Indian Institute of Science Education and Research Kolkata 1" Year Autumn Semester (2015-2016) CH1101 – Elements of Chemistry Mid-Sem Examination

Time: 1h	Max Marks: 50
Answers should be to the point.	
 (a) O(SiH₃)₂ is less basic than H₂O. Explain. 	(6)

- (b) Arrive at the shapes of (i) XeOF₄ and (ii) PO₄³-. In each case comment on predicted
 - (b) Arrive at the snapes of (i) XeOr₄ and (ii) PO₄ . In each case comment on predicted as well as actual geometry.

 (2 x 3 = 6)
- 2. Using molecular-orbital energy level diagram arrange (in the increasing order) the N-O bond order in NO, NO⁺, and NO⁻.
- 3. Fill-up the blanks and make comments, as required:

Complexes	Write CFSE in terms of appropriate Dq	Comment on magnetic property	Comment on distorted or perfect	Write electronic distribution in d-orbitals
	appropriate 4		structure; if distorted, the nature of distortion – mild or severe	
[FeCl ₄]				
[NiCl ₄] ²⁻				
$[Mn(H_2O)_6]^{3+}$		1		
$[Co(H_2O)_6]^{3+}$				
$[Fe(CN)_6]^{3-}$				

 $(4 \times 4 = 16)$

4. Showing orbital interaction diagram (label axes) explain the metal-CO bonding in [Cr(CO)₆] and M-C₂H₄ bonding in [PtCl₃(C₂H₄)]⁻, from the standpoint of metal-ligand interactions.

 $(2 \times 4 = 8)$

5. Comment on the magnetic property of myoglobin in its deoxy- and oxy-form.		(9)
		(8)

End Semester Examination CH1101

Total Marks 100

- Q1. Arrive at the shapes of the following compounds. In each case comment on predicted as well as actual geometry.
 - i) OCIF₃
- ii) PhIO
- iii) NO₂
- iv) (PhO)₂PO₂
- H₃Si-O-SiH₃ is linear in shape whereas H₃C-O-CH₃ is bent. Why? Q2.

(3)

- Predict whether Jahn-Tellar distortion occurs or not in the following complexes. If yes, Q3. (4)predict what type of distortion (mild or severe) and suggest the modified d-orbital energy level splitting.
 - i)
- $[Ti(H_2O)_6]^{3+}$ ii) $[Mn(H_2O)_6]^{2+}$
- Calculate the CFSE for the following complexes: Q4.

(4)

- $i) \ [\text{Co}(\text{H}_2\text{O})_6]^{3^+}, \ ii) \ [\text{Co}(\text{CN})_6]^{4^-}, \ \ iii) \ [\text{Co}\text{Cl}_4]^-, \ iv) \ [\text{Co}(\text{NH}_3)_6]^{3^+}$
- Arrange the following in the correct order and fill the data. Q5.

(8)

	E1610 2 - Oak	Oxidation State and number of valance electrons on the metal ions (reactant and product)
Ar ₃ P _{IIII} , Rh. Ar ₃ P _{IIII} , Rh. Ar ₃ P _{III} , Rh. Ar ₃ P _{III} , Rh. Ar ₃ P _{II} , Rh. Ar ₃ P _I	β-hydride elimination	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oxidative addition	
$\begin{array}{c c} (C) & OH \\ CI & Pd \\ \hline \\ H_2O & Pd \\ \hline \end{array} \qquad \begin{array}{c c} H_2O & Pd \\ \hline \\ \end{array} \qquad \begin{array}{c c} H_2O & Pd \\ \hline \end{array} \qquad \begin{array}{c c} H_2O & Pd \\ \hline \end{array}$	Insertion	
(D) H Ar ₃ P _{IIII} H CI + I PAr ₃ PAr ₃ CI + I S CI + I S PAr ₃ PAr ₃	Reductive elimination	

