TD 8 : compléments sur l'intégration

Compléments : Intégration sur un segment 1

Exercice 1 (La formule de Taylor pour e¹)

- **1.** Calculer les intégrales : $I_0 = \int_0^1 e^{-t} dt$, $I_1 = \int_0^1 t e^{-t} dt$, et $I_2 = \int_0^1 \frac{t^2}{2} e^{-t} dt$.
- **2.** Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{t^n}{n!} e^{-t} dt$.
 - a) Montrer que pour $n \in \mathbb{N}$, on a : $I_{n+1} = \frac{e^{-1}}{n!} + I_n$.
 - **b)** En déduire que pour $n \in \mathbb{N}$, on a : $I_{n+1} = e^{-1} \sum_{k=0}^{n} \frac{1}{k!} + I_0$.
 - c) En déduire que pour $n \in \mathbb{N}$, on a : $e = \sum_{k=0}^{n} \frac{1}{k!} + \int_{0}^{1} \frac{t^{n+1}}{(n+1)!} e^{1-t} dt$.
- 3. Étude de la convergence pour $n \to 0$
 - a) Montrer l'encadrement $0 \le \int_0^1 \frac{t^{n+1}}{(n+1)!} e^{1-t} dt \le e^1 \int_0^1 \frac{t^{n+1}}{(n+1)!} dt$.
 - **b)** En déduire que $e = \sum_{k=0}^{+\infty} \frac{1}{k!}$

Exercice 2 (Avec des sommes de Riemann)

- **1.** Rappeler les hypothèses pour avoir la convergence $\frac{1}{n}\sum_{k=1}^n f\left(a+\frac{k}{n}(b-a)\right) \to \int_a^b f(t)\,\mathrm{d}t.$
- **2.** En déduire la limite des suites : $a_n = \frac{1}{n} \sum_{k=1}^n 1$, $b_n = \frac{1}{n} \sum_{k=1}^n \frac{k}{n}$, $c_n = \frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n}\right)^2$. Avec quelles formules confronter ces limites?
- **3.** a) Calculer la limite $\frac{1}{n} \sum_{k=1}^{n} \ln \left(1 + \frac{k}{n} \right)$.
- **b)** En déduire un équivalent de la suite : $u_n = \ln\left(\frac{(2n)!}{n!}\right)$. **4.** Pour $n \ge 1$, on pose : $H_n = \sum_{k=1}^n \frac{1}{k}$. Calculer $\lim_{n \to +\infty} (H_{2n} H_n)$, $\lim_{n \to +\infty} (H_{4n} - H_n).$
- **5.** a) Pour a > 0, calcular $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{a}$. $(pourquoi\ a > 0\ ?)$
 - **b)** En déduire un équivalent pour $n \to +\infty$, de la suite des sommes partielles $\sum_{i=1}^{n} k^{a}$.

Exercice 3 (Pratique du changement de variables)

- 1. a) Rappeler une primitive de $t \mapsto \frac{t}{1+t^2}$.
 - **b)** Par le changement de variables $t = \ln(x)$, calculer l'intégrale $I = \int_1^{e^2} \frac{\ln(x) dx}{x(1 + \ln^2(x))}$.
- **2.** Par le changement de variables $t = \ln(x)$, calculer $J = \int_1^3 \frac{1 + \ln(x) + \ln^5(x)}{x} dx$.
- **3.** Par le changement de variables $t=x^2$, calculer l'intégrale $K=\frac{1}{\sqrt{2\pi}}\int_0^1 x\ \mathrm{e}^{-\frac{x^2}{2}}\,\mathrm{d}x$.

2 Convergence et calcul par passage à la limite

Exercice 4 (Intégrations par parties)

Justifier l'existence et calculer les intégrales suivantes :

$$I_{1} = \int_{1}^{\infty} \frac{\ln(t)}{t^{3}} dt, \quad I_{2} = \int_{1}^{\infty} \frac{\ln(t)}{t^{2}} dt, \quad I_{3} = \int_{1}^{\infty} \frac{\ln^{2}(t)}{t^{3}} dt, \quad I_{4} = \int_{0}^{\infty} t^{3} e^{-\frac{t^{2}}{2}} dt.$$

$$I_{5} = \int_{0}^{1} \ln(t) dt, \quad I_{6} = \int_{0}^{1} \frac{\ln(t)}{\sqrt{t}} dt, \quad I_{7} = \int_{0}^{1} \frac{\ln^{2}(t)}{\sqrt{t}} dt, \quad I_{8} = \int_{-\infty}^{1} (t-1) e^{t} dt.$$

Que donne le changement de variables $x = \ln(t)$ dans celles « à logarithme »?

Exercice 5 ($Int\'{e}grales$ $Eul\'{e}riennes$ (I))

On fixe a > 0; on pose $\forall n \in \mathbb{N}, f_n : x \mapsto x^n e^{-ax}$, et $\forall x \geqslant 0, I_n(x) = \int_0^x f_n(t) dt$.

- **1.** Pour $x \ge 0$, calculer $I_0(x)$. En déduire convergence et valeur de $J_0 = \int_0^\infty f_0(x) \, \mathrm{d}x$.
- **2.** Soit $n \ge 1$. Étudier les variations de f_n sur \mathbb{R}_+ . Calculer $\lim_{x \to \infty} f_n(x)$.
- **3.** Soit $n \in \mathbb{N}$. Montrer que, pour $t \to +\infty$, on a : $f_n(t) = o\left(\frac{1}{t^2}\right)$. En déduire que l'intégrale $J_n = \lim_{x \to +\infty} I_n(x)$ converge .
- **4.** Pour $n \in \mathbb{N}$, montrer que *(intég. par parties)*: $\frac{1}{(n+1)!}I_{n+1}(x) = \frac{1}{a}\frac{x^{n+1}}{(n+1)!}e^{-ax} + \frac{1}{a}\frac{1}{n!}I_n(x).$
- 5. Déduire que $\left(\frac{J_n}{n!}\right)$ est une suite géométrique à préciser. Conclure sur la valeur de J_n .

Exercice 6 (Intégrales Eulériennes (II))

- a) Montrer que quand $x \to 0+$, on a : $\ln(x) = o\left(\frac{1}{\sqrt{x}}\right)$.
 - **b)** En déduire que $\int_0^1 \ln(x) dx$ converge.
 - c) Montrer que $\int_0^1 \ln(x) dx = -1$.
- **2.** Montrer de même (convergence puis valeur) que $\int_0^1 \ln^2(x) dx = 2$.
- **3.** Par le changement de variables $x = e^{-t}$, montrer que $\int_0^1 \ln(x) dx = -\int_0^{+\infty} e^{-t} dt$ $\int_0^1 \ln^2(x) \, \mathrm{d}x = \int_0^{+\infty} t \, \mathrm{e}^{-t} \, \mathrm{d}t.$
- **4.** De même, on pourra montrer : $\forall n \in \mathbb{N}$, $\int_0^1 \ln^n(x) dx \stackrel{\text{récu.}}{=} \frac{(-1)^n}{n!}$ $= (-1)^n \int_0^{+\infty} t^n e^{-t} dt.$

Exercice 7 (Comparaison séries-intégrales)

- **1.** Soit $f: [0; +\infty[\to \mathbb{R}]]$ une fonction continue **décroissante**.
 - a) Soit $n \in \mathbb{N}^*$. Donner un encadrement de f(t) pour $t \in [n; n+1]$.
 - **b)** En déduire un encadrement de $\int_{-\infty}^{n+1} f(t) dt$.
 - c) En déduire pour $n \ge 2$, l'encadrement $\int_n^{n+1} f(t) dt \le f(n) \le \int_{n-1}^n f(t) dt$
 - **d)** En déduire que l'on a $\forall n \in \mathbb{N}$: $\int_{1}^{N+1} f(t) dt \leqslant \sum_{n=1}^{N} f(n) \leqslant f(1) + \int_{1}^{N} f(t) dt$.
- **2.** Application pour $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ t \mapsto \frac{1}{t} \end{cases}$ **a)** Montrer que l'on a : $\int_{1}^{N+1} \frac{\mathrm{d}t}{t} \leqslant \sum_{n=1}^{N} \frac{1}{n} \leqslant 1 + \int_{1}^{N} \frac{\mathrm{d}t}{t}.$
 - b) En déduire la divergence de la série harmonique $\sum_{i=1}^{n} \frac{1}{n}$.
- **3.** Application pour $f: \left\{ \mathbb{R} \to \mathbb{R} \text{ , avec } \alpha > 0 \text{, pour } \alpha \neq 1. \right.$
 - a) Montrer que l'on a : $\int_{1}^{N+1} \frac{\mathrm{d}t}{t^{\alpha}} \leqslant \sum_{n=1}^{N} \frac{1}{n^{\alpha}} \leqslant 1 + \underbrace{\int_{1}^{N} \frac{\mathrm{d}t}{t^{\alpha}}}_{=\frac{1}{\alpha-1} \frac{1}{N^{\alpha-1}} + \mathrm{cst.}}$
 - b) En déduire l'énoncé du critère de convergence pour la série de Riemann : $\sum_{i=1}^{\infty} \frac{1}{n^{\alpha}}$.

Exercice 8 (Un équivalent de ln(k))

- **1.** Montrer que pour $n \ge 2$, on a : $\ln(n!) = \sum_{k=1}^{n} \ln(k) = \sum_{k=2}^{n} \ln(k)$.
- 2. Par une comparaison série-intégrale (Attention au sens de variations!), montrer pour une certaine fonction F à expliciter :

$$\forall n \geqslant 2, \quad \leqslant F(n) - F(1) \ln(n!) \leqslant F(n+1) - F(2).$$

3. En déduire pour $n \to \infty$, l'équivalent $\ln(n!) \sim n \ln(n)$.

3 Autour des probas

Exercice 9 (Densité)

- **1.** Soit $\theta > 0$ et $k \ge 0$ un entier. Montrer que la fonction $f_{\theta}: \mathbb{R} \to \mathbb{R}$ définit une densité: $f_{\theta}: x \mapsto \begin{cases} \frac{k+1}{\theta^{k+1}} x^k & \text{si } 0 \leqslant x \leqslant \theta \\ 0 & \text{sinon.} \end{cases}$
- 2. Soit X une variable aléatoire admettant f_{θ} pour densité.
 - a) Calculer la fonction de répartition de X. (Quel est le rapport avec $\mathcal{U}[0;\theta]$?)
 - b) Calculer l'espérance $\mathbb{E}[X]$.

Exercice 10 (*Une densité*)

- 1. Montrer que $\int_0^1 \ln^2(x) dx$ converge et vaut 2.
- **2.** Montrer que $\int_{-\infty}^{0} e^{2x} dx$ converge et vaut $\frac{1}{2}$.
- 3. Montrer que la fonction $f: x \mapsto \begin{cases} \frac{2}{5} e^{2x} & \text{pour } x \leq 0 \\ \frac{2}{5} \ln^2(x) & \text{pour } 0 < x \leq 1 \\ 0 & \text{sinon.} \end{cases}$ définit une densité sur \mathbb{R} .

Exercice 11 (Gaussiennes)

- a) Montrer pour $x \ge 1$, l'encadrement : $0 \le \exp\left(-\frac{x^2}{2}\right) \le \exp\left(-x\right)$.
 - **b)** En déduire la convergence de l'intégrale : $\int_{1}^{+\infty} e^{-\frac{x^2}{2}} dx$.
- **2.** Montrer la convergence de l'intégrale $\int_{-\infty}^{+\infty} e^{-\frac{x^2}{2}} dx$. Rappeler sa valeur (c'est du cours).
- **3.** Soient $\mu \in \mathbb{R}$, et $\sigma > 0$. Par changement de variables affine, en déduire $\int_{-\infty}^{+\infty} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$.
- **4.** Quelle est la valeur de $\int_0^{+\infty} e^{-\frac{x^2}{2}} dx$?