Optimalizace

Elektronická skripta předmětu B0B33OPT, verze ze **17. září 2020**.

Tomáš Werner werner@fel.cvut.cz

Katedra kybernetiky Fakulta elektrotechnická České vysoké učení technické

Obsah

1	Zna	čení a základní pojmy	1		
	1.1	Značení	1		
		1.1.1 Množiny	1		
		1.1.2 Zobrazení	2		
		1.1.3 Funkce a zobrazení více reálných proměnných	3		
	1.2	Minimum a infimum	3		
	1.3	Extrémy funkce na množině	4		
	1.4	Úloha spojité optimalizace	5		
	1.5	Cvičení	13		
Ι	Po	užití lineární algebry v optimalizaci	16		
2	Mat	icová algebra	17		
	2.1	Binární operace s maticemi	17		
	2.2	Transpozice a symetrie	18		
	2.3	Hodnost	18		
	2.4	Inverze	19		
	2.5	Stopa	19		
	2.6	Determinant	20		
	2.7	Matice s jedním sloupcem nebo jedním řádkem	20		
	2.8	Matice sestavené z bloků	21		
	2.9	Co je soustava lineárních rovnic?	22		
	2.10	Maticové zločiny	23		
		2.10.1 Výraz je nesmyslný kvůli rozměrům matic	24		
		2.10.2 Použití neexistujících maticových identit	24		
		2.10.3 Neekvivalentní úpravy (ne)rovnic	24		
		2.10.4 Další nápady pro práci s maticemi	25		
	2.11	Cvičení	25		
3	Linearita				
	3.1	Lineární podprostory			
	3.2	Lineární zobrazení			
		3.2.1 Prostor obrazů	33		
		3.2.2 Nulový prostor	34		
		3.2.3 Dvě věty o dimenzích			
	2.3	A finní podprostor a zobrazoní	26		

	3.4	Cvičení				
4	Ortogonalita 44					
	4.1	Standardní skalární součin				
	4.2	Ortogonální podprostory				
	4.3	Ortonormální množina vektorů				
	4.4	Matice s ortonormálními sloupci				
	4.5	QR rozklad				
	4.6	Ortogonální projekce				
	1.0	4.6.1 Projekce na ortogonální doplněk				
		4.6.2 Vzdálenost bodu od podprostoru				
	4.7	Skalární součin a norma matic				
	4.8	Cvičení				
5	Neh	omogenní lineární soustavy 58				
	5.1	Přibližné řešení ve smyslu nejmenších čtverců				
		5.1.1 Ortogonální projekce na podprostor daný obecnou bází 60				
		5.1.2 Řešení pomocí QR rozkladu				
		5.1.3 Lineární regrese				
		5.1.4 Statistické odůvodnění kritéria nejmenších čtverců				
		5.1.5 Vícekriteriální nejmenší čtverce, regularizace				
	5.2	Řešení s nejmenší normou				
	5.3	(*) Pseudoinverze obecné matice				
	5.4	Cvičení				
	0.1	Ovicent				
6	-	ktrální rozklad a kvadratické funkce 70				
	6.1	Vlastní čísla a vektory				
		6.1.1 Spektrální rozklad				
	6.2	Kvadratická forma				
		6.2.1 Definitnost kvadratické formy / její matice				
		6.2.2 Definitnost ze znamének hlavních minorů				
		6.2.3 Diagonalizace kvadratické formy				
	6.3	Kvadratická funkce				
		6.3.1 Doplnění na čtverec				
		6.3.2 Kvadrika				
	6.4	Cvičení				
7	D	žití spektrálního rozkladu v optimalizaci 83				
7	7.1	žití spektrálního rozkladu v optimalizaci Úloha na nejmenší stopu				
	7.2	Proložení bodů podprostorem				
	1.4	1 1				
		7.2.1 Jiný pohled: nejbližší matice nižší hodnosti				
	7.0	7.2.2 Co když prokládáme afinním podprostorem?				
	7.3	Přeurčené homogenní lineární soustavy				
	7.4	Singulární rozklad (SVD)90				
		7.4.1 Nejbližší matice nižší hodnosti z SVD				
	7.5	Cvičení				

II	N	elineární optimalizace	95
8	Neli	ineární funkce a zobrazení	96
	8.1	Spojitost	97
	8.2	Derivace funkce jedné proměnné	98
	8.3	Parciální derivace	
	8.4	Derivace zobrazení	
		8.4.1 Derivace složeného zobrazení	
		8.4.2 Derivace maticových výrazů	
	8.5	Směrová derivace	
	8.6	Gradient	
	8.7	Parciální derivace druhého řádu	
	8.8	Taylorův polynom	
	8.9	Vnitřek a hranice množiny	
		Lokální extrémy funkce na množině	
	8.11	Cvičení	109
9	Vol	né lokální extrémy	114
	9.1	Analytické podmínky	114
		9.1.1 Pro jednu proměnnou	
		9.1.2 Pro více proměnných	
	9.2	Iterační metody na volná lokální minima	
	9.3	Gradientní metoda	
	9.0	9.3.1 (*) Závislost na lineární transformaci souřadnic	
	0.4		
	9.4	Newtonova metoda	
		9.4.1 Použití na soustavy nelineárních rovnic	
		9.4.2 Použití na minimalizaci funkce	
	9.5	Nelineární metoda nejmenších čtverců	
		9.5.1 Gauss-Newtonova metoda	120
		9.5.2 Rozdíl oproti Newtonově metodě	122
		9.5.3 Levenberg-Marquardtova metoda	122
	9.6	Cvičení	
10	Lok	ální extrémy vázané rovnostmi	127
10		Lineární omezení	
		Tečný a ortogonální prostor k množině	
		Podmínky prvního řádu	
		(\star) Podmínky druhého řádu	
	10.5	Cvičení	134
II	I I	Lineární programování	1 <mark>38</mark>
11	Line	eární programování	139
TI		Transformace úloh LP	
	11.1		
	11.0	11.1.1 Po částech afinní funkce	
	11.2	Typické aplikace LP	
		11.2.1 Optimální výrobní program	142

		11.2.2 Směšovací (výživová) úloha	. 143
		11.2.3 Dopravní úloha	. 144
		11.2.4 Distribuční úloha	. 144
	11.3	Přeurčené lineární soustavy	. 145
		11.3.1 Vektorové normy	
		11.3.2 Přibližné řešení lineárních soustav v 1-normě a ∞ -normě	
		11.3.3 Lineární regrese	
	11.4	Celočíselné lineární programování, LP relaxace	
		11.4.1 Nejlepší přiřazení	
		11.4.2 Nejmenší vrcholové pokrytí	
		11.4.3 Největší nezávislá množina	
	11.5	Cvičení	
	11.0	Oviceni	. 102
12	Kon	vexní množiny a mnohostěny	157
		Konvexní množiny	
		Čtyři kombinace vektorů	
		Konvexní mnohostěny	
	12.0	12.3.1 Extremální body	
		12.3.2 Stěny mnohostěnu	
		12.3.3 Extrémy lineární funkce na mnohostěnu	
	19 /	Cvičení	
	14.4	Oviceni	. 104
13	Sim	plexová metoda	168
	-	Stavební kameny algoritmu	
	10.1	13.1.1 Přechod k sousední standardní bázi	
		13.1.2 Kdy je nové bázové řešení přípustné?	
		13.1.3 Co když je celý sloupec nekladný?	
		13.1.4 Ekvivalentní úpravy účelového řádku	
		13.1.5 Co udělá přechod k sousední bázi s účelovou funkcí?	
	12.9	Základní algoritmus	
	10.2	13.2.1 Cyklení	
	199		
	15.5	Inicializace algoritmu	
	19.4	13.3.1 Dvoufázová simplexová metoda	
	13.4	Cvičení	. 178
11	Dua	lita v lineárním programování	181
14		Konstrukce duální úlohy	
		Věty o dualitě	
		Příklady na konstrukci a interpretaci duálních úloh	
	14.0	14.3.1 Mechanické modely	
	111	Cvičení	
	14.4	Cviceiii	. 191
IV	7 F	Konvexní optimalizace	194
15	Kon	vexní funkce	195
τO		Vztah konvexní funkce a konvexní množiny	
		Konvexita diferencovatelných funkcí	
	10.4	Tromvonion anterenegation for runner	. 100

1	5.3	Operace zachovávající konvexitu funkcí	. 199
		15.3.1 Nezáporná lineární konbinace	. 200
		15.3.2 Skládání funkcí	
		15.3.3 Maximum	. 201
1	5.4	Cvičení	. 202
16 F	⟨on	vexní optimalizační úlohy	205
1	6.1	Příklady nekonvexních úloh	. 205
1	6.2	Konvexní optimalizační úloha ve standardním tvaru	. 206
1	6.3	Ekvivalentní transformace úlohy	. 207
		Třídy konvexních optimalizačních úloh	
		16.4.1 Lineární programování (LP)	
		16.4.2 Kvadratické programování (QP)	
		16.4.3 Kvadratické programování s kvadratickými omezeními (QCQP)	. 209
		16.4.4 Programování na kuželu druhého řádu (SOCP)	. 209
		16.4.5 Semidefinitní programování (SDP)	. 210
1	6.5	Konvexní relaxace nekonvexních úloh	. 211
1	6.6	Cvičení	. 211
17 (*) I	Lagrangeova dualita	214
1	7.1	Minimaxní nerovnost	. 214
1	7.2	Lagrangeova duální úloha	. 215
1	7.3	Silná dualita	. 216
1	7.4	Příklady	. 217
Rejs	stříl	k	218

Kapitola 1

Značení a základní pojmy

1.1 Značení

Pokud potkáte ve skriptech slovo vysázené **tučně**, jde o nově zavedený pojem, který máte pochopit a zapamatovat si. Ve skriptech tedy nepotkáte slovo 'definice', protože všechna tučná slova jsou definice. Slova vysázená kurzívou znamenají buď zdůraznění, nebo nový avšak všeobecně známý pojem. Odstavce, věty, důkazy, příklady a cvičení označené hvězdičkou (*) jsou rozšiřující (a často zajímavé) a není nezbytné umět je ke zkoušce. Je-li za nějakým tvrzením v závorce pokyn odvoďte!, proveďte!, ověřte! či otázka proč?, znamená to, že správnost tvrzení není patrná na první pohled, ale snadno ho dokážete, když se nad ním zamyslíte nebo si to napíšete na papír.

Zopakujme nejdříve matematické značení, které se používá v celých skriptech a které by čtenář měl bezpečně ovládat.

1.1.1 Množiny

Názvy množin budeme psát velkými skloněnými písmeny, např. A nebo X. Budeme používat standardní množinové značení:

```
množina s prvky a_1, \ldots, a_n
\{a_1,\ldots,a_n\}
                      prvek a patří do množiny A (neboli a je prvkem A)
a \in A
A \subseteq B
                      množina A je podmnožinou množiny B, tj. každý prvek z A patří do B
A = B
                      množina A je rovna množině B, platí zároveň A \subseteq B a B \subseteq A
\{a \in A
         |\varphi(a)|
                     množina prvků a z množiny A, které splňují logický výrok \varphi(a)
A \cup B
                      sjednocení množin, množina \{a \mid a \in A \text{ nebo } a \in B\}
A \cap B
                      průnik množin, množina \{a \mid a \in A, a \in B\}
A \setminus B
                      rozdíl množin, množina \{a \mid a \in A, a \notin B\}
(a_1,\ldots,a_n)
                      uspořádaná n-tice prvků a_1, \ldots, a_n
A_1 \times \cdots \times A_n
                      kartézský součin množin, množina \{(a_1,\ldots,a_n)\mid a_1\in A_1,\ldots,a_n\in A_n\}
                      kartézský součinnstejných množin, A^n = A \times \cdots \times A \ (n\text{-krát})
A^n
                      prázdná množina
```

Číselné množiny budeme značit takto:

```
\mathbb{N}
             množina přirozených čísel
\mathbb{Z}
             množina celých čísel
\mathbb{Q}
             množina racionálních čísel
\mathbb{R}
             množina reálných čísel
\mathbb{R}_{+}
             množina nezáporných reálných čísel \{x \in \mathbb{R} \mid x \geq 0\}
             množina kladných reálných čísel \{x \in \mathbb{R} \mid x > 0\}
\mathbb{R}_{++}
             uzavřený reálný interval \{x \in \mathbb{R} \mid x_1 \leq x \leq x_2\}
[x_1, x_2]
             otevřený reálný interval \{x \in \mathbb{R} \mid x_1 < x < x_2\}
(x_1, x_2)
             polouzavřený reálný interval \{x \in \mathbb{R} \mid x_1 \leq x < x_2\}
|x_1, x_2|
\mathbb{C}
             množina komplexních čísel
```

Desetinná čísla budeme psát jako v angličtině s desetinnou tečkou, např. 1.23 namísto 1,23.

1.1.2 Zobrazení

Zobrazení (angl. mapping, map) z množiny A do množiny B značíme

$$f: A \to B$$
 (1.1)

nebo (méně často) $A \xrightarrow{f} B$. Zobrazení si můžeme představit¹ jako 'černou skříňku', která každému prvku $a \in A$ (vzoru) přiřadí právě jeden prvek $b = f(a) \in B$ (obraz). Slovo funkce (angl. function) znamená přesně totéž jako zobrazení, obvykle se však používá pro zobrazení do číselných množin (tedy $B = \mathbb{R}$, \mathbb{Z} , \mathbb{C} apod.). Transformace je zobrazení nějaké množiny do sebe, tedy $f: A \to A$.

Obraz množiny $A' \subseteq A$ v zobrazení $f \colon A \to B$ značíme

$$f(A') = \{ f(a) \mid a \in A' \} = \{ b \in B \mid b = f(a), a \in A' \}$$
(1.2)

(čárka v definici pravé množiny značí konjunkci, tedy jde o množinu všech $b \in B$ které splňují b = f(a) a zároveň $a \in A'$). Např. je-li $A' = \{1, 3, 4, -1\} \subseteq \mathbb{Z}$ a zobrazení $f: \mathbb{Z} \to \mathbb{Z}$ je definované předpisem $f(a) = a^2$, je $f(A') = \{a^2 \mid a \in A'\} = \{1, 9, 16\}$. Je-li $A' = \{a \in A \mid \varphi(a)\}$ a $f: A \to B$, používáme zkratku

$$f(A') = \{ f(a) \mid a \in A, \, \varphi(a) \} = \{ b \in B \mid b = f(a), \, a \in A, \, \varphi(a) \}$$
 (1.3)

nebo jen { $f(a) \mid \varphi(a)$ }, pokud je A jasné z kontextu. Např. { $x^2 \mid x \in \mathbb{R}, \ -1 < x < 1$ } = [0, 1). Zobrazení se nazývá

- injektivní (neboli prosté), jestliže každý vzor má jiný obraz, tj. $f(a) = f(a') \Rightarrow a = a'$.
- surjektivní (neboli A na B), jestliže každý obraz má aspoň jeden vzor, tj. f(A) = B.
- bijektivní (neboli vzájemně jednoznačné), jestliže je zároveň injektivní a surjektivní.

Mějme dvě zobrazení $f: A \to B$ a $g: B \to C$, neboli $A \xrightarrow{f} B \xrightarrow{g} C$. Složení zobrazení f a g je zobrazení $g \circ f: A \to C$ definované jako $(g \circ f)(a) = g(f(a))$ pro každé $a \in A$.

¹Přesná definice je následující: zobrazení $f: A \to B$ je podmnožina kartézského součinu $A \times B$ (tedy relace) taková, že $(a,b) \in f$ a $(a,b') \in f$ implikuje b=b'.

1.1.3 Funkce a zobrazení více reálných proměnných

Uspořádané n-tici $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ reálných čísel říkáme (n-rozměrný) **vektor**. Zápis

$$\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m \tag{1.4}$$

označuje zobrazení, které vektoru $\mathbf{x} \in \mathbb{R}^n$ přiřadí vektor

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(x_1, \dots, x_n) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x})) = (f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n)) \in \mathbb{R}^m,$$

kde $f_1, \ldots, f_m: \mathbb{R}^n \to \mathbb{R}$ jsou složky zobrazení. Píšeme také $\mathbf{f} = (f_1, \ldots, f_m)$. Obrázek ilustruje zobrazení $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^2$:

Pro m=1 jsou hodnotami zobrazení skaláry a budeme psát jeho jméno kurzívou, f. Pro m>1 jsou hodnotami zobrazení vektory a proto jméno budeme psát tučně, \mathbf{f} . I když slova 'funkce' a 'zobrazení' znamenají jedno a to samé, je často zvykem pro m=1 mluvit o funkci a pro m>1 o zobrazení.

Je-li $n \in \{1,2,3\}$, často budeme proměnné zobrazení $f \colon \mathbb{R}^n \to \mathbb{R}^m$ značit x,y,z místo x_1,x_2,x_3 . Např. pro $f \colon \mathbb{R}^2 \to \mathbb{R}$ je pohodlnější psát $f(x,y) = x^2 - xy$ místo $f(x_1,x_2) = x_1^2 - x_1x_2$.

1.2 Minimum a infimum

Pro množinu $Y \subseteq \mathbb{R}$ definujeme tyto pojmy (opakování z analýzy):

- Dolní mez množiny Y je každé číslo $a \in \mathbb{R}$, pro které $a \leq y$ pro všechna $y \in Y$.
- Infimum množiny Y je její největší dolní mez. Značíme jej inf Y.
- **Nejmenší prvek** (neboli **minimum**) množiny Y je její dolní mez, která v ní leží. Pokud taková dolní mez existuje, je určena jednoznačně. Značíme min Y.

Horní mez, největší prvek (maximum, $\max Y$) a supremum (sup Y) se definují analogicky.

Minimum či maximum podmnožiny reálných čísel nemusí existovat. Je hlubokou vlastností reálných čísel, že v nich existuje infimum [supremum] každé zdola [shora] omezené podmnožiny. Tato vlastnost množiny \mathbb{R} se nazývá **úplnost**.

Zaveď me dva prvky $-\infty$ a $+\infty$ (které nepatří do množiny \mathbb{R}) a definujme $-\infty < a < +\infty$ pro každé $a \in \mathbb{R}$. Pokud množina Y je zdola [shora] neomezená, definujeme inf $Y = -\infty$ [sup $Y = +\infty$]. Pro prázdnou množinu definujeme inf $\emptyset = +\infty$ a sup $\emptyset = -\infty$.

Příklad 1.1.

- 1. Množina všech horních mezí intervalu [0,1) je $[1,+\infty)$.
- 2. Množina všech horních mezí množiny \mathbb{R} je \emptyset .
- 3. Množina všech horních mezí množiny \emptyset je \mathbb{R} .
- 4. Interval [0, 1) nemá největší prvek, ale má supremum 1.
- 5. Minimum množiny $\{1/n \mid n \in \mathbb{N}\}$ neexistuje, ale infimum je rovno 0.

- 6. Maximum množiny $\{x\in\mathbb{Q}\mid x^2\leq 2\}=[-\sqrt{2},\sqrt{2}]\cap\mathbb{Q}$ neexistuje, ale supremum je rovno $\sqrt{2}$.
- 7. $\max\{1,2,3\} = \sup\{1,2,3\} = 3$ (minimum a maximum každé konečné množiny existují a jsou rovny infimu a supremu)
- 8. Množina \mathbb{R} nemá nejmenší prvek, tedy min \mathbb{R} neexistuje.
- 9. Prázdná množina ∅ nemá nejmenší prvek, tedy min ∅ neexistuje.

1.3 Extrémy funkce na množině

Mějme funkci $f: X' \to \mathbb{R}$ a množinu $X \subseteq X'$. Nechť $x \in X$ je takové, že $f(x) \le f(x')$ pro všechna $x' \in X$. Pak x nazveme minimum funkce f na množině X, nebo také říkáme, že funkce f nabývá minima na množině X v prvku x. Chceme-li být přesnější, takový prvek x nazýváme minimalizující argument nebo argument minima (angl. minimizer) funkce na množině. Číslo f(x) nazýváme minimální hodnotou funkce f na množině X a píšeme

$$f(x) = \min_{x' \in X} f(x'). \tag{1.5}$$

Pokud navíc je f(x) < f(x') pro všechna $x' \in X \setminus \{x\}$, mluvíme o ostrém minimu. Množinu všech minimálních argumentů funkce f na množině X značíme

$$\underset{x \in X}{\operatorname{argmin}} f(x) = \left\{ x \in X \mid f(x) \le f(x') \ \forall x' \in X \right\} \subseteq X. \tag{1.6}$$

Podobně definujeme maximum funkce na množině. Minima a maxima funkce se souhrnně nazývají její extrémy nebo optima. Pokud odkaz na množinu X chybí, myslí se X = X'.

Je užitečné se k minimu funkce na množině postavit poněkud abstraktněji. Nechť $Y \subseteq \mathbb{R}$. Prvek $y \in Y$ nazveme nejmenší prvek (nebo také minimální prvek) množiny Y, jestliže $y \leq y'$ pro všechna $y' \in Y$. Nejmenší prvek značíme min Y. Ne každá množina $Y \subseteq \mathbb{R}$ má nejmenší prvek (např. interval (0,1] ho nemá). Na druhou stranu, Y má nejvýše jeden minimální prvek.

Označme nyní

$$f(X) = \{ f(x) \mid x \in X \} \subseteq \mathbb{R}$$

obraz množiny X funkcí f. Pokud množina f(X) má nejmenší prvek, definujeme

$$\min_{x \in X} f(x) = \min\{ f(x) \mid x \in X \} = \min f(X). \tag{1.7}$$

Funkce nemusí mít na množině minimum, což plyne z toho, že ne každá množina $Y \subseteq \mathbb{R}$ má minimální prvek. V tom případě je množina (1.6) prázdná.

Příklad 1.2.

- Nechť $X' = X = [1, \infty)$ a f(x) = 1/x. Máme f(X) = (0, 1]. Ale množina (0, 1] nemá minimální prvek, proto funkce f na množině X nemá minimum.
- $\min_{x \in \mathbb{R}} |x 1| = \min\{ |x 1| \mid x \in \mathbb{R} \} = \min \mathbb{R}_+ = 0, \quad \underset{x \in \mathbb{R}}{\operatorname{argmin}} |x 1| = \{1\}$
- Necht' $f(x) = \max\{|x|, 1\}$. Pak $\underset{x \in \mathbb{R}}{\operatorname{argmin}} f(x) = [-1, 1]$.

• Necht'
$$(a_1, a_2, \dots, a_5) = (1, 2, 3, 2, 3)$$
. Pak² $\max_{i=1}^5 a_i = 3$, $\underset{i=1}{\operatorname{argmax}} a_i = \{3, 5\}$.

1.4 Úloha spojité optimalizace

 $Matematickou\ optimalizací\ rozumíme\ hledání\ minima\ nějaké funkce\ f: X' \to \mathbb{R}$ na nějaké množině $X\subseteq X'$. Tato formulace je velmi obecná, neboť množina X může být zcela libovolná. Tento kurs se zabývá $spojitou\ optimalizací$, ve které $X'=\mathbb{R}^n$ a množina X má nespočetný počet prvků a je popsána jako množina řešení soustavy rovnic a nerovnic. Tedy X je množina všech vektorů $(x_1,\ldots,x_n)\in\mathbb{R}^n$ splňujících

$$g_i(x_1, \dots, x_n) \le 0, \quad i = 1, \dots, m$$
 (1.8a)

$$h_i(x_1, \dots, x_n) = 0, \quad i = 1, \dots, l$$
 (1.8b)

pro dané funkce $g_1, \ldots, g_m, h_1, \ldots, h_l$: $\mathbb{R}^n \to \mathbb{R}$. Funkce f, g_i, h_i jsou obvykle spojité a často i diferencovatelné a množina X je obvykle nespočetná a souvislá (nebo je aspoň sjednocením malého počtu souvislých množin). Říkáme také, že minimalizujeme funkci $f(\mathbf{x})$ za podmínek (1.8) příp. (1.10). To lze psát také jako

min
$$f(x_1, \ldots, x_n)$$

za podmínek $g_i(x_1, \ldots, x_n) \leq 0, \quad i = 1, \ldots, m$
 $h_i(x_1, \ldots, x_n) = 0, \quad i = 1, \ldots, l$
 $x_1, \ldots, x_n \in \mathbb{R}$ (1.9)

Podmínka $x_1, \ldots, x_n \in \mathbb{R}$ není vlastně omezením, často se ale píše, aby bylo jasné, co jsou proměnné úlohy. Toto je tedy *úloha spojité optimalizace v obecném tvaru*.

Soustavu (1.8) lze napsat kratčeji ve vektorovém značení jako

$$\mathbf{g}(\mathbf{x}) \le \mathbf{0},\tag{1.10a}$$

$$\mathbf{h}(\mathbf{x}) = \mathbf{0},\tag{1.10b}$$

kde $\mathbf{g} \colon \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{h} \colon \mathbb{R}^n \to \mathbb{R}^l$ a $\mathbf{0}$ značí nulové vektory příslušné dimenze. Tedy

$$X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \le \mathbf{0}, \ \mathbf{h}(\mathbf{x}) = \mathbf{0} \}.$$

Ve shodě se značením (1.3) se pak úloha (1.9) může zapsat jako

$$\min\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{g}(\mathbf{x}) \le \mathbf{0}, \ \mathbf{h}(\mathbf{x}) = \mathbf{0}\}. \tag{1.11}$$

V matematické analýze se řešením úlohy (1.9) říká extrémy funkce f vázané podmínkami (1.8). Pokud omezení chybí, mluví se o volných extrémech funkce f. V matematické optimalizaci se vžilo poněkud odlišné názvosloví:

• Funkce f se nazývá účelová (také pokutová, cenová, kriteriální) funkce.

 $^{^2}$ Místo $\max_{i=1}^5 a_i$ se obvykle píše $\max_{i=1,\dots,5} a_i$. Používáme zde první způsob v analogii se značením $\sum_{i=1}^5 a_i$.

- Prvky množiny X se nazývají $p\check{r}ipustn\acute{a}$ řešení, což je vlastně protimluv, protože nemusí být řešeními úlohy (1.9). Prvkům množiny $\mathop{\rm argmin}_{\mathbf{x}\in X} f(\mathbf{x})$ se pak říká $optim\acute{a}ln\acute{i}$ řešení nebo $optim\acute{a}ln\acute{i}$ argumenty úlohy. Číslu $\min_{\mathbf{x}\in X} f(\mathbf{x})$ se říká $optim\acute{a}ln\acute{i}$ hodnota úlohy.
- Rovnice a nerovnice (1.8) se nazývají omezující podmínky, krátce omezení.
- Omezení (1.8a) příp. (1.8b) se nazývají omezení $typu \ nerovnosti$ příp. $typu \ rovnosti$. Pokud omezení chybí (m = l = 0), jedná se o optimalizaci $bez \ omezen$ í.
- Pokud je omezení typu nerovnosti $g_i(\mathbf{x}) \leq 0$ splněno s rovností, tedy $g_i(\mathbf{x}) = 0$, říkáme, že je v bodě \mathbf{x} aktivní.
- Pokud $X \neq \emptyset$, úloha se nazývá *přípustná*, v opačném případě $(X = \emptyset)$ je nepřípustná.

Dále uvedeme několik příkladů formulace (a často i řešení) úloh ve tvaru (1.9). Některé z nich byste měli být schopni řešit znalostmi a dovednostmi ze střední školy příp. z analýzy, jde tedy o opakování. Jiné předesílají, co přijde v pozdějších kapitolách.

Příklad 1.3. Pastevec vlastní 100 metrů pletiva a chce z něj udělat ohradu pro ovce o co největším obsahu. Ohrada bude mít tvar obdélníka, z něhož tři strany budou tvořeny plotem a zbylá strana řekou (ovce neplavou, řeka tedy slouží jako plot).

Označme strany obdélníka jako x,y. Obsah obdélníka je xy a jeho obvod (bez strany tvořené řekou) 2x+y. Řešíme úlohu

$$\begin{array}{cc} \max & xy \\ \text{za podmínek} & 2x + y = 100 \\ & x, y \ge 0 \end{array}$$

neboli

$$\max\{xy \mid x \ge 0, \ y \ge 0, \ 2x + y = 100\}.$$

To je úloha s n=2 proměnnými, m=2 omezeními typu nerovnosti a l=1 omezením typu rovnosti.

I když jde o úlohu s omezeními, bylo by extrémně nešikovné snažit se ji řešit formalismem Lagrangeových multiplikátorů či KKT podmínek (pokud je někdo zná). Místo toho z podmínky 2x + y = 100 vyjádříme y (přesněji: rovnice 2x + y = 100 je ekvivalentní rovnici y = 100 - 2x) a dosadíme do původní úlohy. Tím dostaneme úlohu s jednou proměnnou

$$\max\{x(100 - 2x) \mid 0 \le x \le 50\},\$$

což někdo raději píše jako $\max_{0 \le x \le 50} x(100-2x)$ nebo $\max_{x \in [0,50]} x(100-2x).$

Tu snadno vyřešíme metodami analýzy funkcí jedné proměnné. Optimální řešení může být buď ve vnitřním bodě nebo v jednom z krajních bodů intervalu [0,50]. Maximum výrazu x(100-2x) na množině $\mathbb R$ snadno najdeme pomocí derivace, nabývá se v bodě x=25. Ten zároveň splňuje podmínku $0 \le x \le 50$. Body na krajích intervalu mají menší hodnotu kritéria, tedy nejsou optimální. Dosazením dostaneme y=100-2x=50.

Příklad 1.4. Jste na pravém břehu řeky široké 0.1 km a chcete se dostat ke stanu na levém břehu, který je 0.3 km po proudu od bodu, který je na levém břehu nejblíže vám. Řeka teče pomalu, zanedbatelnou rychlostí. Plavete rychlostí 1 km/h a chodíte rychlostí 3 km/h (běhat odmítáte, protože je vedro). Jaký je nejkratší čas, za který se dokážete dostat ke stanu?

Optimální dráha bude mít tvar jako na obrázku:

Tedy nejdřív jdeme kus x po pravém břehu, pak přeplaveme šikmo do bodu na levém břehu vzdáleném y od stanu, nakonec dojdeme kus y po levém břehu.

Může mít dráha jiný tvar? Těžko, pokud přijmeme, že dráha, kterou se dostaneme nejrychleji z bodu do bodu za předpokladu, že v každém místě prostoru se pohybujeme stejně rychle, je úsečka spojující tyto dva body.

Celkový čas je $t = \frac{1}{3}x + \sqrt{0.1^2 + (0.3 - x - y)^2} + \frac{1}{3}y$ (hodin). Ten chceme minimalizovat pro proměnné $x, y \in \mathbb{R}$. Všimněte si, že nepotřebujeme omezení $x, y \geq 0$ ani $x + y \leq 0.3$, nebot' i bez nich dostaneme přípustné dráhy. Ovšem tyto dráhy očividně nejsou optimální, protože pro x < 0 bychom na začátku hloupě kráčeli pryč od stanu, pro y < 0 bychom doplavali až za stan, a pro x + y > 0.3 bychom zase plavali pryč od stanu. Takže kdybychom tato omezení přidali, úloha by se nezměnila (tj. omezení jsou redundantní).

Máme tedy úlohu se dvěma proměnnými bez omezení. Ovšem proměnné se vyskytují jen v součtu, tedy označíme-li z=x+y, je $t=\frac{1}{3}z+\sqrt{0.1^2+(0.3-z)^2}$ (samozřejmě vidíme i z obrázku, že x nebo y můžeme uvažovat nulové bez újmy na obecnosti). Pomocí derivace získáme stacionární bod $z=0.3-\sqrt{2}/40$ km ≈ 264.6 m. Minimální čas je $t\approx 0.19428$ hodin, tedy asi 11.7 minut.

Příklad 1.5. Zloděj má žebřík délky 1 a potřebuje se dostat přes svislou zeď ze strany, kde terén (v obrázku červeně) stoupá s konstantní (kladnou) směrnicí k. Jak daleko od zdi musí zloděj žebřík zapíchnout do země, aby jeho druhý konec dosáhl co nejvýše na zeď? Jaký bude v tom případě úhel mezi žebříkem a terénem?

Nakreslíme situaci (levý obrázek):

Hledáme hodnotu x, která maximalizuje výšku vršku žebříku na zdi $|OC| = kx + \sqrt{1-x^2}$, za podmínky $x \geq 0$ (protože žebřík nemůžeme zapíchnout za zeď). Tuto podmínku ale můžeme ignorovat, protože zjevně žádná poloha s x < 0 nebude optimální (vršek bude níž než pro jakékoliv $x \geq 0$). Tedy opět analýza jedné proměnné: podmínka stacionarity je $k = x/\sqrt{1-x^2}$, z toho $x = 1/\sqrt{1+1/k^2}$. Jedná se o maximum, což můžeme ověřit pomocí druhé derivace (musí být záporná), ale je to i vidět.

Ukážeme, že pro optimální x bude žebřík kolmý k terénu (tj. $\alpha=\pi/2$). Z podmínky $k=x/\sqrt{1-x^2}$ vidíme, že |AD|/|CD|=k, protože |AD|=x a $|CD|=\sqrt{1-x^2}$. Ale z definice směrnice je také kx/x=|DO|/|AD|=|AB|/|BO|=k. Tedy pravoúhlé trojúhelníky DCA, BOA a DAO jsou si podobné. Protože součet úhlů v trojúhelníku je π , úhel CAO (tj. α) musí být pravý.

Tento výsledek jsme mohli uhodnout následující úvahou: pokud $\alpha < \frac{\pi}{2}$, pak zmenšením x vršek žebříku C povyleze vzhůru. Podobně pro $\alpha > \frac{\pi}{2}$ a zvětšení x. Když ale $\alpha = \frac{\pi}{2}$, pak zmenšení i zvětšení x způsobí pokles bodu C. Jinými slovy, z obrázku vidíme, že $\alpha = \frac{\pi}{2}$ je lokální maximum.

Úlohu nyní zobecníme tak, že terén nemá tvar přímky f(x) = kx, ale obecné neklesající diferencovatelné funkce f(x) (viz obrázek nahoře vpravo). Dosahuje-li žebřík na zdi (bod C) nejvýše, jaký bude úhel (opět označený α) mezi žebříkem a terénem? Minimalizujeme výraz $f(x) + \sqrt{1-x^2}$. Stacionární podmínka je $f'(x) = x/\sqrt{1-x^2}$. To opět znamená, že je žebřík kolmý k terénu (odvození podobné jako minule).

Příklad 1.6. Jdete chodbou o šířce 8 m, která zatáčí do pravého úhlu a zároveň se zužuje na šířku 1 m (viz obrázek). Jaká je největší možná délka rovné tuhé tyče, se kterou lze zatáčkou projít? Požaduje se, abyste tyč drželi stále vodorovně.

Nejdelší tyč, se kterou projedeme, se určitě bude dotýkat vnitřního rohu chodby (viz obrázek):

Uvažujme pravoúhlý trojúhelník, jehož přepona je tyč (na obrázku červeně) dotýkající se tohoto rohu a odvěsny jsou označeny x a y. Potřebujeme najít délky x a y, pro které bude délka odvěsny minimální (to bude chvíle, kdy bychom už delší tyč nepronesli). Trojúhelník má vrcholy (0,0), (x,0) a (0,y). Z podobnosti trojúhelníků máme (x-1)/1=8/(y-8). Za této podmínky minimalizujeme čtverec délky odvěsny x^2+y^2 . Měli bychom přidat ještě podmínky $x,y\geq 0$, ale opět se snadno ukáže, že v optimálním řešení budou splněny.

Z podmínky vyjádříme y=(8x)/(x-1)=8/(1-1/x) a dosadíme do kritéria, takže minimalizujeme $x^2+64/(1-1/x)^2$. Stacionární podmínka je $2x(x^3-3x^2+3x-65)/(x-1)^3=0$, což je ekvivalentní $2x(x^3-3x^2+3x-65)=0$ za předpokladu $x\neq 1$. Bohužel, to je rovnice 4. stupně. Její jediné reálné řešení je x=5, což se dá uhodnout nebo použít vhodný numerický algoritmus. Z toho y=10. Tedy největší možná délka tyče je $\sqrt{x^2+y^2}=\sqrt{5^2+10^2}=5\sqrt{5}\approx 11.18034$.

Existuje jiný, jednodušší způsob řešení, kterým se navíc vyhneme rovnici 4. stupně. Délku tyče lze napsat jako $8/\cos\alpha + 1/\sin\alpha$ kde α je úhel mezi tyčí a osou x. Hledáme α , pro které je tato délka minimální. Stacionarni podminka je $2\sin\alpha = \cos\alpha$, tedy $\tan\alpha = \frac{1}{2}$. Lze ověřit, že jde o minimum.

Příklad 1.7. Na zahradě vám rostou melouny. Dnes je jich tam 200 kg. Každý den melouny narostou o 5 kg, ale cena 1 kg melounů na trhu klesne o 10 haléřů. Pokud dnešní cena 1 kg melounů na trhu je 9 Kč, jak dlouho máte čekat se sklizní, abyste dosáhli co největšího zisku? Předpokládejte, že melouny sklidíte a prodáte tentýž den.

Cena na trhu za t dnů je $(200+5t)(9-t/10)=-t^2/2+25t+1800$. Chceme najít takové t, pro které tato funkce bude maximální. Porovnáním derivace s nulou dostaneme stacionární bod t=25, který je maximem.

Ovšem pozor: správně jsme měli požadovat, aby t bylo nezáporné a celočíselné, tedy $t \geq 0$ a $t \in \mathbb{Z}$. V našem případě jsme měli štěstí a optimální řešení t tyto podmínky splňuje. I kdyby je nesplňovalo, snadno bychom z něj spočetli optimální řešení, které by je splňovalo (jak?).

Prakticky zaměřený čtenář namítne, že žádný zelinář by to takto nedělal. Hmotnost melounů ani jejich výkupní cena nejsou lineární funkce času a skutečné funkce není snadné odhadnout. I kdyby je zelinář znal, jeho kritériem není jen velikost zisku z melounů, protože např. pěstuje i spoustu jiných věcí a v den optimální sklizně melounů zrovna musí okopávat okurky.

Většina slovních úloh v těchto skriptech bude takto nerealisticky zjednodušená (půjde o tzv. $toy\ problems$). Skutečné úlohy z optimalizační praxe jsou obvykle příliš složité na to, abychom je v tomto kursu dokázali uvést a vysvětlit. Tato složitost je ovšem často jen kvantitavního rázu (více proměnných a více omezení), typ úlohy je stejný jako u našich zjednodušených úloh.

Příklad 1.8. Najděte nejmenší kruh, který obsahuje dané body $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^2$. Kruh je množina $\{\mathbf{x} \in \mathbb{R}^2 \mid ||\mathbf{x} - \mathbf{c}|| \le r\}$, kde

$$\|\mathbf{x}\| = (x_1^2 + \dots + x_n^2)^{1/2}$$

označuje eukleidovskou normu vektoru $\mathbf{x} \in \mathbb{R}^n.$ Úlohu lze napsat jako

za podmínek
$$\|\mathbf{a}_i - \mathbf{c}\| \le r, \quad i = 1, ..., m$$

$$\mathbf{c} \in \mathbb{R}^2$$

$$r \in \mathbb{R}$$

$$(1.12)$$

Mohla by tam být ještě podmínka $r \ge 0$, ta je ale zbytečná, protože norma je nezáporná.

Tato úloha je konvexní a patří do třídy programování na kuželu druhého řádu (SOCP), což si ovšem řekneme až mnohem později. Na řešení SOCP existují numerické metody, které bychom mohli mechanicky použít. Algoritmus řešící naši úlohu lze ale vymyslet i se znalostmi, které máte nyní, a to následující úvahou.

Nejmenší kruh bude mít vždy na své hranici (tj. kružnici) aspoň jeden bod, protože jinak by ho bylo možno zmenšit a tedy by nebyl optimální. Optimální kruh může mít na hranici libovolný počet bodů (třeba všechny, když budou dané body ležet na kružnici; nebo jen jeden když bude m=1, pak bude r=0). Zároveň víme, že kružnice je jednoznačně určena třemi (nekolinárními) body. Úlohu tedy řeší tento algoritmus: Projdi všechny jedno-, dvou- a tříprvkové podmnožiny daných bodů. Pro každou podmnožinu najdi nejmenší kružnici, která jí prochází a zjisti, jestli ostatní body leží v tomto kruhu (jehož hranicí je ta kružnice). Nejmenší z těch kruhů je optimální.

Vidíme, že pro tuto úvahu jsme matematický zápis úlohy (1.12) vlastně vůbec nepotřebovali. Zobecněme nyní úlohu z roviny \mathbb{R}^2 do n-rozměrného prostoru \mathbb{R}^n . Tedy hledáme nejmenší n-rozměrnou kouli, která obsahuje dané body $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^n$. Protože n-rozměrná koule je určena n+1 body v obecné poloze, museli bychom procházet všechny jedno-, dvou- až (n+1)-prvkové podmnožiny. Pro velké n by tento algoritmus už nebyl vhodný, protože množství podmnožin by bylo příliš velké.

Příklad 1.9. Rešme tuto lineární soustavu třech rovnic o dvou neznámých:

$$x + 2y = 6$$

$$-x + y = 3$$

$$x + y = 4$$

Tato soustava nemá řešení (je přeurčená). Chceme najít alespoň přibližné řešení.

Termín 'přibližné řešení' není jednoznačný, různí lidé jím mohou myslet různé věci. Nejčastěji užívaná formulace je minimalizovat součet čtverců³ zbytků (residuí) jednotlivých rovnic. Tedy minimalizujeme funkci

$$f(x,y) = (x+2y-6)^2 + (-x+y-3)^2 + (x+y-4)^2$$

na množině \mathbb{R}^2 . Je jasné, že f(x,y) > 0 pro všechna $x,y \in \mathbb{R}$, kdyby totiž f(x,y) = 0 pak by x,y bylo řešení soustavy. Minimum funkce f najdeme snadno, protože f je kvadratická funkce dvou proměnných. Nutná (a zde i postačující) podmínka na minimum je nulovost parciálních derivací.

Jiný způsob, jak formalizovat termín 'přibližné řešení', je minimalizovat funkci

$$f(x,y) = |x + 2y - 6| + |-x + y - 3| + |x + y - 4|.$$

Zde už nám derivace nepomohou. Uvidíme, že úloha je konvexní a dá se převést na lineární programování. \Box

Příklad 1.10. Víme, že reálná veličina y závisí na reálné veličině x kvadraticky, tj. $y = ax^2 + bx + c$. Neznáme ovšem koeficienty a, b, c. Naměřili jsme hodnoty veličiny y pro m hodnot veličiny x, tj. máme dvojice $(x_i, y_i)_{i=1}^m$. Jak najdeme koeficienty a, b, c?

To je úloha na lineární regresi. Lze ji formulovat ve smyslu nejmenších čtverců jako minimalizaci funkce

$$f(a, b, c) = \sum_{i=1}^{m} (ax_i^2 + bx_i + c - y_i)^2$$

přes proměnné $a, b, c \in \mathbb{R}$. Tato formulace má statistické odůvodnění (z principu maximální věrohodnosti) za předpokladu, že čísla x_1, \ldots, x_n měříme přesně a nepřesnosti měření čísel y_1, \ldots, y_m jsou i.i.d. normální s nulovou střední hodnotou a stejnou variancí. Minimum kvadratické funkce f opět najdeme porovnáním parciálních derivací s nulou.

Příklad 1.11. Jsou dány body $\mathbf{a}_1 \neq \mathbf{b}_1$ a $\mathbf{a}_2 \neq \mathbf{b}_2$ v prostoru \mathbb{R}^n . Najděte vzdálenost přímky procházející body $\mathbf{a}_1, \mathbf{b}_1$ od přímky procházející body $\mathbf{a}_2, \mathbf{b}_2$ (tj. vzdálenost mimoběžek, neboli délka příčky mimoběžek).

Víme, že *i*-tá (kde i=1,2) přímka je množina { $\mathbf{a}_i + \alpha(\mathbf{b}_i - \mathbf{a}_i) \mid \alpha \in \mathbb{R}$ }. Hledáme bod na první přímce a bod na druhé přímce tak, aby jejich vzdálenost byla co nejmenší. Tedy minimalizujeme funkci

$$f(\alpha_1, \alpha_2) = \|\mathbf{a}_1 + \alpha_1(\mathbf{b}_1 - \mathbf{a}_1) - \mathbf{a}_2 - \alpha_2(\mathbf{b}_2 - \mathbf{a}_2)\|^2.$$
 (1.13)

Opět je to kvadratická funkce dvou proměnných.

Příklad 1.12. Pán⁴ u stánku prodává lupínky za 120 Kč/kg a hranolky za 76 Kč/kg. Na výrobu 1 kg lupínků se spotřebuje 2 kg brambor a 0.4 kg oleje. Na výrobu 1 kg hranolků se spotřebuje 1.5 kg brambor a 0.2 kg oleje. Je nakoupeno 100 kg brambor a 16 kg oleje. Kolik má

 $^{^3}$ 'Čtverec' čísla znamená jeho druhou mocninu. Tento historický termín je jednak hezký a jednak se používá tak často, že ho budeme používat i my.

⁴Tato úloha je převzata z elektronických skript *Petr Hliněný: Optimalizační úlohy. Kat. informatiky VSB-TU Ostrava, 2006.*

pán vyrobit lupínků a kolik hranolků, aby co nejvíce utržil? Přitom nepočítáme cenu surovin a předpokládáme, že všechny výrobky se prodají a nevyužité suroviny se po pracovní době vyhodí.

Tuto úlohu lze formalizovat takto:

$$\begin{array}{ll} \max & 120l + 76h \\ \text{za podmínek} & 2l + 1.5h \leq 100 \\ & 0.4l + 0.2h \leq 16 \\ & l,h \geq 0 \end{array}$$

Optimální řešení je $l=20\,\mathrm{kg}$ lupínků a $h=40\,\mathrm{kg}$ hranolků. Podotkněme, že v tomto příkladě jsou omezení $x,y\geq 0$ zbytečná – kdybychom je vynechali, optimální řešení by se nezměnilo (to je vidět z toho, že ani jedna z podmínek $x,y\geq 0$ není v optimu aktivní). Ovšem kdyby druhů surovin a výrobků bylo více, podmínky by zbytečné nebyly.

Příklad 1.13. Jsou dána čísla $c_1, \ldots, c_n \in \mathbb{R}$. Najdi čísla $x_1, \ldots, x_n \in \mathbb{R}$, která maximalizují výraz $\sum_{i=1}^n c_i x_i$ za podmínek $0 \le x_i \le 1$ $(i = 1, \ldots, n)$.

Tato úloha patří do třídy lineárního programování. Ovšem dokážeme ji vyřešit jednoduchou úvahou. Tvrdíme, že optimum se nabývá tehdy, když $x_i = 0$ pro $c_i < 0$ a $x_i = 1$ pro $c_i > 0$ (pro $c_i = 0$ je x_i libovolné v intervalu [0, 1]). Kdyby to tak totiž nebylo, mohli bychom účelovou funkci zvětšit zmenšením nějakého x_i pro $c_i < 0$ nebo zvětšením pro $c_i > 0$. Optimální hodnota je tedy $\sum_{i=1}^{n} \max\{0, c_i\}$, tj. součet kladných čísel c_i .

Příklad 1.14. Jsou dány body $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^n$ a hledáme vektor $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, který minimalizuje (bez omezujících podmínek) funkci

$$f(\mathbf{x}) = \sum_{i=1}^{m} \|\mathbf{x} - \mathbf{a}_i\|^2.$$
 (1.14)

Označíme-li $\mathbf{a}_i = (a_{i1}, \dots, a_{in})$, je $\sum_{i=1}^m \|\mathbf{x} - \mathbf{a}_i\|^2 = \sum_{i=1}^m \sum_{j=1}^n (x_j - a_{ij})^2$, tedy účelová funkce je součtem n funkcí, z nichž každá závisí jen na jedné souřadnici x_j . Minimum funkce f lze tedy najít tak, že najdeme minimum každé funkce zvlášť (úloha se nám tak 'rozpadla' na m nezávislých optimalizačních úloh). Jak snadno spočtete (a jistě jste dávno uhodli), minimum se nabývá v těžišti $(\mathbf{a}_1 + \dots + \mathbf{a}_m)/m$ daných bodů.

Příklad 1.15. jsou dána čísla $a_1, \ldots, a_m \in \mathbb{R}$. Najděte minimum funkce

$$f(x) = \sum_{i=1}^{m} |x - a_i|. \tag{1.15}$$

Seřadíme čísla a_1,\ldots,a_m vzestupně, tedy předpokládáme $a_1 \leq a_2 \leq \cdots \geq a_{m-1} \leq a_m$. Funkce f je po částech lineární (přesněji: je afinní), je diferencovatelná všude kromě bodů a_i . Derivace je konstantní pro každý interval (a_{i-1},a_i) . Najděte hodnotu těchto derivací (nejpozději teď je nutno si nakreslit obrázek!). Z toho usoudíme, kde je funkce klesající, kde rostoucí a kde konstantní. Nyní je jasné, kde f nabývá minima: pro m liché je to v bodě $a_{(m+1)/2}$, pro m sudé na intervalu $[a_{m/2},a_{m/2+1}]$. Argument minima se označuje jako medián čísel a_1,\ldots,a_m (pro sudé m se konvencí bere číslo $\frac{1}{2}(a_{m/2},a_{m/2+1})$.

Příklad 1.16. Jsou dány body $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^n$. Najděte minimum funkce

$$f(\mathbf{x}) = \sum_{i=1}^{m} \|\mathbf{x} - \mathbf{a}_i\|. \tag{1.16}$$

Pro n = 1 se funkce (1.16) redukuje na (1.15). Pro $n \geq 2$ je řešení úlohy známo jako geometrický medián. Ovšem na rozdíl od obyčejného mediánu se minimum obecně nenabývá v žádném z bodů $\mathbf{a}_1, \ldots, \mathbf{a}_m$. Neexistuje algoritmus, který by pro $n \geq 2$ našel minimum funkce (1.16) v konečném počtu kroků. Dobrá zpráva ale je, že úloha je konvexní (patří do třídy SOCP, o které jsme se už zmínili).

Pro případ n=2 má úloha jednoduchý mechanický model⁵. Do vodorovného prkna vyvrtáme díry o souřadnicích \mathbf{a}_i . Každou dírou provlečeme provázek. Provázky jsou nahoře svázané uzlem do jednoho bodu a dole mají závaží o stejné hmotnosti. Poloha uzlu je \mathbf{x} . Hodnota $f(\mathbf{x})$ je potenciální energie soustavy a ustálený stav odpovídá minimu $f(\mathbf{x})$.

Příklad 1.17. Mějme m bodů $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^n$ v n-rozměrném prostoru. Úkolem je rozmístit dalších k bodů $\mathbf{x}_1, \ldots, \mathbf{x}_k \in \mathbb{R}^n$ tak, aby průměrná vzdálenost bodu \mathbf{a}_i k nejbližšímu bodu \mathbf{x}_j byla co nejmenší. Tedy minimalizujeme účelovou funkci

$$f(\mathbf{x}_1, \dots, \mathbf{x}_k) = \sum_{i=1}^m \min_{j=1}^k \|\mathbf{a}_i - \mathbf{x}_j\|$$
 (1.17)

po neznámé vektory $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$. Úloha je známá jako *shlukování*. Jako motivaci si představme optimální rozmístění cisteren ve vesnici, kde občas neteče voda. Zde máme n=2, \mathbf{a}_i jsou souřadnice domů a \mathbf{x}_j jsou souřadnice cisteren. Chceme, aby průměrná vzdálenost obyvatele k nejbližší cisterně byla co nejmenší.

Není znám (a pravděpodobně nikdy nebude) algoritmus, který by pro libovolný vstup (tedy libovolné $n, m, k \in \mathbb{N}$ a $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^n$) našel globální minimum funkce (1.17) za prakticky přijatelný čas. Lze totiž dokázat, že úloha je tzv. NP-těžká⁶. V praktické situaci často použijeme algoritmus, který najde pouze přibližné (typicky lokální) optimum, např. k-means.

Příklad 1.18. Necht' (V, E) je ohodnocený neorientovaný graf, tj. V je konečná množina, $E \subseteq \binom{V}{2}$ je množina dvouprvkových podmnožin V, a je dáno zobrazení $c: E \to \mathbb{R}$ (tedy každá hrana $\{i, j\} \in E$ má přiřazené číslo c_{ij}). Úloha na maximální řez (maximum cut)⁷ v grafu zní

$$\max \sum_{\substack{\{i,j\} \in E \\ \text{za podmínek}}} c_{ij} x_i x_j$$

$$x_i^2 = 1, \quad i \in V$$

$$x_i \in \mathbb{R}, \quad i \in V$$

$$(1.18)$$

⁵Toto mechanické zařízení je známé jako *Varignon frame* a v minulosti se opravdu používalo na řešení úlohy. Úloha má bohatou historii, je známa také jako Fermat-Weberův problém.

 $^{^6}$ Tento pojem patří do teorie složitosti algoritmů, kterou jste ještě nebrali. Zde jen řekneme, že pro NP-těžkou úlohu jen malá naděje, že bude někdy nalezen algoritmus, který by úlohu shlukování řešil v polynomiálním čase. Algoritmus řeší úlohu v polynomiálním čase, jestliže existuje polynom p takový, že pro každý vstup najde řešení v čase menším než p(L), kde L je počet bitů potřebných k zápisu vstupu.

⁷Úloha byla intenzivně studována nejen v kombinatorické optimalizaci, ale také ve statistické fyzice pod názvem hledání minimální energie Isingova modelu.

Účelová funkce je kvadratická (dokonce bilineární) a máme |V| kvadratických omezení typu rovnosti. Každé omezení $x_i^2 = 1$ je ekvivalentní $x_i \in \{-1,1\}$, tedy množina přípustných řešení má konečný počet $(2^{|V|})$ prvků a jedná se tedy o kombinatorickou úlohu. Všimněte si že, přísně vzato, omezení nemůžeme psát jako $x_i \in \{-1,1\}$, protože to není ve tvaru (1.9). Jedná se o klasickou NP-těžkou úlohu, proto už pro některé poměrně malé úlohy je prakticky nemožné najít globální optimum.

1.5 Cvičení

- 1.1. Vyřešte následující úlohy, přičemž slovní úlohy nejdříve formulujte ve tvaru (1.9). Stačí vám k tomu papír, tužka, zdravý rozum a analýza funkcí jedné proměnné. Všimněte si, že některé úlohy lze převést na hledání extrémů funkce jedné proměnné na intervalu, což umíte z analýzy funkcí jedné proměnné.
 - a) $\min\{x^2 + y^2 \mid x \ge 0, xy \ge 1\}$
 - b) $\min\{(x-2)^2 + (y-\frac{1}{2})^2 \mid x^2 \le 1, \ y^2 \le 1\}$
 - c) $\min\{x \mid x \in \mathbb{R}, x \geq a_i \ \forall i = 1, \dots, n\} \text{ pro daná } a_1, \dots, a_n \in \mathbb{R}$
 - d) Máte vyrobit papírovou krabici (včetně víka) o objemu 72 litrů, jejíž délka je dvojnásobek její šířky. Jaké budou její rozměry, má-li se na ní spotřebovat co nejméně papíru? Tloušťka stěn je zanedbatelná.
 - e) Jaké má rozměry válec s jednotkovým objemem a nejmenším povrchem?
 - f) Najděte rozměry půllitru, na jehož výrobu je třeba co nejméně skla. Tloušťka stěn je zanedbatelná.
 - g) Najděte obsah největšího obdélníka vepsaného do kružnice s poloměrem 1.
 - h) Obdélník v rovině má jeden roh v počátku a druhý na křivce $y = x^2 + x^{-2}$, přičemž jeho strany jsou rovnoběžné se souřadnicovými osami. Pro jaké x bude jeho obsah minimální? Může být jeho obsah libovolně veliký?
 - i) Najděte bod v rovině na parabole s rovnicí $y = x^2$ nejblíže bodu (3,0).
 - j) Hektarová oblast obdélníkového tvaru se má obehnat ze tří stran živým plotem, který stojí 1000 korun na metr, a ze zbývající strany obyčejným plotem, který stojí 500 korun na metr. Jaké budou rozměry oblasti při nejmenší ceně plotu?
 - k) x, y jsou čísla v intervalu [1, 5] taková, že jejich součet je 6. Najděte tato čísla tak, aby xy^2 bylo (a) co nejmenší a (b) co největší.
 - l) Hledá se n-tice čísel $x_1, \ldots, x_n \in \{-1, 1\}$ tak, že jejich součin je kladný a jejich součet minimální. Jako výsledek napište (co nejjednodušší) vzorec, který udává hodnotu tohoto minimálního součtu pro obecné n.
 - m) Potkaní biatlon. Potkan stojí na břehu kruhového jezírka o poloměru 1 a potřebuje se dostat na protilehlý bod břehu. Potkan plave rychlostí v_1 a běží rychlostí v_2 . Chce se do cíle dostat co nejrychleji, přičemž může běžet, plavat, nebo zvolit kombinaci obojího. Jakou dráhu zvolí? Strategie potkana může být různá pro různé hodnoty v_1 a v_2 , vyřešte pro všechny kombinace těchto hodnot.
 - n) Normální rozdělení se střední hodnotou μ a směrodatnou odchylkou σ má hustotu pravděpodobnosti $p_{\mu,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \mathrm{e}^{-\frac{(x-\mu)^2}{2\sigma^2}}$. Chceme odhadnout parametry μ a σ z i.i.d. vzorku x_1,\ldots,x_n z rozdělení na základě principu maximální věrohodnosti, tedy chceme maximalizovat věrohodnost $\prod_{i=1}^n p_{\mu,\sigma}(x_i)$.

- 1.2. Nechť X je libovolná množina a $f: X \to \mathbb{R}$. Nechť $g: \mathbb{R} \to \mathbb{R}$ je rostoucí funkce. Dokažte, že $\operatorname*{argmin}_{x \in X} f(x) = \operatorname*{argmin}_{x \in X} g(f(x))$.
- 1.3. Nechť X je libovolná množina, $Y \subset X$, a $f: X \to \mathbb{R}$. Najděte co nejobecnější podmínku, za které platí argmin $f(x) = Y \cap \operatorname*{argmin}_{x \in X} f(x)$.

Nápověda a řešení

- 1.1.a) Vyřešíme úvahou s pomocí obrázku. Množina přípustných řešení je kladná větev hyperboly xy=1 a oblast nad ní. Účelová funkce $f(x,y)=x^2+y^2$ je čtverec (= druhá mocnina) vzdálenosti bodu (x,y) od počátku, její vrstevnice jsou kružnice se středem v počátku (0,0). Protože funkce $\sqrt{\cdot}$ je rostoucí, úloha (přesněji, její množina argumentů minima) by se nezměnila (viz Cvičení 1.2), kdybychom účelovou funkce změnili na $\sqrt{x^2+y^2}$, což je vzdálenost od počátku. Optimální hodnota se proto nabývá v bodě hyperboly nejblíž počátku, tedy v bodě (x,y)=(1,1).
- 1.1.b) Vyřešíme opět obrázkem. Protože $x^2 \le 1$ je ekvivalentní $-1 \le x \le 1$, množina přípustných řešení je čtverec (i s vnitřkem) se středem v počátku a stranou délky 2. Účelová funkce je čtverec vzdálenosti od bodu $(2, \frac{1}{2})$. Minimum se nabývá v bodě čtverce nejblíže bodu $(2, \frac{1}{2})$, tj. v bodě $(1, \frac{1}{2})$
- 1.1.c) Optimální řešení je nejmenší číslo x, které není menší než žádné z čísel a_1, \ldots, a_n . Očividně, takové číslo je $x = \max_i a_i$.
- 1.1.d) Krabice je kvádr se stranami x, 2x, y (v decimetrech). Minimalizujeme jeho povrch 6x + 2y za podmínek $2x^2y = 72$ a $x, y \ge 0$. Z této úlohy eliminujeme proměnnou y. První podmínka je ekvivalentní $y = 36/x^2$. Všimneme si, že podmínka $y = 36/x^2 \ge 0$ je automaticky splněna pro x > 0. Tedy minimalizujeme $6x + 72/x^2$ za podmínky x > 0. To spadá do analýzy funkcí jedné proměnné: položení derivace rovné nule dá stacionární bod $x = \sqrt[3]{24} = 2\sqrt[3]{3}$, což splňuje $x \ge 0$. Mohli bychom ověřit, např. pomocí druhé derivace nebo úvahou, že je to globální minimum na intervalu $[0, \infty)$.
- 1.1.h) Minimalizujeme obsah xy obdélníka za podmínky $y=x^2+x^{-2}$ přes proměnné $x,y\in\mathbb{R},\ x\neq 0$ (poslední podmínka je kvůli x^{-2}). Dosazením za y převedeme na minimalizaci funkce jedné proměnné $x(x^2+x^{-2})=x^3+1/x$ (bez omezení, tedy na intervalu $(-\infty,\infty)$).
- 1.1.i) Minimalizujeme čtverec vzdálenosti $(x-3)^2+y^2$ za podmínky $y=x^2$ přes proměnné $x,y\in\mathbb{R}$. Dosazením za y převedeme na minimalizaci funkce $(x-3)^2+x^4$ bez omezení.
- 1.1.k) Hledáme extrém funkce xy^2 za podmínek x+y=6 a $x,y\in[1,5]$. Tuto úlohu převedeme na úlohu s jedinou proměnnou eliminací např. y. Z x+y=6 vyjádříme y=6-x. Všimneme si (ověřte podrobně!), že podmínka $6-x\in[1,5]$ je ekvivalentní $x\in[1,5]$, což už ale máme. Tedy minimalizujeme $x(6-x)^2$ na intervalu $x\in[1,5]$.
- 1.1.l) Minimalizujeme $x_1 + \cdots + x_n$ za podmínek $x_1 \cdots x_n > 0$ a $x_1, \ldots, x_n \in \{-1, 1\}$. To není úloha ve tvaru (1.9), protože omezení $x_i \in \{-1, 1\}$ nejsou v (1.9) dovolena. To ovšem snadno spravíme, protože je můžeme nahradit ekvivalentními omezeními $x_i^2 = 1$, které už tvar (1.9) dovoluje. Stejně ale jde o netypickou úlohu spojité optimalizace, protože každá proměnná může nabývat jen dvou hodnot a tedy množina přípustných řešení má konečný počet prvků (jedná se tedy spíše o úlohu kombinatorické optimalizace).
 - Úlohu vyřešíme jednoduchou úvahou. Aby $x_1 \cdots x_n > 0$, zápornou hodnotu smí mít sudý počet proměnných. Chceme-li minimalizovat $x_1 + \cdots + x_n$, pro sudé n tedy nastavíme všechny (pro sudé n) příp. všechny kromě jedné (pro liché n) proměnné na -1. Optimální hodnota bude tedy -n (pro n sudé) a 1-n (pro n liché).
- 1.1.n) Tedy chceme maximalizovat $\prod_{i=1}^{n} p_{\mu,\sigma}(x_i)$ přes $\mu \in \mathbb{R}$ a $\sigma > 0$. Je šikovné místo maximalizace této funkce minimalizovat její záporný logaritmus.

1.2. Úkolem je dokázat, že pro každé $x^* \in X$ platí následující ekvivalence: pro každé $x \in X$ platí $f(x^*) \leq f(x)$ právě tehdy, když pro každé $x \in X$ platí $g(f(x^*)) \leq g(f(x))$. To je ale zjevné, protože pro každou rostoucí funkci $g \colon \mathbb{R} \to \mathbb{R}$ a každé $a,b \in \mathbb{R}$ platí $a \leq b \Leftrightarrow g(a) \leq g(b)$.

Část I

Použití lineární algebry v optimalizaci

Kapitola 2

Maticová algebra

Cílem této kapitoly je zopakovat si základní maticové pojmy a naučit se manipulovat s maticovými výrazy a rovnicemi, aniž byste zatím museli mnoho vědět o lineární algebře.

Reálná **matice** rozměru $m \times n$ je tabulka reálných čísel s m řádky a n sloupci¹,

$$\mathbf{A} = [a_{ij}] = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix},$$

kde a_{ij} jsou **prvky** matice. Množinu všech reálných matic rozměru $m \times n$ značíme $\mathbb{R}^{m \times n}$. Používají se tyto názvy:

- Pro m = n se matice nazývá **čtvercová** a pro $m \neq n$ **obdélníková**, přičemž pro m < n je **široká** a pro m > n je **úzká**.
- Diagonální prvky matice jsou prvky a_{11}, \ldots, a_{pp} , kde $p = \min\{m, n\}$. Matice je diagonální, když všechny nediagonální prvky jsou nulové, tedy $a_{ij} = 0$ pro všechna $i \neq j$. Všimněte si, že diagonální matice nemusí být čtvercová. Čtvercovou (m = n) diagonální matici značíme $\mathbf{A} = \operatorname{diag}(a_{11}, a_{22}, \ldots, a_{nn})$.
- Nulová matice má všechny prvky nulové. Značíme ji $\mathbf{0}_{m,n}$ (pokud jsou rozměry jasné z kontextu, pak pouze $\mathbf{0}$).
- **Jednotková matice** je čtvercová diagonální, jejíž diagonální prvky jsou jedničky. Značíme ji \mathbf{I}_n (pokud jsou rozměry jasné z kontextu, pak pouze \mathbf{I}).
- Horní [dolní] trojúhelníková matice má $a_{ij} = 0$ pro všechna i > j [i < j]. Všimněte si, že horní/dolní trojúhelníková matice nemusí být čtvercová.

2.1 Binární operace s maticemi

V algebře reálných matic se reálná čísla nazývají také **skaláry**². Na maticích jsou definovány následující operace:

¹Formálněji můžeme matice definovat jako zobrazení $\{1,\ldots,m\}$ × $\{1,\ldots,n\}$ → \mathbb{R} (podobně, vektor $(x_1,\ldots,x_n)\in\mathbb{R}^n$ lze považovat za zobrazení $\{1,\ldots,n\}$ → \mathbb{R}). Množinu $\mathbb{R}^{m\times n}$ můžeme vidět jako množinu $(\mathbb{R}^m)^n$. V každém případě ale musíme dodat, že matici značíme tabulkou v hranatých závorkách.

 $^{^2}$ Přesněji, pohlížíme-li na množinu všech matic rozměru $m \times n$ jako na lineární prostor, jedná se o skaláry tohoto lineárního prostoru.

- Součin skaláru $\alpha \in \mathbb{R}$ a matice $\mathbf{A} \in \mathbb{R}^{m \times n}$ je matice $\alpha \mathbf{A} = \mathbf{A}\alpha = [\alpha a_{ij}] \in \mathbb{R}^{m \times n}$. Součin $\frac{1}{\alpha}\mathbf{A}$ píšeme krátce jako $\frac{\mathbf{A}}{\alpha}$ nebo \mathbf{A}/α . Součin $(-1)\mathbf{A}$ píšeme krátce jako $-\mathbf{A}$.
- Součet matic $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ je matice $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}] \in \mathbb{R}^{m \times n}$. Rozdíl matic je $\mathbf{A} \mathbf{B} = \mathbf{A} + (-\mathbf{B})$.
- Maticový součin matic $\mathbf{A} \in \mathbb{R}^{m \times p}$ a $\mathbf{B} \in \mathbb{R}^{p \times n}$ je matice $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{m \times n}$ s prvky

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}, \quad i = 1, \dots, m, \ j = 1, \dots, n.$$
 (2.1)

Všimněte si, že násobit lze jen matice, které mají vnitřní rozměr (p) stejný.

Vlastnosti maticového součinu:

- (AB)C = A(BC)
- (A + B)C = AC + BC a A(B + C) = AB + AC
- $\bullet \ \mathbf{AI}_n = \mathbf{A} = \mathbf{I}_m \mathbf{A}$
- $(\alpha \mathbf{A})\mathbf{B} = \mathbf{A}(\alpha \mathbf{B}) = \alpha(\mathbf{A}\mathbf{B})$

Obecně neplatí AB = BA (maticový součin není komutativní)!

Poznamenejme, že výraz $\alpha \mathbf{A}$ pro $\alpha \in \mathbb{R}$ nelze považovat za maticový součin 'matice' α rozměru 1×1 a matice \mathbf{A} , protože vnitřní rozměr matic by byl obecně různý. Tedy násobení matice skalárem je jiná operace, než maticový součin.

Pro čtvercovou matici \mathbf{A} značí \mathbf{A}^k maticový součin k matic \mathbf{A} .

2.2 Transpozice a symetrie

Transpozici matice $\mathbf{A} = [a_{ij}] \in \mathbb{R}^{m \times n}$ značíme $\mathbf{A}^T = [a_{ji}] \in \mathbb{R}^{n \times m}$. Vlastnosti transpozice:

- $\bullet \ (\alpha \mathbf{A})^T = \alpha \mathbf{A}^T$
- $\bullet \ (\mathbf{A}^T)^T = \mathbf{A}$
- $\bullet \ (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
- $\bullet \ (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$

Čtvercová matice se nazývá

- symetrická, když $\mathbf{A}^T = \mathbf{A}$, tj. $a_{ij} = a_{ji}$,
- antisymetrická, když $\mathbf{A}^T = -\mathbf{A}$, tj. $a_{ij} = -a_{ji}$ (z čehož plyne $a_{ii} = 0$).

2.3 Hodnost

Hodnost matice je dimenze lineárního obalu jejích sloupců. Značíme ji rank A. Platí

$$rank \mathbf{A} = rank(\mathbf{A}^T), \tag{2.2}$$

tedy 3 hodnost je také rovna dimenzi lineárního obalu řádků. Tato rovnost není zdaleka očividná, dokážeme ji v §3.2.3 (důkaz najdete také v každé učebnici lineární algebry).

 $^{^3}$ Někdo by raději psal rank (\mathbf{A}) než rank \mathbf{A} , ale před rozmožením počítačů bylo běžnější psát např. $\sin x$ než $\sin(x)$.

Z (2.2) plyne, že pro matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ je

$$rank \mathbf{A} \le \min\{m, n\}. \tag{2.3}$$

Když rank $\mathbf{A} = \min\{m, n\}$, říkáme, že matice má **plnou hodnost**. Je rank $\mathbf{A} = n$ právě když \mathbf{A} má lineárně nezávislé sloupce, a rank $\mathbf{A} = m$ právě když \mathbf{A} má lineárně nezávislé řádky. Čtvercová matice s plnou hodností se nazývá **regulární**. Čtvercová matice, která nemá plnou hodnost, se nazývá **singulární**.

Je užitečné si pamatovat nerovnost (důkaz viz Cvičení 3.8)

$$rank(\mathbf{AB}) \le \min\{rank \, \mathbf{A}, rank \, \mathbf{B}\}. \tag{2.4}$$

2.4 Inverze

Když platí

$$\mathbf{AB} = \mathbf{I},\tag{2.5}$$

matice \mathbf{B} se nazývá **pravá inverze** matice \mathbf{A} a matice \mathbf{A} se nazývá **levá inverze** matice \mathbf{B} . Pravá či levá inverze nemusí existovat nebo nemusí být jediná. Pravá inverze matice existuje právě tehdy, má-li matice lineárně nezávislé řádky (dokážeme to později ve Větě 3.5, zatím si to pamatujte). Levá inverze matice existuje právě tehdy, má-li matice lineárně nezávislé sloupce (což plyne z předchozího, když si (2.5) napíšeme jako $\mathbf{B}^T \mathbf{A}^T = \mathbf{I}$; viz také Věta 3.7).

Jestliže matice \mathbf{A} je čtvercová a má pravou inverzi, má zároveň i levou inverzi a obě inverze se rovnají a jsou jediné. Opravdu: je-li $\mathbf{AX} = \mathbf{I}$ a $\mathbf{YA} = \mathbf{I}$, pak $\mathbf{YAX} = \mathbf{Y} = \mathbf{X}$. Protože toto platí pro každou levou inverzi a každou pravou inverzi, jsou zároveň jediné. Pak mluvíme pouze o **inverzi** matice a značíme ji \mathbf{A}^{-1} . Matice má inverzi, právě když je regulární. Vlastnosti inverze:

- $\bullet \ \mathbf{A}\mathbf{A}^{-1} = \mathbf{I} = \mathbf{A}^{-1}\mathbf{A}$
- $\bullet (\mathbf{A}^{-1})^{-1} = \mathbf{A}$
- $(AB)^{-1} = B^{-1}A^{-1}$
- $(\alpha \mathbf{A})^{-1} = \alpha^{-1} \mathbf{A}^{-1}$
- $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$, což krátce značíme \mathbf{A}^{-T} .

2.5 Stopa

Stopa (angl. trace) čtvercové matice $\mathbf{A} \in \mathbb{R}^{n \times n}$ je součet jejích diagonálních prvků, značí se

$$\operatorname{tr} \mathbf{A} = a_{11} + \dots + a_{nn}. \tag{2.6}$$

Vlastnosti (dokažte!):

- $\operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr} \mathbf{A} + \operatorname{tr} \mathbf{B}$
- $\operatorname{tr}(\alpha \mathbf{A}) = \alpha \operatorname{tr} \mathbf{A}$
- $\operatorname{tr}(\mathbf{A}^T) = \operatorname{tr} \mathbf{A}$
- $\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA})$ pro každé $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{B} \in \mathbb{R}^{n \times m}$ (tzv. cykličnost stopy)

Z poslední rovnosti plyne např. tr(ABC) = tr(CAB), protože tr(DC) = tr(CD) kde D = AB. Podobně např. tr(ABCD) = tr(CDAB). Ale neplatí např. tr(ABC) = tr(CBA).

2.6 Determinant

Determinant je funkce $\mathbb{R}^{n\times n}\to\mathbb{R}$ (tedy přiřazuje čtvercové matici skalár) definovaná jako

$$\det \mathbf{A} = \sum_{\sigma} \operatorname{sgn} \sigma \prod_{i=1}^{n} a_{i\,\sigma(i)}, \tag{2.7}$$

kde sčítáme přes všechny permutace n prvků $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$, přičemž⁴ sgn σ označuje znaménko permutace. Některé vlastnosti determinantu:

- $\det \mathbf{I} = 1$
- $det(\mathbf{AB}) = (det \mathbf{A})(det \mathbf{B})$
- det $\mathbf{A}^{-1} = (\det \mathbf{A})^{-1}$ (plyne z předchozího pro $\mathbf{B} = \mathbf{A}^{-1}$)
- $\det \mathbf{A}^T = \det \mathbf{A}$
- $\det \mathbf{A} = 0$ právě tehdy, když \mathbf{A} je singulární
- Determinant je multilineární funkce sloupců matice, tj. je lineární funkcí libovolného sloupce, jsou-li všechny ostatní sloupce konstantní.
- Determinant je alternující funkce sloupců matice, tj. prohození dvou sloupců změní znaménko determinantu.

2.7 Matice s jedním sloupcem nebo jedním řádkem

Matice s jediným sloupcem (tedy prvek $\mathbb{R}^{m\times 1}$) se také nazývá **sloupcový vektor**⁵. Matice s jediným řádkem (tedy prvek $\mathbb{R}^{1\times n}$) se také nazývá **řádkový vektor**.

Lineární prostor $\mathbb{R}^{m\times 1}$ všech matic s jediným sloupcem je 'skoro stejný' jako lineární prostor \mathbb{R}^m všech uspořádaných m-tic (x_1,\ldots,x_m) . Proto je zvykem tyto prostory ztotožnit a bez upozornění přecházet mezi oběma významy. Prvkům

$$\mathbf{x} = \underbrace{(x_1, \dots, x_m)}_{\text{uspořádaná }m\text{-tice}} = \underbrace{\begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}}_{\text{matice }m \times 1} \in \mathbb{R}^m$$

tohoto prostoru budeme říkat krátce **vektory**. Jinak řečeno, slovem vektor (bez přívlastku) budeme rozumět sloupcový vektor nebo také uspořánou n-tici čísel⁶.

Všimněme si případů, kdy se v maticovém součinu vyskytují vektory:

- Pro matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ a vektor $\mathbf{x} \in \mathbb{R}^n$, výraz $\mathbf{A}\mathbf{x}$ je maticový součin matice $m \times n$ a matice $n \times 1$, což je (sloupcový) vektor délky m. Je to vlastně lineární kombinace sloupců matice \mathbf{A} s koeficienty \mathbf{x} (viz §3.2).
- Pro matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ a vektor $\mathbf{x} \in \mathbb{R}^m$, výraz $\mathbf{x}^T \mathbf{A}$ je maticový součin matice $1 \times m$ a matice $m \times n$, což je řádkový vektor délky n. Je to vlastně lineární kombinace řádků matice \mathbf{A} s koeficienty \mathbf{x} .

⁴Všimněte si, že permutace n prvků je vlastně bijektivní zobrazení $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$.

⁵V lineární algebře má slovo *vektor* obecnější význam než v maticové algebře: znamená prvek lineárního prostoru (který se někdy také nazývá *vektorový prostor*).

⁶Totéž bychom samozřejmě mohli udělat s řádky (a někdo to tak i dělá, např. počítačoví grafici).

- Pro $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ je $\mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n$ je maticový součin řádkového vektoru \mathbf{x}^T a sloupcového vektoru y, jehož výsledkem je skalár. Je to standardní skalární součin vektorů \mathbf{x} a \mathbf{y} (více si o něm řekneme §4.1).
- Pro $\mathbf{x} \in \mathbb{R}^m$ a $\mathbf{y} \in \mathbb{R}^n$ je $\mathbf{x}\mathbf{y}^T$ matice rozměru $m \times n$, které se někdy říká **vnější součin** vektorů x a y nebo dyáda.

Symbol $\mathbf{1}_n=(1,\ldots,1)\in\mathbb{R}^n$ značí (sloupcový) vektor s jedničkovými složkami. Pokud nplyne z kontextu, píšeme jen 1. Příklad: pro $\mathbf{x} \in \mathbb{R}^n$ je $\mathbf{1}^T \mathbf{x} = x_1 + \cdots + x_n$.

Symbol $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{R}^n$ (jednička na *i*-tém místě) značí *i*-tý (sloupcový) vektor standardní báze, kde počet n složek vektoru \mathbf{e}_i je určen kontextem. Standardní báze tvoří sloupce jednotkové matice, $[\mathbf{e}_1 \ \cdots \ \mathbf{e}_n] = \mathbf{I}_n$.

2.8 Matice sestavené z bloků

Matici je možno sestavit z několika jejích **podmatic** (zvaných též **bloky**), např.

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{A} & \mathbf{I} \\ \mathbf{B} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{A} & \mathbf{I} \\ \mathbf{0} & \mathbf{D} \end{bmatrix}. \tag{2.8}$$

Rozměry jednotlivých bloků musí být slučitelné, v prvním příkladu musí mít např. matice A, B stejný počet řádků a matice A, C stejný počet sloupců. V posledním příkladu jsou rozměry jednotkové matice I a nulové matice 0 určeny rozměry matic A a D.

Při násobení matic sestavených z bloků je užitečné pravidlo, že lze formálně užít obvyklý postup pro násobení matic, pouze místo prvků matice si představíme bloky.

Příklad 2.1. Jsou-li a, b, c, d, x, y skaláry, máme

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}.$$

Jsou-li A, B, C, D, X, Y matice vhodných rozměrů, máme tedy (ověřte dle vzorce (2.1)!)

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{Y} \\ \mathbf{C}\mathbf{X} + \mathbf{D}\mathbf{Y} \end{bmatrix}.$$

Často je užitečné vnímat matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ jako matici sestavenou z bloků

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix},$$

kde sloupcové vektory $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ jsou sloupce matice A. Matici lze také vnímat jako sestavenou z bloků

$$\mathbf{A} = egin{bmatrix} \mathbf{a}_1^T \ dots \ \mathbf{a}_m^T \end{bmatrix} = egin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_m \end{bmatrix}^T,$$

kde řádkové vektory $\mathbf{a}_1^T, \dots, \mathbf{a}_m^T$ jsou řádky matice \mathbf{A} , přičemž $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^n$. Vyjádříme-li matici $\mathbf{A} \in \mathbb{R}^{m \times p}$ pomocí řádků a matici $\mathbf{B} \in \mathbb{R}^{p \times n}$ pomocí sloupců, je

$$\mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix} \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix} = \begin{bmatrix} \mathbf{A}\mathbf{b}_1 & \cdots & \mathbf{A}\mathbf{b}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1^T \mathbf{B} \\ \vdots \\ \mathbf{a}_m^T \mathbf{B} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1^T \mathbf{b}_1 & \cdots & \mathbf{a}_1^T \mathbf{b}_n \\ \vdots & \ddots & \vdots \\ \mathbf{a}_m^T \mathbf{b}_1 & \cdots & \mathbf{a}_m^T \mathbf{b}_n \end{bmatrix}. \quad (2.9)$$

Vyjádříme-li matici $\mathbf{A} \in \mathbb{R}^{m \times p}$ pomocí sloupců a matici $\mathbf{B} \in \mathbb{R}^{p \times n}$ pomocí řádků, je

$$\mathbf{AB} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_p \end{bmatrix} \begin{bmatrix} \mathbf{b}_1^T \\ \vdots \\ \mathbf{b}_p^T \end{bmatrix} = \mathbf{a}_1 \mathbf{b}_1^T + \cdots + \mathbf{a}_p \mathbf{b}_p^T.$$
 (2.10)

2.9 Co je soustava lineárních rovnic?

Soustava rovnic je lineárni, jestliže se v žádné rovnici proměné nevyskytují v mocninách (např. x^2) ani v součinech (např. xy). Tedy, pravá i levá strana každé rovnice je polynom nejvýše prvního stupně (ale ve více proměnných, viz zač. §6). Když pojmenujeme proměnné jako x_1, \ldots, x_n , každou lineární soustavu m rovnic s n neznámými jde zapsat jako

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1,$$

 \vdots
 $a_{m1}x_1 + \dots + a_{mn}x_n = b_m,$

neboli

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, \dots, m.$$

neboli

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{2.11}$$

kde $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{x} \in \mathbb{R}^n$. Soustava je **homogenní** pokud $\mathbf{b} = \mathbf{0}$ (tj. každé z čísel b_1, \ldots, b_m je nulové), v opačném případě (aspoň jedno z čísel b_1, \ldots, b_m je nenulové) je **nehomogenní**.

Chceme-li řešit lineární soustavu na počítači, příslušné algoritmy často vyžadují soustavu ve tvaru (2.11), tj. všechny neznámé jsou soutředěné do jediného vektoru. Např. v Matlabu se řešení soustavy (2.11) spočítá jednoduše jako x=A\b (zde předpokládáme, že soustava má právě jedno řešení)). Ovšem ne vždy dostaneme lineární soustavu v tomto tvaru. Přepisujeme-li takové soustavy do tvaru (2.11), můžeme snadno udělat chybu. Existují způsoby, jak to dělat elegantněji a obecněji⁷, viz následující příklady a Cvičení 2.6.

Příklad 2.2. Soustava

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{2.12a}$$

$$\mathbf{A}^T \mathbf{y} = \mathbf{x},\tag{2.12b}$$

kde $\mathbf{x} \in \mathbb{R}^n$ a $\mathbf{y} \in \mathbb{R}^m$ jsou neznámé a $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{b} \in \mathbb{R}^m$ jsou dány. Je to lineární soustava m+n rovnic s m+n neznámými. Tuto soustavu můžeme napsat ve tvaru (2.11) (kde samozřejmě písmena \mathbf{A}, \mathbf{b} znamenají něco jiného než v naší soustavě) takto:

$$\begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{I} & -\mathbf{A}^T \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix}.$$

 $^{^7}$ Abychom řekli přesně, co znamená 'obecněji', musíme rozlišovat mezi instanci lineární soustavy, což je jedna konkrétní soustava, a $nekonečnou\ množinou\ instanci$ lineárních soustav v určitém tvaru (kterou někdy krátce nazýváme problém nebo úloha). Např. soustava $\{x-2y=1,\ -x+y=3\}$ je instance, ale (2.13) je nekonečná množina lineárních soustav, jejíž každý prvek je určen konkrétní dvojicí vektorů (\mathbf{a}, \mathbf{b}). Převodem úlohy (2.13) do tvaru (2.11) pak rozumíme algoritmus, který pro libovolnou dvojici trojici (\mathbf{a}, \mathbf{b}) najde dvojici (\mathbf{A}', \mathbf{b}') tak, že soustava (2.13) bude ekvivalentní soustavě $\mathbf{A}'\mathbf{x} = \mathbf{b}'$.

Samořejmě, že soustavu (2.12) lze vyřešit i jinak. Dosadíme \mathbf{x} z druhé rovnice do první, což dá $\mathbf{A}\mathbf{A}^T\mathbf{y} = \mathbf{b}$. Tuto rovnici vyřešíme pro \mathbf{y} (pokud má řešení) a spočítáme \mathbf{x} z druhé rovnice.

Příklad 2.3. Homogenní lineární soustava

$$\mathbf{a}_i^T \mathbf{x} = \alpha_i b_i \quad \forall i = 1, \dots, m$$

kde $\mathbf{x} \in \mathbb{R}^n$ a $\alpha_1, \dots, \alpha_m$ jsou neznámé a $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^n$ a $b_1, \dots, b_m \in \mathbb{R}$ jsou dány. Označímeli $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_m \end{bmatrix}^T \in \mathbb{R}^{m \times n}, \ \mathbf{b} = (b_1, \dots, b_m)$ a $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_m)$, pak soustavu můžeme psát jako $\mathbf{A}\mathbf{x} = (\operatorname{diag} \mathbf{b})\boldsymbol{\alpha}$, neboli

$$\begin{bmatrix} \mathbf{A} & -\operatorname{diag} \mathbf{b} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \boldsymbol{\alpha} \end{bmatrix} = \mathbf{0}.$$

Příklad 2.4. Soustava

$$\sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, \dots, m,$$
(2.13a)

$$\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n,$$
(2.13b)

kde $x_{11}, \ldots, x_{mn} \in \mathbb{R}$ jsou neznámé a $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbb{R}$ jsou dány. Je to lineární soustava m + n rovnic s mn neznámými. Tato soustava jde napsat v maticovém tvaru jako

$$\mathbf{X}\mathbf{1} = \mathbf{a},$$

 $\mathbf{X}^T\mathbf{1} = \mathbf{b},$

kde $\mathbf{a} = (a_1, \dots, a_m) \in \mathbb{R}^m$, $\mathbf{b} = (b_1, \dots, b_n) \in \mathbb{R}^n$ a $\mathbf{X} = [x_{ij}] \in \mathbb{R}^{m \times n}$. To ale není tvar (2.11), neboť proměnné jsou opět soustředěné do matice \mathbf{X} a nikoliv do vektoru. Soustavu ale lze přepsat takto (ověřte roznásobením matic!):

$$\begin{bmatrix} \mathbf{I}_m & \cdots & \mathbf{I}_m \\ \mathbf{1}_m^T & & \\ & \ddots & \\ & & \mathbf{1}_m^T \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}$$
 (2.14)

kde $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^n$ jsou sloupce matice \mathbf{X} .

2.10 Maticové zločiny

Při manipulaci s maticovými výrazy a rovnicemi dělají začátečníci někdy hrubé chyby, kterých se lze při alespoň minimální pozornosti vyhnout. Takové chyby jsou neomluvitelné. Uveď me typické příklady těchto zločinů.

2.10.1 Výraz je nesmyslný kvůli rozměrům matic

Jako první příklad uveďme chyby, kdy výraz nemá smysl kvůli rozměrům matic a vektorů. Např.:

 \bullet Pokud $\mathbf{A} \in \mathbb{R}^{2\times 3}$ a $\mathbf{B} \in \mathbb{R}^{3\times 3},$ tak následující výrazy jsou chybné:

$$A + B$$
, $A = B$, $[A B]$, $A^T B$, A^{-1} , $\det A$, A^2 .

- Zcela odstrašující je použití zlomku pro matice, např. $\frac{\mathbf{A}}{\mathbf{B}}$. 'Zlomková čára' není pro matice definována. Nebyla by totiž jednoznačná, protože může znamenat bud' $\mathbf{A}\mathbf{B}^{-1}$ nebo $\mathbf{B}^{-1}\mathbf{A}$.
- Inverze čtvercové, ale evidentně singulární matice. Např. $(\mathbf{w}\mathbf{w}^T)^{-1}$, kde $\mathbf{w} \in \mathbb{R}^3$. Singularita matice plyne např. z (2.4).
- Předpoklad, že existuje pravá inverze úzké matice. Ale úzká matice má lineárně závislé řádky, proto nemá pravou inverzi. Napíšeme-li proto $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}$ pro matici $\mathbf{Q} \in \mathbb{R}^{5\times 3}$, je to zločin.

Příklad 2.5. Vidíme-li výraz $(\mathbf{A}^T\mathbf{B})^{-1}$, musí nám okamžitě hlavou proběhnout tyto úvahy o rozměrech matic $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{B} \in \mathbb{R}^{k \times p}$:

- Aby byly kompatibilní velikosti matic v násobení, musí být m = k. (Výjimkou je případ, kdy **A** je skalár nebo **B** je skalár pak by $\mathbf{A}^T\mathbf{B}$ byl sice nezvyklý ale korektní zápis.)
- Jelikož součin $\mathbf{A}^T\mathbf{B}$ je rozměru $n \times p$, musí být n = p, protože invertovat můžeme jen čtvercovou matici. Teď tedy víme, že obě matice musí mít stejný rozměr.
- Z nerovnosti (2.4) je jasné, že pokud by \mathbf{A}^T byla úzká nebo \mathbf{B} široká, $\mathbf{A}^T\mathbf{B}$ by byla singulární a tedy by neměla inverzi. Abychom se tomu vyhnuli, musí být obě matice buď čtvercové nebo úzké, $m \geq n$.

Závěr: Aby výraz $(\mathbf{A}^T\mathbf{B})^{-1}$ měl smysl, je nutné, aby matice \mathbf{A}, \mathbf{B} měly stejný rozměr a byly čtvercové nebo úzké.

2.10.2 Použití neexistujících maticových identit

Pro manipulaci s maticovými výrazy je užitečné mít v paměti zásobu maticových identit. Ovšem nesmí být chybné. Typické příklady:

- $(\mathbf{A}\mathbf{B})^T = \mathbf{A}^T \mathbf{B}^T$ (pokud v maticovém součinu $\mathbf{A}^T \mathbf{B}^T$ je vnitřní rozměr různý, je to chyba už kvůli rozměrům matic)
- $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{A}^{-1}\mathbf{B}^{-1}$ (pro nečtvercové matice je to také syntaktická chyba, pro čtvercové ale singulární matice je to také chyba kvůli rozměrům matic)
- $(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + 2\mathbf{A}\mathbf{B} + \mathbf{B}^2$. Tato identita se opírá o velice užitečnou (avšak neexistující) identitu $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$. Správně je $(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + \mathbf{A}\mathbf{B} + \mathbf{B}\mathbf{A} + \mathbf{B}^2$.

2.10.3 Neekvivalentní úpravy (ne)rovnic

Zde pachatel udělá chybný úsudek při neekvivalentní úpravě rovnice či nerovnice. Ekvivalentní a neekvivalentní úpravy skalárních rovnic známe již ze základní školy. Např. úprava 'přičti k rovnici jedničku' je ekvivalentní, nebot' $a=b \Leftrightarrow a+1=b+1$. Úprava 'umocni rovnici na druhou' je neekvivalentní, nebot' sice $a=b \Rightarrow a^2=b^2$, ale neplatí $a^2=b^2 \Rightarrow a=b$. Příklady:

- Student si myslí, že $\mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{y} \Rightarrow \mathbf{x} = \mathbf{y}$ (není pravda, ani když vektor \mathbf{a} je nenulový).
- Student si myslí, že pokud $\mathbf{A} \in \mathbb{R}^{3\times 5}$ a $\mathbf{A}\mathbf{X} = \mathbf{A}\mathbf{Y}$, pak $\mathbf{X} = \mathbf{Y}$ (není pravda, protože \mathbf{A} nemá lineárně nezávislé sloupce, tedy nemá levou inverzi).
- Student si myslí, že $\mathbf{A}^T \mathbf{A} = \mathbf{B}^T \mathbf{B} \Rightarrow \mathbf{A} = \mathbf{B}$ (není pravda dokonce ani pro skaláry).
- Student řeší soustavu rovnic $\{\mathbf{a}^T\mathbf{x}=0, \mathbf{x}^T\mathbf{x}=1\}$, kde $\mathbf{a}\in\mathbb{R}^n$ je dáno a $\mathbf{x}\in\mathbb{R}^n$ je neznámá. Dělá to tak, že 'vyjádří' \mathbf{x} z první rovnice a dosadí ho do druhé rovnice. To je těžký zločin, protože rovnice $\mathbf{a}^T\mathbf{x}=0$ má nekonečně mnoho řešení (alespoň pro n>1) a tedy z ní neplyne, že \mathbf{x} je rovno jakémukoliv jednomu vektoru.

2.10.4 Další nápady pro práci s maticemi

- Pod výrazy s maticemi a vektory si malujte obdélníčky s rozměry matic, abyste měli jasnou představu o jejich rozměrech.
- Vidíte-li maticovou rovnici či soustavu rovnic, spočítejte si skalární rovnice a neznámé.
- Pracujte nejen s papírem, ale i s Matlabem. Úpravy maticových výrazů lze často ověřit na náhodných maticích. Např. chceme-li ověřit rovnost $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$, zkusíme např. A=randn(5,3); B=randn(3,6); (A*B)'-B'*A'. Samozřejmě to není důkaz.

2.11 Cvičení

- 2.1. Vyřešte tyto rovnice a soustavy rovnic pro neznámou matici \mathbf{X} (předpokládejte, že každá potřebná inverze existuje):
 - a) $AX + B = A^2X$
 - b) X A = XB
 - c) $2\mathbf{X} \mathbf{A}\mathbf{X} + 2\mathbf{A} = \mathbf{0}$
- 2.2. Řešíme soustavu rovnic $\mathbf{b}_i = \mathbf{X}\mathbf{a}_i$ (kde $i=1,\ldots,k$) pro neznámou matici $\mathbf{X} \in \mathbb{R}^{m \times n}$. Napište soustavu jako jedinou maticovou rovnici. Jaké musí být k, aby soustava měla stejný počet (skalárních) rovnic jako neznámých? Za jaké podmínky má soustava jediné řešení?
- 2.3. Chceme vyřešit soustavu rovnic

$$\mathbf{A}\mathbf{x} + (\mathbf{y}^T \mathbf{B})^T = \alpha \mathbf{1}$$
$$\mathbf{A}\mathbf{y} + \mathbf{c} = \mathbf{0}$$

kde \mathbf{A} , \mathbf{B} jsou známé matice, \mathbf{c} je známý vektor, \mathbf{x} , \mathbf{y} jsou neznámé vektory a α je neznámý skalár. Soustavu přepište do tvaru $\mathbf{P}\mathbf{u} = \mathbf{q}$, kde matice \mathbf{P} a vektor \mathbf{q} obsahují známé konstanty a vektor \mathbf{u} obsahuje všechny neznámé.

2.4. Mějme soustavu rovnic pro neznámé x a y:

$$Ax + By = a$$
$$Cx + Dy = b$$

a) Vyjádřete soustavu ve tvaru $\mathbf{P}\mathbf{u} = \mathbf{q}$.

- b) Je-li $\mathbf{a}, \mathbf{x} \in \mathbb{R}^m$, $\mathbf{b}, \mathbf{y} \in \mathbb{R}^n$, ukažte, že $\mathbf{x} = (\mathbf{A} \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1}(\mathbf{a} \mathbf{B}\mathbf{D}^{-1}\mathbf{b})$. Jakou to má výpočetní výhodu oproti počítání \mathbf{u} přímo ze soustavy $\mathbf{P}\mathbf{u} = \mathbf{q}$?
- 2.5. V následujících soustavách rovnic malá písmena značí vektory a velká matice. Jaké jsou nejobecnější rozměry matic a vektorů, aby rovnice byly syntakticky správně? Jaký je počet rovnic a neznámých v každé soustavě? Které z těchto soustav rovnic jsou lineární?
 - a) $\mathbf{A}\mathbf{x} = \mathbf{b}$, neznámá \mathbf{x} .
 - b) $\mathbf{x}^T \mathbf{A} \mathbf{x} = 1$, neznámá \mathbf{x} .
 - c) $\mathbf{a}^T \mathbf{X} \mathbf{b} = 0$, neznámá \mathbf{X} .
 - d) $\mathbf{AX} + \mathbf{XA}^T = \mathbf{C}$, neznámá \mathbf{X}
 - e) $\{ \mathbf{X}^T \mathbf{Y} = \mathbf{A}, \ \mathbf{X} \mathbf{Y}^T = \mathbf{B} \}$, neznámé \mathbf{X}, \mathbf{Y}
- 2.6. Zobrazení vec: $\mathbb{R}^{m \times n} \to \mathbb{R}^{mn}$ (vektorizace matice, v Matlabu označeno A(:)) je definováno tak, že vektor vec $\mathbf{A} \in \mathbb{R}^{mn}$ je matice $\mathbf{A} \in \mathbb{R}^{m \times n}$ přerovnaná po sloupcích do vektoru. Např. vec $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = (1,3,2,4) = \begin{bmatrix} 1 & 3 & 2 & 4 \end{bmatrix}^T$. Kroneckerův součin matic (v Matlabu kron(A,B)) je definován jako

$$\mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}.$$

Pro libovolné matice (s kompatibilními velikostmi) platí

$$\operatorname{vec}(\mathbf{ABC}) = (\mathbf{C}^T \otimes \mathbf{A}) \operatorname{vec} \mathbf{B}. \tag{2.15}$$

Použijte tohoto vzorce pro transformaci následujících soustav rovnic s neznámou maticí \mathbf{X} do tvaru (2.11). Předpokládejte, že matice a vektory mají nejobecnější možné rozměry, které jsou kompatibilní s maticovými operacemi v soustavě.

- a) Soustava $\mathbf{b}_i^T \mathbf{X} \mathbf{a}_i = 0 \ \forall i = 1, \dots, k,$ kde neznámá je matice \mathbf{X} .
- b) Soustava $\mathbf{A}\mathbf{X} + \mathbf{X}^T\mathbf{B}^T = \mathbf{C}$, kde neznámá je matice \mathbf{X} .
- c) Soustava z Příkladu 2.4.
- 2.7. Komutátorem dvou matic rozumíme matici [A, B] = AB BA. Dokažte:
 - a) Komutátor symetrických matic je antisymetrická matice.
 - b) [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 (Jacobiho identita)
 - c) $[\mathbf{A}, \mathbf{BC}] = [\mathbf{A}, \mathbf{B}]\mathbf{C} + \mathbf{B}[\mathbf{A}, \mathbf{C}]$
- 2.8. Dokažte
 - a) vzorec Shermana a Morrisonové (kde **A** je regulární a $\mathbf{v}^T \mathbf{A}^{-1} \mathbf{u} + 1 \neq 0$)

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}},$$

b) vzorec Shermana, Morrisonové a Woodburyho (kde $\mathbf{I} + \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}$ je regulární)

$$(\mathbf{A} + \mathbf{U}\mathbf{V}^T)^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{I} + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}^T\mathbf{A}^{-1}.$$

- 2.9. Dokažte pro regulární matice $\mathbf{A}, \mathbf{B}, \text{ že } (\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.
- 2.10. Dokažte, že pro každou čtvercovou matici A platí:
 - a) $\mathbf{A} + \mathbf{A}^T$ je symetrická,
 - b) $\mathbf{A} \mathbf{A}^T$ je antisymetrická,
 - c) existuje právě jedna symetrická \mathbf{B} a právě jedna antisymetrická \mathbf{C} tak, že $\mathbf{A} = \mathbf{B} + \mathbf{C}$,
 - d) $\mathbf{A}^T \mathbf{A}$ je symetrická.
- 2.11. Dokažte, že pro každé $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{B} \in \mathbb{R}^{n \times m}$ má matice

$$\mathbf{L} = \begin{bmatrix} \mathbf{I} - \mathbf{B} \mathbf{A} & \mathbf{B} \\ 2\mathbf{A} - \mathbf{A} \mathbf{B} \mathbf{A} & \mathbf{A} \mathbf{B} - \mathbf{I} \end{bmatrix}$$

vlastnost $\mathbf{L}^2 = \mathbf{I}$ (kde \mathbf{L}^2 je zkratka pro $\mathbf{L}\mathbf{L}$). Matice s touto vlastností se nazývá involuce.

- 2.12. Kdy je diagonální matice regulární? Co je inverzí diagonální matice?
- 2.13. Ukažte, že čtvercové diagonální matice komutují (tj. AB = BA).
- 2.14. Dokažte, že pokud je $\mathbf{I} \mathbf{A}$ regulární, pak $\mathbf{A}(\mathbf{I} \mathbf{A})^{-1} = (\mathbf{I} \mathbf{A})^{-1}\mathbf{A}$.
- 2.15. Dokažte, že pokud \mathbf{A} , \mathbf{B} a $\mathbf{A} + \mathbf{B}$ jsou regulární, pak

$$A(A + B)^{-1}B = (A^{-1} + B^{-1})^{-1} = B(A + B)^{-1}A.$$

- 2.16. Dokažte, že inverze regulární symetrické matice je symetrická matice.
- 2.17. (*) Nechť čtvercové matice $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ jsou takové, že $\mathbf{A}\mathbf{B}^T$ a $\mathbf{C}\mathbf{D}^T$ jsou symetrické a platí $\mathbf{A}\mathbf{D}^T \mathbf{B}\mathbf{C}^T = \mathbf{I}$. Dokažte, že $\mathbf{A}^T\mathbf{D} \mathbf{C}^T\mathbf{B} = \mathbf{I}$.
- 2.18. Dokažte, že rovnice AB BA = I nemá řešení pro žádné A, B.

Nápověda a řešení

2.1.a)
$$\mathbf{X} = (\mathbf{A}^2 - \mathbf{A})^{-1}\mathbf{B} = (\mathbf{A} - \mathbf{I})^{-1}\mathbf{A}^{-1}\mathbf{B}$$

2.1.b)
$$\mathbf{X} = \mathbf{A}(\mathbf{I} - \mathbf{B})^{-1}$$

2.1.c)
$$\mathbf{X} = 2(\mathbf{A} - 2\mathbf{I})^{-1}\mathbf{A} = (\mathbf{A}/2 - \mathbf{I})^{-1}\mathbf{A}$$

2.2. Lze napsat jako $\mathbf{B} = \mathbf{X}\mathbf{A}$, kde $\mathbf{a}_i \in \mathbb{R}^n$ jsou sloupce $\mathbf{A} \in \mathbb{R}^{n \times k}$ a $\mathbf{b}_i \in \mathbb{R}^m$ jsou sloupce $\mathbf{B} \in \mathbb{R}^{m \times k}$. Neznámých je $m \times n$, rovnic je $m \times k$, tedy musí být n = k. Pro jediné řešení musí být vektory \mathbf{a}_i lineárně nezávislé.

2.3.
$$\begin{bmatrix} \mathbf{A} & \mathbf{B}^T & \mathbf{1} \\ \mathbf{0} & \mathbf{A} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ -\alpha \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ -\mathbf{c} \end{bmatrix}$$

2.4.a)
$$\mathbf{P} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$$
, $\mathbf{q} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$

- 2.5.a) Rovnic je m, neznámých n, kde $\mathbf{A} \in \mathbb{R}^{m \times n}$. Je lineární.
- 2.5.b) Rovnice je jedna, neznámých je n, kde $\mathbf{x} \in \mathbb{R}^n$. Není lineární.
- 2.5.c) Rovnice je jedna, neznámých je mn, kde $\mathbf{X} \in \mathbb{R}^{m \times n}$. Je lineární.
- 2.5.d) Všechny tři matice $\mathbf{A}, \mathbf{C}, \mathbf{X}$ musí být čtvercové velikosti $n \times n$. Rovnic i neznámých je n^2 .
- 2.5.e) Rovnic je $m^2 + n^2$, neznámých je 2mn, kde $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$. Není lineární.

2.6.a) Je
$$\mathbf{b}_i^T \mathbf{X} \mathbf{a}_i = \text{vec}(\mathbf{b}_i^T \mathbf{X} \mathbf{a}_i) = (\mathbf{a}_i^T \otimes \mathbf{b}_i^T) \text{ vec } \mathbf{X}$$
. Tedy soustavu lze napsat jako $\begin{bmatrix} \mathbf{a}_1^T \otimes \mathbf{b}_1^T \\ \vdots \\ \mathbf{a}_k^T \otimes \mathbf{b}_k^T \end{bmatrix}$ vec $\mathbf{X} = \mathbf{0}$.

- 2.6.b) Musí být $\mathbf{X} \in \mathbb{R}^{m \times n}$ je neznámá a $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times m}$ a $\mathbf{C} \in \mathbb{R}^{n \times n}$ jsou dány. Jedná se tedy o lineární soustavu n^2 rovnic s mn neznámými. Neznámé ovšem nejsou soustředěné do vektoru, ale do matice, tedy soustava není ve tvaru (2.11). Je $\operatorname{vec}(\mathbf{A}\mathbf{X}) = \operatorname{vec}(\mathbf{A}\mathbf{X}\mathbf{I}_n) = (\mathbf{I}_n \otimes \mathbf{A}) \operatorname{vec} \mathbf{X}$ a $\operatorname{vec}(\mathbf{X}\mathbf{B}^T) = \operatorname{vec}(\mathbf{I}_m\mathbf{X}\mathbf{B}^T) = (\mathbf{B} \otimes \mathbf{I}_m) \operatorname{vec} \mathbf{X}$. Tedy soustavu můžeme napsat jako $((\mathbf{I}_n \otimes \mathbf{A}) + (\mathbf{B} \otimes \mathbf{I}_m)) \operatorname{vec} \mathbf{X} = \operatorname{vec} \mathbf{C}$.
- 2.6.c) Je $\operatorname{vec}(\mathbf{X}\mathbf{1}_n) = \operatorname{vec}(\mathbf{I}_m\mathbf{X}\mathbf{1}_n) = (\mathbf{1}_n^T \otimes \mathbf{I}_m) \operatorname{vec} \mathbf{X}$ a $\operatorname{vec}(\mathbf{1}_m^T\mathbf{X}) = \operatorname{vec}(\mathbf{1}_m\mathbf{X}\mathbf{I}_n) = (\mathbf{I}_n \otimes \mathbf{1}_m) \operatorname{vec} \mathbf{X}$. Tedy soustavu můžeme psát jako $\begin{bmatrix} \mathbf{1}_n^T \otimes \mathbf{I}_m \\ \mathbf{I}_n \otimes \mathbf{1}_m \end{bmatrix} \operatorname{vec} \mathbf{X} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}$. Zkontrolujte vypočítáním výrazů $\mathbf{1}_n^T \otimes \mathbf{I}_m$ a $\mathbf{I}_n \otimes \mathbf{1}_m$, že je to totéž jako soustava (2.14).
- 2.7.a) $[\mathbf{A}, \mathbf{B}]^T = (\mathbf{A}\mathbf{B} \mathbf{B}\mathbf{A})^T = \mathbf{B}^T \mathbf{A}^T \mathbf{A}^T \mathbf{B}^T = \mathbf{B}\mathbf{A} \mathbf{A}\mathbf{B} = -[\mathbf{A}, \mathbf{B}]$
- 2.7.c) Máme dokázat, že $\mathbf{ABC} \mathbf{BCA} = (\mathbf{AB} \mathbf{BA})\mathbf{C} + \mathbf{B}(\mathbf{AC} \mathbf{CA})$, což zjevně platí.
- 2.8.a) Musíme ukázat, že $(\mathbf{A} + \mathbf{u}\mathbf{v}^T) \left(\mathbf{A}^{-1} \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1+\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}\right) = \mathbf{I}$. To je pouhé cvičení na úpravy maticových výrazů, ale nesmíme se do toho zamotat a udělat chybu. Upravujeme:

$$\begin{split} (\mathbf{A} + \mathbf{u}\mathbf{v}^T) \Big(\mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}} \Big) &= \mathbf{I} - \frac{\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}} + \mathbf{u}\mathbf{v}^T\mathbf{A}^{-1} - \frac{\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}} \\ &= \mathbf{I} - \frac{\mathbf{u}\mathbf{w}^T}{1 + \mathbf{w}^T\mathbf{u}} + \mathbf{u}\mathbf{w}^T - \frac{\mathbf{u}\mathbf{w}^T\mathbf{u}\mathbf{w}^T}{1 + \mathbf{w}^T\mathbf{u}} \\ &= \mathbf{I} - \frac{\mathbf{u}\mathbf{w}^T - \mathbf{u}\mathbf{w}^T - (\mathbf{w}^T\mathbf{u})\mathbf{u}\mathbf{w}^T + \mathbf{u}\mathbf{w}^T\mathbf{u}\mathbf{w}^T}{1 + \mathbf{w}^T\mathbf{u}}, \end{split}$$

kde jsme označili $\mathbf{v}^T \mathbf{A}^{-1} = \mathbf{w}^T$. Výraz $\mathbf{u} \mathbf{w}^T \mathbf{u} \mathbf{w}^T$ je maticový součin čtyř matic. Ale výraz $\mathbf{w}^T \mathbf{u}$ je skalár, proto $\mathbf{u} \mathbf{w}^T \mathbf{u} \mathbf{w}^T = (\mathbf{w}^T \mathbf{u}) \mathbf{u} \mathbf{w}^T$. Tedy čitatel zlomku je nulový vektor a jsme hotovi.

