Unidad de medida MPU-6050 Estimación de Θ y $\dot{\Theta}_{_{b}}$ Requisitos del programa

Filtro de Kalman

Departamento de Automática

Unidad de medida MPU-6050

Conexiones:

- MPU-6050, VCC_IN → VCC
- MPU-6050, GND → GND
- MPU-6050, SCL \rightarrow A5
- MPU-6050, SDA → A4

fritzing

Estimación de Θ y Ōb

- Estimación del roll (Θ) y del bias de la velocidad angular en X ($\dot{\Theta}_{\rm h}$)
- Fase de predicción:
 - Matriz de estado
 - 2. Cálculo de la predicción
 - 3. Cálculo de la matriz de covarianza de error a priori
 - Densidad espectral de ruido del roll (Q_angle): 0.01
 - Densidad espectral de ruido del bias de la velocidad angular (Q_gyro): 0.003
- Fase de actualización:
 - Innovación
 - 2. Innovación en covarianza
 - Varianza de medida del ángulo (R_measure): 0.03
 - 3. Cálculo de la ganancia de Kalman
 - 4. Estimación del estado actual a posteriori
 - 5. Matriz de covarianza de error a posteriori

Requisitos del programa

- Inicialización del programa:
 - Configuración de la puerta serie a 115200 baudios
 - Configuración del dispositivo MPU-6050 empleando la biblioteca Wire
 - Configuración del giróscopo con un fondo de escala de ± 250°
 - Configuración del acelerómetro con un fondo de escala de ± 2g
 - Inicialización de estimaciones y covarianzas a 0
- De forma de forma <u>ininterrumpida</u> (i.e. sin delay ()), el programa debe realizar la estimación de Θ y de $\dot{\Theta}_h$ empleando un filtro de Kalman
 - Es necesario obtener medidas de tiempos con alta precisión: micros()
- Representación gráfica de las medidas: Serial Plotter
 - roll medido directamente con el acelerómetro
 - o roll estimado mediante el filtro de Kalman
- Esqueleto del programa: imu.ino

© Departamento de Automática. Universidad de Alcalá. Este documento se ha publicado con la licencia Creative Commons Attribution Share-Alike 4.0 (international): https://creativecommons.org/licenses/by-sa/4.0/