UENF

Universidade Estadual do Norte Fluminense Darcy Ribeiro

Curso: Ciência de Computação Data: 06 /.05./2024

Prova: P1 **Período:** 3° **Disciplina:** Estatística e Probabilidades

Professor: Fermín Alfredo Tang **Turno:** Diurno

Nome do Aluno:Matrícula:

1- [3,0 Pontos] Na Empresa Mercury Ltda. Foi observada a distribuição de funcionários do setor de serviços gerais com relação ao salário semanal, conforme mostra a distribuição de frequências:

Salário Semanal (em \$)	Número de funcionários
[25, 30 >	10
[30, 35 >	20
[35, 40 >	30
[40, 45 >	15
[45, 50 >	40
[50, 55 >	35
Total	150

Calcule o seguinte:

i) O salário médio semanal dos funcionários;

[1,0 ponto]

ii) O desvio padrão semanal dos funcionários;

[1,0 ponto]

iii) Determine o limite dos salários que divide os funcionários em duas categorias, aqueles menos produtivos na categoria A e os mais produtivos na categoria B.

[1,0 ponto].

Resposta 1.- Calculamos a tabela com as frequências e pontos médios:

Salário Semanal (em \$)	Ponto médio x_i	Freq. f_i	Freq. Acum. fac_i	$x_i f_i$	$(x_i - \bar{x})^2 f_i$
[25, 30 >	27,5	10	10	275	2.351,008
[30, 35 >	32,5	20	30	650	2.135,417
[35, 40 >	37,5	30	60	1.125	853,226
[40, 45 >	42,5	15	75	637,5	1,663
[45, 50 >	47,5	40	115	1.900	871,235
[50, 55 >	52,5	35	150	1.837,5	3.270,781
Total		150		6.425	9.483,33

- i) Salário médio dos funcionários: $\bar{x} = \frac{\sum_{i=1}^{k} x_i f_i}{n} = \frac{6.425}{150} = 42,833$
- ii) Desvio padrão dos funcionários:

$$s^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \bar{x})^{2} f_{i}}{n - 1} = \frac{9.483,33}{149} = 63,646$$
$$s = \sqrt{63,646} = 7,977$$

iii) O limite de salários que divide os funcionários em duas categorias é a mediana.

Calculando a posição de mediana temos: $P = \frac{150}{2} = 75$

Corresponde à classe que contém o elemento número 75. Temos h=5

$$M_e = LI_e + \left(\frac{P - f'_{ac}}{f_e}\right)h = 40 + \left(\frac{75 - 60}{15}\right)5 = 45$$

- **2-** [2,5 Ponto] Uma caixa contém 3 bolas brancas e uma bola vermelha. Alexandra vai retirar as bolas uma por uma, até conseguir a bola vermelha. Sendo Y o número de tentativas necessárias até encontrar a bola vermelha, determine:
 - i) A distribuição de probabilidade da variável Y; P(Y = 1), P(Y = 2), P(Y = 3), P(Y = 4) [1,0 ponto]
 - ii) Valor esperado E(Y); [0,5 ponto]
 - iii) Variância Var(Y); [1,0 ponto]

Resposta 2.-

Sejam os eventos:

 B_i = retirar a *i*-ésima bola banca i = 1, 2, 3;

V = retirar a bola vermelha.

Considere as probabilidades associadas à variável aleatória Y:

$$P(Y=1) = P(V) = \frac{1}{4}$$

$$P(Y=2) = P(B_1 \cap V) = \frac{3}{4} \times \frac{1}{3} = \frac{1}{4}$$

$$P(Y=3) = P(B_1 \cap B_2 \cap V) = \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2} = \frac{1}{4}$$

$$P(Y=4) = P(B_1 \cap B_2 \cap B_3 \cap V) = \frac{3}{4} \times \frac{2}{3} \times \frac{1}{2} \times 1 = \frac{1}{4}$$

Portanto, P(Y=j) = 0.25 para j = 1, 2, 3, 4.

