```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

df = pd.read csv('/content/customer churn dataset-testing-master.csv')

df.head()

	CustomerID	Age	Gender	Tenure	Usage Frequency	Support Calls	Payment Delay	Subscription Type	Contract Length	Total Spend
0	1	22	Female	25	14	4	27	Basic	Monthly	598
1	2	41	Female	28	28	7	13	Standard	Monthly	584
2	3	47	Male	27	10	2	29	Premium	Annual	757
3	4	35	Male	9	12	5	17	Premium	Quarterly	232
4	5	53	Female	58	24	9	2	Standard	Annual	533

Automatic saving failed. This file was updated remotely or in another tab.

Show diff

df.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 64374 entries, 0 to 64373
    Data columns (total 12 columns):
         Column
                          Non-Null Count Dtype
     #
                          -----
     0
         CustomerID
                         64374 non-null int64
     1
         Age
                          64374 non-null int64
                         64374 non-null object
     2
         Gender
     3
         Tenure
                         64374 non-null int64
     4
        Usage Frequency 64374 non-null int64
     5
         Support Calls
                         64374 non-null int64
         Payment Delay 64374 non-null int64
     6
     7
         Subscription Type 64374 non-null object
                           64374 non-null object
     8
         Contract Length
                           64374 non-null int64
     9
         Total Spend
     10 Last Interaction
                          64374 non-null int64
     11 Churn
                           64374 non-null int64
    dtypes: int64(9), object(3)
    memory usage: 5.9+ MB
attribute_selected = ['Total Spend', 'Payment Delay', 'Support Calls', 'Age', 'Tenure', 'Churn']
df_selected = df[attribute_selected].copy()
sns.set(style="ticks")
sns.pairplot(df_selected, hue="Churn")
plt.show()
```


Double-click (or enter) to edit

```
sns.barplot(data=df, x='Gender', y='Total Spend')
# Add labels and title
plt.xlabel('Gender')
plt.ylabel('Total Spend')
plt.title('Gender by Total Spend')
# Show the plot
plt.show()
```


Cross tab between gender and customer churn

OCHUC

cross_t=pd.crosstab(df['Gender'], df['Churn'])

Automatic saving failed. This file was updated remotely or in another tab. Show diff

Churn	0	1	7	ılı		
Gender						
Female	44.950950	55.049050				
Male	61.420339	38.579661				

```
sns.set(style="darkgrid")
plt.figure(figsize=(10, 6))
by = sns.barplot(data=cross_tPercent, palette="Set2")
plt.title("Percentage of Gender against Churn")
plt.xlabel("Churn: 0 Yes 1 No")
plt.ylabel("Percentage")
plt.ylim(0, 100) # Set y-axis limit to 0-100 for percentages
plt.show()
```


cross_t=pd.crosstab(df['Subscription Type'], df['Churn'])

cross_tPercent = cross_t.apply(lambda x: x / x.sum() * 100, axis=1) cross_t

cnoce +Doncont

Automatic saving failed. This file was updated remotely or in another tab. Show diff

Subscription Type

Basic	51.722530	48.277470
Premium	53.503571	46.496429
Standard	52.669519	47.330481

```
cross_t=pd.crosstab(df['Subscription Type'], df['Contract Length'])
cross_tPercent = cross_t.apply(lambda x: x / x.sum() * 100, axis=1)
cross_t
cross tPercent
```

Contract Length	Annual	Monthly	Quarterly	1	ılı
Subscription Type					
Basic	33.322456	34.371358	32.306186		
Premium	33.028337	34.587554	32.384109		
Standard	33.424798	34.173565	32.401637		

Subscription = df['Subscription Type'].value_counts()

```
# Create a bar plot
plt.figure(figsize=(8, 6))
plt.barh(Subscription.index, Subscription)
```

```
# Add labels and title
plt.xlabel('Count')
plt.ylabel('Subscription Type')
plt.title('Subscription Type Distribution')
# Show the plot
plt.show()
```


The analysis proceeds to k-means clustering

<class 'pandas.core.frame.DataFrame'>

df.info()

RangeIndex: 64374 entries, 0 to 64373 Data columns (total 12 columns): Column Non-Null Count Dtype 0 CustomerID 64374 non-null int64 64374 non-null int64 1 Age 2 Gender 64374 non-null object 3 Tenure 64374 non-null int64 4 Usage Frequency 64374 non-null int64 64374 non-null int64 5 Support Calls 64374 non-null int64 6 Payment Delay 7 Subscription Type 64374 non-null object Contract Length 8 64374 non-null object 9 Total Spend 64374 non-null int64 10 Last Interaction 64374 non-null int64 11 Churn 64374 non-null int64

```
dtypes: int64(9), object(3)
     memory usage: 5.9+ MB
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
data = pd.read_csv('/content/customer_churn_dataset-testing-master.csv')
#selection of numerical attributes
numerical_features = data[['Age', 'Tenure', 'Usage Frequency', 'Support Calls', 'Payment Delay', 'Total Spenc
# Perform data scaling
scaler = StandardScaler()
scaled_data = scaler.fit_transform(numerical_features)
# Choose the number of clusters using the elbow method
inertia = []
for k in range(1, 11):
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(scaled data)
Automatic saving failed. This file was updated remotely or in another tab.
                                                                Show diff
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.title('Elbow Method')
plt.show()
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning:
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning:
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning:
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning:
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning:
 warnings.warn(
/usr/local/lib/python3.10/dist-packages/sklearn/cluster/ kmeans.py:870: FutureWarning:
 warnings.warn(
```

Elbow Method

450000 -

rom the elbow plot the analysis chooses four clusters k = 4

Automatic saving failed. This file was updated remotely or in another tab.

Show diff

```
# Add cluster labels to the original data
data['cluster'] = kmeans.labels_

# Scatter plot of the cluster1
plt.scatter(data['Total Spend'], data['Usage Frequency'], c=data['cluster'], cmap='rainbow')
plt.xlabel('Total Spend')
plt.ylabel('Usage Frequency')
plt.title('K-Means Clustering Results')
plt.show()
```

/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default valu warnings.warn(


```
# Scatter plot of the cluster1
plt.scatter(data['Age'], data['Usage Frequency'], c=data['cluster'], cmap='rainbow')
plt.xlabel('Age')
plt.ylabel('Usage Frequency')
plt.title('K-Means Clustering Results')
plt.show()
```


✓ 8s completed at 12:06 PM

Automatic saving failed. This file was updated remotely or in another tab.

Show diff

• ×