

Finite element methods

Yuji Nakatsukasa

Many slides by Ricardo Ruiz Baier Some pictures from Andy Wathen Mathematical Institute, Oxford Computational Techniques InFoMM Centre for Doctoral Training Michaelmas Term 2019, Week 6

November 21, 2019

Finite element methods: references

- References (among many):
 - H. Elman, D. Silvester, A. Wathen, Finite Elements and Fast Iterative Solvers, OUP, 2014
 - P. E. Farrell, Finite Element Methods for PDEs, C6.4 lecture notes
 - E. Süli, Lecture Notes for FEM for PDEs people.maths.ox.ac.uk/suli/fem.pdf
 - Brenner and Scott, The Mathematical Theory of Finite Element Methods, Springer, 2007 (advanced, mathematical analysis)
- For software, we suggest FEniCS (demo session later by Fede Danieli) or IFISS (Elman-Silvester-Wathen book)
- For advanced questions, we suggest asking our amazing local experts!
 - P. E. Farrell (theory, programming & applications)
 - E. Süli (analysis, theory)
 - A. Wathen (preconditioning, LA aspects)

Classification of PDEs

$$au_{xx} + bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$$

- elliptic: $b^2 4ac < 0$ e.g. Poisson problem $\nabla^2 u = f$
- parabolic: $b^2 4ac = 0$ e.g. heat equation $u_t = \nabla^2 u - f$
- hyperbolic $b^2 4ac > 0$ e.g. wave equation $u_{tt} = c^2 u_{xx}$

Finite elements: essentials

e.g. consider Poisson problem $\nabla^2 u = f$

- Approximate solution u with piecewise polynomial $\hat{u}(x) = \sum_{i=1}^{n} c_i \phi_i(x)$ e.g. $\phi_i(x)$: hat function
- Integration by parts+divergence thm to 'move' one derivative, 'relax' smoothness requirement
- Find c_i via 'weak solution' by requiring Galerkin condition: 'residual is orthogonal to test functions', in LA terms, $Q^T(Ax b) = 0$ (recall least-squares $\min_x ||Ax b||$, and CG $Q^T(AQy b) = 0$)

Poisson problem in weak form I

First, we stick to the Poisson problem on a bounded domain (in strong form)

$$-\nabla^2 u = f$$
 in $\Omega \subset \mathbb{R}^d$, $u = 0$ on $\partial \Omega$.

Weak formulation

- multiply by a test function $v \in V$
- integrate by parts

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\partial \Omega} (\nabla u \cdot \mathbf{n}) v \, ds = \int_{\Omega} f v \, dx$$

- BCs $\rightarrow V = \{ w \in H^1(\Omega) : w = 0 \text{ on } \partial \Omega \}$ (roughly, $H^k(\Omega) : k$ -times differentiable with kth der $\in L^2(\Omega)$)
- find $u \in V$ such that

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\Omega} f v \, dx, \qquad \forall v \in V$$

Weak form for poisson, step by step I

$$-\nabla^2 u = f$$
 in $\Omega \subset \mathbb{R}^d$, $u = 0$ on $\partial \Omega$.

1. Multiply by a test function $v \in V$ and integrate:

$$-\int_{\Omega} v \nabla^2 u dx = \int_{\Omega} f v dx$$

2. Integrate by parts: first recall product rule

$$v\nabla^2 u + \nabla v \cdot \nabla u = \nabla \cdot (v\nabla u)$$

Integrate $-\int_{\Omega} v \nabla^2 u dx = \int_{\Omega} \nabla v \cdot \nabla u dx - \int_{\Omega} \nabla \cdot (v \nabla u) dx$. By diver, thm. $\int_{\Omega} \nabla \cdot (v \nabla u) dx = \int_{\partial \Omega} (\nabla u \cdot \mathbf{n}) v ds$ (\mathbf{n} : outward normal vec)

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\partial \Omega} (\nabla u \cdot \mathbf{n}) v \, ds = \int_{\Omega} f v \, dx \tag{1}$$

 \rightarrow reduced regularity: before $(u \in C^2(\bar{\Omega}))$, after $(u \in C^1(\bar{\Omega}))$

Weak form for poisson, step by step II

3. Take test functions $v = \xi_1(x), \dots, \xi_n(x)$ in (1) (simplest case: $\phi_i = \xi_i = \text{hat func}$) to find $\hat{u}(x) = \sum_{i=1}^n c_i \phi_i(x)$ via $n \times n$ linear system $A\mathbf{c} = \mathbf{f}$, where

$$A_{ij} = \int_{\Omega} \nabla \phi_j \cdot \nabla \xi_i \, dx - \int_{\partial \Omega} (\nabla \phi_j \cdot \mathbf{n}) \xi_i \, ds, \quad f_i = \int_{\Omega} f \, \xi_i \, dx$$

- When $\phi_i = \xi_i$ =hat functions, reduced regularity significant–why?
- We'll take $\xi_i=0$ on boundary $\partial\Omega$

Linear system is sparse and positive definite

Recall
$$A_{ij} = \int_{\Omega} \nabla \phi_j \cdot \nabla \xi_j \, dx$$

If support of ϕ_j , ξ_j do not overlap, $A_{ij} = 0$ $\Rightarrow A$ highly sparse! exploit in solving $A\mathbf{c} = \mathbf{f}$

For nonzero entries, compute A_{ij} via splitting into

Sparsity

What is the sparsity structure of A here?

