Feuille d'exercices 4

Avertissement: tous les exercices ne seront pas traités durant les séances; pour en suivre l'avancement veuillez consulter mon site personnel dans la rubrique Forum.

Exercice 1. — (Cryptosystème de Massey-Omura) Alice souhaite envoyer un message à Bob codé par un élément m d'un groupe cyclique G d'ordre n. Ils utilisent le cryptosystème (sans clé) suivant :

- 1. Alice choisit secrètement un entier x_A tel que $1 < x_A < n$ et $x_A \wedge n = 1$, et elle envoie à Bob l'élément $a = m^{x_A}$.
- 2. Bob choisit secrètement un entier x_B tel que $1 < x_B < n$ et $x_B \wedge n = 1$, et il renvoie à Alice l'élément $b = a^{x_B}$.
- 3. Alice calcule l'entier y_A tel que $1 < y_A < n$ et $x_A y_A \equiv 1 \mod n$, et elle renvoie à Bob l'élément $c = b^{y_A}$.
- 4. Bob calcule l'entier y_B tel que $1 < y_B < n$ et $x_B y_B \equiv 1 \mod n$, et détermine c^{y_B} .
 - (a) Montrer que l'on a $m = c^{y_B}$.
 - (b) On prend $G = \mathbb{F}_{19}^*$. Supposons qu'Alice choisisse l'entier $x_A = 5$ et qu'elle envoie à Bob $a = \overline{2}$. Trouver l'élément m correspondant.

Exercice 2. — (Système RSA) Soit n un entier ≥ 1 . Alice utilise le cryptosystème RSA afin de se faire envoyer des messages codés par des éléments de $\mathbb{Z}/n\mathbb{Z}$. Soit (e, n) sa clé publique.

1. Déterminer sa clé secrète dans chacun des cas suivants :

$$(e,n) \in \Big\{ (5,35), (139,265), (31,3599) \Big\}.$$

2. Avec (e, n) = (31, 3599), elle reçoit le cryptogramme $2 + n\mathbb{Z}$. Quel est le message envoyé? Soient p et q deux nombres premiers distincts congrus à 2 modulo 3. Posons

$$n = pq$$
 et $e = \frac{2(p-1)(q-1)+1}{3}$ (e est un entier).

- 3. Montrer que e est premier avec $\varphi(n)$ et calculer son inverse modulo $\varphi(n)$.
- 4. Alice choisit comme clé publique le couple (e, n) = (107, 187). Elle reçoit le cryptogramme $9 + n\mathbb{Z}$. Quel est le message envoyé?

Exercice 3. — (Protocole de Diffie-Hellman) Alice et Bob décident d'utiliser ce protocole pour se fabriquer une clé secrète. Pour cela, ils rendent public le couple (K, α) où

$$K = \mathbb{F}_3[X]/(X^3 + 2X + 1)$$
 et $\alpha = X + (X^3 + 2X + 1)$.

- 1. Vérifier que K est un corps et que α est un générateur de K^* . Conformément à ce protocole, Alice choisit un entier a compris entre 2 et 25, par exemple a=9, et transmet α^9 à Bob. Ce dernier choisit un entier b compris entre 2 et 25 et lui renvoie l'élément $\alpha^b=2+\alpha+2\alpha^2$.
- 2. Quelle est la clé secrète d'Alice et Bob? On déterminera ses coordonnées dans la base $(1, \alpha, \alpha^2)$ de K sur \mathbb{F}_3 .

Exercice 4. — (Algorithme de El Gamal) Alice souhaite se faire envoyer des messages confidentiellement en utilisant cet algorithme. Elle considère pour cela le corps

$$K = \mathbb{F}_2[X]/(X^4 + X + 1).$$

Soit α la classe de X modulo $(X^4 + X + 1)$.

- 1. Justifier que K est un corps et montrer que α est un générateur de K^* . Alice rend public le triplet $(K, \alpha, \alpha^2 + 1)$, et Bob envoie des messages à Alice en utilisant cette clé publique.
- 2. Bob veut coder le message $1 + \alpha$ pour l'envoyer à Alice. Conformément à l'algorithme, il choisit un entier x compris entre 2 et 14, par exemple x = 3. Que transmet-il à Alice?
- 3. Vous interceptez le message $(\alpha^3, \alpha^3 + \alpha^2 + \alpha)$. Quel était le message envoyé par Bob?

