The Intel Microprocessors

8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium 4, and Core2 with 64-bit Extensions

Architecture, Programming, and Interfacing

EIGHTH EDITION

Barry B. Brey

Chapter 13: Direct Memory Access and DMA-Controlled I/O

Introduction

- The DMA I/O technique provides direct access to the memory while the microprocessor is temporarily disabled.
- This chapter also explains the operation of disk memory systems and video systems that are often DMA-processed.
- Disk memory includes floppy, fixed, and optical disk storage. Video systems include digital and analog monitors.

Chapter Objectives

Upon completion of this chapter, you will be able to:

- Describe a DMA transfer.
- Explain the operation of the HOLD and HLDA direct memory access control signals.
- Explain the function of the 8237 DMA controller when used for DMA transfers.
- Program the 8237 to accomplish DMA transfers.

Chapter Objectives

(cont.)

Upon completion of this chapter, you will be able to:

- Describe the disk standards found in personal computer systems.
- Describe the various video interface standards found in the personal computer.

13-1 BASIC DMA OPERATION

- Two control signals are used to request and acknowledge a direct memory access (DMA) transfer in the microprocessor-based system.
 - the HOLD pin is an input used to request a DMA action
 - the HLDA pin is an output that acknowledges the DMA action
- Figure 13–1 shows the timing that is typically found on these two DMA control pins.

Figure 13–1 HOLD and HLDA timing for the microprocessor.

- HOLD is sampled in any clocking cycle
- when the processor recognizes the hold, it stops executing software and enters hold cycles
- HOLD input has higher priority than INTR or NMI
- the only microprocessor pin that has a higher priority than a HOLD is the RESET pin

- HLDA becomes active to indicate the processor has placed its buses at highimpedance state.
 - as can be seen in the timing diagram, there are a few clock cycles between the time that HOLD changes and until HLDA changes
- HLDA output is a signal to the requesting device that the processor has relinquished control of its memory and I/O space.
 - one could call HOLD input a DMA request input and HLDA output a DMA grant signal

Basic DMA Definitions

- Direct memory accesses normally occur between an I/O device and memory without the use of the microprocessor.
 - a DMA read transfers data from the memory to the I/O device
 - A DMA write transfers data from an I/O device to memory
- Memory & I/O are controlled simultaneously.
 - which is why the system contains separate memory and I/O control signals
 - This special control bus structure allows DMA transfer

- A DMA read causes the MRDC and IOWC signals to activate simultaneously.
 - transferring data from memory to the I/O device
- A DMA write causes the MWTC and IORC signals to both activate.
- These control signals are available to all microprocessors except the 8088/8086.
- 8086/8088 require a controller or circuit such as shown in Fig 13–2 for control bus signal generation.
- The DMA controller provides memory with its address, and controller signal (DACK) selects the I/O device during the transfer.

Figure 13–2 A circuit that generates system control signals in a DMA environment.

- Data transfer speed is determined by speed of the memory device or a DMA controller.
 - if memory speed is 50 ns, DMA transfers occur at rates up to 1/50 ns or 20 M bytes per second
 - if the DMA controller functions at a maximum rate of 15 MHz with 50 ns memory, maximum transfer rate is 15 MHz because the DMA controller is slower than the memory
- In many cases, the DMA controller slows the speed of the system when transfers occur.

- The switch to serial data transfers in modern systems has made DMA is less important.
- The serial PCI Express bus transfers data at rates exceeding DMA transfers.
- The SATA (serial ATA) interface for disk drives uses serial transfers at the rate of 300 Mbps
 - and has replaced DMA transfers for hard disks
- Serial transfers on main-boards between components using can approach 20 Gbps for the PCI Express connection.

13-2 THE 8237 DMA CONTROLLER

- The 8237 supplies memory & I/O with control signals and memory address information during the DMA transfer.
 - actually a special-purpose microprocessor whose job is high-speed data transfer between memory and I/O
- Figure 13–3 shows the pin-out and block diagram of the 8237 programmable DMA controller.

Figure 13–3 The 8237A-5 programmable DMA controller. (a) Block diagram and (b) pin-out. (Courtesy of Intel Corporation.)

