5.3

Opération sur les limites

Maths Spé terminale - JB Duthoit

Remarque

 \triangle Les propriétés suivantes donnent la limite en a de la somme, du produit ou du quotient de f et g, a pouvant désigner un réel ou $+\infty$ ou $-\infty$.

5.3.1 Somme

Propriété

Si f a pour limite	l	l	l	$+\infty$	$-\infty$	$+\infty$
Si g a pour limite	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
Alors $f + g$ a pour limite	l + l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	FI

• Exercice 5.12

Déterminer $\lim_{x \to +\infty} x^2 + \frac{1}{x}$

5.3.2 Produit

Propriété

Si f a pour limite	l	l > 0	l > 0	l < 0	l < 0	$+\infty$	$+\infty$	$-\infty$	0
Si g a pour limite	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
Alors $f \times g$ a pour limite	$l \times l'$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$	FI

Exercice 5.13

Déterminer $\lim_{x \to +\infty} x^2 \sqrt{x}$

5.3.3 Quotient

Propriété

Si f a pour limite	l	l	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
Si g a pour limite	$l' \neq 0$	$\pm \infty$	l' > 0	l' < 0	l' > 0	l' < 0	$\pm \infty$
Alors $\frac{f}{g}$ a pour limite	$\frac{l}{l'}$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$	FI

Si f a pour limite	$l > 0$ ou $+\infty$	$l < 0$ ou $-\infty$	$l > 0$ ou $+\infty$	$l < 0$ ou $-\infty$	0
Si g a pour limite	0 avec $g(x) > 0$	0 avec $g(x) > 0$	0 avec g(x) < 0	0 avec g(x) < 0	0
Alors $\frac{f}{g}$ tend vers	+∞	$-\infty$	$-\infty$	+∞	FI

Exercice 5.14

Déterminer $\lim_{x\to 2} \frac{x^2}{(x-2)^2}$

Propriété

En $+\infty$ et en $-\infty$, une fonction polynôme a la même limite que son monôme de plus haut

Exercice 5.15 Déterminer $\lim_{x \to +\infty} x^3 - 45x^2 + 4x - 5$

Savoir-Faire 5.17

SAVOIR CALCULER UNE LIMITE DE FONCTION DANS DES CAS SIMPLES

- 1. f est définie sur \mathbb{R} par $f(x) = x^4 x$. Déterminer la limite de f en $-\infty$.
- 2. $\lim_{x \to -\infty} (3 e^x)(2 + e^x)$
- 3. g est définie sur $]0; +\infty[$ par $g(x)=x^2(\frac{1}{\sqrt{x}}+5)$. Déterminer la limite de g en $+\infty$.
- 4. h est définie sur $\mathbb{R} \{1\}$ par $h(x) = x^2 + 4x 11$. Déterminer les limites à droite et à gauche de h en 1.
- 5. $\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{1}{x} + 2x + 3$
- 6. $\lim_{x \to +\infty} \sqrt{x}(2-x)$
- 7. $\lim_{\substack{x\to 0\\x\to 0}} (x-3)(2-\frac{1}{x})$
- 8. $\lim_{x \to -\infty} e^x + 7x + 1$
- 9. $\lim_{\substack{x \to 1 \\ x > 1}} \frac{x^2 2x + 2}{x 1}$ et $\lim_{\substack{x \to 1 \\ x < 1}} \frac{x^2 2x + 2}{x 1}$
- 10. $\lim_{x \to +\infty} (3 e^x)(2 + e^x)$

Savoir-Faire 5.18

SAVOIR CALCULER UNE LIMITE DE FONCTION EN LEVANT UNE FI Calculer les limites suivantes :

$$1. \lim_{x \to +\infty} x^4 - x$$

2.
$$\lim_{x \to +\infty} x^2 - x + 1$$

$$3. \lim_{x \to +\infty} \frac{x+2}{x^2 + x\sqrt{x}}$$

4.
$$\lim_{x \to -\infty} \frac{x^3 - x^2 + 4}{x^2 + 1}$$

5.
$$\lim_{x \to +\infty} \frac{3x}{-x+4}$$
 et $\lim_{\substack{x \to 4 \\ x > 4}} \frac{3x}{-x+4}$

Exercice 5.16

Déterminer les limites en $+\infty$ et en $-\infty$ des fonctions suivantes :

1.
$$f(x) = x^2 - 3x + 1$$

3.
$$f(x) = \frac{x^2 + 2x - 3}{x + 1}$$

2.
$$f(x) = -x^5 + 10x^4 + x^2 + x$$

4.
$$f(x) = \frac{3x^2 - 1}{x^2 - 2}$$

Exercice 5.17

Déterminer les limites en a des fonctions suivantes :

1.
$$f(x) = \frac{1}{x-4} + \sqrt{x}$$
, avec $a = 4$

4.
$$f(x) = \frac{1}{x^2 - 1}$$
, avec $a = -1$

2.
$$f(x) = \frac{x^3 - 2x^2}{(x-1)^2}$$
, avec $a = 1$

3.
$$f(x) = \frac{5x+2}{x+4}$$
, avec $a = -4$

5.
$$f(x) = \frac{2}{\sqrt{x} - 2}$$
, avec $a = 4$

• Exercice 5.18

Déterminer les limites en $+\infty$ et en $-\infty$ des fonctions suivantes :

1.
$$f(x) = 3x^4 - 3x^2 + 5x + 1$$

3.
$$f(x) = \frac{4x^2 - 3}{x^7 - 5x^4 + x^2 + 2x - 3}$$

2.
$$f(x) = \frac{-x^3 + x - 1}{2x + 1}$$

4.
$$f(x) = \frac{x^2 + x + 1}{5x^2 + 2}$$

5.3.4 Composée de deux fonctions

Rappels

Définition

Soit g est une fonction définie sur un intervalle J de \mathbb{R} et f est une fonction définie sur un intervalle I de \mathbb{R} telle que, pour tout $x \in I$, $f(x) \in J$.

