

Efficient learning

Applied Deep Learning

Content

- Faster convergence
 - LR schedulers
 - Regularization
- Accelerators
 - GPU
 - Apple Metall / Neural Engines
 - TPUs
 - Data / Modell parallel
- Zero Shot learning (prompting)
- Modell Destillation

Learning rate schedulers

- Optimizer schedulers dynamically adjust the learning rate during training.
- Aim: improve convergence, escape local minima, and ensure generalization.
- Note: Schedulers can be combined

• Step Decay: Reduce learning rate by a factor every *n* epochs.

$$\eta_t = \eta_0 \cdot \gamma^{\left\lfloor rac{t}{n}
ight
floor}$$

- Cosine Annealing: Smooth decay using cosine function.
 Suitable for large-scale training.
- Cyclic Learning Rates (CLR): Vary learning rate within a range.
 Encourages exploration of the loss surface.
- Warm-up Schedulers: Start with small learning rate, increase gradually.

Learning rate schedulers

16

Steps

24

32

0.0000

Pytorch Lightning

```
def configure_optimizers(self):
   optimizer = Adam(self.parameters(), lr=1e-3)
   scheduler = ReduceLROnPlateau(optimizer,...)
   return [optimizer], [scheduler]
```

Normalization

• Problem: unevenly scaled data can lead to problematic optimizer behaviour

• Goal:

Batch normalization

- Batch norm is another layer inserted into network arch
- Normalizes output before passing to next layer

- 2 learnable parameters mmu & sigma
- 2 stored moving averages values
- Usually places after activation function (original paper: before)

Batch normalization - training

Batch normalization - inference

- During inference, we only have a single sample, not a mini batch \rightarrow mean and variance?
- Moving averages used as good proxies

Layer normalization

- Calculates the mean and variance of the activations for each individual input sample, considering all features
- BN
 - Good where features are related, like computer vision (fully connected, CNNs)
- LN
 - Reduces internal covariance shift
 - Good with RNNs
 - Same operations in train and inference

Regularization

Shall prevent overfitting

L1 regularization

- add penalty term to loss which depends on weights
- Scaling factor alpha

$$Loss = Error(y, \hat{y}) + \alpha \sum_{i=1}^{N} |w_i|$$

$$w_{\text{new}} = w - \left(\lambda \frac{\partial \text{Error}}{\partial w} + \lambda \frac{\partial (\alpha \sum_{i=1}^{N} |w_i|)}{\partial w}\right)$$

$$\frac{\partial(\alpha \sum_{i=1}^{N} |w_i|)}{\partial w} = \begin{cases} \alpha & w > 0 \\ -\alpha & w < 0 \end{cases}$$

Regularization

Early stopping

Dropout

- Randomly dropping neurons in a layer (no update on backprop)
- Creates redundancies in the network, reduces complexity

Regularization

Label smoothing

- Replaces one-hot labels with a weighted distribution
- A technique that prevents the model from becoming too confident.
- Reduces overfitting and sharp decision boundaries.

Formula:

$$y_{ ext{smooth}} = (1 - \epsilon) \cdot y_{ ext{one-hot}} + rac{\epsilon}{K}$$

where ϵ = smoothing factor, K = number of classes

Common setting: $\epsilon=0.1$

Accelerators

- Training NN is compute intensive
- Accelerators reduce training time and energy consumption.
- Key concepts
 - Speed up matrix operations (e.g., convolutions, multiplications)
 - Enable large-batch parallel training
 - Efficient memory handling (bandwidth, latency)

Accelerators

Cuda

- Compute Unified Device Architecture
- Parallel computing platform by NVIDIA.
- Deep integration with PyTorch, TensorFlow, JAX.

Apple

Apple Metal

- Low-level GPU API optimized for macOS and iOS.
- Leverages Apple's Neural Engine and M-series GPUs.
- Pytorch support over Core ML Tools
- Offers parallel computing ability for apple GPUs, but fewer control than CUDA

Apple Neural Engine

- Dedicated accelerator since A11 Bionic
- Optimized for inference
- Supports up to 15 Tflops
- Not used for training
- Over Apple Core ML

Google TPU

- Developed by Google for neural network trainings
- Designed for Tensorflow applications
- For high volume, low precision
- Optimized for input & output per Joule!
- Best for CNN-like

4 ASICs with cooling, Gen4 TPU

Parallelism

Data parallel (DDP)

- Same model is stored in different computing nodes
- Data is split onto nodes
- After backward step, gradients are accumulated and distributed to every node
- Grad exchange is done in ring bucket → nodes are always busy / no waiting

Model parallel

- Split model onto different nodes
- Model is sharded by layers
- Sync bottleneck

Zero shot learning

Images

- Model extracts meaningful features from data
- Organizes in internal embedding space
- Uses embedding space to identify new unseen data
- Embedding arithmetics can apply

LLMs

- Leverage internal abilities without additional training
- Usually in-context learning
- Even possible without in-context training, only using prompts

Classify the text into neutral, negative or positive. Text: I think the vacation is okay. Sentiment:

Output:

Neutral

Model destillation

- Also knowledge destillation
- Abilities of larger model (teacher) are conveyed to a smaller model (pupil)
- Implementations
 - Using GANs to make pupil indestinguishable from teacher
 - Cross-Modal destillation: one works in images, one in text
 - Soft target dest.: using logits instead of hard outputs

- Word are stored as embeddings
- Size of embedding around twelve thousand entries (GPT 3)

Word are stored as embeddings

- Embeddings can be found in each layer
- Each perpendicular direction can be associated with a concept

- Problem: can we only store twelve thousand concepts?
- Yes!, but they are not completely perpendicular anymore (superposition)
- For 100 dimensions, we can find around 10.000 vectors
- Amount grows exponentially!

Wrap up

- Faster convergence by scheduling and regularization
- Accelerators
 - Specific hardware
 - Data / Modell parallel
- Modell Destillation