- Arrange the following complexes in the increasing order of C-O stretching frequency. Justify. Q6.
 - i) [Cr(CO)₆]
- ii) [V(CO)₆]
- iii) $[Mn(CO)_6]^+$
- (3)
- Draw the Molecular Orbital diagram of N_2 and predict the bond order of N_2 , N_2^+ and N_2^- . Q8.
- What is the need of carbonic anhydrase in our body? Which metal ion is present in carbonic Q9. anhydrase and what is the role of metal ion? (4)
- What is the structure of $[Cr_2O_7]^{2-}$? Why $[Cr_2O_7]^{2-}$ is intense orange in color? Q10. (2)

Q.11. Choose the correct answer/statement

- (i) A compound should be called aromatic if
 - (a) It is only planar
 - (c) If it is planar and has $4n \pi$ -electron
- (b) If it is planar and has $4n+2\pi$ -electron
- (d) None of the above

(ii) The benzylic carbocation will be

- (a) Aromatic
 - (c) Anti-aromatic

- (b) Non-aromatic
- (d) None of the above

(iii) Correct order of increasing reaction rate of CH₃CH₂Br with the following nucleophiles is

- (a) EtOH>EtSH>HO'>EtO'>EtS'
- (b) EtOH> HO'>EtSH> EtO'>EtS'
- EtS > EtO > HO > EtSH > EtOH H (
- (d) EtS > EtQ > EtSH>HO > EtOH

- (b) $PhCH_2S^* = EtO^* = HO^* = H_2O$
- (a) PhCH₂S'>EtO'>HO'>H₂O (lo H₂O >PhCH₂S'>EtO'>HO'
- (d) None of the above

(v) The modest method for the synthesis of PhCH₂CH₂CH₂CH₃ from benzene is

- (a) AlCl₃/dry ether, CH₃CH₂CH₂CHBr
- (b) CH3CH2CH2COCI, AICI3/Water,
 - Zn(Hg)/HCl
- (c) TiCl₃/dry ether, CH₃CH₂CH₂CHBr
- (d) None of the above

(vi) Increasing order of nucleophilicity in polar protic solvent of the following nucleophiles is

(a) F->Cl->Br->l-

(b) I > Cl > Br > F

(b) 1'>Br'>C1'>F'

(d) Br>F>Cl> I

Q12. Compare the stability of these carbocations with reason.

(2)

a) Draw the Lewis structure of the following formula and assign the formal charge. Q13.

(3)

- (i) HCO₃
- (ii) CH₃NH₃⁺

(2)

- (i) NH₄⁺
- (ii) NH₃
- (iii) H₂O (iv) CO₂

Q14. Comment on the following:

Comm	ent on the follow	wing:			(8)
(i)					
	pound (A)	Predict whether Aromatic/Anti- aromatic/Non-aromatic	AgBF ₄ / CH ₃ CN Comment on the reno) and write the is feasible	B eaction feasibility (y product B if the re	yes or action
a)	Br				
b)	Br				
c)	Br				
d)	Br				(4)
(ii) Compound Aromatic/Non-aromatic/Anti-aromatic					
	Compound	Aromatic/Non-aromati	c/Anti-aromatic		
a)	[10]annulen	e	distribution of the second		
b)	\$				
c)					
d)					

Q15. Write the hydrolysis product of the following reaction with proper justification. (4)

Q16. Assign the reaction type and write the mechanism.

Quinty:

$$H_{3C}$$
 OH
 H_{3C}
 OH
 H_{3C}
 CI
 (R)

Q17. Arrange the following molecules in increasing order of their acidity and justify your answer. (4)

Q18. Write down the products of the following reaction and assign the reaction type.

 $(3 \times 2 = 6)$

(4)

Q19. Write down the reaction mechanism of sulfonation and desulfonation reaction of benzene using (3+2=5)conc.H₂SO₄ as sulfonating agent.

·Q20. Predict the product (major) of the following reaction?

 $(1.5 \times 2 = 3)$

Q21. Predict the products in the following reactions. Explain the formation of different products and (3 + 3)write their reaction mechanism.

$$\begin{array}{c|c} & & & \\ & & & \\ \hline & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$