Chapter 4

Spin Valves

韩伟 量子材料科学中心 2015年11月1日

Outline 1 and 1 an

1. Spin valves and spin injection

2. Spin valves based on Metal and Superconductor

3. Spin valves based on semiconductor and Quantum materials

1. Metal Spin Valves

Local and Nonlcoal spin valves

Hanle spin precession

Nano devices (Thanks to cleanroom)

Spin injection efficiency

Spin relaxation in Metals: EY

Spin Injection efficiency

FIG. 4. (Color online) Spin signal in the NLSV measurement as a function of the junction size $l_p w$. The dotted curve is the best fitting to the data points using Eq. (2).

$$\frac{\tau_e}{\tau_{sf}} = a \propto \left(\frac{\lambda}{\Delta E}\right)^2$$

Jedema, et al, PRB (2003) Fabian & Das Sarma, PRL (1998)

2. Superconductor Spin Valves

Large MR and control of T_C

Josephson junction, Spin-triplet

Spin injection, Long spin lifetime

Large spin Hall

Spin injection

Spin Hall

This Class

3. Spin valves based on Semiconductor and Quantum materials

Outline |

1. Semiconductor Spin Valves

When spintronics meets semiconductor

GaAs

Silicon and Germanium

Complex oxides

Spin FET

Why semiconductor Spintronics

Magnetic materials

Information storage

- Hard disks
- Tapes
- MRAM

Advantages:

- Non-volatile
- Fast switching

Semiconductor

Information logic and computing

- Transistor
- CPU

Advantages:

- Tunable carrier densities
- Bipolar (electron/hole)

$$R_{NL} = 4R_N e^{-L/\lambda_N} \prod_{i=1}^{2} \left(\frac{P_J \frac{R_i}{R_N}}{1 - P_J^2} + \frac{P_F \frac{R_F}{R_N}}{1 - P_F^2} \right) \times \left[\prod_{i=1}^{2} \left(1 + \frac{2 \frac{R_i}{R_N}}{1 - P_J^2} + \frac{2 \frac{R_F}{R_N}}{1 - P_F^2} \right) - e^{-2L/\lambda_N} \right]^{-1}$$

$$P_F = (\sigma_F^{\uparrow} - \sigma_F^{\downarrow}) / (\sigma_F^{\uparrow} + \sigma_F^{\downarrow})$$

$$P_J = (G_i^{\uparrow} - G_i^{\downarrow}) / (G_i^{\uparrow} + G_i^{\downarrow})$$

$$R_{N} = \rho_{N} \lambda_{N} / A_{N}$$

$$R_{E} = \rho_{E} \lambda_{E} / A_{L}$$

R_i (R₁, R₂) interficial resistances between FM (injector, detector) and nonmetal material.

$$R_{NL} = 4R_N e^{-L/\lambda_N} \prod_{i=1}^{2} \left(\frac{P_X \frac{R_i}{R_N}}{1 - P_J^2} + \frac{P_F \frac{R_F}{R_N}}{1 - P_F^2} \right) \times \left[\prod_{i=1}^{2} \left(1 + \frac{2 \frac{R_i}{R_N}}{1 - P_J^2} + \frac{2 \frac{R_F}{R_N}}{1 - P_F^2} \right) - e^{-2L/\lambda_N} \right]^{-1}$$

$$R_{NL} = \frac{4p_F^2}{(1-p_F^2)^2} R_N (\frac{R_F}{R_N})^2 \frac{e^{-L/\lambda_G}}{1-e^{-2L/\lambda_G}} = \frac{4p_F^2}{(1-p_F^2)^2} \frac{R_F^2}{R_N} \frac{e^{-L/\lambda_G}}{1-e^{-2L/\lambda_G}}$$

$$P^2 = \frac{4p_F^2}{(1-p_F^2)^2} (\frac{R_F}{R_N})^2$$

Semiconductor

E.I. Rashba, Phys. Rev. B (2000) A. Fert, H. Jaffres, Phys. Rev. B (2001)

17

Two types of tunnel barrier

1) Schottky barrier

2) Insulating barrier, Al_2O_3 , MgO

Lou, et al, PRL (2006)

$$S_y(x_1, x_2, B) = S_0 \int_0^\infty \frac{1}{\sqrt{4\pi Dt}} e^{-(x_2-x_1-\nu_d t)^2/4Dt}$$

 $\times \cos(g\mu_B Bt/\hbar) e^{-t/\tau_a} dt$,

Spin Injection

Spin Extraction / Reflection

Crooker, et al, Science (2005)

Jonker, et al, Nature Physics (2007)

Dash, et al, Nature (2009)

Spin in Silicon

Spin in Silicon

Spin in Silicon

Spin in Germanium

Epitaxial Fe/MgO/Ge junction is achieved MgO/Ge 45⁰ rotation

Spin in Germanium

Ge spin valve

Zhou & Han, et al, PRB (2011)

Spin in Germanium

Oxide Interface

Hwang, et al. Nat. Mater. (2012)

SrTiO3

High mobility

Ohtomo & Hwang Nature 427, 423-426 (2004)

Son, et al ,Nat Mater 9, 482-484 (2010)

Gate tunable Superconductivity

Reyren, et al, Science 317, 1196-1199 (2007)

Magnetism + Superconductive

Brinkman, et al, *Nat Mater* **6**, 493-496 (2007). Li, et al, *Nat Phys* **7**, 762-766 (2011). Bert, et al, *Nat Phys* **7**, 767-771 (2011).

