graph algorithms 2

minimum spanning tree and shortest paths

- \bullet (V, E) undirected graph
- $w: E \to R^+$ nonnegative edge weights

- \bullet (V, E) undirected graph
- $w: E \to R^+$ nonnegative edge weights

(V,T) spanning tree

$$w(T) = \Sigma_{e \in T} w(e)$$
 weight of T

- \bullet (V, E) undirected graph
- $w: E \to R^+$ nonnegative edge weights

(V,T) spanning tree

$$w(T) = \Sigma_{e \in T} w(e)$$
 weight of T

minimum spanning tree

- input: weighted connected graph
- output: edges T of a spanning tree with minimal weight

- \bullet (V, E) undirected graph
- $w: E \to R^+$ nonnegative edge weights

(V,T) spanning tree

$$w(T) = \Sigma_{e \in T} w(e)$$
 weight of T

def:
$$cut C = (V', V'')$$
 with

- $\bullet V' \cup V'' = V$
- $V' \cap V'' = \emptyset$

cuts

- input: weighted connected graph
- output: edges T of a spanning tree with minimal weight

- \bullet (V, E) undirected graph
- $w: E \to R^+$ nonnegative edge weights

(V,T) spanning tree

$$w(T) = \Sigma_{e \in T} w(e)$$
 weight of T

def:
$$cut\ C = (V', V'')$$
 with

- $\bullet V' \cup V'' = V$
- $V' \cap V'' = \emptyset$

$$T' \subset E$$
 respects cut C if

no edge in T^{\prime} crosses the cut

$$\{u,v\} \in T' \rightarrow u, v \in V' \lor u, v \in V''$$

cuts

- input: weighted connected graph
- output: edges T of a spanning tree with minimal weight

- \bullet (V, E) undirected graph
- $w: E \to R^+$ nonnegative edge weights

(V,T) spanning tree

$$w(T) = \Sigma_{e \in T} w(e)$$
 weight of T

def:
$$cut\ C = (V', V'')$$
 with

$$\bullet V' \cup V'' = V$$

•
$$V' \cap V'' = \emptyset$$

$$T' \subset E$$
 respects cut C if

no edge in T^{\prime} crosses the cut

$$\{u,v\} \in T' \rightarrow u, v \in V' \lor u, v \in V''$$

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

- \bullet (V, E) undirected graph
- $w: E \to R^+$ nonnegative edge weights

(V,T) spanning tree

$$w(T) = \Sigma_{e \in T} w(e)$$
 weight of T

def:
$$cut C = (V', V'')$$
 with

- $\bullet V' \cup V'' = V$
- $V' \cap V'' = \emptyset$

$$T' \subset E$$
 respects cut C if

no edge in T^{\prime} crosses the cut

$$\{u,v\} \in T' \rightarrow u, v \in V' \lor u, v \in V''$$

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

- \bullet (V, E) undirected graph
- $w: E \to R^+$ nonnegative edge weights

(V,T) spanning tree

$$w(T) = \Sigma_{e \in T} w(e)$$
 weight of T

def:
$$cut C = (V', V'')$$
 with

$$\bullet V' \cup V'' = V$$

•
$$V' \cap V'' = \emptyset$$

$$T' \subset E$$
 respects cut C if

no edge in T^{\prime} crosses the cut

$$\{u,v\} \in T' \rightarrow u, v \in V' \lor u, v \in V''$$

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

• otherwise add e to (V,T). This closes a single cycle.

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

• otherwise add e to (V,T). This closes a single cycle.

• the cycle must contain an edge e' crossing the cut. Remove e'.

$$R = T \setminus \{e'\} \cup \{e\}$$

$$w(R) = w(T) - w(e') + w(e) \le w(T)$$

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

• otherwise add e to (V, T). This closes a single cycle.

• the cycle must contain an edge e' crossing the cut. Remove e'.

$$R = T \setminus \{e'\} \cup \{e\}$$

$$w(R) = w(T) - w(e') + w(e) \le w(T)$$

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

Algorithm 50 Kruskal-MST

```
Input: connected weighted undirected graph G = (V, E, w)
```

Output: a minimum spanning tree T of G

```
1: Sort the edges by increasing weight
```

```
2: for each vertex v \in V do
```

```
3: Make-set(v)
```

4:
$$E_T := \emptyset$$

5: for each edge $e = \{u, v\} \in E$, in order by increasing weight do

```
6: if Find(u) \neq Find(v) then
```

