Analise de Sentimento em Frases

Com NLTK, TextBlob e Transformers

Transformers

Analise de Sentimento

Analise de Sentimento

Análise de sentimento é um termo que se refere ao uso de **processamento de linguagem natural**, análise de texto e linguística computacional para determinar a atitude de um falante ou escritor em relação a um tópico específico.

Basicamente, ajuda a determinar se um texto expressa sentimentos positivos, negativos ou neutros. A análise de sentimento é uma excelente maneira de descobrir como as pessoas, principalmente os consumidores, se sentem sobre um determinado tópico, produto ou ideia.

Artigo (Tutorial)

Nesse tutorial vou **explorar técnicas e uso de bibliotecas** para gerar a analise de sentimento em uma base de dados do Twitter.

A ideia é explorar técnicas e conhecimento sobre as bibliotecas.

Atenção!

As bibliotecas que vou utilizar possuem algoritmos para identificar a expressão de sentimentos em suas funções, assim não vou utilizar Machine Learning no processo de aprendizado e também vou utilizar uma base de dados do Twitter em Inglês.

Caso queira fazer um processo de analise de sentimento com um modelo, recomendo o link abaixo.

https://www.youtube.com/watch?v=ywbzwTc51y4

Vamos utilizar uma base de dados da Kaggle

https://www.kaggle.com/crowdflower/twitter-airline-sentiment

Vamos importar as bibliotecas necessárias

```
[14] # Lib para modelagem de Dados
   import pandas as pd
   # Lib para uso de vetores
   import numpy as np
   # Lib para mineração de textos
   import nltk
   # Função para extrair palavras sem relevâncias
   from nltk.corpus import stopwords
   # Lib para trabalhar com textos
   import string
   # Lib para expressões regulares
   import re
   # Lib para trabalhar com abreviações no ingles
   # Exemplo: you're --> you are
   import contractions
```

Vamos ler os dados e explorar algumas informações

```
[4] # Lendo a Base de Dados
Base_Dados = pd.read_csv('Tweets.csv')

# Verificando as primerias linhas
Base_Dados.head()
```

1 570301130888122368 positive 0.3486 NaN 0.000 2 570301083672813571 neutral 0.6837 NaN Na 3 570301031407624196 negative 1.0000 Bad Flight 0.703	₽		tweet_id	airline_sentiment	airline_sentiment_confidence	negativereason	negativereason_confidence
2 570301083672813571 neutral 0.6837 NaN Na 3 570301031407624196 negative 1.0000 Bad Flight 0.703		0	570306133677760513	neutral	1.0000	NaN	NaN
3 570301031407624196 negative 1.0000 Bad Flight 0.703		1	570301130888122368	positive	0.3486	NaN	0.0000
		2	570301083672813571	neutral	0.6837	NaN	NaN
4 570300817074462722 negative 1.0000 Can't Tell 1.000		3	570301031407624196	negative	1.0000	Bad Flight	0.7033
		4	570300817074462722	negative	1.0000	Can't Tell	1.0000

```
[5] # Verificando as dimensões da base de dados
Base_Dados.shape

(14640, 15)
```

[6] # Verificando as colunas da Base de Dados Base_Dados.columns

Retirando colunas sem necessidades

# Verificando a nova o	dimensão
Base Filtrada.head()	

₽		airline_sentiment	airline_sentiment_confidence	negativereason	negativereason_confidence	airline	airline_sentiment_gold	n
	0	neutral	1.0000	NaN	NaN	Virgin America	NaN	
	1	positive	0.3486	NaN	0.0000	Virgin America	NaN	
	2	neutral	0.6837	NaN	NaN	Virgin America	NaN	
	3	negative	1.0000	Bad Flight	0.7033	Virgin America	NaN	
	4	negative	1.0000	Can't Tell	1.0000	Virgin America	NaN	

Retirando os valores 'Nan' → Só enche o saco esses 'NaN' -_-'

```
[10] # Retinando os NaN da base de dados
    Base_Filtrada['negativereason'] = Base_Filtrada['negativereason'].fillna('')
    Base_Filtrada['negativereason_confidence'] = Base_Filtrada['negativereason_confidence'].fillna('')
    Base_Filtrada['airline_sentiment_gold'] = Base_Filtrada['airline_sentiment_gold'].fillna('')
    Base_Filtrada['negativereason_gold'] = Base_Filtrada['negativereason_gold'].fillna('')
```

