EXPANSION OF CHOLESTERIC REFLECTION ZONE OF PHOTOPOLYMERIZABLE CHOLESTERIC LIQUID CRYSTAL, AND OPTICAL ELEMENT PRODUCED **THEREBY**

Patent number:

JP11080733

Publication date:

1999-03-26

Inventor:

SCHWALB GEORG DR; KOPF MECHTHILD;

KREUZER FRANZ-HEINRICH DR

Applicant:

CONSORTIUM ELEKTROCHEM IND

Classification:

- international:

C09K19/38; G02B1/04; G02B1/08; G02B5/26;

G02B5/30; G02F1/13

- european:

C09K19/38; G02B5/30L

Application number: JP19980168291 19980616 Priority number(s): DE19971026051 19970619 Also published as:

EP0885945 (A1)

US6057008 (A1) DE19726051 (A1)

EP0885945 (B1)

CA2240813 (C)

Report a data error here

Abstract of JP11080733

PROBLEM TO BE SOLVED: To provide a method for expanding a cholesteric reflection zone of a photopolymerizable cholesteric liquid crystal hardly requiring long-lasting UV-exposure. SOLUTION: This method for expanding a cholesteric reflection zone comprises a step for partially polymerizing a layer containing a photopolymerizable cholesteric liquid crystal by a prescribed short time exposure at a prescribed temperature by chemical rays, a step for maintaining the exposed layer at a prescribed temperature for a prescribed waiting time without the exposure (a dark phase), and a step for fixing the obtained layer by the exposure of the chemical rays at the prescribed temperature. The zone width and medium wavelength of the cholesteric reflection zone of the polymerized material are mutually independently regulated. and a long-lasting exposure to the UV can be avoided.

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁(JP)

迎特許公報(B2)

(11)特許番号

特許第3272668号

(45) 発行日 平成14年4月8日 (2002. 4.8)

(P3272668) (24)登録日 平成14年1月25日(2002.1.25)

(51) Int. C I. 7 C 0 9 K 19/3 G 0 2 B 5/2 5/3 G 0 2 F 1/1	6 0 ·	F I C 0 9 K 19/38 G 0 2 B 5/26 5/30 G 0 2 F 1/13 5 0 0 5 0 5 (全 1 2 頁)
(21) 出願番号 (22) 出願日 (65) 公開番号 (43) 公開日 審查請求日 (31) 優先権主張番号 (32) 優先日 (33) 優先権主張国 前置審査	特願平10-168291 平成10年6月16日(1998. 6. 16) 特開平11-80733 平成11年3月26日(1999. 3. 26) 平成10年6月16日(1998. 6. 16) 19726051. 9 平成9年6月19日(1997. 6. 19) ドイツ(DE)	(73) 特許権者 390009003 コンゾルテイウム フユール エレクトロケミツシエ インヅストリー ゲゼルシヤフト ミツト ベシユレンクテル ハフツングドイツ連邦共和国 D-81379 ミユンヘン ツイールシユタツトシュトラーセ 20 (72) 発明者 ゲオルク シュヴァルプドイツ連邦共和国 ミュンヘン ハンゼルマンシュトラーセ 32アー (74) 代理人 100061815 弁理士 矢野 敏雄 (外3名)
		最終頁に続く

(54) 【発明の名称】光重合可能なコレステリック液晶のコレステリック反射帯域を拡張する方法およびこの方法により製造した光学素子

1

(57) 【特許請求の範囲】

【請求項1】 光重合可能なコレステリック液晶のコレステリック反射帯域を拡張する方法において、次の3つの工程:

- 1) 光重合可能なコレステリック液晶を包含する層を、定義された温度における、単位面積当たりの露光エネルギーがUV-A範囲中の10~39.6mJ/cm²の範囲内の化学線での定義された短時間露光により部分的に重合させる工程、
- 2) 工程 1 において生じた反射帯域を拡張するために、 定義された温度における露光なし(暗相)の定義された 待ち時間を維持する工程、
- 3) こうして得られた層を定義された温度において<u>工程</u> <u>1におけると同じ</u>化学線で露光することにより固定する 工程を包含することを特徴とする光重合可能なコレステ

2

リック液晶のコレステリック反射帯域を拡張する方法。

【請求項2】 請求項1記載の方法により製造されていることを特徴とする、通常の露光で製造した光重合したコレステリック液晶に比べて少なくとも10nm拡張されたコレステリック反射帯域を有する光重合したコレステリック液晶。

【請求項3】 請求項1記載の方法により製造された、 拡張されたコレステリック反射帯域を有する材料を含有 する少なくとも1つの層を包含することを特徴とする拡 10 張されたコレステリック反射帯域を有する光学素子。

【請求項4】 請求項3記載の少なくとも1つの光学素子を含有する装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、高重合可能なコレ

ステリック液晶の反射帯域を拡張する方法ならびにこの 方法により製造した、色フィルター、レフレクター、偏 光子のような光学素子および顔料に関する。

[0002]

【従来の技術】コレステリック性質を有する液晶材料 (コレステリック液晶と略称) は、分子の螺旋形配置を 有する物質である。通常、これらの材料は2つの適当な 支持体の間で薄層として、螺旋軸が支持体表面に対して 垂直であるように調製される。螺旋のリード ("ピッ チ")は材料に依存し、層厚にわたって一定である。か かる光学的異方性層は円偏光成分を、材料中の回転方向 および光波長んがコレステリック螺旋の回転方向および ピッチpと一致する場合完全に反射することができる (コレステリック反射)。これに反して、反対の回転方 向を有する第二の円偏光成分は完全に透過する。

【0003】その際、コレステリック反射は波長 λ1= p*noおよび2p*neを有し、その際neおよびnoは 材料の異常および正常の屈折率を表わす。この反射帯域 は2つのパラメーター、中波長 λ oおよび幅 $\Delta\lambda$ によっ て特性表示することができる。 中波長 λοは材料の平均 屈折率およびピッチpに依存する。コレステリック反射 帯域の幅 $\Delta \lambda$ は、 $\Delta \lambda = p^* (n_e - n_o)$ により材料の 複屈折Δλ=ne-noに依存する。実際に、可視スペク トル領域における大抵のコレステリック材料の複屈折は 0. 3よりも小さい値に制限されている。これから、約 100nmの最大可能な帯域幅が生じる。しかし、大抵 は30~50nmしか達成されない。反射帯域外でかつ 吸収の不在において、2つの偏光方向の光(右まわりの 円偏光および左まわりの円偏光、つまり不偏光)は完全 に透過する。反射ないしは透過した円偏光は、所望の場 合には、付加的な四分の一波長遅延層により直線偏光に 変えることができる。

