

CRrystal **PLA**

TECHNISCHES DATENBLATT

Verarbeitung

Düse	210	°C
Druckbett	max. 50	°C
Lüfter	100	%
Retract (Direkt)	1 n	nm
Fluss	91	%
Empfohlenes Druckbett	PowdCR PEI FR4 BuildTak	

Technische Eigenschaften	Werte	Einheiten	Testmethode
Dichte	1,31	g/cm³	DIN EN ISO 1183
Bruchdehnung	27	%	DIN EN ISO 527
Zug E-Modul	3500	MPA	DIN EN ISO 527
Erweichungstemperatur	125	°C	DIN EN ISO 75/1
Kerbschlagzähigkeit	23	kJ/m2	DIN EN ISO 179/23°C
Schwindung	0,5	%	ISO 294-4
Bio Abbaubarkeit	Ja		DIN 13432 / ISO 14855

Allgemeine Informationen

ohe Wärmeformbeständigkeit ohe mechanische und thermische Eigenschaften nwendungen im industriellen Einsatz Wärme-Nachbehandlung

Um die Hochtemperatureigenschaften des Materials zu aktivieren muss das gedruckte Objekt im Umluftofen bei 105-110°C (Alternativ in kochenden Wasser) für 5-10min nachbehandelt werden. Dabei kristallisiert der Kunststoff aus und muss anschließend langsam abkühlen (Ofen ausschalten, Tür jedoch geschlossen halten). Das CRystal PLA bildet während des Abkühlvorgangs teilkristalline Strukturen aus, welche die Materialeigenschaften grundlegend verändern. Achtung! Es kann dabei zu einer Schrumpfung des Bauteils kommen!

Kontakt:

Stand: 20.08.2022