

Advanced HD decoding IC for STB

Preliminary Data

Features

- Advanced high definition video decoding (H264/VC-1/MPEG2)
- Advanced standard definition video decoding (H264/VC-1/MPEG2/AVS)
- Advanced multi-channel audio decoding (MPEG 1, 2, MP 3, DD/DD+, AAC/AAC+, and WMA9/WMA9pro)
- Linux, Windows CE, and OS21 compatible ST40 applications CPU (450 MHz)

- 32-bit DDR1/DDR2 compatible local memory interface
- Multi-stream, DVR capable transport stream processing
- Extensive connectivity (dual USB 2.0 hosts, e-SATA, Ethernet MAC/MII/RMII, and PCI)
- Advanced security and DRM support including SVP, MS-DRM, and DTCP-IP
- DVD data decryption

Contents

1	Relate	ed documents
	1.1	STi7105 programming manual
	1.2	CPU documentation
2	Desci	ription
	2.1	Transport
	2.2	Connectivity
	2.3	Audio/Video decoding
	2.4	Graphics and display
	2.5	Audio/Video outputs
	2.6	Processors and memory
	2.7	DVR
	2.8	STB peripherals
3	Syste	m on chip subsystem overview1
	3.1	STBus interconnect
	3.2	Processor core
	3.3	External memory interface (EMI)
	3.4	Local memory interface (LMI)
	3.5	STB transport subsystem
		3.5.1 Overview
		3.5.2 Dual Programmable transport interface (PTI)
	3.6	DVD decryption
	3.7	Video decoder
	3.8	Main and auxiliary display2
	3.9	Compositor
		3.9.1 Overview
		3.9.2 Compositor layout
	3.10	Video output
		3.10.1 Main HDTV video output
		3.10.2 Auxiliary SDTV video flow
	3.11	2D blitter display engine

Confidential

Contents

	3.12	Audio subsystem
	3.13	FDMA controllers
	3.14	Interfaces
		3.14.1 Internal peripherals
		3.14.2 Ethernet controller
		3.14.3 Dual smartcard interfaces
	3.15	Clock generation
	3.16	System services
4	Pack	age mechanical data 34
	4.1	27 x 27 package
	4.2	Environmentally friendly packages
5	BGA	footprint and pin lists
	5.1	Ball grid array 37
	5.2	Pin lists
		5.2.1 Full pin list sorted by pin number
6	Conr	nections
	6.1	Power supplies
	6.2	System 71
	6.3	JTAG 71
	6.4	Transport interface
	6.5	Display analog output interface
	6.6	HDMI interface
	6.7	Audio digital interface
	6.8	Audio analog interface
	6.9	Serial ATA interface
	6.10	FDMA interface
	6.11	Programmable inputs/outputs
	6.12	External memory interface (EMI)
		,

57

6.13

6.14

6.15

Confidential

STi7105

Ethernet 88

Contents STi7105

	6.16	Periphe	rals	. 91
		6.16.1	DAA	91
		6.16.2	Asynchronous serial controller (ASC)	91
		6.16.3	Infrared transmitter/receiver	92
		6.16.4	Modem analog front-end interface (MAFE)	92
		6.16.5	Pulse width modulator (PWM)	92
		6.16.6	Smartcard	93
		6.16.7	Synchronous serial controller (SSC)	93
		6.16.8	Key Scanner (KS)	94
	6.17	Pad res	et conditions	. 94
7	Basic	chip o	perating modes and multiplexing scenarios	. 98
	7.1	Transpo	ort interfaces multiplexing	. 98
	7.2	Etherne	et interface multiplexing in standard mode	109
	7.3	DVB co	mmon interface (DVB-CI) transport mode	111
	7.4	Externa	Il memory interface (EMI) operating modes	112
		7.4.1	Peripheral/SRAM mode	. 113
		7.4.2	Asynchronous NOR-Flash mode	. 113
		7.4.3	Synchronous NOR-Flash mode	. 114
		7.4.4	NAND-Flash mode	. 114
		7.4.5	Serial-Flash mode	. 115
		7.4.6	DVB-CI modes	. 115
		7.4.7	ATAPI-PIO modes	. 116
		7.4.8	PCI mode	. 116
		7.4.9	Multi-chip mode	. 117
8	Memo	ory map)	118
	8.1	Global I	Mapping	120
9	Interr	upt net	works	126
	9.1	Interrup	t network organization	126
		9.1.1	STi7105 interrupt network	. 126
		9.1.2	ST40 interrupt network	. 130
		9.1.3	DeltaMU and LX_AUDIO ST231 interrupt network	. 136
10	FDMA	.		140

///

Confidential

STi7105			Contents
	10.1	Overvie	ew 140
		10.1.1	FDMA0 and FDMA1 Partitioning140
		10.1.2	Peripheral and memory access140
		10.1.3	FDMA processing power
		10.1.4	FDMA firmware140
		10.1.5	FDMA features
	10.2	Block d	iagram
	10.3	DMA re	equests
	10.4	Exampl	les of DMA Data flow
11	Cloc	king	
	11.1	Clock ir	nput/output pins
	11.2	Clock d	lomains
	11.3	CPUs a	and interconnect clock generation (ClockGen A)
		11.3.1	Block diagram
		11.3.2	Clock-off and reduced power
		11.3.3	Clock observability
	11.4		lecoder, display, and Comms clock generation Gen B) 157
		11.4.1	Clock signals
		11.4.2	Clock generator B startup configuration
		11.4.3	Clock frequency change160
		11.4.4	Clock frequency reduction
		11.4.5	Clocks observation
		11.4.6	Frequency synthesizers reference clock
	11.5	Audio d	clock generation (ClockGen C)
		11.5.1	Frequency synthesizer reference clock
	11.6	LMI me	emory clocks (ClockGen D)
		11.6.1	Clock signals
		11.6.2	Reference clock
		11.6.3	Clock frequency reduction
	11.7	MPEG	clock recovery
		11.7.1	Clock recovery principle
12	Powe	er-On-Re	eset and system reset167
	12.1	Reset s	sources 167

8065505 Rev D

Confidential

STi7105

POR reset (cold reset) vs. system reset (warm reset) 167 12.2 12.3 13 14 14.1 14.2 14.3 14.4 14.5 15 15.1 15.1.1 15.1.2 15.1.3 15.1.4 15.1.5 16 16.1 16.1.1 16.1.2 16.2 16.3 16.4 16.4.1 16.4.2 16.4.3 Video DACs output-stage adaptation and amplification 235 16.5 16.6 16.7 16.8 16.9

8065505 Rev D

Contents

Confidentia

6/313

STi7105		C	Contents

	16.10	Local memory interface	237
	16.11	Ethernet interface	240
	16.12	USB interface	240
	16.13	SATA	240
		Peripherals	
17	Electi	rical specifications	242
	17.1	Absolute maximum ratings	
	17.2	Operating conditions	
	17.2	Audio DAC	
	17.3	17.3.1 Electrical characteristics	
	17.4	Triple HD video DACs	
		·	
	17.5	DAA electrical characteristics	
	17.6	DDR electrical characteristics	
		17.6.1 Limiting values	
		17.6.2 Output buffer DC characteristics	
	177	·	
	17.7	SATA PHY electrical characteristics	
		17.7.1 Absolute maximum ratings	
		17.7.2 Operating conditions	
	17.8	External memory interface (EMI)	
	17.9	USB	
	17.9	035	231
18	Timin	g interfaces	
	18.1	Digital audio interface	252
		18.1.1 Digital PCM reader input interface	. 252
	18.2	Digital PCM player output interface	253
		18.2.1 PCM player output timing waveform	. 253
	18.3	Transport stream input AC specification	254
		18.3.1 Parallel transport stream input interface	. 254
		18.3.2 Serial transport stream input interface	. 255
	18.4	Transport stream output AC specification	255
	18.5	JTAG interfaces AC specification	256
	18.6	EMI timings	256

8065505 Rev D

Confidential

		18.6.1 S	ynchronous devices	257
	18.7	LMI DDR2	2-SDRAM timings	259
	18.8	PIO outpu	t AC specification	260
	18.9	Ethernet in	nterface	261
		18.9.1 M	III interface	261
		18.9.2 R	MII interface	262
19	Alterr	ate funct	ions on PIO	263
	19.1	Alternate f	unctions	263
	19.2	PIO0 alter	nate functions	266
	19.3	PIO1 alter	nate functions	268
	19.4	PIO2 alter	nate functions	270
	19.5	PIO3 alter	nate functions	273
	19.6	PIO4 alter	nate functions	276
	19.7	PIO5 alter	nate functions	278
	19.8	PIO6 alter	nate functions	281
	19.9	PIO7 alter	nate functions	284
	19.10	PIO8 alter	nate functions	287
	19.11	PIO9 alter	nate functions	289
	19.12	PIO10 alte	ernate functions	291
	19.13	PIO11 alte	ernate functions	293
	19.14	PIO12 alte	ernate functions	295
	19.15	PIO13 alte	ernate functions	298
	19.16	PIO14 alte	ernate functions	302
	19.17	PIO15 alte	ernate functions	304
	19.18	PIO16 alte	ernate functions	306
20	Licen	ses		308
21	Revis	ion histor	ry	311

577

Information classified Confidential - Do not copy (See last page for obligations)

Related documents

1 Related documents

STi7105

This datasheet is part of the STi7105 documentation suite which forms a complete system description and programming guide. This datasheet is intended for hardware engineers, and describes the pins, package, electrical characteristics, and timing information for the STi7105 device.

The documents related to this datasheet are described in the sections below.

1.1 STi7105 programming manual

The *STi7105 programing manual* describes how to program and configure the STi7105 device. It is intended for software and system engineers.

1.2 CPU documentation

The ST40 core and its instruction set are documented in the ST40 32-bit CPU Core Architecture manual.

The ST231 core and its instruction set are documented in the ST231 CPU Core and Instruction Set Architecture Manual.

Description STi7105

2 Description

The STi7105 includes in a single IC, multi-stream transport de-multiplexing and descrambling, an ST40 applications CPU, advanced audio/video decoding, video processing, graphics and display composition, advanced security, STB peripherals, audio/video DACs, HDMI, Digital A/V outputs, two Host USB ports, e-SATA port HDD interface, and Ethernet MAC/MII/RMII.

2.1 Transport

The STi7105 receives transport streams from broadcast networks through three parallel/serial transport stream inputs and one serial transport stream input. The fourth transport interface can be configured as a fourth input or as an output. ST provides a range of front end channel decoder ICs for cable, satellite and terrestrial networks that can be interfaced directly with the STi7105. Transport stream routing for DVB-CI+ (HD/SD profiles) modules can also be supported.

Transport streams are processed by two integrated programmable transport stream engines (PTIs). These perform demultiplexing, descrambling, and section filtering on multiple transport streams received from Broadcast, IP, and HDD sources.

2.2 Connectivity

The STi7105 has a wide range of options for connecting to external peripherals or IP network devices, such as wired ethernet, xDSL, and Wi-fi. These interfaces enable the delivery of IP streams received over broadband networks and support streaming over home networks. These interfaces include 2 USB host ports, a 32-bit PCI interface, and a high speed Ethernet MAC/MII/RMII interface.

PCI uses the same physical interface as the EMI with dynamic interleaving of access types possible. Transport streams received through IP can be routed internally to the PTIs for demultiplexing and descrambling similar to the broadcast TS streams. The PTIs can concurrently process multiple TS streams from both sources.

2.3 Audio/Video decoding

The STi7105 can decode H264, VC -1/WMV9, and MPEG2 HD and SD streams with concurrent decoding of one HD stream and one SD stream possible for PIP applications. AVS SD decoding is also supported. Multiple decoding of lower resolution streams can also be supported for Mosaic applications. The decoder is well proven in the industry and is powerful and flexible enough to decode other video formats, such as MPEG4 part2 and DivX (3.x, 4.x, and 5.x). It can also support concurrent H263 encode and decode for video conference applications.

A programmable ST231 CPU core provides the flexibility and performance for decoding multi-channel advanced audio streams. Concurrent decoding of an audio description channel is also supported.

STi7105 Description

2.4 Graphics and display

The STi7105 integrates a graphics and display sub-system that can deliver a high quality visual experience for applications. Graphics generation can use both the CPU and an independent multi-operator graphics accelerator that supports 2D graphics and 3D user interface effects. Graphics can be displayed on any one of three graphics planes. The graphics planes are combined, with video, using alpha blending and color keying. The graphics and video are combined by two independent display compositors, one for the Main TV and a second for output to a VCR or DVD-R. Two video planes are available for PIP on the main composition or downscaled video on the second composition. Video post-processing can be applied to resize, reformat and de-interlace video between the encoded and intended display formats prior to composition. Advanced de-blocking processing can be applied to decoded MPEG2 SD video. With such capabilities, feature-rich displays can be generated including PIP, POP, Mosaics, animations, highlighting, blended overlays, scrolling subtitles etc.

2.5 Audio/Video outputs

The STi7105 has both HDMI and analog interfaces for outputting video to the TV/panel. In addition to the standard 720p and 1080i HD formats, the STi7105 supports 1080p60 display output on the HDMI interface. The Analog interface comprises 6 Video DACs with CGMS-A, Macrovision and Dwight-Cavendish copy protection, whilst the HDMI interface supports HDCP copy protection. HDMI interface is in full compliance with all features of v1.3a except deep color, enhanced colorimetry (xvYCC, gamut metadata), and DST/DSD audio features.

Audio is output over HDMI, SPDIF, stereo analog DACs, and a digital PCM output interface. It is possible to output both compressed and decoded audio streams at the same time over different interfaces (for example, Dolby Digital 5.1 over SPDIF with decoded and downmixed AAC-plus audio via the analog output). A 2-channel PCM input is also available for inputting audio from external sources such as a microphone (for example, for VOIP telephony).

2.6 Processors and memory

The STi7105 embeds the latest ST40 class applications processor, the ST40-300 with 2–way, set associative caches, a 32 K instruction cache, and a 32 K data cache. At an operating frequency of 450 MHz it can deliver > 800 DMIPs performance.

The STi7105 supports the latest DDR2 memory technology on its 32-bit local memory interface (LMI) providing a high bandwidth unified memory for code, data, audio and video buffers, graphics etc. With two 2-Gbit devices in a x16 configuration, up to 512 Mbytes capacity can be supported. The STi7105 also retains the ability to support DDR1 memory types.

A 16-bit External memory interface is used for connecting to FLASH and SRAM/peripherals supporting a standard 8/16-bit asynchronous read/write protocol. Synchronous or burst mode FLASH can also be supported. Both NOR and NAND Flash types can be used, with the ability to boot from, and perform code authentication checking from both types. Interfacing and booting from Serial FLASH attached through SPI is also supported.

Description STi7105

2.7 **DVR**

The STi7105 supports attachment of an HDD through e-SATA, USB, or EIDE (PIO mode) allowing DVR STBs to be developed. The e-SATA interface can independently support either internal or external SATA drive attachment. The STi7105 can support recording of up to four HD streams with local playback of an HD stream with trick modes, as well as playback of additional streams for export to client STBs over a home network. Streams can be encrypted to/from the HDD and to/from a home network for copy protection using AES, TDES, or DES ciphers.

2.8 STB peripherals

The STi7105 integrates a range of peripherals and interfaces to minimize or eliminate the external cost of implementing basic STB functions. These include UARTs and SSCs used for serial interfaces, I2C control busses, two smart card controllers, a PWM module, IR receiver and transmitter, general purpose programmable I/O, external interrupt inputs, and a controller for scanning/debouncing a 4 x 4 key matrix. There are also two options available for implementing a software modem on the STi7105; a MAFE interface to connect to an external modem codec and integration of a system-side DAA circuit to connect to an external line-side DAA device. For HDMI interfacing, a dedicated I2C port is available, together with a hardware CEC line controller.

Figure 1. Typical DVR cable STB with DOCSIS

Confidential

Figure 2. IP client

Confidential

RJ45 2x USB 2.0 PHY МІІ LNB H24 DiSEqC ST8024 ► SMARTCARD I2C MAFE MAFE/ RJ11 STV6110 TMDS/I2C ► HDMI STV6110 = 30 MHz ► E2PROM LMI YPbPr STi7105 NAND Pr FLASH DDR2 STV6440AJ YC, CVBS EMI С CVBS e-SATA Analog audio L/R <u>Left</u> ▶ ● Audio HDD SPI or UART Right Front panel display and controls KEYSCAN / PIOs SPDIF RESET IR Rx UHF Tx/Rx

Figure 3. High definition DVR satellite STB

Confidential

JTAG DCU

Confidential

Ethernet RJ45 2x USB 2.0 PHY міі 🕽 ST8024 SMARTCARD STV036x TMDS/I2C ► HDMI 12C WiFi module E2PROM PCI FLASH STi7105 \$ EMI AUX/Loop-thru RGB LMI YC, CVBS STV641x DDR2 e-SATA Analog AUDIO L/R HDD KEYSCAN / PIOs Front panel display and controls SPDIF RESET IR Tx/Rx JTAG ▼ DCU

Figure 4. Hybrid DTT/Broadband STB with DVR and Wi-fi home network

3 System on chip subsystem overview

This section gives a top-level overview of the device components.

3.1 STBus interconnect

The STBus multipath unified interconnect provides high on-chip bandwidth and low latency accesses between modules. The interconnect operates hierarchically, with latency-critical modules placed at the top level. The multipath router allows simultaneous access paths between modules, and simultaneous read and write phases from different transactions to and from the modules. Split transactions maximize the use of the available bandwidth.

3.2 Processor core

The STi7105 integrates a 450 MHz ST40-300 processor core that features a 32-bit superscalar RISC CPU and IEEE-754 compliant floating point unit (FPU). The ST40-300 includes 2-way, set-associative caches and an interrupt controller with 15 user interrupt sources and an interrupt expansion port.

