The *Kepler* characterization of the variability among A- and F-type stars

I. General overview

K. Uytterhoeven^{1,2,3}, A. Moya⁴, A. Grigahcène⁵, J. A. Guzik⁶, J. Gutiérrez-Soto^{7,8,9}, B. Smalley¹⁰, G. Handler^{11,12}, L. A. Balona¹³, E. Niemczura¹⁴, L. Fox Machado¹⁵, S. Benatti^{16,17}, E. Chapellier¹⁸, A. Tkachenko¹⁹, R. Szabó²⁰, J. C. Suárez⁷, V. Ripepi²¹, J. Pascual⁷, P. Mathias²², S. Martín-Ruíz⁷, H. Lehmann²³, J. Jackiewicz²⁴, S. Hekker^{25,26}, M. Gruberbauer^{27,11}, R. A. García¹, X. Dumusque^{5,28}, D. Díaz-Fraile⁷, P. Bradley²⁹, V. Antoci¹¹, M. Roth², B. Leroy⁸, S. J. Murphy³⁰, P. De Cat³¹, J. Cuypers³¹, H. Kjeldsen³², J. Christensen-Dalsgaard³², M. Breger^{11,33}, A. Pigulski¹⁴, L. L. Kiss^{20,34}, M. Still³⁵, S. E. Thompson³⁶, and J. Van Cleve³⁶

(Affiliations can be found after the references)

Received 30 May 2011 / Accepted 29 June 2011

ABSTRACT

Context. The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. Aims. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and observationally investigate the relation between γ Doradus (γ Dor), δ Scuti (δ Sct), and hybrid stars. Methods. We compile a database of physical parameters for the sample stars from the literature and new ground-based observations. We analyse the Kepler light curve of each star and extract the pulsational frequencies using different frequency analysis methods. We construct two new observables, "energy" and "efficiency", related to the driving energy of the pulsation mode and the convective efficiency of the outer convective zone, respectively.

Results. We propose three main groups to describe the observed variety in pulsating A-F type stars: γ Dor, δ Sct, and hybrid stars. We assign 63% of our sample to one of the three groups, and identify the remaining part as rotationally modulated/active stars, binaries, stars of different spectral type, or stars that show no clear periodic variability. 23% of the stars (171 stars) are hybrid stars, which is a much higher fraction than what has been observed before. We characterize for the first time a large number of A-F type stars (475 stars) in terms of number of detected frequencies, frequency range, and typical pulsation amplitudes. The majority of hybrid stars show frequencies with all kinds of periodicities within the γ Dor and δ Sct range, also between 5 and 10 d⁻¹, which is a challenge for the current models. We find indications for the existence of δ Sct and γ Dor stars beyond the edges of the current observational instability strips. The hybrid stars occupy the entire region within the δ Sct and γ Dor instability strips and beyond. Non-variable stars seem to exist within the instability strips. The location of γ Dor and δ Sct classes in the ($T_{\rm eff}$, $\log g$)-diagram has been extended. We investigate two newly constructed variables, "efficiency" and "energy", as a means to explore the relation between γ Dor and δ Sct stars.

Conclusions. Our results suggest a revision of the current observational instability strips of δ Sct and γ Dor stars and imply an investigation of pulsation mechanisms to supplement the κ mechanism and convective blocking effect to drive hybrid pulsations. Accurate physical parameters for all stars are needed to confirm these findings.

Key words. stars: oscillations – stars: fundamental parameters – binaries: general – asteroseismology – stars: variables: δ Scuti – stars: statistics

1. Introduction

With the advent of the asteroseismic space missions MOST (Walker et al. 2003), CoRoT (Baglin et al. 2006), and Kepler (Borucki et al. 2010), a new window is opening towards the understanding of the seismic behaviour of A- and F-type pulsators. The main advantages of these space missions are (1) the longterm continuous monitoring of thousands of stars, which enables both the determination of long-period oscillations and the resolving of beat frequencies; and (2) the photometric precision at the level of milli- to micro-magnitudes, which will provide a more complete frequency spectrum and also allow the detection of low-amplitude variations that are unobservable from the ground and providing a more complete frequency spectrum. The availability of these long-term, very precise light curves makes possible the first comprehensive analysis of the variability of a sample of several hundred candidate A-F type stars that is presented here.

The region of variable A- and F-type, including main sequence (MS), pre-MS, and post-MS stars, with masses between 1.2 and 2.5 M_{\odot} hosts the γ Doradus (γ Dor) and δ Scuti (δ Sct) pulsators. The γ Dor stars were recognized as a new class of pulsating stars less than 20 years ago (Balona et al. 1994). Our current understanding is that they pulsate in high-order gravity (g) modes (Kaye et al. 1999a), excited by a flux modulation mechanism induced by the upper convective layer (Guzik et al. 2000; Dupret et al. 2004; Grigahcène 2005). Typical γ Dor periods are between 8 h and 3 d. From the ground, about 70 bona fide and 88 candidate γ Dor pulsators have been detected (Balona et al. 1994; Handler 1999; Henry et al. 2005; De Cat et al. 2006; Henry et al. 2011, among other papers).

The δ Sct variables, on the other hand, have been known for decades. They show low-order g and pressure (p) modes with periods between 15 min and 5 h that are self-excited through the κ -mechanism (see reviews by Breger 2000; Handler 2009a).

Several hundreds of δ Sct stars have been observed from the ground (e.g. catalogue by Rodríguez & Breger 2001).

Because the instability strips of both classes overlap, the existence of hybrid stars, i.e. stars showing pulsations excited by different excitation mechanisms, is expected, and a few candidate hybrid stars have indeed been detected from the ground (Henry & Fekel 2005; Uytterhoeven et al. 2008; Handler 2009b).

The main open question in seismic studies of A- and F-type stars concerns the excitation and mode selection mechanism of p and g modes. The only way to understand and find out systematics in the mode-selection mechanism is a determination of pulsation frequencies and pulsation mode parameters for a large number of individual class members for each of the pulsation classes, and a comparison of the properties of the different case-studies. So far, a systematic study of a sufficiently substantial sample was hampered by two factors. First, the number of detected well-defined pulsation modes is too small to construct unique seismic models, which is caused by ground-based observational constraints, such as bad time-sampling and a high noiselevel. Second, only a small number of well-studied cases exist, because a proper seismic study requires a long-term project, involving ground-based multi-site campaigns spanning several seasons, or a dedicated space mission.

First demonstrations of the strength and innovative character of space data with respect to seismic studies of A-F type stars are the detection of two hybrid γ Dor- δ Sct stars by the MOST satellite (HD 114839, King et al. 2006; BD+18-4914, Rowe et al. 2006), and the detection of an impressive number of frequencies at low amplitudes, including high-degree modes as confirmed by ground-based spectroscopy, in the precise space CoRoT photometry of the δ Sct stars HD 50844 (Poretti et al. 2009) and HD 174936 (García Hernández et al. 2009), and the γ Dor star HD 49434 (Chapellier et al. 2011). The first indications that hybrid behaviour might be common in A-F type stars were found from a pilot study of a larger sample of Kepler and CoRoT stars (Grigahcène et al. 2010; Hareter et al. 2010). Recently, Balona et al. (2011a) announced the detection of δ Sct and γ Dor type pulsations in the Kepler light curves of Ap stars. Hence, a breakthrough is expected in a currently poorly-understood field of seismic studies of A-F type pulsators through a systematic and careful investigation of the pulsational behaviour in a large sam-

The goals of the current paper are (1) to present a first general characterization of the pulsational behaviour of main-sequence A-F type stars as observed in the *Kepler* light curves of a large sample; and (2) to observationally investigate the relation between γ Dor and δ Sct stars and the role of hybrids. In forthcoming papers, detailed seismic studies and modelling of selected stars will be presented.

2. The Kepler sample of A-F type stars

2.1. The Kepler data

The NASA space mission *Kepler* was launched in March 2009 and is designed to search for Earth-size planets in the extended solar neighbourhood (Borucki et al. 2010; Koch et al. 2010). To this end, the spacecraft continuously monitors the brightness of ~150 000 stars in a fixed area of 105 deg² in the constellations Cygnus, Lyra, and Draco, at Galactic latitudes from 6 to 20 deg. The nearly uninterrupted time series with micromagnitude precision also opens up opportunities for detailed and in-depth asteroseismic studies with unprecedented precision (Gilliland et al. 2010a). Of all *Kepler* targets, more than 5000 stars have been

selected as potential targets for seismic studies by the *Kepler* Asteroseismic Science Consortium, KASC¹.

The *Kepler Mission* offers two observing modes: long cadence (LC) and short cadence (SC). The former monitors selected stars with a time resolution of ~ 30 min (Jenkins et al. 2010a), the latter provides a 1-min sampling (Gilliland et al. 2010b). The LC data are well-suited to search for long-period g-mode variations in A-F type stars (periods from a few hours to a few days), while the SC data are needed to unravel the p-mode oscillations (periods of the order of minutes to hours).

The *Kepler* asteroseismic data are made available to the KASC quarterly. In this paper we consider data from the first year of *Kepler* operations: the 9.7 d Q0 commissioning period (1–11 May 2009), the 33.5 d Q1 phase data (12 May–14 June 2009), the 88.9 d Q2 phase data (19 June–15 September 2009), the 89.3 d time string of Q3 (18 September–16 December 2009), and 89.8 d of Q4 data (19 December 2009–19 March 2010). The SC data are subdivided into three-monthly cycles, labelled, for example, Q3.1, Q3.2 and Q3.3.

Not all quarters Q0–Q4 are available for all stars. The first year of *Kepler* operations was dedicated to the survey phase of the mission. During this phase as many different stars as possible were monitored with the aim to identify the best potential candidates for seismic studies. From the survey sample, the KASC working groups selected subsamples of the best seismic candidates for long-term follow-up with *Kepler*. From quarter Q5 onwards, only a limited number of selected KASC stars are being observed with *Kepler*. The results of the selection process of the most promising γ Dor, δ Sct, and hybrid candidates are presented in this work.

2.2. Selection of the A-F type star sample

We selected all stars in the Kepler Asteroseismic Science Operations Center (KASOC) database initially labelled as γ Dor or δ Sct candidates. The stars were sorted into these KASOC catagories either because the Kepler Input Catalogue (KIC; Latham et al. 2005; Brown et al. 2011) value of their effective temperature T_{eff} and gravity $\log g$ suggested that they lie in or close to the instability strips of γ Dor and δ Sct stars, or because they where proposed as potential variable A-F type candidates in pre-launch asteroseismic Kepler observing proposals. To avoid sampling bias and to aim at completeness of the sample, we analysed all stars listed in the KASOC catalogue as δ Sct or γ Dor candidates. Our analysis results provide feedback on the initial guess on variable class assignment by KASOC. As will be seen (Sect. 6.2), several of these stars actually belong to other pulsation classes, many of which are cool stars. Because there are much fewer B-type stars in the *Kepler* field of view than cooler stars, there is a natural selection effect towards cooler stars. We also included stars initially assigned to other pulsation types that showed periodicities typical for δ Sct and/or γ Dor stars. We are aware that many more δ Sct and γ Dor candidate stars are being discovered among the KASC targets, but we cannot include all in this study.

The total sample we considered consists of 750 stars. For 517 stars both LC and SC data are available, while 65 and 168 stars were only observed in SC and LC mode, respectively. An overview of the A-F type star sample is given in Table 1, available in the on-line version of the paper. The first three columns indicate the KIC identifier of the star (KIC ID),

http://astro.phys.au.dk/KASC

right ascension (RA), declination (Dec), and Kepler magnitude (Kp). The Kepler bandpass is wider than the typical broad-band filters that are commonly used in optical astronomy (e.g. Johnson UBVRI), and can be described as "white" light. The next three columns provide information on the spectral type (Spectral Type), alternative name of the target (Name), and a comment on its variability (Variable). Information on binarity comes from the Washington Double Star Catalog (Worley & Douglass 1997; Mason et al. 2001), unless mentioned otherwise. For binary stars labelled with "★", the double star was suspected by inspecting Digitized Sky Survey and 2MASS images by eye. The next set of columns provides information on the *Kepler* time series. For each star, the number of datapoints (N datapoints), the total time span of the dataset (ΔT) expressed in d, the longest time gap in the Kepler light curves (δT) expressed in d, and the available (range of) quarters in LC (Quarters LC) and SC (Quarters SC) mode are given.

2.3. Sample stars in the literature

Most of the 750 sample stars were previously unstudied. We searched the catalogue by Skiff (2007) and found information on spectral types for only 212 stars. Besides 198 confirmed Aor F-type stars, among which are fourteen chemically peculiar stars, we discovered that stars with a different spectral type also ended up in the sample. There are six known B stars, one M star, three K stars, and six G-type stars in the sample. The G star KIC 7548061 (V1154 Cyg) is a known and well-studied Cepheid (e.g. Pigulski et al. 2009) and is the subject of a dedicated paper based on Kepler data by Szabó et al. (2011). Sixty-two stars are known to belong to multiple systems, including at least fourteen eclipsing binaries (EB; KIC 1432149, Hartman et al. 2004; KIC 10206340, Malkov et al. 2006; catalogues by Prša et al. 2011; and Slawson et al. 2011). Seven stars are only known as "(pulsating) variable stars". The star KIC 2987660 (HD 182634) is reported as a δ Sct star by Henry et al. (2001). Our sample also includes a candidate α^2 Canum Venaticorum star, namely KIC 9851142 or V2094 Cyg (Carrier et al. 2002; Otero 2007). The Kepler field hosts four open clusters. In our sample at least six known members of NGC 6819 are included. Also one, eight, and nine members of NGC 6791, NGC 6811, and NGC 6866, respectively, are in our sample. All 750 stars are included in the analysis.

3. Physical parameters of the sample stars

Seismic models require accurate values of physical parameters such as $\log g$, T_{eff} , metallicity [M/H], and projected rotational velocity $v \sin i$. We compiled an overview of all T_{eff} , $\log g$, and $v \sin i$ values available for the sample stars in Table 2 in the on-line version of the paper. The different sources include literature and KIC, along with values derived from new groundbased data. A description of the different sources is given below. The columns of Table 2 are (1) KIC identifier (KIC ID); (2) $T_{\rm eff}$ value from KIC; (3)-(5) $T_{\rm eff}$ values taken from the literature or derived from new ground-based data (Literature); (6) adopted T_{eff} value (Adopted); (7) $\log q$ value from KIC; (8)–(9) log g values taken from the literature or derived from new ground-based data (Literature); (10) adopted $\log g$ value (Adopted); (11)–(12) $v \sin i$ values derived from spectroscopic data (Spectra). Stars that are known to be spectroscopic binaries are flagged ° behind its KIC identifier (KIC ID). The derived physical parameters of the binary stars have to be considered

Fig. 1. 750 sample stars in the $(T_{\rm eff}, \log g)$ -diagram. The cross at the left top corner represents the typical error bars on the values: 290 K for $T_{\rm eff}$ and 0.3 dex for $\log g$.

with caution because the contribution of the binary components might not have been correctly separated.

KIC-independent values of $\log g$ and $T_{\rm eff}$ are only available for 110 stars. The values used for the subsequent analysis are (in order of priority, depending on availability and accuracy) the spectroscopically derived values, or the most recent photometrically derived values. For all other stars we use the only source: the KIC values. The corresponding adopted $T_{\rm eff}$ (in K), and $\log g$ (in dex) values are given in boldface in the sixth and tenth column of Table 2, respectively (column "Adopted"). For 65 and 71 stars no value of $T_{\rm eff}$ and $\log g$, respectively, is available. Figure 1 shows the sample of 750 stars in the ($T_{\rm eff}$, $\log g$)-diagram. We estimated the error bars on the KIC values by comparing them with the adopted values taken from the literature or ground-based data. The average difference was 290 K for $T_{\rm eff}$ and 0.3 dex for $\log g$. $v \sin i$ values are only available for 52 of the sample stars.

3.1. Literature

Besides papers dedicated to specific targets of our sample, the on-line catalogues by Soubiran et al. (2010), Lafrasse et al. (2010), Kharchenko et al. (2009), Masana et al. (2006), Nordström et al. (2004), Glebocki & Stawikowski (2000), Allende Prieto & Lambert (1999), and Wright et al. (2003) were very helpful in the search for values of T_{eff} , $\log g$, and $v \sin i$. Also, photometric indices by Hauck & Mermilliod (1998) were used to estimate values of $T_{\rm eff}$ and $\log g$. We took care not to include $T_{\rm eff}$ values that are derived from the spectral type rather than directly from data. The literature values of $T_{\rm eff}$ and $\log g$ can be found in Cols. 3-5 and 8, 9 of Table 2, respectively ("lit"). We note that the given errors on T_{eff} and $\log g$, which sometimes seem unrealistic small, are taken from the quoted paper and are not rounded to the number of significant digits. Values of $v \sin i$, expressed in $\mathrm{km}\,\mathrm{s}^{-1}$, are given in the last two columns of Table 2. The source of each value is indicated by the label.

3.2. Kepler Input Catalogue

The KIC provides an estimate of T_{eff} and $\log g$ for most Kepler targets derived from Sloan photometry (see the second and

seventh column, "KIC", of Table 2, respectively). Unfortunately, the KIC values of $\log q$ are known to have large error bars (Molenda-Żakowicz et al. 2011; Lehmann et al. 2011). Moreover, a comparison between KIC estimates of the stellar radius and the radius derived from evolutionary models indicate that the KIC values of log q might be shifted towards lower values by about 0.1 dex. The temperature values, on the other hand, are fairly good for A-F type stars, and become less reliable for more massive or peculiar stars, because for higher temperatures the interstellar reddening is apparently not properly taken into account. The stars in our sample are reddened up to 0.3 mag in (B - V), with an average reddening of E(B - V) = 0.04 mag. The 85 stars for which no KIC $T_{\rm eff}$ value is available, which are generally faint stars (Kp > 11 mag), are not considered in any analysis related to temperature, unless values of $T_{\rm eff}$ exist in the literature or are available from the analysis of new ground-based observations (see below).

3.3. New ground-based observations of sample stars

In the framework of the ground-based observational project for the characterization of KASC targets (see Uytterhoeven et al. 2010a,b, for an overview), targets of the A-F type sample are being observed using multi-colour photometry and/or high-to-mid-resolution spectroscopy. The goal is to obtain precise values of physical parameters that are needed for the seismic modelling of the stars. A detailed analysis of a first subsample of A-F type stars has been presented by Catanzaro et al. (2011). Several other papers are in preparation. We include the available results to date in this paper, because the precise values of $T_{\rm eff}$ and $\log g$ are needed for the interpretations in Sects. 7 and 8.

3.3.1. Strömgren photometry from the Observatorio San Pedro Mártir

Multi-colour observations were obtained for 48 sample stars over the period 2010 June 13–17 with the six-channel $uvby - \beta$ Strömgren spectrophotometer attached to the 1.5-m telescope at the Observatorio Astrónomico Nacional-San Pedro Mártir (OAN-SPM), Baja California, Mexico. Each night, a set of standard stars was observed to transform instrumental observations into the standard system using the well known transformation relations given by Strömgren (1966), and to correct for atmospheric extinction. Next, the photometric data were dereddeded using Moon's UVBYBETA programme (Moon 1985), and $T_{\rm eff}$ and $\log g$ values were obtained using the uvby grid presented by Smalley & Kupka (1997). A detailed description of the data will be given by Fox Machado et al. (in prep.). The resulting stellar atmospheric parameters are presented in Table 2 under label "b".

3.3.2. SOPHIE spectra from the Observatoire de Haute Provence

We also analysed spectra of two sample stars, KIC 11253226 and KIC 11447883, obtained during the nights of 2009 July 31, August 1, and August 5 with the high-resolution ($R \sim 70\,000$) spectrograph SOPHIE, which is attached to the 1.93-m telescope at the Observatoire de Haute Provence (OHP), France. The spectra were reduced using a software package directly adapted from HARPS, subsequently corrected to the heliocentric frame, and manually normalized by fitting a cubic spline.

To derive stellar atmospheric parameters, the observed spectra, which covers the wavelength range 3870–6940 Å, were compared with synthetic spectra. The synthetic spectra were computed with the SYNTHE code (Kurucz 1993), using atmospheric models computed with the line-blanketed LTE ATLAS9 code (Kurucz 1993). The parameters were derived using the methodology presented in Niemczura et al. (2009) which relies on an efficient spectral synthesis based on a least-squares optimisation algorithm. The resulting values of $T_{\rm eff}$, $\log g$ and $v \sin i$ are presented in Table 2, under label "h". The detailed analysis results, including element abundances and microturbulence, will be presented in a dedicated paper (Niemczura et al., in prep.), including several other *Kepler* stars.

3.3.3. Spectra from the Tautenburg Observatory

Spectra of 26 sample stars were obtained from May to August 2010 with the Coude-Échelle spectrograph attached to the 2-m telescope of the Thüringer Landessternwarte Tautenburg (TLS), Germany. The spectra cover 4700 to 7400 Å in wavelength range, with a resolution of $R=32\,000$. The spectra were reduced using standard ESO-MIDAS packages. We obtained between two and seven spectra per star, which were radial velocity corrected and co-added. The resulting signal-to-noise in the continua is between 150 and 250.

Stellar parameters such as $T_{\rm eff}$, $\log g$, [M/H], and $v \sin i$ have been determined by a comparison of the observed spectra with synthetic ones, where we used the spectral range 4740 to 5800 Å, which is almost free of telluric contributions. The synthetic spectra have been computed with the SynthV programme (Tsymbal 1996) based on atmosphere models computed with LLmodels (Shulyak et al. 2004). Scaled solar abundances have been used for different values of [M/H]. A detailed description of the applied method can be found in Lehmann et al. (2011). The resulting values of $T_{\rm eff}$, $\log g$ and $v \sin i$ are presented in Table 2, under label "g". Errors are determined from χ^2 statistics and represent a 1- σ confidence level. Detailed analysis results, including also values of [M/H] and microturbulent velocity, will be published in a dedicated paper (Tkachenko et al., in prep.).

4. Characterization of the sample

Figure 2 shows the distribution of the 750 sample stars in $T_{\rm eff}$ (top left), $\log g$ (top right), Kepler magnitude Kp (bottom left), and total length of the Kepler light curve ΔT , expressed in d (bottom right). For the analysis we used $T_{\rm eff}$ and $\log g$ values given in boldface in Table 2. Note that seven stars in our sample are hotter than $T_{\rm eff} = 9000$ K, and fall off the diagram.

The following typical global parameters have been observed for δ Sct and γ Dor stars (e.g. Rodríguez & Breger 2001; Handler & Shobbrook 2002): $\log g = 3.2-4.3$ and $T_{\rm eff} = 6300-8600$ K for δ Sct stars, and $\log g = 3.9-4.3$ and $T_{\rm eff} = 6900-7500$ K for γ Dor stars. While γ Dor stars are generally MS stars, several more evolved δ Sct stars have been observed.

The distributions in Fig. 2 show that about 70% of the total sample does indeed have $T_{\rm eff}$ values between 6300 K and 8600 K. However, a significant number (about 20%) are cooler stars. The $\log g$ values of our sample are concentrated on 3.5–4.5, which represents about 76% of the total sample.

The sample consists of stars with magnitudes in the range 6 < Kp < 15 mag. The majority (about 55%) is located in the interval Kp = [10, 12] mag. Given that stars with magnitudes fainter than V = 9 are difficult to monitor spectroscopically from

Fig. 2. Distribution in $T_{\rm eff}$ (top left), $\log g$ (top right), Kepler magnitude Kp (bottom left), and total time span ΔT of the Kepler light curves, expressed in d (bottom right) of the 750 sample stars. The number of stars belonging to each bin (N) is indicated on the Y-axis. We used the adopted values of $T_{\rm eff}$ and $\log g$, as given in boldface in Table 2.

the ground with 2 m-class telescopes, the fact that about 92% of the stars are fainter than V = 9 has implications for the feasibility of possible spectroscopic ground-based follow-up observations (see Uytterhoeven et al. 2010a,b).

Finally, the total length of the *Kepler* dataset (not taking into account possible gaps of several tens of days) is spread between 9.5 and 322 d. For a considerable fraction (19%) of the sample only Q0 and Q1 data are available, with a total length of 44 d, implying a frequency resolution slightly worse than 0.02 d⁻¹. On the other hand, 351 stars, or 47% of the total sample, have a time span of more than 200 d (resulting in a frequency resolution better than 0.005 d⁻¹). Of these 351 stars, 46% have a maximum time gap in the light curve of less than 10 d, and 23% have a gap of over 200 d and up to 325 d.

In the following sections we will describe the variability analysis results of all 750 stars. At this stage we did not exclude any of the stars from the sample on grounds of non-compatibility of physical parameters with the current expectations for A- and F-type pulsators, to present a homogenous analysis and to investigate if *Kepler* confirms the current understanding of δ Sct and γ Dor stars.

5. Frequency analysis

5.1. Treatment of the Kepler light curves

In this paper we used the "non-corrected" light curves available to KASC for asteroseismic investigations through the KASOC database. A description of the *Kepler* data reduction pipeline is given by Jenkins et al. (2010a,b). However, these raw time series suffer from some instrumental perturbations that need to be corrected for, e.g. perturbations caused by the heating and cooling down of the *Kepler* CCDs, variations caused by changes in the aperture size of the source mask, etc. Some of the effects are well known, and the corresponding non-stellar frequencies are tabulated by the *Kepler* team (e.g. frequencies near 32, 400, 430, and 690 d⁻¹). Other perturbations are not documented, and are harder to evaluate and correct for.

We subjected the light curves of all sample stars to an automated procedure that involves fitting a cubic spline to the time series, and correcting the residuals for discontinuities and outliers. To investigate if and to what extent artificial periodicities

at the same timescale as the expected pulsations in γ Dor and δ Sct stars are introduced by the correction, we also corrected a subsample of stars by a different procedure that takes three types of effects into account, namely outliers, jumps, and drifts (see García et al. 2011). Both correction methods gave the same frequency analysis results within the accuracy of the dataset.

Next, the *Kepler* flux $(F_{Kp}(t))$ was converted to parts-permillion (ppm) $(F_{ppm}(t))$, using the following formula:

$$F_{\text{ppm}}(t) = 10^6 \times \left(\frac{F_{\text{Kp}}(t)}{f(t)} - 1\right),$$
 (1)

with f(t) a polynomial fit to the light curve. A test on the effect of the use of different polynomial orders (2 to 10) on the detected frequencies in the time series showed that, in general, a third or fourth order polynomial fits the overall curvature better than a linear fit. The choice of the polynomial did not change periodicities with frequencies higher than 0.2 d⁻¹. The obtained error for frequencies between 0.01 and 0.2 d⁻¹ was of the order of $1/\Delta T$ d⁻¹, with ΔT the total time span of the light curve expressed in d.

5.2. Frequency analysis

The Kepler time series of the 750 sample stars were analysed in a homogenous way, using a programme based on the Lomb-Scargle analysis method (Scargle 1982). Frequencies were extracted in an iterative way until the Scargle false alarm probability (fap; Scargle 1982), a measure for the significance of a peak with respect to the underlying noise level, reached 0.001. In view of the almost uninterrupted and equidistant sampling of the *Kepler* data, this estimate of the fap is a fast and reliable approximation of the true fap, because the number of independent frequencies can be estimated precisely (see also the discussion in Sect. 4 of Balona et al. 2011b). Frequencies were calculated with an oversampling factor of 10. Time series consisting of only LC data were not searched for periods shorter than 1 h, because the corresponding Nyquist frequency is 24 d⁻¹. For SC data, with a time sampling of about 1 min, frequencies up to 720 d⁻¹ could be detected.

As a comparison, subsamples of the stars were analysed using different analysis methods, such as SigSpec (Reegen 2007, 2011), Period04 (Lenz & Breger 2005), the generalized Lomb-Scargle periodogram (Zechmeister & Kürster 2009), and the non-interactive code, *freqfind* (Leroy & Gutiérrez-Soto, in prep.). The latter code is based on the non-uniform fast Fourier transform by Keiner et al. (2009), and significantly decreases the computation time for unevenly spaced data. The results obtained with the different methods were consistent.

6. Classification

6.1. δ Sct, γ Dor, and hybrid stars

We performed a careful inspection (one-by-one, and by eye) of the 750 light curves, the extracted frequency spectra, and list of detected frequencies, and tried to identify candidate δ Sct, γ Dor, and hybrid stars. We used a conservative approach and omitted frequencies with amplitudes lower than 20 ppm for the classification. We also filtered out obvious combination frequencies and harmonics² in an automatic way, and only considered apparent independent frequencies for the analysis. We suspect that the

² As obvious combination frequencies and harmonics we considered nf_i or $kf_i \pm lf_j$, with f_i and f_j different frequencies, $n \in [2, 3, 4, 5]$, and $k, l \in [1, 2, 3, 4, 5]$.

variable signal of a few stars is contaminated by the light variations of a brighter neighbouring star on the CCD. We flagged all stars with a high contamination factor (>0.15), as given by the KIC. If the light curves of the neighbouring stars on the CCD were available through KASOC³, we carefully checked the light curves of these stars with their neighbours. Stars that show an obvious contamination effect were omitted from classification. We used information on $T_{\rm eff}$ (Table 2) to distinguish between δ Sct and γ Dor stars versus β Cep and SPB stars. To be conservative, low frequencies (<0.5 d⁻¹) (see, for instance, the frequency spectra in Fig. 4) are currently not taken into account in the analysis, because in this frequency range real stellar frequencies are contaminated with frequencies resulting from instrumental effects (see Sect. 5.1), and the separation of the different origins requires a dedicated study, which is beyond the scope of this paper.

We encountered a variety of light curve behaviour. Based on a small number of stars and using only the first quarter of Kepler data, Grigahcène et al. (2010) already proposed a subdivision of the A-F type pulsators into pure δ Sct stars, pure γ Dor stars, δ Sct/ γ Dor hybrids and γ Dor/ δ Sct hybrids, using the fact that frequencies are only detected in the δ Sct (i.e. >5 d⁻¹, or >58 μ Hz) or γ Dor (i.e. <5 d⁻¹ or <58 μ Hz) domain, or in both domains with dominant frequencies in either the δ Sct star or γ Dor star region, respectively. Among the 750 sample stars we see different manifestations of hybrid variability. There are stars that show frequencies with amplitudes of similar height in both regimes, and stars with dominant frequencies in the γ Dor (δ Sct) domain and low amplitude frequencies in the δ Sct (γ Dor) domain. The light curves show diversity as well. Balona et al. (2011d) already commented on the different shapes of light curves of pure γ Dor stars.

In this work, we focus on stars that show at least three independent frequencies. We classified the stars in three groups: δ Sct stars, γ Dor stars, and hybrid stars. Because the underlying physics that causes the different types of hybrid behaviour is currently not clear, all types of hybridity (both δ Sct/ γ Dor hybrids and γ Dor/ δ Sct hybrids) are included in the group of hybrids. A star was classified as a hybrid star only if it satisfied all of the following criteria:

- frequencies are detected in the δ Sct (i.e. >5 d⁻¹ or >58 μ Hz) and γ Dor domain (i.e. <5 d⁻¹ or <58 μ Hz);
- the amplitudes in the two domains are either comparable, or the amplitudes do not differ more than a factor of 5-7 (case-to-case judgement);
- at least two independent frequencies are detected in both regimes with amplitudes higher than 100 ppm.

By using these criteria, we should reduce the number of false positive detections. In particular, we tried to avoid a hybrid star classification of "pure" δ Sct stars that show a prominent long-term variability signal caused by rotation. We also tried to take care of more evolved δ Sct stars that are expected to pulsate with frequencies lower than 5 d⁻¹. Stars that exhibited only or mainly frequencies in the δ Sct domain (i.e. >5 d⁻¹) and did not satisfy all of the above given criteria were assigned to the pure δ Sct group. Likewise, the group of pure γ Dor stars consists of stars that do not comply with the hybrid star criteria, and that

have only or mainly frequencies lower than 5 d⁻¹. However, the classification of pure γ Dor stars is not as straightforward, because several other physical processes and phenomena can give rise to variability on similar timescales, such as binarity and rotational modulation caused by migrating star spots. We tried our best to select only γ Dor stars, but are aware that nonetheless, and most likely, our selection is contaminated with a few non-bona fide γ Dor stars. For stars that were observed in nonconsecutive *Kepler* quarters, we tried to beware of frequencies introduced by the spectral window. For instance, frequently a peak near 48 d⁻¹ (555 μ Hz) is detected (e.g. KIC 2166218 and KIC 7798339), which for a γ Dor pulsator can result in an incorrect classification as hybrid star.

In Figs. 3–5 a portion of the light curve with a time span of 2 d (δ Sct stars) or 5 d (γ Dor and hybrid stars) and a schematic overview of the detected independent frequencies (i.e. combination frequencies are filtered out in an automated way, see above) are given for a few representative stars of each group. The amplitudes and Kepler flux are expressed in ppm, and the frequencies are given in both d^{-1} (bottom X-axis) and μ Hz (top X-axis). The dotted grey line in the amplitude spectra separates the δ Sct and γ Dor regime. The dates are in the Heliocentric Julian Date (HJD) format $HJD_0 = 2454950.0$. The figures illustrate the variety of pulsational behaviour within the groups. The δ Sct stars (Fig. 3) display an impressive variety of amplitude heights. The variability of the stars in panels (d) and (e), KIC 9845907 and KIC 9306095, respectively, is dominated by one high-amplitude frequency. Several lower amplitude variations are also present. The chance of confusing a high amplitude δ Sct star (HADS) and binarity is high for KIC 9306095. The stars in panels (a)–(c) show multiperiodic variations with frequency amplitudes of similar size. The rotational frequency near 1.2 d⁻¹ and its first harmonic of the star KIC 10717871 (panel c) could be mistaken for γ Dor-like frequencies. Because there are no other longer-term periodicities, there is no evidence for the possible hybrid status of this star.

The light curves of γ Dor stars (Fig. 4) vary from obvious beat patterns to less recognizable variable signals. Balona et al. (2011d) already pointed out that there are symmetric (e.g. panel d) and asymmetric (e.g. panel e) light curves among the stars that show obvious beating, and that most likely in these cases the pulsation frequencies are comparable to the rotation frequency. Balona et al. (2011d) also suggested that the more irregular light curves likely stem from slowly rotating stars.

Examples of hybrid stars are given in Fig. 5. The grey dotted line in the right panels guide the eye to separate the δ Sct and γ Dor regimes. The stars KIC 3119604 and KIC 2853280 (panels a and b, respectively) are clearly dominated by δ Sct frequencies, while the γ Dor frequencies have lower amplitudes. The star KIC 9664869 (panel c) is an example of a star that exhibits frequencies with amplitudes of comparable height in the two regimes. The highest peak in the γ Dor region is most likely related to the stellar rotation period, however, because several harmonics are also observed. The bottom two panels are examples of hybrid stars dominated by γ Dor periodicities.

Table 3, available in the on-line version of the paper, presents an overview of the stars assigned to the three groups. For each star (KIC ID) we provide the classification (Class), the total number of independent frequencies (N) detected above the significance level (fap = 0.001) and with amplitudes higher than 20 ppm, and the number of independent frequencies detected in the γ Dor and δ Sct regime ($N_{\gamma \rm Dor}$ and $N_{\delta \rm Sct}$, respectively). The next column gives as a reference the total number

³ Unfortunately, only 40 stars of the sample could be checked in this way. We saw a clear contamination for the stars KIC 4048488 and KIC 4048494, KIC 5724810 and KIC 5724811, and KIC 3457431 and KIC 3457434. Less clear contamination is seen for KIC 4937255 and KIC 4937257, and KIC 10035772 and KIC 10035775, which are stars that show no obvious periodic variable signals.

Fig. 3. Light curve and frequency spectrum of five stars assigned to the *δ* Sct group, illustrating the variety of pulsational behaviour within the group. *The left panel* shows a portion of the *Kepler* light curves. The *Kepler* flux is expressed in ppm, HJD is given in d with respect to HJD₀ = 2 454 950.0. *The right panel* gives a schematic representation of the detected independent frequencies, expressed in d^{-1} (*bottom X-*axis) or *μ*Hz (*top X-*axis). Amplitudes are given in ppm. The dotted grey line separates the *δ* Sct and *γ* Dor regime. Note the different *Y-*axis scales for each star. **a)** KIC 8415752; **b)** KIC 8103917; **c)** KIC10717871; **d)** KIC 9845907; **e)** KIC 9306095.

of frequencies detected above the significance level, including combination frequencies and harmonics (N_{total}). The next four columns denote the frequency range of peaks in the γ Dor and δ Sct regimes ((Freq Range) $_{\gamma Dor}$ and (Freq Range) $_{\delta Sct}$, expressed in d⁻¹), the highest amplitude (Amplitude $_{high}$, expressed in ppm) and associated frequency (Freq $_{high}$, in d⁻¹). In the last column a flag (\bullet) indicates if the risk on light contamination with a neighbouring star on the CCD is high (contamination factor >0.15). A typical error on the frequency associated with the highest amplitude is 0.0001 d⁻¹. The error on the amplitude ranges from a few ppm up to about 30 ppm. We note that for stars identified as γ Dor or δ Sct stars we report on frequencies up to 6 d⁻¹ or from 4 d⁻¹, respectively, to account for, for instance, the frequency spectrum of more evolved stars.

We note that for several stars classified as γ Dor star only LC data are available. This may create a selection effect, because short-term δ Sct periods are more difficult to detect in the short timestring of LC data owing to sampling restrictions. Also, as mentioned above, even though we carefully checked the stars one by one, we expect to have a few false positive detections of hybrid and γ Dor stars because the typical γ Dor frequencies can be easily confused with variations of the order of a day caused

by rotation or binarity. A more careful analysis and interpretation of the full frequency spectrum of all individual stars of the sample will clarify this matter, but this is beyond the scope of this paper.

We compared our classification with the automated supervised classification results presented by Debosscher et al. (2011). Because these authors studied public Kepler Q1 data, only 479 objects of our sample appear in their catalogue. We point out that the classifier by Debosscher et al. (2009) only takes three independent frequencies with the highest amplitudes into account. Hence, the recognition and classification of hybrid behaviour is currently not implemented. Moreover, because the classifier does not take external information into account that can distinguish between B-type stars and A-F type stars (e.g. colour information, spectral classification based on spectra), there is often a confusion between δ Sct and β Cep stars, and between γ Dor and SPB stars. In general, there is good agreement (>87%, classified in terms of δ Sct or β Cep stars) with the classification by Debosscher et al. (2011) for stars that we classified as δ Sct stars. The γ Dor stars, as we classified them, are in general less easily recognized by the automated classifier. Often they appear as "miscellaneous" in their list. This is not surprising, because

Fig. 4. Similar figure as Fig. 3, but for five candidate γ Dor stars. Note the different *X*-axis scale with respect to Fig. 3. a) KIC 1432149; b) KIC 5180796; c) KIC 7106648; d) KIC 8330056; e) KIC 7304385.

so far only a few high-quality light curves of well-recognized γ Dor stars were available that could be used as a template to feed the classifier. Stars that we identified as hybrid stars appear in the catalogue by Debosscher et al. (2011) as "miscellaneous" or as δ Sct, γ Dor, β Cep, or SPB stars. The work presented in this paper will provide valuable feedback and information to refine the automated supervised classification procedure developed by Debosscher et al. (2009).

6.2. Other classes

About 63% of our sample is recognized as δ Sct, γ Dor, or hybrid star. Table 4, in the on-line version of the paper, gives an overview of the "classification" of the remaining 37% of the stars. For each star (KIC ID) the associated classification (Class) and a flag (Flag) indicating a high risk on light contamination by a neighbouring star (\bullet if there is a contamination factor >0.15), are given. Table 4 includes stars that show no clear periodic variability on timescales typical for δ Sct and γ Dor pulsators ("...", or "solar-like"), stars that exhibit stellar activity and show a rotationally modulated signal ("rotation/activity"), binaries ("binary" or eclipsing binary "EB"), B-type stars ("Bstar"), candidate red giant stars ("red giant"), Cepheids ("Cepheid"), and stars whose light is contaminated by another star ("contaminated"). Although the observed ranges in $T_{\rm eff}$ and $\log g$ include typical values for RR Lyr stars (see Fig. 2), we did not find any

in our sample, but there are \sim 40 such stars observed by *Kepler*, which are studied separately (Kolenberg et al. 2010; Benkő et al. 2010). Unclear cases mostly show a behaviour that might be related to rotation and are hence also labelled "rotation/activity". We also assigned the candidate γ Dor stars for which less than three significant peaks were detected to this category. The light curve and frequency spectra of a few examples of these other classifications are given in Figs. 6 and 7.

One hundred and twenty-one stars do not show an obvious periodicity in the expected range for γ Dor and δ Sct stars, or have an unresolved frequency spectrum within the available dataset. The star KIC 9386259 (Fig. 6, panel a) is an example of a star showing no clear periodicity. Furthermore, we used the label "..." for some stars for which less than three significant frequencies were detected (e.g. KIC 11509728 and KIC 11910256). We investigated the stars for signatures of solar-like oscillations and identified 75 candidate solar-like oscillators ("solar-like", see Table 4).

We identified seven B-type stars and 44 red giant stars in the sample. The giant stars show an envelope of frequencies with amplitudes up to 100–200 ppm in the region 0.5–5 d⁻¹, as illustrated by KIC 2584202 (Fig. 6, panel b). Among the B-type stars, we recognized five SPB stars and one candidate β Cep star.

Within the sample we identified at least 39 binaries, including 28 EBs. In Table 4 the binary stars are labelled "binary", or "EB" for an EB. If the variability of one of the components

Fig. 5. Similar figure as Fig. 3, but for five candidate hybrid stars. **a)** KIC 3119604; **b)** KIC 2853280; **c)** KIC 9664869; **d)** KIC 9970568; **e)** KIC 3337002. *The two top panel* **a)**-**b)** are δ Sct frequency-dominated stars, and *the two bottom panels* **d)**-**e)** are γ Dor frequency-dominated stars.

is identified as typical for one of the three groups outlined in Sect. 6.1, we also indicated this in Table 4. Panels (c)–(e) of Fig. 6 show examples of EBs. An interesting target is KIC 11973705, because it most likely is a binary with a δ Sct and SPB component (see also Balona et al. 2011b). For three stars reported in the literature as EBs (Prša et al. 2011; Slawson et al. 2011; Hartman et al. 2004), KIC 2557115, KIC 5810113, and KIC 1432149, we find no clear evidence of their eclipsing nature in the *Kepler* lightcurves. In case of KIC 1432149, presented by Hartman et al. (2004) as an EB with period 9.3562 d, we cannot confirm its eclipsing nature or its orbital period, and we suspect that this target has been misidentified as an EB.

Several stars show an irregular light curve typical of stellar activity, or a clearly rotationally modified signal (panels (a)–(c) of Fig. 7). It is also not impossible that low-amplitude pulsating γ Dor star candidates are hidden among the stars labelled as "rotation/activity" in Table 4. Namely, when only one or two of their pulsation frequencies reach the current detection threshold, they are not yet assigned to a pulsation group. A possible γ Dor candidate is given in panel (d) of Fig. 7.

In some cases the light curves look very peculiar, and the origin of the variability is not clear. This is the case for KIC 3348390 (panel (e) of Fig. 7) and KIC 4857678, for instance.

We discovered several interesting targets among the 750 stars of the sample. Dedicated studies of groups of individual stars will be presented in forthcoming papers. Below, we will sort the stars into different classes.

7. Characterization of the different classes

The classification described in the previous section results in the following distribution. A total of 63% of the sample can be identified as γ Dor, δ Sct or hybrid stars: 27% are classified as δ Sct stars (206 stars), 23% as hybrid stars (171 stars; of which 115 stars are δ Sct-dominated and 56 stars are γ Dor-dominated), and 13% as γ Dor stars (100 stars). A striking result is that almost a quarter of the sample, i.e. 171 stars, shows hybrid behaviour. This is in sharp contrast with the results obtained from ground-based observations, where so far only three candidate γ Dor- δ Sct hybrid stars have been discovered. The far superior precision of the space data opens a new window in detecting low amplitude variations. This result was already hinted at by Grigahcène et al. (2010) and Hareter et al. (2010), but the quantification by means of this sample is remarkable.

Of the remaining 37% of the sample, a considerable number (121 stars, 16%) do not show clear variability with periods in the expected range for γ Dor and δ Sct stars. Among this group are

Fig. 6. Similar figure as Fig. 3, but for stars that were not assigned to the groups of δ Sct, γ Dor or hybrid stars. a) KIC 9386259, no clear periodic signal detected; b) KIC 2584202, red giant star; c) KIC 5197256, EB or ellipsoidal variable with a δ Sct component; d) KIC 3230227, EB with a γ Dor component; e) KIC 9851142, EB with most likely a γ Dor component.

75 candidate solar-like oscillators. Our sample has seven B-type stars (1%) and 44 stars (6%) are identified as red giant stars. One Cepheid turned out to be among the sample. About 8% of the sample shows stellar activity, often manifesting itself by a rotationally modulated signal.

At least 5% of the sample stars are identified through the analysis of their light curve as binary or multiple systems, of which 3.5% show eclipses. When we also consider the known binaries from the literature (Table 1), we arrive at a binary rate of 12% within the sample. The number of binary detections is only a fraction of what is expected. The binary rate among A-F type stars in general and δ Sct stars in particular is estimated to be at least 30% (Breger & Rodríguez 2000; Lampens & Boffin 2000). Several additional stars are expected to be part of multiple systems with possibly much longer periods than the available *Kepler* time span. The percentage of EBs in our sample is high. Prša et al. (2011) reported a 1.2% occurence rate of EBs among the *Kepler* targets.

Figure 8 shows the stars that are not assigned to one of the δ Sct, γ Dor or hybrid star groups in a $(T_{\rm eff}, \log g)$ -diagram. The solid thick black and light grey lines mark the blue and red edge of the observed instability strip of δ Sct and γ Dor stars, respectively (Rodríguez & Breger 2001; Handler & Shobbrook 2002). Owing to the possibly incorrect separation of the binary component's contribution, we considered the physical parameters of

the binaries as insufficiently constrained and omitted them. The same holds for the B-type stars, which are much hotter than the $T_{\rm eff}$ region shown here. The stars that show no clear periodic variability on timescales typical for δ Sct and γ Dor pulsators (open triangles) and stars that exhibit stellar activity (bullets) are found along the MS and in more evolved stars. The location of the only Cepheid in our sample is marked by a cross. The candidate red giants (open squares) are all but one found in the expected region of the $(T_{\rm eff}, \log g)$ -diagram. This implies that the KIC photometry separates giant from MS stars well.

