(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 27.08.1997 Bulletin 1997/35

(21) Application number: 97301066.3

(22) Date of filing: 19.02.1997

(51) Int Oi.6: C12N 15/52, C12N 9/00, C12N 15/63, C12P 19/62, C12P 17/08

- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
 PT SE

 Designated Extension States:
 RO
- (30) Priority: 22.02.1996 US 12050
- (71) Applicant: ELI LILLY AND COMPANY Indianapolis, Indiana 46285 (US)
- (72) Inventors:
 - Burgett, Stanley Gene Indianapolis, Indiana 46227 (US)

- Kuhstoss, Stuart Allen Indianapolis, Indiana 46256 (US)
- Rao, Ramachandra Nagaraja Indianapolis, Indiana 46260 (US)
- Richardson, Mark Alan Bloomington, Indiana 46408 (US)
- Rosteck, Paul Robert, Jr.
 Indianapolis, Indiana 46237 (US)
- (74) Representative: Tapping, Kenneth George et al Lilly Industries Limited European Patent Operations Erl Wood Manor Windlesham Surrey GU20 6PH (GB)
- (54) Platenolide synthase gene
- (57) A DNA molecule isolated from Streptomyces

ambofaciens encodes the multi-functional proteins which direct the synthesis of the polyketide platenolide.

Description

5

25

45

The present invention is directed to the DNA isolated from *Streptomyces ambofaciens* responsible for encoding the multi-functional proteins which direct the synthesis of the polyketide platenolide. The present invention also is directed to use of that DNA to produce compounds exhibiting antibiotic activity based on the platenolide structure, including specifically spiramycin and spiramycin analogues and derivatives.

Spiramycin is a macrolide antibiotic useful in both veterinary and human medicine produced by *Streptomyces ambofaciens* (ATCC 15154). Spiramycin is a 16-membered cyclic lactone, platenolide, with three attached sugar residues. Spiramycin's antibiotic activity is believed to be due to its inhibition of protein synthesis by a mechanism that involves binding of the antibiotic to a ribosome. Spiramycin is structurally similar to another antibiotic, tylosin, and the biosynthetic pathways of both are known to be similar.

The biosynthesis of tylosin has been thoroughly investigated (Baltz et al., Antimicrobial Agents and Chemotherapy, 20(2):214-225(1981); Beckmann et al., Genetics and Molecular Biology of Industrial Microorganisms, (1989):176-186). Polyketides are synthesized via a common mechanistic scheme thought to be related to fatty acid synthesis. The cyclic lactone framework is prepared by a series of condensations involving small carboxylic acid residues. Modifications of the structure, such as ketoreduction, dehydration and enolylreduction, also occur during the processing. The synthesis is driven by a set of large multi-functional polypeptides, referred to as polyketide synthases.

PCT Publication WO 93/13663 describes the organization of the gene encoding the polyketide synthase of Saccharapolyspora ezythraea. The gene is organized in modules, with each module effecting one condensation step. The precise sequence of chain growth and the processing of the growing chain is determined by the genetic information in each module. This PCT application describes an approach for synthesizing novel polyketide structures by manipulating in several ways the DNA governing the biosynthesis of the cyclic lactone framework. In order to adapt this methodology to other polyketides, however, the DNA molecules directing the biosynthetic processing must first be isolated.

The present invention is directed to the DNA sequence for the gene cluster responsible for encoding platenolide synthase, the building machinery of platenolide which is the basic building block of spiramycin. As a result, the present invention provides the information needed to synthesize novel spiramycin-related polyketides based on platenolide, arising from modifications of this DNA sequence designed to change the number and type of carboxylic acids incorporated into the growing polyketide chain and to change the kind of post-condensation processing that is conducted.

The present invention provides a DNA molecule comprising an isolated DNA sequence that encodes a platenolide synthase domain. Thus, the present invention provides the DNA molecule of SEQ ID NO:1 and DNA molecules that contain submodules thereof. The present invention also provides the products encoded by said DNA molecules, recombinant DNA expression vectors, and transformed microbial host cells. The present invention is further directed to a method of screening for new antibiotics based on the platenolide structure.

Figure 1 shows the map of the srmG region of the *S. ambofaciens* DNA. Distances in kb are shown relative to the beginning of srmG. Open reading frames (ORF) are indicated by block arrows. The srmG DNA (0-42 kb) is the platenolide PKS region. The indicia Ap, G, E, K, P, and X denote restriction sites Apal, Bglll, EcoRl, Kpnl, Pstl and Xhol, respectively. Predicted domains for the srmG DNA are labeled as shown. ACP stands for acyl carrier protein; AT stands for acyltransferase; DH stands for dehydratase; ER stands for enoylreductase; KR stands for ketoreductase; KS stands for ketosynthase; and KS' stands for a ketosynthase-like domain in which a glutamine residue is present in the position occupied by an active site cysteine in a normal ketosynthase. KR' is a domain that resembles a ketoreductase but which is predicted to be inactive.

Figure 2 demonstrates the biosynthetic pathway for platenolide synthesis. A denotes malonyl-CoA; B denotes ethylmalonyl-CoA; P denotes methylmalonyl-CoA; C2 denotes a CoA derivative related to malonyl-CoA but of unknown structure.

Figure 3 shows the map of two clones that span the whole region of the srmG DNA.

The term polyketide defines a class of molecules produced through the successive condensation of small carboxylic acids. This diverse group includes plant flavonoids, fungal aflatoxins, and hundreds of compounds of different structures that exhibit antibacterial, antifungal, antitumor, and anthelmintic properties. Some polyketides produced by fungi and bacteria are associated with sporulation or other developmental pathways; others do not yet have an ascribed function. Some polyketides have more than one pharmacological effect. The diversity of polyketide structures reflects the wide variety of their biological properties. Many cyclized polyketides undergo glycosidation at one or more sites, and virtually all are modified during their synthesis through hydroxylation, reduction, epoxidation, etc.

A common feature of compounds in this class is that their synthesis is directed by a complex of multi-functional peptides, termed a "polyketide synthase". Molecular genetic analysis of polyketide synthase genes has revealed two distinct classes of enzymes operating for different polyketides: (a) the aromatics, which are made through an essentially iterative process; (b) the complex polyketides, which comprise several repeats of the same activities arranged in few, very large polypeptides. A common feature among complex polyketide synthase genes is that they are generally arranged in several open reading frames (ORFs), each of which contains one or more repeated units, designated mod-

ules. Each module processes one condensation step and typically requires several activities accomplished by several enzymes including acyl carrier protein (ACP), β-ketosynthase (KS), and acyltransferase (AT).

Therefore a "module" is defined as the genetic element encoding a multi-functional protein segment that is responsible for all of the distinct activities required in a single round of synthesis, i.e., one condensation step and all the β-carbonyl processing steps associated therewith. Each module encodes an ACP, a KS, and an AT activity to accomplish the condensation portion of the synthesis, and selected post-condensation activities to effect β-carbonyl processing. Each module is therefore, further characterized by the inclusion of submodules that are responsible for encoding the distinct activities of a complex polyketide synthase. A "submodule" thus is defined as the portion of the polyketide synthase DNA sequence that encodes a distinct activity, or "domain". A distinct activity or domain is commonly understood to mean that part of the polyketide synthase polyprotein necessary for a given distinct activity.

The protein segments corresponding to each module are called synthase units (SUs). Each SU is responsible for one of the fatty acid-like cycles required for completing the polyketide, it carries the elements required for the condensation process, for selecting the particular extender unit (a coenzyme A thioester of a dicarboxylate) to be incorporated, and for the extent of processing that the β -carbon will undergo. After completion of the cycle, the nascent polyketide is transferred from the ACP it occupies to the KS of the next SU utilized, where the appropriate extender unit and processing level are introduced. This process is repeated, employing a new SU for each elongation cycle, until the programmed length has been reached. As in synthesis of long chain fatty acids, the number of elongation cycles determines the length of the molecule. However, whereas fatty acid synthesis involves a single SU used iteratively, formation of complex polyketides requires participation of a different SU for each cycle, thereby ensuring that the correct molecular structure is produced. The composition of the polyketide synthase gene modules are variable. Some carry the full complement of β -ketoreductase(KR), dehydratase(DH), and enoylreductase(ER) domains, and some encode a particular domain only or lack a functional domain, although much of the sequence is preserved.

20

30

40

This variable composition of the modules, which correlate with the asymmetry in the synthesis of the polyketide precursor, enable a specific step to be assigned to each module. Since each enzymatic activity is involved in a single biochemical step in the pathway, loss of any one activity should affect only a single step in the synthesis. Knowledge of the correlation between the structure of the polyketide and the organization of the polyketide synthase genes enables one to produce altered genes selectively which produce a polyketide derivative with predicted structure.

Because the degree of processing appears to depend on the presence of functional domains in a particular SU, inactivation of a KR, DH, or ER will result in a polyketide less processed at a single site, but only if the altered chain thus produced can be utilized as a substrate for the subsequent synthesis steps. Thus, the inactivation of one of these domains should result in the formation of a polyketide retaining a ketone, hydroxyl, or site of unsaturation at the corresponding position. This rationale has led to the successful production of altered erythromycin derivatives from strains in which a KR or an ER domain had been inactivated.

Thus, one can engineer polyketide pathways by genetic intervention of the polyketide synthase and by adding or eliminating modification steps. Many of the enzymes involved in postpolyketide modifications do not seem to have absolute specificity for a particular structure. In addition one can also select the desired components from a library of polyketide and postpolyketide biosynthesis genes and combine them to produce novel structures.

The present invention provides, in particular, the DNA sequence encoding the polyketide synthase responsible for biosynthesis of platenolide, i.e., platenolide synthase. Platenolide itself is the foundation for spiramycin-related polyketides. The platenolide synthase DNA sequence, which defines the platenolide synthase gene cluster, directs biosynthesis of the platenolide polyketide by encoding the various distinct activities of platenolide synthase.

The gene cluster for platenolide synthase, like other polyketide biosynthetic genes whose organization has been elucidated, is characterized by the presence of several ORFs, each of which contains one or more repeated units termed modules as defined above. Each module also further includes submodules as defined above. Organization of the platenolide synthase gene cluster derived from *Streptomyces ambofaciens* is shown in Figure 1. The accompanying synthetic pathway and the specific carboxylic acid substrates that are used for each condensation reaction and the post-condensation activities of platenolide synthesis are indicated in Figure 2.

A preferred DNA molecule comprising the platenolide synthase gene cluster isolated from *Streptomyces ambofaciens* is represented by SEQ ID NO: 1. Other preferred DNA molecules of the present invention include the various ORFs of SEQ ID NO: 1 that encode individual multi-functional polypeptides. These are represented by ORF1, 350 to 14002, ORF2, 14046 to 20036, ORF3, 20110 to 31284, ORF4, 31329 to 36071, and ORF5, 36155 to 41830 all in SEQ ID NO: 1. The predicted amino acid sequences of the various peptides encoded by these sequences are shown in SEQ ID NO: 2, 3, 4, 5, and 6.

Yet other preferred DNA molecules of the present invention include the modules that encode all the activities necessary for a single round of synthesis. These are represented by starter module 392 to 3424, module 1, 3527 to 8197, module 2, 8270 to 13720, module 3, 14148 to 19730, module 4, 20215 to 24678, module 5, 24742 to 31002, module 6, 31428 to 35837, and module 7, 36257 to 41395 all in SEQ ID NO: 1. The predicted amino acid sequences of the various synthase units encoded by these modules are represented by starter SU 15 to 1025, SU1, 1060 to 2616,

and SU2, 2641 to 4457 in SEQ ID NO: 2; SU3, 35 to 1895 in SEQ ID NO: 3; SU4, 36 to 1523, and SU5, 1545 to 3631 in SEQ ID NO: 4; SU6, 34 to 1503 in SEQ ID NO: 5; SU7, 35 to 1747 all in SEQ ID NO: 6.

Still other preferred DNA molecules include the various submodules that encode the various domains of platenolide synthase. These submodules are represented by KS'(s), 392 to 1603, AT(s), 1922 to 2995, and ACP(s), 3173 to 3424 of starter module in SEQ ID NO:1; KS1, 3527 to 4798, AT1, 5135 to 6208, KR1, 7043 to 7597, and ACP1, 7946 to 8197 of module 1 in SEQ IN NO: 1; KS2, 8270 to 9541, AT2, 9899 to 10909, DH2, 10985 to 11530, KR2, 12596 to 13153, and ACP2, 13469 to 13720 of module 2 in SEQ ID NO: 1; KS3, 14148 to 15422, AT3, 15789 to 16844, DH3, 16914 to 17510, KR3, 18612 to 19166, and ACP3, 19479 to 19730 of module 3 in SEQ ID NO: 1; KS4, 20215 to 21486, AT4, 21889 to 22872, KR'4, 23638 to 24159, and ACP4, 24484 to 24678 of module 4 in SEQ ID NO: 1; KS5, 24742 to 26016, AT5, 26371 to 27381, DH5, 27442 to 27966, ER5, 28843 to 29892, KR5, 29905 to 30462, and ACP5, 30760 to 31002 of module 5 in SEQ ID NP: 1; KS6, 31428 to 32696, AT6, 33024 to 34022, KR6, 34770 to 35327, and ACP6, 35586 to 35837 of module 6 in SEQ ID NO: 1; KS7, 36257 to 37528, AT7, 37898 to 38905, KR7, 39851 to 40408, ACP7, 40658 to 40909, and TE, 41297 to 41395 of module 7 in SEQ ID NO: 1. The predicted amino acid sequences of the various domains encoded by these submodules are represented by KS'(s), 15 to 418, AT(s), 525 to 882, and ACP(s), 942 to 1025 of starter SU in SEQ ID NO:2; KS1, 1060 to 1483, AT1, 1596 to 1953, KR1, 2232 to 2416, and ACP1, 2533 to 2616 of SU1 in SEQ IN NO: 2; KS2, 2641 to 3064, AT2, 3184 to 3520, DH2, 3546 to 3727, KR2, 4083 to 4268, and ACP2, 4374 to 4457 of SU2 in SEQ ID NO: 2; KS3, 35 to 459, AT3, 582 to 933, DH3, 957 to 1155, KR3, 1523 to 1707, and ACP3, 1812 to 1895 of SU3 in SEQ ID NO: 3; KS4, 36 to 459, AT4, 594 to 921, KS⁰4, 1177 to 1350, and ACP4, 1459 to 1523 of SU4 in SEQ ID NO: 4; KS5, 1545 to 1969, AT5, 2088 to 2424, DH5, 2445 to 2619, ER5, 2912 to 3261, KR5, 3266 to 3451, and ACP5, 3551 to 3631 of SU5 in SEQ ID NO: 4; KS6, 34 to 456, AT6, 566 to 898, KR6, 1148 to 1333, and ACP6, 1420 to 1503 of SU6 in SEQ ID NO: 5; KS7, 35 to 458, AT7, 582 to 917, KR7, 1233 to 1418, ACP7, 1502 to 1585, and TE, 1715 to 1747 of SU7 in SEQ ID NO: 6.

Although not wishing to be bound to any particular technical explanation, a sequence similarity exists among domain boundaries in various polyketide synthase genes. Thus, one skilled in the art is able to predict the domain boundaries of newly discovered polyketide synthase genes based on the sequence information of known polyketide synthase genes. In particular, the boundaries of submodules, domains, and open reading frames in the instant application are predicted based on sequence information disclosed in this application and the locations of the domain boundaries of the erythromycin polyketide synthase (Donadio et al., *GENE*, 111 51-60 (1992)). Furthermore, the genetic organization of the platenolide synthase gene cluster appears to correspond to the order of the reactions required to complete synthesis of platenolide. This means that the polyketide synthase DNA sequence can be manipulated to generate predictable alterations in the final platenolide product.

30

35

45

The DNA sequence of the platenolide synthase gene can be determined from recombinant DNA clones prepared from the DNA of *Streptomyces ambofaciens*, in particular strain ATCC 15154. The platenolide synthase gene is contained in recombinant DNA vectors pKC1080 and pKC1306 (Figure 1), which are available from the National Center for Agricultural Utilization Research, 1815 North University Street, Peoria, Illinois 61604-3999, in *E. coli* DH10B under accession numbers B-21500 for pKC1080 (deposited Sep 21, 1995) and B-21499 for pKC1306 (deposited Sep 21, 1995) respectively.

Techniques of isolating bacterial DNA are readily available and well known in the art. Any such techniques can be employed in this invention. In particular DNA from these deposited cultures can be isolated as follows. Lyophils of *E. coli* DH10B/pKC1080 or *E. coli* DH10B/pKC1306 are plated onto L-agar (10 g tryptone, 10 g NaCl, 5 g yeast extract, and 15 g agar per liter) plates containing 100 µg/ml apramycin to obtain a single colony isolate of the strain. This colony is used to inoculate about 500 ml of L-broth (10 g tryptone, 10 g NaCl, 5 g yeast extract per liter) containing 100 µg/ml apramycin, and the resulting culture is incubated at 37°C with aeration until the cells reach stationary phase. Cosmid DNA can be obtained from the cells in accordance with procedures known in the art (see e.g., Rao et al., 1987 in Methods in Enzymology, 153:166).

DNA of the current invention can be sequenced using any known techniques in the art such as the dideoxynucle-otide chain-termination method (Sanger, et al., Proc. Natl. Acad. Sci. 74:5463 (1977)) with either radioisotopic or fluorescent labels. Double-stranded, supercoiled DNA can be used directly for templates in sequence reactions with sequence-specific oligonucleotide primers. Alternatively, fragments can be used to prepare libraries of either random, overlapping sequences in the bacteriophage M13 or nested, overlapping deletions in a plasmid vector. Individual recombinant DNA subclones are then sequenced with vector-specific oligonucleotide primers. Radioactive reaction products are electrophoresed on denaturing polyacrylamide gets and analyzed by autoradiography. Fluorescently labeled reaction products are electrophoresed and analyzed on Applied Biosystems (ABI Division, Perkin Elmer, Foster City, CA 94404) model 370A and 373A or Dupont (Wilmington, DE) Genesis DNA sequencers. Sequence data are assembled and edited using Genetic Center Group (GCG, Madison, WI) programs GelAssemble and Seqed or the ABI model 670 Inherit Sequence Analysis system and the AutoAssembler and SeqEd programs.

Polypeptides corresponding to a domain, a submodule, a module, a synthesis unit (SU), or an open reading frame can be produced by transforming a host cell such as bacteria, yeast, or eukaryotic cell-expression system with the

cDNA sequence in a recombinant DNA vector. It is well within one skilled in the art to choose among host cells and numerous recombinant DNA expression vectors to practice the instant invention. Multifunctional polypeptides of polyketide platenolide synthase can be extracted from platenolide-producing bacteria such as *Streptomyces ambofaciens* or translated in a cell-free in vitro translation system. In addition, the techniques of synthetic chemistry can be employed to synthesize some of the polypeptides mentioned above.

Procedures and techniques for isolation and purification of proteins produced in recombinant host cells are known in the art. See, for example, Roberts et al., Eur. J. Biochem. 214, 305-311, (1993) and Caffrey et al., FEBS 304, 225-228 (1992) for detailed description of polyketide synthase purification in bacteria. To achieve a homogeneous preparation of a polypeptide, proteins in the crude cell extract can be separated by size and/or charge through different columns well known in the art once or several times. In particular the crude cell extract can be applied to various cellulose columns commercially available such as DEAE-cellulose columns. Subsequently the bound proteins can be eluted and the fractions can be tested for the presence of the polyketide platenolide synthase or engineered derivative protein. Techniques for detecting the target protein are readily available in the art. Any such techniques can be employed for this invention. In particular the fractions can be analysized on Western blot using antibodies raised against a portion or portions of such polyketide platenolide synthase proteins. The fractions containing the polyketide platenolide synthase protein can be pooled and further purified by passing through more columns well known in the art such as applying the pooled fractions to a gel filtration column. When visualized on SDS-PAGE gels homogeneous preparations contain a single band and are substantially free of other proteins.

Knowledge of the platenolide synthase DNA sequence, its genetic organization, and the activities associated with particular open reading frames, modules, and submodules of the gene enables production of novel polyketides having a predicted structure that are not otherwise available. Modifications may be made to the DNA sequence that either alter the initial carboxylic acid building block used or alter the building block added at any of the condensation steps. The platenolide synthase gene may also be modified to alter the actual number of condensation steps done, thereby changing the size of the carbon backbone. Submodules that are part of the present invention may be selectively inactivated thereby giving rise to predictable, novel polyketide structures. Modifications to portions of the DNA sequence that encode the post-condensation processing activities will alter the functional groups appearing at the various condensation sites on the carbon chain backbone.

One skilled in the art is fully familiar with the degeneracy of the genetic code. Consequently, the skilled artisan can modify the specific DNA sequences provided by this disclosure to provide proteins having the same or improved characteristics compared to those polypeptides specifically provided herein. Also, one skilled in the art can modify the DNA sequences to express an identical protein to those provided, albeit expressed at higher levels. Furthermore, one skilled in the art is familiar with means to prepare synthetically, either partially, or in whole, DNA sequences which would be useful in preparing recombinant DNA vectors or coding sequences which are encompassed by the current invention. Additionally, recombinant means for modifying the DNA sequences provided may include for example site-directed deletion or site-directed mutagenesis. These techniques are well known to those skilled in the art and require no further elaboration here. Consequently, as used herein, DNA which is isolated from natural sources, prepared synthetically or semi-synthetically, or which are modified by recombinant DNA methods, are within the scope of the present invention.

Likewise, those skilled in the art will recognize that the polypeptides of the invention may be expressed recombinantly. Alternatively, these polypeptides may be synthesized as well, either in whole or in part, by conventional known non-recombinant techniques; for example, solid-phase synthesis. Thus, the present invention should not be construed as necessarily limited to any specific vector constructions or means for production of the specific polyketide synthase molecules exemplified. These alternate means for preparing the present polypeptides are meant to be encompassed by the present invention.

Many cyclized polyketides undergo glycosidation at one or more sites. Spiramycin is a 16-membered cyclic lactone, platenolide, with three attached sugar residues. The process of converting platenolide to spiramycin is well known in the art. The present invention also provides the information needed to synthesize novel spiramycin-related polyketides based on platenolide. The principles have already been described above. In addition, any product resulting from post-transcriptional or post-translational modification in vivo or in vitro based on the DNA sequence information disclosed here are meant to be encompassed by the present invention.

The following example is provided for exemplification purposes only and is not intended to limit the scope of the invention which has been described in broad terms above.

Example 1:

5

20

40

50

Specific experimental details and results from the sequencing of platenolide synthase.

The DNA sequence of the S. ambofaciens platenolide synthase (srmG) gene can be obtained by sequencing inserts of recombinant DNA subclones containing contiguous or overlapping DNA segments of the region indicated in

Figure 3. All sequences representing srmG are fully contained in the overlapping cosmid clones pKC1080 and pKC1306 (Figure 3). The sequence can be obtained by subcloning and sequencing the fragments bounded by Nrul sites at position 1, 0.3 kb, 8.2 kb, 14.1 kb, 20.2 kb, 29.5 kb, 31.4 kb, 41.1 kb and 42.0 kb. In order to obtain the srmG region on a single fragment, the 25.0 kb fragment bounded by the Nrul site at position 1 and the Sful site at 25.0 kb should be isolated from a partial digestion of pKC1080 with restriction enzymes Nrul and Sful. The 17.8 kb DNA fragment bounded by the Sful sites at 25.0 kb and 42.8 kb should be isolated from a digestion of pKC1306 with the restriction enzyme Sful. The resulting fragments should be ligated and cloned in an appropriate recombinant DNA vector. Clones containing the correct orientation of the two ligated fragments can be identified by restriction enzyme site mapping.

The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. The invention which is intended to be protected herein, however, is not to be construed as limited to the particular forms disclosed, since they are to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	(i) APPLICANT: ELI LILLY AND COMPANY (B) STREET: Lilly Corporate Center (C) CITY: Indianapolis (D) STATE: Indiana (E) COUNTRY: United States of America (F) ZIP: 46285
	(ii) TITLE OF INVENTION: PLATENOLIDE SYNTHASE GENE
15	(iii) NUMBER OF SEQUENCES: 6
20	(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: K. G. Tapping (B) STREET: Erl Wood Manor (C) CITY: Windlesham (D) STATE: Surrey (E) COUNTRY: United Kingdom
	(F) ZIP: GU20 6PH
25	(v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: Macintosh (C) OPERATING SYSTEM: Macintosh 7.0 (D) SOFTWARE: Microsoft Word 5.1
30	
35	
40	
	(2) INFORMATION FOR SEQ ID NO:1:
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44377 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii) MOLECULE TYPE: DNA (genomic)
•	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 35014002
55	(ix) FEATURE:

(B) LOCATION: 14046..20036

(ix) FEATURE:

(A) NAME/KEY: CDS
(B) LOCATION: 20110..31284

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 31329..36071

(ix) FEATURE:

(A) NAME/REY: CDS
(B) LOCATION: 36155..41830

15

20

25

30

35

40

45

50

55

5

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GACCGCTCGG GGAGACCTGA CATATTCGTC GCGAAGTGGT TGTCCGCGCC GCC	
GAAATCTTCT CCGCTCGCCC AGGACTCCGC GTGCAGGTCA CCGGAGTGCG CGA	ACCGGCCG 120
GGACGTCGGA GCGCCGACCC TGCGGACCTG GTGCGATGCC GTGTGGTCCC GCA	ATGATCCC 180
GCGCCGTCTC CGGTGACGAG AATCGGTGGA CAATCTCCGA ACTTGACACA ATT	TGATTGTC 240
GTTCACCGGC CGTTCCTGTC GCCCGGCAGT TCGCCCGCTG TACGCTCGGG AAC	GATCAAGA 300
AAAGGCAGAA AAGCCACGGC GTGGTACGGC GAACATATGA GGGATGCAGG TGT	CTGGAGA 360
ACTCGCGATT TCCCGCAGTG ACGACCGGTC CGACGCCGTT GCCGTGGTCG GAR	ATGGCGTG 420
CCGGTTTCCC GGCGCCCCGG GAATTGCCGA ATTCTGGAAA CTGCTGACCG ACG	GAAGGGA 480
CGCGATCGCC CGGGACGCCG ACGGCCGCCG GCGCGCATG ATCGAGGCGC CCG	GCGACTT 540
CGACGCCGCC TTCTTCGGCA TGTCACCCCG CGACGCCGCC GAGACCGACC CCC	AGCAGCG 600
CCTGATGCTC GAACTCGGCT GGGAGGCTCT GGAGGACGCC GGCATCGTCC CCG	GCTCCCT 660
GCGCGGCGAG GCGGTCGGCG TCTTCGTCGG GGCCATGCAC GACGACTACG CCA	CCCTCCT 720
CCACCGCGCC GGCGCGCGG TCGGCCCCA CACCGCCACC GGCCTCCAGC GCG	CCATCCT 780
CGCCAACCGG CTCTCCTACG TCCTGGGGAC GCGCGGCCCC AGCCTCGCGG TCG	ACACCGC 840
CCAGTCGTCC TCCCTGGTCG CCGTGGCCCT CGCCGTCGAG AGCCTGCGGG CCG	GCACCTC 900
CCGCGTCGCC GTCGCCGGGG GCGTCAACCT GGTCCTCGCC GACGAGCGAA CGG	CCGCCAT 960
GGAACGCCTC GGCGCGCTGT CACCCGACGG CCGCTGCCAC ACCTTCGACG CCC	GTGCCAA 1020
CGGCTATGTC CGCGGTGAGG GCGGCGCCGC CGTCGTCCTG AAGCCCCTCG CCG	ACGCCCT 1080
GGCCGACGGG GACCCCGTGT ACTGCGTGGT GCGTGGCGTC GCCGTCGGCA ACG	ACGGCGG 1140
CGGCCCCGGG CTGACCGCTC CCGACCGCGA GGGACAGGAG GCGGTGCTCC GGG	CCGCCTG 1200
CGCCCAGGCC CGGGTCGACC CCGCCGAGGT GCGTTTCGTC GAACTGCACG GCA	CGGGAAC 1260

	CCCGCTGGGC GACCCGGTCG AGGCACA	CCC CCTCGCCGCG GTGCACGCCT CCGGTCGGCC	1320
	GGCCGACGAC CCCCTGCTGG TGGGGTC	GT GAAGACCAAC ATCGGCCACC TGGAGGGCGC	1380
5	CGCCGGCATC GCGGGCCTGG TCAAGGC	CGC ACTGTGCCTG CGGGAACGCA CCCTTCCCGG	1440
	CTCGCTGAAC TTCGCCACCC CCTCTCC	SGC CATCCCGCTG GACCAGCTCC GGCTGAAGGT	1500
10	GCAGACCGCT GCCGCCGAGC TGCCGCT	CCC CCCGGCGGC GCACCCCTGC TGGCGGGTGT	1560
	CACTTCGTTC GGCATCGGTG GCACCAA	TG CCATGTGGTC CTGGAACACC TGCCCTCCCG	1620
	GCCCACCCCG GCCGTCTCCG TCGCCGC	TC GCTTCCGGAC GTCCCGCCGC TGTTGTTGTC	1680
15	CGCGCGGTCG GAGGGGGCGT TGCGGGC	SCA GGCGGTGCGG TTGGGTGAGT ACGTGGAGCG	1740
	CCTCCCCCC GATCCCCCGG ATCTCCC	TA TICGCIGGCI TCGACGCGGA CICTITICGA	1800
	GCACCGTGCG GTGGTGCCGT GTGGTGG	CG TGGGGAGCTC GTCGCTGCTC TTGGTGGGTT	1860
20	TECTECCEGE AGGSTGTCTG GGGGTGT	CG GTCCGGGCGG GCTGTGCCGG GTGGGGTGGG	1920
	GGTGTTGTTC ACGGGTCAGG GTGCGCA	TG GGTTGGTATG GGGCGTGGGT TGTATGCGGG	1980
25	GGCTGGGTG TTTGCGGAGG TGCTGGA	CA GGTGTTGTCG ATGGTGGGGG AGGTGGATGG	2040
	TCGCTCGTTG CGGGATGTGA TGTTCGG	CA COTCGACOTO GACGCGGOTO CCGGGGCTGA	2100
	TECCECTECC GETECCECTE CTCCCCT	GG TTCTGGTTCC GGTTCTGTGG GTGGGTTGTT	2160
30	GGGTCGGACG GAGTTTGCTC AGCCTGC	TT GTTTGCGTTG GAGGTGGCGT TGTTCCGGGC	2220
	GTTGGAGGCT CGGGGTGTGG ACCTGTC	OT GGTGTTGGGT CATTCGGTGG GGGAGGTGGC	2280
	TGCTGCGTAT GTGGCGGGGG TGTTGTC	TT GGGTGATGCG GTGCGGTTGG TGGTGGCGCG	2340
35	GGCTGGGTTG ATGCCTGGT TGCCGGT	GG TGGGGGATG TGGTCGGTGG GGGCGTCGGA	2400
	CTCCCTCCTC CCCCCCCTTC TTCACCC	TT GGGGGAGTGG GTGTCGGTTG CGGCGGTGAA	2460
40	TOGGCCGCGG TCGGTGGTGT TGTCGGG	GA TETEGETETE CTEGAGTCGG TEGTTECCTC	2520
	GCTGATGGGG GATGGGGTGG AGTGCCG	CG GTTGGATGTG TCGCATGGGT TTCATTCGGT	2580
	GTTGATGGAG CCGGTGTTGG GGGAGTTV	CG GGGGTTGTG GAGTCGTTGG AGTTCGGTCG	2640
45	GGTGCGGCCG GGTGTGGTGG TGGTGTC	GG TGTGTCGGGT GGGGTGGTCG GTTCGGGGGA	2700
	CTTCCCCCAT CCCCCCTATT CCCTCCC	CA TGCGCGGAG GCGGTGCGTT TCGCGGATGG	2760
	COTCCCCTC CTCCCTCCTC TCCCTCTC	GG GACGTTGGTG GAGGTGGGTC CGCATGGGGT	2820
50	GCTGACGGGG ATGGCGGTG AGTGCCTY	GG GGCCGGTGAT GATGTGGTGG TGGTGCCGGC	2880
	GATGCGGCGG GGCCGTGCGG AGCGGGA	GT GTTCGAGGCG GCGCTGCGA CGGTGTTCAC	2940
55	CCGGGACGCC GGCCTGGACG CCACGGC	CT CCACACCGGG AGCACCGGCC GGCGCATCGA	3000
	CCTCCCCACC TACCCCTTCC AACGCCG	AC CCACTGGTCG CCCGCGCTGA GCCGGCCGGT	3060

