

2 adanie

2 należi "pruplyu"
$$f$$
, o maksymalnej vontośu

 $f: V \times V \rightarrow \mathbb{N}$
 $(\forall u,v) [f(u,v) \leq c(u,v)]$
 $(\forall v \in V - \{s,t\}) [\sum_{u \in V} f(u,v) = \sum_{u \in V} f(v,u)]$
 $v \in V$
 $v \in V$
 $v \in V$
 $v \in V$

$$c(S,T) = 3 + 2 + 4 + 5 = 14$$

 $f(S,T) = 4 - 1 = 3$

Prepustovoic prelevoja S,T to

$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v)$$

Preptyv nette:

$$f(S,T) = \sum \sum f(u,v) - \sum \sum f(v,u)$$

$$u \in S \ V \in T \qquad u \in S \ V \in T$$

Lemat
$$f(S,T) = 1 fI$$

$$Dovoid$$

$$|f| = \sum_{v \in V} f(s,v) - \sum_{v \in V} f(v,s) = 0 \quad (vTarmsc)$$

$$zandovania$$

$$+ \sum_{u \in S - \{s\}} \sum_{v \in V} f(u,v) - \sum_{u \in S - \{s\}} \sum_{v \in V} f(v,u)$$

$$= \sum_{u \in S} \sum_{v \in V} f(u,v) - \sum_{u \in S} \sum_{v \in V} f(v,u)$$

$$= \sum_{u \in S} \sum_{v \in V} f(u,v) - \sum_{u \in S} \sum_{v \in V} f(v,u)$$

$$= \sum_{u \in S} \sum_{v \in V} f(u,v) - \sum_{u \in S} \sum_{v \in V} f(v,u)$$

$$= f(S,T)$$

Lemat

$$|f| \le c(S,T)$$

Dovod

 $|f| = S(S,T)$
 $= \sum \sum f(u,v) - \sum S f(v,u)$
 $u \in S \ v \in T$
 $u \in S \ v \in T$

tu (max-flow/min-cut theorem) ② ⇒ ③ S = { v ∈ V | istnique scienta 2 s do v } Niech G=(V,E), s,t, C:VxV -> IN bedzie sierią pnepłyvovą ovoz f niech lędzie T = V - S inanej istniataly, scienca
povijekrzejąca
zavoniamy: S & S, t & T

of, (f prieptyvem u tej sieci. Nastzpujque varente sa vouvouazne: $|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} (f(u,v) - f(v,u)) = c(S,T)$ 1) f jet maksymalnym przytyvem w 6 2) Gf, cf nie ma scieli povijeksinjecij 3 Dla pernego melcroju S, T zachodni Josh (u,v)∈ E to c_f(u,v)=0, cyli f(u,v)=
c(u,v) 1f = c(S,T) Dovid · Jeili (v,u) & E to cf (u,v) = 0, myli f(v,u) = 0 3 => 1 Justi $(u,v) \notin E$ i $(v,u) \notin E$ to f(u,v) = 0 = c(u,v) f(v,u) = 01 > 2

