Evolutionary Computing - N-Queens Problem

Goal: Implement an Evolutionary Algorithm to solve for the N-Queens problem. Could be defined as minimization of maximization.

This assignment requires implementation of the main components of an evolutionary algorithm (i.e. *crossover*, *mutation*, *parent selection*, etc), and construction of your algorithm to solve the given problem. Try to make your EA as good performing as possible (solving also the bigger chess boards).

Please answer the Questions and implement coding Tasks by filling PLEASE FILL IN sections. *Documentation* of your code is also important. You can find the grading scheme in implementation cells.

- Plagiarism is automatically checked and set to 0 points
- It is allowed to learn from external resources but copying is not allowed. If you use any external resource, please cite them in the comments (e.g. # source: https://..../ (see fitness_function))

POINTS ARE ONLY FOR RELATIVE FEEDBACK, NOT AN ACTUAL GRADE.

Setup

Install Prerequisites

```
In []: # Run this cell to install the required libraries
%pip install numpy matplotlib scipy
```

Imports

```
In [1]: # Necessary libraries
   import matplotlib.pyplot as plt
   import numpy as np
   from scipy.stats import ranksums
   import random
# Set seed
   np.random.seed(42)
```

Plotting

```
# WARN: may cause dependency issues
#%matplotlib qt5
#%pip install PyQt5
#plt.ion()
```

```
In [2]: def generate_subplot_function(
            avgs_experiment_1,
            stds_experiment_1,
            labels,
            avgs experiment 2,
            stds_experiment_2,
            n_columns,
            n_queens,
        ):
            """This helper function generates subplots for the experiments.
            fig, axes = plt.subplots(nrows=1, ncols=n_columns, figsize=(18,
            for i in range(len(avgs_experiment_1)):
                if avgs_experiment_2 is not None:
                    # Plot data for subplot 1
                    axes[i].plot(avgs_experiment_2[i], label="Experiment 2"
                    axes[i].fill_between(
                         np.arange(len(avgs_experiment_2[i])),
                        avgs_experiment_2[i] - stds_experiment_2[i],
                        avgs_experiment_2[i] + stds_experiment_2[i],
                        alpha=0.2,
                        color="green",
                    axes[i].set_ylim(bottom=0)
                    if n_queens:
                        axes[i].set_ylim(top=n_queens[i])
                axes[i].plot(avgs_experiment_1[i], label="Experiment 1", co
                axes[i].fill between(
                    np.arange(len(avgs_experiment_1[i])),
                    avgs_experiment_1[i] - stds_experiment_1[i],
                    avgs_experiment_1[i] + stds_experiment_1[i],
                    alpha=0.2,
                    color="blue",
                )
                axes[i].set_title(labels[i])
                axes[i].set_ylim(bottom=0)
                if n_queens:
                    axes[i].set_ylim(top=n_queens[i])
            # Set common labels and title
            for ax in axes:
                ax.set_xlabel("Generations")
                ax.set_ylabel("Average Best Fitness")
                ax.legend()
            plt.tight_layout()
```

Discrete Optimization - The N-Queens Problem (5 points total)

Implement an Evolutionary Algorithm for the **n-queens problem** - finding a placement of N queens on an N by N chess board, in which no queens are attacking each other.

Below is a visualization of a solution for the n-queens problem when n = 4. Observe that none of the queens are attacking each other.

Plotting the average performance of the algorithm

Use the cells below to plot the results of your algorithm. The plots should show average and std of 10 runs of EA for n-queens problem for N=8, 16, 32.

```
In [15]: def calculate_mean_std(f_best):
    """This is a helper function to calculate the mean and standard
    f_best = np.array(f_best)
    avg = np.mean(f_best, axis=0)
    std = np.std(f_best, axis=0)
    return avg, std

In [16]: def run_experiment_n_queens(population_size, p_crossover, m_rate):
    # These are the hyperparameters of your evolutionary algorithm.
    runs = 10
```

```
max_fit_evals = 10000
             fitness_8 = []
             fitness 16 = []
             fitness_32 = []
             for run in range(runs):
                 print("Run: ", run)
                 _, f_best_8 = ea_n_queens(
                     population_size[0], max_fit_evals, p_crossover[0], m_ra
                 )
                 _{,} f_best_16 = ea_n_queens(
                     population_size[1], max_fit_evals, p_crossover[1], m_ra
                 _{,} f_best_32 = ea_n_queens(
                     population_size[2], max_fit_evals, p_crossover[2], m_ra
                 )
                 fitness_8.append(f_best_8)
                 fitness_16.append(f_best_16)
                 fitness_32.append(f_best_32)
             avg_8, std_8 = calculate_mean_std(fitness_8)
             avg_16, std_16 = calculate_mean_std(fitness_16)
             avg_32, std_32 = calculate_mean_std(fitness_32)
             avgs = [avg_8, avg_16, avg_32]
             stds = [std_8, std_16, std_32]
             all_runs = [fitness_8, fitness_16, fitness_32]
             return avgs, stds, all_runs
In [17]: population_size = [100, 100, 100] # not allowed to change
         p_crossover = [0.8, 0.8, 0.8] # not allowed to change
         m_rate = [0.1, 0.1, 0.1] # not allowed to change
         avgs_experiment_1, stds_experiment_1, all_runs_experiment_1 = run_e
             population_size, p_crossover, m_rate
         )
        Run:
        Run:
             1
        Run:
              2
        Run: 3
        Run: 4
        Run: 5
        Run: 6
             7
        Run:
        Run:
              8
        Run:
In [18]: #check for the best fitness found for each problem
```

```
f_8, f_{16}, f_{32} = all_runs_experiment_1
         print("Best fitness found for N = 8: ", max(max(f_8)))
         print("Best fitness found for N = 16: ", max(max(f_16)))
         print("Best fitness found for N = 32: ", max(max(f_32)))
        Best fitness found for N = 8:
        Best fitness found for N = 16:
        Best fitness found for N = 32:
In [19]: labels = ["N = 8", "N = 16", "N = 32"]
         generate_subplot_function(
             avgs experiment 1,
              stds_experiment_1,
             labels,
             avgs_experiment_2=None,
             stds_experiment_2=None,
             n_columns=3,
             n_{queens}=[8, 16, 32],
```

Question 4 (0-0.4 pt):

 Describe the average performance of the algorithm. What was the maximum average fitness found for each case? Do you see any differences between the problem cases?

Answer: The average performance is the average fitness of the population during the end of the algorithm, it tells us how good the typical solution is instead of just querying the best one and is a better representation of performance than choosing the best fit solution. The Maximum average fitness found for N = 8, 16 and 32 are 8 , 15 and 30 respectively. It can be observer as the value of N increases the algorithm strugles to find a perfect solution so the average fitness decreases slightly relative to the possible. A reason for this could be the larger solution space and it would require more runs to find the optimal solution but since we kept the number of runs constant the algorithm performed perfectly for smaller values of N but the performance reduces for medium (N=16) and a slightly larger (N=32).