(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-220262

(43)公開日 平成11年(1999)8月10日

(51) Int.Cl. ⁶	識別記号	F I		
H05K	3/46	H05K	3/46	Q
	1/18		1/18	s

審査請求 未請求 請求項の数35 OL (全 18 頁)

(21)出顧番号	特願平10-328215	(71) 出願人	000005821			
			松下電器産業株式会社			
(22)出顧日	平成10年(1998)11月18日	大阪府門真市大字門真1006番地				
() HIRAH	1 1000/11/1101	(70) \$28 HH-34	中谷 賊一			
		(72)発明者	中分 隔一			
(31)優先権主張番号	特願平9-322595		大阪府門真市大字門真1006番地 松下電器			
(32)優先日	平 9 (1997)11月25日		産業株式会社内			
(33)優先権主張国	日本 (JP)	(72)発明者	平野 浩一			
,						
		İ	大阪府門真市大字門真1006番地 松下電器			
			産業株式会社内			
		(74)代理人	弁理士 池内 寛幸 (外1名)			
		1 1 1 1 1 1	71 <u>— 121 75 1 11 - 27</u>			
		ļ				

(54) 【発明の名称】 回路部品内蔵モジュールおよびその製造方法

(57)【要約】

【課題】 無機フィラーと熱硬化性樹脂とを含む混合物 からなる電気絶縁性基板を用いることによって、高密度 で回路部品の実装が可能であり且つ信頼性が高い回路部 品内蔵モジュールおよびその製造方法を提供する。

【解決手段】 積層された電気絶縁性基板401a、4 01 b および401 c からなる電気絶縁性基板401 と、電気絶縁性基板401の主面および内部に形成され た配線パターン402a、402b、402cおよび4 02 dと、電気絶縁性基板401の内部に配置され配線 パターンに接続された回路部品403と、配線パターン 402a、402b、402cおよび402dを電気的 に接続するインナービア404とを含む。電気絶縁性基 板401a、401bおよび401cは、無機フィラー と熱硬化性樹脂とを含む混合物からなる。

【特許請求の範囲】

【請求項1】 無機フィラー70重量%~95重量%と 熱硬化性樹脂とを含む混合物からなる電気絶縁性基板 と

1

前記電気絶縁性基板の少なくとも主面に形成された複数の配線パターンと、

前記電気絶縁性基板の内部に配置され前記配線パターンに電気的に接続された回路部品と、

前記複数の配線パターンを電気的に接続するように前記 電気絶縁性基板内に形成されたインナービアとを含む回 10 路部品内蔵モジュール。

【請求項2】 前記配線パターンは、前記電気絶縁性基板の主面および内部に形成されている請求項1に記載の回路部品内蔵モジュール。

【請求項3】 前記回路部品は能動部品を含み、前記インナービアは導電性樹脂組成物からなる請求項1または2に記載の回路部品内蔵モジュール。

【請求項4】 前記回路部品は、前記電気絶縁性基板によって外気から遮断されている請求項1ないし3のいずれかに記載の回路部品内蔵モジュール。

【請求項5】 前記熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂およびシアネート樹脂から選ばれる少なくとも一つの熱硬化性樹脂を含む請求項1ないし4のいずれかに記載の回路部品内臓モジュール。

【請求項6】 前記無機フィラーが、Al,O,、MgO、BN、AlNむよびSiO,から選ばれる少なくとも一つの無機フィラーを含む請求項lないし4のいずれかに記載の回路部品内蔵モジュール。

【請求項7】 前記無機フィラーの平均粒子径が0.1 μ m~ 100μ mである請求項1.2.3.4または6 のいずれかに記載の回路部品内蔵モジュール。

【請求項8】 前記配線バターンが銅を含む請求項1ないし4のいずれかに記載の回路部品内蔵モジュール。

【請求項9】 前記配線パターンが導電性樹脂組成物を含む請求項1ないし4のいずれかに記載の回路部品内蔵モジュール。

【請求項10】 前記能動部品は半導体ベアーチップを含み、前記半導体ベアーチップは前記配線パターンにフリップチップボンディングされている請求項3または4 に記載の回路部品内蔵モジュール。

【請求項11】 前記導電性樹脂組成物が、金、銀、銅 およびニッケルから選ばれる一つの金属を含む金属粒子 を導電性成分として含み、エポキシ樹脂を樹脂成分として含む請求項3、4または9のいずれかに記載の回路部 品内蔵モジュール。

【請求項12】 前記配線パターンが、エッチング法または打ち抜き法で形成された金属板のリードフレームからなる請求項1ないし4のいずれかに記載の回路部品内蔵モジュール。

【請求項13】 前記回路部品が、チップ状の抵抗、チ 50 ールの製造方法であって、

ップ状のコンデンサおよびチップ状のインダクタから選ばれる少なくとも一つの部品を含む請求項1ないし4のいずれかに記載の回路部品内蔵モジュール。

【請求項14】 前記混合物は、分散剤、着色剤、カップリング剤および離型剤から選ばれる少なくとも一つの添加剤をさらに含む請求項1ないし4のいずれかに記載の回路部品内蔵モジュール。

【請求項15】 前記電気絶縁性基板の線膨張係数が8×10-6/℃~20×10-6/℃であり、かつ前記電気 絶縁性基板の熱伝導度が1w/mK~10w/mKであ る請求項1ないし4のいずれかに記載の回路部品内蔵モ ジュール。

【請求項16】 無機フィラー70重量%~95重量% と未硬化状態の熱硬化性樹脂とを含む混合物を、貫通孔 を有する第1の板状体に加工する工程と、

前記貫通孔に熱硬化性の導電性物質を充填することによって熱硬化性の導電性物質が前記貫通孔に充填された第2の板状体を形成する工程と、

第1の銅箔の一主面に回路部品を実装する工程と、

20 前記第1の銅箔の前記一主面上に、前記第2の板状体を 位置合わせして重ね、さらにその上に第2の銅箔を重ね て加圧することによって、前記回路部品が埋設された第 3の板状体を形成する工程と、

前記第3の板状体を加熱することによって、前記熱硬化 性樹脂および前記導電性物質を硬化させる工程と、

前記第1 および第2 の銅箔を加工して配線パターンを形成する工程とを含む回路部品内蔵モジュールの製造方法。

【請求項17】 無機フィラー70重量%~95重量% 30 と未硬化状態の熱硬化性樹脂とを含む混合物を、貫通孔 を有する第1の板状体に加工する工程と、

前記貫通孔に熱硬化性の導電性物質を充填するととによって熱硬化性の導電性物質が前記貫通孔に充填された第2の板状体を形成する工程と、

第1の離型フィルムの一主面に配線パターンを形成し、 前記配線パターン上に回路部品を実装する工程と、

第2の離型フィルムの一主面に配線パターンを形成する T程と

前記第1の離型フィルムと前記第2の板状体と前記第2 40 の離型フィルムとを前記配線バターンが前記第2の板状 体側に向くようにこの順序で位置合わせして重ねて加圧 することによって前記回路部品が埋設された第3の板状 体を形成する工程と、

第3の板状体を加熱することによって、前記熱硬化性樹脂および前記導電性物質を硬化させる工程と、

前記第1 および第2の離型フィルムを前記硬化した第3 の板状体から剥離する工程とを含む回路部品内蔵モジュールの製造方法。

【請求項18】 多層構造を有する回路部品内蔵モジュールの製造方法であって

3

無機フィラー70重量%~95重量%と未硬化状態の熱硬化性樹脂とを含む混合物を、貫通孔を有する第1の板状体に加工する工程と、

前記貫通孔に熱硬化性の導電性物質を充填することによって熱硬化性の導電性物質が前記貫通孔に充填された第2の板状体を形成する工程と、

第1の離型フィルムの一主面に配線パターンを形成し、 前記配線パターン上に回路部品を実装する工程と、

前記第1の離型フィルムの前記一主面側に、前記第2の 板状体を位置合わせして重ね、加圧することによって前 10 記回路部品が埋設された第3の板状体を形成する工程 と、

前記第1の離型フィルムを前記第3の板状体から剥離することによって第4の板状体を形成する工程と、

複数の前記第4の板状体を位置合わせして重ね、さらに一主面に配線パターンが形成された第2の離型フィルムを前記配線パターンが前記第4の板状体側を向くように位置合わせして重ねて加圧し加熱することによって、前記熱硬化性樹脂および前記導電性物質を硬化させて多層構造を有する第5の板状体を形成する工程と、

前記第2の離型フィルムを前記第5の板状体から剥離する工程とを含むことを特徴とする回路部品内蔵モジュールの製造方法。

【請求項19】 多層構造を有する回路部品内蔵モジュールの製造方法であって、

無機フィラー70重量%~95重量%と未硬化状態の熱 硬化性樹脂とを含む混合物を、貫通孔を有する第1の板 状体に加工する工程と、

前記貫通孔に熱硬化性の導電性物質を充填することによ 請求項16ないし190 って熱硬化性の導電性物質が前記貫通孔に充填された第 30 モジュールの製造方法。 2の板状体を形成する工程と、 【請求項27】 前記額

第1の離型フィルムの一主面に配線パターンを形成して 前記配線パターン上に回路部品を実装する工程と、

前記第1の離型フィルムの前記一主面側に、前記第2の 板状体を位置合わせして重ねて加圧することによって、 前記回路部品が埋設された第3の板状体を形成する工程 と、

前記第1の離型フィルムを前記第3の板状体から剥離することによって第4の板状体を形成する工程と、

複数の前記第4の板状体を位置合わせして重ね、さらに 40 法。 その上に銅箔を重ねて加圧し加熱することによって、前 【記 記熱硬化性樹脂および前記導電性物質を硬化させて多層 O、 構造を有する第5の板状体を形成する工程と、 も-

前記第5の板状体の前記銅箔を加工して配線パターンを 形成する工程とを含むことを特徴とする回路部品内蔵モ ジュールの製造方法。

【請求項20】 前記回路部品は能動部品を含み、前記 導電性物質は導電性樹脂組成物からなる請求項16ない し19のいずれかに記載の回路部品内蔵モジュールの製 造方法。 【請求項21】 前記銅箔または前記配線パターンに前記回路部品を実装した後、前記銅箔または前記配線パターンと前記回路部品との間に封止樹脂を注入する工程をさらに含む請求項16ないし19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項22】 前記熱硬化性樹脂および前記導電性物質を加熱して硬化させる際の温度が150℃以上260℃以下である請求項16ないし19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項23】 前記熱硬化性樹脂および前記導電性物質を加熱して硬化させる際に、加熱しながら10kg/cm²~200kg/cm²の圧力で加圧する請求項16ないし19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項24】 前記第1の板状体を形成する工程が、前記混合物を板状に成型した後、前記板状の混合物を前記熱硬化性樹脂の硬化温度より低い温度で熱処理することによって、前記板状の混合物の粘着性を失わせる工程を含む請求項16ないし19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項25】 前記回路部品を前記第2の板状体に埋設することによって前記第3の板状体を形成する工程を、前記熱硬化性樹脂の硬化温度より低い温度下で行う請求項16ないし19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項26】 前記回路部品を前記配線バターンに実装する工程は、前記回路部品と前記配線バターンとを半田によって電気的および機械的に接続する工程からなる請求項16ないし19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項27】 前記能動部品を前記配線パターンに実装する際に、前記能動部品の金パンプと前記配線パターンとを導電性接着剤によって電気的に接続する請求項16から19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項28】 前記熱硬化性樹脂が、エポキシ樹脂、フェノール樹脂およびシアネート樹脂から選ばれる少なくとも一つの熱硬化性樹脂を含む請求項16ないし19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項29】 前記無機フィラーがAL、〇、、Mg 〇、BN、AINおよびSiO、から選ばれる少なくと も一つの無機フィラーを含む請求項16ないし19のい ずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項30】 前記配線パターンが、銅を含む請求項16ないし19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項31】 前記配線パターンが、導電性樹脂組成物を含む請求項16ないし19のいずれかに記載の回路50 部品内蔵モジュールの製造方法。

4

【請求項32】 前記回路部品が半導体ベアーチップを含み、前記半導体ベアーチップは前記配線バターンにフリップチップボンディングされている請求項20または26に記載の回路部品内蔵モジュールの製造方法。

【請求項33】 前記導電性樹脂組成物が、金、銀、銅およびニッケルから選ばれる少なくとも一つの金属を含む金属粒子を導電性成分として含み、エボキシ樹脂を樹脂成分として含む請求項20または31に記載の回路部品内蔵モジュールの製造方法。

【請求項34】 前記配線パターンが、エッチング法または打ち抜き法で形成された金属板のリードフレームからなる請求項16ないし19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【請求項35】 前記回路部品が、チップ状の抵抗、チップ状のコンデンサおよびチップ状のインダクタから選ばれる少なくとも一つの部品を含む請求項16ないし19のいずれかに記載の回路部品内蔵モジュールの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、回路部品内蔵モジュールに関し、特にたとえば、回路部品が電気絶縁性基板の内部に配置される回路部品内蔵モジュールに関する。

[0002]

【従来の技術】近年、電子機器の高性能化、小型化の要求に伴い、回路部品の高密度、高機能化が一層叫ばれている。そのため、回路部品の高密度、高機能化に対応した回路基板が要求されている。

【0003】回路部品を高密度化する方法として、回路を多層化する方法が考えられるが、従来のガラスーエボキシ基板では、ドリルによる貫通スルーホール構造を用いる必要があるため、高密度実装化への対応が困難である。このため、最も回路の高密度化が図れる方法として、LS I 間や部品間の配線パターンを最短距離で接続できるインナービアホール接続法の開発が、各方面で進められている。

【0004】インナービアホール接続法では、必要な各層間のみの接続が可能であり、回路部品の実装性にも優れている(特開昭63-47991、特開平6-268345)。

[0005]

【発明が解決しようとする課題】しかしながら、従来、インナービアホール接続法で用いられてきた基板は、樹脂系の材料で構成されていたため、熱伝導度が低いという問題があった。回路部品内蔵モジュールでは、回路部品の実装密度が高密度になればなるほど部品から発生する熱を放熱させる必要が高くなるが、従来の基板では十分に放熱をすることができず、回路部品内蔵モジュールの信頼性が低下するという問題があった。

【0006】本発明は、上記従来の問題を解決するため、高密度で回路部品の実装が可能であり且つ信頼性の高い回路部品内蔵モジュールおよびその製造方法を提供することを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成するために、本発明の回路部品内蔵モジュールは、無機フィラー70重量%~95重量%(混合物に対して)と熱硬化性樹脂とを含む混合物からなる電気絶縁性基板と、前記電気絶縁性基板の少なくとも主面に形成された複数の配線パターン(一つの配線パターンは同一平面内に形成される一群の電気配線からなる)と、前記電気絶縁性基板の内部に配置され前配配線パターンに電気的に接続された回路部品と、前記複数の配線パターンを電気的に接続するように前記電気絶縁性基板内に形成されたインナービアとを含む。

【0008】上記回路部品内蔵モジュールでは、電気絶縁性基板内に形成されるインナービアによってインナービアホール接続が行われるため、高密度に回路部品を実 表するととができる。また、回路部品から発生する熱が、無機フィラーによって速やかに放熱されるため、信頼性の高い回路部品内蔵モジュールが得られる。さらに、無機フィラーを選択することによって、内蔵する回路部品にあわせて電気絶縁性基板の熱伝導度、線膨張係数、誘電率、絶縁耐圧等を変化させることができる。また、半導体素子およびチップコンデンサを含む回路部品内蔵モジュールでは、半導体素子とチップコンデンサとの距離を短くすることによって、電気信号のノイズを低減することができる。

【0009】上記回路部品内蔵モジュールでは、配線パターンは、電気絶縁性基板の主面および内部に形成されていることが好ましい。配線パターンを多層構造とすることによって、さらに高密度に回路部品を実装することができる。

【0010】上記回路部品内蔵モジュールでは、回路部品は能動部品を含み、インナービアは導電性樹脂組成物からなることが好ましい。回路部品が能動部品を含むことによって所望の機能をもった回路部品を形成することができる。また、インナービアが導電性樹脂組成物から40なる場合は、製造が容易になる。

【0011】上記回路部品内蔵モジュールでは、回路部品が、電気絶縁性基板によって外気から遮断されている ことが好ましい。回路部品が外気から遮断されることによって、湿度による回路部品の信頼性低下を防止でき

【0012】上記回路部品内蔵モジュールでは、熱硬化性樹脂が、エボキシ樹脂、フェノール樹脂およびシアネート樹脂から選ばれる少なくとも一つの熱硬化性樹脂を含むことが好ましい。これらの樹脂は耐熱性や電気絶縁50性に優れているからである。

6

【0013】上記回路部品内蔵モジュールでは、無機フ ィラーが、Al,O,、MgO、BN、AlNおよびSi 〇、から選ばれる少なくとも一つの無機フィラーを含む ことが好ましい。これらの無機フィラーを用いることに よって、放熱性に優れた電気絶縁性基板が得られる。ま た、無機フィラーとしてMgOを用いた場合は、電気絶 縁性基板の線膨張係数を大きくすることができる。ま た、無機フィラーとしてSiO、(特に非晶質SiO、) を用いた場合は、電気絶縁性基板の誘電率を小さくする ことができる。また、無機フィラーとしてBNを用いた 10 場合は、線膨張係数を低くすることができる。

【0014】上記回路部品内蔵モジュールでは、無機フ ィラーの平均粒子径が0. 1μm~100μmであるこ とが好ましい。上記回路部品内蔵モジュールでは、配線 パターンが銅を含むことが好ましい。銅は電気抵抗が小 さいため、微細な配線パターンを形成することができ る。

【0015】上記回路部品内蔵モジュールでは、配線バ ターンが導電性樹脂組成物を含むことが好ましい。導電 性樹脂組成物を用いるととによって、配線パターンを容 易に形成することができる。

【0016】上記回路部品内蔵モジュールでは、能動部 品は半導体ベアーチップを含み、半導体ベアーチップは 配線パターンにフリップチップボンディングされている ことが好ましい。

【0017】上記回路部品内蔵モジュールでは、導電性 樹脂組成物が、金、銀、銅およびニッケルから選ばれる 一つの金属を含む金属粒子を導電性成分として含み、エ ポキシ樹脂を樹脂成分として含むことが好ましい。上記 金属は電気抵抗が低く、また、エポキシ樹脂は耐熱性や 30 電気絶縁性に優れているからである。

【0018】上記回路部品内蔵モジュールでは、配線パ ターンが、エッチング法または打ち抜き法で形成された 金属板のリードフレームからなることが好ましい。金属 板のリードフレームは、電気抵抗が低いからである。エ ッチング法を用いることによって、微細なパターンの配 線パターンを形成することができる。打ち抜き法を用い ることによって、簡易な設備で配線パターンを形成する ことができる。

【0019】上記回路部品内蔵モジュールでは、回路部 品が、チップ状の抵抗、チップ状のコンデンサおよびチ ップ状のインダクタから選ばれる少なくとも一つの部品 を含むことが好ましい。チップ状の部品を用いることに よって、電気絶縁性基板に容易に埋設することができ

【0020】上記回路部品内蔵モジュールでは、混合物 は、分散剤、着色剤、カップリング剤および離型剤から 選ばれる少なくとも一つの添加剤をさらに含むことが望 ましい。分散剤によって、熱硬化性樹脂中の無機フィラ ーを均一性よく分散させることができる。着色剤によっ 50 多層構造を有する回路部品内蔵モジュールの製造方法で

て、電気絶縁性基板を着色することができるため、回路 部品内蔵モジュールの放熱性をよくすることができる。 カップリング剤によって、熱硬化性樹脂と無機フィラー との接着強度を高くすることができるため、電気絶縁性 基板の絶縁性を向上できる。離型剤によって、金型と混 合物との離型性を向上できるため、生産性を向上でき る。