- Taking $\phi_i = \xi_i = 0$ on $\partial \Omega$, $A_{ij} = \int_{\Omega} \nabla \phi_j \cdot \nabla \xi_j \, dx$
- Then A symmetric positive definite:

$$v^{T}Av = \sum_{j=1}^{n} \sum_{i=1}^{n} v_{j}A_{ji}v_{i} = \sum_{j=1}^{n} \sum_{i=1}^{n} v_{j}\left(\int_{\Omega} \nabla \phi_{j} \cdot \nabla \phi_{j} dx\right)v_{i}$$
$$= \int_{\Omega} \left(\sum_{j=1}^{n} v_{j} \nabla \phi_{j}\right) \cdot \left(\sum_{i=1}^{n} v_{i} \nabla \phi_{j}\right) dx \ge 0.$$

• (preconditioned) conjugate gradient applicable/effective for $A\mathbf{c} = \mathbf{f}$

Mathematics

CDT InFoMM

November 21, 2019

FEM for PDEs

More generally

- In this special case, $V = H_0^1(\Omega)$
- If u=g on $\partial\Omega$ we rewrite the weak problem: find $u\in V_g$ such that

$$a(u,v) = F(v), \quad \forall v \in V_0$$

- Trial space: $V_g = \{ w \in H^1(\Omega) : w = g \text{ on } \partial \Omega \}$, test space: $V_0 = H^1_0(\Omega)$
- Alternatively: lifting strategy (solve the homogeneous weak form for $u u_g$ where u_g is a function st. $u_g = g$ on $\partial \Omega$)
- common notation: $(u, v) := \int_{\Omega} uv \, dx$, $||v||_{0,\Omega}^2 = (v, v)$
- u solution of the weak formulation need not belong to $C^2(\bar{\Omega})$, but if it does, then it is a *strong solution*

Theorem

Well-posedness

(Lax-Milgram) Let $(V, \|\cdot\|_V)$ be a Hilbert space and V_0 a closed subspace and consider the problem: find $u \in V$ st

$$a(u,v) = F(v), \quad \forall v \in V_0.$$

Assume

- $a(\cdot,\cdot)$ is bounded: $|a(v,w)| \le C_1 ||v||_V ||w||_V$, $v,w \in V$
- $a(\cdot,\cdot)$ is V-elliptic (or coercive): $a(v,v) \ge C_2 ||v||_V^2$, $v \in V$
- $F(\cdot)$ is bounded: $|F(v)| \leq C_3 ||v||_V$, $v \in V$

Then the problem is uniquely solvable and $||u||_V \le C_2^{-1} ||F||_{V'}$.

(But this is not a solution method!)

Back to Mr. Poisson

Well-posedness

Let's check it: find $u \in H^1(\Omega)$ such that

$$u = 0$$
 on $\partial \Omega$, and $a(u, v) = F(v) \quad \forall v \in H_0^1(\Omega)$.

- $H^1(\Omega)$ with the norm $\|v\|_{1,\Omega}^2 := \|v\|_{0,\Omega}^2 + \|\nabla v\|_{0,\Omega}^2$ is a Hilbert space
- the bilinear form is bounded (C-S and norm def.)
- the linear functional is bounded (C-S and norm def.)
- the bilinear form is $H^1(\Omega)$ -elliptic (established using Poincaré ineq.)

Cauchy-Schwarz inequality: $|(v, w)| \le ||v|| ||w||$, for $v, w \in V$

Poincaré inequality: $\|v\|_{0,\Omega} \le C \|\nabla v\|_{0,\Omega}$, for $v \in H_0^1(\Omega)$

Galerkin method

Let's now consider V_h subspace of V, with dim $V_h = n < \infty$

• Replace V by V_h in the weak form. We get: find $u_h \in V_h$ (an approximation of u) st.

$$a(\mathbf{u}_h, \mathbf{v}_h) = F(\mathbf{v}_h) \qquad \forall \mathbf{v}_h \in V_h.$$

- Done. This was Galerkin's method
- It can be reduced to a set of n linear eqns. and n unknowns
- Comparing the "continuous" and "discrete" problems gives the Galerkin orthogonality ("strong" consistency)

$$a(u-u_h,v_h)=0 \quad \forall v_h \in V_h$$

(using that a, F are unchanged and that a is linear)

Galerkin method

Further properties

 $V_h \subset V \Rightarrow \text{Lax-Milgram also applicable for the Galerkin problem} \Rightarrow$

- The solution of the Galerkin problem exists and is unique
- The method is uniformly stable wrt h since $\|u_h\|_V \leq C_2^{-1} \|F\|_{V'}$

Céa's estimate: $a(\cdot,\cdot)$ bilinear, continuous and V-elliptic. Then

$$||u-u_h||_V \le C_1 C_2^{-1} \inf_{v_h \in V_h} ||u-v_h||_V$$

Convergence:

$$\lim_{h\to 0} \|u_h - u\|_{V} = 0,$$

valid if V_h is chosen adequately

Galerkin method optimality in energy norm

Theorem:
$$\|\nabla u - \nabla u_h\| = \min\{\|\nabla u - \nabla v_h\| : v_h = \sum_{i=1}^n c_i \phi_i\},$$

where
$$\|\nabla u\|^2 := \int_{\Omega} (\nabla u \cdot \nabla u) dx (=: a(u, u))$$
, energy norm

Proof:

$$\|\nabla u - \nabla u_h\|^2 = a(u - u_h, u - u_h) = a(u - u_h, u - v_h + v_h - u_h)$$

