CENG 382 - Analysis of Dynamic Systems 20221

Take Home Exam 1 Solutions

Göçer, Anıl Eren e2448397@ceng.metu.edu.tr

November 14, 2022

1. (a) y(k+3) + 2y(k+1) - y(k) = 5k + 8

The difference equation of order n=3 is of the form:

$$a_n(k)y(k+n) + a_{n-1}(k)y(k+n-1) + \dots + a_1(k)y(k+1) + a_0(k)y(k) = g(k)$$

Thus, the system is "linear".

Since all of the coefficients a_i does not depend on k, i.e. they are all constants, the system is "time-invariant".

It is "forced", as the forcing term, g(k), is not equal to zero, i.e. $(g(k) \neq 0)$.

Answer = linear, time-invariant, forced

(b)
$$\ddot{y}(t) - (t+1)^2 \dot{y}(t) - y(t) = 0$$

The differential equation of order n=2 is of the form:

$$a_n(t)y^{(n)}(t) + a_{n-1}(t)y^{(n-1)}(t) + \dots + a_1(t)\dot{y}(t) + a_0(t)y(t) = g(t)$$

Hence, the system is "linear".

Since there is a coefficient depending on t, which is $-(t+1)^2$, it is "time-varying".

Because the forcing term, g(t), is equal to zero, i.e. (g(t) = 0), it is "unforced"

Answer = linear, time-varying, unforced

(c)
$$\ddot{y}(t) - 5\dot{y}(t) + 6y(t) = y^2(t) + 3$$

The linear continuous systems can be written in the form of

$$a_n(t)y^{(n)}(t) + a_{n-1}(t)y^{(n-1)}(t) + \dots + a_1(t)\dot{y}(t) + a_0(t)y(t) = g(t).$$

However, this system cannot be written in that form because of the term $y^2(t)$, so it is "non-linear".

Since all coefficients does not depend on t, it is "time-invariant".

It is "forced", as the forcing term, g(t), is not equal to zero.

Answer = non-linear, time-invariant, forced.

2. (a) Find eigenvalues:

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 2 & -2 \\ -5 & \lambda + 1 \end{vmatrix} = \lambda^2 - \lambda - 12 = 0 \longrightarrow \lambda_1 = 4, \ \lambda_2 = -3$$

Find corresponding eigenvectors:

for $\lambda_1 = 4$:

$$As_1 = \lambda_1 s_1 \longrightarrow \begin{bmatrix} 2 & 2 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4x_1 \\ 4x_2 \end{bmatrix} \longrightarrow x_1 = x_2 \longrightarrow s_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

for $\lambda_2 = -3$:

$$As_2 = \lambda_2 s_2 \longrightarrow \begin{bmatrix} 2 & 2 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3x_1 \\ -3x_2 \end{bmatrix} \longrightarrow 5x_1 = -2x_2 \longrightarrow s_2 = \begin{bmatrix} 1 \\ -5 \\ \hline 2 \end{bmatrix}$$

For $A = S\Lambda S^{-1}$:

$$\Lambda = \begin{bmatrix} 4 & 0 \\ 0 & -3 \end{bmatrix}, S = \begin{bmatrix} 1 & 1 \\ 1 & \frac{-5}{2} \end{bmatrix}, S^{-1} = \begin{bmatrix} \frac{5}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{-2}{7} \end{bmatrix}$$

The system can be written as:

$$x' = (S\Lambda S^{-1})x + b$$

Multiply on the left by S^{-1} :

$$S^{-1}x' = \Lambda S^{-1}x + S^{-1}b$$

$$(S^{-1}x)' = \Lambda S^{-1}x + S^{-1}b$$

Let $u = S^{-1}x$ and $c = S^{-1}b$, then the system becomes:

$$u' = \Lambda u + c$$

where
$$c = \begin{bmatrix} \frac{5}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{-2}{7} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{9}{7} \\ \frac{-2}{7} \end{bmatrix}$$
.

