

Tutorial on the OSOAA radiative transfer model

Ocean Successive Orders with Atmosphere - Advanced

Dr Bruno LAFRANCE

bruno.lafrance@cs-soprasteria.com

CS GROUP - France

Pr Malik CHAMI

malik.chami@upmc.fr

Sorbonne Université (France)

Outlines

- Software installation
- Graphical User Interface (GUI)
- Running the model using GUI
- Output files presentation
- Running the model using command files
- Examples of simulations

Software installation

- Download site (CNES website): https://github.com/CNES/RadiativeTransferCode-OSOAA
- Deposite on personnal OSOAA root repertory
- Define the OSOAA_ROOT path

```
bruno@PO13561LX:~
Fichier Édition Affichage Rechercher Terminal Aide
[bruno@P013561LX ~]$ ls -a
              .cache
                                .GlobalProtect
                                                #.bashrc
              .config
                                .ICEauthority
.bash history connectVPN.sh
                                Images
.bash loqout
                                .local
              .dbus
                                                #OSOAA ROOT path
bash profile disconnectVPN.sh Modèles.
                                                 export OSOAA ROOT=/home/bruno/OSOAA V2.0
.bashrc
              Documents
                                .mozilla
              .esd auth
                                Musiqu
[bruno@P013561LX ~]$ gedit .bashrc&
```

Software installation

List of directories

doc /

→ Documentation

ihm / (GUI)

→ Graphical User Interface tools

src /

→ Source programs

inc /

→ Constant parameters

(e.g., number of Gauss angles, threshold values,...)

gen /

→ Makefiles for the compilation

obj /

→ Compiled files

exe /

→ Executable code

Compilation :

- cd \$OSOAA_ROOT/gen
- make -f makefile_OSOAA.gfortran (or *.g77 or *.f77)

fic /

→ Ancillary database

(e.g. aerosol models, seabed reflectance, ...)

Launch of OSOAA model

- GUI launch
 - Prerequisite

Test: « java -version » Must be version 16 or higher

- cd \$OSOAA_ROOT/ihm/bin
 - . ./runOSOAAUI.bash

Graphical User Interface (GUI)

OSOAA :: Ocean Successive Orders with Atmosphere Advanced Radiance wavelength: 0.443 ∰ µm | Solar zenith angle: 30 ∰ deg | Expert mode: □ | Working directory : [Show command RUN A Home √ Atmospheric & sea profiles √ Aerosols model √ Hydrosols model Welcome to OSOAA √ Sea/atmosphere interface √ Geometric parameters version 2.0 √ Output specificities Process tracker

Liberté Égalité Fraternité

Description of the GUI

Description of the GUI

Description of the GUI

Hansen & Travis (1974) formulation to derive the molecular optical thickness from Pressure

$$\tau_{\text{mol}}^{\text{surf}} = \frac{P}{P_0} \times \left(\frac{84,35}{\lambda^4} + \frac{-1,225}{\lambda^5} + \frac{1,4}{\lambda^6} \right) \times 10^{-4}$$

- Setting for the example #1 : SIMU_1
 - Open ocean with deep sea bottom and weak surface wind
 - ► Let's set a depth at 500 m
 - ► Let's set the <u>seabed</u> albedo to 0
 - ► Let's set the <u>sea surface</u> albedo to 0
 - Standard atmosphere : sea level pressure and aerosol load (AOT)
 - ► Let's set the Pressure to 1013 mbar
 - ► Let's set the AOT to 0.2 at $\lambda_{ref} = 550 \text{ nm}$
 - ► Set the molecular and aerosols height scales respectively to 8 and 3 km

- Setting for the example #1 : SIMU_1
 - Gaussian Chlorophyll profile
 - ► Let's set a background concentration : $Chl_{bg} = 0.1 \text{ mg.m}^{-3}$
 - ► Let's set a maximum concentration of the gaussian : $ChI_{Zmax} = 6 \text{ mg.m}^{-3}$
 - ► Let's set the depth of ChI_{Zmax} : $z_{max} = 40 \text{ m}$
 - Let's set a standard deviation (σ) of the peak : $\sigma = 5 \text{ m}$

- ► Let's set Csed = 0
- CDOM
 - ► Let's set the absorption coefficient YS.Abs440 (a_cdom) = 0.1 m⁻¹
- No detritus

Phase function of Shettle & Fenn Maritime model 98% relative humidity at 442 nm

Note:

The native phase function is truncated in the forward peak within OSOAA to reduce the computation time (Lenoble, 1974; Chami et al., 2001)

Setting for the example #1 : SIMU_1

- ► Let's define your own repertory for Mie files storage
- ► Let's set aerosol optical properties are modelled using the Shettle & Fenn Maritime model for a 98 % relative humidity

Hydrosol models

- Setting for the example #1 : SIMU_1
 - ► Let's define a directory for the storage of Mie calculations
 - Phytoplankton
 - ► Let's set a refractive index = 1.05 (no imaginary part)
 - ► Let's set hydrosol size distribution by a Junge model with :
 - Minimal radius : $r_{min} = 0.01$
 - Maximal radius : $r_{max} = 200 \mu m$
 - Slope of the Junge power law : -v = -4
 - No mineral-like particles

Hydrosol models

Hydrosol models

The third GUI window is ready!

Setting for the example #1 : SIMU_1

- ► Let's define a directory for the storage of surface reflexion and transmission matrices
- ► No logfile for surface matrices computations
- ► Let's set a surface wind speed null
- ► Let's set a refractive index sea/atmosphere = 1.34

- Setting for the example #1 : SIMU_1
 - ► Let's define an observation in the solar principal plane : Relative azimuth angle $\Phi = 0^{\circ}$
 - ► Output (i.e., radiance, reflectance, degree of polarization) for Top Of Atmosphere
 - ► Output versus the viewing angle Let's call the output file : LUMvzVZA_Simu1_TOA.txt
 - ► No Advanced output files
 - ► Let's call the binary file : LUM_SF_Simu1.bin

The last GUI window is ready!
We are now ready to perform a run!

Running OSOAA

Output files

Output files

Header of the output file

Viewing Zenith Angle (VZA)

Normalized radiance is defined as:

 $L_{OSOAA} = \pi * L(z) / E_{sun}$

The radiance in geophysical units (W.m⁻².sr⁻¹) is:

 $L_{\text{geophys}} = E_{\text{sun}} * L_{\text{OSOAA}} / \pi$

```
STANDARD RESULTS:
  UPWARD RADIANCE FIELD VERSUS THE VIEWING ZENITH ANGLE
  (RELATIVE AZIMUTH AND ALTITUDE/DEPTH ARE FIXED)
Relative azimuth (degrees) :
   Relative azimuth convention :
       180 degrees <-> Satellite and Sun in the same half-plane
        0 degree <-> Satellite and Sun in opposite half-planes with respect to the zenith direction
   Simulated relative azimuth (degrees) :
       for VZA < 0 (sign convention):
                                       180.000000000000000
       for VZA > 0 (sign convention):
                                       0.0000000000000000
TOA level - Altitude (km) : 300.00000000000000
Columns parameters :
          : Viewing Zenith Angle (deg)
  SCA ANG: Scattering angle (deg)
         : Stokes parameter at output level Z (in sr-1)
             normalized to the extraterrestrial solar irradiance (PI * L(z) / Esun)
  REFL
        : Reflectance at output level Z (PI * L(z) / Ed(z))
  POL RATE: Degree of polarization (%)
  LPOL : Polarized intensity at output level Z (in sr-1)
             normalized to the extraterrestrial solar irradiance (PI * Lpol(z) / Esun)
  REFL POL: Polarized reflectance at output level Z (PI * Lpol(z) / Ed(z))
  VZA
        SCA AND
                                  REFL
                                              POL RATE
                                                           LP0L
                                                                       REFL POL
        120.93
-89.07
                  0.319458E+00
                               0.368878E+00
                                                46.34
                                                        0.148049E+00
                                                                     0.170952E+00
```


Scattering Normalized radiance angle

Reflectance

Degree of polarization Polarized normalized 62 radiance

Polarized

reflectance

Output files

Advanced_Outputs/Flux.txt

Profile of downward and upward fluxes from TOA to the sea bottom for a solar extra-terrestrial irradiance at TOA equals to PI.

