BEST AVAILABLE COPY PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-271073

(43)Date of publication of application: 20.10.1995

(51)Int.CI.

G03G 5/06

(21)Application number: 06-138886

(71)Applicant: KONICA CORP

(22)Date of filing:

21.06.1994

(72)Inventor: FUJIMAKI YOSHIHIDE

TAKEUCHI SHIGEKI

(54) PHOTORECEPTOR

(57)Abstract:

PURPOSE: To obtain a photoreceptor having high potential stability even after repeated use, excellent in electrification ability and optimum for a reversal developing process by incorporating titanyl phthalocyanine having high sensitivity especially to light of ≥600nm wavelength.

CONSTITUTION: This photoreceptor contains titanyl phthalocyanine having principal peaks of Bragg angle 2θ to CuKα characteristic X-rays of 1.541Å wavelength at 9.5±0.2° $9.7\pm0.2^{\circ}$, $11.7\pm0.2^{\circ}$, $15.0\pm0.2^{\circ}$, $23.5\pm0.2^{\circ}$, $24.1\pm0.2^{\circ}$ and $27.3 \pm 0.2^{\circ}$.

LEGAL STATUS

[Date of request for examination]

20.07.1994

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2700859

[Date of registration]

03.10.1997

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

5/06

(12) 特 許 公 報 (B 2)

(11)特許番号

371

第2700859号

(45)発行日 平成10年(1998) 1月21日

(24)登録日 平成9年(1997)10月3日

(51) Int.Cl.⁴ G 0 3 G

職別記号 371 庁内整理番号

F I G 0 3 G

技術表示箇所

発明の数1(全 17 頁)

(21)出願番号

特願平6-138886

(62)分割の表示

特願昭62-173640の分割

(22)出顧日

昭和62年(1987)7月10日

(65)公開番号

特開平7-271073

(43)公開日

平成7年(1995)10月20日

(73)特許権者 000001270

5/06

コニカ株式会社

東京都新宿区西新宿1丁目26番2号

(72)発明者

藤巻 義英

東京都八王子市石川町2970番地コニカ株

式会社内

(72)発明者 竹内 茂樹

東京都八王子市石川町2970番地コニカ株

式会社内

審査官 原健司

(56)参考文献

特開 昭59-49544 (JP, A)

特開 昭62-67094 (JP, A)

特開 昭63-20365 (JP. A)

特開 昭62-272272 (JP, A)

(54) 【発明の名称】 感光体

(57) 【特許請求の範囲】

1. CuK α 特性 X線(波長1.541 Å)に対するブラッグ 角 2 θ の主要ピークが少なくとも9.5度±0.2度、9.7度 ±0.2度、11.7度±0.2度、15.0度±0.2度、23.5度±0.2 度、24.1度±0.2度及び27.3度±0.2度にあるチタニルフタロシアニンを含有する感光体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は感光体、例えば電子写真 用感光体に関し、特にブリンター、複写機等に使用され かつ可視光より長波長光、半導体レーザー光に対して高 感度を示す感光体に関するものである。

[0002]

【従来の技術】従来、可視光に光感度を有する電子写真 感光体は複写機、プリンター等に広く使用されている。 2

このような電子写真感光体としては、セレン、酸化亜鉛、硫化カドミウム等の無機光導電物質を主成分とする感光層を設けた無機感光体が広く使用されている。しかしながら、このような無機感光体は複写機等の電子写真感光体として要求される光感度、熱安定性、耐湿性、耐久性等の特性において必ずしも満足できるものではない。例えば、セレンは熱や手で触ったときの指紋の汚れ等により結晶化するため、電子写真感光体としての上記特性が劣化し易い。また硫化カドミウムを用いた電子写真感光体は耐湿度性、耐久性に劣り、また酸化亜鉛を用いた電子写真感光体は耐湿度性、耐久性に問題がある。また、セレン、硫化カドミウムの電子写真感光体は製造上、取り扱い上の制約が大きいという欠点もある。

【0003】このような無機光導電性物質の問題点を改善するために、種々の有機の光導電性物質を電子写真感

光体の感光層に使用することが試みられ、近年活発に研究、開発が行われている。例えば、特公昭50-10496号公報には、ポリーN-ビニルカルバゾールと2,4,7-トリニトロー9-フルオレノンを含有した感光層を有する有機感光体が記載されている。しかし、この感光体も感度及び耐久性において充分でない。そのため、感光層を二層に分けてキャリア発生層とキャリア輸送層を別々に構成し、それぞれにキャリアを発生物質、キャリア輸送物質を含った。これば、キャリア発生機能とキャリア輸送機能を異なる物質に個別に分担させることができるため、各機能を発揮する物質を広い範囲のものから選択することができるので、任意の特性を有する電子写真感光体を比較的容易に得られる。そのため、感度が高く、耐久性の大きい有機感光体が得られることが期待されている。

