

Data Link Layer: ETHERNET, Data Centre

A/PROF. DUY NGO

Ethernet

"dominant" wired LAN technology:

- single chip, multiple speeds (e.g., Broadcom BCM5761)
- first widely used LAN technology
- simpler, cheap
- kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Ethernet: Physical Topology

- bus: popular through mid 90s
- all nodes in same collision domain (can collide with each other)
- star: prevails today
- active switch in center
- each "spoke" runs a (separate) Ethernet protocol (nodes <u>do not collide</u> with each other)

bus: coaxial cable

Ethernet Frame Structure (1 of 2)

 sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

preamble:

- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

Ethernet Frame Structure (2 of 2)

- •addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- •type: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)
- •CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

Ethernet: Unreliable, Connectionless

- •connectionless: no handshaking between sending and receiving NICs
- unreliable: receiving NIC doesn't send ACKs or NACKs to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- •Ethernet's MAC protocol: unslotted **CSMA/CD with binary backoff** (for coaxial-cable-based and hub-based Ethernet; not for switch-based Ethernet)

802.3 Ethernet Standards: Link & Physical Layers

- •many different Ethernet standards
 - common MAC protocol and frame format
 - o different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps
 - different physical layer media: fiber, cable

Ethernet Switch

•link-layer device: takes an active role

- store, forward Ethernet frames
- examine incoming frame's MAC address
- **selectively** forward frame to one or more outgoing links when frame is to be forwarded on segment

transparent

hosts are unaware of presence of switches

plug-and-play, self-learning

switches do not need to be configured

Switch: Multiple Simultaneous Transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, but no collisions; full duplex
 - each link is its own collision domain
- •switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions

switch with six interfaces (1,2,3,4,5,6)

Switch Forwarding Table

Q: how does switch know A' reachable via interface 4, B' reachable via interface 5?

- A: each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
 - looks like a routing table!

Q: how are entries created, maintained in switch table?

– something like a routing protocol?

switch with six interfaces (1,2,3,4,5,6)

Switch: Self-Learning

- switch **learns** which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr	interface	TTL
А	1	60

Switch table (initially empty)

Switch: Frame Filtering/Forwarding

when frame received at switch:

- 1. record incoming link, MAC address of sending host
- 2. index switch table using MAC destination address
- **3. if** entry found for destination

```
then {
if destination on segment from which frame arrived
   then drop frame
   else forward frame on interface indicated by entry
}
else flood /* forward on all interfaces except arriving interface */
```

Self-Learning, Forwarding: Example

- frame destination, A', location unknown: flood
- destination location <u>known</u>:
 selectively send on just one link

MAC addr	interface	TTL
Α	1	60
A'	4	60

switch table (initially empty)

Interconnecting Switches

self-learning switches can be connected together:

Q: sending from A to G - how does S_1 know to forward frame destined to G via S_4 and S_3 ?

— A: self learning! (works exactly the same as in single-switch case!)

Self-Learning Multi-Switch Example

Suppose C sends frame to I, I responds to C

Q: show switch tables and packet forwarding in S₁, S₂, S₃, S₄

Switches vs. Routers

both are store-and-forward:

- routers: network-layer devices (examine network-layer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- routers: compute tables using routing algorithms, IP addresses
- switches: learn forwarding table using flooding, learning, MAC addresses

Institutional Network

VLANs: Motivation

consider:

CS user moves office to EE, but wants connect to CS switch?

single broadcast domain - issues:

- all layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN
- security/privacy, efficiency issues

VLANs

Virtual Local Area Network

switch(es) supporting VLAN capabilities can be configured to define multiple **virtual** LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that single physical switch

... operates as **multiple** virtual switches

Port-Based VLAN

- traffic isolation: frames to/from ports 1-8
 can only reach ports 1-8
 - can also define VLAN based on MAC addresses of endpoints, rather than switch port
- dynamic membership: ports can be dynamically assigned among VLANs
- forwarding between V LANS: done via routing (just as with separate switches)
 - in practice vendors sell combined switches plus routers

VLANS Spanning Multiple Switches

trunk port: carries frames between VLANs defined over multiple physical switches

- frames forwarded within VLAN between switches can't be vanilla 802.1 frames (must carry VLAN ID info)
- 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports

802.1Q VLAN Frame Format

Data Center Networks (1 of 3)

- 10's to 100's of thousands of hosts, often closely coupled, in close proximity:
 - e-business (e.g. Amazon)
 - content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 - search engines, data mining (e.g., Google)
- challenges:
 - multiple applications, each serving massive numbers of clients
 - managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-f t Microsoft container, Chicago data center

Data Center Networks (2 of 3)

load balancer: application-layer routing

- receives external client requests
- directs workload within data center
- returns results to external client (hiding data center internals from client)

Data Center Networks (3 of 3)

- rich interconnection among switches, racks:
 - increased throughput between racks (multiple routing paths possible)
 - increased reliability via redundancy

