CLAIMS

1

10.

1	1.	A method of moving droplets, comprising:
2		providing a liquid phase on a surface;
3		dispensing a droplet into the liquid phase, the liquid phase being immiscible with
4		the droplet; and
5		focusing a beam of light at an edge of the droplet in the liquid phase to produce
6		thermal gradient sufficient to induce the droplet to move.
1.	2.	The method of claim 1, wherein the droplet forms a contact angle approaching 180° with
2		respect to the surface.
1	3.	The method of claim 1, wherein the beam of light contacts the droplet.
1	4.	The method of claim 1, wherein the beam of light passes near without contacting the
2		droplet.
1	5.	The method of claim 1, wherein the immiscible liquid phase includes an organic liquid.
1	6.	The method of claim 5, wherein the organic liquid includes decanol.
1 .	7.	The method of claim 1, wherein the immiscible liquid phase controls evaporation of the
2		droplet.
1	8.	The method of claim 1, wherein the immiscible liquid phase comprises a first immiscible
2		liquid and a second immiscible liquid, the second immiscible liquid having a greater
3		density than that of the first immiscible liquid and of the droplet to produce a fluid-to-
4 ·		fluid interface between the immiscible liquids upon which the droplet sits.
1	9.	The method of claim 8, wherein the second immiscible liquid includes perflourinated
2		silicone oil.

The method of claim 1, wherein the thermal gradient forms within the droplet.

WO 2005/069964 PCT/US2005/002033

13

1 2	11.	The method of claim 1, wherein the thermal gradient forms in the immiscible liquid phase.
1	12.	The method of claim 1, wherein the droplet is aqueous.
1	13.	The method of claim 1, wherein the beam of light includes an infrared wavelength.
1	14.	The method of claim 1, further comprising inserting dye into one of the droplet and the immiscible liquid phase to cause optical absorption by molecules of the dye.
1 2	15.	The method of claim 1, wherein a size of the droplet ranges from approximately 30 μm to 1500 μm in diameter.
1 2 3	16.	The method of claim 1, wherein the droplet is a first droplet, and further comprising depositing a second droplet into the immiscible liquid phase and moving the first droplet into the second droplet to cause the droplets to fuse and contents of the droplets to mix.
1	17.	The method of claim 16, wherein each droplet contains a chemical fragment.
1	18.	The method of claim 16, further comprising detecting a biological molecule in the fused droplet.
1	. 19.	The method of claim 16, further comprising detecting a gene in the fused droplet.
1 2	20.	The method of claim 16, further comprising detecting products of gene expression of a particular gene.
1 2	21.	The method of claim 1, further comprising turning the light beam on and off to perform thermal cycling of the droplet.
1 2 3	22.	An apparatus for moving droplets, comprising: a surface; a droplet on the surface;

a light source producing a focused beam of light;

4

WO 2005/069964 PCT/US2005/002033

5		means for directing the beam of light at the droplet disposed on the surface to heat
6		the droplet and cause a thermal gradient to form across the droplet sufficient to induce the
7		droplet to move across the surface.
1	23.	The apparatus of claim 22, further comprising a liquid phase on the surface, the liquid
2		phase being immiscible with the droplet, and wherein the droplet is surrounded by the
3		immiscible liquid phase.
1.	24.	The apparatus of claim 23, wherein the immiscible liquid phase comprises a first
2		immiscible liquid and a second immiscible liquid, the second immiscible liquid having a
3		greater density than that of the first immiscible liquid and of the droplet to produce a
4		fluid-to-fluid interface between the immiscible liquids upon which the droplet sits.
1	25.	The apparatus of claim 24, wherein the second immiscible liquid includes perflourinated
2		silicone oil.
1	. 26.	The apparatus of claim 23, wherein the immiscible liquid phase includes an organic
2		liquid.
1	27.	The apparatus of claim 26, wherein the organic liquid includes decanol.
. 1	28.	The apparatus of claim 22, where the beam of light includes an infrared wavelength.
1	29.	The apparatus of claim 22, wherein the droplet is aqueous.
1	30.	The apparatus of claim 22, wherein the droplet includes a dye to cause optical absorption
2	•	by the droplet.
1	31.	The apparatus of claim 22, wherein a size of the droplet ranges from approximately 30
2		μm to 1500 μm in diameter.
1	32.	The apparatus of claim 22, further comprising a second droplet on the surface and
2		wherein the directing means causes one of the droplets to move into the other of the
3		droplets, causing the droplets to fuse and contents of the droplets to mix.

- 1 33. The apparatus of claim 32, wherein each droplet contains a chemical fragment.
- 1 34. The apparatus of claim 32, further comprising means for detecting a biological molecule in the fused droplet.
- 1 35. The apparatus of claim 32, further comprising means for detecting a gene in the fused droplet.
- 1 36. The apparatus of claim 32, further comprising means for detecting produces of gene expression of a particular gene.