

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2019 - 2020)

Enthusiast, Leader & Achiever Course

PHASE : ALL PHASE TARGET : PRE-MEDICAL 2020

Test Type : MAJOR Test Pattern : NEET (UG)

TEST DATE: 31-08-2020

Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Α.	1	3	3	2	3	3	2	3	2	1	4	1	3	2	1	3	4	3	2	3	3	1	3	2	1	4	3	3	4	1
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Α.	4	3	3	2	3	1	2	1	4	3	4	4	1	4	3	3	2	2	3	3	3	3	3	2	3	4	3	2	3	1
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Α.	2	2	1	3	1	2	3	2	2	2	4	2	3	1	2	2	2	1	1	1	1	3	2	3	3	3	2	4	2	1
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Α.	4	4	3	3	3	2	2	2	2	3	3	1	3	1	2	1	3	1	2	1	3	1	3	2	2	3	2	4	4	2
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Α.	4	1	2	1	2	1	4	4	3	2	1	1	4	2	4	3	4	2	2	2	2	3	3	4	3	3	2	4	3	2
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	2	4	2	2	4	2	4	2	2	1	1	4	3	3	3	3	4	3	4	1	4	1	2	3	4	4	4	2	2	1

HINT - SHEET

1. Ans (1)

2. Ans (3)

$$\begin{split} & Energy \ released \ if \\ & BE_f > BE_i \\ & in \ (3) \quad BE_i = 900 \ MeV \\ & BE_f = 1020 \ MeV \\ & So \ BE_f > BE_i \end{split}$$

 $3. \quad Ans(3)$

As the density of water increases up to 4° C, $\Delta V = -ve$ $\Rightarrow \Delta W = -ve$ and $\Delta U = 300$ cal By, $\Delta Q = \Delta U + \Delta W$ $\Delta Q < 300$ cal. 4. Ans (2)

f = 5 cm, u = ?for closest distance न्यूनतम दूरी के लिये v = -25 cm

$$-25 \text{ cm} \qquad \qquad \mathbf{v}' = \infty, \ \mathbf{u}' = ?$$

$$\frac{1}{\mathbf{v}} - \frac{1}{\mathbf{u}} \qquad \qquad \frac{1}{f} = \frac{1}{\mathbf{v}'} - \frac{1}{\mathbf{u}'}$$

$$\frac{1}{5} = \frac{1}{-25} - \frac{1}{u}$$

$$\frac{1}{5} = \frac{1}{\infty} - \frac{1}{\mathfrak{u}'}$$

for farthest ditance

अधिकतम दुरी के लिये

$$\frac{1}{u} = -\frac{1}{25} - \frac{1}{5}$$

$$u = -4.2cm$$

5. Ans (3)

$$\Delta U = \frac{mgh}{1 + \frac{h}{R}} \text{ where } h = R/5$$

6. Ans (3)

$$C = \frac{\varepsilon_0 KA}{d} = \frac{(8.85 \times 10^{-12}) \times 10 \times 1}{10^{-3}}$$
$$i = \frac{d}{dt}(CV) = C\frac{dV}{dt} = 8.85 \times 10^{-8} \times 25$$
$$= 2.2 \times 10^{-6} A$$

7. $\operatorname{Ans}(2)$

In case of diffraction

$$d \sin\theta = n\lambda ; \sin\theta = \theta = y/D d \left(\frac{y}{D}\right) = n\lambda$$

$$\Rightarrow y = \frac{D}{d}(n\lambda)$$
So, $y_3 - y_1 = \frac{D}{d}(3\lambda - \lambda) = \frac{D}{d}(2\lambda)$

$$\Rightarrow d = \frac{0.50 \times (2 \times 6 \times 10^{-7})}{3 \times 10^{-3}} = 0.2 \text{mm}$$

