Intro to Statistical Learning

What is Statistical Learning?

Modeling

Every analysis we will do assumes a structure like:

... or, if you prefer...

```
(response variables) = f(explanatory variables) + (noise)
(dependent variables) = f(independent variables) + (noise)
```

(target) = f(predictors) + (noise)

Modeling

In any case: we are trying to reconstruct information in data, and we are hindered by random noise.

The function f might be very simple...

$$Y = X + (\epsilon)$$

... or very complex

$$z_i = b_0 + b_1 x_i$$

$$q_i = \frac{1}{1 + \exp(-z_i)}$$

$$y_i \sim \text{Bern}(q_i)$$

This or That?

Statistical Learning vs. Machine Learning

You will often hear people refer to machine learning in reference to the topics in this class.

My opinion:

Statistical learning is more concerned with the *model structure*, *interpretation of estimates*, and *understanding error*.

Machine learning is more concerned with *model implementation* and *computational demands*.

Quantitative (numeric) vs. qualitative (categorical)

Often, the nature of our models will differ depending on the types of data involved!

Regression vs. Classification

regression = the response variables are quantitative

classification = the response variables are *categorical*

Supervised vs. Unsupervised

supervised learning = our data includes observations of the output variable

What drug treatments are associated with better disease outcomes?

unsupervised learning = our data does NOT include any observations of the output variable

What social groups already exist among the Stat 434 students?

Prediction vs. Inference

So, why do we care about estimating f?

prediction: We are trying to use future inputs to guess about future outputs.

Which advertisements is Dr. B. most likely to click on Instagram?

inference: We are trying to tell a story about the relationship between variables.

Which genes are more activated when breast cancer is present?

What do we need to learn?

Why not just "plug-and-chug"?

It is important to think carefully about:

- Assumptions: What do various models assume to be true about the data structure? Are these justified?
- Interpretations: What can we learn by estimating f for a particular model? Is that information what we are looking for?
- Estimation: How is each f being approximated? Will this be a close approximation?
- Usage: What are we going to do once we estimate f? Do certain models lend themselves better than others?

Estimation

If we are doing **prediction**, we mostly don't care about *assumptions*.

The "best" model is the model that predicts most accurately.

If we are doing **inference**, we care a lot about *assumptions*.

The "best" model is the one that matches the truth.

In this Class

You will learn:

- To apply many different models to real data using R or python.
- To interpret the output of these model estimates
- To use *cross-validation* to compare models
- To explain the general structure and philosophy behind each model
- To select an appropriate "best" model for a data analysis, and make a well-reasoned argument for your choice.