

PAC-Bayesian Theory and Domain Adaptation Algorithms

Pascal Germain

November 25, 2015

Pascal Germain November 25, 2015 1 / 57

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Basic Definitions

- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Definitions

Learning example

An example $(x, y) \in \mathcal{X} \times \mathcal{Y}$ is a **description-label** pair.

Data generating distribution

Each example is an **observation from distribution** D on $\mathcal{X} \times \mathcal{Y}$.

Learning sample

$$S \stackrel{\text{def}}{=} \{ (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \} \sim D^n$$

Classifier (or hypothesis)

$$h: \mathcal{X} \to \mathcal{Y}$$

Binary classifier

$$h: \mathcal{X} \rightarrow \{-1, +1\}$$

Learning algorithm

$$A(S) \longrightarrow h$$

Pascal Germain

I.I.D. Assumption

Assumption

Examples are generated *i.i.d.* by a distribution D on $\mathcal{X} \times \mathcal{Y}$.

$$S = \{ (x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \} \sim D^n$$

Pascal Germain November 25, 2015

Risk (or generalization error)

Probability of misclassifying an example generated by distribution D:

$$R_D(h) \stackrel{\text{def}}{=} \Pr_{(x,y)\sim D} \left(\frac{h(x) \neq y}{} \right)$$

$$= \mathop{\mathbf{E}}_{(x,y)\sim D} \operatorname{I} \left[y \cdot h(x) \leq 0 \right], \quad \langle \text{ binary classification } \rangle$$

6 / 57

where I[a] = 1 if predicate a is true; I[a] = 0 otherwise.

Empirical risk

Error rate on the learning sample $S \sim D^n$:

$$\widehat{R}_{S}(h) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left[y_{i} \cdot h(x_{i}) \leq 0\right].$$

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

PAC-Bayesian Theory

Initiated by David McAllester (1999), the PAC-Bayesian theory gives generalization guarantees on **majority votes** of classifiers.

PAC guarantees (Probably Approximately Correct)

With probability at least $\ll 1-\delta \gg$, the risk of classifier h is less than $\ll \epsilon \gg$

$$\Pr_{S \sim D^n} \left(R_D(h) \leq \epsilon(R_S(h), n, \ldots) \right) \geq 1 - \delta$$

Bayesian flavor

Incorporates *a priori* knowledge about the learning problem as a probability distribution over a family of classifiers.

Training bounds

- Gives generalization guarantees not based on testing sample;
- Inspiration for conceiving **new learning algorithms**.

Pascal Germain November 25, 2015

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Majority Vote Classifiers

Given:

- A set of **voters** $\mathcal{H} = \{h_1, h_2, h_3, ...\}$ (discrete or continuous);
- A weight distribution Q on H.

Weighted majority vote

To predict the label of $x \in \mathcal{X}$, the classifier asks for the prevailing opinion

$$B_Q(x) \stackrel{\text{def}}{=} \operatorname{sgn}\left(\mathop{\mathbf{E}}_{h\sim Q} h(x)\right)$$

Many learning algorithms output majority vote classifiers

AdaBoost, Random Forests, Bagging, ...

A Surrogate Loss

Given

- A data distribution D on $\mathcal{X} \times \{-1, +1\}$;
- A weight distribution Q on the set of voters $\mathcal H$.

Majority vote risk (or Bayes Risk)

$$R_D(B_Q) \stackrel{\text{def}}{=} \underset{(x,y)\sim D}{\mathbf{E}} \mathbb{I}\left[\underset{h\sim Q}{\mathbf{E}} y \cdot h(x) \leq 0\right]$$

Gibbs Risk

The stochastic Gibbs classifier $G_Q(x)$ draws $h' \in \mathcal{H}$ according to Q and output h'(x).

$$R_D(G_Q) \stackrel{\text{def}}{=} \underbrace{\mathbf{E}}_{(x,y)\sim D} \underbrace{\mathbf{E}}_{h\sim Q} \mathbb{I}\left[\underline{y\cdot h(x)} \leq 0\right]$$
$$= \underbrace{\mathbf{E}}_{(x,y)\sim D} \left(\frac{1}{2} - \frac{1}{2} \underbrace{\mathbf{E}}_{h\sim Q} \underline{y\cdot h(x)}\right)$$

Factor two

It is well-known that

$$R_D(B_Q) \leq 2 \times R_D(G_Q)$$

From the Factor 2 to the C-bound

From Markov's inequality $(\Pr(X \ge a) \le \frac{EX}{a})$, we obtain :

Factor 2 bound

$$R_D(B_Q) = \Pr_{(x,y)\sim D} \left(1 - \underbrace{y \cdot h(x)} \ge 1\right)$$

$$\leq \mathop{\mathbf{E}}_{(x,y)\sim D} \left(1 - \underbrace{y \cdot h(x)}\right) = 2 R_D(G_Q).$$

From Chebyshev's inequality $(\Pr(X - \mathbf{E} X \ge a) \le \frac{\mathbf{Var} X}{a^2 + \mathbf{Var} X})$, we obtain :

The C-bound (Lacasse et al., 2006)

$$R_D(B_Q) \leq \mathcal{C}_Q^D \stackrel{\text{def}}{=} 1 - \frac{\left(1 - 2 \cdot R_D(G_Q)\right)^2}{1 - 2 \cdot d_Q^D}$$

12 / 57

where $d_Q^{\scriptscriptstyle D}$ is the **expected disagreement** :

$$d_Q^p \stackrel{\text{def}}{=} \underset{(x,\cdot)\sim D}{\mathsf{E}} \underset{h_1\sim Q}{\mathsf{E}} \underset{h_2\sim Q}{\mathsf{E}} \mathrm{I}\left[h_1(x) \neq h_2(x)\right] = \frac{1}{2} \left(1 - \underset{(x,\cdot)\sim D'}{\mathsf{E}} \left[\underset{h\sim Q}{\mathsf{E}} h(x)\right]^2\right)$$

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Pascal Germain November 25, 2015

A Classical PAC-Bayesian Theorem

Two principal components

• The Gibbs empirical risk :

$$\widehat{R}_{S}(G_{Q}) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{2} - \frac{1}{2} \mathop{\mathbb{E}}_{h \sim Q} y_{i} \cdot h(x_{i}) \right)$$

• The **Kullback-Leibler divergence** between the *prior P* and the *posterior Q* :

$$\mathrm{KL}(Q||P) \stackrel{\mathrm{def}}{=} \mathop{\mathbf{E}}_{h \sim Q} \ln \frac{Q(h)}{P(h)}$$

PAC-Bayesian theorem (McAllester, 2003)

For any distribution D on $\mathcal{X} \times \mathcal{Y}$, for any set of voters \mathcal{H} , for any distribution P on \mathcal{H} , for any $\delta \in (0,1]$, we have, with probability at least $1-\delta$ over the choice of $S \sim D^n$,

$$\forall Q \text{ on } \mathcal{H}: R_D(G_Q) \leq \widehat{R}_S(G_Q) + \sqrt{\frac{1}{2n} \left[\text{KL}(Q \| P) + \ln \frac{2\sqrt{n}}{\delta} \right]}$$

Pascal Germain November 25, 2015

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Pascal Germain November 25, 2015

A General PAC-Bayesian Theorem

Δ -function : «distance» between $\widehat{R}_{S}(G_{Q})$ et $R_{D}(G_{Q})$

Convex function $\Delta : [0,1] \times [0,1] \to \mathbb{R}$.

General theorem

For any distribution D on $\mathcal{X} \times \mathcal{Y}$, for any set \mathcal{H} of voters, for any distribution P on \mathcal{H} , for any $\delta \in (0,1]$, and for any Δ -function, we have, with probability at least $1-\delta$ over the choice of $S \sim D^n$,

$$\forall Q \text{ on } \mathcal{H}: \quad \Delta\Big(\widehat{R}_{S}(G_{Q}), R_{D}(G_{Q})\Big) \leq \frac{1}{n} \left[\mathrm{KL}(Q \| P) + \ln \frac{\mathcal{I}_{\Delta}(n)}{\delta} \right],$$

οù

$$\mathcal{I}_{\Delta}(n) \stackrel{\text{def}}{=} \sup_{r \in [0,1]} \left[\sum_{k=0}^{n} \text{Bin}(k; n, r) e^{n\Delta(\frac{k}{n}, r)} \right]$$

Pascal Germain November 25, 2015

$$\Pr_{S \sim D^n} \left(\forall Q \text{ on } \mathcal{H} : \Delta \left(\widehat{R}_S(G_Q), R_D(G_Q) \right) \leq \frac{1}{n} \left[\text{KL}(Q \| P) + \ln \frac{\mathcal{I}_{\Delta}(n)}{\delta} \right] \right) \geq 1 - \delta.$$

Interpretation.

Pascal Germain

$$\Pr_{S \sim D^n} \left(\forall \ Q \text{ on } \mathcal{H}: \ \Delta \Big(\widehat{R}_S(G_Q), R_D(G_Q) \Big) \le \frac{1}{n} \bigg[\mathrm{KL}(Q \| P) + \ln \frac{\mathcal{I}_{\Delta}(n)}{\delta} \bigg] \right) \ \ge \ 1 - \delta \, .$$

Proof ideas.

Change of Measure Inequality

For any P and Q on \mathcal{H} , and for any measurable function $\phi: \mathcal{H} \to \mathbb{R}$, we have

$$\underset{h \sim Q}{\mathsf{E}} \phi(h) \leq \mathrm{KL}(Q \| P) + \ln \left(\underset{h \sim P}{\mathsf{E}} e^{\phi(h)} \right).$$

Markov's inequality

$$\Pr\left(X \geq a\right) \leq \frac{\mathsf{E}\,X}{a} \quad \Longleftrightarrow \quad \Pr\left(X \leq \frac{\mathsf{E}\,X}{\delta}\right) \geq 1 - \delta$$
.

Probability of observing k misclassifications among n examples

Given a voter h, consider a binomial variable of n trials with success $R_D(h)$:

$$\mathbf{Bin}\Big(k; n, R_D(h)\Big) \stackrel{\text{def}}{=} \Pr_{S \sim D^n} \Big(\widehat{R}_S(h) = \frac{k}{n}\Big) \\
= \Big(\frac{n}{k}\Big) \Big(R_D(h)\Big)^k \Big(1 - R_D(h)\Big)^{n-k}.$$

Pascal Germain November 25, 2015

$$\Pr_{S \sim D^n} \left(\forall Q \text{ on } \mathcal{H} : \Delta \left(\widehat{R}_S(G_Q), R_D(G_Q) \right) \leq \frac{1}{n} \left[\text{KL}(Q \| P) + \ln \frac{\mathcal{I}_{\Delta}(n)}{\delta} \right] \right) \geq 1 - \delta.$$

Proof.

$$n \cdot \Delta \left(\underset{h \sim Q}{\mathbf{E}} \widehat{R}_{S}(h), \underset{h \sim Q}{\mathbf{E}} R_{D}(h) \right)$$

Jensen's Inequality
$$\leq \sum_{h\sim Q}^{\mathsf{E}} n \cdot \Delta\Big(\widehat{R}_{\mathcal{S}}(h), R_D(h)\Big)$$

Change of measure
$$\leq \operatorname{KL}(Q||P) + \ln \mathop{\mathbf{E}}_{h \sim P} e^{n\Delta \left(\widehat{R}_S(h), R_D(h)\right)}$$

Markov's Inequality
$$\leq_{1-\delta} \operatorname{KL}(Q\|P) + \ln \frac{1}{\delta} \mathop{\mathsf{E}}_{S' \sim D^n} \mathop{\mathsf{E}}_{h \sim P} e^{n \cdot \Delta(R_{S'}(h), R_D(h))}$$

Expectation swap
$$= \mathrm{KL}(Q\|P) + \ln \frac{1}{\delta} \sum_{\substack{h \sim P \\ S \sim D^n}} \mathsf{E} \mathsf{E} \mathsf{E} \mathsf{e}^{n \cdot \Delta(R_{S'}(h), R_D(h))}$$