[11] # Verificando os primeiros registros
 Base_Filtrada.head()

	airline_sentiment	airline_sentiment_confidence	negativereason	negativereason_confidence	airline
0	neutral	1.0000			Virgin America
1	positive	0.3486		0	Virgin America
2	neutral	0.6837			Virgin America
3	negative	1.0000	Bad Flight	0.7033	Virgin America
4	negative	1.0000	Can't Tell	1	Virgin America

Utilizando uma técnica para tratamento dos textos

```
[12] # Esse mesmo tratamento pode ser aplicado no Portugues
     # Exceto a erapa do contractions
     # Função para fazer o tratamento no Texto
     # Serão aplicados diversos tratamentos
     def Limpeza_Texto(Texto):
         if Texto:
             # Retirando as abreviações do Ingles
             # exemplo: you're --> you are | i'm -> I am
             Texto = contractions.fix(Texto)
             # Retirando os pontos '...' do Texto
             Texto = ' '.join(Texto.split('.'))
             # Removendo Acentuações, Caracteres Especiais
             # E transformando tudo em minúsculo
             Texto = re.sub( r'\s+', ' ',
                            re.sub('[^A-Za-z0-9]', '',
                                   Texto.strip().lower())).strip()
             # Transoformando os valores numeros em espaço
             Texto = re.sub(r'\W+', ' ', Texto.strip().lower()).strip()
             # Quebrando a frase em uma lista com as palavras
             Texto = [Palavra for Palavra in Texto.split()]
             # Retornando a Lista
             return Texto
     # Aplicando a função
     # No Lambda, a lista será unificada em uma unica celula
     Base_Filtrada['text'] = Base_Filtrada['text'].apply( lambda Linha: ' '.join(Limpeza_Texto(Linha) ) )
```

Veja o Antes x Depois

```
# Comparando o texto depois do Tratamento
print('Como era antes do tratamento ...')
for Antes in Base_Dados['text'].head():
    print('\n', 'Como ficou depois ...')
for Depois in Base_Filtrada['text'].head():
    print( Depois )

Como era antes do tratamento ...
@VirginAmerica what @dhepburn said.
@VirginAmerica plus you've added commercials to the experience... tacky.
@VirginAmerica it's really aggressive to blast obnoxious "entertainment" in your guests' faces & they have little recourse
@VirginAmerica and it's a really big bad thing about it

Como ficou depois ...
virginamerica what dhepburn said
virginamerica plus you have added commercials to the experience tacky
virginamerica id id not today must mean i need to take another trip
virginamerica it is really aggressive to blast obnoxious entertainment in your guests faces amp they have little recourse
virginamerica it is really aggressive to blast obnoxious entertainment in your guests faces amp they have little recourse
virginamerica it is really big bad thing about it
```

Instalando alguns complementos do NLTK

```
[nltk_data] Downloading package names to /root/nltk_data...
[nltk_data] Unzipping corpora/names.zip.
[nltk_data] Downloading package stopwords to /root/nltk_data...
[nltk_data] Unzipping corpora/stopwords.zip.
```

Vamos explorar a função de Analise de Sentimento da NLTK

```
[26] # Função implementar e facilitar tarefas de análise de sentimento usando
     # recursos e classificadores NLTK
     from nltk.sentiment import SentimentIntensityAnalyzer
     # Atribuindo a Função
     Função_SIA = SentimentIntensityAnalyzer()
     # Essa função retorna um score com categorias
     # Cada caregoria tera um valor
     # quanto mais alto o valor, mais indica o possivel sentimento da frase
     # 1° Exemplo
     # Vamos escrever "Eu odeio chocolate" em inglês e ver o retorna da função
     print('Odeio Chocolate: ', Função_SIA.polarity_scores('i hate chocolate'), '\n' )
     # 2º Exemplo
     # Vamos escrever "Eu amo chocolate" em inglês e ver o retorna da função
     print('Amo Chocolate: ', Função_SIA.polarity_scores('i love chocolate') )
    Odeio Chocolate: {'neg': 0.787, 'neu': 0.213, 'pos': 0.0, 'compound': -0.5719}
     Amo Chocolate: {'neg': 0.0, 'neu': 0.192, 'pos': 0.808, 'compound': 0.6369}
```