= $a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h)$
= $a(u - u_h, u - v_h)$

due to Galerkin orthogonality, since $a(u-u_h,v_h-u_h)=\int_{\Omega}(\nabla(u-u_h)\cdot\nabla(v_h-u_h))dx=(r,v_h-u_h).$ By Cauchy-Schwarz,

$$a(u-u_h, u-v_h) \leq \|\nabla(u-u_h)\| \cdot \|\nabla(u-v_h)\|$$

Bases and the FEM

- Let $\{\phi_i\}$ be a basis of V_h
- ⇒ we have only to guarantee that the Galerkin problem holds for all functions of the basis

$$a(u_h,\phi_i)=F(\phi_i), \qquad i=1,\ldots,n.$$

- Since $u_h \in V_h$, then $u_h(x) = \sum_{j=1}^n c_j \phi_j(x)$, (with unknown coeffs)
- Then $\sum_{j=1}^n c_j a(\phi_j, \phi_i) = F(\phi_i), \qquad i = 1, \ldots, n$
- A: stiffness matrix $(a_{ij} = a(\phi_i, \phi_i))$, **f**: load vector $f_i = F(\phi_i)$
- $A\mathbf{c} = \mathbf{f}$. If associated to a coercive problem, then A is positive definite

But V_h still not revealed! (which will actually dictate the form of A)

Galerkin method II

Let's "discretize" the remainder of the problem (spaces, weak form, domain)

- Polygonal domain $\Omega \subset \mathbb{R}^2$, partition it into triangles
- If two triangles have some intersection, it is either on common vertex or a common full edge. In particular, two different triangles do not overlap
- ullet h: length of the longest edge of all K in the "regular mesh" \mathscr{T}_h

Galerkin method III

Bases and the FEM

- \mathbb{P}_r : polynomials of degree r or less. E.g. $\mathbb{P}_1 = \{g(x) = a + bx_1 + cx_2, \text{ with } a, b, c \in \mathbb{R}\}$
- $\dim \mathbb{P}_r = (r+1)(r+2)/2$
- On each $K \in \mathcal{T}_h$, v_h is well-defined knowing its value in dim \mathbb{P}_r points

Finite element space

$$X_h^r = \{ v_h \in C^0(\bar{\Omega}) : v_h|_K \in \mathbb{P}_r, \ \forall K \in \mathscr{T}_h \}$$

and the one accounting for the BC

$$\overset{\circ}{X_h^r} = \{v_h \in X_h^r : v_h|_{\partial\Omega} = 0\}$$

Galerkin method IV

Bases and the FEM

OXFORD Mathematical

Lemma

If $v \in C^0(\bar{\Omega})$ and $v \in H^1(K)$ for all $K \in \mathscr{T}_h$, then $v \in H^1(\Omega)$.

For our Poisson problem (with the given BC) we set $V_h = \overset{\circ}{X_h^r}$

OK. V_h more or less clear, but what about $\{\phi_j\}$?

Since (in this particular case) $V_h = X_h^r$, each v_h is characterized by values in the "nodes" \mathbf{N}_j , $i=1,\ldots,n$. Thus, a basis can be

$$\phi_j(\mathbf{N}_i) = \delta_{ij} = \begin{cases} 0 & i \neq j, \\ 1 & i = j \end{cases}$$

Galerkin method V

OXFORD Mathematical

If r = 1, the nodes coincide with the triangle vertices (in the interior). [a.k.a. Lagrangian Finite Elements]

• $v_h \in V_h$ is then a linear combination of ϕ_i 's:

$$v_h(x) = \sum_{i=1}^n v_i \phi_i(x) \qquad \forall x \in \Omega,$$

Galerkin method VI

Bases and the FEM

- v_i can be evaluations at the nodes $v_i = v_h(\mathbf{N}_i)$
- Back to Poisson

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h \, dx = \int_{\Omega} f v_h \, dx \qquad \forall v_h \in V_h$$

• Expanding also the discrete solution, the Galerkin method gives

$$\sum_{j=1}^{n} u_{j} \int_{\Omega} \nabla \phi_{j} \cdot \nabla \phi_{i} \, dx = \int_{\Omega} f \phi_{i} \, dx, \qquad i = 1, \dots, n$$

- Stiffness matrix $(n \times n)$ A with $a_{ij} = \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \, dx$
- Au = f

Other elements

Higher-order

Other boundary conditions I: inhomoegeneous

Inhomogeneous Dirichlet b.c.

$$-\nabla^2 u = f$$
 in $\Omega \subset \mathbb{R}^d$, $u = g$ on $\partial \Omega$.

• Take
$$u_h(x) = \sum_{j=1}^n c_j \phi_j(x) + \sum_{j=n+1}^{n+n_d} g(x_j) \phi_j(x)$$

- red term prescribed s.t. b.c. satisfied
- e.g. $\phi_{n+\ell}(x)$ hat func at $x_{n+\ell} \in \partial \Omega$
- ullet The rest remain same; note test space does not include $\phi_{n+\ell}$

Other boundary conditions II: Neumann

Neumann b.c.

$$-\nabla^2 u = f$$
 in $\Omega \subset \mathbb{R}^d$, $\nabla u \cdot \mathbf{n} = g$ on $\partial \Omega$.

Recall weak form

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = \int_{\partial \Omega} (\nabla u \cdot \mathbf{n}) v \, ds + \int_{\Omega} f v \, dx = \int_{\partial \Omega} g v \, ds + \int_{\Omega} f v \, dx$$

- Take $u_h(x) = \sum_{j=1}^{n+1} c_j \phi_j(x) \; (\phi_{n+\ell}(x) \; \text{nonzero on} \; \partial \Omega)$
- test space $\xi_j = \phi_j$, $j = 1, \dots, n + n_e$
- Note $\int_{\partial\Omega} gv \, ds$ influences right-hand side in $A\mathbf{c} = \mathbf{f}$
- Robin $(u + \nabla u \cdot \mathbf{n} = g \text{ on } \partial \Omega)$ or mixed $(u = g_1 \text{ on } \partial \Omega, \nabla u \cdot \mathbf{n} = g_2 \text{ on } \partial \Omega_2)$ b.c. possible

Analysis of FEM I

OXFORD Mathematical

Steps in estimating the error

1. Estimate the local interpolation error $\mathbf{v} - \prod_{K}^{r} \mathbf{v}$, where

$$\Pi_K^r: C^0(K) \to \mathbb{P}_r(K), \qquad v \mapsto \Pi_K^r v$$

2. Extension of the estimate to the whole mesh

$$|v - \Pi_K^r v|_{m,\Omega} \le Ch^{r+1-m} |v|_{r+1,K}, \quad m = 0,1$$

3. Error estimate in the "energy norm" (C indep. of h and u)

$$||u-u_h||_{1,\Omega} \le C_1 C_2^{-1} h^r |u|_{r+1,\Omega}$$

Evidently, 2 ways of increase accuracy (reduce h or increase r). The latter effective only if u is smooth enough...