Binomial law
$$= \operatorname{KL}(Q||P) + \ln \frac{1}{\delta} \sum_{h \sim P}^{n} \operatorname{Bin}(k; n, R_D(h)) e^{n \cdot \Delta(\frac{k}{n}, R_D(h))}$$

Supremum over risk
$$\leq \operatorname{KL}(Q||P) + \ln \frac{1}{\delta} \sup_{r \in [0,1]} \left[\sum_{k=0}^{n} \operatorname{Bin}(k; n, r) e^{n\Delta(\frac{k}{n}, r)} \right]$$

$$= \operatorname{KL}(Q||P) + \ln \frac{1}{x} \mathcal{I}_{\Delta}(n).$$

19 / 57

$$\Pr_{S \sim D^n} \left(\forall Q \text{ on } \mathcal{H} : \Delta \left(\widehat{R}_S(G_Q), R_D(G_Q) \right) \leq \frac{1}{n} \left[\text{KL}(Q \| P) + \ln \frac{\mathcal{I}_{\Delta}(n)}{\delta} \right] \right) \geq 1 - \delta.$$

Corollary

[...] with probability at least $1{-}\delta$ over the choice of $S\sim D^n$,

 $\forall Q \text{ on } \mathcal{H}$:

(a)
$$\operatorname{kl}\left(\widehat{R}_S(G_Q), R_D(G_Q)\right) \leq \frac{1}{n} \left[\operatorname{KL}(Q\|P) + \ln \frac{2\sqrt{n}}{\delta}\right]$$
, (Langford and Seeger, 2001)

(b)
$$R_D(G_Q) \leq \widehat{R}_S(G_Q) + \sqrt{\frac{1}{2n}} \left[\text{KL}(Q \| P) + \ln \frac{2\sqrt{n}}{\delta} \right]$$
, (McAllester, 1999)

(c)
$$R_D(G_Q) \leq \frac{1}{1 - e^{-c}} \left(c \cdot \widehat{R}_S(G_Q) + \frac{1}{n} \left[\text{KL}(Q \| P) + \ln \frac{1}{\delta} \right] \right)$$
. (Catoni, 2007)

$$\begin{array}{ll} \operatorname{kl}(q,p) & \stackrel{\mathrm{def}}{=} & q \ln \frac{q}{p} + (1-q) \ln \frac{1-q}{1-p} \; \geq \; 2(q-p)^2 \,, \\ \Delta_c(q,p) & \stackrel{\mathrm{def}}{=} & -\ln[1-(1-e^{-c})\cdot p] - c \cdot q \,. \end{array}$$

Pascal Germain November 25, 2015

Bounding the Expected Disagreement

Expected disagreement

$$d_Q^D \stackrel{\text{def}}{=} \underset{(x,\cdot)\sim D}{\mathsf{E}} \underset{h_1\sim Q}{\mathsf{E}} \underset{h_2\sim Q}{\mathsf{E}} \mathrm{I}\left[h_1(x)\neq h_2(x)\right] = \frac{1}{2}\left(1 - \underset{(x,\cdot)\sim D'}{\mathsf{E}}\left[\underset{h\sim Q}{\mathsf{E}} h(x)\right]^2\right)$$

General theorem

[...] with probability at least $1{-}\delta$ over the choice of $S\sim D^n$,

$$\forall Q \text{ on } \mathcal{H}: \quad \Delta\left(d_Q^s, d_Q^D\right) \leq \frac{1}{n} \left[2 \operatorname{KL}(Q \| P) + \ln \frac{\mathcal{I}_{\Delta}(n)}{\delta}\right],$$

Corollary

(a)
$$\operatorname{kl}\left(d_Q^s,\,d_Q^{\scriptscriptstyle D}\right) \, \leq \, \frac{1}{n} \left[2 \operatorname{KL}(Q\|P) + \ln \frac{2\sqrt{n}}{\delta} \right] \, ,$$

(b)
$$d_Q^{\scriptscriptstyle D} \leq d_Q^{\scriptscriptstyle S} + \sqrt{\frac{1}{2n} \left[2 \operatorname{KL}(Q \| P) + \ln \frac{2\sqrt{n}}{\delta} \right]}$$
,

(c)
$$d_Q^D \leq \frac{1}{1-e^{-c}} \left(c \cdot d_Q^S + \frac{1}{n} \left[2 \operatorname{KL}(Q \| P) + \ln \frac{1}{\delta} \right] \right)$$
.

Pascal Germain

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Pascal Germain November 25, 2015

Transductive Learning

Assumption

Examples are drawn without replacement from a finite set Z of size N.

$$S = \{ (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \} \subset Z$$

 $U = \{ (x_{n+1}, \cdot), (x_{n+2}, \cdot), \dots, (x_N, \cdot) \} = Z \setminus S$

Pascal Germain November 25, 2015 23 / 57

General Theorem for Transductive Learning

Observation

Inductive learning : n draws with replacement according to $D \Rightarrow$ Binomial law.

Transductive learning : n draws without replacement in $Z \Rightarrow$ Hypergeometric law.

Theorem

For any set Z of $\mathbb N$ examples, for any set $\mathcal H$ of voters, for any distribution P on $\mathcal H$, for any $\delta\!\in\!(0,1]$, and for any Δ -function, we have, with probability at least $1\!-\!\delta$ over the choice of n examples among Z,

$$\forall Q \text{ on } \mathcal{H}: \quad \Delta(\widehat{R}_{S}(G_{Q}), \widehat{R}_{Z}(G_{Q})) \leq \frac{1}{n} \left[KL(Q||P) + \ln \frac{\mathcal{T}_{\Delta}(n, N)}{\delta} \right],$$

where

$$\mathcal{T}_{\Delta}(n,N) \stackrel{\mathrm{def}}{=} \max_{K=0...N} \left[\sum_{k \in \mathcal{K}_{n,N,K}} \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}} e^{n\Delta(\frac{k}{n},\frac{K}{N})} \right],$$

and $\mathcal{K}_{n,N,K} \stackrel{\text{def}}{=} \{ \max[0, K+n-N], \dots, \min[n, K] \}.$