	CACGGCCGAC	CCCCCCCCCCC	GTGTGACCGC	CACCGATGCC	GTGGGGCACA	CCCTCTCCCC	3120
5	GGACCCGGAG	AGCACCGAGG	GGACGTCCCA	CAGGGAC ACG	GACGACGAGG	CGGACTCGGC	3180
	GTCACCGGAG	CCGATGTCCC	CCGAGGATGC	CGTCCGCCTG	GTCCGCGAGA	GCACCGCGGC ·	3240
	CCTCCTCCCC	CACGACGATC	CCGGCGAGGT	CGCGCTCGAC	CGCACCTTCA	CCTCCCAGGG	3300
10	CATGGACTCG	GTGACCGCGG	TCGAGCTGTG	CGACCTGCTG	AAGGCCCCT	CCCCCTCCC	3360
	CCTCGCCGCC	ACGCTGGTCT	ACGACCTGCC	CACCCCCCCT	GCCGTCGCCG	AGCACATCGT	3420
46	GGAAGCCGCG	GGCGGGCCGA	AGGACTCGGT	TGCCGGTGGG	CCCGGAGTGC	TCTCGTCGGC	3480
15	CGCGGTAGGG	GTGTCGGACG	ccccccccc	CAGCCGGGAC	GACGACGACC	CGATCGCCAT	3540
	CCTCCCTCTC	GGCTGCCGGC	TCCCCGGCGG	CGTCGACTCG	CCCCCCCCTC	TCTGGGAGCT	3600
20	GCTGGAGTCC	GGCGCCGACG	CCATCTCGTC	CTTCCCCACC	GACCGCCGCT	GGGACCTCGA	3660
	CGGGCTGTAC	GACCCCGAGC	CCGGGACGCC	CGGCAAGACC	TATGTGCGGG	AGGGCGGGTT	3720
	CCTGCACTCG	GCGGCCGAGT	TCGACGCGGA	CTTCTTCCCC	ATATCGCCGC	GCGAGGCCAC	3780
25	GGCCATGGAC	CCGCAGCAGC	GCTTGCTGCT	GGAAGCGTCG	TGGGAGGCCC	TCGAGGACGC	3840
	CGGAGTGCTC	CCCGAGTCAC	TGCGCGGCGG	CGACGCCGGA	GTGTTCGTCG	GCGCCACCGC	3900
	ACCGGAGTAC	GGGCCGAGGC	TTCACGAGGG	AGCGGACGGA	TACGAGGGGT	ACCTGCTCAC	3960
30	CCCCACC	GCGAGCGTGG	CCTCCGGCCG	GATCGCCTAC	ACCCTCGGCA	CCGCCGGACC	4020
	GCCCTCACC	GTCGACACCG	CGTGCTCCTC	GTCCCTGGTG	GCGCTGCACC	TGGCCGTGCA	4080
35	GCCCTGCGC	CGGGGCGAGT	GCGGGCTGGC	TCTGGCGGGC	GGCGCCACGG	TGATGTCGGG	4140
	GCCCGGCATG	TTCGTGGAGT	TCTCGCGGCA	CCCCGCCTC	GCCCCCGACG	GCCGCTGCAT	4200
	GCCGTTCTCC	GCCGATGCCG	ACGGTACGGC	CTGGTCCGAG	GGTGTCGCCG	TACTGGCACT	4260
40	GGAGCGGCTC	TCCGACGCCC	GGCGTGCGGG	ACACCGGGTG	CTGGGCGTGG	TGCGGGGCAG	4320
	TGCGGTCAAC	CAGGACGGTG	CCAGCAACGG	CCTGACCGCT	CCCAACCCCT	CCGCGCAGGA	4380
45	GGCGTCATC	CGAGCTGCCC	TGGCCGACGC	CGCCTCGCC	CCCCCTCACC	TOGACGCGGT	4440
45	GGAGGCGCAC	GGTACGGGGA	CGCCCTCGG	CGATCCGATC	GAGGCGAGCG	CCCTCCTGCC	4500
	CACGTACGGG	CGTGAGCGGG	TGGGCGACCC	CTTGTGGCTC	GGGTCGCTGA	AGTCCAACGT	4560
50	CGGTCACACC	CAGGCCGCCG	ceeeeccec	CCCTCTCCTC	AAGATGCTGC	TTGCCCTGGA	4620
	GCACGGCACG	CTGCCGCGGA	CACTTCACGC	GGACCGGCCC	AGCACGCACG	TCGACTGGTC	4680
	GTCGGGCACC	GTCGCCCTGC	TGGCAGAGGC	CCCCCCTCC	CCCCGGGGGT	CGGACCGCCC	4740
55	GCGCCGGGCG	GCTGTGTCGT	CGTTCGGGAT	CAGTGGGACG	AACGCGCATC	TGATCATCCA	4800

	GGAGGCGCCG	GAGTGGGTCG	AGGACATCGA	CGCCTCGCT	GCTCCTGACC	GCGCTACCGC	4860
	GGACGCGGCT	GCTCCGTCGC	CGCTGTTGTT	CTCCGCGCGG	TCGGAGGGGG	CCTTCCGGCC	4920
5	GCAGGCGGTG	CCCTTCCCTC	AGTACGTGGA	CCCCCTCCCT	GCGGATCCGC	GGGATGTGGC	4980
	TTATTCGCTG	GCTTCGACGC	GGACTCTTTT	CGAGCACCGT	GCGGTGGTGC	CCTCTCCTCC	5040
10	GCGTGGGGAG	CTCGTCGCTG	CTCTTGGTGG	GTTTGCTGCC	GGGAGGGTGT	CTGGGGGTGT	5100
	GCGGTCCGGG	CGGGCTGTGC	CCCCTCCCCT	CCCCCTCTTC	TTCACGGGTC	AGGGTGCGCA	5160
	CTCCCTTCCT	ATGGGGCGTG	GGTTGTATGC	CCCCCCTCCC	GTGTTTGCGG	AGGTGCTGGA	5220
15	TGAGGTGTTG	TCGATGGTGG	GGGAGGTGGA	TGGTCGGTCG	TTGCGGGATG	TGATGTTCGG	5280
	CGACGTCGAC	CTGGACGCGG	CTCCCCCCC	TGATGCGGGT	GCCGGTGCGG	CTCCTCCCCT	5340
	CGGTTCTGGT	TCCGGTTCTG	TGGGTGGGTT	GTTGGGTCGG	ACGGAGTTTG	CTCAGCCTGC	5400
20	GCTGTTTGCG	TTGGAGGTGG	CGTTGTTCCG	GGCGTTGGAG	GCTCGGGGTG	TOGAGGTGTC	5460
	CCTCCTCTTC	GGTCATTCGG	TGGGGGAGGT	GGCTGCTGCG	TATGTGGCGG	GCCTCTTCTC	5520
25	CTTCCCTCAT	GCGGTGCGGT	TGGTGGTGGC	CCCCCCTCCC	TTGATGGGTG	GCTTGCCGGT	5580
	GGGTGGGGG	ATGTGGTCGG	TGGGGGCGTC	GGAGTCGGTG	GTGCGGGGG	TTGTTGAGGG	5640
	CTTCCCCCAG	TGGGTGTCGG	TTGCGGCGGT	GAATGGGCCG	CCCTCCCTCC	TCTTCTCGGG	5700
30	TGATGTGGGT	GTGCTGGAGT	CGGTGGTTGC	CTCGCTGATG	GGGGATGGGG	TOGAGTGCCG	5760
	GCGGTTGGAT	GTGTCGCATG	GGTTTCATTC	GGTGTTGATG	GAGCCGGTGT	TGGGGGAGTT	5820
	CCGCGCGGTT	GTGGAGTCGT	TGGAGTTCGG	TCGGGTGCGG	CCGGGTGTGG	TOGTOGTGTC	5880
35	GGGTGTGTCG	GGTGGGGTGG	TGGGTTCGGG	GGAGTTGGGG	GATCCGGGGT	ATTGGGTGCG	5940
	TCATGCGCGG	GAGGCGGTGC	GTTTCGCGGA	TCCCCTCCCC	GTGGTGCGTG	CTCTCCCTCT	6000
40	GGGGACGTTG	GTGGAGGTGG	GTCCGCATGG	GGTGCTGACG	GGGATGGCGG	GTGAGTGCCT	6060
	GGGGGCCGGT	GATGATGTGG	TGGTGGTGCC	GCCGATGCGG	CCCCCCCTC	CGGAGCGGGA	6120
	GGTGTTCGAG	GCGGCGCTGG	CGACGGTGTT	CACCCGGGAC	CCCCCCTCC	ACCCACCCC	6180
45	ACTCCACACC	GGGAGCACCG	GCCGGCGCAT	CGACCTCCCC	ACCTACCCCT	TCCAACGCGA	6240
	CCGCTACTGG	CTGGACCCCG	TTCGCACCGC	CCTGACCGGC	GTCGAGCCCG	CCGGCTCGCC	6300
	GCCGGACGCT	CGGGCCACTG	AGCGGGGACG	GTCGACGACG	GCCGGGATCC	GCTACCGCGT	6360
50	CGCTTGGCAG	CCGGCCGTCG	TCGACCGCGG	CAACCCCGGG	CCTGCCGGTC	ATGTGCTGCT	6420
	TCTGGCCCCG	GACGAGGACA	CCCCCGACTC	CGGACTCGCC	CCCGCGATCG	CACCTGAACT	6480
55	CCCCGTGCGC	GGGGCCGAGG	TCCACACCGT	CGCCGTGCCG	GTCGGTACAG	GCCGGGAGGC	6540
	AGCCGGGGAC	CTCTTCCGGG	CCGCCGGTGA	CCCTCCCCCC	CGCAGCACCC	GACTTCTGTG	6600

	CCTCCCCCC	GCCGAGCCGG	ACGCGGCCGA	CGCCGTCGCC	CTCGTCCAC	CCCTCCCCCA	666
5	GCCGTACCC	GAAGCCCCGC	TCTGGATCAC	CACCCGTGAG	cccccccc	TCCCCCCCA	672
	CGAGACCCCT	TCCGTCGGGG	GCGCTCAGCT	GTGGGGACTC	GGACAGGTC	CCCCCCTCCA	678
	ACTGGGGGG	CGCTGGGGCG	GCTTGGCGGA	CCTGCCCGG	AGTGCGTCGC	CCCCCCTCCT	684
10	CCGTACGTTC	GTCGGGGCGC	TGCTCGCCGG	GGGAGAGAAC	CAGTTCGCGC	TACGGCCCTC	690
	CGGCGTCCAT	GTCCGCCGTG	TGGTTCCCGC	GCCCGTCCCC	GTCCCGGCCT	CCCCTCCCAC	6960
15	CGTCACCACG	GCCCCCGCCA	CCGCCGTCGG	CGAGGACGCA	CGGAACGACA	CCTCGGACGT	7020
.5	GGTCGTGCCG	GACGACCGGT	GGTCCTCCGG	CACCGTACTG	ATCACCGGGG	GCACCGGTGC	7080
	CCTGGGTGCG	CAGGTCGCCC	GCAGGCTCGC	CCGGTCGGGC	GCCGCGCGTC	TGCTCCTGGT	7140
20	GGGCCGGCGC	GCCGCGGCCG	GCCCCGGAGT	GGGCGAACTC	GTCGAGGAGC	TGACGGCGCT	7200
	CGGTTCCGAA	GTGGCCGTCG	AGGCCTGCGA	CGTCGCCGAC	CGGGACGCAC	TOCCOCCCT	7260
	CCTCGCGGGC	CTCCCCGAGG	AGCGGCCCCT	CGTCGCCGTA	CTGCACGCGG	CACCICICCT	7320
25	CGACGACGGT	GTGCTCGACT	CGCTCACCTC	CGACCGGGTG	GACGCCGTAC	TGCGGGACAA	7380
	GGTCACCGCC	GCCCGTCACC	TGGACGAGCT	GACCGCGGAC	CTTCCGCTCG	ACCCCTTCGT	7440
30	GCTCTTCTCC	TCCATCGTCG	GCCTCTCGCG	CAACGGAGGG	CAGGCCGTCT	yccccccc	7500
30	CAACGCCGCG	CTCGACGCCC	TGGCGCAGCG	GCGCCGGGCC	AGGGGAGCCC	GTGCCCCCTC	7560
	GATCGCCTGG	GGGCCGTGGG	CCGCTGCCGG	AATGGCCTCC	GGAACGCCGG	CGAAGTCCTT	7620
35	CGAACGGGAC	GGCGTCACGG	CCCTGGACCC	CGAGCGCGCG	CTCGACGTCC	TCGACGACGT	7680
	GGTGGGCGCC	GGCGGGACCT	CTGCCGCAGG	GACGCACGCG	GCCGGCGAGA	CCTCCCTGCT	7740
	CGTCGCCGAC	GTGGACTGGG	AGACCTTCGT	CGGGCGTTCG	GTCACCCGCC	GTACCTGGTC	7800
40	GCTCTTCGAC	GCCTCTCCG	CCCCCCTTC	GGCGCGTGCC	GGCCATGCCG	CCGACGACCG	7860
						CCCCACACCA	7920
45	CGGGGGCGAG	GGCCGGCCGT	GCTCTCCGT	CCCCCCTCG	CCGGCGGAAC	CCCCTCCTCC	7980
45	TCTGCTCACG	CTTGTGCGCT	CGGAGGCCGC	CGGGATCCTG	CCCCACCCCT	CCCCCGACCC	8040
	GGTCGACCCG	GAGCTGGCCT	TCCGGTCCGC	CGGGTTCGAC	TCCCTCACCG	TTCTCGAACT	8100
50	GCGTAACCGC	CTGACCGCTG	CCACCGGCCT	GAACCTGCCG	AACACGCTGC	TCTTCGACCA	8160
	CCCGACCCCC	CTCTCGCTCG	CCTCCCACCT	GCACGACGAA	CTCTTCGGTC	CCCACAGCGA	8220
	GCCGGAGCCG	GCAGCGGCCG	CCCCACGCC	GGTCATGGCC	GACGAGCGTG	AGCCCATCGC	8280
55	GATCGTGGGC	ATGGCGTGCC	GTTACCCGGG	CGGTGTGGCG	TCGCCGGACG	ACCTGTGGGA	8340

	CCTGGTGGCC	GGTGACGGGC	ACACGCTCTC	CCCGTTCCCG	GCCGACCGTG	GCTGGGACGT	8400
	CGAGGGGCTG	TACGACCCGG	AGCCGGGGGT	GCCGGGCAAG	AGCTATGTAC	GGGAAGGCGG	8460
5	GTTCCTGCGT	TCCGCGGCCG	AGTTCGACGC	GGAGTTCTTC	GGGATATCGC	CGCGCGAGGC	8520
	CACGCCCATG	GACCCGCAGC	AGCGGTTGCT	GCTGGAGACG	TCGTGGGAGG	CGCTGGAGCG	8580
10	GGCCGGCATC	GTTCCGGACT	CGCTGCGCGG	CACCCGGACC	GGTGTCTTCA	GCGGCATCTC	8640
	CCAGCAGGAC	TACGCGACCC	AGCTGGGGGA	CGCCGCCGAC	ACCTACGGCG	GCCATGTGCT	8700
	CACGGGGACC	CTCGGCAGTG	TGATCTCCGG	TCGGGTTGCC	TATGCGTTGG	GCTTGGAGGG	8760
15	GCCGGCGCTG	ACGGTGGACA	CGGCGTGTTC	GTCGTCGTTC	GTGCCGTTGC	ATCTGGCGGT	8820
	GCAGTCGTTG	CGGCGGGGTG	AGTGTGATCT	GGCGTTGGCC	GGTGGGGTGA	CGGTGATGGC	8880
	GACGCCGACG	GTGTTCGTGG	AGTTCTCGCG	GCAGCGGGG	CTGGCGGCGG	ACGGGCGGTG	8940
20	CAAGGCGTTC	CCGCAGGGTG	CGGACGGGAC	GCCGTCGCCG	GAGGGTGTGG	CTCTCCTCCT	9000
	GGTGGAGCGG	CTTTCCGACG	CGCGCCGCAA	CGGTCATCGG	GTGCTGGCGG	TGGTGCGGGG	9060
25	CAGTGCGGTC	AATCAGGACG	GTGCGAGCAA	TGGGCTGACG	GCGCCGAGTG	GTCCGGCGÇA	9120
	GCAGCGGGTG	ATCCGTGAGG	CGCTGGCTGA	TGCGGGGCTG	GTGCCCGCCG	ACGTGGATGT	9180
	GGTGGAGGCG	CACGGTACGG	GGACGCCCT	GGGTGATCCG	ATCGAGGCGG	GTGCGCTGCT	9240
30	GGCCACGTAC	GGGCGGGAGC	GGGTCGGCGA	TCCGTTGTGG	CTCGGGTCGT	TGAAGTCGAA	9300
	CATCGGGCAT	GCGCAGGCGG	CTGCGGGTGT	GGGTGGTGTG	ATCAAGGTGG	TGCAGGGGAT	9360
	GCGGCATGGG	TCGTTGCCGC	GGACGCTGCA	TGTGGATGCG	CCGTCGTCGA	AGGTGGAGTG	9420
35	CCCTTCCCCT	GCGGTGGAGC	TGCTGACCGA	GACCCGGTCG	TGGCCGCGGC	GCCTCCACCC	9480
	GGTGCGGCGG	GCCGCGGTGT	CGCCCTTCGG	GGTGAGCGGG	ACCAACGCCC	ATGTGGTCCT	9540
40	GGAGGAAGCG	CCGGCGGAGG	CCGGGAGCGA	GCACGGGGAC	GGCCCTGAAC	CTGAGCGGCC	9600
	CGACGCGGTG	ACGGGTCCGT	TGTCGTGGGT	GCTTTCTGCG	CGGTCGGAGG	GGGCGTTGCG	9660
	GGCGCAGGCG	CTGCCGTTGC	GTGAGTGTGT	GGAGCGGGTG	GGTGCGGATC	CGCGGGATGT	9720
45	GGCGGGTCG	TIGGTGGTGT	CCCCTCCCTC	GTTCGGTGAG	CCTCCCGTCG	TOCTGGGCCG	9780
	GGGCGTGAG	GAGTTGCTGG	CGGGTCTGGA	TGTGGTGGCT	GCCGGGGCTC	CTCTCCCTCT	9840
	CTCTTCGGGG	GCCGGTGCTG	TCCTCCCCCC	GACTGCGGTG	CCCCCTCCTC	CCCTCCCCCT	9900
50	GTTGTTCACG	GGTCAGGGTG	CGCAGTGGGT	TGGTATGGGG	CCTCCCTTCT	ATGCGGGGGG	9960
	TGGGGTGTTT	GCGGAGGTGC	TGGATGAGGT	CTTCTCCCTC	GTGGGGGAGG	TOGATEGTCG	10020
55	GTCGTTGCGG	GATGTGATGT	TCGCGGATGC	TGACTCGGTT	TTGGGTGGGT	TCTTCGCTCG	10080
	GACGGAGTTT	GCTCAGCCTG	CCTTCTTTCC	CTTGGAGGTG	CCCTTCTTCC	GCCCTTCGA	10140

	GGCTCGGGGT	GTGGAGGTGT	CCGTCGTGTT	GGGTCATTCG	CTCCCCCACC	TOGCTGCTGC	10200
5	GTATGTGGCG	GGGGTGTTGT	CCTTGGGTGA	TGCGGTGCGG	TTGGTGGTGG	CCCCCCCTCC	10260
	GTTGATGGGT	GCCTTCCCCC	TOGGTGGGG	GATGTGGTCG	CTCCCCCCT	CGGAGTCGGT	10320
	GCTGCGGGG	GTTGTTGAGG	GGTTGGGGGA	GTGGGTGTCG	GTTGCGGCGG	TGAATGGGCC	10380-
10	GCGGTCGGTG	GTGTTGTCGC	CTGATGTGGG	TGTGCTGGAG	TCGGTGGTTG	TCACGCTGAT	10440
	GGGGGATGGG	GTGGAGTGCC	GCCGTTGGA	TGTGTCGCAT	GGGTTTCATT	COGTGTTGAT	10500
	GGAGCCGGTG	TTGGGGGAGT	TCCGGGGGGT	TGTGGAGTCG	TTGGAGTTCG	CTCCCCTCCC	10560
15	GCCGGGTGTG	GTGGTGGTGT	CGGGTGTGTC	CCCTCCCCTC	GTGGGTTCGG	GGGAGTTGGG	10620
	GGATCCGGGG	TATTGGGTGC	GTCATGCGCG	GGAGGCGGTG	CGTTTCGCCG	ATGGGGTGGG	10680
20	GGTGGTGCGT	GGTCTGGGTG	TGGGGACGTT	GGTGGAGGTG	GGTCCGCATG	GGGTGCTGAC	10740
	GGGGATGGCG	GGTCAGTGCC	TGGAGGCCGG	TGATGATGTG	GTGGTGGTGC	CGCCGATGCG	10800
	GCGGGGCCGT	CCGGAGCGGG	AGGTGTTCGA	GGCGGCGCTG	GCGACGGTGT	TCACCCGGGA	10860
25	CCCCCCCCTC	GACGCCACGA	CACTCCACAC	CGGGAGCACC	GGCCGACGCA	TCGACCTCCC	10920
	CACCTACCCC	TTCCAACACA	ACCGCTACTG	GGCAACCGGC	TCAGTGACCG	GTGCGACCGG	10980
	CACCTCGGCA	GCCGCGCGCT	TCGGCCTGGA	GTGGAAGGAC	CACCCCTTCC	TCAGCGGCGC	11040
30	CACGCCGATA	GCCGGCTCCG	CCCCCCTCCT	CCTCACCGGC	AGGGTGGGGC	TCGCTGCCCA	11100
	CCCGTGGCTG	GCCGACCACG	CCATCTCCGG	CACGGTGCTG	CTCCCCGGAA	CGGCGATCGC	11160
35	CGACCTGCTG	CTGCGGGCGG	TCGAGGAGGT	CGGCGCCGGA	GGGGTCGAGG	AACTGACGCT	11220
	CCATGAGCCC	CTGCTCCTCC	CCGAGCGAGG	CGGCCTGCAC	GTCCAGGTGC	TGGTCGAGGC	11280
	GGCGACGAG	CAGGGACGGC	CTGCCCTGGC	AGTCGCCGCA	CGCCCGGAGG	GCCCTGGGCG	11340
40	GGACGGTGAG	GAACAGGAGT	GGACCCGGCA	CGCGGAAGGC	GTGCTCACCT	CCACCGAGAC	11400
	GCCCTTCCC	GACATGGGCT	cccccccc	GCCTGGCCG	CCCCCCCCTC	CCGAGCCGAT	11460
	CGACGTCGAG	GAGCTGTACG	ACGCCTTCGC	CGCGGACGGC	TACGGCTACG	GCCCGGCCTT	11520
45	CACCGCACTG	TCCGCCGTGT	GCCTCTCGG	CGACGAACTC	TTCGCCGAGG	TGCGGCGGCC	11580
	CCCCCCCCCC	GCGGGCACGA	CCGGTGACGG	TTTCGGCGTC	CACCCCGCAC	TCTTCGATGC	11640
50	GGCCCTCCAC	CCGTCGCGCG	CCGGCGGGCT	GCTGCCCGAC	ACGGGCGGCA	CCACCTGGGC	11700
	GCCGTTCTCC	TGCCAGGGCA	TOGOGOTOCA	CACCACCGGA	GCCGAGACGC	TCCGCGTCAG	11760
	ACTGGCCCCT	GCGGCCGGCG	GCACCGAGTC	GGCCTTCTCC	GTACAGGCCG	CCCACCCGGC	11820
55	GGGCACCCCG	GTCCTCACCC	TCGACGCACT	GCTGCTCCGC	CCGGTGACCC	TGGGGAGGGC	11880

	CGACGCGCCG	CAACCGCTGT	ACCGCGTCGA	CTGGCAGCCG	GTCGGCCAGG	GGACCGAGGC	11940
5	CTCCGGCGCC	CAGGGCTGGA	CCCTCCTCCC	GCAGGCCGCG	GCCGAGACGG	TCGCGCAGCC	12000
	CGCCGCCCAT	GCGGACCTCA	CCCCCTCCG	TACGGCTGTG	ccccccccc	GAACACCCGT	12060
	CCCCCCCCTC	CTCCTCCTCT	CGCCGGTGGA	CACCCGGCTG	GACGAGGGGC	CCCTCCTCCC	12120
10	GGACGCCGAG	GCTCGGGCCC	GTGCGGGTGA	CGGCTGGGAC	GACGATCCCC	TACGTGTCGC	12180
	CCTCGGGCGC	GGCCTGACCC	TGGTCCGGGA	GTGGGTCGAG	GACGAACGGT	TGGCGGACTC	12240
	CCGGCTCGTC	GTCCTCACCC	CTCCCCCCT	CCCCCCCCT	CCCGCCGATG	TGCCGGACCT	12300
15	GACAGGTGCG	GCCCTGTGGG	GGCTGCTCCG	CTCCGCGCAG	TOGGAGTATO	CGGACCGCTT	12360
	CACCCTCATC	GACGTGGACG	ATTCCCCCGA	CTCCCCTCCG	GCTCTGCCCC	GGGCTCTGGG	12420
	ATCGGCCGAG	CGACAACTCG	CCCTGCGGAC	GGCGACGTG	CTGGCGCCGG	CCCTGGTCCC	12480
20	GATGGCCACC	CGGCCGGCGG	AGACCACTCC	AGCGACGGCG	GTCGCCTCGG	CGACAACACA	12540
	GACACAGGTC	ACCGCGCCCG	CTCCCGACGA	CCCGCCTGCG	GATGCCGTGT	TCGACCCGC	12600
25	GGGCACCGTA	CTGATCACCG	GCGGCACCGG	CGCCCTGGGA	CGCCGTGTCG	CCTCGCACCT	12660
	CGCGCGCCGG	TACGGCGTAC	GCCACATGCT	TCTGGTCAGC	AGGCGTGGAC	CGGACGCCCC	12720
	CGAGGCCGGT	CCCCTGGAAC	GGGAACTCGC	CGGTCTCGGA	GTCACCGCCA	CCTTCCTGGC	12780
30	ATGCGACCTC	ACCGACATCG	AGGCCGTACG	GAAGGCCGTC	GCCGCGGTGC	CGTCGGACCA	12840
	CCCGCTGACC	CCTCTCCTCC	ACACCGCCGG	CGTGCTGGAC	GACGGCGCCC	TGACCGGCCT	12900
	GACCCGGCAA	CGCCTCGACA	CCCTGCTGCG	GCCCAAGGCC	GACGCCGTGC	GGAACCTCCA	12960
35	CGAGGCGACC	CTCGACCGGC	CGCTGCGCGC	CTTCGTCCTG	TTCTCCGCCG	CCGCCGGACT	13020
	CCTGGGCCGC	CCCGGGCAGG	CCTCCTACGC	CGCCGCCAAC	GCGGTCCTCG	ACGCCCTCCC	13080
40	GGGAGCCCGC	CGCGCGGCCG	GACTGCCCGC	AGTGTCCCTG	CCCTCCCCC	TGTGGGACGA	13140
	GCAGACGGGC	ATGGCAGGAG	GCCTCGACGA	GATGGCCCTG	CGCCTGCTGC	GCCGGGACGG	13200
	CATCGCCGCG	ATGCCTCCGG	AGCAGGGGCT	CGAACTGCTC	GACCTGGCCC	TGACCGGACA	13260
45	CCGGGACGGA	CCCGCCGTCC	TCGTCCCCCT	CCTCCTCGAC	ccccccccc	TGCGCCGCAC	13320
	GGCGAAGGAG	CGCGGCGCGG	CCACGATGTC	CCCCTTGCTG	CGCGCCCTGC	TGCCGGCGGC	13380
	CCTGCGCCGC	AGCGGTGGAG	CCGCCCCCC	CGCGGCGGCC	GACCGGCACG	GCAAGGAGGC	13440
50	GGACCCCGGT	GCGGGACGCC	TCGCAGGGAT	GGTGGCACTC	GAAGCGGCGG	AGCGTTCCGC	13500
	GCCGTCCTT	GAGCTGGTCA	CCGAACAGGT	CGCCGAGGTC	CTCGGCTACG	CGTCGGCCGC	13560
	GGAGATCGAG	CCCGAACGAC	CCTTCCGGGA	GATCGGCGTC	GACTCCCTGG	CGGCGGTGGA	13620
55	GCTGCGCAAC	CGGCTCAGCC	GTCTGGTCGG	CCTCCCCTTC	CCGACCACGC	TCTCCTTCGA	13680

	CCACCCCACG CCGAAGGACA TGGCGCAGCA CATCGACGGG CAGCTCCCCC GCCCGGCCGG	13740
5	AGCCTCGCCC GCGGACGCAG CGCTGGAAGG GATCGGCGAC CTCGCGCGCGC CGGTCGCCCT	13800
	GCTGGGCACG GGCGACGCCC GCCGGGCCGA GGTACGAGAG CAGCTCGTCG GACTGCTGGC	13860
10	CGCGCTCGAC CCACCTGGGC GGACGGGCAC CGCCGCACCC GGCGTCCCCT CCGGTGCCGA	13920
10	TGGCGCGGAA CCGACCGTGA CGGACCGGCT CGACGAGGCG ACCGACGACG AGATCTTCGC	13980
	CTTCCTGGAC GAGCAGCTGT GACCACACCG TGGACCGACC GCATGCCGAG GAGTTGGTGG	14040
15	CAGCAATGAC CGCCGAGAAC GACAAGATCC GCAGCTACCT GAAGCGTGCC ACCGCCGAAC	14100
	TGCACCGGAC CAAGTCCCGC CTGGCCGAGG TCGAGTCGGC GAGCCGCGAG CCGATCGCGA	14160
	TCGTGGGCAT GGCGTGCCGT TACCCGGGCG GTGTGGCGTC GCCGGACGAC CTGTGGGACC	14220
20	TGGTGGCAGC CGGTACGGAC GCGGTCTCCG CGTTCCCCGT CGACCGTGGC TGGGACGTCG	14280
	AGGGGCTGTA CGACCCCGAT CCGGAGGCGG TGGGGCGTAG TTACGTGCGG GAGGGCGGGT	14340
	TCCTGCACTC GGCGGCCGAG TTCGACGCGG AGTTCTTCGG GATCTCGCCC CGTGAGGCGG	14400
25	CGGCGATGGA TCCGCAGCAG CGGTTGCTGC TGGAGACGTC GTGGGAGGGG CTGGAGCGGG	14460
	CGGGGATCGT CCCCGCGTCG CTGCGCGGCA CCCGTACCGG CGTCTTCACC GGCGTCATGT	14520
20	ACGACGACTA CGGGTCGCGG TTCGACTCGG CTCCGCCGGA GTACGAGGGC TACCTCGTGA	14580
30	ACGCCAGCGC CGGCAGCATC GCGTCCGGTC GGGTTGCCTA TGCGTTGGGG TTGGAGGGGC	14640
	CGCCGCTGAC GGTGGACACG GCGTGTTCGT CGTCGTTGGT GGCGTTGCAT CTGGCGGTGC	14700
35	AGTCGTTGCG GCGGGGTGAG TGTGATCTGG CGTTGGCCGG TGGGGTGACG GTGATGGCGA	14760
	CGCCGACGGT GCTCGTGGAG TTCTCGCGGC AGCGGGGGCT GGCGGCGGAC GGGCGGTGCA	14820
	AGGCGTTCGC GGAGGGTGCG GACGGGACGG CGTGGGCCGA GGGTGTGGGC GTGCTGCTGG	14880
40	TGGAGCGGCT CTCCGACGCC CGCCGCAATG GCCATCGGGT GCTGGCGGTG GTGCGGGGCA	14940
	GTGCGGTCAA TCAGGACGGT GCGAGCAACG GGCTGACGGC GCCGAGTGGT CCTGCGCAGC	15000
	AGCGGGTGAT CCGTGAGGCG CTGGCCGACG CGGGGCTGAC GCCCGCCGAC GTCGACGCGG	15060.
45	TCGAGGCGCA CGGCACCGCC ACACCCCTTCG GCGACCCCAM CCACCCCCAM	15120
	CCACCTATGG CAGTGAGCGC CAGCGCCAAG CTCCCTTTCTC CTTTCCCCCTTCC	15180
50	ACATCGGGCA TGCGCAGGCG GCTCCCCGTC TGCGTCCCCT CATCAACCTC	15240
50	TGCGGCATGG GTCGTTGCCG CGGACGCTGC ATGTGCATGG GGGGTGGTGG	15300
	GGGCTTCGGG TGCCGTGGAG CTCCTGACCC ACACCCCCTTC CTCCGGGGGGGGGG	15360
55	GGGTGCGGCG GGCCCCCTTC TCCCCCTTTCC CCCTTCACCCC CACCAACCCC	
	THE PROPERTY OF THE PROPERTY O	15420

	TGGAGGAAGC	GCCGGCGGAG	GCCGGGAGCG	AGCACGGGGA	CGGCCCTGAA	CCCGAGCGGC	15480
5	CCGACGCGGT	GACGGGTCCG	TTCTCCTCCC	TGCTTTCTGC	GCGGTCGGAG	GGGGCGTTGC	15540
	GGGCGCAGGC	CCTCCCCTTC	CCTGACTCTC	TGGAGCGGGT	GGGTGCGGAT	CCGCGGGATG	15600
	TGGCGGGGTC	CTTCCTCCTC	TCGCGTGCGT	CCTTCCCTCA	GCGTGCGGTG	GTGGTGGGCC	15660
10	CCCCCCTCA	GGAGTTGCTG	GCGGGTCTGG	ATGTGGTGGC	TGCCGGGGCT	CCTGTGGGTG	15720
	TCTCCGGGGG	CGTGTCTTCG	GCCCCCCTC	CTCTCCTCCC	GGGGAGTGCG	CTCCCCCCTC	15780
	CTCCCCTCCC	CCTCTTCTTC	ACGGGTCAGG	GTGCGCAGTG	GGTTGGTATG	CCCCTCCCT	15840
15	TGTATGCGGG	CCCTCCCCTC	TTTGCGGAGG	TGCTGGATGA	GGTGTTGTCG	CTCCTCCCCC	15900
	AGGTGGGGG	TTGGTCGTTG	CGGGATGTGA	TGTTCGGCGA	CGTCGACGTG	GACGCGGGTG	15960
	CCGGGGCTGA	TGCGGGTGTC	GGTTCGGGTG	TTGGTGTGGG	TGGGTTGTTG	GGTCGGACGG	16020
20	AGTTTGCTCA	GCCTGCGTTG	TTTGCGTTGG	AGGTGGCGTT	GTTCCGGGCG	TTGGAGGCTC	16080
	GGGGTGTGGA	CCTCTCCCTC	GTGTTGGGTC	ATTCGGTGGG	GGAGGTGGCT	GCTGCGTATG	16140
25	TGGCGGGGGT	GTTGTCGTTG	GGTGATGCGG	TGCGGTTGGT	CCTCCCCCC	GCTGGGTTGA	16200
	TGGGTGGGTT	GCCGGTGGGT	GGGGGGATGT	GGTCGGTGGG	GCCTCGGAG	TCGGTGGTGC	16260
	CCCCCTTCT	TGAGGGGTTG	GGGGAGTGGG	TGTCGGTTGC	GGCGGTGAAT	GGGCCGCGT	16320
30	CGGTGGTGTT	GTCGGGTGAT	CTCCCTCTCC	TGGAGTCGGT	CCTTCCCTCC	CTGATGGGG	16380
	ATGGGGTGGA	GTGCCGGCGG	TTGGATGTGT	CGCATGGGTT	TCATTCGGTG	TTGATGGAGC	16440
	CGGTGTTGGG	GGAGTTCCGG	CCCCTTCTCC	AGTCGTTGGA	GTTCGGTCGG	CTGCGGCCGG	16500
35	GTGTGGTGGT	GGTGTCGAGT	CTCTCCCCTC	CCCTCCTCCC	TTCGGGGGAG	TIGGGGGATC	16560
	CGGGGTATTG	GGTGCGTCAT	GCGCGGGAGG	CGGTGCGTTT	CGCGGATGGG	CTGGGGGTGG	16620
40	TGCGTGGTCT	CCCTCTCCCC	ACCTTCCTCC	AGGTGGGTCC	GCATGGGGTG	CTGACGGGGA	16680
40	TGGCGGGTGA	CTCCCTCCCC	GCCGGTGATG	ATCTCCTCCT	GCTGCCGGCG	ATGCGGCGGG	16740
	GCCGTGCGGA	GCGGGAGGTG	TTCGAGGCGG	CGCTGGCGAC	GGTGTTCACC	CCCGACCCCC	16800
45	GCCTGGACGC	CACGACACTC	CACACCGGGA	GCACCGGCCG	ACGCATCGAC	CTCCCCACCT	16860
	ACCCCTTCCA	ACACGACCGC	TACTGGCTGG	CCCCCCCTC	CCGGCCCAGG	ACGGACGGC	16920
	TGTCGGCGGC	GGGTCTGCGC	GAGGTGGAGC	ACCCCCTGCT	CACCGCCGCC	GTGGAACTGC	16980
50	CCGGCACCGA	CACCGAGGTG	TGGACCGGCC	GCATATCCGC	TGCCGACCTG	CCCTGGCTCG	17040
	CCGACCACCT	GGTGTGGGAC	CGAGGCGTGG	TGCCGGGGAC	CGCGCTGCTG	GAGACGGTGC	17100
	TCCAGGTGGG	AAGCCGGATC	GCTCTGCCGC	GCGTCGCCGA	ACTGGTCCTG	GAGACGCCGC	17160
55	TGACCTGGAC	GTCGGACCGC	CCGCTCCAGG	TCCGGATCGT	CGTGACCGCT	GCCGCCACCG	17220

