TFG - Algoritmo de Optimización para la Recolección de Pedidos en sector de retail

Pablo Gonzalez Madroño 10/02/25

¿De que se trata este Proyecto?

- Cada día en un supermercado se reciben 100 de pedidos online que se deben de recolectar para su posterior envío o recogido

- Con el objetivo de REDUCIR LOS TIEMPOS en la preparación de pedidos en un supermercado, se plantea el desarrollo de un MODELO de OPTIMIZACIÓN DE RUTA del proceso de picking.

DESAFIOS / DIFICULTADES DEL PROYECTO

1. Extracción de la ubicación de los artículos y obstáculos del centro

2. Calculo de distancias entre articulos

3. Calculo de la ruta optima (TSP)

Teniendo en cuenta las reglas de oro

1. Extracción de la ubicación de los artículos y obstáculos

Se hace uso de una herramienta del equipo de real state donde se mapea los artículos contenidos en cada góndola extraído en formato JSON

```
"Largo": 1,
"Coordenada X": 6.150149968,
```

Entry para una estantería estantería

```
"Origen": "Cop_2_A_0",
"Coordenada X": 105.9603777,
"Coordenada Y": -9.758378968,
"Coordenada Z": -3.820021194,
"Coordenada X__1": 106.5074297,
"Coordenada Y__1": -9.758378968,
"Coordenada Z_1": -3.820021194,
"Coordenada X__2": 0.547.
```

Entry para un obstáculo

1. Mapeado de la ubicación de los artículos y obstáculos

Con lo anterior generamos una matriz con las cordenadas no transitables (0) representadas con azul claro y las si transitables (1), representadas con morado. Los puntos amarillos representan cada ubicación de las estanaterias

2. Calcular las distancias entre todos los pares de puntos

Utilizamos A* para calcular las distancias entre dos puntos cualesquiera

- Al ser exponencial hemos tenido que reducir dimensionalmente la matriz para mejorar eficiencia

3. Cálculo de la ruta

- Se trata del problema clásico de TSP
- Hay que tener en cuenta las reglas de oro
- Complejidad: (n-1)!

No se puede **resolver** de manera **exacta** si tiene más de 22 productos

Reglas de oro

1) Grandes volúmenes lo primero

Variable discreta pesado/no pesado

2) Congelados lo último

Se modela aplicando una penalizacion a la distancia congelado -> alimento normal

3. Cálculo de ruta: Exactitud

- Para un estudio que se hizo de pedidos de un supermercado:
 - Media de articulos por pedidos: 13
 - Mediana de articulos por pedido: 11
- Para el 81% de los pedidos se puede calcular la solucion exacta (n<22)

Para n>22

