Démonstrations

Approche de la représentation du nombre par le calcul à la main : $\frac{1}{3} \approx 0$, 33333333...

Ce résultat ne permet de pas de justifier que $\frac{1}{3}$ n'est pas décimal.

Prenons alors la la proposition P **contraire** : $\frac{1}{3}$ est un nombre décimal.

Par définition il existe $a \in \mathbb{N}$ et $n \in \mathbb{N}$ tel que $\frac{1}{3} = \frac{a}{10^n}$ On a alors $10^n = 3a$.

10ⁿ serait donc un multiple de 3.

Or la décomposition de 10^n en facteurs premiers : $10^n = (2 \times 5)^n = 2^n \times 5^n$ montre que 10^n n'est pas un multiple de 3 qui lui est premier.

Donc, l'hypothèse de départ nous mène à une contradiction. On en déduit qu'elle est fausse.

Donc, par contradiction P est fausse donc la négation de P est vraie.

Conclusion : $\frac{1}{3}$ n'est pas un nombre décimal.

Prenons alors la la proposition P **contraire** : $\sqrt{2}$ est un nombre rationnel.

On peut donc écrire $\sqrt{2}$ sous la forme d'une fraction irréductible :

Il existe donc un entier relatif p et un entier naturel q non nul tels que $\sqrt{2}$ s'écrive $\frac{p}{q}$

 $\sqrt{2} = \frac{p}{q}$ donc, en élevant les deux membres de légalité au carré, on obtient $2 = \frac{p^2}{q^2}$.

On a donc $2q^2 = p^2$ donc p^2 est pair.

p est soit pair, soit impair. Or le carré dun nombre pair est pair.

Par définition dun nombre pair, il existe un entier relatif k tel que p=2k.

Or $2q^2 = p^2$, donc $2q^2 = (2k)^2 = 4k^2$ En divisant par 2 les deux membres de cette égalité, on obtient $q^2 = 2k^2$.

Donc q^2 est pair, ce qui, comme précédemment, implique que q est pair.

On a montré que p est pair et que q est pair, donc on peut simplifier la fraction $\frac{p}{q}$ ce qui est absurde puisquon a supposé que la fraction était irréductible.

Donc, par contradiction P est fausse donc la négation de P est vraie.

Conclusion : $\sqrt{2}$ est un nombre irrationnel.