1 Basic Principles

Degenerate spectral decomposition

$$F(\hat{A}) = \sum_{i} \sum_{j_i=1}^{d_i} F(A_i) |A_i, j_i\rangle\langle A_i, j_i|$$

provided $F(A_i)$ is well defined.

1.1 Tensor Product

Direct product $\mathcal{H}_A \otimes \mathcal{H}_B$ has basis

$$|i,I\rangle = |B_i\rangle \otimes \left|\widetilde{B}_I\right\rangle \qquad \langle i,I| = \langle B_i| \otimes \left\langle \widetilde{B}_I \right|$$

Rule for combining tensor products of operators, bras, and kets:

$$(A \otimes B)(C \otimes D) = AC \otimes BC$$

rule: left stays left, right stays right

1.2 Trace and Partial trace

Trace of operator: $\text{Tr}(\hat{O}) = \sum_i \langle B_i | \hat{O} | B_i \rangle$ Properties:

• cyclic:
$$\text{Tr}(\hat{A}\hat{B}\hat{C}) = \text{Tr}(\hat{C}\hat{A}\hat{B}) = \text{Tr}(\hat{B}\hat{C}\hat{A})$$

• linear:
$$\operatorname{Tr}\left(a\hat{A} + \hat{B}\right) = a\operatorname{Tr}\left(\hat{A}\right) + b\operatorname{Tr}\left(\hat{B}\right)$$

• trace of unity operator: $Tr(\hat{1}) = dim(\mathcal{H})$

Trace over $\mathcal{H}_A \otimes \mathcal{H}_B$ is

$$\operatorname{Tr}_{\mathcal{H}_A \otimes \mathcal{H}_B} = \operatorname{Tr}_{\mathcal{H}_A} \operatorname{Tr}_{\mathcal{H}_B} = \operatorname{Tr}_{\mathcal{H}_B} \operatorname{Tr}_{\mathcal{H}_A}$$

with partial traces

$$\operatorname{Tr}_{\mathcal{H}_B}(\hat{O}) = \sum_K \left\langle \widetilde{B}_K \middle| \hat{O} \middle| \widetilde{B}_K \right\rangle = \hat{O}_A^{\text{reduced}}$$

with reduced operator acting on \mathcal{H}_A with matrix elements

$$\langle i|\hat{O}_A^{\rm red}|j\rangle = \sum_K \, \langle i,K|\hat{O}|j,K\rangle$$

• if
$$\hat{O} = \hat{O}_A \otimes \hat{1}_B$$
 then $\operatorname{Tr}(\hat{O}) = \operatorname{Tr}_{\mathcal{H}_A}(\hat{O}_A)$

• reduced density operator $\hat{\rho}_A = \text{Tr}_{\mathcal{H}_B}(\hat{\rho})$ describes probabilities in \mathcal{H}_A

hint: only orthogonal terms survive:

$$\operatorname{Tr}_{\mathcal{H}_A \otimes \mathcal{H}_B} |abc\rangle\langle a'b'c'| = |a\rangle\langle a'| \underbrace{\langle b'c'|bc\rangle}_{\delta_{b'b}\delta_{c'c}}$$

pitfall: have to factor out products:

$$\operatorname{Tr}_{\mathcal{H}_{B}}\left[(|ab\rangle + \gamma |cd\rangle)(\langle ab| + \gamma^{*} \langle cd|)\right]$$

$$= |a\rangle\langle a| + |\gamma|^{2} |c\rangle\langle c|$$

$$\neq \left[(|a\rangle + \gamma |c\rangle)(\langle a| + \gamma^{*} \langle c|)\right] \operatorname{Tr}(\dots)$$

1.3 Stone's Theorem

Every continuous symmetry $a \to a + \Delta a$ (automorphism) is enacted by a unitary operator

$$\hat{U}(\Delta a) = e^{i\Delta \hat{A}}$$

where the generator \hat{A} is Hermitian and time-independent.

a=t: time translation: $\hat{A}=-\hat{H}/\hbar$

• differentiating gives TDSE

a=x: spatial translation: $\hat{A}=-\hat{p}_x/\hbar$

• expanding \hat{x}' to $O(\Delta x)$ gives CCR: $[\hat{x}, \hat{p}_x] = i\hbar$

 $a = \theta$: rotation: $\hat{A} = \hat{L}\theta/\hbar\hat{A} = \hat{L}/\hbar$

1.4 Automorphisms

Unitary transform between representations

$$|\psi'\rangle = \hat{X} |\psi\rangle, \qquad \hat{O}' = \hat{X}\hat{O}\hat{X}^{\dagger}$$

