مقدمة الإحصاء الاستدلالي تسليم (2)

التعليمات:

- 🔾 احرص على أن يكون خطك واضحًا ومرتبًا.
- ◄ قم بتصوير حلولك وضعها في ملف واحد (as PDF).
- 🔾 تأكد من كتابة اسمك ورقم جلوسك داخل ملف التسليم.
- Assignment(2)yourIndex : قم بتسمية ملف التسليم كالتالي Assignment(2)21-111
 مثلاً: 111-21(2)21-111
 - تأكد من أن حجم الملف لايتجاوز 10MB.
- إذا تجاوز هذا الحجم يُرجى ضغطه باستخدام برامج ضغط الملفات لتقليل الحجم دون التأثير على جودته مثل (smallpdf, ilovepdf).
 - أو تجنب استخدام بعض التطبيقات التي تجعل حجم الملف كبيراً عند دمج الصور في ملف واحد، حيث يمكنك استخدام تطبيقات مثل CamScanner التي تقوم بدمج الصور وتحويلها إلى PDF بحجم مناسب.
 - ✓ طریقة التسلیم عبر الفورم الآتي:
 S2023Assignment(2)-Submission Form
 - آخر موعد للتسليم: يوم الثلاثاء الموافق 24/9/2024 الساعة 11:59:59 مساءً بإذن
 الله.

المسائل:

- 1) أفرض أن X متغير عشوائي يتبع التوزيع المنتظم في الفترة (- heta, heta) و أن heta غير معلومة.
 - باستخدام الطريقة المولدة للعزوم، أوجد مقدر θ .
- عينة $x_1 = -0.808$, $x_2 = 2.590$, $x_3 = 2.314$, $x_4 = -0.268$ عينة عشوائية بحجم 4 أوجد تقدير θ .
 - p عينة عشوائية تتبع التوزيع الهندسي بمعلمة x_1, x_2, \dots, x_n إذا كان

$$X \sim Geo(p) \Rightarrow P(x) = p(1-p)^{x-1}$$
, $x = 1,2,...$

- . p عقدر الترجيح الأعظم، قدر المعلمة
 - مقدر غير متحين. أن المقدر \hat{p} مقدر غير متحين.
- β و α قدر المعلمتين α, β)، قدر المعلمتين عشوائية تتبع توزيع قاما بمعلمتين α, β)، قدر المعلمتين (3) بإستخدام طريقة الترجيح الأعظم.