# الجمهورية الجزائرية الديمقراطية الشعبية

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: الرياضيات و التقني رياضي

سبب برياسي رياسي

اختبار في مادة: العلوم الفيزيائية

دورة: جوان 2012

المدة: أربع ساعات ونصف

الديوان الوطني للامتحانات والمسابقات

# على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

#### التمرين الأول: (03,5 نقاط)

اقترح أستاذ على تلامذته تعيين سعة مكثفة C بطريقتين مختلفتين : الطريقة الأولى: شحن المكثفة بتيار مستمر ثابت الشدة.

الطريقة الثانية: تفريغ المكثفة في ناقل أومي.

لهذا الغرض تُمُّ تحقيق التركيب المقابل.

أولاً: المكثفة في البداية فارغة. نضع في اللحظة 0 = t البادلة K في الوضع (1)، فتشحن المكثفة بالمولد G الذي يعطي تيارا ثابتا شدته  $i = 0,31 \, mA$  نصاعدة المنحنى  $i = 0,31 \, mA$  البياني لتطور التوتر  $u_{AB}$  بين طرفي المكثفة بدلالة الزمن t (الشكل t ).

أ- أعط عبارة التوتر  $u_{AB}$  بدلالة شدة التيار i المار في الدارة ، وسعة المكثفة C و الزمن t .

ب- جد قيمة C سعة المكثفة .

ثانياً: عندما يصبح التوتر بين طرفي المكثفة مساويا إلى القيمة  $U_0 = 1,6V$  نضع البادلة K في الوضع (2) في لحظة نعتبرها من جديد t=0 ، فيتم تغريغ المكثفة في ناقل أومي مقاومته R=1

.  $u_{AB}$  التفاضلية التي يحققها -1

 $u_{AB} = U_0 e^{\frac{t}{\tau}}$ : علماً أن حلها

- أثناء تغريغ المكثفة، سمح جهاز ExAO من متابعة تطور التوتر الكهربائي  $u_{AB}$  بين طرفي المكثفة بدلالة الزمن t. بواسطة برمجية مناسبة تمكنا من الحصول على المنحنى البياني (الشكل-1ب). جد بيانيا قيمة ثابت الزمن t للدارة ، ثم استنتج قيمة سعة المكثفة t.







#### التمرين الثاني: (03 نقاط)

1- التفاعل بين الدوتريوم و التريتيوم ينتج نواة He ونيترون وتحرير طاقة.



ب- اكتب معادلة التفاعل الحادث.

ب- حدد من (الشكل-2) مجالات

الأنوية القابلة للإنشطار، الأنوية القابلة للإندماج

و الأنوية المستقرة.



 $E_{\ell}$  النواة طاقة الربط النووي  $E_{\ell}$  للنواة -3

- الطاقة المحررة  $|\Delta E|$  بدلالة طاقات الربط النووي تعطى بالعبارة:

$$|\Delta E| = |E_{\ell}({}_{2}^{4}He) - E_{\ell}({}_{1}^{2}H) - E_{\ell}({}_{1}^{3}H)|$$

احسب قيمة هذه الطاقة المحررة مقدرة بـ MeV.

#### المعطيات:

| النواة           | <sup>2</sup> <sub>1</sub> H | <sup>3</sup> <sub>1</sub> H | <sup>4</sup> <sub>2</sub> He |
|------------------|-----------------------------|-----------------------------|------------------------------|
| طاقة الربط (MeV) | 2,22                        | 8,48                        | 28,29                        |

#### التمرين الثالث: (03,5 نقطة)

تتكون دارة كهربائية (الشكل-3) مما يلي:

E=6,0V مولد توترمستمر قوته المحركة الكهربائية

-قاطعة -

 $r=10~\Omega$  و مقاومتها L و مقاومتها  $r=10~\Omega$ 

. R=200 مقاومته  $\Omega$  اقل أومي مقاومته

ExAO في اللحظة t=0 نغلق القاطعة K ، فبو اسطة ال

 $u_{BC}$  و  $u_{AB}$  يمكن معاينة التوتر الكهربائي

( الشكل-4) و ( الشكل-5).

