Pagrindinė dalis

Darbe naudojamas 'esoph' duomenų rinkinys, kurame yra duomenys apie rūkymo, alkoholio vartojimo ir stemplės vėžio riziką. Duomenys yra suskirstyti į grupes pagal amžių, suvartojamo tabako ir alkoholio kiekį.

In [3]: data(esoph)
 head(esoph)
 tail(esoph)

agegp	alcgp	tobgp	ncases	ncontrols
25-34	0-39g/day	0-9g/day	0	40
25-34	0-39g/day	10-19	0	10
25-34	0-39g/day	20-29	0	6
25-34	0-39g/day	30+	0	5
25-34	40-79	0-9g/day	0	27
25-34	40-79	10-19	0	7

	agegp	alcgp	tobgp	ncases	ncontrols
83	75+	40-79	20-29	0	3
84	75+	40-79	30+	1	1
85	75+	80-119	0-9g/day	1	1
86	75+	80-119	10-19	1	1
87	75+	120+	0-9g/day	2	2
88	75+	120+	10-19	1	1

Amžiaus, suvartojomo alkoholio ir tobako kiekio kategorijos paverčiamos skaitinėmis vertėmis, kad būtų galima skaičiuoti koreliaciją tarp jų. Pridedamas papildomas stulpelis, kuris paskaičiuoja procentinį vėžio atvejų santykį kiekvienai grupei.

```
In [4]: df <- esoph
         df$agegp <- ifelse(df$agegp == "25-34", 30,</pre>
                                   ifelse(df$agegp == "35-44", 40,
                                   ifelse(df$agegp == "45-54", 50,
                                   ifelse(df$agegp == "55-64", 60,
                                   ifelse(df$agegp == "65-74", 70,
                                   ifelse(df$agegp == "75+", 80, NA))))))
         df$alcgp <- ifelse(df$alcgp == "0-39g/day", 20,</pre>
                                  ifelse(df$alcgp == "40-79", 60,
                                  ifelse(df$alcgp == "80-119", 100,
                                  ifelse(df$alcgp == "120+", 120, NA))))
         df$tobgp <- ifelse(df$tobgp == "0-9g/day", 5,</pre>
                                  ifelse(df$tobgp == "10-19", 15,
                                  ifelse(df$tobgp == "20-29", 25,
                                  ifelse(df$tobgp == "30+", 30, NA))))
         df$cases ratio <- df$ncases * 100 / (df$ncontrols + df$ncases)</pre>
```

Sukuriama koreliacijos matrica tarp agegp, alcgp, tobgp ir cases_ratio stulpelių.

```
In [5]: cor_matrix <- cor(df[, -c(4, 5)])
    cor_matrix</pre>
```

	agegp	alcgp	tobgp	cases_ratio
agegp	1.00000000	-0.01367027	-0.06877864	0.58703223
alcgp	-0.01367027	1.00000000	-0.04568395	0.50665129
tobgp	-0.06877864	-0.04568395	1.00000000	0.05070901
cases_ratio	0.58703223	0.50665129	0.05070901	1.00000000

```
In [6]: heatmap(cor_matrix)
```


Toliau naudojamas pradinis duomenų rinkinys su pridėtu vėžio susirgimų santykiu.

```
In [7]: df2 <- esoph
    df2$cases_ratio <- df2$ncases * 100 / (df2$ncontrols + df2$ncases)</pre>
```

Žemiau esančios stulpelinės diagramos vaizduoja vidutinį vėžio atvejų santykį, kiekvienai kategorijai: suvartojamo alkoholio kiekio, suvartojamo tobako kiekio, amžiaus.

Mean Cases Ratio by Age Group

Age Group

Mean Cases Ratio by Alcohol Group

Alcohol Group

Mean Cases Ratio by Tobaco Group

Tobaco Group

Abu duomenų rinkiniai išsaugomi csv formatu ir bus naudojami antroje dalyje

```
In [11]: write.csv(df, file = "esoph_df.csv", row.names = FALSE)
    write.csv(df2, file = "esoph_df2.csv", row.names = FALSE)
```

Papildoma dalis

H0: stemplės susirgimų santykio vidurkis tarp 30 ir 80 amžiaus grupių yra vienodas

H0 atmesta, p-vertė = 0.003542

```
In [22]: age30 <- subset(data, agegp == 30 )
    age80 <- subset(data, agegp == 80)

ttest_result <- t.test(age30$cases_ratio, age80$cases_ratio, conf.level = 0.95)

print(ttest_result)

Welch Two Sample t-test

data: age30$cases_ratio and age80$cases_ratio
    t = -4.4637, df = 16.722, p-value = 0.0003542
    alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -43.14869 -15.42730
    sample estimates:
    mean of x mean of y
    3.333333 32.621326</pre>
```

H0: stemplės susirgimų santykio vidurkis tarp 5 g/dieną tobako ir 30 g/dieną tobako grupių yra vienodas

H0: priimta, p-vertė = 0.512

H0: stemplės susirgimų santykio vidurkis tarp 20 g/dieną alkoholio ir 120 g/dieną alkoholio grupių yra vienodas

H0 priimta, p-vertė = 1.991e-06

```
In [18]: alc20 <- subset(data, alcgp == 20 )
    alc120 <- subset(data, alcgp == 120)

    ttest_result <- t.test(alc20$cases_ratio, alc120$cases_ratio)

    print(ttest_result)

        Welch Two Sample t-test

data: alc20$cases_ratio and alc120$cases_ratio
    t = -5.7593, df = 32.854, p-value = 1.991e-06
    alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
        -36.75367 -17.56274
    sample estimates:
    mean of x mean of y
        8.428585 35.586794</pre>
```