$\sigma_1^{#2}$
$t_{1}+k^{2}t_{1}$ $-\frac{\sqrt{2}}{t_{1}+k^{2}t_{1}}$
$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2} = \frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$
$\frac{i\left(2k^3r_1\!-\!kt_1\right)}{(1\!+\!k^2)^2t_1^2} \left \begin{array}{c} -2k^4r_1\!+\!k^2t_1 \\ (1\!+\!k^2)^2t_1^2 \end{array} \right $
0 0
0 0
0 0
0 0

Lagrangian density

Н

 $\sigma_{0}^{\#1} == 0$

Source constraints SO(3) irreps

 \vdash

 $\tau_{0}^{\#1} == 0$

_	$\omega_{2}^{\#1}{}_{\alpha\beta}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{#1}$ † $^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

 \vdash

 $\tau_{0}^{\#2} == 0$

 \sim

 $\tau_{1}^{\#1}{}^{\alpha} == 0$

 \sim

 $\tau_{1}^{\#2}{}^{\alpha} + 2\,\bar{\imath}\,k\,\,\sigma_{1}^{\#1}{}^{\alpha} = 0$

5 20

 $\tau_{2+}^{\#1}\alpha\beta - 2ik \ \sigma_{2+}^{\#1}\alpha\beta == 0$

Total #:

3

 $\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$

 \sim

 $= \sigma_{1}^{\#2\alpha}$

 $\sigma_{1}^{\#1}{}^{\alpha}$

$\tau_{2}^{\#1}_{+}\alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
·	$\sigma_{2^+}^{\#1} \dagger^{\alpha\beta}$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{#1} +^{\alpha\beta\chi}$

0

0

 $\frac{2}{2k^2r_1+t_1}$

Massive particl	e
	1

Parity:

Pole residue:	$-\frac{1}{r_1} > 0$
Polarisations:	5
Square mass:	$-\frac{t_1}{2r_1} > 0$
Spin:	2

Odd

(No massless particles)

r_1 .	< 0	&&	t_1	>	0	
---------	-----	----	-------	---	---	--