博客园 首页 新随笔 联系 订阅 管理

MarkDown公式指导手册

原文链接

Markdown 公式指导手册

目录

- Markdown 公式指导手册
- 一、公式使用参考
 - 。 1. 如何插入公式
 - 。 2. 如何输入上下标
 - 。 3. 如何输入括号和分隔符
 - 。 4. 如何输入分数
 - 。 5. 如何输入开方
 - 。 6. 如何输入省略号
 - 。 7. 如何输入向量
 - 。 8. 如何输入积分
 - 。 9. 如何输入极限运算
 - 10. 如何输入累加、累乘运算
 - 11. 如何输入希腊字母
 - 。 12. 如何输入其它特殊字符
 - o (1). 关系运算符
 - 。 (2). 集合运算符
 - 。 (3). 对数运算符
 - o (4). 三角运算符
 - o (5). 微积分运算符
 - o (6). 逻辑运算符
 - 。 (7). 戴帽符号
 - 。 (8). 连线符号
 - 。 (9). 箭头符号
 - 13. 如何进行字体转换
 - 14. 如何高亮一行公式
 - 15. 大括号和行标的使用
 - 16. 其它命令
 - 。 (1). 定义新的运算符 \operatorname
 - 。 (2). 添加注释文字 \text
 - 。 (3). 在字符间加入空格
 - 。 (4). 更改文字颜色 \color
 - 。 (5). 添加删除线
- 二、矩阵使用参考
 - 。 1. 如何输入无框矩阵
 - 。 2. 如何输入边框矩阵
 - 。 3. 如何输入带省略符号的矩阵
 - 4. 如何输入带分割符号的矩阵
 - 。 5. 如何输入行中矩阵
- 三、方程式序列使用参考
 - 。 1. 如何输入一个方程式序列
 - 。 2. 在一个方程式序列的每一行中注明原因
- 四、条件表达式使用参考
 - 。 1. 如何输入一个条件表达式
 - 。 2. 如何输入一个左侧对齐的条件表达式
 - 。 3. 如何使条件表达式适配行高

• 五、数组与表格使用参考

- 1. 如何输入一个数组或表格
- 。 2. 如何输入一个嵌套的数组或表格
- 。 3. 如何输入一个方程组
- 六、连分数使用参考
 - 。 1. 如何输入一个连分式
- 七、交换图表使用参考
 - 。 1. 如何输入一个交换图表
- 八、一些特殊的注意事项

一、公式使用参考

1. 如何插入公式

TEX 可使用行中公式放在文中与其它文字混编,或单独成行的独立公式。

(1) 行中公式

可以用如下方法表示:

\$ 表达式 \$

例子:

```
$ J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \Gamma (m + \alpha + 1)} {\left({ \frac{x}{2} }\right)}^{2m + \alpha} \text {, 行内公式示例} $
```

显示:

$$J_{lpha}(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\Gamma(m+lpha+1)} \left(rac{x}{2}
ight)^{2m+lpha}$$
,行内公式示例

(2) 独立公式

可以用如下方法表示:

```
$$ 表达式 $$
```

例子:

显示:

$$J_{lpha}(x)=\sum_{m=0}^{\infty}rac{(-1)^m}{m!\Gamma(m+lpha+1)}\Big(rac{x}{2}\Big)^{2m+lpha}$$
,独立公式示例

(3) 自动编号

公式可以用如下方法表示:

自动编号后的公式可在全文任意处使用 \eqref{eq:公式名} 语句引用。

例子:

显示:

$$E = mc^2$$
,自动编号公式示例 (1)

在公式(???)中,我们看到了这个被自动编号的公式。

(4) 手动编号

若需要手动编号,可在公式后使用 \tag{编号} 语句。

例子:

```
$$ J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \Gamma (m + \alpha + 1)} {\left({ \frac{x}{2} }\right)}^{2m + \alpha} \text{,使用 \tag {0.1} $$$
```

显示:

(5) 不自动编号

公式可以用如下方法表示:

```
\begin{equation*}
表达式
\end{equation*}
```

显示:

表达式

2. 如何输入上下标

- ↑ 表示上标, _ 表示下标。如果上下标的内容多于一个字符,需要用 () 将这些内容括成一个整体。 上下标可以嵌套,也可以同时使用。
 - 例子:

 $\ \$ $x^{y^z} = (1+{\rm yrm} \ e)^x)^{-2xy^w} \$

• 显示:

$$x^{y^z} = (1 + e^x)^{-2xy^w}$$

如果要在左右两边都有上下标,可以使用\sideset 命令;也可以简单地在符号前面多打一个上下标,此时会以行内公式渲染。 本例内\quad 均为空格符号,为方便公式格式对比而添加,请注意辨别。详见[在字符间加入空格](#3在字符间加入空格)。

• 例子:

 $\ \$ \sideset{^1_2}{^3_4}\bigotimes \quad or \quad {^1_2}\bigotimes {^3_4} $\$

• 显示:

$${}^{1}_{2}\bigotimes_{4}^{3}$$
 or ${}^{1}_{2}\bigotimes_{4}^{3}$

3. 如何输入括号和分隔符

() 、 [] 和 | 表示符号本身,使用 \{\} 来表示 {} 。当要显示大号的括号或分隔符时,要用 \left 和 \right 命令。
—些特殊的括号:

输入	显示	输入	显示
\langle	<	\rangle	>
\lceil	Γ	\rceil	7
\lfloor	L	\rfloor	
\lbrace	{	\rbrace	}
\lvert		\rvert	
\IVert		\rVert	

有时,我们需要在行内使用两个竖杠表示向量间的某种空间距离,可以这样写:

\lvert \boldsymbol{X}_i - \boldsymbol{S}_j \rvert^2 $ightarrow \|m{X}_i - m{S}_i\|^2$

• 例子:

\$ f(x,y,z) = 3y^2z \left(3+\frac{7x+5}{1+y^2} \right) \$\$

• 显示:

$$f(x,y,z)=3y^2z\left(3+rac{7x+5}{1+y^2}
ight)$$

有时要用 \left. 或 \right. 进行匹配而不显示本身。

• 例子:

 $\ \left(\x d_{x} \right) _{x=0} \$

$$\frac{\mathrm{d}u}{\mathrm{d}x}\Big|_{x=0}$$

4. 如何输入分数

通常使用 \frac {分子} {分母} 来生成一个分数,分数可多层嵌套。

若分数只有一层,也可使用分子 \over 分母 命令。

例内 \quad \mid \, 等均为空格或分隔符号, 为方便公式格式对比而添加, 请注意辨别。详见[在字符间加入空格](#3在字符间加入空格)。

• 例子:

 $\$ \frac{a-1}{b-1} \quad or \quad {a+1 \over b+1} \$\$

• 显示:

$$\frac{a-1}{b-1}$$
 or $\frac{a+1}{b+1}$

当分式 \mathbf{Q} 有两个字符时 可直接输入 \frac ab 来快速生成一个 $\frac{a}{b}$.

