See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/8261158

A Unique Reaction Pathway of Fluorine-Substituted Ethyl Groups on Cu(111): Successive α,α -Fluoride Elimination

ARTICLE in JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · NOVEMBER 2004

Impact Factor: 12.11 · DOI: 10.1021/ja047831f · Source: PubMed

CITATIONS

READS

4

19

7 AUTHORS, INCLUDING:

Chih-Chau Hwang Rice University

17 PUBLICATIONS 289 CITATIONS

SEE PROFILE

Yaw-Wen Yang

National Synchrotron Radiation Research Ce...

120 PUBLICATIONS 1,149 CITATIONS

SEE PROFILE

Published on Web 09/08/2004

A Unique Reaction Pathway of Fluorine-Substituted Ethyl Groups on Cu(111): Successive α, α -Fluoride Elimination

Chao-Ming Chiang,*,† Deyi Lu,† Jia-Tze Huang,† Chi-Chau Hwang,† Chia-Chin Cho,† Liang-Jen Fan,[‡] and Yaw-Wen Yang*,[‡]

Department of Chemistry, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424, and National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan 30077

Received April 15, 2004; E-mail: cmc@mail.nsysu.edu.tw; yang@nsrrc.org.tw

Replacement of hydrogen with fluorine usually results in a marked change in the physical and chemical properties of fluorocarbons. Numerous studies have shown that fluorinated radicals and their metal complexes have structures and reactivities deviating from their hydrocarbon counterparts. 1-3 Surface studies of adsorbed perfluoroalkyl moieties beyond C₁, in comparison, remain largely unexplored. Here we report a surface reaction study of the fluorinesubstituted ethyl groups on Cu(111) that displays novel reaction pathways driven by α -elimination, instead of β -elimination found commonly in hydrocarbons.

Temperature-programmed reaction/desorption (TPR/D) and reflection absorption infrared spectroscopy (RAIRS) were conducted in an in-house ultrahigh vacuum chamber. X-ray photoemission spectra (XPS) were acquired in the wide-range spherical grating monochromator beamline at NSRRC. The surface-bound perfluoroethyl moieties were prepared by the dissociative adsorption of $C_2F_5I.^4$

As illustrated in Figure 1 (left), following the adsorption of 0.6 L of C₂F₅I (98%, SynQuest) at 110 K, multiple-ion TPR/D survey shows four desorption states with peak maxima at 315, 350, 425, and 880 K, respectively. The 880 K state is featured by m/e 82(63-CuF) and 84(65CuF) with a peak height ratio matching the natural abundance of copper isotopes; hence, the substrate is etched through forming volatile copper fluoride.⁵ Here the origin of the fluorine atoms hints that some, if not all, of the C-F bonds in Cu-C₂F₅ must be ruptured. The 315 K state is primarily characterized by m/e 181(C₄F₇⁺), 131(C₃F₅⁺), 100(C₂F₄⁺), and 93(C₃F₃⁺). Their relative abundance agrees with the measured cracking pattern of CF₃-CF=CFCF₃(C₄F₈),⁶ inferring single F abstraction at the α -carbon in perfluoroethyl, 7 Cu $^{-\alpha}$ CF $_{2}$ CF $_{3}$ \rightarrow Cu $^{-\alpha}$ CFCF $_{3}$ + Cu $^{-}$ F, followed by a dimerization step.8 The 350 K desorption state can be understood in terms of product mixtures. First, the observation of m/e $100(C_2F_4^+)$ and $119(C_2F_5^+)$ may arise from desorption of C_2F_5 radicals. However, the lack of m/e 81(C₂F₃⁺) rules out a possible contribution from CF_2 = $CF_2(m/e\ 100)$, a direct result from β -F elimination. This clear preference to α -elimination, rather than β elimination, is rarely observable in hydrocarbon (>C₁) systems.¹⁰ Second, a featureless trace of m/e 169(C₃F₇⁺) ensures the absence of perfluorobutane (C_4F_{10}), and the concurrence of m/e 93($C_3F_3^+$), 143(C₄F₅⁺), and 162(C₄F₆⁺) signals is attributable to unsaturated C₄F₆ compounds. The above three fragments are also found in the pronounced 425 K desorption state, however, with different relative intensities. Logically, the intermediacy of Cu-C₂F₃ is invoked to account for the observed C₄F₆ recombinants at these temperatures; in other words, two C-F bonds must be selectively activated in the starting Cu-C₂F₅. The coverage-dependent study, shown in Figure 1 (right), manifests that at very low exposure the 425 K C₄F₆ is the sole fluorocarbon product. At high coverage, a crossover of

Figure 1. Left: Multiplex TPR/D spectra after the adsorption of 0.6 L of C_2F_5I on Cu(111) at 110 K. Right: The trend of m/e 93 and 131 signals shows change of C₄F₆ and C₄F₈ relative yields with increasing exposures.