Exercice 5. — (Sac à dos)

1. Pour les suites d'entiers et \ll volumes $\gg V$ suivants, résoudre le problème du sac à dos correspondant :

$$(2,3,7,20,35,69)$$
 et $V=45$, $(1,2,5,9,20,49)$ et $V=73$, $(1,3,7,12,22,45)$ et $V=67$, $(4,5,10,30,50,101)$ et $V=186$.

- 2. Soit $(v_i)_{i>0}$ une suite d'entiers positifs telle que l'on ait $v_{i+1} > 2v_i$ pour tout i. Montrer qu'elle est super croissante.
- 3. Montrer que la suite d'entiers strictement positifs super croissante dont chaque terme est le plus petit possible est la suite $(2^i)_{i>0}$.

Exercice 6. — (Sac à dos de Merkle-Hellman) Alice et Bob utilisent le cryptosystème du sac à dos de Merkle-Hellman pour communiquer. L'alphabet utilisé est l'alphabet usuel, chaque lettre étant codée par un entier écrit en binaire avec cinq composantes $(\varepsilon_4\varepsilon_3\varepsilon_2\varepsilon_1\varepsilon_0)_2$ (on a $A=(00000)_2, \cdots, Z=(11001)_2$). Les unités de message sont des mots de trois lettres (ils ont donc quinze composantes). Les notations étant celles figurant dans le paragraphe 7 du chapitre IV du cours, Alice choisit la suite d'entiers (4,5,12,23,45), ainsi que m=400 et a=381.

- 1. Vérifier que ces données sont conformes au principe d'utilisation de ce cryptosystème.
- 2. Déterminer la clé publique d'Alice.
- 3. Bob veut envoyer à Alice le message OUI. Indiquer le procédé qu'il doit suivre et comment Alice retrouve-t-elle le message.

Exercice 7. — Soit p un nombre premier de Mersenne : on a $p = 2^{\ell} - 1$ où ℓ est premier. Posons $K = \mathbb{F}_p[X]/(X^2 + 1).$

$$K = \mathbb{F}_p[X]/(X^2 + 1)$$

Notons i la classe de X modulo $(X^2 + 1)$.

- 1. Montrer que K est $\ll le \gg corps$ à p^2 éléments.
- 2. Soient a et b deux éléments de \mathbb{F}_p tels que a^2+b^2 soit un générateur de \mathbb{F}_p^* (cette hypothèse n'est pas restrictive car tout élément de \mathbb{F}_p est somme de deux carrés). Montrer que a+ib est un générateur de K^* .
- 3. En déduire que 4+i et 3+2i sont des générateurs du groupe \mathbb{F}_{312}^* .
- 4. Deux personnes Alice et Bob souhaitent se construire une clé de chiffrement commune en utilisant le protocole de Diffie-Hellman dans le groupe $\mathbb{F}_{31^2}^*$, avec le générateur 4+i.
 - (a) Alice choisit secrètement l'entier 193 et Bob envoie à Alice l'élément 1+19i. Quelle est la clé commune de chiffrement?
 - (b) Quel élément de K* doit envoyer Alice à Bob pour qu'il connaisse la clé?

1. Solutions

1 1) On a les égalités

$$c^{y_B} = (b^{y_A})^{y_B} = (a^{x_B y_A})^{y_B} = (m^{x_A y_A})^{x_B y_B}$$

Il existe deux entiers naturels u et v tels que l'on ait $x_A y_A = 1 + un$ et $x_B y_B = 1 + vn$. Soit e l'élément neutre de G. Puisque G est d'ordre n, on a $m^{un} = m^{vn} = e$. Par suite, on obtient

$$c^{y_B} = (m^{1+un})^{1+vn} = m.$$

2) On a dans cet exemple n=18. Supposons que Bob choisisse l'élément $x_B=7$. Dans ce cas, il renvoie à Alice l'élément $b=\overline{2}^7=14\mod 19$. On vérifie que l'on a $y_A=11$ car on a $5\times (-7)+18\times 2=1$. Alice renvoie ainsi à Bob l'élément $c=\overline{14}^{11}$. Par ailleurs, vu l'égalité $7\times 13-5\times 18=1$, on a $y_B=13$. Ainsi Bob effectue l'opération $(14^{11})^{13}$ modulo 19. On a $11\times 13\equiv 17\mod 18$. D'après le petit théorème de Fermat, on a donc

$$(14^{11})^{13} \equiv 14^{17} \mod 19.$$

On en déduit que l'on a $m = 14^{-1} \mod 19 = 15 \mod 19$ (on a $-4 \times 14 + 3 \times 19 = 1$) i.e. $m = \overline{15} \in \mathbb{F}_{19}^*$.

