Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

KATEDRA INFORMATYKI

PRACA MAGISTERSKA

MARTA RYŁKO, ANNA SKIBA

RÓWNOLEGŁE ALGORYTMY OPTYMALIZACJI TORU PRZEJAZDU W NARCIARSTWIE ALPEJSKIM

PROMOTOR: dr inż. Roman Dębski

Kraków 2013

OŚWIADCZENIE AUTORA PRACY
OŚWIADCZAM, ŚWIADOMY ODPOWIEDZIALNOŚCI KARNEJ ZA POŚWIADCZENIE NIEPRAWDY, ŻE NINIEJSZĄ PRACĘ DYPLOMOWĄ WYKONAŁEM OSOBIŚCIE I SAMODZIELNIE, I NIE KORZYSTAŁEM ZE ŹRÓDEŁ INNYCH NIŻ WYMIENIONE W PRACY.
PODPIS

AGH University of Science and Technology in Krakow

Faculty of Electrical Engineering, Automatics, Computer Science and Electronics

DEPARTMENT OF COMPUTER SCIENCE

MASTER OF SCIENCE THESIS

Marta Ryłko, Anna Skiba

PARALLEL ALGORITHMS FOR SKI-LINE OPTIMISATION IN ALPINE SKI RACING

SUPERVISOR:

Roman Dębski Ph.D

Krakow 2013

Spis treści

1. Wprowadzenie			(
	1.1.	Cele pracy	(
	1.2.	Zawartość pracy	(
2.	Pierwszy dokument		7
	2.1.	Struktura dokumentu	7
	2.2.	Kompilacja	8
	2.3.	Narzędzia	8
	2.4.	Przygotowanie dokumentu	Ç

1. Wprowadzenie

LATEX jest systemem składu umożliwiającym tworzenie dowolnego typu dokumentów (w szczególności naukowych i technicznych) o wysokiej jakości typograficznej ([1], [2]). Wysoka jakość składu jest niezależna od rozmiaru dokumentu – zaczynając od krótkich listów do bardzo grubych książek. LATEX automatyzuje wiele prac związanych ze składaniem dokumentów np.: referencje, cytowania, generowanie spisów (treśli, rysunków, symboli itp.) itd.

LATEX jest zestawem instrukcji umożliwiających autorom skład i wydruk ich prac na najwyższym poziomie typograficznym. Do formatowania dokumentu LATEX stosuje TEXa (wymiawamy 'tech' – greckie litery τ , ϵ , χ). Korzystając z systemu składu LATEX mamy za zadanie przygotować jedynie tekst źródłowy, cały ciężar składania, formatowania dokumentu przejmuje na siebie system.

1.1. Cele pracy

Celem poniższej pracy jest zapoznanie studentów z systemem L^AT_EX w zakresie umożliwiającym im samodzielne, profesjonalne złożenie pracy dyplomowej w systemie L^AT_EX.

1.2. Zawartość pracy

W rodziale 2 przedstawiono podstawowe informacje dotyczące struktury dokumentów w LATEXu. Alvis [3] jest językiem

2. Pierwszy dokument

W rozdziale tym przedstawiono podstawowe informacje dotyczące struktury prostych plików L^AT_EXa. Omówiono również metody kompilacji plików z zastosowaniem programów *latex* oraz *pdflatex*.

2.1. Struktura dokumentu

Plik LATEXowy jest plikiem tekstowym, który oprócz tekstu zawiera polecenia formatujące ten tekst (analogicznie do języka HTML). Plik składa się z dwóch części:

- Preambuły określającej klasę dokumentu oraz zawierającej m.in. polecenia dołączającej dodatkowe pakiety;
- 2. Części głównej zawierającej zasadniczą treść dokumentu.

```
\documentclass[a4paper,12pt]{article} % preambuła
\usepackage[polish]{babel}
\usepackage[latin2]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{times}

\begin{document} % część główna
\section{Sztuczne życie}

% treść
\end{document}
```

Nie ma żadnych przeciwskazań do tworzenia dokumentów w LATEXu w języku polskim. Plik źródłowy jest zwykłym plikiem tekstowym i do jego przygotowania można użyć dowolnego edytora tekstów, a polskie znaki wprowadzać używając prawego klawisza Alt. Jeżeli po kompilacji dokumentu polskie znaki nie są wyświetlane poprawnie, to na 95% źle określono sposób kodowania znaków (należy zmienić opcje wykorzystywanych pakietów).