7.1. Characterization of stars that show no clear periodic variability

We now focus on the properties of the 121 stars that show no clear periodic variability in the γ Dor and δ Sct range of frequencies to understand why no oscillations are detected. Figure 9 presents the distribution in $T_{\rm eff}$ (top left), $\log g$ (top right), Kp (bottom left), and total time span ΔT , expressed in d, of the *Kepler* light curves (bottom right).

The cool boundary of the observational instability strip for γ Dor stars is located around $T_{\rm eff} = 6900$ K. At least ⁴ 78% of the 121 stars have cooler temperatures, and hence no A-F type variability is expected. About 75 stars are identified as candidate

⁴ For 11% of the 121 stars we have no information on $T_{\rm eff}$ or $\log g$.

Fig. 7. Similar figure as Fig. 3, but for stars that were not assigned to the groups of δ Sct, γ Dor or hybrid stars. Stellar activity/rotational modulation: a) KIC 8748251; b) KIC 8703413 and c) KIC 11498538; no clear classification: d) KIC 12062443; and e) KIC 3348390.

solar-like oscillators. However, 10% of the 121 stars that show no clear periodicity are located inside the instability strip of γ Dor or δ Sct stars⁵ (see also Fig. 8). Additional investigation is needed to confirm that these stars do not show variability, which would imply that non-variable stars exist in the instability strip.

Sixty percent (71 stars) of our non-variable stars are fainter than Kp = 12 mag, and 18% are fainter than Kp = 14 mag. The faintness of the star most likely has an impact on the (non-)detection of periodicities. To quantify this, we counted the fraction of apparently non-periodic stars per magnitude bin for the full sample of 750 stars. The number of stars that show no clear periodicity increases dramatically towards faint stars: the fraction is only 2% for magnitude Kp = 9 mag, 5% for Kp = 10 mag, 12% for Kp = 11 mag, 15% for Kp = 12 mag, 41% for Kp = 13 mag, and 68% for Kp > 14 mag. The fainter the star, the more difficult it becomes to detect periodicities. Our analysis results, which were obtained by only considering amplitudes above 20 ppm, lead us to suspect that the *Kepler* detection limit of A-F type low-amplitude oscillations (≤ 20 ppm) lies around Kp = 14 mag (see also Sect. 7.2).

We find no evidence for a selection effect towards stars with a short time span in the available *Kepler* time series. The right panel of Fig. 9 shows that also several time series with long time

spans do not show clear variability. Also, the observing mode has no obvious influence on the (non-)detection of oscillations. Fifty-four percent of the 121 stars have only LC data, while 46% have only SC data.

To summarize, stars that show no clear periodic variations are generally the cooler and fainter stars of the sample. We do not find evidence for a bias towards the total time span of the available light curve or towards the observing mode (LC versus SC).

7.2. Characterization of δ Sct, γ Dor, and hybrid stars

7.2.1. The $(T_{\text{eff}}, \log g)$ -diagram

The current ground-based (GB) view on the positions of the δ Sct and γ Dor classes in the $(T_{\rm eff}, \log g)$ -diagram (parameters are taken from the literature⁶) is presented in panel (a) of Fig. 10. A comparison of $\log g$ values derived from Geneva photometry and from other sources (photometry and spectroscopy)

⁵ As demonstrated in Sect. 7.2, a revision of the current instability strip is required.

⁶ Rodríguez & Breger (2001); Rodríguez et al. (2000); Henry & Fekel (2005); Poretti et al. (1997); Breger et al. (1997); Zerbi et al. (1997, 1999); Aerts et al. (1998); Kaye et al. (1999b); Gray & Kaye (1999); Eyer & Aerts (2000); Guinan et al. (2001); Aerts (2001); Martín et al. (2003); Mathias et al. (2004); Rowe et al. (2006); Bruntt et al. (2008); Cuypers et al. (2009); Uytterhoeven et al. (2008); Catanzaro et al. (2010, 2011).

Fig. 8. $(T_{\rm eff}, \log g)$ -diagram with stars that show no clear periodic variability on timescales typical for δ Sct and γ Dor pulsators (open triangles), stars identified as red giants (open squares), stars that exhibit stellar activity (bullet), and a Cepheid (cross). The cross at the right top corner represents the typical error bars on the values: 290 K for $T_{\rm eff}$ and 0.3 dex for $\log g$. The solid thick black and light grey lines mark the blue and red edge of the observed instability strips of δ Sct and γ Dor stars, as described by Rodríguez & Breger (2001) and Handler & Shobbrook (2002), respectively. In the on-line version of the paper the open squares, open triangles, bullets, and crosses, are red, blue, black, and black, respectively.

Fig. 9. Distribution in $T_{\rm eff}$ (top left), $\log g$ (top right), Kepler magnitude Kp (bottom left), and total time span ΔT of the Kepler light curves (bottom right) of the 121 stars that show no clear periodic varibility. The number of stars belonging to each bin is given on the *Y*-axis.

indicates a systematic difference of about 0.4 dex for $\log g$ values above 4.35 dex as calculated from the Geneva photometry (Cuypers & Hendrix, priv. comm.). Therefore we have corrected the values based on Geneva photometry. Evidently, the δ Sct and γ Dor stars occupy distinct locations in the ($T_{\rm eff}$, $\log g$)-diagram, with a small overlap region.

Panel (b) of Fig. 10 shows a different picture. Here the δ Sct, γ Dor, and hybrid stars from the *Kepler* sample are plotted. We used the adopted values of $T_{\rm eff}$ and $\log g$, as given in Table 2. The cross in the top right corner of the figure shows typical errors on the values. The stars are scattered in the $(T_{\rm eff}, \log g)$ -diagram: the δ Sct and γ Dor stars are not confined anymore to the two regions that were clearly seen for the ground-based stars. Even when considering the large error bars on the values, the scatter is

present. Kepler δ Sct stars exist beyond the red edge of the instability strip, while Kepler γ Dor pulsations appear in both hotter and cooler stars than previously observed from the ground. The Kepler hybrid stars occupy the entire region between the blue edge of the δ Sct instability strip and the red edge of the γ Dor instability strip, and beyond. The position of the Kepler δ Sct and γ Dor stars suggests that the edges of the so far accepted observational instability strips need to be revised. However, we need accurate values of $T_{\rm eff}$ and $\log q$ for all stars to confirm this finding.

Because for most stars in our sample only KIC-based estimates of $T_{\rm eff}$ and $\log g$ are available, we selected the stars that have reliable estimates of these parameters derived from ground-based spectra or multi-colour photometry (see Sect. 3). From this selection, 69 are classified as belonging to one of the three groups. The subsample of 69 stars is plotted in panel (c) of Fig. 10. The position of the stars in the $(T_{\rm eff}, \log g)$ -diagram confirms the general findings described for the full sample. However, the scatter across the diagram of γ Dor stars is less present, but almost all γ Dor candidates lie outside the observational instability strip for γ Dor stars. Ground-based observations for the derivation of more precise values of $T_{\rm eff}$ and $\log g$ are needed for all other stars to confirm the exact locations of the stars.

Panel (d) of Fig. 10 shows the *Kepler* stars assigned to the three groups that have amplitudes higher than 1000 ppm (see Table 3), which approximately corresponds to amplitudes higher than 1 mmag and hence might be observable from the ground. We notice that the *Kepler* stars with ground-based observable amplitudes also do not fit within the observational instability strips.

The left column of Fig. 11 presents an overview of the distribution in $T_{\rm eff}$ for the three groups of A-F type stars. The histograms related to δ Sct, hybrid, and γ Dor stars are coloured in dark grey, middle grey, and light grey respectively. The distribution in T_{eff} peaks around 7400 K, 7200 K, and 7000 K for δ Sct, hybrid, and γ Dor pulsators, respectively. Comparing these values with the center of the observed instability strips by Rodríguez & Breger (2001) and Handler & Shobbrook (2002), we find that a large part of the Kepler stars are concentrated near the overlap of the two instability strips, and that many members of the three groups coincide in the same region in the $(T_{\text{eff}}, \log g)$ -diagram. It will be interesting to investigate why stars with similar values of $T_{\rm eff}$ and $\log g$ in some cases pulsate as a δ Sct star, and in others as a γ Dor star, or as both. Another interesting and puzzling result is that γ Dor and δ Sct pulsations seem to be excited in a far wider range of temperatures then previously expected.

The distribution in $\log g$ is similar for all classes. Most stars have $\log g$ values between 3.5 dex and 4.3 dex, with a peak around $\log g = 3.9$ dex. We point out that the $\log g$ values derived from the KIC for A-F type stars are known to have large uncertainties, and only few stars have measurements from other sources. Without more stars with accurate values derived from ground-based observations we cannot draw any conclusions.

The distribution in *Kepler* magnitude Kp (bottom left, Fig. 2) is representative for the distribution in Kp for γ Dor and δ Sct stars. It illustrates that the cut-off magnitude for the detection of γ Dor and δ Sct type of variations with *Kepler* lies around Kp = 14 mag. The majority of the sample stars have magnitudes in the range Kp = 10-12 mag.

 $v \sin i$ values are available for 41 stars of the subsample consisting of δ Sct, γ Dor and hybrid stars (see Table 2). Of the five γ Dor stars, four have $v \sin i$ values above 90 km s⁻¹, and one has $v \sin i = 15$ km s⁻¹. Of the sixteen δ Sct stars,

Fig. 10. a) ($T_{\rm eff}$, log g)-diagram of the δ Sct, γ Dor, and hybrid stars detected from the ground (parameters taken from the literature). b) ($T_{\rm eff}$, log g)-diagram of the *Kepler* stars we classified as δ Sct, γ Dor, and hybrid stars in this paper. Open squares represent δ Sct stars, asterisks indicate γ Dor stars, and hybrid stars are marked by bullets. The black cross in the right top corner shows typical errors on the values. c) ($T_{\rm eff}$, log g)-diagram of the subsample of 69 *Kepler* stars for which accurate $T_{\rm eff}$ and log g values are available. The colour-codes are the same as for panel b). d) ($T_{\rm eff}$, log g)-diagram of the subsample of *Kepler* stars that show pulsations with amplitudes higher than 1000 ppm (>1 mmag). Evolutionary tracks for MS stars with masses 1.4 M_{\odot} , 1.7 M_{\odot} , and 2.0 M_{\odot} are plotted with grey dotted lines. The evolutionary tracks have been computed using the Code Liégeois d'Évolution Stellaire (CLES, Scuflaire et al. 2008). The input physics included is similar to the one used in Dupret et al. (2005) with the following values for the modelling parameters $\alpha_{\rm MLT} = 1.8$, $\alpha_{\rm ov} = 0.2$ and Z = 0.02. The solid thick black and light grey lines mark the blue and red edge of the observed instability strips of δ Sct and γ Dor stars, as described by Rodríguez & Breger (2001) and Handler & Shobbrook (2002), respectively. In the on-line version of the paper the symbols representing the δ Sct, γ Dor, and hybrid stars are red, blue, and black, respectively.

eight stars have high $v\sin i$ values, six have moderate values ($40 < v\sin i < 90 \text{ km s}^{-1}$), and two low values ($v\sin i < 40 \text{ km s}^{-1}$). Of the 20 hybrid stars almost all have high $v\sin i$ values, with six stars having $v\sin i$ values above 200 km s^{-1} . Extrapolating these numbers to the full sample, we expect that many stars in the sample are moderate-to-fast rotators.

7.2.2. Frequencies and amplitudes

Up to 500 non-combination frequencies are detected in the *Kepler* time series of a single star (see Table 3). These large numbers of frequencies are in sharp contrast with the small number of frequencies observed from the ground, e.g. up to 79 pulsation and combination frequencies for the δ Sct star FG Vir (e.g. Breger et al. 2005) and up to 10 frequencies in the γ Dor hybrid candidate HD 49434 (Uytterhoeven et al. 2008), but are

commonly seen in space observations because of their higher precision and sensitivity to low-amplitude variations (e.g. Poretti et al. 2009; García Hernández et al. 2009; Chapellier et al. 2011). However, it needs to be carefully checked whether all of the apparent individual frequencies are of pulsational origin.

For the majority of stars (66%), less than 100 frequencies were found, and 10% of the stars show variations with more than 200 frequencies. If we look at the extreme cases we find that for 29 stars (6%) fewer than 10 frequencies were detected, while for 5 stars (1%) more than 400 frequencies were found. The middle panel of Fig. 11 shows the distribution of the number of detected frequencies for the δ Sct (top, dark grey), hybrid (middle, middle grey), and γ Dor (bottom, light grey) stars. The highest number of frequencies are found for hybrid stars. It is worth mentioning that the number of detected frequencies versus $T_{\rm eff}$ follows a distribution that peaks near 7700 K, 7500 K, and 7000 K for δ Sct, hybrid, and γ Dor stars, respectively. More modes are excited

Fig. 11. Distribution in $T_{\rm eff}$ (left column), number of detected (independent) frequencies (middle column) and highest amplitude (ppm, in logarithmic scale) (right column), for the three groups of A-F type stars: δ Sct stars (top; dark grey), hybrid stars (middle; middle grey), and γ Dor stars (bottom; light grey). The number of stars belonging to each bin (N) is indicated on the Y-axis.

near the centre of the δ Sct instability strip. For the hybrid and γ Dor stars most detected frequencies are found towards the red edge of the (overlap in the) instability strip.

The right panel of Fig. 11 shows the distribution of the highest measured amplitude in ppm logarithmic scale (log(Amplitude)) for the different groups using the same colourcode as before. The range in highest amplitude measured is 40 to 155 000 ppm. For about 59% of the stars the highest amplitude is lower than 2000 ppm. Only 16 stars (3.5%) show variability with highest amplitudes below 100 ppm, while 26 stars (5%) have amplitudes above 10000 ppm. In general, higher amplitudes are detected in δ Sct pulsators than in γ Dor stars. We point out that the origin of high peaks detected in γ Dor stars, e.g. the amplitude of 23 000 ppm in the star KIC 7304385, is most likely related to the rotation of the star. It is worth mentioning that amplitudes above 10000 ppm are also detected in faint targets. The highest amplitudes are found for stars within the temperature range $T_{\rm eff} = 6600-7100$ K, which is the cool part of the instability strips.

We detected δ Sct frequencies between 4 and 80 d⁻¹. We found indications that a handful of stars vary with even shorter periods. However, these short periods need to be confirmed by means of a careful investigation of the specific frequency spectra, which is beyond the scope of this paper.

When considering the δ Sct stars and hybrid classes, which amount to atotal of 375 stars, we find that 56% shows an upper frequency limit between 40 and 70 d⁻¹. Only 10% of the δ Sct

and hybrid stars have frequencies up to 80 d⁻¹, and 9% only show variations with frequencies lower than 20 d⁻¹. We note that γ Dor-dominated hybrids that show variations with frequencies higher than 60 d⁻¹ are rare (three stars in our sample).

The majority of the hybrid stars detected in the *Kepler* data show all kinds of periodicities within the γ Dor and δ Sct range (see Cols. 6 and 7 in Table 3 which give the frequency range of the detected frequencies in the γ Dor and δ Sct domains). This observational fact is interesting because from a theoretical point of view no excited modes are expected between about 5 and $10~\rm d^{-1}$, i.e. the so-called "frequency gap" (see, e.g. Grigahcène et al. 2010). Only for five hybrid stars a "frequency gap" is observed 7. Possible explanations for the absence of gaps, within the present non-adiabatic theories, are that the frequencies within the gap are high-degree and/or rotationally split modes (Bouabid et al. 2009).

8. A first step towards understanding the relation between δ Sct, γ Dor, and hybrid stars

As presented in the previous section, it is not trivial to distinguish between the three groups of variable A-F type stars defined in Sect. 6.1. The relation between the three groups is currently unclear as well because δ Sct, γ Dor, and hybrid stars

⁷ The six hybrid stars that show a "frequency gap" are: KIC 3851151, KIC 4556345, KIC 7770282, KIC 9052363, and KIC 9775454.

coincide in the $(T_{\rm eff}, \log g)$ -diagram (Fig. 10). Driven by the idea to find observables based on physical concepts that allow insight in the different internal physics of the three types of stars, we constructed two new observables that can provide an alternative way to improve our understanding of the relation between the three groups. We point out that several observational parameters can be found that reflect the different inherent properties of the three groups in one way or another. For instance, δ Sct stars pulsate with shorter periods, and are generally hotter than γ Dor stars. A combination of these parameters will lead to a differentiation of the groups, such as for instance a $(T_{\rm eff}, f_{\rm max})$ -diagram, with $f_{\rm max}$ the frequency associated to the highest amplitude mode. However, we emphasize that our aim is to find observables that can be directly related to the internal physics of the stars.

According to the current instability theories, which need to be revised following the results presented in this work, the main driving process of the oscillations in δ Sct stars is related to the opacity variations in the ionization zones (Unno et al. 1989). These zones are located in the region where the main energy transport mechanism is convection and where a small quantity of energy is transported by radiation. The total amount of driving energy going into the mode is directly related to the radiative luminosity in this zone, and this latter quantity is a function of the convective efficiency. Therefore, we expect a relation between the energy of the observed modes and the convective efficiency of the outer convective zone. We searched for this relation and constructed two observables, *energy* and *efficiency*, that are estimates of the energy and the convective efficiency, using the available observational data.

8.1. Energy

The kinetic energy of a wave is given by

$$E_{\rm kin} = \frac{1}{2} f(\rho_*) (A\zeta)^2, \tag{2}$$

where f is a function of the stellar density ρ_* , A is the amplitude of the oscillation, and ζ is the pulsation frequency. Using the available observational data, we construct the following observable that we call *energy*, which is a first approximation and estimate of the kinetic energy of the wave:

$$energy \equiv (A_{\text{max}}\zeta_{\text{max}})^2,$$
 (3)

where A_{max} and ζ_{max} refer to the highest amplitude mode of the star (in ppm), and associated frequency (in d⁻¹). The pulsation amplitude is a function of the observed amplitude and the relative variation of the flux, and is given by the expression (Moya & Rodríguez-López 2010):

$$\Delta R/R = -\frac{\Delta m}{\ln(5 + 10dT)},\tag{4}$$

where $\frac{\Delta R}{R}$ is the relative pulsational amplitude, Δm the observed magnitude variation of the mode, and dT is given by

$$dT = \frac{\delta T_{\text{eff}}}{T_{\text{eff}}} / \frac{\xi_r}{r}, \quad (r = R), \tag{5}$$

with ξ_r the variation in radius of the mode, and dT is evaluated at the surface of the star (r = R).

Non-adiabatic calculations of a representative model of a hybrid pulsating A-F type star including time dependent convection (Grigahcène et al. 2005) show that the difference between

Fig. 12. Distribution in $\log(energy)$ (right), and $\log(efficiency)$ (left) for the δ Sct (top, dark grey), hybrid (middle, middle grey), and γ Dor (bottom, light grey) stars. The number of stars belonging to each bin (N) is indicated on the Y-axis.

the predicted $\mathrm{d}T$ value of asymptotic g-modes (γ Dor stars) and low-order p-modes (δ Sct stars) is around one order of magnitude or less, where the δ Sct stars have higher values. Therefore, we can directly use the observed magnitude variation as a measurement of the radial amplitude variation. That we are using an approximation does not change the conclusions of the present study, because the observed differences are larger than two orders of magnitude (see Figs. 12 and 13).

The right column of Fig. 12 shows the distribution in $\log(energy)$ for the δ Sct (top, dark grey), hybrid (middle, middle grey), and γ Dor (bottom, light grey) stars. Clearly, the weight of the distribution is located in the region $\log(energy) > 8$ for stars dominated by frequencies in the δ Sct domain, and in the region $\log(energy) < 8$ for stars with dominant γ Dor pulsations.

8.2. Efficiency

In the introduction of this section we pointed out that a relation between the convective efficiency and mode excitation can exist. Recent studies on convective efficiency of the outer convective zone of F-G-K stars using 3D models show that the convective efficiency is related to the position of the star in the Hertzsprung-Russell (HR-) diagram (Trampedach & Stein 2011). To construct an observable related to the convective efficiency that can be described with only variables related with the position in the HR-diagram, we found inspiration in the analytic description of the convective energy given by the mixing length theory.

 $^{^8}$ In analogy to the mean free parameter in gas kinetic theory, the mixing length is defined as the mean distance over which a fluid bulb conserves its properties. Generally, the mixing-length is assumed to be proportional to the pressure-scale height by a factor α that is usually called mixing-length parameter.

Fig. 13. Observable $\log(energy)$ plotted versus $\log(efficiency)$ for δ Sct (open squares) and γ Dor (asterisks) stars only (top), and for hybrid stars as well (bullets) (bottom). The left panels include all 480 Kepler stars that are assigned to one of the three groups. The right panels show the 49 stars for which reliable values of $T_{\rm eff}$ and $\log g$ are available. In the on-line version of the paper the symbols representing the δ Sct, γ Dor and hybrid stars are red, blue, and black, respectively. The cross in the right bottom corner of the top left panel represents the typical error bars on the values: 0.04 dex and 0.12 dex for $\log(energy)$ and $\log(efficiency)$, respectively.

(Böhm-Vitense 1958). There, the convective efficiency, Γ , is defined as

$$\Gamma = \left[\frac{A^2}{a_0} (\nabla_{\text{rad}} - \nabla) \right]^{1/3},\tag{6}$$

with a_0 a constant, ∇_{rad} and ∇ the radiative and real temperature gradient, respectively, and

$$A \sim \frac{c_p \kappa p \rho c_s \alpha^2}{9 \sigma T^3 g \sqrt{2\Gamma_1}} \tag{7}$$

(see Cox & Giuli 1968).

This quantity, which measures the ratio between the convective and radiative conductivity, depends on a large number of physical variables: the specific heat capacity at constant pressure c_p , the opacity κ , the pressure p, the stellar density p, the sound velocity p, the mixing length parameter p, the Stephan-Boltzmann constant p, the temperature p, the gravity p, and the first adiabatic coefficient p₁. Because we only have information on a limited number of observational variables, our estimate of

the quantity is only an approximation. Inspired by these equations, we searched for the combination of temperature and gravity that empirically provided the best means to separate between γ Dor and δ Sct stars (see statistical test below), and define the observable *efficiency* as

efficiency
$$\equiv (T_{\text{eff}}^3 \log g)^{-2/3} \sim \Gamma.$$
 (8)

Because the efficiency of the convective zone is expected to be higher for γ Dor stars than for δ Sct stars, the observable *efficiency* should have a higher value for γ Dor stars than δ Sct stars. This behaviour is indeed observed, as illustrated in the left panel of Fig. 12, where the distribution in $\log(efficiency)$ is given. The majority of δ Sct stars have values $\log(efficiency) < -8.1$ dex, while the histograms for γ Dor pulsators peak in the region $\log(efficiency) > -8.1$ dex.

8.3. Efficiency versus energy

When we plot the two new observables, log(energy) versus log(efficiency), the groups of δ Sct and γ Dor stars are fairly well separated (see top panels Fig. 13). A log(energy) value

of 8 leaves 90% of the δ Sct and γ Dor stars separated. The bottom panel of Fig. 13 shows the same diagram with values for the hybrid stars included, using the same colours and symbols as before. Typical errors on the values are 0.04 dex and 0.12 dex for $\log(energy)$ and $\log(efficiency)$, respectively. The hybrid stars are placed in the intermediate region. We observed that δ Sct (γ Dor) dominated hybrids fall in the same region as the δ Sct (γ Dor) stars.

We performed a Mann-Whitney U test with an adapted p-value (p = 0.0166) according to the closed-test principle described in Horn & Vollandt (1995), to statistically investigate if the mean of the distribution in log(energy) and log(efficiency) is different for the three different groups. The test shows that the difference in the mean of the distributions in both log(energy) and log(efficiency) is statistically significant for all groups. However, the apparent separation in log(efficiency) becomes less evident when we take the considerable error bars into account. We also performed a χ^2 test (as described by Press et al. 1992) to determine if the distributions themselves were different. All distributions are statistically significant, save for the γ Dor versus hybrid star efficiencies, where they are marginally similar. This conclusion holds even if we vary the T_{eff} and $\log g$ values within the error ranges and recompute the efficiencies or vary the inputs into the energies. We point out once again that the definition of efficiency is only a rough estimate of the theoretical expression for the convective efficiency, and might – at this stage – not be refined enough to display the separating power between the groups we expect the convective efficiency to have. In a followup investigation we will assess the goodness of approximation of our definition of efficiency by comparison with values of the convective efficiency as given by Eq. (6), calculated for several model stars, and finetune its definition.

The two new approximate observables *energy* and *efficiency* reflect the different internal physics of oscillators with dominant δ Sct pulsations and oscillators dominated by γ Dor pulsations, and seem to allow us to distinguish between them. However, it needs to be further investigated if the two observables can be considered as independent parameters. This, together with an exploration of the physical mechanisms behind the instability of these stars, is the topic of a forthcoming paper. The observables *energy* and *efficiency* are promising starting points to explore the relation between δ Sct, γ Dor and hybrid stars, but need to be refined.

9. Summary, discussion, and future prospects

We analysed the *Kepler* light curves based on survey phase data with time spans between 9 d and 322 d available through KASOC and associated frequency spectra of 750 candidate A-F type stars in search for δ Sct, γ Dor, and hybrid pulsators. The main results are:

- The Kepler light curves of the sample of 750 candidate
 A-F type stars show a variety in variability behaviour.
- Observationally, we propose three main groups to describe the observed variety: γ Dor, δ Sct, and hybrid stars. The latter group includes both δ Sct-dominated and γ Dor-dominated hybrid stars. About 63% of the sample are unambiguously assigned to one of the three groups.
- About 23% of the sample are hybrid candidates (171 stars, or 36% of the stars assigned to the three groups). This is in strong contrast with the number of hybrid candidates so far observed from the ground, but compatible with the first *Kepler* study of γ Dor and δ Sct variables by

- Grigahcène et al. (2010). The far superior precision of the *Kepler* space data opens a new window in detecting low-amplitude variations. *Kepler* will be ideal to study hybrid behaviour in different types of stars, such as roAp stars (Balona et al. 2011a), sdB stars (Østensen et al. 2010), and B stars (Balona et al. 2011b).
- We presented a characterization of the stars in terms of number of detected frequencies, frequency range, and typical pulsation amplitudes, which provides valuable feedback for models and instability studies. This is the first time that this kind of information is available for a substantial sample of stars. Up to 500 non-combination frequencies are detected in the Kepler time series of a single star. The highest pulsation amplitude measured is 58 000 ppm. The shortest detected δ Sct periods are about 18 min. We find that hybrid stars show all kinds of periodicities within the γ Dor and δ Sct range. In particular, the majority of hybrid stars shows frequencies between 5 and 10 d⁻¹. From a theoretical point of view, this result presents a number of challenges, because the currently accepted over-stability mechanisms cannot explain the presence of pulsational modes in the wide frequency ranges observed with Kepler. It needs to be investigated if and to what extent the presence of stochastic modes, highdegree, and/or rotationally split modes with high amplitudes, granulation and effects of convection can explain part of the unexpected observed modes.
- The location of γ Dor and δ Sct classes in the $(T_{\rm eff}, \log g)$ -diagram has been extended (Fig. 10). We find indications that Kepler δ Sct stars exist beyond the red edge of the observational instability strip, while Kepler γ Dor pulsations seem to appear in both hotter and cooler stars than observed so far. The Kepler hybrid stars occupy the entire region between the blue edge of the δ Sct instability strip and the red edge of the γ Dor instability strip and beyond. These results, if confirmed by verification of the temperature and $\log g$ values in a more comprehensive sample, imply that the observational instability strips need to be extended to accommodate the Kepler δ Sct and γ Dor stars. From a theoretical point of view, the overall presence of hybrid stars implies an investigation of other pulsation mechanisms to supplement the κ mechanism and convective blocking effect to drive hybrid pulsations.
- Two new "observables" that reflect the different internal physics of δ Sct and γ Dor pulsators are introduced to investigate the relation between the two types of pulsations (Fig. 13): (1) efficiency, related to the convective efficiency of the outer convective zone, and a function of T_{eff} and log g; and (2) energy, the driving energy of a mode, and a function of the highest observed frequency amplitude and the associated frequency. Both observables are empirical and are constructed using only available measured variables. The impact and physical significance of the group separation in the (log(efficiency), log(energy))-diagram needs to be investigated in more detail. The two new observables are a promising starting point for further investigations of the relation between δ Sct, γ Dor and hybrid stars.
- Our study indicates that Kp = 14 mag is a cut-off magnitude for detection of variations with amplitudes below 20 ppm in A-F type stars with *Kepler*.
- Sixteen percent of the sample stars show no clear variability within the expected range of frequencies for δ Sct and γ Dor stars. Faint and cool stars predominate this sample. Among the stars, we identified 75 candidate solar-like stars. No correlation between non-variability and the length of the

- available dataset or the available cadence mode is found. We find indications for the presence of constant stars inside the instability strips of A-F type pulsators.
- The remaining 21% of sample stars are identified as a Cepheid, B-type stars, red giant stars, stars that show stellar activity, or binaries. At least 12% of the sample are identified as a binary or multiple system, based on investigation of the *Kepler* light curve or on input from the literature. Many long-period binaries are expected to be among the remaining stars of the sample. 3.5% of the sample stars shows eclipses. Several of the EBs have variable components, including δ Sct, γ Dor, and hybrid stars.

Clearly, space missions are changing the landscape of γ Dor and δ Sct pulsators. We aimed at a global analysis of the sample stars. A careful seismic analysis of individual stars is needed to confirm their classification, clarify the observed variety in pulsational behaviour, fully characterize the properties of the δ Sct, γ Dor, and hybrid groups, understand their relationship, clarify the driving mechanism(s) for each group, and elaborate on the variables *energy* and *efficiency*. The observational results with *Kepler* presented here open up several new questions and theoretical challenges for the current models related to pulsational instability, thermodynamics, and stellar structure. We mention here some topics for further investigation.

To be able to place the stars confidently in the $(T_{\rm eff}, \log g)$ -diagram, estimate the projected rotational velocity, and derive accurate abundances, at least one high-resolution spectrum is needed for each star. To this end, an observational campaign is ongoing (Uytterhoeven et al. 2010a,b). Most stars of the δ Sct, γ Dor, and hybrid stars in our sample with magnitude Kp \leq 10.5 mag have recently been observed or are scheduled to be observed in the coming months. However, 70% of the stars in Table 3 are fainter than magnitude Kp = 10.5 mag, for which it is time-consuming and less practical to observe them with the available 2-m class telescopes that are equipped with a high-resolution spectrograph.

Because the oscillation modes in A-F type stars do not produce evident frequency patterns in their mode spectra, as is the case for solar-like oscillators, the identification of pulsation modes benefits from high-resolution spectral or multi-colour time series. Here we encounter limitations owing to the relative faintness of the *Kepler* sample too. For instance, it is only feasible to efficiently spectroscopically monitor the few brightest (Kp \leq 9 mag) stars from the ground, while multi-colour photometry can go a few magnitudes fainter. Moreover, it will be impossible with the current instrumentation to detect the pulsation amplitudes of the order of a few μ mag from the ground. Therefore, only for a limited selection of the stars in Table 3, i.e. bright stars exhibiting high-amplitude variations, will it be feasible to organize ground-based follow-up campaigns.

For all other stars, we will have to rely on extracting information on the pulsation modes directly from frequency patterns observed in the *Kepler* data. Quasi-periodic patterns have been observed before in δ Sct stars (Handler et al. 1997; García Hernández et al. 2009). But in fast rotating stars the rotation destroys regular frequency and period patterns of p- and g-modes, which complicates the mode identification (e.g. Lignières et al. 2006; Ballot et al. 2010). For slowly rotating g-mode pulsators ($V_{\rm rot} < 70~{\rm km\,s^{-1}}$), a mode-identification technique has been developed that relies only on accurate values of at least three frequencies (Frequency Ratio Method, Moya et al. 2005; Suárez et al. 2005), which is ideal to apply to the information extracted from the *Kepler* white light, without

colour or spectral information. Unfortunately, many of our stars are moderate-to-fast rotators (see Sect. 7.2). Hence, the mode identification will be very challenging and will require more investigation.

An individual analysis of the candidate hybrid stars is needed to confirm their hybrid status and to firmly characterize their pulsation properties. The current theoretical instability models for hybrid stars need to be revised to be able to accommodate all stars that have been proposed as hybrid candidates in this paper. This includes a revision of the mechanisms that allow driving of p- and g-modes in A-F type stars with a broad range of temperatures. Additional processes that can be investigated with possible effect on the driving are stochastic excitation (Houdek et al. 1999; Samadi et al. 2002), a convective driving mechanism similar to g-mode pulsations in white dwarfs (Goldreich & Wu 1999), a κ mechanism-related effect presented by Gautschy & Löffler (1996) and Löffler (2000), and radiative levitation (Turcotte et al. 2000). Asteroseismic diagnostics have been studied to find signatures of stochastic mechanisms at the origin of the instability of γ Dor oscillators (Pereira et al. 2007). In that work, this possibility was not discarded, but continuous and precise space data were not yet available. The Kepler time series of the sample of stars studied here will be an ideal new testbed for this method.

The long, continuous time series that *Kepler* will deliver during its lifetime will unveil a large number of amplitudes at μ mag level. This precision will open up opportunities to search for signatures of granulation in the variable star light (Kallinger & Matthews 2010). Spectroscopically, convective signatures have been detected in the microturbulence and line broadening of A-F type stars cooler than $T_{\rm eff}=10\,000$ K (Landstreet et al. 2009).

Also the theoretical instability strips of the γ Dor and δ Sct pulsators need revision. As shown in Fig. 1, stars exhibiting purely γ Dor or δ Sct pulsations seem to exist beyond the current blue and red edge of the respective instability strips. Moreover, it is worth investigating if the evolutionary phase of γ Dor stars can be derived from properties in their frequency spectra, as is recently suggested by Bouabid et al. (2011), based on a theoretical study of seismic properties of MS and pre-MS γ Dor pulsators.

Another open question is the existence of non-variable A-F type stars inside the instability strips. So far, it is suggested (Poretti et al. 2003; Breger 2004) that all seemingly constant stars in the instability strip are low-amplitude pulsators. In this study we find indications that non-variability exists within the instability strip, but a more in-depth investigation based on a more comprehensive sample of stars with precise values of $T_{\rm eff}$ and $\log g$ is needed to confirm this.

Furthermore, candidate γ Dor stars with only a few excited dominant modes deserve to be looked at in more detail. The relation between rotation and pulsations is not yet clear. Moreover, the differentiation between pulsations and rotational variability proves to be very difficult (Breger 2011; Monnier et al. 2010). In the pilot study by Balona et al. (2011d) it was suggested that pulsation and rotation periods might be very closely related. It needs to be investigated to which extent the rotation influences the excitation of the observed modes. To help this investigation, $v \sin i$ values are needed.

Constraints on important physical parameters that are crucial for seismic modelling, such as stellar radius and mass, can be derived directly for pulsators in binary systems (e.g. Tango et al. 2006; Desmet et al. 2010). Our sample consists of several binaries and eclipsing systems with (a) pulsating component(s) (see Table 4). Hence, these targets in particular are very

promising for dedicated ground-based follow-up observations, and a seismic analysis. Moreover, it will be interesting to investigate the effect of tidal interactions on pulsation frequencies (e.g. Uytterhoeven et al. 2004; Derekas et al. 2011).

Four of the EBs with a candidate γ Dor, δ Sct, or hybrid component in our sample are known as chemically peculiar stars (see Table 1). Three candidate hybrid stars (out of 61 stars with known spectral type), four candidate δ Sct stars (out of 67 stars), and one candidate γ Dor star (out of 25 stars) are also Ap or Am stars. So far, we detected both p- and g-mode pulsators among the chemically peculiar stars. Balona et al. (2011c) stated that the instability strip of pulsating Am type stars and δ Sct stars do not differ much. With the current small number statistics, it is not clear whether Ap/Am stars are indeed rare among γ Dor stars (Handler & Shobbrook 2002). One of the open questions is if chemical peculiarity is related to hybridity. The first discovered hybrid HD 8801 (Henry & Fekel 2005) intruigingly turned out to be an Am star. In a recent abundance study by Hareter et al. (2011) one of the two studied hybrid stars is also confirmed as being a chemically peculiar star. Together with the results of this study, this brings the total of known chemically peculiar hybrid stars to five. There is currently no evidence for a direct link between chemical peculiarity and hybrid behaviour, but a careful abundance analysis of a representative sample of hybrid stars is needed to confirm this.

Many more (candidate) δ Sct, γ Dor, and hybrid stars are expected to be among the stars observed by *Kepler*. Debosscher et al. (2011) reported the discovery of many additional δ Sct and γ Dor candidates in the public *Kepler* Q1 data. Also, a considerable fraction of the host stars of the recently published 1235 *Kepler* planet candidates (Borucki et al. 2011) turn out to be A-F type stars. Hence, we have promising prospects in studying and understanding the A-F type star variable behaviour in detail through a much larger and more complete sample of A-F stars in the *Kepler* field when longer timestrings of *Kepler* data will become publicly available. *Kepler* is definitely opening the window towards the accurate characterization of pulsating A-F stars.

Acknowledgements. We are grateful to Joanna Molenda-Żakowicz, James Nemec and the anonymous referee for their suggestions and comments to improve this paper. Funding for the Kepler mission is provided by NASA's Science Mission Directorate. We thank the entire Kepler team for the development and operations of this outstanding mission. K.U. acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) in the framework of project UY 52/1-1, and by the Spanish National Plan of R&D for 2010, project AYA2010-17803. A.M. acknowledges the funding of AstroMadrid (CAM S2009/ESP-1496). E.N. and A.P. acknowledge the financial support of the NN 203 405139 and NN 203 302635 grant, respectively, from the MNiSW. The work by G.H. and V.A. was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung under grant P20526-N16. L.F.M. acknowledge financial support from the UNAM under grant PAPIIT IN114309. R.Sz. and L.L.K. have been supported by the "Lendület" program of the Hungarian Academy of Sciences and the Hungarian OTKA grants K83790 and MB08C 81013. RSz was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. SH acknowledges financial support from the Netherlands Organisation for Scientific Research (NWO). This research has been funded by the Spanish grants ESP2007-65475-C02-02, AYA 2010-21161-C02-02 and CSD2006-00070. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 269194. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and is partly based on observations obtained at the Observatorio Astrónomico Nacional-San Pedro Mártir (OAN-SPM), Baja California, Mexico, at the Observatoire de Haute Provence, France, and at the Thüringer Landessternwarte Tautenburg, Germany. We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.

References Abt, H. A. 1984, ApJ, 285, 247 Abt, H. A. 2004, ApJS, 155, 175 Abt, H. A., & Cardona, O. 1984, ApJ, 285, 190 Aerts, C. 2001, ApJ, 553, 814 Aerts, C., Eyer, L., & Kestens, E. 1998, A&A, 337, 790 Allende Prieto, C., & Lambert, D. L. 1999, A&A, 352, 555 Antoci, V., Handler, G., Campante, T. L., et al. 2011, Nature, accepted Baglin, A., Auvergne, M., Barge, P., et al. 2006, in The CoRoT Mission, Pre-Launch Status, Stellar Seismology and Planet Finding, ed. M. Fridlund, A. Baglin, J. Lochard, & L. Conroy, ESA Publications Division, Nordwijk, Netherlands, ESA SP-1306, 33 Ballot, J., Lignières, F., Reese, D. R., & Rieutord, M. 2010, A&A, 518, A30 Balona, L. A., Krisciunas, K., & Cousins, A. W. J. 1994, MNRAS, 270, 905 Balona, L. A., Cunha, M. S., Kurtz, D. W., et al. 2011a, MNRAS, 410, 517 Balona, L. A., Pigulski, A., De Cat, P., et al. 2011b, MNRAS, 413, 2403 Balona, L. A., Ripepi, V., Catanzaro, G., et al. 2011c, MNRAS, 414, 792 Balona, L. A., Guzik, J., Uytterhoeven, K., et al. 2011d, MNRAS, in press Benkő, J. M., Kolenberg, K., Szabó, R., et al. 2010, MNRAS, 409, 1585 Bidelman, W. P., Ratcliff, S. J., & Svolopoulos, S. 1988, PASP, 100, 828 Böhm-Vitense, E. 1958, Zeitschrift für Astrophysik, 46, 108 Borucki, W. J., Koch, D. G., Brown, T. M., et al. 2010, Science, 327, 977 Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ApJ, 728, 117 Bouabid, M.-P., Montalbán, J., Miglio, A., et al. 2009, in Stellar Pulsation: Challenges for Theory and Observation, ed. J. A. Guzik, P. A. Bradley (Melville, NY: AIP), AIP Conf. Proc., 1170, 477 Bouabid, M.-P., Montalbán, J., Miglio, A., et al. 2011, A&A, 531, A145 Breger, M. 2000, in Delta Scuti and Related Stars, ed. M. Breger, & M. H. Montgomery, ASP Conf. Ser., 210, 3 Breger, M. 2004, in The A-Star Puzzle, ed. J. Zverko, J. Žižnovský, S. J. Adelman, & W. W. Weiss (Cambridge University Press), Proc. IAU Symp., 224, 335 Breger, M. 2011, Carnegie Observatories Astrophysics Series, 5, in press [arXiv:1104.4392] Breger, M., Handler, G., Garrido, R., et al. 1997, A&A, 324, 566 Breger, M., Lenz, P., Antoci, V., et al. 2005, A&A, 435, 955 Breger, M., Balona, L., Lenz, P., et al. 2011, MNRAS, 414, 1721 Brown, T. M., Latham, D. W., Everett, M. E., & Esquerdo, G. A. 2011, AJ, in press [arXiv:1102.0342] Bruntt, H., De Cat, P., & Aerts, C. 2008, A&A, 478, 487 Cannon, A. J. 1925, Ann. Astron. Obs. Harvard Coll., 100, 17 Carrier, F., North, P., Udry, S., & Babel, J. 2002, A&A, 394, 151 Catanzaro, G., Frasca, A., Molenda-Żakowicz, J., & Marilli, E. 2010, A&A, 517, A3 Catanzaro, G., Ripepi, V., Bernabei, S., et al. 2011, MNRAS, 411, 1167 Chapellier, E., Rodríguez, E., Auvergne, M., et al. 2011, A&A, 525, A23 Cox, J. P., & Giuli, R. T. 1968, Principles of stellar structure (New York: Gordon Cuypers, J., Aerts, C., De Cat, P., et al. 2009, A&A, 499, 967 Debosscher, J., Sarro, L. M., López, M., et al. 2009, A&A, 506, 519 Debosscher, J., Blomme, J., Aerts, C., & De Ridder, J. 2011, A&A, 529, A89 Derekas, A., Kiss, L. L., Borkovits, T., et al. 2011, Science, 332, 216 De Cat, P., Eyer, L., Cuypers, J., et al. 2006, A&A, 449, 281 Desmet, M., Frémat, Y., Baudin, F., et al. 2010, MNRAS, 401, 418 Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2004, A&A, 414, L17 Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2005, A&A, 435, 927 Eyer, L., & Aerts, C. 2000, A&A, 361, 201 Floquet, M. 1970, A&AS, 1, 1 Floquet, M. 1975, A&AS, 21, 25 García, R. A., Hekker, S., Stello, D., et al. 2011, MNRAS, 414, 6 García Hernández, A., Moya, A., Michel, E., et al. 2009, A&A, 506, 79 Gautschy, A., & Löffler, W. 1996, DSSN, 10, 13 Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al. 2010a, PASP, 122, 131 Gilliland, R. L., Jenkins, J. M., Borucki, W. J., et al. 2010b, ApJ, 713, 160 Glebocki, R., & Stawikowski, A. 2000, AcA, 50, 509 Goldreich, P., & Wu, Y. 1999, ApJ, 511, 904 Grenier, S., Baylac, M.-O., Rolland, L., et al. 1999, A&AS, 137, 451 Grigahcène, A., Dupret, M.-A., Gabriel, M., Garrido, R., & Scuflaire, R. 2005, A&A, 434, 1055 Grigahcène, A., Antoci, V., Balona, L., et al. 2010, ApJ, 713, L192

Gray, R. O., & Kaye, A. B. 1999, AJ, 118, 2993

2001, IAU Inform. Bull. Var. Stars, 5062, 1

Guinan, E. F., Bochanski, J. J., Depasquale, J. M., Ribas, I., & McCook, G. P.