ExAO ما هو الجهاز الذي يمكن وضعه بدلا من-1

لتسجيل المنحنيات البيانية السابقة؟

.  $\frac{di}{dt}$  و i(t) بدلالة  $u_{AB}$  عبارة عبارة -2

. i(t) عبارة  $u_{BC}$  بدلالة -3





الشكل- 4

. برتر.  $u_{BC}$  و  $u_{AB}$  له الموافق له  $u_{BC}$  و برتر.

5-اكتب المعادلة التفاضلية التي تحققها شدة التيار الكهربائي i(t) مع إعطاء حل لها.

 $I_0$ جد عبارة شدة التيار الكهربائي الأعظمي-6

الذي يجتاز الدارة عند الوصعول الى النظام الدائم،

ثم احسب قيمته .

7-جد قيمة ثابت الزمن 7 بطريقتين مختلفتين مع الشرح.

احسب L ذاتية الوشيعة.-8



# التمرين الرابع: (03,75 نقطة)

في فبراير 2012، هبت عاصفة ثلجية على شمال شرق الجزائر، فاستعملت الطائرات المروحية للجيش الوطني الشعبي لإيصال المساعدات للمتضررين خاصة في المناطق الجبلية منها.

# 

تطير المروحية على ارتفاع ثابت h من سطح الأرض بسرعة أفقية ثابتة قيمتها  $50m \cdot s^{-1}$ .  $v_0 = 50m \cdot s^{-1}$  أيترك صندوق مواد غذائية مركز عطالته G يسقط في اللحظة t = 0 انطلاقا من النقطة O مبدأ الإحداثيات وبالسرعة الابتدائية الأفقية  $v_0$  ليرتطم بسطح الأرض في النقطة  $v_0$  (الشكلo).

ندرس حركة G في المعلم المتعامد و المتجانس  $G(\widetilde{i},\widetilde{j})$  المرتبط بسطح الأرض الذي نعتبره غاليلياء نهمل أبعاد الصندوق و تؤثر عليه قوة وحيدة هي قوة ثقله.

1- بتطبيق القانون الثاني لنيوتن جد:

أ- المعادلتين الزمنيتين (x(t) و (z(t).

-z(x) ب- معادلة المسار

ج- إحداثيتي نقطة السقوط M.

د- الزمن اللازم لوصول الصندوق إلى الأرض.



الشكل-6

# <u>ٹانیاً:</u>

لكي لا نتلف المواد الغذائية عند الارتطام بسطح الأرض، تم ربط الصندوق بمظلة تمكنه من النزول شاقوليا ببطء تبقى المروحية على نفس الارتفاع h السابق في النقطة O ، ليترك الصندوق يسقط شاقوليا دون سرعة البتدائية في اللحظة t=0 (الشكلt=0). يخضع الصندوق لقوة احتكاك الهواء نعبر عنها بالعلاقة t=0 حيث:  $\vec{v}$  يمثّل شعاع سرعة الصندوق في اللحظة t مع إهمال دافعة أرخميدس خلال السقوط.





7-الشكل

1- جد المعادلة التفاضلية التي تحققها سرعة مركز عطالة الصندوق.

t يمثّل (الشكل-8) تطور v سرعة مركز عطالة الصندوق بدلالة الزمن -2

أ- جد السرعة الحدية بر٧.

t=10s و t=0s و . t=10s و . t=10s و .

m = 150 kg الصندوق و المظلة h = 405 m ،  $g = 9.8 \text{ m} \cdot \text{s}^{-2}$ 

#### التمرين الخامس: (02,75 نقطة)

 $\oplus Zn \left| Zn^{2+} \right| \left| Cu^{2+} \left| Cu \oplus \right| :$  نحقق عمود دانيال

 $E = 1.10 \ V$  القوة المحركة الكهربائية:

اسارسم بشكل تخطيطي عمود دانيال موصو لا بناقل أومي مقاومته R=20، موضحا عليه جهة التيار الكهربائي و اتجام حركة الالكترونات و الشوارد.