• 例子:

 $\$ \frac 12,\frac 1a,\frac a2 \quad \mid \quad \text{2 letters only:} \quad \frac 12a \,, k\frac q{r^2} \\$\$

• 显示:

$$\frac{1}{2}, \frac{1}{a}, \frac{a}{2}$$
 | 2 letters only: $\frac{1}{2}a, k\frac{q}{r^2}$

5. 如何输入开方

使用 \sqrt [根指数, 省略时为2] {被开方数} 命令输入开方。

本例内 \quad 均为空格符号,为方便公式格式对比而添加,请注意辨别。详见[在字符间加入空格](#3在字符间加入空格)。

• 例子:

 $\ \$ \sqrt{2} \quad or \quad \sqrt[n]{3} $\$

• 显示:

$$\sqrt{2}$$
 or $\sqrt[n]{3}$

6. 如何输入省略号

数学公式中常见的省略号有两种, \ldots 表示与 文本底线 对齐的省略号, \cdots 表示与 文本中线 对齐的省略号。

• 例子:

 $\$ f(x_1,x_2,\underbrace{\ldots}_{\rm ldots} ,x_n) = x_1^2 + x_2^2 + \underbrace{\cdots}_{\rm cdots} + x_n^2 \$\$

• 显示:

$$f(x_1, x_2, \underbrace{\dots}_{\text{ldots}}, x_n) = x_1^2 + x_2^2 + \underbrace{\dots}_{\text{cdots}} + x_n^2$$

7. 如何输入向量

使用 \vec{向量} 来自动产生一个向量。也可以使用 \overrightarrow 等命令自定义字母上方的符号。

例内 \quad \mid \, 等均为空格或分隔符号,为方便公式格式对比而添加,请注意辨别。详见[在字符间加入空格](#3在字符间加入空格)。

• 例子:

\$\$ \vec{a} \cdot \vec{b}=0 \$\$

• 例子:

 $\$ verieftarrow{xy} \; \mid \; \overleftarrow{xy} \; \mid \; \overleftarrow{xy} \; \mid \; \overleftarrow{xy} \\$

• 显示:

$$xy$$
 with arrows: $\stackrel{\longleftarrow}{xy} \mid \stackrel{\longleftrightarrow}{xy} \mid \stackrel{\longrightarrow}{xy}$

8. 如何输入积分

使用 \int_积分下限^积分上限 {被积表达式} 来输入一个积分。

例子:

```
\ \int 0^1 {x^2} \, {\rm d}x $$
```

显示:

$$\int_0^1 x^2 \, \mathrm{d}x$$

本例中 \ , 和 (\rm d) 部分可省略,但加入能使式子更美观,详见[在字符间加入空格](#3在字符间加入空格)及[如何进行字体转换](#13如何进行字体转换)。

9. 如何输入极限运算

使用 \lim_{变量 \to 表达式} 表达式 来输入一个极限。如有需求,可以更改 \to 符号至任意符号。

例子:

```
\ \lim_{n \to \infy} \frac{1}{n(n+1)} \quad \and \quad \lim_{x\to \infty} \frac{\pi}{\theta}}
```

显示:

$$\lim_{n o\infty}rac{1}{n(n+1)} \quad and \quad \lim_{x\leftarrow \overline{x}
eq 0}rac{1}{n(n+1)}$$

10. 如何输入累加、累乘运算

使用 \sum_{下标表达式}^{上标表达式} {累加表达式} 来输入一个累加。与之类似,使用 \prod \bigcup \bigcup 来分别输入累乘、并集和交集,更多符号可参考"[其它特殊字符](# 12如何输入其它特殊字符)"。

此类符号在行内显示时上下标表达式将会移至右上角和右下角,如 \sum_{i=1}^n \frac{1}{ i^2 } 显示为 $\sum_{i=1}^n \frac{1}{i^2}$;

或在行内可使用 \sum\limits_{下标表达式}^{上标表达式} (累加表达式) 使上下标仍在正上正下方。

如 \sum\limits_{i=1}^n \frac{1}{i^2} 显示为
$$\sum_{i=1}^n \frac{1}{i^2}$$
。

本例内 \quad 均为空格符号,为方便公式格式对比而添加,请注意辨别。详见[在字符间加入空格](#3在字符间加入空格)。

• 例子:

```
\ \sum_{i=1}^n \frac{1}{i^2} \quad \quad \ \quad and \quad \prod_{i=1}^n \frac{1}{i^2} \quad \quad \ \Bbb{R} \
```

• 显示:

$$\sum_{i=1}^{n} \frac{1}{i^2} \quad and \quad \prod_{i=1}^{n} \frac{1}{i^2} \quad and \quad \bigcup_{i=1}^{2} \mathbb{R}$$

11. 如何输入希腊字母

输入 \小写希腊字母英文全称 和 \首字母大写希腊字母英文全称 来分别输入小写和大写希腊字母。 对于大写希腊字母与现有字母相同的,直接输入大写字母即可。

输入	显示	输入	显示	输入	显示	输入	显示
\alpha	α	А	A	\beta	β	В	В
\gamma	γ	\Gamma	Г	\delta	δ	\Delta	Δ
\epsilon	ϵ	E	E	\zeta	ζ	Z	Z
\eta	η	Н	H	\theta	θ	\Theta	Θ
\iota	ι	I	I	\kappa	κ	К	K
\lambda	λ	\Lambda	Λ	\mu	μ	М	M
\nu	ν	N	N	\xi	ξ	\Xi	Ξ
0	0	0	0	\pi	π	\Pi	П
\rho	ρ	Р	P	\sigma	σ	\Sigma	Σ
\tau	au	Т	T	\upsilon	v	\Upsilon	Υ
\phi	φ	\Phi	Φ	\chi	χ	Х	X
\psi	ψ	\Psi	Ψ	\omega	ω	\Omega	Ω
\partial	д	\nabla	∇				

部分字母有变量专用形式,以 \var- 开头。

小写形式	大写形式	变量形式	显示
\epsilon	E	\varepsilon	$\epsilon \mid E \mid \varepsilon$
\theta	\Theta	\vartheta	$\theta \mid \Theta \mid \vartheta$
\rho	Р	\varrho	$ ho \mid P \mid \varrho$
\sigma	\Sigma	\varsigma	$\sigma \mid \Sigma \mid \varsigma$
\phi	\Phi	\varphi	$\phi \mid \Phi \mid \varphi$

