

Dr. Shahid Mahmood Awan

Assistant Professor School of Systems and Technology, University of Management and Technology shahid.awan@umt.edu.pk

Umer Saeed(MS Data Science, BSc Telecommunication Engineering)
Sr. RF Optimization & Planning Engineer
f2017313017@umt.edu.pk

Linear Regression

Data Source

Microsoft Excel Ima Separated Valu

Energy Efficiency Data Set

Energy Efficiency Data Set selected for Task-1 from the following URL; https://archive.ics.uci.edu/ml/datasets/Energy+efficiency

Source:

The dataset was created by Angeliki Xifara and was processed by Athanasios Tsanas.

Energy Efficiency Data Set

Data Set Information:

- We perform energy analysis using 12 different building shapes simulated in Ecotect.
- The buildings differ with respect to the glazing area, the glazing area distribution, and the orientation, amongst other parameters.
- We simulate various settings as functions of the afore-mentioned characteristics to obtain 768 building shapes.
- ▶ The dataset comprises 768 samples and 8 features, aiming to predict two real valued responses. It can also be used as a multi-class classification problem if the response is rounded to the nearest integer.

Energy Efficiency Data Set

Attribute Information:

▶ The dataset contains eight attributes (or features, denoted by X1...X8) and two responses (or outcomes, denoted by Y1 and Y2). The aim is to use the eight features to predict each of the two responses.

Attributes/Features/Variables
X1 Relative Compactness
X2 Surface Area
X3 Wall Area
X4 Roof Area
X5 Overall Height
X6 Orientation
X7 Glazing Area
X8 Glazing Area Distribution

Outcome/Responses				
Y1 Heating Load				
Y2 Cooling Load				

Energy Efficiency Data Set

Item	Variable	Discrete Values	Range
1	X1 Relative Compactness	12	[0.62 , 0.98]
2	X2 Surface Area	12	[514.5 , 808.5]
3	X3 Wall Area	7	[245 , 416.5]
4	X4 Roof Area	4	[110.25 , 220.5]
5	X5 Overall Height	2	[3.5 , 7]
6	X6 Orientation	4	[2 ,5]
7	X7 Glazing Area	4	[0,0.4]
8	X8 Glazing Area Distribution	6	[0,5]

Table 1: Input Variables (Attributs)

Item	Outcome	Outcome Mean	
1	Y1 Heating Load	22.30720052	[6.01 , 43.1]
2	Y2 Cooling Load	24.58776042	[10.9, 48.03]

Table 2: Output Variables (Responses)

Linear Regression with one variable

UNIT PRO TECHNOLOGICAL SECTION OF THE CHANGE OF THE CHANGE

Linear Regression with One Variable

The first step is to import the required Libraries

import numpy as np import matplotlib.pyplot as plt import pandas as pd import scipy.stats as stats

The second step is to load the dataset (Energy Efficiency Data Set)

enb=pd.read_csv("ENB2012_data.csv")

The data will be loaded using Python Pandas, a data analysis module. It will be loaded into a structure known as a Panda Data Frame, which allows for each manipulation of the rows and columns.

Linear Regression with One Variable(Outcome Heating Loading)

UANT CHANGE HEAVY PART OF THE CHANGE HEAVY PAR

Linear Regression with One Variable

Create two arrays: x (X1 Relative Compactness) and y (Y1 Heating Load). Intuitively we'd expect to find some correlation between the two variables.

In next step, Splitting the dataset into the features set and Outcome set

```
x = enb.iloc[:, 0].values
x=x.reshape(len(x),1)
y = enb.iloc[:, -2].values
y=y.reshape(len(y),1)
```

The data will be split into a training and test set. Once we have the test data, we can find a best fit line and make predictions.

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.1, random_state= 0)

Fitting Simple Linear Regression to the Training set

from sklearn.linear_model import LinearRegression

regressor = LinearRegression()

regressor.fit(x_train, y_train)

Predicting the Test set results

y_pred = regressor.predict(x_test)

Visualising the Training set results

```
plt.scatter(x_train, y_train, color = 'red')
plt.plot(x_train, regressor.predict(x_train), color = 'blue')
plt.title('x1 Relative Compactness vs y1 Heating Load (Training set)')
plt.xlabel('x1 Relative Compactness')
plt.ylabel('y1 Heating Load')
plt.show()

x1 Relative Compactness vs y1 Heating Load (Training Load (Training Load))
```


Visualising the Test set results

Building the optimal model using Backward Elimination

```
import statsmodels.formula.api as sm

x= np.append(arr=np.ones((768,1)).astype(int),values=x,axis=1)

x_opt = x[:,[0,1]]

regressor_OSL = sm.OLS(endog=y, exog=x_opt).fit()

regressor_OSL.summary()
```


