Algorithms Chapter 24 Single-Source Shortest Paths

給定-個桌到其他桌的最短距離

Associate Professor: Ching-Chi Lin

林清池 副教授

chingchi.lin@gmail.com

Department of Computer Science and Engineering National Taiwan Ocean University

Outline

- > The Bellman-Ford algorithm negative weight edge: 5]
 θ(nm)
- Single-source shortest paths in directed acyclic graphs
- Dijkstra's algorithm

 negative-weight edge ::

```
negative-weight edge:不可
O(mlgn)
```

沒"cycle"有向图的最短距離 O(n+m)

.....

給定-個桌到其他桌的最短距離

Single-source shortest paths problem

- ▶ Input: A weighted graph G = (V, E) and a source vertex s.
- ▶ Output: Find a shortest path from s to every vertex $v \in V$.
- The weight w(p) of path $p = \langle v_0, v_1, ..., v_k \rangle$ is the sum of the weights of its constituent edges:

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
. 路徑長度:路徑長度上各段距離的和

▶ The shortest path weight $\delta(u,v)$ from u to v is

$$\delta(u,v): u \ v) \ v \ \underset{\sim}{\mathbb{R}} \ \overset{\sim}{\mathbb{R}} \ \overset{\sim}{\mathbb{$$

A **shortest path** from vertex u to vertex v is then defined as any path p with weight $w(p) = \delta(u,v)$.

An example

和MST相同,最短路徑,非唯一

▶ The shortest path might **not** be unique.

到各桌的路徑会形成一個 tree

- When we look at shortest paths from one vertex to all other vertices, the shortest paths are organized as a tree.
- ▶ The weights can represent weight可以表示時間、花费、损失
 - time, cost, penalties, loss.

Variants - 些相關問題

- ▶ **Single-destination shortest-paths problem:** Find shortest paths to a given destination vertex. 其它集到総定→集的最短距離
 - ▶ By reversing the direction of each edge in the graph, we can reduce this problem to a single-source problem.

作法: 將每一個边的方向"reverse", 然後跑 single-source 演算法

- ▶ **Single-pair shortest-paths problem:** Find shortest path from *u* to *v* for given vertices *u* and *v*. 総定 2 矣, μ 到 ν 码 最 短 能能
 - ▶ All know algorithms have the same running time as the single-source algorithms. 目前 知道 的方法 都 和 single source 様 快
- ▶ All-pairs shortest-paths problem: Find shortest path from u to v for all $u, v \in V$. We'll see algorithms for all-pairs in the next chapter. 全部任意二字的最短距:ch25

Negative-weight edges 花费可能為負:下坡

- If G contains no negative-weight cycles reachable from s, then $\delta(s,v)$ is well-defined for all $v \in V$. 中里沒有 negative weight cycle $\Rightarrow \delta(u,v)$ 是定義良好的,無歧義
- ▶ If there is a negative-weight cycle on some path from s to v, we define $\delta(s,v) = -\infty$. 40 里有, 則定義 $\delta(u,v) = -\infty$

Output of single-source shortest-path algorithm

- ▶ For each vertex v∈ V: d[v]: 記録目前s到v的最短距離
 - ▶ $d[v] = \delta(s, v)$. 閏報設定及[v] = ∞
 - ▶ Initially, $d[v] = \infty$.
 - Reduces as algorithms progress.
 - ▶ But always maintain $d[v] \ge \delta(s, v)$. 過程中保持 $d[v] \ge \delta(s, v)$
- \blacktriangleright $\pi[v]$: the predecessor of v on a shortest path from s.
 - ▶ If no predecessor, π[ν] = NIL. π[ν]: S 到 ν 路徑上, ν 的前 個臭
 - ▶ Trinduces a tree → shortest-path tree. 開始設定π[v]= NULL
- Predecessor subgraph: $G_{\pi} = (V_{\pi}, E_{\pi})$
 - ▶ $V_{\pi} = \{v \in V : \pi[v] \neq \text{NIL}\} \cup \{s\}$ 际有 $(\pi[v], v) \text{ edges } \in \pi; 成 裸 \text{ tree}$
 - $E_{\pi} = \{(\pi[v], v) : v \in V_{\pi} \{s\}\}$

Initialization & Relaxation ②更新前一桌

▶ All algorithm start with Initialize-Single-Source and then repeatedly decrease d[v] until $d[v] \ge \delta(s, v)$.