If $u \in H^{p+1}(\Omega)$ for some p > 0, then

$$||u-u_h||_{1,\Omega} \le Ch^s|u|_{s+1,\Omega}, \quad s=\min\{r,p\}$$

Analysis of FEM II

Steps in estimating the error

Then, if e.g. $u \in H^2(\Omega)$ (i.e. p = 1), then going for polynomials of degree ≥ 2 won't get you more accuracy Summary:

\overline{r}	$u \in H^1(I)$	$u \in H^2(I)$	$u \in H^3(I)$	$u \in H^4(I)$	$u \in H^5(I)$
	(p = 0)	(p = 1)	(p=2)	(p=3)	(p=4)
1	converges	h^1	h^1	h^1	h^1
2	converges	h^1	h^2	h^2	h^2
3	converges	h^1	h^2	h^3	h^3
4	converges	h^1	h^2	h^3	$\boxed{h^4}$

Analysis of FEM III

Steps in estimating the error

Sometimes we're also interested in L^2 —norm estimates. For Poisson one can prove that if $u \in H^{p+1}(\Omega)$ for some p > 0, then

$$||u - u_h||_{0,\Omega} \le Ch^{s+1}|u|_{s+1,\Omega}, \quad s = \min\{r, p\}$$

Generalised Stokes equations Strong form

We study the *generalised Stokes* problem with homogeneous Dirichlet boundary conditions

$$\mathbf{u} - v\Delta \mathbf{u} + \nabla p = \mathbf{f} \quad \text{in } \Omega,$$

$$\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega,$$

$$\mathbf{u} = \mathbf{0} \quad \text{on } \partial \Omega,$$

- **u** vector field (in \mathbb{R}^2 or \mathbb{R}^3), p: pressure (scalar func.) the medium)
- describe the steady motion of an incompressible viscous fluid in a porous domain
- ullet the model is valid for $Re \ll 1$

Generalised Stokes equations

OXFORD Mathematica

Weak form

• Testing against \mathbf{v}, q , integrate over Ω , and apply IBP on the momentum equation: find $\mathbf{u} \in \mathbf{V}$ and $p \in Q_0$ (mixed FEM) st

$$\int_{\Omega} (\mathbf{u} \cdot \mathbf{v} + v \nabla \mathbf{u} : \nabla \mathbf{v}) - \int_{\Omega} p \nabla \cdot \mathbf{v} = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \quad \forall \mathbf{v} \in \mathbf{V},$$
$$\int_{\Omega} q \nabla \cdot \mathbf{u} = 0 \quad \forall q \in Q_0,$$

where
$$\mathbf{V} = [H_0^1(\Omega)]^d$$
 and $Q_0 = L_0^2(\Omega) = \{q \in L^2(\Omega) : \mathbf{q} = 0 \text{ on } \partial\Omega\},\ \nabla \mathbf{u} : \nabla \mathbf{v} = \nabla u_x \cdot \nabla v_x + \nabla u_y \cdot \nabla v_y \text{ (in 2d)}$

• bilinear forms $a: V \times V \to \mathbb{R}$ and $b: V \times Q \to \mathbb{R}$, and functional $\mathscr{F}(\mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}$:

$$a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} (\mathbf{u} \cdot \mathbf{v} + v \nabla \mathbf{u} \cdot \nabla \mathbf{v}), \qquad b(\mathbf{u}, q) = -\int_{\Omega} q \nabla \cdot \mathbf{u}.$$

• Find $(\mathbf{u},p) \in \mathbf{V} \times Q_0$ such that

$$a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) = \mathscr{F}(\mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{V},$$

 $b(\mathbf{u}, q) = 0 \quad \forall q \in Q_0,$

Galerkin (conforming) finite element method I

• For Stokes eqn: find $(\mathbf{u}_h, p_h) \in \mathbf{V}_h \times Q_h$ such that

$$a(\mathbf{u}_h, \mathbf{v}_h) + b(\mathbf{v}_h, p_h) = \mathscr{F}(\mathbf{v}_h) \quad \forall \mathbf{v}_h \in \mathbf{V}_h,$$

 $b(\mathbf{u}_h, q_h) = 0 \quad \forall q_h \in Q_h,$

• $\{V_h \subset V\}$ and $\{Q_h \subset Q_0\}$ are families of finite dimensional subspaces

Galerkin (conforming) finite element method II

Find $\mathbf{u} \in \mathbf{V}$ and $p \in Q_0$ (mixed FEM) st

$$\begin{split} \int_{\Omega} (\mathbf{u} \cdot \mathbf{v} + \nu \nabla \mathbf{u} : \nabla \mathbf{v}) - \int_{\Omega} p \nabla \cdot \mathbf{v} &= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \quad \forall \mathbf{v} \in \mathbf{V}, \\ \int_{\Omega} q \nabla \cdot \mathbf{u} &= 0 \quad \forall q \in Q_0, \end{split}$$

Associated linear system.

