Newton's iteration:

$$x_0 = \text{initial grees}$$

 $x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}$

auadratic convergence

3.3 Secant metrod:

when the derivative of the function is not easily accessible, we approximate the slope (f'(xn)) by the slope of the se can, i.e.

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

For secont's method, we let $x := x_n$, $h := x_{n-1} - x_n$ So that $f'(x_n) \approx \frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n}$

Susstibuting this into the Newton sequence we get

$$\times_{n+1} = \times_n - f(\times_n) \frac{\times_{n-1} - \times_n}{f(\times_{n-1}) - f(\times_n)}$$

 $\int_{\mathcal{T}} \int_{X_{n+1}} \left(x_n - x_{n-1} \right) dx$

Theorem 28: Led $f \in C^2(Ta, b])$ and $r \in (a, b)$ s. that f(r) = 0 and f'(r) = 0. Furthermore let $x_{n+1} = x_n - \frac{x_{n-1} - x_n}{0}$ $f(x_n)$

for n = 1, 2, 3, ... Then those exists 8 >0 such that when Ir-Xo/ < S, Ir-X, 1< &

we have
a)
$$\lim_{n\to\infty} |r-x_n| = 0$$
 (=> $\lim_{n\to\infty} x_n = \tau$]

b)
$$|x - x_{n+1}| \leq M |x - x_n|^{\alpha}$$

with $\alpha = \frac{1 + \sqrt{57}}{2} \approx 1.618$

This is actually super-linear convergence, be cause

$$\lim_{N\to\infty} \frac{\left| x - x_{N+1} \right|}{\left| x - x_N \right|} \le \lim_{N\to\infty} M \left| x - x_N \right|^{d-1} = 0$$

Proof: Practice

Summay:	Regularity	Roximby of	# inihial	rod between points	# function calls	Converguel
Bisechian	C°	No	2	Yes	(linear
Newton	C ²	Yes	ι	No	2	guadratic
Secant	C 2	Yes	2	No	1	Super-lineor

3.4 Systems of non-linear equations:

given a vector valued function

we want to solve the equation $\beta(\vec{x}) = \vec{O}$, i.e. find a vector it & Rm such that $f(\vec{r}) = \vec{o}$.

Sud function of is represented by

$$f(\dot{x}) = \begin{pmatrix} f_i(\dot{x}) \\ \vdots \end{pmatrix}$$
 where $f_i: \mathbb{R}^m \longrightarrow \mathbb{R}$

$$\left\langle \int_{\mathbf{m}} \left(\hat{\mathbf{x}} \right) \right\rangle$$
 for $i = 1, ..., m$

and vectors $\vec{x} = (x_{(1)}, \dots, x_{(m)}) \in \mathbb{R}^m$.

Thus, $J(\vec{x}) = \vec{0}$ means that we need to simultane ously solve $[\hat{f}_i(\vec{x}) = 0]$ for all i = 1, ..., m

The generalitation of denovative for such function is the so called Jacobian mastex:

$$\mathbb{D}f = \begin{bmatrix} \frac{\partial f_1}{\partial x_{(1)}} & \frac{\partial f_1}{\partial x_{(2)}} & \cdots & \frac{\partial f_1}{\partial x_{(m)}} \\ \vdots & & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_{(1)}} & \frac{\partial f_m}{\partial x_{(2)}} & \cdots & \frac{\partial f_m}{\partial x_{(m)}} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Example 29:

$$\frac{\partial f_{i}}{\partial x_{ij}} = \text{portial derivative}$$

$$= \text{slope of the } i\text{-th}$$

$$\text{let } m = 3 \text{, i.e. } f: \mathbb{R}^{3} \to \mathbb{R}^{3}, \quad \text{w.r.t the } j\text{-th}$$

$$\text{let } f_{i} = \begin{bmatrix} x_{(1)} + x_{(2)} + x_{(3)} - 3 \\ x_{(i)}^{2} + x_{(2)} + x_{(3)}^{2} - 5 \end{bmatrix}$$

$$= \begin{bmatrix} x_{(1)} + x_{(2)} + x_{(3)}^{2} - 5 \\ x_{(i)}^{2} - x_{(i)}x_{(2)} - x_{(i)}x_{(3)} - 1 \end{bmatrix}$$

Then the Jacobi matrix (Jacobian) is

$$(\mathcal{D}_{f})(\vec{x}) = \begin{bmatrix} 1 & 1 & 1 \\ 2x_{(1)} & 1 & 2x_{(3)} \\ e^{x_{(1)}} & -x_{(1)} & -x_{(1)} \\ -x_{(3)} \end{bmatrix}$$

Now, the Newson's method can be generalised to this setting by the iteration:

$$\hat{\vec{X}}_{n+1} = \hat{\vec{X}}_{n} - (\mathbb{D}_{\vec{J}})^{-1} (\hat{\vec{X}}_{n}) f(\hat{\vec{X}}_{n})$$

In precice, the inverse (DS) - need not be calculated, but a system

$$\left[\iint (\dot{x}_n) \right] \dot{y} = \int (\dot{x}_n)$$

may be solved. Then $\dot{\vec{y}} = [DJ(\vec{x}_h)]^{-1} J(\vec{x}_h)$

4. Interpolation and apposimation:

Motivadian: Viscosity of water has been measured for venious temperatures:

temp/oc	0	5	10	ا ا
viscosity/	1.792	1.519	1,308	1.140

Question: What is the viscosity at temp = 8°C

Solution: And cosity

Find a linear function that attains the weasered values at T=5 and T=10. Then evaluate this function at T=s8.

$$v(T) = \frac{T - S}{10 - S} T_{10}$$

$$= \frac{T-5}{5}T_{10} + \frac{10-T}{5}T_{5}$$

and so

$$v(8) = (3) + (2) T_5$$

that wears, in order to interpolate limorly, the given values To and To weed to be weighted with the cut-ratios $\frac{2}{5}$, and additionables.

What, if the measured values looked like the

- a) approximate by piecewise linear interpolation
- b) polynomial intepe lation.