8. Ans (3)

$$P = \overline{X} + Y$$
, $Q = \overline{X}\overline{Y} = \overline{X} + Y$

$$R = \overline{\left(\bar{X} + Y\right) + \left(\bar{X} + Y\right)}$$

$$R = \overline{\overline{X} + Y} = X\overline{Y}$$

$$R = 1$$
, when $X = 1$, $Y = 0$

9. Ans (2)

$$P_1 + P_2 = 9$$

$$P = P_1 + P_2 - dP_1P_2$$

$$\frac{27}{9} = 9 - \frac{20}{100} \times P_1 P_2$$

The above equation is correct only for

$$P_1 = 3 \text{ and } P_2 = 6$$

10. Ans (1)

At constant pressure

$$\Delta W = P\Delta V = P \times (V_f - V_i)$$
 ...(i)

For an ideal gas PV = nRT

or
$$PV_f = nRT_f$$
 and $PV_i = nRT_i$

From (i)

$$\therefore \Delta W = nRT(T_f - T_i) \qquad ...(ii)$$

For constant temperature, PV = constant

$$P_f V_f \!=\! P_i V_i \ \, \text{or} \ \, \left(\frac{V_f}{V_i} \right) = \left(\frac{P_i}{P_f} \right)$$

$$\Delta W = nRT \ln \frac{P_i}{P_f}$$
 ...(ii)

So work done for path AB, BC, CD and DA respectively will be

$$\Delta W_{AB} = nR(T_f - T_i) = 2 \times R(400 - 300)$$

$$\Delta W_{BC} = nRT ln \left(\frac{P_i}{P_f}\right) = 2 \times R \times 400 ln2$$

$$= 800Rln2 (Using(iii))$$

$$\Delta W_{CD} = nR(T_f - T_i) = 2 \times R[300 - 400]$$

$$=-200R (Using(ii))$$

$$\Delta W_{DA} = nRT \ln \left(\frac{P_i}{P_f} \right) = 2 \times R \times 300 \ \ln \left(\frac{1}{2} \right)$$

$$=$$
 -600Rln2 (Using(iii))

Hence, the work done in the complete cycle

$$\Delta W = W_{AB} + W_{BC} + W_{CD} + W_{DA}$$

$$= 200R + 800Rln2 - 200R - 600Rln2$$

$$= 200Rln2$$

$$B_1 = \frac{\mu_0 I (a/2)}{2\pi a^2}$$

$$B_2 = \frac{\mu_0 I}{2\pi (2a)}$$
 $\frac{B_1}{B_2} = 1$

12. Ans (1)

For the process with ideal gas $PV^n = constant$. If expansion happens with n > 1 then only the temperature decreases. But here n = 2/3, so here n < 1 so temperature must increase.

13. Ans (3)

$$\begin{split} &\frac{1}{2}mV_{max}^2 = \frac{hc}{\lambda} - \phi \\ \Rightarrow & V_{max} = \left[\frac{2(hc - \lambda\phi)}{m\lambda}\right]^{1/2} \end{split}$$

14. Ans (2)

Here
$$\vec{\tau}_{net} = 0$$
, so

$$\vec{L} = constant$$

$$\therefore L_i = L_F \qquad ...(i)$$

$$L_i = I_1 \omega_1$$

$$L_i = \left(\frac{ML^2}{12}\right)\omega_0$$

When ball reaches to the ends:

$$L_{F} = I_{2}\omega_{2} = \left(\frac{ML^{2}}{12} + 2 \times \frac{mL^{2}}{4}\right)\omega_{2}$$

$$L_{F} = \left(\frac{ML^{2} + 6mL^{2}}{12}\right)\omega_{2}$$

From eq. ...(i)

$$\left(\frac{ML^2}{12}\right)\omega_0 = \left(\frac{ML^2 + 6mL^2}{12}\right)\omega_2$$

$$\omega_2 = \frac{M\omega_0}{M + 6m}$$

15. Ans (1)

Use KVL in upper loop

$$8 - 8(i_1 + i_2) - 4i_1 = 0$$

or
$$8 = 12i_1 + 8i_2$$
(i)

