

passes and sections and sections

one	FILE	UU
-----	------	-----------

S. RECURITY CLASSFICATION AUTHORITY 20. DECLASSFICATION AUTHORITY 21. DECLASSFICATION DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 6. NAME OF PERFORMING PROPERTY NUMBER(S) 6. NAME OF PERFORMIN	AD-A191 767 PORT DOCUMENTATION PAGE								
Approved for public release; distribution is unlimited. 4. PERPORNING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) 6. OFFICE SYMBOL 7. NAVID OCEAN Systems Center NOSC NAVID O	- 11	- 713	,,,,,,		16. RESTRICTIVE MARKIN	GS			
A, PERFORMING ORGANIZATION REPORT NUMBER(S) 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7b. NOSC 7c. NAME OF MONITORING ORGANIZATION 8c. NOSC 7c. NAME OF MONITORING ORGANIZATION Naval Ocean Systems Center 6c. ADDRESS (Rp. Saw are 2P look) 7c. ADDRESS (Rp. Saw are 2P look) 8a. Diego. California 92152-5000 8a. NAME OF FUNDING SPONSORING ORGANIZATION 8c. ADDRESS (Rp. Saw are 2P look) 9c. ADDRESS (Rp. Saw are 2P	2a. SECURITY CLASSIFICATION AUTHORITY			3. DISTRIBUTION/AVAILABILITY OF REPORT					
San Diego, California 92152-5000 San D	2b. DECLASSIFICATION/DOWNGRADING SCHEDULE			Approved for public release; distribution is unlimited.					
Naval Ocean Systems Center 6c. ADDRESS (Fig. Sizes and 20 Code) 7s. ADDRESS (Fig. Sizes and 20 Code) 8a. NAME OF PUNDING SPONSORING ORGANIZATION 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT DENT PICATION NUMBER (Applicable) Office of Naval Technology ONT 6c. ADDRESS (Fig. Sizes and 20 Code) 8a. NAME OF FUNDING NUMBERS PROGRAM ELEMENT INO PROJECT NO. TASK NO. ACCESSION NO. Arlington, Virginia 22217 6c. ADDRESS (Fig. Sizes and 20 Code) 8c. ADDRESS (Fig. Sizes and 20 Code) 9c. ADDRES	4. PERFORMING ORGANIZATION REPORT NUMBER(S)			5. MONITORING ORGANIZATION REPORT NUMBER(S)					
Naval Ocean Systems Center 6c. ADDRESS (Fig. Sizes and 20 Code) 7s. ADDRESS (Fig. Sizes and 20 Code) 8a. NAME OF PUNDING SPONSORING ORGANIZATION 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT DENT PICATION NUMBER (Applicable) Office of Naval Technology ONT 6c. ADDRESS (Fig. Sizes and 20 Code) 8a. NAME OF FUNDING NUMBERS PROGRAM ELEMENT INO PROJECT NO. TASK NO. ACCESSION NO. Arlington, Virginia 22217 6c. ADDRESS (Fig. Sizes and 20 Code) 8c. ADDRESS (Fig. Sizes and 20 Code) 9c. ADDRES	62 NAME OF	PERFORMING OR	CANIZATION	Sh OFFICE SYMBOL	7				
San Diego, California 92152-5000 3a. NAME OF FUNDING/SPONSORING ORGANIZATION 3b. OFFICE SYMBOL Office of Naval Technology ONT 10. SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO. PROJECT NO. TASK NO. ACCESSION NO. Arlington, Virginia 22217 11. TITLE (notes Seary Classreame) Empirical Modeling of Nighttime Easterly and Westerly VLF Propagation in the Earth-Ionosphere Waveguide 12. PERSONAL AUTHORIS) R.A. Pappert, L.R. Hitney 13a. TYPE OF REPORT 15b. TIME COVERED PROM Jun 1987 To Jun 1987 December 1987 1c) ASSTRACT (Communication arts to the west being greater than to the east for ground to ground transmissions. It is also true in all propagation to the east for ground to ground transmissions. It is also true that mighttime propagation to the east. For example, a simple exponential propagation to the east for ground to ground transmissions. It is also true that mighttime propagation to the east for ground to ground transmissions. It is also true that propagation to the east and that this, at least that propagation to the east. In this study full wave solutions will be used to show that propagation to the east is less stable than propagation to the east. In this study full wave solutions will be used to show that propagation to the east. In this study full wave solutions will be used to show that propagation to the east. In this study full wave solutions will be used to show that propagation to the east. In the study full wave solutions will be used to show that propagation to the east. In the study that this, at least in part, is responsible for the difficulty of predicting westerly propagation to the east. If the study the to the fact that propagation to the east is more entire to upper levels of the ionosphere than its propagation to the east in the study was the to the fact that propagation to the east. In this study full wave solutions will be used to show that propagation to the east. In the study that this, at least in part, is responsible for the difficulty of predicting westerly propagation				(if applicable)	_				
San Diego, California 92152-5000 Take San Diego, California 92152-5000 San California 92152-5000 San Diego, California 92152-5000 San Dieg			er	NOSC					
Ba. NAME OF FUNDING ISPONSORING ORGANIZATION OF GROBERS (IN) State and EPPCom) 80. ADDRESS (IN) State and EPPCom) 81. SUBJECT FUNDING NUMBERS 82. ASSTALL (IN) STATE (IN)			2-5000						
Office of Naval Technology ONT 8c. ADDRESS (by, State and EPCone) 8c. ADDRESS (by, State and EPCone) 8c. ADDRESS (by, State and EPCone) Artington, Virginia 22217 8c. ADDRESS (by, State and EPCone) Artington, Virginia 22217 8c. ADDRESS (by, State and EPCone) Empirical Modeling of Nighttime Easterly and Westerly VLF Propagation in the Earth-Ionosphere Waveguide 12. PERSONAL AUTHOR(5) R. A. Pappert, L. R. Hitney 13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (new Month Day) 15. PAGE COUNT PROfessional paper 180 TIME COVERED 180 TI				Tan DESIDE SYMBOL					
