МГТУ МГТУ МГТУ

Лекция б. Функции от случайных величин

Велищанский Михаил Александрович

Московский Государственный Технический Университет имени Н.Э. Баумана

Москва, 2023 — 2

МГТУ

МГТУ

МГТУ

Функция от скалярной СВ

Пусть на вероятностном пространстве $(\Omega,\mathfrak{B},\mathbf{P})$ задана СВ $X=X(\omega)$. Рассмотрим действительную функцию $y=Y(x),\ x\in\mathbb{R}.$

Определение

Случайную величину Y, которая каждому элементарному исходу $\omega \in \Omega$ ставит в соответствие число $Y(\omega) = Y(X(\omega))$ называют функцией Y(X) от случайной величины X.

Замечание

Функция Y = Y(X) от дискретной CB так же будет дискретной CB, т.к. она не может принимать больше значений, чем CB X, а функция от непрерывной CB может быть как непрерывной, так и дискретной.

Функция от скалярной СВ

Рассмотрим дискретную СВ X, имеющую следующий ряд распределения:

λ	0	<i>x</i> ₁	<i>x</i> ₂	 x _i	DH-	Xn
F)	p_1	<i>p</i> ₂	 pi		p _n

Тогда СВ Y = Y(X) будет иметь следующий ряд распределения:

Y	$Y(x_1)$	$Y(x_2)$	 $Y(x_i)$		$Y(x_n)$
Р	p_1	- p ₂	 p_i	-1.2	p _n

Если в верхней строке таблицы появляются одинаковые значения $Y(x_i)$, то соответствующие столбцы нужно объединить в один, приписав им суммарную вероятность.

Нахождение функции распределения

Рассмотрим, как найти $F_Y(y)$, если известна $f_X(x)$.

По определению $F_Y(y) = \mathbf{P}\{Y < y\} = \mathbf{P}\{Y(X(\omega)) < y\}$. Событие $\{Y(X(\omega)) < y\}$ эквивалентно событию $\bigcup_k \{X(\omega) \in \Delta_k\}$, где Δ_k — непересекающиеся промежутки из \mathbb{R} (поскольку на множестве элементарных исходов из $\{Y(X(\omega)) < y\}$ CB $X(\omega)$ будет принимать свои значения на некоторой совокупности $\{\Delta_k\}$).

Нахождение функции распределения

Тогда по расширенной аксиоме сложения

$$F_Y(y) = P\{Y(X(\omega)) < y\} = \sum_k P\{X(\omega_k) \in \Delta_k\} =$$

$$=\sum_{k}\int\limits_{\Delta_{k}}f_{X}(x)dx=\int\limits_{\Delta}f_{X}(x)dx$$
, где $\Delta=\bigcup_{k}\Delta_{k}$.

Т.к. $\bigcup_k \Delta_k$ определено как множество тех значений $X(\omega)$, для которых $Y(X(\omega)) < y$, то получаем

$$F_Y(y) = \int_{Y(x) < y} f_X(x) dx.$$

Рассмотрим частный случай, предположив, что Y(x) является непрерывной возрастающей (убывающей) функцией.

Функция плотности функции от случайный величины

Теорема

Пусть $CB\ X$ имеет плотность распределения $f_X(x)$, функция $y=Y(x)=\varphi(x)$ является монотонной и непрерывно-дифференцируемой. Тогда функция плотности $CB\ Y=Y(X)$ может быть найдена по следующей формуле: $f_Y(y)=f_X(\psi(y))|\psi'(y)|$, где $x=\psi(y)$ функция, обратная к $y=\varphi(x)$.

METY

MLTA

Доказательство.

Т.к. функция $\varphi(x)$ непрерывна и монотонна то существует обратная функция $x=\psi(y)=\varphi^{-1}(y)$. Тогда событие $\{\varphi(X(\omega))< y\}$ эквивалентно событию $\{X(\omega)<\psi(y)\}$ для возрастающей

Лекция 6. Функции от случайных величин:

MITY

Функция плотности функции от случайный величины доказательство (продолжение).

Тогда ИГТУ

$$\begin{array}{lll} \mathbf{P}\{Y < y\} & = & \mathbf{P}\{\varphi(X(\omega)) < y\} = \\ & = & \left\{ \begin{array}{l} \mathbf{P}\{X(\omega) < \psi(y)\}, \; \varphi(x) \; \text{возр}, \\ \mathbf{P}\{X(\omega) > \psi(y)\}, \; \varphi(x) \; \text{убыв}, \end{array} \right. = \\ & = & \left\{ \begin{array}{l} F_X(\psi(y)), & \varphi(x) \; \text{возр}, \\ 1 - F_X(\psi(y)), & \varphi(x) \; \text{убыв}. \end{array} \right. \end{array}$$

Функция плотности может быть найдена как производная от функции распределения, т.е.

$$f_Y(y) = F_Y'(y) = \begin{cases} \left. \left(F_X(x) \right)' \middle|_{x = \psi(y)} \psi'(y), 2 & \varphi(x) \text{ возр,} \\ \left. \left(1 - F_X(x) \right)' \middle|_{x = \psi(y)} \psi'(y), & \varphi(x) \text{ убыв.} \end{cases} = \begin{cases} \left. f_X(\psi(y))\psi'(y), & \varphi(x) \text{ возр,} \\ -f_X(\psi(y))\psi'(y), & \varphi(x) \text{ убыв.} \end{cases}$$

Оба эти случая можно записать в виде $f_Y(y) = f_X(\psi(y))|\psi'(y)|$.

