DATASCIENCE & BUSINESS ANALYTICS

SUPERVISED ML-LINEAR REGRESSION

Predict the percentage of an student based on the no. of study hours.

AUTHOR: Kaviya. G

Imports

```
In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

Get the data

```
In [3]: url = "http://bit.ly/w-data"
data = pd.read_csv(url)

In [4]: data.head()
Out[4]: Hours Scores
```

Out[4]:		Hours	Scores
	0	2.5	21
	1	5.1	47
	2	3.2	27
	3	8.5	75
	4	3.5	30

EXPLORATORY DATA ANALYSIS

In [4]: data.columns

Out[4]: Index(['Hours', 'Scores'], dtype='object')

In [5]: sns.jointplot(x='Hours',y='Scores',data=data)

Out[5]: <seaborn.axisgrid.JointGrid at 0x7faca073af40>

In [6]: sns.pairplot(data=data)

Out[6]: <seaborn.axisgrid.PairGrid at 0x7faca073ae20>

In [7]: sns.lmplot(x='Hours',y='Scores',data = data)

Out[7]: <seaborn.axisgrid.FacetGrid at 0x7faca1726580>


```
In [6]: sns.heatmap(data,linecolor='white',linewidth='1')
```

Out[6]: <AxesSubplot:>

Splitting the data

```
In [7]: x=data[["Hours"]]
In [8]: y=data["Scores"]
```

MODEL SELECTION

Training and testing data

```
In [9]: from sklearn.model_selection import train_test_split
In [10]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size)
```

Training the model

```
In [11]: from sklearn.linear_model import LinearRegression
```

Create an instance of a LinearRegression() model named Im.

```
In [12]: lm=LinearRegression()
```

```
In [13]: lm.fit(x_train,y_train)
```

Out[13]: LinearRegression()

Hours 9.941678

Print out the coefficients of the model

PREDICTING TEST DATA

Scores			
20	16.844722		
27	33.745575		
69	75.500624		
30	26.786400		
62	60.588106		
35	39.710582		
24	20.821393		

Create a scatterplot of the real test values versus the predicted values.

```
In [20]: plt.scatter(y_test,p)
```

Out[20]: <matplotlib.collections.PathCollection at 0x7f9d0f1fcb20>

Evaluating the Model

```
In [22]: from sklearn import metrics
    print('MAE:', metrics.mean_absolute_error(y_test,p))
    print('MSE:', metrics.mean_squared_error(y_test, p))
    print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, p)))
```

MAE: 4.130879918502486 MSE: 20.33292367497997 RMSE: 4.5092043283688055

```
In [53]: print(lm.predict([[9.25]]))
```

[93.89272889]

```
In [54]: df2=pd.DataFrame({'Actual':y_test,'Predicted':p})
```

df2

In [55]: df2

Out [55]:

	Actual	Predicted
5	20	16.844722
2	27	33.745575
19	69	75.500624
16	30	26.786400
11	62	60.588106
22	35	39.710582
17	24	20.821393

Conculsion

Predicted score as per algorithm for student studied for 9.25 hrs/day is 93.89 %

In []: