Introduction to Algorithms, Fall, 2023 Programming Homework 6

Problem B Shortest Paths with Negative Weights

Time limit: 1 second

Memory limit: 2048 megabytes

Problem Description

You are given a directed graph with n vertices and m directed edges, where the vertices are numbered from 1 to n. Each edge in the graph is associated with a weight w_i .

Your objective is to compute the total sum of the shortest path lengths between all pairs of vertices such that the second vertex is reachable from the first one. To clarify, let dist(u, v) represent the shortest distance between vertices labeled u and v if v is reachable from u, and dist(u, v) = 0 otherwise. Your program needs to output the sum of these distances computed over all vertex pairs: $\sum_{i=1}^{n} \sum_{j=1}^{n} dist(u, v)$. Your program also has to detect negative-weight cycles if there is any.

Input Format

The first line of the input contains two integers n and m. Each of the following m lines contains three integers u_i , v_i and w_i , where the i-th line denotes that there is a directed edge from vertex u_i to v_i in the graph.

Output Format

Output the sum $\sum_{i=1}^{n} \sum_{j=1}^{n} dist(u, v)$ in one line. If there is at least one negative-weight cycle uin the graph, print Negative-weight cycle found.

Technical Specification

- $1 \le n \le 3000$
- $0 \le m \le 3000$
- $1 \le u_i, v_i \le n$ and $u_i \ne v_i$ for $i = 1, 2, \dots, m$
- $-10^8 \le w_i \le 10^8 \text{ for } i = 1, 2, \dots, m$

Scoring

- 1. (40 points) $w_i > 0$ for i = 1, 2, ..., m.
- 2. (40 points) $n \le 300$.
- 3. (20 points) No additional constraints.

Introduction to Algorithms, Fall, 2023 Programming Homework 6

Sample Output 1

18

Sample Input 2

```
3 3
1 2 -1
2 3 -2
3 1 -3
```

Sample Output 2

Negative-weight cycle found

Sample Input 3

3000 0

Sample Output 3

0

Introduction to Algorithms, Fall, 2023 Programming Homework 6

Sample Input 4

5	6														
1	3	-4	4												
3	5	-6	6												
2	4	-1	1												
4	5	-2	2												
4	5	-3	3												
1	2	-2	2												

Sample Output 4

-33