Figure 2. TPR/D traces of m/e 93, 143, and 162, representing C₄F₆ evolution from (a) C_2F_5I , (b) C_4F_6 isomers, (c, top) CF_2 =CFI, and (c, bottom) CF₃CCl₃ adsorbed on Cu(111) at 110 K. The exposures are kept low enough to focus on the 425 K pathway. (d) TPR/D profiles after exposing C₂F₅I to Cu(100), indicating C₄F₆ is not formed on this surface.

yield from C₄F₆ to C₄F₈ is noted, consistent with the requirement for more empty surface sites in the process of making the former species.

In Figure 2a, the TPR/D profiles of m/e 93, 143, and 162 resulting from C₂F₅I/Cu(111) are compared with those (Figure 2b) from the individually adsorbed hexafluoro-2-butyne, -cyclobutene, and -1,3butadiene (C₄F₆ isomers, 98%, SynQuest). On the basis of the fragmentation ratios determined by our mass spectrometer, it is safe to assign the 425 K major product to 2-butyne and the 350 K species to cyclobutene. To further identify the postulated surface C₂F₃ intermediate, we used the readily available perfluorovinyl iodide (CF₂=CFI, 97%, Lancaster) as a direct route to form Cu-C₂F₃. As displayed in Figure 2c (top), traces of m/e 93, 143, and 162, characteristic of hexafluoro-2-butyne, are indeed observed, yet appear only at 425 K. Despite the essential difference between perfluoroethyl and perfluorovinyl, the outcome of the same end product at 425 K seems to suggest that perfluoroethyl undergoes sequential fluoride elimination from the α - and β -carbons to render perfluorovinyl, namely, $Cu^{-\alpha}CF_2CF_3 \rightarrow Cu=CF^{\beta}CF_3 \rightarrow Cu-CF=$ CF₂. But, the question remains: why is C₄-diene not observed, considering the fact that copper would promote coupling of Cu-CF=CF₂ (Ullman-type reaction)?¹¹ By losing two fluorine atoms from the α-carbon in Cu-CF₂CF₃, an alternative intermediate, trifluoroethylidyne (Cu=C-CF₃) certainly deserves attention. Because d'Itri and co-workers reported identification of the surface

[†] National Sun Yat-Sen University. ‡ National Synchrotron Radiation Research Center.

≡C-CF₃ species formed upon adsorption and dechlorination of CCl₃CF₃ on a Pd/γ-Al₂O₃ catalyst, ⁷ TPR/D spectra were measured by exposing Cu(111) to CCl₃CF₃ (99%, Aldrich). The data shown in Figure 2c (bottom) also support the evolution of CF₃C≡CCF₃ at 425 K. In principle, the controversy about the reaction intermediacy can be resolved by direct surface spectroscopic methods. RAIR spectra taken after annealing C₂F₅I on Cu(111) showed dramatic changes at 400 K (near the onset of 2-butyne desorption), where only two absorption bands were present: 1410 and 1210 cm⁻¹, but they did not match the signature vibrations of either a surface $\equiv C - CF_3^{12}$ or $-CF = CF_2^{13}$ moiety. In fact, the spectrum was identical with that produced by CF₃C≡CCF₃ adsorbed on Cu-(111) and annealed to 400 K, where the 1410 cm⁻¹ band is, rather, attributed to the $\nu_{\rm CC}$ and the 1210 cm⁻¹ band is ascribed to the $\nu_s(CF_3)$ mode. The large red-shift of the CC stretching mode indicates that the symmetric alkyne is strongly perturbed upon adsorption, leading to a reduced bond order of its C≡C group. 14 The strongly chemisorbed CF₃C \equiv CCF₃ may adopt a μ - η^2 , η^2 binding geometry discovered in metal-alkyne complexes, in which the ligand is bonded to two metal centers, with the C-C axis perpendicular to the metal—metal axis as a tetrahedral form. 15 In C1s XPS. we expected that the exact number of F atoms bonded to C atom for the surface-bound fluorocarbon species can be discerned because of a significant core-level shift exerted by the highly electronegative fluorine. Although only one type of C-F bonding environment, CF₃(C1s binding energy at 291.3 eV), was observed between 350 and 400 K for C₂F₅I/Cu(111), it was not obvious whether the spectra represent 2-butyne (end product) or ethylidyne (intermediate).

