Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»					
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»					
НАПРАВЛЕНІ	ИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»					

ОТЧЕТ по лабораторной работе №3

Название:	Программная реа	ализация приближенного анали	тического метода и		
	численных алгоритмов первого и второго порядков точности				
	пр	и решении задачи Коши для О	ДУ		
Дисциплина:	Модел	пирование			
Студент	ИУ7-66Б		Т. А. Казаева		
	Группа	Подпись, дата	И. О. Фамилия		
Преподаватель			В. М. Градов		
		Подпись, дата	И. О. Фамилия		

1. Теоретические сведения

Цель работы — получение навыков решения задачи Коши для ОДУ методами Пикара и явными методами первого порядка точности (Эйлера) и второго порядка точности (Рунге-Кутта).

1.1 Входные данные

Имеется ОДУ, не имеющее аналитического решения:

$$\begin{cases} u'(x) = x^2 + u^2 \\ u(0) = 0 \end{cases}$$
 (1.1)

Необходимо найти значения функции u(x) предложенными методами.

1.2 МЕТОДЫ РЕШЕНИЯ ОДУ

Методы решения ОДУ можно разделить на:

- точные;
- аналитически приближенные;
- о численные.

1.2.1 Метод Пикара

Относится к приближенным методам. Сводится к последовательному интегрированию полученного вида функции.

$$y_s(x) = v_0 + \int_{x_0}^x \phi(t, y_{s-1}(t))dt,$$
 (1.2)

где $y_s(x) - s$ -ое приближение искомой функции, $v_0 = y_0(t)$. Тогда для заданного ОДУ приближения Пикара выглядят следующим образом: Первое приближение:

$$u_1(x) = 0 + \int_0^x t^2 dt = \frac{x^3}{3}$$
 (1.3)

Второе приближение:

$$u_2(x) = 0 + \int_0^x \left[t^2 + \left(\frac{t^3}{3} \right)^2 \right] dt = \frac{x^3}{3} \cdot \frac{x^7}{9 \cdot 7}$$
 (1.4)

Третье приближение:

$$u_3(x) = 0 + \int_0^x \left[\left(\frac{t^7}{63} + \frac{t^3}{3} \right)^2 + t^2 \right] dt = \int_0^x \left[\frac{t^{14}}{63^2} + \frac{2}{63 * 3} t^{10} + \frac{t^6}{9} + t^2 \right] = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{x^{15}}{59535}$$

$$(1.5)$$

Четвертое приближение:

$$0 + \int_0^x \left[\left(\frac{t^3}{3} + \frac{t^7}{63} + \frac{2t^{11}}{2079} + \frac{t^{15}}{59535} \right)^2 + t^2 \right] dt = \frac{x^3}{3} + \frac{x^7}{63} + \frac{2x^{11}}{2079} + \frac{13x^{15}}{218295} + \frac{82x^{19}}{37328445} + \frac{662x^{23}}{10438212015} + \frac{4x^{27}}{3341878155} + \frac{x^{31}}{109876903905}$$
(1.6)

1.2.2 Метод Эйлера

Относится к группе явных численных методов, имеет первый порядок точности. Общий вид поиска значения в следующем узле:

$$y_{n+1} = y_n + h \cdot f(x_n, y_n)$$
 (1.7)

где $f(x_n, y_n)$ — функция, которой задано ОДУ, h — шаг сетки для переменной x.

1.2.3 Метод Рунге — Кутта

Vетод является численным и имеет второй порядок точности. Вычисление значения в следующем узле выглядит следующим образом:

$$y_{n+1} = y_n + h * [(1 - \alpha)k_1 + \alpha * k_2]$$
(1.8)

Где k_1 и k_2 представлены как (1.9) и (1.10) соответственно, на практике $\alpha=1$ или $\frac{1}{2}.$

$$k_1 = f(x_n, y_n) \tag{1.9}$$

$$k_2 = f(x_n + \frac{h}{2\alpha}, y_n + \frac{h}{2\alpha}k_1)$$
 (1.10)

2. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ

Листинг 2.1 – Приближения для метода Пикара

```
func first_approx(x float64) float64 {
                    return x * x * x / 3
           }
           func sec approx(x float64) float64 {
                    return first approx (x) + math. Pow(x, 7)/63
           }
           func third_approx(x float64) float64 {
                    \textbf{return} \ \sec \texttt{\_approx}(\texttt{x}) \ + \ 2* \texttt{math.Pow}(\texttt{x}, \ 11) \ / \ (3*7*9*11) \ + \ \texttt{math.Pow}
10
                        (x, 15)/(9*9*7*7*15)
           }
11
12
           func fourth approx(x float64) float64 {
                    f := 4 * math.Pow(x, 15) / (3 * 3 * 7 * 9 * 11 * 15)
14
                    s1 := 4 * math.Pow(x, 19) / (3 * 7 * 7 * 9 * 9 * 11 * 19)
15
                    s2 := 2 * math.Pow(x, 19) / (3 * 9 * 9 * 7 * 7 * 15 * 19)
                    t1 := 2 * math.Pow(x, 23) / (9 * 9 * 9 * 7 * 7 * 7 * 15 * 23)
17
                    t2 := 2 * math.Pow(x, 23) / (3 * 3 * 7 * 7 * 9 * 9 * 11 * 11 *
18
                         23)
                    fr := 4 * math.Pow(x, 27) / (3 * 7 * 7 * 7 * 9 * 9 * 9 * 11 *
19
                        15 * 27
                    fv := math.Pow(x, 31) / (9 * 9 * 9 * 9 * 7 * 7 * 7 * 7 * 15 *
20
                        15 * 31)
21
                    return third approx(x) + f + s1 + s2 + t1 + t2 + fr + fv
22
```

