Bits, Bytes, Ints

Jinyang Li

Some slides are due to Tiger Wang

Lesson plan

- How computers represent integers in binary formats
 - Bit, Byte
- How to make binary formats readable to humans
 - Hex notation
- How computers add/subtract integers
- Unsigned vs. signed integer representation

The language of technology has evolved from analog signals...

Analog signals: smooth and continuous

Hard

- 1. Difficult to design
- 2. Susceptible to noise

Analog components: resistors, capacitors, inductors, diodes, etc.

... to digital

Digital signals: discrete (0 or 1)

Easier

- 1. Easier to design
- 2. Robust to noise

Digital components: transistors, logic gates ...

Using bits to represent everything

Bit = Binary digit, 0 or 1

- A bit is too small to be useful
 - A bit has 2 values; the English alphabet has 26 values (characters)
- Idea: use a group of bits
 - different bit patterns represent different "values"

Question

How many bit patterns can a group of 2 bits have?

Can be either 0 or 1 $b_1 \ b_0$ All patterns of 2-bits: 00, 01, 10, 11

How many bit patterns does a group of n bits have?

Digression: Any self-respecting CS person must memorize powers of 2

$$2^{0} = 1$$
 $2^{1} = 2$
 $2^{2} = 4$
 $2^{3} = 8$
 $2^{4} = 16$
 $2^{5} = 32$
 $2^{6} = 64$
 $2^{7} = 128$
 $2^{8} = 256$
 $2^{9} = 512$
 $2^{10} = 1024$

2⁵

2⁸

Approximations of powers of 2

$$2^{10} = 1024 \approx 10^3$$
 (Kilo)
 $2^{20} \approx 10^{3*2} = 10^6$ (Mega)
 $2^{30} \approx 10^{3*3} = 10^9$ (Giga)
 $2^{40} \approx 10^{3*4} = 10^{12}$ (Tera)
 $2^{50} \approx 10^{3*5} = 10^{15}$ (Peta)

verizon/ 200 Mbps ≈ 2??

Stream and download movies, shows and photos.

\$39.99⁶

Per Month. With Auto Pay. Plus taxes and equipment charges. 200/200 Mbps

Represent non-negative integer

bits: b₁b₀

Goal: map each bit pattern to an integer

Represent unsigned integer

Bit pattern: $b_{n-1}b_{n-2}...b_2b_1b_0$

Range: [0, 2ⁿ-1]

Base-2 representation:

$$b_{n-1}b_{n-2}...b_2b_1b_0 = \sum_{i=0}^{n-1} b_i * 2^i$$

b_i is bit at i-th position (from right to left, starting at i=0)

Examples

Bit pattern: 00000110

Value: $0*2^7+0*2^6+0*2^5+0*2^4+0*2^3+1*2^2+1*2^1+0*2^0 = 6$

Bit pattern: 10000110

Value: ?

Byte

- Byte: a fixed size group of bits
 - The term is coined by Werner Buchholz (IBM).
 - Long long ago, different vendors use different byte sizes
- Now: Byte is 8-bit

IBM System/360, 1964

Introduced 8-bit byte

Intel 8080, 1974

Widely adopted

Modern processors

Standardized

Byte

Byte is the smallest unit of information storage, computation and transfer

Integers are represented by 1,2,4, or 8 bytes.

Range of 1-byte non-negative integers: [0, ??]

Bit-pattern of the largest integer?

Range of 4-byte non-negative integers: [0, ??]

Bit-pattern of the largest integer?

Most and least significant bit

MSB: bit position with the largest positional value LSB: bit position with the smallest positional value

1-byte unsigned int:

10011010

4-byte unsigned int:

01110011 10001101 01010011 11011010

Describing bit patterns in a humanreadable way

1-byte int: 10101110

C program:

unsigned int a = 0b10101110;

If I ask you to type a 4-byte int, ...

Describing a bit pattern: hex notation

Use one (hex) symbol to represent a group of 4 bits

How many hex symbols are needed?

