2. Consider the data set shown in Table 6.22

Customer ID Transaction ID Items Bought 1 0001 $\{a,d,e\}$ 1 0024 $\{a,b,c,e\}$ 2 $\{a,b,d,e\}$ 0012 2 $\{a, c, d, e\}$ 0031 3 $\{b, c, e\}$ 0015 3 0022 $\{b, d, e\}$ 4 0029 $\{c,d\}$ 4 $\{a,b,c\}$ 0040 0033 $\{a,d,e\}$

0038

Table 6.22. Example of market basket transactions.

a. Compute the support for item sets {e}, {b, d}, and {b, d, e} by treating each transaction ID as a market basket.

 $\{a, b, e\}$

support = (Frequency of given item set) / (total number of item sets)

The support for {e} is 0.8. Since 'e' appeared 8 times in 10 item sets mentioned above.

The support for {b, d} is 0.2. Since 'b' & 'd' appeared 2 times together in 10 item sets mentioned above.

The support for {b, d, e} is 0.2. Since 'b', 'd' & 'e' appeared 2 times together in 10 item sets mentioned above.

b. Use the results in part (a) to compute the confidence for the association rules {b, d} à {e} and {e} -> {b, d}. Is confidence a symmetric measure?

Confidence = Measure how often Y appears in a transaction that contains X.

Confidence for $\{b, d\} \rightarrow \{e\} = \text{support } (\{b, d, e\}) / \text{support } (\{b, d\})$

$$= 0.2 / 0.2 = 1.$$

Confidence for $\{e\} \rightarrow \{b, d\} = \text{support } (\{b, d, e\}) / \text{support } (\{e\})$

$$= 0.2 / 0.8 = 0.25$$

No, confidence is not a symmetric measure.

c. Repeat part (a) by treating each customer ID as a market basket. Each item should be treated as a binary variable (1 if an item appears in at least one transaction bought by the customer, and 0 otherwise.)

support = (Frequency of given item set) / (total number of item sets)

The support for {e} is 0.8. Since 'e' appeared 4 times in 5 Customer ID transactions mentioned above.

The support for {b, d} is 1. Since 'b' & 'd' appeared 5 times together in 5 Customer ID transactions mentioned above.

The support for {b, d, e} is 0.8. Since 'b', 'd' & 'e' appeared 4 times together in 5 Customer ID transactions mentioned above.

d. Use the results in part (c) to compute the confidence for the association rules {b, d} à {e} and {e} -> {b, d}. Is confidence a symmetric measure?

Confidence = Measure how often Y appears in a transaction that contains X.

Confidence for $\{b, d\} \rightarrow \{e\} = \text{support } (\{b, d, e\}) / \text{support } (\{b, d\})$

$$= 0.8 / 1 = 0.8$$
.

Confidence for $\{e\} \rightarrow \{b, d\} = \text{support } (\{b, d, e\}) / \text{support } (\{e\})$

$$= 0.8 / 0.8 = 1.$$

No, confidence is not an asymmetric measure.

3. Consider the market basket transactions shown in Table 6.23

Table 6.23. Market basket transactions.

Transaction ID	Items Bought
1	{Milk, Beer, Diapers}
2	{Bread, Butter, Milk}
3	{Milk, Diapers, Cookies}
4	{Bread, Butter, Cookies}
5	{Beer, Cookies, Diapers}
6	{Milk, Diapers, Bread, Butter}
7	{Bread, Butter, Diapers}
8	{Beer, Diapers}
9	{Milk, Diapers, Bread, Butter}
10	{Beer, Cookies}

d. Find an itemset (of size 2 or larger) that has the largest support.

Support for each item above is as below

Item	Support Count
Milk	5
Beer	4
Diapers	7
Bread	5
Cookies	4
Butter	5

Support Count for 2 items is as below

Item	Support Count
Milk, beer	1
Milk, diapers	4
Milk, bread	3
Milk, cookies	1
Milk, butter	2

Beer, Diapers	3
Beer, Bread	0
Beer, Cookies	2
Beer, Butter	0
Diapers, Bread	3
Diapers, Cookies	2
Diapers, Butter	3
Bread, Cookies	1
Bread, Butter	5
Cookies, Butter	1

As the number of k items sets keep increasing, the support count will be the same or decrease. So, for 2-item set the support will be higher.

So, looking into the above table {bread, butter} will have the higher support followed by {milk, diaper} data sets.

e. Find a pair of items, a and b, such that the rules {a} -> {b} and {b} -> {a} have the same confidence

Looking into table 1 of the above problem the support count for Milk, bread, butter and Beer, Cookies are the same.

The following pairs will have the same confidence

- 1. Milk, butter and butter, milk
- 2. Milk, bread and bread, milk
- 3. Bread, butter and butter, bread
- 4. Beer, cookies and cookies, beer

4. Using the data at www.stats202.com/more_stats202_logs.txt and treating each row as a "market basket" compute the support and confidence for the rule ip = 65.57.245.11 → "Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3". State what the support and confidence values mean in plain English in this context.

The rule for which we have to find the support and confidence is {65.57.245.11} -> {"Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"}

Support for $\{65.57.245.11\} = 5021 / 14803 = 0.33$

Support for {"Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"} = 1619/14803 = 0.109

Confidence for rule {65.57.245.11} -> {"Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"}

= support count ({65.57.245.11, "Mozilla/5.0 (X11; U; Linux i686 (x86_64); en-US; rv:1.8.1.3) Gecko/20070309 Firefox/2.0.0.3"}) / support count ({65.57.245.11})

= 1619 / 5021

= 0.322