Calculabilité et complexité TD 7

STI 2A Année 2012-2013

Quelques problèmes NP-Complets

Afin de montrer qu'un problème \mathcal{P}_1 est NP-Complet, il faut déterminer une réduction polynomiale de celui-ci dans un autre. C'est-à-dire, il faut partir d'un problème \mathcal{P} connu comme étant NP-complet et transformer une instance quelconque du problème \mathcal{P} dans une instance du problème \mathcal{P}_1 de telle sorte que la réponse soit la même dans les deux problèmes. Les deux difficultés sont alors :

- trouver un bon problème candidat : la liste est assez longue, comme le montre l'étude de Garey et Johnson, en 1978, dans leur livre sur la NP-complétude, et qui fait encore référence actuellement.
- trouver la réduction adéquate. Pour cela, il faut une certaine expérience de ces transformations et une imagination importante.

Dans ce TD, nous étudierons quelques problèmes historiques.

Exercice 1 : Le problème Partition

Ce problème est posé de la manière suivante :

Données:

- Un ensemble fini X
- Une collection \mathcal{C} de sous ensembles de X

$$\mathcal{C} = \{X_1, X_2, \dots, X_m\}$$

Question : existe-t-il un sous-ensemble de \mathcal{C} qui forme une partition de X?

- **a**: Montrer que Partition est dans NP.
- **b**: On effectue une réduction à partir du problème 3-SAT. Soit F une formule booléenne sous forme 3-SAT. F est la conjonction de k clauses, w_1, \ldots, w_k , qui sont des disjonctions d'au plus trois littéraux. On suppose qu'il y a m variables booléennes : x_1, \ldots, x_m .

On construit un graphe biparti de la manière suivante :

- les sommets du graphe sont étiquetés par les varariables et les termes : $V = \{x_1, \ldots, x_m, w_1, \ldots, w_k\}$
- pour chaque clause, par exemple $w_1 = (x_1 \lor x_3 \lor \neg x_5)$, on ajoute les arêtes reliant le sommet correspondant à la clause aux sommets correspondant aux variables, ici, on ajoute (w_1, x_1) , (w_1, x_3) et (w_1, x_5) .

La réduction vers le problème Partition s'effectue de la manière suivante :

- Soit \mathcal{C}' , l'ensemble contenant tous les ensembles de la forme : $\{w_i\} \cup E'$ où E' est un sous-ensemble strict des arêtes incidentes à w_i . En reprenant l'exemple précédent, la clause w_1 génère les ensembles $\{w_i\}$, $\{w_i\} \cup \{(w_1, x_1)\}$, $\{w_i\} \cup \{(w_1, x_3)\}$, $\{w_i\} \cup \{(w_1, x_3)\}$, ..., sans $\{w_i\} \cup \{(w_1, x_1), \{(w_1, x_3), \{(w_1, x_5)\}\}$.
- Soit \mathcal{C}'' l'ensemble contenant tous les ensembles ayant l'une des formes suivantes :
 - $-\{x_j\} \cup E'_j$ avec E'_j est l'ensemble de toutes les arêtes (x_i, w_j) telles que x_i apparaît dans dans la clause w_j (sous sa forme positive);

 $-\{x_j\} \cup E_j''$ avec E_j'' est l'ensemble de toutes les arêtes (x_i, w_j) telles que $\neg x_i$ apparaît dans la clause w_j (sous sa forme négative).

- Soit
$$\mathcal{C} = \mathcal{C}' \cup \mathcal{C}''$$

Effectuer la transformation pour la formule booléenne suivante :

$$F = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor \neg x_4)$$

- c : Montrer que la transformation s'effectue de manière polynomiale.
- \mathbf{d} : Montrer que si F est une formule booléenne satisfiable, alors l'instance I de Partition correspondante admet une réponse positive.
- \mathbf{e} : Montrer que si l'instance I, venant de la transformation, admet une réponse positive, alors la formule F est satisfiable.
 - f: Conclure

Exercice 2 : Problème : Circuit Hamiltonien

Un problème classique en théorie des graphes est le circuit Hamiltonien : il s'agit de trouver un chemin qui passe une et une seule fois par chaque sommet. Il faut noter que le problème qui consiste à passe par toutes les arêtes est polynomial : il s'agit du problème des circuits eulériens. On s'intéresse au cas où le graphe est orienté.

a : Montrer que le problème est dans NP

La réduction s'effectue à partir de Partition et est assez fastidieuse.

b: Montrer que l'on peut déduire que la version non orientée de ce problème est aussi NP-complet. Pour cela, on peut remplacer chaque sommet v du graphe orienté par trois sommets v', v'', v''' et rajouter les arêtes $\{v', v''\}$ et $\{v'', v'''\}$; pour chaque arc (v_1, v_2) , on rajoute les arêtes $\{v'_1, v'''_2\}$.