EXERCICE 10

Etudier la nature de la série de Bertrand, de terme général:

$$U_n = \frac{1}{n^{\alpha} \ln(n)^{\beta}}$$
 pour $n \ge 2$ $(\alpha, \beta) \in \mathbb{R}^2$

Distinguer les cas, $\alpha > 1$, $\alpha < 1$, $\alpha = 1$,

Solution

Remarquons d'abord que le terme général U_n est positif pour tout $n \geq 2$ 1- Si $\alpha > 1$, il existe γ un réel tel que $1 < \gamma < \alpha$ alors:

$$n^{\gamma}U_n = \frac{n^{\gamma - \alpha}}{\ln(n)^{\beta}}, \quad \forall n \ge 2$$

Donc

$$\lim_{n \to +\infty} n^{\gamma} U_n = \lim_{n \to +\infty} \frac{n^{\gamma - \alpha}}{\ln(n)^{\beta}} = 0, \quad \text{car} \quad \gamma - \alpha < 0$$

D'où

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \ge n_0 \Rightarrow U_n < \frac{1}{n^{\gamma}} \quad \gamma > 1$$

Ainsi, par comparaison avec une série de Riemann $\sum \frac{1}{n^{\gamma}}$ convergente (puisque $\gamma > 1$), on obtient la convergence de la série $\sum_{n} U_n$ dans ce cas pour tout valeur de β .

2- Si $\alpha < 1$ alors, $\alpha - 1 < 0,$ On a

$$nU_n = \frac{n^{1-\alpha}}{\ln(n)^{\beta}}, \quad \forall n \ge 2$$

Donc

$$\lim_{n \to +\infty} nU_n = \lim_{n \to +\infty} \frac{n^{1-\alpha}}{\ln(n)^{\beta}} = +\infty, \quad \text{car} \quad 1 - \alpha < 0$$

D'où

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, \quad n \ge n_0 \Rightarrow U_n > \frac{1}{n}$$

Ainsi, par comparaison on a la série $\sum_{n\geq 2} \frac{1}{n}$ est diverge alors Donc la série $\sum_{n\geq 2} U_n$ est aussi diverge pour tout valeur de β .

3- Si $\alpha = 1$

Soit f_{β} la fonction définie sur $[2, +\infty]$ par

$$f_{\beta}(t) = \frac{1}{t(\ln(t))^{\beta}}$$

 f_{β} est positive, décroissante et continue sur $[2,+\infty]$ (car f_{β} est dérivable et $f_{\beta}^{'}(t)=-\frac{(\ln(t))^{\beta-1}}{t^2(\ln(t))^{2\beta}}(\ln(t)+\beta)$) Donc , la série $\sum_{n\geq 2}U_n$ et l'intégrale $\int_2^{+\infty}\frac{dt}{t(\ln t)^{\beta}}$ sont de même nature.

On pose $u = \ln t$ alors $du = \frac{dt}{t}$

$$\int_{2}^{x} \frac{dt}{t(\ln t)^{\beta}} = \int_{\ln 2}^{\ln x} \frac{du}{u^{\beta}} = \frac{1}{1-\beta} [(\ln x)^{1-\beta} - (\ln 2)^{1-\beta}]$$

* Si $\beta < 1$, donc

$$\int_{0}^{+\infty} f_{\beta}(t)dt = +\infty$$

D'où $\sum_{n\geq 2} U_n$ diverge. ** Si $\beta > 1$ donc

$$\int_{2}^{+\infty} f_{\beta}(t)dt = \frac{(\ln 2)^{1-\beta}}{\beta - 1}$$

D'où
$$\sum_{n\geq 2} U_n$$
 converge.
*** Si $\beta=1$ donc

$$\int_{2}^{x} \frac{1}{t(\ln(t))} = \int_{\ln 2}^{\ln x} \frac{du}{u} = \ln \ln x - \ln \ln 2$$

D'où
$$\sum_{n\geq 2} U_n$$
 diverge.

EXERCICE 11 Soient
$$U_n = \frac{(-1)^n}{n}$$
 et $V_n = \frac{(-1)^n}{n} + \frac{1}{n \log n}$

- 1. Quelle est la nature des séries $\sum U_n$ et $\sum V_n$?
- 2. Montrer que $U_n \sim_{\infty} V_n$
- 3. Conclure.

Solution

1- La série harmonique alternée $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ est convergente.

On a vu **EX** .10, que $\sum_{n=2}^{+\infty} \frac{1}{n \log n}$ est divergente, donc il en est de même pour $\sum V_n$.

2- On a

$$\frac{V_n}{U_n} = 1 + \frac{(-1)^n}{\log(n)}$$

Donc

$$\underset{n \to +\infty}{\lim} \frac{V_n}{U_n} = 1$$

C'est \tilde{A} dire $U_n \sim_{\infty} V_n$

3- On voit que si U_n et V_n sont de signe quelconque. alors $U_n \sim_\infty V_n$ n'implique pas que $\sum_n U_n$ et $\sum_n V_n$ sont de même nature.

EXERCICE 12

Etudier la nature des séries alternées de terme général:

1.
$$U_n = \frac{(-1)^n}{n + \sin(n)}$$

2.
$$V_n = (-1)^n \frac{\log(n)}{\sqrt{n}}$$

3.
$$W_n = \frac{(-1)^n + 1}{\log(n)}$$

Solution

1- Soit f une fonction définie sur $I =]0, +\infty[$ par :

$$f(x) = \frac{1}{x + \sin(x)}$$

est positive et dérivable sur I et pour tout $x \in I$ On a

$$f'(x) = -\frac{1 + \cos(x)}{(x + \sin(x))^2} < 0$$

donc f est décroissante On a $\sum_{n}^{\infty} U_n$ est une série altérnée $(U_n \times U_{n+1} < 0)$ dont la valeur absolue de terme général $|U_n| = \frac{1}{n + \sin(n)}$ tend vers

0 en décroissant. (car $\frac{1}{n+\sin x} < \frac{1}{n-1}$)

Donc $\sum_{n=1}^{\infty} U_n$ converge.

2- Soit g une fonction définie sur $I=]e^2,+\infty[$ par :

$$g(x) = \frac{\log(x)}{\sqrt{x}}$$

est positive et décroissante car g est décroissante et $\forall x \in I, \qquad g^{'}(x) = -\frac{\log(x) - 2}{2x\sqrt{x}} < 0$

De plus $|V_n|=\frac{\log(n)}{\sqrt{n}}$ tend vers 0 en décroissant. (à partir d'un certain rang). Donc $\sum_{n=1} V_n$ est une série altérnée convergente.

3- On pose $X_n = \frac{(-1)^n}{\log(n)}$ est une série de terme général d'une série alternée convergente car $|X_n| = \frac{1}{\log(n)}$ tend vers 0 en décroissant.

Comme $\log(n) < n$ alors on pose $Y_n = \frac{1}{\log(n)} > \frac{1}{n}$ Or la série $\sum_{n=1}^{\infty} \frac{1}{n}$ est diverge , alors d'après les théorèmes de comparaison ,la série $\sum_{n=1}^{\infty} Y_n$ est diverge. Par suite $\sum_{n=1}^{\infty} W_n = \sum_{n=1}^{\infty} X_n + \sum_{n=1}^{\infty} Y_n$ est une série divergente.