【0004】このような機能分離型の電子写真感光体のキャリア発生層に有効なキャリア発生物質としては、従来数多くの物質が提案されている。無機物質を用いる例としては、例えば特公昭43-16198号公報に記載されているように無定形セレンが挙げられる。この無定形セレンを含有するキャリア発生層は有機キャリア輸送物質を含有するキャリア輸送層と組み合わされて使用される。しかし、この無定形セレンからなるキャリア発生層は、上記したように熱等により結晶化してその特性が劣化するという問題点がある。また、有機物質を上記のキャリア発生物質として用いる例としては、有機染料や有機顔料が挙げられる。例えば、ビスアゾ化合物を含有する感光層を有するものとしては、特開昭47-37543号公報、特開昭55-22834号公報、特開昭54-79632号公報、特開昭56-116040号公報等によりすでに知られている。

【0005】しかしながら、これらの公知のビスアゾ化合物は短波長若しくは中波長域では比較的良好な感度を示すが、長波長域での感度が低く、高信頼性の期待される半導体レーザー光源を用いるレーザープリンターに用いることは困難であった。

【0006】現在、半導体レーザーとして広範に用いられているガリウム-アルミニウム-ヒ素(Ga・Al・As)系発光素子は、発振波長が750nm程度以上である。このような長波長光に高感度の電子写真感光体を得るために、従来数多くの検討がなされてきた。例えば、可視光領域に高感度を有するSe、CdS等の感光材料に新たに長波長化するための増感剤を添加する方法が考えられたが、Se、CdSは上記したように温度、湿度等に対する耐環境性が充分でなく、まだ問題がある。また、多数知られている有機系光導電材料も、上記したようにその感度が通常700nm以下の可視光領域に限定され、これより長波長域に充分な感度を有する材料は少ない。.

【0007】これらのうちで、有機系光導電材料の一つであるフタロシアニン系化合物は、他のものに比べ感光域が長波長域に拡大していることが知られている。これ

らの光導電性を示すフタロシアニン系化合物としては例えば特開昭61-239248号公報に記載されている α 型チタニルフタロシアニンが挙げられる。この α 型チタニルフタロシアニンは、図 2に示すように、CuK α 1.541 Åの X 線に対するブラッグ角度は、7.5, 12.3, 16.3, 25.3, 28.7にピークを有する。しかし、この α 型チタニルフタロシアニンは感度が低く、繰り返し使用に対する電位安定性が劣っており、反転現像を用いる電子写真プロセスでは、地力ブリを起こし易いなどの問題がある。また、帯電能が劣る為、充分な画像濃度が得難い。

100081

【発明が解決しようとする課題】以上のように、長波長域に感度を有する有機キャリア発生物質としてはフタロシアニン化合物が挙げられるが、 α型チタニルフタロシアニンはその製造法、電子写真感光体として繰り返し使用されたときの電位安定性に問題点がある。

【0009】従って、本発明の第1の目的は、特に600nm以上の波長光に対して高い感度を有するチタニルフタロシアニンを用いた感光体を提供することにある。

【0010】本発明の第2の目的は、繰り返し使用による電位安定性の高い感光体を提供することにある。

【0011】本発明の第3の目的は、帯電能に優れた感 光体を提供することにある。

【0012】本発明の第4の目的は、反転現像プロセスに最適な感光体を提供することにある。

[0013]

【課題を解決するための手段】即ち、本発明は $CuK\alpha$ 特性X線(波長1.541Å)に対するブラッグ角 2 θ の主要ピークが少なくとも9.5度±0.2度、9.7度±0.2度、11.7度±0.2度、15.0度±0.2度、23.5度±0.2度、24.1度±0.2度及び27.3度±0.2度にあるチタニルフタロシアニンを含有する感光体に係るものである。

【0015】なお、本発明によるチタニルフタロシアニンは上記の如くに従来にはない独得のスペクトルを呈するが、その基本構造は次の一般式で表される。

[0016]

(化1)

$$(X^{1})_{n} \longrightarrow C \longrightarrow X^{2})_{n}$$

$$C \longrightarrow N \longrightarrow N \longrightarrow C$$

$$N \longrightarrow C \longrightarrow N \longrightarrow C$$

$$(X^{3})_{\ell} \longrightarrow (X^{4})_{k}$$

【0017】 (但し、 X^1 , X^2 , X^3 , X^4 はC1又はBrを表し、n, m, l, kは $0\sim4$ の整数を表す。) また、上記のX線回折スペクトルは次の条件で測定したもの(以下同様)である。

[0018]

X線管球	Cu	
電圧	40. 0	kV
電流	100. 0	mΑ
スタート角度	6. 00	deg.
ストップ角度	35. 00	deg.
ステップ角度	0.020	deg.
測定時間	0. 50	sec.