In lower loop

$$6 - 8(i_1 + i_2) - 6i_2 = 0$$

$$6 = 8i_1 + 14i_2$$
(ii)

(ii)
$$\times \frac{3}{2} \implies 9 = 12i_1 + 21i_2 \dots$$
 (ii)

By (i) & (ii)
$$-$$
 (i)

$$1 = 13i_2$$
 Put in (i)

$$8 = 12i_1 + 8\left(\frac{1}{13}\right) \Rightarrow 2 = 3i_1 + \frac{2}{13}$$

$$3i_1 = \frac{24}{13} \Rightarrow i_1 = \frac{8}{13}$$

$$i_1 + i_2 = \frac{8}{13} + \frac{1}{13} = \frac{9}{13} \approx 0.69 \text{ A}$$

16. Ans (3)

$$Y = \frac{F}{A} \cdot \frac{L}{\Delta L} = \frac{\text{dyne}}{\text{cm}^2} = \frac{10^{-5} \text{N}}{10^{-4} \text{m}^2} = 0.1 \text{ N/m}^2$$

17. Ans (4)

Acceleration is a_1 , $v_0 = a_1 t_1$ (i)

Retardation is a_2 , $0 = v_0 - a_2 t_2$ (ii)

$$a_2 = 3a_1$$
, put in (ii) $v_0 = 3a_1t_2$ (iii)

By (i) & (iii) $t_1 = 3t_2$

Given
$$t_1 + t_2 = 8$$

then
$$t_1 + \frac{t_1}{3} = 8 \implies t_1 = 6 \text{ s}$$

18. Ans (3)

19. Ans (2)

(A) E due to 5q and q

- (B) E due to 5q only2q and 2q cancels each other
- (C) 5q and 5q cancels each other So E due to 3q - 2q = q
- (D) 5q and 5q cancels each other3q and 3q cancels each otherresult is zero

$$E_A > E_B > E_C > E_D$$

20. Ans (3)

Closed organ pipe

$$L = \frac{3\lambda_c}{4}$$
, $V_c = \sqrt{\frac{\gamma P}{\rho_1}} = \lambda_c f$ (i)

For open organ pipe

$$L_0 = 2\left(\frac{\lambda_0}{2}\right), \ V_0 = \sqrt{\frac{\gamma P}{\rho_2}} = \lambda_0 f \dots (ii)$$

(ii) ÷ (i)
$$\sqrt{\frac{\rho_1}{\rho_2}} = \frac{\lambda_0}{\lambda_c}$$
Put $\lambda_0 = L_0$, $\lambda_c = \frac{4L}{3}$

$$\Rightarrow \lambda_0 = \frac{4L}{3} \sqrt{\frac{\rho_1}{\rho_2}}$$

21. Ans (3)

Required length of winding wire $L = 2\pi rN$

r = radius of solenoid

N = Number of turns

Magnetic field inside solenoid

$$B = \mu_0 \left(\frac{N}{\ell}\right) I$$

 ℓ = length of solenoid

by eq.(i) & (ii)

$$\Rightarrow B = \mu_0 \left(\frac{L}{2\pi r}\right) \frac{I}{\ell}$$

Put B = 0.2 T, I = 10 A,
$$r = 3 \times 10^{-2} \text{ m}$$

$$\ell = 0.80 \text{ m}$$

On solving $L = 2.4 \times 10^3 \text{ m}$

22. Ans (1)

Speed of wave
$$v = \sqrt{\frac{T}{\mu}} = \frac{\omega}{k}$$

$$\sqrt{\frac{T}{1.3 \times 10^{-4}}} = \frac{30}{1}$$

$$\Rightarrow T = 900 \times 1.3 \times 10^{-4}$$

$$T \simeq 0.12 \text{ N}$$

Ans (3)

$$I = \frac{1}{2}\rho va^2 \omega^2 \implies I \propto n^2 a^2$$

24. Ans (2)

23.