12. 如何输入其它特殊字符

(1). 关系运算符

输入	显示	输入	显示	输入	显示	输入	显示
\pm	±	\times	×	\div	*	\mid	
\nmid	†	\cdot		\circ	0	\ast	*
\odot	•	\otimes	\otimes	\oplus	0	\leq	<u>≤</u>
\geq	≥	\neq	<i>≠</i>	\approx	≈	\equiv	≡
\sum	Σ	\prod	П	\coprod	П	\backslash	\

(2). 集合运算符

输入	显示	输入	显示	输入	显示
\emptyset	Ø	\in	€	\notin	∉

输入	显示	输入	显示	输入	显示
\subset	<u> </u>	\supset	\supset	\subseteq	\subseteq
\supseteq	⊇	\cap	Ω	\cup	U
\vee	V	\wedge	^	\uplus	Ш
\top	Т	\bot	Т	\complement	С

(3). 对数运算符

输入	显示	输入	显示	输入	显示
\log	log	\lg	lg	\In	ln

(4). 三角运算符

输入	显示	输入	显示	输入	显示
\backsim	~	\cong	\cong	\angle A	$\angle A$
\sin	\sin	\cos	cos	\tan	tan
\csc	csc	\sec	sec	\cot	cot

(5). 微积分运算符

输入	显示	输入	显示	输入	显示
\int	ſ	\iint	JJ.	\iiint	\iiint
\partial	д	\oint	∮	\prime	,
\lim	lim	\infty	∞	\nabla	∇

(6). 逻辑运算符

输入	显示	输入	显示	输入	显示
\because	::	\therefore	··.	\neg	_
\forall	\forall	\exists	3	\not\subset	¢
\not<	*	\not>	*	\not=	#
\vdash	H				

(7). 戴帽符号

输入	显示	输入	显示	输入	显示
\hat	\hat{xy}	\widehat	\widehat{xyz}	\bar	\bar{y}
\tilde	\tilde{xy}	\widetilde	\widetilde{xyz}	\acute	ý
\breve	$reve{y}$	\check	ž	\grave	ỳ
\dot	\dot{x}	\ddot	\ddot{x}	\dddot	\ddot{x}

• 例子:

 $\$ \verb+\overset{above}{level}+ \qquad \overset{xx}{ABC} \; \mid \quad \overset{x^2}{\longmapsto} \, \mid \quad \overset{\bullet\circ\circ\bullet}{T}

• 显示:

$$\verb|\varphi | ABC | \stackrel{x^2}{\longmapsto} | T$$

• 例子:

 $\$ \verb+\underset{below}{level}+ \qquad \underset{xx}{ABC} \;\; \mid \quad \underset{x^2}{\longmapsto} \, \mid \quad \underset{bullet\circ\circ\bullet}{T} \$\$

• 显示:

$$\verb|\underset{below}{level}| \qquad ABC & | & \underset{x^2}{\longmapsto} & | & T \\ & & & \\ \end{bmatrix}$$

此命令可叠加嵌套使用, 生成类似化学反应式的多重条件符号,

如 \overset{H_2}{\underset{1300°C}{\Longleftrightarrow}} :

$$\mathrm{SrO} + V_{\mathrm{Sr}}^{''} \overset{\mathrm{H_2}}{\underset{1300^{\circ}\mathrm{C}}{\Longleftrightarrow}} \mathrm{Sr}_{\mathrm{Sr}}^{\times} + 2\mathrm{e}^{'} + \frac{1}{2}\mathrm{O}_2(\mathrm{g})$$

和 $\overset{Surface/bulk}{\overset{diffusion}{\overset{bulk}}}$:

$$2OH_{O(STN)}^{\circ} + 2O_{O(YSZ)}^{\times} \ \stackrel{Surface/bulk}{\longleftrightarrow} \ 2OH_{O(YSZ)}^{\circ} + 2O_{O(STN)}^{\times}$$

在书写化学方程式时可声明 \require(AMDcd) 语句,使用 MathJax 内置的交换图表功能,具体例子可参见下文。

(8). 连线符号

其它可用的文字修饰符可参见官方文档 "Additional decorations"。

输入	显示
\fbox	[a+b+c+d]
\overleftarrow	a+b+c+d
\overrightarrow	$\overrightarrow{a+b+c+d}$
\overleftrightarrow	$\overrightarrow{a+b+c+d}$
\underleftarrow	a+b+c+d
\underrightarrow	$\xrightarrow{a+b+c+d}$
\underleftrightarrow	$\overset{a+b+c+d}{\longleftrightarrow}$
\overline	$\overline{a+b+c+d}$
\underline	$\underline{a+b+c+d}$
\overbrace{a+b+c+d}^	$\overbrace{a+b+c+d}^{Sample}$
\underbrace{a+b+c+d}_	$\underbrace{a+b+c+d}_{Sample}$

输入	显示
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\underbrace{a + \underbrace{b + c}_{1.0} + d}^{2.0}$
\underbrace{a\cdot a\cdots a}_{b\text{ times}}	$\underbrace{a \cdot a \cdots a}_{b \text{ times}}$

(9). 箭头符号

• 推荐使用符号:

输入	显示	输入	显示	输入	显示
\to	\rightarrow	\mapsto	\mapsto	\underrightarrow	$\xrightarrow{1^{\circ}C/min}$
\implies	\Longrightarrow	\iff	\iff	\impliedby	=====================================

• 其它可用符号:

><0.1/10/0.21			
输入	显示	输入	显示
\uparrow	†	\Uparrow	1
\downarrow	+	\Downarrow	\
\leftarrow	←	\Leftarrow	(
\rightarrow	\rightarrow	\Rightarrow	\Rightarrow
\leftrightarrow	\leftrightarrow	\Leftrightarrow	\Leftrightarrow
\longleftarrow		\Longleftarrow	=====================================
\longrightarrow	\longrightarrow	\Longrightarrow	\Longrightarrow
\longleftrightarrow	\longleftrightarrow	\Longleftrightarrow	\iff

13. 如何进行字体转换

若要对公式的某一部分字符进行字体转换,可以用 $\{\}$ 命令,其中 $\}$ 命令,其中 $\}$ 部分可以参照下表选择合适的字体。一般情况下,公式默认为斜体字 italic 。

示例中 全部大写 的字体仅大写可用。

输入	全字母可用	显示	输入	仅大写可用	显示
\rm	罗马体	Sample	\mathcal	花体 (数学符号等)	SAMPLE
\it	斜体	Sample	\mathbb	黑板粗体 (定义域等)	SAMPLE
\bf	粗体	Sample	\mit	数学斜体	SAMPLE
\sf	等线体	Sample	\scr	手写体	タタM ゆよさ
\tt	打字机体	Sample	\cal	等同于 \mathcal	ABCXYZ
\frak	旧德式字体	Sample	\Bbb	等同于 \mathbb	ABCXYZ
\boldsymbol	向量或者矩阵的加粗斜体	$ec{lpha}$			

转换字体十分常用,例如在积分中:

• 例子:

```
\begin{array}{cc}
    \mathrm{Bad} & \mathrm{Better} \\
    \hline \\
    \int_0^1 x^2 dx & \int_0^1 x^2 \,{\rm d}x
\end{array}
```

$$\int_0^1 x^2 dx \quad \int_0^1 x^2 dx$$

注意比较两个式子间 dx 与 dx 的不同。

使用 \operatorname 命令也可以达到相同的效果,详见[定义新的运算符](#1定义新的运算符-operatorname)。

14. 如何高亮一行公式

使用 \bbox[底色,(可选)边距,(可选)边框 border: 框宽度 框类型 框颜色] 命令来高亮一行公式。 底色和框颜色支持详见"[更改文字颜色](#4更改文字颜色-color)",边距及框宽度支持 绝对像素 px 或 相对大小 em ,框类型支持 实线 solid 或 虚线 dashed 。

• 例子:

```
$$
\bbox[yellow]{
   e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n \qquad (1)
}
$$
$$
```

• 显示:

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \qquad (1)$$

• 例子:

```
$$ \bbox[#9ff, 5px]{ % 此处向外添加 5 像素的边距
    e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n \qquad (1)
}
$$
```

• 显示:

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \qquad (1)$$

• 例子:

```
$$
% 此处使用 0.5 倍行高作为边距,附加 2 像素的实线边框 (Ctrl+Alt+Y 可见)
\bbox[#2f3542, 0.5em, border:2px solid #f1f2f6]{
   \color(#f1f2f6){e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n \qquad (1)}
}
$$
```

• 显示:

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \qquad (1)$$

15. 大括号和行标的使用

• 例子:

```
$$
f\left(
  \left[
    \frac{
      1+\left\{x,y\right\}
    }{
      \left(
          \frac xy + \frac yx
      \right)
      (u+1)
    }+a
  \right]^{3/2}
\right)
\tag {行标}
$$
$$
$$
```

• 显示:

$$f\left(\left[\frac{1+\{x,y\}}{\left(\frac{x}{y}+\frac{y}{x}\right)(u+1)}+a\right]^{3/2}\right) \tag{7.15}$$

如果你需要在不同的行显示对应括号,可以在每一行对应处使用\left. 或\right. 来放一个"不存在的括号"。

• 例子:

```
$$
\begin{align*}
    a=&\left(1+2+3+ \cdots \right. \\
        &\cdots+\left. \infty-2+\infty\right)
\end{align*}
$$$
```

• 显示:

$$a = (1 + 2 + 3 + \cdots \\ \cdots + \infty - 2 + \infty - 1 + \infty)$$

如果你需要将大括号里面显示的分隔符也变大,可以使用 \middle 命令, 此处分别使用单竖线 | 和双竖线 \\| 。

• 例子:

```
$$
\left\langle
    q \; \middle|
        \frac{\frac xy}{\frac uv}
        \middle\| p
\right\rangle
$$
```

• 显示:

$$\left\langle q \left| \frac{\frac{x}{y}}{\frac{u}{v}} \right| \right| p \right\rangle$$

16. 其它命令

(1). 定义新的运算符 \operatorname

当需要使用的运算符不在 MathJax 的内置库中时,程序可能会报错或产生错误的渲染结果。此时可以使用 \operatorname 命令定义一个新的运算符号。

• 反例:

```
\begin{array}{c|c}
  \mathrm{Error} & \text{Wrong rendering} \\
  \hline \\
```

Error	Wrong rendering
	()
$\setminus \operatorname{arsinh}(x)$	arsinh(x)
$\backslash \mathrm{Res}_{z=1}$	$Res_{z=1}rac{1}{z^2-z}=1$

使用 \operatorname{运算符}{式子} 来生成一个普通运算,或使用 \operatorname*{运算符}_{下标}^{上标}{式子} 来生成一个含上下标的自定义运算。

• 例子:

```
\begin{array}{c|c}
   \text{Normal Operator} & \text{Operator with label above and below} \\
   \hline \\
   \scriptsize\text{\operatorname{arsinh}{x}} & \scriptsize\text{\operatorname*{Res}_{z=1}{\frac{1}{z^2-z}=1}}
\\
   \operatorname{arsinh}{x} & \operatorname*{Res}_{z=1}{\frac{1}{z^2-z}=1} \\
   \end{array}
```

• 显示:

Normal Operator	Operator with label above and below
$\\ \\ (arsinh)\{x\}$	$\label{lem:constraint} $\operatorname{Res}_{z=1}_{z=1}_{\frac{1}{z^2-z}=1}$$
$\operatorname{arsinh} x$	$\operatorname{Res}_{z=1} \frac{1}{z^2 - z} = 1$

查询关于此命令的定义和关于此命令的讨论来进一步了解此命令。

(2). 添加注释文字 \text

在 \text {文字} 中仍可以使用 \$公式\$ 插入其它公式。

• 例子:

```
\ f(n)= \begin{cases} n/2, & \text{if }n\$ is even} \\ 3n+1, & \text{if }n\$ is odd} \end{cases} \$$
```

• 显示:

$$f(n) = \begin{cases} n/2, & \text{if } n \text{ is even} \\ 3n+1, & \text{if } n \text{ is odd} \end{cases}$$

(3). 在字符间加入空格

有四种宽度的空格可以使用: \, \, \, \, \quad 和 \, \qquad , 灵活使用 \\text{n个空格} 也可以在任意位置实现空格。同时存在一种负空格 \! 用来减小字符间距,一般在物理单位中使用。

重复使用 \! 命令能够实现不同元素的叠加渲染,如\n }!!!!!\div

• 例子:

```
\begin{array}{c|c}
    \text{Spaces} & \text{Negative Space in Units} \\
    \hline \\
    \overbrace{a \! b}^{\text{\!}} \mid \underbrace{ab}_{\rm{default}} \mid \overbrace{a \, b}^{\text{\,}} \mid \underbrace{a \, b}^{\text{\,}} \mid \underbrace{a \, quad \,} \mid \underbrace{a \, quad \,} \mid \underbrace{a \, quad \,} \mid \\
    \underbrace{a \, p}_{\text{\,}} \mid \overbrace{a \, quad \,} \mid \\
    \underbrace{a \, quad \,} & \mathrm{N}\!\cdot\!\mathrm{\,} \mid \\
    \mathrm{\,} \\\
    \underbrace{\,} \\
    \underbrace{\,} \\\
    \underbrace{\,} \\
    \underbrace{\,} \\
```


一些常见的公式单位可表达如下:

• 例子:

• 显示:

$$\mu_0 = 4\pi \times 10^{-7} \ \mathrm{T \cdot m/A} \, \$\$\$\$180^\circ = \pi \ \mathrm{rad} \$\$\$\$ N_{\mathrm{A}} = 6.022 \times 10^{23} \ \mathrm{mol}^{-1}$$

