Loops

Repetition in Programs

- loop
 - a control structure that repeats a group of steps in a program
- loop body
 - the statements that are repeated in the loop

Comparison of Loop Kinds

- counting loop
 - we can determine before loop execution exactly how many loop repetitions will be needed to solve the problem
 - while, for
- sentinel-controlled loop
 - input of a list of data of any length ended by a special value
 - · while, for
- endfile-controlled loop
 - input of a single list of data of any length from a data file
 - · while, for
- input validation loop
 - repeated interactive input of a data value until a value within the valid range is entered
 - · do-while
- general conditional loop
 - repeated processing of data until a desired condition is met
 - · while, for

Counting Loops

- counter-controlled loop
 - a.k.a. counting loop
 - a loop whose required number of iterations can be determined before loop execution begins
- · loop repetition condition
 - the condition that controls loop repetition
- loop control variable
 - the variable whose value controls loop repetition
- · infinite loop
 - a loop that executes forever

while Statement Syntax

while (loop repetition condition) statement;

```
/* display N asterisks. */
count_star = 0
while (count_star < N) {
    printf("*");
    count_star = count_star + 1;
}</pre>
```

Computing a Sum or Product in a Loop

- accumulator
 - a variable used to store a value being computed in increments during the execution of a loop

Do Example of accumulator loop

```
#include<stdio.h>
int main()
    int i, sum;
    sum = 0;
                    //initialize accumulator value to zero
    i = 1;
                    //initialize loop control
    while(i < 100)</pre>
        sum = sum + i;
                       //update loop control
        i = i + 2;
    printf("sum of the odd numbers 1 to 100 is %d\n", sum);
}
Do Example of Fibonacci numbers
#include<stdio.h>
int main()
  {int i, f, fn1, fn2;
   fn1 = 1;
   fn2 = 0;
   i = 2;
   printf("Fibonacci 0 = %d\n", fn2);
   printf("Fibonacci 1 = %d\n", fn1);
  while(i < 20)
     {f = fn1 + fn2;}
      printf("Fibonacci %d = %d\n", i, f);
      fn2 = fn1;
      fn1 = f;
      i++;
     }
        return 0;
  }
```

Do Example to evaluate $y = 3x^3 - 12x^2 + 4x - 3$ for values of x starting at 0 and continuing in steps of 0.01 until y is greater than 1000. Print the first value of y and the corresponding value of x for which y > 1000.

```
double FindY(double x);
int main()
    double x, y, xIncr;
    x = 0;
    xIncr = 0.01;
    y = FindY(x);
    while(y <= 1000)
        x = x + xIncr;
        y = FindY(x);
    printf("x = %1f y = %1f \n", x, y);
    return 0;
}
double FindY(double x)
    double y;
    y = 3*pow(x, 3) - 12*x*x + 4*x - 3;
    return y;
}
Example: The value of \pi can be approximated from the series given by
#include<stdio.h>
//Pi = 4*{1 - 1/3 + 1/5 - 1/7 + 1/9 - ...}
// The user enters the number of terms to use.
int main()
  {int terms, i;
   double pi;
   printf("Enter the number of terms to use... ");
   scanf_s("%d", &terms);
   i = 0;
   pi = 0;
   while(i < terms)</pre>
      \{if(i \% 2 == 0)\}
         pi = pi + 1.0/(2*i+1); //Add even term.
                                  //Note that 2i+1 is always odd
         pi = pi - 1.0/(2*i+1); //Subtract odd term
       i++;
      pi = pi * 4;
      printf("For %d terms, pi = %lf\n", terms, pi);
         return 0;
  }
```

#include<stdio.h>
#include<math.h>

Example: Write a program to find the integer square root of a number input from the user. The integer square root is the largest integer whose square is less than or equal to the number. Use a loop and do this program with an exhaustive search.

```
#include<stdio.h>
int main()
{
    int i, n;
    printf("Enter an integer greater than zero... ");
    scanf_s("%d", &n);
    i = 1;
    while(i*i <= n)
    {
        i = i + 1;
    }
    i = i - 1;
    printf("%d is the integer square root of %d\n", i, n);
}</pre>
```

Loop equation evaluation

Write a console application that prompts the user for a value which can be used to increment the value of x. Evaluate and print the value of y where $y = x^4 - 3x^3 + 2x^2 + 1$. Use a loop to allow the value of x to go from 0 to 10 while x is incremented by the value from the user.

For example, if the user inputs a value of 1, your program should print values for y for $x = 0, 1, 2, 3, 4, \dots 10$.

Put the function into a method called FindY which accepts an argument of type double and returns a double.

Turn in a printed copy of your source file.

General Conditional Loop

- 1. Initialize loop control variable.
- 2. As long as exit condition hasn't been met
 - 3. Continue processing

Loop Control Components

- initialization of the loop control variable
- test of the loop repetition condition
- change (update) of the loop control variable
- the for loop supplies a designated place for each of these three components

The for Statement Syntax

Example Countable loop

TABLE 5.3 Compound Assignment Operators

Statement with Simple Assignment Operator	Equivalent Statement with Compound Assignment Operator
count_emp = count_emp + 1;	count_emp += 1;
time = time - 1;	time -= 1;
total_time = total_time + times;	<pre>total time += time;</pre>
<pre>product = product * item;</pre>	<pre>product *= item;</pre>
n = n * (x + 1);	n *= x + 1;

The for Statement Syntax