Guetter, H. H. 1968, PASP, 80, 197

```
Guzik, J. A., Kaye, A. B., Bradley, P. A., Cox, A. N., & Neuforge, C. 2000, AJ,
   542, 57
Handler, G. 1999, MNRAS, 309, L19
Handler, G. 2009a, AIPC, 1170, 403
Handler, G. 2009b, MNRAS, 398, 1339
Handler, G., & Shobbrook, R. R. 2002, MNRAS, 333, 251
Handler, G., Pikall, H., O'Donoghue, D., et al. 1997, MNRAS, 286, 303
Hareter, M., Reegen, P., Miglio, A., et al. 2010, AN, P49 [arXiv:1007.3176]
Hareter, M., Fossati, L., Weiss, W., et al. 2011, ApJ, submitted
Hartman, J. D., Bakos, G., Stanek, K. Z., & Noyes, R. W. 2004, AJ, 128, 1761
Hauck, B., & Mermilliod, M. 1998, A&AS, 129, 431
Henry, G. W., & Fekel, F. C. 2005, AJ, 129, 2026
Henry, G. W., Fekel, F. C., Kaye, A. B., & Kaul, A. 2001, AJ, 122, 3383
Henry, G. W., Fekel, F. C., & Henry, S. M. 2005, AJ, 129, 2815
Henry, G. W., Fekel, F. C., & Henry, S. M. 2011, AJ, 142, 39
Hill, P. W., & Lynas-Gray, A. E. 1977, MNRAS, 180, 691
Hill, S. J., & Schilt, J. 1952, Contributions from the Rutherford Observatory of
   Columbia University New York, 32, 1
Hoffleit, D. 1951, Harvard College Observatory Bulletin, 920, 32
Horn, M., & Vollandt, R. 1995, in Multiple Tests und Auswahlverfahren
   (Stuttgart: Gustav Fischer Verlag)
Houdek, G., Balmforth, N. J., Christensen-Dalsgaard, J., & Gough, D. O. 1999,
   A&A, 351, 582
Jenkins, J. M., Caldwell, D. A., Chandrasekaran, H., et al. 2010a, ApJ, 713, L120
Jenkins, J. M., Caldwell, D. A., Chandrasekaran, H., et al. 2010b, ApJ, 713, L87
Kallinger, T., & Matthews, J. M. 2010, ApJ, 711, L35
Kaye, A. B., Handler, G., Krisciunas, K., Poretti, E., & Zerbi, F. M. 1999a, PASP,
   111,840
Kaye, A. B., Henry, G. W., Fekel, F. C., & Hall, D. S. 1999b, MNRAS, 308,
   1081
Keiner, J., Kunis, S., & Potts, D. 2009, in Using NFFT 3 – a software library for
   various nonequispaced fast Fourier transforms ACM Trans. Math. Software,
Kharchenko, N. V., & Roeser, S. 2009, VizieR On-line Data Catalog: I/280B
King, H., Matthews, J. M., Rowe, J. F., et al. 2006, CoAst, 148, 28
Koch, D. J., Borucki, W. J., Basri, G., et al. 2010, ApJ, 713, L79
Kolenberg, K., Szabó, R., Kurtz, D., et al. 2010, ApJ, 713, L198
Kurucz, R. L. 1993, Kurucz CD-ROM 13 (Cambridge, USA: Smithonian
   Astrophysical Observatory)
Lafrasse, S., Mella, G., Bonneau, D., et al. 2010, in Optical and Infrared
   Interferometry II., ed. W. C. Danchi, F. Delplancke, & J. K. Rajagopal, Proc.
   SPIE, 7734, 140
Lampens, P., & Boffin, H. M. J. 2000, in Delta Scuti and Related Stars, ed. M.
  Breger, & M. H. Montgomery, ASP Conf. Ser., 210, 309
Landstreet, J. D., Kupka, F., Ford, H. A., et al. 2009, A&A, 503, 973
Latham, D. W., Brown, T. M., Monet, D. G., et al. 2005, BAAS, 37, 1340
Lehmann, H., Tkachenko, A., Semaan, T., et al. 2011, A&A, 526, A124
Lenz, P., & Breger, M. 2005, CoAst, 146, 53
Lignières, F., Rieutord, M., & Reese, D. 2006, A&A, 455, 607
Lindoff, U. 1972, A&A, 16, 315
Löffler, W. 2000, in The Impact of Large-Scale Surveys on Pulsating Star
   Research, ed. L. Szabados, & D. Kurtz, ASP Conf. Ser., 203, 447
Macrae, D. A. 1952, ApJ, 116, 592
Magalashvili, N. L., & Kumishvili, J. I. 1976, IAU Inform. Bull. Var. Stars, 1167,
Malkov, O. Y., Oblak, E., Snegireva, E. A., & Torra, J. 2006, A&A, 446, 785
Martín, S., Bossi, M., & Zerbi, F. M. 2003, A&A, 401, 1077
Masana, E., Jordi, C., & Ribas, I. 2006, A&A, 450, 735
Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., & Worley, C. E.
   2001, AJ, 122, 3466
Mathias, P., Le Contel, J.-M., Chapellier, E., et al. 2004, A&A, 417, 189
Molenda-Żakowicz, J., Frasca, A., & Latham, D. W. 2008, AcA, 58, 419
Molenda-Żakowicz, J., Latham, D. W., Catanzaro, G., Frasca, A., & Quinn, S. N.
   2011, MNRAS, 412, 1210
Monnier, J. D., Townsend, R. H. D., Che, X., et al. 2010, ApJ, 725, 1192
Moon, T. T. 1985, Comm. from the Univ. of London Obs., 78
Moore, J. H. & Paddock, G. F. 1950, ApJ, 112, 48
Moya, A., & Rodríguez-López, C. 2010, ApJ, 710, L7
Moya, A., Suárez, J. C., Amado, P. J., et al. 2005, A&A, 432, 289
Niemczura, E., Morel, T., & Aerts, C. 2009, A&A, 506, 213
Nordström, B., Mayor, M., Andersen, J., et al. 2004, A&A, 418, 989
Otero, S. 2007, Open European Journal on Variable stars, 72, 10
Østensen, R. H., Silvotti, R., Charpinet, S., et al. 2010, MNRAS, 409, 1470
Pereira, T. M. D., Suárez, J. C., Lopes, I., et al. 2007, A&A, 464, 659
Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49
Pigulski, A., Pojmański, G., Pilecki, B., & Szczygieł, D. M. 2009, AcA, 59, 33
```

```
Poretti, E., Michel, E., Garrido, R., et al. 2009, A&A, 506, 85
Press, W. H., Teukolsky, S. A., Vettering, W. T., & Flannery, B. P. 1992,
  Numerical Recipes, 2nd edn. (New York: Cambridge University Press)
Prša, A., Batalha, N. M., Slawson, R. W., et al. 2011, AJ, 141, 83
Reegen, P. 2007, A&A, 467, 1353
Reegen, P. 2011, CoAst, in press [arXiv:1006.5081]
Rodríguez, E., & Breger, M. 2001, A&A, 366, 178
Rodríguez, E., López-González, M. J., & López de Coca, P. 2000, A&AS, 144,
Rowe, J. F., Matthews, J. M., Cameron, C., et al. 2006, CoAst, 148, 34
Samadi, R., Goupil, M.-J., & Houdek, G. 2002, A&A, 395, 563
Sato, K., & Kuji, S. 1990, A&AS, 85, 1069
Scargle, J. D. 1982, ApJ, 263, 835
Scuflaire, R., Théado, S., Montalbán, J., et al. 2008, A&AS, 316, 83
Shulyak, D., Tsymbal, V., Ryabchikova, T., Stütz, Ch., & Weiss, W. W. 2004,
   A&A, 428, 993
Skiff, B. A. 2007, Vizier On-line Data Catalog, 1, 2023
Slawson, R. W., Prša, A., Welsh, W. F., et al. 2011, AJ, in press
  [arXiv:1103.1659]
Smalley, B., & Kupka, F. 1997, A&A, 328, 349
Soubiran, C., Le Campion, J.-F., Cayrel de Strobel, G., & Caillo, A. 2010, A&A,
   515, A111
Stephenson, C. B. 1986, ApJ, 301, 927
Strömgren, B. 1966, ARA&A, 4, 433
Suárez, J. C., Moya, A., Martín-Ruíz, S., et al. 2005, A&A, 443, 271
Szabó, R., Szabados, L., Ngeow, C.-C., et al. 2011, MNRAS, 413, 2709
Tango, W. J., Davis, J., Ireland, M., et al. 2006, MNRAS, 370, 884
Trampedach, R., & Stein, R. F. 2011, ApJ, 731, A78
Tsymbal, V. 1996, ASPC, 108, 198
Turcotte, S., Richer, J., Michaud, G., & Christensen-Dalsgaard, J. 2000, A&A,
   360, 603
Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonradial os-
  cillations of stars (Tokyo: University of Tokyo Press)
Uytterhoeven, K., Telting, J. H., Aerts, C., & Willems, B. 2004, A&A, 427, 593
Uytterhoeven, K., Mathias, P., Poretti, E., et al. 2008, A&A, 489, 2213
Uytterhoeven, K., Szabo, R., Southworth, J., et al. 2010a, AN, 331, P30
   [arXiv:1003.6089]
Uytterhoeven, K., Briquet, M., Bruntt, H., et al. 2010b, AN, 331, 993
Vyssotsky, A. N. 1958, Publications of the Leander Mc Cormik Observatory of
   the University of Virginia, Charlottesville, 13, V
Walker, G., Matthews, J., Kuschnig, R., et al. 2003, PASP, 115, 1023
Watson, C. L. 2006, SASS, 25, 47, AAVSO International Variable Star Index
```

¹ Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot; CEA, IRFU, SAp, Centre de Saclay, 91191, Gif-sur-Yvette, France

Wright, C. O., Egan, M. P., Kraemer, K. E., & Price, S. D. 2003, AJ, 125, 359

Zerbi, F. M., Rodríguez, E., Garrido, R., et al. 1997, MNRAS, 292, 43

Zerbi, F. M., Rodríguez, E., Garrido, R., et al. 1999, MNRAS, 303, 275

VSX, Watson+, 2006-2010

Worley, C. E., & Douglass, G. G. 1997, A&AS, 125, 523

Zechmeister, M., & Kürster, M. 2009, A&A, 496, 577

² Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, 79104

Freiburg im Breisgau, Germany

³ Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain; Departamento de Astrofísica, Universidad de La Laguna,

Spain; Departamento de Astrofísica, Universidad de La Laguna 38205 La Laguna, Tenerife, Spain e-mail: katrien@iac.es

- ⁴ Laboratorio de Astrofísica Estelar y Exoplanetas, LAEX-CAB (INTA-CSIC), PO BOX 78, 28691 Villanueva de la Cañada, Madrid, Spain
- ⁵ Centro de Astrofísica, Faculdade de Ciências, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal
- ⁶ Los Alamos National Laboratory, XTD-2, Los Alamos, NM 87545-2345, USA
- Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, 18080 Granada, Spain
- ⁸ LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris-Diderot, 92195 Meudon, France
- ⁹ Valentian International University, Prolongación C/ José Pradas Gallen, s/n 12006 Castellón de la Plana, Spain
- Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK
- Institut für Astronomie, Türkenschanzstraße 17, 1180 Wien, Austria
- Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw, Poland

Poretti, E., Koen, C., Martinez, P., et al. 1997, MNRAS, 292, 621 Poretti, E., Garido, R., Amado, P. J., et al. 2003, A&A, 406, 203

- ¹³ South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa
- ¹⁴ Instytut Astronomiczny, Uniwersytet Wrocławski, Kopernika 11, 51-622 Wrocław, Poland
- ¹⁵ Observatorio Astronómico Nacional, Instituto de Astronomía, UNAM, Ensenada B.C., Apdo. Postal 877, Mexico
- ¹⁶ CISAS, Padova University, via Venezia 15, 35131 Padova, Italy
- ¹⁷ INAF Astronomical Observatory of Padova, Vicolo Osservatorio 5, 35122 Padova, Italy
- ¹⁸ UMR 6525 H. Fizeau, UNS, CNRS, OCA, Campus Valrose, 06108 Nice Cedex 2, France
- ¹⁹ Instituut voor Sterrenkunde, K.U.Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
- Konkoly Observatory of the Hungarian Academy of Sciences, 1525 Budapest PO Box 67, Hungary
- ²¹ INAF Osservatorio Astronomico di Capodimonte, via Moiariello 16, 80131 Napoli, Italy
- Lab. d'Astrophysique de Toulouse-Tarbes, Université de Toulouse, CNRS, 57 avenue d'Azereix, 65000 Tarbes, France
- ²³ Thüringer Landessternwarte Tautenburg, 07778 Tautenburg, Germany
- ²⁴ Department of Astronomy, New Mexico State University, Las Cruces, NM 88001, USA
- Astronomical Institute "Anton Pannekoek", University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

- ²⁶ University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, UK
- ²⁷ Department of Astronomy and Physics, Saint Marys University, Halifax, NS B3H 3C3, Canada
- ²⁸ Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland
- ²⁹ Los Alamos National Laboratory, XCP-6, MS T-087, Los Alamos, NM 87545-2345, USA
- ³⁰ Jeremiah Horrocks Institute of Astrophysics, University of Central Lancashire, Preston PR1 2HE, UK
- Royal Observatory of Belgium, Ringlaan 3, 1180 Brussel, Belgium
- ³² Department of Physics and Astronomy, University of Aarhus, bygn. 1520, Ny Munkegade, 8000 Aarhus C., Denmark
- ³³ Department of Astronomy, University of Texas, Austin, TX 78712, USA
- ³⁴ Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW, 2006, Australia
- 35 Bay Area Environmental Research Inst./NASA Ames Research Center, Moffett Field, CA 94035, USA
- ³⁶ SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035, USA

Table 1. Database of 750 Kepler A-F type stars.

Quarters SC ... Q1 Q3.1 Q2.2 Q3.3 02.3 02.1 03.2 03.1 02.3 24.3 24.2 22.2 22.3 Quarters LC \$\$\$\$ \$\$\$\$ (20-6) 12-69 00-01 35.3 158.5 0.0 66.3 158.5 32.9 1.2 1.2 95.2 248.3 1.2 219.3 35.4 66.3 9.5 9.5 262.8 44.2 44.2 137.7 228.8 321.4 8.691 109.5 9.5 9.5 321.5 321.5 44.4 292.5 109.0 137.7 9.5 9.62 310.5 321.4 169.8 44.2 44.2 137.7 44.2 137.7 N Datapoints 463 44399 15791 38681 45121 40286 2 062 45 378 463 47 547 2 090 2 090 2 070 40 426 40 072 58 430 2 063 48 466 45 158 45 394 40 135 40 427 43 321 14 006 58 013 45 140 40408 2 062 2 034 460 binary, Am star Variable oulsating ... oinary ... binary³¹ binary* binary binary° FYC 3120-1011-1 FYC3134-1188-1 FYC 3120-1051-1 FYC 3121-1831-1 FYC 3134-2162-FYC3121-1178-TYC 3121-379-1 'YC 3120-564-1 FYC 3135-607-1 FYC 3135-396-1 FYC 3135-135-1 ГYC 3134-632-1 TYC 3135-189-1 FYC 3134-70-1 ... BD+38 3666 ... BD+38 3415 HD 181850 ... BD+38 3391 BD+373324 HD 178306 HD 178875 HD 184105 HD 181569 HD 182634 Name kF2hA9mF3¹⁸ Spectral type ... A5³⁵ 10.6 12.3 11.3 9.4 9.4 13.5 10.7 10.5 10.3 10.1 Κp +38 12 08.2 +38 15 08.2 +38 16 09.4 +38 16 47.1 F38 24 18.0 +38 30 20.2 +38 32 46.6 +38 33 25.9 +38 08 59.3 -38 08 56.6 F38 06 51.7 r38 09 13.6 F38 11 41.6 +38 08 35.9 +38 18 24.3 +38 21 28.8 F38 20 07.4 +38 21 13.9 +38 19 32.8 +38 21 19.9 +38 23 59.5 +38 18 53.3 +38 18 46.4 +38 18 21.2 +38 29 02.3 +38 27 34.3 +38 24 41.0 +38 24 02.9 F38 27 51.8 F38 25 24.9 +38 34 04.0 +38 35 24.4 +38 30 31.8 +38 31 49.4 F38 30 32.6 +38 30 34.6 +38 34 50.6 F38 34 54.4 F38 32 18.4 F38 35 51.6 F38 40 26.4 -38 38 56.5 F38 39 04.9 38 19.2 38 05.1 +38 21 04.1 Dec (J2000) 19 23 57.46 19 25 49.34 19 30 50.23 19 32 48.14 19 03 36.72 19 20 37.54 19 28 30.50 19 28 42.19 19 01 03.65 19 03 51.02 19 21 43.73 19 31 15.98 19 35 58.61 19 38 54.29 19 08 12.48 19 13 07.75 19 20 04.25 19 31 16.22 19 32 00.62 19 37 33.10 19 19 22 12.36 19 22 12.36 19 31 35.98 19 31 49.30 19 35 31.73 56.78 19 06 35.86 19 11 01.99 19 05 31.68 19 08 43.49 19 10 59.54 19 20 27.02 19 38 29.66 19 08 38.04 19 39 18.86 19 39 53.33 19 06 27.53 19 00 37.54 19 02 50.26 19 05 12.86 19 40 03.91 19 00 34.73 19 04 53.21 19 19 32.71 RA (J2000) 19 27 : 19 39 1 19 04 5 33458318 02975832 03215800 03219256 03230227 03240556 03245420 03248627 03331147 33355066 03425802 03427365 03429637 03437940 33528578 3539153 33558145 0387660 02989746 12995525 72997802 03097912 03119825 03217554 03218637 03220783 03231406 03337002 03347643 03348390 03424493 03427144 33440495 33449373 03449625 33457434 33458097 03119604 03222364 03354022 03453494 03111451 03327681 3525951 33546061 0297240

Table 1. continued.

Quarters SC	:	:	02.1	. :	04.2	, :	04.3	, :	02.2	7:77	. 6	Q2.2 0.3.3	Q3.2	:	8	:	00	, 00	03.1	02.2	i	1. 5	Q2:2	ري. چ	3	00	Q2.3	Q2.2	Q4.3	:	Q2.1	:	Q2.2	Q2.2	Q2.3	Q2.3	Q4.2	00	04.2	02.3	02.2	, 10	02.2	02.2	02.3	03.3	04.1	, :	
Quarters LC	00	00	00-01	00	00-01	00-01	, 00–00	00-01	00-04	55	5 6	[7] (2)	00−01 00−01	8	Q1	00-01	0.0) OI	00-01	00-07	55	7 Z	200	[] (M-C]	[₂]	Q ₁	Q1	00-01	00-01	00-01	00-01	00-01	00-01	00-01	00-01	00-01	00-01	Q1	00-01	, 10	00-01	,00	00-01	, 00-01	00-01	00-01	00-01	Q0-Q4	
δ <i>T</i> (d)	0.0	0.0	4.5	0.0	219.3	1.2	248.3	1.6	35 3	 	0.1	55.5	126.4	0.0	1.2	1.2	1.2	4.1	95.3	35.3	210.2	25.2	0.00	7.06	1.2	1.2	66.5	35.3	248.3	1.6	4.5	1.2	35.3	35.4	66.3	66.3	219.3	1.2	219.3	66.3	35.3	1.2	35.3	35.3	66.3	158.5	187.3	4.5	
ΔT	9.5	9.5	9.6	9.5	292.5	44.2	321.5	44.2	321.4	777	1 5	c.601	7.007	9.5	4.4	44.2	4.44	4.4	169.8	109.5	200.5	100 5	109.5	109.8	4.4	4.4 4.4	126.8	109.5	321.5	44.2	9.62	44.2	109.4	109.5	137.7	137.7	292.5	4.4	292.5	126.8	109.5	44.2	109.5	109.5	137.7	228.8	262.8	321.5	
N Datapoints	459	463	43 854	463	38 681	2090	43 807	2067	57.376	2061	2001	45 382	46 068	464	15851	2 0 8 9	15860	15 771	44 909	45 449	38 658	36 036	45 190	671.04	15 842	15 856	39 583	45 465	44 118	2070	43 905	2075	43 160	45 235	40 285	40 321	38 628	15 829	38 629	39 692	45 460	49 453	45 434	45 390	40 338	40 112	47 527	14 474	
Variable	:	:	:	:	:	:	:	binarv⋆		:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	binary	binary	÷	:	:	:	binary ³⁸	· :	:	:	:	:	:	binary	. :	:	:	:	: :		: :	variable ^{4,38}	
Name	:	:	:	:	TYC 3134-1328-1	TYC 3135-142-1	:	:	HD 178971	TVC 2135 260 1	TYC 2123-300-1	1 Y C 3133-77-1	TYC3135-708-1	HD 185894	HD 225341	:	TYC3134-3-1	BD+383594	HD 225504	TVC 3120-867-1	TVC 3121 710-1	110317171	1 0001 7010 773	I I C 3130-1008-1	TYC 3119-347-1	BD+383465	:	BD+383512	TYC 3135-485-1	HD 225644	:	:	HD 181469	TYC 3134-81-1	:	TYC 3135-437-1	TYC 3135-641-1	HD 225718	TYC 3121-1037-1	:	HD 225569	HD 225535	:	HD 225479	TYC 3140-568-1	TYC 3125-3570-1	TYC3138-1615-1	BD+393858	
Spectral type	:	:	:	:	:	:	:	:	F 5 35			205	:	$A1V^{17}$	$A0^{18}$:	:	$A2^{35}$	$A0^{18}$:	:	:	:		A235	$A5^{35}$	$A5^{35}$:	$\mathrm{F0}^{18}$	$F0^{35}$:	A5V ¹⁷ ,A2 ³⁵	:	:	:	:	$A7^{18}$:	$A8\Pi^{35}$	$A2^{18}$	$A3^{18}$:	A318	:	: :	: :	:	
Kp	13.5	12.6	11.2	12.9	10.9	10.5	11.4	13.2	×		11.0	10.7	10.6	8.8	11.0	12.5	10.0	8.6	10.4	103	10.8	10.0	11.2	C.11	10.0	8.6	11.6	9.5	11.2	12.5	6.7	12.3	7.9	10.2	11.4	10.3	10.8	10.1	10.9	10.9	9.4	11.0	11.5	10.3	11.4	10.5	10.8	8.6	
Dec (12000)	+38 42 20.2	+38 43 48.4	+38 43 34.1	+38 47 30.2	+38 43 01.1	+38 47 03.7	+38 44 45.3	+38 43 05.7	+38 53 59 6	2 2	1.00.11.20.4	+38 51 52.5	+38 52 43.6	+38 53 47.9	+38 51 59.9	+38 54 42.7	+38 58 32.7	+38 56 16.7	+38 56 49 9	+39 02 45 6	+30 04 16 0	130 04 10.3	+39 04 38.9	+39 00 46.8	+39 10 56.7	+39 10 15.3	$+39\ 10\ 30.1$	+39 10 28.7	+39 08 25.2	+39 08 48.5	+39 11 26.0	+39 12 18.0	+39 16 01.4	+39 13 17.6	+39 14 26.5	+39 15 17.9	+39 14 18.7	+39 12 19.7	+39 20 07.2	+39 22 23.8	+39 20 47.4	24	34	33	+39 32 15.3	36	+39 36 36.4	+39 37 43.0	
RA (J2000)	19 04 07.22	19 11 21.65	19 12 20.28	19 23 43.75	19 24 10.73	19 35 53.30	19 35 59.16	19 42 39.17	19 09 01 92	10 27 70 17	19 30 42.14	19 38 40.23	19 38 58.01	19 39 48.22	19 40 30.24	19 08 30.05	19 26 24.72	19 26 47.54	19 43 07.58	19 09 43 68	10 17 16 77	10 20 24 10	19 38 24.10	19 42 18.00	18 58 29.57	19 11 00.82	19 16 32.78	19 16 33.07	19 38 38.52	19 43 50.02	19 45 03.17	19 11 26.11	19 18 58.20	19 29 29.16	19 32 50.54	19 36 41.02	19 38 33.07	19 46 02.35	19 15 35.28	19 33 12.96	19 43 57.00	19 43 34.10	19 39 31.42	19 42 38.38	19 49 27.58	19 14 05.11	19 20 28.85	19 36 09.02	
KICID	03629080	03633693	03634384	03643717	03644116	03655513	03655608	03663141	03733735	03758717	03750717	03/39814	03/60002	03760826	03761641	03836911	03850810	03851151	03868032	03941283	03942911	03046347	02505050	03970759	04035667	04044353	04048488	04048494	04069477	04075519	04077032	04144300	04150611	04160876	04164363	04168574	04170631	04180199	04252757	04269337	04281581	04383117	04476836	04480321	04488840	04550962	04556345	04570326	

Table 1. continued.

KIC ID	RA (J2000)	Dec (J2000)	Kp	Spectral type	Name	Variable	N Datapoints	ΔT (d)	<i>δT</i> (d)	Quarters LC	Quarters SC
04588487	19 51 21.82	+39 41 37.5	10.9	$\mathrm{A0^{18}}$	HD 226196	:	43 254	310.5	248.4	Q1	Q4.3
04647763	19 18 41.14	+39 42 26.7	10.8		TYC 3125-307-1	:	45 196	109.5	35.4	00-01	Q2.2
04649476	19 20 35.90	+39 47 01.5	9.4	$A2^{35}$	BD+393732	:	45 459	109.5	35.3	00-01	02.2
04671225	43	+39 45 33.1	10.0	A7 ¹⁸	HD 225544	:	54 194	137.9	66.3	Q1	00,02.3
04677684	\$	+39 47 32.5	10.2	$A0^{18}$	HD 225950	:	40 407	137.7	66.3	00-01	Q2.3
04758316	39	48	11.1		TYC 3139-1185-1	÷	47 354	262.8	187.3	00-01	04.1
04768677	48	52	11.2	A^{18}	HD 225906	:	40 676	9.62	5.1	00-01	Q2.1
04840675	32	+39 58 45.3	9.6	::	TYC 3139-1403-1	:	40 137	228.8	158.5	00-01	Q3.3
04850899	43	+39 59 49.6	7.0	$F0IV^{19}, A5^{35}$	HD 186505	:	451	9.5	0.0	00	:
04856630	47	+39 58 56.3	11.4	:	:	:	40 317	137.7	66.3	00-01	Q2.3
04857678	8	+39 54 60.0	7.0	$F0^{35}$	HD 187523	:	14 420	321.5	4.7	00-04	:
04863077	53	+39 56 48.3	11.1	$A0^{18}$	HD 226381	:	49 510	44.2	1.2	8	Q1
04909697	80	+40 04 06.0	10.7	:	TYC 3124-2306-1	binary	47 579	262.8	187.3	00-01	Q4.1
04919818	22	+40 03 17.1	10.7	: '	TYC3138-36-1	:	47 370	262.8	187.3	00-01	Q4.1
04920125	22	+40 03 47.2	11.1	$F0^{35}$	BD+393745	:	49 479	44.2	1.2	00	Q1
04936524	9	+40 02 28.9	13.1	:	:	:	49 504	44.2	1.2	00	Q1
04937257	41	+40 04 54.8	13.5	:	:	:	10 188	228.7	4.9	00-03	:
04989900	18 55 25.66	+40 10 37.7	6.9	$A2^{35}$	HD 175841	:	37 933	25.9	0.0	:	Q3.3
05024150	19 41 06.58	+40 10 19.6	13.2	:	:	:	48 935	33.4	0.0	:	01
05024454	41	+40 10 34.8	13.7	:	NGC 6819 609	NGC 6819	48 970	33.4	0.0	:	Q1
05024455	4	+40 06 04.0	14.8	:	NGC 6819 960	NGC 6819	48 955	33.4	0.0	:	Q1
05024456	41	+40 10 51.9	11.1	:	NGC 6819 550	NGC 6819	13 835	309.7	4.9	01-04	:
05024750	4	+40 11 41.8	11.2	:	NGC 6819 975	NGC 6819	10327	228.7	4.5	00-03	:
05038228	52	+40 10 56.0	11.4		:	:	44 407	321.5	248.3	00-01	Q4.3
05080290	59	+40 12 54.8	9.5	$F8^{35}$	BD+403547		41 935	9.62	5.0	00-01	Q2.1
05088308	13	+40 14 32.1	8.7	F5 ³⁵	HD 180099	$binary^{38}$	40304	137.7	66.3	00-01	Q2.3
05105754	35	+40 17 36.6	11.4	:	TYC 3139-2577-1		40 240	137.7	6.99	00-01 00-01	Q2.3
05112786	4 5	$\frac{1}{2}$	11.5	:	NGC 6819 972	NGC 6819	14461	321.5	4.5 C.0	Q0-05	: 7
05112932	4 5	+40 13 15.5	13.2	4	NGC 6819 995	NGC 6819	48 925	33.4	0.0	. :	<u>5</u> 5
05115/9/	7 5	+40 1/ 46.0	7.1	A3.0	HD 223447	:	45015	0.67	C. 4	5 6	Q2.1
05104/6/	18 53 54.19	+40 19 25.6	×. 4	F21V=3	HD1/555/ TVC2175 260 1	:	14 422	5.175	0.4.0	\$ 8 \$ 2	
05100/90	200	+40 19 16.7	10.7	:	TVC 2120 1002 1		44 633	201.5	4.00	5 5 8 8	Q2:2 Q4.3
05191230	8 4	+40 19 23.7	14.8	:	1103139-1002-1	Ullially	44 430	33.4	0.00	2	÷, =
05200084	4	+40 23 31.7	9.2	$A0^{39}$	HD 225410	binarv [⋆]	41 302	79.6	5.1	00-01	02.1
05201088	4	+40 18 02.8	13.6	$A3^{35}$:	:	48 950	33.4	0.0	, ,	01
05209712	19 49 21.98	+40 21 13.2	11.3	$A2^{39}$	HD 226009	:	45 346	109.5	35.3	00-01	02.2
05217733	19 55 44.76	+40 23 30.3	7.4	$\mathbf{B}1\mathbf{V}^{22},\mathbf{B}2\mathbf{\Pi}^{21}$	HD 188891	binary	42 261	28.9	0.0	:	Q4.3
05219533	57	+40 22 50.5	9.2	A2 ³⁹ ,kA2hA8mA8 ²³	HD 226766	binary	49 385	44.2	1.2	00	Q1
05272673		+40 24 27.6	10.4	:	TYC 3138-994-1	:	45 175	169.8	95.2	00-01	Q3.1
05294571	19 47 12.53	+40 28 02.4	10.5	$F2^{39}$	HD 225808	:	47 206	262.8	187.3	00-01	Q4.1
05296877	19 49 04.75	+40 24 36.6	12.3	:	HAT 199-27597	variable ^{5,38}	28 722	321.9	75.3	00-04	00
05356349	19	+40 35 07.3	8.1	$A0^{35}$	HD 181680	binary	45 292	189.7	126.4	Q1	Q3.2
05371747		+40 35 38.4	10.5	\mathbb{F}^{35}	BD+403811	:	45 893	200.7	126.4	00-01	03.2
05391416	55	33 12	10.2	$A7^{39}$	HD 226570	:	45 456	109.5	35.3	Q0-Q1	Q2.2
05428254	18 56 52.80	+40 37 47.4	10.5	:	TYC 3123-1722-1	:	46 080	200.7	126.4	17-00	Q3.2

ers SC	1	1.2	2.1	0	1.3	1	1	2.2	1.3	1.3	0	.3	2.2	1.1	1.3	3.1	0	2.2	1.2	1.3	1.1	2.2	1.2		3.3	2.2	0	2.1		3.2	1	.3	<u></u> :	J. 6	7:0) c	7:	. ;	1 0	; ;	2.5	2	7.7	1.3	
Quarters SC	Ò	03.2	Q2	8	Ω	Q2.1	02	02	04	Ŏ3	0	02	Š O	04	0.4	03.1	0	02	04	, 0	02	Ò2	, 2	01	03.3	Q2	00	Q 2	:	Õ	62	07	Q4.3	., ., .	<u>ک</u> ک	y 5	3	: 5	7.25 0.00	żξ	, S	93	02.2	04	,
Quarters LC	00	00-01	00-01	01	00-01	00-01	01	00-01	00-01	<u>0</u> 0-01	, 10	00-01	00-0 <u>1</u>	00-01	00-01	00-04	01	00-01	00-01	00-01	00-01	, 00-01	00-01	00	00-01	00-04	00-03	00-01	00-04	00-01	00-01	00-01	20-01 0-01 0-01 0-01	566		25	7 3 8	55	55		00-01	00-01	00-01	00-01	()
<i>δT</i> (b)	1.2	126.4	4.5	1.2	248.3	4.6	5.1	113.0	248.3	158.5	1.2	66.3	35.3	187.3	248.4	4.5	1.2	35.3	219.9	248.3	4.5	35.3	219.3	1.2	158.5	35.3	4.5	5.0	93.4	126.4	4.5	66.3	248.3	C.8CI	55.5 1 2	25.2	0.00 C 1	25.2	35.4	158.5	126.4	126.4	35.3	248.3	
ΔT (d)	44.2	200.7	9.62	4.4 4.4	321.5	9.62	9.89	109.5	321.5	228.8	44.4	137.7	109.5	262.8	321.5	321.5	44.4	109.5	292.5	321.5	9.62	109.5	292.5	44.2	228.8	321.5	228.5	79.0	321.5	200.7	9.62	137.7	321.5	2.822	C.601	1.5	109.5 C 77	1.001	100.5	228.8	200.7	200.7	109.5	321.5	
N Datapoints	49 499	46 078	43 937	15 859	44 428	42 944	41 682	45 178	44 428	40 134	15 846	40 404	45 456	47 575	44 067	57 568	15 856	45 448	37 713	44 425	43 397	45 383	38 656	49 507	40 102	57 187	24 079	43 796	10 332	46 077	43 924	40 431	44 408	40.021	43 403	02001	10404	75.438	45 248	39 980	46.058	45 857	45 463	44 431	
Variable	:	:	binary	:	:	:	:	binary ³⁸	· :	:	:	:	:	:	:	:	binary*	· :	binary	:	:	binary ³⁸	· :	:	:	:	variable ⁶	binary	:	:	:	binary	variable	omary"	:	:	:	:	:	:	: ;	: :	: :		•
Name	HD 179618	HD 179936	BD+403704	HD 226284	TYC 3141-2904-1	HD 226528	:	TYC 3123-2012-1	TYC 3124-1423-1	TYC 3139-1246-1	HD 225391	HD 226029	TYC 3139-826-1	TYC 3140-925-1	:	HD 187234	HD 225842	TYC 3123-19-1	:	TYC 3124-2058-1	HD 181902	:	TYC 3123-742-1	HD 184380	BD+413185	HD 181654	BD+403786	HD 225912	HD 188774	HD 180349	HD 226443	HD 183281	HAT 199-04866	TYC 3144-608-1	TVC 2178-1790-1	TVC 2120 2125 1	HD 191977	ED-71 3380	TVC 3144-787-1	HD 187141	HD 179837	TYC 3142-1367-1	TYC 3142-1661-1	TYC 3143-1362-1	100
Spectral type	$A2^{35}$	$A2^{35}$:	$A2^{39}$:	$A3^{39}$:	:	:	:	A^{39}	$\mathrm{F0}^{39}$:	:	:	$A5^{35}$	$A7^{39}$:	:	:	$A2^{35}$:	:	$A0^{35}$	$F0^{35}$	$F0^{35}$	$F2^{35}$	$\mathrm{F0}^{39}$	$\mathrm{F0}^{37}$	$A2^{3/}$	$A3^{39}$	$F0^{35}$:	:	:	:	 E035	L'U A 735	74	 A 0 ³⁵	$F0^{35}$, :			•
Kp	0.6	8.4	6.7	0.6	11.4	10.2	11.5	11.6	11.2	10.5	10.9	10.4	11.3	11.2	11.4	7.9	10.9	10.8	10.6	11.0	0.6	11.6	11.2	8.8	10.5	8.2	9.2	10.1	8.9	8.7	10.2	8.7	11.1	10.0	0.11	11.3	7:11	0.0	10.0	× ×	8.2	10.6	11.2	11 3	
Dec (J2000)	+40 41 26.6	+40 37 57.1	+40 38 58.8	+404110.1	+40 39 12.9		+40 39 20.7	+40 42 53.0	+40 48 17.2	+40 53 58.9	+40 53 17.4	+40 53 49.8	+40 54 03.0	+40 56 41.9	+40 56 10.0	+40 59 39.6	+40 54 41.5	+41 05 27.7	+41 00 54.3	+41 01 49.6	+41 04 48.4	+41 01 32.5	+41 09 56.0	+41 08 09.2	+41 15 40.5	+41 13 25.6	+41 15 03.3	+41 16 51.3	+41 17 10.1	18		29		97	+41 30 20.9		+41 30 11.4	20	37	4	50		49	+41 53 32.3	
RA (J2000)	19 11 27.91	19 12 43.56	19 24 18.10	19 52 17.88	19 53 21.14	19 54 53.11	19 55 09.22	18 57 24.53		19 39 19.25	19 41 04.78	19 49 38.38	19 32 25.58	19 45 32.76	19 47 00.46	19 47 19.78	19 47 39.24	18 51 36.46	18 59 59.59	19 04 01.78	19 20 31.70	19 47 39.34	18 58 46.37	19 32 23.26	18 55 48.17	19 19 27.19	19 34 06.50	48	19 55 10.03	7		27			19 01 38.06	19 20 31.94	19 02 28.39	19 23 00 60	19 45 51 36	19 46 36 34	19 12 09.53	19 24 33.79	19 27 36.34	19 32 35 93	1
KIC ID	05436432	05437206	05446068	05473171	05474427	05476495	05476864	05513861	05603049	05630362	05632093	05641711	05709664	05722346	05724048	05724440	05724810	05768203	05772411	05774557	05785707	05810113	05857714	05880360	05940273	05954264	05965837	05980337	05988140	06032730	06067817	06123324	06141372	06142919	06100731	16/66100	0620700	84768690	06301745	06381306	06432054	06440930	06443122	06446951	

Table 1. continued.

KIC ID	RA (J2000)	Dec (J2000)	Кр	Spectral type	Name	Variable	N Datapoints	ΔT	<i>δT</i> (b)	Quarters LC	Quarters SC
06462033	19 48 33.72	+41 49 49.3	10.7	:	TYC 3144-646-1	:	40 066	228.8	158.5	00-01	Q3.3
06500578	18 53 24.94	+41 59 16.9	10.8	30	TYC 3127-1666-1	:	38 671	292.5	219.3	00-01	04.2
06509175	19 09 08.64	+41 56 59.8	10.0	$A2^{35}$	BD+41 3248	:	15 859	4.4	1.2	01	00
06519869	19 24 03.26	+41 56 54.4	10.5	:	TYC 3142-733-1	:	44 879	169.8	95.2	20-01	Q3.1 <u>0</u> 3.1
06586052	18 58 02.14	+42 01 05.7	11.3		:	:	45 465	109.5	35.3	20-01	Q2.2
06587551		+42 02 23.9	8.6	$A0^{35}$	BD+413207	:	15 844	44.4	1.2	Q1	00
06590403		+42 02 14.5	10.6	:	TYC 3128-2036-1	:	40 133	228.8	158.5	00-01	Q3.3
06606229	19 27 25.34	+42 00 31.0	11.1	:	TYC 3142-717-1	:	47 569	262.7	187.3	00-01	Q4.1
06614168	19 36 27.50	+42 04 26.8	11.4	:	:	:	40 405	137.7	66.3	00-01	Q2.3
06629106	19 50 38.40	+42 01 23.2	10.1	$\mathrm{F0}^{39}$	HD 226135	:	15 861	44.4	1.2	01	00
06668729	18 53 50.62	+42 10 15.8	8.6	$A2^{35}$	HD 175536	:	46 078	200.7	126.4	00-01	03.2
06670742	18 57 19.82	+42 07 37.5	9.3	$A5^{35}$	BD+413195	:	43 924	9.62	4.5	00-01	Q2.1
06678614	19 10 46.30	+42 06 40.7	10.8	:	TYC 3129-800-1	:	37 918	292.5	219.4	00-01	04.2
06694649	19 31 01.20	+42 10 11.2	10.4	:	:	binary	45 188	169.8	95.2	00-01	Q3.1
06756386	18 55 54.24	+42 12 37.9	8.7	$A2^{35}$	HD 175939	:	15 860	4.4	1.2	01	00
06756481	18 56 01.87	+42 13 34.7	9.3	$F0^{35}$	BD+423197	:	43 844	9.62	4.5	00-01	02.1
06761539	19 05 03.58	+42 13 18.7	10.3	:	TYC 3128-1341-1	:	45 451	109.5	35.3	00-01	Q 2.2
06776331	19 25 59.47	+42 16 45.3	10.9	:	TYC 3142-511-1	:	44 411	321.5	248.3	<u>0</u> 0-01	04.3
06790335	19 41 30.74	+42 12 11.1	10.5	:	TYC 3144-1756-1	:	46 068	200.7	126.4	<u>0</u> 0-01	Q 3.2
06804821	19 54 04.99	+42 17 29.9	10.6	A^{35}	HD 226454	variable ⁷	40 121	228.8	158.5	00-01	03.3
06865077	19 29 39.38	+42 23 25.4	8.6	:	TYC 3142-1206-1	:	15 858	44.4	1.2	,0	,00
06922690	18 46 11.06	+42 24 02.5	10.4	:	TYC 3126-780-1	:	45 167	169.8	95.2	00-01	03.1
06923424	18 47 49.73	+42 26 27.6	11.3	:	TYC 3126-1059-1	:	44 223	321.5	248.4	Q0-Q1	Q4.3
06937758	19 13 01.18	+42 29 58.4	8.6	$A2^{35}$	BD+423278	:	15860	44.4	1.2	01	00
06939291	19 15 18.79	+42 26 19.2	10.1	:	TYC 3129-2577-1	:	42.750	9.62	4.5	00-01	Q2.1
06947064	19 25 17.66	+42 25 13.3	11.3	:	TYC 3142-1168-1	:	45 456	109.5	35.3	00-01	Q2.2
06951642	19 31 05.93	+42 29 53.2	6.7	$A5^{35}$	BD+423370	:	15 807	44.4	1.2	Q1	00
06965789	19 45 41.30	+42 29 34.4	10.1	$A5^{35}$	BD+423446	binary	43 926	9.62	4.5	00-01	Q2.1
07007103	18 43 57.19	+42 31 05.7	11.2	:	TYC 3126-2522-1	:	38 311	292.5	219.3	Q0 - Q1	Q4.2
07106205	19 11 57.48	+42 40 22.6	11.4	:	TYC 3129-879-1	$binary^*$	43 945	9.62	4.5	00-01	Q2.1
07106648	19 12 39.79	+42 38 40.5	10.5	:	TYC 3129-2589-1	:	44 969	169.8	95.3	Q0-Q1	Q3.1
07109598	19 16 56.81	+42 38 11.7	10.6		TYC 3129-2517-1	:	46 064	200.7	126.4	Q0 - Q1	Q3.2
07119530	19 29 19.03	+42 38 29.1	8.5	$A3^{35}$	HD 183787	:	14 473	321.5	4.5	00-04	:
07122746	19 33 10.10	+42 38 26.9	10.9	:	TYC 3143-1631-1	:	15 833	4. 4 .	1.2	01	00
07204237	19 32 01.34	+42 42 21.5	10.8	:	TYC 3143-261-1	:	47 584	262.8	187.3	00-01	Q 4.1
07211759	19 40 30.77	+42 47 02.9	11.0	:	TYC 3144-1426-1	:	49 467	44.2	1.2	00	Q1
07212040	19 40 49.03	+42 47 05.6	10.9	:	TYC 3144-2042-1	:	38 635	292.5	219.3	00-01	Q4.2
07215607	19 44 11.64		10.5	:	TYC 3144-1656-1	:	47 487	262.8	187.3	00-01	04.1
07217483	19 45 57.86	+42 45 23.1	10.6	:	TYC 3144-856-1	:	49 511	44.2	1.2	00	Q1
07220356	19 48 28.15	+42 44 36.9	11.5	:	:	:	44 194	321.5	248.4	00-01	Q4.3
07265427	19 03 27.89	+42 49 54.6	11.5	:		:	40413	137.7	66.3	00-01	02.3
07287118	19 33 31.34	+42 50 11.3	10.7	:	TYC 3143-1359-1	:	47 575	262.8	187.3	00-01	04.1
07300387	19 47 19.51	+42 52 02.0	10.5	:	TYC 3144-1600-1	:	46 064	200.7	126.4	Q0-Q1	03.2
07304385	50 51.5		10.0	:	TYC3145-901-1	:	10 289	228.7	4.5 5.0	20-03 0-03	: 0
07350486	18 48 49.75	+42 55 05.4 +42 54 38 6	11.1	:	TYC 3126-3094-1	:	48 494 45 279	109.5	35.3	90	2√2
00100000	7.0	7	C:11	:	:	:	714 0+	107.5	0.00	١٨	1:17

 Table 1. continued.