- 8237 is not a discrete component in modern microprocessor-based systems.
 - it appears within many system controller chip sets
- 8237 is a four-channel device compatible with 8086/8088, adequate for small systems.
 - expandable to any number of DMA channel inputs
- 8237 is capable of DMA transfers at rates up to 1.6M bytes per second.
 - each channel is capable of addressing a full
 64K-byte section of memory and transfer up to
 64K bytes with a single programming

- Clock input is connected to the system clock signal as long as that signal is 5 MHz or less.
 - in the 8086/8088 system, the clock must be inverted for the proper operation of the 8237

8237 Pin Definitions \overline{CS}

- Chip select enables 8237 for programming.
- The CS pin is normally connected to the output of a decoder.
- The decoder does not use the 8086/8088 control signal IO/M(M/IO) because it contains the new memory and I/O control signals (MEMR, MEMW, IOR and IOW).

RESET

- The reset pin clears the command, status, request, and temporary registers.
- It also clears the first/last flip-flop and sets the mask register.
 - this input primes the 8237 so it is disabled until programmed otherwise

READY

 A logic 0 on the ready input causes the 8237 to enter wait states for slower memory components.

HLDA

 A hold acknowledge signals 8237 that the microprocessor has relinquished control of the address, data, and control buses.

DREQ₀-DREQ₃

- DMA request inputs are used to request a transfer for each of the four DMA channels.
 - the polarity of these inputs is programmable, so they are either active-high or active-low inputs

DB₀-DB₇

 Data bus pins are connected to the processor data bus connections and used during the programming of the DMA controller.

IOR

 I/O read is a bidirectional pin used during programming and during a DMA write cycle.

IOW

 I/O write is a bidirectional pin used during programming and during a DMA read cycle.

EOP

- End-of-process is a bidirectional signal used as an input to terminate a DMA process or as an output to signal the end of the DMA transfer.
 - often used to interrupt a DMA transfer at the end of a DMA cycle

$A_0 - A_3$

- These address pins select an internal register during programming and provide part of the DMA transfer address during a DMA action.
 - address pins are outputs that provide part of the DMA transfer address during a DMA action

8237 Pin Definitions HRQ

 Hold request is an output that connects to the HOLD input of the microprocessor in order to request a DMA transfer.

8237 Pin Definitions DACK₀-DACK₃

- DMA channel acknowledge outputs acknowledge a channel DMA request.
- These outputs are programmable as either active-high or active-low signals.
 - DACK outputs are often used to select the DMA- controlled I/O device during the DMA transfer.

AEN

- Address enable signal enables the DMA address latch connected to the DB_7 – DB_0 pins on the 8237.
 - also used to disable any buffers in the system connected to the microprocessor

ADSTB

• Address strobe functions as ALE, except it is used by the DMA controller to latch address bits A_{15} – A_{8} during the DMA transfer.

MEMR

 Memory read is an output that causes memory to read data during a DMA read cycle.

MEMW

 Memory write is an output that causes memory to write data during a DMA write cycle.

8237 Internal Registers

CAR

- The current address register holds a 16-bit memory address used for the DMA transfer.
 - each channel has its own current address register for this purpose
- When a byte of data is transferred during a DMA operation, CAR is either incremented or decremented.
 - depending on how it is programmed

8237 Internal Registers CWCR

- The current word count register programs a channel for the number of bytes (up to 64K) transferred during a DMA action.
- The number loaded into this register is one less than the number of bytes transferred.
 - for example, if a 10 is loaded to CWCR, then
 11 bytes are transferred during the DMA action

8237 Internal Registers BA and BWC

- The base address (BA) and base word count (BWC) registers are used when auto-initialization is selected for a channel.
- In auto-initialization mode, these registers are used to reload the CAR and CWCR after the DMA action is completed.
 - allows the same count and address to be used to transfer data from the same memory area

8237 Internal Registers CR

- The command register programs the operation of the 8237 DMA controller.
- The register uses bit position 0 to select the memory-to-memory DMA transfer mode.
 - memory-to-memory DMA transfers use DMA channel 0 to hold the source address
 - DMA channel 1 holds the destination address
- Similar to operation of a MOVSB instruction.

Figure 13–4 8237A-5 command register. (Courtesy of Intel Corporation.)

8237 Internal Registers MR

- The **mode register** programs the mode of operation for a channel.
- Each channel has its own mode register as selected by bit positions 1 and 0.
 - remaining bits of the mode register select operation, auto-initialization, increment/decrement, and mode for the channel

Figure 13–5 8237A-5 mode register. (Courtesy of Intel Corporation.)

8237 Internal Registers BR

- The bus request register is used to request a DMA transfer via software.
 - very useful in memory-to-memory transfers, where an external signal is not available to begin the DMA transfer

Figure 13–6 8237A-5 request register. (Courtesy of Intel Corporation.)