7:
$$E_T := E_T \cup \{e\}$$

8: Union
$$(u, v)$$

9: return (V, E_T)

correctness:

- T contained in edges of minimum spanning tree
- induction using lemma 3

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

Algorithm 50 Kruskal-MST

```
Input: connected weighted undirected graph G = (V, E, w)
```

Output: a minimum spanning tree T of G

```
1: Sort the edges by increasing weight
```

2: for each vertex $v \in V$ do

3: Make-set(v)

4: $E_T := \emptyset$

5: for each edge $e = \{u, v\} \in E$, in order by increasing weight do

6: **if** $\operatorname{Find}(u) \neq \operatorname{Find}(v)$ **then**

greedy

 $E_T := E_T \cup \{e\}$

8: Union(u, v)

9: return (V, E_T)

correctness:

- T contained in edges of minimum spanning tree
- induction using lemma 3

greedy algorithms:

- go locally for optimum
- hope globally for the best

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

Algorithm 50 Kruskal-MST

```
Input: connected weighted undirected graph G = (V, E, w)
```

Output: a minimum spanning tree T of G

```
1: Sort the edges by increasing weight
```

2: for each vertex $v \in V$ do

```
3: Make-set(v)
```

4:
$$E_T := \emptyset$$

5: for each edge $e = \{u, v\} \in E$, in order by increasing weight do

6: **if** Find $(u) \neq$ Find(v) **then**

7: $E_T := E_T \cup \{e\}$

8: Union(u, v)

9: return (V, E_T)

correctness:

- T contained in edges of minimum spanning tree
- induction using lemma 3

run time:

- sorting: $O(|E|\log|E|)$
- union find: $O(|E| \cdot \alpha(|E|))$

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

Algorithm 50 Kruskal-MST

```
Input: connected weighted undirected graph G = (V, E, w)
```

Output: a minimum spanning tree T of G

- 1: Sort the edges by increasing weight
- 2: for each vertex $v \in V$ do
- 3: Make-set(v)
- 4: $E_T := \emptyset$
- 5: for each edge $e = \{u, v\} \in E$, in order by increasing weight do
- 6: **if** Find $(u) \neq$ Find(v) **then**
- 7: $E_T := E_T \cup \{e\}$
- 8: Union(u, v)
- 9: return (V, E_T)

correctness:

- T contained in edges of minimum spanning tree
- induction using lemma 3

run time:

- sorting: $O(|E|\log|E|)$
- union find: $O(|E| \cdot \alpha(|E|))$

Lemma 3. Let $T' \subseteq E$ be a set of edges contained in the edges of a minimum spanning tree (V,T) of graph G = (V,E,w).

$$T' \subseteq T$$

$$T' \cup \{e\} \subseteq R$$

Figure 6: Edges is T' are drawn solid. Dotted edges e cross the cut C = (V', V''). Such edges are not in T'.

- (V, E) directed graph
- $w: E \to R^+$ nonnegative edge weights

$$p=(p_0,\ldots,p_\ell)$$
 path

$$\Sigma_{i=1}^{\ell} w(p_{i-1}, p_i)$$
 length of path sum of edge weights

- \bullet (V, E) directed graph
- $w: E \to R^+$ nonnegative edge weights

$$p=(p_0,\ldots,p_\ell)$$
 path

$$\Sigma_{i=1}^{\ell} w(p_{i-1}, p_i)$$
 length of path sum of edge weights

single source shortest path

- input: weighted connected graph, start node $s \in V$
- output: for each node $\delta[v]$ = length of a shortest path from s to v

- grow set of nodes S
- obtain upper bounds $d[x] \ge \delta(x)$ on length of shortest path
- d[x] length of shortest path found so far, i.e in S or in S plus one further edge.

Dijkstra's Algorithm

- grow set of nodes S
- obtain upper bounds $d[x] \ge \delta(x)$ on length of shortest path
- d[x] length of shortest path found so far, i.e in S or in S plus one further edge.

initialization

$$S = \{s\}; d[s] = 0;$$
for all $v \neq s$

$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

Dijkstra's Algorithm

- grow set of nodes S
- obtain upper bounds $d[x] \ge \delta(x)$ on length of shortest path
- d[x] length of shortest path found so far, i.e in S or in S plus one further edge.

initialization

$$S = \{s\}; d[s] = 0;$$
for all $v \neq s$

$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
 choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
 for all v with $(u, v) \in E_1$ $\emptyset \in S$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

