

Department of Electrical Engineering and Computer Science

Faculty Mer	mber: Dr. Saln	nan Ghafoor	Dated: 4/12/2022

Semester: _____5th Section: <u>BEE 12C</u>

EE-232: Signals and Systems

Lab 10: Linearity in Simulink MATLAB

Group Members

		PL04 -	PL05 -	PL08 -	PL09 -
		CL03	CL03	CL04	CL04
Name	Reg. No	Viva / Quiz / Lab Performa nce	Analysis of data in Lab Report	Modern Tool Usage	Ethics and Safety
		5 Marks	5 Marks	5 Marks	5 Marks
Danial Ahmad	331388				
Muhammad Umer	345834				
Syeda Fatima Zahra	334379				

Table of Contents

2	\mathbf{N}	IATL	AB Simulink	3
			jectives	
			uipment	
			b Instructions	
3 Lab Tasks				
	3.1	Test	sting Linearity	4
	3.2	Exe	ercise	5
	3.	.2.1	Task 1	5
	3.	.2.2	Task 2	6
4	C	onclus	ısion	7

2 MATLAB Simulink

2.1 Objectives

This Lab experiment has been designed to familiarize students with MATLAB Simulink; students are required to prove linearity of a system using Simulink.

2.2 Equipment

Software

• MATLAB

2.3 Lab Instructions

All questions should be answered precisely to get maximum credit. Lab report must ensure following items:

- Lab objectives
- MATLAB codes
- Results (Graphs/Tables) duly commented and discussed
- Conclusion

3 Lab Tasks

3.1 Testing Linearity

To test the linearity of the gain block, build the system in the following Figure 1.

Figure 1

Scope 1: (Sine Wave $1 + Sine Wave 2) \times 2$

Scope 2: $((Sine\ Wave\ 1 + Sine\ Wave\ 2) \times 2) - (2 \times Sine\ Wave\ 1) + (2 \times Sine\ Wave\ 2)$

As scope 2 displays: $((Sine\ Wave\ 1 + Sine\ Wave\ 2) \times 2) - (2 \times Sine\ Wave\ 1) + (2 \times Sine\ Wave\ 2),$ we can deduce that the system is indeed linear, due to a constant zero output.

3.2 Exercise

3.2.1 Task 1

Use Simulink to design a non-linear system and show that the system is non-linear by showing that the principle of superposition does not hold.

Figure 2

As scope 2 displays: $(x + y)^2 - ((x)^2 + (y)^2)$, we can deduce that the system is not linear, due to a non-zero constant output.

3.2.2 Task 2

Use the symbolic toolbox to show that the squaring operation is not linear. That is, use the symbolic toolbox to show that:

$$(\alpha x + \beta y)^2 \neq \alpha x^2 + \beta y^2$$

Figure 3

In Figure 3, x and y are sine waves of different frequencies. α is a gain of 52 and β is a gain of 417.

As scope 2 displays: $(52x + 417y)^2 - ((52x)^2 + (417y)^2)$, we can deduce that the system is not linear, due to a non-zero constant output.

4 Conclusion

In this lab, MATLAB® Simulink was used to show the linearity and non-linearity of different systems, mainly the squaring operation. We deduce that Simulink is a useful and versatile MATLAB "add-on" used as a graphical programming environment for modelling systems.