	CCCCCGGGG CGCGCGTGAG CTGACCCTCC ACTCGCGGCC CGAGCCCCGTG GCCGCCTCCT	17280
5	CGTCCTCCCC GAGTCCCGCC TCTCCCCGGC ACCTCACGGC GCAGGAGAGC GACGACGACT	17340
•	GGACCCGGCA TGCCTCAGGG CTGCTCGCCC CGGCTGCCGG CCTCGCCGAC GACTTCGCCG	17400
	AGCTCACCGG CGCCTGGCCC CCCGTCGCCG CCGAGCCCCT CGACCTCGCC GGTCAGTACC	17460
10	CGCTCTTCGC AGCCGCCGGA GTGCGCTACG AAGGCGCCTT CCGAGGGCTG CGCGCGCAT	17520
	GGCGTCGAGG CGACGAGGTC TTCGCCGACG TACGGCTGCC CGACGCGCAC GCGGTCGACG	17580
15	CTGATCGTTA CGGGGTGCAC CCCGCCCTGC TCGACGCGGT GCTCCACCCG ATCGCGTCGC	17640
	TGGACCCGCT GGGCACGGC GGGCACGGTC TGCTGCCGTT CTCCTGGACC GACGTACAGG	17700
	GACACGGGGC CGGCGGACAC GCCCTCCGGC TACGGGTGGC GGCCGTCGAC GGCGGCGCGC	17760
20	TETEGGTEAC CECGGCCGAC CACGCGGGCA ACCCGGTGTT ATCCGCCCGG TCCCTGGCAC	17820
	TECETCETAT CACCECEGAC CEGCTTCCCE CCGCCCCCT CGCCCCTCTC TACCECGTCG	17880
	ACTGGCTGCC GTTCCCGGGT CCGGTGCCCG TATCCGCGGG CGGCCGCTGG GCGGTCGTCG	17940
25	GACCCGAGGC CGAAGCCACG GCTGCCGGAC TGCGTGCGGT GGGCCTCGAC GTGCGTACCC	18000
	ATGCGCTCCC CCTCGGAGAG CCCCTGCCTC CGCAGGCCGG TACCGACGCG GAGGTGATCA	18060
•	TCCTCGACCT GACCACCACC GCAGCCGGCC GTACGGCGTC GGACGGGGG CGGCTCAGTC	18120
30	TCCTCGACGA GCTGCGTGCG ACGGTGCGCC GGACCCTCGA AGCCGTACAG GCCCGCCTCG	18180
	CCGACACCGA AACGGCCCCC GACGTCGACG TCCGTACGGC CGCGCGCCCC CGCACAGCCG	18240
35	CCCGTACAAG CCCCCGCGTG GACACCCGCTA CGGGAGCCCG CACCGCTGAC GGCCCCCGCC	18300
	TCGTCGTCCT GACCCGGGGC GCGGCCGGAC CCGAGGGAGG CGCGGCCGAT CCCGCGGGTG	18360
	CCGCTGTCTG GGGGCTCGTC CGGGTCGCCC AGGCCGAACA GCCCGGCCGC TTCACCCTGG	18420
40	TGGACGTCGA CGGCACCCAG GCGTCGCTGC GGGCCCTGCC CGGTCTGCTG GCCACGGATG	18480
	CCGGCCAGTC GCCCGTGCGC GACGGACGTG TCACCGTCCC GCGCCTCGTC CCGGTGGCCG	18540
	ACCCCGTCCC CCACGCGGC GGCACGGGGC CCGACGGGAC GGGTGCCGGC GAGCCGTCCG	18600
45	CGACCCTGGA CCCCGAAGGC ACCGTGCTCA TCACCGGCGG CACCGGAGCA CTGGCCGCGG	18660
	3AAACCGCCCG GCACCTGGTC GACCGGCACA AGGTGCGCCA TCTCCTGCTG GTGGGCAGGC	18720
50	GCGGTCCCGA CGCACCCGGC GTCGATCGAC TGGTCGCCGA GTTGACCGAG TCGGGTGCCG	18780
30	AGGTCGCCGT ACGGGCCTGT GACGTCACGG ACCGCGACGC CCTGCGCCGC CTGCTCGACG	18840
	CACTCCCCGA CGAACACCCG CTGACCTCCG TGGTGCACAC CGCCGGGGTG CTCGACGACG	18900
55	GCGTGCTCTC CGCCCAGACG GCCGAGCGGA TCGACACGGT GCTCCGGCCC AAGGCCGACG	18960

	CCGCCGTCCA	CCTGGACGAG	CTGACCCGGG	AGATCGGACG	GCTGCCCCTG	GTGCTGTACT	19020
5	CCTCGGTCTC	GCCACCCTG	GCCAGCGCGG	GGCAGGCCGG	GTACGCGGCG	GCCAACGCCT	19080
3	TCATGGACGC	GCTGGCCGCC	CCCCCCTCCC	CCGCCGGGCA	cccccccrc	TCGCTCGGCT	19140
	CCCCTCCTC	GTCCGGGGTG	GGTCTCGCCA	CCGGACTGGA	CGGAGCGGAC	cccccccc	19200
10	TCAGGCGCTC	GGGTCTCGCC	CCGCTCGACG	cccccccc	ACTGGACCTG	CTCGACCGGG	19260
	CGCTGACCCG	GCCCGAGCCG	GCCCTGCTGC	CCCTGCGGCT	CGACCTGCGC	eccececce	19320
	GTGCCACCGC	TCTCCCGGAG	GTCCTGCGTG	ACCTGGCCGG	CGTACCGGCG	GACGCCCGCA	19380
15	GCACGCCCGG	GCCCCCCCC	GGCACCGGGG	ACGAGGACGG	TGCCGTGCGC	CCTGCCCCCG	19440
	CCCCGGCCGA	cccccccc	ACGCTGGCCG	CGCGGCTCGC	GGGACGTTCC	GCACCCGAGC	19500
	GTACGGCTCT	CCTGCTCGAC	CTGGTGCGGA	CCGAGGTCGC	GCCGTGCTC	GGACACGGCG	19560
20	ACCCCGCCGC	GATCGCCGCC	GCCCGCACCT	TCAAGGACGC	CGGATTCGAC	TCCCTCACCG	19620
	CTGTCGACCT	CCGCAACCGG	CTGAACACAC	GCACCGGACT	GCGGCTGCCC	GCGACCCTCG	19680
25	TCTTCGACCA	CCCCACACCG	CTCGCCCTCG	CCGAACTCCT	GCTCGACGGG	CTGGAGGCGG	19740
	CCGGTCCAGC	GGAACCGGCC	GCTGAGGTCC	CGGACGAAGC	GCCCGTGCC	GAGACCCTGT	19800
	CCGCCGTGAT	CGACCGGCTG	GAACGCAGCC	TCGCCGCGAC	CGACGACGC	GACGCCCGGG	19860
30	TCCGCGCGGC	ACGGCGGCTG	CCCCCCTCC	TGGACGCGCT	CCCCGCCGGT	CCCGGTGCCG	19920
	CCTCCGGTCC	GGATGCCGGA	GAGCACGCCC	CCGGTCGCGG	CGACGTGGTG	ATCGACCGGC	19980
	TCAGGTCGGC	CTCCGACGAC	GACTTGTTCG	ACCTGCTCGA	CAGCGACTTC	CAGTGAGCCG	20040
35	GACCGCGCCG	CGCGCCGACC	GCTGAACCGC	TCTTCACCCA	GACCCACGAG	ACCACGCCTG	20100
	AGGAGAACCG	TGTCTGCGAC	CAACGAGGAG	AAGTTGCGGG	AGTACCTGCG	GCGCGCGATG	20160
	GCCGACCTGC	ACAGCGCACG	AGAGCGGTTG	CGCGAGGTCG	AGTCGGCGAG	CCGTGAGCCG	20220
40	ATCGCGATCG	TGGGCATGGC	GTGCCGTTAC	CCGGGCGGTG	TGGCGTCGCC	GCAGGAGCTG	20280
	TOGGACCTGG	TGGCCGCCGG	TACGGACGCG	ATCTCCCCGT	TCCCCGTCGA	CCGCGGCTGG	20340
45	GACGCCGAGG	GTCTGTACGA	CCCGGAGCCG	GGGGTGCCGG	GCAAGAGCTA	CCTCCCCCAC	20400
	GGCGGGTTCC	TGCACTCGGC	GGCCGAGTTC	GACGCGGAGT	TCTTCGGGAT	CTCGCCGCGT	20460
	GAGGCGGCGG	CGATGGATCC	GCAGCAGCGG	TTGCTGCTGG	AGACGTCGTG	GGAGGCGCTG	20520
50	GAGCGGGCCG	GGATCGTCCC	CCCCTCCCTC	CGCGGCACCC	GTACCGGCGT	CTTCACCGGC	20580
	GTCATGTACC	ACGACTACGG	CAGCCACCAG	GTCGGCACCG	CCGCCGATCC	CAGTGGACAG	20640
	CTCGGCCTCG	GCACCGCGGG	GAGCGTCGCC	TCGGGCCGGG	TGGCGTACAC	CCTCGGTCTA	20700
55	CAGGGGCCGG	CCGTGACCAT	GGACACGGCA	TGCTCGTCCT	CGCTGGTGGC	GTTGCACCTG	20760

5	CCCCTCCACT CCTTCCCCCC GGGCGAGTCC GATCTCCCCT TCCCCCCCCC CCCGACCGTC	20820
5	TTGCCGACGC CCACGCTGTT CGTGGAGTTC TCGCGGCAAC GGGGGCTGGC GGCGGACGGA	20880
	CGGTGCAAGG CGTTCGCGGA GGGCGCCGAC GGCACGCGT GGGCCGAGGG CGCCGGTGTG	20940
10	CTGCTGGTGG AGCGGCTCTC CGACGCCCGC CGCAACGGCC ATCGGGTGCT CGCGGTGGTG	21000
70	CGGGGCAGCG CGGTCAACCA GGACGGTGCC AGCAACGGCC TCACCGCACC CAGCGGGCCC	21060
	GCCCAGCAGC GGGTGATCCG TGACGCGGTG GCCGACGCG GGCTGACGCC CGCCGACGTG	21120
15	GACGCGGTCG AGGCGCACGG CACCGGCACA CCGCTCGGCG ACCCGATCGA GGCCGGCGCG	21180
	CTGATGGCCA CCTACGGCAG TGAACGGGTG GGCGACCCGC TGTGGCTGGG TTCGCTGAAG	21240
	TCGAACATCG GACACACCA GGCCGCCGCC GGAGCCGCCG GCGTCATCAA GATGGTGCAG	21300
20	GCGTTACGGC AGTCCGAGCT GCCGCGCACC CTGCACGTCG ACGCGCCCTC GGCCAAGGTC	21360
	GAATGGGACG CGGGCGCGT GCAACTGCTC ACCGGCGTCC GGCCATGGCC CCGGCGCGAG	21420
	CACAGGCCCC GGCGGCCGC GGTCTCCGCC TTCGGCGTCA GCGGCACCAA CGCCCACGTC	21480
25	ATCATCGAGG AACCGCCCGC GGCCGGTGAC ACCTCGCCCG CCGGCGACAC CCCTGAGCCG	21540
	GGCGAGGCGA CCGCGTCCCC CTCCACCGCG GCCGGCCGT CGTCCCCCTC CGCGGTGGCC	21600
	GGGCCGCTGT CCCCCTCCTC CCCGGCCGTG GTCTGGCCCC TGTCCGCCGA GACCGCCCCC	21660
30	GCCCTGCGCG CCCAGGCCGC CCGCCTGCGG GCGCACCTCG AACGCCTCCC CGGCACCTCG	21720
	CCGACCGACA TCGGCCACGC CCTGGCCGCC GAACGCGCCG CCCTCACCCG ACGCGTCGTG	21780
35	CTGCTCGGCG ACGACGGAGC CCCGGTCGAC GCACTCGCCG CCCTCGCCGC CGGCGAGACC	21840
	ACCCCCGACG CCGTCCACGG CACCGCGGGG GACATCCGCC GGGTCGCCTT CGTGTTCCCC	21900
	GGCCAGGGTT CCCAGTGGGC CGGGATGGGC GCCGAACTGC TGGACACGGC CCCGGCCTTC	21960
40	GCCGCCGAAC TGGACCGCTG CCAGGGGGGG CTCTCCCCGT ACGTGGACTG GAACCTCGCG	22020
	GACGTGCTGC GCGGCGCCC CGCGGCGCCC GGCCTCGACC GGGTCGACGT CGTCCAGCCG 2	22080
	GCCACCTTCG CCGTCATGGT GGGACTCGCC GCGCTGTGGC GCTCCCTCGG GGTCGAACCC 2	2140
45	GCCGCCGTCA TCGGCCACTC CCAGGCCGAG ATCCCCCCC CCTGGGTGGG	2200
	TCCCTGGAGG ACGCCGCCCG GATCCTCCCC CTCCCCTCCC	2260
50	GCCGGGGGG GCGGCATGGC CTCGGTTGGCC CTCCCCCCC CCGACCTTGGA CGGGGGGGGG	2320
	GCCGCCGCG TCGAGATCGC CGCCGTCAAC CCCCCCCCT CCACCCTTCCT CCACCCTTCCT	2380
	CCCGGCGCCC TGGAGGCGTT GCTCGTCACC CTCGACACCC AACGGAGGCG	2440
5 5	ATCGACGTCG ACTACGCGTC CCACTCCAC TACCTCACA CCATCCCCC	2500

	ACCGTCCTCG	CCCCCTCCC	GCCGCGGAGG	GGCGACGTGC	CCTTCTACTC	CACCGTCGAG	22560
5	GCGGCGCTCC	TCGACACCGC	CACCCTGGAC	GCCGACTACT	GGTACCGCAA	CCTGCGCCTC	22620
	CCGGTGCGCT	TCGAGCCGAC	CGTACGCGCC	ATGCTCGACG	ACGGCGTCGA	CCCCTTCCTC	22680
	GAGTGCTCCG	CGCATCCCGT	CCTGACCGTC	GGCGTGCGCC	AGACCGTGGA	GAGCGCCGGC	22740
10 '	GCCCCGTCC	CGGCCCTCGC	TTCGCTGCGC	CGCGACGAGG	GCGGGCTGCG	GCGCTTCCTC	22800
	ACCTCCGCCG	CCGAGGCCCA	CCTCCTCCCC	GTCCCCGTGG	ACTGGGGGAC	GCTCCGCCCA	22860
	GCCCCCCCC	GGGTGGACCT	GCCGACCTAC	GCCTTCCAGC	GCGAACGCCA	CTGGGTCGGC	22920
15	ccccccccc	CCGACTCCGC	GGCGACGGCC	GCCACGACCG	GTGACGACGC	CCCGGAGCCC	22980
	GGAGACCGGC	TCGGCTACCA	CCTCCCCTCC	AAGGGACTGC	GCTCCACCAC	CGGCGGCTGG	23040
	CGCCCCGGCC	TGCGCCTGCT	GATCGTGCCC	ACCGGGGACC	AGTACACCGC	CCTCGCCGAC	23100
20	ACCCTGGAAC	AGGCGGTCGC	CTCCTTCGGC	GGAACGGTCC	CCCCCTCCC	CTTCGACCCG	23160
	GCACGCACCG	GACGCGCCGA	GCTGTTCGGC	CTGCTCGAGA	CGGAGATCAA	CGGCGACACC .	23220
25	GCCGTCACCG	GCGTCGTCTC	GCTGCTCGGA	CTGTGCACCG	ACGGCAGGCC	GGACCACCCC	23280
	GCCGTGCCCG	TCGCCGTCAC	CGCCACCCTC	GCCCTCGTCC	AGGCCCTGGC	CGACCTCGGC	23340
	AGCACCGCAC	CGCTGTGGAC	CGTCACCTGC	GCCCCGTCG	CCACCGCCCC	CGACGAACTG	23400
30	CCGTGCACCG	CCGGTGCCCA	GCTGTGGGGC	CTGGGCCGGG	TGGCCGCGCT	CCACCTCCCC	23460
	GAGGTGTGGG	GCGGCCTCAT	CGACCTTCCC	GCGCGGCCCG	ACGCCCGGGT	CCTGGACCGT	23520
	CTCGCCGGCG	TCCTCGCCGA	ACCCGGCGGC	GAGGACCAGA	TCGCCGTACG	GATGGCGGGC	23580
35	GTCTTCGGCC	CCCCCTCCT	GCGGAACCCG	GCCGACTCCC	GCCCCCGGC	CTGGCGCGCC	23640
	CGGGGCACCG	TCCTCATCGC	CGGCGACCTC	ACGACGGTGC	CCGGCCGACT	GCTCCGGTCC	23700
40	CTCCTCGAGG	ACGGCGCGGA	CCCCCTCCTC	CTGGCCGGAC	CCGACGCCCC	CCACAGCCC	23760
40	GCCGCCGCCG	GACTGACCGG	CGTCTCCCTC	GTCCCCGTGC	GCTGCGACGT	CACCGACCGC	23820
	GCCGCACTGG	CCGCGCTGCT	CGACGAGCAC	GCGCCCACCG	TCGCCGTGCA	OCCCCCCCCC	23880
45	CTGGTGCCCC	TGGCGCCGCT	GCGGGAGACG	GCACCCGGCG	ACATCGCCGC	CCCCTCCCC	23940
	GCCAAGACCA	cecceccee	CCACCTGGTC	GACCTGGCGC	cecceces	CCTCGACGCG	24000
	CTGGTGCTGT	TCTCCTCGGT	CTCCGGAGTG	TGGGCGGGG	CGGCCCAGGG	CGGCTACGCG	24060
50	GCCGCCAGCG	CGCACCTCGA	CCCCCTCCCC	GAACGCGCCC	ccccccccc	GCTGCCCCCG	24120
	TTCTCCGTGG	CCTGGAGCCC	CTGGGCCGGA	GCACGCCCG	CCGACGCTGC	CGAGGCGGAG	24180
	TTCCTCAGCC	GCCCCGGCT	GGCTCCCCTC	GACCCCGACC	AGGCGGTGCG	CACCCTGCGC	24240
55	CGCATGCTGG .	AGCGCGGCAG	CGCCTGCGGT	GCGGTCGCCG	ACGTCGAGTG	GAGCCGGTTC	24300

	GCCGCCTCCT	ACACCTGGGT	GCGTCCCGCC	CTACTCTTCC	ACGACATCCC	GGACGTGCAG	24360
5	CGCCTGCGCG	CGCCGAACT	CGCCCCGAGC	ACCGGAGACT	CGACCACCTC	CGAACTCGTC	24420
	CGCGAGCTGA	CCGCGCAGTC	CGCCACAAG	CGGCACGCCA	CCCTGCTGCG	CCTCCTCCCC	24480
	GCACACGCCG	CCGCCGTCCT	CGGACAGTCC	TCCGGCGACG	CGGTGAGCAG	cccccccc	24540
10	TTCCGCGACC	TCGGCTTCGA	CTCGCTGACC	GCCCTCGAAC	TGCGCGACCG	GCTCAGCACC	24600
	AGCACCGGGC	TCAAACTGCC	CACCTCCCTG	GTCTTCGACC	ACTCCAGCCC	GCCCCCCCTC	24660
15	GCCCGGCACC	TCGGTGAGGA	ACTCCTCGGC	CGGAACGACA	CCGCCGACCG	ecccecccc	24720
	GACACCCCGG	TACGGACGGA	CGAGCCCATC	GCCATCATCG	GCATGGCCTG	CCGGCTGCCC	24780
	GCCGGGGTGC	AGTCCCCCGA	GGACCTGTGG	GACCTGCTGA	CCGGTCCGAC	CGACGCCATC	24840
20	ACCCCCTTCC	CGACCAACCG	GGGATGGGAC	AACGAGACCC	TCTACGACCC	CGACCCCGAC	24900
	TCGCCCGGGC	ACCACACCTA	CGTGCGCGAG	CCCCCCTTCC	TGCACGACGC	GCCGAGTTC	24960
	GACCCCGGCT	TCTTCGGCAT	CAGCCCCCGC	GAGGCCCTGG	CCATGGACCC	GCAGCAGCGG	25020
25	CTGATCCTGG	AGACGTCCTG	GGAGTCCTTC	GAACGGGCCG	GCATCGACCC	GGTCGAACTG	25080
	CGCGGCAGCC	GCACCGGGGT	CTTCGTCGGC	ACCAACGGAC	AGCACTACGT	GCCGCTCCTC	25140
30	CAGGACGGCG	ACGAGAACTT	CGACGGCTAC	ATCGCCACCG	GCAACTCCGC	CAGCGTGATG	25200
30	TCCGGCCGGC	TCTCCTACGT	CTTCGGACTG	GAGGGCCCCG	CCGTCACCGT	CGACACCGCC	25260
	TCCTCGCCCT	CCCTGGCCGC	ACTGCACCTG	GCGGTGCAGT	CACTGCGCCG	CGGCGAATGC	25320
35	GACTACGCCC	TCGCCGGCGG	GGCCACGGTG	ATGTCCACCC	CCGAGATGCT	GGTGGAGTTC	25380
	GCCCGTCAGC	GAGCGGTGTC	GCCGGACGGC	CGCAGCAAGG	CCTTCCCCGA	GCCGCCGAC	25440
	GGGGTCGGTC	TCGCCGAGGG	AGCCGGGATG	CTGCTCGTGG	AGCGGCTGTC	GGAGGCGCAG	25500
40	AAGAAGGGCC	ATCCGGTACT	GCCGGTGGTG	CGGGGCAGTG	CCGTCAACCA	GGACGGTGCC	25560
	AGCAACGGCC	TCACCGCACC	CAGCGGGCCC	GCCCAGCAGC	GGGTGATACG	CGAGGCGCTG	25620
	GCCGACGCGG	GGCTGACGCC	CCCCGACGTG	GACGCGGTCG	AGGCGCACGG	CACCGGCACG	25680
45	CCGCTCGGCG	ACCCCATCGA	GCCCGCCCC	CTGCTCGCCA	CGTACGGCCG	GGACCGGCGC	25740
	GACGGCCCGC	TGTGGCTGGG	TTCGCTGAAG	TCGAACATCG	GGCACACCCA	ecceccecc	25800
50	CCCCTCCCC	GGGTGATCAA	GATGCTGCTG	GCCCTGCGCC	ACCCCCACCT	CCCCCCCACC	25860
-*	CTGCACGCGT	CGACGCCGTC	GTCCAGGATC	GATTGGGACG	CGGGGGGCGT	GGAGTTGCTG	25920
	GACGAGGCCA	GCCCTGGCT	CCAGCGGGCC	GAGGGGCCGC	ccccccccc	CATCTCCTCG	25980
55	TTCGGCATCA	GCGGCACCAA	CGCGCACCTC	GTCATCGAGG	AGCCGCCGGA	GCCCACCGCG	26040

	CCCGAACTGC TCGC	GCCCGA ACCGGCCGC	C CACCCICACG	TCTCCTCCGA	GGAGTCGTCC	26100
_	CACGAGGTGA CCGT	GCCCCT GATGATGTC	C GCGCZUAACG	AAGCCGCCCT	GCCCGACCAG	26160
5	GCGCGCGCC TGCG	CGCCGA CCTGCTCGC	C CACCOXGAGC	TGCACCCGGC	CGACGTCGGC	26220
	TACACCCTCA TCAC	CACCCG CACCCGGTT	C GAGCZAXCGGG	CCGCCGTCGT	CGGCGAGAAC	26280
10	TTCACGGAGC TGAT	CGCGGC CCTCGACGA	C CTCGTTCGAAG	GCCGACCGCA	CCCGCTCGTG	26340
	CTGCGGGGCA CCGC	CGGCAC CTCCGACCA	G GTCGIVÆTCC	TCTTCCCCGG	CCAGGGCTCG	26400
	CAGTGGCCCG AGAT	GGCCGA CGGGCTGCT	G GCCCCCTTCCA	CCGCCTCCGG	CTCCTTCCTG	26460
15	GAGACCGCCC GCGC	CTGCGA CCTCGCGCT	C CCCCCCTC	TCGCCTGCTC	CCTCCTGGAC	26520
	GTACTGCGCC GGGA	ACCCGG CGCGCCCTC	CTCGA(CCGG	TCGACGTGGT	GCAGCCCGTG	26580
	CTGTTCACCA TGAT	GGTCTC GCTCGCCGA	C ACCTONCCTT	CCCTCCCCCT	CGAACCGGCC	26640
20	GCGGTCGTCG GTCA	CTCCCA GGGCGAGAT	C GCCGCCCCCCCC	ACGTCGCCGG	CGCCCTGACG	26700
	CTGGACGACG CGGC	GCGCAT CGTCGCCCT	G CGCACXCAGG	CGTCGCTCCG	GCTGGCCGGC	26760
25	AAGGCCGCA TGGT	CGCCGT GACCCTGTC	C GAACCICGACC	TGCGTCCCCG	CCTGGAGCCC	26820
23	TGGAGCGACC GGCT	CGCCGT CGCCGCCGT	C AACGCICCCG	AGACCTGCGC	CGTCTCCGGG	26880
	GACCCGGACG CCCT	GGCGGA GCTGGTCGC	C GAACTICGGTC	CGGAGGGCGT	GCACGCCCGC	26940
30	CCCATCCCCG GCGT	CGACAC CGCCGGGCA	C TCGCCICAGG	TCGACACGCT	GGAGGCCCAC	27000
	CTGCGGAAGG TGCT	CGCGCC CGTCGCGCC	C CGCACCTTCCG	ACATCCCGTT	CTACTCGACG	27060
	GTCACCGGAG GACT	GATCGA CACCGCCGA	CTGGZKGCCG	ACTACTGGTA	CCGCAACATG	27120
35	CGCGAGCCGG TGGA	GTTCGA GCAGGCCAC	C CGCGCICTGA	TCGCCGACGG	CCACGACGTG	27180
	TTCCTGGAGT CGAG	CCCGCA CCCCATGCT	G GCCGIITECCC	TCCAGGAGAC	GATCAGCGAC	27240
	GCCGGTTCCC CGGC	GGCCGT CCTCGGCAC	C CTGCGICGG	GCCAGGGGGG	CCCCCCTCC	27300
40	CTCCCCTCC CCCT	CTGCCG CGCCTACAC	C CACGGICTGG	AGATCGACGC	CGAGGCCATC	27360
	TTCGGCCCCG ACTC	ACGCCA GGTGGAACT	G CCCACITACC	CCTTCCAGCG	CGAGCGCTAC	27420
45	TGGTACAGCC CCGG	CCACCG CGGTGACGA	C CCCCCATTCCC	TCGCTCTCGA	CGCCGTCGAC	27480
	CACCCCCTGC TGGG	CAGCGG CGTCGAACT	G CCGG2/ATCCG	GTGACCGGAT	GTACACCGCA	27540
	CGCCTGGGCG CCGA	CACCAC CCCGTGGCT	GCCGZICACG	CCCTCCTCCC	CTCCCCCCTC	27600
50	CTGCCCGGCG CCGC	CTTCGC CGACCTGGC	G CTCTQXGCCG	GCCGCCAGGC	CGCACCGC	27660
	CGCGTCGAGG AGCT	CACCCT GGCCGCGCC	C CTGGTICTGC	CCGGCTCCGG	CCCTCTCCCC	27720
	CTGCGGCTGA ACGT	CGGCGC CCCGGGCAC	C GACGAICECCC	CCCCCTTCCC	CCTGCACGCC	27780
55	CGCGCCGAGG GCGC	CACGGA CTGGACCCT	G CACGCICEAGG	GGCTGCTCAC	CGCGCAGGAC	27840

	ACGGCCGACG	CCCCCGACCC	CTCGCCGGCC	ACCCCGCCCC	CCCGCGCCCGA	ACAACTGGAC	27900
5	ATCGGCGACT	TCTACCAGCG	CTTCTCCGAA	CTCGGTTACG	GCTACGGCCC	GTTCTTCCGG	27960
	GGACTGGTGA	GCGCCCACCG	CTGCGGCCCC	GACATCCACG	CCGACCTCCC	GCTGCCCGTC	28020
	CAGGCGCAGG	GCGACGCGGC	CCGCTTCGGC	ATCCATCCCG	CGCTGCTCGA	CGCGGCGCTG	28080
10	CAGACCATGA	GCCTCGGGGG	CTTCTTCCCC	GAGGACGGCC	GCGTCCGCAT	GCCGTTCGCC	28140
	CTGCGCGGCG	TTCGGCTGTA	CCGCGCCGGA	GCCGACCGGC	TGCACGTGCG	CCTCTCCCCC	28200
15	GTCTCCGAGG	ACGCGGTCCG	CATCAGGTGC	GCCGACGGCG	AGGGACGGCC	GGTCGCCGAG	28260
	ATCGAGTCCT	TCATCATGCG	GCCGGTCGAC	CCGGGACAGC	TCCTGGGGGG	CCGCCCGGTC	28320
	GGCGCCGACG	CGCTCTTCCG	CATCGCCTGG	CGGGAACTCG	ccccccccc	GGGCACCCGT	28380
20	ACCGGCGACG	GCACCCCTCC	CCCGCTGCGC	TGGGTGCTGG	CGGGACCCGA	CGCGCTGGGC	28440
	CTGGCCGAGG	CGGCCGACGC	CCACCTGCCC	GCCGTTCCCG	GCCCGGACGG	CGCACTGCCG	28500
	TCCCCGACGG	GACGCCCGGC	GCCGGACGCC	GTCGTGTTCG	CGGTCCGTGC	CGGGACCGGC	28560
25	GACGTCGCCG	CCGACGCGCA	CACCGTGGCC	TGCCGGGTGC	TGGACCTCGT	CCAGCGCCGG	28620
	CTCGCGGCCC	CGGAGGGCCC	GGACGCCCC	CGCCTGGTGG	TGGCCACCCG	CGGCGCGGTC	28680
	GCCGTACGCG	ACGACGCCGA	GGTGGACGAC	cccccccc	CCCCCCCCTG	GGGCCTGCTG	28740
30	CGCTCCGCGC	AGGCCGAGGA	cccccccc	TTCCTGCTCG	TGGACCTGGA	CGACGACCCG	28800
	GCGTCCGCCC	GGGCGCTGAC	CGACGCCCTC	GCCTCCGGCG	AACCGCAGAC	CGCGGTCCGG	28860
35	GCCGGGACGG	TGTACGTGCC	CCGGCTGGAG	CGGCCGCCG	ACCGCACGGA	CGGGCCGCTC	28920
	ACCCCGCCCG	ACGACGGTGC	CTGGCGGCTG	GGCCGGGGCA	CCGACCTCAC	CCTCGACGGC	28980
	CTCGCCCTGG	TGCCCGCCCC	GGACGCCGAG	GCGCCGCTGG	AGCCCGGCCA	CCTCCCCCTC	29040
40	GCCGTACGCG	CCGCGGGCGT	CAACTTCCGC	GACGCCCTCA	TCCCCCTCCC	CATGTACCCG	29100
	GGCGAGGCGG	AGATGGGAAC	GGAGGGCGCC	GGCACCGTCG	TCGAGGTCGG	CCCCGGCGTC	29160
	ACCGGTGTCG	CCGTCGGCGA	CCGCGTGCTC	GCCTCTGGG	ACGGCGGCCT	GGCCCCCCTG	29220
45	TGCGTGGCCG	ACCACCGGCT	GCTCGCCCCC	GTCCCGGACG	GCTGGTCCTA	CGCCCAGGCC	29280
	GCCTCGGTCC	CCGCGGTGTT	CCTCAGCGCC	TACTACGGTC	TGGTCACCCT	GGCCGGCCTC	29340
50	AGGCCGGGGG	AGCGGGTGCT	CGTGCACGCC	eccecceses	GCGTCGGCAT	GCCCCCCCTC	29400
50	CAGATCGCCC	GCCACCTCGG	CCCCGAGGTG	CTGGCCACCG	CGAGCCCCGG	CAAGTGGGAC	29460
	GCCCTGCGCG	CCATGGGCAT	CACCGACGAC	CACCTCGCCT	CCTCCCGCAC	CCTCGACTTC	29520
55	GCGACCGCCT	TCACCGGAGC	GGACGGCACG	TCCCGCGCGG	ACGTCGTCCT	GAACTCGCTC	29580

