Linear Algebra and Applications

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 01 (Jul 30, 2019)

Course Information

Instructor: Sartaj UI Hasan

Email: sartaj.hasan@iitjammu.ac.in

• Office: N 513

Office Hours: By appointment (send me mail or talk with me).

Course Webpage:

https://sites.google.com/site/sartajulhasan/csd001p5m

Evaluation:

Tests: 40 % [two tests each 20%]

Med-semester: 20 %End-semester: 40 %

Course Information (Cont . . .)

• **Gradescope**: A paperless grading system. Use the course code <u>9X2B5Y</u> to register in the course on Gradescope. Use only your IIT Jammu email address to register on Gradescope.

Reference Books:

- Linear Algebra and Its Applications, 3rd (Indian Edition), Pearson by David C Lay
- Matrix Computations, John Hopkins University Press by Golub and Loan
- Matrix Analysis and Applied Liner Algebra, SIAM by Carl. D. Meyer
- Linear Algebra and Its Applications, 4th Edn, Cengange by G. Strang
- **Policy on cheating**: As per rules and regulations of the institute.
- **Policy on attendance**: As per rules and regulations of the institute.

System of Linear Equations

A system of equations of the form:

$$a_{11}X_1 + a_{12}X_2 + \dots + a_{1n}X_n = b_1$$

$$a_{21}X_1 + a_{22}X_2 + \dots + a_{2n}X_n = b_2$$

$$\vdots$$

$$a_{m1}X_1 + a_{m2}X_2 + \dots + a_{mn}X_n = b_m$$
(1)

where the unknowns a_{ij} and b_i are scalars and the X_j are "unknown" variables is called a **system of** m **linear equations in** n **unknowns**.

• Any (ordered) n-tuple (s_1, s_2, \ldots, s_n) of scalars which satisfies all of the equations is called a **solution** of the system. The set of all solutions is called the **solution set** of the system.

Matrix Formulation

• A system of linear equations can be more compactly expressed in matrix notation as: AX = b, where $A = [a_{ij}]$ is called coefficient matrix, and

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$
 and $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ are vectors.

• Recall that a vector is an ordered k-tuple of scalars. Vectors are represented in various ways: (X_1, X_2, \ldots, X_n) or $[X_1, X_2, \ldots, X_n]$ (referred to as a row vector)

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$
 (referred to as column vector).