Just-News

CADE-based research on newspapers language

Leonardo Alchieri 860624

Davide Badalotti 861354

Goal:

Determine the **Emotional Charge** of the language used in various American Newspapers

Goal:

Determine the **Emotional Charge** of the language used in various American Newspapers

"Efforts by states to expand access to mail-in voting have enlarged the pool of eligible mail voters." "Police have been demonized in the days following the death of George Floyd."

- Describe factual realities
- Does not involve emotions
- Can be considered **objective** from our perspective

- Despite relying on facts, the author choses not to report them
- An emotion is presented
- Can be considered **subjective** from our point of view

Tools:

- Distributional methods (CADE).
- Annotated lexicons.
- Score induction methods:
 - 1. Dott. Nicoli
 - 2. Prof. Hamilton

Are they comparable?

How well do they perform?

Corpora:

Around ~60'000 articles and pages from 6 different sources:

- New York Times
- CNN
- ABC News
- Breitbart News
- The Federalist
- Wikipedia (used as control: hypothesis of neutral language)

Labeled Lexicons:

Two options:

- MPQA Subjectivity Lexicon. ~8000 words labeled as:
 - Strongly subjective (+1) [fool, greatness, scary...]
 - Weakly subjective (0) [speculate, scheme, repute...]
- Harvard General Enquirer. ~1000 words labeled as:
 - Over-stating (+1) [bad, brutal, acute...]
 - Under-stating (0) [ambiguity, apparent, appear...]

CADE Embeddings

Comparative Distributional Framework

$$\mathcal{F} = (D, V^*, \mathbf{C}, \Phi)$$

Set of slices:

$$D = \{D^1, \dots, D^n\}$$

Set of vocabularies, including the shared one:

$$V^* = \{V, V^1, \dots, V^n\}$$
 $V = \bigcup_{i=1}^{n} V^i$

Set of slice-specific embeddings:

$$\mathbf{C} = {\mathbf{C}^1, \dots, \mathbf{C}^n}$$

Set of top-k nearest neighbours corresp. functions:

$$\Phi_{D^i \to D^j}^k : \mathbf{C}^i \to \{\mathbf{C}^j_{(1)}, \dots, \mathbf{C}^j_{(k)}\}$$

Lexicon Refinement

Objective:

Determine a **subset of the initial lexicon** in which all the words have **stable vector-representation** across corpora.

$$\mathcal{L} \to \mathcal{L}_r$$

Where:

$$\mathcal{L}_r = \{ w_j \in \cap_i V_i : \zeta_{D_i}(w_j) > 5 \,\forall i \}$$

 $\zeta_{D_i}(w_j)$ is the Zipf measure of a word in corpus D_i.

High value means implies **stable and noise-free** word representation in corpus.

Standardized across corpora.

C: 8222 words

 \mathcal{L}_r : 64 words

Lexicon Augmentation

Objective:

Create new **artificial labeled word vectors** to increase the data quantity in the lexicon.

Procedure:

Given a word vector in the refined lexicon:

$$\mathbf{w_i} \in \mathcal{L}_r$$

We apply a vector of norm 1, whose components are extracted randomly from a standardized **normal distribution**.

Thus obtaining:

$$\mathbf{w_{i,j}} = \mathbf{w_i} + \mathbf{n}$$

If the following condition is satisfied:

$$MostSimilar(\mathbf{w_{i,j}}) = \mathbf{w_i}$$

The vector is added to the lexicon, with the same label as the *parent*.

 \mathcal{L}_a : 300 words

Main focus of this project

Objective:

Propagate the labels in the lexicon to all the vectors inside each embedding \mathbf{C}_i .

Result:

For each embedding C_i , we obtain a **labeled embedding:**

$$\mathbf{C}_i^{\ell} = \{(\mathbf{w_j}, L_j)\}_{j \in |V_i|}$$

Where the label has value between 0 and 1, where 1 is for max subjectivity.

We can also the define a **labeled vocabulary:**

$$V_i^{\ell} = \{(w_j, L_j)\}_{j \in |V_i|}$$

Three different methods:

Nicoli Hamilton No-induction

Comparison and scoring of benchmarked articles

Nicoli's Method

Overview:

The score induction process is framed as a **machine** learning problem.