- 2.8.b) Analogické předešlému.
- 2.9. Z definice inverze stačí ukázat, že $\mathbf{A}\mathbf{B}\mathbf{B}^{-1}\mathbf{A}^{-1} = \mathbf{I}$. To je očividné, protože $\mathbf{B}\mathbf{B}^{-1} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$.
- 2.10.a) Máme dokázat, že $(\mathbf{A} + \mathbf{A}^T)^T = \mathbf{A} + \mathbf{A}^T$. To je jasné, protože $(\mathbf{A}^T)^T = \mathbf{A}$ a tedy $(\mathbf{A} + \mathbf{A}^T)^T = \mathbf{A}^T + \mathbf{A}^T$.
- 2.10.b) Analogické jako minule.
- 2.10.c) Takové matice existují, konkrétně $\mathbf{B} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^T)$ a $\mathbf{C} = \frac{1}{2}(\mathbf{A} \mathbf{A}^T)$. Nahoře jsme ukázali, že $\mathbf{B}^T = \mathbf{B}$ a $\mathbf{C}^T = -\mathbf{C}$. Jednoznačnost dokážeme takto: předpokládejme, že pro symetrické matice \mathbf{B}, \mathbf{B}' a antisymetrické \mathbf{C}, \mathbf{C}' platí $\mathbf{B} + \mathbf{C} = \mathbf{B}' + \mathbf{C}'$. Z toho plyne $\mathbf{B}^T + \mathbf{C}^T = \mathbf{B}'^T + \mathbf{C}'^T$, tedy $\mathbf{B} \mathbf{C} = \mathbf{B}' \mathbf{C}'$. Porovnáním s předchozí rovnicí dostaneme $\mathbf{B} = \mathbf{B}'$ a $\mathbf{C} = \mathbf{C}'$.
- 2.10.d) Plyne okamžitě z identity $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$ (viz §2.2).
- 2.11. Opět pouhé cvičení na úpravy maticových výrazů.
- 2.12. Matice diag (a_1, \ldots, a_n) je regulární, právě když a_1, \ldots, a_n jsou všechny nenulové. Je diag $(a_1, \ldots, a_n)^{-1} = \text{diag}(1/a_1, \ldots, 1/a_n)$. Obojí plyne přímo z definic regularity, inverze a diagonální matice.
- 2.13. Plyne snadno z definice diagonální matice a maticového součinu.
- 2.14. Rovnost $\mathbf{A}(\mathbf{I} \mathbf{A})^{-1} = (\mathbf{I} \mathbf{A})^{-1}\mathbf{A}$ vynásobte zleva a zprava maticí $(\mathbf{I} \mathbf{A})$ a roznásobte závorky.
- 2.15. Stačí dokázat první rovnost, druhá platí symetricky. Máme ukázat $\mathbf{A}(\mathbf{A}+\mathbf{B})^{-1}\mathbf{B}(\mathbf{A}^{-1}+\mathbf{B}^{-1}) = \mathbf{I}$. Je $\mathbf{A}(\mathbf{A}+\mathbf{B})^{-1}\mathbf{B}(\mathbf{A}^{-1}+\mathbf{B}^{-1}) = \mathbf{A}(\mathbf{A}+\mathbf{B})^{-1}\mathbf{B}\mathbf{A}^{-1} + \mathbf{A}(\mathbf{A}+\mathbf{B})^{-1} = \mathbf{A}(\mathbf{A}+\mathbf{B})^{-1}(\mathbf{B}\mathbf{A}^{-1}+\mathbf{I})$. Vynásobení rovnosti $\mathbf{A}(\mathbf{A}+\mathbf{B})^{-1}(\mathbf{B}\mathbf{A}^{-1}+\mathbf{I}) = \mathbf{I}$ zleva maticí $(\mathbf{A}+\mathbf{B})\mathbf{A}^{-1}$ (což je ekvivalentní úprava) dá $(\mathbf{B}\mathbf{A}^{-1}+\mathbf{I}) = (\mathbf{A}+\mathbf{B})\mathbf{A}^{-1}$, což zjevně platí.

- 2.16. Nechť \mathbf{A} je regulární a symetrická (tedy čtvercová). Nechť $\mathbf{B}\mathbf{A} = \mathbf{I}$, tedy \mathbf{B} je levá inverze \mathbf{A} . Z toho $\mathbf{A}^T\mathbf{B}^T = \mathbf{A}\mathbf{B}^T = \mathbf{I}$, tedy \mathbf{B}^T je pravá inverze \mathbf{A} . Ale pro regulární matici jsou si levá a pravá inverze rovny (viz §2.4), tedy $\mathbf{B}^T = \mathbf{B}$.
- 2.18. Použijte cykličnost stopy.

Kapitola 3

Linearita

3.1 Lineární podprostory

Množina \mathbb{R}^n spolu s operacemi sčítaní vektorů a násobení vektorů skalárem tvoří lineární prostor nad tělesem \mathbb{R} . Zopakujte si z lineární algebry pojem lineárního prostoru!

Lineární kombinace vektorů $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$ je vektor

$$\mathbf{x} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k \tag{3.1}$$

pro nějaké skaláry $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$. Vektory $\mathbf{x}_1, \ldots, \mathbf{x}_k$ jsou lineárně nezávislé, jestliže

$$\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k = \mathbf{0} \implies \alpha_1 = \dots = \alpha_k = 0.$$
 (3.2)

V opačném případě jsou vektory $\mathbf{x}_1, \dots, \mathbf{x}_k$ lineárně závislé. Pokud jsou vektory lineárně závislé, tak je aspoň jeden z nich lineární kombinací ostatních. To je jasné: je-li např. $\alpha_1 \neq 0$, pak $\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k = \mathbf{0}$ lze napsat jako $\mathbf{x}_1 = \alpha_2' \mathbf{x}_2 + \dots + \alpha_k' \mathbf{x}_k$ kde $\alpha_i' = \alpha_i/\alpha_1$.

Věta 3.1. Jsou-li vektory $\mathbf{x}_1, \dots, \mathbf{x}_k$ lineárně nezávislé, koeficienty $\alpha_1, \dots, \alpha_k$ jsou vektorem (3.1) určeny jednoznačně (tj. soustava (3.1) s neznámými $\alpha_1, \dots, \alpha_k$ má právě jedno řešení).

 $D\mathring{u}kaz$. Nechť kromě rovnice (3.1) platí také $\mathbf{x} = \beta_1\mathbf{x}_1 + \cdots + \beta_k\mathbf{x}_k$. Odečtením obou rovnic máme $\mathbf{0} = (\alpha_1 - \beta_1)\mathbf{x}_1 + \cdots + (\alpha_k - \beta_k)\mathbf{x}_k$. Ale z (3.2) plyne $\alpha_i - \beta_i = 0$, tedy $\alpha_i = \beta_i$.

Lineární obal vektorů $\mathbf{x}_1, \dots, \mathbf{x}_k$ je množina

$$\operatorname{span}\{\mathbf{x}_1,\ldots,\mathbf{x}_k\} = \{\alpha_1\mathbf{x}_1 + \cdots + \alpha_k\mathbf{x}_k \mid \alpha_1,\ldots,\alpha_k \in \mathbb{R}\}$$

všech jejich lineárních kombinací (zde předpokládáme, že vektorů je konečný počet).

Neprázdná množina $X \subseteq \mathbb{R}^n$ se nazývá **lineární podprostor** (nebo jen **podprostor**) lineárního prostoru \mathbb{R}^n , jestliže každá lineární kombinace každé (konečné) množiny vektorů z X leží v X (neboli že množina X je uzavřená vůči lineárním kombinacím):

$$\mathbf{x}_1, \dots, \mathbf{x}_k \in X, \quad \alpha_1, \dots, \alpha_k \in \mathbb{R} \implies \alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k \in X.$$
 (3.3)

Snadno se ukáže, že lineární obal libovolné množiny vektorů je lineární podprostor.

Báze lineárního podprostoru¹ $X \subseteq \mathbb{R}^n$ je lineárně nezávislá množina vektorů, jejíž lineární obal je X. Platí následující netriviální tvrzení (důkazy najdete v učebnicích lineární algebry):

 $^{^1}$ Výrok 'množina $X \subseteq \mathbb{R}^n$ je lineární podprostor' je totéž jako 'množina X je lineární podprostor prostoru \mathbb{R}^n '. Nemůže se totiž stát, že např. množina $X \subseteq \mathbb{R}^3$ je podprostor prostoru \mathbb{R}^2 , to by odporovalo definici podprostoru.

Věta 3.2.

- Z každé množiny vektorů lze vybrat bázi jejich lineárního obalu.
- Každou lineárně nezávislou množinu vektorů z lineárního podprostoru lze doplnit na jeho bázi.
- Každý lineární podprostor má (alespoň jednu) bázi.
- Každá báze každého lineárního podprostoru má stejný počet vektorů.

Počet vektorů báze lineárního podprostoru X se nazývá jeho **dimenze**, značíme ji dim X. Je-li $\{\mathbf{x}_1, \ldots, \mathbf{x}_k\}$ báze podprostoru X a $\alpha_1 \mathbf{x}_1 + \cdots + \alpha_k \mathbf{x}_k = \mathbf{x} \in X$, potom (jednoznačně určené) skaláry $\alpha_1, \ldots, \alpha_k$ se nazývají **souřadnice** vektoru \mathbf{x} v dané bázi².

Věta 3.3. Pro každé podprostory $X, Y \subseteq \mathbb{R}^n$ platí:

- $X \subseteq Y$ implikuje $\dim X \leq \dim Y$.
- $X \subseteq Y$ a dim $X = \dim Y$ implikuje X = Y.

 $D\mathring{u}kaz$. Jestliže $X \subseteq Y$, každá báze podprostoru X patří do Y. Dle Věty 3.2 lze tuto bázi doplnit na bázi podprostoru Y, odtud první tvrzení. Jestliže navíc dim $X = \dim Y$, každá báze X je už bází Y (tedy doplnění nepřidá žádný vektor), odtud druhé tvrzení.

Příklad 3.1. Triviálně, prostor \mathbb{R}^3 je svým vlastním podprostorem. Jeho dimenze je 3. Jeho báze je např. $\{(1,0,0),(0,1,0),(0,0,1)\}$ (standardní) nebo $\{(1,1,1),(1,-1,0),(2,0,0)\}$.

Příklad 3.2. Množina $X = \text{span}\{(1,2,3)\} = \{\alpha(1,2,3) \mid \alpha \in \mathbb{R}\} \subseteq \mathbb{R}^3$ je podprostor \mathbb{R}^3 dimenze 1. Je to přímka procházející počátkem. Její báze je např. množina $\{(1,2,3)\}$, jiná báze je množina $\{(2,4,6)\}$.

Příklad 3.3. Množina $X = \text{span}\{(1,2,3,0), (0,1,2,-1), (0,2,4,-2)\} \subseteq \mathbb{R}^4$ je podprostor \mathbb{R}^4 dimenze 2. Všimněte si, že vektory jsou lineárně závislé. Báze podprostoru X je např. množina $\{(1,2,3,0), (0,1,2,-1)\}$.

Příklad 3.4. Všechny možné podprostory prostoru \mathbb{R}^3 jsou tyto: počátek **0** (dimenze 0), všechny přímky procházející počátkem (dimenze 1), všechny roviny procházející počátkem (dimenze 2), a konečně celý prostor \mathbb{R}^3 (dimenze 3).

Příklad 3.5. Množina $X = \{ (1 + \alpha, \alpha) \mid \alpha \in \mathbb{R} \} \subseteq \mathbb{R}^2$ (přímka neprocházející počátkem) není podprostor \mathbb{R}^2 , protože např. $(1,0) \in X$ ale $2(1,0) = (2,0) \notin X$.

3.2 Lineární zobrazení

Zobrazení $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ je **lineární**, jestliže pro každé $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$ a $\alpha_1, \dots, \alpha_k \in \mathbb{R}$ platí

$$\mathbf{f}(\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k) = \alpha_1 \mathbf{f}(\mathbf{x}_1) + \dots + \alpha_k \mathbf{f}(\mathbf{x}_k). \tag{3.4}$$

²Zde si můžete všimnout drobné nesrovnalosti: bázi jsme definovali jako *množinu* vektorů, ale pokud mluvíme o souřadnicích vektorů v dané bázi, musí to být *uspořádaná množina*, protože na pořadí vektorů báze záleží.

Věta 3.4. Zobrazení $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ je lineární, právě když existuje matice $\mathbf{A} \in \mathbb{R}^{m \times n}$ splňující³

$$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} \tag{3.5}$$

pro všechna $\mathbf{x} \in \mathbb{R}^n$. Matice \mathbf{A} je navíc zobrazením \mathbf{f} určena jednoznačně.

Říkáme proto, že matice \mathbf{A} reprezentuje lineární zobrazení \mathbf{f} .

Důkaz. Důkaz jedné implikace je snadný: zobrazení (3.5) je lineární, neboť

$$\mathbf{f}(\alpha_1\mathbf{x}_1 + \dots + \alpha_k\mathbf{x}_k) = \mathbf{A}(\alpha_1\mathbf{x}_1 + \dots + \alpha_k\mathbf{x}_k) = \alpha_1\mathbf{A}\mathbf{x}_1 + \dots + \alpha_k\mathbf{A}\mathbf{x}_k = \alpha_1\mathbf{f}(\mathbf{x}_1) + \dots + \alpha_k\mathbf{f}(\mathbf{x}_k).$$

Dokažme opačnou implikaci. Nechť $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ je lineární zobrazení. Nechť $\mathbf{e}_1, \dots, \mathbf{e}_n \in \mathbb{R}^n$ je standardní báze prostoru \mathbb{R}^n . Pro každé $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ máme $\mathbf{x} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$. Z (3.4) plyne

$$\mathbf{f}(\mathbf{x}) = \mathbf{f}(x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n) = x_1\mathbf{f}(\mathbf{e}_1) + \dots + x_n\mathbf{f}(\mathbf{e}_n) = [\mathbf{f}(\mathbf{e}_1) \ \dots \ \mathbf{f}(\mathbf{e}_n)] \mathbf{x}.$$

Nyní označíme $[\mathbf{f}(\mathbf{e}_1) \cdots \mathbf{f}(\mathbf{e}_n)] = \mathbf{A}$. Tedy \mathbf{A} je matice se sloupci $\mathbf{f}(\mathbf{e}_1), \dots, \mathbf{f}(\mathbf{e}_n)$.

Dokažme jednoznačnost matice **A**. Platí-li $\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{x}$ pro každé $\mathbf{x} \in \mathbb{R}^n$, pak samozřejmě platí $\mathbf{A} = \mathbf{B}$, protože stačí dosadit za \mathbf{x} postupně vektory $\mathbf{e}_1, \dots, \mathbf{e}_n$.

Příklad 3.6. Zobrazení $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$ definované jako $\mathbf{f}(x_1, x_2) = (x_1 + x_2, x_1 - x_2, 2x_1)$ je lineární. To bychom dokázali ověřením podmínky (3.4). Ovšem je to patrné na první pohled, protože jej lze vyjádřit ve tvaru (3.5):

$$\mathbf{f}(x_1, x_2) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \\ 2x_1 \end{bmatrix} = (x_1 + x_2, x_1 - x_2, 2x_1).$$

Pokud m=1, lineární zobrazení je funkce $f: \mathbb{R}^n \to \mathbb{R}$ tvaru

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = a_1 x_1 + \dots + a_n x_n, \tag{3.6}$$

kde $\mathbf{a} \in \mathbb{R}^n$. Této funkci se též říká lineární forma.

Podívejme se blíže na vzorec (3.5). Výraz $\mathbf{A}\mathbf{x}$ je maticový součin matice $m \times n$ maticí $n \times 1$ (viz §2.7). Označíme-li $\mathbf{y} = \mathbf{A}\mathbf{x}$, podle (2.1) je tedy

$$y_i = a_{i1}x_1 + \dots + a_{in}x_n, \quad i = 1, \dots, m.$$
 (3.7)

Napíšeme-li matici A pomocí sloupců, máme

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{a}_1 + \cdots + x_n \mathbf{a}_n, \tag{3.8}$$

 $^{^3}$ Možná se ptáte, proč tedy nedefinujeme lineární zobrazení přímo vztahem (3.5). Pro zobrazení $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ by to opravdu bylo možné. Výhoda obecné definice je, že funguje i pro zobrazení $f \colon U \to V$, kde U, V jsou abstraktní (definované axiomaticky) lineární prostory.

tedy vektor $\mathbf{A}\mathbf{x}$ je $line\acute{a}rn\acute{i}$ kombinace sloupců matice \mathbf{A} . Napíšeme-li matici \mathbf{A} pomocí řádků, máme

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1^T \\ \vdots \\ \mathbf{a}_m^T \end{bmatrix} \mathbf{x} = \begin{bmatrix} \mathbf{a}_1^T \mathbf{x} \\ \vdots \\ \mathbf{a}_m^T \mathbf{x} \end{bmatrix}, \tag{3.9}$$

tedy složky vektoru $\mathbf{A}\mathbf{x}$ jsou *skalární součiny řádků* matice \mathbf{A} a vektoru \mathbf{x} . Všimněte si, že (3.8) a (3.9) jsou speciální případy (2.9) a (2.10).

Složení lineárních zobrazení je opět lineární zobrazení. Pro f(x) = Ax a g(y) = By máme

$$(\mathbf{g} \circ \mathbf{f})(\mathbf{x}) = \mathbf{g}(\mathbf{f}(\mathbf{x})) = \mathbf{B}(\mathbf{A}\mathbf{x}) = (\mathbf{B}\mathbf{A})\mathbf{x} = \mathbf{B}\mathbf{A}\mathbf{x},$$

tedy **BA** je matice složeného zobrazení $\mathbf{g} \circ \mathbf{f}$. Tedy matice složeného zobrazení je součinem matic jednotlivých zobrazení. To je hlavní důvod, proč je rozumné definovat maticové násobení jako (2.1): násobení matic odpovídá skládání lineárních zobrazení reprezentovaných těmito maticemi.

3.2.1 Prostor obrazů

S lineárním zobrazením jsou spjaty dva lineární podprostory, prostor obrazů a nulový prostor (jádro). Je-li zobrazení reprezentováno maticí jako $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$, hovoříme o prostoru obrazů a nulovém prostoru matice \mathbf{A} .

Prostor obrazů matice $\mathbf{A} \in \mathbb{R}^{m \times n}$ je množina

$$\operatorname{rng} \mathbf{A} = \{ \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n \} \subseteq \mathbb{R}^m. \tag{3.10}$$

Interpretace prostoru obrazů:

- Je to množina $\mathbf{f}(\mathbb{R}^n)$ všech hodnot, jichž může zobrazení $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ nabýt.
- Je to množina všech vektorů y, pro které má lineární soustava Ax = y řešení.
- Dle (3.8) je to lineární obal sloupců matice A. Tedy je to lineární podprostor \mathbb{R}^m .

Dimenze lineárního obalu sloupců se nazývá hodnost matice (už jsme ji potkali v §2.3),

$$rank \mathbf{A} = \dim rng \mathbf{A}. \tag{3.11}$$

Věta 3.5. Pro matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ jsou následující tvrzení ekvivalentní:

- 1. rng $\mathbf{A} = \mathbb{R}^m$
- 2. Soustava $\mathbf{A}\mathbf{x} = \mathbf{y}$ má řešení pro každé \mathbf{y} .
- 3. rank $\mathbf{A} = m$
- 4. Zobrazení $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ je surjektivní, tj. $\mathbf{f}(\mathbb{R}^n) = \mathbb{R}^m$ (viz §1.1.2).
- 5. Rádky matice A jsou lineárně nezávislé.
- 6. Matice A má pravou inverzi, tj. existuje B tak, že AB = I.
- 7. Matice $\mathbf{A}\mathbf{A}^T \in \mathbb{R}^{m \times m}$ je regulární.

Důkaz.

• $1 \Leftrightarrow 2 \Leftrightarrow 3 \Leftrightarrow 4$ plyne přímo z definic.

- $3 \Leftrightarrow 5$ plyne z definice hodnosti a z (2.2).
- 2 \Rightarrow 6 platí, neboť soustava $\mathbf{A}\mathbf{b}_i = \mathbf{e}_i$ má řešení \mathbf{b}_i pro každé i (kde \mathbf{e}_i resp. \mathbf{b}_i je i-tý sloupec matice \mathbf{I} resp. \mathbf{B}). Pro důkaz $6 \Rightarrow 2$ položíme $\mathbf{x} = \mathbf{B}\mathbf{y}$.
- Tvrzení $1 \Leftrightarrow 7$ plyne z rovnosti (5.4a), uvedené později.

Věta 3.6. Pro libovolné matice A, B platí

- $\operatorname{rng}(\mathbf{AB}) \subseteq \operatorname{rng} \mathbf{A}$.
- rng(AB) = rng A, jestliže řádky matice B jsou lineárně nezávislé.

 $D\mathring{u}kaz$. První tvrzení říká, že jestliže soustava $\mathbf{z} = \mathbf{A}\mathbf{B}\mathbf{x}$ má řešení, pak i soustava $\mathbf{z} = \mathbf{A}\mathbf{y}$ má řešení. To je ale jasné, protože můžeme položit $\mathbf{y} = \mathbf{B}\mathbf{x}$. Druhé tvrzení navíc říká, že jestliže \mathbf{B} má lineárně nezávislé řádky a $\mathbf{z} = \mathbf{A}\mathbf{y}$ má řešení, pak i $\mathbf{z} = \mathbf{A}\mathbf{B}\mathbf{x}$ má řešení. To platí, neboť dle implikace $5 \Rightarrow 2$ ve Větě 3.5 má soustava $\mathbf{B}\mathbf{x} = \mathbf{y}$ řešení pro každé \mathbf{y} .

3.2.2 Nulový prostor

Nulový prostor matice A (také se nazývá jádro zobrazení f(x) = Ax) je množina

$$\operatorname{null} \mathbf{A} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \} \subseteq \mathbb{R}^n. \tag{3.12}$$

Interpretace nulového prostoru:

- Je to množina všech vektorů, které se zobrazí na nulový vektor.
- Podle (3.9) je to množina všech vektorů, které jsou ortogonální na každý řádek matice \mathbf{A} . Z toho je vidět, že je to lineární podprostor \mathbb{R}^n .

Platí navíc, že každý lineární podprostor prostoru \mathbb{R}^n je nulovým prostorem nějaké matice $\mathbf{A} \in \mathbb{R}^{m \times n}$ (toto tvrzení není samozřejmé, lze ho dokázat např. z pozdější Věty 4.1). Tedy lineární podprostor X lze reprezentovat (např. v počítači) dvěma způsoby:

- jako lineární obal konečného počtu vektorů (tedy maticí \mathbf{A} takovou, že $X = \operatorname{rng} \mathbf{A}$),
- jako množinu řešení homogenní lineární soustavy (tedy maticí \mathbf{A} takovou, že $X = \text{null } \mathbf{A}$).

Věta 3.7. Pro matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ jsou následující tvrzení ekvivalentní:

- 1. null $\mathbf{A} = \{\mathbf{0}\}$ (tj. nulový prostor je triviální).
- 2. Soustava $\mathbf{A}\mathbf{x} = \mathbf{0}$ má jediné řešení $\mathbf{x} = \mathbf{0}$.
- 3. rank $\mathbf{A} = n$.
- 4. Zobrazení $f(\mathbf{x}) = A\mathbf{x}$ je injektivní (viz §1.1.2).
- 5. Sloupce matice A jsou lineárně nezávislé.
- 6. Matice A má levou inverzi, tj. existuje B tak, že BA = I.
- 7. Matice $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ je regulární.

Důkaz.

- Ekvivalence $1 \Leftrightarrow 2$ plyne z definice nulového prostoru (3.12).
- Ekvivalence $2 \Leftrightarrow 5$ plyne z definice lineární nezávislosti (3.2), tj. $\mathbf{A}\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{x} = \mathbf{0}$.
- Ekvivalence $3 \Leftrightarrow 5$ plyne z definice hodnosti (3.11).

- Tvrzení 4 říká, že pro každé \mathbf{x}, \mathbf{y} je $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y} \Rightarrow \mathbf{x} = \mathbf{y}$, tj. $\mathbf{A}(\mathbf{x} \mathbf{y}) = \mathbf{0} \Rightarrow \mathbf{x} \mathbf{y} = \mathbf{0}$. Ale to je definice (3.2) lineární nezávislosti sloupců \mathbf{A} . Tedy platí $2 \Leftrightarrow 4$.
- Tvrzení 6 je ekvivalentní tomu, že matice \mathbf{A}^T má pravou inverzi, tj. $\mathbf{A}^T\mathbf{B}^T=\mathbf{I}$. Tedy $3\Leftrightarrow 6$ plyne ekvivalence $3\Leftrightarrow 6$ ve Větě 3.5.
- Tvrzení $1 \Leftrightarrow 7$ je plyne z rovnosti (5.4b), uvedené později.

Věta 3.8. Pro libovolné matice A, B platí:

- $\operatorname{null}(\mathbf{AB}) \supseteq \operatorname{null} \mathbf{B}$.
- null(AB) = null B, jestliže sloupce matice A jsou lineárně nezávislé.

 $D\mathring{u}kaz$. První tvrzení říká, že $\mathbf{B}\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0}$, což platí vynásobením maticí \mathbf{A} zleva. Druhé tvrzení říká, že když \mathbf{A} má lineárně nezávislé sloupce, pak $\mathbf{A}\mathbf{B}\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{B}\mathbf{x} = \mathbf{0}$. To platí, neboť dle implikace $5 \Rightarrow 2$ ve Větě 3.7 máme $\mathbf{A}\mathbf{y} = \mathbf{0} \Rightarrow \mathbf{y} = \mathbf{0}$.

3.2.3 Dvě věty o dimenzích

Zde dokážeme dvě obtížnější věty o dimenzích prostoru obrazů a nulového prostoru.

Jako první uvedeme slíbený důkaz rovnosti (2.2). K tomu nejdřív uvedeme pomocnou větu, která je zajímavá sama o sobě.

Věta 3.9. Pro každou matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ hodnosti r existují $\mathbf{B} \in \mathbb{R}^{m \times r}$ a $\mathbf{C} \in \mathbb{R}^{r \times n}$ tak, že

$$\mathbf{A} = \mathbf{BC}.\tag{3.13}$$

 $D\mathring{u}kaz$. Zvolme libovolnou bázi prostoru rng \mathbf{A} . Nechť vektory této báze tvoří sloupce matice $\mathbf{B} \in \mathbb{R}^{m \times r}$, kde $r = \dim \operatorname{rng} \mathbf{A}$. Nyní j-tý sloupec \mathbf{a}_j matice \mathbf{A} je lineární kombinací sloupců matice \mathbf{B} , neboli existuje vektor \mathbf{c}_j tak že $\mathbf{a}_j = \mathbf{B}\mathbf{c}_j$. Platí tedy (3.13), kde matice $\mathbf{C} \in \mathbb{R}^{r \times n}$ má sloupce $\mathbf{c}_1, \ldots, \mathbf{c}_n$.

Rozkladu (3.13) se někdy říká **rozklad matice podle hodnosti** (angl. rank factorization). Lze na něj pohlížet jako na 'kompresi' matice \mathbf{A} , což při $r \ll \min\{m,n\}$ může být značná úspora. Např.:

- Uložení matice A do paměti zabere mn čísel, uložení matic B a C jen (m+n)r čísel.
- Přímý výpočet maticového součinu $\mathbf{A}\mathbf{x}$ vyžaduje mn operací. Spočítáme-li ale nejdřív vektor $\mathbf{z} = \mathbf{C}\mathbf{x}$ a pak vektor $\mathbf{y} = \mathbf{B}\mathbf{z}$, potřebujeme jen (m+n)r operací.
- Představme si zobrazení $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ jako přenosový kanál, jehož vstupem jsou proměnné x_1, \ldots, x_n a výstupem y_1, \ldots, y_m . Přenos můžeme realizovat jen po r 'drátech' z_1, \ldots, z_r .

A nyní můžeme dokázat rovnost (2.2), tj. že dimenze lineárního obalu sloupců je rovna dimenzi lineárního obalu řádků:

Věta 3.10. Pro každou matici A platí

$$\operatorname{rank} \mathbf{A} = \dim \operatorname{rng} \mathbf{A} = \dim \operatorname{rng}(\mathbf{A}^{T}) = \operatorname{rank}(\mathbf{A}^{T}). \tag{3.14}$$

 $D\mathring{u}kaz$. Pišme (3.13) jako $\mathbf{A}^T = \mathbf{C}^T\mathbf{B}^T$. Dle Věty 3.6 je $\operatorname{rng}(\mathbf{A}^T) \subseteq \operatorname{rng}(\mathbf{C}^T)$. Dle Věty 3.3 tedy $\operatorname{dim}\operatorname{rng}(\mathbf{A}^T) \le \operatorname{dim}\operatorname{rng}(\mathbf{C}^T)$. Protože \mathbf{C}^T má r sloupců, je $\operatorname{dim}\operatorname{rng}(\mathbf{C}^T) \le r = \operatorname{dim}\operatorname{rng}\mathbf{A}$. Tedy

$$\dim \operatorname{rng}(\mathbf{A}^T) \le \dim \operatorname{rng} \mathbf{A}. \tag{3.15}$$

Ukázali jsme, že pro každou matici \mathbf{A} platí nerovnost (3.15). Nyní tuto nerovnost použijeme na matici \mathbf{A}^T , což dá dim rng $\mathbf{A} \leq \dim \operatorname{rng}(\mathbf{A}^T)$. Obě nerovnosti dohromady dají (3.14).

Jako druhou uvedeme větu o vztahu dimenze prostoru obrazů, nulového prostoru, a 'vstupního' prostoru \mathbb{R}^n lineárního zobrazení. Někdy se jí říká rank-plus-nullity theorem, kde nullity označuje dimenzi nulového prostoru matice:

Věta 3.11. Pro každou matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ platí

$$\dim \operatorname{rng} \mathbf{A} + \dim \operatorname{null} \mathbf{A} = n. \tag{3.16}$$

 $D\mathring{u}kaz$. (*) Necht' bázi prostoru rng **A** tvoří sloupce matice $\mathbf{B} \in \mathbb{R}^{m \times r}$. Tedy existuje matice $\mathbf{C} \in \mathbb{R}^{n \times r}$ tak, že $\mathbf{B} = \mathbf{AC}$. Necht' bázi prostoru null **A** tvoří sloupce matice $\mathbf{D} \in \mathbb{R}^{n \times q}$.

Protože sloupce **B** tvoří bázi rng **A**, pro každý vektor $\mathbf{x} \in \mathbb{R}^n$ existuje právě jeden vektor $\mathbf{y} \in \mathbb{R}^r$ tak, že $\mathbf{A}\mathbf{x} = \mathbf{B}\mathbf{y}$, to jest $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{C}\mathbf{y}$, to jest $\mathbf{A}(\mathbf{x} - \mathbf{C}\mathbf{y}) = \mathbf{0}$. To ale znamená $\mathbf{x} - \mathbf{C}\mathbf{y} \in \text{null } \mathbf{A}$, proto existuje právě jeden vektor $\mathbf{z} \in \mathbb{R}^q$ tak, že $\mathbf{x} - \mathbf{C}\mathbf{y} = \mathbf{D}\mathbf{z}$.

A jsme hotovi. Ukázali jsme totiž, že pro každý $\mathbf{x} \in \mathbb{R}^n$ existuje právě jeden $\mathbf{y} \in \mathbb{R}^r$ a právě jeden $\mathbf{z} \in \mathbb{R}^q$ tak, že $\mathbf{x} = \mathbf{C}\mathbf{y} + \mathbf{D}\mathbf{z}$. To ale znamená, že sloupce matice $\begin{bmatrix} \mathbf{C} & \mathbf{D} \end{bmatrix} \in \mathbb{R}^{n \times (r+q)}$ tvoří bázi prostoru \mathbb{R}^n . Tedy musí být r+q=n, což je rovnost (3.16).

Interpretace věty 3.11:

- Každá dimenze na vstupu zobrazení $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ se buď 'splácne' do nulového vektoru nebo se objeví na výstupu.
- Počet lineárně nezávislých řešení lineární homogenní soustavy $\mathbf{A}\mathbf{x} = \mathbf{0}$ je $n \operatorname{rank} \mathbf{A}$.
- Protože rank $\mathbf{A} = \text{rank}(\mathbf{A}^T)$, rovnost (3.16) lze psát také jako

$$\dim \operatorname{rng}(\mathbf{A}^T) + \dim \operatorname{null} \mathbf{A} = n. \tag{3.17}$$

Protože $\operatorname{rng}(\mathbf{A}^T)$ je lineární obal řádků matice \mathbf{A} a null \mathbf{A} je množina všech vektorů ortogonálních na řádky \mathbf{A} , rovnost (3.17) říká, že součet dimenzí těchto dvou podprostorů prostoru \mathbb{R}^n je n. O tom si více řekneme v části o ortogonálním doplňku (§4.2).

3.3 Afinní podprostor a zobrazení

Afinní kombinace vektorů $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$ je lineární kombinace $\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k$, ve které koeficienty kombinace splňují

$$\alpha_1 + \dots + \alpha_k = 1.$$

Afinní obal vektorů $\mathbf{x}_1, \dots, \mathbf{x}_k$ je množina všech jejich afinních kombinací. Množina $A \subseteq \mathbb{R}^n$ je afinní podprostor⁴ lineárního prostoru \mathbb{R}^n , jestliže každá afinní kombinace každé (konečné) množiny vektorů z A leží v A (neboli množina A je uzavřená vůči afinním kombinacím):

$$\mathbf{x}_1, \dots, \mathbf{x}_k \in A, \quad \alpha_1 + \dots + \alpha_k = 1 \implies \alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k \in A.$$
 (3.18)

⁴Všimněte si, že definujeme afinní *podprostor* lineárního prostoru, ale už ne afinní *prostor* sám o sobě. Definice afinního prostoru bez odkazu k nějakému lineárnímu prostoru (tj. pomocí axiomů) existuje, ale neuvádíme ji.

Afinní kombinace nezávisí na počátku. To znamená, že afinní kombinace vektorů posunutých o libovolný vektor \mathbf{x}_0 je rovna afinní kombinaci neposunutých vektorů posunuté o \mathbf{x}_0 . To snadno dokážeme:

$$\alpha_1(\mathbf{x}_1 - \mathbf{x}_0) + \dots + \alpha_k(\mathbf{x}_k - \mathbf{x}_0) = \alpha_1\mathbf{x}_1 + \dots + \alpha_k\mathbf{x}_k - (\alpha_1 + \dots + \alpha_k)\mathbf{x}_0 = (\alpha_1\mathbf{x}_1 + \dots + \alpha_k\mathbf{x}_k) - \mathbf{x}_0.$$

Na rozdíl od toho, obecná lineární kombinace na počátku závisí.

K tomu (mírně neformální) poznámka: Jestliže s prvky vektorového (pod)prostoru provádíme operace afinní kombinace, tyto prvky si stačí představovat/kreslit jako body. Poloha počátku není důležitá, protože afinní kombinace na něm nezávisí. Afinní kombinaci bodů na papíře lze sestrojit pomocí pravítka a měřítka bez znalosti polohy počátku. Naproti tomu, jestliže s prvky vektorového (pod)prostoru provádíme operace lineární kombinace, tyto prvky si představujeme jako šipky spojující počátek s koncovým bodem (přesněji jako volné vektory), protože lineární kombinaci vektorů můžeme sestrojit pouze se znalostí polohy počátku. To je důvod, proč se prvkům afinního (pod)prostoru říká body zatímto prvkům pouhého vektorového (= lineárního) (pod)prostoru vektory.

Příklad 3.7. Afinní obal dvou bodů $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^3$ je množina

aff
$$\{\mathbf{x}_1, \mathbf{x}_2\} = \{ \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 \mid \alpha_1 + \alpha_2 = 1 \}.$$

Pokud $\mathbf{x}_1 \neq \mathbf{x}_2$, je touto množinou přímka procházející body $\mathbf{x}_1, \mathbf{x}_2$. Tato přímka je afinní podprostor \mathbb{R}^3 . Na obrázku dole vlevo je několik bodů na přímce a příslušné koeficienty (α_1, α_2) .

Naproti tomu, lineární obal dvou vektorů $\mathbf{x}_1, \mathbf{x}_2$ (pokud jsou lineárně nezávislé) je rovina procházející těmito dvěma body a počátkem $\mathbf{0}$.

Afinní obal tří bodů $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{R}^3$ je množina

aff
$$\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} = \{\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \alpha_3 \mathbf{x}_3 \mid \alpha_1 + \alpha_2 + \alpha_3 = 1\}.$$

Pokud body $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ neleží v přímce, je touto množinou rovina jimi procházející. Tato rovina je afinní podprostor \mathbb{R}^3 . Na obrázku vpravo je několik bodů v této rovině a příslušné koeficienty $(\alpha_1, \alpha_2, \alpha_3)$.

(Protože afinní kombinace nezávisí na poloze počátku, do obrázků jsme počátek ani nekreslili a prvky prostoru \mathbb{R}^3 jsme kreslili jako body, viz poznámka výše.)

Pro množinu $X \subseteq \mathbb{R}^n$ a vektor $\mathbf{x} \in \mathbb{R}^n$ označme

$$X + \mathbf{x} = \mathbf{x} + X = \{ \mathbf{x} + \mathbf{y} \mid \mathbf{y} \in X \}. \tag{3.19}$$

Věta 3.12.

- Je-li X lineární podprostor \mathbb{R}^n a $\mathbf{x} \in \mathbb{R}^n$, pak množina $X + \mathbf{x}$ je afinní podprostor \mathbb{R}^n .
- Je-li A afinní podprostor \mathbb{R}^n a $\mathbf{x} \in A$, pak množina $A \mathbf{x}$ je lineární podprostor \mathbb{R}^n .
- Je-li A afinní podprostor a $\mathbf{x}, \mathbf{y} \in A$, pak $A \mathbf{x} = A \mathbf{y}$.

 $D\mathring{u}kaz$. První tvrzení: Chceme dokázat, že afinní kombinace bodů z množiny $X + \mathbf{x}$ leží v této množině. Nechť tedy $\alpha_1 + \cdots + \alpha_k = 1$ a chceme dokázat implikaci

$$\mathbf{x}_1, \dots, \mathbf{x}_k \in X + \mathbf{x} \implies \alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k \in X + \mathbf{x},$$

 $neboli^{5}$

$$\mathbf{x}_1 - \mathbf{x}, \dots, \mathbf{x}_k - \mathbf{x} \in X \implies \alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k - \mathbf{x} = \alpha_1 (\mathbf{x}_1 - \mathbf{x}) + \dots + \alpha_k (\mathbf{x}_k - \mathbf{x}) \in X.$$

Tato implikace platí díky linearítě X.

Druhé tvrzení: Chceme dokázat, že lineární kombinace vektorů z množiny $A - \mathbf{x}$ leží v této množině. Nechť tedy $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ a chceme dokázat implikaci

$$\mathbf{x}_1, \dots, \mathbf{x}_k \in A \implies \alpha_1(\mathbf{x}_1 - \mathbf{x}) + \dots + \alpha_k(\mathbf{x}_k - \mathbf{x}) \in A - \mathbf{x}.$$

Pravá strana této implikace jde psát jako

$$\alpha_1(\mathbf{x}_1 - \mathbf{x}) + \dots + \alpha_k(\mathbf{x}_k - \mathbf{x}) + \mathbf{x} = \alpha_1\mathbf{x}_1 + \dots + \alpha_k\mathbf{x}_k + (1 - \alpha_1 - \dots - \alpha_k)\mathbf{x} \in A.$$

To je ale pravda, neboť $\alpha_1 + \cdots + \alpha_k + (1 - \alpha_1 - \cdots - \alpha_k) = 1$ a tedy poslední výraz je afinní kombinace vektorů z A, která podle předpokladu leží v A.

Třetí tvrzení: Označme $X = A - \mathbf{x}$. Jelikož $\mathbf{y} \in A$, je také $\mathbf{y} - \mathbf{x} \in A - \mathbf{x} = X$. Nyní pišme $A - \mathbf{y} = A - \mathbf{x} + \mathbf{x} - \mathbf{y} = X - (\mathbf{y} - \mathbf{x}) = X$, kde poslední rovnost plyne z linearity X (kterou jsme dokázali v druhém tvrzení).

Věta 3.12 říká, že afinní podprostor není nic jiného, než 'posunutý' lineární podprostor (tedy nemusí procházet počátkem, na rozdíl of lineárního podprostoru). Třetí tvrzení věty navíc ukazuje, že tento lineární podprostor je afinním prostorem určen jednoznačně:

Dimenze afinního podprostoru je dimenze tohoto lineárního podprostoru. Afinnímu podprostoru \mathbb{R}^n dimenze 0, 1, 2 a n-1 se říká po řadě **bod**, **přímka**, **rovina**, a **nadrovina**.

⁵Zde jsme použili skutečnost, že k výroku typu $\mathbf{x} \in X$ můžeme přičíst libovolný vektor a výrok se tím nezmění. Přesněji, pro každé $X \subseteq \mathbb{R}^n$ a $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ platí $\mathbf{x} \in X \Leftrightarrow \mathbf{x} + \mathbf{y} \in X + \mathbf{y}$. To snadno plyne z (3.19).

Věta 3.13. Množina $A \subseteq \mathbb{R}^n$ je afinní podprostor právě tehdy, když je množinou řešení nějaké lineární soustavy⁶, tj. existují **A** a **b** splňující $A = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$.

 $D\mathring{u}kaz$. Předpokládejme, že množina A je neprázdná (pro $A=\emptyset$ věta zjevně platí, protože prázdná množina je afinní podprostor a je to také řešení nějaké lineární soustavy).

Důkaz \Leftarrow : Necht' $A = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$. Necht' $\mathbf{x}_1, \dots, \mathbf{x}_k \in A$ a $\alpha_1 + \dots + \alpha_k = 1$. Dokažme, že $\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k \in A$:

$$\mathbf{A}(\alpha_1\mathbf{x}_1 + \dots + \alpha_k\mathbf{x}_k) = \alpha_1\mathbf{A}\mathbf{x}_1 + \dots + \alpha_k\mathbf{A}\mathbf{x}_k = \alpha_1\mathbf{b} + \dots + \alpha_k\mathbf{b} = \mathbf{b}.$$

Jiný důkaz \Leftarrow : Nechť $X = \text{null } \mathbf{A}$ a \mathbf{x}_0 je libovolný bod splňující $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$ (tzv. partikulární řešení soustavy $\mathbf{A}\mathbf{x} = \mathbf{b}$). Pak

$$A = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b} \} = \{ \mathbf{x} \mid \mathbf{A}(\mathbf{x} - \mathbf{x}_0) = \mathbf{0} \} = \{ \mathbf{x}' + \mathbf{x}_0 \mid \mathbf{A}\mathbf{x}' = \mathbf{0} \} = X + \mathbf{x}_0.$$
 (3.20)

Tedy dle Věty 3.12 je A afinní podprostor.

Důkaz \Rightarrow : Necht' A je afinní podprostor a necht' $\mathbf{x}_0 \in A$. Pak (dle Věty 3.12) je množina $X = A - \mathbf{x}_0$ lineární podprostor, tedy (viz poznámka v §3.2.2) existuje matice \mathbf{A} tak, že $X = \text{null } \mathbf{A}$. Necht' $\mathbf{b} = \mathbf{A}\mathbf{x}_0$. Pak dle (3.20) je $X + \mathbf{x}_0 = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}\}$.

Shrňme: každý lineární podprostor lze reprezentovat buď jako rng $\bf A$ pro nějakou matici $\bf A$, nebo jako null $\bf A$ (tj. množinou řešení soustavy $\bf A x = 0$) pro nějakou (jinou!) matici $\bf A$. Každý afinní podprostor lze reprezentovat buď jako $\bf x + X$ pro nějaký vektor $\bf x$ a lineární podprostor X, nebo jako množinu řešení soustavy $\bf A x = b$ pro nějaké $\bf A$, $\bf b$.

Body $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$ jsou **afinně nezávislé**, jestliže žádný není afinní kombinace ostatních. Afinní nezávislost lze ovšem definovat i jinak (důkaz věty neuvádíme, i když není těžký):

Věta 3.14. Pro body $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$ jsou následující tvrzení ekvivalentní:

- 1. Žádný bod není roven afinní kombinaci ostatních bodů.
- 2. Platí (srov. se (3.2))

$$\alpha_1 + \dots + \alpha_k = 0, \quad \alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k = \mathbf{0} \quad \Longrightarrow \quad \alpha_1 = \dots = \alpha_k = 0.$$
 (3.21)

- 3. Vektory $\mathbf{x}_2 \mathbf{x}_1, \mathbf{x}_3 \mathbf{x}_1, \dots, \mathbf{x}_k \mathbf{x}_1$ jsou lineárně nezávislé.
- 4. Vektory $\begin{bmatrix} \mathbf{x}_1 \\ 1 \end{bmatrix}, \dots, \begin{bmatrix} \mathbf{x}_k \\ 1 \end{bmatrix}$ jsou lineárně nezávislé (kde $\begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} \in \mathbb{R}^{n+1}$ značí vektor \mathbf{x} s přidanou jedničkou jako (n+1)-ní souřadnicí⁷).

Příklad 3.8. Dva body $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ jsou afinně nezávislé, právě když $\mathbf{x}_1 \neq \mathbf{x}_2$ (neboli nejsou identické). Tři body $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \in \mathbb{R}^n$ jsou afinně nezávislé, právě když neleží v jedné přímce (neboli nejsou $koline\acute{a}rn\acute{i}$). Viz Příklad 3.7. Čtyři body $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \in \mathbb{R}^n$ jsou afinně nezávislé, právě když neleží v jedné rovině (neboli nejsou $koplan\acute{a}rn\acute{i}$).

⁶Proto se afinnímu podprostoru říká také *lineární varieta*. Je to speciální případ *algebraické variety*, což je množina řešení soustavy polynomiálních rovnic. Jejich studiem se zabývá *algebraická geometrie*.

⁷Tento vektor dobře znají počítačoví grafici jako homogenní souřadnice bodu x.

Zobrazení $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ nazveme **afinní**, pokud (3.4) platí pro všechna $\alpha_1 + \cdots + \alpha_k = 1$. Lze dokázat (proveďte!), že zobrazení \mathbf{f} je afinní, právě když existuje matice $\mathbf{A} \in \mathbb{R}^{m \times n}$ a vektor $\mathbf{b} \in \mathbb{R}^m$ tak, že

$$f(x) = Ax + b. (3.22)$$

Pro m=1 se zobrazení (3.22) nazývá také **afinní funkce** ⁸ $f: \mathbb{R}^n \to \mathbb{R}$ a má tvar

$$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b = a_1 x_1 + \dots + a_n x_n + b, \tag{3.23}$$

kde $\mathbf{a} \in \mathbb{R}^n$ a $b \in \mathbb{R}$.

Příklad 3.9. Zobrazení $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$ definované jako $\mathbf{f}(x_1, x_2) = (x_1 + x_2 + 1, x_1 - x_2 - 2, 2x_1)$ je afinní. To bychom mohli dokázat ověřením podmínek (3.4) pro $\alpha_1 + \cdots + \alpha_k = 1$. Ale je to patrné i z toho, že zobrazení lze vyjádřit ve tvaru (3.22):

$$\mathbf{f}(x_1, x_2) = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}.$$

Příklad 3.10. Pro dané body $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$ a $\mathbf{y}_1, \dots, \mathbf{y}_k \in \mathbb{R}^m$ máme za úkol najít afinní zobrazení \mathbf{f} takové, aby platilo $\mathbf{y}_i = \mathbf{f}(\mathbf{x}_i)$ pro všechna $i = 1, \dots, k$. Řešíme tedy lineární soustavu $\mathbf{y}_i = \mathbf{A}\mathbf{x}_i + \mathbf{b}, i = 1, \dots, k$, pro neznámé $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{b} \in \mathbb{R}^m$. Tuto soustavu můžeme napsat v maticovém tvaru

$$\begin{bmatrix} \mathbf{y}_1 & \cdots & \mathbf{y}_k \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_k \\ 1 & \cdots & 1 \end{bmatrix}.$$

Je-li k=n+1 a body $\mathbf{x}_1,\dots,\mathbf{x}_k$ jsou afinně nezávislé, matice $\begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_k \\ 1 & \cdots & 1 \end{bmatrix}$ je regulární a tedy soustava má jediné řešení.

Shrňme: každé lineární zobrazení lze reprezentovat jako $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ pro nějakou \mathbf{A} a každé afinní zobrazení jako $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ pro nějaké \mathbf{A}, \mathbf{b} .

3.4 Cvičení

- 3.1. Rozhodněte, zda následující množiny jsou lineární nebo afinní podprostory \mathbb{R}^n a když ano, určete jejich dimenze:
 - a) $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} = 0\}$ pro dané $\mathbf{a} \in \mathbb{R}^n$
 - b) $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} = b\}$ pro dané $\mathbf{a} \in \mathbb{R}^n, b \in \mathbb{R}$
 - c) $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{x} = 1\}$
 - d) $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}\mathbf{x}^T = \mathbf{I}\}$ pro dané $\mathbf{a} \in \mathbb{R}^n$
 - e) $\{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{i=1}^n x_i = 0 \}$

 $^{^8}$ V lineární algebře znamená 'lineární funkce' něco jiného než v matematické analýze. Např. funkci jedné proměnné f(x) = ax + b znáte ze základní školy jako lineární, v lineární algebře však lineární není – je afinní. Ovšem soustavě rovnic $\mathbf{A}\mathbf{x} = \mathbf{b}$ se říká 'lineární' i v lineární algebře.

- f) $\mathbf{a} + \text{span}\{\mathbf{b}, \mathbf{c}\}$, kde $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^n$ jsou známé vektory takové, že \mathbf{b}, \mathbf{c} jsou lineárně nezávislé.
- 3.2. Je množina $\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_3 = 0\}$ lineární podprostor? Pokud ano, najděte jeho libovolnou bázi.
- 3.3. Je dáno zobrazení $\mathbf{f}(\mathbf{x}) = \mathbf{x} \times \mathbf{y}$, kde $\mathbf{y} \in \mathbb{R}^3$ je pevný vektor a × označuje vektorový součin dvou vektorů⁹. Jde tedy o zobrazení $\mathbb{R}^3 \to \mathbb{R}^3$. Je toto zobrazení lineární? Pokud ano, najděte matici \mathbf{A} tak, aby $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$. Čemu je rovno \mathbf{A}^T ? Jakou hodnost má \mathbf{A} ?
- 3.4. Máme zobrazení $\mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}^3$ definované jako $\mathbf{f}(x,y) = (x+y,2x-1,x-y)$. Je toto zobrazení lineární? Pokud ano, napište ho ve formě (3.5). Je toto zobrazení afinní? Pokud ano, napište ho ve formě (3.22). Obě odpovědi dokažte z definic.
- 3.5. Mějme nehomogenní lineární soustavu

$$x + 2y + z = 1$$
$$-x + y + 2z = 2$$

dvou rovnic o třech neznámých. Napište množinu řešení soustavy jako $X + \mathbf{x}_0$, kde $X \subseteq \mathbb{R}^3$ je lineární podprostor (napište jeho bázi) a $\mathbf{x}_0 \in \mathbb{R}^3$.

- 3.6. Najděte bázi prostoru obrazů a bázi nulového prostoru následujících lineárních zobrazení:
 - a) $\mathbf{f}(x_1, x_2, x_3) = (x_1 x_2, x_2 x_3 + 2x_1)$
 - b) $\mathbf{f}(x_1, x_2) = (2x_1 + x_2, x_1 x_2, 2x_2 + x_1)$
- 3.7. Máte matice \mathbf{A} a \mathbf{B} se stejným počtem řádků. Jak byste ověřili, zda rng $\mathbf{A} = \operatorname{rng} \mathbf{B}$, umíte-li spočítat hodnost libovolné matice?
- 3.8. Dokažte, že pro libovolné dvě matice platí $\operatorname{rank}(\mathbf{AB}) \leq \min\{\operatorname{rank}\mathbf{A}, \operatorname{rank}\mathbf{B}\}.$
- 3.9. Nechť X je lineární podprostor \mathbb{R}^n a $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ je lineární zobrazení. Je množina $\mathbf{f}(X)$ lineární podprostor \mathbb{R}^m ? Odpověď dokažte.
- 3.10. Navrhněte postup, jak spočítat afinní zobrazení $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$, které zobrazí trojúhelník s vrcholy $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3 \in \mathbb{R}^2$. Zobrazení má zobrazit bod \mathbf{p}_1 do bodu \mathbf{q}_1 atd.
- 3.11. Zjisti, zda existuje lineární funkce f splňující tyto podmínky:
 - a) f(1,2) = 2, f(3,4) = 3.
 - b) f(1,2) = 2, f(3,4) = 3, f(5,6) = 4.
 - c) f(1,0,1) = -1, f(0,1,2) = 1, f(1,1,3) = 2.
- 3.12. Máme podprostor $X \subseteq \mathbb{R}^3$ s bází tvořenou vektory $\mathbf{a} = (1, 2, 3)$ a $\mathbf{b} = (-1, 0, 1)$. Nechť $\mathbf{x} = (2, 2, 2)$. Platí $\mathbf{x} \in X$? Pokud ano, najděte souřadnice vektoru \mathbf{x} v této bázi.
- 3.13. Které z těchto výroků jsou pravdivé? Každý výrok dokažte nebo najděte protipříklad. Některé výroky mohou platit jen pro určité rozměry matic najděte co nejobecnější podmínky na rozměry matic, aby výroky byly pravdivé.
 - a) Pokud AB má plnou hodnost, pak A a B mají plnou hodnost.
 - b) Pokud A a B mají plnou hodnost, pak AB má plnou hodnost.

⁹Tedy × zde neoznačuje kartézský součin množin, jako jinde ve skriptech.

- c) Pokud A a B mají triviální nulový prostor, pak AB má triviální nulový prostor.
- d) (*) Pokud \mathbf{A} a \mathbf{B} jsou úzké s plnou hodností a platí $\mathbf{A}^T\mathbf{B} = \mathbf{0}$, pak matice $[\mathbf{A} \ \mathbf{B}]$ je úzká s plnou hodností.
- e) (\star) Pokud matice $\begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$ má plnou hodnost, pak \mathbf{A} i \mathbf{B} mají plnou hodnost.
- 3.14. (*) Mějme vektory $\mathbf{x}_1, \dots, \mathbf{x}_k$. Vektor \mathbf{x}_i nazveme klíčový, není-li lineární kombinací vektorů $\mathbf{x}_1, \dots, \mathbf{x}_{i-1}$. Dokažte, že množina klíčových vektorů je báze podprostoru span $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$. Všimněte si, že vlastně dokazujete první tvrzení Věty 3.2.
- 3.15. (*) Máme lineárně nezávislé vektory $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^n$ a hledáme vektory $\mathbf{a}_{m+1}, \ldots, \mathbf{a}_n \in \mathbb{R}^n$ tak, aby vektory $\mathbf{a}_1, \ldots, \mathbf{a}_n$ byly lineárně nezávislé. Dokažte, že to jde udělat následovně. Nechť $\mathbf{A} \in \mathbb{R}^{m \times n}$ je matice s řádky $\mathbf{a}_1^T, \ldots, \mathbf{a}_m^T$. Vybereme množinu $J \subseteq \{1, \ldots, n\}$ lineárně nezávislých sloupců matice \mathbf{A} (viz předchozí cvičení). Pak zvolíme vektory $\mathbf{a}_{m+1}, \ldots, \mathbf{a}_n$ jako n-m vektorů standardní báze $\mathbf{e}_j \in \mathbb{R}^n$ kde $j \in \{1, \ldots, n\} \setminus J$.
- 3.16. (★) Dokažte Větu 3.14.

Nápověda a řešení

- 3.1.a) Lineární podprostor, dimenze n-1 pro $\mathbf{a} \neq \mathbf{0}$ a n pro $\mathbf{a} = \mathbf{0}$.
- 3.1.b) Afinní podprostor dimenze n-1 pro $\mathbf{a}\neq\mathbf{0}$ a n pro $\mathbf{a}=\mathbf{0},\,b=0$. Pro $\mathbf{a}=\mathbf{0},\,b\neq0$ je množina prázdná (tedy není afinní podprostor).
- 3.1.c) Není lineární ani afinní podprostor (je to sféra).
- 3.1.d) Pro n=1 a $\mathbf{a}\neq\mathbf{0}$ je množinou jediný bod, tedy afinní podprostor prostoru \mathbb{R} . Pro n=1 a $\mathbf{a}=\mathbf{0}$ je množina prázdná (tedy není afinní podprostor). Pro n>1 je množina také prázdná, protože soustava $\mathbf{a}\mathbf{x}^T=\mathbf{I}$ nemá řešení pro žádné \mathbf{a},\mathbf{x} (možný důkaz: je rank $\mathbf{I}=n$, ale rank $(\mathbf{a}\mathbf{x}^T)\leq 1$).
- 3.1.e) Lineární podprostor dimenze n-1.
- 3.1.f) Je to rovina v \mathbb{R}^n , která neprochází počátkem (prochází bodem **a**), tedy je to afinní podprostor dimenze 2.
- 3.2. Ano. Je to vlastně množina $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T\mathbf{x} = 0\}$ (tedy nadrovina procházející počátkem s normálovým vektorem \mathbf{a}), kde n=4 a $\mathbf{a}=(1,0,-1,0)$. Bázi získáme řešením homogenní soustavy $\mathbf{a}^T\mathbf{x}=x_1+x_3=0$. Báze má tři prvky (protože dimenze nadroviny je n-1=3).
- 3.3. Je lineární, $\mathbf{A}=\begin{bmatrix}0&y_3&-y_2\\-y_3&0&y_1\\y_2&-y_1&0\end{bmatrix}$ je antisymetrická hodnosti 2 pro $\mathbf{y}\neq\mathbf{0}$.
- 3.4. Je afinní. Je $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, kde $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 1 & -1 \end{bmatrix}$ $\mathbf{b} = (0, -1, 0) = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{x} = (x, y) = \begin{bmatrix} x \\ y \end{bmatrix}$.
- 3.5. Např. $(1, -1, 2) + \text{span}\{(1, -1, 1)\} = \{(1 + \alpha, -1 \alpha, 2 + \alpha) \mid \alpha \in \mathbb{R}\}.$
- 3.6.a) rng $\mathbf{A} = \mathbb{R}^2$ a tedy báze rng \mathbf{A} je např. \mathbf{I}_2 . Báze null \mathbf{A} je např. (1,1,3).
- 3.6.b) Báze rng \mathbf{A} je např. (2,1,1), (1,-1,2). Báze null \mathbf{A} je např. (0,0).
- 3.7. $\operatorname{rng} \mathbf{A} = \operatorname{rng} \mathbf{B}$ je ekvivalentní $\operatorname{rank} \mathbf{A} = \operatorname{rank}[\mathbf{A} \mathbf{B}] = \operatorname{rank} \mathbf{B}$.
- 3.8. Dle Věty 3.6 je $\operatorname{rng}(\mathbf{AB}) \subseteq \operatorname{rng} \mathbf{A}$, z toho $\operatorname{rank}(\mathbf{AB}) \leq \operatorname{rank} \mathbf{A}$. Dle (2.2) je $\operatorname{rank}(\mathbf{AB}) = \operatorname{rank}((\mathbf{AB})^T) = \operatorname{rank}(\mathbf{B}^T\mathbf{A}^T) \leq \operatorname{rank}(\mathbf{B}^T) = \operatorname{rank} \mathbf{B}$.

- 3.9. Ano. Důkaz: Dle (3.3) máme dokázat, že pro každé $\mathbf{y}_1, \dots, \mathbf{y}_k \in \mathbf{f}(X)$ platí $\sum_i \alpha_i \mathbf{y}_i \in \mathbf{f}(X)$. Protože $\mathbf{f}(X) = \{\mathbf{f}(\mathbf{x}) \mid \mathbf{x} \in X\}$, je $\mathbf{y} \in \mathbf{f}(X)$ právě když existuje $\mathbf{x} \in X$ tak, že $\mathbf{y} = \mathbf{f}(\mathbf{x})$. Tedy máme dokázat, že pro každé $\mathbf{x}_1, \dots, \mathbf{x}_k \in X$ existuje $\mathbf{x} \in X$ tak, že $\sum_i \alpha_i \mathbf{f}(\mathbf{x}_i) = \mathbf{f}(\mathbf{x})$. To je ale pravda, protože $\sum_i \alpha_i \mathbf{f}(\mathbf{x}_i) = \mathbf{f}(\sum_i \alpha_i \mathbf{x}_i)$ a $\mathbf{x} = \sum_i \alpha_i \mathbf{x}_i \in X$.
- 3.10. Viz Příklad 3.10.
- 3.11.a) Je $f(x_1, x_2) = a_1x_1 + a_2x_2$. Rešíme soustavu $a_1 + 2a_2 = 2$, $3a_1 + 4a_2 = 3$. Tato soustava má řešení, tedy lineární funkce existuje.
- 3.11.b) Ano.
- 3.11.c) Ne.
- 3.12. Je $\mathbf{x} \in X$, právě když $\mathbf{x} = \alpha \mathbf{a} + \beta \mathbf{b}$ pro nějaké $\alpha, \beta \in \mathbb{R}$. Pokud tato lineární soustava má řešení, pak (α, β) jsou souřadnice vektoru \mathbf{x} v bázi (\mathbf{a}, \mathbf{b}) (zde je drobná nesrovnalost: někdy jsme o bázi mluvili jako o množině vektorů, protože nám na pořadí vektorů báze nezáleželo.

Kapitola 4

Ortogonalita

4.1 Standardní skalární součin

Na prostoru \mathbb{R}^n lze přirozeně definovat **standardní skalární součin**¹

$$\mathbf{x}^T \mathbf{y} = x_1 y_1 + \dots + x_n y_n = \mathbf{y}^T \mathbf{x}.$$

Skalární součin splňuje Cauchy-Schwarzovu nerovnost $(\mathbf{x}^T\mathbf{y})^2 \leq (\mathbf{x}^T\mathbf{x})(\mathbf{y}^T\mathbf{y})$.

Standardní skalární součin indukuje eukleidovskou normu

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^T \mathbf{x}} = (x_1^2 + \dots + x_n^2)^{1/2},$$
 (4.1)

Norma splňuje **trojúhelníkovou nerovnost** $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$. Ta snadno plyne z Cauchy-Schwarzovy nerovnosti (umocněte a roznásobte). Norma měří *délku* vektoru \mathbf{x} .

 $\acute{U}hel \varphi$ dvojice vektorů se spočítá jako

$$\cos \varphi = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$
 (4.2)

Speciálně:

- Když $\mathbf{x}^T\mathbf{y} = 0$, vektory jsou **ortogonální**², což značíme také $\mathbf{x} \perp \mathbf{y}$.
- Když $\mathbf{x}^T\mathbf{y} > 0$, vektory svírají ostrý úhel.
- Když $\mathbf{x}^T\mathbf{y} < 0,$ vektory svírají tupý úhel.

Eukleidovská norma indukuje eukleidovskou metriku

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|,\tag{4.3}$$

která měří vzdálenost bodů \mathbf{x} a \mathbf{y} .

Protože pro n=3 takto definované pojmy délky, úhlu a vzdálenosti dobře modelují prostor, ve kterém žijeme, prostoru \mathbb{R}^n se standardním skalárním součinem se často říká Eukleidovský prostor.

¹Pro skalární součin prvků \mathbf{x}, \mathbf{y} z abstraktního vektorového prostoru se užívá značení $\mathbf{x} \cdot \mathbf{y}, \langle \mathbf{x}, \mathbf{y} \rangle$ nebo (\mathbf{x}, \mathbf{y}) . Protože my ale máme $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ a standardní skalární součin, vystačíme s maticovým zápisem $\mathbf{x}^T \mathbf{y}$.

²Slovo ortogonální je téměř synonymem slova kolmý (perpendicular), ale ne zcela. Relace ortogonality se definuje pro dvojice prvků z libovolného abstraktního vektorového (= lineárního) prostoru, tedy např. i pro dvojice funkcí. Relace kolmosti se původně definuje v geometrii pro dvojice přímek. Je možné ji rozšířit na dvojice nenulových vektorů \mathbf{x}, \mathbf{y} , které vlastně chápeme jako přímky $\mathrm{span}\{\mathbf{x}\}$ a $\mathrm{span}\{\mathbf{y}\}$. Vektory musejí být nenulové, neboť $\mathrm{span}\{\mathbf{0}\}$ není přímka. Naproti tomu, nulový vektor $\mathbf{0}$ je ortogonální s každým vektorem.

4.2 Ortogonální podprostory

Vektor $\mathbf{y} \in \mathbb{R}^n$ je **ortogonální** na podprostor $X \subseteq \mathbb{R}^n$ (což značíme $\mathbf{y} \perp X$ nebo $X \perp \mathbf{y}$), je-li $\mathbf{y} \perp \mathbf{x}$ pro každé $\mathbf{x} \in X$. Pro testování této podmínky stačí ověřit, že \mathbf{y} je ortogonální na každý bázový vektor podprostoru X, neboť (dokažte!)

$$\mathbf{y} \perp \operatorname{span}\{\mathbf{x}_1, \dots, \mathbf{x}_k\} \iff \mathbf{y} \perp \mathbf{x}_i, \dots, \mathbf{y} \perp \mathbf{x}_k.$$
 (4.4)

Podprostory $X,Y\subseteq\mathbb{R}^n$ jsou **ortogonální** (značíme $X\perp Y$), je-li $\mathbf{x}\perp\mathbf{y}$ pro každé $\mathbf{x}\in X$ a $\mathbf{y}\in Y$, neboli $\mathbf{y}\perp X$ pro každé $\mathbf{y}\in Y$. Platí

$$X \perp Y \implies X \cap Y = \{\mathbf{0}\},\tag{4.5}$$

neboť jediný vektor ortogonální sám na sebe je $\mathbf{0}$ (rozmyslete!).

Ortogonální doplněk podprostoru $X \subseteq \mathbb{R}^n$ je množina

$$X^{\perp} = \{ \mathbf{y} \in \mathbb{R}^n \mid \mathbf{y} \perp X \} \tag{4.6}$$

 $v\check{s}ech$ vektorů z \mathbb{R}^n ortogonálních na podprostor X. Množina (4.6) je podprostor \mathbb{R}^n (dokažte!).

Příklad 4.1. Dvě na sebe kolmé přímky v \mathbb{R}^3 procházející počátkem jsou ortogonální podprostory, jedna přímka není ale ortogonálním doplňkem druhé přímky. Ortogonální doplněk k přímce v \mathbb{R}^3 procházející počátkem je rovina procházející počátkem, která je na tuto přímku kolmá. Ortogonální doplněk celého \mathbb{R}^3 (míněného jako podprostor prostoru \mathbb{R}^3) je počátek $\mathbf{0}$. \square

Příklad 4.2. Pozor, stěna místnosti není ortogonální na podlahu. Opravdu, existuje dvojice vektorů, jeden z podlahy a jeden ze stěny, které nejsou ortogonální (kde jsou?).

S ortogonálním doplňkem jsme se vlastně už setkali v §3.2.2: nulový prostor matice je tvořen všemi vektory ortogonálními na všechny řádky matice. Ale (dle (4.4)) vektor je ortogonální na všechny řádky matice právě tehdy, je-li ortogonální na lineární obal řádků matice. Tedy je-li $X = \operatorname{rng}(\mathbf{A}^T)$, pak $X^{\perp} = \operatorname{null} \mathbf{A}$. Krátce

$$(\operatorname{rng}(\mathbf{A}^T))^{\perp} = \operatorname{null} \mathbf{A}. \tag{4.7}$$

Příklad 4.3. Ortogonální doplněk podprostoru $X = \text{span}\{(1,2,3),(0,1,-1)\}$ je množina všech vektorů (x_1,x_2,x_3) splňujících $x_1+2x_2+3x_3=x_2-x_3=0$, neboli $X^{\perp}=\text{null}\begin{bmatrix}1&2&3\\0&1&-1\end{bmatrix}$.

Věta 4.1. Pro každé podprostory $X, Y \subseteq \mathbb{R}^n$ platí:

- 1. $\dim X + \dim X^{\perp} = n$,
- 2. $X \perp Y$ a dim X + dim Y = n implikuje $Y = X^{\perp}$,
- 3. $(X^{\perp})^{\perp} = X$.

Důkaz.

- 1. Tvrzení 1 je rovnost (3.17), kde $X = \operatorname{rng}(\mathbf{A}^T)$ a $X^{\perp} = \operatorname{null} \mathbf{A}$.
- 2. Platí $X \perp Y \Leftrightarrow Y \subseteq X^{\perp}$ (neboť $Y \subseteq X^{\perp}$ znamená, že každý vektor z Y je ortogonální s X). Dle tvrzení 1 tedy dim $(X^{\perp}) = n \dim X = \dim Y$. Dle Věty 3.3 proto $Y = X^{\perp}$.

3. Nechť $Y=X^{\perp}$. Z toho plyne $X\perp Y$ a dim $X+\dim Y=n$. Z toho ale dle tvrzení 2 plyne $X=Y^{\perp}=(X^{\perp})^{\perp}$.

Dle tvrzení 3 je $Y=X^\perp\Leftrightarrow X=Y^\perp.$ Proto říkáme, že podprostory X a Y jsou ortogonálním doplňkem jeden druhého.

Zformulujme podrobněji naše pozorování výše, které vedlo k rovnosti (4.7). Pro každou matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ je jasné, že:

- rng $\mathbf{A} = \{ \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n \} \subseteq \mathbb{R}^m$ je lineární obal sloupců \mathbf{A} ,
- null $\mathbf{A} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \} \subseteq \mathbb{R}^n$ je prostor všech vektorů kolmých na řádky \mathbf{A} ,
- $\operatorname{rng}(\mathbf{A}^T) = \{ \mathbf{A}^T \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^m \} \subseteq \mathbb{R}^n \text{ je lineární obal řádků } \mathbf{A},$
- null $(\mathbf{A}^T) = \{ \mathbf{x} \in \mathbb{R}^m \mid \mathbf{A}^T \mathbf{x} = \mathbf{0} \} \subseteq \mathbb{R}^m$ je prostor všech vektorů kolmých na sloupce \mathbf{A} . Rovnost (4.7) plynula z druhého a třetího výroku. Dále platí tato věta:

Věta 4.2. Pro každou matici A platí

$$(\operatorname{rng} \mathbf{A})^{\perp} = \operatorname{null}(\mathbf{A}^T), \tag{4.8a}$$

$$(\text{null }\mathbf{A})^{\perp} = \text{rng}(\mathbf{A}^T). \tag{4.8b}$$

 $D\mathring{u}kaz$. Rovnost (4.8a) plyne z prvního a čtvrtého pozorování výše. Je to vlastně rovnost (4.7) použitá na matici \mathbf{A}^T . Rovnost (4.8b) se získá použitím rovnosti (4.8a) na matici \mathbf{A}^T a rovnosti $(X^{\perp})^{\perp} = X$.

4.3 Ortonormální množina vektorů

Vektor $\mathbf{u} \in \mathbb{R}^m$ nazveme **normalizovaný**, pokud má jednotkovou délku ($\|\mathbf{u}\| = 1 = \mathbf{u}^T \mathbf{u}$). Množinu vektorů $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ nazveme³ **ortonormální** (trochu nepřesně⁴ říkáme, že *vektory* $\mathbf{u}_1, \dots, \mathbf{u}_n$ *jsou ortonormální*), jestliže každý vektor z této množiny je normalizovaný a každá dvojice vektorů z této množiny je ortogonální, tedy

$$\mathbf{u}_{i}^{T}\mathbf{u}_{j} = \delta_{ij} = \begin{cases} 0 & \text{když } i \neq j, \\ 1 & \text{když } i = j. \end{cases}$$

$$\tag{4.9}$$

Věta 4.3. Ortonormální množina vektorů je lineárně nezávislá.

 $D\mathring{u}kaz$. Vynásobme levou stranu implikace (3.2) skalárně vektorem \mathbf{u}_i , což dá

$$\alpha_i = \alpha_i \mathbf{u}_i^T \mathbf{u}_i = \alpha_1 \mathbf{u}_i^T \mathbf{u}_1 + \dots + \alpha_n \mathbf{u}_i^T \mathbf{u}_n = \mathbf{u}_i^T \mathbf{0} = 0.$$

To platí pro každé i, tedy $\alpha_1 = \cdots = \alpha_n = 0$. To je pravá strana implikace (3.2).

Věta 4.4. Necht' jsou vektory $\mathbf{u}_1, \dots, \mathbf{u}_n$ ortonormální. Necht'

$$\mathbf{x} = \alpha_1 \mathbf{u}_1 + \dots + \alpha_n \mathbf{u}_n. \tag{4.10}$$

 $Pak \ \alpha_i = \mathbf{u}_i^T \mathbf{x}.$

 $^{^3}$ Pro vektory z ortonormální množiny je obvyklé používat písmena $\mathbf{u}, \mathbf{v}, \mathbf{q}$ a ne $\mathbf{x}, \mathbf{y}, \mathbf{a}$, jak jsme zvyklí. Podobně, matice s ortonormálními sloupci (§4.4) je obvyklé značit $\mathbf{U}, \mathbf{V}, \mathbf{Q}$ místo \mathbf{A}, \mathbf{B} .

⁴Nepřesně proto, že ortonormalita není vlastnost jednoho vektoru, ale množiny vektorů.

 $D\mathring{u}kaz$. Vynásobením rovnice (4.10) zleva skalárně vektorem \mathbf{u}_i máme $\mathbf{u}_i^T\mathbf{x} = \mathbf{u}_i^T\mathbf{u}_i\alpha_i = \alpha_i$. \square

Připomeňme (§3.1), že skaláry $\alpha_1, \ldots, \alpha_n$ jsou souřadnice vektoru \mathbf{x} v ortonormální bázi $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ podprostoru span $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$. Ze střední školy víte (zopakujte a odvoďte!), že $\mathbf{u}_i^T \mathbf{x}$ je délka ortogonální projekce vektoru \mathbf{x} do (normalizovaného) vektoru \mathbf{u}_i . Uvědomte si rozdíl oproti situaci, kdy vektory $\mathbf{u}_1, \ldots, \mathbf{u}_n$ jsou lineárně nezávislé, ale ne ortonormální (Věta 3.1): v tom případě koeficienty α_i musíme počítat řešením lineární soustavy (4.10).

Dosazení $\alpha_i = \mathbf{u}_i^T \mathbf{x}$ do (4.10) ukáže, že pro každé $\mathbf{x} \in \text{span}\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ máme

$$\mathbf{x} = (\mathbf{u}_1^T \mathbf{x}) \mathbf{u}_1 + \dots + (\mathbf{u}_n^T \mathbf{x}) \mathbf{u}_n. \tag{4.11}$$

Podotkněme, že ortonormální báze lineárního (pod)prostoru odpovídá tomu, co ze základní školy znáte pod pojmem 'kartézský souřadnicový systém'. Souřadnice bodu (pod)prostoru vůči jeho ortonormální bázi (viz §3.1) pak známe jako jeho 'kartézské souřadnice'.

4.4 Matice s ortonormálními sloupci

Nechť sloupce matice $\mathbf{U} \in \mathbb{R}^{m \times n}$ tvoří ortonormální množinu vektorů. Dle Věty 4.3 jsou sloupce \mathbf{U} lineárně nezávislé, tedy nutně $m \geq n$ (tj. \mathbf{U} je čtvercová nebo úzká). Podmínku ortonormality (4.9) sloupců matice \mathbf{U} lze psát stručně jako (proč?)

$$\mathbf{U}^T \mathbf{U} = \mathbf{I}.\tag{4.12}$$

To také znamená, že \mathbf{U}^T je levá inverze matice \mathbf{U} a \mathbf{U} je pravá inverze matice \mathbf{U}^T (viz §2.4). Lineární zobrazení $\mathbf{f}(\mathbf{x}) = \mathbf{U}\mathbf{x}$ (zobrazení z \mathbb{R}^n do \mathbb{R}^m) zachovává skalární součin, neboť

$$\mathbf{f}(\mathbf{x})^T \mathbf{f}(\mathbf{y}) = (\mathbf{U}\mathbf{x})^T (\mathbf{U}\mathbf{y}) = \mathbf{x}^T \mathbf{U}^T \mathbf{U}\mathbf{y} = \mathbf{x}^T \mathbf{y}.$$
 (4.13)

Pro $\mathbf{x} = \mathbf{y}$ dostaneme $\|\mathbf{f}(\mathbf{x})\| = \|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$, neboli zobrazení zachovává také eukleidovskou normu. Zobrazení \mathbf{f} tedy zachovává délky a úhly. Taková zobrazení se nazývají **isometrie**⁵.

Věta 4.5. Pro každou čtvercovou matici U platí

$$\mathbf{U}^{T}\mathbf{U} = \mathbf{I} \iff \mathbf{U}^{T} = \mathbf{U}^{-1} \iff \mathbf{U}\mathbf{U}^{T} = \mathbf{I}. \tag{4.14}$$

 $D\mathring{u}kaz$. Necht' platí levá rovnost. Pak jsou sloupce **U** ortonormální a tedy lineárně nezávislé. To ale znamená, že **U** je regulární, protože je čtvercová. Vynásobením levé rovnice maticí \mathbf{U}^{-1} zprava získáme prostřední rovnici. Vynásobením prostřední rovnice maticí **U** zleva získáme pravou rovnici. Zbylé implikace dokážeme podobně.

Věta říká, že má-li čtvercová matice ortonormální sloupce, má ortonormální i řádky, a inverze takové matice se spočítá jednoduše transpozicí. Čtvercové matici splňující podmínky (4.14) se říká **ortogonální matice**.

Zdůrazněme, že pokud ${\bf U}$ je obdélníková s ortonormálními sloupci, neplatí ${\bf U}{\bf U}^T={\bf I}$. Dle Věty 4.4 platí pouze

$$\mathbf{x} \in \operatorname{rng} \mathbf{U} \implies \mathbf{U} \mathbf{U}^T \mathbf{x} = \mathbf{x},$$
 (4.15)

⁵Obecněji, *isometrie* je zobrazení mezi dvěma metrickými (ne nutně lineárními) prostory, které zachovává vzdálenosti. V našem případě bychom mohli přesněji mluvit o *lineární isometrii*, tedy o isometrii, která je zároveň lineární zobrazení.

což je rovnost (4.11) zapsaná v maticovém tvaru. Dále, pokud má **U** ortogonální (ne však ortonormální) sloupce, nemusí mít ortogonální řádky⁶.

Nechť U je ortogonální matice. Vezmeme-li determinant obou stran rovnice $\mathbf{U}^T\mathbf{U} = \mathbf{I}$, máme $\det(\mathbf{U}^T\mathbf{U}) = \det(\mathbf{U}^T) \det \mathbf{U} = (\det \mathbf{U})^2 = 1$. Tedy $\det \mathbf{U} \in \{-1,1\}$.

- Pokud det $\mathbf{U}=1$, matici se říká **speciální ortogonální** nebo také **rotační**, protože transformace $\mathbf{f}(\mathbf{x})=\mathbf{U}\mathbf{x}$ (zobrazení z \mathbb{R}^n do sebe) znamená *otočení* vektoru \mathbf{x} okolo počátku. Každou rotaci v prostoru \mathbb{R}^n lze jednoznačně reprezentovat rotační maticí.
- Pokud det U = -1, transformace f je složením otočení a zrcadlení (reflexe) kolem nadroviny procházející počátkem.

Příklad 4.4. Všechny rotační matice 2 × 2 lze napsat jako

$$\mathbf{U} = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$

pro nějaké φ . Násobení vektoru touto maticí odpovídá otočení vektoru v rovině o úhel φ . Zkontrolujte si, že $\mathbf{U}^T\mathbf{U} = \mathbf{I} = \mathbf{U}\mathbf{U}^T$ a det $\mathbf{U} = 1$.

Příklad 4.5. Zrcadlení (neboli reflexe) v \mathbb{R}^2 kolem přímky procházející počátkem a směrnicí $\tan(\varphi/2)$ je reprezentováno ortogonální maticí

$$\mathbf{U} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{bmatrix}.$$

Příklad 4.6. Permutační matice je čtvercová matice, jejíž sloupce jsou permutované vektory standardní báze. Např.

$$\begin{bmatrix} \mathbf{e}_3 & \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Permutační matice je ortogonální (dokažte!) a její determinant je rovný znaménku permutace.□

4.5 QR rozklad

Věta 4.6. Každou matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ lze rozložit na součin

$$\mathbf{A} = \mathbf{QR},\tag{4.16}$$

kde matice $\mathbf{Q} \in \mathbb{R}^{m \times m}$ je ortogonální a matice $\mathbf{R} \in \mathbb{R}^{m \times n}$ je horní trojúhelníková.

Rozkladu matice (4.16) se říká **QR rozklad** matice **A**. QR rozklad se počítá (což zároveň dokáže Větu 4.6) pomocí algoritmů založených na *Gramm-Schmidtově ortogonalizaci*, *House-holderových reflexích* nebo *Givensových rotacích* (tyto algoritmy neuvádíme). V Matlabu jej spočítáte příkazem [Q,R]=qr(A).

⁶To je možná důvod, proč se čtvercové matici s ortonormálními sloupci (tedy i řádky) neříká 'ortonormální' ale 'ortogonální'. Obdélníková matice s ortonormálními sloupci a čtvercová matice s ortogonálními (ne však ortonormálními) sloupci zvláštní jména nemají.

Věta 4.6 popisuje tzv. plnou verzi QR rozkladu. Pokud m > n, je posledních m - n řádků matice \mathbf{R} nulových (protože \mathbf{R} je horní trojúhelníková). Tyto řádky jsou násobeny posledními m - n sloupci matice \mathbf{Q} . Vynecháme-li tedy z matice \mathbf{R} posledních m - n řádků a z matice \mathbf{Q} posledních m - n sloupců, součin $\mathbf{Q}\mathbf{R}$ se nezmění. Pro m > n lze tedy každou $\mathbf{A} \in \mathbb{R}^{m \times n}$ rozložit jako $\mathbf{A} = \mathbf{Q}\mathbf{R}$ kde $\mathbf{Q} \in \mathbb{R}^{m \times n}$ má ortonormální sloupce a $\mathbf{R} \in \mathbb{R}^{n \times n}$ je horní trojúhelníková. Toto je redukovaná verze QR rozkladu, v Matlabu $[\mathbf{Q},\mathbf{R}]=q\mathbf{r}(\mathbf{A},\mathbf{0})$. Pro $m \leq n$ obě verze splývají. Zkoumejte v Matlabu příkaz help $q\mathbf{r}$!

Nechť $\mathbf{A} = \mathbf{Q}\mathbf{R}$ je redukovaný QR rozklad. Dle Věty 3.6 je rng $\mathbf{A} = \operatorname{rng}(\mathbf{Q}\mathbf{R}) \subseteq \operatorname{rng}\mathbf{Q}$. Pokud rank $\mathbf{A} = n$ (např. \mathbf{A} má lineárně nezávislé sloupce), tak dle Věty 3.3 je rng $\mathbf{A} = \operatorname{rng}\mathbf{Q}$. Takže sloupce matice \mathbf{Q} tvoří ortonormální bázi podprostoru rng \mathbf{A} . Z Věty 4.6 tedy plyne, že každý podprostor má ortonormální bázi (což je netriviální tvrzení!).

QR rozklad je velmi užitečný. Typické je jeho užití na řešení lineárních soustav. Řešíme-li soustavu $\mathbf{A}\mathbf{x} = \mathbf{b}$, rozložíme $\mathbf{A} = \mathbf{Q}\mathbf{R}$ a vynásobíme soustavu zleva \mathbf{Q}^T , což dá

$$\mathbf{R}\mathbf{x} = \mathbf{Q}^T \mathbf{b}.\tag{4.17}$$

Toto je ekvivalentní úprava, neboť \mathbf{Q} je regulární (v případě plného QR rozkladu). Ale protože je \mathbf{R} trojúhelníková, soustavu jsme velmi zjednodušili. Např. pokud je \mathbf{A} čtvercová regulární, jediné řešení soustavy (4.17) lze levně najít zpětnou substitucí.

4.6 Ortogonální projekce

Ortogonální projekce vektoru $\mathbf{z} \in \mathbb{R}^m$ na podprostor $X \subseteq \mathbb{R}^m$ je vektor $\mathbf{x} \in X$ takový, že $(\mathbf{z} - \mathbf{x}) \perp X$. Viz obrázek:

Ukážeme, jak ortogonální projekci spočítat, je-li dána ortonormální báze podprostoru X, tedy je-li dána matice $\mathbf{U} \in \mathbb{R}^{m \times n}$ taková, že $X = \operatorname{rng} \mathbf{U}$ a $\mathbf{U}^T \mathbf{U} = \mathbf{I}$. Protože (viz §4.5) každý podprostor má ortonormální bázi, dokážeme tím zároveň i existenci a jednoznačnost ortogonální projekce. Případem, kdy podprostor X je zadán libovolnou (ne nutně ortonormální) bází, se budeme zabývat později v §5.1.1.

Věta 4.7. Nechť matice $\mathbf{U} \in \mathbb{R}^{m \times n}$ se sloupci $\mathbf{u}_1, \dots, \mathbf{u}_n \in \mathbb{R}^m$ splňuje $\mathbf{U}^T \mathbf{U} = \mathbf{I}$. Ortogonální projekce vektoru $\mathbf{z} \in \mathbb{R}^m$ na podprostor rng \mathbf{U} je vektor

$$\mathbf{x} = \mathbf{U}\mathbf{U}^T\mathbf{z} = (\mathbf{u}_1^T\mathbf{z})\mathbf{u}_1 + \dots + (\mathbf{u}_n^T\mathbf{z})\mathbf{u}_n. \tag{4.18}$$

 $D\mathring{u}kaz$. Hledáme vektor $\mathbf{x} \in \operatorname{rng} \mathbf{U}$ splňující $(\mathbf{z} - \mathbf{x}) \perp \operatorname{rng} \mathbf{U}$. Dle (3.10) je $\mathbf{x} \in \operatorname{rng} \mathbf{U}$ právě když $\mathbf{x} = \mathbf{U}\boldsymbol{\alpha}$ pro nějaké $\boldsymbol{\alpha}$. Podmínka $(\mathbf{z} - \mathbf{x}) \perp \operatorname{rng} \mathbf{U}$ říká, že vektor $\mathbf{z} - \mathbf{x} = \mathbf{z} - \mathbf{U}\boldsymbol{\alpha}$ je

kolmý na sloupce matice **U**. To lze psát jako $\mathbf{U}^T(\mathbf{z} - \mathbf{U}\boldsymbol{\alpha}) = \mathbf{0}$ neboli $\mathbf{U}^T\mathbf{z} = \mathbf{U}^T\mathbf{U}\boldsymbol{\alpha}$. Protože $\mathbf{U}^T\mathbf{U} = \mathbf{I}$, tato rovnice má právě jedno řešení $\boldsymbol{\alpha} = \mathbf{U}^T\mathbf{z}$. Po dosazení $\mathbf{x} = \mathbf{U}\boldsymbol{\alpha} = \mathbf{U}\mathbf{U}^T\mathbf{z}$. Druhá rovnost v (4.18) je jen otázka značení. Uvědomíme si⁷, že $\mathbf{u}\mathbf{u}^T\mathbf{z} = (\mathbf{u}^T\mathbf{z})\mathbf{u}$, a pak

$$\mathbf{U}\mathbf{U}^T\mathbf{z} = \mathbf{u}_1\mathbf{u}_1^T\mathbf{z} + \dots + \mathbf{u}_n\mathbf{u}_n^T\mathbf{z} = (\mathbf{u}_1^T\mathbf{z})\mathbf{u}_1 + \dots + (\mathbf{u}_n^T\mathbf{z})\mathbf{u}_n.$$

Skaláry $\alpha_i = \mathbf{u}_i^T \mathbf{z}$ v (4.18) jsou souřadnice vektoru \mathbf{x} v ortonormální bázi $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ podprostoru X (viz Věta 4.4). Řečeno maticově, rovnici $\mathbf{x} = \mathbf{U}\mathbf{U}^T \mathbf{z}$ lze rozdělit na dvě části

$$\mathbf{x} = \mathbf{U}^T \boldsymbol{\alpha}, \qquad \boldsymbol{\alpha} = \mathbf{U} \mathbf{z} \tag{4.19}$$

kde $\pmb{\alpha} \in \mathbb{R}^n$ jsou
* souřadnice vektoru \mathbf{x} v ortonormální bázi tvořené sloupc
i $\mathbf{U}.$ Poznámky:

- Věta 4.7 mj. dokazuje existenci a jednoznačnost ortogonální projekce.
- Podle Věty 4.4 pro každé $\mathbf{z} \in \operatorname{rng} \mathbf{U}$ máme $\mathbf{U}\mathbf{U}^T\mathbf{z} = \mathbf{z}$ (pozor: ve (4.11) máme \mathbf{x} místo \mathbf{z}).
- Přidáme-li k vektorům $\mathbf{u}_1, \dots, \mathbf{u}_n$ vektory $\mathbf{u}_{n+1}, \dots, \mathbf{u}_m$ tak, aby $\mathbf{u}_1, \dots, \mathbf{u}_m$ byly ortonormální, dostaneme ortonormální bázi prostoru \mathbb{R}^m . Dle (4.11) tedy pro každé $\mathbf{z} \in \mathbb{R}^m$ je

$$\mathbf{z} = (\mathbf{u}_1^T \mathbf{z}) \mathbf{u}_1 + \dots + (\mathbf{u}_m^T \mathbf{z}) \mathbf{u}_m. \tag{4.20}$$

Vidíme, že (4.18) je 'zkrácená' suma (4.20), ze které jsme vzali jen prvních n členů.

• Má-li matice U jediný sloupec (označme ho $\mathbf{U} = \mathbf{u} \in \mathbb{R}^m$), pak

$$\mathbf{x} = \mathbf{u}\mathbf{u}^T\mathbf{z} = (\mathbf{u}^T\mathbf{z})\mathbf{u}.\tag{4.21}$$

To je tedy vzoreček pro projekci vektoru \mathbf{z} na přímku $X = \operatorname{rng} \mathbf{u} = \operatorname{span}\{\mathbf{u}\}$ procházející počátkem (kde $\|\mathbf{u}\| = 1$), který máte znát ze střední školy. Středoškolské odvození: skalární součin $\mathbf{u}^T \mathbf{z}$ je délka (se znaménkem) průmětu a (4.21) je vektor této délky ve směru \mathbf{u} .

Zobrazení dané vzorcem (4.18) (za předpokladu $\mathbf{U}^T\mathbf{U}=\mathbf{I})$ je lineární zobrazení reprezentované maticí

$$\mathbf{P} = \mathbf{U}\mathbf{U}^T, \tag{4.22}$$

které se proto říká **ortogonální projektor** (na podprostor $X = \operatorname{rng} \mathbf{U}$). Z (4.22) ihned plynou (ověřte!) dvě vlastnosti ortogonálního projektoru:

$$\mathbf{P}^2 = \mathbf{P} = \mathbf{P}^T \tag{4.23}$$

(kde \mathbf{P}^2 je zkratka pro \mathbf{PP}). Vlastnost $\mathbf{P}^2 = \mathbf{P}$ (říká se jí *idempotence* matice \mathbf{P}) říká očividnou věc: když vektor jednou promítneme na nějaký podprostor, tak opětovné promítnutí na tentýž podprostor ho už nezmění. Dá se ukázat (důkaz neuvádíme), že každá čtvercová matice s vlastnostmi (4.23) je ortogonálni projektor (na nějaký podprostor).

⁷Pozor:, závorka ve výrazu $(\mathbf{u}^T\mathbf{z})\mathbf{u}$ je nutná, protože součin výrazů $\mathbf{u}^T\mathbf{z}$ a \mathbf{u} není maticový součin, ale násobení vektoru skalárem (viz poznámka v §2.1). Oproti tomu, výraz $\mathbf{u}\mathbf{u}^T\mathbf{z}$ je maticový součin tří matic $\mathbf{u}, \mathbf{u}^T, \mathbf{z}$, takže závorky v něm být nemusí.

⁸Někteří studenti si myslí, že když bod $\mathbf{z} \in \mathbb{R}^m$ promítneme na podprostor menší dimenze n < m, tak výsledný bod $\mathbf{x} = \mathbf{U}\mathbf{U}^T\mathbf{z}$ splňuje $\mathbf{x} \in \mathbb{R}^n$. Tak to ale není, protože $\mathbf{x} \in \mathbb{R}^m$. To, co mají tito studenti intuitivně na mysli, je právě vektor souřadnic $\boldsymbol{\alpha} = \mathbf{U}^T\mathbf{z} \in \mathbb{R}^n$.

4.6.1 Projekce na ortogonální doplněk

Pohled na ortogonální projekci se stane úplnější, zahrneme-li do něj kromě podprostoru X i jeho ortogonální doplněk X^{\perp} (viz obrázek výše). Vlastně jsme ukázali, že pro každý vektor $\mathbf{z} \in \mathbb{R}^m$ existuje právě jedna dvojice vektorů $\mathbf{x} \in X$ a $\mathbf{y} \in X^{\perp}$ tak, že $\mathbf{x} + \mathbf{y} = \mathbf{z}$. Opravdu, podmínku $\mathbf{y} \in X^{\perp}$ lze psát jako $\mathbf{y} \perp X$ neboli $(\mathbf{z} - \mathbf{x}) \perp X$ (domyslete do konce!).

Co je prostorem obrazů a nulovým prostorem ortogonálního projektoru? Úvahou (Kam se promítne každý vektor? Které vektory se promítnou do počátku?) snadno vidíme, že

$$\operatorname{rng} \mathbf{P} = X, \tag{4.24a}$$

$$\operatorname{null} \mathbf{P} = X^{\perp}. \tag{4.24b}$$

Algebraicky to také plyne z Vět 3.6 a 3.8.

Dále z obrázku vidíme, že je-li ${\bf P}$ projektor na X, tak ${\bf I}-{\bf P}$ je projektor na $X^\perp.$ Vskutku:

$$\mathbf{y} = \mathbf{z} - \mathbf{x} = \mathbf{z} - \mathbf{U}\mathbf{U}^{T}\mathbf{z} = \mathbf{z} - \mathbf{P}\mathbf{z} = (\mathbf{I} - \mathbf{P})\mathbf{z}. \tag{4.25}$$

Rozveď me tuto myšlenku: zkoumejme ortogonální matici $[\mathbf{U} \ \mathbf{V}] \in \mathbb{R}^{m \times m}$, která je složená ze dvou bloků $\mathbf{U} \in \mathbb{R}^{m \times n}$ a $\mathbf{V} \in \mathbb{R}^{m \times (m-n)}$. Z ortonormality sloupců máme $\mathbf{U}^T \mathbf{U} = \mathbf{I}$ a $\mathbf{V}^T \mathbf{V} = \mathbf{I}$, a dále $\mathbf{U}^T \mathbf{V} = \mathbf{0}$ neboli rng $\mathbf{U} \perp \text{rng } \mathbf{V}$. Platí ovšem dokonce

$$(\operatorname{rng} \mathbf{U})^{\perp} = \operatorname{rng} \mathbf{V},\tag{4.26}$$

což plyne z Věty 4.1, neboť dim rng \mathbf{U} + dim rng $\mathbf{V} = n + (m - n) = m$. Vidíme, že rozdělení sloupců ortogonální matice do dvou bloků generuje rozklad prostoru na podprostor a jeho ortogonální doplněk. Navíc z Věty 4.5 máme

$$\begin{bmatrix} \mathbf{U} & \mathbf{V} \end{bmatrix} \begin{bmatrix} \mathbf{U} & \mathbf{V} \end{bmatrix}^T = \mathbf{U}\mathbf{U}^T + \mathbf{V}\mathbf{V}^T = \mathbf{I}, \tag{4.27}$$

jak ověříme roznásobením blokových matic (proveď
te!). To souhlasí, protože projektor na podprostor X je
 $\mathbf{P} = \mathbf{U}\mathbf{U}^T$ a tedy projektor na podprostor X^{\perp} je $\mathbf{V}\mathbf{V}^T = \mathbf{I} - \mathbf{U}\mathbf{U}^T = \mathbf{I} - \mathbf{P}$.

4.6.2 Vzdálenost bodu od podprostoru

Vzdálenost bodu $\mathbf{z} \in \mathbb{R}^m$ od podprostoru $X \subseteq \mathbb{R}^m$ je optimální hodnota úlohy

$$\min_{\mathbf{x} \in X} \|\mathbf{z} - \mathbf{x}\|. \tag{4.28}$$

Optimální argumenty této úlohy (tedy prvky množiny $\operatorname{argmin}_{\mathbf{x} \in X} \|\mathbf{z} - \mathbf{x}\|$) jsou ze všech bodů v X nejblíže bodu \mathbf{z} . Intuitivně je zřejmé (viz obrázek na začátku §4.6), že tento bod je jediný a je to právě ortogonální projekce bodu \mathbf{z} podprostoru X. Tato vlastnost ortogonální projekce je důležitá pro optimalizaci. I když je intuitivně zřejmá, dokažme ji přesně:

Věta 4.8. Pro podprostor $X \subseteq \mathbb{R}^m$ a body $\mathbf{z} \in \mathbb{R}^m$ a $\mathbf{x} \in X$ jsou tato tvrzení ekvivalentní:

- 1. Bod \mathbf{x} je ortogonální projekcí bodu \mathbf{z} na podprostor X (tedy $(\mathbf{z} \mathbf{x}) \perp X$).
- 2. Bod \mathbf{x} je nejbližší bodu \mathbf{z} na podprostoru X.

 $D\mathring{u}kaz$. Pro pohodlí posuneme podprostor X a body \mathbf{x} a \mathbf{z} o vektor $-\mathbf{x}$, čímž se podprostor X ani vzdálenosti bodů a ortogonalita vektorů nezmění. Větu tedy stačí dokázat $\mathbf{x} = \mathbf{0}$.

Důkaz $1 \Rightarrow 2$: Nechť $\mathbf{0}$ je ortogonální projekce bodu \mathbf{z} na podprostor X, tj. $\mathbf{z} \perp X$. Vezměme libovolné $\mathbf{y} \in X$. Protože $\mathbf{z} \perp X$, je $\mathbf{z} \perp \mathbf{y}$. Tedy vektory \mathbf{z} a \mathbf{y} tvoří odvěsny pravoúhlého trojúhelníka s přeponou $\mathbf{z} - \mathbf{y}$. Z Pythagorovy věty (viz Cvičení 4.7) máme

$$\|\mathbf{z} - \mathbf{y}\|^2 = \|\mathbf{z}\|^2 + \|\mathbf{y}\|^2 \ge \|\mathbf{z}\|^2.$$

Tedy počátek $\mathbf{0}$ je nejbližší bodu \mathbf{z} mezi všemi body z X.

Důkaz $\neg 1 \Rightarrow \neg 2$: Nechť **0** není ortogonální projekcí bodu **z** na podprostor X, tj. **z** $\not\perp X$. Tedy existuje $\mathbf{y} \in X$ takové, že $\mathbf{y}^T \mathbf{z} \neq 0$. Tedy existuje $\mathbf{y} \in X$ takové, že $\mathbf{y}^T \mathbf{y} = 1$ a $\mathbf{y}^T \mathbf{z} = \alpha > 0$ (protože vektor \mathbf{y} vždy můžeme znormalizovat, příp. vynásobit mínus jedničkou). Tedy

$$\|\mathbf{z} - \alpha \mathbf{y}\|^2 - \|\mathbf{z}\|^2 = \mathbf{z}^T \mathbf{z} - 2\alpha \mathbf{y}^T \mathbf{z} + \alpha^2 \mathbf{y}^T \mathbf{y} - \mathbf{z}^T \mathbf{z} = -2\alpha^2 + \alpha^2 \mathbf{y}^T \mathbf{y} = -\alpha^2 < 0.$$

To ale ukazuje, že bod $\alpha \mathbf{y} \in X$ je bližší počátku než bod \mathbf{z} . (Všimněte si, že bod $\alpha \mathbf{y}$ je ortogonální projekce vektoru \mathbf{z} na přímku span $\{\mathbf{y}\}$.)

Z toho plyne, že *vzdálenost* bodu **z** od podprostoru $X^{\perp} = (\operatorname{rng} \mathbf{U})^{\perp} = \operatorname{null}(\mathbf{U}^{T})$ je rovna délce projekce bodu **z** na podprostor $X = \operatorname{rng} \mathbf{U}$, tedy

$$\|\mathbf{x}\| = \|\mathbf{U}\mathbf{U}^T\mathbf{z}\| = \|\mathbf{U}^T\mathbf{z}\|,\tag{4.29}$$

kde jsme použili, že zobrazení reprezentované maticí U zachovává eukleidovskou normu (viz $\S4.4$). Samozřejmě stále předpokládáme, že U má ortonormální sloupce.

Jako v §4.6.1, doplňme matici **U** na ortogonální matici $[\mathbf{U} \ \mathbf{V}]$, tedy $X^{\perp} = \operatorname{rng} \mathbf{V}$. Pak vzdálenost bodu **z** od podprostoru X je $\|\mathbf{y}\| = \|\mathbf{V}^T\mathbf{z}\|$. Z (4.27) máme

$$\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \|\mathbf{U}^T\mathbf{z}\|^2 + \|\mathbf{V}^T\mathbf{z}\|^2 = \mathbf{z}^T\mathbf{U}\mathbf{U}^T\mathbf{z} + \mathbf{z}^T\mathbf{V}\mathbf{V}^T\mathbf{z} = \mathbf{z}^T(\mathbf{U}\mathbf{U}^T + \mathbf{V}\mathbf{V}^T)\mathbf{z} = \mathbf{z}^T\mathbf{z} = \|\mathbf{z}\|^2.$$
(4.30)

To není nic jiného než Pythagorova věta.

Vzorec (4.29) počítá vzdálenost bodu od lineárního podprostoru $X^{\perp} = \text{null}(\mathbf{U}^T)$, tj. tento podprostor je tvořen řešeními homogenní soustavy $\mathbf{U}^T\mathbf{x} = \mathbf{0}$. Často potřebujeme spočítat vzdálenost bodu of afinního podprostoru. Jak to uděláme? Reprezentujme tento afinní podprostor, $A \subseteq \mathbb{R}^m$, množinou řešení lineární soustavy $\mathbf{U}^T\mathbf{x} = \mathbf{b}$ (viz Věta 3.13), tedy

$$A = \{ \mathbf{x} \in \mathbb{R}^m \mid \mathbf{U}^T \mathbf{x} = \mathbf{b} \} = \{ \mathbf{x} \in \mathbb{R}^m \mid \mathbf{U}^T (\mathbf{x} - \mathbf{x}_0) = \mathbf{0} \} = X^{\perp} + \mathbf{x}_0, \tag{4.31}$$

kde \mathbf{x}_0 je libovolný bod splňující $\mathbf{U}^T\mathbf{x}_0 = \mathbf{b}$. Vidíme, že vzdálenost bodu \mathbf{z} od afinního podprostoru A je rovna vzdálenosti bodu $\mathbf{z} - \mathbf{x}_0$ od lineárního podprostoru X^{\perp} , což je

$$\|\mathbf{U}^{T}(\mathbf{z} - \mathbf{x}_{0})\| = \|\mathbf{U}^{T}\mathbf{z} - \mathbf{b}\|. \tag{4.32}$$

Speciálně, nechť náš afinní podprostor je nadrovina $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T\mathbf{x} = b\}$, kde předopkládáme $\mathbf{a} \neq \mathbf{0}$ (jinak by podprostor nebyl nadrovinou, tj. neměl by dimenzi n-1). Jestliže $\|\mathbf{a}\| = 1$, vzdálenost bodu \mathbf{z} od nadroviny je rovna $\|\mathbf{a}^T\mathbf{z} - b\|$. Obecně je tato vzdálenost rovna $\|\mathbf{a}^T\mathbf{z} - b\|/\|\mathbf{a}\|$. Vidíme zde geometrický význam vektoru \mathbf{a} a čísla b: \mathbf{a} je normálový vektor nadroviny a $\|b\|/\|\mathbf{a}\|$ je vzdálenost nadroviny od počátku.