It is generally accepted that ethylidyne is the favored intermediate against vinyl on close-packed fcc(111) surfaces where $\equiv C-CH_3$ prefers to sit at the threefold hollow site by forming three bonds with the metal surface. 16 If the generation of CF₃C≡CCF₃ and the intermediacy of $Cu \equiv C - CF_3$ on Cu(111) do correlate, we anticipate that the 425 K pathway will not occur on a more open surface devoid of threefold hollow sites, such as Cu(100). In this vein, we measured the TPR/D spectra by dosing C₂F₅I on Cu(100). As illustrated in Figure 2d, only one desorption state arises at 330 K, and CF₃C≡CCF₃ is indeed absent because of the lack of m/e 143 and 162 signals. Instead, CF₃CF=CFCF₃ accounts best for the relative peak intensities of m/e 181, 131, and 93.6 This observed end product suggests that Cu-CF₂CF₃ is susceptible to the α-F elimination step only *once* on Cu(100), yielding surface $=^{\alpha}$ CF-CF₃ species⁷ that couple to form a perfluoroalkene at lower temperatures.¹⁷ The surface-specific result should lend strong support to the α , α -fluoride elimination imperative for C_2F_5/Cu -(111). While the fate of $\equiv C-CH_3$ intermediate is high-temperature decomposition in conjunction with a surface carbon buildup, it might be hard to maintain the metal—carbon bond integrity for $\equiv C$ — CF₃ on a metal surface. The electronegative CF₃ group weakens the orbital overlap between the metal and α -carbon in Cu=CCF₃. Thus, on Cu(111) an unusual CC bond formation step becomes possible, $2Cu = CCF_3 \rightarrow Cu = Cu + CF_3C = CCF_{3(ad)}$, reminiscent of a reverse metathesis-type reaction involving metal-metal multiple bonds to give alkylidyne complexes (Chauvin-like mechanism). 18 This coupling process can be relatively facile; therefore, as successive α,α-fluoride elimination of Cu-CF₂CF₃ takes place, the resulting Cu=CCF₃ readily converts to a tightly surface-bound $(\mu-\eta^2,\eta^2)$ -C₄-alkyne (the only IR recognizable species). The overall reaction path is rate-limited by the product desorption step, following first-order kinetics (see the unchanged peak temperature with increasing exposure in Figure 1). The last puzzle about the pathway from Cu−CF=CF₂ to CF₃C=CCF₃ (Figure 2c, top) must be explained by the rapid isomerization from $Cu-CF=CF_2$ to Cu= CCF₃ on Cu(111). This type of vinyl-to-ethylidyne rearrangement was observed on a (111) surface of Pd. 19 Altogether, we propose the following mechanism:

$$\underbrace{ \begin{array}{c} C_2F_5I \\ \hline Cu(111) \end{array}}_{\text{Cu(111)}} \underbrace{ \begin{array}{c} CF_3 \\ F_2 \\ \hline \\ \text{low coverage} \end{array}}_{\text{low coverage}} \underbrace{ \begin{array}{c} >325 \text{ K} \\ \hline \\ F_2 \\ \hline \\ \text{low coverage} \end{array}}_{\text{3-fold hollow sites}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ F_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{final}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \hline \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \hline \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \hline \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text{4-low F} \end{array}}_{\text{p-q-3}, \gamma-2\text{-allyine}} \underbrace{ \begin{array}{c} CF_3 \\ \hline \\ \text$$

Ethyl (-CH₂CH₃) on transition-metal surfaces is dominated by the H-elimination from the β -position.¹⁰ On the other hand, β -F elimination is favored by a semifluorinated ethyl (-CH2CF3) on Ag(111) to yield CH₂=CF₂.²⁰ Here we have established a different pathway available for the perfluorinated ethyl (-CF₂CF₃) where α-elimination prevails, and thus two C-F bonds adjacent to the surface are selectively activated. We believe this difference is initiated by the exceptionally labile $\alpha\text{-CF}$ bonds in the fluorocarbon group (CF₂R) bound to a metal center or surface (M), comprehensible by resonance such as $M-CF_2R \leftrightarrow M^+=CFR + F^-$, or the back-donation of metal $d\pi$ electrons into the C-F antibonding orbital.²¹ The removal of the second F atom from the β -carbon $(M=\alpha CF-\beta CF_3)$ is usually hindered by the relative difficulty in breaking a C-F bond for compounds with two or more F atoms attached to the same carbon.²² Further, on Cu(111) the available threefold hollow sites are beneficial to the consecutive α -F abstraction to afford trifluoroethylidyne, resulting in the final coupling product. We foresee that pathways involving α -elimination steps may prove to be quite general for fluorine-substituted alkyl groups bound to metal surfaces.

