NAME:	INDEX No
SIGNATURE:	

545/2 CHEMISTRY PAPER 2 JULY/AUGUST, 2023 TIME: 2 Hrs

LANGO SECONDARY SCHOOLS MOCK EXAMINATIONS ASSOCIATION UGANDA CERTIFICATE OF EDUCATION CHEMISTRY PAPER TWO Time: 2 Hours

INSTRUCTIONS TO CANDIDATES:

- Section A consists of 10 structured questions.
- · Answer all the questions in this Section
- Answers to the questions must be written in the spaces provided.
- Section B consists of 4 semi structured questions. Answer any two questions from this Section. Answers to the questions must be written in the answer booklet(s) provided.

$$(C = 12, H = 1, O = 16, Cu = 64, S = 32, N = 14, P = 31)$$

1 mole of gas occupies 22.4l at s.t.p.

1 mole of gas occupies 24l at room temperature.

NA.	V1.70	e de la composition della comp			F	or Exa	miner	s' Use	Only					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
J.S.														

© LASSMEA, 2023

SECTION A: (50 MARKS)

Answer all questions in this Section.

(a) S	State:		i. (01 Mk
	i)	Two reasons why air is regarded as a mixture and not a compound	
		7.7.2	
			ndustrially
((ii)	The method by which the major components of air are separated in	
			(1/2 Mk)
(b) (Give	a reason for your answer in (a)(ii)	
. ;		equation to show the reaction that can take place between the mos	t abundan
(c) \	comr	onent of air and magnesium.	(1 ½ Mks
	COMP		
(d)	A cle	an iron-nail that remained exposed in air overnight had a reddish bro	own solid
		sited on it.	
	(i)	Name the component(s) of air that caused the formation of the red	dish
		brown solid on the iron nail.	(01 Mk)
	(ii)	State one industrial method that is normally used to avoid formation	
	(ii)	State one industrial method that is normally used to avoid formation	
	(ii)	***************************************	n of the (1/2 Mk)
	(ii)	State one industrial method that is normally used to avoid formation reddish brown solid on iron.	n of the (1/2 Mk)
		State one industrial method that is normally used to avoid formation reddish brown solid on iron.	n of the (1/2 Mk)
The at	omic	State one industrial method that is normally used to avoid formation reddish brown solid on iron.	n of the (1/2 Mk)
The ato	omic	State one industrial method that is normally used to avoid formation reddish brown solid on iron. numbers of elements Q, R and T are 6, 17 and 19 respectively.	n of the (1/2 Mk)
The ato	omic Write	State one industrial method that is normally used to avoid formation reddish brown solid on iron. numbers of elements Q, R and T are 6, 17 and 19 respectively. ethe electronic configuration of: -	n of the (1/2 Mk)
The ato	omic Write (i)	State one industrial method that is normally used to avoid formation reddish brown solid on iron. numbers of elements Q, R and T are 6, 17 and 19 respectively. ethe electronic configuration of: - Q:	(1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk)
The ato	omic Write (i) (ii) (iii)	State one industrial method that is normally used to avoid formation reddish brown solid on iron. numbers of elements Q, R and T are 6, 17 and 19 respectively. ethe electronic configuration of: - Q: R: T:	(1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk)
The ato	omic Write (i) (ii) (iii) R re	State one industrial method that is normally used to avoid formation reddish brown solid on iron. numbers of elements Q, R and T are 6, 17 and 19 respectively. the electronic configuration of: - Q: R: T: acted separately with Q and T to form compounds X and Y respectively.	(1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk)
The ato	omic Write (i) (ii) (iii) R re	State one industrial method that is normally used to avoid formation reddish brown solid on iron. numbers of elements Q, R and T are 6, 17 and 19 respectively. the electronic configuration of: - Q: R: T: acted separately with Q and T to form compounds X and Y respectively.	(1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk) ely. State
The ato	omic Write (i) (ii) (iii) R re the t	State one industrial method that is normally used to avoid formation reddish brown solid on iron. numbers of elements Q, R and T are 6, 17 and 19 respectively. the electronic configuration of: - Q: R: T: acted separately with Q and T to form compounds X and Y respectively. Express of bond that exists in compound: - X:	(1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk) ely. State
The ato	omic Write (i) (ii) (iii) R re the t (i) (ii)	State one industrial method that is normally used to avoid formation reddish brown solid on iron. numbers of elements Q, R and T are 6, 17 and 19 respectively. the electronic configuration of: - Q: R: T: acted separately with Q and T to form compounds X and Y respectively. types of bond that exists in compound: - X: Y:	(1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk) ely. State
The ate (a)	omic Write (i) (ii) (iii) R re the t (i) (ii)	State one industrial method that is normally used to avoid formation reddish brown solid on iron. numbers of elements Q, R and T are 6, 17 and 19 respectively. the electronic configuration of: - Q: R: T: acted separately with Q and T to form compounds X and Y respectively. Express of bond that exists in compound: - X:	(1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk) (1/2 Mk) ely. State (1 Mk) (1 Mk)

3. The diagram below shows how states of matter can change under different conditions.

			U	
	(a)	Nam	ne the change of states of matter represented by: -	(2 ½ Mks)
		(i)	A:	
		(ii)	B:	
		(iii)	C:	
		(iv)	D:	
		(v)	E:	
	(b)	Nam	ne two substances which can undergo the change of state re	
		into he	dylci washipi ca a mana can can mba	(2 Mks)
	(c)	Stat	e one condition other than temperature that can bring about	the change of state
		repr	resented by D.	(1/2 Mk)
				••••••
4.	A coi	mpour	nd P of molecular mass 28, contains 85.7% carbon and 14.49	% hydrogen.
	(a)	Calc	culate the simplest formula of P.	(1 ½ Mk)
			with constant to struction, without the constant such	•••••
	(b)	(i)	Determine the molecular formula of P.	(01 Mk)
			Mark	
			What a rink of it is easily to be a what you a late.	
		(ii)	Write the structural formula of P.	(1/2 Mk)
			3	

	(c)	State	what is observed if P is reacted with bromine water.	(OT WK)						
				(01 Mk)						
	(d)	Write	an equation for the reaction in (c).							
				(1 ½ Mks)						
5.	(a)	Defin	e the term electrolyte.							
	(b)	Name	Name the particle by means of which electric current is conducted in							
		(i)	Graphite:							
		(b)	Molten lead (II) bromide:							
				(01 Mk)						
	(c)	Give	a reason why: -							
		(i)	Lead (II) bromide when in molten state conducts electricity but when	en in solid						
			state does not.	(01 Mk)						
		(ii)	Electrolysis of concentrated sodium chloride solution is done using	ng graphite						
			anode but not a metal like iron.	(01 Mk)						
6	(0)	(i)	Write equation to show how hydrogen can be prepared using Zi	nc and dilute						
6.	(a)	(i)	sulphuric acid.	(1 ½ Mks)						
			Sulphune dold.	, 						
		/**\	Otata have hydrogon oon be tooted in the lebenstany	(01 Mk)						
		(ii)	State how hydrogen can be tested in the laboratory.							
			······							

	(b)	Hydro	gen reacts with copper (ii) oxide according to the following equati	on				
			$H_{2(g)} \longrightarrow Cu(s) + H_{2}O(s)$					
		(i)	State what is observed when dry hydrogen is passed over heate oxide.	d copper (II) (01 Mk)				
		(ii)	Calculate the volume of hydrogen at s.t.p that would react with o	copper (II)				
			oxide to form 3.20g of copper.	(2 Mks)				
7.	(a)	Name	e the industrial process by which ammonia gas is manufactured.	(UT MK)				
	(-)							
	(b)	Amm	onia is used to manufacture fertilizers such as ammonium sulphat	e,				
	(5)	(NH ₄) ₂ SO ₄ and diammonium phosphate, (NH ₄) ₂ HPO ₄ . Calculate the percentage						
			rogen in: -					
		(i)	Ammonium sulphate.	(1½ Mks)				
		(-)						
		(ii)	Diammonium phosphate.	(1 ½ Mks)				
		()						
	(c)	(i)	Which of the two fertilizers in (b) is better?	(1/2 Mk)				
	(-)							
				(4/0 1/4)				
		(ii)	Give a reason for your answer in (c)(i).	(1/2 Mk)				

