МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теории функций и стохастического анализа

ОТЧЕТ ПО ПРОИЗВОДСТВЕННОЙ (БАЗОВОЙ) ПРАКТИКЕ

студента 4 курса 451 группы направления 38.03.05 — Бизнес-информатика

> механико-математического факультета Чайковского Петра Ильича

Место прохождения: завод "Тантал"	
Сроки прохождения: с 29.06.2019 г. по 26.07.2019 г.	
Оценка:	
Руководитель практики от СГУ	
доцент, к. фм. н.	Н. Ю. Агафонова
Руководитель практики от организации	
ведущий программист	Д. Э. Кнутов

СОДЕРЖАНИЕ

1	Постановка задачи	4
2	Теоретические сведения по рассмотренным темам с их обоснованием.	5
3	Результаты работы	9
	3.1	9

1 Постановка задачи

Цель работы — изучение основных свойств бинарных отношений и операций замыкания бинарных отношений.

Порядок выполнения работы:

- 1. Разобрать определения отношения эквивалентности, фактор-множества. Разработать алгоритмы построения эквивалентного замыкания бинарного отношения и системы представителей фактор-множества.
- 2. Разобрать определения отношения порядка и диаграммы Xacce. Разработать алгоритмы вычисления минимальных (максимальных) и наименьших (наибольших) элементов и построения диаграммы Xacce.
- **3.** Разобрать определения контекста и концепта. Разработать алгоритм вычисления решетки концептов.

2 Теоретические сведения по рассмотренным темам с их обоснованием

Определение. Бинарное отношение ε на множестве A называется omношением эквивалентности (эквивалентностью), если оно рефлексивно,
симметрично и транзитивно.

Для обозначения эквивалентности ε используется инфиксная запись с помощью символа \equiv : вместо $(a, b) \in \varepsilon$ пишут $a \equiv b(\varepsilon)$ или просто $a \equiv b$.

Срезы $\varepsilon(a)$ называются классами эквивалентности по отношению ε и обозначаются символом [a]. Множество всех таких классов эквивалентности $\{[a]: a \in A\}$ называется фактор-множеством множества A по эквивалентности ε и обозначается A/ε .

Определение. Подмножество $T\subset A$ называется *полной системой* $npe\partial cmaeumene \ddot{u}$ классов эквивалентности ε на множестве A, если:

- 1) $\varepsilon(T) = A$,
- 2) из условия $t_1 \equiv t_2(\varepsilon)$ следует $t_1 = t_2$.

Классы эквивалентности $[t] \in A/\varepsilon$ могут быть отождествлены со своими представителями t, и фактор-множество A/ε может быть отождествлено с множеством T.

Определение. Бинарное отношение ω на множестве A называется omношением nopsdka (nopsdkom), если оно рефлексивно, антисимметрично и
транзитивно.

Множество A с заданным на нём отношением порядка \leq называется ynopsdovenhым множеством и обозначается $A=(A,\leq)$.

Определение. Элемент a упорядоченного множества (A, \leq) называется:

- 1. Минимальным, если $(\forall x \in A) \ x \le a \implies x = a$,
- 2. Максимальным, если $(\forall x \in A) \ a < x \implies x = a$,
- 3. Наименьшим, если $(\forall x \in A) \ a \le x$,
- 4. *Наибольшим*, если $(\forall x \in A) \ x \le a$.

Упорядоченное множество $A=(A,\leq)$ наглядно представляется $\partial uarpa-$ мой Xacce, которая представляет элементы множества A точками плоскости и пары $a \lessdot b$ представляет линиями, идущими beep от элемента a к элементу b.

Алгоритм построения диаграммы Хассе конечного упорядоченного множества $A = (A, \leq)$.

