

Practical Invalid Curve Attacks on TLS-ECDH

Tibor Jager, Jörg Schwenk, <u>Juraj Somorovsky</u>
Horst Görtz Institute for IT Security
Ruhr University Bochum

@jurajsomorovsky

About Me and Our Institute

- Security Researcher at:
 - Chair for Network and Data Security
 - Prof. Dr. Jörg Schwenk
 - Web Services, Single Sign-On, (Applied) Crypto, SSL, crypto currencies
 - Provable security, attacks and defenses
 - Horst Görtz Institute for IT-Security
 - Further topics: embedded security, malware, crypto...
 - Ruhr University Bochum

Penetration tests, security analyses, workshops...

Recent years revealed many attacks on TLS...

- ESORICS 2004, Bard BEAST bility of SSL to Chosen Plainte 2011 BEAST
- Eurocrypt 2002, Va **2013/14 POODLE**, Iws Induced by CBC Padding—Apr **Lucky13**
- Crypto 1998, Bleichenbacher: Character Ciphertext Attacks Aga 2014 at USENIX Sec RSA Encryption Standard PKCS #1

Another "forgotten" attack

- Invalid curve attack
- Crypto 2000, Biehl et al.: Differential fault attacks on elliptic curve cryptosystems
- Targets elliptic curves
 - Allows one to extract private keys

Are current libraries vulnerable?

Overview

- 1. Elliptic Curves
- 2. Invalid Curve Attacks
- 3. Application to TLS ECDH
- 4. Evaluation
- 5. Bonus Content

Elliptic Curve (EC) Crypto

- Key exchange, signatures, PRNGs
- Many sites switching to EC
- Fast, secure

Algorithm	Signatures
256 bit ECDSA	9516 per sec
RSA 2048 bits	1000 per sec

https://blog.cloudflare.com/ecdsa-the-digital-signature-algorithm-of-a-better-internet/

Elliptic Curve

Set of points over a finite field

E:
$$y^2 = x^3 + ax + b \mod p$$

- Operations: ADD and DOUBLE
- Example:

$$a = 9$$

$$b = 17$$

$$p = 23$$

Elliptic Curve Diffie Hellman (ECDH)

Client Secret q

Server

Secret s

Shared secret: s(qP) = q(sP)

Elliptic Curves in Crypto

Have to be chosen very carefully: high order

order

- Predefined curves> 256 bits
- DOUBLE 19 Base Point P

Overview

- 1. Elliptic Curves
- 2. Invalid Curve Attacks
- 3. Application to TLS ECDH
- 4. Evaluation
- 5. Bonus Content

Invalid Curve Attack

- What if we compute with a point P' outside of curve E?
- P' belongs to curve E'
- E' can have a small order

- Example:
 - E' with 256 bits
 - P' generates 5 points

Invalid Curve Attack

- What can we learn?
- Shared secret: sP'
 - Only 5 possible values!
- We can compute:

$$s_1 = s \bmod 5$$

$$s_2 = s \mod 7$$

 $s_3 = s \mod 11$
 $s_4 = s \mod 13$

Compute s with CRT

Invalid Curve Attack

- Possible if
 - No point verification
 - Test for shared secret possible
 - Simple DOUBLE and ADD method
 - No sliding window etc.

$$\begin{array}{ll} \operatorname{ADD}(P,Q): & \operatorname{DBL}(P): \\ \hline (x_P,y_P):=P; (x_Q,y_Q):=Q \\ \textbf{If } P=O_{\infty} \textbf{ then Return } Q \\ \textbf{If } Q=O_{\infty} \textbf{ then Return } P \\ \lambda:=(y_P-y_Q)/(x_P-x_Q) \\ x_R:=\lambda^2-x_P-x_Q \\ y_R:=y_P+\lambda(x_R-x_P) \\ \textbf{Return } (x_R,y_R) \end{array} \qquad \begin{array}{ll} \operatorname{DBL}(P): \\ \hline (x_P,y_P):=P \\ \hline (x_P,y_P):$$

Curve b parameter not in the computation

Overview

- 1. Elliptic Curves
- 2. Invalid Curve Attacks

- 3. Application to TLS ECDH
- 4. Evaluation
- 5. Bonus Content

Transport Layer Security (TLS)

- EC since 2006
- Static and ephemeral
- TLS server initialized with an EC certificate
 - Server has EC key

TLS ECDH

How to use the server as an oracle?

(DCI VCI-) I IIIBIICU

TLS as an Oracle

- Idea:
 - $\text{ Set } pms_1 = 1P', pms_2 = 2P', pms_3 = 3P', \dots$
 - Execute TLS handshakes
 - If pms correct, ClientFinished accepted
- First described by Brumley et al.

(Server-) Finished

TLS as an Oracle

Attacker

Client-) Finished:

Invalid Curve Attack on TLS

1. Generate invalid points with order

$$p_i = 5, 7, 11, 13 \dots$$

- 2. Use oracle to get equations $s = s_i \mod p_i$
- 3. Compute CRT to get secret key s

Overview

- 1. Elliptic Curves
- 2. Invalid Curve Attacks
- 3. Application to TLS ECDH

- 4. Evaluation
- 5. Bonus Content

Evaluation

- 8 libraries
 - Bouncy Castle v1.50, Bouncy Castle v1.52,
 MatrixSSL, mbedTLS, OpenSSL, Java NSS Provider,
 Oracle JSSE, WolfSSL
- 2 vulnerable
- Practical test with NIST secp256r1
 - Most commonly used [Bos et al., 2013]

Evaluation: Bouncy Castle v1.50

- Vulnerable
 - 74 equations (oracle queries)
 - 3300 real server queries

Evaluation: JSSE

Java Secure Socket Extension (JSSE) server accepted invalid points

However, the direct attack failed

Evaluation: JSSE

Problem: invalid computation with some EC points

- Not considered by Biehl et al.
- Attack possible:
 - 52 oracle queries, 17000 server requests

Impact

- Attacks extract server private keys
- Huge problem for Java servers using EC certificates
 - For example Apache Tomcat
 - Static ECDH enabled per default
- Key revocation

- Not only applicable to TLS
 - Also to other Java applications using EC

Overview

- 1. Elliptic Curves
- 2. Invalid Curve Attacks
- 3. Application to TLS ECDH
- 4. Evaluation

5. Bonus Content

What's next?

What's next?

- Hardware Security Modules
- Devices for storage of crypto material

Attacker Model in HSM Scenarios

Key never leaves HSMs

Attacker Model in HSM Scenarios

Key never leaves HSMs

How about Invalid Curve Attacks?

- CVE-2015-6924
- Utimaco HSMs vulnerable
 - Analyzed together with Dennis Felsch
- < 100 queries to extract a 256 bit EC key

"Catastrophic is the right word. On the scale of 1 to 10, this is an 11." [Heartbleed]

Conclusion

- Old attacks still applicable, we can learn a lot from them
- Bouncy Castle, JSSE and Utimaco broken
- More tools / analyses of crypto applications needed

- https://github.com/RUB-NDS/EccPlayground
- http://web-in-security.blogspot.de/