3.3 External memory interface (EMI)

The EMI is a general-purpose interface for attaching Flash memory and peripherals. The EMI features are:

- 5 banks
- Addressing up to at least 64 Mbytes of NOR Flash
- External bus master support through BUSREQ/BUSGNT signals
- Slave Mode EMI support
- Single level cell (SLC) NAND Flash and boot from SLC NAND Flash
- Serial Flash support
- PCI interface, host and device selected on boot
- ATAPI PIO mode 4
- DVB-CI+

3.4 Local memory interface (LMI)

The STi7105 integrates one 32-bit DDR2-DDR1 interface. The interface can run up to 400 MHz when configured in DDR2 mode or up to 250 MHz when in DDR1 mode.

The LMI supports 16-bit and 32-bit configurations. The following 32-bit configurations are supported:

- 2 x 512 Mbits (x16) devices resulting in 128 Mbytes memory space
- 4 x 512 Mbits (x8) devices resulting in 256 Mbytes memory space
- 2 x 1 Gbits (x16) devices resulting in 256 Mbytes memory space
- 2 x 2 Gbits (x16) devices resulting in 512 Mbytes memory space

3.5 STB transport subsystem

3.5.1 Overview

Confidentia

The transport subsystem (TS) is able to receive ATSC, DVB, DIRECTV, DCII, OpenCable, ARIB BS4 transport streams containing high definition (HD) and standard definition (SD) programs. It demultiplexes and descrambles the transport streams to deliver PES packets to the video and audio decoders.

Figure 5. Transport subsystem block diagram

Transport streams are input to the STi7105 through the four TS interfaces. Two of these interfaces (TSin0 and TSin2) are parallel inputs that can also be configured as serial inputs. The third interface is a bidirectional interface that can be configured as a third parallel input (TSin1) or a third serial input (TSin1), or can be configured as a parallel output(TSOUT). Also, a serial input interface (TSin3) is available if four TS inputs are required.

The serial formats of each, TSin1 and TSin2, are available multiplexed with PIOs in two different locations to maximize the availability of chip functions for a given application.

Transport streams can also be input to the STi7105 from network or HDD. These streams can be input through the MII, PCI, or USB interfaces (and e-SATA for HDD) buffered in memory and merged with the transport streams from the TS inputs. These merged TS streams are then forwarded to the PTIs for processing. Streams can also be output to a network or HDD.

3.5.2 Dual Programmable transport interface (PTI)

Each PTI is a dedicated transport engine and integrates its own CPU to handle the transport stream PID filtering, demultiplexing, descrambling, and data filtering. It interfaces with the programmable descrambler (PDES) for descrambling. Each PTI receives a transport stream from a dedicated input port, processes it, and outputs it either to the memory through its DMA channels or to a dedicated transport output port.

The PTIs perform PID filtering, demultiplexing, descrambling, and data filtering on up to four transport streams. The PTIs extract PCRs with time stamps and make them available to the CPU for clock recovery and audio/video synchronization.

PES data is transferred by DMA to memory buffers. Section data is transferred by DMA to separate buffers for further processing by the CPU. The PTIs extract indexing information and transfer packets, using DMA, to an intermediate buffer for writing to HDD.

5/

The following transport streams are supported:

- AVS video
- MPEG2 transport stream demultiplexing, and service information extraction, conforming to:
 - MPEG2 systems
 - MPEG4 systems
 - DVB
 - DirecTV DSS format
 - DirecTV AMC stream format
- MPEG2 TS audio/visual formats:
 - MPEG2 A/V over MPEG2 TS
 - H264 video over MPEG2 TS
 - VC-1 over MPEG2 TS
 - WMA9, WMA9 pro over MPEG2 TS
 - AAC and AAC+ audio over MPEG2 TS
- A/V streams encapsulated in RTP packets according to these protocols (parsing):
 - MPEG2 A/V in RTP
 - MPEG 4 pt2 video in RTP
 - MPEG 4 audio including AAC and AAC+ in RTP
 - H264 video in RTP
 - VC-1 video in RTP
 - AVS video in RTP
- processing of:
 - WMV9/WMA9 streaming content in ASF files using client server interaction
 - parsing of MP3 or MPEG 4 AAC audio from Audio File format versions 2, 3 and 4
 - A/V streams, such as DivX, delivered in AVI files
 - WAV and AIFF files

Each PTI performs PID filtering to select audio, video, and data packets to be processed. It supports up to 151 PID slots, and routes streams to and from the descrambler. Streams can be descrambled using:

- DES
- TDES
- AES

20/313

- Multi-2
- DVB-CSA
- NDS ICAM

The PTI has a 64 x 16 byte section filter core. Four filtering modes are available:

- wide match mode: 64 x 16 byte filters
- long match mode: 128 x 8 byte filters
- positive/negative mode: 64 x 8 byte filters with positive/negative filtering at the bit level
- APG filtering mode

Matching sections are transferred to memory buffers for processing by software.

3.6 DVD decryption

CSS (DVD-video), CPRM (DVD-RW), and CPPM (DVD-audio) decryption is provided for the DVD stream.

3.7 Video decoder

The STi7105 video decoding subsystem includes the Delta-Rasta core capable of decoding H264/VC-1/MPEG2 HD/SD streams and AVS SD streams.

The following are Delta-Rasta features:

- Supports H264 in-loop deblocking filter, VC-1 deblocking filter and overlapped transform, AVS deblocking filter, and deblocking post processing algorithm for MPEG2
- Supports non-real-time MPEG2 to H264 transcoding

The decoder is partially implemented in software which is executed on a dedicated ST231 CPU core. The decoder gets its data from memory and stores decoded data back into memory.

The decoder uses a mixed hardware and firmware architecture with a hardwired data path and an ST231 core engine. It provides flexibility for firmware upgrades, error concealment, or trick modes. The ST231 core can be used for other coders or decoders at lower resolution, when the VC-1, H264, AVS SD, or MPEG2 decoders are not running.

Streams are decoded picture-by-picture from an elementary stream buffer. Decoding, reconstruction, and prediction buffers are set up by the CPU. CPU control of bit-buffer pointers provides flexibility for trick modes and out-of-sequence decoding.

Semantic or syntax errors are detected by the decoder and failing slices are replaced up to the next slice or picture.

3.8 Main and auxiliary display

The main and auxiliary display pipelines form a high-quality scaling engine for video display processing. The two display pipelines are shown in *Figure 6*.

Figure 6. Display pipelines block diagram

The same video is displayed through both displays, but each display processor can be set up to format the video differently and display video with different timing. Separate video timing generators (VTGs) are provided to support this feature. The display processors adapt the decoded video to a format suitable for display, taking into account differences in scanning method, resolution, aspect ratio, and scanning frequency.

The main-display processor receives decoded or acquired video from memory, and performs block-to-line conversion, pan and scan, and vertical and horizontal format conversion. There is also a de-interlacer (DEI) to perform interlace-to-progressive conversion using motion estimation. This is used to display 480i, 576i, or 1080i interlaced sources on a progressive display (480p, 720p, or 1080p). The main display processor has IQI that improves the subjective image quality by methods, such as high frequency peaking and edge sharpening.

The auxiliary-display processor receives decoded or acquired (and possibly decimated) video, and performs pan and scan, vertical format conversion, horizontal format conversion and color tint and saturation control. The output line size is limited to SD on the auxiliary-display processor and is intended to output video for VCR recording.

3.9 Compositor

3.9.1 Overview

The compositor comprises two real-time, multiplane digital mixers.

The main mixer (mixer A), which is intended for main HDTV video output, is composed of:

- one background color
- two video planes
- three graphics planes
- one cursor plane

The auxiliary mixer (mixer B), which is intended for auxiliary SDTV video output, is composed of:

- one background color
- the video 2 plane
- the graphics 3 plane

The compositor receives the video planes from the video display processor, and the 2D graphics planes from the memory through GDP. Each mixer alpha blends graphics and video layers on a pixel basis based on alpha component values provided by each layer.

After real-time processing by the display plane pipelines, pixel data is mixed in mixer A or mixer B. The output of mixer A supports up to full HD resolutions and is intended as the main TV display (*Figure 7*). The output of mixer B (*Figure 8*) supports up to full SD resolutions and is intended as an auxiliary display for applications, including connection to a VCR. The mixer outputs are fed to the STi7105's output stage.

The mixers provide RGB and/or YCbCr digital outputs that are used by the video output subsystem to produce the HDTV video outputs (analog, digital, and composite) and the SDTV video outputs (analog and digital).

Figure 7. Mixer A planes

The compositor also comprises additional components that can be used to enhance the display presentation of video and graphics. These include an alpha plane attachment and a

cross-bar router. A capture pipeline is also provided for capturing main video streams or mixer A or B output streams and storing them in memory.

Figure 8. Mixer B planes

3.9.2 Compositor layout

Figure 9 shows a block diagram of the compositor. It presents the dataflow and memory access of all the compositor modules.

The graphics and cursor pipelines read pixel data and related control information directly from memory. The video input pipelines accept data from the main and auxiliary video display pipelines. Video and graphics data (captured for the compositor data flow by the capture pipeline) is written back to memory with a resolution up to 32 bits/pixel. The real-time processing performed by each pipeline is controlled by register programming.

Digital mixer A successively blends video layers VID1, VID2, graphics layers (GDP1, GDP2, and GDP3), the cursor layer (CUR), and a background color. A cross-bar router enables the hierarchy of the GDP1, GDP2, GDP3 and VID1, VID2 layers to be programmed. Each layer can be independently enabled or disabled. The blending operates in the RGB color domain, so each layer supplies an RGB signal (3x12 bits), with transparency information that provides the weighting coefficients for the mixing operation at a given depth.

Digital mixer B successively blends one video layer (VID2) with one graphics layer (GDP3) and a background color. A cross-bar router enables the hierarchy of the GDP3 and VID2 layers to be programmed. In Digital mixer B, each layer can be independently enabled or disabled, and blending operates in the RGB color domain.

All sub-blocks are controlled by hardware registers. All these registers can be read but not necessarily written. The graphics planes are link-list based and have their register set written through the memory (register download is controlled directly by the hardware after initialization). All other registers can be written. Each plane block supports a specific set of bitmap formats. Each plane starts reading data from memory when it is enabled in mixer A or mixer B.

Figure 9. Graphics and video subsystem block diagram

3.10 Video output

The Video Output subsystem is the unit responsible for reading decoded video frames and graphics data from external memory to reformat, rasterize, and mix them for display.

The STi7105 can output video program on main HD TV Out and on aux SD TV (VCR) Out with separate timebase if required (VTG0, VTG1). It is also able to deliver the same SD video on both main and auxiliary video outputs using the capture feature. The main data paths corresponding to these typical configurations are shown in *Figure 10* as well as the principal units which constitute the Video Output Stage.

Main HD Analog HD 3x VDac stream HD TV Digital HD **HDMI** Audio from sub audio Digital video SD/HD Dig Out Digital graphic/video SD/HD From compo pass through Dig Out Analog SD Aux SD 3x VDac SD TV stream (VCR) **SCART** 7105 VIDEO OUT

Figure 10. Video output stage block diagram

3.10.1 Main HDTV video output

The following are the main functional blocks included in the main video flow:

- Main VDP, including High Definition Display Pipeline with IQI and DEI engines
- VTG0 (free running or master of the aux VTG1)
- Capture output port with vertical and horizontal resizing, shared with auxiliary video flow
- Compositor—Mixer five to four (in: video: RGB or YCbCr, 3x graphic: RGB; out: 2x video: RGB and YCbCr, pass through, capture), shared GDP3 and VDP aux with auxiliary compositor
- TV Out—receives its data from the compositor channel (video: RGB or YCbCr, graphic: RGB); the video data is then formatted and output in digital and analog and audio-video composite to be used by external devices
- DVI-HDCP or HDMI compliant copy-protected digital output
- Player multichannel (8-ch) and GP FIFO
- S/PDIF Player and GP FIFO
- Four S/PDIF Players with I2S to S/PDIF converters
- Triple HD/SD DAC (analog output)
- Two digital video outputs, i.e., DVO0 (video) is 8-bit or 16-bit and DVO1(GFX) is 24-bit
- AWG—arbitrary waveform generator (Dwight Cavendish and Macrovision copy protection support)

Note:

The compositor includes a pipeline, which is able to mix one cursor, one or two video, up to three graphic layers, and one background layer. The data is then delivered to the TV Out. The capture port supports vertical and horizontal resizing output data with filtering for upsizing.

3.10.2 Auxiliary SDTV video flow

The following are the main functional blocks included in the auxiliary video flow:

- VTG1—free running or slave of the main HDTV VTG0
- Video Display Pipe High-definition (VDP aux)
- Capture output port with vertical and horizontal resizing, shared with main HDTV video flow
- Compositor—mixer two to three (YCbCr 8-bit and RGB 8-bit and capture), shared GDP3, and VDP aux with main HDTV compositor
- SD DENC—SDTV/VCR Video Encoder
- AWG—arbitrary waveform generator (Dwight Cavendish and Macrovision copy protection support)
- Triple HD/SD DAC (analog output)—The DAC outputs can be components (Y/C) or composite (PAL, SECAM, NTSC CVBS); all 6 DACs can output the auxiliary display in SD format for SCART output

Note:

The Compositor includes a pipeline, which is able to mix one video, one graphic layer, and one background layer. The data is then delivered to the TV Out. The capture port supports vertical and horizontal resizing output data with filtering for upsizing.

3.11 2D blitter display engine

The 2D blitter display engine (BDisp 2 engine) is a software controlled output display generator, which can also be used as a CPU accelerator for graphics picture handling. The BDisp 2 engine, is an evolution of BDisp engine. It is a triple-source 2D DMA, with a set of powerful operators.

The 2D blitter display engine retrieves data from the local memory through three input sources, source 1, source 2, and source 3. Sources 1, 2, and 3 are used simultaneously for read/modify/write operations.

2D blitter display engine features are as follows:

- 2 composition queues
- 4 application queues
- Subbyte S1 and S2 access
- 5-tap vertical filters
- 8-tap horizontal filters
- Flicker filter adaptative
- Matrix conversion on input and output for: rgb2ycbcr, ycbcr2rgb,bt601, and bt709
- CLUT 1/2/4/8
- Color reduction
- Logical operation
- Clipmask
- Rotation
- Plane mask
- Color key capability
- BlueRay Disc run-length decoder (BD RLD)
- High definition-DVD 2/8-bit run-length decoder (HD-DVD RLD)

2D blitter display engine functions are as follows:

- Solid color fill of rectangular window
- Solid color shade (fill and alpha blending)
- 1 source copy, with one or several operators enabled (color format conversion, 2D scaling)
- 2 source copy with alpha blending
- 4:2:2 / 4:20 capabilities, as source format
- Fully programmable matrix used for color space conversion, PSI, special effects
- Color expansion (CLUT to true color)
- Color correction (gamma, contrast, gain)
- 2D resize engine with high quality filtering
- Adaptive flicker filter from memory-to-memory
- Rectangular clipping
- VC-1 range mapping/range reduction compensation algorithm
- Programmable source/target scanning direction, both horizontally and vertically, to cope correctly with overlapping source and destination area.

3.12 Audio subsystem

Overview

The main function of the STi7105 Audio subsystem is to decode and play different standards of multi-channel compressed audio streams. The audio stream (encoded or decoded) is received either from an external source through the PCM input interface or an internal source, such as the Transport subsystem through memory.

28/313 8065505 Rev D

The audio decoder may have to decode simultaneously two different encoded audio streams when an audio description channel is provided (the main audio stream and a 2-channel audio description channel) or when recording and listening to two different audio streams.

PCM mixing

The decoded audio stream can be mixed with a PCM file stored in memory following an optional sample rate conversion to adapt the sampling rate of the two streams. PCM mixing is also used when a description channel is decoded and then mixed with the main audio stream. The PCM mixing is fully implemented in the software running on the ST231.

PCM output: downmixing

The multi-channel decoded PCM stream can be downmixed to generate a 2-channel PCM stream. This down mixed stream can be then output unmixed through a stereo 24-bit DAC while the PCM-mixed decoded audio stream can be delivered onto a 6-channel digital PCM output and a digital S/PDIF output.

Compressed data: S/PDIF output

Compressed audio data can also be delivered on the S/PDIF output to be decoded by an external decoder/amplifier.

HDMI output

The STi7105 HDMI output can deliver audio data to an HDMI sink device. The audio data is delivered by the audio subsystem to the HDMI subsystem through internal I²S-S/PDIF players/converters (see *Figure 11*).

Audio decoder features

The audio decoder features are as follows:

- Decoding of the following audio formats: MPEG1 layer I/II, MP3, MPEG2- Layer II, Dolby Digital, Dolby Digital Plus (up to 7.1), MPEG4 AAC-LC, MPEG4 AACplus (HE-AAC, AAC+SBR) v1 and v2 (up to 5.1), WMA9, WMA9pro (up to 7.1)
- PCM mixing with internal or external source with sample rate conversion (32, 44.1, 48 kHz)
- Encoded (IEC 61937) or decoded (IEC 60958) digital audio on S/PDIF output
- Multi-channel down-mixing for output over HDMI (up to 8 channels), PCM output (up to 6 channels), and analog output (up to 2 channels)
- PCM audio input (I2S format)
- Audio description channel decoding
- Postprocessing (channel virtualization)—Dolby Prologic downmix, volume control, and bass redirection

Audio transcoding

The STi7105 supports the transcoding of advanced audio formats for output over S/PDIF as formats recognized by external audio decoders. The following two transcode operations are available:

- Dolby Digital Plus to Dolby Digital
- MPEG4 AACplus to DTS

Audio subsystem blocks

The audio subsystem includes the following functional units.

