TEAM INTRODUCTION

CHAPTER 9
HEDGING

CHAPTER 9 HEDGING

1. General Principles

2. Delta Hedging

3. Delta Neutral Portfolio

4. Gamma Neutral Portfolio

HEDGING

การป้องกันความเสี่ยง

คือ การทำให้ Portfolio มีความอ่อนไหว (sensitive) ต่อการเปลี่ยนแปลงของตัวแปรตลาดน้อยลง เช่น ราคาหลักทรัพย์ อัตราดอกเบี้ย

BLACK-SCHOLES

PATIAL DIFFERENTIAL EQUATION

เนื่องจาก ขนาด Δ = Fs เป็นส่วนสำคัญของการป้องกันความเสี่ยงในพอร์ตโฟลิโอ โดย Δ ที่เหมือนกันนี้ถูกใช้เพื่อให้ได้ Black-Scholes Partial Differential Equation. เมื่อ Δ เป็นศูนย์ สมการ Black-Scholes จะสามารถบอกได้ว่า อัตราผลตอบแทนจาก พอร์ตโฟลิโอที่ประกอบด้วยการเป็นเจ้าของหลักทรัพย์อ้างอิงและการขายออปชั่น (หรือ position ตรงกันข้าม) ควรมีค่าเท่ากับอัตราของผลตอบแทนจากอัตราดอกเบี้ย ไร้ความเสี่ยง (Risk-free interest rate) ในจำนวนเงินสดสุทธิที่เท่ากัน

General **Principle**

If Spot Price at t < Strike Price : Bank Win!

If Spot Price at t > Strike Price : Investor Win!

European call option

ธนาคารออก European call option ให้นักลงทุนซื้อ 1,000,000 สิทธิ โดยมีรายละเอียดดังนี้ (Bank Short Position)

Spot price : ราคาหุ้นปัจจุบัน	\$50	$S_0 = 50
Strike price : ราคาใช้สิทธิ	\$52	K= \$52
Expiry date : วันหมดอายุ	4 months	$t = \frac{1}{3}year$
Risk-free rate : อัตราดอกเบี้ยไร้ความเสี่ยง	2.5%	$r_f = 2.5\% \ per \ year$
Volatility : ความผันผวนของราคาหุ้น	22.5%	σ = 22.5% per year

- จากสูตรการหาราคา option ของ Black-Scholes มูลค่าของ European call option = \$1.91965 ดังนั้น ธนาคารมีรายได้จากการขาย Call option (Premium) \$1.91965 x 1,000,000 สิทธิ = \$1,919,650
- หาก Spot Price at t > Strike Price นักลงทุนจะใช้สิทธิซื้อ ดังนั้นธนาคารจะต้องซื้อหุ้นมาขายให้นักลงทุนซื้อตามสัญญา โดยธนาคารมีทางเลือก 2 วิธี ได้แก่
 - 1. ธนาคารซื้อหุ้น ณ วันที่ตกลงสัญญา call option
 - 2. ธนาคารซื้อหุ้น ณ วันหมดอายุ (วันใช้สิทธิ)

European call option (Bank : Sell covered position)

สมมติว่าธนาคารเลือกวิธีซื้อหุ้นสำหรับขายให้นักลงทุนโดย ธนาคารซื้อหุ้น ณ เวลาที่ตกลงสัญญา call option ธนาคารมีค่าใช้จ่ายในการซื้อหุ้นทั้งหมด \$50 x 1,000,000 สิทธิ = \$50,000,000

• ให้ S แทนราคาต่อหุ้นของหุ้น ณ เวลาใช้สิทธิ

Pay-off call option (covered position) $Premium + (\min\{K,S\}e^{-r_ft} - S_0) \times$ จน. สิทธิ

$$1,919,650 + (\min\{52,S\}e^{\frac{-0.025}{3}} - 50) \times 10^6$$

จากสูตรแบ่งได้เป็น 3 กรณี

European call option (Bank : Sell covered position)

Pay off หากธนาคารซื้อหุ้น ณ วันที่ขาย option เพื่อขายให้แก่นักลงทุน

European call option (Bank : Sell naked position / short position)

สมมติว่าธนาคารเลือกวิธีซื้อหุ้นสำหรับขายให้นักลงทุนโดย ธนาคารซื้อหุ้น ณ วันหมดอายุ / ใช้สิทธิ call option ธนาคารมีค่าใช้จ่ายในการซื้อหุ้นทั้งหมด \$S x 1,000,000 สิทธิ

• ให้ S แทนราคาต่อหุ้นของหุ้น ณ เวลาใช้สิทธิ

Pay-off call option (naked position) $Premium + (\min\{0, K - S\} e^{-r_f t}) \times \mathfrak{d}u. \, \bar{\mathfrak{a}} n\bar{\mathfrak{s}}$

$$1,919,650 + (\min\{0,52 - S\}e^{\frac{-0.025}{3}}) \times 10^6$$

จากสูตรแบ่งได้เป็น 3 กรณี

European call option (Bank : Sell naked position / short position)

Pay off หากธนาคารซื้อหุ้น ณ วันใช้สิทธิเพื่อขายให้แก่นักลงทุน

Conclusion European Call Option Pay-off

เส้นกำไร/ขาดทุนของ (ฝั่งนักลงทุน)

กรณีธนาคารซื้อหุ้น ณ วันใช้สีทธิ Long call position

เส้นกำไร/ขาดทุนของ (ฝั่งธนาคาร)

กรณีธนาคารซื้อหุ้น ณ วันขาย option (t = 0) Sell Covered Call position

กรณีธนาคารซื้อหุ้น ณ วันใช้สีทธิ Sell Naked Call position / Short Call position

Delta Hedging

PURPOSE OF HEDGING

จุดประสงค์ของการป้องกันความเสี่ยง คือ การกำจัดหรือลดการเปลี่ยนแปลง ของมูลค่า Portfolio ของนักลงทุนหรือสถาบันให้น้อยที่สุดเท่าที่จะเป็นไปได้ เช่น เงื่อนไขในตลาดการเงินที่เปลี่ยนแปลงไป

ตัวแปรหนึ่งที่อาจจะมีการเปลี่ยนแปลง คือ มูลค่าของหุ้น/หลักทรัพย์อ้างอิง ที่อยู่ภายใต้สัญญา Option

Delta Hedging

โดยจากบทที่แล้ว จะเห็นว่า delta เป็นอนุพันธ์ย่อยของ มูลค่าของ option ที่เกี่ยวข้องกับมูลค่า ของหลักทรัพย์อ้างอิง

จากในส่วนที่ 8.2 ที่ กล่าวว่า Delta (Δ) กำเนิดจาก European call และ put option เราสามารถนึกถึง Delta ได้ในลักษณะ ดังต่อไปนี้

สำหรับทุกหน่วย การเปลี่ยนแปลงของ มูลค่าของหลักทรัพย์ อ้างอิง ส่งผลให้ มูลค่าของ option เปลี่ยนแปลง ไปตามค่า Δ

Portfolio ที่
ประกอบด้วย
Security และ Option
เรียกว่า Delta-neutral
หากมีการขาย option
หลักทรัพย์อ้างอิงจะถูก
ซื้อตามจำนวน
หน่วยของ Δ

- พิจารณากรณีหลักทรัพย์ที่มีราคา \$100
- อัตราดอกเบี้ยไร้ความเสี่ยงคือ 4% ต่อปี
- ความผันผวนของราคาหุ้นต่อปีคือ 23%
- ราคาใช้สิทธิกำหนดไว้ที่ \$105
- วันหมดอายุคืออีก 3 เดือน
- ภายใต้เงื่อนไขเหล่านี้ ω = -0.279806
- มูลค่าของ European call option
 คือ C = 2.96155
- Delta สำหรับ option คือ

$$\Delta = \frac{\partial C}{\partial S} = 0.389813$$

Spot price : ราคาหุ้นปัจจุบัน	\$100	$S_0 = 100
Strike price : ราคาใช้สิทธิ	\$105	<i>K</i> = \$105
Expiry date : วันหมดอายุ	3 months	$t = \frac{1}{4} year$
Risk-free rate : อัตราดอกเบี้ยไร้ความเสี่ยง	4%	$r_f = 4\% \ per \ year$
Volatility : ความผันผวนของราคาหุ้น	23%	$\sigma = 23\%$
Value of call option : มูลค่าของ call option	2.96155	<i>C</i> = \$2.96155

อาก

$$\Delta$$
= 0.389813

$$C = 2.96155$$

$$\omega = -0.279806$$

ปกติในตลาด 10,000 shares = 100 options *กรณีนี้เราจะให้สมมติฐานว่า 1 share = 1 option*