2-اكتب المعادلتين النصفيتين للأكسدة و الإرجاع، ثم استنتج معادلة التفاعل المنمذج للتحول الذي يحدث أثناء اشتغال العمود.

3- ماذا يحدث للمسريين عند حالة التوازن ؟

4- لحسب شدة التيار الذي يجتاز الدارة.

5- احسب Q كمية الكهرباء التي ينتجها العمود بـ C بعد ساعتين من الاشتغال.

# التعرين التجريبي: (5,50 نقطة)

تؤخذ كل المحاليل في 25°C.

الإيبويروفين حمض كربوكسيلي صيغته الجزيئية الإجمالية  $C_{13}H_{18}O_2$ ، دواء يعتبر من المضادات للالتهابات، شبيه بالأسبرين، مسكن للألام و مخفض للحرارة تباع مستحضرات الإيبويروفين في الصيطيات على شكل مسحوق في أكياس تحمل المقدار mg يذوب في الماء. في كل هذا النشاط نرمز لحمض الإيبويروفين ب mg بالماء ولأساسه المرافق ب $mol^{-1}$  .  $mol^{-1}$  .

 $S_0$  أو  $V_0=500$  كيس الإيبوبروفين  $V_0=500$  من الحمض في بيشر به ماء فنحصل على مطول مائي ما تركيزه المولى  $c_0$  و حجمه  $c_0=500$  .

.  $c_opprox 0,002\ mol\cdot L^{-1}$  : تأكد من أن1

 $\cdot pH = 3.5$  القيمة  $S_{\theta}$  المحلول القيمة العلم -2

أ- تحقق باستعانتك بجدول التقدم أن تفاعل حمض الإيبوبروفين مع الماء محدود.

ب-اكتب كسر التفاعل ،Q لهذا التحول.

$$Q_{r,eq} = rac{x_{max} \cdot { au_f}^2}{V_{g} \cdot (1 - { au_f})}$$
 : ج- بیّن أن عبارة  $Q_r$  عند التوازن تكتب على الشكل

. $x_{max}$  عنه بـ عنه بـ منه النقاء النقدم النهائي للنفاعل و  $x_{max}$  النقدم الأعظمي و يعبر عنه بـ منه النهائي النفاعل و ال

د-استنتج قيمة ثابت التوازن . لا

لاتحقق من صحة المقدار المسجل على الكيس ، نأخذ  $S_b$  على الكيس ، نأخذ  $V_b = 100.0 \ mL$  حجما  $V_b = 100.0 \ mL$  من محلول ماثي  $S_b$  تركيزه لهيدروكسيد الصوديوم  $S_b$  من محلول  $S_b$  و نذيب فيه كليا محتوى المولي  $S_b$   $S_b$  محلول مائي  $S_b$  (نعتبر أن حجم الكيس فنحصل على محلول مائي  $S_b$  (نعتبر أن حجم المحلول  $S_b$  هو  $S_b$ ) . نأخذ  $S_b$  من المحلول  $S_b$  و نضعه في بيشر ونعايره بمحلول حمض كلور الهيدروجين تركيزه المولي  $S_b$  المنحنى المحلول  $S_b$  المنحنى المولي  $S_b$  المنحنى المولي  $S_b$ 

$$H_3O^-(aq) + HO^-(aq) = 2H_2O_-(\ell)$$
 -ارسم بشكل تخطيطي عملية المعابرة.

البياني (الشكل-9)؛ معادلة تفاعل المعابرة هي:

المراجع بالمراجع بالمراجع المراجع المر

2- عرب نقطة التكافؤ، ثم حند إحداثيتي هذه النقطة E.

3- جد كمية المادة لشوارد (aq) HO التي تمت معايرتها.

4-جد كمية المادة الأصلية لشوار د $HO^*(aq)$ ، ثم استنتج تلك التي نفاعلت مع الحمضRCOOHالمتواجد في الكيس. 5- احسب m كتلة حمض الإيبوبروفين المتواجدة في الكيس، ماذا تستنتج!