 $\bullet \ \{\phi_j\}_{j=1}^N$ and $\{\phi_k\}_{k=1}^M,$ basis functions for \pmb{V}_h and Q_h

•
$$\mathbf{u}_h = \sum_{j=1}^N u_j \varphi_j(x), \, \rho_h = \sum_{k=1}^M \rho_k \varphi_k(x), \, \text{with } N = \dim(\mathbf{V}_h), M = \dim(Q_h)$$

Choosing the basis functions as tests:

$$\begin{array}{rcl} \mathbf{A}\mathbf{U} + \mathbf{B}^T \mathbf{P} &= \mathbf{F}, \\ \mathbf{B}\mathbf{U} &= \mathbf{0}, \end{array} \Leftrightarrow \quad \begin{pmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{U} \\ \mathbf{P} \end{pmatrix} = \begin{pmatrix} \mathbf{F} \\ \mathbf{0} \end{pmatrix},$$

Galerkin (conforming) finite element method III

• $A \in \mathbb{R}^{N \times N}$ and $B \in \mathbb{R}^{M \times N}$ are associated to $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$

$$(A)_{ij} = a(\varphi_j, \varphi_i), \quad B_{kj} = b(\varphi_j, \phi_k), \qquad i, j = 1, \dots, N, \ k = 1, \dots, M.$$

- Unknowns: $\mathbf{U} = (u_1, ..., u_N)^T$, $\mathbf{P} = (p_1, ..., p_M)^T$
- Datum: $\mathbf{F} = (f_1, \dots, f_N)^T$ with $f_i = \int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi}_i$
- The (generalised) Stokes matrix

$$S = \begin{pmatrix} A & B^{T} \\ B & 0 \end{pmatrix} \in \mathbb{R}^{(N+M)\times(N+M)}$$

is block-symmetric (since A is symmetric) and indefinite (positive and negative eigenvalues)

 A stable solver is MINRES (symmetric variant of GMRES); preconditioning of course important

CG optimality from FEM arguments

 $Ax_* = b$, x_k : CG solution after k steps, i.e., $Q^T(Ax_k - b) = 0$. Then

$$x_k = \operatorname{argmin}_{x \in \operatorname{\mathsf{Span}}(Q)} \|x - x_*\|_A$$

Since $||y||_A^2 = (y, y)_A = y^T A y = ||A^{1/2}y||^2$, statement equivalent to

$$||A^{1/2}(x_k-x_*)|| = \min_{x} \{||A^{1/2}(x-x_*)|| : x = \sum_{i=1}^{\kappa} y_i q_i \}.$$

FEM-type proof: (recall Poisson) for any $y \in Q$,

$$||A^{1/2}(x_k - x_*)||^2 = (x_k - x_*, x_k - x_*)_A = (x_k - x_*, x_k - y + y - x_*)$$

$$= (x_k - x_*, y - x_*)_A + (x_k - x_*, x_k - y)_A$$

$$= (x_k - x_*, y - x_*)_A$$

due to Galerkin orthogonality:

$$(x_k - x_*, x_k - y)_A = (A(x_k - x_*), x_k - y) = (Ax_k - b, x_k - y) = (r, x_k - y) = 0.$$

By Cauchy-Schwarz,

$$||A^{1/2}(x_k-x_*)||^2 \le ||A^{1/2}(x_k-x_*)|||A^{1/2}(x_*-y)||.$$

Oxford Mathematics

CG convergence

 $A^T = A$ positive definite. Let $e_k := x_* - x_k$. $e_0 = x_*$, and

$$\begin{split} \frac{\|e_{k}\|_{A}}{\|e_{0}\|_{A}} &= \min_{x \in \mathcal{K}_{k-1}(A,b)} \|x_{k} - x_{*}\|_{A} / \|x_{*}\|_{A} \\ &= \min_{p_{k-1} \in \mathcal{P}_{k-1}} \|p_{k-1}(A)b - A^{-1}b\|_{A} / \|e_{0}\|_{A} \\ &= \min_{p_{k-1} \in \mathcal{P}_{k-1}} \|(p_{k-1}(A)A - I)e_{0}\|_{A} / \|e_{0}\|_{A} \\ &= \min_{p \in \mathcal{P}_{k}, p(0) = 1} \|p(A)e_{0}\|_{A} / \|e_{0}\|_{A} \\ &= \min_{p \in \mathcal{P}_{k}, p(0) = 1} \|Q\begin{bmatrix}p(\lambda_{1}) & & & \\ & \ddots & & \\ & & p(\lambda_{n})\end{bmatrix} Q^{T}e_{0} \|A / \|e_{0}\|_{A} \end{split}$$

Now
$$\|Q\begin{bmatrix}p(\lambda_1)\\ \vdots\\ p(\lambda_n)\end{bmatrix}Q^Te_0\|_A^2 = \sum_i \lambda_i p(\lambda_i)^2 (Q^Te_0)_i \le \max_j p(\lambda_j)^2 \sum_i \lambda_i (Q^Te_0)_i = \max_j p(\lambda_j)^2 \|e_0\|_A^2$$

Oxford Mathematics

CDT InFoMM

November 21, 2019

FEM for PDEs

CG convergence cont'd

$$\frac{\|e_k\|_A}{\|e_0\|_A} \le \|Q\|_A \|Q^T\|_A \min_{p \in \mathscr{P}_k, p(0) = 1} \max |p(\lambda_i)|$$

Now

$$\min_{p \in \mathscr{P}_k, p(0)=1} \max |p(\lambda_i)| \leq \left(\frac{\sqrt{\kappa_2(A)} - 1}{\sqrt{\kappa_2(A)} + 1}\right)^k$$

- note $\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)} = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$
- obtained by Chebyshev polynomial on $[\lambda_{min}(A), \lambda_{max}(A)]$