Binary	Hex
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7

Binary	Hex
1000	8
1001	9
1010	a
1011	b
1100	С
1101	d
1110	е
1111	f

C program:

unsigned int a = 0xae;

What have we learnt

- How computers represent integers
 - Bit, Byte

Q: What is 10001111 in decimal? A: 143

Hex notation

Q: What is 10001111 in hex?

A: 0x8F

Lesson plan

- How computers represent integers
 - Bit, Byte
- Hex notation
- How computers add/subtract integers
- Signed integer representation
 - 2's complement
- A short history of processors:
 - from 8-bit to 64-bit machines
- Byte ordering: big vs. small endian

Unsigned int addition

00001011

+ 00001010

10001011

+ 10001010

00010101

00010101

Unsigned int subtraction

00001110

- 00001011

00001010

- 00001011

0000011

11111111

Strawman

Most significant bit (MSB) represents the sign

Weed different h/w for signed vs. unsigned computation

Two's complement

Unsigned int

$$00010110 = 0^{27} + 0^{26} + 0^{25} + 1^{24} + 0^{23} + 1^{22} + 1^{21} + 0^{20}$$

$$10010110 = 1^{27} + 0^{26} + 0^{25} + 1^{24} + 0^{23} + 1^{22} + 1^{21} + 0^{20}$$

Signed int

$$00010110 = 0*(-2^{7}) + 0*2^{6} + 0*2^{5} + 1*2^{4} + 0*2^{3} + 1*2^{2} + 1*2^{1} + 0*2^{0}$$

$$10010110 = 1*(-27) + 0*26 + 0*25 + 1*24 + 0*23 + 1*22 + 1*21 + 0*20$$

Two's complement

• 1-byte bit pattern → signed int

Bit pattern	value	
0000000	0	
00000001	1	
•••		
01111111	2 ⁷ -1 = 127	
1000000	-2 ⁷ = -128	
10000001	-2 ⁷ +1= -127	
•••		
11111111	$-2^7+(2^7-1)=-1$	

Two's complement

• 1-byte bit pattern → signed int

Source: xkcd.com

Basic facts of 2's complement

Signed int

Size (bytes)	Bit pattern of smallest	Bit pattern of largest	Range
1	0x80	0x7f	$[-2^7, 2^7-1]$
2	0x8000	0x7fff	[-2 ¹⁵ , 2 ¹⁵ -1]
4	0x80000000	0x7fffffff	[-2 ³¹ , 2 ³¹ -1]
8	0x8000000000000000	0x7fffffffffffffff	[-2 ⁶³ , 2 ⁶³ -1]

Home exercise: make a similar table for unsigned int

- Negative numbers ←→ MSB=1
- A sequence of 1's (e.g. 0xff, 0xffffffff) ← → -1

Signed addition on hardware

$$0 0 0 0 0 0 0 1 (1)_{10}$$

+ $0 0 0 0 0 0 1 1 (3)_{10}$

$$0\ 0\ 0\ 0\ 0\ 0\ 1\ (1)_{10}$$
 $0\ 0\ 0\ 0\ 0\ 0\ 1\ (1)_{10}$ $+\ 0\ 0\ 0\ 0\ 0\ 1\ (-127)_{10}$

This is what 2's complement is designed to accomplish!

$$0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ (4)_{10}$$

$$0\ 1\ 0\ 0\ 0\ 0\ 1\ (65)_{10}$$

+ $0\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ (64)_{10}$

$$1\ 0\ 0\ 0\ 0\ 0\ 1\ (-127)_{10}$$
 $+\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ (-2)_{10}$

$$1\ 0\ 0\ 0\ 0\ 0\ 1\ (-127)_{10}$$

$$0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ (127)_{10}$$

Signed subtraction on hardware

```
0\ 0\ 0\ 0\ 0\ 0\ 1\ (1)_{10} 0\ 0\ 0\ 0\ 0\ 0\ 1\ (1)_{10}
- 0\ 0\ 0\ 0\ 0\ 1\ 1\ (3)_{10} - 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ (-1)_{10}
```

This is what 2's complement is designed to accomplish!