		Level	Z(m)	Direct_Down	Diffuse_Down	Total_Down	Direct_Up	Diffuse_Up	Total_Up	Total_Up/Total_Down
TOA		0	300000.00000	0.272070E+001	0.000000E+000	0.2/20/0E+001	U.230120E-001	0.4048Z0E+000	0.430433E+000	0.158207E+000
1 . 0 , (1	2106/.00000	0.266862E+001	0.339498E-001	0.270257E+001	0.261126E-001	0.386517E+000	0.412630E+000	
		2	15700.00000	0.261845E+001	0.660302E-001	0.268448E+001	0.266129E-001	0.368208E+000	0.394821E+000	0.147075E+000
		3	12681.00000	0.257018E+001	0.966905E-001	0.266687E+001	0.271128E-001	0.350364E+000	0.377477E+000	0.141543E+000
		4	10630.00000	0.252376E+001	0.126170E+000	0.264993E+001	0.276115E-001	0.333180E+000	0.360791E+000	0.136151E+000
		5	9105.00000	0.247907E+001	0.154625E+000	0.263369E+001	0.281092E-001	0.316705E+000	0.344814E+000	0.130924E+000
		6	7908.00000	0.243592E+001	0.182210E+000	0.261813E+001	0.286072E-001	0.300893E+000	0.329500E+000	0.125853E+000
		7	6934.00000	0.239421E+001	0.208975E+000	0.260319E+001	0.291055E-001	0.285707E+000	0.314813E+000	0.120934E+000
		*								
		*								
		*								
		24		0.182631E+001	0.573796E+000	0.240011E+001	0.381560E-001	0.777433E-001	0.115899E+000	
Lavial	0.	25	177.00000	0.179878E+001	0.590868E+000	0.238965E+001	0.387400E-001	0.669443E-001	0.105684E+000	0.442259E-001
Level	0+	26		0.177177E+001	0.607498E+000	0.237927E+001	0.393306E-001	0.564370E-001	0.957676E-001	
	<u> </u>	27	-0.00000	0.173244E+001	0.575489E+000	0.230793E+001	0.000000E+000	0.210157E-001	0.210157E-001	
Level	0-	28	-0.00000	0.173231E+001	0.575472E+000	0.230778E+001	0.000000E+000	0.210144E-001	0.210144E-001	
LEVE	0-	29	-1.80400	0.130621E+001	0.508931E+000	0.181514E+001	0.000000E+000	0.166171E-001	0.166171E-001	
		30	-3.60800	0.984920E+000	0.440888E+000	0.142581E+001	0.000000E+000	0.130973E-001	0.130973E-001	
		31	-5.41200	0.742658E+000	0.376310E+000	0.111897E+001	0.000000E+000	0.103050E-001	0.103050E-001	
		32	-7.21600	0.559986E+000	0.317575E+000	0.877561E+000	0.000000E+000	0.809873E-002	0.809873E-002	
		33	-9.02000	0.422245E+000	0.265619E+000	0.687864E+000	0.000000E+000	0.636010E-002	0.636010E-002	0.924615E-002
		*								
		*								
		*	F1 F2000	0 5075405 005		0.0040005.004	0.0000005.000	0.0107475.005	0.0107475.006	0.0005005.000
		103	-51.52900	0.597642E-006	0.928106E-004	0.934082E-004	0.000000E+000	0.918747E-006	0.918747E-006	
		104	-52.58800	0.473425E-006	0.770871E-004	0.775605E-004	0.000000E+000	0.677501E-006	0.677501E-006	· · · · · · · · · · · · · · · · · · ·
		105	-53.84400 -55.31400	0.369093E-006	0.626283E-004	0.629974E-004	0.000000E+000	0.454464E-006	0.454464E-006	
Sooh	od -			0.283311E-006	0.497645E-004	0.500478E-004	0.000000E+000	0.238391E-006	0.238391E-006	
Seab	eu —	107	-56.96200	0.215144E-006	0.389111E-004	0.391262E-004	0.000000E+000	0.000000E+000	0.000000E+000	0.000000E+000

J_1 / Advanced_outputs

Aerosols.log

ANGLES.Log

Flux.txt

Name

or depth for which the maximum allowed value of the optical depth is reached (τ_{max} = 30 for OSOAA)

