Introduction to ∞ -categories

Talk by Marco Robalo at DAGIT 2017 Typed by Timothy Hosgood

Monday 12th June, 2017

Abstract

These are a copy of my notes on a talk given by Marco Robalo at the seminar Derived Algebraic Geometry in Toulouse (DAGIT) 2017: the content is purely his; the mistakes are all mine.

1 Motivation

- **1.1. Idea.** An ∞ -category consists of
 - objects;
 - 1-morphisms between objects;
 - n-morphisms between (n-1)-objects (for $n \ge 2$);
 - composition laws for *n*-morphisms $(n \ge 1)$ defined up to higher morphisms;
 - associativity of compositions up to homotopy.
- **1.2.** Proto-example. (Fundamental ∞ -groupoid) For a CW-complex X we have
 - objects = points;
 - 1-morphisms = homotopies;
 - 2-morphisms = homotopies of homotopies;
 - ... and so on.
- **1.3. Problem.** No direct definition that is operational and simultaneously close to our intuition/desire (infinitely many axioms!).
- **1.4. Solution.** Find a model category whose objects serve as models for ∞ -categories.
- 1.5. Modelling. Many classical examples:
 - homotopy types can be modelled by topological spaces, simplicial sets, categories, etc.;
 - \bullet homotopy theory of homotopy-commutative $\mathbb{Q}\text{-algebras}$ can be modelled by dgalgebras;
 - derived stacks can be modelled by simplicial presheaves.

- **1.6. Question.** Why so many models?
- **1.7. Answer.** Dwyer-Kan localisation: every model category has an associated ∞ -category that captures all the important information.
- **1.8. Question.** If we have models then why care about ∞ -categories?
- **1.9. Answer.** Many reasons:
 - not all ∞ -categories have a model presentation;
 - no 'good enough' definition of functors that relate different models (need an ∞-functor between the associated ∞-categories);
 - models for diagrams are not always given by diagrams of models;
 - proofs and statements become 'simpler'.

2 Preliminary definitions

- **2.1.** Category of simplices. Write Δ to be the category of simplices:
 - $ob(\Delta) = \{[n]\}_{n \in \mathbb{N}}$ where $[n] = \{0 < 1 < \ldots < n\}$ is the ordered set of natural numbers up to n;
 - $\operatorname{Hom}_{\Delta}([m],[n])$ is the set of order-preserving maps from [m] to [n].
- **2.2. Simplicial notation.** We use the following notation:
 - $sSet = Set^{\Delta^{op}} = Fun(\Delta^{op}, Set);$
 - $\Delta[n] = \operatorname{Hom}_{\Delta}(-, [n]) \in \mathsf{sSet};$
 - $S_n = \operatorname{Hom}_{\mathsf{sSet}}(\Delta[n], S)$ for $S \in \mathsf{sSet}$;
 - $\Lambda_n^i = \Delta[n] \setminus \{\text{interior and the face opposite the } j\text{-th vertex}\}$ is the i-th horn (for $n \ge 2$).

$$\Delta[2] =$$

$$0 \xrightarrow{1} \qquad \qquad \Lambda_2^1 =$$

$$0 \xrightarrow{2} \qquad \qquad 2$$

- **2.3.** Nerve. The nerve $N(\mathcal{C})$ of a category \mathcal{C} is the simplicial set with
 - *n*-simplices given by $(x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} x_n)$ in C;
 - boundary maps given by composition (or forgetting the first/last object and morphism for the two edge cases);
 - degeneracy maps given by inserting the identity.
- **2.4.** Note. There is a set-bijection

$$\{\text{functors } \mathcal{C} \to \mathcal{D}\} \simeq \{\text{simplicial maps } N(\mathcal{C}) \to N(\mathcal{D})\}.$$

2

2.5. Lemma. There is an equivalence of categories $X \simeq N(\mathcal{C})$ if and only if all *inner* horns lift *uniquely*.

$$\begin{array}{ccc} \Lambda_n^i & & & X \\ & & & \\ & & & \\ & & \\ \Delta[n] & & \end{array} \quad \text{for all } i \in \{1,\dots,n-1\}$$

2.6. Composition. For example, " Λ^1_2 gives composition".

$$x_1 \xrightarrow{f_1} x_2 \xrightarrow{f_2} x_0 \xrightarrow{\exists ! f_2 \circ f_1} x_2$$

2.7. Associativity. As another example, " Λ_3^1 gives associativity":

$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} x_2 \xrightarrow{f_3} x_3 \text{ in } \mathcal{C}$$

corresponds to

$$\Lambda^1_2 \xrightarrow{(f_2, f_1)} N(\mathcal{C})$$
 and $\Lambda^1_2 \xrightarrow{(f_3, f_2)} N(\mathcal{C})$

which generate compositions

$$\Delta[2] \xrightarrow{(f_2,f_1)} N(\mathcal{C})$$
 and $\Delta[2] \xrightarrow{(f_3,f_2)} N(\mathcal{C})$.

