chemical-reaction-kinetics

December 23, 2021

[1]: import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import scipy.integrate as integrate

1 반응속도론(reaction-kinetics)

동적평형 그래프를 재현하기 위해서 간단하게 화학반응의 속도가 일정하거나(상수), 양에 비례하게 가정했었다.

화학반응속도론은 이런 가정에 더 정확한 이론적 바탕을 제공한다.

1.1 반응 속도(reaction rate)에 대한 정의

단위 시간당 반응물 또는 생성물의 농도 변화

$$A \longrightarrow B$$

• 반응물(A) 기준: A가 감소하는 속도

$$v = -\frac{\Delta[A]}{\Delta t}$$

• 생성물(B) 기준: B가 증가하는 속도

$$v = \frac{\Delta[B]}{\Delta t}$$

1.2 반응식의 계수와 속도의 관계

$$2A \longrightarrow B$$

이때 속도는

$$v = -\frac{1}{2} \frac{\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t}$$

일반적으로,

$$aA + bB \longrightarrow cC + dD$$

일때,

속도v는 다음과 같다.

$$v = -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$$

1.3 속도 법칙

반응 속도를 속도 상수(k)와 반응물들의 농도의 지수로 표시한다.

$$aA + bB \longrightarrow cC + dD$$

에서 속도 v를 다음과 같이 쓰는 것이다.

$$v = k[A]^x[B]^y$$

이때, x와 y를 반응 차수라 하고 x + y를 전체 반응 차수라 한다.

1.3.1 Example 1-1

$$2A \longrightarrow B$$

- 속도조건, $v = 0.1[A]^1 = -\frac{1}{2} \frac{\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t}$
- 초기조건, [A] = 1

```
[2]: t, dt = np.linspace(0, 100, 100000, retstep=True)

A = np.zeros_like(t)
B = np.zeros_like(t)
v = np.zeros_like(t)

k = 0.1

A[0] = 1
B[0] = 0
v[0] = k*A[0]

for i in range(len(t)-1):
    A[i+1] = A[i] - 2 * dt*v[i]
    B[i+1] = B[i] + 1 * dt*v[i]
    v[i+1] = k*A[i]
```

```
ax.plot(t, A, label="A")
ax.plot(t, B, label="B")
ax.legend()
plt.show()
```


1.4 차수에 따른 분류

- 영차 반응(zero-order reactions)
- 일차 반응(first-order reactions)
- 이차 반응(second-order reactions)
- 유사 n차 반응(pseudo nth reactions): 반응물 중 하나에 비해 다른 반응물이 **과량**일 경우에만 반응

1.4.1 E 2-1: 차수에 따른 변화

$$\mathbf{A} \longrightarrow \mathbf{B}$$

- k = 0.1
- $v = k[A]^x$

```
B = np.zeros((3, len(t)))
v = np.zeros((3, len(t)))

k = 0.1

A[:, 0] = 1
B[:, 0] = 0
```

```
[5]: v[0][0] = k
     v[1][0] = k*A[1][0]
     v[2][0] = k*A[2][0]**2
     for i in range(len(t)-1):
         A[0][i+1] = A[0][i] - dt * v[0][i]
         B[0][i+1] = B[0][i] + dt * v[0][i]
         if 0.001 > A[0][i] > 0:
             v[0][i+1] = 0
         else:
             v[0][i+1] = k
         A[1][i+1] = A[1][i] - dt * v[1][i]
         B[1][i+1] = B[1][i] + dt * v[1][i]
         v[1][i+1] = k*A[1][i]
         A[2][i+1] = A[2][i] - dt * v[2][i]
         B[2][i+1] = B[2][i] + dt * v[2][i]
         v[2][i+1] = k*A[2][i]**2
```

```
[6]: fig, ax = plt.subplots(figsize=(7, 4))

ax.plot(t, A[0], label='zero-order')
ax.plot(t, A[1], label='first-order')
ax.plot(t, A[2], label='second-order')

ax.set_ylabel("[A]")
ax.set_xlabel("time")
ax.legend()

plt.show()
```


