```
In [56]: import sys
         print(f"Python Version: {sys.version}")
         Python Version: 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)]
In [26]: import numpy as np
         print(f"Numpy Version: {np.__version__}}")
         Numpy Version: 1.18.1
In [27]: import pandas as pd
         print(f"Pandas Version: {pd.__version__}}")
         Pandas Version: 1.0.3
In [28]: import sklearn
         print(f"Sklearn Version: {sklearn.__version__}}")
         Sklearn Version: 0.22.1
In [29]: import matplotlib
         print(f"Matplot Version: {matplotlib.__version__}}")
         Matplot Version: 3.1.3
In [30]: import scipy as sc
         print(f"Scipy Version: {sc.__version__}}")
         Scipy Version: 1.4.1
In [31]: import matplotlib.pyplot as plt
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import accuracy_score
         from sklearn.metrics import confusion_matrix
         from sklearn.metrics import classification_report
         from pandas.plotting import scatter_matrix
```

Loading the dataset using pandas (Titanic dataset)

```
In [32]: titanic_dataset = pd.read_csv("titanic.csv",)
titanic_dataset.head()
```

Out[32]:

_	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0 1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1 2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
;	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4 5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

In [33]: titanic_dataset.tail()

Out[33]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	NaN	Q

In [34]: print(f"Shape of dataframe: {titanic_dataset.shape}")

Shape of dataframe: (891, 12)

In [36]: titanic_dataset.describe()

Out[36]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Data Visualisation


```
In [40]: correlation = titanic_dataset.corr()
    correlation
```

Out[40]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
Passengerld	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

```
In [41]: # matshow
    fig = plt.figure(figsize=(16,10))
    ax = fig.add_subplot(111)
    cax = ax.matshow(correlation, vmax=1, vmin=-1)
    fig.colorbar(cax)
    label = correlation.columns
    ticks = np.arange(len(correlation))
    ax.set_xticks(ticks)
    ax.set_xticklabels(label)
    ax.set_yticks(ticks)
    ax.set_yticks(ticks)
    ax.set_yticklabels(label)
    plt.show()
```



```
In [42]: # scatter matrix
scatter_matrix(titanic_dataset, figsize=(16,10))
plt.show()
```


Data Preprocessing

```
In [57]: # finding the missing values
          print(f"Missing Values: \n{titanic_dataset.isna().sum()}")
          Missing Values:
          PassengerId
                            0
          Survived
                            0
          Pclass
                            0
          Name
          Sex
                            0
          Age
          SibSp
          Parch
          Ticket
          Fare
                            0
          Cabin
                          687
          Embarked
          dtype: int64
In [44]: | # missing value treatment
          titanic_dataset['Embarked'] = titanic_dataset['Embarked'].fillna(titanic_dataset['Embarked'].mode()[0])
          titanic_dataset['Age'] = titanic_dataset['Age'].fillna(titanic_dataset['Age'].mean())
In [45]: # Feature Generation, total number of family members from SibSp and Parch
           family_member = []
          for i in range(len(titanic_dataset['Parch'])):
    family_member.append(titanic_dataset['SibSp'][i] + titanic_dataset['Parch'][i] + 1)
          family_member = pd.DataFrame({'FamilyMember': family_member})
```

```
In [46]: # Feature Generation, title from Name
         title = []
         for i in range(len(titanic_dataset.Name)):
             if('Mr.' in titanic_dataset['Name'][i]):
                 title.append('Mr')
             elif('Mrs.' in titanic_dataset['Name'][i]):
                  title.append('Mrs')
             elif('Master' in titanic_dataset['Name'][i]):
                  title.append('Master')
             elif('Miss.' in titanic_dataset['Name'][i]):
                  title.append('Miss')
             elif('Dr.' in titanic_dataset['Name'][i]):
                  title.append('Dr')
             elif('Rev.' in titanic_dataset['Name'][i]):
                  title.append('Rev')
                  title.append('Mr')
         title = pd.DataFrame({'Title': title})
In [47]: | # splitting the data into feature and target variable
         X = titanic_dataset.iloc[:,[2, 4, 5]]
         Y = titanic_dataset.iloc[:,1].values
In [48]: | X= pd.concat([X,family_member, title], axis=1)
         X = pd.get_dummies(X).values
In [49]: | # splitting the dataset into train and test set
         X_train, X_test, Y_train, Y_test = train_test_split(X, Y , train_size=0.3, random_state=11)
```

Train the model

Test the model

```
In [51]: # testing the model
          Y_pred = model.predict(X_test)
In [52]: | accuracy_score(Y_test, Y_pred)
Out[52]: 0.8317307692307693
In [53]: # confusion matrix
          confusion_matrix(Y_test,Y_pred)
Out[53]: array([[347, 39],
                 [ 66, 172]], dtype=int64)
In [54]: | # classification report
          print(classification_report(Y_test, Y_pred))
          precision
                       recall f1-score
                     0
                             0.84
                                       0.90
                                                  0.87
                                                             386
                             0.82
                                                             238
                                       0.72
                                                  0.77
                                                  0.83
                                                             624
              accuracy
             macro avg
                             0.83
                                       0.81
                                                  0.82
                                                             624
          weighted avg
                             0.83
                                       0.83
                                                  0.83
                                                             624
```

Use the model

```
In [55]: # usning the model
         Pclass = int(input("Enter Pclass"))
         age = float(input("Enter age"))
         family_member = int(input("Enter number of family members"))
         sex_male=0
         sex_female=0
         sex = input("Enter sex")
         if(sex=='male'):
             sex_male=1
         elif(sex=='female'):
             sex_female=1
         Title_Dr=0
         Title_Master=0
         Title_Miss=0
         Title_Mr=0
         Title_Mrs=0
         Title_Rev=0
         title = input("Enter title")
         if(title == 'Dr'):
             Title_Dr=1
         elif(title == 'Master'):
             Title_Master=1
         elif(title == 'Miss'):
             Title_Miss=1
         elif(title == 'Mr'):
             Title_Mr=1
         elif(title == 'Mrs'):
             Title_Mrs=1
         elif(title == 'Rev'):
             Title_Rev=1
         X_input = [[Pclass,age,family_member, sex_female, sex_male,Title_Dr, Title_Master,Title_Miss,Title_Mr,Title_Mrs,Title_
         Rev]]
         output = model.predict(X_input)
         if(output == 1):
             print(X_input, ': Passenger Survived')
         else:
             print(X_input, ': Passenger Not Survived')
```

[[1, 45.0, 2, 0, 0, 0, 0, 0, 1, 0]] : Passenger Survived