

海云捷讯杯 全国总决赛 答 辩

基于FPGA的图像识别和机械臂精准控制系统设计

以伍编号: CICC0901373

团队名称: 超绝队

成员一: 机械臂分析及控制模块开发、硬件设计

成员二: 图像采集及识别模块开发

成员三: 图像采集及识别模块开发

01

项目介绍

系统总体设计方案

- 目标难度: 难度二
- · 主要功能实现方式: FPGA
- *使用外接平台*: 野火升腾Mini Artix-7 XC7A100T

总系统结构流程图

舵机

摄像头

02

关键技术分析

图像采集及识别

I. 颜色识别

Ⅱ. 连通域算法

Ⅲ. 质心坐标获取 & 形状识别

Ⅳ. 反正切求角度

机械臂分析及控制

I. 逆运动算法

II. 线性插值

Ⅲ. 状态控制仿真

2.1 图像采集及识别模块流程

I. 颜色分析

颜色	特征 一	控制阈值
红	Y分量比黑色大且Cr分量最大	Y、Cr
黄	Y分量在四种颜色里最大 且Cb分量最小	Y、Cb
蓝	Y分量比黑色大、比红色小 且Cb分量最大	Y、Cb
黑	Y分量最小	Y

II. 连通域算法

- A. 采用两遍扫描法, 在一帧图像的前一行打上标签, 第二行进行上一行标签的更新。 给互不相连的物体打上不同的标签, 以此达成分离物体的目的。
- B. 使用八连通域:指定像素的上下左右以及对角线方向上的8个像素为相邻像素。 在实现过程中对某一像素做具体判断的时候,只需要考虑头上三个以及左边的像素即可。

仿真结果 (640 X 480):

原图

实验效果

标签为"1"的二值化图像

Ⅲ. 质心坐标获取 & 形状识别

A. 加权平均值求质心

B. 形状识别

摄像头放在固定的高度,则每个物体所占二值化面积是一个固定的大小关系

形状	大小关系
三角形	最小
正方形	最大
圆形	大于六边形, 小于正方形
六边形	大于三角形, 小于圆形

IV. 反正切求角度

根据最高点X坐标与质心X坐标的关系,可以分成三种情况,每种情况有不同的反正切公式:

- 在左边:
$$\theta = \tan^{-1} ((y_{\bar{\mathbf{a}}} - y_{\bar{\mathbf{b}}})/(x_{\bar{\mathbf{b}}}) - x_{\bar{\mathbf{a}}}))$$

在右边:
$$\theta = \tan^{-1} ((y_{\overline{a}} - y_{\overline{b}})/(x_{\overline{a}} - x_{\overline{b}}))$$

在附近: θ = 常数

无论处于何种姿态,都不需旋转

正方形

旋转角度: $\gamma = \theta - 45^{\circ}$

$$\gamma = 135^{\circ} - \theta$$

 $\gamma = 45^{\circ}$

六边形

旋转角度: $\gamma = \theta - 60^{\circ}$

旋转角度: $\gamma = 120^{\circ} - \theta$

三角形

旋转角度: $\gamma = 135^{\circ} - \theta$

旋转角度:γ = 45°

 $\uparrow X$

2.2 机械臂分析及控制模块流程

期望的PWM信息与

I. 逆运动算法

建立坐标系

对0、4号舵机和1、2、3号舵机的角度建立方程组

求解方程组

利用ROM部署到FPGA

0、4号舵机角度的求解

X物、Y物 的比例一定,0、4号舵机角度确定:

$$\theta = \arctan \left| X_{\text{m}} / Y_{\text{m}} \right|$$

1号、2号、3号舵机角度的求解

当R一定时, 1、2、3号舵机的角度确定:

对R分类讨论,经各情况下连杆的几何关系建立三角方程组

II. 线性插值

①间隔时间可变、②步进值可变 —— 实现机械臂运动速度的可控

Ⅲ. 状态控制

03

性能分析

性能指标

指标	此系统
目标锁定时间(s)	0.067 <i>N</i>
完成任务总时间(s)	6.94 <i>N</i>
定位精度	一般

测试表

测试序号	总时间(s)	均方根误差(cm)	方差(cm²)	均值误差(cm)
1	6.94 <i>N</i>	1.45	2.27	1.30
2	5.27 <i>N</i>	2.11	4.77	1.92
3	12.96 <i>N</i>	0.35	0.13	0.27

04

方案可优化方向

A. 出现问题:在本系统现阶段的连通域算法中,所处理图像的边缘由于二值化阈值范围与光照环境影响下,可能会出现"左L"形的情景:

解决方案:在处理当前行标签的时候,增加"回溯"功能即增加固定次数的循环结构,把当前所要给的标签赋值给被循环的像素。

B. 出现问题:由于连通域算法将标签为1的物体输出,而且求取质心的公式与像素的xy坐标有关系。 所以图像识别模块容易收到噪点以及外部环境的影响

解决方案:在连通域模块之前添加滤波/腐蚀,保证模块传入的数据没有噪点。

感谢各位评委