Additional simulations

Additional simulations for the example #1 : SIMU_1

Modifications of the output conditions

- ► Let's perform the same simulation for :
 - Just above the sea surface : Level 0+
 → Output file : LUMvzVZA_Simu1_Level0p.txt
 - Just below the sea surface : Level 0-
 - → Output file: LUMvzVZA_Simu1_Level0m.txt
- New setting : example #2 (SIMU_2)

Modifications of the surface conditions

- ► Same conditions as SIMU_1 but for a surface wind speed of 5 m/s
- ► Outputs for the levels : TOA, 0+ and 0-
- New setting : example #3 (SIMU_3)
 - ► Same conditions as SIMU_1 but for a surface wind speed of 10 m/s
 - ▶ Outputs for the levels : TOA, 0+ and 0-

Additional simulations

- A few comments :
 - Running the same simulation to get radiances for another level is very fast
 - ⇒ Re-use of the previous result file (SOS.ResFile.Bin) including all the radiance fields, over all the maritime and atmospheric profiles
 - Running simulations by introducing a new value of surface wind speed induces an additional calculation of sea/atmosphere interface matrices

```
==> Sea / atmosphere interface matrices computation
Surface matrices repertory: /home/bruno/OSOAA/DATABASE/SURF
Matrix RAA: RAA-1.340-05.0-RadMU48-NB80-SZA30.000-TSZA21.909
-- RAA Matrix file is being calculated
Matrix TAW: TAW-1.340-05.0-RadMU48-NB80-SZA30.000-TSZA21.909
-- TAW Matrix file is being calculated
Matrix RWW: RWW-1.340-05.0-RadMU48-NB80-SZA30.000-TSZA21.909
-- RWW Matrix file is being calculated
Matrix TWA: TWA-1.340-05.0-RadMU48-NB80-SZA30.000-TSZA21.909
-- TWA Matrix file is being calculated
==> Radiative transfer computation
```

Performing a simulation using the command line mode

The GUI generates and executes a command line

Performing a simulation using the command line mode

- Use of shell scripts can help for :
 - single simulation
 - many simulations using a single script file
 - Look-Up Tables calculations
- A demonstration script is available in \$OSOAA_ROOT/exe

```
. ./run_OSOAA_demo.ksh
```

```
dirRESULTS=${OSOAA ROOT}/OSOAA RESULTS DEMO
dirMIE AER=${OSOAA ROOT}/DATABASE/MIE AER
                                           && mkdir -p ${dirMIE AER}
dirMIE HYD=${OSOAA ROOT}/DATABASE/MIE HYD
                                           && mkdir -p ${dirMIE HYD}
dirSURF=${0S0AA ROOT}/DATABASE/SURF MATR
                                           && mkdir -p ${dirSURF}
${0SOAA ROOT}/exe/OSOAA MAIN.exe \
          -OSOAA.ResRoot ${dirRESULTS} \
          -OSOAA.Log Main.Log \
          -0S0AA.Wa 0.440 \
          -ANG.Thetas 30. \
          -AP.Pressure 1013.0 -AP.HR 8.0 -AP.HA 2.0 \
          -AER.Waref 0.550 -AER.AOTref 0.1 \
          -AER.DirMie ${dirMIE AER} \
          -AER.Model 2 \
          -AER.SF.Model 3 -AER.SF.RH 98. \
          -PHYTO.Chl 0.2 \
          -SED.Csed 0.0 -PHYTO.ProfilType 1 \
          -YS.Abs440 0.00 -DET.Abs440 0.00 \
          -SEA.Depth 15.000 \
          -HYD.DirMie ${dirMIE HYD} \
          -HYD.Model 1 \
          -PHYTO.JD.slope 4.0 -PHYTO.JD.rmin 0.01 -PHYTO.JD.rmax 200. \
          -PHYTO.JD.MRwa 1.05 -PHYTO.JD.MIwa -0.000 -PHYTO.JD.rate 1.0 \
          -SEA.Dir ${dirSURF} -SEA.Ind 1.34 -SEA.Wind 7
          -SEA.SurfAlb 0.0 -SEA.BotType 1 -SEA.BotAlb 0.30 \
          -OSOAA.View.Phi 0.0 \
          -OSOAA.View.Level 5\
          -0S0AA.View.Z -10.0
                                -OSOAA.ResFile.vsVZA RESLUM vsVZA.txt \
                                -OSOAA.ResFile.vsZ RESLUM vsZ.txt \
          -OSOAA.View.VZA 0.0
          -OSOAA.ResFile.Adv.Up
                                  RESLUM Advanced UP.txt \
          -OSOAA.ResFile.Adv.Down RESLUM Advanced DOWN.txt
```