【0004】コレステリック物質の使用に対する重要な 前提条件は、層の十分な熱および機械的安定性である。 この安定性は、重合によるかまたはガラス転移点以下の 温度に迅速に冷却することにより配向状態を固定するこ とによって達成することができる。かかる安定なコレス テリック層は、たとえばマーラー(R. Maurer) 等により、SID 90 ダイジェスト、1990年、 110~113ページに"コレステリックLCシリコー ンから製造した偏光色フィルター"なる表題で記載され ている。

【0005】記述した光学的および機械的性質に基づ き、コレステリック材料は偏光および色選択的レフレク ターとしてならびに偏光および色選択的光学フィルター として適当である。かかるフィルターは、吸収性材料か らなるフィルターに比して、フィルター材料の加熱が十 分に避けられるという大きい利点を有する。これらの材 料は、コレステリック反射の相応する帯域幅において、

ても使用することができる:コレステリック層とミラー (金属) との間に存在する光源からの偏光されない光が コレステリック層に当たると、層の螺旋と反対の回転方 向をを有する円偏光が層を通過するが、同じ回転方向を 有する残余成分は反射される。この成分はミラーに当た り、円偏光の回転方向の逆転を受け、その結果この光成 分もコレステリック層を通過しうる。それで、理論的に は偏光されない光の円偏光への完全な変換が成功する。 光源、ミラーおよび吸収作用する偏光子からなる通常の 装置に比して、液晶ディスプレーの照明ユニットの光収 率の倍加が可能である。同時に、吸収の廃止により偏光 子の加熱および褪色が避けられる(S. V. Belay evおよびM. Schadt、M. I. Barnik、 J. Fuenfschilling, N. V. Mali monekoおよびK. Schmitt、J. App 1. Phys. 29巻、L273(1990年))。

【0006】光重合可能なコレステリック材料は、光構 造化することができる。これは、たとえばR. Maur er等によりSID 94 ダイジェスト、1994 20 年、399~402ページに、"カラーパターンを有す るコレステリックレフレクター"なる表題中に記載され ている。これに記載された材料は、顕著なサーモクロミ 一、つまり反射色の温度への強い依存性を示す。従っ て、所望の色は試料の温度により調節し、マスクを通す UV露光により固定することができる。コレステリック 層のなお未露光範囲の色は、引き続く温度変化により変 えることができる。この色は、場合により再びマスクを 通して行われる第二のUV露光により持続的に固定され る。この工程を異なる温度で別のマスクを用いて繰り返 し、こうして多色の構造化されたフィルターおよびレフ レクターを製造することができる。かかる構造化された フィルターないしはレフレクターは、たとえばカラー投 写機および液晶ディスプレーにおいて使用することがで きる。

【0007】コレステリック材料のもう1つの適用は、 コレステリックフィルムの磨砕および篩別によって製造 される顔料である。適当な材料およびその製造は、たと えばヨーロッパ特許0601483号に記載されてい

【0008】これらの適用可能性を実際に実現するの は、従来反射帯域の限定された幅によって強く制限され る。さらに工業的使用にためには、反射帯域の中波長な らびに反射帯域の幅がそのつどの要求により自由におよ び互いに独立に調節することができることが望ましい。 むしろ反射広帯域偏光子としての特殊な適用のために は、反射帯域が全可視スペクトル領域をカバーすること が必要である、つまりコレステリック層は300nmよ りも大きい帯域幅を有しなければならない。

【0009】小さすぎる帯域幅の問題は原理的には、光 たとえば液晶ディスプレー中のいわゆる反射偏光子とし 50 学素子を異なる中波長を有する幾つかの層から構成する

ことによって解決することができる。これはマーラー (R. Maurer) 等の上述した記事に記載されてい るが、この方法は非常に費用がかかり、それぞれの付加 的層を有する光学素子の光学的品質が欠陥個所の散乱お よび不均質性に基づき減少することが欠点である。

【0010】上記の問題を解決する他の方法は、螺旋の ピッチにおける勾配(ピッチ勾配)による反射帯域の拡 -張である。この手がかりは、理論的研究からは既に久し く公知である(たとえばS. Mazkedian、S. Melone, F. Rustichelli, J. Ph ysique 37巻、731ページ(1976年)ま ttL. E. Hajdo, A. C. Eringen, J. Opt. Soc. Am. 36巻、1017ページ (1979年))。

【0011】ヨーロッパ特許0606940A2号に記 載された方法においては、その重合性に関し異なる反応 性を有するキラルモノマーおよびネマチックモノマーか らなり、付加的にその吸収特性が光重合のために使用さ れたUV光線に同調されている色素を含有する混合物が 使用される。光重合において、色素がUV光線の一部を 吸収し、こうしてコレステリック層内に強い強さの勾配 を生じる。ネマチックモノマーおよびキラルモノマーの 異なる反応性に基づき拡散プロセスが起き、これにより 所望のピッチ勾配が形成する。ヨーロッパ特許0606 940A2号によれば、これは線形のピッチ勾配であ り、その際最小のピッチはUV光源に面した側に出現す る。さらに記載した方法は、長い時間にわたる低い強さ での連続的UV露光を特徴とする。

【0012】この方法の1つの欠点は、原則的に重合に 関し異なる反応性を有する異なるモノマーの混合を必要 とし、付加的に色素を混入しなければならないことであ る。それにより、この方法は費用のかかる、コスト高の 材料合成を前提とする。さらに、紫外線露光を比較的長 い時間にわたり(10分程度)一定不変に保持しなけれ ばならないことが不利である。従って、光学的層をシー・ ト上ないしはシート間に連続的に設け、光重合させる連 続的製造方法においては、均質に照明される長い露光区 間が必要である。大きい滞留時間により、生産されたシ ートの達成できる流量が強く制限される。UV色素の混 入からも若干の欠点が生じる。それで、ヨーロッパ特許 0606940号の例に記載されているように、色素の 吸収は短波のスペクトル領域における帯域幅の不所望の 制限をもたらしうる。その外に、色素吸収と結合した加 熱は光学活性層の損傷またはむしろ破壊を生じうる。