As
$$F = 100 \text{ N}$$
,

Tension in string is 50 N

So m_2 can not move, its acceleration is zero, for

 m_1

$$50 - 4g = 4a \Rightarrow a = 2.5 \text{ m/s}^2$$

25. Ans (1)

Most of current passes through shunt

$$25 \times 10^{-3} = 25 \text{ R}_{\odot}$$

$$\Rightarrow R_s = 0.001$$

 $f \le \mu mgcos\theta$ so (a) is false In pure rolling no loss of energy so (b) is false

f increases ω , decreases v

(c) is true

Equation of motion for sphere

$$mgsin\theta - f = ma....(1)$$

torque
$$\tau = fR = mk^2 \propto$$

about centre, $a = R \propto$

$$fR = mk^2 \frac{a}{R}$$

$$fR^2 = mK^2a$$
 (2) Put in (1)

$$mgsin\theta - f = \frac{fR^2}{k^2}$$

$$mgsin\theta = f\left(1 + \frac{R^2}{k^2}\right)$$

$$f = \frac{\text{mg sin } \theta}{1 + R^2/K^2}$$

As θ decreases, friction decreases.

27. Ans (3)

$$t_{\min} = \frac{d}{V_{s/r}} \text{ (same)}$$

28. Ans (3)

Electric field of large sheet is $E = \frac{\sigma}{2\epsilon_0}$

A rod is hinged in this field. If we consider the rod as an electric dipole of moment P then,

$$P = (\lambda \ell). \ \ell = \lambda \ell^2$$

Torque $\tau = PE \sin \theta$

$$\tau = (\lambda \ell^2) \frac{\sigma}{2 \epsilon_0} \sin \theta$$

29. Ans (4)

From the relation $B_v = I \sin \phi$

$$I = \frac{V}{\sin \phi} = \frac{6 \times 10^{-5}}{\sin 30^{\circ}} = \frac{6 \times 10^{-5}}{0.5} = 12 \times 10^{-5} \text{ tesla}$$

30. Ans (1)

Maximum possible friction between block and slab

$$f_{s(lim)} = \mu_S \; N_{AB} = 0.60 \times 10g = 60 \; N$$

then acceleration of slab in this condition

$$a = \frac{60}{40} = 1.5 \text{ m/s}^2$$

If both block and slab move together under the effect of 100 N then common acceleration would be

$$a_c = \frac{100}{10 + 40} = 2 \text{ m/s}^2$$

Slab can not with this acceleration so there is sliding between block and slab. So

$$100 \text{ N} \underbrace{\qquad \qquad } 10 \text{ kg}$$

$$\times \text{ g} = 40 \text{ N}$$

$$f_k \underbrace{\qquad \qquad } 40 \text{ kg}$$

$$Acceleration of slab = \frac{f_k}{40} = \frac{40}{40} = 1 \text{ m/s}^2$$

31. Ans (4)

$$\therefore E = same \quad so \lambda = \frac{h}{\sqrt{2mE}}$$

$$\lambda \propto \frac{1}{\sqrt{m}}$$

$$\frac{\lambda_p}{\lambda_\alpha} = \sqrt{\frac{m_\alpha}{m_p}} = \sqrt{\frac{4m_p}{m_p}} = 2$$

$$\lambda_p = 2\lambda_0$$

32. Ans (3)

$$A_1V_1 = A_2V_2$$

$$= \pi \left(\frac{3}{2}\right)^2 \times 4 = \pi \left(\frac{6}{2}\right)^2 \times v$$

$$= v = 1 \text{ m/s}$$

33. Ans (3)

According to Stefan's law $E = \sigma \varepsilon A T^4$

$$\frac{1.58 \times 10^5 \times 4.2}{60 \times 60} = 5.67 \times 10^{-8} \times 10^{-4} \times 0.8 \times T^4$$

$$T = 2500 \text{ K}$$

34. Ans (2)

$$d = y - x, m = \frac{y}{x}$$

$$d = mx - x = (m - 1)x$$
(i)

