Support Vector Machines Let us start with the basic intuition of SVM. Let us say we have a 2-D space (can be n-D, but for simplification let us aroune a 2-D space) yperplane Support vector of dimensions (n-1) The objective of SVM is to find a hyperplane which seperates the two classes such that the hyperplane is at a maximum distance from the points which define the boundary of the clauses (a.ka. support vectors) > Some basic info on SVHs: > Supervised learning algo > Unlike Logistic Regression this can also work on non-linearly Seperate data using kennels

_	The mathematics of it:
	to the same of
	The hyperplane can be suppresented by the equation
44	9
	ऄ.२ॅ+७=०
	where $\vec{w} \in coefficients \times \epsilon$ features, be trias
	The hyperplane equation is such that it is equidistant
* ;	to both the support vector planes land is therefore in between
	Hen)
	With just the hyperplane wx+6=0, we have two
	unknowns > w & & and we donot have enough constraint
	to calculate them, but with the support vector plane
Al annual .	capations defined as
	w.x+b=1, w.x+b=-1
	where if wextb &-1 y=-1
e _{no} vi <mark>ši</mark> Prit	& w.x+b>1 y=1 we can find w Eet.
	We can now combine the equations as
	y*(vi, x+6)≥1 @ societios condesion
	⇒ y.(w.x. +6)-1=0 + for all samples
	which lie on cost
	which lie on cost
	recor planes i.e. an
	Support vectors

The question is how do we find the peopendicular
projection of (n,-x). Here we have our perpendicular
vector is come to over rescue.
· (x2+-x2)·10 = width 10 = 10 = unit vector
liwil Itali
Now remember our optimization is to maximise this
width
: max (width) = max (m+-2).00)
IIOIL)
now remember our equ where we said for all point
vectors
y ₁ (13. x̄ ₁ +6) -1=0
: pox. n4 => y;=1 => w. n2+4-1=0
でで、一で、一で、
for x > y;=-1 >-(13.72+6)-1=0
必・え = - (1+1+)
: (元,-元). 强 元, 元, 强 二元, 强 二十七十七
(1111) 11111 11111
-2
IIWII

This equa can be solved using quadratic programming			
Where egis of the form can be solved by CVXOPT library's			
op solver			
min			
min 1 xTPx+qTx			
subject to Goz <h< td=""></h<>			
Ax=6.			
The lagrange en	can be writtenas.		
Q P			
$-(-1)^{T}\alpha + 1 \alpha^{T}$	9,9,×,*×, 4,4,2×,*×24,4,×,*×n		
2	924, x2x, 924, x2x2 424 xx2x N		
	Yny, xnx, yny, xnx, 2 Yny, xnx, xn		
subject to A			
subject to $\sqrt[3]{20} \approx \sqrt[3]{20}$.			
>>(-1) × < 0			
, B	'n		