【0013】同様にピッチ勾配の製造を目指すもう1つ の方法は、ファリ (Fagris) 等により、SID 96 ダイジェスト(1996年)、111~113ペ ージに、"単層超広帯域の反射偏光子"なる表題で開示 されている。この方法は、光架橋可能なコレステリック ポリシロキサンと架橋不可能な低分子ネマート(Nem 50 ラルモノマーからなる混合物またはコレステリックモノ

aten)からなる混合物を基礎とする。この方法で も、低いUV露光において緩慢な光架橋が実施され、そ の際UV重合の間に架橋可能のポリシロキサンと非架橋 可能のネマートとの間で相分離が行われるべきである。 この相分離のため、凝離した分子は層内部で拡散でき、 再びピッチ勾配を生じる濃度勾配を惹起すべきである。

【0014】上述した方法におけるように、この方法 も、少なくとも2つの異なる出発成分を合成しなければ ならないという根本的欠点を有する。この方法も、UV 露光を長い時間維持しなければならないことにより緩慢 な架橋が達成されることに基づき、既に上記に記載した 連続的製造方法の欠点を有する。

[0015]

【発明が解決しようとする課題】本発明の課題は、光重 合可能なコレステリック液晶のコレステリック反射帯域 を拡張する方法を提供することであり、この方法を用い ると、重合した材料のコレステリック反射帯域の中波長 および帯域幅を互いに独立に調節し、その際上記した欠 点、殊に長く持続するUV露光を回避することが可能で ある。

[0016]

【課題を解決するための手段】この課題は、次の3つの 工程:

- 1)光重合可能なコレステリック液晶を含有する層を、 定義された温度において化学線での定義された短時間露 光により部分的に重合させる工程、
- 2) 定義された温度において露光なし(暗相)の定義さ れた待ち時間を維持する工程、
- 3) こうして得られた層を、定義された温度において化 学線でさらに露光することにより固定する工程 を包含する方法により解決される。

【0017】公知の方法とは異なり、本発明による方法 においては、コレステリック相を有する単に1つの液晶 物質から出発することが可能である。しかし、コレステ リック相を有する液晶物質の混合物を使用するかまたは 他の所望の性質を最適化するために別の成分を混入する こともできる。

【0.018】本発明による方法は、公知の方法に比し て、長く持続する露光を行う必要がないという重要な利 点を有する。

【0019】本発明による方法の適当な出発材料は、コ レステリック特性を有する光重合可能な材料である。

【0020】かかる材料は、たとえばラブ(J.Lu b)、ブロワ(D. J. Broer)、ヒクメ(A. M. Hikmet) およびニロプ (K. G. Niero p)、液晶(Liq. Cryst.) 18巻、319ペ ージ(1995年)から公知である。たとえば、コレス テリックモノマー、オリゴマーまたはポリマーまたはコ レステリックモノマー、オリゴマーまたはポリマーとキ

しはレフレクターにより利用される全波長領域にわたり 波長の0.25倍の全遅延が起きるように選択される。

【0029】もちろん、λ/4遅延層は後で本発明によるコレステリック層と組み合わせることもできる。

【0030】コレステリック層に面した基板側で配向層を、たとえば摩擦ポリイミド層または摩擦ポリビニルアルコール層の形で使用するのが有利である。これらの配向層は、基板面に対して垂直なコレステリック螺旋軸の良好な配向を助長する。シートを使用する場合、シート表面の一方向摩擦も良好な配向を確保しうる。

【0031】材料は、溶融液ならびに溶液から引き続き溶剤を自体公知の方法で蒸発させ、たとえばドクター、ロールまたはスピンコーティングにより塗布することができる。

【0032】塗布される層厚はとくに $3\sim60\mu$ m、殊に $5\sim40\mu$ mであり、たとえばスペーサーによるかまたは定義された層厚での塗布方法により調節することができる。

【0033】層の巨視的配向は、材料がコレステリック相を有する温度において行われおよびたとえば材料の剪断または電場または磁場の印加によって達成される。液晶物質の塗布および配向は全連続的、半連続的または不連続的に行うことができる。こうして製造され、配向されたがまだ重合されていない層は、全層厚にわたり一定のピッチを有する。

【0034】本発明により必要な第一工程において、配向されたコレステリックフィルムは化学線で照射される。化学線は、光化学的活性光線、たとえばUV線、X線、 γ 線または電子またはイオンのような高エネルギー粒子での照射である。

【0035】UV線での照射が好ましい。

【0036】照射は、すべての可能な重合しうる分子の一部だけが照射後に重合されているように実施される。 照射後重合可能な分子の分量はとくに、重合可能な分子 $00.1\%\sim69\%$ 、とくに好ましくは1%と50%の間であるべきである。

【0037】この分量が記載したものよりも少ない場合、生じたポリマー構造は引き続く工程に対して十分に安定でない。これはたとえば、強い温度変化は中波長の移動を生じ、反射帯域の拡張を生じない点に判明する。これに反して第一の露光の際に多すぎる基が重合すると、コレステリックピッチは、ピッチ勾配の生成が阻止される程度に強く固定されている。通常の露光の場合も事情は同じである。それとともに、重合可能な分子の70%以上が重合する露光が考えられる。

【0038】重合可能な分子のこの分量は、たとえば試料の露光、引き続く抽出によるかまたは熱量測定による時間変換曲線の決定により確かめられる。

なる分散に基づき、積層品の全遅延も波長により変化す 【0039】重合可能な分子の分量は、単位面積あたりる。シートの材料および延伸の程度は、フィルターない 50 入射した露光エネルギーにより制御される。できるだけ

マー、オリゴマーまたはポリマーとアキラルモノマーからなる混合物またはコレステリックオリゴマーとキラルおよびアキラルモノマーからなる混合物またはアキラル液晶相を有するモノマー、オリゴマーまたはポリマーとキラルモノマーからなる混合物を使用することができる。

【0021】とくに、ポリシロキサンを基礎とするコレステリックオリゴマーが使用される。

【0022】とくに好ましくは、キラリティー(Chiralikum)としてコレステリン誘導体または異性 10体のコレステリン誘導体を含有するポリシロキサンを基礎とするコレステリックオリゴマーが使用される。かかる材料は、たとえば米国特許5211877号から公知である。