MINRES convergence

(special case of GMRES) $A^T = A$ Recall that $x \in \mathcal{K}_k(A,b) \Rightarrow x = p_{k-1}(A)b$. Hence MINRES solution is

$$\min_{x \in \mathcal{K}_{k}(A,b)} ||Ax - b||_{2} = \min_{p_{k-1} \in \mathcal{P}_{k-1}} ||Ap_{k-1}(A)b - b||_{2}$$

$$= \min_{\tilde{p} \in \mathcal{P}_{k}, \tilde{p}(0) = 0} ||(\tilde{p}(A) - I)b||_{2}$$

$$= \min_{p \in \mathcal{P}_{k}, p(0) = 1} ||p(A)b||_{2}$$

A is diagonalizable $A = Q\Lambda Q^T$, so

$$||p(A)||_2 = ||Qp(\Lambda)Q^T||_2 \le ||Q||_2 ||Q^T||_2 ||p(\Lambda)||_2$$

= $\max_{z \in \lambda(A)} |p(z)|$

Interpretation: (again) find polynomial s.t. p(0) = 1 and $|p(\lambda_i)|$ small

MINRES convergence cont'd

$$\frac{\|Ax - b\|_2}{\|b\|_2} \le \min_{p \in \mathscr{P}_k, p(0) = 1} \max |p(\lambda_i)|$$

Now

$$\min_{p \in \mathscr{P}_k, \underline{p(0)} = 1} \max |p(\lambda_i)| \le \left(2\frac{\kappa_2(A) - 1}{\kappa_2(A) + 1}\right)^{k/2}$$

- minimization needed on positive and negative sides, hence slower convergence when A indefinite (same bound as CG when $A \succ 0$)
- obtained by Chebyshev+change of variables [A. Greenbaum's book]

Navier-Stokes equation, very briefly

Steady-state Navier-Stokes equation

$$-\nu\nabla^2\mathbf{u} + \mathbf{u}\cdot\nabla\mathbf{u} + \nabla\rho = \mathbf{f}$$
$$\nabla\cdot\mathbf{u} = 0$$

- Nonlinear in u: iterative solution of linearized problems necessary (Picard, Newton)
- Multiple stable solutions can exist
- See e.g. Elman-Silvester-Wathen Ch.8

Backup slides

(from Ricardo)

Generalised Stokes equations

Choosing the spaces wisely, we can eliminate p

• Subspaces of $[H^1(\Omega)]^d$:

$$\boldsymbol{V}_{\mathrm{div}} = \{ \boldsymbol{\mathsf{v}} \in [H^1(\Omega)]^d \, : \, \nabla \cdot \boldsymbol{\mathsf{v}} = 0 \, \, \text{in} \, \, \Omega \}, \quad \boldsymbol{V}_{\mathrm{div}}^0 = \{ \boldsymbol{\mathsf{v}} \in \boldsymbol{V}_{\mathrm{div}} \, : \, \boldsymbol{\mathsf{v}} = \boldsymbol{0} \, \, \text{on} \, \, \Gamma_D \}.$$

- Take $\mathbf{v} \in \mathbf{V}_{\mathrm{div}}$ in the momentum equation and the term involving the pressure p vanishes
- Equation only for the velocity:

find
$$\mathbf{u} \in V_{\mathrm{div}}^0$$
: $a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}$ $\forall \mathbf{v} \in V_{\mathrm{div}}^0$.

- Well-posedness via Lax & Milgram
- Result: if we can solve the reduced problem in \mathbf{u} , then there exists a unique p st (\mathbf{u}, p) is solution of the complete problem
- But! not practical since it requires to construct a FE space $\boldsymbol{V}_{\mathrm{div},h}$ of divergence-free functions (up to date, only 1 paper on that)
- Plus, how do I compute *p*?

Solvability theorem I

Conditions for well-posedness:

Abstract theory of saddle-point problems by Brezzi (1974)

Theorem: Let $(X,\|\cdot\|_X)$ and $(Y,\|\cdot\|_Y)$ be Hilbert spaces. Consider $\mathscr{A}(\cdot,\cdot): X\times X\to \mathbb{R},\ \mathscr{B}(\cdot,\cdot): X\times Y\to \mathbb{R},\ \ell\in X',\ \sigma\in Y',$ and the saddle-point problem: find $(u,\eta)\in X\times Y$ such that

$$\mathscr{A}(u,v) + \mathscr{B}(v,\eta) = \chi_{\prime} \langle \ell, v \rangle_{X} \qquad \forall v \in X, \tag{2}$$

$$\mathscr{B}(u,\mu) = _{Y'}\langle \sigma, \mu \rangle_{Y} \qquad \forall \mu \in Y. \tag{3}$$

If the following hypotheses are satisfied:

1.
$$\mathscr{A}(\cdot,\cdot)$$
 is **continuous**: $|\mathscr{A}(u,v)| \leq \gamma ||u||_X ||v||_X \quad \forall u,v \in X$

2.
$$\mathscr{A}$$
 is X^0 -elliptic, with $X^0 = \{ v \in X : \mathscr{B}(v,\mu) = 0 \ \forall \mu \in Y \}$,

$$|\mathscr{A}(v,v)| \ge ||v||_X^2 \qquad \forall v \in X^0;$$

Solvability theorem II

- 3. $\mathscr{B}(\cdot,\cdot)$ is **continuous**: $|\mathscr{B}(u,\mu)| \leq \delta ||u||_X ||\mu||_Y \forall u \in X, \forall \mu \in Y$
- 4. **inf-sup condition**: $\exists \beta^* > 0$ st. $\inf_{\mu \in Y, \mu \neq 0} \sup_{v \in X, v \neq 0} \frac{\mathscr{B}(v, \mu)}{\|v\|_X \|\mu\|_Y} \ge \beta^*$

