4주차(1/3)

퍼셉트론

파이썬으로배우는기계학습

한동대학교 김영섭교수

퍼셉트론

- 학습 목표
 - 퍼셉트론의 구조와 학습방법을 이해한다.
- 학습 내용
 - 퍼셉트론의 역사와 구조
 - 퍼셉트론의 이진분류
 - 퍼셉트론의 학습방법
 - 과대적합과 과소적합

프랑크 로젠블라트(출처: Arvin Calspan Advanced Technology Center; Hecht-Nielsen, R. Neurocomputing)

- 인공 뉴론 → 뉴론, 노드, 퍼셉트론
- 퍼셉트론 → 최초의 인공신경망
 - 제안자: 프랑크 로젠블라트
 Frank Rosenblatt
 - 소속: 1957년 코넬 항공 연구소

프랑크 로젠블라트(출처: Arvin Calspan Advanced Technology Center; Hecht-Nielsen, R. Neurocomputing)

- 인공 뉴론 → 뉴론, 노드, 퍼셉트론
- 퍼셉트론 → 최초의 인공신경망
 - 제안자: 프랑크 로젠블라트
 Frank Rosenblatt
 - 소속: 1957년 코넬 항공 연구소
 - 논문: The Perceptron: A
 Probabilistic Model for
 Information Storage and
 Organization in the Brain

프랑크 로젠블라트(출처: Arvin Calspan Advanced Technology Center; Hecht-Nielsen, R. Neurocomputing)

- 인공 뉴론 → 뉴론, 노드, 퍼셉트론
- 퍼셉트론 → 최초의 인공신경망
 - 제안자: 프랑크 로젠블라트
 Frank Rosenblatt
 - 소속: 1957년 코넬 항공 연구소
 - 논문: The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain

마크 1 퍼셉트론 (출처: Arvin Calspan Advanced Technology Center; Hecht-Nielsen, R. Neurocomputing)

ARCHIVES

NEW NAVY DEVICE LEARNS BY DOING; Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser

JULY 8, 1958 1958

WASHINGTON, July 7 (UPI) -- The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

ARCHIVES

NEW NAVY DEVICE LEARNS BY DOING; Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser

JULY 8, 1958

WASHINGTON, July 7 (UPI) -- The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.

■ 입력 **x**

■ 입력 **x**

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

■ 가중치 w

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$

■ 입력 **x**

■ 가중치 w

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$

순입력 z

• 순입력 **z** $z = w_0 x_0 + w_1 w_1 + ... + w_n x_n$

■ 순입력 z

$$z = w_0 x_0 + w_1 w_1 + \dots + w_n x_n$$
$$= \sum_{j=0}^{n} x_j w_j$$

■ 순입력 z

$$z = w_0 x_0 + w_1 w_1 + \dots + w_n x_n$$

$$= \sum_{j=0}^{n} x_j w_j$$

$$= \mathbf{w}^T \mathbf{x}$$

■ 순입력 z

$$z = w_0 x_0 + w_1 w_1 + \dots + w_n x_n$$
$$= \sum_{j=0}^{n} x_j w_j$$
$$= \mathbf{w}^T \mathbf{x}$$

- 순입력 z 계산 예제:
 - 1. 입력 x = [0, 1, 2, 3]
 - 2. 가중치 w = [0부터 1사이의 작은 값]
 - 3. 순입력 z 를 계산하십시오.

```
x = np.array([0, 1, 2, 3])
w = np.array([0, 0.1, 0.2, 0.3])
z = np.dot(x, w)
print(z)
1.4 예제 풀이(1)
```

- 순입력 z 계산 예제:
 - 1. 입력 x = [0, 1, 2, 3]
 - 2. 가중치 w = [0부터 1사이의 작은 값]
 - 3. 순입력 z 를 계산하십시오.

```
x = np.array([0, 1, 2, 3])
w = np.array([0, 0.1, 0.2, 0.3])
z = np.dot(x, w)
print(z)
1.4 예제 풀이(1)
```

- 순입력 z 계산 예제:
 - 1. 입력 x = [0, 1, 2, 3]
 - 2. 가중치 w = [0부터 1사이의 작은 값]
 - 3. 순입력 z 를 계산하십시오.

```
import numpy as np
x = np.array(np.arange(4))
w = np.array(np.random.random(4))
z = np.dot(w, x)
print(z)

1.329056653793057 예제 풀이(2)
```

・ 순입력 \mathbf{z} $z = w_0 x_0 + w_1 w_1 + ... + w_n x_n$ $= \sum_{j=0}^{n} x_j w_j$ $= \mathbf{w}^T \mathbf{x}$

```
import numpy as np
x = np.array(np.arange(4))
w = np.array(np.random.random(4))
z = np.dot(w, x)
print(z)
1.329056653793057 예제 풀이(2)
```

순입력 z 계산 예제:

- 1. 입력 x = [0, 1, 2, 3]
- 2. 가중치 w = [0부터 1사이의 작은 값]
- 3. 순입력 z 를 계산하십시오.
- 예제 풀이(2)에 대한 생각:

- 순입력 \mathbf{z} $z = w_0 x_0 + w_1 w_1 + \dots + w_n x_n$ $= \sum_{j=0}^{n} x_j w_j$ $= \mathbf{w}^T \mathbf{x}$

```
import numpy as np
x = np.array(np.arange(4))
w = np.array(np.random.random(4))
z = np.dot(w, x)
print(z)

1.329056653793057 여제 풀이(2)
```

- 순입력 z 계산 예제:
 - 1. 입력 x = [0, 1, 2, 3]
 - 2. 가중치 w = [0부터 1사이의 작은 값]
 - 3. 순입력 z 를 계산하십시오.
- 예제 풀이(2)에 대한 생각:

・ 순입력 \mathbf{z} $z = w_0 x_0 + w_1 w_1 + ... + w_n x_n$ $= \sum_{j=0}^{n} x_j w_j$ $= \mathbf{w}^T \mathbf{x}$

```
순입력 z 계산 예제:
```

- 1. 입력 x = [0, 1, 2, 3]
- 2. 가중치 w = [0부터 1사이의 작은 값]
- 3. 순입력 z 를 계산하십시오.
- 예제 풀이(2)에 대한 생각:

```
import numpy as np
x = np.array(np.arange(4))
w = np.array(np.random.random(4))
z = np.dot(w, x)
print(z)
1.329056653793057 예제 풀이(2)
```

```
import numpy as np
x = np.array(np.arange(4))
w = np.array(np.random.random(4))
z = np.dot(w.T, x)
print(z)
1.4781818847304011 예제 풀이(3)
```

- 순입력 \mathbf{z} $z = w_0 x_0 + w_1 w_1 + ... + w_n x_n$ $= \sum_{j=0}^{n} x_j w_j$ $= \mathbf{w}^T \mathbf{x}$

순입력 z 계산 예제:

- 1. 입력 x = [0, 1, 2, 3]
- 2. 가중치 w = [0부터 1사이의 작은 값]
- 3. 순입력 z 를 계산하십시오.
- 예제 풀이(2)에 대한 생각:

```
import numpy as np
x = np.array(np.arange(4))
w = np.array(np.random.random(4))
z = np.dot(w, x)
print(z)
1.329056653793057 예제 풀이(2)
```

```
import numpy as np
x = np.array(np.arange(4))
w = np.array(np.random.random(4))
z = np.dot(w.T, x)
print(z)
1.4781818847304011 예제 풀이(3)
```

• 순입력 **z** $z = w_0 x_0 + w_1 w_1 + ... + w_n x_n$

$$=\sum_{j=0}x_jw_j$$

 $= \mathbf{w}^{\mathsf{T}}\mathbf{x}$

import numpy as np
np.random.seed(0)

x = np.array(np.arange(4))

w = np.array(np.random.random(4))

z = np.dot(w, x)

print(z)

3.5553656675063983 예제 풀이(**2A**)

순입력 z 계산 예제:

- 1. 입력 x = [0, 1, 2, 3]
- 2. 가중치 w = [0부터 1사이의 작은 값]
- 3. 순입력 z 를 계산하십시오.
- 예제 풀이(2)에 대한 생각:

3.5553656675063983

```
import numpy as np
np.random.seed(0)
x = np.array(np.arange(4))
w = np.array(np.random.random(4))
z = np.dot(w.T, x)
print(z)
```

예제 풀이(3A)

・ 순입력 \mathbf{z} $z = w_0 x_0 + w_1 w_1 + ... + w_n x_n$ $= \sum_{j=0}^{n} x_j w_j$ $= \mathbf{w}^T \mathbf{x}$

```
순입력 z 계산 예제:
```

- 1. 입력 x = [0, 1, 2, 3]
- 2. 가중치 w = [0부터 1사이의 작은 값]
- 3. 순입력 z 를 계산하십시오.
- 예제 풀이(2)에 대한 생각:

```
print('x.shape={}, w.shape{}, w.T.shape{}'.
    format(x.shape, w.shape, w.T.shape))

x.shape=(4,), w.shape(4,), w.T.shape(4,)
```

- •
- •

・ 순입력 \mathbf{z} $z = w_0 x_0 + w_1 w_1 + ... + w_n x_n$ $= \sum_{j=0}^{n} x_j w_j$ $= \mathbf{w}^T \mathbf{x}$

```
순입력 z 계산 예제:
```

- 1. 입력 x = [0, 1, 2, 3]
- 2. 가중치 w = [0부터 1사이의 작은 값]
- 3. 순입력 z 를 계산하십시오.
- 예제 풀이(2)에 대한 생각:

```
print('x.shape={}, w.shape{}, w.T.shape{}'.
    format(x.shape, w.shape, w.T.shape))

x.shape=(4,), w.shape(4,), w.T.shape(4,)
```

