Completeness Thresholds for Memory Safety of Array Traversing Programs

Tobias Reinhard, Justus Fasse, Bart Jacobs KU Leuven

Workshop on the State Of the Art in Program Analysis June 17, 2023

What This Work Is About

- Connection between bounded & unbounded proofs
- Ideas to increase trust in bounded model checking

What This Work Is About

- Connection between bounded & unbounded proofs
- Ideas to increase trust in bounded model checking
- When is a bounded "proof" a proof?

Model Checking: Easy Off-by-1 Error

- WHILE language with pointer arithmetic
- Targeted property: Memory safety
- Memory assumption array(a, s): $a[0] \dots a[s-1]$ allocated

```
for i in [0 : s-1] do !a[i+1]
```

Model Checking: Easy Off-by-1 Error

- WHILE language with pointer arithmetic
- Targeted property: Memory safety
- Memory assumption array(a, s): $a[0] \dots a[s-1]$ allocated

```
for i in [0 : s-1] do !a[i+1]
```

Which bounds should we choose for s?

- s = 0: No error
- s = 1: Error

Model Checking: "Harder" Off-by-N Error

```
Memory assumption: for i in [0:s-2] do array(a, s) !a[i+2]
```

Which bounds should we choose for *s*?

Model Checking: "Harder" Off-by-N Error

```
Memory assumption: for i in [0:s-2] do array(a, s) !a[i+2]
```

Which bounds should we choose for s?

- s = 0: No error
- s = 1: No error
- s = 2: Error

Model Checking: No Off-by-N Error

```
Memory assumption: for i in [0:s-1] do array(a, s) !a[i]
```

Which s can convince us?

Model Checking: No Off-by-N Error

```
Memory assumption: for i in [0:s-1] do array(a, s) |a[i]|
```

Which s can convince us?

- s = 0: No error
- s = 1: No error
- s = 2: No error \Rightarrow Which size bound is large enough?
- s = 3: No error

- Finite state transition system T
- Prove property Gp $G \approx globally \approx p$ holds in every state
- Approach: Prove Gp for all paths up to length k $T \models_k Gp$

- Finite state transition system T
- Prove property Gp $G \approx globally \approx p$ holds in every state
- Approach: Prove Gp for all paths up to length k $T \models_k Gp$

$$T \models_0 \mathsf{G} p$$

- Finite state transition system T
- Prove property GpG \approx globally $\approx p$ holds in every state
- Approach: Prove Gp for all paths up to length k $T \models_k Gp$

$$T \models_1 \mathsf{G} p$$

- Finite state transition system T
- Prove property Gp G \approx globally \approx p holds in every state
- Approach: Prove $\mathbf{G}p$ for all paths up to length k $T \models_k \mathbf{G}p$

 $T \models_2 \mathbf{G}p$

When should we stop?

• k is completeness thresholds (CT) iff

$$T \models_k \phi \Rightarrow T \models \phi$$

• For specific ϕ : Can over-approximate CT via of key props of T

• k is completeness thresholds (CT) iff

$$T \models_k \phi \Rightarrow T \models \phi$$

- For specific ϕ : Can over-approximate CT via of key props of T
- For $\phi = \mathrm{G}p$ we know $\mathrm{CT}(T,\mathrm{G}p) = \mathrm{recurrence_diameter}(T)$ (length of longest loop-free path)

recurrence_diameter(T) = 5

• k is completeness thresholds (CT) iff $T \models_k \phi \implies T \models \phi$

- For specific ϕ : Can over-approximate CT via of key props of T
- For $\phi = Gp$ we know $CT(T, Gp) = recurrence_diameter(T)$ (length of longest loop-free path)

recurrence_diameter(T) = 5

• k is completeness thresholds (CT) iff $T \models_k \phi \implies T \models \phi$

- For specific ϕ : Can over-approximate CT via of key props of T
- For $\phi = Gp$ we know $CT(T, Gp) = recurrence_diameter(T)$ (length of longest loop-free path)

recurrence_diameter(T) = 5

CTs for Infinite Systems?

Problem

Key properties used to describe CTs may be ∞

recurrence_diameter(
$$T$$
) = ∞

CTs for Infinite Systems?

