- 1. Given $n = 2^k 1$ elements, construct a binary min heap using Divide and Conquer in O(n) time. (Note that, in general, we can construct binary min heap in O(n) time without using DnC.)
- 2. Given a set $P = \{p_1, p_2, \dots p_n\}$ of n points in 2-D, and distance between two points is Manhattan distance(not the Euclidean distance). Find the closest pair of points using divide and conquer in $O(n \log n)$ time. Justify the time complexity. (Hint: Find number of points to be checked for a point in a strip)

Computational Geo in C expln poor than MIT lec

- 3. Given a set $P = \{p_1, p_2, \dots p_n\}$ of n points, construct a convex hull using divide and conquer in in $O(n \log n)$ time. Justify the time complexity.
- 4. Suppose you are given two sets of n points, one set $p_1, p_2, \ldots p_n$ on the line y = 0 and the other set $q_1, q_2, \ldots q_n$ on the line y = 1. Create a set of n line segments by connect each point p_i to the corresponding point q_i . Describe and analyze a divide-and-conquer algorithm to determine how many pairs of these line segments intersect, in $O(n \log n)$ time. (See the left image of the figure below to understand the problem).
- 5. Now suppose you are given two sets $p_1, p_2, \ldots p_n$ and $q_1, q_2, \ldots q_n$ of n points on the unit circle. Connect each point p_i to the corresponding q_i . Describe and analyze a divide-and-conquer algorithm to determine how many pairs of these line segments intersect in $O(n \log^2 n)$ time. (See the right image of the figure below to understand the problem). Hint Use sorting with respect to polar coordinate.

- 6. Let S be a set of n-distinct real numbers and let $k \le n$ be a positive integer (k may not be a constant). Design an algorithm, running in O(n) time, that determines the k numbers in S that are closest to the median of S. Justify the time complexity.
- 7. For n distinct elements $x_1, x_2, \ldots x_n$ with positive weights w_1, w_2, \ldots, w_n such that $\sum_{i=1}^n w_i = 1$, the weighted median is the element x_k satisfying $\sum_{x_i < x_k} w_i < 1/2$ and $\sum_{x_i > x_k} w_i \le 1/2$. Show how to compute the weighted median of n elements in O(n) time using a linear-time median algorithm discussed in the class.
- 8. Need more of $\stackrel{\text{\tiny 12}}{\Rightarrow} \stackrel{\text{\tiny 13}}{\Rightarrow} \stackrel{\text{\tiny 13}}{\Rightarrow}$ to solve the question number 5 in $O(n \log n)$ time? Try this after you solve all the questions. Good luck and become algo $\stackrel{\text{\tiny 45}}{\bullet}$.

¹Prepared by Pawan K. Mishra