(4). 更改文字颜色 \color

使用 \color{颜色}{文字} 来更改特定的文字颜色。

更改文字颜色需要浏览器支持 ,如果浏览器不知道你所需的颜色,那么文字将被渲染为黑色。对于较旧的浏览器(HTML4 & CSS2),以下颜色是被支持的:

输入	显示	输入	显示
black	text	grey	text
silver	text	white	text
maroon	text	red	text
yellow	text	lime	text
olive	text	green	text
teal	text	auqa	text
blue	text	navy	text
purple	text	fuchsia	text

对于较新的浏览器(HTML5 & CSS3), HEX 颜色将被支持:

输入 \color {\pmurphi} \text} 来自定义更多的颜色,其中 \pmurphi 或 \pmurphi g b 可输入 0-9 和 a-f 来表示红色、绿色和蓝色的纯度(饱和度)。

• 例子:

```
#000 text #00F text #0FF text #F00 text #FF0 text #FFF text
```

• 例子:

```
\begin{array}{|rrrrrrrr|}\hline
                                      \label{lem:color} $$\operatorname{werb+\#000+ \& \color{\#000}{text} \& \verb+\#005+ \& \color{\#005}{text} \& \verb+\#00A+ \& \color{\#00A}{text} \& \color{
 \verb+#00F+ & \color{#00F}{text} \\
                                      \verb+#50F+ & \color{#50F}{text} \\
                                      \label{lem:color} $$\operatorname{a}_0 + a \circ \frac{400}{\tan 4.00} \le \operatorname{color}_{400} \le \operatorname{color}_{4000} \le \operatorname{color}_{4000} \le \operatorname{color}_{4000} \le \operatorname{color}_{4000} \le \operatorname
 \verb+#A0F+ & \color{#A0F}{text} \\
                                        \verb+#F0F+ & \color{#F0F}{text} \\
                                      \verb+#08F+ & \color{#08F}{text} \\
                                      \verb+#580+ & \color{#580}{text} & \verb+#585+ & \color{#585}{text} & \verb+#58A+ & \color{#58A}{text} &
\verb+#58F+ & \color{#58F}{text} \\
                                      \verb+#F80+ & \color{#F80}{text} & \verb+#F85+ & \color{#F85}{text} & \verb+#F8A+ & \color{#F8A}{text} &
\verb+#F8F+ & \color{#F8F}{text} \\
\hline
                                      \label{lem:color} $$\operatorname{text} & \operatorname{color}(\#0F0) {\text{text}} & \operatorname{color}(\#0F4) {
\verb+#0FF+ & \color{#0FF}{text} \\
                                      \label{lem:color} $$\operatorname{text} & \operatorname{color}(\#5F0) $$ \text{ & } \operatorname{color}(\#5F1) $$ \text{ & } \operatorname{color}(\#5F1) $$ \text{ & } \operatorname{color}(\#5F1) $$ \text{ & } \operatorname{
\verb+#5FF+ & \color{#5FF}{text} \\
                                      \label{lem:color} $$\operatorname{Lext} & \operatorname{Lext} & \operatorname{Le
\verb+#AFF+ & \color{#AFF}{text} \\
                                      \verb+#FF0+ & \color{#FF0}{text} & \verb+#FF5+ & \color{#FF5}{text} & \verb+#FFA+ & \color{#FFA}{text} &
\verb+#FFF+ & \color{#FFF}{text} \\
\hline\end{array}
```

• 显示:

```
#000 text #005 text #00A text #00F
                                          text
#500
           #505 text
                       #50A
                                   #50F
     text
                              text
                                          text
#A00
      text
           #A05 text
                       #AOA
                              text
                                   #AOF
                                          text
#F00
           #F05
                       #FOA
                              text
                                   #FOF
      text
                  text
                                          text
#080
      text
           #085
                  text
                       #08A
                              text
                                   #08F
                                          text
#580
      text
           #585
                  text
                       #58A
                              text
                                   #58F
                                          text
#A80
      text
           #A85
                  text
                       #A8A
                              text
                                   #A8F
                                          text
                       #F8A
#F80
           #F85
                                   #F8F
      text
                  text
                              text
                                          text
#OFO
      text
           #0F5
                  text
                       #OFA
                              text
                                   #OFF
                                          text
#5F0
      text
           #5F5
                       #5FA
                                   #5FF
                  text
                              text
                                          text
#AFO
           #AF5
                       #AFA
                                   #AFF
                 text
                              text
                                          text
#FFO
     text
           #FF5
                 text
                       #FFA
                              text
                                   #FFF
                                          text
```

(5). 添加删除线

使用删除线功能必须声明 \$\$ 符号。

在公式内使用 \require{cancel} 来允许**片段删除线**的显示。 声明片段删除线后,使用 \cancel{字符} 、 \bcancel{字符} 、 \xcancel{字符} 和 \cancelto{字符} 来实现各种片段删除线效果。

• 例子:

```
$$
\require{cancel}
\begin{array}{rl}
    \verb|y+\cancel{x}| & y+\cancel{x} \\
    \verb|\cancel{y+x}| & \cancel{y+x} \\
    \verb|y+\bcancel{x}| & y+\bcancel{x} \\
    \verb|y+\cancel{x}| & y+\cancel{x} \\
```

使用 \require{enclose} 来允许整段删除线的显示。

声明整段删除线后,使用 \enclose{删除线效果}{字符} 来实现各种整段删除线效果。

其中,删除线效果有 horizontalstrike 、 verticalstrike 、 updiagonalstrike 和 downdiagonalstrike ,可叠加使用。

• 例子:

```
$$
\require{enclose}
\begin{array}{r1}
   \verb|\enclose{horizontalstrike}{x+y}| & \enclose{horizontalstrike}{x+y} \\
   \verb|\enclose{verticalstrike}{\frac xy}| & \enclose{verticalstrike}{\frac xy} \\
   \verb|\enclose{updiagonalstrike}{x+y}| & \enclose{updiagonalstrike}{x+y} \\
   \verb|\enclose{downdiagonalstrike}{x+y}| & \enclose{downdiagonalstrike}{x+y} \\
   \verb|\enclose{horizontalstrike, updiagonalstrike}{x+y}| & \enclose{horizontalstrike, updiagonalstrike}{x+y}}
\\
\end{array}
$$$
```

• 显示:

此外, \enclose 命令还可以产生包围的边框和圆等,参见 MathML Menclose Documentation 以查看更多效果。

• 例子:

分别使用 circle 和 roundedbox 包围的公式

```
\require{enclose}
\begin{array}{c}
\enclose{circle}{f(\top),\, f^2(\top),\, f^3(\top) \,\cdots\, f^n(\top)} \\
\enclose{roundedbox}{f(\bot),\, f^2(\bot),\, f^3(\bot) \,\cdots\, f^n(\bot)} \\
\end{array}
$$
```

