Nom complet:	
	·····NIU:

Matemàtiques Geometria Diferencial

Examen parcial. Abril de 2019

- 1. (3 punts) Es considera la corba parametritzada $\alpha: \mathbb{R} \to \mathbb{R}^3$ donada per $\alpha(t) = (\sin t, 1 \cos t, e^t)$.
 - a) Comproveu que α és una corba regular amb imatge continguda en el cilindre $S=\{(x,y,z)\mid x^2+(y-1)^2=1\}$.
 - b) Calculeu la curvatura i la torsió de α en cada punt de la corba així com el seu triedre de Frenet en el punt $p=\alpha(0)=(0,0,1).$
 - c) Es considera la parametrització $\varphi(u,v)=(\sin u,1-\cos u,v)$ de S. Calculeu la curvatura normal de S en el punt $p=\alpha(0)$ i en la direcció $\alpha'(0)$, prenent com camp normal unitari de S el determinat per la parametrització φ .

Nom:....

- 2. (4 punts) Es considera l'aplicació $\varphi: \mathbb{R}^2 \to \mathbb{R}^3$ donada per $\varphi(u,v) = \left(u,v,\frac{u^2}{2} \frac{v^2}{2}\right)$ i es denota per S la seva imatge.
 - a) Demostreu, utilitzant un criteri adequat, que S és una superfície regular de \mathbb{R}^3 . Proveu també que l'aplicació φ n'és una parametrització.
 - b) Calculeu la curvatura de Gauss K(p) de S en cada punt $p \in S$ i determineu, si existeixen, el màxim i el mínim de la funció K = K(p).
 - c) Determineu el conjunt de punts $p \in S$ pels que la curvatura mitjana H(p) és zero. Comproveu que aquest conjunt està contingut en un pla.
 - d) Determineu el morfisme de Weingarten W_p de S en el punt p=(0,0,0) i deduïu d'aquí quines són les direccions principals i les corresponents curvatures principal en aquest punt .
 - e) Determineu els punts de S en els que els vectors φ_u i φ_v formen un angle superior a $\pi/2$.

Nom:

- 3. (3 punts) Considereu les tres afirmacions següents i decidiu raonadament si són correctes o no ho són:
 - a) Sigui $F: \mathbb{R}^3 \to \mathbb{R}$ la funció definida per $F(x,y,z) = x^2 + y^2 + z^2 2xy 2yz 2xz + 1$. El conjunt $S = F^{-1}(0)$ és una superfície regular de \mathbb{R}^3 .

b) Sigui p un punt d'una superfície regular S. Si K(p) < 0 llavors hi ha exactament una direcció de T_pS amb curvatura normal nul·la.

c) Sigui $\alpha=\alpha(t)$ una corba parametritzada amb imatge en una superficie regular S de \mathbb{R}^3 i sigui $p=\alpha(0)$. Aleshores $\alpha''(0)\in T_pS\Leftrightarrow II_p(\alpha'(0),\alpha'(0))=0$, on II_p denota la segona forma fonamental de S en el punt p.