МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по учебной практике

Тема: Разработка визуализатора алгоритма на Java. Минимальное остовное дерево: алгоритм Прима

Студентка гр. 0383	 Александрович В. П.	
Студент гр. 0383	 Парфенов В. М.	
Студентка гр. 0383	 Куртова К. А.	
Руковолитель	Ефремов М. А.	

Санкт-Петербург

ЗАДАНИЕ

на учебную практику

Студентка Александрович В. П. группы 0383
Студент Парфенов В. М. группы 0383
Студентка Куртова К. А. группы 0383
Тема практики: Разработка визуализатора алгоритма на Java. Минимальное
остовное дерево: алгоритм Прима.
Задание на практику:
Командная итеративная разработка визуализатора алгоритма на Java с
графическим интерфейсом.
Алгоритм: алгоритм Прима для нахождения минимального остовного дерева.
C 20.06.2022 12.07.2022
Сроки прохождения практики: 29.06.2022 – 12.07.2022
Дата сдачи отчета: 00.07.2020
Дата защиты отчета: 00.07.2020
Студентка гр. 0383 Александрович В. П.
Студент гр. 0383 Парфенов В. М.
Студентка гр. 0383 Куртова К. А.
Руководитель Ефремов М. А.

АННОТАЦИЯ

Целью разработка проекта является итеративного визуализатора алгоритма Прима с графическим интерфейсом на языке Java. Главными задачами проекта являются создание плана работы и разработка приложения согласно этому плану. Разработка осуществляется в команде, каждый участник которой Конечным выполняет свою роль. продуктом является приложение с графическим интерфейсом, пошагово визуализирующее выполнение алгоритма Прима для поиска минимального остовного дерева на графе, заданном одним из нескольких способов: граф либо генерируется самой программой, либо считывается из текстового файла, либо вводится самим пользователем с инструментов, предоставленных использованием программой. Проект предполагает разработку программы на Java с JDK версии 17 с GUI, реализованным с помощью Swing. Для сборки проекта используется Maven, программа покрывается тестами JUnit.

SUMMARY

The objective of the project is to develop an iterative visualizer of the Prim's algorithm with a graphical interface in Java language. The main tasks of the project are to create a work plan and develop applications according to this plan. Development is carried out in a team, each participant performing their role. The end result is a GUI application that visualizes the execution of the Prim's algorithm step by step. The graph is defined in one of several ways: it is either generated by the program itself, or read from a text file, or entered by the user themselves with the use of tools provided by the program. Is it presumed to build a Java program with JDK version 17 with a GUI implemented with Swing. Maven is used to build the project. The program is covered by JUnit tests.

СОДЕРЖАНИЕ

	Введение	5
1.	Требования к программе	6
1.1.	Исходные требования к программе*	0
1.2.	Уточнение требований после сдачи прототипа	0
1.3.	Уточнение требований после сдачи 1-ой версии	0
1.4	Уточнение требований после сдачи 2-ой версии	0
2.	План разработки и распределение ролей в бригаде	0
2.1.	План разработки	0
2.2.	Распределение ролей в бригаде	0
3.	Особенности реализации	0
3.1.	Структуры данных	0
3.2.	Основные методы	0
3.3		0
4.	Тестирование	0
4.1	Тестирование графического интерфейса	0
4.2	Тестирование кода алгоритма	0
4.3	•••	0
	Заключение	0
	Список использованных источников	0
	Приложение А. Исходный код – только в электронном виде	0

ВВЕДЕНИЕ

Целью проекта является итеративная разработка приложения с графическим интерфейсом на Java, предоставляющего пользователю инструменты для взаимодействия с ним. Приложение должно пошагово визуализировать выполнение алгоритма Прима. Алгоритм Прима строит минимальное остовное дерево взвешенного связного неориентированного графа.

1. ТРЕБОВАНИЯ К ПРОГРАММЕ

1.1. Исходные требования к программе

1.1.1. Требования к вводу исходных данных

Входные данные могут быть заданы одним из нескольких способов:

1) Загружены из текстового документа (файла с расширением .txt). Файл должен содержать данные в следующем формате: первая строка содержит число, обозначающее количество вершин, последующие строки вида

[вершина 1] [вершина 2] [вес ребра] задают ребра графа. Вершины обозначаются их порядковыми

номерами.