1.5 반응의 일반해

1.5.1 0차 반응

$$-\frac{d[A]}{dt} = k$$

$$\int \frac{[A]}{dt} dt = -\int k dt$$

$$[A] = -kt + [A]_0$$

1.5.2 1차 반응

$$-\frac{d[A]}{dt} = ka$$

$$-\frac{[A]'}{[A]} = k$$

$$\int \frac{[A]'}{[A]} dt = -\int k dt$$

$$\ln [A] = -kt + C$$

$$[\mathbf{A}] = e^{-kt + \ln{[\mathbf{A}]_0}}$$

1.5.3 2차 반응

$$-\frac{d[A]}{dt} = k[A]^2$$

$$\int \frac{[A]'}{[A]^2} dt = \int -k dt$$

$$-\frac{1}{[A]} = -kt - C$$

$$[\mathbf{A}] = \frac{1}{kt + \frac{1}{[\mathbf{A}]_0}}$$

1.6 반응의 반감기

• 0차 반응의 경우

$$t_{1/2} = \frac{[\mathbf{A}]_0}{2k}$$

• 1차 반응의 경우

$$t_{1/2} = \frac{\ln 2}{k}$$

• 2차 반응의 경우

$$t_{1/2} = \frac{1}{k[\mathbf{A}]}$$

```
[7]: for i in range(3):
    for j, a in enumerate(A[i]):
        if a < 1/2:
            print(f"{i}차 반응, 수치값: {t[j]:.3f}", end=', 해석적값:')
            if i == 0:
                print(f"{1/(2*k):.3f}")
            elif i == 1:
                print(f"{np.log(2)/k:.3f}")
            elif i == 2:
                print(f"{1/k:.3f}")
            break
```

0차 반응, 수치값: 5.000, 해석적값: 5.000 1차 반응, 수치값: 6.931, 해석적값: 6.931 2차 반응, 수치값: 9.998, 해석적값: 10.000

1.7 반응 속도에 영향을 미치는 요인

- 반응물질의 특성
- 물리적 상태
- 고체의 표면적(고체에서 표면에 있는 입자만이 반응에 관여할 수 있기 때문)
- 농도
- 온도
- 촉매
- 압력
- ...

2 충돌이론

반응이 일어나기 위해서는 분자는 충돌해야하고, 충분한 에너지를 가지고 있는 상태이어야 한다. 이때 반응이 일어나기 위한 최소한의 에너지를 활성화 에너지 (activation energy)라 한다.

$$r(T) = Z\rho \exp\left(\frac{-E_{\rm a}}{RT}\right)$$

2.0.1 충돌수

대부분의 반응에서 온도가 올라갈수록 대부분의 반응 속도는 빨라진다.

이유는 반응 속도는 충돌수와 비례하는데 온도가 증가함에 따라 분자 운동 속도가 증가하고 분자간 충돌 빈도가 증가하여 반응 속도가 증가하기 때문이다.

2.0.2 활성화 에너지

온도에 따른 속도에 의해서만 반응이 일어나지 않는다. 충돌 시의 분자의 운동에너지가 부족하면 반응이 일어나지 않는다.

기체 분자의 운동에너지는 온도가 높을수록 높을 확률이 높다. 이는 맥스웰-볼츠만 분포로 확인할 수 있다.

v = np.linspace(0, 1200, 10000, dtype=np.float64)

$$kB = 1.3806488 * 10**(-23)$$

 $m = 127*1.66053904*10**(-27)$

T1 = 400

T2 = 700

T3 = 1000


```
[9]: print(f"T= 400, {integrate.quad(mbd1, 400, 1000)[0]:.5f}")
print(f"T= 700, {integrate.quad(mbd2, 400, 1000)[0]:.5f}")
print(f"T=1000, {integrate.quad(mbd3, 400, 1000)[0]:.5f}")
```

T= 400, 0.10639

T= 700, 0.32182 T=1000, 0.48391

2.1 아레니우스 식

속도상수 k의 온도T에 대한 의존성을 나타낸 식

$$k = A \exp\left(-\frac{E_a}{RT}\right)$$

 $(A 는 충돌 빈도, R 은 기체상수, E_a 는 활성화 에너지)$

```
[11]: fig, ax = plt.subplots(figsize=(7, 7))

T = np.linspace(400, 800)
R = 8.314
A = 100

ax.plot(T, A*np.exp(-100000/(R*T)), color='red')
ax.set_xlabel("T")
ax.set_ylabel("k")
ax.set_ylabel("k")
ax.set_yticks([])
ax.set_yticks([])
```


이에 더해 반응은 적절한 분자 배향을 가지고 충돌해야 한다. 따라서 배향인자 p를 고려해야 한다.

$$k = pA \exp\left(-\frac{E_a}{RT}\right)$$