4.7 Skalární součin a norma matic

Ve většině skript vystačíme se skalárním součinem vektorů $\mathbf{x}^T\mathbf{y} = \sum_{i=1}^n x_i y_i$, který se značí také $\langle \mathbf{x}, \mathbf{y} \rangle$. Někdy ale budeme potřebovat i **skalární součin matic A**, $\mathbf{B} \in \mathbb{R}^{m \times n}$, definovaný jako

$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}, \tag{4.33}$$

což je vlastně skalární součin vektorů vytvořených přerovnáním prvků každé matice do vektoru. Z definice (4.33) plyne, že $\langle \mathbf{A}, \mathbf{B} \rangle = \langle \mathbf{B}, \mathbf{A} \rangle = \langle \mathbf{A}^T, \mathbf{B}^T \rangle = \langle \mathbf{B}^T, \mathbf{A}^T \rangle$. Jsou-li $\mathbf{a}_i, \mathbf{b}_i \in \mathbb{R}^m$ sloupce matic \mathbf{A}, \mathbf{B} , skalární součin jde také napsat jako

$$\langle \mathbf{A}, \mathbf{B} \rangle = \mathbf{a}_1^T \mathbf{b}_1 + \dots + \mathbf{a}_n^T \mathbf{b}_n \tag{4.34}$$

(totéž lze napsat pro řádky). Platí také

$$\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{tr}(\mathbf{A}^T \mathbf{B}) = \operatorname{tr}(\mathbf{B}^T \mathbf{A}) = \operatorname{tr}(\mathbf{A} \mathbf{B}^T) = \operatorname{tr}(\mathbf{B} \mathbf{A}^T),$$
 (4.35)

kde první rovnost plyne snadno např. ze vzorců (4.34) a (2.9) ostatní rovnosti z vlastností stopy, viz 2.5 (ověřte!). Obráceně, stopu lze napsat pomocí skalárního součinu jako

$$\operatorname{tr} \mathbf{A} = \langle \mathbf{I}, \mathbf{A} \rangle. \tag{4.36}$$

Skalární součin (4.33) indukuje **normu matice** $\mathbf{A} \in \mathbb{R}^{m \times n}$ jako

$$\|\mathbf{A}\| = \sqrt{\langle \mathbf{A}, \mathbf{A} \rangle} = \sqrt{\operatorname{tr}(\mathbf{A}^T \mathbf{A})} = \sqrt{\operatorname{tr}(\mathbf{A}\mathbf{A}^T)} = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}.$$
 (4.37)

Podobně jako pro vektory (viz $\S4.4$), skalární součin matic je invariantní vůči transformaci isometrií: jsou-li \mathbf{U}, \mathbf{V} matice s ortonormálními sloupci, je

$$\langle \mathbf{U}\mathbf{A}\mathbf{V}^T, \mathbf{U}\mathbf{B}\mathbf{V}^T \rangle = \operatorname{tr}(\mathbf{V}\mathbf{A}^T\mathbf{U}^T\mathbf{U}\mathbf{B}\mathbf{V}^T) = \operatorname{tr}(\mathbf{V}\mathbf{A}^T\mathbf{B}\mathbf{V}^T) = \operatorname{tr}(\mathbf{A}^T\mathbf{B}\mathbf{V}^T\mathbf{V}) = \operatorname{tr}(\mathbf{A}^T\mathbf{B}) = \langle \mathbf{A}, \mathbf{B} \rangle,$$

kde jsme použili cykličnost stopy. Tedy i norma (4.37) je invariantní vůči isometrii,

$$\|\mathbf{U}\mathbf{A}\mathbf{V}^T\| = \|\mathbf{A}\|. \tag{4.38}$$

Existují i jiné maticové normy. Maticová norma (4.37) se nazývá **Frobeniova norma** a pokud ji chceme odlišit od jiných norem, značíme ji $\|\cdot\|_{F}$.

4.8 Cvičení

- 4.1. Máme vektory $\mathbf{x} = (1, 2, 3)$ a $\mathbf{y} = (-1, 0, 1)$. Spočítejte (a) délku vektoru \mathbf{x} , (b) vzdálenost bodů \mathbf{x} a \mathbf{y} , (c) úhel mezi vektory \mathbf{x} a \mathbf{y} .
- 4.2. Najděte bázi ortogonálního doplňku prostoru span $\{(0,1,1),(1,2,3)\}$.
- 4.3. Najděte ortonormální bázi podprostoru span $\{(1,1,1,-1), (2,-1,-1,1), (-1,2,2,1)\}$ pomocí QR rozkladu (použijte Matlab).
- 4.4. Dokažte, že součin ortogonálních matic je ortogonální matice.

- 4.5. Pro jaké n je matice diag $(-\mathbf{1}_n)$ (tedy diagonální matice se samými mínus jedničkami na diagonále) rotační?
- 4.6. Počet nezávislých parametrů ("stupňů volnosti") ortogonální matice $n \times n$ se získá jako rozdíl počtu prvků matice (n^2) a počtu nezávislých (v našem případě různých) rovnic v podmínce $\mathbf{U}^T\mathbf{U} = \mathbf{I}$. Neformálně řečeno udává, kolika 'knoflíky' můžeme nezávisle 'kroutit' při rotaci v n-rozměrném prostoru. Jaké je toto číslo pro n=2,3,4? Najděte vzorec pro obecné n.
- 4.7. Pro dva vektory $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ dokažte následující tvrzení, nakreslete obrázek a uvědomte si, jaké známé středoškolské poučky jste to vlastně dokázali.
 - a) Jestliže $\mathbf{x} \perp \mathbf{y}$, pak $\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \|\mathbf{x} \mathbf{y}\|^2$.
 - b) Jestliže $\|\mathbf{x}\| = \|\mathbf{y}\|$, pak $(\mathbf{x} + \mathbf{y}) \perp (\mathbf{x} \mathbf{y})$.
- 4.8. Máme vektory $\mathbf{x}_1 = (1, -1, 0, 2), \mathbf{x}_2 = (1, 1, 1, 0), \mathbf{x}_3 = (-1, -1, 2, 0).$
 - a) Ověřte, že vektory $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ jsou po dvojicích ortogonální.
 - b) Najděte libovolnou bázi podprostoru span $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}^{\perp}$.
 - c) Najděte ortogonální projektory na podprostory span $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ a span $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}^{\perp}$.
- 4.9. Jsou dány množiny $A = \text{span}\{(1,0,1,0)\}, B = \{(x_1,x_2,x_3,x_4) \in \mathbb{R}^4 \mid x_1+x_3=0\}$ a $C = \{(x_1,x_2,x_3,x_4) \in \mathbb{R}^4 \mid x_1+x_3=0, x_2=x_4\}$. Jedná se o lineární podprostory? Pokud ano, najděte dimenzi každého z nich. Rozhodněte, které z následujících výroků platí: $A \perp B, A \perp C, B \perp C, A = B^{\perp}, B = A^{\perp}, A = C^{\perp}$. Najděte libovolnou bázi podprostoru C^{\perp} .
- 4.10. Najděte dva ortogonální vektory \mathbf{x}, \mathbf{y} takové, že span $\{\mathbf{x}, \mathbf{y}\} = \text{span}\{(0, 1, 1), (1, 2, 3)\}.$
- 4.11. Spočtěte co nejjednodušším způsobem inverzi matice $\frac{1}{3}\begin{bmatrix} -1 & 2 & 2\\ 2 & -1 & 2\\ 2 & 2 & -1 \end{bmatrix}$. Je tato matice ortogonální projektor?
- 4.12. (*) Nechť X,Y jsou podprostory \mathbb{R}^n . Definujme $X+Y=\{\mathbf{x}+\mathbf{y}\mid \mathbf{x}\in X,\ \mathbf{y}\in Y\}$. Dokažte:
 - a) $X \subseteq Y \Rightarrow X^{\perp} \supseteq Y^{\perp}$.
 - b) X + Y je generován sjednocením libovolné báze X a libovolné báze Y. Tedy je-li $\{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ báze X a $\{\mathbf{y}_1, \dots, \mathbf{y}_l\}$ báze Y, pak $X + Y = \operatorname{span}\{\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{y}_1, \dots, \mathbf{y}_l\}$.
 - c) $(X + Y)^{\perp} = X^{\perp} \cap Y^{\perp}$.
 - d) $(X \cap Y)^{\perp} = X^{\perp} + Y^{\perp}$
- 4.13. Jak byste levně spočítali absolutní hodnotu determinantu matice z jejího QR rozkladu?
- 4.14. Pro $\mathbf{U}^T\mathbf{U} = \mathbf{I}$ reprezentuje matice $\mathbf{H} = \mathbf{I} 2\mathbf{U}\mathbf{U}^T$ zrcadlení (reflexi) vzhledem k podprostoru $X = (\operatorname{rng} \mathbf{U})^{\perp}$, proto této matici budeme říkat reflektor.
 - a) Odvod'te vzorec pro reflektor geometrickou úvahou, podobnou jako pro projektor.
 - b) Dokažte, že $\mathbf{H}^{-1} = \mathbf{H} = \mathbf{H}^T$ (srov. s (4.23)).
 - c) Co je $\mathbf{H}\mathbf{x}$ když $\mathbf{x} \in X?$ Ukažte algebraicky a odůvodněte geometricky.
 - d) Co je $\mathbf{H}\mathbf{x}$ když $\mathbf{x} \perp X$? Ukažte algebraicky a odůvodněte geometricky.

- Poznamenejme, že známější je případ, kdy \mathbf{U} má jediný sloupec, tedy $\mathbf{H} = \mathbf{I} 2\mathbf{u}\mathbf{u}^T$ kde $\mathbf{u}^T\mathbf{u} = 1$. Tato matice reprezentuje zrcadlení kolem nadroviny s normálovým vektorem \mathbf{u} a je známa jako elementární reflektor nebo Householderova matice.
- 4.15. (*) RQ rozklad rozloží matici $\mathbf{A} = \mathbf{RQ}$, kde \mathbf{R} je horní trojúhelníková a \mathbf{Q} je ortogonální. Jak byste spočítali RQ rozklad z QR rozkladu?
- 4.16. Existuje isometrie $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^4$ taková, že $\mathbf{f}(1, -1, 2) = (1, 2, -1, 1)$ a $\mathbf{f}(1, 1, 0) = (0, 1, -1, 0)$?
- 4.17. Dokažte: Jestliže sloupce matice ${\bf U}$ tvoří ortonormální bázi nějakého podprostoru, pak sloupce matice ${\bf V}={\bf UC}$ tvoří ortonormální bázi téhož podprostoru pro každou ortogonální matici ${\bf C}$.
- 4.18. Nechť $\mathbf{U}^T\mathbf{U} = \mathbf{I}$. Najděte co nejjednodušší vzorec pro
 - a) vzdálenost bodu x od podprostoru rng U,
 - b) vzdálenost bodu \mathbf{x} od podprostoru null(\mathbf{U}^T) = { $\mathbf{x} \mid \mathbf{U}^T \mathbf{x} = \mathbf{0}$ },
 - c) vzdálenost počátku $\mathbf{0}$ od afinního podprostoru $\{\mathbf{x} \mid \mathbf{U}^T \mathbf{x} = \mathbf{b}\},$
 - d) vzdálenost bodu \mathbf{x} od afinního podprostoru $\{\mathbf{x} \mid \mathbf{U}^T\mathbf{x} = \mathbf{b}\}.$
- 4.19. Afinní podprostor $A \subseteq \mathbb{R}^m$ lze reprezentovat jako $A = \mathbf{x} + \operatorname{rng} \mathbf{U}$ kde $\mathbf{x} \in A$ a $\mathbf{U} \in \mathbb{R}^{m \times n}$. Bod \mathbf{x} ovšem není touto reprezentací určen jednoznačně: zvolíme-li libovolný jiný bod $\mathbf{y} \in A$, dle Věty 3.12 je $\mathbf{y} + \operatorname{rng} \mathbf{U} = A$. Tuto nejednoznačnost můžeme odstranit přidáním podmínky, že norma $\|\mathbf{x}\|$ je minimální, tj. bod \mathbf{x} je průmětem počátku na podprostor A. Jsou-li dány $\mathbf{y} \in A$ a $\mathbf{U} \in \mathbb{R}^{m \times n}$, najděte co nejjednodušší vzorec pro takový bod \mathbf{x} .
- 4.20. Nechť $X,Y\subseteq\mathbb{R}^n$ jsou podprostory takové, že $X\subseteq Y$. Tvrdíme, že když vektor ortogonálně promítneme nejdříve na Y a potom na X, dostaneme stejný výsledek, jako když ho ortogonálně promítneme rovnou na X. Dokažte toto tvrzení algebraicky nebo ho vyvrať te.
- 4.21. Necht' $\mathbf{U}^T\mathbf{U} = \mathbf{I}$. Dokažte, že
 - a) Prvky matice U splňují $|u_{ij}| \leq 1$.
 - b) Pro každý řádek \mathbf{u}^T matice \mathbf{U} platí $\|\mathbf{u}\| < 1$.
- 4.22. Nechť P je ortogonální projektor (na nějaký podprostor). Dokažte, že
 - a) Prvky matice **P** splňují $|p_{ij}| \leq 1$.
 - b) Diagonální prvky matice P jsou nezáporné.
- 4.23. Obecnou *projekcí* se v lineární algebře rozumí každé lineární zobrazení $\mathbf{f}(\mathbf{z}) = \mathbf{P}\mathbf{z}$, které je idempotentní, tedy $\mathbf{f}(\mathbf{f}(\mathbf{z})) = \mathbf{f}(\mathbf{z})$ neboli $\mathbf{P}^2 = \mathbf{P}$. Projekce nemusí být ortogonální, může být šikmá pak promítáme ve směru podprostoru null \mathbf{P} na podprostor rng \mathbf{P} .
 - a) Dokažte, že pro každý vektor \mathbf{z} platí $\mathbf{z} \mathbf{P}\mathbf{z} \in \text{null } \mathbf{P}$.
 - b) Projekce je ortogonální, právě když $\mathbf{P}^T = \mathbf{P}$. Dokažte, že potom $(\operatorname{rng} \mathbf{P})^{\perp} = \operatorname{null} \mathbf{P}$.
- 4.24. Nechť \mathbf{A}, \mathbf{B} jsou libovolné matice splňující $\mathbf{AB} = \mathbf{I}$ (tedy \mathbf{A} je levá inverze \mathbf{B} a \mathbf{B} je pravá inverze \mathbf{A} , viz §2.4). Dokažte, že:
 - a) $\mathbf{P} = \mathbf{B}\mathbf{A}$ je (obecný) projektor dle Cvičení 4.23, tedy platí $\mathbf{P}^2 = \mathbf{P}$.
 - b) $\operatorname{null} \mathbf{P} = \operatorname{null} \mathbf{A} \text{ a rng } \mathbf{P} = \operatorname{rng} \mathbf{B}.$
 - c) Co jsou matice A, B v případě ortogonální projekce?
- 4.25. Pro jaké vektory \mathbf{x}, \mathbf{y} platí trojúhelníková nerovnost $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ s rovností?

- 4.26. Dokažte Pythagorovu větu: $\mathbf{x} \perp \mathbf{y} \Rightarrow \|\mathbf{x} + \mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$. Dokažte její zobecnění: jsouli vektory $\mathbf{x}_1, \dots, \mathbf{x}_k$ po dvojicích ortogonální, pak $\|\mathbf{x}_1 + \dots + \mathbf{x}_k\|^2 = \|\mathbf{x}_1\|^2 + \dots + \|\mathbf{x}_k\|^2$.
- 4.27. Zobrazení $\mathbf{F}: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ je dané vzorcem $\mathbf{F}(\mathbf{A}) = (\mathbf{I} \mathbf{A})(\mathbf{I} + \mathbf{A})^{-1}$. Předpokládejte, že \mathbf{A} je taková, že $\mathbf{I} + \mathbf{A}$ je regulární. Dokažte, že:
 - a) Pro každou A je $(\mathbf{I} \mathbf{A})(\mathbf{I} + \mathbf{A}) = (\mathbf{I} + \mathbf{A})(\mathbf{I} \mathbf{A})$.
 - b) Pro každou \mathbf{A} je $(\mathbf{I} \mathbf{A})(\mathbf{I} + \mathbf{A})^{-1} = (\mathbf{I} + \mathbf{A})^{-1}(\mathbf{I} \mathbf{A}).$
 - c) Pro každou antisymetrickou A je F(A) ortogonální.
 - d) Pro každou ortogonální A je F(A) antisymetrická.
 - e) Zobrazení \mathbf{F} je inverzí sama sebe, tedy $\mathbf{F}(\mathbf{F}(\mathbf{A})) = \mathbf{A}$ pro každé \mathbf{A} .

Před důkazy na papíře se přesvědčte v Matlabu, že tvrzení platí pro náhodné matice.

Nápověda a řešení

- 4.1. (a) $\|\mathbf{x}\| = \sqrt{14}$, (b) $\|\mathbf{x} \mathbf{y}\| = 2\sqrt{3}$, (c) ≈ 1.1832 radiánů
- 4.2. Např. (1, 1, -1)
- 4.3. Báze je $\{(1,1,1,-1)/2, (3,-1,-1,1)/\sqrt{12}, (0,1,1,2)/\sqrt{6}\}$
- 4.4. Nechť $\mathbf{A}^T \mathbf{A} = \mathbf{I} = \mathbf{B}^T \mathbf{B}$ a $\mathbf{C} = \mathbf{A} \mathbf{B}$. Pak $\mathbf{C}^T \mathbf{C} = \mathbf{B}^T \mathbf{A}^T \mathbf{A} \mathbf{B} = \mathbf{B}^T \mathbf{B} = \mathbf{I}$.
- 4.5. Musí být det diag $(-\mathbf{1}_n) = (-1)^n > 0$, tedy pro sudá n.
- 4.6. Podmínka $\mathbf{U}^T\mathbf{U} = \mathbf{I}$ je soustava rovnic $\mathbf{u}_i^T\mathbf{u}_j = \delta_{ij}$ pro $i, j = 1, \dots, n$, kde $\mathbf{u}_1, \dots, \mathbf{u}_n$ jsou sloupce matice \mathbf{U} . Tato soustava obsahuje jen $\binom{n}{2} + n$ různých rovnic (napište si ji např. pro n = 4). Tedy počet stupňů volnosti je $n^2 \binom{n}{2} n = \binom{n}{2} = n(n-1)/2$.
- 4.7.a) $\|\mathbf{x} \mathbf{y}\|^2 = (\mathbf{x} \mathbf{y})^T (\mathbf{x} \mathbf{y}) = \mathbf{x}^T \mathbf{x} \mathbf{y}^T \mathbf{x} \mathbf{x}^T \mathbf{y} + \mathbf{y}^T \mathbf{y} = \|\mathbf{x}\|^2 2\mathbf{x}^T \mathbf{y} + \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2$, protože $\mathbf{x}^T \mathbf{y} = 0$. Dokázali jsme Pythagorovu větu.
- 4.7.b) Dokzujeme, že úhlopříčky rovnoběžníka jsou na sebe kolmé.
- 4.10. Zvolíme $\mathbf{y} = (1, 2, 3) r\mathbf{x}$, kde $r \in \mathbb{R}$ spočítáme z $\mathbf{x}^T\mathbf{y} = 0$. Tedy $r = \frac{5}{2}$ a $\mathbf{y} = (1, -\frac{1}{2}, \frac{1}{2})$. (V duchu Gram-Smidtovy ortogonalizace, jestli ji znáte.)
- 4.11. Není matice náhodou ortogonální? Ort. projektor to není, protože nesplňuje $\mathbf{P}^2 = \mathbf{P}$.
- 4.12.c) Plyne z (b).
- 4.12.d) Plyne z (c) s použitím $(X^{\perp})^{\perp} = X$.
- 4.14.c) Je $\mathbf{x} \in X = (\operatorname{rng} \mathbf{U})^{\perp} = \operatorname{null}(\mathbf{U}^T)$, tedy $\mathbf{U}^T \mathbf{x} = \mathbf{0}$, tedy $\mathbf{H} \mathbf{x} = \mathbf{x}$. Geometricky to znamená, že když vektor leží v rovině zrcadlení, tak ho zrcadlení nezmění.
- 4.14.d) $\mathbf{x} \perp X$ je to samé jako $\mathbf{x} \in X^{\perp} = ((\operatorname{rng} \mathbf{U})^{\perp})^{\perp} = \operatorname{rng} \mathbf{U}$, tedy $\mathbf{x} = \mathbf{U}\boldsymbol{\alpha}$ pro nějaké $\boldsymbol{\alpha}$. Tedy $\mathbf{U}\mathbf{U}^T\mathbf{x} = \mathbf{U}\mathbf{U}^T\mathbf{U}\boldsymbol{\alpha} = \mathbf{U}\boldsymbol{\alpha} = \mathbf{x}$ (taky to lze vidět z (4.24a), protože $\mathbf{U}\mathbf{U}^T$ je projektor na X). Tedy $\mathbf{H}\mathbf{x} = -\mathbf{x}$. Geometricky: zrcadlení vektoru kolmého k rovině zrcadlení vektoru obrátí orientaci.
- 4.16. Ne, protože isometrie zachovává eukleidovskou normu, ale $\|(1,-1,2)\| \neq \|(1,2,-1,1)\|$.
- 4.17. Víme, že $\mathbf{U} \in \mathbb{R}^{m \times n}$ a $\mathbf{C} \in \mathbb{R}^{n \times n}$, kde $m \geq n$, a $\mathbf{U}^T \mathbf{U} = \mathbf{I}$, $\mathbf{C}^T \mathbf{C} = \mathbf{I} = \mathbf{C} \mathbf{C}^T$. Sloupce matic \mathbf{U} a \mathbf{V} tvoří báze stejného podprostoru, neboť dle Věty 3.6 je rng $\mathbf{U} = \operatorname{rng} \mathbf{V}$ (\mathbf{C} je matice přechodu k jiné bázi). Sloupce matice \mathbf{V} jsou ortonormální, neboť $\mathbf{V}^T \mathbf{V} = \mathbf{C}^T \mathbf{U}^T \mathbf{U} \mathbf{C} = \mathbf{C}^T \mathbf{C} = \mathbf{I}$.
- 4.18.a) $\|(\mathbf{I} \mathbf{U}\mathbf{U}^T)\mathbf{x}\|$, víc to už zjednodušit nejde.
- 4.18.b) $\|\mathbf{U}^T\mathbf{x}\|$, viz §4.6.2.
- 4.18.c) $\|\mathbf{b}\|$, viz §4.6.2.
- 4.18.d) $\|\mathbf{U}^T\mathbf{x} \mathbf{b}\|$, viz §4.6.2.

- 4.19. $\mathbf{x} = (\mathbf{I} \mathbf{U}\mathbf{U}^T)\mathbf{y}$
- 4.20. Je pravdivé. Důkaz: Nechť $[\mathbf{U} \ \mathbf{V}]$ je matice s ortonormálními sloupci taková, že $X = \operatorname{rng} \mathbf{U}$ a $Y = \operatorname{rng} [\mathbf{U} \ \mathbf{V}]$. Z toho plyne $X \subseteq Y$. Všimněte si (použijeme později), že $\mathbf{U}^T\mathbf{U} = \mathbf{I}$ a $\mathbf{U}^T\mathbf{V} = \mathbf{0}$. Označme $\mathbf{P} = \mathbf{U}\mathbf{U}^T$ projektor na X a $\mathbf{Q} = \begin{bmatrix} \mathbf{U} \ \mathbf{V} \end{bmatrix} \begin{bmatrix} \mathbf{U} \ \mathbf{V} \end{bmatrix}^T$ projektor na Y. Máme dokázat, že pro každé \mathbf{z} platí $\mathbf{PQz} = \mathbf{Pz}$, neboli $\mathbf{PQ} = \mathbf{P}$. Platí $\mathbf{PQ} = \mathbf{U}\mathbf{U}^T \begin{bmatrix} \mathbf{U} \ \mathbf{V} \end{bmatrix} \begin{bmatrix} \mathbf{U} \ \mathbf{V} \end{bmatrix}^T = \mathbf{U} \begin{bmatrix} \mathbf{U}^T\mathbf{U} \ \mathbf{U}^T\mathbf{V} \end{bmatrix} \begin{bmatrix} \mathbf{U} \ \mathbf{V} \end{bmatrix}^T = \mathbf{U} \begin{bmatrix} \mathbf{U} \ \mathbf{V} \end{bmatrix}^T = \mathbf{U}\mathbf{U}^T = \mathbf{P}$.
- 4.21.b) Doplňme matici **U** na ortogonální matici $\mathbf{W} = \begin{bmatrix} \mathbf{U} & \mathbf{V} \end{bmatrix}$. Řádek této matice je $\mathbf{w}^T = \begin{bmatrix} \mathbf{u}^T & \mathbf{v}^T \end{bmatrix}$. Z ortogonality **W** je však $\mathbf{w}^T \mathbf{w} = \mathbf{u}^T \mathbf{u} + \mathbf{v}^T \mathbf{v} = 1$. Z toho $\mathbf{u}^T \mathbf{u} \leq 1$.
- 4.22.a) Z $\mathbf{P} = \mathbf{U}\mathbf{U}^T$ máme $p_{ij} = \mathbf{u}_i^T\mathbf{u}_j$, kde \mathbf{u}_i je *i*-tý řádek \mathbf{U} . Protože $\|\mathbf{u}_i\| \leq 1$, musí být $|\mathbf{u}_i^T\mathbf{u}_j| \leq 1$.
- 4.22.b) Máme $p_{ii} = \mathbf{u}_i^T \mathbf{u}_i \ge 0$
- $4.23.a) \ \mathbf{z} \mathbf{P}\mathbf{z} \in \operatorname{null} \mathbf{P} \ \operatorname{znamen\'a} \ \mathbf{P}(\mathbf{z} \mathbf{P}\mathbf{z}) = \mathbf{P}(\mathbf{I} \mathbf{P})\mathbf{z} = \mathbf{0}. \ \operatorname{Ale} \ \mathbf{P}(\mathbf{I} \mathbf{P}) = \mathbf{P} \mathbf{P}^2 = \mathbf{P} \mathbf{P} = \mathbf{0}.$
- 4.23.b) Dle (4.8a) je $(\operatorname{rng} \mathbf{P})^{\perp} = \operatorname{null}(\mathbf{P}^{T}) = \operatorname{null} \mathbf{P}$. Srov. s Cvičením 5.16.
- 4.24.a) $P^2 = PP = BABA = BA = P$
- 4.24.b) \mathbf{B} má levou inverzi a tedy dle Věty 3.7 má l.n. sloupce. Dle Věty 3.8 tedy null $\mathbf{P} = \text{null}(\mathbf{B}\mathbf{A}) = \text{null }\mathbf{A}$. rng $\mathbf{P} = \text{rng }\mathbf{B}$ dokážeme podobně z Vět 3.5 a 3.6.
- 4.24.c) $\mathbf{A} = \mathbf{U}$ a $\mathbf{B} = \mathbf{U}^T$, kde \mathbf{U} má ortonormální sloupce.

Kapitola 5

Nehomogenní lineární soustavy

Mějme soustavu m lineárních rovnic o n neznámých

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{5.1}$$

kde $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$. Soustava má (aspoň jedno) řešení, právě když $\mathbf{b} \in \operatorname{rng} \mathbf{A}$ (tedy \mathbf{b} je lineární kombinací sloupců \mathbf{A}), což lze psát také jako $\operatorname{rank}[\mathbf{A} \ \mathbf{b}] = \operatorname{rank} \mathbf{A}$ (Frobeniova věta). Pokud je množina řešení soustavy neprázdná, je to afinní podprostor \mathbb{R}^n (dle Věty 3.13).

V této kapitole se zaměříme pouze na nehomogenní soustavy (tj. $\mathbf{b} \neq \mathbf{0}$). Rozlišme tři případy:

- Soustava nemá řešení. To nastane právě tehdy, když b ∉ rng A. Taková soustava se nazývá přeurčená. V tom případě můžeme chtít řešit soustavu přibližně, což je tématem §5.1.
- Soustava má právě jedno řešení. To nastane právě tehdy, když $\mathbf{b} \in \operatorname{rng} \mathbf{A}$ a matice \mathbf{A} má lineárně nezávislé sloupce (tedy její nulový prostor je triviální).
- Soustava má nekonečně mnoho řešení. To nastane právě tehdy, když b ∈ rng A a matice A má lineárně závislé sloupce. Taková soustava se nazývá nedourčená. V tom případě můžeme chtít z množiny řešení vybrat jediné, čímž se budeme zabývat v §5.2.

5.1 Přibližné řešení ve smyslu nejmenších čtverců

Pokud soustava (5.1) nemá řešení, řešme ji přibližně (což můžeme značit $\mathbf{A}\mathbf{x} \approx \mathbf{b}$). Hledejme takové \mathbf{x} , aby eukleidovská norma vektoru $\mathbf{r} = \mathbf{b} - \mathbf{A}\mathbf{x}$ zbytků (neboli reziduí) byla co nejmenší. Úloha se nezmění (proč?), když místo eukleidovské normy budeme minimalizovat její čtverec $\|\mathbf{r}\|^2 = \mathbf{r}^T\mathbf{r} = r_1^2 + \cdots + r_m^2$. Tedy řešíme úlohu

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 = \min_{\mathbf{y} \in \text{rng } \mathbf{A}} \|\mathbf{y} - \mathbf{b}\|^2.$$
 (5.2)

Protože minimalizujeme součet čtverců reziduí, mluvíme o přibližném řešení soustavy **ve smyslu nejmenších čtverců** (least squares solution)¹.

Příklad 5.1. Soustava třech rovnic o dvou neznámých

$$x + 2y = 6$$

$$-x + y = 3$$

$$x + y = 4$$

¹Přesně by se mělo říkat least sum of squares, protože je i metoda založená na least median of squares.

je přeurčená. Její přibližné řešení ve smyslu nejmenších čtverců znamená najít taková čísla x, y, která minimalizují číslo $(x + 2y - 6)^2 + (-x + y - 3)^2 + (x + y - 4)^2$.

Jak vyřešíme úlohu (5.2)? Všimněte si druhého tvaru úlohy, kde jsme označili $\mathbf{y} = \mathbf{A}\mathbf{x}$ (rovnost v (5.2) plyne z definice (3.10) prostoru obrazů). Viz obrázek:

Pokud vzdálenost $\|\mathbf{y} - \mathbf{b}\|$ je minimální, je $(\mathbf{b} - \mathbf{y}) \perp \operatorname{rng} \mathbf{A}$, neboli \mathbf{y} je ortogonální projekce bodu \mathbf{b} na rng \mathbf{A} . To je intuitivně zřejmé a dokázali jsme to ve Větě 4.8. To ale znamená (viz (4.4)), že vektor $\mathbf{b} - \mathbf{A}\mathbf{x}$ musí být kolmý na každý sloupec matice \mathbf{A} . Tuto podmínku lze zapsat jako $\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{b}) = \mathbf{0}$, tedy

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}. \tag{5.3}$$

Dle Věty 4.8 je tedy \mathbf{x} optimální řešení úlohy (5.2), právě když \mathbf{x} je řešením soustavy (5.3). Soustava (5.3) se nazývá **normální rovnice** (protože normála = kolmice). Je to soustava n rovnic o n neznámých. Abychom mohli zkoumat její řešitelnost, uvedeme následující větu.

Věta 5.1. Pro každou matici A platí²

$$rng(\mathbf{A}^T \mathbf{A}) = rng(\mathbf{A}^T), \tag{5.4a}$$

$$\operatorname{null}(\mathbf{A}^T \mathbf{A}) = \operatorname{null} \mathbf{A}. \tag{5.4b}$$

 $D\mathring{u}kaz$. Dokažme nejprve rovnost (5.4b), tj. $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{0} \Leftrightarrow \mathbf{A} \mathbf{x} = \mathbf{0}$. Implikace \Leftarrow je jasná, vynásobením $\mathbf{A} \mathbf{x} = \mathbf{0}$ zleva maticí \mathbf{A}^T . Implikace \Rightarrow se dokáže takto:

$$\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{0} \implies \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = (\mathbf{A} \mathbf{x})^T (\mathbf{A} \mathbf{x}) = 0 \implies \mathbf{A} \mathbf{x} = \mathbf{0},$$

neboť pro libovolný vektor y platí $\mathbf{y}^T \mathbf{y} = 0 \Rightarrow \mathbf{y} = \mathbf{0}$ (proč?).

Dokažme (5.4a). Z definice (3.10) je jasné (viz Věta 3.6), že $\operatorname{rng}(\mathbf{A}^T\mathbf{A}) \subseteq \operatorname{rng}(\mathbf{A}^T)$. Nyní použijeme Větu 3.11 jednou na matici \mathbf{A} a jednou na matici $\mathbf{A}^T\mathbf{A}$:

$$\dim \operatorname{rng} \mathbf{A} + \dim \operatorname{null} \mathbf{A} = n = \dim \operatorname{rng}(\mathbf{A}^T \mathbf{A}) + \dim \operatorname{null}(\mathbf{A}^T \mathbf{A}).$$

Díky (5.4b) z toho máme dim $\operatorname{rng}(\mathbf{A}^T\mathbf{A}) = \dim \operatorname{rng} \mathbf{A} = \dim \operatorname{rng}(\mathbf{A}^T)$, kde druhá rovnost je (2.2). Ale pokud je podprostor podmnožinou jiného podprostoru a oba mají stejnou dimenzi, jsou stejné (dle Věty 3.3).

²Matice tvaru $\mathbf{A}^T \mathbf{A}$ či $\mathbf{A} \mathbf{A}^T$ se objevují v různých situacích. Označme jako $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ sloupce matice \mathbf{A} . Matici $\mathbf{A}^T \mathbf{A} \in \mathbb{R}^{n \times n}$ se říká *Gramova matice* vektorů $\mathbf{a}_1, \dots, \mathbf{a}_n$ a její prvky jsou skalární součiny $\mathbf{a}_i^T \mathbf{a}_j$ (viz (2.9)). Matici $\mathbf{A} \mathbf{A}^T \in \mathbb{R}^{m \times m}$ lze zase vidět (až na skalární násobek) jako empirickou kovarianční matici n pozorování $\mathbf{a}_1, \dots, \mathbf{a}_n$ m-tice náhodných proměnných.

Soustava (5.3) má řešení, právě když $\mathbf{A}^T\mathbf{b} \in \operatorname{rng}(\mathbf{A}^T\mathbf{A})$. Ale z (5.4a) je $\operatorname{rng}(\mathbf{A}^T) = \operatorname{rng}(\mathbf{A}^T\mathbf{A})$. Protože $\mathbf{A}^T\mathbf{b} \in \operatorname{rng}(\mathbf{A}^T)$ pro libovolné \mathbf{A}, \mathbf{b} , vidíme, že soustava má vždy řešení. Je zajímavé, že pro důkaz tohoto tvrzení jsme potřebovali rovnost (5.4a), jejíž důkaz není snadný (používá Větu 3.11). Zdá-li se vám, že musí existovat elementárnější důkaz, schválně ho zkuste najít!

Zkombinujeme-li (5.4a) (použité jednou na matici \mathbf{A} a jednou na matici \mathbf{A}^T) a (2.2), máme

$$rank(\mathbf{A}\mathbf{A}^{T}) = rank(\mathbf{A}^{T}) = rank(\mathbf{A}^{T}\mathbf{A}). \tag{5.5}$$

Dle (5.5) je matice $\mathbf{A}^T \mathbf{A}$ regulární, právě když \mathbf{A} má lineárně nezávislé sloupce. V tom případě můžeme soustavu (5.3) řešit pomocí inverze. Řešením je vektor $\mathbf{x} = \mathbf{A}^+ \mathbf{b}$, kde

$$\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T. \tag{5.6}$$

Matice (5.6) se nazývá **pseudoinverze** matice \mathbf{A} s lineárně nezávislými sloupci. Je to jedna z levých inverzí matice \mathbf{A} , neboť $\mathbf{A}^+\mathbf{A} = (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{A} = \mathbf{I}$.

Má-li matice \mathbf{A} lineárně závislé sloupce, vzorec (5.6) nelze použít (zkrátka proto, že matice $\mathbf{A}^T\mathbf{A}$ nemá inverzi). V tom případě soustava (5.3), a tedy i úloha (5.2), mají nekonečně mnoho (afinní podprostor) řešení (pozor, to je něco jiného, než že soustava (5.1) má nekonečně mnoho řešení!).

5.1.1 Ortogonální projekce na podprostor daný obecnou bází

Pokud \mathbf{x} je řešení normální rovnice, vektor $\mathbf{A}\mathbf{x}$ je ortogonální projekcí vektoru \mathbf{b} na podprostor $X = \operatorname{rng} \mathbf{A}$ (viz obrázek výše). Pokud \mathbf{A} má lineárně nezávislé sloupce (tj. tyto sloupce tvoří bázi podprostoru X), z (5.6) máme $\mathbf{A}\mathbf{x} = \mathbf{P}\mathbf{b}$, kde

$$\mathbf{P} = \mathbf{A}\mathbf{A}^{+} = \mathbf{A}(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}.$$
 (5.7)

Toto je tedy projektor na podprostor X s bází (ne nutně ortonormální) tvořenou sloupci matice \mathbf{A} . Zdůrazněme, že projektor (5.7) vyjde stejný pro libovolnou bázi podprostoru X (viz Cvičení 5.11). Pokud je báze ortonormální, je $\mathbf{A}^T\mathbf{A} = \mathbf{I}$ a (5.7) se redukuje na (4.22).

Projekce na X^{\perp} má přirozenou úlohu v problému (5.2): hodnota jeho minima je $\|\mathbf{b} - \mathbf{A}\mathbf{x}\|^2 = \|\mathbf{b} - \mathbf{P}\mathbf{b}\|^2 = \|(\mathbf{I} - \mathbf{P})\mathbf{b}\|^2$.

5.1.2 Řešení pomocí QR rozkladu

I když má matice A lineárně nezávislé sloupce, řešení pomocí pseudoinverze (5.6) nemusí být vhodné pro numerické výpočty, kdy nezbytně používáme aritmetiku s konečnou přesností.

Příklad 5.2. Řešme soustavu Ax = b pro

$$\mathbf{A} = \begin{bmatrix} 3 & 6 \\ 1 & 2.01 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 9 \\ 3.01 \end{bmatrix}.$$

Matice **A** je regulární. Dejme tomu, že používáme aritmetiku s pohyblivou řádovou čárkou s přesností na 3 platné cifry. Gaussova eliminace najde přesné řešení soustavy $\mathbf{x} = (1, 1)$. Pokud ovšem v této aritmetice zformulujeme normální rovnici $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$, dostaneme

$$\mathbf{A}^T \mathbf{A} = \begin{bmatrix} 10 & 20 \\ 20 & 40 \end{bmatrix}, \quad \mathbf{A}^T \mathbf{b} = \begin{bmatrix} 30 \\ 60.1 \end{bmatrix}.$$

I když v přesné aritmetice je matice $\mathbf{A}^T \mathbf{A}$ regulární, v naší přibližné aritmetice došlo v součinu $\mathbf{A}^T \mathbf{A}$ k zaokrouhlení a výsledná matice je singulární. Tedy soustava $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ nemá řešení.

Numericky vhodnější způsob je řešit normální rovnici bez explicitního výpočtu součinu $\mathbf{A}^T\mathbf{A}$. To lze udělat pomocí redukovaného QR rozkladu $\mathbf{A} = \mathbf{Q}\mathbf{R}$. Po dosazení do normální rovnice máme $\mathbf{R}^T\mathbf{Q}^T\mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{R}^T\mathbf{Q}^T\mathbf{b}$ neboli $\mathbf{R}^T\mathbf{R}\mathbf{x} = \mathbf{R}^T\mathbf{Q}^T\mathbf{b}$. Jestliže \mathbf{A} má lineárně nezávislé sloupce, matice \mathbf{R} je regulární. Vynásobením maticí \mathbf{R}^{-T} zleva (což je tedy ekvivalentní úprava) máme

$$\mathbf{R}\mathbf{x} = \mathbf{Q}^T \mathbf{b}.\tag{5.8}$$

Zdůraněme, že pokud \mathbf{A} není čtvercová, pak soustava (5.8) není ekvivalentní původní soustavě $\mathbf{A}\mathbf{x} = \mathbf{b}$.

Jestliže sloupce **A** jsou lineárně závislé, postup je trochu složitější, ale také stojí na QR rozkladu. V Matlabu je řešení nehomogenní lineární soustavy implementováno v operátoru \(zpětné lomítko\). Pokud je soustava přeurčená, výsledkem je přibližné řešení ve smyslu nejmenších čtverců, přičemž použitý algoritmus používá QR rozklad. Pochopte všechny funkce operátorů lomítko a zpětné lomítko pomocí studia příkazů help mrdivide a help mldivide!

5.1.3 Lineární regrese

Regrese je modelování funkční závislosti nějaké proměnné na jiné proměnné. Modelujme závislost proměnné $y \in \mathbb{R}$ na proměnné $x \in X$ (kde X je libovolná množina) regresní funkcí

$$y = f(x, \boldsymbol{\theta}),$$

která je známa až na parametry $\boldsymbol{\theta} \in \mathbb{R}^n$. Je dán soubor dvojic (x_i, y_i) , i = 1, ..., m, kde měření $y_i \in \mathbb{R}$ jsou zatížena chybou. Úkolem je najít parametry $\boldsymbol{\theta}$, aby $y_i \approx f(x_i, \boldsymbol{\theta})$ pro všechna i. Minimalizujeme součet čtverců reziduí, tedy řešíme úlohu

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^n} \sum_{i=1}^m (y_i - f(x_i, \boldsymbol{\theta}))^2. \tag{5.9}$$

Často je regresní funkce taková, že pro každé x je lineární funkcí parametrů θ . V tom případě mluvíme o **lineární regresi**. Taková funkce jde vždy napsat jako lineární kombinace

$$f(x, \boldsymbol{\theta}) = \theta_1 \varphi_1(x) + \dots + \theta_n \varphi_n(x) = \boldsymbol{\varphi}(x)^T \boldsymbol{\theta}$$
 (5.10)

nějakých daných funkcí $\varphi_i: X \to \mathbb{R}$. Pak

$$\sum_{i=1}^{m} (y_i - f(x_i, \boldsymbol{\theta}))^2 = \|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|^2,$$

kde $\mathbf{y} = (y_1, \dots, y_m)$ a prvky matice $\mathbf{A} = [a_{ij}] \in \mathbb{R}^{m \times n}$ jsou $a_{ij} = \varphi_j(x_i)$ (odvod'te!). Tedy vyjádřili jsme úlohu (5.9) ve tvaru (5.2).

Příklad 5.3. Nejjednodušší případ je pro n=1 a konstantní funkci $\varphi_i(x)=1$. Funkce (5.10) je tedy $f(x,\theta)=\theta$. Úloha (5.9) zní $\min_{\theta\in\mathbb{R}}\sum_{i}(y_i-\theta)^2$. Snadno spočítáme (udělejte!), že řešením je aritmetický průměr $\theta=\frac{1}{m}\sum_{i=1}^m y_i$ čísel y_1,\ldots,y_m .

 $^{^3}$ Funkce φ_j se často nazývají *bázové funkce* (pokud jsou ovšem lineárně nezávislé).

Příklad 5.4. Proložení bodů polynomem⁴. Necht' $X = \mathbb{R}$ a $\varphi_j(x) = x^{j-1}$. Pak regresní funkce

$$f(x, \boldsymbol{\theta}) = \theta_1 + \theta_2 x + \theta_3 x^2 + \dots + \theta_n x^{n-1}$$

je polynom stupně n-1 proměnné x. Matice

$$\mathbf{A} = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ & & & \vdots \\ 1 & x_m & x_m^2 & \cdots & x_m^{n-1} \end{bmatrix}$$

je známá jako Vandermondova matice.

Tento případ jde snadno zobecnit na polynomy více proměnných: máme $T = \mathbb{R}^d$ a bázové funkce jsou monomy proměnných x_1, \ldots, x_d (viz §6) až do nějakého stupně.

5.1.4 Statistické odůvodnění kritéria nejmenších čtverců

Možná se ptáte, proč se má nalezení přibližného rešení přeurčené soustavy formulovat zrovna jako (5.2). Uvedeme statistický důvod, odkud se kritérium nejmenšího součtu čtverců vzalo.

Odhadujme skryté parametry \mathbf{x} nějakého systému z měření \mathbf{b} na systému. Budiž vázány známou lineární závislostí $\mathbf{b} = \mathbf{A}\mathbf{x}$. Měření jsou zatížena chybami, které jsou způsobeny šumem senzorů, nepřesnostmi měření, nedokonalou znalostí modelu, apod. Tedy

$$\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{r},\tag{5.11}$$

kde $\mathbf{r} = (r_1, \dots, r_m)$ jsou náhodné proměnné modelující chyby měření $\mathbf{b} = (b_1, \dots, b_m)$. Metoda nejmenších čtverců říká, že máme minimalizovat $\|\mathbf{r}\|_2^2 = \sum_{i=1}^m r_i^2$, ale neříká proč.

Důvod odvodíme statistickou úvahou. Metoda činí dva předpoklady:

• Náhodné proměnné r_i mají normální (neboli Gaussovo) rozdělení s nulovou střední hodnotou a směrodatnou odchylkou σ , s hustotou pravděpodobnosti

$$p(r_i) = c e^{-r_i^2/(2\sigma^2)},$$

kde $c = (\sigma \sqrt{2\pi})^{-1}$ je normalizační konstanta.

 \bullet Náhodné proměnné r_1,\dots,r_m jsou na sobě nezávislé. Tedy sdružená hustota pravděpodobnosti je rovna součinu

$$p(\mathbf{r}) = p(r_1, \dots, r_m) = \prod_{i=1}^m p(r_i) = \prod_{i=1}^m c e^{-r_i^2/(2\sigma^2)}.$$
 (5.12)

Dále použijeme princip maxima věrohodnosti. Ten říká, že parametry \mathbf{x} se mají najít tak, aby $p(\mathbf{r}) = p(\mathbf{b} - \mathbf{A}\mathbf{x})$ bylo maximální. Je pohodlnější minimalizovat záporný logaritmus

$$-\log p(r_1, ..., r_m) = -\sum_{i=1}^m \log p(r_i) = \sum_{i=1}^m \left(\frac{r_i^2}{2\sigma^2} - \log c\right).$$

Jelikož σ je konstanta, je to totéž jako minimalizovat $\sum_i r_i^2$.

⁴Nedejte se zmást tím, že polynom není lineární funkce a přesto jde o lineární regresi. Důležité je, že regresní funkce (5.10) je lineární v parametrech θ .

5.1.5 Vícekriteriální nejmenší čtverce, regularizace

V některých úlohách se hodí minimalizovat více kritérií tvaru $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ 'současně'. K tomu se dá přistoupit tak, že minimalizujeme (nezáporně) vážený součet kritérií⁵, tedy funkci⁶

$$\mu_1 \|\mathbf{A}_1 \mathbf{x} - \mathbf{b}_1\|^2 + \dots + \mu_k \|\mathbf{A}_k \mathbf{x} - \mathbf{b}_k\|^2$$
 (5.13)

kde $\mu_i \geq 0$, $\mathbf{A}_i \in \mathbb{R}^{m_i \times n}$ a $\mathbf{b}_i \in \mathbb{R}^{m_i}$. Minimalizace této funkce není nic nového pod sluncem, protože se dá převést na tvar (5.2). Opravdu, výraz (5.13) je roven (viz Cvičení 5.18)

$$\left\| \begin{bmatrix} \sqrt{\mu_1} (\mathbf{A}_1 \mathbf{x} - \mathbf{b}_1) \\ \vdots \\ \sqrt{\mu_k} (\mathbf{A}_k \mathbf{x} - \mathbf{b}_k) \end{bmatrix} \right\|^2 = \left\| \begin{bmatrix} \sqrt{\mu_1} \mathbf{A}_1 \\ \vdots \\ \sqrt{\mu_k} \mathbf{A}_k \end{bmatrix} \mathbf{x} - \begin{bmatrix} \sqrt{\mu_1} \mathbf{b}_1 \\ \vdots \\ \sqrt{\mu_k} \mathbf{b}_k \end{bmatrix} \right\|^2 = \|\mathbf{A}' \mathbf{x} - \mathbf{b}'\|^2,$$
 (5.14)

kde $\mathbf{A}' \in \mathbb{R}^{m' \times n}$ a $\mathbf{b}' \in \mathbb{R}^{m'}$ kde $m' = m_1 + \cdots + m_k$. Jestliže jsou sloupce matice \mathbf{A}' lineárně nezávislé, optimální \mathbf{x} je rovno (ověřte roznásobením blokových matic!)

$$\mathbf{x} = (\mathbf{A}^{T}\mathbf{A}^{T})^{-1}\mathbf{A}^{T}\mathbf{b}^{T} = (\mu_{1}\mathbf{A}_{1}^{T}\mathbf{A}_{1} + \dots + \mu_{k}\mathbf{A}_{k}^{T}\mathbf{A}_{k})^{-1}(\mu_{1}\mathbf{A}_{1}^{T}\mathbf{b}_{1} + \dots + \mu_{k}\mathbf{A}_{k}^{T}\mathbf{b}_{k}).$$
(5.15)

Speciálně, někdy chceme přibližně řešit soustavu $\mathbf{A}\mathbf{x} = \mathbf{b}$ a zároveň chceme, aby norma řešení \mathbf{x} nebyla moc velká. To lze formulovat jako

$$\min_{\mathbf{x} \in \mathbb{R}^n} (\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \mu \|\mathbf{x}\|^2). \tag{5.16}$$

pro zvolenou váhu $\mu > 0$. Přidání členu $\mu \|\mathbf{x}\|^2$ se říká (Tichonovova) **regularizace** úlohy (5.2). Dosazením do vzorečku (5.15) ukážeme (proveď te!), že optimální řešení je rovno $\mathbf{x} = \mathbf{A}_{\mu}^{+}\mathbf{b}$ kde

$$\mathbf{A}_{\mu}^{+} = (\mathbf{A}^{T}\mathbf{A} + \mu \mathbf{I})^{-1}\mathbf{A}^{T} \tag{5.17}$$

je 'regularizovaná pseudoinverze' matice **A**. Důležité je, že matice $\mathbf{A}^T\mathbf{A} + \mu\mathbf{I}$ regulární pro každé $\mu > 0$ a $\mathbf{A} \in \mathbb{R}^{m \times n}$ (viz Cvičení 5.19), tedy \mathbf{A}_{μ}^+ je vždy definována. Viz také Cvičení 5.20.

5.2 Řešení s nejmenší normou

Předpokládejme nyní, že soustava (5.1) je nedourčená, neboli má nekonečně mnoho řešení. Je často užitečné z této množiny řešení vybrat jediné podle nějakého kritéria. Přirozeným kritériem je minimalizovat eukleidovskou normu (tedy vzdálenost od počátku) řešení, což vede na úlohu

$$\min\{ \|\mathbf{x}\|^2 \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}\mathbf{x} = \mathbf{b} \}. \tag{5.18}$$

Místo normy $\|\mathbf{x}\|$ opět minimalizujeme její čtverec. Tato úloha je známa jako řešení nehomogenní lineární soustavy **s nejmenší normou** (*least norm solution*). Podotkněme, že někdy je vhodné použít jiná kritéria než nejmenší eukleidovskou normu, viz např. Cvičení 10.19.

⁵Minimalizací více kritérií současně se zabývá obor vícekriteriální optimalizace (multiobjective optimization).

⁶Matematicky elegantnější by samozřejmě bylo 'schovat' skaláry μ_i do matic \mathbf{A}_i a vektorů \mathbf{b}_i a tedy je tam nepsat. Odvození minima funkce (5.13) by pak bylo kratší.

⁷Symbol \mathbf{A}_{μ}^{+} zde neoznačuje pseudoinverzi nějaké matice \mathbf{A}_{μ} , taková matice \mathbf{A}_{μ} totiž neexistuje.

Příklad 5.5. Soustava dvou rovnic o třech neznámých

$$x + 2y + z = 1$$
$$-x + y + 2z = 2$$

je nedourčená, tj. má nekonečně mnoho řešení. Její řešení s nejmenší normou je takové řešení, které minimalizuje číslo $x^2 + y^2 + z^2$.

Množinu řešení soustavy (5.1) lze psát (viz důkaz Věty 3.13) jako

$$\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b}\} = \text{null } \mathbf{A} + \mathbf{x}_0,$$
 (5.19)

kde \mathbf{x}_0 je libovolné (partikulární) řešení soustavy, tedy $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$. Množina (5.19) je afinní podprostor \mathbb{R}^n , je to lineární podprostor null \mathbf{A} posunutý o \mathbf{x}_0 . Viz obrázek:

Vektory \mathbf{x} a \mathbf{x}_0 jsou dvě různá řešení soustavy, ale pouze \mathbf{x} má nejmenší normu. Řešení \mathbf{x} má nejmenší normu právě tehdy, když $\mathbf{x} \perp \text{null } \mathbf{A}$, neboli $\mathbf{x} \in (\text{null } \mathbf{A})^{\perp} = \text{rng}(\mathbf{A}^T)$, kde poslední rovnost je (4.8b). Neboli musí existovat vektor $\mathbf{y} \in \mathbb{R}^m$ tak, že $\mathbf{x} = \mathbf{A}^T \mathbf{y}$. Pro vyřešení úlohy (5.18) tedy musíme vyřešit soustavu rovnic

$$\mathbf{A}^T \mathbf{y} = \mathbf{x},\tag{5.20a}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}.\tag{5.20b}$$

To je soustava m + n rovnic o m + n neznámých (\mathbf{x}, \mathbf{y}) .

Vyřešme tuto soustavu. Dosazením \mathbf{x} do druhé rovnice obdržíme $\mathbf{A}\mathbf{A}^T\mathbf{y} = \mathbf{b}$. Tato soustava má vždy řešení, protože $\mathbf{b} \in \operatorname{rng} \mathbf{A} = \operatorname{rng}(\mathbf{A}\mathbf{A}^T)$. Předpokládejme, že matice $\mathbf{A}\mathbf{A}^T$ má plnou hodnost, což dle (5.5) nastane právě když \mathbf{A} má lineárně nezávislé řádky. Potom $\mathbf{y} = (\mathbf{A}\mathbf{A}^T)^{-1}\mathbf{b}$. Dosazením do první rovnice dostaneme $\mathbf{x} = \mathbf{A}^+\mathbf{b}$, kde

$$\mathbf{A}^+ = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} \tag{5.21}$$

se nazývá **pseudoinverze** matice \mathbf{A} s lineárně nezávislými řádky. Je to jedna z pravých inverzí matice \mathbf{A} (ověřte!).

Je poučné odvodit tento výsledek i trochu jinou úvahou. Z obrázku je patrno, že řešení \mathbf{x} má nejmenší normu právě tehdy, když je ortogonální projekcí vektoru \mathbf{x}_0 na podprostor (null \mathbf{A})^{\perp} = rng(\mathbf{A}^T). Ortogonální projektor na podprostor reprezentovaný svou bází je dán vztahem (5.7), zde ovšem promítáme na rng(\mathbf{A}^T) a tedy musíme vzorec použít s \mathbf{A}^T místo s \mathbf{A} . Tedy

$$\mathbf{x} = \mathbf{A}^{T} (\mathbf{A} \mathbf{A}^{T})^{-1} \mathbf{A} \mathbf{x}_{0} = \mathbf{A}^{T} (\mathbf{A} \mathbf{A}^{T})^{-1} \mathbf{b} = \mathbf{A}^{+} \mathbf{b}.$$
 (5.22)

Vzorce (5.6) a (5.21) dohromady definují pseudoinverzi libovolné matice (čtvercové, úzké nebo široké) s plnou hodností (tedy rank $\mathbf{A} = \min\{m, n\}$).

5.3 (*) Pseudoinverze obecné matice

Zatím jsme odděleně diskutovali případy, kdy soustava má žádné, jedno, nebo nekonečně mnoho řešení. Překvapivě, tyto tři případy lze spojit do jediné formulace. Zopakujme, že optimální řešení úlohy (5.2) jsou právě řešení soustavy normálních rovnic (5.3). Co když je ale sama soustava (5.3) nedourčená? Pak můžeme hledat její řešení s nejmenší normou, tj. řešit úlohu

$$\min\{ \|\mathbf{x}\|^2 \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b} \}.$$
 (5.23)

Protože úloha (5.18) má pro každou matici \mathbf{A} právě jedno optimální řešení, má i úloha (5.23) pro každou \mathbf{A} právě jedno optimální řešení. Toto řešení, \mathbf{x}^* , má tedy následující vlastnosti:

- Pokud soustava $\mathbf{A}\mathbf{x} = \mathbf{b}$ má jediné řešení, \mathbf{x}^* je toto řešení.
- Pokud soustava $\mathbf{A}\mathbf{x} = \mathbf{b}$ nemá řešení, \mathbf{x}^* je její přibližné řešení ve smyslu nejmenších čtverců, tj. řešení problému (5.2). Pokud ovšem problém (5.2) má více než jedno (tedy nekonečně mnoho) řešení, \mathbf{x}^* je řešení problému (5.2) s nejmenší normou.
- Pokud soustava $\mathbf{A}\mathbf{x} = \mathbf{b}$ má nekonečně mnoho řešení, \mathbf{x}^* je řešení této soustavy s nejmenší normou, tj. řešení problému (5.18).

Lze ukázat, že řešení úlohy (5.23) lze opět psát jako $\mathbf{x} = \mathbf{A}^+\mathbf{b}$ kde matici \mathbf{A}^+ nazýváme **pseudoinverze** (přesněji *Moore-Penroseova pseudoinverze*) matice \mathbf{A} . Když \mathbf{A} má lineárně nezávislé sloupce, pseudoinverze je rovna (5.6). Když \mathbf{A} má lineárně nezávislé řádky, pseudoinverze je rovna (5.21). Když ovšem \mathbf{A} nemá plnou hodnost, pseudoinverzi je nutno počítat jinak. Elegantně se to udělá pomocí SVD, což neuvádíme.

Je několik jiných způsobů, jak definovat pseudoinverzi obecné matice. Zmíníme ještě jeden zajímavý. Všiměte si, že úloha (5.16) je 'něco mezi' úlohami (5.2) a (5.18). Neformálně, (5.18) je minimalizace $\|\mathbf{x}\|^2 + \mu \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$ pro velmi velké μ . To je ale totéž jako (5.16) pro velmi malé (kladné) μ . Lze ukázat, že pseudoinverze obecné matice je rovna

$$\mathbf{A}^+ = \lim_{\mu \to 0+} \mathbf{A}_{\mu}^+. \tag{5.24}$$

5.4 Cvičení

- 5.1. Máme soustavu $\mathbf{A}\mathbf{x} = \mathbf{b}$, kde $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{b} \neq \mathbf{0}$. Jsou tyto výroky pravdivé? Odpovědi dokažte.
 - a) Pokud m < n, pak soustava má vždy řešení.
 - b) Pokud m > n, pak soustava nemá nikdy řešení.
 - c) Pokud m < n a **A** má plnou hodnost, pak soustava má vždy nekonečně mnoho řešení.
- 5.2. Vyřešte (možno použít počítač) soustavu

$$\begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & -3 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

přibližně ve smyslu nejmenších čtverců pomocí (a) pseudoinverze, (b) QR rozkladu.

- 5.3. Formulujte jako přibližné řešení soustavy $\mathbf{Pu} = \mathbf{q}$ ve smyslu nejmenších čtverců, tedy jako úlohu $\min_{\mathbf{u}} \|\mathbf{Pu} \mathbf{q}\|^2$. Jako výsledek napište matice $\mathbf{P}, \mathbf{q}, \mathbf{u}$. Pokud existuje jednoduchý vzorec pro řešení (jak pro optimální hodnotu tak optimální argument), napište je.
 - a) Příklad 1.14.
 - b) Hledá se vzdálenost bodu $\mathbf{y} \in \mathbb{R}^n$ od přímky { $\mathbf{a} + t\mathbf{s} \mid t \in \mathbb{R}$ } kde $\mathbf{a}, \mathbf{s} \in \mathbb{R}^n$.
 - c) Příklad 1.11.
 - d) Máme množinu m přímek v \mathbb{R}^n , kde i-tá přímka je množina $\{\mathbf{a}_i + t\mathbf{s}_i \mid t \in \mathbb{R}\}$ pro dané $\mathbf{a}_i, \mathbf{s}_i \in \mathbb{R}^n$. Hledá se bod $\mathbf{y} \in \mathbb{R}^n$, jehož součet čtverců vzdáleností k přímkám je minimální.
 - e) Máme m nadrovin v prostoru \mathbb{R}^n , kde i-tá nadrovina má rovnici $\mathbf{a}_i^T \mathbf{x} = b_i$ pro dané $\mathbf{a}_i \in \mathbb{R}^n$ a $b_i \in \mathbb{R}$. Hledá se bod $\mathbf{y} \in \mathbb{R}^n$, který minimalizuje součet čtverců vzdáleností od jednotlivých nadrovin.
 - f) V prknu je n děr o souřadnicích $x_1, \ldots, x_n \in \mathbb{R}$, všechny v jedné přímce. Naměříme metrem vzdálenosti $d_{ij} = x_j x_i$ pro vybrané dvojice $(i, j) \in E$, kde množina $E \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}$ je dána. Přitom dvojice jsou vybrané tak, že vždy $x_j > x_i$. Ze vzdáleností d_{ij} chceme spočítat souřadnice x_1, \ldots, x_n . Odpovězte dále na otázky:
 - 1. Kolik řešení má soustava $\mathbf{Pu} = \mathbf{q}$? Odpověď dokažte a interpretujte.
 - 2. Jsou sloupce P lineárně nezávislé?

Diskutujte obě otázky pro případ, že měření jsou přesná, a pro případ, že měření jsou zatížená nepřesnostmi.

- g) Závislost výkonu P kotle na průtoku G plynu a průřezu S díry na přívod vzduchu je modelována funkcí $\hat{P}(G,S) = G(a_1 + a_2S + a_310^{G+S} + a_410^{-S})$. Odhadujeme koeficienty a_1, \ldots, a_4 z naměřených trojic $(G_1, S_1, P_1), \ldots, (G_n, S_n, P_n)$.
- h) Známý průběh ceny akcie jisté firmy po dnech je daný posloupností p_1, \ldots, p_k . Chceme předpovídat cenu akcie den dopředu. Tuto cenu modelujeme *autoregresní funkcí* $\hat{p}_{t+1} = \beta_1 + \beta_2 p_t + \beta_3 p_{t-1}$. Odhadněte koeficienty β_i tak, aby celková chyba predikce $\sum_{t=3}^k (p_t \hat{p}_t)^2$ byla na onom známém průběhu ceny minimální.
- 5.4. V problému vážených nejmenších čtverců chceme najít $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ minimalizující funkci

$$f(\mathbf{x}) = \sum_{i=1}^{m} w_i \left(\sum_{j=1}^{n} a_{ij} x_j - b_i \right)^2$$

kde w_i jsou nezáporné váhy. Napište funkci v maticovém tvaru, k čemuž zaveď te diagonální matici $\mathbf{W} = \operatorname{diag}(w_1, \dots, w_m)$. Napište normální rovnici a pseudoinverzi pro tento případ.

- 5.5. Máme vektory $\mathbf{u} = (2, 1, -3)$ a $\mathbf{v} = (1, -1, 1)$. Najdi ortogonální projekci vektoru (2, 0, 1) na podprostor (a) span $\{\mathbf{u}\}$, (b) $(\text{span}\{\mathbf{u}\})^{\perp}$, (c) span $\{\mathbf{u}, \mathbf{v}\}$, (d) $(\text{span}\{\mathbf{u}, \mathbf{v}\})^{\perp}$.
- 5.6. Nechť $X = \text{span}\{(-\frac{3}{5}, 0, \frac{4}{5}, 0), (0, 0, 0, 1), (\frac{4}{5}, 0, \frac{3}{5}, 0)\}$. Najdi projektory na podprostor X a podprostor X^{\perp} .
- 5.7. Máme $\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 1 \\ 1 & 2 & 0 \end{bmatrix}$. Najdi ortogonální projekci vektoru (1, 1, 1) na podprostory (a) rng \mathbf{A} , (b) null \mathbf{A} , (c) rng(\mathbf{A}^T), (d) null(\mathbf{A}^T).

- 5.8. Nulový prostor projektoru je typicky netriviální, tedy projektor \mathbf{P} je singulární matice. Kdy je \mathbf{P} regulární? Jaká je v tom případě matice \mathbf{A} ve vzorci (5.7) a podprostor $X = \operatorname{rng} \mathbf{A}$? Jaký je geometrický význam této situace?
- 5.9. Dokažte následující vlastnosti pseudoinverze ze vztahů (5.6) a (5.21) pro libovolné (úzké, široké nebo čtvercové) matice plné hodnosti:
 - a) $\mathbf{A}^+ = \mathbf{A}^{-1}$ když \mathbf{A} je čtvercová
 - b) $(A^+)^+ = A$
 - c) $({\bf A}^T)^+ = ({\bf A}^+)^T$
 - d) $AA^{+}A = A$, $A^{+}AA^{+} = A^{+}$
 - e) $(\mathbf{A}\mathbf{A}^+)^T = \mathbf{A}\mathbf{A}^+, (\mathbf{A}^+\mathbf{A})^T = \mathbf{A}^+\mathbf{A}$
 - f) $\mathbf{A}^T = \mathbf{A}^T \mathbf{A} \mathbf{A}^+ = \mathbf{A}^+ \mathbf{A} \mathbf{A}^T$
 - g) $(\mathbf{A}^T \mathbf{A})^+ = \mathbf{A}^+ (\mathbf{A}^T)^+, (\mathbf{A} \mathbf{A}^T)^+ = (\mathbf{A}^T)^+ \mathbf{A}^+$
- 5.10. Spočítejte pseudoinverzi nenulového skaláru (tj. matice s jedním řádkem a jedním sloupcem), nenulového sloupcového vektoru (tj. matice s jedním sloupcem) a nenulového řádkového vektoru (tj. matice s jedním řádkem).
- 5.11. Uvažujme projektor (5.7). Báze podprostoru X, na který promítáme, je tvořena sloupci matice \mathbf{A} . Projektor \mathbf{P} se nesmí změnit, vezmeme-li jinou bázi podprostoru. Napovíme (rozmyslete důkaz!), že všechny možné báze podprostoru X jsou dány sloupci matice \mathbf{AC} pro všechny možné regulární matice $\mathbf{C} \in \mathbb{R}^{n \times n}$ (tedy \mathbf{C} je matice přechodu k jiné bázi).
- 5.12. Jaké bude řešení normálních rovnic (5.3) v případě, že \mathbf{A} má lineárně nezávislé sloupce a $\mathbf{b} \perp \operatorname{rng} \mathbf{A}$? Vyřešte geometrickou úvahou (vzpomeňte si na orgogonální projekci a koukejte na obrázek v §5.1!) a pak zkuste dokázat algebraicky.
- 5.13. Dokažte, že pokud $\mathbf{A}^T \mathbf{A} = \mathbf{B}^T \mathbf{B}$, pak existuje \mathbf{C} tak, že $\mathbf{A} = \mathbf{C}\mathbf{B}$.
- 5.14. Najděte co nejjednodušší vzorec pro
 - a) vzdálenost počátku **0** od nadroviny $\{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \},$
 - b) vzdálenost počátku ${\bf 0}$ od afinního podprostoru $\{{\bf x}\mid {\bf A}{\bf x}={\bf b}\}$ (kde ${\bf A}$ má lineárně nezávislé řádky),
 - c) vzdálenost bodu \mathbf{x} od nadroviny $\{\mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b\}.$
- 5.15. Neformálně je jasné, že nedourčená soustava bude mít vždy jen jedno řešení s nejmenší normou. Dokažte toto formálně, tj. dokažte, že jestliže soustava $\mathbf{A}\mathbf{x} = \mathbf{b}$ má alespoň jedno řešení pak soustava (5.20) má právě jedno řešení.
- 5.16. Čtvercová matice \mathbf{A} se nazývá normální, když $\mathbf{A}^T\mathbf{A} = \mathbf{A}\mathbf{A}^T$. Příkladem je symetrická nebo antisymetrická matice. Dokažte, že pro normální matice platí $(\operatorname{rng} \mathbf{A})^{\perp} = \operatorname{null} \mathbf{A}$.
- 5.17. Ukázali jsme (viz §4.6), že ortogonální projektor (4.22) na podprostor reprezentovaný ortonormální bází splňuje $\mathbf{P}^2 = \mathbf{P} = \mathbf{P}^T$. Dokažte tyto rovnosti i pro ortogonální projektor (5.7) na podprostor reprezentovaný obecnou bází.
- 5.18. Pro vektory $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ ukažte, že $\left\| \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} \right\|^2 = \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2$.
- 5.19. Dokažte, že matice $\mathbf{A}^T \mathbf{A} + \mu \mathbf{I}$ je regulární pro každou matici \mathbf{A} a každé $\mu > 0$.
- 5.20. Uvažujme 'regularizovanou pseudoinverzi' (5.24). Dokažte, že pro každou matici \mathbf{A} a každé $\mu > 0$ platí $(\mathbf{A}^T \mathbf{A} + \mu \mathbf{I})^{-1} \mathbf{A}^T = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T + \mu \mathbf{I})^{-1}$. Dumejte nad významem této rovnosti.

5.21. (*) Dokažte, že pro každé matice A, B takové, že matice [A B] je čtvercová regulární a $\mathbf{A}^T \mathbf{B} = \mathbf{0}$, platí $\mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T + \mathbf{B} (\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T = \mathbf{I}$. Vysvětlete rozdíl oproti (4.27).

Nápověda a řešení

- 5.1.a) Neplatí. Příklad: $m = 1, n = 2, \mathbf{A} = \begin{bmatrix} 0 & 0 \end{bmatrix}, \mathbf{b} = 1.$
- 5.1.b) Neplatí. Příklad: $m=2, n=1, \mathbf{A}=\begin{bmatrix}1\\1\end{bmatrix}, \mathbf{b}=\begin{bmatrix}1\\1\end{bmatrix}$.
- 5.1.c) Platí. Matice **A** má hodnost m, tedy lineárně nezávislé řádky, tedy rng $\mathbf{A} = \mathbb{R}^m$, tedy soustava má řešení. Navíc má A netriviální nulový prostor, tedy má nekonečně mnoho řešení.
- $(x_1, x_2, x_3) = (2, 1, 0)/3$

5.3.a) Zbývá napsat funkci (1.14) ve tvaru
$$f(\mathbf{u}) = \|\mathbf{P}\mathbf{u} - \mathbf{q}\|^2$$
. To je snadné (srov. s (5.14)): máme
$$\sum_{i=1}^m \|\mathbf{x} - \mathbf{a}_i\|^2 = \left\| \begin{bmatrix} \mathbf{x} - \mathbf{a}_1 \\ \vdots \\ \mathbf{x} - \mathbf{a}_m \end{bmatrix} \right\|^2 = \left\| \begin{bmatrix} \mathbf{I}_n \\ \vdots \\ \mathbf{I}_n \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix} \right\|^2$$
, tedy $\mathbf{u} = \mathbf{x}$, $\mathbf{P} = \begin{bmatrix} \mathbf{I}_n \\ \vdots \\ \mathbf{I}_n \end{bmatrix}$, $\mathbf{q} = \begin{bmatrix} \mathbf{a}_1 \\ \vdots \\ \mathbf{a}_m \end{bmatrix}$

- 5.3.c) Zbývá napsat funkci (1.13) ve tvaru $f(\mathbf{u}) = \|\mathbf{P}\mathbf{u} \mathbf{q}\|^2$. To je opět snadné: $\mathbf{u} = (\alpha_1, \alpha_2)$, $\mathbf{P} = \begin{bmatrix} \mathbf{b}_1 - \mathbf{a}_1 & \mathbf{a}_2 - \mathbf{b}_2 \end{bmatrix}, \, \mathbf{q} = \mathbf{a}_1 - \mathbf{a}_2.$
- 5.3.d) Minimalizujte přes proměnné $\mathbf{y}, t_1, \dots, t_m$.
- 5.3.e) Nejprve si vzpomeňte či odvod'te, jak se spočítá vzdálenost bodu y od nadroviny $\mathbf{a}^T \mathbf{x} = b$.
- $f(\mathbf{x}) = (\mathbf{A}\mathbf{x} \mathbf{b})^T \mathbf{W} (\mathbf{A}\mathbf{x} \mathbf{b}) = \|\mathbf{W}^{1/2} \mathbf{A}\mathbf{x} \mathbf{W}^{1/2} \mathbf{b}\|^2.$
- 5.5. (a) (2, 1, -3)/14, (b) (26, -1, 17)/14, (c) (62, -35, 17)/38, (d) (14, 35, 21)/38
- 5.6. Nejsou náhodou vektory ortonormální?
- Projektor na X je $\mathbf{P} = \operatorname{diag}(1,0,1,1)$. Projektor na X^{\perp} je $\mathbf{P} = \operatorname{diag}(0,1,0,0)$. 5.6.
- (a) (1,1,1), (b) (0.4,-0.2,0), (c) (0.6,1.2,1), (d) (0,0,0). Pozor, **A** nemá plnou hodnost. 5.7.
- \mathbf{A} je regulární, tedy $X=\mathbb{R}^m.$ Projektor je identita. 5.8.
- 5.9.b) Když \mathbf{A} má l.n. sloupce, dle (5.6) je $\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$. Protože $(\mathbf{A}^T \mathbf{A})^{-1}$ je regulární, \mathbf{A}^+ má l.n. řádky. Dle (5.21) tedy $\mathbf{A}^{++} = \mathbf{A}^{+T}(\mathbf{A}^{+}\mathbf{A}^{+T})^{-1} = \mathbf{A}(\mathbf{A}^{T}\mathbf{A})^{-T}[(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}\mathbf{A}(\mathbf{A}^{T}\mathbf{A})^{-T}]^{-1} = \mathbf{A}(\mathbf{A}^{T}\mathbf{A})^{-T}[(\mathbf{A}^{T}\mathbf{A})^{-T}]^{-1} = \mathbf{A}(\mathbf{A}^{T}\mathbf{A})^{-T}[(\mathbf{A}^{T}\mathbf{A})^{-T}]^{-1}$
- 5.11. $\tilde{\mathbf{A}}(\tilde{\mathbf{A}}^T\tilde{\mathbf{A}})^{-1}\tilde{\mathbf{A}}^T = \mathbf{A}\mathbf{C}(\mathbf{C}^T\mathbf{A}^T\mathbf{A}\mathbf{C})^{-1}\mathbf{C}^T\mathbf{A}^T = \mathbf{A}\mathbf{C}\mathbf{C}^{-1}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{C}^{-T}\mathbf{C}^T\mathbf{A}^T = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$
- 5.13. Dle (5.4a) je $\operatorname{rng}(\mathbf{A}^T) = \operatorname{rng}(\mathbf{B}^T)$. Tedy každý řádek \mathbf{A} je lineární kombinací řádků \mathbf{B} . Dle Věty 3.9 to jde napsat jako A = CB pro nějaké C.
- $5.14.a) |b|/||\mathbf{a}||$
- 5.14.b) Čtverec vzdálenosti je roven optimální hodnotě úlohy (5.18), tedy $(\mathbf{A}^+\mathbf{b})^T(\mathbf{A}^+\mathbf{b}) = \mathbf{b}^T(\mathbf{A}\mathbf{A}^T)^{-T}\mathbf{A}\mathbf{A}^T(\mathbf{A}\mathbf{A}^T)^{-1}\mathbf{b} = \mathbf{b}^T(\mathbf{A}\mathbf{A}^T)^{-1}\mathbf{b}.$
- 5.14.c) $|\mathbf{a}^T \mathbf{x} b| / \|\mathbf{a}\|$
- 5.16. Dle (4.8a) a (5.4b) je (rng \mathbf{A}) $^{\perp}$ = null(\mathbf{A}^T) = null($\mathbf{A}\mathbf{A}^T$) = null($\mathbf{A}^T\mathbf{A}$) = null(\mathbf{A}).
- 5.17. Ihned plyne z toho, že každý podprostor má ortonormální bázi (což jsme řekli v §4.5), tedy stačí rovnosti dokázat pro (4.22). Ale můžeme také dokázat přímým dosazením:

$$\mathbf{P}^2 = \mathbf{P}\mathbf{P} = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T,$$

$$\mathbf{P}^T = [\mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T]^T = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-T}\mathbf{A}^T = \mathbf{A}(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T.$$

- 5.19. Je $\mathbf{A}^T \mathbf{A} + \mu \mathbf{I} = \mathbf{B}^T \mathbf{B}$, kde $\mathbf{B} = \begin{bmatrix} \mathbf{A} \\ \mu^{1/2} \mathbf{I} \end{bmatrix}$. Matice \mathbf{B} má l.n. sloupce, protože už matice $\mu^{1/2} \mathbf{I}$ je má. Tedy dle (5.5) má $\mathbf{B}^T \mathbf{B}$ plnou hodnost, tedy je regulární.
- 5.20. Rovnici vynásobte zleva maticí $\mathbf{A}^T \mathbf{A} + \mu \mathbf{I}$ a zprava maticí $\mathbf{A} \mathbf{A}^T + \mu \mathbf{I}$ a pak roznásobte závorky.

5.21.
$$\mathbf{I} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{A}^T \\ \mathbf{B}^T \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{A}^T \\ \mathbf{B}^T \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{pmatrix} \begin{bmatrix} \mathbf{A}^T \\ \mathbf{B}^T \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} \mathbf{A}^T \\ \mathbf{B}^T \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A}^T \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}^T \mathbf{B} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{A}^T \\ \mathbf{B}^T \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{bmatrix} (\mathbf{A}^T \mathbf{A})^{-1} & \mathbf{0} \\ \mathbf{0} & (\mathbf{B}^T \mathbf{B})^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{A}^T \\ \mathbf{B}^T \end{bmatrix}$$
$$= \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T + \mathbf{B}(\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T.$$

Význam: $\begin{bmatrix} \mathbf{A} & \mathbf{B} \end{bmatrix}$ regulární a $\mathbf{A}^T \mathbf{B} = \mathbf{0}$ implikuje rng $\mathbf{B} = (\operatorname{rng} \mathbf{A})^{\perp}$. To souhlasí s tím, že $\mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ je ort. projektor na rng \mathbf{A} a $\mathbf{B} (\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T$ je ort. projektor na rng $\mathbf{B} = (\operatorname{rng} \mathbf{A})^{\perp}$.

Kapitola 6

Spektrální rozklad a kvadratické funkce

Ze základní školy znáte polynomy jedné proměnné, co jsou ale polynomy více proměnných? **Monom** (angl. monomial) k-tého stupně n proměnných je výraz

$$x_1^{k_1}\cdots x_n^{k_n},$$

kde $k_1, \ldots, k_n \in \{0, \ldots, k\}$ splňují $k_1 + \cdots + k_n = k$. **Polynom** (angl. *polynomial*) n proměnných je lineární kombinace monomů, přičemž **stupeň polynomu** je stupeň jeho monomu (s nenulovým koeficientem) nejvyššího stupně. Např. funkce

$$f(x,y) = x^2y + xy - 2x + 1 \tag{6.1}$$

je polynom dvou proměnných třetího stupně, kde např. x^2y je monom třetího stupně a xy je monom druhého stupně. Polynom je **homogenní**, pokud stupně všech jeho monomů jsou stejné. Polynom (6.1) není homogenní, ale např. $f(x,y) = x^2y - 5y^3$ je homogenní stupně tři.

Vidíme, že afinní funkce (3.23) je jen jiný název pro polynom prvního stupně a lineární funkce (3.6) (také zvaná lineární forma) je jiný název pro homogenní polynom prvního stupně¹. Polynom druhého stupně se nazývá kvadratická funkce a homogenní polynom druhého stupně kvadratická forma². Cílem této kapitoly je porozumět extrémům kvadratických forem a funkcí.

6.1 Vlastní čísla a vektory

Nechť pro čtvercovou matici $\mathbf{A} \in \mathbb{R}^{n \times n}$, nenulový vektor $\mathbf{v} \in \mathbb{C}^n$ a skalár $\lambda \in \mathbb{C}$ platí

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}.\tag{6.2}$$

Pak λ se nazývá **vlastní číslo** matice a **v vlastní vektor** matice příslušný vlastnímu číslu λ . Vlastní čísla a vektory mohou být obecně komplexní.

Rovnici (6.2) lze přepsat jako

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}. (6.3)$$

Pokud je λ známé, je to soustava homogenních lineárních rovnic pro \mathbf{v} . Ta má netriviální (tj. nenulové) řešení právě tehdy, když matice $\mathbf{A} - \lambda \mathbf{I}$ je singulární. Tedy vlastní čísla splňují

$$p_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = 0,$$
 (6.4)

 $^{^1}$ Tohle platí jen pro funkce na vektorovém prostoru \mathbb{R}^n . I když polynomy lze definovat (i když složitějším způsobem) na abstraktním (tedy definovaným axiomy) vektorovém prostoru, obvykle se jim tak neříká.

²Názvosloví není zcela konzistentní, což je opět dáno tím, že některá jména pocházejí z lineární algebry a některá z matematické analýzy.

kde funkce $p_A : \mathbb{R} \to \mathbb{R}$ se nazývá **charakteristický polynom** matice **A**.

Vlastní vektory příslušné vlastnímu číslu λ pak spočítáme ze soustavy (6.3). Vlastní vektor není svým vlastním číslem určen jednoznačně, vlastní vektory příslušné vlastnímu číslu λ tvoří celý podprostor null($\mathbf{A} - \lambda \mathbf{I}$) (kromě počátku $\mathbf{0}$). Speciálně, velikost vlastních vektorů nehraje roli a je proto zvykem je normalizovat, $\|\mathbf{v}\| = 1$.

Příklad 6.1. Vlastní čísla matice $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ jsou řešeními rovnice

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det \begin{bmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{bmatrix} = (1 - \lambda)(4 - \lambda) - 3 \cdot 2 = \lambda^2 - 5\lambda - 2 = 0.$$

Tato kvadratická rovnice má dva kořeny $\lambda = (5 \pm \sqrt{33})/2$, což jsou tedy vlastní čísla matice **A**. Vlastní vektory příslušné každému λ najdeme řešením homogenní lineární soustavy

$$\begin{bmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{bmatrix} \mathbf{v} = \mathbf{0}.$$

Z definice determinantu (2.7) plyne (promyslete!), že charakteristický polynom má stupeň n. Podle základní věty algebry má tedy právě n komplexních kořenů, počítáme-li k-násobný kořen k-krát. Označíme-li kořeny $\lambda_1, \ldots, \lambda_n$, je tedy

$$p_{\mathbf{A}}(\lambda) = \prod_{i=1}^{n} (\lambda_i - \lambda).$$

V tomto smyslu má matice právě n vlastních čísel, z nichž některá mohou být stejná kvůli násobnosti. Tomuto seznamu vlastních čísel se říká **spektrum** matice.

Nechť $\lambda_1,\ldots,\lambda_n$ jsou vlastní čísla matice a $\mathbf{v}_1,\ldots,\mathbf{v}_n$ jim příslušné vlastní vektory. Rovnice

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i, \qquad i = 1, \dots, n$$

můžeme napsat jako jedinou maticovou rovnici (rozmyslete!)

$$\mathbf{AV} = \mathbf{V}\boldsymbol{\Lambda},\tag{6.5}$$

kde diagonální matice $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^{n \times n}$ má na diagonále vlastní čísla a sloupce čtvercové matice $\mathbf{V} = [\mathbf{v}_1 \cdots \mathbf{v}_n] \in \mathbb{R}^{n \times n}$ jsou vlastní vektory.

Různé podmnožiny vlastních vektorů mohou být lineárně závislé. Otázka, kdy se tak stane a co to znamená, není jednoduchá a podrobně ji zde diskutovat nepotřebujeme. Řekneme jen, že existuje dobrý důvod vlastní vektory vybrat tak, aby hodnost matice \mathbf{V} byla co možná největší.

Jak se počítají vlastní čísla a vektory? Charakteristický polynom je hlavně teoeretický nástroj a přímé hledání jeho kořenů není vhodné pro numerický výpočet³. Pro větší matice se používají numerické iterační algoritmy, přičemž pro matice různého typu jsou vhodné různé algoritmy. Zásadní rozdíl oproti např. QR rozkladu je v tom, že vlastní čísla (jakožto kořeny polynomu n-tého stupně) obecně nejdou přesně spočítat konečným počtem operací $\{+,-,\times,/,k$ -tá odmocnina $\}$. Matlabská funkce [V,D]=eig(A) spočítá matice V a Λ splňující (6.5).

³Naopak, hledání kořenů libovolného polynomu lze převést na hledání vlastních čísel matice, která se nazývá doprovodná matice (companion matrix) polynomu.

6.1.1 Spektrální rozklad

Pokud je V regulární (tj. matice A má n lineárně nezávislých vlastních vektorů), je invertovatelná a (6.5) lze psát jako

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}. \tag{6.6}$$

Vztahu (6.6) se pak říká rozklad matice podle vlastních čísel nebo spektrální rozklad. V tom případě je matice A podobná⁴ diagonální matici (neboli diagonalizovatelná), protože z (6.6) plyne $V^{-1}AV = \Lambda$.

Věta 6.1. Necht' $\mathbf{A} \in \mathbb{R}^{n \times n}$. Následující dvě tvrzení jsou ekvivalentní:

- Matice A je symetrická.
- Všechna vlastní čísla matice **A** jsou reálná a **A** má n vlastních vektorů které jsou po dvojicích ortogonální.

Důkaz věty neuvádíme. Větě 6.1 se někdy říká **spektrální věta**. Podle ní pro každou symetrickou **A** je v (6.5) matice Λ reálná a **V** může být zvolena ortogonální ($\mathbf{V}^{-1} = \mathbf{V}^{T}$). Tedy

$$\mathbf{A} = \mathbf{V}\boldsymbol{\Lambda}\mathbf{V}^{T} = \lambda_{1}\mathbf{v}_{1}\mathbf{v}_{1}^{T} + \dots + \lambda_{n}\mathbf{v}_{n}\mathbf{v}_{n}^{T}.$$
(6.7)

Zároveň jsme vpravo uvedli i druhou formu rozkladu jako součet dyád (viz §2.7) (přesvědčte se roznásobením součinu $\mathbf{V}\mathbf{\Lambda}\mathbf{V}^T$ dle pravidel z §2.8, že druhá rovnost v (6.7) platí!).

Vlastní čísla v rozkladu (6.7) je zvykem (matlabská funkce eig to tak dělá) řadit vzestupně,

$$\lambda_1 \le \dots \le \lambda_n,\tag{6.8}$$

což lze vždy zařídit vhodnou permutací sloupců matice \mathbf{V} a diagonálních prvků matice $\mathbf{\Lambda}$. Všimněme si dále, že (např. dle Věty 3.6, použité dvakrát na výraz $\mathbf{V}\mathbf{\Lambda}\mathbf{V}^T$) máme

$$\operatorname{rank} \mathbf{\Lambda} = \operatorname{rank} \mathbf{A}. \tag{6.9}$$

Ale hodnost diagonální matice Λ je jednoduše počet jejích nenulových prvků, tedy počet nenulových vlastních čísel. Když rank $\mathbf{A} < n$, některá vlastní čísla jsou nulová a můžeme vynechat jim odpovídající sloupce+řádky matice Λ a sloupce matice \mathbf{V} . To znamená vynechání nulových sčítanců v sumě dyád v (6.7).

Příklad 6.2. Zde je spektrální rozklad matice 3×3 hodnosti 2:

$$\begin{bmatrix} 2 & 3 & -2 \\ 3 & 2 & 2 \\ -2 & 2 & -8 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{18} & 1/\sqrt{2} & -2/3 \\ -1/\sqrt{18} & 1/\sqrt{2} & 2/3 \\ 4/\sqrt{18} & 0 & 1/3 \end{bmatrix} \begin{bmatrix} -9 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{18} & -1/\sqrt{18} & 4/\sqrt{18} \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -2/3 & 2/3 & 1/3 \end{bmatrix}$$

$$= \begin{bmatrix} 1/\sqrt{18} & 1/\sqrt{2} \\ -1/\sqrt{18} & 1/\sqrt{2} \\ 4/\sqrt{18} & 0 \end{bmatrix} \begin{bmatrix} -9 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} 1/\sqrt{18} & -1/\sqrt{18} & 4/\sqrt{18} \\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix}$$

$$= -9 \begin{bmatrix} 1/\sqrt{18} \\ 4/\sqrt{18} \end{bmatrix} \begin{bmatrix} 1/\sqrt{18} & -1/\sqrt{18} & 4/\sqrt{18} \end{bmatrix} + 5 \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix} \square$$

$$= -9 \begin{bmatrix} 1/\sqrt{18} \\ 4/\sqrt{18} \end{bmatrix} \begin{bmatrix} 1/\sqrt{18} & -1/\sqrt{18} & 4/\sqrt{18} \end{bmatrix} + 5 \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix} \square$$

 $^{^4}$ Matice **A** a **B** jsou si podobné, existuje-li regulární matice **C** tak, že **B** = **CAC**⁻¹. To znáte z lineární algebry.

Vlastní čísla a vektory jsou rozsáhlé téma, které jsme zde zdaleka nevyčerpali. To ale není ani třeba, protože dále budeme pořebovat jen spektrální rozklad symetrické matice.

Podotkněme nakonec, že každá čtvercová matice splňuje

$$\det \mathbf{A} = \lambda_1 \cdots \lambda_n, \tag{6.10a}$$

$$\operatorname{tr} \mathbf{A} = \lambda_1 + \dots + \lambda_n. \tag{6.10b}$$

Pro diagonalizovatelné matice lze rovnosti snadno dokázat ze spektrálního rozkladu příp. cykličnosti stopy (proved'te!). Pro nediagonalizovatelné matice důkaz neuvádíme.

6.2 Kvadratická forma

Kvadratická forma na \mathbb{R}^n je homogenní polynom $f: \mathbb{R}^n \to \mathbb{R}$ druhého stupně. Je pohodlné ji zapsat v maticovém tvaru

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{j=1}^n \sum_{i=1}^n a_{ij} x_i x_j$$
 (6.11)

pro nějakou matici $\mathbf{A} \in \mathbb{R}^{n \times n}$. Protože $x_i x_j = x_j x_i$ (násobení čísel je komutativní), máme

$$\mathbf{x}^{T}\mathbf{A}\mathbf{x} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij} x_{i} x_{j} = \frac{1}{2} \sum_{j=1}^{n} \sum_{i=1}^{n} (a_{ij} + a_{ji}) x_{i} x_{j} = \frac{1}{2} \mathbf{x}^{T} (\mathbf{A} + \mathbf{A}^{T}) \mathbf{x}.$$
 (6.12)

Vidíme, že funkce f závisí jen na součtech $a_{ij} + a_{ji}$. Je proto zvykem předpokládat $a_{ij} = a_{ji}$, neboli že matice \mathbf{A} je symetrická ($\mathbf{A}^T = \mathbf{A}$). V tom případě tedy $\frac{1}{2}(\mathbf{A} + \mathbf{A}^T) = \mathbf{A}$.

Abychom si procvičili maticovou algebru, dokážeme rovnost (6.12) i jinak. Každou čtvercovou matici lze jednoznačně napsat jako součet symetrické a antisymetrické části (viz Cvičení 2.10):

$$\mathbf{A} = \underbrace{\frac{1}{2}(\mathbf{A} + \mathbf{A}^T)}_{\text{symetrická}} + \underbrace{\frac{1}{2}(\mathbf{A} - \mathbf{A}^T)}_{\text{antisymetrická}}.$$

Ale pro každé **x** máme

$$\mathbf{x}^{T}(\mathbf{A} - \mathbf{A}^{T})\mathbf{x} = \mathbf{x}^{T}\mathbf{A}\mathbf{x} - \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{x} = \mathbf{x}^{T}\mathbf{A}\mathbf{x} - (\mathbf{x}^{T}\mathbf{A}\mathbf{x})^{T} = 0,$$

kde jsme použili skutečnost, že transpozice skaláru je tentýž skalár. Tedy když **A** není symetrická, můžeme ji nahradit její symetrickou částí a kvadratická forma se nezmění.

Příklad 6.3. Příkladem kvadratické formy dvou proměnných je funkce

$$f(x,y) = 2x^2 - 2xy + y^2 = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

Všimněte si, že první matice není symetrická a druhá ano.

6.2.1 Definitnost kvadratické formy / její matice

Čtvercovou matici A nazýváme

- positivně [negativně] semidefinitní, když pro každé \mathbf{x} platí $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ [$\mathbf{x}^T \mathbf{A} \mathbf{x} \le 0$],
- positivně [negativně] definitní, když pro každé $\mathbf{x} \neq \mathbf{0}$ platí $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ [$\mathbf{x}^T \mathbf{A} \mathbf{x} < 0$],
- indefinitní, když existuje \mathbf{x} a \mathbf{y} tak, že $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ a $\mathbf{y}^T \mathbf{A} \mathbf{y} < 0$.

Matice může mít i několik těchto vlastností najednou. Např. positivně definitní matice je zároveň positivně semidefinitní. Nulová matice je zároveň positivně i negativně semidefinitní.

I když definice dává smysl pro libovolné čtvercové matice, obvykle je zvykem hovořit o těchto vlastnostech jen pro symetrické matice. Někdy se tyto vlastnosti definují ne pro matici, ale abstraktněji pro kvadratickou formu.

Z definice je jasné, má-li kvadratická forma extrém a případně jaký:

Věta 6.2. Nechť funkce f je dána jako $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$.

- Je-li $\mathbf A$ positivně [negativně] semidefinitní, pak f v bodě $\mathbf 0$ nabývá minimum [maximum].
- Je-li \mathbf{A} positivně [negativně] definitní, pak f v bodě $\mathbf{0}$ nabývá ostré minimum [maximum].
- Je-li A indefinitní, pak f nemá minimum ani maximum.

 $D\mathring{u}kaz$. Je-li **A** positivně semidefinitní, funkce f není nikde záporná a zároveň pro $\mathbf{x} = \mathbf{0}$ je nulová, proto v bodě $\mathbf{x} = \mathbf{0}$ (i když možná i jinde) nabývá svého minima. Je-li **A** positivně definitní, je forma nulová jen v počátku a všude jinde kladná, tedy počátek je ostré minimum. Je-li **A** indefinitní a např. $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$, bod \mathbf{x} nemůže být maximum protože $(2\mathbf{x})^T \mathbf{A}(2\mathbf{x}) > \mathbf{x}^T \mathbf{A} \mathbf{x}$, a zároveň \mathbf{x} nemůže být minimum protože pro nějaké \mathbf{y} je $\mathbf{y}^T \mathbf{A} \mathbf{y} < 0$.

6.2.2 Definitnost ze znamének hlavních minorů

Uvedeme kritérium, které určí definitnost matice podle znamének determiantů jistých jejich podmatic. Pro matici $\mathbf{A} \in \mathbb{R}^{n \times n}$ a neprázdnou množinu $I \subseteq \{1, \ldots, n\}$, symbol $\mathbf{A}_I = [a_{ij}]_{i,j \in I} \in \mathbb{R}^{|I| \times |I|}$ označuje matici vytvořenou z prvků matice \mathbf{A} v řádcích a sloupcích s indexy I.

- Hlavní minor matice A je číslo det A_I pro nějakou neprázdnou $I \subseteq \{1, \ldots, n\}$.
- Vůdčí hlavní minor matice A je její hlavní minor pro nějaké $I = \{1, ..., k\}$ a $1 \le k \le n$.

Věta 6.3. Symetrická matice je

- positivně definitní, právě když všechny její vůdčí hlavní minory jsou kladné,
- positivně semidefinitní, právě když všechny její hlavní minory jsou nezáporné.

Větu nebudeme dokazovat. První tvrzení věty je známé $Sylvestrovo\ kritérium$. Všimněte si, že druhé tvrzení je prakticky použitelné jen pro malé matice, protože počet všech hlavních minorů matice $n \times n$ je $2^n - 1$. Tato tvrzení dovolí testovat i negativní [semi]definitnost (matice \mathbf{A} je negativně [semi]definitní, právě když matice $-\mathbf{A}$ je positivně [semi]definitní) a indefinitnost (není-li matice ani positivně semidefinitní ani negativně semidefinitní, pak je indefinitní).

Avšak pozor: věta netvrdí, že když má matice např. všechny hlavní minory nekladné, tak je negativně semidefinitní. Např. matice $\mathbf{A} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ je indefinitní, ale má všechny hlavní minory nekladné. Problém je v tom, že matice $-\mathbf{A}$ má také všechny hlavní minory nekladné (proč?) a tedy není positivně semidefinitní.

6.2.3 Diagonalizace kvadratické formy

Definitnost matice lze ovšem také snadno určit pomocí jejích vlastních čísel. Ze spektrálního rozkladu (6.7) máme

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T \mathbf{x} = \mathbf{y}^T \mathbf{\Lambda} \mathbf{y} = \lambda_1 y_1^2 + \dots + \lambda_n y_n^2 = g(\mathbf{y}) = g(\mathbf{v}^T \mathbf{x}). \tag{6.13}$$

Vidíme, že substituce $\mathbf{x} = \mathbf{V}\mathbf{y}$ (tj. $\mathbf{y} = \mathbf{V}^T\mathbf{x}$) diagonalizovala matici kvadratické formy. Protože matice \mathbf{V} je ortogonální (a proto regulární), transformace $\mathbf{x} = \mathbf{V}\mathbf{y}$ je isometrie a navíc vzájemně jednoznačná (neboli bijekce, viz §1.1.2). Tedy funkce f a g se liší jen otočením příp. zrcadlením. Totéž můžeme říct i v jazyce bází: zatímco ve standardní (ortonormální) bázi (tvořené sloupečky jednotkové matice \mathbf{I}) má kvadratická forma matici \mathbf{A} , v ortonormální bázi tvořené sloupci matice \mathbf{V} má forma diagonální matici $\mathbf{\Lambda}$.

Vlastnosti kvadratické formy jsou mnohem lépe patrny z jejího diagonálního tvaru g než z původního f. 'Kvalitativní' tvar grafu funkce g je dán vektorem znamének vlastních čísel. Např. pro n=2 si grafy a vrstevnice funkce g (kde bez ztráty obecnosti bereme vrstevnici výšky 1, tj. množinu řešení rovnice $\mathbf{y}^T \mathbf{\Lambda} \mathbf{y} = 1$) snadno představíme:

- Je-li $\lambda_1, \lambda_2 > 0$, graf vypadá jako 'dolík' a každá vrstevnice výšky 1 je elipsa (střed má v počátku a její hlavní osy jsou souřadnicové osy).
- Je-li $\lambda_1, \lambda_2 < 0$, graf vypadá jako 'kopec' a vrstevnice výšky 1 je prázdná množina.
- $\bullet\,$ Je-li $\lambda_1\lambda_2<0,$ graf je 'sedlo' a vrstevnice výšky 1 je hyperbola.

Vrstevnice výšky 1 obecné (tj. ne nutně diagonální) kvadratické formy (tj. množina řešení $\mathbf{x}^T \mathbf{A} \mathbf{x} = 1$) s oběma vlastními čísly kladnými je elipsa se středem v počátku, směry jejíchž hlavních os jsou vlastní vektory:

Věta 6.4. Symetrická matice je

- positivně [negativně] semidefinitní, právě když má všechna vlastní čísla nezáporná [nekladná]
- positivně [negativně] definitní, právě když má všechna vlastní čísla kladná [záporná]

• indefinitní, právě když má alespoň jedno kladné a alespoň jedno záporné vlastní číslo.

 $D\mathring{u}kaz$. To je snadný důsledek diagonalizace (6.13). Protože transformace $\mathbf{x} = \mathbf{V}\mathbf{y}$ je bijekce, platí např. (promyslete!)

$$(\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0 \ \forall \mathbf{x} \in \mathbb{R}^n) \iff (\mathbf{y}^T \mathbf{\Lambda} \mathbf{y} \ge 0 \ \forall \mathbf{y} \in \mathbb{R}^n).$$

Tedy definitnost matice \mathbf{A} je stejná jako definitnost matice $\mathbf{\Lambda}$. Ale definitnost diagonální matice $\mathbf{\Lambda}$ je okamžitě patrná ze znamének čísel λ_i . Např. výraz (6.13) je nezáporný pro každé \mathbf{y} , právě když všechna λ_i jsou nezáporná.

6.3 Kvadratická funkce

Kvadratická funkce je polynom (ne nutně homogenní) druhého stupně. Lze jej psát v maticovém tvaru⁵

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c, \tag{6.14}$$

kde $\mathbf{A}^T = \mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^n$ a $c \in \mathbb{R}$. Oproti⁶ kvadratické formě tedy přibyl lineární a konstantní člen. Všimněte si, že pro n = 1 je (6.14) známá kvadratická funkce jedné proměnné $f(x) = ax^2 + bx + c$.

Jak nalézt extrémy kvadratické funkce? Extrémy lze hledat mechanicky pomocí derivací, to však ukážeme až v pozdější kapitole. Jiný způsob je převést kvadratickou funkci na kvadratickou formu posunutím počátku. Tento způsob popíšeme nyní.

6.3.1 Doplnění na čtverec

Někdy lze najít $\mathbf{x}_0 \in \mathbb{R}^n$ a $y_0 \in \mathbb{R}$ takové, že

$$\mathbf{x}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}^{T}\mathbf{x} + c = (\mathbf{x} - \mathbf{x}_{0})^{T}\mathbf{A}(\mathbf{x} - \mathbf{x}_{0}) + y_{0}.$$
(6.15)

Výraz na pravé straně je kvadratická forma s počátkem posunutým do bodu \mathbf{x}_0 , plus konstanta. Této úpravě se říká **doplnění na čtverec**. Znáte ji pro případ n=1, neboť tak se na základní škole odvozuje vzorec pro kořeny kvadratické rovnice jedné proměnné. Zkusme spočíst \mathbf{x}_0, y_0 z daných $\mathbf{A}, \mathbf{b}, c$. Roznásobením pravé strany dostaneme

$$(\mathbf{x} - \mathbf{x}_0)^T \mathbf{A} (\mathbf{x} - \mathbf{x}_0) + y_0 = \mathbf{x}^T \mathbf{A} \mathbf{x} - \mathbf{x}^T \mathbf{A} \mathbf{x}_0 - \mathbf{x}_0^T \mathbf{A} \mathbf{x} + \mathbf{x}_0^T \mathbf{A} \mathbf{x}_0 + y_0$$
$$= \mathbf{x}^T \mathbf{A} \mathbf{x} - 2\mathbf{x}_0^T \mathbf{A} \mathbf{x} + \mathbf{x}_0^T \mathbf{A} \mathbf{x}_0 + y_0$$

(kde jsme použili, že $\mathbf{x}^T \mathbf{A} \mathbf{x}_0 = (\mathbf{x}^T \mathbf{A} \mathbf{x}_0)^T = \mathbf{x}_0^T \mathbf{A}^T \mathbf{x} = \mathbf{x}_0^T \mathbf{A} \mathbf{x}$). Porovnáním členů stejného stupně máme

$$\mathbf{b} = -2\mathbf{A}\mathbf{x}_0,\tag{6.16a}$$

$$c = \mathbf{x}_0^T \mathbf{A} \mathbf{x}_0 + y_0, \tag{6.16b}$$

⁵Jak už jsme zmínili v §2.9 pro afinní zobrazení, kvadratickou funkci nemusíme vždy dostat zadanou přímo ve tvaru (6.14). Příkladem jsou funkce $f(\mathbf{x}, \mathbf{y}) = \mathbf{y}^T (\mathbf{A}\mathbf{x} - \mathbf{b})$ či $f(\mathbf{X}) = \operatorname{tr}((\mathbf{A}\mathbf{X} + \mathbf{B})^T (\mathbf{A}\mathbf{X} + \mathbf{B}))$. Převést takové funkce do tvaru (6.14) může stát dost práce a umu.

 $^{^6}$ Pro ${\bf A}={\bf 0}$ bude f pouhá afinní funkce. Je věcí konvence, zda afinní funkci máme nazývat kvadratickou či nikoliv, tedy zda máme zakázat případ ${\bf A}={\bf 0}$.

Pokud soustava (6.16a) má řešení, spočítáme z ní \mathbf{x}_0 a pak z druhé rovnice y_0 . Pokud soustava (6.16a) nemá řešení, doplnění na čtverec není možné.

Pokud je doplnění na čtverec možné, vyšetření extrémů kvadratické funkce se neliší od vyšetření extrémů kvadratické formy, protože rozdíl je jen v posunutí \mathbf{x}_0 . Pokud doplnění na čtverec možné není, kvadratická funkce extrém nemá (toto tvrzení zde uvádíme bez důkazu, dokázalo by se snadno pomocí derivací). Extrémy kvadratických funkcí lze také hledat pomocí derivací, ale to si ukážeme až později.

Příklad 6.4. Máme kvadratickou funkci

$$f(x,y) = 2x^2 - 2xy + y^2 - 2y + 3 = \begin{bmatrix} x \\ y \end{bmatrix}^T \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ -2 \end{bmatrix}^T \begin{bmatrix} x \\ y \end{bmatrix} + 3.$$

Její doplnění na čtverec je

$$f(x,y) = 2(x-1)^2 - 2(x-1)(y-2) + (y-2)^2 + 1 = \begin{bmatrix} x-1 \\ y-2 \end{bmatrix}^T \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x-1 \\ y-2 \end{bmatrix} + 1,$$

tedy máme $\mathbf{x}_0 = (1, 2), y_0 = 1$. Jelikož matice \mathbf{A} je positivně definitní (ověřte!), má kvadratická funkce minimum v bodě \mathbf{x}_0 .

Příklad 6.5. Kvadratická funkce

$$f(x,y) = x^2 - y = \begin{bmatrix} x \\ y \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix}^T \begin{bmatrix} x \\ y \end{bmatrix}$$

doplnit na čtverec nejde. Funkce tedy nemá na \mathbb{R}^2 extrém.

Příklad 6.6. Řešme znovu úlohu (5.2). Účelová funkce této úlohy je kvadratická, je totiž

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^{2} = (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= (\mathbf{x}^{T}\mathbf{A}^{T} - \mathbf{b}^{T}) (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{x} - \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{b} - \mathbf{b}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}^{T}\mathbf{b}$$

$$= \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{A}\mathbf{x} - 2\mathbf{b}^{T}\mathbf{A}\mathbf{x} + \mathbf{b}^{T}\mathbf{b},$$
(6.17)

kde jsme použili rovnost $\mathbf{b}^T \mathbf{A} \mathbf{x} = (\mathbf{b}^T \mathbf{A} \mathbf{x})^T = \mathbf{x}^T \mathbf{A}^T \mathbf{b}$ (neboť skalár je roven své transpozici). Extrém této kvadratické funkce můžeme najít doplněním na čtverec (viz §6.3). Soustava (6.16a) bude mít tvar $\mathbf{A}^T \mathbf{A} \mathbf{x}_0 = \mathbf{A}^T \mathbf{b}$ (\mathbf{A}, \mathbf{b} zde samozřejmě označuje něco jiného než v (6.16a)), tedy dostali jsme normální rovnici (5.3). Zároveň je jasné, že matice $\mathbf{A}^T \mathbf{A}$ je positivně semidefinitní, neboť pro každé $\mathbf{x} \in \mathbb{R}^n$ máme

$$\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = (\mathbf{A} \mathbf{x})^T \mathbf{A} \mathbf{x} = \|\mathbf{A} \mathbf{x}\|^2 \ge 0.$$
 (6.18)

Tedy v bodě \mathbf{x}_0 bude minimum.

6.3.2 Kvadrika

Vrstevnice kvadratické funkce se nazývá **kvadrika**. Tedy kvadrika je množina⁷

$$\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c = 0 \}$$
(6.19)

všech řešení kvadratické rovnice, neboli množina všech kořenů kvadratické funkce.

Když $\mathbf{b} = \mathbf{0}$, množina (6.19) je vrstevnice kvadratické formy a kvadrika má tedy střed v počátku. Když \mathbf{A} je diagonální, kvadrika má osy rovnoběžné se souřadnicovými osami. Když $\mathbf{A} = \mathbf{0}$, množina (6.19) je pouhá nadrovina. Když \mathbf{A} nemá plnou hodnost, kvadrika je degenerovaná. Množina (6.19) může být i prázdná.

Jestliže kvadratická funkce dovoluje doplnění na čtverec, můžeme množinu (6.19) psát jako

$$\{\mathbf{x} \in \mathbb{R}^n \mid (\mathbf{x} - \mathbf{x}_0)^T \mathbf{A} (\mathbf{x} - \mathbf{x}_0) + y_0 = 0\},$$
(6.20)

což je vrstevnice kvadratické formy posunuté o \mathbf{x}_0 . V tom případě je typ kvadriky určen jednoduše znaménky vlastních čísel matice \mathbf{A} . Speciálně, když všechna vlastní čísla jsou kladná (tedy \mathbf{A} je positivně definitní), jde o povrch **elipsoidu**⁸. Když některá vlastní čísla jsou nulová (tedy \mathbf{A} nemá plnou hodnost), kvadrika je degenerovaná. Toto ale nevyčerpává všechny typy degenerace: další typy degenerace nastanou, když \mathbf{A} nemá plnou hodnost a funkce nedovoluje doplnění na čtverec.