At
$$t = 0$$

- หากบริษัทขาย European call option
 10,000 สิทธิ จะได้เงิน \$29,615.50
- ซื้อหลักทรัพย์ด้วยเงินที่กู้มา
 (10,000)(0.389813) = 3,898 หุ้น
 มูลค่าของหุ้นที่บริษัทซื้อ = (N_{call})(Δ_{call})(S₀)
 \$389,813 = (10,000)(0.389813)(100)
- หมายความบริษัท Short call 10,000 option และ Long security 3,898 shares

- □ บริษัทอาจจะเลือกที่จะไม่ทำอะไรเพิ่มเติมจนกว่าจะถึงเวลาใช้สิทธิ option ในกรณีนี้จะเรียกว่า "hedge and forget"
- ในทางกลับกัน เนื่องจากราคาของหลักทรัพย์เป็นแบบ dynamic
 บริษัทอาจเลือกที่จะทำการปรับจำนวนหลักทรัพย์ที่ถืออยู่เป็นระยะๆ
 กลยุทธ์นี้เรียกว่า การปรับสมดุล (rebalancing) ทำให้เป็น Portfolio ใหม่
- 🗖 ตัวอย่างที่กล่าวมาสามารถนำมา rebalancing ทุกรายสัปดาห์ได้

- สมมติว่ามูลค่าของหลักทรัพย์เป็นไปตาม"การเดินแบบสุ่ม (random walk)" ดังที่แสดงในรูป
- ☐ ในกรณีนี้ European call option จะถูกใช้สิทธิในวันหมดอายุ เมื่อราคาหลักทรัพย์มากกว่าราคาใช้สิทธิที่ \$105
- เมื่อจบอาทิตย์แรกแล้วราคาหลักทรัพย์ลดลงเหลือ \$98.79

เมื่อสิ้นสุดอาทิตย์แรก

- เมื่อราคาหลักทรัพย์ลดลงเหลือ \$98.79 ทำให้ Δ = 0.339811
- ดังนั้น Investment firm จะ Rebalancing Portfolio ทำให้จำนวนการถือหลักทรัพย์เหลือ 3,398 หุ้น แสดงว่าเราขายหุ้นออกไป 3,898 – 3,398 = 500 หุ้น
- บริษัทยืมเงินเพื่อซื้อหลักทรัพย์ในตอนแรก ทำให้ มีค่าใช้จ่ายในรูปของดอกเบี้ยทั้งหมด \$299.97 ดังสมการ

Continuously compounded interest

$$Pe^{rt} = A$$
 $Pe^{rt} - P = Interest$
 $P(e^{rt} - 1) = Interest$
 $(\$389, 813) \left(e^{\frac{0.04}{52}} - 1\right) = \299.97

จาก Continuously compounded interest

$$P(e^{rt}-1) = Interest$$

 $(S_{t=0}N_{call}\Delta_{t=0})(e^{rt}-1) = Interest$
 $(\$389,813)(e^{\frac{0.04}{52}}-1) = \299.97

จะได้มูลค่าของหลักทรัพย์รวมหลัง rebalance ดังสมการ

$$Cost_{t=1} = (S_{t=0}N_{call}\Delta_{t=0}) + [S_{t=1}\times(N_{call}\times(\Delta_{t=1}-\Delta_{t=0}))] + Interest_{t=0}$$

 $\$340,705 = \$389,800 + (\$98.79\times(3,398-3,898)) + \299.97
 $\$340,705 \approx \$389,800 + (\$98.79\times(-500 shares)) + \299.97

Week	s	Δ	$\begin{array}{c} \mathbf{Shares} \\ \mathbf{Held} \end{array}$	$\begin{array}{c} {\bf Interest} \\ {\bf Cost} \end{array}$	$\begin{array}{c} {\bf Cumulative} \\ {\bf Cost} \end{array}$
0	100.00	0.389813	3898	300	389800
1	98.79	0.339811	3398	262	340705

$$(\$340,705)$$
 $\left(e^{\frac{0.04}{52}}-1\right)=\262.18

- ดอกเบี้ยสำหรับปัจจุบันจะถูกบวกเข้ากับ รายการต้นทุนสะสมของสัปดาห์หน้า
- จากตารางที่ 9.1 สรุปการปรับสมดุลรายสัปดาห์ จนถึงวันหมดอายุ
 - ณ วันหมดอายุ Investment firm จะมีหลักทรัพย์ทั้งหมด 10,000 หุ้นใน Portfolio
 - ซึ่งนักลงทุนจะจ่ายเป็นมูลค่ารวม \$1,050,000
- ดังนั้น Investment firm มีรายได้สุทธิ จากการขาย call option และการ ป้องกันความเสี่ยงใน position รวมเท่ากับ