【0023】メソゲン側基を有するオルガノシロキサン 基礎構造からなる液晶(LC´s)は、シロキサン不含 のLC系に比して、オルガノシロキサン主鎖の選択によ り分子量が簡単かつ殆ど随意に変えられることにより優 れている。これにより、たとえば相挙動、ガラス転移点 および透明点のような液晶特性またはたとえば粘度も広 20 い範囲内で要求に適合させることができる。

【0024】本発明による方法は、上記に記載した材料 部類から左旋性および右旋性材料に適用可能である。物 質の光重合は、光重合開始剤の添加により可能となる。

【0025】とくに、本発明による方法において光重合可能な材料は層の形、たとえばフィルムの形で使用される。

【0026】フィルムの調製は、文献から公知の方法によって行われる。光重合可能な材料は、たとえば基板上の均質な薄い層としてまたは2つの支持体の間で調製され、場合によりたとえば下記に記載する自体公知の他の手段によって配向される。

【0027】基板としては、硬質または軟質の支持体またはその組み合わせを使用することができる。平滑な表面および透明性に基づき、ガラス板またはシートがとくに適当である。

【0028】光学的に等方性の基板が好まれる、それというのも該基板は光の偏光状態を変えないからである。 円偏光の代わりに直線偏光を作るフィルターおよびレフレクターに対しては、支持体として、使用される波長領 40域内で波長の0.25倍の光学的遅延を有する光学的単軸の複屈折基板がとくに適当である。かかる四分の一波長遅延層、要するに入/4遅延層は、たとえばボリカーボネートシート、ボリエチレンテレフタレートシートまたはポリプロピレンシートの定義された延伸によって製造される。選択的に、基板としてその延伸方向が主として互いに垂直に調整されている2つの異なる複屈折シートの積層品を使用することもできる。双方のシートの異なる分散に基づき、積層品の全遅延も波長により変化する。シートの材料および延伸の程度は、フィルターない 50 短時間の強力な露光が好まれる。必要な露光エネルギーは、使用した放射線の種類、使用した材料、光重合開始 剤および層厚に依存する。

【0040】第一の露光における単位面積当たりの好ましい露光エネルギーは、 $1\sim500\,\mathrm{mJ/c\,m^2}$ (UV-A)の範囲内、とくに好ましくは $10\sim50\,\mathrm{mJ/c\,m^2}$ (UV-A)の範囲内にある。これと比べて、重合可能な分子の>70%の重合を生じる通常の露光においては、 $500\,\mathrm{mJ/c\,m^2}$ よりも大きい露光エネルギーが適用される。

【0041】第一の露光を実施する際の温度は、使用される材料のコレステリック相範囲内で選択することができる。これは、とくに0 \mathbb{C} \sim 200 \mathbb{C} の範囲内にある。

【0042】この温度により、拡張された反射帯域の中波長も影響される。この温度により、たとえば好ましい材料において全可視スペクトル領域内で中波長を変えることができる。暗相の時間としては、数秒~数日を選択することができる。第一工程における露光(予備露光)に、第二工程として暗相、つまり露光なしの時間が続く。

【0043】暗相は、第一工程における露光と同じ温度でまたは第一工程における露光と異なる温度で経過しうる。それでたとえば、第二工程における温度を第一工程における温度に比して ± 100 ℃まで変えるることも可能である。

【0044】暗相の温度により、反射帯域の拡張速度を 制御することができる。

【0045】温度の上昇は、反射帯域の迅速な拡張を生じる。

【0046】暗相の最大可能温度は、重合した層の透明 30 点によって制限されている。とくに、第一工程における 温度とこの透明点との間の温度が選択される。

【0047】コレステリック特性を有する材料の反射帯域の所望帯域幅を調節するための重要なパラメーターは、第一工程における露光の露光エネルギーおよび第二工程における暗相の持続時間および温度である。

【0048】暗相の温度および持続時間が同じ場合、L C材料の反射帯域の幅は第一工程における露光エネルギーの減少とともに増大する。他面において、第一工程における露光エネルギーが同じ場合、暗相のより長い持続 40時間はLC材料の反射帯域の拡張増加を生じる。

【0049】最小予備露光エネルギーおよび相応に長い暗相の選択により、本発明による方法を用いて300nm以上の帯域幅を実現できる。

【0050】暗相に、第三工程として化学線での第二露光が続く。この第二露光は、できるだけすべてのまだ重合されてない分子を重合させる課題を有する。これは、コレステリック層の固定および安定化を生じる。ここでも、UV光での露光が好ましい。通常の露光の公知露光エネルギーが十分である。

【0051】この第三工程は、暗層と同じ温度でまたは 暗層の温度とは異なる温度で実施することができる。暗 相につき記載した温度範囲が重要である。方法の簡略化のため、この第三工程に暗相の間と同じ温度が好まれる。

10

【0052】本発明による方法を用いて製造した材料は、通常の露光で製造した材料に比して少なくとも10nmだけコレステリック反射帯域の両側の拡張を示す。とくに、これらの材料は幅100nm以上の反射帯域を10示す。

【0053】それで本発明は、通常の露光を用いて製造され光重合されたコレステリック液晶に比して、本発明による方法により製造された、少なくとも10nmだけ拡張されたコレステリック液晶反射帯域を有する光重合されたコレステリック液晶にも関する。

【0054】最大のピッチは、本発明による材料では露 光ランプに面した材料の側に生じる。

【0055】本発明による方法は、近紫外および赤外スペクトル領域内の反射帯域に対しても適用できる。このために場合により、その中波長がこのスペクトル領域内にある材料が使用される。

【0056】工業的実施のためには、本発明による方法が塗布機での連続的製造工程に適当であることが望ましい。

【0057】かかる連続的製造方法はとくに次のように 経過する:光重合可能な液晶で被覆され、カバーシート の貼られているキャリヤーシートが、第一工程において 定義された温度で最初の短時間露光を受け、これが記述 したように重合可能材料の部分重合を惹起する。短かい 露光時間に基づき、この工程において高い材料流量を達 成することができる。

【0058】僅かに拡張された反射帯域に対しては、第二工程(暗相)を相応する短い時間にわたって行ない、第三工程(第二露光)を直ちに接続する。その際、有利にはすべての工程を1回の通過で実施することができる。