- One audio processor ST231 core, running at 450 MHz, which executes the decoding algorithms, the sample-rate conversion, the post-processing and the volume control.
- One PCM reader, which captures the data at the PCM input and stores it in memory through an FDMA channel. (This is mutually exclusive with PCM player 0 since they share the same pads.)
- Two PCM players, which get decoded PCM data from memory through FDMA channels. One PCM player delivers the down-mixed PCM output to the audio DAC. The other PCM player produces the stereo or multi-channel decoded audio stream on a 7wire PCM output (I2S protocol).
- Two quad-frequency synthesizers, which generate the PCM clock (oversampling clock 256 x Fs), used by the S/PDIF, PCM players, and audio DAC. One synthesizer clocks the S/PDIF, one clocks the PCM player associated to the audio DAC and one clocks the PCM player associated to the PCM output.
- One stereo 24-bit audio DAC with differential outputs.
- An S/PDIF player, which reads decoded PCM data or encoded data from memory through an FDMA channel, and outputs them on the S/PDIF output.

See *Figure 11* for a detailed block diagram of the audio subsystem.

2-channel Ch 0/1 PCM reader 0 2-channel PCMI 2-channel PCM player 1 Audio DACs 2-channel PCM multi-channel ►Ch 0/1 Bus PCM player 0 Ch 2/3 6-channel PCMC 8-channel PCM . ► Ch 4/5 ᇷ **HDMI** Audio Audio ST231 Multi-channel 4 x I2S to S/PDIF ► HDMI PCM (up to 8-ch) conversion audio 2-ch PCM or compressed audio Compressed audio IEC 60958 S/PDIF player S/PDIF IEC 61937

Figure 11. Audio subsystem block diagram

The host CPU and the FDMA assist in the audio decoding process. Since the audio decoder is a frame decoder, the host CPU (ST40 core) controls the audio processor frame by frame. A mailbox is used for communication between the two processors.

The host CPU is also required to do the PES parsing and the frame syncword detection.

The FDMA builds the ES buffer to feed the PCM and S/PDIF players, and stores the data captured by the PCM reader in memory.

The PCM reader, PCM player, and S/PDIF player transfer data to/from memory through FDMA.

3.13 FDMA controllers

The STi7105 has two multichannel, burst-capable, direct memory access controllers:

- FDMA0—real-time paced channels: S/PDIF, PcmPlayer 0-1, and SWTS
- FDMA1—PES Parsing, PCI-Master, SWTS when streaming from Ethernet or USB, UART, SSC, and free-running general purpose DMAs

External pacing signals are available for DMA transfers with external peripherals.

3.14 Interfaces

3.14.1 Internal peripherals

The STi7105 has many dedicated internal peripherals, including:

- 4 ASCs (UARTs), two of which are generally used by the smartcard controllers, one to support hardware flow control signals
- 2 smartcard interfaces and clock generators
- 4 external SSCs for I²C/SPI master/slave interfaces
- 1 four-channel PWM module with 2 PWM outputs and programmable frequency
- 1 teletext serializer
- 17 GPIO ports (3.3 V tolerant)
- 1 modem analog front end (MAFE) interface
- 1 single infrared transmitter/receiver supporting RC5, RC6 and RECS80, RC-MM 1.5, DIRECTV and Echostar codes
- 1 UHF remote control digital input
- 1 interrupt level controller with external interrupt inputs
- 2 independent USB 2.0 host controllers each with its own integrated PHY
- 1 front panel key scanning support
- 1 e-SATA interface

3.14.2 Ethernet controller

The STi7105 has an integrated Ethernet controller and MAC processor for delivery of IP based A/V streams in hybrid IP STBs and for home network connectivity. It also includes an MII/RMII port for connection to an external PHY. Ethernet features are as follows:

- Half/full duplex, full duplex flow control
- VLAN tagging support
- MII and RMII external interface
- Direct interface with STE101P and similar PHYs through MII or RMII
- Able to accept clock from external PHY/Home network Device in MII mode
- Dedicated scatter/gather link list DMA
- 100 Mbits/s sustained transfer rates to and from memory
- 32 H/W perfect match MAC address filters

The controller can also be used to interface through overclocked MII interface (up to 300 Mbits/s) to an external non-Ethernet Phy as a MoCA Phy for example.

3.14.3 Dual smartcard interfaces

Both smartcard interfaces are ISO7816, EMV2000 and NDS compliant, with the addition of a simple external power switch.

A programmable hardware power control feature allows the power control signal to be switched when card insertion or removal is detected.

32/313 8065505 Rev D

3.15 Clock generation

The STi7105 features five clock generation blocks:

- ClockGen A: 2 x PLLs main for CPU and interconnect clocks
- ClockGen B: 2 x FreqSynth for video, display and peripheral clocks
- ClockGen C: 1 x FreqSynth for audio clocks
- ClockGen D: 1 x PLL for memory clocks

3.16 System services

The STi7105 supports a number of on-chip system service functions including:

- integrated VCXOs (DCOs) for clock recovery
- debug through a single JTAG port
- reset and watchdog controller
- two power saving modes: reduced power mode and low power/standby mode

Package mechanical data 4

4.1 27 x 27 package

Package type: PBGA 620 balls. Body: 27 x 27 mm.

Figure 12. Top view

Information classified Confidential - Do not copy (See last page for obligations)

Confidentia

Dimension	Millimeters			Inches	Inches		
	Min	Тур	Max	Min	Тур	Max	Notes
Α			2.19			0.8622	(1)
A1	0.27			0.0106			
A2		1.72			0.0677		
А3		0.52			0.0205		
A4		1.20			0.0472		
b	0.45	0.50	0.55	0.0177	0.0197	0.0217	(2)
D	26.80	27.00	27.20	1.055	1.063	1.070	
D1		24.80			0.9764		
D2		24.00			0.9449		
E	26.80	27.00	27.20	1.055	1.063	1.070	
E1		24.80			0.9764		
E2		24.00			0.9449		
е		0.80			0.0315		

0.0433

0.0079

0.0059

0.0315

(3)

(4)

Table 1. JEDEC standard package dimensions

1. FPBGA stands for Fine pitch Plastic Ball Grid Array.

Fine pitch: e < 1.00 mm

F

ddd

eee

fff

The total profile height (Dim A) is measured from the seating plane to the top of the component.

0.20

0.15

0.08

The maximum total package height is calculated by the following methodology:

A2 Typ+A1 Typ + V (A12+A32+A42 tolerance values)

1.10

- 2. The typical ball diameter before mounting is 0.50mm.
- 3. The tolerance of position that controls the location of the pattern of balls with respect to datums A and B. For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position with respect to datums A and B as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone
- 4. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball must lie simultaneously in both tolerance zones.

The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug.

A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.

4.2 Environmentally friendly packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

36/313 8065505 Rev D

5 BGA footprint and pin lists

5.1 Ball grid array

The ball grid array (BGA) diagrams give the allocation of pins to the package, shown from the top looking down using the PCB footprint.

Signal names are prefixed by NOT if they are active low; otherwise they are active high.

Some signal names in BGA diagrams have been abbreviated. Cross refer with *Table 3: Pin list on page 42* for the full signal names.

Table 2. Key to BGA diagrams

Function	Туре	Key
Transport	SIG	
PIO/peripheral	SIG	
Video	SIG	
Audio	SIG	
System (JTAG, interrupts)	SIG	
Memory (EMI, LMI)	SIG	
Power	VCC/VDD	
Ground	VSS/GND	
No connect	NC	
No ball		

Figure 14. Top-left quadrant

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Α	NOTTRST	NOTLMICL K[1]	LMIDATA[2 1]					LMIDATAM ASK[2]								LMIADDR[11]	NOTLMICL K[0]
В	TDO	TDI	LMIDATA[1 8]	LMIDATA[1 6]				LMIDATAM ASK[3]	NOTLMIC S[0]						LMIBA[2]	LMIADDR[13]	LMICLK[0]
С	тск	TMS	LMICLK[1]	LMIDATA[2 3]	LMIDQS[2]		LMIDATA[3 1]	LMIDQSN[3]	NOTLMIC AS	LMIDATA[2 5]				LMIADDR[8]	LMIADDR[6]	LMIDUMM Y[1]	LMIADDR[12]
D	PIO7[0]	PIO7[1]	PIO7[2]	NOTLMIC S[1]	LMIDQSN[2]	LMIDATA[2 6]	LMIDQS[3]	LMI_GND1 V8	NOTLMIR AS	LMIDATA[2 7]	LMIDATA[2 2]		LMIBA[0]	LMIADDR[2]	LMIDUMM Y[0]	LMI_GND1 V8	LMI_GND1 V8
E		PIO6[1]	PIO6[2]	PIO6[0]	LMICLKEN [1]	LMIDATA[2 4]	ODT[0]	LMI_GND1 V8	LMI_GND1 V8	LMIDATA[3 0]	LMIDATA[1 7]	LMIDATA[2 0]	LMIADDR[4]	LMIBA[1]	LMI_GND1 V8	LMI_GND1 V8	LMI_GND1 V8
F			PIO6[4]	PIO6[5]	PIO6[3]	LMIDATA[2 9]	VDD1V2	LMIPLL_A GND2V5	LMIPLL_A GND1V2	LMI_GND1 V8	LMIDATA[2 8]	LMIDATA[1 9]	LMIVREF[1]	LMI_GND1 V8	LMI_GND1 V8	LMI_GND1 V8	LMI_GND1 V8
G			PIO6[7]	PIO6[6]	PIO7[3]	VDD1V2	VDD1V2	LMIPLL_A VDD2V5	LMIPLL_A VDD1V2	LMI_GND1 V8	LMI_GND1 V8	LMIADDR[0]	VDD1V8_2 V5	LMI_GND1 V8	LMI_GND1 V8	LMI_GND1 V8	LMI_GND1 V8
Н	PIO13[2]	PIO13[3]	PIO13[0]	VDD3V3	VDD3V3	VDD3V3											
J		PIO12[6]	PIO12[5]	PIO13[1]	VDD3V3	VDD3V3											
К			PIO12[2]	PIO12[4]	PIO12[0]	PIO12[7]				VDD1V8_2 V5	VDD1V8_2 V5	VDD1V8_2 V5					
L				PIO12[1]	PIO14[7]	PIO12[3]				DGND	DGND	VDD1V8_2 V5	VDD1V8_2 V5				
М					PIO14[4]	PIO14[6]				DGND	DGND	DGND	VDD1V8_2 V5	VDD1V2	VDD1V2	VDD1V8_2 V5	VDD1V8_2 V5
N				PIO14[2]	PIO14[1]	PIO14[5]					DGND	DGND	DGND	DGND	VDD1V2	VDD1V2	VDD1V2
Р			PIO13[6]	PIO14[0]	PIO13[4]	PIO14[3]						VDD1V2	DGND		DGND	VDD1V2	VDD1V2
R		PIO13[5]	NOTEMIC SA	PIO13[7]	CKGA1_D GND1V2	CKGA0_D GND1V2						VDD1V2	VDD1V2	DGND	DGND	DGND	DGND
Т	NOTEMIC SC	NOTEMIC SB	NOTEMIC SE	CKGA0_A GND2V5	CKGA1_D VDD1V2	CKGA0_D VDD1V2						VDD3V3	VDD1V2	VDD1V2	DGND	DGND	DGND
U	NOTEMIC SD	EMIFLASH CLK	NOTEMIB AA	CKGA1_A GND2V5	CKGA1_A VDD2V5	CKGA0_A VDD2V5						VDD3V3	VDD1V2	VDD1V2	DGND	DGND	DGND
V		EMIADDR[EMITREA DYORWAI T	EMIADDR[2]	EMIADDR[4]	EMIADDR[5]						VDD1V2	VDD1V2	DGND	DGND	VDD1V2	DGND
W			EMIADDR[7]	EMIADDR[1]	EMIADDR[12]	EMIADDR[6]						VDD1V2	DGND		DGND	VDD1V2	DGND
Υ				EMIADDR[10]	NOTEMIO E	EMIADDR[11]					VDD3V3	VDD3V3	DGND	DGND	VDD1V2	VDD1V2	DGND

577

Figure 15. Top-right quadrant

	•			•	•	•							•		
18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	
							LMIDQS[0]				WDOGRS TOUT	SYSITRQ[3]	SYSITRQ[1]	SYSITRQ[0]	Α
LMIDATA[2]						LMIDQSN[1]	LMIDQSN[0]			LMIDATA[3]	NOTASEB RK	SYSITRQ[2]	TRIGGERI N	NOTRESE TIN	В
LMIDATA[0]	LMIADDR[9]				LMICLKEN [0]	LMIDQS[1]	LMIDATA[1 4]	LMIDATA[1 1]	LMIDATA[6]	LMIDATA[4]	TRIGGER OUT	SYSCLKIN ALT	NMI	SYSCLKO UT	С
LMIDATA[5]	LMIADDR[7]	LMIDATA[1 0]		LMIADDR[1]	NOTLMIW E	LMIDATAM ASK[1]	VDD3V3	LMIDATA[9]	LMIDATA[1]		PIO16[2]	PIO16[4]	PIO16[3]		D
VDD1V8_2 V5	LMIDATA[7]	LMIDATA[1 3]	LMIADDR[3]	ODT[1]	LMIDATAM ASK[0]	VDD3V3	VDD3V3	LMIDATA[1 2]	LMIVREF[0]	PIO11[7]	PIO16[1]	PIO16[0]			E
VDD1V8_2 V5	VDD1V8_2 V5	LMIADDR[5]	LMIDATA[1 5]	LMIADDR[10]	VDD1V8_2 V5	LMI_COM P_GND	VDD3V3	GND_SEN SE	PIO11[4]	PIO11[6]	PIO11[5]				F
VDD1V8_2 V5	VDD1V8_2 V5	VDD1V8_2 V5	LMIDATA[8]	VDD1V8_2 V5	VDD1V8_2 V5	LMI_COM P_REF	VDD3V3	VDD_SEN SE	VDD1V2	PIO16[7]	PIO11[3]	PIO11[2]			G
									VDD2V5	VDD1V2	VDD1V2	PIO16[6]	PIO15[6]	PIO15[7]	Н
									FDMAREQ [3]	PIO16[5]	PIO9[7]	DAA_C2A	DAA_C1A		J
			DGND	DGND	DGND				PIO5[3]	FDMAREQ [2]	FDMAREQ [0]	FDMAREQ [1]			K
		DGND	DGND	DGND	VDD3V3				PIO5[0]	PIO5[2]	PIO5[1]				L
VDD1V2	VDD1V2	DGND	DGND	DGND	VDD3V3				PIO4[6]	PIO4[7]					М
VDD1V2	DGND	DGND	DGND	VDD3V3					PIO4[3]	PIO4[5]	PIO4[4]				N
DGND		DGND	VDD1V2						DGND	PIO4[2]	PIO4[0]	PIO4[1]			Р
DGND	DGND	VDD1V2	VDD1V2						VDD2V5	VDD1V2	PIO3[5]	PIO3[7]	PIO3[6]		R
DGND	DGND	VDD3V3	VDD3V3						CKGB1_D GND1V2	CKGB1_D VDD1V2	DGND	PIO3[4]	PIO5[6]	PIO5[7]	Т
DGND	DGND	VDD3V3	VDD3V3						CKGB0_A VDD2V5	CKGB1_A VDD2V5	DGND	PIO5[4]	PIO2[7]	PIO5[5]	U
DGND	DGND	VDD1V2	VDD1V2						CKGB0_D GND1V2	CKGB_AG ND2V5	PIO2[4]	PIO2[6]	PIO2[5]		٧
DGND		DGND	DGND						CKGB0_D VDD1V2	PIO2[3]	PIO2[1]	PIO2[2]			w
VDD1V2	DGND	DGND	DGND	DGND					PIO1[6]	PIO2[0]	PIO1[7]				Y

40/313

Figure 16. Bottom-left quadrant

AA					EMIADDR[13]	EMIRDNO TWR				VDD3V3	VDD3V3	DGND	DGND	VDD1V2	VDD1V2	VDD1V2	DGND
АВ				EMIADDR[8]	EMIADDR[16]	EMIADDR[14]				VDD3V3	DGND	DGND	DGND				
AC			EMIADDR[9]	EMIADDR[18]	NOTEMIB E[0]	EMIADDR[17]				DGND	DGND	DGND					
AD		EMIADDR[21]	EMIADDR[22]	EMIADDR[20]	VDD1V2	EMIBUSR EQ											
AE	NOTEMIB E[1]	EMIADDR[15]	EMIBUSG NT	VDD1V2	VDD1V2	VDD1V2											
AF			EMIADDR[25]	EMIDATA[2]	EMIADDR[24]	VDD1V2	PIO9[4]	PIO9[6]	PIO8[3]	ANA1_VD D2V5	ANA1_VD D2V5	CKGC_AV DD2V5	CKGC_AG ND2V5	PIO10[0]	VDD3V3	SATAVSS	
AG				NOTEMILB A	NANDWAI T	EMIADDR[19]	PIO9[3]	PIO8[4]	PIO10[7]	ANA1_GN D2V5	CKGC_DG ND1V2	AUDA_DV DD1V2	PIO10[4]	CKGC_DV DD1V2	VDD3V3	SATAVDD R	SATAVDDT
АН			EMIDATA[1 1]	EMIDATA[6]	EMIDATA[1 3]	PIO15[5]	PIO7[7]	DGND	ANA1_GN D2V5	PIO8[5]	PIO9[5]	AUDA_DG ND1V2	PIO11[1]	PIO10[1]	VDD3V3	VDD3V3	DGND
AJ		EMIDATA[1 5]	EMIDATA[1 4]	EMIADDR[23]	PIO15[2]	PIO7[6]	PIO9[2]	DGND	PIO8[6]	PIO10[5]	PIO10[6]		PIO11[0]	PIO10[2]	DGND	DGND	DGND
AK	EMIDATA[4]	EMIDATA[1]	EMIDATA[7]	EMIDATA[5]	PIO15[4]	PIO8[1]	PIO8[2]	PIO7[5]	PIO7[4]	PIO9[0]				PIO10[3]	AUDA_RIG HTOUTN	AUDA_GN DAS	DGND
AL	EMIDATA[8]	EMIDATA[3]	EMIDATA[1 0]	PIO15[1]	PIO15[3]			PIO8[0]	PIO8[7]						AUDA_RIG HTOUTP	AUDA_IRE F	AUDA_LEF TOUTN
AM	EMIDATA[0]	EMIDATA[1 2]	EMIDATA[9]	PIO15[0]				PIO9[1]								AUDA_VB GOUT	AUDA_LEF TOUTP
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Figure 17. Bottom-right quadrant