For position-1

$$u = -x$$
, $v = y$

Focal length f,
$$\Rightarrow \frac{1}{f} = \frac{1}{v} - \frac{1}{u} = \frac{1}{v} - \frac{1}{-x}$$

$$\frac{1}{f} = \frac{1}{mx} + \frac{1}{x} = \frac{(1+m)}{mx}$$

$$\Rightarrow f = \frac{mx}{m+1} \qquad \dots$$

Put
$$x = \frac{d}{m-1}$$
 in (ii)

$$f = \frac{md}{m^2 - 1}$$

35. Ans (3)

Net force on M is $F_2 + \sqrt{2}F_1 = \frac{MV^2}{R}$

$$\begin{split} F_2 &= \frac{GM^2}{\left(2R\right)^2} \quad , \; F_1 = \frac{GM^2}{\left(\sqrt{2}R\right)^2} \\ \frac{MV^2}{R} &= \frac{GM^2}{4R^2} + \sqrt{2}\frac{GM^2}{2R^2} \\ V &= \frac{1}{2}\sqrt{\frac{GM}{R}}(1 + 2\sqrt{2}) \end{split}$$

36. Ans (1)

$$i = \frac{\epsilon}{R} \left(1 - e^{-\frac{tR}{L}} \right)$$

Emf across R is $\epsilon_R = \epsilon \left(1 - e^{-\frac{tR}{L}}\right)$

$$\Rightarrow \varepsilon_{\rm R} = 6V \left(1 - e^{-\ln\sqrt{2}.2}\right)$$

$$\Rightarrow \varepsilon_{R} = 6V \left(1 - \frac{1}{2}\right) = 3V$$

Voltage across coil $\varepsilon_c = \varepsilon - \varepsilon_R = 3\text{volt}$

37. Ans (2)

Here the tangential acceleration also exits which requires power.

Given that $a_c = k^2 r t^2$ and $a_c = \frac{v^2}{r}$

$$\therefore \frac{v^2}{r} = k^2 r t^2$$

$$v^2 = k^2 r^2 t^2 \quad \text{or} \quad v = k r t$$

Tangential acceleration $a_t = \frac{dv}{dt} = kr$

Now force F = ma

 $\mathbf{F} = \mathbf{m}\mathbf{k}\mathbf{r}$

So power $P = F \times v$

 $P = mkr \times krt = mk^2r^2t$

38. Ans (1)

For small amplitude, the angular motion is nearly simple harmonic and the time period is given by,

$$T = 2\pi \sqrt{\frac{I}{mg\ell}} = 2\pi \sqrt{\frac{\frac{mL^2}{3}}{mg\left(\frac{L}{2}\right)}} = 2\pi \sqrt{\frac{2L}{3g}}$$

Now by substituting values of L and g

$$T = 2\pi \sqrt{\frac{2 \times 60 \times 10^{-2}}{3 \times 10}} = 0.4$$
 second

$$\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{\left(\sqrt{\frac{I_1}{I_2}} + 1\right)^2}{\left(\sqrt{\frac{I_1}{I_2}} - 1\right)^2} = \frac{\left(\sqrt{\beta} + 1\right)^2}{\left(\sqrt{\beta} - 1\right)^2} \\
= \frac{\beta + 1 + 2\sqrt{\beta}}{\beta + 1 - 2\sqrt{\beta}}$$

$$\frac{I_{\max}-I_{\min}}{I_{\max}+I_{\min}} = \frac{\frac{I_{\max}}{I_{\min}}-1}{\frac{I_{\max}}{I_{\min}}+1} = \frac{2\sqrt{\beta}}{1+\beta}$$

