Dorota Leszczyńska-Jasion*, Yaroslav Petrukhin**, Vasilyi Shangin**, Marcin Jukiewicz*

FUNCTIONAL COMPLETENESS IN CPL via CORRESPONDENCE ANALYSIS

* Department of Logic and Cognitive Science, Adam Mickiewicz University, Poznań, Poland Dorota.Leszczynska[at]amu.edu.pl

Marcin.Jukiewicz[at]amu.edu.pl

** Department of Logic, Faculty of Philosophy, Lomonosov Moscow State University, Moscow, Russia petrukhin[at]philos.msu.ru shangin[at]philos.msu.ru

Acknowledgements. The authors' special thanks go to the audience of a research seminar at Department of Logic and Cognitive Science of Adam Mickiewicz University in Poznań.

Dorota Leszczyńska-Jasion and Marcin Jukiewicz were supported financially by Polish National Science Centre, grant no. 2017/26/E/HS1/00127.

Yaroslav Petrukhin is supported by the grant from Polish National Science Centre, grant no. 2017/25/B/HS1/01268.

Lemma 2. Let $x, y, z \in \{1, 0\}$, $A, B \in \mathscr{F}_{\neg}^{\circ}$, v_x , v_y , and v_z be valuations such that $v_x(A) = x$, $v_y(B) = y$, and $v_z(A \circ B) = z$. Then if $f_{\circ}(x, y) = z$, then $A^{v_x}, B^{v_y} \Rightarrow (A \circ B)^{v_z}$ is provable in the respective \mathscr{C} for \circ .

Proof. Consider the case $f_{\circ}(0,0) = 0$. We need to show that $\neg A, \neg B \Rightarrow \neg (A \circ B)$ is provable in the respective \mathscr{C} for $\circ \in \{\circ_{\perp}, \wedge, \not\rightarrow, \circ_{1}, \not\leftarrow, \circ_{2}, \lor, \vee\}$. If $\circ = \circ_{1}$, then we have $R_{\circ}^{(01)}$ in the calculus, if $\circ \in \{\circ_{\perp}, \not\rightarrow, \not\leftarrow\}$, then we have $R_{\circ}^{(02)}$, if $\circ = \circ_{2}$, then there is $R_{\circ}^{(03)}$, and if $\circ = \lor$, then one of the three rules is present. In these cases we follow the appropriate scheme of derivation:

$$\frac{A\Rightarrow B,A}{\neg A,A\Rightarrow B} (\neg\Rightarrow) \\ \frac{\neg A,A\circ B\Rightarrow B}{\neg A,A\circ B\Rightarrow B} (\neg\Rightarrow) \\ \frac{\neg A,\neg B,A\circ B\Rightarrow (\neg\Rightarrow)}{\neg A,\neg B\Rightarrow \neg (A\circ B)} (\Rightarrow\neg) \\ \frac{\neg A,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow (\neg\Rightarrow)} (\Rightarrow\neg) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow (\neg\Rightarrow)} (\Rightarrow\neg) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow (\neg\Rightarrow)} (\Rightarrow\neg) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\ \frac{\neg B,A\circ B\Rightarrow A}{\neg A,A\circ B\Rightarrow A} (\neg\Rightarrow) \\$$

In the case of $\circ = \{\land, \lor\}$, we cannot apply any of the above rules. If $\mathscr{C}_P = \mathscr{C}_P^A$, then we have the axiom $A_{\circ\downarrow}^{(I)}$, and the following shows that $\vdash_{\mathscr{C}_P^A} \neg A, \neg B \Rightarrow \neg (A \circ B)$:

$$\frac{A \circ B \Rightarrow A, B}{\neg A, \neg B, A \circ B \Rightarrow} (\neg \Rightarrow) \times 2$$
$$\frac{\neg A, \neg B, A \circ B \Rightarrow}{\neg A, \neg B \Rightarrow \neg (A \circ B)} (\Rightarrow \neg)$$

If $\mathscr{C}_P = \mathscr{C}_P^R$, then we have the rule $R_{\circ}^{(\mathrm{I})}$:

$$\frac{A, B \Rightarrow A, A \circ B}{A \circ B \Rightarrow A, A, B} R_{\circ}^{(I)} \downarrow
 \frac{A \circ B \Rightarrow A, A, B}{\neg A, \neg B, A \circ B \Rightarrow A} (\neg \Rightarrow) \times 2
 \frac{A, \neg B \Rightarrow A, \neg (A \circ B)}{\neg A, \neg B, A \circ B} (\neg \Rightarrow)
 \frac{A, \neg B \Rightarrow A, \neg (A \circ B)}{\neg A, \neg A, \neg B \Rightarrow \neg (A \circ B)} (\neg \Rightarrow)
 \frac{A, \neg A, \neg B \Rightarrow \neg (A \circ B)}{\neg A, \neg A, \neg B \Rightarrow \neg (A \circ B)} (\text{cut})$$

