DESIGN OPTIMIZATION OF BRAKE DISC GEOMETRY USING DOE in ANSYS

MAE 598 Project – 2 Report

By

Divya Sree Naidu

(1219764715)

Abstract:

This report talks about the study of optimization of brake disc geometry in a four-wheeler vehicle using Design of Experiments (DOE) in ANSYS. The analysis is conducted on various objects like minimize the maximum stress in the brake disc, design a brake disc for emergency braking conditions with minimal volume, minimize the maximum temperature in the brake disc and maximize the first natural frequency of the brake disc. Before performing the optimization, various analysis like Structural, Modal and Thermal are performed to validate the obtained optimal solution. Response surface is used as Design Exploration method and Latin Hypercube Sampling (LHS) is considered for DOE method. Adaptive Multi-Objective Optimization (AMO) is used as Optimization algorithm.

Structural Analysis:

Equivalent Stress (Von-misses)

FIGURE 4
Model (D4) > Static Structural (D5) > Solution (D6) > Equivalent Stress

Deformation:

Modal Analysis:

TABLE 18 Model (E4) > Modal (E5) > Solution (E6) > Results

iei (E4) / Modai (E5) / Solution (E6) / Res		
Object Name	Total Deformation	
State	Solved	
Scope		
Scoping Method	Geometry Selection	
Geometry	All Bodies	
Definition		
Туре	Total Deformation	
Mode	7.	
Identifier		
Suppressed	No	
Results		
Minimum	3.6413e-003 m	
Maximum	0.77453 m	
Average	0.32819 m	
Minimum Occurs On	Solid	
Maximum Occurs On	Solid	
Information		
Frequency	2081.2 Hz	

TABLE 19
Model (E4) > Modal (E5) > Solution (E6) > Total Deformation

(L3) > 301411011 (L0) >	
Mode	Frequency [Hz]
1.	
2.	0.
3.	
4.	2.0187e-003
5.	3.9598e-003
6.	5.8548e-003
7.	2081.2
8.	2087.2
9.	3628.9
10.	3649.5

Thermal Analysis:

FIGURE 4

Model (F4) > Transient Thermal (F5) > Solution (F6) > Solution Information > Temperature - Global Maximum

FIGURE จ Model (F4) > Transient Thermal (F5) > Solution (F6) > Solution Information > Temperature - Global Minimum

345.63 300. – 250. – 200. – 150. – 150. – 100. – 21.699 0. 1. 2. 3. 4. 5. 6. [5]

4

5

6

FIGURE 6
Model (F4) > Transient Thermal (F5) > Solution (F6) > Temperature

Optimization:

Response:

Local Sensitivity:

Local Sensitivity Curve:

Response Points:

