Университет ИТМО ФПИиКТ

Домашняя работа №2 по Теории вероятности

Выполнил: Балтабаев Дамир

Группа: Р3210

Вариант: 3

Преподаватель: Селина Елена Георгиевна

Санкт-Петербург 2022

ИД3-19.1

В результате эксперимента получены данные, записанные в виде статистического ряда. Требуется:

- а) записать значения результатов эксперимента в виде вариационного ряда;
- б) найти размах варьирования и разбить его на 9 интервалов;
- в) построить полигон частот, гистограмму относительных частот и график эмпирической функции распределения;
- г) найти числовые характеристики выборки \bar{x} , D_B ;
- д) приняв в качестве нулевой гипотезу H_0 : генеральная совокупность, из которой извлечена выборка, имеет нормальное распределение, проверить ее, пользуясь критерием Пирсона при уровне значимости $\alpha = 0.025$;
- е) найти доверительные интервалы для математического ожидания и среднего квадратичного отклонения при надежности $\gamma = 0.95$ (взято такое значение, т.к для 0.9 нет данных в прил.9).

Значения:

1.3.

189	207	213	208	186	210	198	219	231	227
202	211	220	236	227	220	210	183	213	190
197	227	187	226	213	191	209	196	202	235
211	214	220	195	182	228	202	207	192	226
193	203	232	202	215	195	220	233	214	185
234	215	196	220	203	236	225	221	193	215
204	184	217	193	216	205	197	203	229	204
225	216	233	223	208	204	207	182	216	191
210	190	207	205	232	222	198	217	211	201
185	217	225	201	208	211	189	205	207	199

Cox							
	Farmon P321	Sal Dar	my	29500			
	S) Jon	wax low	oping'		1		
189,189,		Xmax - Xmih		- 182 =	= 54		
195, 195	h= u	F.COE TOOK	L= 9				
201, 202	Th=	54:9=		d + (ac	A) FI		
204, 205		~		7,			
7,0	nown.	unerfora	Geg.	Vocama	ruec.	Juan.	
	umephona	X1-X1+1	III WILLIAM	1 11000	4	Zouran	
16,217	1	182:188	185	8	0,08	0,013	
27,228	2	188;194	191	10	0,1	0,017	
36,236	3	194:200	197.	9	0,09	0,015	
	4	200: 206	203	15	0,15	0,025	
	8	206:212	209	16	0,16	0,027	
H	6	212:218	215	14	0,14	1	
	7	218:224	221	10	0,1	0,017	
	8	224:230	227	9	0,09	0,015	
	9	230:236	~)	100			

г)

	umoverel 32/0 des	3 Do	my J	Therry	recount	hir.	
2)	Bowoper				MA	3(1)	
mi	Inauryor	aument.	Coenonio	n; Ye	(x;')^	$n_i(x_i')^2$	
	182:188	185	8	1480	34225	273800	
2	188: 194	191	10	1910	36481	364810	
3 4	1947,200	197	9	1773	38 809	349 281	
5	200: 206	203	15	3045	41209	618135	
	206: 212	269	16	3344	43681	698896	
1	212:218	215	14	3010	46225	439569	
8	218: 224	221	10	2270	51529		
9	224: 230	227	9	2097	54289		
7	230:236	1	100	20918	-	489553	2
	_	0 . 4	20 = 2	09 18			
	$\bar{X} = 209$. $p_6 = 43$	as 52	2:100	- (2	09,18)	2=	
	$p_8 = 45$	048					
	Se = Spe	1~	19108	3			

7.

д) Найдем теоретические и эмпирические частоты

	Границы интервала x _i x _{i+1}				Границы интервала			
i			$x_i - x$	$\mathbf{x}_{i+1} - \mathbf{x}$	(z_i, z_{i+1})			
					$z_{i} = \frac{x_{i} - \overline{x}}{\sigma_{B}}$	$z_{i+1} = \frac{x_{i+1} - \overline{x}}{\sigma_B}$		
1	182	188	_	-21,18	_	-1,50122935		
2	188	194	-21,18	-15,18	-1,50122935	- 1,075951914		
3	194	200	-15,18	-9,18	-1,075951914	- 0,650674478		
4	200	206	-9,18	-3,18	-0,650674478	0,225397041		
5	206	212	-3,18	2,82	-0,225397041	0,199880395		
6	212 218		2,82	8,82	0,199880395	0,625157831		

7	218	224	8,82	14,82	0,625157831	1,050435268
8	224	230	14,82	20,82	1,050435268	1,475712704
9	230	236	20,82	_	1,475712704	_

Находим теоретические вероятности P_i и теоретические частоты используя таблицу Лапласа.