	ACCAAGGAGT	TCGTGGACGC	CTCCCTCGGG	CTCCTCCCTC	ceeccecce	GTTCCTGGAG	29640
5	CTGGGCAAGA	CCGACGTCCG	GGACCCCGAG	CGGATCGCCG	CCGAACACCC	CGGGGTGCGC	29700
	TACCGGGCGT	TCGACCTCAA	CGAGGCCGGA	CCCGACGCAC	TCGGCCGGCT	GCTGCGGGAA	29760
	CTGATGGACC	TGTTCGCCGC	CGCCTGCTG	CACCCGCTGC	CCGTCGTCAC	CCACGACGTG	29820
10	CGCCGGGCCG	CGGACGCCCT	GCGCACCATC	AGCCAGGCCC	GGCACACCGG	AAAGCTCGTC	29880
	CTGACCATGC	CGCCCGCCTG	GCACCCGTAC	GGCACGGTCC	TGGTCACCGG	TGGCACCGGC	29940-
15	GCCCTCGGCA	GCCGCATCGC	CCGCCACCTG	GCGAGCCGGC	ACGCCTCCC	CCGGCTGCTG	30000
	ATCGCCGCCC	ccccccccc	GGACGCCGAG	ccccccccc	AGCTGGTCGC	CGACCTCGCC	30060
	GCCCTGGGCG	CGTCGGCCAC	CCTCCTCCCC	TGCGACGTCT	CCGACGCGGA	CGCCGTCCGC	30120
	GGACTGCTCG	CCGGCATACC	GGCCGATCAC	CCGCTGACGG	CGGTGGTGCA	CAGCACCGGC	30180
20	GTCCTCGACG	ACGGCGTGCT	GCCCGGGCTC	ACCCCGAGC	GGATGCGGCG	CGTGCTGCGG	30240
	CCCAAGGTGG	AGGCCGCCGT	CCACCTGGAC	GAACTCACCC	GCGACCTCGA	CCTGTCGGCG	30300
25	TTCGTCCTCT	TCTCCTCCAG	CGCCGGTCTG	CTGGGCAGCC	CGGCCCAGGG	CAACTACGCG	30360
	GCGGCCAACG	CCACCCTCGA	CGCCCTCGCC	GCCCGGCGCC	GGTCCCTCGG	CCTCCCGTCG	30420
	GTGTCACTCG	CCTGGGGTCT	GTGGTCCGAC	ACCAGCCGGA	TGGCACACGC	ACTGGACCAG	30480
30	GAGAGCCTCC	AGCGGCGCTT	CGCCCGCAGC	GGCTTCCCGC	CCCTGTCCGC	CACGCTGGGC	30540
	GCCGCGCTGT	TCGACGCCGC	CCTGCGGGTC	GACGAGGCCG	TGCAGGTCCC	CATGCGGTTC	30600
	GACCCGGCCG	CGCTGCGCGC	CACCGGAAGC	GTCCCCGCCC	TGCTGTCGGA	CCTCGTCGGG	30660
35	TCCGCCCCGG	CGACCGGGTC	CGCGGCCCCG	GCGTCCGGCC	CCCTTCCGGC	TCCGGACGCC	30720
	GGGACCGTCG	GCGAGCCGCT	CGCCGAGCGG	TTGGCCGGAC	TCTCCGCCGA	GGAACGCCAC	30780
40	GACCGGCTGC	TCGGCCTGGT	CGGCGAACAC	CTGCCGCGG	TACTGGGCCA	CGGCTCCGCC	30840
	GCCGAGGTCC	GGCCCGACCG	CCCCTTCCCC	GAGGTCGGGT	TCGACTCGCT	CACGGCCGTG	30900
	GAACTGCGCA	ACCGGATGGC	GGCGGTCACC	GGGGTCAGGC	TCCCCGCCAC	CCTGGTCTTC	30960
45	GACCACCCCA	ccccccccc	GCTGTCCTCG	CACCTCGACG	GCCTGCTGGC	CCCGGCACAG	31020
	CCGGTCACCA	CCACACCGCT	GCTGTCCGAA	CTGGACCGCA	TCGAGGAGGC	CCTGGCCGCC	31080
	CTCACCCCCG	AGCACCTCGC	GGAGCTCGCC	cccccccc	ACGACCGGGC	CGAGGTCGCC	31140
50	CTGCGCCTGG	ACGCCCTGGC	CGACCGCTGG	CCCCCCTCC	ACGACGCGC	GCCCGGCGCCC	31200
	GACGACGACA	TCACCGACGT	GCTGAGCAGC	GCCGACGACG	ACGAGATCTT	OCCUTTCATC	31260
55	GACGAGCGGT	ACGGCACGTC	GTGACCGCCG	GCCCGGAGCC	CCCCCCTCA	TCGAAAGGAA	31320
55	GCACCACCAT	GGCGAACGAA	GAGAAGCTGC	GCGCCTACCT	CAAGCGCGTG	ACGGGTGAGC	31380

		TGCACCGGGC	CACCGAGCAG	CICCGICCCC	TGGACCGGCG	GCCCACGAG	CCGATCGCGA	31440
5		TCGTCGGGGC	GGCCTGCCGA	CTCCCCGGG	GCGTCGAGAG	TCCGGACGAC	CTGTGGGAGC	31500
		TGCTGCACGC	CGGTGCCGAC	GCGGTCGGCC	ceecccccc	CGACCGCGGC	TOGGACGTGG	31560
		AGGGAAGGTA	CTCGCCCGAC	CCCGACACGC	CCGGCACCTC	GTACTGCCGC	GAGGGGGGCT	31620
10	•	TCGTGCAGGG	GGCCGACCGG	TTCGACCCCG	CCCTCTTCGG	CATCTCGCCC	AACGAGGCGC	31680
		TCACCATGGA	CCCCCAGCAG	CGGCTGCTGC	TGGAGACCTC	CTGGGAGGCG	CTGGAGCGAG	31740
15		CCGGTCTGGA	CCCCCAGTCC	CTGGCGGGCA	GCCGGACCGG	CGTGTTCGCC	CCCCCTCCC	31800
		AGAGCGGCTA	CCAGAAGGGC	GTCGAAGGGC	TCGAAGCCGA	TCTGGAGGCC	CAACTCCTGG	31860
		CCGGCATCGT	CAGCTTCACC	GCCGGCCGCG	TCGCCTACGC	CCTGGGCCTG	GAGGGCCCGG	31920
20		CGCTGACGAT	CGACACGGCC	TGCTCCTCGT	CGCTGGTGGC	ACTGCACCTG	GCGGTGCAGT	31980
		CACTGCGCCG	GGCCGAGTGC	GACCTCGCAC	TGGCGGGGGG	CGCCACGGTC	ATCGCCGACT	32040
		TCGCGCTCTT	CACCCAGTTC	TCCCGGCAGC	GCGGGCTCGC	CCCCGACGGG	CCCTCCAACC	32100
25		CCTTCGGTGA	GACGGCCGAC	GGCTTCGGCC	CCGCCGAGGG	CGCGGGGATG	CTGCTGGTCG	32160
		AGCGGCTGTC	GGACGCCCGC	CGCAACGGGC	ACCCGGTGCT	GGCGGTGGTG	CGGGCAGTG	32220
30		CCGTCAACCA	GGACGGTGCG	AGCAATGGGC	TGACGGCGCC	GAGTGGTCCT	GCGCAGCAGC	32280
50		GGGTGATCCG	TGAGGCGCTG	GCCGACGCGG	GGCTGACGCC	CGCCGACGTG	GACGCGGTCG	32340
		AGGCGCACGG	CACCGGCACG	CCGCTCGGCG	ACCCCATCGA	GCCCGCCCC	CTCATGGCGA	32400
35		CGTACGGGCA	CGAACGGACG	GGCGACCCGC	TGTGGCTGGG	TTCGCTGAAG	TCGAACATCG	32460
		GGCACACCCA	GCCGCCGCC	GCCTCCCC	GGGTGATCAA	GATGGTGCTG	CCCCTCCCCC	32520
		ACGGTGAGCT	GCCGCGCACC	CTGCACGCGT	CGACGGCGTC	CTCCAGGATC	GAATGGGACG	32580
40		CGGGCGCCGT	GGAGTTGCTG	GACGAGGCCA	GCCCTGGCC	CCGGCGTGCC	GAGGGGCCGC	32640
		GCCGGGCGGG	CATCTCCTCG	TTCGGCATCA	GCGGCACCAA	CCCCCACCTC	CTCATCGAGG	32700
		AGGAGCCGCC	ccccccccc	GAGCCCGAGG	AGGCCGCGCA	GCCGCCCGCC	CCGCCACCA	32760
45		CCGTCCTCCC	CCTCTCCCCC	ecceecece	GATCCCTGCG	CGAGCAGGCC	CCCAGGCTCG	32820
		CCGCGCACCT	GCCCGCCAC	GAGGAGATCA	CCGCCGCCGA	cecceccec	TCCGCCGCCA	32880
50		CCACCCGTGC	CCCCTCTCC	CACCGGGCCT	CGGTCCTGGC	CGACGACCGG	COGCCCTGA	32940
		TCGACAGGCT	GACCGCGCTG	GCGGAGGACA	GGAAGGACCC	CGGCGTCACC	CTCCGCGAGG	33000
		CGGGCAGCGG	cccccccc	CTCTTCCTCT	TCCCGGGACA	GGGCTCCCAG	TGGACGGGCA	33060
55		TGGGCGCCGA	ACTCCTGGAC	AGGGCACCGG	TCTTCCGCGC	CAAGGCCGAG	CACTGCGCGC	33120

		GGGCCCTCGC	GGCCCACCTC	GACTCCTCCC	TCCTCGACGT	CCTGCGCGAC	ccccccccc	33180
	5	CCCCGCCGAT	CGACCGCGCG	GACGTCGTCC	AGCCGACCCT	GTTCACCATG	ATGGTCTCCC	33240
	J	TCGCGGCGCT	GTGGGAGTCC	CACGGTGTAC	GCCCGCCGC	CGTGGTCGGC	CACTCCCAAG	33300
		GCGAGATCGC	CGCCGCCCAC	CCCCCCCTC	CCCTGTCCCT	CGACGACGCG	GCCCGCGTGA	33360
	10	TCGCCGAGCG	CAGCAGGCTC	TGGAAGCGGC	TGGCCGGAAA	CGGCGGCATG	CTCTCCGTGA	33420
		TGGCCCCGGC	CGACCGGGTC	CGCGAACTGA	TGGAGCCCTG	GCCGGAGCGG	ATCTCCCTCC	33480
		CCGCCGTCAA	CGCCCCCCC	TCGGTCACCG	TGGCCGGTGA	CCCCCCCCCCC	CTGGAGGAGT	33540
	15	TCCCCCCCC	GCTCTCCGCC	GCCGGGGTGC	TGCGCTGGCC	CCTCGCCGGC	GTCGACTTCG	33600
		CCGGACACTC	ACCCCAGGTG	GAGCAGTTCC	GCGCCGAGCT	CCTCGACACG	CTGGGCACCG	33660
		TCCGCCCGAC	CCCCCCCCC	CTGCCCTTCT	TCTCCACCGT	GACCGCCGCG	GCGCACGAGC	33720
	20	CCGAAGGCCT	GGACGCCGCG	TACTGGTACC	GGAACATGCG	CGAACCCGTG	CACTTCCCCT	33780
		CCACCCTGCG	GACGCTGCTG	CGCGAGGGCC	ACCGCACCTT	CGTCGAGATG	GCCCGCACC	33840
	25	CCCTGCTGGG	CGCCGCGATC	GACGAGGTCG	CCGAGGCCGA	GGGCGTGCAC	GCCACCGCCC	33900
		TCGCCACCCT	CCACCGCGGC	TCCGGCGGCC	TGGACCGGTT	CCGCTCCTCG	GTGGGCGCCG	33960
		CGTTCGCCCA	CGGAGTACGG	GTCGACTGGG	ACGCCCTCTT	CGAGGGCTCC	GCCCCCCCC	34020
	30	GGGTCCCGCT	GCCCACCTAC	GCCTTCAGCC	GGGACCGGTA	CTGGCTGCCC	ACCCCCATCG	34080
		GCCGGCGCGC	CGTCGAGGCG	GCCCCCGTCG	ACGCGTCCGC	CCCCGGGCGC	TACCGCGTCA	34140
		CCTGGACACC	CGTGGCATCC	GACGACTCCG	GCCGGCCCTC	CGGGCGCTGG	CTGCTGGTGC	34200
	35	AGACCCCCGG	CACCGCGCCG	GACGAGGCGG	ACACCGCGGC	GTCGGCCCTC	CCTCCCGCCC	34260
		GGGTGGTCGT	GGAGCGCTGC	CTGCTGGATC	CCACCGAGGC	CGCGCGCGTC	ACCCTCACCG	34320
	40	AGCGACTGGC	CGAACTGGAC	GCGCAGCCGG	AGGCCTGGC	CGCCGTGCTG	GTGCTGCCCG	34380
	40	GCCGTCCGCA	GAGCACCGCA	CCGGCCGACG	CCTCCCCGCT	CGACCCGGGG	ACGCCCCCC	34440
		TCCTGCTCGT	GGTCCAGGCC	GTGCCGGACG	CCGCTCCGAA	GCCCGGATC	TGGTGGTGA	34500
	45	CGCGGGGTGC	GCTGGCGCTG	CCCTCCCCTC	AGGTGCCGTG	TGCGGTGGGT	CCCCCCCTCT	34560
		GGGTCTGGG	GCGGGTGGCT	GCGTTGGAGG	TGCCGGTGCA	CTCCCCTCCC	TTGGTGGATG	34620
		TGGCGGTGGG	GCCGCCTCTC	CGTGAGTGGC	GTCGTGTGGT	GGGTGTGGTT	CCGGGGGGTG	34680
50	50	GTGAGGATCA	GCTGGCGGTG	CGTGGTGGGG	CTCTCTTCCC	TCGTCGTCTC	CTCCCTCTCC	34740
		GGGTGCGGG	TGGTTCGGGG	GTGTGGCGTG	CCCCCCCCTC	TGTGGTGGTG	ACCCCTCCCT	34800
		TGGGTGGTGT	GGGGGGTCAT	GTGGCGCGGT	CCTTCCCCCC	TTCGGGTGCG	GAGCATGTGG	34860
	55	TGTTGGCGGG	GCGTCGGGGT	GCTCGCGTTG	TGGGGGCGGT	GGAGTTGGAG	CGGGAGTTGG	34920

		TGGGGTTGGG	GGCGAAGGTG	ACGTTCGTTT	CCTCTCATCI	GGGGGATCGC	GCGTCGATGG	34980
	5	TCCCCTTCTT	CCCTCTCCTC	GAGGGGTTGG	CCCTCCCCTT	CCCTCCTCTC	TTTCATGCGG	35040
	•	CCCCCCTCCC	TCAGGTGTCG	GGGTTGGGTG	AGGTGTCGTI	, ecceevecco	GCTCCTCTCT	35100
		TGGGGGGTAA	GCCGCTCCCC	GCTGAGTTGT	TGGACGAGTT	GACGCCGCG1	CTCGACCTCG	35160
	10	ATGCGTTCGT	GTTGTTCTCG	TCGGGTGCTG	GGGTGTGGGG	GAGTGGGGG	CAGTCGGTGT	35220
		ATGCGGCGGC	CAATGCGCAT	CTGGATGCGT	TGGCGGAGCG	TCGTCGTGCG	CAGGGGCGTC	35280
	15	CCGCGACCTC	CGTCGCCTGG	GCCTGTGGG	GCGGCGAGGG	CATGGGAGCG	GACGAAGGCG	35340
		TCACGGAGTT	CTACGCCGAG	CGCGGCCTCG	CCCCCATGCG	GCCCGAGTCG	GCCATCGAGG	35400
		CACTGCACAC	GGCACTGAAC	GAGGGGGACA	CCTGCGTCAC	GGTCGCCGAC	ATCGACTGGG	35460
20	20	AACACTTCGT	CACCGGGTTC	ACCGCCTACC	GGCCCAGCCC	GCTGATCTCC	GACATCCCCC	35520
		AGGTCCGCGC	GTTGCGCACG	CCCGAACCCA	CCGTGGACGC	CTCGGACGGA	CTGCGCCGGC	35580
		GCGTCGACGC	CGCCCTCACC	CCGCGCGAGC	GCACCAAGGT	CCTGGTCGAC	CTGGTCCGCA	35640
1	25	CGGTGGCGGC	GGAGGTCCTC	GGTCACGACG	GGATCGGCGG	CATCGGCCAC	GACGTGGCCT	35700
		TCCGGGACCT	CGGCTTCGAC	TCGCTGGCCG	CGGTGCGGAT	GCGCGGCCGG	CTGGCCGAGG	35760
	30	CGACCGGACT	CGTACTGCCC	GCGACGGTCA	TCTTCGACCA	CCCCACCGTG	GACCGGCTCG	35820
		GCGCCCCCT	GCTCGAGCGG	CTGTCCGCGG	ACGAACCCGC	ccccccccc	GCGCCGGAGC	35880
		CCGCCGGGGG	GAGGCCCGCG	ACCCCACCGC	CCGCACCGGA	GCCGGCCGTC	CACGACGCCG	35940
	35	ACATCGACGA	ACTCGACGCG	GACGCCCTGA	TCCGGCTGGC	CACGGGAACC	GCCGGACCGG	36000
		CCGACGGCAC	GCCGGCCGAC	GCCGGCCCC	ACGCGGCGGC	GACCGCCCCC	GACGGAGCAC	36060
		CGGAGCAGTA	GCGCGCCCTC	ACCGGCGCGC	CGACCGGCGG	AGCGCCGTAC	CGCCGACGCC	36120
•	40	CCCCACAGCC	AGCGAGCAGA	CGAGGAAGCC	GAAGATGTCA	CCGTCCATGG	ACGAAGTGCT	36180
		GGGTGCGCTG	CGCACCTCCG	TCAAGGAGAC	CGAGCGGCTG	CGCCGGCACA	ACCGGGAGCT	36240
		CCTGGCCGGC	GCGCACGAGC	CGGTCGCCAT	CGTGGGCATG	GCCTGCCGCT	ACCCCGGTGG	36300
•	15	CGTGAGCACC	CCGGACGACC	TGTGGGAGCT	CGCCGCGGAC	GCCTCGACG	CGATCACCCC	36360
		CTTCCCGGCC	GACCGGGGCT	GGGACGAGGA	CGCCGTCTAC	TCGCCCGACC	CCGACACCCC	36420
	50	CGGCACCACC	TACTGCCGTG	AGGCGGCTT	CCTCACCGGC	GCCGGGGACT	TCGACGCGGC	36480
		CTTCTTCGGC	ATCTCGCCGA	ACGAGGCGCT	GGTGATGGAC	CCGCAGCAGC	GCCTGTTGCT	36540
		GGAGACGTCG	TGGGAGACGT	TGGAGCGGGC	CGGCATCGTC	CCCCCCTCCC	TGCGCGGCAG	36600
į	55	CCGTACCGGT	GTCTTCGTCG	GAGCCGCGCA	CACGGGATAC	GTCACCGACA	CCGCGCGAGC	36660

	GCCCGAGGGC ACCGAGGGCT ATCTGCTGAC GGGCAACGCC GATGCCGTCA TGTCCGGCCG	36720
5	GATCGCCTAC TCCCTGGGTC TGGAGGGGGCC GGGGTGACG ATCGGGACGG CCTGCTCGTC	36780
	GTCGTTGGTG GCGTTGCATC TGGCGGTGCA GTCGTTGCGG CGGGGGAGT GCGACCTGGC	36840
	GTTGGCCGGC GGCGTCGCGG TCATGCCCGA CCCGACGGTG TTCGTGGAGT TCTCGCGGCA	36900
10	GCGGGGGTG GCGGTGGACG GGCGTGCAA GGCGTTCGCG GAGGGTGCGG ACGGGACGGC	36960
	GTGGGCGGAG GGAGTGGGTG TGCTGCTGGT GGAGCGGCTT TCCGACGCGC GCCGCAATGG	37020
	CCATCGGGTG CTGGCGGTGG TGCGGGCAG TGCGGTCAAT CACGACGGG CGAGCAATGG	37080
15	GCTGACGGCG CCGAGTGGTC CTGCGCAGCA GCGGGTGATC CGTGAGGCGC TGGCTGATGC	37140
	GGGCTGACG CCCGCCGACG TGGATGTGGT GGAGGCGCAC GGTACGGGGA CGCCGTTGGG	37200
20	TGATCCGATC GAGGCGGGTG CGTTGCTGGC CACGTACGGG CGGGAGCGGG TCGGTGATCC	37260
20	TTTGTGGTTG GGGTCGTTGA AGTCGAACAT CGGGCATGCG CAGGCGGCTG CGGGTGTGGG	37320
	TEGTETGATE AAGGTEGTEC AGGCGATECE GCATEGETCE TTGCCGCGGA CECTECATET	37380
25	GGATGCGCCG TCGTCGAAGG TGGAGTGGGC TTCGGGTGCG GTGGAGCTGC TGACCGAGGG	37440
	CCCCTCCTCC CCCCCCCCCC TCCACCCCCT CCCCCCCC	37500
	GAGCGGGACC AACGCCCATG TGGTCCTGGA GGAAGCACCG GTCGAGGCCG GGAGCGAGCA	37560
30	CGGGGACGGC CCCGGACCCG ACCGGCCCGA CGCCGTGACG GGTCCGCTCC CCTGGGTGCT	37620
	CTCGGCACGC TCGCGGGAGG CGCTGCGCGG CCAGGCCGGA CGACTCGCCG CTCTCGCCCG	37680
	CCAGGGGCGC ACGGAGGGCA CCGGCGGCGG CAGCGGACTC GTCGTCCCCG CGGCCGACAT	37740
35	CGGATACTCC CTGGCCACCA CCAGGGAGAC CCTGGAGCAC CGGGCGGTGG CGCTGGTGCA	37800
	GGAGAACCGG ACGGCCGGGG AGGACCTCGC CGCGCTGGCC GCCGGCCGCA CACCGGAGAG	37860
40	CGTGGTCACG GGTGTCGCGC GACGTGGCCG CGGGATCGCC TTCCTCTGCT CGGGCAGGG	37920
	CGCCCAGCGG CTCGGCGCCC CTCGGGAGCT CCGCGGCAGG TTCCCCGTCT TCGCCGACGC	37980
	CCTCGACGAG ATCGCGGCGG AGTTCGACGC CCACCTCGAA CGCCCTCTCC TGTCGGTGAT	38040
45	GTTCGCCGAG CCCGCCACGC CGGACGCCGC ACTCCTCGAC CGCACCGACT ACACCCAGCC	38100
	GGCCCTCTTC GCGGTGGAGA CCGCGCTCTT CCGGCTCCTG GAGAGCTGGG GCCTGGTCCC	38160
	GGACGTCCTC GTGGGCCACT CGATCGGCGG TCTGGTGGCG GCTCACGTGG CGGGCGTCTT	38220
50	CTCTGCGGCC GACGCGGCCC GGCTGGTCTC CGCACGCGGC CGGCTCATGC GGGCCCTGCC	38280
	CGAGGGGGG GCGATGGCGG CCGTGCAGGC CACCGAGCGG GAGGCCGCCG CGCTGGAGCC	38340
	CGTCGCCGCC GGCGGCGCGC TGGTCGCCGC GGTCAACGGC CCGCAGGCCC TCGTGCTCTC	38400
55	CGGGGACGAG GCGGCCGTAC TGGCGGCGGC CGGTGAACTG GCCGCCCGCG GACGCCGCAC	38460

	CAAGCGCCTG	AGGGTGAGCC	ACCCCTTCCA	CTCACCCCGT	ATGGACGCCA	TGCTCGCCGA	38520
5	CTTCCGCGCG	GTGGCGGACA	CGGTCGACTA	CCACGCCCCC	CGGCTGCCGG	TCGTCTCCGA	38580
	AGTGACCGGC	GACCTCGCCG	ACGCCGCCCA	GCTGACCGAC	CCCGCTACT	GGACCCGCCA	38640
	GGTGCGGCAG	CCGCTGCGCT	TCGCCGACGC	CGTGCGCACC	GCGAGCGCCC	GGGACGCCGC	38700
10	GACCTTCATC	GAGCTCGGGC	CCGACGCCGT	CCTGTGCGGC	ATGGCGGAGG	AGTCCCTGGC	38760
	CGCGGAGGCC	GACGTCGTGT	TCGCCCCGGC	ACTGCGCCGC	ccccccccc	AGGCGACAC	38820
15	CCTCCTCCGG	GCCGCCGCGA	GCGCGTACGT	ccccccccc	GGCCTCGACT	GGGCCGCGCT	38880
	CTACGGCGGC	ACGGGAGCCC	GCCGCACCGA	CCTGCCCACC	TACGCCTTCC	AGCACAGCCG	38940
	CTACTGGCTC	GCCCCCGCCT	CGGCCGCGGT	CCCCCCCCC	ACGGCCGCCC	CCTCCGTCCG	39000
20	ATCCGTGCCG	GAAGCCGAGC	AGGACGGGGC	GCTGTGGGCC	GCCGTGCACG	CCGGTGACGT	39060
	CGCCTCGGCC	GCGGCGCGAC	TGGGCGCCGA	CGACGCCGGT	ATCGAACACG	AACTGCGCGC	39120
	GCTCCTGCCG	CACCTGGCCG	CCTGGCACGA	CCGCGACCGC	GCGACCGCGC	GGACCGCGGG	39180
25	CCTGCACTAC	CGCGTCACCT	GGCAGGCGAT	CGAGGCAGAC	GCTGTCAGGT	TCAGCCCCTC	39240
	GGATCGCTGG	CTGATGGTCG	AGCATGGGCA	GCACACGGAA	TGCGCGGACG	CCGCGGAACG	39300
	GGCGCTGCGC	GCGGCCGGCG	CGGAGGTCAC	CCGCCTGGTG	TGGCCGCTGG	AGCAGCACAC	39360
30	CGGATCACCG	CGGACGGAGA	CCCCGGACCG	CGGCACCCTG	GCGGCCCGGC	TGGCCGAGCT	39420
	CGCACGGAGC	CCGGAGGGCC	TGGCCGGCGT	GCTGCTGCTC	CCCGACTCGG	GCGGTGCCGC	39480
35	GGTCGCCGGG	CACCCCGGGC	TGGACCAGGG	AACGGCGGCG	GTGCTGCTGA	CGATCCAGGC	39540
	ACTGACCGAC	GCCGCGGTGC	GGCACCGCT	CTCCCTCCTC	ACGCGGGGTG	CGGTGGCGGT	39600
	GGGGTCGGGT	GAGGTGCCGT	CTCCGGTCGG	TGCGCGGGTG	TGGGGTCTGG	GCCGGGTGGC	39660
40	TGCGTTGGAG	GTGCCGGTGC	AGTGGGGTGG	GTTGGTCGAT	CTCCCCCTCC	GGCGGGTGT	39720
	GCGTCACTCC	CGTCGTGTGG	TCCCTCTCCT	TGCGGGGGGT	GCTGAGGATC	ACCTCCCCGT	39780
	GCGTGGTGGG	GCTCTCTTCC	CTCCTCCTCT	CCTCCCTCTC	GCCCTCCCCC	CTCCTTCCGG	39840
45	GGTGTGGCGT	CCCCCCCCCT	CTCTCCTCCT	GACGGGTGGG	TTGGGTGGTG	TGGGGGTCA	39900
	TCTCCCCCCC	TGGTTGGCGC	CTTCGGGTGC	GGAGCATGTG	GTGTTGGCGG	CCCTCCCC	39960
50	TGGTGGGGTT	CTCCCCCCC	TGGAGTTGGA	CCCCCACTTC	CTCCCCTTCC	GGCCGAAGGT	40020
	GACGTTCGTT	TCGTGTGATG	TGGGGGATCG	GCCGTCGGTG	GTGGGGTTGT	TECCTETECT	40080
	GGAGGGGTTG	GGGTGCCGT	TGCGTGGTGT	GTTTCATGCG	GCGGGGGTGG	CTCAGGTGTC	40140
55	GGGGTTGGGT	GAGGTGTCGT	TGGCGGAGGC	CCCTCCTCTC	TTGGGGGGTA	ACCCCCTCCC	40200

	GGCTGAGTTG TTGGACC	ACT TGACGGCGGG TGTGGAGCT	IG GATGCGTTCG TGTTGTTCTC	40260
5	CTCCCCTCCT CCCCTCT	GGG GGAGTGGGGG GCAGTCGGT	IG TATGCGGCGG CCAATGCGCA	40320
	TCTGGATGCG TTGGCGG	AGC GTCGTCGTGC GCAGGGGCC	T CCCGCGACCT CCCTCGCCTG	40380
	GCCCCCTGC GACCGCC	ACG GCATGGGCGA GATGGCGCC	CC GAGGGCTACT TCGCCCGCCA	40440
10	CCCCTCCCC CCCCTCC	ACC CCGAGACGGC GCTCACCGC	CC CTGCACCAGG CCATCGACGG	40500
	CGGCGAAGCC ACGGTCA	CCG TGGCGGACAT CGACTGGGA	AA CGGTTCGCCC CCGGCTTCAC	40560
	CCCCTTCCGT CCCAGCC	CCC TGATCGCCGG CATCCCCGG	CG GCCCGTACGG CGCCCGCCGC	40620
15	CCCCCCCCC GCCGAGG	ACA CCCCCACCGC CCCCGGCCT	C CTGCGGGCGC GCCCGAGGA	40680
	CCGCCCGCGG CTCGCCC	TGG ACCTGGTGCT CCGCCACGT	TO GOGGGGTOO TOGGCOACTO	40740
20	CGAGGACGCC CGGGTCG	ACG CCCGGGCCCC CTTCCGGGA	AC CTCGGCTTCG ACTCGCTCGC	40800
20	CCCGCTGCGG CTGCGCC	GCC GGCTGGCCGA GGACACCGG	G CTCGACCTGC CCGCACCCT	40860
•	CGTCTTCGAC CACGAGG	ACC CCACCGCGCT GGCCCACCA	AC CTGGCCGGCC TCGCCGACGC	40920
25	GGGGACCCCC GGCCCCC	AGG AGGGCACGGC TCGGGCCGA	AG AGCGGGCTGT TCGCCTCCTT	40980
	CCGCGCCGCC GTCGAAC	AGC GCAGGTCGAG CGAGGTCGT	G GAGCTGATGG COGACCTGGC	41040
	GCCTTCCGG CCCGCCT	ACT CCCGGCAGCA CCCCGGCTC	C GGCCGCCCCG CGCCCGTACC	41100
30	CCTCGCGACC GGACCGG	CGA CGCGTCCCAC GCTGTACTG	C TGCGCCGGCA CCGCGGTCGG	41160
	CTCCGGGCCC GCCGAGT	ACG TCCCGTTCGC CGAAGGACT	G CGCGGCGTCC GGGAGACGGT	41220
	CGCCCTTCCC CTGTCCG	SCT TCGGCGACCC CGCGGAACC	G ATGCCCGCAT CGCTCGACGC	41280
35	GCTGATCGAG GTCCAGG	CCG ACGTCCTCCT GGAGCACAC	C GCGGCAAGC CCTTCGCCCT	41340
	CGCCGGCCAC TCCGCCG	SCG CGAACATCGC CCACGCCCT	G GCCGCCCGGC TGGAGGAACG	41400
40	COGCTCGGGC CCCGCAG	CG TCGTACTGAT GGACGTCTA	C CGTCCCGAGG ACCCCGGTGC	41460
	GATGGGCGAG TGGCGCG	CG ACCTGCTCAG CTGGGCGCT	C GAACGCAGCA COGTGCCCCT	41520
	GGAGGACCAC CGGCTCA	CC CCATGGCCGG CTATCAGCG	G CTGGTGCTCG GAACCCGGCT	41580
45	CACCGCCCTC GAAGCCC	CC TCCTGCTGGC CCGGGCGTC	C GAACCCCTGT GCGCGTGGCC	41640
	GCCCGCGCGC GGGGCGC	GG GCGACTGGCG GTCCCAGGT	C CCGTTCGCAC GGACCGTCGC	41700
	CGACGTGCCC GGCAACC	CT TCACCATGCT CACCGAACA	C GCCCGGCACA CCGCGTCCCT	41760
50	GGTGCACGAA TGGCTGG	CA GCCTCCCGCA CCAGCCCGG	T CCCGCCCCGC TCACCGGAGG	41820
	GAAACACTGA TGTACGC	GA CGACATCGCG GCCGTCTAC	G ACCTGGTCCA CGAGGGGAAG	41880
55	GGGAAGGACT ACCGGCA	GA GGCCGAGGAG ATCGCCGCA	C TCGTGCGCGT CCACCGGCCG	41940
55	GCCCCCGGA CCCTGCT	GA CGTGGCCTGC GGCACCGGC	C AGCACCTGCA CCACCTGGAC	42000

	GCCTCTTCG	ACCACGTCGA	GGGCCTGGAA	CTCTCCGCCG	ACATGCTGGC	CCTCGCGACC	42060
5	GCCGGAACC	CCGGTGTCAC	CTTCCACCAA	GGGGACATGC	GCTCGTTCTC	CCTCCCACCC	42120
	CGGTTCGACG	CGGTGACCTG	CATGTTCAGC	TCCATAGGCC	ACCTGCGGAC	CACCGACGAA	42180
10	CTCGACAGCA	CGCTGCGGGC	CTTCACCGAC	CACCTCGAAC	CGTCCGGCGT	CATCGTCGTC	42240
70	GAACCCTGGT	GGTTCCCCGA	GTCCTTCACC	CCCGGTTACG	TCGCCCCAG	CATCACGGAG	42300
	GCGGGCGAGC	GCACCGTCTG	CCGGGTCTCG	CACTCCGTAC	GGGAGGGGAA	CCCACCCCC	42360
15	ATCGAGGTGC	ACTACCTCCT	CGCCGGACCC	GCCGCCGTCC	GTCACCTGAC	CGAGGACCAC	42420
	ACCATCACCC	TGTTCCCGCG	CGCCGACTAC	GAGGCGGCCT	TCGAGCGCGC	CGGCTGCGAC	42480
	GTGGTCTACC	AGGAAGGCGG	CCCGTCCGGT	CGCGGGCTGT	TCATCGGCAC	CCCCCCCTGA	42540
20	CCCGGTGCCG	ACGCGGACCG	ccccccccc	GAGGCGGGTT	GCCCCGACCC	ACCCGGCACA	42600
	CCCGGGTCCC	CCGATCGTGC	GAGCGCCCCC	ATCGACCCGA	GAAGAAAGGC	AGGGCAGCCA	42660
	TGCCCACCCT	TGCCACGGAA	ACGGCCCCCG	CGAGCACGAG	CACGAGCGCG	GCACGAGCA	42720
25	CGGCGTCCG	TGCGCTCGGC	CGTCGGCTCC	AGCTGACCCG	GCCGCACAC	TOCTCCCCC	42780
	GCAACCAGGG	CGACCCGTAC	GCGCTGATCC	TGCGCGCCGT	CGCCGACCCC	GAGCCGTTCG	42840
30	AACGGGAGAT	CCGGGCCCGC	GGACCGTGGT	TCCGCAGCGA	ACAGCTGGAC	GCCTGGGTGA	42900
-	CCGCGGACCC	CGAGGTGGCG	GCGGCCGTCC	TGGCCGACCC	GCGCTTCGGC	ACGCTGGACC	42960
	GGGCCGGACG	CCGCCCGGAC	GAGGAACTGC	TGCCCCTCGC	CGAGGCGTTC	CCCCACCACG	43020
35	AACGCGCGGA	GCTCGTACGC	CTGCGGGCGC	TGGCCGCCCC	GGTGCTCAGC	CGGTACGCCC	43080
	CGGCCCAGGC	GCCCTGCGCG	GCGCGCACCA	CCGCCCGCAG	AGTGCTCGGC	CCCCTCCTCC	43140
	CCACCGGTGA	CGCCGGGTTC	GACCTTGTCG	GCGAGGTCGC	CCGGCCCTAC	GCCGTCGAGC	43200
40	TGATGCTCAG	GCTCCTCGGA	GTGCCGGGCC	GCGACCGCGC	CACCGCCGCG	CGGGCACTCG	43260
	CCCCCTCCGG	CCCCCAGCTC	GACGCCCGGA	TGGCCCCGCA	ACTGCTGACC	CT/CCCCCCCC	43320
	AGTCCGCCGA	CGCCGTCCGC	ACACTGGCCG	ACCTGGTCCC	CGAGCTCGTC	GCGGAGAAGT	43380
45	CCCGGGGCCT	CGGGAACGCC	GAGCCCCGGC	CCGACGACGT	GCTCGCCCTC	CTCCTGCACG	43440
	ACGGCGTCGC	CCCCGGCGAC	GTCGAGCGCA	TCGCGCTGCT	CCTCGCGGTC	GGCGCACCCG	43500
50	AACCCGTCGT	CACCGCCGTC	GCGCACACGG	TCCACCGGCT	GCTCGGCCGG	CCGCGGGAGT	43560
	GGGAGAGGGC	CCGCCGGACG	ccccccccc	CGAACGCCGT	CGACCAGGTG	CTCCCCCACC	43620
	GCCCCCGGC	CCGGCTGGAG	AACCGGGTCG	CGCACACCGG	CCTCGAACTC	GCCGCCCCC CC	43680
55	GGATCACCGC	CGACGAGCAC	GTCGTGGTGC	TGGCCGCCGC	CGGACGGGAG	ATCCCCCCCC	43740

	CGGAGCCGCT CGGGGGCGCC GACGGACCGC ACCTGGCGCT CGCCCTCCCG CTGATCCGCC	43800												
5	TGGCCGCCAC CACCGCGGTC CAGGTCACGG CCGGCCCTG GCCCGGCCTG CGGGCCGAGG	43860												
	GACCGCCCCT GACCCGGCCG CGGTCACCGG TCCTGGGCCGC CTGCGGCCCGC CTCCGGGTCC	43920												
	ACCCGGGATG ACCCCGCCGT CCGTACGCCC CCTCCCAGAC CGGAGCCGCT GTGCGCGTCC	43980												
10	TGCTGACATC CCTCGCCCAC AACACCCACT ACTACAGTCT GGTGCCCCTC GCCTGGGCGC	44040												
	TGCGCGCCGC CGGGCACGAG GTACGGGTGG CGAGCCCGCC CTCCCTCACC GACGTCATCA													
	CCTCCACCGG TCTGACCGCC GTACCGGTGG GCGACGACCG ACCGGCCGCG GAGCTGCTCG													
15	CCGAGATGGG CAGAGACCTC GTCCCCTACC AGAGGGGCTT CGAGTTCGGT GAGGTGCAGA	44220												
	3GCGAGGAGGA GACCACCTGG GAGTACCTGC TCGGCCAGCA GAGCATGATG GCCGCCCTGT													
20	GCTTCGCCCC GTTCAACGGC GCCGCCACGA TGGACGAGAT CGTCGACTTC GCCCGTGGCT													
	GGCGGCCCGA CCTGGTCGTG TGGGAACCCT GGACCTA													
	(2) INFORMATION FOR SEQ ID NO:2:													
25	(i) SEQUENCE CHARACTERISTICS:													
	(A) LENGTH: 4550 amino acids (B) TYPE: amino acid													
	(D) TOPOLOGY: unknown													
30	(ii) MOLECULE TYPE: peptide													
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:													
35	Met Ser Gly Glu Leu Ala Ile Ser Arg Ser Asp Asp Arg Ser Asp Ala													
	10 15													
	Val Ala Val Gly Met Ala Cys Arg Phe Pro Gly Ala Pro Gly Ile 20 25 30													
40	Ala Glu Phe Trp Lys Leu Leu Thr Asp Gly Arg Asp Ala Ile Gly Arg													
	40 45													
	Asp Ala Asp Gly Arg Arg Gly Met Ile Glu Ala Pro Gly Asp Phe 50 60													
45	Asp Ala Ala Phe Phe Gly Met Ser Pro Arg Glu Ala Ala Glu Thr Asp													
	75 80													
50	Pro Gln Gln Arg Leu Met Leu Glu Leu Gly Trp Glu Ala Leu Glu Asp 85 90 95													
50	Ala Gly Ile Val Pro Gly Ser Leu Arg Gly Glu Ala Val Gly Val Phe													
	100 105 110													

Val Gly Ala Met His Asp Asp Tyr Ala Thr Leu Leu His Arg Ala Gly 115 120 125

55

		130	,				135					140)			Leu
5	Ala 145	Asn	Arg	Leu	Ser	Ту: 150	Val	Leu	Gly	Thr	155		Pro	Ser	Leu	160
	Val	Asp	Thr	Ala	Gln 165	Ser	Ser	Ser	Leu	Val 170		Val	Ala	Leu	Ala 175	Val
10	Glu	Ser	Leu	Arg 180	Ala	Gly	Thr	Ser	Arg 185		λla	Val	Ala	Gly 190		Val
	Asn	Leu	Val 195	Leu	Ala	Asp	Glu	Gly 200	Thr	Ala	Ala	Met	Glu 205		Leu	Gly
15	Ala	Leu 210	Ser	Pro	Asp	Gly	Arg 215	Cys	His	Thr	Phe	220	Ala	Arg	Ala	Asn
20	Gly 225	Tyr	Val	Arg	Gly	Glu 230	Gly	Gly	Ala	Ala	Val 235		Leu	Lya	Pro	Leu 240
	Ala	Asp	Ala	Leu	Ala 245	Asp	Gly	Asp	Pro	Val 250	Tyr	Cys	Val	Val	Arg 255	Gly
25	Val	Ala	Val	Gly 260	Asn	Asp	Gly	Gly	Gly 265	Pro	Gly	Leu	Thr	Ala 270	Pro	A sp
	Arg	Glu	Gly 275	Gln	Glu	Ala	Val	Leu 280	Arg	Ala	Ala	Суз	Ala 285	Gln	Ala	Arg
30	Val	Asp 290	Pro	Ala	Glu	Val	Arg 295	Phe	Val	Glu	Leu	His 300	Gly	Thr	Gly	Thr
	Pro 305	Val	Gly	Asp	Pro	Val 310	Glu	Ala	His	Ala	Leu 315	Gly	Ala	Val	His	Gly 320
35	Ser	Gly	Arg	Pro	Ala 325	Ąsp	ysb	Pro	Leu	Leu 330	Val	Gly	Ser	Val	Lys 335	Thr
	Yau	Ile	Gly	His 340	Leu	Glu	Gly	Ala	Ala 345	Gly	Ile	Ala	Gly	Leu 350	Val	Lys
40	Ala	Ala	Leu 355	Сув	Leu	Arg	Glu	Arg 360	Thr	Leu	Pro	Gly	Ser 365	Leu	Asn	Phe
	Ala	Thr 370	Pro	Ser	Pro	Ala	11e 375	Pro	Leu	Asp	Gln	Leu . 380	Arg	Leu	Lys	Val
45	Gln 385	Thr	Ala	Ala	Ala	Glu 390	Leu	Pro	Leu	Ala	Pro 395	Gly	Gly	Ala	Pro	Leu 400
50	Leu	Ala	Gly	Val	Ser 405	Ser	Phe	Gly	Ile	Gly 410	Gly	Thr	Asn		His 415	Val
	Val	Leu	Glu	His 420	Leu	Pro	Ser	Arg	Pro 425	Thr	Pro	Ala		Ser 430	Val	Ala
55	Ala	Ser	Leu 435	Pro .	Asp '	Val	Pro	Pro :	Leu	Leu	Leu		Ala 445	Arg	Ser	Glu

	Gly	450	Leu	Arg	Ala	Gln	Ala 455	Val	Arg	Leu	Gly	Glu 460		Val	Glu	Arg
5	Val 465	Gly	Ala	qzA	Pro	Arg 470	Asp	Val	λla	Tyr	Ser 475		Ala	Ser	Thr	Arg 480
	Thr	Leu	Phe	Glu	His 485	Arg	λla	Val	Val	Pro	Сув	Gly	Gly	Arg	Gly 495	Glu
10	Leu	Val	Ala	Ala 500	Leu	Gly	Gly	Phe	Ala 505	Ala	Gly	Arg	Val	Ser 510	Gly	Gly
	Val	Arg	Ser 515	Gly	Arg	Ala	Val	Pro 520	Gly	Gly	Val	Gly	Val 525	Leu	Phe	Thr
15	Gly	Gln 530	Gly	Ala	Gln	Trp	Val 535	Gly	Met	Gly	Arg	Gly 540	Leu	Tyr	Ala	Gly
	Gly 545	Gly	Val	Phe	Ala	Glu 550	Val	Leu	Asp	Glu	Val 555	Leu	Ser	Met	Val	Gly 560
20	Glu	Val	Asp	Gly	Arg 565	Ser	Leu	Arg	Asp	Val 570	Met	Phe	Gly	Asp	Val 575	Хзр
25	Val	Asp	Ala	Gly 580	Ala	Gly	Ala	Азр	Ala 585	Gly	Ala	Gly	Ala	Gly 590	Ala	Gly
	Val	Gly	Ser 595	Gly	Ser	Gly	Ser	Val 600	Gly	Gly	Leu	Leu	Gly 605	Arg	Thr	Glu
30	Phe	Ala 610	Gln	Pro	Ala	Leu	Phe 615	Ala	Leu	Glu	Val	Ala 620	Leu	Phe	Arg	Ala
	Leu 625	Glu	Ala	Arg	Gly	Val 630	Glu	Val	Ser	Val	Val 635	Leu	Gly	His	Ser	Val 640
35	Gly	Glu	Val	Ala	Ala 645	Ala	Tyr	Val	Ala	Gly 650	Val	Leu	Ser	Leu	G1y 655	Asp
	Ala	Val	Arg	Leu 660	Val	Val	Ala	Arg	Gly 665	Gly	Leu	Met	Gly	Gly 670	Leu	Pro
40	Val	Gly	Gly 675	Gly	Met	Trp	Ser	Val 680	Gly	Ala	Ser	Glu	Ser 685	Val	Val	Arg
	Gly	Val 690	Val	Glu	Gly	Leu	Gly 695	Glu	Trp	Val	Ser	Val 700	Ala	Ala	Val	λsn
45	Gly 705	Pro	Arg	Ser	Val	Val 710	Leu	Ser	Gly		Val 715	Gly	Val	Leu	Glu	Ser 720
50	Val	Val	λla	Ser	Leu 725	Met	Gly	Asp	Gly	Val 730	Glu	Суз	Arg	Arg	Leu 735	Asp
	Val	Ser	His	Gly 740	Phe	His	Ser	Val	Leu 745	Met	Glu	Pro		Leu 750	Gly	Glu
55	Phe	Arg	Gly 755	Val	Val	Glu	Ser	Leu 760	Glu	Phe (Gly	Arg	Val 765	Arg	Pro	Gly

	Val	Val 770	Val	Val	Ser	Gly	Val 775	Ser	Gly	Gly	Val	Val 780	Gly	Ser	Gly	Glu
5	Leu 785	Gly	qeA	Pro	Gly	Tyr 790	Trp	Val	Arg	His	Ala 795	Arg	Glu	Ala	Val	Arg 800
10	Phe	Ala	Asp	Gly	Val 805	Gly	Val	Val	Arg	Gly 810	Leu	Gly	Val	Gly	Thr 815	Leu
	Val	Glu	Val	Gly 820	Pro	His	Gly	Val	Leu 825	Thr	Gly	Met	Ala	Gly 830	Glu	Cys
15	Leu	Gly	Ala 835	Gly	Asp	Asp	Val	Val 840	Val	Val	Pro	Ala	Met 845	Arg	Arg	Gly
15	Arg	Ala 850	Glu	Arg	Glu	Val	Phe 855	Glu	Ala	Ala	Leu	Ala 860	Thr	Val	Phe	Thr
20	Arg 865	Asp	Ala	Gly	Leu	Asp 870	Ala	Thr	Ala	Leu	His 875	Thr	Gly	Ser	Thr	Gly 880
	Arg	Arg	Ile	Asp	Leu 885	Pro	Thr	Tyr	Pro	Phe 890	Gln	Arg	Arg	Thr	His 895	Trp
25	Ser	Pro	Ala	Leu 900	Ser	Arg	Pro	Val	Thr 905	Ala	Asp	Ala	Gly	Ala 910	Gly	Val
	Thr	Ala	Thr 915	Asp	Ala	Val	Gly	His 920	Ser	Val	Ser	Pro	Asp 925	Pro	Glu	Ser
30	Thr	Glu 930	Gly	Thr	Ser	His	Arg 935	Asp	Thr	Asp	Asp	Glu 940	Ala	Asp	Ser	Ala
	Ser 945	Pro	Glu	Pro	Met	Ser 950	Pro	Glu	Asp	Ala	Val 955	Arg	Leu	Val	Arg	Glu 960
35	Ser	Thr	Ala	Ala	Val 965	Leu	Gly	His	Asp	Азр 970	Pro	Gly	Glu	Val	Ala 975	Leu
	Asp	Arg	Thr	Phe 980	Thr	Ser	Gln	Gly	Met 985	Asp	Ser	Val	Thr	Ala 990	Val	Glu
40	Leu	Суз	Asp 995	Leu	Leu	Lys	Gly	Ala 1000		Gly	Leu	Pro	Leu 1005		Ala	Thr
45	Leu	Val 1010	Tyr)	Asp	Leu	Pro	Thr 1015	Pro	Arg	Ala	Val	Ala 1020		His	Ile	Val
	Glu 1025	Ala	Ala	Gly	Gly	Pro 1030		Asp	Ser	Val	Ala 1035		Gly	Pro	Gly	Val 1040
50	Leu	Ser	Ser	Ala	Ala 1045	Val	Gly	Val	Ser	Asp 1050		Arg	Gly		Ser 1055	_
	Asp	Asp	Asp	Asp 1060	Pro	Ile	Ala		Val 1065		Val	Gly		Arg 1070		Pro
55	Gly	Gly	Val 1075	Asp	Ser	Arg	Ala	Ala 1080		Trp	Glu	Leu	Leu 1085		Ser	Gly

	Ala Asp Ala 1090	Ile Ser	Ser Phe 1095		Arg Gly Trp 1100	Asp Leu Asp
5	Gly Leu Tyr 1105	Asp Pro	Glu Pro 1110	Gly Thr Pro	Gly Lys Thr 1115	Tyr Val Arg 1120
10	Glu Gly Gly	Phe Leu 1125	His Ser	Ala Ala Glu 1130		Glu Phe Phe 1135
	Gly Ile Ser	Pro Arg 1140	Glu Ala	Thr Ala Met 1145	Asp Pro Gln	Gln Arg Leu 1150
15	Leu Leu Glu 115	Ala Ser 5		Ala Leu Glu 1160	Asp Ala Gly 116	Val Leu Pro 5
	Glu Ser Leu 1170	Arg Gly	Gly Asp 1175	Ala Gly Val	Phe Val Gly 1180	Ala Thr Ala
20	1185		1190		1195	Tyr Glu Gly 1200
	Tyr Leu Leu	Thr Gly 1205	Thr Thr	Ala Ser Val 1210		Arg Ile Ala 1215
25	Tyr Thr Leu	Gly Thr 1220	Gly Gly	Pro Ala Leu 1225	Thr Val Asp	Thr Ala Cys 1230
	Ser Ser Ser 123	Leu Val	Ala Leu	His Leu Ala 1240	Val Gln Ala 124	Leu Arg Arg 5
30	Gly Glu Cys 1250	Gly Leu	Ala Leu 1 1255	Ala Gly Gly	Ala Thr Val 1260	Met Ser Gly
	Pro Gly Met 1265	Phe Val	Glu Phe : 1270		Arg Gly Leu 1275	Ala Pro Asp 1280
35	Gly Arg Cys	Met Pro 1285	Phe Ser	Ala Asp Ala 1290		Ala Trp Ser 1295
	Glu Gly Val	Ala Val 1 1300	Leu Ala 1	Leu Glu Arg 1305	Leu Ser Asp	Ala Arg Arg 1310
40	Ala Gly His	Arg Val 1	Leu Gly \	Val Val Arg 1320	Gly Ser Ala 1325	
	Asp Gly Ala 1330	Ser Asn (Gly Leu 1 1335	Thr Ala Pro	Asn Arg Ser 1340	Ala Gln Glu
45	Gly Val Ile 1345	Arg Ala 1	Ala Leu <i>A</i> 1350	Ala Asp Ala	Gly Leu Ala 1355	Pro Gly Asp 1360
50	Val Asp Ala	Val Glu 1 1365	Ala His C	Gly Thr Gly	Thr Ala Leu	Gly Asp Pro 1375
	Ile Glu Ala	Ser Ala I 1380	Leu Leu A	Ala Thr Tyr (1385	Gly Arg Glu	Arg Val Gly 1390
55	Asp Pro Leu 1395	Trp Leu (Gly Ser [1	Leu Lys Ser i 1400	Asn Val Gly 1405	

_	Ala	Ala 141	Ala 0	Gly	Ala	Ala	Gly 141	Val .5	Va]	Lys	Met	Leu 142		Ala	Leu	Glu
5	His 142	Gly 5	Thr	Leu	Pro	Arg 143	Thr 0	Leu	His	Ala	Asp 143		Pro	Ser	Thr	His 1440
10	Val	Asp	Trp	Ser	Ser 144	Gly 5	Thr	Val	Ala	Leu 145		Ala	Glu	Ala	Arg 145	Arg S
	Trp	Pro	Arg	Arg 146	Ser 0	Asp	Arg	Pro	Arg 146	Arg 5	Ala	Ala	Val	Ser 147		Phe
15	Gly	Ile	Ser 147	Gly 5	Thr	Asn	Ala	His 148	Leu 0	Ile	Ile	Glu	Glu 148		Pro	Glu
	Trp	Val 149	Glu 0	Asp	Ile	Asp	Gly 149	Val 5	Ala	Ala	Pro	Asp 150		Gly	Thr	Ala
. 20	Asp 1509	Ala	Ala	Ala	Pro	Ser 151	Pro 0	Leu	Leu	Leu	Ser 151		Arg	Ser	Glu	Gly 1520
	Ala	Leu	Arg	Ala	Gln 152	Ala 5	Val	Arg	Leu	Gly 1530		Tyr	Val	Glu	Arg 1535	
25				154					154	5				1550)	
			1555	•	Arg			1560)				1569	5		
30	Val	Ala 1570	Ala)	Leu	Gly	Gly	Phe 157	Ala 5	Ala	Gly	Arg	Val 1580		Gly	Gly	Val
	Arg 1585	Ser	Gly	Arg	Ala	Val 1590	Pro	Gly	Gly	Val	Gly 1595		Leu	Phe	Thr	Gly 1600
35	Gln	Gly	Ala	Gln	Trp 1605	Val	Gly	Met	Gly	Arg 1610	Gly	Leu	Tyr	Ala	Gly 1615	
	Gly	Val	Phe	Ala 1620	Glu)	Val	Leu	Хэр	Glu 1625	Val	Leu	Ser	Het	Val 1630		Glu
40	Val	qeA	Gly 1635	Arg	Ser	Leu	Arg	Asp 1640	Va1	Met	Phe		Asp 1645		qeA	Val
45	Asp	Ala 1650	Gly .	Ala	Gly	Ala	Asp 1655		Gly	Ala		Ala 1660		Ala	Gly	Val
	Gly 1665	Ser	Gly .	Ser	Gly	Ser 1670	Val	Gly	Gly		Leu 1675	Gly	Arg	Thr		Phe 1680
50	Ala (Gln	Pro .	Ala	Leu 1685	Phe	Ala	Leu	Glu	Val 1690	Ala 1	Leu	Phe		Ala 1 1695	Leu
	Glu i	Ala .	Arg (Gly 1700	Val (Glu	Val	Ser	Val 1705	Val 1	Leu (Gly		Ser ' 1710	Val (Gly
55	Glu V	Val .	Ala <i>i</i> 1715	Ala	Ala '	Tyr	Val .	Ala (1720	Gly	Val 1	Leu s		Leu (1725	Gly i	Asp i	Ala

	Val Arg L 1730	eu Val Val	Ala Arg 173		Met Gly Gly 1740	Leu Pro Val
5	Gly Gly G 1745	ly Met Trp	Ser Val 1750	Gly Ala Ser	Glu Ser Val 1755	Val Arg Gly 1760
10	Val Val G	lu Gly Leu 176		Trp Val Ser 177		Val Asn Gly 1775
	Pro Arg S	er Val Val 1780	Leu Ser	Gly Asp Val 1785	Gly Val Leu	Glu Ser Val 1790
15		er Leu Met 795	Gly Asp	Gly Val Glu 1800	Cys Arg Arg 180	Leu Asp Val
	Ser His G 1810	ly Phe His	Ser Val 181		Pro Val Leu 1820	Gly Glu Phe
20	1825		1830		1835	Pro Gly Val 1840
		184	5	185	0	Gly Glu Leu 1855
25		1860		1865		Val Arg Phe 1870
	1	875		1880	Gly Val Gly 188	5
30	1890		189	5	1900	Glu Cys Leu
	1905		1910		1915	Arg Gly Arg 1920
35	Ala Glu A	rg Glu Val 192		Ala Ala Leu 193	Ala Thr Val	Phe Thr Arg 1935
40	Asp Ala G	ly Leu Asp 1940	Ala Thr	Ala Leu His 1945	Thr Gly Ser	Thr Gly Arg 1950
40		sp Leu Pro 955	Thr Tyr	Pro Phe Gln 1960	Arg Asp Arg 1969	
45	Asp Pro V 1970	al Arg Thr	Ala Val 197	_	Glu Pro Ala 1980	Gly Ser Pro
	Ala Asp A 1985	la Arg Ala	Thr Glu 1990	Arg Gly Arg	Ser Thr Thr 1995	Ala Gly Ile 2000
50	Arg Tyr A	rg Val Ala 200		Pro Ala Val 201	Val Asp Arg)	Gly Asn Pro 2015
	Gly Pro A	la Cly His 2020	Val Leu	Leu Leu Ala 2025	Pro Asp Glu	Asp Thr Ala 2030
55		ly Leu Ala 035	Pro Ala	Ile Ala Arg 2040	Glu Leu Ala 204	

	Ala	Glu 2050		His	Thr	Val	Ala 2055		Pro	Val	Gly	Thr 2060		λrg	Glu	Ala
5	Ala 2065		Дзр	Leu	Leu	Arg 2070		Ala	Gly	Asp	Gly 2079		Ala	Arg	Ser	Thr 2080
10	Arg	Val	Leu	Trp	Leu 2085		Pro	Ala	Glu	Pro 2090		Ala	Ala	Asp	Ala 2095	
	Ala	Leu	Val	Gln 2100		Leu	Gly	Glu	Ala 2105		Pro	Glu	Ala	Pro 2110		Trp
15	Ile	Thr	Thr 2115	Arg	Glu	Ala	Ala	Ala 2120		Arg	Pro	qeA	Glu 2125		Pro	Ser
	Val	Gly 2130		Ala	Gln	Leu	Trp 2135		Leu	Gly	Gln	Val 2140		Ala	Leu	Glu
	Leu 2149	-	Arg	Arg	Trp	Gly 2150	_	Leu	Ala	Asp	Leu 2159		Gly	Ser	Ala	Ser 2160
	Pro	Ala	Val	Leu	Arg 2169		Phe	Val	Gly	Ala 2170	•	Leu	Ala	Gly	Gly 2175	
25	Asn	Gln	Phe	Ala 2180		Arg	Pro	Ser	Gly 2185		His	Val	Arg	Arg 2190		Val
	Pro	Ala	Pro 2195	Val	Pro	Val	Pro	Ala 2200		Ala	Arg	Thr	Val 2205		Thr	λla
30	Pro	Ala 2210		Ala	Val	Gly	Glu 2215		Ala	Arg	Asn	Asp 2220		Ser	Asp	Val
	Val - 2225		Pro	Asp	qzA	Arg 2230		Ser	Ser	Gly	Thr 2235		Leu	Ile	Thr	Gly 2240
				Ala	2245	i				2250)				2255	i
	GIĄ	ATA	Ala	Arg 2260		Leu	Leu	Val	2265		Arg	GIĀ	Ala	Ala 2270		Pro
40	Gly	Val	Gly 2275	Glu	Leu	Val	Glu	Glu 2280		Thr	λla	Leu	Gly 2285		Glu	Val
45	Ala	Val 2290		Ala	Cys	Asp	Val 2295		Asp	Arg	yab	Ala 2300		λla	λlα	Leu
	Leu 2305		Gly	Leu	Pro	Glu 2310		Arg	Pro	Leu	Val 2315		Val	Leu	His	Ala 2320
50	Ala	Gly	Val	Leu	Asp 2325		Gly	Val	Leu	Asp 2330		Leu	Thr	Ser	λ вр 2335	-
	Val	qeA	Ala	Val 2340		Àrg	qeA	Lys	Val 2345		Ala	Ala	Arg	His 2350		Дзр
55	Glu	Leu	Thr 2355	Ala	qeA	Leu	Pro	Leu 2360	_	Ala	Phe	Val	Leu 2365		Ser	Ser

	Ile	Val 237	Gly	Val	Trp	Gly	Asn 237	Gly 5	Gly	Glr	Ala	Val 238		Ala	A Ala	λla
5	A sn 238	Ala 5	Ala	Leu	dsy	Ala 239	Leu 0	Ala	Gln	Arg	Arg 239		Ala	Arg	g Gly	Ala 2400
10	Arg	Ala	Ala	Ser	Ile 240	Ala 5	Trp	Gly	Pro	Trp 241		Gly	Ala	Gly	Met 241	Ala 5
	Ser	Gly	Thr	Ala 242	Ala O	Lys	Ser	Phe	Glu 242	Arg 5	Asp	Gly	Val	Thr 243		Leu
15	Asp	Pro	Glu 243	Arg 5	Ala	Leu	Asp	Val 244		Asp	qeA	Val	Val 244		Ala	Gly
		245					245	5				246	0			
20	246	>	Дзр			2470)				247	5				2480
			Trp		2485	5				249	0				249	5
25			His	2500)				250	5				251	0	
			2515	•				2520)				252	5		Gly
30		253(2535	•				2540)			
35	2343	,	Thr			2550	1				2555	•				2560
			qeA		2565	1				2570)				2575	5
40				2580					2585	•				259()	
			Asn 2595 Ala					2600					2605			
45		2010	,				2615					2620				
	2025		Pro			2630					2635					2640
50			Ile .	,	2645					2650					2655	
				2660					2665					2670	•	
55	Leu :	Ser	Pro 1 2675	Phe 1	Pro 1	Ala i	Asp .	Arg 2680	Gly '	Trp	qeA	Val	Glu 2685	Gly	Leu	Tyr

5	Asp	Pro 269		Pro	Gly	Val	Pro 269		Lys	Ser	Tyr	Val 270		Glu	Gly	Gly
5	Phe 2705		Arg	Ser	Ala	Ala 271		Phe	Asp	Ala	Glu 271		Phe	Gly	Ile	Ser 2720
10	Pro	Arg	Glu	Ala	Thr 272		Met	Asp	Pro	Gln 273		Arg	Leu	Leu	Leu 273	Glu _. 5
	Thr	Ser	Trp	Glu 2740		Leu	Glu	Arg	Ala 274		Ile	Val	Pro	A sp 2750		Leu
15	Arg	Gly	Thr 2755		Thr	Gly	Val	Phe 276		Gly	Ile	Ser	Gln 276		qeA	Tyr
		277)				2779	5				2780)			Leu
20	Thr 2789	Gly	Thr	Leu	Gly	Ser 2790		Ile	Ser	Gly	Arg 2799		Ala	Tyr	Ala	Leu 2800
					2805	5				2810)			Ser	2815	;
25	Leu	Val	Ala	Leu 2820	His	Leu	Ala	Val	Gln 2829		Leu	Arg	Arg	Gly 2830		Cys
			2835	;				2840)				2845			
		2850					2855	5				2860	•	Gly	_	
35	2865	•				2870)				2875	3		Glu		2880
					2885	•				2890)				2895	
40				2900					2905	;				Asp 2910		
	Ser	Asn	Gly 2915	Leu	Thr	Ala		Ser 2920		Pro	Ala		Gln 2925	Arg	Val	Ile
45	Arg	G1u 2930	Ala	Leu	Ala	Asp	Ala 2935	Gly	Leu	Val		Ala 2940		Val	Asp	Val
	2945					2950					2955			Ile (2960
50					2965					2970					2975	
				2980					2985					Ala . 2990		
55	eta ,	Val	Gly (2995	Gly	Val'	Ile		Val 3000		Gln (Gly		Arg 3005	His (Gly :	Ser

	Leu Pro Arg Thr Le	eu His Val Asp Ala Pro	Ser Ser Lys Val Glu Trp
	3010	3015	3020
5	Ala Ser Gly Ala Va	ol Glu Leu Leu Thr Glu	Thr Arg Ser Trp Pro Arg
	3025	3030	3035 3040
10		l Arg Arg Ala Ala Val 45 3050	Ser Ala Phe Gly Val Ser 3055
	Gly Thr Asn Ala Hi	s Val Val Leu Glu Glu	Ala Pro Ala Glu Ala Gly
	3060	3065	3070
15	Ser Glu His Gly As	p Gly Pro Glu Pro Glu	Arg Pro Asp Ala Val Thr
	3075	3080	3085
	Gly Pro Leu Ser Tr	p Val Leu Ser Ala Arg	Ser Glu Gly Ala Leu Arg
	3090	3095	3100
20	Ala Gln Ala Val Ar 3105		Glu Arg Val Gly Ala Asp 3115 3120
	Pro Arg Asp Val Al		Ser Arg Ala Ser Phe Gly 3135
25	Glu Arg Ala Val Va	l Val Gly Arg Gly Arg	Glu Glu Leu Leu Ala Gly
	3140	3145	3150
	Leu Asp Val Val Al	a Ala Gly Ala Pro Val :	Gly Val Ser Ser Gly Ala
	3155	3160	3165
30	Gly Ala Val Val Ar	g Gly Ser Ala Val Arg o	Gly Arg Gly Val Gly Val
	3170	3175	3180
	Leu Phe Thr Gly Gl 3185		Gly Met Gly Arg Gly Leu 3195 3200
35	Tyr Ala Gly Gly Gl	y Val Phe Ala Glu Val 1	Leu Asp Glu Val Leu Ser
	32	05 3210	3215
40	Val Val Gly Glu Va	l Asp Gly Arg Ser Leu 3	Arg Asp Val Met Phe Ala
	3220	3225	3230
	Asp Ala Asp Ser Va	l Leu Gly Gly Leu Leu (Gly Arg Thr Glu Phe Ala
	3235	3240	3245
<i>45</i>	Gln Pro Ala Leu Ph	e Ala Leu Glu Val Ala I	Leu Phe Arg Ala Leu Glu
	3250	3255	3260
	Ala Arg Gly Val Glo	Val Ser Val Val Leu (Gly His Ser Val Gly Glu
	3265	3270	3275 3280
50	Val Ala Ala Ala Ty:	Val Ala Gly Val Leu S 35 3290	Ser Leu Gly Asp Ala Val 3295
	Arg Leu Val Val Ala		Gly Gly Leu Pro Val Gly
55		3305 : Val Gly Ala Ser Glu S 3320	3310 Ser Val Val Arg Gly Val 3325