8237 Internal Registers MRSR

- The mask register set/reset sets or clears the channel mask.
 - if the mask is set, the channel is disabled
 - the RESET signal sets all channel masks to disable them

Figure 13–7 8237A-5 mask register set/reset mode. (Courtesy of Intel Corporation.)

8237 Internal Registers MSR

 The mask register clears or sets all of the masks with one command instead of individual channels, as with the MRSR.

Figure 13–8 8237A-5 mask register. (Courtesy of Intel Corporation.)

8237 Internal Registers

SR

- The status register shows status of each DMA channel. The TC bits indicate if the channel has reached its terminal count (transferred all its bytes).
- When the terminal count is reached, the DMA transfer is terminated for most modes of operation.
 - the request bits indicate whether the DREQ input for a given channel is active

Figure 13–9 8237A-5 status register. (Courtesy of Intel Corporation.)

Software Commands

- Three software commands are used to control the operation of the 8237.
- These commands do not have a binary bit pattern, as do various control registers within the 8237.
 - a simple output to the correct port number enables the software command
- Fig 13–10 shows I/O port assignments that access all registers and the software commands.

Figure 13–10 8237A-5 command and control port assignments. (Courtesy of Intel Corporation.)

Signals						Operation			
АЗ	A2	A1	A0	ĪŌŔ	ĪŌW	Operation			
1	0	0	0	0	1	Read Status Register			
1	0	0	0	1	0	Write Command Register			
1	0	0	1	0	1	Illegal			
1	0	0	1	1	0	Write Request Register			
1	0	1	0	0	1	Illegal			
1	0	1	0	1	0	Write Single Mask Register Bit			
1	0	1	1	0	1	Illegal			
1	0	1	1	1	0	Write Mode Register			
1	1	0	0	0	1	Illegal			
1	1	0	0	1	0	Clear Byte Pointer Flip/Flop			
1	1	0	1	0	1	Read Temporary Register			
1	1	0	1	1	0	Master Clear			
1	1	1	0	0	1	Illegal			
1	1	1	0	1	0	Clear Mask Register			
1	1	1	1	0	1	Illegal			
1	1	1	1	1	0	Write All Mask Register Bits			

8237 Software Commands *Master clear*

- Acts exactly the same as the RESET signal to the 8237.
 - as with the RESET signal, this command disables all channels

Clear mask register

Enables all four DMA channels.

8237 Software Commands Clear the first/last flip-flop

- Clears the first/last (F/L) flip-flop within 8237.
- The F/L flip-flop selects which byte (low or high order) is read/written in the current address and current count registers.
 - if F/L = 0, the low-order byte is selected
 - if F/L = 1, the high-order byte is selected
- Any read or write to the address or count register automatically toggles the F/L flipflop.

Programming the Address and Count Registers

- Figure 13–11 shows I/O port locations for programming the count and address registers for each channel.
- The state of the F/L flip-flop determines whether the LSB or MSB is programmed.
 - if the state is unknown, count and address could be programmed incorrectly
- It is important to disable the DMA channel before address and count are programmed.

Figure 13–11 8237A-5 DMA channel I/O port addresses. (Courtesy of Intel Corporation.)

Channel	Desister	Operation	Signals								D D DDC DDC
	Register		CS	IOR	IOW	A3	A2	A1	A0	Internal Flip-Flop	Data Bus DB0-DB7
0	Base and Current Address	Write	0	1	0	0	0	0	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	0	0	0	0	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	0	0	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	0	0	1	0	W0-W7 W8-W15
1	Base and Current Address	Write	0	1	0	0	0	1	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	0	1	0	0	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	0	1	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	0	1	1	0	W0-W7 W8-W15
2	Base and Current Address	Write	0	1	0	0	1	0	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	1	0	0	0	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	1	0	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	1	0	1	0	W0-W7 W8-W15
3	Base and Current Address	Write	0	1	0	0	1	1	0	0	A0-A7 A8-A15
	Current Address	Read	0	0	1	0	1	1	0	0	A0-A7 A8-A15
	Base and Current Word Count	Write	0	1	0	0	1	1	1	0	W0-W7 W8-W15
	Current Word Count	Read	0	0	1	0	1	1	1	0	W0-W7 W8-W15

- Four steps are required to program the 8237:
 - (1) The F/L flip-flop is cleared using a clear F/L command
 - (2) the channel is disabled
 - (3) LSB & MSB of the address are programmed
 - (4) LSB & MSB of the count are programmed
- Once these four operations are performed, the channel is programmed and ready to use.
 - additional programming is required to select the mode of operation before the channel is enabled and started

The 8237 Connected to the 80X86

- The address enable (AEN) output of 8237 controls the output pins of the latches and outputs of the 74LS257 (E).
 - during normal operation (AEN=0), latches A & C and the multiplexer (E) provide address bus bits A_{19} – A_{16} and A_7 – A_0
- See Figure 13-12.