So $(f_3 \circ f_2) \circ f_1 = f_3 \circ (f_2 \circ f_1)$ if and only if we can 'fill the back face of the tetrahedron with vertices x_0, x_1, x_2 , and x_3 ', i.e. if and only if we can extend $\Lambda^1_3 \to N(\mathcal{C})$ to $\Delta[3] \to N(\mathcal{C})$.

- **2.8. Exercise.** What does the lifting of Λ_3^2 tell us?
- **2.9. Summary.** The lifting property for inner horns (0 < i < n) gives composition and associativity laws; for outer horns (i = 0, n) it gives inverses.

$$\begin{array}{ccc}
 & x_0 \\
 & & \exists ! \\
 & x_0 & \xrightarrow{f_1} & x_1
\end{array}$$

2.10. Kan complex. If $X \in \mathsf{sSet}$ is such that $X \simeq \operatorname{Sing}(T)$, where $\operatorname{Sing}(T)$ consists of singular simplices in a topological space T (i.e. continuous maps $|\Delta^n| \to T$) then we call it a **Kan complex**. Note that X is a Kan complex if and only if *all* horns lift, but *not necessarily* uniquely.

3 Quasi-categories

3.1. Quasi-category. A **quasi-category** is a simplicial set \mathcal{C} such that all *inner* horns lift, but *not necessarily* uniquely. This notions lies in between that of a Kan complex and that of the nerve of a category: we get compositions that aren't unique, but their non-uniqueness is controlled by higher homotopy data. For example, consider

$$x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} x_2 \xrightarrow{\mathrm{id}_{x_2}} x_2$$

which gives us two maps $u_1, u_2 \colon \Delta[2] \to \mathcal{C}$. Similarly, for 'associativity' we can use the lifting of Λ^1_3 as before, after filling one face with the identity.

- **3.2.** ∞ -category. We can use quasi-categories as a model for ∞ -categories: define the objects of a quasi-category $\mathcal C$ to be the 0-simplices, and the n-morphisms to be the n-simplices.
- **3.3.** ∞ -functor. Since functors are 'maps that preserve commutative diagrams', it makes sense to define an ∞ -functor to be a map of simplicial sets between quasi-categories, since these send n-simplices to n-simplices and preserve boundaries.
- **3.4.** Homotopy category. Given an ∞ -category $\mathcal C$ we define its homotopy category $\mathrm{h}\mathcal C$ to be the (1-)category with
 - ob(hC) = ob(C);
 - $\operatorname{Hom}_{\mathrm{h}\mathcal{C}}(x,y) = \operatorname{Hom}_{\mathcal{C}}(x,y) / \sim$, where $f \sim g$ if there exists a 2-morphism $u \colon \Delta[2] \to \mathcal{C}$ with boundary $(\mathrm{id}_y g + f)$.

Note that compositions are unique (and thus well defined) thanks to the lifting property, i.e. u_1, u_2 are identified in the homotopy category.

3.5. Subcategory. An ∞ -subcategory \mathcal{C}' of an ∞ -category \mathcal{C} is a sub-simplicial set obtained as a fibre product in sSet:

$$\begin{array}{cccc} \mathcal{C}' & \longrightarrow & \mathcal{C} \\ \downarrow & & \downarrow & & \text{where } \mathcal{D} \text{ is a subcategory of } \mathbf{h}\mathcal{C}. \\ N(\mathcal{D}) & \longrightarrow & N(\mathbf{h}\mathcal{C}) \end{array}$$

- **3.6. Equivalence.** A 1-morphism f in $\mathcal C$ is called an **equivalence** if [f] in $h\mathcal C$ is an isomorphism.
- **3.7.** ∞ -groupoid. An ∞ -category where *all* 1-morphisms are equivalences is called an ∞ -groupoid.
- **3.8. Proposition.** An ∞ -category is an ∞ -groupoid if and only if it is a Kan complex.
- **3.9. Example.** For T a topological space, $\operatorname{Sing}(T)$ is an ∞ -groupoid

- 4 Simplicial nerve and rectification
 - 5 Homotopy colimits
 - 6 Localisation
 - 7 Presheaves and ∞ -functors
 - 8 Presentability
- $9 \;\; Symmetric \; monoidal \; \infty\text{-categories}$
 - 10 Subtleties