Kondo effect

Lee, et al, *Phys. Rev. Lett.* **107**, 256601 (2011). Li, et al, *Phys. Rev. Lett.* 109, 196803 (2012).

Reyren, et al, PRL (2012)

La, Nb doped STO

Son, et al, Nature Materials (2010)

Han, et al, Nature Communications (2013)

Spin FET

Koo, et al, Science (2009)

Spin FET

Spin FET

Another solution

Ando, et al, Nature Mater. (2011)

Spin pumping

Another solution

休息10分钟

Outline 1 and 1 an

2. Spin valves based on Quantum materials

石墨烯

▶ 弱自旋-轨道耦合→ 长自旋寿命

二硫化钼等

▶ 自旋-谷

拓扑绝缘体

> 自旋流的拓扑保护

Graphene

Metals

Disadvantages	Advantages
Short spin lifetime	Large velocity of electrons
	Conductivity similar to FM
	RT operation

Semiconductors

Advantages	Disadvantages
Long spin lifetimes	conductivity mismatch
Tunable carrier density	Small spin signal (mainly work at low temperatures)

61

Graphene

Graphene combines the advantages of both metals and semiconductors

62

Graphene

Graphite

Graphene

Massless Dirac Fermions

Spin-dependent properties

Low intrinsic spin-orbit coupling

Long spin lifetime (~ μs)
High mobility

 $\lambda = \sqrt{D\tau}$

Long spin transport length

Gmitra, et al, *Phys. Rev. B* (2009) Abdelouahed, et al, *Phys. Rev. B* (2010)

$$\frac{\partial \vec{\mu}}{\partial t} = D \nabla^2 \vec{\mu} - \frac{\vec{\mu}}{\tau} + \left(\frac{g \mu_B}{\hbar} \vec{B} \times \vec{\mu} \right)$$

- 1) Diffusion D: diffusion constant
- 2) Relaxation τ : spin relaxation time
- 3) Larmor spin precession: $g \sim 2$

Spin relaxation length: $\lambda = \sqrt{D\tau}$

Diffuse without precession

$$B_{\perp} = 0, \frac{\partial \mu}{\partial t} = 0,$$

$$\mu(x) = \mu_0 \exp(-x/\lambda)$$

E.I. Rashba, Phys. Rev. B 62, R16 267 (2000) A. Fert, H. Jaffres, Phys. Rev. B 64, 184420 (2001).

Nonlocal MR: ~ 0.1 ohms

Spin injection efficiency: ~ 1 %

Nonlocal MR: ~ 10 ohms

Spin injection efficiency: ~ 8 %

Nonlocal MR: ~130 ohms

Spin injection efficiency: ~ 30 %

Spin relaxation in graphene

Spin flip during momentum scattering events: More momentum scattering, more spin relaxation.

J. Fabian, et al, Acta Phys. Slovaca (2007) R.J. Elliott, Phys. Rev. (1954) F. Meier and B.P. Zachachrenya, Optical Orientation, (1984). Josza, et al, Phys. Rev. B (2009)

Spin relaxation in graphene

Momentum scattering can reduce this effect by randomizing the field

More momentum scattering, less spin relaxation

M. I. D'yakonov and V.I. Perel, Sov. Phys. Solid State (1972)

Spin relaxation in graphene

Spin relaxation in graphene

Spin relaxation in graphene

$$\frac{1}{\tau_{s}} = \frac{1}{\tau_{s}^{EY}} + \frac{1}{\tau_{s}^{DP}} = \frac{K_{EY}}{D} + K_{DP}D$$

BLG

$$K_{EY} = 0.05 \pm 0.01 (10^{-2} \text{ m}^2\text{s}^{-1}) \text{ ns}^{-1}$$

 $K_{DP} = 1.24 \pm 0.09 (10^{-2} \text{ m}^2\text{s}^{-1})^{-1} \text{ ns}^{-1}$

SLG

$$K_{EY}$$
 = 3.05 ± 0.35 (10⁻² m²s⁻¹)ns⁻¹
 K_{DP} = -0.02 ± 0.10 (10⁻² m²s⁻¹)⁻¹ns⁻¹

Spin relaxation in graphene

Elliot-Yafet

Dyakonov-Perel

Tombros, et al, Nature (2007)