	Границы					
i	интервала		$\Phi(z_i)$	$\Phi(\mathbf{z}_{i+1})$	$Pi = \Phi(z_{i+1}) - \Phi(z_i)$	$f'_i = 100P_i$
	\mathbf{z}_{i}	\mathbf{Z}_{i+1}				
1	_	-1,501	-0,5	-0,4332	0,0668	6,68
2	-1,501	-1,076	-0,4332	-0,3599	0,0733	7,33
3	-1,076	-0,651	-0,3599	-0,2422	0,1177	11,77
4	-0,651	-0,225	-0,2422	-0,091	0,1512	15,12
5	-0,225	0,1999	-0,091	0,0793	0,1703	17,03
6	0,1999	0,6252	0,0793	0,2357	0,1564	15,64
7	0,6252	1,0504	0,2357	0,3531	0,1174	11,74
8	1,0504	1,4757	0,3531	0,4306	0,0775	7,75
9	1,4757		0,4306	0,5	0,0694	6,94
\sum	_			_	1	100
i						

Вычислим наблюдаемое значение критерия Пирсона.

$$\chi^2_{ ext{набл}} = rac{1}{n} \sum_{i=1}^k n_i^2 - n$$

i	n_i	n'_i	$n_i - n'_i$	$(n_i - n'_i)^2$	$\frac{\left(n_i - n_i'\right)^2}{n_i'}$	n_i^2	$\frac{n_i^2}{n_i'}$
1	8	6,68	1,32	1,7424	0,26084	64	9,580838323
2	10	7,33	2,67	7,1289	0,97256	100	13,6425648
3	9	11,77	-2,77	7,6729	0,6519	81	6,881903144
4	15	15,12	-0,12	0,0144	0,00095	225	14,88095238
5	16	17,03	-1,03	1,0609	0,0623	256	15,03229595
6	14	15,64	-1,64	2,6896	0,17197	196	12,53196931
7	9	11,74	-2,74	7,5076	0,63949	81	6,899488927
8	10	7,75	2,25	5,0625	0,65323	100	12,90322581
9	9	6,94	2,06	4,2436	0,61147	81	11,67146974

Контроль:
$$\frac{\sum n_i^2}{n_i'} - n = \frac{\sum (n_i - n_i')^2}{n} = 104,0247 - 100 = 4,0247$$

По таблице критических точек распределения χ^2 , уровню значимости $\alpha = 0.025$ и числу степеней свободы k = l - 3 = 9 - 3 = 6 найдем $\chi^2_{\text{кр}} \approx 14.4$

Так как $\chi^2_{\text{набл}} = 4,0247 < \chi^2_{\text{кр(0,025;6)}} = 14,4$,то гипотеза H0 о нормальном распределении генеральной совокупности принимается.

е) найти доверительные интервалы для математического ожидания и среднего квадратичного отклонения при надежности γ =0,95 (взято такое значение, т.к для 0,9 нет данных в прил.9)

$$\bar{x} = 209,18, \ n = 100, \overline{\sigma_B} = 14,180.$$

Если случайная величина (CB) X генеральной совокупности распределена нормально, то с надежностью γ можно утверждать, что математическое ожидание а CB X покрывается доверительным интервалом

$$\left(\overline{\chi} - rac{t_{\gamma}*\overline{\sigma_{\mathrm{B}}}}{\sqrt{n}}; \overline{\chi} + rac{t_{\gamma}*\overline{\sigma_{\mathrm{B}}}}{\sqrt{n}}
ight)$$

$$2\Phi(t) = 0.95 \Rightarrow \Phi(t) = 0.475$$

По таблице функции Лапласа находим

$$t_{\gamma} = 1,96$$

Получаем

$$209,18 - \frac{1,96*14,180}{\sqrt{100}} < a < 209,18 + \frac{1,96*14,180}{\sqrt{100}}$$
$$209,18 - 2,77928 < a < 209,18 + 2,77928$$
$$206,40072 < a < 211,95928$$

Доверительный интервал, покрывающий среднее квадратическое отклонение с заданной надежностью $(\overline{\sigma_B}(1-q); \overline{\sigma_B}(1+q))$

При γ =0,95 и n = 100 имеем: q = 0,143

Доверительным интервалом для σ будет (14,180(1-0,143); 14,180(1+0,143)) => (12,15226; 16,20774)

ИДЗ – 19.2

Дана таблица распределения 100 заводов по производственным средствам X(тыс.ден.ед.) и по суточной выработке Y(т). Известно, что между X и Y существует линейная корреляционная зависимость. Требуется:

- а) найти уравнение прямой регрессии у на х;
- б) построить уравнение эмпирической линии регрессии и случайные точки выборки (X, Y)

Значения:

1.3.

