计算物理 2018 秋季第三次作业

*

2018年12月23日

1 Householder 与 Givens 在 QR 分解中的比较

1.1 **问题** (a)

下面对计算过程进行分析。Householder 变换, 步骤如下:

- 对于 n 阶实矩阵 $A = \{a_1, a_2, ..., a_n\} := A^{(0)}$,对每一个列向量构造 Householder 变换 $P^{(0)}$,使得 $P^{(0)}a_1 = (||a_1||, 0, 0, ..., 0)^T$ 。
- 接下来把这个 $P^{(0)}$ 作用到 $A^{(0)}$ 上,得到 $A^{(1)} = P^{(0)}A^{(0)}$, $A^{(1)}$ 的第一列除了第一行 其他均为 0;
- 如此迭代下去, 每次 $A^{(i)} = P^{(i-1)}A^{(i-1)}$ 得到的是 $A^{(i)}$,第 i 列从第 i+1 行到第 n 行元素均为 0。
- 最终得到 $A^{(n-1)}$,将会是一个上三角矩阵 R。将上述 n-1 个 Householder 矩阵相乘得 到矩阵 Q。

要考虑计算次数的最高阶贡献。因此,以下讨论对低阶项进行简化。

计算每次计算 Householder 矩阵需要先计算一个 $w^{(k)}$ 的欧式模,需要首先计算一个 $x^{(n-k)}$ 的模,需要进行 n-k 次乘法和 n-k-1 次加法以及 1 次开方,总共计算量为 2(n-k)。由 x 到 w 的计算是一个 O(1) 的计算量,故这里予以忽略(不会对最高阶系数结果造成影响)。

接下来每次计算都要对每个列向量乘 Householder 矩阵, 但实际上只有每个列向量的后 n-k 个元素会发生变化, 所以其实只有后 n-k 个列向量需要参与计算。每次计算有一个列向量的点乘, n-k 次乘法和 n-k-1 次加法; 逐元素的数乘 n-k 个, 减法 n-k 个。总共计算量为 4(n-k)-1 次。

故得到 R 矩阵的计算量为

$$\sum_{k=0}^{n-1} (2(n-k)) + (n-k)(4(n-k)-1) = n(n+1)(\frac{2}{3}(2n+1) + \frac{1}{2}) = O(\frac{4}{3}n^3)$$
 (1)

得到 Q 矩阵的计算量可以类似的计算。 $Q^T = P^{(n-2)}P^{(n-1)}\cdots P^{(0)}$,构造 $P^{(0)}$ 需要 $2n^2$ 次,之后每次变换都需要对所有 n 列进行变换。

故得到 R 矩阵的计算量为

$$2^{n} + \sum_{k=1}^{n-1} n(4(n-k) - 1) = O(2n^{3})$$
(2)

Householder 总的计算量为 $O(\frac{10}{3}n^3)$ 。

Givens 旋转。步骤如下:

- 选择 Givens 转动矩阵 $G_{2,1} = G(1,2,\theta)$,使得 $a_{1,1}sin\theta + a_{2,1}cos\theta = 0$,这样作用后 $G_{2,1}A$ 的第二行第一列元素为 0。同理构造 $G_{3,1}, G_{4,1}, \cdots, G_{n,1}$,依次作用可以得到 $A^{(1)}$ 的第 1 列第 1+1 到第 n 行都为 0.
- 接下来构造 $G_{3,2}, G_{4,2}, ..., G_{n,2}$ 依次作用到 $A^{(1)}$ 得到 $A^{(2)}$,使得其第 2 列第 2+1 到第 n 行都为 0。注意到,对于 $G_{i,j}$,第 1 列的第 i,j 行都是 0,作用后依然都是 0(按照 $G_{i,j}$ 的定义可以容易得到)。所以第 1 列第 1+1 到第 n 行都是 0.
- 以此类推,可以得到 $R = Q^T A = (Gn, n 1G_{n,n-2}, ..., G_{2,1})A$ 。

每次 Givens 矩阵作用上的时候,都只需要考虑第 j 到 n 列,因为第 1 到 j-1 列元素都为 0,不会发生改变。故每次作用计算次数为 $(3 \times 2(n-j+1)$,计算第 j 列的时候要进行 (n-j) 次计算。故计算 R 需要的计算次数为

$$\sum_{j=1}^{n} (n-j) \times (3 \times 2(n-j+1)) = O(2n^3)$$
(3)

计算 Q 需要的次数与上相同。每次作用第 j 列都只需要对第 j 到第 n 列进行计算。故也是 $O(2n^3)$ 。

故 Givens 总共需要运算次数 $O(4n^3)$ 。

1.2 **问题** (b)

代码见附件。

1.3 问题 (c)

代码见附件。

1.4 问题 (d)

注意到这里两种 QR 方法作比较,显然是 Householder 需要的时间更短。注意到这里两种方法需要的时间之比与上述理论分析不一样,主要原因有:1. 计算机执行乘除法和加法

图 1: 两种 QR 算法需要的时间的对比

的时间是不一样的,上述理论分析将二者视作时间消耗相同的运算; 2. 上述理论分析没有体现最高阶项以外的项; 3. 具体实现的过程中不同的代码风格经过编译器(或解释器)优化的程度不一样。而显然,一些现有的科学计算库(例如 Python 的 NumPy)中有效率更高的实现,这里效率的提升可能涉及根据计算机缓存、以及并行算法等优化,与本题分析无关。

2 幂次法求矩阵最大模的本征值和本征矢

2.1 **问题** (a)

去 $x(t) = xe^{-i\omega t}$ 带入经典运动方程 (原题中式 (1)) 得到

$$\omega^2 x_i + (x_{i-1} + x_{i+1} - 2x_i) = 0, i = 1, 2, ..., N$$
(4)

如果取 $(-A)_{ij} = \delta_{i-1,j} + \delta_{i+1,j} - 2\delta_{ij}$ 可以得到

$$\omega^2 = -Ax \tag{5}$$

也就是本征方程的形式。本征值 $\lambda = \omega^2$

2.2 **问题**(b)

下面给出证明,假设 A 的本征值 $\lambda_1 > \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_N \geq 0$,分别对应归一化本征 矢量 v_1, v_2, \ldots, v_N 。那么取任意一个单位矢量 $q^{(0)}$ 用 v_i 展开得到

$$q^{(0)} = \sum_{i=1}^{N} a_i^{(0)} v_i \tag{6}$$

图 2: 幂次法求得的最大本征值收敛情况

那么对迭代的式子进行展开得到

$$q^{(k)} = \sum_{i=1}^{N} a_i^{(k)} v_i = \frac{1}{C'} \sum_{i=1}^{N} a_i^{(k-1)} \lambda_i v_i = \frac{1}{C} \sum_{i=1}^{N} a_i^{(0)} \lambda_i^k v_i$$
 (7)

其中 C 和 C' 都是归一化常数,也就是说 $C = \sqrt{\sum_{i=1}^{N} (a_i^{(0)} \lambda_i^k)^2}$ 。下面考虑极限,当 $a_i^{(0)} \neq 0$ 而且 $\lambda_1 > \lambda_i, i = 2, 3, \dots, N$ 严格成立时,有

$$\lim_{k \to \infty} q^{(k)} = \lim_{k \to \infty} \frac{\lambda_1^k}{C} \lim_{k \to \infty} \sum_{i=1}^N a_i^{(k)} v_i \left(\frac{\lambda_i}{\lambda_1}\right)^k = \lim_{k \to \infty} \frac{\lambda_1^k}{C} a_1^{(0)} v_1 = v_1 \tag{8}$$

最后一个等式由 C 的表达式可以容易得到。

而
$$v = \lim_{k \to \infty} v^{(k)} = \lim_{k \to \infty} \left[q^{(k)} \right]^{\dagger} A q^{(k)} = \left[v_1 \right]^{\dagger} A v_1 = \lambda_1$$
。证毕。

使用以上方法,设置每次迭代的 q 的分量与上一次的差值的绝对值不超过 1e-7,得到的结果为本征矢量为 [-0.31622777 0.31622777 -0.31622777 0.3162277

3 关联函数的拟合与数据分析

本题的主要解题过程在代码中体现,请参见附件。

3.1 **问题** (a)

依照题意进行计算,可以得到相对误差的值随着时间的增加不断增大。最大可以达到 大约 3%。

图 3: 相对误差随着时间变化的曲线

图 4: 有效质量函数 $m_{eff}(t)$

3.2 **问题**(b)

在这里得到的图如下。可见每次误差相差不太大。为了显示清楚,图中 Error Bar 的标度与纵轴不一样,实际上的长度应该是图中所画长度的 1/10。

可以看到,在初期由于高激发态的存在,计算得到的结果是不可靠的。这里选择 $t_0 = 25$, t>25 的部分在图中没有体现。

3.3 **问题** (c)

根据问题 (b) 得到的图,选择 t=5,6,...,25 作为起始时间进行扫描,考察每次得到的 $\chi^2/d.o.f$,找到最小时对应的 t_{min},t_{max} ,在这里找到的是 $(t_{min},t_{max})=(12,15)$ 。在这里估计 m 的误差使用的是 1σ 对应的 m 值。**拟合得到的** m **为** 0.243167,p-value **为** 0.990235。 m 对应 1σ 的置信区间为 $(0.241538,0.244753),\Delta m=0.003215$ 。

图 5: 有效质量误差

图 6: 有效质量函数 $m_{eff}(t)$

3.4 问题 (d)

按照如上步骤重新进行一次。选择 t= 20,21,...,30 作为起始时间进行扫描,考察每次得到的 $\chi^2/d.o.f$,找到最小时对应的 t_{min}, t_{max} ,在这里找到的是 $(t_{min}, t_{max}) = (21, 24)$ 。在这里估计 m 的误差使用的是 1σ 对应的 m 值。**拟合得到的** m **为** 0.240804, p-value **为** 0.960539。 m 对应 1σ 的置信区间为 (0.236651,0.245111), $\Delta m = 0.008460$ 。

3.5 **问题** (e)

首先进行了 1000 次 bootstrap 采样。然后计算 $\rho_{3,4}$ 和 $\rho_{3,5}$ 。通过计算发现 $\rho_{3,5}$ 比 $\rho_{3,4}$ 要小一些,说明时间相差越长,关联程度减弱。

图 7: 有效质量误差

$\rho_{3,5}$	0.957785
$\delta \rho_{3,5}$	0.003362
$\rho_{3,4}$	0.979404
$\delta \rho_{3,4}$	0.003362

表 1: $\rho_{t,t'}$