【0021】上記回路部品内蔵モジュールでは、電気絶 縁性基板の線膨張係数が8×10-6/℃~20×10-6 /°Cであり、かつ電気絶縁性基板の熱伝導度が1w/m K~10w/mKであることが好ましい。セラミック基 板に近い熱伝導度が得られ、放熱性に富む基板が得られ るからである。

【0022】本発明の第1の回路部品内蔵モジュールの 製造方法は、無機フィラー70重量%~95重量%(混 合物に対して)と未硬化状態の熱硬化性樹脂とを含む混 合物を、貫通孔を有する第1の板状体に加工する工程 と、貫通孔に熱硬化性の導電性物質を充填することによ って熱硬化性の導電性物質が貫通孔に充填された第2の 板状体を形成する工程と、第1の銅箔の一主面に回路部 品を実装する工程と、第1の銅箔の一主面上に、第2の 板状体を位置合わせして重ね、 さらにその上に第2の銅 箔を重ねて加圧することによって、回路部品が埋設され た第3の板状体を形成する工程と、第3の板状体を加熱 することによって、熱硬化性樹脂および導電性物質を硬 化させる工程と、第1 および第2 の銅箔を加工して配線 バターンを形成する工程とを含む。上記第1の製造方法 によれば、本発明の回路部品内蔵モジュールを容易に製 造するととができる。

【0023】本発明の第2の回路部品内蔵モジュールの 製造方法は、無機フィラー70重量%~95重量%(混 合物に対して)と未硬化状態の熱硬化性樹脂とを含む混 合物を、貫通孔を有する第1の板状体に加工する工程 と、貫通孔に熱硬化性の導電性物質を充填することによ って熱硬化性の導電性物質が貫通孔に充填された第2の 板状体を形成する工程と、第1の離型フィルムの一主面 に配線パターンを形成し、配線パターン上に回路部品を 実装する工程と、第2の離型フィルムの一主面に配線パ ターンを形成する工程と、第1の離型フィルムと第2の 40 板状体と第2の離型フィルムとを配線パターンが第2の 板状体側に向くようにとの順序で位置合わせして重ねて 加圧することによって回路部品が埋設された第3の板状 体を形成する工程と、第3の板状体を加熱することによ って、熱硬化性樹脂および導電性物質を硬化させる工程 と、第1および第2の離型フィルムを硬化した第3の板 状体から剥離する工程とを含む。

【0024】上記第2の製造方法によれば、本発明の回 路部品内蔵モジュールを容易に製造することができる。 本発明の第3の回路部品内蔵モジュールの製造方法は、

あって、無機フィラー70重量%~95重量%(混合物 に対して)と未硬化状態の熱硬化性樹脂とを含む混合物 を、貫通孔を有する第1の板状体に加工する工程と、貫 通孔に熱硬化性の導電性物質を充填することによって熱 硬化性の導電性物質が貫通孔に充填された第2の板状体 を形成する工程と、第1の離型フィルムの一主面に配線 パターンを形成し、配線パターン上に回路部品を実装す る工程と、第1の離型フィルムの一主面側に、第2の板 状体を位置合わせして重ね、加圧することによって回路 部品が埋設された第3の板状体を形成する工程と、第1 の離型フィルムを第3の板状体から剥離することによっ て第4の板状体を形成する工程と、複数の第4の板状体 を位置合わせして重ね、さらに一主面に配線パターンが 形成された第2の離型フィルムを配線パターンが第4の 板状体側を向くように位置合わせして重ねて加圧し加熱 することによって、熱硬化性樹脂および導電性物質を硬 化させて多層構造を有する第5の板状体を形成する工程 と、第2の離型フィルムを第5の板状体から剥離する工 程とを含むことを特徴とする。

【0025】上記第3の製造方法によれば、本発明の多 層構造を有する回路部品内蔵モジュールを容易に製造す ることができる。本発明の第4の回路部品内蔵モジュー ルの製造方法は、多層構造を有する回路部品内蔵モジュ ールの製造方法であって、無機フィラー70重量%~9 5重量%(混合物に対して)と未硬化状態の熱硬化性樹 脂とを含む混合物を、貫通孔を有する第1の板状体に加 工する工程と、貫通孔に熱硬化性の導電性物質を充填す ることによって熱硬化性の導電性物質が貫通孔に充填さ れた第2の板状体を形成する工程と、第1の離型フィル ムの一主面に配線パターンを形成して配線パターン上に 回路部品を実装する工程と、第1の離型フィルムの一主 面側に、第2の板状体を位置合わせして重ねて加圧する ことによって、回路部品が埋設された第3の板状体を形 成する工程と、第1の離型フィルムを第3の板状体から 剥離することによって第4の板状体を形成する工程と、 複数の第4の板状体を位置合わせして重ね、さらにその 上に銅箔を重ねて加圧し加熱することによって、熱硬化 性樹脂および導電性物質を硬化させて多層構造を有する 第5の板状体を形成する工程と、第5の板状体の銅箔を 徴とする。

【0026】上記第4の製造方法によれば、本発明の多層構造を有する回路部品内蔵モジュールを容易に製造することができる。上記第1ないし第4の回路部品内蔵モジュールの製造方法では、回路部品は能動部品を含み、導電性物質は導電性樹脂組成物からなることが好ましい。回路部品が能動部品を含むことによって所望の機能をもった回路部品を形成することができる。また、導電性物質が導電性樹脂組成物からなる場合は、貫通孔への充填および硬化が容易であるため、製造が容易になる。

10

【0027】上記第1ないし第4の回路部品内蔵モジュールの製造方法では、銅箔または配線パターンに回路部品を実装した後、銅箔または配線パターンと回路部品との間に封止樹脂を注入する工程をさらに含むことが好ましい。この工程によって、回路部品と配線パターンとの間に空間が形成されることを防止することができ、また、回路部品と配線パターンとの接続を強固にすることができる。

【0028】上記第1ないし第4の回路部品内蔵モジュールの製造方法では、熱硬化性樹脂および導電性物質を加熱して硬化させる際の温度が150℃以上260℃以下であることが好ましい。この温度範囲で加熱することによって、回路部品に大きなダメージを与えることなく熱硬化性樹脂を硬化することができる。

【0029】上記第1ないし第4の回路部品内蔵モジュールの製造方法では、熱硬化性樹脂および導電性物質を加熱して硬化させる際に、加熱しながら $10 \, k \, g / c \, m^2 \sim 200 \, k \, g / c \, m^2$ の圧力で加圧することが好ましい。加熱しながら加圧することで、機械的強度に優れた回路部品内蔵モジュールが得られる。

【0030】上記第1ないし第4の回路部品内蔵モジュールの製造方法では、第1の板状体を形成する工程が、混合物を板状に成型した後、板状の混合物を熱硬化性樹脂の硬化温度より低い温度(たとえば、硬化開始温度より低い温度)で熱処理することによって、板状の混合物の粘着性を失わせる工程を含むことが好ましい。板状の混合物の粘着性を失わせることによって、その後の工程が容易になるからである。

[0031]上記第1ないし第4の回路部品内蔵モジュールの製造方法では、回路部品を第2の板状体に埋設することによって第3の板状体を形成する工程を、熱硬化性樹脂の硬化温度より低い温度下で行うことが好ましい。熱硬化性樹脂の硬化温度より低い温度下で工程を行うことによって、熱硬化性樹脂を硬化させることなく軟化させることができるため、回路部品を第2の板状体に埋設することが容易となり、また、回路部品内蔵モジュールの表面を平滑にすることができる。

性樹脂および導電性物質を硬化させて多層構造を有する 第5の板状体を形成する工程と、第5の板状体の銅箔を 加工して配線パターンを形成する工程とを含むことを特 40 名工程は、回路部品と配線パターンとを半田によって電 徴とする。 気的および機械的に接続する工程からなることが好まし い。上記工程によれば、熱硬化性樹脂を硬化させるため に加熱を行う際に、加熱によって回路部品と配線パター ることができる。上記第1ないし第4の回路部品内蔵モシュールを容易に製造す なの接続不良が発生することを防止できる。

【0033】上記第1ないし第4の回路部品内蔵モジュールの製造方法では、能動部品を配線パターンに実装する際に、能動部品の金パンプと配線パターンとを導電性接着剤によって電気的に接続することが好ましい。導電性接着剤を用いることによって、後の工程で加熱する際に、接続不良や部品の位置ずれが起こることを防止でき

る。

【0034】上記第1ないし第4の回路部品内蔵モジュ ールの製造方法では、熱硬化性樹脂が、エポキシ樹脂、 フェノール樹脂およびシアネート樹脂から選ばれる少な くとも一つの熱硬化性樹脂を含むことが好ましい。これ らの樹脂は、耐熱性や電気絶縁性に優れているからであ る。

【0035】上記第1ないし第4の回路部品内蔵モジュ ールの製造方法では、無機フィラーがAl,O,、Mg O、BN、AINおよびSiOzから選ばれる少なくと も一つの無機フィラーを含むことが好ましい。これらの 無機フィラーを用いることによって、放熱性に優れた電 気絶縁性基板が得られる。また、無機フィラーとしてM g〇を用いた場合は、電気絶縁性基板の線膨張係数を大 きくすることができる。また、無機フィラーとしてSi O、(特に非晶質SiO、)を用いた場合は、電気絶縁性 基板の誘電率を小さくすることができる。また、無機フ ィラーとしてBNを用いた場合は、線膨張係数を低くす ることができる。

【0036】上記第1ないし第4の回路部品内蔵モジュ ールの製造方法では、配線パターンが、銅を含むことが 好ましい。銅は電気抵抗が小さいため、微細な配線パタ ーンを形成することができるからである。

【0037】上記第1ないし第4の回路部品内蔵モジュ ールの製造方法では、配線パターンが、導電性樹脂組成 物を含むことが好ましい。導電性樹脂組成物を用いるこ とによって、配線パターンを容易に形成することができ

