Rene Hampoliz

Laborabung

18.02.2021

RC-Bandpass

Ausgabenstellung

Messen des Amplitudenganges eines RC-Bandposses.

Schaltung

Analytische Losung und Simulation

$$\frac{U_{a}}{U_{e}} = \frac{R \cdot X_{c}}{R^{2} + 3R \times_{c} + X_{c}^{2}}$$

$$X_{c} = \frac{4}{2\pi \cdot f \cdot C}$$

Berechnung der Maximalwerte

Seite 1 von 3

		uswertung	
4	Ve	().	110
f Hz	V	Va	A _{JB} JB
4 -	4.2.0	100	_ 40 02
100	10,2	1,04	- 1983
200	-n-	7,84	- 14,88
400	-11-	2,88	- 14,88 - 10,98
600	-11-	3,42	- 10 4 b
800	-11-	3,40	- 9' 71 - 9',44
14	-11-	3,44	-9,49
1,5 K	-11-	5,28	-10,02
2 K	-11-	3,04	-10,68
2,5K	-11-	1,84 2,88 3,42 3,44 3,44 3,04 2,76 2,56 2,24	-11,35
3 K	-11-	2,56	-12,01
3,5 K	-11-	2,24	-13,17
4 K	-11-	2,08	-13,81
4,5 K	-11-	1,82	- 19,19
5 K	-11-	1,76	-18,88
5,5 K	-11-	1.64	-15,88
6 K	-11-	1,52	-16,54
6,5 K	-11-	7,44	-17,00
7 K	-11-	1,44	-17,25
7,5 K	-11-	7,28	-18,03
2 K 10 K	-11-	1,20	-18,59
10 4		1,00	-2017
U 13	perechnen vo	n AdB (Aus Messwerten)
	AJD = 20	· loga (Uu)	$= 20 \cdot (9940 \left(\frac{1,04 \text{ V}}{403 \text{ V}}\right) = -19,83$
			$= 20 \cdot (\log_{10}(\frac{1,04 \text{V}}{10,2 \text{V}}) = -19,83$
		Logno (Vu Ve)	
—D Ве	vechnen von	AdB (Simulation)
—D Ве	vechnen von		Simulation)
→ Be	vechnen von c= 2π·100 Hz·	AdB (1 = 159	Simulation) U2
→ Be	vechnen von c= 2π·100 Hz·	AdB (Simulation) U2
→ Be	$c = 2\pi \cdot 100 \text{Hz}$	$A_{dB} = 159$ $10.10^{-9} = 159$ $0.910 = \frac{R \times 1}{R^2 + 3R}$	Simulation) LLQ c+Xc2
→ Be	$c = 2\pi \cdot 100 \text{Hz}$	$A_{dB} = 159$ $10.10^{-9} = 159$ $0.910 = \frac{R \times 1}{R^2 + 3R}$	Simulation) LLQ c+Xc2
→ Be	$c = 2\pi \cdot 100 \text{Hz}$	$A_{dB} = 159$ $10.10^{-9} = 159$ $0.910 = \frac{R \times 1}{R^2 + 3R}$	Simulation) LLQ c+Xc2
→ Be	$c = 2\pi \cdot 100 \text{Hz}$	$A_{dB} = 159$ $10.10^{-9} = 159$ $0.910 = \frac{R \times 1}{R^2 + 3R}$	Simulation) U2
→ Be	Evechmen von $C = \frac{2\pi \cdot 100 \text{Hz}}{2\pi \cdot 100 \text{Hz}}$ $dB = 20 \cdot 100 \text{Hz}$	$A_{dB} = 159$ $1 = 159$ $0.910 \left(\frac{R \times x}{R^2 + 3Rx} \right)$ $0.910 \left(\frac{R \times x}{10^2 + 3Rx} \right)$	Simulation) LLQ c+Xc2
→ Be	$c = 2\pi \cdot 100 \text{Hz}$	$A_{dB} = 159$ $1 = 159$ $0.910 \left(\frac{R \times x}{R^2 + 3Rx} \right)$ $0.910 \left(\frac{R \times x}{10^2 + 3Rx} \right)$	Simulation) LLQ c+Xc2
→ Be	Evechmen von $C = \frac{2\pi \cdot 100 \text{Hz}}{2\pi \cdot 100 \text{Hz}}$ $dB = 20 \cdot 100 \text{Hz}$	$A_{dB} = 159$ $1 = 159$ $0.910 \left(\frac{R \times x}{R^2 + 3Rx} \right)$ $0.910 \left(\frac{R \times x}{10^2 + 3Rx} \right)$	Simulation) LLQ c+Xc2
→ Be	Evechmen von $C = \frac{2\pi \cdot 100 \text{Hz}}{2\pi \cdot 100 \text{Hz}}$ $dB = 20 \cdot 100 \text{Hz}$	$A_{dB} = 159$ $1 = 159$ $0.910 \left(\frac{R \times x}{R^2 + 3Rx} \right)$ $0.910 \left(\frac{R \times x}{10^2 + 3Rx} \right)$	Simulation) LLQ c+Xc2

Verwendete Gerate

Frequenz generator	ET-ELA-7605	
Oszilishys	E7 - EL 11 - 0504	
Widerstands delade	ET-MTL1-RD16	R ₁
	ET-MTLT-RD74	R ₂
Vandensator dekade	E7-EL11-CD02	Ca
	ET-EL A1-CD03	C ₂
		Seite 3 von 3