8.	(a)	Natural rubber is soft and it is normally made hard before use.						
		(i)	Name one process by which natural rubber is made hard.	(01 Mk)				
		(ii)	State how natural rubber is made hard by the process you have					
			(a)(i).	(01 Mk)				
	(b)	State						
	(-/	(i)	Two reasons why natural rubber is made hard before use.	(01 Mk)				
				,				
		(ii)	Two uses of rubber.	(01 Mk)				
_								
9.	(a)	Oxy	gen can be prepared using sodium peroxide and water.					
	146	(i)	Write an equation for the reaction between sodium peroxide and	water.				
				(01½ Mks)				
		(ii)	Name one other substance from which oxygen can be prepared	in the				
		À	laboratory.	(01 Mk)				
	(b)	(i)	State the condition(s) under which oxygen can react with Iron.					
	(5)	(1)		(01 Mk)				
		/::\	W					
		(ii)	Write an equation for the reaction that takes place when iron is to	reated with				
			oxygen under the condition(s) you have stated in (b)(i).	(1½ Mks)				
			······					
10.	(a)	Defi	ne the term neutralization reaction.	(01 Mk)				
(4)								
			,					
	(b)		or 0.1M hydrochloric acid solution required 10.0cm ³ of sodium					
	(-)		ition for complete reaction.	Janorialo				

		(1)	hydrochloric acid.	nd dilute (1 ½ Mks)
		(ii)	Determine the concentration of sodium carbonate solution in mo	oldm ⁻³ .
			······alsentian	
			William Committee and the comm	
				(3 ½ Mks)
			SECTION B.	
	Ansv	ver any	y two questions from this Section. Additional question answered w	vill not be
	mark		Che'r sagvarlage af the dalaigent to the environment.	
11.	(a)	(i)	With the aid of a labelled diagram, describe how a pure dry sam carbondioxide	ple of
			gas can be prepared in the laboratory.	(5 ½ Mks)
		(ii)	Write the equation for the reaction.	(1½ Mks)
		(iii)	State two commercial uses of carbodioxide gas.	(2 Mks)
	(b)	(i)	State what is observed when burning magnesium is plunged into containing dry carbondioxide gas.	a gas jar (1 ½ Mks)
		(ii)	Explain the observation in b(i) above.	(03 Mks)
		(iii)	Write the equation for the reaction that takes place in b(i) above.	(1 1/2 Mks)
12.	(a)	State	e and explain how any three factors can affect the rate of a reaction	n. (6 Mks)
	(b)	acid	ixture of a known mass of zinc granules and a certain volume of 2M was put in a conical flask attached to a 100cm ³ graduated gas syrime of the gas was recorded at various intervals and a graph plotted	nge. The
			Volume	
			of gas	
			(cm ³)	
			de e la granda de la companya de la	
			A STATE OF THE STA	
			Time (s)	

7

On the same axes, sketch and label a graph that would be obtained when the experiment was repeated with: -(1 1/2 Mks) (i) 1M sulphuric acid. (1 1/2 Mks) (ii) 2M sulphuric acid and powdered zinc. 10.0g of copper (II) carbonate were reacted with 40cm3 of 2M hydrochloric acid. (c) (i) Write an equation for the reaction between the acid and copper (II) (1 1/2 Mks) carbonate. (ii) Calculate the volume of the carbon dioxide produced at room temperature. (4 1/2 Mks) 13 (a) Which word is used to mean 'formation of soap'? (01 Mk) (i) (ii) Name two sources of vegetable oils that can be used for preparation of soap. (01 Mk)(b) Briefly describe how soap is prepared. (4 1/2 Mks) (c) State: -(i) One advantage of using a detergent over soap when washing. (01 Mk)(ii) One disadvantage of the detergent to the environment. (01 Mk)(d) Explain the following observations: -(i) Water containing calcium hydrogen carbonate does not lather readily with soap unless after boiling. (05 Mks)(ii) Water containing magnesium sulphate will not lather even after boiling. (1 1/2 Mks) In the extraction of cast iron using a blast furnace, spathic iron ore which contains some 14. impurities is first roasted in air. It is then mixed with some other substances and finally introduced into the blast furnace. Name the major impurity in the iron ore. (a) (01 Mk)(b) (i) Give the chemical name of spathic iron ore. (01 Mk)Write an equation for the reaction which takes place when spathic iron ore is (ii) roasted in air. (2 ½ Mks) (c) Name the substances that are fed into the blast furnace. (i) From the top (1 ½ Mks) (ii) From the bottom (1 1/2 Mks) Outline the reactions leading to the formation of cast iron. (d) (05 Mks) What is an alloy? (i) (e) (1/2 Mk)Name an example of an alloy of iron and state the elements contained in it. (ii) (01 Mk)State two uses of the named alloy in (ii) (iii) (01 Mk)Suggest a reason why the named alloy is preferred to that of pure iron. (iv) (01 Mk)8

END