	Val Glu 3330		Glu Trp 333		al Ala Ala 334	Val Asn Gly	y Pro
5	Arg Ser 3345	Val Val Le	Ser Gly 3350	Asp Val G	ly Val Leu 3355	Glu Ser Va	l Val 3360
10	Val Thr	Leu Met Gly 33		_	/s Arg Arg 370	Leu Asp Va	
	His Gly	Phe His Set 3380	Val Leu	Met Glu Pr 3385	o Val Leu	Gly Glu Pho 3390	e Arg
15		Val Glu Se 3395	Leu Glu	Phe Gly Ar 3400	g Val Arg	Pro Gly Va	l Val
	Val Val 3410		Ser Gly 341		al Gly Ser 3420	Gly Glu Let 0	ı Gly
20	Asp Pro	Gly Tyr Tr	Val Arg 3430	His Ala Ar	g Glu Ala 3435	Val Arg Pho	3440
	Asp Gly	Val Gly Va 34		_	ly Val Gly 150	Thr Leu Va. 34!	•
25	Val Gly	Pro His Gly 3460	/ Val Leu	Thr Gly Me 3465	et Ala Gly	Gln Cys Let 3470	ı Glu
		Asp Asp Val 3475	l Val Val	Val Pro Al 3480	a Met Arg	Arg Gly Arg 3485	g Pro
30	Glu Arg (Glu Ala 349		a Thr Val	Phe Thr Arg	dsy i
	Ala Gly 1 3505	Leu Asp Ala	Thr Thr 3510	Leu His Th	or Gly Ser 3515	Thr Gly Arg	3520
35	Ile Asp	Leu Pro Thi 35	•		s Asn Arg	Tyr Trp Ala	
40	Gly Ser	Val Thr Gly 3540	Ala Thr	Gly Thr Se 3545	er Ala Ala	Ala Arg Phe 3550	Gly
		Trp Lya Ası 3555	His Pro	Phe Leu Se 3560	r Gly Ala	Thr Pro Ile 3565	Ala
45	Gly Ser 6 3570		Leu Leu 357		g Val Gly 3580	Leu Ala Ala)	His
	Pro Trp 1 3585	Leu Ala Ası	His Ala 3590	Ile Ser Gl	y Thr Val 3595	Leu Leu Pro	3600
50	Thr Ala	Ile Ala Ası 360			a Val Glu 10	Glu Val Gly 361	
	Gly Gly	Val Glu Glu 3620	Leu Thr	Leu His Gl 3625	u Pro Leu	Leu Leu Pro 3630	Glu
55		Gly Leu His 3635	Val Gln	Val Leu Va 3640	l Glu Ala	Ala Asp Glu 3645	Gln

5		3650)				3655	•	Ala			3660)			
	3665 y ab		Glu	Glu	Gln	Glu 3670		Thr	Arg	His	Ala 3675		Gly	Val	Leu	Thr 3680
10	Ser	Thr	Glu	Thr	Ala 3685		Pro	ysb	Met	Gly 3690		Ala	λla	Gly	Ala 3695	_
	Pro	Pro	Pro	Gly 3700		Glu	Pro	Ile	Asp 3705		Glu	Glu	Leu	Tyr 3710	-	Ala
15	Phe	Ala	Ala 3719		Gly	Tyr	Gly	Tyr 3720	Gly)	Pro	Ala	Phe	Thr 3729		Leu	Ser
	Gly	Val 3730	_	Arg	Leu	Gly	Asp 3735		Leu	Phe	Ala	Glu 3740		Arg	Arg	Pro
20	Ala 3745		Gly	Ala	Gly	Thr 3750		Gly	yab	Gly	Phe 3759		Val	His	Pro	Ala 3760
	Leu	Phe	Asp	Ala	Ala 3765		His	Pro	Trp	Arg 377(Gly	Gly	Leu	Leu 3775	
25	Asp	Thr	Gly	Gly 3780		Thr	Trp	Ala	Pro 3785		Ser	Trp	Gln	Gly 3790		Ala
	Leu	His	Thr 3799		Gly	Ala	Glu	Thr 3800		Arg	Val	Arg	Leu 3809		Pro	Ala
30	Ala	Gly 3810		Thr	Glu	Ser	Ala 3815		Ser	Val	Gln	Ala 3820		Asp	Pro	Ala
35	Gly 3825		Pro	Val	Leu	Thr 3830		yab	Ala	Leu	Leu 3835		Arg	Pro	Val	Thr 3840
	Leu	Gly	Arg	Ala	Asp 3845		Pro	Gln	Pro	Leu 3850		Arg	Val	yap	Trp 3855	
40	Pro	Val	Gly	Gln 3860		Thr	Glu	Ala	Ser 3865	_	Ala	Gln	Gly	Trp 3870		Val
	Leu	Gly	Gln 3879		Ala	Ala	Glu	Thr 3880		Ala	Gln	Pro	Ala 3885		His	Ala
45	qeA	Leu 3890		Ala			Thr 3895		Val	Ala		Ala 3900	_	Thr	Pro	Val
	Pro 3905		Leu	Val	Val	Val 3910		Pro	Val	Ąsp	Thr 3919		Leu	λsp	Glu	Gly 3920
50	Pro	Val	Leu	Ala	Asp 3925		Glu	Ala	Arg	Ala 3930		Ala	Gly	Asp	Gly 3935	_
	Asp	yab	yab	Pro 3940		Arg	Val	Ala	Leu 3945		Arg	Gly	Leu	Thr 3950		Val
55	Arg	Glu	Trp 3955		Glu	qzA	Glu	Arg 3960		Ala	Asp	Ser	Arg 3965		Val	Val

5	Leu '	Thr A 3970	urg Gly	λla	Val	Ala 397		Gly	Pro	Gly	Asp		Pro	λ sp	Leu
	Thr (Gly A	la Ala	Leu	399 399		Leu	Leu	Arg	Ser 399	Ala 5 .	Gln	Ser	Glu	Tyr 4000
10	Pro A	Asp A	rg Phe	Thr		Ile	yab	Val	Asp 4010		Ser	Pro	Glu	Ser	_
	Ala /	Ala L	eu Pro 402	Arg	_	Leu	Gly	Ser 402	Ala		Arg	Gln	Leu 4030	Ala	
15	Arg 1		035 Sly Aap	Val	Leu	λla	Pro 404		Leu	Val	Pro	Met 404		Thr	Arg
		Ala G 1050	lu Thr	Thr	Pro	Ala 405		Ala	Val	λla	Ser 4060		Thr	Thr	Gln
20	Thr 6	31n V	al Thr	Ala	Pro 407		Pro	yab	Asp	Pro 4075		Ala	Asp	Ala	Val 4080
	Phe A	Asp P	ro Ala	Gly 4085	Thr 5	Val	Leu	Ile	Thr 4090		Gly	Thr	Gly	Ala 4099	
25	Gly A	lrg A	rg Val 410		Ser	His	Leu	Ala 4105		Arg	Tyr	Gly	Val 4110		His
	Met L		eu Val 115	Ser	Arg	Arg	Gly 4120		qæÆ	Ala	Pro	Glu 4125		Gly	Pro
30	Leu G	lu A:	rg Glu	Leu	Ala	Gly 4135		Gly	Val	Thr	Ala 4140		Phe	Leu	Ala
35	Cys A 4145	sp L	eu Thr	Asp	Ile 4150	Glu)	Ala	Val	Arg	Lys 4155		Val	Ala	Ala	Val 4 160
	Pro S	er A	sp His	Pro 4165		Thr	Gly	Val	Val 4170		Thr	Ala	_	Val 4175	
40	A geA	sp G	ly Ala 418	Leu)	Thr	Gly	Leu	Thr 4185		Gln	Arg		Asp 4190		Val
	Leu A	rg Pi	ro Lys 195	λla	Ąsp	Ala	Val 4200		Asn	Leu	His	Glu 4 205		Thr	Leu
45	Asp A	rg Pi 210	ro Leu	Arg	Ala	Phe 4215	Val	Leu	Phe		Ala 4220		Ala	Gly	Leu
	Leu G 4225	ly A	rg Pro		Gln 4230		Ser	Tyr		Ala 4235		A sn	Ala		Leu 4240
50	Asp A	la Le	eu Ala	Gly 4245	Ala	Arg	Arg	Ala	Ala 4250		Leu	Pro		Val 4255	
	Leu A	la Tı	rp Gly 4260	Leu)	Trp	deK		Gln 4265		Gly :	Met		Gly 4270	_	Leu
55	Asp G	lu Me 42	et Ala 275	Leu	Arg	Val	Leu 4280		Arg .	qeA		Ile 4285	Ala .	Ala i	Met

5	Pro	Pro 429	Glu 0	Gln	Gly	Leu	Glu 429	Leu 5	Leu	Дзр	Leu	Ala 430		Thr	Gly	His
	Arg 430	As p 5	Gly	Pro	Ala	Val 431	Leu 0	Val	Pro	Leu	Leu 431		Asp	Gly	Ala	Ala 4320
10	Leu	Arg	Arg	Thr	Ala 432	Lys 5	Glu	λrg	Gly	Ala 433		Thr	Met	Ser	Pro 433	
	Leu	Arg	Ala	Leu 434	Leu)	Pro	Ala	λla	Leu 434	Arg 5	Arg	Ser	Gly	Gly 435		Gly
15			4355	5	Ala			436	0				436	5	_	
	Gly	Arg 437	Leu)	Ala	Gly	Met	Val 437	Ala 5	Leu	Glu	Ala	Ala 4380		Arg	Ser	Ala
20	Ala 4389	Val	Leu	Glu	Leu	Val 439	Thr)	Glu	Gln	Val	Ala 4395		Val	Leu	Gly	Tyr 4400
	Ala	Ser	Ala	Ala	Glu 4405	Ile	Glu	Pro	Glu	Arg 4410		Phe	Arg	Glu	Ile 4415	
25	Val	Asp	Ser	Leu 4420	Ala)	Ala	Val	Glu	Leu 4425		Asn	Arg	Leu	Ser 4430		Leu
	Val	Gly	Leu 4435	Arg	Leu	Pro	Thr	Thr 4440		Ser	Phe	Asp	His 4449		Thr	Pro
30	Lys	Азр 4450	Met	Ala	Gln	His	Ile 4455	Дар	Gly	Gln	Leu	Pro 4460		Pro	λla	Gly
35	Ala 4465	Ser	Pro	Ala	yab	Ala 4470	Ala)	Leu	Glu	Gly	Ile 4475	Gly	qeA	Leu		Arg 4480
	λla	Val	Ala	Leu	Leu 4485	Gly	Thr	Gly	Asp	Ala 4490		Arg	Ala		Val 4495	
40	Glu	Gln	Leu	Val 4500	Gly	Leu	Leu	Ala	Ala 4505		λsp	Pro		Gly 4510		Thr
	Gly	Thr	Ala 4515	Ala	Pro	Gly	Val	Pro 4520	Ser	Gly	Ala		Gly 4525		Glu	Pro
45	Thr	Val 4530	Thr	yab	Arg	Leu	Asp 4535		Ala	Thr		Asp 4540		Ile	Phe	Ala
	Phe 4545		Asp	Glu	Gln	Leu 4550	ı									
50	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:3:								
		(i)	(A) LE	e ch Ngth	: 19	96 a	mino	S: aci	ds						
55					PE: POLO						•					

(ii) MOLECULE TYPE: peptide

5		(xi	SE	QUENK	CE DI	ESCR:	PTIC	on: s	SEQ :	ID N	0:3:					
	Met 1	Thr	Ala	Glu	Asn 5	λ sp	Lys	Ile	Arg	Ser 10	Tyr	Leu	Lys	λrg	Ala 15	Thr
10	Ala	Glu	Leu	His 20	Arg	Thr	Lys	Ser	Arg 25	Leu	Ala	Glu	Val	Glu 30	Ser	Ala
45	Ser	λrg	Glu 35	Pro	Ile	Ala	Ile	Val 40	Gly	Met	Ala	Суз	Arg 45	Tyr	Pro	Gly
15	Gly	Val 50	λla	Ser	Pro	Ąsp	Asp 55	Leu	Trp	Asp	Leu	Val 60	Ala	Ala	Gly	Thr
	λ sp 65	λla	Val	Ser	Ala	Phe	Pro	Val	Asp	Arg	Gly 75	Trp	qeA	Val	Glu	Gly 80
20		Tyr	Asp	Pro	Asp 85		Glu	Ala	Val	G1y 90		Ser	Tyr	Val	Arg 95	
	Gly	Gly	Phe	Leu 100	His	Ser	Ala	Ala	Glu 105	Phe	qeA	Ala	Glu	Phe 110	Phe	Gly
25	Ile	Ser	Pro 115	Arg	Glu	Ala	Ala	Ala 120	Met	Asp	Pro	Gln	Gln 125	Arg	Leu	Leu
30	Leu	Glu 130	Thr	Ser	Trp	Glu	Ala 135	Leu	Glu	Arg	Ala	Gly 140	Ile	Val	Pro	Ala
	Ser 145	Leu	Arg	Gly	Thr	Arg 150	Thr	Gly	Val	Phe	Thr 155	Gly	Val	Met	Tyr	Asp 160
35	Asp	Tyr	Gly	Ser	Arg 165	Phe	Asp	Ser	Ala	Pro 170	Pro	Glu	Tyr	Glu	Gly 175	Tyr
	Leu	Val	Asn	Gly 180	Ser	Ala	Gly	Ser	Ile 185	Ala	Ser	Gly	Arg	Val 190	λla	Tyr
40	Ala	Leu	Gly 195	Leu	Glu	Gly	Pro	Ala 200	Leu	Thr	Val	λsp	Thr 205	Ala	Cys	Ser
	Ser	Ser 210	Leu	Val	Ala	Leu	His 215	Leu	Ala	Val	Gln	Ser 220	Leu	λrg	Arg	Gly
45	Glu 225	Суз	Asp	Leu	Ala	Leu 230	Ala	Gly	Gly	Val	Thr 235	Val	Met	Ala	Thr	Pro 240
	Thr	Val	Leu	Val	Glu 245	Phe	Ser	Arg	Gln	Arg 250	Gly	Leu	Ala	Ala	Asp 255	Gly
50	λ rg	Суз	Lys	Ala 260	Phe	Ala	Glu	Gly	Ala 265	yab	Gly	Thr	Ala	Trp 270	Ala	Glu
55	Gly	Val	Gly 275	Val	Leu	Leu	Val	Glu 280	Arg	Leu	Ser	Авр	Ala 285	Arg	Arg	Asn
	Gly	His	Arg	Val	Leu	Ala	Val	Val	Arg	Gly	Ser	Ala	Val	Asn	Gln	Asp

		290					295					300				
5	Gly 305	Ala	Ser	Asn	Gly	Leu 310	Thr	λla	Pro	Ser	Gly 315	Pro	Ala	Gln	Gln	Arg 320
	Val	Ile	Arg	Glu	Ala 325	Leu	λla	λsp	Ala	Gly 330	Leu	Thr	Pro	Ala	Л вр 335	Val
10	qeA	Ala	Val	Glu 340	Ala	His	Gly	Thr	Gly 3 4 5	Thr	Pro	Leu	Gly	350 Asp	Pro	Ile
	Glu	Ala	Gly 355	Ala	Leu	Leu	λla	Thr 360	Tyr	Gly	Ser	Glu	Arg 365	Gln	Gly	Gln
15	Gly	Pro 370	Leu	Trp	Leu	Gly	Ser 375	Leu	Lys	Ser	Asn	Ile 380	Gly	His	λla	Gln
20	Ala 385	Ala	Ala	Gly	Val	Gly 390	Gly	Val	Ile	Lys	Val 395	Val	Gln	Ala	Met	Arg 400
	His	Gly	Ser	Leu	Pro 405	Arg	Thr	Leu	His	Val 410	Asp	Ala	Pro	Ser	Ser 415	Lys
25	Val	G1u	Trp	Ala 420	Ser	Gly	λla	Val	Glu 425	Leu	Leu	Thr	Glu	Thr 430	Arg	Ser
	Trp	Pro	Arg 435	Arg	Val	Glu	λrg	Val 440	Arg	Arg	Ala	Ala	Val 445	Ser	Ala	Phe
30 .	Gly	Val 450	Ser	Gly	Thr	Asn	Ala 455	His	Val	Val	Leu	Glu 460	Glu	Ala	Pro	Ala
	Glu 465	Ala	Gly	Ser	Glu	His 470	Gly	yab	Gly	Pro	Glu 475	Pro	Glu	Arg	Pro	Asp 480
35	Ala	Val	Thr	Gly	Pro 485	Leu	Ser	Trp	Val	Leu 4 90	Ser	Ala	Arg	Ser	Glu 495	Gly
	Ala	Leu	Arg	λla 500	Gln	Ala	Val	Arg	Leu 505	Arg	Glu	Суз	Val	Glu 510	Arg	Val
40	Gly	λla	Asp 515	Pro	λrg	Asp	Val	Ala 520	Gly	Ser	Leu	Val	Val 525	Ser	Arg	Ala
	Ser	Phe 530	Gly	Glu	λrg	Ala	Val 535	Val	Val	Gly	Arg	Gly 540	Arg	Glu	Glu	Leu
45	Leu 545	Ala	Gly	Leu	λsp	Val 550	Val	Ala	Ala	Gly	Ala 555	Pro	Val	Gly	Val	Ser 560
	Gly	Gly	Val	Ser	Ser 565	Gly	Ala	Gly	Ala	Val 570	Val	Arg	Gly	Ser	Ala 575	Val
50	Arg	Gly	Arg	Gly 580	Val	Gly	Val	Leu	Phe 585	Thr	Gly	Gln	Gly	Ala 590	Gln	Trp
55	Val	Gly	Met 595	Gly	λrg	Gly	Leu	Tyr 600	Ala	Gly	Gly	Gly	Val 605	Phe	Ala	Glu
	Val	Leu	Asp	Glu	Val	Leu	Ser	Va1	Val	Gly	Glu	Val	Gly	Gly	Trp	Ser

		610					615					620				
5	Leu 625	Arg	Asp	Val	Met	Phe 630	Gly	Asp	Val	Дзр	Val 635		Ala	Gly	Ala	Gly 640
	λla	Asp	λla	Gly	Val 645	Gly	Ser	Gly	Val	Gly 650	Val	Gly	Gly	Leu	Leu 655	Gly
10	λrg	Thr	Glu	Phe 660	Ala	Gln	Pro	Ala	Leu 665		Ala	Leu	Glu	Val 670		Leu
15	Phe	Arg	Ala 675	Leu	Glu	Ala	Arg	Gly 680		Glu	Val	Ser	Val 685		Leu	Gly
	His	Ser 690	Val	Gly	Glu	Val	Ala 695	Ala	Ala	Tyr	Val	Ala 700	Gly	Val	Leu	Ser
20	Leu 705	Gly	Asp	Ala	Val	Arg 710	Leu	Val	Val	Ala	Arg 715	Gly	Gly	Leu	Met	Gly 720
	Gly	Leu	Pro	Val	Gly 725	Gly	Gly	Met	Trp	Ser 730	Val	Gly	Ala	Ser	Glu 735	Ser
25	Val	Val	Arg	Gly 740	Val	Val	Glu	Gly	Leu 745	Gly	Glu	Trp	Val	Ser 750	Val	Ala
	Ala	Val	Asn 755	Gly	Pro	Arg	Ser	Val 760	Val	Leu	Ser	Gly	A sp 7 65	Val	Gly	Val
30		//0					Ser 775					780				
	Arg 785	Leu	yab	Val	Ser	His 790	Gly	Phe	His	Ser	Val 795	Leu	Met	Glu	Pro	Val 800
35	Leu	Gly	Glu	Phe	Arg 805	Gly	Val	Val	Glu	Ser 810	Leu	Glu	Phe	Gly	Arg 815	Val
	Arg	Pro	Gly	Val 820	Val	Val	Val	Ser	Ser 825	Val	Ser	Gly	Gly	Val 830	Val	Gly
40	Ser	Gly	Glu 835	Leu	Gly	qаA	Pro	Gly 840	Tyr	Trp	Val	Arg	His 845	Ala	Arg	Glu
	Ala	Val 850	Arg	Phe	Ala	Asp	Gly 855	Val	Gly	Val		Arg 860	Gly	Leu	Sly	Val
45	Gly 865	Thr	Leu	Val	Glu	Val 870	Gly	Pro	His		Val 875	Leu	Thr	Gly	Met	Ala 880
50	Gly	Glu	Cys	Leu	Gly 885	Ala	Gly	Asp	Asp	Val 890	Val	Val	Val	Pro	Ala 895	Met
50	Arg	Arg	Gly	Arg 900	Ala	Glu	Arg	Glu	Val 905	Phe	Glu	Ala	Ala	Leu 910	λla	Thr
<i>55</i>	Val	Phe	Thr 915	Arg	A sp	Ala	Gly	Leu 920	Узр	Ala	Thr	Thr	Leu 925	His	Thr	Gly
	Ser	Thr	Gly	Arg	Arg	Ile	Asp	Leu	Pro	Thr	Tyr	Pro	Phe	Gln	His	Asp

		930	ŀ				935	i				940				
5	Arg 945	Tyr	Trp	Leu	Ala	Ala 950	Pro		Arg	Pro	Arg 955	Thr		Gly	Leu	Ser 960
	Ala	Ala	Gly	Leu	Arg 965	Glu	Val	Glu	His	Pro 970	Leu	Leu	Thr	λla	Ala 975	Val
10	Glu	Leu	Pro	Gly .980	Thr	Asp	Thr	Glu	Val 985		Thr	Gly	Arg	Ile 990		Ala
	Ala	Asp	Leu 995	Pro	Trp	Leu	Ala	Asp 100		Leu	Val	Trp	Asp 100		Gly	Val
15	Val'	Pro 101	Gly 0	Thr	Ala	Leu	Leu 101		Thr	Val	Leu	Gln 102		Gly	Ser	Arg
20	Ile 102	Gly 5	Leu	Pro	Arg	Val 103		Glu	Leu	Val	Leu 103!		Thr	Pro	Leu	Thr 1040
	Trp	Thr	Ser	Asp	Arg 1049	Pro 5	Leu	Gln	Val	Arg 105		Val	Val	Thr	Ala 105	
25	Ala	Thr	Ala	Pro 106	Gly)	Gly	Ala	Arg	Glu 106		Thr	Leu	Kis	Ser 107	-	Pro
	Glu	Pro	Val 107	Ala 5	Ala	Ser	Ser	Ser 108	Ser O	Pro	Ser	Pro	Ala 1089		Pro	Arg
30	His	Leu 109	Thr O	Ala	Gln	Glu	Ser 1099	dsy 5	yab	Asp	Trp	Thr 110		His	Ala	Ser
	Gly 1109	Leu S	Leu	Ala	Pro	Ala 111	Ala O	Gly	Leu	Ala	Asp 1115		Phe	Ala	Glu	Leu 1120
35				Trp	1125	5				1130)				1139	
	Gln	Tyr	Pro	Leu 1140	Phe)	Ala	Ala	Ala	Gly 1149	Val	Arg	Tyr	Glu	Gly 1150	Ala	Phe
40	Arg	Gly	Leu 1155	Arg	Ala	Ala	Trp	Arg 1160		Gly	Asp	Glu	Val 1165		Ala	Asp
	Val	Arg 1170	Leu)	Pro	yab	λla	His 1175	Ala	Val	Asp	Ala	Asp 1180		Tyr	G1y	Val
45	His 1185	Pro	Ala	Leu	Leu	Asp 1190	Ala)	Val	Leu	His	Pro 1195		Ala	Ser		Asp 1200
50	Pro	Leu	Gly	Asp	Gly 1205	Gly	His	Gly	Leu	Leu 1210		Phe	Ser	Trp	Thr 1215	_
50	Val	Gln	Gly	His 1220	Gly	Ala	Gly	Gly	His 1225	Ala	Leu	Arg		Arg 1230		Ala
55	Ala	Val	Asp 1235	Gly	Gly	Ala	Val	Ser 1240		Thr	Ala	Ala	Asp 1245		Ala	Cly
	Asn	Pro	Val	Leu	Ser	Ala	Arg	Ser	Leu	Ala	Leu	Arg	Arg	Ile	Thr	Ala

	1250		1255	1260	
5	Asp Arg Le 1265	u Pro Ala Ala 127	n Pro Val Ala Pro 10	Leu Tyr Arg Val	l Asp Trp 1280
	Leu Pro Ph	e Pro Gly Pro 1285	Val Pro Val Ser 129		Trp Ala 1295
10	Val Val Gl	y Pro Glu Ala 1300	Glu Ala Thr Ala 1305	Ala Gly Leu Arg	
		p Val Arg Thr 15	His Ala Leu Pro 1320	Leu Gly Glu Pro 1325	Leu Pro
15	Pro Gln Al 1330	a Gly Thr Asp	Ala Glu Val Ile 1335	Ile Leu Asp Leu 1340	Thr Thr
20	Thr Ala Al 1345	a Gly Arg Thr 135	Ala Ser Asp Gly	Gly Arg Leu Ser 1355	Leu Leu 1360
	Asp Glu Va	l Arg Ala Thr 1365	Val Arg Arg Thr 137		Gln Ala 1375
25	Arg Leu Al	Asp Thr Glu 1380	Thr Ala Pro Asp 1385	Val Asp Val Arg	
	Ala Arg Pro		Ala Arg Thr Ser	Pro Arg Val Asp 1405	Thr Arg
30	Thr Gly Ala 1410	Arg Thr Ala	Asp Gly Pro Arg 1415	Leu Val Val Leu 1420	Thr Arg
	Gly Ala Ala 1425	a Gly Pro Glu 143	Gly Gly Ala Ala O	Asp Pro Ala Gly 1435	Ala Ala 1440
35	Val Trp Gly	/ Leu Val Arg 1445	Val Ala Gln Ala 145		Arg Phe 1455
	Thr Leu Va	l Asp Val Asp 1460	Gly Thr Gln Ala 1465	Ser Leu Arg Ala 147	
40	Gly Leu Leu 14		Ala Gly Gln Ser 1480	Ala Val Arg Asp	Gly Arg
	Val Thr Val	Pro Arg Leu	Val Pro Val Ala 1495		His Gly
45	Gly Gly Thi 1505	: Ala Ala Asp 151	Gly Thr Gly Ala 0	Gly Glu Pro Ser 1515	Ala Thr 1520
	Leu Asp Pro	Glu Gly Thr 1525	Val Leu Ile Thr 153		Ala Leu 1535
50	Ala Ala Glu	Thr Ala Arg 1540	His Leu Val Asp 1545	Arg His Lys Val	-
55	Leu Leu Leu 159	Val Gly Arg	Arg Gly Pro Asp 1560	Ala Pro Gly Val 1565	Asp Arg
	Leu Val Ala	Glu Leu Thr	Glu Ser Gly Ala	Glu Val Ala Val	Arg Ala

		1570)				157	5				158	0			
5	Cys 1585	Asp	Val	Thr	Ąsp	A rg 159		Ala	Leu	λrg	Arg 159		Leu	Ąsp	λla	Leu 1600
	Pro i	Asp	Glu	His	Pro 160	Leu 5	Thr	Cys	Val	Val 161		Thr	Ala	Gly	Val 161	
10	Asp i	Asp	Gly	Val 162		Ser	Ala	Gln	Thr 162		Glu	Arg	Ile	Asp 163		Val
45	Leu i	Arg	Pro 1635	Lys	Ala	Asp	Ala	Ala 164		His	Leu	Asp	Glu 164		Thr	Arg
15	Glu :	lle 1650	Gly	Arg	Val	Pro	Leu 1659		Leu	Tyr	Ser	Ser 166		Ser	Ala	Thr
20	Leu (1665	Gly :	Ser	Ala	Gly	Gln 167	Ala D	Gly	Tyr	Ala	Ala 1679		Asn	Ala	Phe	Met 1680
	Asp A	Ala 1	Leu	Ala	Ala 1685	Arg	Arg	Сув	Ala	Ala 1690		His	Pro	Ala	Leu 169	
25	Leu C	Sly '	Trp	Gly 1700	Trp)	Trp	Ser	Gly	Val 170	Gly 5	Leu	Ala	Thr	Gly 1710		Ąsp
	Gly A	Ala i	Asp 1715	Ala	Ala	Arg	Val	Arg 1720	Arg)	Ser	Gly	Leu	Ala 1729		Leu	Asp
<i>30</i> .	Ala G	31y 1 1730	Ala	Ala	Leu	Asp	Leu 1735	Leu	d s y	Arg	Ala	Leu 1740		Arg	Pro	Glu
	Pro A 1745	la I	Leu	Leu	Pro	Val 1750	Arg)	Leu	Asp	Leu	Arg 1755		Ala	Ala	Gly	Ala 1760
35	Thr A	la I	Leu	Pro	Glu 1765	Val	Leu	Arg	deK	Leu 1770		Gly	Val	Pro	Ala 1779	
	Ala A	rg S	Ser '	Thr 1780	Pro	Gly	Ala	Ala	λla 1785	Gly	Thr	Gly		Glu 1790		Gly
40	Ala V	al ;	Arg : 1795	Pro	Ala	Pro	Ala	Pro 1800	λla	λsp	Ala		Gly 1805		Leu	Ala
45	Ala A 1	rg L 810	eu ,	Ala	Gly	Arg	Ser 1815	Ala	Pro	Glu		Thr 1820	Ala	Leu	Leu	Leu
	Asp L 1825					1830	1				1835				_	1840
50	Ala A	la I	lle (Gly	Ala 1845	Ala	Arg	Thr	Phe	Lys 1850		Ala	Gly		Asp 1855	
••	Leu T	hr A	la Y	Val 1860	Asp :	Leu	Arg .		Arg 1865		Asn	Thr		Thr		Leu
55	Arg L	eu P	Pro 1 .875	Ala	Thr :	Leu	Val	Phe 1880	qeA	His	Pro '		Pro 1885		Ala	Leu
	Ala G	lu L	eu I	Leu I	Leu .	Asp	Gly 1	Leu (Glu	Ala :	Ala (Gly	Pro .	Ala (Glu	Pro

		189	0				189	5				190	0			
5	Ala 190	Ala 5	Glu	Val	Pro	λsp 191		Ala	Ala	Gly	Ala 191		Thr	Leu	Ser	Gly 1920
	Val	Ile	qeA	λrg	Leu 192	Glu 5	Arg	Ser	Leu	Ala 193		Thr	A sp	yab	Gly 193	Asp 5
10	Ala	Arg	Val	Arg 194	Ala O	Ala	Arg	Arg	Leu 194		Gly	Leu	Leu	Asp 195		Leu
	Pro	Ala	Gly 195	Pro 5	Gly	Ala	Ala	Ser 196		Pro	As p	Ala	Gly 196		His	Ala
15	Pro	Gly 197	Arg 0	Gly	qeA	Val	Val 197		Asp	Arg	Leu	Arg 198		Ala	Ser	Asp
20	Asp 198	Asp 5	Leu	Phe	Asp	Leu 199		Asp	Ser	Asp	Phe 199					
	(2)	INF	ORMA'	TION	FOR	SEQ	ID I	NO : 4	:							
25		(i)	(1	A) L1 B) T1	engti Ype:	H: 3'	724 a no ac unki	amino cid	CS: o ac	ids						
30							pept									
							IPTIC								•	
35	Met 1	Ser	Ala	Thr	Asn 5	Glu	Glu	Lys	Leu	Arg 10	Glu	Tyr	Leu	Arg	Arg 15	Ala
	Met	Ala	Asp	Leu 20	His	Ser	Ala	λrg	Glu 25	Arg	Leu	Arg	Glu	Val 30	Glu	Ser
40	Ala	Ser	Arg 35	Glu	Pro	Ile	Ala	Ile 40	Val	Gly	Met	Ala	Cys 45	Arg	Tyr	Pro
	Gly	Gly 50	Val	Ala	Ser	Pro	Glu 55	Glu	Leu	Trp	Asp	Leu 60	Val	Ala	λla	Gly
45	Thr 65	Asp	Ala	Ile	Ser	Pro 70	Phe	Pro	Val	qaA	Arg 75	Gly	Trp	Asp	Ala	Glu 80
	Gly	Leu	Tyr	Asp	Pro 85	Glu	Pro	Gly	Val	Pro 90	Gly	Lys	Ser	Tyr	Val 95	Arg
50		Gly		100					105					110		
	Gly	Ile	Ser 115	Pro	Arg	Glu	Ala	Ala 120	Ala	Met	Asp	Pro	Gln 125	Gln	λrg	Leu
55																

5	Ala 145		Leu	Arg	Gly	Thr 150	Arg	Thr	Gly	Val	Phe 155	Thr	Gly	Val	Het	Tyr 160
5	His	A sp	Tyr	Gly	Ser 165	His	Gln	Val	Gly	Thr 170	Ala	Ala	Азр	Pro	Ser 175	Gly
10	Gln	Leu	Gly	Leu 180	Gly	Thr	Ala	Gly	Ser 185	Val	Ala	Ser	Gly	Arg 190	Val	Ala
	Tyr	Thr	Leu 195	Gly	Leu	Gln	Gly	Pro 200	Ala	Val	Thr	Met	А зр 205	Thr	Ala	Сув
15		210		Leu			215					220				
	225			qeK		230					235					240
20				Phe	245					250					255	_
				Lys 260					265					270		
25			275	Gly				280					285			
30		290		Arg			295					300				
	305			Ser		310					315					320
35				Arg	325					330					335	
				Val 340					345					350	_	
40			355	Gly				360					365			_
		370		Trp			375					380				
45	385			Gly		390					395			•		400
				Leu	405					410					415	_
50				Asp 420					425					430		
55			435	Arg				440					445			
	GIÅ	Val 450	ser	Gly	Thr	Asn	Ala 455	His	Val	Ile	Ile	Glu 460	Glu	Pro	Pro	Ala

_	Ala 465	Gly	Asp	Thr	Ser	Pro 470	Ala	Gly	λsp	Thr	Pro 475	Glu	Pro	Gly	Glu	Ala 480
5	Thr	Ala	Ser	Pro	Ser 485	Thr	λla	λla	Gly	Pro 490	Ser	Ser	Pro	Ser	Ala 495	Val
10	Ala	Gly	Pro	Leu 500	Ser	Pro	Ser	Ser	Pro 505	Ala	Val	Val	Trp	Pro 510	Leu	Ser
	Ala	Glu	Thr 515	Ala	Pro	Ala	Leu	Arg 520	λla	Gln	Ala	Ala	Arg 525	Leu	Arg	Ala
15	His	Leu 530	Glu	Arg	Leu	Pro	Gly 535	Thr	Ser	Pro	Thr	Asp 540	Ile	Gly	His	Ala
	Leu 545	Ala	Ala	Glu	λrg	Ala 550	Ala	Leu	Thr	Arg	Arg 555	Val	Val	Leu	Leu	Gly 560
20	yab	Asp	Gly	Ala	Pro 565	Val	yab	Ala	Leu	Ala 570	Ala	Leu	Ala	Ala	Gly 575	G1u
	Thr	Thr	Pro	980 y ab	Ala	Val	His	Gly	Thr 585	Ala	Ala	Asp	Ile	Arg 590	Arg	Val
25	Ala	Phe	Val 595	Phe	Pro	Gly	Gln	Gly 600	Ser	Gln	Trp	Ala	Gly 605	Met	Gly	Ala
	Glu	Leu 610	Leu	Asp	Thr	Ala	Pro 615	Ala	Phe	Ala	Ala	Glu 620	Leu	Asp	Arg	Cys
30	Gln 625	Gly	Ala	Leu	Ser	Pro 630	Tyr	Val	Двр	Trp	A sn 635	Leu	Ala	Asp	Val	Leu 640
35	Arg	Gly	Ala	Pro	Ala 645	Ala	Pro	Gly	Leu	Asp 650	Arg	Val	Asp	Val	Val 655	Gln
	Pro	Ala	Thr	Phe 660	Ala	Val	Met	Val	Gly 665	Leu	Ala	Ala	Leu	Trp 670	Arg	Ser
40	Leu	Gly	Val 675	Glu	Pro	λla	Ala	Val 680	Ile	Gly	His	Ser	Gln 685	Gly	Glu	Ile
·	Ala	Ala 690	Ala	Сув	Val	Ala	Gly 695	Ala	Leu	Ser	Leu	Glu 700	yab	Ala	Ala	Arg
45	Ile 705	Val	Ala	Leu	Arg	Ser 710	Gln	Val	Ile	Ala	Arg 715	Glu	Leu	Ala	Gly	Arg 720
	Gly	Gly	Met	λla	Ser 725	Val	Ala	Leu	Pro	Ala 730	Ala	Glu	Val	Glu	Ala 735	Arg
50	Leu	Ala	Gly	Gly 740	Val	Glu	Ile	Ala	Ala 745	Val	neA	Gly	Pro	Gly 750	Ser	Thr
	Val	Val	Сув 755	Gly	Glu	Pro	Gly	Ala 760	Leu	Glu	Ala	Leu	Leu 765	Val	Thr	Leu
55	Glu	Ser 770	Glu	Gly	Thr	Arg	Val 775	Arg	Arg	Ile	Asp	Val 780	Asp	Tyr	Ala	Ser

5	His 785	Ser	His	Tyr	Val	Glu 790	Ser	Ile	Arg	Ala	Glu 795	Leu	Ala	Thr	Val	Leu 800
					805					810				Ser	815	
10	Glu	Ala	Ala	Leu 820	Leu	Asp	Thr	Ala	Thr 825	Leu	ysb	Ala	Asp	Tyr 830	Trp	Tyr
	Arg	Asn	Leu 835	Arg	Leu	Pro	Val	Arg 840	Phe	Glu	Pro	Thr	Val 845	Arg	Ala	Met
15	Leu	Asp 850	Asp	Gly	Val	Asp	Ala 855	Phe	Val	Glu	Суз	Ser 860	Ala	His	Pro	Val
	Leu 865	Thr	Val	Gly	Val	Arg 870	Gln	Thr	Val	Glu	Ser 875	Ala	Gly	Gly	Ala	Val 880
20	Pro	Ala	Leu	Ala	Ser 885	Leu	Arg	Arg	Asp	Glu 890	Gly	Gly	Leu	Arg	Arg 895	Phe
	Leu	Thr	Ser	Ala 900	Ala	Glu	Ala	Gln	Val 905	Val	Gly	Val	Pro	Val 910	Asp	Trp
25	Ala	Thr	Leu 915	Arg	Pro	Gly	Ala	Gly 920	Arg	Vạ1	Asp	Leu	Pro 925	Thr	Tyr	Ala
	Phe	Gln 930	Arg	G1u	Arg	His	Trp 935	Val	Gly	Pro	Ala	Arg 940	Pro	Хsр	Ser	Ala
30	Ala 945	Thr	Ala	Ala	Thr	Thr 950	Gly	Asp	Asp	Ala	Pro 955	Glu	Pro	Gly	Asp	Arg 960
0.5	Leu	Gly	Tyr	His	Val 965	Ala	Trp	Lya	Gly	Leu 970	Arg	Ser	Thr	Thr	Gly 975	Gly
35	Trp	Arg	Pro	Gly 980	Leu	Arg	Leu	Leu	Ile 985	Val	Pro	Thr	Gly	Asp 990	Gln	Tyr
40	Thr	Ala	Leu 995	Ala	Asp	Thr	Leu	Glu 1000		Ala	Val	Ala	Ser 1005	Phe	Gly	Gly
	Thr	Val 1010	Arg	Arg	Val	Ala	Phe 1015		Pro	Ala	Arg	Thr 1020		Arg	Ala	Glu
45	Leu 1029	Phe	Gly	Leu	Leu	Glu 1030		Glu	Ile	Asn	Gly 1035		Thr	Ala	Val	Thr 1040
	Gly	Val	Val	Ser	Leu 1045	Leu	Gly	Leu	Суэ	Thr 1050		Gly	Arg	Pro	Asp	
50	Pro	Ala	Val	Pro 1060		Ala	Val	Thr	Ala 1065		Leu	Ala	Leu	Val 1070		Ala
	Leu	Ala	Asp 1075	Leu	Gly	Ser	Thr	Ala 1080		Leu	Trp	Thr	Val 1085		Суѕ	Gly
55	Ala	Val 1090		Thr	Ala	Pro	Asp 1095		Leu	Pro	Сув	Thr 1100		Gly	Ala	Gln

5	Leu Trp Gly Leu Gly Arg Val Ala Ala Leu Glu Leu Pro Glu Val Trp 1105 1110 1115 1120
	Gly Gly Leu Ile Asp Leu Pro Ala Arg Pro Asp Ala Arg Val Leu Asp 1125 1130 1135
10	Arg Leu Ala Gly Val Leu Ala Glu Pro Gly Gly Glu Asp Gln Ile Ala 1140 1145 1150
	Val Arg Met Ala Gly Val Phe Gly Arg Arg Val Leu Arg Asn Pro Ala 1155 1160 1165
15	Asp Ser Arg Pro Pro Ala Trp Arg Ala Arg Gly Thr Val Leu Ile Ala 1170 1175 1180
	Gly Asp Leu Thr Thr Val Pro Gly Arg Leu Val Arg Ser Leu Leu Glu 1185 1190 1195 1200
20	Asp Gly Ala Asp Arg Val Val Leu Ala Gly Pro Asp Ala Pro Ala Gln 1205 1210 1215
	Ala Ala Ala Gly Leu Thr Gly Val Ser Leu Val Pro Val Arg Cys 1220 1225 1230
25	Asp Val Thr Asp Arg Ala Ala Leu Ala Ala Leu Leu Asp Glu His Ala 1235 1240 1245
	Pro Thr Val Ala Val His Ala Pro Pro Leu Val Pro Leu Ala Pro Leu 1250 1255 1260
30	Arg Glu Thr Ala Pro Gly Asp Ile Ala Ala Ala Leu Ala Ala Lys Thr 1265 1270 1275 1280
35	Thr Ala Ala Gly His Leu Val Asp Leu Ala Pro Ala Ala Gly Leu Asp 1285 1290 1295
	Ala Leu Val Leu Phe Ser Ser Val Ser Gly Val Trp Gly Gly Ala Ala 1300 1305 1310
40	Gln Gly Gly Tyr Ala Ala Ala Ser Ala His Leu Asp Ala Leu Ala Glu 1315 1320 1325
	Arg Ala Arg Ala Ala Gly Val Pro Ala Phe Ser Val Ala Trp Ser Pro 1330 1340
45	Trp Ala Gly Gly Thr Pro Ala Asp Gly Ala Glu Ala Glu Phe Leu Ser 1345 1350 1355 1360
	Arg Arg Gly Leu Ala Pro Leu Asp Pro Asp Gln Ala Val Arg Thr Leu 1365 1370 1375
50	Arg Arg Met Leu Glu Arg Gly Ser Ala Cys Gly Ala Val Ala Asp Val 1380 1385 1390
	Glu Trp Ser Arg Phe Ala Ala Ser Tyr Thr Trp Val Arg Pro Ala Val 1395 1400 1405
55	Leu Phe Asp Asp Ile Pro Asp Val Cln Arg Leu Arg Ala Ala Glu Leu 1410 1415 1420

	Ala Pro 1425	Ser Thr	Gly Asp 143		hr Thr	Ser Glu 1435		Arg Glu	1 Leu 1440
5	Thr Ala	Gln Ser	Gly His 1445	Lys A		Ala Thr 1450	Leu Leu	Arg Let 145	
	Arg Ala	His Ala 146	Ala Ala O .	Val Le	eu Gly (1465		Ser Gly	Asp Ala 1470	Val
10	Ser Ser	Ala Arg 1475	Ala Phe		sp Leu (480	Gly Phe	Asp Ser 148		Ala
15	Leu Glu 149	Leu Arg 0	Asp Arg	Leu Se 1495	er Thr :		Gly Leu 1500	Lys Leu	Pro
	1505	Leu Val	151	0		1515	;		1520
20		Glu Glu	1525			1530		153	5
		Thr Pro)		1545			1550	
25	Ala Cys	Arg Leu 1555	Pro Gly		al Gln S 560	Ser Pro	Glu Asp 156		Asp
	Leu Leu 1570	Thr Gly	Gly Thr	Asp Al 1575	la Ile 1		Phe Pro 1580	Thr Asn	Arg
30	Gly Trp 1585	yab yau	Glu Thr 159		r Asp i	Pro Asp 1595		Ser Pro	Gly 1600
	His His	Thr Tyr	Val Arg 1605	Glu Gl		Phe Leu 1610	His Asp	Ala Ala 161	
35	Phe Asp	Pro Gly 1620	Phe Phe	Gly Il	le Ser I 1625	Pro Arg (Glu Ala	Leu Ala 1630	Met
40	Map Pro	Gln Gln 1635	Arg Leu		eu Glu 1 640	Thr Ser	Trp Glu 1645		Glu
40	Arg Ala 1650	Gly Ile	Asp Pro	Val Gl 1655	u Leu A		Ser Arg 1660	Thr Gly	Val
45	Phe Val 1665	Gly Thr	Asn Gly 1670	Gln Hi)	s Tyr V	/al Pro 1 1675	Leu Leu	Gln Asp	Gly 1680
	Asp Glu	Asn Phe	Asp Gly 1685	Tyr Il	e Ala T 1	Thr Gly 1 1690	Asn Ser	Ala Ser 169	
50	Met Ser	Gly Arg 1700	Leu Ser	Tyr Va	l Phe G 1705	Sly Leu (Glu Gly	Pro Ala 1710	Val
	Thr Val	Asp Thr 1715	Ala Cys	Ser Ala 17		eu Ala /	Ala Leu 1725		Ala
55	Val Gln 1730	Ser Leu	Arg Arg	Gly Gle 1735	u Cys A		Ala Leu 1740	Ala Gly	Gly

	Ala Thr 1745	Val Met	Ser Thr 175		Met Leu	Val Glu 1755	Phe Ala	Arg Gln 1760
5	Arg Ala	Val Ser	Pro Asp 1765	Gly Arg	Ser Lys		Ala Glu	Ala Ala 1775
	Asp Gly	Val Gly 1780		Glu Gly	Ala Gly 1785	Met Leu	Leu Val 1790	_
10	Leu Ser	Glu Ala 1795	Gln Lys	Lys Gly 180		Val Leu	Ala Val 1805	Val Arg
15	Gly Ser 1810	Ala Val .	Asn Gln	Asp Gly 1815	Ala Ser	Asn Gly 182		Ala Pro
	Ser Gly 1825	Pro Ala	Gln Gln 1830		Ile Arg	Glu Ala 1835	Leu Ala	Asp Ala 1840
20	Gly Leu	Thr Pro	Ala Asp 1845	Val Asp	Ala Val 185		His Gly	Thr Gly 1855
		Leu Gly 1 1860	•		1865		1870)
25		Asp Arg 2 1875	Arg Asp	Gly Pro 188	Leu Trp)	Leu Gly	Ser Leu 1885	Lys Ser
	Asn Ile 1890	Gly His	Thr Gln	Ala Ala 1895	Ala Gly	Val Ala 190		Ile Lys
30	Met Val 1905	Leu Ala 1	Leu Arg 1910		Glu Leu	Pro Arg 1915	Thr Leu	His Ala 1920
	Ser Thr	Ala Ser :	Ser Arg 1925	Ile Asp	Trp Asp 193		Ala Val	Glu Leu 1935
35	Leu Asp	Glu Ala 1 1940	Arg Pro	Trp Leu	Gln Arg 1945	Ala Glu	Gly Pro 1950	
	Ala Gly	Ile Ser S 1955	Ser Phe	Gly Ile 1960		Thr Asn	Ala His 1965	Leu Val
40	Ile Glu 1970	Glu Pro 1	Pro Glu	Pro Thr 1975	Ala Pro	Glu Leu 1980		Pro Glu
45	Pro Ala 1985	Ala Asp (Gly Asp 1990		Ser Glu	Glu Trp 1995	Trp His	Glu Val 2000
	Thr Val		Met Met 2005	Ser Ala	His Asn 201			Arg Asp 2015
50	Gln Ala	Arg Arg I 2020	Leu Arg	Ala Asp	Leu Leu 2025	Ala His	Pro Glu 2030	
	Pro Ala	Asp Val (2035	Sly Tyr	Thr Leu 2040		Thr Arg	Thr Arg 2045	Phe Glu
55	Gln Arg 2050	Ala Ala V		Gly Glu 2055	Asn Phe	Thr Glu 2060		Ala Ala

	Leu Asp Asp Leu Va 2065	al Glu Gly Arg Pro His 2070	Pro Leu Val Leu 2 2075	Arg Gly 2080
5		r Asp Gln Val Val Phe 85 209	_	Gln Gly 2095
10	Ser Gln Trp Pro Gl 2100	u Met Ala Asp Gly Leu 2105	Leu Ala Arg Ser : 2110	
10	Ser Gly Ser Phe Le 2115	u Glu Thr Ala Arg Ala 2120	Cys Asp Leu Ala 1 2125	Leu Arg
15	Pro His Leu Gly Tr 2130	p Ser Val Leu Asp Val 2135	Leu Arg Arg Glu I 2140	Pro Gly
	Ala Pro Ser Leu As 2145	p Arg Val Asp Val Val 2150	Gln Pro Val Leu 1 2155	Phe Thr 2160
20		u Ala Glu Thr Trp Arg 65 217	_	Glu Pro 2175
	Ala Ala Val Val Gl 2180	y His Ser Gln Gly Glu 2185	Ile Ala Ala Ala 1 2190	Tyr Val
25	Ala Gly Ala Leu Th 2195	r Leu Asp Asp Ala Ala 2200	Arg Ile Val Ala I 2205	Leu Arg
	2210	u Arg Leu Ala Gly Lys 2215	2220	
30	Thr Leu Ser Glu Ar 2225	g Asp Leu Arg Pro Arg 2230	Leu Glu Pro Trp S 2235	Ser Asp 2240
	Arg Leu Ala Val Al 22	a Ala Val Asn Gly Pro 45 225	_	/al Ser 2255
35	Gly Asp Pro Asp Al 2260	a Leu Ala Glu Leu Val 2265	Ala Glu Leu Gly A 2270	lla Glu
40	Gly Val His Ala Ar	g Pro Ile Pro Gly Val 2280	Asp Thr Ala Gly H 2285	lis Ser
	Pro Gln Val Asp Th	r Leu Glu Ala His Leu 2295	Arg Lys Val Leu A 2300	lla Pro
45	Val Ala Pro Arg Th	r Ser Asp Ile Pro Phe 2310	Tyr Ser Thr Val T 2315	thr Gly 2320
	Gly Leu Ile Asp Th	r Ala Glu Leu Asp Ala 25 2330		arg Asn 1335
50	Met Arg Glu Pro Va 2340	l Glu Phe Glu Gln Ala 2345	Thr Arg Ala Leu I 2350	le Ala
	Asp Gly His Asp Va: 2355	l Phe Leu Glu Ser Ser 2360	Pro His Pro Met L 2365	eu Ala
55	Val Ser Leu Gln Glu 2370	Thr Ile Ser Asp Ala 2375	Gly Ser Pro Ala A 2380	la Val

	Leu Gly Th 2385	r Leu Arg	Arg Gly 2390	Gln Gly	Gly Pro 2395		Gly Val 2400
.	Ala Leu Cy	s Arg Ala 240		His Gly	Leu Glu 2410	Ile Asp Al	Glu Ala 2415
	Ile Phe Gl	y Pro Asp 2420	Ser Arg	Gln Val 2429		Pro Thr Ty: 24	
10	Gln Arg Gl 24		Trp Tyr	Ser Pro 2440	Gly His .	Arg Gly As 2445	Asp Pro
15	Ala Ser Le 2450	ı Gly Leu	Asp Ala 245			Leu Leu Gly 2460	y Ser Gly
	Val Glu Le 2465	ı Pro Glu	Ser Gly 2470	Asp Arg	Met Tyr '	Thr Ala Ar	Leu Gly 2480
20	Ala Asp Th	Thr Pro 248		Ala Asp	His Ala 1 2490	Leu Leu Gly	/ Ser Pro 2495
	Leu Leu Pro	Gly Ala 2500	Ala Phe	Ala Asp 2505		Leu Trp Ala 251	
25	Gln Ala Gl	y Thr Gly 15	Arg Val	Glu Glu 2520	Leu Thr 1	Leu Ala Ala 2525	Pro Leu
	Val Leu Pro 2530	Gly Ser	Gly Gly 2535			Leu Asn Val 2540	Gly Ala
30	Pro Gly Thi 2545	dsk dsk	Ala Arg 2550	Arg Phe	Ala Val I 2555		Ala Glu 2560
	Gly Ala Th	2565	5		2570		2575
35	Asp Thr Ala	2580	Pro Asp	Ala Ser 2585		Thr Pro Pro 259	Pro Gly
40	Ala Glu Gli 259	Leu Asp 95	Ile Gly	Asp Phe 2600	Tyr Gln I	arg Phe Ser 2605	Glu Leu
40	Gly Tyr Gly 2610	Tyr Gly	Pro Phe 2615			Val Ser Ala 2620	His Arg.
45	Cys Gly Pro 2625	Asp Ile	His Ala 2630	Glu Val	Ala Leu E 2635	Pro Val Glm	Ala Gln 2640
	Gly Asp Ala	Ala Arg 2645	Phe Gly		Pro Ala I 2650	eu Leu Asp	Ala Ala 2655
50	Leu Gln Thi	Met Ser 2660	Leu Gly	Gly Phe 2665		Glu Asp Gly 267	
	Arg Met Pro	Phe Ala	Leu Arg	Gly Val 2680	Arg Leu 1	yr Arg Ala 2685	Gly Ala
55	Asp Arg Leu 2690	His Val	Arg Val 2695	Ser Pro		lu Asp Ala 700	Val Arg

	11e 270		Суз	Ala	Азр	Gly 271		Gly	λ rg	Pro	Val 271		Glu	Ile	Glu	Ser 2720
<i>5</i>	Phe	Ile	Met	Arg	Pro 272		qeK	Pro	Gly	Gln 273		Leu	Gly	Gly	Arg 273	Pro 5
10	Val	Gly	Ala	Asp 274		Leu	Phe	Arg	11e 274		Trp	Arg	Glu	Leu 275		Ala
,,	Gly	Pro	Gly 275	Thr 5	Arg	Thr	Gly	Asp 276		Thr	Pro	Pro	Pro 276		Arg	Trp
15	Val	Leu 277	Ala O	Gly	Pro	qeA	Ala 277		Gly	Leu	Ala	Glu 278		Ala	Asp	Ala
	His 278	Leu 5	Pro	Ala	Val	Pro 279		Pro	Asp	Gly	Ala 279		Pro	Ser	Pro	Thr 2800
20	Gly	Arg	Pro	Ala	Pro 280		Ala	Val	Val	Phe 2810		Val	Arg	Ala	Gly 281	
	Gly	Yab	Val	Ala 2820	Ala)	yab	Ala	His	Thr 282	Val	Ala	Суз	Arg	Val 2830		yab
25	Leu	Val	Gln 2835	Arg	Arg	Leu	Ala	Ala 284		Glu	Gly	Pro	Asp 2849	_	Ala	Arg
	Leu	Val 2850	Val	Ala	Thr	Arg	Gly 285		Val	Ala	Val	Arg 2860		Ąsp	Ala	Glu
30	Val 2865	g	Asp	Pro	Ala	Ala 2870	Ala)	Ala	Ala	Trp	Gly 2875		Leu	Arg	Ser	Ala 2880
35	Gln	Ala	Glu	Glu	Pro 2885	Gly	Arg	Phe	Leu	Leu 2890		Asp	Leu	Asp	Asp 2895	
	Pro	Ala	Ser	Ala 2900	Arg	Ala	Leu	Thr	Asp 2905	Ala	Leu	Ala	Ser	Gly 2910		Pro
40	Gln	Thr	Ala 2915	Val	Arg	Ala	Gly	Thr 2920	Val	Tyr	Val	Pro	Arg 2925		Glu	Arg
	λla	Ala 2930	Asp	Arg	Thr	qeA	Gly 2935	Pro		Thr	Pro	Pro 2940	Asp	Asp	Gly	Ala
45	Trp 2945	Arg	Leu	Gly	Arg	Gly 2950	Thr	Asp	Leu	Thr	Leu 2955		Gly	Leu	Ala	Leu 2960
	Val	Pro	Ala	Pro	Asp 2965	Ala	Glu	Ala	Pro	Leu 2970		Pro	Gly		Val 2975	_
50	Val	Ala	Val	Arg 2980	Ala	Ala	Gly	Val	Asn 2985	Phe	Arg	Asp		Leu 2990		Ala
	Leu	Gly	Met 2995	Tyr	Pro	Gly	Glu	Ala 3000		Met	Gly	Thr	G1u 3005		Ala	Gly
55	Thr	Val 3010	Val	Glu	Val		Pro 3015		Val	Thr		Val 3020		Val	Gly	Asp

	Arg Val Leu 3025	Gly Leu Trp 303	Asp Gly Gly	Leu Gly Pro I 3035	Leu Cys Val Ala 3040
	Asp His Arg	Leu Leu Ala 3045	Pro Val Pro	Asp Gly Trp S	Ser Tyr Ala Gln 3055
10	Ala Ala Ser	Val Pro Ala 3060	Val Phe Leu 306		Tyr Gly Leu Val 3070
10	Thr Leu Ala 3075	Gly Leu Arg	Pro Gly Glu 3080		Val His Ala Ala 3085
15	Ala Gly Gly 3090	Val Gly Met	Ala Ala Val 3095	Gln Ile Ala A 3100	Arg His Leu Gly
	Ala Glu Val 1 3105	Leu Ala Thr 311	Ala Ser Pro	Gly Lys Trp A	Asp Ala Leu Arg 3120
20	Ala Met Gly	Ile Thr Asp 3125	Asp His Leu	Ala Ser Ser A 3130	Arg Thr Leu Asp 3135
	Phe Ala Thr	Ala Phe Thr 3140	Gly Ala Asp 3145		arg Ala Asp Val 3150
25	Val Leu Asn 9 3155	Ser Leu Thr	Lys Glu Phe 3160		er Leu Gly Leu 165
	Leu Arg Pro 0 3170	Gly Gly Arg	Phe Leu Glu 3175	Leu Gly Lys T 3180	hr Asp Val Arg
30	Asp Pro Glu /	Arg Ile Ala 319	Ala Glu His	Pro Gly Val A 3195	rg Tyr Arg Ala 3200
35	Phe Asp Leu A	Asn Glu Ala 3205		Ala Leu Gly A 3210	rg Leu Leu Arg 3215
	Glu Leu Met A	Asp Leu Phe 1220	Ala Ala Gly 3225		ro Leu Pro Val 3230
40	Val Thr His 3 3235	Asp Val Arg	Arg Ala Ala 3240		rg Thr Ile Ser 245
	Gln Ala Arg H 3250	lis Thr Gly	Lys Leu Val 3255	Leu Thr Met P: 3260	ro Pro Ala Trp
45	His Pro Tyr G	ly Thr Val	Leu Val Thr	Gly Gly Thr G	ly Ala Leu Gly 3280
	Ser Arg Ile A	ala Arg His 3285	Leu Ala Ser	Arg His Gly Va 3290	al Arg Arg Leu 3295
50	Leu Ile Ala A	la Arg Arg 300	Gly Pro Asp 6 3305		la Ala Glu Leu 3310
	Val Ala Asp L 3315	eu Ala Ala	Leu Gly Ala : 3320		al Val Ala Cys 325
55	Asp Val Ser A 3330	sp Ala Asp	Ala Val Arg (3335	Gly Leu Leu Al 3340	la Gly Ile Pro

	Ala Asp His Pro	Leu Thr Ala Va 3350	l Val His Ser Thr 3355	Gly Val Leu Asp 3360
5	Asp Gly Val Leu	Pro Gly Leu Th	r Pro Glu Arg Met 3370	Arg Arg Val Leu 3375
10	Arg Pro Lys Val		l His Leu Asp Glu 3385	Leu Thr Arg Asp 3390
10	Leu Asp Leu Ser 3395		u Phe Ser Ser Ser 00	Ala Gly Leu Leu 3405
15	Gly Ser Pro Ala 3410	Gln Gly Asn Ty 3415	r Ala Ala Ala Asn 3420	-
	Ala Leu Ala Ala 3425	Arg Arg Arg Se 3430	r Leu Gly Leu Pro 3435	Ser Val Ser Leu 3440
20	Ala Trp Gly Leu	Trp Ser Asp Th 3445	r Ser Arg Met Ala 3450	His Ala Leu Asp 3455
	Gln Glu Ser Leu 346	Gln Arg Arg Ph 0	e Ala Arg Ser Gly 3465	Phe Pro Pro Leu 3470
25	Ser Ala Thr Leu 3475	Gly Ala Ala Le 34	u Phe Asp Ala Ala 80	Leu Arg Val Asp 3485
	Glu Ala Val Gln 3490	Val Pro Met Ar 3495	J Phe Asp Pro Ala 3500	
30	Thr Gly Ser Val 3505	Pro Ala Leu Le 3510	Ser Asp Leu Val 3515	Gly Ser Ala Pro 3520
35	Ala Thr Gly Ser	Ala Ala Pro Ala 3525	a Ser Gly Pro Leu 3530	Pro Ala Pro Asp 3535
	Ala Gly Thr Val	Gly Glu Pro Let 0	Ala Glu Arg Leu 3545	Ala Gly Leu Ser 3550
40	Ala Glu Glu Arg 3555	His Asp Arg Let 350	Leu Gly Leu Val	Gly Glu His Val 3565
	Ala Ala Val Leu 3570	Gly His Gly Ser 3575	Ala Ala Glu Val 3580	
45	Pro Phe Arg Glu 3585	Val Gly Phe Asp 3590	Ser Leu Thr Ala 3595	Val Glu Leu Arg 3600
	Asn Arg Met Ala	Ala Val Thr Gly 3605	Val Arg Leu Pro 3610	Ala Thr Leu Val 3615
50	3620	0	Leu Ser Ser His 3625	3630
	3635	364		3645
55	Asp Arg Ile Glu 3650	Glu Ala Leu Ala 3655	Ala Leu Thr Pro 3660	

	366	ı Lev 55	ı Ala	. Pro	Ala	Pro 367		qeA () Arg	Ala	G1u 367		λla	Leu	Arg	Leu 3680
5	Asp	Ala	Leu	Ala	Asp	A rg 5	Trp	Arg	Ala	Leu 369		Asp	Gly	Ala	369	Gly 5
	Ala	Asp	yab	Asp 370	lle 0	Thr	Asp	Val	Leu 370		Ser	λla	Asp	Asp 371		Glu
10	Ile	Phe	371		Ile	Asp	Glu	Arg 372		Gly	Thr	Ser				
15	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:5	:					,		
		(i	(A) L B) T	CE CI ENGTI YPE: OPOLA	H: 1 ami:	580 no a	amin cid	o ac	ids						
		(ii) MO	LECU	LE T	PE:	pep	tide								
25		(xi) SE	QUEN	CE DI	ESCR	IPTI	ON:	SEQ	ID N	0:5:					
2.5	Met 1	Ala	Asn	Glu	Glu 5	Lys	Leu	Arg	Ala	Tyr 10	Leu	Lys	Arg	Val	Thr 15	Gly
30	Glu	Leu	His	Arg 20	Ala	Thr	Glu	Gln	Leu 25	Arg	Ala	Leu	Asp	Arg 30	Arg	Ala
	His	Glu	Pro 35	Ile	Ala	Ile	Val	Gly 40	Ala	Ala	Суз	Arg	Leu 45	Pro	Gly	Gly
35	Val	Glu 50	Ser	Pro	Asp	Asp	Leu 55	Trp	Glu	Leu	Leu	His 60	Ala	Gly	Ala	Asp
	Ala 65	Val	Gly	Pro	Ala	Pro 70	Ala	Дзр	Arg	Gly	Trp 75	Asp	Val	Glu	Gly	Arg 80
40	Туг	Ser	Pro	Asp	Pro 85	Asp	Thr	Pro	Gly	Thr 90	Ser	Tyr	Cys	Arg	Glu 95	Gly
	Gly	Phe	Val	Gln 100	Gly	Ala	Asp	Arg	Phe 105	Asp	Pro	Ala	Leu	Phe 110	Gly	Ile
45	Ser	Pro	Asn 115	Glu	Ala	Leu	Thr	Met 120	Asp	Pro	Gln	Gln	Arg 125	Leu	Leu	Leu
50	Glu	Thr 130	Ser	Trp	Glu	Ala	Leu 135	Glu	Arg	Ala	Gly	Leu 140	Asp	Pro	Gln	Ser
	Leu 145	Ala	Gly	Ser	Arg	Thr 150	Gly	Val	Phe	Ala	Gly 155	Ala	Trp	Glu	Ser	Gly 160
55					Val 165					170					175	
	Leu	Ala	Gly	Ile	Val	Ser	Phe	Thr	Ala	Gly	Arg	Val	Ala	Tyr	Ala	Leu

				180)				18	5				19	0		
5	Gl	y Let	1 Glu 19!	ı Gly	/ Pro	Ala	Let	200	r Ile	e Ası	e Thu	r Ala	a Cy:		r Se	r Ser	
	Lei	u Va:	l Ala	Leu	His	Leu	Ala 215	Val	Gli	n Sei	r Let	1 Arg 220	g Arg	g Gly	y Gl	и Сув	
10	As 225	Lev 5	ı Ala	Leu	Ala	Gly 230	Gly	Ala	Thi	r Val	11e 235	Ala 5	a Ası	Phe	≥ Ala	Leu 240	
	Phe	• Thr	Gln	Phe	Ser 245	Arg	Gln	Arg	Gly	/ Leu 250	Ala	Pro) Asp	Gly	/ Ar g	Cys	
15	Lys	3 Ala	Phe	Gly 260	Glu	Thr	Ala	Asp	Gly 265	Phe	Gly	Pro) Ala	Glu 270	Gly	/ Ala	
	Gly	Met	Leu 275	Leu	Val	Glü	Arg	Leu 280	Ser	yab	Ala	Arg	Arg 285		Gly	His	
20	Pro	Val 290	Leu	Ala	Val	Val	Arg 295	Gly	Ser	Ala	Val	Asn 300	Gln	Asp	Gly	Ala	
	Ser 305	Asn	Gly	Leu	Thr	Ala 310	Pro	Ser	Gly	Pro	Ala 315	Gln	Gln	Arg	Val	Ile 320	
25	Arg	Glu	Ala	Leu	Ala 325	yab	Ala	Gly	Leu	Thr 330	Pro	Ala	Asp	Val	Asp	Ala	
30	Val	Glu	Ala	His 340	Gly	Thr	Gly	Thr	Pro 345	Leu	Gly	Asp	Ьċо	Ile 350	Glu	Ala	
	Gly	Ala	Leu 355	Met	Ala	Thr	Tyr	Gly 360	His	Glu	Arg	Thr	Gly 365	Asp	Pro	Leu	
35	Trp	Leu 370	Gly	Ser	Leu	Lys	Ser 375	Asn	Ile	Gly	His	Thr 380	Gln	Ala	λla	Ala	
	Gly 385	Val	Ala	Gly	Val	Ile 390	Lys	Met	Val	Leu	Ala 395	Leu	Arg	His	Gly	Glu 400	
40	Leu	Pro	Arg	Thr	Leu 405	His	Ala	Ser	Thr	Ala 410	Ser	Ser	Arg	Ile	Glu 415	Trp	
	Asp	Ala	Gly	Ala 420	Val	Glu	Leu	Leu	Asp 425	Glu	Ala	Arg	Pro	Trp 430	Pro	Arg	
45	Arg	Ala	Glu 435	Gly	Pro	Arg	Arg	Ala 440	Gly	Ile	Ser	Ser	Phe 445	Gly	Ile	Ser	
	Gly	Thr 450	Asn	Ala	His :	Leu	Val 455	Ile	Glu	Glu	Glu	Pro 460	Pro	Ala	Arg	Pro	
50	Glu 465	Pro	Glu	Glu .	λla	Ala 470	Gln	Pro :	Pro	Ala	Pro 475	Ala '	Thr	Thr	Val	Leu 480	
55	Pro	Leu	Ser	Ala .	Ala (485	Gly .	Ala /	Arg :	Ser	Leu . 490	Arg (Glu (Gln .		Arg 495		