Vamos aplicar na nossa base de dados essa função

```
[32] # Gerando o Score quanto ao Sentimento da Frase com a Função SIA
     # Convertendo em uma lista as frases
     Textos = Base_Filtrada['text'].tolist()
     # Lista para receber valores
     Scores_Negativos = []
     Scores_Neutros = []
     Scores Positivos = []
     Combinação_Scores = []
     Finale = []
     # Loop nos Textos
     for Frases in Textos:
         # Função para gerar o Score de Emoção
         Score_Emoção = Função_SIA.polarity_scores(Frases)
         # Adicionando o score negativo nas listas
         Scores_Negativos.append(Score_Emoção['neg'])
         # Adicionando o score possitivo nas listas
         Scores Positivos.append(Score Emoção['pos'])
         # Adicionando o score Neutros nas listas
         Scores Neutros.append(Score Emoção['neu'])
         # Adicionando a composição nas listas
         Combinação Scores.append(Score Emoção['compound'])
```

Continuação da imagem anterior

```
# Condição para flegar a marcação da emoção
    # Caso a Combinação maior que Zero
    # A Flag será Positvo
    if Score_Emoção['compound'] > 0:
        Finale.append('positive')
    # Caso a Combinação menor que Zero
    # A Flag será Positvo
    elif Score_Emoção['compound'] < 0:
        Finale.append('negative')
    # Caso contrário negativa
    else:
        Finale.append('neutral')
# Atribuindo as listas na nossa base de dados
Base_Filtrada['negative_score'] = Scores_Negativos
Base_Filtrada['positive_score'] = Scores_Positivos
Base_Filtrada['neutral_score'] = Scores_Neutros
Base_Filtrada['compound_score'] = Combinação_Scores
Base_Filtrada['Finale'] = Finale
```

Veja como fica os dados

	text	negative_score	positive_score	neutral_score	compound_score	Finale
0	virginamerica what dhepburn said	0.000	0.000	1.000	0.0000	neutral
1	virginamerica plus you have added commercials \dots	0.000	0.000	1.000	0.0000	neutral
2	virginamerica i did not today must mean i need	0.000	0.000	1.000	0.0000	neutral
3	virginamerica it is really aggressive to blast	0.216	0.123	0.661	-0.2716	negative
4	virginamerica and it is a really big bad thing	0.296	0.000	0.704	-0.5829	negative
5	virginamerica seriously would pay 30 a flight	0.238	0.069	0.693	-0.5945	negative
6	virginamerica yes nearly every time i fly vx t	0.000	0.172	0.828	0.4019	positive
7	virginamerica really missed a prime opportunit	0.142	0.175	0.683	0.1458	positive
8	virginamerica well i did not but now i do d	0.000	0.205	0.795	0.1406	positive
9	virginamerica it was amazing and arrived an ho	0.000	0.340	0.660	0.7717	positive

@Odemir Depieri Jr

Vamos avaliar o resultado

Avaliando a performance da NLTK

	precision	recall	f1-score	support
negative neutral positive	0.90 0.43 0.27	0.45 0.32 0.90	0.60 0.37 0.42	9178 3099 2363
accuracy macro avg weighted avg	0.53 0.70	0.56 0.49	0.49 0.46 0.52	14640 14640 14640

A Acurácia não foi das melhores.

Vale lembrar que estamos usando um algoritmo da própria biblioteca

Vamos utilizar outras Biblioteca

```
[36] # Vamos testar agora com a textblob
     #TextBlob é uma lib para processamento de dados textuais
     pip install textblob
     Requirement already satisfied: textblob in /usr/local/lib/python3.7/dist-packages (0.15
     Requirement already satisfied: nltk>=3.1 in /usr/local/lib/python3.7/dist-packages (frc
     Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from nltk
[40] # Função para analisar as frases
     from textblob import TextBlob
[52] # Vamos definir uma frase
     # Frase transcrita: 'Eu odeio chocolate'
     Frase = TextBlob('i hate chocolate')
[53] # Identificando as palavras
     Frase.words
     WordList(['i', 'hate', 'chocolate'])
[54] # Identificando a frase
     Frase.sentences
     [Sentence("i hate chocolate")]
 [56] # Utilizando o score de avaliação de sentimento
        # Tem a mesma função da 'Função_SIA' da NLTK
        # O valor varia de -1 a 1
        # Mais proximo de 1 - Positivo
        # Mais proxima de -1 Negativo
        # 0 neutro
        print( Frase.polarity )
```