VDD1V2	VDD1V2	DGND	DGND	DGND	DGND				PIO1[4]	PIO1[5]					AA
		VDD1V2	DGND	DGND	DGND				PIO1[1]	PIO1[3]	PIO1[2]				АВ
			VDD1V2	DGND	HDMI_GN D3V3				HDMIPLL_ AVDD1V2	PIO1[0]	PIO0[6]	PIO0[7]			AC
									HDMIPLL_ AGND1V2	HDMIPLL_ AGND2V5	PIO0[3]	PIO0[5]	PIO0[4]		AD
									ANA2_VD DE2V5	HDMIPLL_ AVDD2V5	ANA2_GN DE2V5	PIO0[2]	PIO0[0]	PIO0[1]	AE
SATAVDD_ PLL		SATAVDD2 _PLL	USB_GND 2V5	GNDSATA	USB_VDD 1V2	USB_VDD 1V2	TMDS_GN D	HDMI_VD D3V3	THS_AVD D2V5	PIO3[3]	PIO3[0]	PIO3[2]			AF
USB_GND 2V5	SATAVSS_ PLL	USB_VDD 2V5	SATARXN	REXT	USB_GND 1V2	TMDS_VD D1V2	TMDS_GN D	TMDS_GN D	VIDA0_GN DAS	PIO3[1]	VIDA1_GN DA1	VIDA1_YO UT			AG
DGND	SATAREF	SATATXN	SATARXP	SYSCLKO SC	USB1VDD B3V3	TMDS_VD D1V2	TMDS_VD D1V2	TMDSTX1 N	TMDSTX2 N	HDMI_CE C	VIDA1_GN DA2	VIDA1_ID UMP	VIDA1_CV OUT		АН
		SATATXP		SYSCLKIN	USB1DP	USB2VDD B3V3	HDMI_VD D1V2	TMDSTX0 N	TMDSTX1 P	TMDSTX2 P	VIDA0_GN DA1	VIDA1_GN DAS	VIDA1_VC CA1	VIDA1_CO UT	AJ
					USB1DM	USB2DP	TMDSTXC P	TMDSTX0 P		VIDA0_MA SSQUIET	VIDA0_GN DA2	VIDA0_VC CA2	VIDA1_VC CA2	VIDA1_RE XT	AK
						USB2DM	TMDSREF				VIDA0_RE XT	VIDA0_VC CA1	VIDA0_ID UMP	VIDA1_MA SSQUIET	AL
							TMDSTXC N					VIDA0_BO UT	VIDA0_RO UT	VIDA0_GO UT	АМ
18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	

5.2 Pin lists

5.2.1 Full pin list sorted by pin number

Table 3. Pin list

Table 3. Pin list							
Pin number	Net name						
A1	NOTTRST						
A2	NOTLMICLK[1]						
A3	LMIDATA[21]						
A8	LMIDATAMASK[2]						
A16	LMIADDR[11]						
A17	NOTLMICLK[0]						
A25	LMIDQS[0]						
A29	WDOGRSTOUT						
A30	SYSITRQ[3]						
A31	SYSITRQ[1]						
A32	SYSITRQ[0]						
B1	TDO						
B2	TDI						
B3	LMIDATA[18]						
B4	LMIDATA[16]						
B8	LMIDATAMASK[3]						
B9	NOTLMICS[0]						
B15	LMIBA[2]						
B16	LMIADDR[13]						
B17	LMICLK[0]						
B18	LMIDATA[2]						
B24	LMIDQSN[1]						
B25	LMIDQSN[0]						
B28	LMIDATA[3]						
B29	NOTASEBRK						
B30	SYSITRQ[2]						
B31	TRIGGERIN						
B32	NOTRESETIN						
C1	TCK						
C2	TMS						
C3	LMICLK[1]						

8065505 Rev D

Table 3. Pin list (continued)

Table 3. Pin list (c	ontinued)
Pin number	Net name
C4	LMIDATA[23]
C5	LMIDQS[2]
C7	LMIDATA[31]
C8	LMIDQSN[3]
C9	NOTLMICAS
C10	LMIDATA[25]
C14	LMIADDR[8]
C15	LMIADDR[6]
C16	LMIDUMMY[1]
C17	LMIADDR[12]
C18	LMIDATA[0]
C19	LMIADDR[9]
C23	LMICLKEN[0]
C24	LMIDQS[1]
C25	LMIDATA[14]
C26	LMIDATA[11]
C27	LMIDATA[6]
C28	LMIDATA[4]
C29	TRIGGEROUT
C30	SYSCLKINALT
C31	NMI
C32	SYSCLKOUT
D1	PIO7[0]
D2	PIO7[1]
D3	PIO7[2]
D4	NOTLMICS[1]
D5	LMIDQSN[2]
D6	LMIDATA[26]
D7	LMIDQS[3]
D8	LMI_GND1V8
D9	NOTLMIRAS
D10	LMIDATA[27]
D11	LMIDATA[22]
D13	LMIBA[0]
D14	LMIADDR[2]

Table 3. Pin list (continued)

Table 3. Pin list (c	ontinued)
Pin number	Net name
D15	LMIDUMMY[0]
D16	LMI_GND1V8
D17	LMI_GND1V8
D18	LMIDATA[5]
D19	LMIADDR[7]
D20	LMIDATA[10]
D22	LMIADDR[1]
D23	NOTLMIWE
D24	LMIDATAMASK[1]
D25	VDD3V3
D26	LMIDATA[9]
D27	LMIDATA[1]
D28	NC
D29	PIO16[2]
D30	PIO16[4]
D31	PIO16[3]
E2	PIO6[1]
E3	PIO6[2]
E4	PIO6[0]
E5	LMICLKEN[1]
E6	LMIDATA[24]
E7	ODT[0]
E8	LMI_GND1V8
E9	LMI_GND1V8
E10	LMIDATA[30]
E11	LMIDATA[17]
E12	LMIDATA[20]
E13	LMIADDR[4]
E14	LMIBA[1]
E15	LMI_GND1V8
E16	LMI_GND1V8
E17	LMI_GND1V8
E18	VDD1V8_2V5
E19	LMIDATA[7]
E20	LMIDATA[13]

Table 3. Pin list (continued)

Table 3. Pin list (c	ontinued)
Pin number	Net name
E21	LMIADDR[3]
E22	ODT[1]
E23	LMIDATAMASK[0]
E24	VDD3V3
E25	VDD3V3
E26	LMIDATA[12]
E27	LMIVREF[0]
E28	PIO11[7]
E29	PIO16[1]
E30	PIO16[0]
F3	PIO6[4]
F4	PIO6[5]
F5	PIO6[3]
F6	LMIDATA[29]
F7	VDD1V2
F8	LMIPLL_AGND2V5
F9	LMIPLL_AGND1V2
F10	LMI_GND1V8
F11	LMIDATA[28]
F12	LMIDATA[19]
F13	LMIVREF[1]
F14	LMI_GND1V8
F15	LMI_GND1V8
F16	LMI_GND1V8
F17	LMI_GND1V8
F18	VDD1V8_2V5
F19	VDD1V8_2V5
F20	LMIADDR[5]
F21	LMIDATA[15]
F22	LMIADDR[10]
F23	VDD1V8_2V5
F24	LMI_COMP_GND
F25	VDD3V3
F26	GND_SENSE
F27	PIO11[4]

Table 3. Pin list (continued)

Pin number	Net name
F28	PIO11[6]
F29	PIO11[5]
G3	PIO6[7]
G4	PIO6[6]
G5	PIO7[3]
G6	VDD1V2
G7	VDD1V2
G8	LMIPLL_AVDD2V5
G9	LMIPLL_AVDD1V2
G10	LMI_GND1V8
G11	LMI_GND1V8
G12	LMIADDR[0]
G13	VDD1V8_2V5
G14	LMI_GND1V8
G15	LMI_GND1V8
G16	LMI_GND1V8
G17	LMI_GND1V8
G18	VDD1V8_2V5
G19	VDD1V8_2V5
G20	VDD1V8_2V5
G21	LMIDATA[8]
G22	VDD1V8_2V5
G23	VDD1V8_2V5
G24	LMI_COMP_REF
G25	VDD3V3
G26	VDD_SENSE
G27	VDD1V2
G28	PIO16[7]
G29	PIO11[3]
G30	PIO11[2]
H1	PIO13[2]
H2	PIO13[3]
H3	PIO13[0]
H4	VDD3V3
H5	VDD3V3

Table 3. Pin list (continued)

Table 3. Pin list (continued)						
Pin number	Net name					
H6	VDD3V3					
H27	VDD2V5					
H28	VDD1V2					
H29	VDD1V2					
H30	PIO16[6]					
H31	PIO15[6]					
H32	PIO15[7]					
J2	PIO12[6]					
J3	PIO12[5]					
J4	PIO13[1]					
J5	VDD3V3					
J6	VDD3V3					
J27	FDMAREQ[3]					
J28	PIO16[5]					
J29	PIO9[7]					
J30	DAA_C2A					
J31	DAA_C1A					
K3	PIO12[2]					
K4	PIO12[4]					
K5	PIO12[0]					
K6	PIO12[7]					
K10	VDD1V8_2V5					
K11	VDD1V8_2V5					
K12	VDD1V8_2V5					
K21	DGND					
K22	DGND					
K23	DGND					
K27	PIO5[3]					
K28	FDMAREQ[2]					
K29	FDMAREQ[0]					
K30	FDMAREQ[1]					
L4	PIO12[1]					
L5	PIO14[7]					
L6	PIO12[3]					
L10	DGND					

Table 3. Pin list (continued)

Pin number	Net name
L11	DGND
L12	VDD1V8_2V5
L13	VDD1V8_2V5
L20	DGND
L21	DGND
L22	DGND
L23	VDD3V3
L27	PIO5[0]
L28	PIO5[2]
L29	PIO5[1]
M5	PIO14[4]
M6	PIO14[6]
M10	DGND
M11	DGND
M12	DGND
M13	VDD1V8_2V5
M14	VDD1V2
M15	VDD1V2
M16	VDD1V8_2V5
M17	VDD1V8_2V5
M18	VDD1V2
M19	VDD1V2
M20	DGND
M21	DGND
M22	DGND
M23	VDD3V3
M27	PIO4[6]
M28	PIO4[7]
N4	PIO14[2]
N5	PIO14[1]
N6	PIO14[5]
N11	DGND
N12	DGND
N13	DGND
N14	DGND

Table 3. Pin list (continued)

Table 3. Pin list (continued)				
Pin number	Net name			
N15	VDD1V2			
N16	VDD1V2			
N17	VDD1V2			
N18	VDD1V2			
N19	DGND			
N20	DGND			
N21	DGND			
N22	VDD3V3			
N27	PIO4[3]			
N28	PIO4[5]			
N29	PIO4[4]			
P3	PIO13[6]			
P4	PIO14[0]			
P5	PIO13[4]			
P6	PIO14[3]			
P12	VDD1V2			
P13	DGND			
P15	DGND			
P16	VDD1V2			
P17	VDD1V2			
P18	DGND			
P20	DGND			
P21	VDD1V2			
P27	DGND			
P28	PIO4[2]			
P29	PIO4[0]			
P30	PIO4[1]			
R2	PIO13[5]			
R3	NOTEMICSA			
R4	PIO13[7]			
R5	CKGA1_DGND1V2			
R6	CKGA0_DGND1V2			
R12	VDD1V2			
R13	VDD1V2			
R14	DGND			

Table 3. Pin list (continued)

Table 3. Pin list (continued)				
Pin number	Net name			
R15	DGND			
R16	DGND			
R17	DGND			
R18	DGND			
R19	DGND			
R20	VDD1V2			
R21	VDD1V2			
R27	VDD2V5			
R28	VDD1V2			
R29	PIO3[5]			
R30	PIO3[7]			
R31	PIO3[6]			
T1	NOTEMICSC			
T2	NOTEMICSB			
Т3	NOTEMICSE			
T4	CKGA0_AGND2V5			
T5	CKGA1_DVDD1V2			
T6	CKGA0_DVDD1V2			
T12	VDD3V3			
T13	VDD1V2			
T14	VDD1V2			
T15	DGND			
T16	DGND			
T17	DGND			
T18	DGND			
T19	DGND			
T20	VDD3V3			
T21	VDD3V3			
T27	CKGB1_DGND1V2			
T28	CKGB1_DVDD1V2			
T29	DGND			
T30	PIO3[4]			
T31	PIO5[6]			
T32	PIO5[7]			
U1	NOTEMICSD			

50/313 8065505 Rev D

Table 3. Pin list (continued)

Table 3. Pin list (continued)				
Pin number	Net name			
U2	EMIFLASHCLK			
U3	NOTEMIBAA			
U4	CKGA1_AGND2V5			
U5	CKGA1_AVDD2V5			
U6	CKGA0_AVDD2V5			
U12	VDD3V3			
U13	VDD1V2			
U14	VDD1V2			
U15	DGND			
U16	DGND			
U17	DGND			
U18	DGND			
U19	DGND			
U20	VDD3V3			
U21	VDD3V3			
U27	CKGB0_AVDD2V5			
U28	CKGB1_AVDD2V5			
U29	DGND			
U30	PIO5[4]			
U31	PIO2[7]			
U32	PIO5[5]			
V2	EMIADDR[3]			
V3	EMITREADYORWAIT			
V4	EMIADDR[2]			
V5	EMIADDR[4]			
V6	EMIADDR[5]			
V12	VDD1V2			
V13	VDD1V2			
V14	DGND			
V15	DGND			
V16	VDD1V2			
V17	DGND			
V18	DGND			
V19	DGND			
V20	VDD1V2			

Table 3. Pin list (continued)

Pin number	Net name			
V21	VDD1V2			
V27	CKGB0_DGND1V2			
V28	CKGB_AGND2V5			
V29	PIO2[4]			
V30	PIO2[6]			
V31	PIO2[5]			
W3	EMIADDR[7]			
W4	EMIADDR[1]			
W5	EMIADDR[12]			
W6	EMIADDR[6]			
W12	VDD1V2			
W13	DGND			
W15	DGND			
W16	VDD1V2			
W17	DGND			
W18	DGND			
W20	DGND			
W21	DGND			
W27	CKGB0_DVDD1V2			
W28	PIO2[3]			
W29	PIO2[1]			
W30	PIO2[2]			
Y4	EMIADDR[10]			
Y5	NOTEMIOE			
Y6	EMIADDR[11]			
Y11	VDD3V3			
Y12	VDD3V3			
Y13	DGND			
Y14	DGND			
Y15	VDD1V2			
Y16	VDD1V2			
Y17	DGND			
Y18	VDD1V2			
Y19	DGND			
Y20	DGND			

Table 3. Pin list (continued)

Pin number	Net name			
Y21	DGND			
Y22	DGND			
Y27	PIO1[6]			
Y28	PIO2[0]			
Y29	PIO1[7]			
AA5	EMIADDR[13]			
AA6	EMIRDNOTWR			
AA10	VDD3V3			
AA11	VDD3V3			
AA12	DGND			
AA13	DGND			
AA14	VDD1V2			
AA15	VDD1V2			
AA16	VDD1V2			
AA17	DGND			
AA18	VDD1V2			
AA19	VDD1V2			
AA20	DGND			
AA21	DGND			
AA22	DGND			
AA23	DGND			
AA27	PIO1[4]			
AA28	PIO1[5]			
AB4	EMIADDR[8]			
AB5	EMIADDR[16]			
AB6	EMIADDR[14]			
AB10	VDD3V3			
AB11	DGND			
AB12	DGND			
AB13	DGND			
AB20	VDD1V2			
AB21	DGND			
AB22	DGND			
AB23	DGND			
AB27	PIO1[1]			

Table 3. Pin list (continued)