Be. ADDRESS (ch. Sales and the Cool) Continue of the Cool PROJECT NO. TASK NO. AGENCY ACCESSION NO.				(if applicable)	9. PROCUREMENT INSTRI	UMENT IDENTIF	ICATION NUMBE	H	
Artington, Virginia 22217 62759N SXB3 RW59551B DN888 715 11. TITLE (include Security Classification) Empirical Modeling of Nighttime Easterly and Westerly VLF Propagation in the Earth-Ionosphere Waveguide 12. PERSONAL AUTHOR(S) R.A. Pappert, L. R. Hitney 13a. TYPE OF REPORT 13b. TIME COVERED Professional paper FROM Jun 1987 TO Jun 1987 December 1987 16. SUBJECT TERMS (Contour on merce of mecassary and dentify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Contour on merce of mecassary and dentify by block number) 19. ABSTRACT (Contour on merce of mecassary and dentify by block number) 19. ABSTRACT (Contour on merce of mecassary and dentify by block number) 19. ABSTRACT (Contour on merce of mecassary and dentify by block number) 19. ABSTRACT (Contour on merce of mecassary and dentify by block number) 10. SUB-GROUP 11 has been known for many years that easterly wand westerly propagation of VLF in the earth-ionosphere waveguide is nonreciprocal with the mean attenuation rate to the west being greater than to the east for ground to ground transmissions. It is also true that nighttime propagation to the west is more sensitive to upper decit than is propagation to the east. In this study full wave solutions will be used to show that propagation to the west is more sensitive to upper levels of the tonosphere than spropagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation. 18. ABSTRACT SECURITY CLASSIFICATION 19. DICLASSIFIED 19. DICLASSIFIED 20. DISTRIBUTION/AVAILABLITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 22. DISTRIBUTION/AVAILABLITY OF ABSTRACT 22. TELEPHONE (return ac			, 	I ONT	10. 001/005 05 5 11/0	NII IN 40500			
ACCESSION NO. Artlington, Virginia 22217 62759N SXB3 RW59551B DN888 715 11. TiTLE (motive Security Classification) Empirical Modeling of Nighttime Easterly and Westerly VLF Propagation in the Earth-Ionosphere Waveguide 12. PERSONAL AUTHOR(S) R.A. Pappert, L. R. Hitney 13a. TYPE OF REPORT Professional paper FROM Jun 1987 TO Jun 1987 TO Jun 1987 December 1987 15. SUPPLEMENTARY NOTATION 17. COBATI CODES FRED GROUP SUB-GROUP It has been known for many years that easterly and westerly propagation of VLF in the earth-ionosphere waveguide is nonreciprocal with the mean attenuation rate to the west being greater than to the east for ground transmissions. It is also true that nighttime propagation or the west is more sand fifted to predict than its propagation of the east. For exponential Ps - 0 Skm ⁻¹ , h ⁻ 87km (notation of Wait and Spies) profile does an excellent job of predicting nocturnal in-flight measurements over the Hawaii-Nabe path is partly due to the fact that propagation to the west is more sensitive to upper levels of the ionosphere than does propagation to the east is partly to the the face that propagation to the west is more sensitive to upper levels of the ionosphere than does propagation to the east and in-flight measurements over the Hawaii-Nabe path. It therefore seems reasonable that propagation to the west is more sensitive to to part levels of the officency over the Hawaii-Nabe path is partly due to the fact that propagation to the west is more sensitive to upper levels of the ionosphere than does propagation to the east and in-flight measurements between Hawaii and San Diego, and Hawaii and Wake. Presented at Fifth International lonospheric Effects Symposium. Springfield, VA, 5-7 May 1987 and URSI. Boulder, CO. 12-15 Jan 1987. 20. DISTRIBUTION/AVAILABUTY OF ABSTRACT DICLASSIFIED DICLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22. TELEPHONE (retice Assictor) 22. OFFICE SYMBOL.	ac. AUDHES:	o (Ciry, State and ZIP Code)					TASK NO	AGENCY	
### ITTLE (rective Security Classification) Empirical Modeling of Nighttime Easterly and Westerly VLF Propagation in the Earth-Ionosphere Waveguide 12. PERSONAL AUTHOR(S) R. A. Pappert, L. R. Hitney 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (New, Month, Day) 15. PAGE COUNT Professional paper 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on means of necessary and dentity by block number) 19. ABSTRACT (Continue on me						1.1.55201 140.			
Empirical Modeling of Nighttime Easterly and Westerly VLF Propagation in the Earth-Ionosphere Waveguide 12. PERSONAL AUTHOR(S) R.A. Pappert, L.R. Hitney 13a TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Yew, Moren, Day) 15. PAGE COUNT Professional paper 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT YERMS (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Commun on merce of necessary and dentity by block number) 19. ABSTRACT (Number) 19. ABSTRACT (Number) 1	Arlington,	Virginia 22217			62759N	SXB3	RW59551B	DN888 715	
12. PERSONAL AUTHOR(S) R.A. Pappert, L. R. Hitney 13a. TYPE OF REPORT 13b. TIME COVERED Professional paper 15. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABSTRACT (Continue on mercia of mecasury and dentify by block number) 19. ABST	11. TITLE (Inc	lude Security Classification)			······································	<u> </u>			
