

Intro to Bayesian Statistics in R

Angelika Stefan

R-Ladies Amsterdam, September 28, 2021

About me

Economic, Organizational, & Social Psychology M.Sc.

About the workshop

Understanding the basics of Bayesian statistics

Let's get started!

Bayesian statistics is getting more and more popular

Published: 04 April 2017

Introduction to Bayesian Inference for Psychology

Alexander Etz & Joachim Vandekerckhove

Psychonomic Bulletin & Review 25, 5–34(2018) | Cite this article

14k Accesses | 24 Citations | 129 Altmetric | Metrics

Bayesian statistics is nothing new

Reverend Thomas Bayes (1701 – 1761)

- Presbyterian minister
- Studied logic and theology in Edinburgh
- Bayes theorem

Sir Harold Jeffreys (1891 – 1989)

- Geophysicist, mathematician, astronomer
- Professor for astronomy at Cambridge
- Bayes factor

Bayesian statistics is about quantifying uncertainty

"Chance then exists not in nature, and cannot coexist with knowledge; it is merely an expression for our ignorance of the causes, and our consequent inability to predict the result."

William S. Jevons, 1873

"It's probably B..."

Bayesian statistics is about updating knowledge

Bayesian statistics is about updating knowledge

Knowledge updating in parameter estimation

What is a parameter?

Any measured quantity of a statistical population that summarizes or describes an aspect of the population.

Examples:

- Mean
- Standard deviation
- Variance
- Proportion

Knowledge updating in parameter estimation

What is a parameter?

Any measured quantity of a statistical population that summarizes or describes an aspect of the population.

We do not know the population parameter

Bayesian statistics is about updating knowledge

Running example

Parameter of interest

People can be classified as either a cat person or a dog person.

We are interested in the proportion of dog people in the Netherlands.

$$\theta = 0$$
 $\theta = 1$

0% dog people

100% dog people

Prior Distribution

 $p(\theta)$

- Probability (density) function
- Quantifies uncertainty about a parameter before data collection
 - Wide prior: high uncertainty
 - Narrow prior: only few values considered likely

Prior Distribution

Different Prior Distributions

Choose your prior!


```
# Change the shape parameters to find the prior distribution that represents
# your belief best.
# Remember: theta = 0 = 0% dog people; theta = 1 = 100% dog people

shape1 <- 1
shape2 <- 1

curve(dbeta(x, shape1, shape2),
    bty="l", xlab=bquote(theta), ylab="Density", cex.lab=1.5)</pre>
```

The Likelihood

 $p(X|\theta)$

Shows how plausible data are, given a fixed parameter value

The number of successes in a sequence of n independent trials, each asking a yes-no question, follows a Binomial distribution with success parameter θ .

The Likelihood

$$p(X|\theta)$$

 $dbinom(0:n_observations, size = n_observations, prob = 0.5)$

 $dbinom(0:n_observations, size = n_observations, prob = 0.8)$

p(X)

- Makes a prediction about the plausibility of data
- Assuming that a model (prior + likelihood) is correct, what predictions does it make about possible data?

p(X)

Computation of the prior predictive distribution

$$p(X) = \sum_{\theta} p(\theta) \cdot p(X \mid \theta)$$

Weigh the likelihood of possible observations with the prior across all possible parameter values

Prior Distribution: Shows how plausible parameter values are before seeing the data

Likelihood: Shows how plausible data are, given a fixed parameter value

Computation of the prior predictive distribution

 $p(X) = \int_{0}^{1} p(\theta) \cdot p(X \mid \theta) d\theta$ Weigh the likelihood of possible observations with the prior across all possible parameter values

Prior Distribution: Shows how plausible parameter values are before seeing the data

Likelihood: Shows how plausible data are, given a fixed parameter value

Computation of the prior predictive distribution

$$p(X) = \int_{0}^{1} p(\theta) \cdot p(X \mid \theta) d\theta$$

 $p(X) = \int_{0}^{1} p(\theta) \cdot p(X \mid \theta) d\theta$ Weigh the likelihood of possible observations with the prior across all possible parameter values

```
integrand <- function(theta){</pre>
 dbinom(i,n_observations,theta) * dbeta(theta,shape1,shape2)
integrate(integrand, lower = 0, upper = 1)$value
```

p(X)

Prior

Prior Predictive

Yay, data!

Our fictional data:

In a random sample of N = 5 we observe:

x = 3 Dog people5-x = 2 Cat people

VS.