Distribuição de Probabilidade:

Y	1	2	3	4
P(Y)	0,25	0,25	0,25	0,25

Cálculo da esperança de Y:

$$E(Y) = \sum_{i=1}^{4} Y_i P(Y_i)$$

$$E(Y) = 0.25 \times (1 + 2 + 3 + 4) = 2.5$$

Cálculo da Variância de Y:

$$Var(Y) = E(Y)^{2} - \left[E(Y)\right]^{2}$$

$$Mas, E(Y)^{2} = \sum_{i=1}^{4} Y_{i}^{2} P(Y_{i})$$

$$E(Y^{2}) = 0.25 \times (1^{2} + 2^{2} + 3^{2} + 4^{2} + 5^{2}) = 13.75$$

$$Segue-se, Var(Y) = 13.75 - 2.5^{2} = 7.5 \checkmark$$

3- [2,0 Ponto] Considere os seguintes retornos para os ativos A e B de acordo com os cenários possíveis:

Situação da	Chances de	Retorno em (%)		
Economia	ocorrer em (%)	Ativo A	Ativo B	
Crescimento	30	28	8	
Estabilidade	40	15	12	
Recessão	30	-5	7	

Calcule o seguinte:

i) O retorno médio esperado de cada ativo;

[1,0 ponto]

ii) O risco envolvido (desvio padrão) para cada ativo.

[1,0 ponto]

Resposta 3.- Pela descrição

i) O retorno médio esperado de cada ativo é calculado:

$$E(X_A) = \sum_{i=1}^n x_i p(x_i) = 28 \times 0.30 + 15 \times 0.40 - 5 \times 0.30 = 12.9$$

$$E(X_B) = \sum_{i=1}^n x_i p(x_i) = 8 \times 0.30 + 12 \times 0.40 + 7 \times 0.30 = 9.3$$

ii) O risco envolvido para cada ativo é calculado:

$$V(X_A) = E(X_A^2) - [E(X_A)]^2 = \sum_{i=1}^n x_i^2 p(x_i) - [E(X_A)]^2$$

$$= 28^2 \times 0.30 + 15^2 \times 0.40 + (-5)^2 \times 0.30 - (12.9)^2$$

$$= 332.7 - 166.41 = 166.29$$

$$\sigma_A = \sqrt{V(X_A)} = \sqrt{166.29} = 12.89$$

$$V(X_B) = E(X_B^2) - [E(X_B)]^2 = \sum_{i=1}^n x_i^2 p(x_i) - [E(X_B)]^2$$

$$= 8^2 \times 0.30 + 12^2 \times 0.40 + 7^2 \times 0.30 - (9.3)^2$$

$$= 91.5 - 86.49 = 5.01$$

$$\sigma_B = \sqrt{V(X_A)} = \sqrt{5.01} = 2.238$$

- 4- [2,5 Ponto] Na venda de um produto temos duas opções:
 - a) Cobrar \$1000 por peça dos lotes sem inspeção;
 - b) Classificar as peças dos lotes em primeira qualidade e segunda qualidade, mediante inspeção e cobrar \$1.200 por peça do lote de primeira qualidade e \$800 por peça do lote de segunda qualidade.

A inspeção é realizada retirando 5 peças do lote, e classificada como primeira qualidade se não for encontrada mais do que uma peças defeituosa. Caso contrário, classificada como segunda qualidade. Sabe-se que 10% das peças produzidas são defeituosas e que são vendidos 50 lotes contendo 10 peças cada. Responda:

- i) Calcule as probabilidades de: o lote ser classificado de primeira qualidade e o lote ser classificado como de segunda qualidade; [1,0 ponto]
- ii) Calcule o faturamento da primeira opção; [0,5 ponto]
- iii) Valor esperado por peça e o faturamento da segunda opção. [1,0 ponto]

Resposta 4.-

i) Usamos a distribuição Binomial com:

$$n=5$$
, $p=0.10$, $q=0.90$

Calculamos a probabilidade de encontrar até 1 peça defeituosa:

$$P(X \le 1) = P(X = 0) + P(X = 1)$$
$$= {5 \choose 0} (0,1)^{0} (0,9)^{5} + {5 \choose 1} (0,1)^{1} (0,9)^{4} = 0,9185$$

Logo, a probabilidade de o lote ser classificado de primeira qualidade é: 0,9185 e a probabilidade de ser classificado como segunda qualidade o complemento 0,0815.

ii) Como existem 50 lotes de 10 peças cada, temos 500 peças. Na primeira opção sem inspeção o faturamento será de:

$$$1.000 \times 500 = $500.000$$

iii) Com a opção de inspeção, espera-se faturar:

$$E(X) = 1.200 \times 0.9185 + 800 \times 0.0815 = $1.167,40$$

Neste caso o faturamento esperado é de:

$$$1.167 \times 500 = $583.700$$