2. 位相空間

岩井雅崇 2022/10/11

問 $2.1 \ X = \{0,1\}, \emptyset = \{\emptyset, X, \{0\}\}$ とするとき (X, \emptyset) は位相空間になることを示せ.

問 2.2 X = (0,1)とし、

$$\mathscr{O} = \left\{ \left(0, 1 - \frac{1}{n}\right) | n \in \mathbb{N}, n \geqq 2 \right\} \cup \left\{X, \varnothing\right\}$$

とする. (X, \mathcal{O}) は位相空間になることを示せ.

問 2.3 (補有限位相) \mathbb{R} に関して部分集合の族 $\mathcal{O}_c \subset \mathfrak{P}(\mathbb{R})$ を次で定める.

$$\mathcal{O}_c = \{V \subset \mathbb{R} | \mathbb{R} \setminus V \text{ は有限集合である } \} \cup \{\emptyset\}$$

次の問いに答えよ.

- (a) $(\mathbb{R}, \mathcal{O}_c)$ は位相空間になることを示せ.
- (b) \mathbb{R} のユークリッド位相を \mathcal{O}_{Euc} とするとき $\mathcal{O}_c \subset \mathcal{O}_{Euc}$ を示せ.
- (c) $A \in \mathcal{O}_{Euc}$ かつ $A \notin \mathcal{O}_c$ なる A の例を一つあげよ.

問 2.4 (上半連続位相) \mathbb{R} に関して部分集合の族 $\mathcal{O}_{usc} \subset \mathfrak{P}(\mathbb{R})$ を次で定める.

$$\mathcal{O}_{usc} = \{(-\infty, t) | t \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$$

次の問いに答えよ.

- (a) $(\mathbb{R}, \mathcal{O}_{usc})$ は位相空間になることを示せ.
- (b) $\{0\}$ は $(\mathbb{R}, \mathcal{O}_{usc})$ での閉集合ではないことをしめせ.

問 $2.5 \mathbb{R}$ に関して部分集合の族 $\mathcal{O}_{sc} \subset \mathfrak{P}(\mathbb{R})$ を次で定める.

$$\mathscr{O}_{sc} = \{U \cup A \subset \mathbb{R} | U$$
 はユークリッド位相に関する開集合, A は $\mathbb{R} \setminus \mathbb{Q}$ の部分集合 $\}$

次を示せ.

- (a) (\mathbb{R} , \mathcal{O}_{sc}) は位相空間になることを示せ.
- (b) $\{\sqrt{2}\}$ は $(\mathbb{R}, \mathcal{O}_{sc})$ での開集合かつ閉集合であることを示せ.

問 2.6 (Fortissimo Space) $X = \mathbb{R} \cup \{\infty\} \ge \mathbb{L}^1$

$$\mathcal{O}_F = \{V \subset X | X \setminus V \$$
は高々可算集合、または $\infty \in V\}$

とおくと (X, \mathcal{O}_F) は位相空間になることを示せ.

 $^{^{1}\}infty$ は $\mathbb R$ の元ではないことに注意する. ∞ という記号が嫌な場合は ∞ を $\mathbb R$ に含まれない元だと思ってください.

- 問 2.7 位相空間 (X, \emptyset) で距離化可能でないものの例をあげよ.²
- 問 $2.8~\mathbb{R}$ にユークリッド位相 \mathcal{O}_{Euc} をいれる. $X=(0,1)\cup(2,3]$ とし, X に \mathbb{R} の部分位相を入れる. このとき (2,3] は X 上の開集合かつ閉集合であることを示せ.
- 問 $2.9 \mathbb{R}$ にユークリッド位相 \mathcal{O}_{Euc} をいれる. $A = \mathbb{O}$ について A^i, \overline{A} を求めよ.
- 問 2.10 \mathbb{R} にユークリッド位相 \mathcal{O}_{Euc} をいれる. 次の問いに答えよ.
 - (a) $A = \mathbb{Q}$ とし、A に相対位相 \mathcal{O}_A を入れる. $\{0\}$ は A の開集合かどうか判定せよ.
 - (b) {0} は A の閉集合かどうか判定せよ.
 - (c) \mathbb{R} の部分集合 B で, B は無限集合であり, (B,\mathcal{O}_B) 上において $\{0\}$ が開集合かつ閉集合となる例を一つあげよ. ここで \mathcal{O}_B は相対位相とする.
- 問 $2.11(X, \emptyset)$ を位相空間とし、A を X の部分集合とする. 次を示せ.
 - (a) $(A^c)^a = (A^i)^c$;
 - (b) $(A^c)^i = (A^a)^c$.
- 問 2.12* 位相空間 (X, \mathcal{O}) とその部分集合 $A, B \subset X$ を考える. 次の主張に関して、真である場合は証明し、偽である場合は反例をあげよ.
 - (a) $(A \cap B)^i = A^i \cap B^i$
 - (b) $(A \cup B)^i = A^i \cup B^i$
 - (c) $(A \cap B)^a = A^a \cap B^a$
 - (d) $(A \cup B)^a = A^a \cup B^a$
- 問 $2.13*A,A^i,\overline{A},\overline{A^i},\overline{(A^i)}^i,\overline{(A^i)}^i,\overline{(A^i)}^i$ が全て違うような A の例をあげ<u>よ</u>. ここで $\overline{A^i}$ は A の内部の閉包、 $(\overline{A})^i$ は A の閉包の内部、 $\overline{(A^i)}^i$ は A の内部の閉包の内部、 $\overline{(\overline{A}^i)}$ は A の閉包の内部の閉包である.
- 問 $2.14*(Zariski 位相) \mathbb{Z}$ を整数の集合とする. 素数 p について

とし, $Spec(\mathbb{Z}) := \{(p)|p \text{ は素数}\}$ とする. また整数 n について

$$V_n := \{(p) \in Spec(\mathbb{Z}) | n \in (p)\} \subset Spec(\mathbb{Z})$$

と定義し、 $\mathfrak{A}:=\{V_n|n\in\mathbb{Z}\}\subset\mathfrak{P}(Spec(\mathbb{Z}))$ とおく. このとき \mathfrak{A} は閉集合の公理を満たし $(Spec(\mathbb{Z}),\mathfrak{A})$ は位相空間になることを示せ.

 $^{^2}$ つまり「ある距離 d があってその位相が $\mathcal O$ となる」ということがない例を挙げてください.