Perceptrons, SVMs, and Friends: Some *Discriminative* Models for Classification

The Automatic Classification Problem

- Assign object/event or sequence of objects/events to one of a given finite set of categories.
 - · Fraud detection for credit card transactions, telephone calls, etc.
 - · Worm detection in network packets
 - · Spam filtering in email
 - · Recommending articles, books, movies, music
 - · Medical diagnosis
 - · Speech recognition
 - · OCR of handwritten letters
 - · Recognition of specific astronomical images
 - · Recognition of specific DNA sequences
 - · Financial investment
- Machine Learning methods provide one set of approaches to this problem

Universal Machine Learning Diagram

Example: handwritten digit recognition

Machine learning algorithms that

- Automatically cluster these images
- Use a training set of labeled images to learn to classify new images
- Discover how to account for variability in writing style

A machine learning algorithm development pipeline: minimization

Problem statement

Mathematical description of a cost function

Mathematical description of how to minimize/maximize the cost function

Implementation

Universal Machine Learning Diagram

Linear Classification: Informal...

Find a (line, plane, hyperplane) that divides the red points from the blue points....

Hyperplane

A hyperplane can be defined by

Or more simply (renormalizing) by

$$c = \vec{w} \cdot \vec{x}$$

$$0 = \vec{w} \cdot \vec{x}$$

Consider a two-dimension example...

$$0 = [1, -1] \left[egin{array}{c} x \ y \end{array}
ight]$$

$$0 = x - y$$

$$y = x$$

Linear Classification: Slightly more formal

Input encoded as feature vector \vec{x}

Model encoded as \vec{w}

Just return $y = \vec{w} \cdot \vec{x}!$ sign(y) tell us the class:

+ - blue

- - red

(All vectors normalized to

length 1, for simplicity)

Computing the sign...

One definition of dot product: $W \cdot X = ||W|| ||X|| \cos \theta$

So
$$sign(W \cdot X) = sign(\cos \theta)$$

Let
$$y = sign(\cos \theta)$$

Perceptron Update Example

Perceptron Learning Algorithm

```
Input: A list T of training examples \langle \vec{x}_0, y_0 \rangle \dots \langle \vec{x}_n, y_n \rangle where
            \forall i: y_i \in \{+1, -1\}
Output: A classifying hyperplane \vec{w}
Randomly initialize \vec{w};
while model \vec{w} makes errors on the training data do
     for \langle \vec{x}_i, y_i \rangle in T do
          Let \hat{y} = sign(\vec{w} \cdot \vec{x}_i);
          if \hat{y} \neq y_i then
               \vec{w} = \vec{w} + y_i \vec{x}_i;
          end
     end
end
```

Perceptron Learning Algorithm

```
Input: A list T of training examples \langle \vec{x}_0, y_0 \rangle \dots \langle \vec{x}_n, y_n \rangle where
           \forall i: y_i \in \{+1, -1\}
Output: A classifying hyperplane \vec{w}
Randomly initialize \vec{w};
while model \vec{w} makes errors on the training data do
    for \langle \vec{x}_i, y_i \rangle in T do
         Let \hat{y} = sign(\vec{w} \cdot \vec{x}_i);
                                             Converges if the training set is
         if \hat{y} \neq y_i then
                                             linearly separable
              \vec{w} = \vec{w} + y_i \vec{x}_i;
         end
                                            May not converge if the training
    end
                                             set is not linearly separable
end
```

Support vector machines

What's wrong with these hyperplanes?

They're unjustifiably biased!

A less biased choice

Margin

- the distance to closest point in the training data
- We tend to get better generalization to **unseen data** if we choose the separating hyperplane which *maximizes the margin*

Support Vector Machines

- A learning method which *explicitly calculates the maximum margin hyperplane* by solving a gigantic quadratic programming minimization problem.
- Among the very highest -performing traditional machine learning techniques.
- But it's relatively slow and quite complicated.

Maximizing the Margin

Support Vectors

Penn x^2

Support Vector Machines

• A learning method which explicitly calculates the maximum margin hyperplane.

Setting Up the Optimization Problem

The maximum margin can be characterized as a solution to an optimization problem:

max.
$$\frac{2}{\|w\|}$$

s.t. $(w \cdot x + b) \ge 1$, $\forall x$ of class 1
 $(w \cdot x + b) \le -1$, $\forall x$ of class 2

Define the margin (what ever it turns out to be) to be one unit of width.

Setting Up the Optimization Problem

 If class 1 corresponds to 1 and class 2 corresponds to -1, we can rewrite

$$(w \cdot x_i + b) \ge 1$$
, $\forall x_i \text{ with } y_i = 1$
 $(w \cdot x_i + b) \le -1$, $\forall x_i \text{ with } y_i = -1$

as

$$y_i(w\cdot x_i+b)\geq 1, \ \forall x_i$$

So the problem becomes:

$$\max_{i} \frac{2}{\|w\|} \qquad \text{or} \qquad \min_{i} \frac{1}{2} \|w\|^{2}$$

$$s.t. \ y_{i}(w \cdot x_{i} + b) \ge 1, \ \forall x_{i} \qquad s.t. \ y_{i}(w \cdot x_{i} + b) \ge 1, \ \forall x_{i}$$

Linear, (Hard-Margin) SVM Formulation

Find w,b that solves

$$\min_{i} \frac{1}{2} \|w\|^2$$

$$s.t. \ y_i(w \cdot x_i + b) \ge 1, \ \forall x_i$$

- Problem is convex, so there is a unique global minimum value (when feasible)
- There is also a unique minimizer, i.e. weight and b value that provides the minimum
- Quadratic Programming
 - very efficient computationally with procedures that take advantage of the special structure

What if it isn't separable?

Project it to someplace where it is!

$$\phi(\langle x, y \rangle) = x^2 + y^2$$

Non - linear SVMs: Feature spaces

• General idea: the original feature space can *always* be mapped to some *higher - dimensional* feature space where the training set is *linearly* separable:

Kernel Trick

 If our data isn't linearly separable, we can define a projection Φ(x_i) to map it into a much higher dimensional feature space where it is.

- For SVM where everything can be expressed as the dot products of instances this can be done efficiently using the `kernel trick':
 - A kernel K is a function such that: K(x_i, x_j) = Φ(x_i) · Φ(x_j)
 - Then, we never need to explicitly map the data into the highdimensional space to solve the optimization problem – magic!!

SVMs vs. other ML methods

Examples from the NIST database of handwritten digits

- 60K labeled digits 20x20 pixels 8bit greyscale values
- Learning methods
 - 3 -nearest neighbors
 - Hidden layer neural net
 - Specialized neural net (LeNet)
 - · Boosted neural net
 - · SVM
 - SVM with kernels on pairs of nearby pixels + specialized transforms
 - Shape matching (vision technique)
- Human error: on similar US Post Office database 2.5%.

Performance on the NIST digit set (2003)

	3 -NN	Hidden Layer NN	LeNet	Boosted LeNet	SVM	Kernel SVM	Shape Match
Error %	2.4	1.6	0.9	0.7	1.1	0.56	0.63
Run time (millisec /digit)	1000	10	30	50	2000	200	
Memory (MB)	12	.49	.012	.21	11		
Training time (days)	0	7	14	30	10		

In 2010) (.35% error) by a neural network