Dep. Variab Model:	Le:		-	R-squ	ared: R-squared:		0.387 0.386	
Method:		Least Squa					484.0	
Date:		•			(F-statistic):			
Time:					ikelihood:		-2676.5	
No. Observat	tions:			_			5357.	
Df Residuals	5:		766	BIC:			5366.	
Df Model:			1					
Covariance 1	Гуре:	nonrol	oust					
=======							========	
	coef	std err		t	P> t	[0.025	0.975]	
const	-23.0530	2.081	-11	.076	0.000	-27.139	-18.967	
x1	59.3590	2.698	22	.001	0.000	54.063	64.655	
====== Omnibus:		53	. 989	Durbi	n-Watson:		0.305	
Prob(Omnibus	s):	0.	.000	Jarqu	e-Bera (JB):		64.327	
Skew:		0	.708	Prob(JB):		1.08e-14	
Kurtosis:		3.	.059	Cond.	No.		15.0	
							========	

UMIT OF THE PROPERTY OF THE PR

Linear Regression with One Variable

Create two arrays: x (X2 Surface Area) and y (Y1 Heating Load). Intuitively we'd expect to find some correlation between the two variables.

UMIT OF THE PROPERTY OF THE PR

Linear Regression with One Variable

Create two arrays: x (X3 Wall Area) and y (Y1 Heating Load). Intuitively we'd expect to find some correlation between the two variables.

Linear Regression with One Variable

Create two arrays: x (X4 Roof Area) and y (Y1 Heating Load). Intuitively we'd expect to find some correlation between the two variables.

UMIT OF THE PROPERTY OF THE PR

Linear Regression with One Variable

Create two arrays: x (X5 Overall Height) and y (Y1 Heating Load). Intuitively we'd expect to find some correlation between the two variables.

UANT OF LOOK

Linear Regression with One Variable

Create two arrays: x (X6 Orientation) and y (Y1 Heating Load). Intuitively we'd expect to find some correlation between the two variables.

Linear Regression

Create two arrays: x (X7 Glazing Area) and y (Y1 Heating Load). Intuitively we'd expect to find some correlation between the two variables.

Linear Regression

Create two arrays: x (X8 Glazing Area Distribution) and y (Y1 Heating Load). Intuitively we'd expect to find some correlation between the two variables.

Linear Regression with One Variable(Outcome Cooling Loading)

Linear Regression with One Variable

Create two arrays: x (X1 Relative Compactness) and y (Y2 Cooling Load). Intuitively we'd expect to find some correlation between the two variables.

Linear Regression with One Variable

Create two arrays: x (X2 Surface Area) and y (Y2 Cooling Load). Intuitively we'd expect to find some correlation between the two variables.

UMIT OF THE PROPERTY OF THE PR

Linear Regression with One Variable

 Create two arrays: x (X3 Wall Area) and y (Y2 Cooling Load). Intuitively we'd expect to find some correlation between the two variables.

UMIT OF THE PROPERTY OF THE PR

Linear Regression with One Variable

Create two arrays: x (X4 Roof Area) and y (Y2 Cooling Load). Intuitively we'd expect to find some correlation between the two variables.

Linear Regression with One Variable

Create two arrays: x (X5 Overall Height) and y (Y2 Cooling Load). Intuitively we'd expect to find some correlation between the two variables.

Linear Regression with One Variable

Create two arrays: x (X6 Orientation) and y (Y2 Cooling Load). Intuitively we'd expect to find some correlation between the two variables.

Linear Regression

 Create two arrays: x (X7 Glazing Area) and y (Y2 Cooling Load). Intuitively we'd expect to find some correlation between the two variables.

UMIT OF LOOK

Linear Regression

Create two arrays: x (X8 Glazing Area Distribution) and y (Y2 Cooling Load). Intuitively we'd expect to find some correlation between the two variables.

Linear Regression with Multiple Variables

UNIT PRO TECHNOLOGICAL SECTION OF THE CHANGE OF THE CHANGE

Linear Regression with One Variable

The first step is to import the required Libraries

import numpy as np import matplotlib.pyplot as plt import pandas as pd import scipy.stats as stats

The second step is to load the dataset (Energy Efficiency Data Set)

enb=pd.read_csv("ENB2012_data.csv")

▶ The data will be loaded using Python Pandas, a data analysis module. It will be loaded into a structure known as a Panda Data Frame, which allows for each manipulation of the rows and columns.

