The Simplest CPU Arch Possible(SCAP)

1:System specs

1.0:Registers

The simples CPU architecture possible(SCAP for short) has the following registers:

BIN	HEX	NAME	BITS	Init Val
00	0x0	A	8	0x00
01	0x1	В	8	0x00
10(upper) and 11(lower)	0x2(upper) and 0x3(lower)	PC	16	0x0000
inaccessable	inaccessable	SP	16	0x00FF
inaccessable	inaccessable	FLAGS	2	0ь00

1.1:Instructions

And the following instructions:

BIN	HEX	NAME	I/O
0000	0x0	LD	IREG,ADDR
0001	0x1	ST	OREG,ADDR
0010	0x2	MV	IREG,OREG
0011	0x3	ADD	REG1,REG2
0100	0x4	SUB	REG1,REG2
0101	0x5	SL	REG1
0110	0x6	PUSH	REG1
0111	0x7	POP	REG1
1000	0x8	JMP	ADDR
1001	0x9	JZ	ADDR
1010	0xA	JNZ	ADDR
1011	0xB	JC	ADDR
1100	0xC	JNC	ADDR
1101	0xD	CALL	ADDR
1110	0xE	RET	-
1111	0xF	NOP	-

2:Memory

2.0:Details for external hardware support

The SCAP has an 8 bit data bus and a 16 bit address bus. The memory layout can be anything on devices using SCAP, so you may want to keep the devices mapped between 0xFF00 and 0xFFFD.

3:Instruction format

XXXX	XX	XX XXXXXXXXXXX	XXXXXX
Λ	\wedge	Λ	\wedge
		REG2/OREG	ADDR
	RI	EG1/IREG	
OPC	ODI	7	

4:Interrupts

When the interrupt line is pulsed, the CPU jumps to the address whose lower byte is the byte read from 0xFFFE and upper one is the byte read from 0xFFFF. Interrupts behave like CALL instructions.