Pascal Germain November 25, 2015

Theorem

$$\Pr_{S \sim [Z]^n} \left(\forall \ \textit{Q} \ \textit{on} \ \mathcal{H}: \ \Delta \Big(\widehat{\textit{R}}_{\textit{S}}(\textit{G}_{\textit{Q}}), \widehat{\textit{R}}_{\textit{Z}}(\textit{G}_{\textit{Q}}) \Big) \ \leq \ \frac{1}{n} \bigg[\text{KL}(\textit{Q} \| \textit{P}) + \text{In} \ \frac{\textit{T}_{\Delta}(\textit{n}, \textit{N})}{\delta} \bigg] \right) \ \geq \ 1 - \delta \, .$$

Poof.

$$n \cdot \Delta \Big(\underset{h \sim Q}{\mathbf{E}} \widehat{R}_{\mathcal{S}}(h), \underset{h \sim Q}{\mathbf{E}} \widehat{R}_{\mathcal{Z}}(h) \Big)$$

Jensen's inequality
$$\leq \mathbf{E}_{h \sim O} \mathbf{n} \cdot \Delta \left(\widehat{R}_{S}(h), \widehat{R}_{Z}(h) \right)$$

Change of measure
$$\leq \operatorname{KL}(Q\|P) + \ln \mathop{\mathbf{E}}_{h \sim P} e^{n\Delta\left(\widehat{R}_{S}(h), \widehat{R}_{Z}(h)\right)}$$

Markov's inequality
$$\leq_{1-\delta} \operatorname{KL}(Q\|P) + \ln \frac{1}{\delta} \underbrace{\mathsf{E}}_{S' \sim |Z|^n} \underbrace{\mathsf{E}}_{h \sim P} e^{n \cdot \Delta(R_{S'}(h), \widehat{R}_Z(h))}$$

Expectations swap
$$= \mathrm{KL}(Q\|P) + \ln \frac{1}{\delta} \mathop{\mathbf{E}}_{h \sim P} \mathop{\mathbf{E}}_{S' \sim [Z]^n} e^{n \cdot \Delta(R_{S'}(h), \widehat{R}_Z(h))}$$

Hypergeometric law
$$= \mathrm{KL}(Q\|P) + \ln\frac{1}{\delta} \sum_{h \sim P} \sum_{k \in \mathcal{K}_{n,N,N}, R_{Z}(h)} \frac{\binom{N \cdot R_{Z}(h)}{k} \binom{N - N \cdot R_{Z}(h)}{n - k}}{\binom{N}{n}} e^{n \cdot \Delta(\frac{k}{n}, \widehat{R}_{Z}(h))}$$

$$\leq \operatorname{KL}(Q\|P) + \ln \frac{1}{\delta} \max_{K=0...N} \left[\sum_{k \in \mathcal{K}_{n,N,K}} \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}} e^{n\Delta(\frac{k}{n},\frac{K}{N})} \right]$$

$$= \operatorname{KL}(Q\|P) + \ln \frac{1}{\delta} \mathcal{T}_{\Delta}(n,N) \, .$$

Pascal Germain November 25, 2015

A New Transductive Bound for the Gibbs Risk

Corollary

[...] with probability at least $1-\delta$ over the choice of n examples among Z,

$$\forall Q \text{ on } \mathcal{H} : \widehat{R}_{Z}(G_{Q}) \leq \widehat{R}_{S}(G_{Q}) + \sqrt{\frac{1 - \frac{n}{N}}{2n}} \left[\mathrm{KL}(Q \| P) + \ln \frac{3 \ln(n) \sqrt{n(1 - \frac{n}{N})}}{\delta} \right].$$

Theorem (Derbeko et al., 2004)

$$\widehat{R}_Z(G_Q) \leq \widehat{R}_S(G_Q) + \sqrt{\frac{1-\frac{n}{N}}{2(n-1)}} \left[\mathrm{KL}(Q\|P) + \ln \frac{n(N+1)^7}{\delta} \right].$$

Pascal Germain November 25, 2015

A New Transductive Bound for the Bayes Risk

Majority Vote Bound

[...] with probability at least $1 - \delta$ over the choice of n examples among Z,

 $\forall Q \text{ on } \mathcal{H}$:

(a)
$$\widehat{R}_Z(B_Q) \leq 2 \times \overline{r}$$
 (Factor 2)

(b)
$$\widehat{R}_Z(B_Q) \leq 1 - \frac{\left(1 - 2 \times \overline{r}\right)^2}{1 - 2 \times d_Q^Z}$$
 (C-bound)

where

$$\overline{r} := \widehat{R}_{S}(G_{Q}) + \sqrt{\frac{1-\frac{n}{N}}{2n}} \left[\text{KL}(Q||P) + \ln \frac{3\ln(n)\sqrt{n(1-\frac{n}{N})}}{\delta} \right],$$

$$d_{Q}^{Z} = \frac{1}{2} \left(1 - \sum_{i=1}^{N} \left[\underset{h \sim Q}{\mathsf{E}} h(x_{i}) \right]^{2} \right).$$

Pascal Germain November 25, 2015

Empirical Comparison

Majority votes of decision stumps obtained with AdaBoost.

Dataset	N	n/N	$R_S(B_Q)$	Factor 2	$\mathcal{C} ext{-bound}$
car	1728	0.1	0.105	1.092	-
		0.5	0.115	0.830	0.819
letter_AB	1555	0.1	0.000	0.914	0.961
		0.5	0.000	0.797	0.626
mushroom	8124	0.1	0.000	0.964	0.966
		0.5	0.000	0.875	0.546
nursery	12959	0.1	0.009	0.798	0.692
		0.5	0.010	0.711	0.379
optdigits	3823	0.1	0.000	1.055	-
		0.5	0.026	0.917	0.793
pageblock	5473	0.1	0.048	0.979	0.992
		0.5	0.057	0.894	0.697
pendigits	7494	0.1	0.023	0.989	0.997
		0.5	0.041	0.912	0.706
segment	2310	0.1	0.000	1.101	-
		0.5	0.014	0.920	0.834
spambase	4601	0.1	0.115	1.096	-
		0.5	0.137	0.973	0.961