Consider the case $f_{\circ}(0,0) = 1$. We need to show that $\vdash_{\mathscr{C}} \neg A, \neg B \Rightarrow A \circ B$ is provable in the respective \mathscr{C} for $\circ \in \{\downarrow, \equiv, \circ_{\neg 2}, \leftarrow, \circ_{\neg 1}, \rightarrow, \uparrow, \circ_{\top}\}$. If $\circ = \circ_{\neg 1}$, then we have the rule $R_{\circ}^{(04)}$, and then we follow:

$$\frac{A \Rightarrow B, A}{\neg A, A \Rightarrow B} (\neg \Rightarrow)$$

$$\overline{\neg A, \neg B \Rightarrow A \circ B} R_{\circ}^{(04)} \downarrow$$

If $\circ \in \{\leftarrow, \rightarrow, \circ_{\top}\}$, then we have the rule $R_{\circ}^{(05)}$, and we follow:

$$\frac{B \Rightarrow A \circ B, B}{B, \neg B \Rightarrow A \circ B} (\neg \Rightarrow)$$

$$\frac{B \Rightarrow A \circ B}{\neg A, \neg B \Rightarrow A \circ B} R_{\circ}^{(05)} \downarrow$$

If $\circ = \circ_{\neg 2}$, then we have $R_{\circ}^{(06)}$, and we follow:

$$\frac{A \circ B \Rightarrow A, A \circ B}{\neg A \Rightarrow B, A \circ B} R_{\circ}^{(06)} \downarrow \frac{\neg A, \neg B \Rightarrow A \circ B}{\neg A, \neg B \Rightarrow A \circ B} (\neg \Rightarrow)$$

If \circ is \equiv , then one of $R_{\circ}^{(04)}$, $R_{\circ}^{(05)}$, $R_{\circ}^{(06)}$ is present. Finally, assume that $\circ \in \{\downarrow,\uparrow\}$. If $\mathscr{C} = \mathscr{C}_{P}^{A}$, then the required sequent is the axiom $A_{\circ\uparrow}^{(\mathrm{II})}$. Let $\mathscr{C} = \mathscr{C}_{P}^{R}$. Then sequent $\neg A, \neg B \Rightarrow A \circ B$ is proved as follows:

Consider the case $f_{\circ}(0,1)=0$. We need to show that $\vdash_{\mathscr{C}} \neg A, B \Rightarrow \neg(A \circ B)$ is provable in the respective \mathscr{C} for $\circ \in \{\circ_{\perp}, \wedge, \not\rightarrow, \circ_{1}, \downarrow, \equiv, \circ_{\neg 2}, \leftarrow\}$. If $\circ = \circ_{\neg 2}$, then we have $R_{\circ}^{(06)}$, and we follow:

$$\frac{A \circ B, B \Rightarrow A}{A \circ B, B \Rightarrow A} R_{\circ}^{(06)} \uparrow
A \circ B, \neg A, B \Rightarrow (\neg \Rightarrow)
\hline
\neg A, B \Rightarrow \neg (A \circ B) (\neg \Rightarrow)$$

If $\circ = \circ_1$, then we have $R_{\circ}^{(07)}$, and then we follow:

$$\frac{A \circ B, B \Rightarrow A \circ B}{B \Rightarrow \neg (A \circ B), A \circ B} (\Rightarrow \neg)
\frac{B \Rightarrow \neg (A \circ B), A}{\neg A, B \Rightarrow \neg (A \circ B)} (\neg \Rightarrow)$$

If $\circ \in \{\circ_{\perp}, \wedge, \downarrow\}$, then $R_{\circ}^{(08)}$ is present, and then:

$$\frac{A \circ B, B \Rightarrow B}{A \circ B, B \Rightarrow A} R_{\circ}^{(08)} \downarrow \\ \frac{A \circ B, \neg A, B \Rightarrow}{A \circ B, \neg A, B \Rightarrow} (\neg \Rightarrow)$$
$$\neg A, B \Rightarrow \neg (A \circ B) (\Rightarrow \neg)$$