• preserves $\langle A|\hat{O}|B\rangle$ and $\hat{A}\hat{B}=\hat{C}$

$$\langle A|X^{\dagger}X\hat{O}X^{\dagger}X|B\rangle$$

1.5 Schrödinger picture

Unitary time evolution operator evolves states:

$$|\psi(t)\rangle_S = \hat{U}(t) |\psi(0)\rangle, \qquad \hat{U}(t) = e^{-i\hat{H}_S t/\hbar}$$

Equations of motion:

$$\underbrace{i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle_{S} = \hat{H}_{S}|\psi(t)\rangle_{S}}_{\text{Schrödinger equation*}}, \qquad \frac{\partial}{\partial t}\hat{A}_{S} = 0$$

1.6 Heisenberg picture

Automorphism $\hat{X} = \hat{U}^{\dagger}(t) = \exp(it\hat{H}_S/\hbar)$ gives:

$$\hat{O}_H(t) = \hat{U}^{\dagger}(t)\hat{O}_S\hat{U}(t)$$

preserving matrix elements

$$\langle A(t)|\hat{O}|B(t)\rangle_S = \, \langle A|\hat{U}^\dagger(t)\hat{O}\hat{U}(t)|B\rangle = \, \langle A|\hat{O}(t)|B\rangle_H$$

Equations of motion:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle_H = 0,$$
 $\underbrace{\frac{\partial}{\partial t} \hat{A}_H(t) = \frac{i}{\hbar} \left[\hat{H}_H, \hat{A}_H \right]}_{\text{Heisenberg equation of motion}}$

Interacting (Dirac) picture

Interaction Hamiltonian: $\hat{H}_I = \hat{H}_I^0 + \hat{H}_I^1$

• operators evolve with \hat{H}_{I}^{0} , states with \hat{H}_{I}^{1}

From (S), automorphism $\hat{X} = \exp(it\hat{H}_S^0/\hbar)$

$$\underbrace{i\hbar\frac{\partial}{\partial t}\left|\psi(t)\right\rangle_{I}=\hat{H}_{I}^{1}(t)\left|\psi(t)\right\rangle_{I},}_{\text{Schrödinger with }\hat{H}_{I}^{1}(t)}\underbrace{\frac{\partial}{\partial t}\hat{A}_{I}(t)=-\frac{i}{\hbar}\left[\hat{A}_{I}(t),\hat{H}_{I}^{0}(t)\right]}_{\text{Heisenberg with }\hat{H}_{I}^{0}(t)}$$

- Dirac reduces to Heisenberg when $\hat{H}_S^1 = 0$
- perturbation theory: $\hat{H}^0 \gg \hat{H}^1$: expand in powers of \hat{H}^1

2 Position and Momentum Rep

In the continuous case, projection operators are

$$\hat{P}_{x,x+\Delta x} = \int_{x}^{x+\Delta x} dx' |x'\rangle \langle x'|$$

• Wavefunction: $\psi(x) = \mathcal{A}(x|\psi) = \langle x|\psi\rangle$

Momentum eigenstates $\hat{p}|k\rangle = p|k\rangle = \hbar k|k\rangle$

• Completeness:

$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}k}{2\pi} |k\rangle \langle k| = \hat{1}$$

- Orthonormality: $\langle k|k'\rangle = (2\pi)\delta(k-k')$
- Orthogonality to $|x\rangle$ and CCR:

$$\langle x|k_x\rangle = e^{ik_xx} = e^{ip_xx/\hbar}, \qquad [\hat{x},\hat{p}] = i\hbar$$

• in position basis: $\langle x|F(\hat{p}_x)|\psi\rangle = F(-i\hbar\partial_x)\psi(x)$

In polar coords, $|r, \phi\rangle = |x = r \cos \phi, y = r \sin \phi\rangle$,

(completeness)
$$\int_0^\infty dr \int_0^{2\pi} r \, d\phi \, |r, \phi\rangle \langle r, \phi| = \hat{1}$$
 forthonormality)
$$\langle r, \phi | r', \phi' \rangle = r^{-1} \delta(r - r') \delta(\phi - \phi')$$

In separable spherical coords $|r, \theta, \phi\rangle = |r\rangle \otimes |\theta\phi\rangle$ have

$$(\text{completeness}) \qquad \int_0^\infty \mathrm{d}r \int r^2 \,\mathrm{d}\Omega \, |r, \phi\rangle \langle r, \phi| = \hat{1}_{\text{man}} \text{ state (Boltzmann)}$$

$$\int_0^\infty \mathrm{d}r \, r^2 \, |r\rangle \langle r| = \hat{1}_r \implies \langle r|r'\rangle = r^{-2} \delta r - r'$$

$$\hat{\rho} = \frac{e^{-\hat{H}/2}}{\mathrm{Tr}(A)}$$
 and the CCR become $[\hat{r}_i, \hat{p}_j] = i\hbar \delta_{ij}$

3 Emergence of Classicality I

Hilbert Space to Phase Space

Associate every operator $\hat{A} \in \mathcal{H}$ to classical phase space quantity

$$A_{cl}(x, p_x) = \langle x | \hat{A} | k_x \rangle \langle k_x | x \rangle$$

- Integral over p_x gives $\langle x|\hat{A}|x\rangle$
- Integral over x gives $\langle k_x | \hat{A} | k_x \rangle$
- Integral over x and p_x gives $\text{Tr}(\hat{A})$
- Invertible via $\hat{A} = \hat{1}_x \hat{A} \hat{1}_k$

Wigner-Weyl transform guarantees that A_c is real

4 Density Matrices

Pure state density operator

$$\hat{\rho} = |\psi\rangle \, \langle \psi|$$

- $\hat{\rho}$ is probability op.: $p(A_i) = |\langle A_i | \psi \rangle|^2 = \langle A_i | \hat{\rho} | A_i \rangle$
- expectation value: $\langle \psi | \hat{A} | \psi \rangle = \text{Tr} \left(\hat{A} \hat{\rho} \right)$
- Satisfies $\operatorname{Tr}(\hat{\rho}) = \operatorname{Tr}(\hat{\rho}^2) = 1$

4.1 Mixed States

$$\hat{\rho} = \sum_{I} p_{J} \left| \psi_{J} \right\rangle \left\langle \psi_{J} \right|$$

- Satisfies $\operatorname{Tr}(\hat{\rho}) = \sum_{J} p_{J} = 1$, but $\operatorname{Tr}(\hat{\rho}^{2}) < 1$
- more mixed = less information about the system
- von Neumann entropy: $S = -\text{Tr}(\hat{\rho} \ln \hat{\rho})$ measures igno-
 - mixed vs pure: compute $Tr(\hat{\rho}^2)$
- statistical (classical) prob. op.: p_J are eigenvalues of $\hat{\rho}$
- since $\hat{\rho}$ is composed of states $|\psi\rangle$, the time evolution is governed by how the states (not operators) evolve:

$$\hat{\rho}_S(t) = \hat{U}(t)\hat{\rho}_S(0)\hat{U}^{\dagger}(t), \qquad \hat{\rho}_H = \hat{\rho}_S(0)$$

For degenerate states with the same probability, use spectral decomposition (e.g. for entropy)

$$F(\hat{\rho}) = \sum_{i} \sum_{j_i} F(p_i) |p_i, j_i\rangle\langle p_i, j_i|$$

(Boitzmann)
$$e^{-\hat{H}/(kT)}$$

$$\hat{\rho} = \frac{e^{-\hat{H}/(kT)}}{\text{Tr}(\ldots)}$$

Wigner Quasi-Probability Distribution

... is classical phase space version of density operator

$$W(x, p_x) = \rho_c$$

- normalised: phase space integral is $Tr(\hat{\rho}) = 1$
- $\hbar \to 0$: phase space prob. density

• probability to be in phase space volume V:

$$p_V = \int_V \frac{\mathrm{d}x \,\mathrm{d}p_x}{2\pi\hbar} W(x, p_x)$$

• expectation value of any function of \hat{x} or \hat{p}_x is

$$\langle F(\hat{x}, \hat{p}_x) \rangle = \text{Tr}(\hat{F}\hat{\rho}) = \int \frac{\mathrm{d}x \,\mathrm{d}p_x}{2\pi\hbar} F(x, p_x) W(x, p_x)$$

• quasi-probability density: W and p_V can become negative

4.3 Quantum Liouville equation*

From time evolution of $\hat{\rho}_S(t)$, can find

$$\frac{\partial W}{\partial t} = \frac{i}{\hbar} \left[\hat{\rho}_S(t), \hat{H} \right]_c$$

and to leading order in \hbar :

$$\frac{DW_0}{Dt} = \frac{\partial W_0}{\partial t} + \{W_0, H\} \approx 0 \quad \text{(Classical Liouville)}$$

Quantum corrections vanish for $\partial^3 V(x)/\partial x^3 = 0$:

- 1. free particle: V = const.
- 2. constant external force: V = -Fx
- 3. harmonic oscillator: $V = \frac{1}{2}m\omega^2 x^2$
 - W: Gaussian with $\Delta x \Delta p_x = \frac{\hbar}{2} \& \Delta x = \sqrt{\hbar/(2m\omega)}$

5 Uncertainty Principle

Cauchy-Schwarz:

$$\langle u|u\rangle \langle v|v\rangle \ge |\langle u|v\rangle|^2$$

• uncertainty = standard deviation ΔA with

$$\Delta A^2 = \langle \psi | (\hat{A} - \langle \hat{A} \rangle)^2 | \psi \rangle = \langle \hat{A}^2 \rangle - \langle \hat{A} \rangle^2$$

• generalised uncertainty principle

$$\Delta A \Delta B \ge \frac{1}{2} \left| \left\langle \left[\hat{A}, \hat{B} \right] \right\rangle \right|$$

5.1 Coherent States

Uncertainty is minimised for

1.
$$R = \left\langle \underbrace{\left\{ \Delta \hat{A}, \Delta \hat{B} \right\}}_{\text{Arti computator}} \right\rangle = 0$$

2. Cauchy-Schwarz is equality: $|u\rangle \propto |v\rangle$

⇒ states of minimum uncertainty

These are satisfied by coherent states which are eigenstates of

$$\underbrace{(\hat{A}+i\mu\hat{B})}_{\text{non-hermitian}}\left|\alpha\right\rangle =\alpha\left|\alpha\right\rangle$$

• For $\hat{A} = \hat{x}$, $\hat{B} = \hat{p}_x$, wavefunction $\langle x | \alpha \rangle$ is Gaussian

6 Entanglement and Mixed States

Entangled states are states that cannot be written as a direct product of two states.

- Even if $\hat{\rho}$ is pure state, reduced $\hat{\rho}_A$ is in general mixed.
 - to verify entanglement, show that $Tr(\rho_A^2) < 1$
- Factorisable states are not entangled: partial traces yield pure states in reduced Hilbert space.

Bell state (normalised, pure) of maximal entanglement

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|0,0\rangle + |1,1\rangle)$$

Entropy is defined as

$$S = -\operatorname{Tr}(\hat{\rho}\ln\hat{\rho})$$

• Maximum entropy / entanglement states $\hat{\rho} = \hat{1}/\dim(\mathcal{H})$

6.1 Maximal Qubit Entanglement

General qubit state:

$$|\psi\rangle = \frac{|0,0\rangle + \alpha |0,1\rangle + \beta |1,0\rangle + \gamma |1,1\rangle}{\sqrt{1 + |\alpha|^2 + |\beta|^2 + |\gamma|^2}}$$

- 1. partial trace over \mathcal{H}_B gives effective state in \mathcal{H}_A
 - cyclic + orthonormality: partial trace picks out terms where second label is the same
- 2. find relation between constants in $\hat{\rho}_A$:
 - symmetry $\mathcal{H}_A \leftrightarrow \mathcal{H}_B$: $|\alpha| = |\beta|$,
 - symmetry $0 \leftrightarrow 1$: $|\gamma| = 1$
 - maximal entropy: $\hat{\rho} = \frac{1}{2} \hat{1}_{\mathcal{H}_A}$

$$\frac{\beta + \gamma \alpha *}{1 + |\alpha|^2} = 0$$

$$|\alpha| = |\beta| = \infty \text{ or } \beta = -\gamma \alpha *, \text{ e.g. } \alpha = \beta = 0$$

3. Bell states are natural basis of maximally entangled states

$$|\psi_{1,2}\rangle = \frac{1}{\sqrt{2}} (|0,0\rangle \pm |1,1\rangle)$$
$$|\psi_{3,4}\rangle = \frac{1}{\sqrt{2}} (|0,1\rangle \pm |1,0\rangle)$$

ullet qualitatively: for each measurement A, outcome B is known

6.2 Tensor products of harmonic oscillators

• QHO ladder op. Hamiltonian: $\hat{H} = \hbar \omega (\hat{a}^{\dagger} \hat{a} + \frac{1}{2})$ number operator \hat{N}

