Summary | Vectors

Introduction

Revise Vectors unit from G.C.E (A/L) Combined Mathematics.

Direction Cosines

Suppose $\vec{p}=a\underline{i}+b\underline{j}+c\underline{k}$. Direction cosines of p are $\cos\alpha,\cos\beta,\cos\gamma$ where α,β,γ are the angles p makes with x,y,z axes.

Unit vector in the direction of $\vec{p}=\underline{i}\cos lpha+\underline{j}\cos eta+\underline{k}\cos \gamma$. Because of this:

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

Direction Ratio

Ratio of the direction cosines is called as direction ratio.

$$\cos \alpha : \cos \beta : \cos \gamma$$

Cross Product

$$a imes b = |a||b|sin(heta)n = egin{bmatrix} rac{\dot{i}}{a_x} & rac{\dot{k}}{a_y} & a_z \ b_x & b_y & b_z \end{bmatrix}$$

n is the **unit normal vector** to a and b. Direction is based on the right hand rule.

$$a \times b = 0 \implies |a| = 0 \lor |b| = 0 \lor a \parallel b$$

Cross products between i, j, k are circular.

$$i \times j = k$$

$$j \times i = -k$$

$$j \times k = i$$

$$k \times i = j$$

$$k \times i = j$$

Properties

- $a \times a = 0$
- $(a \times b) = -(b \times a)$
- $a \times (b+c) = (a \times b) + (a \times c)$

(i) Note

Area of a parallelogram $ABCD = |\vec{AB} imes \vec{AD}|$

Scalar Triple Product

$$[a,b,c] = a \cdot (b imes c) = \det egin{pmatrix} a_x & a_y & a_z \ b_x & b_y & b_z \ c_x & c_y & c_z \end{pmatrix}$$
 $[a,b,c] = a \cdot (b imes c) = (a imes b) \cdot c$

$$[a,b,c]=a\cdot (b\wedge c)=(a\wedge b)\cdot c$$

$$[a,b,c]=[b,c,a]=[c,a,b]=-[a,c,b]$$

[a,b,c]=0 iff a,b,c are coplanar. Swapping any 2 vectors will negate the product.

(i) Note

Volume of a parallelepiped with a, b, c as adjacent edges = [a, b, c]

Volume of a tetrahedron with a, b, c as adjacent edges = $\frac{1}{6}\left[a,b,c\right]$

Vector Triple Product

$$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$$

Resulting vector lies in the plane that contains \boldsymbol{b} and \boldsymbol{c}

Section Formula

Suppose O is the reference point, and P,Q are 2 points.

If R divides the line segment PQ in the ratio m:n (both are positive and $m\geq n$), the division can either be internal or external.

Internally

$$\overrightarrow{\mathrm{OR}} = \dfrac{\overrightarrow{m\mathrm{OQ}} + n\overrightarrow{\mathrm{OP}}}{m+n}$$

Externally

$$\overrightarrow{\mathrm{OR}} = \dfrac{\overrightarrow{m\mathrm{OQ}} - n\overrightarrow{\mathrm{OP}}}{m-n}$$

Straight Lines

Passes through a point & parallel to a vector

Equation for a line that:

- ullet passes through $\underline{r_0} = \langle x_0, y_0, z_0
 angle$
- ullet is parallel to $\, \underline{v} = a \underline{i} + b \underline{j} + c \underline{k} \,$

Parametric equation

$$\underline{r} = r_0 + t\underline{v}; \ t \in \mathbb{R}$$

Symmetric equation

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

Passes through 2 points

Equation of a line passes through $A=(x_1,y_1,z_1)$, $B=(x_2,y_2,z_2)$. $\underline{r_A}$ and $\underline{r_B}$ are the position vectors of A and B.

Parametric equation

$$\underline{r}=(1-t)r_A+tr_B;\;t\in\mathbb{R}$$

Symmetric equation

$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$

(i) Note

To show that two straight lines intersect in 3D space, it is **not** enough to show that the cross product of their parallel vectors is non-zero.

Also: Existence of a point which satisfies both lines must be proven.

Normal to 2 lines

Let α , β be two lines.

$$lpha:rac{x-x_1}{a_1}=rac{y-y_1}{b_1}=rac{z-z_1}{c_1};\;\;eta:rac{x-x_2}{a_2}=rac{y-y_2}{b_2}=rac{z-z_2}{c_2}$$

Here $v_1=\langle a_1,b_1,c_1\rangle$, $v_2=\langle a_2,b_2,c_2\rangle$ are 2 vectors parallel to α,β respectively.

