Control Theory Home Work 1

Utkarsh Kalra BS18-03

Varient f

1 Git repo

https://github.com/kalraUtkarsh/Control-Theory-Utkarsh-Kalra

$$2 \quad x'' + 2 \sin 2t + 2x0 = 4x + 1; \ x'(0) = 3; \ x(0) = 0$$

- 2.1 2(A)
- 2.1.1 Schema in Simulink without transfer funtion

2.1.2 Plot of the simulink without Transfer Function

2.2 2(B)

2.2.1 Calculation of Transfer Function

$$\begin{split} & \text{let d/dt} = \text{p so} \\ & xp^2 - 4x + 2xp = 1 - 2sin(2t) \\ & x(p^2 - 4 + 2p) = -sin(2t) + 1 \\ & x = [1 - 2sin(2t)]/[p^2 + 2p - 4] \\ & input = 1 - 2sin(2t)so \\ & TransferFunction = [1]/[p^2 + 2p - 4] \end{split}$$

2.2.2 Simulink Schema using Transfer Funtion block

2.2.3 Plot for Simulink using Transfer Function block

2.3 2(C)

2.3.1 Solving the Differential equation with Matlab

2.3.2 The plot of the Ode solved using matlab

2.4 2(D)

2.4.1 Solving the Differential equation using Laplace in Matlab

3 Converting into State Space Model

$$\begin{aligned} \mathbf{x}'' + 2\mathbf{x}' + 2\mathbf{x} &= \mathbf{t} + \mathbf{5}, \ \mathbf{y} = \mathbf{x}' + 2\mathbf{t} \\ \mathbf{x}'' &= \mathbf{t} + \mathbf{5} - 2\mathbf{x}' - 2\mathbf{x} \end{aligned}$$

$$\begin{bmatrix} x' \\ x'' \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ x' \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ \mathbf{5} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ t \end{bmatrix}$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ x' \end{bmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ t \end{bmatrix}$$

4 Converting into state space Model

$$\begin{aligned} x'''' + 2x''' + 2x'' + 2x' - 6 &= 2u_1 + 3u - 2, y = x' + u_1 + 2u_2 \\ \begin{bmatrix} x' \\ x'' \\ x''' \\ x'''' \end{bmatrix} &= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -2 & -2 & -2 \end{bmatrix} \begin{bmatrix} x \\ x' \\ x'' \\ x''' \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 6 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ u_1 \\ u_2 \end{bmatrix} \\ y &= \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ x' \\ x'' \\ x''' \end{bmatrix} + \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ u_1 \\ u_2 \end{bmatrix}$$

5 Function in Python to convert any ODE to State Space Representation

```
import numpy as np

def odess(coff_a, b0):
    k = len(coff_a)-1;

a = np.zeros(shape=(k,k))

for i in range_(k-1):
    a[i][i+1] = 1

for i in range(k):
    a[-1][i] = -coff_a[i]/ coff_a[k]

b = np.zeros(shape=(k,1))

b = np.zeros(shape=(k,1))

return a, b
```

6 Functions in python to solve ODE and the State Space Models

6.0.1 Code

```
from scipy.integrate import odeint
import matplotlib.pyplot as plt

def dU dx(U, x):
    # Here U is a vector such that y=U[0] and z=U[1]. This function should retu

return [U[1], -2*U[1] + 4*U[0] - np.sin(2*x)]

U0 = [0, 3]

xs = np.linspace(0, 10, 200)

Us = odeint(dU_dx, U0, xs)

ys = Us[:,0]

plt.xlabel("x")

plt.ylabel("y")

plt.title("Damped harmonic oscillator")

plt.plot(xs,ys);

plt.show()
```

6.0.2 PLot

