An Efficient Ant Colony System for Multi-Robot Task Allocation with Large-scale Cooperative Tasks and Precedence Constraints

2021.10

Xiao-Fang Liu*12, Bo-Cheng Lin1, Zhi-Hui Zhan3, Sang-Woon Jeon4, Jun Zhang56

¹Institute of Robotics and Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 30050, China

²Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 30050, China

³School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

⁴Department of Electrical and Electronic Engineering, Hanyang University, Ansan, South Korea

⁵Hanyang University, Ansan, South Korea

⁶Chaoyang University of Technology, Taiwan

Multi-Robot

Environment Monitoring

Logistics

Multi-Robot

Disaster Rescue

Support in Healthcare Facilities

Extraterrestrial Exploration

compared to single-operating robots

Multi-Robot

Decrease task complexity Enhance system reliability

Multi-Robot

Market-Based Optimization-Based

Market-Based
Optimization-Based

Small-Scale without Precedence Constraints

Large-Scale Complex Precedence Constraints

Large-Scale
Complex Precedence Constraints

Ant Colony System

better than the state-of-the-art Neighboring Heuristic methods

$t_1, ..., t_m$

asks

r₁, ..., r_n

obots

asks

Robots Iliances

 $\{r_1\}, \{r_2\}, \{r_3\}, \{r_1, r_2\}, \{r_1, r_3\}, \{r_2, r_3\}, \{r_1, r_2, r_3\}$

asks

robot alliance a_j to execute task t_i

Jost

Robots Robots

 $\{r_1\}, \{r_2\}, \{r_3\}, \{r_1, r_2\}, \{r_1, r_3\}, \{r_2, r_3\}, \{r_1, r_2, r_3\}$

Neighboring Heuristic method

Neighboring Heuristic method

minimize
$$f(S)=FT(S)+w\times(TR(S)+FR(S))$$

Scheduling Solution

$$f(S)=FT(S)+w\times(TR(S)+FR(S))$$

latest Finishing Time

$$f(S) = FT(S) + w \times (TR(S) + FR(S))$$

average Traveling Time

$$f(S)=FT(S)+w\times(TR(S)+FR(S))$$

average Finishing Time

$$f(S)=FT(S)+w\times(TR(S)+F^{\prime}R(S))$$

0.001

$$f(S)=FT(S)+W\times(TR(S)+FR(S))$$

Proposed method

Ant Colony System

Solution Encoding

dim	1	2	3	4	5	6	7	8	9	10
value	(1, 1)	(2, 4)	(3,5)	(4,6)	(5,2)	(6,3)	(7,7)	(8,4)	(9,5)	(10,5)

Hierarchical Greedy Strategy

$$\tau_0 = (m \times f(S_{greedy}))^{-1}$$

Ant Colony System Hierarchical Greedy Strategy

State Transition Rule

$$a_{j} = \begin{cases} \arg\max \tau_{ih} \eta_{ih}^{\beta}, & \text{if } q \leq q_{0} \\ a_{h} \in A_{t_{i}} \end{cases}$$

$$J, & \text{otherwise}$$

Ant Colony System Hierarchical Greedy Strategy State Transition Rule

Local Updating Rule

$$\tau_{ij} = (1 - \rho) \times \tau_{ij} + \rho \times \tau_0$$

Hierarchical Greedy Strategy

State Transition Rule

Local Updating Rule

Global Updating Rule

$$\tau_{ij} = (1 - \alpha) \times \tau_{ij} + \alpha \times \Delta \tau$$

$$\Delta \tau = (f(S_h))^{-1}$$

Hierarchical Greedy Strategy

State Transition Rule

Local Updating Rule

Global Updating Rule

Heuristic Information

$$\eta_{ij} = (\max_{r_i \in a_j} (st(r_i) + tt(r_i)) + c(t_i, a_j))^{-1}$$

$$tt(r_l) = dist(p_{t_{o-1}^l}, p_{t_i}) / v_{r_l}, \quad t_{o-1}^l \in L_l \land t_o^l \in L_l \land t_o^l = t_i$$

Hierarchical Greedy Strategy
State Transition Rule
Local Updating Rule
Global Updating Rule
Heuristic Information