1,050,000 + 29,615.50 - 1,069,460 = \$10,155.50

 กล่าวอีกนัยหนึ่งคือ บริษัทมีกำไรจากการออกขาย call option และผู้อ่านควรรู้ว่าเราจะสมมติให้นักลงทุนไม่ต้องชำระค่า call option จนกว่าจะถึงวันใช้สิทธิ

			Shares	Interest	Cumulative
Week	\mathbf{S}	Δ	\mathbf{Held}	\mathbf{Cost}	Cost
0	100.00	0.389813	3898	300	389800
1	98.79	0.339811	3398	262	340705
2	102.52	0.462922	4629	359	467169
3	103.41	0.490192	4902	382	495760
4	102.82	0.460541	4605	358	465604
5	102.25	0.428236	4282	333	432935
6	100.67	0.347145	3471	271	351625
7	106.05	0.589204	5892	468	608643
8	104.17	0.491348	4913	390	507129
9	106.08	0.595047	5950	475	617524
10	105.86	0.585915	5859	468	608366
11	110.40	0.878690	8787	717	932085
12	112.46	0.985811	9858	811	1053247
13	108.47	1.0	10000	0	1069460

ตารางที่ 9.1 การป้องกันความเสี่ยงด้วย Delta โดยใช้การปรับสมดุลพอร์ตโฟลิโอในช่วงเวลารายสัปดาห์

อีกทางเลือกหนึ่ง มูลค่าของหลักทรัพย์อาจมีการเติบโตในลักษณะ ที่ไม่มีการใช้ call option สถานการณ์ดังกล่าวแสดงไว้ดังรูป เนื่องจากมูลค่าของหลักทรัพย์ต่ำกว่าราคาที่ใช้สิทธิจึงทำให้ Call option หมดอายุโดยไม่ได้ใช้สิทธิ

- จากตารางสรุปการปรับสมดุลรายสัปดาห์ของ Investment firm ตามแนวทางการป้องกัน ความเสี่ยงด้วย Delta
- สังเกตได้ว่า ณ วันหมดอายุ investment firm จะไม่มีหลักทรัพย์เหลืออยู่เลย (เหตุผลที่ไม่ จำเป็นต้องมีเนื่องจากจะไม่มีการใช้ call option)
- ดังนั้นรายได้สุทธิของ Investment firm จะมาจาก การขาย call option และการป้องกันความเสี่ยง จาก position ดังกล่าวคือ

$$29,615.50 - 29,669 = -\$53.50$$

"ในกรณีนี้บริษัทจะสูญเสียเงินจำนวนเล็กน้อย จากการทำธุรกรรมทั้งหมดที่กล่าวมา"

			Shares	Interest	Cumulative
Week	\mathbf{S}	Δ	Held	\mathbf{Cost}	\mathbf{Cost}
0	100.00	0.389813	3898	300	389800
1	101.71	0.440643	4406	340	441769
2	100.43	0.386757	3868	299	388077
3	100.91	0.394649	3946	305	396247
4	103.37	0.482725	4827	375	487621
5	97.69	0.246176	2462	198	256959
6	91.95	0.071229	712	74	96244
7	91.12	0.043022	430	54	70623
8	92.81	0.050427	504	60	77545
9	95.45	0.078574	786	80	104521
10	97.75	0.110154	1102	104	135491
11	96.58	0.036209	362	49	64126
12	95.40	0.001508	15	24	31072
13	95.10	0.0	0	0	29669

ตารางที่ 9.2 การป้องกันความเสี่ยงของ Delta โดยใช้การปรับสมดุลพอร์ตโฟลิโอ ในช่วงเวลารายสัปดาห์สำหรับ option ที่จะหมดอายูแล้วและไม่ได้ใช้สิทธิ

Conclusion

การปรับสมดุลพอร์ตโฟลิโอ อาจเกิดขึ้นไม่มากก็น้อยกว่า รายสัปดาห์อย่างที่เคยทำใน 2 ตัวอย่างที่กล่าวถึงก่อนหน้านี้

GAMMA (Γ)

ในบทที่ 8 "Gamma (Г)" เป็น Second partial derivative ของ Portfolio ที่เกี่ยวข้องกับ มูลค่าของหลักทรัพย์อ้างอิง

OC

กล่าวอีกนัยหนึ่ง Gamma คือ อัตราการเปลี่ยนแปลงของ Delta เทียบกับ S

01

หาก |Γ| มีขนาดใหญ่ หมายความว่า Δ จะเปลี่ยน อย่างรวดเร็วโดยมีการเปลี่ยนแปลงเล็กน้อยใน S ในกรณีนี้อาจจำเป็นต้องปรับสมดุล position investment firm บ่อยครั้ง

02

ถ้า | Г | มีขนาดเล็ก หมายความว่า ∆ จะค่อนข้างไม่ไวต่อการเปลี่ยนแปลงใน S เพราะฉะนั้นอาจจะไม่จำเป็นต้องปรับสมดุลบ่อยนัก ดังนั้น investment firm จึงสามารถตรวจสอบ Gamma เพื่อกำหนดความถี่ในการปรับสมดุล position ของบริษัท

3

Delta Neutral Portfolios

สมมติว่าพอร์ตโฟลิโอประกอบด้วยการผสมผสานเชิงเส้นตรง (สร้าง portfolio ตามวิธีที่เหมาะสมจาก Sec. Delta Hedging)

Portfolio

Short position in European call option

Long position in Security

Result : ได้มูลค่าสุทธิของ Portfolio (P) คือ

$$P = C - \Delta S = C - \frac{\partial C}{\partial S} \Big|_{S_0} S, \quad (9.1)$$

$$P = C - \Delta S = C - \frac{\partial C}{\partial S} \Big|_{S_0} S, \qquad (9.1)$$

- S₀ คือราคาของหลักทรัพย์ ณ เวลาที่มีการป้องกันความเสี่ยงเกิดขึ้น
- โดยขนาดของ P จะเป็นไปตามสมการของ Black-Scholes
 โดยที่ C และ S มีการทำแยกกันและสมการนี้เป็นเส้นตรง
 ดังนั้นจึงสมเหตุสมผลที่จะพิจารณา Delta สำหรับพอร์ตโฟลิโอ
- อนุพันธ์ย่อยของ Portfolio ทั้งหมดเทียบ S แสดงถึง ความไวของมูลค่าของ Portfolio ต่อการเปลี่ยนแปลงใน S
- การแยกความแตกต่างทั้งสองด้านของสมการที่ 9.1
 เทียบกับ S ได้ผลลัพธ์ดังนี้

$$\frac{\partial P}{\partial S} = \frac{\partial C}{\partial S} - \frac{\partial C}{\partial S} \bigg|_{S_0}$$

ผลลัพธ์ดังกล่าวจะเท่ากับศูนย์เมื่อ S = S₀ (เช่น ขณะที่มีการป้องกันความเสี่ยงเกิดขึ้น) และจะมีค่าเข้าใกล้ศูนย์มากขึ้นเมื่อค่า S เข้าใกล้ S₀ ด้วยเหตุนี้พอร์ตโฟลิโอที่มีการป้องกัน ความเสี่ยงโดยใช้การป้องกันความเสี่ยงแบบ Delta บางครั้งจึงเรียกว่า Delta neutral.

สมมติว่าอัตราดอกเบี้ยไร้ความเสี่ยงคงที่และความผันผวนขอหลักทรัพย์ ไม่มีการเปลี่ยนแปลง ดังนั้นจะใช้ Taylor series expansion เพื่อหามูลค่าของพอร์ตโฟลิโอในแง่ของ t และ S คือ

$$\begin{cases} P = P_0 + \frac{\partial P}{\partial t}(t - t_0) + \frac{\partial P}{\partial S}(S - S_0) + \frac{\partial^2 P}{\partial S^2} \frac{(S - S_0)^2}{2} + \cdots \\ \delta P = \theta \delta t + \Delta \delta S + \frac{1}{2} \Gamma(\delta S)^2 + \cdots \end{cases}$$

- Terms ที่ถูกละเว้นทั้งหมดในอนุกรมเทย์เลอร์
 เกี่ยวข้องกับยกกำลังของ δt ที่มากกว่า 1
- เทอมของ Gamma จะยังคงอยู่เนื่องจากตัวแปรสุ่ม โดย การสุ่ม S เป็นไปตามกระบวนการสุ่มที่ขึ้นอยู่กับ √8t ดูสมการที่ (5.38) หากพอร์ตโฟลิโอได้รับการป้องกันความ เสี่ยงโดยใช้การป้องกันด้วย delta ดังนั้น ∆ ของพอร์ตโฟ ลิโอจะเท่ากับศูนย์

$$\delta P \approx \theta \delta t + \frac{1}{2} \Gamma(\delta S)^2,$$
 (9.2)

การประมาณที่ละเว้น term ที่เกี่ยวข้องกับ การยกกำลังของ δt มากกว่า 1 Term ที่เกี่ยวข้องกับ θ ไม่ใช่ stochastic ดังนั้นจึงต้องคงไว้ แต่อย่างไรก็ตามการประมาณค่าสามารถปรับปรุงเพิ่มเติมได้ หากพอร์ตโฟลิโอสามารถทำให้เป็น Gamma neutral เช่น หากสามารถปรับองค์ประกอบในพอร์ตโฟลิโอเพื่อให้ Γ = 0

4

Gamma Neutral Portfolios

DELTA NEUTRAL PORTFOLIOS

การสร้าง Delta Neutral Portfolio สามารถสร้างได้โดยการใช้เพียงแค่มี Linear combination ระหว่าง Option + Underlying Security ดังสมการ เนื่องจากอนุพันธ์อันดับสองของ S เทียบกับตัวมันเองนั้นเท่ากับศูนย์

$$\frac{\partial P}{\partial S} = \frac{\partial C}{\partial S} - \frac{\partial C}{\partial S} \bigg|_{S_0}$$

Short call option + Long Underlying Security

GAMMA NEUTRAL PORTFOLIOS

เราไม่สามารถการสร้าง Gamma Neutral Portfolio แบบเดียวกันกับ Delta Neutral Portfolio องค์ประกอบนั้นก็คือ option หมายความว่าใน Portfolio จะต้องมี Option ตั้งแต่ 2 ประเภทขึ้นไป เช่น

ดังนั้นจะสามารถสร้าง Portfolio ลักษณะนี้ได้โดยจัดการให้มี องค์ประกอบที่ขึ้นอยู่กับ S แบบ Non-linear

Portfolio:

Sell European call option (t = 3/12 yr.) and Buy European call option (t = 6/12 yr.) *In the same underlying security*

Portfolio:

Sell European call option (t = 3/12 yr.) and Buy European call option (t = 6/12 yr.) *In the same underlying security*

Type of option	Number Option	Expiry Date
Sell European call option	W _e	t = 3/12 yr.
Buy European call option	w _l	t = 6/12 yr.

- สามารถกำหนดจำนวนของ option แต่ละประเภทได้เพื่อให้ $\Gamma_P = 0$
- เมื่อทำให้เป็น Gamma Neutral Portfolio แล้ว เราสามารถเพิ่มหลักทรัพย์อ้างอิงเข้ามาใน Portfolio ได้ เพื่อให้เป็น Delta Neutral Portfolio
- การเพิ่มหลักทรัพย์เข้ามาจะไม่ส่งผลต่อค่า Gamma
 เนื่องจากหลักทรัพย์มี Γ = 0
- เมื่อจัดการทั้ง Delta และ Gamma แล้ว สำหรับสมการ ของ Gamma Neutral Portfolio จะถูกลดรูปให้เหลือ

The gamma of Portfolio is

$$\Gamma_P = w_e \Gamma_e - w_l \Gamma_l$$

The gamma of Portfolio is

$$\delta P \approx \theta \delta t$$
, (9.3)

Sell European call option

In same underlying stock

Spot price	\$100	$S_0 = 100
Strike price	\$102	X = \$102
Expiry date	3 months	$t = \frac{1}{4}yr.$
Risk-free rate	2.5%	$r_f = 2.5\% per yr.$
Volatility	22%	$\sigma = 22\%$

Buy European call option

In same underlying stock

Spot price	\$100	$S_0 = \$100$
Strike price	\$102	X = \$102
Expiry date	6 months	$t = \frac{1}{2}yr.$
Risk-free rate	2.5%	$r_f = 2.5\% per yr.$
Volatility	22%	$\sigma = 22\%$

