Non-flat elliptic fourfolds, three-form cohomology and 4D strongly coupled theories

Paul-Konstantin Oehlmann

Uppsala University

Based on arXiv:2102.10722

String Pheno Seminar Series 2021, Harvard, April 6th. 2021

Hodge numbers in fourfolds

Fourfolds admit Kahler and complex structure moduli counted by $h^{1,1}$ and $h^{3,1}$

06.04.2021

2 / 17

P-K. Oehlmann Uppsala University

Hodge numbers in fourfolds

Fourfolds admit Kahler and complex structure moduli counted by $h^{1,1}$ and $h^{3,1}$ Fourfolds admit one additional independent Hodge number $h^{2,1}$

P-K. Oehlmann Uppsala University 06.04.2021 2 / 17

Hodge numbers in fourfolds

Fourfolds admit Kahler and complex structure moduli counted by $h^{1,1}$ and $h^{3,1}$ Fourfolds admit one additional independent Hodge number $h^{2,1}$

P-K. Oehlmann Uppsala University 06.04.2021

2 / 17

Hodge numbers in fourfolds

Fourfolds admit Kahler and complex structure moduli counted by $h^{1,1}$ and $h^{3,1}$ Fourfolds admit one additional independent Hodge number $h^{2,1}$

• Kahler and complex structure **interchanged** by **mirror symmetry**

P-K. Oehlmann Uppsala University 06.04.2021

2 / 17

Hodge numbers in fourfolds

Fourfolds admit **Kahler** and **complex structure moduli** counted by $h^{1,1}$ and $h^{3,1}$ **Fourfolds** admit one additional **independent** Hodge number $h^{2,1}$

- Kahler and complex structure interchanged by mirror symmetry
- $h^{2,1}$ is self-mirror \rightarrow deserves some attention [Greiner, Grimm 15]

How do $h^{2,1}$ threeforms contribute in M/F-theory on such fourfolds X_4 ?

P-K. Oehlmann Uppsala University 06.04.2021 3 / 17

How do $h^{2,1}$ threeforms contribute in M/F-theory on such fourfolds X_4 ?

• 3D, M-theory on X_4 : expansion of C_3 threeform yields additional massless singlets N^I $C_3 \to N^I \eta_I^{(3)} + \dots$, $I = 1 \dots h^{2,1}(X_4)$

P-K. Oehlmann Uppsala University 06.04.2021 3 / 17

How do $h^{2,1}$ threeforms contribute in **M/F-theory** on such fourfolds X_4 ?

- 3D, M-theory on X_4 : expansion of C_3 threeform yields additional massless singlets N^I $C_3 \to N^I \eta_I^{(3)} + \dots$, $I = 1 \dots h^{2,1}(X_4)$
- 4D F-theory lift, if fourfold is elliptic, splits up $h^{2,1}(X_4) = h^{2,1}(B_3) + h^{2,1}_{fiber}$
 - Base contribution: $h^{2,1}(B_3)$ dualize to 4D RR U(1)'s
 - Fiber contribution: $h_{\text{fiber}}^{2,1}$ stay 4D chiral singlets

P-K. Oehlmann Uppsala University 06.04.2021

3 / 17

How do $h^{2,1}$ threeforms contribute in **M/F-theory** on such fourfolds X_4 ?

- 3D, M-theory on X_4 : expansion of C_3 threeform yields additional massless singlets N^I $C_3 \to N^I \eta_I^{(3)} + \dots$, $I = 1 \dots h^{2,1}(X_4)$
- 4D F-theory lift, if fourfold is elliptic, splits up $h^{2,1}(X_4) = h^{2,1}(B_3) + h_{\text{fiber}}^{2,1}$
 - Base contribution: $h^{2,1}(B_3)$ dualize to 4D RR U(1)'s
 - Fiber contribution: $h_{\text{fiber}}^{2,1}$ stay 4D chiral singlets

The $h_{\text{fiber}}^{2,1}$ singlets mix with Kahler moduli and admit special shift symmetries \rightarrow deserves some attention [Grimm; Grimm, Taylor 12]

How do $h^{2,1}$ threeforms contribute in **M/F-theory** on such fourfolds X_4 ?

