

Workshop on the Integration of Information Retrieval and Databases (WIRD'04)

An XML-IR-DB Sandwich

Is it better with an Algebra in Between?

Vojkan Mihajlovic

Djoerd Hiemstra

Henk Ernst Blok

Peter M. G. Apers

- # Motivation
- ***XML** and Relational Databases
- #Region Algebra & Operator Properties
- #Region Algebra & Relevance Ranking
- # Properties of Ranking Operators
- # Conclusions and Future Work

- # Motivation
- ***XML** and Relational Databases
- #Region Algebra & Operator Properties
- #Region Algebra & Relevance Ranking
- # Properties of Ranking Operators
- # Conclusions and Future Work

XML-IR and Relational DBs

- # XPath and XQuery:
 - Navigation in XML structure
- # Relational Databases:
 - **■** Rules for relational table manipulation
- # Missing:
 - Sound specification of IR tasks
 - Rules for score propagation and correlation
 - Connection between the two

Our Approach

- # Three level DBMS:
 - Conceptual level:
 - XPath+IR (NEXI)
 - Logical level:
 - = extended region algebra
 - Physical level:
 - relational model

Intermediate level

- # Algebraic approach
 - **XML** navigation is supported
 - Ranking is a part of the algebra
- # Opportunities
 - Query rewriting and optimization
 - ... also for IR-like queries

- # Motivation
- ***XML** and Relational Databases
- #Region Algebra & Operator Properties
- #Region Algebra & Relevance Ranking
- # Properties of Ranking Operators
- # Conclusions and Future Work

XML example

```
<article lang="en" date="10/02/04">
  <title>Region algebra</title>
  <bdy>
      <sec>
            Structured documents ...
             Text search ...
      </sec>
  </bdy>
</article>
```


XML example - Index (step 1)

```
<article<sup>0</sup> lang<sup>1</sup>="en"<sup>2</sup> date<sup>3</sup>="10/02/04"<sup>4</sup>>
   <title>5Region6 algebra7</title>8
   <bdy>9
         <sec>10
                  11Structured documents 13 ...54
                  55Text<sup>56</sup> search<sup>57</sup> ...
         </sec>576
                                                Start tag
   </bdy>9876
                                                End tag
                                                Attribute name
                                                Attribute value
</article>10034
                                                Term
```


Indexed XML example (step 2)

	Start	End	Name	Туре
	0	10034	article	node
	1	2	lang	attr_name
	2	2	en	attr_value
ď	3	4	date	attr_name
4	4	4	10/02/04	attr_value
	5	8	title	node
1	6	7	-	text
	6	6	region	term
	7	7	algebra term	
	9	9876	bdy	node
2.0	10	576	sec	node
	11	54	р	node
	12	53	-	text
	12	12	structured	term
, 23 , 23 , 3	13	13	documents	Term
	•••	•••	•••	

The Storage of XML

Node table N

start	$_{ m end}$	name	type
0	10034	article	node
5	8	title	node
6	8	-	text
9	9876	bdy	node
10	576	sec	node
11	54	P	node
12	53	-	text

Wor	Word table W					
start	name					
6	region					
7	algebra					
12	structured					
13	documents					

Attribute table A

start	owner	name	type			
1	0	lang	name			
2	0	en	value			
3	0	date	name			
4	0	10/02/04	value			

Fragmentations

- # Horizontal
 - * XML node type
- Vertical
 - name and type of XML elements
- Path-based

#Not unified

WIRD'04 11

Queries & Relational Algebra

Bottleneck

- Descendant/ancestor step
- Join and projection combination

$$R = \pi_{start_2, end_2, name_2}(R_2 \triangleright \triangleleft_{start_2 > start_1, end_2 < end_1} R_1)$$

$$R = \pi_{start_2, end_2, name_2}(R_2 \triangleright \triangleleft_{start_2 < start_1, end_2 > end_1} R_1)$$

= "Containment join" ($\bowtie \supset$ and $\bowtie \sqsubset$)

WIRD'04 12

Example query

//article//bdy[about(.//sec, structured) and about(.//sec, documents)]

Intermezzo: Logical Algebra

Relational algebra:

- New operators for IR-like queries
- Relational query plan highly dependant on relational storage
- Not XML (structure) aware

Logical Algebra

- Right level of abstraction for IR operators
- Data independence
- Query rewriting and optimization on logical level
- = IR understanding and IR operator optimization