#### الموضوع الثاني

#### التمرين الأول: (03 نقاط)

نسكب في بيشر حجما  $V_1=50mL$  من محلول يود البوتاسيوم  $K^+(\alpha q)+I^-(\alpha q)$  تركيزه المولي  $V_1=50mL$  تركيزه المولي بيشر حجما  $C_1=3,2\times 10^{-1}mol\cdot L^{-1}$  نفر نضيف له حجما  $V_2=50$  mL من محلول بيروكسوديكبريتات البوتاسيوم  $C_1=3,2\times 10^{-1}mol\cdot L^{-1}$  تركيزه المولي  $C_2=0,20$   $mol\cdot L^{-1}$  تركيزه المولي  $C_2=0,20$   $mol\cdot L^{-1}$  تركيزه المولي  $C_2=0,20$   $mol\cdot L^{-1}$  وأن الثنائيتين المشاركتين في التفاعل هما:  $C_1=0$   $C_2=0$  وأن الثنائيتين المشاركتين في التفاعل هما:  $C_1=0$   $C_2=0$   $C_1=0$  وأن الثنائيتين المشاركتين في التفاعل هما:  $C_1=0$   $C_1=0$   $C_1=0$  وأن الثنائيتين المشاركتين في التفاعل هما:  $C_1=0$   $C_1=0$   $C_1=0$  وأن الثنائيتين المشاركتين في التفاعل هما:  $C_1=0$   $C_1=0$  وأن الثنائيتين المشاركتين في التفاعل هما:  $C_1=0$ 

- 1- اكتب معادلة التفاعل المنمذج للتحول الكيميائي الحادث.
  - 2- أنشئ جدو لا لتقدم التفاعل، ثم عين المتفاعل المحد.
- بيّن أن التركيز المولى لثنائي اليود المتشكل ( $I_2(aq)$  في كل لحظة t يعطى بالعلاقة:

$$V = V_1 + V_2$$
  $= \frac{c_1 V_1}{2 V} - \frac{[I^-(aq)]}{2}$ 

-4 سمحت إحدى طرق متابعة التحول الكيميائي بحساب التركيز المولي لشوارد اليود $I^{-}(aq)$  كل  $I^{-}(aq)$  في المزيج التفاعلي ودوّنت النتائج في الجدول التالي:

| t (min)                                | 0          | 5    | 10  | 15  | 20  | 25  |
|----------------------------------------|------------|------|-----|-----|-----|-----|
| $[I'(aq)](10^{-2} mol \cdot L^{-1})$   | 16,0       | 12,0 | 9,6 | 7,7 | 6,1 | 5,1 |
| $[I_2(aq)](10^{-2}  mol \cdot L^{-1})$ | - <u>-</u> |      |     |     |     |     |

أ-أكمل الجدول، ثم ارسم المنحنى البياني  $f(t) = I_2(aq) = I_2(aq)$  على ورقة مبليمترية ترفق مع ورقة الإجابة.  $t_{1/2}$  عرق نصف التفاعل  $t_{1/2}$  ، ثم عين قيمته.

ج-احسب سرعة النفاعل في اللحظة t = 20min، ثم استنتج سرعة اختفاء شوارد اليود في نفس اللحظة.

#### التمرين الثاني: (03,25 نقطة)

1-النشاط الإشعاعي ظاهرة عفوية لنفاعل نووي.

- أ- البيكرال هي وحدة القياس المستعملة في النشاط الإشعاعي ، عرّف البيكرال.
- $\gamma$ ب تفكك نواة الإيريديوم  $^{192}Ir$  يعطي نواة البلاتين  $^{192}Pt$  المشعة أيضا. يصاحب هذا التفكك إصدار للإشعاع
  - اكتب معادلة تفكك نواة الإيريديوم، موضّحا النمط الإشعاعي الموافق لهذا التحول النووي.
    - فسر إصدار الإشعاع ٧ خلال هذا التحول.
    - .  $A = 3.4 \times 10^{14} \, Bq$  هو  $A = 3.4 \times 10^{14} \, Bq$  هن الإيريديوم هو
      - جد عدد أنوية الإيريديوم N الموجودة في m = lg من العينة.
        - احسب t<sub>1/2</sub> نصف العمر للإيريديوم.

