Bigger Jacobians!

TOTAL POINTS 5

1.Question 1

In this quiz, you will calculate the Jacobian matrix for some vector valued functions.

For the function $u(x,y) = x^2 - y^2$ and v(x,y) = 2xy, calculate the Jacobian matrix $J = x^2 - y^2$

 $[[\partial u/\partial x \ \partial u \partial y \], [\partial v \partial x \ \partial v \partial y]].$

<u>1 /</u> 1 point

 $J = [[2x \ 2y], [2y \ 2x]]$

• J = [[2x - 2y], [2y2x]]

J = [2x - 2y - 2y2x]

J = [2x - 2y2y2x]

2.Question 2

For the function $u(x,y,z)=2x+3y,\ v(x,\,y,\,z)=\cos(x)\sin(z)$ and $w(x,y,z)=e^xe^ye^z$, calculate the Jacobian matrix J=

1 / 1 point

J = [[2 3 0], $[-\sin(x)\sin(z) \cdot 0 \cdot \cos(x)\cos(z)]$, $[exe_ye_z \cdot exe_ye_z \cdot exe_ye_z]$]

 $\int \int \left[2\sin(x)\sin(z)e^{2x}e^{2y}$

 $\int \int \left[2\cos(x)\sin(z)e^{x}e^{y}e^{z}30e^{y}e^{z}0-\sin(x)\cos(z)e^{y}e^{y}e^{z} \right]$

3.Question 3

Consider the pair of linear equations $\mathbf{u}(\mathbf{x},\mathbf{y}) = \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y}\mathbf{u}(\mathbf{x},\mathbf{y}) = \mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y}$ and $\mathbf{v}(\mathbf{x},\mathbf{y}) = \mathbf{c}\mathbf{x} + \mathbf{d}\mathbf{y}\mathbf{v}(\mathbf{x},\mathbf{y}) = \mathbf{c}\mathbf{x} + \mathbf{d}\mathbf{y}$, where \mathbf{a} , \mathbf{b} , $\mathbf{c}a$, \mathbf{b} , $\mathbf{c}a$, and $\mathbf{d}d$ are all constants. Calculate the Jacobian, and notice something kind of interesting!

1/1 point

 $^{\square} \quad J = [a \ c], [b \ d]$

• $J = [a \ b], [c \ d]$

 $^{\circ}$ J =[bdca]

 $^{\circ}$ J =[bacd]

4.Question 4

For the function $u(x,y,z) = 9x^2y^2 + ze^x$, $v(x, y, z) = xy + x^2y^3 + 2z$ and $w(x,y,z) = cos(x)sin(z)e^y$, calculate the Jacobian matrix and evaluate at the point (0,0,0).

1 / 1 point

 $J = [[0\ 0\ 1], [0\ 0\ 2], [0\ 01]]$

 $\int_{J} = \left[\left[001002001 \right] \right]$

J = [001001001]

5.Question 5

In the lecture, we calculated the Jacobian of the transformation from Polar co-ordinates to Cartesian co-ordinates in 2D. In this question, we will do the same, but with Spherical co-ordinates to 3D.

For the functions $x(r,\theta,\phi)=rcos(\theta)sin(\phi), \ y(r,\theta,\phi)=rsin(\theta)sin(\phi)$ and $z(r,\theta,\phi)=rcos(\phi),$ calculate the Jacobian matrix.

1 / 1 point

 $\begin{array}{l}
\hline \Box \\
J = \\
\hline \Box \\
rcos(\theta)sin(\phi)rsin(\theta)sin(\phi)cos(\phi) - rsin(\theta)sin(\phi)r2cos(\theta)sin(\phi) - 1rcos(\theta)cos(\phi)sin(\theta)cos(\phi) - rsin(\phi)cos(\phi) - rsin(\phi)cos(\phi)c$

 $J=[[cos(\theta)sin(\phi) - rsin(\theta)sin(\phi) \ rcos(\theta)cos(\phi)], \ [sin(\theta)sin(\phi) \ rcos(\theta)sin(\phi) \ rsin(\theta) \ cos(\phi)], \ [cos(\phi) \ 0 - rsin(\phi)]]$