R.A. Pappert, L.R. Hitney 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Commus on merces of necessary and dentity by block number) 18. NOBJECT TERMS (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of necessary and dentity by block number) 19. ABSTRACT (Commus on merces of ne	Empirical	Modeling of Nigh	nttime Easterly and V	Vesterly VLF Propag	gation in the Earth-Ionos	sphere Waveg	ıide		
13b. TIME COVERED 13b. TIME COVERED 14. DATE OF REPORT (Now. Month. Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Communic on mental of necessary and dentify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic	12. PERSON	AL AUTHOR(S)							
13b. TIME COVERED 13b. TIME COVERED 14. DATE OF REPORT (Now. Month. Day) 15. PAGE COUNT 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Communic on mental of necessary and dentify by block number) 17. COSATI CODES 18. SUBJECT TERMS (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic on mental of necessary and dentify by block number) 19. ABSTRACT (Communic	R.A. Papp	pert, L.R. Hitney							
Professional paper FROM Jun 1987 TO Jun 1987 December 1987 18. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number) nocturnal in-flight measurements nighttime propagation empirical electron density 19. ABSTRACT (Commun on reverse of necessary and all miles by block number) nocturnal in-flight measurements nighttime propagation of VLF in the earth-ionosphere waveguide is nonreciprocal with the mean attenuation rate to the west being greater than to the east for ground to ground transmissions. It is also true that nighttime propagation to the west is more difficult to predict than is propagation to the east. For example, a simple exponential \$p = 0.5 km², h²=87km (notation of Wait and Spies) profile does an excellent job of predicting nocturnal in-flight measurements over the Hawaii-San Diego path but does not predict inghttime propagation over the Hawaii-Wake path. This is partly due to the fact that propagation to the west is more sensitive to upper levels of the ionosphere than is propagation to the east. It therefore seems reasonable that propagation to the west senses more variable regions of the ionosphere than does propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation. Comparisons are made between calculations based on empirical electron density profiles and in-flight measurements between Hawaii and San Diego, and Hawaii and Wake. Presented at Fifth International lonospheric Effects Symposium, Springfield, VA, 5-7 May 1987 and URSI, Boulder, CO. 12-15 Jan 1987. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT				D	14. DATE OF REPORT (Y	(ear, Month, Day)	15. PAGE COUN	NŤ	
18. SUBJECT TERMS (Commus on reverse of recessary and stendity by block number) nocturnal in-flight measurements nighttime propagation empirical electron density 19. ABSTRACT (Commus on reverse of recessary and stendity by block number) It has been known for many years that easterly and westerly propagation of VLF in the earth-ionosphere waveguide is nonreciprocal with the mean attenuation rate to the west being greater than to the east for ground to ground transmissions. It is also true that nighttime propagation to the east. For example, a simple exponential β = 0 5 km ⁻¹ , h'=87 km (notation of Wait and Spies) profile does an excellent job of predicting nocturnal in-flight measurements over the Hawaii-San Diego path but does not predict nighttime propagation over the Hawaii-Wake path. This is partly due to the fact that propagation to the west is less stable than propagation to the east. In this study full wave solutions will be used to show that propagation to the west is senses more variable regions of the ionosphere than is propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation. Comparisons are made between calculations based on empirical electron density profiles and in-flight measurements between Hawaii and San Diego, and Hawaii and Wake. Presented at Fifth International lonospheric Effects Symposium, Springfield, VA, 5-7 May 1987 and URSI, Boulder, CO, 12-15 Jan 1987. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 22. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22. TELEPHONE (notworkers 2009) 22. OFFICE SYMBOL	Professiona	ıl paper	FROM Jun 1987	TO Jun 1987	December 1987				
nocturnal in-flight measurements nighttime propagation empirical electron density 19. ABSTRACT (Continue on reverse & necessary and sentity by block number) 11 has been known for many years that easterly and westerly propagation of VLF in the earth-ionosphere waveguide is nonrecipro-cal with the mean attenuation rate to the west being greater than to the east for ground to ground transmissions. It is also true that nighttime propagation to the west is more difficult to predict than is propagation to the east. For example, a simple exponential β = 0.5 km ⁻¹ , h ⁻¹ = 87 km (notation of Wait and Spies) profile does an excellent job of predicting nocturnal in-flight measurements over the Hawaii-San Diego path but does not predict nighttime propagation over the Hawaiii-Wake path. This is partly due to the fact that propagation to the west is less stable than propagation to the east. In this study full wave solutions will be used to show that propagation to the west senses more variable regions of the ionosphere than does propagation to the east. It therefore seems reasonable that propagation to the west senses more variable regions of the ionosphere than does propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation. Comparisons are made between calculations based on empirical electron density profiles and in-flight measurements between Hawaii and San Diego, and Hawaii and Wake. Presented at Fifth International Ionospheric Effects Symposium, Springfield, VA, 5-7 May 1987 and URSI, Boulder, CO, 12-15 Jan 1987. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT □ UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 22c. OFFICE SYMBOL	16. SUPPLEN	MENTARY NOTATIO	N						
nocturnal in-flight measurements nighttime propagation empirical electron density 19. ABSTRACT (Continue on reverse & necessary and sentity by block number) 11 has been known for many years that easterly and westerly propagation of VLF in the earth-ionosphere waveguide is nonrecipro-cal with the mean attenuation rate to the west being greater than to the east for ground to ground transmissions. It is also true that nighttime propagation to the west is more difficult to predict than is propagation to the east. For example, a simple exponential β = 0.5 km ⁻¹ , h ⁻¹ = 87 km (notation of Wait and Spies) profile does an excellent job of predicting nocturnal in-flight measurements over the Hawaii-San Diego path but does not predict nighttime propagation over the Hawaiii-Wake path. This is partly due to the fact that propagation to the west is less stable than propagation to the east. In this study full wave solutions will be used to show that propagation to the west senses more variable regions of the ionosphere than does propagation to the east. It therefore seems reasonable that propagation to the west senses more variable regions of the ionosphere than does propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation. Comparisons are made between calculations based on empirical electron density profiles and in-flight measurements between Hawaii and San Diego, and Hawaii and Wake. Presented at Fifth International Ionospheric Effects Symposium, Springfield, VA, 5-7 May 1987 and URSI, Boulder, CO, 12-15 Jan 1987. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT □ UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 22c. OFFICE SYMBOL									
nighttime propagation empirical electron density 19. ABSTRACT (Communo on reverse f meessary and identify by block number) It has been known for many years that easterly and westerly propagation of VLF in the earth-ionosphere waveguide is nonreciprocal with the mean attenuation rate to the west being greater than to the east for ground to ground transmissions. It is also true that nighttime propagation to the west is more difficult to predict than is propagation to the east. It exponential β = 0.5 km ⁻¹ , h'=87km (notation of Wait and Spies) profile does an excellent job of predicting nocturnal in-flight measurements over the Hawaii- San Diego path but does not predict nightlime propagation over the Hawaii- Wake path. This is partly due to the fact that propagation to the west is less stable than propagation to the east. In this study full wave solutions will be used to show that propagation to the west is more sensitive to upper levels of the ionosphere than is propagation to the east. It therefore seems reasonable that propagation to the west senses more variable regions of the ionosphere than does propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation. Comparisons are made between calculations based on empirical electron density profiles and in-flight measurements between Hawaii and San Diego, and Hawaii and Wake. Presented at Fifth International lonospheric Effects Symposium, Springfield, VA, 5-7 May 1987 and URSI, Boulder, CO, 12-15 Jan 1987. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22. OFFICE SYMBOL	17. COSATI	CODES	1	18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)					
Presented at Fifth International lonospheric Effects Symposium, Springfield, VA, 5-7 May 1987 and URSI, Boulder, CO. Presented at Fifth International lonospheric Effects Symposium, Springfield, VA, 5-7 May 1987 and URSI, Boulder, CO. 22a. NAME OF RESPONSIBLE INDIVIDUAL	FIELD	GROUP	SUB-GROUP	nighttime propagation					