使用 box 框住所有公式

```
$$
\require{enclose}
\enclose{box}{
   \begin{array}{c}
     f(\top),\, f^2(\top),\, f^3(\top) \,\cdots\, f^n(\top) \\
     f(\bot),\, f^2(\bot),\, f^3(\bot) \,\cdots\, f^n(\bot) \\
   \end{array}
```

```
}
$$
```

分别使用 circle 和 roundedbox 包围的公式:

$$\underbrace{f(\bot), f^2(\top), f^3(\top) \cdots f^n(\bot)}_{f(\bot), f^2(\bot), f^3(\bot) \cdots f^n(\bot)}$$

使用 box 框住所有公式:

$$f(\top), f^2(\top), f^3(\top) \cdots f^n(\top) f(\bot), f^2(\bot), f^3(\bot) \cdots f^n(\bot)$$

此例语法可参见[如何输入一个数组或表格](# 五、数组与表格使用参考)。

二、矩阵使用参考

1. 如何输入无框矩阵

在开头使用 \begin{matrix} , 在结尾使用 \end{matrix} , 在中间插入矩阵元素,每个元素之间插入 & , 并在每行结尾处使用 \\ 。

使用矩阵时必须声明 \$ 或 \$\$ 符号。

• 例子:

```
$$
\begin{matrix}
    1 & x & x^2 \\
    1 & y & y^2 \\
    1 & z & z^2 \\
    1 & z & z^2 \\
end{matrix}
$$$
```

• 显示:

2. 如何输入边框矩阵

在开头将 matrix 替换为 pmatrix bmatrix Bmatrix vmatrix Vmatrix .

例子:

```
$ \begin{matrix} 1 & 2 \\ 3 & 4 \\ \end{matrix} $

$ \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ \end{pmatrix} $

$ \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ \end{bmatrix} $

$ \begin{Bmatrix} 1 & 2 \\ 3 & 4 \\ \end{Bmatrix} $

$ \begin{Bmatrix} 1 & 2 \\ 3 & 4 \\ \end{Bmatrix} $

$ \begin{vmatrix} 1 & 2 \\ 3 & 4 \\ \end{Vmatrix} $

$ \begin{vmatrix} 1 & 2 \\ 3 & 4 \\ \end{vmatrix} $

$ \begin{vmatrix} 1 & 2 \\ 3 & 4 \\ \end{vmatrix} $
```

• 显示:

matrix:

 $\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}$

pmatrix:

 $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$

bmatrix:

 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Bmatrix:

 $\left\{ \begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right\}$

vmatrix:

 $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$

Vmatrix:

 $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$

3. 如何输入带省略符号的矩阵

使用 \cdots ···, \ddots ··., \vdots :来输入省略符号。

• 例子:

```
$$
\begin{pmatrix}
    1 & a_1 & a_1^2 & \cdots & a_1^n \\
    1 & a_2 & a_2^2 & \cdots & a_2^n \\
    \vdots & \vdots & \vdots & \ddots \\
    1 & a_m & a_m^2 & \cdots & a_m^n \\
\end{pmatrix}
$$
$$
```

• 显示:

$$\begin{pmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{pmatrix}$$

4. 如何输入带分割符号的矩阵

详见数组使用参考。

• 例子:

• 显示:

$$\left[\begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right]$$

其中 cclc 代表在一个三列矩阵中的第二和第三列之间插入分割线。

5. 如何输入行中矩阵

若想在一行内显示矩阵,可使用 \bigl(\begin{smallmatrix} 表达式 \end{smallmatrix}\bigr)

• 例子:

这是一个行中矩阵的示例 \$\bigl(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\bigr)\$

• 显示:

这是一个行中矩阵的示例 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 。

三、方程式序列使用参考

1. 如何输入一个方程式序列

人们经常想要一列整齐且居中的方程式序列。使用 \begin{align}...\end{align} 来创造一列方程式,其中在每行结尾处使用 \\ 。 使用方程式序列无需声明公式符号 \$ 或 \$\$ 。

请注意 {align} 语句是自动编号的,使用 {align*} 声明不自动编号。

• 例子:

```
\begin{align}
   \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \
            \& = \sqrt{73^2}{12^2} \cdot \frac{73^2}{73^2} 
            & = \sqrt{73^2}{12^2}\sqrt{573^2-1}{73^2} \\
            \& = \frac{73}{12} \sqrt{1-\frac{1}{73^2}} \
             & \approx \frac{73}{12}\left(1-\frac{1}{2\cdot73^2}\right) \\
\end{align}
```

• 显示:

$$\sqrt{37} = \sqrt{\frac{73^2 - 1}{12^2}} \tag{2}$$

$$=\sqrt{\frac{73^2}{12^2} \cdot \frac{73^2 - 1}{73^2}}\tag{3}$$

$$=\sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}}\tag{4}$$

$$=\frac{73}{12}\sqrt{1-\frac{1}{73^2}}\tag{5}$$

$$\approx \frac{73}{12} \left(1 - \frac{1}{2 \cdot 73^2} \right) \tag{6}$$

本例中每行公式的编号续自"[如何插入公式](#1如何插入公式)"中的自动编号公式(???)。

2. 在一个方程式序列的每一行中注明原因

在 {align} 中后添加 & 符号来自动对齐后面的内容,可灵活组合 \text 和 \tag 语句。 \tag 语句编号优先级高于自动编 号。

• 例子:

```
\begin{align}
    v + w &= 0 & \text{text{Given} } 1 \
        -w \& = -w + 0 \& \text{ditive identity} \text{ 2 }
   -w + 0 & = -w + (v + w) & \text{text}\{\text{equations } \$(1)\$ \text{ and } \$(2)\$\} \setminus
\end{align}
```

• 显示:

$$v + w = 0$$
 Given (1)
 $-w = -w + 0$ additive identity (2)

$$-w + 0 = -w + (v + w)$$
 equations (1) and (2)

本例中第一、第二行的自动编号被 \tag 语句覆盖,第三行的编号为自动编号。

如何引用 \tag 标记的公式?

