12일차

IEEE 802.11 Wireless LAN (Wifi)

1. 환경

- a. base station = access point (AP) = 공유기 (ap에 접속한다 = wifi 에 접속한다)
- b. Basic Service Set (BSS): AP가 signal을 줄 수 있는 반경 내

2. Channels, association

- a. 11개 채널
- b. host 는 AP와 associate (wifi에 연결) 하려면 AP's name(SSID) 와 MAC address 를 알아야한다.
- 3. passive/activce scanning \rightarrow 두가지를 비교 설명 할 수 있도록!
 - a. H1 = host
 - b. passive scanning
 - a. AP가 beacon frame 을 보내줌 (BSS의 존재를 host 에게 알리는 방송)

- b. h1 은 받은 beacon frame 으로 BSS을 여러개 알게 되고 그 중 하나와 association.
 - → H1이 association Request 를 AP 에게 보내준다.
- c. AP 가 association Response 를 H1 에게 보내준다.

c. active scanning

- a. H1이 Probe Request frame 을 broadcast 한다.
- b. AP가 H1 에게 Probe Response frame을 보낸다.
- c. H1이 AP 에게 Association Request 를 보낸다.
- d. AP가 H1 에게 Association Response 를 보낸다.

4. frame: addressing

a. 구조 Mac source, dest 가 있고 AP MAC address가 있다. ad hoc mode 도 있다.

b. 무선에서는 802.11 frame을 사용하다가 유선으로 갈때는 802.3 frame 을 사용한다.

5. advanced capabilities

Rate adaptation

 base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

1. 예로 BER (bits error rate) 를 10-3 을 기준을으 데이터를 보내줘야 한다고 했을때 환경이 좋을땐 QAM256으로 데이터를 빠르게 보내주다가 noise 가 많아지고 하면 속도를 낮춰서(SNR 을 줄여서 = QAM256 \rightarrow BPSK) 로해서 BER 을 맞춰서 보내 준다. \rightarrow Rate adaption

6. multiple access

- a. 802.11 : no collision detection (CD) → 신호를 보내고 목적지까지 가기 전에 중 간에 충돌 난 것을 감지할 수 없음 → 그래서 collision avoidance (CA) 방식을 쓴 다!
- 7. MAC Protocol : CSMA/CA → 핵심 : RTS, CTS 를 보낸다.
 - a. sensing → data → ack 줌
 - b. DIFS(sensing 하는 시간) 는 SIFS(받은 데이터의 에러유무와 ACK 데이터를 만드는 시간) 보다 조금 더 길게 해야한다. 이유는? → 수신자가 데이터를 받고 SIFS 시간동안 ACK 를 만들고 있을때 다른 송신자가 DIFS 시간동안 센싱을 할텐데 SIFS 가 길면 다른 송신자들은 보내는 데이터가 없다고 생각해 메세지를 보낼 것이다. 하지만 수신자는 ACK를 보내기 시작하므로 ACK가 깨질 수 있다. 따라서 SIFS는 DIFS 보다 짧게 설정해야 한다.

c. RTS: request to send → 내가 보낼거다!

d. CTS: clear to send → 나한테 누가 보낼거니깐 아무도 보내지마!

• 과정설명

- 1. A, B가 AP에게 RTS를 보낸다. 둘이 충돌이 난다.
- 2. 일정시간이 지난 후 A가 다시 RTS를 보낸다.
- 3. AP는 A가 보낸 RTS를 받고 A를 포함한 주변 모든 host 에게 CTS를 보낸다.
- 4. A는 이를 받고 DATA 를 보낸다.
- 5. DATA를 받은 이후 AP 는 A를 포함한 주변 모든 host 에게 ACK를 보낸다

802.15 : personal area network (bluetooth)