-2 إن الاندماج النووي هو مصدر الطاقة كما في الشمس و النجوم. تحدث تفاعلات متسلسلة في الشمس والذي يمكن نمذجتها بالمعادلة التالية:  $4^{1}_{1}H \rightarrow {}^{4}_{2}He + 2^{0}_{1}e$ 

MeV لهذا النقص الكتلي  $\Delta m$  لهذا النقاعل بوحدة الكتل الذرية u وكذا الطاقة المحررة لتشكل نواة الهيليوم بـ  $c=3\times 10^8 m/s$  : - وحدة الكتل الذرية:  $1u=1.66\times 10^{-27}kg$  ، سرعة الضوء في الفراغ:

 $1eV = 1.6 \times 10^{-19} J$  ،  $N_A = 6.02 \times 10^{23} \, mol^{-1}$  : ثابت أفو غادرو - ثابت

| النواة         | ⁴He    | 1 <b>p</b> | <sup>1</sup> <sub>0</sub> n | 0<br>1e |
|----------------|--------|------------|-----------------------------|---------|
| الكتلة بــ (u) | 4,0015 | 1,0073     | 1,0087                      | 0,0005  |

# التعرين الثالث: (03,5 نقطة)

نحقق الدارة الكهربائية (الشكل-1) المكونة من:

- .  $E=2\ V$  مولد نوتر كهربائي ثابت قوته المحركة الكهربائية -
  - ناقل أومي مقاومته  $\Omega$  R=100 .
    - . r وشیعهٔ ذاتیتها L ومقاومتها r
      - قاطعة -

#### 1- نغلق القاطعة K:

أ- اكتب العلاقة التي تربط التوتر الكهربائي بين طرفي الوشيعة  $u_b(t)$  والتوتر الكهربائي بين طرفي المقاومة E و  $u_R(t)$ 

 $u_{R}(t)$  بدلالة أدم التيار الكهربائي i(t) ، ثم بدلالة  $u_{b}(t)$  عبارة بدلالة التيار الكهربائي

 $u_R(t)$  المعادلة التفاضلية التي يحققها  $u_R(t)$  للدارة.

2- يعطى حل المعادلة التفاضلية بالشكل التالي:

. عيينها عيينها عيينها  $a_{R}(t) = A + Be^{-mt}$ 

Eنسمح تجهيز اله EندAO بمتابعة التطور الزمني لشدة التيار الكهربائي i(t) المار في الدارة فنحصل على المنحنى البيانى (الشكل-2).

لتكن  $I_0$  شدة التيار الكهربائي الأعظمي في النظام الدائم.

أ-جد العبارة الحرفية للشدة 10.

 $t^{(S)}$  . r جد بيانيا قيمة الشدة،  $I_0$  ، ثم استتج مقاومة الوشيعة

ج- اكتب عبارة ثابت الزمن ت للدارة وبين بالتحليل البعدي أن ت متجانس مع الزمن.

L د جد بیانیا قیمة au، ثم استنج قیمة ذانیة الوشیعة L





# التمرين الرابع: (03,5 نقطة)

يتركيز مولي  $C_cH_sCOOH$  البنزويك V=200~mL عجمه  $S_s$  بتركيز مولي البنزويك

 $pH_{I}=3,I$  هذا المحلول فنجده  $c_{I}=1,00 imes 10^{-2}~mol \cdot L^{-1}$ 

أ- اكتب معادلة نفاعل حمض البنزويك مع الماء.

ب- أنشئ جدو لا لتقدم هذا التفاعل.