19. ABSTRACT (Continue on reverse I necessary and dentity by block number) It has been known for many years that easterly and westerly propagation of VLF in the earth-ionosphere waveguide is nonreciprocal with the mean attenuation rate to the west being greater than to the east for ground to ground transmissions. It is also true that nighttime propagation to the west is more difficult to predict than is propagation to the east. For example, a simple exponential β = 0 fkm² l, *187km (notation of Wait and Spies) profile does an excellent job of predicting nocturnal in-flight measurements over the Hawaii-San Diego path but does not predict nighttime propagation over the Hawaii-Wake path. This is partly due to the fact that propagation to the west is less stable than propagation to the east. In this study full wave solutions will be used to show that propagation to the west is more sensitive to upper levels of the ionosphere than is propagation to the east. It therefore seems reasonable that propagation to the west senses more variable regions of the ionosphere than does propagation to the east and that this, at least in partly is responsible for the difficulty of predicting westerly propagation. Comparisons are made between calculations based on empirical electron density profiles and in-flight measurements between Hawaii and San Diego, and Hawaii and Wake. Presented at Fifth International lonospheric Effects Symposium, Springfield, VA, 5-7 May 1987 and URSI. Boulder, CO, 12-15 Jan 1987. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 22c. OFFICE SYMBOL									
It has been known for many years that easterly and westerly propagation of VLF in the earth-ionosphere waveguide is nonreciprocal with the mean attenuation rate to the west being greater than to the east for ground to ground transmissions. It is also true that nighttime propagation to the west is more difficult to predict than is propagation to the east. For example, a simple exponential β = 0 5km ⁻¹ , h'=87km (notation of Wait and Spies) profile does an excellent job of predicting nocturnal in-flight measurements over the Hawaii-San Diego path but does not predict nighttime propagation over the Hawaii-Wake path. This is partly due to the fact that propagation to the west is less stable than propagation to the east. In this study full wave solutions will be used to show that propagation to the west is not sensitive to upper levels of the ionosphere than is propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation. Comparisons are made between calculations based on empirical electron density profiles and in-flight measurements between Hawaii and San Diego, and Hawaii and Wake. Presented at Fifth International lonospheric Effects Symposium, Springfield, VA, 5-7 May 1987 and URSI, Boulder, CO, 12-15 Jan 1937. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED/UNLIMITED SAME AS RPT DIIC USERS 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL				empirical electron density					
cal with the mean attenuation rate to the west being greater than to the east for ground to ground transmissions. It is also true that nighttime propagation to the west is more difficult to predict than is propagation to the east. For example, a simple exponential β = 0.5km ⁻¹ , h'=87km (notation of Wait and Spies) profile does an excellent job of predicting nocturnal in-flight measurements over the Hawaii-San Diego path but does not predict nighttime propagation over the Hawaii-Wake path. This is partly due to the fact that propagation to the west is less stable than propagation to the east. In this study full wave solutions will be used to show that propagation to the west is more sensitive to upper levels of the ionosphere than is propagation to the east. It freefore seems reasonable that propagation to the west senses more variable regions of the ionosphere than does propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation. Comparisons are made between calculations based on empirical electron density profiles and in-flight measurements between Hawaii and San Diego, and Hawaii and Wake. Presented at Fifth International lonospheric Effects Symposium, Springfield, VA, 5-7 May 1987 and URSI, Boulder, CO, 12-15 Jan 1937. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL	19. ABSTRAC	CT (Continue on reverse if r	necessary and identify by block num	mber)					
12-15 Jan 1987. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED / UNCLAS	cal with the nighttime p $\beta = 0.5$ km the Hawaii propagatior tion to the propagatior is responsit tron density	e mean attenuatio ropagation to the 1. h'=87km (nota -San Diego path to 1. to the west is less west is more sense 1. to the west sense 1. to the west sense 1. to the difficulty 1. profiles and in-f	on rate to the west be west is more difficulation of Wait and Spi but does not predict so stable than propagative to upper levels ces more variable regity of predicting wester flight measurements 1	ing greater than to to to predict than is pies) profile does an nighttime propagation to the east. If of the ionosphere the ons of the ionospheerly propagation. Cobetween Hawaii and	the east for ground to group propagation to the east, excellent job of predicting on over the Hawaii-Wake the thin study full wave solved an is propagation to the re than does propagation imparisons are made better I San Diego, and Hawaii	pund transmiss For example, ig nocturnal in e path. This i utions will be east. It there to the east a ween calculati and Wake.	sions. It is also a simple exporunce flight measures partly due to used to show the ore seems reasured that this, at ons based on e	true that nential ements over the fact that nate propaga- onable that least in part, mpirical elec-	
UNCLASSIFIED UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL	12-15 Jan	1987.		ets Symposium, Spri				CE	
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL					· _				
,, LOUE J44	R.A. Pappert			619-553-3069	,	Code 544	**		