Tombors, et al, PRL(2008)

Jozsa, et al, PRB (2009)

Han and Kawakami, PRL (2011)

~ 150 ps, impurity (EY)

Anisotropy (EY)

Linear scaling of $\lambda \& D$ (EY)

~1 ns, τ_s ~ $\tau_p(D)$ (EY)

Han and Kawakami, PRL (2011)

Yang, et al, PRL (2011)

Up to 6 ns, $\tau_s \sim 1/\tau_p(1/D)$ (DP)

Up to 2 ns, $\tau_s \sim 1/\mu$ (DP)

Being under investigation:

- Random Rashba field
- Magnetic resonant scattering

Wang and Wu, et al, NJP (2012)

Kochan, et al, arXiv:1306.0230 (2013)

Suspended graphene

Spin diffusion lengths 1-5 microns

Guimarães, et al, Nano Letters (2012). Han, et al, Nano Letter (2012).

Spin diffusion lengths >10 microns

Guimarães, et al, PRL (2014) Drogeler, et al, Nano Letter (2014)

Anisotropy

Guimarães, et al, PRL (2014)

Anisotropy

Guimarães, et al, PRL (2014)

An indirect method-- local MR measurement

Spin diffusion lengths >100 microns

Spin properties of graphene

	Spin lifetime	Spin diffusion lengths	Spin signals
Room Temperature	0.5 - 2 ns	> 10 μm	130 Ω
Low Temperature	1 - 6 ns	> 10 μm (> 100 μm indirect)	1 MΩ for local MR

Spin properties of graphene

Spin Channel		Spin lifetime	Spin diffusion lengths	Spin signals	
Metals	Cu ^{15,131}	~ 42 ps at 4.2 K ~ 11 ps at 300 K	$\sim 1~\mu m$ at $4.2~K$ $\sim 0.4~\mu m$ at $300~K$	$\sim 1 \text{ m}\Omega$ at 4.2 K $\sim 0.5 \text{ m}\Omega$ at 300 K	
	Al ¹⁰⁸	~ 100 ps at 4.2 K ~ 45 ps at 300 K	~ 0.6 µm at 4.2 K ~ 0.4 µm at 300 K	\sim 12 m Ω at 4.2 K \sim 0.5 m Ω at 300 K	
	Ag ¹³²	~ 20 ps at 5 K ~ 10 ps at 300 K	~ 1 μm at 5 K ~ 0.3 μm at 300 K	$\sim 9 \text{ m}\Omega$ at 5 K $\sim 2 \text{ m}\Omega$ at 300 K	
Semiconductor	Highly doped Si ^{129,153}	~10 ns at 8 K ~1.3 ns at 300 K	~2 μm at 8 K ~0.5 μm at 300 K	~ 30 mΩ at 8 K ~ 1 mΩ at 300 K	
	GaAs ¹⁵⁴	24 ns at 10 K 4 ns at 70 K	6 μm at 50 K	~ 30 mΩ at 50 K	
	Highly doped Ge ¹³⁰	~ 1 ns at 4 K ~ 300 ps at 100 K	~ 0.6 µm at 4 K	0.1-1 Ω at 4 K 0.02 ~ 0.1 Ω at 200 K	
Graphene ⁶	.9.10	0.5 - 2 ns at 300 K 1 - 6 ns at 4 K	3 - 10 μm at 300 K (~100 μm fit from local MR data)	130 Ω at 300 K (1 MΩ for local MR at 1.4 K)	

Spin properties of graphene

Han, et al, Nature Nanotechnology (2014)

MoS2

Xiao, et al, PRL (2013)

Xiao, et al, PRL (2013)

Topological insulators—Spin-Momentum locking

2D Topological insulator

3D Topological insulator

Qi&Zhang, *Rev. Mod. Phys.* (2011) Hasan& Kane, *Rev. Mod. Phys.* (2010) Yazyev, et al, Phys. Rev. Lett. (2010).

Spin ARPES: Hasan Group (Priceton University)

Challenge

experimental data, the value of η is estimated to be $\sim 10^{-4}$ for BSTS1 and BSTS2. Here, because of imperfect insulation of bulk states, about 15% of the injected spins contribute to the spin-electricity conversion effect [11].

Song, et al, Nature Commun. (2016)

Summary

1. Semiconductor Spin Valves

When spintronics meets semiconductor

GaAs

Silicon and Germanium

Complex oxides

Spin FET

Summary

2. Spin valves based on Quantum materials

石墨烯

▶ 弱自旋-轨道耦合→ 长自旋寿命

二硫化钼等

▶ 自旋-谷

拓扑绝缘体

自旋流的拓扑保护

下一节课: Nov. 8th

Chapter 5: Spin transfer torque

课件下载:

http://www.phy.pku.edu.cn/~LabSpin/teaching.html

谢谢!