【0038】上記第1ないし第4の回路部品内蔵モジュ 含み、半導体ベアーチップは配線パターンにフリップチ ップボンディングされていることが好ましい。半導体べ アーチップをフリップチップボンディングすることによ って、高密度に半導体素子を実装することができる。

【0039】上記第1ないし第4の回路部品内蔵モジュ ールの製造方法では、導電性樹脂組成物が、金、銀、銅 およびニッケルから選ばれる少なくとも一つの金属を含 む金属粒子を導電性成分として含み、エポキシ樹脂を樹 脂成分として含むことが好ましい。上記金属は電気抵抗 が低く、また、エポキシ樹脂は耐熱性や電気絶縁性に優 40 れているからである。

【0040】上記第1ないし第4の回路部品内蔵モジュ ールの製造方法では、配線パターンが、エッチング法ま たは打ち抜き法で形成された金属板のリードフレームか **らなることが好ましい。金属板のリードフレームは、電** 気抵抗が低いからである。エッチング法を用いることに よって、微細なパターンの配線パターンを形成すること ができる。打ち抜き法を用いることによって、簡易な設 備で配線パターンを形成することができる。

【0041】上記第1ないし第4の回路部品内蔵モジュ 50 は、チップ状の抵抗、チップ状のコンデンサまたはチッ

ールの製造方法では、回路部品が、チップ状の抵抗、チ ップ状のコンデンサおよびチップ状のインダクタから選 ばれる少なくとも一つの部品を含むことが好ましい。チ ップ状の部品を用いることによって、電気絶縁性基板に 部品を容易に埋設することができる。

[0042]

【発明の実施の形態】以下、図面を参照して、本発明の 実施の形態の一例について説明する。

(実施形態1)との実施形態1は、本発明の回路部品内 蔵モジュールの一例であり、図1は、この実施形態の回 路部品内蔵モジュール100の斜視断面図である。

【0043】図1を参照して、この実施形態の回路部品 内蔵モジュール100は、電気絶縁性基板101と、電 気絶縁性基板101の一主面および他主面に形成された 配線パターン102aおよび102bと、配線パターン 102bに接続され電気絶縁性基板101の内部に配置 された回路部品103と、配線パターン102aおよび 102bを電気的に接続するインナービア104とを含 t.

【0044】電気絶縁性基板101は、無機フィラーと 熱硬化性樹脂とを含む混合物からなる。無機フィラーに は、たとえば、Al₂O₃、MgO、BN、AlNまたは SiOzなどを用いることができる。無機フィラーは、 混合物に対して70重量%から95重量%であることが 好ましい。無機フィラーの平均粒子径は、0.1μm~ 100μm以下であることが好ましい。熱硬化性樹脂に は、たとえば、耐熱性が高いエポキシ樹脂、フェノール 樹脂またはシアネート樹脂が好ましい。エポキシ樹脂 は、耐熱性が特に高いため特に好ましい。なお、混合物 ールの製造方法では、回路部品が半導体ベアーチップを 30 は、さらに分散剤、着色剤、カップリング剤または離型 剤を含んでいてもよい。

> 【0045】配線パターン102aおよび102bは、 電気導電性を有する物質からなり、たとえば、銅箔や導 電性樹脂組成物からなる。配線パターンとして銅箔を用 いる場合、たとえば、電解メッキにより作製された厚さ 18 µm~35 µm程度の銅箔が使用できる。銅箔は、 電気絶縁性基板101との接着性を向上させるため、電 気絶縁性基板101と接触する面を粗化することが望ま しい。また、銅箔には、接着性および耐酸化性向上のた め、銅箔表面をカップリング処理したものや、銅箔表面 に錫、亜鉛またはニッケルをメッキしたものを使用して もよい。また、配線パターン102aおよび102bに は、エッチング法または打ち抜き法で形成された金属板 のリードフレームを用いてもよい。

> 【0046】回路部品103は、たとえば、能動部品1 03aおよび受動部品103bを含む。能動部品103 aとしては、たとえば、トランジスタ、IC、LSIな どの半導体素子が用いられる。半導体素子は、半導体ベ アーチップであってもよい。受動部品103bとして

プ状インダクタなどが用いられる。なお、回路部品10 3は、受動部品103bを含まない場合であってもよ 41

【0047】配線パターン102bと能動部品103a との接続には、たとえばフリップチップボンディングが 用いられる。インナービア104は、たとえば、熱硬化 性の導電性物質からなる。熱硬化性の導電性物質として は、たとえば、金属粒子と熱硬化性樹脂とを混合した導 電性樹脂組成物を用いることができる。金属粒子として は、金、銀、銅またはニッケルなどを用いることができ る。金、銀、銅またはニッケルは導電性が高いため好ま しく、銅は導電性が高くマイグレーションも少ないため 特に好ましい。熱硬化性樹脂としては、たとえば、エボ キシ樹脂、フェノール樹脂またはシアネート樹脂を用い ることができる。エポキシ樹脂は、耐熱性が高いため特 に好ましい。

【0048】との実施形態1に示した回路部品内蔵モジ ュール100では、配線パターン102aと配線パター ン102bとが、電気絶縁性基板101の貫通孔に充填 されたインナービア104によって接続される。したが って、回路部品内蔵モジュール100では、髙密度に回 路部品103を実装することができる。

【0049】また、回路部品内蔵モジュール100で は、電気絶縁性基板101に含まれる無機フィラーによ って回路部品で発生した熱が速やかに伝導される。した がって、信頼性の高い回路部品内蔵モジュールが得られ

【0050】また、回路部品内蔵モジュール100で は、電気絶縁性基板101に用いる無機フィラーを選択 することによって、電気絶縁性基板101の線膨張係 数、熱伝導度、誘電率などを容易に制御することができ る。電気絶縁性基板101の線膨張係数を半導体素子と 略等しくすると、温度変化によるクラックの発生等を防 止することができるため、信頼性の高い回路部品内蔵モ ジュールが得られる。電気絶縁性基板 101 の熱伝導性 を向上させると、髙密度で回路部品を実装した場合に も、信頼性の高い回路部品内蔵モジュールが得られる。 電気絶縁性基板101の誘電率を低くすることによっ て、誘電損失の少ない高周波回路用モジュールが得られ る。

【0051】また、回路部品内蔵モジュール100で は、電気絶縁性基板101によって回路部品103を外 気から遮断することができるため、湿度による信頼性低 下を防止することができる。

【0052】また、本発明の回路部品内蔵モジュール1 00は、電気絶縁性基板101の材料として、無機フィ ラーと熱硬化性樹脂との混合物を用いているため、セラ ミック基板と異なり、高温で焼成する必要がなく製造が 容易である。

14

ル100では、配線パターン102aが電気絶縁性基板 101に埋設されていない場合を示したが、配線パター ン102aが電気絶縁性基板101に埋設されていても よい(図3(h)参照)。

【0054】また、図1に示した回路部品内蔵モジュー ル100では、配線パターン102a上に回路部品が実 装されていない場合を示したが、配線パターン102a 上に回路部品を実装してもよく、さらに回路部品内蔵モ ジュールを樹脂モールドしてもよい(以下の実施形態に おいて同様である)。配線パターン102a上に回路部 品を実装することによって、さらに高密度に回路部品を 実装できる。

【0055】(実施形態2) この実施形態2では、図1 に示した回路部品内蔵モジュールの製造方法の一実施形 態を説明する。実施形態2で用いられる材料および回路 部品は、実施形態1で説明したものである。

【0056】図2(a)~(h)は回路部品内蔵モジュ ールの製造工程の一実施形態を示す断面図である。ま ず、図2(a)に示すように、無機フィラーと熱硬化性 20 樹脂とを含む混合物を加工することによって板状の混合 物200を形成する。板状の混合物200は、無機フィ ラーと未硬化状態の熱硬化性樹脂とを混合してペースト 状混練物とし、そのペースト状混練物を一定厚みに成型 することによって形成することができる。

【0057】なお、板状の混合物200を、熱硬化性樹 脂の硬化温度より低い温度で熱処理をしてもよい。熱処 理をすることによって、混合物200の可撓性を維持し ながら粘着性を除去することができるため、その後の処 理が容易になる。また、溶剤によって熱硬化性樹脂を溶 30 解させた混合物では、熱処理をすることによって、溶剤 の一部を除去することができる。

【0058】その後、図2(b) に示すように、混合物 200の所望の位置に貫通孔201を形成することによ って、貫通孔201が形成された板状体を形成する。貫 通孔201は、たとえば、レーザ加工、ドリルによる加 工または金型による加工で形成することができる。レー ザ加工は、微細なピッチで貫通孔201を形成すること ができ、削り屑が発生しないため好ましい。レーザ加工 では、炭酸ガスレーザやエキシマレーザを用いると加工 40 が容易である。なお、貫通孔201は、ペースト状混練 物を成型して板状の混合物200を形成する際に、同時 に形成してもよい。

【0059】その後、図2(c)に示すように、貫通孔 201に導電性樹脂組成物202を充填することによっ て、貫通孔201に導電性樹脂組成物202が充填され た板状体を形成する。

【0060】図2(a)~(c)の工程と平行して、図 2(d) に示すように、銅箔203に回路部品204を フリップチップボンディングする。回路部品204は、

【0053】なお、図1に示した回路部品内蔵モジュー 50 導電性接着剤205を介して銅箔203と電気的に接続

形態において同様である)。

されている。導電性接着剤205には、たとえば、金、 銀、銅、銀ーパラジウム合金などを熱硬化性樹脂で混練 したものが使用できる。また、導電性接着剤205の代 わりに、金ワイヤボンディング法で作製したパンプまた は半田によるバンプを回路部品側にあらかじめ形成し、 熱処理によって金または半田の溶解して回路部品204 を実装することも可能である。さらに、半田パンプと導 電性接着剤とを併用することも可能である。

【0061】なお、銅箔203に実装した回路部品20 4と銅箔203との間に封止樹脂を注入してもよい(以 10 下の実施形態において、回路部品と銅箔との間あるいは 回路部品と配線パターンとの間に封止樹脂を注入しても よいことは同様である)。封止樹脂の注入によって、後 の工程で半導体素子を板状体に埋設する際に、半導体素 子と配線パターンとの間に隙間ができることを防止する ことができる。封止樹脂には通常のフリップチップボン ディングに使用されるアンダーフィル樹脂を用いること ができる。