	Leu	Ala	Ala	His 500	Leu	Ala	Gly	His	G1u 505	Glu	Ile	Thr	Ala	Ala 510		Ala
5			515					520					525	_		Ser
	Val	530	Ala	ysb	Asp	Arg	Arg 535	Ala	Leu	Ile	Asp	Arg 540		Thr	Ala	Leu
10	Ala 545	Glu	Asp	Arg	Lys	Asp 550	Pro	Gly	Val	Thr	Val 555	Gly	Glu	Ala	Gly	Ser 560
	Gly	Arg	Pro	Pro	Val 565	Phe	Val	Phe	Pro	Gly 570	Gln	Gly	Ser	Gln	Trp 575	Thr
15	Gly	Met	Gly	Ala 580	Glu	Leu	Leu	Asp	Arg 585	Ala	Pro	Val	Phe	Arg 590	Ala	Lys
	Ala	Glu	Glu 595	Cys	Ala	Arg	Ala	Leu 600	Ala	Ala	His	Leu	902 Yab	Trp	Ser	Val
20	Leu	Asp 610	Val	Leu	Arg	Дsp	Ala 615	Pro	Gly	Ala	Pro	Pro 620	Ile	Asp	Arg	Ala
25	Asp 625	Val	Val	Gln	Pro	Thr 630	Leu	Phe	Thr	Met	Met 635	Val	Ser	Leu	Ala	Ala 640
20	Leu	Trp	Glu	Ser	His 645	Gly	Val	Arg	Pro	Ala 650	Ala	Val	Val	Gly	His 655	Ser
30	Gln	Gly	Glu	11e 660	Ala	Ala	Ala	His	Ala 665	Ala	Gly	Ala	Leu	Ser 670	Leu	Asp
	Asp	Ala	Ala 675	Arg	Val	Ile	Ala	Glu 680	Arg	Ser	Arg	Leu	Trp 685	Lys	Arg	Leu
35	Ala	Gly 690	Asn	Gly	Gly	Met	Leu 695	Ser	Val	Met	Ala	Pro 700	Ala	Asp	Arg	Val
	Arg 705	Glu	Leu	Met	Glu	Pro 710	Trp	Ala	Glu	Arg	Met 715	Ser	Va1	Ala	Ala	Val 720
40	Asn	Gly	Pro	Ala	Ser 725	Val	Thr	Val	Ala	Gly 730	Asp	Ala	Arg	Ala	Leu 735	Glu
	Glu	Phe	Gly	Gly 740	Arg	Leu	Ser	Ala	Ala 745	Gly	Val	Leu	λrg	Trp 750	Pro	Leu
45	Ala	Gly	Val 755	Азр	Phe	λla	Gly	His 760	Ser	Pro	Gln	Val	Glu 765	Gln	Phe	Arg
50	Ala	Glu 770	Leu	Leu	Asp	Thr	Leu 775	Gly	Thr	Val	Arg	Pro 780	Thr	Ala	Ala	Arg
	Leu 785	Pro	Phe	Phe	Ser	Thr 790	Val	Thr	Ala	Ala	Ala 795	His	Glu	Pro	Glu	Gly 800
55	Leu	qeA	Ala	Ala	Tyr 805	Trp	Tyr	Arg		Met 810	Arg	Glu	Pro	Val	Glu 815	Phe

	Ala	Ser	Thr	Leu 820	Arg	Thr	Leu	Leu	Arg 825	Glu	Gly	His	Arg	Thr 830	Phe	Val
5	Glu	Met	Gly 835	Pro	His	Pro	Leu	Leu 840	Gly	Ala	Ala	Ile	Asp 845	Glu	Val	Ala
	Glu	Ala 850	Glu	Gly	Val	His	Ala 855	Thr	Ala	Leu	Ala	Thr 860	Leu	His	Arg	Gly
10	865	_	-	Leu	_	870					875					880
	His	Gly	Val	Arg	Val 885	Asp	Trp	Asp	Ala	Leu 890	Phe	Glu	Gly	Ser	Gly 895	Ala
15	Arg	Arg	Val	Pro 900	Leu	Pro	Thr	Tyr	Ala 905	Phe	Ser	Arg	Asp	Arg 910	Tyr	Trp
	Leu	Pro	Thr 915	Ala	Ile	Gly	Arg	Arg 920	Ala	Val	Glu	Ala	Ala 925	Pro	Val	Asp
	Ala	Ser 930	Ala	Pro	Gly	Arg	Tyr 935	Arg	Val	Thr	Trp	Thr 940	Pro	Val	Ala	Ser
25	Asp 945	_	Ser	Gly	Arg	Pro 950	Ser	Gly	Arg	Trp	Leu 955	Leu	Val	Gln	Thr	Pro 960
	Gly	Thr	Ala	Pro	Asp 965	Glu	Ala	Asp	Thr	Ala 970	Ala	Ser	Ala	Leu	Gly 975	Ala
30	Ala	Gly	Val	Val 980	Val	Glu	Arg	Cys	Leu 985	Leu	Asp	Pro	Thr	Glu 990	Ala	Ala
	Arg	Val	Thr 995	Leu	Thr	Glu	Arg	Leu 1000		Glu	Leu	Asp	Ala 100		Pro	Glu
35	Gly	Leu 101		Gly	Val	Leu	Val 101		Pro	Gly	Arg	Pro 1020		Ser	Thr	Ala
	Pro 102		Asp	Ala	Ser	Pro 1030		Asp	Pro	Gly	Thr 103		Ala	Val	Leu	Leu 1040
40	Val	Val	Gln	Ala	Val 104		qaA	Ala	Ala	Pro 105		Ala	Arg	Ile	Trp 105	
	Val	Thr	Arg	Gly 106		Val	Ala	Val	Gly 106		Gly	Glu	Val	Pro 1076		Ala
45	Val	Gly	Ala 107	Arg 5	Val	Trp	Gly	Leu 108		Arg	Val	Ala	Ala 108		Glu	Val
50	Pro	Val 109		Trp	Gly	Gly	Leu 109		Asp	Val	Ala	Val 110	_	Ala	Gly	Val
30	Arg 110		Trp	Arg	Arg	Val 111		Gly	Val	Val	Ala 111		Gly	Gly	Glu	Asp 1120
55	Gln	Val	Ala	Val	Arg 112		Gly	Gly	Val	Phe 113		Arg	Arg	Leu	Val 113	-

	Val Gly Val Arg Gly	Gly Ser Gly Val Trp	Arg Ala Arg Gly Cys Val
	1140	1145	1150
5	Val Val Thr Gly Gly	Leu Gly Gly Val Gly	Gly His Val Ala Arg Trp
	1155	1160	1165
	Leu Ala Arg Ser Gly	Ala Glu His Val Val	Leu Ala Gly Arg Arg Gly
	1170	1175	1180
10	Gly Gly Val Val Gly	Ala Val Glu Leu Glu	Arg Glu Leu Val Gly Leu
	1185	1190	1195 1200
	Gly Ala Lys Val Thr 1205	Phe Val Ser Cys Asp	Val Gly Asp Arg Ala Ser 1215
15	1220	1225	Leu Gly Val Pro Leu Arg 1230
	Gly Val Phe His Ala	Ala Gly Val Ala Gln	Val Ser Gly Leu Gly Glu
	1235	1240	1245
	Val Ser Leu Ala Glu	Ala Gly Gly Val Leu	Gly Gly Lys Ala Val Gly
	1250	1255	1260
25	Ala Glu Leu Leu Asp	Glu Leu Thr Ala Gly	Val Glu Leu Asp Ala Phe
	1265	1270	1275 1280
	Val Leu Phe Ser Ser	Gly Ala Gly Val Trp 1290	Gly Ser Gly Gly Gln Ser 1295
30	Val Tyr Ala Ala Ala .	Asn Ala His Leu Asp	Ala Leu Ala Glu Arg Arg
	1300	1305	1310
	Arg Ala Gln Gly Arg 1	Pro Ala Thr Ser Val	Ala Trp Gly Leu Trp Gly
	1315	1320	1325
35	Gly Glu Gly Met Gly 1	Ala Asp Glu Gly Val 1335	Thr Glu Phe Tyr Ala Glu 1340
	Arg Gly Leu Ala Pro ! 1345		Gly Ile Glu Ala Leu His 1355 1360
40	Thr Ala Leu Asn Glu (1365	Gly Asp Thr Cys Val	Thr Val Ala Asp Ile Asp 1375
	Trp Glu His Phe Val 1	Thr Gly Phe Thr Ala 1 1385	Tyr Arg Pro Ser Pro Leu 1390
45	Ile Ser Asp Ile Pro (Sin Val Arg Ala Leu . 1400	Arg Thr Pro Glu Pro Thr 1405
50	Val Asp Ala Ser Asp 0 1410	Cly Leu Arg Arg Arg 1415	Val Asp Ala Ala Leu Thr 1420
30	Pro Arg Glu Arg Thr I	ys Val Leu Val Asp	Leu Val Arg Thr Val Ala
	1425 1	430	1435 1440
55	Ala Glu Val Leu Gly H	is Asp Gly Ile Gly (Gly Ile Gly His Asp Val
	1445	1450	1455

	VI	, Pne	. Arg	146	o Leu io	ı GIY	Phe	: Asp	Ser 146		ı Ala	Ala	Val	147		: Arg
5	Gly	/ Arg	Leu 147	Ala	Glu	Ala	Thr	Gly 148	Leu 10	Val	Leu	Pro	Ala 148		r Val	Ile
	Phe	149	His O	Pro	Thr	Val	Азр 149	Arg 5	l Leu	Gly	Gly	Ala 150		Leu	ı Glu	Arg
10	Leu 150	Ser	λla	Asp	Glu	Pro 151	Ala O	Pro	Gly	Gly	Ala 151		Glu	Pro	Ala	Gly 1520
. 15	Gly	Arg	Pro	Ala	Thr 152	Pro 5	Pro	Pro	Ala	Pro 153		Pro	Ala	Val	His 153	Asp 5
	Ala	Asp	Ile	Asp 154	Glu 0	Leu	Asp	Ala	Asp 154	Ala 5	Leu	Ile	Arg	Leu 155		Thr
20	Gly	Thr	Ala 155	Gly 5	Pro	Ala	Asp	Gly 156	Thr 0	Pro	Ala	qeA	Gly 156		Pro	Asp
	Ala	Ala 157	Ala 0	Thr	Ala	Pro	Asp 157		Ala	Pro	Glu	Gln 158				
25	(2)	INF														
20		(i	()	QUEING A) LI B) TY D) TY	engt Ype:	H: 1	891 a	amine	CS: o ac:	ids						
30		(ii		LECUI												
35		(xi) SE(QUEN	CE DI	ESCR:	IPTIC	ON: S	SEQ]	ID N	0:6:					
	Met 1	Ser	Pro	Ser	Met 5	yab	Glu	Val	Leu	Gly 10	Ala	Leu	Arg	Thr	Ser 15	Val
40	Lys	Glu	Thr	Glu 20	Arg	Leu	Arg	Arg	His 25	Asn	Arg	Glu	Leu	Leu 30	Ala	Gly
	Ala	His	Glu 35	Pro	Val	Ala	Ile	Val 40	Gly	Met	Ala	Сув	Arg 45	Tyr	Pro	Gly
45	Gly	Val 50	Ser	Thr	Pro	Asp	Азр 55	Leu	Trp	Glu	Leu	Ala 60	Ala	Αsp	Gly	Val
	Дз р 65	Ala	Ile	Thr	Pro	Phe 70	Pro	Ala	Asp	Arg	Gly 75	Trp	Asp	Glu	A sp	Ala 80
50	Val	Tyr	Ser	Pro	Asp 85	Pro	Asp	Thr	Pro	Gly 90	Thr	Thr	Tyr	Суз	A rg 95	Glu
	Gly	Gly	Phe	Leu 100	Thr	Gly	Ala	Gly	Asp 105	Phe	Asp	Ala	Ala	Phe 110	Phe	Gly
55	Ile	Ser	Pro	Asn	Glu	Ala	Leu	Val	Met	Asp	Pro	Gln	Gln	Arg	Leu	Leu

			11	5		•		12	0				12	5		
5	Lev	u Glu 130	Th:	r Sei	r Tri	p Gl	u Thi 13!	r Lei	ı Gl	u Ar	g Ala	Gl;	y Il 0	e Va	l Pr	o Al
	Ser 145	r Leu 5	ı Arç	g G1 ₃	/ Sea	150	g Thi	c Gly	/ Va	l Ph	Va:		y Al	a Al	a Hi	s Th 16
10	Gly	у Туг	Val	l Thr	165	Th:	r Ala	Arg	J Ala	170	G1(ı Gly	y Th	r Gl	u G1 17	
	Leu	ı Lev	Thi	Gly 180	Asn	Ala	a Asp	Ala	Va 189	l Met	: Ser	Gly	/ Ar	11 i		а Ту
15	Ser	Leu	Gly 195	/ Leu	Glu	Gly	/ Pro	200	Leu	ı Thı	Ile	Gly	7 Thi 209		a Cy:	s Sei
	Ser	Ser 210	Leu	Val	Ala	Leu	His 215	Leu	Ala	Va]	Gln	Ser 220		ı Arç) Ar	Gl)
	Glu 225	Cys	Asp	Leu	Ala	Leu 230	Ala	Gly	Gly	Val	Ala 235		Met	Pro) Ası	Pro 240
25				Val	243					250					255	5
				Ala 260					ノカラ					271		
	GIY	Vai	275	Val	Leu	Leu	Val	Glu 280	Arg	Leu	Ser	Asp	Ala 285	Arg	Arg	Asn
30	Gly	His 290	Arg	Val	Leu	Ala	Val 295	Val	Arg	Gly	Ser	Ala 300	Val	Asn	Gln	ge Æ
35	Gly 305	Ala	Ser	Asn	Gly	Leu 310	Thr	Ala	Pro	Ser	Gly 315	Pro	Ala	Gln	Gln	Arg 320
				Glu	323					330					335	
40	Asp	Val	Val	Glu 340	Ala	His	Gly	Thr	Gly 345	Thr	Ala	Leu	Gly	Asp 350	Pro	Ile
	Glu	Ala	Gly 355	Ala	Leu	Leu	Ala	Thr 360	Tyr	Gly	λrg	Glu	Arg 365	Val	Gly	Дзр
45	Pro	Leu 370	Trp	Leu	Gly	Ser	Leu 375	Lys	Ser	λsn	Ile	Gly 380	His	Ala	Gln	Ala
	Ala 385	Ala	Gly	Val	Gly	Gly 390	Val	Ile	Lys	Val	Va 1 395	Gln	Ala	Met	Arg	His 400
50	Gly	Ser	Leu	Pro	Arg 405	Thr	Leu	His	Val	Asp 410	Ala	Pro	Ser	Ser	Lys 415	Val
	Glu	Trp	Ala	Ser 420	Gly	Ala	Val	Glu	Leu 425	Leu	Thr	Glu	Gly	Arg 430	Ser	Trp
55	Pro	Arg	Arg	Val	Glu .	Arg	Val	Arg	λrg	Ala	Ala	Val	Ser	Ala	Phe	Gly

			435					440					445			
5	Val	Ser 450	Gly	Thr	Asn	Ala	His 455	Val	Val	Leu	Glu	Glu 460		Pro	Val	Glu
	Ala 465	Gly	Ser	Glu	His	Gly 470	yab	Gly	Pro	Gly	Pro 475		Arg	Pro	yab	Ala 480
10	Val	Thr	Gly	Pro	Leu 485	Pro	Trp	Val	Leu	Ser 490	Ala	Arg	Ser	Arg	Glu 495	
	Leu	Arg	Gly	Gln 500	Ala	Gly	Arg	Leu	Ala 505	Ala	Leu	Ala	Arg	Gln 510		Arg
15	Thr	Glu	Gly 515	Thr	Gly	Gly	Gly	Ser 520	Gly	Leu	Val	Val	Pro 525		Ala	Asp
	Ile	Gly 530	Tyr	Ser	Leu	Ala	Thr 535	Thr	Arg	Glu	Thr	Leu 540	Glu	His	Arg	Ala
	Val 545	Ala	Leu	Val	Gln	Glu 550	Asn	Arg	Thr	Ala	Gly 555	Glu	Asp	Leu	Ala	Ala 560
25	Leu	Ala	Ala	Gly	Arg 565	Thr	Pro	Glu	Ser	Val 570	Val	Thr	Gly	Val	Ala 575	Arg
	Arg	Gly	Arg	Gly 580	Ile	Ala	Phe	Leu	Cys 585	Ser	Gly	Gln	Gly	Ala 590	Gln	Arg
30	Leu	Gly	Ala 595	Gly	Arg	Glu	Leu	Arg 600	Gly	Arg	Phe	Pro	Val 605	Phe	Ala	λѕр
		910		Glu			615					620				
35	Leu 625	Leu	Ser	Val	Met	Phe 630	Ala	Glu	Pro	Ala	Thr 635	Pro	Asp	Ala	Ala	Leu 640
	Leu	Asp	Arg	Thr	Asp 645	Tyr	Thr	Gln	Pro	Ala 650	Leu	Phe	Ala	Val	Glu 655	Thr
40	Ala	Leu	Phe	Arg 660	Leu	Leu	Glu	Ser	Trp 665	Gly	Leu	Val	Pro	Asp 670	Val	Leu
	Val	Gly	His 675	Ser	Ile	Gly	Gly	Leu 680	Val	Ala	Ala	His	Val 685		Gly	Val
45	Phe	Ser 690	Ala	Ala	Asp	Ala	Ala 695	λrg	Leu	Val	Ser	Ala 700	Arg	Gly	Arg	Leu
	Met 705	Arg	Ala	Leu	Pro	Glu 710	Gly	Gly	Ala	Met	Ala 715	Ala	Val	Gln	Ala	Thr 720
50	Glu	Arg	Glu	Ala	Ala 725	Ala	Leu	Glu	Pro	Val 730	Ala	Ala	Gly	Gly	Ala 735	Val
	Val	Ala	Ala	Val 740	Asn	Gly	Pro	Gln	Ala 745	Leu	Val	Leu	Ser	Gly 750	Asp	Glu
55	Ala	Ala	Val	Leu	Ala	Ala	Ala	Gly	Glu	Leu	Ala	Ala	Arg	Gly	Arg	Arg

			755					760)				769	5		
5	ፐክ	r Lys 770	Arg	Leu	Arg	Val	Ser 775	His	Ala	Phe	His	Ser 780		Arg	J Met	qeA :
	A1 78	a Met 5	Leu	Ala	qeA	Phe 790	Arg	Ala	Val	Ala	Asp		Val	Asp	Туг	His 800
10	Al	a Pro	Arg	Leu	Pro 805	Val	Val	Ser	Glu	Va]		Gly	yab	Leu	Ala 815	
	Ala	a Ala	Gln	Leu 820	Thr	Азр	Pro	Gly	Tyr 825	Trp	Thr	Arg	Gln	Val 830		Gln
15	Pro	Val	Arg 835	Phe	Ala	Asp	Ala	Val 840	Arg	Thr	Ala	Ser	Ala 845		A sp	Ala
	Al a	850	Phe	Ile	Glu	Leu	Gly 855	Pro	Asp	Ala	Val	Leu 860		Gly	Met	Ala
20	G1: 865	Glu	Ser	Leu	Ala	Ala 870	Glu	Ala	Asp	Val	Val 875	Phe	Ala	Pro	Ala	Leu 880
25	Arg	J Arg	Gly	Arg	Pro 885	Glu	Gly	Asp	Thr	Val 890	Leu	Arg	Ala	Ala	Ala 895	
	Ala	Tyr	Val	A rg 900	Gly	Ala	Gly	Leu	Asp 905	Trp	Ala	Ala	Leu	Tyr 910	Gly	Gly
30	Thr	Gly	Ala 915	Arg	Arg	Thr	yab	Leu 920	Pro	Thr	Tyr	Ala	Phe 925	Gln	His	Ser
	Arg	Tyr 930	Trp	Leu	Ala	Pro	Ala 935	Ser	Ala	Ala	Val	Ala 940	Pro	Ala	Thr	Ala
35	Ala 945	Pro	Ser	Val	Arg	Ser 950	Val	Pro	Glu	Ala	Glu 955	Gln	Asp	Gly	Ala	Leu 960
		Ala			765					970					975	
40	Gly	Ala	Asp	A sp 980	Ala	Gly	Ile	Glu	His 985	Glu	Leu	Arg	Ala	Val 990	Leu	Pro
	His	Leu	Ala 995	Ala	Trp	His	Asp	A rg 1 000	A sp)	Arg	Ala	Thr	Ala 1005		Thr	Ala
45	Gly	Leu 101(His)	Tyr	λrg	Val	Thr 1015	Trp	Gln	Ala	Ile	Glu 1020	Ala	Asp	Ala	Val
	A rg 102	Phe 5	Ser	Pro	Ser	Asp 1030	Arg	Trp	Leu	Met	Val 1035	Glu	His	Gly	Gln	His 1040
50	Thr	Glu	Cys	Ala	Asp 1045	Ala	Ala	Glu	Arg	Ala 1050	Leu	Arg	Ala	Ala	Gly 1055	
	Glu	Val	Thr	Arg 1060	Leu	Val	Trp	Pro	Leu 1065	Glu	Gln	His	Thr	Gly 1070		Pro
55	λ rg	Thr	Glu	Thr	Pro	qeA	Arg	Gly	Thr	Leu	Ala	Ala	Arg	Leu	Ala	Glu

	1075		1080	1085
5	Leu Ala Arg Se 1090	r Pro Glu Gly 109		Leu Leu Pro Asp
	Ser Gly Gly Al 1105	a Ala Val Ala 1110	Gly His Pro Gly I 1115	Leu Asp Gln Gly Thr 1120
10	Ala Ala Val Le	u Leu Thr Ile 1125	Gln Ala Leu Thr A	Asp Ala Ala Val Arg 1135
	Ala Pro Leu Tr 11	p Val Val Thr 40	Arg Gly Ala Val A	ala Val Gly Ser Gly 1150
15	Glu Val Pro Cy 1155	s Ala Val Gly	Ala Arg Val Trp G	Cly Leu Gly Arg Val 1165
	Ala Ala Leu Gl 1170	a Val Pro Val 1175		eu Val Asp Val Ala 180
20	Val Gly Ala Gl	Val Arg Glu 1190	Trp Arg Arg Val V	al Gly Val Val Ala 1200
. 25	Gly Gly Gly Gl	1 Asp Gln Val 1205	Ala Val Arg Gly G 1210	ly Gly Val Phe Gly 1215
20	Arg Arg Leu Va	Gly Val Gly	Val Arg Gly Gly S 1225	er Gly Val Trp Arg 1230
30	Ala Arg Gly Cys 1235	Val Val Val	Thr Gly Gly Leu G 1240	ly Gly Val Gly Gly 1245
	His Val Ala Arg 1250	Trp Leu Ala 1255		lu His Val Val Leu 260
35	Ala Gly Arg Arg 1265	Gly Gly Gly 1270	Val Val Gly Ala Va 1275	al Glu Leu Glu Arg 1280
	Glu Leu Val Gly	Leu Gly Ala 1285	Lys Val Thr Phe Va 1290	al Ser Cys Asp Val 1295
40	Gly Asp Arg Ala	Ser Val Val	Gly Leu Leu Gly Va 1305	al Val Glu Gly Leu 1310
	1312		Phe His Ala Ala G 1320	- 1325
45	1330	1335		340
	Gly Lys Ala Val 1345	Gly Ala Glu : 1350	Leu Leu Asp Glu Le 1355	eu Thr Ala Gly Val 1360
50	Glu Leu Asp Ala	Phe Val Leu 1 1365	Phe Ser Ser Gly Al 1370	a Gly Val Trp Gly 1375
55	Ser Gly Gly Gln 138	Ser Val Tyr i 0	Ala Ala Asn Al 1385	a His Leu Asp Ala 1390
	Leu Ala Glu Arg	Arg Arg Ala	Gln Gly Arg Pro Al	a Thr Ser Val Ala

			139	95				14	00				146	05		
5	Tr	Gly 141	Pro	Tr	As _I	Gly	/ As ₁	p Gl 15	у Ме	t Gl	y Glu	1 Met	t Ala 20	a Pro	Gl:	u Gly
	Tyr 142	Phe	Ala	Arg	His	Gl ₃	/ Va:	l Al	a Pr	o Lei	4 His 143	Pro	Glu	T hi	. Ala	Leu 1440
10	Thr	Ala	Leu	His	Glr 144	Ala 15	Ile	e As	p Gl	y Gly	/ Glu	Ala	Thr	Va]	Th:	Val
	Ala	Asp	Ile	Asp 146	Trp 0	Glu	Arg	P ho	e Ala 14	a Pro	Gly	Phe	Thr	Ala 147		Arg
15	Pro	Ser	Pro 147	Leu 5	Ile	Ala	G1y	7 Ile 148	e Pro	o Ala	Ala	Arg	Thr 148	Ala 5	Pro	Ala
	Ala	Gly 149	Arg 0	Pro	Ala	Glu	Asp 149	Thi 5	Pro	> Thr	Ala	Pro	Gly 0	Leu	Leu	Arg
20	Ala 150	Arg 5	Pro	Glu	Asp	Arg 151	Pro 0	Arg	J Let	ı Ala	Leu 151	λ sp 5	Leu	Val	Leu	Arg 1520
25	His	Val	Ala	Ala	Val 152	Leu 5	Gly	His	Ser	Glu 153	Asp 0	λla	Arg	Val	Asp 153	Ala 5
	Arg	Ala	Pro	Phe 1546	Arg)	Asp	Leu	Gly	Phe 154	Asp	Ser	Leu	Ala	Ala 155		Arg
30	Leu	Arg	Arg 155	Arg	Leu	Ala	Glu	156	Thr 0	Gly	Leu	λзр	Leu 1569	Pro	Gly	Thr
	Leu	Val 1570	Phe	yab	His	Glu	Asp 157	Pro 5	Thr	Ala	Leu	Ala 1580	His)	His	Leu	Ala
35	Gly 1585	Leu	Ala	yab	Ala	Gly 1590	Thr	Pro	Gly	Pro	Gln 1595	Glu	Gly	Thr	λla	Arg 1600
	Ala	Glu	Ser	Gly	Leu 1605	Phe	Ala	Ser	Phe	Arg 1610	Ala)	Ala	Val	Glu	Gln 1615	
40	Arg	Ser	Ser	Glu 1620	Val	Val	Glu	Leu	Met 162	Ala 5	Дзр	Leu	Ala	Ala 1630	Phe	Arg
	Pro	Ala	Tyr 1635	Ser	Arg	Gln	His	Pro 164	Gly)	Ser	Gly	Arg	Pro 1645	Ala	Pro	Val
45	Pro	Leu 1650	Ala	Thr	Gly	Pro	Ala 1655	Thr	Arg	Pro	Thr	Leu 1660	Tyr	Суз	Суз	Ala
50	Gly 1665															
	Gly i			•	1005					1690					1695	
55	Gly i								1/05	•				1710		
	Val (Gln /	Ala	Yab /	Val 1	Leu	Leu ·	Glu	His	Thr .	Ala (Sly I	Lys I	Pro 1	Phe 2	Ala

1720

1725

1715

5		Leu	Ala 1730	Gly)	His	Ser	Ala	Gly 1739	Ala 5	Asn	Ile	Ala	His 1740		Leu	Ala	Ala
		Arg 174		Glu	Glu	Arg	Gly 1750		Gly	Pro	Ala	Ala 1759		Val	Leu	Met	Asp 1760
10		Val	Tyr	Arg	Pro	Glu 1769		Pro	Gly	Ala	Met 1770		Glu	Trp	Arg	Asp 1775	-
		Leu	Leu	Ser	Trp 1780		Leu	Glu	Arg	Ser 1785		Val	Pro	Leu	Glu 1790	Asp)	His
15		Arg	Leu	Thr 1799		Met	Ala	Gly	Tyr 1800		Arg	Leu	Val	Leu 1809	_	Thr	Arg
00		Leu	Thr 1810		Leu	Glu	Ala	Pro 1815		Leu	Leu	Ala	Arg 1820		Ser	Glu	Pro
20		Leu 182!		Ala	Trp	Pro	Pro 1830		Gly	Gly	Ala	Arg 1839		Asp	Trp	Arg	Ser 1840
25		Gln	Val	Pro	Phe	Ala 1849		Thr	Val	Ala	1850 1850		Pro	Gly	Asn	His 1855	
		Thr	Met	Leu	Thr 1860		His	Ala	Arg	His 1869		Ala	Ser	Leu	Val 1870	His	Glu
30		Trp	Leu	Asp 1875		Leu	Pro	His	Gln 1880		Gly	Pro	Ala	Pro 1885		Thr	Gly
		Gly	Lys 1890														
35	Cla	ims															
	1.	An isolated (_			tide se	equen	ce tha	t enco	des a	pojyp	eptide	where	ein said polypep
40	2.										•					_	up consisting of to 7597, 7946 to
45		16844, 1691	4 to 1	7510,	1861	2 to 1	9166,	19479	9 to 19	9730,	20215	to 2	1486,	21889	to 22	2872, 3	15422, 15789 to 23638 to 24159 30462, 30760 to
			28 to 3	32696,	3302	4 to 3	4022,	34770	0 to 3!	5327,	35586	5 to 3	5837,				37898 to 38905
50	3.	A polypeptid	le con:	sisting	of an	amino	acid	seque	nce w	hereir	n said	polyp	eptide	consi	sts of	a plate	enolide synthase

2641 to 3064, 3184 to 3520, 3546 to 3727, 4083 to 4268, and 4374 to 4457 all in SEQ ID NO: 2; (b) amino acids 35 to 459, 582 to 933, 957 to 1155, 1523 to 1707, and 1812 to 1895 all in SEQ ID NO: 3; (c) amino acids 36 to 459, 594 to 921, 1177 to 1350, 1459 to 1523, 1545 to 1969, 2088 to 2424, 2445 to 2619,

(a) amino acids 15 to 418, 525 to 882, 942 to 1025, 1060 to 1483, 1596 to 1953, 2232 to 2416, 2533 to 2616,

4. A polypeptide of claim 3 wherein the amino acid sequence is selected from the group consisting of:

2912 to 3261, 3266 to 3451, and 3551 to 3631 all in SEQ ID NO: 4;

55

- (d) amino acids 34 to 456, 566 to 898, 1148 to 1333, and 1420 to 1503 all in SEQ ID NO: 5; and (e) amino acids 35 to 458, 582 to 917, 1233 to 1418, 1502 to 1585, 1715 to 1747 all in SEQ ID NO: 6.
- The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: nucleotides 392 to 3424, 3527 to 8197, 8270 to 13720, 14148 to 19730, 20215 to 24678, 24742 to 31002, 31428 to 35837, and 36257 to 41395 all in SEQ ID NO: 1.
- 6. A polypeptide of claim 3 wherein the amino acid sequence is selected from the group consisting of:
 - (a) amino acids 15 to 1025, 1060 to 2616, and 2641 to 4457 all in SEQ ID NO: 2;
 - (b) amino acids 35 to 1895 in SEQ ID NO: 3;
 - (c) amino acids 36 to 1523, and 1545 to 3631 all in SEQ ID NO: 4;
 - (d) amino acids 34 to 1503 in SEQ ID NO: 5; and
 - (e) amino acids 35 to 1747 in SEQ ID NO: 6.

15

5

10

- The isolated DNA molecule of claim 1 wherein the nucleotide sequence is selected from the group consisting of: nucleotides 350 to 14002, 14046 to 20036, 20110 to 31284, 31329 to 36071, and 36155 to 41830 all in SEQ ID NO: 1.
- A homogenous preparation of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 2, 3, 4, 5, and 6.
 - 9. An isolated DNA molecule consisting of nucleotide sequence of SEQ ID NO: 1
- 25 10. A recombinant DNA vector comprising the DNA molecule of claim 1.
 - 11. A recombinant DNA vector comprising the DNA molecule of claim 2.
 - 12. A recombinant DNA vector comprising the DNA molecule of claim 5.

30

- 13. A recombinant DNA vector comprising the DNA molecule of claim 7.
- 14. A recombinant DNA vector comprising the DNA molecule of claim 9.
- 35 15. A host cell transformed with a recombinant DNA vector of Claim 10.
 - 16. A host cell transformed with a recombinant DNA vector of Claim 11.
 - 17. A host cell transformed with a recombinant DNA vector of Claim 12.

40

- 18. A host cell transformed with a recombinant DNA vector of Claim 13.
- 19. A host cell transformed with a recombinant DNA vector of Claim 14.
- 45 20. The recombinant DNA vector deposited under accession number NRRL B-21500.
 - 21. The recombinant DNA vector deposited under accession number NRRL B-21499.

50

55

KS-7 AT KR ACP TE Module 7 ORF 5

Fig. 1

KS-4 AT KR ACP KS-5 AT DH ER KR ACP Module 5 ORF 3 srmG ~44kb Module 4 KS AT ACP KS-1 AT KR ACP KS-2 AT DH KR ACP Module 2

KS-3 AT DH KR ACP ORF 2 Module 3

KS-6 AT DH KR ACP

ORF 4 Module 6

ORF1

Module 1

Starter Module

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.