Assignment 2 Solution

1. DFA Construction

Consider the language L over the alphabet {0,1} defined as follows: L contains all strings that start with '1' and end with '0'. Construct a DFA (Deterministic Finite Automaton) that recognizes this language.

Answer:

2. NFA Construction

Define a language L over the alphabet {a, b} as follows: L contains all strings that contain the substring 'aba'. Design an NFA (Nondeterministic Finite Automaton) that recognizes this language.

Answer:

3. NFA to DFA Conversion

Given the NFA below:

```
N = (\{q0, q1, q2\}, \{0, 1\}, \delta, q0, \{q2\}) where \delta is given by: \delta(q0, 0) = \{q0\} \delta(q0, 1) = \{q0, q1\} \delta(q1, 0) = \{q2\} \delta(q1, 1) = \{q2\} \delta(q2, 0) = \{q0\} \delta(q2, 1) = \{q2\}
```

Convert the given NFA N to an equivalent DFA using the subset construction method.

Answer:

4. ε-NFA to NFA Conversion

Consider an ϵ -NFA M over the alphabet $\{0, 1\}$ with the following transition function:

 $\mathsf{M} = (\{\mathsf{q0},\,\mathsf{q1},\,\mathsf{q2}\},\,\{\mathsf{0},\,\mathsf{1}\},\,\delta,\,\mathsf{q0},\,\{\mathsf{q2}\})$

where $\boldsymbol{\delta}$ is given by:

 $\delta(q0, \epsilon) = \{q1\}$

 $\delta(q0, 0) = \{q0\}$

 $\delta(q0, 1) = \{q0\}$

 $\delta(q1, 0) = \{q2\}$

 $\delta(q1, \epsilon) = \{q2\}$

 $\delta(q2, 1) = \{q1\}$

Convert the given ε -NFA M to an equivalent NFA by eliminating ε -transitions.

Answer:

