

Universidad de las Fuerzas Armadas ESPE

Departamento:

Carrera: Ingeniería en Electrónica y Automatización

Taller académico N^a: 7 Parcial Nro:2

1. Información General

• **Asignatura:** Fundamentos de Programación

• Apellidos y nombres de los estudiantes: Alvear Alexander, Campoverde

Anthony, Velecela Mateo
• NRC: 20823

• Fecha de realización: 25/06/2025

2. Objetivo del Taller y Desarrollo

Objetivo del Taller:

Desarrollar habilidades prácticas en el manejo de requisitos funcionales, seudocódigo en PseInt, aplicando matrices y loogica para operaciones básicas de recorrido, ordenamiento y manipulación de datos, con énfasis en la eficiencia del código.

Desarrollo:

Aprendimos a manejar la inversa de las matrices, resolviendo ejercicios prácticos para la aplicación intuitiva de conocimientos. Al final, discutimos los resultados y reforzamos la lógica.

U2 T7 VECTORES Y FUNCIONES

EJERCICIO 1 MATRICES:

Problema 2.2.4 Intercambiar las filasi, j de una matriz. Escriba un programa que intercambie las filas i y a de una matriz de enteros de Na componentes, siendo : yj dos valores introducidos por teclado.

La solución se muestra en el diagrama de la figura 2.13, junto con su tabla de objetos y codificación. La dificultad del problema reside en intercambiar las filas sin perder información, tal y como pasa aquí al intercambiar el elemento 7 de la filas a y b mat[a][6]=mat[b][6]; //Sobrescribe mat[a][6] y se pierde su valor mat[b][6]=mat[a][6]://Queda mat[a][6] con el mismo valor que mat[b][6]

Es necesario usar una variable auxiliar para no perder el valor original de matla Aux=mat[a][6]

mata[a][6]=mat[b][6] mata[a][6]=aux;

• Tabla de Objetos

OBJETO	NOMBRE	VARIABLE	TIPO
M1	N,i,j,fila_j,aux,k	variable	Entero
M2	matriz	variable	Entero

Requsitos funcionales

RF1: El sistema debe permitir al usuario ingresar el tamaño de la matriz (número de filas y columnas).

RF2: El sistema debe permitir al usuario ingresar los elementos de la matriz de enteros.

RF3: El sistema debe solicitar al usuario los índices de las dos filas que desea intercambiar (i y j).

RF4: El sistema debe validar que los índices i y j se encuentren dentro del rango válido de la matriz.

RF5: El sistema debe intercambiar correctamente las filas i y j usando una variable auxiliar para evitar la pérdida de datos.

RF6: El sistema debe mostrar en pantalla la matriz original antes del intercambio.

RF7: El sistema debe mostrar en pantalla la matriz actualizada después del intercambio de filas.

Seudocódigo

```
Algoritmo IntercambioFilasMatriz
   Definir N, i, j, fila_i, fila_j, aux, k Como Entero
   Dimension matriz[10,10] // Matriz máxima de 10x10
   // Solicitar tamaño de la matriz
   Escribir 'Ingrese el tamaño N de la matriz cuadrada (N x N, máximo 10): '
   Leer N
   Si N < 0 O N > 10 Entonces
       Escribir 'Tamaño inválido. Debe ser entre 1 y 10.'
   Sino
       Fara i ← 1 Hasta N Hacer
           Fara j ← 1 Hasta N Hacer
            matriz[i,j] < (i-1)*N + j // Valores secuenciales
           FinFara
       FinFara
       Escribir 'Matriz original:'
       Para i ← 1 Hasta N Hacer
           Fara j ← 1 Hasta N Hacer
             Escribir Sin Saltar matriz[i,j], ' '
           FinFara
       FinFara
       Escribir 'Ingrese las filas a intercambiar (i y j, entre 1 y ', N, '): '
       Leer fila_i, fila_j
       Si fila_i < 1 O fila_i > N O fila_j < 1 O fila_j > N Entonces
           Escribir 'Error: Las filas deben estar entre 1 y ', N
           Fara k ← 1 Hasta N Hacer
               aux < matriz[fila_i, k]
               matriz[fila_i, k] \leftarrow matriz[fila_j, k]
               matriz[fila_j, k] \leftarrow aux
           FinFara
           Escribir 'Matriz con filas ', fila_i, ' y ', fila_j, ' intercambiadas:'
           Fara i ← 1 Hasta N Hacer
               Fara j ← 1 Hasta N Hacer
                  Escribir Sin Saltar matriz[i,j], ' '
               FinFara
               Escribir "
           FinFara
       FinSi
   FinSi
FinAlgoritmo
```


• Diagrama de Flujo

• Código en C

```
int N, i, j, fila i, fila j, aux;
int matriz[10][10]; // Matriz máxima 10x10
// Solicitar tamaño da la matriz printf("Ingrese el tamaño N de la matriz suadrada (N × N, máximo 10): ");
// Validat tamade
if (N <= 0 || N > 10) {
   printf("Tamade inválido. Paba sat entre 1 y 10.\n");
   return 1; // Salid con error
 // Llenar matriz con valores secuenciales
for (i = 0; i < N; i++) {</pre>
       for (j = 0; j < N; j++) {
    matriz[i][j] = i * N + j + 1;</pre>
     Mostrar matriz original
printf("Hatrig original:\n");
for (i = 0; i < N; i++) {
    for (j = 0; j < N; j++) {
        printf("%3d ", matriz[i][j]);
}</pre>
       printf("\n");
// Salisitax files a intersembler
printf("Ingress las files a intersembler (i y j, entre 1 y %d): ", N);
scanf("%d %d", &file_i, &file_j);
// Walldat files (rester 1 para indices base 0)
if (fila_i < 1 || fila_i > N || fila_j < 1 || fila_j > N) {
    printf("Error: Las files deben estex entre 1 y *d.\n", N);
 fila_i--; // Ajustar a indice base 0
// Intercambian files

for (j = 0; j < N; j++) {
        aux = matriz[fila_i][j];
       matriz[fila_i][j] = matriz[fila_j][j];
matriz[fila_j][j] = aux;
printf("Matrix con files *d y *d intercambiadas: \n", fila_i + 1, fila_j + 1);
for (i = 0; i < N; i++) {
    for (j = 0; j < N; j++) {
        printf("%3d ", matriz[i][j]);
    }
}</pre>
```

Problema 2.2.3 Máximo de una fila.

Escriba un programa que led una matriz de N filas y N columnas de valores enteros A continuación, el programa debe pedir el número de una fila y mostrar por pantalla el valor de la mayor componente de esa fila.

Tal como ya se discutió en el problema 1.7, la dificultad de calcular el máximo valor de un vector (en este caso un vector fila de una matriz) reside en decidir qué valor inicial se le da a la variable que va a almacenar el máximo (max). Imagine que se ssume que todos los números del vector son positivos y se inicializa max = -1000 Se procede entonces a comparar este valor con todas las componentes del vector y, s alguna es mayor, se actualiza el valor de maz con el valor de esa componente. Podria ocurrir, sin emba...

Tabla de Objetos

OBJETO	NOMBRE	VARIABLE	TIPO
M1	N,fila,i,j,maximo	variable	Entero
M2	matriz	variable	Entero

Seudocódigo

```
Algoritmo MaximoDeUnaFila
    Definir N, fila, i, j, maximo Como Entero
    Dimension matriz[10, 10] // limite superior razonable
    Repetir
       Escribir "Ingrese el tamaño N de la matriz NxN (entre 1 y 10):"
       Leer N
       Si N \leq 0 O N > 10 Entonces
         Escribir "Error: N debe estar entre 1 y 10, intente nuevamente."
    Hasta Que N > 0 Y N ≤ 10
    Para i + 1 Hasta N
       Para j ← 1 Hasta N
           Escribir "Ingrese el valor para la posición [", i, ",", j, "]:"
           Leer matriz[i, j]
       FinPara
    FinPara
   Escribir "Ingrese el número de fila (entre 1 y ", N, ") para buscar el máximo:"
   Leer fila
    Mientras fila < 1 o fila > N
       Escribir "Fila fuera de rango. Intente nuevamente:"
   FinMientras
    maximo + matriz[fila, 1]
    Para j + 2 Hasta N
       Si matriz[fila, j] > maximo Entonces
         maximo ← matriz[fila, j]
    FinPara
    Escribir "El valor máximo en la fila ", fila, " es: ", maximo
FinAlgoritmo
```


• Diagrama de Flujo

Requisitos Funcionales

- Ingreso del tamaño de la matriz El programa debe solicitar al usuario un valor entero N que represente el tamaño de una matriz cuadrada N x N.
- Ingreso de los elementos de la matriz El programa debe solicitar al usuario que ingrese un número entero para cada una de las posiciones [i,j] de la matriz de tamaño $N \times N$.
- Selección de la fila a analizar El programa debe solicitar al usuario que ingrese un número de fila dentro del rango de 1 a N. El programa debe validar que el número de fila ingresado esté dentro del rango permitido. El programa debe volver a solicitar el número de fila si este está fuera del rango válido.
- Cálculo del valor máximo en una fila El programa debe recorrer los elementos de la fila seleccionada por el usuario. El programa debe identificar y almacenar el valor máximo presente en esa fila.
- Visualización del resultado El programa debe mostrar en pantalla el valor máximo encontrado en la fila seleccionada.

Código en C

```
#include <stdio.h>
2
     ☐ int main() {
    int N, fila, i, j, maximo;
3
 4
           int matriz[10][10];
            // Walidar N
 8
9
              printf("Ingrese el tamaño N de la matriz NxN (entre 1 y 10): ");
10
                scanf("%d", &N);
11
               if (N \le 0 | || N > 10) (
12
                   printf("Error: N debe estar entre 1 y 10. Intente nuevamente.\n");
13
14
15
           } while (N <= 0 || N > 10);
16
17
18
            // Ingreso de valores de la matriz
19
           for (i = 0; i < N; i++) {
               for (j = 0; j < N; j++) {
   printf("Ingress components ds la matriz [%d][%d]: ", i, j);</pre>
20
21
                    scanf("%d", &matriz[i][j]);
22
23
24
25
26
            // Redix mimero de file
27
           printf("Ingrese el número de fila (entre 1 y %d) para buscar el máximo: ", N);
28
           scanf("%d", &fila);
29
30
           while (fila < 1 || fila > N) (
31
              printf("File fuera de rango. Intente nuevamente: ");
32
33
               scanf("%d", &fila);
34
35
36
           // Aiustar indice de file (perque el usuario usa 1 a N, pero C usa 0 a N-1)
37
           fila = fila - 1;
38
39
            // Buscar el máximo en asa fila
40
           maximo = matriz[fila][0];
           for (j = 1; j < N; j++) (
41
42
               if (matriz[fila][j] > maximo) {
43
                   maximo = matriz[fila][j];
44
45
46
47
            // Mostrar resultado
           printf("El valor máximo en la fila %d es: %d\n", fila + 1, maximo);
48
49
50
           return 0;
51
```

Problema 2.1.5 Vector de factoriales.

Problema 2.2.2 Escritura de matriz en sentido inverso. Dada una matriz de NX N elementos, realice un algoritmo que recorrala por filas desde la última a la primera y cada fila en sentido inverso, y de la columna a la primera, de modo que se vaya mostrando cada elemento.

La solución a este problema consiste en recorrer la matriz invirtiendo el sentid bitual de los bucles. Observe cómo, en este caso, los bucles de filas y columm las variables i y j comienzan en la última fila/columna de la matriz. La condición permanencia en los bucles es ahora i >= 1 oj >= 1 (en C i >= 0oj >= 0) variables se decrementan en cada iteración.

A continuación se muestra el diagrama de flujo de la solución en la figura 2004 como la tabla de objetos y codificación en C3.

Tabla de Objetos

OBJETO	NOMBRE	VARIABLE	TIPO
M1	N,i,j	Variable	Entero
M2	matriz	Variable	Entero

Requisitos funcionales

RF1: El sistema debe permitir al usuario ingresar el tamaño N de la matriz cuadrada (N x N).

RF2: El sistema debe permitir al usuario ingresar los elementos de la matriz manualmente o generar una matriz con valores predefinidos para pruebas.

RF3: El sistema debe recorrer la matriz desde la última fila a la primera (es decir, de i = N-1 a i = 0).

RF4: El sistema debe recorrer cada fila desde la última columna a la primera (es decir, de j = N-1 a j = 0).

RF5: El sistema debe mostrar en pantalla cada elemento de la matriz en el orden inverso especificado.

RF6: El sistema debe mantener el formato de impresión para que se comprenda la estructura de la matriz (opcional: separadores, saltos de línea por fila).

RF7: El sistema debe validar que el tamaño de la matriz sea un número entero positivo.

Seudocódigo

```
Algoritmo RecorridoMatrizInverso
    Definir N, i, j Como Entero
    Dimension matriz[10,10] // Declaración correcta
    // Solicitar tamaño de la matriz
    Escribir "Ingrese el tamaño N de la matriz cuadrada (N x N, máximo 10): "
    Leer N
    Si N ≤ 0 0 N > 10 Entonces
       Escribir "Tamaño inválido. Debe ser entre 1 y 10."
    Sino
        // Llenar la matriz con valores de ejemplo
        Para i ← 1 Hasta N Hacer
            Para j ← 1 Hasta N Hacer
               matriz[i,j] \leftarrow (i-1) * N + j
            FinPara
        FinPara
        // Mostrar matriz original
        Escribir "Matriz original:"
        Para i ← 1 Hasta N Hacer
            Para j ← 1 Hasta N Hacer
               Escribir Sin Saltar matriz[i,j], " "
           FinPara
           Escribir ""
        FinPara
        // Recorrer y mostrar en orden inverso
        Escribir "Matriz en orden inverso:"
        Para i ← N Hasta 1 Con Paso -1 Hacer
           Para j ← N Hasta 1 Con Paso -1 Hacer
               Escribir Sin Saltar matriz[i,j], " "
           FinPara
           Escribir ""
        FinPara
    FinSi
FinAlgoritmo
```

• Diagrama de Flujo

Codigo en C

```
#include <stdio.h>
∏int main() {
     int N, i, j;
     int matriz[10][10]; // Tamaño máximo de 10x10
     // Solicitar tamaño de la matriz
     printf("Ingrese el tamaño N de la matriz cuadrada (N x N, máximo 10): ");
     scanf("%d", &N);
      // Validar tamaño
     if (N <= 0 || N > 10) {
         printf("Tamaño inválido. Debe ser entre 1 y 10.\n");
         return 1; // Terminar el programa con error
     // Llenar la matriz con valores de siemplo
     for (i = 0; i < N; i++) {
         for (j = 0; j < N; j++) {
             matriz[i][j] = i * N + j + 1;
         }
     // Mostrar matriz original
     printf("Matriz original:\n");
     for (i = 0; i < N; i++) (
        for (j = 0; j < N; j++) (
    printf("*3d ", matriz[i][j]);</pre>
         printf("\n");
     // Mostrar matriz en orden inverso
     printf("Matriz en orden inverso:\n");
     for (i = N - 1; i >= 0; i--) {
         for (j = N - 1; j >= 0; j--) {
            printf("%3d ", matriz[i][j]);
         printf("\n");
     return 0;
```