本発明によるチタニルフタロシアニンの製造方法を例示 的に説明する。

【0019】まず、例えば四塩化チタンとフタロジニトリルとをα-クロロナフタレン溶媒中で反応させ、これによって得られるジクロロチタニウムフタロシアニン(TiCl₂Pc)をアンモニア水等で加水分解することにより、α型チタニルフタロシアニンを得る。これは、引き続いて、2-エトキシエタノール、ジグライム、ジオキサン、テトラヒドロフラン、N,N-ジメチルホルムアミド、N-メチルピロリドン、ピリジン、モルホリン等の電子供与性の溶媒で処理することが好ましい。

【0020】次に、この α 型チタニルフタロシアニンを 50~180℃、好ましくは60~130℃の温度において結晶変 換するのに充分な時間撹拌もしくは機械的歪力をもって ミリングし、本発明のチタニルフタロシアニンが製造される。

【0021】なお、上記の α 型チタニルフタロシアニンの別の作製方法としては、 $TiCl_2Pc$ を望ましくは5 \mathbb{C} 以下で硫酸に一度溶解もしくは硫酸塩にしたものを水または氷水中に注ぎ、再折出もしくは加水分解し、 α 型チタニルフタロシアニンが得られる。

【0022】上記のように得られたチタニルフタロシアニンは、乾燥状態で用いることが好ましいが、水ペースト状のものを用いることもできる。撹拌混練の分散媒と

しては通常顔料の分散や乳化混合等に用いられるものでよく、例えばガラスビーズ、スチールビーズ、アルミナビーズ、フリント石が挙げられる。しかし、分散媒は必ずしも必要としない。磨砕助剤としては通常顔料の磨砕助剤として用いられているものでよく、例えば、食塩、 重炭酸ソーダ、ほう硝等が挙げられる。しかし、この磨砕助剤も必ずしも必要としない。

【0023】撹拌、混練、磨砕時に溶媒を必要とする場合には、撹拌混練時の温度において液状のものでよく、例えば、アルコール系溶媒、即ちグリセリン、エチレングリコール、ジエチレングリコールもしくはポリエチレングリコール系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のセロソルブ系溶剤、ケトン系溶剤、エステルケトン系溶剤等の群から1種類以上選択することが好ましい。

【0024】結晶転移工程において使用される装置として代表的なものを挙げると、一般的な撹拌装置、例えば、ホモミキサー、ティスパーザー、アジター、スターラー或いはニーダー、バンバリーミキサー、ボールミル、サンドミル、アトライター等がある。

【00.25】結晶転移工程における温度範囲は50~180 ℃、好ましくは60~130℃の温度範囲内に行う。また、 通常の結晶転移工程におけると同様に、結晶核を用いる ことも有効である。

【0026】本発明では、上記のチタニルフタロシアニンの他にさらに他のキャリア発生物質を併用しても良い。併用できるキャリア発生物質としては、例えば α 型、 β 型、 γ 型、 χ 型、 χ 2型、 χ 2型、 χ 2型、 χ 2型、 χ 3型、 χ 3型、 χ 4型、 χ 2型、 χ 2型、 χ 4型、 χ 5型、 χ 5型、 χ 6型、 χ 6型 (χ 7) の元を属フタロシアニン、 χ 7 以は各種結晶型 (χ 7) 型の無金属フタロシアニン、 χ 7 以は各種結晶型 (χ 7) 型の無金属フタロシアニン等が挙げられる。また、上記以外のフタロシアニン顔料、アゾ顔料、アントラキノン顔料、ペリレン顔料、多環キノン顔料、スクアリック酸メチン顔料等が挙げられる。

【0027】アゾ顔料としては、例えば以下のものが挙げられる。

0028

6

$$(1-1) A - N = N$$

$$(I-2)A-N=N-N-N-N-N-A$$

$$(1-3) A - N = N$$

$$(1 - 5)$$

$$A - N = N - Ar_1 - CH = CH - Ar_2 - N = N - A$$

$$(1 - 6)$$

$$A - N = N - Ar_1 - C H = C H - Ar_2 - C H = C H - Ar_3 - N = N - A$$

$$(1 - 7)$$

$$A - N = N - Ar_1 - N - A$$

[0030]

(I - 8)

 $A - N = N - A_{I_1} - N = N - A_{I_2} - N = N - A$

(1 - 9)

