- 3. **Fall2007.** Let T be a linear transformation on a complex vector space V, not necessarily finite dimensional. Let $\lambda_1, \ldots, \lambda_s$ be distinct eigenvalues of T.
 - (a) Suppose that for each $j(1 \le j \le s)$, v_j s an eigenvector of T with eigenvalue λ_j . Prove that $\{v_1, \ldots, v_s\}$ is linearly independent.
 - (b) Now suppose that for each j, v_j is a generalized eigenvector of T with eigenvalue j; that is, there is some integer $m_j \geq 1$ such that

$$(T - \lambda_i)^{m_j} v_i = 0.$$

Again conclude that $\{v_1, \ldots, v_s\}$ g is linearly independent. (As a matter of notational convenience, assume each mj is chosen to be minimal; $(T - \lambda_j)^{m_j - 1} v_j \neq 0$.)

a) Assume $\{V_1, ..., V_5\}$ is not LI. Let K < 5 be the largest integer such that $\{V_1, ..., V_K\}$ is LI. Then $V_{K+1} = \sum_{i=1}^{K} C_i V_i$,

where af least one $C; \neq 0$. Because all V are eigenvectors, we have

$$Tv_{k+1} = T \sum_{i=1}^{k} c_i v_i$$

$$= \sum_{i=1}^{k} c_i Tv_i$$

$$= \sum_{i=1}^{k} c_i \lambda_i v_i$$

and OTOH,

$$TV_{k+1} = \lambda_{k+1}V_{k+1}$$

$$= \lambda_{k+1}\sum_{i=1}^{k} c_i V_i$$

$$= \sum_{i=1}^{k} c_i \lambda_{k+1}V_i$$

So
$$T_{V_{K+1}} - T_{V_{K+1}} = \sum_{i=1}^{K} c_i \lambda_{K+1} V_i - \sum_{i=1}^{K} c_i \lambda_i V_i$$

= $\sum_{i=1}^{K} (\lambda_{K+1} - \lambda_i) c_i V_i$

As all λ_i are distinct, $(\lambda_{k+1} - \lambda_i) \neq 0$. Thus as the Vis are LT (not all the Vis, just these ones), we must have that $C_i \equiv 0$ \$\frac{1}{2}\$

b) Recall a generalized eigenvector v; of rank M; satisfies

$$(T-\lambda_j)^{m_j}$$
 $\forall_j = 0$

for a minimal $m \in \mathbb{Z}^+$, i.e., $(T-\lambda_i)^{m_i-1} \lor_i \neq 0$.

Assume $\{v_1,...,v_5\}$ are not LI; i.e., $\sum_{i=1}^{5} C_i V_i = 0$ with at least

one nonzero C_i . We will show WLOG that $C_i = 0$, and thus that all $C_i = 0$, which is a contradiction.

Let $V = (T - \lambda_1 I)^{M_1 - 1} V_1$. Then $(T - \lambda_1 I) W = O$,

meaning W is an eigenvector of T with eigenvalue λ_1 .

Thus we know: $TV = \lambda_1 W \Rightarrow TV - \lambda_2 W = \lambda_1 V - \lambda_2 V (w)$ $\Rightarrow (T - \lambda_2 I) V = (\lambda_1 - \lambda_2) W \frac{(T - \lambda_2 I)(\lambda_1 - \lambda_2)^2 V}{z(T - \lambda_2 I) V(\lambda_1 - \lambda_2)^2}$ $\Rightarrow (T - \lambda_2 I) W = (\lambda_1 - \lambda_2) W A = (\lambda_1 - \lambda_2)^{M_1 - M_2} V$

Let n= max{mi}. Then we can knock out all but one of the general eigenvectors by applying a bunch of appropriate transformations:

$$O = \sum_{i=1}^{5} C_{i}V_{i}$$

$$O = \left(\left(T - \lambda_{i} T \right)^{n} \right) \sum_{i=1}^{5} \left(T - \lambda_{i} T \right)^{n} \sum_{i=1}^{5} \left(T - \lambda_{i} T \right)^{n} \sum_{i=1}^{6} C_{i}V_{i}$$

$$= \left(\left(T - \lambda_{i} T \right)^{n-1} \right) \sum_{i=1}^{5} \left(T - \lambda_{i} T \right)^{n} \sum_{i=1}^{6} C_{i}V_{i}$$

$$= \left(\left(T - \lambda_{i} T \right)^{n-1} \right) \sum_{i=1}^{5} \left(T - \lambda_{i} T \right)^{n} C_{i}V_{i}$$

$$= C_{i} \left(\prod_{i=2}^{5} \left(T - \lambda_{i} T \right)^{n} \right) \left(T - \lambda_{i} T \right)^{n} V_{i}$$

$$= C_{i} \left(\prod_{i=2}^{5} \left(T - \lambda_{i} T \right)^{n} \right) V_{i}$$

$$= C_{i} \left(\prod_{i=2}^{5} \left(\Lambda_{i} - \lambda_{i} \right) W \right) (do a lef of associativity)$$

$$= O$$

But each $(\lambda_1 - \lambda_1) \neq 0$, so $c_1 = 0$. The result follows because I gaid WLOG before so I win