40. Ans (3)

Diode D₁ is RB & D₂ & D₃ is FB

Thus

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2} = \frac{10 \times 20}{10 + 20}; \ R_{eq} = \frac{200}{30} = \frac{20}{3}$$

$$i = \frac{10 \times 3}{20} = \frac{3}{2} = 1.5 \text{ Amp}$$

41. Ans (4)

$$T\cos\theta = mg$$

$$T \sin\theta = (m) (4)^2 (L) \sin\theta$$

$$T = 16 \text{ mL}$$

42. Ans (4)

Efficiency n = 90%

 $0.9 \times \text{power in} = \text{power out}$

$$0.9 \times 2300 \times 5 = 230 \times I_{out}$$

$$I_{out} = 45 A$$

43. Ans (1)

$$Y = \frac{\text{stress}}{\Delta L/L} \text{ or } \frac{\Delta L}{L} = \frac{\text{stress}}{Y} = \frac{5 \times 10^7}{2 \times 10^{11}} = 2.5 \times 10^{-4}$$
Now,
$$V = \pi r^2 L$$

$$\frac{\Delta V}{V} = \frac{\pi \Delta (r^2 L)}{\pi r^2 L}$$

or
$$\frac{\Delta V}{V} = \frac{\Delta L}{L} + 2\frac{\Delta r}{r}$$

or
$$2\frac{\Delta r}{r} = \frac{\Delta V}{V} - \frac{\Delta L}{L}$$

or
$$2\frac{\Delta r}{r} = \frac{0.02}{100} - 2.5 \times 10^{-4}$$

or

$$\frac{\Delta r}{r} = 1 \times 10^{-4} - \frac{2.5}{2} \times 100^{-4} = -0.25 \times 10^{-4}$$

44. Ans (4)

E (initial) =

$$\frac{Q_0^2}{2C} = \frac{1}{2}CV_0^2 = V_0^2$$

Final energy
$$E(f) = \frac{Q_0^2}{2C_{cff}}$$

$$E(f) = \frac{1}{2} \times \frac{2v_0}{10} \times 2v_0 = \frac{v_0^2}{5}$$

$$\Delta E(loss) = \frac{4v_0^2}{5}$$

$$\% loss = \frac{4v_0^2}{5v_0^2} \times 100$$

$$\Delta E(loss)\% = 80\%$$

$$E + 4r = 12$$

$$E - 2r = 9$$

$$\Rightarrow E = 10 \text{ V & } r = 0.5\Omega$$

46. Ans (3)

$$\therefore$$
 pH = 5

$$\therefore$$
 [H⁺] = 10–5 M

After dilution [H⁺] =
$$\frac{10^{-5}}{1000}$$
 = 10^{-8} M

Total [H⁺] =
$$10^{-8} + 10^{-7}$$

= $10^{-7} [10^{-1} + 1]$
= $10^{-7} [1.1]$

$$pH = -\log(1.1 \times 10^{-7}) = 6.95$$

47. Ans (2)

$$P_{T} = P_{B}^{0}X_{B} + P_{T}^{0}X_{T}$$

$$= 96 \times \frac{1}{2} + 28 \times \frac{1}{2} = 48 + 14 = 62 \text{ torr}$$

$$Y_{B} = \frac{P_{B}}{P_{total}} = \frac{48}{62} = 0.77$$

$$y_{T} = 1 - 0.77 = 0.23$$

48. Ans (2)

$$\Lambda_m^0 (NH_4OH) = 150 + 2.70 - 149$$

$$\Rightarrow$$
 280 S cm² mol⁻¹

$$\alpha = \frac{\Lambda_m}{\Lambda_m^{\alpha}} = \frac{25}{280} = 0.09$$

$$K_a = \frac{C\alpha^2}{1 - \alpha} = \frac{0.02(0.09)^2}{1 - 0.09} = 1.0 \times 10^{-4}$$

$$t = \frac{2.303}{0.2303} \log 4$$

$$t = 6.02 \sec$$

$$\frac{200 - 190}{200} = n_{B} = \frac{n_{B}}{n_{B} + \frac{624}{78}}$$

$$\frac{1}{20} = \frac{n_{B}}{n_{B} + B}$$

$$19nB = 8 \implies n_{B} = \frac{8}{19}$$
Mol. wt = 152g

51. Ans (3)

CH₃NH₂ + HCl
$$\longrightarrow$$
 CH₃NH₃Cl⁻
0.08 0.02 0.02
0.06 -
pOH = pK_b + log $\left(\frac{.02}{.06}\right)$
pOH = 3.3 + log $\frac{1}{3}\frac{1}{3}$
pOH = 2.83
pH = 14 - 2.83 = 11.17

52. Ans (3)

$$A \rightarrow \frac{1}{8} \times 8 = 1A \rightarrow \frac{1}{8} \times 8 = 1$$
 $B \rightarrow \frac{1}{2} \times 5 = \frac{5}{2}B \rightarrow \frac{1}{2} \times 5 = \frac{5}{2}$
 A_2B_5

$$H_2 + \frac{1}{2} \frac{1}{2} O_2 \longrightarrow H_2 O$$
15 10 15

L.R.
$$10-7.5 = 2.5 \text{ mL O}_2$$

54. Ans (2)

No. of atoms =
$$\frac{6.8}{68} \frac{6.8}{68} \times N_A \times 3$$

= $6.023 \times 3 \times 10^{22}$
= 18.06×10^{22}

55. Ans (3)

$$\log \frac{x}{m} = \log K + \frac{1}{n} \log P$$

$$\log \frac{x}{m} = \log K + \frac{1}{n} \log P$$

$$n = 4, 1 = 3, 2, 11.2 = 3, 2, 1, 0$$

Total 32 electrons

But with
$$M_{s} = +\frac{1}{2} \frac{1}{2}$$

16 electrons

57. Ans (3)

No. of moles of
$$e^- = \frac{0.4 \times 8 \times 3600}{96500} \times 0.75$$

$$= 0.089$$

$$C_2H_6 = \frac{0.089}{2} \times 22.4 \times \frac{720}{760} \times \frac{300}{273}$$

$$C_2H_6 = \frac{0.089}{2} \times 22.4 \times \frac{720}{760} \times \frac{300}{273}$$

$$= 1.03L = 1.03L$$

58. Ans (2)

$$C_7H_{16} + 11O_2 \longrightarrow 7CO_2 + 8H_2O$$

$$\Delta H^0 = 7(-394) + 8(-286) - (-200)$$

$$\Delta H^0 = -2758 - 2288 + 200 = -4846$$

59. Ans (3)

$$PT = P^{\circ}_{A}X_{A} + P^{\circ}_{R}X_{R}$$

$$450 = 300 \left(\frac{2}{x+2} \right) + 500 \left(\frac{x}{x+2} \right)$$

$$450 = 300 \left(\frac{2}{x+2}\right) + 500 \left(\frac{x}{x+2}\right)$$

$$\Rightarrow \qquad \qquad 45 = \frac{60}{x+2} + \frac{50x}{x+2}$$

$$45 = \frac{60}{x+2} + \frac{50x}{x+2}$$

$$\Rightarrow$$
 (x + 2)45 = 60 + 50x

$$x = 6$$

60. Ans (1)

Due to formation of most stable transition stage.

$$PV = nRT$$

$$P \ = \ \frac{nR}{V} \ \times \ TP \ = \ \frac{nR}{V} \ \times \ T$$

Slope =
$$\frac{nR}{V}$$
 Slope = $\frac{nR}{V}$

62. Ans (2)

(Conc.
$$H_2SO_4 + Conc. HNO_3$$
)

⇒ Nitrating mixture

63. Ans (1)

Cellulose is a polymer of β -glucose.