2 1) On a $35 = 5 \times 7$ et $\varphi(n) = 24$. Par ailleurs, on a $1 = 5 \times 5 - 24$, donc 5 est son propre inverse modulo 24. Dans ce cas, la clé secrète est donc (5, 24).

On a $265 = 5 \times 53$ et $\varphi(n) = 208$. Il s'agit de déterminer l'inverse de 139 modulo 208. On peut utiliser pour cela l'algorithme d'Euclide, ce qui conduit à l'égalité $1 = 3 \times 139 - 2 \times 208$. La clé secrète est donc (3, 208).

On a $3599 = 59 \times 61$, d'où $\varphi(n) = 3480$. En utilisant l'algorithme d'Euclide, on obtient directement l'égalité

$$4 \times 3480 - 449 \times 31 = 1$$
,

de sorte que l'inverse de 31 modulo 3480 est 3031. La clé secrète est ainsi (3031, 3480). 2) Le message m envoyé est $(2+n\mathbb{Z})^{3031}$. Afin de déterminer son représentant compris entre 1 et n, on procède comme suit. On remarque que l'on a $3031 = 7 \times 433$. On a $59 \equiv 3 \mod 8$, donc 2 n'est pas un carré modulo 59, d'où $2^{29} \equiv -1 \mod 59$ (critère d'Euler). On en déduit que l'on a

$$2^{433} \equiv 2^{27} = -4^{-1} \equiv 44 \mod 59$$
 et $(2^{433})^7 \equiv 44^7 \equiv 23 \mod 59$.

Par ailleurs, on a

$$2^{433} \equiv 2^{13} \equiv 18 \mod 61$$
 et $(2^{433})^7 \equiv 18^7 \equiv -2 \mod 61$.

On est donc amené à chercher l'entier N tel que $1 \le N \le 3599$ vérifiant les congruences

(1)
$$N \equiv 23 \mod 59 \text{ et } N \equiv -2 \mod 61.$$

On utilise pour cela l'algorithme donné par le théorème chinois. On a la relation de Bézout

$$30 \times 59 - 29 \times 61 = 1$$
,

d'où l'on déduit que l'entier $-2(30 \times 59) - 23(29 \times 61) = -44227$ vérifie les congruences (1). Il en résulte que N = 2560. Le message m envoyé est donc

$$m = 2560 + n\mathbb{Z}.$$

3) On a $\varphi(n) = (p-1)(q-1)$ i.e. on a $3e = 2\varphi(n) + 1$, donc e est premier avec $\varphi(n)$ et 3 est l'inverse de e modulo $\varphi(n)$. 4) On a $n = 11 \times 17$, $\varphi(n) = 160$. D'après la question 3, l'inverse de 107 modulo 160 est 3. Le message m qui lui a été envoyé est donc

$$m = 9^3 \mod 187 = 168 \mod 187.$$

3 1) Le polynôme $X^3 + 2X + 1 \in \mathbb{F}_3[X]$ est irréductible sur \mathbb{F}_3 car il n'a pas de racines dans \mathbb{F}_3 et son degré est 3, donc K est un corps de cardinal 27. Le groupe K^* est d'ordre 26. Les ordres de ses éléments autres que l'élément neutre, sont donc 2, 13 ou 26. En fait, -1 est le seul élément d'ordre 2 de K^* , car par exemple ± 1 sont les seules racines du polynôme $X^2 - 1 \in K[X]$. On a $\alpha^3 = \alpha - 1$, d'où $\alpha^9 = \alpha^3 - 1$ (car K est de caractéristique 3) i.e. $\alpha^9 = \alpha + 1$, d'où $\alpha^{12} = \alpha^2 - 1$ puis $\alpha^{13} = -1$ et notre assertion. 2) On a $\alpha^4 = \alpha^2 - \alpha$ et $\alpha^5 = 2\alpha^2 + \alpha + 2$, d'où b = 5. La clé secrète d'Alice et Bob est donc $(\alpha^9)^5 = \alpha^{45}$. Déterminons ses coordonnées dans la base $(1, \alpha, \alpha^2)$ de K sur \mathbb{F}_3 . On a $\alpha^{26} = 1$, d'où $\alpha^{45} = \alpha^{19} = \alpha^{-7}$. Par ailleurs, on a $\alpha^6 = \alpha^2 + \alpha + 1$, d'où $\alpha^7 = \alpha^2 - \alpha - 1$. De l'égalité

