数值分析 Numerical Analysis

•通常解决数学问题的思维方式

•数值分析的思维方式

后者也正是利用计算机解决科学计算的过程。

众所周知, 电子计算机实质上只会做加减乘除等基本运算, 研究怎样通过计算机所能执行的基本运算, 求得各类数学问题的数值解或近似解就是数值计算的根本课题。由基本运算及运算顺序的规定所构成的完整的解题步骤, 称为算法。数值计算的根本任务就是研究算法。

例 计算多项式

$$0.0625x^4 + 0.425x^3 + 1.215x^2 + 1.912x + 2.1296$$

的值。

▶算法1:按原形计算: 需做十次乘法、四次加法

▶算法2:上述多项式化为

(((0.0625x + 0.425)x + 1.215)x + 1.912)x + 2.1296则需做四次乘法、四次加法。

第一章 误差 /* Error */

- § 1 误差的背景介绍 /* Introduction */
- 1. 来源与分类 /* Source & Classification */
- > 从实际问题中抽象出数学模型
 - —— 模型误差 /* Modeling Error */
- ▶ 通过测量得到模型中参数的值
 - —— 观测误差 /* Measurement Error */
- ➤ 求近似解 —— 方法误差 (截断误差 /* Truncation Error */)
- ➤ 机器字长有限 —— 舍入误差 /* Roundoff Error */

- § 2 误差与有效数字 /* Error and Significant Digits */
- ➤ 绝对误差 /* absolute error */

$$e^* = x^* - x$$
 其中x为精确值, x^* 为x的近似值。

 $|e^*|$ 的上限记为 ε^* ,称为绝对误差限 /* accuracy */, 工程上常记为 $x = x^* \pm \varepsilon^*$,例如: $\int_0^1 e^{-x^2} dx = 0.743 \pm 0.006$

$$\int_0^1 e^{-x^2} dx \approx 0.743$$

► 相对误差 /* relative error */ $e_r^* = \frac{e^*}{x}$ x 的相对误差上限 /* relative accuracy */ 定义为 $\varepsilon_r^* = \frac{\varepsilon^*}{|x^*|}$

▶有效数字 /* significant digits */

(有效数字) 若近似值 x^* 的误差限是某一位的半个单位,该位到 x^* 的第一位非零数字共有 n位,则 e^* 有n位有效数字。

$$\pi = 3.14159265\cdots$$

按四舍五入原则若取四位小数得 $\pi \approx 3.1416$,取五位小数则有 $\pi \approx 3.14159$,它们的绝对误差不超过末位数的半个单位,即

$$|\pi - 3.1416| \le \frac{1}{2} \times 10^{-4}, |\pi - 3.14159| \le \frac{1}{2} \times 10^{-5}$$

用科学计数法,记 $x^* = \pm 0.a_1a_2 \cdots a_n \times 10^m$ (其中 $a_1 \neq 0$)。若 $|x-x^*| \leq 0.5 \times 10^{m-n}$ (即 a_n 的截取按四舍五入规则),则称 x^* 为有n 位有效数字,精确到 10^{m-n} 。

例: $\pi = 3.1415926535897932 \cdots$; $\pi^* = 3.1415$

问: π* 有几位有效数字? 请证明你的结论。

证明: $\pi^* = 0.31415 \times 10^1$, and $\pi^* - \pi < 0.5 \times 10^{-3} = 0.5 \times 10^{1-4}$

∴π*有4位有效数字,精确到小数点后第3位。

>有效数字与相对误差的关系

有效数字 ⇒ 相对误差限

已知 x^* 有 n 位有效数字,则其相对误差限为

$$\varepsilon_{r}^{*} = \left| \frac{\varepsilon^{*}}{x^{*}} \right| = \frac{0.5 \times 10^{m-n}}{0.a_{1}a_{2} \cdots a_{n} \times 10^{m}} = \frac{10^{-n}}{2 \times 0.a_{1} \cdots}$$

$$\leq \frac{1}{2a_{1}} \times 10^{-n+1}$$

相对误差限 ⇒ 有效数字

已知
$$x^*$$
 的相对误差限可写为 $\varepsilon_r^* = \frac{1}{2(a_1+1)} \times 10^{-n+1}$ 则 $|x-x^*| \le \varepsilon_r^* \cdot |x^*| = \frac{10^{-n+1}}{2(a_1+1)} \times 0.a_1a_2 \cdots \times 10^m$ $< \frac{10^{-n+1}}{2(a_1+1)} \cdot (a_1+1) \times 10^{m-1} = 0.5 \times 10^{m-n}$ 可见 x^* 至少有 n 位有效数字。

例:为使 π^* 的相对误差小于0.001%,至少应取几位有效数字?

 \mathbf{M} : 假设 π^* 取到 n 位有效数字,则其相对误差上限为

$$\varepsilon_r^* \le \frac{1}{2a_1} \times 10^{-n+1}$$

要保证其相对误差小于0.001%,只要保证其上限满足

$$\varepsilon_r * \le \frac{1}{2a_1} \times 10^{-n+1} < 0.001\%$$

已知 $a_1 = 3$,则从以上不等式可解得 $n > 6 - \log 6$,即 $n \ge 6$,应取 $\pi^* = 3.14159$ 。

§ 3 几点注意事项 /* Remarks */

1. 避免相近二数相减

例: $a_1 = 0.12345$, $a_2 = 0.12346$, 各有5位有效数字。 而 $a_2 - a_1 = 0.00001$, 只剩下1位有效数字。

几种经验性避免方法:

$$\sqrt{x+\varepsilon}-\sqrt{x}=\frac{\varepsilon}{\sqrt{x+\varepsilon}+\sqrt{x}};\quad \ln(x+\varepsilon)-\ln x=\ln(1+\frac{\varepsilon}{x});$$

当
$$|x| << 1$$
 时: $1 - \cos x = 2\sin^2 \frac{x}{2}$;
$$e^x - 1 = x \left(1 + \frac{1}{2}x + \frac{1}{6}x^2 + \dots \right)$$

- 2. 避免小分母: 分母小会造成浮点溢出 /* over flow */
- 3. 避免大数吃小数

例: 用单精度计算 $x^2 - (10^9 + 1)x + 10^9 = 0$ 的根。 精确解为 $x_1 = 10^9$, $x_2 = 1$

算法1: 利用求根公式 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

在计算机内, 10^9 存为 0.1×10^{10} ,1存为 0.1×10^1 。做加法时,两加数的指数先向大指数对齐,再将浮点部分相加。

即1 的指数部分须变为 10^{10} ,则: $1 = 0.00000000001 \times 10^{10}$, 取单精度时就成为:

 $10^9 + 1 = 0.10000000 \times 10^{10} + 0.000000000 \times 10^{10} = 0.100000000 \times 10^{10}$

$$\Rightarrow x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} = 10^9, \quad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} = 0$$
大数吃小数

再利用
$$x_1 \cdot x_2 = \frac{c}{a} \implies x_2 = \frac{c}{a \cdot x_1} = \frac{10^9}{10^9} = 1$$

注: 求和时从小到大相加, 可使和的误差减小。

例:按从小到大、以及从大到小的顺序分别计算

$$1 + 2 + 3 + ... + 40 + 10^9$$

4. 先化简再计算,减少步骤,避免误差积累。

alg orithm 1:
$$x^{16} = \underbrace{x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x}_{16}$$

alg orithm 2: $x^{16} = (((x^2)^2)^2)^2$

一般来说,计算机处理下列运算的速度为 $(+,-)>(\times,+)>(\exp)$ 5. 选用稳定的算法。