【0059】非常に広い反射帯域に対しては、場合により第二工程(暗相)のより長い時間が必要でありうる。ここで、第一工程の温度と異なる温度における露光したシートの中間貯蔵が提案される。引き続き、第三工程において第二露光が自体公知の方法で実施され、材料は最終的に安定化される。その際、この別個に実施された第三工程を、場合により他の工程、たとえば接着層の塗布と組合わせることもできる。この手段は、中間貯蔵にも拘わらず高い材料流量(Materialdurchsatz)を保証する、それというのも機械の通過は短い露光時間のため高い速度で行なうことができるからである。

【0060】本発明による方法は、たとえば拡張された50.反射帯域を有する光構造化されたコレステリックフィル

である。

ターおよびレフレクターの製造のためにも適当である。このために本方法は、少なくとも材料の露光(本発明による工程1および3)をマスクを通して行なう相異を有して、上記に記載したように実施される。引き続き、第一のマスクをずらすかまたは第二のマスクに代え、本発明による工程1~3を、工程1または2の少なくとも1つのパラメーターを変えて、材料の未露光部分が照射されるように繰り返す。

【0061】工程1または2の少なくとも1つのパラメーターを変えるとは、方法を繰り返す場合、第一工程における露光の際に異なる温度を用いて、今照射された材料範囲に対し異なる反射色を調節するかまたは第二工程における暗相の温度または時間を相応に選択することにより今照射された材料範囲に対する反射帯域の帯域幅をその都度所望通りに調節することを意味する。

【0062】場合により、方法はなお材料の未露光範囲で必要である度毎に繰り返えされる。こうして、個々の色が反射帯域の中波長および帯域幅をその都度選択することにより自由に調節できる多色の光構造化されたフィルターないしはレフレクターを製造することができる。 【0063】個々には、たとえば次のように行なうことができる:

- 1. 異なる帯域幅および同じ中波長の反射帯域を含有する光構造化された材料は、コレステリック材料を
- a)個々の構造に対し、その都度第一工程において同じ温度で異なる予備露光線量で露光し、爾後の工程をその都度暗相の同じ温度および同じ時間で実施するかまたはb)個々の構造に対し、その都度第一工程において同じ温度で同じ予備露光線量で露光し、その都度の構造に対する爾後の工程を暗相の異なる温度および/または時間で実施する場合に得られる。

【0064】2. 異なる帯域幅および異なる中波長の反射帯域を含有する光構造化された材料は、コレステリック材料を

- a)個々の構造に対し、その都度第一工程において異なる温度でその都度異なる予備露光線量で露光し、爾後の工程をその都度暗相の同じ温度および同じ時間で実施するかまたは
- b)個々の構造に対し、その都度第一工程において異なる温度で同じ予備露光線量で露光し、その都度の構造に対する爾後の工程を暗相の異なる温度および/または時間で実施する場合に得られる。

【0065】3. 同じ帯域幅および異なる中波長の反射 帯域を含有する光構造化された材料は、コレステリック 材料を個々の構造に対し、その都度第一工程において異 なる温度で同じ予備露光線量で露光し、爾後の工程をそ の都度暗相の同じ温度および同じ時間で実施する場合に 得られる。

【0066】実際に選択された系に応じて、場合により 初期線量ならびに暗相の時間および温度の最適化が必要 50 【0067】製造工程の促進および簡単化のために、種々の構造に対し同じ工程を、局所的および/または時間的に分離する代わりに、場合により局所的および/または時間的に一緒に実施することもできる。

12

【0068】本発明による方法を用いて可能な、反射帯域の幅および中波長の制御は、簡単に偏光子、色フィルターまたはレフレクターのような光学的素子または顔料、殊に左または右円偏光に対する構造化されたフィルターおよびレフレクターの所望の測光的性質を調節することができる。

【0069】従って、本発明による方法に従って製造されたコレステリック特性を含有する層を包含する光学素子、たとえばフィルター、レフレクターおよび偏光子も同じく本発明の対象である。

【0070】とくに、本発明による光学素子は100nmよりも大きい帯域幅のコレステリック反射帯域を有する。

【0071】光学素子として、コレステリック反射帯域を有する本発明による層は基板と一緒に積層品の形でまたは片側の開いた層としてまたは基板を除去した後フリーのフィルムとしても適当である。

【0072】この層ないしは積層品上に、さらにコレステリック単一層または他の層、たとえば遅延シート(たとえば $\lambda/4$ 遅延層)、吸光作用の偏光シート、色シートまたは接着層を設けることができる。

【0073】しかし、光重合可能なLC材料の支持基板として λ / 4 遅延層が使用される、フィルター、レフレクターおよび偏光子のような光学素子を本発明による方法を用いて製造することも可能である。

【0074】 $\lambda/4$ 遅延層とは、できるだけ光学素子により利用される全波長領域中でその都度の波長の0.25倍の遅延値を有する層を意味する。

【0075】光学素子として本発明による層は、薄片として破砕された形でも適当である。ヨーロッパ特許0601483A1号には、可視光を反射するコレステリック顔料を、重合したコレステリックフィルムを支持体から剥離し、引き続きこうして得られた粗塊を破砕することにより製造することのできる方法が記載されている。

【0076】類似に、本発明によるフィルムから、拡張された反射帯域を有するコレステリック薄片を製造することができる。かかるコレステリック顔料は、そのより広い反射帯域に基づきより高い光反射を示し、従って良好な光沢が達成される。さらに、適切に拡張された反射帯域により新規な色調および効果を得ることができる。その反射帯域が全可視スペクトル領域をカバーするコレステリック 原料も重要である。該顔料は、本発明によるコレステリック広帯域フィルムから類似に製造することができる。かかる高反射性の無彩色顔料(farbneutralePigmente)は、たとえばメタリッ

ク効果を得るのに適当である。

【0077】長波反射縁の適当な調節により、これらの 無彩色顔料は垂直線から偏移する角度で観察する場合に 彩色しても見える。

【0078】顔料は、引き続きヨーロッパ特許0685 7 4 9 A 1 号類似に、適当な結合剤系中に混入すること ができる。硬化した後可視光中で無色に見えおよびコレ ステリック薄片の平均屈折率に類似である結合剤系が好 まれる。このため、コレステリック薄片をなお液状の結 合剤中へ撹拌混入する。表面に対して平行な薄片の配向 は、たとえばヨーロッパ特許0685749A1号に記 載されているように、支持体上に顔料結合剤混合物の薄 層塗布する際または混合物を押し出す際に行われる。そ の都度の要求に依存して、フィルムを結合剤の硬化した 後支持体から剥離するかまたは別の層と組合わせること ができる。