Then, (2)-(3) has a unique solution $(u, \eta) \in X \times Y$ and

$$||u||_{X} \leq \left[||\ell||_{X'} + \frac{1+\gamma}{\beta^{*}} ||\sigma||_{Y'} \right]$$

$$||\eta||_{Y} \leq \frac{1}{\beta^{*}} \left[\left(1 + \frac{\gamma}{\bar{\alpha}} \right) ||\ell||_{X'} + \frac{\gamma(\bar{\alpha} + \gamma)}{\bar{\alpha}\beta^{*}} ||\sigma||_{Y'} \right].$$

The Stokes equation falls in this framework with X = V, $X^0 = V_{\rm div}$, knowing that $H^1_0(\Omega)$ and $L^2(\Omega)$ satisfy the inf-sup condition

Galerkin (conforming) finite element method I

• For the Brinkman problem: find $(\mathbf{u}_h, p_h) \in \mathbf{V}_h \times Q_h$ such that

$$a(\mathbf{u}_h, \mathbf{v}_h) + b(\mathbf{v}_h, p_h) = \mathscr{F}(\mathbf{v}_h) \quad \forall \mathbf{v}_h \in \mathbf{V}_h,$$

 $b(\mathbf{u}_h, q_h) = 0 \quad \forall q_h \in Q_h,$

• $\{V_h \subset V\}$ and $\{Q_h \subset Q_0\}$ are families of finite dimensional subspaces

Galerkin (conforming) finite element method II

- Solvability also falls into the Brezzi theory with $X = V_h$ and $X^0 = V_h^0 = \{ \mathbf{v}_h \in V_h : b(\mathbf{v}_h, q_h) = 0 \ \forall q_h \in Q_h \}$
- $\beta^* > 0$ appearing in the inf-sup condition may depend on h!

$$\exists \beta^* > 0: \quad \inf_{q_h \in Q_h, q_h \neq 0} \sup_{\mathbf{v}_h \in \mathbf{V}_h, \mathbf{v}_h \neq \mathbf{0}} \frac{b(\mathbf{v}_h, q_h)}{\|\mathbf{v}_h\|_{H^1(\Omega)} \|q_h\|_{L^2(\Omega)}} \geq \beta^*$$

A-priori estimates

$$\|\mathbf{u}_h\|_{\mathbf{V}} \leq \frac{1}{\overline{\alpha}} \|\mathbf{f}\|_{\mathbf{V}'}, \qquad \|p_h\|_{Q} \leq \frac{1}{\beta} \left(1 + \frac{\gamma}{\overline{\alpha}}\right) \|\mathbf{f}\|_{\mathbf{V}'},$$

Céa's lemma

$$\begin{aligned} \|\mathbf{u} - \mathbf{u}_h\|_{\mathbf{V}} &\leq \left(1 + \frac{\gamma}{\beta^*}\right) \left(1 + \frac{\gamma}{\bar{\alpha}}\right) \inf_{\mathbf{v}_h \in \mathbf{V}_h} \|\mathbf{u} - \mathbf{v}_h\|_{\mathbf{V}} + \frac{\delta}{\bar{\alpha}} \inf_{q_h \in Q_h} \|p - q_h\|_{Q}, \\ \|p - p_h\|_{Q} &\leq \frac{\gamma}{\beta^*} \left(1 + \frac{\gamma}{\bar{\alpha}}\right) \inf_{\mathbf{v}_h \in \mathbf{V}_h} \|\mathbf{u} - \mathbf{v}_h\|_{\mathbf{V}} + \left(1 + \frac{\delta}{\beta^*} + \frac{\delta\gamma}{\bar{\alpha}\beta^*}\right) \inf_{q_h \in Q_h} \|p - q_h\|_{Q}. \end{aligned}$$

Galerkin (conforming) finite element method III

Associated linear system.

 $\bullet \ \{\phi_j\}_{j=1}^N$ and $\{\phi_k\}_{k=1}^M,$ basis functions for \pmb{V}_h and Q_h

•
$$\mathbf{u}_h = \sum_{j=1}^N u_j \varphi_j(x), \, p_h = \sum_{k=1}^M p_k \phi_k(x), \, \text{with } N = \dim(\mathbf{V}_h), M = \dim(Q_h)$$

Choosing the basis functions as tests:

$$\begin{array}{rcl} \mathbf{A}\mathbf{U} + \mathbf{B}^T \mathbf{P} &= \mathbf{F}, \\ \mathbf{B}\mathbf{U} &= \mathbf{0}, \end{array} \quad \Leftrightarrow \quad \begin{pmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{U} \\ \mathbf{P} \end{pmatrix} = \begin{pmatrix} \mathbf{F} \\ \mathbf{0} \end{pmatrix},$$

Galerkin (conforming) finite element method IV

• $A \in \mathbb{R}^{N \times N}$ and $B \in \mathbb{R}^{M \times N}$ are associated to $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$

$$(A)_{ij} = a(\varphi_j, \varphi_i), \quad B_{kj} = b(\varphi_j, \phi_k), \qquad i, j = 1, \dots, N, \ k = 1, \dots, M.$$

- Unknowns: $\mathbf{U} = (u_1, \dots, u_N)^T$, $\mathbf{P} = (p_1, \dots, p_M)^T$
- Datum: $\mathbf{F} = (f_1, \dots, f_N)^T$ with $f_i = \int_{\Omega} \mathbf{f} \cdot \boldsymbol{\varphi}_i$
- The (generalised) Stokes matrix

$$S = \left(\begin{array}{cc} A & B^{\mathcal{T}} \\ B & 0 \end{array}\right) \in \mathbb{R}^{(N+M) \times (N+M)}$$

is block-symmetric (since A is symmetric) and non-definite (real eigenvalues of variable sign)