So, the system looks like

$$u' = \begin{bmatrix} 4 & 0 \\ 0 & -3 \end{bmatrix} u + \begin{bmatrix} \frac{9}{7} \\ \frac{-2}{7} \end{bmatrix}$$

with
$$u_0 = S^{-1}x_0 = \begin{bmatrix} \frac{5}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{-2}{7} \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{-1}{7} \\ \frac{-6}{7} \end{bmatrix}$$

So, the matrix equation can be written simply as:

$$u_1'(t) = 4u_1(t) + \frac{9}{7}, u_1(0) = \frac{-1}{7}$$

$$u_2'(t) = -3u_2(t) + \frac{-2}{7}, u_2(0) = \frac{-6}{7}$$

We can solve them separately. Recall that the solution to the one-dimensional equation x' = ax + b, $x(0) = x_0$ is $x(t) = e^{at}(x_0 + \frac{b}{a}) - \frac{b}{a}$. Therefore $u_1(t)$ and $u_2(t)$ is found as follows:

$$u_1(t) = e^{4t} \left(\frac{-1}{7} + \frac{9}{28}\right) - \frac{9}{28} = \frac{5}{28} e^{4t} - \frac{9}{28}$$
$$u_2(t) = e^{-3t} \left(\frac{-6}{7} + \frac{2}{21}\right) - \frac{2}{21} = \frac{-16}{21} e^{-3t} - \frac{2}{21}$$

As a result:

$$u(t) = \begin{bmatrix} \frac{5}{28}e^{4t} - \frac{9}{28} \\ \frac{-16}{21}e^{-3t} - \frac{2}{21} \end{bmatrix}$$

by back substitution x = Su:

$$x(t) = \begin{bmatrix} 1 & 1 \\ 1 & \frac{-5}{2} \end{bmatrix} \begin{bmatrix} \frac{5}{28}e^{4t} - \frac{9}{28} \\ \frac{-16}{21}e^{-3t} - \frac{2}{21} \end{bmatrix} = \begin{bmatrix} \frac{5}{28}e^{4t} - \frac{16}{21}e^{-3t} - \frac{245}{588} \\ \frac{5}{28}e^{4t} + \frac{40}{21}e^{-3t} - \frac{49}{588} \end{bmatrix}$$
$$x(t) = \begin{bmatrix} \frac{5}{28}e^{4t} - \frac{16}{21}e^{-3t} - \frac{245}{588} \\ \frac{5}{28}e^{4t} + \frac{40}{21}e^{-3t} - \frac{49}{588} \end{bmatrix}$$

(b)
$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} \left[\frac{\frac{5}{28}e^{4t} - \frac{16}{21}e^{-3t} - \frac{245}{588}}{\frac{5}{28}e^{4t} + \frac{40}{21}e^{-3t} - \frac{49}{588}} \right] = \begin{bmatrix} \infty \\ \infty \end{bmatrix}$$

The term e^{-3t} vanishes and the term e^{4t} dominates by exploading as $t \longrightarrow \infty$.

That is x(t) is exploading in the direction of the eigenvector corresponding the eigenvalue $\lambda = 4$.

3.
$$\dot{x}(t) = -7x(t) + 5$$

Let's say \tilde{x} is the fixed point of the system. Then,

$$-7\tilde{x}+5=0 \longrightarrow \tilde{x}=\frac{5}{7}$$
, so $\tilde{x}=\frac{5}{7}$ is the fixed point of the system.

Recall that solution to the equation $\dot{x}(t) = ax(t) + b$, $x(0) = x_0$ is $e^{at}(x_0 + \frac{b}{a}) - \frac{b}{a}$. So, $x(t) = e^{-7t}(x_0 - \frac{5}{7}) + \frac{5}{7}$.

$$\lim_{t \to \infty} x(t) = \lim_{x \to \infty} e^{-7t} (x_0 - \frac{5}{7}) + \frac{5}{7} = \frac{5}{7}$$

Hence, x(t) converges to the fixed point $\tilde{x} = \frac{5}{7}$ as $t \longrightarrow \infty$.

Because $x(t) \longrightarrow \tilde{x} = \frac{5}{7}$ as $t \longrightarrow \infty$, fixed point \tilde{x} is "stable" fixed point. This means the system gravitates toward the fixed point.