【0062】図2(a)~(c)の工程と平行して、銅 箔206を形成する。その後、図2(f)に示すよう に、回路部品204を実装した銅箔203、図2(c) の板状体および銅箔206を位置合わせして重ねる。

【0063】その後、図2(g)に示すように、位置合 わせして重ねたものを加圧することによって回路部品2 04が埋設された板状体を形成した後、これを加熱する ことによって、混合物200および導電性樹脂組成物2 02中の熱硬化性樹脂を硬化させ、回路部品204が埋 設された板状体を形成する。加熱は、混合物200およ び導電性樹脂組成物202中の熱硬化性樹脂が硬化する 温度以上の温度(たとえば150℃~260℃)で行 い、混合物200は電気絶縁性基板207となり、導電 性樹脂組成物はインナービア208となる。この工程に よって、銅箔203および206と回路部品204と電 気絶縁性基板207とが機械的に強固に接着する。ま た、インナービア208によって、銅箔203および2 06が電気的に接続される。なお、加熱によって混合物 200 および導電性樹脂組成物202中の熱硬化性樹脂 を硬化させる際に、加熱しながら10kg/cm²~2 00kg/cm'の圧力で加圧することによって、回路 部品モジュールの機械的強度を向上させることができる 40 (以下の実施形態において同様である)。

【0064】その後、図2(h)に示すように、銅箔2 03および206を加工することによって配線パターン 209および210を形成する。このようにして、実施 形態1で説明した回路部品内蔵モジュールが形成され る。上記製造方法によれば、実施形態 1 で説明した回路 部品内蔵モジュールを容易に製造することができる。 【0065】なお、実施形態2では、貫通孔201に充 填する導電性物質として導電性樹脂組成物202を用い

【0066】(実施形態3) この実施形態3では、図1 に示した回路部品内蔵モジュールの製造方法の他の一実 施形態を説明する。 実施形態3で用いられる材料および 回路部品は、実施形態1で説明したものである。

【0067】図3(a)~(h)は、実施形態3におけ る回路部品内蔵モジュールの製造工程を示す断面図であ る。まず、図3(a)に示すように、無機フィラーと熱 硬化性樹脂とを含む混合物を加工することによって板状 の混合物300を形成する。この工程は図2(a)と同 様であるため、重複する説明は省略する。

【0068】その後、図3(b)に示すように、混合物 300の所望の位置に、貫通孔301を形成する。この 工程は図2(b)と同様であるため、重複する説明は省 略する。

【0069】その後、図3(c)に示すように、貫通孔 301に導電性樹脂組成物302を充填することによっ て、貫通孔301に導電性樹脂組成物302が充填され た板状体を形成する。

【0070】図3(a)~(c)の工程と平行して、図 3(d)に示すように、離型フィルム305上に配線パ ターン303を形成し、配線パターン303に回路部品 304を実装する。回路部品304を実装する方法は、 図2(d)で説明した方法と同様であるため、重複する 説明は省略する。離型フィルム305には、たとえば、 ポリエチレンテレフタレートやポリフェニレンサルファ イトのフィルムを用いることができる。配線パターン3 03は、たとえば、離型フィルム305に銅箔を接着し た後フォトリソ工程およびエッチング工程を行うことに 30 よって形成できる。また、配線パターン303には、エ ッチング法または打ち抜き法で形成された金属板のリー ドフレームを用いてもよい。

【0071】図3(a)~(c)の工程と平行して、図 3(e)に示すように、離型フィルム307上に配線パ ターン306を形成する。配線パターン306は、配線 パターン303と同様の方法で形成できる。

【0072】その後、図3(f)に示すように、配線パ ターン303および306と導電性物質302とが所望 の部分で接続されるように、離型フィルム305、図2 (c)の板状体および離型フィルム307を位置合わせ して重ねる。

【0073】その後、図3(g)に示すように、位置合 わせして重ねたものを加圧し加熱することによって、混 合物300および導電性樹脂組成物302中の熱硬化性 樹脂を硬化させ、回路部品304ならびに配線パターン 303および306が埋設された板状体を形成する。加 熱は、混合物300および導電性樹脂組成物302中の 熱硬化性樹脂が硬化する温度以上の温度(たとえば15 0℃~260℃)で行い、混合物300は電気絶縁性基 たが、熱硬化性の導電性物質であればよい(以下の実施 50 板308となり、導電性樹脂組成物302はインナービ

ア309となる。インナービア309によって、配線パ ターン303および306が電気的に接続される。

【0074】その後、図3(h)に示すように、離型フ ィルム305および307を図3(g)の板状体から剥 離する。このようにして、実施形態1で説明した回路部 品内蔵モジュールが形成される。上記製造方法によれ ば、実施形態1で説明した回路部品内蔵モジュールを容 易に製造することができる。

【0075】なお、本方法では、あらかじめ配線パター ン306を形成した離型フィルム307を用いるため、 配線パターン306が電気絶縁性基板308に埋め込ま れ表面が平坦な回路部品内蔵モジュールを製造できる。 表面が平坦であることによって配線パターン306上に 高密度に部品を実装することができるため、より高密度 に回路部品を実装できる。

【0076】(実施形態4)との実施形態4では、本発 明の多層構造を有する回路部品内蔵モジュールの一実施 形態を説明する。図4は、この実施形態4の回路部品内 蔵モジュール400の斜視断面図である。

【0077】図4を参照して、この実施形態の回路部品 内蔵モジュール400は、積層された電気絶縁性基板4 01a、401bおよび401cからなる電気絶縁性基 板401と、電気絶縁性基板401の主面および内部に 形成された配線パターン402a、402b、402c および402dと、電気絶縁性基板401の内部に配置 され配線バターン402a、402bまたは402cに 接続された回路部品403と、配線パターン402a、 402b、402cおよび402dを電気的に接続する インナービア404とを含む。

【0078】電気絶縁性基板401a、401bおよび 30 401 cは、無機フィラーと熱硬化性樹脂とを含む混合 物からなる。無機フィラーには、たとえば、Al,O,、 MgO、BN、AINまたはSiOzなどを用いること ができる。無機フィラーは、混合物に対して70重量% ~95重量%であることが好ましい。無機フィラーの平 均粒子径は、 0.1μ m~ 100μ mであることが好ま しい。熱硬化性樹脂には、たとえば、耐熱性が高いエボ キシ樹脂、フェノール樹脂またはシアネート樹脂が好ま しい。エポキシ樹脂は、耐熱性が特に高いため特に好ま しい。なお、混合物は、さらに分散剤、着色剤、カップ 40 リング剤または離型剤を含んでいてもよい。

【0079】配線パターン402a、402b、402 cおよび402dは、実施形態1で説明した配線パター ン102aおよび102bと同様であるので、重複する 説明は省略する。

【0080】回路部品403は、たとえば、能動部品4 03aや受動部品403bを含む。能動部品403aと しては、たとえば、トランジスタ、IC、LSIなどの 半導体素子が用いられる。半導体素子は、半導体ベアー

18

ップ状の抵抗、チップ状のコンデンサまたはチップ状イ ンダクタなどが用いられる。なお、回路部品403は、 受動部品403bを含まない場合であってもよい。

【0081】配線パターン402a、402bおよび4 02cと能動部品403aとの接続には、たとえばフリ ップチップボンディングが用いられる。インナービア4 04は、たとえば、熱硬化性の導電性物質からなる。 イ ンナービア404としては、たとえば、金属粒子と熱硬 化性樹脂とを混合した導電性樹脂組成物を用いることが できる。金属粒子の材料としては、金、銀、銅またはニ ッケルなどの金属を用いることができる。金、銀、銅ま たはニッケルは導電性が高いため好ましく、銅は導電性 が高くマイグレーションも少ないため特に好ましい。ま た、熱硬化性樹脂としては、たとえば、エポキシ樹脂、 フェノール樹脂またはシアネート樹脂を用いることがで きる。エポキシ樹脂は、耐熱性が高いため特に好まし

【0082】なお、図4に示した回路部品内蔵モジュー ル400は、配線パターン402 dが電気絶縁性基板4 01 c に埋設されていない場合を示したが、配線パター ン402 dが電気絶縁性基板401 c に埋設されていて もよい(図6(g)参照)。

【0083】また、図4には3層構造の回路部品内蔵モ ジュール400を示したが、設計に応じた多層構造とす ることができる(以下の実施形態において同様であ

(実施形態5) この実施形態5では、実施形態4に示し た回路部品内蔵モジュールの製造方法の一実施形態を説 明する。実施形態5で用いられる材料および回路部品 は、実施形態4で説明したものである。

【0084】図5を参照して、実施形態4に示した回路 部品内蔵モジュールの製造方法の一例を説明する。図5 (a)~(h)は、この実施形態の回路部品内蔵モジュ ールの製造工程を示す断面図である。

【0085】まず、図5(a)に示すように、無機フィ ラーと熱硬化性樹脂とを含む混合物を加工することによ って板状の混合物500を形成し、貫通孔に導電性樹脂 組成物501を充填することによって、貫通孔に導電性 樹脂組成物501が充填された板状体を形成する。との 工程は、図2(a)~(c)で説明した工程と同様であ るので、重複する説明は省略する。

【0086】一方、離型フィルム503上に配線パター ン506を形成し、配線パターン506上に能動部品5 04および受動部品505を実装する。この工程は、図 3(d)で説明したものと同様であり、重複する説明は 省略する。

【0087】その後、図5(b) に示すように、図5 (a)の板状体と離型フィルム503とを位置合わせし て重ねて加圧した後、離型フィルム503を剥離すると チップであってもよい。受動部品403bとしては、チ 50 とによって、配線パターン506、能動部品504およ び受動部品505が埋設された板状体を形成する。 【0088】図5(a) および(b) の工程と平行して、図5(a) および(b) と同様の工程で、配線パターン506および回路部品が埋設された板状体を複数形成する(図5(c) および(d)、図5(e) および(f)参照)。なお、配線パターン506と回路部品

