Московский физико-технический институт

Лабораторная работа

Исследование разрешающей способности микроскопа методом Аббе

выполнили студенты 653 группы ФФКЭ Карпова Татьяна Давыдов Валентин

1 Цель работы:

Определение дифракционного предела разрешения объектива микроскопа методом Аббе.

2 В работе используются:

- лазер
- кассета с набором сеток разного периода
- линзы
- щель с микрометрическим винтом
- оптический стол с набором рейтеров и крепёжных винтов
- экран
- линейка

3 Теоретические положения

Разрешающей способностью оптического прибора называют минимальное расстояние l_{min} между двумя точками в пространстве предметов, которое прибор может разрешить. При визуальном наблюдении изображения в качестве критерия разрешения применяют так называемый критерий Рэлея.

Для иммерсионного микроскопа (объект находится в иммерсионной среде — жидкости с показателем преломления n) разрешающая способность объектива при некогерентном освещении

$$l_{min} = \frac{0.61\lambda}{n\sin A},\tag{1}$$

где A — апертурный угол объектива микроскопа.

Рассмотрим теперь когерентно освещённый объект, наблюдаемый в микроскоп. Схема образования изображения в объективе микроскопа представлена на рис. 1.

Рис. 1: Образование изображения в объективе микроскопа. P_1 — плоскость предмета, F — задняя фокальная плоскость объектива, P_2 — плоскость, сопряжённая с предметной плоскостью. В плоскости P_2 световые пучки сильно перекрываются

минимальное разрешаемое объективом расстояние определяется условием

$$l_{min} = \frac{\lambda}{\sin A} \approx \frac{\lambda}{D/2f},\tag{2}$$

где D- диаметр диафрагмы. При этом диафрагма, расположенная симметрично, пропускает нулевой и 1 дифракционные максимумы.

Рис. 2: Схема экспериментальной установки — модель проекционного микроскопа

4 Экспериментальная установка

Схема модели проекционного микроскопа приведена на рис. 2. Предметом служат сетки, расположенные в кассете. Смена сеток осуществляется поворотом внешнего кольца кассеты.

5 Ход работы

5.1 Определение периода решёток по их пространственному спектру

1. Для определения периода решёток измерим расстояния между максимумами разных порядков на экране. Расстояние от сетки до экрана D=141.5 см. Период решётки рассчитывается по формуле

$$d = \frac{\lambda D}{d_{mes}} \tag{3}$$

Результаты измерений занесём в таблицу 1.

Таблица 1: Периоды решёток, метод пространственного спектра

Номер решётки	1	2	3	4	5
d_{mes} , cm	3.625	2.5	1.257	0.625	0.455
<i>d</i> , мкм	20.676	30.111	59.887	120.445	165.446

5.2 Определение периода решёток по изображению, увеличенному с помощью модели микроскопа

1. Соберём модель проекционного микроскопа (рис. 2), центрируем систему. Увеличение полученной системы вычисляется по формуле

$$\gamma = \frac{a_1}{b_1 + b_2 + a_2},\tag{4}$$

(расстояния a_1, a_2, b_1, b_2 см на рис. 2)

2. На экране измерим расстояния между максимумами разных порядков. Результаты измерений занесём в таблицу 2.

Таблица 2: Периоды решёток, по изображению с микроскопа

Номер решётки	2	3	4	5
d_{mes} , mm	0.293	0.609	1.156	1.64
d, MKM	34.07	70.814	135.465	191.698

5.3 Определение периодов решёток по оценке разрешающей способности микроскопа

1. Поместим щелевую диафрагму с микрометрическим винтом в фокальную плоскость F линзы Π 1. Определите для каждой решётки минимальный размер диафрагмы D, при котором на экране ещё видно изображение сетки (при меньших размерах щели изображение выглядит как одномерная решётка). Результаты измерений занесём в таблицу 3.

Таблица 3: Периоды решёток, по измерению диафрагмы

Номер решётки	3	4	5
D, mm	2.78	1.12	0.87
d, MKM	55.496	137.75	177.333

Рис. 3: Зависимость d = f(1/D)

2. Для проверки теории Аббе построим график зависимости d=f(1/D), взяв периоды сеток, определённые по спектру. Определим угловой коэффициент, он равен 130. По формуле $d\geq \frac{\lambda}{D/2f}$, тогда при наших условиях теоретический угловой коэффициент равен 154. Теория Аббе верна в пределах используемой точности.

5.4 Пространственная фильтрация и мультиплицирование

Поворачивая щель относительно оси, добьёмся того, чтобы щель занимала наклонное положение под 45° . Тогда будет осуществляться пространственная фильтрация, то есть выделение из спектра максимумов $m_x = m_y$ (диагональных максимумов). Тогда на экране возникнет изображение решётки, которой нет на самом деле. Полосы располагаются под углом 45° , что видно на рисунке 4. Период новой решетки равен 0.852 мм, что в $\sqrt{2}$ раз больше периода изображения решётки, определённого стандартным методом (по увеличенному изображению решётки). Это объясняется тем фактом, что расстояние между выделенными максимумами, то есть между вторичными источниками волн, составляет $d\sqrt{2}$. Также наблюдали мультиплицирование, то есть рассечение фурье-образа щели сеткой. Такой эффект создаётся, если в нашей установке поменять местами сетку и щель.

6 Вывод

В ходе работы были измерены периоды различных дифракционных решёток тремя различными способами: по пространственному спектру, изображению с микроскопа и по оценке разрешающей способности

Рис. 4: Пространственная фильтрация

микроскопа. Результаты измерений практически совпадают. Сравнение результатов, полученных разными методами, приведено в таблице 4.

Также в работе наблюдалось и объяснялось явление пространственной фильтрации и мультиплицирования. Фактически проводилась работа с фурье-образами щели и сетки, то есть выделение и рассечение образа.

Таблица 4: Периоды решёток, различные методы

Номер решётки	1	2	3	4	5
d, мкм - простр. спектр	20.676	30.111	59.887	120.445	165.446
d, мкм - микроскоп	-	34.07	70.814	135.465	191.698
d, мкм - диафрагма	-	-	55.496	137.75	177.333