From Eq. (8.10)
$$\Gamma = \frac{e^{\frac{-\omega^2}{2}}}{\sigma S \sqrt{2\pi (T-t)}} \begin{cases} \Gamma_3 = 0.03618 \\ \Gamma_6 = 0.02563 \end{cases}$$

 $0.03618w_3 - 0.02563w_6 = 0$

จะเป็น Gamma Neutral Portfolio ณ จุดใดก็ได้ในจตุภาคแรกของ w3w6 - space

$$0.03618w_3 - 0.02563w_6 = 0$$

- หากเราขาย option อายุ 3 เดือนได้ w_3 = 100,000 ถ้าจะทำให้ Portfolio เป็น Gamma neutral เราต้องซื้อ option อายุ 6 เดือนให้ w_6 = 141,163
- ดังนั้นก่อนที่จะรวบรวมหุ้นอ้างอิงไว้ในพอร์ตโฟลิโอ จะได้ Delta ของ Portfolio คือ

$$w_3\Delta_3 - w_6\Delta_6 = (100,000)(0.4728) - (141,163)(0.5123) = (-25,038)$$

$$w_3\Delta_3 - w_6\Delta_6 = (100,000)(0.4728) - (141,163)(0.5123) = (-25,038)$$

- ดังนั้นพอร์ตโฟลิโอสามารถทำให้เป็น Delta neutral
 ได้หากมีการขายหุ้นอ้างอิงจำนวน 25,038 หุ้น
- จากรูปที่ 9.5 แสดงให้เห็นว่าช่วงของมูลค่าหุ้น อ้างอิงจะค่อนข้างกว้างและมูลค่าของ Portfolio ยังคงใกล้เคียงกับค่าเดิม

DELTA NEUTRAL PORTFOLIOS

รูปที่ 9.5 มูลค่ารวมของพอร์ตโฟลิโอที่เป็นแบบ Gamma neutral ที่ไม่อ่อนไหวต่อการเปลี่ยนแปลงมูลค่าของหลักทรัพย์อ้างอิงในช่วงต่าง ๆ

1

- ✓ การอธิบายเรื่องการป้องกันความเสี่ยงนี้ ยังห่างไกลจากความสมบูรณ์
- ✓ โดยจะมุ่งเน้นไปที่การสร้างมูลค่าของ Portfolio ให้ทนทานต่อการเปลี่ยนแปลงมูลค่าของหลักทรัพย์เป็นหลัก

2

- ✓ ในบทนี้มีการสันนิษฐานด้วยว่าสามารถซื้อ option และ หลักทรัพย์ที่จำเป็นได้เพื่อสร้างการป้องกันความเสี่ยง ตามที่ต้องการ
- ✓ ในทางปฏิบัติสิ่งนี้อาจไม่สามารถทำได้เสมอไป

3

- ✓ ในความเป็นจริงแล้ว Risk-free interest rate และ
 Volatility ของหุ้น ยังส่งผลต่อมูลค่าของพอร์ตการลงทุนด้วย
- ✓ จาก Rho และ Vega ที่กล่าวถึงในบทที่ 8 สามารถใช้ในการ ปรับ Portfolio เพื่อป้องกันความเสี่ยงจากการเปลี่ยนแปลง ของ Interest rate และ Volatility

เช่น Investment firm อาจจะไม่สามารถซื้อหุ้นในปริมาณที่ เพียงพอเพื่อสร้าง Portfolio แบบ Delta neutral หรือ Gamma neutral ได้

KCA	AR.	Q		Vol/Value(K) 18,100 219
	ume	Bid	Offer	Volume
	21,200	12.10	12.20	4,800
Volume สำหรับซื้อหุ้น ไม่เพียงพอ	21,700 31,100	12.00 11.90	12.30 12.40	36,200 19,000
เมเพยงพอ	20,600	11.80	12.50	24,500
	22,100	11.70	12.60	22,200

ทดแทนด้วยหลักทรัพย์อื่นที่เกี่ยวข้องหรือเครื่องมือทางการเงิน อื่น ๆ เพื่อสร้างการป้องกันความเสี่ยง กลยุทธ์นี้จะกล่าวถึงใน บทถัดไปหลังจากแนะนำแนวคิดทางสถิติเบื้องต้นแล้ว

Thanks!