【0089】その後、図5(g)に示すように、図5(b)、(d)および(f)の板状体を位置合わせして重ね、図5(f)の板状体の配線パターンが形成されて 10いない主面上にさらに銅箔507を重ねる。

は、設計に応じて各層でとに異なる。

【0090】その後、図5(h)に示すように、図5(g)で重ねた板状体および銅箔507を加圧し加熱することによって多層構造を有する板状体を形成する。加熱は、混合物500および導電性樹脂組成物501中の熱硬化性樹脂が硬化する温度以上の温度(たとえば150℃~260℃)で行い、混合物500は電気絶縁性基板508となり、導電性樹脂組成物501はインナービア509となる。この工程によって、回路部品504および505、銅箔507および電気絶縁性基板508が機械的に強固に接着する。また、インナービア509によって、配線バターン506および銅箔507が電気的に接続される。その後、銅箔507を加工して配線バターン510を形成する。

【0091】 このようにして、多層構造を有する回路部 品内蔵モジュールを形成できる。上記製造方法によれ ば、多層構造を有する回路部品内蔵モジュールを容易に 製造することができる。

【0092】(実施形態6)との実施形態6では、実施 形態4で説明した回路部品内蔵モジュールの製造方法の 他の一実施形態を説明する。実施形態6で用いられる材 料および回路部品は、実施形態4で説明したものであ る。

【0093】図6を参照して、この実施形態における回路部品内蔵モジュールの製造方法の一例を説明する。図6(a)~(g)は、この実施形態における回路部品内蔵モジュールの製造工程を示す断面図である。

【0094】まず、図6(a)に示すように、無機フィラーと熱硬化性樹脂とを含む混合物を加工することによって板状の混合物600を形成し、貫通孔に導電性物質 40601を充填することによって貫通孔に導電性樹脂組成物601が充填された板状体を形成する。この工程は、図2(a)~(c)で説明したものと同様であり、重複する説明は省略する。一方、離型フィルム603上に配線パターン606を形成し、配線パターン606上に能動部品604および受動部品605を実装する。この工程は、図3(d)で説明したものと同様であり、重複する説明は省略する。

【0095】その後、図6(b) に示すように、図6

(a)の板状の混合物600と離型フィルム603とを

位置合わせして重ねて加圧した後、離型フィルム603 を剥離することによって、配線バターン606、能動部 品604および受動部品605が埋設された板状体を形成する。

20

【0096】図6(a) および(b) の工程と平行して、図6(a) および(b) と同様の工程で、配線パターン606 および回路部品が埋設された板状体を形成する(図6(c) および(d) 参照)。なお、配線パターン606と回路部品は、設計に応じて各層ごとに異なる

【0097】図6(a) および(b) の工程と平行して、図6(e) に示すように、離型フィルム603上に、配線パターン607を形成する。その後、図6(f) に示すように、図6(b) および(d) の板状体を位置合わせして重ね、図6(d) の板状体の配線パターン606が形成されていない主面上に、さらに図6(e) の離型フィルム603を配線パターン607が内側になるように重ねる。

【0098】その後、図6(g)に示すように、図6(f)で重ねた板状体および離型フィルム603を加圧し加熱することによって、多層構造を有する板状体を形成する。加熱は、混合物600および導電性樹脂組成物601中の熱硬化性樹脂が硬化する温度以上の温度(たとえば150℃~260℃)で行い、混合物600は電気絶縁性基板608となり、導電性樹脂組成物601はインナービア609となる。この工程によって、能動部品604、受動部品605、配線パターン606および607、および電気絶縁性基板608が機械的に強固に接着する。また、インナービア609によって、配線パターン606および607が電気的に接続される。

【0099】その後、多層構造を有する板状体から離型フィルム603を剥離することによって、多層構造を有する回路部品内蔵モジュールを形成できる。このようにして、上記製造方法によれば、多層構造を有する回路部品内蔵モジュールを容易に製造することができる。

[0100]

【実施例】以下に、本発明の具体的な実施例を説明する。

(実施例1)本発明の回路部品内蔵モジュールの作製に際し、無機フィラーと熱硬化性樹脂とを含む混合物からなる電気絶縁性基板の作製方法の一例について説明する

【0101】本実施例では、表1に示す配合組成で電気 絶縁性基板を作製した。なお、比較例を試料番号1に示 す。

[0102]

【表1】

1MHz(%) KV/mm	0.3 8.1	10.1	16.5	15.5	18.7	17.1	15.2	17.4	19.3	18.2	13.2	14.5
1MHz(%)	33		1		<u> </u>				_		¥	-
		0.3	0.3	0.2	0.2	0.2	0.4	0.3	0.3	0.2	0.5	0.2
1MHz	3.5	4.7	5.8	6.1	6.7	7.1	8,1	6.8	7.3	3.5	7.7	6.7
(ppm/C)	45	35	52	21	16	11	24	10	18	7	31	15
(W/mK)	0.52	0.87	1.2	2.8	4.5	5.5	4.2	5.5	5.8	2.2	4.1	3.8
(wt%)			カーボンブラック	(0.2)				カーボンブラック	(02)		カーボンブラック (0.2)	分散剂 (0.2)
量(wt%)	39.8	29.8	1	14.8	9.8	4.8	21.8	22.8	14.8	24.8	9.8	9.8
温效			後状エポキツ姫脂	WE-2025	*			液状エポキン粒間	WE-2025		フェノール樹脂	シアネート樹脂
ME(WCS)	8	2	8	85	99	95	78	77	8	75	90	96
種類	Al ₂ O ₃	A ₂ O ₃	Al ₂ O ₃	A ₂ O ₃	Al ₂ O ₃	Al ₂ O ₃	MgO	SS.	AIN	SiO2	Al ₂ O ₃	Al ₂ O ₃
	-	2	က	4	5	မ	7	8	6	9	=	12
	童(wt%) 福朝 塩(wt%) (wt%) (W/mK) (ppm/°C)	(W/mK) 種類 (W(KS) (W(KK) (ppm/^C) 19.8 0.52 45	程類 値(wt%) 視類 (wt%) (wt%) (W/mK) (ppm/C) 39.8 (wt%) 0.52 45 45 29.8 0.87 32	程類 値(wt%) 程数 (wt%) (wt%) (wt%) (w/mK) (ppm/^C) (A½O ₂ 60 39.8 0.52 45 45	程類 値(wt%) 提類 (wt%) (wt%) (wt%) (wt%) (wt/mtK) (ppm/C) (ppm/C	程類 値(wtk) 指数 (wtk) (wtk) (w/mK) (ppm/C) (AbO ₃ 60 39.8 0.52 45 45 4bO ₃ 70 29.8 0.87 29.8 0.87 32 45 4bO ₃ 80 液状エポキン樹脂 19.8 カーボンブラック 1.2 26 45 4bO ₃ 85 WE-2025 14.8 (0.2) 2.8 21 4.5 16	程類 値(wt%) 提類 (wt%) (wt%) (wt%) (wt%) (ppm/C) (ppm/C	程第 値(wtk) 指数 (wtk) (wtk) (wtk) (ppm/C) (AbO ₃ 60 29.8 0.52 45 45 45.0 10.5 10 29.8 0.52 45 45.0 10.9 20 20.8 14.0 20.8 14.0 20.8 14.0 20.8 14.0 20.8 14.0 20.8 14.0 20.8 14.0 20.8 11.0 20.8 11.0 20.8 11.0 20.8 11.0 20.8 11.0 20.8 11.0 20.8 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	1	程第 (Wtk) 程数 (Wtk) (wtk) (wtk) (wtk) (ppm/C) (Abo) 60 (Abo) 60 (Abo) 70 (Abo) 80 液状工ポキン樹脂 19.8 カーボンブラック 1.2 26 45 (Abo) 90 (Abo) 95 (Abo) 95 (Abo) 78 (Abo	種類 重(wfs) 種類 (wfs) (wfs) (W/mK) (ppm/C) 12 (ppm/C) 14 (ppm/C) 14 (ppm/C) 15 (ppm/C) 14 (ppm/C) 15 (ppm/C) 14 (ppm/C) 15 (ppm/C) 14 (ppm/C) 15 (ppm/C) 15 (ppm/C) 14 (ppm/C) 15 (ppm/C) 15 (ppm/C) 14 (ppm/C) 15 (ppm/C) 14 (ppm/C) 15 (ppm/C) 15 (ppm/C) 14 (ppm/C) 15 (ppm/C)	種類 重(wfs) 種類 (wfs) (wfs) (wfmK) (ppm/C) 12 (ppm/C) 14.0 (ppm/C) 14.0 (ppm/C) 15 (ppm/C) 14.0

Al₂O₂: 跖右侧工(杖)姒SA-40 SiO2:関東化学(株)試薬1級

BN: 配気化学工媒(株)数 AIN:ダウ社数

MgO: 関東化学(株)試楽1級

ナーボンブレック:東洋ナーボン(株)数K-930

フェノール被脂: 大日本インキ(株)数フェノライトVH-4150 後状エポキツ抽脂: 日本ペンノックス(株)製WE-2025 シアネート樹脂: 旭チパ(株)製AroCyM-30 液状の熱硬化性樹脂とを攪拌混合機によって10分程度 混合して作製した。使用した攪拌混合機は、所定の容量 の容器に無機フィラーと液状の熱硬化性樹脂とを投入 し、容器自身を回転させながら公転させるもので、混合 物の粘度が比較的髙くても充分な分散状態が得られる。 離型フィルムには厚み75μmのポリエチレンテレフタ レートフィルムを用い、フィルム表面にシリコンによる 離型処理を施した。