EMPIRICAL MODELING OF NIGHTTIME EASTERLY AND WESTERLY VLF PROPAGATION IN THE EARTH-IONOSPHERE WAVEGUIDE

Richard A. Pappert and Linda R. Hitney

Ocean and Atmospheric Sciences Division

Naval Ocean Systems Center

San Diego, CA 92152-5000

ABSTRACT

INSPECTED 1

A-1

It has been known for many years that easterly and westerly propagation of VLF in the earth-ionosphere waveguide is nonreciprocal with the mean attenuation rate to the west being greater than to the east for ground to ground transmissions. It is also true that nighttime propagation to the west is more difficult to predict than is propagation to the east. For example, a simple exponential β =0.5km⁻¹, h'=87km (notation of Wait and Spies) profile does an excellent job of predicting nocturnal in-flight measurements over the Hawaii-San Diego path but does not predict nighttime propagation over the Hawaii-Wake path. This is partly due to the fact that propagation to the west is less stable than propagation to the east. In this study full wave solutions will be used to show that propagation to the west is more sensitive to upper levels of the ionosphere than is propagation to the east. It therefore seems reasonable that propagation to the west senses more variable regions of the ionosphere than does propagation to the east and that this, at least in part, is responsible for the difficulty of predicting westerly propagation. Comparisons are made between calculations based on empirical electron density profiles and in-flight measurements between Hawaii and San Diego, and Hawaii and Wake

() p