Simon King, FSU Jena Fakultät für Mathematik und Informatik Daniel Max

Numerische Mathematik

Sommersemester 2022

Übungsblatt 3

Hausaufgaben (Abgabe: bis $03.05.2022 \ 10^{\underline{00}} \ \mathrm{Uhr}$)

Abgabe paarweise — Bitte beide Namen auf der Lösung angeben.

Hausaufgabe 3.1: Berechnung von relativer Kondition Berechnen Sie jeweils die relative komponentenweise Kondition $\underline{\kappa}^{\text{rel}}(f, x)$:

- a) (1 P.) $f: \mathbb{R}_{>0} \to \mathbb{R}$ mit $f(x) = \sqrt{x}$ für x > 0.
- b) (2 P.) $f: \mathbb{R}_{>0} \times \mathbb{R} \to \mathbb{R}$ mit $f(x_1, x_2) = x_1^{x_2}$ für $x_1 > 0$.
- c) (1 P.) $f: \mathbb{R}_{\geq 1} \to \mathbb{R} \text{ mit } f(x) := \ln (x \sqrt{x^2 1}), x = 30.$

Hausaufgabe 3.2: Kondition quadratischer Gleichungen Sei $D:=\{(p,q)\in\mathbb{R}^2\mid q\neq 0, \frac{p^2}{4}-q\geq 0\}$. Für $p,q\in D$ hat $y^2-py+q=0$ die Lösungen $y_{1,2}(p,q):=\frac{p}{2}\pm\sqrt{\frac{p^2}{4}-q}$. Sei $f\colon D\to\mathbb{R}^2$ mit $f(p,q):=\binom{y_1(p,q)}{y_2(p,q)}$.

- a) (4 P.) Untersuchen Sie die relative komponentenweise Kondition des Problems (f, (p, q)): Unter welcher Bedingung an p, q ist $\underline{\kappa}^{\text{rel}}(f, (p, q)) \gg 1$?
- b) (2 P.) Berechnen Sie $\underline{\kappa}^{\rm rel}\left(f,\,(p,q)\right)$ für p:=4 und q:=3.999.

Hinweis: Nach dem *Satz von Vieta* gilt $y_1 + y_2 = p$ und $y_1 \cdot y_2 = q$. Es ist sinnvoll, dies implizit abzuleiten, statt die p, q-Formel explizit abzuleiten.

Hausaufgabe 3.3: (3 P.) Für $0 < x \le 1$ sei $f(x) := \frac{1-\cos(x)}{x^2}$. Wir nehmen an, dass $\cos(x)$ mit dem relativen Fehler ε berechnet wird und die Grundrechenarten exakt ausgeführt werden. Es sei ε_f der daraus resultierende relative Fehler bei der Berechnung von f(x). Bestimmen Sie ein möglichst großes $x_0 > 0$, so dass $|\varepsilon_f| > 10^4 \cdot |\varepsilon|$ für alle $0 < x < x_0$.

Zusatzaufgabe: (3 Bonus-P.) Wie kann man f(x) mit deutlich höherer Genauigkeit berechnen, wenn $\sin(x)$ ebenfalls mit relativem Fehler ε ausgewertet wird? *Hinweis:* Trigonometrische Umformungen.

Bitte wenden

Hausaufgabe 3.4: Lemma 2.8

Bitte beachten Sie die Korrektur zu der Version des Lemmas, die ursprünglich an der Tafel stand.

(3 P.) Sei $f \in \mathcal{C}^1([\mathbb{R}^m, \mathbb{R}^n]), x \in \mathbb{R}^m$. Seien $i \in \{1,...,n\}, \ j \in \{1,...,m\}$ mit $x_j \neq 0$ und $f_i(x) \neq 0$. $e^{(j)} \in \mathbb{R}^m$ sei der j-te Standardbasisvektor. Zeigen Sie:

- $\left| f_i(x + he^{(j)}) f_i(x) \right| \le \underline{\kappa}^{\text{abs}}(f, x) \cdot |h| + r(h) \text{ mit } r(h) \in o(h) \text{ für } h \to 0.$
- $\frac{\left|f_i(x+he^{(j)})-f_i(x)\right|}{|f_i(x)|} \le \underline{\kappa}^{\mathrm{rel}}(f,x) \cdot \frac{|h|}{|x_j|} + s(h) \text{ mit } s(h) \in o(h) \text{ für } h \to 0.$

Hinweis: Taylor. Zur Definition der Landau-Symbole siehe die vorige Hausaufgabenserie.

Erreichbare Punktzahl: 16