$$X(X^3 + 2X + 1) - (X^2 + X + 1)(X^2 - X - 1) = 1,$$

on déduit alors que l'on a

$$\alpha^{45} = -(\alpha^2 + \alpha + 1).$$

4 1) Le polynôme $X^4 + X + 1 \in \mathbb{F}_2[X]$ n'a pas de racines dans \mathbb{F}_2 et n'est pas divisible par $X^2 + X = 1$ qui est le seul polynôme irréductible de degré 2 de $\mathbb{F}_2[X]$, donc $X^4 + X + 1$ est irréductible sur \mathbb{F}_2 et K est un corps. Le groupe K^* est d'ordre 15. On a $\alpha^4 = \alpha + 1$, d'où l'on déduit que α^3 et α^5 sont distincts de 1, ce qui entraîne que l'ordre de α dans K^* est 15. 2) Il transmet le couple $(\alpha^3, (1 + \alpha)(1 + \alpha^2)^3)$ i.e. $(\alpha^3, \alpha^3 + \alpha^2 + 1)$. 3) On cherche

l'entier a tel que $1 \le a \le 14$ et que $1 + \alpha^2 = \alpha^a$. On remarque pour cela que l'on a $(1 + \alpha^2)^2 = 1 + \alpha^4 = \alpha$. De l'égalité $(1 + \alpha^2)^{16} = 1 + \alpha^2$ (on a $x^{16} = x$ pour tout $x \in K$), on déduit alors que l'on a $1 + \alpha^2 = \alpha^8$ i.e. on a a = 8. On a

$$\alpha^{xa} = \alpha^{24} = \alpha^9$$
.

Par définition, si m est le message envoyé par Bob, on a

$$m\alpha^{ax} = \alpha^3 + \alpha^2 + \alpha.$$

L'inverse de α^{ax} i.e. de α^9 est $(\alpha^9)^{14} = \alpha^{126} = \alpha^{8 \times 15 + 6} = \alpha^6$, autrement dit, on a

$$\left(\alpha^9\right)^{-1} = \alpha^2 + \alpha^3.$$

On a donc $m = (\alpha + \alpha^2 + \alpha^3)(\alpha^2 + \alpha^3)$, d'où $m = \alpha^2$.

5 Soient k un entier ≥ 1 et $(v_i)_{0 \leq i \leq k-1}$ une suite d'entiers super croissante. Rappelons que par définition on a

(1)
$$0 < v_0 < v_1 < \dots < v_{k-1}$$
 et $v_i > \sum_{i=0}^{i-1} v_j$ pour tout i tel que $0 \le i \le k-1$.

Pour tout entier naturel V (le volume), le problème du sac à dos relatif à V et à une telle suite (v_i) est facile à résoudre. Il s'agit de déterminer des entiers a_i égaux à 0 ou 1, s'ils existent, tels que l'on ait

$$V = \sum_{i=0}^{k-1} a_i v_i.$$

Il existe au plus une solution. Pour résoudre ce problème, on utilise l'algorithme décrit dans l'alinéa 2 du paragraphe 6 du chapitre IV. 1) La suite (2,3,7,20,35,69) est super croissante et $n=(010110)_2$ est la solution (qui correspond à l'égalité 45=35+7+3). Il en est de même de la suite (1,2,5,9,20,49). On constate qu'avec l'entier V=73 le problème n'a pas de solution.

La suite (1,3,7,12,22,45) n'est pas super croissante. Dans ce cas, il y a exactement deux solutions $(110000)_2$ et $(101110)_2$.