More on the discrete inf-sup condition I

- The algebraic problem has a unique solution iff det(S) ≠ 0 (true if the discrete inf-sup condition holds)
- If the inf-sup condition is not satisfied

$$\exists q_h^* \in Q_h: \quad b(\mathbf{v}_h, q_h^*) = 0 \qquad \forall \mathbf{v}_h \in \mathbf{V}_h.$$

• Thus, if (\mathbf{u}_h, p_h) is a solution, then also $(\mathbf{u}_h, p_h + q_h^*)$, because $a(\mathbf{u}_h, \mathbf{v}_h) + b(\mathbf{v}_h, p_h + q_h^*) = a(\mathbf{u}_h, \mathbf{v}_h) + b(\mathbf{v}_h, p_h) + \underbrace{b(\mathbf{v}_h, q_h^*)}_{=0} = \mathscr{F}(\mathbf{v}_h), \ \forall \mathbf{v}_h \in \mathbf{V}_h.$

Non-uniqueness!!

More on the discrete inf-sup condition II

- \bullet p_h^* breaking the inf-sup condition are called spurious pressure modes
- Who's fault is this?!! Q_h and V_h ...
- Pairs (V_h, Q_h) violating the inf-sup condition are called inf-sup unstable
- The weak form does not require the pressure to be continuous
- Possible choices (degrees of freedom of the velocity "●" and those of the pressure are "□")
- See a list in Girault-Raviart or Brezzi-Fortin books

More on the discrete inf-sup condition III

Elements with Discontinuous Pressure

More on the discrete inf-sup condition IV

Stabilised formulations I

- Hope in the horizon: you can still use unstable pairs (why would you want to do that?)
- Some remedies available (cf Exercises of week 4)
- General stabilisation technique: find $\boldsymbol{u}_h \in \boldsymbol{V}_h$, $q_h \in Q_h$ such that

$$\begin{array}{rcl} a(\boldsymbol{u}_h,\boldsymbol{v}_h) + b(\boldsymbol{v}_h,p_h) & = & \mathscr{F}(\boldsymbol{v}_h) - \Psi_h^{(\rho)}(\boldsymbol{v}_h) & \forall \boldsymbol{v}_h \in \boldsymbol{V}_h \\ b(\boldsymbol{u}_h,q_h) & = & \Phi_h(q_h) & \forall q_h \in Q_h, \end{array}$$

where

$$\begin{split} \Psi_h^{(\rho)}(\mathbf{v}_h) &= \bar{\delta} \sum_{K \in \mathcal{T}_h} h_K^2 \int_K (\alpha \mathbf{u}_h - \mathbf{v} \triangle \mathbf{u}_h + \nabla p_h - \mathbf{f}) \cdot (\rho \alpha \mathbf{v}_h - \rho \mathbf{v} \triangle \mathbf{v}_h) \\ \Phi_h(q_h) &= \bar{\delta} \sum_{K \in \mathcal{T}_h} h_K^2 \int_K (\alpha \mathbf{u}_h - \mathbf{v} \triangle \mathbf{u}_h + \nabla p_h - \mathbf{f}) \cdot \nabla q_h. \end{split}$$

with $\bar{\delta} > 0$, ρ stabilisation parameters to be set

Stabilised formulations II

- $\rho = 0 \Rightarrow \Psi_h^{(0)} = 0 \leftrightarrow \text{Streamline Upwind/Petrov-Galerkin (SUPG) method}$
- $m{\circ}$ $ho = -1 \leftrightarrow {\sf Galerkin/Least-Squares}$ (GLS or GaLS) method
- These methods are strongly consistent (other versions may not)

Stokes flow ($\alpha = 0$).

- Notice that if using $\mathbb{P}_1 \mathbb{P}_1$ elements, then $\Delta \mathbf{v}_h = \Delta \mathbf{u}_h = \mathbf{0}$ for all $K \in \mathscr{T}_h$
- The stabilised method is well-posed for adequate stabilisation parameters (see e.g. Quarteroni-Valli, section 9.4)
- Stability and convergence also follow

Stabilised formulations III

Matrix form

$$\begin{pmatrix} A & B^{\mathcal{T}} \\ B & -C \end{pmatrix} \begin{pmatrix} \textbf{U} \\ \textbf{P} \end{pmatrix} = \begin{pmatrix} \textbf{F} \\ \textbf{G} \end{pmatrix}$$

$$\begin{split} & \text{with } \mathbf{C}_{km} = \bar{\delta} \sum_{K \in \mathscr{T}_h} h_K^2 \int_K \nabla \phi_m \cdot \nabla \phi_k, \qquad k, m = 1, \dots, M \\ & g_k = -\bar{\delta} \sum_{K \in \mathscr{T}_h} h_K^2 \int_K \mathbf{f} \cdot \nabla \phi_k, \qquad k = 1, \dots, M. \end{split}$$

 \bullet Similar method (also with a "name"): Brezzi-Pitkaranta (uses $\mathbb{P}_1 - \mathbb{P}_1$)

$$\begin{array}{rcl} a_0(\boldsymbol{u}_h,\boldsymbol{v}_h) + b(\boldsymbol{v}_h,p_h) & = & \mathscr{F}(\boldsymbol{v}_h) & \forall \boldsymbol{v}_h \in \boldsymbol{V}_h \\ b(\boldsymbol{u}_h,q_h) & = & \sum_{K \in \mathscr{T}_h} \delta_K(\nabla p_h,\nabla q_h)_{0,K} & \forall q_h \in Q_h, \end{array}$$

with
$$\delta_K = \frac{|K|^2}{5(c_1^2 + c_2^2 + c_3^2)}$$
, $|K|$: area of K , c_i : length of edges