Criação de Containers e acesso ao Servidor de Arquivo NAS TrueNAS Scale

Alanny Barbosa Cavalcante, Caren Beatriz Silva Oliveira

Instituto Federal do campus Salgueiro (IFPECS) Salgueiro – PE – Brasil

Curso de Tecnologia em Sistemas para Internet Instituto Federal do Sertão Pernambucano – Salgueiro, PE – Brasil

{alanny.cavalcante@aluno.ifsertao-pe.edu.br, caren.beatriz@aluno.ifsertao-pe.edu.br}

Abstract. This document presents a detailed tutorial on the installation and configuration of the TrueNAS SCALE server. The predecessor, TrueNAS CORE, was not used due to its lack of compatibility with Docker — an essential tool for creating and configuring containers. All necessary configurations were carried out on the Linux Mint operating system installed in a virtual machine. The main objective is to present the scenarios explored and explain how these technologies were implemented in this system.

Resumo. Este arquivo apresenta um tutorial detalhado sobre a instalação e configuração do servidor TrueNAS Scale, a antecessora TrueNAS Core não foi utilizada por não possuir compatibilidade para a instalação do Dockerferramenta essencial para criação e configurações dos contêineres. Toda configuração necessária foi realizada no sistema operacional Linux Mint instalado em uma máquina virtual. O objetivo central é apresentar os cenários desenvolvidos e explicar como essas tecnologias foram trabalhadas nesse sistema.

1. Introdução

Contêineres são ambientes leves que compartilham o mesmo kernel com a máquina em que ele está sendo executado, empacotando uma aplicação com seus processos. Cada contêiner é projetado para armazenar um programa ou sistema com seus dados para possuir apenas uma responsabilidade. Uma das empresas responsáveis pelo desenvolvimento e manipulação dos contêineres é o Docker, disponibilizando ferramentas de orquestração. Neste trabalho, será apresentado um caso prático utilizando o Docker em uma máquina virtual com o sistema operacional Linux Mint, hospedada em um servidor TrueNAS Scale. O objetivo é demonstrar as etapas para instalação, criação do container e sua utilização.

2. Aplicação no servidor TrueNAS Scale

Nesse tópico será abordado as etapas realizadas para que o contêiner dentro do servidor TrueNAS Scale funcione. A instalação do Docker ocorreu a partir da utilização da máquina virtual.

2.1 Instalação da máquina virtual (Oracle VirtualBOX)

A instalação da máquina virtual foi primordial para a instalação e configuração do TrueNAS Scale, pois esse serviço não possui compatibilidade com o sistema operacional Windows. Como o servidor não permite a instalação do Docker, a solução desse problema foi utilizar um sistema operacional compatível para ambas tecnologias, logo escolhendo o Linux Mint, que foi configurado e instalado na máquina virtual.

Imagem 1: Dados gerais sobre o sistema operacional.

2.2. Instalação do TrueNAS Scale

O TrueNAS CORE possui seu sistema baseado em FreeBSD, que impossibilita a instalação direta e suporte nativo do Docker. Um meio encontrado para melhor suportar o container foi a instalação do TrueNAS Scale, que substitui a versão mencionada, além de facilitar o uso dos containers, seu sistema também fornece uma interface gráfica mais intuitiva, sendo a mais ideal para a utilização do servidor NAS mais outros serviços externos.

Foi usada a imagem oficial do sistema TrueNAS SCALE, **TrueNAS-SCALE-24.10.2.2.iso**, por ele temos acesso completo ao instalador.

Imagem 2: Tela inicial do instalador executado na máquina virtual.

Imagem 3: Tela de gerenciamento via console, simbolizando o sucesso na instalação.

Imagem 4: Tela de login acessada através do navegador.

2.3. Instalação do contêiner

Com a nova versão do TrueNAS instalada, a forma de instalação do contêiner será diferente, a iniciar pela interface disponibilizada. No terminal foi digitado o comando:

docker run -d -p 8080:80 --name meu_nginx nginx

Ele será responsável por baixar a imagem oficial do nginx, a criação e execução do novo contêiner.

Para verificar os contêineres foi utilizado o:

docker ps

Após isso será utilizado o comando para o Docker daemon que gerenciará os comandos essenciais no contêiner, como o CRUD (create, read, update e delete):

service docker start. Por fim, será acessado o servidor **nginx** externamente, através do shell ou próprio navegador.

```
Arquivo Máquina Visualizar Entrada Dispositivos Ajuda

root@truenas[/]# docker run -d -p 8888:80 --nome meu_mginx
unknown f18s: --nome pin.
root@truenas[/]# docker run -d -p 8888:80 --nome meu_mginx
unknown f18s: --nome pin.
root@truenas[/]# mginx
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.0443 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.08180 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 1::1:443 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 1::1:80 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 1::1:80 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.0818 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.0818 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.0818 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.0814 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.0814 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.0814 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.0814 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.08149 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.08149 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.08149 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.08149 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.08149 failed (98: Address already in use)
2055/17/40: 18125123 [emerg] 46544654: blind() to 0.e.0.e.08149 failed (98: Address already in use)
2055/17/40: 18125123 [
```

Imagem 5: Comandos do Docker na máquina virtual.

Imagem 6: Visualização de um página criada em HTML e armazenada no servidor nginx.

3. Disponibilização no ambientes do Github

Usando a plataforma Github, foi criado um repositório público para a divulgação chamado TrueNAS-Container, que contém as etapas e comandos necessários para a criação e utilização do contêiner em questão, além de um pdf detalhado o material. A disponibilização possui a principal função de orientar quaisquer usuários sobre como reproduzir esse mesmo ambiente em suas máquinas.

Link do repositório: https://github.com/CarenOliv/TrueNAS-Container .

Imagem 6: Dados contidos no repositório.

4. Conclusão

Essa atividade possibilitou ampliar o conhecimento teórico e prático sobre servidores, sistemas operacionais na máquina virtual e containers. Além de reforçar o compartilhamento de informações na comunidade tecnológica utilizando o Github, contribuindo para a disseminação de conteúdos relevantes na internet. Com isso, esse trabalho contribuiu para um crescimento acadêmico significativo, auxiliando no aprendizado de novas tecnologias que poderão ser novamente aplicadas em usos futuros.

5. Referências

1. DOCKER. Documentação oficial do Docker. Docker Inc., [s.d.]. Disponível em: https://docs.docker.com. Acesso em: 3 jul. 2025.

- 2. DOCKER HUB. nginx Docker Image. Docker Inc., [s.d.]. Disponível em: https://hub.docker.com/ /nginx. Acesso em: 3 jul. 2025.
- 3. NGINX. NGINX Documentation. F5 Inc., [s.d.]. Disponível em: https://nginx.org/en/docs/. Acesso em: 3 jul. 2025.
- 4. MOZILLA. HTML: Linguagem de Marcação de Hipertexto. MDN Web Docs, [s.d.]. Disponível em: https://developer.mozilla.org/pt-BR/docs/Web/HTML. Acesso em: 3 jul. 2025.
- 5. IXSYSTEMS. TrueNAS SCALE Documentation. iXsystems Inc., 2025. Disponível em: https://www.truenas.com/docs/scale/. Acesso em: 3 jul. 2025.
- 6. GIT SCM. Git Documentation. Software Freedom Conservancy, [s.d.]. Disponível em: https://git-scm.com/doc. Acesso em: 3 jul. 2025.
- 7. GITHUB. Criar um repositório. GitHub Docs, [s.d.]. Disponível em: https://docs.github.com/pt/get-started/quickstart/create-a-repo. Acesso em: 3 jul. 2025.
- 8. OPENSSH. SCP Secure Copy. OpenSSH, [s.d.]. Disponível em: https://linux.die.net/man/1/scp. Acesso em: 3 jul. 2025.
- 9. ALPINE LINUX. alpine/git Docker Hub. Docker Inc., [s.d.]. Disponível em: https://hub.docker.com/r/alpine/git. Acesso em: 3 jul. 2025.