



# 이미지 생성 AI

구름 도시공학과 일반대학원

한양대학교

- 1. GAN
- 2. Autoencoder
- 3. Diffusion

#### **Generative Adversarial Nets (GAN)**

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$



#### **Loss Function**

## **MSE**

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

# Inputs X

## **MLE**

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$



#### **Maximum Likelihood**

https://angeloyeo.github.io/2020/07/17/MLE.html



#### 정보이론 (information theory)

코드:

0:A 1:B 10:C 11:D 100:E 101:F 110:G 111:H 1000:I

데이터:

| EGG  | 100110110 |  |  |
|------|-----------|--|--|
| BED  | 110011    |  |  |
| НІ   | 1111000   |  |  |
| HEAD | 111100011 |  |  |

발생확률

| 코드  | А    | В    | С  | D    | E    | F  | G   | Н   | I    | 합계   |
|-----|------|------|----|------|------|----|-----|-----|------|------|
| 빈도  | 1    | 1    | 0  | 2    | 3    | 0  | 2   | 2   | 1    | 12   |
| 확률  | 8%   | 8%   | 0% | 17%  | 25%  | 0% | 17% | 17% | 8%   |      |
| 길이  | 1    | 1    | 2  | 2    | 3    | 3  | 3   | 3   | 4    |      |
| 총길이 | 0.08 | 0.08 | 0  | 0.33 | 0.75 | 0  | 0.5 | 0.5 | 0.33 | 2.58 |

코드:

0:A 1:B 10:C 11:D 100:E 101:F 110:G 111:H 1000:I

확률 :

 8%
 8%
 0%
 17%
 25%
 0%
 17%
 17%
 8%

변환 :

100 : A | 101 : B | 111 : C | 1 : D | 0 : E | 1000 : F | 10 : G | 11 : H | 110 : I

데이터:

| EGG  | 100110110 | 01010   |  |
|------|-----------|---------|--|
| BED  | 110011    | 10101   |  |
| НІ   | 1111000   | 11110   |  |
| HEAD | 111100011 | 1101001 |  |

발생확률

| 코드  | Α    | В    | С  | D    | E    | F  | G    | Н    | I    | 합계   |
|-----|------|------|----|------|------|----|------|------|------|------|
| 빈도  | 1    | 1    | 0  | 2    | 3    | 0  | 2    | 2    | 1    | 12   |
| 확률  | 8%   | 8%   | 0% | 17%  | 25%  | 0% | 17%  | 17%  | 8%   |      |
| 길이  | 3    | 3    | 3  | 1    | 1    | 4  | 2    | 2    | 3    |      |
| 총길이 | 0.24 | 0.24 | 0  | 0.17 | 0.25 | 0  | 0.34 | 0.34 | 0.24 | 1.82 |
| 이전  | 0.08 | 0.08 | 0  | 0.33 | 0.75 | 0  | 0.5  | 0.5  | 0.33 | 2.58 |

#### 엔트로피 (Entropy)

$$H(x) = -\sum_{i=1}^n p(x_i) log p(x_i)$$



#### **Cross Entropy**

$$H(P^*|P) = -\sum_{i} P^*(i) \log P(i)$$
TRUE CLASS
DISTIRBUTION

TRUE CLASS
DISTIRBUTION

TRUE CLASS
DISTIRBUTION

|   | P*(x) | -LOG(p*(x)) | entropy | P(X) | -LOG(p(x)) | cross-entropy |
|---|-------|-------------|---------|------|------------|---------------|
| Α | 10%   | 1.00        | 0.10    | 80%  | 0.10       | 0.01          |
| В | 50%   | 0.30        | 0.15    | 45%  | 0.35       | 0.17          |
| С | 12%   | 0.92        | 0.11    | 70%  | 0.15       | 0.02          |
| D | 5%    | 1.30        | 0.07    | 90%  | 0.05       | 0.00          |
| Е | 1%    | 2.00        | 0.02    | 99%  | 0.00       | 0.00          |
| F | 90%   | 0.05        | 0.04    | 10%  | 1.00       | 0.90          |
| G | 70%   | 0.15        | 0.11    | 30%  | 0.52       | 0.37          |
|   |       |             | 0.60    |      |            | 1.47          |

#### **KL Divergence** (Kullback-Leibler divergence)

$$D_{KL}(P \parallel Q) = \sum_{i=0}^n p(x_i)log(p(x_i)) - \sum_{i=0}^n p(x_i)log(q(x_i))$$
 entropy Cross Entropy



#### **Generative Adversarial Nets (GAN)**

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf



$$C(G) = -\log(4) + KL\left(p_{\mathrm{data}} \left\| rac{p_{\mathrm{data}} + p_g}{2} 
ight) + KL\left(p_g \left\| rac{p_{\mathrm{data}} + p_g}{2} 
ight)$$
 
$$C(G) = -\log(4) + 2 \cdot JSD\left(p_{\mathrm{data}} \left\| p_g 
ight)$$
 실제데이터와 생성된 데이터의 분포가 같으면 Global Optimum에 도달

#### **Generative Adversarial Nets (GAN)**



#### 심층 합성곱 생성적 적대 신경망 MNIST 활용

 $\underline{https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/ko/tutorials/generative/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?hl=ko/dcgan.ipynb?h$ 



#### GAN 의 종류

https://baobao.tistory.com/66



# UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS (DCGAN)

https://arxiv.org/pdf/1511.06434.pdf



Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribution Z is projected to a small spatial extent convolutional representation with many feature maps. A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called deconvolutions) then convert this high level representation into a  $64 \times 64$  pixel image. Notably, no fully connected or pooling layers are used.