64. Ans (3)

65. Ans (1)

$$CH_3$$
 CH-OH CH_3 C=O

66. Ans (2)

General formula of saturated fatty acid is $C_nH_{2n+1}COOH$

71. Ans (4)

72. Ans (2)

$$\begin{array}{ccc} CH_3-CH-COOH & \xrightarrow{LiAlH_4} CH_3-CH-CH_2OH \\ I & I \\ CH_2OH & CH_2OH \end{array}$$

74. Ans (1)

$$\begin{array}{c|c} & CN & \underbrace{\text{H_2O/OH}}_{\text{incomplete}} & & \\ \hline & A & NH_2 & \underbrace{\text{KOH}}_{\text{Br}_2} & \\ & & \text{Hoffman} \\ & & \text{Bromomide} \\ & & \text{Degradation} \\ \end{array}$$

75. Ans (2)

3° alcohol reacts fastest with lucas reagent as it forms most stable 3° carbocation.

76. Ans (2)

In presence of sun light (hv) free radical substitution reaction will takes place.

77. Ans (2)

$$PCl_{5} \xrightarrow{H_{2}SO_{4}} POCl_{3} + SO_{2}Cl_{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_{3}PO_{4} \quad H_{2}SO_{4}$$

79. Ans (1)

$$CH_2 \xrightarrow{COOH} CG_3O_2 \longrightarrow [O=C=C=C=O]$$

80. Ans (1)

$$CN_2^{-2} \Rightarrow \stackrel{\bigcirc}{N} = C = \stackrel{\bigcirc}{N}$$

83. Ans (2)

For polyatomic anion

Thermal stability ∝ Size of cation

84. Ans (3)

Metal carbonyl contain synergic bond between Metal atom and CO molecules

$$C \xrightarrow{\sigma} M$$
 $M \xrightarrow{\pi} C$

Bauxite is ore of aluminium

It has impurities of Fe₂O₃ and SiO₂

86. Ans (3)

dien → Diethylene triamine

87. Ans (2)

88. Ans (4)

Cl₂ cannot displace F₂.

89. Ans (2)

 AsO_3^{-3} , ClO_3^- and $SO_3^{-2} \Rightarrow sp^3$ hybridisation so non planar.

90. Ans (1)

The important step in the extraction of Metal from carbonate ore is calcination.

$$ZnCO_3 \rightarrow ZnO + CO_2$$

99. Ans (2) NCERT XIIth Pg # 195

101. Ans (3)NCERT XIIth Pg.#25 (E), 26 (H)

105. Ans (2)
New NCERT Update

107. Ans (3) NCERT (XI) Pg. # 269; para-1

108. Ans (1) NCERT (XI) Pg. # 272

109. Ans (2) NCERT XI- Pg. # 282

110. Ans (1) NCERT (XI) Page No. # 273

115. Ans (2) NCERT XI Page # 72

119. Ans (4) NCERT-XII, Pg No. # 153

122. Ans (1) NCERT Pg # 113 para 7.4.2 fig 7.16

130. Ans (2) NCERT(XIth) Pg.#52, Ist para

134. Ans (2) NCERT (XI) Pg. # 138, para-01

138. Ans (2) NCERT XII Pg.# 185 (E), Pg.# 204 (H)

141. Ans (2) NCERT Pg. # 10

143. Ans (3) NCERT (XIth) Pg. # 21

152. Ans (4) NCERT(XII) Pg#133/143(H) Para:7.4

154. Ans (2) NCERT(XII) Pg#140/151(H) Para:7.9

157. Ans (4)
NCERT Page-60

158. Ans (2) NCERT (XIth) Pg. # 306,307

161. Ans (1) NCERT–XI, Pg. # 148, Para-1

164. Ans (3) NCERT Pg.#203

166. Ans (3) NCERT Pg. # 212

178. Ans (2) NCERT Pg # 279, 16.3.1

1001CMD303119109 • HS-11/11