 $A - N = N - Ar_1 - N = N - Ar_2 - N = N - Ar_3 - N = N - Ar_4 - N = N - A$

(I-10) R^{1} R^{2} $A-N=N-Ar_{1}-C=C-Ar_{2}-N=N-A$

(I-11) $R^{1}R^{2}$ $R^{3}R^{4}$ $A-N=N-Ar_{1}-C=C-Ar_{2}-C=C-Ar_{3}-N=N-A$

$$(1-12) A - N = N$$
 $R^{1} R^{2}$

【0031】〔但し、この一般式中、

 Ar_1 , Ar_2 及び Ar_3 : それぞれ、置換若しくは未置換の炭素環式芳香族環基、

 R^1 , R^2 , R^3 及び R^4 : それぞれ、電子吸引性基又は水素原子であって、 $R^1 \sim R^4$ の少なくとも1つはシアノ基等の電子吸引性基、

[0032]

【化5】

[0033]

【化6】

$$z \longrightarrow Y \qquad z \longrightarrow Y$$

$$z \longrightarrow X \qquad X \qquad X$$

$$X \qquad N \qquad R^{5}$$

$$A \qquad (1-1-1)$$

20 【0034】(Xは、ヒドロキシ基、-N(R6)(R7)又は
-NHS02-R8 〈但し、R6及びR7はそれぞれ、水素原子
又は置換若しくは未置換のアルキル基、R8は置換若し
くは未置換のアルキル基又は置換若しくは未置換のアリール基〉、Yは、水素原子、ハロゲン原子、置換若しくは未置換のアルキル基、アルコキシ基、カルボキシル基、スルホ基、置換若しくは未置換のカルバモイル基又は置換若しくは未置換のスルファモイル基(但し、mが2以上のときは、互いに異なる基であってもよい。)、
Zは、置換若しくは未置換の炭素環式芳香族環又は置換若しくは未置換の炭素環式芳香族環又は置換のア群、R5は、水素原子、置換若しくは未置換のアミノ基、置換若しくは未置換のカルバモイル基、カルボキシル基またはそのエステル基、A′は、置換若しくは未置換のアリール基、nは、1又は2の整数、mは0~4

10

[0035]

の整数である。)]

【化7】

C = N N = N C = N C = N C = N C = N

[0036]

【化8】

$$(1-2-1)$$

[0037]

$$(1 - 3 - 1)$$

$$(1 - 4 - 1)$$

$$(1 - 5 - 1)$$

$$-CONHOH$$
 $-N=N-CH=CH-CN=N-N$

[0038]

【化10】

$$(1 - 6 - 1)$$

(1 - 8 - 1)

[0039]

$$(1 - 8 - 3)$$

(1 - 8 - 4)

(1 - 8 - 5)

(1 - 9 - 1)

H₂ N
$$=$$
 N $=$ N $=$

[0040]

(8)

15

$$H \circ - \bigcirc O H = N - \bigcirc - N = N$$

$$(1-9-3)$$

(1 - 9 - 4)

[0041]

$$(1-9-5)$$

$$C \stackrel{\ell}{\longleftarrow} N + C \stackrel{O}{\bigcirc} O \stackrel{H}{\longrightarrow} N = N - \stackrel{O}{\bigcirc} N = N - \stackrel{$$

(1-10-1)

$$N + C = C + C = C + C = N +$$

(1-10-2)

$$C H_3 O \longrightarrow N H C O O H$$

$$C N O H C O N H \bigcirc O C H_3$$

$$N = N \longrightarrow C = C H \bigcirc N = N \longrightarrow O C H_3$$

[0042]

【化14】

16

$$(1.-10-3)$$

$$N = N - C = C H - N = N - C H^{3}$$

$$C H^{3}$$

$$C H^{3}$$

$$(1-11-1)$$

$$CH_{3} \longrightarrow N + COOH \qquad CH_{3} \longrightarrow CH_{3}$$

$$CH_{3} \longrightarrow N + COOH \longrightarrow CH_{3}$$

$$CH_{4} \longrightarrow N + COOH \longrightarrow CH_{3}$$

$$(1-11-2)$$

$$OCH_3$$

$$OCH_3$$

$$OCH_4$$

$$OCH_4$$

$$OCH_4$$

$$OCH_4$$

$$OCH_4$$

$$OCH_4$$

$$OCH_4$$

$$(1-11-4)$$

$$C H_{3} \longrightarrow N + C O O H \qquad C N \qquad C M = C \longrightarrow C H_{3} \longrightarrow C H_{3}$$

$$C H_{3} \longrightarrow N + C O O H \qquad C O N H \longrightarrow C H_{3}$$

$$(1-11-5)$$

$$OCH_3$$

$$OCH_3$$

$$OCH_3$$

$$OCH_3$$

$$OCH_3$$

$$OCH_3$$

$$OCH_3$$

[0044]

【化16】

(10)

(1-12-1)

$$N = N$$

$$C N C N$$

$$O H C O N H$$

(1-12-2)

$$C H_{3} \longrightarrow N H C O O H$$

$$C N C N$$

$$N = N$$

$$C H_{3} \longrightarrow C H_{3}$$

$$C H_{3} \longrightarrow C H_{3}$$

[0045]

$$(1-12-3)$$

$$\begin{array}{c} C H_3 \\ \\ N H C O O H \\ \\ H \\ \\ N = N \\ \\ C N C N \\ \\ N = N \\ \\ N = N \\ \\ N = N \\ \\ O C H_3 \\ \\$$