In the case of \equiv , one of the three rules is present in the calculus. Suppose that $\circ \in \{ \not\rightarrow, \leftarrow \}$, and that $\mathscr{C} = \mathscr{C}_P^A$. Then the following:

$$\frac{\neg A, B \Rightarrow \neg (A \circ B), B}{\neg B, \neg A, B \Rightarrow \neg (A \circ B)} (\neg \Rightarrow) \qquad \frac{A \circ B, B \Rightarrow A, \neg B}{\neg A, A \circ B, B \Rightarrow \neg B} (\neg \Rightarrow) \\
\frac{\neg A, B \Rightarrow \neg (A \circ B), \neg \neg B}{\neg A, B \Rightarrow \neg (A \circ B), \neg \neg B} (\Rightarrow \neg) \qquad \frac{\neg \neg B, \neg A, A \circ B, B \Rightarrow \neg (A \circ B)}{\neg \neg B, \neg A, B \Rightarrow \neg (A \circ B)} (\Rightarrow \neg) \\
\frac{\neg A, B \Rightarrow \neg (A \circ B), \neg \neg B}{\neg A, B \Rightarrow \neg (A \circ B)} (\Rightarrow \neg) \qquad (\text{cut})$$

is a proof of the required sequent, since the left leaf follows under the scheme of (Ax), and the right one – under the scheme of $A_{\circ\downarrow}^{(III)}$. If $\mathscr{C} = \mathscr{C}_{P}^{R}$, then we have the rule $R_{\circ}^{(III)}$, and we follow:

$$\frac{\neg A, B \Rightarrow B, \neg (A \circ B)}{\neg A, B, \neg B \Rightarrow \neg (A \circ B), \neg \neg B} (\neg \Rightarrow) \\
\frac{\neg A, B \Rightarrow B, \neg (A \circ B)}{\neg A, B, A \circ B \Rightarrow \neg (A \circ B)} (\neg \Rightarrow) \\
\frac{\neg A, B \Rightarrow \neg (A \circ B), \neg \neg B}{\neg A, B, A \circ B \Rightarrow \neg (A \circ B)} (\neg \Rightarrow) \\
\frac{\neg A, B \Rightarrow \neg (A \circ B), \neg \neg B}{\neg \neg B, \neg A, B, A \circ B \Rightarrow \neg (A \circ B)} (\Rightarrow \neg) \\
\neg A, B \Rightarrow \neg (A \circ B)$$
(cut)

Consider the case $f_{\circ}(0,1) = 1$. We need to show that $\vdash_{\mathscr{C}} \neg A, B \Rightarrow A \circ B$ is provable in the respective \mathscr{C} for $\circ \in \{ \not\leftarrow, \circ_2, \lor, \lor, \circ_{\neg 1}, \to, \uparrow, \circ_{\top} \}$. If $\circ = \circ_2$, then $R_{\circ}^{(03)}$ is present in the calculus and we have:

$$\frac{A \circ B \Rightarrow A \circ B, A}{B \Rightarrow A \circ B, A} R_{\circ}^{(03)} \uparrow
\frac{A \circ B \Rightarrow A \circ B, A}{\neg A, B \Rightarrow A \circ B} (\neg \Rightarrow)$$

If $\circ = \circ_{\neg 1}$, then $R_{\circ}^{(09)}$ is present, and we derive:

$$\frac{A \circ B, B \Rightarrow A \circ B}{B \Rightarrow A \circ B, \neg(A \circ B)} \xrightarrow[\neg A, B \Rightarrow A \circ B, A]{} (\Rightarrow \neg)$$

$$\frac{B \Rightarrow A \circ B, A}{\neg A, B \Rightarrow A \circ B} (\neg \Rightarrow)$$

If $\circ \in \{ \lor, \uparrow, \circ_{\perp} \}$, then we have $R_{\circ}^{(10)}$.

$$\frac{B \Rightarrow A \circ B, B}{\neg B, B \Rightarrow A \circ B} (\neg \Rightarrow)$$
$$\frac{\neg A, B \Rightarrow A \circ B}{\neg A, B \Rightarrow A \circ B} R_{\circ}^{(10)} \downarrow$$

Consider the case $f_{\circ}(1,0) = 0$. We need to show that $\vdash_{\mathscr{C}} A, \neg B \Rightarrow \neg(A \circ B)$ is provable in the respective \mathscr{C} for $\circ \in \{\circ_{\perp}, \land, \not\leftarrow, \circ_{2}, \downarrow, \equiv, \circ_{\neg 1}, \rightarrow\}$. If $\circ = \circ_{\neg 1}$, then we have: $R_{\circ}^{(04)}$, and:

$$\frac{A \circ B, \neg B \Rightarrow A \circ B}{\neg B \Rightarrow \neg (A \circ B), A \circ B} (\Rightarrow \neg)$$

$$\frac{A \Rightarrow \neg (A \circ B), B}{A, \neg B \Rightarrow \neg (A \circ B)} (\neg \Rightarrow)$$

