- 1. Umwandlung von Zahlen in verschiedenen Zahlensystemen:
 - a) $5289_{10} \rightarrow X_2$
 - b) $398,4368_{10} \rightarrow X_2$
- 2. Addition und Subtraktion von Dualzahlen
 - a) 2195 + 381
 - b) 589 231 (n=10)
 - c) 215 371 (n=10)
- 3. Multiplikation von Dualzahlen
 - a) $34_{10} \times 25_{10}$
 - b) 3,25₁₀ x 12,75₁₀
- 4. Division von Dualzahlen
 - a) 180:15
 - b) 54,625₁₀: 4,75₁₀

5. Sortierschaltung

Vor der Auslieferung von Werkstücken an den Kunden werden 4 Parameter (x_0 , x_1 , x_2 , x_3) überprüft, ob diese im Toleranzbereich liegen. Das Ergebnis der Messung ist dann 1, wenn der gemessene Wert innerhalb der Toleranz liegt, sonst 0.

Falls alle 4 Parameter innerhalb der Toleranz liegen, soll ein Ausgang y_0 der gesuchten Digitalschaltung gleich 1 sein.

Weicht nur x_1 von der Toleranz ab, dann soll Ausgang y_1 gleich 1 sein.

Liegen lediglich x_1 und x_3 außerhalb der Toleranz, dann liefert Ausgang y_2 eine 1.

Für alle anderen Fälle muss ein Ausgang z gleich 1 sein, d.h. dann ist das Werkstück Ausschuss.

Bestimmen Sie die gesuchte Schaltung und bauen Sie diese nur mit NAND-Gliedern auf!

6. Gegeben sei folgende Schaltung:

- a) Geben Sie die Arbeitstabelle hierfür an.
- b) Nehmen Sie positive Logik an. Welche Verknüpfung stellt die Schaltung dar?
- c) Wie ändert sich das Ergebnis von b) wenn man negative Logik voraussetzt?
- 7. Was versteht man unter Signal-Laufzeit und Signal-Übergangszeit (mit Skizze)?
- 8. Skizzieren Sie ein typisches TTL-NAND-Glied mit 5 Eingängen und Gegentakt-Ausgangsstufe.

9. Welche logische Funktion wir unter Annahme von positiver Logik durch die Schaltung dargestellt?