La suite (4, 5, 10, 30, 50, 101) est super croissante et l'on trouve la solution $(111010)_2$. 2) Il s'agit de démontrer que la suite (infinie) (v_i) satisfait la condition (1). On a $v_1 > v_0$. Si pour $i \ge 1$, v_i est plus grand que la somme des i premiers termes, on a les inégalités

$$v_{i+1} > 2v_i > \sum_{i=0}^{i} v_j,$$

d'où le résultat par récurrence. 3) On vérifie d'abord que la suite $(2^i)_{i\geq 0}$ est super croissante. Par ailleurs, soit $(a_i)_{i\geq 0}$ la suite super croissante telle que pour tout i le terme a_i soit le plus petit possible. Remarquons que cette suite existe. En effet, on prend $a_0 = 1$ et pour tout $i \geq 1$, a_i est le plus petit entier naturel vérifiant la condition

$$0 < a_0 < \dots < a_{i-1} < a_i$$
 et $a_i > \sum_{j=0}^{i-1} a_j$.

Vérifions que l'on a $a_i = 2^i$. C'est vrai si i = 0. Soit i un entier ≥ 0 . Supposons que l'on ait $a_j = 2^j$ pour tout j tel que $0 \leq j \leq i$. On a alors

$$a_{i+1} > \sum_{j=0}^{i} 2^j = 2^{i+1} - 1.$$

Par suite, le plus petit entier a_{i+1} possible est 2^{i+1} , d'où l'assertion.

6 Rappelons d'abord le principe de ce cryptosystème (paragraphe 7 du chapitre IV). Chaque utilisateur choisit une suite d'entiers super croissante $(v_0, v_1, \dots, v_{k-1})$, un entier m tel que

$$(1) m > \sum_{i=0}^{k-1} v_i,$$

et un entier a tel que $1 \le a < m$ et $\operatorname{pgcd}(a, m) = 1$. Il détermine ensuite l'entier b tel que

$$1 \le b < m$$
 et $ab \equiv 1 \mod m$,

et pour tout $i = 0, \dots, k-1$, l'entier w_i tel que

$$(2) 1 \le w_i < m \quad \text{et} \quad w_i \equiv av_i \mod m.$$

Il garde secret les entiers v_i , m, a et b. Sa clé publique est la suite (w_0, \dots, w_{k-1}) . Une personne souhaitant lui envoyer un message binaire $P = (\varepsilon_{k-1} \cdots \varepsilon_0)_2$, lui transmet l'entier

$$C = \sum_{i=0}^{k-1} \varepsilon_i w_i.$$

Afin de décrypter ce message, l'utilisateur calcule l'entier V tel que

$$0 \le V < m$$
 et $V \equiv bC \mod m$.

L'égalité

$$(3) V = \sum_{i=0}^{k-1} \varepsilon_i v_i,$$

et l'algorithme du sac à dos super croissant, appliqué avec la suite $(v_0, v_1, \dots, v_{k-1})$, lui permet alors de retrouver le message P.

1) On vérifie que la suite $(v_0, v_1, v_2, v_3, v_4) = (4, 5, 12, 23, 45)$ est super croissante, que l'on a $a = 381 = 3 \times 127$, puis

$$m = 400 > \sum_{i=0}^{4} v_i = 89$$
 et $pgcd(381, 400) = 1$.

Les données proposées sont donc conformes au principe d'utilisation du cryptosystème. 2) On détermine l'entier b tel que $1 \le b < 400$ et $381b \equiv 1 \mod 400$. È l'aide de l'algorithme d'Euclide, on trouve que l'on a b = 21. Il s'agit ensuite de déterminer les entiers w_i définis par l'égalité (2) ci-dessus. On vérifie alors que la clé publique d'Alice est

$$(w_0, w_1, w_2, w_3, w_4) = (324, 305, 172, 363, 345).$$

3) On vérifie que l'on a

$$O = (01110)_2, \quad U = (10100)_2, \quad I = (01000)_2.$$

Pour chacun des trois messages $(\varepsilon_4\varepsilon_3\varepsilon_2\varepsilon_1\varepsilon_0)_2$ ci-dessus à envoyer, Bob transmet donc à Alice successivement le message

$$\sum_{i=0}^{4} \varepsilon_i w_i.$$

Il transmet ainsi les messages cryptés

$$C_1 = 363 + 172 + 305 = 840, \quad C_2 = 345 + 172 = 517, \quad C_3 = 363.$$

Afin de retrouver le mot OUI, Alice calcule les trois entiers V_i tels que

$$0 \le V_i < 400$$
 et $V_i \equiv 21C_i \mod 400$.