A5 ³⁵ BD+423380 49484 TYC3145-171-1 binary ³⁸ 42.442 A5 ³⁵ BD+423380 44.216 TYC3145-1179-1 40429 G2 ²⁴ ,G2Ib ⁴¹ V1154 Cyg Cepheid ⁸ 63 501 A3 ³⁵ HD 187547 44428 A0 ³⁵ BD+433078 44428 A0 ³⁵ BD+433078 44428 A2 ³⁵ HD 178615 44428 A5 ³⁵ HD 178615 44428 A5 ³⁵ HD 178615 44428 A5 ³⁵ HD 178615 44419 F0 ³⁵ BD+433078 44419 F0 ³⁵ BD+433078 4458 A5 ³⁶ HD 181985 40 113 TYC 3148-1156-1 38 455 TYC 3149-1784-1 49 361 A5 ³⁵ HD 181985 binary 2069 F0 ³⁵ HD 184695 binary 46 078 TYC 3149-1784-1 47 583 F0 ³⁵ HD 184695 variable 43 088 TYC 3149-1784-1 44 3215 TYC 3149-2143-1 binary 45 15 861 TYC 3146-1192-1 45 163 A2 ³⁵ HD 189210 45 467 TYC 3148-509-1 45 163 A2 ³⁵ HD 189210 55 936 G5 ³⁵ HD 189210 55 936 TYC 3148-1402-1 55 936 TYC 3148-1402-1 55 936 TYC 3148-1402-1 45 163				TVC2120 1210 1		30.650	(p)	(d)	Cuantoris EC	Cuanto S
442 59 45.9 11.5 TYC3145-171-1 binary38 42442 443 01 65.7 11.4 A535 BD+42.380 40402 443 01 66.6 11.3 TYC3126-2023-1 40429 443 07 68.6 8.8 G2 ²⁴ /G2Ib ⁴¹ VI154 Cyg Cepheid* 60 571 443 07 36.8 8.8 G2 ²⁴ /G2Ib ⁴¹ VI154 Cyg Cepheid* 40 429 443 07 36.8 8.8 G2 ²⁴ /G2Ib ⁴¹ VI154 Cyg Cepheid* 40 429 443 07 36.8 8.8 G2 ²⁴ /G2Ib ⁴¹ W1154 Cyg Cepheid* 40 429 443 07 36.8 8.8 G2 ²⁴ /G2Ib ⁴¹ W1154 Cyg Cepheid* 40 473 443 06 00.1 11.3 HD 187547 40 423 443 18 07.8 11.3 TYC3148-180 41 419 443 18 55.2 12.4 F2III ²⁰ HD 178615 40 36 443 18 55.2 10.5 TYC3148-130-1 40 36 443 18 55.2 10.8 <t< td=""><td></td><td>.8 10.6 .7 11.1</td><td>: :</td><td>TYC3129-1319-1 TYC3129-2485-1</td><td>: :</td><td>38 650 49 484</td><td>292.5</td><td>219.3 1.2</td><td>7 0 0 0</td><td>01.2 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5</td></t<>		.8 10.6 .7 11.1	: :	TYC3129-1319-1 TYC3129-2485-1	: :	38 650 49 484	292.5	219.3 1.2	7 0 0 0	01.2 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
43 01 26.7 1114 40 402 443 01 26.7 1114 40 402 443 07 66.6 11.3 TYC 3126-2023-1 40 429 443 07 66.6 11.3 TYC 3126-2023-1 40 429 443 07 36.8 8.8 G22 ³⁴ G2lb ⁴¹ V1154 Cyg Cepheid 63 501 443 06 00.1 11.3 HD 187547 44 28 443 16 00.1 11.3 HD 187547 44 28 443 16 00.1 11.3 BD 443 3078 40 086 443 16 00.1 11.3 HD 178120 44 428 443 18 13.6 10.0 F0 ³⁵ BD 443 3078 44 428 443 18 13.6 10.0 F0 ³⁵ BD 443 3078 44 536 443 18 18.6 10.0 F0 ³⁵ HD 178120 44 536 443 2 40.6 10.3 TYC 3148-182-1 44 536	_	_	:	TYC 3145-171-1	binary ³⁸	42 442	109.5	35.3	00-01	02.2
43 07 06.6 11.3 TYC3145-1179-1 4216 43 07 06.5 10.4 TYC3145-1179-1 49 429 443 07 06.5 10.4 TYC3145-1179-1 40 429 443 06 00.1 11.3 TYC3145-1179-1 40 429 443 06 00.1 11.3 TYC3145-1179-1 40 429 443 06 00.1 11.3 TYC3145-1179-1 40 429 443 17 04.7 3.7 A0 ³⁵ BD+43 3078 40 4086 443 17 04.7 3.7 A2 ³⁵ HD 178120 43 532 443 18 55.2 7.4 FZIII. HD 17815 15 812 443 28 05.6 9.3 A2 ³⁵ HD 17815 40 1017 443 28 05.0 10.8 TYC 3148-1126-1 40 510 443 28 05.0 10.5 TYC 3148-1808-1 40 113 443 28 05.0 10.5 TYC 3148-1808-1 40 114 443 28 05.0 10.5 TYC 3148-1808-1 40 114 443 28 05.0 10.5 TYC 3148-1808-1 40 114 443 28 06.0 10.5 TYC 3148				 07.3380	:	40402	137.7	66.3	00-01 0-01 0-01	Q2.3
43 07 08.5 10.4 TYC3143-1179-1 40 429 443 07 86.8 8.8 G2 ²⁴ G2Ib ⁴¹ VI154Cyg Cephcid* 63 501 443 06 00.1 1.3 A3 ³⁵ HD 187547 40 086 443 06 00.1 1.3 A3 ³⁵ HD 187547 40 0086 443 17 04.7 9.7 A0 ³⁵ BD+43 3078 40 0086 443 18 10.0 P0 ³⁵ BD+43 3097 13 83.2 44 419 443 18 15.2 74 F2III ²⁰ HD 178126 43 53.2 443 18 55.2 74 HD 178126 10 175 44 419 443 25 37.4 10.8 TYC 3148-1808-1 40 113 44 113 443 25 10.4 10.5 TYC 3148-180-1 40 113 44 38.2 443 26 11.0 TYC 3148-180-1 40 113 44 48.2 443 27 04.2 10.5 TYC 3144-194-1 40 48.2 443 26 11.1 10.8 TYC 3149-182-1 40 414 443 27 04.2 20 A5 ³⁵ HD 184055 41 47 88.2 443 27 04.2			A3	DD+42.538U TVC3126-2023-1	:	43 192 44 216	321.5	93.2 248.3		
+43 07 36.8 8.8 G22 ⁴ ,G21b ⁴ V1154 Cyg Cepheid* 63 501 +43 06 32.0 8.4 A3 ³⁵ HD 187547 44428 +43 06 00.1 11.3 44428 +43 17 04.7 9.7 A0 ³⁵ BD+43 3078 40077 +43 18 06.6 11.3 44419 44419 +43 18 07.8 11.3 HD 178120 444419 +43 18 55.7 7.4 FZIII ²⁰ HD 178615 444419 +43 20 05.6 1.0 FO ³⁵ HD 178615 444419 +43 20 05.6 1.10 TYC 3148-1126-1 444419 +43 20 05.0 1.1 TYC 3148-130-1 44551 +43 20 10.7 1.1 TYC 3148-130-1 44582 +43 20 10.7 1.1 TYC 3148-130-1 44507 +43 20 40.0 1.0			: :	TYC3143-1179-1	: :	40 429	137.7	66.3	0 0 0 0 0 0	02:3
443 06 320 8.4 A333 HD 187547 46 077 443 06 320 8.4 A333 HD 187547 46 077 443 17 04.7 9.7 A633 BD+43 3078 44 19 443 18 70.4 9.7 A635 BD+43 3078 44 19 443 18 75.2 7.4 F2III ²⁰ HD 178120 44 19 443 20 05.6 9.3 A235 HD 178120 44 19 443 20 05.6 11.0 TYC 3148-1126-1 44 352 443 22 3.6 11.0 TYC 3148-1126-1 49 351 443 20 19.4 10.5 TYC 3148-131-1 40 1113 443 20 19.4 10.5 TYC 3148-431-1 40 1113 443 20 19.4 TYC 3148-431-1 40 1114 443 20 10.2 TYC 3148-431-1 40 1114 443 20 10.3 TYC 3149-183-1 40 114 443 20 10.2 TYC 3	+43 07		$G2^{24}$, $G2Ib^{41}$	V1154 Cyg	Cepheid ⁸	63 501	321.5	319.7	Q0-Q4	, [0
443 06 00.1 11.3 44428 443 17 04.7 9.7 Aobs BD+43 3078 44428 443 17 04.7 9.7 Aobs BD+43 3097 44008 443 18 76.8 11.3 HD 78120 4419 443 20 05.6 9.3 A238 HD 178120 44582 443 21 8.55.2 7.4 F2III ²⁰ HD 178615 10175 443 21 8.55.2 7.4 F2III ²⁰ HD 178615 49 5510 443 22 3.0 11.0 TYC 3148-130-1 49 5510 443 20 19.4 10.5 TYC 3148-130-1 40 113 443 20 10.4 TYC 3148-431-1 40 113 443 20 10.2 TYC 3148-431-1 40 114 443 20 10.2 TYC 3148-431-1 40 114 443 20 10.2 TYC 3148-431-1 40 114 443 20 10.2 TYC 3149-183-1 44 582 443 20 0.3 11.1 TYC 3149-183-1 .		_	$A3^{35}$	HD 187547	. :	46 077	200.7	126.4	00-01	03.2
443 17 04.7 9.7 A035 BD+43 3078 440 086 443 18 07.8 11.3 44419 443 18 07.8 11.3 44419 443 18 13.6 10.3 A236 HD 17812 15812 443 18 55.2 7.4 FZIII ²⁰ HD 178615 10175 443 20 05.6 11.0 TYC 3148-1308-1 49 510 443 22 36.0 11.0 TYC 3148-1308-1 40 113 443 20 19.4 10.5 TYC 3148-431-1 40 113 443 20 19.4 10.5 TYC 3148-431-1 40 113 443 20 19.4 10.5 TYC 3148-431-1 40 368 443 20 10.7 TYC 3149-1784-1 40 114 443 20 10.2 8.0 A535 HD 186995 binary 40 114 443 20 10.2 8.0 A536 HD 186995 binary 16 756 443 20 40.2 9.7 F0 ³⁵ HD 184499 <td>_</td> <td></td> <td>:</td> <td>:</td> <td>:</td> <td>44 428</td> <td>321.5</td> <td>248.3</td> <td>00-01</td> <td>Q4.3</td>	_		:	:	:	44 428	321.5	248.3	00-01	Q4.3
443 13 07.8 11.3 44419 443 18 07.8 11.3 H93 BD+43 3097 15 812 443 18 13.6 10.0 F93 BD+43 3097 45 812 443 18 55.2 7.4 F2III ²⁰ HD 178615 45 522 443 18 55.2 7.4 F2III ²⁰ HD 178615 49 510 443 22 33.4 10.8 TYC 3148-1808-1 49 510 443 20 19.4 10.5 TYC 3148-431-1 40 318 443 20 19.4 10.5 TYC 3148-431-1 40 318 443 20 19.4 11.6 TYC 3148-431-1 40 318 443 20 10.4 TYC 3148-431-1 40 58 443 20 10.7 TYC 3149-1852-1 40 58 443 20 40.2 9.7 F0 ³⁵ HD 184095 binary 15 796 443 20 40.2 9.7 F0 ³⁵ HD 184095 variable 47 583 443 20 40.2 9.7 F0 ³⁵ HD 184095	+43		$A0^{35}$	BD+43 3078	:	40 086	228.8	158.5	00-01	Q3.3
+43 I8 I3.6 10.0 FO ²⁵ BD+43 3097 15 812 +43 I8 55.6 9.3 A2 ³⁵ HD 17815 43 532 +43 20 57.4 10.8 TYC 3148-1126-1 43 532 +43 20 37.4 10.8 TYC 3148-1126-1 38 456 +43 20 19.4 10.5 TYC 3148-113-1 40 113 +43 20 19.4 10.5 TYC 3148-13-1 40 510 +43 20 19.4 10.5 TYC 3148-13-1 40 113 +43 20 19.4 10.5 TYC 3148-43-1 40 113 +43 20 19.4 11.3 TYC 3148-43-1 44 582 +43 20 43.0 9.3 A5 ³⁵ HD 18095 binary 49 461 +43 20 45.0 9.3 A5 ³⁵ HD 18095 binary 49 57 +43 20 45.0 10.7 TYC 3149-182-1 44 56 +43 20 45.0 10.7 TYC 3148-	+43		• • •	::	:	44 419	321.5	248.3	00-01	04.3
+43 20 05.6 9.3 A2** HD 178120 43 532 +43 18 55.2 7.4 F2III** HD 178615 10 175 +43 18 55.2 7.4 F2III** HD 178615 10 175 +43 22 36.0 11.0 11.0 17C 3148-1126-1 38 456 +43 22 19.4 10.5 11.7 10.7 40 113 +43 20 19.4 10.5 11.7 17C 3130-150-1 40 38 +43 20 12.1 10.8 11.3 17C 3130-150-1 40 38 +43 20 43.0 9.5 A63** HD 18095 binary 2069 +43 20 43.0 9.3 A53** HD 18095 binary 2069 +43 20 43.0 9.3 A53** HD 18095 binary 2069 +43 20 43.0 10.9 11.1 11.7 17C 3149-185-1 49 327 +43 20 43.0 10.9 11.2 11.4 40 32 +43 20 43.0 10.9 11.2 11.2 12.2 +43 20 43.0 10.9 11.2 12.2 12.2 +43 20 43.0 10.9 11.3 12.2	+43	_	$F0^{35}$	BD+43 3097	:	15812	4. 4.	1.2	01	8
+43 18 55.2 7.4 F2III.** HD 178615 10 175 +43 18 55.2 7.4 F2III.** HD 178615 10 175 +43 22 36.0 11.0 11.0 11.0 49 510 +43 20 19.4 10.5 11.0 11.4 40 368 +43 20 19.4 10.5 11.4 11.1 40 368 +43 20 11.1 10.8 11.7 12.33-2367-1 40 368 +43 20 42.8 11.3 12.33-2367-1 40 368 +43 20 43.0 9.5 A53* HD 184985 40 114 +43 20 43.0 9.3 A53* HD 186995 binary 2069 +43 20 43.0 9.3 A53* HD 186995 binary 2069 +43 20 43.0 10.9 17 YC 3149-1784-1 49 6078 +43 20 5.9 11.1 11.7 17 YC 3149-1784-1 40 6078 +43 20 6.9 11.1 11.7 17 YC 3149-1784-1 40 432 +43 31 0.2 8.0 A23* HD 184695 variable* 43 088 +43 30 4.8 10.9 11.1 17 YC 3149-1211-1 12 84	+43 20		$A2^{35}$	HD 178120	÷	43 532	9.62	4.5	00-01	Q2.1
+43 23 37.4 10.8 TYC 3148-1126-1 38 456 +43 22 36.0 11.0 TYC 3148-130-1 49 510 +43 22 019.4 10.5 TYC 3148-130-1 40 113 +43 10 00.0 11.4 TYC 3130-150-1 38 452 +43 22 42.8 11.3 TYC 3133-2367-1 40 511 +43 29 03.7 9.5 A535 HD 18 1985 40 114 +43 29 03.7 9.3 A535 HD 18 18695 11.1 44 582 +43 29 03.7 9.3 A535 HD 18 6995 binary 2 069 +43 29 03.9 10.7 TYC 3149-1852-1 49 327 +43 20 05.9 11.1 TYC 3149-1852-1 46 078 +43 20 47.9 10.7 TYC 3149-1852-1 46 078 +43 20 47.9 10.7 TYC 3149-1852-1 47 583 +43 30 28.9 7.9 F035 HD 184695 variable 43 588 +43 30 48.8 9.9 A235 HD 1840-121-1 47 583 +43 30 4.8 10.3 TYC 3149-121-1 11.3 17 TYC 3149-121-1 45 435 +43 44 40.1 9.8 <	+43 18		$F2III^{20}$	HD 178615	:	10175	228.7	4.7	00-03	:
+43 22 50.0 11.0 TYC 3148-1808-1 49 510 +43 20 19.4 10.5 TYC 3148-431-1 40 113 +43 19 03.0 11.4 TYC 3130-150-1 38 452 +43 19 03.7 9.5 A535 HD 181985 40 114 +43 29 03.7 9.5 A535 HD 181895 40 114 +43 29 03.7 9.3 A535 HD 186995 90 114 +43 29 43.0 9.3 A535 HD 186995 90 114 +43 20 43.0 9.7 F035 HD 186995 90 113 +43 20 45.9 10.7 TYC 3149-1852-1 46 078 +43 20 47.9 10.7 TYC 3149-1852-1 46 078 +43 20 47.9 10.7 TYC 3149-1852-1 47 583 +43 20 47.9 10.7 TYC 3149-1852-1 47 583 +43 30 4.8 9.9 A235 HD 184695 variable 43 088 +43 30 4.8 9.9 A235 BD+43 334 15 840 +43 40 5.3 11.1 TYC 3149-121-1 45 135 +43 44 40.1 9.8 A235 BD+43 3245 15 840 <tr< td=""><td>+43 23</td><td>_ ,</td><td>:</td><td>TYC3148-1126-1</td><td>:</td><td>38456</td><td>292.5</td><td>219.4</td><td>Q0-Q1</td><td>Q4:2</td></tr<>	+43 23	_ ,	:	TYC3148-1126-1	:	38456	292.5	219.4	Q0-Q1	Q4:2
+43 20 19.4 10.5 11 YC 5148-451-1 40 113 +43 19 03.0 11.4 17 C 3148-451-1 40 368 +43 19 03.0 11.4 TYC 3133-267-1 38 452 +43 24 24.8 11.3 TYC 3133-267-1 40 368 +43 24 24.8 11.3 TYC 313-2567-1 40 114 +43 24 24.8 11.2 9.0 A035 HD 18449 40 40114 +43 29 03.7 9.3 A535 HD 18449 40 40114 +43 20 04.9 9.7 F035 HD 18449 40 4078 +43 20 05.9 11.1 TYC 3149-1784-1 40 783 +43 20 05.9 11.1 TYC 3149-1852-1 45 078 +43 20 05.9 11.1 TYC 3149-1852-1 47 583 +43 30 02.2 8.0 A235 HD 184695 variable ⁹ 43 088 +43 30 02.8 10.3 TYC 3149-120-1 45 435 +43 30 02.8 10.3 TYC 3149-120-1	3 +43 22	_ ,	:	TYC3148-1808-1	:	49510	44.2	1.2	3 3 3	Q1 33,01
+45 19 05.0 11.4 TYC 3130-150-1 40 508 +43 24 24.8 11.3 TYC 313-2567-1 44 582 +43 24 24.8 11.3 TYC 313-2567-1 44 582 +43 24 24.8 11.3 TYC 313-2567-1 40 114 +43 29 03.7 9.5 A535 HD 186995 binary 2069 +43 29 43.0 9.3 A536 HD 186995 binary 2069 +43 20 43.0 9.7 F035 HD 186995 binary 2069 +43 20 43.0 10.9 TYC 3149-1852-1 15 796 +43 20 47.9 10.7 TYC 3149-1852-1 49 327 +43 20 47.9 10.7 TYC 3147-982-1 47 583 +43 30 22.8 10.3 TYC 3148-2091-1 47 583 +43 30 14.8 9.9 A235 BD+43 3384 45 435 +43 30 14.8 10.3 TYC 3149-1211-1 44 505 +43 40 53.8 11.3 TYC 3146-119-1 <t< td=""><td>+43</td><td></td><td>:</td><td>TYC3148-431-1</td><td>:</td><td>40113</td><td>228.8</td><td>5851</td><td>20-C1</td><td>Q3.3</td></t<>	+43		:	TYC3148-431-1	:	40113	228.8	5851	20-C1	Q3.3
+45 24 12.1 10.8 11C 5130-130-1 58452 +45 24 24.8 11.3 11C 5133-2367-1 58452 +43 24 24.8 11.3 11.3 11.4 44 582 +43 26 11.2 90 A63* HD 184949 10.14 44 582 +43 20 43.0 9.3 A53* HD 186995 binary 2069 +43 20 43.0 9.3 A53* BD+43 3370 15 796 +43 20 43.0 10.9 11.1 TYC 3149-1852-1 40 78 +43 20 47.9 10.7 11.1 TYC 3149-1852-1 40 78 +43 20 47.9 10.7 11.1 TYC 3147-982-1 17 84 +43 30 63.4 11.3 11.2 11.4 44 562 +43 35 63.4 11.3 11.4 11.4 43 318 +43 30 14.8 10.9 A23* BD+43 384 15 840 +43 30 14.8 10.8 11.7 17C 3149-121-1 45 3215 +43 40 53.8 11.3 11.4 17C 3148-60-1 15 840 +43 40 53.8 11.3 11.3 17C 3148-60-1 15 840	+ + + · · ·	_ `	:	1.021.0010.003	:	40.368	13/./	00.3		Q2:3
+43 29 43.0 +43 29 43.0 +43 29 43.0 +43 29 43.0 43.5 HD181985 HD184499 HD184959 H	+453		:	TVC3133-7367-1	:	58 452 44 582	109 5	35.3		5. 5. c
+43 26 11.2 9.0 Ao3* HD 184449 49 461 +43 29 43.0 9.3 A53* HD 186995 binary 2069 +43 29 43.0 9.7 F03* BD+43 3370 15 796 +43 29 05.9 11.1 TYC3149-1852-1 40 327 +43 29 47.9 10.7 TYC3149-1852-1 40 78 +43 29 47.9 10.7 TYC3149-1852-1 46 078 +43 32 58.9 7.9 F03* HD 184695 variable* 43 088 +43 31 02.2 8.0 A23* HD 184695 variable* 44 562 +43 35 03.4 11.3 TYC3148-2091-1 40 432 +43 35 10.1 11.1 TYC3148-2091-1 43 215 +43 30 14.8 10.8 TYC3148-1021-1 45 435 +43 40 53.8 11.3 TYC3148-60-1 45 163 +43 44 0.1 9.8 A23* BD+43 3245 45 105 +43 45	+43		A5 ³⁵	HD 181985	: :	40114	137.7	66.5	00-01	02.3
+43 29 43.0 9.3 A535 HD 186995 binary 2069 +43 27 04.2 9.7 F035 BD+43 3370 15 796 +43 20 05.9 11.1 TYC3149-1784-1 49 327 +43 29 05.9 11.1 TYC3149-1852-1 46 078 +43 29 47.9 10.7 TYC3149-1852-1 46 078 +43 29 47.9 10.7 TYC3149-1852-1 47 583 +43 32 58.9 7.9 F035 HD 184695 variable 43 088 +43 31 02.2 8.0 A235 HD 184695 variable 43 088 +43 35 03.4 11.3 TYC3147-982-1 40 432 +43 35 03.4 11.3 TYC3148-1211-1 43 215 +43 30 14.8 10.9 A235 BD+43 3384 45 435 +43 40 53.8 11.3 TYC3149-1211-1 45 163 +43 40 53.8 11.3 TYC3149-120-1 45 435 +43 45 08.3	. +43		$A0^{35}$	HD 184449	:	49 461	44.2	1.2	, 00,	, 01
+43 27 04.2 9.7 F035 BD+433370 15 796 +43 29 05.9 11.1 TYC3149-1784-1 49 327 +43 29 47.9 10.9 TYC3149-1852-1 46 078 +43 29 47.9 10.7 TYC3149-1852-1 47 583 +43 29 47.9 10.7 TYC3149-1852-1 47 583 +43 32 58.9 7.9 F035 HD 173109 47 583 +43 31 02.2 8.0 A235 HD 184695 variable, 43 088 44 562 +43 31 02.2 8.0 A235 BD+43 384 40 432 +43 35 04.8 9.9 A235 BD+43 334 40 432 +43 30 14.8 10.8 TYC3149-1211-1 45 163 +43 40 53.8 11.3 TYC3149-1211-1 45 315 +43 40 53.8 11.3 TYC3149-1211-1 45 35 +43 40 53.8 11.3 TYC3148-660-1 45 36 +43 44 62.8 11.5 TYC3148-597-1 46 074	+43	.0 9.3	A5 ³⁵	HD 186995	binary	2 069	44.2	1.2	00-01	:
+43 29 05.9 11.1 TYC3149-1784-1 49 327 +43 27 43.0 10.9 TYC3149-1852-1 46 078 +43 29 47.9 10.7 47 583 +43 32 58.9 7.9 F035 HD 173109 57 256 +43 31 02.2 8.0 A235 HD 184695 variable ⁹ 43 088 +43 31 02.2 8.0 A235 HD 184695 variable ⁹ 43 088 +43 31 02.2 8.0 A235 HD 184695 variable ⁹ 43 088 +43 35 02.8 10.3 TYC3147-982-1 40 432 +43 35 04.8 9.9 A235 BD+43 3384 45 315 +43 30 14.8 10.8 TYC3149-1211-1 45 315 +43 40 53.8 11.3 TYC3149-1192-1 45 435 +43 44 40.5 11.3 TYC3148-660-1 45 163 +43 44 40.1 9.8 A235 HD 189210 46 074 +43 50 16.0 11.0 TYC3148-1362-1<	, +43		$F0^{35}$	BD+433370	÷	15 796	4 .	1.2	Q1	8
+43 27 43.0 10.9 TYC3149-1852-1 46 078 +43 29 47.9 10.7 47 583 +43 29 47.9 10.7 47 583 +43 32 58.9 7.9 F035 HD 13409 57 256 +43 31 02.2 8.0 A235 HD 184695 variable ⁹ 43 088 +43 31 02.2 8.0 A235 HD 184695 variable ⁹ 43 088 +43 35 02.4 11.3 TYC3147-982-1 40 432 +43 35 04.8 9.9 A235 BD+43 3384 40 432 +43 30 14.8 10.9 A235 BD+43 3384 45 215 +43 40 53.8 11.3 TYC3149-1211-1 45 435 +43 40 53.8 11.3 TYC3147-12-1 45 435 +43 40 53.8 11.3 TYC3148-660-1 45 163 +43 44 40.1 9.8 A235 BD+43 3245 46 074 +43 45 08.3 9.8 G535 HD 189210 49 145 <t< td=""><td>+43 29</td><td>_</td><td>:</td><td>TYC3149-1784-1</td><td>:</td><td>49 327</td><td>44.2</td><td>1.2</td><td>8</td><td>Q1</td></t<>	+43 29	_	:	TYC3149-1784-1	:	49 327	44.2	1.2	8	Q1
+43 29 47.9 10.7 47 583 +43 32 58.9 7.9 F0 ³⁵ HD 173109 57 256 +43 31 02.2 8.0 A2 ³⁵ HD 184695 variable ⁹ 43 088 +43 35 03.4 11.3 TYC 3147-982-1 40432 +43 35 03.4 11.3 TYC 3149-1211-1 40432 +43 30 41.8 9.9 A2 ³⁵ BD+43 3384 15 840 +43 30 41.8 10.8 TYC 3149-1211-1 43 215 +43 44 40.1 9.8 A2 ³⁵ BD+43 345 45 163 +43 45 08.3 9.8 G5 ³⁵ HD 189210 55 936 +43 49 27.0 11.3 TYC 3146-1256-1 45 167 +43 49 27.0 11.3 TYC 3146-1256-1 45 467 +43 49 27.0 11.3 TYC 3148-1402-1 45 192 	+43		:	TYC3149-1852-1	÷	46078	200.7	126.4	00-01	Q3.2
+43 32 58.9 7.9 F035 HD173109 57256 +43 31 02.2 8.0 A235 HD184695 variable* 43 088 +43 31 02.2 8.0 A235 HD184695 variable* 43 088 +43 35 03.4 11.3 TYC 3147-982-1 40 432 +43 35 32.8 10.3 TYC 3149-1211-1 40 432 +43 31 10.1 11.1 TYC 3149-1211-1 43 215 +43 30 14.8 10.8 TYC 3149-121-1 45 315 +43 40 53.8 11.3 TYC 3147-12-1 45 435 +43 44 40.1 9.8 A235 BD+43 3-45 45 163 +43 45 08.3 9.8 G535 HD189210 49 145 +43 50 27.8 10.7 TYC 3148-1402-1 45 467 +43 55 08.0 11.5 TYC 3148-1402-1 45 467 +43 55 08.0 11.5 TYC 3148-1402-1 45 192	+43		• •	:	:	47 583	262.8	187.3	00-01	04.1
+43 31 02.2 8.0 A233 HD 184695 variable* 43 088 +43 35 03.4 11.3 TYC 3147-982-1 44 562 +43 35 32.8 10.3 TYC 3147-982-1 40 432 +43 35 04.18 9.9 A235 BD+43 3384 15 840 +43 31 10.1 11.1 TYC 3149-1211-1 43 215 +43 30 14.8 10.8 TYC 3149-121-1 45 38 034 +43 40 53.8 11.3 TYC 3147-12-1 38 681 +43 44 45.3 11.3 TYC 3148-660-1 45 163 +43 44 40.1 9.8 A235 BD+43 3245 46 074 +43 45 08.3 9.8 G535 HD 189210 55 936 +43 50 27.8 10.7 TYC 3148-1402-1 49 145 +43 55 08.0 11.5 TYC 3148-1402-1 45 467 +43 55 08.0 11.5 TYC 3148-1402-1 45 192	+43		$F0^{35}$	HD 173109		57 256	321.5	35.3	00-04	Q2.2
+43 35 03.4 11.3 TYC 3147-982-1 44 562 +43 35 32.8 10.3 TYC 3148-2091-1 40 432 +43 30 41.8 9.9 A235 BD+43 3384 40 432 +43 30 41.8 9.9 A235 BD+43 3384 15 840 +43 31 10.1 11.1 TYC 3149-1211-1 43 215 +43 30 14.8 10.8 TYC 3149-121-1 45 303 +43 40 53.8 11.3 TYC 3146-1192-1 45 435 +43 41 22.8 11.2 TYC 3148-660-1 45 163 +43 44 0.1 9.8 A235 BD+43 3245 46 074 +43 45 08.3 9.8 G535 HD 189210 49 145 +43 50 27.8 10.7 TYC 3148-1402-1 45 467 +43 55 08.0 11.5 TYC 3148-1402-1 45 192 +43 55 08.0 11.5 TYC 3148-1402-1 45 192	+43		$A2^{55}$	HD 184695	variable	43 088	30.3	0.7	:	Q3.1
+43 50 27.8 10.3 11.5 148-1201-1 15.840 15.840 14.3 30 41.8 9.9 A2 ³⁵ BD+43.334 15.840 15.840 17.0 17.0 149-121-1 TYC3149-2143-1 binary* 45.435 14.3 10.8 TYC3146-1192-1 45.435 14.3 17.2 14.4 17.2 18.861 17.2 17.2 18.861 17.2 18.861 18.3 18	5 +43		:	TYC3147-982-1	:	44 562	98.6	35.3	001	Q2:2
+43 30 41.0 3.9 A2 DD +43 3304 13 040 +43 31 10.1 11.1 TYC3149-1211-1 43 215 +43 30 14.8 10.8 1 TYC3149-1214-1 45 435 +43 41 45.3 11.3 1 TYC3148-1192-1 38 681 +43 44 40.1 3.8 A2 ³⁵ BD+43 3245 15 38 681 +43 44 40.1 9.8 A2 ³⁵ BD+43 3245 15 836 +43 44 40.1 9.8 A2 ³⁵ BD+43 3245 15 836 +43 45 28.6 11.5 1 TYC3148-597-1 46 074 +43 50 27.8 10.7 1 TYC3148-1402-1 49 145 +43 50 27.8 10.7 1 TYC3148-1402-1 45 467 +43 55 88.0 11.5 45 192	+ -	-	 A 735	DD: 42 2294	:	15 0 40	1.1.61	00.5	<u> </u>	5,5
+43 30 14.8 10.8 TYC3149-2143-1 binary* 38 034 +43 40 53.8 11.3 TYC3146-1192-1 38 681 +43 41 22.8 11.2 TYC3148-660-1 45 163 +43 44 40.1 9.8 A2 ³⁵ BD+43 3245 15836 +43 46 28.6 11.5 TYC3148-597-1 6074 +43 45 08.3 9.8 G5 ³⁵ HD 189210 55 936 +43 52 16.0 11.0 TYC3146-1256-1 49 145 +43 50 27.8 10.7 TYC3148-1402-1 39 284 +43 55 08.0 11.5 45 192	4 + 4	_	7	TYC3149-1211-1	: :	43.215	79.6	4.9 9.4	00-01	25.5
+43 40 53.8 11.3 TYC3146-1192-1 45 435 +43 41 45.3 11.2 TYC3148-660-1 45 163 +43 44 40.1 9.8 A2 ³⁵ BD+43 3245 15 836 +43 46 28.6 11.5 TYC3148-597-1 46 074 +43 45 08.3 9.8 G5 ³⁵ HD 189210 55 936 +43 52 16.0 11.0 TYC3146-1256-1 49 145 +43 50 27.8 10.7 TYC3148-1402-1 45 467 +43 55 08.0 11.5 45 192	+43			TYC3149-2143-1	binarv⋆	38 034	281.5	219.3	01	04.2
+43 41 45.3 11.3 TYC 3147-12-1 38 681 +43 41 22.8 11.2 TYC 3148-660-1 45 163 +43 44 40.1 9.8 A235 BD+43 3245 15 836 +43 46 28.6 11.5 TYC 3148-597-1 46 074 +43 45 08.3 9.8 G535 HD 189210 55 936 +43 52 16.0 11.0 TYC 3146-1256-1 49 145 +43 50 27.8 10.7 TYC 3148-1402-1 45 467 +43 49 27.0 11.3 45 192 +43 55 08.0 11.5 45 192	+43		:	TYC3146-1192-1	· :	45 435	109.5	35.3	00-01	Q 2.2
+43 41 22.8 11.2 TYC 3148-660-1 45 163 +43 44 40.1 9.8 A235 BD+43 3245 15 836 +43 46 28.6 11.5 TYC 3148-597-1 46 074 +43 45 08.3 9.8 G535 HD 189210 55 936 +43 52 16.0 11.0 TYC 3146-1256-1 49 145 +43 50 27.8 10.7 TYC 3148-1402-1 45 467 +43 55 08.0 11.5 45 192 45 192	+43		:	TYC3147-12-1	:	38 681	292.5	219.3	00-01	04.2
+43 44 0.1 9.8 A235 BD+433245 15 836 +43 46 28.6 11.5 TYC3148-597-1 46 074 +43 45 08.3 9.8 G535 HD 189210 55 936 +43 52 16.0 11.0 TYC3146-1256-1 49 145 +43 50 27.8 10.7 TYC3148-1402-1 45 467 +43 49 27.0 11.3 45 192 +43 55 08.0 11.5 45 192			:	TYC 3148-660-1	:	45 163	109.5	35.4	00-01	Q2.2
+43 46 28.6 11.5 TYC 3148-597-1 46 074 +43 45 08.3 9.8 G5 ³⁵ HD 189210 55 936 +43 52 16.0 11.0 TYC 3146-1256-1 49 145 +43 50 27.8 10.7 TYC 3148-1402-1 45 467 +43 49 27.0 11.3 45 192 +43 55 08.0 11.5 45 192		_	$A2^{35}$	BD+43 3245	:	15836	4.4	1.2	01	8
+43 45 08.3 9.8 G535 HD189210 55 936 443 52 16.0 11.0 11.0 49 145 49 145 49 145 443 50 27.8 10.7 10.		_	:	TYC 3148-597-1	:	46 074	200.7	126.4	00-01	Q3.2
+43 52 16.0 11.0 TYC3146-1256-1 49 145 +43 50 27.8 10.7 TYC3148-1402-1 45 467 +43 49 27.0 11.3 39 284 +43 55 08.0 11.5 45 192			$G5^{35}$	HD 189210	:	55 936	321.5	4.5	00-04	Q2.1
+43 50 27.8 10.7 TYC3148-1402-1 45 467 +43 49 27.0 11.3 39 284 +43 55 08.0 11.5 45 192			:	TYC3146-1256-1	:	49 145	44.2	1.2	8	Q1
+43 49 27.0 11.3 39 284 1 1 +43 55 08.0 11.5 45 192 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_		:	TYC3148-1402-1	÷	45 467	109.5	112.9	00-01	Q2.2
+43 55 08:0 11:5 45 192			:	:	:	39 284	137.7	66.5	00-01 00-01	Q2.3
	+43 55	0.11.5	:	:	:	45 192	169.8	95.2	20-01 20-01	Q3.1

KIC ID	RA (J2000)	Dec (J2000)	Kp	Spectral type	Name	Variable	N Datapoints	ΔT (d)	<i>δT</i> (d)	Quarters LC	Quarters SC
08123127	19 57 04.13	+43 55 31.7	11.0	:	TYC 3149-534-1	:	86 902	321.5	248.3	00-01	Q4.3
08143903	18 46 15.74	+44 00 13.4	13.8	:		:	13 373	310.5	6.0	01-04	: (
08144674	18 48 20.42	+44 00 12.4	11.6	:	TYC 3130-1700-1	:	39 858	228.8	158.6	20-01 3.	Q3.3
08145477	18 50 15.98	+44 03 16.7	8.4	:		:	14 007	310.5	325.1	QI-Q4	(
08149341	18 58 28.85	4. 1.	10.9	:	TYC 3131-1906-1	:	46.057	200.7	126.4	20-01 0-10-01	Q3.2
08159135	19 17 59.83	+44 01 12.6	13.8				12 238	310.5	5.7	QI-Q4	: (
08197761	20 04 09.31	+44 04 16.0	10.7	F233	BD+43 3473s	NGC 6866 ¹⁰	49 023	44.2	1.2	00° 00°	Q1 33,
08197788	20 04 11.18	+44 05 33.3	13.0	• 1		: ;	45 246	109.5	35.3	00-01	Q2.2
08211500	18 46 12.19	+44 08 08.3	8.1	$A5^{35}$	HD 173978	binary	26 868	310.5	4.9	01-04	Q3.1
08218419	19 00 34.61	+44 08 29.0	11.9	:	:	÷	14 436	321.5	4.5	00-04	:
08222685	19 10 07.49	+44 08 18.5	8.9	$F0V^{25},F2^{35}$	HD 179336	:	2 080	44.2	1.2	00-01	:
08223568	19 11 56.54	+44 08 49.9	11.5	$F2^{25}$:	:	52 274	321.5	4.5	00-04	Q2.3
08223987	19 12 46.30	+44 06 18.9	14.2	:	:	:	5 678	310.5	187.5	01,04	:
08230025	19 22 29.45	+44 06 16.2	10.9	$\mathrm{F0}^{25}$	TYC 3146-1037-1	:	15 850	44.4	1.2	Q1	8
08245366	19 43 33.91	+44 06 19.5	11.2	:	TYC 3148-1360-1	:	40 134	228.8	158.5	00-01	Q3.3
08248630	19 47 23.30	+44 07 59.0	11.2	:	TYC 3148-484-1	:	44 407	321.5	248.3	00-01	Q4.3
08264061	20 03 27.94	+44 09 19.2	13.5	:	:	NGC 6866	44 106	98.6	35.3	Q1	Q2.2
08264075	20 03 28.34	+44 07 55.2	13.7	:	:	NGC 6866	39 585	126.8	66.3	Q1	Q2.3
08264274	20 03 39.67	+44 09 23.3	13.8	:	:	NGC 6866	39 285	126.8	66.5	Q1	Q2.3
08264404	20 03 47.14	+44 09 25.7	12.2	:	:	NGC 6866	45 464	109.5	35.3	00-01	Q2.2
08264546	20 03 54.84	+44 09 50.3	13.4	:	NGC 6866 17	NGC 6866	49 495	44.2	1.2	00	01
08264583	20 03 57.36	+44 09 33.6	11.3	:	HIP 98797	NGC 6866	45 272	109.5	35.3	00-01	Q2.2
08264588	20 03 57.62	+44 08 37.5	10.7	:	:	NGC 6866	49 512	44.2	1.2	00	01
08264617	20 03 59.35	+44 10 25.8	13.9	:	:	NGC 6866	44 828	98.1	35.3	01	Q2.2
08264674	20 04 02.86	+44 11 55.4	11.2	:	:	:	42 120	9.62	5.1	00-01	Q2.1
08264698	20 04 03.96	+44 10 20.5	12.4	:	:	÷	44 937	98.6	35.3	Q1	Q2.2
08283796	18 58 53.09	16	14.5	:	:	:	13 965	310.5	8.69	01-04	:
08293302	19 18 03.67	+44 14 36.1	13.4	:	:	:	13 721	321.3	6.9	00-04	:
08323104	19 55 37.82	+44 14 32.9	6.7	$kA2mF0^{26}$:	:	39 147	9.62	0.9	00-01	Q2.1
08330056	20 03 33.05	+44 12 06.5	13.8	:	:	÷	39 755	126.8	66.3	Q1	Q2.3
08330092	20 03 34.92		13.5	:	:	:	43 475	9.89	4.5	Q1	Q2.1
08330463	20 03 58.63		14.9	:	:	:	37 687	281.5	219.3	Q1	Q4.2
08330778	20 04 16.18		13.4	:	:	:	41 890	9.62	4.5	00-01	Q2.1
08352420	19 04 11.40	+44 21 44.7	12.6	:	:	:	40433	137.7	66.3	00-01	Q2.3
08355130	19 10 01.61	+44 22 29.9	10.3	$F0III^{25}$	BD+443072	binary	57 395	321.5	35.3	00-04	Q2.2
08355837	19 11 27.07	+44 22 46.7	13.3	:	:	÷	13 332	310.5	6.2	01-04	:
08397426	20 05 34.30	+44 20 09.8	11.1	:	:	÷	49 505	44.2	1.2	8	Q1
08415752	19 00 00.02	+44 27 48.5	10.7	:	TYC 3132-1272-1	÷	46 040	200.7	126.4	00-01	Q3.2
08429756	19 25 43.13		10.5	:	TYC 3146-1441-1	:	46 052	200.7	126.4	00-01	Q3.2
08446738	19 48 49.37		11.1	:	TYC 3148-665-1	:	49 502	44.2	1.2	00	Q1
08454553	19 56 37.15	25	11.5	:	TYC 3149-213-1	:	40 298	137.7	66.3	00-01	Q2.3
08459354	20 01 37.63	24	11.1	:	TYC 3162-1077-1	÷	43 947	9.62	4.5	00-01	Q2.1
08460025	20 02 22.08	29	13.7	:	:	:	43 968	98.6	35.9	Q1	Q2.2
08460993	03		11.2	:	:	:	38 282	292.5	219.3	00-01	Q4.2
08479107	99	33	14.9	:	:	:	13 570	310.5	324.9	Q1-Q4	:
08482540	19 04 31.01	+44 35 20.1	14.1	:	:	:	13 467	310.5	5.4	01-04	:

Quarters SC Q2:2 Q2:1 Q4:2 Q4:2 % 62.3 % 63.1 % 62.3 % 62.3 % 63.1 % .: Q3:2 94.1 Quarters LC 00-04 80-01 80-04 90-01 90-01 \$\$\$\\ \frac{2}{2}\\ \frac{2}\\ \frac{2}\\ \f Q0-Q1 % % % % % 00-01 8 6 158.6 126.4 219.3 187.3 126.4 187.3 219.3 1.2 248.3 248.3 219.3 35.3 35.3 248.3 187.3 35.3 66.5 66.3 34.8 4.5 4.5 6.3 4.5 321.5 44.4 200.7 251.8 292.5 68.6 44.4 228.8 321.5 321.5 321.5 321.5 292.5 109.5 109.5 228.8 8.691 8.691 8.69 262.8 8.691 321.5 310.5 321.4 321.4 292.5 321.5 137.7 200.7 262.7 9.86 310.5 4.4 44.2 4.44 4.4 9.6 137.7 44.2 109.1 4.4 N Datapoints 46 058 15859 49 509 44 402 55 306 44 398 38 676 45 466 39 574 14 442 15850 13 862 14 043 14 093 95 046 43 942 77 120 13 803 40429 50616 15854 49 159 40206 45 344 15845 38 572 41 777 45 275 15857 46035 15834 44 792 45 192 45 195 45 194 47 457 44 401 40433 Ap variable11 Variable binary binary inary, : TYC3540-2380-1 LYC3556-3407-1 TYC3541-1172-1 TYC3147-849-1 LYC3148-1229-1 FYC3131-1633-1 TYC3558-2497-1 TYC3540-2491-1 FYC3147-509-1 FYC3149-571-1 FYC3149-307-1 TYC3147-395-1 TYC3149-863-1 TYC3146-802-1 FYC 3162-71-1 BD+443113 BD+443134 HD 187254 HD 189637 BD+45 2892 HD 182895 HD 181598 ... HD 190566 HD 190226 HD 189177 HD 176390 HD 188538 HD 175201 Name F2CrEu?³⁵,F0V³⁷ Spectral type $xA2mF0^{26}$ A2³⁵ F2III²⁵ $A5p?^{25}$... В9Ш³⁵ $\stackrel{\cdots}{A3}V^{20}$... A5³⁵ \mathbb{F}^{35} ... F0²⁵ 10.9 10.9 8.2 14.0 13.0 12.6 10.8 10.6 10.6 10.9 13.4 11.7 10.6 10.9 8.01 6.01 8.01 8.9 12.8 9.5 Кр 10.1 1.4 +44 47 24.9 +44 42 18.6 +44 50 53.6 +44 51 44.9 +44 58 05.0 +44 57 54.0 +44 59 42.0 +45 05 53.6 +45 10 42.0 +45 08 03.5 +45 07 06.9 +45 10 02.9 +45 14 24.9 +45 15 51.8 +45 13 09.3 +45 21 01.2 +45 20 48.9 +45 22 07.6 +45 28 35.9 +44 35 42.6 +44 39 58.5 +44 40 09.6 +44 36 58.0 +44 40 59.2 +44 40 18.9 +44 50 14.8 +44 59 09.8 +45 11 42.2 +45 26 59.2 +45 29 45.6 +45 26 47.0 +44 34 20.0 +44 35 50.4 +44 40 08.5 +44 44 45.3 +44 57 56.3 +44 56 01.4 +45 13 39.4 +44 30 13.4 +44 44 57.7 +44 52 47.4 +44 59 17.2 +45 05 58.7 +44 33 43.7 +44 33 21.1 Dec (J2000) 19 44 27.10 19 54 22.56 19 59 54.19 19 47 11.45 19 59 10.18 19 16 37.06 19 53 09.36 9 02 56.93 20 03 45.55 19 06 33.89 19 53 45.58 19 24 43.66 19 24 48.48 8 53 55.80 34.85 19 18 59.50 19 34 14.23 19 53 42.72 20 03 36.36 19 00 22.73 19 52 44.14 20 04 13.46 19 25 59.76 20 04 50.98 18 57 58.94 19 07 33.17 19 17 39.50 19 19 07.73 19 46 09.19 19 40 41.38 8 58 45.58 19 21 36.02 9 51 32.42 20 02 07.70 8 58 15.29 19 28 46.42 19 35 28.32 9 56 58.51 18 56 07.42 19 36 27.74 20 01 40.54 19 21 54.91 9 00 00.74 8 52 06.41 9 16 14.83 18 56 09.07 38717065 08489712 08499639 08507325 38516008 38516686 08525286 08545456 96609580 08565229 38579615 08583770 08590553 08608260 08623953 38651452 38655712 08695156 08703413 08714886 08738244 08742449 08746834 08747415 08750029 08766619 08838457 38869302 38869892 38871304 78881697 08915335 08940640 38972966 38975515 09020157 09020199 09052363 39072011 70057060 39073985 08488065 08933391 08748251 08827821 KIC ID

Table 1. continued.

Table 1. continued.

` -	Dec Kp (J2000) +45 27 04.4 11.4
ئے پ	7
= .	0.1 O.1
20 2	
>	7 F0V ²³
: :	
35	
nF(8.8 kA3mF0 ³⁷
25	
)35	
)35	$A0^{35}$
:	3
:	0
:	4,
	2.1
77/	9.0 A7 ²⁷
. 35	
2	9.7 A5.5
: :	: :
)35	$\times 10^{35}$ $\times 10^{35}$
:	
)35	1 F0 35
:	.: 9
:	
: :	
225	8 F2 ²⁵
:	1.5
235	$5 A2^{35}$
:	
:	9
:	4 °
:	:
:	
:	
:	0.5
:	9
:	:
:	0.7
:	:
	:

Table 1. continued.

