B.C.A. (CBCS) RUSA VIth Semester 105 210 Examination

4396

NUMERICAL METHODS

Paper: BCA-0602

Time: 3 Hours]

[Maximum Marks: 70

Note :- Attempt four questions in all, selecting one question from each of the Sections B, C, D and E. Question No. 1 is compulsory.

Section-A

Compulsory Question

- 1. (A) Answer all the following ten questions with 1 mark each on the answer sheet.
 - The binary representation of the decimal (i) number 109 is
 - $(0.6372 E 4) (0.7456 E 5) = \dots$ (ii)

CH-722

(1)

Turn Over

- (iv) The first three terms in Newton's forward interpolation formula are given by :

$$y = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \dots$$

where $p = \frac{x - x_0}{h}$. Then the first three

terms of
$$\frac{dy}{dx}$$
 are

- (v) The real root of the equation $x e^{-x} = 0$ lies between:
 - (a) 0 and 1
 - (b) 1 and 2
 - (c) 2 and 3
 - (d) 3 and 4

- (vi) Which of the following relations is false?
 - (a) $E 1 = \Delta$
 - (b) $\nabla + E^{-1} = 1$
 - (c) $(1 + \Delta)(1 \nabla) = 1$
 - (d) $\delta^2 = E + E^{-1} + 2$
- (vii) The value of $\Delta^2 x^3$ at x = 0 is :
 - (a) 0
 - (b) 2
 - (c) 4
 - (d) 6
- (viii) In Gauss-Jordan method for solving a system of three simultaneous algebraic equations, elimination of unknowns ultimately reduces the system to:
 - (a) Lower Triangular matrix
 - (b) Upper triangular matrix
 - (c) Diagonal matrix
 - (d) Singular matrix

- (ix) Of the $\frac{1}{3}$ rd-Simpson's rule and $\frac{3}{8}$ th. Simpson's rule the $\frac{1}{3}$ rd rule is better. (True/False)
- (x) If the values of x are equispaced and $\frac{dy}{dx}$ is required near the beginning of the table of values, we use Newton's Forward Interpolation Formula. (True/False)

Short Answer Type Questions

- (B) Answer all the four questions.
 - (i) If $y = 3x^7 6x$, find the percentage error in y at x = 1 if the error in x = 0.05.
 - (ii) Express $y = 2x^3 3x^2 + 3x 10$, in factorial notation.
 - (iii) Find the cubical polynomial which takes the following values:

x	0		-	
C	0	1	2	3
f(x)	1	2	1010	10
Icin .			1	10

Formula.

Newton's Forward Interportation

(iv) Find the positive root of $x^4 - x - 10 = 0$, correct to three decimal places, using Newton-Raphson method. $4\times5=20$

Section-B

- 2. (a) If $P = \frac{5xy^2}{z^3}$, x = y = z = 1, error in x, y, and z is equal to 0.001. Find relative error in P.
 - (b) Multiply 0·1112E6 by 0·1213E8. 5,5
- (a) Convert the Binary number (100110011)₂ to decimal form.
 - (b) Find the number of terms in the expansion of e^x correct to 5 decimal places at x = 1. 5,5

Section-C

- 4. (a) Find a root of the equation $x^3 x 4 = 0$ between 1 and 2 to three decimal places using Newton-Raphson method.
 - (b) Find a root of $x^3 4x 9 = 0$, between 2 and 3, using the Bisection method in four stages. 5

H-722 (5) Turn Over

5. Solve the system:

$$20x + y - 2z = 17,$$

$$3x + 20y - z = -18,$$

and

$$2x - 3y + 20z = 25;$$

using both by Jacobi's and Gauss-Seidal method.

Section-D

6. (a) Evaluate:

$$\Delta^2 \left(\frac{5x+12}{x^2+5x+16} \right)$$

(b) Estimate the missing term in the following table:

x	0	1	2	3	4
f(x)	1	3	9	-	81

5,5

10

7. (a) Using Newton's forward interpolation formula, find the cubic polynomial which takes the following values:

x	0	1,	2	3
f(x)	1	2	1	10

Hence evaluate f(4).

CH-722

(b) Using Gauss's forward formula, evaluate
$$y_{30}$$
, given that $y_{21} = 18.4708$, $y_{25} = 17.8144$, $y_{29} = 17.1070$, $y_{33} = 16.3432$ and $y_{37} = 15.5154$. 5,5

8. (a) The following data gives the velocity of a particle for 20 seconds at an interval of 5 seconds.

Find the initial acceleration using the data:

Time t (sec.)	0	5	10	15	20
Velocity v (m/sec.)	0	3	14	69	228

(b) For the following values of x and y, find $\frac{dy}{dx}$ at x = 4:

x	1	2	4	8	10
у	0	1	5	21	27

9. (a) Derive Newton-Cote's quadrature formula to evaluate $\int_{a}^{b} f(x)dx$, where f(x) takes the values

$$y_0, y_1, y_2, \dots, y_n$$
 for $x = x_0, x_1, x_2, \dots, x_n$ respectively.

5.5

- Using Newton-Cote's quadrature formula, write (b) the following formulae:
 - (i) Trapezoidal rule
 - (ii) Simpson's one-third rule
 - (iii) Simpson's three-eighth rule 1,2,2