EXERCISE 4 CONTINUOUS TIME-INDEPENDENT SCHRODINGER EQUATION

QUANTUM INFORMATION AND COMPUTING COURSE 2021/2022

ALESSANDRO MARCOMINI (2024286)

PROF. SIMONE MONTANGERO

EXERCISE GOALS

Consider the one-dimensional quantum harmonic oscillator defined by the Hamiltonian $H=\hat{p}^2+\,\omega^2\hat{x}^2$

- Write a Fortran program to compute the first k eigenvalues E_k and eigenvectors $|\psi_k\rangle$.
- Rate your program in terms of the priorities for good scientific software development (Correctness, Stability, Accurate discretization, Flexibility, Efficiency)

WHAT SHOULD I EXPECT?

- Theory of quantum mechanics: eigenvalues in the form $E_n = 2 \times (n + 1/2) \hbar \omega$ \Rightarrow constant difference among eigenvals
- Eigenfunctions: Hermite functions (# of nodes = n)
- ullet Finite size: discretize second derivative operator in \hat{p}^2 as

$$\psi_n^{\prime\prime} = \frac{\psi_{n-1} - 2\psi_n + \psi_{n+1}}{\Delta x^2} + \vartheta(\Delta x^4)$$

• At the boundaries, expected no kinetic contribution: for $x \in [-L, L]$

$$\omega^2 L^2 = E_n \Rightarrow L = \sqrt{E_n}/\omega$$

CODE DEVELOPEMENT

```
V_diag = (X**2)*(omega**2)

D = (2./(dx**2))*hbar**2 + V_diag
E = [(-1.,ii=1,N-1,1)]*(1./(dx**2))*hbar**2

call DSTEV( 'V', N, D, E, Z, LDZ, WORK, INFO )
```

- Use of LAPACK's DSTEV for hamiltonian diagonalization
- Avoid defining zero elements to improve efficiency and reduce memory use
- Add pre-conditions on input variables (e.g, non-negative discretization interval and number of points
- Add post-condition on exit status of DSTEV

RESULTS - PDFS AND DEPENDENCE ON N

RESULTS – DEPENDENCE ON L AND ω

FINAL OVERVIEW

It is hard to keep under control the whole algorithm: by one side, a larger L allows to estimate better higher level eigenvalues, the quality on the first ones. Similarly, a larger N allows for better precision on first energy levels, by it must be set wrt L. Changing ω means scaling the eigenvals: the last plot suggest that it must also be taken into consideration while setting the best N, L.