ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Факультет информационных технологий и анализа больших данных Департамент анализа данных и машинного обучения

Дисциплина: «Теория вероятностей и математическая статистика»

Направление подготовки: 01.03.02 «Прикладная математика и информатика» Профиль: «Анализ данных и принятие решений в экономике и финансах» Форма обучения очная, учебный 2020/2021 год, 4 семестр

Билет 118

- 1. Дайте определение случайной величины, которая имеет χ^2 -распределение с n степенями свободы. Запишите плотность χ^2 распределения. Выведите формулы для математического ожидания $\mathbb{E}(X)$ и дисперсии $\mathbb{V}ar(X)$ χ^2 -распределение с n степенями свободы. Найдите a) $\mathbb{P}(\chi^2_{20}>10.9)$, где χ^2_{20} -случайная величина, которая имеет χ^2 распределение с 20 степенями свободы; б) найдите 93% (верхнюю) точку $\chi^2_{0.93}(5)$ хи-квадрат распределения с 5 степенями свободы
- 2. Случайные величины X и Y независимы и имеют равномерное распределение на отрезках [0;3] и [0;8] соответственно. Для случайной величины $Z=\frac{Y}{X}$ найдите: 1) функцию распределения $F_Z(x)$; 2) плотность распределения $f_Z(x)$ и постройте график плотности; 3) вероятность $\P(2,475\leqslant Z\leqslant 4,811)$.
- 3. (10) Известно, что доля возвратов по кредитам в банке имеет распределение $F(x)=x^{\beta}, 0\leqslant x\leqslant 1$. Наблюдения показали, что в среднем она составляет 91,6667%. Методом моментов оцените параметр β и вероятность того, что она опуститься ниже 59%
- 4. (10) В группе Ω учатся студенты: $\omega_1...\omega_{25}$. Пусть X и Y-100-балльные экзаменационные оценки по математическому анализу и теории вероятностей. Оценки ω_i студента обозначаются: $x_i=X(\omega_i)$ и $y_i=Y(\omega_i),\ i=1...25$. Все оценки известны $x_0=64,y_0=84,\ x_1=82,y_1=42,\ x_2=51,y_2=99,\ x_3=68,y_3=57,\ x_4=90,y_4=71,\ x_5=89,y_5=55,\ x_6=55,y_6=55,\ x_7=90,y_7=58,\ x_8=61,y_8=78,\ x_9=38,y_9=84,\ x_{10}=56,y_{10}=95,\ x_{11}=86,y_{11}=69,\ x_{12}=71,y_{12}=72,\ x_{13}=35,y_{13}=99,\ x_{14}=82,y_{14}=67,\ x_{15}=79,y_{15}=59,\ x_{16}=83,y_{16}=88,\ x_{17}=45,y_{17}=75,\ x_{18}=70,y_{18}=79,\ x_{19}=89,y_{19}=80,\ x_{20}=33,y_{20}=30,\ x_{21}=63,y_{21}=73,\ x_{22}=55,y_{22}=53,\ x_{23}=31,y_{23}=78,\ x_{24}=50,y_{24}=90$ Требуется найти следующие условные эмпирические характеристики: 1) ковариацию X и Y при условии, что одновременно $X\geqslant50$ и $Y\geqslant50$; 2) коэффициент корреляции X и Y при том же условии.
- 5.~(10)~ Эмпирическое распределение признаков X и Y на генеральной совокупности Ω задано таблицей частот

	Y = 2	Y=4	Y=5
X = 200	17	3	13
X = 300	21	23	23

Из Ω случайным образом без возвращения извлекаются 10 элементов. Пусть \bar{X} и \bar{Y} – средние значения признаков на выбранных элементах. Требуется найти: 1) математическое ожидание $\mathbb{E}(\bar{Y})$; 2) стандартное отклонение $\sigma(\bar{X})$; 3) ковариацию $Cov(\bar{X},\bar{Y})$

6. (10) Пусть X_1, X_2, X_3, X_4 выборка из $N(\theta, \sigma^2)$. Рассмотрим две оценки параметра θ :

$$\hat{\theta}_1 = \frac{X_1 + 4X_2 + X_3 + 4X_4}{10}, \hat{\theta}_1 = \frac{2X_1 + 3X_2 + 3X_3 + 2X_4}{10}$$

а) Покажите, что обе оценки несмещенные. б) Какая из оценок оптимальная?

12506

П.Е. Рябов

Подготовил

Утверждаю: Первый заместитель руководителя департамента

Дата 01.06.2021 ⁷екши Феклин В.Г.