- **Q3**. Consider a matrix A of size $m \times n$, $m \le n$. Define $P = A^T A$ and $Q = AA^T$. (Note: all matrices, vectors and scalars involved in this question are real-valued).
 - (a) Prove that for any vector y with appropriate number of elements, we have $\mathbf{y}^{\mathsf{t}}\mathbf{P}$ \mathbf{y} ≥ 0 . Similarly show that $\mathbf{z}^{\mathsf{T}}\mathbf{Q}\mathbf{z} \geq 0$ for a vector z with appropriate number of elements. Why are the eigenvalues of P and Q non-negative?

Sol: We have,
$$y^TPy = y^T(A^TA)y = (y^TA^T)(Ay) = (Ay)^T(Ay) = ||Ay||_{2^2} \ge 0$$
 ----- (1)

Also,
$$z^TQz = z^T(AA^T)z = (z^TA)(A^Tz) = (A^Tz)^T(A^Tz) = ||A^Tz||_{2^2} \ge 0$$

Now, Let λ be the eigen value of P, with eigen vector $x \implies Px = \lambda x$
Multiplying both the sides by x^T , we have $x^TPx = x^T\lambda x = \lambda x^Tx = \lambda$

Similarly, let z be an eigen vector of Q with eigen value ω .

 \Rightarrow Qz = ω z \Rightarrow z^TQz = ω || z||₂² \ge 0 \Rightarrow ω \ge 0. Hence, the eigen values of P and Q are non-negative. P and Q are positive semi-definite matrices.

(b) If $\bf u$ is an eigenvector of $\bf P$ with eigenvalue λ , show that $\bf A \bf u$ is an eigenvector of $\bf Q$ with eigenvalue μ , show that $\bf A^T \bf v$ is an eigenvector of $\bf P$ with eigenvalue μ . What will be the number of elements in $\bf u$ and $\bf v$?

Sol: We have, $Pu = \lambda u \Rightarrow (A^TA)u = \lambda u$

Now, $Q(Au) = (AA^T)(Au) = A(A^TAu) = A(\lambda u) = \lambda$ (Au) [\cdots λ is ascalar]. \Rightarrow $Q(Au) = \lambda$ (Au). Hence, Au is an eigen vector of Q with eigen value of Q with eigen value λ Also, v is an eigen vector of Q with eigen value μ . $\Rightarrow Qv = \mu v \Rightarrow (AA^T)v = \mu v$ Now, $P(A^Tv) = (A^TA)(A^Tv) = A^T(AA^Tv) = A^T\mu v \Rightarrow P(A^Tv) = \mu(A^Tv)$ Thus A^Tv is an eigen vector of P with eigen value μ .

(c) If v_i is an eigenvector of Q and we define $u_i \triangleq A^T v_i / || A^T v_i ||_2$. Then prove that there will exist some real, non-negative y_i such that $Au_i = y_i v_i$

Sol: We have, $Au_i = A(A^Tv_i / || A^Tv_i ||_2) = (A A^Tv_i) / || A^Tv_i ||_2 = Qv_i / || A^Tv_i ||_2 = \mu_i v_i / || A^Tv_i ||_2$.

Let
$$y_i = (\mu_i / || A^T v_i ||_2)$$
, -----(2)

 \Rightarrow $y_i \ge 0$ [From (a) and (b), and $||a||_2 \ge 0$]. Hence, \exists a real non-negative y_i such that $\mathbf{A}\mathbf{u}_i = \mathbf{\gamma}_i \mathbf{v}_i$

(d)It can be shown that u^T_i u_j = 0 for i ≠ j and likewise v^T_i v_j = 0 for i ≠ j for correspondingly distinct eigenvalues¹. Now, define U = [v₁|v₂|v₃|...|v_m] and V = [u₁|u₂|u₃|...|u_m]. Now show that A = U Γ V^T where Γ is a diagonal matrix containing the non-negative values γ₁, γ₂, ..., γ_m. With this, you have just established the existence of the singular value decomposition of any matrix A. This is a key result in linear algebra and it is widely used in image processing, computer vision, computer graphics, statistics, machine learning, numerical analysis, natural language processing and data mining.

Sol: We have, $u^{T_i} u_j = 0$ for $i \neq j$.

For
$$i = j$$
, $u^{T}_{i}u_{i} = (A^{T} v_{i})^{T} (A^{T}v_{i}) / ||A^{T}v_{i}||_{2}^{2} = 1 [:: u^{T}u = ||u||_{2}^{2}].$

Now, $Au_i = \gamma_i v_i$ (from (c), and γ_i is non-negative).

Note that P is n*n matrix with at least n-m linearly independent eigenvectors corresponding to zero eigenvalues. Let those eigenvectors be u_i , i=m+1,m+2,...,n Let $V' = [u_1|u_2|u_3|...|u_m|u_{m+1}|....|u_n]$, where V' is a square, orthogonal (n*n) matrix. (Columns of V' are all the eigenvectors of P, and since P is real symmetric, V' is orthogonal).

Also,
$$U \Gamma V^{T} = \sum_{i=1}^{m} (\gamma_{i} v_{i} u^{T}_{i}) = \sum_{i=1}^{m} (A u_{i} u^{T}_{i}) = A^{*} \sum_{i=1}^{n} (u_{i} u^{T}_{i}) = AV'V'^{T} [\because \sum_{i=m+1}^{n} (A u_{i} u^{T}_{i})] = A^{*} \sum_{i=1}^{n} (A u_{i} u^{T}_{i}) = AV'V'^{T} [\because \sum_{i=m+1}^{n} (A u_{i} u^{T}_{i})] = A^{*} \sum_{i=1}^{n} (A u_{i} u^{T}_{i}) = AV'V'^{T} [\because \sum_{i=m+1}^{n} (A u_{i} u^{T}_{i})] = A^{*} \sum_{i=1}^{n} (A u_{i} u^{T}_{i}) = AV'V'^{T} [\because \sum_{i=m+1}^{n} (A u_{i} u^{T}_{i})] = AV'V'^{T} [\because \sum_{i=m+1}^{n} (A u_{i} u^{T}_{i})$$

$$(A_iu_i)=0]$$

Hence,
$$U \Gamma V^T = AV'V'^T = A$$