- # Motivation
- ***XML** and Relational Databases
- #Region Algebra & Operator Properties
- #Region Algebra & Relevance Ranking
- # Properties of Ranking Operators
- # Conclusions and Future Work

Region Algebra

- # Domain R={r|r=(s,e,n,t)}
- # Operators
 - \blacksquare select $\sigma_{n=name}(R)$
 - containing __
 - **=** contained by □
 - intersection □
 - union \square

Example logical expression

ARTICLE =
$$\sigma_{n=article}(C)$$

Logical query plan

//article//bdy[about(., region) and about(., algebra)] [about(.//sec, XML] //p[about(., information) and about(., retrieval)]

```
R1 = BDY ☐ ARTICLE
```

$$R2 = ((R1 \square REGION) \sqcap (R1 \square ALGEBRA)) \square (SEC \square XML)$$

$$R3 = P \square R2$$

$$R4 = (R3 \square INFORMATION) \sqcap (R3 \square RETRIEVAL)$$

ARTICLE =
$$\sigma_{n=article}(C)$$

Algebra Operator Properties (1)

```
# Regular
```

- Identity $\{(\sqcap, C), (\sqcup, \emptyset)\}$
- **■** Commutativity { □, ⊔ }
- Associativity { □ , ⊔ }
- **■** Distributivity {(□ , ⊔), (□ , ⊔), (□ , □)}

WIRD'04 19

Algebra Operator Properties (2)

Special cases

■
$$op1 = { \exists, \sqsubseteq}; op2 = { \exists, \sqsubseteq}$$

$$(R1 \ op1 \ R2) \ op2 \ R3 = (R1 \ op2 \ R3) \ op1 \ R2$$

$$(R1 \ op1 \ R2) \ op2 \ R3 = (R1 \ op1 \ R2) \ (R1 \ op2 \ R3)$$

2

$$op1 = { \sqcap, \sqcup }; op2 = { \exists, \sqsubseteq }$$

$$(R1 \ op1 \ R2) \ op2 \ R3 = (R1 \ op2 \ R3) \ op1 \ (R2 \ op2 \ R3)$$

3

Properties in action (1)

(BDY ☐ ((SEC ☐ DOCUMENTS) ☐ STRUCTURED))

☐ ARTICLE

WIRD'04 21

Properties in action (2)

```
((ARTICLE ☐ REGION) ☐ (ARTICLE ☐ ALGEBRA))
     ☐ (SEC ☐ XML)
((ARTICLE ☐ REGION) ☐ (SEC ☐ XML)) ☐
     ((ARTICLE ☐ ALGEBRA)☐ (SEC ☐ XML))
((ARTICLE ☐ (SEC ☐ XML)) ☐ REGION) ☐
     ((ARTICLE ☐ (SEC ☐ XML)) ☐ ALGEBRA)
((ARTICLE ☐ (SEC ☐ XML)) ☐ REGION) ☐ ALGEBRA
```

WIRD'04 22

- # Motivation
- ***XML** and Relational Databases
- #Region Algebra & Operator Properties
- #Region Algebra & Relevance Ranking
- # Properties of Ranking Operators
- # Conclusions and Future Work

Scoring in region algebra

- # Domain R={r|r=(s,e,n,t,p)}
- # New operators
 - ranked containing □p
 - ranked contained by □p
 - = ranked intersection \sqcap_{P}
 - = ranked union \square_p

Scoring operators

$$\# R1 \square_p R2$$
 $p = p_1 \bullet f_{\supset}(r_1, R_2)$

$$p = p_1 \bullet f_{\subset}(r_1, R_2)$$

$$\sharp \mathbf{R1} \sqcap_{\mathbf{p}} \mathbf{R2} \qquad p = p_1 \otimes p_2$$

$$p = p_1 \otimes p_2$$

$$\sharp \mathbf{R1} \sqcup_{\mathbf{p}} \mathbf{R2} \qquad p = p_1 \oplus p_2$$

$$p = p_1 \oplus p_2$$

Scoring functions and operators

#Scoring functions:

- *structural relation
- score values

#Abstract operators:

- "and" expression
- "or" expression

$$f_{\supset}(r,R)$$

$$f_{\subset}(r,R)$$

$$\otimes = \{\bullet, \min, \dots\}$$

$$\oplus = \{+\}$$
 max,...}

Complex scoring functions

$$\begin{split} f_{\subset}(r,R) &= \sum_{\overline{r} \in R \subset R'} (g_{\subset}(\overline{r},r) \bullet \overline{p}) \\ f_{\supset}(r,R) &= \sum_{\overline{r} \in R \subset R'} (g_{\supset}(\overline{r},r) \bullet \overline{p}) \\ R' &= \{r\} \\ &\qquad \qquad g_{\supset}(\overline{r},r) = \frac{size(\overline{r})}{size(r)} \\ &\qquad \qquad \text{Possible imple-mentation of g} \\ g_{\subset}(\overline{r},r) &= \frac{size(\overline{r})}{\sum_{\overline{z}} size(r)} \end{split}$$

- # Motivation
- ***XML** and Relational Databases
- #Region Algebra & Operator Properties
- #Region Algebra & Relevance Ranking
- # Properties of Ranking Operators
- # Conclusions and Future Work

Properties of scoring operators

$$(R \sqcap_{p} C) = (C \sqcap_{p} R)$$
 $p * 1 = 1 * p = p$
 $(R \sqcup_{p} 0) = (0 \sqcup_{p} R)$ $p + 0 = 0 + p = p$
 $\forall r \in R$

R1
$$\square_{p}$$
(R2 \square_{p} R3) = (R1 \square_{p} R2) \square_{p} (R1 \square_{p} R3)
(R1 op1 R2) op2 R3 = (R1 op2 R3) op1 R2
op1 = { \square_{p} , \square_{p} } op2 = { \square_{p} , \square_{p} }
 $p = (p_{1} \bullet f(r_{1}, R_{2})) \bullet f(r_{1}, R_{3}) = (p_{1} \bullet f(r_{1}, R_{3})) \bullet f(r_{1}, R_{2})$
only if $f(r, R) = f(s, n, t, R)$

... conditional properties(1) ...

(R1 op1 R2) op2 R3 = (R1 op1 R2)
$$\bigcap_{p}$$
 (R1 op2 R3)
op1 = { \bigcap_{p} , \bigcap_{p} op2 = { \bigcap_{p} , \bigcap_{p} }

$$p = \underbrace{(1) \sum_{\overline{r}} (g(\overline{r}, r_1)) \bullet p_2) \bullet \sum_{\overline{r}} (g(\overline{r}, r_1)) \bullet p_3}_{\overline{r}} (g(\overline{r}, r_1)) \bullet p_3$$

$$= \underbrace{(1) \sum_{\overline{r}} (g(\overline{r}, r_1)) \bullet p_2)}_{\overline{r}} (g(\overline{r}, r_1)) \bullet p_3)$$

4

Conditional properties - example

```
((P□pSEC)□pINFORMATION)□p
    ((P p SEC) p RETRIEVAL)
((P _ pINFORMATION) | p(P _ pRETRIEVAL))
     □ P SEC
((P□pINFORMATION)□pRETRIEVAL)
     □ P SEC
```


Conditional properties (2)

$$op1 = \{ \Box_p, \Box_p \}$$

 $(R1 \square_p R2) \text{ op1 } R3 = (R1 \text{ op1 } R2) \square_p (R2 \text{ op1 } R3)$

$$(p_1 \bullet p_2) \bullet f(r_{1,2}, R_3) = (p_1 \bullet f(r_{1,2}, R_3)) \bullet (p_2 \bullet f(r_{1,2}, R_3))$$

 $(R1 \bigsqcup_{p} R2) \text{ op1 } R3 = (R1 \text{ op1 } R2) \bigsqcup_{p} (R2 \text{ op1 } R3)$

$$(p_1 + p_2) \bullet f(r_{1|2}, R_3) = (p_1 \bullet f(r_{1|2}, R_3)) + (p_2 \bullet f(r_{1|2}, R_3))$$

- # Motivation
- ***XML** and Relational Databases
- #Region Algebra & Operator Properties
- #Region Algebra & Relevance Ranking
- # Properties of Ranking Operators
- # Conclusions and Future Work

Conclusions

- # Problem: Execution of IR-like queries over XML documents stored in relational database
- # Usefulness of intermediate logical level based on region algebra (with score computation)
 - Data independence between levels
 - Right level of abstraction (understanding IR)
 - Opportunities for query optimization on logical level (including ranking operators)

... still to come

- #Experimental evaluation: benefits of intermediate logical level
- # The definition of score operators
 - => operator properties
- #Usage of different retrieval models
- #Theoretical foundation for the definition of score operators

WIRD'04 35