- 2) Введены пользователем вручную помощью cинструментов, программой. Пользователю предоставленных предоставляется несколько режимов: режим ввода вершин, режим ввода ребер и режим удаления элементов. Вершины добавляются пользователем щелчком мыши на свободную часть холста. Ребра добавляются выбором двух вершин в режиме добавления ребер, пользователя просят ввести вес создаваемого ребра. Пользователь может редактировать граф, удаляя элементы (ребра и вершины) в режиме удаления.
- 3) Сгенерированы самой программой. Данные о графе генерируются и визуализируются программой. Полученный граф должен удовлетворять условиям, требующимися для выполнения алгоритма (т. е. быть связным, неориентированным и взвешенным).

В первых двух случаях обязательна проверка на связность графа.

1.1.2. Требования к визуализации

Графический интерфейс приложения должен содержать панель инструментов и холст, на котором будет представлен граф.

На панели инструментов содержится несколько кнопок, отвечающих за следующие действия:

- 1) Кнопка "Очистить" удаляет все элементы с холста.
- 2) Кнопка "Загрузить" позволяет загрузить файл формата .txt с информацией о графе.
- 3) Кнопка "Сгенерировать" добавляет на холст граф, сгенерированный самой программой.
- 4) Кнопка "Добавить вершину" включает режим добавления вершин. Вершины добавляются щелчком мыши на свободную часть холста.
- 5) Кнопка "Добавить ребро" включает режим добавления ребер. Ребра добавляются выбором двух вершин и вводом значения их веса.
- 6) Кнопка "Добавить вершину" включает режим удаления элементов. Элементы (ребра и вершины) удаляются щелчком мыши по ним.
- 7) Кнопка "Назад" показывает предыдущий шаг алгоритма.
- 8) Кнопка "Вперед" показывает следующий шаг алгоритма.

Визуализация работы алгоритма происходит следующим образом. Каждый шаг алгоритма показывается после нажатия кнопки "Вперед", с возможностью отката на предыдущий шаг с помощью кнопки "Назад". красным цветом на графе выделяются ребра и вершины, входящие в остовное дерево, голубым — рассматриваемые на данном шаге вершины и ребра, т. е. вершины, инцидентные последней вершине, вошедшей в минимальное остовное дерево, и соответствующие им ребра, зеленым — вершина и ребро с минимальным весом, которые войдут в минимальное остовное дерево на следующем шаге. В отдельной строке на каждом шаге алгоритма показывается текущий вес минимального остовного дерева.

Макет графического интерфейса представлен на рис. 1.

Рисунок 1 — Макет графического интерфейса приложения Диаграмма сценариев использования представлена на рис. 2.

Рисунок 2 — Диаграмма сценариев использования

2. ПЛАН РАЗРАБОТКИ И РАСПРЕДЕЛЕНИЕ РОЛЕЙ В БРИГАДЕ

2.1. План разработки

02.07 — создание файла отчёта, заполнение титульного листа с постановкой задачи и сроками, написание раздела спецификаций, описание ролей участников команды; согласование спецификаций; создание Maven-проекта.

04.07 — Создание прототипа интерфейса: интерфейс программы на заглушках, реализация структур данных и алгоритма, тесты для структур данных и алгоритма; создание диаграмм классов и описание сущностей.

06.07 — Рабочий прототип: реализация всех типов генерации данных, выполнение и отображение работы алгоритма; представление диаграмм последовательности, описание тестовых случаев.

08.07 — Корректная работа кнопок, отвечающих за пошаговое исполнение алгоритма, реализация структур данных, отвечающих за пошаговое выполнение алгоритма, реализация тестов для этих структур; создание диаграммы состояний для описания процесса пошагового исполнения алгоритма, пояснения к диаграмме, описание тестовых случаев, описание интерфейса взаимодействия с пошаговым выполнением алгоритма.

10.07 — Сборка проекта в јаг-архив, представление итогового отчёта.

2.2. Распределение ролей в бригаде

Александрович Валерия — покрытие программы тестами, связь интерфейса и внутренних структур данных

Парфенов Владислав — визуализация, создание интерфейса программы

Куртова Карина — реализация алгоритма и структур данных

3. ОСОБЕННОСТИ РЕАЛИЗАЦИИ

- 3.1. Структуры данных
- 3.2. Основные методы

4. ТЕСТИРОВАНИЕ

- 4.1. Первый подраздел третьего раздела
- 4.2. Второй подраздел третьего раздела

ЗАКЛЮЧЕНИЕ

Кратко подвести итоги, проанализировать соответствие поставленной цели и полученного результата.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ПРИЛОЖЕНИЕ А НАЗВАНИЕ ПРИЛОЖЕНИЯ