강의	정보처리 필기	강사	조대호
차시 명	[CA-08강] 주기억장치와 보조기억장치	차시	8차시

학습내용

☞ 기억장치의 종류 중 주기억장치와 보조기억장치

학습목표

☞ 주 기억장치의 종류와 용도를 이해 할 수 있다 보조 기억장치의 종류와 용도를 파악 할 수 있다

학습내용

1. 컴퓨터의 구성

2. 기억장치의 분류

3. 기억장치 계층 구조

4. 기억장치의 특성을 결정하는 요소

접근시간(Access time)

=탐색시간(Seek time) + 대기시간(Latency Time) + 전송시간(Transmission Time)

접근시간이 빠른 순서

- Associative(연관) memory > Cache memory > main memory > magnetic disk

사이클 시간(Cycle time) Cycle Time >= Access Time 기억장치에 접근을 위하여 판독신호를 내고 나서 다음 판독신호를 낼 수 있을 때까지의 시간

Bandwidth(대역폭, 전송률)

기억장치의 자료 처리 속도를 나타내는 단위로, 기억 장치를 연속적으로 액세스 할 때 초당 처리할 수 있는 비트 수를 말함 계속적으로 기억장치에서 데이터를 읽거나 기억시킬 때 1초 동안에 사용되는 비트수 메모리 워드의 길이가 작을 수록 대역폭이 좋음

5. 기억장치의 구분

파괴성 메모리(Destructive Memory)

- 비 파괴성 메모리

전원 단절시 내용 소멸 여부

- 휘발성 메모리(Volatile Memory)
- 비 휘발성 메모리

접근 방식

- 순차 접근 저장 매체(SASD, Sequential Access Storage Device)
- 직접 접근 저장 매체(DASD, Direct Access Storage Device)

재충전 여부

- 정적 메모리(SRAM)
- 동적 메모리(DRAM)

기억보호(Memory Protection)

메모리의 각 블록에 허락할 수 있는 접근 형태를 지정하는 보호 비트를 둠으로써 이루어 짐

6. 주기억 장치

주기억장치의 개요:

- CPU가 직접 접근하여 처리할 수 있는 기억장치, 현재 수행되는 프로그램과 데이터를 저장

주기억장치의 성능을 좌우하는 요소

- 기억용량, 기억 사이클 타임, 기억엑세스 폭

주기억장치의 밴드 폭(Bandwidth)

하드웨어의 특성상 주기억장치가 제공할 수 있는 정보 전달능력의 한계

ROM(Read Only Memory)

비휘발성 메모리

마이크로프로그램을 저장하는 제어 메모리는 주로 ROM 메모리를 사용

실제 주기억장치 보다, 기본 입출력 시스템(BIOS)와 자가 진단 프로그램(POST) 같이 변경 가능성이 없는 시스템 소 프트웨어를 기억시키는데 사용

Mask Rom

PROM

EPROM

EEPROM

7. 주기억장치의 분류

RAM(Random Access Memory)

- 실제 주기억장치로 사용이 되며 자유롭게 읽고 쓸 수 있는 기억장치

구 분	DRAM (Dynamic RAM, 동적 램)	SRAM (Static RAM, 정적램)		
구성 소자	콘덴서	플립플롭		
특징	 각 비트(Bit)를 전하(charge)의 형태로 저장하며, 주기적으로 재충전이 필요함 미소의 콘덴서에 전하를 충전하는 형태의 원리를 이용하는 메모리 	•전원이 공급되는 동안에는 기억 내용이 유지됨		
전력 소모	적음	마음		
접근 속도	느림	빠름		
직접도	높음	낮음		
가격	저가	고가		
용도	일반적인 주기억장치	캐시 메모리		

8. 반도체 기억소자 구성

RAM/ROM 의 용량 계산법

기억장치 용량 = 2워드의 수 × 워드의 크기

워드의 수 = 입력 번지선의 수 = 주소선의 수 = MAR = PC 워드의 크기 = 출력 데이터선의 수 = Data Bus 의 비트 수 = MBR = DR = IR

예>

기억용량이 1Mbyte 일 때 필요한 주소선의 수는?

- 1Mbyte = 2의 20승 이므로 20개의 주소선이 필요

입력번지 선이 8개, 출력 데이터 선이 8개인 ROM의 기억용량은?

- 2의 8승(입력 번지 선)과 8bit(출력 데이터 선)을 곱하면 256*8이므로 256byte가 됨

기억장치의 총 용량이 4096워드이고, 워드 길이가 16bit일 때 프로그램 카운터(PC), 주소 레지스터(AR), 데이터 레지스터(DR)의 크기?

4,096×16 = 2¹²×16이고, 워드의 수=주소선의 수=(M)AR=PC 이므로 PC=12. AR=12.

워드 길이(크기)가 16bit이고, 워드 크기=DR 이므로 DR=16

9. 기억용량 계산 예제

워드의 수 = 입력 번지선의 수 = 주소선의 수 = MAR = PC 워드의 크기 = 출력 데이터선의 수 = Data Bus 의 비트 수 = MBR = DR = IR

예>

메인 메모리의 용량이 1,024K*24Bit 일 때, MAR과 MBR의 길이는 각각 몇 비트?

- MBR=24, MAR=20 1,024K = $2^{10} \times 2^{10}$ (::K = 2^{10} = 1.024) = 2^{20}

컴퓨터의 메모리 용량이 16K*32bit라 하면 MAR(Memory Address Register) 와 MBR(Memory Buffer Register)은 각각 몇 비트?

- MAR=14, MBR=32 $16K = 16 \times 2^{10} = 2^4 \times 2^{10} = 2^{14}$ \therefore MAR = 14

가로 세로 각각 32개로 구성된 core plain을 16장 겹쳐 쌓은 기억장치의 기억 용량은 몇 K워드?

- 코어는 1개의 워드를 구성하는 비트수 만큼 Core Plain을 겹쳐 쌓음 즉. 16장이므로 16bit가 1워드임. 가로 세로 각 32개이므로 32*32=1024, 즉 1K임

마이크로 프로그램의 크기가 2048 * 64비트, 마이크로 인스트럭션의 수가 128개일 때 Nano programming 을 위한 컨트롤 스토어(control store)의 크기는?

- 나노 프로그램을 위한 제어 메모리의 크기는 마이크로 프로그램의 크기 * 명령어의 수 를 나타낼 수 있는 비트수 이므로 $128 = 2^7 = 2,048 \times 7$ 비트의 제어 메모리가 필요

10. 보조기억장치

자기테이프(Magnetic Tape)

	블록			블록			
 IBG	논리 레코드1	논리 레코드2	IBG	논리 레코드1	논리 레코드2	IBG	

순차처리(SASD)만 할 수 있는 대용량 저장 매체 블록 팩터(Block Factor)=블록 크기 / (논리)레코드의 개수 하나의 블록 내에 통합되어 있는 논리 레코드의 개수 예> 자기 테이프 Record 크기가 80자로서 블록의 크기가 2400자일 경우 블록 팩터? 2400/80=30

스테이징(Staging)

자기테이프 등과 같은 대용량의 보조 기억장치의 내용을 직접 접근이 가능한 영역으로이동하여 컴퓨터시스템에서 자 료를 접근할 수 있도록 하는 기능

가상기억체제에서 보조기억장치에 저장되어 있는 프로그램을 주기억장치로 옮기는 것처럼, 느린 장치에서 빠른 장치 로 옮겨가는 것

자기 드럼(Magnetic Drum)

- 자기 디스크에 비해 속도가 빠름
- 순차, 비순차(직접) 처리가 모두 가능한 DASD(Direct Access Storage Device)방식
- 기억용량=드럼 표면의 트랙당 셀 수 * 트랙 수
- 예> 자기드럼 기억장치의 드럼 표면이 트랙당 5000개의 셀로 된 30개의 트랙으로 구분되어 있다면 몇 비트의 정보를 기억? 5,000*30=150,000비트

자기 디스크(Magnetic Disk)

- 용량이크고 접근속도가 빠름
- 순차, 비순차(직접) 처리가 모두 가능한 DASD(Direct Access Storage Device)방식
- 가상 메모리로 사용할 수 있음
- 자기 디스크 구성요소 읽고 쓰기 헤드, 디스크, 액세스 암(실린더 : 물리적 구성요소가 아니라 논리적인 의미의 용어) Access Time=Seek Time + Rotational Delay Time(Latency time)+Transmission Time
- 디스크의 용량=면수*트랙수*섹터수*섹터당 바이트 수
- * 등각속도(Constant Angular Velocity)

디스크 저장 매체에서 디스크 회전 속도를 일정하게 하고 디스크의 회전각에 따라 데이터를 저장하는 방식 디스크 외/내각이 회전 속도 차이로 데이터의 밀도가 다라 저장공간의 낭비가 생김

요점정리

- 1. 주 기억장치의 종류와 용도를 정리합니다.
- 2. 보조 기억장치의 종류와 용도를 정리합니다.

다음차시예고

수고하셨습니다. 다음 9주차에서는 "[CA-9강] 특수기억장치와 입출력장치"에 대해서 학습하도록 하겠습니다.