MARKSCHEME

May 2000

CHEMISTRY

Higher Level

Paper 3

OPTION C – HUMAN BIOCHEMISTRY

C1. (a) (i)

- (Award [1] for either circled C and [1] for the whole structure.) [2]
- (ii) In the ring structure of glucose, on the C₁ atom/the "carbonyl" C
 the H/OH are in different positions in α/β
 OR illustration of this (diagrammatically).
- (b) (i) glucose and fructose [2]
 - (ii) glucose (and glucose) [1]
- (c) (Award [1] for any of the below.)

Food or energy reserves/resources/stores/glycogen/starch Structure/cell walls/cellulose/chitin.

Total [8 marks]

[1]

۷.	(a)	6.		[1]
	(b)	(i)	Chromatography and electrophoresis.	[2]
		(ii)	(Award up to [4] for the following points for EITHER paper chromatograph OR electrophoresis.)	phy
			Paper chromatography:	
			hydrolyse/release amino acids/heat with acid; place sample spot on paper; place paper in solvent (or suitable named solvent); compare distances travelled/R _f values with known values.	[1] [1] [1] [1]
		OR	Electrophoresis:	
			hydrolysis; 'loading' onto origin; variable voltage/distance moved from origin; compare isoelectric points (standards) <i>etc</i> .	[1] [1] [1]
	(c)		pH 4.5 pH 6 pH 7.5	
			H ₃ ⁺ N— H ₃ ⁺ N—COO ⁻ H ₂ N—COO ⁻ [1] [1]	[3]
		Lool	king for functional groups only	

− 7 *−*

Looking for functional groups only.

(In absence of other marks: three correct structures at wrong pH, award [1].)

Total [10 marks]

C3. (a) Substrate concentration: activity/rate increases initially (first order); becomes constant/flattens out.

[1] [1]

A labelled correct diagram (i.e. axes labelled, correct shape) could score these two marks, for example:

Satisfactory explanation of one region of graph:

Many free active sites initially; [active sites being occupied/becoming more saturated].

[1]

(b) **Temperature:**

increased rate initially; but then reduced markedly $(\rightarrow 0)$;

[1] [1]

A labelled correct diagram (i.e. axes labelled, correct shape) could score these two marks, for example:

enzyme destroyed/denatured; since stabilising H bonds disrupted (or words to that effect).

[1] [1]

Total [7 marks]

Total [7 marks]

OPTION D – ENVIRONMENTAL CHEMISTRY

			Source		Reduction of emission	<u>1</u>		
D1.	(a)	(i)	Incomplete combustion of C-containing fuel/named fuel	[1]	Use catalytic converter*	[1]		
		(ii)	Burning sulfur-containing fuel/coal	[1]	Desulfurisation/scrubbing (flue gases)	[1]		
		(iii)	Reaction of gases in air/nitrogen and oxygen (at high temperatrure)	[1]	Use catalytic converter*	[1]		
* al	low c :	atalyt	ic converter once only					
		(Awa	ard final mark for correct product from	one oj	f the above:)			
		(i)	Carbon dioxide;					
		(ii)	Sulfur/sulfate/hydrogen sulfide;		[1]			
		(iii)	Nitrogen.			[6]		
	(b)	One	of SO_2 or NO_x (however described)			[1]		
		EIT	HER $SO_2 + H_2O \rightleftharpoons H_2SO_3$		[1]			
		OR	$2NO + 1\frac{1}{2}O_2 + H_2O \rightarrow 2HNO_3$	(fo	r example)			
					Tota	al [8 marks]		
D2.	(a)		ount of oxygen needed to break down or uced availability of oxygen/fewer living	-		[1] [1]		
	(b)	Secondary treatment; Activated sludge process; Organic matter broken down/oxidised by bacteria.						
	(c)	c) Plant growth encouraged; Oxygen concentration reduced by plant decay. (Allow eutrophication as alternative to either of the above.)						

