ITCS 532:

1. Models of Computation

Rob Egrot

What is computation?

- ► Given a set Γ of first-order sentences, and a first-order sentence φ, does Γ $\models φ$?
- Is there an algorithm that will always answer the above question correctly?
- What exactly is an algorithm anyway?
- What is computation?
- How does this relate to modern computers?

Finite State Machines

- ► A finite state machine (FSM), AKA finite automaton, is an abstract machine.
- At any moment an FSM is in one of a finite number of possible states.
- ▶ The state changes in response to input.
- ► There are only a finite number of possible inputs.
- ► E.g:
 - ticket machines,
 - vending machines,
 - etc.

FSM - formal definition

An FSM consists of:

- 1. A finite set of states Q.
- 2. A distinguished set $H \subseteq Q$. This set contains the *halting* states of M. If the machine gets to a state in H then it stops running.
- 3. A special starting state $q_0 \in Q$.
- 4. A finite set of possible inputs Σ sometimes called the *alphabet* of M.
- 5. A transition function $\delta: (Q \setminus H) \times \Sigma \to Q$. This function controls state change. I.e. $\delta(q, \sigma) = r$ means if in state q go to state r when receiving input σ .

Warning 1

- There are other definitions for FSMs.
- ► E.g:
 - $ightharpoonup \delta$ may be partial.
 - In this case there must be a rule for dealing with undefined situations.
- ▶ Alternative definitions will be essentially equivalent to ours.

Warning 2

- ▶ In the real world, things like ticket machines take user input in real time.
- Users might walk away before completing their purchase.
- The design of the machine must deal with this.
- E.g. after some time of inactivity state of machine must reset.
- Waiting time should not be too short or too long.
- Not our problem.
- We abstract away time, and treat input as a pre-determined finite sequence of events.
- We don't worry about what happens after that.

Running an FSM

- ▶ The possible inputs are represented by the symbols in Σ .
- ightharpoonup Sequences of inputs correspond to finite strings from Σ .
- Σ* is set of all finite strings from Σ.
- ▶ We think of the *input* of an FSM to be a string from Σ^* .
- Machine acts on each symbol in the input in turn, and changes state according to δ .
- The output is just the state after acting on the final symbol of the input.

Representing an FSM

This diagram represents an FSM that looks for the sequence abc inside strings composed of letters from the alphabet $\Sigma = \{a, b, c\}$.

If it gets to state C it halts, and we have a success. Otherwise once it reaches end of input we consider it a failure. I.e., input does not contain abc.

The formal version

The machine on the previous slide has this formal description:

- \triangleright $Q = \{q_0, A, B, C\}.$
- $\triangleright \Sigma = \{a, b, c\}.$

$$(q_0,a)\mapsto A \ (q_0,b)\mapsto q_0 \ (q_0,c)\mapsto q_0 \ (A,a)\mapsto A$$

- $\delta: \begin{cases} (q_0,a) \mapsto A \\ (q_0,b) \mapsto q_0 \\ (q_0,c) \mapsto q_0 \\ (A,a) \mapsto A \\ (A,b) \mapsto B \\ (A,c) \mapsto q_0 \\ (B,a) \mapsto A \\ (B,b) \mapsto q_0 \\ (B,c) \mapsto C \end{cases}$
 - $ightharpoonup q_0$ (the starting state).
 - $ightharpoonup H = \{C\}$ (the set of halt states).

Limitations of FSMs

- Finite state machines are useful, but they are quite limited.
- ► E.g:
 - No FSM to check if a graph is connected.
 - No FSM to check if a given set of polynomial equations has a solution.
 - ▶ No FSM to check if a number in binary is prime.
 - Etc.
- A simpler example:
- Why is there no FSM that can add two binary numbers together?

Memory problems

- Many of the limitations of FSMs come down to memory.
- Specifically, lack of memory.
- An FSM records information only in its state.
- Since it has a finite number of states, but inputs can be arbitrarily long, its ability to distinguish between inputs is limited.
- Real computers also have finite memory, but the amount increases all the time.
- Theoretical computer scientists often prefer to study abstract computation by assuming memory is infinite.

Turing machines

- A Turing machine (TM) is another abstract machine.
- Turing defined this concept to capture the notion of an algorithm.
- It is similar to an FSM but it also has an infinite tape.
- ► The TM can write on the tape, and can access things it has written before.
- ► The tape provides the TM with an infinite memory.
- A TM has a tape head which moves around on the tape reading symbols.
- During operation, the TM reads a symbol and checks its current state.
- ► Then it moves into a new state, and acts on the tape in some way, either by writing a new symbol or moving the tape head.

Turing machines - formal version $(Q, \Sigma, q_0, H, \delta)$

- 1. A finite set of states Q.
- 2. A finite alphabet Σ . Also special symbols \Box (for blank spaces) and : (for start of tape).
- A one way infinite tape consisting of numbered squares starting at 0. Each square contains one symbol from ∑ ∪ {..,:}. Symbol : at square 0 (only).
- 4. A tape head that moves up and down the tape reading symbols.
- 5. A distinguished starting state q_0 .
- 6. A set $H \subseteq Q$ of halting states (maybe partitioned into 'accept' states and 'reject' states).
- 7. A function $\delta: (Q \setminus H) \times \Sigma \cup \{\square, :\} \rightarrow Q \times (\Sigma \cup \{\square, \rightarrow, \leftarrow\})$.

Running a Turing machine

- ▶ The *input* of a TM is the initial state of the tape.
- We assume that the starting tape always contains a finite string from Σ^* followed by an infinite sequence of _ symbols.
- ▶ A run of a Turing machine on input I is a sequence of abstract triples representing the state the machine is in, the position of the tape head, and the current state of the tape.
- A run is completely determined by the input I on the tape and the function δ .
- ➤ The *output* can either be defined to be the final halting state (e.g. *accept* or *reject*), or the state of the tape up to the first _ after halting.
- Runs don't always halt!

Example - unary addition of 1

Let $\Sigma = \{1\}$. This machine adds one to a natural number represented in unary notation.

Example - unary addition of two natural numbers

This machine uses the alphabet $\{1,*\}$ and correct input is of form *, a*, *b, a*b followed by blanks (a and b are strings containing only 1). Here a and b represent the numbers to be added together in unary notation. Output is the unary number that is left on the tape when the machine accepts.

Decision problems

- ▶ A decision problem is a yes or no question. E.g:
 - ► Given a graph *G*, is *G* connected?
 - Does a given string of English characters contain the word biscuits as a substring?
 - Is a given propositional formula satisfiable?
 - Is a given natural number prime?
- ► A decision problem has a *general form*, and an *instance*.
- ► E.g. "Is a given natural number prime?" is a general form, and a specific number *n* is an instance of this problem.
- Abstractly, a decision problem partitions its set of instances into two parts: one for 'yes' and the other for 'no'.
- ► Turing machines can try to solve decision problems, but first we must write them in a language they can understand.

Working with strings

- ightharpoonup A (finite) alphabet Σ is a finite set of symbols.
- A string over Σ is a sequence of characters, e.g. 01001, or the digits of π .
- ▶ |s| denotes the length of s. E.g |01001| = 5, and the length of the string defined by the digits of π is ω (countable infinity).
- ▶ The *empty string* is denoted ϵ , and $|\epsilon| = 0$.
- ▶ We can *concatenate* finite strings. Given a and b we write ab.
- For all finite strings a we have $\epsilon a = a$ and $a\epsilon = a$.
- $ightharpoonup \Sigma^*$ is the set of all finite strings from Σ .

Formal languages

- ▶ A formal language over Σ is a subset of Σ*.
- ▶ If L is a formal language over Σ then we can define the characteristic function of L by $\chi_L : \Sigma^* \to \{0,1\}$ and

$$\chi_L(s) = \begin{cases} 1 \text{ if } s \in L \\ 0 \text{ if } s \notin L \end{cases}$$

Encoding schemes

- We want to take a decision problem and turn it into a language problem.
- ▶ I.e. given a decision problem D we want to associate it with a formal language L_D for some alphabet Σ .
- ▶ We have to choose Σ , and choose a system for writing the instances of D as strings from Σ^* .
- ▶ I.e. each instance x should correspond to some $s_x \in \Sigma^*$.
- This system should be sensible. I.e.
 - Different instances should be written as different strings.
 - We should be able to tell if a string from Σ^* corresponds to an instance of D or not.
 - ► We should be able to work out the string from the instance, and also the instance from the string.

Encoding schemes - formal version

Definition 1 (encoding scheme)

If Σ is a finite alphabet, D is a decision problem, and I_D is the set of all instances of D, an encoding scheme for D using Σ is a function $\mathbf{code}:I_D\to\Sigma^*$ such that:

- 1. if $x, y \in I_D$ and $x \neq y$ we must have $\mathbf{code}(x) \neq \mathbf{code}(y)$ (i.e. \mathbf{code} is 1-1),
- 2. it is possible to work out if a string in Σ^* is $\mathbf{code}(x)$ for some $x \in I_D$, and
- 3. the process for converting x to code(x) and code(x) to x is well defined.

Decision problems and formal languages

- \triangleright Any formal language L defines a decision problem D_L .
 - "is this word from Σ^* in L?".
- Using encoding we can turn decision problems into formal languages as follows.

Definition 2 (L_D)

Given a decision problem D, a finite alphabet Σ , and an encoding for D using Σ , the language defined by D is the set $L_D = \{ \mathbf{code}(x) : x \text{ is a yes instance of } D \}.$

Decidability

Definition 3 (Decidable)

An (encodable) decision problem D is decidable if there is a Turing machine T that accepts when its input is the code of a yes instance of D, and rejects when its input is the code of a no instance (or not the code of an instance at all). We say T decides D.

▶ Is every decision problem that can be encoded using a finite alphabet decidable?

Semidecidability

Definition 4 (Semidecidable)

An (encodable) decision problem D is semidecidable if there is a Turing machine T that accepts when its input is the code of a yes instance of D, and does not halt (i.e. it runs forever) when its input is the code of a no instance (or not the code of an instance at all). We say T semidecides D.

- ▶ Is every decision problem that can be encoded using a finite alphabet semidecidable?
- Why is every decidable problem also semidecidable?

Decidability and formal languages

Definition 5 (recursive)

A formal language L over a finite alphabet Σ is recursive if there is a Turing machine T that takes input x from Σ^* and accepts when $x \in L$ and rejects when $x \notin L$.

Definition 6 (recursively enumerable)

A formal language L over a finite alphabet Σ is recursively enumerable if there is a Turing machine T that takes input x from Σ^* and accepts when $x \in L$ and runs forever when $x \notin L$. We often shorten recursively enumerable to r.e.).

Some equivalences

By definition of L_D and D_L we have the following correspondences for encodable decision problems:

```
D is decidable \iff L_D is recursive
```

 D_L is decidable $\iff L$ is recursive

D is semidecidable $\iff L_D$ is recursively enumerable

 D_L is semidecidable $\iff L$ is recursively enumerable

Example - palindromes

Pushdown automata

- ► Turing machines are strictly more powerful than FSMs due to them effectively having infinite memory.
- There are things we can do with a TM that can not be done by an FSM.
- Is there a model of computation between FSMs and TMs?
- It turns out the answer is yes.
- ► A *pushdown automaton* is another abstract computation system based on FSMs.
- ▶ A pushdown automaton also has access to infinite memory in the form of a stack.
- ► It turns out that this makes them strictly more powerful than FSMs, but strictly less powerful than Turing machines.
- Pushdown automata with two stacks turn out to be equivalent to Turing machines.

Computation and language

Definition 7 (Recognize)

Let M be an abstract machine capable of acting on input from Σ^* for a finite alphabet Σ , and let $L \subseteq \Sigma^*$ be a language. We say M recognizes L if M accepts on input x if and only if $x \in L$.

- ► Every recursively enumerable language has a Turing machine that recognizes it (this is just the definition of r.e.).
- Moreover, every Turing machine T defines a recursively enumerable language (just take the set of all x such that T(x) halts). So...

Theorem 8

The class of recursively enumerable languages is precisely the class of languages that can be recognized by a Turing machine.

The Chomsky heirarchy

language	model of computation
recursively enumerable	Turing machines
context-sensitive	linear bounded automata
context-free	pushdown automata
regular	finite state machines

- The Chomsky hierarchy of formal languages and their associated models of computation.
- Models of computation are arranged in order of power.
- On this course we are mainly interested in Turing machines.
- Note that it is possible to refine this hierarchy by adding extra classes, and this may result in something that is not linearly ordered.