19 37 35 37 46 10 10 10 10 10 10 10 1	KICID	RA (J2000)	Dec (J2000)	Kp	Spectral type	Name	Variable	N Datapoints	$\begin{array}{c} \Delta T \\ \text{(b)} \end{array}$	<i>δT</i> (d)	Quarters LC	Quarters SC
19 18 17 14 16 17 18 11 18 11 18 18 18	09532644	19 37 26.47	+46 10 07.4	12.7	:	:	:	49 449	44.2	1.2	00	QI
30 N 3 4 1.77 44 96 07 316 33.4 0.0. 20 N 3 3 4 1.77 44 60 73 1.6 A3* PD 189916 45 192 313 4.83 0.0. 20 N 3 3 4 1.77 44 60 73 1.6 A3* PD 189916 45 192 183 4.3 0.0. 19 14 0 8 1.72 44 61 5.84 1.0 A5* PD 189916 45 192 183 5.9 44 1 1.2 0.0 19 36 55 55 9 44 61 5.88 3.0 3.0 3.0 3.0 0.0	09533449	19 38 37.37	+46 11 16.9	11.3	:	TYC 3556-3494-1	:	45 449	109.5	35.3	00-01	Q2.2
200 03 May (1) 1 (1	09533489	19 38 41.71	+46 07 21.6	13.0	:	:	:	48 961	33.4	0.0	:	OI
20.016.02.25.00.04.01 A336 HD189916 45192 1068.02 0.0-Q1 19.14.08.02.4.46.16.04.1 12.46.6 12.4 12.4 12.4 12.0 0.0-Q1 19.14.08.02.4.46.16.18.18.3 13.0 14440 21.2 0.0-Q1 19.36.47.76.4.46.16.18.18.3 13.0 14440 21.2 0.0-Q1 19.36.55.09.4.46.16.18.18.3 13.0 13.9 39.77 2.18.8 0.0-Q1 19.36.55.04.46.10.20.2.4.46.10.16.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	09550886	20 00 06.74		11.0	:	TYC 3558-1238-1	:	44 429	321.5	248.3	00-01	04.3
1918 17.18 4.4 1.2 0.1 0	09551281	20 00 33.60	+46 11 55.4	10.4	$A3^{35}$	HD 189916	:	45 192	169.8	95.2	00-01	Q3.1
1918 1818 1816 1818 1819 1818	09580794	19 14 08.02	+46 16 00.1	11.3	$F0V^{25}$:	:	15859	4. 4.	1.2	01	8
19.665599 446 18.6 18.6 18.6 19.	09582720	19 18 17.18	+46 12 46.6	12.7	:	:	binary*	14 440	321.5	4.6	40-00	:
19 36 539 + 446 1815 130 130 130 130 140 + 45 141 121 140	09593997	19 36 47.76	+46 17 34.0	12.6	:	:	:	38 532	292.5	219.3	00-01	Q4.2
18 46 1125 446 16 103 106 A55	09594100	19 36 55.99	+46 15 18.5	13.0	:	:	:	49 454	4.2	1.2	8	Q1
B. 84 6 13.5 1	09604762	19 50 59.64	+46 16 03.3	10.6	$A5^{35}$	TYC 3557-1418-1	:	39877	228.8	158.6	00-01	Q3.3
18.20024	09630640	18 46 31.25	+46 19 16.1	13.7	:	:	:	13 939	310.5	4.5	01-04	:
19 18 18 18 18 18 18 18	09632537	18 52 00.24	+46 21 51.6	12.0	:	:	:	15861	4.4	1.2	Q1	00
19 18 18 18 19 12 13 13 13 13 13 13 13	09640204	19 10 14.09	+46 20 42.6	11.5	$F5^{25}$:	:	63 481	321.5	4.5	00-04	Q1
1918 1836 446 217.9 1.9	09642894	19 16 18.07	+46 21 16.1	11.1	$F0^{25}$	TYC 3542-1780-1	:	46 081	200.7	126.4	00-01	Q3.2
1992 178 1462 126. 94 A0 ¹⁵ HD 183829 49510 442 1.2 Q0-Q1 99 05.28, 4618 392 1.31 17Y 2355-768-1 4027 4177 663 Q0-Q1 96 5.28, 4461 2.24 1.2 A4 ²⁸ NGC 6811 6 NGC 6811 40.27 1377 663 Q0-Q1 96 5.19 440.2 2.6 1.2 A4 ²⁸ NGC 6811 NGC 6811 40.22 1377 663 Q0-Q1 96 5.19 440.2 2.6 1.2 A4 ²⁸ NGC 6811 1.2 NGC 6811 1.2 A4 ²⁸ NGC 681 1.2 A	09643982	19 18 38.69	+46 21 27.9	12.9	:	:	:	13 969	320.7	6.5	40-00	:
19 00 25.56 446 22 22 11.1 TYC 3556-768-1 49510 441.2 1.2 QU 19 05 65.81 446 22 20.4 11.4 A4.8 NGC 6811 6 NGC 6811 5 S782 31.5 4.5 QU-Q-I 19 05 63.81 446.22 20.4 11.4 A4.8 NGC 6811 8 NGC 6811 5 S782 31.5 4.5 QU-Q-I 19 37 01.8 446.2 29.4 13.2 A4.8 NGC 6811 0 NGC 6811 43.883 79.6 4.5 QU-Q-I 19 77 01.8 446.1 25.3 1.2 A4.8 NGC 6811 0 NGC 6811 43.883 79.6 4.5 QU-Q-I 19 77 01.3 446.1 25.3 1.2 A4.8 NGC 6811 14 A7.8	09650390	19 29 17.81	+46 21 26.1	9.4	$A0^{35}$	HD 183829	:	45 231	109.5	35.3	00-01	Q2.2
1956 28.88 446 18 39.2 13.3 1956 28.80 446 18 39.2 13.3 1956 28.80 446 18 39.2 13.3 1956 28.11 446 22 20.4 11.4 A4*2 NGC 6811 18 NGC 6811 5.2782 227.82 221.5 4.5 00-Q1 1957 01.18 446 20.20 12.1 A4*2 NGC 6811 18 NGC 6811 48.83 33.4 0.0 1957 01.18 446 20.20 12.1 NGC 6811 18 NGC 6811 47.74 26.28 187.3 00-Q1 1957 01.23 446 19.25.3 12.6 NGC 6811 14 NGC 6811 47.74 26.28 187.3 00-Q1 1957 21.23 446 19.25.1 11.5 NGC 6811 14 NGC 6811 47.505 189.7 120-Q1 1957 22.21 446 19.35.1 12.1 NGC 6811 14.5 NGC 6811 47.505 18.7 26.28 187.3 00-Q1 1957 22.21 446 19.35.1 12.1 NGC 6811 11.5 NGC 6811 47.505 26.28 187.3 00-Q1 1957 22.21 446 19.35.1 12.1 NGC 6811 11.5 NGC 6811 47.505 26.28 187.3 00-Q1 1957 22.11 446 19.15.0 11.5 A4*2 NGC 6811 11.5 NGC 6811 47.542 26.28 187.3 00-Q1 1957 22.11 446 19.15.0 11.5 A4*2 NGC 6811 11.5 NGC 6811 NGC	09651065	19 30 25.63		11.1	:	TYC 3556-768-1	:	49510	4.2	1.2	8	Q1
1936 S19 446 23 204 114 A4 ²⁸	09654789	19 36 28.80		13.3	:	:	:	40 227	137.7	66.3	00-01	Q2.3
1936 Still 8	09655055	19 36 51.91		11.4	$A4^{28}$	NGC 6811 26	NGC 6811	40 429	137.7	66.3	00-01	02.3
193701.18 446 22 594 132 NGC 6811 16 NGC 6811 48 853 334 0.0 193702.18 446 19 25.7 10.9 A428 NGC 6811 70 NGC 6811 43 883 795, 45 45 0.0 19372.18 446 19 25.7 11.5 NGC 6811 194 NGC 6811 47 574 20.2.8 187.3 00-Q1 19372.24 446 19 53.2 11.5 NGC 6811 114 NGC 6811 47 565 20.2.8 187.3 00-Q1 19372.21 446 19 35.0 11.9 B738 NGC 6811 114 NGC 6811 MGC 6811 M	09655114	19 36 58.18	+46 20 22.6	12.1	$A4^{28}$	NGC 6811 18	NGC 6811	52 782	321.5	4.5	00-04	02.3
1937 03.24 446 19 25.7 10.9 A4 ²⁸ NGC 6811 70 NGC 6811 43 883 79.6 4.5 Q0-Q1 1937 24.86 446 19 25.7 12.5 NGC 6811 114 NGC 6811 NGC 6811 A5565 18.7 A0-Q1 1937 24.86 446 18 30.0 11.5 MGC 6811	09655151	19 37 01.18		13.2	:	NGC 6811 16	NGC 6811	48 853	33.4	0.0	, :	, 0
193721.38 446 19 53.3 12.6 NGC 6811 39 NGC 6811 45 557 1854 20 20 19 27 456 45 652 11.5 NGC 6811 114 NGC 6811, binary* 45 655 189.7 126.4 Q1 Q1 Q1 Q1 Q1 Q1 Q2 Q2	09655177	19 37 03.24	+46 19 25.7	10.9	$A4^{28}$	NGC 6811 70	NGC 6811	43 883	9.62	4.5	00-01	02.1
193724.10 446 23 52.1 11.5 NGC 6811 39 NGC 6811, binary* 45 605 189.7 1264 Q1 1937 24.86 +46 18 39.0 11.9 B73* NGC 6811, binary* 47 563 26.8 17.04 1937 52.2 +46 18 39.0 11.3 48 956 33.4 0.0 1937 52.2 +46 19 15.0 11.5 A42* NGC 6811 113 NGC 6811, binary 48 956 33.4 0.0 1937 53.12 +46 19 15.0 11.5 A42* NGC 6811, binary 48 956 33.4 0.0 1937 53.12 +46 18 13.9 12.4 A52* NGC 6811, binary 48 956 33.4 0.0 1937 53.12 +46 18 12.0 1.2 NGC 6811, binary 48 956 33.4 0.0 1937 53.12 +46 18 12.0 1.2 NGC 6811, binary 48 956 33.4 0.0 1938 50.2 1.0 1.2 A42*	09655393	37		12.6	:	:	:	47 574	262.8	187.3	00-01	04.1
193724.86 +46 I8 39.0 11.9 B738 NGC 6811, binary* 12 994 310.5 6.8 Q1-Q4 193722.2 +46 19 35.7 12.3 47 505 262.8 187.3 Q0-Q1 193732.2 +46 22 39.1 13.1 48 956 32.8 187.3 Q0-Q1 193733.1.2 +46 21 31.9 12.4 A5*8 NGC 6811 113 NGC 6811, binary 48 956 32.8 187.3 Q0-Q1 1937 32.11 +46 19 15.0 11.5 A42*8 NGC 6811 113 NGC 6811, binary 47 543 26.2 187.3 Q0-Q1 1937 32.11 +46 19 15.0 11.5 A42*8 NGC 6811, binary 47 543 26.2 187.3 Q0-Q1 19 37 32.11 +46 19 15.0 11.2 TYC 3557-368-1 47 540 44.2 1.2 Q0-Q1 19 50 12.10 +46 18 17.0 10.6 A03* HD 189861 47 538 18.8 Q0-Q1 18 51 14.90	09655422	37	+46 23 52.1	11.5	:	NGC 6811 39	NGC 6811	45 605	189.7	126.4	01	Q3.2
19372522	09655433	37		11.9	$\mathbf{B7}^{28}$	NGC 6811 114	NGC 6811, binary*	12 994	310.5	8.9	01-04	:
1937 29.21	09655438	37	+46 19 35.7	12.3	:	:		47 505	262.8	187.3	00-01	Q4.1
193731.22	09655487	37	+46 22 39.1	13.1	:	:	:	48 956	33.4	0.0	:	Q1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09655501	37		12.4	$A5^{28}$	NGC 6811 49	NGC 6811	47 543	262.8	187.3	00-01	Q4.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09655514	19 37 32.11	+46 19 15.0	11.5	$A4^{28}$	NGC 6811 113	NGC 6811, binary	63 523	321.5	4.5	00-04	Q1
19 38 45.29 446 18 23.6 10.3 TYC3556-3198-1 49 500 44.2 1.2 Q0 19 50 12.10 446 18 52.3 11.2 TYC3557-388-1 49 510 44.2 1.2 Q0 20 00 11.23 446 19 17.0 10.6 A0.35 HD189861 49 510 44.2 1.2 Q0 18 51 14.90 446 25 61.1 10.4 TYC3540-1359-1 49 895 228.8 158.6 Q0-Q1 18 53 34.3 446 25 60.0 13.4 TYC3541-967-1 41 869 79.6 5.1 Q0-Q1 18 53 34.3 446 24 11.3 11.3 TYC3541-967-1 40 133 228.8 158.5 Q0-Q1 19 06 55.3 446 24 11.3 11.3 TYC3541-967-1 40 426 5.1 Q0-Q1 19 07 50.71 446 28 10.6 12.7 ASAS J190751+4629.2 40 426 157.7 66.3 Q0-Q1	00855800	19 37 53.16		12.7	:	:	:	77 242	292.5	219.3	00-01	Q4.2
19 50 12.10 446 18 52.3 11.2 TYC 3557-368-1 TYC 3557-368-1 49 510 44.2 1.2 Q0 20 00 11.23 446 19 17.0 10.6 A0 ³⁵ HD 189861 39 895 228.8 158.6 Q0-Q1 18 51 14.90 +46 25 61.1 10.4 TYC 3540-1359-1 45 385 109.5 35.3 Q0-Q1 18 55 33.43 +46 24 01.3 11.3 TYC 3541-967-1 44 1869 79.6 5.1 Q0-Q1 19 06 55.32 +46 24 01.3 TYC 3541-967-1 44 1869 79.6 5.1 Q0-Q1 19 06 55.32 +46 22 01.7 12.7 ASAS J190751+4629.2 40426 137.7 66.3 Q0-Q1 19 08 42.5 +46 22 11.7 1.2 ASAS J190751+4629.2 40416 137.7 66.3 Q0-Q1 19 15 25.03 +46 24 14.8 9.9 G2IIII ² BD+46 2633 4844	09656348	19 38 45.29	+46 18 23.6	10.3	:	TYC 3556-3198-1	:	49 500	4.2	1.2	8	Q1
20 00 11.23 +46 19 17.0 10.6 A0 ³⁵ HD 189861 39 895 228.8 158.6 Q0-Q1 18 51 14.90 +46 26 56.1 10.4 TYC 3540-1359-1 45 385 109.5 35.3 Q0-Q1 18 59 33.43 +46 26 56.1 10.4 TYC 3541-967-1 41 869 79.6 5.1 Q0-Q1 18 59 33.43 +46 24 11.3 11.3 TYC 3541-967-1 41 869 79.6 5.1 Q0-Q1 19 06 55.32 +46 22 0.0 13.4 ASAS 1190751+4629.2 40 426 138.7 66.3 Q0-Q1 19 07 55.71 +46 29 11.9 12.7 ASAS 1190751+4629.2 40 416 137.7 66.3 Q0-Q1 19 08 42.53 +46 24 14.8 9.9 G2III ² BD+46 2633 13 495 310.5 5.7 Q1-Q4 19 15 25.03 +46 24 14.8 9.9 G2III H8 446	09664869	19 50 12.10	+46 18 52.3	11.2	:	TYC 3557-368-1	:	49 510	4.2	1.2	8	Q1
18 51 14.90 +46 26 56.1 10.4 TYC 3540-1359-1 45 385 109.5 35.3 Q0-Q1 18 59 33.43 +46 24 11.3 11.3 TYC 3541-967-1 41 869 79.6 5.1 Q0-Q1 19 06 55.32 +46 24 11.3 11.3 40 426 15.7 66.3 Q0-Q1 19 07 23.57 +46 28 21.7 12.7 40 426 137.7 66.3 Q0-Q1 19 07 50.71 +46 28 21.7 12.7 ASAS J190751+4629.2 45 194 169.8 95.2 Q0-Q1 19 08 42.53 +46 24 14.8 9.9 G2III ²⁵ BD+46 2633 40 416 137.7 66.3 Q0-Q1 19 15 25.03 +46 24 14.8 9.9 G2III ²⁵ BD+46 2633 13 495 33.4 0.1 19 35 57.6 +46 25 58.0 13.1 49 401 44.2 1.2 Q0 19 37 17.98 +46 28 02	09673293	20 00 11.23	+46 19 17.0	10.6	$A0^{35}$	HD 189861	:	39 895	228.8	158.6	00-01	Q3.3
18 59 33.43 +46 24 11.3 11.3 TYC3541-967-1 41869 79.6 5.1 Q0-Q1 19 06 55.32 +46 25 08.0 13.4 40133 228.8 158.5 Q0-Q1 19 07 23.57 +46 28 21.7 12.7 ASAS J190751+4629.2 40426 137.7 66.3 Q0-Q1 19 07 23.71 +46 28 11.9 12.7 ASAS J190751+4629.2 45 194 169.8 95.2 Q0-Q1 19 08 42.53 +46 24 14.8 9.9 G2III ²⁵ BD+46 2633 40416 137.7 66.3 Q0-Q1 19 15 25.03 +46 24 14.8 9.9 G2III ²⁵ BD+46 2633 48446 33.4 0.1 19 36 56.76 +46 26 58.0 13.1 binary* 49401 44.2 1.2 Q0 19 38 11.95 +46 28 02.5 12.9 binary* 49401 44.2 1.2 Q0 19 06 59.78 +46 32 20.4 9.5 FQ ²⁵	09693282	18 51 14.90	+46 26 56.1	10.4	:	TYC 3540-1359-1	:	45 385	109.5	35.3	00-01	Q2.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09696853	18 59 33.43	+46 24 11.3	11.3	:	TYC 3541-967-1	:	41869	9.62	5.1	00-01	Q2.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09666960	19 06 55.32	+46 25 08.0	13.4	:	:	:	40133	228.8	158.5	00-01	Q3.3
19 07 50.71 +46 29 11.9 12.7 ASAS J190751+4629.2 45 194 169.8 95.2 Q0-Q1 19 08 42.53 +46 24 14.8 9.9 G2III ²⁵ BD+46 2633 40416 137.7 66.3 Q0-Q1 19 15 25.03 +46 28 10.6 14.3 13495 310.5 5.7 Q1-Q4 19 36 56.76 +46 26 58.0 13.1 48 446 33.4 0.1 19 37 17.98 +46 27 45.3 12.5 49 401 44.2 1.2 Q0 19 38 11.95 +46 28 02.5 12.9 49 302 44.2 1.2 Q0 19 06 59.78 +46 32 20.4 9.5 F0 ³⁵ BD+46 2621 43 946 79.6 4.5 Q0-Q1 19 12 12.26 +46 30 50.3 11.1 F0 ²⁵ 40 134 228.8 158.5 Q0-Q1 19 16 49.58 +46 32 01.7 13.9 13 15.8 310.5 6.3 Q1-Q4	09700145	19 07 23.57	+46 28 21.7	12.7	:		:	40 426	137.7	66.3	00-01	Q2.3
19 08 42.53 +46 24 14.8 9.9 G2III ²⁵ BD+46 2633 40416 137.7 66.3 Q0-Q1 19 15 25.03 +46 28 10.6 14.3 13 495 310.5 5.7 Q1-Q4 19 36 56.76 +46 26 58.0 13.1 48 446 33.4 0.1 19 37 17.98 +46 27 45.3 12.5 49 401 44.2 1.2 Q0 19 38 11.95 +46 28 02.5 12.9 49 302 44.2 1.2 Q0 19 06 59.78 +46 32 20.4 9.5 F0 ³⁵ BD+46 2621 43 946 79.6 4.5 Q0-Q1 19 12 12.26 +46 30 50.3 11.1 F0 ²⁵ 40 134 228.8 158.5 Q0-Q1 19 16 49.58 +46 32 01.7 13.9	09700322	19 07 50.71	+46 29 11.9	12.7	:	ASAS J190751+4629.2	:	45 194	169.8	95.2	00-01	Q3.1
1915 25.03 +46 28 10.6 14.3 13495 310.5 5.7 Q1–Q4 1936 56.76 +46 26 58.0 13.1 binary* 49401 44.2 1.2 Q0 1937 17.98 +46 27 45.3 12.5 binary* 49401 44.2 1.2 Q0 1938 11.95 +46 28 02.5 12.9 binary* 49302 44.2 1.2 Q0 1906 59.78 +46 32 20.4 9.5 F0³5 BD+46 2621 43946 79.6 4.5 Q0–Q1 1912 12.26 +46 30 50.3 11.1 F0²5 13158 158.5 Q0–Q1 1916 49.58 +46 32 01.7 13.9 13158 310.5 6.3 Q1–Q4	62900260	19 08 42.53	72	6.6	$G2III^{25}$	BD+462633	:	40416	137.7	66.3	00-01	Q2.3
19 36 56,76 +46 26 58.0 13.1 48 446 33.4 0.1 19 37 77.98 +46 27 45.3 12.5	09703601	19 15 25.03		14.3	:	:	:	13 495	310.5	5.7	01–04	:
19 37 17.98 +46 27 45.3 12.5 binary* 49 401 44.2 1.2 Q0 19 38 11.95 +46 28 02.5 12.9 43 946 79.6 44.2 1.2 Q0 19 06 59.78 +46 32 20.4 9.5 F0 ³⁵ BD+46 2621 43 946 79.6 4.5 Q0-Q1 19 12 12.26 +46 30 50.3 11.1 F0 ²⁵ 40 134 228.8 158.5 Q0-Q1 19 16 49.58 +46 32 01.7 13.9 13 158 310.5 6.3 Q1-Q4	09716107	19 36 56.76	+46 26 58.0	13.1	:	:	:	48 446	33.4	0.1	:	Q1
19 38 11.95 +46 28 02.5 12.9 49 302 44.2 1.2 Q0 19 06 59.78 +46 32 20.4 9.5 F0 ³⁵ BD+46 2621 43 946 79.6 4.5 Q0-Q1 19 12 12.26 +46 30 50.3 11.1 F0 ²⁵ 40 134 228.8 158.5 Q0-Q1 19 16 49.58 +46 32 01.7 13.9 13 158 310.5 6.3 Q1-Q4	09716350	19 37 17.98	+46 27 45.3	12.5	:	:	$\operatorname{binary}^{\star}$	49 401	4.2	1.2	8	Q1
19 06 59.78 +46 32 20.4 9.5 F0 ³⁵ BD+46 2621 43 946 79.6 4.5 Q0-Q1 19 12 12.26 +46 30 50.3 11.1 F0 ²⁵ 40 134 228.8 158.5 Q0-Q1 19 16 49.58 +46 32 01.7 13.9 13 158 310.5 6.3 Q1-Q4	09716947	19 38 11.95	+46 28 02.5	12.9	:	:	:	49 302	4.2	1.2	8	QI
19 12 12.26 +46 30 50.3 11.1 F0 ²⁵ 40 134 228.8 158.5 Q0-Q1 19 16 49.58 +46 32 01.7 13.9 13 158 310.5 6.3 Q1-Q4	09760531	19 06 59.78	+46 32 20.4	9.5	$F0^{35}$	BD+462621	:	43 946	9.62	4.5	00-01	Q2.1
19 16 49.58 +46 32 01.7 13.9 13 158 310.5 6.3 Q1-Q4	09762713	19 12 12.26		11.1	$F0^{25}$:	:	40 134	228.8	158.5	00-01	Q3.3
	09764712	19 16 49.58	32	13.9	:	:	:	13 158	310.5	6.3	Q1-Q4	:

Table 1. continued.

KICID	RA (J2000)	Dec (J2000)	Кр	Spectral type	Name	Variable	N Datapoints	ΔT (d)	<i>δT</i> (d)	Quarters LC	Quarters SC
09764965	19 17 24.91	+46 35 35.2	8.9	$A5mp^{25}$	HD 181206	Ap or Am star	49 507	44.2	1.2	00	Q1
09773512	19 32 21.77	+46 35 29.8	10.0	$A2^{35}$	BD+462714	:	15 860	44.4	1.2	Q1	8
09775385	19 35 24.70	+46 35 26.9	11.1	•	TYC 3556-1982-1	•	43 914	9.62	4.5	00-01	Q2.1
09775454	19 35 32.02	+46 35 22.3	8.5	$F1IV^{29}$	HD 185115	hybrid ¹³	10 327	228.7	4.5	00-03	: ;
09776474	19 37 00.19	+46 31 14.2	13.0	:		:	63 426	321.5	4.5	00-04	Q1
09777532	19 38 31.06	+46 31 34.1	10.9		TYC 3556-3228-1	:	57 342	321.5	4.5	00-04	Q3.1
09790479	19 55 05.57	+46 35 05.1	6.6	$A2^{35}$	HD 188833	:	15 822	4 .	1.2	Q1	8
09812351	18 46 10.32	+46 37 51.0	7.9	$A0^{35}$	HD 174019	:	45 192	169.8	95.2	00-01	Q3.1
09813078	18 48 21.55	+46 41 43.7	11.9	:	:	:	15859	44.4	1.2	01	00
09818269	19 00 40.73	+46 39 58.7	11.4	:	:	:	15851	44.4	1.2	01	00
09836020	19 35 43.10	+46 40 03.0	12.8	:	:	:	14 463	321.5	4.5	40-00	:
09845907	19 49 30.46	+46 40 01.7	11.6	:	:	:	15860	4.4	1.2	0.0	00
09851142	19 55 12.05	+46 39 55.9	9.7	kA5hA7mF3 ²⁰ ,	V2094 Cyg	Am star, or	47 787	310.5	4.5	01-04	Q2.3
	ì		0	A/pCrEu ^{TO}		$\alpha^{2} \text{ CVn}^{12}$	0	1		(
09874181	18 51 26.57	+46 46 48.0	10.8	: ;	:	:	38 670	292.5	219.3	00-01	04.2
09881909	19 10 03.58	+46 42 16.1	11.4	$F2^{25}$:	:	43 845	9.62	4.5	00-01	Q2.1
09885882	19 18 45.05		14.1	:	:	:	13 809	310.5	5.0	01-04	:
00860660	19 53 27.17	+46 45 39.5	11.5	:	:	:	88 778	321.5	248.3	00-01	04.3
09913481	19 58 20.76	+46 45 55.9	10.9	:	TYC 3558-637-1	:	13 759	44.1	4.6	01	8
09944208	19 13 58.44	+46 50 00.2	14.2	:	:	:	13 980	310.5	4.5	01-04	:
09944730	19 15 11.54	+46 48 52.2	14.1	:	:	:	13 980	310.5	4.6	01-04	:
09970568	19 55 01.15	+46 52 29.2	9.6	$A2^{35}$	HD 188832	:	40 424	137.7	66.3	00-01	Q2.3
09991621	18 44 43.25	+46 55 47.6	13.9	:	:	:	13 276	310.5	6.1	01-04	, :
09991766	18 45 08.02		14.2	:	:	:	13 495	310.5	5.7	01-04	:
09994789	18 52 50.45	+46 59 48.0	13.8	:	:	:	13 322	310.5	6.4	01-04	:
09995464	18 54 26.02	+46 59 11.5	13.2	:	:	:	14360	321.5	4.9	00-04	:
10000056	19 05 07.51	+46 59 01.5	14.2	:	:	:	36583	28.9	3.9	, :	Q4.2
10002897	19 11 41.71	+46 55 12.7	12.2	:	:	:	15 853	44.4	1.2	01	00
10004510	19 14 55.08	+46 55 02.6	14.2	:	÷	:	13 941	310.5	4.5	01-04	:
10006158	19 18 07.39	+46 57 26.2	6.7	$K0^{35}$	BD+462665	:	14 431	321.5	4.5	00-04	:
10014548	19 32 14.23	+46 54 20.9	10.7	:	TYC 3560-2590-1	:	47 550	262.8	187.3	00-01	Q 4 .1
10030943	19 54 12.43	+46 56 12.6	11.3	:	TYC 3562-2361-1	:	38 677	292.5	219.3	00-01	04.2
10035772	20 00 05.26	+46 54 22.8	11.1	:	TYC 3562-32-1	:	43 903	9.62	4.5	00-01	Q2.1
10056217	18 50 47.52	+47 00 23.3	12.9	:	:	:	13 699	320.6	8.9	00-04	:
10056297	18 51 00.24	+47 00 11.3	13.4	:	:	:	40137	228.8	158.5	00-01	Q3.3
10057129	18 52 50.38	8	13.9	:	:	:	13 930	310.5	4.9	01-04	:
10062593	19 04 12.91	+47 03 05.0	13.3	:	:	:	14399	321.5	4.6	00-04	:
10064111	19 07 24.91	05	10.3	$A5^{35}$	BD+462624	binary	44 462	109.5	35.9	00-01	Q2.2
10065244	19 09 47.30		12.3	:	:	:	43 945	9.62	4.5	00-01	Q2.1
10068892	19 17 00.31	05	11.4	:	:	:	14433	321.5	4.6	00-04	:
10069934	19 18 56.14	05	11.3	:	TYC 3547-470-1	:	88 326	321.5	248.3	00-01	04.3
10073601	19 24 48.70		11.5	:	TYC 3547-20-1	:	433 213	321.6	4.5	:	00-04.3
10090345	19 49 00.12	+47 05 05.2	11.3		TYC 3561-258-1	:	45 170	109.5	35.4	00-01	02.2
10096499	55	3	6.9	$A3V^{50}$	HD 189013	:	37 977	25.9	0.0	. (03.3
10119517	18 45 55.46	+47 07 21.6	9.9	:	TYC 3544-1245-1	:	52 795	321.5	4.5	00-02 50-04	Q2:3
111001111	10	⇉	17.0	:	:	:	40.540	1.161	C.00	رم_ر ر	7.77

Table 1. continued.

Spectral type
TYC 3562-1846-
v830 Cyg
TYC 3560-2645-1
1103
BD+472769
•
TVC 2550 1022
1 1 C 3300-192. BD±47 2027
+00
·
HD 183954
HD 187709
TYC 3562-1455-
3C DXT
I YC 3544-2086-1 PD: 47.7721
DD↑
:
HD
TVC 3560_2310_
TYC 3561-1801-
TYC 3546-1494-
·
BD+47 2828
BD+47 2856

Table 1. continued.

KICID	RA (J2000)	Dec (J2000)	Кр	Spectral type	Name	Variable	N Datapoints	ΔT (d)	<i>ST</i> (b)	Quarters LC	Quarters SC
10549371	19 48 16.15		9.5	$A5^{35}$	BD+47 2922	:	43 939	9.62	4.5	Q0-Q1	Q2.1
10586837	19 03 02.38		12.4		:	:	45316	109.5	35.3	00-01	Q2.2
10590857	19 11 38.54		10.0	$F0^{35}$	BD+47 2773	:	15851	44.4	1.2	01	8
10604429	19 34 36.46	20	6.6	$F0^{35}$	BD+47 2868	binary [⋆]	52 538	137.9	101.1	:	Q0-Q2.3
10615125	48	51	10.3	:	:	:	40 385	137.7	66.3	00-01	Q2.3
10647493	18 51 45.14	+47 57 29.4	11.7	:	:	:	15860	44.4 4.4	1.2	Q1	8
10647611	18 52 04.49	+47 59 54.2	12.0	:	:	:	15851	44.4	1.2	01	8
10647860	18 52 37.75	+47 55 26.2	13.3	:	:	:	13 667	321.0	7.4	00-04	:
10648728	54	+47 56 52.3	11.4	:	:	:	44 102	321.5	248.4	00-01	04.3
10652134	19 02 08.28	+47 55 45.2	11.9	:	:	:	11 249	252.5	4.5	00-04	, :
10658302	19 15 07.68		13.1	:	:	:	43 591	9.62	4.5	00-01	02.1
10658802	19 16 03.00		11.9	: :	: :	: :	15854	4.44	1.2	0.0	,0
10663892	19 24 45.10		11.8		: :	: :	430810	321.6	4.5	٤ :	00-04.3
10664703	19 26 02.47	58	10.9	: :	TYC 3547-1575-1	: :	44 427	321.5	248.3	00-01	04.3
10664975	19 26 28 49	28	7.6	A 235	HD 183280		38.016	25.9	0.0	, ,	03.3
10675762	19 43 05 02	5	10.0	1	TVC 3561-371-1	:	15 842	444	1.3	: 5) ()
10684587	19 53 36 67		110	:	TYC 3562-461-1	:	44 430	321.5	248 3	0-0	Q 43
10684673	33	S &	11.1	:	TVC 3562-805-1	:	49 511	44.2	5 -	ر ک	<u>}</u>
10685653	19 54 50 30		1111	:	TVC 3562-301-1	:	49.465	2.4	1 5	38	52
10686752	19 56 03 43		113	:	TVC 3562-707-1	:	45.455	109.5	35.3	0	000
100001	18 45 20 64		12.0	:	1-101-2000-11	:	13.501	310.5	5.5	\$ 2 \$ 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10713308	18 53 42 43	+48 02 33.0	11.5	:	TVC 35///_1186_1	:	15.860	210.5	1.5	, , ,	: 8
10717971	10 03 14 88	148 00 56 6	10.5	:	TVC 3545 7573 1	:	10.600	1277	7:1	25	3,5
10/1/01	19 03 14.88	+48 02 30.0	0.51	:	1 1 5 3 3 4 3 - 2 3 2 3 - 1	:	12 650	210.7	00.3	Z Z	Z-2.3
10/23/18	19 15 05.93	+48 00 40.9	14.7	:	1 3001 Th 30 DVF	:	13 030	510.5	y.,	4 ح اک	
10/30018	19 20 30.48	+48 03 34.8	10.5	:	TVC 2547-1203-1	:	411 003	321.0	6.7		CU-C4:
10777541	10 40 10.30	+46 00 30.0	10.0	:	1103344-733-1	:	19 650	210.6	130.0	2 2 2 3	C.C.)
10///541	18 48 50.14	+48 06 45.9	1.4.1	:		:	12,632	5.016	ر: د: م	2 2 4 2 5	: 5
1077107	10 49 40.42	+46 0/ 15.9	10.7	:	DD+4/2/03	:	45 945	7.07	4. L	25.5	Q2.1
107/8640	18 51 17.76	+48 06 19.5	15.8	:	:	:	13 190	310.5	4.	VI-Q4	:
10/83150	19 01 20.76	+48 08 30.9	15.1	:		:	11 299	C.7C7	4. C. d.	20-02 42-03	
10/88451	19 12 37.80	+48 08 15.5	11.1		TYC 3546-1364-1	:	40 136	278.8	158.5	(A)-(A)	U3.3
10/9/526	19 2/ 49.5/	+48 10 36.3	8.3	B352	HD 183558	: ;	147 /27	109.7	4. C.	÷	00-02:2
10/9/849	19 28 20.69	+48 10 57.2	10.8	:	TYC 3547-1020-1	binary	435 452	321.6	5.1		C0-C4:3
10813970	20	+48 10 17.3	11.3	:	TYC 3301-1338-1	:	40408	13/./	5.00	- - - - - - - - - - - - - - - - - - -	Q2.3
10815466	19 52 28.63	2 5	11.2	:	TYC 3561-434-1	binary^	43 946	79.6	C.4.	[7] (2] (3]	Q2.1
10825/85	15	1 5	11.0	:	1 Y C 3340-3/4-1	:	44428	521.5	248.3	[]	C.4.3
10861649	19 27 58.37	+48 17 37.9	12.1	:	:	:	431057	321.6	4.5 5.1		00-04.3
10902738	45		12.5	:	:	:	9.706	217.8	5.4	01-03	: (
10920182	19 27 36.17		11.8	:	:	:	430 256	321.6	5.5	:	Q0-Q4.3
10920273	19 27 45.77	+48 19 45.4	11.9	:		:	430371	321.6	4.5	: (00-04.3
10920447	19 28 04.97	+48 18 27.6	11.2	:	TYC 3547-1099-1	:	44 429	321.5	248.3	20-01	Q4.3
10971674	19 19 09.79	26 53.	13.8	:	:	:	12 734	310.5	5.7	01-04	:
10975247	19 26 34.37	+48 29 14.9	11.1		:	:	48 556	44.2	1.3	8	Q <u>1</u>
10977859	31	56	8.8	$A2^{35}$	HD 184333	:	49 510	4.2	1.2	8	01
10988009	19 48 08.23	27 37.	10.2		TYC 3561-622-1	:	43 947	79.6	4.5	00-01 30-01	Q2.1
11013201	18 48 00.07	+48 32 32.0	9.3	A255	BD+48 2768	:	43 656	79.6	4.5	Q0-Q1	Q2.1

Quarters SC 00-04.1 00-04.1 00-04.2 02.2 02.2 00-04.1 03.1 00-04.1 00-04.1 Q1 Q0-Q4.1 Q0-Q4.1 Q3.3 Q3.3 20-04.3 20-04. 20-04. Q2.3 Q4.3 03.2 03.1 Quarters LC 01-64 01-64 00-64 20-01 20-04 20-01 20-01 ... 2000 2000 2000 2000 77777 7885 5.1 5.1 158.5 5.1 126.4 219.3 4.6 95.2 310.5 292.5 137.7 310.5 33.4 44.4 44.4 44.4 44.4 44.4 44.4 522.7 522.7 522.7 169.8 321.6 524.1 525.7 5 321.5 109.5 44.4 252.7 1169.8 241.5 220.7 252.7 252.7 252.7 252.7 252.7 252.7 252.7 252.7 322.0 252.7 228.5 252.7 252.7 N Datapoints 336 245 39 548 337 715 328 959 336 659 88 810 15856 339 574 338 231 10 290 10 545 337 220 338 373 46 076 11 332 340 340 338 263 335 442 11 324 45 180 40 255 $\begin{array}{c} 58\,160 \\ 10\,454 \end{array}$ 56546 45 466 15 861 337 111 10617 341474 38 597 40423 13 297 44324 77 272 45 182 45 461 28 721 49 041 Am, hybrid^{14,15} Am star¹⁴ Variable binary FYC 3547-1058-1 FYC 3565-1318-1 TYC 3547-759-1 TYC3550-456-1 TYC3565-514-1 FYC3551-523-1 FYC3550-892-1 FYC3550-300-1 FYC3565-674-1 TYC 3545-69-1 TYC 3550-42-1 BD+482815 BD+482912 BD+482925 HD 186700 HD 177876 HD 183489 HD 178327 Name kA7hA9mF5¹⁴ $kF3hA9mF5^{14}$ Spectral type $\frac{...}{A2/3}V^{20}$... A2³⁵ ... A5³⁵ 7.7 7.7 12.0 12.8 10.8 11.9 11.8 10.5 11.5 12.0 10.8 10.9 +48 52 00.3 +48 50 41.5 +48 52 21.4 +48 50 21.2 +49 17 04.6 +48 34 19.4 +48 33 38.9 +48 35 49.5 +48 36 16.9 +48 40 08.7 +48 38 19.8 +48 36 24.2 +48 47 55.6 +48 42 57.5 +48 46 32.4 +48 43 27.7 +48 52 07.6 +48 48 22.0 +48 48 07.5 +48 54 33.0 +48 56 31.6 +48 56 07.0 +48 56 39.3 +48 54 03.6 +48 55 44.2 +49 02 05.6 +49 03 12.5 +49 02 36.3 +49 05 50.0 +49 10 52.6 +49 08 47.4 +49 11 48.3 +49 17 49.7 +49 15 04.5 +49 16 44.4 +49 15 23.5 +49 18 01.6 +49 18 20.8 +49 20 52.2 +48 55 39.1 +49 14 02.1 +48 55 32.1 +48 47 45.1 +48 44 32. +49 22 19. 19 04 04.61 19 10 24.26 19 12 06.29 19 12 25.80 19 43 51.58 18 55 50.50 19 12 40.70 19 48 47.21 19 09 19.63 19 06 05.35 19 07 12.19 19 10 15.19 19 01 12.19 24.36 19 07 39.65 19 09 15.58 19 22 35.14 18 48 26.30 18 52 28.25 19 24 46.87 19 39 12.38 18 52 27.24 19 01 09.67 19 04 37.85 19 06 59.26 19 41 29.06 19 02 17.33 19 02 52.42 19 07 00.22 19 10 39.34 19 19 53.18 19 43 39.62 19 04 11.66 19 05 42.79 19 07 48.43 19 09 55.49 19 09 57.86 19 10 54.34 19 05 21.00 19 05 40.63 19 06 19.22 19 32 45.31 19 09 10.61 19 27 32.81 19 08 39.31 90 61 1199412 1230518 1069435 1182716 1193046 1197934 1232922 1233189 1234888 1290197 1309335 1340063 1340713 1342032 1394216 1395018 1445913 1027270 1090405 1122763 1125764 1127190 1128126 1129289 1183399 1183539 1240653 1253226 1285767 1288686 1395028 1445774 1021188 1067972 1082830 1128041 1180361 1236253 1393580 1395392 1402951 1446143 1235721 1446181 102052 KIC ID

Quarters SC % 64.2 % 64.1 % 64.2 % ... 20-04.1 20-04.1 20-04.3 02.2 04.3 03.3 83: 88: : Quarters LC \$000 \$000 \$000 \$000 000 158.6 248.3 156.1 187.3 4.8 δ*T* (d) 44.2 252.5 241.3 252.7 252.7 310.5 310.5 321.5 44.2 321.5 321.5 321.5 44.4 292.5 252.1 241.5 44.4 44.4 321.5 8.691 262.8 252.7 252.7 309.6 292.5 310.5 321.5 321.5 ΔT N Datapoints 04958 335 138 334 440 298 877 49 461 49 507 13 788 38 643 15835 38 114 10 898 10369 15857 15855 14393 40 115 2 089 11 057 10423 13 043 45 466 41 580 39 786 49 100 14 384 14 380 13915 57 638 39814 44 372 45 195 15800 47515 39824 10563 Variable binary' TYC 3551-2195-1 FYC 3549-1627-1 TYC 3550-1330-1 FYC 3564-1819-1 FYC 3565-1373-1 FYC 3565-1155-FYC3550-1718-FYC 3565-1003-TYC 3549-677-1 TYC 3550-1782-LYC 3565-580-1 TYC 3549-914-1 FYC 3564-231-1 TYC 3564-891-1 TYC 3565-247-1 ... BD+493018 BD+493106 BD+493039 BD+49 2927 BD+493109 BD+493081 BD+49 2951 HD 178874 HD 181252 Name Spectral type ... A2³² $A2^{33}$... F2³³ Кр +49 51 03.6 +49 53 55.7 +49 25 47.5 +49 28 46.6 +49 25 27.0 +49 32 58.2 +50 16 17.4 +50 17 00.6 +49 44 22.2 +49 47 37.4 +49 39 07.6 +49 41 07.8 +49 33 08.0 +49 35 28.8 +49 46 57.8 +49 47 11.6 +49 51 13.6 +49 51 00.8 +49 53 09.0 -50 03 11.0 +49 19 22.3 +49 22 41.1 +49 19 42.5 +49 27 49.4 +49 39 14.1 +49 45 33.7 -49 45 43.5 +49 51 01.2 +49 51 34.5 +49 57 15.4 +50 04 31.8 +50 05 14.2 +49 23 03.2 +49 24 56.4 +49 29 48.4 +49 39 10.7 +49 45 14.1 -49 54 06.3 -49 29 07.3 +49 25 10.5 +50 06 09.4 +49 18 46.2 -49 48 06. +50 11 20. +49 25 39. 19 18 15.26 19 27 55.78 19 45 48.82 19 15 46.08 19 24 45.94 19 07 46.85 19 09 50.93 19 10 05.35 19 16 07.75 18 57 38.28 18 58 21.74 19 13 34.66 19 13 51.17 19 15 32.38 19 17 18.50 9 08 57.19 46.56 9 51 22.80 9 08 13.78 9 30 25.78 9 41 26.98 9 47 43.10 9 11 13.92 9 12 02.93 9 29 38.30 9 10 12.67 9 19 29.78 9 47 56.14 9 01 15.65 9 01 26.57 9 09 41.76 9 08 15.94 9 43 57.53 33.77 8 57 57.77 9 03 53.04 9 32 21.24 9 42 55.30 9 04 23.64 9 30 41.54 9 39 17.64 9 03 04.37 9 47 15.31 RA (J2000) 19 17 4 1612274 11910256 11910642 1499453 11502075 1515690 1700370 1714150 1718839 1448266 1602449 1653958 1654210 1753169 1822666 1874676 1454008 1494765 1497012 1498538 1499354 1508397 1551622 1572666 1607193 1622328 1651083 1651147 1657840 1661993 1671429 1706449 1708170 1754974 1821140 1824964 1874898 1509728 1549609 1700604 1706564 11447953 144993 1707341 KIC ID

Table 1. continued.