Problem

Key properties used to describe CTs may be ∞

Our Approach

Analyse program's *verification conditions* instead of transition system

Verification Conditions

• Logical formula vc is VC for any spec Spec(c) iff

$$\models vc \Rightarrow \models Spec(c)$$

- Can verify VC instead of program
- In general: VCs are over-approximations, i.e., possible that $\not\vdash vc$ but $\models Spec(c)$

Completeness Thresholds

- Program variable x with domain X
- Specification $\forall x \in X.Spec(c)$

Completeness Thresholds

- ullet Program variable x with domain X
- Specification $\forall x \in X.Spec(c)$
- Subdomain $Q \subseteq X$ is a CT for x in $\forall x \in X$. Spec(c) iff $\forall x \in Q$. $Spec(c) \Rightarrow \forall x \in X$. Spec(c)
- For us: CT are subdomains, not depths

How to Prove CTs

• Generate VC: $Spec(c) \implies \forall x \in X. \ vc(x)$

How to Prove CTs

• Generate VC: $Spec(c) \implies \forall x \in X. \ vc(x)$

• Identify subdomain $Y \subseteq X$ where choice $x \in Y$ does not influence validity of vc(x)

$$\left(\models vc(x) \iff \models vc' \text{ with } x \notin \text{free}(vc') \right)$$

 \implies Found CT: $(X \setminus Y) \cup \{y\}$ (for any choice of $y \in Y$)


```
\forall c_0 := \forall s. \ \operatorname{array}(a, s) \to \forall i \in \{L, ..., s - R\} \ . \ a[i + Z] \ \text{alloc}
```

Range L, ..., s-R empty?

$$VC\ vc_0 := \forall s.\ array(a, s) \rightarrow \forall i \in \{L, ..., s-R\}.\ a[i+Z]\ alloc$$

$$vc_0 \equiv \forall s^- \dots \rightarrow \forall i \in \emptyset \dots$$

 $\equiv \text{True}$

$$\text{VC } vc_0 := \forall \textbf{\textit{s}}. \ \text{array}(a,\textbf{\textit{s}}) \rightarrow \forall i \in \{\textbf{\textit{L}},...,\textbf{\textit{s}}-\textbf{\textit{R}}\} \ . \ a[i+\textbf{\textit{Z}}] \ \text{alloc}$$

No need to check

$$\forall c_0 := \forall s. \operatorname{array}(a, s) \rightarrow \forall i \in \{L, ..., s - R\}. a[i+Z] \text{ alloc}$$

No need to check

$$vc_0 \equiv \forall i. (L \leq i < s^+ - R) \rightarrow (0 \leq i + Z < s^+)$$

$$\forall c_0 := \forall s. \ \mathrm{array}(a,s) \to \forall i \in \{L,...,s-R\} \ . \ a[i+Z] \ \mathrm{alloc}$$

No need to check

Range L, ..., s-R empty? Simplify VC! No $s^+ \ge L + R$ $vc_0 \equiv \forall i . (L \le i < -R) \rightarrow (0 \le i + Z < R)$ $\equiv \forall i . (L \le i \rightarrow 0 \le i + Z)$ $\land (i \le -R) \rightarrow i + Z < 0)$

⇒ Validity does not depend on size

$$\forall c_0 := \forall s. \ \operatorname{array}(a, s) \to \forall i \in \{L, ..., s - R\} \ . \ a[i + Z] \ \text{alloc}$$

No need to check

Can check for any
$$s^+ > L + R$$

$$\forall \mathbf{c} \ vc_0 := \forall \mathbf{s} . \ \mathrm{array}(a,\mathbf{s}) \to \forall i \in \{\mathbf{L},...,\mathbf{s}-\mathbf{R}\} . \ a[i+\mathbf{Z}] \ \mathrm{alloc}$$

Workflow: How to Find CTs

Mem spec + program

Workflow: How to Find CTs

Workflow: How to Find CTs

Workflow: How to Find CTs

Scalability CT Combinators

Scalability CT Combinators

Scalability

Follow AST

Scalability

Follow AST

Scalability

Follow AST

Outlook: Challenges

- Automation, e.g., automatic VC rewriting
- Demo scalability: Complex programs & data (e.g. lists, trees)

Outlook: Increase Trust in BMC

Turn bounded into unbounded proof

Outlook: Increase Trust in BMC

- Turn bounded into unbounded proof
- Shift resources to critical bounds

Outlook: Increase Trust in BMC

- Turn bounded into unbounded proof
- Shift resources to critical bounds

Conclusion

- First generalisation of CTs to infinite state systems
- Connection between bounded & unbounded proofs in program verification
- Foundational research but potential for integration into BMC

Backup Slides

Precise VCs

• VC vc is precise for x in Spec iff

$$\forall v. \left(\models Spec[x \mapsto v] \Rightarrow \models vc[x \mapsto v] \right)$$

Intuition: vc does not over-approximate wrt. x

• Q is CT $vc \land vc$ is precise $\Rightarrow Q$ is CT Spec

Precise VCs