Předpokládejme, že y_0 je takové, že množina (6.20) obsahuje nekonečný počet bodů. Pro n=2 se pak kvadrika nazývá **kuželosečka** (angl. conic). Je-li matice **A** positivně či negativně definitní maticí, kuželosečka je elipsa (speciálně, pokud $\lambda_1 = \lambda_2$ pak je to kružnice), je-li **A** indefinitní, je to hyperbola.

6.4 Cvičení

- 6.1. Pro každou z těchto funkcí určete, zda je to polynom. Pokud ano, určete počet proměnných a stupeň polynomu a rozhodněte, jestli je polynom homogenní.
 - a) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = (x^2 + y^2)(x y) + xy x y$
 - b) $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ kde **a** je dáno
 - c) $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = \|\mathbf{x}\|$
 - d) $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = ||\mathbf{A}\mathbf{x} + \mathbf{b}||^2 \text{ kde } \mathbf{A}, \mathbf{b} \text{ jsou dány}$
 - e) $f: \mathbb{R}^{2n} \to \mathbb{R}, f(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{y}$
 - f) $f: \mathbb{R}^{n \times n} \to \mathbb{R}$, $f(\mathbf{X}) = \mathbf{a}^T \mathbf{X} \mathbf{b}$ kde \mathbf{a}, \mathbf{b} jsou dány
 - g) $f: \mathbb{R}^{n \times n} \to \mathbb{R}, f(\mathbf{X}) = \det \mathbf{X}$
- 6.2. Spočítejte vlastní čísla a vlastní vektory matic $\begin{bmatrix} 1 & 2 \\ -1 & -3 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$.
- 6.3. Napište rovnici, jejímiž kořeny jsou vlastní čísla matice $\begin{bmatrix} 2 & 0 & 3 \\ 0 & -2 & -1 \\ 3 & -1 & 2 \end{bmatrix}.$

 $^{^7\}mathrm{Bez}$ ztráty obecnosti uvažujeme vrstevnici výšky nula (tj. množina kořenů) kvadratické funkce (6.14), neboť c můžeme zvolit libovolně.

⁸Někteří autoři myslí elipsoidem množinu i s vnitřkem, někteří jen její hranici. Rozdíl je stejný jako mezi sférou a koulí.

- 6.4. Jaká jsou vlastní čísla a vlastní vektory (a) nulové, (b) jednotkové, (c) diagonální matice? Jaká jsou vlastní čísla trojúhelníkové matice?
- 6.5. Známe vlastní čísla a vektory matice \mathbf{A} . Jaká jsou vlastní čísla a vektory matice $\mathbf{A} + \alpha \mathbf{I}$?
- 6.6. Nechť $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{B} \in \mathbb{R}^{n \times m}$. Dokažte, že nenulová vlastní čísla matic \mathbf{AB} a \mathbf{BA} jsou stejná. Jaký je vztah jejich vlastních vektorů?
- 6.7. Určete definitnost těchto symetrických matic. Pro všechny matice to udělejte pomocí znamének hlavních minorů, pro matice 2×2 také pomocí vlastních čísel.

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad \begin{bmatrix} 3 & -2 & 1 \\ -2 & 3 & 0 \\ 1 & 0 & 3 \end{bmatrix}, \quad \begin{bmatrix} -2 & 0 & 1 \\ 0 & 3 & -1 \\ 1 & -1 & -2 \end{bmatrix}$$

- 6.8. Mějme matici $\mathbf{A} = \begin{bmatrix} 1 & -3 \\ 2 & -4 \end{bmatrix}$. Která z následujících tvrzení jsou pravdivá?
 - a) Výraz $\mathbf{x}^T \mathbf{A} \mathbf{x}$ je nezáporný pro každé $\mathbf{x} \in \mathbb{R}^2$.
 - b) Výraz $\mathbf{x}^T \mathbf{A} \mathbf{x}$ je nekladný pro každé $\mathbf{x} \in \mathbb{R}^2$.
 - c) Funkce $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ má v bodě $\mathbf{x} = \mathbf{0}$ extrém.
- 6.9. Máme kvadratickou formu dvou proměnných $f(x,y) = 3x^2 + 2xy + 3y^2$.
 - a) Napište ji ve tvaru $f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \mathbf{A} \begin{bmatrix} x \\ y \end{bmatrix}$ se symetrickou \mathbf{A} .
 - b) Najděte $a, b \in \mathbb{R}$ a ortogonální **U** tak, že $f(x, y) = au^2 + bv^2$, kde $\begin{bmatrix} u \\ v \end{bmatrix} = \mathbf{U} \begin{bmatrix} x \\ y \end{bmatrix}$.
 - c) Nakreslete množinu bodů (u, v) splňujících $au^2 + bv^2 = 1$.
 - d) Transformujte tuto množinu do souřadnic (x, y) a nakreslete.
- 6.10. Je množina { $(x,y) \in \mathbb{R}^2 \mid x^2 3xy + y^2 = 1$ } elipsa nebo hyperbola? Odůvodněte.
- 6.11. (*) Napište v Matlabu funkci ellipse(A), která vykreslí elipsu s rovnicí $\mathbf{x}^T \mathbf{A} \mathbf{x} = 1$ pro positivně definitní \mathbf{A} . Zamyslete se, jak byste postupovali při návrhu funkce $\operatorname{conic}(\mathbb{Q})$, která vykreslí kuželosečku $\mathbf{x}^T \mathbf{A} \mathbf{x} = 1$ pro \mathbf{A} libovolné definitnosti (nezapomeňte, že obecná kuželosečka může být neomezená, tedy je nutno ji oříznout do daného obdélníku).
- 6.12. Ukažte, že je-li $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ spektrální rozklad symetrické matice \mathbf{A} , platí $\mathbf{A}^n = \mathbf{V} \mathbf{\Lambda}^n \mathbf{V}^T$.
- 6.13. Následující kvadratické funkce napište ve tvaru (6.14) se symetrickou \mathbf{A} . Pak najděte jejich extrémy a určete typ každého extrému (použijte doplnění na čtverec).

a)
$$f(x,y) = x^2 + 4xy - 2y^2 + 3x - 6y + 5$$

b)
$$f(x,y) = x^2 + 2y^2 - 2xy + 2x - y$$

6.14. Máme neorientovaný graf (V, E) s množinou vrcholů $V = \{1, ..., n\}$ a množinou hran⁹. $E \subseteq \binom{V}{2}$ Každému vrcholu $i \in V$ je přiřazeno číslo $x_i \in \mathbb{R}$, tato čísla tvoří vektor $\mathbf{x} \in \mathbb{R}^n$. Je dána funkce $f \colon \mathbb{R}^n \to \mathbb{R}$ vzorcem

$$f(\mathbf{x}) = \sum_{\{i,j\} \in E} (x_i - x_j)^2.$$

 $[\]binom{V}{k}$ značí množinu všech k-prvkových podmnožin množiny V.

- a) Ukažte, že f je kvadratická forma.
- b) Jaká je definitnost této kvadratické formy?
- c) Pro jaká **x** platí $f(\mathbf{x}) = 0$?
- d) Necht' je graf zadán maticí sousednosti $\mathbf{A} \in \{0,1\}^{n \times n}$ tak, že $a_{ij} = 1$ právě když $\{i,j\} \in E$. Najděte matici $\mathbf{L} \in \mathbb{R}^{n \times n}$ tak, že $f(\mathbf{x}) = \mathbf{x}^T \mathbf{L} \mathbf{x}$. Hledejte co nejjednodušší vztah pro \mathbf{L} . Použijte přitom kromě matice \mathbf{A} také diagonální matici $\mathbf{D} = \operatorname{diag}(\mathbf{A}\mathbf{1})$. Co jsou diagonální prvky matice \mathbf{D} v termínech grafu (V, E)?
- e) Nechť $\mathbf{B} \in \{-1,0,1\}^{n \times m}$ (kde m = |E|) je incidenční matice orientovaného grafu vytvořeného tak, že pro každou hranu neorientovaného grafu (V, E) zvolíme orientaci. Ukažte, že $f(\mathbf{x}) = \|\mathbf{B}^T\mathbf{x}\|^2$, tedy $\mathbf{L} = \mathbf{B}\mathbf{B}^T$, kde tyto výrazy nezávisejí na zvolených orientacích hran.

Poznamenejme, že funkci f (příp. matici L) se říká Laplacián grafu (V, E).

- 6.15. Musí mít positivně semidefinitní matice na diagonále nezáporné prvky? Odpověď dokažte.
- 6.16. Dokažte, že matice $\mathbf{A}^T \mathbf{A} + \mu \mathbf{I}$ je positivně definitní pro každou matici \mathbf{A} a každé $\mu > 0$.
- 6.17. Dokažte, že symetrická matice je positivně definitní, právě když je positivně semidefinitní a invertovatelná.
- 6.18. Dokažte, že každá symetrická positivně definitní matice je invertovatelná a její inverze je také positivně definitní. Dokažte
 - a) s použitím spektrálního rozkladu,
 - b) bez použití spektrálního rozkladu.

6.19. Dokažte:

- a) Pro každou matici \mathbf{A} je matice $\mathbf{A}^T \mathbf{A}$ positivně semidefinitní.
- b) Matice $\mathbf{A}^T \mathbf{A}$ je positivně definitní, právě když matice \mathbf{A} má lineárně nezávislé sloupce,
- c) Pro každou positivně semidefinitní matici \mathbf{B} existuje matice \mathbf{A} tak, že $\mathbf{B} = \mathbf{A}^T \mathbf{A}$.
- d) Pro každou positivně definitní matici ${\bf B}$ existuje regulární matice ${\bf A}$ tak, že ${\bf B}={\bf A}^T{\bf A}$.
- 6.20. (*) Positivně semidefinitní symetrické matice lze vnímat jako zobecnění nezáporných čísel. Proto se někdy positivní semidefinitnost značí $\mathbf{A} \succeq \mathbf{0}$. Zápis $\mathbf{A} \preceq \mathbf{B}$ je pak zkratkou $\mathbf{B} \mathbf{A} \succeq \mathbf{0}$. Dokažte, že relace \preceq je částečné uspořádání (tj. reflexivní, tranzitivní a antisymetrická) na množině symetrických matic $n \times n$.
- 6.21. (*) Na základě podobnosti relace \leq z předchozího cvičení a relace \leq na množině $\mathbb R$ bychom očekávali, že:
 - a) Pokud $A \leq B$ a $C \leq D$, potom $A + C \leq B + D$.
 - b) Pokud $\mathbf{A} \succeq \mathbf{0}$ a $\alpha \geq 0$, potom $\alpha \mathbf{A} \succeq \mathbf{0}$.
 - c) Pokud $\mathbf{A} \succeq \mathbf{0}$, potom $\mathbf{A}^2 \succeq \mathbf{0}$.
 - d) Pokud $A \succeq 0$ a $B \succeq 0$, potom $AB \succeq 0$.
 - e) Pokud $A \succeq 0$ a $B \succeq 0$, potom $ABA \succeq 0$.

Které z těchto tvrzení platí a která neplatí? Odpovědi dokažte.

6.22. Najděte všechna vlastní čísla projektoru. Odpověď nalezněte algebraicky z idempotence projektoru a poté odůvoděte geometrickou úvahou.

- 6.23. Geometrickou úvahou najděte aspoň dva vlastní vektory a příslušná vlastní čísla Householderovy matice ze Cvičení 4.14.
- 6.24. Je známo, že libovolnou rotaci ve třírozměrném prostoru lze realizovat jako rotaci kolem jisté přímky (jdoucí počátkem) o jistý úhel. Geometrickou úvahou zjistěte co nejvíce o vlastních číslech a vektorech rotační matice rozměru 3 × 3.
- 6.25. Dokažte, že ortogonální projektor (tj. matice reprezentující ortogonální projekci) je positivně semidefinitní. Jaký to má geometrický význam?
- 6.26. Na wikipedii vyhledejte hesla *conic section* (kuželosečka) a *quadric surface* (kvadrika). Všechny typy kuželoseček a kvadrik (nedegenerovaných i denenerovaných) tam uvedené zkuste napsat jako vrstevnici vhodné kvadratické formy nebo funkce.

Nápověda a řešení

- 6.5. Vlastní čísla se zvětší o α . Vlastní vektory jsou stejné.
- 6.6. Nechť $\mathbf{ABv} = \lambda \mathbf{v} \neq \mathbf{0}$. Z toho plyne $\mathbf{BABv} = \lambda \mathbf{Bv}$, tedy $\mathbf{BAu} = \lambda \mathbf{u}$ kde $\mathbf{u} = \mathbf{Bv}$. Zároveň $\mathbf{u} \neq \mathbf{0}$ protože jinak by bylo $\lambda \mathbf{v} = \mathbf{0}$.
- 6.7. indefinitní, positivně definitní, indefinitní, positivně semidefinitní, indefinitní, indefinitní
- 6.8. Matice **A** není symetrická. Musíme ji nejdříve symetrizovat, tj. vzít matici $\frac{1}{2}(\mathbf{A} + \mathbf{A}^T)$, a pak teprv počítat vlastní čísla. Tím zjistíme, že žádné tvrzení neplatí.

6.9.a)
$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

6.9.b)
$$a = 2, b = 4, \mathbf{U} = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1\\ 1 & 1 \end{bmatrix}$$

- 6.10. Hyperbola, neboť A má nenulová vlastní čísla opačných znamének.
- 6.13.a) Převod na tvar (6.14): $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$, $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ -6 \end{bmatrix}$, c = 5. Doplnění na čtverec existuje (protože \mathbf{A} je regulární). Funkce nemá extrém (protože \mathbf{A} je indefinitní), má sedlo v bodě $(\frac{1}{2}, -1)$.
- 6.13.b) Má minimum v bodě -(3,1)/2.
- 6.14.a) Je $(x_i x_j)^2 = x_i^2 2x_i x_j + x_j^2$. Tedy f je homogenní polynom stupně dva, což je kvadratická forma.
- 6.14.b) Funkce je součet čtverců (druhých mocnin), tedy $f(\mathbf{x}) \geq 0$ pro všechna $\mathbf{x} \in \mathbb{R}^n$, tedy f je positivně semidefinitní. Zároveň $f(\mathbf{x}) = 0$ když všechny složky x_i jsou stejné (tedy $\mathbf{x} = \alpha \mathbf{1}$ pro libovolné $\alpha \in \mathbb{R}$), tedy není positivně definitní.
- 6.14.c) Zjevně $f(\mathbf{x}) = 0$ právě když $x_i = x_j$ pro všechna $\{i, j\} \in E$. Když graf je souvislý, nastane to právě když všechna x_i jsou stejná. Jinak to nastane právě když jsou x_i stejná v každé komponentě grafu.
- 6.14.d) Prvek d_{ii} matice **D** je stupeň (tedy počet incidentních hran) vrcholu i. Je $\mathbf{L} = \mathbf{D} \mathbf{A}$, neboť

$$\sum_{\{i,j\}} (x_i - x_j)^2 = \frac{1}{2} \sum_{\{i,j\}} x_i^2 - \sum_{\{i,j\}} x_i x_j + \frac{1}{2} \sum_{\{i,j\}} x_j^2 = \sum_{\{i,j\}} x_i^2 - \sum_{\{i,j\}} x_i x_j = \mathbf{x}^T \mathbf{D} \mathbf{x} - \mathbf{x}^T \mathbf{A} \mathbf{x}.$$

- 6.15. Musí. Stačí vzít $\mathbf{x} = \mathbf{e}_i$ vektory standardní báze.
- 6.16. $\mathbf{x}^T (\mathbf{A}^T \mathbf{A} + \mu \mathbf{I}) \mathbf{x} = \mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} + \mu \mathbf{x}^T \mathbf{I} \mathbf{x} = \|\mathbf{A} \mathbf{x}\|^2 + \mu \|\mathbf{x}\|^2 > 0$ pro každé $\mathbf{x} \neq \mathbf{0}$.

- 6.17. Nechť $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$. Matice \mathbf{A} je positivně semidefinitní, právě když jsou všechny diagonální prvky matice $\mathbf{\Lambda}$ (což jsou vlastní čísla matice \mathbf{A}) nezáporné. Dle (6.9) je \mathbf{A} invertovatelná, právě když $\mathbf{\Lambda}$ je invertovatelná, neboli $\mathbf{\Lambda}$ má na diagonále nenulové prvky. Ale \mathbf{A} je positivně definitní, právě když její vl. čísla jsou kladná, tj. nezáporná a nenulová.
- 6.18.a) Je $\mathbf{A}^{-1} = (\mathbf{V} \mathbf{\Lambda} \mathbf{V}^T)^{-1} = \mathbf{V} \mathbf{\Lambda}^{-1} \mathbf{V}^T$. Ale definitnost matice \mathbf{A} je stejná jako definitnost matice $\mathbf{\Lambda}$. Je jasné, že pokud diagonální prvky λ_i matice $\mathbf{\Lambda}$ jsou kladné, pak jsou kladné i diagonální prvky $1/\lambda_i$ matice $\mathbf{\Lambda}^{-1}$.
- 6.18.b) Nechť **A** je positivně definitní, tedy $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ pro každé $\mathbf{x} \neq \mathbf{0}$. Kdyby **A** nebyla invertovatelná (tj. regulární), dle Věty 3.7 by měla netriviální nulový prostor, tedy $\mathbf{A} \mathbf{x} = \mathbf{0}$ pro nějaké $\mathbf{x} \neq \mathbf{0}$. Ale to nelze, protože pak by také $\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{0}$.
 - Nechť \mathbf{A} je invertovatelná. Položme $\mathbf{y} = \mathbf{A}\mathbf{x}$ a $\mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$. Víme, že $\mathbf{x}^T \mathbf{A}\mathbf{x} > 0$ pro každé $\mathbf{x} \neq \mathbf{0}$. Z toho $\mathbf{x}^T \mathbf{A}\mathbf{x} = \mathbf{y}^T \mathbf{A}^{-1} \mathbf{y} = \mathbf{y}^T \mathbf{A}^{-1} \mathbf{y} > 0$. Protože zobrazení $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ je bijekce, je $\mathbf{y}^T \mathbf{A}^{-1}\mathbf{y} > 0$ pro každé $\mathbf{y} \neq \mathbf{0}$.
- 6.19.a) $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = (\mathbf{A} \mathbf{x})^T \mathbf{A} \mathbf{x} = ||\mathbf{A} \mathbf{x}||^2 \ge 0$
- 6.19.b) Víme, že $\mathbf{A}^T \mathbf{A}$ je p.s.d. pro každou \mathbf{A} . Tedy stačí dokázat, že $\mathbf{A}^T \mathbf{A}$ je invertovatelná, právě když \mathbf{A} má l.n. sloupce. To jsme dokázali v (5.5).
- 6.19.c) Ve spektrálním rozkladu $\mathbf{B} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ má $\mathbf{\Lambda}$ nezáporné diagonální prvky. Položme $\mathbf{A} = \mathbf{\Lambda}^{1/2} \mathbf{V}^T$.
- 6.19.d) Ve spektrálním rozkladu $\mathbf{B} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ má $\mathbf{\Lambda}$ kladné diagonální prvky. Položme $\mathbf{A} = \mathbf{\Lambda}^{1/2} \mathbf{V}^T$.
- 6.20. Relace je reflexivní, když $\mathbf{A} \leq \mathbf{A}$ pro každou \mathbf{A} , neboli $\mathbf{A} \mathbf{A} \succeq \mathbf{0}$, což platí.
 - Pro další si všimněte, že $\mathbf{A} \leq \mathbf{B}$ znamená $(\forall \mathbf{x})(\mathbf{x}^T \mathbf{A} \mathbf{x} \leq \mathbf{x}^T \mathbf{B} \mathbf{x})$. Relace je antisymetrická, když $\mathbf{A} \leq \mathbf{B} \leq \mathbf{A} \Rightarrow \mathbf{A} = \mathbf{B}$. Ale $\mathbf{x}^T \mathbf{A} \mathbf{x} \leq \mathbf{x}^T \mathbf{A} \mathbf{x}$ implikuje $\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{B} \mathbf{x}$. To platí pro všechna \mathbf{x} , protože \mathbf{A}, \mathbf{B} jsou symetrické.
 - Relace je tranzitivní, když $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C} \Rightarrow \mathbf{A} \leq \mathbf{C}$. To platí, neboť $\mathbf{x}^T \mathbf{A} \mathbf{x} \leq \mathbf{x}^T \mathbf{B} \mathbf{x} \leq \mathbf{x}^T \mathbf{C} \mathbf{x} \Rightarrow \mathbf{x}^T \mathbf{A} \mathbf{x} \leq \mathbf{x}^T \mathbf{C} \mathbf{x}$.
- 6.22. Algebraicky: Projektor \mathbf{P} splňuje $\mathbf{PP} = \mathbf{P}$ (idempotence). Tedy z $\mathbf{Pv} = \lambda \mathbf{v}$ plyne (násobením maticí \mathbf{P}) $\mathbf{Pv} = \lambda \mathbf{Pv}$. To může platit jen pro $\lambda = 1$ nebo pro $\mathbf{Pv} = \mathbf{0}$. Ale když $\mathbf{Pv} = \mathbf{0}$, tak z rovnice $\mathbf{Pv} = \lambda \mathbf{v}$ musí být $\lambda = 0$. Tedy vlastní čísla projektoru mohou být buď 1 nebo 0.
 - Úvaha: Projekce na podprostor $X = \operatorname{rng} \mathbf{P}$ promítne každý vektor $\mathbf{x} \in X$ na sebe, tedy $\mathbf{P}\mathbf{x} = \mathbf{x}$. Každý vektor $\mathbf{x} \in X^{\perp}$ se promítne do $\mathbf{0}$, tedy $\mathbf{P}\mathbf{x} = \mathbf{0}$. Každý vektor $\mathbf{x} \notin X \cup X^{\perp}$ se promítne do vektoru, který není rovnoběžný s \mathbf{x} . Shrnuto, \mathbf{P} má jen dvě vlastní čísla 1 a 0 (předpokládáme nyní, že $X^{\perp} \neq \{\mathbf{0}\}$, neboli \mathbf{P} není regulární). Vlastní vektory příslušné číslu 1 tvoří podprostor X, vlastní vektory příslušné číslu 0 tvoří podprostor X^{\perp} .
- 6.23. Transformace $\mathbf{f}(\mathbf{x}) = \mathbf{H}\mathbf{x}$ je zrcadlení okolo nadroviny s normálovým vektorem \mathbf{v} . Tedy $\mathbf{H}\mathbf{x} = \mathbf{x}$ pro všechna \mathbf{x} ležící v této nadrovině, neboli $\mathbf{v}^T\mathbf{x} = 0$. Dále je $\mathbf{H}\mathbf{v} = -\mathbf{v}$, neboť normála nadroviny zrcadlením změní orientaci.
- 6.25. Projektor \mathbf{P} splňuje $\mathbf{P}^2 = \mathbf{P}$ a $\mathbf{P}^T = \mathbf{P}$ (viz §4.6 a Cvičení 5.17), z čehož plyne $\mathbf{P} = \mathbf{P}^T \mathbf{P}$. Nyní $\mathbf{z}^T \mathbf{P} \mathbf{z} = \mathbf{z}^T \mathbf{P}^T \mathbf{P} \mathbf{z} = \|\mathbf{P} \mathbf{z}\|^2 \ge 0$ (viz Cvičení 6.19). Geometrický význam je takový, že libovolný vektor \mathbf{z} svírá se svou ortogonální projekcí $\mathbf{x} = \mathbf{P} \mathbf{z}$ ostrý úhel nebo jsou na sebe kolmé (když $\mathbf{z} = \mathbf{0}$ nebo $\mathbf{x} = \mathbf{0}$), tedy $\mathbf{z}^T \mathbf{x} = \mathbf{z}^T \mathbf{P} \mathbf{z} \ge 0$.

Kapitola 7

Použití spektrálního rozkladu v optimalizaci

7.1 Úloha na nejmenší stopu

Nechť $\mathbf{A} = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^T$ je spektrální rozklad symetrické matice $\mathbf{A} \in \mathbb{R}^{n \times n}$, tedy matice $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ je diagonální a $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$ je ortogonální. Předpokládáme přitom, že vlastní čísla jsou vzestupně seřazena, tedy platí (6.8).

Věta 7.1. Platí

$$\min\{\mathbf{x}^T \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}^T \mathbf{x} = 1\} = \lambda_1 \tag{7.1}$$

a minimální hodnota se nabývá pro $\mathbf{x} = \mathbf{v}_1$ (tedy pro normalizovaný vlastní vektor příslušný nejmenšímu vlastnímu číslu λ_1).

 $D\mathring{u}kaz$. Pohled'me na rovnost (6.13). Protože **V** je ortogonální a $\mathbf{y} = \mathbf{V}^T\mathbf{x}$, je $\mathbf{y}^T\mathbf{y} = \mathbf{x}^T\mathbf{V}\mathbf{V}^T\mathbf{x} = \mathbf{x}^T\mathbf{x}$ a tedy podmínka $\mathbf{x}^T\mathbf{x} = 1$ je ekvivalentní podmínce $\mathbf{y}^T\mathbf{y} = 1$. Tedy úloha (7.1) má stejnou minimální hodnotu jako úloha

$$\min\{\mathbf{y}^T \mathbf{\Lambda} \mathbf{y} \mid \mathbf{y} \in \mathbb{R}^n, \ \mathbf{y}^T \mathbf{y} = 1\} = \min\{\lambda_1 y_1^2 + \dots + \lambda_n y_n^2 \mid y_1, \dots, y_n \in \mathbb{R}, \ y_1^2 + \dots + y_n^2 = 1\}.$$
(7.2)

Je jasné (viz Cvičení 7.1), že minimum nastane když $y_1 = 1$ (tedy $y_2 = \cdots = y_n = 0$), tj. pro $\mathbf{y} = \mathbf{e}_1$ (první vektor standardní báze). To odpovídá $\mathbf{x} = \mathbf{V}\mathbf{e}_1 = \mathbf{v}_1$ a $\mathbf{y}^T \mathbf{\Lambda} \mathbf{y} = \lambda_1$.

Všimněte si: Věta 7.1 netvrdí, že se minimum úlohy (7.1) nabývá vždy pouze ve vektoru \mathbf{v}_1 . Je-li vlastní číslo λ_1 násobné, nabývá se ve více bodech.

Rovnost (7.1) ukazuje, že nejmenší vlastní číslo lze získat řešením optimalizační úlohy. Zobecněním této úlohy lze postupně získat všechna vlastní čísla:

Věta 7.2. Necht' k < n. Platí

$$\min\{\mathbf{x}^T \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}^T \mathbf{x} = 1, \ \mathbf{v}_1^T \mathbf{x} = \dots = \mathbf{v}_k^T \mathbf{x} = 0\} = \lambda_{k+1}$$
 (7.3)

a minimální hodnota se nabývá pro $\mathbf{x} = \mathbf{v}_{k+1}$.

 $D\mathring{u}kaz$. Protože $\mathbf{v}_i = \mathbf{V}\mathbf{e}_i$, přechodem k souřadnicím $\mathbf{y} = \mathbf{V}^T\mathbf{x}$ úlohu převedeme na

$$\min\{\mathbf{y}^T \mathbf{\Lambda} \mathbf{y} \mid \mathbf{y} \in \mathbb{R}^n, \ \mathbf{y}^T \mathbf{y} = 1, \ \mathbf{e}_1^T \mathbf{y} = \dots = \mathbf{e}_k^T \mathbf{y} = 0 \}.$$

Ale $\mathbf{e}_k^T \mathbf{y} = y_k$, tedy dodatečná podmínka říká $y_1 = \cdots = y_k = 0$. Proto minimum nastane když $y_{k+1} = 1$, tedy pro $\mathbf{y} = \mathbf{e}_{k+1}$. To odpovídá $\mathbf{x} = \mathbf{V}\mathbf{e}_{k+1} = \mathbf{v}_{k+1}$ a $\mathbf{y}^T \mathbf{\Lambda} \mathbf{y} = \lambda_{k+1}$.

Úlohu (7.1) lze ale zobecnit i jiným způsobem:

Věta 7.3. Necht' $k \leq n$. Platí¹

$$\min\{\operatorname{tr}(\mathbf{X}^T \mathbf{A} \mathbf{X}) \mid \mathbf{X} \in \mathbb{R}^{n \times k}, \ \mathbf{X}^T \mathbf{X} = \mathbf{I}\} = \lambda_1 + \dots + \lambda_k$$
 (7.4)

a minimum se nabývá pro $\mathbf{X} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix}$.

 $D\mathring{u}kaz$. (*) Máme $\mathrm{tr}(\mathbf{X}^T\mathbf{A}\mathbf{X})=\mathrm{tr}(\mathbf{X}^T\mathbf{V}\mathbf{\Lambda}\mathbf{V}^T\mathbf{X})=\mathrm{tr}(\mathbf{Y}^T\mathbf{\Lambda}\mathbf{Y})$, kde $\mathbf{X}=\mathbf{V}\mathbf{Y}$. Protože \mathbf{V} je ortogonální, $\mathbf{X}^T\mathbf{X}=\mathbf{I}$ platí právě když $\mathbf{Y}^T\mathbf{V}^T\mathbf{V}\mathbf{Y}=\mathbf{Y}^T\mathbf{Y}=\mathbf{I}$. Tedy úloha (7.4) má stejnou optimální hodnotu jako úloha

$$\min\{\operatorname{tr}(\mathbf{Y}^T \mathbf{\Lambda} \mathbf{Y}) \mid \mathbf{Y} \in \mathbb{R}^{n \times k}, \ \mathbf{Y}^T \mathbf{Y} = \mathbf{I}\}.$$
 (7.5)

Řešme úlohu (7.5). Z vlastností stopy (viz §2.5) máme

$$\operatorname{tr}(\mathbf{Y}^T \mathbf{\Lambda} \mathbf{Y}) = \operatorname{tr}(\mathbf{Y} \mathbf{Y}^T \mathbf{\Lambda}) = \operatorname{tr}(\mathbf{P} \mathbf{\Lambda}) = \lambda_1 p_{11} + \dots + \lambda_n p_{nn},$$

kde p_{11}, \ldots, p_{nn} jsou diagonální prvky matice $\mathbf{P} = \mathbf{Y}\mathbf{Y}^T$.

Pro každou $\mathbf{Y} \in \mathbb{R}^{n \times k}$ čísla p_{11}, \dots, p_{nn} splňují rovnost

$$p_{11} + \cdots + p_{nn} = \operatorname{tr} \mathbf{P} = \operatorname{tr}(\mathbf{Y}\mathbf{Y}^T) = \operatorname{tr}(\mathbf{Y}^T\mathbf{Y}) = \operatorname{tr} \mathbf{I}_k = k$$
.

Dále splňují nerovnosti $0 \le p_{ii} \le 1$ (viz Cvičení 4.22). Uvažujme úlohu

$$\min\{\lambda_1 p_{11} + \dots + \lambda_n p_{nn} \mid 0 \le p_{11}, \dots, p_{nn} \le 1, \ p_{11} + \dots + p_{nn} = k\}.$$
 (7.6)

Tento jednoduchý lineární program vyřešíme úvahou (viz Cvičení 11.3): jeho optimální hodnota je $\lambda_1 + \cdots + \lambda_k$ a optimální argument je dán jako $p_{11} = \cdots = p_{kk} = 1$ a $p_{k+1,k+1} = \cdots = p_{nn} = 0$.

Ale matici $\mathbf{P} = \mathbf{Y}\mathbf{Y}^T$ s těmito diagonálními prvky lze realizovat volbou $\mathbf{Y} = \begin{bmatrix} \mathbf{I}_k \\ \mathbf{0} \end{bmatrix}$. Z toho $\mathbf{X} = \mathbf{V}\mathbf{Y} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix}$.

Všimněte si, že pro k=n se rovnost (7.4) redukuje na rovnost (6.10b), neboť pro každou ortogonální $\mathbf{X} \in \mathbb{R}^{n \times n}$ je $\operatorname{tr}(\mathbf{X}^T \mathbf{A} \mathbf{X}) = \operatorname{tr}(\mathbf{X} \mathbf{X}^T \mathbf{A}) = \operatorname{tr} \mathbf{A} = \lambda_1 + \dots + \lambda_k$.

Úloze (7.4) lze rozumět takto. Označme $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$ sloupce matice $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_k \end{bmatrix}$. Podmínka $\mathbf{X}^T \mathbf{X} = \mathbf{I}$ říká, že $\mathbf{x}_1, \dots, \mathbf{x}_k$ jsou ortonormální, $\mathbf{x}_i^T \mathbf{x}_j = \delta_{ij}$. Dále platí (ověřte!)

$$tr(\mathbf{X}^T \mathbf{A} \mathbf{X}) = \mathbf{x}_1^T \mathbf{A} \mathbf{x}_1 + \dots + \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k.$$
 (7.7)

Tedy v úloze (7.4) hledáme ortonormální k-tici vektorů, které minimalizují součet (7.7).

Bezsouřadnicová formulace. Uvedeme ještě jiný tvar úlohy (7.4). Sloupce matice \mathbf{X} tvoří ortonormální bázi podprostoru $X = \operatorname{rng} \mathbf{X}$. Každý vektor z podprostoru X je lineární kombinace $\mathbf{x} = \mathbf{X}\mathbf{y}$ vektorů báze, kde $\mathbf{y} \in \mathbb{R}^k$ jsou souřadnice vektoru \mathbf{x} v této bázi. Tedy funkce

$$g(\mathbf{y}) = f(\mathbf{X}\mathbf{y}) = \mathbf{y}^T \mathbf{X}^T \mathbf{A} \mathbf{X} \mathbf{y}$$
 (7.8)

¹Namítnete, že úloha (7.4) není ve tvaru (1.11), protože optimalizujeme přes množinu matic a ne vektorů. To je ale jen záležitost značení, neboť matici rozměru $m \times n$ lze vidět jako vektor o mn složkách.

je zúžení (neboli *restrikce*) kvadratické formy $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ na daný podprostor, vyjádřená v souřadnicích v. Funkce q je kvadratická forma s maticí $\mathbf{X}^T \mathbf{A} \mathbf{X}$. Její stopu

$$\operatorname{tr}_X \mathbf{A} = \operatorname{tr}(\mathbf{X}^T \mathbf{A} \mathbf{X}) \tag{7.9}$$

tedy můžeme nazvat stopou matice **A** na podprostoru X. Aby tato definice byla smysluplná, je důležité, že výraz (7.9) nezávisí na tom, jakou ortonormální bázi podprostoru X zvolíme. Vskutku, pro každou ortogonální matici $\mathbf{U} \in \mathbb{R}^{k \times k}$ (viz Cvičení 4.17) je

$$tr[(\mathbf{X}\mathbf{U})^T\mathbf{A}(\mathbf{X}\mathbf{U})] = tr(\mathbf{U}^T\mathbf{X}^T\mathbf{A}\mathbf{X}\mathbf{U}) = tr(\mathbf{U}\mathbf{U}^T\mathbf{X}^T\mathbf{A}\mathbf{X}) = tr(\mathbf{X}^T\mathbf{A}\mathbf{X}).$$
(7.10)

Tedy úlohu (7.4) můžeme formulovat 'bezsouřadnicově': hledáme podprostor $X \subseteq \mathbb{R}^n$ dimenze k, který minimalizuje $\operatorname{tr}_X \mathbf{A}$. Proto se této úloze někdy říká *úloha na nejmenší stopu*.

7.2 Proložení bodů podprostorem

Nechť jsou dány body $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^m$ a přirozené číslo $k \leq m$. Hledejme lineární podprostor dimenze k prostoru \mathbb{R}^m , který minimalizuje součet čtverců vzdáleností k bodům $\mathbf{a}_1, \ldots, \mathbf{a}_n$. Ve statistice se této úloze říká rozvoj podle hlavních komponent (angl. principal component analysis, PCA) nebo Karhunen-Loewův rozvoj. Podotkněme, že úlohu nelze nijak převést na přibližné řešení lineární soustavy ve smyslu nejmenších čtverců, tedy úlohu (5.2).

Aby bylo možné jednoduše vyjádřit vzdálenost bodu k podprostoru, je výhodné místo hledaného podprostoru hledat jeho ortogonální doplněk, reprezentovaný ortonormální bází tvořenou sloupci matice $\mathbf{X} \in \mathbb{R}^{m \times (m-k)}$. Matice \mathbf{X} má m-k sloupců, neboť dle Věty 4.1 je dimenze tohoto ortogonálního doplňku rovna m-k. Tedy hledaný podprostor je (dle (4.8a))

$$\operatorname{rng} \mathbf{Y} = (\operatorname{rng} \mathbf{X})^{\perp} = \operatorname{null}(\mathbf{X}^{T}) = \{ \mathbf{b} \in \mathbb{R}^{m} \mid \mathbf{X}^{T} \mathbf{b} = \mathbf{0} \}.$$
 (7.11)

Vzdálenost bodu $\mathbf{a} \in \mathbb{R}^m$ k podprostoru (7.11) je délka projekce na jeho ortogonální doplněk (viz §4.6.2), tj. $\|\mathbf{X}\mathbf{X}^T\mathbf{a}\| = \|\mathbf{X}^T\mathbf{a}\|$. Součet čtverců vzdáleností všech bodů k podprostoru je

$$\|\mathbf{X}^T \mathbf{a}_1\|^2 + \dots + \|\mathbf{X}^T \mathbf{a}_n\|^2 = \|\mathbf{X}^T \mathbf{A}\|^2,$$

kde $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{m \times n}$ označuje matici se sloupci $\mathbf{a}_1, \dots, \mathbf{a}_n$ a $\|\cdot\|$ maticovou (Frobeniovu) normu (4.37). Řešíme tedy úlohu

$$\min\{\|\mathbf{X}^T\mathbf{A}\|^2 \mid \mathbf{X} \in \mathbb{R}^{m \times (m-k)}, \ \mathbf{X}^T\mathbf{X} = \mathbf{I}\}.$$
 (7.12)

Protože $\|\mathbf{X}^T\mathbf{A}\|^2 = \operatorname{tr}(\mathbf{X}^T\mathbf{A}\mathbf{A}^T\mathbf{X})$, úlohu (7.12) můžeme vyřešit pomocí Věty 7.3. Spočítáme spektrální rozklad $\mathbf{V}\mathbf{\Lambda}\mathbf{V}^T = \mathbf{A}\mathbf{A}^T$ matice² $\mathbf{A}\mathbf{A}^T$ (kde opět předpokládáme, že diagonální prvky matice $\mathbf{\Lambda}$ jsou vzestupně seřazeny). Rozdělíme-li (ortogonální) matici $\mathbf{V} = \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} \in \mathbb{R}^{m \times m}$ do dvou bloků $\mathbf{X} \in \mathbb{R}^{m \times (m-k)}$ a $\mathbf{Y} \in \mathbb{R}^{m \times k}$, pak \mathbf{X} je řešení úlohy (7.12) a (viz §4.6.1) sloupce \mathbf{Y} tvoří ortonormální bázi hledaného podprostoru (7.11). Tedy:

- Posledních k sloupců matice \mathbf{V} (tj. ortonormální vlastní vektory matice $\mathbf{A}\mathbf{A}^T$ odpovídající k největším vlastním číslům) tvoří ortonormální bázi lineárního podprostoru dimenze k, který minimalizuje součet čtverců vdáleností k bodům $\mathbf{a}_1, \ldots, \mathbf{a}_n$.
- Prvních m-k sloupců matice \mathbf{V} (tj. ortonormální vlastní vektory matice $\mathbf{A}\mathbf{A}^T$ odpovídající m-k nejmenším vlastním číslům) tvoří ortonormální bázi ortogonálního doplňku tohoto podprostoru.

Všimněte si výhody: spočítáme-li jednou spektrální rozklad matice $\mathbf{A}\mathbf{A}^T$, máme rovnou řešení úlohy pro všechna $k=1,\ldots,m$.

Optimální hodnota úlohy (7.12) je chyba proložení našich bodů $\mathbf{a}_1, \ldots, \mathbf{a}_n$ podprostorem dimenze k, neboli je to míra, do jaké tyto body neleží v podprostoru dimenze k. Dle Věty 7.3 je tato optimální hodnota rovna

$$\lambda_1 + \dots + \lambda_{m-k},\tag{7.13}$$

kde $\lambda_1 \leq \cdots \leq \lambda_m$ je spektrum matice $\mathbf{A}\mathbf{A}^T$.

Příklad 7.1. Jsou dány body $\mathbf{a}_1, \dots, \mathbf{a}_n$ v prostoru \mathbb{R}^3 , jež tvoří sloupce matice $\mathbf{A} \in \mathbb{R}^{3 \times n}$. Nechť $\mathbf{A}\mathbf{A}^T = \mathbf{V}\mathbf{\Lambda}\mathbf{V}^T$ je spektrální rozklad matice $\mathbf{A}\mathbf{A}^T$, kde $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} \in \mathbb{R}^{3 \times 3}$ a $0 \le \lambda_1 \le \lambda_2 \le \lambda_3$. Přímka procházející počátkem (tedy k = 1), která minimalizuje součet čtverců vzdáleností k bodům, je množina

$$(\operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\})^{\perp} = \{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{v}_1^T \mathbf{x} = \mathbf{v}_2^T \mathbf{x} = 0 \} = \operatorname{span}\{\mathbf{v}_3\}.$$

Číslo $\lambda_1 + \lambda_2$ říká, do jaké míry body neleží v přímce procházející počátkem.

Rovina procházející počátkem (tedy k=2), která minimalizuje součet čtverců vzdáleností k bodům, je množina

$$(\operatorname{span}\{\mathbf{v}_1\})^{\perp} = \{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{v}_1^T \mathbf{x} = 0 \} = \operatorname{span}\{\mathbf{v}_2, \mathbf{v}_3\}.$$

Číslo λ_1 říká, do jaké míry body neleží v rovině procházející počátkem.

7.2.1 Jiný pohled: nejbližší matice nižší hodnosti

Úlohu na optimální proložení bodů podprostorem lze formulovat i jiným, ekvivalentním způsobem (viz obrázek výše): k bodům $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ hledáme body $\mathbf{b}_1, \dots, \mathbf{b}_n \in \mathbb{R}^m$, které leží v (nějakém, předem neznámém) podprostoru dimenze k a minimalizují součet čtverců vzdáleností

$$\|\mathbf{a}_1 - \mathbf{b}_1\|^2 + \dots + \|\mathbf{a}_n - \mathbf{b}_n\|^2 = \|\mathbf{A} - \mathbf{B}\|^2.$$
 (7.14)

Výraz (7.14) jsme napsali i v maticové formě, kde $\mathbf{B} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_n \end{bmatrix} \in \mathbb{R}^{m \times n}$ značí matici se sloupci $\mathbf{b}_1, \dots, \mathbf{b}_n$. Body $\mathbf{b}_1, \dots, \mathbf{b}_n$ leží v podprostoru dimenze k, právě když³

$$\dim \operatorname{span}\{\mathbf{b}_1, \dots, \mathbf{b}_n\} = \dim \operatorname{rng}(\mathbf{B}^T) = \operatorname{rank}(\mathbf{B}^T) = \operatorname{rank}\mathbf{B} \le k.$$
 (7.15)

 $^{^2}$ Ve statistice je matice $\mathbf{A}\mathbf{A}^T = \mathbf{a}_1\mathbf{a}_1^T + \cdots + \mathbf{a}_n\mathbf{a}_n^T$ interpretována jako empirická kovarianční matice vzorku $\mathbf{a}_1, \dots, \mathbf{a}_n$ *m*-rozměrné náhodné veličiny (viz poznámka u Věty 5.1).

 $^{^3}$ Možná si myslíte, že v (7.15) má být dim span $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}=k$ místo dim span $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}\leq k$. To by ale byla chyba. Není totiž pravda, že body $\mathbf{b}_1,\ldots,\mathbf{b}_n$ leží v podprostoru dimenze k, právě když dim span $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}=k$ neplatí. Když totiž množina bodů leží v podprostoru dimenze nejvýše k, pak leží i v podprostoru dimenze k. Např. když množina bodů v \mathbb{R}^3 leží na přímce, pak také leží v (nějaké) rovině.

Tedy úlohu lze napsat jako

$$\min\{\|\mathbf{A} - \mathbf{B}\|^2 \mid \mathbf{B} \in \mathbb{R}^{m \times n}, \text{ rank } \mathbf{B} \le k \}.$$
 (7.16)

Krátce, k dané matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ hledáme nejbližší (ve smyslu Frobeniovy normy) matici \mathbf{B} hodnosti nejvýše k. Tato úloha je angl. známa jako low rank approximation.

Ukážeme, že úlohy (7.12) a (7.16) mají stejnou optimální hodnotu. Jsou-li body $\mathbf{b}_1, \ldots, \mathbf{b}_n$ optimálním řešením úlohy (7.16), pak musejí být ortogonálními projekcemi bodů $\mathbf{a}_1, \ldots, \mathbf{a}_n$ na podprostor span $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$, jinak by totiž účelová funkce (7.14) šla zmenšit posunutím bodů v tomto podprostoru. V tom případě je $\|\mathbf{a}_j - \mathbf{b}_j\|$ vzdálenost bodu \mathbf{a}_j od podprostoru a tedy výraz (7.14) je roven výrazu (7.2).

Optimální řešení úlohy (7.16) je tedy projekce bodů $\mathbf{a}_1, \dots, \mathbf{a}_n$ na optimální podprostor, spočítaný v úloze (7.12). Je-li ortonormální báze tohoto podprostoru tvořena sloupci matice \mathbf{Y} , pak dle Věty 4.7 je $\mathbf{b}_j = \mathbf{Y}\mathbf{Y}^T\mathbf{a}_j$ pro každé $j = 1, \dots, n$, což se maticově zapíše jako

$$\mathbf{B} = \mathbf{Y}\mathbf{Y}^{T}\mathbf{A} = (\mathbf{I} - \mathbf{X}\mathbf{X}^{T})\mathbf{A},\tag{7.17}$$

kde druhá rovnost plyne z (4.27), předpokládáme-li stále $V = \begin{bmatrix} X & Y \end{bmatrix}$. Stejně jako v (4.19) můžeme rovnici (7.17) rozdělit na dvě části

$$\mathbf{B} = \mathbf{Y}\mathbf{C}, \qquad \mathbf{C} = \mathbf{Y}^T \mathbf{A}, \tag{7.18}$$

kde sloupce $\mathbf{c}_1, \dots, \mathbf{c}_n \in \mathbb{R}^k$ matice $\mathbf{C} \in \mathbb{R}^{k \times n}$ jsou souřadnice sloupců matice \mathbf{B} v bázi tvořené sloupci matice \mathbf{Y} . Pro jednotlivé tedy máme $\mathbf{b}_j = \mathbf{Y}\mathbf{c}_j$ kde $\mathbf{c}_j = \mathbf{Y}^T\mathbf{a}_j$.

Všimněte si, že pro $n \gg m$ řešení úlohy (7.16) funguje jako komprese dat: body $\mathbf{a}_1, \dots, \mathbf{a}_n$ chceme aproximovat body $\mathbf{c}_1, \dots, \mathbf{c}_n$ (které zaberou v paměti daleko méně čísel, přičemž velikost báze \mathbf{Y} je zanedbatelná) tak, aby chyba aproximace (7.14) byla co nejmenší.

Jelikož jsou optimální hodnoty úloh (7.12) a (7.16) stejné, číslo (7.13) je čtverec vzdálenosti (měřené Frobeniovou normou) matice \mathbf{A} od nejbližší matice hodnosti nejvýše k. V tomto smyslu lze tedy spektrum matice $\mathbf{A}\mathbf{A}^T$ vidět jako zobecnění hodnosti matice \mathbf{A} .

(*) Poznámka: řešení úlohy (7.16) střídavou minimalizací. Dokažme ekvivalenci úloh (7.16) a (7.12) ještě jiným způsobem. Dle Věty 3.9 lze každou matici $\mathbf{B} \in \mathbb{R}^{m \times n}$ hodnosti ne větší než k zapsat jako $\mathbf{B} = \mathbf{YC}$ kde $\mathbf{Y} \in \mathbb{R}^{m \times k}$ a $\mathbf{C} \in \mathbb{R}^{k \times n}$. Tedy úloha (7.16) je ekvivalentní úloze

$$\min\{\|\mathbf{A} - \mathbf{Y}\mathbf{C}\|^2 \mid \mathbf{Y} \in \mathbb{R}^{m \times k}, \ \mathbf{C} \in \mathbb{R}^{k \times n}\}.$$
 (7.19)

Zde nepožadujeme, aby sloupce matice \mathbf{Y} byly ortonormální. Ovšem tuto podmínku bez ztráty obecnosti můžeme přidat, díky následujícímu tvrzení: pro každé matice $\mathbf{Y} \in \mathbb{R}^{m \times k}$ a $\mathbf{C} \in \mathbb{R}^{k \times n}$ existuje matice $\mathbf{Y}' \in \mathbb{R}^{m \times k}$ s ortonormálními sloupci a matice $\mathbf{C}' \in \mathbb{R}^{k \times n}$ tak, že $\mathbf{YC} = \mathbf{Y'C'}$. Tvrzení plyne z QR-rozkladu (Věta 4.6): rozložíme $\mathbf{Y} = \mathbf{Y'R}$ kde $\mathbf{Y'}$ má ortonormální sloupce a \mathbf{R} je horní trojúhelníková, a položíme $\mathbf{C}' = \mathbf{RC}$.

Úlohu (7.19) lze (kromě spektrálního či singulárního rozkladu) řešit metodou střídavé optimalizace (alternating optimization). Všimneme si, že je-li matice \mathbf{C} pevná, minimalizace výrazu $\|\mathbf{A} - \mathbf{Y}\mathbf{C}\|^2$ přes neznámou matici \mathbf{Y} není (po přerovnání matice \mathbf{Y} do vektoru) nic jiného než úloha nejmenších čtverců (5.2). Podobně pro pevnou \mathbf{Y} a proměnnou \mathbf{C} . Tedy můžeme začít s nějakou počáteční maticí \mathbf{C} a střídavě minimalizovat výraz přes \mathbf{Y} a \mathbf{C} . Lze ukázat, že tento iterační algoritmus konverguje ke globálnímu minimu úlohy (7.19) (zkuste si to v Matlabu!).

Tato metoda není pro úlohu (7.19) příliš zajímavá. Ovšem někdy je nutné přidat k úloze další podmínky, např. že jedna nebo obě z matic **Y** a **C** musí mít nezáporné prvky (tato úloha je známá jako non-negative matrix factorization, NMF). Pak může být velmi obtížné najít globální minimum úlohy (stane se NP-těžkou). Ovšem minimalizace přes pouze jednu z matic **Y** a **C** je stále snadná (jde o konvexní úlohu). Je známo, že střídavou minimalizací lze často najít dobré přibližné minimum.

7.2.2 Co když prokládáme afinním podprostorem?

Změňme nyní úlohu (7.12) tak, že místo lineárního podprostoru hledejme afinni podprostor dimenze k, který minimalizuje součet čtverců vzdáleností k bodům $\mathbf{a}_1, \ldots, \mathbf{a}_n$.

Věta 7.4. Nechť $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^m$ a $k \leq m$. Afinní podprostor dimenze k minimalizující součet čtverců vzdáleností k bodům $\mathbf{a}_1, \ldots, \mathbf{a}_n$ prochází těžištěm $\bar{\mathbf{a}} = \frac{1}{n}(\mathbf{a}_1 + \cdots + \mathbf{a}_n)$ těchto bodů.

Důkaz. Hledaný afinní podprostor parametrizujme jako (srov. (7.11) a Věta 3.13)

$$\{ \mathbf{b} \in \mathbb{R}^m \mid \mathbf{X}^T \mathbf{b} = \mathbf{y} \}, \tag{7.20}$$

kde $\mathbf{X} \in \mathbb{R}^{m \times (m-k)}$ je matice s ortonormálními sloupci a $\mathbf{y} \in \mathbb{R}^n$. Vzdálenost bodu $\mathbf{a} \in \mathbb{R}^m$ od tohoto podprostoru je $\|\mathbf{X}^T\mathbf{a} - \mathbf{y}\|$ (viz §4.6.2). Součet čtverců vzdáleností všech bodů k podprostoru je tedy

$$\|\mathbf{X}^T\mathbf{a}_1 - \mathbf{y}\|^2 + \dots + \|\mathbf{X}^T\mathbf{a}_n - \mathbf{y}\|^2.$$

Tento výraz tedy musíme minimalizovat přes proměnné \mathbf{X} a \mathbf{y} za podmínky $\mathbf{X}^T\mathbf{X} = \mathbf{I}$. Pokud je \mathbf{X} pevné a minimalizujeme pouze přes \mathbf{y} , minimum se nabývá v bodě $\mathbf{y} = \mathbf{X}^T\bar{\mathbf{a}}$ (viz Příklad 1.14). Z toho plyne (proč?), že podprostor (7.20) obsahuje bod $\bar{\mathbf{a}}$.

Nyní je řešení jasné: nejprve posuneme body $\mathbf{a}_1, \ldots, \mathbf{a}_n$ tak, aby jejich těžiště leželo v počátku, a potom najdeme (lineární) podprostor minimalizující součet čtverců vzdáleností k posunutým bodům. Jeho posunutím zpět pak získáme kýžený afinní podprostor.

7.3 Přeurčené homogenní lineární soustavy

Rešme homogenní lineární soustavu

$$\mathbf{A}\mathbf{x} = \mathbf{0},\tag{7.21}$$

kde $\mathbf{A} \in \mathbb{R}^{m \times n}$. Její množinou řešení je null \mathbf{A} , což je lineární podprostor \mathbb{R}^n dimenze $n-\mathrm{rank}\ \mathbf{A}$ viz (3.16). Může být homogenní soustava 'přeurčená'? Přeurčenost není rozumné definovat jako u nehomogenní soustavy (viz §5.1), protože homogenní soustava má vždy triviální řešení $\mathbf{x} = \mathbf{0}$. Ovšem, kdybychom 'přeurčenou' soustavu (7.21) zkusili přibližně řešit jako minimalizaci $\|\mathbf{A}\mathbf{x}\|$, dostali bychom triviální optimální řešení $\mathbf{x} = \mathbf{0}$.

Abychom se tomu vyhnuli, můžeme navíc požadovat $\mathbf{x}^T\mathbf{x} = 1$. To tedy vede na úlohu

$$\min\{\|\mathbf{A}\mathbf{x}\| \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}^T\mathbf{x} = 1\}. \tag{7.22}$$

Protože $\|\mathbf{A}\mathbf{x}\|^2 = \mathbf{x}^T \mathbf{A}^T \mathbf{A}\mathbf{x}$, dle (7.1) je řešením této úlohy vlastní vektor matice $\mathbf{A}^T \mathbf{A}$ příslušný jejímu nejmenšímu vlastnímu číslu.

Příklad 7.2 (Přibližné proložení bodů kuželosečkou). Kuželosečka (viz §6.3.2) je množina

$$K = \{ (x,y) \in \mathbb{R}^2 \mid Q(x,y) = ax^2 + bxy + cy^2 + dx + ey + f = 0 \}.$$

Budiž dáno m bodů $(x_1, y_1), \ldots, (x_m, y_m) \in \mathbb{R}^2$, o kterých víme, že mají ležet na kuželosečce. Body jsou ale zatíženy šumem a tedy obecně nemusí existovat kuželosečka, která jimi prochází. Hledejme tedy kuželosečku, která je 'nejbližší' daným bodům. Jedna možná formulace této úlohy je, že hledáme čísla a, b, c, d, e, f, která minimalizují součet čtverců vzdáleností bodů od křivky. Vyřešit přesně tuto úlohu je ale obtížné.

Formulujme proto úlohu přibližně: hledejme čísla a, \ldots, f , která minimalizují součet

$$Q(x_1, y_1)^2 + \dots + Q(x_m, y_m)^2$$
. (7.23)

Tato formulace ale nevyjadřuje to, co chceme, protože minimum výrazu (7.23) se nabývá pro a=b=c=d=e=f=0. V tomto případě množina K není křivka, ale celá rovina \mathbb{R}^2 , což rozhodně nechceme. Ve skutečnosti navíc potřebujeme, aby aspoň jedno z čísel a, \ldots, f bylo nenulové. Toho dosáhneme uvalením podmínky

$$a^{2} + b^{2} + c^{2} + d^{2} + e^{2} + f^{2} = 1. (7.24)$$

Všimněte si, že pro každou kuželosečku můžeme dosáhnout splnění této podmínky, protože vynásobením vektoru (a, b, c, d, e, f) libovolným nenulovým číslem nezmění množinu K.

Minimalizace (7.23) za podmínky (7.24) se dá psát jako minimalizace $\|\mathbf{A}\boldsymbol{\theta}\|^2$ za podmínky $\boldsymbol{\theta}^T\boldsymbol{\theta}=1$, kde

$$\mathbf{A} = \begin{bmatrix} x_1^2 & x_1 y_1 & y_1^2 & x_1 & y_1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_m^2 & x_m y_m & y_m^2 & x_m & y_m & 1 \end{bmatrix}, \quad \boldsymbol{\theta} = \begin{bmatrix} a & b & c & d & e & f \end{bmatrix}^T.$$

Obecněji, soustavu (7.21) nazveme přeurčenou tehdy, když dimenze jejího prostoru řešení je nižší než nějaká předem známá dimenze n-k. Přibližné řešení soustavy pak vede na úlohu (7.12), která je ovšem ekvivalentní úloze (7.16). Úloha (7.16) odpovídá tomu, že co nejméně změníme matici \mathbf{A} , aby prostor řešení soustavy (7.21) měl kýženou dimenzi n-k. Neboli nejprve najdeme matici \mathbf{B} s hodností k nejbližší matici \mathbf{A} a potom řešíme soustavu $\mathbf{B}\mathbf{x}=\mathbf{0}$, jejíž prostor řešení již má dimenzi n-k.

Vztah k nehomogennímu případu. V §5.1 jsme formulovali přibližné řešení nehomogenní $(\mathbf{b} \neq \mathbf{0})$ soustavy $\mathbf{A}\mathbf{x} = \mathbf{b}$ jako úlohu $\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|$. Může se zdát, že tato formulace je úplně odlišná od formulace přibližného řešení homogenní soustavy, kterou jsme uvedli zde. Ale tak tomu není. Formulujme přibližné řešení nehomogenní soustavy takto: pokud soustava $\mathbf{A}\mathbf{x} = \mathbf{b}$ nemá řešení, změňme vektor \mathbf{b} co nejméně tak, aby soustava řešení měla. Přesněji, hledáme vektor \mathbf{c} tak, aby pro nějaké \mathbf{x} platilo $\mathbf{A}\mathbf{x} = \mathbf{c}$ a přitom číslo $\|\mathbf{b} - \mathbf{c}\|$ bylo co nejmenší. Tuto úlohu lze napsat jako

$$\min\{\|\mathbf{b} - \mathbf{c}\| \mid \mathbf{A}\mathbf{x} = \mathbf{c}, \ \mathbf{x} \in \mathbb{R}^n, \ \mathbf{c} \in \mathbb{R}^m \}.$$

Zde minimalizujeme přes proměnné \mathbf{x} a \mathbf{c} (nevadí, že \mathbf{x} se nevyskytuje v účelové funkci). Ale tato úloha jde zjednodušit: dosadíme $\mathbf{c} = \mathbf{A}\mathbf{x}$ do účelové funkce $\|\mathbf{b} - \mathbf{c}\|$, čímž dostaneme $\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|$. Shrňme:

- \bullet V přibližném řešení nehomogenní soustavy $\mathbf{A}\mathbf{x} = \mathbf{b}$ chceme změnit vektor \mathbf{b} co nejméně tak, aby soustava měla řešení.
- V přibližném řešení homogenní soustavy $\mathbf{A}\mathbf{x} = \mathbf{0}$ chceme změnit matici \mathbf{A} co nejméně tak, aby soustava měla prostor řešení dané dimenze.

7.4 Singulární rozklad (SVD)

Věta 7.5. Každou matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ lze rozložit jako

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T = s_1\mathbf{u}_1\mathbf{v}_1^T + \dots + s_p\mathbf{u}_p\mathbf{v}_p^T. \tag{7.25}$$

kde $p = \min\{m, n\}$, matice $\mathbf{S} \in \mathbb{R}^{m \times n}$ je diagonální s diagonálními prvky s_1, \ldots, s_p a matice $\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_m \end{bmatrix} \in \mathbb{R}^{m \times m}$ a $\mathbf{V} \in \mathbb{R}^{n \times n} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$ jsou ortogonální.

Rozklad (7.25) se nazývá **singulární rozklad** (singular value decomposition, SVD) matice **A**. Diagonální prvky s_1, \ldots, s_p matice **S** se nazývají **singulární čísla** matice **A**. Připomeňme, že diagonální matice nemusí být čtvercová (viz §2), diagonální matice rozměru $m \times n$ má $p = \min\{m, n\}$ diagonálních prvků. Singulární čísla je zvykem (i Matlab to tak dělá) volit nezáporná a řadit je sestupně⁴,

$$s_1 \ge \dots \ge s_p \ge 0, \tag{7.26}$$

což lze vždy zajistit případným vynásobením čísla s_i a jednoho z vektorů $\mathbf{u}_i, \mathbf{v}_i$ minus jedničkou a permutací sloupců \mathbf{U}, \mathbf{V} a diagonálních prvků \mathbf{S} . Sloupce $\mathbf{u}_1, \ldots, \mathbf{u}_m$ matice \mathbf{U} nazývají levé **singulární vektory** a sloupce $\mathbf{v}_1, \ldots, \mathbf{v}_n$ matice \mathbf{V} pravé singulární vektory matice \mathbf{A} . Platí (např. z Věty 3.6) rank $\mathbf{A} = \operatorname{rank} \mathbf{S}$, tedy hodnost matice je rovna počtu jejích nenulových singulárních čísel.

Rozklad $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ kde $\mathbf{S}, \mathbf{U}, \mathbf{V}$ maji rozměry jako ve Větě 7.5 se přesněji nazývá plný singulární rozklad. Pokud je \mathbf{A} obdélníková, pak posledních m-p sloupců \mathbf{U} příp. n-p sloupců \mathbf{V} je násobeno nulami (napište si!). Jejich vynecháním získáme redukovaný rozklad $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$, kde $\mathbf{S} = \mathrm{diag}(s_1, \ldots, s_p) \in \mathbb{R}^{p \times p}$ je diagonální a $\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_p \end{bmatrix} \in \mathbb{R}^{m \times p}$ a $\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_p \end{bmatrix} \in \mathbb{R}^{n \times p}$ mají ortonormální sloupce.

Singulární čísla a vektory matice \mathbf{A} mají úzký vztah k vlastním číslům a vektorům matic $\mathbf{A}^T\mathbf{A}$ a $\mathbf{A}\mathbf{A}^T$. Předpokládeje, že rozklad (7.25) existuje. Pak

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{S}^T \mathbf{U}^T \mathbf{U} \mathbf{S} \mathbf{V}^T = \mathbf{V} \mathbf{S}^T \mathbf{S} \mathbf{V}^T, \tag{7.27a}$$

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{S}\mathbf{V}^T\mathbf{V}\mathbf{S}^T\mathbf{U}^T = \mathbf{U}\mathbf{S}\mathbf{S}^T\mathbf{U}^T. \tag{7.27b}$$

Ale to jsou spektrální rozklady (6.7) symetrických positivně semidefinitních matic $\mathbf{A}^T\mathbf{A}$ a $\mathbf{A}\mathbf{A}^T$. Matice $\mathbf{S}^T\mathbf{S} \in \mathbb{R}^{n \times n}$ a $\mathbf{S}\mathbf{S}^T \in \mathbb{R}^{m \times m}$ jsou diagonální a jejich nenulové diagonální prvky jsou druhé mocniny nenulových diagonálních prvků matice \mathbf{S} . Tedy nenulová singulární čísla matice \mathbf{A} jsou druhé odmocniny nenulových vlastních čísel matic $\mathbf{A}^T\mathbf{A}$ a $\mathbf{A}\mathbf{A}^T$ (která jsou tudíž stejná, srov. Cvičení 6.6). Pravé a levé singulární vektory jsou vlastní vektory těchto matic příslušné nenulovým vlastním číslům. Zdůrazněme, že (7.27) není ještě důkaz Věty 7.5, protože není jasné, zda matice získané nezávisle dvěma spektrálními rozklady (7.27) splňují (7.25).

Počítat SVD matice \mathbf{A} ze spektrálního rozkladu matice $\mathbf{A}^T\mathbf{A}$ nebo $\mathbf{A}\mathbf{A}^T$ není numericky vhodné, protože výpočet např. součinu $\mathbf{A}\mathbf{A}^T$ může vést ke zbytečným zaokrouhlovacím chybám

⁴Na rozdíl od vlastních čísel symetrické matice, která je zvykem řadit vzestupně, dle (6.8).

(viz Příklad 5.2). Na SVD proto byly vymyšleny algoritmy, které se explicitnímu výpočtu $\mathbf{A}\mathbf{A}^T$ vyhýbají. Kdykoliv tedy hledáme vlastní čísla a vektory matice $\mathbf{A}\mathbf{A}^T$ (např. v úlohách (7.12) a (7.16)), měli bychom to dělat *pomocí SVD algoritmu*. Na druhou stranu, pokud nám možné snížení přesnosti nevadí, počítání SVD spektrálním rozkladem může být rychlejší: např. když $m \gg n$ a potřebujeme spočítat jen matice \mathbf{V} a \mathbf{S} (nepotřebujeme \mathbf{U}), spektrální rozklad matice $\mathbf{A}\mathbf{A}^T$ bude rychlejší (tato matice je malá, $n \times n$).

7.4.1 Nejbližší matice nižší hodnosti z SVD

V $\S7.2.1$ jsme odvodili řešení úlohy (7.16) pomocí spektrálního rozkladu matice $\mathbf{A}\mathbf{A}^T$. Následující klasická věta (Eckarta a Younga) formuluje toto řešení elegantně pomocí SVD matice \mathbf{A} .

Věta 7.6. Nechť $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ je SVD matice \mathbf{A} a $k \leq p = \min\{m, n\}$. Řešení úlohy (7.16) je

$$\mathbf{B} = \mathbf{U}\mathbf{S}_k \mathbf{V}^T = s_1 \mathbf{u}_1 \mathbf{v}_1^T + \dots + s_k \mathbf{u}_k \mathbf{v}_k^T, \tag{7.28}$$

kde matice $\mathbf{S}_k = \begin{bmatrix} \mathbf{I}_k & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{S}$ se získá vynulováním p-k nejmenších diagonálních prvků matice \mathbf{S} .

 $D\mathring{u}kaz$. Dle (7.27b) víme, že matici **U** ve spektrálním rozkladu $\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T$ můžeme získat jako matici **U** v singulárním rozkladu $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$. Protože však vlastní čísla jsou řazená sestupně ale singulární čísla sestupně, blok této matice odpovídající k největším vlastním číslům matice $\mathbf{A}\mathbf{A}^T$ je $\mathbf{X} \in \mathbb{R}^{m \times k}$ kde $\mathbf{U} = \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix}$. Dle (7.18) je tedy optimální řešení úlohy (7.16) rovno $\mathbf{B} = \mathbf{X}\mathbf{C}$ kde $\mathbf{C} = \mathbf{X}^T\mathbf{A}$. Zbytek je cvičení na úpravy maticových výrazů:

$$\begin{aligned} \mathbf{C} &= \mathbf{X}^T \mathbf{A} = \mathbf{X}^T \mathbf{U} \mathbf{S} \mathbf{V}^T = \mathbf{X}^T \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} \mathbf{S} \mathbf{V}^T = \begin{bmatrix} \mathbf{X}^T \mathbf{X} & \mathbf{X}^T \mathbf{Y} \end{bmatrix} \mathbf{S} \mathbf{V}^T = \begin{bmatrix} \mathbf{I}_k & \mathbf{0} \end{bmatrix} \mathbf{S} \mathbf{V}^T \\ \mathbf{B} &= \mathbf{X} \mathbf{C} = \mathbf{X} \begin{bmatrix} \mathbf{I}_k & \mathbf{0} \end{bmatrix} \mathbf{S} \mathbf{V}^T = \mathbf{X} \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} \begin{bmatrix} \mathbf{I}_k & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{S} \mathbf{V}^T = \mathbf{U} \begin{bmatrix} \mathbf{I}_k & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{S} \mathbf{V}^T = \mathbf{U} \mathbf{S}_k \mathbf{V}^T. \end{aligned}$$

Rozměry nulových matic se liší podle toho, zda je SVD plné nebo redukované (věta platí pro obě verze SVD). \Box

Všimněte si, že suma dyád v (7.28) je vlastně zkrácená suma v (7.25).

7.5 Cvičení

- 7.1. Řekli jsme, že řešení úlohy (7.2) se nabývá pro $y_1=1$ a $y_2=\cdots=y_n=0$ (kde předpokládáme, λ_1 je nejmenší z čísel $\lambda_1,\ldots,\lambda_n$). Dokažte to přesně.
- 7.2. Vyřešte úlohu $\max\{\mathbf{x}^T\mathbf{A}\mathbf{x}\mid\mathbf{x}\in\mathbb{R}^n,\ \mathbf{x}^T\mathbf{x}=1\}$. Musí být matice **A** symetrická?
- 7.3. Ukážeme, že úlohy (7.1) a (7.4) lze formulovat i tak, že podmínky na ortonormalitu vynecháme a zobecníme účelovou funkci.
 - a) Pro čtvercovu matici **A** je výraz $f(\mathbf{x}) = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$ znám jako **Rayleighův kvocient**. Dokažte, že $\min_{\mathbf{x} \in \mathbb{R}^n \setminus \{0\}} f(\mathbf{x}) = \min\{\mathbf{x}^T \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x}^T \mathbf{x} = 1\}.$

- b) V §7.1 jsme ukázali, že stopa matice \mathbf{A} na podprostoru X nezávisí na tom, jakou ortonormální bázi podprostoru X zvolíme, tj. výraz (7.9) je stejný pro všechny matice $\mathbf{X} \in \mathbb{R}^{n \times k}$ splňující $X = \operatorname{rng} \mathbf{X}$ a $\mathbf{X}^T \mathbf{X} = \mathbf{I}$. Chceme najít obecnější výraz, který bude stejný pro všechny matice $\mathbf{X} \in \mathbb{R}^{n \times k}$ splňující $X = \operatorname{rng} \mathbf{X}$ a rank $\mathbf{X} = k$ (tedy báze už nemusí být ortonormální). Dokažte, že takovým výrazem je $\operatorname{tr}(\mathbf{X}^T \mathbf{A} \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1})$. Dokažte, že úloha $\min\{\operatorname{tr}(\mathbf{X}^T \mathbf{A} \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}) \mid \mathbf{X} \in \mathbb{R}^{n \times k}, \operatorname{rank} \mathbf{X} = k\}$ má stejnou optimální hodnotu jako úloha (7.4).
- 7.4. Jsou dány čtyři body $\mathbf{a}_1 = (3, -3, 4)$, $\mathbf{a}_2 = (-2, -3, -2)$, $\mathbf{a}_3 = (1, 0, -1)$, $\mathbf{a}_4 = (3, 1, 0)$ v \mathbb{R}^3 . Najděte podprostor $X \subseteq \mathbb{R}^3$, který minimalizuje součet čtverců kolmých vzdáleností bodů k podprostoru X, kde X je
 - a) přímka procházející počátkem,
 - b) rovina procházející počátkem,
 - c) přímka která může ale nemusí procházet počátkem.

Vždy najděte vektor \mathbf{x}_0 a ortonormální bázi lineárního podprostoru X' tak, aby $X = \mathbf{x}_0 + X'$. Dále spočítejte ortogonální projekce bodů na podprostor X (je snad jasné, co myslíme projekcí na afinní podprostor) a souřadnice těchto projekcí v ortonormální bázi podprostoru X'. Použijte (a) spektrální rozklad, (b) SVD. Můžete použít počítač.

- 7.5. (*) Nechť v rozkladu (7.25) je $\sigma_1 \geq \cdots \geq \sigma_p$ a nechť rank $\mathbf{A} = r$. Dokažte, že prvních r sloupců matice \mathbf{U} tvoří ortonormální bázi prostoru rng \mathbf{A} a prvních r sloupců matice \mathbf{V} tvoří ortonormální bázi prostoru rng(\mathbf{A}^T).
- 7.6. (*) V Matlabu se báze nulového prostoru matice najde funkcí nul1; vypište si implementaci této funkce matlabským příkazem edit nul1 a najděte souvislost se Cvičením 7.5.
- 7.7. Je dán spektrální rozklad dané symetrické matice. Jak byste z něho jednoduše nalezli SVD této matice?
- 7.8. Pro matici $\mathbf{A} = \frac{1}{15} \begin{bmatrix} -13 & 2 & -22 \\ -16 & 14 & -4 \end{bmatrix}$ najděte matici \mathbf{B} hodnosti jedna takovou, že $\|\mathbf{A} \mathbf{B}\|$ je minimální. Pak spočtěte $\|\mathbf{A} \mathbf{B}\|$. Spočtěte pomocí (a) spektrálního rozkladu, (b) SVD. Použijte počítač. Pokud byste počítali ručně, napovíme že $\mathbf{U} = \frac{1}{5} \begin{bmatrix} -3 & 4 \\ 4 & 3 \end{bmatrix}$.
- 7.9. Máme n = 100 bodů $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^{10^6}$. Chceme najít podprostor dimenze k (kde k < 100) minimalizující součet čtverců vzdáleností k bodům. Jak to uděláme co nejefektivněji? Nápověda: použijte výsledek Cvičení 6.6.
- 7.10. Dokažte, že následující dvě úlohy jsou stejné:
 - Najdi podprostor takový, že součet čtverců vzdáleností daných bodů k tomuto podprostoru je minimální.
 - Najdi podprostor takový, že součet čtverců délek ortogonálních projekcí daných bodů na tento podprostor je maximální.
- 7.11. Komutuje operace ortogonální projekce s operací těžiště? Tj., když body $\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ ortogonálně promítnu na podprostor $X \subseteq \mathbb{R}^m$ a potom najdu těžiště výsledných bodů, dostanu stejný bod jako když nejdříve spočítám těžiště bodů $\mathbf{a}_1, \dots, \mathbf{a}_n$ a pak ho promítnu na podprostor X? Odpověď dokažte.

- 7.12. Zjednodušme Příklad 7.2 tak, že místo kuželosečky chceme dané body proložit přímkou $\{(x,y)\in\mathbb{R}^2\mid ax+by+c=0\}$. Děláme to opět tak, že minimalizujeme $\sum_i(ax_i+by_i+c)^2$ za podmínky $a^2+b^2+c^2=1$.
 - a) Minimalizuje formulovaná úloha součet čtverců vzdáleností bodů k přímce, nebo jen jeho aproximaci (jako pro kuželosečku)?
 - b) Co když místo omezení $a^2+b^2+c^2=1$ použijeme omezení $a^2+b^2=1$? Co úloha vyjadřuje a jak ji vyřešíme?
 - c) (*) Když v Příkladě 7.2 změníme omezení (7.24) na $a^2 + b^2 + c^2 + d^2 + e^2 = 1$ příp. na $a^2 + b^2 + c^2 = 1$, bude úloha minimalizovat přesný součet čtverců vzdáleností bodů ke kuželosečce?
- 7.13. (*) Dokažte, že $\max\{\mathbf{x}^T\mathbf{A}\mathbf{y} \mid \mathbf{x} \in \mathbb{R}^m, \mathbf{y} \in \mathbb{R}^n, \mathbf{x}^T\mathbf{x} = \mathbf{y}^T\mathbf{y} = 1\} = s_1$, kde s_1 je největší singulární číslo matice $\mathbf{A} \in \mathbb{R}^{m \times n}$, a optimální argument je $\mathbf{u}_1, \mathbf{v}_1$, tedy levý a pravý singulární vektor příslušný singulárnímu číslu s_1 .
- 7.14. Někdo by mohl namítnout, že Věta 7.3 plyne okamžitě z Věty 7.2, neboť minimalizaci součtu $\mathbf{x}_1^T \mathbf{A} \mathbf{x}_1 + \dots + \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k$ za podmínky $\mathbf{x}_i^T \mathbf{x}_j = \delta_{ij}$ jde provést takto: nejdříve minimalizujeme $\mathbf{x}_1^T \mathbf{A} \mathbf{x}_1$ za podmínky $\mathbf{x}_i^T \mathbf{x}_j = \delta_{ij}$, což má řešení $\mathbf{x}_1 = \mathbf{v}_1$, pak \mathbf{x}_1 zafixujeme a minimalizujeme $\mathbf{x}_1^T \mathbf{A} \mathbf{x}_1 + \mathbf{x}_2^T \mathbf{A} \mathbf{x}_2$ za podmínky $\mathbf{x}_i^T \mathbf{x}_j = \delta_{ij}$, což má řešení $\mathbf{x}_2 = \mathbf{v}_2$, atd. Ovšem tento 'hladový' (angl. greedy) algoritmus obecně nefunguje. Uvažujte zjednodušenou verzi úlohy: máme funkce $f \colon \mathbb{R} \to \mathbb{R}$ a $g \colon \mathbb{R}^k \to \mathbb{R}$ a chceme minimalizovat součet $f(x_1) + \dots + f(x_k)$ za podmínky $g(x_1, \dots, x_k) = 0$, kde proměnné jsou čísla $x_1, \dots, x_k \in \mathbb{R}$. Najděte příklad funkcí f, g, pro které hladový algoritmus nenajde minimum této úlohy.
- 7.15. Do této chvíle jsme potkali již tři rozklady matic: QR, spektrální rozklad a SVD. Je ještě několik jiných užitečných rozkladů. Návrh algoritmů na operace s maticemi, řešení soustav lineárních rovnic a rozklady matic je předmětem numerické lineární algebry. Cílem je nalézt rychlé algoritmy, které jsou odolné vůči zaokrouhlovacím chybám. Existují volně dostupné softwarové balíky na numerickou lineární algebru. Matlab je postaven na balíku LAPACK. Jiný oblíbený balík je BLAS, který obsahuje funkce nižší úrovně než LAPACK. Najděte na internetu dokumentaci k balíkům LAPACK a BLAS a pochopte z ní co nejvíce!

Nápověda a řešení

- 7.1. Dokažte, že kdyby bylo $y_1 < 1$ (a tedy $y_2^2 + \dots + y_n^2 > 0$), tak bychom mohli hodnotu výrazu $\lambda_1 y_1^2 + \dots + \lambda_n y_n^2$ zmenšit bez porušení podmínky $y_1^2 + \dots + y_n^2 = 1$.
- 7.3.a) Klíčové je si všimnout, že $f(\alpha \mathbf{x}) = f(\mathbf{x})$ pro každé $\alpha \neq 0$ a $\mathbf{x} \neq \mathbf{0}$. To nám dovolí dokázat rovnost množin $\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}\} = \{\mathbf{x}^T \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}^T \mathbf{x} = 1\}$. Každý prvek z pravé množiny zřejmě patří také do levé množiny. Ale také každý prvek z levé množiny patří do pravé množiny, protože když vektor \mathbf{x} vydělíme číslem $\|\mathbf{x}\|$, bude $\mathbf{x}^T \mathbf{x} = 1$ a hodnota $f(\mathbf{x})$ se nezmění.
- 7.3.b) Z cykličnosti stopy je $\operatorname{tr}(\mathbf{X}^T\mathbf{A}\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}) = \operatorname{tr}(\mathbf{A}\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)$. Matice $\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ je ortogonální projektor na podprostor \mathbf{X} . Ve Cvičení 5.11 jsme dokázali, že tento projektor nezávisí na změně báze.
- 7.4.a) $\mathbf{x}_0 = \mathbf{0}$, ortonorm. báze X' je např. $\{(0.6912, -0.2181, 0.6889)\}$.
- 7.4.b) $\mathbf{x}_0 = \mathbf{0}$, ortonorm. báze X' je např. $\{(0.6912, -0.2181, 0.6889), (-0.3771, -0.9221, 0.0864)\}$.
- 7.4.c) $\mathbf{x}_0 = (1.25, -1.25, 0.25)$, ortonorm. báze X' je např. $\{(0.6599, 0.0280, 0.7508)\}$.
- 7.11. Ano, komutují. Nápověda k důkazu: Označíme-li $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \in \mathbb{R}^{m \times n}$, pak těžiště bodů je bod $\mathbf{A}\mathbf{t}$ kde $\mathbf{t} = \frac{1}{n}\mathbf{1}_n$ a projekce bodů je $\mathbf{P}\mathbf{A}$ kde \mathbf{P} je projektor. Důkaz dokončete sami.

- 7.13. Dosaďte $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^T$ (\mathbf{U}, \mathbf{V} ortogonální, $\mathbf{S} \in \mathbb{R}^{m \times n}$). Řešíme $\max\{\bar{\mathbf{x}}^T\mathbf{S}\bar{\mathbf{y}} \mid \bar{\mathbf{x}}^T\bar{\mathbf{x}} = \bar{\mathbf{y}}^T\bar{\mathbf{y}} = 1\}$. Máme $\bar{\mathbf{x}}^T\mathbf{S}\bar{\mathbf{y}} = \sum_{i=1}^p s_i\bar{z}_i\bar{y}_i = \sum_{i=1}^p s_iz_i$, kde $z_i = \bar{z}_i\bar{y}_i$. Platí $|z_i| \le 1$ a $|\sum_i z_i| \le 1$ (rozmyslete). Úloha $\max\{\sum_i s_iz_i \mid |z_i| \le 1, |\sum_i z_i| \le 1\}$ má optimální hodnotu s_1 a optimální argument je $z_1 = 1$ a $z_i = 0$ pro $i \ne 1$. Taková čísla $z_i = \bar{x}_i\bar{y}_i$ lze ale realizovat volbou $\bar{\mathbf{x}} = \mathbf{e}_1$ a $\bar{\mathbf{y}} = \mathbf{e}_1$. Optimální argument původní úlohy je $\mathbf{x} = \mathbf{U}\bar{\mathbf{x}} = \mathbf{u}_1$ a $\mathbf{y} = \mathbf{V}\bar{\mathbf{y}} = \mathbf{v}_1$.
- 7.14. f(x)=x a $g(x_1,\ldots,x_k)=x_1^2+\cdots+x_k^2$. Nechť k=2. Minimum je $x_1=x_2=1/\sqrt{2}$. Hladový algoritmus ovšem v prvním kroku minimalizuje x_1 za podmínky $x_1^2+x_2^2=1$, což dá $x_1=-1$.

Část II Nelineární optimalizace

Kapitola 8

Nelineární funkce a zobrazení

V předchozích kapitolách jsme potkali lineární a afinní zobrazení a kvadratické funkce. V této kapitole si zopakujeme základní fakta o obecných nelineárních funkcích $f: \mathbb{R}^n \to \mathbb{R}$ a zobrazeních $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ (zopakujte si značení funkcí a zobrazení z §1.1.3). Většinu z této kapitoly byste již měli znát z matematické analýzy funkcí jedné a více proměnných. I když v některých definicích použijeme pojem limity funkce více proměnných, student se bez znalosti tohoto pojmu obejde.

Většinu definic a vět vyslovíme jen pro funkce a zobrazení, jejichž definičním oborem je celé \mathbb{R}^n . To samozřejmě obecně neplatí, protože součástí definice funkce je i její definiční obor. Např. funkce $f \colon \mathbb{R} \to \mathbb{R}$ daná předpisem $f(x) = x^2$ a funkce $g \colon [0,1] \to \mathbb{R}$ daná předpisem $g(x) = x^2$ jsou dvě různé funkce. Podobně, funkce daná předpisem $f(x) = \sqrt{1-x^2}$ není pro některá $x \in \mathbb{R}$ definována a jejím největším možným definičním oborem je interval [-1,1]. Toto zjednodušení usnadní výklad a vždy bude očividné, jak by se látka zobecnila pro jiný definiční obor.

Pro funkci $f: \mathbb{R}^n \to \mathbb{R}$ užíváme tyto pojmy:

- Graf funkce f je množina $\{(\mathbf{x}, y) \in \mathbb{R}^{n+1} \mid f(\mathbf{x}) = y\} = \{(\mathbf{x}, f(\mathbf{x})) \mid \mathbf{x} \in \mathbb{R}^n\}.$
- Vrstevnice funkce f výšky y je množina $\{ \mathbf{x} \in \mathbb{R}^n \mid f(\mathbf{x}) = y \}.$

Příklad 8.1. Graf funkce $f: \mathbb{R} \to \mathbb{R}$ dané vzorcem $f(x) = x^2$ je množina $\{(x,y) \mid x^2 = y\}$. Vrstevnice funkce f výšky 1 je množina $\{x \mid x^2 = 1\} = \{-1,1\}$.

Graf funkce $f: \mathbb{R}^2 \to \mathbb{R}$ dané vzorcem $f(x,y) = x^2 + y^2$ je množina $\{(x,y,z) \mid x^2 + y^2 = z\}$. Vrstevnice funkce f výšky 1 je množina $\{(x,y) \mid x^2 + y^2 = 1\}$.

Příklad 8.2. Obrázek ukazuje část (na obdélníku $[-1,1]^2$) grafu a vrtevnic funkcí $f: \mathbb{R}^2 \to \mathbb{R}$:

Příklad 8.3. Příklady funkcí a zobrazení reálných proměnných:

- 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$
- 2. $f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = x^2 y^2$
- 3. $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = a$ kde $a \in \mathbb{R}$ (konstantní funkce n proměnných)
- 4. $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = x_1$ (i když x_2, \dots, x_n chybí, f se rozumí jako funkce n proměnných)
- 5. $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} = a_1 x_1 + \dots + a_n x_n \text{ kde } \mathbf{a} \in \mathbb{R}^n \text{ (lineární funkce)}$
- 6. $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b = a_1 x_1 + \dots + a_n x_n + b \text{ kde } \mathbf{a} \in \mathbb{R}^n, b \in \mathbb{R} \text{ (afinní funkce)}$
- 7. $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = e^{-\mathbf{x}^T \mathbf{x}}$ (nenormalizované Gaussovo rozdělení)
- 8. $f: \mathbb{R}^n \to \mathbb{R}, f(\mathbf{x}) = \max_{i=1}^n x_i$
- 9. $\mathbf{f}: \mathbb{R} \to \mathbb{R}^2$, $\mathbf{f}(t) = (\cos t, \sin t)$ (parametrizace kružnice, množina $\mathbf{f}([0, 2\pi))$ je kružnice)
- 10. $\mathbf{f}: \mathbb{R} \to \mathbb{R}^3$, $\mathbf{f}(t) = (\cos t, \sin t, at)$ (parametrizace šroubovice neboli helixu)
- 11. $\mathbf{f} \colon \mathbb{R} \to \mathbb{R}^n$, $\mathbf{f}(t) = \mathbf{x} + t\mathbf{v}$ (parametrizace přímky jdoucí bodem \mathbf{x} ve směry \mathbf{v})
- 12. $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^n$, $\mathbf{f}(\mathbf{x}) = \mathbf{x}$ (identické zobrazení neboli identita)
- 13. $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m, \, \mathbf{f}(\mathbf{x}) = \mathbf{a} \text{ kde } \mathbf{a} \in \mathbb{R}^m \text{ (konstantní zobrazení)}$
- 14. $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$ kde $\mathbf{A} \in \mathbb{R}^{m \times n}$ (lineární zobrazení; je to také parametrizace lineárního podprostoru $\mathbf{f}(\mathbb{R}^n) = \operatorname{rng} \mathbf{A} \subseteq \mathbb{R}^m$)
- 15. $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ kde $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ (afinní zobrazení; je to také parametrizace afinního podprostoru $\mathbf{f}(\mathbb{R}^n) \subseteq \mathbb{R}^m$)
- 16. $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^3$, $\mathbf{f}(u, v) = ((R + r \cos v) \cos u, (R + r \cos v) \sin u, r \sin v)$ (parametrizace toru neboli anuloidu, množina $\mathbf{f}([0, 2\pi) \times [0, 2\pi))$ je torus)
- 17. Skalární pole (pojem z fyziky) je funkce $\mathbb{R}^3 \to \mathbb{R}$. Např. teplotní pole přiřadí každému bodu prostoru teplotu.
- 18. Vektorové pole (opět z fyziky) je zobrazení $\mathbb{R}^3 \to \mathbb{R}^3$. Např. elektrické pole přiřadí každému bodu v \mathbb{R}^3 vektor z \mathbb{R}^3 .
- 19. Při technice image morphing se obrázek např. obličeje spojitě zdeformuje na obrázek jiného obličeje. Považujeme-li obrázek pro jednoduchost za prostor \mathbb{R}^2 (ve skutečnosti je to množina $\{1,\ldots,m\}\times\{1,\ldots,n\}$), morphing je tedy zobrazení $\mathbb{R}^2\to\mathbb{R}^2$.

8.1 Spojitost

Spojitost zobrazení $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ lze definovat několika ekvivalentními způsoby. Uvedeme tento: zobrazení \mathbf{f} je **spojité** v bodě $\mathbf{x} \in \mathbb{R}^n$, jestliže

$$\lim_{\mathbf{y} \to \mathbf{x}} \mathbf{f}(\mathbf{y}) = \mathbf{f}(\mathbf{x}). \tag{8.1}$$

Tato definice není pohodlná, protože počítat limity funkcí více proměnných je obtížné. Uvedeme proto postačující (avšak nikoliv nutnou) podmínku pro spojitost, která v praxi většinou stačí. Přitom předpokládáme, že čtenář pouze dokáže ověřit spojitost funkcí jedné proměnné. Věta vlastně ukazuje, jak lze rekurzivně sestrojit spojitá zobrazení více proměnných ze spojitých funkcí jedné proměnné. Důkaz věty vynecháme.

Věta 8.1.

- 1. Necht' funkce $f: \mathbb{R} \to \mathbb{R}$ je spojitá v bodě x. Necht' $k \in \{1, ..., n\}$ a necht' funkce $g: \mathbb{R}^n \to \mathbb{R}$ je dána jako $g(x_1, ..., x_n) = f(x_k)$ (tedy g závisí jen na proměnné x_k). Pak funkce g je spojitá v každém bodě $(x_1, ..., x_n)$ takovém, že $x_k = x$.
- 2. Nechť funkce $f, g: \mathbb{R}^n \to \mathbb{R}$ jsou spojité v bodě **x**. Pak funkce f+g, f-g a fg jsou spojité v bodě **x**. Pokud $g(\mathbf{x}) \neq 0$, je funkce f/g spojitá v bodě **x**.
- 3. Nechť $f: \mathbb{R}^n \to \mathbb{R}$ je spojitá v bodě \mathbf{x} a $g: \mathbb{R} \to \mathbb{R}$ je spojitá v bodě $y = f(\mathbf{x})$. Pak složená funkce $q \circ f: \mathbb{R}^n \to \mathbb{R}$ je spojitá v bodě \mathbf{x} .
- 4. Nechť funkce f_1, \ldots, f_m : $\mathbb{R}^n \to \mathbb{R}$ jsou spojité v bodě \mathbf{x} . Pak zobrazení \mathbf{f} : $\mathbb{R}^n \to \mathbb{R}^m$ definované jako $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \ldots, f_m(\mathbf{x}))$ je spojité v bodě \mathbf{x} .

Příklad 8.4. Z věty snadno ukážeme, že např. funkce dvou proměnných

$$f(x,y) = \sin(x+y^2) \tag{8.2}$$

je spojitá. Podle 1 je x spojitá funkce dvou proměnných (x, y). Podobně, y^2 je spojitá funkce proměnných (x, y). Podle 2 je proto funkce $x + y^2$ spojitá. Protože funkce sin je spojitá, podle 3 je funkce $\sin(x + y^2)$ spojitá. Takto jsme 'rekurzivně' dokázali spojitost celé funkce.

8.2 Derivace funkce jedné proměnné

Zopakujme pojmy diferencovatelnosti a derivace funkce jedné proměnné. Funkce $f: \mathbb{R} \to \mathbb{R}$ je diferencovatelná v bodě $x \in \mathbb{R}$ tehdy, existuje-li limita

$$\lim_{y \to x} \frac{f(y) - f(x)}{y - x} = \lim_{\alpha \to 0} \frac{f(x + \alpha) - f(x)}{\alpha}.$$
(8.3)

V tom případě se hodnota limity (8.3) nazývá derivace funkce f v bodě x. Tuto derivaci značíme jedním ze symbolů $\frac{\mathrm{d}f(x)}{\mathrm{d}x}$ nebo f'(x). Symbol $\frac{\mathrm{d}f}{\mathrm{d}x} \colon \mathbb{R} \to \mathbb{R}$ nebo $f' \colon \mathbb{R} \to \mathbb{R}$ označuje funkci, která bodu $x \in \mathbb{R}$ přiřadí defivaci funkce f v bodě x.

Diferencovatelnost a derivaci lze definovat i jiným, ekvivalentním způsobem: funkce f je diferencovatelná v bodě x tehdy, lze-li ji v okolí bodu x 'dobře' aproximovat afinní funkcí. Upřesněme tento výrok. Označme naši afinní funkci jako $g: \mathbb{R} \to \mathbb{R}$ a pišme ji ve tvaru¹

$$g(y) = f(x) + a(y - x),$$
 (8.4)

¹Někdo raději píše $g(x + \alpha) = f(x) + a\alpha$, což je samozřejmě stejné jako (8.4) dosazením $y = x + \alpha$.

Samozřejmě, funkce g je obecně jiná² pro každé $x \in \mathbb{R}$. Všimněte si, že pro každé $a \in \mathbb{R}$ je g(x) = f(x), tedy v bodě x mají obě funkce stenou hodnotu. Funkce g je opravdu afinní (viz (3.5)), protože g(y) = ay + b kde b = f(x) - ax. Funkce f je diferencovatelná v bodě x právě tehdy, když existuje číslo a takové, že chyba aproximace f(y) - g(y) se pro $y \to x$ v prvním řádu blíží nule, tedy

$$\lim_{y \to x} \frac{f(y) - g(y)}{y - x} = \lim_{y \to x} \frac{f(y) - f(x) - a(y - x)}{y - x} = 0.$$
 (8.5)

V tom případě se číslu a říká derivace funkce f v bodě x.

Obě definice jsou ekvivalentní, neboť

$$\lim_{y \to x} \frac{f(y) - f(x) - a(y - x)}{y - x} = \lim_{y \to x} \left(\frac{f(y) - f(x)}{y - x} - a \right) = \lim_{y \to x} \frac{f(y) - f(x)}{y - x} - a. \tag{8.6}$$

Tedy limita (8.3) existuje a je rovna a, právě když limita (8.5) existuje a je rovna nule.

8.3 Parciální derivace

Parciální derivaci funkce $f: \mathbb{R}^n \to \mathbb{R}$ podle i-té proměnné v bodě \mathbf{x} značíme jedním ze symbolů $\frac{\partial f(\mathbf{x})}{\partial x_i}$ nebo $f_{x_i}(\mathbf{x})$. Spočítáme ji tak, že všechny proměnné $x_j, j \neq i$, považujeme za konstanty a zderivujeme funkci podle jediné proměnné x_i . Symbol $\frac{\partial f}{\partial x_i}: \mathbb{R}^n \to \mathbb{R}$ nebo $f_{x_i}: \mathbb{R}^n \to \mathbb{R}$ pak označuje funkci, která přiřazuje bodu $\mathbf{x} \in \mathbb{R}^n$ parciální derivaci funkce f podle i-té proměnné v bodě \mathbf{x} .

Příklad 8.5. Parciální derivace funkce (8.2) jsou

$$\frac{\partial f(x,y)}{\partial x} = f_x(x,y) = \cos(x+y^2), \tag{8.7a}$$

$$\frac{\partial f(x,y)}{\partial y} = f_y(x,y) = 2y\cos(x+y^2). \tag{8.7b}$$

8.4 Derivace zobrazení

Jak se dají pojmy diferencovatelnosti a derivace zobecnit z funkce $f: \mathbb{R} \to \mathbb{R}$ na zobrazení $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$? Mohli bychom si myslet, že toho lze dosáhnout nějakým zobecněním limity (8.3), tudy ale cesta nevede. Cesta vede přes alternativní definici diferencovatelnosti (8.5). Zkusme zobrazení v blízkosti daného bodu $\mathbf{x} \in \mathbb{R}^n$ aproximovat afinním zobrazením

$$g(y) = f(x) + A(y - x), \tag{8.8}$$

kde $\mathbf{A} \in \mathbb{R}^{m \times n}$. Zobrazení \mathbf{f} je **diferencovatelné** v bodě \mathbf{x} , jestliže existuje matice \mathbf{A} taková, že chyba aproximace $\mathbf{f}(\mathbf{y}) - \mathbf{g}(\mathbf{y})$ se pro $\mathbf{y} \to \mathbf{x}$ v prvním řádu blíží nule, tedy

$$\lim_{\mathbf{y} \to \mathbf{x}} \frac{\mathbf{f}(\mathbf{y}) - \mathbf{g}(\mathbf{y})}{\|\mathbf{y} - \mathbf{x}\|} = \lim_{\mathbf{y} \to \mathbf{x}} \frac{\mathbf{f}(\mathbf{y}) - \mathbf{f}(\mathbf{x}) - \mathbf{A}(\mathbf{y} - \mathbf{x})}{\|\mathbf{y} - \mathbf{x}\|} = \mathbf{0}.$$
 (8.9)

²Takže bychom přesněji mohli psát $g_x(y)$ nebo g(x,y).

Všimněte si, že tato limita nejde zjednodušit jako jsme to udělali v (8.6).

Definice (8.9) není pro ověřování diferencovatelnosti pohodlná, protože počítání limit funkcí více proměnných je obtížné. Uvedeme proto postačující (ne však nutnou) podmínku pro diferencovatelnost, která nám většinou stačí. Zobrazení \mathbf{f} je v bodě \mathbf{x} spojitě diferencovatelné, jestliže v bodě \mathbf{x} existují všechny parciální derivace $\partial f_i(\mathbf{x})/\partial x_j$ a funkce $\partial f_i/\partial x_j$ jsou v tomto bodě spojité.

Věta 8.2. Je-li zobrazení v bodě spojitě diferencovatelné, je v tomto bodě diferencovatelné.

Příklad 8.6. Obě parciální derivace (8.7) funkce (8.2) jsou spojité funkce na celém \mathbb{R}^2 (neboť splňují předpoklady Věty 8.1). Proto je funkce (8.2) spojitě diferencovatelná (a tedy diferencovatelná) na celém \mathbb{R}^2 .

Pozor: pouhá existence všech parciálních derivací pro diferencovatelnost nestačí.

V případě, že je zobrazení \mathbf{f} je v bodě \mathbf{x} diferencovatelné, má matice \mathbf{A} přirozený tvar: její složky jsou parciální derivace všech složek zobrazení podle všech proměnných³:

$$\mathbf{A} = \frac{\mathrm{d}\mathbf{f}(\mathbf{x})}{\mathrm{d}\mathbf{x}} = \mathbf{f}'(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$
 (8.10)

Matice (8.10) se nazývá **totální derivace**⁴ (nebo krátce jen **derivace**) zobrazení \mathbf{f} v bodě \mathbf{x} . Z historických důvodů se jí říká také **Jacobiho matice**. Funkci, která bodu $\mathbf{x} \in \mathbb{R}^n$ přiřadí (totální) derivaci zobrazení \mathbf{f} v bodě \mathbf{x} , značíme $\frac{d\mathbf{f}}{d\mathbf{x}}$: $\mathbb{R}^n \to \mathbb{R}^{m \times n}$ nebo \mathbf{f}' : $\mathbb{R}^n \to \mathbb{R}^{m \times n}$.

Pamatujte speciální případy:

- Pro $f: \mathbb{R} \to \mathbb{R}$ je f'(x) skalár a splývá s obyčejnou derivací (8.3).
- Pro $\mathbf{f} \colon \mathbb{R} \to \mathbb{R}^m$ je $\mathbf{f}'(x) = \begin{bmatrix} f_1'(x) \\ \vdots \\ f_m'(x) \end{bmatrix}$ sloupcový vektor, jehož složky jsou derivace složek \mathbf{f} .
- Pro $f: \mathbb{R}^n \to \mathbb{R}$ je $f'(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \end{bmatrix}$ řádkový vektor.

8.4.1 Derivace složeného zobrazení

Známé 'řetízkové pravidlo' pro derivaci složených funkcí jedné proměnné lze přirozeným způsobem rozšířit na zobrazení. Důkaz následující věty není krátký a nebudeme ho uvádět.

Věta 8.3. Nechť $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ a $\mathbf{g}: \mathbb{R}^m \to \mathbb{R}^l$ jsou diferencovatelná zobrazení. Derivace složeného zobrazení $\mathbf{g} \circ \mathbf{f}: \mathbb{R}^n \to \mathbb{R}^l$ je

$$(\mathbf{g} \circ \mathbf{f})'(\mathbf{x}) = \frac{\mathrm{d}\mathbf{g}(\mathbf{f}(\mathbf{x}))}{\mathrm{d}\mathbf{x}} = \mathbf{g}'(\mathbf{f}(\mathbf{x})) \mathbf{f}'(\mathbf{x}). \tag{8.11}$$

 $^{^3}$ Někdo matici (8.10) značí také $D\mathbf{f}(\mathbf{x})$, ale my to tak značit nebudeme.

⁴Někdy se místo pojmu 'totální derivace' používá pojem 'totální diferenciál'. Tyto pojmy jsou si podobné ale ne identické: totální derivace je *matice* a totální diferenciál je *lineární zobrazení* reprezentované touto maticí.

Dimenze zúčastněných prostorů lze přehledně znázornit diagramem (viz §1.1.2)

$$\mathbb{R}^n \xrightarrow{\mathbf{f}} \mathbb{R}^m \xrightarrow{\mathbf{g}} \mathbb{R}^l$$
.

Pokud píšeme $\mathbf{u} = \mathbf{f}(\mathbf{x})$ a $\mathbf{y} = \mathbf{g}(\mathbf{u})$, pravidlo lze psát také v Leibnizově značení jako

$$\frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{x}} = \frac{\mathrm{d}\mathbf{y}}{\mathrm{d}\mathbf{u}} \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{x}},\tag{8.12}$$

což se dobře pamatuje, protože d**u** se 'jakoby vykrátí' (což ale není důkaz ničeho!). Zdůrazněme, že tato rovnost je násobení matic. Výraz na levé straně je matice $l \times n$, první výraz na pravé straně je matice $l \times m$ a druhý výraz na pravé straně je matice $m \times n$. Pro l = m = n = 1 dostaneme řetízkové pravidlo pro derivaci složení funkcí jedné proměnné. Pravidlo se dá zjevným způsobem rozšířit na složení více než dvou zobrazení: Jacobiho matice složeného zobrazení je součinem Jacobiho matic jednotlivých zobrazení.

Příklad 8.7. Nechť $g \colon \mathbb{R}^2 \to \mathbb{R}$ je diferencovatelná funkce. Hledejme (totální) derivaci funkce h(x,y) = g(x+y,xy) podle vektoru (x,y), tedy matici $\left[\frac{\partial h(x,y)}{\partial x} \quad \frac{\partial h(x,y)}{\partial y}\right] \in \mathbb{R}^{1 \times 2}$.

Máme $\mathbb{R}^2 \xrightarrow{\mathbf{f}} \mathbb{R}^2 \xrightarrow{g} \mathbb{R}$, kde $\mathbf{f}(x,y) = (u,v) = (x+y,xy)$. Označme z = g(u,v). Viz obrázek:

Derivace zobrazení g podle vektoru (u, v) je matice 1×2 (řádkový vektor)

$$g'(u,v) = \begin{bmatrix} \frac{\partial g(u,v)}{\partial u} & \frac{\partial g(u,v)}{\partial v} \end{bmatrix} = \begin{bmatrix} g_u(u,v) & g_v(u,v) \end{bmatrix}.$$

Derivace zobrazení f podle vektoru (x, y) je matice 2×2

$$\mathbf{f}'(x,y) = \frac{\mathrm{d}\mathbf{f}(x,y)}{\mathrm{d}(x,y)} = \begin{bmatrix} \frac{\partial(x+y)}{\partial x} & \frac{\partial(x+y)}{\partial y} \\ \frac{\partial(xy)}{\partial x} & \frac{\partial(xy)}{\partial y} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ y & x \end{bmatrix}.$$

Derivace zobrazení $h = g \circ \mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}$ podle vektoru (x, y) je matice 1×2 (řádkový vektor)

$$\frac{\mathrm{d}h(x,y)}{\mathrm{d}(x,y)} = \frac{\mathrm{d}g(\mathbf{f}(x,y))}{\mathrm{d}(x,y)} = g'(u,v)\mathbf{f}'(x,y)$$

$$= \begin{bmatrix} g_u(u,v) & g_v(u,v) \end{bmatrix} \begin{bmatrix} 1 & 1 \\ y & x \end{bmatrix}$$

$$= \begin{bmatrix} g_u(u,v) + yg_v(u,v) & g_u(u,v) + xg_v(u,v) \end{bmatrix},$$

kde u = x + y a v = xy.

Příklad 8.8. Ukažme dva způsoby, jak najít parciální derivaci h_x funkce $h(x,y) = e^{(x+y)^2 + (xy)^2}$:

 \bullet Považujeme y za konstantu a derivujeme h jako funkci jedné proměnné x:

$$h_x(x,y) = [2(x+y) + 2(xy)y]e^{(x+y)^2 + (xy)^2} = 2(x+y+xy^2)e^{(x+y)^2 + (xy)^2}.$$

• Položíme $u=x+y,\,v=xy,\,g(u,v)=\mathrm{e}^{u^2+v^2}.$ Z Příkladu 8.7 máme $h_x=g_u+yg_v.$ Jelikož

$$g_u(u,v) = 2ue^{u^2+v^2}, \quad g_v(u,v) = 2ve^{u^2+v^2},$$

máme
$$h_x(x,y) = g_u + yg_v = 2ue^{u^2+v^2} + y(2v)e^{u^2+v^2} = 2(x+y+xy^2)e^{(x+y)^2+(xy)^2}.$$

Příklad 8.9. Máme diferencovatelnou funkci $g: \mathbb{R}^2 \to \mathbb{R}$ a chceme spočítat derivaci funkce $g(t+t^2,\sin t)$ podle t.

Máme $\mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R}^2 \xrightarrow{g} \mathbb{R}$, kde $\mathbf{f}(t) = (u, v) = (t + t^2, \sin t)$. Je

$$\frac{\mathrm{d}g(t+t^2,\sin t)}{\mathrm{d}t} = g'(u,v)\mathbf{f}'(t) = \begin{bmatrix} g_u(u,v) & g_v(u,v) \end{bmatrix} \begin{bmatrix} 1+2t \\ \cos t \end{bmatrix} = g_u(u,v)(1+2t) + g_v(u,v)\cos t.$$

8.4.2 Derivace maticových výrazů

Je-li zobrazení zadáno výrazem obsahujícím vektory a matice, jeho (totální) derivaci lze obvykle napsat také jako výraz obsahující tyto vektory a matice. Naučme se této dovednosti.