Derive thermal state / quantum Boltzmann:

- 1. product space $\hat{a}_{+} = \hat{a} \otimes \hat{1}, \quad \hat{a}_{-} = \hat{1} \otimes \hat{a}$
- 2. define pure state $|\psi\rangle = A \exp\left(\alpha \hat{a}_{+}^{\dagger} \hat{a}_{-}^{\dagger}\right) |0,0\rangle$
 - normalisation: $A = \sqrt{1 |\alpha|^2}$
- 3. partial trace $\hat{\rho}_{+} = \operatorname{Tr}_{\mathcal{H}_{-}}(\hat{\rho})$
 - define $|\alpha|^2 = \exp\left(-\ln\left(1/|\alpha|^2\right)\right) := \exp\left(-\frac{\hbar\omega}{kT}\right)$

Entangled state is thermal from point of view of \mathcal{H}_+ WKB approx Path integral saddle points Quantum tunneling

7 General Theory of Measurement

Projection operator $\hat{P}_A = |A\rangle \langle A|$.

Born rule: probability of outcome A of measurement \hat{A} on pure state $|\psi\rangle$ is

$$p(A|\rho) = |\langle A|\psi\rangle|^2 = \text{Tr}\left(\hat{P}_A\hat{\rho}\hat{P}_A^{\dagger}\right)$$

State after measurement is

$$|\psi'\rangle = \frac{\hat{P}_A |\psi\rangle}{\left\|\hat{P}_A |\psi\rangle\right\|} \qquad \hat{\rho}' = \frac{\hat{P}_A \hat{\rho} \hat{P}_A^{\dagger}}{\operatorname{Tr}\left(\hat{P}_A \hat{\rho} \hat{P}_A^{\dagger}\right)}$$

For degenerate eigenstates, state after measurement is given by

$$|\psi'\rangle = \frac{\hat{P}_{A_i} |\psi\rangle}{\left\|\hat{P}_{A_i} |\psi\rangle\right\|}$$

with $\hat{P}_{A_i} = \sum_{q_i} |A_i, q_i\rangle \langle A_i, q_i|$.

7.1 Consecutive Measurements

For consecutive measurements, projection operators multiply:

A AND THEN
$$B: \hat{P}_{B \cap A} = \hat{P}_B \hat{P}_A$$

For chronological set of measurements A and then B and \dots and then Z:

$$\hat{\rho}' = \frac{\hat{P}_Z \cdots \hat{P}_A \hat{\rho} \hat{P}_A^{\dagger} \cdots \hat{P}_Z^{\dagger}}{\text{Tr}(\dots)}$$

- trace is same as upstairs to ensure $Tr(\rho') = 1$
- denominator trace is also the probability $p(Z \cap \cdots \cap A|\rho)$
- $p(B \cap A|\rho) \neq p(A \cap B|\rho)$ and Bayes' thm does not apply

7.2 Multiple Consistent Outcomes

If $\hat{P}_A\hat{P}_B = \hat{P}_B\hat{P}_A = 0$, projection operators add:

$$A \text{ OR } B: \quad \hat{P}_{A \cup B} = \hat{P}_A + \hat{P}_B$$

Example: Measurement on d-degenerate eigenvalue A:

$$\hat{P} = \sum_{q=1}^{d} |A, q\rangle\langle A, q|$$

7.3 Two-Slit Experiment

Electron passing slit (A OR B) AND THEN measured at D:

$$p(D \cap (A \cup B)) = p(D \cap A) + p(D \cap B) + I_{D,AB}$$

with interference term $I_{D,AB} = \text{Tr}(\hat{P}_D\hat{P}_A\hat{\rho}\hat{P}_B^{\dagger}) + (A \leftrightarrow B)$ There is no third or higher order interference in QM (Wick's theorem?)

