

Marco Antonio Moreira

Instituto de Física da UFRGS, C.P. 15051, 91501-970 Porto Alegre - RS moreira@if.ufrgs.br www.if.ufrgs.br/~ moreira

Introdução

ste texto procura dar, através da técnica dos mapas conceituais (Moreira e Buchweitz, 1987), uma visão introdutória ao assunto partículas elementares e interações fundamentais. A intenção é a de mostrar que esse tema pode ser abordado,

Uma visão introdutória ao

assunto partículas

elementares e interações

fundamentais pode ser

abordado, de maneira

acessível, de forma a

transmitir aos alunos a idéia

de um assunto excitante,

colorido, estranho e

charmoso

de maneira acessível, sem muitas ilustrações que acabam tolhendo a imaginação dos alunos e até mesmo dificultando a aprendizagem de certos conceitos. Essa introdução poderá ser seguida de considerações

qualitativas sobre simetria e leis de conservação em Física, sobre a construção do conhecimento em Física (por exemplo, a previsão teórica das partículas que somente anos depois foram detectadas, ou que ainda não o foram), sobre as tentativas de unificar teorias físicas. Com habilidade didática, talvez se possa transmitir aos alunos a idéia de um assunto excitante, colorido, estranho e charmoso, ao invés de difícil e enfadonho.

Partículas¹ Elementares

Átomos consistem de elétrons, que formam as camadas eletrônicas, e núcleos, compostos por prótons e nêutrons que, por sua vez, consistem de quarks (dos tipos **u** e **d**). Quarks são, possivelmente, os constituintes fundamentais da matéria. Há seis espécies, ou *sabores*, de quarks: **u** (*up*), **d** (*down*), **c** (*charmed*), **s** (*strange*), **b** (*bottom*) e **t** (*top*). Cada uma dessas

espécies pode apresentar-se em três "edições" chamadas *cores*: 1 (vermelho), 2 (verde) e 3 (azul). Haveria então 18 quarks distintos. Porém, como cada um deles tem a sua antipartícula, o número total de quarks é 36 (uma antipartícula tem a mesma massa e o mesmo spin² da partícula em questão,

porém carga oposta.) Quarks têm carga elétrica fracionária (+ 2/3 para os sabores **u**, **c** e **t** e - 1/3 para os sabores **d**, **s** e **b**), mas nunca foram detectados livres; aparentemente, estão sempre confinados em partículas chamadas

hádrons (da palavra grega *hadros*, que significa massivo, robusto, forte).

Há duas classes de hádrons, aqueles formados por três quarks, chamados bárions (da palavra grega barys, que significa pesado), e os constituídos por um quark e um antiquark, denominados mésons (do grego, mesos, significando intermediário, médio). Bárions obedecem o Princípio da Exclusão de Pauli3, mésons não; bárions têm spin fracionário (1/2, 3/2, ...), mésons têm spin inteiro (0, 1, 2,...). O nêutron e o próton são os bárions mais familiares, os mésons π e K são exemplos de mésons: contudo. face às múltiplas possibilidades de combinações de três quarks ou de quarks e antiquarks, o número de hádrons é bastante grande, constituindo uma grande família.

Outra família, não tão numerosa, é a dos léptons (do grego *leptos*, que significa delgado, fino, leve). São par-

Este artigo apresenta um sumário das partículas elementares e das interações fundamentais, segundo o Modelo Padrão. Na seqüência, são apresentados dois mapas conceituais, um para partículas e outro para interações, que esquematizam conceitualmente esse modelo.