1

The following questions are based upon the Cook-Levin Theorem as described in the Sipser textbook.

a. Which of the four parts of the formula are dependent on the TM N?

 $\phi_{cell}, \phi_{start}, \phi_{move}, \text{ and } \phi_{accept}$

b. Which of the four parts of the formula are dependent on the the string w? $\phi start$

c. Give a different legal window for the Turing Machine described as an example.

a	q_1	a	a	a	#	a	a	a
a	b	q_1	a	a	#	q_2	a	a

d. Give a different illegal window for the Turing Machine described as an example.

a	a	a	a	#	b	a	q_1	a
a	b	a	a	#	b	q_2	a	a

e. Why are there n^k columns in the tableau?

Each row of the tableau corresponds to a configuration of the Turing machine N on w. We assume that N runs in n^k time (where n is the length of w) for some constant k. This means that there are at most n^k possible configurations, which accounts for the n^k rows. It takes n steps for the head to reach the final character on the tape. From here the tape can add one character for the remaining n^{k-1} steps. Therefore the longest any configuration could be is $n + n^{k-1} = n^k$ characters long, which is why there are also n^k columns.

2

Claim: The formula $(x \vee y) \wedge (x \vee \overline{y}) \wedge (\overline{x} \vee y) \wedge (\overline{x} \vee \overline{y})$ is unsatisfiable.

Proof: Let us denote the formula by ϕ , and create the following truth table.

\boldsymbol{x}	y	$x \vee y$	$x \vee \overline{y}$	$\overline{x} \vee y$	$ \overline{x} \vee \overline{y} $	ϕ
T	T	T	T	T	F	F
T	F	T	T	F	T	F
F	T	T	F	T	T	F
F	F	F	T	T	T	F

Because there is no assignment of truth values to the variables that makes ϕ true, ϕ is unsatisfiable.

3

A triangle in an undirected graph is a 3-clique. Let $TRIANGLE = \{\langle G \rangle | G \text{ contains a triangle} \}$. Claim: $TRIANGLE \in P$.

Proof: Create a Turing machine M that decides TRIANGLE.

M = "On input $\langle G \rangle$ where G is a graph with at least three nodes:

- 1. List all possible triples of nodes in G.
- 2. For each triple, see if their edges are contained in the encoding of G. If they are contained for some triple, accept, otherwise reject."

Step 1 can be computed in m^3 stages where m is the number of nodes in G. (m^3 is obtained by testing all m nodes as the first node in the triple, then all m as the second, and then the third.) Step 2 takes n stages where n is the number of edges in G, so collectively M takes m^3n stages to run. Because M runs in polynomial time, $TRIANGLE \in P$.

4

G and H are isomorphic if the nodes of G may be reordered so that it is identical to H. Let $ISO = \{\langle G, H \rangle | G \text{ and } H \text{ are isomorphic graphs}\}.$

Claim: $ISO \in NP$.

Proof: Create a non-deterministic Turing machine M_2 that decides ISO.

 $M_2 =$ "On input $\langle G, H \rangle$ where G and H are graphs:

- 1. Test to see if G and H have the same nodes.
- 2. Non-deterministically guess all possible reorderings of the nodes in G, and check to see if a reordering is identical to H.
- 3. If both accept, accept, otherwise reject."

Step 1 could be computed in $m \log m$ stages where m is the number of nodes in G. Because step 2 is done non-deterministically, it runs in m + n time, where n is the number of edges. Because these are both polynomial, ISO can be decided in polynomial time, and therefore is in NP.

Alternate Proof: Create a verifier V for ISO, and let c be the certificate. V = "On input $\langle \langle G, H \rangle, c \rangle$:

- 1. Test whether c is a graph that contains the same nodes as G.
- 2. Test whether c's encoding of nodes and edges is identical to H's.
- 3. If both accept, accept, otherwise reject."

Step 1 can be computed in $m \log m$ time where m is the number of nodes in G. Step 2 can be computed in m + n time where n is the number of edges. Because these are both polynomial, ISO can be verified in polynomial time, and therefore is in NP.

I affirm that I have upheld the highest principles of honesty and integrity in my academic work and have not witnessed a violation of the honor code.