Initialize-Single-Source(G, s) Relax(u, v, w)

- 2. $d[u] \leftarrow \infty$
- $\pi[u] \leftarrow \mathsf{NIL}$
- 4. $d[s] \leftarrow 0$

- **for** each vertex $u \in V[G]$ 1. **if** d[v] > d[u] + w(u, v)
 - $d[v] \leftarrow d[u] + w(u, v)$
 - 3. $\pi[v] \leftarrow u$

The Bellman-Ford algorithm

- Allows negative-weight edges. 可以有負 "edge"
- ullet Computes d[v] and $\pi[v]$ for all $u\in V$. 記錄目前 s 到 v 的 最短距離和,v 的 前 個 克
- Returns TRUE if no negative-weight cycles reachable from s,
 FALSE otherwise.

```
path超过 n-1 辺, 莫会重覆, 删除更小
>最短 path 最多有 n-1 辺
Bellman-Ford(G, w, s)
      Initialize-Single-Source(G, s)
                                       edge relax The first for loop relaxes all edges n - 1 times. 場所有edge. relax n-1 文
      for i = 1 to n - 1
2.
         for each edge (u, v) \in E
             Relax(u, v, w)
4.
                                                     \blacktriangleright Time: \Theta(nm).
     for each edge (u, v) \in E
                                      檢測1是否有负 cycle
          if d[v] > d[u] + w(u, v)
6.
                                        :S到V最多經过n-1辺
              return FALSE
7.
      return TRUE
                                          relax n-1 次後不会
8.
                                          再減少, 除非有负"cycle"
```


Outline

- ▶ The Bellman-Ford algorithm
- **▶** Single-source shortest paths in directed acyclic graphs 沒"cycle"有向图的最短距離
- Dijkstra's algorithm

dag:沒有"cycle"的有向图

Single-source shortest paths in directed acyclic graphs

Since G is a dag, no negative-weight cycles can exist.

▶ By relaxing the edges of *G* according to a topological sort of its vertices, we can compute shortest paths from a single source in $\Theta(n+m)$ time. ★1 \oplus topological sort, \bowtie time \oplus $\Theta(nm) \rightarrow \Theta(n+m)$

Dag-Shortest-Paths (G, w, s)

- 1. topologically sort the vertices of *G*
- 2. INITIALIZE-SINGLE-SOURCE(G, s) 使用topological sort 当 relax 的顺序
- for each vertex u, taken in topologically sorted order
- 4. **for** each vertex $v \in Adj[u]$
- 5. RELAX(*u, v, w*)
- \blacktriangleright Time: $\Theta(n+m)$.

Dag: D排序 ②由前到後 relax 鄰居

Outline

- ▶ The Bellman-Ford algorithm
- Single-source shortest paths in directed acyclic graphs
- Dijkstra's algorithm

negative-weight edge : रज

Dijkstra's algorithm

- ▶ No negative-weight edges. negative-weight edge: কত
- Essentially a weighted version of breadth-first search.
 - ▶ Instead of a FIFO queue, uses a priority queue. 利用 priority queue 選最小
 - ▶ Keys are shortest-path weights (d[v]). 使用 d[v] 当 key 位
- ▶ Have two sets of vertices: 過程中維護兩個集合 5 和 Q
 - \triangleright S = vertices whose final shortest-path weights are determined.
 - \triangleright Q = priority queue = V S.

```
s=最短路徑已經決定的莫集合
Q = V - S
 =在priority queue 中的莫重合
```

Initialize-Single-Source(G, s)

- $d[u] \leftarrow \infty$
- $\pi[u] \leftarrow \mathsf{NIL}$
- 4. $d[s] \leftarrow 0$

```
Relax(u, v, w)
```

- **for** each vertex $u \in V[G]$ 1. **if** d[v] > d[u] + w(u, v)
 - 2. $d[v] \leftarrow d[u] + w(u, v)$
 - 3. $\pi[v] \leftarrow u$

0為一氮禁演算法

②以出発臭為核心擴大

③动作: (a) 選最小 (b) 更新都居资訊

Prim:更新w(u,v), v到集合S的最短距離 S=和起始桌相連的所有桌 Dijkstra:更新d[v],s到v的最短距離

s=出発桌

Dijkstra's algorithm 使用不同heap,時間也不同

```
DIJKSTRA (G, w, s)
                                                Binary heap
                                                                           Fibonacci heap
      Initialize-Single-Source(G, s)
   S \leftarrow \emptyset
                                                                     O(n)
     Q \leftarrow V
4. while Q \neq \emptyset
5. u \leftarrow \text{EXTRACT-Min}(Q)
                                                                     O(n \lg n)
            S \leftarrow S \cup \{u\}
             for each v \in Adj[u]
7.
                                                  O(m \lg n)
                                                                                  O(m)
                   Relax(u, v, w)
8.
                                          Total: O(m \lg n)
                                                                              O(m + n \lg n)
```

- Looks a lot like Prim's algorithm, but computing d[v], and using shortest-path weights as keys.
- Dijkstra's algorithm can be viewed as greedy, since it always chooses the "lightest" vertex in V - S to add to S.