If $\circ \in \{\circ_{\perp}, \wedge, \downarrow\}$, then we have $R_{\circ}^{(08)}$, and if \circ is $\circ_2 - R_{\circ}^{(11)}$. We go as follows:

$$\frac{A \circ B, A \Rightarrow A}{A \circ B, A \Rightarrow B} R_{\circ}^{(08)} \uparrow \\ \frac{A \Rightarrow \neg (A \circ B), B}{A, \neg B \Rightarrow \neg (A \circ B)} (\neg \Rightarrow)$$

$$\frac{A \circ B, A \Rightarrow A \circ B}{A \Rightarrow \neg (A \circ B), A \circ B} \underset{(\neg \Rightarrow \neg)}{(\Rightarrow \neg)} \xrightarrow{A \Rightarrow \neg (A \circ B), B} \underset{(\neg \Rightarrow)}{R_{\circ}^{(11)}} \downarrow$$

If \circ is \equiv , then we must have one of the three rules. Let $\circ \in \{ \not\leftarrow, \rightarrow \}$ and $\mathscr{C} = \mathscr{C}_P^A$. Then we go as follows (the right leaf is the appropriate axiom):

whereas in the case of $\mathscr{C} = \mathscr{C}_P^R$, as follows:

$$\frac{A, B \Rightarrow A \circ B, A}{A, \neg A, B \Rightarrow A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg A, B \Rightarrow A, \neg (A \circ B)}{A, A, \neg B \Rightarrow \neg (A \circ B)} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B \Rightarrow \neg A, B}{A, \neg B, A \circ B \Rightarrow \neg A} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A \circ B, A \circ B, A \circ B}{A, \neg B, A \circ B} (\neg \Rightarrow) \\
\frac{A, \neg B, A \circ B, A$$

Consider the case $f_{\circ}(1,0) = 1$. We need to show that $\vdash_{\mathscr{C}} A, \neg B \Rightarrow A \circ B$ is provable in the respective \mathscr{C} for $\circ \in \{ \not\rightarrow, \circ_1, \lor, \lor, \circ_{\neg 2}, \leftarrow, \uparrow, \circ_{\top} \}$. If \circ is \circ_1 , then the calculus contains $R_{\circ}^{(01)}$; if $\circ \in \{ \lor, \uparrow, \circ_{\top} \}$, then it contains $R_{\circ}^{(10)}$, if $\circ = \circ_{\neg 2}$, then $R_{\circ}^{(12)}$ is present, and if \circ is \lor , then it is one of the three rules. In these cases we apply:

$$\frac{A \circ B \Rightarrow A \circ B, B}{A \Rightarrow A \circ B, B} R_{\circ}^{(01)} \uparrow \\ A, \neg B \Rightarrow \neg (A \circ B)} (\neg \Rightarrow)$$

or:

$$\frac{A \Rightarrow A \circ B, A}{A, \neg A \Rightarrow A \circ B} (\neg \Rightarrow)$$

$$A, \neg B \Rightarrow A \circ B R_{\circ}^{(10)} \uparrow$$

or:

$$\frac{A \circ B, A \Rightarrow A \circ B}{A \Rightarrow A \circ B, \neg(A \circ B)} \xrightarrow{(\Rightarrow \neg)}
\frac{A \Rightarrow A \circ B, B}{A, \neg B \Rightarrow A \circ B} \xrightarrow{(\neg \Rightarrow)}$$

If $\circ \in \{ \not\rightarrow, \leftarrow \}$, and $\mathscr C$ contains $A_{\circ \uparrow}^{(\mathrm{III})}$, then the desired sequent is an instance of the axiom scheme. Suppose $\mathscr C = \mathscr C_P^R$. Then we apply:

$$A, \neg B \Rightarrow A \circ B, \neg B \qquad \frac{\neg B, A \circ B \Rightarrow A, \neg B}{\neg B, A, \neg B \Rightarrow A \circ B} R_{\circ}^{(\text{III})} \uparrow A, \neg B \Rightarrow A \circ B \qquad (\text{cut})$$