Acknowledgment. We thank the financial support from the National Science Council of the Republic of China under Contract No. 92-2113-M-110-017 and 92-2816-M-110-0002-6.

References

- Dolbier, W. R., Jr. Chem. Rev. 1996, 96, 1557.
- Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. Chem. Rev. 1994, 94,
- (3) Burton, D. J.; Yang, Z.-Y. Tetrahedron 1992, 48, 189.
- (4) Zaera, F. Acc. Chem. Res. 1992, 25, 260.
 (5) Sugawara, K.; Sun, W.; Wach, Th.; Wanner, J. Ber. Bunsen-Ges. Phys. Chem. 1995, 99, 1357.
- (6) The spectrum was checked by backfilling the chamber with pure C₄F₈ gas.
- (7) Borovkov, V. Y.; Lonyi, F.; Kovalchuk, V. I.; d'Itri, J. L. J. Phys. Chem. B 2000, 104, 5603
- Wu, G.; Stacchiola, D.; Kaltchev, M.; Tysoe, W. T. J. Am. Chem. Soc. 2000, 122, 8232
- (9) The major fragment of fluorocarbon radicals usually results from the loss of one fluorine atom during electron-impact ionization. For example, see: Jensen, M. B.; Thiel, P. A. *J. Am. Chem. Soc.* **1995**, *117*, 438.
- (10) For an excellent review, see: Zaera, F. Prog. Surf. Sci. 2001, 69, 1.
 (11) Burton, D. J.; Yang, Z.-Y.; Morken, P. A. Tetrahedron 1994, 50, 2993.
- (12) The fingerprinting bands of ≡CCF₃ are at 1160−1165 cm⁻¹ ν_{as}(CF₃) and 1218−1228 cm⁻¹ ν_s(CF₃). For details, see ref 7.
 (13) The RAIR spectra of CF₂=CFI/Cu(111) below 400 K exhibit bands at
- $1625 (\nu_{C=C})$, $1285 (\nu_{as} CF_2)$, and $985 cm^{-1} (\nu_s CF_2)$, diagnostic of a stable
- vinylic species trapped on the surface. For assignments, see: Stafford, S. ..; Stone, F. G. A. Spectrochim. Acta 1961, 17, 412.
- (14) Chesters, M. A.; McCash, E. M. J. Electron Spectrosc. Relat. Phenom. **1987**, 44, 99.
- (15) Ros, R.; Tassan, A.; Roulet, R.; Laurenczy, G.; Duprez, V.; Schenk, K. Chem. Soc., Dalton Trans. 2002, 3565. (16) Pallassana, V.; Neurock, M.; Lusvardi, V. S.; Kragten, D. D.; van Santen,
- R. A. J. Phys. Chem. B 2002, 106, 1656 and references therein.
- (17) Parallel reaction results were observed in the pyrolysis of a (C₂F₅)₂Fe-(CO)₄ complex. For details, see: King, R. B.; Stafford, S. L.; Treichel, P. M.; Stone, F. G. A. J. Am. Chem. Soc. **1961**, 83, 3604.
- (18) Schrock, R. R.; Listemann, M. L.; Sturgeoff, L. G. J. Am. Chem. Soc. 1982, 104, 4291.
- (19) Azad, S.; Kaltchev, M.; Stacchiola, D.; Wu, G.; Tysoe, W. T. J. Phys. Chem. B 2000, 104, 3107.

- (20) Paul, A.; Gellman, A. J. Langmuir 1995, 11, 4433.
 (21) Brothers, P. J.; Roper, W. R. Chem. Rev. 1988, 88, 1293.
 (22) For example, D(CH₃CH₂-F) is 105.5 kcal/mol, while D(CH₃CF₂-F) is 124.8 kcal/mol. See: Witt, S. D.; Wu, E.-C.; Loh, K.-L.; Tang, Y.-N. J. Catal. 1981, 71, 270.

JA047831F