On appelle fonction composée de f par g ou la composée de f suivie de g:

$$x \mapsto f(x) \mapsto g(f(x))$$

Remarque

- On note $g \circ f$ (on lit "g rond f") la fonction définie par $(g \circ f)(x) = g(f(x))$
- L'écriture $(g \circ f)(x) = g(f(x))$ n'a de sens que si $x \in D_f$ et $f(x) \in D_g$.
- De manière générale, $f \circ g \neq g \circ f$

Exercice 5.19

On considère les fonctions f(x) = x - 1 définie sur \mathbb{R} et $g(x) = \frac{1}{x}$ définie sur \mathbb{R}^* .

- 1. Donner l'ensemble de définition de $f \circ g$
- 2. Donner l'ensemble de définition de $g \circ f$

Limites de composée

Propriété Théorème de composition des limites

a,b et l représente ici des réels ou bien $+\infty$ ou $-\infty$. Si $\lim_{x\to a} f(x) = b$ et $\lim_{t\to b} g(t) = l$, alors $\lim_{x\to a} (g\circ f)(x) = l$

Savoir-Faire 5.19

SAVOIR CALCULER UNE LIMITE DE FONCTION PAR COMPOSITION Calculer les limites suivantes :

$$1. \lim_{x \to +\infty} e^{2-3x}$$

3.
$$\lim_{x \to +\infty} (2 - 3x)^4$$

$$2. \lim_{x \to -\infty} e^{2-3x}$$

4.
$$\lim_{x \to -\infty} (2 - 3x)^4$$

• Exercice 5.20

- 1. On considère la fonction u définie sur \mathbb{R} par $u(x) = \sqrt{x^2 + x + 1}$. Déterminer la limite éventuelle de u en $+\infty$.
- 2. On considère la fonction v définie sur]14; $+\infty$ [par $v(x) = \frac{x-4}{\sqrt{x-5}-3}$. Déterminer la limite éventuelle de v en 14.

∠Démonstration 6- (Exigible) -

 \nearrow Démontrer que la limite de la fonction exponentielle en $-\infty$ est égale à 0.

Exercice 5.21

Écrire f comme composée de deux fonctions, puis calculer les limites de f, en $-\infty$ et en $+\infty$:

1.
$$f(x) = \sqrt{x^2 + 3}$$

3.
$$f(x) = (5-x)^3$$

2.
$$f(x) = e^{1-0.5x}$$

4.
$$f(x) = \frac{1}{(x^4 + x + 1)^4}$$

Exercice 5.22

Calculer les limites suivantes :

$$1. \lim_{x \to -\infty} e^{3x-2}$$

3.
$$\lim_{x \to +\infty} e^{-x^2 + x + 1}$$

$$2. \lim_{x \to +\infty} \sqrt{2 + x + e^{-x}}$$

$$4. \lim_{\substack{x \to 0 \\ x > 0}} e^{\frac{2}{x}}$$

Exercice 5.23

Soit f la fonction définie sur \mathbb{R} par $f(x) = (e^{1-0.5x} - 1)^2$. On note C_f la courbe représentative de la fonction f.

- 1. a) Calculer la limite de f en $-\infty$ et en $+\infty$.
 - b) En déduire que la courbe C_f admet une asymptote que l'on précisera.
- 2. a) Calculer f'(x)
 - b) Étudier le signe de f'(x) sur \mathbb{R}
 - c) Dresser le tableau de variation de f sur \mathbb{R} .

Exercice 5.24

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{x^2 + 2x + 3}{x^2 + 2}$. On note C_f la courbe représentative de la fonction f.

- 1. a) Calculer la limite de f en $-\infty$ et en $+\infty$.
 - b) En déduire que la courbe C_f admet une asymptote d que l'on précisera.
 - c) Avec la calculatrice, tracer C_f et d et conjecturer la position relative de C_f et d.
 - d) Démontrer cette conjecture
- 2. a) Calculer f'(x)
 - b) Dresser le tableau de variation de f sur \mathbb{R} .

Exercice 5.25

Soit f la fonction définie sur $[-3; +\infty[$ par $f(x) = 2x\sqrt{x+3}.$

On note C_f la courbe représentative de la fonction f, et on admet que la fonction f est dérivable sur $x \in]-3;+\infty[$.

- 1. Calculer la limite de f en $+\infty$.
- 2. Calculer f'(x) pour tout $x \in]-3; +\infty[$
- 3. Dresser le tableau de variation de f sur $[-3; +\infty[$.