Příklad 8.10. Odvoď me derivaci zobrazení $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ daného vzorcem $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, kde $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{b} \in \mathbb{R}^m$. Máme

$$f_1(\mathbf{x}) = a_{11}x_1 + \dots + a_{1n}x_n + b_1$$

 \vdots
 $f_m(\mathbf{x}) = a_{m1}x_1 + \dots + a_{mn}x_n + b_m.$

Ale $\partial f_i(\mathbf{x})/\partial x_j = a_{ij}$, tedy dle (8.10) je $\mathbf{f}'(\mathbf{x}) = \mathbf{A}$. Tomu se nedivíme, neboť zobrazení \mathbf{f} je afinní, tedy jeho afinní aproximace (8.8) musí být ono samo. Opravdu: pravá strana výrazu (8.8) je pro libovolné \mathbf{x} rovna $\mathbf{A}\mathbf{y} + \mathbf{b}$.

Příklad 8.11. Počítejme derivaci zobrazení $\mathbf{g}(\mathbf{A}\mathbf{x} + \mathbf{b})$ podle \mathbf{x} , kde \mathbf{g} : $\mathbb{R}^l \to \mathbb{R}^m$, $\mathbf{A} \in \mathbb{R}^{l \times n}$, $\mathbf{b} \in \mathbb{R}^l$. V řetízkovém pravidle máme $\mathbb{R}^n \xrightarrow{\mathbf{f}} \mathbb{R}^l \xrightarrow{\mathbf{g}} \mathbb{R}^m$, kde $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$. Je $\mathbf{f}'(\mathbf{x}) = \mathbf{A}$, tedy

$$\frac{\mathrm{d}\mathbf{g}(\mathbf{A}\mathbf{x} + \mathbf{b})}{\mathrm{d}\mathbf{x}} = \mathbf{g}'(\mathbf{A}\mathbf{x} + \mathbf{b})\mathbf{A}.$$

Příklad 8.12. Odvoď me derivaci kvadratické formy $f: \mathbb{R}^n \to \mathbb{R}$,

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \sum_{j=1}^n \sum_{i=1}^n a_{ij} x_i x_j,$$
 (8.14)

kde $\mathbf{A} = [a_{ij}] \in \mathbb{R}^{n \times n}$ je (ne nutně symetrická) čtvercová matice. Derivace monomu $x_i x_j$ je

$$\frac{\partial(x_i x_j)}{\partial x_k} = \begin{cases} x_j & \text{když } k = i, \\ x_i & \text{když } k = j, \\ 0 & \text{jinak.} \end{cases}$$

Tedy

$$\frac{\partial f(\mathbf{x})}{\partial x_k} = \sum_{i=1}^n \sum_{i=1}^n a_{ij} \frac{\partial (x_i x_j)}{\partial x_k} = \sum_{i=1}^n (a_{ik} + a_{ki}) x_i = (\mathbf{a}_k + \mathbf{b}_k)^T \mathbf{x} = \mathbf{x}^T (\mathbf{a}_k + \mathbf{b}_k),$$

kde $\mathbf{a}_k=(a_{1k},\ldots,a_{nk})$ je k-tý sloupec a $\mathbf{b}_k^T=(a_{k1},\ldots,a_{kn})^T$ je k-tý řádek matice \mathbf{A} . Tedy

$$f'(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix} = \mathbf{x}^T \begin{bmatrix} \mathbf{a}_1 + \mathbf{b}_1 & \cdots & \mathbf{a}_n + \mathbf{b}_n \end{bmatrix} = \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T).$$
(8.15)

Následující tabulka uvádí derivace jednoduchých zobrazení (odvoď te je jako cvičení!), které je dobré si pamatovat. S pomocí zapamatovaných derivací jednoduchých zobrazení a řetízkového pravidla nakonec totální derivace odvozujeme s trochou cviku rovnou v maticovém tvaru.

zobrazení	(totální) derivace	poznámka
f(x) = x	$\mathbf{f}'(\mathbf{x}) = \mathbf{I}$	$\mathbf{f} \colon \mathbb{R}^n o \mathbb{R}^n$
$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$	$\mathbf{f}'(\mathbf{x}) = \mathbf{A}$	$\mathbf{f} \colon \mathbb{R}^n o \mathbb{R}^m, \ \mathbf{A} \in \mathbb{R}^{m \times n}, \ \mathbf{b} \in \mathbb{R}^m$
$f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$	$f'(\mathbf{x}) = \mathbf{a}^T$	$f: \mathbb{R}^n \to \mathbb{R}, \ \mathbf{a} \in \mathbb{R}^n$
$f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$	$f'(\mathbf{x}) = 2\mathbf{x}^T$	$f: \mathbb{R}^n \to \mathbb{R}$
$f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$	$f'(\mathbf{x}) = \mathbf{x}^T (\mathbf{A} + \mathbf{A}^T)$	$f: \mathbb{R}^n \to \mathbb{R}, \ \mathbf{A} \in \mathbb{R}^{n \times n}$
f(x) = Ag(x)	$\mathbf{f}'(\mathbf{x}) = \mathbf{A}\mathbf{g}'(\mathbf{x})$	$\mathbf{f} \colon \mathbb{R}^n o \mathbb{R}^m, \ \mathbf{g} \colon \mathbb{R}^n o \mathbb{R}^l, \ \mathbf{A} \in \mathbb{R}^{m imes l}$
$f(\mathbf{x}) = \ \mathbf{x}\ $	$f'(\mathbf{x}) = \mathbf{x}^T / \ \mathbf{x}\ $	$f: \mathbb{R}^n \to \mathbb{R}$
$f(\mathbf{x}) = \mathbf{g}(\mathbf{x})^T \mathbf{g}(\mathbf{x})$	$f'(\mathbf{x}) = 2\mathbf{g}(\mathbf{x})^T \mathbf{g}'(\mathbf{x})$	$f: \mathbb{R}^n \to \mathbb{R}, \ \mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$
$f(\mathbf{x}) = \mathbf{g}(\mathbf{x})^T \mathbf{h}(\mathbf{x})$	$f'(\mathbf{x}) = \mathbf{g}(\mathbf{x})^T \mathbf{h}'(\mathbf{x}) + \mathbf{h}(\mathbf{x})^T \mathbf{g}'(\mathbf{x})$	$f: \mathbb{R}^n \to \mathbb{R}, \ \mathbf{g}, \mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$

8.5 Směrová derivace

Řez zobrazení $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ v bodě $\mathbf{x} \in \mathbb{R}^n$ ve směru⁵ $\mathbf{v} \in \mathbb{R}^n$ je zobrazení $\boldsymbol{\varphi} \colon \mathbb{R} \to \mathbb{R}^m$ dané jako

$$\varphi(\alpha) = \mathbf{f}(\mathbf{x} + \alpha \mathbf{v}). \tag{8.16}$$

 $\mathbf{Sm\check{e}rov\acute{a}}$ derivace 6 zobrazení \mathbf{f} v bodě \mathbf{x} ve směru \mathbf{v} je vektor

$$\varphi'(0) = \lim_{\alpha \to 0} \frac{\varphi(\alpha) - \varphi(0)}{\alpha} = \lim_{\alpha \to 0} \frac{\mathbf{f}(\mathbf{x} + \alpha \mathbf{v}) - \mathbf{f}(\mathbf{x})}{\alpha},$$
(8.17)

kde $\varphi'(0)$ označuje derivaci zobrazení φ v bodě $\alpha = 0$, tedy vektor se složkami $\varphi'_1(0), \ldots, \varphi'_m(0)$. Směrová derivace existuje právě tehdy, když derivace $\varphi'_1(0), \ldots, \varphi'_m(0)$ existují.

Pojem směrové derivace se geometricky snadněji představí pro případ m=1, tedy pro funkci $f: \mathbb{R}^n \to \mathbb{R}$. Obrázek ilustruje situaci pro funkci $f: \mathbb{R}^2 \to \mathbb{R}$:

 $^{^5}$ Někdy se řez a směrová derivace uvažují jen pro normalizované vektory \mathbf{v} , tj. $\|\mathbf{v}\| = 1$, protože ty lépe zachycují pojem směru. Mnoho autorů (a my také) však dovoluje libovolný vektor \mathbf{v} .

⁶Přesněji jde o *oboustrannou* směrovou derivaci. Jednostrannou směrovou derivaci bychom dostali, kdybychom místo oboustranné limity (8.17) vzali jednostrannou limitu zprava.

Vidíme, že parciální derivace funkce $f: \mathbb{R}^n \to \mathbb{R}$ není nic jiného než její směrová derivace ve směru *i*-tého vektoru standardní báze $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0)$ (jednička na *i*-tém místě).

Věta 8.4. Necht' zobrazení $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ je diferencovatelné v bodě \mathbf{x} . Pak jeho směrová derivace v bodě \mathbf{x} ve směru \mathbf{v} je rovna $\mathbf{f}'(\mathbf{x})\mathbf{v}$.

 $D\mathring{u}kaz$. Zobrazení $\mathbf{y} = \boldsymbol{\varphi}(\alpha) = \mathbf{f}(\mathbf{x} + \alpha \mathbf{v})$ je složením zobrazení $\mathbf{y} = \mathbf{f}(\mathbf{u})$ a $\mathbf{u} = g(\alpha) = \mathbf{x} + \alpha \mathbf{v}$. Máme diagram $\mathbb{R} \xrightarrow{g(\alpha) = \mathbf{u}} \mathbb{R}^n \xrightarrow{\mathbf{f}(\mathbf{u}) = \mathbf{y}} \mathbb{R}^m$. Je $g'(\alpha) = \mathbf{v}$. Podle řetízkového pravidla je

$$\varphi'(\alpha) = \mathbf{f}'(g(\alpha))g'(\alpha) = \mathbf{f}'(g(\alpha))\mathbf{v}.$$

Ale $g(0) = \mathbf{x}$ a tedy $\varphi'(0) = \mathbf{f}'(\mathbf{x})\mathbf{v}$.

Věta 8.4 říká, že je-li zobrazení \mathbf{f} diferencovatelné, je jeho směrová derivace (v pevném bodě \mathbf{x}) lineární zobrazení směru \mathbf{v} reprezentované Jacobiho maticí $\mathbf{f}'(\mathbf{x})$. Zdůrazněme, že nic takového neplatí, pokud zobrazení \mathbf{f} není diferencovatelné.

Příklad 8.13. Spočítáme směrovou derivaci funkce $f(x,y) = \sin(x+y^2)$ v bodě (x,y) ve směru (u,v) dvěma způsoby: nejdříve z definice (8.17) a pak z Věty 8.4. Z definice je

$$\varphi(\alpha) = \sin(x + \alpha u + (y + \alpha v)^2),$$

$$\varphi'(\alpha) = (u + 2v(y + \alpha v))\cos(x + \alpha u + (y + \alpha v)^2),$$

$$\varphi'(0) = (u + 2vy)\cos(x + y^2).$$

Podle Věty 8.4 je směrová derivace rovna

$$uf_x(x,y) + vf_y(x,y) = u\cos(x+y^2) + 2vy\cos(x+y^2) = (u+2vy)\cos(x+y^2),$$

což je stejné jako předešlý výsledek.

8.6 Gradient

Sloupcový vektor parciálních derivací funkce $f: \mathbb{R}^n \to \mathbb{R}$ se nazývá její **gradient** a značí se

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix} = f'(\mathbf{x})^T$$

 $(\nabla \text{ čteme 'nabla'})$. Je to tedy transpozice Jacobiho matice $f'(\mathbf{x})$, což je řádkový vektor⁷.

Zkoumejme směrovou derivaci v pevném bodě \mathbf{x} pro různé normalizované směry \mathbf{v} (tedy $\|\mathbf{v}\| = 1$). Tato derivace je rovna $f'(\mathbf{x})\mathbf{v} = \nabla f(\mathbf{x})^T\mathbf{v}$, což je skalární součin gradientu v bodě \mathbf{x} a vektoru \mathbf{v} . Je jasné (ale promyslete!), že:

 $^{^7}$ Zavedení nového slova pro transpozici derivace se zdá zbytečné – důvod je ale v tom, že totální diferenciál je lineární forma, kdežto gradient je vektor. Toto rozlišení by bylo důležité, kdybychom uvažovali derivaci funkce $f \colon V \to \mathbb{R}$ kde V je obecný (normovaný) vektorový prostor (tj. ne nutně \mathbb{R}^n). Literatura bohužel není jednotná v rozlišování gradientu a (totální) derivace funkce $f \colon \mathbb{R}^n \to \mathbb{R}$. Někdy se obojí ztotožňuje a značí $\nabla f(\mathbf{x})$. To ale vede mj. k nekonzistenci s maticovým značením, protože derivace funkce $\mathbb{R}^n \to \mathbb{R}$ pak není speciálním případem derivace zobrazení $\mathbb{R}^n \to \mathbb{R}^m$ (tedy Jacobiho matice) pro m=1, což je řádkový vektor.

- Směrová derivace je největší ve směru $\mathbf{v} = \nabla f(\mathbf{x})/\|\nabla f(\mathbf{x})\|$, tedy když je \mathbf{v} rovnoběžný s gradientem a stejně orientovaný. Tedy směr gradientu je směr největšího růstu funkce.
- Velikost gradientu $\|\nabla f(\mathbf{x})\|$ je strmost funkce ve směru největšího růstu.
- Směrová derivace ve směru kolmém na gradient je nulová.

Dále lze ukázat (viz diskuze v $\S10.2$), že gradient je vždy $kolm\acute{y}$ k vrstevnici.

Obrázek ukazuje tři vrstevnice funkce $f: \mathbb{R}^2 \to \mathbb{R}$ a její gradienty v několika bodech:

8.7 Parciální derivace druhého řádu

Zderivujeme-li funkci $f: \mathbb{R}^n \to \mathbb{R}$ nejdříve podle proměnné x_i a pak podle proměnné x_j , dostaneme parciální derivaci druhého řádu, kterou značíme

$$\frac{\partial}{\partial x_j} \frac{\partial f(\mathbf{x})}{\partial x_i} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}.$$

Je-li i = j, píšeme zkráceně

$$\frac{\partial}{\partial x_i} \frac{\partial f(\mathbf{x})}{\partial x_i} = \frac{\partial^2 f(\mathbf{x})}{\partial x_i^2}.$$

Věta 8.5. Necht' $f: \mathbb{R}^n \to \mathbb{R}$ a $\mathbf{x} \in \mathbb{R}^n$. Jestliže druhé parciální derivace

$$\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_i}, \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_i}$$

v bodě x existují a jsou v tomto bodě spojité, pak jsou si rovny.

Příklad 8.14. Určeme všechny druhé parciální derivace funkce $f(x,y) = \sin(x+y^2)$ z Příkladu 8.4. První derivace už tam máme. Nyní druhé derivace:

$$\frac{\partial^2 f(x,y)}{\partial x^2} = \frac{\partial}{\partial x} (\cos(x+y^2)) = -\sin(x+y^2),$$

$$\frac{\partial^2 f(x,y)}{\partial x \partial y} = \frac{\partial}{\partial y} (\cos(x+y^2)) = -2y \sin(x+y^2),$$

$$\frac{\partial^2 f(x,y)}{\partial y \partial x} = \frac{\partial}{\partial x} (2y \cos(x+y^2)) = -2y \sin(x+y^2),$$

$$\frac{\partial^2 f(x,y)}{\partial y^2} = \frac{\partial}{\partial y} (2y \cos(x+y^2)) = 2\cos(x+y^2) - 4y^2 \sin(x+y^2).$$

Vidíme, že vskutku nezáleží na pořadí derivování podle x a podle y.

Pro funkci $f: \mathbb{R}^n \to \mathbb{R}$ budeme značit matici všech druhých parciálních derivací

$$f''(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_n} \end{bmatrix} \in \mathbb{R}^{n \times n}.$$

Dle Věty 8.5 je tato matice symetrická. Často se jí říká Hessova matice.

Co by byla druhá derivace zobrazení $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$? Nebyla by to již dvojrozměrná tabulka (tedy matice) velikosti $n \times n$, nýbrž třírozměrná tabulka velikosti $m \times n \times n$.

8.8 Taylorův polynom

Nechť funkce $f: \mathbb{R} \to \mathbb{R}$ má v bodě x derivace až do řádu k. Její **Taylorův polynom** stupně k v bodě x je polynom $T_k: \mathbb{R} \to \mathbb{R}$ takový, že v bodě x má všechny derivace až do řádu k stejné jako funkce f. V tomto smyslu je polynom T_k aproximací funkce f v okolí bodu x.

Taylorův polynom je tímto požadavkem definován jednoznačně a má tvar (odvoďte!)

$$T_k(y) = \sum_{i=0}^k \frac{1}{i!} f^{(i)}(x) (y - x)^i,$$
 (8.18)

kde $f^{(i)}$ označuje *i*-tou derivaci funkce f (kde nultá derivace je funkce sama, $f^{(0)} = f$) a kde klademe 0! = 1. Tvary polynomu až do stupně dva:

$$T_0(y) = f(x),$$

$$T_1(y) = f(x) + f'(x)(y - x),$$

$$T_2(y) = f(x) + f'(x)(y - x) + \frac{1}{2}f''(x)(y - x)^2.$$

Taylorův polynom nultého stupně T_0 je hodně špatná aproximace, rovná jednoduše konstantní funkci. Polynom prvního stupně T_1 je vlastně afinní funkce g v (8.4). Polynom druhého stupně T_2 je parabola, která má s funkcí f v bodě x společnou hodnotu a první dvě derivace. Viz obrázek:

Jak zobecnit Taylorův polynom pro funkci více proměnných $f: \mathbb{R}^n \to \mathbb{R}$? Definujme Taylorův polynom k-tého stupně (funkce f v okolí bodu \mathbf{x}) jako polynom $T_k: \mathbb{R}^n \to \mathbb{R}$, který má v bodě \mathbf{x} všechny parciální derivace až do řádu k stejné jako funkce f. Nebudeme uvádět vzorec pro polynom libovolného stupně, budou nám stačit jen polynomy do stupně dva:

$$T_0(\mathbf{y}) = f(\mathbf{x}),\tag{8.19a}$$

$$T_1(\mathbf{y}) = f(\mathbf{x}) + f'(\mathbf{x}) (\mathbf{y} - \mathbf{x}), \tag{8.19b}$$

$$T_2(\mathbf{y}) = f(\mathbf{x}) + f'(\mathbf{x}) (\mathbf{y} - \mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^T f''(\mathbf{x}) (\mathbf{y} - \mathbf{x}). \tag{8.19c}$$

Zde $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $f'(\mathbf{x}) \in \mathbb{R}^{1 \times n}$ je Jacobiho matice (řádkový vektor) a $f''(\mathbf{x}) \in \mathbb{R}^{n \times n}$ je Hessova matice. Funkce (8.19b) je afinní a funkce (8.19c) je kvadratická.

Taylorův polynom lze zobecnit na zobrazení $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ tak, že vezmeme Taylorovy polynomy všech složek f_1, \dots, f_m . Polynom prvního stupně tak vede na zobrazení

$$\mathbf{T}_{1}(\mathbf{y}) = \mathbf{f}(\mathbf{x}) + \mathbf{f}'(\mathbf{x}) (\mathbf{y} - \mathbf{x}), \tag{8.20}$$

což je vlastně afinní zobrazení \mathbf{g} v (8.8). Polynom druhého stupně vede na zobrazení \mathbf{T}_2 , jehož složky jsou funkce (8.19c). To nejde napsat v maticové formě, protože všech $m \times n \times n$ druhých parciálních derivací se 'nevejde' do matice.

Příklad 8.15. Najděte Taylorův polynom druhého stupně funkce $f(x,y) = x^{-1} + y^{-1} + xy$ v bodě $(x_0, y_0) = (2, 1)$. Máme

$$f(x_0, y_0) = x^{-1} + y^{-1} + xy \Big|_{(x,y)=(2,1)} = \frac{7}{2},$$

$$f'(x_0, y_0) = \begin{bmatrix} y - x^{-2} & x - y^{-2} \end{bmatrix} \Big|_{(x,y)=(2,1)} = \begin{bmatrix} \frac{3}{4} & 1 \end{bmatrix},$$

$$f''(x_0, y_0) = \begin{bmatrix} 2x^{-3} & 1 \\ 1 & 2y^{-3} \end{bmatrix} \Big|_{(x,y)=(2,1)} = \begin{bmatrix} \frac{1}{4} & 1 \\ 1 & 2 \end{bmatrix}.$$

Dle (8.19c) je (pozor, naše proměnné jsou označené jinak než v (8.19c))

$$T_{2}(x,y) = f(x_{0},y_{0}) + f'(x_{0},y_{0}) \begin{bmatrix} x - x_{0} \\ y - y_{0} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} x - x_{0} \\ y - y_{0} \end{bmatrix}^{T} f''(x_{0},y_{0}) \begin{bmatrix} x - x_{0} \\ y - y_{0} \end{bmatrix}$$

$$= \frac{7}{2} + \begin{bmatrix} \frac{3}{4} & 1 \end{bmatrix} \begin{bmatrix} x - 2 \\ y - 1 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} x - 2 \\ y - 1 \end{bmatrix}^{T} \begin{bmatrix} \frac{1}{4} & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x - 2 \\ y - 1 \end{bmatrix}$$

$$= \frac{1}{8}x^{2} + xy + y^{2} - \frac{3}{4}x - 3y + \frac{9}{2}.$$

8.9 Vnitřek a hranice množiny

Označme jako

$$B_{\varepsilon}(\mathbf{x}) = \{ \mathbf{y} \in \mathbb{R}^n \mid ||\mathbf{x} - \mathbf{y}|| < \varepsilon \}$$
(8.21)

n-rozměrnou kouli bez hranice⁸ se středem $\mathbf{x} \in \mathbb{R}^n$ a poloměrem $\varepsilon > 0$. Všimněte si, že pro speciální případ n = 1 (tedy $x \in \mathbb{R}$) je množina (8.21) interval $B_{\varepsilon}(x) = (x - \varepsilon, x + \varepsilon)$.

Mějme nyní množinu $X \subseteq \mathbb{R}^n$. Bod $\mathbf{x} \in \mathbb{R}^n$ se nazývá její

- vnitřní bod, jestliže existuje $\varepsilon > 0$ takové, že $B_{\varepsilon}(\mathbf{x}) \subseteq X$,
- hraniční bod, jestliže pro každé $\varepsilon > 0$ je $B_{\varepsilon}(\mathbf{x}) \cap X \neq \emptyset$ a $B_{\varepsilon}(\mathbf{x}) \cap (\mathbb{R}^n \setminus X) \neq \emptyset$.

Všimněte si, že hraniční bod množiny nemusí patřit do této množiny. Pokud leží bod v množině, je buď vnitřní nebo hraniční, ale ne obojí najednou (dokažte!). **Vnitřek** [hranice] množiny je množina všech jejích vnitřních [hraničních] bodů.

Příklad 8.16. Máme množinu $\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\leq 1,\ y>0\}\cup\{(1,1)\}$ na obrázku:

⁸Mohli bychom použít i kouli s hranicí { $\mathbf{y} \in \mathbb{R}^n \mid \|\mathbf{x} - \mathbf{y}\| \leq \varepsilon$ }. Podobně, norma v (8.21) může být eukleidovská, ale i libovolná jiná vektorová p-norma (viz §11.3.1). Vnitřek a hranice každé množiny by se tím nezměnila.

Bod \mathbf{a} je vnitřní bod množiny, protože existuje koule (s nenulovým poloměrem!) se středem \mathbf{a} , která celé leží v množině. Bod \mathbf{b} je hraniční, protože každá koule se středem \mathbf{b} má neprázdný průnik s množinou i s jejím doplňkem. Všimněte si, že \mathbf{b} nepatří do množiny. Bod \mathbf{a} není hraniční a bod \mathbf{b} není vnitřní. Bod \mathbf{c} není vnitřní, je hraniční a patří do množiny. Bod (1,1) (který patří do množiny, viz její definice výše) je hraniční.

Příklad 8.17. Bod 1/2 je vnitřní bod intervalu $(0,1] \subseteq \mathbb{R}$ a body 0 a 1 jsou hraniční.

Příklad 8.18. Množina $[0,1] \times \{1\} = \{(x,y) \mid 0 \le x \le 1, y = 1\} \subseteq \mathbb{R}^2$ (úsečka v rovině) nemá žádné vnitřní body. Všechny její body jsou hraniční, je tedy sama svou vlastní hranicí.

Příklad 8.19. Kružnice v rovině $\{(x,y) \in \mathbb{R}^2 \mid x^2+y^2=1\}$ nemá žádné vnitřní body, všechny její body jsou hraniční. Podobně pro n-rozměrnou sféru $\{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| = 1\}$.

Příklad 8.20. Mějme kruh bez hranice $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$. Všechny jeho body jsou vnitřní. Jeho hranice je kružnice $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. Podobně pro n-rozměrnou kouli bez hranice $\{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| < 1\}$.

8.10 Lokální extrémy funkce na množině

Zopakujme (§1.3), že funkce $f: \mathbb{R}^n \to \mathbb{R}$ nabývá na množině $X \subseteq \mathbb{R}^n$ v bodě $\mathbf{x} \in X$ svého

- minima, jestliže $f(\mathbf{x}) \leq f(\mathbf{x}')$ pro všechna $\mathbf{x}' \in X$,
- ostrého minima, jestliže $f(\mathbf{x}) < f(\mathbf{x}')$ pro všechna $\mathbf{x}' \in X \setminus \{\mathbf{x}\}.$

Funkce f nabývá na množině X v bodě \mathbf{x} svého [ostrého] lokálního minima, jestliže existuje $\varepsilon > 0$ tak, že funkce f nabývá na množině $X \cap B_{\varepsilon}(\mathbf{x})$ svého [ostrého] minima. Maximum, lokální maximum a jejich ostré verze se definují obdobně.

Každé minimum funkce f je zároveň lokální minimum funkce f (proč?), naopak to ale obecně neplatí. Mluvíme-li o lokálních extrémech, pro zdůraznění někdy 'obyčejné' extrémy nazýváme **globální extrémy**. Pokud odkaz na množinu X chybí, myslí se jí celý definiční obor funkce f.

Každý bod množiny $X \subseteq \mathbb{R}^n$ je buď vnitřní nebo hraniční. Extrém **x** (globální či lokální) funkce $f \colon \mathbb{R}^n \to \mathbb{R}$ na množině X je **volný** když **x** je vnitřní bod množiny X, a **vázaný** když **x** je hraniční bod množiny X.

Příklad 8.21. Funkce jedné proměnné na obrázku nabývá na uzavřeném intervalu $[a, f] \subseteq \mathbb{R}$ v bodě a globálního (a tedy i lokálního) maxima, v bodech b, e globálního (a tedy i lokálního) minima, v bodě c lokálního maxima a zároveň lokálního minima, v bodě d lokálního maxima, v bodě f lokálního maxima. Extrémy v bodech f jsou ostré. Extrémy v bodech f jsou vázané, v bodech f jsou volné.

Příklad 8.22. Nechť $X\subseteq\mathbb{R}^2$ je kružnice a funkce $f\colon\mathbb{R}^2\to\mathbb{R}$ má vrstevnice jako na obrázku:

V bodě \mathbf{x}^* nabývá funkce f na množině X globálního (a tedy i lokálního) minima, protože v žádném bodě na kružnici X nemá funkce menší hodnotu než $f(\mathbf{x}^*) = 2$. V bodě \mathbf{x} nabývá funkce f na množině X lokálního minima, protože existuje $\varepsilon > 0$ tak, že funkce f nabývá na části kružnice $B_{\varepsilon}(\mathbf{x}) \cap X$ svého (globálního) minima. Oba extrémy jsou vázané, protože body \mathbf{x}^* a \mathbf{x} jsou hraniční body množiny X (množina X vnitřní body nemá, viz Příklad 8.19).

Příklad 8.23. Funkce $f(\mathbf{x}) = x_1$ na množině $\{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| \le 1\}$ má v bodě $(-1, 0, \dots, 0)$ vázané globální (a tedy i lokální) minimum.

Příklad 8.24. Libovolná funkce $f: \mathbb{R} \to \mathbb{R}$ má na množině \mathbb{Z} (množina celých čísel) v libovolném bodě $x \in \mathbb{Z}$ lokální minimum i lokální maximum.

8.11 Cvičení

- 8.1. Najděte parametrizaci válce. Přesněji, najděte zobrazení $\mathbf{f} \colon \mathbb{R}^2 \to \mathbb{R}^3$ tak, aby množina $\mathbf{f}([0,2\pi) \times \mathbb{R})$ byla nekonečný válec o poloměru r bez podstav.
- 8.2. Máme množiny $X = [-1,1] \times \{0\}$ a $Y = [-1,1] \times [-1,1]$. Načrtněte následující množiny:
 - a) $\left\{ \mathbf{x} \in \mathbb{R}^2 \mid 1 \ge \min_{\mathbf{y} \in X} \|\mathbf{x} \mathbf{y}\| \right\}$
 - b) $\left\{ \mathbf{x} \in \mathbb{R}^2 \mid 2 \ge \max_{\mathbf{y} \in X} \|\mathbf{x} \mathbf{y}\| \right\}$
 - c) vrstevnice výšky 1 funkce $f(\mathbf{x}) = \min_{\mathbf{y} \in Y} \|\mathbf{x} \mathbf{y}\|$
 - d) vrstevnice výšky $\sqrt{2}$ funkce $f(\mathbf{x}) = \max_{\mathbf{y} \in Y} \|\mathbf{x} \mathbf{y}\|$
- 8.3. Máme funkci $f: \mathbb{R}^2 \to \mathbb{R}$ danou vzorcem $f(x,y) = \ln(1+xy)$. Máme bod $(x_0,y_0) = (1,2)$.
 - a) Je funkce f v bodě (x_0, y_0) spojitá?
 - b) Je funkce f v bodě (x_0, y_0) spojitě diferencovatelná?

- c) Je funkce f v bodě (x_0, y_0) diferencovatelná?
- d) Najdi totální derivaci (Jacobiho matici) f'(x,y) funkce f v bodě (x_0,y_0) .
- e) Najdi gradient $\nabla f(x,y)$ funkce f v bodě (x_0,y_0) .
- f) Najdi řez a směrovou derivaci funkce f v bodě (x_0, y_0) ve směru (1, -1).
- g) Najdi Hessovu matici funkce f v bodě (x_0, y_0) .
- 8.4. Funkce $f: \mathbb{R}^2 \to \mathbb{R}$ je dána vzorcem $f(x, y) = \max\{x, y\}$. Ve kterých bodech je tato funkce spojitě diferencovatelná? Odpověď odůvodněte.
- 8.5. Najdi totální derivaci (Jacobiho matici) zobrazení 2, 4, 6, 7, 9, 10, 11, 12, 15, 16 z Příkladu 8.3.
- 8.6. Nechť f(x,y) je diferencovatelá funkce dvou proměnných.
 - a) Spočítej derivaci f podle polárních souřadnic (φ, r) , kde $x = r \cos \varphi$, $y = r \sin \varphi$.
 - b) Bod (x, y) se v čase t pohybuje po křivce dané rovnicí $(x, y) = (t^2 + 2t, \log(t^2 + 1))$. Najděte derivaci f podle času.
- 8.7. Nechť f(x, y) je diferencovatelá funkce dvou proměnných. Spočítej derivaci funkce $g(\mathbf{u}) = f(\mathbf{a}^T \mathbf{u}, ||\mathbf{u}||)$ podle vektoru \mathbf{u} .
- 8.8. Odvoď co nejjednodušší vzorec pro totální derivaci (Jacobiho matici) těchto zobrazení. Kde je to možné, odvoď nejdříve přímým výpočtem a pak řetízkovým pravidlem.
 - a) $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x} = ||\mathbf{x}||^2$
 - b) $f(\mathbf{x}) = \|\mathbf{x}\| = \sqrt{\mathbf{x}^T \mathbf{x}}$
 - c) $\mathbf{f}(\mathbf{x}) = \mathbf{g}(\mathbf{x})^T \mathbf{h}(\mathbf{x})$ (kde $\mathbf{g}, \mathbf{h}: \mathbb{R}^n \to \mathbb{R}^m$ jsou dána)
 - $d) f(\mathbf{x}) = \|\mathbf{g}(\mathbf{x})\|$
- 8.9. Odvoď totální derivaci (8.15) kvadratické formy, nepoužij ale postup z Příkladu 8.12 ale použij vzorec $(\mathbf{g}(\mathbf{x})^T \mathbf{h}(\mathbf{x}))' = \mathbf{g}(\mathbf{x})^T \mathbf{h}'(\mathbf{x}) + \mathbf{h}(\mathbf{x})^T \mathbf{g}'(\mathbf{x})$.
- 8.10. Nadmořská výška krajiny je dána vzorcem $h(d,s)=2s^2+3sd-d^2+5$, kde d je zeměpisná délka (zvětšuje se od západu k východu) a s je zeměpisná šířka (zvětšuje se od jihu k severu). V bodě (d,s)=(-1,1) určete
 - a) směr nejstrmějšího stoupání terénu
 - b) strmost terénu v jihovýchodním směru.

V této úloze je logické uvažovat směr jako normalizovaný vektor.

- 8.11. Spočítejte druhou derivaci $f''(\mathbf{x})$ (Hessovu matici) těchto funkcí:
 - a) $f(x,y) = e^{-x^2 y^2}$
 - b) $f(x,y) = \log(e^x + e^y)$
 - c) $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ (matice **A** je dána, nemusí být symetrická)
 - d) $f(\mathbf{x}) = \mathbf{g}(\mathbf{x})^T \mathbf{g}(\mathbf{x})$ (zobrazení $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$ je dáno)
 - e) $f(\mathbf{x}) = \|\mathbf{x}\|$
- 8.12. Je dána funkce $f(x,y) = 6xy^2 2x^3 3y^3$. V bodě $(x_0,y_0) = (1,-2)$ najděte Taylorův polynom nultého, prvního a druhého stupně.

- 8.13. Čemu je roven Taylorův polynom prvního stupně polynomu prvního stupně (tj. afinní funkce)? A čemu je roven Taylorův polynom druhého stupně polynomu druhého stupně (tj. kvadratické funkce)? Proč?
- 8.14. Metoda konečných diferencí počítá derivaci funkce přibližně jako

$$f'(x) \approx \frac{f(x+\alpha) - f(x)}{\alpha}$$

kde α je malé číslo (dobrá volba je $h=\sqrt{\varepsilon}$, kde ε je strojová přesnost). Toto jde použít i na parciální derivace. Vymyslete si dvě zobrazení $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$ a $\mathbf{g} \colon \mathbb{R}^m \to \mathbb{R}^l$ pro nějaké navzájem různé dimenze n,m,l>1. Zvolte bod $\mathbf{x} \in \mathbb{R}^n$. Spočítejte přibližně totální derivace (Jacobiho matice) $\mathbf{f}'(\mathbf{x})$ a $\mathbf{g}'(\mathbf{f}(\mathbf{x}))$ v Matlabu metodou konečných diferencí. Potom spočítejte derivaci složeného zobrazení $(\mathbf{g} \circ \mathbf{f})'(\mathbf{x})$ jednak metodou konečných diferencí a jednak vynásobením matic $\mathbf{f}'(\mathbf{x})$ a $\mathbf{g}'(\mathbf{f}(\mathbf{x}))$. Porovnejte.

- 8.15. (*) Necht' zobrazení $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ je definováno výrazem $\mathbf{f}(\mathbf{x})$ obsahujícím vektor \mathbf{x} , konstantní matice a vektory, a operace součet matic, maticový součin a transpozice (např. $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{x}\mathbf{b}^T\mathbf{x}$). Lze vždy derivaci $\mathbf{f}'(\mathbf{x})$ vyjádřit výrazem obsahujícím vektor \mathbf{x} , ty samé konstantní matice a vektory, a operace součet matic, maticový součin a transpozice?
- 8.16. Načrtněte následující množiny (jedná se o podmnožiny \mathbb{R}^2 nebo \mathbb{R}^3):
 - a) $[-1,0] \times \{1\}$
 - b) $\mathbb{Z} \times \mathbb{Z}$
 - c) $\mathbb{R} \times \mathbb{Z}$
 - d) $(\mathbb{R} \times \mathbb{Z}) \cup (\mathbb{Z} \times \mathbb{R})$
 - e) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} \times \mathbb{R}$
 - f) $\{(x,y) \in \mathbb{R}^2 \mid x > 0, y > 0, xy = 1\}$
 - g) $\{(x,y) \in \mathbb{R}^2 \mid \min\{x,y\} = 1\}$
- 8.17. Co je vnitřek a hranice těchto množin?
 - a) Množina reálných čísel R
 - b) Uzavřený interval $[a, b] = \{ x \in \mathbb{R} \mid a \le x \le b \}$
 - c) Množina racionálních čísel Q
 - d) Množina (8.21)
 - e) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\}$
 - f) $\{(x,y) \in \mathbb{R}^2 \mid y = x^2, -1 < x < 1\}$
 - g) $\{(x,y) \in \mathbb{R}^2 \mid xy < 1, \ x > 0, \ y > 0\}$
 - h) $\{\mathbf{x} \in \mathbb{R}^n \mid \max_{i=1}^n x_i \leq 1\}$
 - i) $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} = b \}$, kde $\mathbf{a} \in \mathbb{R}^n$, $b \in \mathbb{R}$ (nadrovina)
 - j) $\{ \mathbf{x} \in \mathbb{R}^n \mid b < \mathbf{a}^T \mathbf{x} < c \}$, kde $\mathbf{a} \in \mathbb{R}^n$, $b, c \in \mathbb{R}$ (panel)
 - k) { $\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b}$ } (afinní podprostor \mathbb{R}^n)
- 8.18. Každá z následujících množin je sjednocením konečného počtu (otevřených, uzavřených či polouzavřených) intervalů. Najděte tyto intervaly. Příklad: $\{x^2 \mid x \in \mathbb{R}\} = [0, +\infty)$.
 - a) $\{1/x \mid x \ge 1\}$
 - b) $\{1/x \mid |x| > 1\}$

- c) $\{e^{-x^2} \mid x \in \mathbb{R}\}$
- d) $\{x+y \mid x^2+y^2<1\}$
- e) $\{x+y \mid x^2+y^2=1\}$
- f) $\{x y \mid x^2 + y^2 = 1\}$
- g) $\{ |x| + |y| | x^2 + y^2 = 1 \}$
- h) $\{x_1 + \dots + x_n \mid \mathbf{x} \in \mathbb{R}^n, x_1^2 + \dots + x_n^2 = 1\}$
- i) $\{|x-y| \mid x \in [0,1], y \in (1,2]\}$
- j) $\{x + y \mid |x| \ge 1, |y| \ge 1\}$
- 8.19. Najděte všechny (globální i lokální) extrémy funkce f(x,y) = x + y na množině $\{(x,y) \in \mathbb{R}^2 \mid y = x^2, y \leq 1\}$.
- 8.20. Najdi (úvahou, bez použití derivací) všechny extrémy funkce
 - a) $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ (vektor $\mathbf{a} \in \mathbb{R}^n$ je dán)
 - b) $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$

na množině

- a) \mathbb{R}^n
- b) $\{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| = 1 \}$
- c) $\{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| \le 1\}$
- d) $\{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| < 1 \}$
- e) daný lineární podprostor prostoru \mathbb{R}^n
- f) daný afinní podprostor prostoru \mathbb{R}^n
- g) $\{\mathbf{x} \in \mathbb{R}^n \mid -1 \leq \mathbf{1}^T \mathbf{x} \leq 1\}$

U každého extrému urči, zda je lokální/globální, ostrý/neostrý, volný/vázaný.

- 8.21. Nechť $f: \mathbb{R}^n \to \mathbb{R}$ a $\mathbf{x} \in X' \subseteq X \subseteq \mathbb{R}^n$. Uvažujme dva výroky:
 - 1. Funkce f má v bodě \mathbf{x} lokální minimum na množině X.
 - 2. Funkce f má v bodě \mathbf{x} lokální minimum na množině X'.

Vyplývá druhý výrok z prvního? Vyplývá první výrok z druhého? Odpovědi dokažte.

- 8.22. Může se stát, že funkce má na množině lokální minimum ale nemá na ní globální minimum? Odpověď dokažte.
- 8.23. Může nekonstantní lineární funkce nabývat na množině lokálního extrému ve vnitřním bodě této množiny? Odpověď dokažte.
- 8.24. Dokažte, že pro libovolné funkce $f_1, \ldots, f_m \colon \mathbb{R}^n \to \mathbb{R}$ platí

$$\min_{\mathbf{x}_1,\dots,\mathbf{x}_m \in \mathbb{R}^n} [f_1(\mathbf{x}_1) + \dots + f_m(\mathbf{x}_m)] = \min_{\mathbf{x} \in \mathbb{R}^n} f_1(\mathbf{x}) + \dots + \min_{\mathbf{x} \in \mathbb{R}^n} f_m(\mathbf{x}), \quad (8.22)$$

tedy minimalizace funkce $f(\mathbf{x}_1, \dots, \mathbf{x}_m) = f_1(\mathbf{x}_1) + \dots + f_m(\mathbf{x}_m)$ se rozpadne na m nezávislých minimalizací.

 (\star) Platí tvrzení i tehdy, když nahradíme součet maximem nebo minimem? Obecněji, pro jaké funkce $g: \mathbb{R}^m \to \mathbb{R}$ platí

$$\min_{\mathbf{x}_1,\dots,\mathbf{x}_m\in\mathbb{R}^n} g(f_1(\mathbf{x}_1),\dots,f_m(\mathbf{x}_m)) = g(\min_{\mathbf{x}\in\mathbb{R}^n} f_1(\mathbf{x}),\dots,\min_{\mathbf{x}\in\mathbb{R}^n} f_m(\mathbf{x}))?$$
(8.23)

Nápověda a řešení

- 8.3.a) Ano, dle Věty 8.1.
- 8.3.b) Ano, protože její parciální derivace $\partial f(x,y)/\partial x = y/(1+xy)$ a $\partial f(x,y)/\partial y = x/(1+xy)$ jsou (dle Věty 8.1) spojité funkce.
- 8.3.c) Ano, dle Věty 8.2.
- 8.3.d) $f'(x,y) = [y/(1+xy) \ x/(1+xy)] \in \mathbb{R}^{1\times 2}$, tedy $f'(x_0,y_0) = [2 \ 1]/3$.

8.3.e)
$$\nabla f(x,y) = [f'(x,y)]^T = \begin{bmatrix} y/(1+xy) \\ x/(1+xy) \end{bmatrix} \in \mathbb{R}^{2\times 1}$$
, tedy $\nabla f(x_0,y_0) = (2,1)/3 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}/3$.

- 8.3.f) Řez je $\varphi(\alpha) = \ln[1 + (1 + \alpha)(2 \alpha)]$. Směrová derivace je 1/3.
- 8.4. Je spoj. diferencovatelná na množině $\mathbb{R}^2 \setminus \{(x,y) \mid x=y\}$.

8.6.a)
$$f_{\varphi}(x,y) = -f_x(x,y)r\sin\varphi + f_y(x,y)r\cos\varphi, f_r(x,y) = f_x(x,y)\cos\varphi + f_y(x,y)\sin\varphi$$

8.6.b)
$$f_t(x,y) = 2f_x(x,y)(t+1) + 2tf_y(x,y)/(t^2+1)$$

- 8.9. Dosad' $\mathbf{g}(\mathbf{x}) = \mathbf{x} \ a \ \mathbf{h}(\mathbf{x}) = \mathbf{A}\mathbf{x}$.
- 8.10.a) $(5,1)/\sqrt{26}$
- 8.10.b) $(5,1)^T(1,-1)/\sqrt{2} = 2\sqrt{2}$

8.11.a)
$$2e^{-x^2-y^2}\begin{bmatrix} 2x^2-1 & 2xy\\ 2xy & 2y^2-1 \end{bmatrix}$$

8.11.b)
$$\frac{e^{x+y}}{(e^x+e^y)^2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

8.11.c)
$$f''(\mathbf{x}) = \mathbf{A} + \mathbf{A}^T$$

- 8.11.d) $f''(\mathbf{x}) = 2\mathbf{g}'(\mathbf{x})^T\mathbf{g}'(\mathbf{x}) + 2\sum_{i=1}^m g_i(\mathbf{x})g_i''(\mathbf{x})$ (výraz nejde napsat čistě v maticové formě, nutno použít sumu)
- 8.12. $T_0(x,y) = 46$, $T_1(x,y) = 18x 60y 92$, $T_2(x,y) = -6x^2 24xy 18x + 24y^2 + 60y + 46$
- 8.13. V obou případech je roven původnímu polynomu. Ty přece určitě mají nulté a prvé (a příp. druhé) derivace stejné jako původní polynom.
- 8.17.c) Vnitřek je \emptyset a hranice je \mathbb{R} .
- 8.19. (1,1) je glob. maximum, $(-\frac{1}{2},\frac{1}{4})$ glob. minimum, (-1,1) lok. maximum. To je vidět z obrázku (nakreslete!). Jiný postup je eliminovat proměnnou y, čímž úlohu převedeme na hledání extrémů funkce $x + x^2$ na intervalu [-1,1].
- 8.21. Druhý výrok plyne z prvního. Naopak to ale neplatí, protipříklad je $X = \mathbb{R}, X' = [0, 1], f(x) = x$.

Kapitola 9

Volné lokální extrémy

9.1 Analytické podmínky

Zopakujme nejprve podmínky na volné lokální extrémy diferencovatelných funkcí, vyjádřené pomocí prvních a druhých derivací. Uděláme to nejprve pro funkce jedné proměnné a pak zobecníme na funkce více proměnných.

9.1.1 Pro jednu proměnnou

Věta 9.1. Nechť je funkce $f: \mathbb{R} \to \mathbb{R}$ v bodě $x \in \mathbb{R}$ diferencovatelná a nechť f'(x) > 0 [f'(x) < 0]. Pak existuje $\delta > 0$ tak, že pro každé $\alpha \in (0, \delta]$ je $f(x - \alpha) < f(x) < f(x + \alpha)$ $[f(x - \alpha) > f(x) > f(x + \alpha)]$.

Důsledek 9.2 (Fermatova věta). Nechť funkce $f: \mathbb{R} \to \mathbb{R}$ je v bodě $x \in \mathbb{R}$ diferencovatelná a má v tomto bodě lokální extrém. Pak f'(x) = 0.

Jestliže f'(x) = 0, bodu x říkáme **stacionární bod** funkce f. Věta 9.2 říká, že stacionární body jsou body 'podezřelé' z volného lokálního extrému. Pozor: věta neříká, že každý stacionární bod je lokální extrém (uvažte např. funkci $f(x) = x^3$ v bodě x = 0).

Věta 9.2 udává podmínku *prvního řádu* na volné extrémy, protože obsahuje první derivace. Následující podmínka *druhého řádu* (uvedená bez důkazu) pomůže zjistit, zda je stacionární bod lokálním extrémem, případně jakým.

Věta 9.3. Necht' funkce $f: \mathbb{R} \to \mathbb{R}$ je v bodě $x \in \mathbb{R}$ dvakrát diferencovatelná a necht' f'(x) = 0.

- Je-li x lokální minimum [maximum] funkce f, pak $f''(x) \ge 0$ [$f''(x) \le 0$].
- Je-li f''(x) > 0 [f''(x) < 0], pak x je ostré lokální minimum [maximum] funkce f.

Všimněte si, že je-li f''(x) = 0, funkce v bodě x lokální extrém mít může nebo nemusí (příkladem jsou funkce $f(x) = x^3$ a $f(x) = x^4$ v bodě x = 0).

9.1.2 Pro více proměnných

Věta 9.2 má snadný důsledek pro funkce více proměnných:

Věta 9.4. Necht' $f: \mathbb{R}^n \to \mathbb{R}$ a $X \subseteq \mathbb{R}^n$. Necht' \mathbf{x} je vnitřní bod množiny X a zároveň lokální extrém funkce f na množině X. Necht' $\mathbf{v} \in \mathbb{R}^n$. Jestliže existuje směrová derivace funkce f v bodě \mathbf{x} ve směru \mathbf{v} , pak je nulová.

 $D\mathring{u}kaz$. Jelikož \mathbf{x} je lokální extrém f na X a zároveň vnitřní bod X, existuje $\varepsilon > 0$ tak, že $B_{\varepsilon}(\mathbf{x}) \subseteq X$ a \mathbf{x} je (globální) extrém funkce f na kouli $B_{\varepsilon}(\mathbf{x})$. Pro řez $\varphi(\alpha) = f(\mathbf{x} + \alpha \mathbf{v})$ (viz §8.5) z toho plyne, že bod 0 je (globální) extrém funkce φ na intervalu $[-\varepsilon/\|\mathbf{v}\|, \varepsilon/\|\mathbf{v}\|] = B_{\varepsilon/\|\mathbf{v}\|}(0)$. Tedy funkce φ má v bodě $\alpha = 0$ lokální extrém. Dle Důsledku 9.2 je tedy $\varphi'(0) = 0$. Dle (8.17) je $\varphi'(0)$ směrová derivace funkce f v bodě \mathbf{x} ve směru \mathbf{v} .

Jestliže je funkce v bodě \mathbf{x} diferencovatelná, tak existují směrové derivace ve všech směrech a jsou nulové, tedy speciálně všechny parciální derivace jsou nulové neboli $f'(\mathbf{x}) = \mathbf{0}$. V tom případě bod \mathbf{x} opět nazýváme **stacionární** bod funkce f.

Věta 9.4 svádí k tomu, aby se použila v situacích, kdy nejsou splněny její předpoklady. Uveď me příklady tohoto chybého použití (jeden uz jsme uvedli v $\S 9.1.1$ pro n=1).

Příklad 9.1. V Příkladu 8.21 jsou předpoklady Věty 9.4 splněny pouze pro body b, c, které jsou stacionární a vnitřní. Body a, f jsou hraniční (tedy ne vnitřní) body intervalu [a, f] a v bodech d, e není funkce diferencovatelná.

Příklad 9.2. Funkce $f(\mathbf{x}) = ||\mathbf{x}||$ má na hyperkrychli $X = \{\mathbf{x} \in \mathbb{R}^n \mid -\mathbf{1} \leq \mathbf{x} \leq \mathbf{1}\}$ v bodě $\mathbf{0}$ volné lokální minimum (nakreslete si množinu X a vrstevnice funkce f pro n = 1 a pro n = 2!). Nemá tam ale stacionární bod, protože tam není diferencovatelná. Dále má funkce na množině X vázaná lokální maxima ve všech jejích rozích (např. v bodě $\mathbf{1}$), což jsou její hraniční body. Bod $\mathbf{1}$ ovšem není stacionární bod funkce f.

A nyní podmínky druhého řádu:

Věta 9.5. Necht' $f: \mathbb{R}^n \to \mathbb{R}$ a $X \subseteq \mathbb{R}^n$. Necht' \mathbf{x} je vnitřní bod množiny X. Necht' je funkce f v bodě \mathbf{x} dvakrát diferencovatelná a platí $f'(\mathbf{x}) = \mathbf{0}$. Pak:

- Je-li \mathbf{x} lokální minimum [maximum] funkce f na množině X, pak Hessova matice $f''(\mathbf{x})$ je positivně [negativně] semidefinitní.
- Je-li $f''(\mathbf{x})$ positivně [negativně] definitní, pak \mathbf{x} je ostré lokální minimum [maximum] funkce f na množině X.
- Je-li $f''(\mathbf{x})$ indefinitní, pak \mathbf{x} není lokální extrém funkce f na množině X.

Bod \mathbf{x} , ve kterém $f'(\mathbf{x}) = \mathbf{0}$ a matice $f''(\mathbf{x})$ je indefinitní, se nazývá **sedlový bod**. Všimněte si, že je-li matice $f''(\mathbf{x})$ (positivně či negativně) semidefinitní, věta neříká nic o tom, zda funkce v bodě \mathbf{x} má nebo nemá lokální extrém. Příklad jsme uvedli v §9.1.1) pro n = 1.

Větu 9.5 nebudeme dokazovat, uvedeme jen argument, který ji učiní snadno uvěřitelnou. Místo funkce f vyšetřujme v blízkosti bodu \mathbf{x} její Taylorův polynom druhého stupně (8.19c),

$$T_2(\mathbf{y}) = f(\mathbf{x}) + \underbrace{f'(\mathbf{x})(\mathbf{y} - \mathbf{x})}_{0} + \frac{1}{2}(\mathbf{y} - \mathbf{x})^T f''(\mathbf{x}) (\mathbf{y} - \mathbf{x}).$$

Protože $f'(\mathbf{x}) = \mathbf{0}$, lineární člen je nulový a polynom je tedy kvadratická forma posunutá do bodu \mathbf{x} . Zda funkce T_2 má či nemá v bodě \mathbf{x} extrém bychom tedy mohli určit podle Věty 6.2 z definitnosti matice $f''(\mathbf{x})$. Zde ovšem vyšetřujeme funkci f a ne její aproximaci T_2 , proto pro lokální extrém nestačí (positivní či negativní) semidefinitnost $f''(\mathbf{x})$.

Příklad 9.3. Extrémy kvadratické funkce (6.14) umíme hledat pomocí rozkladu na čtverec. Ovšem je to také možné pomocí derivací. Podmínka stacionarity je

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(\mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c) = 2\mathbf{x}^T \mathbf{A} + \mathbf{b}^T = \mathbf{0}.$$

Po transpozici dostaneme rovnici (6.16a). Druh extrému určíme podle druhé derivace (Hessiánu), který je roven 2**A** (předpokládáme symetrii **A**). To souhlasí s klasifikací extrémů kvadratické formy z $\S6$.

9.2 Iterační metody na volná lokální minima

Dále se budeme věnovat numerickým iteračním metodám¹ na nalezení volného lokálního minima diferencovatelných funkcí na množině \mathbb{R}^n .

Iterační metody na hledání lokálního minima spojité funkce $f: \mathbb{R}^n \to \mathbb{R}$ mají tvar

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{v}_k,\tag{9.1}$$

kde vektor $\mathbf{v}_k \in \mathbb{R}^n$ je směr hledání a skalár $\alpha_k > 0$ je délka kroku. V sestupných metodách (descent methods) hodnota účelové funkce monotonně klesá², $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$.

Nechť je funkce f diferencovatelná. Směr \mathbf{v}_k se nazývá **sestupný** v bodě \mathbf{x}_k , jestliže

$$f'(\mathbf{x}_k)\,\mathbf{v}_k < 0,\tag{9.2}$$

tedy směrová derivace ve směru \mathbf{v}_k je záporná. Pokud v bodě \mathbf{x}_k existuje sestupný směr, existuje $\alpha_k > 0$ tak, že $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$. Pokud v bodě \mathbf{x}_k sestupný směr neexistuje, vektor $f'(\mathbf{x}_k)$ je nutně nulový (proč?) a tedy \mathbf{x}_k je stacionární bod.

Máme-li sestupný směr, optimální délku kroku α_k najdeme minimalizací funkce f na polopřímce z bodu \mathbf{x}_k ve směru \mathbf{v}_k . Tedy minimalizujeme funkci jedné proměnné

$$\varphi(\alpha_k) = f(\mathbf{x}_k + \alpha_k \mathbf{v}_k) \tag{9.3}$$

přes všechny $\alpha_k \geq 0$. Tato úloha je v kontextu vícerozměrné optimalizace nazývána jednoroz-měrné hledání (angl. $line\ search$). Tuto úlohu stačí řešit přibližně, čímž se nebudeme zabývat a necháme to na čtenáři.

Dále uvedeme nejznámější zástupce sestupných metod.

9.3 Gradientní metoda

Tato nejjednodušší metoda volí směr sestupu jako záporný gradient funkce f v bodě \mathbf{x}_k :

$$\mathbf{v}_k = -f'(\mathbf{x}_k)^T = -\nabla f(\mathbf{x}_k). \tag{9.4}$$

Tento směr je sestupný, což je okamžitě vidět dosazením do (9.2).

Výhodou gradientní metody je spolehlivost, daná tím, že směr (9.4) je vždy sestupný. Nevýhodou gradientní metody je často pomalá konvergence. To se může stát tehdy, když funkce v okolí lokálního optima je v některých směrech mnohem protaženější než v jiných (přesněji, když vlastní čísla Hessiánu $f''(\mathbf{x})$ jsou velmi různá).

 $^{^{1}}$ Schválně píšeme metody a ne algoritmy, neboť algoritmus by měl skončit po konečném počtu operací, kdežto iterační metoda typicky pouze konverguje v nekonečném počtu iterací.

²Existují totiž i metody, ve kterých hodnota $f(\mathbf{x}_k)$ neklesá monotonně (tj. někdy stoupne a někdy klesne) a přesto konvergují k optimu (např. subgradientní metody).

Příklad 9.4. Hledejme minimum kvadratické formy $f(x,y) = (ax^2 + y^2)/2$ (kde a > 0) gradientní metodou s počátečním bodem $(x_0, y_0) = (1, a)$. Minimum se nabývá v bodě (x, y) = (0, 0). Při přesném řešení problému (9.3) je k-tá iterace rovna (odvod'te!)

$$x_k = \left(-\frac{a-1}{a+1}\right)^k, \quad y_k = a\left(\frac{a-1}{a+1}\right)^k. \tag{9.5}$$

Vidíme, že konvergence je velmi pomalá pro $a \ll 1$ nebo $a \gg 1$.

9.3.1 (*) Závislost na lineární transformaci souřadnic

Transformujme vektor proměnných \mathbf{x} lineární transformací $\tilde{\mathbf{x}} = \mathbf{A}\mathbf{x}$, kde \mathbf{A} je regulární matice. Je jasné, že funkce f původních proměnných \mathbf{x} bude mít stejné extrémy jako funkce

$$\tilde{f}(\tilde{\mathbf{x}}) = \tilde{f}(\mathbf{A}\mathbf{x}) = f(\mathbf{x}) = f(\mathbf{A}^{-1}\tilde{\mathbf{x}}).$$

Iterace gradientní metody v nových proměnných je

$$\tilde{\mathbf{x}}_{k+1} = \tilde{\mathbf{x}}_k - \alpha_k \, \tilde{f}'(\tilde{\mathbf{x}}_k)^T. \tag{9.6}$$

Zkoumejme, jaké iteraci to odpovídá v původních proměnných. K tomu potřebujeme vyjádřit (9.6) v proměnných \mathbf{x} . Použitím řetízkového pravidla odvodíme

$$\tilde{f}'(\tilde{\mathbf{x}}) = \frac{\mathrm{d}\tilde{f}(\tilde{\mathbf{x}})}{\mathrm{d}\tilde{\mathbf{x}}} = \frac{\mathrm{d}\tilde{f}(\tilde{\mathbf{x}})}{\mathrm{d}\mathbf{x}} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\tilde{\mathbf{x}}} = \frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}\tilde{\mathbf{x}}} = f'(\mathbf{x})\mathbf{A}^{-1}.$$

Dosazením za $\tilde{\mathbf{x}}$ a $\tilde{f}'(\tilde{\mathbf{x}})$ do (9.6) a úpravou dostaneme

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k (\mathbf{A}^T \mathbf{A})^{-1} f'(\mathbf{x}_k)^T.$$
(9.7)

To lze napsat ve tvaru (9.1) se směrem hledání

$$\mathbf{v}_k = -(\mathbf{A}^T \mathbf{A})^{-1} f'(\mathbf{x}_k)^T. \tag{9.8}$$

Tento směr se liší od původního směru (9.4) vynásobením maticí $(\mathbf{A}^T \mathbf{A})^{-1}$. Vidíme, že gradientní metoda není invariantní vůči lineární transformaci souřadnic.

Ovšem lze ukázat, že nový směr (9.8) je také sestupný. Dosazením (9.4) do (9.2) to znamená, že $-f'(\mathbf{x}_k)(\mathbf{A}^T\mathbf{A})^{-1}f'(\mathbf{x}_k)^T < 0$. To je ale pravda, neboť matice $\mathbf{A}^T\mathbf{A}$ a tedy i její inverze je positivně definitní (viz Cvičení 6.19 a 6.18).

Na vzorec (9.8) se lze dívat ještě obecněji. Je jasné, že směr $\mathbf{v}_k = -\mathbf{C}_k^{-1} f'(\mathbf{x}_k)^T$ je sestupný, je-li matice \mathbf{C}_k je positivně definitní. Opačně, každý sestupný směr lze napsat takto. Uvidíme, že metody uvedené dále budou mít vždy tento tvar sestupného směru, ovšem matice \mathbf{C}_k bude jiná v každém kroku.

9.4 Newtonova metoda

Newtonova metoda (přesněji Newton-Raphsonova, také se jí říká *metoda tečen*) je slavná iterační metoda na řešení soustav nelineárních rovnic. Lze ho použít i na minimalizaci funkce tak, že hledáme její bod s nulovým gradientem. Oba způsoby použití popíšeme.

9.4.1 Použití na soustavy nelineárních rovnic

Necht' $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^n$ je diferencovatelné zobrazení. Chceme řešit rovnici $\mathbf{g}(\mathbf{x}) = \mathbf{0}$, což je soustava n rovnic s n neznámými. Myšlenka Newtonovy metody je jednoduchá: místo hledání nulového bodu zobrazení \mathbf{g} (což je obecně velmi obtížné) opakujeme iteraci, která najde nulový bod afinní aproximace zobrazení \mathbf{g} v okolí aktuálního odhadu (což je snadné).

Afinní aproximace zobrazení \mathbf{g} v okolí bodu \mathbf{x}_k je zobrazení (viz (8.8) nebo (8.20))

$$\mathbf{T}_1(\mathbf{x}) = \mathbf{g}(\mathbf{x}_k) + \mathbf{g}'(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k). \tag{9.9}$$

Další odhad \mathbf{x}_{k+1} najdeme řešením nehomogenní lineární soustavy $\mathbf{T}_1(\mathbf{x}_{k+1}) = \mathbf{0}$. Pokud je Jacobiho matice $\mathbf{g}'(\mathbf{x}_k)$ regulární, řešením je

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{g}'(\mathbf{x}_k)^{-1}\mathbf{g}(\mathbf{x}_k). \tag{9.10}$$

Viz obrázek:

Hlavní výhodou Newtonovy metody je, že v blízkém okolí řešení obvykle konverguje velmi rychle (mnohem rychleji než gradientní metoda). Nevýhodou je, že je nutno začít s poměrně přesnou aproximací \mathbf{x}_0 skutečného řešení, jinak metoda snadno diverguje.

Příklad 9.5. Babylónská metoda na výpočet druhé odmocniny čísla $a \ge 0$ opakuje iteraci

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right).$$

To není nic jiného než Newtonova metoda pro rovnici $0 = g(x) = x^2 - a$. Opravdu,

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)} = x_k - \frac{x_k^2 - a}{2x_k} = x_k - \frac{1}{2} \left(x_k - \frac{a}{x_k} \right) = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right).$$

Příklad 9.6. Hledejme průsečík $(x,y) \in \mathbb{R}^2$ dvou rovinných křivek daných rovnicemi

$$(x-1)^2 + y^2 = 1,$$

 $x^4 + y^4 = 1.$

Máme

$$\mathbf{g}(x,y) = \begin{bmatrix} (x-1)^2 + y^2 - 1 \\ x^4 + y^4 - 1 \end{bmatrix} \in \mathbb{R}^2, \qquad \mathbf{g}'(x,y) = \begin{bmatrix} 2(x-1) & 2y \\ 4x^3 & 4y^3 \end{bmatrix} \in \mathbb{R}^{2 \times 2}.$$

Iterace (9.10) je

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \end{bmatrix} - \begin{bmatrix} 2(x_k - 1) & 2y_k \\ 4x_k^3 & 4y_k^3 \end{bmatrix}^{-1} \begin{bmatrix} (x_k - 1)^2 + y_k^2 - 1 \\ x_k^4 + y_k^4 - 1 \end{bmatrix}.$$

Načrtneme-li si obě křivky, vidíme, že mají dva průsečíky, lišící se znaménkem druhé souřadnice. Zvolme počáteční odhad pro horní průsečík $(x_0, y_0) = (1, 1)$. První iterace bude

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 & 2 \\ 4 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.75 \\ 1 \end{bmatrix}.$$

Pro šestou iteraci $(x_6, y_6) = (0.671859751039018, 0.944629015546222)$ jsou rovnice splněny se strojovou přesností.

Příklad 9.7. Funkce $g(x) = x^2 - 1$ má dva nulové body $x = \pm 1$. Pokud v nějaké iteraci bude $x_k = 0$, nastane dělení nulou. Pokud bude x_k velmi malé, dělení nulou nenastane, ale iterace x_{k+1} se ocitne velmi daleko od kořene.

Příklad 9.8. Pro funkci $g(x) = x^3 - 2x + 2$ zvolme $x_0 = 0$. Další iterace bude $x_1 = 1$ a další $x_2 = 0$. Metoda bude oscilovat mezi hodnotami 0 a 1, tedy bude divergovat.

9.4.2 Použití na minimalizaci funkce

Newtonovu metodu lze použít pro hledání lokálního extrému dvakrát diferencovatelné funkce $f: \mathbb{R}^n \to \mathbb{R}$ tak, že v metodě (9.10) položíme $\mathbf{g}(\mathbf{x}) = f'(\mathbf{x})^T$. Tím dostaneme iteraci

$$\mathbf{x}_{k+1} = \mathbf{x}_k - f''(\mathbf{x}_k)^{-1} f'(\mathbf{x}_k)^T, \tag{9.11}$$

kde $f''(\mathbf{x}_k)$ je Hessova matice funkce f v bodě \mathbf{x}_k . Neplet'te si tato dvě různá použití Newtonovy metody (tj. na hledání kořenů a na hledání lokálních extrémů)!

Iterace (9.10) se odvodila tak, že se zobrazení \mathbf{g} v okolí bodu \mathbf{x}_k aproximovalo afinním zobrazením \mathbf{T}_1 a pak se našel nulový bod tohoto zobrazení. Lze ukázat (viz Cvičení 9.11), že iterace (9.11) lze odvodit také tak, že se funkce f aproximuje Taylorovým polynomem druhého stupně T_2 (tedy kvadratickou funkcí) a pak se najde minimum této kvadratické funkce.

Iteraci (9.11) lze napsat v obecnějším tvaru (9.1), kde

$$\mathbf{v}_k = -f''(\mathbf{x}_k)^{-1} f'(\mathbf{x}_k)^T. \tag{9.12}$$

Výhodou tohoto zobecnění je možnost zvolit optimální (ne nutně jednotkovou) délku kroku α_k pomocí jednorozměrné minimalizace (9.3). Metodě (9.11) s jednotkovou délkou kroku (tj. $\alpha_k = 1$ pro každé k) se pak říká **čistá** Newtonova metoda.

Vektoru (9.12) říkáme **Newtonův směr**. Vidíme, že se od gradientního směru (9.4) liší násobením Hessovou maticí $f''(\mathbf{x}_k)$. Aby to byl sestupný směr, musí být

$$f'(\mathbf{x}_k)\mathbf{v}_k = -f'(\mathbf{x}_k)f''(\mathbf{x}_k)^{-1}f'(\mathbf{x}_k)^T < 0.$$

Toto platí, když $f'(\mathbf{x}_k) \neq \mathbf{0}$ (tj. \mathbf{x}_k není stacionární bod) a matice $f''(\mathbf{x}_k)$ je positivně definitní (neboť pak bude positivně definitní i její inverze, viz Cvičení 6.18).

V porovnání s gradientní metodou má Newtonova metoda (použitá na minimalizaci funkce) nevýhodu v tom, že musíme počítat Hessián $f''(\mathbf{x}_k)$ a řešit soustavu $f''(\mathbf{x}_k)\mathbf{v}_k = -f'(\mathbf{x}_k)^T$, což pro velký počet proměnných je pomalé či nemožné. Všimněte si ale, že na rozdíl od §9.4.1 je zde matice $\mathbf{g}'(\mathbf{x}_k) = f''(\mathbf{x}_k)$ symetrická, což může řešení soustavy ulehčit.

9.5 Nelineární metoda nejmenších čtverců

Mějme soustavu rovnic $\mathbf{g}(\mathbf{x}) = \mathbf{0}$, kde $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$ (tedy je to soustava m rovnic s n neznámými). Soustavu nazveme přeurčenou, jestliže nemá žádné řešení. Chceme takovou přeurčenou soustavu řešit přibližně ve smyslu nejmenších čtverců. Tedy chceme minimalizovat funkci

$$f(\mathbf{x}) = \|\mathbf{g}(\mathbf{x})\|^2 = \mathbf{g}(\mathbf{x})^T \mathbf{g}(\mathbf{x}) = \sum_{i=1}^m g_i(\mathbf{x})^2,$$
 (9.13)

kde g_i jsou složky zobrazení **g**. Speciálním případem je přibližné řešení lineární nehomogenní soustavy $\mathbf{A}\mathbf{x} = \mathbf{b}$, kde $\mathbf{g}(\mathbf{x}) = \mathbf{b} - \mathbf{A}\mathbf{x}$ (viz §5.1).

Zatímco v §9.3 a §9.4.2 bylo cílem minimalizovat *obecnou* funkci, zde chceme minimalizovat funkci ve speciálním tvaru (9.13). Nyní máme dvě možnosti. Buď můžeme nasadit na funkci (9.13) jednu z metod pro minimalizaci obecné funkce, k čemuž se vrátíme v §9.5.2. Nebo můžeme být chytřejší a využít speciálního tvaru funkce (9.13), což popíšeme v §9.5.1.

9.5.1 Gauss-Newtonova metoda

Aproximujme opět zobrazení \mathbf{g} v okolí bodu \mathbf{x}_k afinním zobrazením \mathbf{T}_1 dle (9.9). Úloha (9.13) pak vyžaduje minimalizovat $\|\mathbf{T}_1(\mathbf{x})\|^2$. To je úloha lineárních nejmenších čtverců, kterou již známe z §5.1. Normální rovnice (5.3) má tvar

$$\mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}'(\mathbf{x}_k)(\mathbf{x} - \mathbf{x}_k) = -\mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}(\mathbf{x}_k). \tag{9.14}$$

Její řešení napišme pomocí pseudoinverze:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{g}'(\mathbf{x}_k)^+ \mathbf{g}(\mathbf{x}_k). \tag{9.15}$$

Metoda (9.15) je známa jako (čistá) **Gauss-Newtonova metoda**. Můžeme ji opět napsat obecněji ve tvaru (9.1) se směrem hledání (Gauss-Newtonův směr)

$$\mathbf{v}_k = -\mathbf{g}'(\mathbf{x}_k)^+ \mathbf{g}(\mathbf{x}_k). \tag{9.16}$$

Všmněte si, že pokud m = n a Jakobiho matice $\mathbf{g}'(\mathbf{x}_k)$ je regulární, je $\mathbf{g}'(\mathbf{x}_k)^+ = \mathbf{g}'(\mathbf{x}_k)^{-1}$, tedy Gauss-Newtonova metoda (9.15) se redukuje na Newtonovu metodu (9.10).

Pokud má Jacobiho matice $\mathbf{g}'(\mathbf{x}_k)$ lineárně nezávislé sloupce (viz §5.1), výraz (9.16) můžeme napsat jako

$$\mathbf{v}_k = -(\mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}'(\mathbf{x}_k))^{-1} \mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}(\mathbf{x}_k) = -\frac{1}{2} (\mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}'(\mathbf{x}_k))^{-1} f'(\mathbf{x}_k)^T, \tag{9.17}$$

kde ve výrazu na pravé straně jsme dosadili derivaci

$$f'(\mathbf{x}) = 2\mathbf{g}(\mathbf{x})^T \mathbf{g}'(\mathbf{x}) \tag{9.18}$$

účelové funkce (9.13) (odvoď te dle §8.4.2!). Vidíme, že Gauss-Newtonův směr (9.17) se liší od gradientního směru (9.4) pouze násobením maticí $\frac{1}{2}(\mathbf{g}'(\mathbf{x}_k)^T\mathbf{g}'(\mathbf{x}_k))^{-1}$. Aby byl tento směr sestupný, musí být

$$f'(\mathbf{x}_k)\mathbf{v}_k = -\frac{1}{2}f'(\mathbf{x}_k)(\mathbf{g}'(\mathbf{x}_k)^T\mathbf{g}'(\mathbf{x}_k))^{-1}f'(\mathbf{x}_k)^T < 0.$$

To platí, když $f'(\mathbf{x}_k) \neq \mathbf{0}$ a matice $\mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}'(\mathbf{x}_k)$ je positivně definitní (viz Cvičení 6.18). Matice $\mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}'(\mathbf{x}_k)$ je positivně definitní, právě když $\mathbf{g}'(\mathbf{x}_k)$ má lineárně nezávislé sloupce (viz Cvičení 6.19), což ovšem již předpokládáme kvůli existenci inverze. Tedy vidíme, že za přirozených podmínek je Gauss-Newtonův směr vždy sestupný.

Čistá Gauss-Newtonova metoda (tj. s jednotkovou délkou kroku) může divergovat, a to i když je počáteční odhad \mathbf{x}_0 libovolně blízko lokálnímu minimu funkce (9.13). Protože ale Gauss-Newtonův směr je vždy sestupný, vhodnou volbou délky kroku α_k lze vždy zajistit konvergenci.

Příklad 9.9. Hledáme přibližné řešení soustavy tří rovnic o dvou neznámých

$$(x-1)^2 + y^2 = 1,$$

 $x^4 + y^4 = 1,$
 $x^2 + (y-1)^2 = 1/2.$

Oba průsečíky křivek daných prvními dvěma rovnicemi již známe z Příkladu 9.6. Ani jeden z těchto průsečíků neleží na třetí křivce (i když je jí blízko), tedy soustava je přeurčená. Nezbývá nám tedy, než ji řešit přibližně. Hledáme bod $(x, y) \in \mathbb{R}^2$, který minimalizuje číslo

$$f(x,y) = \mathbf{g}(x,y)^T \mathbf{g}(x,y) = ((x-1)^2 + y^2 - 1)^2 + (x^4 + y^4 - 1)^2 + (x^2 + (y-1)^2 - 1/2)^2$$

kde

$$\mathbf{g}(x,y) = \begin{bmatrix} (x-1)^2 + y^2 - 1 \\ x^4 + y^4 - 1 \\ x^2 + (y-1)^2 - 1/2 \end{bmatrix} \in \mathbb{R}^3, \quad \mathbf{g}'(x,y) = \begin{bmatrix} 2(x-1) & 2y \\ 4x^3 & 4y^3 \\ 2x & 2(y-1) \end{bmatrix} \in \mathbb{R}^{3 \times 2}.$$

Rozumný počáteční odhad je $(x_0, y_0) = (1, 1)$. První Gauss-Newtonova iterace (9.15) je

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 & 2 \\ 4 & 4 \\ 2 & 0 \end{bmatrix}^+ \begin{bmatrix} 0 \\ 1 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 0.75 \\ 1 \end{bmatrix}.$$

Po osmé iteraci $(x_8, y_8) = (0.691002152515578, 0.940548357857245)$ se již hodnota $f(x_8, y_8) = 0.0008674592922855055$ v rámci strojové přesnosti nemění.

Příklad 9.10. V systému GPS máme m satelitů se známými souřadnicemi $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^n$ a chceme spočítat souřadnice pozorovatele $\mathbf{x} \in \mathbb{R}^n$ z naměřených vzdáleností $y_i = \|\mathbf{a}_i - \mathbf{x}\|$ pozorovatele od satelitů. Měření jsou zatížena chybou, proto obecně tato soustava rovnic nebude mít žádné řešení. Řešme tuto přeurčenou nelineární soustavu ve smyslu nejmenších čtverců, tedy minimalizujme funkci

$$f(\mathbf{x}) = \sum_{i=1}^{m} (\|\mathbf{x} - \mathbf{a}_i\| - y_i)^2.$$

Máme³ tedy $\mathbf{g} = (g_1, \dots, g_m) : \mathbb{R}^n \to \mathbb{R}^m$, kde $g_i(\mathbf{x}) = \|\mathbf{x} - \mathbf{a}_i\| - y_i$. Derivace složek \mathbf{g} je (pomůže nám §8.4.2, ale udělejte sami!) $g_i'(\mathbf{x}) = (\mathbf{x} - \mathbf{a}_i)^T / \|\mathbf{x} - \mathbf{a}_i\|$. Tedy

$$\mathbf{g}'(\mathbf{x}) = egin{bmatrix} (\mathbf{x} - \mathbf{a}_1)^T / \|\mathbf{x} - \mathbf{a}_1\| \ dots \ (\mathbf{x} - \mathbf{a}_m)^T / \|\mathbf{x} - \mathbf{a}_m\| \end{bmatrix} \in \mathbb{R}^{m imes n}.$$

Pak dosadíme do vzorečku (9.15).

9.5.2 Rozdíl oproti Newtonově metodě

Předpokládejme, že bychom optimalizovali naší účelovou funkci (9.13) přímo Newtonovou metodou z §9.4.2. Spočítejme (viz Cvičení 8.11.d) Hessián funkce (9.13):

$$f''(\mathbf{x}) = 2\mathbf{g}'(\mathbf{x})^T \mathbf{g}'(\mathbf{x}) + 2\sum_{i=1}^m g_i(\mathbf{x})g_i''(\mathbf{x}). \tag{9.19}$$

Hessián je součtem členu obsahujícího derivace prvního rádu a členu obsahujícího derivace druhého řádu. Vidíme, že Gauss-Newtonův směr (9.17) se liší od Newtonova směru (9.12) zanedbáním členu druhého řádu v Hessiánu (9.19). Jinými slovy, Gauss-Newtonovu metodu je možno vnímat jako aproximaci Newtonovy metody na minimalizaci funkce (9.13) spočívající v tom, že zanedbáme členy druhého řádu, tedy skutečný Hessián (9.19) aproximujeme výrazem $2\mathbf{g}'(\mathbf{x})^T\mathbf{g}'(\mathbf{x})$.

To se projevuje tím, že Gauss-Newtonova metoda obvykle konverguje pomaleji než plná Newtonova metoda použitá na funkci (9.13). Ovšem vyhnuli jsme se počítání druhých derivací funkce **g**, což je hlavní výhoda Gauss-Newtonovy metody.

9.5.3 Levenberg-Marquardtova metoda

Levenberg-Marquardtova metoda je široce používané vylepšení Gauss-Newtonovy metody, které její iteraci

$$\mathbf{x}_{k+1} = \mathbf{x}_k - (\mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}'(\mathbf{x}_k))^{-1} \mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}(\mathbf{x}_k)$$
(9.20)

nahrazuje iterací

$$\mathbf{x}_{k+1} = \mathbf{x}_k - (\mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}'(\mathbf{x}_k) + \mu_k \mathbf{I})^{-1} \mathbf{g}'(\mathbf{x}_k)^T \mathbf{g}(\mathbf{x}_k)$$
(9.21)

kde $\mu_k > 0$. Přidání členu $\mu_k \mathbf{I}$ je vlastně (Tichonovova) regularizace (viz §(5.17)). Potom:

- Pro malé μ_k se (9.21) blíží Gauss-Newtonově iteraci.
- Pro velké μ_k je $(\mathbf{g}'(\mathbf{x}_k)^T\mathbf{g}'(\mathbf{x}_k) + \mu_k\mathbf{I})^{-1} \approx \mu_k^{-1}\mathbf{I}$, tedy (9.21) je blízká iteraci $\mathbf{x}_{k+1} = \mathbf{x}_k \frac{1}{2}\mu_k^{-1}f'(\mathbf{x}_k)^T$ (kde jsme dosadili (9.18)) gradientní metody s délkou kroku μ_k^{-1} .

Tím jsou spojeny výhody Gauss-Newtonovy metody (typicky rychlá konvergence v okolí optima) a gradientní metody (spolehlivost i daleko od optima). Volbou parametru μ_k spojitě přecházíme mezi oběma metodami.

Parametr μ_k měníme se zvětšujícíc
m se k pomocí jednoduché heuristiky. Začneme např. s
 $\mu_0=10^3$ a pak v každé iteraci:

 $^{^3}$ Zde ignorujeme, že funkce f není všude diferencovatelná. Přesně, není diferencovatelná v bodech $\mathbf{a}_1, \dots, \mathbf{a}_m$ (promyslete!), což budeme ignorovat.

- Pokud iterace snížila účelovou funkci, iteraci přijmeme a μ_k zmenšíme.
- Pokud iterace nesnížila účelovou funkci, iteraci odmítneme a μ_k zvětšíme.

Zvětšování a zmenšování μ_k děláme násobením a dělením konstantou, např. 10. Všimněte si, toto nahrazuje optimalizaci délky kroku α_k (line search).

Motivaci pro přidání regularizace do Gauss-Newtonovy iterace (9.20) lze vidět i jinak. Matice $\mathbf{g}'(\mathbf{x}_k)^T\mathbf{g}'(\mathbf{x}_k)$ může být singulární (to když sloupce $\mathbf{g}'(\mathbf{x}_k)$ budou lineárně závislé) nebo blízká singulární. Pak její inverze neexistuje nebo je velmi citlivá na malé změny matice, což může neblaze ovlivnit konvergenci metody. Matice (9.21) je ale vždy positivně definitní (viz Cvičení 6.16), a tedy regulární.

9.6 Cvičení

- 9.1. Funkce $f: \mathbb{R}^3 \to \mathbb{R}$ má stacionární bod (2, 1, 5). Co se dá o tomto stacionárním bodě říci, když Hessova matice f''(2,1,5) v něm má vlastní čísla
 - a) $\{2, 3, -1\}$
 - b) $\{2,3,0\}$
 - c) $\{2, 1, 1\}$
- 9.2. Pro následující funkce najděte stacionární body. Pro každý stacionární bod určete, zda je to lokální minimum, lokální maximum, či ani jedno. Pokud to určit neumíte, odůvodněte.
 - a) $f(x,y) = x(1 \frac{2}{3}x^2 y^2)$
 - b) f(x,y) = 1/x + 1/y + xy
 - c) $f(x,y) = e^y(y^2 x^2)$
 - d) $f(x,y) = 3x x^3 3xy^2$
 - e) $f(x,y) = 6xy^2 2x^3 3y^4$
 - f) $f(x,y) = x^4/3 + y^4/2 4xy^2 + 2x^2 + 2y^2 + 3$
 - g) $f(x, y, z) = x^3 + y^3 + 2xyz + z^2$
- 9.3. Najděte lokální extrémy funkce $f: \mathbb{R}^n \to \mathbb{R}$ dané vzorcem $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} \sum_{i=1}^n x_i \log x_i$, kde \mathbf{a} je známý vektor.
- 9.4. Vyšetřete extrémy funkce $f: \mathbb{R}^n \to \mathbb{R}$ definované vzorcem $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + 1/(\mathbf{b}^T \mathbf{x})$, kde \mathbf{a} a $\mathbf{b} \neq \mathbf{0}$ jsou známé vektory. Tj. zjistěte, jaké podmínky musí splňovat vektory \mathbf{a} a \mathbf{b} aby funkce měla aspoň jeden extrém a za tohoto přepokladu najděte všechny (lokální i globální) extrémy funkce f.
- 9.5. Najděte všechna řešení rovnice $\sin x = \frac{1}{2}x$ (sinus je v radiánech) na kalkulačce s největší přesností, jakou dokážete.
- 9.6. Najděte lokální extrém funkce $f(x,y) = x^2 y + \sin(y^2 2x)$ čistou Newtonovou metodou. Počáteční odhad zvolte $(x_0, y_0) = (1, 1)$. Můžete použít počítač.
- 9.7. Máme m bodů v rovině o souřadnicích (x_i, y_i) , i = 1, ..., m. Tyto body chceme proložit kružnicí ve smyslu nejmenších čtverců tj. hledáme kružnici se středem (u, v) a poloměrem r takovou, aby součet čtverců kolmých vzdáleností bodů ke kružnici byl minimální. Zformulujte příslušnou optimalizační úlohu. Napište iteraci (a) Gauss-Newtonovy, (b) Levenberg-Marquardtovy metody.

9.8. Soustavu dvou rovnic o jedné neznámé

$$x^2 + x = 1$$
$$x^2 - x = 1$$

chceme řešit přibližně ve smyslu nejmenších čtverců. Napište iteraci

- a) čisté Gauss-Newtonovy metody,
- b) čisté Newtonovy metody.

Výsledné vzorce co nejvíce zjednodušte.

9.9. Máme soustavu rovnic

$$x + y - 2xy = 1$$

$$-x + y + xy = -3$$

$$x - y + xy = 1$$

Je soustava lineární? Kolik má řešení a proč? Chceme soustavu řešit přibližně ve smyslu nejmenších čtverců, tj. minimalizovat funkci f(x, y) ve tvaru (9.13). Napište iteraci (a) gradientní, (b) Newtonovy, (c) Gauss-Newtonovy, (d) Levenberg-Marquardtovy metody.

- 9.10. Chceme najít vzdálenost množiny $\{(x,y) \in \mathbb{R}^2 \mid x^2 = y\}$ od kružnice s poloměrem 1 a středem v bodě (2,0). Tvrdíme, že tuto úlohu lze řešit tak, že vyřešíme přeurčenou soustavu $\{x^2 = y, (x-2)^2 + y^2 = 1\}$ přibližně ve smyslu nejmenších čtverců, tedy minimalizujeme funkci $f(x,y) = (x^2 y)^2 + ((x-2)^2 + y^2 1)^2$. Je to pravda, bude minimální hodnota této funkce rovna (čtverci) vzdálenosti mezi množinami? Pokud ne, jak bychom tuto vzdálenost spočítali?
- 9.11. Čistá Newtonova metoda (9.11) na minimalizaci funkce $f: \mathbb{R}^n \to \mathbb{R}$ je Newtonova metoda (9.10) na řešení soustavy $f'(\mathbf{x})^T = \mathbf{0}$. Takto jsme ji odvodili. Ukažte, že iteraci (9.11) lze odvodit také tak, že funkci f aproximujeme okolo bodu \mathbf{x}_k Taylorovým polynomem druhého řádu a najdeme \mathbf{x}_{k+1} jako minimum tohoto polynomu.
- 9.12. (*) V §9.3.1 jsme ukázali, že iterace gradientní metody není invariantní vůči lineární transformaci souřadnic $\tilde{\mathbf{x}} = \mathbf{A}\mathbf{x}$ (pro regulární \mathbf{A}). Ukažte, že iterace Newtonovy metody (9.11) je invariantní vůči této transformaci.
- 9.13. Pevný bod Newtonovy metody (9.10) je takový bod \mathbf{x}_k , který všechny další iterace již nemění, tj. $\mathbf{x}_{k+1} = \mathbf{x}_k$ (z čehož plyne, že $\mathbf{x}_l = \mathbf{x}_k$ pro všechna $l \geq k$). Může mít Newtonova metoda pevný bod, když soustava $\mathbf{g}(\mathbf{x}) = \mathbf{0}$ nemá řešení (máme na mysli reálné řešení, komplexní mít může)?
- 9.14. (*) Gauss-Newtonův směr (9.16) se získá řešením normální rovnice (9.14). Ukázali jsme, že když Jacobiho matice $\mathbf{g}'(\mathbf{x}_k)$ má lineárně nezávislé sloupce, je Gauss-Newtonův směr sestupný. Má-li $\mathbf{g}'(\mathbf{x}_k)$ lineárně závislé sloupce, rovnice (9.14) má nekonečně mnoho řešení, tj. směrů hledání je nekonečně mnoho. Dokažte, že každý takový směr je sestupný.

Nápověda a řešení

- 9.1.a) funkce nemá v tomto bodě lokální extrém
- 9.1.b) nemůžeme rozhodnout, zda má funkce má v tomto bodě lokální extrém
- 9.1.c) funkce má v tomto bodě lokální minimum
- 9.2.d) Stacionární body jsou 4.

- 9.2.e) Stacionární body jsou 3.
- 9.2.f) Stacionárních bodů je 5.
- 9.2.g) Stacionární body jsou (0,0,0) a (3/2,3/2,-9/4).
- 9.3. Funkce je součtem funkcí jedné proměnné, $f(\mathbf{x}) = \sum_i g_i(x_i)$ kde $g_i(x) = a_i x x \log x$. Tedy hledání extrémů funkce f se dá převést na nezávislé hledání extrémů funkcí g_i , viz Cvičení 8.24. Přesněji, f bude mít lokální/globální maximum/minimum v bodě $\mathbf{x} = (x_1, \dots, x_n)$, právě když každá g_i bude mít lokální/globální maximum/minimum v bodě x_i . Je $g'_i(x) = a_i \log x 1 = 0$, tedy $x = e^{a_i-1}$. Není těžké ověřit, že jde o globální maximum. Shrnuto: f má jediný lokální a zároveň globální extrém, a to maximum v bodě $\mathbf{x} = (e^{a_1-1}, \dots, e^{a_n-1})$.
- 9.4. Stacionární podmínka je $f'(\mathbf{x})^T = \mathbf{a} \mathbf{b}/(\mathbf{b}^T\mathbf{x})^2 = \mathbf{0}$. Tuto rovnici musíme vyřešit, tj. určit, pro jaká \mathbf{a}, \mathbf{b} má řešení a jaká je v tom případě její množina řešení. Nemůže být $\mathbf{a} = \mathbf{b} = \mathbf{0}$, protože $\mathbf{b} = \mathbf{0}$ je zakázáno v zadání (jinak by f nebyla definována). Jistě musí být $\mathbf{b}^T\mathbf{x} \neq \mathbf{0}$, protože jinak by také $f(\mathbf{x})$ nebylo definováno. Pro každé $\alpha \geq 0$ existuje \mathbf{x} takové, že $(\mathbf{b}^T\mathbf{x})^2 = \alpha$ (proč?). Proto má rovnice řešení právě tehdy, když $\mathbf{b} \neq \mathbf{0}$ a existuje skalár $\alpha > 0$ takový, že $\mathbf{a} = \mathbf{b}/\alpha$. Neboli vektory \mathbf{a}, \mathbf{b} jsou nenulové, rovnoběžné a mají stejný směr. (Tento výsledek je intuitivně přijatelný, představíme-li n = 2. Pro $\mathbf{a} = (1,0)$ a $\mathbf{b} = (0,1)$ (tj. nejsou rovnoběžné) dostaneme funkci f(x,y) = x + 1/y, která je očividně neomezená. Pro $\mathbf{a} = (1,0)$ a $\mathbf{b} = -\mathbf{a}$ (jsou rovnoběžné ale mají opačný směr) dostaneme f(x,y) = x 1/x, a ta také neomezená (načrtněte si graf).)

Za této podmínky můžeme naši funkci napsat jako $f(\mathbf{x}) = \mathbf{b}^T \mathbf{x}/\alpha + 1/(\mathbf{b}^T \mathbf{x})$, kde $\mathbf{b} \in \mathbb{R}^n$ a $\alpha > 0$ jsou známé. Tato funkce závisí jen na součinu $\mathbf{b}^T \mathbf{x}$ (můžeme se totiž pohybovat jen po přímce dané společným směrem vektorů \mathbf{a}, \mathbf{b}). Označíme-li $\mathbf{b}^T \mathbf{x} = y$, je $f(\mathbf{x}) = g(\mathbf{b}^T \mathbf{x})$ kde $g(y) = y/\alpha + 1/y$. Nyní stačí najít extrémy funkce g. Stacionární podmínka je $g'(y) = 1/\alpha - 1/y^2 = 0$. Tato rovnice má dvě řešení $y = \pm \alpha$. Pomocí jednoduchých úvah (načrtnutí grafu, druhá derivace) zjistíme, že kladný kořen je globální minimum a záporný je globální maximum.

Odpověď na otázku v zadání: funkce f má aspoň jeden lokální extrém právě tehdy, když $\mathbf{b} \neq \mathbf{0}$ a existuje skalár $\alpha > 0$ takový, že $\mathbf{a} = \mathbf{b}/\alpha$. Za této podmínky má funkce f lokální a zároveň globální minimum v bodech \mathbf{x} splňujících $\mathbf{b}^T\mathbf{x} = \alpha$ a lokální a zároveň globální maximum v bodech \mathbf{x} splňujících $\mathbf{b}^T\mathbf{x} = -\alpha$.

- 9.5. Jeden kořen je x=0 a pak dva další lišící se znaménkem. Jeden z nich získáme Newtonovou metodou: $x_{k+1}=x_k-(2\sin x_k-x_k)/(2\cos x_k-1)$. Načrtneme si grafy funkcí $\sin x$ a 1/over2x a z toho zvolíme počáteční odhad, např. $x_0=2$. Po několika iteracích máme $x_k=1.895494267033981$.
- 9.8.a) Minimalizujeme $\mathbf{g}(x)^T \mathbf{g}(x)$ kde $\mathbf{g}(x) = \begin{bmatrix} x^2 + x 1 \\ x^2 x 1 \end{bmatrix}$. Máme $\mathbf{g}'(x) = \begin{bmatrix} 2x + 1 \\ 2x 1 \end{bmatrix}$. Iterace je $x \leftarrow x (\mathbf{g}'(x)^T \mathbf{g}'(x))^{-1} \mathbf{g}'(x)^T \mathbf{g}(x) = x (8x^2 + 2)^{-1} \begin{bmatrix} 2x + 1 & 2x 1 \end{bmatrix} \begin{bmatrix} x^2 + x 1 \\ x^2 x 1 \end{bmatrix} = \frac{2x(x^2 + 1)}{4x^2 + 1}$.
- 9.8.b) Minimalizujeme $f(x) = \mathbf{g}(x)^T \mathbf{g}(x) = (x^2 + x 1)^2 + (x^2 x 1)^2 = 2(x^4 x^2 + 1)$. Máme $f'(x) = 8x^3 4x$, $f''(x) = 24x^2 4$. Iterace je $x \leftarrow x f'(x)/f''(x) = (4x^3)/(6x^2 1)$. Vidíme, že pro tuto jednoduchou soustavu s jednou proměnnou není Newtonova iterace složitější než Gauss-Newtonova iterace obvykle je to ale naopak.
- 9.9. Soustava je nelineární. Nemá řešení, protože po zavedení proměnné xy=z dostaneme lineární soustavu s řešením (x,y,z)=(0.5,-1.5,-1), což je spor.
- 9.10. Nebude, vzdálenost by se musela počítat jako minimalizace $(x-u)^2+(y-v)^2$ za podmínek $x^2=y$ a $(u-2)^2+v^2=1$. Protože se křivky neprotínají, tato formulace jde zjednodušit: vzdálenost bodu od kružnice je rovna vzdálenost bodu od středu kružnice, tedy stačí minimalizovat $(x-2)^2+y^2$ za podmínky $x^2=y$, což se zjednoduší na minimalizaci funkce jedné proměnné $(x-2)^2+x^4$.

- 9.11. Po přejmenování proměnných $\mathbf{x}_k, \mathbf{x}_{k+1}$ na \mathbf{x}, \mathbf{y} máme ukázat, že stacionární bod \mathbf{y} Taylorova polynomu (8.19c) je právě bod splňující $\mathbf{g}(\mathbf{x}) + \mathbf{g}'(\mathbf{x})(\mathbf{y} \mathbf{x}) = \mathbf{0}$ kde $\mathbf{g}(\mathbf{x}) = f'(\mathbf{x})^T$. To se snadno dokáže výpočtem derivace polynomu (s užitím Cvičení 8.11).
- 9.13. Aby $\mathbf{x}_{k+1} = \mathbf{x}_k$, musí být $\mathbf{g}'(\mathbf{x}_k)^{-1}\mathbf{g}(\mathbf{x}_k) = \mathbf{0}$. Matice $\mathbf{g}'(\mathbf{x}_k)$ je regulární (protože předpokládáme, že má inverzi) a tedy i matice $\mathbf{g}'(\mathbf{x}_k)^{-1}$ je regulární. Ale nemůže být $\mathbf{g}(\mathbf{x}_k) = \mathbf{0}$, protože soustava nemá řešení. Tedy pevný bod neexistuje.
- 9.14. Pišme normální rovnici (9.14) jako $\mathbf{A}^T \mathbf{A} \mathbf{v} = \mathbf{A}^T \mathbf{b}$ kde $\mathbf{A} = \mathbf{g}'(\mathbf{x}_k)$, $\mathbf{b} = -\mathbf{g}(\mathbf{x}_k)$ a $\mathbf{v} = \mathbf{x}_{k+1} \mathbf{x}_k$ je směr hledání. Je-li \mathbf{v} řešení normální rovnice, pak $\mathbf{A} \mathbf{v} = \mathbf{P} \mathbf{b}$ je projekce vektoru \mathbf{b} na podprostor rng \mathbf{A} . Je $f'(\mathbf{x}_k) = -\mathbf{A}^T \mathbf{b}$, tedy podmínka na sestupnost směru \mathbf{v} zní $\mathbf{b}^T \mathbf{A} \mathbf{v} = \mathbf{b}^T \mathbf{P} \mathbf{b} > 0$. Ale \mathbf{P} je positivně semidefinitní (viz Cvičení 6.25), tedy $\mathbf{b}^T \mathbf{P} \mathbf{b} \geq 0$. Zde ovšem rovnost nastane jen když $\mathbf{b} = \mathbf{0}$ nebo $\mathbf{A}^T \mathbf{b} = \mathbf{0}$. Tedy \mathbf{v} je sestupný, za přirozených předpokladů $\mathbf{g}(\mathbf{x}_k) \neq \mathbf{0}$ a $f'(\mathbf{x}) \neq \mathbf{0}$.

Kapitola 10

Lokální extrémy vázané rovnostmi

Hledejme minimum funkce $f: \mathbb{R}^n \to \mathbb{R}$ na množině

$$X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) = \mathbf{0} \}, \tag{10.1}$$

kde $\mathbf{g} = (g_1, \dots, g_m) \colon \mathbb{R}^n \to \mathbb{R}^m$. To odpovídá úloze (1.9) s omezeními typu rovnosti:

min
$$f(x_1, ..., x_n)$$

za podmínek $g_i(x_1, ..., x_n) = 0, \quad i = 1, ..., m.$ (10.2)

Mluvíme o minimu funkce f vázaném rovnostmi $\mathbf{g}(\mathbf{x}) = \mathbf{0}$.

Množina X je množina řešení soustavy m rovnic (obecně nelineárních) o n neznámých. Tato množina obvykle nemá žádné vnitřní body, proto nelze použít Větu 9.4. V některých případech ale lze vyjádřit všechna řešení soustavy $\mathbf{g}(\mathbf{x}) = \mathbf{0}$ parametricky (neboli parametrizovat množinu X) a úlohu tak převést na úlohu bez omezení. To jsme použili v Příkladu 1.3, uveď me další příklady.

Příklad 10.1. Minimalizujme funkci f(x,y) = x + y na množině $X = \{(x,y) \in \mathbb{R}^2 \mid g(x,y) = x^2 + y^2 - 1 = 0\}$, máme tedy m = 1 a n = 2. Tj. řešíme úlohu

$$\min \quad x + y$$
 za podmínky $x^2 + y^2 = 1$ (10.3)

Množinu X lze parametrizovat jako $X=\{(\cos\alpha,\sin\alpha)\mid\alpha\in\mathbb{R}\}$. Úlohu tak převedeme na hledání extrémů funkce jedné proměnné $\varphi(\alpha)=f(\cos\alpha,\sin\alpha)=\cos\alpha+\sin\alpha$ na množině \mathbb{R} . Je-li α lokální extrém této funkce, pak dle Vět 9.2 a 9.4 je $\varphi'(\alpha=-\sin\alpha+\cos\alpha=0,\cos\alpha)$ řešení $\alpha=\frac{\pi}{4}+k\pi$. To odpovídá bodům $(x,y)=\pm\frac{\sqrt{2}}{2}(1,1)$. To jsou body podezřelé z lokálního extrému.

Někdy ovšem množinu (10.1) parametrizovat nelze nebo je to složité mebo nevýhodné. Nyní proto odvodíme obecnější metodu, metodu Lagrangeových multiplikátorů.

10.1 Lineární omezení

Uvažujme nejprve důležitý případ, kdy zobrazení \mathbf{g} je afinní, tj. $\mathbf{g}(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$ kde $\mathbf{A} \in \mathbb{R}^{m \times n}$. Dle Věty 3.13 je tedy množina X afinní podprostor \mathbb{R}^n . Naši úlohu můžeme psát jako

$$\min\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}\mathbf{x} = \mathbf{b}\},\tag{10.4}$$

tj. minimalizujeme funkci f za podmínek lineárních rovností. Ukážeme, že v tomto případě lze podmínky prvního řádu na lokální extrém odvodit jednoduše s tím, co už známe.

Věta 10.1. Necht' f je diferencovatelná. Necht' \mathbf{x} je lokální extrém úlohy (10.4) (tj. lokální extrém funkce f na množině řešení soustavy $\mathbf{A}\mathbf{x} = \mathbf{b}$). Pak existuje $\lambda \in \mathbb{R}^m$ tak, že

$$f'(\mathbf{x}) = \boldsymbol{\lambda}^T \mathbf{A},\tag{10.5a}$$

$$\mathbf{A}\mathbf{x} = \mathbf{b}.\tag{10.5b}$$

 $D\mathring{u}kaz$. Množinu řešení soustavy $\mathbf{A}\mathbf{x} = \mathbf{b}$ parametrizujme jako $\mathbf{x} = \mathbf{C}\mathbf{y} + \mathbf{x}_0$, kde \mathbf{x}_0 a \mathbf{C} jsou libovolné splňující $\mathbf{A}\mathbf{x}_0 = \mathbf{b}$ a rng $\mathbf{C} = \text{null } \mathbf{A}$. Teď je úloha ekvivalentní minimalizaci funkce

$$\varphi(\mathbf{y}) = f(\mathbf{C}\mathbf{y} + \mathbf{x}_0) \tag{10.6}$$

bez omezení. Nevýhodou tohoto postupu se zdá být, že musíme z matice \mathbf{A} spočítat matici \mathbf{C} , tedy např. najít bázi nulového prostoru matice \mathbf{A} .

Vtip je v tom, že nemusíme. Dle Věty 9.4 minimální argument y splňuje

$$\frac{\mathrm{d}\varphi(\mathbf{x})}{\mathrm{d}\mathbf{y}} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{y}} f(\mathbf{C}\mathbf{y} + \mathbf{x}_0) = f'(\mathbf{C}\mathbf{y} + \mathbf{x}_0)\mathbf{C} = f'(\mathbf{x})\mathbf{C} = \mathbf{0},$$
(10.7)

kde jsme užili řetízkové pravidlo (jako v Příkladě 8.11). Rovnost $f'(\mathbf{x})\mathbf{C} = \mathbf{0}$ říká, že gradient $\nabla f(\mathbf{x}) = f'(\mathbf{x})^T$ je kolmý na všechny sloupce matice \mathbf{C} , tedy na podprostor rng $\mathbf{C} = \text{null } \mathbf{A}$. Ale to je totéž jako $\nabla f(\mathbf{x}) \in (\text{null } \mathbf{A})^{\perp} = \text{rng}(\mathbf{A}^T)$, neboli $\nabla f(\mathbf{x})$ je lineární kombinací řádků matice \mathbf{A} , neboli $f'(\mathbf{x}) = \boldsymbol{\lambda}^T \mathbf{A}$ pro nějaké $\boldsymbol{\lambda} \in \mathbb{R}^m$.

Soustava (10.5) má m+n rovnic a m+n neznámých. Jak řekneme později, prvkům vektoru λ se říká Lagrangeovy multiplikátory.

Příklad 10.2. Vrať me se k úloze (5.18), tedy k hledání řešení nehomogenní lineární soustavy s nejmenší normou. Místo funkce $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$ budeme minimalizovat funkci $f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{x}$, což úlohu nezmění a stacionární podmínky nám vyjdou hezčí. Je $f'(\mathbf{x}) = \mathbf{x}^T$, tedy rovnost (10.5a) je $\mathbf{x} = \mathbf{A}^T \lambda$. Soustava (10.5) je tedy soustava (5.20), kterou jsme v §5.2 odvodili úvahou.

Příklad 10.3. Obecněji, řešme úlohu

$$\begin{aligned} & & \min & \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 \\ & \text{za podmínek} & & \mathbf{C}\mathbf{x} = \mathbf{d} \end{aligned} \tag{10.8}$$

Tedy řešíme úlohu nejmenších čtverců (5.2) s lineárními omezeními (angl. linearly constrained least squares). Tato úloha má hodně aplikací.

Máme (opět po přidání $\frac{1}{2}$ pro pohodlí)

$$f(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2 = \frac{1}{2} (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b}),$$

$$f'(\mathbf{x}) = \mathbf{x}^T \mathbf{A}^T \mathbf{A} - \mathbf{b}^T \mathbf{A}$$

(derivaci spočtěte sami!). Tedy podmínka stacionarity (10.5) je

$$\mathbf{A}^T \mathbf{A} \mathbf{x} + \mathbf{C}^T \boldsymbol{\lambda} = \mathbf{A}^T \mathbf{b}, \tag{10.9a}$$

$$\mathbf{C}\mathbf{x} = \mathbf{d},\tag{10.9b}$$

neboli

$$\begin{bmatrix} \mathbf{A}^T \mathbf{A} & \mathbf{C}^T \\ \mathbf{C} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^T \mathbf{b} \\ \mathbf{d} \end{bmatrix}.$$

Tuto lineární soustavu vyřešíme jednou ze známých metod (k tomu viz Cvičení 10.25).

10.2 Tečný a ortogonální prostor k množině

Zde odvodíme podmínky prvního řádu na lokální extrém pro zobrazení \mathbf{g} , která nemusí být afinní. Zapomeňme nejprve na účelovou funkci f a zkoumejme pouze množinu (10.1) řešení soustavy $\mathbf{g}(\mathbf{x}) = \mathbf{0}$. Nejprve definujme pojem tečny k množině X v bodě $\mathbf{x} \in X$. Tento pojem je intuitivně zřejmý, ale jeho přesná definice není očividná.

Necht' zobrazení

$$\varphi \colon (\alpha_1, \alpha_2) \to \mathbb{R}^n$$
 (10.10)

je na intervalu $(\alpha_1, \alpha_2) \subseteq \mathbb{R}$ diferencovatelné a pro každé $\alpha \in (\alpha_1, \alpha_2)$ splňuje

$$\mathbf{g}(\boldsymbol{\varphi}(\alpha)) = \mathbf{0}.\tag{10.11}$$

Množina $\{\varphi(\alpha) \mid \alpha \in (\alpha_1, \alpha_2)\} \subseteq X$ je hladká křivka na množině X. Pro každé $\alpha \in (\alpha_1, \alpha_2)$ je vektor $\varphi'(\alpha) \in \mathbb{R}^n$ tečný ke křivce v bodě $\varphi(\alpha) \in X$. Tento vektor je zároveň **tečný** k množině X v bodě $\varphi(\alpha)$.

Tedy: vektor $\mathbf{v} \in \mathbb{R}^n$ je tečný k množině X v bodě $\mathbf{x} \in X$, existují-li čísla $\alpha_1 < \alpha < \alpha_2$ a diferencovatelné zobrazení (10.10) tak, že $\mathbf{x} = \boldsymbol{\varphi}(\alpha)$ a $\mathbf{v} = \boldsymbol{\varphi}'(\alpha)$. Množina X v daném bodě $\mathbf{x} \in X$ může mít více tečných vektorů nebo tam také nemusí mít žádný – to záleží na vlastnostech zobrazení \mathbf{g} v okolí bodu \mathbf{x} .

Tvrzení 10.2. Nechť je zobrazení **g** spojitě diferencovatelné v bodě $\mathbf{x} \in X$. Nechť vektor $\mathbf{v} \in \mathbb{R}^n$ je tečný k množině X v bodě \mathbf{x} . Pak $\mathbf{g}'(\mathbf{x})\mathbf{v} = \mathbf{0}$.

 $D\mathring{u}kaz$. Derivací rovnice (10.11) v bodě α s použitím řetízkového pravidla máme

$$\frac{\mathrm{d}\mathbf{g}(\boldsymbol{\varphi}(\alpha))}{\mathrm{d}\alpha} = \mathbf{g}'(\boldsymbol{\varphi}(\alpha))\boldsymbol{\varphi}'(\alpha) = \mathbf{g}'(\mathbf{x})\mathbf{v} = \mathbf{0}.$$

Podmínka $\mathbf{g}'(\mathbf{x})\mathbf{v} = \mathbf{0}$ znamená, že vektor \mathbf{v} je kolmý k řádkům Jacobiho matice $\mathbf{g}'(\mathbf{x})$, což jsou gradienty $\nabla g_1(\mathbf{x}), \dots, \nabla g_m(\mathbf{x})$ složek zobrazení \mathbf{g} v bodě \mathbf{x} . Pro m = 1 tedy tvrzení zobecňuje skutečnost, kterou jsme bez důkazu uvedli v §8.6, totiž že gradient funkce je v každém bodě kolmý k její vrstevnici.

Následující věta říká, že za jisté podmínky to platí i naopak, tedy že každý vektor kolmý ke gradientům $\nabla g_1(\mathbf{x}), \ldots, \nabla g_m(\mathbf{x})$ je tečný k množině X. Důkaz věty neuvádíme (plyne z tzv. věty o implicitni funkci).

Věta 10.3. Nechť je zobrazení g spojitě diferencovatelné v bodě $\mathbf{x} \in X$. Nechť

$$\operatorname{rank} \mathbf{g}'(\mathbf{x}) = m. \tag{10.12}$$

Nechť vektor $\mathbf{v} \in \mathbb{R}^n$ splňuje $\mathbf{g}'(\mathbf{x})\mathbf{v} = \mathbf{0}$. Pak vektor \mathbf{v} je tečný k množině X v bodě \mathbf{x} .

Podmínka (10.12) znamená, že gradienty $\nabla g_1(\mathbf{x}), \dots, \nabla g_m(\mathbf{x})$ musí být lineárně nezávislé. Bodu $\mathbf{x} \in X$ splňující podmínku (10.12) se někdy říká **regulární bod**¹ množiny X.

Tvrzení 10.2 a Věta 10.3 společně říkají, že v každém regulárním bodě $\mathbf{x} \in X$ je množina všech tečných vektorů rovna nulovému prostoru Jacobiho matice $\mathbf{g}'(\mathbf{x})$. To zároveň dokazuje, že

¹Jsou-li pro nějaké $\varepsilon > 0$ všechny body množiny $X \cap B_{\varepsilon}(\mathbf{x})$ regulární, tato množina je 'hladký povrch' v \mathbb{R}^n dimenze n-m. Studiem 'hladkých povrchů' se zabývá zajímavá disciplína diferenciální geometrie.

tato množina všech tečných vektorů tvoří podprostor \mathbb{R}^n . Tomuto podprostoru se říká **tečný prostor** k množině X v bodě \mathbf{x} . Jeho ortogonální doplněk (viz Věta 4.2)

$$(\text{null } \mathbf{g}'(\mathbf{x}))^{\perp} = \text{rng } \mathbf{g}'(\mathbf{x})^{T} = \text{span}\{\nabla g_{1}(\mathbf{x}), \dots, \nabla g_{m}(\mathbf{x})\}$$
(10.13)

je ortogonální prostor k množině X v bodě \mathbf{x} . Viz obrázek:

Příklad 10.4. Nechť $g: \mathbb{R}^2 \to \mathbb{R}$ je funkce $g(x,y) = x^2 + y^2 - 1$. Množina X je jednotková kružnice v \mathbb{R}^2 . Máme $\nabla g(x,y) = (2x,2y)$. Protože pro každé $(x,y) \in X$ je $\nabla g(x,y) \neq (0,0)$, předpoklady Věty 10.3 jsou splněny a ortogonální prostor k X v bodě (x,y) je množina span $\{\nabla g(x,y)\}$, což je přímka kolmá ke kružnici. Tečný prostor v bodě (x,y) je ortogonální doplněk této přímky, tedy přímka tečná ke kružnici².

Příklad 10.5. Nechť $g: \mathbb{R}^3 \to \mathbb{R}$ je funkce $g(x,y,z) = x^2 + y^2 + z^2 - 1$. Množina X je jednotková sféra v \mathbb{R}^3 . Máme $\nabla g(x,y,z) = (2x,2y,2z)$. Ortogonální prostor k X v bodě (x,y,z) je množina span $\{\nabla g(x,y,z)\}\}$, což je přímka kolmá ke sféře. Tečný prostor v bodě (x,y,z) je ortogonální doplněk této přímky, tedy rovina tečná ke sféře.

Příklad 10.6. Nechť $\mathbf{g}=(g_1,g_2)\colon \mathbb{R}^3\to\mathbb{R}^2$ je zobrazení

$$\mathbf{g}(x, y, z) = (x^2 + y^2 + z^2 - 1, (x - 1)^2 + y^2 + z^2 - 1).$$

Nulová vrstevnice funkce g_1 je jednotková sféra se středem v bodě (0,0,0), nulová vrstevnice funkce g_2 je jednotková sféra se středem v bodě (1,0,0). Množina X je průnik těchto dvou sfér, je to tedy kružnice v \mathbb{R}^3 . Máme $\nabla g_1(x,y,z) = 2(x,y,z)$ a $\nabla g_2(x,y,z) = 2(x-1,y,z)$. Ortogonální prostor k množině X v bodě (x,y,z) je množina span $\{\nabla g_1(x,y,z), \nabla g_2(x,y,z)\}\}$, což je rovina kolmá ke kružnici v bodě (x,y,z). Tečný prostor je ortogonální doplněk této množiny, tedy přímka tečná ke kružnici.

Příklad 10.7. Nechť $g: \mathbb{R}^2 \to \mathbb{R}$ je funkce $g(x,y) = (x^2 + y^2 - 1)^2$. Množina X je úplně stejná kružnice jako v Příkladě 10.4. Máme $\nabla g(x,y) = 4(x^2 + y^2 - 1)(x,y)$. Pro každý bod $(x,y) \in X$ je $\nabla g(x,y) = (0,0)$, tedy bod (x,y) není regulární. Neplatí, že každý vektor kolmý ke gradientu $\nabla g(x,y)$ (což je úplně každý vektor) je tečný ke kružnici v bodě (x,y). Platí pouze Tvrzení 10.2, totiž že každý vektor tečný ke kružnici v bodě (x,y) je kolmý ke gradientu (protože k nulovému vektoru je každý vektor kolmý).

 $^{^2}$ Mohli byste namítnout, že tečný prostor je lineární podprostor (a tedy prochází počátkem), kdežto tečna ke kružnici v bodě (x,y) prochází bodem (x,y) a je to tedy afinní podprostor. To je pravda, ale bere se to jako samozřejmost. Tečný prostor je lineární, pokud jako jeho počátek vezmeme bod (x,y).

10.3 Podmínky prvního řádu

Nyní přidáme do našich úvah i naši účelovou funkci $f: \mathbb{R}^n \to \mathbb{R}$.

Tvrzení 10.4. Nechť $\mathbf{x} \in X$ je lokální extrém funkce f na množině X. Nechť f a \mathbf{g} jsou v bodě \mathbf{x} spojitě diferencovatelné. Nechť $\mathbf{v} \in \mathbb{R}^n$ je tečný vektor k množině X v bodě \mathbf{x} . Pak $f'(\mathbf{x})\mathbf{v} = \mathbf{0}$.

 $D\mathring{u}kaz$. Protože \mathbf{v} je tečný vektor k množině X v bodě \mathbf{x} , existují čísla $\alpha_1 < \alpha < \alpha_2$ a diferencovatelné zobrazení (10.10) tak, že $\mathbf{x} = \boldsymbol{\varphi}(\alpha)$ a $\mathbf{v} = \boldsymbol{\varphi}'(\alpha)$. Protože \mathbf{x} je lokální extrém funkce f na množině X, je to lokální extrém funkce f také na každé hladké křivce na X procházející bodem \mathbf{x} (to plyne z definice lokálního extrému, viz §8.10). Dle Věty 9.2 tedy

$$\frac{\mathrm{d}f(\boldsymbol{\varphi}(\alpha))}{\mathrm{d}\alpha} = f'(\boldsymbol{\varphi}(\alpha))\boldsymbol{\varphi}'(\alpha) = f'(\mathbf{x})\mathbf{v} = 0.$$

Tvrzení 10.4 říká, že je-li $\mathbf{x} \in X$ lokální extrém funkce f na množině X, pak gradient $\nabla f(\mathbf{x}) = f'(\mathbf{x})^T$ je kolmý na každý vektor tečný k množině X v bodě \mathbf{x} . Neboli (dle Věty 8.4) směrová derivace $f'(\mathbf{x})\mathbf{v} = \nabla f(\mathbf{x})^T\mathbf{v}$ je nulová v každém směru tečném k množině X v bodě \mathbf{x} . Toto tvrzení je intuitivně jasné. Pokud je směrová derivace nenulová (obrázek dole vlevo), bod \mathbf{x} není lokální extrém, protože bychom bodem \mathbf{x} mohli pohnout ve směru vektoru \mathbf{v} (příp. $-\mathbf{v}$) a funkci tak zvětšit (příp. zmenšit). Aby byla směrová derivace nulová, musí být gradient $\nabla f(\mathbf{x})$ kolmý na tečný vektor \mathbf{v} (obrázek vpravo).

Kombinací Tvrzení 10.4 a Věty 10.3 už snadno obdržíme hlavní výsledek této kapitoly:

Věta 10.5. Nechť $\mathbf{x} \in X$ je lokální extrém funkce f na množině X. Nechť f a \mathbf{g} jsou v bodě \mathbf{x} spojitě diferencovatelné. Nechť platí (10.12). Pak gradient $\nabla f(\mathbf{x}) = f'(\mathbf{x})^T$ patří do ortogonálního prostoru množiny X v bodě \mathbf{x} , tj.

$$\nabla f(\mathbf{x}) \in \text{span}\{\nabla g_1(\mathbf{x}), \dots, \nabla g_m(\mathbf{x})\}.$$
 (10.14)

 $D\mathring{u}kaz$. Protože \mathbf{x} je lokální extrém, dle Tvrzení 10.4 je gradient $\nabla f(\mathbf{x})$ kolmý na každý vektor tečný k množině X v bodě \mathbf{x} . Protože platí (10.12), dle Věty 10.3 je tedy $\nabla f(\mathbf{x})$ kolmý na tečný prostor null $\mathbf{g}'(\mathbf{x})$, neboli patří do ortogonálního prostoru (10.13).

Věta 10.5 se k řešení úlohy (10.2) obvykle používá následujícím způsobem. Podmínka (10.14) říká, že existují čísla $(\lambda_1, \ldots, \lambda_m) = \lambda \in \mathbb{R}^m$ (tzv. Lagrangeovy multiplikátory) taková, že

$$f'(\mathbf{x}) + \lambda_1 g'_1(\mathbf{x}) + \dots + \lambda_m g'_m(\mathbf{x}) = f'(\mathbf{x}) + \boldsymbol{\lambda}^T \mathbf{g}'(\mathbf{x}) = 0.$$
 (10.15)

Zaved'me Lagrangeovu funkci $L: \mathbb{R}^{n+m} \to \mathbb{R}$ jako

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \boldsymbol{\lambda}^T \mathbf{g}(\mathbf{x}) = f(\mathbf{x}) + \lambda_1 g_1(\mathbf{x}) + \dots + \lambda_m g_m(\mathbf{x}).$$
(10.16)

Očividně je $L(\mathbf{x}, \lambda) = f(\mathbf{x})$ pro všechna $\mathbf{x} \in X$ a $\lambda \in \mathbb{R}^m$. Dále si všimneme, že:

- Podmínku (10.15) lze psát jako³ $\partial L(\mathbf{x}, \boldsymbol{\lambda})/\partial \mathbf{x} = \mathbf{0}$.
- Rovnost $\partial L(\mathbf{x}, \boldsymbol{\lambda})/\partial \boldsymbol{\lambda} = \mathbf{g}(\mathbf{x})^T = \mathbf{0}$ je ekvivalentní omezením.

Platí-li přepoklady Věty 10.5, existuje tedy vektor $\lambda \in \mathbb{R}^m$ takový, že $L'(\mathbf{x}, \lambda) = \mathbf{0}$, tj. bod $(\mathbf{x}, \lambda) \in \mathbb{R}^{m+n}$ je stacionární bod funkce L.

Příklad 10.8. Řešme znovu Příklad 10.1. Lagrangeova funkce je

$$L(x, y, \lambda) = x + y + \lambda(1 - x^2 - y^2).$$

Její stacionární body (x, y, λ) jsou řešeními soustavy tří rovnic o třech neznámých

$$\partial L(x, y, \lambda)/\partial x = 1 - 2\lambda x = 0,$$

$$\partial L(x, y, \lambda)/\partial y = 1 - 2\lambda y = 0,$$

$$\partial L(x, y, \lambda)/\partial \lambda = 1 - x^2 - y^2 = 0.$$

První dvě rovnice dají $x = y = 1/(2\lambda)$. Dosazením do třetí máme $2/(2\lambda)^2 = 1$, což dá dva kořeny $\lambda = \pm 1/\sqrt{2}$. Stacionární body funkce L jsou dva, $(x, y, \lambda) = \pm (1, 1, 1)/\sqrt{2}$. Tedy máme dva kandidáty na lokální extrémy, $(x, y) = \pm (1, 1)/\sqrt{2}$.

Příklad 10.9. Řešme Příklad 10.1, kde ale omezení změníme na $g(x,y) = (1 - x^2 - y^2)^2 = 0$. Podle Příkladu 10.7 máme g'(x,y) = (0,0) pro každé $(x,y) \in X$, čekáme tedy potíž.

Stacionární body Lagrangeovy funkce $L(x, y, \lambda) = x + y + \lambda (1 - x^2 - y^2)^2$ musí splňovat

$$\partial L(x, y, \lambda)/\partial x = 1 - 4\lambda x(1 - x^2 - y^2) = 0,$$

$$\partial L(x, y, \lambda)/\partial y = 1 - 4\lambda y(1 - x^2 - y^2) = 0,$$

$$\partial L(x, y, \lambda)/\partial \lambda = (1 - x^2 - y^2)^2 = 0.$$

Tyto rovnice si odporují. Jelikož $1-x^2-y^2=0$, tak např. první rovnice říká $1-4\lambda x\cdot 0=0$, což neplatí pro žádné (x,λ) . Závěr je, že lokální extrémy $(x,y)=\pm(1,1)/\sqrt{2}$ jsme nenašli. \square

Příklad 10.10. Získejme podmínky stacionarity (10.5) pro úlohu (10.4) s lineárními omezeními pomocí formalismu s Lagrangeovou funkcí. Máme

$$L(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \boldsymbol{\lambda}^T (\mathbf{b} - \mathbf{A}\mathbf{x})$$

a tedy

$$\partial L(\mathbf{x}, \boldsymbol{\lambda})/\partial \mathbf{x} = f'(\mathbf{x}) - \boldsymbol{\lambda}^T \mathbf{A} = \mathbf{0},$$

 $\partial L(\mathbf{x}, \boldsymbol{\lambda})/\partial \boldsymbol{\lambda} = \mathbf{b} - \mathbf{A}\mathbf{x} = \mathbf{0}.$

Příklad 10.11. Vrať me se k úloze (7.1), kde minimalizujeme kvadratickou formu $\mathbf{x}^T \mathbf{A} \mathbf{x}$ na sféře $\mathbf{x}^T \mathbf{x} = 1$. Předpokládáme, že \mathbf{A} je symetrická. Máme

$$L(\mathbf{x}, \lambda) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \lambda (1 - \mathbf{x}^T \mathbf{x}).$$

Rovnice $\partial L(\mathbf{x}, \lambda)/\partial \mathbf{x} = \mathbf{0}$ dá (po transpozici) $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$. Tedy (\mathbf{x}, λ) je stacionární bod funkce L, právě když λ je vlastní číslo matice \mathbf{A} a \mathbf{x} je normalizovaný (kvůli podmínce $\mathbf{x}^T\mathbf{x} = 1$) vlastní vektor příslušný λ .

Pouze z podmínek prvního řádu nelze rozhodnout, které stacionární body funkce L odpovídají minimu úlohy (7.1), které maximu a které ani jednomu. Můžeme to ale udělat úvahou: když (λ, \mathbf{x}) je stacionární bod L, máme $\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T (\lambda \mathbf{x}) = \lambda$. Tedy nejmenší [největší] vlastní číslo odpovídá minimu [maximu] a ostatní vlastní čísla neodpovídají (globálním) extrémům úlohy.

 $^{^{3}}$ Výraz $\partial L(\mathbf{x}, \boldsymbol{\lambda})/\partial \mathbf{x}$ označuje řádkový vektor parciálních derivací funkce L podle x_{1}, \ldots, x_{n} .

Předchozí příklady a také Příklady 10.3 a 10.2 vyžadují od studenta nejen znalost metody Lagrangeových multiplikátorů, ale i jistou zručnost v manipulaci s maticovými výrazy. Cvičte tuto zručnost ve Cvičeních 10.16–10.19!

Věta 10.5 udává podmínky prvního řádu na extrémy vázané rovnostmi. Říká, že pokud $(\mathbf{x}, \boldsymbol{\lambda})$ je stacionární bod Lagrangeovy funkce, pak bod \mathbf{x} je 'podezřelý' z lokálního extrému funkce f na množině X. Jak poznáme, zda tento bod je lokální extrém, případně jaký? Podmínky druhého řádu pro vázané extrémy uvádíme nepovinně v §10.4. Zde pouze zdůrazníme, že druh lokálního extrému nelze zjistit podle definitnosti Hessovy matice $L''(\mathbf{x}, \boldsymbol{\lambda})$, tedy je chybou použít Větu 9.5 na funkci L.

10.4 (*) Podmínky druhého řádu

Řekneme, že matice $\mathbf{A} \in \mathbb{R}^{n \times n}$ je positivně semidefinitní na podprostoru $X \subseteq \mathbb{R}^n$, jestliže $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$ pro každé $\mathbf{x} \in X$. Jak tuto podmínku ověříme? Najdeme-li matici \mathbf{B} , jejíž sloupce tvoří bázi podprostoru X, pak každý prvek $\mathbf{y} \in X$ lze parametrizovat jako $\mathbf{y} = \mathbf{B} \mathbf{x}$. Protože $\mathbf{y}^T \mathbf{A} \mathbf{y} = \mathbf{x}^T \mathbf{B}^T \mathbf{A} \mathbf{B} \mathbf{x}$, převedli jsme problém na ověřování positivní semidefinitnosti matice $\mathbf{B}^T \mathbf{A} \mathbf{B}$. Podobně definujeme positivní a negativní (semi)definitnost a indefinitnost matice \mathbf{A} na podprostoru X.

Věta 10.6. Necht' $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^m$, $\mathbf{x} \in \mathbb{R}^n$ a $\lambda \in \mathbb{R}^m$. Necht'

- (\mathbf{x}, λ) je stacionární bod Lagrangeovy funkce, neboli $L'(\mathbf{x}, \lambda) = \mathbf{0}$,
- f a g jsou dvakrát diferencovatelné v bodě x.

Pak platí:

- Je-li \mathbf{x} lokální minimum [maximum] funkce f vázané podmínkou $\mathbf{g}(\mathbf{x}) = \mathbf{0}$, pak matice $\partial^2 L(\mathbf{x}, \boldsymbol{\lambda})/\partial \mathbf{x}^2$ je positivně [negativně] semidefinitní na nulovém prostoru matice $\mathbf{g}'(\mathbf{x})$.
- Je-li $\partial^2 L(\mathbf{x}, \boldsymbol{\lambda})/\partial \mathbf{x}^2$ positivně [negativně] definitní na nulovém prostoru matice $\mathbf{g}'(\mathbf{x})$, pak \mathbf{x} je ostré lokální minimum [maximum] funkce f vázané podmínkou $\mathbf{g}(\mathbf{x}) = \mathbf{0}$.
- Je-li $\partial^2 L(\mathbf{x}, \boldsymbol{\lambda})/\partial \mathbf{x}^2$ indefinitní na nulovém prostoru matice $\mathbf{g}'(\mathbf{x})$, pak \mathbf{x} není lokální extrém funkce f vázaný podmínkou $\mathbf{g}(\mathbf{x}) = \mathbf{0}$.

Zde

$$\frac{\partial^2 L(\mathbf{x}, \boldsymbol{\lambda})}{\partial \mathbf{x}^2} = f''(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i''(\mathbf{x})$$

značí druhou derivaci (Hessovu matici) funkce $L(\mathbf{x}, \boldsymbol{\lambda})$ podle \mathbf{x} v bodě $(\mathbf{x}, \boldsymbol{\lambda})$.

Příklad 10.12. Najděme strany kvádru s jednotkovým objem a minimálním povrchem. Tedy minimalizujeme xy + xz + yz za podmínky xyz = 1. Lagrangeova funkce je

$$L(x, y, z, \lambda) = xy + xz + yz + \lambda(1 - xyz).$$

Položením derivací L rovným nule máme soustavu

$$L'_{x}(x, y, z, \lambda) = y + z - \lambda yz = 0$$

$$L'_{y}(x, y, z, \lambda) = x + z - \lambda xz = 0$$

$$L'_{z}(x, y, z, \lambda) = x + y - \lambda xy = 0$$

$$L'_{\lambda}(x, y, z, \lambda) = xyz - 1 = 0.$$

Soustava je zjevně splněna pro $(x,y,z,\lambda)=(1,1,1,2)$. Máme ukázat, že tento bod odpovídá lokálnímu minimu. Máme

$$\frac{\partial^2 L(x,y,z,\lambda)}{\partial (x,y,z)^2} = \begin{bmatrix} 0 & 1 - \lambda z & 1 - \lambda y \\ 1 - \lambda z & 0 & 1 - \lambda x \\ 1 - \lambda y & 1 - \lambda x & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}.$$
(10.17)

Ukážeme, že tato matice je positivně definitní na nulovém prostoru Jacobiho matice

$$g'(x, y, z) = \begin{bmatrix} -yz & -xz & -xy \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1 \end{bmatrix}.$$

Nejdříve zkusme štěstí, zda matice (10.17) není positivně definitní již na \mathbb{R}^3 – v tom případě by zjevně byla positivně definitní i na nulovém prostoru g'(x, y, z) (promyslete, proč to tak je!). Není tomu tak, protože její vlastní čísla jsou $\{-2, 1, 1\}$, tedy je indefinitní.

Nějakou bázi nulového prostoru matice g'(x, y, z) snadno najdeme ručně, např.

$$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Snadno zjistíme, že matice

$$\mathbf{B}^T \frac{\partial^2 L(x,y,z,\lambda)}{\partial (x,y,z)^2} \mathbf{B} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

má vlastní čísla {2,1}, tedy je positivně definitní.

10.5 Cvičení

Následující úlohy vyřešte nejdříve převodem na hledání volných extrémů dle Příkladu 10.1 (proveď jen je-li to možné; někdy je k tomu třeba jednoduchá úvaha) a potom metodou Lagrangeových multiplikátorů. V druhém prípadě nemusíte ověřovat podmínky druhého řádu, stačí jen najít stacionární body Lagrangeovy funkce (lze-li ale usoudit na druh extrému nějakou snadnou úvahou, udělejte to).

- 10.1. Na kružnici $x^2+y^2=1$ najděte lokální extrémy funkce
 - a) f(x,y) = 2x y
 - b) f(x,y) = x(y-1)
 - c) $f(x,y) = x^2 + 2y^2$
 - d) $f(x,y) = x^2y$
 - e) $f(x,y) = x^4 + y^2$
 - f) $f(x,y) = \sin(xy)$
 - g) $f(x,y) = e^{xy}$
- 10.2. Na sféře $x^2 + y^2 + z^2 = 1$ najděte lokální extrémy funkce
 - a) f(x, y, z) = (x + y)(y + z)
 - b) f(x,y,z) = a/x + b/y + c/z, kde a,b,c > 0 jsou dány

- c) $f(x, y, z) = x^3 + y^2 + z$
- d) $f(x, y, z) = x^3 + y^3 + z^3 + 2xyz$
- e) (\star) $f(x, y, z) = x^3 + y^3 + z^3 3xyz$
- f) (\star) $f(x, y, z) = x^3 + 2xyz z^3$
- 10.3. Najděte lokální extrémy funkce
 - a) f(x, y, z) = x + yz za podmínek $x^2 + y^2 + z^2 = 1$ a $z^2 = x^2 + y^2$
 - b) f(x, y, z) = xyz za podmínek $x^2 + y^2 + z^2 = 1$ a xy + yz + zx = 1
- 10.4. Najděte bod nejblíže počátku na křivce
 - a) x + y = 1
 - b) x + 2y = 5
 - c) $x^2y = 1$
 - d) $x^2 + 2y^2 = 1$
- 10.5. Spočítejte rozměry tělesa tak, aby mělo při daném objemu nejmenší povrch:
 - a) kvádr
 - b) kvádr bez víka (má jednu dolní stěnu a čtyři boční, horní stěna chybí)
 - c) válec
 - d) půllitr (válec bez víka)
 - e) (*) kelímek (komolý kužel bez víka). Objem komolého kužele je $V = \frac{\pi}{3}h(R^2 + Rr + r^2)$ a povrch pláště (bez podstav) je $S = \pi(R+r)\sqrt{(R-r)^2 + h^2}$. Použijte vhodnou numerickou metodu na řešení vzniklé soustavy rovnic.
- 10.6. Rozložte dané kladné reálné číslo na součin n kladných reálných čísel tak, aby jejich součet byl co nejmenší.
- 10.7. Najděte vzdálenost množiny $\{(x,y) \in \mathbb{R}^2 \mid y=x^2\}$ od kružnice s poloměrem 1 a středem v bodě (2,0).
- 10.8. Dokažte, že funkce f(x,y)=x nabývá za podmínky $x^3=y^2$ minimum pouze v počátku. Ukažte, že metoda Lagrangeových multiplikátorů toto minimum nenajde.
- 10.9. Nechť \mathbf{x}^* je bod nejblíže počátku na nadploše $h(\mathbf{x}) = 0$. Ukažte metodou Lagrangeových multiplikátorů, že vektor \mathbf{x}^* je kolmý k tečné nadrovině plochy v bodě \mathbf{x}^* .
- 10.10. Do elipsy o daných délkách os vepište obdélník s maximálním obsahem. Předpokládejte přitom, že strany obdélníku jsou rovnoběžné s osami elipsy.
- 10.11. Fermatův princip v paprskové optice říká, že cesta mezi libovolnými dvěma body na paprsku má takový tvar, aby ji světlo proběhlo za čas kratší než jí blízké dráhy. Později se zjistilo, že správným kritériem není nejkratší ale extrémní čas. Tedy skutečná dráha paprsku musí mít čas větší nebo menší než jí blízké dráhy. Z tohoto principu odvoďte:
 - a) Zákon odrazu od zrcadla: úhel dopadu se rovná úhlu odrazu.
 - b) Snellův zákon lomu: na rozhraní dvou prostředí se světlo lomí tak, že

$$\frac{c_1}{c_2} = \frac{\sin \alpha_1}{\sin \alpha_2},$$

kde α_i je úhel paprsku od normály rozhraní a c_i je rychlost světla v prostředí i.

Odvození udělejte:

- (i) Pro rovinné zrcadlo a rovinné rozhraní (což vede na minimalizaci bez omezení).
- (ii) Pro zrcadlo a rozhraní tvaru obecné plochy s rovnicí $g(\mathbf{x}) = 0$. Dokážete najít situaci, kdy skutečná dráha paprsku má čas $v \check{e} t \check{s} i$ než jí blízké dráhy?
- 10.12. Rozdělení pravděpodobnosti diskrétní náhodné proměnné je funkce $p: \{1, \ldots, n\} \to \mathbb{R}_+$ (tj. soubor nezáporných čísel $p(1), \ldots, p(n)$) splňující $\sum_{x=1}^{n} p(x) = 1$.
 - a) Entropie náhodné proměnné s rozdělením p je rovna $-\sum_{x=1}^{n} p(x) \log p(x)$, kde log je přirozený logaritmus. Najděte rozdělení s maximální entropií.
 - b) Dokažte Gibbsovu nerovnost (též zvanou informační nerovnost): pro každé dvě rozdělení p,q platí

$$\sum_{x=1}^{n} p(x) \log q(x) \le \sum_{x=1}^{n} p(x) \log p(x),$$

přičemž rovnost nastává jen tehdy, když p = q.

- 10.13. (\star) Máme trojúhelník se stranami délek a,b,c. Uvažujme bod, který má takovou polohu, že součet čtverců jeho vzdáleností od stran trojúhelníku je nejmenší možný. Jaké budou vzdálenosti x,y,z tohoto bodu od stran trojúhelníku?
- 10.14. (*) Máme krychli s délkou hrany 2. Do stěny krychle je vepsána kružnice (která má tedy poloměr 1) a okolo sousední stěny je opsána kružnice (která má tedy poloměr $\sqrt{2}$). Najděte nejmenší a největší vzdálenost mezi body na kružnicích.
- 10.15. (★) Najděte extrémy funkce

$$f(x, y, z, u, v, w) = (1 + x + u)^{-1} + (1 + y + v)^{-1} + (1 + z + w)^{-1}$$

za podmínek $xyz=a^3,\, uvw=b^3$ a x,y,z,u,v,w>0.

- 10.16. Minimalizujte $\mathbf{x}^T \mathbf{x}$ za podmínky $\mathbf{a}^T \mathbf{x} = 1$. Jaký je geometrický význam úlohy?
- 10.17. Maximalizujte $\mathbf{a}^T \mathbf{x}$ za podmínky $\mathbf{x}^T \mathbf{x} = 1$. Jaký je geometrický význam úlohy?
- 10.18. Minimalizujte $\mathbf{x}^T \mathbf{A} \mathbf{x}$ za podmínky $\mathbf{b}^T \mathbf{x} = 1$, kde \mathbf{A} je symetrická positivně definitní.
- 10.19. Minimalizujte $\mathbf{x}^T \mathbf{C} \mathbf{x}$ za podmínky $\mathbf{A} \mathbf{x} = \mathbf{b}$, kde \mathbf{A} má lineárně nezávislé řádky a \mathbf{C} je symetrická positivně definitní. Najděte vzorec pro optimální \mathbf{x} .
- 10.20. Řešte Cvičení 10.19, kde ale matice C a A mohou být libovolné. Nemusíte najít vzorec pro optimální x, ale napište lineární soustavu, jejímž řešením je stacionární bod Lagrangeovy funkce (jako v Příkladu 10.3).
- 10.21. (\star) Minimalizujte $\mathbf{x}^T \mathbf{A} \mathbf{x}$ za podmínky $\mathbf{x}^T \mathbf{B} \mathbf{x} = 1$, kde \mathbf{A} a \mathbf{B} jsou positivně definitní.
- 10.22. (*) Minimalizujte $\mathbf{x}^T \mathbf{A} \mathbf{x}$ za podmínek $\mathbf{B} \mathbf{x} = \mathbf{0}$ a $\mathbf{x}^T \mathbf{x} = 1$, kde \mathbf{A} je positivně definitní.
- 10.23. (*) Minimalizujte $\mathbf{a}^T(\mathbf{x} \mathbf{b})$ za podmínky $\mathbf{x}^T \mathbf{C} \mathbf{x} = 1$, kde \mathbf{C} je positivně definitní.
- 10.24. (*) Jaké musí být vlastnosti matice \mathbf{A} a vektoru \mathbf{b} , aby $\max\{\|\mathbf{A}\mathbf{x}\| \mid \mathbf{b}^T\mathbf{x} = 0\} = 0$?
- 10.25. (*) Dokažte, že matice $\begin{bmatrix} \mathbf{A}^T \mathbf{A} & \mathbf{C}^T \\ \mathbf{C} & \mathbf{0} \end{bmatrix}$ je regulární právě tehdy, když matice $\begin{bmatrix} \mathbf{A} \\ \mathbf{C} \end{bmatrix}$ má lineárně nezávislé sloupce a matice \mathbf{C} má lineárně nezávislé řádky (viz Příklad 10.3).

10.26. Nechť $f: \mathbb{R}^n \to \mathbb{R}$ je všude diferencovatelná a všude má nenulový gradient. Nechť $\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^n$ a $b \in \mathbb{R}$. Hledáme vzdálenost křivého povrchu $f(\mathbf{x}) = 0$ od nadroviny $\mathbf{a}^T \mathbf{x} = b$. Dokažte, že tečný prostor k nadpovrchu v bodě nejblíže nadrovině bude rovnoběžný s nadrovinou.

Nápověda a řešení

- 10.1.d) Můžeme použít stejnou parametrizaci kružnice jako v Příkladě 10.1 a najít (s trochou štěstí) čtyři lokální extrémy funkce $\cos^2\alpha\sin\alpha$. Můžeme ale užít i jiný způsob. Do účelové funkce dosadíme $x^2 = 1 y^2$ a hledáme lokální extrémy funkce $(1 y^2)y$. Ale pozor: hledáme je ne na množině \mathbb{R} , ale na intervalu [-1,1]. Na tomto intervalu má funkce čtyři lokální extrémy, z toho dva v krajních bodech intervalu.
- 10.1.g) Někdy je možné účelovou funkci zjednodušit. Např. extrémy funkce e^{xy} se nabývají ve stejných bodech jako extrémy funkce xy, protože funkce e^t je rostoucí.
- 10.4.c) Jsou dva body nejblíže počátku: $x = \pm 2^{1/6}$, $y = 2^{-1/3}$.
- 10.6. Formulace: Minimalizujeme $x_1 + \cdots + x_n$ za podmínek $x_1 \cdots x_n = a$ a $x_1, \dots, x_n > 0$, kde a > 0 je dané číslo.
- 10.7. Ukážeme jen řešení pomocí převodu na volné extrémy: po eliminaci proměnné y minimalizujeme $\|(x,x^2)-(2,0)\|_2^2=(x-2)^2+x^4$. Stacionární podmínka je $2x^3+x-2=0$. To je kubická rovnice. Pokud neznáme vzorce na řešení kubických rovnic (tzv. Cardanovy vzorce), pomúže Newtonova metodua: její iterace je (odvoďte!) $x_{k+1} \leftarrow x_k \frac{2x_k^3+x_k-2}{6x_k^2+1} = \frac{4x_k^3+2}{6x_k^2+1}$, počáteční odhad $x_0=1$. Po pár iteracích je $x\approx 0.835122348481367$, tedy $d\approx 1.357699386102247$.
- 10.11.a) Uděláme jen pro obecný případ (ii). Máme dva body \mathbf{a}, \mathbf{b} a hledáme bod \mathbf{x} splňující $g(\mathbf{x}) = 0$ pro který je celková dráha $\|\mathbf{x} \mathbf{a}\| + \|\mathbf{x} \mathbf{b}\|$ extremální. Stacionární body Lagrangeovy funkce splňují $(\mathbf{x} \mathbf{a})^0 + (\mathbf{x} \mathbf{b})^0 = \lambda \nabla g(\mathbf{x})$, kde $\mathbf{y}^0 = \mathbf{y}/\|\mathbf{y}\|$. Ale to říká, že vektor $\nabla g(\mathbf{x})$ leží v jedné rovině s jednotkovými vektory $(\mathbf{x} \mathbf{a})^0$ a $(\mathbf{x} \mathbf{b})^0$ a půlí úhel mezi nimi. Pro důkaz druhého tvrzení násobte rovnici vektory $(\mathbf{x} \mathbf{a})^0$ a $(\mathbf{x} \mathbf{b})^0$ a porovnejte.
- 10.12.b) Maximalizujte levou stranu pres q za podmínky $\sum_{x} q(x) = 1$. (Podmínka $q(x) \ge 0$ je implicitně zajištěna tím, že když se některá složka q blíží shora nule, účelová funkce se zhoršuje nade všechny meze.)
- 10.18. $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}/(\mathbf{b}^T\mathbf{A}^{-1}\mathbf{b})$
- 10.19. $\mathbf{x} = \mathbf{C}^{-1} \mathbf{A}^T (\mathbf{A} \mathbf{C}^{-1} \mathbf{A}^T)^{-1} \mathbf{b}.$
- 10.26. Minimalizujeme $\|\mathbf{x} \mathbf{y}\|^2$ za podmínek $f(\mathbf{x}) = 0$ a $\mathbf{a}^T \mathbf{y} = b$. Dokazované tvrzení vyplývá z podmínek prvního řádu (pomocí Lagrangeových multiplikátorů).

Část III Lineární programování

Kapitola 11

Lineární programování

Úloha **lineárního programování** (LP, také zvané lineární optimalizace) je minimalizace nebo maximalizace lineární funkce za omezujících podmínek ve tvaru lineárních rovnic a nerovnic. Zde **lineární rovnicí** rozumíme relaci

$$a_1x_1 + \dots + a_nx_n = b,$$

neboli krátce $\mathbf{a}^T \mathbf{x} = b$. Lineární nerovnicí rozumíme jednu z relací

$$a_1x_1 + \dots + a_nx_n \le b$$
, $a_1x_1 + \dots + a_nx_n \ge b$,

neboli $\mathbf{a}^T \mathbf{x} \leq b$ či $\mathbf{a}^T \mathbf{x} \geq b$. Lineární program je tedy úloha (1.9) ve které je funkce f lineární (tj. tvaru (3.6)) a funkce g_i, h_i jsou afinní (tj. tvaru (3.23)).

Lineární programy s jednou nebo dvěma proměnnými lze řešit graficky.

Příklad 11.1. Příkladem lineárního programu je optimalizační úloha

$$\max \quad x + y$$
 za podmínek
$$x + 2y \le 14$$

$$3x - y \ge 0$$

$$x - y \le 2$$

$$(11.1)$$

Množina $X=\{(x,y)\in\mathbb{R}^2\mid x+2y\leq 14,\ 3x-y\geq 0,\ x-y\leq 2\}$ přípustných řešení této úlohy je průnik tří polorovin:

¹Slovo programování zde má trochu jiný význam než znáte: místo tvoření sekvenčního počítačového kódu, který řeší daný problém, to znamená hledání vhodné účelové funkce a omezujících podmínek tak, aby optimální řešení bylo řešením daného problému. Optimalizaci obecně se také někdy říká matematické programování.

Účelová funkce x + y, neboli $\mathbf{c}^T \mathbf{x}$ pro $\mathbf{x} = (x, y)$ a $\mathbf{c} = (1, 1)$, má vrstevnice kolmé k vektoru \mathbf{c} a roste ve směru \mathbf{c} . Proto (viz obrázek vlevo) účelová funkce na množině X nabývá maxima v bodě (x, y) = (6, 4). Úloha má tedy jediné optimální řešení.

Pokud bychom účelovou funkci úlohy změnili na x + 2y, množina optimálních řešení úlohy by byla úsečka spojující body (2,6) a (6,4) (viz obrázek vpravo), úloha by tedy měla nekonečně mnoho optimálních řešení. Pokud by účelová funkce byla nulová (tj. 0x + 0y), množina optimálních řešení úlohy by byla celý trojúhelník X.

Z našich úvah je patrno (přesně ukážeme později), že pro úlohu lineárního programování mohou nastat tři případy:

- úloha má (alespoň jedno) optimální řešení,
- úloha je nepřípustná (množina přípustných řešení je prázdná, omezení si odporují),
- úloha je neomezená (účelovou funkci lze bez porušení omezení libovolně zlepšovat).

Jestliže úloha má optimální řešení, pak množina optimálních řešení je buď vrchol mnohoúhelníku nebo jeho hrana nebo celý mnohoúhelník.

11.1 Transformace úloh LP

Často je užitečné formulovat lineární program v nějakém speciálním tvaru, kdy jsou dovoleny jen určité typy omezení. To obvykle vyžadují např. algoritmy na řešení LP.

Jeden speciální tvar je tvar, kdy minimalizujeme (ne tedy maximalizujeme) a dovolíme pouze omezení typu \geq (větší nebo rovno):

$$\min \quad c_1 x_1 + \dots + c_n x_n$$

za podmínek $a_{i1} x_1 + \dots + a_{in} x_n \ge b_i, \quad i = 1, \dots, m$ (11.2a)

To se pohodlněji napíše v maticovém tvaru

$$\min\{\mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}\mathbf{x} \ge \mathbf{b}\},\tag{11.2b}$$

kde $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{c} \in \mathbb{R}^n$. Zápis $\mathbf{A}\mathbf{x} \geq \mathbf{b}$ značí, že pro každé $i = 1, \dots, m$ není i-tá složka vektoru $\mathbf{A}\mathbf{x}$ menší než i-tá složka vektoru \mathbf{b} . Jakýkoliv lineární program snadno převedeme na tvar (11.2) těmito úpravami:

- Maximalizaci funkce $\mathbf{c}^T \mathbf{x}$ nahradíme minimalizací funkce $-\mathbf{c}^T \mathbf{x}$.
- Nerovnost $\mathbf{a}^T \mathbf{x} \leq b$ nahradíme nerovností $-\mathbf{a}^T \mathbf{x} \geq -b$.
- Rovnost $\mathbf{a}^T \mathbf{x} = b$ nahradíme dvěma nerovnostmi $\mathbf{a}^T \mathbf{x} \ge b, -\mathbf{a}^T \mathbf{x} \ge -b.$

Jiný často užívaný speciální tvar je **rovnicový tvar**², ve kterém všechna omezení jsou rovnosti a všechny proměnné jsou nezáporné, tedy

min
$$c_1x_1 + \cdots + c_nx_n$$

za podmínek $a_{i1}x_1 + \cdots + a_{in}x_n = b_i$, $i = 1, \dots, m$
 $x_j \ge 0$, $j = 1, \dots, n$ (11.3a)

neboli

$$\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}\}.$$
 (11.3b)

Tvar (11.2) lze převést na tvar (11.3) dvěma úpravami, ve kterých zavedeme nové proměnné:

²Tomuto tvaru se někdy říká *standardní*. Názvosloví bohužel není jednotné, názvy jako 'standardní tvar', 'základní tvar' či 'kanonický tvar' tedy mohou znamenat v různých knihách různé věci.

- Nerovnost $\mathbf{a}^T \mathbf{x} \ge b$ nahradíme dvěma omezeními $\mathbf{a}^T \mathbf{x} u = b, u \ge 0$. Pomocné proměnné u se říká **slacková proměnná**³. Podobně bychom převedli nerovnost $\mathbf{a}^T \mathbf{x} \le b$ na rovnost.
- Neomezenou proměnnou $x \in \mathbb{R}$ rozdělíme na dvě nezáporné proměnné $x^+ \geq 0, x^- \geq 0$ přidáním podmínky $x = x^+ x^-$.

Úloha získaná z původní úlohy pomocí těchto úprav je ekvivalentní původní úloze v tom smyslu, že hodnota jejich optima je stejná a argument optima původní úlohy lze 'snadno a rychle' získat z argumentu optima nové úlohy.

Příklad 11.2. Úlohu (11.1) převeď me na tvar, ve kterém minimalizujeme (místo maximalizujeme) a omezení jsou rovnosti, přičemž některé proměnné mohou být nezáporné. To uděláme zavedením slackových proměnných. Nová úloha je

$$\begin{array}{lll} \min & -x-&y\\ \text{za podmínek} & x+2y+u=14\\ & 3x-&y-v=0\\ & x-&y+w=&2\\ & u,v,w\geq &0 \end{array}$$

Zde proměnné x,y mohou mít libovolné znaménko. Převeď me úlohu na tvar (11.3), kde všechny proměnné jsou nezáporné. Dosadíme $x=x_+-x_-$ a $y=y_+-y_-$, kde $x_+,x_-,y_+,y_-\geq 0$. Výsledná úloha je

min
$$-x_+ + x_- - y_+ + y_-$$
 za podmínek $x_+ - x_- + 2y_+ - 2y_- + u = 14$ $3x_+ - 3x_- - y_+ + y_- - v = 0$ $x_+ - x_- - y_+ + y_- + w = 2$ $x_+, x_-, y_+, y_-, u, v, w \ge 0$

11.1.1 Po částech afinní funkce

Mějme funkci $f: \mathbb{R}^n \to \mathbb{R}$ danou vzorcem

$$f(\mathbf{x}) = \max_{i=1}^{k} (\mathbf{c}_i^T \mathbf{x} + d_i), \tag{11.4}$$

kde $\mathbf{c}_1, \dots, \mathbf{c}_k \in \mathbb{R}^n$ a $d_1, \dots, d_k \in \mathbb{R}$ jsou dány. Tato funkce není lineární ani afinní, je po částech afinní. Na obrázku jsou příklady (vlevo pro n = 1 a k = 3, vpravo pro n = 2 a k = 4):

 $^{^3}Slack$ znamená anglicky např. mezeru mezi zdí a skříní, která není zcela přiražená ke zdi. Termín slack variablenemá ustálený český ekvivalent, někdy se překládá jako $skluzová\ proměnná.$

⁴Přesněji v *lineárním čase*, ve smyslu teorie algoritmů.

Minimalizujme funkci (11.4) za podmínek $\mathbf{A}\mathbf{x} \geq \mathbf{b}$. To není úloha LP, neboť její účelová funkce není lineární. Ovšem lze ji převést na LP zavedením pomocné proměnné.

Obecně, pro každou množinu X a funkci $f: X \to \mathbb{R}$ platí (pokud minimum existuje)

$$\min\{f(x) \mid x \in X\} = \min\{y \mid (x, y) \in X \times \mathbb{R}, \ f(x) \le y\}.$$
 (11.5)

To proto, že každé optimální řešení (x, y) pravé úlohy splňuje f(x) = y. Kdyby totiž bylo f(x) < y, pak by řešení (x, y) bylo přípustné ale ne optimální, protože bychom mohli y zmenšit bez porušení omezení a zlepšit tak účelovou funkci.

Teď už naši úlohu snadno převedeme na LP:

$$\min\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^{n}, \mathbf{A}\mathbf{x} \ge \mathbf{b}\} = \min\{y \mid (\mathbf{x}, y) \in \mathbb{R}^{n+1}, f(\mathbf{x}) \le y, \mathbf{A}\mathbf{x} \ge \mathbf{b}\}$$
(11.6a)
$$= \min\{y \mid (\mathbf{x}, y) \in \mathbb{R}^{n+1}, \max_{i} (\mathbf{c}_{i}^{T}\mathbf{x} + d_{i}) \le y, \mathbf{A}\mathbf{x} \ge \mathbf{b}\}$$
(11.6b)
$$= \min\{y \mid (\mathbf{x}, y) \in \mathbb{R}^{n+1}, (\forall i) (\mathbf{c}_{i}^{T}\mathbf{x} + d_{i} \le y), \mathbf{A}\mathbf{x} \ge \mathbf{b}\}$$
(11.6c)

kde (11.6c) je již úloha LP. Rovnost (11.6c) platí proto, že pro libovolná čísla a_i, b zřejmě je

$$\max_{i} a_i \le b \iff (\forall i)(a_i \le b). \tag{11.7}$$

Příklad 11.3. Úloha

$$\min \max \{ 3x + 4y + 1, 2x - 3y \}$$
 za podm.
$$x + 2y \le 14$$

$$3x - y \ge 0$$

$$x - y \le 2$$

není LP, protože účelová funkce $f(x,y) = \max\{3x + 4y + 1, 2x - 3y\}$ není lineární ani afinní (načrtněte si na papír několik jejích vrstevnic!). Úlohu lze ale převést na LP

$$\min z$$

$$\text{za podm.} \quad 3x + 4y - z \leq -1$$

$$2x - 3y - z \leq 0$$

$$x + 2y \leq 14$$

$$3x - y \geq 0$$

$$x - y \leq 2$$

Tento převod lze užít i pro funkce obsahující absolutní hodnoty, neboť $|x| = \max\{-x, x\}$, a na různé jiné prípady (trénujte to ve Cvičení 11.4!). Buď te ale opatrní: neplatí nic takového jako $(\min_i a_i \leq b) \Leftrightarrow (\forall i)(a_i \leq b)$, tedy máme-li špatnou kombinaci minim/maxim a nerovností, převod na LP není možný.

Ve zbytku této kapitoly uvedeme některá z mnoha použití lineárního programování.

11.2 Typické aplikace LP

11.2.1 Optimální výrobní program

 $\mathbf{Z} \ m \ \mathrm{druh}$ ů surovin vyrábíme $n \ \mathrm{druh}$ ů výrobků.

 \bullet $a_{ij} = \text{množství suroviny druhu } i \text{ potřebné na výrobu výrobku druhu } j$

- $b_i = \text{množství suroviny druhu } i$, které máme k dispozici
- $c_i = zisk z$ vyrobení jednoho výrobku druhu j
- $x_j = \text{počet vyrobených výrobků druhu } j$

Chceme zjistit, kolik jakých výrobků máme vyrobit, aby zisk byl největši. Tuto úlohu lze formalizovat lineárním programem

$$\max \sum_{j=1}^{n} c_j x_j \tag{11.8a}$$

za podm.
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \quad i = 1, ..., m$$
 (11.8b)
 $x_j \ge 0, \quad j = 1, ..., n$

$$x_j \ge 0, \qquad j = 1, \dots, n \tag{11.8c}$$

což jde kratčeji napsat v maticové formě jako $\max\{\mathbf{c}^T\mathbf{x}\mid\mathbf{x}\in\mathbb{R}^n,\ \mathbf{A}\mathbf{x}\leq\mathbf{b},\ \mathbf{x}\geq\mathbf{0}\}.$

Příkladem úlohy na optimální výrobní program je Příklad 1.12 z Kapitoly 1 (podívejte se na něj!).

11.2.2Směšovací (výživová) úloha

 \mathbb{Z} n druhů surovin, z nichž každá je směsí m druhů látek, máme namíchat konečný produkt o požadovaném složení tak, aby cena surovin byla minimální.

- \bullet $a_{ij} = \text{množství látky druhu} i obsažené v jednotkovém množství suroviny druhu <math>j$
- $\bullet \ b_i =$ nejmenší požadované množství látky druhu iv konečném produktu
- $c_i = \text{jednotková cena suroviny druhu } j$
- $x_j = \text{množství suroviny druhu } j$

Tuto úlohu lze formalizovat lineárním programem

$$\min \quad \sum_{j=1}^{n} c_j x_j \tag{11.9a}$$

za podm.
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i$$
, $i = 1, ..., m$ (11.9b) $x_j \ge 0$, $j = 1, ..., n$ (11.9c)

$$x_i > 0, \qquad j = 1, \dots, n$$
 (11.9c)

neboli min{ $\mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n$, $\mathbf{A} \mathbf{x} \ge \mathbf{b}$, $\mathbf{x} \ge \mathbf{0}$ }.

Příklad 11.4. Jste kuchařka v menze a chcete uvařit pro studenty co nejlevnější oběd, ve kterém ovšem kvůli předpisům musí být dané minimální množství živin (cukrů, bílkovin a vitamínů). Oběd vaříte ze tří surovin: brambor, masa a zeleniny. Jsou dány hodnoty v tabulce:

	na jednotku	na jednotku	na jednotku	min. požadavek
	brambor	masa	zeleniny	na jeden oběd
obsah cukrů	2	1	1	8
obsah bílkovin	2	6	1	16
obsah vitamínů	1	3	6	8
cena	25	50	80	

Kolik je třeba každé suroviny na jeden oběd?

Rešíme LP

min
$$25b + 50m + 80z$$

za podmínek $2b + m + z \ge 8$
 $2b + 6m + z \ge 16$
 $b + 3m + 6z \ge 8$
 $b, m, z \ge 0$

Optimální řešení je b = 3.2, m = 1.6, z = 0 s hodnotou 160.

11.2.3 Dopravní úloha

Máme m skladů a n spotřebitelů.

- $a_i = \text{množství ve skladě } i$
- $b_i = \text{množství zboží požadované spotřebitelem } j$
- $\bullet \ c_{ij} = {\rm cena}$ dopravy jednotky zboží ze skladu ike spotřebiteli j
- $x_{ij} = \text{množství zboží vezené ze skladu } i \text{ ke spotřebiteli } j$

Chceme co nejlevněji rozvézt zboží ze skladů ke spotřebitelům. Rešením je lineární program

$$\min \quad \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \tag{11.10a}$$

za podm.
$$\sum_{j=1}^{n} x_{ij} = a_i, \quad i = 1, \dots, m$$
 (11.10b)

$$\sum_{i=1}^{m} x_{ij} = b_j, \qquad j = 1, \dots, n$$

$$x_{ij} \ge 0, \qquad i = 1, \dots, m, \ j = 1, \dots, n$$
(11.10d)

$$x_{ij} \ge 0, \qquad i = 1, \dots, m, \ j = 1, \dots, n$$
 (11.10d)

Ten jde také napsat jako (rozmyslete!)

$$\min\{\langle \mathbf{C}, \mathbf{X} \rangle \mid \mathbf{X} \in \mathbb{R}^{m \times n}, \ \mathbf{X}\mathbf{1} = \mathbf{a}, \ \mathbf{X}^T \mathbf{1} = \mathbf{b}, \ \mathbf{X} \ge \mathbf{0} \},$$
(11.11)

kde $\mathbf{a}=(a_1,\ldots,a_m),\;\mathbf{b}=(b_1,\ldots,b_n),\;\mathbf{C}=[c_{ij}],\;\langle\mathbf{C},\mathbf{X}\rangle$ značí skalární součin matic (4.33) a optimalizujeme přes matice $\mathbf{X} = [x_{ij}].$

Zadání musí splňovat $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$ (nabídka je rovna poptávce), jinak je úloha nepřípustná. To snadno vidíme: součet levých stran rovnic (11.10b) je roven součtu levých stran rovnic (11.10c). Úloha jde modifikovat tak, že dovolíme $\sum_{i=1}^m a_i \geq \sum_{j=1}^n b_j$, tedy zboží na skladech může být více než žádají spotřebitelé. Pak by se omezení (11.10b) muselo změnit na $\sum_{j=1}^{n} x_{ij} \leq a_i$ (promyslete!).

11.2.4Distribuční úloha

Máme m strojů a n druhů výrobků.

- $a_i = \text{počet hodin}$, který je k dispozici na stroji i
- $\bullet \ b_j =$ požadované množství výrobku druhu j
- $\cdot c_{ij} = \text{cena jedné hodiny práce stroje } i \text{ na výrobku typu } j$

- \bullet $k_{ij} = \text{hodinový výkon stroje } i$ při výrobě výrobku druhu j
- $x_{ij} = \text{počet hodin}$, po který bude stroj i vyrábět výrobek druhu j

Pro každý ze strojů máme určit, kolik výrobků se na něm bude vyrábět. Řešení:

$$\min \left\{ \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \, \middle| \, \sum_{j=1}^{n} x_{ij} \le a_i, \, \sum_{i=1}^{m} k_{ij} x_{ij} = b_j, \, x_{ij} \ge 0 \right\}.$$
 (11.12)

11.3 Přeurčené lineární soustavy

11.3.1 Vektorové normy

Norma formalizuje pojem 'délky' vektoru **x**. Známe již eukleidovskou normu, ale existují i jiné normy. Obecně pojem norma definujeme takto: funkce $\|\cdot\|$: $\mathbb{R}^n \to \mathbb{R}$ se nazývá vektorová **norma**⁵, jestliže splňuje tyto axiomy:

- 1. Jestliže $\|\mathbf{x}\| = 0$ pak $\mathbf{x} = \mathbf{0}$.
- 2. $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ pro každé $\alpha \in \mathbb{R}$ a $\mathbf{x} \in \mathbb{R}^n$ (norma je kladně homogenní).
- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ pro každé $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (trojúhelníková nerovnost).

Z axiomů plynou tyto další vlastnosti normy:

- $\|\mathbf{0}\| = 0$, což plyne z homogenity pro $\alpha = 0$
- $\|\mathbf{x}\| \ge 0$ pro každé $\mathbf{x} \in \mathbb{R}^n$. To jde odvodit tak, že v trojúhelníkové nerovnosti položíme $\mathbf{y} = -\mathbf{x}$ a tedy

$$0 = ||0|| = ||\mathbf{x} - \mathbf{x}|| \le ||\mathbf{x}|| + ||-\mathbf{x}|| = 2||\mathbf{x}||,$$

kde na pravé straně jsme použili homogenitu.

Jednotková sféra normy je množina $\{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| = 1 \}$, tedy vrstevnice normy výšky 1. Díky homogenitě je jednotková sféra středově symetrická a její tvar zcela určuje normu.

Uveď me příklady norem. Důležitou skupinou norem jsou p-normy

$$\|\mathbf{x}\|_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}.$$

Musí být $p \ge 1$, jinak neplatí trojúhelníková nerovnost. Nejčastěji narazíte na:

- $\|\mathbf{x}\|_1 = |x_1| + \cdots + |x_n|$. Někdy se jí říká manhattanská norma, protože v systému pravoúhlých ulic je vzdálenost mezi body \mathbf{x} a \mathbf{y} rovna $\|\mathbf{x} - \mathbf{y}\|_1$.
- $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\mathbf{x}^T \mathbf{x}}$. Je to eukleidovská norma.
- $\|\mathbf{x}\|_{\infty} = \lim_{p\to\infty} \|\mathbf{x}\|_p = \max\{|x_1|, \dots, |x_n|\}$ (spočtěte limitu ve Cvičení 11.13!). Někdy se jí říká *Čebyševova norma* nebo *max-norma*.

Jednotkové sféry těchto norem v \mathbb{R}^2 vypadají takto:

⁵Symbolem $\|\cdot\|$ jsme dosud značili eukleidovskou normu. Od teď až do konce skript jím ale budeme značit obecnou vektorovou normu a eukleidovskou normu budeme značit symbolem $\|\cdot\|_2$.

Všimněte si, že pro n=1 se p-norma pro libovolné $p\geq 1$ redukuje na absolutní hodnotu |x|. Existují ovšem i normy, které nejsou p-normy, např.

- $\|\mathbf{x}\| = 2|x_1| + \sqrt{x_2^2 + x_3^2} + \max\{|x_4|, |x_5|\}$ je norma na \mathbb{R}^5 .
- \bullet Je-li $\|\mathbf{x}\|$ norma a \mathbf{A} matice s lineárně nezávislými sloupci, je také $\|\mathbf{A}\mathbf{x}\|$ norma.

11.3.2 Přibližné řešení lineárních soustav v 1-normě a ∞-normě

Mějme přeurčenou lineární soustavu $\mathbf{A}\mathbf{x} = \mathbf{b}$, kde $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{0} \neq \mathbf{b} \in \mathbb{R}^m$. Nalezení jejího přibližného řešení formulujme jako úlohu

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p. \tag{11.13}$$

Uvažujme tři případy:

 $\bullet\,$ Pro $p=\infty$ hledáme takové $\mathbf{x},$ které minimalizuje výraz

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty} = \max_{i=1}^{m} |\mathbf{a}_{i}^{T}\mathbf{x} - b_{i}|,$$
(11.14)

tedy minimalizuje maximální residuum. Toto řešení je známé pod názvem minimaxní nebo $\check{C}eby\check{s}evovo$. Podle §11.1.1 je tato úloha ekvivalentní lineárnímu programu

min
$$z$$

za podm. $-z \leq \mathbf{a}_i^T \mathbf{x} - b_i \leq z$, $i = 1, ..., m$

což lze napsat kratčeji v maticové formě

$$\min\{z \mid \mathbf{x} \in \mathbb{R}^n, \ z \in \mathbb{R}, \ -z\mathbf{1} \le \mathbf{A}\mathbf{x} - \mathbf{b} \le z\mathbf{1}\}. \tag{11.15}$$

- Pro p=2 dostaneme řešení ve smyslu nejmenších čtverců, které jsme odvodili v §5.1.
- \bullet Prop=1hledáme takové $\mathbf{x},$ které minimalizuje výraz

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_1 = \sum_{i=1}^m |\mathbf{a}_i^T \mathbf{x} - b_i|, \tag{11.16}$$

kde $\mathbf{a}_1^T,\dots,\mathbf{a}_m^T$ jsou řádky matice \mathbf{A} . Úloha je ekvivalentní lineárnímu programu

min
$$z_1 + \dots + z_m$$

za podm. $-z_i \le \mathbf{a}_i^T \mathbf{x} - b_i \le z_i, \quad i = 1, \dots, m$

neboli

$$\min\{ \mathbf{1}^T \mathbf{z} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{z} \in \mathbb{R}^m, \ -\mathbf{z} < \mathbf{A}\mathbf{x} - \mathbf{b} < \mathbf{z} \}.$$
 (11.17)

11.3.3 Lineární regrese

Vrať me se k lineární regresi z §5.1.3 (znovu přečtěte!). Funkční závislost přibližně popsanou naměřenými dvojicemi (x_i, y_i) , i = 1, ..., m, jsme aproximovali regresní funkcí

$$f(x, \boldsymbol{\theta}) = \theta_1 \varphi_1(x) + \dots + \theta_n \varphi_n(x) = \boldsymbol{\varphi}(x)^T \boldsymbol{\theta},$$

kde parametry θ jsou takové, aby $y_i \approx f(x_i, \theta)$ pro všechna i. Přibližné rovnosti \approx jsme chápali ve smyslu nejmenších čtverců, tedy hledali jsme takové θ které minimalizovalo funkci

$$\sum_{i=1}^{m} (y_i - f(x_i, \boldsymbol{\theta}))^2 = \|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_2, \tag{11.18}$$

kde $\mathbf{y} = (y_1, \dots, y_m)$ a prvky matice \mathbf{A} jsou $a_{ij} = \varphi_j(x_i)$. Tedy řešíme úlohu (11.13) pro p = 2. Můžeme ale použít i jiné normy než eukleidovskou. Pro p = 1 minimalizujeme

$$\sum_{i=1}^{m} |y_i - f(x_i, \boldsymbol{\theta})| = \|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_1$$
 (11.19)

a pro $p = \infty$ minimalizujeme

$$\max_{i=1}^{m} |y_i - f(x_i, \boldsymbol{\theta})| = \|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_{\infty}.$$
 (11.20)

Dále ukážeme, k čemu to může být dobré.

Regrese ve smyslu ∞-normy je vhodná např. při aproximaci funkcí.

Příklad 11.5. Na počítači bez matematického koprocesoru potřebujeme mnohokrát vyhodnocovat funkci sinus na intervalu $[0, \frac{\pi}{2}]$. Protože výpočet hodnot této funkce by trval příliš dlouho, chceme ji aproximovat polynomem třetího stupně $\theta_1 + \theta_2 x + \theta_3 x^2 + \theta_4 x^3$, jehož hodnoty se spočítají rychleji. Spočítejme hodnoty $y_i = \sin x_i$ funkce v dostatečném počtu bodů $x_i = \frac{\pi i}{2m}$ pro $i = 1, \ldots, m$. Koeficienty polynomu hledáme minimalizací Čebyševova kritéria (11.20), neboť to nám dá záruku, že chyba aproximace nikde nepřesáhne hodnotu, která je nejmenší možná pro daný stupeň polynomu.

Regrese ve smyslu 1-normy je užitečná tehdy, když je malá část hodnot y_i naměřená úplně chybně (např. se někdo při zapisování výsledků měření spletl v desetinné čárce). Takovým hodnotám se říká **vychýlené hodnoty** (outliers). Disciplína zabývající se modelováním funkčních závislostí za přítomnosti vychýlených hodnot se nazývá **robustní regrese**. V tomto případě řešení ve smyslu nejmenších čtverců není vhodné (není 'robustní'), protože i jediný vychýlený bod velmi ovlivní řešení. Regrese ve smyslu 1-normy je vůči vychýleným bodům odolnější.

Ukážeme to na velmi jednoduchém případu regrese: odhadu hodnoty jediného čísla ze souboru jeho nepřesných měření. To je vlastně polynomiální regrese polynomem nultého stupně $f(x,\theta) = \theta$, tj. konstantní funkcí (viz Příklad 5.4). Pro daná čísla $\mathbf{y} = (y_1, \dots, y_m) \in \mathbb{R}^m$ hledáme $\theta \in \mathbb{R}$ minimalizující výraz

$$\|\mathbf{y} - \mathbf{1}\theta\|_{p} = \|(y_{1} - \theta, \dots, y_{m} - \theta)\|_{p}.$$
 (11.21)

• Pro $p = \infty$ minimalizujeme $\max_{i=1}^m |y_i - \theta|$. Řešením je $\theta = \frac{1}{2} (\min_{i=1}^m y_i + \max_{i=1}^m y_i)$, tedy bod v polovině mezi krajními body.

- Pro p=2 minimalizujeme $\sqrt{\sum_{i=1}^{m}(y_i-\theta)^2}$. Řešením je aritmetický průměr, $\theta=\frac{1}{m}\sum_{i=1}^{m}y_i$ (viz Příklad 5.4).
- Pro p=1 minimalizujeme $\sum_{i=1}^{m} |y_i \theta|$. Řešením je medián z čísel y_1, \ldots, y_m (viz Cvičení 11.7). Medián se vypočte tak, že seřadíme čísla y_1, \ldots, y_m podle velikosti a vezmeme prostřední z nich. Pokud je m sudé, máme dva 'prostřední prvky' a v tom případě funkce f nabývá minima v jejich libovolné konvexní kombinaci. Je pak úzus definovat medián jako aritmetický průměr prostředních prvků.

Předpokládejme nyní, že jedno z čísel, např. y_1 , se zvětšuje. V tom případě se řešení θ pro různá p budou chovat různě. Např. aritmetický průměr se bude zvětšovat, a to tak, že zvětšováním hodnoty y_1 dosáhneme libovolně velké hodnoty θ . Pro medián to ovšem neplatí – zvětšováním jediného bodu y_1 ovlivníme θ jen natolik, nakolik to změní pořadí bodů. Jeho libovolným zvětšováním nedosáhneme libovolně velké hodnoty θ .

Příklad 11.6. Šuplérou změříme průměr ocelové kuličky v několika místech, dostaneme hodnoty $y_1 = 1.02$, $y_2 = 1.04$, $y_3 = 0.99$, $y_4 = 2.03$ (cm). Při posledním měření jsme se na stupnici přehlédli, proto je poslední hodnota úplně špatně. Z těchto měření chceme odhadnout skutečný průměr. Máme

$$\frac{1}{2} \left(\min_{i=1}^{m} y_i + \max_{i=1}^{m} y_i \right) = 1.51, \qquad \frac{1}{m} \sum_{i=1}^{m} y_i = 1.27, \qquad \text{median } y_i = 1.03.$$

Je zjevné, že medián je neovlivněn vychýleným bodem, zatímco ostatní odhady ano. □

Ve složitějším případě, např. prokládání dat polynomem jako v Příkladu 5.4, se nedá robustnost rešení ve smyslu 1-normy takto jednoduše formálně ukázat a analýza je obtížnější. Výsledek ale bude podobný: řešení ve smyslu 1-normy je méně citlivé na vychýlené body než řešení ve smyslu 2-normy.

11.4 Celočíselné lineární programování, LP relaxace

Celočíselné lineární programování (angl. integer linear programming, ILP) se liší od lineárního programování dodatečným omezením, že proměnné musí nabývat pouze celočíselných hodnot. Nejčastěji používané jsou binární proměnné, které mohou nabývat jen dvou hodnot 0 a 1. ILP s binárními proměnnými je tedy úloha

$$\min\{\mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \{0, 1\}^n, \ \mathbf{A}\mathbf{x} \ge \mathbf{b} \}. \tag{11.22}$$

Množina přípustných řešení této úlohy obsahuje konečný (avšak obvykle obrovský) počet izolovaných bodů, jedná se o typickou úlohu kombinatorické optimalizace (viz §1.4). Zatímco vyřešit obyčejný lineární program je relativně snadné (LP je řešitelné v polynomiálním čase), vyřešit úlohu ILP je obecně velmi obtížné (ILP je tzv. NP-těžké).

Mohli bychom zkusit úlohu (11.22) jednoduše nahradit lineárním programem

$$\min\{\mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in [0, 1]^n, \ \mathbf{A}\mathbf{x} \ge \mathbf{b}\}. \tag{11.23}$$

To je opravdu lineární program, protože omezení $\mathbf{x} \in [0,1]^n$ lze napsat jako $0 \le x_i \le 1$ (i = 1, ..., n), což jsou lineární nerovnosti. Úloze (11.23) se říká **LP relaxace** (angl. relaxation

znamená uvolnění, myšleno jako 'uvolnění' omezení) úlohy (11.22). LP relaxace je tedy nahrazení (těžké) úlohy ILP (snadnou) úlohou LP, ve které jsme vypustili omezení na celočíselnost proměnných.

Mohli bychom si myslet, že když optimální řešení $\mathbf{x} \in [0,1]^n$ LP relaxace (11.23) nějak šikovně zaokrouhlíme na celočíselný vektor $\mathbf{x}' \in \{0,1\}^n$, dostaneme řešení (nebo aspoň přibližné řešení) úlohy (11.22). To ale bohužel obecně neplatí. Zaokrouhlení totiž může zničit přípustnost, tedy zaokrouhlené proměnné \mathbf{x}' nemusí splňovat podmínky $\mathbf{A}\mathbf{x}' \geq \mathbf{b}$. I to nejšikovnější zaokrouhlení nám nepomůže, neboť už jen odpovědět na otázku, zda úloha (11.22) je přípustná (tedy zda existuje alespoň jedno $\mathbf{x} \in \{0,1\}^n$ splňující $\mathbf{A}\mathbf{x} \geq \mathbf{b}$), je obecně stejně těžké jako najít optimální řešení úlohy (11.22). I kdybychom však měli štěstí a zaokrouhlený vektor \mathbf{x}' byl přípustný, hodnota $\mathbf{c}^T\mathbf{x}'$ účelové funkce může být obecně libovolně daleko od optimální hodnoty úlohy (11.22).

Obecně, jediný užitečný vztah mezi optimálním řešením původní a relaxované úlohy je, že optimální hodnota relaxované úlohy není větší než optimální hodnota původní úlohy:

$$\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in [0,1]^n, \ \mathbf{A}\mathbf{x} \ge \mathbf{b}\} \le \min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \{0,1\}^n, \ \mathbf{A}\mathbf{x} \ge \mathbf{b}\}.$$
(11.24)

To proto, že v relaxované úloze minimalizujeme přes *větší* množinu než v původní úloze:

$$\{ \mathbf{x} \in [0,1]^n \mid \mathbf{A}\mathbf{x} \ge \mathbf{b} \} \supseteq \{ \mathbf{x} \in \{0,1\}^n \mid \mathbf{A}\mathbf{x} \ge \mathbf{b} \}.$$

Přesněji to lze uvidět takto: Nechť \mathbf{x}^* je optimální řešení nerelaxované úlohy (11.22) a nechť \mathbf{x} je optimální řešení relaxované úlohy (11.23). Protože \mathbf{x}^* je přípustné (i když ne nutně optimální) pro relaxovanou úlohu, musí být $\mathbf{c}^T\mathbf{x} \leq \mathbf{c}^T\mathbf{x}^*$. Rozdílu mezi pravou a levou stranou nerovnosti (11.24) se říká integrality gap (tedy mezera celočíselnosti).

Pro některé konkrétní kombinatorické problémy však je situace příznivější, např. LP relaxace řeší původní úlohu vždy přesně (tedy nerovnost (11.24) platí s rovností), nebo dovoluje sestrojit její přibližné řešení se zárukou přesnosti (dále uvedeme příklady). I když toto štěstí nemáme, dolní mez je často užitečná při hledání přesného nebo přibližného řešení úlohy nějakým jiným způsobem (např. metodou *větví a mezí* nebo metodou *sečných nadrovin*).

11.4.1 Nejlepší přiřazení

V přiřazovací úloze (assignment problem, též znám jako bipartitní párování) jsou dána čísla c_{ij} pro $i, j \in \{1, ..., n\}$ a cílem je najít bijektivní zobrazení π : $\{1, ..., n\} \rightarrow \{1, ..., n\}$ (tedy permutaci množiny $\{1, ..., n\}$), která minimalizuje součet $\sum_{i=1}^{n} c_{i,\pi(i)}$.

Každé dvojici $i, j \in \{1, ..., n\}$ přiřad'me binární proměnnou $x_{ij} \in \{0, 1\}$. Tyto proměnné reprezentují permutaci π tak, že $x_{ij} = 1$ právě když $\pi(i) = j$. Protože π přiřazuje každému i právě jedno j, musí být mezi proměnnými $x_{i1}, ..., x_{in}$ právě jedna rovna 1. To zapíšeme jako $\sum_{j=1}^{n} x_{ij} = 1$. Protože π je bijekce, každý obraz π má právě jeden vzor, tedy $\sum_{i=1}^{n} x_{ij} = 1$. Nyní

úlohu můžeme psát jako ILP

$$\min \quad \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij} \tag{11.25a}$$

za podm.
$$\sum_{j=1}^{n} x_{ij} = 1,$$
 $i = 1, \dots, n$ (11.25b)

$$\sum_{i=1}^{n} x_{ij} = 1, j = 1, ..., n (11.25c)$$

$$x_{ij} \in \{0, 1\}, i, j = 1, ..., n (11.25d)$$

$$x_{ij} \in \{0, 1\}, \quad i, j = 1, \dots, n$$
 (11.25d)

LP relaxaci úlohy (11.25) získáme nahrazením omezení $x_{ij} \in \{0,1\}$ omezeními $0 \le x_{ij} \le 1$. Vlastně stačí jen $x_{ij} \geq 0$, neboť (11.25b) a $x_{ij} \geq 0$ implikuje $x_{ij} \leq 1$. Takže LP relaxace je speciální případ dopravního problému (11.10).

Pro tuto úlohu máme stěstí, protože platí toto (důkaz neuvádíme, není krátký):

Věta 11.1. Úloha (11.25) má stejnou optimální hodnotu jako její LP relaxace a mezi optimálními řešeními LP relaxace je aspoň jedno celočíselné.

Vyslovme tuto větu trochu jinak. Zapišme všechny proměnné x_{ij} do matice **X** velikosti $n \times n$. Účelová funkce (11.25a) je lineární funkce matice X (jde psát jako $\langle C, X \rangle$, viz §4.7). Přípustná řešení úlohy (11.25) jsou všechny matice, které mají v každém řádku a každém sloupci právě jednu jedničku. To jsou permutační matice (viz Příklad 4.6). Přípustná řešení LP relaxace jsou matice s nezápornými prvky, ve kterých součet prvků v každém řádku a v každém sloupci je roven 1. Takové matice se nazývají dvojitě stochastické matice. Každá permutační matice je dvojitě stochastická, ale naopak to neplatí. Věta 11.1 říká, že minimum lineární funkce na množině permutačních matic je rovno minimu té samé lineární funkce na množině dvojitě stochastických matic. To je klasický výsledek Birkhoffa a von Neumanna.

11.4.2 Nejmenší vrcholové pokrytí

Vrcholové pokrytí neorientovaného grafu (V, E) je podmnožina $X \subseteq V$ vrcholů taková, že každá hrana má alespoň jeden vrchol v X. V úloze na **nejmenší vcholové pokrytí** hledáme pro daný graf vrcholové pokrytí s nejmenším počtem vrcholů. Je to jedna z klasických NP-těžkých úloh kombinatorické optimalizace.

Každému vrcholu $i \in V$ přiřad'me proměnnou $x_i \in \{0,1\}$ s tímto významem: $x_i = 1$ když $i \in X$ a $x_i = 0$ když $i \notin X$. Úlohu můžeme formulovat jako ILP

$$\min \quad \sum_{i \in V} x_i \tag{11.26a}$$

za podm.
$$x_i + x_j \ge 1$$
, $\{i, j\} \in E$ (11.26b)
 $x_i \in \{0, 1\}$, $i \in V$ (11.26c)

$$x_i \in \{0, 1\}, \qquad i \in V$$
 (11.26c)

Označíme-li incidenční matici grafu (V, E) jako $\mathbf{A} \in \{0, 1\}^{n \times m}$ kde n = |V| je počet vrcholů a m = |E| je počet hran, úlohu (11.26) můžeme zapsat také jako

$$\min\{\mathbf{1}^T \mathbf{x} \mid \mathbf{x} \in \{0, 1\}^n, \ \mathbf{A}^T \mathbf{x} \ge \mathbf{1}\}. \tag{11.27}$$

LP relaxace úlohy (11.26) se získá tak, že omezení $x_i \in \{0,1\}$ se nahradí omezeními $0 \le x_i \le 1$. Nechť x_i $(i \in V)$ je optimální řešení relaxované úlohy. Zaokrouhleme toto řešení:

$$\bar{x}_i = \left\lfloor x_i + \frac{1}{2} \right\rfloor = \begin{cases} 0 & \text{když } x_i < \frac{1}{2}, \\ 1 & \text{když } x_i \ge \frac{1}{2}. \end{cases}$$

Zaokrouhlené řešení je přípustné pro úlohu (11.26): protože $x_i + x_j \ge 1$, musí být $x_i \ge \frac{1}{2}$ nebo $x_j \geq \frac{1}{2}$, tedy $\bar{x}_i = 1$ nebo $\bar{x}_j = 1$, tedy $\bar{x}_i + \bar{x}_j \geq 1$. Označme optimální hodnotu nerelaxované úlohy (11.26) jako y^* , optimální hodnotu relaxované úlohy jako $y = \sum_{i \in V} x_i$ a hodnotu zaokrouhleného řešení relaxace jako $\bar{y} = \sum_{i \in V} \bar{x}_i$.

Věta 11.2. Pro každý problém minimálního vrcholového pokrytí je $\bar{y} \leq 2y^*$.

Důkaz. Máme

$$\bar{y} = \sum_{i \in V} \bar{x}_i \le 2y = 2 \sum_{i \in V} x_i \le 2 \sum_{i \in V} x_i^* = 2y^*.$$

První nerovnost plyle z toho, že pro každé číslo $x \ge 0$ je $\lfloor x + \frac{1}{2} \rfloor \le 2x$, tedy $\bar{x}_i \le 2x_i$. Druhá nerovnost plyne z (11.24).

Celkově tedy máme tyto nerovnosti (rozmyslete):

$$0 \le y \le y^* \le \bar{y} \le 2y \le 2y^*.$$

Z toho plyne $\frac{1}{2}y^* \le y \le y^*$, tedy optimální hodnota LP relaxace nemůže být libovolně-krát menší než optimální hodnota nerelaxované úlohy (mezera celočíselnosti nemůže být libovolná).

Příklad 11.7. Nechť $V = \{1, 2, 3\}$ a $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}$, tedy (V, E) je úplný graf se třemi vrcholy. Úloha (11.26) má tři optimální řešení $\mathbf{x} = (1, 1, 0), \mathbf{x} = (1, 0, 1)$ a $\mathbf{x} = (0, 1, 1),$ odpovídající minimálním pokrytím $X = \{1, 2\}, X = \{1, 3\}$ a $X = \{2, 3\}$. Optimální hodnota úlohy je 2. LP relaxace má jediné optimální řešení $\mathbf{x} = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ s optimální hodnotou $\frac{3}{2}$, což je ve shodě s nerovností (11.24). Zaokrouhlené řešení je $\bar{\mathbf{x}} = (1, 1, 1)$ s optimální hodnotou 3, což je ve shodě s Větou 11.2.

Největší nezávislá množina 11.4.3

Podmnožina vrcholů $X \subseteq V$ neorientovaného grafu (V, E) se nazývá **nezávislá**, když žádné dva vrcholy z X nejsou spojeny hranou. V úloze na **největší nezávislou množinu** hledáme pro daný graf nezávislou množinu s největším počtem vrcholů.

Formulace této úlohy pomocí ILP je velmi podobné (11.26):

$$\max \quad \sum_{i \in V} x_i \tag{11.28a}$$

za podm.
$$x_i + x_j \le 1$$
, $\{i, j\} \in E$ (11.28b) $x_i \in \{0, 1\}$, $i \in V$ (11.28c)

$$x_i \in \{0, 1\}, \quad i \in V$$
 (11.28c)

V LP relaxaci opět nahradíme podmínky $x_i \in \{0,1\}$ nerovnostmi $0 \le x_i \le 1$.

Na rozdíl od úlohy na vrcholové pokrytí tato LP relaxace není příliš užitečná. LP relaxace má vždy přípustné řešení $x_i = \frac{1}{2}$ $(i \in V)$. Tomu odpovídá hodnota účelové funkce $\sum_i x_i = \frac{1}{2}|V|$. Tedy optimální hodnota LP relaxace úlohy nemůže být menší než $\frac{1}{2}|V|$. Bohužel, optimální hodnota y^* nerelaxované úlohy (11.28) může libovolně-krát menší než $\frac{1}{2}|V|$. Např. pro každý úplný graf je $y^* = 1$ (protože každé dva vrcholy jsou spojeny hranou).

Mohli bychom doufat, že např. zaokrouhlením optimálního řešení relaxované úlohy získáme analogii Věty 11.2. Tyto snahy jsou ale beznadějné: bylo dokázáno, že úlohu (11.28) nelze aproximovat s jakoukoliv konstantní (tj. nezávislou na velikosti grafu) zárukou. Přesněji, pro každé číslo $\varepsilon > 0$ je nalezení přípustného řešení $\bar{x}_i \in \{0,1\}$ $(i \in V)$ splňujícího $\sum_{i \in V} \bar{x}_i \geq y^*/\varepsilon$ stejně těžké, jako nalezení optimálního řešení (úloha je tzv. APX-těžká).

11.5 Cvičení

11.1. Najděte graficky množinu optimálních řešení úlohy

min
$$c_1x_1 + c_2x_2 + c_3x_3$$

za podm. $x_1 + x_2 \ge 1$
 $x_1 + 2x_2 \le 3$
 $x_1 + x_2 \le 10$
 $x_1, x_2, x_3 \ge 0$

pro následující případy: (a) $\mathbf{c} = (-1, 0, 1)$, (b) $\mathbf{c} = (0, 1, 0)$, (c) $\mathbf{c} = (0, 0, -1)$.

11.2. Následující úlohy nejprve převed'te na rovnicový tvar (tj. tvar s nezápornými proměnnými a omezeními typu lineární rovnice, viz §11.1). Potom je převed'te do maticové formy $\min\{\mathbf{r}^T\mathbf{u}\mid \mathbf{P}\mathbf{u}=\mathbf{q},\ \mathbf{u}\geq\mathbf{0}\}$ (výsledkem tedy budou $\mathbf{u},\mathbf{P},\mathbf{q},\mathbf{r}$).

a)
$$\min 2x_1 - 3x_3 + x_4$$

$$\text{za podmínek} \quad x_1 - x_2 - x_3 \geq 0$$

$$-x_1 + 2x_2 - 3x_3 \leq 5$$

$$2x_1 - x_2 - x_3 + 2x_4 = 6$$

$$x_1, x_2, x_3, x_4 \geq 0$$

- b) lineární program (11.10)
- c) lineární program (11.15)
- d) lineární program (11.17)
- 11.3. Vyřešte úvahou tyto jednoduché lineární programy a napište (jednoduchý) výraz pro optimální hodnotu. Odpovědi dokažte. Vektor $\mathbf{c} \in \mathbb{R}^n$ a číslo $k \in \{1, \dots, n\}$ jsou dány.
 - a) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{0} \le \mathbf{x} \le \mathbf{1}\}$
 - b) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, -1 \leq \mathbf{x} \leq 1\}$
 - c) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x} \geq \mathbf{0}, \ \mathbf{1}^T\mathbf{x} = 1\}$
 - d) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x} \geq \mathbf{0}, \ \mathbf{1}^T\mathbf{x} \leq 1\}$
 - e) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, -1 \leq \mathbf{1}^T\mathbf{x} \leq 1\}$
 - f) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x} \geq \mathbf{0}, \ \mathbf{1}^T\mathbf{x} = k\}$
 - g) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{0} \leq \mathbf{x} \leq \mathbf{1}, \ \mathbf{1}^T\mathbf{x} = k\}$
 - h) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{0} \leq \mathbf{x} \leq \mathbf{1}, \ \mathbf{1}^T\mathbf{x} \leq k \ \}$
 - i) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ 0 \le x_1 \le x_2 \le \dots \le x_n \le 1\}$
 - j) (\star) max{ $\mathbf{c}^T \mathbf{x} \mid \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, -\mathbf{y} \leq \mathbf{x} \leq \mathbf{y}, \mathbf{1}^T \mathbf{y} = k, \mathbf{y} \leq \mathbf{1}$ }

- 11.4. Pokuste se úlohy transformovat na LP. Pokud to nedokážete, vysvětlete proč.
 - a) $\min\{|x_1| + |x_2| \mid x_1, x_2 \in \mathbb{R}, 2x_1 x_2 \ge 1, -x_1 + 2x_2 \ge 1\}$
 - b) $\max\{ |x_1 c_1| + \dots + |x_n c_n| \mid x_1, \dots, x_n \in \mathbb{R}, a_1 x_1 + \dots + a_n x_n \ge b \}$
 - c) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}\mathbf{x} = \mathbf{b}, \ |\mathbf{d}^T\mathbf{x}| \le 1, \ \mathbf{x} \ge \mathbf{0}\}$

 - d) $\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{l=1}^L \max_{k=1}^K (\mathbf{c}_{kl}^T \mathbf{x} + d_{kl})$ e) $\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1}^m f(\mathbf{a}_i^T \mathbf{x} b_i)$, kde funkce f je definována obrázkem

- f) $\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \|\mathbf{A}\mathbf{x} \mathbf{b}\|_{\infty} \le 1\}$
- g) $\min\{ \|\mathbf{x}\|_1 \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}\mathbf{x} = \mathbf{b} \}$
- h) $\min_{\mathbf{x} \in \mathbb{R}^n} (\|\mathbf{A}\mathbf{x} \mathbf{b}\|_1 + \|\mathbf{x}\|_{\infty})$ (což se dá napsat také jako min $\{\|\mathbf{A}\mathbf{x} \mathbf{b}\|_1 + \|\mathbf{x}\|_{\infty} \mid \mathbf{x} \in \mathbb{R}^n\}$)
- i) $(\star) \min \{ \mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \|\mathbf{A}\mathbf{x} \mathbf{b}\|_1 < 1 \}$
- 11.5. Máme algoritmus (černou skříňku) na řešení LP, kterou můžeme zavolat i vícekrát. S pomocí tohoto algoritmu vyřešte úlohu $\max\{|\mathbf{c}^T\mathbf{x}| \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}\}.$
- 11.6. Dokažte nebo vyvrať te následující rovnosti. Zde $\mathbf{c} \in \mathbb{R}^n$ a $\mathbf{A} \in \mathbb{R}^{m \times n}$ jsou dány, $\|\cdot\|$ je libovolná norma, a optimalizuje se přes proměnné $\mathbf{x} \in \mathbb{R}^n$.
 - a) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\| = 1\} = \max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\| \le 1\}$
 - b) $\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\| = 1\} = \min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\| \le 1\}$
 - c) $\max\{\|\mathbf{A}\mathbf{x}\| \mid \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\| = 1\} = \max\{\|\mathbf{A}\mathbf{x}\| \mid \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\| \le 1\}$
- 11.7. Dokažte, že minimum funkce $f(x) = \sum_{i=1}^{m} |x y_i|$ se nabývá v mediánu čísel y_1, \dots, y_m .
- 11.8. Uvažujme Příklad 1.12 takto pozměněný: pán má pomocníka, kterému platí 10 Kč za každý kg vyrobeného zboží (je jedno, zda to jsou lupínky nebo hranolky). Ovšem pokud se toho vyrobí hodně, chce pomocník větší plat, protože musí zůstat přesčas. Tak za každý kg nad 20 kg vyrobeného zboží si nechá připlatit dalších 10 Kč, a za každý kg nad 30 kg vyrobeného zboží si nechá připlatit dalších 20 Kč (tedy za každý kg nad 30 kg vyrobeného zboží dostane 10 + 10 + 20 = 40 Kč). Kolik má pán vyrobit lupínků a hranolků, aby měl co největší denní zisk (tj. tržbu z prodeje minus plat pomocníkovi)? Zformulujte jako LP.
- 11.9. Armáda má ve dvou skladech uskladněno 6 a 5 tun střeliva. Střelivo je nutno přepravit ke třem střelnicím s požadavky 3, 2 a 2 tuny střeliva. Kvůli minimalizaci rizika je nutné minimalizovat maximální množství střeliva, které se veze po kterékoliv cestě od skladu ke střelnici. Formulujte jako lineární program.

11.10. Máme kladku s provazem, jehož oba konce končí hákem. Na levém háku visí n závaží na provázcích, přičemž i-té závaží má tíhu m_i a jeho výška nad zemí je d_i , pro $i=1,\ldots,n$. Na pravém háku visí n' závaží na provázcích, přičemž i-té závaží má tíhu m_i' a jeho výška nad zemí je d_i' , pro $i=1,\ldots,n'$. Výšky d_i a d_i' se měří v poloze, kdy jsou oba háky ve stejné výšce nad zemí. Kladka se pohybuje bez tření, provázky a háky mají nulovou hmotnost. Obrázek ukazuje příklad pro n=3, n'=2.

Soustava má jediný stupeň volnosti daný otáčením kladky. Označme jako x výšku levého háku nad bodem, kdy jsou oba háky ve stejné výšce – tedy pro x=0 jsou oba háky ve stejné výšce a pro x>0 bude levý hák o 2x výše než pravý hák. V závislosti na x každé závaží buď visí nad zemí (pak je jeho potenciální energie rovna m_i krát výška nad zemí) nebo leží na zemi (pak je jeho potenciální energie nulová). Soustava bude v rovnováze při minimální celkové potenciální energii.

- a) Napište vzorec pro celkovou potenciální energii soustavy jako funkci x.
- b) Formulujte hledání minima potenciální energie soustavy jako lineární program.
- 11.11. Veverka před zimou potřebuje přerovnat zásoby oříšků. Stávající zásoby má v m jamkách, přičemž i-tá jamka má souřadnice $\mathbf{p}_i \in \mathbb{R}^2$ a je v ní a_i oříšků. Potřebuje je přenosit do n nových připravených jamek, přičemž j-tá jamka má souřadnice $\mathbf{q}_j \in \mathbb{R}^2$ a na konci v ní bude y_j oříšků. Veverka unese najednou jen jeden oříšek. Nechť x_{ij} označuje celkový počet oříšků přenesených ze staré jamky i do nové jamky j. Uvažujte dvě úlohy:
 - a) Čísla y_j jsou dána. Hledají se taková čísla x_{ij} , aby veverka vykonala co nejméně práce, kde práce na přenesení jednoho oříšku je přímo úměrná vzdálenosti (vzdušnou čarou). Běh bez oříšku se za práci nepovažuje.
 - b) Hledají se čísla x_{ij} a y_j tak, aby veverka vykonala co nejméně práce a navíc byly v nových jamkách oříšky rozloženy co nejrovnoměrněji, čímž minimalizuje škodu způsobenou případnou krádeží. Přesněji, aby rozdíl mezi největším a nejmenším z čísel y_j byl menší než dané číslo t.

Formulujte obě úlohy jako LP. Předpokládejte, že počty oříšků jsou nezáporná reálná čísla, ač ve skutečnosti mohou být pouze nezáporná celá čísla.

11.12. Firma na výrobu kánoí má 120 zaměstnanců, z nichž každý pracuje maximálně 30 hodin týdně. Polovina zaměstnanců pracuje v truhlářské dílně, 20 zaměstnanců pracuje v dílně na zpracování plastů a zbytek v kompletační dílně. Firma vyrábí dva typy kánoí: standardní kánoe s čistým ziskem 7 EUR za kus a luxusní kánoe s čistým ziskem 10 EUR za kus. Na výrobu jedné standardní kánoe je třeba 4.5 hodiny práce v truhlářské dílně a dvě hodiny v každé ze zbylých dvou dílen. Jedna luxusní kánoe vyžaduje 5 hodin práce v truhlárně,

hodinu v dílně na plasty a 4 hodiny kompletace. Průzkum trhu odhalil, že ne méně jež 1/3 a ne více než 2/3 vyrobených kánoí by měly být luxusní. Kolik kterých kánoí má firma týdně vyrobit, aby byl její čistý zisk maximální? Formalizujte jako optimalizační úlohu, kterou už ale neřešte.

- 11.13. Spočtěte limitu $\lim_{p\to\infty} \|\mathbf{x}\|_p = \lim_{p\to\infty} (|x_1|^p + \cdots + |x_n|^p)^{1/p}$.
- 11.14. Máme dvě konečné množiny $\{\mathbf{a}_1,\ldots,\mathbf{a}_m\}$ a $\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$ bodů z \mathbb{R}^d . Hledáme
 - a) nadrovinu procházející počátkem (tj. lineární podprostor dimenze d-1),
 - b) nadrovinu (tj. afinní podprostor dimenze d-1),

která množiny odděluje (tedy všechny body z první množiny jsou na jedné straně nadroviny a všechny body z druhé množiny jsou na druhé straně). Napište jako lineární program.

- 11.15. Rozhodněte (a odpověď dokažte), pro jaká n je následující funkce $f \colon \mathbb{R}^n \to \mathbb{R}$ norma:
 - a) $f(\mathbf{x}) = |\max\{x_1, \dots, x_n\}|$
 - b) $f(\mathbf{x}) = \|\mathbf{x}\|_1 + \|\mathbf{x}\|_2$
 - c) $f(\mathbf{x}, \mathbf{y}) = \|\mathbf{x}\|_1 + \|\mathbf{y}\|_2$ (argument této funkce je vektor $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n$, kde $\mathbf{x} \in \mathbb{R}^k$ a $\mathbf{y} \in \mathbb{R}^{n-k}$)
 - d) $f(\mathbf{x}) = \max_{i=1}^{n} x_i \min_{i=1}^{n} x_i$
- 11.16. Máme m nadrovin v \mathbb{R}^n , kde i-tá nadrovina je množina $H_i = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_i^T \mathbf{x} = b_i \}$ kde $\mathbf{a}_i \neq \mathbf{0}$. Označme $d(H_i, \mathbf{x}) = \min_{\mathbf{y} \in H_i} \|\mathbf{x} \mathbf{y}\|_2$ vzdálenost bodu $\mathbf{x} \in \mathbb{R}^n$ od i-té nadroviny. Hledáme bod \mathbf{x} , který minimalizuje číslo (a) $\sum_{i=1}^m d(H_i, \mathbf{x})$, (b) $\max_{i=1}^m d(H_i, \mathbf{x})$. Formulujte jako lineární program.
- 11.17. (\star) Najděte co nejjednodušší algoritmus, který spočte minimum funkce $\mathbf{a}^T \mathbf{X} \mathbf{b}$ na množině dvojitě stochastických matic \mathbf{X} , kde \mathbf{a} , \mathbf{b} jsou dané vektory.

Nápověda a řešení

- 11.2.b) Úloha už je v rovnicovém tvaru, takže v prvním kroku nemusíme dělat nic. Úloha jde napsat v maticovém tvaru (11.11), to ale není požadovaný tvar, protože proměnné jsou soustředěné do matice $\mathbf X$ a nikoliv do vektoru. Převod do požadovaného tvaru je jasný z Příkladu .c.
- 11.3.a) Viz Příklad 1.13.
- 11.3.b) $\sum_{i=1}^{n} |c_i|$. Dokáže se podobně.
- 11.3.c) $\max_{i=1}^{n} c_i$
- 11.3.d) $\max_{i=1}^{n} \max\{0, c_i\} = \max\{0, \max_{i=1}^{n} c_i\}$
- 11.3.e) Když $c_i = a$ pro každé i (tj. všechna c_i jsou stejná), tak optimální hodnota je |a|. Jinak je úloha neomezená.
- 11.3.i) Nápověda: substituujte $y_i = x_i x_{i-1}$
- 11.4.a) $\min\{z_1+z_2\mid x_1,x_2,z_1,z_2\in\mathbb{R},\ 2x_1-x_2\geq 1,\ -x_1+2x_2\geq 1,\ x_1\leq z_1,\ x_2\leq z_2,\ -x_1\leq z_1,\ -x_2\leq z_2\}$
- 11.4.b) Nejde.
- 11.4.c) $\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{d}^T\mathbf{x} \le 1, -\mathbf{d}^T\mathbf{x} \le 1, \mathbf{x} \ge \mathbf{0}\}\$
- 11.4.d) $\min\{\mathbf{1}^T\mathbf{z} \mid \mathbf{c}_{kl}^T\mathbf{x} + d_{kl} \leq z_l \ (\forall k, l), \ \mathbf{x} \in \mathbb{R}^n, \ \mathbf{z} \in \mathbb{R}^L \}$ (analogické §11.1.1)
- 11.4.f) $\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, -1 \leq \mathbf{A}\mathbf{x} \mathbf{b} \leq \mathbf{1}\}\$

- 11.4.h) $\min\{\mathbf{1}^T\mathbf{y} + z \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{y} \in \mathbb{R}^m, \ z \in \mathbb{R}, \ -\mathbf{y} \le \mathbf{A}\mathbf{x} \mathbf{b} \le \mathbf{y}, \ -z\mathbf{1} \le \mathbf{x} \le z\mathbf{1}\}$
- 11.4.i) $\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{z} \in \mathbb{R}^m, \ -\mathbf{z} \leq \mathbf{A}\mathbf{x} \mathbf{b} \leq \mathbf{z}, \ \mathbf{1}^T\mathbf{z} \leq 1\}$. Správnost tohoto převodu bychom museli dokázat podobně jako v Příkladu 1.13 proveď te! Všimněte si také, že $-\mathbf{z} \leq \mathbf{A}\mathbf{x} \mathbf{b} \leq \mathbf{z}$ implikuje $\mathbf{z} \geq \mathbf{0}$, tedy bychom mohli přidat podmínku $\mathbf{z} \geq \mathbf{0}$ a úloha by se nezměnila.
- 11.5. Postupem uvedeným v §11.1 nedokážeme převést na jedinou úlohu LP. Ale lze vyřešit vypočtením dvou úloh LP: optimální hodnota je $\max\{A, -B\}$, kde $A = \max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}\}$ a $B = \min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}\}$.
- 11.6. Inspirujte se úvahou v §11.1.1.
- 11.7. Funkce f je po částech afinní, je tedy diferencovatelná všude kromě bodů y_1, \ldots, y_m . Napište vzorec pro derivaci funkce $|\theta y_i|$ (použijte funkci signum) a pak vzorec pro derivaci $f'(\theta)$ funkce f. Seřad'te čísla y_1, \ldots, y_m vzestupně a napište hodnoty derivace $f'(\theta)$ pro každý interval (y_{i-1}, y_i) . Z toho usud'te, kde je funkce klesající/konstantní/rostoucí a kde tedy nabývá minimum.
- 11.8. Stejná úloha jako v Příkladu 1.12, jen účelová funkce se změní na 120l + 76h f(l+h) kde $f(t) = \max\{10t, 200 + 20(t-20), 400 + 40(t-30)\}$. To převedeme na LP dle §11.1.1.
- 11.9. Nechť x_{ij} označuje množství střeliva vezeného od skladu i do střelnice j. Minimalizujeme funkci $\max\{x_{11},x_{12},x_{13},x_{21},x_{22},x_{23}\}$ za podmínek $x_{11}+x_{12}+x_{13}\leq 6,\,x_{21}+x_{22}+x_{23}\leq 5,\,x_{11}+x_{21}=3,\,x_{12}+x_{22}=2,\,x_{13}+x_{23}=2,\,$ a $x_{11},x_{12},x_{13},x_{21},x_{22},x_{23}\geq 0$. To převedeme na LP dle §11.1.1.
- 11.10.a) $E(x) = \sum_{i=1}^{n} m_i \max(d_i + x, 0) + \sum_{i=1}^{n'} m'_i \max(d'_i x, 0)$
- 11.10.b) $\min\{\sum_{i=1}^{n} m_i z_i + \sum_{i=1}^{n'} m_i' z_i' \mid x, z_i, z_i' \in \mathbb{R}, z_i \ge d_i + x, z_i' \ge d_i' x, z_i \ge 0, z_i' \ge 0\}$
- 11.12. $\max 7s + 10l$ z.p. $4.5s + 5l \le 60 \cdot 30$, $2s + l \le 20 \cdot 30$, $2s + 4l \le 40 \cdot 30$, $(s + l)/3 \le l \le 2(s + l)/3$, $s, l \ge 0$ a navíc $s, l \in \mathbb{Z}$.
- 11.13. Stačí spočítat $\lim_{p\to\infty}(x_1^p+\cdots+x_n^p)^{1/p}$ pro $x_1,\ldots,x_n\geq 0$. Označte $a=\max\{x_1,\ldots,x_n\}$ a pište $\lim_{p\to\infty}(x_1^p+\cdots+x_n^p)^{1/p}=a\lim_{p\to\infty}((x_1/a)^p+\cdots+(x_n/a)^p)^{1/p}$. Zbytek je snad jasný.
- 11.14.a) Podmínku oddělení napište jako soustavu lineárních nerovnic, což je vlastně LP s konstantní (nulovou) účelovou funkcí. Viz Příklad 16.12.
- 11.15.a) Je to norma pro n=1, protože pak f(x)=|x|. Pro $n\geq 2$ to norma není, protože z $f(\mathbf{x})=0$ neplyne $\mathbf{x}=\mathbf{0}$ (první axiom), např. pro $\mathbf{x}=(-1,0,0,\ldots)$.
- 11.17. Dle Věty 11.1 se optimální hodnota úlohy nezmění, když budeme minimalizovat přes permutační matice. Tedy hledáme minimum funkce $\sum_i a_i b_{\pi(i)}$ přes všechny permutace π .

Kapitola 12

Konvexní množiny a mnohostěny

Zde si řekneme více o geometrii lineárního programování. Ke konvexním množinám, zásadnímu to pojmu v optimalizaci, se navíc vrátíme v pozdějších kapitolách.

12.1 Konvexní množiny

Množina $X \subseteq \mathbb{R}^n$ se nazývá **konvexní**, jestliže

$$\mathbf{x} \in X, \ \mathbf{y} \in X, \ 0 \le \alpha \le 1 \implies (1 - \alpha)\mathbf{x} + \alpha\mathbf{y} \in X.$$
 (12.1)

Množina $\{(1-\alpha)\mathbf{x} + \alpha\mathbf{y} \mid 0 \le \alpha \le 1\}$ je úsečka spojující body \mathbf{x} a \mathbf{y} (viz Příklad 3.7). Definice tedy říká, že množina je konvexní, jestliže s každými dvěma body obsahuje i úsečku, která je spojuje. Obrázek ukazuje příklad konvexní a nekonvexní množiny v \mathbb{R}^2 :

Konvexní kombinace vektorů $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n$ je jejich lineární kombinace $\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k$ taková, že $\alpha_1 + \dots + \alpha_k = 1$ a $\alpha_1, \dots, \alpha_k \geq 0$. Lze dokázat, že množina je konvexní právě tehdy, když je uzavřená vůči konvexním kombinacím (neboli každá konvexní kombinace vektorů z množiny leží v množině). Všimněte si, že $(1 - \alpha)\mathbf{x} + \alpha\mathbf{y}$ pro $0 \leq \alpha \leq 1$ je konvexní kombinací dvou vektorů \mathbf{x}, \mathbf{y} , nebot' $(1 - \alpha) + \alpha = 1, 1 - \alpha \geq 0, \alpha \geq 0$.

Konvexní obal vektorů $\mathbf{x}_1, \dots, \mathbf{x}_k$ je množina všech jejich konvexních kombinací, značíme

$$\operatorname{conv}\{\mathbf{x}_1, \dots, \mathbf{x}_k\} = \{ \alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k \mid \alpha_1 + \dots + \alpha_k = 1, \ \alpha_1, \dots, \alpha_k \ge 0 \}.$$
 (12.2)

Jak ale definovat konvexní obal množiny s nekonečným počtem prvků (např. na pravém obrázku výše)? Nelze použít definice (12.2), neboť není jasné, co znamená součet $\alpha_1 \mathbf{x}_1 + \cdots + \alpha_k \mathbf{x}_k$ pro nekonečný počet vektorů. **Konvexní obal množiny** $X \subseteq \mathbb{R}^n$ (konečné či nekonečné) definujeme jako průnik všech konvexních množin, které množinu X obsahují. Značíme jej conv X.

Obrázek ukazuje konvexní obal konečné (vlevo) a nekonečné (vpravo) množiny pro n=2:

Věta 12.1. Průnik (konečně či nekonečně mnoha) konvexních množin je konvexní množina.

 $D\mathring{u}kaz$. Stačí dokázat pro dvě množiny, pro více množin věta plyne z asociativity operace průnik. Nechť $X,Y\subseteq\mathbb{R}^n$ jsou konvexní. Nechť $\mathbf{x},\mathbf{y}\in X\cap Y$, tedy $\mathbf{x},\mathbf{y}\in X$ a $\mathbf{x},\mathbf{y}\in Y$. Proto pro $0\leq\alpha\leq1$ je bod $(1-\alpha)\mathbf{x}+\alpha\mathbf{y}$ také v X i Y, tedy je v $X\cap Y$.

Sjednocení konvexních množin ale nemusí být konvexní množina.

12.2 Čtyři kombinace vektorů

Konvexní kombinace je lineární kombinace, jejíž koeficienty splňují omezení $\alpha_1 + \cdots + \alpha_k = 1$ a $\alpha_1, \ldots, \alpha_k \geq 0$. Všimněte si, že když vynecháme druhé omezení, dostaneme afinní kombinaci (viz §3.3). Podle toho, které ze dvou omezení vyžadujeme, dostaneme čtyři druhy kombinací. Udělejme si v nich nyní pořádek.

```
Vážený součet \alpha_1 \mathbf{x}_1 + \cdots + \alpha_k \mathbf{x}_k vektorů \mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbb{R}^n se nazývá jejich
```

```
\begin{array}{lll} \textbf{line\'arn\'i kombinace}, & \text{jestli\'ze} & \alpha_1,\dots,\alpha_k \in \mathbb{R}. \\ & \textbf{afinn\'i kombinace}, & \text{jestli\'ze} & \alpha_1,\dots,\alpha_k \in \mathbb{R}, & \alpha_1+\dots+\alpha_k=1. \\ \textbf{nez\'aporn\'a kombinace}, & \text{jestli\'ze} & \alpha_1,\dots,\alpha_k \in \mathbb{R}, & \alpha_1+\dots+\alpha_k=1. \\ & \textbf{konvexn\'i kombinace}, & \text{jestli\'ze} & \alpha_1,\dots,\alpha_k \in \mathbb{R}, & \alpha_1+\dots+\alpha_k=1, & \alpha_1,\dots,\alpha_k \geq 0. \end{array}
```

Množina, která je uzavřená vůči

lineárním kombinacím, se nazývá lineární podprostor. afinním kombinacím, se nazývá afinní podprostor. nezáporným kombinacím, se nazývá konvexní kužel. konvexním kombinacím, se nazývá konvexní množina.

K tomu, co již znáte, přibyl pojem nezáporné kombinace a konvexního kuželu.

Lineární [afinní, nezáporný, konvexní] **obal** vektorů $\mathbf{x}_1, \dots, \mathbf{x}_k$ je množina všech jejich lineárních [afinních, nezáporných, konvexních] kombinací. Obecněji, lineární [afinní, nezáporný, konvexní] obal (konečné či nekonečné) množiny $X \subseteq \mathbb{R}^n$ je průnik všech lineárních podprostorů [afinních podprostorů, konvexních kuželů, konvexních množin] obsahující množinu X.

Příklad 12.1. Mějme tři body v \mathbb{R}^3 , které neleží v jedné rovině s počátkem. Jejich lineární obal je celé \mathbb{R}^3 . Jejich afinní obal je rovina jimi procházející. Jejich nezáporný obal je nekonečný trojboký hranol, jehož vrchol je v počátku a jehož hrany jsou tři polopřímky určené počátkem a danými body. Jejich konvexní obal je trojúhelník jimi určený.

12.3 Konvexní mnohostěny

Zopakujme (viz §3.3), že nadrovina v \mathbb{R}^n je afinní podprostor dimenze n-1. Je to tedy množina

$$\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} = b \}, \tag{12.3}$$

kde $\mathbf{a} \in \mathbb{R}^n$ a $b \in \mathbb{R}$. Požadujeme $\mathbf{a} \neq \mathbf{0}$, jinak by afinní podprostor (12.3) neměl dimenzi n-1 (a nebyl by tedy nadrovinou). Vektor \mathbf{a} je normála nadroviny a $|b|/\|\mathbf{a}\|$ je vzdálenost nadroviny od počátku (viz §4.6.2). **Poloprostor** (přesněji *uzavřený poloprostor*) je množina

$$\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} \ge b \}. \tag{12.4}$$

Hranice (viz §8.9) poloprostoru je nadrovina (12.3). Obrázek ilustruje tyto pojmy pro n=2:

Konvexní mnohostěn (krátce jen mnohostěn, angl. *polyhedron*) je průnik konečně mnoha uzavřených poloprostorů. Je to tedy množina

$$X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_i^T \mathbf{x} \ge b_i \ \forall i = 1, \dots, m \} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A} \mathbf{x} \ge \mathbf{b} \},$$
(12.5)

kde $\mathbf{a}_1^T, \dots, \mathbf{a}_m^T \in \mathbb{R}^n$ jsou řádky matice $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $b_1, \dots, b_m \in \mathbb{R}$ jsou složky vektoru $\mathbf{b} \in \mathbb{R}^m$. Obrázek ukazuje příklad pro n=2 a m=7 (všimněte si, že poloprostory 6 a 7 jsou nadbytečné, jejich vynecháním se mnohostěn nezmění):

Poloprostor je očividně konvexní množina, proto dle Věty 12.1 je konvexní mnohostěn konvexní množina. Všimněte si, že konvexní mnohostěn nemusí být omezený.

Dimenze mnohostěnu je dimenze jeho afinního obalu, dim $X = \dim \text{aff } X$ (afinní obal viz §12.2, dimenze afinního podprostoru viz §3.3). Jinými slovy, je to největší počet afinně nezávislých bodů, které lze do mnohostěnu umístit, minus jedna.

¹Otevřený poloprostor je množina { $\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} > b$ }.

Příklad 12.3. Příklady 'jednoduchých' konvexních mnohostěnů v \mathbb{R}^n :

- prázdná množina Ø
- celý prostor \mathbb{R}^n
- intervaly typu $(-\infty, a]$, $[a, \infty)$ (tj. poloprostory v \mathbb{R}) a jejich průniky [a, b]
- každý afinní podprostor (např. bod, přímka, rovina, nadrovina)
- polopřímka $\{ \mathbf{x} + \alpha \mathbf{v} \mid \alpha \geq 0 \}$
- poloprostor
- množina \mathbb{R}^n_+ (kde \mathbb{R}_+ značí množinu nezáporných reálných čísel)
- panel $\{\mathbf{x} \in \mathbb{R}^n \mid b_1 \leq \mathbf{a}^T \mathbf{x} \leq b_2\}$ (průnik dvou poloprostorů s opačnými normálami)
- hyperkrychle $[-1,1]^n = \{ \mathbf{x} \in \mathbb{R}^n \mid -1 \le x_i \le 1 \ \forall i = 1,\ldots,n \} = \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||_{\infty} \le 1 \}$

- hyperkvádr ('box') $[a_1, b_1] \times \cdots \times [a_n, b_n] = \{ \mathbf{x} \in \mathbb{R}^n \mid a_i \leq x_i \leq b_i \ \forall i = 1, \dots, n \}$
- $\bullet\,$ simplex, což je n-rozměrnýmnohostěn který je konvexním obalem svých n+1vrcholů
- standardní simplex { $\mathbf{x} \in \mathbb{R}^n \mid x_i \geq 0, \sum_{i=1}^n x_i = 1$ } (tedy (n-1)-rozměrný konvexní mnohostěn, jehož vrcholy jsou vektory $\mathbf{e}_1, \dots, \mathbf{e}_n$ standardní báze \mathbb{R}^n)
- křížový polytop $\{\mathbf{x} \in \mathbb{R}^n \mid \|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i| \le 1\}$ (pro n=3 pravidelný osmistěn)

Příklad 12.4. Příklady konvexních množin, které nejsou mnohostěny:

- Koule v \mathbb{R}^n pro $n \geq 2$ je průnikem nekonečně mnoha poloprostorů $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T\mathbf{x} \leq 1\}$ pro všechna $\mathbf{a} \in \mathbb{R}^n$ splňující $\|\mathbf{a}\|_2 = 1$ (nakreslete a promyslete!). Není to mnohostěn, protože počet poloprostorů není konečný.
- otevřený poloprostor $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T \mathbf{x} > b \}$
- interval [0,1)

12.3.1 Extremální body

Bod $\mathbf{x} \in X$ se nazývá **extremální bod** konvexní množiny X, jestliže neexistují dva různé body z X takové, že \mathbf{x} je střed úsečky spojující tyto dva body, tj. jestliže platí implikace

$$\mathbf{x}_1, \mathbf{x}_2 \in X, \quad \mathbf{x} = \frac{1}{2}(\mathbf{x}_1 + \mathbf{x}_2) \implies \mathbf{x}_1 = \mathbf{x}_2.$$
 (12.6)

Pro mnohostěn (12.5) a pro množinu $I \subseteq \{1, ..., m\}$ budeme symbolem \mathbf{A}_I označovat² matici tvořenou řádky matice \mathbf{A} s indexy I a \mathbf{b}_I bude označovat vektor tvořený složkami vektoru \mathbf{b} s indexy I. Tedy $\mathbf{A}_I \mathbf{x} = \mathbf{b}_I$ je jen jiné označení soustavy $\mathbf{a}_i^T \mathbf{x} = b_i \ \forall i \in I \ (\text{pro } I = \emptyset \text{ definujeme soustavu jako prázdnou a její řešení je libovolné <math>\mathbf{x} \in \mathbb{R}^n$).

Věta 12.2. Pro každý bod x mnohostěnu (12.5) jsou následující tvrzení ekvivalentní:

• Bod x je extremální bod mnohostěnu.

 $^{^2}$ Zde je drobná formální nesrovnalost: I je množina, a tedy na pořadí jejích prvků nezáleží, ale na pořadí řádků matice \mathbf{A}_I záleží. Abychom byli přesní, musíme proto předpokládat, že I je uspořádaná množina, kde její uspořádání je zděděné od množiny $\{1, \ldots, m\}$, a řádky matice \mathbf{A}_I jsou seřazené tímto uspořádáním.

• Existuje $I \subseteq \{1, ..., m\}$ tak, že $\mathbf{A}_I \mathbf{x} = \mathbf{b}_I$ a sloupce matice \mathbf{A}_I jsou lineárně nezávislé.

 $D\mathring{u}kaz$. (*) Necht' X označuje mnohostěn (12.5) a $\mathbf{x} \in X$ je jeho extremální bod. Označme jako $I = \{i \mid \mathbf{a}_i^T \mathbf{x} = b_i\}$ množinu indexů nerovností v definici (12.5), které jsou v bodě \mathbf{x} aktivní. Dokážeme, že sloupce \mathbf{A}_I jsou lineárně nezávislé. Kdyby totiž nebyly, měla by matice \mathbf{A}_I netriviální nulový prostor (dle Věty 3.7), tedy $\mathbf{A}_I \mathbf{v} = \mathbf{0}$ pro nějaké $\mathbf{v} \neq \mathbf{0}$. Pro každé $i \notin I$ je $\mathbf{a}_i^T \mathbf{x} > b_i$, tedy $\mathbf{a}_i^T \mathbf{x} \pm \varepsilon \geq b_i$ pro nějaké $\varepsilon > 0$. Tedy by bylo $\mathbf{A}(\mathbf{x} \pm \varepsilon \mathbf{v}) \geq \mathbf{b}$ neboli $\mathbf{x} \pm \varepsilon \mathbf{v} \in X$. Dle (12.6) by proto \mathbf{x} nebyl extremální bod.

Nechť I je taková, že $\mathbf{A}_I \mathbf{x} = \mathbf{b}_I$ a sloupce \mathbf{A}_I jsou lineárně nezávislé. Nechť $\mathbf{x} = \frac{1}{2}(\mathbf{x}_1 + \mathbf{x}_2)$ pro nějaké $\mathbf{x}_1, \mathbf{x}_2 \in X$, tedy

$$\mathbf{A}_I\mathbf{x}_1 \geq \mathbf{b}_I,$$
 $\mathbf{A}_I\mathbf{x}_2 \geq \mathbf{b}_I,$ $\mathbf{A}_I\mathbf{x} = \frac{1}{2}(\mathbf{A}_I\mathbf{x}_1 + \mathbf{A}_I\mathbf{x}_2) = \mathbf{b}_I.$

Z toho plyne $\mathbf{A}_I \mathbf{x}_1 \geq \frac{1}{2} (\mathbf{A}_I \mathbf{x}_1 + \mathbf{A}_I \mathbf{x}_2) \leq \mathbf{A}_I \mathbf{x}_2$. Ale pro libovolná čísla $\alpha_1, \alpha_2 \in \mathbb{R}$ platí implikace

$$\alpha_1 \ge \frac{1}{2}(\alpha_1 + \alpha_2) \le \alpha_2 \implies \alpha_1 = \alpha_2.$$
 (12.7)

Tedy platí $\mathbf{A}_I \mathbf{x}_1 = \mathbf{A}_I \mathbf{x}_2$. Protože však \mathbf{A}_I má lineárně nezávislé sloupce, plyne z toho $\mathbf{x}_1 = \mathbf{x}_2$ (dle Věty 3.1). Tedy \mathbf{x} je extremální bod.

Připomeňme, že lineární soustava má právě jedno řešení právě tehdy, když má aspoň jedno řešení a její matice má lineárně nezávislé sloupce. Věta tedy vlastně říká, že $\mathbf{x} \in \mathbb{R}^n$ je extremální bod mnohostěnu, právě když soustava $\mathbf{A}_I\mathbf{x} = \mathbf{b}_I$ má právě jedno řešení \mathbf{x} a toto řešení navíc splňuje $\mathbf{A}\mathbf{x} \geq \mathbf{b}$. Geometricky to znamená, že hranice poloprostorů s indexy I se protínají v právě jednom bodě a ten bod leží v mnohostěnu. To nám dává návod, jak vypsat všechny extremální body mnohostěnu. Procházíme všechny podmnožiny $I \subseteq \{1, \ldots, m\}$. Jestliže soustava $\mathbf{A}_I\mathbf{x} = \mathbf{b}_I$ má právě jedno řešení \mathbf{x} a to navíc splňuje $\mathbf{A}\mathbf{x} \geq \mathbf{b}$, pak \mathbf{x} je extremální bod.

Příklad 12.5. Mějme mnohostěn $\{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x+y \ge 1\}$ (nakreslete si ho!). Tedy v (12.5) máme n=2, m=3 a

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Zkoumejme podmnožiny $I \subseteq \{1,2,3\}$. Pro všechny jednoprvkové podmnožiny (|I|=1) jistě má matice \mathbf{A}_I lineárně závislé sloupce. Pro všechny dvouprvkové podmnožiny ($\{1,2\}$, $\{1,3\}$ a $\{2,3\}$) má matice \mathbf{A}_I lineárně nezávislé sloupce. Např. pro $I=\{1,2\}$ je řešením soustavy $\mathbf{A}_I\mathbf{x}=\mathbf{b}_I$ bod $\mathbf{x}=(x,y)=(0,0)$, ten ale nesplňuje $\mathbf{A}\mathbf{x}\geq\mathbf{b}$ (tj. není v mnohostěnu), proto to není extremální bod. Pro $I=\{1,3\}$ má soustava jediné řešení (x,y)=(0,1), které patří do mnohostěnu a tudíž je to jeho extremální bod. Pro $I=\{1,2,3\}$ nemá soustava $\mathbf{A}_I\mathbf{x}=\mathbf{b}_I$ žádné řešení.

Příklad 12.6. Nechť mnohostěn (12.5) je pyramida v \mathbb{R}^3 na obrázku:

Tento mnohostěn je průnikem pěti poloprostorů, tedy n=3 a m=5. Nechť omezení $\mathbf{a}_i^T \mathbf{x} \geq b_i$ pro i=1,2,3,4,5 je poloprostor, jehož hranicí je nadrovina určená po řadě body ABCD, ABE, BCE, CDE, ADE. Pro $I=\{1\}$ má soustava $\mathbf{A}_I \mathbf{x} = \mathbf{b}_I$ řešení ale sloupce matice \mathbf{A}_I jsou lineárně závislé, tedy soustava má nekonečně mnoho řešení, a proto žádné její řešení není extremální bod. Pro $I=\{1,2,3,4,5\}$ nemá soustava žádné řešení. Pro $I=\{1,2,3\}$ má soustava řešení a navíc sloupce matice \mathbf{A}_I jsou lineárně nezávislé, tedy soustava má právě jedno řešení řešení. Toto řešení navíc splňuje soustavu $\mathbf{A}\mathbf{x} \geq \mathbf{b}$, tedy je to extremální bod (vrchol B).

Protože podmnožin I je konečně mnoho, má každý konvexní mnohostěn konečně mnoho extremálních bodů. Počet extremálních bodů mnohostěnu popsaného soustavou lineárních nerovnic ovšem může být exponenciální funkcí počtu nerovnic (tedy může být astronomicky velký pro nepříliš velký počet nerovnic). Tomu se není co divit, protože počet všech podmnožin množiny $\{1,\ldots,m\}$ je 2^m . Např. hyperkrychle $\{\mathbf{x}\in\mathbb{R}^n\mid -\mathbf{1}\leq \mathbf{x}\leq \mathbf{1}\}$ je popsaná 2^n lineárními nerovnicemi ale má 2^n extremálních bodů. Není tomu tak vždy, např. simplex (viz Příklad 12.3) je popsaný n+1 lineárními nerovnicemi a má n+1 extremálních bodů.

12.3.2 Stěny mnohostěnu

Opěrná nadrovina konvexní množiny $X \subseteq \mathbb{R}^n$ je nadrovina $H = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}^T\mathbf{x} = b \}$ taková, že $X \cap H \neq \emptyset$ a pro všechna $\mathbf{x} \in X$ platí $\mathbf{a}^T\mathbf{x} \geq b$. Neboli je to nadrovina, která obsahuje množinu X v jednom ze svých dvou poloprostorů a má s množinou X neprázdný průnik. Obrázky ukazují dvě různé opěrné nadroviny mnohostěnu:

Je-li H opěrná rovina mnohostěnu X, pak množina $X \cap H$ se nazývá **stěna** mnohostěnu. Dle Věty 12.1 je každá stěna konvexního mnohostěnu sama o sobě konvexní mnohostěn. Stěny některých dimenzí mají jméno:

- Stěna dimenze 0 se nazývá **vrchol** (na obrázku vlevo).
- Stěna dimenze 1 se nazývá **hrana** (na obrázku vpravo).
- Stěna dimenze dim X-1 se nazývá **faseta** (pro množinu X dimenze 2 na obrázku je tedy faseta totéž co hrana).

Lze dokázat (důkaz neuvádíme), že bod mnohostěnu je vrchol, právě když je to extremální bod. V následujícím textu budeme používat pojem extremální bod (se kterým se pracuje lépe než s ekvivalentním pojmem vrchol).

Každým hraničním bodem (viz §8.9) konvexního mnohostěnu prochází alespoň jedna opěrná rovina. To snadno dokážeme: Mnohostěn je průnik konečně mnoha poloprostorů. Hranice každého z těchto poloprostorů je opěrná nadrovina mnohostěnu. Zároveň každý hraniční hod mnohostěnu leží na hranici aspoň jednoho poloprostoru.

12.3.3 Extrémy lineární funkce na mnohostěnu

Lema 12.3. Je-li H opěrná nadrovina konvexní množiny X, pak každý extremální bod množiny $X \cap H$ je extremální bod množiny X.

 $D\mathring{u}kaz$. (*) Necht' $H = \{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \}$ a $\mathbf{a}^T \mathbf{x} \geq b$ pro všechna $\mathbf{x} \in X$. Necht' $\mathbf{x} \in X \cap H$ není extremální bod mnohostěnu X, takže $\mathbf{x} = \frac{1}{2}(\mathbf{x}_1 + \mathbf{x}_2)$ pro nějaké $\mathbf{x}_1, \mathbf{x}_2 \in X$ kde $\mathbf{x}_1 \neq \mathbf{x}_2$. Platí

$$\mathbf{a}^T \mathbf{x}_1 \ge b,$$

$$\mathbf{a}^T \mathbf{x}_2 \ge b,$$

$$\mathbf{a}^T \mathbf{x} = \frac{1}{2} (\mathbf{a}^T \mathbf{x}_1 + \mathbf{a}^T \mathbf{x}_2) = b.$$

Díky (12.7) z toho plyne $\mathbf{a}^T \mathbf{x}_1 = \mathbf{a}^T \mathbf{x}_2 = b$, tedy $\mathbf{x}_1, \mathbf{x}_2 \in H$. Tedy \mathbf{x} není extremální bod mnohostěnu $X \cap H$.

Věta tedy říká, že extremální bod stěny mnohostěnu je zároveň extremální bod mnohostěnu. Ne každý mnohostěn má extremální bod, např. poloprostor nebo afinní podprostor (což je konvexní mnohostěn) nemá žádný. Pro následující větu připomeňme, že přímka je afinní podprostor dimenze 1, tedy množina $\{\mathbf{x} + \alpha \mathbf{v} \mid \alpha \in \mathbb{R} \}$ pro nějaké $\mathbf{x} \in \mathbb{R}^n$ a $\mathbf{0} \neq \mathbf{v} \in \mathbb{R}^n$.

Věta 12.4. Pro každý neprázdný konvexní mnohostěn jsou následující tvrzení ekvivalentní:

- Mnohostěn má aspoň jeden extremální bod.
- Mnohostěn neobsahuje přímku.

 $D\mathring{u}kaz$. (*) Nejdříve dokážeme, že když mnohostěn X obsahuje přímku, tak nemá ani jeden extremální bod. Víme, že existují $\mathbf{x} \in X$ a $\mathbf{v} \neq \mathbf{0}$ takové, že $\mathbf{x} + \alpha \mathbf{v} \in X$ pro všechna $\alpha \in \mathbb{R}$. Je-li X ve tvaru (12.5), platí $\mathbf{A}\mathbf{x} \geq \mathbf{b}$ a tedy $\mathbf{A}(\mathbf{x} + \alpha \mathbf{v}) \geq \mathbf{b}$ pro všechna $\alpha \in \mathbb{R}$. Z toho plyne $\alpha \mathbf{A}\mathbf{v} \geq \mathbf{0}$ pro $\alpha \in \mathbb{R}$, z čehož plyne $\mathbf{A}\mathbf{v} = \mathbf{0}$. To ale znamená, že pro $každ\acute{e} \mathbf{x} \in X$ a každé $\alpha \in \mathbb{R}$ platí $\mathbf{A}(\mathbf{x} + \alpha \mathbf{v}) \geq \mathbf{b}$ neboli $\mathbf{x} + \alpha \mathbf{v} \in X$. Tedy $každ\acute{y}m$ bodem mnohostěnu prochází přímka, která leží v mnohostěnu. Proto žádný bod mnohostěnu nemůže být extremální bod.

Nyní dokážeme, že jestliže mnohostěn neobsahuje přímku, pak má aspoň jeden extremální bod. Dokážeme to indukcí podle dimenze mnohostěnu. Tvrzení triviálně platí pro mnohostěny dimenze 0, což jsou pouhé body. Předpokládejme, že tvrzení platí pro všechny mnohostěny dimenze menší než n. Pokud neprázdný mnohostěn X dimenze n neobsahuje přímku, pak každá přímka protínající X narazí na hranici X. Jestliže vezmeme přímku, která leží v afinním obalu X, pak v obdrženém hraničním bodě mnohostěnu X existuje opěrná nadrovina H, která mnohostěn neobsahuje (tj. $X \not\subseteq H$). Mnohostěn $X \cap H$ má proto dimenzi menší než n a neobsahuje přímku (protože X ji neobsahuje), tedy podle indukčního předpokladu má aspoň jeden extremální bod. Ten je dle Lematu 12.3 extremální bod mnohostěnu X.

Věta 12.5. Mějme konvexní mnohostěn, který neobsahuje přímku. Jestliže lineární funkce má na tomto mnohostěnu minimum, pak tato funkce nabývá na mnohostěnu minima aspoň v jednom z jeho extremálních bodů.

 $D\mathring{u}kaz$. Necht' $\mathbf{x}^* \in X$ je bod mnohostěnu X, ve kterém lineární funkce $f(\mathbf{x}) = \mathbf{c}^T\mathbf{x}$ nabývá minima, tedy $\mathbf{c}^T\mathbf{x}^* \leq \mathbf{c}^T\mathbf{x}$ pro všechna $\mathbf{x} \in X$. To znamená, že $H = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{c}^T\mathbf{x} = \mathbf{c}^T\mathbf{x}^*\}$ je opěrná rovina mnohostěnu X v bodě \mathbf{x}^* (H je vlastně vrstevnice funkce f výšky $\mathbf{c}^T\mathbf{x}^*$). Tedy f nabývá na X minima ve všech bodech množiny $X \cap H$ (což je stěna mnohostěnu X). Mnohostěn $X \cap H$ neobsahuje přímku (protože X ji neobsahuje), tedy dle Věty 12.4 má aspoň jeden extremální bod. Dle Lematu 12.3 je tento bod extremální bod mnohostěnu X.

Hledejme nyní minimum lineární funkce na mnohostěnu, neboli řešme lineární program

$$\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}\mathbf{x} \ge \mathbf{b} \}.$$

Jestliže mnohostěn neobsahuje přímku a funkce na něm má minimum, pak dle Věty 12.5 stačí jednoduše projít všechny extremální body mnohostěnu a vybrat z nich ten, ve kterém má funkce nejmenší hodnotu. Tento algoritmus má několik zádrhelů. Nevíme, co dělat s mnohostěny, které obsahují přímku. Nevíme, jak poznat, že účelová funkce má na mnohostěnu minimum. Zdaleka největší zádrhel je ovšem to, že prakticky není možné projít všechny extremální body, neboť jich je příliš mnoho. V příští (nepovinné) kapitole popíšeme simplexový algoritmus, který téměř všechny tyto potíže řeší.

12.4 Cvičení

- 12.1. Odpovězte, zda následující množiny jsou konvexní a odpověď dokažte z definice konvexní množiny:
 - a) interval [a, b]
 - b) $\{(x,y) \in \mathbb{R}^2 \mid y = x^2 \}$
 - c) $\{(x,y) \in \mathbb{R}^2 \mid y > x^2 \}$
 - d) $\{(x,y) \in \mathbb{R}^2 \mid y^2 \ge x^2 \}$
 - e) $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \ \mathbf{C}\mathbf{x} = \mathbf{d} \}$
 - f) $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{x} < 1 \}$
 - g) Z (množina celých čísel)
 - h) $\{ \mathbf{x} \in \mathbb{R}^n \mid \max\{x_1, \dots, x_n\} \ge 0 \}$
 - i) $\{ \mathbf{C}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{A}\mathbf{x} > \mathbf{b} \}$ (lineární zobrazení konvexního mnohostěnu)
- 12.2. Jsou následující množiny konvexní? Odpověď nemusíte dokazovat z definice kovexní množiny, stačí uvést přesvědčivý argument. Jestliže množina není konvexní, napište její konvexní obal jako množinu řešení soustavy (co možná nejjednodušší) rovnic a nerovnic.
 - a) $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \ge \mathbf{0}, \ \sum_{i=1}^n x_i = 1 \}$
 - b) $\{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||_2 = 1 \}$
 - c) $\{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||_2 < 1 \}$
 - d) $\{(x,y) \in \mathbb{R}^2 \mid y = x^2 \}$

- e) $\{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, xy = 1\}$
- f) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 2\} \cap \{(x,y) \in \mathbb{R}^2 \mid (x-1)^2 + y^2 \le 2\}$
- g) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, \ x \ge 0, \ y \ge 0 \}$
- h) $\{-1,0,1\}$
- i) $\{(1,1),(2,2)\}$
- $j) \{(1,1),(1,2),(3,1)\}$
- 12.3. (*) Zobrazení $f\colon 2^V\to 2^V$ (kde V je libovolná množina a 2^V značí množinu všech podmnožin množiny V) se nazývá uzávěr (angl. closure) na množině V, jestliže pro každé $X,Y\subseteq V$ platí
 - $X \subseteq f(X)$ (extensivita),
 - f(f(X)) = f(X) (idempotence),
 - $X \subseteq Y \Rightarrow f(X) \subseteq f(Y)$ (monotonicita).

Dokažte, že operace lineárního, afinního, nezáporného a konvexního obalu jsou uzávěry. Tedy dokažte tři vlastnosti výše pro $V = \mathbb{R}^n$ a např. f(X) = conv X.

- 12.4. (*) Navrhněte algoritmus na nalezení konvexního obalu konečné množiny bodů v rovině. Výstupem bude uspořádný seznam bodů, které tvoří extremální body konvexního obalu.
- 12.5. Nakreslete lineární, afinní, nezáporný a konvexní obal náhodně zvolených k vektorů v \mathbb{R}^n pro všech devět případů $k, n \in \{1, 2, 3\}.$
- 12.6. Bude Věta 12.1 platit, pokud v ní výraz 'konvexní množina' nahradíme výrazem 'lineární podprostor' (příp. 'afinní podprostor', 'konvexní kužel')? Odpověd' dokažte.
- 12.7. Jsou následující množiny konvexní mnohostěny? Zápornou odpověď odůvodněte. Kladnou odpověď dokažte tak, že množinu napíšete jako množinu řešení soustavy konečně mnoha lineárních nerovnic (tj. jako průnik konečně mnoha poloprostorů).
 - a) $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{C} \mathbf{x} \leq 1 \}$, kde **C** je positivně definitní
 - b) $\{ \alpha \mathbf{v} \mid \alpha \in \mathbb{R} \}$, kde $\mathbf{v} \in \mathbb{R}^n$
 - c) (\star) { $\mathbf{C}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n$, $\|\mathbf{x}\|_2 \le 1$ }, kde $\mathbf{C} \in \mathbb{R}^{m \times n}$
 - d) $\{\mathbf{x} \in \mathbb{R}^n \mid \|\mathbf{x} \mathbf{a}\|_2 \le \|\mathbf{x} \mathbf{b}\|_2\}$, kde \mathbf{a}, \mathbf{b} jsou dány
- 12.8. Mějme body $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^n$. Pro každé $i=1,\dots,m$ definujeme množinu

$$X_i = \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x} - \mathbf{a}_i||_2 \le ||\mathbf{x} - \mathbf{a}_j||_2 \, \forall j \ne i \}.$$

Ukažte, že množiny X_1, \ldots, X_m jsou konvexní mnohostěny. Ukažte, že tyto množiny tvoří rozklad (zopakujte si, co je to rozklad množiny) množiny \mathbb{R}^n . Sjednocení hranic těchto množin se nazývá *Voronoiův diagram*. Nakreslete si ho pro n=2 a pro tři případy $m \in \{2,3,4\}$ pro různé konfigurace bodů $\mathbf{a}_1, \ldots, \mathbf{a}_m$.

- 12.9. Hledáme největší (hyper)kouli $\{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x} \mathbf{c}||_2 \le r \}$, která se vejde do mnohostěnu $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \ge \mathbf{b} \}$. Zformulujte jako lineární program.
- 12.10. Chceme najít všechny extremální body mnohostěnu $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \geq \mathbf{b} \}$.
 - a) Udělejte pro mnohostěn

$$\mathbf{A} = \begin{bmatrix} -1 & -2 \\ 3 & -1 \\ -1 & 1 \\ 2 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -14 \\ 0 \\ -2 \\ 4 \end{bmatrix}.$$

- b) Napište program v Matlabu, který vypíše všechny extremální body pro libovolné $\mathbf{A}, \mathbf{b}.$
- 12.11. Které z následujících mnohostěnů mají aspoň jeden extremální bod? Kladnou odpověď dokažte nalezením libovolného jednoho extremálního bodu. Zápornou odpověď dokažte nalezením libovolné přímky, která leží v mnohostěnu.
 - a) všechny mnohostěny z Příkladu 12.3
 - b) $\{(x, y, z) \in \mathbb{R}^3 \mid x + y \le 1, \ x \ge 0, \ y \ge 0\}$
 - c) $\{(x,y) \in \mathbb{R}^2 \mid -1 \le x + y \le 1\}$
- 12.12. (*) Pro mnohostěn $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \geq \mathbf{b} \}$ dokažte:
 - a) Má-li A lineárně závislé sloupce (tj. rank A < n), mnohostěn nemá extremální bod.
 - b) Má-li mnohostěn aspoň jeden extremální bod, je rank $\mathbf{A} = n$.

Nápověda a řešení

- 12.1.a) Konvexní, protože pro libovolné $\alpha \in [0,1]$ je $(1-\alpha)a + \alpha b \in [a,b]$.
- 12.1.b) Není konvexní. Např. $\mathbf{x}=(1,1)$ a $\mathbf{y}=(-1,1)$ patří do množiny, ale $\mathbf{x}/2+\mathbf{y}/2=(0,1)$ nepatří.
- 12.1.c) Je konvexní.
- 12.1.e) Konvexní.
- 12.1.f) Konvexní.
- 12.1.g) Nekonvexní. Např. pro $x=1,\ y=2,\ \alpha=\frac{1}{2}$ číslo $(1-\alpha)x+\alpha y=1.5$ není celé.
- 12.1.h) Nekonvexní.
- 12.2.a) průnik poloprostorů a nadroviny, konvexní mnohostěn
- 12.2.b) Sféra, nekonvexní. Konve. obal je koule $\{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}||_2 \leq 1\}$.
- 12.2.c) koule bez hranice, konvexní
- 12.2.d) Graf paraboly, nekonvexní. Konvexní obal je $\{(x,y) \in \mathbb{R}^2 \mid y \geq x^2\}$.
- 12.2.e) Jedna větev grafu hyperboly, není konvexní. Konv. obal je $\{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, xy \ge 1\}$.
- 12.2.f) průnik dvou koulí, konvexní
- 12.2.g) Čtvrt kružnice, nekonvexní. Konv. obal je $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1, \ x + y \ge 1\}$.
- 12.2.h) Tři body v \mathbb{R} , nekonvexní protože např. (-1+0)/2 nepatří do množiny. Konv. obal je interval [-1,1].
- 12.2.i) Dva body v \mathbb{R}^2 , nekonvexní. Konv. obal je úsečka spojující ty dva body. Tuto úsečka máme napsat jako množinu řešení rovnic a nerovnic, což jde např. takto: $\{(x,y) \in \mathbb{R}^2 \mid 1 \le x \le 2, \ x=y \}$.
- 12.2.j) Tři body v \mathbb{R}^2 , nekonvexní. Konv. obal je trojúhelník $\{(x,y)\in\mathbb{R}^2\mid x\geq 1,\ y\geq 1,\ x+2y\leq 5\}.$
- 12.7.a) Je to elipsoid, tedy je to konvexní množina. Mnohostěn je to jen pro n=1 (v tom případě je to úsečka).
- 12.7.b) Přímka jdoucí počátkem (tj. lineární podprostor dimenze 1) se směrovým vektorem \mathbf{v} . V uvedeném tvaru není vyjádřena jako průnik poloprostorů. Je-li ale $\mathbf{A} \in \mathbb{R}^{(n-1)\times n}$ matice taková, že $\{\alpha\mathbf{v} \mid \alpha \in \mathbb{R}\} = \operatorname{span}\{\mathbf{v}\} = \operatorname{null} \mathbf{A}$, přímku jsme vyjádřili jako množinou řešení lineární soustavy $\mathbf{A}\mathbf{x} = \mathbf{0}$, což už je průnik poloprostorů.
- 12.9. Maximalizujeme r za podmínek $\mathbf{Ac} \mathbf{b} \ge r\mathbf{1}$ (tedy neznámé jsou $\mathbf{c} \in \mathbb{R}^n$ a $r \ge 0$), přičemž předpokládáme, že v každé nerovnici $\mathbf{a}_i^T \mathbf{x} \ge b_i$ soustavy $\mathbf{Ax} \ge \mathbf{b}$ máme $\|\mathbf{a}_i\| = 1$ (tedy každou nerovnici musíme nejdříve vydělit číslem $\|\mathbf{a}_i\|$).

12.10.a) Extremální body a odpovídající množiny $I \subseteq \{1, \dots, 4\}$:	Ι	$\{1, 2\}$	$\{1, 3\}$	$\{2,4\}$	${\{3,4\}}$
12.10.a) Extremain body a supovidajici innoziny $1 \subseteq \{1, \dots, 4\}$.	\mathbf{x}	(2,6)	(6,4)	$(\frac{4}{5}, \frac{12}{5})$	(2,0)

- 12.11.b) nemá extremální bod
- 12.11.c) nemá extremální bod
- 12.12.a) Je-li rank $\mathbf{A} < n$, je $\mathbf{A}\mathbf{v} = \mathbf{0}$ pro nějaké $\mathbf{v} \neq \mathbf{0}$. Tedy pro každé \mathbf{x} splňující $\mathbf{A}\mathbf{x} \geq \mathbf{b}$, mnohostěn obsahuje přímku $\{\mathbf{x} + \alpha\mathbf{v} \mid \alpha \in \mathbb{R}\}$. Tedy každým bodem mnohostěnu prochází přímka, která celá leží v mnohostěnu. Tedy žádný bod mnohostěnu není extremální bod. Srov. Věta 12.4.

Kapitola 13

Simplexová metoda

Nyní popíšeme slavný algoritmus na řešení lineárních programů, **simplexovou metodu**. V minulé kapitole jsme ukázali, že má-li mnohostěn aspoň jeden extremální bod, lineární funkce na něm nabývá minima aspoň v jednom extremálním bodě. Tedy můžeme projít všechny extremální body a najít ten s nejlepší účelovou funkcí. Ale extremálních bodů může být mnoho. Simplexová metoda tento naivní algoritmus výrazně zrychluje tak, že postupuje od jednoho extremálního bodu k dalšímu po hranách mnohostěnu tak, aby se účelová funkce zlepšovala nebo aspoň nezhoršovala. Ve zbytku kapitoly tento geometricky popsaný nápad převedeme do algebry.

Pro začátek zapomeňme na účelovou funkci a zkoumejme pouze mnohostěn přípustných řešení LP. Místo mnohostěnu v obecném tvaru (12.5) algoritmus pracuje s mnohostěnem v rovnicovém tvaru (11.3)

$$X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0} \}, \tag{13.1}$$

kde navíc matice $\mathbf{A} \in \mathbb{R}^{m \times n}$ má lineárně nezávislé řádky (tj. rank $\mathbf{A} = m$). Množina řešení soustavy $\mathbf{A}\mathbf{x} = \mathbf{b}$ je tedy afinní podprostor dimenze nejvýše n - m.

Zkoumejme soustavu $\mathbf{A}\mathbf{x} = \mathbf{b}$ s dodatečnou podmínkou, že některé proměnné nastavíme na nulu. Tedy zvolíme množinu indexů $J \subseteq \{1, 2, \dots, n\}$ a řešíme soustavu

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{13.2a}$$

$$x_j = 0 \quad \forall j \in \{1, \dots, n\} \setminus J. \tag{13.2b}$$

Kdy má tato soustava právě jedno řešení? Dle Věty 3.1 právě tehdy, když sloupce matice \mathbf{A} s indexy J jsou lineárně nezávislé a \mathbf{b} patří do jejich lineárního obalu. Aby sloupce J byly lineárně nezávislé, nutně musí být $|J| \leq m$. Když ovšem |J| < m, pak existuje množina $J' \supseteq J$ tak, že |J'| = m a sloupce J' jsou lineárně nezávislé (tedy doplníme sloupce J na bázi prostoru rng \mathbf{A} , což lze díky Větě 3.2). Pak ale, dle Věty 3.1, bude řešení soustavy splňovat $x_j = 0$ pro všechna $j \in J' \setminus J$. Tedy soustava bude mít stejné řešení pro J i J'. Proto, chceme-li najít všechny body \mathbf{x} která jsou jediným řešením soustavy (13.2), stačí soustavu vyřešit jen pro množiny J velikosti |J| = m, pro které jsou sloupce J matice \mathbf{A} lineárně nezávislé.

Příklad 13.1. Necht' je soustava Ax = b dána tabulkou (blokovou maticí)

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} = \begin{bmatrix} -1 & 1 & 3 & 1 & 0 & 2 & 1 \\ 1 & 0 & 4 & 0 & 1 & 4 & 4 \\ -1 & 0 & 4 & 1 & 1 & 4 & 2 \end{bmatrix}. \tag{13.3}$$

Sloupce $J = \{1, 4, 5\}$ matice **A** jsou lineárně nezávislé (ověřte!). Soustava (13.2) vypadá takto

$$\begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}, \quad x_2 = x_3 = x_6 = 0$$
 (13.4)

a má jediné řešení $\mathbf{x} = (3, 0, 0, 4, 1, 0)$. Sloupce J tvoří regulární matici velikosti $m \times m$. Sloupce $J = \{3, 4\}$ jsou lineárně nezávislé a soustava

$$\begin{bmatrix} 3 & 1 \\ 4 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}, \quad x_1 = x_2 = x_5 = x_6 = 0$$

má jediné řešení $\mathbf{x} = (0, 0, 1, -2, 0, 0)$. Sloupce $J = \{3, 4, 5\}$ jsou lineárně nezávislé a soustava

$$\begin{bmatrix} 3 & 1 & 0 \\ 4 & 0 & 1 \\ 4 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}, \quad x_1 = x_2 = x_6 = 0$$

má jediné řešení $\mathbf{x} = (0, 0, 1, -2, 0, 0)$, stejné jako pro $J = \{3, 4\}$. Sloupce $J = \{3, 4, 6\}$ jsou také lineárně nezávislé a soustava má tedy stejné řešení.

Uvedená úvaha motivuje zavedení následujících pojmů. Množina $J \subseteq \{1, \ldots, n\}$ se nazývá báze, pokud |J| = m a sloupce J matice $\mathbf A$ jsou lineárně nezávislé. Proměnným x_j pro $j \in J$ říkáme bázové proměnné. Bod $\mathbf x$ je bázové řešení příslušné bázi J, jestliže splňuje (13.2). Bázové řešení $\mathbf x$ je přípustné (tedy leží v mnohostěnu), pokud $\mathbf x \geq \mathbf 0$. Bázové řešení $\mathbf x$ je degenerované, pokud má více než m-n nulových složek. Protože matice $\mathbf A$ má hodnost m, existuje aspoň jedna báze. Každé bázi přísluší právě jedno bázové řešení. Je-li ovšem bázové řešení degenerované, přísluší více než jedné bázi (v Příkladu 13.1 bázové řešení $\mathbf x = (0,0,1,-2,0,0)$ přísluší bázím $\{3,4,5\}$ a $\{3,4,6\}$).

Mnohostěn (13.1) neobsahuje přímku, protože už jeho nadmnožina $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \geq \mathbf{0}\}$ neobsahuje přímku (proč?). Tedy jestliže je mnohostěn (13.1) neprázdný, má dle Věty 12.4 aspoň jeden extremální bod. Věta 12.2, vyslovená pro mnohostěn v obecném tvaru (12.5), jde vyslovit i pro mnohostěn v rovnicovém tvaru (13.1):

Důsledek 13.1. Bod mnohostěnu (13.1) je extremální, právě když je to přípustné bázové řešení.

 $D\mathring{u}kaz$. Mnohostěn (13.1) lze napsat ve tvaru (12.5) jako $X=\{\mathbf{x}\in\mathbb{R}^n\mid \mathbf{A}'\mathbf{x}\geq \mathbf{b}'\}$, kde

$$\mathbf{A}' = egin{bmatrix} \mathbf{A} \ -\mathbf{A} \ \mathbf{I}_n \end{bmatrix} \in \mathbb{R}^{(2m+n) imes n}, \qquad \mathbf{b}' = egin{bmatrix} \mathbf{b} \ -\mathbf{b} \ \mathbf{0} \end{bmatrix} \in \mathbb{R}^{2m+n}.$$

Máme dokázat, že pro každé $\mathbf{x} \in \mathbb{R}^n$ jsou následující dvě tvrzení ekvivalentní:

- 1. $\mathbf{A}'\mathbf{x} \geq \mathbf{b}'$ a existuje množina $I \subseteq \{1, \dots, 2m + n\}$ tak, že \mathbf{x} je jediným řešením soustavy $\mathbf{A}'_I\mathbf{x} = \mathbf{b}'_I$.
- 2. $\mathbf{x} \geq \mathbf{0}$ a existuje množina $J \subseteq \{1, \dots, n\}$ tak, že \mathbf{x} je jediným řešením soustavy (13.2).

Implikaci $1 \Leftarrow 2$ dokážeme položením $I = \{1, \ldots, 2m\} \cup \{2m+j \mid j \in \{1, \ldots, n\} \setminus J\}$. Implikaci $1 \Rightarrow 2$ dokážeme položením $J = \{j \in \{1, \ldots, n\} \mid 2m+j \notin I\}$. Rozmyslete, že to tak je!

Dvě báze nazveme **sousední**, pokud mají m-1 společných prvků (např. báze $\{3,4,5\}$ a $\{3,4,6\}$ v Příkladu 13.1). Lze ukázat (důkaz vynecháme), že dvojice sousedních bází odpovídají buď jedinému (degenerovanému) extremálnímu bodu nebo dvojici extremálních bodů spojených hranou. Simplexová metoda přechází mezi sousedními bázemi tak, že bázová řešení jsou stále přípustná a účelová funkce se zlepšuje nebo aspoň nezhoršuje.

V §13.1 popíšeme stavební kameny metody, které pak v §13.2 spojíme do celého algoritmu.

13.1 Stavební kameny algoritmu

13.1.1 Přechod k sousední standardní bázi

Simplexová metoda pracuje pouze se standardními bázemi, tj. sloupce J jsou vektory standardní báze. To má výhodu v tom, že (i) nemusíme kontrolovat, zda jsou sloupce J lineárně nezávislé a (ii) nenulové složky bázového řešení $\mathbf x$ jsou rovny přímo složkám vektoru $\mathbf b$. Na počátku algoritmu se předpokládá, že matice $\mathbf A$ obsahuje standardní bázi.

Z lineární algebry známe *ekvivalentní řádkové úpravy* soustavy $\mathbf{A}\mathbf{x} = \mathbf{b}$: libovolný řádek tabulky $\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$ můžeme vynásobit nenulovým číslem a můžeme k němu přičíst lineární kombinaci ostatních řádků. Tyto úpravy nemění množinu řešení soustavy.

Ukážeme, jak přejít od aktuální standardní báze J k sousední standardní bázi, tedy nějaký sloupec $j' \in J$ bázi opustí a nějaký sloupec $j \notin J$ do báze vstoupí. Nechť i je řádek, ve kterém je $a_{ij'} = 1$. Prvek (i,j) matice se nazývá **pivot** (angl. znamená čep). Nechť $a_{ij} \neq 0$. Chceme nastavit pivot a_{ij} na jedničku, vynulovat prvky nad i pod pivotem, a nezměnit přitom sloupce $J \setminus \{j'\}$. Toho se dosáhne těmito ekvivalentními řádkovými úpravami:

- 1. Vyděl řádek i číslem a_{ij} .
- 2. Pro každé $i' \neq i$ odečti $a_{i'i}$ -násobek řádku i od řádku i'.

Říkáme, že jsme provedli ekvivalentní úpravu kolem pivotu s indexy (i, j).

přičtením vhodných násobků řádku 2 k ostatním řádkům. Výsledek:

Příklad 13.2. Mějme soustavu

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 & 2 & 6 & 1 & 0 & 4 & 4 \\ 1 & \boxed{1} & 3 & 0 & 0 & 2 & 3 \\ 0 & -1 & 1 & 0 & 1 & 2 & 1 \end{bmatrix}$$
(13.5)

se (standardní) bází $J = \{1, 4, 5\}$. Vidíme ihned odpovídající bázové řešení, $\mathbf{x} = (3, 0, 0, 4, 1, 0)$. Chceme nahradit bázový sloupec j' = 1 nebázovým sloupcem j = 2, tedy přejít k sousední bázi $\{2, 4, 5\}$. Máme i = 2, tedy pivot je prvek a_{22} (v tabulce orámován). Ekvivalentními řádkovými úpravami musíme docílit, aby pivot byl roven jedné a prvky nad ním a pod ním byly nulové. Při tom smíme změnit sloupec 1, ale sloupce 4 a 5 se změnit nesmějí. Toho se docílí vydělením řádku 2 číslem a_{22} (což zde nemá žádný efekt, protože náhodou $a_{22} = 1$) a pak

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 & 1 & 0 & 0 & -2 \\ 1 & 1 & 3 & 0 & 0 & 2 & 3 \\ 1 & 0 & 4 & 0 & 1 & 4 & 4 \end{bmatrix}.$$

Nyní sloupce $\{2, 4, 5\}$ tvoří standardní bázi.

13.1.2 Kdy je nové bázové řešení přípustné?

Uvedeným způsobem můžeme od aktuální báze přejít k libovolné sousední bázi. Přitom nové bázové řešení může nebo nemusí být přípustné. Je-li aktuální bázové řešení přípustné, jak poznáme, zda i nové bázové řešení bude přípustné?

Protože nenulové složky bázového řešení \mathbf{x} jsou rovny složkám vektoru \mathbf{b} , bázové řešení je přípustné právě tehdy, když $\mathbf{b} \geq \mathbf{0}$. Necht' v aktuální tabulce je $\mathbf{b} \geq \mathbf{0}$. Proved'me ekvivalentní úpravu kolem pivotu (i, j). Hledáme podmínky na (i, j), za kterých bude i po úpravě $\mathbf{b} \geq \mathbf{0}$.

Po ekvivalentní úpravě kolem pivotu (i, j) se vektor **b** změní takto (viz §13.1.1):

- b_i se změní na b_i/a_{ij} ,
- pro každé $i' \neq i$ se $b_{i'}$ změní na $b_{i'} a_{i'j}b_i/a_{ij}$.

Tato čísla musejí zůstat nezáporná. To nastane právě tehdy, když platí následující podmínky:

$$a_{ij} > 0, (13.6a)$$

pro každé
$$i' \neq i$$
 platí $a_{i'j} \leq 0$ nebo $\frac{b_i}{a_{ij}} \leq \frac{b_{i'}}{a_{i'j}}$, (13.6b)

kde 'nebo' je užito v nevylučovacím smyslu. Podmínka (13.6a) je zřejmá. Podmínka (13.6b) je ekvivalentní podmínce $b_{i'} - a_{i'j}b_i/a_{ij} \ge 0$, nebot' $a_{ij} > 0$, $b_i \ge 0$, $b_{i'} \ge 0$ (rozmyslete!).

Příklad 13.3. V tabulce (13.5):

- Ekvivalentní úprava okolo pivotu (i, j) = (3, 2) nepovede k přípustnému bázovému řešení, neboť $a_{ij} = -1 < 0$, což porušuje podmínku (13.6a).
- Ekvivalentní úprava okolo pivotu (i, j) = (2, 2) nepovede k přípustnému bázovému řešení, neboť pro i' = 1 je $a_{i'j} > 0$ a $\frac{3}{1} > \frac{4}{2}$, tedy podmínka (13.6b) je porušena.
- Ekvivalentní úprava okolo pivotu (i, j) = (3, 6) povede k přípustnému bázovému řešení. Podmínky (13.6) jsou splněny, neboť $a_{ij} = 2 > 0$ a $\frac{1}{2} \le \frac{4}{4}$, $\frac{1}{2} \le \frac{3}{2}$.

13.1.3 Co když je celý sloupec nekladný?

Jestliže jsou všechny prvky v nějakém nebázovém sloupci j nekladné, víme z podmínky (13.6a), že tento sloupec se nemůže stát bázovým. Platí ale navíc, že souřadnice x_j bodu \mathbf{x} se může libovolně zvětšovat a bod \mathbf{x} přesto zůstane v mnohostěnu X. Tedy existuje polopřímka s počátkem v \mathbf{x} ležící celá v mnohostěnu X. Tedy mnohostěn X je neomezený.

Příklad 13.4. Necht' $\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$ je tabulka

s bází $\{1,4,5\}$. Pod tabulkou je napsáno bázové řešení \mathbf{x} . Když se x_2 bude libovolně zvětšovat, změnu lze kompenzovat současným zvětšováním bázových proměnných x_1, x_4, x_5 tak, že vektor $\mathbf{A}\mathbf{x}$ zůstane nezměněn a tedy roven \mathbf{b} . Konkrétně, pro každé $\alpha \geq 0$ bude vektor $\mathbf{x} = (3,0,0,4,1,0) + \alpha(1,1,0,2,1,0)$ splňovat $\mathbf{A}\mathbf{x} = \mathbf{b}$ a $\mathbf{x} \geq \mathbf{0}$.

13.1.4 Ekvivalentní úpravy účelového řádku

Dosud jsme prováděli ekvivalentní řádkové úpravy pouze na soustavě $\mathbf{A}\mathbf{x} = \mathbf{b}$ a účelové funkce si nevšímali. Tyto úpravy lze rozšířit na účelovou funkci. Nebudeme účelovou funkci uvažovat ve tvaru $\mathbf{c}^T\mathbf{x}$, ale v mírně obecnějším tvaru $\mathbf{c}^T\mathbf{x} - d$. Tedy řešíme LP

$$\min\{\mathbf{c}^T \mathbf{x} - d \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}\}. \tag{13.7}$$

Úlohu budeme reprezentovat simplexovou tabulkou

$$\begin{bmatrix} \mathbf{c}^T & d \\ \mathbf{A} & \mathbf{b} \end{bmatrix}. \tag{13.8}$$

Přičtěme k účelovému řádku $\begin{bmatrix} \mathbf{c}^T & \mathbf{d} \end{bmatrix}$ libovolnou lineární kombinaci $\mathbf{y}^T \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$ ostatních řádků $\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$, kde \mathbf{y} jsou koeficienty lineární kombinace. Ukážeme, že tato úprava zachová hodnotu účelové funkce $\mathbf{c}^T \mathbf{x} - d$ pro každé \mathbf{x} splňující $\mathbf{A} \mathbf{x} = \mathbf{b}$. Nový účelový řádek bude

$$\begin{bmatrix} \mathbf{c}^T & d \end{bmatrix} + \mathbf{y}^T \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{c}^T + \mathbf{y}^T \mathbf{A} & d + \mathbf{y}^T \mathbf{b} \end{bmatrix}.$$

Nová účelová funkce bude tedy

$$(\mathbf{c}^T + \mathbf{y}^T \mathbf{A})\mathbf{x} - (d + \mathbf{y}^T \mathbf{b}) = \mathbf{c}^T \mathbf{x} - d + \mathbf{y}^T (\mathbf{A}\mathbf{x} - \mathbf{b}).$$

Ale to je rovno $\mathbf{c}^T \mathbf{x} - d$ pro každé \mathbf{x} splňující $\mathbf{A} \mathbf{x} = \mathbf{b}$.

13.1.5 Co udělá přechod k sousední bázi s účelovou funkcí?

Nechť J je standardní báze. Přičtěme k účelovému řádku takovou lineární kombinaci ostatních řádků, aby pro všechna $j \in J$ bylo $c_j = 0$ (novému vektoru \mathbf{c} se pak říká $redukované \ ceny$). Protože bázové řešení \mathbf{x} je v nebázových sloupcích nulové, znamená to $\mathbf{c}^T\mathbf{x} = 0$. Tedy hodnota účelové funkce $\mathbf{c}^T\mathbf{x} - d$ v bázovém řešení \mathbf{x} je rovna jednoduše -d.

Navíc je snadno vidět, co udělá přechod k nové bázi s účelovou funkcí. Nechť j' je sloupec opouštějící bázi a j je sloupec vstupující do báze. Při přechodu k nové bázi se číslo $x_{j'}$ stane nulovým a číslo x_j se zvětší z nuly na kladné (nebo se nezmění). Protože $c_{j'} = 0$, číslo $\mathbf{c}^T \mathbf{x} - d$ při $c_j \geq 0$ stoupne (nebo se nezmění) a při $c_j \leq 0$ klesne (nebo se nezmění).

Příklad 13.5. Mějme úlohu se simplexovou tabulkou

$$\begin{bmatrix} \mathbf{c}^T & d \\ \mathbf{A} & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & -2 & -3 & -1 & 2 & 1 & 4 \\ \hline 0 & 2 & 6 & 1 & 0 & 4 & 4 \\ 1 & 1 & 3 & 0 & 0 & 2 & 3 \\ 0 & -1 & 1 & 0 & 1 & 2 & 1 \end{bmatrix},$$

kde $J = \{1, 4, 5\}$. Složky vektoru \mathbf{c} v bázových sloupcích vynulujeme tak, že k účelovému řádku přičteme první řádek, odečteme druhý řádek, a odečteme dvojnásobek třetího řádku:

		1					
'	0	2	6	1	0	4	4
	1	1	3	0	0	2	3
	0	2 1 -1	1	0	1	2	1
$\mathbf{x} =$	3	0	0	4	1	0	

Pod tabulku jsme napsali bázové řešení **x**. Nyní je $\mathbf{c}^T \mathbf{x} = 0$, a tedy hodnota účelové funkce v bázovém řešení je $\mathbf{c}^T \mathbf{x} - d = -d = -3$.

Dejme tomu, že chceme přidat do báze nebázový sloupec 2 a vyloučit z ní některý z bázových sloupců $\{1,4,5\}$. Po tomto přechodu se x_2 stane kladné nebo zůstane nulové a jedna ze složek x_1, x_4, x_5 se vynuluje. Protože $c_1 = c_4 = c_5 = 0$, změna x_1, x_4, x_5 se na účelové funkci neprojeví a ta se změní o c_2x_2 . Kritérium tedy stoupne nebo zůstane stejné, protože $c_2 = 1 > 0$.

Jestliže v některém sloupci j je $c_j < 0$ a $a_{ij} \le 0$ pro všechna i, proměnnou x_j můžeme libovolně zvětšovat (viz §13.1.3) a účelovou funkci libovolně zmenšovat. Úloha je tedy neomezená.

13.2 Základní algoritmus

Spojením popsaných stavebních kamenů dostaneme iteraci simplexové metody na řešení úlohy (13.7). Iterace přejde k sousední standardní bázi takové, že bázové řešení zůstane přípustné a účelová funkce se nezvětší. Vstupem i výstupem iterace je simplexová tabulka (13.8) s těmito vlastnostmi:

- podmnožina sloupců A tvoří standardní bázi J,
- bázové řešení odpovídající této bázi je přípustné, $b \ge 0$,
- složky vektoru \mathbf{c} v bázových sloupcích jsou nulové, $c_i = 0$ pro $j \in J$.

Iterace se provede takto:

- 1. Vyber index j pivotu tak, aby $c_i < 0$ (§13.1.5).
- 2. Vyber index i pivotu podle podmínek (13.6). Z těchto podmínek plyne (promyslete!)

$$i \in \underset{i' \mid a_{i'j} > 0}{\operatorname{argmin}} \frac{b_{i'}}{a_{i'j}}, \tag{13.9}$$

kde argmin označuje, že se minimalizuje přes všechna i' splňující $a_{i'j} > 0$. $i' | a_{i'j} > 0$

- 3. Udělej ekvivalentní úpravu okolo pivotu (i, j) (§13.1.1).
- 4. Ekvivalentní úpravou účelového řádku vynuluj c_i v novém bázovém sloupci j (§13.1.5).

Algoritmus, který opakuje uvedenou iteraci, nazveme **základní simplexový algoritmus**. Algoritmus končí, když už nelze vybrat pivot (i, j) splňující podmínky 1 a 2 výše. To nastane z jednoho z těchto důvodů:

- Všechny koeficienty c_i jsou nezáporné. Pak účelovou funkci nelze zlepšit a jsme v optimu²
- Existuje sloupec j, ve kterém $c_j < 0$ a $a_{ij} \le 0$ pro všechna i. Pak je úloha neomezená.

Výběr indexů (i,j) pivotu v krocích 1 a 2 nemusí být jednoznačný: může existovat více sloupců j s vhodným znaménkem c_j a více řádků i' může splňovat podmínky (13.6) (tedy množina $\{b_{i'}/a_{i'j} \mid i'=1,\ldots,m,\ a_{i'j}>0\}$ může mít více minimálních prvků). Algoritmus, který vybírá jediný pivot z těchto možností, se nazývá **pivotové pravidlo**.

 $^{^{1}}$ Když je lineární program ve tvaru maximalizace, samozřejmě ho nemusíte převádět do minimalizačního tvaru (13.7), stačí jen vybrat sloupec s $c_{i} > 0$.

²Pozor: aktuální bázové řešení může být optimální přesto, že nějaký koeficient c_j je záporný. V další iteraci vložíme sloupec j do báze, ale kvůli degeneraci může zůstat $x_j = 0$, tedy účelová funkce se nezmění (viz §13.1.5).

Příklad 13.6. Vyřešte lineární program (13.7) simplexovou metodou, když výchozí simplexová tabulka (13.8) je

Báze je $J = \{1, 4, 5\}$ a bázové řešení $\mathbf{x} = (3, 0, 0, 4, 1, 0)$.

Účelový řádek budeme nazývat nultý, ostatní pak prvý, druhý atd. První iterace simplexového algoritmu se provede v těchto krocích:

- 1. Vybereme sloupec j, který vstoupí do báze. To může být libovolný sloupec, který má v nultém řádku záporné číslo. Můžeme vzít např. nejmenší takové číslo, zde -3, tedy j=6.
- 2. Vybereme řádek i pivotu dle (13.9) nalezením argumentu minima z čísel $\frac{4}{4}$, $\frac{3}{2}$, $\frac{1}{2}$. Bude tedy i=3. Výsledný pivot je označen rámečkem. Všimněte si, že řádek i=3 má v aktuální bázi jedničku ve sloupci 5, sloupec 5 tedy bázi opustí.
- 3,4. Uděláme ekvivalentní úpravu okolo pivotu (i,j) a zároveň vynulujeme číslo c_j . Neboli chceme, aby se z pivotu a_{ij} stala jednička a nad i pod pivotem byly nuly, a to včetně nultého řádku. Tedy nejprve třetí řádek vydělíme dvěma a potom k nultému řádku přičteme trojnásobek třetího řádku, od prvního řádku odečteme čtyřnásobek třetího řádku, a od druhého řádku odečteme dvojnásobek třetího řádku. Všimněte si: k žádnému řádku nikdy nepřičítáme násobky jiného řádku než pivotového. Výsledek:

Na konci první iterace máme bázi $J = \{1, 4, 6\}$, bázové řešení $\mathbf{x} = (2, 0, 0, 2, 0, 0.5)$, a hodnotu účelové funkce -d = -1.5.

Druhá iterace: pivot je ve sloupci j=2. Jeho řádek najdeme dle (13.9) porovnáním čísel $\frac{2}{4},\frac{2}{2},$ tedy i=1. Výsledek druhé iterace:

Výsledek třetí iterace:

Protože všechna čísla v účelovém řádku jsou nezáporná, algoritmus končí. Úloha má optimální řešení s hodnotou -4 v bodě $(x_1, x_2, x_3, x_4, x_5, x_6) = (1, 2, 0, 0, 3, 0)$.

Příklad 13.7. Necht' simplexová tabulka (13.8) je

Tabulka po první iteraci je

Podle nultého řádku by další pivot měl být ve třetím sloupci. Ale čísla a_{i3} jsou všechna záporná (viz §13.1.3). Tedy úloha je neomezená. V nové tabulce můžeme zvětšovat x_3 libovolně a kompenzovat to vhodným nárůstem x_1 a x_4 . Jelikož $c_1 = c_4 = 0$, změny x_1 a x_4 se na účelové funkci neprojeví a jediný vliv na ní bude mít x_3 , které ho bude libovolně zmenšovat.

13.2.1 Cyklení

Zřídka se algoritmus může dostat do stavu, kdy cyklicky prochází stále stejnou množinu bází, které odpovídají jedinému degenerovanému bázovému řešení a tedy účelová funkce se nemění. Algoritmus tedy nikdy neskončí. Tomuto chování říkáme **cyklení** algoritmu.

Příklad 13.8. Zde je počáteční simplexová tabulka a dvě iterace simplexového algoritmu:

-2.3	-2.15	13.55	0.4	0	0	0
0.4	0.2	-1.4	-0.2	1	0	0
-7.8	-1.4	7.8	0.4	0	1	0
0					0	
0	-1		-0.75	5.75	0	0
1	0.5	-3.5	-0.5	2.5	0	0
0	2.5	-19.5	-3.5	19.5	1	0
0	0	-2.3	-2.15	13.55	0.4	0
1	0	0.4	0.2		-0.2	0
0	1	-7.8	-1.4	7.8	0.4	0

Vidíme, že třetí tabulka se liší od první jen rotací sloupců o dva vpravo. Použijeme-li v dalších iteracích pivotové pravidlo, které bude opět vybírat pivoty 0.4 a 2.5, tak za další čtyři iterace získáme počáteční simplexovou tabulku.

Byla objevena pivotová pravidla zaručující, že algoritmus se pro žádný vstup nezacyklí. Nejznámější je Blandovo anticyklící pravidlo: při výběru pivotového sloupce vždy vybereme mezi sloupci s $c_j < 0$ ten s nejmenším indexem, při výběru pivotového řádku vybereme z množiny (13.9) řádek s nejmenším indexem. Důkaz správnosti pravidla vynecháme (není krátký).

13.3 Inicializace algoritmu

Zopakujme, že na začátku základního simplexového algoritmu musí být úloha zadána ve tvaru

$$\min\{\mathbf{c}^T \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}\},\tag{13.10}$$

kde matice ${\bf A}$ obsahuje standardní bázi a ${\bf b} \geq {\bf 0}$. Ukážeme, jak lze obecnou úlohu LP převést na tento tvar.

Někdy je převod snadný. Pokud má úloha tvar min $\{ \mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0} \}$ a platí $\mathbf{b} \geq \mathbf{0}$, přidáním slacků úlohu převedeme na min $\{ \mathbf{c}^T \mathbf{u} \mid \mathbf{A} \mathbf{x} + \mathbf{u} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, \mathbf{u} \geq \mathbf{0} \}$. Tato úloha má simplexovou tabulkou

 $\begin{bmatrix} \mathbf{c}^T & \mathbf{0} & 0 \\ \mathbf{A} & \mathbf{I} & \mathbf{b} \end{bmatrix},$

ve které sloupce příslušné proměnným u tvoří standardní bázi.

Příklad 13.9. Vyřešte simplexovým algoritmem:

min
$$-3x_1 - x_2 - 3x_3$$

za podmínek $2x_1 + x_2 + x_3 \le 2$
 $x_1 + 2x_2 + 3x_3 \le 5$
 $2x_1 + 2x_2 + x_3 \le 6$
 $x_1, x_2, x_3 \ge 0$

Přidáme slackové proměnné $u_1, u_2, u_3 \ge 0$, abychom omezení uvedli do tvaru rovností:

Zde je výchozí simplexová tabulka:

13.3.1 Dvoufázová simplexová metoda

Pokud je úloha zadána v obecném tvaru, operacemi z §11.1 ji lze vždy převést do tvaru (13.10). Vynásobením vhodných řádků záporným číslem vždy zajistíme $\mathbf{b} \geq \mathbf{0}$, matice \mathbf{A} ale nemusí obsahovat standardní bázi. Máme dokonce vážnější problém: není vůbec jasné, zda úloha (13.10) je přípustná. V tomto případě nejdříve vyřešíme pomocnou úlohu LP, která najde nějaké (ne nutně optimální) přípustné řešení. Z něj pak získáme standardní bázi. Pomocná úloha je

$$\min\{\mathbf{1}^{T}\mathbf{u} \mid \mathbf{A}\mathbf{x} + \mathbf{u} = \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}, \ \mathbf{u} \ge \mathbf{0}\}$$
 (13.11)

a má simplexovou tabulku

$$\begin{bmatrix} \mathbf{0} & \mathbf{1}^T & 0 \\ \mathbf{A} & \mathbf{I} & \mathbf{b} \end{bmatrix}.$$

Pro libovolné $\mathbf{u} \geq \mathbf{0}$ je $\mathbf{1}^T \mathbf{u} \geq 0$, přičemž $\mathbf{1}^T \mathbf{u} = 0$ právě když $\mathbf{u} = \mathbf{0}$. Tedy úloha (13.10) je přípustná, právě když je optimální hodnota úlohy (13.11) rovna 0. Na počátku tvoří sloupce příslušné proměnným \mathbf{u} standardní bázi, lze tedy na ní pustit základní simplexový algoritmus. Ten může skončit dvěma způsoby:

- Pokud je optimum větší než 0, pak úloha (13.10) je nepřípustná.
- Pokud je optimum rovno 0, pak úloha (13.10) je přípustná. Pokud není optimální řešení (\mathbf{x}, \mathbf{u}) úlohy (13.11) degenerované, po skončení simplexového algoritmu jsou všechny bázové proměnné kladné. Protože $\mathbf{u} = \mathbf{0}$, proměnné \mathbf{u} budou tedy nebázové. Proto mezi sloupci příslušnými proměnným \mathbf{x} existuje standardní báze.

Pokud je optimální řešení (\mathbf{x}, \mathbf{u}) úlohy (13.11) degenerované, některé proměnné \mathbf{u} mohou být na konci algoritmu bázové. Pak je nutno udělat dodatečné úpravy kolem pivotů ve sloupcích příslušných bázovým proměnným \mathbf{u} , abychom tyto sloupce dostali z báze ven. Toto podrobně popisovat nebudeme.

Nalezení nějakého přípustného řešení v pomocné úloze (13.11) se nazývá **první fáze** a řešení původní úlohy pak **druhá fáze** algoritmu, mluvíme tedy o **dvoufázové simplexové metodě**.

Příklad 13.10. Řešte

$$\begin{array}{llll} & \min & -20x_1-30x_2-40x_3\\ & \text{za podmínek} & & 3x_1+&2x_2+&x_3=10\\ & & x_1+&2x_2+&2x_3=15\\ & & & x_1,x_2,x_3\geq & 0 \end{array}$$

Máme sice $\mathbf{b} \geq \mathbf{0}$, ale není jasné, zda existuje přípustné \mathbf{x} , tím méně není vidět standardní báze. Provedeme první fázi algoritmu. Pomocná úloha bude

min
$$u_1+u_2$$
 za podmínek $3x_1+2x_2+x_3+u_1=10$
$$x_1+2x_2+2x_3+u_2=15$$

$$x_1,x_2,x_3,u_1,u_2\geq 0$$

s tabulkou

Sloupce nad přidanými proměnnými tvoří standardní bázi, můžeme tedy na pomocnou úlohu pustit základní simplexový algoritmus. Po vynulování ceny nad bázovými proměnnými budou kroky algoritmu vypadat takto:

-4	-4	-3	0	0	-25
3	2	1	1	0	10
1	2	2	0	1	15
2	0	-1	2	0	-5
1.5	1	0.5	0.5	0	5
-2	0	1	-1	1	5
0	0	0	1	1	0
2.5	1	0	1	-0.5	2.5
-2	0	1	-1	1	5

Optimum je rovno 0, tedy původní úloha je přípustná. Proměnné u_1, u_2 jsou nebázové a tedy rovny nule, bázové proměnné jsou x_2, x_3 . Teď tedy můžeme začít druhou fázi (řešení původní úlohy) s počáteční tabulkou

13.4 Cvičení

13.1. Najděte všechny báze a bázová řešení mnohostěnu $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq \mathbf{0} \}$ pro

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 2 & -1 & 4 & 1 & 4 \end{bmatrix}.$$

Která z nich jsou přípustná? Která z nich jsou degenerovaná?

- 13.2. Protože rank $\mathbf{A} = m$, dimenze mnohostěnu (13.1) je dim $X \leq n m$. Může být dim X libovolné číslo mezi 0 a n m? Jestliže ano, dokažte to tak, že pro každou dvojici $(n, k) \in \mathbb{N} \times \{0, \dots, n m\}$ najdete matici $\mathbf{A} \in \mathbb{R}^{m \times n}$ a vektor $\mathbf{b} \in \mathbb{R}^m$ tak, aby rank $\mathbf{A} = m$ a dim X = k.
- 13.3. V tabulce zakroužkujte všechny pivoty takové, že ekvivalentní úprava kolem nich povede k přípustnému bázovému řešení:

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 & 2 & 6 & 1 & 0 & -4 & 3 & 0 & | & 4 \\ 1 & 1 & -3 & 0 & 0 & 2 & 3 & 0 & | & 3 \\ 0 & -1 & 1 & 0 & 1 & -2 & -3 & 0 & | & 1 \\ 0 & -2 & 2 & 0 & 0 & 2 & -1 & 1 & | & 1 \end{bmatrix}$$

13.4. Zapište lineární program

do simplexové tabulky. Předpokládejte, že aktuální báze je $\{2,3,6\}$. Jaké je aktuální bázové řešení? Je toto bázové řešení přípustné. Je degenerované? Pokud je to možné, udělejte jeden krok simplexového algoritmu. Pokud to možné není, vysvětlete proč.

13.5. Vyřešte simplexovou metodou (nejdříve ji co nejjednodušeji incializujte):

$$\begin{array}{lll} \max & 2x_1 - x_2 - 3x_3 \\ \text{za podmínek} & -2x_1 - x_2 + x_3 \leq 2 \\ & -x_1 + 2x_2 - 3x_3 \leq 5 \\ & -2x_1 - 4x_2 + x_3 \leq 6 \\ & x_1, x_2, x_3 \geq 0 \end{array}$$

13.6. Vyřešte simplexovou metodou (i když lze řešit úvahou):

$$\max \quad 6x_1 + 9x_2 + 5x_3 + 9x_4$$
 za podmínek
$$x_1 + x_2 + x_3 + x_4 = 1$$

$$x_1, x_2, x_3, x_4 \ge 0$$

- 13.7. Nechť úloha (13.7) má více optimálních řešení. Jak se to pozná v simplexové tabulce? Navrhněte algoritmus, který vypíše všechna optimální bázová řešení.
- 13.8. Mějme lineární program

$$\begin{array}{llll} & \min & 2x_1 & -3x_3 + x_4 \\ & \text{za podmínek} & x_1 - x_2 - x_3 & \geq 0 \\ & -x_1 + 2x_2 - 3x_3 & \leq 5 \\ & 2x_1 - x_2 - x_3 + 2x_4 = 6 \\ & & x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

Inicializujte co nejjednodušším způsobem základní simplexový algoritmus. Vyřešte tímto algoritmem. Nepoužívejte dvoufázovou metodu.

13.9. Vyřešte dvoufázovou simplexovou metodou:

$$\begin{array}{cccc} \max & 3x_1 - 4x_2 \\ \text{za podmínek} & -2x_1 - 5x_2 \leq 10 \\ & 3x_1 + x_2 \leq 3 \\ & -2x_1 + x_2 \leq -2 \\ & x_1 & \geq 0 \\ & x_2 \leq -1 \end{array}$$

13.10. Nechť úloha (13.7) má simplexovou tabulku

$$\begin{bmatrix} \mathbf{c}^T & d \\ \mathbf{A} & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 & 1 & -3 & 0 & 0 \\ \hline 7 & 0 & 0 & -3 & 3 & 2 & 1 \\ 1 & 1 & 0 & 0 & -1 & 0 & 3 \\ -1 & 0 & 2 & 1 & -1 & 0 & 1 \end{bmatrix}$$

Je tato úloha omezená?

13.11. (⋆) Cvičeni 3.15 má vztah k důkazu Důsledku 13.1. Jaký je tento vztah?

Nápověda a řešení

- 13.2. Nápověda: mnohostěn $\{(x,y)\in\mathbb{R}^2\mid x+y=1,\ x\geq 0,\ y\geq 0\}$ má dimenzi 1, mnohostěn $\{(x,y)\in\mathbb{R}^2\mid x+y=0,\ x\geq 0,\ y\geq 0\}$ má dimenzi 0.
- 13.5. Úloha je neomezená kvůli prvnímu sloupci.

13.8. Např. otočíme znaménko prvního omezení, třetí omezení vydělíme dvěma, přidáme slackové proměnné pro první a druhé omezení. Pak vynulujeme ceny nad bázovými sloupci. Iterace algoritmu:

1	0.5	-2.5	0	0	0	-3	_	-1.5	3	0	0	2.5	0	-3	0	3	0	3	4	0	6
-1	1	1	0	1	0	0						1			0	1	1	2	2	0	6
-1	2	$\overline{-3}$	0	0	1	5		-4	5	0	0	3	1	5	0	5	0	8	7	1	29
1	-0.5	-0.5	1	0	0	3		0.5	0	0	1	0.5	0	3	1	0	0	2	1	0	6

Výsledek: $(x_1, x_2, x_3, x_4) = (6, 0, 6, 0)$, hodnota optima -6.

- 13.9. Optimum je $(x_1, x_2) = (25, -36)/13$.
- 13.10. Úloha je neomezená. Mohlo by se zdát, že je omezená, protože neexistuje sloupec j takový, že $c_j < 0$ a $a_{ij} \leq 0$ pro všechna i. Ale po jedné či několika iteracích simplexové metody se takový sloupec objeví.

Kapitola 14

Dualita v lineárním programování

Ke každé úloze LP lze sestavit podle jistého postupu jinou úlohu LP. Novou úlohu nazýváme **duální**, původní úlohu nazýváme **primární** či **přímou**. Konstrukce je symetrická (viz Cvičení 14.1): duální úloha k duální úloze je původní úloha. Tedy má smysl říkat, že primární a duální úloha jsou *navzájem* duální. Dvojice duálních úloh je svázána zajímavými vztahy.

14.1 Konstrukce duální úlohy

K úloze LP v obecném tvaru (viz §11.1) se duální úloha získá dle tohoto postupu:

$$\begin{array}{llll} & \min & \sum\limits_{j \in J} c_j x_j & \max & \sum\limits_{i \in I} b_i y_i \\ & \text{za podm.} & \sum\limits_{j \in J} a_{ij} x_j = b_i & \text{za podm.} & y_i \in \mathbb{R}, & i \in I_0 \\ & \sum\limits_{j \in J} a_{ij} x_j \geq b_i & y_i \geq 0 \;, & i \in I_+ \\ & \sum\limits_{j \in J} a_{ij} x_j \leq b_i & y_i \leq 0 \;, & i \in I_- \\ & x_j \in \mathbb{R} & \sum\limits_{i \in I} a_{ij} y_i = c_j, & j \in J_0 \\ & x_j \geq 0 & \sum\limits_{i \in I} a_{ij} y_i \leq c_j, & j \in J_+ \\ & x_j \leq 0 & \sum\limits_{i \in I} a_{ij} y_i \geq c_j, & j \in J_- \end{array}$$

V levém sloupci je primární úloha, v prostředním sloupci je z ní vytvořená duální úloha. V pravém sloupci jsou množiny indexů pro obě úlohy: $I = \{1, \ldots, m\} = I_0 \cup I_+ \cup I_-$ je indexová množina primárních omezení a duálních proměnných, $J = \{1, \ldots, n\} = J_0 \cup J_+ \cup J_-$ je indexová množina primárních proměnných a duálních omezení.

Všimněte si symetrie dvojice úloh: i-tému primárnímu omezení $\sum_j a_{ij} x_j \geq b_i$ odpovídá duální proměnná $y_i \geq 0$. Opačně, j-tá primární proměnná $x_j \geq 0$ odpovídá j-tému duálnímu omezení $\sum_i a_{ij} y_i \leq c_j$. Tak je to pro všechny řádky s tím, že lineární rovnici v primáru odpovídá neomezená proměnná v duálu, nerovnici typu \geq v primáru odpovídá nezáporná proměnná v duálu, a nerovnici typu \leq v primáru odpovídá nekladná proměnná v duálu.

 $^{^1}$ Poznamenejme, že tato proměnná je vlastně $Lagrange \mathring{u}v$ multiplikátor příslušného omezení. Podobně, j-tá primární proměnná x_j je Lagrange \mathring{u}v multiplikátor j-tého duálního omezení $\sum_i a_{ij} x_j \leq c_j.$

Příklad 14.1. Následující dvojice lineárních programů je navzájem duální:

Pro speciální tvary LP se dvojice duálních úloh přehledněji napíše v maticové formě. Např. pro $I_0=I_-=J_0=J_-=\emptyset$ obdržíme

min
$$\mathbf{c}^T \mathbf{x}$$
 max $\mathbf{b}^T \mathbf{y}$
za podm. $\mathbf{A} \mathbf{x} \ge \mathbf{b}$ za podm. $\mathbf{y} \ge \mathbf{0}$ (14.2)
 $\mathbf{x} \ge \mathbf{0}$ $\mathbf{A}^T \mathbf{y} \le \mathbf{c}$

14.2 Věty o dualitě

Následující věty platí pro obecný tvar (14.1), ale důkazy uděláme jen pro speciální tvar (14.2).

Věta 14.1 (o slabé dualitě). Nechť \mathbf{x} je přípustné primární řešení a \mathbf{y} přípustné duální řešení. Pak $\mathbf{c}^T \mathbf{x} \geq \mathbf{b}^T \mathbf{y}$.

 $D\mathring{u}kaz$. Díky přípustnosti \mathbf{x} a \mathbf{y} platí $\mathbf{y}^T\mathbf{A} \leq \mathbf{c}^T$ a $\mathbf{x} \geq \mathbf{0}$, z čehož plyne $\mathbf{y}^T\mathbf{A}\mathbf{x} \leq \mathbf{c}^T\mathbf{x}$. Podobně, díky přípustnosti \mathbf{x} a \mathbf{y} platí $\mathbf{A}\mathbf{x} \geq \mathbf{b}$ a $\mathbf{y} \geq \mathbf{0}$, z čehož plyne $\mathbf{y}^T\mathbf{A}\mathbf{x} \geq \mathbf{y}^T\mathbf{b}$. Z toho

$$\mathbf{c}^T \mathbf{x} \ge \mathbf{y}^T \mathbf{A} \mathbf{x} \ge \mathbf{y}^T \mathbf{b}. \tag{14.3}$$

Uveď me jeden okamžitý důsledek slabé duality.

Důsledek 14.2. Necht' \mathbf{x} je přípustné primární řešení a \mathbf{y} je přípustné duální řešení. Necht' $\mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$. Potom \mathbf{x} je optimální pro primární úlohu a \mathbf{y} je optimální pro duální úlohu.

 $D\mathring{u}kaz$. Pro libovolné primární přípustné řešení \mathbf{x}' je dle věty o slabé dualitě $\mathbf{c}^T\mathbf{x}' \geq \mathbf{b}^T\mathbf{y} = \mathbf{c}^T\mathbf{x}$. Toto platí pro $ka\check{z}d\acute{e}$ přípustné \mathbf{x}' , tedy řešení \mathbf{x} musí být optimální pro primární úlohu.

Optimalita y pro duální úlohu se dokáže symetricky.

Věta 14.3 (o komplementaritě). Nechť \mathbf{x} je přípustné primární řešení a \mathbf{y} přípustné duální řešení. Pak $\mathbf{c}^T\mathbf{x} = \mathbf{b}^T\mathbf{y}$ právě tehdy, když zároveň platí tyto dvě podmínky:

$$\sum_{j \in J} a_{ij} x_j = b_i \quad \text{nebo} \quad y_i = 0 \qquad \forall i \in I,$$

$$x_j = 0 \quad \text{nebo} \quad \sum_{j \in I} a_{ij} y_j = c_j \qquad \forall j \in J.$$

$$(14.4a)$$

Podmínky (14.4) budeme nazývat *podmínky komplementarity*. Říkají, že na každém řádku ve dvojici duálních úloh je vždy alespoň jedno omezení aktivní, buď primární nebo duální (přičemž omezení typu rovnosti považujeme vždy za aktivní).

 $D\mathring{u}kaz$. Z nerovnosti (14.3) je jasné, že pro přípustná \mathbf{x}, \mathbf{y} platí ekvivalence

$$\mathbf{c}^T \mathbf{x} = \mathbf{y}^T \mathbf{b} \iff \mathbf{c}^T \mathbf{x} = \mathbf{y}^T \mathbf{A} \mathbf{x} = \mathbf{y}^T \mathbf{b}.$$
 (14.5)

Dvě rovnosti na pravé straně této ekvivalence jde napsat jako

$$\mathbf{y}^T(\mathbf{A}\mathbf{x} - \mathbf{b}) = 0, (14.6a)$$

$$(\mathbf{c}^T - \mathbf{y}^T \mathbf{A})\mathbf{x} = 0. \tag{14.6b}$$

Levé strany těchto rovností jsou skalární součiny nezáporných (díky přípustnosti \mathbf{x}, \mathbf{y}) vektorů. Nyní si stačí uvědomit, že pro libovolné nezáporné vektory $\mathbf{u}, \mathbf{v} \geq \mathbf{0}$ platí

$$\mathbf{u}^T \mathbf{v} = 0 \iff \forall i (u_i v_i = 0) \iff \forall i (u_i = 0 \text{ nebo } v_i = 0).$$

Uvědomte si, že Důsledek 14.2 a Věta 14.3 neříkají, že rovnost $\mathbf{c}^T\mathbf{x} = \mathbf{b}^T\mathbf{y}$ vůbec někdy nastane. To je předmětem nejdůležitější věty o dualitě:

Věta 14.4 (o silné dualitě). Primární úloha má optimální řešení, právě když má duální úloha optimální řešení. Má-li primární úloha optimální řešení \mathbf{x} a duální úloha optimální řešení \mathbf{y} , pak $\mathbf{c}^T\mathbf{x} = \mathbf{b}^T\mathbf{y}$.

Důkaz této věty není jednoduchý a vynecháme jej. Věty o slabé a silné dualitě mají jasnou interpretaci: pro přípustná \mathbf{x} a \mathbf{y} není hodnota duální účelové funkce nikdy větší než hodnota primární účelové funkce a tyto hodnoty se potkají ve společném optimu:

Příklad 14.2. Mějme dvojici navzájem duálních úloh LP:

Spočetli jsme optimální řešení obou úloh a dosadili tato řešení do účelových funkcí a do omezení. Hodnoty optimálních řešení $\mathbf{x}^* = (1.2, 0.6, 0)$ a $\mathbf{y}^* = (0.2, 0, 1.6)$ a hodnoty omezení a účelových funkcí v optimech jsou napsané tučně před/za rovnítky. Dle věty o silné dualitě se optima rovnají. Vezmeme-li libovolný řádek (kromě účelového), je na něm alespoň jedno z obou omezení aktivní. Např. ve druhém řádku je primární omezení $2x_1 + x_2 + 2x_3 \geq 3$ aktivní a duální omezení $y_1 \geq 0$ je neaktivní. Podle věty o komplementaritě se nemůže stát, že by na některém řádku byly obě omezení zároveň neaktivní (mohou být obě ale zároveň aktivní, což zde nenastává, ale může to nastat v případě degenerace).

Zopakujme (viz §11), že pro každou úlohu LP mohou nastat 3 možnosti: úloha má optimální řešení, úloha je neomezená, úloha je nepřípustná.

Věta 14.5. Z devíti možností pro dvojici duálních úloh se realizují tyto:

primární/duální	má optimum	neomezená	nepřípustná			
má optimum	ano	ne	ne			
neomezená	ne	ne	ano			
nepřípustná	ne	ano	ano			

Důkaz. Snadno najdeme příklady dvojic duálních úloh, které realizují povolené kombinace. Čtyři zakázané kombinace v prvním řádku a prvním sloupci plynou z první části věty o silné dualitě (primární úloha má optimum *právě tehdy*, když duální úloha má optimum).

Poslední zakázaný případ odůvodníme poněkud neformálně. Lze ukázat, že věta o slabé dualitě platí i tehdy, kdy jedna úloha je neomezená, přičemž pro primární [duální] neomezenou úlohu definujeme hodnotu optima (přesněji infima [suprema]) $-\infty$ [$+\infty$]. Pak tato věta zakazuje, aby úlohy byly zároveň neomezené, protože pak bychom měli $-\infty \ge +\infty$.

Předložíme-li přípustná primární a duální řešení taková, že se účelové funkce rovnají, dokázali jsme optimalitu obou úloh. Pro velké úlohy to může být nejsnadnější důkaz optimality (tzv. **certifikát optimality**).

Máme-li duální optimální řešení, jak z něj co nejlevněji spočítat primární optimální řešení? Obecně je k tomu nutno vyřešit soustavu lineárních nerovnic (což není o moc snadnější než vyřešit lineární program). Někdy ale postačí vyřešit soustavu rovnic.

Příklad 14.3. Zkuste dokázat bez použití simplexové metody, že $\mathbf{x} = (x_1, x_2, x_3) = (1.2, 0.6, 0)$ je optimální řešení úlohy z Příkladu 14.2 (přičemž optimální duální řešení \mathbf{y} není známo).

Pomocí věty o komplementaritě zkusíme z daného optimálního \mathbf{x} spočítat optimální \mathbf{y} . Protože jsou druhé a čtvrté primární omezení neaktivní, z komplementarity plyne $y_2 = y_4 = 0$. Protože $x_1 > 0$ a $x_2 > 0$, z komplementarity musí být první a druhé duální omezení aktivní. Máme tedy soustavu lineárních rovnic

$$\begin{aligned}
2y_1 + y_3 &= 2\\ y_1 + 3y_3 &= 5
\end{aligned} \tag{14.7}$$

která má jediné řešení $(y_1, y_3) = (0.2, 1.6)$. Tedy $\mathbf{y} = (0.2, 0, 1.6, 0)$. Toto duální řešení je přípustné (tj. splňuje všechna duální omezení). Protože se hodnota primární účelové funkce v bodě \mathbf{x} rovná hodnotě duální účelové funkce v bodě \mathbf{y} , musejí být \mathbf{x} a \mathbf{y} optimální řešení.

Tento postup nemusí vést vždy k cíli. Pokud by duální úloha měla nekonečně mnoho optimálních řešení, soustava (14.7) by měla nekonečně mnoho řešení (měla by např. více proměnných než neznámých). Z nich by bylo nutno vybrat přípustná duální řešení, tedy $\mathbf{y} \geq \mathbf{0}$. Museli bychom tedy řešit soustavu rovnic a nerovnic.

Zkoumejme, jak se změní optimální hodnota úlohy min $\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} \geq \mathbf{b}, \ \mathbf{x} \geq \mathbf{0}\}$, jestliže nepatrně změníme pravé strany omezení **b**. Odpověď je snadno vidět v duálu.

Věta 14.6 (o stínových cenách). Nechť funkce $f: \mathbb{R}^m \to \mathbb{R}$ je definována jako

$$f(\mathbf{b}) = \min\{ \mathbf{c}^T \mathbf{x} \mid \mathbf{A} \mathbf{x} \ge \mathbf{b}, \ \mathbf{x} \ge \mathbf{0} \} = \max\{ \mathbf{b}^T \mathbf{y} \mid \mathbf{A}^T \mathbf{y} \le \mathbf{c}, \ \mathbf{y} \ge \mathbf{0} \},$$

přičemž předpokládáme, že primární (a tedy i duální) úloha má optimální řešení. Jestliže má duální úloha pro dané **b** jediné optimální řešení \mathbf{y}^* , pak je funkce f v bodě **b** diferencovatelná a platí $f'(\mathbf{b}) = \mathbf{y}^{*T}$, neboli $\partial f(\mathbf{b})/\partial b_i = \mathbf{y}_i^*$.

 $D\mathring{u}kaz$. Je-li \mathbf{y}^* duální optimální řešení pro dané \mathbf{b} , je $f(\mathbf{b}) = \mathbf{b}^T \mathbf{y}^*$. Jelikož je toto optimální řešení jediné, nabývá se v extremálním bodě mnohostěnu $\{\mathbf{y} \in \mathbb{R}^m \mid \mathbf{A}^T \mathbf{y} \leq \mathbf{c}, \ \mathbf{y} \geq \mathbf{0}\}$, viz obrázek:

Změníme-li nepatrně **b**, optimální duální řešení \mathbf{y}^* se nezmění a zůstane jediné (toto odůvodnění není zcela rigorózní, ale geometricky je dostatečně názorné). Tedy při malé změně vektoru **b** je hodnota optima stále rovna $f(\mathbf{b}) = \mathbf{b}^T \mathbf{y}^*$, v malém okolí bodu **b** je tedy funkce f lineární. Její derivace je $f'(\mathbf{b}) = \mathbf{y}^{*T}$.

Zdůrazněme předpoklad jednoznačnosti optimálního řešení. Kdyby množina duálních optimálních řešení byla ne jediný extremální bod, ale stěna vyšší dimenze, po malé změně vektoru ${\bf b}$ by se optimální stěna mohla stát extremálním bodem a funkce f by tedy v bodě ${\bf b}$ nebyla diferencovatelná.

Protože **b** je zároveň vektor pravých stran primární úlohy, optimální duální proměnné \mathbf{y}^* vyjadřují *citlivost* optima primární úlohy na změnu pravých stran primárních omezení $\mathbf{A}\mathbf{x} \geq \mathbf{b}$. Interpretujeme-li naše LP jako optimální výrobní plán (11.8) (pozor, liší se obrácenou nerovností v omezení), pak hodnota y_i^* říká, jak by se náš výdělek zvětšil, kdybychom trochu uvolnili omezení na výrobní zdroje $\mathbf{a}_i^T\mathbf{x} \leq b_i$. V ekonomii se proto duálním proměnným říká **stínové ceny** primárních omezení.

Všimněte si, že věta o stínových cenách je ve shodě s větou o komplementaritě. Pokud $y_i^* = 0$, je dovoleno $\mathbf{a}_i^T \mathbf{x} < b_i$ a tedy malá změna b_i nemá na optimum vliv.

Příklad 14.4. Nechť je známo, že duální úloha v Příkladu 14.2 má jediné optimální řešení. Stínová cena prvního primárního omezení $2x_1+x_2+2x_3 \geq 3$ je $y_1=0.2$. Změňme pravou stranu $b_1=3$ tohoto omezení o malou hodnotu h=0.01 a zkoumejme, jak se změní optimum. Tato změna nezmění argument \mathbf{y}^* duálního optima, pouze jeho hodnotu $\mathbf{b}^T\mathbf{y}^*$. Podle silné duality hodnota primárního optima musí být rovna hodnotě duálního optima (argument \mathbf{x}^* primárního optima se může nějak změnit, to nás ale nezajímá). Dvojice úloh tedy bude vypadat takto:

min
$$2x_1 + 5x_2 + 6x_3 = 5.402$$
 max $3.01y_1 + y_2 + 3y_3 - y_4 = 5.402$

$$2x_1 + x_2 + 2x_3 \ge 3.01$$

$$x_1 + 2x_2 + 2x_3 \ge 1$$

$$x_1 + 3x_2 + x_3 \ge 3$$

$$-x_1 + x_2 - 2x_3 \ge -1$$

$$x_1 \ge 0$$

$$x_1 + x_2 - 2x_3 \ge 0$$

$$x_2 = 2y_1 + y_2 + y_3 - y_4 \le 0$$

$$x_1 + x_2 + x_3 = 0$$

$$x_2 = 2y_1 + y_2 + y_3 - y_4 \le 0$$

$$x_1 + x_2 + x_3 = 0$$

$$x_2 = 2y_1 + 2y_2 + 3y_3 + y_4 \le 0$$

$$x_2 + x_3 = 0$$

$$x_3 \ge 0$$

$$x_1 + x_2 + 2x_3 \ge 0$$

$$x_2 + x_3 = 0$$

$$x_3 = 0$$

$$x_1 + x_2 + 2x_3 \ge 0$$

$$x_2 + x_3 = 0$$

$$x_3 = 0$$

$$x_1 + x_2 + 2x_3 \ge 0$$

$$x_2 + x_3 = 0$$

$$x_3 = 0$$

$$x_1 + x_2 + x_3 = 0$$

$$x_2 + x_3 = 0$$

$$x_3 = 0$$

$$x_1 + x_2 + x_3 = 0$$

$$x_2 + x_3 = 0$$

$$x_3 = 0$$

$$x_3 = 0$$

$$x_1 + x_2 + x_3 = 0$$

$$x_2 + x_3 = 0$$

$$x_3 = 0$$

$$x_1 + x_2 + x_3 = 0$$

$$x_2 + x_3 = 0$$

$$x_3 = 0$$

$$x_1 + x_2 + x_3 = 0$$

$$x_2 + x_3 = 0$$

$$x_3 = 0$$

$$x_1 + x_2 + x_3 = 0$$

$$x_2 + x_3 = 0$$

$$x_3 = 0$$

$$x_3 = 0$$

$$x_3 = 0$$

$$x_3 = 0$$

$$x_1 + x_2 + x_3 = 0$$

$$x_3 = 0$$

$$x_3$$

V okolí bodu $\mathbf{b} = (3, 1, 3, -1)$, ve kterém se nemění optimální \mathbf{y}^* , bude $f(\mathbf{b}) = \mathbf{b}^T \mathbf{y}^*$ a tedy hodnota společného optima se změní o $h \cdot \partial f(\mathbf{b})/\partial b_1 = h \cdot y_1 = 0.2 \cdot 0.01$ na 5.402.

14.3 Příklady na konstrukci a interpretaci duálních úloh

Dualita umožňuje *vhled* do řešeného problému, často velmi netriviální. Abychom danou úlohu (fyzikální, ekonomickou či jinou) popsanou lineárním programem pochopili do hloubky, je dobré pochopit význam nejen primární úlohy, ale i duální úlohy a vztahy mezi primární a duální úlohou (tj. věty o dualitě). Často se nám podaří dokázat platnost silné duality pro náš konkrétní problém.

Příklad 14.5. Demonstrujme nyní dualitu na velmi jednoduchém lineárním programu

$$\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{1}^T\mathbf{x} = 1, \ \mathbf{x} \ge \mathbf{0}\} = \min\{c_1x_1 + \dots + c_nx_n \mid x_1 + \dots + x_n = 1, \ x_i \ge 0\},\$$

kde čísla $\mathbf{c} = (c_1, \dots, c_n) \in \mathbb{R}^n$ jsou dána. Chceme přesně rozumět, proč v tomto případě platí věty o silné dualitě a o komplementaritě.

Úvahou snadno vidíme (viz Cvičení 11.3), že optimální hodnota je $\min_{i=1}^{n} c_i$ a nabývá se ve vektoru \mathbf{x} jehož všechny složky jsou nulové kromě složek příslušných minimálnímu c_i . Pokud je více minimálních prvků c_i , optimální \mathbf{x} není dáno jednoznačně. Např. pro $\mathbf{c} = (1, 3, 1, 2)$ bude optimálním řešením každé $\mathbf{x} = (x_1, 0, x_3, 0)$ pro $x_1, x_3 \geq 0$ splňující $x_1 + x_3 = 1$.

Podle návodu (14.1) sestrojíme duální úlohu

$$\max\{y \in \mathbb{R} \mid y\mathbf{1} < \mathbf{c}\} = \max\{y \in \mathbb{R} \mid y < c_i \ \forall i = 1, \dots, n\}.$$

Neboli hledá se největší číslo y, které je menší než všechna čísla c_i . Takové číslo y je zřejmě nejmenší z čísel c_i . Tedy platí silná dualita.

Podmínky komplementarity říkají, že v optimech bude alespoň jedno z odpovídající dvojice primární-duální omezení aktivní. Dvojice omezení $\sum_i x_i = 1, \ y \in \mathbb{R}$ splňuje podmínky komplementarity triviálně. Dvojice omezení $x_i \geq 0, \ y \leq c_i$ je splňuje právě tehdy, když je splněna aspoň jedna z rovností $x_i = 0, \ y = c_i$. To znamená:

- Pokud je v duálu $y < c_i$, v primáru musí být $x_i = 0$. To je ale jasné, protože $y < c_i$ znamená, že c_i není nejmenší ze složek vektoru \mathbf{c} a proto mu v primáru nemůžeme přiřadit nenulovou váhu x_i .
- Obráceně, pokud je v primáru $x_i > 0$, musí být v duálu $y = c_i$. To je jasné, protože pokud jsme v primáru přiřadili číslu c_i nenulovou váhu, musí být nejmenší.

Příklad 14.6. Pro daná $\mathbf{c} \in \mathbb{R}^n$ a $k \in \{1, \dots, n\}$ máme úlohu

$$\max\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{0} \le \mathbf{x} \le \mathbf{1}, \ \mathbf{1}^T\mathbf{x} \le k \ \}$$
 (14.8)

Duální úlohu sestrojíme dle předpisu (14.1):

Pravá úloha odpovídá levé úloze z dvojice (14.1), protože v úloze (14.8) se maximalizuje. Sestrojit duální úlohu je zde obtížnější než např. v Příkladě 14.2 kvůli přítomnosti indexů $i=1,\ldots,n$. Doporučujeme např. napsat dvojici (14.1) podrobně pro nějaké konkrétní malé n (např. n=3) a pak ji přepsat do obecného tvaru.

Podmínky komplementarity:

- $\sum_{i} x_i = k \text{ nebo } y = 0$
- Pro každé i je $x_i = 1$ nebo $z_i = 0$
- Pro každé i je $x_i = 0$ nebo $y + z_i = c_i$

Primární úloha (14.8) se snadno vyřeší úvahou (viz Cvičení 11.3): její optimální hodnota je součet k největších kladných čísel c_i . Ovšem na první pohled není patrné, proč duální úloha má stejnou optimální hodnotu. Zkuste takovou úvahu vymyslet!

Příklad 14.7 (Ekonomická interpretace duality). Vraťme se k Příkladu 1.12 o výrobci lupínků a hranolků z brambor a oleje. Napišme k této úloze duální úlohu:

Přijde překupník a chce koupit od výrobce jeho zásoby brambor a oleje. Překupník řeší tuto otázku: Jaké nejnižší ceny musím nabídnout, aby mi výrobce ještě své zásoby prodal? Tvrdíme, že toto je význam duální úlohy.

Vskutku, nechť a, b označují nabízenou cenu za jednotku brambor a oleje. Překupník chce minimalizovat celkovou cenu za suroviny 100a + 16b. Musí být $2a + 0.4b \ge 120$, neboť jinak by výrobci více vyplatilo vyrobit ze všech brambor a oleje lupínky a prodat je, než prodat suroviny. Ze stejného důvodu musí být $1.5a + 0.2b \ge 76$. Optimální duální řešení je a = 32 a b = 140.

Toto je další důvod (kromě Věty 14.6), proč se optimálním duálním proměnným někdy říká stínové ceny odpovídajících primárních omezení. Např. stínová cena brambor je 32 Kč/kg.

Příklad 14.8. Z §11.3 víme, že optimální argument úlohy

$$\min_{x \in \mathbb{R}} \sum_{i=1}^{n} |x - a_i| = \min\{ z_1 + \dots + z_n \mid z_i \in \mathbb{R}, \ x \in \mathbb{R}, \ -z_i \le x - a_i \le z_i \}$$
 (14.9)

je medián z čísel a_1, \ldots, a_n . Chceme sestrojit duální úlohu a zjednodušit ji. Chceme pro tuto úlohu dokázat platnost silné duality.

Duální úlohu je možné sestrojit podle předpisu (14.1):

min Unonu je mozne sestrojit podle predpisu (14.1):
$$\min \sum_{i=1}^{n} z_{i} \qquad \max \sum_{i=1}^{n} (p_{i} - q_{i}) a_{i}$$
 za podm.
$$x + z_{i} \geq a_{i} \qquad \text{za podm.} \qquad p_{i} \geq 0 \qquad i = 1, \dots, n$$

$$-x + z_{i} \geq -a_{i} \qquad q_{i} \geq 0 \qquad i = 1, \dots, n$$

$$z_{i} \in \mathbb{R} \qquad p_{i} + q_{i} = 1 \qquad i = 1, \dots, n$$

$$x \in \mathbb{R} \qquad \sum_{i=1}^{n} (p_{i} - q_{i}) = 0$$

Napsat duální úlohu takto přímo je ovšem obtížné. Proto je lépe postupovat zdlouhavějším ale bezpečnějším způsobem přes matice. Dvojici úloh lze psát v maticovém tvaru

$$\begin{array}{llll} & \min & \mathbf{1}^T\mathbf{z} & \max & \mathbf{a}^T(\mathbf{p} - \mathbf{q}) \\ \text{za podm.} & \mathbf{1}x + \mathbf{z} \geq \mathbf{a} & \text{za podm.} & \mathbf{p} \geq \mathbf{0} \\ & -\mathbf{1}x + \mathbf{z} \geq -\mathbf{a} & \mathbf{q} \geq \mathbf{0} \\ & \mathbf{z} \in \mathbb{R}^n & \mathbf{p} + \mathbf{q} = \mathbf{1} \\ & x \in \mathbb{R} & \mathbf{1}^T(\mathbf{p} - \mathbf{q}) = 0 \end{array}$$

neboli

$$\begin{array}{llll} & \min & \mathbf{h}^T \mathbf{u} & \max & \mathbf{g}^T \mathbf{v} \\ \text{za podm.} & \mathbf{F} \mathbf{u} \geq \mathbf{g} & \text{za podm.} & \mathbf{v} \geq \mathbf{0} \\ & \mathbf{u} \in \mathbb{R}^{1+n} & & \mathbf{F}^T \mathbf{v} = \mathbf{h} \end{array}$$

kde

$$\mathbf{F} = \begin{bmatrix} \mathbf{1} & \mathbf{I} \\ -\mathbf{1} & \mathbf{I} \end{bmatrix}, \quad \mathbf{g} = \begin{bmatrix} \mathbf{a} \\ -\mathbf{a} \end{bmatrix}, \quad \mathbf{h} = \begin{bmatrix} 0 \\ \mathbf{1} \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} x \\ \mathbf{z} \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} \mathbf{p} \\ \mathbf{q} \end{bmatrix}.$$

Vektor duálních proměnných \mathbf{v} jsme zde rozdělili na dva bloky \mathbf{p} , \mathbf{q} , odpovídající blokům matic \mathbf{F} a \mathbf{g} . Při kontrukci duálu tedy nejprve napíšeme primární úlohu v maticové formě, k ní napíšeme duál v maticové formě, a ten pak zjednodušíme vynásobením matic.

Duální úlohu dále zjednodušíme substitucí

$$2p_i = 1 + t_i, \quad 2q_i = 1 - t_i.$$

Po této substituci je $p_i - q_i = t_i$ a podmínka $p_i + q_i = 1$ je splněna automaticky. Podmínka $\sum_i (p_i - q_i) = 0$ odpovídá podmínce $\sum_i t_i = 0$. Podmínka $p_i \ge 0$ odpovídá $t_i \ge -1$ a podmínka $q_i \ge 0$ odpovídá $t_i \le 1$. Duální úloha s novými proměnnými $\mathbf{t} \in \mathbb{R}^n$ je tedy

$$\max\{a_1t_1 + \dots + a_nt_n \mid t_i \in \mathbb{R}, \ t_1 + \dots + t_n = 0, \ -1 \le t_i \le 1\}.$$
 (14.10)

Primární úloha (14.9) a duální úloha (14.10) spolu zdánlivě vůbec nesouvisejí – avšak podle silné duality jejich optimální hodnoty musejí být stejné. Zkusme dokázat, že tomu tak je.

Nejprve si všimneme, že optimální hodnota primární úlohy (14.9) se nezmění, posuneme-li čísla a_1, \ldots, a_n o libovolnou konstantu $b \in \mathbb{R}$. To je jasné, neboť medián x se posune o stejnou konstantu a je $|(x-b)-(a_i-b)|=|x-a_i|$. Totéž platí pro duální úlohu (14.10), neboť díky podmínce $\sum_i t_i = 0$ je $\sum_i (a_i-b)t_i = \sum_i a_i t_i$. Proto bez ztráty obecnosti můžeme zvolit $b = \text{median}_i a_i$, neboli posunout body tak, že jejich medián bude x = 0.

Nyní je primární optimální hodnota rovna jednoduše $\sum_i |x-a_i| = \sum_i |a_i|$. Protože kladných a záporných čísel a_i je stejný počet, duální úloha nabývá optima v takovém vektoru \mathbf{t} , kde $t_i = -1$ pro $a_i < 0$ a $t_i = 1$ pro $a_i > 0$ (což splňuje podmínku $\sum_i t_i = 0$). Tedy duální optimální hodnota je také $\sum_i a_i t_i = \sum_i |a_i|$.

14.3.1 Mechanické modely

Lineární programy lze modelovat mechanickými (obecněji fyzikálními) modely. Můžeme jim říkat mechanické či analogové počítače. Takové modely se dobře hodí na ilustraci duality.

Příklad 14.9. Uvažujme dvojici duálních úloh

$$\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{A}\mathbf{x} \ge \mathbf{b}, \, \mathbf{x} \in \mathbb{R}^n\} = \max\{\mathbf{b}^T\mathbf{y} \mid \mathbf{A}^T\mathbf{y} = \mathbf{c}, \, \mathbf{y} \ge \mathbf{0}\}.$$
 (14.11)

Mějme mnohostěn tvořený poloprostory $\mathbf{a}_i^T \mathbf{x} \geq b_i$ a vektor \mathbf{c} míříci svisle vzhůru:

Vhoď me do mnohostěnu maličký míček, na který působí tíhová síla $-\mathbf{c}$. Pro míček se středem v bodě \mathbf{x} je číslo $\mathbf{c}^T\mathbf{x}$ přímo úměrné výšce míčku nad vodorovnou rovinou procházející počátkem, tedy potenciální energii míčku. Míček se zastaví v místě s nejmenší potenciální energií, což je nejnižší vrchol \mathbf{x}^* . Proto \mathbf{x}^* je řešením primární úlohy.

Podívejme se teď na duální úlohu. V bodě \mathbf{x}^* je míček v klidu a proto pro něj platí rovnováha sil: tíha $-\mathbf{c}$ se vyrovnává silami stěn. Tedy existují skaláry y_i^* tak, že $\mathbf{c} = \sum_i y_i^* \mathbf{a}_i = \mathbf{A}^T \mathbf{y}^*$. Musí být $y_i^* \geq 0$, protože stěny působí silou jen dovnitř mnohostěnu, ne ven. Vidíme, že \mathbf{y}^* je přípustné řešení duální úlohy.

Když $\mathbf{a}_i^T\mathbf{x}^* > b_i$, míček se stěny i nedotýká a tedy síla stěny na míček je nulová, $y_i^* = 0$. Proto $y_i^*(\mathbf{a}_i^T\mathbf{x}^* - b_i) = 0$, což je podmínka komplementarity. Sečtením těchto podmínek získáme $\sum_i y_i^* \mathbf{a}_i^T\mathbf{x}^* - \sum_i b_i \mathbf{x}^* = 0$ neboli $\mathbf{c}^T\mathbf{x}^* = \mathbf{b}^T\mathbf{y}^*$ (to je vlastně Věta 14.3). Tedy platí silná dualita. Rovnost $\mathbf{c}^T\mathbf{x}^* = \mathbf{b}^T\mathbf{y}^*$ jde vidět i jinak. Potenciální energie $\mathbf{c}^T\mathbf{x}^*$ míčku v bodě \mathbf{x}^* se rovná práci, která by se vykonala posunutím míčku do počátku. Ukážeme, že tato práce je rovna $\mathbf{b}^T\mathbf{y}^*$. Odtraňme nejprve všechny stěny, kterých se míček nedotýká. Posuňme nyní některou stěnu i rovnoběžně tak, aby procházela počátkem. Při tomto posunování se síly stěn na míček nemění. Vzdálenost stěny od počátku je $b_i/\|\mathbf{a}_i\|_2$ (viz Cvičení 5.14). Síla stěny na míček je $y_i^*\mathbf{a}_i$ a působí ve směru posouvání, tedy vykonaná práce je $(b_i/\|\mathbf{a}_i\|_2) \cdot \|y_i^*\mathbf{a}_i\|_2 = b_iy_i^*$. Po odtlačení všech stěn do počátku vykonáme práci $\sum_i b_i y_i^* = \mathbf{b}^T\mathbf{y}^*$.