Figure 13–12 Complete 8088 minimum mode DMA system.

- The multiplexer provides the system control signals as long as the 80X86 is in control of the system.
 - during a DMA action (AEN=1), latches A & C are disabled along with the multiplexer (E)
 - latches D and B now provide address bits A_{19} – A_{16} and A_{15} – A_{8}
- Address bus bits A_7 – A_0 are provided directly by the 8237 and contain part of the DMA transfer address.
- The DMA controller provides conntrol signals.

Memory-to-Memory Transfer with the 8237

- Memory-to-memory transfer is much more powerful than the automatically repeated MOVSB instruction.
 - most modern chip sets do not support the memory-to-memory feature
- 8237 requires only 2.0 μ s per byte, which is over twice as fast as a software data transfer.
- This is not true if an 80386, 80846, or Pentium is in use in the system.

Sample Memory-to-Memory DMA Transfer

- Suppose contents of memory locations 10000H–13FFFH are to be transferred to locations 14000H–17FFFH.
 - accomplished with a repeated string move instruction or with the DMA controller
- Example 13–1 shows the software required to initialize the 8237 and program latch B in Figure 13–12 for this DMA transfer.

Sample Memory Fill Using the 8237

- To fill an area of memory with the same data, the channel 0 source register is programmed to point to the same address throughout the transfer.
 - accomplished with the channel 0 hold mode
- The controller copies the contents of this single memory location to an entire block of memory addressed by channel 1.
- This has many useful applications.

DMA-Processed Printer Interface

- Fig 13–13 illustrates the hardware added to Fig13–12 for a DMA-controlled printer interface.
 - software to control this interface is simple as only the address of the data and number of characters to be printed are programmed
- Once programmed, the channel is enabled, and the DMA action transfers a byte at a time to the printer interface.
 - each time a printer ACK signal is received

Figure 13–13 DMA-processed printer interface.

- The HOLD input is used to request a DMA action, and the HLDA output signals that the hold is in effect.
- When a logic 1 is placed on the HOLD input, the micro-processor (1) stops executing the program; (2) places its address, data, and control bus at their high-impedance state; and (3) signals that the hold is in effect by placing a logic 1 on the HLDA pin.

- A DMA read operation transfers data from a memory location to an external I/O device.
- A DMA write operation transfers data from an I/O device into the memory.
- Also available is a memory-to-memory transfer that allows data to be transferred between two memory locations by using DMA techniques.

- The 8237 direct memory access (DMA)
 controller is a four-channel device that
 can be expanded to include an additional
 channel of DMA.
- Disk memory comes in the form of floppy disk storage that is found as 3-1/2" microfloppy disks.

- Floppy disk memory data are stored using NRZ (non-return to zero) recording.
- This method saturates the disk with one polarity of magnetic energy for a logic 1 and the opposite polarity for a logic 0.
- In either case, the magnetic field never returns to 0.
- This technique eliminates the need for a separate erase head.

- The MFM scheme records a data pulse for a logic 1, no data or clock for the first logic 0 of a string of zeros, and a clock pulse for the second and subsequent logic 0 in a string of zeros.
- The RLL scheme encodes data so that 50% more information can be packed onto the same disk area. Most modern disk memory systems use the RLL encoding scheme.

- Video monitors are either TTL or analog.
- The TTL monitor uses two discrete voltage levels of 0 V and 5.0 V.
- The analog monitor uses an infinite number of voltage levels between 0.0 V and 0.7 V.
- The analog monitor can display an infinite number of video levels, while the TTL monitor is limited to two video levels.

- The color TTL monitor displays 16 different colors.
- This is accomplished through three video signals (red, green, and blue) and an intensity input.
- The analog color monitor can display an infinite number of colors through its three video inputs.

- In practice, the most common form of color analog display system (VGA) can display 16 M different colors.
- The video standards found today include VGA (640 ´ 480), SVGA (800 ´ 600), and EVGA or XVGA (1024 ´ 768).
- In all three cases, the video information can be 16M colors.