Consider the case $f_{\circ}(1,1) = 0$. We need to show that $\vdash_{\mathscr{C}} A, B \Rightarrow \neg(A \circ B)$ is provable in the respective \mathscr{C} for $\circ \in \{\circ_{\perp}, \not\rightarrow, \not\leftarrow, \lor, \downarrow, \circ_{\neg 2}, \circ_{\neg 1}, \uparrow\}$. If $\circ \in \{\circ_{\perp}, \not\rightarrow, \not\leftarrow\}$, then the rule $R_{\circ}^{(02)}$ is in the calculus; if $\circ = \circ_{\neg 1}$, then it is $R_{\circ}^{(09)}$; if $\circ = \circ_{\neg 2}$, then it is $R_{\circ}^{(12)}$; and if \circ is \lor , then it is one of the three. In these cases we follow:

$$\frac{A, A \circ B \Rightarrow A}{A, B \Rightarrow \neg (A \circ B)} R_{\circ}^{(02)} \uparrow$$

or:

$$\frac{A,B\Rightarrow A}{A,B\Rightarrow \neg(A\circ B)}\,R_{\circ}^{(09)}\uparrow$$

or:

$$\frac{A,B\Rightarrow B}{A,B\Rightarrow \neg(A\circ B)}\,R_{\circ}^{(12)}\uparrow$$

If $\circ \in \{\downarrow,\uparrow\}$, then either $A_{\circ\downarrow}^{(\mathrm{II})}$ or $R_{\circ\downarrow}^{(\mathrm{II})}$ is used as follows:

$$\frac{A, B \Rightarrow \neg (A \circ B), \neg B, A}{\neg A, A, B \Rightarrow \neg (A \circ B), \neg B, A \Rightarrow \neg (A \circ B), \neg B, \neg A} (\neg \Rightarrow) \qquad \frac{A, B, A \circ B \Rightarrow \neg B, \neg A}{A, B \Rightarrow \neg (A \circ B), \neg B, \neg A} (\Rightarrow \neg)}{\neg A, A, B \Rightarrow \neg (A \circ B), \neg B, \neg A} (\Rightarrow \neg) \qquad \frac{A, B, A \circ B \Rightarrow \neg B, \neg A}{\neg A, B \Rightarrow \neg (A \circ B), \neg B, \neg A} (\Rightarrow \neg) \qquad (\Rightarrow \neg)$$

For the case of \mathscr{C}_{P}^{R} the rightmost branch is extended as follows:

$$\frac{A, B, \neg B \Rightarrow A \circ B, A}{A, B, \neg A, \neg B \Rightarrow A \circ B} (\neg \Rightarrow)$$

$$\frac{A, B, \neg A, \neg B \Rightarrow A \circ B}{A, B, A \circ B \Rightarrow \neg A, \neg B} R_{\circ}^{(II)} \downarrow$$

Finally, consider the case $f_{\circ}(1,1) = 1$. We need to show that $\vdash_{\mathscr{C}} A, B \Rightarrow A \circ B$ is provable in the respective \mathscr{C} for $\circ \in \{\land, \circ_1, \circ_2, \lor, \equiv, \leftarrow, \rightarrow, \circ_{\top}\}$. For $\circ \in \{\leftarrow, \rightarrow, \circ_{\top}\}$ we have $R_{\circ}^{(05)}$; for \circ_1 we have $R_{\circ}^{(07)}$; for \circ_2 we have $R_{\circ}^{(11)}$; and for \equiv we have one of the three rules. Then we follow:

$$\frac{A \Rightarrow A \circ B, A}{A, \neg A \Rightarrow A \circ B} \xrightarrow{(\neg \Rightarrow)} R_{\circ}^{(05)} \uparrow$$

or:

$$\frac{A, B \Rightarrow A}{A, B \Rightarrow A \circ B} R_{\circ}^{(07)} \uparrow$$

or:

$$\frac{A,B\Rightarrow B}{A,B\Rightarrow A\circ B}R_{\circ}^{(11)}\uparrow$$

If $\circ \in \{\land, \lor\}$ and $\mathscr{C} = \mathscr{C}_P^A$, then the respective sequent is an instance of $A_{\circ \uparrow}^{(I)}$. If $\mathscr{C} = \mathscr{C}_P^R$, then the sequent is derived as follows:

$$\frac{A, B \Rightarrow A \circ B, A}{\neg A, A, B \Rightarrow A \circ B, \neg B} (\neg \Rightarrow) \qquad \frac{A, B \Rightarrow A, B \Rightarrow A, B}{A \circ B \Rightarrow A, B, \neg B} (\Rightarrow \neg) \qquad \frac{A, B \Rightarrow A \circ B, \neg B}{A, B \Rightarrow A \circ B, \neg B} (\neg \Rightarrow) \qquad \frac{A, B \Rightarrow A \circ B, \neg B}{\neg \neg B, A, B \Rightarrow A \circ B} (\neg \Rightarrow) \qquad (\text{cut})$$