AB28 PIO1[3] AB29 PIO1[2] AC3 EMIADDR[9] AC4 EMIADDR[18] AC5 NOTEMIBE[0] AC6 EMIADDR[17] AC10 DGND AC11 DGND AC11 DGND AC21 VDD1V2 AC22 DGND AC22 DGND AC23 HDMI_GND3V3 AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND1V2 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AD31 PIO0[4] AD31 EMIADDR[15] AD31 EMIADDR[15] AD31 AD31 EMIADDR[15] AD31 AD31 PIO0[4] AD41 AC29 PIO0[4] AD5 AD5 AD5 AD7 AD8	Pin number	Net name			
AC3 EMIADDR[9] AC4 EMIADDR[18] AC5 NOTEMIBE[0] AC6 EMIADDR[17] AC10 DGND AC11 DGND AC11 DGND AC21 VDD1V2 AC22 DGND AC23 HDMI_GND3V3 AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND1V2 AD6 EMIBUSREQ AD7 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND1V2 AD9 PIO0[5] AD1 PIO0[5] AD2 EMIADDR[15] AD3 EMIADDR[15] AD4 EMIADDR[15] AD5 DYD1V2 AD6 EMIBUSREQ AD7 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND1V2 AD9 PIO0[5] AD1 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE28 HDMIPLL_AVDD2V5	AB28	PIO1[3]			
AC4 EMIADDR[18] AC5 NOTEMIBE[0] AC6 EMIADDR[17] AC10 DGND AC11 DGND AC11 DGND AC21 VDD1V2 AC22 DGND AC23 HDMI_GND3V3 AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND1V2 AD6 EMIBUSREQ AD7 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND1V2 AD9 PIO0[5] AD10[5] AD2 EMIADDR[15] AD3 EMIBUSREQ AD4 EMIBUSREQ AD5 HDMIPLL_AGND1V2 AD6 EMIBUSREQ AD7 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND1V2 AD9 PIO0[5] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5	AB29	PIO1[2]			
AC5 NOTEMIBE[0] AC6 EMIADDR[17] AC10 DGND AC11 DGND AC11 DGND AC21 VDD1V2 AC22 DGND AC23 HDMI_GND3V3 AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD40 EMIBUSREQ AD51 AD61 PIO0[6] AD71 AD72 HDMIPLL_AGND1V2 AD83 HDMIPLL_AGND1V2 AD84 HDMIPLL_AGND2V5 AD95 PIO0[6] AD1 PIO0[6] AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND1V2 AD29 PIO0[6] AD31 PIO0[6] AD31 PIO0[6] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5	AC3	EMIADDR[9]			
AC6 EMIADDR[17] AC10 DGND AC11 DGND AC11 DGND AC12 DGND AC21 VDD1V2 AC22 DGND AC23 HDMI_GND3V3 AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND1V2 AD9 PIO0[3] AD10 PIO0[5] AD29 PIO0[6] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5	AC4	EMIADDR[18]			
AC10 DGND AC11 DGND AC12 DGND AC21 VDD1V2 AC22 DGND AC23 HDMI_GND3V3 AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC30 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND2V5 AD9 PIO0[3] AD10 PIO0[5] AD2 EMIADDR[21] AD3 EMIBUSREQ AD4 EMIBUSREQ AD5 AD6 EMIBUSREQ AD6 EMIBUSREQ AD7 HDMIPLL_AGND2V5 AD8 HDMIPLL_AGND1V2 AD8 EMIADDR[15] AD9 PIO0[6] AD11 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AC5				
AC11 DGND AC12 DGND AC21 VDD1V2 AC22 DGND AC23 HDMI_GND3V3 AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD7 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND1V2 AD9 PIO0[3] AD10 PIO0[4] AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 AD6 EMIBUSREQ AD6 EMIBUSREQ AD7 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND1V2 AD8 EMIADDR[15] AD9 PIO0[5] AD11 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5	AC6	EMIADDR[17]			
AC12 DGND AC21 VDD1V2 AC22 DGND AC23 HDMI_GND3V3 AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD7 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND2V5 AD9 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AC10	DGND			
AC21	AC11	DGND			
AC22 DGND AC23 HDMI_GND3V3 AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD7 HDMIPLL_AGND1V2 AD8 HDMIPLL_AGND2V5 AD9 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AC12	DGND			
AC23 HDMI_GND3V3 AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AN29 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AC21	VDD1V2			
AC27 HDMIPLL_AVDD1V2 AC28 PIO1[0] AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD7 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AC22	DGND			
AC28 PIO1[0] AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AC23	HDMI_GND3V3			
AC29 PIO0[6] AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE6 ANA2_VDDE2V5 AD29 AD3V2	AC27	HDMIPLL_AVDD1V2			
AC30 PIO0[7] AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AC28	PIO1[0]			
AD2 EMIADDR[21] AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AD4 EMIADDR[21]	AC29	PIO0[6]			
AD3 EMIADDR[22] AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AC30				
AD4 EMIADDR[20] AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AD2	EMIADDR[21]			
AD5 VDD1V2 AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AD3	EMIADDR[22]			
AD6 EMIBUSREQ AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AD4	EMIADDR[20]			
AD27 HDMIPLL_AGND1V2 AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AD5	VDD1V2			
AD28 HDMIPLL_AGND2V5 AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AD6	EMIBUSREQ			
AD29 PIO0[3] AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AD27	HDMIPLL_AGND1V2			
AD30 PIO0[5] AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AD28	HDMIPLL_AGND2V5			
AD31 PIO0[4] AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AD29	PIO0[3]			
AE1 NOTEMIBE[1] AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AD30	PIO0[5]			
AE2 EMIADDR[15] AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AD31	PIO0[4]			
AE3 EMIBUSGNT AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AE1	NOTEMIBE[1]			
AE4 VDD1V2 AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AE2	EMIADDR[15]			
AE5 VDD1V2 AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AE3	EMIBUSGNT			
AE6 VDD1V2 AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AE4	VDD1V2			
AE27 ANA2_VDDE2V5 AE28 HDMIPLL_AVDD2V5	AE5	VDD1V2			
AE28 HDMIPLL_AVDD2V5	AE6	VDD1V2			
	AE27	ANA2_VDDE2V5			
AE29 ANA2 GNDE2V5	AE28	HDMIPLL_AVDD2V5			
	AE29	ANA2_GNDE2V5			

Table 3. Pin list (continued)

Pin number	Net name			
AE30	PIO0[2]			
AE31	PIO0[0]			
AE32	PIO0[1]			
AF3	EMIADDR[25]			
AF4	EMIDATA[2]			
AF5	EMIADDR[24]			
AF6	VDD1V2			
AF7	PIO9[4]			
AF8	PIO9[6]			
AF9	PIO8[3]			
AF10	ANA1_VDD2V5			
AF11	ANA1_VDD2V5			
AF12	CKGC_AVDD2V5			
AF13	CKGC_AGND2V5			
AF14	PIO10[0]			
AF15	VDD3V3			
AF16	SATAVSS			
AF17	NC			
AF18	SATAVDD_PLL			
AF19	NC			
AF20	SATAVDD2_PLL			
AF21	USB_GND2V5			
AF22	GNDSATA			
AF23	USB_VDD1V2			
AF24	USB_VDD1V2			
AF25	TMDS_GND			
AF26	HDMI_VDD3V3			
AF27	THS_AVDD2V5			
AF28	PIO3[3]			
AF29	PIO3[0]			
AF30	PIO3[2]			
AG4	NOTEMILBA			
AG5	NANDWAIT			
AG6	EMIADDR[19]			
AG7	PIO9[3]			

Table 3. Pin list (continued)

Table 3. Pin list (continued)				
Pin number	Net name			
AG8	PIO8[4]			
AG9	PIO10[7]			
AG10	ANA1_GND2V5			
AG11	CKGC_DGND1V2			
AG12	AUDA_DVDD1V2			
AG13	PIO10[4]			
AG14	CKGC_DVDD1V2			
AG15	VDD3V3			
AG16	SATAVDDR			
AG17	SATAVDDT			
AG18	USB_GND2V5			
AG19	SATAVSS_PLL			
AG20	USB_VDD2V5			
AG21	SATARXN			
AG22	REXT			
AG23	USB_GND1V2			
AG24	TMDS_VDD1V2			
AG25	TMDS_GND			
AG26	TMDS_GND			
AG27	VIDA0_GNDAS			
AG28	PIO3[1]			
AG29	VIDA1_GNDA1			
AG30	VIDA1_YOUT			
AH3	EMIDATA[11]			
AH4	EMIDATA[6]			
AH5	EMIDATA[13]			
AH6	PIO15[5]			
AH7	PIO7[7]			
AH8	DGND			
AH9	ANA1_GND2V5			
AH10	PIO8[5]			
AH11	PIO9[5]			
AH12	AUDA_DGND1V2			
AH13	PIO11[1]			
AH14	PIO10[1]			

Table 3. Pin list (continued)

Pin number	Net name			
AH15	VDD3V3			
AH16	VDD3V3			
AH17	DGND			
AH18	DGND			
AH19	SATAREF			
AH20	SATATXN			
AH21	SATARXP			
AH22	SYSCLKOSC			
AH23	USB1VDDB3V3			
AH24	TMDS_VDD1V2			
AH25	TMDS_VDD1V2			
AH26	TMDSTX1N			
AH27	TMDSTX2N			
AH28	HDMI_CEC			
AH29	VIDA1_GNDA2			
AH30	VIDA1_IDUMP			
AH31	VIDA1_CVOUT			
AJ2	EMIDATA[15]			
AJ3	EMIDATA[14]			
AJ4	EMIADDR[23]			
AJ5	PIO15[2]			
AJ6	PIO7[6]			
AJ7	PIO9[2]			
AJ8	DGND			
AJ9	PIO8[6]			
AJ10	PIO10[5]			
AJ11	PIO10[6]			
AJ13	PIO11[0]			
AJ14	PIO10[2]			
AJ15	DGND			
AJ16	DGND			
AJ17	DGND			
AJ18	NC			
AJ19	NC			
AJ20	SATATXP			

Table 3. Pin list (continued)

Table 3. Pin list (continued)				
Pin number	Net name			
AJ22	SYSCLKIN			
AJ23	USB1DP			
AJ24	USB2VDDB3V3			
AJ25	HDMI_VDD1V2			
AJ26	TMDSTX0N			
AJ27	TMDSTX1P			
AJ28	TMDSTX2P			
AJ29	VIDA0_GNDA1			
AJ30	VIDA1_GNDAS			
AJ31	VIDA1_VCCA1			
AJ32	VIDA1_COUT			
AK1	EMIDATA[4]			
AK2	EMIDATA[1]			
AK3	EMIDATA[7]			
AK4	EMIDATA[5]			
AK5	PIO15[4]			
AK6	PIO8[1]			
AK7	PIO8[2]			
AK8	PIO7[5]			
AK9	PIO7[4]			
AK10	PIO9[0]			
AK14	PIO10[3]			
AK15	AUDA_RIGHTOUTN			
AK16	AUDA_GNDAS			
AK17	DGND			
AK18	NC			
AK19	NC			
AK23	USB1DM			
AK24	USB2DP			
AK25	TMDSTXCP			
AK26	TMDSTX0P			
AK28	VIDA0_MASSQUIET			
AK29	VIDA0_GNDA2			
AK30	VIDA0_VCCA2			
AK31	VIDA1_VCCA2			

58/313 8065505 Rev D

Table 3. Pin list (continued)

Pin number	Net name			
AK32	VIDA1_REXT			
AL1	EMIDATA[8]			
AL2	EMIDATA[3]			
AL3	EMIDATA[10]			
AL4	PIO15[1]			
AL5	PIO15[3]			
AL8	PIO8[0]			
AL9	PIO8[7]			
AL15	AUDA_RIGHTOUTP			
AL16	AUDA_IREF			
AL17	AUDA_LEFTOUTN			
AL18	NC			
AL24	USB2DM			
AL25	TMDSREF			
AL29	VIDA0_REXT			
AL30	VIDA0_VCCA1			
AL31	VIDA0_IDUMP			
AL32	VIDA1_MASSQUIET			
AM1	EMIDATA[0]			
AM2	EMIDATA[12]			
AM3	EMIDATA[9]			
AM4	PIO15[0]			
AM8	PIO9[1]			
AM16	AUDA_VBGOUT			
AM17	AUDA_LEFTOUTP			
AM25	TMDSTXCN			
AM30	VIDA0_BOUT			
AM31	VIDA0_ROUT			
AM32	VIDA0_GOUT			

6 Connections

This chapter contains detail of pins, pad reset conditions, alternative functions and connection diagrams, listed in the following functional groups:

- power supplies (analog and digital) on page 60
- system on page 71
- JTAG on page 71
- transport interface on page 72
- Ethernet on page 88
- display analog output interface on page 74
- HDMI interface on page 75
- audio digital interface on page 75
- audio analog interface on page 76
- SATA interface on page 76
- FDMA interface on page 77
- programmable I/O (PIO) on page 78
- external memory interface (EMI) on page 82
- local memory interface on page 85
- USB 2.0 interface on page 90
- peripherals:
 - DAA interface on page 91
 - asynchronous serial controller (ASC) on page 91
 - infrared transmitter/receiver on page 92
 - modem analog front-end interface on page 92
 - PWM on page 92
 - smartcard on page 93
 - synchronous serial controller (SSC) on page 93
- pad reset conditions on page 94
- for external circuitry information, refer to External circuitry recommendations on page 233.

6.1 Power supplies

Table 4. Power/ground pins

Pin	Assignment	Voltage	Туре	Description
USB 2.0				
AF23	USB VDD1V2	1.2	Analog	USB 1.2 V power
AF24	030_400142	1.2	Analog	1.2 v power
AG20	USB_VDD2V5	2.5	Analog	USB 2.5 V power
AG23	USB_GND1V2	0		USB ground

577

Table 4. Power/ground pins (continued)

lable 4.	Power/ground pins (T -	<u> </u>	
Pin	Assignment	Voltage	Type	Description	
AF21	USB_GND2V5	0		USB ground	
AG18					
AH23	USB1VDDB3V3	3.3	Analog	USB1 3.3 V power	
AJ24	USB2VDDB3V3	3.3	Analog	USB2 3.3 V power	
SATA					
AF16	SATAVSS	0		SATA ground	
AF17	NC	0		SATA ground	
AG16	SATAVDDR	1.2	Analog	SATA power	
AG17	SATAVDDT	1.2	Analog	SATA power	
AF18	SATAVDD_PLL	1.2	Analog	SATA PLL power	
AG19	SATAVSS_PLL	0		SATA PLL ground	
AF20	SATAVDD2_PLL	2.5	Analog	SATA PLL power	
AJ18	NC	-		No connect	
AF19	NC	-		No connect	
AF22	GNDSATA	0	-	SATA ground	
номі					
AG24					
AH24	TMDS_VDD1V2	1.2	Analog	TMDS 1.2 V power	
AH25					
AF25					
AG25	TMDS_GND	0		TMDS ground	
AG26					
AE28	HDMIPLL_AVDD2V5	2.5	Analog	HDMI PLL 2.5 V power	
AD28	HDMIPLL_AGND2V5	0		HDMI PLL ground	
AC27	HDMIPLL_AVDD1V2	1.2	Analog	HDMI PLL power	
AD27	HDMIPLL_AGND1V2	0		HDMI PLL ground	
AC23	HDMI_GND3V3	0		HDMI ground	
AF26	HDMI_VDD3V3	3.3	Digital	HDMI 3.3 V power	
AJ25	HDMI_VDD1V2	1.2	Digital	HDMI 1.2 V power	
LMIPLL		•			
G8	LMIPLL_AVDD2V5	2.5	Analog	LMI PLL 2.5 V power	
F8	LMIPLL_AGND2V5	0		LMI PLL ground	
G9	LMIPLL_AVDD1V2	1.2	Analog	LMI PLL 1.2 V power	
F9	LMIPLL_AGND1V2	0		LMI PLL ground	
Video DA	ACs	1			
AG27	VIDA0_GNDAS	0			
<u> </u>	1	_1	l		

Connections STi7105

Table 4. Power/ground pins (continued)

Confidential

Table 4.	ole 4. Power/ground pins (continued)								
Pin	Assignment	Voltage	Туре	Description					
AK29	VIDA0_GNDA2	0							
AK30	VIDA0_VCCA2	2.5	Analog						
AL30	VIDA0_VCCA1	2.5	Analog						
AJ29	VIDA0_GNDA1	0							
AJ30	VIDA1_GNDAS	0							
AH29	VIDA1_GNDA2	0							
AK31	VIDA1_VCCA2	2.5	Analog						
AJ31	VIDA1_VCCA1	2.5	Analog						
AG29	VIDA1_GNDA1	0							
AE27	ANA2_VDDE2V5	2.5	Analog						
AE29	ANA2_GNDE2V5	0							
Audio E	DAC								
AG10	ANIA4 ONIDOVE								
AH9	ANA1_GND2V5	0							
AF10	ANIA4 VDDOVE	0.5	A1						
AF11	ANA1_VDD2V5	2.5	Analog						
AH12	AUDA_DGND1V2	0		ADCAC 1.2 V ground					
AG12	AUDA_DVDD1V2	1.2	Digital	ADCAC 1.2 V power					
AK16	AUDA_GNDAS	0							
ClockG	enA								
R5	CKGA1_DGND1V2	0		CKGA PLL1 1.2 ground					
T5	CKGA1_DVDD1V2	1.2	Digital	CKGA PLL1 1.2 power					
U4	CKGA1_AGND2V5	0		CKGA PLL1 2.5 V ground					
U5	CKGA1_AVDD2V5	2.5	Analog	CKGA PLL1 2.5 V power					
R6	CKGA0_DGND1V2	0		CKGA PLL0 1.2 ground					
T6	CKGA0_DVDD1V2	1.2	Digital	CKGA PLL0 1.2 power					
T4	CKGA0_AGND2V5	0		CKGA PLL0 2.5 V ground					
U6	CKGA0_AVDD2V5	2.5	Analog	CKGA PLL0 2.5 V power					
ClockG	enB								
U27	CKGB0_AVDD2V5	2.5	Analog	CKGB FS0 2.5 V power					
V28	CKGB_AGND2V5	0		CKGB FS0,1 2.5 V ground					
U28	CKGB1_AVDD2V5	2.5	Analog	CKGB FS1 2.5 V power					
W27	CKGB0_DVDD1V2	1.2	Digital	CKGB FS 1.2 V power					
V27	CKGB0_DGND1V2	0		CKGB FS 1.2 V ground					
T27	CKGB1_DGND1V2	0		CKGB FS1 1.2 V ground					
T28	CKGB1_DVDD1V2	1.2	Digital	CKGB FS1 1.2 V power					
	1		ı – –	<u>'</u>					

