Logica

Corso di Laurea in Informatica AA 2025-2026

Linguaggio Formale

Dato un alfabeto A, denotiamo con A^* l'insieme di tutte le stringhe su A.

Definizione (Linguaggio)

Un **linguaggio** sull'alfabeto A è una coppia $\langle A, L \rangle$ dove $L \subseteq A^*$.

- ▶ Ogni sottoinsieme di A* definisce un linguaggio.
- Siamo interessati esclusivamente ai linguaggi per i quali siano date esplicitamente delle regole di buona formazione delle stringhe sintatticamente corrette.

Logica Proposizionale

Il linguaggio della logica proposizionale ha nell'alfabeto due entità sintattiche fondamentali:

- i simboli proposizionali: formalizzano generiche proposizioni elementari;
- i connettivi: simboli associati ai connettivi linguistici della lingua italiana;

Obiettivo: formalizzare i *connettivi* linguistici e come essi interagiscono con le *proposizioni*.

Proposizioni

Le proposizioni (o asserzioni) sono entità linguistiche che possono essere vere o false. Quindi non possono essere e.g. domande o frasi imperative.

Proposizioni elementari: nessuna sottostringa propria costituisce a sua volta una proposizione, e.g.

- ▶ $5 \in \{0, 1, 2, 5, 7\}$
- \triangleright 2 + 2 = 5

Proposizioni composte: sono costruite componendo altre proposizioni mediante i **connectives**, e.g.

 "c è razionale oppure c è irrazionale, " dove c è una costante.

Connettivi Logici

- ightharpoonup formalizza il concetto di se ... allora: $\phi
 ightharpoonup \psi$ significa "se ϕ è vero allora ψ è vero";
- ▶ \land formalizza il concetto di congiunzione: $\phi \land \psi$ significa " ϕ è vero e ψ è vero";
- V formalizza il concetto di disgiunzione (inclusiva): $\phi \lor \psi$ significa " ϕ è vero oppure ψ è vero";
- ightharpoonup formalizza il concetto di se e solo se: $\phi \equiv \psi$ significa " ϕ è vero se e solo se ψ è vero";
- ▶ ¬ formalizza il concetto di negazione: ¬ ϕ significa " ϕ è falso";
- ▶ ⊥ formalizza il concetto di assurdo.

Il Linguaggio Prop

Definizione (Alfabeto)

L'alfabeto ${\mathcal L}$ della logica proposizionale ha i seguenti simboli

- un insieme numerabile di simboli proposizionali
 - $\mathsf{AT}_{\mathsf{Prop}} = \{ p_0, p_1, \ldots \};$
- i connettivi \lor , \land , \rightarrow , \bot ;
- i simboli ausiliari (e).

Definizione

L'insieme Prop delle proposizioni è definito come il più piccolo insieme P di stringhe su $\mathcal L$ tali che:

- 1. $AT_{Prop} \subseteq P$;
- 2. $\bot \in P$;
- 3. se ϕ , $\psi \in P$ allora $(\phi \lor \psi)$, $(\phi \land \psi)$, $(\phi \rightarrow \psi) \in P$.

Notazioni

Chiamiamo formule atomiche le formule nell'insieme

$$\textbf{AT} = \textbf{AT}_{\mathsf{Prop}} \cup \{\bot\}.$$

- ► Con $\neg \phi$ denotiamo la proposizione $(\phi \rightarrow \bot)$;
- ▶ con $\phi \equiv \psi$ la proposizione $((\phi \rightarrow \psi) \land (\psi \rightarrow \phi))$.

Introdurremo delle convenzioni che facilitano la scrittura di una formula eliminando le parentesi.

Ad esempio, potremo scrivere la formula

$$(\phi \land \psi) \rightarrow (\gamma \rightarrow (\alpha \lor \beta))$$

nella forma più leggibile

$$\phi \land \psi \rightarrow \gamma \rightarrow \alpha \lor \beta$$
,

mentre la stringa $\phi \lor \psi \land \gamma$ è da considerarsi mal formata.

Convenzioni

- 1. Ometteremo di scrivere le parentesi più esterne di una formula, così ad esempio invece di $(\phi \land \psi)$ scriveremo semplicemente $\phi \land \psi$;
- 2. scriveremo $\neg \phi$ invece di $(\neg \phi)$;
- 3. assumiamo che \wedge e \vee legano più fortemente di \rightarrow e \equiv (come nel caso dell'aritmentica quando diciamo che il prodotto lega più della somma); quindi ad esempio $\phi_1 \wedge \phi_2 \rightarrow \psi_1 \vee \psi_2$ sta per la formula $(\phi_1 \wedge \phi_2) \rightarrow (\psi_1 \vee \psi_2)$;
- 4. assumiamo inoltre che \rightarrow , \wedge , \vee associno a destra; quindi $\phi \rightarrow \psi \rightarrow \gamma$ sta per $\phi \rightarrow (\psi \rightarrow \gamma)$ e $\phi \land \psi \land \gamma$ sta per $\phi \land (\psi \land \gamma)$

Funzioni Ricorsive su Prop

Si consideri la seguente definizione di una funzione ℓ : Prop $\to\mathbb{N}$ che ad ogni $\phi \in$ Prop associa la sua lunghezza (il numero di simboli in ϕ).

- 1. $\ell(\phi) = 1$ se $\phi \in \mathbf{AT}$
- 2. $\ell((\phi \circ \psi)) = 3 + \ell(\psi) + \ell(\phi) \text{ con } \circ \in \{\rightarrow, \lor, \land\}$
- La definizione data è corretta, ovvero esiste ed è unica una funzione ℓ che gode delle proprietà (1) e (2) sopra elencate.
- lackbox L'esistenza ed unicità della funzione ℓ deriva dal seguente teorema.

Ricorsione primitiva

Theorem

Sia A un insieme. Date le funzioni

- \blacktriangleright b : **AT** \rightarrow A;
- \triangleright $g_{\rightarrow}: A \times A \rightarrow A;$
- $ightharpoonup g_{\vee} A \times A \rightarrow A;$
- \triangleright $g_{\wedge}: A \times A \rightarrow A$.

esiste unica una funzione $f : Prop \rightarrow A$ tale che:

- 1. $f(\phi) = b(\phi)$ se $\phi \in \mathsf{AT}$;
- 2. $f((\phi \rightarrow \psi)) = g_{\rightarrow}(f(\phi), f(\psi));$
- 3. $f((\phi \lor \psi)) = g_{\lor}(f(\phi), f(\psi));$
- 4. $f((\phi \wedge \psi)) = g_{\wedge}(f(\phi), f(\psi)).$

Sottoformule

Un'importante definizione per ricorsione primitiva è quella di sottoformula di una formula proposizionale.

Definizione

La funzione SF : Prop \rightarrow 2^{Prop} che associa ad ogni proposizione ϕ l'insieme SF[ϕ] delle sue sottoformule è ricorsivamente definita come:

- 1. $SF[\phi] = {\phi}$ se ϕ è atomica.
- 2. $SF[(\phi \lor \psi)] = \{(\phi \lor \psi)\} \cup SF[\phi] \cup SF[\psi]$
- 3. $SF[(\phi \land \psi)] = \{(\phi \land \psi)\} \cup SF[\phi] \cup SF[\psi]$
- 4. $SF[(\phi \rightarrow \psi)] = \{(\phi \rightarrow \psi)\} \cup SF[\phi] \cup SF[\psi]$

Rango

La più semplice nozione di misura di una formula è la funzione ℓ che conta il numero dei simboli in una formula La più utilizzata è quella di rango.

Definizione

Il rango ${\rm rk}[\phi]$ di una formula ρ è definito ricorsivamente nel modo seguente:

- 1. $\mathsf{rk}[\phi] = 1 \mathsf{ se } \phi \in \mathsf{AT}$;
- 2. $\mathsf{rk}[(\phi \circ \psi)] = \mathsf{max}(\mathsf{rk}[\phi], \mathsf{rk}[\psi]) + 1 \; \mathsf{dove} \; \circ \in \{ \rightarrow, \lor, \land \}$

Commento

E' facile osservare come la definizione di rango corrisponda a quella di altezza di un albero.

Proprietà di Prop

Come dimostrare che una proprietà P Prop è vera, i.e. che per ogni $\phi \in \operatorname{Prop}$ vale $P(\phi)$?

Teorema (Principio di induzione strutturale) Sia $P \subset Prop$.

Se

- 1. $P(\phi)$ per ogni $\phi \in \mathsf{AT}$
- 2. per ogni $\phi, \psi \in \text{Prop}$, se $P(\phi)$ e $P(\psi)$ allora $P(\phi \lor \psi), P(\phi \land \psi), (\phi \rightarrow \psi)$ allora per ogni $\phi \in \text{Prop}, P(\phi)$

Dimostrazione.

Basta dimostrare che Prop $\subseteq P$. E' sufficiente notare che P gode delle proprietà (1), (2) e (3) della definizione 3 di Prop. E quindi Prop $\subseteq P$.

Induzione sul Rango

Per dimostare proprietà di Prop useremo quasi sempre il seguente principio.

Teorema (Induzione sul rango)

Sia $P \subseteq \mathsf{Prop}$.

$$\forall \phi \in \mathsf{Prop}(\forall \psi \in \mathsf{Prop}(\mathit{rk}[\psi] < \mathit{rk}[\phi]) \Rightarrow P(\phi)) \Rightarrow \forall \phi \in \mathsf{Prop}.P(\phi)$$

La dimostrazione di questo principio discende direttamente dalla cosiddetta induzione completa sui numeri naturali.

Theorem (Induzione completa sui numeri naturali)

Sia Q una proprietà su \mathbb{N} .

se
$$\forall m \in \mathbb{N}, ((\forall j < m, Q(j)) \Rightarrow Q(m))$$
 allora $\forall n \in \mathbb{N}, Q(n).$

Esempio di Dimostrazione

Dimostriamo ora una proprietà per induzione.

Proposizione

Se
$$\phi \in \mathsf{SF}[\psi]$$
 e $\phi \neq \psi$ allora $\mathit{rk}[\phi] < \mathit{rk}[\psi]$.

Dimostrazione.

La dimostrazione procede per induzione strutturale su $\psi.$

Base: Se $\psi \in \mathsf{AT}$ il caso è vacuamente vero.

Passo induttivo: Distinguiamo vari casi a seconda della struttura sintattica di ψ .

cont.

- $(\psi = \gamma_1 \rightarrow \gamma_2)$. se $\phi \in \mathsf{SF}[\psi]$ e $\phi \neq \psi$ allora $\phi \in \mathsf{SF}[\gamma_1]$ oppure $\phi \in \mathsf{SF}[\gamma_2]$. Esaminiamo entrambe le alternative.
 - se $\phi \in SF[\gamma_1]$ allora se $\phi = \gamma_1$, abbiamo che $\mathrm{rk}[\phi] = \mathrm{rk}[\gamma_1]$ e se $\psi \neq \gamma_1$ allora per Ipotesi Induttiva $\mathrm{rk}[\phi] < \mathrm{rk}[\gamma_1]$, e quindi per entrambi le possibilità abbiamo che $\mathrm{rk}[\phi] \leq \mathrm{rk}[\gamma_1]$. Dato che $\mathrm{rk}[\gamma_1] < \mathrm{rk}[\psi]$ abbiamo la tesi.
 - $\psi \in \mathsf{SF}[\gamma_2]$ ragioniamo esattamente come il caso precedente.
- $(\psi = \gamma_1 \land \gamma_2)$, $(\psi = \gamma_1 \lor \gamma_2)$. Il ragionamento è identico al caso precedente.