- 3D, M-theory on X_4 : expansion of C_3 threeform yields additional massless singlets N^I $C_3 \to N^I \eta_I^{(3)} + \ldots, \quad I = 1 \ldots h^{2,1}(X_4)$
- 4D F-theory lift, if fourfold is elliptic, splits up $h^{2,1}(X_4) = h^{2,1}(B_3) + h^{2,1}_{fiber}(B_4)$
 - Base contribution: h^{2,1}(B₃) dualize to 4D RR U(1)'s
 - Fiber contribution: $h_{\text{fiber}}^{2,1}$ stay 4D chiral singlets

The $h_{\text{fiber}}^{2,1}$ singlets mix with Kahler moduli and admit special shift symmetries \rightarrow deserves some attention [Grimm, Grimm, Taylor 12]

Q: How to engineer $h_{\text{fiber}}^{2,1}$?

How do $h^{2,1}$ threeforms contribute in **M/F-theory** on such fourfolds X_4 ?

- 3D, M-theory on X_4 : expansion of C_3 threeform yields additional massless singlets N^I $C_3 \rightarrow N^I \eta_I^{(3)} + \ldots, \quad I = 1 \ldots h^{2,1}(X_4)$
- 4D F-theory lift, if fourfold is elliptic, splits up $h^{2,1}(X_4) = h^{2,1}(B_3) + h^{2,1}_{fiber}$
 - Base contribution: $h^{2,1}(B_3)$ dualize to 4D RR U(1)'s
 - Fiber contribution: $h_{\text{fiber}}^{2,1}$ stay 4D chiral singlets

The $h_{\text{fiber}}^{2,1}$ singlets mix with Kahler moduli and admit special shift symmetries \rightarrow deserves some attention [Grimm, Grimm, Taylor 12]

Q: How to engineer $h_{\text{fiber}}^{2,1}$?

A: Compactifications of certain 6D SCFT sectors

Consider an elliptic threefold with G_1 and G_2 group type of singularities,

• G_i fibers can be resolved in a crepant way

Consider an elliptic threefold with G_1 and G_2 group type of singularities,

• G_i fibers can be resolved in a crepant way

Consider an elliptic threefold with G_1 and G_2 group type of singularities,

- G_i fibers can be resolved in a crepant way
- The $[G_1 G_2]$ intersection might be non-minimal \rightarrow 6D SCFT !

Consider an elliptic threefold with G_1 and G_2 group type of singularities,

- G_i fibers can be resolved in a crepant way
- The $[G_1$ - $G_2]$ intersection might be non-minimal \rightarrow 6D SCFT !

Two (crepant) ways to resolve the threefold

Consider an elliptic threefold with $[G_1-G_2]$ collision

• T Blow-ups of the base until the fiber is regular

Consider an elliptic threefold with $[G_1-G_2]$ collision

- T Blow-ups of the base until the fiber is regular
- **Resolve all fibers** requires $\dim(\sum_i rank(\mathfrak{g}_i)) = R$
- Associated 6D SCFT admits T dimensional tensor branch [del Zotto, Heckman,

Tomasiello, Vafa 14]

Consider an elliptic threefold with $[G_1-G_2]$ collision

- T Blow-ups of the base until the fiber is regular
- **Resolve all fibers** requires $\dim(\sum_i rank(\mathfrak{g}_i)) = R$
- Associated 6D SCFT admits T dimensional tensor branch [del Zotto, Heckman, Tomasiello, Vafa'14]
- CB = T + R dimensional 5D Coulomb branch

Consider an elliptic threefold with $[G_1-G_2]$ collision

- T Blow-ups of the base until the fiber is regular
- **Resolve all fibers** requires $\dim(\sum_i rank(\mathfrak{g}_i)) = R$
- Associated 6D SCFT admits T dimensional tensor branch [del Zotto, Heckman, Tomasiello, Vafa 14]
- CB = T + R dimensional 5D Coulomb branch

