TABLE OF CONTENTS

Find the area between f(x) and g(x) from x = -1 to x = 2.

$$= \int_{-1}^{2} \left[\frac{1}{3} x^3 - x + 2 - x^2 + \frac{1}{3} x^3 \right] dx$$

$$= \int_{-1}^{2} \left[\frac{2}{3} x^3 - x^2 - x + 2 \right] dx$$

$$\left[\frac{1}{3} x^4 + \frac{1}{3} x^3 + \frac{1}{3} x^2 + 2x \right]^2$$

Find the (unsigned) area between f(x) and g(x) from $x = -\frac{\pi}{2}$ to $x = \frac{\pi}{2}$.

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left[f(x) - g(x) \right] dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(e^{\sin x} \cos x - \sin x \cos x \right) dx$$

Let $u = \sin x$.

Then:
$$du = \cos x \, dx$$
, $u\left(\frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1$, $u\left(\frac{-\pi}{2}\right) = \sin\left(\frac{-\pi}{2}\right) = -1$.

$$= \int_{-1}^{1} \left(e^{u} - u\right) du$$

$$- \left[e^{u} - \frac{1}{2}u^{2}\right]^{1}$$

Find the (unsigned) area of the finite region bounded by f(x) and g(x).

Find the (unsigned) area in the figure below between the curves f(x) and g(x) from x = 0 to x = 1.

Area =
$$\int_0^{\frac{1}{\sqrt{2}}} \left[g(x) - f(x) \right] dx + \int_{\frac{1}{\sqrt{2}}}^1 \left[f(x) - g(x) \right] dx$$
$$\int_0^{\frac{1}{\sqrt{2}}} \left[w e^{1 - x^2} - w e^{x^2} \right] dx + \int_0^1 \left[w e^{x^2} - w e^{1 - x^2} \right] dx$$

Set up, but do not evaluate, integral(s) to find the (unsigned) area of the finite region bounded by $x = 1 + y^2$ and y = x - 3.

Option 1:
$$\int_{1}^{2} \left[\sqrt{x-1} - \left(-\sqrt{x-1} \right) \right] dx + \int_{2}^{5} \left[\sqrt{x-1} - (x-3) \right] dx$$

Set up, but do not evaluate, integral(s) to find the (unsigned) area of the finite region bounded by $x = 1 + y^2$ and y = x - 3.

$$\int_{-1}^{2} \left[(x+3) - (1+x^2) \right] dx$$

