VIP-to-Raw Bridge IP Core

VIP-to-Raw Bridge IP Core 可以将 VIP 视频格式转换成普通的 Avalon-ST 数据包格式,并解析出视频控制包中的信息. 您可以直接导出这些信息供其他模块使用,或者通过一个可选的 Avalon-MM 接口来读取这些信息.

VIP-to-Raw Bridge Parameter Settings

Table 1-1: vip_raw_bridge Parameter Settings

Parameter	Value	Description
Data Bits	4-32, Default = 8	每个颜色分量的数据宽度.
Data Planes	1-3, Default = 1	颜色分量的数量.
Runtime Control	On or Off	增加一个实时控制端口.
Control Mode	• Avalon-MM • Export	选择通过 Avalon-MM 端口来 通讯还是简单的导出数据总线.

VIP-to-Raw Bridge Signals

Table 1-2: Common Signals

Signal	Direction	Description
clk	Input	系统的主时钟.
rst_n	Input	系统会在该复位信号为低时异步复位.
din_data	Input	din 端口 Avalon-ST 的 data 总线, 视频信号通过该总线传输进 IP 核.
din_valid	Input	din 端口 Avalon-ST 的 valid 信号, 该信号指示 din_data 上的数据是否有效.
din_ready	Output	din 端口 Avalon-ST 的 ready 信号, 当 IP 核准备好接收数据时该信号置位.
din_startofpacket	Input	din 端口 Avalon-ST 的 startofpacket 信号, 该信号标志了一个 Avalon-ST 包的开始.
din_endofpacket	Input	din 端口 Avalon-ST 的 endofpacket 信号, 该信号标志了一个 Avalon-ST 包的结束.

Signal	Direction	Description
dout_data	Output	dout 端口 Avalon-ST 的 data 总线, IP 核通过该总线输出视频信号.
dout_ready	Input	dout 端口 Avalon-ST 的 ready 信号, 当下游的器件准备好接收数据时置位该信号.
dout_valid	Output	dout 端口 Avalon-ST 的 valid 信号, 该信号指示此时 data 总线上的数据是否有效.
dout_startofpacket	Output	dout 端口 Avalon-ST 的 startofpacket 信号,该信号标志了一个 Avalon-ST 包的开始.
dout_endofpacket	Output	dout 端口 Avalon-ST 的 endofpacket 信号,该信号标志了一个 Avalon-ST 包的结束.

Table 1-3: Control Signals

这些信号只会在 vip_raw_bridge 参数编辑器里将 runtime control 选项打开时出现.

Signal	Direction	Description
av_clk	Input	av_control 从端口的主时钟.
av_rst_n	Input	av_control 从端口的复位信号, 低电平有效.
av_address	Input	av_control 从 Avalon-MM 的 address 总线, 该地址指向某一寄存器, 单位为字(word)偏移.
av_read	Input	av_control 从 Avalon-MM 的 read 信号, 当您置位该信号时, av_control 从端口会将 读数据发送到 readdata 总线上.
av_readdata	Output	av_control 从 Avalon-MM 的 readdata 总线, av_control 从端口通过该总线输出读数据.
av_readdatavalid	Output	av_control 从 Avalon-MM 的 readdatavalid 信号,该信号用来表明此时 readdata 总线上的数据是否有效.
av_waitrequest	Output	av_control 从 Avalon-MM 的 waitrequest 信号, 当该信号置位时, av_control 从端口会忽略一切读写请求.

Signal	Direction	Description
av_write	Input	av_control 从 Avalon-MM 的 write 信号, 当您置位该信号时, av_control 从端口会从 writedata 上接收新数据.
av_writedata	Input	av_control 从 Avalon-MM 的 writedata 信号, av_control 从端口通过该总线接收写数据.
im_width	Input	视频宽度信息.
im_height	Input	视频高度信息.
im_interlaced	Input	视频交错信息.

VIP-to-Raw Bridge Control Registers

Table 1-4: vip_raw_bridge Control Register Map

Address	Register	Description
0	Control	Bit 0 为运行寄存器. 其他位都没有使用. 设置该位为 0 会使得 vip_raw_bridge 停止工作.
1~2	unused	Reserved
3	Video Width	视频宽度信息.
4	Video Height	视频高度信息.
5	Video Interlaced	视频交错信息.

Table 1-5: Video Interlaced Data

视频交错信息取值与含义的对应关系如该表所示.

Hex	Bin	Description
4'h2	4'b0010	Progressive
4'hA	4'b1010	Interlaced F0
4'hE	4'b1110	Interlaced F1

Document Revision History

Data	Version	Changes
July 2016	1.1	修复了一个 Bug, 该 Bug 会导致输出接口的读延迟 不符合标准.
October 2015	1.0	第一次发布