(1-12-4)

【0046】また、多環キノン顔料としては次の一般式 [II] の化合物が挙げられる。

[0047]

【化18】

一般式 [II]

【0048】 (この一般式中、X' はハロゲン原子、ニトロ基、シアル基、アシル基又はカルボキシル基を表し、nは0~4の整数を表す。)

具体例は次の通りである。

[0049]

【化19】

【化21】

【0052】本発明の感光体において、機能分離型とする場合に使用されるキャリア輸送物質としては、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、イミダゾール誘導体、イミダゾリジン誘導体、イミダゾリジン誘導体、ロミダゾリジン誘導体、スチリル化合物、ヒドラゾン化合物、ピラゾリン誘導体、オキサゾロン誘導体、ベンゾチアゾール誘導体、ベンズイミダゾール誘導体、ベンゾチアゾール誘導体、ベンズイミダゾール誘導体、キナゾリン誘導体、ベンブフラン誘導体、アクリジン誘導体、フェナジン誘導体、アミノスチルベン誘導体、ポリーNービニルカルバゾール、ポリー1ービニルピレン、ポリー9ービニルアントラセン等が挙げられる。

【0053】本発明の感光体の感光層を構成するためには、上記キャリア発生物質をバインダー中に分散せしめた層を導電性支持体上に設ければよい。或いはこのキャリア発生物質とキャリア輸送物質とを組み合わせ、積層型若しくは分散型のいわゆる機能分離型感光層を設ける場合、通常は図6~図11のようにする。即ち、図6に示す層構成は、導電性支持体1上に本発明に係るチタニルフタロシアニンを含むキャリア発生層2を形成し、これに上記キャリア輸送を含有するキャリア輸送層3を積層して感光層4を形成したものであり、図7はこれらのキャリア発生層2とキャリア輸送層3を逆にした感光層4′を形成したものであり、図7はこれらのキャリア発生をもであり、図8の層構成は図5の層構成の感光層4と導電性支持体1の間に中間層5を設け、図9は図7の層構成

【0054】二層構成の感光層を形成する場合における キャリア発生層2は、次の如き方法によって設けること ができる。

【0055】(イ) キャリア発生物質を適当な溶剤に溶解した溶液或いはこれにバインダーを加えて混合溶解した溶液を塗布する方法。

【0056】(ロ)キャリア発生物質をボールミル、ホモミキサー等によって分散媒中で微細粒子とし、必要に応じてバインダーを加えて混合分散して得られる分散液を塗布する方法。

【0057】これらの方法において超音波の作用下に粒子を分散させると、均一分散が可能にになる。

【0058】キャリア発生層の形成に使用される溶剤或いは分散媒としては、n-ブチルアミン、ジェチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N-ジメチルホルムアミド、アセトン、メチルエチルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、1,2-ジクロロエタン、ジクロロメタン、テトラヒドロフラン、ジオキサン、メタノール、エタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド等を挙げることができる。

【0059】キャリア発生層若しくはキャリア輸送層の 形成にバインダーを用いる場合に、このバインダーとし ては任意のものを用いることができるが、特に疎水性で かつ誘電率が高い電器絶縁性のフィルム形成能を有する 高分子重合体が好ましい。こうした重合体としては、例 えば次のものを挙げることができるが、勿論これらに限 定されるものではない。

【0060】a) ポリカーボネート

- b) ポリエステル
- c)メタクリル樹脂
- d) アクリル樹脂
- e)ポリ塩化ビニル
- f) ポリ塩化ビニリデン
- g) ポリスチレン
- h) ポリビニルアセテート
- i) スチレン-ブタジエン共重合体
- j) 塩化ビニリデン-アクリロニトリル共重合体
- k) 塩化ビニル-酢酸ビニル共重合体
- 1)塩化ビニル-酢酸ビニル-無水マレイン酸共重合体
- m)シリコン樹脂

n)シリコン-アルキッド樹脂

(12)

- o) フェノール-ホルムアルデヒド樹脂
- p) スチレン-アルキッド樹脂
- q) ポリ-N-ビニルカルバゾール
- r)ポリビニルブチラール
- s)ポリカーボネートZ樹脂

これらのバインダーは、単独或いは2種以上の混合物として用いることができる。またバインダーに対するキャリア発生物質の割合は10~600重量%、好ましくは50~4 00重量%、キャリア輸送物質は10~500重量部とするのが良い。