7.4 Measurements at different times

Schrödinger picture: $\hat{\rho}(t) = e^{-\frac{i}{\hbar}\hat{H}(t-t_0)}\hat{\rho}_0 e^{+\frac{i}{\hbar}\hat{H}(t-t_0)}$

- same as before but evolve state and thus $\hat{\rho}$ by $U(\Delta t)$ between each measurement
- probability is trace in denominator

Heisenberg picture:

• Absorb time evolution into projection operator:

$$\hat{P}_{A,B}(t) = e^{+\frac{i}{\hbar}\hat{H}(t-t_0)}\hat{P}_{A,B}e^{-\frac{i}{\hbar}\hat{H}(t-t_0)}$$

7.5 Quantum Zeno Effect

- 1. Prepare system in state $|\phi\rangle$ with $\hat{\rho} = \hat{P} = |\phi\rangle\langle\phi|$
- 2. survival probability p: still in state $|\phi\rangle$ after time t/N
- 3. repeat N times to find combined prob. p_N after time t
- 4. continuous measurement: $\lim_{N\to\infty} p_N = 1$

Conclusion: continuously observed states evolve with $\hat{P}\hat{H}\hat{P}$ and remain within subspace defined by projection operator.

8 Angular Momentum

Infinitesimal rotation in SO(2): $R[\theta] \approx \begin{pmatrix} 1 & -\theta \\ \theta & 1 \end{pmatrix} = 1 - i\theta\sigma_2$. Find $\hat{U}(\theta)$ by considering infinitesimal θ :

1. require position operators transform as (sim for \hat{y})

$$\hat{U}(\theta)\hat{x}\hat{U}(\theta)^{\dagger} = \hat{x}\cos\theta - \hat{y}\sin\theta$$

- 2. look for soln of form $\hat{U}(\theta) \approx 1 + \frac{i}{\hbar}\hat{L}\theta + O(\theta^2)$
- 3. compare to find $\hat{L} = \hat{x}\hat{p}_y \hat{y}\hat{p}_x$
- 4. standard argument: $\hat{U}[\theta] = \lim_{N \to \infty} \hat{U}[\theta/N]^N = e^{i\theta \hat{L}/\hbar}$

8.1 Orbital Rotations

Action on position eigenkets

$$|x', y'\rangle = \hat{U}_L^{\dagger}(\theta) |x, y\rangle$$

Since $|x,y\rangle=\hat{U}_L^\dagger(2\pi)\,|x,y\rangle$ and wavefunction is continuous, require $\hat{U}_L(2\pi)=\hat{1}$:

- eigenvalues of \hat{L} are integers
- find $\langle r, \phi | \hat{L} | \psi \rangle$ in polar coordinates:

$$x = r\cos\phi$$
 $y = r\sin\phi$

• eigenf
n $\langle r,\phi|m\rangle=f(r)e^{im\phi}$ with eigenvalue $L=m\hbar$

8.2 Spin in 2D

$$\hat{U}_S(\theta) = e^{i\hat{S}\theta/\hbar}$$

• do not require $\hat{U}_S(2\pi) = \hat{1}$, only

$$\hat{U}_S(2\pi) |\psi\rangle = e^{i\alpha} |\psi\rangle$$

- eigenvalue equation: $S = (n + \frac{\alpha}{2\pi})\hbar$
 - $-\alpha = 0$: boson
 - $-\alpha = \pi$: fermion
 - else: ANYON

Total ang. mom.: $\hat{J}=\hat{L}+\hat{S} \Longrightarrow \hat{U}_J=\hat{U}_S\hat{U}_L=\hat{U}_L\hat{U}_S$ Note that Pauli matrices obey $\hat{\sigma}_x^2=\hat{\sigma}_y^2=\hat{\sigma}_z^2=\hat{1}$ Schwinger and Holstein-Primakoff representation

9 Electric and Magnetic Fields

10 Quantum Harmonic Oscillator

Ladder operators:

$$\hat{a}\left|n\right\rangle = \sqrt{n}\left|n-1\right\rangle, \qquad \hat{a}^{\dagger}\left|n\right\rangle = \sqrt{n+1}\left|n+1\right\rangle$$

- number operator: $\hat{a}^{\dagger}\hat{a}$
- commutator: $[\hat{a}, \hat{a}^{\dagger}] = 1$

Position and momentum:

$$\hat{x} = \frac{\hbar}{2m\omega}(\hat{a} + \hat{a}^{\dagger}) \qquad \hat{p} = -i\omega \frac{\hbar}{2m\omega}(\hat{a} - \hat{a}^{\dagger}) \tag{1}$$

11 Hydrogen

For bound states, E < 0. This implies that there must be a maximum value of l.

12 Time-dep perturbation theory

13 Advanced topics

Spin statistics adiabatic approx Berry phase Aharanhov-Bohm effect