【0079】本発明による方法により製造した層をフィ ルター、レフレクターまたは偏光子として含有する装置 も、同様に本発明に対象である。かかる装置は、たとえ ば投写機、投写ディスプレーおよび液晶インジケーター 20 である。

【0080】たとえば、この方法によって製造した広帯 域偏光子は液晶ディスプレーの露光ユニット中で反射偏 光子として使用することができる。それにより、液晶イ ンジケーターの光収率を100%まで改善することがで きる。

[0081]

【実施例】次の例は本発明をさらに説明するのに役立

出発物質:下記に記載したすべての物質に、光重合開始 30 剤イルガキュール(Irgacure-907;Cib a-Geigy、スイス)2重量%を混入した。

【0082】<u>物質1</u>(TCブルー)

物質1は、ヨーロッパ特許0661287号における例 la) (US-A5605649号の例la) に相当) により製造した。

【0083】<u>物質2</u>(TCブルー96.2%+ABIS 3.8%)

物質 2 は、物質 1 9 6. 2 重量%をキラル成分イソソ ルビドービス(4ーアリルオキシベンゾエート)3.8 重量%と混合することによって得られた。このキラル成 分は次のようにして製造された:イソソルビド(Iso sorbid) $24m \in \mathcal{U}$ ω $-\mathcal{U}$ α $-\mathcal{U}$ α ベンゾイルクロリド48mモルをトルオール40mモル に溶解し、12時間加熱還流させる。トルオールを真空 で留去し、粗生成物をエタノールないしはイソプロパノ ールから再結晶する。

【0084】<u>物質3</u>(TCブルー50%+TCレッド5 0%)

号の例1b) (US-A5605649号における例1 b) に相当) により製造した他の左まわり螺旋構造オリ ゴマーを1:1の比で混合することによって得られた。

14

【0085】<u>物質4</u>(CCブルー74.3%+Mach o 1 1 7. 1%+MAABH 8. 6%)

物質 4 は、ドイツ国特許 4 2 4 0 7 4 3 号の例 I A (U S-A5362315号の例1Aに相当) により得られ たコレステリックオリゴマー74.3重量%および4-アリルオキシ安息香酸ー(4ーメタクリロイルオキシフ ェニル)エステル8.6重量%を混合することによって 得られた。

【0086】<u>物質5</u> (CCブルーrh 77. 7%+MA HBEP19. 4%+ABIM2. 9%)

物質5は、(4-メタクリロイルオキシ)安息香酸-4 -エチルフェニルエステル 19.4重量%をイソマン ニドービス (アリルオキシベンゾエート) 2.9重量% および右まわり螺旋構造のコレステリックオリゴマー7 7. 7重量%と混合することによって製造した、該オリ ゴマーはドイツ国特許4234845号における例2 (US Ser. No. 08/406978号の例2に 相当) に記載されたようにして得られた: 4-(プロバ ンー 2 - オキシ) 安息香酸ドリステリルエステル (CA SNo.: 159235-15-1) 2. 78g, 4-(プロペン-2-オキシ) 安息香酸-4´-(4´´-メトキシフェニルカルボニルオキシ)フェニルエステル (通常の製造方法によって製造した) 0.88gおよび

テトラメチルシクロテトラシロキサン0.95gを無水 トルオール20mlに溶解し、ジシクロペンタジエン白 金ジクロリドの溶液(塩化メチレン中1重量%) 4 6 µ 1の添加後1.5時間100℃に加熱した。50℃に冷 却した溶液に、4-(プロペン-2-オキシ)安息香酸 - (4-メタクリロイルオキシ)フェニルエステル(C ASNo. 159235-16-2) 2. 46g, Q1 301 500ppm (選択的に: 2.6-ジーter t. 7fu-4-yfuよびさらに触媒溶液 2 7 μ 1 を加えた。この溶液を 7 0 ~80℃で2時間撹拌した。反応終了後、炭酸水素ナト リウム150mgとともに十分に撹拌し、濾過し、生成

【0087】イソマンニドービス(4ーアリルオキシベ ンゾエート)の製造は次のように行った:イソマンニド 24 mモルおよびωープロペニルオキシベンゾイルクロ リド48mモルをトルオール40mモルに溶解し、12 時間加熱還流する。トルオールを真空で留去し、粗生成 物をエタノールないしはイソプロパノールから再結晶す る。

【0088】<u>実施例</u>

物をエタノールから再沈殿させた。

フィルムの製造は、別記しない場合、次のように実施し た:2枚のガラス板にポリイミドからなる配向層を設 物質3は、物質1およびヨーロッパ特許0661287~50~け、該層をビロード布で一方向に摩擦した。少量の物質

を溶融液でその都度記載した温度で板の1つの配向層上に塗布し、第二の板で覆った。ガラス板を、良好な巨視的配向を得るために、小さい間隔で剪断した。露光光源として、そのシャッターがタイムスイッチ時計で制御することのできる水銀アークランプ(Model68810、-OrielGmbH)を使用した。UV-A領域中の露光出力は、UVパワーバック(PowerPuck;EITInc社、アメリカ)を用いて測定した。得られる反射スペクトルおよび透過スペクトルを、パーキンエルマー(PerkinElmer)の<math>UV-VIS分光計ラムダ19を用いて測定した。円偏光光路中での測定に対しては、無彩色の円偏光検光子としてフレネル菱形(<math>Fresnelrhombus)およびグランートンプソン(<math>Glan-Thompson)偏光子からなる組合せを使用した。

【0089】<u>実施例1</u>

A)出発物質 1 を、上記に記載したように、90 でで溶融液調製により 2 枚のポリイミド被覆ガラス板の間に入れ、剪断し、90 で0.8 秒間 3 mW/c m² (U V - A) で露光した。材料の層厚は 15 μ m であった。暗 20 中で同様に 90 で 30 分の待ち時間後に、第二の露光を同様に 90 で 33 mW/c m² (U V - A) の出力で今度は 60 秒間行った。