四、条件表达式使用参考

1. 如何输入一个条件表达式

使用 \begin{cases}...\end{cases} 来创造一组条件表达式,在每一行条件中插入 & 来指定需要对齐的内容,并在每一行结尾处使用 \\ 。

• 例子:

• 显示:

$$f(n) = \begin{cases} n/2, & \text{if } n \text{ is even} \\ 3n+1, & \text{if } n \text{ is odd} \end{cases}$$

用 markdown+math 编辑时 \text 内需用 \((equation\))

2. 如何输入一个左侧对齐的条件表达式

若想让文字在**左侧对齐显示**,则有如下方式:

• 例子:

• 显示:

$$\begin{array}{ll} \text{if } n \text{ is even:} & n/2 \\ \text{if } n \text{ is odd:} & 3n+1 \end{array} \bigg\} = f(n)$$

3. 如何使条件表达式适配行高

在一些情况下,条件表达式中某些行的行高为非标准高度,此时使用 \\[2ex] 语句代替该行末尾的 \\ 来让编辑器适配。

• 例子:

不适配:

```
$$
f(n) =
   \begin{cases}
     \frac{n}{2}, & \text{if $n$ is even} \\
          3n+1, & \text{if $n$ is odd} \\
     \end{cases}
$$$
$$$
```

适配:

```
\end{cases}
$$
```

不适配:

$$f(n) = \begin{cases} rac{n}{2}, & ext{if } n ext{ is even} \\ 3n+1, & ext{if } n ext{ is odd} \end{cases}$$

适配:

$$f(n) = \left\{ egin{array}{ll} rac{n}{2}, & ext{if n is even} \ \\ 3n+1, & ext{if n is odd} \end{array}
ight.$$

一个 [ex] **指一个 "X-Height"**, 即 x 字母高度。可以根据情况指定多个 [ex] , 如 [3ex] 、 [4ex] 等。 其实可以在任意换行处使用 \\[2ex] 语句,只要你觉得合适。

五、数组与表格使用参考

1. 如何输入一个数组或表格

通常,一个格式化后的表格比单纯的文字或排版后的文字更具有可读性。

数组和表格均以 \begin{array} 开头,并在其后定义列数及每一列的文本对齐属性, c l r 分别代表居中、左对齐及右对齐。若需要插入垂直分割线,在定义式中插入 l ,若要插入水平分割线,在下一行输入前插入 \hline 。与矩阵相似,每行元素间均须要插入 & ,每行元素以 \\ 结尾,最后以 \end{array} 结束数组。使用单个数组或表格时无需声明 \$ 或 \$\$ 符号。

• 例子:

```
\begin{array}{c|lcr}

n & \text{左对齐} & \text{居中对齐} & \text{右对齐} \\
    \hline

1 & 0.24 & 1 & 125 \\
    2 & -1 & 189 & -8 \\
    3 & -20 & 2000 & 1+10i \\
end{array}
```

• 显示:

2. 如何输入一个嵌套的数组或表格

多个数组\表格可 **互相嵌套** 并组成一组数组或表格。 使用嵌套前必须声明 \$\$ 符号。

• 例子:

```
$$
\begin{array}{c} % 第一行内分成两列
\begin{array}{c|ccc} % 第一列"最小值"数组
\text{min} & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 \\
2 & 0 & 1 & 2 & 2 \\
3 & 0 & 1 & 2 & 2 \\
\end{array}

6
\begin{array}{c|ccc} % 第二列"最大值"数组
\text{max} & 0 & 1 & 2 & 3 \\
\hline
```

```
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 1 & 2 & 3 \\
2 & 2 & 2 & 2 & 2 & 3 \\
3 & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\end{array}
\end{array}
\begin{array}{c|ccc} % 第二行 Delta 值数组
\Delta & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 1 \\
3 & 3 & 2 & 1 & 0 \\
\end{array}
\end{array} % 第二行表格结束
\end{array} % 总表格结束
\end{array} % 总表格结束
```

min	0	1	2	3	max		0	1	2	3	
0	0	0	0	0		0		0	1	2	3
1	0	1	1	1		1		1	1	2	3
$\frac{2}{3}$	0		2			2		2	2	2	3
3	0	1	2	3		3		3	3	3	3
			Δ	0	1	2	3				
			0	0	1	2	3	_			
			1	1	0	1	2				
			2	2	1	0	1				
			3	3	2	1	0				

3. 如何输入一个方程组

可以使用 \begin{array} ... \end{array} 和 \left\{ ... \right. 来创建一个方程组:

• 例子:

```
$$
\left\{
   \begin{array}{c}
        a_1x+b_1y+c_1z=d_1 \\
        a_2x+b_2y+c_2z=d_2 \\
        a_3x+b_3y+c_3z=d_3 \\
   \end{array}
\right.
$$$
```

• 显示:

$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

或使用条件表达式组 \begin{cases} ... \end{cases} 来实现相同效果:

• 例子:

```
\begin{cases}
    a_1x+b_1y+c_1z=d_1 \\
    a_2x+b_2y+c_2z=d_2 \\
    a_3x+b_3y+c_3z=d_3 \\
\end{cases}
```

```
\{ a_1x + b_1y + c_1z = d_1 \ a_2x + b_2y + c_2z = d_2 \ a_3x + b_3y + c_3z = d_3
```

六、连分数使用参考

1. 如何输入一个连分式

就像输入分式时使用 \frac 一样,使用 \cfrac 来创建一个连分数。

• 例子:

• 显示:

$$x = a_0 + \frac{1^2}{a_1 + \frac{2^2}{a_2 + \frac{3^2}{a_4 + \cdots}}}$$

不要使用普通的 \frac 或 \over 来生成连分数,看起来会很奇怪。

• 反例:

• 显示:

$$x=a_0+rac{1^2}{a_1+rac{2^2}{a_2+rac{3^2}{a_3+rac{4^4}{a_4+\cdots}}}}$$

当然,你可以使用\frac 来表达连分数的紧缩记法。

• 例子:

```
$$
x = a_0 + \frac{1^2}{a_1 +}
        \frac{2^2}{a_2 +}
        \frac{3^2}{a_3 +}
        \frac{4^4}{a_4 +}
        \cdots
```

$$x = a_0 + rac{1^2}{a_1 +} rac{2^2}{a_2 +} rac{3^2}{a_3 +} rac{4^4}{a_4 +} \cdots$$

七、交换图表使用参考

1. 如何输入一个交换图表

推荐使用 Cmd Markdown 自带的各种图功能,详见 Cmd Markdown 高阶语法手册。

使用一行 \require{AMScd} 语句来允许交换图表的显示。

声明交换图表后,语法与矩阵相似,在开头使用 \begin{CD} ,在结尾使用 \ end{CD} ,在中间插入图表元素,每个元素之间插入 。 ,并在每行结尾处使用 \\ 。

• 例子:

```
$$
\require{AMScd}
\begin{CD}
    A @>a>> B \\
    @V b V V\# @VV c V \\
    C @>>d> D \\
\end{CD}
$$
```

• 显示:

$$\begin{array}{ccc}
A & \stackrel{a}{\longrightarrow} & B \\
\downarrow b & \# & \downarrow c \\
C & \stackrel{d}{\longrightarrow} & D
\end{array}$$

其中, @>>> 代表右箭头、 @<<< 代表左箭头、 @VVV 代表下箭头、 @AAA 代表上箭头、 @= 代表水平双实线、 @| 代表竖直双 实线、 @. 代表没有箭头。