Linear Regression with Multiple Variables (Outcome Heating Loading)

In next step, Splitting the dataset into the features set and Outcome set

```
x = enb.iloc[:, :8].values
y = enb.iloc[:, 8].values
```

The data will be split into a training and test set. Once we have the test data, we can find a best fit line and make predictions.

from sklearn.cross_validation import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y,test_size = 0.1,random_state= 0)

Fitting Multiple Linear Regression to the Training set

```
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
```

Predicting the Test set results

```
y_pred = regressor.predict(x_test)
```

Building the optimal model using Backward Elimination

```
import statsmodels.formula.api as sm
x= np.append(arr=np.ones((768,1)).astype(int),values=x,axis=1)
x_opt = x[:,[0,1,2,3,4,5,6,7,8]]
regressor_OSL = sm.OLS(endog=y, exog=x_opt).fit()
regressor_OSL.summary()
```


Dep. Variab	le:		v	R-squa			0.916
Model:	ie.	(R-squared:		0.915
Method:		Least Squar					1187.
Date:					(F-statistic)		0.00
Time:	٥,	13 · 01	00	Log-Li	kelihood:		-1912.5
No. Observa	tions:			AIC:		3841.	
Df Residual		760		BIC:			3878.
Df Model:		<i>'</i>	7	DIC.			3070.
Covariance		nonrobu	ıst				
		std err		t	P> t		0.975]
onst	84.0145	19.034	4.	414	0.000	46.650	121.379
d	-64.7740	10.289	-6.	295	0.000	-84.973	-44.575
(2	-0.0626	0.013	-4.	670	0.000	-0.089	-0.036
ε3	0.0361	0.004	9.	386	0.000	0.029	0.044
(4	-0.0494	0.008	-6.	569	0.000	-0.064	-0.035
:5	4.1699	0.338	12.	337	0.000	3.506	4.833
(6	-0.0233	0.095	-0.	246	0.805	-0.209	0.163
c 7	19.9327	0.814				18.335	21.531
8	0.2038	0.070		914	0.004	0.067	0.341
mnibus:					n-Watson:		0.654
rob(Omnibu	s):	0.6	000	Jarque	e-Bera (JB):		37.708
kew:	-			Prob(J			6.48e-09
urtosis:				Cond. No.			3.34e+15

- [2] The smallest eigenvalue is 4.08e-23. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Umer Saeed Dr. Shahid Awan

Building the optimal model using Backward Elimination

```
import statsmodels.formula.api as sm
x= np.append(arr=np.ones((768,1)).astype(int),values=x,axis=1)
x_opt = x[:,[0,1,2,3,4,5,7,8]]
regressor_OSL = sm.OLS(endog=y, exog=x_opt).fit()
regressor_OSL.summary()
```


		_	-	Results			
Dep. Variabl	e:	у		squared:		0.916	
Model:		OLS		j. R-squared:		0.916	
Date: S Time:		Least Squar				1387.	
		n, 22 Apr 20	018 Pr	ob (F-statisti	c):	0.00	
		13:03:	59 Lo	g-Likelihood:		-1912.5	
No. Observations:		768		C:		3839.	
Df Residuals:		761		C:		3871.	
Df Model:			6				
Covariance T							
		std err		t P> t			
const	83.9329	19.019	4.41	3 0.000	46.597	121.269	
x1				9 0.000			
x2				3 0.000			
x3	0.0361	0.004	9.39	2 0.000	0.029	0.044	
x4	-0.0494	0.008	-6.57	3 0.000	-0.064	-0.035	
x5	4.1699	0.338	12.34	0.000	3.507	4.833	
x6					18.336	21.530	
x7					0.067	0.341	
======= Omnibus:				 rbin-Watson:		0.654	
Omnibus: Prob(Omnibus):						37.740	
Skew:	<i>)</i> ·	0.0	944 Pr	rque-Bera (JB)		6.38e-09	
skew: Kurtosis:		4.082		nd. No.		1.26e+16	
Kui LUSIS:		4.6	702 CO	iu. No.		1.200710	

Machine Learning

Linear Regression with Multiple Variables (Outcome Cooling Loading)

In next step, Splitting the dataset into the features set and Outcome set

```
x = enb.iloc[:, :8].values
y = enb.iloc[:, 9].values
```

The data will be split into a training and test set. Once we have the test data, we can find a best fit line and make predictions.

```
from sklearn.cross_validation import train_test_split
```

```
x_train, x_test, y_train, y_test = train_test_split(x, y,test_size = 0.1,random_state= 0)
```


Fitting Multiple Linear Regression to the Training set

```
from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train)
```

Predicting the Test set results

```
y_pred = regressor.predict(x_test)
```

Building the optimal model using Backward Elimination

```
import statsmodels.formula.api as sm
x= np.append(arr=np.ones((768,1)).astype(int),values=x,axis=1)
x_opt = x[:,[0,1,2,3,4,5,6,7,8]]
regressor_OSL = sm.OLS(endog=y, exog=x_opt).fit()
regressor_OSL.summary()
```