【0090】平坦域 (プラトー) における透過帯域 (つまり最小透過率の90%値) の帯域幅は68nmであった

【0091】B)物質2から、例1A)に記載したように、層を調製し、同じ工程後に露光した。120nmの帯域幅が判明する。

【0092】C)物質3から、例1A)に記載したよう 30 に、層を調製し、同じ工程後に露光した。107nmの 帯域幅が判明する。

【0093】D)物質4から、例1A)に記載したように、層を調製し、同じ工程後に露光した。83nmの帯域幅が判明する。

【0094】E)物質5から、例1A)に記載したよう* 第1表・

【0095】比較例1

A) 出発物質 1 を上記に記載したように、9 0 $\mathbb C$ で溶融調製により 2 枚のポリイミドを塗布したガラス板の間に入れ、剪断した。層厚は 1 5 μ mであった。この層を、9 0 $\mathbb C$ で 6 0 秒間 3 3 mW/c m² (UV-A) で通常のように照射した。これは、唯1回の露光を大きい露光エネルギーで実施したことを意味する。

【0096】透過において34nmの帯域幅が測定される。

【0097】B)物質2から、比較例1A)に記載したように、層を調製し、同じ工程後に露光した。39nmの帯域幅が判明する。

【0098】C)物質3から、比較例1A)に記載したように、層を調製し、同じ工程後に露光した。30nmの帯域幅が判明する。

【0099】D)物質4から、比較例1A)に記載したように、層を調製し、同じ工程後に露光した。27nmの帯域幅が判明する。

【0100】E)物質5から、比較例1A)に記載したように、層を調製し、85℃で60秒間33mW/cm²(UV-A)で露光した。45nmの帯域幅が判明する。

【0 1 0 1】実施例 I A~1 E および相当する比較例 I A~1 E からの反射帯域の中波長および幅は、第 l 表に対比されている。

【0102】1つの成分、コレステリックオリゴマーの みからなる物質1も、反射帯域の拡張を示す。最初の4 つの物質は左まわり螺旋構造の混合物であり、物質5は 右まわり螺旋構造の混合物である。此処でも、本発明に よる方法の場合に反射帯域の拡張が観察される。

[0 1 0 3]

第 l 表:				
	物質	中波長	通常の露光	拡張された
		[nm]	の際の帯域幅	帯域
		•	[nm]	[nm]
比較例IA	1 .	3 8 6	3 4	
実施例1A	1	3 8 6		6 8
比較例IB	2	5 0 4	3 9	
実施例IB	2	5 0 4		1 2 0
比較例1C	3	4 9 0	3 0	
実施例1C	3	4 9 0		107
比較例ID	4	4 4 3	2 7	
実施例ID	4	4 4 3		83 -
比較例IE	5	4 4 5	4 5	
実施例IE	5	4 4 5		9 3

実施例2

A)物質2の少量を、溶融液で90℃で上記に記載した ように2枚のポリイミドを塗布したガラス板の間で調製 した。層厚は 1 2 µmであった。 9 6 ℃での第一の露光 は、33mW/cm²(UV-A領域)の露光出力で 1. 5秒持続した。露光後、フィルムを5分内に70℃ に冷却した。70℃で20分の待ち時間後に、第二の露 光を同様に33mW/cm²(UV-A)で、今度は1 0秒間行った。UV-VIS分光計を用いる未偏光光路 中での測定は、図1に示した反射帯域および所属する透 10 過帯域を生じた。平坦域における透過帯域(つまり最小 透過率の90%値)の帯域幅は、32nmである。

【0 1 0 4 】 B) 層を、例 2 A) におけるように調製 し、同じ工程後に例2A)におけるように、第一露光の 時間が1.2秒であった唯1つの相異を有して露光し た。

【0 1 0 5】所属する反射帯域および透過帯域は、同様 に図1に示されている。48nmの帯域幅が判明する。 【0 I 0 6】C)層を、例 2 A) におけるように調製

し、同じ工程後に例 2 A) におけるように、第一露光の*20 【 0 1 1 0 】第 2 表

*時間が1秒であった唯1つの相異を有して露光した。所 属する反射帯域および透過帯域は、同様に図1に示され ている。59nmの帯域幅が判明する。

18

【0 1 0 7】 D) 層を、例 2 A) におけるように調製 し、同じ工程後に例2Aにおけるように、第一露光の時 間が0.8秒であった唯1つの相異を有して露光した。 所属する反射帯域および透過帯域は、同様に図1に示さ れている。108nmの帯域幅が判明する。

【0108】比較例2

比較のため、物質2から実施例2に記載したように、1 2 μmの厚さを有する層を調製した。この層を、96℃ で 6 0 秒間 3 3 mW/c m² (UV-A) で通常のよう に照射した。これは、1回の露光を、大きい露光エネル ギーを用いて実施したことを意味する。所属する反射帯 域および透過帯域は、比較のため同様に図1に示されて いる。得られた帯域幅は29nmである。

【0 1 0 9】 実施例 2 および比較例 2 のデータは、第 2 表にまとめられている:露光エネルギーは、露光出力 (UV-A領域)×露光時間の積から判明する。

1. 露光	1. 露光における	帯域幅
[s]	露光エネルギー	[nm]
	[m J / c m2]	
6 0	1. 980	29
1.5	49.5	3 2
比較例)		
1.2	39.6	4 8
1	3 3	5 9
0.8	26.4	108
	[s] 60 1.5 比較例) 1.2 1	[s] 露光エネルギー [mJ/cm2] 60 1.980 1.5 49.5 は較例) 1.2 39.6 1 33

実施例3

A)物質2を用い、層を実施例2に記載したように調製 した。層厚は 1 2 μmであった。 3 3 mW/c m2 (U V-A)を用いる第一露光を96℃で0.8秒の露光時 間で実施した。96℃で1分の待ち時間後に、第二の露 光(96℃、33mW/cm2、10秒間)を行った。 36 nmの帯域幅が判明する。

【0 1 1 1】B)層を、例 3 A) におけるように調製 し、同じ工程後に例3A)におけるように、待ち時間が 96℃で4分であった唯1つの相異を有して、露光し た。60nmの帯域幅が判明する。

【0 1 1 2】 C) 層を、例 3 A) におけるように調製 ※ 第3表

30※し、同じ工程後に例3A)におけるように、待ち時間が 96℃で7分であった唯1つの相異を有して、露光し た。86nmの帯域幅が判明する。

【0113】D) もう1つの層を、例3A) におけるよ うに調製し、同じ工程後に例3A)におけるように、待 ち時間が96℃で15分であった唯1つの相異を有し て、露光した。115nmの帯域幅が判明する。

【0 1 1 4】 実施例 3 A) ~ 3 D) に対するデータおよ び不偏光光路中で得られる透過帯域は、第3表および図 2に示されている。待ち時間が増加すると、反射帯域の 40 拡張も増加する。

[0 1 1 5]

	第一露光	暗相	帯域幅
	[s]	[min]	[nm]
実施例 3 A)	0.8	l	3 6
実施例 3 B)	0.8	4	6 0
実施例3C)	0.8	7	8 6
実施例 3 D)	0.8	1 5	1 1 5

次の3つの実施例は、どのようにして本発明による方法 を用いて、同じ材料を使用する場合、中波長および帯域 50 【0116】実施例4

幅を互いに独立に調節することができるかを示す。

物質 2 からなる層を、実施例 2 に記載したように調製し、 9 6 $\mathbb C$ 0 . 8 秒間露光し、引き続き 4 分間 9 6 $\mathbb C$ で熱処理し、最後に 9 6 $\mathbb C$ で 1 0 秒間 3 3 mW/c m^2 で露光した。こうして処理した材料の反射帯域の中波長は 4 6 8 n m である。こうして処理した材料の反射帯域の帯域幅は 6 0 n m であり、 9 6 $\mathbb C$ で通例のように製造した同じ材料からなる試料よりも 2 5 n m だけ広い。

【0117】 実施例5

物質 2 からなる層を、実施例 2 A に記載したように調製し、96 $^{\circ}$ で剪断した後 70 $^{\circ}$ に冷却した。この温度で、第一の露光を 33 mW/c m $^{\circ}$ で0.6 秒間実施した。引き続き、試料を 5 $^{\circ}$ $^$

【0118】こうして処理した材料の反射帯域に対して、550nmの中波長が判明し、反射帯域の帯域幅は約160nmである。本発明による方法により製造した層の光学的性質は、図3および図4に明確にする。この*第4表

1. 露光 暗相 実施例4 0.8秒 4分 96℃ 96℃ 実施例5 0.6秒 20分 70℃ 100℃ 実施例 6 3秒 5分 45℃ 100℃

次の2つの実施例は、どのようにして本発明による方法 を用いて、全可視スペクトル領域をカバーする反射帯域 が作られるかを示す。

【0122】実施例7

【0123】 実施例8

物質 3 から、9 5 ℃で例 2 A に記載したように層を調製した。層厚は 2 0 μ m であった。試料を 8 5 ℃に冷却した後、コレステリック層を 0.8秒間 3 3 m W / c m² (UV-A)で露光し、9 5 ℃に加熱し、引き続きこの温度で 1 2 0 分間熱処理した。第二露光は、9 5 ℃で60秒間 3 3 m W / c m²で行った。

【0 1 2 4】得られる反射帯域は、3 6 0 nmから7 0 0 nmに及ぶ。

【0125】<u>実施例9</u>

実施例 ID) に記載したように、ガラス板の間で本発明 50

*図は左および右円偏光光路中での透過および反射を示す。右円偏光透過対左円偏光透過の比は、10:1よりも良好である。左円偏光反射対右円偏光反射の比は、100:1よりも良好である。

20

【0119】実施例6

物質 2 からなる層を、実施例 2 Aに記載したように調製し、96℃で剪断した後45℃に冷却した。第一の露光 (33 mW/c m²、3秒間)は、45℃で15分の熱処理後に行った。引き続き、試料を約5℃/分で100 ℃に加熱した。それに5分の待ち時間が続き、その後に試料を二回目に露光した(33 mW/c m²、60秒間)。第一露光の際のより低い出発温度により、中波長は630 n mである。帯域幅は約115 n mである。

【0 1 2 0】 実施例 4、5 および 6 のデータは第 4 表にまとめられている: 左円偏光光路における所属する透過スペクトルは、図 5 に示されている。

[0121]

30

2. 露光	中波長	帯域幅
10秒	4 6 8 n m	60 n m
96℃		
10秒	5 5 0 n m	160 n m
70℃		
60秒	6 3 0 n m	1 1 5 n m
100℃		

によるフィルムを製造した。中波長は443nmであり、反射帯域の幅は83nmであった。引き続き、ガラス板を破壊した。コレステリックフィルムをナイフの刃でガラス支持体から削り取った。残留する粒子を約100μmの平均粒径にまで磨砕し、クリヤラッカーとして、ポリウレタンベースの二成分上塗りラッカー(Standox、Herberts社)を使用した。ラッカー混合物をフィルム引き出し装置を用いて黒色厚紙上に120μmの湿潤フィルム厚に塗布し、80℃で1時間乾燥した。得られる厚紙は、視角が増加すると青色の方へずれる高い光沢の青緑色の着色を示す。

【図面の簡単な説明】

① 【図1】実施例2および比較例2による層の不偏光光路 中での反射および所属する透過/波長曲線図

【図2】実施例3A)、3B)、3C)および3D)に よる層の透過/波長曲線図

【図3】実施例5による層の右および左円偏光光路中での透過/波長曲線図

【図4】実施例5による層の左および右円偏光光路中での反射/波長曲線図

【図5】実施例4、5および6による層の左円偏光光路中での透過/波長曲線図

【図6】実施例7による層の、図3に相応する透過/波

長曲線図

【図7】実施例7による層の、図4に相応する反射/波

[図3]

【図5】

【図2】

【図4】

[図6]

【図7】

フロントページの続き

(73)特許権者 390009003

Zielstattstraβe 20,

D-81379 Munchen, F. R.

Germany

(72)発明者 メヒトヒルト コプフ

ドイツ連邦共和国 フォルステルン ア

ム アルテン ブルネン 19ベー

(72)発明者 フランツーハインリヒ クロイツァー

ドイツ連邦共和国 マーティンスリート

ヨーゼフーゲルストナーーシュトラー

セ 14デー

(56)参考文献 特開 平10-260387 (JP, A)

特開 平5-323254 (JP, A)

特開 平10-62758 (JP, A)

米国特許5506704(US, A)

L. Li, S. M. FARIS, A

Single-Layer 9.4 S

uper Broadband Ref

lective Polarizer,

SID Int. Sympo. dige

st of Tech. papers,

SAN JOSE, 111-113

(58) 調査した分野(Int. Cl. 7, DB名)

CO9K 19/38

G02B 5/26

G02B 5/30

G02F 1/13

CA (STN)