Claims

- A method for controlling combustion in a combustion
 chamber of a combustion engine, comprising:
 - receiving (s53) a measured air-to-fuel ratio value,
 - receiving (s55) at least one estimated air-to-fuel ratio value, said air-to-fuel ratio estimate being generated in dependence of a predetermined fuel deposit factor,
- 10 establishing a fuel volatility value in dependence of said measured air-to-fuel ratio value and said air-to-fuel ratio estimate, and
 - controlling combustion in dependence of said fuel volatility value.

15

2. A method according to claim 1, wherein said measured air-to-fuel ratio value is compared to said air-to-fuel ratio estimate and said fuel volatility value is generated in dependence of said comparison.

20

3. A method according to claim 1, wherein said fuel volatility value is generated in dependence of said measured air-to-fuel ratio value and a plurality of air-to-fuel ratio estimates.

- 4. A method according to claim 3, wherein said plurality of air-to-fuel ratio estimates are of mutually different values.
- 5. A method according to claims 1, wherein said at least one air-to-fuel ratio estimate is generated in dependence of a predetermined fuel deposit factor (X_i) and at least one detected engine parameter value $(M_f,\ M_a)$.

6. A method according to claim 4, wherein said plurality of mutually different air-to-fuel ratio estimates are generated in dependence of the same detected engine parameter value (M_f , M_a) and mutually different predetermined fuel deposit factor (X_i).

5

- 7. A method according to claim 1, wherein said measured air-to-fuel ratio value is delivered by an air-to-fuel ratio sensor (210, 11c) positioned to detect an actual air-to-fuel ratio in an exhaust manifold (225a).
 - 8. A system for controlling combustion in a combustion chamber of a combustion engine, comprising:
- first means (335) for receiving a measured air-to-fuel ratio value (λ_{meas}) ,
 - second means (P1, P2...PN) for receiving at least one air-to-fuel ratio estimate $(\lambda_1,\lambda_2...\lambda_N)$, said air-to-fuel ratio estimate being generated in dependence of a predetermined fuel deposit factor,
 - third means (330, 700) for generating a fuel volatility value in dependence of said measured air-to-fuel ratio value and said air-to-fuel ratio estimate, and
- fourth means (360) for controlling combustion in dependence
 of said fuel volatility value.
 - 9. A system according to claim 8, wherein said third means (330, 700) is adapted to compare said measured air-to-fuel ratio value to said air-to-fuel ratio estimate and
- 30 to generate said fuel volatility value in dependence of said comparison.

- 10. A system according to claim 8, wherein said fuel volatility value is generated in dependence of said measured air-to-fuel ratio value and a plurality of air-to-fuel ratio estimates $(\lambda_1, \lambda_2...\lambda_N)$.
- 11. A system according to claim 8, wherein said plurality of air-to-fuel ratio estimates $(\lambda_1, \lambda_2 ... \lambda_N)$ are of mutually different values.

10

15

30

- 12. A system according to claim 8, wherein said third means (330, 700) is adapted to generate at least one air-to-fuel ratio estimate $(\lambda_1, \lambda_2...\lambda_N)$ in dependence of a predetermined fuel deposit factor (X_i) and at least one detected engine parameter value (M_f, M_a) .
- 13. A system according to claim 8, wherein said third means (330, 700) is adapted to generate a plurality of mutually different air-to-fuel ratio estimates $(\lambda_1, \lambda_2...\lambda_N)$ in dependence of the same detected engine parameter value (M_f, M_a) and mutually different predetermined fuel deposit factor (X_i) .
- 14. A system according to claim 8, wherein said air-to-fuel ratio sensor (210, 11) is positioned to detect an actual air-to-fuel ratio value in an exhaust pipe (228) and adapted to deliver said measured air-to-fuel ratio value (λ_{meas}).
 - 15. A computer program for causing a computerized apparatus (8; 700) to improve combustion in a combustion chamber of a combustion engine, comprising:
 - a computer readable code means which, when run on a computerized apparatus (8, 700), causes the computerized apparatus (8; 700) to:
- receive (s53) a measured air-to-fuel ratio value,
 receive (s55) at least one estimated air-to-fuel ratio

value, said air-to-fuel ratio estimate being generated in dependence of a predetermined fuel deposit factor,

establish a fuel volatility value in dependence of said measured air-to-fuel ratio value and said air-tofuel ratio estimate, and

control combustion in dependence of said fuel volatility value.

10