62/313 8065505 Rev D

Table 4. Power/ground pins (continued)

Table 4.	rower/ground pins (co	Jiitiiiaca,		
Pin	Assignment	Voltage	Type	Description
ClockGe	nC			
AG11	CKGC_DGND1V2	0		CKGC FS 1.2 ground
AG14	CKGC_DVDD1V2	1.2	Digital	CKGC FS 1.2 power
AF13	CKGC_AGND2V5	0		CKGC FS 2.5 V ground
AF12	CKGC_AVDD2V5	2.5	Analog	CKGC FS 2.5 V power
LMI				
E18				
F18				
F19				
F23				
G13				
G18				
G19				
G20				
G22	VDD1V8_2V5	1.8	Digital	LMI DDR2 1.8/2.5 V power
G23	VDD1V0_2V3	1.0	Digital	Livii DDnz 1.6/2.3 v powei
K10				
K11				
K12				
L12				
L13				
M13				
M16				
M17				

STi7105

Table 4. Power/ground pins (continued)

Pin	Assignment	Voltage	Туре	Description
D8				
D16				
D17				
E8				
E9				
E15				
E16				
E17				
F10				
F14	LMI_GND1V8	0		LMI 1.8 V ground
F15				
F16				
F17				
G10				
G11				
G14				
G15				
G16				
G17				
Analog 2	5V			
H27	VDD2V5	2.5	Analog	Analog 2.5 V power
Digital 2.	5V			
R27	VDD2V5	2.5	Digital	Digital 2.5 V power
Tsensor				
AF27	THS_AVDD2V5	2.5	Analog	Thermal sensor analog supply

Table 4. Power/ground pins (continued)

Table 4.	Power/ground pins (co	ontinued)		
Pin	Assignment	Voltage	Туре	Description
Digital 3	3 V			
D25				
E24				
E25				
F25				
G25				
H4				
H5				
H6				
J5				
J6				
L23				
M23				
N22				
T12	VDD3V3	3.3	Digital	Digital 3.3 V power
T20	VDD5V5	0.0	Digital	Digital 6.6 v power
T21				
U12				
U20				
U21				
Y11				
Y12				
AA10				
AA11				
AB10				
AF15				
AG15				
AH15				
AH16				
DGND				

Connections STi7105

Table 4. Power/ground pins (continued)

Table 4.	Power/ground pins (co		1	T
Pin	Assignment	Voltage	Type	Description
K21				
K22				
K23				
L10				
L11				
L20				
L21				
L22				
M10				
M11				
M12				
M20				
M21				
M22				
N11				
N12				
N13				
N14	DGND	0		Digital 2 2/2 E/1 2 V ground
N19	DGND	U		Digital 3.3/2.5/1.2 V ground
N20				
N21				
P13				
P15				
P18				
P20				
P27				
R14				
R15				
R16				
R17				
R18				
R19				
T15				
T16				
T17				
T18				

Information classified Confidential - Do not copy (See last page for obligations)

Table 4. Power/ground pins (continued)

Table 4.	Power/ground pins (continued)		
Pin	Assignment	Voltage	Туре	Description
T19				
T29				
U15				
U16				
U17				
U18				
U19				
U29				
V14				
V15				
V17				
V18				
V19				
W13				
W15				
W17				
W18				
W20	DGND	0		Digital 3.3/2.5/1.2 V ground
W21				
Y13				
Y14				
Y17				
Y19				
Y20				
Y21				
Y22				
AA12				
AA13				
AA17				
AA20				
AA21				
AA22	_			
AA23	_			
AB11				
AB12				

Table 4. Power/ground pins (continued)

Pin	Assignment	Voltage	Туре	Description
AB13				
AB21	-			
AB22	- 			
AB23				
AC10	-			
AC11	-			
AC12	- 			
AC22	DGND	0		 Digital 3.3/2.5/1.2 V ground
AH8	- DGND	U		Digital 3.3/2.3/1.2 V ground
AH17	-			
AH18	-			
AJ8	- 			
AJ15				
AJ16	-			
AJ17				
AK17				

Table 4. Power/ground pins (continued)

lable 4.	Power/ground pins (co	ontinuea)		
Pin	Assignment	Voltage	Туре	Description
Digital 1.	2 V			
F7				
G6				
G7				
G27				
H28				
H29				
M14				
M15				
M18				
M19				
N15				
N16				
N17				
N18				
P12				
P16	VDD1V2	1.2	Digital	Digital power 1.2 V core power
P17				
P21				
R12				
R13				
R20				
R21				
R28				
T13				
T14				
U13				
U14				
V12				
V13				
V16				
V20				

Table 4. Power/ground pins (continued)

Pin	Assignment	Voltage	Туре	Description
V21				
W12				
W16				
Y15				
Y16				
Y18				
AA14				
AA15				
AA16	VDD1V2	1.2	Digital	Digital 1.2 V core power
AA18	VDDIVZ	1.2	Digital	Digital 1.2 v core power
AA19				
AB20				
AC21				
AD5				
AE4				
AE5				
AE6				
AF6				

6.2 System

Table 5. System pins

Pin	Assignment	I/O	Voltage	Description	Comments
B32	NOTRESETIN	I	3.3	System reset-in	
A29	WDOGRSTOUT	0	3.3	System reset-out (from System reset- in or Internal watchdog timer reset)	System reset
B29	NOTASEBRK	I/O	3.3	ST40 debugger breakpoint	
B31	TRIGGERIN	I	3.3	ST231 debugger controller in	CPUs debug
C29	TRIGGEROUT	0	3.3	ST231 debugger controller out	
A32	SYSITRQ[0]				
A31	SYSITRQ[1]	1/0	0.0	Interrupt line	Interrupts
B30	SYSITRQ[2]	1/0	3.3		
A30	SYSITRQ[3]				
C31	NMI	I	3.3	Nonmaskable interrupt	
C30	SYSCLKINALT	I	3.3	2nd system alternate clock (30 MHz) with external VCXO	
C32	SYSCLKOUT	0	3.3	Programmable output clock for debug	
AJ22	SYSCLKIN	I	2.5	30 MHz oscillator (USB/SATA) with	
AH22	SYSCLKOSC	0	2.5	internal VCXO	
F26	GND_SENSE	Α	-	Ground voltage sense	
G26	VDD_SENSE	Α	-	Voltage sense	

6.3 JTAG

Table 6. JTAG pins

100.0 0.	o in tel pillo				
Pin	Assignment	I/O	Voltage	Description	Comments
B2	TDI	I	3.3	CPUs debug port and TAP data input	
C2	TMS	I	3.3	CPUs debug port and TAP mode select	No internal pull-
C1	TCK	I	3.3	CPUs debug port and TAP clock	up or pull-down
A1	NOTTRST	I	3.3	CPUs debug port and TAP logic reset	resistors
B1	TDO	0	3.3	CPUs debug port and TAP data output	

STi7105

Connections

nfidential

6.4 Transport interface

This transport interface is an alternative to the PIO bits. By default, the PIO is bypassed. To enable the transport interface, the PIO setting must be done at boot (refer to *Chapter 19: Alternate functions on PIO on page 263* for programming details).

Note: The parallel/serial mode selection is done by selecting the TSmerger channel.

Table 7. Parallel mode transport pins

Pad	I/O	Voltage	PIO	Description	Comments
TSIN0BYTECLK	I/O	3.3	PIO13[5]	-TSIN0 control signals	
TSIN0BYTECLKVALID	I/O	3.3	PIO13[6]		
TSIN0ERROR	I/O	3.3	PIO13[7]		
TSIN0PACKETCLK	I/O	3.3	PIO14[0]		
TSIN0DATA[0]	- I/O	3.3	PIO14[7]	TSIN0 parallel data	
TSIN0DATA[1]			PIO14[6]		
TSIN0DATA[2]			PIO14[5]		
TSIN0DATA[3]			PIO14[4]		
TSIN0DATA[4]			PIO14[3]		
TSIN0DATA[5]			PIO14[2]		
TSIN0DATA[6]			PIO14[1]		
TSIN0DATA[7]			PIO13[4]		
TSIN1BYTECLK	I	3.3 PIO12[1]/ PIO15[1]			
TSIN1BYTECLKVALID	I	3.3	PIO12[2]/ PIO15[2]	TSIN1 control signals	
TSIN1ERROR	I	3.3	PIO12[3]/ PIO15[3]		
TSIN1PACKETCLK	I	3.3	PIO12[4]/ PIO15[0]		
TSIN1DATA[0]	_	3.3	PIO13[3]	TSIN1 parallel data	
TSIN1DATA[1]			PIO13[2]		
TSIN1DATA[2]			PIO13[1]		
TSIN1DATA[3]			PIO13[0]		
TSIN1DATA[4]			PIO12[7]		
TSIN1DATA[5]			PIO12[6]		
TSIN1DATA[6]			PIO12[5]		
TSIN1DATA[7]			PIO12[0]/ PIO15[4]		

Table 7. Parallel mode transport pins (continued)

Pad	I/O	Voltage	PIO	Description	Comments
TSIN2BYTECLK	I	3.3	PIO6[1], PIO14[2]		
TSIN2BYTECLKVALID	1	3.3	PIO6[2], PIO14[3]	TSIN2 control signals	
TSIN2ERROR	I	3.3	PIO6[3], PIO14[4]	1 Sinz control signals	
TSIN2PACKETCLK	I	3.3	PIO6[4], PIO14[5]		
TSIN2DATA[0]			PIO7[3]		
TSIN2DATA[1]			PIO7[2]		
TSIN2DATA[2]			PIO7[1]	TSIN2 parallel data	
TSIN2DATA[3]			PIO7[0]		
TSIN2DATA[4]	ı	3.3	PIO6[7]		
TSIN2DATA[5]			PIO6[6]		
TSIN2DATA[6]			PIO6[5]		
TSIN2DATA[7]			PIO6[0], PIO14[1]		
TSIN3BYTECLK	I	3.3	PIO12[6]		
TSIN3BYTECLKVALID	I	3.3	PIO12[7]	TOING control circusts	
TSIN3ERROR	I	3.3	PIO13[0]	TSIN3 control signals	
TSIN3PACKETCLK	I	3.3	PIO13[1]		

Table 8. Serial mode transport pins

able of Cortal mode transport pine								
Pad	I/O	Voltage	PIO	Description	Comments			
TSIN0SER/DATA[7]	I	3.3	PIO13[4]	TSIN0 serial data				
TSIN1SER/DATA[7]	I	3.3	PIO12[0]/ PIO15[4]	TSIN1 serial data				
TSIN2SER/DATA[7]	I	3.3	PIO6[0]/ PIO14[1]	TSIN2 serial data				
TSIN3SER/DATA[7	I	3.3	PIO12[5]	TSIN3 serial data				
TSOUTSER/DATA[7]	0	3.3	PIO12[0]	TSOUT serial data				

Connections STi7105

Table 9. 1394OUT mode transport pins

Signal	I/O	Voltage	PIO	Description	Comments
TSOUTBYTECLK	0	3.3	PIO12[1]		
TSOUTBYTECLKVALID	0	3.3	PIO12[2]	TCOLIT control cionale	
TSOUTERROR	0	3.3	PIO12[3]	TSOUT control signals	
TSOUTPACKETCLK	0	3.3	PIO12[4]		
TSOUTDATA[0]			PIO13[3]		
TSOUTDATA[1]			PIO13[2]		
TSOUTDATA[2]			PIO13[1]		
TSOUTDATA[3]	0	3.3	PIO13[0]	TSOUT parallel data	
TSOUTDATA[4]			PIO12[7]		
TSOUTDATA[5]			PIO12[6]		
TSOUTDATA[6]			PIO12[5]		

6.5 Display analog output interface

Table 10. Display analog output pins

Pin	Assignment	I/O	Voltage (a)	Description	Comments
AM31	VIDA0_ROUT	0	-	Analog main display - red output	
AM32	VIDA0_GOUT	0	-	Analog main display -green output	Connect an external 140 Ω 1% resistor between these pins and analog ground.
AM30	VIDA0_BOUT	0	-	Analog main display - blue output	,
AL29	VIDA0_REXT	-	-	VDAC0 external resistor interface	Connect an external 7.81 k Ω 1% resistor between each of these pins
AJ32	VIDA1_COUT	0	-	Analog auxiliary display - chrominance output	
AH31	VIDA1_CVOUT	0	-	Analog auxiliary display - CVBS output	Connect an external 140 Ω 1% resistor between these pins and analog ground.
AG30	VIDA1_YOUT	0	-	Analog auxiliary display - luminance output	,
AK32	VIDA1_REXT	-	-	VDAC1 external resistor interface	Connect an external 7.81 $k\Omega$ 1% resistor between each of these pins
AK28	VIDA0_MASSQUIET	-	-	Analog ground connection	It must be connected to noiseless board analog ground because it is sensitive pin for DAC output signal performance.
AL31	VIDA0_IDUMP	0	-	Current return path for the DAC output	It is tied to PCB ground plane.

STi7105 Connections

Table 10. Display analog output pins (continued)

Pin	Assignment	I/O	Voltage (a)	Description	Comments
AL32	VIDA1_MASSQUIET	-	-	Analog ground connection	It must be connected to noiseless board analog ground because it is sensitive pin for DAC output signal performance
AH30	VIDA1_IDUMP	0	-	Current return path for the DAC output	It is tied to PCB ground plane

a. For voltage values, please refer Section 17.4: Triple HD video DACs on page 244.

6.6 HDMI interface

Table 11. HDMI pins

Pin	Assignment	1/0	Voltage ^(a)	Description	Comments
AK25	TMDSTXCP	0	=	TMDS Control plus	
AM25	TMDSTXCN	0	=	TMDS Control minus	
AK26	TMDSTX0P	0	-	TMDS Data0 plus	
AJ26	TMDSTX0N	0	-	TMDS Data0 minus	
AJ27	TMDSTX1P	0	-	TMDS Data1 plus	
AH26	TMDSTX1N	0	-	TMDS Data1 minus	
AJ28	TMDSTX2P	0	-	TMDS Data2 plus	
AH27	TMDSTX2N	0	=	TMDS Data2 minus	
AL25	TMDSREF	-	-	TMDS voltage reference	Used by compensation cell to determine the current drive of output buffers. Pulled up externally to 3.3 V using a 50 Ω resistor.
AH28	HDMI_CEC	I/O	-	HDMI CEC line	

a. For voltage values, please contact your local ST representative to provide you specific internal document.

HDMI pins as PIO alternates

Assignment	1/0	Voltage ^(a)	Description	Comments
HDMI_PLUGIN	_	i	HDMI HOT PLUG detection input	PIO9[7]

6.7 Audio digital interface

For audio digital pins, refer to PIO10 and PIO11 alternate functions in *Alternate functions on PIO*.

Connections STi7105

6.8 Audio analog interface

Table 12. Audio analog pins

Pin	Assignment	1/0	Voltage (a)	Description	Comments
AM17	AUDA_LEFTOUTP	0	-	DAC left channel positive differential current output	
AL17	AUDA_LEFTOUTN	0	-	DAC left channel negative differential current output	
AL15	AUDA_RIGHTOUTP	0	-	DAC right channel positive differential current output	
AK15	AUDA_RIGHTOUTN	0	-	DAC right channel negative differential current output	
AM16	AUDA_VBGOUT	0		DAC output bandgap voltage	
AL16	AUDA_IREF	-	-	DAC output reference current	Connect an external 575 Ω1% resistor to AUDA_AGND2V5

a. For voltage values, please refer Section 17.3: Audio DAC on page 243.

6.9 Serial ATA interface

Table 13. SATA pins

Pin	Assignment	I/O	Voltage (a)	Description	Comments
AJ20	SATATXP	0	-	SATA transmit plus	
AK18	-	-	-	No connect	
AH20	SATATXN	0	-	SATA transmit minus	
AK19	-	-	-	No connect	
AH21	SATARXP	I	-	SATA receive plus	
AJ19	-	-	-	No connect	
AG21	SATARXN	I	-	SATA receive minus	
AL18	-	-	-	No connect	
AH19	SATAREF	I/O	-	SATA external reference	It is an external 475 Ω resistor with the other end connected to AF18 pin (SATAVDD_PLL).

a. For voltage values, please refer Section 17.7: SATA PHY electrical characteristics on page 248.

6.10 FDMA interface

Table 14. FDMA pins

Pin	Assignment	1/0	Voltage	Description	Comments
K29	FDMAREQ[0]	I/O	3.3	FDMA request	
K30	FDMAREQ[1]	I/O	3.3	FDMA request	
K28	FDMAREQ[2]	I/O	3.3	FDMA request	
J27	FDMAREQ[3]	I/O	3.3	FDMA request	

6.11 Programmable inputs/outputs

Note: All PIO pins are rated at 4 mA sink/source.

