Math 733 - Fall 2020

Homework 3

Due: 10PM, October 11, 2020. Please upload your work in Canvas. Late homework will not be accepted.

- 1. Suppose that X and Y are independent. Find the distribution of X + Y if
 - (a) X has Binomial(n, p) and Y has Binomial(m, p) distribution.
 - (b) X has Poisson(λ) and Y has Poisson(μ) distribution.

(Check the posted summary on Canvas for the definition of these distributions.)

- 2. Suppose that X and Y are independent with CDF F_X and F_Y .
 - (a) Express the CDF of XY in terms of F_X and F_Y .
 - (b) Suppose that X and Y are absolutely continuous with PDF f_X and f_Y . Show that XY is absolutely continuous and find its PDF.
- 3. Suppose that $X_n \stackrel{P}{\to} X$ and $Y_n \stackrel{P}{\to} Y$ as $n \to \infty$, and all these random variables are defined on the same probability space. Show that $X_n + Y_n \stackrel{P}{\to} X + Y$ and $X_n Y_n \stackrel{P}{\to} XY$.
- 4. Let $f:[0,1]\to\mathbb{R}$ be a bounded, three time continuously differentiable function. Evaluate the following limit:

$$\lim_{n \to \infty} \int_{0}^{1} \int_{0}^{1} \dots \int_{0}^{1} n \left(f \left(\frac{1}{n} (x_1 + x_2 + \dots + x_n) \right) - f(1/2) \right) dx_1 dx_2 \dots dx_n$$

Hint: express the integral as an expectation.

- 5. Suppose that X_1, X_2, \ldots are independent and identically distributed non-negative integer valued random variables with common CDF F(x). Assume that F(0) < 1 and let $F^{(n)}$ denote the n-fold convolution of F. (This is the convolution of n copies of F.)
 - (a) For each x > 0 find a random variable N_x for which $E[N_x] = \sum_{n=1}^{\infty} F^{(n)}(x)$.
 - (b) Show that $\sum_{n=1}^{\infty} F^{(n)}(x)$ is finite for all $x \ge 0$.
 - (c) Is the previous statement true if we don't assume that the X_i are integer valued?
- 6. Suppose that X_1, X_2, \ldots are i.i.d. Cauchy distributed random variables, i.e. X_1 has PDF $\frac{1}{\pi(1+x^2)}$. Let $S_n = X_1 + \cdots + X_n$, and suppose that $c_n > 0$ is a sequence with $c_n/n \to \infty$ as $n \to \infty$. Show that $\frac{S_n}{c_n} \stackrel{P}{\to} 0$ as $n \to \infty$.

Here are two possible approaches:

- (1) Adjust the proof of the (general) Weak Law of Large Numbers discussed in class.
- (2) Show that S_n/n has the same distribution as X_1 .

(The second approach shows that the condition $c_n/n \to \infty$ is sharp.)

You can use the Piazza page to ask for clarifications about a specific problem, but please don't discuss explicit solutions before the deadline. Handing in plagiarized work, whether copied from a fellow student or off the web, is not acceptable and will lead to sanctions.

Bonus problem.

A random walker moves on the lattice \mathbb{Z}^2 according to the following rule: in the first step it moves to one of its neighbors with probability 1/4-1/4, and then in step n>1 it moves to one of the three neighbors that it didn't visit in the step n-1 with equal probability (independently of its history before step n-1). Let T be the time when the random walker steps on a site that it already visited. Show T has a finite expectation. What is the best bound you can give on E[T]?

Bonus problems are not graded, and you don't need to submit them. They are provided as an extra challenge for those who are interested.