ALGEBRA ASSIGNMENT 3 – QUADRATIC EQUATION 1

1)	The value of a for which the sum of the squares of the roots of the equation $x^2 - (a-2)x - a - 1 = 0$ Assume the least value is?					
	(a) 0	(b) 1		(d) None	e of these.	
2)	If the roots of the equation $x^2 - bx + c = 0$ be two consecutive integers, then $b^2 - 4c$ equals-					
	•	(b) 2	(c) -2	(d) None	e of these.	
3)	If both the roots of the quadratic equation $x^2 - 2kx + k^2 + k - 5 = 0$ are less than 5, $x = 0$ lies in the interval					
	(a) (5,6)	(b) (6,∞)	(c) (∞,	4) (d) None	e of these	
4)	Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation.					
	(a) $x^2 + 18x + 16 = 0$			(b) $x^2 - 18x +$	16 = 0	
	(c) $x^2 + 18x - 16$	= 0		(d) None of the	se	
5)		f quadratic equation (b) -1,1			hen the roots are (d) None of these	
6)	If one root of the equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal roots, then the value of q is					
	(a) $\frac{49}{4}$	(b) 12	(c) 3	(d) None	e of these	
7)	The number of real solutions of the equation $x^2 - 3 x + 2 = 0$ is					
	(a) 1	(b) 2	(c) 3	(d) None	e of these	
8)	The value of 'a' for which one root of quadratic equation $(a^2 - 5a + 3)x^2 + (3a - 1)x + 2 = 0$ Is twice as large as the other is					
		(b) $-\frac{2}{3}$				
9)	If roots of the equation $x^2 - 5x + 16 = 0$ are \propto , β and roots of the equation $x^2 + px + q = 0$ are $\propto^2 + \beta^2$ and $\frac{\propto \beta}{2}$, then					
	(a) p=1 and q= -56 (b) p=1 and q= 56			(c) p=-1 and q= -56 (d) None of these		
10)If $\propto and \beta$ be the $(x-\propto)(x-\beta)=c$ are	roots of the equation	(x-a)(x-b	o)=c , c≠0, then	the roots of the equation	

(a) a and b

(c) (a+b) and (b+c)

(b) b and c

(d) None of these

11) If one root of the equation $x^2 + px - q = 0$ is square of the other, then for any p and q it will satisfy the relation

(a) $p^3 - q(3p - 1) + q^2 = 0$

(b) $p^3 - q(3p + 1) + q^2 = 0$

- (c) $p^3 + q(3p 1) + q^2 = 0$
- (d) None of these.

12) If $x^2 + 2ax + 10 - 3a > 0$ for every real value of x, then

(a) a > 5

(c) a < -5

(b) 2<a<5

(d) None of these

13) If minimum value of $f(x) = x^2 + 2bx + 2c^2$ is greater than the maximum value of $g(x) = -x^2 + 2cx + b^2$, then for real value of x

(a) $|c| > \sqrt{2}|b|$

(c) $0 < c < \sqrt{2|b|}$

(b) $|c|^*\sqrt{2} > |b|$

(d) None of these.

14) The set of all real numbers x for which $x^2 - |x + 2| + x > 0$, is

(a) $(-\infty, -2) \cup (2, \infty)$

(c) $(-\infty, -\sqrt{2})$ U $(\sqrt{2}, \infty)$

(b) $(-\infty, -1) \cup (1, \infty)$

(d) None of these

15) The number of solutions of $log_4(x-1) = log_2(x-3)$ is

- (a) 3
- (b) 2
- (c) 1
- (d) None of these

16) If α and β are the roots if the equation $x^2 + bx + c = 0$, where c < 0 < b, then

- (a) $0 < \alpha < \beta$
- (b) $\alpha < 0 < \beta < |\alpha|$ (c) $\alpha < \beta < 0$
- (d) None of these

17) For the equation $3x^2 + px + 3 = 0$, p>0, if one of the roots is square of the other, then p is equal to

- (a) $\frac{1}{2}$
- (b) 1
- (c)3
- (d) $\frac{2}{3}$

18) If b>a, then the equation (x-a)(x-b)-1 = 0 has

(a) Both the roots in (a,b)