X	22,0	22,4	22,8	23,2	23,6	24,0	24,4	24,8	m_{χ}
1,00	3	2	1	_	_	_	_	_	6
1,20	_	_	4	5	_	_	_	_	9
1,40	_	_	10	7	6	_	_	_	23
1,60	_	_	_	12	9	5	_	_	26
1,80	_	_	_	_	7	4	3	_	14
2,00	_	_	_	_	_	5	9	8	22
m_y	3	2	15	24	22	14	12	8	100

$$\sum_{i=1}^{6} m_{x_i} = \sum_{j=1}^{8} m_{y_j} = n = 100$$

$$\sum_{i=1}^{m} m_{ij} x_i = 3 * 1 + 2 * 1 + [1 * 1 + 4 * 1,2 + 10 * 1,40]$$

$$+ [5 * 1,20 + 7 * 1,40 + 12 * 1,60] + [6 * 1,40 + 9 * 1,60 + 7 * 1,80]$$

$$+ [5 * 1,6 + 4 * 1,80 + 5 * 2] + [3 * 1,8 + 9 * 2] + 8 * 2$$

$$= 3 + 2 + 19,8 + 35 + 35,4 + 25,2 + 23,4 + 16 = 159,8$$

$$\sum_{j=1}^{k} m_{ij} y_j = [3 * 22 + 2 * 22,4 + 1 * 22,8] + [4 * 22,8 + 5 * 23,2]$$

$$+ [10 * 22,8 + 7 * 23,2 + 6 * 23,6] + [12 * 23,2 + 9 * 23,6 + 5 * 24]$$

$$+ [7 * 23,6 + 4 * 24 + 3 * 24,4] + [5 * 24 + 9 * 24,4 + 8 * 24,8]$$

$$= 133,6 + 207,2 + 532 + 610,8 + 334,4 + 538 = 2356$$

X	22	22,4	22,8	23,2	23,6	24	24,4	24,8	m _{xi}	$m_{xi}x_i$	$\sum_{j=1}^k m_{ij} y_j$	$x_i^2 m_{x_i}$	$x_i \sum_{j=1}^k m_{ij} y_j$
1	3	2	1						6	6	133,6	6	133,6
1,2			4	5					9	10,8	207,2	12,96	248,64
1,4			10	7	6				23	32,2	532	45,08	744,8
1,6				12	9	5			26	41,6	610,8	66,56	977,28
1,8					7	4	3		14	25,2	334,4	45,36	601,92
2						5	9	8	22	44	538	88	1076
m _{yj}	3	2	15	24	22	14	12	8	100	159,8	2356	263,96	3782,24
$m_{yj}y_j$	66	44,8	342	556,8	519,2	336	292,8	198,4	2356				
$\sum_{i=1}^m m_{ij} x_i$	3	2	19,8	35	35,4	25,2	23,4	16	159,8				
$y_j^2 m_{ij}$	145 2	1003 ,52	7797 ,6	12917 ,76	12253 ,12	8064	7144, 32	4920,32	55552, 64				
$y_{j} \sum_{i=1}^{m} m_{ij}$	х _і 66	44,8	451, 44	812	835,4 4	604,8	570,9 6	396,8	3782,2 4				

Выборочные средние
$$\bar{x}$$
 и \bar{y} , $i = \overline{1,6}$; $j = \overline{1,8}$;

$$\overline{x} = \frac{\sum \sum m_{ij} x_i}{n} = \frac{\sum m_{xi} x_i}{n} = \frac{159,8}{100} = 1,598$$

$$\overline{y} = \frac{\sum m_{y_j} y_j}{n} = \frac{2356}{100} = 23,56$$

Выборочная дисперсия:

$$s_x^2 = \frac{1}{n-1} \left(\sum_{i=1}^n m_{x_i} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n m_{x_i} x_i \right)^2 \right) = \frac{1}{99} \left(263,96 - \frac{1}{100} \cdot (159,8)^2 \right)$$

$$= \frac{1}{99} \left(263,96 - 255,3604 \right) = \frac{8,5996}{99} = 0,0869 s_y^2$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^n m_{y_i} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^n m_{y_i} y_i \right)^2 \right)$$

$$= \frac{1}{99} \left(55552,64 - \frac{1}{100} \cdot (2356)^2 \right) = \frac{1}{99} \left(55552,64 - 55507,36 \right)$$

$$= \frac{45,28}{99} = 0,4574$$

Корреляционный момент:

$$s_{xy} = \frac{1}{n-1} \left(\sum \sum m_{ij} x_i y_j - \frac{1}{n} \left(\sum m_{x_i} x_i \right) \left(\sum m_{y_j} y_j \right) \right)$$

$$= \frac{1}{99} \left(3782,24 - \frac{1}{100} \cdot (159,8 \cdot 2356) \right) =$$

$$= \frac{1}{99} (3782,24 - 3764,888) = \frac{17,352}{99} = 0,1753$$

Оценкой теоретической линии регрессии является эмпирическая линия регрессии, уравнение которой имеет вид:

$$y=\overline{y}+r_{xy}\cdot\frac{s_y}{s_x}(x-\overline{x})$$
 где $s_x=\sqrt{0.0869}=0.2948;\ s_y=\sqrt{0.4574}=0.6763$

$$r_{xy} = \frac{s_{xy}}{s_x s_y} = \frac{0,1753}{0,2948 \cdot 0,6763} = \frac{0,1753}{0,1994} = 0,8791$$
$$y = 23,56 + 0,8791 \cdot \frac{0,6763}{0,2948} (x - 1,598)$$
$$y = 2,0167x + 20,3372$$

Линия регрессии:

