Module #4 - Functions

Izmir Institute of Technology

CENG 115
Discrete Structures

Slides are based on the Text

Discrete Mathematics & Its Applications (6th Edition)

by Kenneth H. Rosen

Module #4 - Functions

Module #4: Functions

Rosen 6th ed., § 2.3 ~20 slides, ~1 lecture

Function: Formal Definition

- For any nonempty sets A, B, we say that a function f from A to B ($f:A \rightarrow B$) is an assignment of exactly one element of B to each element of A.
- Functions are different from *relations* (ordered n-tuples)
- Functions are sometimes also called *mappings* or *transformations*.

Graphical Representations

• Functions can be represented graphically in several ways:

Venn-like diagrams

Functions We've Seen So Far

• A *predicate* can be viewed as a function from *objects* to *truth values*:

```
P := "is a nice creature",

P(Garfield) = "Garfield is a nice creature"

P(Garfield) \in \{T,F\}
```

- A set operator such as \cap , \cup can be viewed as a function from pairs of sets to sets.
 - Example: $\cap ((\{1,3\},\{3,4\})) = \{3\}$

Some Function Terminology

- If $f:A \rightarrow B$, and f(a)=b (where $a \in A \& b \in B$), then:
 - -A is the *domain* of f.
 - -B is the *codomain* of f.
 - -b is the *image* of a under f.
 - − *a* is a *pre-image* of *b* under *f*.
 - The *range* of *f* is the set of all images of elements in *A*.
 - The range $R \subseteq B$ of f is $\{b \mid \exists a f(a) = b \}$.

Range versus Codomain

- The range of a function might *not* be its whole codomain.
- The range is the *particular* set of values in the codomain that the function *actually* maps to.

Range vs. Codomain - Example

- Suppose that: "f is a function from students in the class to the set of grades {A,B,C,D,F}"
- At this point, you know *f*'s codomain is: {A,B,C,D,F}, and its range is unknown.
- Suppose at the end of the term, I announce that all the grades are A or B.
- Then the range of f is A,B, and its codomain is still A,B,C,D,F!.

Operators (general definition)

- An *n*-ary *operator* over the set *S* is any function from the set of ordered *n*-tuples of elements of *S*, to *S* itself.
- *E.g.*, if $S=\{T,F\}$, \neg can be seen as a unary operator, and \land , \lor are binary operators on S.
- Another example: \cup and \cap are binary operators on the set of all sets.
- Another example: +, × ("plus", "times") are binary operators over **R**.

One-to-One Functions

- A function is *one-to-one* (1-1), or *injective*, iff every element of its range has *only* 1 pre-image.
 - Formally: given $f:A \rightarrow B$, "f is injective" := $(\neg \exists x, y: x \neq y \land f(x) = f(y))$.
- Only <u>one</u> element of the domain is mapped <u>to</u> any given <u>one</u> element of the range.
 - Domain & range have same cardinality. What about codomain? May be larger!

One-to-One Illustration

• Bipartite (2-part) graph representations of functions that are (or not) one-to-one:

11/23/2020

(but a relation)

Sufficient Conditions for 1-1ness

- For functions f over numbers,
 - -f is *strictly* (or *monotonically*) *increasing* iff $x>y \rightarrow f(x)>f(y)$ for all x,y in domain;
 - -f is *strictly* (or *monotonically*) *decreasing* iff $x>y \rightarrow f(x)< f(y)$ for all x,y in domain;
- If f is either strictly increasing or strictly decreasing, then f is one-to-one. $E.g.\ x^3$
 - Inverse is not necessarily true. E.g. 1/x

Onto (Surjective) Functions

• A function $f:A \rightarrow B$ is *onto* or *surjective* iff its range is equal to its codomain: $\forall b \in B, \exists a \in A: f(a)=b$

- An *onto* function maps set *A* <u>onto</u> (over, covering) the *entirety* of set *B*, not just over a piece of it.
- E.g., for domain & codomain \mathbf{R} , x^3 is onto, whereas x^2 isn't. (Why not?)

Illustration of Onto

• Some functions that are or are not *onto* their codomains:

• How many different functions are there when |A|=m, |B|=n?

Function Composition Operator

- For functions $g:A \rightarrow B$ and $f:B \rightarrow C$, there is a special operator called *compose* ("o").
 - It <u>composes</u> (creates) a new function out of f,g
 by applying f to the result of g.
 - $-(f \circ g):A \rightarrow C$, where $(f \circ g)(a) = f(g(a))$.
 - Note g(a)∈B, so f(g(a)) is defined and ∈C.
 - Note that \circ (like Cartesian ×, but unlike +, \wedge , \cup) is non-commuting. (Generally, $f \circ g \neq g \circ f$.)

Bijections and Inverse Function

- A function f is a one-to-one correspondence, or a bijection, or reversible, or invertible, iff it is both one-to-one and onto.
- For bijections $f:A \rightarrow B$, there exists an inverse of f, written $f^{-1}:B \rightarrow A$, which is the unique function s.t. $f^{-1}(b)=a$ when f(a)=b.
- $f^{-1} \circ f = I$, the Identity Function.

The Identity Function

- For any domain A, the *identity function* $I:A \rightarrow A$ (variously written, I_A , $\mathbf{1}$, $\mathbf{1}_A$) is the unique function such that $\forall a \in A: I(a) = a$.
- Some identity functions you've seen: +ing 0, ·ing by 1, \land ing with **T**, \lor ing with **F**, \lor ing with \varnothing , \land ing with U.
- Note that the identity function is both one-toone and onto (bijective).

Identity Function Illustrations

• The identity function:

Domain and range

Some Important Functions

- In discrete math, we frequently use the following functions:
 - $-\lfloor x \rfloor$ ("floor of x") is the largest (most positive) integer $\leq x$.
 - $-\lceil x \rceil$ ("ceiling of x") is the smallest (most negative) integer $\geq x$.

Plots with floor/ceiling: Example

• Plot of graph of function $f(x) = \lfloor x/3 \rfloor$:

Review of § 2.3 (Functions)

- Function variables f, g, h, \dots
- Notations: $f:A \rightarrow B$, f(a), f(A).
- Terms: image, preimage, domain, codomain, range, one-to-one, onto, strictly (in/de)creasing, bijective, inverse, composition.
- Function unary operator f^{-1} , binary operators +, -, etc., and \circ .
- The $\mathbb{R} \rightarrow \mathbb{Z}$ functions $\lfloor x \rfloor$ and $\lceil x \rceil$.