1. 특징

a. ad hoc: no infrastructure → Device와 device 간 통신

Mobility

• 이동성이 있다 → 네트워크 반경을 벗어난다 → 이를 어떻게 처리? routing 이 처리하거나 end-system이 처리하거나

1. 단어

- a. home network : 이동 노드를 식별하는 영구적 고유식별(permenent address)이 가능한 홈 주소
- b. home agent : 현재 이동 노드를 관리하고 있는 라우터
- c. visited network (=foreign network) : 방문한 네트워크, 방문하더라도 permenent address 는 가지고 있음
- d. foreign agent: visited network 의 router
- e. care-of-address : 방문한 네트워크의 주소
- f. correspondent : 이동한 network 에서의 목적지
- g. foreign agent가 준 IP 사용??

2. registration

a. 다른 노드들이 home network 에 요청을 할 것이므로 visited network 의 정보를 home network 에 등록한다.

3. indirect routing

- a. 과정
 - i. correspondent 는 home netwok에 데이터를 packet 한다.
 - ii. home network 는 데이터를 coa 로 보내줌
 - iii. foreign agent 가 패킷을 받아서 mobile 로 준다.
 - iv. 모바일은 home network 에서 받은 correspondent 로 response 해준다.

b. 문제점

i. triangle problem → 이렇게 해야대나? 2번 과정이 복잡함.

- 4. direct routing → triangle problem 해결을 위해
 - a. 과정 (그림에선 빠졌는데 visited network 에서 home network 에 COA 정보를 이 미 준상태)
 - + 1,2는 한번만 일어나고 3,4간에 메세지를 주고받음
 - i. correspondent 가 home network 에 request 를 보냄
 - ii. home network 는 correspondent 에게 foreign address 를 알려줌
 - iii. correspondent 는 foreign agent 에 forwarding 한다.
 - iv. foreign agent 는 모바일로 forwarding 한다
 - v. 모바일은 correspondent 한테 response 한다.

b. foreign agent 가 여러개일 경우

- a. 첫번째 foreign agent 를 anchor foreign agent 로 지정한다.
- b. 이후 new foreign agent 에 mobile 이 가면 그 정보를 anchor foreign agent 가 받음.
- c. correspondent agent 가 anchor foreign agent 에게 정보를 요청하게 되면
- d. 이동한 node가 응답을 주고 response 한다.

Cellular networks (이동통신)

- 1. architecture
 - a. MSC(Mobile Switching Center) : 운영국 (기지국 관리)
 - b. cell: 기지국

2. 2G: voice network architecture

a. BTS: 기지국 (BSS 의 종류중 하나)

3. 3G: voice + data network architecture (data: 메세지, 간단 영상 등)

- a. 2G voice 망은 유지
- b. 데이터 망을 추가
 - a. SGSN, GGSN: 데이터 패킷을 어떻게 잘 보내줄 것인가

4. 4G: LTE network architecture

- all IP core: IP packets tunneled (through core IP network) from base station to gateway
- no separation between voice and data all traffic carried over IP core to gateway

- a. voice 도 data 망에 같이
- b. EPC: Evolved packet core

c. eNodeB : base station (이름만 바뀜)

d. HSS (HLR + VLR) : 통신 가입자

a. HLR: Home location register

b. VLR: Visited location register

5. 5G

	1G	2G	3G	4G	5G
서비스 개시	1984년 3월	1996년 1월	2002년 1월	2011년 7월	2019년 4월
통신 방식	아날로그	디지털	디지털	디지털	디지털
교환 방식	회선 교환	회선(음성) + 패킷(데이터)		패킷 교환	패킷 교환
통신 속도		14.4~153.6Kbps	2~14.4Mbps	75~1000Mbps	1~20Gbps
주요 서비스	음성	음성 문자 저속인터넷	음성 고속 인터넷 영상통화	고음질 통화 초고속 인터넷 고화질 동영상	AR/VR 홀로그램 자율주행차 스마트시티 등

• 2G, 3G, 4G 큰 틀 차이! 알자