【0105】次に、離型フィルム上のペースト状の混合 物にさらに離型フィルムを重ね、加圧プレスで厚さ50

【0103】この実施例では、液状エポキシ樹脂には、 日本ペルノックス(株)製のエポキシ樹脂(WE-20 25、酸無水系硬化剤含む)を用いた。フェノール樹脂 には、大日本インキ(株)製のフェノール樹脂(フェノ ライト、VH4150)を用いた。シアネート樹脂に は、旭チバ(株)製のシアネート樹脂(AroCy、M -30)を用いた。この実施例では、添加物としてカー ボンブラックまたは分散剤を加えた。

21

【0104】板状体の作製は、まず、表1の組成で混合 されたペースト状の混合物を、所定量だけ離型フィルム 上に滴下する。ペースト状の混合物は、無機フィラーと 50 0μmになるようにプレスして、板状の混合物を得た。

次に、離型フィルムで挟まれた板状の混合物を離型フィルムでと加熱し、板状の混合物の粘着性が無くなる条件下で熱処理した。熱処理は、120℃の温度で15分間保持である。この熱処理によって、板状の混合物の粘着性が失われるため、離型フィルムの剥離が容易になる。この実施例で用いた液状エポキシ樹脂は、硬化温度が130℃であるため、この熱処理条件下では、未硬化状態(Bステージ)である。

【0106】次に、板状の混合物から離型フィルムを剥離し、板状の混合物を耐熱性離型フィルム(PPS:ボ 10リフェニレンサルファイト、厚さ75μm)で挟んで、50kg/cm³の圧力で加圧しながら170℃の温度で加熱することによって板状の混合物を硬化させた。

【0107】次に、硬化した板状の混合物から耐熱性離型フィルムを剥離することによって、電気絶縁性基板を得た。この電気絶縁性基板を所定の寸法に加工して、熱伝導度、線膨張係数などを測定した。熱伝導度は、10mm角に切断した試料の表面を加熱ヒータに接触させて加熱し、反対面の温度上昇から計算で求めた。線膨張係数は、室温から140℃まで温度上昇させた場合の電気絶縁性基板の寸法変化を測定し、その寸法変化の平均値から求めた。絶縁耐圧は、電気絶縁性基板の厚み方向にAC電圧を印加した場合の絶縁耐圧を求め、単位厚み当たりの絶縁耐圧を計算した。

【0108】表1に示すように、上記の方法で作製された電気絶縁性基板は、無機フィラーとして $A1_2O_3$ を用いた場合には、従来のガラス-エボキシ基板(熱伝導度0.2 $w/mK\sim0$.3w/mK)に比べて熱伝導度が約10倍以上となった。 $A1_2O_3$ の量を85重量%以上とすることによって、熱伝導度を2.8w/mK以上とすることができた。 $A1_2O_3$ はコストが安いという利点もある。

【0109】また、無機フィラーとしてA1N、MgOを用いた場合では、A1,O,を用いた場合と同等以上の熱伝導度が得られた。また、無機フィラーとして非晶質SiO,を用いた場合では、線膨張係数がシリコン半導体(線膨張係数3×10-6/℃)により近くなった。したがって、無機フィラーとして非晶質SiO,を用いた電気絶縁性基板は、半導体を直接実装するフリップチップ用基板として好ましい。

【0110】また、無機フィラーとしてSiOzを用いた場合には、誘電率が低い電気絶縁性基板が得られた。SiOzは比重が軽いという利点もある。無機フィラーとしてSiOzを用いた回路部品内蔵モジュールは、携帯電話などの高周波用モジュールとして好ましい。

【0111】また、無機フィラーとしてBNを用いた場合には、熱伝導度が高く線膨張係数が低い電気絶縁性基板が得られた。表1の比較例(試料番号1)に示すように、無機フィラーとして60重量%のA1、O,を用いた場合を除いて、電気絶縁性基板の絶縁耐圧は、10kV

/mm以上であった。電気絶縁性基板の絶縁耐圧は、電気絶縁性基板の材料である無機フィラーと熱硬化性樹脂との接着性の指標となる。すなわち、無機フィラーと熱硬化性樹脂との接着性が悪いと、その間に微小な隙間が生じて絶縁耐圧が低下する。このような微小な隙間は回路部品内蔵モジュールの信頼性低下を招く。一般に、絶縁耐圧が10kV/mm以上であれば無機フィラーと熱硬化性樹脂との接着性が良好であると判断できる。したがって、無機フィラーの量は70重量%以上であることが好ましい。

【0112】なお、熱硬化性樹脂の含有量が低いと電気 絶縁性基板の強度が低下するため、熱硬化性樹脂は4. 8重量%以上であることが好ましい。

(実施例2)実施例2は、実施形態2で説明した方法で 回路部品内蔵モジュールを作製した一例である。

【0113】本実施例に使用した電気絶縁性基板の組成は、A1,O,(昭和電工(株)製AS-40、球状、平均粒子径12μm)が90重量%、液状エポキシ樹脂(日本レック(株)製、EF-450)が9.5重量%、カーボンブラック(東洋カーボン(株)製)が0.2重量%、カップリング剤(味の素(株)製、チタネート系、46B)が0.3重量%である。

【0114】上記材料を実施例1と同様の条件で処理することによって、板状体(厚み500μm)を作製した。上記板状体を所定の大きさに切断し、炭酸ガスレーザを用いてインナービアホール接続をするための貫通孔(直径0.15mm)を形成した(図2(b)参照)。【0115】この貫通孔に、導電性樹脂組成物をスクリーン印刷法によって充填した(図2(c)参照)。導電性樹脂組成物は、球状の銅粒子85重量%と、ビスフェノールA型エポキシ樹脂(油化シェルエポキシ製、エピコート828)3重量%と、グルシジルエステル系エポキシ樹脂(東都化成製、YD-171)9重量%と、アミンアダクト硬化剤(味の素製、MY-24)3重量%とを混練して作製した。

【0116】次に、厚さ35μmの銅箔の片面を粗化し、粗化した面に導電性接着剤を用いて半導体素子をフリップチップボンディングした(図2(d)参照)。次に、半導体素子を実装した銅箔と、導電性樹脂組成物を充填した板状体と、別途作製した銅箔(片面を粗化処理した銅箔で厚さ35μm)とを位置合わせして重ねた(図2(f)参照)。この時、銅箔の粗化面は、板状体側になるように重ねた。

【0117】次に、これを熱プレス機によってプレス温度120℃、圧力10kg/cm³で5分間加熱加圧した。硬化温度より低い温度での加熱によって、板状体中の熱硬化性樹脂が軟化するため、半導体素子が板状体中に容易に埋没した。

に、無機フィラーとして60重量%の $A1_2O_3$ を用いた 【0118】次に、加熱温度を上昇させて175℃で6場合を除いて、電気絶縁性基板の絶縁耐圧は、10kV 50 0分間加熱した(図2(g)参照)。この加熱によっ

て、板状体中のエポキシ樹脂および導電性樹脂組成物中 のエポキシ樹脂が硬化し、半導体素子および銅箔と板状 体とが機械的に強固に接続された。また、この加熱によって、導電性樹脂組成物と銅箔とが電気的(インナービ ア接続)、機械的に接続された。

【0119】次に、半導体素子が埋設された板状体の表面の銅箔を、フォトリソ工程およびエッチング工程によってエッチングし、配線パターンを形成した(図2

(h)参照)。とのようにして、回路部品内蔵モジュールを作成した。

【0120】本実施例によって作製された回路部品内蔵モジュールの信頼性を評価するため、半田リフロー試験および温度サイクル試験を行った。半田リフロー試験は、ベルト式リフロー試験機を用い、最高温度が260℃で10秒のサイクルを10回繰り返すことで行った。温度サイクル試験は、125℃で30分間保持した後、-60℃の温度で30分間保持する工程を200サイクル繰り返すことによって行った。

【0121】半田リフロー試験および温度サイクル試験のいずれにおいても、本実施例の回路部品内蔵モシュールにはクラックが発生せず、超音波探傷装置を用いても特に異常は認められなかった。との試験から、半導体素子と電気絶縁性基板とは、強固に接着していることがわかる。また、導電性樹脂組成物によるインナービア接続の抵抗値も、試験開始前後でほとんど変化がなかった。

【0122】(実施例3)実施例3は、実施形態3で説明した方法で回路部品内蔵モジュールを作製した一例である。

【0123】まず、実施例2と同様の方法で、貫通孔に 導電性樹脂組成物が充填された板状体(厚さ500 μ m)を作製した(図3(c)参照)。次に、離型フィルム(ポリフェニレンサルファイト製、厚さ150 μ m)に、厚さ35 μ mの銅箔を接着剤によって接着した。 この銅箔は、片面が粗化処理されており、光沢面が接着剤側になるように接着した。

【0124】次に、離型フィルム上の銅箔を、フォトリソ工程およびエッチング工程によってエッチングして、配線パターンを形成した。さらにこの配線パターン上に、半田バンプを用いて半導体素子をフリップチップボンディングした(図3(d)参照)。

[0125]次に、配線パターンに実装した半導体素子と配線パターンとの隙間に封止樹脂を注入した。具体的には、70℃に加熱したホットブレートを傾け、そのホットブレート上に、半導体素子を実装した配線パターンを有する離型フィルムを設置した後、半導体素子と配線パターンとの間に注射器で徐々に封止樹脂を注入した。10秒程度で半導体素子と配線パターンとの間に封止樹脂を注入できた。ホットプレートで加熱するのは、封止樹脂の粘度を下げて短時間に注入できるようにするためである。また、ホットプレートを傾けるのは注入を容見

にするためである。封止樹脂には、テクノアルファー (株) 製EL18Bを用いた。EL18Bは、一液性のエポキシ樹脂にSi〇₂粉末を混入した樹脂である。 【0126】一方、上記工程と平行して、上記工程と同様に、片面に配線パターンが形成された離型フィルム(ポリフェニレンサルファイト製、厚さ150μm)を作製した(図3(e)参照)。

【0127】次に、半導体素子をボンディングした離型フィルムと、貫通孔に導電性樹脂組成物が充填された板10 状体と、片面に配線パターンが形成された離型フィルムとを、位置合わせして重ねた(図3(f)参照)。