【0061】このようにして形成されるキャリア発生層 2 の厚さは $0.01\sim20\,\mu\,\mathrm{m}$ であることが好ましいが、さらに好ましくは $0.05\sim5\,\mu\,\mathrm{m}$ である。キャリア輸送層の厚みは $2\sim100\,\mu\,\mathrm{m}$ 、好ましくは $5\sim30\,\mu\,\mathrm{m}$ である。

【0062】上記キャリア発生物質を分散せしめて感光層を形成する場合においては、当該キャリア発生物質は2μm以下、好ましくは1μm以下の平均粒径の粉粒体とされるのが好ましい。即ち、粒径が余り大きいと層中への分散が悪くなるとともに、粒子が表面に一部突出して表面の平滑性が悪くなり、場合によっては粒子の突出部分で放電が生じたり、或いはそこにトナー粒子が付着してトナーフィルミング現象が生じ易い。

【0063】さらに、上記感光層には感度の向上、残留 電位乃至反復使用時の疲労低減等を目的として、一種又 は二種以上の電子受容物質を含有せしめることができ る。ここに用いることのできる電子受容性物質として は、例えば無水コハク酸、無水マレイン酸、ジブロム無 水コハク酸、無水フタル酸、テトラクロル無水フタル 酸、テトラブロム無水フタル酸、3-ニトロ無水フタル 酸、4-ニトロ無水フタル酸、無水ピロメリット酸、無水 メリット酸、テトラシアノエチレン、テトラシアノキノ ジメタン、o-ジニトロベンゼン、m-ジニトロベンゼン、 1,3,5-トリニトロベンゼン、パラニトロベンゾニトリ ル、ピクリルクロライド、キノンクロルイミド、クロラ ニル、ブルマニル、ジクロロジシアノパラベンゾキノ ン、アントラキノン、ジニトロアントラキノン、9-フル オレニリデン(ジシアノメチレンマロノジニトリル)、ポ リニトロ-9-フルオレニリデン-(ジシアノメチレンマロ ノジニトリル)、ピクリン酸、o-ニトロ安息香酸、p-ニ トロ安息香酸、3,5-ジニトロ安息香酸、ペンタフルオロ 安息香酸、5-ニトロサルチル酸、3,5-ジニトロサリチル 酸、フタル酸、メリット酸、その他の電子親和力の大き い化合物を挙げることができる。また、電子受容性物質 の添加割合は、重量比でキャリア発生物質:電子受容物 質は100:0.01~200、好ましくは100:0.1~100であ

【0064】なお、上記の感光層を設けるべき支持体1 は金属板、金属ドラム又は導電性ポリマー、酸化インジ ウム等の導電性化合物若しくはアルミニウム、パラジウ ム、金等の金属よりなる導電性薄層を塗布、蒸着、ラミネート等の手段により、紙、プラスチックフィルム等の 基体に設けて成るものが用いられる。接着層あいるはバリヤー層等として機能する中間層としては、上記のバインダー樹脂として説明したような高分子重合体、ポリビニルアルコール、エチルセルローズ、カルボキシメチルセルローズなどの有機高分子物質又は酸化アルミニウムなどより成るものが用いられる。

【0065】上記のようにして本発明の感光体が得られるが、その特長は本発明において用いるチタニルフタロ 10シアニンの感光波長域の極大値が817nm±5nmに存在するため、半導体レーザー用感光体として最適であること、このチタニルフタロシアニンは極めて結晶形が安定であり、他の結晶形への転移は起り難いことである。このことは上記した本発明のチタニルフタロシアニンの製造、性質のみならず、電子写真用感光体を製造するときや、その使用上でも大きな長所となるものである。

【0066】本発明は、以上説明したように、本発明による独特のチタニルフタロシアニンを用いたので、長波長域の光、特に半導体レーザー及びLEDに最適な感光波長域を有する感光体を得ることができる。また、本発明に係るチタニルフタロシアニンは、溶剤、熱、機械的歪力に対する結晶安定性に優れ、感光体としての感度、帯電能、電位安定性に優れるという特長を有する。

[0067]

【実施例】以下、本発明の実施例を説明するが、まず本発明に係るチタニルフタロシアニンの合成例 1、及び比較例の α 型チタニルフタロシアニンの合成例 2 及び 3 を示す。

【0068】(合成例1)

α型チタニルフタロシアニン10部と、磨砕助剤として食塩5万至20部、分散媒としてアセトフェノン10部をサンドグラインダーに入れ、60℃乃至120℃で7万至15時間磨砕した。この場合、高温でグライングすると、β型結晶形を示し易くなり、また、分解し易くなる。容器より取り出し、水及びメタノールで磨砕助剤、分散媒を取り除いた後、2%の希硫酸水溶液で精製し、濾過、水洗、乾燥して鮮明な緑味の青色結晶を得た。この結晶はX線回折、赤外線分光により、図1の本発明のチタニルフタロシアニンであることが分かった。

