4ª Lista de Exercícios – Cálculo Numérico Computacional

Assunto: Método dos Quadrados Mínimos

Professor: Fabricio Alves Oliveira

Curso: Engenharia Elétrica

1- Ajuste os dados abaixo pelo método dos quadrados mínimos, utilizando:

- a) uma reta $\varphi(x) = a_1 + a_2 x$
- b) uma parábola do tipo $\varphi(x) = a_1 + a_2 x + a_3 x^2$

\boldsymbol{x}	0	1	2	3	4
у	27	42	60	87	127

2- Considere a tabela abaixo:

x	0.5	0.75	1	1.5	2	2.5	3
у	-2.8	-0.6	1	3.2	4.8	6	7

- a) Faça o gráfico de dispersão e verifique que uma função para ajustar esses dados possui a forma $\varphi(x) = a_1 \ln(x) + a_2$.
- b) Utilize o método dos quadrados mínimos para ajustar os valores da tabela à função $\varphi(x)=a_1\ln(x)+a_2$.

3- Dada a tabela

Х	0.00	0.10	0.50	1.00	1.50
f(x)	2.00	2.22	3.72	8.39	21.08

suponha que o ajuste dos pontos seja feito pelo Método dos Quadrados Mínimos (MQM) com uma função do tipo Q(x) = a1g1(x) + a2g2(x).

Faça o diagrama de dispersão e indique qual das funções abaixo fornecerá o melhor ajuste:

a)
$$g_1(x) = 1 e g_2(x) = e^x$$

b)
$$g_1(x) = 1 e g_2(x) = 1/x$$

c)
$$g_1(x) = 1 e g_2(x) = sen(x)$$

4- Aproxime, pelo método dos quadrados mínimos, a função $f(x)=x^4-5x$ no intervalo [-1,1] por um polinômio do segundo grau: $\varphi(x)=a_1+a_2x+a_3x^2$.

1

5- O número de bactérias existente em uma cultura após x horas é apresentado na tabela:

x	0	1	2	3	4	5	6
у	32	47	65	92	132	190	275

- a) Utilize o método dos quadrados mínimos para ajustar os dados da tabela a função $y=ab^x$. (Observe que y não é linear no parâmetros a e b. Para aplicar o MQM deve-se linearizar o problema.)
- b) Estime o número de bactérias para x = 7.

Respostas:

1) a)
$$\varphi(x) = 19.6 + 24.5x$$
 b) $\varphi(x) = 28.02 + 7.64x + 4.21x^2$

2) b)
$$\varphi(x) = 5.47411 \ln(x) + 0.98935$$

3) gráfico do tipo (a)

4)
$$\varphi(x) = -\frac{3}{35} - 5x + \frac{6}{7}x^2$$

5) a)
$$\varphi(x) = ab^x$$
, onde $a = 32.14685$ e $b = 1.42696$ b) ≈ 387