Dijkstra's Algorithm

- grow set of nodes S
- obtain upper bounds $d[x] \ge \delta(x)$ on length of shortest path
- d[x] length of shortest path found so far, i.e in S or in S plus one further edge.

initialization

$$S = \{s\}; d[s] = 0;$$
for all $v \neq s$

$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
 choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
 for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

Dijkstra's Algorithm

primed notation

- S^t and d^t : set S and distance bound d before iteration t of the while loop.
- in statements which hold for all t: drop superscript t
- in statement involving only t and t+1 (e.g. induction steps): replace X^t by X and X^{t+1} by X'; here for $X \in \{S, d\}$

- grow set of nodes S
- obtain upper bounds $d[x] \ge \delta(x)$ on length of shortest path
- d[x] length of shortest path found so far, i.e in S or in S plus one further edge.

initialization

$$S = \{s\}; d[s] = 0;$$
for all $v \neq s$

$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
 choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
 for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

Dijkstra's Algorithm

primed notation

- S^t and d^t : set S and distance bound d before iteration t of the while loop.
- in statements which hold for all t: drop superscript t
- in statement involving only t and t+1 (e.g. induction steps): replace X^t by X and X^{t+1} by X'; here for $X \in \{S, d\}$

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u] , u \in S \to d'[u] = d[u]$$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

.

initialization

$$S = \{s\}; \ d[s] = 0;$$

for all $v \neq s$
$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
 choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
 for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u] , u \in S \to d'[u] = d[u]$$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

Lemma 4.

$$u = s \lor u \in S' \setminus S \rightarrow d[u] = \delta[u]$$

initialization

$$S = \{s\}; d[s] = 0;$$

for all $v \neq s$
$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
 choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
 for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u] , u \in S \to d'[u] = d[u]$$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

Lemma 4.

$$u = s \lor u \in S' \setminus S \to d[u] = \delta[u]$$

u = s trivial. For $u \neq s$ assume in some iteration of while loop:

$$u \in S^{t+1} \setminus S^t$$
, $\delta[u] < d^t[u]$

Consider *first* such t and u. Let P be shortest path from s to u.

$$s \in S^t \land u \notin S^t \rightarrow \exists \text{ edge } (x,y) \text{ on } P. \ x \in S^t \land y \notin S^t$$

initialization

$$S = \{s\}; d[s] = 0;$$

for all $v \neq s$
$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u], u \in S \rightarrow d'[u] = d[u]$$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

Lemma 4.

$$u = s \lor u \in S' \setminus S \rightarrow d[u] = \delta[u]$$

u = s trivial. For $u \neq s$ assume in some iteration of while loop:

$$u \in S^{t+1} \setminus S^t$$
, $\delta[u] < d^t[u]$

Consider *first* such t and u. Let P be shortest path from s to u.

$$s \in S^t \land u \notin S^t \rightarrow \exists \text{ edge } (x,y) \text{ on } P. \ x \in S^t \land y \notin S^t$$

x entered S before u:

$$x \in S^{r+1} \setminus S^r$$
, $r < t$

$$S[x] = d^r[x]$$
 (minimality of t)
= $d^t[x]$ (property 1)

initialization

$$S = \{s\}; d[s] = 0;$$
for all $v \neq s$

$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
 choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
 for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u], u \in S \rightarrow d'[u] = d[u]$$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

Lemma 4.

$$u = s \lor u \in S' \setminus S \rightarrow d[u] = \delta[u]$$

u = s trivial. For $u \neq s$ assume in some iteration of while loop:

$$u \in S^{t+1} \setminus S^t$$
, $\delta[u] < d^t[u]$

Consider *first* such t and u. Let P be shortest path from s to u.

$$s \in S^t \land u \notin S^t \rightarrow \exists \text{ edge } (x,y) \text{ on } P. \ x \in S^t \land y \notin S^t$$

x entered S before u:

$$x \in S^{r+1} \setminus S^r$$
, $r < t$

$$\delta[x] = d^r[x]$$
 (minimality of t)
= $d^t[x]$ (property 1)

$$d^{t}[y] \le d^{r}[y]$$
 (property 1)
 $\le d^{r}[x] + w(x,y)$ (algorithm)

$$= \delta[x] + w(x, y)$$
 (above)

=
$$\delta[y]$$
 ((x,y) on shortest path P)

$$\leq d^t[y]$$
 (property 2)

$$d^t[y] = \delta[y]$$

initialization

$$S = \{s\}; d[s] = 0;$$

for all $v \neq s$
$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
 choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
 for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u] , u \in S \to d'[u] = d[u]$$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