Normal to both lines: $v_1 \times v_2$. Unit normal to both lines can be found by:

$$rac{v_1 imes v_2}{|v_1 imes v_2|}$$

Angle between 2 straight lines

Using the α , β lines mentioned above:

$$\cos heta = rac{v_1 \cdot v_1}{|v_1| \cdot |v_2|} = rac{(a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}) \cdot (a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k})}{|a_1 \underline{i} + b_1 \underline{j} + c_1 \underline{k}| \cdot |a_2 \underline{i} + b_2 \underline{j} + c_2 \underline{k}|}$$

Here v_1, v_2 are 2 vectors parallel to α, β respectively.

Shortest distance to a point

Suppose x_1 and x_2 lie on a line. Shortest distance to the point P is:

$$d^2 = rac{\left|\left(\underline{x_2} - \overrightarrow{OP}
ight) imes \left(\underline{x_1} - \overrightarrow{OP}
ight)
ight|^2}{\left|x_2 - x_1
ight|^2}$$

Planes

Equation of planes can expressed in either vector or cartesian form. Vector equation is the one containing only vectors. Cartesian equation is in the form: Ax + By + Cz = D.

Contains a point and parallel to 2 vectors

Suppose a plane:

- is parallel to both $\, \underline{a} \,$ and $\, \underline{b} \,$ where $\, a \times b \neq 0 \,$
- ullet contains $\underline{r_0}=x_0 \underline{i}+y_0 j+z_0 \underline{k}$

Equation for the plane is:

$$\underline{r} = r_0 + s\underline{a} + t\underline{b} \; ; \; s,t \in \mathbb{R}$$

Contains a point and normal is given

Suppose a plane:

- ullet contains $\underline{r_0}=x_0 \underline{i}+y_0 \underline{j}+z_0 \underline{k}$
- ullet has a normal \underline{n}

Equation for the plane is:

$$(\underline{r} - r_0) \cdot \underline{n} = 0$$

Contains 3 points

Suppose a plane contains r_0, r_1, r_2 ($\underline{r_0}, \underline{r_1}, \underline{r_2}$ are the position vectors of respectively).

$$(\underline{r} - \underline{r_1}) \cdot \left[(\underline{r_1} - \underline{r_0}) \times (\underline{r_1} - \underline{r_2}) \right] = 0$$

Normal to a plane

Suppose ax+by+cz=d is a plane. $\underline{n}=a\underline{i}+b\underline{j}+c\underline{k}$ is a normal to the plane.

Angle between 2 planes

Consider the two planes:

- $A: a_1x + a_2y + a_3z = d$
- $B: b_1x + b_2y + b_3z = d'$

The angle between the planes ϕ is given by:

$$\cos(\phi) = rac{n_A \cdot n_B}{|n_A| \cdot |n_B|} = rac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{(a_1^2 + a_2^2 + a_3^2)(b_1^2 + b_2^2 + b_3^2)}}$$

Here n_A, n_B are normal to the planes A, B.

Shortest distance to a point

Considering a plane ax + by + cz = d.

$$\text{distance} = \frac{|(\underline{r_1} - \underline{r_0}) \cdot \underline{n}|}{|\underline{n}|}$$

- ullet \underline{n} is a normal to the plane
- ullet r_0 is the position vector of any known point on the plane
- ullet r_1 is the position vector to the arbitrary point

Skew Lines

Two non-parallel lines in a 3-space that do not intersect.

Normal to 2 skew lines

Let l_1, l_2 be 2 skew lines.

$$l_1: rac{x-x_0}{a_0} = rac{y-y_0}{b_0} = rac{z-z_0}{c_0} \; ; \; \; l_2: rac{x-x_1}{a_1} = rac{y-y_1}{b_1} = rac{z-z_1}{c_1}$$

The unit normal to both lines n is:

$$\underline{n} = rac{\langle a_0, b_0, c_0
angle imes \langle a_1, b_1, c_1
angle}{|\langle a_0, b_0, c_0
angle imes \langle a_1, b_1, c_1
angle|}$$

Distance between 2 skew lines

$$\mathrm{distance} = |\overrightarrow{AB} \cdot \underline{n}|$$

Here

- ullet \underline{n} is the normal to both l_1, l_2
- ullet A and B are points lying on each line

This PDF is saved from https://s1.sahithyan.dev