Vamos utilizar uma técnica para gerar a analise dos sentimentos

```
[59] # Gerando o Score quanto ao Sentimento da Frase com a TextBlob
     # Convertendo em uma lista as frases
     Textos 02 = Base Filtrada['text'].tolist()
     # Listas para salar os valores
     Score_Frase = []
     Finale = []
     # Loop nos Textos
     for Frase in Textos_02:
         # Atribuindo a função do TextBlob
         Atribuindo TextBlob = TextBlob(Frase)
         # Gerando o Score de sentimento
         Gerando_Score = Atribuindo_TextBlob.polarity
         # Adicionando o score nas listas
         Score_Frase.append( Gerando_Score )
         # Condição sobre o score
         # Caso maior que 0 - Possitivo
         if Gerando Score > 0:
             Finale.append('positive')
         # Caso menor que 0 - Negativo
         elif Gerando Score < 0:
             Finale.append('negative')
         # Caso contrario Neutro
         else:
             Finale.append('neutral')
     # Atribuindo as listas na base de dados
     Base_Filtrada['Score_Frase'] = Score_Frase
     Base_Filtrada['Finale_Blob'] = Finale
[60] # Verificando os registros
     Base_Filtrada[['text', 'Score_Frase', 'Finale_Blob']].head()
```

	text	Score_Frase	Finale_Blob
0	virginamerica what dhepburn said	0.00000	neutral
1	virginamerica plus you have added commercials	0.00000	neutral
2	virginamerica i did not today must mean i need	-0.31250	negative
3	virginamerica it is really aggressive to blast	0.00625	positive
4	virginamerica and it is a really big bad thing	-0.35000	negative

@Odemir Depieri Jr

Vamos avaliar o modelo

Avaliando a performance da TextBlob

	precision	recall	f1-score	support
negative neutral positive	0.88 0.32 0.32	0.35 0.57 0.75	0.50 0.41 0.45	9178 3099 2363
accuracy macro avg weighted avg	0.51 0.67	0.56 0.46	0.46 0.45 0.48	14640 14640 14640

A Acurácia não foi das melhores novamente hahaha

@Odemir Depieri Jr

Vamos utilizar outras Biblioteca

```
[65] pip install transformers
     Collecting transformers
       Downloading transformers-4.9.2-py3-none-any.whl (2.6 MB)
                               2.6 MB 12.2 MB/s
[67] # Vamos testar agora com a pipeline
     #Piple é uma lib para processamento de dados textuais
     # Função para mineração de emoção
     from transformers import pipeline
     # Definindo a função
     Função_Classificação = pipeline('sentiment-analysis')
     # Aplicando em uma frase para identificar o sentimento
     Função_Classificação('i hate chocolate')[0]['label']
     'NEGATIVE'
[71] # Aplicando a classificação nos textos
     Base Filtrada['Classificação Transformer'] = Base Filtrada['text']apply(
         lambda Frase: Função_Classificação(Frase)[0]['label'].lower() )
     # Vamos retirar os sentimentos neutros
     Base_Filtrada_Cortada = Base_Filtrada[
       Base_Filtrada['airline_sentiment'] != 'neutral']
```

Vamos avaliar o modelo

weighted avg

```
[87] # Vamos avaliar o quanto a Lib TextBlob tem de acurácia no seu modelo
     # Função para metricas de classificação
     from sklearn.metrics import classification_report
     # Avaliando a performance da Lib NTL
     print('Avaliando a performance da Transformes', '\n')
     print( classification report(
         Base_Filtrada_Cortada['airline_sentiment'], Base_Filtrada_Cortada['Classificação_Transformer'] ) )
     Avaliando a performance da Transformes
                                recall f1-score
                   precision
                                                    support
         negative
                                  0.97
                        0.86
                                            0.91
                                                         33
         positive
                        0.96
                                  0.81
                                            0.88
                                                        27
         accuracy
                                             0.90
                                                        60
                        0.91
                                  0.89
                                            0.90
                                                        60
        macro avg
```

60

A Acurácia foi boa, porém nessa biblioteca apenas é considerado "Positivo" ou "Negativo", logico que fica mais fácil assertar a categoria quanto se tem menos opções de classificações.

0.90

0.90

0.91

Final

Esse guia foi elaborada para demostrar como analisar sentimentos usando alguns frameworks.

Link do Colab

https://colab.research.google.com/drive/1FVxU-zKS K1gbWWXDlap0chjkgpnGlBL?usp=sharing

Transformers

Odemir Depieri Jr

Data Intelligence Analyst Sr Tech Lead Specialization AI