	The Lunar Lander is a continuous state Markov Decision Process (MDP) because:	
	The state contains numbers such as position and velocity that are continuous valued.	
	O The reward contains numbers that are continuous valued	
	\bigcirc The state has multiple numbers rather than only a single number (such as position in the x -direction)	
	$\ \ \bigcap$ The state-action value $Q(s,a)$ function outputs continuous valued numbers	
	Correct That's right!	
2.		1 / 1 point
	In the learning algorithm described in the videos, we repeatedly create an artificial training set to which we apply supervised learning where the input $x=(s,a)$ and the target, constructed using Bellman's equations, is y =?	
	$igotimes y = R(s) + \gamma \max_{a'} Q(s',a')$ where s' is the state you get to after taking action a in state s	
	$\bigcirc \ y = \max_{a'} Q(s',a')$ where s' is the state you get to after taking action a in state s	
	$\bigcirc \ y = R(s')$ where s' is the state you get to after taking action a in state s	
	$\bigcirc \ y = R(s)$	
	⊘ Correct	
;	3.	1/1 poin
	You have reached the final practice quiz of this class! What does that mean? (Please check all the answers, because all of them are correct!)	
	✓ What an accomplishment you made it!	
	Andrew sends his heartfelt congratulations to you!	
	⊘ Correct	
	✓ The DeepLearning.AI and Stanford Online teams would like to give you a round of applause!	
	⊘ Correct	
	✓ You deserve to celebrate!	
	⊘ Correct	