#2 More on inner products and norms

Monday, 13 September 2021 9:30 am

Hour 2: More on inner products and norms

Proofs (from last lecture)

Triangle inequality: 12441 = 121+141 As both sides ≥ 0 , we can instead prove $|x+y|^2 \leq (|x|+|y|)^2$ $\langle x+y, x+y \rangle \leq |x|^2 + 2|x||y| + |y|^2$ $2\langle x,y \rangle \leq 2|x||y|$ (xy) & lally!

We know 1(x,y) = 1211y1, Cauchy-Schwarz, hence triangle inequality follows.

4. Polarization identity: $\langle x,y \rangle = \frac{|x+y|^2 - |x-y|^2}{4}$ Trivial.

 \underline{Def}^n : If $x,y \in \mathbb{R}^n$, d(x,y) = "distance between a and <math>y" = |x-y|Thum: becomes a definition later on

① d is "symmetric" (ie d(xy) = d(y,x))
② d is "positive definite" (ie $d(xy) \ge 0$, w/ equality
③ Triangle inequality: $d(xz) \le d(xy) + d(y,z)$

- $\frac{1}{2} \int d(x,y) = |x-y| = |-(y-x)| = |-1| \cdot |y-x| = |y-x| = d(y,x)$ $2 \quad \text{Norm always } \ge 0.$ $d(x,y) = 0 \iff |x-y| = 0 \iff x-y=0$ $\iff x = y$
- 12-21 = 12-41 + 14-21 12-41 + 14-21 = 12-4+4-21 (ne know |p1 + 19) = |p+q1)

 $|x-y|+|y-z| \ge |x-y+y-z|$ (we know $|p|+|q| \ge |p+q|$) = |x-z|

 $|x| = \sqrt{2} x^2$ commonly known as $|x|_2$ or Euclidean norm Similarly, $|x|_2 = \sum |x|$ $d_1(x,y) = |x-y|$, $|x|_\infty = \max_{\infty} |x|$ $d_\infty(x,y) = |x-y|_\infty$

Exercise: de la do have the exact same properties.