Álgebra Linear e Aplicações - Lista 6

Entregar dia 25 de Abril

A lista de hoje soma 60 pontos, ao invés dos típicos 50 pontos. Isso é porque o problema 2.b) é opcional. Se fizerem corretamente ganham mais 10 pontos para distribuir por outras listas.

1. A sequência de Fibonacci é definida pela recurrência:

$$f_0 = 0$$
, $f_1 = 1$ and $f_{n+1} = f_n + f_{n-1}$

Considera a matriz $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.

- (a) (5 pts) Mostra que $A^n = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix}$
- (b) (5 pts) Calcula os auto-valores e auto-vetores de A
- (c) (5 pts) Usa a resposta anterior para encontrar uma fórmula fechada para f_n . Será algo do género: $f_n = c_1 \lambda_1^n + c_2 \lambda_2^n$, onde c_1 e c_2 são constantes que não dependem de n, e λ_1 , λ_2 são os auto-valores de A.
- 2. Uma matriz A é nilpotente se existe m tal que $A^m = 0$ (a matriz com todos 0s).
 - (a) (5 pts) Mostra que todos os autovalores de uma matriz nilpotente são 0.
 - (b) (* 10 pts) Mostra que para qualquer matriz $n \times n$ nilpotente temos $A^n = 0$. (Pista: Lema de Schur).
- 3. (15 pts) Uma matriz complexa é normal se $A^*A = AA^*$. Mostra que uma matriz normal é diagonalizável por uma matriz unitária, isto é, se A é normal, existem matrizes Λ diagonal e U unitária tais que $A = U\Lambda U^*$ (Pista: Lema de Schur). Mesmo que não consigam mostrar esse resultado, podem usar ele nas alíneas abaixo.
 - (a) (5 pts) Mostra que uma matriz unitária é diagonalizável. Mostra que se λ é um auto-valor de uma matriz unitária, então $|\lambda|=1$
 - (b) (5 pts) Mostra que uma matriz anti-Hermitiana ($A^* = -A$) é diagonalizável. Mostra que os auto-valores de uma matriz anti-Hermitiana são puramente imaginários.
 - (c) (5 pts) Mostra que se A é anti-Hermitiana, então $I-2(I+A)^{-1}$ é unitária.