 1:decide total number of sub net required, lets say 2
- Step 2: calculate required subnet bits for example in assumed case

```
255.255.10000000 (2<sup>n</sup> formula used)
```

 Step 3: calculate subnet mask by converting this binary number to decimal for eg.

```
10000000 = 128 hence mask will be: 255.255.255.128
```

 Step 4: Find range by subtracting calculated mask from maximum possible number 255.255.255.255

```
255.255.255.128 Range will be
255.255.255.128 10.10.10.0 to 10.10.0.127
And
0.0.0.127 10.10.128 to 10.10.10.255
```


Sample of pc setting

Sample of pc setting

Router setting

VLSM subnetting (variable length subnet mask)

- Step 1:decide total number of sub net required, lets say 2
- Step 2: calculate required network bits for example in assumed case network one need 64 IP's and rest IP's belong to network two 32-6=26 bits

(2ⁿ formula used and 32 is (8.8.8.8 total no of bits))

 Step 3: calculate subnet mask by converting this binary number to decimal for eg.

11000000 = 192 hence mask will be: 255,255,255,192

Step 4: Find range by subtracting calculated mask from maximum possible number 255.255.255.255

255.255.255.255

255.255.255.192

Range will be 10.10.10.0.63

0.0.0.63

VLSM subnetting

- Step 1:decide total number of sub net required, lets say 2
- Step 2: calculate required network bits for example is assumed case network one need 30 IP's and rest IP's belong to network two 32-5=27 bits

(2ⁿ formula used and 32 is (8.8.8.8 total no of bits))

Step 3: calculate subnet mask by converting this binary number to decimal for eq.

1110000 = 224 hence mask will be: 255,255,255,224

Step 4: Find range by subtracting calculated mask from maximum possible number 255.255.255.255

255.255.255.255 255.255.255.224

Range will be 10.10.10.64 to 10.10.0.95

0.0.0.31