- (b) One root in $(-\infty,a)$ and the other in $(b, +\infty)$
- (c) Both roots in $(b,+\infty)$
- (d) None of these
- 19) The harmonic mean of the roots of the equation

$$(5 + \sqrt{2}) x^2 - (4 + \sqrt{5})x + 8 + 2\sqrt{5} = 0$$
 is

- (a) 2
- (b) 4
- (c) 6
- (d) None of these.
- 20) If the roots of the equation x^2 2ax + a^2 + a 3 = 0 are real and less than 3, then
 - (a) a < 2

- (b) $2 \le a \le 3$ (c) $3 < a \le 4$
- (d) None of these

- 21) The equation $\sqrt{x+1} \sqrt{x-1} = \sqrt{4x-1}$ has
 - (a) No solution of these
- (b) one solution
- (c) Two solutions
- (d) None
- 22) If p,q,r are positive and are in A.P. then the roots of the quadratic equation $px^2 + qx + r = 0$ are real for
 - (a) $|\frac{r}{p} 7| \ge 4\sqrt{3}$
 - (b) $\left| \frac{p}{r} 7 \right| \ge 4\sqrt{3}$
 - (c) For all p and r
 - (d) None of these
- 23) Let f(x) be a quadratic expression which is positive for all real x.

If
$$g(x) = f(x) + f'(x) + f''(x)$$
, then for any real x

- (a) g(x) < 0
- (b) g(x) > 0
- (c) g(x) = 0
- (d) None of these
- 24) If α and β are the roots of $x^2 + px + q = 0$ and α and α are the roots of α are the roots of α and α are the roots of α and α are the roots of α are the roots of α and α are the roots of α are the roots of the equation $x^2 - 4qx + 2q^2 - r = 0$ has always
 - (a) Two real roots
 - (b) Two positive roots
 - (c) Two negative roots
 - (d) None of these

- 25) The equation $x \frac{2}{x-1} = 1 \frac{2}{x-1}$ has
 - (a) No root
 - (b) One root
 - (c) Two equal roots
 - (d) None of these
- 26) If a + b + c = 0, then the quadratic equation $3ax^2 + 2bx + c = 0$ has
 - (a) At least one root in [0,1]
 - (b) One root in [2,3] and the other in [-2, -1]
 - (c) Imaginary roots
 - (d) None of these
- 27) The number of real solutions of the equation $|x|^2 3|x| + 2 = 0$ is
 - (a) 1
- (b) 2
- (c)3
- (d) None of these.
- 28) If a > 0, b > 0 and c > 0, then both the roots of the equation $ax^2 + bx + c = 0$
 - (a) are real and negative

(c) Have negative real parts

(b) Having positive real parts

- (d) None of these
- 29) Both the roots of the equation (x b)(x c) + (x a)(x c) + (x a)(x b) = 0 are always
 - (a) Positive
- (b) Negative
- (c) Real

- (d) None of these
- 30) If I, m,n are real, $I \neq m$, then the roots of the equation

$$(I - m) x^2 - 5(I + m)x - 2(I - m) = 0$$
 are

(a) Real and equal

(c) Complex

(b) Real and unequal

- (d) None of these
- 31) The entire graph of the equation $y = x^2 + kx x + 9$ is strictly above the X-axis if
 - (a) K <7
- (b) -5 < k < 7 (c) k > -5
- (d) None of these
- 32) If α and β are roots of the equation $ax^2 + bx + c = 0$, then

$$(1 + \alpha + \alpha^2)(1 + \beta + \beta^2)$$

- (a) 0
- (b) Positive
- (c) Negative
- (d) None of these

33) If the two equations $ax^2 + bx + c = 0$ and $px^2 + qx + r = 0$ have a common root, then the value of

$$(aq - bp) (br - cq) is$$

(a)
$$-(ar - cp)^2$$

(b)
$$(ap - cr)^2$$
 (c) $(ac - pr)^2$

(c)
$$(ac - pr)^2$$

(d) None of these

34) The set of values of p for which the roots of the equation $3x^2 + 2x + p$ (p-1) = 0 are of opposite signs is

- (a) $(-\infty,0)$
- (b) (0, 1)
- (c) (1, ∞)
- (d) None of these

35) If the roots of the equation $a(b - c) x^2 + b(c - a) x + c(a - b) = 0$ are equal, then a, b, c are in

- (a) H.P. these
- (b) G.P.