There exists an alternative resolution

P-K. Oehlmann Uppsala University 06.04.2021

Non-minimal singularities admits a **non-flat resolution** [Schafer-Nameki, Lawrie 12; Dierigl, Oehlmann, Ruehle 18]

Non-minimal singularities admits a **non-flat resolution** [Schafer-Nameki, Lawrie 12; Dierigl, Oehlmann, Ruehle 18]

Non-minimal singularities admits a **non-flat resolution** [Schafer-Nameki, Lawrie 12; Dierigl, Ochlmann, Ruehle 18]

• Replace fiber with several surfaces $\dim_{\mathbb{C}}(E_i) = 2$

Non-minimal singularities admits a **non-flat resolution** [Schafer-Nameki, Lawrie 12; Dierigl, Ochlmann, Ruehle 18]

• Replace fiber with several surfaces $\dim_{\mathbb{C}}(E_i) = 2$

Non-minimal singularities admits a **non-flat resolution** [Schafer-Nameki, Lawrie 12; Dierigl, Ochlmann, Ruehle 18]

• Replace fiber with several surfaces $\dim_{\mathbb{C}}(E_i) = 2$

Non-minimal singularities admits a **non-flat resolution** [Schafer-Nameki, Lawrie'12; Dierigl, Oehlmann, Ruehle'18]

• Replace fiber with several surfaces $\dim_{\mathbb{C}}(E_i) = 2$

Non-minimal singularities admits a **non-flat resolution** [Schafer-Nameki, Lawrie 12; Dierigl, Oehlmann, Ruehle 18]

- Replace fiber with several surfaces $\dim_{\mathbb{C}}(E_i) = 2$
- Also needs CB non-flat surfaces!
- Consistent with 5D M-theory duality of 6D SCFT compactifications

[Apruzzi, Lin, Mayrhover; Apruzzi, Lin, Schafer-Nameki, Wang, Lawrie; Hubner 18,19]

Phases of non-minimal singularities

Both resolutions part of extended Kahler cone of the threefold

Phases of non-minimal singularities

Both resolutions part of extended Kahler cone of the threefold

Non-flatness describes resolved non-minimal singularities without changing the base

7 / 17

Extend the base from $B_2 \rightarrow B_3$: threefold \rightarrow fourfold X_4

• The fiber singularity appears over Riemann surfaces $C_{\alpha} \in B_3$ of genus g_{α}

Extend the base from $B_2 \rightarrow B_3$: threefold \rightarrow fourfold X_4

- The fiber singularity appears over Riemann surfaces $C_{\alpha} \in B_3$ of genus g_{α}
- Fiber resolution via surfaces E_i base independent

Extend the base from $B_2 \rightarrow B_3$: threefold \rightarrow fourfold X_4

- The fiber singularity appears over Riemann surfaces $C_{\alpha} \in B_3$ of genus g_{α}
- Fiber resolution via surfaces *E_i* base independent
- Gives rise to divisor $D_{i,\alpha}$ that itself admits a **fibration structure**

Extend the base from $B_2 \rightarrow B_3$: threefold \rightarrow fourfold X_4

- The fiber singularity appears over Riemann surfaces $C_{\alpha} \in B_3$ of genus g_{α}
- Fiber resolution via surfaces E; base independent
- Gives rise to divisor $D_{i,\alpha}$ that itself admits a **fibration structure**
- Cohomology of $D_{i,\alpha}$ from Leray-Hirsch spectral sequence:

$$h^{0,0}(D_{i,\alpha}) = h^{0,0}(\mathcal{C}_{\alpha}) \cdot h^{0,0}(E_{i,\alpha}) = 1$$

$$h^{1,0}(D_{i,\alpha}) = h^{1,0}(\mathcal{C}_{\alpha}) \cdot h^{0,0}(E_{i,\alpha}) = g_{\alpha}$$

Non-flat fourfold cohomology

$$\begin{array}{ccc}
E_{i,\alpha} \to & D_{i,\alpha} \\
& \downarrow \pi \\
& \mathcal{C}_{\alpha}
\end{array}$$

06.04.2021

9 / 17

ullet $D_{i,lpha}$ embedded into fourfold X_4 via Gysin map ι [Greiner,Grimm'17]

P-K. Oehlmann Uppsala University

Non-flat fourfold cohomology

$$\begin{array}{ccc}
E_{i,\alpha} \to & D_{i,\alpha} \\
\downarrow \pi \\
& \mathcal{C}_{\alpha}
\end{array}$$

- $D_{i,\alpha}$ embedded into fourfold X_4 via Gysin map ι [Greiner, Grimm 17]
- Compute cohomology contribution from Gysin complex in X4 [Mavlyutov 00]

$$\bigoplus_{i,\alpha} H^{0,0}(D_{i,\alpha}) \stackrel{\iota}{\to} H^{1,1}(X_4)$$

$$\oplus_{i,\alpha}H^{1,0}(D_{i,\alpha})\stackrel{\iota}{\to}H^{2,1}(X_4)$$

Non-flat fourfold cohomology

$$\begin{array}{ccc}
E_{i,\alpha} \to & D_{i,\alpha} \\
\downarrow \pi \\
\mathcal{C}_{\alpha}
\end{array}$$

- $D_{i,\alpha}$ embedded into fourfold X_4 via Gysin map ι [Greiner, Grimm 17]
- Compute cohomology contribution from Gysin complex in X₄ [Mavlyutov 00]

$$\bigoplus_{i,\alpha} H^{0,0}(D_{i,\alpha}) \stackrel{\iota}{\to} H^{1,1}(X_4)$$

$$\bigoplus_{i,\alpha} H^{1,0}(D_{i,\alpha}) \stackrel{\iota}{\rightarrow} H^{2,1}(X_4)$$

• **Sum** over all CB_{α} surfaces E_i over each base curve C_{α}

$$h^{1,1}(X_4)_{\mathsf{non-flat}} = \sum_{\alpha} CB_{\alpha}$$

$$h^{2,1}(X_4)_{\mathsf{non-flat}} = \sum_{\alpha} g_{\alpha} \cdot CB_{\alpha}$$

P-K. Oehlmann Up

Non-flat fourfold cohomology

$$\begin{array}{ccc}
E_{i,\alpha} \to & D_{i,\alpha} \\
\downarrow \pi \\
\mathcal{C}_{\alpha}
\end{array}$$

- $D_{i,\alpha}$ embedded into fourfold X_4 via Gysin map ι [Greiner, Grimm 17]
- Compute cohomology contribution from Gysin complex in X₄ [Mavlyutov 00]

$$\bigoplus_{i,\alpha} H^{0,0}(D_{i,\alpha}) \stackrel{\iota}{\rightarrow} H^{1,1}(X_4)$$

$$\oplus_{i,\alpha}H^{1,0}(D_{i,\alpha})\stackrel{\iota}{\to} H^{2,1}(X_4)$$

• **Sum** over all CB_{α} surfaces E_i over each base curve C_{α}

$$h^{1,1}(X_4)_{\mathsf{non-flat}} = \sum \mathit{CB}_{lpha}$$

$$h_{\mathsf{fiber}}^{2,1} \ni h^{2,1}(X_4)_{\mathsf{non-flat}} = \sum g_{\alpha} \cdot \mathit{CB}_{\alpha}$$

Summary

Double check in toric examples via Batyrev construction [Klemm, Lian, Roan, Yau'97]

- **E-string theories** on genus g = 153 curves \checkmark
- Higher rank theories e.g. $[E_8xSU(n)]$ superconformal matter over g >> 1 curves \checkmark

10 / 17

Summary

Double check in toric examples via Batyrev construction [Klemm, Lian, Roan, Yau'97]

- **E-string theories** on genus g = 153 curves $\sqrt{}$
- **Higher rank theories** e.g. $[E_8 \times SU(n)]$ superconformal matter over g >> 1curves √