Lemma 4.

$$u = s \lor u \in S' \setminus S \rightarrow d[u] = \delta[u]$$

u = s trivial. For $u \neq s$ assume in some iteration of while loop:

$$u \in S^{t+1} \setminus S^t$$
, $\delta[u] < d^t[u]$

Consider *first* such t and u. Let P be shortest path from s to u.

$$s \in S^t \land u \notin S^t \rightarrow \exists \text{ edge } (x,y) \text{ on } P. \ x \in S^t \land y \notin S^t$$

$$d^t[y] = \delta[y]$$

initialization

$$S = \{s\}; d[s] = 0;$$

for all $v \neq s$
$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
 choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
 for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u] , u \in S \to d'[u] = d[u]$$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

Lemma 4.

$$u = s \lor u \in S' \setminus S \rightarrow d[u] = \delta[u]$$

u = s trivial. For $u \neq s$ assume in some iteration of while loop:

$$u \in S^{t+1} \setminus S^t$$
, $\delta[u] < d^t[u]$

Consider *first* such t and u. Let P be shortest path from s to u.

$$s \in S^t \land u \notin S^t \rightarrow \exists \text{ edge } (x,y) \text{ on } P. \ x \in S^t \land y \notin S^t$$

$$d^t[y] = \delta[y]$$

$$d^{t}[y] = \delta[y]$$
 (above)
 $\leq \delta[u]$ (edge weights nonnegative)
 $\leq d^{t}[u]$ (assumption)

initialization

$$S = \{s\}; d[s] = 0;$$
for all $v \neq s$

$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u] , u \in S \to d'[u] = d[u]$$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

Lemma 4.

$$u = s \lor u \in S' \setminus S \rightarrow d[u] = \delta[u]$$

u = s trivial. For $u \neq s$ assume in some iteration of while loop:

$$u \in S^{t+1} \setminus S^t$$
, $\delta[u] < d^t[u]$

Consider *first* such t and u. Let P be shortest path from s to u.

$$s \in S^t \land u \notin S^t \rightarrow \exists \text{ edge } (x, y) \text{ on } P. \ x \in S^t \land y \notin S^t$$

$$d^t[y] = \delta[y]$$

$$d^{t}[y] = \delta[y]$$
 (above)
 $\leq \delta[u]$ (edge weights nonnegative)
 $\leq d^{t}[u]$ (assumption)

As $u \notin S^t$ is chosen in pass t with minimal d[u]

$$d^t[u] \le d^t[y]$$
 contradiction

run time

initialization

$$S = \{s\}; d[s] = 0;$$
for all $v \neq s$

$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
 choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
 for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u], u \in S \rightarrow d'[u] = d[u]$$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

data structure for $V \setminus S$

balanced search tree: AVL or 2/3

records

use d[u] as key; pointers to these records in array elements a[u]

run time

initialization

$$S = \{s\}; d[s] = 0;$$
for all $v \neq s$

$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
 choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
 for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u] , u \in S \to d'[u] = d[u]$$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

data structure for $V \setminus S$

balanced search tree: AVL or 2/3

records

use d[u] as key; pointers to these records in array elements a[u]

initialization

at most |V| insert operations

iterations

at most |E| operations

Ind • delete min (go over lef edges or sim.)

• delete vu

• insert v with d'[v]

update

run time

initialization

$$S = \{s\}; d[s] = 0;$$
for all $v \neq s$

$$d[v] = \begin{cases} w(s, v) & (s, v) \in E \\ \infty & \text{otherwise} \end{cases}$$

iteration:

while
$$S \neq V$$
 {
choose $u \in V \setminus S$ with minimal $d[u]$;
 $S = S \cup \{u\}$;
for all v with $(u, v) \in E$
 $\{d[v] = \min\{d[v], d[u] + w(u, v)\}\}$
}

properties

1. shortest discovered distances nonincreasing; stable for nodes $u \in S$

$$d'[u] \le d[u]$$
, $u \in S \rightarrow d'[u] = d[u]$

2. d[u] is upper bound on length of real shortest paths

$$\delta[u] \le d[u]$$

data structure for $V \setminus S$

balanced search tree: AVL or 2/3

records

use d[u] as key; pointers to these records in array elements a[u]

initialization

at most |V| insert operations { we for Expended to the point operations operations

at most |E| operations

- delete min
- delete v
- insert v with d'[v]

tree mont-luing VIS at Most V.

run time = $O(|E|\log|V|)$