ج- احسب نسبة التقدم النهائي عن لهذا التفاعل . ماذا تستنتج؟

 $C_6H_5COOH(aq)/C_6H_5COO^*(aq)$  للثنائية  $K_{al}$  المعروضة ثابت الحموضة د- اكتب عبارة ثابت الحموضة

هـ أثبت أن يعطى بالعلاقة:  $\frac{ au_{jj}^2}{1- au_{jj}}$  ، ثم احسب قيمته. -

 $S_i$  على محلول  $S_i$  لحمض البنزويك -2 مرات بالماء فنحصل على محلول  $S_i$  لحمض البنزويك بنركيز مولى  $pH_i = 3.6$  هذا المحلول فنجده  $pH_i = 3.6$ 

 $.c_{I}^{\prime}=$  1,00 × 10 $^{-3}$  mol  $\cdot L^{-1}$  :أثبت أن

auب القيمة الجديدة لنسبة التقدم النهائي  $au_{2f}$  لتفاعل حمض البنزويك مع الماء.

ج- ما هو تأثير تخفيف المحاليل على نسبة التقدم النهائي؟

# التمرين الخامس: ( 03,25 نقطة )

يتصور العلماء في الرحلات المستقبلية نحو كوكب المريخ M وضع محطة لأجهزة الاتصالات مع الأرض على أحد أقمار هذا الكوكب، مثلا على القمر فوبوس (P) (P).

 $G = 6.67 \times 10^{-11} \ N \cdot m^2 \cdot kg^{-2}$ : التجانب الكونى: – ثابت التجانب الكونى:

 $r = 9.38 \times 10^{3} \; km \; : P$  و القمر  $M = 9.38 \times 10^{3} \; km$ 

 $m_p$ : Phobos و كتلة المريخ :  $m_M = 6,44 \times 10^{23} \text{ kg}$ 

 $T_{M}=24h$  37 m in 22 s : حول نفسه M حول المريخ M

نفرض أن هذه الأجسام كروية الشكل وكتلها موزعة بانتظام على حجومها وأن حركة هذا القمر دائرية وتنسب إلى مرجع غائبلي مبدؤه O مركز كوكب المريخ (الشكل-3).



الشكل -3

P مثّل على الشكل - القوة التي يطبقها الكوكب M على القمر فوبوس - المثّل على العمر فوبوس

2- أ- بتطبيق القانون الثاني لنيوتن، بين أن حركة مركز عطالة هذا القمر دائرية منتظمة.

ب- استنتج عبارة سرعة دوران القمر P حول المريخ.

 $m_M$  و G ، G بدلالة المقادير G ، G و المريخ بدلالة المقادير G ، G و

4- اذكر نص القانون الثالث لكبلر و بيّن أن النسبة :

$$T_{p}$$
 غمة استنتج قيمة  $T_{p}^{2} = 9,21 \times 10^{-13} \, s^{2} \cdot m^{-3}$ 

5-أين يجب وضع محطة الانتصالات S لتكون مستقرة بالنسبة للمريخ؟ ما قيمة  $T_s$  دور المحطة في مدارها حينئذ؟

# التمرين التجريبي: (03,5 نقاط)

-1 لغرض حساب زاوية الميل lpha لمستو يميل عن الأفق. قام فوج من التلاميذ بقذف جسم صلب (S) كتأنه m=1~kg في اللحظة m=1~kg



 $u_0$  نحو الأعلى وفق خط الميل الأعظم لمستو أملس (الشكل-4).

باستعمال تجهيز مناسب ، تمكن التلاميذ من دراسة حركة مركز عطالة (S) والحصول على أحد مخططات السرعة v = f(t) التالية :



أ- بتطبيق القانون الثاني لنيوتن، ادرس طبيعة حركة الجسم (S) بعد لحظة قذفه من O. - ب- من بين المخططات الأربعة (1)، (2) ، (3) و (4)، ما هو المخطط الموافق لحركة الجسم (3)? برتر.

ج- احسب قيمة الزاوية α.

t=2s و t=0 المصافة المقطوعة بين اللحظتين: t=2

f في الحقيقة يخضع الجسم أثناء انزلاقه على المستوي المائل إلى قوة احتكاك شدتها ثابئة f

أ- أحص و مثل القوى الخارجية المؤثرة على الجسم (S).

ب-ادرس حركة مركز عطالة (S)، ثم استنتج العبارة الحرفية لتسارع حركته.

f=1.8N ج-احسب قيمة التسارع من أجلf=1.8N

يَعظى: g=9,8 m·S².