- 1. В упорядоченном множестве $A = (A, \leq)$ найти множество A_1 всех минимальных элементов и расположить их в один горизонтальный ряд (это первый уровень диаграммы).
- 2. В упорядоченном множестве $A \setminus A_1$, найти множество A_2 всех минимальных элементов и расположить их в один горизонтальный ряд над первым уровнем (это второй уровень диаграммы). Соединить отрезками элементы этого ряда с покрываемыми ими элементами предыдущего ряда.
- 3. В упорядоченном множестве $A \setminus (A_1 \cup A_2)$ найти множество A_3 всех минимальных элементов и расположить их в один горизонтальный ряд над вторым уровнем (это третий уровень диаграммы). Соединить отрезками элементы этого ряда с покрываемыми ими элементами предыдущих рядов.
- 4. Процесс продолжается до тех пор, пока не выберутся все элементы множества A.

Определение. Подмножество X упорядоченного множества (A, \leq) называется:

- 1. Ограниченным сверху, если найдется такой элемент $a \in A$, что $x \leq a$ для всех $x \in X$; в этом случае элемент a называется верхней гранью множества X; если для множества X существует наименьшая верхняя грань, то она обозначается символом $\sup X$ и называется точной верхней гранью множества X; в случае $\sup X \in X$ значение $\sup X$ является наибольшим элементом множества и обозначается $\max X$;
- 2. Ограниченным снизу, если найдется такой элемент $a \in A$, что $a \le x$ для всех $x \in X$; в этом случае элемент a называется нижней гранью множества X; если для множества X существует наибольшая нижняя грань, то она обозначается символом $\inf X$ и называется mочной ниженей гранью множества X; в случае $\inf X \in X$ значение $\inf X$ является наименьшим элементом

Определение. Порядок \leq на множестве A называется:

- 1. Линейным, если любые два элемента этого множества сравнимы, т.е. выполняется $(\forall a, b \in A) (a \le b \lor b \le a)$;
- 2. *Полным*, если его любое непустое подмножество имеет точную верхнюю и точную нижнюю грани;
- 3. Решеточным, если для всяких $a, b \in A$ существуют $\sup\{a, b\}$ и $\inf\{a, b\}$, которые обозначаются соответственно $a \lor b$, $a \land b$ и называются также объединением и пересечением элементов a, b.

Множество с заданным на нем линейным порядком называется *линейно* упорядоченным множеством или цепью.

Множество с заданным на нем решеточным порядком называется *решеточно упорядоченным множеством* или *решеткой*.

Бинарное отношение $\rho \subset G \times M$ между элементами множеств G и M можно рассматривать как базу данных с множеством объектов G и множеством атрибутов M. Такая система называется контекстом и определяется следующим образом:

Определение. Контекстом называется алгебраическая система $K=(G,M,\rho)$, состоящая из множества объектов G, множества атрибутов M и бинарного отношения $\rho\subset G\times M$, показывающего $(g,m)\in \rho$, что объект g имеет атрибут m.

Определение. Упорядоченная пара (X,Y) замкнутых множеств $X \in Z_{f_G}$, $Y \in Z_{f_M}$ (где Z_{f_G} и Z_{f_M} - системы замыканий множеств G и M), удовлетворяющих условиям $\varphi(X) = Y$, $\psi(Y) = X$, называется концептом контекста $K = (G, M, \rho)$. При этом компонента X называется объёмом и компонента Y - содержанием концепта (X,Y).

Также для составления алгоритма вычисления решётки концептов нам понадобится **алгоритм вычисления системы замыканий** на множестве G:

- 1. Рассматриваем множество $G \in Z_{f_G}$.
- 2. Последовательно перебираем все элементы $m \in M$ и вычисляем для них $\psi(\{m\}) = \rho^{-1}(m)$.
- 3. Вычисляем все новые пересечения множества $\psi(\{m\})$ с ранее полученными множествами и добавляем новые множества к Z_{f_G} . Аналогично вычисляется система замыканий на множестве M.

- 3 Результаты работы
- 3.1