Marginal Likelihood

p(x)

- How plausible are the observed data under the model
- Evaluation of the prior predictive distribution at the observed data

Marginal Likelihood

p(x)

$$p(\theta \mid x)$$

- Probability (density) function
- Quantifies uncertainty about a parameter within a specific model after the data collection

How to get from prior to posterior distribution

Bayes theorem:
$$p(\theta \mid x) = p(\theta) \cdot \frac{p(x \mid \theta)}{p(x)}$$

Knowledge after data collection

Knowledge before data collection

Updating factor

 $p(\theta \mid x)$

How to get from prior to posterior distribution

Prior Distribution

 $p(\theta \mid x)$

Prior and posterior distribution

```
posterior <- function(theta){
   dbinom(sum(dogpeople),length(dogpeople),theta) * dbeta(theta,shape1,shape2) / ML
}

curve(posterior(x),
   bty="l", xlab = bquote(theta), ylab = "Density", cex.lab = 1.5)</pre>
```

$p(\theta \mid x)$

Prior and posterior distribution

(Data: 3 dog people, 2 cat people,

blue: prior, red: posterior)

Credible Interval

- With a probability of x%, the parameter lies within this interval
- Defined based on the posterior distribution

Credible Interval

Computation of the credible interval

Central Credible Interval

The 95% CI contains the central 95% of the posterior distribution

Bayesian statistics is about updating knowledge

Bayesian statistics is about updating knowledge

Prior Model Odds

$$p(M_1)/p(M_2)$$

• Compares the relative plausibility of two models before data collection

Prior Model Odds

$p(M_1)/p(M_2)$

Yay, data!

Our fictional data:

In a random sample of N = 5 we observe:

x = 3 Dog people5-x = 2 Cat people

VS.

$$p(x|M_1)/p(x|M_2)$$

- Tells you how much more likely the observed data are under one model than under another model
- Can be interpreted as degree of relative evidence for a model

$p(x|M_1)/p(x|M_2)$

Prior predictive distributions for the binomial models with the following prior distributions on θ

$$BF_{12} = 1.896$$

 $p(x|M_1)/p(x|M_2)$

```
# Compute the marginal likelihoods (ML_1 was computed earlier)
ML_1 <- ML
ML_2 <- dbinom(sum(dogpeople), length(dogpeople), prob = 0.5)
# Compute the Bayes factor
BF12 <- ML_1 / ML_2</pre>
```

$p(x|M_1)/p(x|M_2)$

Bayes factor interpretation

 $BF_{12} > 1$: Evidence in favor of model 1

 $BF_{12} = 1$: No evidence

 $BF_{12} < 1$: Evidence in favor of model 2

$p(x|M_1)/p(x|M_2)$

What is a convincing Bayes factor?

Bayes factor	Evidence category
> 100	Extreme evidence for \mathcal{H}_1
30 - 100	Very strong evidence for \mathcal{H}_1
10 - 30	Strong evidence for \mathcal{H}_1
3 - 10	Moderate evidence for \mathcal{H}_1
1 - 3	Anecdotal evidence for \mathcal{H}_1
1	No evidence
1/3 - 1	Anecdotal evidence for \mathcal{H}_0
1/10 - 1/3	Moderate evidence for \mathcal{H}_0
1/30 - 1/10	Strong evidence for \mathcal{H}_0
1/100 - 1/30	Very strong evidence for \mathcal{H}_0
< 1/100	Extreme evidence for \mathcal{H}_0

Posterior Model Odds

$$p(M_1|x)/p(M_2|x)$$

Compares the relative plausibility of two models after data collection

Posterior Model Odds

$p(M_1|x)/p(M_2|x)$

Posterior Model Odds = Prior odds x BF

0.75 P(M1|X)P(M2|X)

 $P(M_1|X):P(M_2|X) = 1:1 * 1.46 = 1.46:1$

Posterior Model Odds

 $p(M_1|x)/p(M_2|x)$

```
# First, define your prior model odds
prior_prob_M1 <- 0.5
prior_prob_M2 <- 0.5
prior_model_odds <- prior_prob_M1 / prior_prob_M2
# Then, update with the Bayes factor
posterior_model_odds <- prior_model_odds * BF12</pre>
```

Bayesian statistics is about updating knowledge

But what about more complex cases?

This workshop

But what about more complex cases?

The good news

- Bayesian statistics can be applied to extremely complex problems (e.g., hierarchical data, many parameters, nonlinear relationships, ...)
- Even highly complex modeling uses the same basic concepts (prior distribution, posterior distribution, Bayes factor, credible interval, ...)

The bad news

- Complex modeling requires computational solutions to obtain posteriors (think: multidimensional integrals)
- These solutions can be computationally intensive

Sounds difficult? Help is near!

R Packages

library(BayesFactor)

library(brms)

library(BAS)

library(rstan)

```
library(bridgesampling)
library(posterior)
               library(tidybayes)
library(bayesplot)
          library(bayestestR)
```

Sounds difficult? Help is near!

Textbooks

The theory of probabilities is basically just common sense reduced to calculus; it makes one appreciate with exactness that which accurate minds feel with a sort of instinct, often without being able to account for it.

Laplace, 1829

Questions, Comments, Issues

E-Mail: a.m.stefan@uva.nl

GitHub: astefan1

Twitter: @ephemeralidea