KICID	RA (J2000)	Dec (J2000)	Кр	Spectral type	Name	Variable	N Datapoints	ΔT (d)	<i>δT</i> (d)	Quarters LC	Quarters SC
11973705	19 46 42.58	+50 21 01.3	9.1	$\mathbf{B9}^{34}$	HD 234999	:	28 668	322.0	4.6	00-04	00
12018834	19 38 48.29	+50 24 13.8	10.8	:	TYC 3564-274-1	:	95 146	262.8	187.3	00-01	04.1
12020590	19 42 20.35	+50 27 38.8	10.0	:	TYC 3565-859-1	:	15830	44.4	1.4	Q1	8
12058428	19 18 05.66	+50 33 35.9	11.1	:	TYC 3550-895-1	:	49 055	44.2	1.2	8	<u>0</u> 1
12062443	19 27 48.05	+50 31 10.2	10.9	:	TYC 3551-450-1	:	15 826	44.4	1.6	01	8
12068180	19 39 22.42	+50 32 03.4	10.4	:	TYC 3564-1358-1	:	40 428	137.7	66.3	00-01	Q2.3
12102187	19 04 01.97	+50 37 26.3	11.1	:	TYC 3549-88-1	:	49 308	44.2	1.2	8	01
12117689	19 40 37.25	+50 38 31.5	10.8	:	TYC 3568-996-1	:	45 441	109.5	35.3	00-01	Q2.2
12122075	19 48 15.07	+50 39 11.8	10.7	:	TYC 3569-391-1	$binary^*$	47 568	262.8	187.3	00-01	Q4.1
12216817	19 43 11.14	+50 53 45.6	10.7	:	TYC 3569-368-1	· :	40 433	137.7	66.3	00-01	Q2.3
12217281	19 44 00.38	+50 53 13.2	6.6	$F2^{34}$	HD 234984	:	15 841	4.4	1.2	Q1	8
12353648	19 18 07.97	+51 10 47.5	9.6	$A2^{34}$	HD 234859	:	40 397	137.7	66.3	00-01	Q2.3
12647070	19 21 51.14	+51 42 20.1	10.7	:	TYC 3555-1407-1	:	47 581	262.8	187.3	00-01	Q4.1
12784394	19 19 51.41	+52 05 39.6	8.6	$A5^{34}$	HD 234869	:	15 729	44.4	1.6	Q1	00

(1988); (3) Stephenson (1986); (32) Vyssotsky (1958); (33) Hill & Schilt (1952); (34) Cannon (1925); (35) Kharchenko & Roeser (2009); (36) Edipsing binary (Prša et al. 2011); (37) Balona et al. (2011); (37) Balona et al. (2011); (38) Hill & Schilt (1952); (38) Kharchenko & Roeser (2009); (39) Edipsing binary (Prša et al. 2011); (37) Balona et al. (2011c); (38) Hill & Schilt (1952); (38) Kharchenko & Roeser (2009); (39) Edipsing binary (Prša et al. 2011); (37) Balona et al. (2011c); Notes. (1) P = 9.3562 d, eclipsing binary (Hartman et al. 2004); (2) P = 0.0665 d (Henry et al. 2001); (3) P = 4.0303 d, pulsating star (Hartman et al. 2004); (4) P = 0.2948 d (Hartman et al. 2004); (7) P = 35.9 d (Watson 2006); (8) P = 4.924 d (Pigulski et al. 2009); (9) P = 2.18 d (Magalashvili & Kumishvili 1976); (10) P = 0.066677 d (Watson 2006); (11) P = 0.38414 d (Watson 2006); (12) P = 8.4803 d (Otero 2007); 8.480322 d (Carrier et al. 2002); (13) P = 4.56427 d, eclipsing binary (Malkov et al. 2006); 38 Eclipsing binary (Slawson et al. 2011); (39) Wright et al. (2003); (40) Hoffleit (1951); (41) Molenda-Zakowicz et al. (2008). (*) Binarity is suspected by inspection of Digitized Sky Survey and 2MASS images; (o) spectroscopic binary.

Table 2. Effective temperature (in K), $\log g$ (in dex), and $v \sin i$ values (in km s⁻¹) for the 750 sample stars.

	ture	Literature
8410 ± 290°		
$7270 \pm 290^{\circ}$ $7270 \pm 290^{\circ}$ $7000 + 75^{\circ}$	657 ± 0007	:
: :	: : :	: : :
$\dots \qquad \qquad 4639 \pm 290^a$:	463
$\dots \qquad 7500 \pm 290^{\circ}$:	:
6410 ± 120°	:	:
6560 ± 130°	:	$6560 \pm 130^{\circ}$ 6
6680 ± 290° 2000 ± 290°		
: :	808	7070 + 80%
$7140 \pm 290^{\circ}$:	:
$\dots \qquad \qquad 7280 \pm 290^{a}$		
$\dots \qquad \qquad 4600 \pm 290^a$		
$\dots 4670 \pm 290^a$		
$\dots \qquad \qquad 4440 \pm 290^a$		
4640 ± 290°		4
	::	::
::	::	
$\dots 4590 \pm 290^a$		
	:	::
::	:	::
: :	:	: :
:	::	::
:	:	:
:	:	::
:	::	::
	:	:
:	150^{b}	$6940 \pm 150^{\circ}$
:	130^{b}	6610 ± 130^{b}
:	::	::
:	:	:
$\dots \qquad \qquad 8180 \pm 290^a$::	::
7290 ± 290^a	:	::
$\dots \qquad \qquad 7280 \pm 290^a$:	:
:	:	:
:	:	:
:		
:		::

Table 2. continued.

s ⁻¹) Spectra	:	:	÷	:	:	:	:	:	÷	:	÷	:	:	:	:	:	: :	: :	:	÷	:	÷	:	:	:		:	:	:	:	:	:	:	:	:	:	÷	:	:
$v \sin i \text{ (km s}^{-1})$ Spectra Spec	:	:	:	:	:	:	:	: :	:	:	:	:	:	:		228 ± 18^{9}	 90 + 5		:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	50 ± 5^{i}	$120 \pm 5'$:	:	
Adopted*	3.6 ± 0.3^a	$\textbf{2.5} \pm \textbf{0.3}^a$	$\textbf{2.5} \pm \textbf{0.3}^a$	$\textbf{2.4} \pm \textbf{0.3}^a$	2.2 ± 0.3^a	$\textbf{2.6} \pm \textbf{0.3}^a$	3.6 + 0.34	· .	2.6 ± 0.3^a	:	3.6 ± 0.3^{a}	:	4.0 ± 0.3^a	:		3.69 ± 0.09 ³	3.6 ± 0.1^{i}	$\textbf{2.6} \pm \textbf{0.3}^a$	3.82 ± 0.21^b	3.9 ± 0.3^a	$\textbf{3.8} \pm \textbf{0.3}^a$	3.9 ± 0.3^a	3.7 ± 0.3^a	2.3 ± 0.3°	3.6 + 0.3 ^a	3.6 ± 0.3^a	$\textbf{4.1} \pm \textbf{0.3}^a$	$\textbf{4.10} \pm \textbf{0.21}^b$	2.3 ± 0.3^a	$\textbf{2.7} \pm \textbf{0.3}^a$	3.4 ± 0.3^a	$\textbf{4.1} \pm \textbf{0.3}^a$	2.5 ± 0.3^a	$\textbf{2.5} \pm \textbf{0.3}^a$	4.0 ± 0.1^{i}	$4.1 \pm 0.2^{\prime}$	3.9 ± 0.3^a	:	000000
$\log g \text{ (dex)}$ Literature	:	:	÷	:	:	:	:	: :	:	:	:	:	:	:	:	:	: :	: :	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:		$4.1 \pm 0.2'$:	:	:
log Literature	:	:	:	:	:	:	:	: :	:	:	:	:	:	:		3.69 ± 0.09	3.6 ± 0.1^{i}	:	3.82 ± 0.21^b	:	:	:	:	:	:		:	4.10 ± 0.21^b	:	:	:	:	:	:	$4.0 \pm 0.1'$	3.3 ± 0.2^{e}	:	:	
KIC^a	3.59	2.52	2.53	2.37	2.24	2.59	3 50	(C.C	2.64	:	3.56	:	4.04	:	: 0	3.50	3.56	2.58	:	3.89	3.76	3.85	3.66	7.57	3.55	3.60	4.07	4.02	2.26	2.74	3.44	4.06	2.55	7.48	3.42	3.86	3.93	:	
Adopted*	7320 ± 290^a	4770 ± 290^a	4620 ± 290^a	4700 ± 290^a	4720 ± 290^{a}	4660 ± 290^{a}	7310 + 290a		4850 ± 290^a	:	7880 ± 290^{a}	:	8210 ± 290^a	:		$7830 \pm 120^{\circ}$	7500 ± 150^{i}	4590 ± 290^a	6750 ± 130^{b}	7970 ± 290^a	7800 ± 290^{a}	8420 ± 290^a	7870 ± 290^a	4660 ± 290°	500 ± 200 $7020 + 290^a$	7200 ± 290^{a}	6780 ± 290^a	6850 ± 150^{b}	4810 ± 290^a	4900 ± 290^{a}	7230 ± 290^a	8050 ± 290°	4790 ± 290^a	4900 ± 290°	$7200 \pm 150'$	$7700 \pm 120'$	7410 ± 290^a	:	
		4	4	4	4.	4	•											4	_										4	4	<u>_</u>	Ø	4	4					
Literature	:	.:	:	:	:		:	: :	:	:	:	:	:	:	:	:			:	:	:	:	:	:	:	: :	:	:	::	:		ž	.: 4		:	:	:	:	:
$T_{\rm eff}$ (K) Literature	:	: :	::	::	::		::	: :	:	:	:	:	::	:	:	:			:	:	:	:	:	: :	: :		:	:	::	::		::		.:.		7700 ± 120^{6}	:	:	: :
	:			4 · · · · · · · · · · · · · · · · · · ·	4		::		::	:	: :	::	::	: :		/830 ± 120° · · · ·	7500 + 150'		6750 ± 130^b	::	::	: :	::	: : : : : : : : : : : : : : : : : : : :			:	6850 ± 150^b				:: ::				7342 ± 162^e 7700 ± 120^t	::	::	
$T_{ m eff}$ (K) Literature	7320	4770 4	:	:	:		7310		4850	: :			8210	: : : : : : : : : : : : : : : : : : : :		:	$7500 + 150^{i}$		6750 ± 130^b	0797	7800	8420		4660	2020	7200	6780		::	: :	:	:	:		$7200 \pm 150'$	7342 ± 162^{e}			

 Table 2. continued.

N1 Ca	earriteaeti I pr	I itarotura	I itoroti I	* Lotus A	VICa	JOI	$\log g (\text{dex})$	Adontodx	VSIN 1	$v \sin i \text{ (km s}^{-1}\text{)}$
ASZ			Literature	A570 - 200a	NIC 200	Filerature	Liferature	Adopted	opecua	Specia
45/0	:	:	:	.067 ± 0/c4	7.39	:	:	2.4 ± 0.5°	:	:
:	:	:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:
4570	0	:	:	4570 ± 290^{a}	2.47	:	:	2.5 ± 0.3^{a}	:	:
5020	0	:	÷	5020 ± 290^{a}	2.78	:	:	$\textbf{2.8} \pm \textbf{0.3}^a$:	:
7310	$0 6790 \pm 140^{b}$	40 ^b	:	6790 ± 140^b	3.81	3.73 ± 0.21^b	:	3.73 ± 0.21^b	:	:
4770		:	:	4770 ± 290^a	2.34	:	:	$\textbf{2.3} \pm \textbf{0.3}^a$:	:
7340	0	:	:	7340 ± 290^a	4.11	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
4830	.:: 0	:	:	4830 ± 290^a	2.74	:	:	$\textbf{2.7} \pm \textbf{0.3}^a$:	:
4530	0	:	:	4530 ± 290^a	2.38	;	;	2.4 ± 0.3^a	:	;
7480				$7480 + 290^a$	3.86		: :	3.9 + 0.3		
4410	:	•	:	4410 ± 290^a	200	:	:	2.0 + 0.3	:	:
7500		•	:	$7500 + 290^a$	4 12 1	•	:	4.1 ± 0.3^a		•
	:	:	:		11:1	:	:		:	:
	:	:	:	000C - 0022		:	:	13 - 0 34	:	:
0000	:	:	:	.067 ± 0000	4.33	:	:	4.0 ± 0.5	:	:
:			:	:	:	:	:	:	:	:
6440	$0.0671 \pm 76^{\circ}$	$_{0}^{c}$ $6.0 \pm 0_{q}$	$6546 \pm 0^{\circ}$	6671 ± 76^{c}	4.03	4.31 ± 0.10^d	:	$\textbf{4.3} \pm \textbf{0.1}^d$:	:
:	:	:	:	:	:	:	:	:	:	:
4890		:	:	4890 ± 290^{a}	3.51	:	:	$\textbf{3.5} \pm \textbf{0.3}^a$:	:
7030	0	:	:	7030 ± 290^{a}	4.04	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
8640	0	:	:	8640 ± 290^a	3.42	:	:	$\textbf{3.4} \pm \textbf{0.3}^a$:	:
8150	0	:	:	8150 ± 290^a	4.10	:	:	$\textbf{4.1}\pm\textbf{0.3}^a$	÷	:
:	:	:	:	:	:	:	:	:	:	:
7300	0	:	:	7300 ± 290^{a}	3.56	:	:	3.6 ± 0.3^a	:	:
8190	0	:	:	8190 ± 290^a	4.10	:	:	$\textbf{4.1}\pm\textbf{0.3}^{a}$:	:
8340	0	:	:	8340 ± 290^a	4.04	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
7800	0	:	:	7800 ± 290^{a}	3.87	:	:	$\textbf{3.9} \pm \textbf{0.3}^a$:	:
7310	0	:	÷	7310 ± 290^{a}	3.99	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
7460	0	:	:	7460 ± 290^a	3.59	:	:	$\textbf{3.6} \pm \textbf{0.3}^a$:	:
7160	0	:	:	7160 ± 290^{a}	4.14	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
1960	0	:	:	7960 ± 290^{a}	3.87	:	:	$\textbf{3.9} \pm \textbf{0.3}^a$:	:
8300	0	:	:	8300 ± 290^{a}	3.56	:	:	$\textbf{3.6} \pm \textbf{0.3}^a$:	:
5900	0	:	÷	5900 ± 290^{a}	4.21	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	:
7620	0	:	:	7620 ± 290^a	3.95	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
7190	0	:	:	7190 ± 290^a	3.80	:	:	$\textbf{3.8} \pm \textbf{0.3}^a$:	:
:	:	:	÷	:	:	:	:	:	:	:
0629	0	:	:	6790 ± 290^a	4.05	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
:	:	:	÷	:	:	:	:	:	:	:
6620	.: 0	:	:	6620 ± 290^{a}	4.05	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
8290	0	:	:	8290 ± 290^{a}	3.65	:	;	3.7 ± 0.3^a	:	;
7480	$0.06470 + 120^{b}$	_q 0c		$6470 + 120^{b}$	3.83	$3.84 + 0.22^{b}$		$3.84 + 0.22^{b}$		
7710		:	:	$7710 + 290^a$	3.50		:	35+03	•	
0 1 1	::	:	:	0/1 - 07/1		•	:		:	:

Table 2. continued.

m s ⁻¹)	Specia	÷	: :	:	:	:	:	:	:	÷	:	÷	:	:	:	: :	:	:	:	:	:	:	:	: :	÷	:	:	:	:	:	: :	÷	:	:	:	:	:	:
$v \sin i \text{ (km s}^{-1})$	Specia	:	: :	:	÷	:	÷	:	÷	:	$80 \pm 20'$:	:	÷	:	: :	÷	:	÷	:	:	:	:	: :	÷	:	:	÷	:	:		:	÷	41 ± 1^9	:	:	:	
Adonted*	3.0 ± 0.3a	3.7 ± 0.3° 3.7 ± 0.3°	3.6 ± 0.3^a	$\textbf{3.8} \pm \textbf{0.3}^a$	3.6 ± 0.3^a	3.9 ± 0.3^a	3.9 ± 0.3^a	$\textbf{3.5}\pm\textbf{0.3}^a$	$\textbf{3.5}\pm\textbf{0.3}^a$	$\textbf{3.9} \pm \textbf{0.3}^a$	$4.0 \pm 0.3^{\prime}$	4.0 ± 0.3^a	3.56 ± 0.22^{o}	5.7 ± 0.5"	3.3 ± 0.3 3.3 + 0.3	4.1 ± 0.3^a	4.0 ± 0.3^a	3.6 ± 0.3^a	+I	3.9 ± 0.3^a		$3.9 \pm 0.3^{\circ}$	3.9 ± 0.3 4.0 + 0.3	3.6 ± 0.3^{a}	3.8 ± 0.3^a		$3.5 \pm 0.3^{\circ}$	11 - 0 34	4.1 ± 0.3) H		$\textbf{4.1} \pm \textbf{0.3}^a$	3.6 ± 0.3^a	$\textbf{2.70} \pm \textbf{0.13}^g$	$\textbf{4.1} \pm \textbf{0.3}^a$:	•	3.8 ± 0.3^a
$\log g \text{ (dex)}$	Literature	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	4.26 ± 0.05^d	:	:	:	: :		:	:	:	:	:	:	: :	:	:	:	:	:	:	
l iterature	Liferature	:	: :	:	:	:	:	:	:	:	4.0 ± 0.3^{i}		$3.56 \pm 0.22^{\circ}$:	:	: :	:	:	4.2 ± 0.2^{e}	:	:	:	:	: :	:	:	:	:	:	:	: :	:	:	2.70 ± 0.13^9	:	:	:	
KICa	2 0 1	3.72	3.58	3.84	3.63	3.88	3.87	3.54	3.54	3.87	: 6	3.98	4.05	7.0.0	3.37	4.07	3.97	3.55	:	3.89	: 6	3.90	3.97	3.62	3.79	: ;	3.51	: -	4.11	† !		4.13	3.58	4.04	4.13	:	:	3.83
Adonted*	7220 + 200a	267 ± 290° 7650 + 290°	8000 ± 290^a	8140 ± 290^a	+1	+1	7150 ± 290^a	7130 ± 290^a	7290 ± 290^a	7290 ± 290^{a}	$7000 \pm 150^{\circ}$	7860 ± 290^{a}	$6850 \pm 140^{\circ}$	8550 ± 290°	067 ± 0679 7860 + 290°	6980 ± 290^{a}	8360 ± 290^a	7110 ± 290^a	7132 ± 163^{e}	7350 ± 290^a	$6680 \pm 290^{\circ}$	$7820 \pm 290^{\circ}$	7320 ± 290^a	7630 ± 290^{a}	7470 ± 290^a		7900 ± 290°	5250 ± 290° 5210 + 200°	067 ± 0170	4300 ± 290^a		6740 ± 290^a	5140 ± 290^a	6740 ± 50^{9}	7090 ± 290^{a}	:	•	8140 ± 290^a
afilire	2																																					8
Literature	Literatu	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	:	:	: :	:	:	:	:	:	:	:	:	:	:	:	:	:	
$T_{ m eff}$ (K) Literature Liters	ciatuic	:	: :	:	:	:	:	:	:	:	:	:	:	: :	: :	: :	:	:	7244 ± 0^d	:	:	: :	: :		:	:	:	:	:	:		:	:	:	:	:	:	
T _{eff} (K)	Literature	: :		:	:	::	:	::	::	::	$7000 \pm 150'$		$6850 \pm 140^{\circ}$:	::		:	:	7132 ± 163^e 7244 ± 0^d			:			: : : : : : : : : : : : : : : : : : : :	:	::	:	:			:	:	6740 ± 50^9	:	:	:	
T _{eff} (K)	Literature Literature	077/	0008	8140	8250	0929	7150	7130		7290			$6890 6850 \pm 140^{p} cdots$	8330	7860	0869	8360	:	7132 ± 163^e 724	7350		7820	7320	7630	7470		006/		0170	4300		6740	5140		0602	::		

Spectra $v \sin i \text{ (km s}^{-1}\text{)}$ pectra 200 ± 20 70 ± 20^{6} 20 ± 5^{i} 20 ± 10 11 ± 1 3.7 ± 0.3^a 3.58 ± 0.28^g 3.72 ± 0.22^b 4.48 ± 0.21^{b} 3.7 ± 0.3^a 3.5 ± 0.3^a 0.44 ± 0.26 3.60 ± 0.23^{b} 4.1 ± 0.3^a 3.32 ± 0.23 3.9 ± 0.3^{a} 3.9 ± 0.3^a 3.9 ± 0.3^{a} $\textbf{3.6} \pm \textbf{0.3}^a$ 3.9 ± 0.3^a $\textbf{4.1} \pm \textbf{0.3}^{a}$ 3.6 ± 0.3^a Adopted* 4.0 ± 0.3^a 4.0 ± 0.3^{a} 4.0 ± 0.3^{a} 4.0 ± 0.3^{a} 4.2 ± 0.3^a 3.9 ± 0.3^{a} 3.9 ± 0.3^{a} 4.2 ± 0.3^a 4.0 ± 0.3^{a} 3.8 ± 0.3^{a} 4.5 ± 0.3^{a} 3.8 ± 0.3^{a} 4.2 ± 0.3^a $3.8 \pm 0.3^{\circ}$ $4.1\pm0.3^{\circ}$ 3.8 ± 0.3^{i} 3.9 ± 0.3^{a} 4.1 ± 0.3^{a} 3.9 ± 0.3 3.6 ± 0.3 3.9 ± 0.3 Literature 3.6 ± 0.3^{1} 3.7 ± 0.3^{i} $\log g \text{ (dex)}$ 4.48 ± 0.21^b 3.58 ± 0.28^9 3.72 ± 0.22^{b} 3.98 ± 0.21^{e} 3.44 ± 0.26^9 3.60 ± 0.23^{b} 3.86 ± 0.21^{e} 3.32 ± 0.23^{e} Literature 4.0 ± 0.4 3.89 3.93 3.90 3.67 3.92 88. 3.63 1.07 3.97 1.08 3.95 3.99 1.04 3.64 3.95 3.91 8000 ± 290^{a} 7360 ± 290^{a} 8090 ± 290^{a} 7160 ± 290^{a} 7200 ± 290^{a} 6670 ± 290^{a} 5450 ± 290^{a} 8360 ± 290^{a} 7690 ± 290^a 8010 ± 290^a 7470 ± 290^{a} 9120 ± 290^{a} 7120 ± 290^{a} 6580 ± 290^{a} 6500 ± 200^{i} 7070 ± 290^{a} 7390 ± 290^{a} 8330 ± 290^{a} 7710 ± 290^{a} 5980 ± 120^{9} 7450 ± 290^{a} 6880 ± 290^{a} 7360 ± 290^{a} 6550 ± 120^{b} 6610 ± 140^{b} 6520 ± 290^{a} 7330 ± 290^{a} 6450 ± 290^{a} 6760 ± 290^{a} 7050 ± 290^{a} 5480 ± 120^{b} 6710 ± 290^{a} $6900 \pm 146^{\circ}$ 6975 ± 200^{i} $7410 \pm 290^{\circ}$ $8290 \pm 290^{\circ}$ $8060 \pm 290^{\circ}$ $7350 \pm 120^{\circ}$ 7940 ± 80^{9} Literature 7350 ± 120 $T_{\mathrm{eff}}\left(\mathrm{K}\right)$ $7537 \pm 186^{\circ}$ 7400 ± 150^{i} Literature 5980 ± 120^9 6550 ± 120^{b} 7267 ± 163° 6500 ± 200^{i} 6610 ± 140^{b} 7940 ± 80^{9} 6480 ± 120^{b} 5900 ± 146^{e} 7699 ± 81^{c} 6975 ± 200 Literature 0999 7070 8060 8290 7390 8330 5340 7450 7360 069/ 8360 0889 6580 6170 8000 8090 7160 7290 6450 7050 05446068° 05632093 05641711 05391416 05436432 05437206 05603049 05199464 05200084 35201088 05209712 05217733 05219533 05272673 75296877 05356349 05371747)5428254 05474427 05476495 05476864 05513861 05630362 05709664 05722346 05724048 05724440 05724810 05768203 05774557 05785707 05810113 05857714 05880360 05940273 05954264 35965837 05988140 0519725605473171 05772411 05294571

Table 2. continued.

KIC ID KIC** 06032730 7110 06057817 7840 06123324 6670 06141372 7080 06187665 6880 06187665 6880 0628890 7280 06279848	KIC ^a Literature 7110 7840 6670 6700 ± 130 ^b 7080 7000	Literature	Literature	$Adopted^{\star}$	KIC^a	Literature	Literature	Adopted*	Spectra	Spectra
		: :		4						:
		:	:	7110 ± 290^a	3.79	:	:	$\textbf{3.8} \pm \textbf{0.3}^a$:	
			:	7840 ± 290^{a}	3.86	:	:	$\textbf{3.9} \pm \textbf{0.3}^a$:	:
		6641 ± 123^{e}	:	6700 ± 130^{b}	3.40	3.09 ± 0.23^{b}	3.06 ± 0.21^{e}	3.1 ± 0.3^b	:	:
_		:	:	7080 ± 290^{a}	4.21	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	:
		:	:	7000 ± 290^a	4.02	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
_		6025 ± 0^{d}	:	6025 ± 60^{c}	4.01	4.27 ± 0.11^d	:	4.27 ± 0.11^d	:	:
	7850	:	:	7850 ± 290^{a}	3.55	:	:	$\textbf{3.6} \pm \textbf{0.3}^a$:	:
		:	:	7280 ± 290^a	3.49	:	:	$\textbf{3.5}\pm\textbf{0.3}^a$:	:
	. 6826 ± 140°	:	:	6826 ± 140^e	:	3.8 ± 0.2^{e}	:	$\textbf{3.8} \pm \textbf{0.2}^e$:	:
	$70 8150 \pm 100^9$:	:	8150 ± 100^{g}	3.74	3.29 ± 0.09^9	:	3.29 ± 0.09^{g}	148 ± 7^9	:
06301745 6790	$90 6740 \pm 130^b$:	:	6740 ± 130^{b}	4.13	4.01 ± 0.21^{b}	:	4.01 ± 0.21^b	:	:
06381306 8060		:	:	8060 ± 290^{a}	3.63	:	:	3.6 ± 0.3^a	:	÷
06432054 70	$7090 7287 \pm 167^{e}$	$7400 \pm 150'$:	7400 ± 150^{l}	3.85	3.81 ± 0.19^{e}	3.9 ± 0.2^{l}	$\textbf{3.81} \pm \textbf{0.19}^e$:	:
06440930 8320	30	:	:	8320 ± 290^{a}	4.09	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
06443122 7480	.:. 08	:	:	7480 ± 290^a	3.54	:	:	$\textbf{3.5} \pm \textbf{0.3}^a$:	:
06446951 7380	08	:	:	7380 ± 290^{a}	4.06	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
06448112 8150	05	:	:	8150 ± 290^a	4.01	:	:	+1	:	:
06462033 8390	.: 0¢	:	:	8390 ± 290^a	4.32	:	:	4.3 ± 0.3^a	:	:
06500578 7840	.:.	:	:	7840 ± 290^{a}	3.64	:	:	3.6 ± 0.3^a	:	:
06509175 73	$7300 7520 \pm 60^9$:	:	7520 ± 60^{g}	3.52	3.29 ± 0.3^9	:	3.3 ± 0.3^{g}	132 ± 8^9	:
_	7150	:	:	7150 ± 290^a	3.80	:	:	$\textbf{3.8} \pm \textbf{0.3}^a$:	:
•)	30	:	:	7520 ± 290^a	4.05	:	:	$\textbf{4.1}\pm\textbf{0.3}^a$:	:
	$80 8870 \pm 190^{9}$:	:	$8870 \pm 190^{\circ}$	3.93	3.78 ± 0.09^{9}	:	3.78 ± 0.09^{g}	138 ± 9^{9}	:
	7030	:	:	7030 ± 290^a	3.93	:	:	3.9 ± 0.3^a	:	:
		:	:	6750 ± 290^{a}	4.09	:	:	+I	:	:
	02	:	:	7270 ± 290^a	4.14	÷	:	+I	÷	:
		:	:	7070 ± 290^a	3.95	:	:	+I	:	:
		:	:	7770 ± 290^a	3.48	:	:	+I	:	:
	$7450 6386 \pm 62^{\circ}$:	:	$6386 \pm 62^{\circ}$	3.61	:	:	+I	:	:
	7410	:	:	7410 ± 290^{a}	3.85	:	:	$\textbf{3.9} \pm \textbf{0.3}^a$:	:
		:	:	7750 ± 290^{a}	3.66		:	+1		:
	$7990 + 7000 \pm 70^{9}$:	:	7900 ± 70 ⁹	3.51	3.17 ± 0.10^9	:	+I	190 ± 12^{9}	:
	:: 01	:	:	7310 ± 290^a	3.52	÷	:	+I	:	:
_	::	:	:	7240 ± 290^{a}	4.04	:	:	+I	:	:
	7650	:	:	7650 ± 290^{a}	3.72	:	:	+I	:	:
	0692	:	:	7690 ± 290^{a}	3.52	÷	:	+I	÷	÷
	7480	:	:	7480 ± 290^{a}	3.65	:	:	+1	:	:
	02	:	:	7770 ± 290^a	3.62	:	:	+I	:	:
	7320	:	:	7320 ± 290^a	3.61	:	:	+I	:	:
	.:.	:	:	7060 ± 290^{a}	4.16	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	:
	7840	:	:	+I	3.47	:	:	$\textbf{3.5} \pm \textbf{0.3}^a$:	:
	::	:	:	+I	3.52	:	:	$\textbf{3.5} \pm \textbf{0.3}^a$:	:
06947064 8170		:	:	8170 ± 290^{a}	3.91	:	:	3.9 ± 0.3^a	:	:

 $19.4 \pm 2.0^{\circ}$ Spectra $v \sin i \text{ (km s}^{-1}\text{)}$ Spectra 200 ± 20 12 ± 2^{q} 10 ± 2^{l} 4.06 ± 0.28^{9} 3.9 ± 0.3^{a} 3.73 ± 0.21^{b} 4.00 ± 0.18^b 3.90 ± 0.25^{l} 2.88 ± 0.23^{b} 3.6 ± 0.3^{a} 3.9 ± 0.3^{a} 3.26 ± 0.21 3.7 ± 0.3^a 3.9 ± 0.3^a Adopted* 3.4 ± 0.3^a $\textbf{4.1} \pm \textbf{0.3}^a$ 4.1 ± 0.3^a 4.1 ± 0.3^a $\textbf{4.1} \pm \textbf{0.3}^a$ 3.8 ± 0.3^a 4.0 ± 0.3^a $\textbf{4.1} \pm \textbf{0.3}^a$ 4.1 ± 0.3^a 3.9 ± 0.3^{a} 4.1 ± 0.3^a 3.8 ± 0.3^{a} 2.4 ± 0.3^a 4.1 ± 0.3^a 3.9 ± 0.3^a 3.9 ± 0.3^{a} 4.0 ± 0.3^a 3.9 ± 0.3^{a} 3.5 ± 0.3^a 3.6 ± 0.3^{a} 3.7 ± 0.3^a 3.9 ± 0.3^{a} 4.3 ± 0.3^a 3.6 ± 0.3^{a} 4.0 ± 0.3^{a} 4.1 ± 0.3^{a} 3.8 ± 0.3^{a} 3.6 ± 0.3^{a} 3.7 ± 0.3^{a} 4.0 ± 0.3^{a} Literature 3.6 ± 0.3^{i} $\log g$ (dex) 3.73 ± 0.21^b 3.26 ± 0.21^{e} $\pm 0.28^{9}$ 4.00 ± 0.18^{b} 0.50 ± 0.35^{q} $\pm 0.23^{b}$ 3.90 ± 0.25^{l} Literature : 4.06 3.89 3.97 4.06 3.60 3.96 3.65 3.99 3.87 4.05 3.74 3.80 2.42 3.90 3.89 3.89 3.60 4.07 3.84 3.95 4.01 $7000 \pm 290^{\circ}$ $6890 \pm 290^{\circ}$ $7860 \pm 290^{\circ}$ $7290 \pm 290^{\circ}$ 7460 ± 290^{a} 6480 ± 290^{a} 7020 ± 290^{a} 7550 ± 290^a 7260 ± 64^{9} 8060 ± 290^{9} 7270 ± 290^a 7500 ± 290^{a} 6530 ± 290^{a} 6940 ± 290^{a} 6340 ± 290^{a} 7560 ± 290^a 6890 ± 290^{a} 7860 ± 290^{a} 7850 ± 290^{a} 7480 ± 290^{a} 7410 ± 290^a 6710 ± 130^{b} 7170 ± 290^{a} 6900 ± 140^{b} 740 ± 200^{b} $8070 \pm 290^{\circ}$ $8220 \pm 290^{\circ}$ $7850 \pm 290^{\circ}$ $7930 \pm 290^{\circ}$ $7470 \pm 290^{\circ}$ 5370 ± 120^{q} $8310 \pm 290^{\circ}$ $6870 \pm 290^{\circ}$ $6910 \pm 290^{\circ}$ $7010 \pm 290^{\circ}$ $7500 \pm 200^{\circ}$ $7500 \pm 250^{\circ}$ $6930 \pm 290^{\circ}$ $7050 \pm 290^{\circ}$ $8150 \pm 290^{\circ}$ 7180 ± 290 Literature $T_{\mathrm{eff}}\left(\mathrm{K}\right)$ 7500 ± 200^{i} Literature 5370 ± 120^{q} 6900 ± 140^{b} 7608 ± 190^{e} 7740 ± 200^{b} 6710 ± 130^{b} $7500 \pm 250'$ 7260 ± 64^9 Literature 2000 0689 7860 7290 6890 7460 6480 7020 7930 7470 5000 8150 6940 6340 7560 7850 098 07265427 07287118 07300387 07304385 07338125 07350486 07385478 07436266 07352776 07702705 07732458 06965789 07106205 07106648 07109598 07119530 07211759 07215607 07217483 07352425 07502559 07583939 07669848 26116910 07699056 07742739 07007103 07122746 07212040 07220356 07450284 07533694 07548479 07596250 07662076 07748238 07756853 06951642 07204237 07548061 07553237 07668791 07694191

Table 2. continued.

Literature	rature Literature	Adopted*	KICa	Literature	Literature	Adopted*	Spectra	ectra Spectra
	: :	7450 ± 290^a	3.50	: :	: :	3.5 ± 0.3^a	: :	: :
	:	7300 ± 290^a	3.53	:	÷	$\textbf{3.5}\pm\textbf{0.3}^a$:	÷
	:	6640 ± 290^a	3.52	:	:	$\textbf{3.5} \pm \textbf{0.3}^a$:	:
+ 200	i 6745 + 0°	$8120 \pm 290^{\circ}$ $6880 + 144^{e}$	3.75	3 90 + 0 21e	3.7 ± 0.3^{i}	$3.8 \pm 0.3^{\circ}$	$\frac{15.4 + 2.0^n}{15.4 + 2.0^n}$	15 + 59.
		8290 ± 290^a	3.49	:) 	3.5 ± 0.3^a)
	:	8160 ± 290^a	3.86	:	:	+1	:	÷
	:	7450 ± 290^a	3.67	:	:	+1	:	:
	:	7660 ± 290^{a}	3.77	:	:	+I	:	:
	:	7620 ± 290^a	3.54	:	:	+1	:	÷
	:	7380 ± 290^{a}	3.52	:	:	$\textbf{3.5} \pm \textbf{0.3}^a$:	:
	:	7080 ± 290^a	4.07	:	:	+1	:	÷
	:	$6970 \pm 290^{\circ}$	4.14	:	:		:	:
	:	7840 ± 290^{a}	3.73	:	:	+1	:	÷
	:	8480 ± 290^{a}	3.90	:	:	+1	:	:
	:	7120 ± 290^a	3.77	:	:	+I	:	:
	:	5610 ± 290^{a}	4.60	:	:	+1	:	:
	:	7120 ± 290^a	3.89	:	:	$\textbf{3.9} \pm \textbf{0.3}^a$:	:
	:	6350 ± 290^{a}	3.62	:	:	3.6 ± 0.3^a	:	:
	:	6770 ± 150^b	3.67	3.08 ± 0.27^{b}	:	+I	:	:
	:	7130 ± 290^a	4.16	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	:
	:	6510 ± 290^a	4.29	:	:	$\textbf{4.3} \pm \textbf{0.3}^a$:	÷
	:	7160 ± 290^{a}	3.69	:	:	3.7 ± 0.3^a	÷	:
	:	3680 ± 290^a	4.22	:	:	$\textbf{4.2}\pm\textbf{0.3}^a$:	:
	:	7290 ± 290^{a}	3.85	:	:	+I	:	:
	:	6800 ± 290^{a}	4.06	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
	:	7540 ± 290^{a}	00.4	:	:		:	:
	:	5020 ± 290^a	4.14	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
	:	7070 ± 290°	4.09	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
	:	$7500 \pm 150'$	3.98	$4.0 \pm 0.3^{\prime}$:	$4.0 \pm 0.3^{\circ}$	$230 \pm 20'$:
	:	7400 ± 290^a	3.91	:	:	3.9 ± 0.3^a	:	:
	:	4550 ± 290^{a}	2.20	:	:	2.2 ± 0.3^a	:	:
	:		:		:		:	:
	:	$6740 \pm 140^{\circ}$	3.88	$4.38 \pm 0.21^{\circ}$:	$\textbf{4.38} \pm \textbf{0.21}^{o}$:	:
	:	5550 ± 290^a	4.45	:	:	$\textbf{4.5} \pm \textbf{0.3}^a$:	:
	:	7280 ± 290^a	3.48	:	:	$\textbf{3.5} \pm \textbf{0.3}^a$:	÷
	:	:	:	:	:	:	:	:
	:	7310 ± 290^{a}	3.74	:	:	3.7 ± 0.3^a	:	:
	:	7230 ± 290^a	4.10	:	:	$\textbf{4.1}\pm\textbf{0.3}^a$:	:
	:	7650 ± 290^{a}	4.06	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
	:	7640 ± 290^{a}	3.74	:	:	3.7 ± 0.3^a		:
		$7500 \pm 200^{\circ}$	3.73	$3.7 \pm 0.3'$:	3.7 + 0.3	250 + 20	:

 $v \sin i \text{ (km s}^{-1}\text{)}$ 130 ± 10^{i} Spectra 210 ± 20 84 ± 4^{9} 3.97 ± 0.22^{b} 3.47 ± 0.08 Adopted* 4.0 ± 0.3^a 4.0 ± 0.3^a 3.9 ± 0.3^{a} 4.1 ± 0.3^a 4.1 ± 0.3^a 3.9 ± 0.3^{a} 3.0 ± 0.2^i 3.4 ± 0.3^a $4.0 \pm 0.3^{\circ}$ 3.7 ± 0.3^{a} 3.9 ± 0.2^{i} $4.1 \pm 0.3^{\circ}$ $4.2 \pm 0.3^{\circ}$ $3.9 \pm 0.3^{\circ}$ 4.1 ± 0.3 3.6 ± 0.3 $3.7 \pm 0.3^{\circ}$ 3.9 ± 0.3 $3.6 \pm 0.3^{\circ}$ $3.6 \pm 0.3^{\circ}$ $4.0 \pm 0.3^{\circ}$ $4.5 \pm 0.3^{\circ}$ $4.3 \pm 0.3^{\circ}$ $4.2 \pm 0.3^{\circ}$ $3.5 \pm 0.3^{\circ}$ $4.1 \pm 0.3^{\circ}$ $3.4 \pm 0.3^{\circ}$ $3.6 \pm 0.3^{\circ}$ $4.0 \pm 0.3^{\circ}$ $4.2 \pm 0.3^{\circ}$ $3.6 \pm 0.3^{\circ}$ $3.9 \pm 0.3^{\circ}$ 4.1 ± 0.3 4.1 ± 0.3 4.0 ± 0.3 4.0 ± 0.3 4.9 ± 0.3 4.3 ± 0.3 4.3 ± 0.3 Literature $\log g \text{ (dex)}$ Literature 2.97 ± 0.22^{b} 3.47 ± 0.08^9 3.0 ± 0.2^{i} 3.9 ± 0.2 : 3.93 4.00 3.62 3.98 3.67 $6670 \pm 290^{a} \\ 7430 \pm 290^{a}$ 6710 ± 290^a 8030 ± 290^a 7300 ± 290^{a} 7310 ± 290^a 7590 ± 290^a 7620 ± 290^{a} 5050 ± 290^a 5580 ± 290^{a} 7350 ± 290^{a} 7870 ± 290^{a} 740 ± 290^a 3260 ± 290^a 7890 ± 290^a 7240 ± 160^{b} 7500 ± 200^{i} $5500 \pm 290^{\circ}$ $5450 \pm 290^{\circ}$ $7240 \pm 290^{\circ}$ $6900 \pm 290^{\circ}$ $7040 \pm 290^{\circ}$ $7030 \pm 290^{\circ}$ $780 \pm 290^{\circ}$ $7360 \pm 290^{\circ}$ $7150 \pm 290^{\circ}$ $6360 \pm 290^{\circ}$ $6190 \pm 290^{\circ}$ $8350 \pm 290^{\circ}$ $7140 \pm 290^{\circ}$ $3320 \pm 290^{\circ}$ $8240 \pm 290^{\circ}$ $7860 \pm 290^{\circ}$ 9000 ± 200^{i} 7720 ± 50^{g} $5940 \pm 290^{\circ}$ 7630 ± 290 $5020 \pm 290^{\circ}$ $5560 \pm 290^{\circ}$ $5860 \pm 290^{\circ}$ Adopted* Literature $T_{
m eff}$ (K) Literature 7240 ± 160^{b} 9000 ± 200^{i} 7500 ± 200^{i} 7720 ± 50^{9} Literature : : : 7780 7360 7150 7430 6360 08429756 08446738 08499639 08579615 08583770 08264546 08264583 08264588 08264617 08264674 08264698 08283796 08323104 08330056 08330092 08330463 08330778 08355130 08397426 08415752 08454553 08459354 08460025 08460993 08479107 08482540 08488065 08489712 08507325 08516008 08516686 08525286 08545456 96609580 08565229 08590553 08608260 08623953 08651452 08655712 08293302 08352420 08355837

Table 2. continued.

Spectra

Table 2. continued.

08695156 7640 08703413 7710 08714886 9140 08717065 7440 08738244 8170 08742449 5580 08746834 4690		Literature Lite	Literature	Literature	Adopted*	KIC^a	Literature	Literature	Adopted*	Spectra	sectra Spectra
	40				$7640 + 290^a$	3 37			3.4 + 0.3	7	
		•	•	:	$7710 + 290^a$	3.77	:	:	3.8 + 0.3a	•	· •
	70 1 000 01 0V	JO		:	10,000 1,000	00.7	 12f	:	43 - 02f	:	:
		Š	:	:	7440 ± 200a	4.09	ļ.	:	4.3 H 0.5 - 0.2a	:	:
	0751 0300 05		:	:	027 - 0200	0.70	2 25 - 20 129	:	3.0 ± 0.3	133 . 00	:
			:	:	200 ± 100°	4.13	5.23 ± 0.12	:	5.25 ± 0.12°	155 ± 6″	:
	.: 08	•	;	:	5580 ± 290^a	4.38	:	:	$\textbf{4.4} \pm \textbf{0.3}^a$:	:
		•	:	:	4690 ± 290^a	3.28	:	:	$\textbf{3.3} \pm \textbf{0.3}^a$:	:
	5030	•	:	:	5030 ± 290^{a}	3.51	:	:	3.5 ± 0.3^a	:	:
08748251 68	0089	٠	:	:	6800 ± 290^a	4.15	:	:	4.2 ± 0.3^a	:	:
_	7340 ± 60^9	609	:	;	7340 ± 60^9	;	3.72 ± 0.3^9	:	3.7 ± 0.3^{9}	$165 + 8^9$:
	$6990 6570 + 120^b$. 40c		•	$6570 + 120^{6}$	3.81	359 + 022	:	3.59 + 0.22		•
					7390 + 2909	3 60		:	37 + 03a		
		•	:	:	007 - 000	0.00	:	:	30 - 03	:	:
		•	:	:	067 ± 0070	3.03	:	:	3.9 ± 0.3	:	:
	087/	•	;	:	$7280 \pm 290^{\circ}$	4.18	:	:	$4.2 \pm 0.3^{\circ}$:	:
	:	•	:	:	:	:	:	:	:	:	:
08871304 71	7150	•	:	:	7150 ± 290^a	3.43	:	:	3.4 ± 0.3^a	:	:
08881697 77	7730	•	:	:	7730 ± 290^{a}	3.86	:	:	3.9 ± 0.3^a	:	:
08915335 77	0777	•	:	:	7770 ± 290^{a}	3.48	:	:	3.5 ± 0.3^a	:	:
	7630 7616 + 193	036			7616 + 193	3 69	$3.71 + 0.19^{e}$		$3.71 + 0.19^{e}$		
)					
	0332	•	:	:			:	:	30 - 030	:	:
		•	:	:	7000 ± 290°	3.80	:	:	3.0 ± 0.5°°	:	:
_			:	:	7180 ± 290^{a}	3.90	:	:	3.9 ± 0.3^{a}	:	:
	$6960 6880 \pm 150^{\circ}$	50^{b} .	:	:	6880 ± 150^o	3.97	4.12 ± 0.21^{b}	:	4.12 ± 0.21^{b}	:	:
_	6540	•	:	:	6540 ± 290^a	3.98	:	:	+I	:	:
	7610	•	:	:	7610 ± 290^a	3.74	:	:	3.7 ± 0.3^a	:	:
	:	•	:	÷	:	:	:	÷	:	:	:
	:	•	:	:	:	:	:	÷	:	:	:
	0665	•	:	:	5990 ± 290^a	4.37	:	:	$\textbf{4.4} \pm \textbf{0.3}^a$:	:
09077192 47	4750	•	:	:	4750 ± 290^a	4.40	:	:	4.4 ± 0.3^a	:	:
09108615 67	6710	•	:	:	6710 ± 290^a	3.81	:	:	3.8 ± 0.3^a	:	:
	0089	•	:	:	6800 ± 290^{a}	3.65	:	:	3.7 ± 0.3^a	:	:
09117875	:	•	:	:	:	:	:	:	:	:	:
09138872 75	7500	•	•	:	7500 ± 290^{a}	4.03	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
09143785 76	0092	•	:	:	7600 ± 290^a	4.25	:	÷	4.3 ± 0.3^a	:	:
09147229 73	7300	•	:	:	7300 ± 290^a	3.57	:	:	3.6 ± 0.3^a	:	:
09156808 70	0707	٠	:	:	7070 ± 290^a	3.94	:	:	3.9 ± 0.3^a	:	:
09201644	:	•	:	:		;	:	:		:	;
	4030	•			4030 + 290a	1 8			1.8 + 0.3	•	•
	7150	•		:	7150 + 2004	2 02	:	:	20 + 0 2a	:	:
		•	:	:	.067 ± 0CT/	5.75	:	:	5.7 ± 0.5	:	:
	:	•	:	:		:	:	:		:	:
	7840	•	:	:	7840 ± 290° =	3.65	:	:	3.7 ± 0.3^{a}	:	:
	7000	•	;	:	7000 ± 290^{a}	3.99	:	÷	+I	:	:
09229318	/140		:	:	7140 ± 290^{a}	3.65	:	:	3.7 ± 0.3^a	:	:

Spectra $v \sin i \text{ (km s}^{-1}\text{)}$ 165 ± 8^{9} Spectra 3.80 ± 0.19^{b} 4.0 ± 0.3^a 4.1 ± 0.3^a 3.62 ± 0.079 4.0 ± 0.3^a 3.7 ± 0.3^a 3.9 ± 0.3^a 4.1 ± 0.3^a 4.5 ± 0.3^a $\textbf{4.2}\pm\textbf{0.3}^{a}$ 4.6 ± 0.3^{a} 3.7 ± 0.3^a $\textbf{4.1}\pm\textbf{0.3}^{a}$ 3.3 ± 0.3^a 3.8 ± 0.3^{a} 4.5 ± 0.3^a 3.6 ± 0.3^{a} 4.6 ± 0.3^a 2.4 ± 0.3^a 3.5 ± 0.3^{a} 4.3 ± 0.3^a 4.0 ± 0.3^a 4.0 ± 0.3^a 4.1 ± 0.3^a 3.6 ± 0.3^{a} 3.6 ± 0.3^{a} 3.9 ± 0.3^{a} 4.5 ± 0.3^a 3.6 ± 0.3^{a} 4.5 ± 0.3^a 3.8 ± 0.3^{a} $3.8 \pm 0.3^{\circ}$ 4.1 ± 0.3^a 4.3 ± 0.3^a 4.1 ± 0.3^a 4.1 ± 0.3^{a} : Literature $\log g \text{ (dex)}$ 3.62 ± 0.07^9 3.80 ± 0.19^{b} 3.96 3.62 4.00 3.69 7290 ± 290^a 6530 ± 290^a 7400 ± 290^{a} 5880 ± 290^{a} 5060 ± 290^a 4870 ± 290^a 6810 ± 130^b 8630 ± 140^{g} 7300 ± 290^a 7450 ± 290^a 5620 ± 290^a 7620 ± 290^a 6520 ± 290^a 8130 ± 290^{a} 5660 ± 290^a 7610 ± 290^a 6340 ± 290^a 7250 ± 290^{a} 1600 ± 290^a 6520 ± 290^a 7450 ± 290^a 7190 ± 290^a 6660 ± 290^{a} 5810 ± 290^{a} $7310 \pm 290^{\circ}$ 8210 ± 290^a 6060 ± 290^a 8060 ± 290^a 5070 ± 290^a 7130 ± 290^a 7160 ± 290^a 7060 ± 290^{a} 6880 ± 290^{a} 7490 ± 290^a 7300 ± 290^a $8050 \pm 290^{\circ}$ Adopted* : Literature $T_{\rm eff}$ (K) Literature 6810 ± 130^{b} 8630 ± 140^{9} Literature 0999 7480 8470 0909 0908 7160 0889 5070 09451598 09453075 09458750 09473000 09489590 09533489 09582720 09594100 09274000 09336219 09368220 09450940 09533449 09550886 09264399 09264462 09272082 09291618 09306095 09324334 09327993 09351622 09386259 09391395 09395246 09408694 09413057 09509296 09514879 09520434 09520864 09532644 09593997 09604762 09630640 09267042 09268087 09353572 09490067 09580794 0924648

Table 2. continued.

