

Foundations of Machine Learning (CS 725)

FALL 2024

Lecture 16:

- Convolutional Neural Networks

Instructor: Preethi Jyothi

- Fully connected (dense) layers have no awareness of spatial information
- Key concept behind convolutional layers is that of kernels or filters
- Filters slide across an input space to detect spatial patterns (translation invariance) in local regions (locality)

1 _{×1}	1 _{×0}	1 _{×1}	0	0
0 _{×0}	1 _{×1}	1 _{×0}	1	0
0 _{×1}	0 _{×0}	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

4

Image

Convolved Feature

1	1	1	0	0
0	1	1	1	0
0	0	1 _{×1}	1 _{×0}	1 _{×1}
0	0	1 _{×0}	1 _{×1}	O _{×0}
0	1	1 _{×1}	0,×0	0 _{×1}

4343344

Image

Convolved Feature

32x32x3 image

5x5x3 filter

activation maps

Convolutional Neural Network

What do these layers learn?

Stride=1, No padding

Stride=1, No padding

Stride=1, Padding, P=1

Stride=1, No padding

Stride=1, Padding, P=1

Stride=1, Padding, P=2

Stride=1, Padding, P=2

Convolution Layers: Summary

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - \circ Number of filters K,
 - \circ their spatial extent F,
 - \circ the stride S,
 - \circ the amount of zero padding P.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - O $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.

Pooling Layer

- Why pooling?
 Reduce the size of the representation, speed up the computations and make the features a little more robust.
- Max pooling is popularly used in CNNs.

Pooling Layer

- ullet Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires two hyperparameters:
 - \circ their spatial extent F,
 - \circ the stride S,
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F)/S + 1$
 - $H_2 = (H_1 F)/S + 1$
 - $D_2 = D_1$

Convolutional NNs

Consider the convolutional neural network shown above with two convolutional layers and a max pooling layer with filters of size 2 x 2, stride 2. What are the dimensions of the output feature map?

Convolutional NNs

Consider the convolutional neural network shown above with two convolutional layers. How many parameters need to be estimated overall for this network? (Ignore biases.)

(A) 1500

(B) 1990

(D) 1954

Convolutional Architectures

- Block that can be repeated: Convolutional layer, followed by non-linearity (e.g. ReLU) + Max pooling
- Fully connected layers before classification

LeNet-5

- One of the first successful CNN architectures
- Used to classify images of hand-written digits

AlexNet

- Winner (by a large margin) of the ImageNet challenge in 2012.
- Much larger than previous architectures.

ResNet

Uses residual blocks