D3.	(a)	()	Lethal dose Amount needed to kill 50 % of animals given the dose.				
		(ii) A	dvantage:	Gives good indication of relative toxicities (of different chemicals)	[1]		
		D	isadvantage	does not indicate acceptable environmental level of chemical /does not help to make accurate assumptions re effect on humans.	[1]		
	(b)	Lead:	Source: Effect: Reducing:	paints/PbEt ₄ in petrol, therefore exhaust gas/lead pipes in plumbing; brain damage (especially in children); unleaded petrol/lead-free paints/use of copper or plastic pipes.	[1] [1] [1]		
		Nitrates	: Source: Effect:	leaching of nitrate fertilisers into rivers stomach cancer/affects haemoglobin (in the young)/'blue baby' syndrome;	[1] [1]		
			Reducing:	use less fertiliser/avoid use before rain is due.	[1]		

Total [10 marks]

Total [11 marks]

OPTION E – CHEMICAL INDUSTRIES

E1.	(a)	Accept a temperature range 400–500 °C in each case.					
		Pressure 150–500 atm (Haber) 1–2 atm (Contact)					
		Catalyst iron/iron oxide	Vanadium (pent/V) oxide	[1]+[1]			
		(For each process, 3 correct condition	ns [2] , 2 correct [1] .)				
	(b)	$N_2 + 3H_2 \rightleftharpoons 2NH_3$ (state symbols NO	T required).	[1]			
		(Don't penalise absence of reversible symbol.)					
		High temperature increases rate/gives greater rate of reaction But low yield of NH ₃ Some comment on a compromise temperature					
	(c)	Raw Materials – naphtha, methane, other hydrocarbon (saturated);					
		 high temperature 	heat/catalyst ([1] for any one of the three.)	[1]			
		(Award [1] for any one of the following	ng equations.)				
		$C_7H_{16} \rightarrow C_6H_5CH_3 + 4H_2O$ $C_6H_{14} \rightarrow C_6H_6 + 4H_2$ $C_2H_6 \rightarrow C_2H_4 + H_2$ etc. (even) $CH_4 + H_2O \rightarrow CO + 3H_2$		[1]			

E2. (a) (Award [2] for any two of the following:)

'close' to C₂H₄ source; close to industries needing polythene; workforce; away from residential areas *etc*.

[2]

- (b) Polar C—Cl bonds in PVC; [1] stronger intermolecular forces (than polythene). [1]
- (c) $C_2H_3Cl + 2\frac{1}{2}O_2 \rightarrow 2CO_2 + H_2O + HCl$ (or doubled). [1]

(Credit polymer equations if correct. Equations given are intentionally simplified.)

$$-C_2H_4 - +3O_2 \rightarrow 2CO_2 + 2H_2O$$
 [1]

Comment on HCl being toxic or poisonous/no poisonous gases from polyethene. [1]

(d) (Radical mechanism):

Free radical mentioned e.g.
$$R \cdot \text{ or } A \cdot \text{ or } R - O - O \cdot$$
[1]
e.g. $R \cdot + CH_2 = CH_2 - R - CH_2 - CH_2 \cdot$
[1]

e.g.
$$R-CH_2-CH_2 \cdot + CH_2 = CH_2 \rightarrow R-CH_2-CH_2-CH_2-CH_2 \cdot$$
 [1]

equation for termination step, e.g.
$$2R \cdot \rightarrow R_2$$
 [1]

(Detailed word descriptions of above may be awarded marks. If none of above marks are scored, [1] may be awarded for mention of initiation, propagation and termination.)

(Ionic mechanism):

e.g.
$$A-B+CH_2 = CH_2 \rightarrow A-CH_2-CH_2^+ (+B^-)$$
 [1]

e.g.
$$A-CH_2-CH_2^++CH_2 = CH_2 \rightarrow A-CH_2-CH_2-CH_2-CH_2^+$$
 [1]

(Detailed word descriptions of above may be awarded marks.)

Total [14 marks]

OPTION F – FUELS AND ENERGY

F1.	(a)	(i)	219; 86.	[1] [1]
		(ii)	Mass number No change; Atomic number +1.	[1] [1]
	(b)	(i)	Time taken for activity to decrease by half (or words to that effect).	[1]
		(ii)	11.7 days. Some working essential, <i>e.g.</i> 3-half lives mentioned.	[1] [1]
		(iii)	$\frac{7}{8}$ or 0.875 or 87.5 %.	[1]
		(iv)	12.5 % or $\frac{1}{8}$.	[1]
				Total [9 marks]
F2.	(a)	Zinc and	graphite (accept carbon).	[1] [1]
	(b)		age – potential difference between electrodes; er – total quantity of electricity available.	[1] [1]
			age affected by the materials used; er affected by the quantity of materials used.	[1] [1]
				Total [6 marks]

F3.	(a)	Energy released when nucleus is synthesised from protons and neutrons/energy		
		needed to split a nucleus into protons and neutrons.	[1]	
²²³ Ra needs to become more stable.				
		This is achieved by losing mass/an α -particle.	[1]	

(b)	Nature of Waste	Source		Characteristic		Storage		
	Low-level waste	Hospitals / checking welds / monitoring thickness of <i>e.g.</i> paper	[1]	Activity is low / short half-life / high volume	[1]	Stored until activity is reduced	[1]	
	High-level waste	Nuclear industry / military	[1]	Activity is high / long half-life / low volume	[1]	Making into glass / deep burial	[1]	[6]
	(Award final	mark for one extr	a poin	t from list above.)				[1]

Total [10 marks]

OPTION G - MODERN ANALYTICAL CHEMISTRY

G1. (a)

Light ions deflected more than heavy ions/> 1 signal obtained **OR** ions(+) of different mass/charge ratio give > 1 line [1].