在 @>>> 的 >>> 之间任意插入文字即代表该箭头的注释文字。

• 例子:

```
$$
\require{AMDcd}
\begin{CD}
    A @>>> B @>{\text{very long label}}>> C \\
    @. @AAA @| \\
    D @= E @<<< F \\
\end{CD}
$$</pre>
```

• 显示:

在本例中, very long label 自动延长了它所在箭头以及对应箭头的长度,因而交换图表十分适合进行化学反应式的书写。

• 例子:

```
$$
\require{AMDcd}
\begin{CD}
  \rm{RCOHR^{'}SO_3Na} @>{\large\text{Hydrolysis, $\Delta$, Dil.HCl}}>> \rm{(RCOR^{'})+NaCl+SO_2+ H_2O}
\end{CD}
$$
```

```
\begin{array}{ccc} RCOHR'SO_{3}Na & \xrightarrow{Hydrolysis, \; \Delta, \; Dil.HCl} & (RCOR') + NaCl + SO_{2} + H_{2}O \end{array}
```

八、一些特殊的注意事项

现在指出的小问题并不会影响公式的正确显示,但能让它们看起来明显更好看。初学者可无视这些建议,自然会有强迫症患者替你们改掉它的,或者更可能地,不会有人在意这些细节。

在以e为底的指数函数、极限和积分中尽量不要使用 $^{\text{frac}}$ 符号——它会使整段函数看起来很奇怪并可能产生歧义,因此它在专业数学排版中几乎从不出现。可试着横着写这些分式,中间使用斜线间隔 $^{\text{frac}}$ (用斜线代替分数线)。

• 例子:

```
\begin{array}{cc}
   \mathrm{Bad} & \mathrm{Better} \\
   \hline \\
   \large e^{i\frac{\pi}2} \quad e^{\frac{i\pi}2}& \large e^{i\pi/2} \\[2ex]
   \int_{-\frac\pi2}^\frac\pi2 \sin x\,dx & \int_{-\pi/2}^{\pi/2}\sin x\,dx \\
\end{array}
```

• 显示:

$$e^{irac{\pi}{2}} \ e^{irac{i\pi}{2}} \ e^{i\pi/2}$$
 $\int_{-\pi/2}^{\pi/2} \sin x \, dx \ \int_{-\pi/2}^{\pi/2} \sin x \, dx$

使用 / 符号作为分隔符时会产生错误的间距,因此在需要分隔时最好使用 \mid 来代替它。

• 例子:

```
\begin{array}{cc}
   \mathrm{Bad} & \mathrm{Better} \\
   \hline \\
   \{x\x^2\in\Bbb Z\} & \{x\mid x^2\in\Bbb Z\} \\
\end{array}
```

• 显示:

$$\begin{array}{c|c} \text{Bad} & \text{Better} \\ \\ \{x|x^2 \in \mathbb{Z}\} & \{x \mid x^2 \in \mathbb{Z}\} \end{array}$$

使用多重积分符号时,不要多次使用 \int 来声明,直接使用 \int 来表示二重积分或 \iiint 来表示三重积分。 在表示面积分和体积分时下标建议使用 \boldsymbol{S} 和 \boldsymbol{V} 符号;对于多维函数的超体积,可使用 \idotsint ,如下面的例子所示。

• 例子:

```
\begin{array}{cc}
    \mathrm(Bad) & \mathrm{Better} \\
    \hline \\
    \int\int_S f(x)\,dy\,dx & \iint_{\boldsymbol{S}} f(x)\,{\rm d}y\,{\rm d}x \\
    \int\int_V f(x)\,dz\,dy\,dx & \iiint_{\boldsymbol{V}} f(x)\,{\rm d}z\,{\rm d}y\,{\rm d}x \\
    \hline \\
    \text{多重积分示例} & \idotsint_{\boldsymbol{D}} f(x_1,x_2,\,\cdots\,,x_n)\,{\rm d}x_1\cdots{\rm d}x_n
    \end{array}
```

Bad	Better	
$\iint_{S} f(x) dy dx$ $\iint_{V} f(x) dz dy dx$	$\iint_{S} f(x) \mathrm{d}y \mathrm{d}x$ $\iiint_{V} f(x) \mathrm{d}z \mathrm{d}y \mathrm{d}x$	

多重积分示例
$$\int \cdots \int_{D} f(x_1, x_2, \cdots, x_n) dx_1 \cdots dx_n$$

使用多重积分时,在被积变量后加入 $^{^{\prime}}$ (或在微分符号 d 之前)来插入一个小的间距,否则各种被积变量将会挤成一团。注意比较 dzdydx 的不同。

• 例子:

```
\begin{array}{cc}
   \mathrm{Bad} & \mathrm{Better} \\
   \hline \\
   \iiint_V f(x){\rm d}z {\rm d}x & \iiint_{\boldsymbol{V}} f(x)\,{\rm d}z\,{\rm d}x \\
\end{array}
```

• 显示:

 $\begin{array}{c|c} \text{Bad} & \text{Better} \\ \\ \iiint_V f(x) \mathrm{d}z \mathrm{d}y \mathrm{d}x & \iiint_V f(x) \, \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x \end{array}$

更多MarkDown语法请参见:

MarkDown简明语法公式

MarkDown高阶语法公式

MarkDown公式指导手册

学习更多编程知识,请关注我的公众号:

代码的路

分类: MarkDown

标签: MarkDown

1 0

« 上一篇: MarkDown高阶语法手册

» 下一篇: 面积曲线AUC (area under curve)

posted @ 2022-08-01 15:56 代码的路 阅读(195) 评论(0) 编辑 收藏 举报

会员救园 刷新页面 返回顶部

登录后才能查看或发表评论,立即 $\frac{6}{2}$ 或者 \underline{x} 博客园首页

【推荐】阿里云金秋云创季:云服务器新秀99元/年,百款产品满减折上折 【推荐】会员救园:园子走出困境的唯一希望,到年底有多少会员

编辑推荐:

- 我试图通过这篇文章告诉你,什么是神奇的泛化调用
- · 「ASP.NET Core」MVC过滤器:运行流程
- ·.net 温故知新: Asp.Net Core WebAPI 缓存
- 对 .NET程序2G虚拟地址紧张崩溃 的最后一次反思
- · pnpm 管理依赖包是如何节省磁盘空间的?

阅读排行:

- ·一个基于.NET Core开源、跨平台的仓储管理系统
- ·.NET 与 OpenEuler 共展翅,昇腾九万里
- ·请查收,本周刷屏的两大热点「GitHub 热点速览」
- ·我试图通过这篇文章告诉你,什么是神奇的泛化调用。
- ·《HelloGitHub》第92期

Copyright © 2023 代码的路 Powered by .NET 8.0 on Kubernetes