- 1. Show that the following statements are true:
 - (a) $\frac{n(n-1)}{2}$ is $O(n^2)$
 - (b) $\max(n^3, 10n^2)$ is $O(n^3)$
 - (c) $\sum_{i=1}^{n} i^{k}$ is $O(n^{k+1})$ for integer k
 - (d) If p(x) is any k^{th} degree polynomial with a positive leading coefficient, then p(n) is $O(n^k)$.
- 2. Which function grows faster?
 - (a) $n^{\log n}$; $(\log n)^n$
 - (b) $\log n^k$; $(\log n)^k$
 - (c) $n^{\log \log \log n}$; $(\log n)!$
 - (d) n^n ; n!.
- 3. If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$ where f_1 and f_2 are positive functions of n, show that the function $f_1(n) + f_2(n)$ is $O(\max(g_1(n), g_2(n)))$.
- 4. Prove or disprove: Any positive n is $O(\frac{n}{2})$.
- 5. Prove or disprove: 3^n is $O(2^n)$.