Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Югорский государственный университет Институт цифровой экономики

Отчет

к проекту Е "Модель дорожное движение"

Руководитель, Семенов С.П. Исполнитель, Свита А.Н. группа 11916

г. Ханты-Мансийск 2022 г.

Оглавление

Концептуальная модель реального процесса	3
Формализация	4
Компьютерная модель.	6
Планирования эксперимента	8
Заключение	14
Список литературы	15

Концептуальная модель реального процесса

Описание: Данный проект демонстрирует возможности Библиотеки дорожного движения пакета AnyLogic создавать модели дорожного движения автомобилей на перекрёстках городских улиц. Обычно модели дорожного трафика создаются для анализа и сравнения различных вариантов организации движения (как в нашем случае с регулировкой светофоров), моделирования проектируемых развязок и дорог с целью выявления узких мест, проверки целесообразности увеличения или уменьшения количества полос на определённом отрезке существующей дорожной сети и т.д.

Проблема: Предлагается создать модель, взяв за основу показанный ниже спутниковый снимок фрагмента городских улиц. Снимок ориентирован так, что север расположен вверху. Рассматривается перекрёсток улиц Чехова (направление восток — запад) и улицы Калинина (север-юг). Обе улицы - с двусторонним движением, и имеют по две полосе для движения в каждом направлении. На обочине Чехова_восток справа имеется автобусная остановка, а на обочине Чехова_запад справа - парковку на 20 мест

Цель моделирования: Оценка эффективности функционирования дорожного движение на перекрестке улица Чехова.

Задача:

- 1. Время движение машин
- 2. Время машин около светофора
- 3. Средняя скорость машин
- 4. Количество машин за час

Формализация

В данной модели используется снимок с спутника перекрестка улица Чехова где у нас используется все четыре дорого северная, южная, западная и восточная которые имеют определенную вероятность поворота у перекрестка на другую дорогу

Рисунок 1 – Улица Чехова.

Таблица 1. Входные данные эксперимента

Обознач	Сокращение	Полное название	Название
ение			
x1	iA	intensityOfArrival	Интенсивность прибытия
			машин в единицу времени
			(количество/час)
x2	Sp	Speed	Скорость машин (км/ч)
х3	Op	Opportunity	Возможность поворотов на
			перекрестке
x4	TLPD	TrafficLightPhaseD	Длительности фаз
		ur ation	светофора(в секундах)

Таблица 2. Выходные данные эксперимента

Обозначен	Сокращение	Полное название	Название	Значение
ие				
y1	CiS	CarsInSystem	Количество	
			машин в	
			системе	
y2	StC	StopsCountPerCar	Время,	
			которое	
			машина	
			находится без	
			движения (в	
			минутах)	
у3	aS	AverageSpeed	Средняя	
			скорость	
			автомобиля	
			(в км/ч)	
y4	aTiS	AverageTimeInSystem	Среднее	
			время	
			нахождения в	
			системе	

Компьютерная модель.

CarSource (carSourceS, carSourceE, carSourceN, carSourceW) - Создает автомобили и пытается поместить их в указанное место дорожной сети (на указанную дорогу или парковку).

CarDispose (CarDispose) - Удаляет машины из модели. Удалять автомобили нужно именно с помощью блока CarDispose, а не блоков Sink или Exit.

CarMoveTo (CarMoveToS, CarMoveToW, CarMoveToE, CarMoveToN) - Блок, который управляет движением автомобиля. Автомобиль может ехать, только когда он находится в блоке CarMoveTo. Автомобиль пытается рассчитать путь от своего текущего места до указанного места назначения, когда поступает в блок CarMoveTo. В качестве места назначения могут выступать: дорога, парковка, автобусная остановка или стоп-линия. Если от текущего местоположения автомобиля к указанному месту нет пути, автомобиль покидает блок через порт outWayNotFound.

Дорога (roadS, roadE, roadW, roadN) - Визуально задает дорогу. Дорога может содержать как прямые, так и изогнутые сегменты. С помощью дорог и перекрестков вы рисуете дорожные сети для моделей дорожного движения. Направление движения (правосторонее или левостороннее) и внешний вид

дороги задаются в свойствах всей дорожной сети. **Delay** (x6, ATM) - Задерживает агентов на заданный период времени. Время задержки вычисляется динамически, может быть случайным, зависеть от текущего агента или от каких-то других условий. Это время может, в частности, вычисляться как длина фигуры, заданной в качестве фигуры анимации этого объекта, поделенной на "скорость" агента.

Перекресток - Визуально задает перекресток. С помощью дорог и перекрестков вы рисуете дорожные сети для моделей дорожного движения. Чтобы сделать перекресток регулируемым, используйте блок TrafficLight. Стрелки, соединяющие концы полос - это соединители полос, разрешающие направления движения для полос на перекрестке.

Планирования эксперимента

Первый эксперимент:

Провести простой эксперимент в соответствии с назначенным вариантом из таблицы.

