1.	(True/False) While the EM algorithm maintains uncertainty about the cluster assignment for each observation via soft assignments, the model assumes that every observation comes from only one cluster.				
	True				
	False				
2.	(True/False) In high dimensions, the EM algorithm runs the risk of setting cluster variances to zero.	1 point			
	True				
	False				
3.	In the EM algorithm, what do the E step and M step represent, respectively?	1 point			
	Estimate cluster responsibilities, Maximize likelihood over parameters				
	Estimate likelihood over parameters, Maximize cluster responsibilities				
	Estimate number of parameters, Maximize likelihood over parameters				
	Estimate likelihood over parameters, Maximize number of parameters				
4.		1 point			
	Suppose we have data that come from a mixture of 6 Gaussians (i.e., that is the true				
	data structure). Which model would we expect to have the highest log-likelihood after fitting via the EM algorithm?				
	fitting via the EM algorithm?				
	fitting via the EM algorithm? A mixture of Gaussians with 2 component clusters				
	fitting via the EM algorithm? A mixture of Gaussians with 2 component clusters A mixture of Gaussians with 4 component clusters				
	fitting via the EM algorithm? A mixture of Gaussians with 2 component clusters A mixture of Gaussians with 4 component clusters A mixture of Gaussians with 6 component clusters				
_	fitting via the EM algorithm? A mixture of Gaussians with 2 component clusters A mixture of Gaussians with 4 component clusters A mixture of Gaussians with 6 component clusters A mixture of Gaussians with 7 component clusters				
5.	fitting via the EM algorithm? A mixture of Gaussians with 2 component clusters A mixture of Gaussians with 4 component clusters A mixture of Gaussians with 6 component clusters A mixture of Gaussians with 7 component clusters	1 point			
5.	fitting via the EM algorithm? A mixture of Gaussians with 2 component clusters A mixture of Gaussians with 4 component clusters A mixture of Gaussians with 6 component clusters A mixture of Gaussians with 7 component clusters	1 point			
5.	fitting via the EM algorithm? A mixture of Gaussians with 2 component clusters A mixture of Gaussians with 4 component clusters A mixture of Gaussians with 6 component clusters A mixture of Gaussians with 7 component clusters A mixture of Gaussians with 10 component clusters Which of the following correctlydescribes the differences between EM for mixtures of	1 point			
5.	fitting via the EM algorithm? A mixture of Gaussians with 2 component clusters A mixture of Gaussians with 4 component clusters A mixture of Gaussians with 6 component clusters A mixture of Gaussians with 7 component clusters A mixture of Gaussians with 10 component clusters A mixture of Gaussians with 10 component clusters Which of the following correctlydescribes the differences between EM for mixtures of Gaussians and k-means? Choose all that apply.	1 point			
5.	fitting via the EM algorithm? A mixture of Gaussians with 2 component clusters A mixture of Gaussians with 4 component clusters A mixture of Gaussians with 6 component clusters A mixture of Gaussians with 7 component clusters A mixture of Gaussians with 10 component clusters A mixture of Gaussians with 10 component clusters Which of the following correctlydescribes the differences between EM for mixtures of Gaussians and k-means? Choose all that apply. k-means often gets stuck in a local minimum, while EM tends not to	1 point			

k-means is equivalent to run covariances.	ning EM with infinite	simally small di	iag	gonal		
Suppose we are running the EM responsibility matrix:	algorithm. After an E	i-step, we obtai	in t	the follov	ving	1 point
Cluster responsibilities	Cluster A	Cluster B		Clust	er C	
Data point 1	0.20	0.40		0.40		
Data point 2	0.50	0.10		0.40		
Data point 3	0.70	0.20	0.20			
Which is the most probable clust	er for data point 3?					
Cluster A Cluster B Cluster C						
Suppose we are running the EM responsibility matrix:	algorithm. After an E	-step, we obtai	in t	the follov	wing	1 point
Cluster responsibilities	Cluster A	Cluster B		Cluster C		
Data point 1	0.20	0.40		0.40		
Data point 2	0.50	0.10		0.40		
Data point 3	0.70	0.20		0.10		
Suppose also that the data points	s are as follows:					
Dataset		X		Υ	Z	
Data point 1		3		1	2	

6.

7.

Data point 2

Data point 3

Let us compute the new mean for Cluster A. What is the Z coordinate of the new mean? Round your answer to 3 decimal places.

4.86

8. 1 point

0

1

0

3

3

7

Which of the following contour plots describes a Gaussian distribution with diagonal covariance? Choose all that apply.

- (1)
- (2)

- (3) (4) (5)

9. 2 points

Suppose we initialize EM for mixtures of Gaussians (using full covariance matrices) with the following clusters:

Which of the following best describes the updated clusters after the first iteration of EM?