Consider conifold type transitions in fourfolds that remove such non-flat fibers

- Removal via Higgs branch type of transitions
- 2 Removal via **Coulomb branch type** of transitions

Summary

Double check in toric examples via Batyrev construction [Klemm, Lian, Roan, Yau' 97]

- E-string theories on genus g = 153 curves $\sqrt{}$
- Higher rank theories e.g. $[E_8 \times SU(n)]$ superconformal matter over g >> 1curves √

Consider conifold type transitions in fourfolds that remove such non-flat fibers

- Removal via Higgs branch type of transitions
- 2 Removal via **Coulomb branch type** of transitions

Disclaimer: Fourfold examples X_4 is **compact** and **no G₄ flux!**

Start in 6D: Construct threefold with $E_6 \times U(1)$ gauge group and an **E-string**

P-K. Oehlmann Uppsala University 06.04.2021 11 / 17

Start in 6D: Construct threefold with $E_6 \times U(1)$ gauge group and an **E-string**

• Phase 1: Base blow-up does not change hodge numbers $\Delta h^{i,j}(X_3)=0$

Start in 6D: Construct threefold with $E_6 \times U(1)$ gauge group and an **E-string**

- Phase 1: Base blow-up does not change hodge numbers $\Delta h^{i,j}(X_3)=0$
- ullet Phase 2: Deform the E-string into $(27_{-\frac{1}{3}}+1_1)$ hypermultiplets
- Enforced by 6D anomalies [Dierigl, Oehlmann, Ruehle 18]

Start in 6D: Construct threefold with $E_6 \times U(1)$ gauge group and an **E-string**

- Phase 1: Base blow-up does not change hodge numbers $\Delta h^{i,j}(X_3)=0$
- Phase 2: Deform the E-string into $(27_{-\frac{1}{3}}+1_1)$ hypermultiplets
- Enforced by 6D anomalies [Dierigl, Oehlmann, Ruehle 18]

Perform the same transition in a fourfold

P-K. Oehlmann Uppsala University 06.04.2021 11 / 17

Place E-string type fiber is over Riemann surface of e.g. g = 5

- Phase 1: Deform the E-string curve into $(27_{-\frac{1}{2}}+1_1)$ curves
- Example: Cohomology change: $\Delta h^{1,1} = -1, \Delta h^{2,1} = -5$ \checkmark

P-K. Oehlmann Uppsala University 06.04.2021 12 / 17

The $E_6 \times U(1)$ deformed fourfold

The ${\color{red}27_{-\frac{1}{3}}}$ and ${\color{blue}1_1}$ curves re-intersect in codimension 3 non-flat point

P-K. Oehlmann Uppsala University 06.04.2021 13 / 17

The $E_6 \times U(1)$ deformed fourfold

The $27_{\frac{1}{2}}$ and 1_1 curves re-intersect in codimension 3 non-flat point

- This is a non-perturbative superpotential coupling term
- How to see that? further break the U(1) group

P-K. Oehlmann Uppsala University 06.04.2021 13 / 17

Further break to E_6

Same locus: flat fiber of E₈ bouquet type

- This is a 27³ triple intersection point
- Adding U(1) over enhances the E_8 point

Adding to $E_6 \times U(1)$ again

15 / 17

Adding the U(1) renders $27^{3}_{-\frac{1}{3}}$ not gauge invariant anymore

P-K. Oehlmann Uppsala University 06.04.2021

Adding to $E_6 \times U(1)$ again

15 / 17

Adding the U(1) renders $\mathbf{27}_{-\frac{1}{3}}^{3}$ not gauge invariant anymore

- ullet Inserting the $\mathbf{1}_{-1}$ singlet, it becomes gauge invariant 4point coupling
- D1 string instanton induced coupling [Achmed-Zade, Garcia-Etxebarria, Mayrhofer 18]

P-K. Oehlmann Uppsala University 06.04.2021

Adding to $E_6 \times U(1)$ again

Adding the U(1) renders $\mathbf{27}_{-\frac{1}{3}}^{3}$ not gauge invariant anymore

