XX-XXX Assignment 0

 ${\it James~Kim~(gyeongwk@andrew.cmu.edu)}$

February 4, 2025

XX-XXX HW 0 Page 2 of 5

1 Main

1.1 Theorems, Lemmas, Definitions, etc

Theorem 1.1: Halting

The Halting Problem is undecidable.

Lemma 1.1: Lovasz-Local Lemma

Let A_1, \ldots, A_n be sequence of events, where each event A_i is dependent to at most d other events and $\mathbf{Pr}[A_i] \leq p$. Then, if $4pd \leq 1$, then there is nonzero probability that none of the events occur.

Corollary 1.1

This is a corollary

Proposition 1.1

Let G = (V, E) be an undirected graph. A vertex cover of G is a subset $S \subseteq V$ such that for every edge $(u, v) \in E$, at least one of u or v is in S. The size of a minimum vertex cover of G is always at least half the size of a maximum matching in G.

Definition 1.1

A graph G = (V, E) is a pair where V is a set of vertices and $E \subseteq V \times V$ is a set of edges.

Example 1.1

Consider the graph G = (V, E) where $V = \{1, 2, 3, 4\}$ and $E = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$. This graph forms a cycle of length 4.

Theorem

Every connected graph with n vertices has at least n-1 edges.

Lemma

In any graph, the sum of the degrees of all vertices is equal to twice the number of edges.

Corollary

Every graph has an even number of vertices with odd degree.

Proposition

A tree with n vertices has exactly n-1 edges.

XX-XXX HW 0 Page 3 of 5

Definition

A path in a graph is a sequence of vertices where each adjacent pair in the sequence is connected by an edge.

Example

Unumbered example

Fact 1

This is a fact

Claim 1

This is a claim

Title

This is an info card where you can put any content with a title and tags.

1.2 Operators

Pr, E, Var

 $\begin{array}{l} \operatorname{poly}, \operatorname{polylog}, \operatorname{dist}, \operatorname{tr}, \operatorname{cost}, \operatorname{proj} \\ \operatorname{Short forms:} \ \checkmark, \ \times \epsilon, \lambda, \varphi, \otimes, \oplus, \nabla \end{array}$

Number systems: $\mathbb{Z}, \mathbb{N}, \mathbb{R}$

XX-XXX HW 0 Page 4 of 5

2 TCS Style Extension

Satisfiability (SAT)

Decision, NP-complete

Instance: propositional formula φ

Question: is φ satisfiable?

XX-XXX HW 0 Page 5 of 5

3 Code

3.1 Psuedocode

Algorithm 1 An algorithm with caption

```
1: y \leftarrow 1
 2: X \leftarrow x
 3: N \leftarrow n
 4: while N \neq 0 do
          if N is even then
               X \leftarrow X \times X
 6:
         N \leftarrow \frac{N}{2} else if N is odd then
 7:
                                                                                                                  \triangleright This is a comment
 8:
               y \leftarrow y \times X
 9:
               N \leftarrow N-1
10:
          end if
11:
12: end while
```

3.2 Real code

```
class Object:
    def __init__(self, arg):
        self.arg = arg
```