CLAIMS

What is claimed is:

l	1. A method for fabricating a thermal management system for a micro-
2	component device, comprising:
3	overlaying a target substrate with a blank in sheet form;
4	stamping a microchannel structure having a plurality of outer walls
5	enclosing a predefined area from the blank;
5	bonding the microchannel structure to a heat dissipating side opposite from a
7	micro-component device facing side of a first substrate, the micro-component
3	device facing side adapted to thermally engage with the micro-component device;
)	bonding the microchannel structure to a second substrate opposite the first
)	substrate, defining a closed volume microchannel; and
l	substantially filling the microchannel with a fluid thermal interface material.
l	2. The method of claim 1, wherein stamping a microchannel structure having a
2	plurality of outer walls enclosing a predefined area from the blank, comprises:
3	providing a press tool having a predetermined relief structure with cutting
4	blades adapted to cut the blank;
5	pressing the press tool into the blank such that the cutting blades cut through
5	to the target substrate, cutting the blank into a microchannel structure and waste
7	portions, the microchannel structure comprising a plurality of outer walls defining
3	an edge seal enclosing a predetermined area of the target substrate; and
)	removing the waste portions.
l	3. The method of claim 2, wherein providing a press tool having a
2	predetermined relief structure with cutting blades adapted to cut the blank
3	comprises:
1	providing a press tool having a predetermined relief structure with cutting
5	blades adapted to cut the blank, the relief structure having an inner surface between
6	adjacent cutting blades; and

7	wherein pressing the press tool into the blank such that the cutting blades cut
8	through to the target substrate, cutting the blank into a microchannel structure and
Q	waste nortions, comprises:

- pressing the press tool into the blank such that the cutting blades cut through to the target substrate cutting the blank into a microchannel structure and waste portions, the inner surface applying a predetermined compressive force onto the microchannel structure to facilitate a fluid-tight diffusion bond between the microchannel structure and the target substrate.
- 1 4. The method of claim 1, wherein bonding the microchannel structure to a first substrate comprises:
- bonding the microchannel structure to the target substrate, wherein the target and first substrates are one and the same.
- 5. The method of claim 4, wherein bonding the microchannel structure to a first
 substrate comprises:
- applying a compressive force between the first substrate and the
 microchannel structure to effect a fluid-tight diffusion bond between the first
 substrate and the microchannel structure.
- 1 6. The method of claim 5, wherein applying a compressive force between the target substrate and the microchannel structure to effect a fluid-tight diffusion bond between the target substrate and the microchannel structure comprises:
- applying a compressive force at an elevated temperature below the melt temperature of either the target substrate and the microchannel structure over a predetermined period of time to effect a fluid-tight diffusion bond between the target substrate and the microchannel structure.
- 7. The method of claim 1, wherein bonding the microchannel structure to a second substrate opposite the first substrate, defining a closed volume microchannel comprises:

- 4 providing a second substrate onto the microchannel structure opposite the
- 5 target substrate; and
- 6 applying a predetermined compressive force to the second substrate and
- 7 microchannel structure sufficient to provide a fluid-tight diffusion bond there
- 8 between.
- 1 8. The method of claim 7, wherein applying a predetermined compressive force
- 2 to the second substrate and microchannel structure sufficient to provide a fluid-tight
- 3 bond there between comprises:
- 4 applying a predetermined compressive force at an elevated temperature
- 5 below the melt temperature of either the target substrate, second substrate, and the
- 6 microchannel structure, over a predetermined period of time to effect a fluid-tight
- 7 diffusion bond between the second substrate and the microchannel structure.
- 1 9. The method of claim 1, wherein substantially filling the microchannel with a
- 2 fluid thermal interface material comprises:
- 3 substantially filling the microchannel with an indium alloy that is liquid at a
- 4 predetermined micro-component device operating temperature.
- 1 10. The method of claim 1, further comprising thermally coupling the micro-
- 2 component device facing side of the first substrate with a heat-producing side of the
- 3 micro-component device.
- 1 11. The method of claim 10, wherein thermally coupling the micro-component
- 2 device facing side of the first substrate with a heat-producing side of the micro-
- 3 component device comprises:
- 4 thermally coupling the micro-component device facing side of the first
- 5 substrate with a backside of a microelectronic die, the microelectronic die
- 6 comprising integrated circuits.
- 1 12. The method of claim 11, further comprising:

2	thermally coupling the fluid thermal interconnect material with one or more
3	thermal dissipation devices selected from the group consisting of heat pipe, therma
4	dissipation fins, fan, heat exchanger, and flat plate.
1	13. A micro-component device package, comprising:
2	a micro-component device comprising a die and a carrier substrate, the die
3	having a backside, the die being electrically interconnected with the carrier
4	substrate; and
5	a thermal management system in thermal engagement with the backside, th
6	thermal management system comprising:
7	a first substrate having a die facing side and an opposite heat
8	dissipation side, the die facing side thermally coupled to the back side of th
9	die;
0	a microchannel structure having a plurality of outer walls enclosing
1	predefined area, the microchannel structure coupled to the heat dissipation
2	side of the first substrate;
3	a second substrate, the second substrate coupled to the microchanne
4	structure, the first substrate, microchannel structure and the second substrate
5·	defining a closed volume microchannel; and
6	a thermal interface material disposed within the closed volume
7	microchannel.
1	14. The micro-component device package of claim 13, wherein the first
2	substrate includes an integrated heat spreader and the second substrate includes a
3	heat sink.
1	15. The micro-component device package of claim 13, wherein the thermal
2	management system further comprises:
3 .	an inlet aperture through the outer wall in fluid communication with the
4	microchannel; and
5	a vent aperture through the second substrate or the outer wall, the vent
6	anartura in fluid communication with the microchannel

- 1 16. The micro-component device package of claim 15, wherein the vent aperture
- 2 includes a semi permeable membrane plug adapted to allow the passage of gas but
- 3 not the fluid thermal interface material.
- 1 17. The micro-component device package of claim 15, wherein the thermal
- 2 management system further comprises:
- a thermal interface material supply line coupled to the inlet aperture;
- 4 a thermal interface material discharge line coupled to the vent aperture; and
- 5 a micropump coupled to the supply line and the discharge line, the
- 6 micropump configured to provide a pressure differential to circulate the fluid
- 7 thermal interface material from the supply line, through the microchannel, and to the
- 8 discharge line.
- 1 18. The micro-component device package of claim 17, wherein the thermal
- 2 management system further comprises a heat exchanger in fluid communication
- 3 with the microchannel, the heat exchanger adapted to dissipate thermal energy from
- 4 the fluid thermal interface material.
- 1 19. The micro-component device package of claim 13, wherein the thermal
- 2 interface material is selected from a group including indium alloy, Ga-In-Sn Alloy,
- 3 Cesium Francium, and Rubidium.
- 1 20. The micro-component device package of claim 13, wherein the micro
- 2 component device is an integrated circuit.

I	21. A system comprising:
2	a selected one of a digital signal processor and a graphics processor; and
3	a micro-component device package coupled to the selected one of a digital
4	signal processor and a graphics processor, including
5	a micro-component device comprising a die and a carrier substrate, the
6	die having a backside, the die being electrically interconnected with
7 ·	the carrier substrate; and
8	a thermal management system in thermal engagement with the backside
9.	the thermal management system comprising:
10	a first substrate having a die facing side and an opposite heat
11	dissipation side, the die facing side thermally coupled to the
12	back side of the die;
13	a microchannel structure having a plurality of outer walls
14	enclosing a predefined area, the microchannel structure
15	coupled to the heat dissipation side of the first substrate;
16	a second substrate, the second substrate coupled to the
17	microchannel structure, the first substrate, microchannel
18	structure and the second substrate defining a closed volume
. 19	microchannel; and
20	a thermal interface material disposed within the closed volume
21	microchannel.
1	22. The system of claim 21, wherein the first substrate of the thermal
2	management system of the micro-component device package includes an integrated
3	heat spreader and the second substrate includes a heat sink.
1	23. The system of claim 21, wherein the thermal management system further
2	comprises:
3	an inlet aperture through the outer wall in fluid communication with the
4	microchannel; and

- 5 a vent aperture through the second substrate or the outer wall, the vent
- 6 aperture in fluid communication with the microchannel.
- 1 24. The system of claim 23, wherein the vent aperture includes a semi
- 2 permeable membrane plug adapted to allow the passage of gas but not the fluid
- 3 thermal interface material.
- 1 25. The system of claim 23, wherein the thermal management system further
- 2 comprises:
- a thermal interface material supply line coupled to the inlet aperture;
- 4 a thermal interface material discharge line coupled to the vent aperture; and
- 5 a micropump coupled to the supply line and the discharge line, the
- 6 micropump configured to provide a pressure differential to circulate the fluid
- 7 thermal interface material from the supply line, through the microchannel, and to the
- 8 discharge line.
- 1 26. The system of claim 25, wherein the thermal management system further
- 2 comprises a heat exchanger in fluid communication with the microchannel, the heat
- 3 exchanger adapted to dissipate thermal energy from the fluid thermal interface
- 4 material.
- 1 27. The system of claim 21, wherein the thermal interface material is selected
- 2 from a group including indium alloy, Ga-In-Sn Alloy, Cesium Francium, and
- 3 Rubidium.