Mestrado Integrado em Engenharia Informática e Computação Análise Matemática | 1^o Semestre | 2020/20211º Mini Teste | 2020.12.09 | Duração: 1h30m

Importante: Teste sem consulta. Resolva cada GRUPO em folhas separadas: GRUPO I responda na grelha do enunciado; GRUPO II e GRUPO III em folhas de capa separadas. Apresente e justifique convenientemente todos os cálculos que efetuar. Não são consideradas folhas sem identificação. Não é permitida a utilização de tabelas, formulários, telemóveis ou máquina de calcular com capacidade gráfica. Durante a realização da prova não é permitida a saída da sala. A desistência só é possível 30 minutos após o início do teste.

Nome COMPLETO:		

GRUPO I – Versão A

(Preencha a tabela de RESPOSTAS na folha de enunciado. Não são consideradas respostas múltiplas. COTAÇÃO prevista: 1.0 valores por cada resposta CORRETA. Cada resposta ERRADA desconta 1/3 valor na cotação deste Grupo.)

RESPOSTAS

1	2	3	4	5

1. Qual o valor do integral definido	$\int_0^1 \sqrt{x\sqrt{x}} \mathrm{d}x ?$
--------------------------------------	--

(a)
$$-\frac{4}{7}$$

(c)
$$\frac{4}{7}$$

(d)
$$\frac{7}{4}$$

2. Considere a função $f(x) = |\sin(x)|$ no intervalo $x \in [0, 2\pi]$. Qual o valor da aproximação do integral definido de f(x) obtido pela soma de Riemann superior para 8 partições de $\Delta x_i = \pi/4$.

(a)
$$\pi(1 - \sin(\frac{\pi}{4}))$$
 (b) 4

(c)
$$\pi(2 + \sin(\frac{\pi}{4}))$$
 (d) $\pi(1 + \sin(\frac{\pi}{4}))$

(d)
$$\pi(1 + \sin(\frac{\pi}{4}))$$

3. Calcule, se existir, o valor de $\lim_{x\to 0} \frac{\int_0^x te^{-t^2} dt}{x}$.

(a)
$$\frac{1}{2}$$

(b)
$$+\infty$$

4. Seja $u(x) = (\ln(x^2))^{3/x}$. Qual a expressão para $\frac{u'(x)}{u(x)}$?

(a)
$$\left[\frac{3}{x^2 \ln x} - \frac{3 \ln (\ln (x^2))}{x^2} \right]$$

(b)
$$\frac{3}{x} \left[-\frac{\ln \ln (x^2)}{x} + \frac{3}{x} \right]$$

$$(c) -\frac{3}{x} \left[\frac{1}{\ln x} + \frac{3}{x} \right]$$

(a)
$$\left[\frac{3}{x^2 \ln x} - \frac{3 \ln(\ln(x^2))}{x^2}\right]$$
 (b) $\frac{3}{x} \left[-\frac{\ln\ln(x^2)}{x} + \frac{3}{x}\right]$ (c) $-\frac{3}{x} \left[\frac{1}{\ln x} + \frac{3}{x}\right]$ (d) $\left[\frac{3 \ln(\ln(x^2))}{x^2} - \frac{3}{x^2 \ln x}\right]$

5. Calcule, se existir, o valor de $\lim_{x\to 0} \frac{\sin(2ax)}{\cos(ax)\sin(bx)}$

(a)
$$\frac{b}{a}$$

(b)
$$2\frac{a}{b}$$

GRUPO II

- 6. [3] Uma partícula move-se ao longo de uma trajectória dada pela seguinte curva $y = x^2 2x + 3$. Encontre as coordenadas do ponto da curva onde a taxa de variação de y, $\frac{dy}{dt}$, é igual a 4 vezes a taxa de variação de x, $\frac{dx}{dt}$.
- 7. [2] Esboce a região Q do plano limitada pelos gráficos das seguintes funções:

$$f_1(x) = \frac{1}{x}$$
, $f_2(x) = x$, $x = 2$ e $x = e$.

Determine a área da região Q.

GRUPO III

8. [8] Calcule os seguintes integrais usando técnicas apropriadas:

(a)
$$\int \frac{\sin(\sin(\ln x))\cos(\ln x)}{x} dx$$

(b)
$$\int \frac{x}{\cos^2 x} dx$$

(c)
$$\int \frac{x^2 - 5x + 9}{x^2 - 5x + 6} \, \mathrm{d}x$$

(d)
$$\int \frac{x^3}{\sqrt{4-x^2}} \, \mathrm{d}x$$

9. [2] Considere g(x), uma função real de variável real tal que g'(x) é contínua em \mathbb{R} . Considere ainda a função f(x) definida por

$$f(x) = \int_{\ln(x+1)}^{\sin x} g(t) dt,$$

uma função real de variável real tal que f'(x) e f''(x) são contínuas em \mathbb{R} .

Mostre, justificando todos os cálculos efectuados, que f''(0) = g(0).

Caso entenda necessário, considere a seguinte informação:

$$\frac{d}{dx}\left(\arctan(u)\right) = \frac{du}{dx}\frac{1}{1+u^2}$$

$$\frac{d}{dx}\left(\arcsin(u)\right) = \frac{du}{dx}\frac{1}{\sqrt{1-u^2}}$$