Assignment: Sorting, Filtering, and Handling Missing Data

Question 1:

Sort the DataFrame df by the 'Name' column in ascending order.

Solution:

df.sort_values('Name')

Question 2:

Sort the DataFrame df by the 'Salary' column in descending order

Solution:

df.sort values('Salary',ascending=False)

Question 3:

Create a new DataFrame that contains only the rows where 'Age' is greater than 25

Solution:

```
pf = df['Age'].where(cond=df['Age']>25)
pf.dropna()
```

Question 4:

Create a new DataFrame that contains only the rows where 'Department' is 'Finance'

Solution:

```
fin = df.where(cond=df['Department']=='Finance')
fin.dropna()
```

Question 5:

Use the .where() method to create a new DataFrame where 'Salary' is greater than 55000, and replace the rest with NaN

Solution:

Sal1 = df.where(cond=df['Salary']>55000, other='Nan')

Question 6:

Use the .filter() method to filter the columns to include only 'Name' and 'Department'.

Solution:

df.filter(items=['Name', 'Department'])

Question 7:

Calculate the mean age of employees in the DataFrame

Solution:

df['Age'].mean()

Question 8:

Calculate the maximum salary in the DataFrame

Solution:

df['Salary'].max()

Question 9:

Create a DataFrame where any rows with missing values (NaN) in any column are removed

Solution:

dt1 = df.dropna()

Question 10:

Fill the missing values in the 'Salary' column with the mean salary of the remaining employees

Solution:

df.interpolate()