$v \sin i \text{ (km s}^{-1})$:	:	:	: :	:	:	20'	:	:	:	:	:	:	: :	:	:	:	:	:	:	:	: :	± 1"	:	:	:	:	:	:	:		39	:		::	
		3 a	 	:. :	$\frac{1}{21^b}$	3 a	<i>3a</i>	3^i 150 ± 20 ⁱ	<i>3a</i>	 3 a	3 a		::	:	3 a	3 a	3 a	q z	3a	.: .:		:	3 a	19	3 a	3 a	 €a		::	:	:: ::		9985 ± 39	::	5" 11' 70 ± 5'		
Adopted*		4.3 ± 0.3^a	4.1 ± 0.3^a	3.7 ± 0.3°° 3.7 ± 0.3°°	3.82 ± 0.21^b	$\textbf{4.1} \pm \textbf{0.3}^a$	3.5 ± 0.3^{a}	3.9 ± 0.3^{i}	+I	+1	$\textbf{4.1} \pm \textbf{0.3}^a$	3.4 ± 0.3^{a}	11 - 0 3a	4.1 H U.	3.9 ± 0.3^a	3.6 ± 0.3^a	$\textbf{4.2} \pm \textbf{0.3}^{a}$	$\textbf{3.9} \pm \textbf{0.2}^b$	$\textbf{4.0} \pm \textbf{0.3}^{a}$	3.9 ± 0.3^{a}	11 - 0 34	4.1 ± 0	4.0 ± 0.3^{a}	3.7 ± 0.1^{m}	$\textbf{4.5} \pm \textbf{0.3}^a$	$\textbf{4.9} \pm \textbf{0.3}^{a}$	3.7 ± 0.3^a	:	4.0 ± 0.3°	4.0 ± 0.5°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	4.1 ± 0.3°	4.7 ± 0	3.78 ± 0.19	3.7 ± 0	4.5 ± 0.3° 3 0.4 ± 0.21°	3.71 ± 0.	:
log g (dex)		:	÷	:	: :	:	:	:	:	÷	÷	:	:	:	: :	:	:	:	÷	:	:	:		: :	:	:	÷	:	:	:	:	:	:	:	10+03	4.0 ± 0.5	:
lo,		:	:	:	3.82 ± 0.21^{b}	:	:	3.9 ± 0.3^{i}	:	:	:	:	:	:	: :	:	:	3.9 ± 0.2^{b}	:	:	:	:	: :	3.7 ± 0.1^{m}	:	:	:	:	:	:	:		3.78 ± 0.19^9	:	3 01 ± 0 316		:
KICa	3.83	4.25	4.09	3.68	3.67	4.09	3.48	3.78	4.18	3.87	4.06	3.38	: 5	4.03	3.88	3.61	4.16	3.52	3.99	3.87	: -	4.14	4.03	:	4.45	4.89	3.65	: 3	40.4	4.03	4.09	80.4	4.09	3.70	4.05	:	:
Adonted*	7820 ± 290°	6440 ± 290^{a}	7050 ± 290^a	6580 ± 290° 8390 + 290°	7010 ± 150^{b}	6990 ± 290^{a}	7620 ± 290^a	7400 ± 200^{i}	7060 ± 290^{a}	6900 ± 290^{a}	7570 ± 290^{a}	7600 ± 290^{a}	$8300 \pm 290^{\circ}$	027 T 076	7740 ± 290^{a}	7440 ± 290^{a}	6780 ± 290^{a}	7190 ± 160^{b}	7190 ± 290^{a}	8230 ± 290^{a}	7120 - 2009	.067 ± 0CI/	7590 ± 290^{a}	6700 ± 100^{m}	5070 ± 290^a	5720 ± 290^{a}	7460 ± 290^{a}		7300 ± 290°	$6/40 \pm 290^{\circ}$	6960 ± 290°	0020 ± 290°	$7470 \pm 45^{\circ}$	7960 ± 290°	$7050 \pm 290^{\circ}$	OCT # OC	:
	78	449	705	020	3 2	9	_	•	•				~ `		,-	,	9	_	_	•								ì	_ `	٠ ر				- 1	7 7	Ž	
Literature	Ì	.:.	705	000 ::				:	:	:	:	:	:	:	: :			7		:	:	:	: :	: :	:	:	:	:	::	:	:	:	:	:		::	:
$T_{ m eff}$ (K) Literature		644	705	0C0			7	:	:	:	:	:	:	::	: :	::	9			:	:	:			:	:	:	::	::	::	::	:	:		67 iost + 0807	051 ± 05	:
		4 4 44 44 44 44 44 44 44 44 44 44 44 44 4	705	©CO	7010 ± 150^b 7010 ± 100^b			$7400 \pm 200'$:	: :	:	:	:	::		:: ::	:	7190 ± 160^b 7		:	::	::		6700 ± 100"	:	::	: :		::	::	::		7470 ± 45^9		150	051 ± 050/	::
$T_{ m eff}$ (K)		:	: :	95.0 08.00 95.8 08.00	7010 ± 150^b		7620 7	7400 ± 200^{i}	:	::	:	:	8300	::	7740	:		7190 ± 160^{b}	:			061/	7590			5720	7460	:	::	::	0969					0.00 ± 0.00	:: ::

GI 214	D121		<i>T</i> _{eff} (K)		* 13 - 2 - 2 - 4	b C1 21	igol	log g (dex)	* F - 7 F - 4	$v \sin i \left(\operatorname{km s}^{-1} \right)$	m s ⁻¹)
NIC ID	NIC	Literature	Literature	Literature	Adopted	NIC.	Literature	Literature	Adopted	Specura	Specura
09813078	:	6811 ± 138^{b}	÷	:	6811 \pm 138 ^b	:	3.67 ± 0.21^b	:	3.67 ± 0.21^b	:	:
09818269	:	:	:	:	:	:	:	:	:	:	:
09836020	7480	:	:	:	7480 ± 290^{a}	4.09	:	:	$\textbf{4.1}\pm\textbf{0.3}^a$:	:
09845907	7940				7940 ± 290^{a}	4.03			+		
09851142	0089	7047 ± 156^{e}	;	:	7047 ± 156^{e}	3.95	3.97 ± 0.21^{e}	;	3.97 ± 0.21^e	;	:
09874181	7180	1	: :	: :	7180 ± 290^{a}	4.08		: :	4.1 ± 0.3^a	: :	: :
09881909	6810	:	;	:	6810 ± 290^{a}	3.86	:	;	3.9 ± 0.3^a	;	:
09885882	5090	: :	: :	: :	5090 ± 290^a	2.63	: :	: :	2.6 ± 0.3^a	: :	: :
0086060	0299		•	•	p067 + 0299	4 19	•	•	1 +	•	
09013481	7410	:	:	:	7410 ± 290^a	3.53	:	:	1 +	:	:
00044208	7040	:	:	:	7040 + 2000	00.7	:	:	- -	:	:
09944200	0407	:	:	:	040 ± 290	4.29	:	:	H -	:	:
09944730	0260	:	:	:	2920 ± 290°	4.I&	:	:	4.2 ± 0.3°	:	:
8950/660	06//	:	:	:	7790 ± 290^{a}	3.64	:	:	3.6 ± 0.3^a	:	:
09991621	5270	:	:	:	5270 ± 290^{a}	4.35	:	:	+I	:	:
09991766	6050	:	:	:	6050 ± 290^{a}	4.25	:	:	$\textbf{4.3} \pm \textbf{0.3}^a$:	:
09994789	5290	:	:	:	5290 ± 290^{a}	3.85	:	:	$\textbf{3.9} \pm \textbf{0.3}^a$:	:
09995464	4850	:	:	:	4850 ± 290^{a}	2.64	:	:	2.6 ± 0.3^a	:	:
10000056	8200	:	:	:	8200 ± 290^a	3.96	:	:	4.0 ± 0.3^a	:	:
10002897	7490	:	:	:	7490 ± 290^a	3.74	:	:	3.7 ± 0.3^a	:	:
10004510	4340	:	:	:	4340 ± 290^a	4.60	:	:	4.6 ± 0.3^a	:	:
10006158	4680	:	:	:	4680 ± 290^{a}	2.39	:	:	2.4 ± 0.3^a	:	:
10014548	7160				$7160 + 290^a$	3.92			+		
10030943	6700	:	:	:	067 ± 0017	2007	:	:	1 +	:	:
10030943	300	:	:	:	7300 ± 2000	5.70	:	:	Н -	:	:
10035/12	067/	:	:	:	.067 ± 067/	3.48	:	:	+1	:	:
10056217	0009	:	:	:	6000 ± 290^a	4.28	:	:	+1	:	:
10056297	7160	:	:	:	7160 ± 290^{a}	4.03	:	:	+I	:	:
10057129	4860	:	:	:	4860 ± 290^{a}	3.17	:	:	3.2 ± 0.3^a	:	:
10062593	5270	:	:	:	5270 ± 290^a	4.93	:	:	+I	:	:
10064111	7220	:	:	:	7220 ± 290^a	4.05	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
10065244	7260	:	:	:	7260 ± 290^a	3.98	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
10068892	4610	:	:	:	4610 ± 290^a	2.29	:	:	$\textbf{2.3} \pm \textbf{0.3}^a$:	:
10069934	0902	:	:	:	7060 ± 290^a	4.01	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
10073601	7100	6680 ± 130^{b}	:	÷	6680 ± 130^b	4.09	3.47 ± 0.22^{b}	:	3.47 ± 0.22^{b}	:	:
10090345	7190	:	:	:	7190 ± 290^a	3.94	:	:	$\textbf{3.9} \pm \textbf{0.3}^a$:	:
10096499	7780	8021 ± 218^{e}	:	:	8012 ± 218^e	4.13	3.91 ± 0.16^{e}	:	3.91 ± 0.16^e	:	:
10119517	6230	6450 ± 80^{9}	:	:	6450 ± 80^{9}	4.38	4.3 ± 0.2^9	:	$\textbf{4.3} \pm \textbf{0.2}^g$	78 ± 4^{9}	:
10130777	8020	:	:	:	8020 ± 290^a	3.71	:	:	3.7 ± 0.3^a	:	:
10134600	5010	:	;	:	5010 ± 290^{a}	3.06	:	;	3.1 ± 0.3^a	:	;
10134800	7910	: :	: :	: :	7910 ± 290^{a}	3.71	: :	: :	3.7 ± 0.3^a		: :
10140513	5880	$6030 + 100^{b}$			6030 ± 100^{6}	3 96	430 ± 0.22^{b}		430 + 0226		
10140665	0000		:	:	p057 = 0009	4 37	11.0	:	44+03	:	:
10164569	7720	$7130 + 150^{b}$:	:	7130 ± 150^{b}	3,66	900 + 00 c	:	2 40 ± 0 22p	:	:
10206340	5210	408 ± 0617	:	:	908 + 0925	2.00 4.46	4.78 ± 0.22	:	4.48 ± 0.25	:	:
21-200701	211	7 77 7	:	:		2	11.0 ± 0t.F	:	-	:	:

Table 2. continued.

KIC^a	Literature	Literature	Literature	Adopted*	KIC^a	log Literature	$\log g (\text{dex})$: Literature	Adopted*	vsin t (km s ') Spectra Spe	m s ⁻¹) Spectra
6380	$6310 + 120^{b}$			$6310 + 120^{b}$	4 17	4.05 ± 0.22^{b}		4.05 ± 0.22^{b}	4	4
7150		: ;	: ;	7150 ± 290^a	4.01	1	: :	4.0 ± 0.3^a	: :	: :
7830	: :		: :	7830 ± 290^a	3.94	: :	: :	3.9 ± 0.3^{a}	: :	: :
7740	: :	: :		7740 ± 290^a	3.70	: :	: :	3.7 ± 0.3^a	: :	: :
5880				5880 ± 290^{a}	4.84	: :	: :	4.8 ± 0.3^a		
7790	: :	: :	: :	7790 ± 290^{a}	3.85	: :	: :	3.9 ± 0.3^a	: :	: :
5050				5050 ± 290^{a}	4.40			$\textbf{4.4} \pm \textbf{0.3}^a$		
0209	6300 ± 120^{b}			6300 ± 120^b	4.15	4.54 ± 0.21^{b}		$\textbf{4.54} \pm \textbf{0.21}^b$		
0269	6220 ± 110^{b}	: :		6220 ± 110^b	3.96	3.79 ± 0.25^{b}	: :	3.79 ± 0.25^b	: :	
0999	6460 ± 130^{b}			6460 ± 130^b	4.44 44.44	4.13 ± 0.22^b	: :	$\textbf{4.13} \pm \textbf{0.22}^b$:	
5210				5210 ± 290^a	4.53			$\textbf{4.5} \pm \textbf{0.3}^{a}$		
7530	:	:	:	7530 ± 290^{a}	4.05	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
7900	:	:	:	7900 ± 290^a	3.73	:	:	3.7 ± 0.3^a	:	:
5400	:	:	:	5400 ± 290^{a}	4.47	:	:	$\textbf{4.5} \pm \textbf{0.3}^a$:	:
5950				5950 ± 290^{a}	4.19			4.2 ± 0.3^a		
5850	:	:	:	5850 ± 290^{a}	4.40	:	:	$\textbf{4.4} \pm \textbf{0.3}^a$:	:
6300	:	:	:	6300 ± 290^{a}	4.18	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	:
8110	:	:	:	8110 ± 290^a	3.74	:	:	3.7 ± 0.3^a	÷	:
0869	:	:	:	6980 ± 290^a	4.03	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
5100	:	÷	:	5100 ± 290^a	4.27	:	:	$\textbf{4.3} \pm \textbf{0.3}^a$:	:
6920	:	:	:	6920 ± 290^a	4.23	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	:
4710	:	:	:	4710 ± 290^{a}	2.19	:	:	$\textbf{2.2} \pm \textbf{0.3}^a$:	:
4920	:	÷	÷	4920 ± 290^a	4.47	÷	:	$\textbf{4.5} \pm \textbf{0.3}^a$:	:
7400	:	:	:	7400 ± 290^a	4.00	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
4970	:	:	:	4970 ± 290^a	3.63	:	:	$\textbf{3.6} \pm \textbf{0.3}^a$:	:
6420	:	:	:	6420 ± 290^a	4.12	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
7580	7640 ± 60^{9}	:	:	7640 ± 60^{g}	4.13	3.74 ± 0.19^9	:	3.74 ± 0.19^{g}	44 ± 2^{9}	:
5650	:	:	:	5650 ± 290^a	4.06	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
5200	:	:	:	5200 ± 290^a	4.47	:	:	$\textbf{4.5} \pm \textbf{0.3}^a$:	:
8850	:	:	:	8850 ± 290^{a}	4.09	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
7290	:	÷	:	7290 ± 290^{a}	3.95	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
8140	:	:	:	8140 ± 290^{a}	3.99	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
3180	:	:	:	3180 ± 290^a	:	÷	:	:	:	:
0809	:	÷	:	6080 ± 290^{a}	4.62	:	:	$\textbf{4.6} \pm \textbf{0.3}^a$:	:
6510	:	:	:	6510 ± 290^{a}	4.18	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	:
8320	:	:	:	8320 ± 290^a	3.77	:	:	$\textbf{3.8} \pm \textbf{0.3}^a$:	:
0209	:	:	:	6070 ± 290^{a}	3.94	:	:	3.9 ± 0.3^a	:	:
12490	20800 ± 0^f	:	:	20800 ± 290^{f}	5.89	3.8^f	:	$\textbf{3.8} \pm \textbf{0.3}^f$	195 ± 10^f	:
7500	:	÷	÷	7500 ± 290^{a}	3.45	:	:	$\textbf{3.4} \pm \textbf{0.3}^a$:	:
7740	:	:	:	7740 ± 290^a	3.94	:	:	$\textbf{3.9} \pm \textbf{0.3}^a$:	:
0269	:	:	:	6970 ± 290^{a}	3.95	:	÷	+I	:	:
7020	:	:	:	+1	4.23	:	:	+I	:	:
7560				7560 ± 200a	375			0000		

 Table 2. continued.

WIC ID	KIC^a	I itaratura	T _{eff} (K)	I iteratura	Adontod*	KIC^a	log gol	$\log g \text{ (dex)}$	Adonted*	$v \sin i \text{ (km s}^{-1})$	cm s ⁻¹)
10604429	7620	7200 ± 200p	Liwiamic	Libramic	7200 + 200 <i>p</i>	3.53	3 5 ± 0 5p	Librature	3 5 ± 0 3a	Specua	Specia
10004429	1100	7700 ± 700,	:	:	007 H 007/	0.00	J.J H U.J	:	5.0 H C.C	00	:
10615125	/100	:	:	:	$7100 \pm 290^{\circ}$	3.39	:	:	3.0 ± 0.5°	:	:
1064/493	:	:	:	:		:	:	:		:	:
10647611	7130	:	:	:	7130 ± 290^{a}	3.97	:	:	$\textbf{4.0} \pm \textbf{0.3}^{a}$:	:
10647860	5460	:	:	:	5460 ± 290^a	4.61	:	:	+1	:	:
10648728	0099	:	:	:	6600 ± 290^a	4.08	:	:	$\textbf{4.1}\pm\textbf{0.3}^a$:	:
10652134	0889	:	:	:	6880 ± 290^a	4.17	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	:
10658302	14810	15900 ± 0^{f}	:	:	15900 ± 290^f	80.9	3.9^f	:	3.9 ± 0.3^f	:	:
10658802	7480	:	:	:	7480 ± 290^a	4.11	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:	:
10663892	2960	6020 ± 100^{b}	:	:	6020 ± 100^b	4.32	4.9 ± 0.2^{b}	:	+I	:	:
10664703	7630	:	:	:	7630 ± 290^a	3.65	:	:	+1	:	:
10664975	7950	6641 ± 123^{e}	÷	:	6641 ± 123^{e}	3.58	:	:	3.6 ± 0.3^a	:	÷
10675762	7220	:	:	:	7220 ± 290^a	3.59	:	:	+1	:	:
10684587	7290	:	:	:	7290 ± 290^a	3.83	:	:	$\textbf{3.8} \pm \textbf{0.3}^a$:	:
10684673	7110	:	:	:	7110 ± 290^a	3.91	:	:	$\textbf{3.9} \pm \textbf{0.3}^a$:	:
10685653	7970	:	:	÷	7970 $\pm 290^a$	3.90	:	:	$\textbf{3.9} \pm \textbf{0.3}^a$:	:
10686752	7270	:	:	:	7270 ± 290^a	3.95	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
10709716	6050	:	:	:	6050 ± 290^a	4.35	:	:	$\textbf{4.4} \pm \textbf{0.3}^a$:	:
10713398	:	:	:	:	:	:	:	:	:	:	:
10717871	7290	:	:	:	7290 ± 290^a	3.50	:	:	$\textbf{3.5}\pm\textbf{0.3}^a$:	:
10723718	5370	:	:	÷	5370 ± 290^a	4.18	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$	÷	:
10730618	6200	:	:	:	6200 ± 290^a	4.22	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	:
10775968	7490	:	:	:	7490 ± 290^a	3.84	:	:	$\textbf{3.8} \pm \textbf{0.3}^a$:	:
10777541	:	:	÷	:	:	:	:	:	:	:	÷
10777903	7320	:	÷	:	7320 ± 290^a	3.53	:	:	+I	:	÷
10778640	6390	:	÷	÷	6390 ± 290^a	4.16	:	:	+I	:	÷
10783150	7340	:	:	:	7340 ± 290^a	3.93	:	:	+I	:	÷
10788451	8790	:	:	:	8790 ± 290^a	4.02	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
10797526	11710	23600 ± 5600^f	20.870 ± 0^{f}	:	20870 ± 5600^f	4.41	3.2 ± 0.0^f	:	$\textbf{3.2}\pm\textbf{0.3}^f$:	÷
10797849	6020	:	:	:	6020 ± 290^a	4.20	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	÷
10813970	7420	:	:	:	7420 ± 290^a	3.61	:	:	$\textbf{3.6} \pm \textbf{0.3}^a$:	:
10815466	8310	:	:	:	8310 ± 290^a	3.86	:	:	3.9 ± 0.3^a	:	:
10853783	7830	:	:	:	7830 ± 290^{a}	3.88	:	:	+I	:	:
10861649	2900	:	:	:	5900 ± 290^{a}	4.18	:	:	+I	:	:
10902738	4640	:	:	:	+1	2.47	:	:	+I	:	÷
10920182	5930	:	:	:	5930 ± 290^{a}	4.24	:	:	$\textbf{4.2} \pm \textbf{0.3}^a$:	:
10920273	5570	:	:	÷	5570 ± 290^a	4.09	:	:	$\textbf{4.1}\pm\textbf{0.3}^a$:	:
10920447	7900	:	:	:	7900 ± 290^a	3.98	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:	:
10971674	5530	:	:	:	5530 ± 290^{a}	4.31	:	:	$\textbf{4.3} \pm \textbf{0.3}^a$:	:
10975247	7780	:	÷	:	7780 ± 290^a	:	:	:	3.9 ± 0.3^a	:	÷
10977859	8050	8190 ± 70^{9}	÷	:	8190 ± 70^{g}	3.94	3.61 ± 0.07^{9}	:	+I	63 ± 3^{9}	÷
10988009	7320		:	:	7320 ± 290^a	4.00		:	4.0 ± 0.3^a		÷
11013201	//80	1200 ± 200°	:	:	/200 ± 200°	3.82	3.3 ± 0.2°	:	H	100	:

Table 2. continued.

$v \sin i \text{ (km s}^{-1}\text{)}$ Spectra Spectra		:	:	:	:				:	:	:	:	:	:	:	:	:	:	: :	:	:	:		:	:	19 ± 1^n	:	:	: :	:	:	:	:	:	:	:	:
Adopted* Sp	\pm 0.3 ^a	$\textbf{4.3} \pm \textbf{0.3}^a$	4.2 ± 0.3^a	5.9 ± 0.5^a	4.5 ± 0.5°	4.0 ± 0.3	+	+1	$\textbf{3.9} \pm \textbf{0.3}^a$	+1	+1	+1	$\textbf{4.3} \pm \textbf{0.3}^a$	+I	+1	+1 -	3.5 ± 0.5°	H H	3.7 ± 0.3^a	$\textbf{4.4} \pm \textbf{0.3}^a$	•	43+03	$\textbf{4.3} \pm \textbf{0.3}^a$	$\textbf{4.5}\pm\textbf{0.3}^a$	$\pm 0.3^a$	\pm 0.1"	3.7 ± 0.3^a	43+03	3.9 ± 0.3^a	3.1 ± 0.3^a	:		4.5 ± 0.3^{a}	$\textbf{4.2} \pm \textbf{0.3}^a$	3.65 ± 0.24^b	$\textbf{4.26} \pm \textbf{0.23}^b$	•
$\log g$ (dex) Literature	:	:	:	:	:	: :	: :	:	:	:	÷	÷	:	:	:	:	:	:	: :	:	:	:		:	:	÷	:	:	: :	:	:	:	:	:	:	:	:
log Literature	:	:	:	:	:	:	: :	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	: :	:	:	4.2 ± 0.1^{h}	:	:	: :	:	:	:	:	:	3.65 ± 0.24^{b}	4.26 ± 0.23^{b}	:
KIC^a	4.39	4.31	4.15	3.91 7.76	4.40 5.40 5.40	3.96	3.71	4.28	3.85	3.72	4.47	4.32	4.31	3.55	4.22	4.03	3.51 07.5	2.70	3.70	4.38	:		4.33	4.45	4.12	4.18	3.65	4 30	3.86	3.10	:	: :	4.45	4.19	4.47	4.42	:
Adopted*	5410 ± 290^a	6670 ± 290^a	7320 ± 290^a	$6850 \pm 290^{\circ}$	5990 ± 290° 5590 ± 290°	3350 ± 290 $7020 + 290^a$	7710 ± 290^{a}	6530 ± 290^a	7980 ± 290^{a}	7630 ± 290^{a}	5670 ± 290^{a}	5940 ± 290^a	5990 ± 290^{a}	8330 ± 290^a	5390 ± 290^{a}	7260 ± 290^{a}	$74/0 \pm 290^{\circ}$	01.0 ± 2.00	7470 ± 290^a	6140 ± 290^a	•	5940 + 290a	5740 ± 290^a	5430 ± 290^a	6460 ± 290^{a}	6736 ± 75^{c}	7460 ± 290^a	6340 + 290	7280 ± 290^{a}	4900 ± 290^a	:		3850 ± 290^{a}	5140 ± 290^{a}	5740 ± 80^{b}	5320 ± 290^a	:
d)		9	<u>'</u> '	80	n u	•																															
Literature	:	.:		:: ::	: :	: :	: :	:	:	:	:	:	:	:	:	:	:	:	: :	:	:	:	:	:	:	$6622 \pm 0^{\circ}$:	:	: :	:	:	:	:	:	:	÷	:
	:	9 ::			: :			:	:	:	:	:	:	:	:	:	: :	:	: :	:	:	: :		:		6800 ± 400^n 6622 ± 0^o	:	:		:	:	:	:	:	:	: :	:
<u> </u>	:	::			: :				:	:	::	:	::	: :	::	::	::	:		::	: :	: : : : : : : : : : : : : : : : : : : :		:	:		:	:		:	::	: :	: :		5740 ± 80^b	5720 ± 80^b	
$T_{ m eff}$ (K) Literature	5410	::	: :	500 088	:		7710	6530	086	7630		5940	6865	8330	5390		0/4/	0/18	7470	6140	: : : : : : : : : : : : : : : : : : : :		5740	5430	:	6736 ± 75^c 6800 ± 400^h	7460	6340	7280	6006	::		3850			$5320 5720 \pm 80^b \dots$	

Spectra $v \sin i \text{ (km s}^{-1}\text{)}$ Spectra $05 \pm 3'$ 51 ± 1^{k} 4.39 ± 0.22^{b} 4.20 ± 0.21^b 4.63 ± 0.21^{b} 4.21 ± 0.07^d 3.7 ± 0.3^a 4.1 ± 0.3^a 3.5 ± 0.3^a 3.8 ± 0.3^a 3.9 ± 0.3^a $\textbf{3.3}\pm\textbf{0.3}^{g}$ $\textbf{4.6} \pm \textbf{0.3}^a$ $\textbf{4.7} \pm \textbf{0.3}^a$ $\textbf{3.9} \pm \textbf{0.3}^a$ 4.7 ± 0.2^b 4.0 ± 0.3^a 4.4 ± 0.3^a $\textbf{4.6} \pm \textbf{0.3}^{a}$ 4.1 ± 0.3^a 4.5 ± 0.3^a 3.9 ± 0.3^{a} 2.4 ± 0.3^a 4.6 ± 0.3^a 3.9 ± 0.3^{a} 3.8 ± 0.3^{a} 4.4 ± 0.3^{a} 4.2 ± 0.1^h 4.4 ± 0.3^a 4.8 ± 0.2^{b} 3.8 ± 0.3^{a} 3.5 ± 0.3^a 4.5 ± 0.3^a 3.6 ± 0.3^{a} 3.6 ± 0.3^{a} 4.0 ± 0.3^a 3.9 ± 0.3^a 3.9 ± 0.3^{a} 3.9 ± 0.3^a Adopted* 3.5 ± 0.2^{k} $4.5 \pm 0.3^{\circ}$ Literature 3.5 ± 0.2^{k} $\log g \text{ (dex)}$ 4.20 ± 0.21^{b} $\pm 0.07^d$ 4.69 ± 0.20^{b} 3.30 ± 0.41^{9} 4.63 ± 0.21^b 4.39 ± 0.22^{b} 4.84 ± 0.20^{b} Literature 4.2 ± 0.1^{h} 3.5 ± 0.2^{i} : 4.21 4.15 4.47 3.83 3.62 3.87 7210 ± 290^{a} 7470 ± 290^{a} $8050 \pm 290^{\circ}$ $8440 \pm 290^{\circ}$ $8260 \pm 290^{a} \\ 7210 \pm 290^{a}$ $7250 \pm 100^k \\ 4300 \pm 290^a$ 7790 ± 290^a 6030 ± 290^a 7200 ± 290^a 8270 ± 290^a 5770 ± 290^a 6410 ± 290^{a} 6110 ± 110^{b} 6130 ± 110^{b} 7050 ± 290^a 7660 ± 290^a 6020 ± 100^b 5810 ± 290^{a} 3980 ± 290^{a} 7460 ± 290^a 6460 ± 290^a 5580 ± 290^{a} 5690 ± 290^a 7040 ± 290^{a} 6200 ± 110^b 6120 ± 290^{a} 7360 ± 290^a 8290 ± 290^a 7630 ± 290^a 4550 ± 290^a 4210 ± 290^a $6690 \pm 290^{\circ}$ $6870 \pm 290^{\circ}$ 6410 ± 70^{c} $7390 \pm 290^{\circ}$ 6450 ± 120^{b} 267 ± 3776 Adopted* Literature $6714 \pm 0^{\circ}$ $6441 \pm 0^{\circ}$ $T_{\rm eff}$ (K) 7250 ± 100^{k} 6450 ± 80^{9} Literature 6918 ± 0^{d} 6110 ± 110^{b} 6450 ± 120^{b} 6800 ± 400^{h} 6130 ± 110^{b} 6410 ± 70^{c} 6020 ± 100^{b} 6200 ± 110^{b} $7200 \pm 120^{\circ}$ Literature $.61 \pm 9119$: : 7390 7210 7630 5980 7050 0992 5780 5810 3980 7460 6460 5580 7040 6620 0909 6120 7200 7360 8290 6640 8260 0289 7790 5690 7470 6030 11572666 11602449 1499453 1654210 1718839 1753169 1549609 1706449 1714150 1821140 11445913 1454008 1494765 1497012 1498538 1502075 1509728 1515690 1551622 1607193 1612274 1622328 1651147 1657840 1661993 1700370 1700604 1706564 1708170 1822666 1446143 1447883 1447953 1448266 1449931 1499354 1508397 1651083 1653958 1671429 1707341 1754974 1446181 KIC ID

Table 2. continued.

			$T_{ m eff}$ (K)				log	$\log g$ (dex)		$v \sin i \text{ (km s}^{-1})$	$cm s^{-1}$)
KIC ID	KIC^a	Literature	Literature	Literature	$Adopted^{\star}$	KIC^a	Literature	Literature	$\mathbf{Adopted}^{\star}$	Spectra	Spectra
11824964	7190	:	:	:	7190 ± 290^{a}	3.97	:	:	4.0 ± 0.3^a	:	:
11874676		:	:	:	8220 ± 290^a		:		$\textbf{4.0} \pm \textbf{0.3}^a$:
11874898	7010	6650 ± 130^{b}	:	:	6650 ± 130^b	3.96	3.72 ± 0.22^{b}	:	3.72 ± 0.22^b	:	:
11910256		:	:	:	7130 ± 290^a		:		$\textbf{3.5} \pm \textbf{0.3}^a$:
11910642		:	:	:		3.59	:	:	3.6 ± 0.3^a		:
11973705°	7400	11.898 ± 0^f	7300 ± 300^{i}	$11\ 150 \pm 0^{j}$		4.04	4.2 ± 0.3^{i}	3.96^{j}	4.0 ± 0.3^{j}	120 ± 20^{i}	103 ± 10^{j}
12018834	7270	:	:	÷		4.00	:	:	4.0 ± 0.3^a		:
12020590	8020	:	:	:	8020 ± 290^a	3.67	:	:	3.7 ± 0.3^a		:
12058428	7110	:	:	:	7110 ± 290^a	3.99	:	:	4.0 ± 0.3^a	:	:
12062443	7380	:	:	:	7380 ± 290^{a}	3.97	:	:	$\textbf{4.0} \pm \textbf{0.3}^a$:
12068180	7460	:	:	:	7460 ± 290^{a}	3.78	:	:	3.8 ± 0.3^a		:
12102187	7030	:	:	:	7030 ± 290^a	4.13	:	:	$\textbf{4.1} \pm \textbf{0.3}^a$:
12117689	6910	:	:	:	6910 ± 290^a	4.09	:	:	$\textbf{4.1}\pm\textbf{0.3}^a$:	:
12122075	7120	:	:	:	7120 ± 290^a	3.89	:	:	3.9 ± 0.3^a	:	:
12216817	0899	:	:	:	6680 ± 290^{a}	3.81	:	:	$\textbf{3.8} \pm \textbf{0.3}^a$:	:
12217281	7130	:	:	:	7130 ± 290^a	3.71	:	:	3.7 ± 0.3^a	:	:
12353648	7410	7190 ± 45^{9}	:	:	7190 ± 45^{g}	3.47	3.60 ± 0.26^{9}	:	3.60 ± 0.26^{9}	189 ± 12^{9}	:
12647070	7280	:	:	:	7280 ± 290^a	3.87	:	:	3.9 ± 0.3^a	:	:
12784394	7850	:	:	:	7850 ± 290^{a}	3.61	:	:	3.6 ± 0.3^a	:	:

Notes. (a) Spectroscopic binary; values derived from photometry: (a) KIC Catalogue, Latham et al. (2005); (b) SPM photometry, this paper; (c) Masana et al. (2006); (d) Allende Prieto & Lambert (1999); (e) Hauck & Mermilliod (1998); values derived from photometry or spectroscopy: (f) Balona et al. (2011b); values derived from spectroscopy: (g) TLS spectra, this paper; (h) Salona et al. (2011); (h) Balona et al. (2011); (h) Balona et al. (2011); (h) Balona et al. (2011); (h) Antoci et al., priv. comm.; (m) Breger et al. (2011); (h) Glebocki & Stawikowski (2000); (e) Nordström et al. (2004); (h) Molenda-Żakowicz et al. (2008); (h) Antoci et al. (2011); (**) the estimated errors on the KIC values are 290 K for T_{eff} and 0.3 dex for log g (see text).

Table 3. Classification and characterization of δ Sct, γ Dor, and hybrid stars.

Flag		:	•	:	:	:	:	•	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:
$\begin{array}{c} Freq_{high} \\ (d^{-1}) \end{array}$	007	16.408	41.235	18.328	14.806	42.967	20.550	9.481	15.049	5.604	17.857	29.695	31.693	10.338	15.973	13.490	22.122	11.648	30.022	8.333	16.260	37.307	14.462	33.270	29.490	46.399	14.364	14.482	7.989	21.480	35.215	26.259	23.717	20.699	22.069	19.582	20.992	19.045	28.039	21.543	14.048	16.809	9.621
Amplitude _{high} (ppm)	1	1857	767	16/4	7340	829	1766	1091	3610	2407	1431	654	643	1640	332	1147	2891	1584	1325	2848	2246	206	1936	1067	1220	552	4701	3707	1495	3961	1552	399	3973	1544	1168	2680	2399	1118	2458	332	931	9479	2740
(Freq Range) $_{\delta Sct}$ (d ⁻¹)		[4.0, 35.5]	[5.4, 56.5]	[5.4, 76.1]	[5.0, 34.8]	[15.9, 79.5]	[4.0, 52.7]	[9.1, 12.1]		[4.0, 56.1]	[4.0, 79.7]		[24.3, 44.4]	[9.3, 19.4]	[4.1, 21.7]	[7.0, 23.0]	[4.0, 44.2]	[4.4, 68.7]	[6.5, 42.6]	[5.2, 12.6]	[7.3, 33.1]	[11.6, 74.6]	[4.5, 51.1]	[9.4, 69.1]	[4.3, 52.9]	[4.8, 79.0]	[9.9, 42.0]	[4.6, 75.8]	[4.4, 18.9]	[5.0, 36.5]	[5.0, 69.1]	[22.8, 45.1]	[4.1, 74.2]	[4.3, 46.7]	[4.5, 47.4]	[4.4, 48.7]	[4.1, 40.9]	[4.3, 73.2]	[10.2, 54.9]	[4.0, 21.5]	[5.4, 65.2]	[4.5, 32.1]	[4.0, 61.9]
$(Freq Range)_{\gamma Dor} \ (d^{-1})$	δ Sct stars	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
$N_{\rm total}$		204	126	139	162	51	345	59	537	446	532	164	30	56	6	47	140	573	95	46	159	149	422	173	295	78	254	698	139	332	297	12	494	195	63	373	631	496	75	11	165	184	401
$N_{\delta { m Sct}}$,	136	86	53	37	36	189	12	186	138	355	93	16	18	∞	16	81	208	75	12	98	62	104	114	190	31	87	274	42	135	106	Ξ	142	88	49	124	160	321	59	4	85	71	120
$N_{\gamma { m Dor}}$	(O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Z	,	136	86	53	37	36	189	12	186	138	355	93	16	18	8	16	81	208	75	12	98	62	104	114	190	31	87	274	43	135	106	11	142	88	49	124	160	321	30	4	85	71	120
Class	Č	δ Sct	δ Sct	o Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct	δ Sct
KIC ID		01162150	01571717	01/18594	02303365	02439660	02571868	02572386	02987660	03217554	03219256	03347643	03425802	03429637	03440495	03458318	03558145	03634384	03644116	03655513	03760002	03761641	03850810	03941283	03942911	04035667	04048494	04077032	04168574	04252757	04269337	04383117	04647763	04649476	04840675	04856630	04863077	04909697	04936524	05080290	05209712	05272673	05391416

KIC ID	Class	Z	$N_{\gamma { m Dor}}$	$N_{\delta \mathrm{Sct}}$	$N_{\rm total}$	$ (Freq \ Range)_{\gamma Dor} $ (d^{-1})	(Freq Range) $_{\delta Sct}$ (d ⁻¹)	Amplitude _{high} (ppm)	$\begin{array}{c} \text{Freq}_{\text{high}} \\ \text{(d}^{-1}) \end{array}$	Flag
05428254	δ Sct	168	0	168	285	:	[4.2, 66.2]	2775	19.161	:
05474427	δ Sct	129	0	129	283	:	[4.1, 31.1]	5363	14.816	:
)5603049	δ Sct	118	0	118	209	:	[4.0, 48.5]	2163	24.345	:
05632093	δ Sct	53	0	53	153	:		623	47.616	:
)5709664	δ Sct	25	0	24	46	:	[4.2, 29.0]	823	19.440	:
05768203	δ Sct	3	0	3	5	:	[7.8, 17.0]	1269	7.808	:
05774557	δ Sct	09	0	09	133	:		3426	13.855	:
75785707	δ Sct	66	0	66	200	:		1036	41.279	:
06123324	δ Sct	103	0	103	468	:		12 596	3.235	:
06586052	δ Sct	78	0	78	219	:	[4.1, 49.2]	4161	20.880	:
06590403	δ Sct	66	0	66	410	:	[4.1, 51.3]	17 926	5.007	:
06606229	δ Sct	35	0	35	85	:	[4.2, 49.7]	4403	6.417	:
06629106	δ Sct	25	0	25	95	:		2608	16.943	:
)6668729	δ Sct	228	0	228	463	:	[4.1, 48.9]	2003	21.164	:
06790335	δ Sct	447	0	447	1080	:	[4.0, 51.7]	3374	20.265	:
06804821	δ Sct	20	0	20	56	:	[12.8, 23.3]	730	14.518	:
06865077	δ Sct	53	0	53	215	:	[5.3, 73.1]	2102	24.163	:
06937758	δ Sct	73	0	73	257	:	[4.4, 67.2]	4883	20.077	:
06939291	δ Sct	21	0	21	36	:	[7.5, 27.6]	725	17.876	:
)6947064	δ Sct	9	0	9	13	:	[20.6, 23.0]	2104	22.791	:
06965789	δ Sct	291	0	291	942	:	[4.0, 73.2]	3135	16.321	•
7106205	δ Sct	18	0	18	53	:	[8.0, 19.5]	4901	13.395	:
07212040	δ Sct	66	0	66	121	÷	[9.7, 62.1]	098	25.848	:
07217483	δ Sct	34	0	34	87	:	[4.2, 35.1]	4795	13.932	:
)7265427	δ Sct	190	0	190	391	:	[4.4, 51.4]	1943	24.137	:
07287118	δ Sct	118	0	118	178	:	[6.5, 49.8]	2241	30.830	:
)7352425	δ Sct	113	0	113	222	:	[4.3, 33.5]	1847	11.820	:
)7450284	δ Sct	136	0	136	298	:	[4.0, 49.1]	3167	19.726	:
7548479	δ Sct	29	0	29	93	:		1451	21.709	:
17583939	δ Sct	501	0	501	908	:		1330	23.165	:
36217691	δ Sct	114	0	114	383	:	[4.2, 35.7]	2523	17.487	:
07699056	δ Sct	305	0	305	651	:	[4.1, 75.2]	2406	12.977	:
07773133	δ Sct	155	0	155	531	:	[4.6, 33.5]	23 529	5.826	:
07777435	δ Sct	43	0	43	55	:	[6.0, 45.9]	1866	20.216	:
07834612	δ Sct	197	0	197	627	:	[4.1, 47.5]	4822	8.529	:
7842286	δ Sct	122	0	122	441	:	[4.4, 78.5]	2785	26.424	:
07842621	δ Sct	59	0	59	48	:	[4.4, 42.9]	889	29.791	:
17900367	δ Sct	30	0	30	79	:	[4.6, 41.2]	3857	13.247	:
08103917	δ Sct	39	0	39	69	:	[4.0, 38.1]	1799	17.747	:
)8245366	δ Sct	101	0	101	367	:	[4.0, 49.1]	27 451	11.938	:
)8248630	δ Sct	184	0	184	311	:	[4.0, 37.2]	1652	19.486	:
38264546	δ Sct	38	0	36	82	:	[4.0, 38.4]	1180	24.985	:
07702200		ι	(ı	<		L1 70 017	, ,		

KICID	Class	z	$N_{\gamma { m Dor}}$	$N_{\delta \mathrm{Sct}}$	Ntotal		(Freq Range) _{6Sct} (d ⁻¹)	Amplitude _{high} (ppm)	$\begin{array}{c} Freq_{high} \\ (d^{-1}) \end{array}$	Flag
08352420	δ Sct	14	0	14	63	:	[6.9, 19.3]	5376	9.271	:
08415752	δ Sct	49	0	49	09	:	[7.3, 66.3]	365	37.764	:
08429756	δ Sct	53	0	53	29	:	[22.1, 61.9]	590	27.746	:
08446738	δ Sct	37	0	37	09	:	[8.0, 67.3]	985	38.249	:
08459354	δ Sct	285	0	284	886	:	[4.1, 51.6]	3867	19.468	:
08499639	δ Sct	49	0	64	117	:	[4.0, 21.3]	11117	13.160	:
08516686	δ Sct	41	0	41	4	:	[21.1, 60.0]	142	43.752	:
08525286	δ Sct	26	0	26	235	:	[4.3, 53.4]	2189	34.056	•
96609580	δ Sct	25	0	25	27	:	[16.9, 51.7]	824	20.944	:
08565229	δ Sct	118	0	118	405	:	[8.1, 46.8]	3902	22.543	:
08579615	δ Sct	34	0	34	89	:	[4.1, 31.9]	286	8.130	:
08608260	δ Sct	192	0	192	325	:	[4.1, 35.7]	1332	13.191	:
08623953	δ Sct	107	0	107	342	:	[6.6, 54.5]	11516	27.257	:
08655712	δ Sct	253	0	253	494	:		2141	14.436	:
08695156	δ Sct	99	0	99	237	:	[4.3, 54.7]	3358	5.777	:
08717065	δ Sct	74	0	73	206	:	[4.5, 61.5]	811	24.547	:
08747415	δ Sct	4	0	4	9	:	[11.0, 12.5]	39	11.030	:
08750029	δ Sct	3	0	3	7	:	[4.4, 22.4]	484	22.439	:
08827821	δ Sct	68	0	68	172	:	[12.9, 50.1]	1689	17.713	:
08869892	δ Sct	34	0	34	129	:	[4.2, 18.6]	5539	7.699	:
08881697	δ Sct	93	0	93	339	:		1835	16.557	:
08933391	δ Sct	7	0	7	7	:	[6.7, 14.5]	193	802.9	:
09020199	δ Sct	53	0	53	180	:	[4.0, 57.3]	5855	7.477	:
09108615	δ Sct	10	0	10	21	:	[6.6, 49.2]	497	6.617	:
09111056	δ Sct	208	0	208	775	:	[4.0, 56.2]	12 668	5.655	:
09138872	δ Sct	86	0	26	273	:	[4.2, 49.2]	2268	19.697	:
09143785	δ Sct	06	0	06	392	:	[5.8, 77.6]	2386	11.798	:
09156808	δ Sct	69	0	69	116	:		2204	21.279	:
09201644	δ Sct	207	0	207	448	:	[4.3, 42.5]	2067	14.723	:
09210037	δ Sct	101	0	101	288	:	[4.6, 34.8]	7634	9.282	:
09229318	δ Sct	263	0	263	851	:	[4.0, 44.1]	5249	6.246	:
09246481	δ Sct	27	0	27	124	:	•	402	33.845	:
09267042	δ Sct	185	0	185	475	:		7895	24.664	:
09291618	δ Sct	100	0	100	522	:	[4.1, 32.9]	3352	10.321	:
09306095	δ Sct	232	0	232	1254	:		56 655	10.173	:
09324334	δ Sct	142	0	142	356	:		8675	10.272	:
09353572	δ Sct	12	0	12	16	:	[6.5, 49.0]	1780	13.392	:
09368220	δ Sct	179	0	179	505	:	[4.2, 62.5]	8093	5.392	:
09395246	δ Sct	63	0	63	199	:	[4.6, 58.3]	4588	7.697	:
09408694	δ Sct	278	0	278	844	:		155 660	5.661	:
09450940	δ Sct	66	0	66	219	:	[6.0, 76.0]	3959	29.997	:
09453075	δ Sct	21	0	21	09	:	[4.6, 34.9]	2389	19.313	:
09489590	δ Sct	75	0	75	113	:	[7.3, 46.7]	1549	15.788	:

	-	$N_{\gamma \mathrm{Dor}}$	$N_{\delta \mathrm{Sct}}$	Ntotal	(Freq Range) _{γDor}	(Freq Range) 6Sct	Amplitude _{high}	Freq _{high}	Flag
Č		c		9	(q_1)	(d ⁻¹)	(bbm)	(d ⁻¹)	
δ Sct	49	0	49	180	:		3170	12.519	:
δ Sct	170	0	170	335	:		1593	21.480	:
δ Sct	84	0	84	393	:		2886	10.188	:
δ Sct	28	0	28	100	:		9622	14.678	:
δ Sct	64	0	49	182	:	` '	2269	7.842	:
δ Sct	268	0	268	508	:		3633	20.569	:
δ Sct	103	0	101	420	:	[4.7, 27.6]	8012	8.510	:
δ Sct	229	0	229	498	:	[4.7, 64.6]	2682	28.159	:
δ Sct	137	0	137	385	:	[4.0, 50.2]	5689	5.128	•
δ Sct	165	0	165	305	:	[4.7, 64.1]	3336	15.177	:
δ Sct	20	0	20	23	:	[24.2, 48.8]	192	29.120	:
δ Sct	324	0	324	1047	:	[4.1, 63.6]	4391	8.683	:
δ Sct	49	0	49	142	:	[13.8, 49.1]	5219	17.011	:
δ Sct	72	0	72	230	:	[4.0, 35.2]	4431	13.062	•
δ Sct	28	0	28	75	:	[9.8, 24.1]	27 944	12.569	:
δ Sct	38	0	38	80	:	[4.4, 26.8]	3687	13.859	:
δ Sct	15	0	13	41	:	[9.2, 14.9]	2242	9.207	:
δ Sct	57	0	57	93	:	[4.4, 68.6]	1173	16.266	:
δ Sct	170	0	170	480	:	[4.8, 79.8]	4279	18.581	:
δ Sct	27	0	56	85	:	[9.4, 76.2]	1666	19.175	:
δ Sct	28	0	28	41	:	[13.7, 22.3]	1062	17.715	:
δ Sct	127	0	124	570	:	[4.9, 77.0]	33 209	17.597	:
δ Sct	71	0	71	114	:	[5.6, 31.7]	1116	20.316	:
δ Sct	88	0	88	387	:	[4.4, 65.9]	9098	20.141	:
δ Sct	33	0	33	181	:	[4.5, 49.0]	4046	15.393	:
δ Sct	63	0	63	323	:	[4.6, 39.9]	32 902	9.560	:
δ Sct	84	0	81	319	:		2894	27.058	:
δ Sct	6	0	6	20	:	[7.2, 20.6]	1156	17.059	•
δ Sct	246	0	246	805	:	[4.2, 78.8]	6926	25.206	:
δ Sct	81	0	81	238	:	[6.4, 25.6]	18 859	8.223	:
δ Sct	267	0	267	645	:	[4.4, 49.9]	2067	19.812	:
δ Sct	45	0	45	140	:	[5.7, 52.6]	3433	22.084	:
δ Sct	92	0	92	484	:	[4.1, 33.6]	10 776	9.591	:
δ Sct	79	0	79	157	:	[10.5, 64.8]	1411	38.376	:
δ Sct	59	0	59	98	:	[10.5, 80.0]	988	27.118	:
δ Sct	4	0	4	2	:	[31.9, 50.6]	34	31.853	:
δ Sct	82	0	82	92	:	[4.9, 48.3]	957	18.081	:
δ Sct	15	0	15	4	:	[7.1, 15.8]	3996	13.880	:
δ Sct	87	0	87	343	:	[4.4, 48.5]	2217	20.924	:
δ Sct	06	0	06	147	:	[4.0, 38.7]	873	18.407	:
δ Sct	109	0	109	385	:	[4.1, 39.2]	5064	9.661	:
δ Sct	62	0	62	312	:	_	2998	8.159	:
δ Sct	228	0	228	909	:	· .	4047	5.558	:
	\$\int \text{SQC}\$ \times \times \text{SQC}\$ \times \text{SQC}\$ \times \text{SQC}\$ \times \times \text{SQC}\$ \times \text{SQC}\$ \times \text{SQC}\$ \times \ti	272464747746664444477447442622			264 275 276 276 277 276 277 276 277 277	284 0 288 103 0 101 229 0 268 103 0 101 229 0 268 103 0 101 103 0 101 103 0 101 104 0 64 107 0 124 117 0 170 27 0 28 28 0 28 28 0 28 28 0 28 27 0 26 27 0 26 28 0 28 28 0 28 28 0 28 28 0 28 27 0 26 28 0 28 33 0 33 4 0 63 8 8 8 8 9 0 8 8 9 0 9 26 0 26 27 0 79 28 0 28 28 0 28 27 0 72 28 0 28 28 0 28 29 0 26 4 0 63 8 8 8 8 9 0 26 24 0 63 8 9 0 9 26 0 26 27 0 79 28 0 82 29 0 90 109 0 90 109 0 109 62 0 62 28 0 82 28 0 82 29 0 90 109 0 90 109 0 109 62 0 62 88 0 87 87 0 87 88 0 88 89 0 89 80 0 90 109 0 90 109 0 109 62 0 62 63 0 62 64 0 65 65 0 65 66 0 66 67 0 67 68 0 68 68 0 68 68 0 68 69 0 0 90 109 0 0 90 109 0 0 109	74 74 74 74 84 84 335 74,14 28 0 28 100 74,14 288 0 288 100 74,14 298 0 229 498 74,7 137 0 137 385 14,7 20 0 229 498 14,7 165 0 165 305 14,7 20 0 20 23 14,7 334 0 324 1047 14,7 4 0 20 23 14,4 170 13 80 14,4 170 13 41 14,4 170 13 41 14,4 18 0 28 41 14,4 1	170 0 74 150 170 0 170 335 28 0 28 100 64 0 64 182 268 0 28 100 103 0 101 420 103 0 1229 498 137 0 137 385 165 0 229 498 170 0 164 64 1047 64 0 20 23 23 27 0 20 23 23 28 0 28 75 170 0 170 480 18 0 28 41 27 0 26 85 28 0 28 41 28 0 28 41 29 0 26 85 24 0 24 80	70 70 73.5 17.1 77.1 77.1 77.2 77.1 77.2 77.

Flag	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	•	•	:
Freq _{high} (d ⁻¹)	12.837	10.387	40.473	15.348	12.217	21.549	16.791	23.160	909.6	36.712	28.955	31.523	59.969	12.957	33.416	23.831	14.371	38.327	18.731	22.664	10.150	25.188	23.846	24.105	14.035	15.970	28.678	16.345	24.877	13.577	22.215	20.302	7.818	13.356	42.652		21.718	24.500	15.158	13.000	2.034	1.466	41.151
Amplitude _{high} (ppm)	7128	7430	628	3106	3778	432	4486	3603	5261	2188	1708	1622	2014	5483	522	1360	992	1868	3559	2265	11 333	6577	884	1660	3473	1425	101	57 658	235	1798	393	2226	3928	1110	107		1452	909	2267	886	733	212	554
(Freq Range) _{oSct} (d ⁻¹)	[4.0, 48.9]	[5.8, 10.4]	[12.7, 58.8]	[5.1, 48.1]	[4.2, 39.7]	[4.5, 24.7]	[4.1, 38.0]	[4.0, 43.1]	[4.1, 49.8]	[4.1, 79.0]	[4.0, 50.7]	[4.0, 62.9]	[4.1, 63.6]	[4.1, 48.8]	[5.5, 57.8]	[4.5, 55.5]	[4.1, 37.5]	[19.2, 65.5]	[13.7, 59.3]	[4.1, 48.8]	[4.2, 23.6]	[4.8, 46.2]	[5.3, 49.1]	[4.0, 41.1]	[4.3, 49.5]	[4.1, 49.4]	[5.2, 72.0]	[4.3, 69.9]	[18.4, 57.4]	[4.9, 67.5]	[18.8, 37.4]	[4.1, 49.3]	[4.3, 24.0]	[9.8, 39.2]	[29.4, 47.9]		[5.5, 49.1]	[5.4, 34.6]	[5.1, 51.1]	[5.0, 35.1]	[5.7, 16.5]	[5.2, 20.0]	[5.0, 76.9]
$(\text{Freq Range})_{\gamma \text{Dor}}$ (d^{-1})	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	Hybrid stars	[0.2, 5.0]	[0.2, 4.9]	[0.2, 5.0]	[0.2, 5.0]	[0.3, 3.5]	[0.2, 4.6]	[0.2, 4.6]
Ntotal	092	28	87	383	693	17	996	301	648	721	136	132	120	613	99	77	68	95	156	440	113	413	161	258	440	624	30	396	70	241	34	722	277	52	11		278	123	674	102	128	99	196
$N_{\delta \mathrm{Sct}}$	306	6	62	80	234	11	277	122	183	267	102	68	29	165	56	70	54	35	47	213	56	06	26	85	147	312	30	84	32	73	19	298	4	33	3		53	22	124	23	4	4	157
$N_{\gamma { m Dor}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		13	27	28	28	10	15	12
z	306	6	62	80	234	11	277	122	183	267	102	68	29	169	56	70	54	35	48	213	56	06	26	85	147	312	30	87	32	73	19	298	48	33	3		89	52	188	53	15	21	171
Class	δ Sct		hybrid																																								
KIC ID	10684587	10684673	10686752	10713398	10717871	10775968	10777903	10788451	10813970	10815466	10853783	10920447	10977859	10988009	11013201	11021188	11090405	11125764	11127190	11183539	11340713	11395392	11402951	11497012	11661993	11671429	11700370	11754974	11821140	11874676	12020590	12068180	12353648	12647070	12784394		02168333	02694337	02707479	02853280	02975832	03097912	03119604

KIC ID	Class	Z	$N_{\gamma { m Dor}}$	$N_{\delta \mathrm{Sct}}$	Ntotal	$\frac{(\mathrm{Freq\ Range})_{\gamma\mathrm{Dor}}}{(\mathrm{d}^{-1})}$	(Freq Range) _{6Sct} (d ⁻¹)	Amplitude _{high} (ppm)	Freq _{high} (d ⁻¹)	Flag
03231406	hybrid	362	62	292	793	[0.2, 5.0]		1761	17.438	:
03240556	hybrid	191	40	151	329	[0.3, 5.0]	[5.0, 63.6]	298	25.220	:
03245420	hybrid	45	10	32	224	[0.8, 3.9]	[5.0, 45.8]	2733	14.097	:
03337002	hybrid	162	92	64	529	-	[5.0, 52.8]	4594	4.558	:
03437940	hybrid	347	106	224	957	[0.2, 5.0]	[5.1, 63.2]	4886	10.476	:
03453494	hybrid	176	47	129	358	[0.3, 5.0]	[5.0, 62.9]	487	7.499	:
03851151	hybrid	7	3	_	22	[0.2, 1.3]	[26.5, 26.5]	42	26.487	:
03970729	hybrid	156	4	105	332		[5.6, 28.2]	1394	18.828	:
04044353	hybrid	59	13	4	153	[0.6, 4.8]	[5.1, 54.5]	553	2.390	:
04170631	hybrid	495	74	412	138	[0.2, 5.0]	[5.1, 59.5]	6264	8.314	:
04180199	hybrid	91	30	61	404	[0.5, 4.9]	[5.2, 51.2]	790	3.284	:
04281581	hybrid	77	51	21	282	-4	[5.2, 54.3]	478	0.882	:
04476836	hybrid	6	2	\mathcal{C}	52	٠.	[5.5, 10.9]	696	6.859	:
04480321	hybrid	142	54	98	504	[0.2, 5.0]	[5.1, 61.2]	2323	0.710	:
04488840	hybrid	178	42	129	517	[0.3, 5.0]	[5.0, 51.3]	1277	15.803	:
04550962	hybrid	179	93	83	603	[0.2, 5.0]	[5.3, 54.1]	2912	2.259	:
04556345	hybrid	137	19	116	186		[13.1, 64.5]	653	26.640	:
04671225	hybrid	74	39	30	191			1271	8.880	:
04768677	hybrid	13	3	7	47		[6.2, 52.2]	124	22.904	:
04919818	hybrid	45	34	10	74	[0.4, 5.0]		342	2.871	:
04920125	hybrid	28	20	∞	92		[5.6, 29.3]	390	23.884	:
04989900	hybrid	42	24	16	210		[5.0, 38.9]	718	2.189	:
05038228	hybrid	203	72	125	919		[5.1, 49.7]	2261	0.904	:
05219533	hybrid	35	22	11	112		•	437	10.285	:
05356349	hybrid	41	14	22	09			205	9.826	:
05437206	hybrid	120	32	82	258	-	[5.2, 49.7]	1637	13.011	:
05446068	hybrid	63	33	24	217		[5.3, 52.1]	558	0.287	:
05473171	hybrid	112	46	64	391		[5.1, 54.5]	3578	7.574	:
05476864	hybrid	82	26	54	374	[0.2, 3.4]		1862	1.667	•
05641711	hybrid	119	46	89	294			758	21.111	:
05722346	hybrid	179	72	66	207		[5.0, 50.4]	3002	11.325	•
05724440	hybrid	425	70	343	663	[0.2, 5.0]	[5.1, 79.7]	1918	19.251	:
05810113	hybrid	41	17	22	92		[5.8, 20.6]	652	0.333	:
05857714	hybrid	210	41	166	850	[0.2, 3.7]	[5.0, 55.0]	22 930	12.227	:
05940273	hybrid	170	80	81	463			1571	3.016	:
05965837	hybrid	93	59	09	354	[0.7, 4.5]	[5.0, 49.2]	7243	3.392	:
06032730	hybrid	87	56	27	144		[5.0, 78.1]	1140	16.267	:
06067817	hybrid	133	27	103	296	[0.2, 4.9]		1374	34.408	:
06141372	hybrid	19	S	14	21	[0.3, 4.8]		338	18.991	•
06142919	hybrid	59	37	19	115			986	16.316	:
06187665	hybrid	184	09	121	629	[0.2, 5.0]	[5.0, 35.5]	3826	11.729	:
06199731	hybrid	42	18	21	215	[0.4, 4.9]	[5.1, 22.5]	2183	7.643	:
06268890	hybrid	359	73	284	152	[0.2, 4.8]	[5.1, 55.1]	15 399	998.9	:

KIC ID	Class	Z	$N_{\gamma { m Dor}}$	$N_{\delta \mathrm{Sct}}$	$N_{ m total}$		(Freq Range) $_{\delta Sct}$ (d ⁻¹)	Amplitude _{high} (ppm)	$\begin{array}{c} Freq_{high} \\ (d^{-1}) \end{array}$	Flag
06289468	hybrid	62	17	40	103	[0.5, 4.9]	[5.1, 40.4]	432	13.652	:
06381306	hybrid	64	43	16	123		[5.3, 53.3]	234	5.814	:
06432054	hybrid	356	89	279	829			2901	10.571	:
06443122	hybrid	154	63	84	537	[0.2, 5.0]	[5.0, 55.3]	1466	2.425	:
06446951	hybrid	288	30	256	509		[5.1, 52.9]	1509	14.872	:
06509175	hybrid	112	45	89	449		[5.1, 53.7]	4431	3.954	:
06587551	hybrid	4	4	39	79	[0.2, 3.6]	[5.5, 60.6]	192	17.422	:
06614168	hybrid	143	40	66	392		[5.0, 57.7]	2002	8.356	:
06670742	hybrid	194	57	134	530	[0.4, 5.0]	[5.1, 70.3]	1411	12.789	:
06694649	hybrid	120	39	78	248		[5.0, 57.7]	1027	12.771	:
06756386	hybrid	63	6	52	237	[0.3, 4.8]	[5.1, 72.6]	1001	8.964	:
06756481	hybrid	114	45	71	256	[0.2, 5.0]		540	5.766	:
06761539	hybrid	212	99	154	627	[0.2, 4.9]		1975	17.826	:
06776331	hybrid	405	51	351	789	[0.2, 5.0]	[5.3, 48.7]	1697	13.789	:
06922690	hybrid	183	46	128	478	[0.3, 4.9]	[5.0, 49.4]	1475	15.257	:
06951642	hybrid	75	34	40	295	•	[5.5, 50.8]	2838	0.721	:
07109598	hybrid	152	33	116	291		[5.1, 54.7]	806	18.597	:
07119530	hybrid	106	78	19	481	[0.2, 5.0]		2443	4.193	:
07122746	hybrid	54	7	47	191	[1.1, 4.9]	[5.1, 48.8]	735	30.154	:
07204237	hybrid	269	54	214	537			2926	17.993	:
07211759	hybrid	163	37	125	287		[5.1, 79.4]	736	7.318	:
07300387	hybrid	329	49	254	852	[0.2, 4.9]	[5.2, 50.5]	3469	10.293	:
07350486	hybrid	22	17	4	28		[5.3, 17.1]	130	1.330	:
07352776	hybrid	105	32	65	382	[0.2, 5.0]	[6.1, 36.5]	1764	2.374	:
07502559	hybrid	64	38	20	145	[0.5, 4.7]	[5.2, 31.9]	1383	4.522	:
07533694	hybrid	14	9	2	29	[0.3, 4.9]	[5.6, 49.5]	1621	11.243	:
07553237	hybrid	46	34	10	132	[0.2, 4.9]	[5.4, 15.6]	2184	14.713	:
07668791	hybrid	23	4	17	30	[0.2, 4.9]	[5.0, 31.1]	86	20.643	:
07702705	hybrid	196	63	130	575		[5.1, 53.3]	878	2.038	:
07732458	hybrid	20	10	4	56	[0.2, 4.9]	[5.0, 32.1]	359	13.184	:
07748238	hybrid	53	30	17	144		[5.0, 49.1]	552	2.292	:
07756853	hybrid	9 -	- ;	so ;	9	•	[5.0, 27.0]	86	21.141	:
07770282	hybrid	70	53	10	195		[28.5, 51.3]	2136	1.004	:
07771991	hybrid	12	9	4	25	[0.8, 4.1]	[5.3, 21.4]	70	2.055	:
07827131	hybrid	39	17	19	175	[0.3, 4.7]	[5.0, 39.4]	939	10.044	:
07831302	hybrid	92	22	51	184	[0.2, 3.6]	[5.5, 48.8]	1051	18.750	•
07848288	hybrid	247	62	178	370	[0.2, 4.9]	[5.0, 66.9]	840	25.238	•
07959867	hybrid	73	23	43	303	[0.2, 4.5]	[5.6, 39.3]	1081	7.713	:
96611610	hybrid	118	27	84	220	•	[5.1, 58.2]	1224	11.030	:
08029546	hybrid	79	38	38	359	[0.2, 4.7]		966	2.034	:
08054146	hybrid	38	11	24	80	[0.3, 3.2]	[5.5, 76.0]	185	66.295	:
08149341	hybrid	183	27	149	350	[0.2, 4.9]	[5.1, 50.5]	1681	27.016	:
08197788	hybrid	128	52	75	410	[0.3, 4.8]	[5.1, 47.3]	3441	14.998	:

KIC ID	Class	Z	$N_{\gamma { m Dor}}$	$N_{\delta \mathrm{Sct}}$	$N_{ m total}$	$(Freq Range)_{\gamma Dor}$ (d^{-1})	(Freq Range) $_{\delta Sct}$	Amplitude _{high}	$\frac{\text{Freq}_{\text{high}}}{(\mathrm{d}^{-1})}$	Flag
08264404	hybrid	26	32	57	414	[0.2, 4.8]	[5.1, 52.3]	5380	9.396	:
08264583	hybrid	50	34	14	175	[0.3, 4.8]	[5.1, 54.0]	519	0.968	:
08264674	hybrid	54	33	16	215	[0.2, 5.0]	[5.2, 18.1]	400	6.598	:
08264698	hybrid	140	49	68	465	[0.3, 4.8]	[5.2, 47.9]	1848	13.801	•
08397426	hybrid	46	22	24	197	[0.3, 4.9]	[5.1, 14.1]	1241	5.576	:
08454553	hybrid	59	56	56	255	[0.2, 5.0]	[5.0, 22.7]	2014	2.920	:
08460993	hybrid	258	70	186	630	[0.2, 5.0]	[5.0, 56.6]	1085	18.067	:
08507325	hybrid	79	41	36	146		[5.1, 49.2]	213	11.679	:
08516008	hybrid	126	52	71	229		[5.0, 49.1]	988	13.376	:
08590553	hybrid	70	22	47	146	٠.	[5.5, 53.3]	1002	24.285	:
08738244	hybrid	116	39	71	185		[5.0, 49.6]	346	14.621	:
08915335	hybrid	71	27	42	162	٠.	[5.1, 33.5]	1429	8.828	:
08940640	hybrid	232	64	164	998	•	[5.4, 52.7]	10 783	17.839	:
08972966	hybrid	286	47	237	641	[0.2, 5.0]	[5.1, 50.5]	2946	19.225	:
08975515	hybrid	25	14	7	61	-		293	13.972	:
09052363	hybrid	13	4	7	16	[0.2, 1.5]		44	41.966	:
09072011	hybrid	133	27	101	445	٠.	[5.3, 55.9]	6138	6.116	:
09073007	hybrid	104	20	20	347	- 1		5031	11.471	:
09222942	hybrid	94	62	24	259		[5.2, 50.3]	671	2.162	:
09351622	hybrid	48	21	17	127			1152	6.020	:
09391395	hybrid	28	24	7	26	٠.	[5.3, 15.4]	465	1.949	:
09413057	hybrid	137	35	101	277		[5.1, 51.8]	497	13.546	:
09473000	hybrid	11	9	4	43	[0.2, 5.0]	[5.6, 17.4]	266	8.699	:
09509296	hybrid	96	42	53	389		[5.3, 51.0]	1406	17.677	:
09532644	hybrid	64	33	28	273	[0.4, 5.0]	[5.4, 35.5]	1520	20.487	:
09533489	hybrid	17	7	~	37		[6.4, 37.6]	333	4.008	:
09550886	hybrid	109	24	80	255	[0.4, 5.0]		3063	50.126	:
09604762	hybrid	10	3	4	12	_		126	18.151	:
09650390	hybrid	122	26	57	313	_		797	1.071	:
09651065	hybrid	107	<u>5</u> 0	84	345	[0.2, 4.8]		2259	19.478	:
09655438	hybrid	22	_ ;	Ξ;	43	[0.2, 4.6]	[5.4, 31.9]	389	12.992	:
09655501	hybrid	138 6	47 -	0110	173		[5.0, 53.7]	530	27.723	:
09030348	nyond bashaid	670	01 0	4 6	751		[5.17, 21.9]	900	2.010	:
029040060	hybrid	00	4 6 7 7	55 11	320 114	[0.2, 3.0]	[5.4, 41.3]	951	270.1	:
09716947	hybrid	89	10	30	302		[5.4.16.8]	833	6.215	:
09764965	hybrid	24	` ∞	10	72		[5.1, 34.6]	961	27.178	: :
09775385	hybrid	22	13	7	58	[0.7, 4.0]	[5.1, 25.9]	189	1.788	:
09775454	hybrid	18	10	2	73		[14.7, 14.9]	316	4.161	÷
09790479	hybrid	6	5	3	25	[1.4, 4.4]	[5.5, 20.0]	246	1.618	:
09813078	hybrid	73	56	37	352	[0.3, 3.9]	[7.4, 39.5]	3871	17.588	:
09970568	hybrid	150	49	83	395	[0.2, 5.0]	[5.0, 55.5]	945	3.408	:
10014548	hybrid	162	42	114	314	[0.2, 5.0]	[5.0, 57.8]	775	1.528	:

10035772 hybrid 10065244 hybrid 10130777 hybrid 10208345 hybrid 10264728 hybrid 10361229 hybrid 10471914 hybrid 10547491 hybrid 10647491 hybrid 10647491 hybrid 10647611 hybrid 10647611 hybrid 1067562 hybrid 1067562 hybrid 1067562 hybrid 1067563 hybrid	125 115 361	30				(_ p)			
	115 361	20	83	427	[0.2, 4.9]	[5.4, 65.8]	1947	26.891	:
> 0 10 m 0 ± > m - 10 01 m 0	361	43	27	448	[0.2, 5.0]	[5.0, 49.1]	10 097	11.930	:
		55	305	806			2101	33.821	:
	53	25	24	145			466	15.396	:
~ ~ + ~ ~ ~ - 10 0) ~ ~	74	41	27	212	[0.3, 4.9]		861	3.452	:
0 + > = - 10 01 = 0	101	37	61	436	[0.2, 4.6]	[5.4, 53.5]	875	3.379	:
± > = = 10 0) = 0	25	20	5	137	[0.5, 4.9]		813	2.653	:
	308	46	254	534	[0.2, 4.9]		2156	15.070	:
	110	22	83	510			4741	11.555	:
_ 10 0) = 0	78	28	47	378	[0.2, 4.6]		5536	17.101	:
10.0) 00.0	69	22	42	317		[5.1, 51.2]	4527	15.723	:
0) 00 0	6	5	3	21			383	2.575	:
~ ~	89	23	40	300	[0.3, 4.7]	[5.0, 50.4]	3118	15.914	:
	47	24	21	149			565	19.411	:
	77	63	9	613	[0.3, 5.0]	[5.1, 17.0]	3896	1.560	:
_	∞	5	\mathcal{C}	8			98	13.943	:
	36	11	25	72		[5.0, 60.0]	334	3.752	:
_	112	62	48	303		[5.0, 54.7]	704	1.275	:
_	213	81	121	397		[5.1, 60.4]	720	1.939	:
_	133	40	98	416			6496	21.061	:
	62	22	33	316	[0.2, 4.6]	[5.3, 41.1]	4053	18.487	:
10	146	22	122	272	_		1191	23.435	:
~	167	18	144	328	٠.	[7.2, 50.4]	1654	31.558	:
_	92	42	48	145	4	[5.1, 48.2]	340	11.367	:
_	4	17	22	164	٠.	[5.0, 48.9]	926	18.279	:
	84 5	36	40	310	-		1392	10.579	:
	102	73	4.	396		[5.0, 16.5]	716	1.817	:
	50	14	4 ,	99		[5.0, 27.0]	515	27.013	:
_	13	6 !	_ ;	28	[0.3, 4.1]	[6.0, 11.0]	307	0.756	:
	167	49	115	235	[0.3, 4.9]		969	16.441	:
_	51	31	20	73	[0.4, 5.0]		298	2.050	:
_	21	11	5	38	[0.4, 4.5]	٠.	125	2.160	:
_	23	16	S	74	[0.3, 4.6]	[5.1, 25.0]	1229	3.218	:
2122075 hybrid	80	54	20	215	[0.3, 5.0]	[5.0, 31.9]	1260	1.116	•
2216817 hybrid	143	55	84	609	[0.2, 5.0]	[5.2, 52.6]	22 007	8.121	:
	c	Ó	(ì	γ Dor stars		6		
_	×	×	0	96	[0.6, 3.5]	:	322	3.451	:
	27	27	0	189	[0.3, 5.8]	:	1061	0.394	:
	13	13	0	31	[0.3, 3.2]	:	208	1.735	:
	17	17	0	42	[0.3, 3.2]	:	149	1.798	:
02300165 γ Dor	47	47	0	219	[0.5, 5.5]	:	2500	1.679	:
	25	25	0	65	[0.3, 3.3]	:	334	2.015	:
	9	9	0	21	[0.2, 4.1]	:	150	0.848	:

Flag	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	•	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
$\begin{array}{c} Freq_{high} \\ (d^{-1}) \end{array}$	2.245	0.551	0.359	1.506	3.849	2.482	1.011	1.427	2.709	0.942	2.035	0.636	2.788	0.871	0.398	1.595	1.408	1.381	4.496	0.991	1.341	1.687	2.836	0.958	1.890	1.494	1.128	4.856	2.131	0.843	1.601	1.840	0.393	1.435	1.500	1.353	2.735	1.540	2.355	2.231	1.261	1.269	1.714	2.658	2.057	1.994
Amplitude _{high} (ppm)	329	467	865	1696	4526	496	301	4684	9092	1035	4512	77	135	259	249	3706	3305	8312	068	4489	1556	10511	431	109	503	1138	1379	6821	269	83	787	1442	1023	/40	782	5215	1948	1780	1335	291	74	23 271	1703	92	2292	532
(Freq Range) _{0Sct} (d ⁻¹)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	::
	[0.6, 2.5]	[0.3, 5.6]	[0.4, 2.4]	[0.2, 3.7]	[0.2, 6.0]	[0.4, 3.7]	[0.3, 1.5]	[0.3, 5.8]	[0.2, 5.9]	[0.3, 3.3]	[0.2, 6.0]	[0.5, 2.6]	[2.3, 5.0]	[0.6, 3.2]	[0.3, 1.7]			[0.2, 5.9]										[0.2, 5.8]	[0.2, 4.3]	•			[0.3, 5.8]	•	[0.2, 6.0]	•		[0.2, 5.9]	_	[0.3, 4.9]	[0.4, 4.4]		[0.2, 4.4]	[0.5, 5.3]	[0.2, 5.9]	[0.4, 4.9]
$N_{\rm total}$	38	70	64	51	237	93	36	115	204	77	373	14	34	63	39	349	250	300	132	416	102	545	114	32	88	176	216	210	62	27	139	99	74	13/	126	513	1	267	103	33	42	774	182	17	282	127
$N_{\delta { m Sct}}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$N_{\gamma { m Dor}}$	∞ ;	34	∞	16	83	23	14	24	54	18	109	6	4	13	∞	87	77	73	37	126	18	156	56	11	25	99	62	69	25	18	36	27	17	46	20	142	57	80	38	21	23	147	45	16	57	26
z	∞ ;	34	∞	16	83	23	14	24	54	18	109	6	4	13	∞	87	77	73	37	126	18	156	56	11	25	99	62	69	25	18	36	27	17	46	20	142	27	80	38	21	23	147	45	16	57	26
Class	γ Dor	γ Dor	γ Dor	$\gamma { m Dor}$	γ Dor																																									
KIC ID	02575161	02720582	02835795	03215800	03218637	03222364	03327681	03331147	03424493	03449625	03539153	03655608	03663141	03758717	03868032	03966357	04069477	04164363	04677684	04758316	05024455	05105754	05113797	05164767	05180796	05294571	05371747	05630362	05724048	05772411	05880360	05954264	06301745	06462033	06500578	06519869	06923424	07007103	07106648	07215607	07220356	07304385	07436266	07694191	07742739	07767565

KIC ID	Class	Z	$N_{\gamma { m Dor}}$	$N_{\delta \mathrm{Sct}}$	$N_{\rm total}$	$ (\text{Freq Range})_{\gamma \text{Dor}} $ $ (\text{d}^{-1}) $	(Freq Range) $_{0Sct}$ (d ⁻¹)	Amplitude _{high} (ppm)	$\begin{array}{c} Freq_{high} \\ (d^{-1}) \end{array}$	Flag
07798339	γ Dor	8	0	0	4	[0.2, 4.9]	:	38	0.450	:
07890526	γ Dor	20	20	0	75	[0.2, 5.4]	:	391	1.353	:
07908633	γ Dor	11	11	0	18	[0.2, 3.0]	:	121	2.795	:
08104589	γ Dor	18	18	0	39	[0.2, 2.1]	:	129	0.538	:
08123127	γ Dor	141	141	0	320		:	1991	0.774	:
08144674	γ Dor	18	18	0	39	[0.2, 5.2]	:	52	0.494	:
08197761	γ Dor	99	99	0	274	[0.2, 5.3]	:	6407	1.097	:
08222685	γ Dor	35	35	0	104	[0.2, 4.0]	:	4330	2.010	:
08230025	γ Dor	50	20	0	232	[0.2, 5.9]	:	878	3.659	:
08264061	γ Dor	70	70	0	321	[0.2, 5.9]	:	5350	1.400	:
08264075	γ Dor	34	34	0	157	[0.2, 5.9]	:	2238	1.201	÷
08264274	γ Dor	34	34	0	135	[0.2, 5.3]	:	2102	1.483	•
08264588	γ Dor	43	43	0	189	_	:	5540	5.002	:
08264617	γ Dor	126	126	0	463	٠.	:	29 753	1.242	•
08330056	γ Dor	32	32	0	104	[0.2, 5.5]	:	974	2.537	•
08355130	γ Dor	165	165	0	989	[0.2, 5.8]	:	10314	1.375	:
08489712	γ Dor	46	46	0	128	[0.2, 6.0]	:	257	0.555	:
08651452	γ Dor	91	91	0	356	[0.2, 5.8]	:	10 285	2.434	:
08766619	γ Dor	39	39	0	158	[0.3, 5.6]	:	1122	2.047	•
08838457	γ Dor	39	39	0	107	[0.2, 5.9]	:	743	2.256	:
08869302	γ Dor	114	114	0	772	[0.2, 4.0]	:	5990	0.647	:
08871304	γ Dor	136	136	0	546	[0.2, 5.6]	:	3742	0.970	:
09020157	γ Dor	59	56	0	118	[0.3, 2.8]	:	1323	1.234	:
09117875	γ Dor	5	S	0	∞	[0.6, 1.4]	:	133	0.667	:
09147229	γ Dor	86	86	0	311	[0.2, 5.4]	:	4172	1.984	:
09490042	γ Dor	107	107	0	280	[0.2, 5.8]	:	675	1.621	:
09490067	γ Dor	89	89	0	150	_	:	989	2.240	:
09594100	γ Dor	33	33	0	181		:	1987	1.052	:
09654789	γ Dor	75	75	0	313	[0.2, 5.7]	:	5913	0.992	:
09655151	γ Dor	32	32	0	197	[0.9, 6.0]	:	2328	1.418	•
00855800	γ Dor	49	49	0	268	[0.2, 4.1]	:	4462	1.944	:
09716107	γ Dor	30	30	0	161	[0.7, 6.0]	:	1755	2.152	•
00860660	γ Dor	94	94	0	372	[0.2, 5.8]	:	7073	1.496	:
10069934	γ Dor	125	125	0	333		:	4669	1.082	:
10073601	γ Dor	21	21	0	46	[0.2, 2.2]	:	06	1.220	:
10096499	γ Dor	18	18	0	83		:	484	2.668	:
10281360	γ Dor	23	23	0	110		:	490	1.961	:
10385459	γ Dor	94	4	0	428		:	11 426	2.596	:
10586837	γ Dor	48	48	0	189		:	1317	1.569	:
10652134	γ Dor	78	78	0	546		:	4757	0.766	:
11199412	γ Dor	12	12	0	53		:	2856	0.685	:
11447883	γ Dor	61	61	0	506		:	1871	1.367	:
11612274	γ Dor	29	56	0	107		:	2638	2.540	:
11874898	γ Dor	17	17	0	100	[0.2, 5.2]	:	1971	0.989	:
12018834	γ Dor	103	103	0	309		:	2834	1.762	:
12058428	γ Dor	89	89	0	261		:	2812	1.598	:
12102187	γ Dor	69	69	0	246	[0.2, 6.0]	:	4821	0.929	:

Table 4. Classification of the stars that do not belong to the δ Sct, γ Dor or hybrid groups.

MC III	Class	rlag	NICID	Class	Flag	KIC ID	Class	Flag
	Stars wit	h no cle	ar periodic si	Stars with no clear periodic signal in the δ Sct and γ Dor regions	Sct and	V Dor regions		
02163434	:	•	09386259	:	:	$10920\overline{1}82$	solar-like	:
02311130	:	•	09458750	:	•	10920273	solar-like	:
02578251	:	:	09514879	:	:	11067972	solar-like	:
02970244	:	:	09520434	solar-like	:	11069435	solar-like	:
02997802	:	:	09593997	:	:	11122763	solar-like	:
03111451	:	:	09703601	solar-like	:	11128041	:	:
03119825	:	:	09764712	solar-like	:	11128126	solar-like	:
03220783	:	:	09991621	solar-like	:	11129289	solar-like	:
03427365	:	:	09991766	solar-like	:	11182716	solar-like	:
03733735	:	:	09994789	solar-like	:	11230518	solar-like	:
03759814	:	:	10056217	solar-like	:	11232922	solar-like	:
03760826	:	:	10062593	:	:	11233189	solar-like	:
04588487	:	:	10090345	:	:	11234888	solar-like	:
04850899	:	:	10140665	solar-like	:	11235721	solar-like	:
05024150	solar-like	•	10208303	solar-like	:	11236253	solar-like	:
05024454	solar-like	•	10254547	solar-like	:	11253226	:	:
05024456	:	•	10266959	solar-like	•	11290197	solar-like	:
05112932	solar-like	•	10273246	solar-like	:	11393580	solar-like	:
05199464	solar-like	•	10273960	solar-like	:	11394216	solar-like	:
05201088	:	•	10339342	solar-like	:	11395018	solar-like	:
05980337	:	:	10340511	solar-like	:	11395028	solar-like	:
07338125	:	:	10341072	solar-like	:	11446143	solar-like	:
07662076	:	:	10383933	solar-like	:	11446181	solar-like	:
07669848	solar-like	:	10450550	solar-like	:	11448266	solar-like	:
08143903	solar-like	:	10450675	solar-like	:	11449931	:	:
08159135	:	:	10451250	solar-like	•	11454008	:	:
08218419	solar-like	:	10453475	:	:	11499354	solar-like	:
08223987	solar-like	:	10467969	solar-like	:	11502075	solar-like	:
08293302	:	:	10526137	:	:	11509728	:	:
08323104	:	:	10526615	solar-like	•	11549609	solar-like	:
08355837	:	:	10533506	solar-like	:	11551622	solar-like	•
08460025	:	•	10534629	solar-like	:	11651083	solar-like	:
08482540	:	:	10647860	solar-like	:	11651147	solar-like	:
08488065	:	:	10663892	solar-like	:	11653958	solar-like	:
09073985	solar-like	:	10709716	solar-like	:	11654210	solar-like	:
09204672	:	:	10723718	solar-like	:	11657840	solar-like	•
09264399	:	:	10730618	solar-like	:	11706449	solar-like	•
09264462	solar-like	:	10777541	solar-like	•	11707341	solar-like	:
09272082	:	:	10778640	solar-like	•	11910256	:	:
09274000	:	:	10861649	solar-like	:	11910642	:	:
09336219	:	:	:	:	:	:	:	:
73040010	0		B	Binaries		1030700		
01794730	omary+0 sct	:	000/8014	EB+0 SCI	:	16000/60	oinary	:

Flag	:	:	:	:	÷	:	÷	:	:	:	:	:		:	:	:	:	:	•	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:		•	:	:	:	:	:	:
Class	$EB + \gamma Dor$	$EB + \gamma Dor$	binary	EB	$EB + \gamma Dor$	$EB + \gamma Dor$	EB	binary	EB	binary	EB	binary+SPB+δ Sct		rotation/activity		Bstar SPB	Bstar SPB			red giant																								
KICID	09851142	09913481	09944730	10119517	10206340	10274244	10971674	11082830	11180361	11342032	11447953	11973705		10140513	10338279	10394332	10648728	10797849	11017401	11020521	11027270	11183399	11240653	11445774	11494765	11498538	11499453	11515690	11622328	11708170	12062443	12217281		10658302	10797526	::		08746834	09327993	09520864	09885882	09995464	10006158	10057129
Flag	:	:	:	:	:	:	•	:	:	:	:	:	ation	:	•	:	•	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:		:	:	:		:	:	:	:	:	:	:
Class	$EB + \gamma Dor$	$EB + \gamma Dor$	$EB + \delta Sct$	EB	binary	$EB + \delta Sct$	EB	EB	binary+ δ Sct	$EB + \gamma Dor$	EB	binary+ δ Sct	Stellar activity/rotational modulation	rotation/activity	B type stars	Bstar candidate β Cep	Bstar SPB		Candidate red giants	red giant																								
KIC ID	07385478	07596250	08043961	08145477	08223568	08330092	08479107	08545456	09204718	09216367	09451598	09630640	Stellar	08283796	08330463	08703413	08742449	08748251	09077192	09268087	09582720	09632537	09640204	09643982	09655487	09696853	09716350	09777532	09881909	09944208	10004510	10064111		10030943	10536147	::		02995525	03248627	03354022	03355066	03427144	03449373	03458097
Flag	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:	•	:	:	:	:	:	:	:		:	:	:		:	:	:	:	:	:	:
Class	EB+δ Sct	$EB + \gamma Dor$	EB	binary	EB+ γ Dor	EB+hybrid	$EB+\delta$ Sct	$EB+\gamma Dor$	$EB+\delta$ Sct	EB	EB	binary+ δ Sct		rotation/activity		Bstar SPB	Bstar	Bstar SPB		red giant																								
KICID	02162283	02557430	02584908	02718596	03230227	04150611	04570326	05088308	05197256	05296877	05513861	05988140		01573064	01995489	02423932	02569639	02583658	03348390	03528578	03643717	04075519	04160876	04857678	05200084	05436432	05476495	06279848	06440930	06448112	07985370	08211500		05217733	08583770	08714886		02306469	02306716	02310479	02443055	02444598	02556297	02556387

:	:	:	:	:	:	•	:		:		•	:
red giant	red giant	red giant	red giant	red giant	red giant	red giant	:		:		contaminated	:
10068892	10134600	10389037	10902738	11340063	11706564	11753169	÷		:		09655433	:
:	:	:	:	:	:	:	:		:		•	•
red giant	red giant	red giant	red giant	red giant	red giant	red giant	red giant	Cepheid	:	taminated stars	contaminated	contaminated
03525951	03546061	03629080	03633693	03836911	04144300	05024750	05112786		:	Con	04937257	05724810
:	:	:	:	:	:	:	:		:		•	•
red giant	red giant	red giant	red giant	red giant	red giant	red giant	red giant		Cepheid		contaminated	contaminated
02557115	02584202	02834796	02855687	02860123	02969151	02972401	02989746		07548061		03457434	04048488
	red giant 03525951 red giant 10068892 r	red giant 03525951 red giant 10068892 red red giant 03546061 red giant 10134600 red	red giant 03525951 red giant 10068892 red red giant red giant 03546061 red giant 10134600 red red giant red giant 03629080 red giant 10389037 red	red giant 03525951 red giant 10068892 red red giant red giant 03546061 red giant 10134600 red red giant red giant 03629080 red giant 10389037 red red giant	red giant 03525951 red giant 10068892 red red giant 03546061 red giant 10134600 red red giant 03629080 red giant 10389037 red red giant 03633693 red giant 10902738 red red giant 03836911 red giant 11340063 red	red giant 03525951 red giant 10068892 red red giant red giant 03629080 red giant 10389037 red red giant red giant 03633693 red giant 10902738 red red giant red giant 04144300 red giant 11706564 red red	red giant 03525951 red giant 10068892 red red giant red giant 03629080 red giant 10389037 red red giant red giant 03633693 red giant 10902738 red red giant red giant 04144300 red giant 11706564 red red giant red giant 05024750 red giant 11753169 red red	red giant 03525951 red giant 10068892 red red giant red giant 03629080 red giant 1034600 red red giant red giant 03633693 red giant 10902738 red red giant red giant 04144300 red giant 11706564 red red giant red giant 05024750 red giant 11753169 red red giant red giant 05112786 red giant	red giant 03525951 red giant 10068892 red red giant red giant 03629080 red giant 10134600 red red red red red red red red giant red giant 03633693 red giant 10902738 red red red red red red red red red giant red giant 04144300 red giant 11765564 red red red giant red giant 05112786 red giant Cepheid	red giant 03525951 red giant 10068892 red red giant red giant 03629080 red giant 10134600 red	red giant 03525951 red giant 10068892 red red giant red giant 03629080 red giant 10134600 red red giant red giant 03633693 red giant 10902738 red red giant red giant 04144300 red giant 11706564 red red giant red giant 05024750 red giant 11753169 red red giant red giant 05112786 red giant Cepheid Cepheid Contaminated stars	red giant 03525951 red giant 10068892 red giant 03629080 red giant 10134600 red giant 03633693 red giant 10902738 red giant 03836911 red giant 11340063 red giant 04144300 red giant 1176564 red giant 05024750 red giant 11753169 red giant 05112786 red giant Cepheid Contaminated Contaminated stars

Table 4. continued.