【0069】また、その赤外線吸収スペクトルは図4の通りであった。なお、吸収スペクトルの極大波長(λ max)は817nm ± 5 nmにあるが、これは α 型チタニルフタロシアニンの λ max = 830nm とは異なっている。

【0070】(合成例2)フタロジニトリル40gと4塩化チタン18g及びα-クロロナフタレン500mlの混合物を窒素気流下240~250℃で3時間加熱撹拌して反応を完結させた。その後、漏過し、生成物であるジクロチタニウムフタロシアニンを収得した。得られたジクロロチタニウムフタロシアニンと濃アンモニア水300mlの混合物を

26

1 時間加熱還流し、目的物であるチタニルフタロシアニン18gを得た。生成物はアセトンにより、ソックスレー抽出器で充分洗浄を行った。この生成物は図2に示したα型チタニルフタロシアニンであった。

【0071】(合成例3)合成例2のチタニルフタロシアニンをアシッドペースト処理し、図3のスペクトルのα型チタニルフタロシアニンを得た。

【0072】 実施例1

合成例1の本発明のチタニルフタロシアニン1部、分散用バインダー樹脂、ポリビニルブ チラール樹脂 (「XY HL」、ユニオン・カーバイド社製) 1部、テトラヒドロフラン100部を超音波分散機を用いて15分間分散した。得られた分散液をワイヤーバーで、アルミニウムを蒸着したポリエステルフィルムよりなる導電性支持体上に塗布して、厚さ0.2μmの電荷発生層を形成した。

【0073】一方、下記構造を有する化合物3部とポリカーボネート樹脂(「パンライトL-1250」、帝人化成社製)4部を1,2-ジクロロエタン30部に溶解し、得られた溶液を前記電荷発生層上に塗布し乾燥して、厚さ18μmの電荷輸送層を形成し、以って本発明の電子写真感光体を作成した。

[0074]

【化22】

【0075】実施例2

実施例1の電荷輸送物質にかえて、下記の構造の電荷輸送物質を用いた他は、実施例1と同様の電子写真感光体を作成した。この感光体の分子感度分布は図5の如くに長波長感度が良好であった。

[0076]

【化23】

【0077】<u>比較例</u>1

実施例1において、電荷発生物質として図2に示したX 線回折スペクトル図を有する電荷発生物質(合成例2の もの)を用いた他は、実施例1と同様にして比較用感光 体1を作成した。

【0078】比較例2

実施例1において、電荷発生物質として図3に示したX 線回折スペクトル図を有する電荷発生物質(合成例3の もの)を用いた他は、実施例1と同様にして比較用感光 体2を作成した。

[0079] 実施例3

アルミニウム箔をラミネートしたポリエステル上に、塩化ビニル-酢酸ビニル-無水マレイン酸共重合体(「エスレックMF-10」、積水化学工業社製)よりなる厚さ0. 1μ mの中間層を形成した。

【0080】次いで、CGMとして本発明のチタニルフタロシアニンをボールミルで24時間粉砕し、ポリカーボネート樹脂(「パンライトLー1250」、帝人化成社製)を6重量%含有する1,2-ジクロロエタン溶液をチタニルフタロシアニン/ポリカーボネート樹脂=30/100(重量比)になるように加えて、更にボールミルで24時間分散した。この分散液にCTM(化合物例1)をポリカーボネート樹脂に対して75重量%を添加し、更にモノクロルベンゼン/1,2-ジクロロエタン=3/7(体積比)になるように調製したものを前記中間層上にスプレー塗布方法により塗布し、厚さ20μmの感光層を形成し、本発明の感光体試料を得た。

【0081】実施例4

アルミニウム箔をラミネートしたポリエステルフィルム上に、実施例1と全く同様の中間層を形成した。

【0082】次いでCTM(化合物例2)/ポリカーボネート樹脂(「パンライトL-1250」、帝人化成社製)=60/100(重量比)を16.5重量%含有する1,2-ジクロロエタン溶液を前記中間層上にディップ塗布、乾燥して、 15μ m厚のCTLを得た。

【0083】次いでCGMとして本発明のチタニルフタロシアニンをボールミルで24時間粉砕し、ポリカーボネート樹脂(「パンライトLー1250」、帝人化成社製)を6重量%含有する1,2-ジクロロエタン溶液をチタニルフ*

*タロシアニン/ポリカーボネート樹脂=30/100 (重量 比)になるように加えて、更にボールミルで24時間分散した。この分散液にCTM (化合物例 2)をポリカーボネート樹脂に対して75重量%を添加し、更にモノクロルベンゼンを加えてモノクロルベンゼン/1,2-ジクロロエタン=3/7 (体積比)になるように調製したものを前記中間層上にスプレー塗布方法により塗布し、厚さ5μmの感光層を形成し、本発明の感光体試料を得た。