Iterations

Experiment

Instances

16 Instances

100 or 200 Tasks

4 or 10 Task Types

3 or 5 Robot Types

7 or 31 Robot Alliances

Ant Colony System Parameters

Parameters

 20_{Size} 0.7_{q_0} 0.4_{α} 0.4_{ρ} 2.0_{β}

500 Iterations 20 Runs

10000 Evaluation Times

Experiment Results

Problem	m	NHM	ACS				
			average	std	min	max	
P1	100	30495.6	29008.5	217.209	28601.7	29363.7	
P2	100	40719.0	39403.4	348.049	38868.5	40152.5	
P3	100	42812.8	31944.2	103.964	31722.4	32156.8	
P4	100	9931.5	8625.5	76.634	8443.6	8740.6	
P5	100	7901.1	7764.4	43.219	7680.2	7821.6	
P6	100	8260.1	8141.4	28.856	8095.3	8194.9	
P7	100	9465.3	7807.8	47.767	7716.0	7895.1	
P8	100	20705.7	14019.1	18.276	13983.7	14052.9	
P9	200	33949.4	27919.4	430.782	27066.1	28345.4	
P10	200	16393.4	15007.5	84.133	14828.5	15140.3	
P11	200	16907.1	16379.7	90.799	16191.8	16551.0	
P12	200	26284.5	16969.2	93.909	16774	17145.6	
P13	200	32085.9	16275.5	84.001	16044.7	16373.7	
P14	200	16607.6	16534.4	80.244	16379.3	16671.4	
P15	200	21732.2	16160.3	79.771	15924.8	16268.5	
P16	200	16862.7	15288.9	60.826	15176.7	15388.7	

Problem	m	NHM	ACS				
			average	std	min	max	
P1	100	30495.6	29008.5	217.209	28601.7	29363.7	
P2	100	40719.0	39403.4	348.049	38868.5	40152.5	
P3	100	42812.8	31944.2	103.964	31722.4	32156.8	
P4	100	9931.5	8625.5	76.634	8443.6	8740.6	
P5	100	7901.1	7764.4	43.219	7680.2	7821.6	
P6	100	8260.1	8141.4	28.856	8095.3	8194.9	
P7	100	9465.3	7807.8	47.767	7716.0	7895.1	
P8	100	20705.7	14019.1	18.276	13983.7	14052.9	
P9	200	33949.4	27919.4	430.782	27066.1	28345.4	
P10	200	16393.4	15007.5	84.133	14828.5	15140.3	
P11	200	16907.1	16379.7	90.799	16191.8	16551.0	
P12	200	26284.5	16969.2	93.909	16774	17145.6	
P13	200	32085.9	16275.5	84.001	16044.7	16373.7	
P14	200	16607.6	16534.4	80.244	16379.3	16671.4	
P15	200	21732.2	16160.3	79.771	15924.8	16268.5	
P16	200	16862.7	15288.9	60.826	15176.7	15388.7	

Problem	m	NHM	ACS				
			average	std	min	max	
P1	100	30495.6	29008.5	217.209	28601.7	29363.7	
P2	100	40719.0	39403.4	348.049	38868.5	40152.5	
P3	100	42812.8	31944.2	103.964	31722.4	32156.8	
P4	100	9931.5	8625.5	76.634	8443.6	8740.6	
P5	100	7901.1	7764.4	43.219	7680.2	7821.6	
P6	100	8260.1	8141.4	28.856	8095.3	8194.9	
P7	100	9465.3	7807.8	47.767	7716.0	7895.1	
P8	100	20705.7	14019.1	18.276	13983.7	14052.9	
P9	200	33949.4	27919.4	430.782	27066.1	28345.4	
P10	200	16393.4	15007.5	84.133	14828.5	15140.3	
P11	200	16907.1	16379.7	90.799	16191.8	16551.0	
P12	200	26284.5	16969.2	93.909	16774	17145.6	
P13	200	32085.9	16275.5	84.001	16044.7	16373.7	
P14	200	16607.6	16534.4	80.244	16379.3	16671.4	
P15	200	21732.2	16160.3	79.771	15924.8	16268.5	
P16	200	16862.7	15288.9	60.826	15176.7	15388.7	

Convergence Curves

Task Paths

Task Paths

Conclusion

Large-Scale Complex Precedence Constraints

Proposed method

Ant Colony System

better than the state-of-the-art Neighboring Heuristic methods

Proposed method

Significantly Better

Up to 50%

better than the state-of-the-art Neighboring Heuristic methods

THANKS

2021.10

An Efficient Ant Colony System for Multi-Robot Task Allocation with Large-scale Cooperative Tasks and Precedence Constraints

Xiao-Fang Liu, Bo-Cheng Lin, Zhi-Hui Zhan, Sang-Woon Jeon, Jun Zhang