Pascal Germain November 25, 2015

Basic Definitions

- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Pascal Germain November 25, 2015

A New Change of Measure

Kullback-Leibler Change of Measure Inequality

For any P and Q on \mathcal{H} , and for any $\phi: \mathcal{H} \to \mathbb{R}$, we have

$$\underset{h \sim Q}{\mathsf{E}} \phi(h) \leq \mathrm{KL}(Q \| P) + \ln \left(\underset{h \sim P}{\mathsf{E}} \mathrm{e}^{\phi(h)} \right).$$

Rényi Change of Measure Inequality

For any P and Q on \mathcal{H} , any $\phi:\mathcal{H}\to\mathbb{R}$, and for any $\alpha>1$, we have

$$\frac{\alpha}{\alpha - 1} \ln \mathop{\mathsf{E}}_{h \sim Q} \phi(h) \leq D_{\alpha}(Q \| P) + \ln \left(\mathop{\mathsf{E}}_{h \sim P} \phi(h)^{\frac{\alpha}{\alpha - 1}} \right),$$

with
$$D_{\alpha}(Q||P) \stackrel{\text{def}}{=} \frac{1}{\alpha - 1} \ln \left[\underset{h \sim P}{\mathbf{E}} \left(\frac{Q(h)}{P(h)} \right)^{\alpha} \right].$$

Pascal Germain November 25, 2015

Rényi-Based General Theorem

General theorem

[...] for any $\alpha>1$, with probability at least $1-\delta$ over the choice of $S\sim D^n$,

$$\forall Q \text{ on } \mathcal{H} \colon \quad \ln \Delta \Big(\widehat{R}_{\mathcal{S}}(G_Q), R_D(G_Q) \Big) \leq \frac{1}{\alpha'} \Big[D_{\alpha}(Q \| P) + \ln \frac{\mathcal{I}_{\Delta}^{\mathbb{R}}(n, \alpha')}{\delta} \Big],$$

with

$$\mathcal{I}^{\mathrm{R}}_{\Delta}(\mathbf{n},\alpha') \ \stackrel{\mathrm{def}}{=} \ \sup_{r \in [0,1]} \left[\sum_{k=0}^{n} \mathrm{Bin}\big(k;\mathbf{n},r\big) \Delta\big(\tfrac{k}{\mathbf{n}},\ r\big)^{\alpha'} \right],$$

and
$$\alpha' := \frac{\alpha}{\alpha - 1} > 1$$
.

Pascal Germain November 25, 2015

General theorem (Rényi-Based)

$$\Pr_{S \sim D^n} \left(\forall \ Q \ \text{on} \ \mathcal{H}: \ \ln \ \underline{\Delta} \Big(\widehat{R}_{\mathcal{S}} (\mathcal{G}_Q), R_D (\mathcal{G}_Q) \Big) \leq \frac{1}{\alpha'} \bigg[\underline{D}_{\alpha} (Q \| P) + \ln \frac{\mathcal{I}_{\Delta}^R (\textbf{\textit{n}}, \alpha')}{\delta} \bigg] \right) \ \geq \ 1 - \delta \, .$$

Proof.

$$\alpha' \coloneqq \frac{\alpha}{\alpha - 1}$$

$$lpha' \cdot \ln \Delta \Big(egin{aligned} \mathbf{E}_{R \sim Q} \widehat{R}_{S}(h), \mathbf{E}_{h \sim Q} R_{D}(h) \Big) \end{aligned}$$

Jensen's Inequality

$$\leq \alpha' \cdot \ln \underset{h \sim Q}{\mathbf{E}} \Delta \Big(\widehat{R}_{S}(h), R_{D}(h) \Big)$$

Change of measure

$$\leq D_{\alpha}(Q||P) + \ln \underset{h \sim P}{\mathbf{E}} \Delta(\widehat{R}_{S}(h), R_{D}(h))^{\alpha'}$$

Markov's Inequality

$$\leq_{1-\delta} \quad D_{\alpha}\big(Q\|P\big) + \ln\frac{1}{\delta} \underset{S' \sim D^n}{\textbf{E}} \underset{h \sim P}{\textbf{E}} \Delta\big(R_{S'}(h), R_D(h)\big)^{\alpha'}$$

Expectation swap

$$= D_{\alpha}(Q\|P) + \ln \frac{1}{\delta} \mathop{\mathbf{E}}_{h \sim P} \mathop{\mathbf{E}}_{S' \sim D''} \Delta(R_{S'}(h), R_D(h))^{\alpha'}$$

Binomial law

$$= D_{\alpha}(Q\|P) + \ln \frac{1}{\delta} \mathop{\mathbf{E}}_{h \sim P} \sum_{k=0}^{n} \mathbf{Bin}(k; n, R_{D}(h)) \Delta(\frac{k}{n}, R_{D}(h))^{\alpha'}$$

Supremum over risk

$$D_{\alpha}(Q||P) + \ln \frac{1}{\delta} \sup_{r \in [0,1]} \left[\sum_{k=0}^{n} \operatorname{Bin}(k; n, r) \Delta \left(\frac{k}{n}, r\right)^{\alpha'} \right]$$

, =
$$D_{\alpha}(Q||P) + \ln \frac{1}{\delta} \mathcal{I}_{\Delta}^{R}(n, \alpha')$$
.

Pascal Germain

Empirical Study

Majority votes of 500 decision trees on Mushroom dataset

$$\begin{array}{ll} \mathbf{X}\mathrm{KL}(Q\|P) \text{ and } \Delta \coloneqq 2(q-p)^2 & \bullet \ D_{\alpha}(Q\|P) \text{ and } \Delta \coloneqq 2(q-p)^2 \\ \mathbf{X}\mathrm{KL}(Q\|P) \text{ and } \Delta \coloneqq \mathrm{kl}(q,p) & \bullet \ D_{\alpha}(Q\|P) \text{ and } \Delta \coloneqq \mathrm{kl}(q,p) \end{array}$$

Pascal Germain November 25, 2015

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Pascal Germain November 25, 2015

Domain Adaptation

Assumption

Source and target examples are generated by different distributions

$$S = \{ (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) \} \sim (D_S)^n$$

$$T = \{ (x_1, \cdot), (x_2, \cdot), \dots, (x_n, \cdot) \} \sim (D_T)^n$$

Pascal Germain November 25, 2015

Our Domain Adaptation Setting

Binary classification tasks

- Input space : \mathbb{R}^d
- Labels : $\{-1,1\}$

Two different data distributions

- Source domain : D_S
- Target domain : D_T

A domain adaptation learning algorithm is provided with

a labeled source sample $S = \{(\mathbf{x}_i^s, y_i^s)\}_{i=1}^n \sim (D_S)^n$,

an unlabeled target sample $T = \{\mathbf{x}_i^t\}_{i=1}^n \sim (D_T)^n$.

36 / 57

The goal is to build a classifier $h: \mathbb{R}^d \to \{-1,1\}$ with a low target risk

$$R_{D_T}(h) \stackrel{\text{def}}{=} \Pr_{(\mathbf{x}^t, y^t) \sim D_T}[h(\mathbf{x}^t) \neq y^t].$$

Basic Definitions

- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Divergence between source and target domains

Definition (Ben David et al., 2006)

Given two domain distributions D_S and D_T , and a **hypothesis class** \mathcal{H} , the \mathcal{H} -divergence between D_S and D_T is

$$d_{\mathcal{H}}(D_{S}, D_{T}) \stackrel{\text{def}}{=} 2 \sup_{h \in \mathcal{H}} \left| \Pr_{\mathbf{x}^{s} \sim D_{S}} \left[h(\mathbf{x}^{s}) = 1 \right] + \Pr_{\mathbf{x}^{t} \sim D_{T}} \left[h(\mathbf{x}^{t}) = -1 \right] - 1 \right|.$$

The \mathcal{H} -divergence measures the ability of an hypothesis class \mathcal{H} to discriminate between source D_S and target D_T distributions.

38 / 57

Bound on the target risk

Theorem (Ben David et al., 2006)

Let $\mathcal H$ be a hypothesis class of VC-dimension d. With probability $1-\delta$ over the choice of samples $S\sim (D_S)^n$ and $T\sim (D_T)^n$, for every $h\in \mathcal H$:

$$R_{D_{\mathcal{T}}}(h) \leq \widehat{R}_{\mathcal{S}}(h) + \frac{4}{n}\sqrt{d\log\frac{2e\,n}{d} + \log\frac{4}{\delta}} + \hat{d}_{\mathcal{H}}(\mathcal{S},\mathcal{T}) + \frac{4}{n^2}\sqrt{d\log\frac{2\,n}{d} + \log\frac{4}{\delta}} + \beta$$

with $\beta \ge \inf_{h^* \in \mathcal{H}} \left[R_{D_S}(h^*) + R_{D_T}(h^*) \right]$.

Empirical risk on the source sample:

$$\widehat{R}_{S}(h) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[h(\mathbf{x}_{i}^{s}) \neq y_{i}^{s}].$$

Empirical \mathcal{H} -divergence :

$$\hat{d}_{\mathcal{H}}(\mathbf{S}, T) \stackrel{\text{def}}{=} 2 \max_{h \in \mathcal{H}} \left[\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[h(\mathbf{x}_{i}^{\mathbf{S}}) = 1] + \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[h(\mathbf{x}_{i}^{t}) = -1] - 1 \right].$$

Pascal Germain November 25, 2015

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm
- 4 Conclusion and future works

Pascal Germain November 25, 2015

Nouvelle borne pour l'adapation de domaine

$\mathcal{H}\Delta\mathcal{H}$ -distance (Ben-David et al., 2006, 2010)

$$d_{\mathcal{H}\Delta\mathcal{H}}(D_{S}, D_{T}) \stackrel{\text{def}}{=} 2 \sup_{h,h' \in \mathcal{H}} \left| \underset{(x^{S}, \cdot) \sim D_{S}}{\mathsf{E}} \mathbb{I}[h(x^{S}) \neq h'(x^{S})] - \underset{(x^{T}, \cdot) \sim D_{T}}{\mathsf{E}} \mathbb{I}[h(x^{T}) \neq h'(x^{T})] \right|$$

Distributions disagreement

$$\operatorname{\mathsf{dis}}_Q(D_{\mathrm{S}}, D_{\mathrm{T}}) \ \stackrel{\mathrm{def}}{=} \ \left| d_Q^{D_{\mathrm{T}}} - d_Q^{D_{\mathrm{S}}} \right|$$

Theorem,

[...] with probability
$$1 - \delta$$
 over the choice of $S \times T \sim (D_S \times D_T)^n$, we have

$$\forall Q \text{ on } \mathcal{H}$$
:

$$R_{D_{\mathbb{T}}}(G_Q) \leq c' \cdot \widehat{R}_{S}(G_Q) + a' \cdot \widehat{\operatorname{dis}}_{Q}(S, T) + \left(\frac{c'}{c} + \frac{2a'}{a}\right) \frac{\operatorname{KL}(Q \parallel P) + \ln \frac{3}{\delta}}{n} + \lambda_Q^{\star} + a' - 1$$

where
$$a' \stackrel{\text{def}}{=} \frac{2a}{1-e^{-2a}}$$
 et $c' \stackrel{\text{def}}{=} \frac{c}{1-e^{-c}}$.