- ullet Inserting the $\mathbf{1}_{-1}$ singlet, it becomes gauge invariant 4point coupling
- D1 string instanton induced coupling [Achmed-Zade, Garcia-Etxebarria, Mayrhofer 18]

A remnant of the deformed E-string curve

P-K. Oehlmann Uppsala University 06.04.2021 15 / 17

Phase 2: Blow-ups of B_3 to remove E-string curve

• Successive blow-ups **split up the non-flat** curve into **several** \mathbb{P}^1 's

Phase 2: Blow-ups of B_3 to remove E-string curve

• Successive blow-ups **split up the non-flat** curve into **several** \mathbb{P}^1 's

Phase 2: Blow-ups of B_3 to remove E-string curve

- Successive blow-ups split up the non-flat curve into several \mathbb{P}^1 's Example: cohomology change: $\Delta(h^{1,1},h^{2,1},h^{3,1})=(7,-5,-13)\checkmark$
- 6 more blow-ups of B_3 required with $\Delta h^{i,1}(X_4) = 0$

Phase 2: Blow-ups of B_3 to remove E-string curve

- Successive blow-ups split up the non-flat curve into several \mathbb{P}^1 's Example: cohomology change: $\Delta(h^{1,1},h^{2,1},h^{3,1})=(7,-5,-13)\checkmark$
- 6 more blow-ups of B_3 required with $\Delta h^{i,1}(X_4) = 0$
- Euler number invariant: $\Delta \chi = 6(8 + \Delta h^{1,1} + \Delta h^{3,1} \Delta h^{2,1}) = 0$
- D3 tadpole unchanged: $\Delta \int G_a^2 = \Delta n_{d3}/12$

P-K. Oehlmann Uppsala University

06 04 2021

16 / 17

- Resolve non-minimal fiber singularities, sacrificing equi-dimensionality
- Compactified 6D conformal matter on on Riemann surface
- Contributes 4D **singlets** from $h_{\text{fiber}}^{2,1} = g \cdot CB$

- Resolve non-minimal fiber singularities, sacrificing equi-dimensionality
- Compactified 6D conformal matter on on Riemann surface
- Contributes 4D **singlets** from $h_{\text{fiber}}^{2,1} = g \cdot CB$

These fibers can be removed by

- Higgs branch type deformation, push non-flatness to points in B_3
 - non-perturbative 4point couplings among e.g. E-string left-overs
- Coulomb branch type transitions by blow-ups of B₃ base
 - changes all hodge numbers but keeps Euler number $\chi(X_4)$ invariant

- Resolve non-minimal fiber singularities, sacrificing equi-dimensionality
- Compactified 6D conformal matter on on Riemann surface
- Contributes 4D **singlets** from $h_{\text{fiber}}^{2,1} = g \cdot CB$

These fibers can be removed by

- Higgs branch type deformation, push non-flatness to points in B_3
 - non-perturbative 4point couplings among e.g. E-string left-overs
- Coulomb branch type transitions by blow-ups of B₃ base
 - changes all hodge numbers but keeps Euler number $\chi(X_4)$ invariant

Outlook

- **Need** to add G_4 -flux! Use invariance of χ under transitions
- Non-flat fibers with monodromy, transitions with higher rank theories

- Resolve non-minimal fiber singularities, sacrificing equi-dimensionality
- Compactified 6D conformal matter on on Riemann surface
- Contributes 4D singlets from $h_{\text{fiber}}^{2,1} = g \cdot CB$

These fibers can be removed by

- ullet Higgs branch type deformation, push non-flatness to points in B_3
 - non-perturbative 4point couplings among e.g. E-string left-overs
- Coulomb branch type transitions by blow-ups of B_3 base
 - changes all hodge numbers but keeps Euler number $\chi(X_4)$ invariant

Thank You Very Much

Outlook

- **Need** to add G_4 -flux! Use invariance of χ under transitions
- Non-flat fibers with monodromy, transitions with higher rank theories