Procedure:

We used a logistic regression.

- $\mathbf{w_{i}}$, word-vector in a certain embedding space, i < m
- *y*, its subjectivity score
- **W**, vector of weights

We optimize the cross-entropy loss function:

$$L(\mathbf{W}) = \sum_{j=1}^{m} \log(1 + e^{\mathbf{W} \cdot \mathbf{w_j}})$$

Perks:

- Fairly easy to set-up
- Fast-training
- Flexible

Disadvantages:

- Requires a consistent amount of labeled words (lexicon)
- Requires manual tuning

Hamilton's Method

Overview:

Based on random-walks on proximity graphs.

Procedure basics:

- $\mathbf{p}^{(i)} \in \mathbb{R}^{|V_i|}$ vector of labels, initialized as: $\mathbf{p}^{(0)} = (\dots, \frac{1}{|V|}, \dots)$
- $E \in \mathbb{R}^{|V_i| \times |V_i|}$ matrix of distances between word-vectors.
- $\mathbf{s} \in \mathbb{R}^{|V_i|}$ lexicon labels vector.
- β parameter that controls local/global consistency

The vector **p** is updated iteratively until convergence, as:

$$\mathbf{p}^{(i)} = f(E, \beta, \mathbf{s}, \mathbf{p}^{(i-1)})$$

Perks:

- Very robust
- Can work with a small lexicon (20 words)
- Only one parameter

Disadvantages:

 Heavy on computation resources and time

Hamilton's Method

Overview:

Based on random-walks on proximity graphs.

Procedure basics:

- $\mathbf{p}^{(i)} \in \mathbb{R}^{|V_i|}$ vector of labels, initialized as: $\mathbf{p}^{(0)} = (\dots, \frac{1}{|V|}, \dots)$
- $E \in \mathbb{R}^{|V_i| \times |V_i|}$ matrix of distances between word-vectors.
- $\sum_{\mathbf{S} \in \mathbb{R}^{|V_i|}} \text{lexicon labels vector.}$
- \bullet parameter that controls local/global consistency

The vector **p** is updated iteratively until convergence, as:

$$\mathbf{p}^{(i)} = f(E, \beta, \mathbf{s}, \mathbf{p}^{(i-1)})$$

Perks:

- Very robust
- Can work with a small lexicon (20 words)
- Only one parameter

Disadvantages:

 Heavy on computation resources and time

(VERY HEAVY!!!)

Process Name	Memory ~
python3.7	180.77 GB

Notes on implementations

Both implementations needed to be adapted:

- Dott. Nicoli's code only worked **for two models.** (Fork, modify, merge)
- Prof. Hamilton's code was written in python2, many parts were deprecated, also:
 - Implementation not agnostic to words
 - Did not support the **lexicon augmentation** process

RESULTS

Without induction, Wikipedia is the most objective of all.

Both other methods, Nicoli's Logistic Propagation and Hamilton's Propagation, do not match the initial structure.

RESULTS

Base hypothesis: Wikipedia has the most objective language.

True before score induction, **False** after.

The propagation might have some *undesired* effects.

friend

snow

Newssite	Hamilton	Nicoli - Logistic
Wikipedia	0.57	0.0000
Breitbart	0.21	0.0353
New York Times	0.47	0.0002
News Max	0.94	0.3172
CNN	0.18	0.0088
The Federalist	0.16	0.1715
ABC News	0.43	0.0005

Hamilton	Nicoli - Logistic
0.11	0.17
0.50	0.22
0.11	0.07
0.90	0.16
0.50	0.24
0.35	0.65
0.53	0.87
	0.11 0.50 0.11 0.90 0.50

Performance on benchmark articles

Can it spot subjective/objective texts?

Benchmarking:

Manually classified articles (~50).

Manually classified paragraphs (~200).

Values:

1: subjective

0 : objective

-1: uncertain

Scoring:

Collection of word-items T: $T = \{w_i, w_j, \dots, w_h\}$

Labeled vocabulary V_i: $V_i = \{(w_j, L_j)\}_{j \in |V_i|}$

Mean subjectivity score: $\langle L_T \rangle = \frac{1}{|T|} \sum_{j}^{w_j \in T} L_j$

Performance on benchmark articles

Can it spot subjective/objective texts?

Performance on benchmark articles

RESULTS

Mean subjectivity score for benchmark articles, classified as subjective and objective, for 3 score induction method.

On bechmarked text classified as *subjective*, both Hamilton's and Nicoli's method attribute (in mean) a slightly higher score, with Nicoli's method being more consistent. The distinction is fairly weak, **however present**.

Conclusions

- Some undesired effects during the propagation, probably due to lexicon composition.
- Propagation methods catches some aspects of subjectivity inside articles, as mean scores suggest.
- Nicoli's method seems consistent in results, despite primitive and simple scoring method.
- Hamilton's method result's are more robust, however it fails to recognize subjectivity in some context.
- Meaningful baseline for future improvements.

How to Improve:

- New, ad-hoc lexicon: Crowd-sourcing, social agreements
- Refined **benchmarking**: higher number of scorers, attenuate personal biases.
- Contextual word embedding. Example: Good.
 - Good as an adjective, Good as a noun
 - Inside the SubjectivityLexicon, Good is labeled as objective.
- Re-implementation of **Hamilton's framework**: word-agnostic
- Evaluating robustness: **bootstrapping** procedure
- The problem of direct and indirect quotes.

References:

- Bianchi, F., Di Carlo, V., Nicoli, P. and Palmonari, M., 2020. Compass-Aligned Distributional Embeddings For Studying Semantic Differences Across Corpora. [online] <u>arXiv.org</u>. Available at: https://arxiv.org/abs/2004.06519 [Accessed 10 September 2020].
- Hamilton, W., Clark, K., Leskovec, J. and Jurafsky, D., 2020. Inducing Domain-Specific Sentiment Lexicons From Unlabeled Corpora.
- Nicoli, P., Palmonari, M., Bianchi, F., 2019. Framework for Comparison of Corpus-Specific Models

Thanks for the attention

Zipf measure:

Definition

•

$$\zeta_D(w) = \log_{10} \left(\frac{\#w + 1}{|V|_M + |D|_M} \right) + 3$$

- #w is the frequency of the word inside the corpus D
- |V| is the dimension of the vocabulary (|M| indicates the unit of a million words)
- |D| is the dimension of the corpus (or slice)

Features:

- Widely used in literaure
- Standardized across various corpora and vocabularies of different dimension

Figure 3.11: Scatterplot and 2D Histogram of frequency-change relation for CADE slices

Ragionamenti Just News

- O Wikipedia sì: permette un ottimo confronto alla fine
- Slate no: troppi pochi articoli
- I processi sono tutti model dependent
- O Wikipedia potrebbe modificare in direzione indesiderata tutto l'embedding, ma è utile per il confronto finale quindi lo teniamo.
- O Nicoli è molto veloce da addestrare, ma dipende dalla Data Augmentation e dall'algoritmo di ML scelto.
- O Hamilton è molto dispendioso computazionalmente sia di tempo che memoria. Per come è implementato, non è agnostico alle parole, e quindi non supporta un lessico arricchito (data augmentation).
- O Dire che abbiamo modificato codice di Nicoli
- O Dire che abbiamo tradotto Hamilton da Python2 a Python3
- OPer i benchmark, sarebbe meglio fare media di score su tante persone diverse, per eliminare bias
- O Abbiamo cercato per Politica, e abbiamo notato come il termine sia bello diverso tra giornali
- Far presente il bias personale
- O Determinare miglior lessico, magari facendo scan a partire da paragrafo classificati
- O Usiamo sia i valori "certi" (1 o 0) sia le probabilità per confrontare Nicoli e Hamilton
- O Abbiamo provato diversi thresholds per Hamilton, ma difatti non cambia nulla nell'ordine.
- Fare esempi per CADE
- O Fare esempi sul lessico (magari condivisa da entrambi). Dire che non tutte le parole sono condivise dai due lessici annotati.
- Fare esempi sulle propagazioni, sia positivi che negativi. Far vedere che parole uguali hanno classificazioni diversa in diversi giornali.