Feuille 5

Applications Linéaires de \mathbb{R}^p dans \mathbb{R}^n

Les feuilles d'exercices sont découpées en trois types d'exercice :

- Les *indispensables* : à savoir faire en autonomie.
- Les exercices d'application : pour mieux maîtriser et comprendre le cours.
- Pour aller plus loin : exercices présentant des développements mathématiques ou des études de modélisations de phénomènes issues d'autres disciplines.

Indispensables

Exercice 1. Déterminer si les applications suivantes sont linéaires :

$$f_{1}: \mathbb{R}^{2} \to \mathbb{R}^{2} \quad f_{1}(x,y) = (2x+y,x-y)$$

$$f_{2}: \mathbb{R}^{3} \to \mathbb{R}^{3} \quad f_{2}(x,y,z) = (xy,x,y)$$

$$f_{3}: \mathbb{R}^{3} \to \mathbb{R}^{3} \quad f_{3}(x,y,z) = (2x+y+z,y-z,x+y)$$

$$f_{4}: \mathbb{R}^{2} \to \mathbb{R}^{4} \quad f_{4}(x,y) = (y,0,x-7y,x+y)$$

$$g_{1}: \mathbb{R}^{2} \to \mathbb{R}^{2} \quad g_{1}(x,y) = (x+y,x-y)$$

$$g_{2}: \mathbb{R}^{2} \to \mathbb{R}^{2} \quad g_{2}(x,y) = (x,y)$$

$$g_{3}: \mathbb{R}^{2} \to \mathbb{R}^{2} \quad g_{3}(x,y) = (x,y^{2})$$

$$g_{4}: \mathbb{R}^{2} \to \mathbb{R} \quad g_{4}(x,y) = x$$

$$g_{5}: \mathbb{R}^{2} \to \mathbb{R} \quad g_{5}(x,y) = xy$$

$$g_{6}: \mathbb{R}^{2} \to \mathbb{R} \quad g_{6}(x,y) = |x+y|$$

Exercice 2. Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ la transformation linéaire donnée dans la base canonique par la matrice

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix}$$

et $g:\mathbb{R}^2 \to \mathbb{R}^2$ la transformation linéaire donnée dans la base canonique par la matrice

$$B = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$

- 1. Calculer la matrice associée à la fonction composée $g\circ f$ dans la base canonique de \mathbb{R}^2 et \mathbb{R}^3 .
- 2. Comparer avec le produit de matrices B.A.
- 3. Pour quel cas général peut-on s'attendre à une relation similaire?

Exercice 3. On considère l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^2 définie par f((x,y,z)) = (x-y,y-z).

- 1. Déterminer Ker f.
- 2. f est-elle injective? Surjective?

Exercice 4. 1. Montrer que $P = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x + 2y - 4z = 0 \right\}$ est un sous-espace vectoriel de

 \mathbb{R}^3 . Quelle est sa dimension? Déterminer une base de P.

2. Montrer que $D = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \mid x - y + z = 0 \text{ et } x + y - z = 0 \right\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Quelle est sa dimension? Déterminer une base de D.

LU1MA002 Mathématiques pour les Études Scientifiques II

3. Montrer que
$$H = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 \mid x+y+z+t=0 \right\}$$
 est un sous-espace vectoriel de \mathbb{R}^4 . Quelle est sa dimension? Déterminer une base de H .

Exercice 5. Montrer que les application suivantes sont \mathbb{R} -linéaires. Pour chacune, donner une base du noyau et de son image, et en déduire si l'application est injective, surjective ou bijective.

$$f_1: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^4 \\ (x,y) \mapsto (y,y+2x,x,y+2x) \end{cases}, \quad f_2: \begin{cases} \mathbb{R}^3 \to \mathbb{R}^2 \\ (x,y,z) \mapsto (x+y,x+2y+z). \end{cases}$$

Exercice 6. Soit f l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 canoniquement associée à la matrice

$$M = \begin{pmatrix} -11 & 7 & 0 & 3 \\ 0 & 1 & 11 & 2 \\ 1 & 0 & 7 & 1 \end{pmatrix}.$$

Déterminer le rang de f, ainsi qu'une base de son noyau et de son image. Donner une équation de l'image.

Exercice 7. Soit

$$A = \left(\begin{array}{rrr} 3 & 1 & -3 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{array}\right)$$

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans \mathcal{B} est A. On pose $\varepsilon_1 = (1, 1, 1), \varepsilon_2 = (1, -1, 0), \varepsilon_3 = (1, 0, 1)$ et $\mathcal{B}' = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$.

- 1. Montrer que \mathcal{B}' constitue une base de \mathbb{R}^3 .
- 2. Écrire la matrice de f dans cette base.
- 3. Déterminer une base de Ker f et de Im f.

_____Pour aller plus loin

Exercice 8. Soit l'endomorphisme f de \mathbb{R}^3 canoniquement associé à la matrice $M = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Le plan P d'équation y + z = 0 est-il stable par f? La droite vect $\{(1, 1, 1)\}$ est-elle stable par f?

Exercice 9. Soit f l'application linéaire du \mathbb{R} -espace vectoriel \mathbb{R}^3 dans le \mathbb{R} -espace vectoriel \mathbb{R}^2 définie par f((x,y,z)) = (x+2y+z,x-2y+z).

- 1. Déterminer la matrice A associée à f par rapport aux bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 .
- 2. Soient $f_1 = (1,0,-1)$, $f_2 = (1,1,0)$, $f_3 = (1,1,1)$, $v_1 = (1,1)$ et $v_2 = (1,-1)$. Vérifier que $\mathcal{B}_3 = (f_1,f_2,f_3)$ est une base de \mathbb{R}^3 et que $\mathcal{B}_2 = (v_1,v_2)$ est une base de \mathbb{R}^2 . Déterminer la matrice A' associée à f par rapport aux bases \mathcal{B}_3 et \mathcal{B}_2 .
- 3. Trouver une base \mathcal{B}_2' de \mathbb{R}^2 telle que la matrice associée à f par rapport aux bases \mathcal{B}_3 et \mathcal{B}_2' soit

$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$