- •

- 입력 x, w:
 - 행벡터
 - 형상 n x 1 혹은 (n, 1)

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{w} = \begin{bmatrix} w_0 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$

- 순입력 z 계산 예제:
 - 1. 입력 x = [0, 1, 2, 3]
 - 2. 가중치 w = [0부터 1사이의 작은 값]
 - 3. 순입력 z 를 계산하십시오.
- 예제 풀이(2)에 대한 생각:

- 입력 x, w:
 - 행 벡터
 - 형상 n x 1 혹은 (n, 1)

$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$

- 순입력 z 계산 예제:
 - 1. 입력 x = [0, 1, 2, 3]
 - 2. 가중치 w = [0부터 1사이의 작은 값]
 - 3. 순입력 z 를 계산하십시오.
- 예제 풀이(2)에 대한 생각:

```
np.random.seed(0)
x = np.array(np.arange(4)).reshape(4,1)
w = np.array(np.random.random(4)).reshape(4,1)
z = np.dot(w.T, x) #.random((4,1)) is OK!
print(z)
[[3.55536567]]
```

```
print(x)
print(w.T)
print(z)
print('shapes: x{}, w{}, w.T{}, z{}'.
  format(x.shape, w.shape, w.T.shape, z.shape))
[[0]]
 [3]]
[[0.5488135  0.71518937  0.60276338  0.54488318]]
[[3.55536567]]
shapes: x(4, 1), w(4, 1), w.T(1, 4), z(1, 1)
```

```
print(x)
print(w.T)
print(z)
print('shapes: x{}, w{}, w.T{}, z{}'.
  format(x.shape, w.shape, w.T.shape, z.shape))
[[0]]
 [1]
 [2]
[[0.5488135  0.71518937  0.60276338  0.54488318]]
[[3.55536567]]
shapes: x(4, 1), w(4, 1), w.T(1, 4), z(1, 1)
```



```
print(x)
print(w.T)
print(z)
print('shapes: x{}, w{}, w.T{}, z{}'.
  format(x.shape, w.shape, w.T.shape, z.shape))
[[0]]
[1]
 [2]
 [3]]
[[0.5488135  0.71518937  0.60276338  0.54488318]]
[[3.55536567]]
shapes: x(4, 1), w(4, 1), w.T(1, 4), z(1, 1)
```



```
print(x)
print(w.T)
print(z)
print('shapes: x{}, w{}, w.T{}, z{}'.
  format(x.shape, w.shape, w.T.shape, z.shape))
[[0]]
[1]
 [2]
 [3]]
[[0.5488135  0.71518937  0.60276338  0.54488318]]
[[3.55536567]]
shapes: x(4, 1), w(4, 1), w.T(1, 4), z(1, 1)
```

```
z = np.dot(w.T, x).squeeze()
print(z)
```

3.555365667506398

3. 퍼셉트론 이진 분류

- 이진 분류(binary classification)
- 선형 이진 분류기
 - linear binary classifier

3. 퍼셉트론 이진 분류

- 입력
- 가중치
- **?**

3. 퍼셉트론 이진 분류

- 입력
- 가중치
- 활성화 함수
 - 시그모이드 함수
 - 계단함수
 - 쌍곡탄젠트 함수
 - 렐루(ReLU)함수

3. 퍼셉트론 이진 분류

• 이진 분류기의 활성화 함수

$$h(z) = \begin{cases} +1 & if \ z > 0 \\ -1 & otherwise. \end{cases}$$

3. 퍼셉트론 이진 분류

• 이진 분류기의 활성화 함수

$$h(z) = \begin{cases} +1 & if \ z > 0 \\ -1 & otherwise. \end{cases}$$

■ 학습 – 가중치의 변화

■ 학습 – 가중치의 변화

• 학습 – 가중치의 변화

• 학습 – 가중치의 변화

■ 학습 – 가중치의 변화

■ 완벽한 퍼셉트론?

■ 완벽한 퍼셉트론?

학습데이터: 레이블(label):

5041921314 3536172869

4091...

• • •

시험문제:

5717116302

- 더 나은 분류를 하는 선은**?**
 - 1. 초록색 선
 - 2. 검은색 선

■ 과대적합: overfitting

■ 과소적합: underfitting

퍼셉트론

- 학습 정리
 - 퍼셉트론의 역사
 - 퍼셉트론의 구조와 학습방법
 - 퍼셉트론의 이진분류기와 활성화함수
 - 과대적합과 과소적합
- 차시 예고
 - 4-2 퍼셉트론 알고리즘

3주차(3/3)

활성화 함수

파이썬으로배우는기계학습

한동대학교 김영섭교수

여러분 곁에 항상 열려 있는 K-MOOC 강의실에서 만나 뵙기를 바랍니다.