Листинг 2.2 – Метод Пикара

Листинг 2.3 – Метод Эйлера

```
func EulerSolver(x0, y0, h float64, n int) FloatVec64 {
    values := make(FloatVec64, 0)

for i := 0; i <= n; i++ {
    values = append(values, y0)
    y0 += h * domain(x0, y0)
    x0 += h
}

return values
}</pre>
```

Листинг 2.4 – Метод Рунге — Кутта

Листинг 2.5 – Вспомогательные функции и типы

3. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Таблица 3.1 – Таблица результатов вычислений (начало)

Nº	X	Пикар(1 пр.)	Пикар(2 пр.)	Пикар(3 пр.)	Пикар(4 пр.)	Эйлер	Рунге — Кутт
1	0.00000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
2	0.05000	0.00004167	0.00004167	0.00004167	0.00004167	0.00004154	0.00004167
3	0.10000	0.00033333	0.00033333	0.00033333	0.00033333	0.00033284	0.00033334
4	0.15000	0.00112500	0.00112503	0.00112503	0.00112503	0.00112390	0.00112503
5	0.20000	0.00266667	0.00266687	0.00266687	0.00266687	0.00266487	0.00266687
6	0.25000	0.00520833	0.00520930	0.00520930	0.00520930	0.00520618	0.00520930
7	0.30000	0.00900000	0.00900347	0.00900347	0.00900347	0.00899897	0.00900347
8	0.35000	0.01429167	0.01430188	0.01430189	0.01430189	0.01429574	0.01430189
9	0.40000	0.02133333	0.02135934	0.02135938	0.02135938	0.02135134	0.02135938
10	0.45000	0.03037500	0.03043431	0.03043446	0.03043446	0.03042424	0.03043446
11	0.50000	0.04166667	0.04179067	0.04179114	0.04179115	0.04177847	0.04179115
12	0.55000	0.05545833	0.05569999	0.05570133	0.05570134	0.05568590	0.05570134
13	0.60000	0.07200000	0.07244434	0.07244784	0.07244786	0.07242934	0.07244786
14	0.65000	0.09154167	0.09231980	0.09232824	0.09232831	0.09230633	0.09232831
15	0.70000	0.11433333	0.11564054	0.11565965	0.11565985	0.11563401	0.11565985
16	0.75000	0.14062500	0.14274379	0.14278465	0.14278523	0.14275505	0.14278524
17	0.80000	0.17066667	0.17399548	0.17407871	0.17408024	0.17404519	0.17408027
18	0.85000	0.20470833	0.20979686	0.20995931	0.20996315	0.20992261	0.20996322
19	0.90000	0.24300000	0.25059201	0.25089736	0.25090646	0.25085975	0.25090668
20	0.95000	0.28579167	0.29687639	0.29743135	0.29745200	0.29739841	0.29745263
21	1.00000	0.33333333	0.34920635	0.35018515	0.35023014	0.35016915	0.35023185
22	1.05000	0.38587500	0.40820993	0.40989019	0.40998477	0.40991653	0.40998919
23	1.10000	0.44366667	0.47459868	0.47741355	0.47760599	0.47753251	0.47761702
24	1.15000	0.50695833	0.54918087	0.55379315	0.55417345	0.55410128	0.55420008
25	1.20000	0.57600000	0.63287589	0.64028242	0.64101438	0.64096045	0.64107673
26	1.25000	0.65104167	0.72673010	0.73840666	0.73978212	0.73978624	0.73992422
27	1.30000	0.73233333	0.83193415	0.85003452	0.85256368	0.85271461	0.85288000
28	1.35000	0.82012500	0.94984168	0.97746847	0.98202821	0.98251740	0.98271806

Таблица 3.2 – Таблица результатов вычислений (продолжение)

Nº	X	Пикар(1 пр.)	Пикар(2 пр.)	Пикар(3 пр.)	Пикар(4 пр.)	Эйлер	Рунге — Кутт
29	1.40000	0.91466667	1.08198969	1.12355960	1.13163411	1.13286566	1.13311268
30	1.45000	1.01620833	1.23012049	1.29185290	1.30592042	1.30873502	1.30904442
31	1.50000	1.12500000	1.39620536	1.48677133	1.51092010	1.51705182	1.51744754
32	1.55000	1.24129167	1.58246992	1.71384867	1.75475104	1.76776607	1.76828516
33	1.60000	1.36533333	1.79142136	1.98002380	2.04846758	2.07572093	2.07642337
34	1.65000	1.49737500	2.02587752	2.29401209	2.40729662	2.46410778	2.46509613
35	1.70000	1.63766667	2.28899789	2.66677353	2.85244492	2.97133477	2.97279716
36	1.75000	1.78645833	2.58431668	3.11210160	3.41376070	3.66602195	3.66833681
37	1.80000	1.94400000	2.91577783	3.64736281	4.13368043	4.68409826	4.68813042
38	1.85000	2.11054167	3.28777229	4.29442366	5.07312176	6.33838527	6.34652466
39	1.90000	2.28633333	3.70517736	5.08080977	6.32033999	9.54566766	9.56699215
40	1.95000	2.47162500	4.17339840	6.04115248	8.00432170	18.64485062	18.74724488
41	2.00000	2.66666667	4.69841270	7.21898959	10.31515805	270.06840575	317.56647872

Рисунок 3.1 – График функции