- 1. Подсчитать значения выходных данных Y=(y1,...,y4).
- 2. Построить гистограмму распределения времени пребывания в системе.

Второй эксперимент:

Проведите изменение параметра $\mathbf{x1}$ в диапазоне $\mathbf{x1S:h1:x1F}$, где $\mathbf{x1S}$ – начальное значение параметра, $\mathbf{h1}$ – шаг, с которым происходит изменения параметра, $\mathbf{x1F}$ – конечное значение параметра. Для каждого из экспериментов постройте график и проанализируйте, как изменение параметра $\mathbf{x1}$ влияет на среднее нахождения времени агентов в системе? Оставить остальные входные из задания 1.

Третий эксперимент:

Вариант 11: изменить вероятности поворотов на перекрестке, чтобы уменьшить среднее время нахождения агента в системе на 20%;

Эксперимент 1:

Обознач	Название		3:	начен	ИЯ									
ение														
x1	Интенсивность прибытия	N-1000												
	машин в единицу времени	S-105	0											
	(количество/час)	E-1100												
		W-0												
x2	Скорость машин (км/ч)	60												
x3	Возможность поворотов на		N	S	Е	W								
	перекрестке	N	0	1	1	0								
		S	1	0	1	0								

			Е	1	1	0	0
			W	0	0	0	0
x4	Длительности	фаз	24/3/	15/5	•	1	
	светофора(в секундах)						

Рисунок 2 – Схема и карта

Рисунок 3 – Время пребывания машин в системе

Обозначен	Название	Значение
ие		
y1	Количество машин в системе	1824
y2	Время, которое машина находится без движения (в минутах)	0,2
у3	Средняя скорость автомобиля (в км/ч)	26
y4	Среднее время нахождения в системе	0,302

Вывод:

Был проведен анализ того сколько в среднем находятся машины в данной системе и также сделали ситуацию, когда Западная дорога находится на ремонте или не доступная.

Эксперимент 2:

Обознач	Название		3	Вначен	R ИН									
ение														
x1	Интенсивность прибытия	N-2000:100:2400												
	машин в единицу времени	S-200	00:100	:2400)									
	(количество/час)	E-2000:100:2400												
		W-2000:100:2400												
x2	Скорость машин (км/ч)	60												
x3	Возможность поворотов на		N	S	Е	W								
	перекрестке	N	0	1	1	0								
		S	1	0	1	0								
		Е	1	1	0	0								
		W	0	0	0	0								
x4	Длительности фаз	24/3/	15/5	1	1									
	светофора(в секундах)													

Х1 интенсивность равно 2000:

Х1 интенсивность равно 2100:

Х1 интенсивность равно 2200:

Х1 интенсивность равно 2300:

Х1 интенсивность равно 2400:

Х1 интенсивность равно 2500:

Вывод: При увеличении интенсивности прибытие машин увеличивается средняя нахождение в системе и также увеличивается возможность аварий.

Эксперимент 3:

Вариант 11: изменить вероятности поворотов на перекрестке, чтобы уменьшить среднее время нахождения агента в системе на 20%;

Bep		N	S	E]	W		N	S	Е	W			N	S	Е	W		N	S	Е	W		N	S	Е	W
ТРО	N	0	1	1	(0	N	0	0	0	0	-	N	0	1	0	0	N	0	1	0	0	N	0	0	0	0
нос	S	1	0	1	(0			•												•				1		
ТЬ	_	1	1		<u> </u>				_	_						2					1		С	0	0	0	_
ПОВ	E	1	1	U	(U			5	5						3					1		S	0	0	U	0
opo	V	0	0	0) (0																					
ТОВ																								1			
x3																											

		S	0	0	0	0	S	1	0	0	0		S	1	0	0	0		Е	0	0	0	0		
			•		•					•						•				•					
			5		5					3						1				1					
		Е	0	0	0	0	Е	1	0	0	0	-	Е	1	0	0	0		V	0	0	0	0		
				•											•							l	1	J	
			5	5					3						1										
		W	0	0	0	0	W	0	0	0	0	-	V	0	0	0	0								
Cpe	0.302	0.3	345	5			0.3	31	2			0.298							0.28						
дне																									
e																									
нах																									
ЖО																									
ден																									
КИ																									
аге																									
НТО																									
ВВ																									
сис																									
тем																									
e																									

Вывод: в данном эксперименте получилось получить среднее нахождение в системе 28,8% чтобы получить 20% нужно уменьшать ближе к нулю все возможные повороты.

Заключение

В модели проанализировано время нахождения агентов в системе их зависимость от интенсивности и вероятности поворотов на перекрестке.

Список литературы

- 1. https://eluniver.ugrasu.ru/course/view.php?id=1689
- 2. https://help.anylogic.ru/index.jsp?nav=%2F0
- 3. https://studopedia.net/11_23663_shag--dobavlenie-statistiki.html