Příklad 14.10. Známý fyzikální zákon říká, že v nádobě s nestačitelnou kapalinou uzavřenou pístem s povrchem a, na který působí síla c, je tlak y = c/a (obrázek vlevo):

Uvažujme nyní stroj na obrázku vpravo. Stroj se skládá z m nádob s nestlačitelnou kapalinou, z nichž každá je uzavřena n svislými písty a jedním vodorovným pístem. Každá m-tice svislých pístů je spojena tyčí, zakončenou dole závažím. Povrch svislého pístu v nádobě i spojeného se závažím j je $|a_{ij}|$. Pro $a_{ij} > 0$ je píst umístěn nahoře a pro $a_{ij} < 0$ dole. Výška závaží j nad referenční rovinou je x_j . Každý vodorovný píst má jdnotkový povrch a je zakončen tyčí, která nemůže projít stěnou vpravo. Šířka mezery mezi i-tou tyčí a stěnou je z_i , přičemž při $\mathbf{x} = \mathbf{0}$ je $\mathbf{z} = -\mathbf{b}$. Tíha j-tého závaží je c_i . Tlak v i-té nádrži je y_i .

Ukážeme, že stroj 'řeší' levou (primární) úlohu z dvojice (14.11). Ze zachování objemu kapaliny v nádobě i plyne $z_i = a_{i1}x_1 + \cdots + a_{in}x_n - b_i$, tedy $\mathbf{z} = \mathbf{A}\mathbf{x} - \mathbf{b}$. Protože vodorovné tyče nemohou projít stěnou, musí vždy být $z_i \geq 0$, tedy $\mathbf{z} \geq \mathbf{0}$. Potenciální energie závaží j je c_jx_j . Když bude stroj v rovnováze, závaží budou v takových výškách, že jejich celková potenciální energie $c_1x_1 + \cdots + c_nx_n = \mathbf{c}^T\mathbf{x}$ bude minimální.

Jaký je význam duálních omezení? Protože povrch vodorovných pístů je jednotkový, tlak y_i v nádrži i se rovná síle vodorovné tyče i na stěnu. Jelikož stěna působí silou vždy od sebe, je $\mathbf{y} \geq \mathbf{0}$. Rovnováha sil pro svislou tyč j zní $a_{1j}y_1 + \cdots + a_{mj}y_m = c_j$, tedy $\mathbf{A}^T\mathbf{y} = \mathbf{c}$.

Dle věty o silné dualitě má být v ustáleném stavu duální kritérium $\mathbf{y}^T\mathbf{b} = y_1b_1 + \cdots + y_mb_m$ rovno potenciální energii $\mathbf{c}^T\mathbf{x}$ závaží. Proč tomu tak je? Potenciální energie závaží je rovna práci, nutné na jejich posunutí do roviny x = 0. Tato práce se dá vykonat buď přímo posunutím závaží (což odpovídá primárnímu kritériu $\mathbf{c}^T\mathbf{x}$) nebo posunutím vodorovných tyčí do vzdáleností $-b_i$ od stěny. Druhý způsob odpovídá duálnímu kritériu. Zafixujeme-li totiž všechny vodorovné tyče kromě tyče i, při odtlačování tyče i se síla, kterou působíme na tyč, nemění. Tedy vykonáme práci y_ib_i . Když takto odtlačíme od stěny postupně všechny tyče, vykonáme práci $\mathbf{y}^T\mathbf{b}$.

Dle věty o komplementaritě v ustáleném stavu pro každé i platí $z_i = 0$ nebo $y_i = 0$. To je jasné, protože když se některá vodorovná tyč nedotýká stěny, je tlak v její nádobě nulový.

Věta o stínových cenách říká, že se změnou b_i se hodnota minimální potenciální energie mění tím více, čím je větší tlak y_i . To je ale jasné, protože čím je větší tlak, tím větší práce je třeba na posunutí tyče od stěny do vzdálenosti b_i .

Mohlo by se zdát, že mechanické modely z předchozích dvou příkladů dokazují větu o silné dualitě pro dvojici úloh (14.11). Dříve jsme ale řekli, že důkaz této věty je složitý. Jak je to možné? Naše fyzikální úvahy větu o silné dualitě nedokazují, předpokládají totiž platnost fyzikálních zákonů, které nelze matematicky dokázat ale pouze experimentálně pozorovat. Naproti tomu matematický důkaz žádné fyzikální zákony nepředpokládá.

Příklad 14.11. Zkoumejme duální úlohu k dopravní úloze (11.10). Konstrukci duálu už nebudeme popisovat prodrobně, výsledná dvojice navzájem duálních úloh je

Význam dvojice úloh ilustrujeme analogovým počítačem na obrázku (pro m = n = 3):

Stroj se skládá z m+n pevných vidlic, z nichž každá se může vodorovně posouvat. Proměnné u_i a v_j jsou posunutí vidlic vzhledem k referenční svislé rovině (na obrázku čárkovaně). Je-li $u_i = v_j = 0$, vzdálenost hrotů vidlic i a j je c_{ij} . Posunutí vidlic je omezeno kontakty dvojic hrotů, neboli podmínkami $c_{ij} - u_i - v_j \geq 0$. Na levé vidlice působí konstantní síly a_i , na pravé b_j (červené šipky). Působením sil se levé vidlice budou přibližovat k pravým, ale jen do té doby, než do sebe některé dvojice hrotů narazí. Proměnné x_{ij} odpovídají silám, které na sebe působí hroty vidlic (na obrázku jsou všechny tyto síly nulové, neboť žádné dva hroty se dosud nedotýkají). Dumejte, čemu odpovídá optimální hodnota úloh a proč platí silná dualita a podmínky komplementarity!

14.4 Cvičení

- 14.1. Dokažte, že duál duálu se rovná původní úloze. Udělejte pro (a) dvojici (14.2), (b) dvojici (14.1).
- 14.2. Pro daná čísla $c_1, \ldots, c_n \in \mathbb{R}$ chceme maximalizovat $\sum_{i=1}^n c_i x_i$ za podmínek $-1 \le x_i \le 1$.

²Chování stroje samozřejme není polohou této referenční roviny ovlivněno. Jak se to projevuje algebraicky v primární a duální úloze?

- a) Vyřešte úvahou.
- b) Sestrojte duální úlohu a upravte ji do co nejjednoduššího tvaru. Vyřešte duální úlohu úvahou (musí vám vyjít stejná optimální hodnota jako u primární úlohy).
- c) Napište podmínky komplementarity.
- d) Najděte číselné hodnoty optimálních primárních a duálních proměnných (které si odpovídají přes podmínky komplementarity) pro n=3 a $(c_1,c_2,c_3)=(-2,3,4)$.
- 14.3. Napište duální úlohu a podmínky komplementarity k následujícím úlohám. Pokud úloha není LP, nejdříve převedte na LP (dle §11.1). Výslednou duální úlohu co nejvíce zjednodušte, příp. převed'te do skalární formy, je-li skalární forma výstižnější. Kde to má smysl, pokuste se interpretovat duální úlohu a věty o dualitě, podobně jako v Příkladu 14.5.
 - a) lineární program ze Cvičení 13.8
 - b) $\min_{x \in \mathbb{R}} \max_{i=1}^{n} |a_i x|$ (střed intervalu)
 - c) úloha (11.15) (přibližné řešení přeurčené lin. soustavy ve smyslu max-normy)
 - d) úloha (11.17) (přibližné řešení přeurčené lin. soustavy ve smyslu 1-normy)
 - e) všechny úlohy ze Cvičení 11.3
 - f) úloha vzniklá ve Cvičení 11.10 o kladce se závažími
 - g) minimalizace maxima afinních funkcí (viz §11.1.1):
 - (i) $\min_{\substack{x_1, x_2 \in \mathbb{R} \\ \mathbf{x} \in \mathbb{R}^n}} \max \{ 2x_1 x_2 3, 1 x_1, x_2 2, x_1 + x_2 \}$ (ii) $\min_{\mathbf{x} \in \mathbb{R}^n} \max_{i=1}^m (\mathbf{a}_i^T \mathbf{x} + b_i)$
- 14.4. Dokažte bez užití algoritmu na řešení LP, že $\mathbf{x} = (1, 1, 1, 1)$ je optimální řešení úlohy

min
$$\begin{bmatrix} 47 & 93 & 17 & -93 \end{bmatrix} \mathbf{x}$$

za podm. $\begin{bmatrix} -1 & -6 & 1 & 3 \\ -1 & -2 & 7 & 1 \\ 0 & 3 & -10 & -1 \\ -6 & -11 & -2 & 12 \\ 1 & 6 & -1 & -3 \end{bmatrix} \mathbf{x} \le \begin{bmatrix} -3 \\ 5 \\ -8 \\ -7 \\ 4 \end{bmatrix}$

Nápověda a řešení

14.1. Pravou úlohu nejdříve převedeme na tvar levé úlohy a pak k ní napíšeme duální úlohu. Ukážeme jen pro (14.2):

$$\begin{array}{lll}
-\min & (-\mathbf{b})^T \mathbf{y} & -\max & (-\mathbf{c})^T \mathbf{x} \\
\text{za podm.} & (-\mathbf{A}^T) \mathbf{y} \ge -\mathbf{c} & \text{za podm.} & \mathbf{x} \ge \mathbf{0} \\
\mathbf{y} \ge \mathbf{0} & (-\mathbf{A}) \mathbf{x} \le -\mathbf{b}
\end{array} \tag{14.12}$$

Levá úloha (14.12) je ekvivalentní pravé úloze (14.2), pravá úloha (14.12) je ekvivalentní levé úloze (14.2).

- 14.2.a) Optimální hodnota je $\sum_{i=1}^{n} |c_i|$ (viz Cvičení 11.3)
- 14.2.b) Duální úloha je $\min\{\sum_i (u_i+v_i) \mid u_i,v_i\geq 0,\ v_i-u_i=c_i\}$. Vyřešme ji úvahou. Nejdříve uvažujme každé i zvlášť a ukažme, že $\min\{u+v\mid u,v\geq 0,\ v-u=c\}=|c|$. Podmínka v-u=czůstává v platnosti, odečteme-li od u, v libovolné číslo. Pokud u + v má být minimální, musí se od u,v odečíst co největší číslo tak, aby platilo $u,v\geq 0$. Tedy jedno z čisel u,v bude nulové a tedy optimální hodnota bude |c|. Optimální hodnota celé duální úlohy bude tedy $\sum_i |c_i|$.

- 14.2.c) Pro každé i platí $x_i = -1$ nebo $u_i = 0$. Pro každé i platí $x_i = 1$ nebo $v_i = 0$.
- 14.2.d) $(x_1, x_2, x_3) = (-1, 1, 1), (u_1, u_2, u_3) = (2, 0, 0), (v_1, v_2, v_3) = (0, 3, 4).$
- 14.3.f) Duál: $\max\{\sum_{i=1}^n y_i d_i + \sum_{i=1}^{n'} y_i' d_i' \mid \sum_{i=1}^n y_i = \sum_{i=1}^{n'} y_i', \ y_i \leq m_i, \ y_i' \leq m_i', \ y_i, y_i' \geq 0\}.$ Podmínky komplementarity: $z_i(y_i m_i) = 0, \ z_i'(y_i' m_i') = 0, \ (z_i d_i x)y_i = 0, \ (z_i' d_i' + x)y_i' = 0.$
- 14.3.g) (i) Nejprve převedeme na LP: min z z.p. $2x_1-x_2-3 \le z, 1-x_1 \le z, x_2-2 \le z, x_1+x_2 \le z$. Duál k tomuto LP je: max $-3u_1+u_2-2u_3$ z.p. $2u_1-u_2+u_4=0, -u_1+u_3+u_4=0, u_1+\cdots+u_4=1, u_1,\ldots,u_4\ge 0$.
- 14.4. Postupujte podle Příkladu 14.3.

Část IV Konvexní optimalizace

Kapitola 15

Konvexní funkce

Funkce $f: \mathbb{R}^n \to \mathbb{R}$ je konvexní na konvexní množině $X \subseteq \mathbb{R}^n$, jestliže

$$\mathbf{x} \in X, \ \mathbf{y} \in X, \ 0 \le \alpha \le 1 \implies f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) \le (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}).$$
 (15.1)

Funkce f je **konkávní** na množině X, jestliže je funkce -f konvexní na množině X. Rozlišujte pojmy konvexní množina a konvexní funkce, jde o různé věci. Všimněte si, že množina X musí být konvexní (pojem konvexní nebo konkávní funkce na nekonvexní množině není definován). Pokud X je celý definiční obor funkce f, odkaz na X můžeme vynechat a říkáme jen, že funkce f je konvexní.

Podmínku (15.1) lze zobecnit pro více než dva body: funkce f je konvexní, právě když

$$\begin{cases}
\mathbf{x}_1, \dots, \mathbf{x}_k \in X \\
\alpha_1, \dots, \alpha_k \ge 0 \\
\alpha_1 + \dots + \alpha_k = 1
\end{cases}
\implies f(\alpha_1 \mathbf{x}_1 + \dots + \alpha_k \mathbf{x}_k) \le \alpha_1 f(\mathbf{x}_1) + \dots + \alpha_k f(\mathbf{x}_k). \quad (15.2)$$

Podmínka (15.2) je známá jako **Jensenova nerovnost**. Podmínka (15.1) je očividně speciální případ podmínky (15.2). Naopak lze dokázat, že (15.1) implikuje (15.2). Porovnejte s definicí lineárního zobrazení (3.4) a afinního zobrazení!

Geometrický význam podmínky (15.1) je ten, že úsečka spojující body $(\mathbf{x}, f(\mathbf{x}))$ a $(\mathbf{y}, f(\mathbf{y}))$ leží nad grafem funkce (viz levý obrázek). Geometrický význam podmínky (15.2) je ten, že konvexní mnohostěn vybarvený šedě (viz pravý obrázek) leží nad grafem funkce. Podrobně rozmyslete, jak tyto geometrické interpretace odpovídají výrazům (15.1) a (15.2)!

Příklad 15.1. Dokažme z podmínky (15.1), že funkce $f: \mathbb{R}^n \to \mathbb{R}$ daná jako $f(\mathbf{x}) = \max_{i=1}^n x_i$ (tedy funkční hodnota je maximum ze složek vektoru \mathbf{x}) je konvexní. Máme dokázat, že pro

každé \mathbf{x} , \mathbf{y} a $0 \le \alpha \le 1$ platí

$$f((1-\alpha)\mathbf{x} + \alpha\mathbf{y}) = \max_{i}((1-\alpha)x_i + \alpha y_i)$$
(15.3a)

$$\leq \max_{i} (1 - \alpha)x_i + \max_{i} \alpha y_i \tag{15.3b}$$

$$= (1 - \alpha) \max_{i} x_i + \alpha \max_{i} y_i \tag{15.3c}$$

$$= (1 - \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}) \tag{15.3d}$$

kde rovnost (15.3c) plyne z nezápornosti čísel α a 1 – α .

Nerovnost (15.3b) plyne z toho, že pro každé $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$ platí

$$\max_{i}(a_i + b_i) \le \max_{i} a_i + \max_{i} b_i. \tag{15.4}$$

Nerovnost (15.4) dokážeme například takto. Nechť i^*, j^*, k^* jsou indexy, ve kterých se nabývají maxima, tedy $a_{i^*} + b_{i^*} = \max_i (a_i + b_i), \ a_{j^*} = \max_i a_i, \ b_{k^*} = \max_i b_i$. Proto $a_{i^*} \le a_{j^*}$ a $b_{i^*} \le b_{k^*}$. Tedy $\max_i (a_i + b_i) = a_{i^*} + b_{i^*} \le a_{j^*} + b_{k^*} = \max_i a_i + \max_i b_i$.

Příklad 15.2. Dokažme z podmínky (15.1), že funkce $f: \mathbb{R}^n \to \mathbb{R}$ definovaná jako $f(\mathbf{x}) = \min_{i=1}^n x_i$ není konvexní. Např. volba $n=2, \mathbf{x}=(0,2), \mathbf{y}=(2,0), \alpha=\frac{1}{2}$ nesplňuje (15.1), neboť

$$f((\mathbf{x} + \mathbf{y})/2) = f(1,1) = 1 > (f(\mathbf{x}) + f(\mathbf{y}))/2 = (0+0)/2 = 0.$$

Použitím Jensenovy nerovnosti na vhodnou konvexní funkci lze získat mnoho užitečných nerovností.

Příklad 15.3. Funkce log je konkávní na \mathbb{R}_{++} (kde \mathbb{R}_{++} označuje množinu kladných reálných čísel, viz §1.1.1). Napišme pro tuto funkci Jensenovu nerovnost (15.2) (jelikož funkce je konkávní a ne konvexní, musíme v Jensenově nerovnosti obrátit směr nerovnosti), ve které položíme $\alpha_1 = \cdots = \alpha_n = \frac{1}{n}$:

$$\log \frac{x_1 + \dots + x_n}{n} \ge \frac{\log x_1 + \dots + \log x_n}{n}$$

kde x_1, \ldots, x_n jsou kladné. Vezmeme-li exponenciálu každé strany, dostaneme

$$\frac{x_1 + \dots + x_n}{n} \ge (x_1 \cdots x_n)^{1/n}.$$

Tato známá nerovnost říká, že aritmetický průměr není nikdy menší než geometrický.

Příklad 15.4. Uveď me často potkávané jednoduché konvexní či konkávní funkce:

- 1. Exponenciála $f(x) = e^{ax}$ je konvexní na \mathbb{R} , pro libovolné $a \in \mathbb{R}$.
- 2. Mocnina $f(x) = x^a$ je na \mathbb{R}_{++} konvexní pro $a \ge 1$ nebo $a \le 0$ a konkávní pro $0 \le a \le 1$.
- 3. Mocnina absolutní hodnoty $f(x) = |x|^a$ je pro $a \ge 1$ konvexní na \mathbb{R} (speciálně: absolutní hodnota |x| je konvexní).
- 4. Logaritmus $f(x) = \log x$ je konkávní na \mathbb{R}_{++} .
- 5. Funkce $f(x) = x \log x$ je konvexní na \mathbb{R}_{++} (nebo i na \mathbb{R}_{+} , pokud dodefinujeme $0 \log 0 = 0$, což se často dělá, protože $\lim_{x\to 0+} x \log x = 0$). Tato funkce se vyskytuje např. jako jeden člen ve vzorci pro Shannonovu entropii náhodné veličiny, $H(\mathbf{x}) = -\sum_i x_i \log x_i$.

- 6. Afinní funkce $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b$ je zároveň konvexní i konkávní.
- 7. Kvadratická forma $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ je konvexní pro **A** positivně semidefinitní, konkávní pro **A** negativně semidefinitní, a nekonvexní a nekonkávní pro **A** indefinitní (viz Příklad 15.5).
- 8. Maximum složek $f(\mathbf{x}) = \max_{i=1}^n x_i = \max\{x_1, \dots, x_n\}$ je konvexní na \mathbb{R}^n .
- 9. Log-sum-exp funkce $f(\mathbf{x}) = \log(e^{x_1} + \dots + e^{x_n})$ je konvexní. Tato funkce se někdy nazývá měkké maximum, neboť funkce

$$f_t(\mathbf{x}) = f(t\mathbf{x})/t = \log(e^{tx_1} + \dots + e^{tx_n})/t$$

se pro $t \to +\infty$ blíží funkci $\max_{i=1}^n x_i$ (dokažte výpočtem limity!).

- 10. Geometrický průměr $f(\mathbf{x}) = (x_1 \cdots x_n)^{1/n}$ je konkávní na \mathbb{R}^n_+ .
- 11. Každá norma je konvexní funkce, neboť pro každé $\alpha,\beta \geq 0$ máme

$$\|\alpha \mathbf{x} + \beta \mathbf{y}\| \le \|\alpha \mathbf{x}\| + \|\beta \mathbf{y}\| = \alpha \|\mathbf{x}\| + \beta \|\mathbf{y}\|,$$

kde nerovnost plyne z trojúhelníkové nerovnosti a rovnost z homogenity (viz §11.3.1). Načrtněte vrstevnice a grafy těchto funkcí (v případě více proměnných jen pro $n \in \{1, 2\}$)!

15.1 Vztah konvexní funkce a konvexní množiny

Zopakujte si pojmy vrstevnice a graf funkce z §1.1.3! Zavedeme dva podobné pojmy, které se liší pouze nahrazením rovnosti nerovností. Pro funkci $f: \mathbb{R}^n \to \mathbb{R}$ definujeme:

- Epigraf funkce je množina $\{(\mathbf{x}, y) \in \mathbb{R}^{n+1} \mid f(\mathbf{x}) \leq y\}.$
- Subkontura¹ výšky y je množina $\{ \mathbf{x} \in \mathbb{R}^n \mid f(\mathbf{x}) \leq y \}$.

Levý obrázek znázorňuje subkonturu výšky y a epigraf funkce $\mathbb{R} \to \mathbb{R}$, pravý obrázek subkonturu výšky 2 funkce $\mathbb{R}^2 \to \mathbb{R}$:

Existují těsné vztahy mezi konvexitou funkce a konvexitou jejího epigrafu a subkontur (což jsou množiny), dané následujícími větami.

Věta 15.1. Funkce je konvexní, právě když její epigraf je konvexní množina.

 $D\mathring{u}kaz$. Předpokládejme, že funkce f je konvexní. Vezměme dva body (\mathbf{x}_1, y_1) a (\mathbf{x}_2, y_2) z epigrafu, tedy $f(\mathbf{x}_1) \leq y_1$ a $f(\mathbf{x}_2) \leq y_2$. Pro každé $0 \leq \alpha \leq 1$ platí

$$f((1-\alpha)\mathbf{x}_1 + \alpha\mathbf{x}_2) \le (1-\alpha)f(\mathbf{x}_1) + \alpha f(\mathbf{x}_2) \le (1-\alpha)y_1 + \alpha y_2,$$

¹Slovo 'subkontura' je pokus o český překlad anglického 'sublevel set'.

kde první nerovnost plyne z konvexity funkce a druhá nerovnost z $f(\mathbf{x}_1) \leq y_1$ a $f(\mathbf{x}_2) \leq y_2$. Tedy bod $(1 - \alpha)(\mathbf{x}_1, y_1) + \alpha(\mathbf{x}_2, y_2)$ patří do epigrafu, který je proto konvexní množina.

Obráceně předpokládejme, že epigraf funkce f je konvexní množina. Tedy pokud body (\mathbf{x}_1, y_1) a (\mathbf{x}_2, y_2) patří do epigrafu, pak také bod $(1 - \alpha)(\mathbf{x}_1, y_1) + \alpha(\mathbf{x}_2, y_2)$ patří do epigrafu pro každé $0 \le \alpha \le 1$. Volbou $y_1 = f(\mathbf{x}_1)$ a $y_2 = f(\mathbf{x}_2)$ máme

$$f((1-\alpha)\mathbf{x}_1 + \alpha\mathbf{x}_2) \le (1-\alpha)y_1 + \alpha y_2 = (1-\alpha)f(\mathbf{x}_1) + \alpha f(\mathbf{x}_2),$$

proto je funkce f konvexní.

Věta 15.2. Každá subkontura konvexní funkce je konvexní množina.

 $D\mathring{u}kaz$. Předpokládejme, že body \mathbf{x}_1 a \mathbf{x}_2 patří do subkontury konvexní funkce f, tedy $f(\mathbf{x}_1) \leq y$ a $f(\mathbf{x}_2) \leq y$. Pro každé $0 \leq \alpha \leq 1$ platí

$$f((1-\alpha)\mathbf{x}_1 + \alpha\mathbf{x}_2) \le (1-\alpha)f(\mathbf{x}_1) + \alpha f(\mathbf{x}_2) \le (1-\alpha)y + \alpha y = y,$$

kde první nerovnost plyne z konvexity funkce a druhá z nerovností $f(\mathbf{x}_1) \leq y$, $f(\mathbf{x}_2) \leq y$. Tedy bod $(1-\alpha)\mathbf{x}_1 + \alpha\mathbf{x}_2$ patří do subkontury. Dle (12.1) je tedy subkontura konvexní množina. \square

Obrácená implikace ve Větě 15.2 neplatí: existuje funkce, která není konvexní a jejíž každá subkontura je konvexní množina². Např. každá subkontura monotonní (tj. nerostoucí nebo neklesající) funkce jedné proměnné je interval, tedy konvexní množina. Jiný příklad je na obrázku:

15.2 Konvexita diferencovatelných funkcí

Konvexní funkce nemusí být v každém bodě diferencovatelná (uvažte např. funkci f(x) = |x|). Pokud je ale funkce jednou či dvakrát diferencovatelná, její konvexitu lze snadněji než pomocí podmínky (15.1) (které se někdy říká podmínka nultého řádu) charakterizovat pomocí derivací. Následující dvě věty uvedeme bez důkazů.

Věta 15.3 (Podmínka prvního řádu). Nechť funkce $f: \mathbb{R}^n \to \mathbb{R}$ je diferencovatelná. Funkce f je konvexní (na celém \mathbb{R}^n)³, právě když

$$\mathbf{x}, \mathbf{y} \in \mathbb{R}^n \implies f(\mathbf{y}) \ge f(\mathbf{x}) + f'(\mathbf{x}) (\mathbf{y} - \mathbf{x}).$$

²Funkce, jejíž každá subkontura je konvexní množina, se nazývá *kvazikonvexní*. Kvazikonvexní funkce jsou užitečné, ale zdaleka ne tak jako konvexní funkce.

 $^{^3}$ Jde věta zobecnit pro případ, kdy ověřujeme konvexitu funkce f na konvexní podmožině $X \subseteq \mathbb{R}^n$? Ano, ale potřebujeme navíc předpoklad, že množina X je otevřená, tj. neobsahuje žádný svůj hraniční bod. Podobně pro Větu 15.4.

To znamená, že Taylorův polynom prvního řádu funkce f v každém bodě $\mathbf{x} \in X$ (viz (8.19b)) je všude (tj. pro každé \mathbf{y}) menší nebo roven funkci f:

Věta 15.4 (Podmínka druhého řádu). Necht' funkce $f: \mathbb{R}^n \to \mathbb{R}$ je dvakrát diferencovatelná. Funkce f je konvexní (na celém \mathbb{R}^n), právě když v každém bodě $\mathbf{x} \in \mathbb{R}^n$ je Hessova matice $f''(\mathbf{x})$ positivně semidefinitní.

Příklad 15.5. Necht' $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, kde **A** je symetrická positivně semidefinitní. Ukažme konvexitu této funkce třemi způsoby:

- Dokažme konvexitu z Věty 15.4. To je triviální, protože Hessián je $f''(\mathbf{x}) = 2\mathbf{A}$ a tedy je positivně semidefinitní.
- Dokažme konvexitu z Věty 15.3. Protože $f'(\mathbf{x}) = 2\mathbf{x}^T\mathbf{A}$, máme dokázat, že

$$\mathbf{y}^T \mathbf{A} \mathbf{y} \ge \mathbf{x}^T \mathbf{A} \mathbf{x} + 2 \mathbf{x}^T \mathbf{A} (\mathbf{y} - \mathbf{x}).$$

To jde upravit na $\mathbf{x}^T \mathbf{A} \mathbf{x} - 2 \mathbf{x}^T \mathbf{A} \mathbf{y} + \mathbf{y}^T \mathbf{A} \mathbf{y} \ge 0$. Platí⁴

$$\mathbf{x}^{T}\mathbf{A}\mathbf{x} - 2\mathbf{x}^{T}\mathbf{A}\mathbf{y} + \mathbf{y}^{T}\mathbf{A}\mathbf{y} = (\mathbf{x} - \mathbf{y})^{T}\mathbf{A}(\mathbf{x} - \mathbf{y}), \tag{15.5}$$

což je nezáporné pro každé x, y, protože A je positivně semidefinitní.

• Dokážme konvexitu z podmínky (15.1). Musíme dokázat, že pro každé $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ a $0 \le \alpha \le 1$ platí (15.1), tedy

$$[(1 - \alpha)\mathbf{x} + \alpha\mathbf{y}]^T \mathbf{A}[(1 - \alpha)\mathbf{x} + \alpha\mathbf{y}] \le (1 - \alpha)\mathbf{x}^T \mathbf{A}\mathbf{x} + \alpha\mathbf{y}^T \mathbf{A}\mathbf{y}$$

Po roznásobení a převedení všech členů na jednu stranu upravujeme:

$$(\alpha - \alpha^2)\mathbf{x}^T \mathbf{A} \mathbf{x} - 2\alpha(1 - \alpha)\mathbf{x}^T \mathbf{A} \mathbf{y} + ((1 - \alpha) - (1 - \alpha)^2)\mathbf{y}^T \mathbf{A} \mathbf{y} \ge 0$$
$$\alpha(1 - \alpha)(\mathbf{x}^T \mathbf{A} \mathbf{x} - 2\mathbf{x}^T \mathbf{A} \mathbf{y} + \mathbf{y}^T \mathbf{A} \mathbf{y}) \ge 0.$$

Výraz $\alpha(1-\alpha)$ je pro každé $0\leq\alpha\leq1$ nezáporný. Nezápornost výrazu (15.5) jsme již ukázali.

15.3 Operace zachovávající konvexitu funkcí

Operace zachovávající konvexitu funkcí umožňují z jednoduchých konvexních funkcí získat složitější. Konvexitu složitější funkce je často snadnější dokázat pomocí těchto operací než z podmínky (15.1) nebo Vět 15.3 a 15.4. Dále uvedeme příklady takových operací.

 $[\]overline{^4}$ Všimněte si, že pro n=1 a $\mathbf{A}=1$ se rovnost (15.5) zjednoduší na známé $x^2-2xy+y^2=(x-y)^2$.

15.3.1 Nezáporná lineární konbinace

Věta 15.5. Jsou-li $g_1, \ldots, g_k : \mathbb{R}^n \to \mathbb{R}$ konvexní funkce a $\alpha_1, \ldots, \alpha_k \geq 0$, pak funkce

$$f = \alpha_1 g_1 + \dots + \alpha_k g_k \tag{15.6}$$

je konvexní.

Důkaz je snadný z podmínky (15.1) (ponecháváme jako cvičení). Speciálně, jsou-li f a g konvexní funkce, pak f+g je konvexní.

Obráceně to ale neplatí: může se stát, že f nebo g nejsou konvexní a f + g konvexní je. Např. funkce x^3 není konvexní, ale funkce $x^3 - x^3$ (tedy konstantní nulová funkce) konvexní je.

15.3.2 Skládání funkcí

Složení konvexních funkcí nemusí být konvexní funkce.

Příklad 15.6. Funkce $f, g: \mathbb{R} \to \mathbb{R}$ dané jako f(x) = |x-1| a g(x) = |x| jsou konvexní. Funkce $(g \circ f)(x) = g(f(x)) = |x| - 1$ ale není konvexní (nakreslete si její graf!).

Věta 15.6. Necht' funkce $f: \mathbb{R} \to \mathbb{R}$ je konvexní. Necht' funkce $g: \mathbb{R} \to \mathbb{R}$ je konvexní a neklesající. Pak složená funkce $g \circ f$ (daná předpisem $(g \circ f)(x) = g(f(x))$) je konvexní.

Důkaz. Pro každé $x, y \in \mathbb{R}$ a $0 \le \alpha \le 1$ máme

$$g(f((1-\alpha)x + \alpha y)) \le g((1-\alpha)f(x) + \alpha f(y)) \le (1-\alpha)g(f(x)) + \alpha g(f(y)).$$

První nerovnost platí, protože f je konvexní a g je neklesající. Druhá nerovnost platí, protože g je konvexní.

Obecněji můžeme zkoumat složené zobrazení $(g \circ \mathbf{f})(\mathbf{x}) = g(\mathbf{f}(\mathbf{x}))$, kde $\mathbb{R}^n \xrightarrow{\mathbf{f}} \mathbb{R}^m \xrightarrow{g} \mathbb{R}$. Existuje analogie Věty 15.6 pro tento případ, je ale dosti komplikovaná a nebudeme ji uvádět. Uvedeme jen důležitý případ, kdy $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$ je afinní zobrazení.

Věta 15.7. Necht' funkce $g: \mathbb{R}^m \to \mathbb{R}$ je konvexní. Necht' $\mathbf{A} \in \mathbb{R}^{m \times n}$ a $\mathbf{b} \in \mathbb{R}^m$. Pak funkce $h(\mathbf{x}) = g(\mathbf{A}\mathbf{x} + \mathbf{b})$ je konvexní.

 $D\mathring{u}kaz.$ Pro každé $\mathbf{x},\mathbf{y}\in\mathbb{R}^n$ a
 $0\leq\alpha\leq1$ platí

$$h((1 - \alpha)\mathbf{x} + \alpha\mathbf{y}) = g(\mathbf{A}[(1 - \alpha)\mathbf{x} + \alpha\mathbf{y}] + \mathbf{b})$$

$$= g((1 - \alpha)(\mathbf{A}\mathbf{x} + \mathbf{b}) + \alpha(\mathbf{A}\mathbf{y} + \mathbf{b}))$$

$$\leq (1 - \alpha)g(\mathbf{A}\mathbf{x} + \mathbf{b}) + \alpha g(\mathbf{A}\mathbf{y} + \mathbf{b})$$

$$= (1 - \alpha)h(\mathbf{x}) + \alpha h(\mathbf{y}).$$

Příklad 15.7. Mějme funkci $f: \mathbb{R}^{2n} \to \mathbb{R}$ danou vzorcem $f(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$, kde $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ a $||\cdot||: \mathbb{R}^n \to \mathbb{R}$ je libovolná norma. Tato funkce je konvexní funkce argumentu $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{2n}$. Ve Větě 15.7 vezmeme $\mathbf{A} = \begin{bmatrix} \mathbf{I} & -\mathbf{I} \end{bmatrix} \in \mathbb{R}^{n \times (2n)}$ a $\mathbf{b} = \mathbf{0}$.

15.3.3 Maximum

Nejzajímavější operace zachovávající konvexitu funkcí je ovšem maximum.

Věta 15.8. Nechť I je libovolná množina a g_i : $\mathbb{R}^n \to \mathbb{R}$, $i \in I$, jsou konvexní funkce. Pak

$$f(\mathbf{x}) = \max_{i \in I} g_i(\mathbf{x}) \tag{15.7}$$

je konvexní funkce, kde předpokládáme, že pro každé \mathbf{x} maximum existuje⁵.

 $D\mathring{u}kaz$. Epigraf funkce f průnik epigrafů funkcí g_i , nebot'

$$\{ (\mathbf{x}, y) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, \max_{i \in I} g_i(\mathbf{x}) \le y \} = \{ (\mathbf{x}, y) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, g_i(\mathbf{x}) \le y \ \forall i \in I \}$$
$$= \bigcap_{i \in I} \{ (\mathbf{x}, y) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, g_i(\mathbf{x}) \le y \},$$

kde jsme využili ekvivalence (11.7). Protože funkce g_i jsou konvexní, dle Věty 15.1 jsou jejich epigrafy konvexní množiny. Dle Věty 12.1 je průnik konvexních množin konvexní množina. Tedy epigraf funkce (15.7) je konvexní množina. Dle Věty 15.1 je tedy funkce f konvexní.

Příklad 15.8. Konvexitu funkce $f(\mathbf{x}) = \max_{i=1}^n x_i$ jsme již v Příkladu 15.1 dokázali z podmínky (15.1). Ovšem je mnohem pohodlnější použít Větu 15.8. Máme $g_i(\mathbf{x}) = x_i$. Funkce g_i jsou lineární, tedy konvexní. Takže funkce $f(\mathbf{x}) = \max_{i=1}^n g_i(\mathbf{x})$ je konvexní.

Příklad 15.9. Funkce

$$f(\mathbf{x}) = \max_{i=1}^k (\mathbf{a}_i^T \mathbf{x} + b_i)$$

je maximem afinních funkcí. Tuto funkci jsme již potkali v $\S 11.1.1$. Protože afinní funkce jsou konvexní, je i jejich maximum konvexní.

Příklad 15.10. Nechť $C \subseteq \mathbb{R}^n$ je libovolná (ne nutně konvexní) množina. Funkce

$$f(\mathbf{x}) = \max_{\mathbf{y} \in C} \|\mathbf{x} - \mathbf{y}\|$$

udává vzdálenost bodu \mathbf{x} od nejvzdálenějšího bodu množiny C (zde předpokládáme, že maximum existuje). Dle Věty 15.7 je pro každé pevné \mathbf{y} výraz $\|\mathbf{x} - \mathbf{y}\|$ konvexní funkcí \mathbf{x} . Tedy výraz $\|\mathbf{x} - \mathbf{y}\|$ lze chápat jako množinu konvexních funkcí \mathbf{x} indexovaných indexem \mathbf{y} (můžeme označit $\|\mathbf{x} - \mathbf{y}\| = g_{\mathbf{y}}(\mathbf{x})$). Jelikož f je maximem těchto funkcí, je i funkce f konvexní.

Příklad 15.11. Mějme funkci

$$f(\mathbf{c}) = \max\{\mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}\mathbf{x} \ge \mathbf{b}\},\$$

která vyjadřuje závislost optimální hodnoty daného lineárního programu na vektoru \mathbf{c} (viz §11). Máme $f(\mathbf{c}) = \max_{\mathbf{x} \in X} \mathbf{c}^T \mathbf{x}$ a $X = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ (zde předpokládáme, že pro každé \mathbf{c} maximum existuje, neboli množina X je neprázdná a omezená). Je-li \mathbf{x} pevné, je $\mathbf{c}^T \mathbf{x}$ lineární funkce vektoru \mathbf{c} . Funkce f je tedy maximum nekonečného množství lineárních funkcí, tedy je konvexní.

⁵Pokud pro nějaké **x** množina $\{g_i(\mathbf{x}) \mid i \in I\}$ nemá největší prvek (což se může stát jen tehdy, je-li množina I nekonečná), můžeme maximum v (15.7) nahradit supremem a věta stále platí.

Příklad 15.12. Necht' $\mathbf{a}_1, \ldots, \mathbf{a}_n \in \mathbb{R}^m$, $b_1, \ldots, b_n \in \mathbb{R}$ a $\mathbf{w} = (w_1, \ldots, w_n) \in \mathbb{R}^n$ je vektor nezáporných vah. Přibližné řešení soustavy $\mathbf{a}_i^T \mathbf{x} = b_i$, $i = 1, \ldots, n$, ve smyslu *vážených nejmenších čtverců* (viz §5.4) znamená vypočítat

$$f(\mathbf{w}) = \min_{\mathbf{x} \in \mathbb{R}^m} \sum_{i=1}^n w_i (\mathbf{a}_i^T \mathbf{x} - b_i)^2,$$

kde jsme označili hodnotu výsledného minima jako funkci vektoru vah. Funkce f je konkávní, protože je minimem lineárních funkcí.

15.4 Cvičení

- 15.1. Pro každou funkci $f: \mathbb{R}^n \to \mathbb{R}$ dokažte z podmínky (15.1), které z těchto čtyř tvrzení platí (a pro jaké n): funkce je konvexní, konkávní, konvexní i konkávní, ani konvexní ani konkávní.
 - a) $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x} + b$
 - b) $f(\mathbf{x}) = \mathbf{x}^T \mathbf{x}$
 - c) $f(\mathbf{x}) = \text{aritmetický průměr čísel } x_1, \dots, x_n$
 - d) $f(\mathbf{x}) = \text{median}_{i=1}^n x_i \text{ (medián čísel } x_1, \dots, x_n)$
 - e) $f(\mathbf{x}) = \min_{i=1}^{n} |x_i|$
 - f) $f(\mathbf{x}) = \text{součet dvou nejmenších čísel z čísel } x_1, \dots, x_n$
- 15.2. Dokažte konvexitu či konkavitu funkcí z Příkladu 15.4. Můžete použít podmínku (15.1) a věty z §15.2 a §15.3.
- 15.3. Pro každou funkci dokažte, které z těchto čtyřech tvrzení platí: funkce je konvexní, konkávní, konvexní i konkávní, ani konvexní ani konkávní. Můžete použít podmínku (15.1) a věty z §15.2 a §15.3.
 - a) $f(x) = e^{x^2}$
 - b) $f(x) = e^{-x^2}$
 - c) f(x,y) = |x y|
 - d) f(x,y) = -y
 - $e) f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
 - f) $f(\mathbf{x}) = \sum_{i=1}^{n} x_i \log x_i$ na množině \mathbb{R}^n_{++}
 - g) $f(\mathbf{x}) = \sum_{i=1}^{k} \log(b_i \mathbf{a}_i^T \mathbf{x})$ na množině $X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{a}_i^T \mathbf{x} < b_i, i = 1, \dots, k \}$
 - h) $f(\mathbf{x}) = \max_{i=1}^{n} x_i + \min_{i=1}^{n} x_i$
 - i) $f(\mathbf{x}) = \max_{i=1}^{n} x_i \min_{i=1}^{n} x_i$
 - j) $f(\mathbf{x}) = \max \left\{ \left| \sum_{i=1}^{n} x_i 1 \right|, \sum_{i=1}^{n} |x_i| 1 \right\}$
 - k) (\star) $f(\mathbf{x}) = \text{součet } k$ největších čísel x_1, \dots, x_n (kde $k \leq n$ je dáno)
- 15.4. Máme funkci jedné proměnné $f(x)=(x^2-a)^2$. Pro jaké hodnoty parametru $a\in\mathbb{R}$ je tato funkce konvexní? Načrtněte graf funkce pro nějaké a, pro které funkce není konvexní.
- 15.5. Může být součet nekonvexních funkcí konvexní funkce? Najděte protipříklad. Je to v rozporu c Větou 15.5?

15.6. Robustní prokládání přímky množinou bodů $(\mathbf{x}_i, y_i) \in \mathbb{R}^n \times \mathbb{R}$ (pro $i = 1, \dots, m$) vyžaduje minimalizaci funkce

$$f(\mathbf{a}, b) = \sum_{i=1}^{m} \max\{-\mathbf{a}^{T}\mathbf{x}_{i} + b + y_{i} - \varepsilon, \ 0, \ \mathbf{a}^{T}\mathbf{x}_{i} + b - y_{i} - \varepsilon\},\$$

- kde $\mathbf{a} \in \mathbb{R}^n$ a $b \in \mathbb{R}$. Dokažte, že $f(\mathbf{a}, b)$ je konvexní funkce.
- 15.7. Každý z obrázků zobrazuje některé vrstevnice funkce dvou proměnných a jejich výšky. Je možné, aby funkce, která má tyto vrstevnice, byla konvexní? Dokažte z podmínky (15.1).

- 15.8. Co je subkontura výšky 2 funkce jedné proměnné $f(x) = x^2 x$?
- 15.9. Dokažte, že elipsoid $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{A} \mathbf{x} \leq 1\}$ (kde **A** je positivně definitní, viz §6.3.2) je konvexní množina.
- 15.10. Dokažte, že množina $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \geq \mathbf{0}, \prod_{i=1}^n x_i \geq 1\}$ je konvexní (symbol $\prod_i x_i$ značí součin čísel x_1, \ldots, x_n).
- 15.11. Dokažte, že následující funkce jsou nekonvexní:
 - a) Minimalizace funkce $f(\mathbf{x}_1, \dots, \mathbf{x}_n) = \max_{i=1}^m \min_{j=1}^n \|\mathbf{a}_i \mathbf{x}_j\|$. Jaký význam má tato formulace v porovnání s (16.3)?
 - b) Příklad 9.10
 - c) Cvičení 9.7

Nápověda a řešení

- 15.1.a) Konvexní i konkávní, nerovnost (15.1) platí s rovností.
- 15.1.b) Je konvexní, není konkávní.
- 15.1.c) Konvexní i konkávní, nerovnost (15.1) platí s rovností.
- 15.1.d) Pro $n \le 2$ konvexní i konkávní, pro n > 2 ani konvexní ani konkávní.
- 15.1.e) Pro n=1 je funkce konvexní. Pro n=2 není konvexní, neboť (15.1) není splněna např. pro $\mathbf{x}=(1,0),\ \mathbf{y}=(0,1),\ \alpha=\frac{1}{2}.$ Pro n>2 také není konvexní, což plyne z nekonvexity pro n=2, protože můžeme zvolit $\mathbf{x}=(1,0,0,0,\ldots)$ a $\mathbf{y}=(0,1,1,1,\ldots)$.
 - Funkce není konkávní pro žádné n. Pro n=1 dokážeme z (15.1) volbou $\mathbf{x}=-1, \mathbf{y}=1, \alpha=\frac{1}{2}$. Pro n>1 můžeme vektory opět doplnit opakováním poslední číslice.
- 15.1.f) Dokážeme, že pro n=3 funkce není konvexní. Vezmeme $\mathbf{x}=(1,2,3), \ \mathbf{y}=(3,2,1), \ \alpha=\frac{1}{2}.$ Pak $f(\alpha\mathbf{x}+(1-\alpha)\mathbf{y})=f(2,2,2)=4 \not\leq (3+3)/2=\frac{1}{2}f(1,2,3)+\frac{1}{2}f(3,2,1)=\frac{1}{2}f(\mathbf{x})+\frac{1}{2}f(\mathbf{y}).$
- 15.3.j) Je konvexní. Absolutní hodnota je konvexní funkce, jejich součet také, maximum konvexních funkcí je konvexní funkce.

- 15.7. V podmínce (15.1) zvolte \mathbf{x}, \mathbf{y} na vrstevnicích výšky 1 a 3. Zvolte chytře α . Odpovědi: ne, ano.
- 15.8. Interval [-1, 2].
- 15.9. Funkce $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ je konvexní, viz Příklad 15.5. Elipsoid je subkontura této funkce, tedy je to konvexní množina.
- 15.10. Zlogaritmováním máme $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \geq \mathbf{0}, \prod_{i=1}^n x_i \geq 1\} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \geq \mathbf{0}, \sum_{i=1}^n \log x_i \geq 0\}$ (protože logaritmus je rostoucí funkce a tedy nemění znaménko nerovnosti). Funkce $f(\mathbf{x}) = -\sum_i \log x_i$ je na množině \mathbb{R}^n_{++} konvexní a proto její subkontura je konvexní množina.

Kapitola 16

Konvexní optimalizační úlohy

Věta 16.1. Necht' funkce $f: \mathbb{R}^n \to \mathbb{R}$ je konvexní na konvexní množině $X \subseteq \mathbb{R}^n$. Pak každé lokální minimum funkce f na množině X je zároveň globální.

 $D\mathring{u}kaz$. Necht' **x** je lokálním minimem f na X, viz obrázek:

Dle definice lokálního minima (viz §8.10) tedy existuje $\varepsilon > 0$ tak, že $f(\mathbf{x}) \leq f(\mathbf{y})$ pro všechna $\mathbf{y} \in B_{\varepsilon}(\mathbf{x}) \cap X$. Nechť ale \mathbf{x} není globální minimum, tedy existuje $\mathbf{x}^* \in X$ tak, že $f(\mathbf{x}^*) < f(\mathbf{x})$. Ukážeme, že to vede ke sporu. Můžeme totiž zvolit $0 < \alpha < 1$ tak, že bod $\mathbf{y} = (1 - \alpha)\mathbf{x} + \alpha\mathbf{x}^*$ leží v $B_{\varepsilon}(\mathbf{x})$. Protože je množina X konvexní, leží bod \mathbf{y} zároveň i v X. Je

$$f(\mathbf{y}) = f((1-\alpha)\mathbf{x} + \alpha\mathbf{x}^*) \le (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{x}^*) < (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{x}) = f(\mathbf{x}).$$

Ale tvrzení $f(\mathbf{y}) < f(\mathbf{x})$ je ve sporu s předpokladem, že \mathbf{x} je lokální minimum.

Minimalizaci konvexní funkce na konvexní množině se říká **konvexní optimalizační úloha**. Pro takovou úlohu nám tedy stačí najít libovolné lokální minimum, abychom našli globální minimum.

16.1 Příklady nekonvexních úloh

Najít globální minimum funkce na množině je obvykle mnohem těžší než najít *nějaké* lokální minimum. Mohli bychom si myslet, že globální minimum najdeme tak, že najdeme všechna lokální minima a vybereme to, pro které je účelová funkce nejmenší. Problém je v tom, že nekonvexní úloha může mít lokálních minim velmi mnoho.

Příklad 16.1. Zopakujme úlohu (7.1): pro danou čtvercovou matici **A** minimalizujeme funkci $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ na množině $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{x} = 1\}$. Tato úloha neni konvexní, neboť množina přípustných řešení není konvexní (je to *n*-rozměrná sféra). My ale víme, že globální optimum úlohy lze najít pomocí spektrálního rozkladu.

Zde jsme měli štěstí: najít globální optimum úlohy (7.1) je snadné, i když úloha není konvexní. To je ale výjimka – typicky je nalezení globálního minima nekonvexní úlohy velmi těžké.

Příklad 16.2. Uveď me příklad, na kterém bude na první pohled vidět, že nekonvexní úloha může mít velmi mnoho lokálních minim. Řešme úlohu

$$\max\{\mathbf{x}^T\mathbf{x} \mid \mathbf{x} \in [-1, 1]^n\},\tag{16.1}$$

tedy maximalizujeme konvexní funkci $\mathbf{x}^T\mathbf{x}$ na hyperkrychli $[-1,1]^n$. Je jasné (nakreslete si obrázek pro n=2, tedy pro čtverec!), že funkce má lokální maximum v každém vrcholu hyperkrychle. Jelikož hyperkrychle má 2^n vrcholů, úloha má 2^n lokálních maxim.

V tomto symetrickém případě globální maximum snadno najdeme úvahou. Uvažme však mírně obecnější úlohu

$$\min\{\mathbf{x}^T \mathbf{A} \mathbf{x} \mid \mathbf{x} \in [-1, 1]^n\},\tag{16.2}$$

kde $\mathbf{A} \in \mathbb{Z}^{n \times n}$ (tedy matice má celočíselné prvky). Je známo, že vyřešení (tj. nalezení globálního maxima) této úlohy je prakticky nemožné (přesněji, je NP-těžké, srov. §11.4).

Příklad 16.3. Podívejme se znovu na úlohu shlukování, Příklad 1.17 z úvodní kapitoly. Tam se minimalizuje funkce

$$f(\mathbf{x}) = f(\mathbf{x}_1, \dots, \mathbf{x}_n) = \sum_{i=1}^m \min_{j=1}^n \|\mathbf{a}_i - \mathbf{x}_j\|$$
 (16.3)

přes vektory $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$. Máme $f: \mathbb{R}^{dn} \to \mathbb{R}$, tedy vlastně minimalizujeme přes jediný vektor $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^{dn}$.

Je funkce (16.3) konvexní? Pro každé i je $\|\mathbf{a}_i - \mathbf{x}_j\|$ funkce vektoru \mathbf{x}_j , tedy i vektoru \mathbf{x} . Ale funkce $\min_{j=1}^n \|\mathbf{a}_i - \mathbf{x}_j\|$ již konvexní být nemusí (Větu 15.8 nelze použít, ta hovoří o maximu konvexních funkcí). Tedy ani funkce f, která je jejich součtem, nemusí být konvexní.

Tím, že se nám nepodařilo dokázat konvexitu funkce f, jsme samozřejmě nedokázali její nekonvexitu. To lze udělat následovně. Vezměme jednoduchý případ $d=1, m=1, n=2, a_1=0$. Pak (1.17) má tvar $f(x_1,x_2)=\min\{|x_1|,|x_2|\}$. Tato funkce není konvexní, protože např. její řez $\varphi(t)=f(t,t-1)=\min\{|t|,|t-1|\}$ není konvexní (nakreslete si graf funkce φ). Bez důkazu uved'me, že funkce není konvexní ani pro větší d,m,n. To nás nepřekvapí, protože, jak jsme řekli Příkladu 1.17, že minimalizace funkce (16.3) je NP-těžké.

Příklad 16.4. Úloha celočíselného programování (11.22) je nekonvexní, protože množina $\{ \mathbf{x} \in \{0,1\}^n \mid \mathbf{A}\mathbf{x} \geq \mathbf{b} \}$ jejích přípustných řešení je nekonvexní (srov. Cvičení 12.1.g).

16.2 Konvexní optimalizační úloha ve standardním tvaru

Uvažujme nyní obecnou úlohu spojité optimalizace ve standarním tvaru (1.9),

$$\min\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{g}(\mathbf{x}) \le \mathbf{0}, \ \mathbf{h}(\mathbf{x}) = \mathbf{0}\}$$
(16.4)

neboli

min
$$f(x_1, \ldots, x_n)$$

za podmínek $g_i(x_1, \ldots, x_n) \leq 0, \quad i = 1, \ldots, m$
 $h_i(x_1, \ldots, x_n) = 0, \quad i = 1, \ldots, l$

kde $f: \mathbb{R}^n \to \mathbb{R}$, $(g_1, \dots, g_m) = \mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$, $(h_1, \dots, h_l) = \mathbf{h}: \mathbb{R}^n \to \mathbb{R}^l$. Množina přípustných řešení této úlohy je konvexní, jestliže funkce f, g_1, \dots, g_m jsou konvexní a funkce h_1, \dots, h_l jsou afinní (tedy zobrazení \mathbf{h} je afinní). Tato množina je totiž průnik množin $\{\mathbf{x} \in \mathbb{R}^n \mid g_i(\mathbf{x}) \leq 0\}$ (které jsou konvexní, neboť jsou to subkontury konvexní funkce g_i) a $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{h}(\mathbf{x}) = \mathbf{0}\}$ (což je afinní podprostor, tedy také konvexní).

Podmínka, že funkce g_1, \ldots, g_m jsou konvexní a zobrazení **h** je afinní, je postačující ale nikoliv nutná pro konvexitu množiny přípustných řešení.

Příklad 16.5. Platí (promyslete!)

$$\{(x,y) \in \mathbb{R}^2 \mid x/(1+y^2) \le 0, (x+y)^2 = 0\} = \{(x,y) \in \mathbb{R}^2 \mid x \le 0, x+y = 0\}.$$

Tedy máme dva různé popisy stejné množiny. V prvním tvaru funkce $g(x,y) = x/(1+y^2)$ není konvexní a funkce $h(x,y) = (x+y)^2$ není afinní. Přesto je množina konvexní, což je vidět ze druhého tvaru.

Úloze tvaru (16.4), ve které jsou funkce f, g_1, \ldots, g_m konvexní a zobrazení h afinní, říkáme konvexní optimalizační úloha ve standardním tvaru.

16.3 Ekvivalentní transformace úlohy

Dvě úlohy ve tvaru (16.4) nazveme **ekvivalentní**, když se z množiny optimálních řešení jedné dá 'snadno' získat množina optimálních řešení druhé a naopak. **Ekvivalentní transformace** je pak každá transformace úlohy, jejímž výsledkem je úloha ekvivalentní. Dále uvedeme příklady ekvivalentních transformací. U každé poznamenáme, zda zachovává konvexitu úlohy:

• Změna proměnných. Nechť $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ je bijektivní zobrazení (viz §1.1.2). Pak úloha (16.4) je ekvivalentní úloze

$$\min\{f(\varphi(\mathbf{x})) \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{g}(\varphi(\mathbf{x})) \leq \mathbf{0}, \ \mathbf{h}(\varphi(\mathbf{x})) = \mathbf{0}\}.$$

Tato transformace nemusí zachovat konvexitu úlohy (viz §15.3.2).

• Monotónní transformace účelové funkce. Nechť $\psi \colon \mathbb{R} \to \mathbb{R}$ je rostoucí funkce. Pak

$$\operatorname{argmin}\{ f(\mathbf{x}) \mid \mathbf{x} \in X \} = \operatorname{argmin}\{ \psi(f(\mathbf{x})) \mid \mathbf{x} \in X \}.$$

Tato transformace nemusí zachovat konvexitu funkce f.

Příklad 16.6. Tuto transformaci jsme již několikrát použili v nejmenších čtvercích. Máme minimalizovat např. funkci $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2$, ale zvolíme $\psi(y) = y^2$ a minimalizujeme funkci $\psi(f(\mathbf{x})) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = (\mathbf{A}\mathbf{x} - \mathbf{b})^T(\mathbf{A}\mathbf{x} - \mathbf{b})$. Nová funkce má výhodu, že je na rozdíl od staré diferencovatelná, a to při zachování konvexity.

• Slackové proměnné. Podobně jako v LP (viz §11.1), úloha (16.4) je ekvivalentní úloze

$$\min\{f(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{s} \in \mathbb{R}^m, \ \mathbf{s} \ge \mathbf{0}, \ \mathbf{g}(\mathbf{x}) + \mathbf{s} = \mathbf{0}, \ \mathbf{h}(\mathbf{x}) = \mathbf{0}\}.$$

Tato transformace zachová konvexitu úlohy jen v případě, kdy $\mathbf{g}(\mathbf{x}) + \mathbf{s}$ je afinní zobrazení vektoru (\mathbf{x}, \mathbf{s}) , tedy kdy zobrazení \mathbf{g} je afinní,

• Epigrafový tvar. Úlohu (16.4) je ekvivalentní úloze

$$\min\{y \mid \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R}, f(\mathbf{x}) - y < 0, \mathbf{g}(\mathbf{x}) < \mathbf{0}, \mathbf{h}(\mathbf{x}) = \mathbf{0}\}.$$

V nové úloze vlastně hledáme nejnižší bod epigrafu funkce f na množině přípustných řešení. Tato transformace zachovává konvexitu úlohy. Plyne z ní, že každou (konvexní) úlohu lze převést na (konvexní) úlohu s lineární účelovou funkcí.

16.4 Třídy konvexních optimalizačních úloh

Optimalizační úlohy ve tvaru (16.4) se taxonomizují podle druhu funkcí f, g_i, h_i . Pro každou třídu existují specializované algoritmy schopné najít lokální minimum (v případě konvexní úlohy tedy globální minimum). Přehled dostupných implementací takových algoritmů je možno najít např. na http://www.neos-guide.org.

16.4.1 Lineární programování (LP)

V lineárním programování jsou všechny funkce f, g_i, h_i afinní. Jde tedy v jistém smyslu o nejjednoduší případ konvexní optimalizační úlohy. Přesto jsme viděli v Kapitole 11, že již tento jednoduchý případ má velmi mnoho aplikací.

16.4.2 Kvadratické programování (QP)

V kvadratickém programování jsou funkce g_i, h_i afinní a funkce f je kvadratická. Tedy je to úloha

$$\begin{aligned} & \min \quad \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} \\ & \text{za podm.} \quad \mathbf{C} \mathbf{x} \leq \mathbf{d}, \\ & \mathbf{E} \mathbf{x} = \mathbf{f}, \end{aligned}$$

kde $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^{n}$, $\mathbf{C} \in \mathbb{R}^{m \times n}$, $\mathbf{d} \in \mathbb{R}^{m}$, $\mathbf{E} \in \mathbb{R}^{l \times n}$, $\mathbf{f} \in \mathbb{R}^{l}$. Úloha je to konvexní, právě když funkce f je navíc konvexní, neboli matice \mathbf{A} je positivně semidefinitní (viz Příklad 15.5).

Příklad 16.7. Přibližné řešení přeurčené lineární soustavy ve smyslu nejmenších čtverců (5.2) je konvexní úloha QP bez omezení, tj. f je kvadratická konvexní (jak jsme ukázali v Příkladě 6.6) a m = l = 0. Tuto úlohu lze převést na řešení soustavy lineárních rovnic (5.3).

Příklad 16.8. Řešení lineární soustavy s nejmenší normou (§5.2) nebo, obecněji, úloha nejmenších čtverců s omezeními typu rovnosti (Příklad 10.3) jsou příklady konvexního QP s omezeními typu rovnosti (tj. **A** je positivně semidefinitní, m = 0 a h_i jsou afinní). Tato úloha jde převést na řešení lineární soustavy.

Příklad 16.9. Obecněji, minimalizace kvadratické funkce za podmínek typu rovnosti (tj. m = 0, l > 0 a h_i jsou afinní) se dá převést na řešení soustavy lineárních rovnic, viz Cvičení 10.20. Je-li ovšem **A** indefinitní, musíme ověřit podmínky druhého řádu (§10.4).

Příklad 16.10. Často je užitečné úlohu nejmenších čtverců (5.2) řešit za omezení $\mathbf{c} \leq \mathbf{x} \leq \mathbf{d}$, tj. každá proměnná x_j musí být v intervalu $[c_j, d_j]$ (tzv. box constraints). To vede na konvexní QP s omezeními typu nerovnosti (tj. **A** je positivně semidefinitní a m > 0). Tuto úlohu již nelze převést na řešení soustavy lineárních rovnic.

Příklad 16.11. Čtverec vzdálenosti bodu $\mathbf{y} \in \mathbb{R}^n$ od konvexního mnohostěnu $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$ je optimální hodnota kvadratického programu

$$\min\{\|\mathbf{y} - \mathbf{x}\|_2^2 \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}\mathbf{x} \le \mathbf{b}\}.$$

Příklad 16.12. Je dáno m bodů v \mathbb{R}^n , z nichž každý patří do jedné ze dvou tříd, označených -1 a 1. Jinými slovy, je dána množina dvojic $(\mathbf{x}_i, y_i) \in \mathbb{R}^n \times \{-1, 1\}$ pro $i = 1, \ldots, m$. V úloze lineární klasifikace hledáme nadrovinu, která odděluje body z obou tříd. Tedy hledáme $\mathbf{a} \in \mathbb{R}^n$ a $b \in \mathbb{R}$ takové, aby

$$\mathbf{a}^T \mathbf{x}_i - b < 0 \quad \text{pro } y_i = -1,$$

 $\mathbf{a}^T \mathbf{x}_i - b > 0 \quad \text{pro } y_i = 1,$

což lze napsat jako

$$y_i(\mathbf{a}^T\mathbf{x}_i - b) > 0, \quad i = 1, \dots, m.$$

$$(16.5)$$

Označme $\varepsilon_i = y_i(\mathbf{a}^T \mathbf{x}_i - b)$ a vydělme vektor (\mathbf{a}, b) kladným číslem $\min_{i=1}^m \varepsilon_i$. Pak soustavu (16.5) můžeme ekvivalentně psát jako

$$y_i(\mathbf{a}^T \mathbf{x}_i - b) \ge 1, \quad i = 1, \dots, m. \tag{16.6}$$

Hledáme-li libovolnou oddělující nadrovinu, stačí nám najít libovolné řešení soustavy nerovnic (16.6), což vede na úlohu LP.

Soustava ale navíc říká, že body jsou odděleny pásem $\{ \mathbf{x} \in \mathbb{R}^n \mid -1 \geq \mathbf{a}^T \mathbf{x} - b \geq 1 \}$:

Snadno spočítáme (srov. Cvičení 5.14), že šířka pásu je $2/\|\mathbf{a}\|_2$. V úloze support vector machine (SVM) hledáme oddělující nadrovinu která maximalizuje šířku pásu, tedy minimalizuje $\|\mathbf{a}\|_2^2 = \mathbf{a}^T\mathbf{a}$ za podmínek (16.6). To je konvexní úloha QP.

16.4.3 Kvadratické programování s kvadratickými omezeními (QCQP)

Obecnější variantou je kvadratické programování s kvadratickými omezeními (QCQP, quadratically constrained quadratic programming), kde funkce f, g_i jsou kvadratické a funkce h_i jsou afinní. Úloha je konvexní, právě když funkce f, g_i jsou navíc konvexní.

16.4.4 Programování na kuželu druhého řádu (SOCP)

V úloze programování na kuželu druhého řádu (SOCP, second-order cone programming) jsou funkce f, h_i afinní a funkce g_i mají tvar

$$g_i(\mathbf{x}) = \|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\|_2 - (\mathbf{c}_i^T \mathbf{x} + d_i). \tag{16.7}$$

Tedy úloha SOCP má tvar (pro jednoduchost neuvažujeme afinní omezení $h_i(\mathbf{x}) = 0$)

min
$$\mathbf{e}^T \mathbf{x}$$

za podmínek $\|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\|_2 \le \mathbf{c}_i^T \mathbf{x} + d_i, \quad i = 1, \dots, m.$

Funkce g_i jsou konvexní (neboť norma je konvexní funkce, viz Příklad 15.4 a dále viz Věta 15.7). Podmínku $g_i(\mathbf{x}) \leq 0$ lze psát také jako $(\mathbf{A}_i\mathbf{x} + \mathbf{b}_i, \mathbf{c}_i^T\mathbf{x} + d_i) \in K_2^n$, kde konvexní množina

$$K_2^n = \{ (\mathbf{x}, y) \in \mathbb{R}^{n+1} \mid ||\mathbf{x}||_2 \le y \}$$

je epigraf eukleidovské normy $\|\cdot\|_2$, kterému se také říká kužel druhého řádu.

Pro $\mathbf{A}_i = \mathbf{0}$ se podmínka $g_i(\mathbf{x}) \leq 0$ stane lineární nerovnicí. Pro $\mathbf{c}_i = \mathbf{0}$ se podmínka $g_i(\mathbf{x}) \leq 0$ po umocnění na druhou stane konvexní kvadratická. Tedy LP a konvexní QCQP jsou speciální případy SOCP.

Příklad 16.13. Podívejme se znovu na úlohu nalzení geometrického mediánu, Příklad 1.16 z úvodní kapitoly. Tam minimalizujeme funkci

$$f(\mathbf{x}) = \sum_{i=1}^{m} \|\mathbf{x} - \mathbf{a}_i\|_2$$
 (16.8)

na množině \mathbb{R}^n . Tato funkce je konvexní a po zavedení pomocných proměnných z_i (podobná úprava jako v §11.1.1) lze její minimalizování formulovat jako SOCP:

$$\min \ z_1+\dots+z_m$$
za podmínek $\|\mathbf{x}-\mathbf{a}_i\|_2 \leq z_i, \ i=1,\dots,m.$

Pro případ n=2 má úloha jednoduchý mechanický model¹. Do vodorovného prkna vyvrtáme díry o souřadnicích \mathbf{a}_i . Každou dírou provlečeme provázek. Provázky jsou nahoře svázané uzlem do jednoho bodu a dole mají závaží o stejné hmotnosti. Poloha uzlu je \mathbf{x} . Hodnota $f(\mathbf{x})$ je potenciální energie soustavy a ustálený stav odpovídá minimu $f(\mathbf{x})$.

16.4.5 Semidefinitní programování (SDP)

Věta 16.2. Pro každé $n \in \mathbb{N}$ je množina všech positivně semidefinitních matic rozměru $n \times n$ konvexní kužel.

$$D\mathring{u}kaz$$
. Necht' $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ jsou takové, že pro každé $\mathbf{x} \in \mathbb{R}^n$ platí $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ a $\mathbf{x}^T \mathbf{B} \mathbf{x} \ge 0$. Pak pro každé $\mathbf{x} \in \mathbb{R}^n$ a $\alpha, \beta \ge 0$ platí $\mathbf{x}^T (\alpha \mathbf{A} + \beta \mathbf{B}) \mathbf{x} = \alpha \mathbf{x}^T \mathbf{A} \mathbf{x} + \beta \mathbf{x}^T \mathbf{B} \mathbf{x} \ge 0$.

Konvexní kužel je konvexní množina. To umožňuje formulovat třídu konvexních úloh známou jako semidefinitní programování (SDP). Jednou z možných formulací je²

min
$$\langle \mathbf{C}, \mathbf{X} \rangle$$

za podmínek \mathbf{X} je positivně semidefinitní $\langle \mathbf{A}_i, \mathbf{X} \rangle = b_i, \quad i = 1, \dots, m.$ (16.9)

kde matice $\mathbf{C}, \mathbf{A}_i \in \mathbb{R}^{n \times n}$ a skaláry b_i jsou dány a optimalizujeme přes positivně semidefinitní matice $\mathbf{X} \in \mathbb{R}^{n \times n}$. Operace $\langle \mathbf{A}, \mathbf{X} \rangle = \sum_i \sum_j a_{ij} x_{ij}$ označuje skalární součin matic (viz §4.7).

¹Toto mechanické zařízení je známé jako *Varignon frame* a v minulosti se opravdu používalo na řešení úlohy. Úloha má bohatou historii, je známa také jako Fermat-Weberův problém.

²Namítnete, že nemůžeme mluvit o konvexitě úlohy (16.9), protože v této úloze optimalizujeme přes množinu matic a konvexitu jsme definovali pro množiny a funkce vektorů. Definice konvexity lze ovšem snadno zobecnit na množiny a funkce matic: matici $\mathbb{R}^{m \times n}$ můžeme buď přerovnat do vektoru \mathbb{R}^{mn} , nebo (lépe) můžeme konvexitu definovat místo na prostoru \mathbb{R}^n na obecném vektorového prostoru (viz učebnice lineární algebry). Podobně již pro Větu 16.2.

SDP je velmi obecná třída konvexních úloh. LP, konvexní QCQP a SOCP jsou speciální případy SDP. Pro ilustraci ukážeme, že pokud matice \mathbf{C}, \mathbf{A}_i jsou diagonální, úloha (16.9) se redukuje na LP. V tom případě v součinech $\langle \mathbf{C}, \mathbf{X} \rangle$ a $\langle \mathbf{A}_i, \mathbf{X} \rangle$ nediagonální prvky matice \mathbf{X} nehrají žádnou roli. Diagonální matice je positivně semidefinitní, právě když všechny její prvky jsou nezáporné (viz Cvičení 6.15). Tedy úloha (16.9) se redukuje na

$$\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \geq \mathbf{0}, \mathbf{a}_i^T\mathbf{x} = b_i \ (i = 1, \dots, m)\},\$$

kde vektory $\mathbf{c}, \mathbf{a}_i \in \mathbb{R}^n$ jsou diagonály matic \mathbf{C}, \mathbf{A}_i .

Některé konvexní úlohy nepatří do žádné z uvedených tříd.

Příklad 16.14. Analytický střed mnohostěnu $\{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \geq \mathbf{b} \}$ je bod uvnitř mnohostěnu, který maximalizuje součin vzdáleností od nadrovin $\mathbf{a}_i^T\mathbf{x} = b_i$. Předpokládáme, že v každé nerovnici $\mathbf{a}_i^T\mathbf{x} \geq b_i$ je $\|\mathbf{a}_i\|_2 = 1$ (to jde vždy zařídit vydělením nerovnice čislem $\|\mathbf{a}_i\|_2$). Vzdálenost (se znaménkem) bodu \mathbf{x} od nadroviny $\mathbf{a}_i^T\mathbf{x} = b_i$ je tedy rovna $\mathbf{a}_i^T\mathbf{x} - b_i$ (viz §4.6.2). Místo součinu vzdáleností maximalizujme jeho logaritmus (což je rostoucí funkce), tedy funkci

$$f(\mathbf{x}) = \log \prod_{i=1}^{m} (\mathbf{a}_i^T \mathbf{x} - b_i) = \sum_{i=1}^{m} \log(\mathbf{a}_i^T \mathbf{x} - b_i).$$
 (16.10)

Tato funkce je konkávní. Funkce je definována jen pro vnitřní body mnohostěnu (tj. body splňující $\mathbf{A}\mathbf{x} > \mathbf{b}$) a blíží se $+\infty$ když se bod \mathbf{x} blíží zevnitř k hranici. Tím je implicitně vynucena podmínka, že optimální bod má ležet uvnitř mnohostěnu. Lze ukázat, že pokud je mnohostěn neprázdný a omezený, úloha má maximum a toto maximum je jediné.

16.5 Konvexní relaxace nekonvexních úloh

Relaxace je technika, kterou lze někdy získat přibližná řešení obtížných úloh. Spočívá na očividné skutečnosti (promyslete!), že pro každou množinu $X \subseteq \mathbb{R}^n$ a funkci $f: X \to \mathbb{R}$ platí

$$Y \supseteq X \implies \min_{\mathbf{x} \in Y} f(\mathbf{x}) \le \min_{\mathbf{x} \in X} f(\mathbf{x}).$$
 (16.11)

Jak toho použíť? Předpokládejme, že účelová funkce f je jednoduchá (např. konvexní), ale množina X přípustných řešení je komplikovaná a úloha $\min_{\mathbf{x} \in X} f(\mathbf{x})$ je díky tomu obtížná. Nahradíme množinu X 'jednodušší' množinou $Y \supseteq X$ a řešíme snadnější úlohu $\min_{\mathbf{x} \in Y} f(\mathbf{x})$. Když budeme mít štěstí, bude nerovnost v (16.11) platit s rovností, tedy obě optima budou stejná. Když ne, získáme alespoň dolní mez na optimální řešení.

Je-li množina X nekonvexní, můžeme ji takto nahradit konvexní množinou $Y \supseteq X$. Pokud funkce f je konvexní, získáme konvexní úlohu. Mluvíme pak o **konvexní relaxaci**. Příkladem konvexní relaxace je LP relaxace, kterou jsme už viděli: lineární program (11.23) je konvexní relaxace lineárního celočíselného programu (11.22).

16.6 Cvičení

16.1. Mějme úlohu

$$\min\{f(x,y) \mid x,y \ge 0, \ 2x + y \ge 1, \ x + 3y \ge 1\}.$$

Nakreslete množinu přípustných řešení. Pro každou z následujících účelových funkcí najděte úvahou množinu optimálních řešení a optimální hodnotu:

- a) f(x,y) = x + y
- b) f(x,y) = x
- c) $f(x,y) = \min\{x,y\}$
- $d) f(x,y) = \max\{x,y\}$
- e) f(x,y) = |x + y|
- f) $f(x,y) = x^2 + 9y^2$

V kterých případech se jedná o konvexní optimalizační úlohu?

- 16.2. Dokažte, že množina optimálních řešení konvexní optimalizační úlohy je konvexní.
- 16.3. Významnou vlastností konvexních funkcí je to, že každé lokální minimum funkce je zároveň globální (Věta 16.1). Ne každá funkce s touto vlastností je ovšem konvexní. Člověk by si mohl myslet, že součet dvou funkcí (ne nutně konvexních) s touto vlastností bude mít tuto vlastnost také. Je toto tvrzení pravdivé?
- 16.4. Najděte spojitou funkci $f: \mathbb{R}^n \to \mathbb{R}$, jejíž každé lokální minimum je zároveň globální a
 - a) není konvexní
 - b) (*) žádná její subkontura není konvexní množina.
- 16.5. Chceme rozestavit n lidí v místnosti čtvercového půdorysu tak, aby 'každý byl od každého co nejdále'. Navrhněte možné formulace této úlohy a u každé určete, zda je konvexní.
- 16.6. (*) Uvažujme úlohu, známou jako lineární lomené programování:

min
$$(\mathbf{c}^T \mathbf{x} + d)/(\mathbf{e}^T \mathbf{x} + f)$$

za podmínek $\mathbf{A} \mathbf{x} \ge \mathbf{b}$
 $\mathbf{e}^T \mathbf{x} + f > 0$

- a) Je účelová funkce na množině přípustných řešení konvexní?
- b) Dokažte, že úloha je ekvivalentní lineárnímu programu (s proměnnými \mathbf{x}, z)

min
$$\mathbf{c}^T \mathbf{y} + dz$$

za podmínek $\mathbf{A} \mathbf{y} \ge \mathbf{b} z$
 $\mathbf{e}^T \mathbf{y} + fz = 1$
 $z > 0$

- 16.7. Najděte explicitní řešení pro následující úlohy QCQP (A, B jsou positivně definitní):
 - a) min{ $\mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}^T \mathbf{A} \mathbf{x} \leq 1$ }
 - b) min{ $\mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n$, $(\mathbf{x} \mathbf{b})^T \mathbf{A} (\mathbf{x} \mathbf{b}) < 1$ }
 - c) $\min\{\mathbf{x}^T \mathbf{B} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x}^T \mathbf{A} \mathbf{x} \leq 1\}$
- 16.8. (\star) Formulujte úlohu $\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_4$ jako konvexní QCQP.
- 16.9. (*) Dokažte, že pro libovolný vektor $\mathbf{x} \in \mathbb{R}^n$ a skaláry $y \geq 0, z \geq 0$ platí

$$\mathbf{x}^T \mathbf{x} \le yz \iff \|(2\mathbf{x}, y - z)\|_2 \le y + z.$$

Uvažujte úlohu, kdy maximalizujeme harmonický průměr afinních fukcí, tedy funkci

$$f(\mathbf{x}) = \left(\sum_{i=1}^{m} (\mathbf{a}_i^T \mathbf{x} - b_i)^{-1}\right)^{-1}$$

- za podmínek $\mathbf{a}_i^T \mathbf{x} > b_i$. Je tato úloha (po možné jednoduché transformaci) konvexní? Vyjádřete úlohu jako SOCP pomocí dokázané ekvivalence.
- 16.10. Sedumi (http://sedumi.ie.lehigh.edu) je jednou z implementací algoritmu na řešení úloh LP, QP, SOCP a SDP (používá tzv. algoritmus vnitřního bodu). Je k dispozici i pro Matlab. Knihovnu si stáhněte a pak prostudujte a pochopte nápovědu k funkci sedumi.m, která je matlabským rozhraním knihovny.

Nápověda a řešení

- 16.3. Vezměme např. funkce $g_1(x) = -e^{-(x+1)^2}$ a $g_2(x) = -e^{-(x-1)^2}$. Každá z těchto funkcí má jediné lokální minimum, ale funkce $g_1 + g_2$ má lokální minima dvě.
- 16.5. Nechť $\mathbf{x}_i \in \mathbb{R}^2$ jsou souřadnice itého člověka v místnosti. Bez ztráty obecnosti nechť je místnost množina $[-1,1] \times [-1,1]$ (kde [-1,1] značí uzavřený interval). Jedna přirozená formulace je taková, že hledáme takové $\mathbf{x}_1, \dots, \mathbf{x}_n$ ležící v tomto čtverci, aby číslo $\min_{i \neq j} \|\mathbf{x}_i \mathbf{x}_j\|$ bylo maximální. Tato úloha není konvexní, neboť její účelová funkce není konvexní.
- 16.6.a) Ne.
- 16.6.b) Uvažujte substituci $\mathbf{y} = \mathbf{x}/(\mathbf{e}^T\mathbf{x} + f), z = /(\mathbf{e}^T\mathbf{x} + f).$
- 16.7.a) Viz Cvičení 11.6.
- 16.7.b) Substituujte $\mathbf{y} = \mathbf{x} \mathbf{b}$.
- 16.7.c) Optimální hodnota je nula.
- 16.9. Místo maximalizace funkce $f(\mathbf{x})$ minimalizujme funkci $1/f(\mathbf{x})$, která je konvexní na množině přípustných hodnot. Úloha je ekvivalentní úloze

min
$$t_1 + \dots + t_m$$

za podmínek $t_i(\mathbf{a}_i^T \mathbf{x} - b_i) \ge 1, \quad i = 1, \dots, m$
 $t_i \ge 0, \quad i = 1, \dots, m.$

Použitím dokázané ekvivalence převedeme na SOCP

$$\begin{aligned} & & & & \min \quad t_1 + \dots + t_m \\ & & \text{za podm\'inek} & & & \|(2, \mathbf{a}_i^T\mathbf{x} - b_i - t_i)\|_2 \geq \mathbf{a}_i^T\mathbf{x} - b_i + t_i, & i = 1, \dots, m \\ & & & \mathbf{a}_i^T\mathbf{x} \geq b_i, & i = 1, \dots, m \\ & & & t_i \geq 0, & i = 1, \dots, m. \end{aligned}$$

Kapitola 17

(*) Lagrangeova dualita

Zatímco v §14 jsme odvodili dualitu pro lineární programování, zde popíšeme základ teorie duality pro obecné optimalizační úlohy. Dualita v LP se pak bude jevit jako speciální případ.

17.1 Minimaxní nerovnost

Pro libovolné množiny X a Y a libovolnou funkci $L: X \times Y \to \mathbb{R}$ platí **minimaxní nerovnost**

$$\min_{x \in X} \underbrace{\max_{y \in Y} L(x, y)}_{F(x)} \ge \max_{y \in Y} \underbrace{\min_{x \in X} L(x, y)}_{G(y)}.$$
(17.1)

Zde předpokládáme, že všechna minima a maxima existují¹. V nerovnosti (17.1) nastává rovnost, právě když existuje bod $(x^*, y^*) \in X \times Y$ takový, že

$$L(x^*, y) \le L(x^*, y^*) \le L(x, y^*) \qquad \forall x \in X, \ y \in Y.$$
 (17.2)

Takovému bodu (x^*, y^*) říkáme **sedlový bod** funkce L na $X \times Y$.

Uvedené skutečnosti se snadno dokáží, podrobné důkazy vynecháme. Pro důkaz druhého tvrzení je užitečné si uvědomit, že podmínku (17.2) lze psát jako $F(x^*) = G(y^*)$.

Příklad 17.1. Necht' $X = Y = \{1, 2, 3, 4\}.$

	1	2	3	4	F(x)	_		1	2	3	4	F(x)
1	-1	4	7	4	7		1	-1	4	7	4	7
				-2			2	4	4	6	-2	6
3	1	5	3	3	5		3	1	0	3	3	3
4	3	5	3	2	5		4	3	3	3	2	3
G(y)	-1	4	3	-2		-	G(y)	-1	0	3	-2	

Funkce L v levé tabulce nemá sedlový bod a máme $\min_{x \in X} F(x) > \max_{y \in Y} G(y)$. Funkce L v pravé tabulce má sedlový bod (dokonce dva, v rámečcích) a $\min_{x \in X} F(x) = \max_{y \in Y} G(y)$. \square

¹Kdyby ne, mohli bychom min/max nahradit inf/sup a nerovnost by stále platila.

17.2 Lagrangeova duální úloha

Ke každé optimalizační úloze (kterou nazýváme primární) lze sestrojit jinou optimalizační úlohu (nazývanou duální) tak, že mezi nimi platí více či méně užitečné vztahy. Jedna forma duality se získá následovně: chytře zvolíme množiny X,Y a funkci L tak, aby levá strana minimaxní nerovnosti (17.1) byla primární (tedy původní) úloha. Pravá strana pak bude duální úloha.

Nechť množina $X \subseteq \mathbb{R}^n$, funkce $f: \mathbb{R}^n \to \mathbb{R}$ a zobrazení $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$ jsou dány; jak dále uvidíme, reprezentují primární úlohu. Zvolme $Y = \mathbb{R}^m_+$ a

$$L(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) + \mathbf{y}^T \mathbf{g}(\mathbf{x}). \tag{17.3}$$

Podívejme se, jak po této volbě vypadá levá strana nerovnosti (17.1), tedy primární úloha. Je

$$F(\mathbf{x}) = \max_{\mathbf{y} \in Y} L(\mathbf{x}, \mathbf{y}) = \max_{\mathbf{y} \ge \mathbf{0}} [f(\mathbf{x}) + \mathbf{y}^T \mathbf{g}(\mathbf{x})] = \begin{cases} f(\mathbf{x}) & \text{když } \mathbf{g}(\mathbf{x}) \le \mathbf{0}, \\ \infty & \text{jinak}, \end{cases}$$
(17.4)

kde ' ∞ ' značí, že úloha max $_{\mathbf{y} \in Y} L(\mathbf{x}, \mathbf{y})$ je neomezená. Abyste to uviděli, promyslete si, že pro každý vektor $\mathbf{a} \in \mathbb{R}^m$ platí

$$\max_{\mathbf{y} \geq \mathbf{0}} \mathbf{y}^T \mathbf{a} = \begin{cases} 0 & \text{když } \mathbf{a} \leq \mathbf{0}, \\ \infty & \text{jinak.} \end{cases}$$

Po dosazení (17.4) do levé strany (17.1) tedy

$$\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in Y} L(\mathbf{x}, \mathbf{y}) = \min\{ f(\mathbf{x}) \mid \mathbf{x} \in X, \ \mathbf{g}(\mathbf{x}) \le \mathbf{0} \}. \tag{17.5}$$

Toto je naše primární úloha. Všimněme si, jak jsme omezující podmínky $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$ zahrnuli do funkce F za cenu, že funkce F může nabývat i nekonečných hodnot.

Nyní se podívejme na duální úlohu. Ta zní

$$\max_{\mathbf{y} \in Y} \min_{\mathbf{x} \in X} L(\mathbf{x}, \mathbf{y}) = \max_{\mathbf{y} \ge \mathbf{0}} G(\mathbf{y}), \tag{17.6}$$

kde

$$G(\mathbf{y}) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \mathbf{y}) = \min_{\mathbf{x} \in X} [f(\mathbf{x}) + \mathbf{y}^T \mathbf{g}(\mathbf{x})].$$
(17.7)

Přesnější tvar duální úlohy nezískáme, dokud nebudeme mít zadánu primární úlohu (tedy X, f, \mathbf{g}) konkrétněji. Nyní můžeme říci jen to, že úloha (17.7) může být pro nějaká \mathbf{y} neomezená a tedy funkce G nabývat hodnot $-\infty$. To bude opět reprezentovat omezení duální úlohy.

Všimněte si, že pro každé \mathbf{x} je funkce L afinní funkcí proměnné \mathbf{y} . Dle Věty 15.8 je tedy duální funkce G konkávní a tedy duální úloha bude maximalizace konkávní funkce, tedy konvexní úloha. To platí vždy, i když primární úloha není konvexní.

Právě sestrojená úloha (17.6) se nazývá **Lagrangeova duální úloha** k (primární) úloze (17.5). Funkce (17.3) se říká Lagrangeova funkce – všimněte si, že je to ta samá funkce, kterou jste potkali u metody Lagrangeových multiplikátorů.

17.3 Silná dualita

Z nerovnosti (17.1) plyne, že optimální hodnota primární úlohy není menší než optimální hodnota duální úlohy. Tato skutečnost je známa jako věta o slabé dualitě. Rozdílu mezi primární a duální optimální hodnotou se říká dualitní mezera. Když v nerovnosti (17.1) nastane rovnost, jsou si optimální hodnoty primární a duální úlohy rovny neboli dualitní mezera je nulová. V tom případě říkáme, že pro naší úlohu platí silná dualita.

Silná dualita může platit pro velice různé úlohy. Uvedeme nyní, ve Větě 17.1, jednu postačující (avšak nikoliv nutnou) podmínku, za které platí silná dualita.

Řekneme, že funkce $g_1, \ldots, g_m \colon \mathbb{R}^n \to \mathbb{R}$ na množině X splňují *Slaterovu podmínku*, když existuje vnitřní bod \mathbf{x} množiny X takový, že $\mathbf{g}(\mathbf{x}) < \mathbf{0}$, neboli

$$g_1(\mathbf{x}) < 0, \dots, g_m(\mathbf{x}) < 0.$$
 (17.8)

Pokud je prvních $k \leq m$ funkcí g_i afinních, podmínku (17.8) lze změkčit na

$$g_1(\mathbf{x}) \le 0, \dots, g_k(\mathbf{x}) \le 0, g_{k+1}(\mathbf{x}) < 0, \dots, g_m(\mathbf{x}) < 0.$$
 (17.9)

Věta 17.1. Nechť

- množina $X \subseteq \mathbb{R}^n$ je konvexní,
- funkce $f: \mathbb{R}^n \to \mathbb{R}$ a $g_1, \dots, g_m: \mathbb{R}^n \to \mathbb{R}$ jsou konvexní na X,
- funkce g_1, \ldots, g_m na množině X splňují Slaterovu podmínku.

Pak platí silná dualita, neboli optimální hodnoty úloh (17.5) a (17.6) jsou si rovny.

Dále uveď me obdobu věty o komplementaritě.

Věta 17.2. Nechť $\mathbf{x} \in X$ je optimum primární úlohy a $\mathbf{y} \in \mathbb{R}^m_+$ je optimum duální úlohy a nastává silná dualita. Pak platí podmínky komplementarity

$$y_i q_i(x_i) = 0 \qquad \forall i = 1, \dots, n. \tag{17.10}$$

Důkaz. Platí

$$F(\mathbf{x}) = f(\mathbf{x}) = G(\mathbf{y}) = \min_{\mathbf{x}' \in X} [f(\mathbf{x}') + \mathbf{y}\mathbf{g}(\mathbf{x}')] \le f(\mathbf{x}) + \mathbf{y}^T\mathbf{g}(\mathbf{x}) \le f(\mathbf{x}).$$

Druhá rovnost plyne ze silné duality. Třetí rovnost je definice duální úlohy. První nerovnost plyne z definice minima. Druhá nerovnost platí, protože $y \ge 0$ a $g(x) \le 0$.

Ale protože $f(\mathbf{x})$ je na začátku i na konci řetězce nerovností, musí obě nerovnosti být rovnostmi, $f(\mathbf{x}) + \mathbf{y}^T \mathbf{g}(\mathbf{x}) = f(\mathbf{x})$. Z toho plyne

$$\mathbf{y}^T \mathbf{g}(\mathbf{x}) = 0. \tag{17.11}$$

To je ale ekvivalentní podmínkám (17.10), protože $y \ge 0$ a $g(x) \le 0$.

17.4 Příklady

Příklad 17.2. Nechť $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}, \ \mathbf{g}(\mathbf{x}) = \mathbf{b} - \mathbf{A}\mathbf{x}, \ X = \mathbb{R}^n$. Primární úloha je

$$\min_{\mathbf{x} \in \mathbb{R}^n} \max_{\mathbf{y} \ge \mathbf{0}} L(\mathbf{x}, \mathbf{y}) = \min \{ \mathbf{c}^T \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A} \mathbf{x} \ge \mathbf{b} \}.$$
 (17.12)

Odvoď me duální úlohu. Lagrangeova funkce je

$$L(\mathbf{x}, \mathbf{y}) = \mathbf{c}^T \mathbf{x} + \mathbf{y}^T (\mathbf{b} - \mathbf{A}\mathbf{x}) = (\mathbf{c}^T - \mathbf{y}^T \mathbf{A})\mathbf{x} + \mathbf{y}^T \mathbf{b},$$
 (17.13)

tedy

$$G(\mathbf{y}) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \mathbf{y}) = \begin{cases} \mathbf{y}^T \mathbf{b} & \text{když } \mathbf{c}^T - \mathbf{y}^T \mathbf{A} = \mathbf{0}, \\ \infty & \text{jinak.} \end{cases}$$

Duální úloha tedy je

$$\max_{\mathbf{y} > \mathbf{0}} G(\mathbf{y}) = \max \{ \mathbf{b}^T \mathbf{y} \mid \mathbf{y} \in \mathbb{R}^m, \mathbf{A}^T \mathbf{y} = \mathbf{c}, \mathbf{y} \ge \mathbf{0} \}.$$
 (17.14)

To je stejný výsledek, jaký bychom dostali podle předpisu (14.1) na konstrukci duálního LP. Konkrétně, primární a duální úloha je dvojice úloh (14.2).

Příklad 17.3. Nechť $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}, \ \mathbf{g}(\mathbf{x}) = \mathbf{b} - \mathbf{A}\mathbf{x}, \ X = \mathbb{R}^n_+$. Primární úloha je

$$\min_{\mathbf{x} \in \mathbb{R}_{+}^{n}} \max_{\mathbf{y} \ge \mathbf{0}} L(\mathbf{x}, \mathbf{y}) = \min \{ \mathbf{c}^{T} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^{n}, \ \mathbf{A} \mathbf{x} \ge \mathbf{b}, \ \mathbf{x} \ge \mathbf{0} \}.$$
 (17.15)

Lagrangeova funkce je (17.13). Je

$$G(\mathbf{y}) = \min_{\mathbf{x} \in \mathbb{R}^n_+} L(\mathbf{x}, \mathbf{y}) = \begin{cases} \mathbf{y}^T \mathbf{b} & \text{když } \mathbf{c}^T - \mathbf{y}^T \mathbf{A} \ge \mathbf{0}, \\ -\infty & \text{jinak.} \end{cases}$$

Duální úloha tedy je

$$\max_{\mathbf{y} > \mathbf{0}} G(\mathbf{y}) = \max \{ \mathbf{b}^T \mathbf{y} \mid \mathbf{A}^T \mathbf{y} \le \mathbf{c}, \ \mathbf{y} \ge \mathbf{0} \}.$$
 (17.16)

To je opět stejný výsledek, jaký bychom dostali podle předpisu (14.1).

Zatím jsme v primární úloze uvažovali jen omezení typu nerovnosti. Omezení typu rovnosti $\mathbf{g}(\mathbf{x}) = \mathbf{0}$ lze nahradit dvěma omezeními typu nerovnosti $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$ a $-\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$. Pak

$$L(\mathbf{x}, \mathbf{y}_+, \mathbf{y}_-) = f(\mathbf{x}) + \mathbf{y}_+^T \mathbf{g}(\mathbf{x}) - \mathbf{y}_-^T \mathbf{g}(\mathbf{x}) = f(\mathbf{x}) + (\mathbf{y}_+ - \mathbf{y}_-)^T \mathbf{g}(\mathbf{x}) = f(\mathbf{x}) + \mathbf{y}^T \mathbf{g}(\mathbf{x}), (17.17)$$

kde jsme označili $\mathbf{y} = \mathbf{y}_+ - \mathbf{y}_-$. Funkci (17.17) můžeme nyní přejmenovat na $L(\mathbf{x}, \mathbf{y})$, která má stejný tvar jako (17.3). Podmínky $\mathbf{y}_+, \mathbf{y}_- \geq \mathbf{0}$ se v rozdílu zruší, tedy $\mathbf{y} \in \mathbb{R}^m$. Ověříme, že

$$F(\mathbf{x}) = \max_{\mathbf{y} \in \mathbb{R}^m} L(\mathbf{x}, \mathbf{y}) = \begin{cases} f(\mathbf{x}) & \text{když } \mathbf{g}(\mathbf{x}) = \mathbf{0}, \\ \infty & \text{jinak,} \end{cases}$$

tedy primární úloha je

$$\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in \mathbb{R}^m} L(\mathbf{x}, \mathbf{y}) = \min\{ f(\mathbf{x}) \mid \mathbf{x} \in X, \ \mathbf{g}(\mathbf{x}) = \mathbf{0} \},$$
(17.18)

jak jsme chtěli. Duální úloha je

$$\max_{\mathbf{y} \in \mathbb{R}^m} \min_{\mathbf{x} \in X} L(\mathbf{x}, \mathbf{y}) = \max_{\mathbf{y} \in \mathbb{R}^m} G(\mathbf{y}). \tag{17.19}$$

Všimněte si, že Slaterova podmínka nebude platit, když zobrazení g nebude afinní.

Příklad 17.4. Napišme duální úlohu k úloze

$$\min\{\mathbf{x}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{A}\mathbf{x} = \mathbf{b}\}.$$

Máme $X = \mathbb{R}^n$ a

$$L(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{x} + \mathbf{y}^T (\mathbf{b} - \mathbf{A} \mathbf{x}) = \mathbf{x}^T \mathbf{x} - \mathbf{y}^T \mathbf{A} \mathbf{x} + \mathbf{y}^T \mathbf{b},$$

duální funkce je tedy

$$G(\mathbf{y}) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \mathbf{y}) = \min_{\mathbf{x} \in \mathbb{R}^n} (\mathbf{x}^T \mathbf{x} - \mathbf{y}^T \mathbf{A} \mathbf{x} + \mathbf{y}^T \mathbf{b}).$$

Řešení musí splňovat $\partial L(\mathbf{x}, \mathbf{y})/\partial \mathbf{x} = \mathbf{0}$, což dá $\mathbf{x} = \mathbf{A}^T \mathbf{y}/2$. Po dosazení dostaneme

$$G(\mathbf{y}) = L(\mathbf{A}^T \mathbf{y}/2, \mathbf{y}) = \mathbf{b}^T \mathbf{y} - \mathbf{y}^T \mathbf{A} \mathbf{A}^T \mathbf{y}/4.$$

Příklad 17.5. Řešme lineární program

$$\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{0} \le \mathbf{x} \le \mathbf{1}\}.$$

Duál bychom mohli sestrojit podle návodu v kapitole o dualitě v LP. Ale postupujme jinak. Zvolme Lagrangeovu funkci jako (17.12) a $X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \}$. Duální funkce bude

$$G(\mathbf{y}) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \mathbf{y}) = \min_{\mathbf{0} \le \mathbf{x} \le \mathbf{1}} [(\mathbf{c}^T - \mathbf{y}^T \mathbf{A}) \mathbf{x} + \mathbf{y}^T \mathbf{b}] = \mathbf{b}^T \mathbf{y} + \mathbf{1}^T \max \{\mathbf{0}, \mathbf{A}^T \mathbf{y} - \mathbf{c}\}$$

neboť $\min_{\mathbf{0} \leq \mathbf{x} \leq \mathbf{1}} \mathbf{d}^T \mathbf{x} = \min\{\mathbf{0}, \mathbf{d}\} = -\max\{\mathbf{0}, -\mathbf{d}\}$ (kde min a max se rozumí po složkách). \square

Příklad 17.6. Řešme celočíselný lineární program

$$\min\{\mathbf{c}^T\mathbf{x} \mid \mathbf{x} \in \{0,1\}^n, \ \mathbf{A}\mathbf{x} = \mathbf{b} \}.$$

Necht' Lagrangeova funkce je (17.12) a necht' $X = \{0,1\}^n$. Duální úloha je stejná jako v minulém příkladě. Zde předpoklady Věty 17.1 neplatí, protože množina X není konvexní. Opravdu, silná dualita u celočíselného programování obecně neplatí.

Silná dualita může nastat (i když spíše vyjímečně) i pro nekonvexní úlohu. Jednou takovou třídou úloh je libovolné (tedy ne nutně konvexní) QCQP s nejvýše *jedním* omezením.

Příklad 17.7. Úloha QCQP

$$\min\{\mathbf{x}^T \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}^T \mathbf{x} = 1\}$$
 (17.20)

není konvexní, pokud matice $\bf A$ není positivně semidefinitní. Řešení ale najdeme snadno pomocí spektrálního rozkladu:

$$\min_{\mathbf{x}^T\mathbf{x}=1}\mathbf{x}^T\mathbf{A}\mathbf{x} = \min_{\mathbf{x}^T\mathbf{x}=1}\mathbf{x}^T\mathbf{V}\boldsymbol{\Lambda}\mathbf{V}^T\mathbf{x} = \min_{\mathbf{z}^T\mathbf{z}=1}\mathbf{z}^T\boldsymbol{\Lambda}\mathbf{z} = \lambda_{\min}(\mathbf{A}).$$

Ukážeme navíc, že platí silná dualita. Máme

$$L(\mathbf{x}, \mathbf{y}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + y(1 - \mathbf{x}^T \mathbf{x}) = \mathbf{x}^T (\mathbf{A} - y\mathbf{I})\mathbf{x} + y.$$

Tedy

$$G(y) = \begin{cases} y & \text{když } \mathbf{A} - y\mathbf{I} \text{ je positivně semidefinitní,} \\ -\infty & \text{jinak.} \end{cases}$$

Ale matice $\mathbf{A} - y\mathbf{I}$ je positivně semidefinitní, právě když nejmenší vlastní číslo matice $\mathbf{A} - y\mathbf{I}$ je nezáporné, neboli (viz Cvičení 6.5) $\lambda_{\min}(\mathbf{A}) \geq y$. Duální úloha tedy je

$$\max\{y \in \mathbb{R} \mid \lambda_{\min}(\mathbf{A}) \ge y\}.$$

Ta má zřejmé optimální řešení $y = \lambda_{\min}(\mathbf{A})$.

Rejstřík

afinní funkce, 40 kombinace, 36, 158 nezávislost, 39 obal, 36, 158 podprostor, 36, 158 zobrazení, 40	stěny mnohostěnu, 162 doplnění na čtverec, 76 dualita silná, 183 slabá, 182, 216 v lineárním programování, 181 dyáda, 21 elipsoid, 78 epigraf, 197 extrém, 4 globální, 108 lokální, 108 vázaný rovnostmi, 127 vázaný, 5, 108 volný, 5, 108			
alternující optimalizace, 87 antisymetrická matice, 18 argument minima, 4				
báze lineárního podprostoru, 30 mnohostěnu, 169 sousední, 170 standardní, 21				
bázová proměnná, 169	extremální bod, 160			
bázové řešení, 169 bloková matice, 21 bod, 38 extremální, 160 hraniční, 107 regulární, 129 sedlový, 115, 214 stacionární, 114, 115 vnitřní, 107 certifikát optimality, 184 cyklení, 175 derivace funkce jedné proměnné, 98	faseta, 162 forma kvadratická, 73 lineární, 32 Frobeniova norma, 53 funkce, 2 afinní, 40 konkávní, 195 konvexní, 195 kvadratická, 76 Lagrangeova, 131 po částech afinní, 141 účelová, 5			
parciální, 99 směrová, 103 totální, 100	gradient, 104 graf funkce, 96			
determinant, 20 dimenze afinního podprostoru, 38 lineárního podprostoru, 31 mnohostěnu, 159	hodnost, 18, 33 plná, 19 hrana mnohostěnu, 162 hraniční bod množiny, 107 hranice množiny, 107			

inverze matice, 19	LP relaxace, 148
isometrie, 47	matice, 17
jednotková matice, 17	antisymetrická, 18
jednotková sféra, 145	bloková, 21
Jednotkova siera, 149	čtvercová, 17
kolmý, 44	,
kombinace	diagonální, 17
afinní, 36, 158	diagonalizovatelná, 72
konvexní, 157, 158	Hessova, 106
lineární, 30, 158	indefinitní, 74
nezáporná, 158	inverzní, 19
komplementarita, 182	Jacobiho, 100
konvexní	jednotková, 17
funkce, 195	nulová, 17
kombinace, 158	obdélníková, 17
kužel, 158	ortogonální, 47
množina, 157, 158	permutační, 48
	positivně/negativně (semi)definitní, 74
mnohostěn, 159	regulární, 19
obal, 157, 158	rotační, 48
optimalizační úloha, 205	singulární, 19
kuželosečka, 78	široká, 17
kvadratická	speciální ortogonální, 48
forma, 73	symetrická, 18
funkce, 76	transponovaná, 18
kvadrika, 78	trojúhelníková, 17
Lagrangeův multiplikátor, 131	úzká, 17
Lagrangeova funkce, 131	metoda
,	Gauss-Newtonova, 120
Laplacián grafu, 80 lineární	Levenberg-Marquardtova, 122
	nejmenších čtverců, 58
program v rovnicovém tvaru, 140	Newtonova, 117
forma, 32	sestupná, 116
kombinace, 30, 158	simplexová, 168
nerovnice, 139	simplexová dvoufázová, 177
nezávislost, 30	simplexová základní, 173
obal, 30, 158	metrika eukleidovská, 44
optimalizace, 139	minimální
podprostor, 30, 158	hodnota funkce na množině, 4
program, 139	prvek množiny, 4
rovnice, 139	minimum
soustava, 22, 58	funkce na množině, 4, 108
soustava nehomogenní nedourčená, 58	
soustava homogenní, 22	funkce na množině ostré, 4
soustava homogenní přeurčená, 88	globální, 108
soustava nehomogenní, 22, 58	lokální, 108
soustava nehomogenní přeurčená, 58	lokální ostré, 108
zobrazení, 31	ostré, 108

množina	přímka, 163				
číselná, 1	pivot, 170				
konvexní, 157, 158	pivotové pravidlo, 173				
mnohostěn konvexní, 159	podprostor, 30				
monom, 70	afinní, 36, 158				
	lineární, 30, 158				
nadrovina, 38, 159	podprostory				
opěrná, 162	ortogonální, 45				
nejmenší	poloprostor, 159				
čtverce, 58	polynom, 70				
norma, 63	charakteristický, 71				
prvek množiny, 4	homogenní, 70				
nerovnost	Taylorův, 106				
Cauchy-Schwarzova, 44	přímka, 38				
Jensenova, 195	projekce ortogonální, 49				
minimaxní, 214	projektor ortogonální, 50				
trojúhelníková, 44	prostor				
nezávislost	lineární, 30				
afinní, 39	nulový, 34				
lineární, 30	obrazů, 33				
norma	pseudoinverze				
p-norma, 145	matice s l.n. řádky, 64				
eukleidovská, 44	matice s l.n. sloupci, 60				
Frobeniova, 53	obecné matice, 65				
matice, 53	obcene marice, oo				
vektorová, 145	regrese, 61				
nulová matice, 17	lineární, 61				
	robustní, 147				
obal	regulární				
afinní, 36, 158	bod, 129				
konvexní, 158	matice, 19				
lineární, 30, 158	regularizace, 63				
nezáporný, 158	řešení				
omezení, 6	bázové, 169				
opěrná nadrovina, 162	degenerované, 169				
optimální	optimální, 6				
argument, 6	přípustné, 6				
hodnota, 6	přípustné, 169				
řešení, 6	řez zobrazení, 103				
ortogonální	rovina, 38				
doplněk, 45	rovnice				
matice, 47	lineární, 139				
podprostory, 45	normální, 59				
projekce, 49	rozklad matice				
projektor, 50	spektrální, 72				
vektory, 44	rozklad matice				
ortonormální množina vektorů, 46	podle hodnosti, 35				
,	poure nounosu, 50				

podle vlastních čísel, 72	na nejmenší vrcholové pokrytí, 150
QR, 48	na optimální výrobní program, 142
-:	primární, 181
simplexová	přiřazovací, 149
metoda, 168	shlukování, 12
tabulka, 172	směšovací, 143
singulární	spojité optimalizace, 5
matice, 19	1. 2.20
skalár, 17	vektor, 3, 20
skalární součin	normalizovaný, 46
matic, 53	řádkový, 20
vektorů, 44	sloupcový, 20
slacková proměnná, 141	vektory
směr	afinně nezávislé, 39
Gauss-Newtonovův, 120	lineárně nezávislé, 30
Newtonův, 119	ortogonální, 44
sestupný, 116	ortonormální, 46
součin	věta
maticový, 18	Fermatova, 114
skalární s. matic, 53	Frobeniova, 58
skalární s. vektorů, 44	spektrální, 72
skaláru a matice, 18	vlastní
vnější, 21	číslo, 70
souřadnice, 31	vektor, 70
spektrální	vnitřek množiny, 107
rozklad, 72	vnitřní bod množiny, 107
spektrum matice, 71	vrchol, 162
stínové ceny, 185	vrstevnice funkce, 96
střídavá optimalizace, 87	vychýlená hodnota, 147
stacionární bod, 115	1, 611, 1611, 16 411, 641, 17
stacionární bod, 114	zobrazení, 2
stopa matice, 19	afinní, 40
na podprostoru, 85	diferencovatelné, 99
subkontura, 197	lineární, 31
symetrická matice, 18	spojité, 97
Symetricka matice, 18	spojitě diferencovatelné, 100
transpozice, 18	1 3
trojúhelníková matice, 17	
erojanomiova maeree, ri	
úloha	
dopravní, 144	
duální, 181	
ekvivalentní, 207	
konvexní, 205	
konvexní ve standardním tvaru, 207	
Lagrangeova duální, 215	
lineárního programování, 139	
na největší nezávislou množinu, 151	