4.
$$\ddot{x}(t) + t^3 \ddot{x}(t) + (t+1)\dot{x}(t) - x(t) = 2t+1$$

Let

$$x(t) = y_1(t)$$

$$\dot{x}(t) = y_2(t) = \dot{y}_1(t)$$

$$\ddot{x}(t) = y_3(t) = \dot{y}_2(t)$$

$$\ddot{x}(t) = -t^3y_3(t) - (t+1)y_2(t) + y_1(t) + 2t + 1 = \dot{y}_3(t)$$

Then, the system can be represented as follows:

$$\begin{bmatrix} \dot{y}_1(t) \\ \dot{y}_2(t) \\ \dot{y}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -(t+1) & -t^3 \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \\ y_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 2t+1 \end{bmatrix}$$

$$\dot{Y} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -(t+1) & -t^3 \end{bmatrix} Y + \begin{bmatrix} 0 \\ 0 \\ 2t+1 \end{bmatrix}$$

5. (a) For
$$x^1(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
;

$$x(1) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} x(0) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$x(2) = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} x(1) = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

$$x(3) = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} x(2) = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1 \\ 9 \end{bmatrix}$$

$$x(4) = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix} x(3) = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \end{bmatrix} = \begin{bmatrix} 1 \\ 14 \end{bmatrix}$$

$$x(5) = \begin{bmatrix} 1 & 0 \\ 6 & 1 \end{bmatrix} x(4) = \begin{bmatrix} 1 & 0 \\ 6 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 14 \end{bmatrix} = \begin{bmatrix} 1 \\ 20 \end{bmatrix}$$

...

...

It can be inferred that $x(k) = \begin{bmatrix} \frac{1}{(k+1)(k+2)} \\ \frac{2}{2} - 1 \end{bmatrix}$.

For
$$x^{1}(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
;
 $x(1) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} x(0) = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $x(2) = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} x(1) = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
 $x(3) = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} x(2) = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
...

It can be concluded that $x(k) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

 $a\left[\frac{1}{(k+1)(k+2)}-1\right]+b\begin{bmatrix}0\\1\end{bmatrix}=0$ is satisfied only if a=b=0. So, the solutions are linearly independent.

We have two linearly independent solutions. Hence, the fundamental set of solutions is $\left\{ \begin{bmatrix} \frac{1}{(k+1)(k+2)} \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$.

It can be written in the matrix form as:

$$X(k) = \begin{bmatrix} 1 & 0\\ \frac{(k+1)(k+2)}{2} - 1 & 1 \end{bmatrix}$$

(b) We know $\Phi(k, 0) = X(k)X^{-1}(0)$.

$$X^{-1}(k) = \begin{bmatrix} 1 & 0 \\ -\frac{(k+1)(k+2)}{2} + 1 & 1 \end{bmatrix} \longrightarrow X^{-1}(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Phi(k,0) = \begin{bmatrix} \frac{1}{(k+1)(k+2)} & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{(k+1)(k+2)} & 0 \\ 2 & 1 \end{bmatrix}$$

$$\Phi(k,0) = \begin{bmatrix} \frac{1}{(k+1)(k+2)} & 0 \\ 2 & 1 \end{bmatrix}$$

(c) Say $\begin{bmatrix} \tilde{x_1} \\ \tilde{x_2} \end{bmatrix}$ is the fixed point of the system. Then,

$$\begin{bmatrix} \tilde{x_1} \\ \tilde{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ k+2 & 1 \end{bmatrix} \begin{bmatrix} \tilde{x_1} \\ \tilde{x_2} \end{bmatrix}$$

For the second equation to satisfy, either (k+2) or $\tilde{x_1}$ should be 0. since k (time) cannot be negative, (k+2) cannot be 0, so $\tilde{x_1}=0$. Then, $\tilde{x_2}$ can be any constant, i.e $\tilde{x_2}=c,c\in R$.

Hence, there are infinitely many fixed points \tilde{X} of the form $\begin{bmatrix} \tilde{x_1} \\ \tilde{x_2} \end{bmatrix}$, $\tilde{x_1} = 0$, $\tilde{x_2} = c$, $c \in R$.

Say $x(0) = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, then:

$$x(t) = \begin{bmatrix} 1 & 0 \\ \frac{(k+1)(k+2)}{2} - 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} c_1 \\ \frac{(k+1)(k+2)}{2} - 1 \end{bmatrix} c_1 + c_2$$

If $c_1 = 0$, then x(t) converges to $\begin{bmatrix} 0 \\ c_2 \end{bmatrix}$ as $k \longrightarrow \infty$. In other words, if the system starts at one of the fixed points, then system remains there.

If $c_1 \neq 0$, then x(t) diverges as $k \longrightarrow \infty$. In other words, if the system does not start at one of the fixed points, then it diverges.