#### **Wasserstein GAN (WGAN)**

https://arxiv.org/abs/1701.07875



Figure 2: Optimal discriminator and critic when learning to differentiate two Gaussians. As we can see, the discriminator of a minimax GAN saturates and results in vanishing gradients. Our WGAN critic provides very clean gradients on all parts of the space.



Figure 5: Algorithms trained with a DCGAN generator. Left: WGAN algorithm. Right: standard GAN formulation. Both algorithms produce high quality samples.

#### A Style-Based Generator Architecture for Generative Adversarial Networks

https://arxiv.org/pdf/1812.04948.pdf





#### **Conditional Generative Adversarial Nets**

https://arxiv.org/pdf/1411.1784.pdf



Figure 2: Generated MNIST digits, each row conditioned on one label

Figure 1: Conditional adversarial net

#### **Image-to-Image Translation with Conditional Adversarial Networks**

https://arxiv.org/pdf/1611.07004.pdf



- 1. GAN
- 2. Autoencoder
- 3. Diffusion

#### **AutoEncoder**

https://youtu.be/o\_peo6U7IRM



#### PCA 주성분 분석 vs AutoEncoder

 $\underline{https://towardsdatascience.com/autoencoders-vs-pca-when-to-use-which-73de063f5d7}$ 

|                           | Feature Space                     | PCA<br>Reconstruction                         | Auto Encoder<br>Reconstruction                                                      |
|---------------------------|-----------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|
| Random Data               | 00 02 04 06 08 10 00 <sup>2</sup> | 00 02 04 06 08 10 00 <sup>2</sup> 04 06 08 10 | 01 <sub>02</sub> 03 <sub>04</sub> 05 <sub>06</sub> 07 <sub>08</sub> 00 <sup>2</sup> |
| Reconstruction Cost (MSE) |                                   | 0.024                                         | 0.010                                                                               |

#### **Manifold**

http://vision-explorer.reactive.ai/#/galaxy?\_k=37rsjx



#### 고차원 공간에서의 거리와 Manifold에서의 거리 차이



#### Manifold를 벗어난 이미지



#### **Manifold Learning Algorithm**



- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- etc..
- Autoencoders (AE)
- t-distributed stochastic neighbor embedding (t-SNE)
- Isomap
- Locally-linear embedding (LLE)
- etc..

#### Autoencoder



#### **Denoising Autoencoder**

https://keras.io/examples/vision/autoencoder/



#### **Denoising Autoencoder**

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML\_2017/Lecture/auto.pptx



#### **Auto-Encoding Variational Bayes (VAE)**

https://arxiv.org/abs/1312.6114

https://arxiv.org/pdf/1606.05908.pdf



#### **Auto-Encoding Variational Bayes (VAE)**



#### **Auto-Encoding Variational Bayes (VAE)**

https://keras.io/examples/generative/vae/



#### **Adversarial Autoencoders**

https://arxiv.org/abs/1511.05644



Figure 1: Architecture of an adversarial autoencoder. The top row is a standard autoencoder that reconstructs an image x from a latent code z. The bottom row diagrams a second network trained to discriminatively predict whether a sample arises from the hidden code of the autoencoder or from a sampled distribution specified by the user.

#### **Adversarial Autoencoders**

https://arxiv.org/abs/1511.05644



#### **Adversarial Autoencoders**

https://arxiv.org/abs/1511.05644



- 1. GAN
- 2. Autoencoder
- 3. Diffusion

#### 생성모델 종류



#### Tackling the Generative Learning Trilemma with Denoising Diffusion GANs

https://arxiv.org/abs/2112.07804



#### **Denoising Diffusion Probabilistic Model**

https://arxiv.org/abs/2006.11239

https://keras.io/examples/generative/ddpm/



#### **Latent Diffusion Models**



Pixel Space



#### **High-Resolution Image Synthesis with Latent Diffusion Models**

https://arxiv.org/abs/2112.10752



https://huggingface.co/



# The AI community building the future.

Build, train and deploy state of the art models powered by the reference open source in machine learning.

#### **Stable Diffusion**

#### https://github.com/AUTOMATIC1111/stable-diffusion-webui



#### **Adding Conditional Control to Text-to-Image Diffusion Models**

https://arxiv.org/abs/2302.05543