Если $\varphi(x)$ является непрерывной кусочно-монотонной

функцией, то
$$f_Y(y) = \sum_{i=1}^k f_X(\psi_i(y)) |\psi_i'(y)|,$$

где k — количество участков монотонности, $\psi_i(y)$ — обратная функция на i-ом участке монотонности.

Рассмотрим на вероятностном пространстве $(\Omega, \mathfrak{B}, \mathbf{P})$ двумерный случайный вектор (X_1, X_2) и числовую функцию $\varphi(x_1, x_2)$.

Определение

Случайную величину $Y=\varphi(X_1,X_2)=\varphi(X_1(\omega),X_2(\omega))$ называют функцией от двумерной случайной величины (двумерного случайного вектора) (X_1,X_2) .

Замечание

Функция $Y = \varphi(X_1, X_2)$ от двумерной дискретной $CB(X_1, X_2)$ так же будет дискретной CB, принимающей значения $Y = \varphi(X_1, X_2)$ с вероятностью $p_{ii} = P\{X = x_{1i}, X = x_{2i}\}.$

Пример

Пусть Y - CB равная суммарному числу успехов в 2-х испытаниях по схеме Бернулли, а X_i — число успехов в i-м испытании, i=1,2.

Тогда $Y = X_1 + X_2$ и $\varphi(x_1, x_2) = x_1 + x_2$. СВ X_i могут принимать только значения 0 или 1, а СВ Y может принимать 3 значения (0,1,2):

$$\varphi(0,0) = 0 + 0 = 0, \quad \varphi(1,0) = 1 + 0 = 1,$$

$$\varphi(0,1) = 0 + 1 = 1, \quad \varphi(1,1) = 1 + 1 = 2$$

с вероятностями q^2 , pq, qp и p^2 , q=1-p.

Тогда

Y	0	1	2
P_Y	q^2	2pq	p^2

Следовательно СВ У имеет биномиальное распределение.

МГТУ

Если (X_1,X_2) двумерная непрерывная случайная величина с плотностью распределения $f_{X_1X_2}(x_1,x_2)$, то функцию распределения случайной величины $Y=\varphi(X_1,X_2)$ можно найти по формуле:

METY

$$F_{Y}(y) = \int \int f_{X_{1}X_{2}}(x_{1}, x_{2}) dx_{1} dx_{2},$$
 $\varphi(X_{1}, X_{2}) < y$

где область интегрирования состоит из всех значений (x_1,x_2) для которых $\varphi(X_1,X_2) < y$.

плотности, $f(x_1,x_2)=\dfrac{1}{2\pi}e^{-\frac{1}{2}(x_1^2+x_2^2)}.$ СВ $Y=\sqrt{X_1^2+X_2^2}$, следовательно $\varphi(x_1,x_2)=\sqrt{x_1^2+x_2^2}.$ $F_Y(y) = \begin{cases} \int_{\sqrt{x_1^2 + x_2^2} < y}^{0} \frac{1}{2\pi} e^{-\frac{1}{2}(x_1^2 + x_2^2)} dx_1 dx_2, & y > 0. \end{cases}$

Переходя к полярным координатам ρ и φ , имеем

$$F_{Y}(y) = \int_{0}^{y} d\rho \int_{0}^{2\pi} \frac{1}{2\pi} e^{-\rho^{2}/2} \rho d\varphi = \int_{0}^{y} \rho e^{-\rho^{2}/2} d\rho = 1 - e^{-y^{2}/2}, \quad y > 0$$

Это распределение известно как распределение Релея.

Формула свертки

Пусть
$$X_1$$
 и X_2 — независимы СВ и $Y = X_1 + X_2$, т.е. $\varphi(x_1,x_2) = x_1 + x_2$. Тогда $f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$ и $F_Y(y) = \int\limits_{x_1+x_2 < y} f_{X_1,X_2}(x_1,x_2) dx_1 dx_2 = \int\limits_{x_1+x_2 < y} f_{X_1}(x_1)f_{X_2}(x_2) dx_1 dx_2 = \int\limits_{$

$$=\int_{-\infty}^{+\infty}f_{X_1}(x_1)dx_1\int_{-\infty}^{y-x_1}f_{X_2}(x_2)dx_2=\int_{-\infty}^{+\infty}F_{X_2}(y-x_1)f_{X_1}(x_1)dx_1.$$

Тогда дифференцируя по у под знаком интеграла имеем:

$$f_Y(y) = \int\limits_{-\infty}^{\infty} f_{X_2}(y-x) f_{X_1}(x) dx = f_{X_2} * f_{X_1}$$
 — формула свертки.