【0128】次に、これを熱プレス機によってプレス温度120℃、圧力10kg/cm²で5分間加熱加圧した。硬化温度より低い温度での加熱によって、板状体中の熱硬化性樹脂が軟化するため、半導体素子および配線パターンが板状体中に容易に埋没した。

【0129】次に、加熱温度を上昇させて175℃で60分間加熱した(図3(g)参照)。この加熱によって、板状体および導電性樹脂組成物中のエポキシ樹脂が硬化するため、半導体素子および配線パターンと板状体とが機械的に強固に接続された。また、この加熱によって、導電性樹脂組成物と配線パターンとが電気的(インナービア接続)、機械的に接続された。さらに、この加熱によって、半導体素子と配線パターンとの間に注入された封止樹脂も硬化した。

【0130】次に、板状体から離型フィルムを剥離した(図3(h)参照)。ボリフェニレンサルファイト製の離型フィルムは、上記加熱温度以上の耐熱性がある。また、銅箔の粗化された面は板状体およびインナービアと30接着し、銅箔の光沢面は離型フィルムと接着している。したがって、板状体およびインナービアと銅箔との接着強度は、離型フィルムと銅箔との接着強度よりも大きいため、離型フィルムだけを剥離することができる。このようにして、回路部品内蔵モジュールを作成した。

【0131】実施例3によって作製された回路部品内蔵モジュールの信頼性を評価するため、実施例2と同様の条件で、半田リフロー試験および温度サイクル試験を行った

【0132】半田リフロー試験および温度サイクル試験のいずれにおいても、実施例3の回路部品内蔵モジュールにはクラックが発生せず、超音波探傷装置を用いても特に異常は認められなかった。この試験から、半導体素子と電気絶縁性基板とは、強固に接着していることがわかる。また、導電性樹脂組成物によるインナービア接続の抵抗値も、試験開始前後でほとんど変化がなかった。【0133】(実施例4)この実施例4は、実施形態5で説明した方法で多層構造を有する回路部品内蔵モジュールを作製した一例である。

樹脂の粘度を下げて短時間に注入できるようにするため 【0134】この実施例4では、回路部品として、半導である。また、ホットプレートを傾けるのは注入を容易 50 体素子とチップ部品とを用いた。まず、実施例2と同様

の方法で、貫通孔に導電性樹脂組成物が充填された板状 体を形成した。

27

【0135】次に、貫通孔に導電性樹脂組成物が充填さ れた板状体と、回路部品がフリップチップボンディング された配線パターンを備える離型フィルム(ポリフェニ レンサルファイト製)とを、位置合わせして重ねた(図 5 (a)参照)。

【0136】次に、これを熱プレス機によって、プレス 温度120℃、圧力10kg/cm'で5分間加熱加圧 した。硬化温度より低い温度での加熱によって、板状体 中の熱硬化性樹脂が軟化するため、回路部品が板状体中 に容易に埋没した。そして、離型フィルムを板状体から 剥離することによって回路部品が埋設された板状体を形 成した(図5(b)参照)。

【0137】との板状体を複数個作製し、複数個の板状 体と銅箔とを位置合わせして重ねた(図5(g)参 照)。次に、これを熱プレス機によって、プレス温度1 75℃、圧力50kg/cm'で60分間加熱加圧し た。この加熱加圧処理によって、回路部品が埋設された 複数の板状体と銅箔とが一体となって、一つの板状体が 形成された。この加熱加圧処理によって、板状体および 導電性樹脂組成物中のエポキシ樹脂が硬化し、回路部品 および配線パターンと板状体とが機械的に強固に接続さ れた。また、この加熱加圧処理によって、銅箔および配 線パターンと導電性樹脂組成物とが電気的(インナービ ア接続)、機械的に接続された。

【0138】次に、回路部品が埋設された板状体の表面 の銅箔を、フォトリソ工程およびエッチング工程によっ てエッチングすることによって、配線パターンを形成し する回路部品内蔵モジュールを作製した。

【0139】実施例4によって作製された回路部品内蔵 モジュールの信頼性を評価するため、実施例2と同様の 条件で、半田リフロー試験および温度サイクル試験を行

【0140】半田リフロー試験および温度サイクル試験 のいずれにおいても、実施例4の回路部品内蔵モジュー ルにはクラックが発生せず、超音波探傷装置を用いても 特に異常は認められなかった。この試験から、半導体素 子と電気絶縁性基板とは、強固に接着していることがわ 40 かる。また、導電性樹脂組成物によるインナービア接続 の抵抗値も、試験開始前後でほとんど変化がなかった。

【0141】(実施例5)との実施例5は、実施形態6 で説明した方法で多層構造を有する回路部品内蔵モジュ ールを作製した一例である。

【0142】まず、実施例2と同様の方法で、貫通孔に 導電性樹脂組成物が充填された板状体を形成した。次 に、貫通孔に導電性樹脂組成物が充填された板状体と、 回路部品がフリップチップボンディングされた配線パタ

ト製) とを、位置合わせして重ねた(図6(a)参 照)。

28

【0143】次に、これを熱プレス機によって、プレス 温度120℃、圧力10kg/cm゚で5分間加熱加圧 した。硬化温度より低い温度での加熱によって、板状体 中の熱硬化性樹脂が軟化するため、回路部品が板状体中 に容易に埋没した。そして、離型フィルムを板状体から 剥離することによって板状体を形成した(図6(b)参 照)。同様に、回路部品が埋設された板状体を形成した (図6(d)参照)。

【0144】次に、離型フィルム(ポリフェニレンサル ファイト製)の片面に配線パターンを形成した(図6 (e)参照)。次に、回路部品が埋設された2個の板状 体と、配線パターンが形成された離型フィルムとを位置 合わせして重ねた(図6(f)参照)。

【0145】次に、これを熱プレス機によって、プレス 温度175℃、圧力50kg/cm゚で60分間加熱加 圧した。この加熱加圧処理によって、回路部品が埋設さ れた複数の板状体と離型フィルムとが一体となって、一 つの板状体が形成された。この加熱加圧処理によって、 板状体中のエポキシ樹脂が硬化し、回路部品および配線 バターンと板状体とが機械的に強固に接続された。ま た、この加熱加圧処理によって導電性樹脂組成物中のエ ボキシ樹脂が硬化し、配線パターンと導電性樹脂組成物 とが電気的(インナービア接続)、機械的に接続され

【0146】次に、一体となった板状体から離型フィル ムを剥離することによって、多層構造を有する回路部品 内蔵モジュールを作製した(図6(g)参照)。実施例 た(図5(h)参照)。このようにして、多層構造を有 30 5によって作製された回路部品内蔵モジュールの信頼性 を評価するため、実施例2と同様の条件で、半田リフロ ー試験および温度サイクル試験を行った。

> 【0147】半田リフロー試験および温度サイクル試験 のいずれにおいても、実施例5の回路部品内蔵モジュー ルにはクラックが発生せず、超音波探傷装置を用いても 特に異常は認められなかった。この試験から、半導体素 子と電気絶縁性基板とは、強固に接着していることがわ かる。また、導電性樹脂組成物によるインナービア接続 の抵抗値も、試験開始前後でほとんど変化がなかった。 [0148]

> 【発明の効果】以上説明したように、本発明の回路部品 内蔵モジュールでは、無機フィラーと熱硬化性樹脂との 混合物からなる電気絶縁性基板を用いるとともにインナ ービアホール接続法を用いているため、髙密度に回路部 品を実装することができ放熱性も高い。したがって、本 発明の回路部品内蔵モジュールでは、高密度に回路部品 が実装され且つ信頼性が高い回路部品内蔵モジュールが 得られる。

【0149】また、本発明の回路部品内蔵モジュールで ーンを備える離型フィルム(ポリフェニレンサルファイ 50 は、多層構造とすることによって、さらに高密度に回路

*【図1】 本発明の回路部品内蔵モジュールの一実施形

部品が実装することができる。さらに、本発明の回路部 品内蔵モジュールでは、無機フィラーを選択することに よって、電気絶縁性基板の熱伝導度、線膨張係数、誘電 率などを制御することが可能である。したがって、本発 明の回路部品内蔵モジュールでは、電気絶縁性基板の線 膨張係数を半導体素子とほぼ同じにすることが可能であ るため、半導体素子を内蔵した回路部品内蔵モジュール として好ましい。また、電気絶縁性基板の熱伝導度を向 上させることができるため、放熱を必要とする半導体素 子などを内蔵した回路部品内蔵モジュールとして好まし 10 の他の一実施形態を示す工程図である。 い。さらに、電気絶縁性基板の誘電率を低くすることも できるため、高周波回路用の回路部品内蔵モジュールと

【0150】本発明の回路部品内蔵モジュールの製造方

法では、上記回路部品内蔵モジュールを容易に製造する ことができる。また、本発明の回路部品内蔵モジュール

の製造方法では、配線パターンを形成した離型フィルム

を用いることによって、配線パターンを電気絶縁性基板

に埋設することができるため、表面が平滑な回路部品内

ーンにさらに回路部品を実装する場合に、高密度で回路

100

【図2】 本発明の回路部品内蔵モジュールの製造方法 の一実施形態を示す工程図である。

【図3】 本発明の回路部品内蔵モジュールの製造方法 の他の一実施形態を示す工程図である。

【図4】 本発明の回路部品内蔵モジュールの他の一実 施形態を示す斜視断面図である。

【図5】 本発明の回路部品内蔵モジュールの製造方法

【図6】 本発明の回路部品内蔵モジュールの製造方法 の他の一実施形態を示す工程図である。

【符号の説明】

100, 400 回路部品内蔵モジュール 101, 401, 401a, 401b, 401c 電気絶縁性基板

102a, 102b, 402a, 402b, 402c,

402d 配線パターン

態を示す斜視断面図である。

103, 403 回路部品

蔵モジュールが得られる。したがって、表面の配線パタ 20 103a、403a 能動部品

103b, 403b 受動部品

104, 404 インナービア

【図面の簡単な説明】

部品を実装することができる。

して好ましい。

*

【図1】

102a 101

103

【図2】

[図3]

【図4】

[図5]

【図6】