(General shape needed for full marks.)

[6]

(b) (i)
$$\left(35 \times \frac{75}{100}\right) + \left(37 \times \frac{25}{100}\right)$$

= 35.50 *[1]*

Both axes correctly labelled; [1]
Three lines at 70, 72 and 74; [1]

Heights of lines in correct order (70 > 72 > 74)

[1]

Total [11 marks]

G2. (a) $R_f = \frac{\text{distance travelled by 'solute'}}{\text{distance travelled by solvent}}$ [1]

- (b) (i) Measure distance travelled by blue spot (centre) and solvent [1]
 Divide one by the other [1]
 - (ii) Each dye has different attractions/affinities for the paper and the solvent (or words to that effect). [1]

(Solvent reference may be to solubility rather than attraction/affinity.)

(iii) Negligible attraction between the dye and paper compared with that of dye and solvent (or solubility of dye in solvent). [1]

(In **absence** of the above award [1] for the distance moved by the dye = distance moved by the solvent.)

Total [7 marks]

[2]

(If both structures and bonding are correct but non-bonding electrons are not shown award a maximum of [1].)

(b)
$$ONH_3$$
 $HONH_2$

Number of Peaks

1 [1] 2 [1]

Relative Areas

Reasoning All protons chemically equivalent (or words to that effect) Protons in different chemical environment [1] [5]

Total [7 marks]

OPTION H – FURTHER ORGANIC CHEMISTRY

H1.	(a)	Electrophilic addition.	[1]
		Arrow from double bond to H ⁺ (or H of H—Cl)	[1]
		Structure of carbocation (CH ₃ —+CH—CH ₃)	[1]
		Arrow showing attack by Cl ⁻ on central carbon of carbocation	[1]
	(b)	CH ₃ CH ₂ CH ₂ Cl	[1]
		Primary carbocation/CH ₃ CH ₂ CH ₂ ⁺ is less stable or less likely to be formed (or secondary carbocation is more stable or more likely to be formed).	[1]
		Explanation of different stabilities of carbocations (in terms of inductive effect or sharing of charge).	[1]
	(c)	(Substitution by) an electron-rich species (e.g. NH_3 ; X^-)	[1]
		(lone pair)/Lewis base/Brønsted base	
	(d)	Arrow from C—Cl bond to Cl atom	[1]
		Structure of carbocation (CH ₃ — ⁺ CH—CH ₃)	[1]
		Arrow showing attack by OH on central carbon of carbocation	[1]
		OR	
		Arrow from C—Cl bond to Cl atom	[1]
		Arrow showing attack by OH on central carbon of halogenoalkane	[1]
		Structure of intermediate (Cl and OH both bonded by to central C)	[1]

Total [11 marks]

H2.	(a)	dichlorodifluoromethane (accept difluorodichloromethane) 1,1,2-trichloro,1,2,2-trifluoroethane (accept 1,1,2-trifluoro,1,2,2-trichloroethane)	[1] [1]
	(b)	absorbs UV-radiation from the sun.	[1]
	(c)	(i) (Saturated) compounds with high bond energies.	[1]
		(ii) C—Cl bond weaker than C—F C—Cl more easily broken (than C—F).	[1] [1]
	(d)	$Cl \bullet +O_3 \rightarrow OCl \bullet +O_2$ (more correctly $ClO \bullet$)	[1]
		Total [7 me	arks]
Н3.	(a)	Chiral carbon atom/C atom joined to 4 different groups Two drawings showing enantiomers/chiral structures (object-mirror images). (These may be incomplete showing only the 'chiral centre'.)	[1] [2]
	(b)	Light vibrating in one plane only.	[1]
		Optically active compounds – rotate plane of polarisation of plane-polarised light.	[1]
		When racemic mixture obtained	[1]
		equimolar concentrations of stereoisomers affecting plane of polarisation equally and oppositely.	[1]
		Total [7 me	arks]

− 18 −