Coursera - Data Science & R Course

Daniel O.

15/12/2020

Types of Data Science Questions

Descriptive

Goal: To describe or summarize a set of data

- Early analysis when receiving new data
- Generate simple summaries about the samples and their measurements
- Not for generalizing the results of the analysis to a larger population

Exploratory

Goal: To examine the data and find relationships that weren't previously known

- Explore how different variables might be related
- Useful for discovering new connections
- Help to formulate hypotheses and drive the design of future studies and data collection

Inferential

Goal: Use a relatively small sample of data to say something about the population at large

- Provide your estimate of the variable for the population and provide your uncertainty about your estimate
- · Ability to accurately infer information about the larger population depends heavily on sampling scheme

Predictive

Goal: Use current and historical data to make predictions about future data

- Accuracy in predictions is dependent on measuring the right variables
- Many ways to build up prediction models with some being better or worse for specific cases

Causal

Goal: See what happens to one variable when we manipulate another variable

- Gold standard in data analysis
- Often applied to the results on randomized studies that were designed to identify causation
- Usually analyzed in aggregate and observed relationships are usually average effects

Mechanistic

Goal: Understand the exact changes in variables that lead to exact changes in other variables

- Applied to simple situations or those that are nicely modeled by deterministic equations
- Commonly applied to physical or engineering sciences
- Often, the only noise in the data is measurement error

Experimental design

Big Data

Volume More and more data is becoming increasingly available Velocity Data is being generated at an astonishing rate Variety The data we can analyse comes in many forms

Practical R Exercises in swirl

- install.packages("swirl")
- library(swirl)
- install_from_swirl("R Programming")
- swirl()
- getwd()
- setwd()
- ls()
- dir()
- dir.create()
- file.create()
- file.exists()
- file.infor()
- file.path()
- file.rename()

```
file.copy()
length(x)
x <- dim(x,y) » Creates matrix</li>
attributes(x)
matrix(data, nrow,ncol)
cbind({vector with row names}, matrix) » Combine columns
colnames(data.frame) = {vector with column names} » Names of columns
```

• data.frame({vector with row names}, matrix) » Allows Text and Numbers

Types of Data Science Questions

Control Structures - if/else

```
if(condition) {
    <do something>
} else("condition2") {
    <do something else>
}

if(condition) {
    <do something>

{ else if(condition2) {
    <do something different>
} else {
    <do something else>
}
```

Control Structures - for loop

```
for(i in vect){
    <function>[i]
}

Control Structures - while
while(finite condition){
    <do something>
}
```

Control Structures - repeat, next, break, return

repeat is a construct that basically initiates an infinite loop. The only way to exit a repeat loop is to call break

next is basically used in any time of looping construct when you want to skip an iteration.

return signals that a function should exit and and return a given value

Functions

```
Basic format: f <- \mbox{function}(x,\,y=) \} \\ \\ User-defined binary operators have the following syntax: $$ \mbox{`[whatever]''}$
```

where [whatever] represents any valid variable name.

Dates and Time

Dates are represented by the Date class and times are represented by the POSIXct and POSIXlt classes. Internally, dates are stored as the number of days since 1970-01-01 and times are stored as either the number of seconds since 1970-01-01 (for POSIXct) or a list of seconds, minutes, hours, etc. (for POSIXlt).

```
strptime() converts character vectors to POSIX1t.
```

If you want more control over the units when finding the above difference in times, you can use difftime(), which allows you to specify a 'units' parameter.

Loop functions

'The Split-Apply-Combine Strategy for Data Analysis'

lapply: Loop over a list and evaluate a function on each element » lapply(data, fun)

sapply: Same as lapply but try to simplify the result

apply: Apply the function over the margins of an array » apply(data, dimension, fun)

mapply: Multivariate function of lapply e.g. list(rep(1,4), rep(2,3), rep(3,2), rep(4,1)) can be done with mapply(rep, 1:4, 4:1)

tapply: Apply a function over the subsets of a vector » tapply(data, factor, fun)

split: Takes a vector and splits it according to a factor(similarly to tapply but without applying any type of summary statistics)

Debbuging tools

Something's wrong

message: Generic notification; function execution continues

warning: Something went wrong but is not fatal; execution of the function is not stopped

error: Fatal problem has occurred; execution is halted; produced by the stop function

condition: A generic concept indicating that something can occur; programmers create their own conditions

Primary Debugging Tools

traceback: Prints out the function call stack after an error occurs and allows to know in which function the error occurred

recover: Allows you to modify the error default behavior so that you can browse the function whenever an error occurs

debug: Flags a function for debug mode which allows you to step through the function one expression/line at a time

browser: Suspends the execution of a function wherever it is called and puts the function in debug mode

trace: Allows to insert debugging mode into a function at specific places without altering the function code