2.2. Kompilacja 8

2.2. Kompilacja

Załóżmy, że przygotowany przez nas dokument zapisany jest w pliku test.tex. Kolejno wykonane poniższe polecenia (pod warunkiem, że w pierwszym przypadku nie wykryto błędów i kompilacja zakończyła się sukcesem) pozwalają uzyskać nasz dokument w formacie pdf:

```
latex test.tex
dvips test.dvi —o test.ps
ps2pdf test.ps
lub za pomocą PDFLATEX:
pdflatex test.tex
```

Przy pierwszej kompilacji po zmiane tekstu, dodaniu nowych etykiet itp., L^AT_EX tworzy sobie spis rozdziałów, obrazków, tabel itp., a dopiero przy następnej kompilacji korzysta z tych informacji.

W pierwszym przypadku rysunki powinny być przygotowane w formacie eps, a w drugim w formacie pdf. Ponadto, jeżeli używamy polecenia pdflatex test.tex można wstawiać grafikę bitową (np. w formacie jpg).

2.3. Narzędzia

Do przygotowania pliku źródłowego może zostać wykorzystany dowolny edytor tekstowy. Niektóre edytory, np. Emacs, mają wbudowane moduły ułatwiające składanie tekstów w LaTeXu (kolorowanie składni, skrypty kompilacji, itp.).

Jednym z bardziej znanych środowisk do składania dokumentów LaTeXa jest *Kile*. Aplikacja dostępna jest dla środowiska KDE począwszy od wersji 2. Zawiera edytor z podświetlaną składnią, zestawy poleceń LaTeXa, zestawy symboli matematycznych, kreatory tabel, macierzy, skrypty kompilujące i konwertujące podpięte są do poleceń w menu aplikacji (i pasków narzędziowych), dostępne jest sprawdzanie pisowni, edytor obsługuje projekty (tzn. dokumenty składające się z wielu plików), umożliwia przygotowanie i zarządzanie bibliografią, itp.

Na stronie http://kile.sourceforge.net/screenshots.php zamieszczono kilkanaście zrzutów ekranu środowiska *Kile*, które warto przejrzeć, by wstępnie zapoznać się z możliwościami programu.

Bardzo dobrym środowiskiem jest również edytor gEdit z wtyczką obsługującą LATEXa. Jest to standardowy edytor środowiska Gnome. Po instalacji wtyczki obsługującej LATEXa, edytor nie ustępuje funkcjonalnościom środowisku Kile, a jest zdecydowanie szybszy w działaniu. Lista dostępnych wtyczek dla tego edytora znajduje się pod adresem http://live.gnome.org/Gedit/Plugins.Inne polecane wtyczki to:

- Edit shortcuts definiowanie własnych klawiszy skrótu;
- Line Tools dodatkowe operacje na liniach tekstu;
- Multi-edit możliwość jednoczesnej edycji w wielu miejscach tekstu;
- Zoom zmiana wielkości czcionki edytora z użyciem rolki myszy;
- Split View możliwość podziału okna edytora na 2 części.

2.4. Przygotowanie dokumentu

Plik źródłowy LATEXa jest zwykłym plikiem tekstowym. Przygotowując plik źródłowy warto wiedzieć o kilku szczegółach:

- Poszczególne słowa oddzielamy spacjami, przy czym ilość spacji nie ma znaczenia. Po kompilacji wielokrotne spacje i tak będą wyglądały jak pojedyncza spacja. Aby uzyskać twardą spację, zamiast znaku spacji należy użyć znaku tyldy.
- Znakiem końca akapitu jest pusta linia (ilość pusty linii nie ma znaczenia), a nie znaki przejścia do nowej
- LATEX sam formatuje tekst. Nie starajmy się go poprawiać, chyba, że naprawdę wiemy co robimy.

Bibliografia

- [1] A. DILLER, LaTeX wiersz po wierszu, Wydawnictwo Helion, Gliwice, 2000.
- [2] L. LAMPORT, LaTeX system przygotowywania dokumentów, Wydawnictwo Ariel, Krakow, 1992.
- [3] M. SZPYRKA, *On Line Alvis Manual*, AGH University of Science and Technology, 2011, http://fm.ia.agh.edu.pl/alvis:manual.