On trouve

$$V_1 = 40, \quad V_2 = 57, \quad V_3 = 23.$$

Les égalités (3) qui correspondent à chacun des V_i sont respectivement

$$40 = 23 + 12 + 5$$
, $57 = 45 + 12$, $23 = 23$,

et Alice peut alors retrouver le mot OUI.

7 1) On a $p \equiv 3 \mod 4$, donc -1 n'est pas un carré dans \mathbb{F}_p i.e. $X^2 + 1$ est irréductible dans $\mathbb{F}_p[X]$. Il en résulte que K est un corps à p^2 éléments (qui est unique à isomorphisme près). 2) Soit m un entier ≥ 1 . Démontrons que l'on a l'implication

$$(1) (a+ib)^m \in \mathbb{F}_p \Longrightarrow p+1 \text{ divise } m.$$

Soit d le pgcd de m et p+1. Il existe u et $v \in \mathbb{Z}$ tels que d=um+v(p+1). Puisque K^* est d'ordre p^2-1 , on a $\left((a+ib)^{p+1}\right)^{p-1}=1$, donc $(a+ib)^{p+1}$ appartient \mathbb{F}_p . Il résulte que l'on a

(2)
$$((a+ib)^m)^u ((a+ib)^{p+1})^v = (a+ib)^d \in \mathbb{F}_p.$$

Vérifions alors que l'on a d = p + 1. Supposons le contraire. Puisque p + 1 est une puissance de 2, d divise alors $\frac{p+1}{2}$. D'après (2), on en déduit que

$$(a+ib)^{\frac{p+1}{2}} \in \mathbb{F}_p.$$

Par ailleurs, le carré de cet élément est $a^2 + b^2$. En effet, p étant congru à 3 modulo 4, on a $i^p = -i$, et vu que l'on a $a^p = a$ et $b^p = b$, on obtient

$$(a+ib)^{p+1} = (a+ib)^p(a+ib) = (a^p + b^p i^p)(a+ib) = (a-ib)(a+ib) = a^2 + b^2.$$

Cela conduit à une contradiction, car $a^2 + b^2$ étant un générateur de \mathbb{F}_p^* , ce n'est pas un carré dans \mathbb{F}_p (un carré est d'ordre divisant $\frac{p-1}{2}$). On a donc d = p+1, par suite p+1 divise m. Cela prouve l'implication (1). Considérons alors un entier $n \geq 1$ tel que

$$(a+ib)^n = 1.$$

D'après (1), p+1 divise n. Soit $r \in \mathbb{Z}$ tel que n=(p+1)r. L'égalité $(a+ib)^{p+1}=a^2+b^2$ entraı̂ne alors $(a^2+b^2)^r=1$.

Puisque $a^2 + b^2$ est un générateur de \mathbb{F}_p^* , p-1 divise r, donc p^2-1 divise n. Ainsi a+ib est d'ordre p^2-1 , d'où le résultat. 3) Il s'agit de démontrer que 13 et 17 sont des générateurs de \mathbb{F}_{31}^* . Démontrons que tel est bien le cas pour 13, l'argument pour 17 est analogue. On a (critère d'Euler)

$$13^{15} \equiv \left(\frac{13}{31}\right) \mod 31.$$

Par ailleurs, on a

$$\left(\frac{13}{31}\right) = \left(\frac{31}{13}\right) = \left(\frac{5}{13}\right) = \left(\frac{13}{5}\right) = \left(\frac{3}{5}\right) = -1,$$

d'où la congruence

$$13^{15} \equiv -1 \mod 31,$$

ce qui entraı̂ne l'assertion (le fait que 13 ne soit pas d'ordre 6 ni d'ordre 10 modulo 31 résulte alors des congruences $13^2 \equiv 14 \mod 31$ et $13^3 \equiv -4 \mod 31$). Conformément au protocole de Diffie-Hellman, la clé commune de chiffrement est

$$\alpha = (1 + 19i)^{193}$$
.

On a $193 = 6 \times 31 + 7$, d'où les égalités

$$\alpha = (1 - 19i)^6 (1 + 19i)^7 = 21^6 (1 + 19i) = 2 + 7i.$$

4.2) Alice doit envoyer à Bob l'élément $\beta = (4+i)^{193}$. On obtient

$$\beta = (4-i)^6(4+i)^7 = 17^6(4+i) = 1+8i.$$