Effect of Economic Factors on Forecasting US Auto Sales

Samy Palaniappan Chicago, II Jan 24, 2020

Intro - The Problem

How does a company:

- 1. Estimate the budget for the number of cars it is going to make for a coming year?
- 2. Decide what type of cars does it want to make, to sell more?

Intro - Background

Macroeconomic Factors: How many cars do people buy?

Population, Unemployment rate, GDP, Consumer Confidence, WTI, gold price

Microeconomic Factors: What kind of cars people buy?

Gasoline price (conventional vs Electric / Hybrid), Family size distribution (Small car vs Minivan), Target market, etc.

Methodology - Importance of Data Source

Methodology - Features Evaluated

- 1. Population
- 2. Unemployment Rate
- 3. Auto Loan Interest Rate
- 4. Consumer Confidence Index
- 5. GDP
- 6. DJIA
- 7. Crude Oil
- 8. Houses sold
- 9. Gold price index

Results - EDA

Data differencing

- 1. Population
- 2. Unemployment Rate
- 3. Auto Loan Interest Rate
- Consumer Confidence Index
- 5. GDP
- 6. DJIA
- 7. Crude Oil
- 8. Houses sold
- 9. Gold price index

Data was differenced to remove the effect of time on the data.

So now each row in my dataset will represent an independent datapoint.

Results - Linear Model on Cars Sold

Monthly Sales for Passenger Cars in the USA

Results - ARIMA Model with no features.

Monthly Sales for Passenger Cars in the USA in Thousands

Linear Optimized Model Metrics

Feature	Coefficient (B)
Population	1.64
Unemployment Rate	-1.31
Interest Rate	-0.66
Consumer Confidence	0.03

Model	R-squared	RMSE			
Lin_reg	0.5954	1.0286			
Ridge	0.6053	1.0156			
Lasso	0.6062	1.0126			

Results - Top Selling Cars 2014, 2019

Data Scraped from Goodcarbadcar.com and cars.com

2010	2018
Honda Accord	Ford F-series
Toyota Camry	Dodge RAM Pickup
Honda Civic	Chevy Silverado
Toyota Corolla	Toyoda RAV4
Ford Fusion	Honda CR-V

On a bad year: Consumers are drawn to the inexpensive cars that gave the best mileage.

On a good year: The data tells us that, consumers are drawn towards the cheapest pickups and SUVs + do NOT care about Mileage

Linear Optimized Model Metrics for Car Price

Feature	Coefficient (B)			
Intercept	0			
Weight x Resale Value	11.9274			
Fuel Efficiency	1.26			
Horsepower	3.26			

Model	R-squared	RMSE
Lin_reg	0.95760	2.7132
Ridge	0.9570	2.7137
Lasso	0.9570	2.7137

Conclusion - Major Features

Total Monthly Car Sales

- 1. Unemployment
- 2. Interest Rate
- 3. Consumer Confidence

Price of Car

- 1. Weight x Resale Value
- 2. Fuel Efficiency
- 3. Horsepower

Conclusion - Lessons Learned

- 1. Linear model is able to predict the features in a time-series data. However, accuracy has suffered.
- 2. <u>Model says</u>: On a good year, the data tells us that, consumers are drawn towards the **cheaper** pickups and SUVs. However, they were **not** necessarily concerned about the **gas mileage**.
 - 3. <u>Model says</u>: On a bad year, total car sales suffered. Customers preferred **higher gas mileage** cars.

Thanks!

Questions?

Appendix

Heat Map, to check for effect and multicollinearity

Cars_Sold_e6	1	0.26	-0.72	-0.29	0.58	0.33	-0.36	-0.04	0.45	0.75		0.8
Population_e6	0.26	1	-0.19	-0.86	-0.22	1	0.57	0.78	0.94	0.42		0.8
Unemp_rate	-0.72	-0.19	1	0.022	-0.51	-0.27	0.27	-0.07	-0.43	-0.5		0.4
Interest_rate	-0.29	-0.86	0.022	1	0.11	-0.85	-0.41	-0.57	-0.78	-0.47		0.4
Cons_conf	0.58	-0.22	-0.51	0.11	1	-0.15	-0.6	-0.55	0.00017	0.43		0.0
GDP	0.33	1	-0.27	-0.85	-0.15	1	0.53	0.77	0.97	0.46		0.0
Gold_Price_Index	-0.36	0.57	0.27	-0.41	-0.6	0.53	1	0.84	0.4	-0.33		-0.4
WTI	-0.04	0.78	-0.07	-0.57	-0.55	0.77	0.84	1	0.69	0.0095		-0.4
DJIA	0.45	0.94	-0.43	-0.78	0.00017	0.97	0.4	0.69	1	0.5		-0.8
Houses_Sold_e3	0.75	0.42	-0.5	-0.47	0.43	0.46	-0.33	0.0095	0.5	1		-0.8
	Cars_Sold_e6	Population_e6	Unemp_rate	Interest_rate	Cons_conf	GDP	3old_Price_Index	WI	DJIA	Houses_Sold_e3		

Appendix