$$1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ (-2)_{10}$$
 $0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ (2)_{10}$

$$0 1 1 1 1 1 1 1 1 (127)_{10}$$

$$- 1 1 1 1 1 1 1 0 (-2)_{10}$$

$$1\ 0\ 0\ 0\ 0\ 0\ 0\ (-128)_{10}$$

 $-0000001(1)_{10}$

$$1\ 0\ 0\ 0\ 0\ 0\ 1\ (-127)_{10}$$
 $0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ (127)_{10}$

$$0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ (127)_{10}$$

Two's complement: 8-bit signed integer

```
01011000 = 0*(-2^{7}) + 1*2^{6} + 0*2^{5} + 1*2^{4} + 1*2^{3} + 0*2^{2} + 0*2^{1} + 0*2^{0} = 88
11011000 = 1*(-2^{7}) + 1*2^{6} + 0*2^{5} + 1*2^{4} + 1*2^{3} + 0*2^{2} + 0*2^{1} + 0*2^{0} = -40
00000000 = 0
11111111 = -1
```

10000000

01111111

 $= -2^7 = -128$

 $= 2^{7}-1= 127$

2's complement: find a number's negation

A useful trick to do negation:

Step-1: flip all bits

Step-2: add 1

Why does the negation trick work

$$\vec{b} + (\sim \vec{b}) = 11...11_2 = -1$$

b with bits flipped

$$-\vec{b} = (\sim \vec{b}) + 1$$

Using negation trick to find the bitpattern of a negative number

The bit pattern of 8-bit signed integer -33?

Answer:

 $33 = (00100001)_2$

Apply negation trick: $(11011110)_2+1=(11011111)_2$

Negation trick helps computers do subtraction

Instead of doing this:

 $\begin{array}{c} 0\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ (5)_{10} \\ -\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ (7)_{10} \\ \\ \end{array}$

Do this instead:

Works for both signed and unsigned subtraction

Lesson plan

- How computers represent integers
 - Bit, Byte
- Hex notation
- How computers add/subtract integers
- Signed integer representation
 - 2's complement
- A short history of processors:
 - from 8-bit to 64-bit machines
- · Byte ordering: big vs. small endian

THE EVOLUTION OF INTEGER SIZES IN PROCESSORS

8-bit processors: Intel 8080 (1974)

32-bit processors: Intel 386 (1985)

64-bit processors: Intel Pentium 4 (2000)

Memory

0x00bacbea4c1eaf0f

64 bits machine: 64 bits length of

- CPU register
- Memory address

Nowadays:

- Servers/laptops: Intel/AMD 64-bit x86 processors
- Mobile phones/tablets: 64-bit ARM processors (made by Apple/Qualcomm/Samsung etc)

C's Integer data types on 64-bit machine

	Length	Min	Max
char	1 byte	-2 ⁷	27 - 1
unsigned char	1 byte	0	28 - 1
short	2 bytes	-2 ¹⁵	215 - 1
unsigned short	2 bytes	0	216 - 1
int	4 bytes	-2 ³¹	$2^{31} - 1$
unsigned int	4 bytes	0	$2^{32} - 1$
long	8 bytes	-2 63	2 ⁶³ - 1
unsigned long	8 bytes	0	2 ⁶⁴ - 1

Your first C program

```
#include <stdio.h>

int
main()
{
    char x = -127;
    char y = 0x81;
    char z = x + y;
    printf("hello world sum is %d\n", z);
}
```

Memory layout for multi-byte integers

Memory layout: Little Endian

Advantage of Little Endian

Processor performs calculation from the least significant bit

Processor can simultaneously perform memory transfer and calculation.

Another advantage of Little Endian

Memory layout: Big Endian

a:

Advantages of Big Endian

Quick to test whether the number is positive or negative

Examine byte stored at the address offset zero.

Summary

- Integer representation
 - Unsigned (base-2)
 - Signed (2's complement)
- Hex notation
- Operations (e.g. add,subtract) on fixed-width integers can cause overflow
- · Big vs. little endian