Esperienza 15: Misura della costante di Boltzmann

Gruppo BN Lisa Bedini, Federico Belliardo, Marco Costa

May 6, 2017

1 Scopo dell'esperienza

Misurare la costante di Bolzmann dal rumore termico (Johnson-Nyquist) di una resistenza a temperatura nota, grazie ad un amplificator, un filtro passa-banda e un convertitore RMS.

2 Materiale a disposizione

• INA114 Amplificatore

• AD708: OpAmp integrati

• AD736: RMS converter

3 Montaggio del circuito

3.1 Power filter

La tensione di alimentazione e la massa sono state filtrate mediante circuiti passa-basso prima di fornirle agli integrati in modo da ridurne le fluttuazioni:

Figure 1: Filtri passa basso per le alimentazioni.

Si è montato anche il filtro per la tensione negativa anche se non è mai stata usata.

3.2 Preamplificatore

Il primo stadio di amplificazione è stato realizzato con un Precision instrumentation amplifier avente un guadagno atteso: $G_1=1+\frac{50k\Omega}{1k\Omega}=51$ il secondo stadi è un semplice amplificatore invertente con guadagno teorico: $G_2=\frac{68k\Omega}{4.7k\Omega}=14.5$. Il valore ateso dell'amplificazione è: G=740. Non sono stati propagati gli errori sulle resistenze. Si nota che anche volendo farlo non conosciamo la precisione sulla calibrazione della resistenza interna dall'INA114.

Figure 2: Preamplificatore realizzato con opAmp e INA114.

Il circuito è stato analizzato fornendo in ingresso con il generatore di funzioni un onda sinusoidale di piccola ampiezza $(V_0 =)$ e se ne è costruito il diagramma di Bode, come visualizzato in figura bode. Esso si comporta come u filtro passa basso con una frequenza di taglio f =. Il segnale in uscita appare molto rumoroso.

3.3 Filtro passa-banda e post amplificatore

Si sono realizzati il filtro passa-banda e il post amplificatore come mostrato nelle figure.

Figure 3: Filtro passa-banda realizzato con opAmp.

Figure 4: Post amplificatore realizzato con opAmp.

L'analisi teorica del circuito passa-banda indica che questo ha una amplificazione massima $A_{banda}=\frac{R_3}{2R_1}=8.7$ in corrispondenza della frequenza $f_t=\frac{1}{2\pi C}\sqrt{\frac{\frac{1}{R_1}+\frac{1}{R_2}}{R_3}}=6.4kHz$. La larghezza i banda prevista è: $\Delta f=\frac{1}{\pi R_3C}$, agli estremi della quale l'amplificazione è di 3dB inferiore a quella di picco. Il post amplificatore ha invece un guadagno $A_{post}=1+\frac{R_2}{R_1}=34$, come è ben noto. Il valore a centro banda atteso sarebbe dunque $A_0=269$.

E' stato realizzato un plot di Bode per questa parte di circuito e si sono confrontate le previsioni teoriche... Non è stato eseguito il fit di questo Bode.

3.4 Convertitore RMS

L'ultima parte del circuito ha lo scopo di trasformare un segnale alternato in un segnale continuo restituendone il valore quadratico medio ed è stato realizzato con un apposito integrato riportato in figura:

Figure 5: Circuito RMS realizzato con appostito integrato.

4 Misura della costante di Boltzmann

5 Conclusioni