(c) A.P.

(d) None of

36) The value of p for which the difference between the roots of the equation $x^2 + px + 8 = 0$ is 2 are

 $(a) \pm 2$

- (b) ± 4
- (c) ± 6
- (d) None of these

37) If
$$a > 0$$
, then $\sqrt{a + \sqrt{a + \sqrt{a + \dots \infty}}} =$

(b)
$$\frac{1}{2} \left[1 + \sqrt{4a - 1} \right]$$

(c)
$$\frac{1}{2} [1 \pm \sqrt{4a-1}]$$

(d) None of these

38) If for the quadratic equation $ax^2 + bx + c = 0$, the difference of the roots is the same as their product, then the ratio of the roots is

- (a) $\frac{a-b}{a+b}$
- (b) $\frac{b-c}{b+c}$
- (c) $\frac{c-a}{c+a}$
- (d) None of these

39) The integral values of m for which the roots of the equation $mx^2 + (2m - 1)x + (m - 2) = 0$ for rational k are given by

- (a) k(k + 1)
- (c) $\frac{k(k+2)}{4}$
- (d) None of these

- 40) If $x^2 + 6x 27 > 0$ and $-x^2 + 3x + 4 > 0$, the x lies in the interval
 - (a) (3,4)
- (b) [3,4]

- (c) (-9, 3) U [4, 9)
- (d) None of these
- 41) If 2, 3 are roots of the equation $2x^3 + mx^2 13x + n = 0$, then the values of m and n are
 - (a) -5, -30
- (b) -5, 30
- (c) 5, 30
- (d) None of these
- 42)If the equations $ax^2 + 2cx + b = 0$ and $ax^2 + 2bx + c = 0$ ($b \ne c$) have a common root, then a + 4b + 4c =
 - (a) 0
- (b) 1
- (c) -1
- (d) None of these
- 43) (a, b), (b, c) &(c, a) are roots of $x^2 2px + 3 = 0$, $x^2 2qx + 5 = 0$ & $x^2 2rx + 15 = 0$ Respectively, where a, b and c are positive real numbers. Find the value of p + q + r.
- 44) If a, b, c are positive real numbers such that $a^2 + b^2 + c^2 = 48$, then the maximum value of a + b + c is
- 45) find range of a for which one negative and two positive roots of x^3 -3x+a=0 are possible
- 46) Let $f(x) = x^4 + ax^3 + bx^2 + cx + d$ be a polynomial whose roots are all negative integers. If a + b + c + d = 2009, find d
- 47) It is given that all roots of $x^3 + ax^2 + bx + c = 0$ are positive integers greater than 2 and it is also given that a + b + c = -2010. Find the value of a
- 48) The zeroes of the function $f(x)=x^2-ax+2a$ are integers . What is the sum of the possible values of a?
- 49) P, Q, R are roots of the equation $x^3 7x^2 6x + 5 = 0$. Find the value of (P+Q)(Q+R)(R+P)
- 50) How many distinct real roots the following equation has: $x^4 + 8x^2 + 16 = 4x^2 - 12x + 9$

ELITE'S GRID

Answer Keys

1	b
2	a
3	C
4	b
5	C
6	a
7	d
8	a
9	C
10	d
11	C
12	d
13	b
14	C
15	C
16	b
17	C
18	b
19	b
20	a
21	a
22	d
23	b
24	a
25	a
26	a
27	d
28	C
29	C
30	b
31	b

ELITE'S GRID Page 7

32	b
33	C
34	С
35	d
36	C
37	b
38	b
39	b
40	a
41	b
42	a
43	9
44	12
45	0 < a < 2
46	528
47	-58
48	16
49	-37
50	1

ELITE'S GRID Page 8