Dam - 171 1	1	=========	2			0.000	
Dep. Variab	ole:		y R-sq			0.888	
Model: Method:				R-squared:		0.887	
		Least Square			١.	859.1	
Date: Time:	Su	n, 22 Apr 201	lo Prob	(F-statistic)):	0.00	
			8 AIC:	Likelihood:		-1979.3	
No. Observa						3975.	
Df Residual Df Model:	.5:		60 BIC: 7			4012.	
Covariance	Type:	nonrobus	t				
		std err	+	P> t	[a aze	0.0751	
	coef	5tu em			[0.025	0.975]	
const	97.2457	20.765	4.683	0.000			
x1	-70.7877	11.225	-6.306	0.000	-92.824	-48.751	
x2	-0.0661	0.015	-4.519	0.000	-0.095	-0.037	
x3	0.0225	0.004	5.365	0.000	0.014	0.031	
x4	-0.0443	0.008	-5.404	0.000	-0.060	-0.028	
x5	4.2838	0.369	11.618	0.000	3.560	5.008	
x6	0.1215	0.103	1.176	0.240	-0.081	0.324	
x7	14.7171	0.888	16.573	0.000	12.974	16.460	
x8	0.0407	0.076	0.534	0.594	-0.109	0.190	
Omnibus:				in-Watson:		1.094	
Prob(Omnibu	15):			ue-Bera (JB):		230.547	
Skew:			7 Prob	• •		8.65e-51	
Kurtosis:		5.20	3 Cond	. No.		3.34e+15	

Building the optimal model using Backward Elimination

```
import statsmodels.formula.api as sm
x= np.append(arr=np.ones((768,1)).astype(int),values=x,axis=1)
x_opt = x[:,[0,1,2,3,4,5,6,7]]
regressor_OSL = sm.OLS(endog=y, exog=x_opt).fit()
regressor_OSL.summary()
```


Dep. Varia	ble:		v	R-squa	ared:		0.888
Model:		(DLS		R-squared:		0.887
Method:		Least Squares				1003.	
ate:	S	un, 22 Apr 20				:	0.00
ime:					kelihood: ´		-1979.5
No. Observations:				AIC:		3973.	
Df Residuals:			761	BIC:			4005.
Model:			6				
variance	21	nonrob	ust				
	coef			t	P> t	[0.025	0.975]
nst	97.3366	20.754	4	.690	0.000	56.594	138.079
	-70.7877	11.220	-6	.309	0.000	-92.814	-48.762
	-0.0661	0.015	-4	.521	0.000	-0.095	-0.037
	0.0225	0.004	5	.367	0.000	0.014	0.031
	-0.0443	0.008	-5	.407	0.000	-0.060	-0.028
;	4.2838	0.369	11	.623	0.000	3.560	5.007
	0.1215	0.103	1	.177	0.240	-0.081	0.324
	14.8180	0.867		.086	0.000	13.116	16.520
ibus:		104.4			n-Watson:		1.093
b(Omnib	us):	0.0	900	Jarque	e-Bera (JB):		230.721
Skew:					Prob(JB):		7.93e-51
urtosis:		5.208		Cond. No.			1.26e+16

Building the optimal model using Backward Elimination

```
import statsmodels.formula.api as sm
x= np.append(arr=np.ones((768,1)).astype(int),values=x,axis=1)
x_opt = x[:,[0,1,2,3,4,5,7]]
regressor_OSL = sm.OLS(endog=y, exog=x_opt).fit()
regressor_OSL.summary()
```


		OLS Reg	gress	sion Re	sults			
Dep. Varia	ble:		-	R-squ			0.888	
Model:				_	R-squared:		0.887	
Method:		Least Squar					1203.	
Date:	Su				(F-statistic)	:	0.00	
Time:		13:33:	40	Log-L	ikelihood:		-1980.2	
No. Observ		7	768	AIC:			3972.	
Df Residua	ls:	7	762	BIC:			4000.	
Df Model:			5					
Covariance	21	nonrobu						
	coef	std err		t	P> t	[0.025	0.975]	
const	97.7618	20.756		4.710	0.000	57.015	138.508	
x1	-70.7877	11.223	-6	5.307	0.000	-92.819	-48.756	
x2	-0.0661	0.015	-4	1.520	0.000	-0.095	-0.037	
x3	0.0225	0.004	9	5.366	0.000	0.014	0.031	
x4	-0.0443	0.008	- 5	5.405	0.000	-0.060	-0.028	
x5	4.2838	0.369	11	1.620	0.000	3.560	5.008	
х6	14.8180	0.867	17	7.082	0.000	13.115	16.521	
Omnibus:					====== n-Watson:		1.095	
Prob(Omnib	us):				e-Bera (JB):		232.225	
Skew:				Prob(, ,		3.74e-51	
Kurtosis:			215	Cond.			1.26e+16	
========			 :===:				========	
[2] The sm	allest eigenv	alue is 2.89	ie-24	4. This	e matrix of t might indica design matri	te that th	ere are	specified.