Data from directory **Standard_Outputs/**

- LUM_vsVZA_Simu2_TOA.txt
- LUM_vsVZA_Simu2_Level0p.txt
- LUM vsVZA Simu2 Level0m.txt

442 nm, wind 5 m/s

Important note:

In the OSOAA model, $\Phi_{\rm OSOAA}$ =0 means that the satellite is located in the specular half-plane and $\Phi_{\rm OSOAA}$ =180° means that the satellite is located in the backscattering half-plane

Illustration of the normalized radiance in the Solar Principal Plan ($\Phi_{oso_{AA}} = 0^{\circ} \& 180^{\circ}$)

Normalized radiance is defined as:

$$\pi * L(z) / E_{sun}$$

Data from directory **Standard_Outputs/**

- LUM_vsVZA_Simu2_TOA.txt
- LUM_vsVZA_Simu2_Level0p.txt
- LUM_vsVZA_Simu2_Level0m.txt

Sunglint in the specular direction

Data from directory **Standard_Outputs/**

- LUM_vsVZA_Simu2_TOA.txt
- LUM_vsVZA_Simu2_Level0p.txt
- LUM_vsVZA_Simu2_Level0m.txt

Increase of the radiance towards limb (high viewing zenith angles VZA)

Angular variation of the degree of polarization

The atmospheric scattering induces a depolarization of the radiation from 0+ to TOA

- Procedure to simulate a « Black Ocean »
 - Open the source code src / OSOAA_SOS_CORE.F
 - To cancel the ocean scattering, set the expert parameter EXPERT_MODE_FORCED_FSEA_NULL as

#define INCTE PI DACOS(-1.D+00)

```
#define EXPERT_MODE_FORCED_FATM_NULL .FALSE.
#define EXPERT_MODE_FORCED_FSEA_NULL .FALSE.
```

- Make a new compilation : gen/Makefile_OSOAA.gfortran
- If the seabed depth is weak (i.e., shallow waters), ensure to set the seabed albedo to the value of zero

Sensitivity of the surface reflectance Rsr(0+) to the ocean scattering.

Rsr(0+) is driven by the skylight reflection onto the sea surface in the case of a black ocean

Data from **Standard Outputs.** Calculations for an expert mode

550 nm ⇒ Phytoplankton scattering

Physical explanation of the reason for an increase of the radiance at high viewing zenith angles (VZA)

⇒ Possible with OSOAA by simulating a « Black Sky »

Illustration of the normalized radiance in the Solar Principal Plan ($\Phi_{OSOAA} = 0^{\circ} \& 180^{\circ}$)

Increase of the radiance towards limb (high viewing zenith angles VZA)

- Procedure to simulate a « Black Sky »
 - Code src / OSOAA_SOS_CORE.F
 - Cancel the atmospheric scattering : set the expert parameter EXPERT_MODE_FORCED_FATM_NULL as

- Make a new compilation
- Set the AOT = 0 and a fairly zero molecular optical thickness (≈0.001)

Impact of the atmospheric scattering on TOA radiance

Focus on the backscattering half-plane

Increase of the radiance towards high viewing zenith angles (VZA)

⇒ Caused by the reflexion of the downward atmospheric diffuse light onto the sea surface (i.e., skylight reflexion)

Data from **Standard_Outputs.**Calculations for an expert mode

- OSOAA simulations cover all geometry of observations (variations in azimuth and zenith angles)
- OSOAA can thus be used for the analysis of satellite ocean color observations

Data obtained using a loop of simulations over the values of Φ_{OSOAA} from 0 to 180° by step of 2°

Illustrations made using the Mgraph software from Laboratoire d'Optique Atmosphérique (LOA, France) 78

OSOAA is yours

Enjoy using OSOAA!

https://github.com/CNES/RadiativeTransferCode-OSOAA

Thank you for your attention!