【0084】こうして得られた各感光体を静電試験機 (「EPA-8100」、川口電気製作所製)に装着し、以 下の特性試験を行った。

【0085】 「エレクトロメータ S P -428型」(川口電機製作所製)を用いて、その電子写真特性を調べた。即ち、感光体表面を帯電電圧-6 k 又は+6 k ボルトで5 秒間帯電させた時の受容電位 V_A (ボルト) と 5 秒間暗滅衰させた後の電位 V_I (初期電位ボルト) を 1/2 に減衰させるに必要な露光量 E1/2 (ルックス・秒) と暗減衰率 ($D.D=(V_A-V_I)/V_I \times 100$ (%) とを測定した。

【0086】次に帯電器に-6kV又は+6kVの電圧を印加して、5秒間コロナ放電により感光層を帯電した後、5秒間放置(このときの電位を初期電位と称する)し、次いで感光層表面における光強度が5erg/cm²・secとなる状態でキセノンランプの光を分光し、780nmの波長光を照射し、初期電位を+600又は-600ボルトから+300又は

[0087]

【外1】

-300ボルトに減衰させるに必要な露光量、E \$88(erg/cm²)を測定した。

【0088】結果を次の表1にまとめて示した。

※【表1】

[0089]

×

	V A (V)	(V)	E1/2 (lux·sec)	D. D (%)	E §88 (erg/cm²)
実施例 1	- 650	-475	0. 3	26. 9	1.5
実施例 2	-800	-640	0. 4	20.0	2. 1
比較例1	- 250	- 50	_	80.0	_
比較例 2	-400	-150	2. 1	62. 5	-
実施例3	750	530	0. 7	29. 3	3. 5
実施例 4	890	650	1.0	27.0	4.3

【0090】この結果から、本発明に基づく感光体は、 長波長感度が良く、繰り返し使用時の電位安定製、帯電 能に優れていることが分かる。

【0091】次に、反転現像プロセスに適用した例を説明する。

50 【0092】以上述べた実施例1~4及び比較例1.2

の6種類の感光体をレーザープリンター(「LP-3010」、小西六写真工業製)の改造機に装着し、正又は負帯電でそれぞれ正又は負のトナーを含む二成分現像剤を用いて反転現像し、1000回の繰り返し画像形成を行い、それぞれの画像濃度、白地部の黒斑点の量を「◎」,

「Q」, 「 \times 」の3段階で判定し、その結果を下記表2に示した。尚光源としては半導体レーザー (780nm)及びLED (680nm)を用いた。

[0093]

表2】

	光 源	画像濃度	白地部の黒斑点の量
実施例1	半導体レーザー	0	0
実施例2	半導体レーザー	0	0
実施例3	LED	0	0
実施例 4	LED	0	0
比較例1	半導体レーザー	×	×
比較例 2	LED	×	×

【0094】但し、黒斑点の量は

- ◎ 0個/cm²
- 3個/cm²以下
- × 3個/cm²以上

画像濃度はサクラデンシトメーターPDA-65型で測定した。

【0095】◎ 反射濃度 1.0以上

- 反射濃度 0.6~1.0
- × 反射濃度 0.6以下

このように、本発明による感光体は、反転現像に好適であることが分かる。

[0096]

【図6】

【図8】

【図10】

(15)

30

【発明の効果】本発明の感光体は600nm以上の波長光に対して高い感度を有するチタニルフタロシアニンを含有し、繰り返し使用により高位安定性が良好で、帯電性に優れ、且つ反転現像プロセスに最適な効果を示す。

【図面の簡単な説明】

- 【図1】本発明のチタニルフタロシアニンのX線回折図。
- 【図2】 α 型チタニルフタロシアニンの二例のX線回折図。
- 10 【図3】 α 型チタニルフタロシアニンの二例のX線回折、図。
 - 【図4】本発明に基づく電荷発生層の吸収スペクトル。
 - 【図5】本発明に基づく感光体の分光感度図。
 - 【図6】本発明の電子写真用感光体の層構成の具体例を 示した断面図。
 - 【図7】本発明の電子写真用感光体の層構成の具体例を 示した断面図。
 - 【図8】本発明の電子写真用感光体の層構成の具体例を示した断面図。
 - 【図9】本発明の電子写真用感光体の層構成の具体例を示した断面図。
 - 【図10】本発明の電子写真用感光体の層構成の具体例を示した断面図。
 - 【図11】本発明の電子写真用感光体の層構成の具体例を示した断面図。

【符号の説明】

- 1 導電性支持体
- 2 キャリア発生層
- 3 キャリア輸送層
- 30 4,4',4" 感光層
 - 5 中間層

【図7】

【図9】

【図1】

【図2】

【図11】

【図5】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

OTHER:

THIS PAGE BLANK (USPTO)