МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

Мельницька А.Р.

3BIT

ОПЕРАЦІЙНІ ПІДСИЛЮВАЧІ З НЕГАТИВНИМ ЗВОРОТНИМ ЗВ'ЯЗКОМ

РЕФЕРАТ

Звіт про дослідження операційних підсилювачів зі зворотним негативним зворотним зв'язком: 11 с., 15 рис.

Об'єкт дослідження: операційні підсилювачі зі зворотним негативним зворотним зв'язком.

Мета роботи: ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком та способи виконання математичних операцій за допомогою схем з ОП.

Метод вимірювання: метод співставлення — одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

В роботі використано програмне забезпечення для моделювання електронних схем $NI\ Multisim^{TM}$.

Ключові слова: ІМ – інтегральна мікросхема; НЗЗ – негативний зворотній зв'язок; ПЗЗ – позитивний зворотній зв'язок

3MICT

Вступ. Теоретичні відомості			
Прак	ктична частина	6	
	Випрямляючий діод		
2.	Стабілітрон	7	
3.	Світлодіод	8	
4.	Фотодіод	8	
Висн	НОВКИ	9	
Спис	сок використаних джерел	11	

ВСТУП. ТЕОРЕТИЧНІ ВІДОМОСТІ

Операційний підсилювач (англ. operational *amplifier*) це диференціальний постійного який підсилювач струму, В має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно В аналогових обчислювальних виконання математичних операцій, пристроях для наприклад, складання інтегрування. Звідси і походить їх назва – операційні підсилювачі (ОП).

Створення зворотного зв'язку полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного сигналу (різниця фаз $\Phi = 180$ 0), то зворотний зв'язок називають *негативним* (H33). Якщо ж він подається на вхід у фазі до вхідного сигналу ($\Phi = 0$ 0), то такий зворотний зв'язок називають *позитивним* (П33)

ПРАКТИЧНА ЧАСТИНА

Дані і результати дослідження подано у графіках та рисунках

1. Неінвертувальний підсилювач

Рисунок 1.1. Схема

Рисунок 1.2. Генератор

Value: 3554SM Footprint: TO-3(LMF)

Manufacturer: Texas Instruments

Function: Wideband, Fast-Settling Operational Amplifier

Рисунок 1.3. IM.

T1 • • Time T2 • • T2-T1	Channel_A Channel_B	Reverse Save Ext. trigger
Timebase Scale: 200 us/Div	Channel A Channel B Scale: 100 mV/Div Scale: 1 V/Div	Trigger Edge: Flab Ext
X pos.(Div): 0 Y/T Add B/A A/B	Y pos.(Div): 1.2	Level: 0 V Single Normal Auto None

Рисунок 1.4. Осцилограф

Рисунок 1.5. Дані спостережень для гармонічного сигналу

2. Інвертувальний підсилювач

Рисунок 2.1. Схема інвертувального підсилювача

Value: 3554SM
Footprint: TO-3(LMF)
Manufacturer: Texas Instruments
Function: Wideband, Fast-Settling Operational Amplifier

Рисунок 2.2. IM

Рисунок 2.3. Генератора

Рисунок 2.4. Осцилограф

Рисунок 2.5. Дані досліджень інвертувального підилювача

3. Інтегратор на базі інвертувального підсилювача

Рисунок 3.1. Схема інтегратора на базі інвертуючого підсилювача

Value: 3554SM Footprint: TO-3(LMF)

Manufacturer: Texas Instruments

Function: Wideband, Fast-Settling Operational Amplifier

Рисунок 3.2. IM

Рисунок 3.3. Параметри генератора

Рисунок 3.4. Дані з осцилографа та його параметри

Рисунок 3.5. Дані дослідження інтегратора.

4. Диференціатор

Рисунок 4.1. Схема диференціатора на базі інвертувального підсилювача

Waveforms							
\sim	~~ -						
Signal options							
Frequency:	1	kHz					
Duty cycle:	50	%					
Amplitude:	100	mVp					
Offset:	0	V					
Set rise/Fall time							
+	Common	Ō,					

Рисунок 4.2. Генератор

T1	Channel_A Cha	nnel_B	Reverse Save Ext. trigger
Timebase	Channel A	Channel B	Trigger
Scale: 50 us/Div	Scale: 100 mV/Div	Scale: 100 mV/Div	Edge: F & A B Ext
X pos.(Div): 0	Y pos.(Div): 0	Y pos.(Div): 0	Level: 0 V
Y/T Add B/A A/B	AC 0 DC	AC 0 DC -	Single Normal Auto None

Рисунок 4.3. Осцилограф

Рисунок 4.4. Дія диференціатору на гармонічний сигнал

Рисунок 4.5. Дія диференціатору на трикутні сигнали

Рисунок 4.6. Дія диференціатору на послідовність прямокутних імпульсів

ВИСНОВКИ

В ході виконання роботи було проведено дослідження операційних підсилювачів з негативним зворотним зв'язком методом співставлень (одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів), ми ознайомились із властивостями операційних підсилювачів, опанували способи підсилення електричних сигналів схемами з ОП, охопленим негативним зворотним зв'язком та способи виконання математичних операцій за допомогою схем з ОП.

Як результат, наочно пересвідчились у дії на сигнал пристроїв, над якими було проведено дослідження.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1. Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк,
- 2. Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.
- 3. Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян "Вивчення радіоелектронних схем методом комп'ютерного моделювання": Методичне видання. К.: 2006.- с.