A New Domain Adaptation Algorithm

For linear classifiers

PAC-Bayes specialization to linear classifier (Langford and Shawe-Taylor, 2002)

- Linear classifier : $h_{\mathbf{w}}(\mathbf{x}) = \operatorname{sgn}[\mathbf{w} \cdot \mathbf{x}]$
- Voters : $\mathcal{H} = \{h_{\mathbf{v}} \mid \mathbf{v} \in \mathbb{R}^d\}$
- Prior P_0 : isotropic Gaussian centered on $\mathbf{0}$
- Posterior $Q_{\mathbf{w}}$: isotropic Gaussian centered on \mathbf{w}

- $h_{\mathbf{w}}(\mathbf{x}) = B_{Q_{\mathbf{w}}}(\mathbf{x})$
- $R_D(Q_{\mathbf{w}}) = \mathbf{E} \Phi \left(y \frac{\mathbf{w} \cdot \mathbf{x}}{\|\mathbf{x}\|} \right)$
- $KL(Q_{\mathbf{w}}||P_{\mathbf{0}}) = \frac{1}{2}||\mathbf{w}||^2$

PBDA

Minimize:

$$C\sum_{i=1}^{n} \Phi_{c}\left(y_{i}^{s} \frac{\mathbf{w} \cdot \mathbf{x}_{i}^{s}}{\|\mathbf{x}_{i}^{s}\|}\right) + A\left|\sum_{i=1}^{n} \Phi_{d}\left(\frac{\mathbf{w} \cdot \mathbf{x}_{i}^{s}}{\|\mathbf{x}_{i}^{s}\|}\right) - \Phi_{d}\left(\frac{\mathbf{w} \cdot \mathbf{x}_{i}^{T}}{\|\mathbf{x}_{i}^{T}\|}\right)\right| + \frac{\|\mathbf{w}\|^{2}}{2}$$

Pascal Germain

Intertwining Moons Toy Dataset

Pascal Germain November 25, 2015 43 / 57

Amazon Reviews Dataset

Input: product review (bag of words) — **Output**: positive or negative rating.

$\mid source \to target \mid$	PBGD	SVM	DASVM	CODA	PBDA
books→dvds	0.174	0.179	0.193	0.181	0.183
books→electronics	0.275	0.290	0.226	0.232	0.263
books→kitchen	0.236	0.251	0.179	0.215	0.229
dvds→books	0.192	0.203	0.202	0.217	0.197
dvds→electronics	0.256	0.269	0.186	0.214	0.241
dvds→kitchen	0.211	0.232	0.183	0.181	0.186
electronics→books	0.268	0.287	0.305	0.275	0.232
electronics→dvds	0.245	0.267	0.214	0.239	0.221
electronics→kitchen	0.127	0.129	0.149	0.134	0.141
kitchen→books	0.255	0.267	0.259	0.247	0.247
kitchen→dvds	0.244	0.253	0.198	0.238	0.233
kitchen→electronics	0.235	0.149	0.157	0.153	0.129
Mean	0.226	0.231	0.204	0.210	0.208

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm
- 4 Conclusion and future works

Pascal Germain November 25, 2015

A New Perspective on Domain Adaptation

Theorem

For all pairs $D_{\rm S}$ and $D_{\rm T}$ on $\mathcal{X} \times \mathcal{Y}$, for all set \mathcal{H} of voters, and for all q>0,

$$\forall Q \; \textit{sur} \; \mathcal{H}, \quad \textit{R}_{D_{\mathrm{T}}}(\textit{G}_{Q}) \; \leq \; \frac{1}{2} \, \textit{d}_{Q}^{\scriptscriptstyle D_{\mathrm{T}}} + \beta_{q}(\textit{D}_{\mathrm{T}} \| \textit{D}_{\mathrm{S}}) \times \left[e_{Q}^{\scriptscriptstyle D_{\mathrm{S}}}\right]^{1 - \frac{1}{q}}.$$

where
$$\beta_q(D_T \| D_S) = \left[\underset{(x,y) \sim D_S}{\mathsf{E}} \left(\frac{D_T(x,y)}{D_S(x,y)} \right)^q \right]^{\frac{1}{q}},$$

and $e_Q^D \stackrel{\mathrm{def}}{=} \underset{(x,y) \sim D}{\mathsf{E}} \underset{h_1 \sim Q}{\mathsf{E}} \underset{h_2 \sim Q}{\mathsf{E}} \mathbb{I} \left[h_1(x) \neq y \right] \times \mathbb{I} \left[h_2(x) \neq y \right].$

DALC

Minimize:

$$A \sum_{i=1}^{n_t} \Phi_{d} \left(\frac{\mathbf{w} \cdot \mathbf{x}_i^{\mathrm{T}}}{\|\mathbf{x}_i^{\mathrm{T}}\|} \right) + B \sum_{i=1}^{n_s} \Phi_{\mathrm{err}} \left(y_i^{\mathrm{S}} \frac{\mathbf{w} \cdot \mathbf{x}_i^{\mathrm{S}}}{\|\mathbf{x}_i^{\mathrm{S}}\|} \right) + \frac{\|\mathbf{w}\|^2}{2}$$

Amazon Reviews Dataset

Input: product review (bag of words) — Output: positive or negative rating.

$source \to target$	PBGD	SVM	DASVM	CODA	PBDA	DALC
books→dvds	0.174	0.179	0.193	0.181	0.183	0.178
books→electronics	0.275	0.290	0.226	0.232	0.263	0.212
books→kitchen	0.236	0.251	0.179	0.215	0.229	0.194
dvds→books	0.192	0.203	0.202	0.217	0.197	0.186
dvds→electronics	0.256	0.269	0.186	0.214	0.241	0.245
dvds→kitchen	0.211	0.232	0.183	0.181	0.186	0.175
electronics→books	0.268	0.287	0.305	0.275	0.232	0.240
electronics→dvds	0.245	0.267	0.214	0.239	0.221	0.256
electronics→kitchen	0.127	0.129	0.149	0.134	0.141	0.123
kitchen→books	0.255	0.267	0.259	0.247	0.247	0.236
kitchen→dvds	0.244	0.253	0.198	0.238	0.233	0.225
kitchen→electronics	0.235	0.149	0.157	0.153	0.129	0.131
Mean	0.226	0.231	0.204	0.210	0.208	0.200

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Pascal Germain November 25, 2015

Bound on the target risk

Theorem (Ben David et al., 2006)

Let \mathcal{H} be a hypothesis class of VC-dimension d. With probability $1-\delta$ over the choice of samples $S \sim (D_S)^n$ and $T \sim (D_T)^n$, for every $h \in \mathcal{H}$:

$$R_{D_T}(h) \leq \hat{R}_S(h) + \frac{4}{n} \sqrt{d \log \frac{2e \, n}{d} + \log \frac{4}{\delta}} + \hat{d}_{\mathcal{H}}(S, T) + \frac{4}{n^2} \sqrt{d \log \frac{2 \, n}{d} + \log \frac{4}{\delta}} + \beta$$

with $\beta \ge \inf_{h^* \in \mathcal{U}} \left[R_{D_S}(h^*) + R_{D_T}(h^*) \right]$.

Target risk $R_{D_{\tau}}(h)$ is low if, given S and T,

i.e., $h \in \mathcal{H}$ is good on

 $\widehat{R}_{S}(h)$ is small, and $\widehat{d}_{\mathcal{H}}(S,T)$ is small, i.e., all $h' \in \mathcal{H}$ are bad on

Domain-Adversarial Neural Network (DANN)

Empirical \mathcal{H} -divergence

$$\hat{d}_{\mathcal{H}}(S,T) \stackrel{\text{def}}{=} 2 \max_{h \in \mathcal{H}} \left[\frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[h(\mathbf{x}_{i}^{s}) = 1] + \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}[h(\mathbf{x}_{i}^{t}) = -1] - 1 \right].$$

We estimate the \mathcal{H} -divergence by a logistic regressor that model the probability that a given input (either \mathbf{x}^s or \mathbf{x}^t) is from the source domain:

$$o(\mathbf{h}(\mathbf{x})) \stackrel{\text{def}}{=} \operatorname{sigm}(d + \mathbf{w}^{\top} \mathbf{h}(\mathbf{x})).$$

Given a representation output by the hidden layer $h(\cdot)$:

$$\hat{d}_{\mathcal{H}}\Big(\mathbf{h}(\mathbf{S}),\mathbf{h}(\mathbf{T})\Big) \approx 2\max_{\mathbf{w},d} \left[\frac{1}{n}\sum_{i=1}^{n}\log\big(o(\mathbf{h}(\mathbf{x}_{i}^{\mathbf{S}}))\big) + \frac{1}{n}\sum_{i=1}^{n}\log\big(1 - o(\mathbf{h}(\mathbf{x}_{i}^{t}))\big) - 1\right].$$

Pascal Germain November 25, 2015

Domain-Adversarial Neural Network (DANN)

$$\min_{\mathbf{W}, \mathbf{V}, \mathbf{b}, \mathbf{c}} \left[\underbrace{\frac{1}{n} \sum_{i=1}^{n} -\log \left(f_{y_{i}^{s}}(\mathbf{x}_{i}^{s}) \right)}_{\text{source loss}} + \lambda \underbrace{\max_{\mathbf{w}, d} \left(\frac{1}{n} \sum_{i=1}^{n} \log \left(o(\mathbf{h}(\mathbf{x}_{i}^{s})) \right) + \frac{1}{n} \sum_{i=1}^{n} \log \left(1 - o(\mathbf{h}(\mathbf{x}_{i}^{t})) \right) \right]}_{\text{adaptation regularizer}},$$

where $\lambda > 0$ weights the domain adaptation regularization term.

Given a source sample $S = \{(\mathbf{x}_i^s, \mathbf{y}_i^s)\}_{i=1}^m \sim (D_S)^m$, and a target sample $T = \{(\mathbf{x}_i^t)\}_{i=1}^m \sim (D_T)^m$,

- 1. Pick a $\mathbf{x}^s \in S$ and $\mathbf{x}^t \in T$
- 2. Update V towards $f(h(x^s)) = y^s$
- 3. Update **W** towards $f(h(x^s)) = y^s$
- 4. Update w towards $o(\mathbf{h}(\mathbf{x}^s)) = 1$ and $o(\mathbf{h}(\mathbf{x}^t)) = -1$
- 5. Update **W** towards $o(\mathbf{h}(\mathbf{x}^s)) = -1$ and $o(\mathbf{h}(\mathbf{x}^t)) = 1$

DANN finds a representation $h(\cdot)$ that are good on S; but unable to discriminate between S and T.

51 / 57

Toy Dataset

Standard Neural Network (NN)

Domain-Adversarial Neural Networks (DANN)

Pascal Germain November 25, 2015 52 / 57

Amazon Reviews

Input: product review (bag of words) — **Output**: positive or negative rating.

Dataset	DANN	NN
$books \to dvd$	0.201	0.199
$books \to electronics$	0.246	0.251
$books \to kitchen$	0.230	0.235
$dvd \to books$	0.247	0.261
$dvd \to electronics$	0.247	0.256
dvd o kitchen	0.227	0.227
$electronics \to books$	0.280	0.281
$electronics \to dvd$	0.273	0.277
$electronics \to kitchen$	0.148	0.149
$kitchen \to books$	0.283	0.288
$kitchen \to dvd$	0.261	0.261
$kitchen \to electronics$	0.161	0.161

Pascal Germain November 25, 2015 53 / 57

Deeper and deeper...

To appear in JMLR : **Domain-Adversarial Neural Networks.**

by Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Pascal Germain November 25, 2015 54 / 57

- Basic Definitions
- 2 PAC-Bayesian Theory
 - Majority Vote Classifiers
 - A Classical PAC-Bayesian Theorem
 - A General PAC-Bayesian Theorem
 - Transductive Learning
 - Rényi-Based Theorem
- 3 Domain Adaptation Algorithms
 - Ben-David et al.'s Domain Divergence
 - A First PAC-Bayesian Algorithm
 - A Second PAC-Bayesian Algorithm
 - A Neural Network / Representation Learning Algorithm

4 Conclusion and future works

Pascal Germain November 25, 2015

Short Summary

An original PAC-Bayesian approach

- General theorem from which we recover existing results;
- Modular proof, easy to adapt to various frameworks.

Domain adaptation algorithms

- Two algorithms for linear classifiers derived from PAC-Bayesian bounds;
- One representation learning Network inspired by the seminal work of Ben-David et al.

Pascal Germain November 25, 2015 56 / 57

Perspectives

- Explore the relationships between PAC-Bayesian and *truly* Bayesian approaches;
- Speed-up domain adaptation algorithms with stochastic gradient;
- Go beyond simple binary classification setting;
- Apply PAC-Bayes to your problems!

If you only have a hammer, you tend to see every problem as a nail.

— Abraham Maslow, 1966

Pascal Germain November 25, 2015 57 / 57