Table 15. PIO pins

Table 15.	PIO pins			
Pin	Assignment	I/O	Voltage	Description
AE31	PIO0[0]			
AE32	PIO0[1]			
AE30	PIO0[2]			
AD29	PIO0[3]	I/O	3.3	Programmable input/output bank0
AD31	PIO0[4]	1/0	3.3	Programmable input/output banko
AD30	PIO0[5]			
AC29	PIO0[6]			
AC30	PIO0[7]			
AC28	PIO1[0]			
AB27	PIO1[1]			
AB29	PIO1[2]			
AB28	PIO1[3]	1/0	3.3	Programmable input/output bank1
AA27	PIO1[4]	1/0		
AA28	PIO1[5]			
Y27	PIO1[6]			
Y29	PIO1[7]			
Y28	PIO2[0]		3.3	
W29	PIO2[1]			
W30	PIO2[2]			
W28	PIO2[3]	I/O		Programmable input/output bank2
V29	PIO2[4]	1/0	3.3	Programmable inpul/output bankz
V31	PIO2[5]			
V30	PIO2[6]			
U31	PIO2[7]			
AF29	PIO3[0]			
AG28	PIO3[1]			
AF30	PIO3[2]	I/O		
AF28	PIO3[3]		3.3	Programmable input/output bank3
T30	PIO3[4]		3.3	r rogrammable inpul/output banks
R29	PIO3[5]			
R31	PIO3[6]			
R30	PIO3[7]			

Table 15. PIO pins (continued)

Pin	Assignment	I/O	Voltage	Description
P29	PIO4[0]			
P30	PIO4[1]			
P28	PIO4[2]			
N27	PIO4[3]	I/O	0.0	Due and remarkle in the Wall And the select
N29	PIO4[4]	1/0	3.3	Programmable input/output bank4
N28	PIO4[5]			
M27	PIO4[6]			
M28	PIO4[7]			
L27	PIO5[0]			
L29	PIO5[1]			
L28	PIO5[2]			
K27	PIO5[3]	1/0	0.0	Programmable input/output bank5
U30	PIO5[4]	I/O	3.3	
U32	PIO5[5]			
T31	PIO5[6]			
T32	PIO5[7]			
E4	PIO6[0]		0.0	
E2	PIO6[1]			
E3	PIO6[2]			
F5	PIO6[3]	I/O		Programmable input/output bank6
F3	PIO6[4]	1/0	3.3	Programmable input/output banko
F4	PIO6[5]			
G4	PIO6[6]			
G3	PIO6[7]			
D1	PIO7[0]			
D2	PIO7[1]			
D3	PIO7[2]			
G5	PIO7[3]	I/O	3.3	Programmable input/output bank7
AK9	PIO7[4]		3.3	r rogrammable input/output bank/
AK8	PIO7[5]	1		
AJ6	PIO7[6]	1		
AH7	PIO7[7]			

Table 15. PIO pins (continued)

Pin	Assignment	I/O	Voltage	Description			
AL8	PIO8[0]						
AK6	PIO8[1]						
AK7	PIO8[2]						
AF9	PIO8[3]	1/0	2.2	Programmable input/output bank8			
AG8	PIO8[4]	1/0	3.3	Programmable inpul/output banko			
AH10	PIO8[5]						
AJ9	PIO8[6]						
AL9	PIO8[7]						
AK10	PIO9[0]						
AM8	PIO9[1]						
AJ7	PIO9[2]						
AG7	PIO9[3]	1/0	3.3	Dreggement innut/output hanks			
AF7	PIO9[4]	1/0	3.3	Programmable input/output bank9			
AH11	PIO9[5]						
AF8	PIO9[6]						
J29	PIO9[7]						
AF14	PIO10[0]						
AH14	PIO10[1]						
AJ14	PIO10[2]						
AK14	PIO10[3]	I/O	3.3	Programmable input/output bank10			
AG13	PIO10[4]	1/0	3.3	Programmable inpul/output bank to			
AJ10	PIO10[5]						
AJ11	PIO10[6]						
AG9	PIO10[7]						
AJ13	PIO11[0]						
AH13	PIO11[1]]					
G30	PIO11[2]]					
G29	PIO11[3]	1/0		Programmable input/output hankf 1			
F27	PIO11[4]	I/O	3.3	Programmable input/output bank11			
F29	PIO11[5]	1					
F28	PIO11[6]						
E28	PIO11[7]	1					

Table 15. PIO pins (continued)

Pin	Assignment	I/O	Voltage	Description		
K5	PIO12[0]					
L4	PIO12[1]					
K3	PIO12[2]					
L6	PIO12[3]	1/0	2.0	Programmable input/output bank12		
K4	PIO12[4]	I/O	3.3	Programmable input/output bank12		
J3	PIO12[5]					
J2	PIO12[6]					
K6	PIO12[7]					
НЗ	PIO13[0]					
J4	PIO13[1]					
H1	PIO13[2]					
H2	PIO13[3]	1/0	2.0	Programmable input/output bank13		
P5	PIO13[4]	I/O	3.3			
R2	PIO135]					
P3	PIO13[6]					
R4	PIO13[7]					
P4	PIO14[0]					
N5	PIO14[1]					
N4	PIO14[2]					
P6	PIO14[3]	1/0	3.3	Programmable input/output bank14		
M5	PIO14[4]	1/0	3.3	Frogrammable input/output bank14		
N6	PIO14[5]					
M6	PIO14[6]					
L5	PIO14[7]					
AM4	PIO15[0]					
AL4	PIO15[1]					
AJ5	PIO15[2]					
AL5	PIO15[3]	11/0	Programmable input/output bank15			
AK5	PIO15[4]	1/0	I/O 3.3	Frogrammable input/output bank 15		
AH6	PIO15[5]					
H31	PIO15[6]					
H32	PIO15[7]					

Table 15. PIO pins (continued)

Pin	Assignment	I/O	Voltage	Description
E30	PIO16[0]			
E29	PIO16[1]			
D29	PIO16[2]			
D31	PIO16[3]	1/0	3.3	Programmable input/output hank16
D30	PIO16[4]	1/0	3.3	Programmable input/output bank16
J28	PIO16[5]			
H30	PIO16[6]			
G28	PIO16[7]			

6.12 External memory interface (EMI)

Note: The various configurations of the EMI (SRAM, FLASH, PCI) are shown in Section 7.4.

Table 16. EMI pins

iable i	6. EWI PINS			,	
Pin	Assignment	1/0	Voltage	Description	Comments
R3	NOTEMICSA	I/O	3.3	Peripheral chip select A	
T2	NOTEMICSB	I/O	3.3	Peripheral chip select B	
T1	NOTEMICSC	I/O	3.3	Peripheral chip select C	
U1	NOTEMICSD	I/O	3.3	Peripheral chip select D	
T3	NOTEMICSE	I/O	3.3	Peripheral chip select E	
AC5	NOTEMIBE[0]	I/O	O 3.3	External device databus byte enable	
AE1	NOTEMIBE[1]				
Y5	NOTEMIOE	O2	3.3	External device output enable	
AG4	NOTEMILBA	I/O	3.3	Flash device load burst address	
U3	NOTEMIBAA	I/O	3.3	Flash burst address advanced	
V3	EMITREADYORWAIT	I/O	3.3	External memory device target ready indicator	
AA6	EMIRDNOTWR	I/O	3.3	External read/write access indicator. Common to all devices.	

Connections

Table 16. EMI pins (continued)

STi7105

Pin	Assignment	I/O	Voltage	Description	Comments
AM1	EMIDATA[0]				
AK2	EMIDATA[1]				
AF4	EMIDATA[2]				
AL2	EMIDATA[3]				
AK1	EMIDATA[4]				
AK4	EMIDATA[5]				
AH4	EMIDATA[6]		3.3	External common data bus	
AK3	EMIDATA[7]	1/0			
AL1	EMIDATA[8]	1/0			
AM3	EMIDATA[9]				
AL3	EMIDATA[10]				
AH3	EMIDATA[11]				
AM2	EMIDATA[12]				
AH5	EMIDATA[13]				
AJ3	EMIDATA[14]				
AJ2	EMIDATA[15]				

Connections STi7105

Table 16. EMI pins (continued

Table 1	6. EMI pins (continued	l)			
Pin	Assignment	I/O	Voltage	Description	Comments
W4	EMIADDR[1]				
V4	EMIADDR[2]				
V2	EMIADDR[3]				
V5	EMIADDR[4]				
V6	EMIADDR[5]				
W6	EMIADDR[6]				
W3	EMIADDR[7]				
AB4	EMIADDR[8]				
AC3	EMIADDR[9]				
Y4	EMIADDR[10]				
Y6	EMIADDR[11]				
W5	EMIADDR[12]				
AA5	EMIADDR[13]	0	3.3	External common address bus	23-bit address ^(a)
AB6	EMIADDR[14]				
AE2	EMIADDR[15]				
AB5	EMIADDR[16]				
AC6	EMIADDR[17]				
AC4	EMIADDR[18]				
AG6	EMIADDR[19]				
AD4	EMIADDR[20]				
AD2	EMIADDR[21]				
AD3	EMIADDR[22]				
AJ4	EMIADDR[23]				
AF5	EMIADDR[24]				
AF3	EMIADDR[25]				
U2	EMIFLASHCLK	I/O	3.3	Flash clock	
AD6	EMIBUSREQ	I/O	3.3	Bus access request	For master/slave
AE3	EMIBUSGNT	I/O	3.3	Bus access grant	configuration
AG5	NANDWAIT		3.3		

a. No pull-up. External resistors to define mode at boot.

Table 17. EMI pins as PIO alternates

Confidential

Signal	I/O	Voltage	Description	Comments
EMI_SS_BUS_FREE_ACCESSPE ND/EMI_SS_BUS_FREE_OUT	I	3.3	Access Pending Flag	PIO15[2]
SPIBOOT_DATA_IN	I	3.3	SPI boot data in	PIO15[3]

STi7105 Connections

Table 17. EMI pins as PIO alternates (continued)

Signal	I/O	Voltage	Description	Comments
SPIBOOT_DATA_OUT	0	3.3	SPI boot data out	PIO15[1]
SPIBOOT_CLOCK	0	3.3	SPI boot clock	PIO15[0]
SPIBOOT_CS	0	3.3	SPI boot chip select	PIO15[2]

Table 18. PCI pins as PIO alternates

Assignment	I/O	Voltage	Description	Comments
PCI_LOCK_IN	I	3.3	PCI lock function	PIO7[0], PIO15[5]
PCI_INT_FROM_DEVICE[0]	I	3.3	PCI interrupt input (when host)	PIO6[0], PIO15[3]
PCI_INT_FROM_DEVICE[1]	I	3.3	PCI interrupt input (when host)	PIO6[1]
PCI_INT_FROM_DEVICE[2]	I	3.3	PCI interrupt input (when host)	PIO6[2]
PCI_INT_TO_HOST	0	3.3	PCI interrupt output (when device)	PIO6[0], PIO15[3]
PCI_RESETN_FROM_HOST_TO_D EVICE	I	3.3	PCI reset input (when host)	PIO15[7]
PCI_SYSTEM_ERROR	0	3.3	PCI error flag	PIO15[4]
PCI_PME_IN	I	3.3	PCI pme function	PIO15[6]
PCI_BUS_GNT[1]	0	3.3	Bus access grant	PIO7[1]
PCI_BUS_GNT[2]	0	3.3	Bus access grant	PIO7[2]
PCI_BUS_REQ[1]	I	3.3	Bus access req	PIO6[5]
PCI_BUS_REQ[2]	I	3.3	Bus access req	PIO6[6]

6.13 Local memory interface

Table 19. LMI pins

Pin	Assignment	I/O	Voltage	Description	Comments
B17	LMICLK[0]	0	1.8	Clock to DDR0	
A17	NOTLMICLK[0]	0	1.8	Inverted clock to DDR0	
C3	LMICLK[1]	0	1.8	Clock to DDR1	
A2	NOTLMICLK[1]	0	1.8	Inverted clock to DDR1	
B9	NOTLMICS[0]	0	1.8	Chip select0	
D4	NOTLMICS[1]	0	1.8	Chip select1	
D9	NOTLMIRAS	0	1.8	Row address strobe	
C9	NOTLMICAS	0	1.8	Column address strobe	
D23	NOTLMIWE	0	1.8	Write enable	

Connections STi7105

Table 19. LMI pins (continued)

Pin	Assignment	I/O	Voltage	Description	Comments
G12	LMIADDR[0]				
D22	LMIADDR[1]				
D14	LMIADDR[2]				
E21	LMIADDR[3]				
E13	LMIADDR[4]				
F20	LMIADDR[5]				
C15	LMIADDR[6]	0	1.8	Address	
D19	LMIADDR[7]	\neg \Box	1.0	Address	
C14	LMIADDR[8]				
C19	LMIADDR[9]				
F22	LMIADDR[10]				
A16	LMIADDR[11]				
C17	LMIADDR[12]				
B16	LMIADDR[13]				

Information classified Confidential - Do not copy (See last page for obligations)

Table 19. LMI pins (continued)

Table 19. LMI pins (continued)								
Pin	Assignment	I/O	Voltage	Description	Comments			
C18	LMIDATA[0]							
D27	LMIDATA[1]							
B18	LMIDATA[2]							
B28	LMIDATA[3]							
C28	LMIDATA[4]							
D18	LMIDATA[5]							
C27	LMIDATA[6]							
E19	LMIDATA[7]							
G21	LMIDATA[8]							
D26	LMIDATA[9]							
D20	LMIDATA[10]							
C26	LMIDATA[11]							
E26	LMIDATA[12]							
E20	LMIDATA[13]							
C25	LMIDATA[14]							
F21	LMIDATA[15]	I/O	1.8	Bidirectional data bus				
B4	LMIDATA[16]		1.0	Didirectional data bus				
E11	LMIDATA[17]							
B3	LMIDATA[18]							
F12	LMIDATA[19]							
E12	LMIDATA[20]							
A3	LMIDATA[21]							
D11	LMIDATA[22]							
C4	LMIDATA[23]							
E6	LMIDATA[24]							
C10	LMIDATA[25]							
D6	LMIDATA[26]							
D10	LMIDATA[27]							
F11	LMIDATA[28]							
F6	LMIDATA[29]							
E10	LMIDATA[30]							
C7	LMIDATA[31]							

Table 19. LMI pins (continued)

Pin	Assignment	I/O	Voltage	Description	Comments
E23	LMIDATAMASK[0]				
D24	LMIDATAMASK[1]		1.8	Data write mask	
A8	LMIDATAMASK[2]	0	1.8	Data write mask	
B8	LMIDATAMASK[3]				
E27	LMIVREF[0]	I	1.8	SSTL reference voltage0	
F13	LMIVREF[1]	I	1.8	SSTL reference voltage1	
C23	LMICLKEN[0]	0	1.8	Memory clock enable	
E5	LMICLKEN[1]	0	1.8	Memory clock enable	
E7	ODT[0]	0	1.8	Memory on-die termination	
E22	ODT[1]	0	1.8	Memory on-die termination	
G24	LMI_COMP_REF	Α	-	LMI compensation external resistor	
F24	LMI_COMP_GND	Α	-	LMI compensation ground	
D15	LMIDUMMY[0]	Α	-	LMI pcb track delay estimator	
C16	LMIDUMMY[1]	Α	-	LMI pcb track delay estimator	
A25	LMIDQS[0]			Write/read data strobe	
C24	LMIDQS[1]	1/0	1.8		
C5	LMIDQS[2]	7 "/	1.0		
D7	LMIDQS[3]				
B25	LMIDQSN[0]				
B24	LMIDQSN[1]	1/0	1.8	Write/read data strobe	
D5	LMIDQSN[2]]//	1.0	WING/IEAU UAIA SIIUDE	
C8	LMIDQSN[3]				
D13	LMIBA[0]				
E14	LMIBA[1]	0	1.8	Bank select	
B15	LMIBA[2]				

6.14 Ethernet

Note:

This Ethernet interface is an alternative of PIO bits. By default, the PIO is selected. To enable the Ethernet interface, the PIO setting must be done at boot (refer to Chapter 19: Alternate functions on PIO on page 263 for programming details).

Information classified Confidential - Do not copy (See last page for obligations)

Table 20. MII interface pin mapping

Table 20. Mil Interface pin mapping							
Pad	1/0	Voltage	PIO mapping	Description	Comments		
MIITXCLK	I	3.3	PIO9[2]	Timing reference for ETHMII_TXEN and ETHMII_TXD			
MIITX_EN	0	3.3	PIO8[2]	Indicates that the MAC is presenting nibbles on the MII for transmission			
MIITXD[3]	0	3.3	PIO8[1]				
MIITXD[2]	0	3.3	PIO8[0]	Data signals driven by the MAC			
MIITXD[1]	0	3.3	PIO7[7]	Data signals driven by the MAC			
MIITXD[0]	0	3.3	PIO7[6]				
MIIRXCLK	I	3.3	PIO8[5]	Timing reference for ETHMII_RXDV, ETHMII_RXER, and ETHMII_RXD			
MIIRX_DV	I	3.3	PIO7[4]	Receive data valid			
MIIRX_ER	I	3.3	PIO7[5]	Receive error			
MIIRXD[3]	I	3.3	PIO9[1]				
MIIRXD[2]	I	3.3	PIO9[0]	Data signals that transition synchronously with respect to			
MIIRXD[1]	I	3.3	PIO8[7]	ETHMII_RXCLK			
MIIRXD[0]	I	3.3	PIO8[6]				
MIICRS	I	3.3	PIO9[4]	Asserted when either the transmit or receive medium is not idle			
MIICOL	I	3.3	PIO9[3]	Asserted on detection of a collision on the medium			
MIIMDC	0	3.3	PIO8[4]	Timing reference for transfer of information on the ETHMII_MDIO signals			
MIIMDIO	I/O	3.3	PIO8[3]	Management Data input/output signal			
MIIMDINT	I	3.3	PIO9[6]	Management data interrupt from PHY			
MIIPHYCLK	0	3.3	PIO9[5]	PHY clock			

Table 21. RMII interface pin mapping

Assignment	1/0	Voltage	PIO mapping	Description	Comments
RMIITX_EN	0	3.3	PIO8[2]	Indicates that the MAC is presenting nibbles on the MII for transmission	
RMIITXD[1]	0	3.3	PIO7[7]	Data signals driven by the MAC	
RMIITXD[0]	0	3.3	PIO7[6]	Data signals driven by the MAC	
RMIIRXD[1]	I	3.3	PIO8[7]	Data signals received by the MAC	
RMIIRXD[0]	I	3.3	PIO8[6]	Data signals received by the MAC	
RMIICRS_DV	I	3.3	PIO7[4]	Asserted when either the transmit or receive medium is not idle	

Connections STi7105

Table 21. RMII interface pin mapping (continued)

Assignment	I/O	Voltage	PIO mapping	Description	Comments
RMIIRX_ER	I	3.3	PIO7[5]		
RMIIMDC	0	3.3	PIO8[4]	Timing reference for transfer of information on the ETHMII_MDIO signals	
RMIIMDIO	I/O	3.3	PIO8[3]	Management Data input/output signal	
RMIIMDINT	I	3.3	PIO9[6]	Management data interrupt from PHY	
RMIIREF_CLK	I/O	3.3	PIO9[5]	Reference clock	

6.15 USB 2.0 interface

Table 22. USB pins

Pin	Assignment	I/O	Voltage	Description	Comments
AK23	USB1DM	I/O	2.5	USB receive minus	
AJ23	USB1DP	I/O	2.5	USB receive plus	
AL24	USB2DM	I/O	2.5	USB receive minus	
AK24	USB2DP	I/O	2.5	USB receive plus	
AG22	REXT			External register	1.5 kΩ resistor

Table 23. USB pin mapping

Mapping	I/O	Voltage	Description	Assignment			
USB1_PRT_OVCUR	I	3.3	USB 2.0 interface 1	PIO4[4], PIO12[5]			
USB1_PRT_PWR	0	3.3		PIO4[5], PIO12[6]			
USB2_PRT_OVCUR	I	3.3	USB 2.0 interface 2	PIO4[6]/PIO14[6]			
USB2_PRT_PWR	0	3.3		PIO4[7]/PIO14[7]			

Caution:

In case of USB signals, the usual naming convention is not used. In order to align with the STi7105 ballout names, this manual mentions two instances of USB as USB1 and USB2 rather than USB0 and USB1. Therefore, in this manual the first instance of USB is USB1 and the second instance is USB2.

STi7105 Connections

6.16 Peripherals

6.16.1 DAA

Table 24. DAA pins

Pin	Assignment	I/O	Voltage	Description	Comments
J31	DAA_C1A	I/O	3.3	DAA differential data ^(a)	
J30	DAA_C2A	I/O	3.3	DAA differential data ^(b)	

a. ISO-Link capacitors C1 and C2, (33 pF) should be as close to the line-side device as possible.

6.16.2 Asynchronous serial controller (ASC)

Table 25. ASC / SCIF pins

Assignment	I/O	Voltage	Description	Comments				
ASC0								
UART0_RXD	1	3.3	ASC 0 receive signal	PIO0[1]				
UART0_TXD	0	3.3	ASC 0 transmit signal	PIO0[0]				
UARTO_CTS	1	3.3	ASC 0 clear to send signal	PIO0[4]				
UARTO_RTS	0	3.3	ASC 0 request to send signal	PIO0[3]				
UART0_NOT_OE	0	3.3		PIO0[2]				
			ASC1					
UART1_RXD	I	3.3	ASC 1 receive signal	PIO1[1]				
UART1_TXD	0	3.3	ASC 1 transmit signal	PIO1[0]				
UART1_CTS	1	3.3	ASC 1 clear to send signal	PIO1[4]				
UART1_RTS	0	3.3	ASC 1 request to send signal	PIO1[3]				
			ASC2					
UART2_RXD	I	3.3	ASC 2 receive signal	PIO12[1], PIO4[1]				
UART2_TXD	0	3.3	ASC 2 transmit signal	PIO12[0], PIO4[0]				
UART2_CTS	I	3.3	ASC 2 clear to send signal	PIO12[2], PIO4[2]				
UART2_RTS	0	3.3	ASC 2 request to send signal	PIO12[3], PIO4[3]				
ASC3								
UART3_RXD	I	3.3	ASC 3 receive signal	PIO5[1]				
UART3_TXD	0	3.3	ASC 3 transmit signal	PIO5[0]				

4

b. After satisfying the above, C1 and C2 should be as close to the embedded system-side DAA module as possible and no further than 6 inches away.

STi7105

Table 25. ASC / SCIF pins (continued)

Assignment	I/O	Voltage	Description	Comments
UART3_CTS	I	3.3	ASC 3 clear to send signal	PIO5[3]
UART3_RTS	0	3.3	ASC 3 request to send signal	PIO5[2]

6.16.3 Infrared transmitter/receiver

Table 26. Infrared transmitter/receiver pins

Assignment	I/O	Voltage	Description	Comments
IRB_IR_IN	I	3.3	IR data input	PIO3[0]
IRB_UHF_IN	I	3.3	UHF data input	PIO3[1]
IRB_IR_DATAOUT	0	3.3	IR data output	PIO3[2]
IRB_IR_DATAOUT_OD	0	3.3	IR data output. It is open drain.	PIO3[3]

6.16.4 Modem analog front-end interface (MAFE)

Table 27. MAFE pins

Table 27. WATE PINS							
Assignment	I/O	Voltage	Description	Comments			
MAFE_HC1	0	3.3	Indicates a control/status exchange	PIO1[2]			
MAFE_DOUT	0	3.3	Line for serially transmitting samples	PIO1[3]			
MAFE_DIN	I	3.3	Line for serially receiving samples	PIO1[0]			
MAFE_SCLK	I	3.3	Modem system clock	PIO1[1]			
MAFE_FS	I	3.3	Start of a sampling period latched on falling edges of SCLK	PIO1[5]			

6.16.5 Pulse width modulator (PWM)

Table 28. PWM pins

Assignment	I/O	Voltage	Description	Comments			
	PWM 0						
PWM_OUT0	0	3.3	PWM 0	PIO13[0], PIO4[4]			
PWM_CAPTURE_IN0	I			PIO4[3]			
	PWM 1						
PWM_OUT1	0	3.3		PIO13[1], PIO4[5]			
PWM_CAPTURE_IN1	I	3.3	PWM 1	PIO4[7]			
PWM_COMPARE_OUT1	0	3.3		PIO4[6]			

6.16.6 Smartcard

Table 29. Smartcard pins

Assignment	I/O	Voltage	Description	Comments		
Smartcard 0						
SC0_EXTCLKIN	I	3.3	External clock	PIO0[2]		
SC0_CLKOUT	О	3.3	Clock for smartcard from 100 MHz system clock	PIO0[3]		
SC0_DATAOUT	0	3.3	Serial data output	PIO0[0]		
SC0_DATAIN	I	3.3	Serial data input	PIO0[1]		
SC0_RESET	0	3.3	Serial data reset	PIO0[4]		
SC0_COND_VCC	0	3.3	VCC control flag	PIO0[5]		
SC0_COND_VPP	0	3.3	VPP control flag	PIO0[6]		
SCO_DETECT	I	3.3	Detection flag	PIO0[7]		
		Sma	rtcard 1	·		
SC1_EXTCLKIN	I	3.3	External clock	PIO1[2]		
SC1_CLKOUT	О	3.3	Clock for smartcard from 100MHz system clock	PIO1[3]		
SC1_DATAOUT	0	3.3	Serial data output	PIO1[0]		
SC1_DATAIN	I	3.3	Serial data input	PIO1[1]		
SC1_RESET	0	3.3	Serial data reset	PIO1[4]		
SC1_COND_VCC	0	3.3	VCC control flag	PIO1[5]		
SC1_COND_VPP	0	3.3	VPP control flag	PIO1[6]		
SC1_DETECT	I	3.3	Detection flag	PIO1[7]		

6.16.7 Synchronous serial controller (SSC)

Table 30. SSC pins

Assignment	I/O	Voltage	Description	Comments			
	SSC 0						
SSC0_SCL	I/O	3.3	SSC 0 serial clock	PIO2[2]			
SSC0_MTSR/SSC0_M RST	I/O	3.3	SSC 0 data: master transmit, slave receive/master receive, slave transmit (half duplex mode for example I ² C)	PIO2[3]			
SSC0_MRST	I/O	3.3	SSC 0 data: master receive, slave transmit (full duplex mode)	PIO2[4]			
SSC 1							
SSC1_SCL	I/O	3.3	SSC 1 serial clock	PIO2[5]			

Connections STi7105

Table 30. SSC pins (continued)

Assignment	1/0	Voltage	Description	Comments		
SSC1_MTSR/SSC1_M RST	I/O	3.3	SSC 1 data: master transmit, slave receive/master receive, slave transmit (half duplex mode for example I ² C)	PIO2[6]		
SSC1_MRST	I/O	3.3	SSC 1 data: master receive, slave transmit (full duplex mode)	PIO2[7]		
			SSC 2			
SSC2_SCL	I/O	3.3	SSC 2 serial clock	PIO3[4], PIO12[0], PIO13[4]		
SSC2_MTSR/SSC2_M RST	I/O	3.3	SSC 2 data: master transmit, slave receive/master receive, slave transmit (half duplex mode for example I ² C)	PIO2[0], PIO3[5], PIO12[1], PIO13[5]		
	SSC 3					
SSC3_SCL	I/O	3.3	SSC 3 serial clock	PIO3[6], PIO13[2], PIO13[6]		
SSC3_MTSR/SSC3_M RST	I/O	3.3	SSC3 data: master transmit, slave receive/master receive, slave transmit (half duplex mode for example I ² C)	PIO2[1], PIO3[7], PIO13[3], PIO13[7]		

6.16.8 Key Scanner (KS)

Table 31. KS pins

Assignment	I/O	Voltage	Description	Comments
KEY_SCAN_OUT[0]		3.3 k		PIO7[0], PIO5[0]
KEY_SCAN_OUT[1]	0		Kay Saannar autauta	PIO7[1], PIO5[1]
KEY_SCAN_OUT[2]			Key Scanner outputs	PIO7[2], PIO5[2]
KEY_SCAN_OUT[3]				PIO7[3], PIO5[3]
KEY_SCAN_IN[0]				PIO5[4]
KEY_SCAN_IN[1]	† - 	3.3	Koy Soonnar innuta	PIO5[5]
KEY_SCAN_IN[2]		3.3	Key Scanner inputs	PIO5[6]
KEY_SCAN_IN[3]				PIO5[7]

6.17 Pad reset conditions

Table 32 describes the pad reset conditions.

Table 32. Pad reset conditions

Ball/Signal name	Functional	Pad re	Pad reset conditions		
3	direction	I/O	Reset value	Pull up/pull down	
	•	System			
SYSCLKIN	I	_	1	_	
SYSCLKOSC	I/O	_	0	_	
NOTASEBRK	I/O	1	1	Pull-up	
TRIGGERIN	I	1	0	Pull-down	
TRIGGEROUT	0	0	0	Pull-down	
SYSITRQ[3:0]	I/O	1	0	Pull-down	
NMI	I	I	0	Pull-down	
WDOGRSTOUT	0	0	1	Pull-down	
SYSCLKOUT	0	I	1	Pull-down	
SYSCLKINALT	I	1	0	Pull-down	
FDMAREQ[3:0]	I/O	I	0	_	
NOTRESETIN	I	I	1	_	
		JTAG			
TDI	1	1	0	Pull-up	
TMS	1	I	0	Pull-up	
TCK	I	1	0	Pull-up	
NOTTRST	I	1	1	Pull-up	
TDO	0	0	1	_	
		EMI	·		
NOTEMICSA	I/O	1	1	Pull-up	
NOTEMICSB	I/O	1	1	Pull-up	
NOTEMICSC	I/O	1	1	Pull-up	
NOTEMICSD	I/O	I	1	Pull-up	
NOTEMICSE	I/O	I	1	Pull-up	
NOTEMIBE[1:0]	I/O	1	1	Pull-up	
NOTEMIOE	0	0	1	Pull-up	
NOTEMILBA	I/O	I	1	Pull-up	
NOTEMIBAA	I/O	1	1	Pull-up	
EMIREADYORWAIT	I/O	I	0	Pull-down	
NANDWAIT	I	I	1	Pull-up	
EMIRDNOTWR	I/O	1	1	Pull-up	
	1		1		

Connections STi7105

Table 32. Pad reset conditions (continued)

Confidential

Dell/Cianal name	Functional	Pad re	Pad reset conditions		
Ball/Signal name	direction	I/O	Reset value	Pull up/pull down	
EMIDATA[15:0]	I/O	I	0	Pull-down	
EMIADDR[16:1]	I/O	1	1	Pull-up	
EMIADDR[25:17]	I/O	1	1	Pull-up	
EMIFLASHCLK	I/O	1	0	Pull-down	
EMIBUSREQ	I/O	1	0	Pull-down	
EMIBUSGNT	I/O	0	0	Pull-down	
	1	PIO	1		
PIO0[7:0]	I/O	I	1	Weak pull-up	
PIO1[7:0]	I/O	I	1	Weak pull-up	
PIO2[7:0]	I/O	I	1	Weak pull-up	
PIO3[7:0]	I/O	1	1	Weak pull-up	
PIO4[7:0]	I/O	1	1	Weak pull-up	
PIO5[7:0]	I/O	ı	1	Weak pull-up	
PIO6[7:0]	I/O	ı	1	Weak pull-up	
PIO7[7:4]	I/O	I	х	Weak pull-up	
PIO7[3:0]	I/O	I	1	Weak pull-up	
PIO8[7:6]	I/O	1	х	Weak pull-up	
PIO8[5]	I/O	1	1	Weak pull-up	
PIO8[4:0]	I/O	1	х	Weak pull-up	
PIO9[7]	I/O	1	0	Weak pull-up	
PIO9[6]	I/O	I	х	Weak pull-up	
PIO9[5:2]	I/O	I	1	Weak pull-up	
PIO9[1:0]	I/O	I	х	Weak pull-up	
PIO10[7:0]	I/O	I	1	Weak pull-up	
PIO11[7:0]	I/O	I	1	Weak pull-up	
PIO12[7:0]	I/O	1	1	Weak pull-up	
PIO13[7:0]	I/O	I	1	Weak pull-up	
PIO14[7:0]	I/O	I	1	Weak pull-up	
PIO15[3:0]	I/O	0	0	_	
PIO15[7:6]	I/O	1	0	Weak pull-up	
PIO15[5:4]	I/O	I	1	Weak pull-up	

STi7105 Connections

Table 32. Pad reset conditions (continued)

Ball/Signal name	Functional direction	Pad reset	conditions	
		I/O	Reset value	Pull up/pull down
PIO16[7:5]	I/O	I	1	_
PIO16[4:0]	I/O	I	х	Weak pull-up

5/

7 Basic chip operating modes and multiplexing scenarios

The STi7105 has one basic chip operating mode, however, other chip operating modes are supported through pad multiplexing.

Following interfaces include ball multiplexing:

- Ethernet interface, which can support MII and ReduceMII(RMII)
- External memory interface (EMI), valid in several operating modes, attached to various types of devices

7.1 Transport interfaces multiplexing

The PIO multiplexing used for transport interfaces can be configured in the following ways:

- serial transport stream inputs: up to four serial IN (mapping details in Table 33)
- parallel transport stream inputs/output: one parallel IN/OUT and two parallel IN (mapping details in *Table 34*)

Table 33. STi7105 Serial Transport Stream inputs mapping

STi7105 Serial Transport Stream inputs mapping		Stream inputs mapping
Parameter	Interface	Details
Name		TSIN0SER/DATA[7]
Description		Transport stream0 serial data input
Direction		1
Configuration		No configuration is required
Name		TSIN0BYTECLK
Description		Transport stream0 data clock input/output
Direction		В
Configuration	Serial	For OUTPUT selection: Config register: SYSTEM_CONFIG49[23:0] Config bus: PIO13_ALTFOP[2:0]_MUX_SEL_BUS[5]=0x000 For INPUT selection: No configuration is required
Name	stream	TSIN0BYTECLKVALID
Description	input 0	Transport stream0 data valid input
Direction		1
Configuration		No configuration is required
Name		TSIN0ERROR
Description		Transport stream0 data error input
Direction		1
Configuration		No configuration is required
Name		TSIN0PACKETCLK
Description		Transport stream0 packet clock input
Direction		I
Configuration		No configuration is required
	Parameter Name Description Direction Configuration Name Description Configuration Name Description Direction Configuration Name Description Configuration Name Description Direction Configuration Name Description Direction Configuration Direction Configuration Name Description Direction Direction Configuration Name	Parameter Interface Name Description Direction Configuration Name Description Direction Configuration Serial transport stream input 0 Direction Configuration Direction Configuration Name Description Direction Configuration Name Description Direction Direction Configuration Name Description Direction Configuration Name Description Direction Direction Configuration Name Description Direction Direction

Table 33. STi7105 Serial Transport Stream inputs mapping (continued)

Table 33.	311/105 Seria	Tansport	Stream inputs mapping (continued)
Pin	Parameter	Interface	Details
	Name		TSIN1SER/DATA[7]
	Description		Transport stream1 serial data input
	Direction		ı
PIO12[0]/ PIO15[4]	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO12[0], SYSTEM_CONFIG4[9] = 0 when PIO15[4], SYSTEM_CONFIG4[9] = 1
	Name	•	TSIN1BYTECLK
	Description		Transport stream1 data clock input/output
	Direction		I
PIO12[1]/ PIO15[1]	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO12[1], SYSTEM_CONFIG4[9] = 0 when PIO15[1], SYSTEM_CONFIG4[9] = 1
	Name	•	TSIN1BYTECLKVALID
	Description		Transport stream1 data valid input
	Direction	Serial	I
PIO12[2]/ PIO15[2]	Configuration	transport stream input 1	For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO12[2], SYSTEM_CONFIG4[9] = 0 when PIO15[2], SYSTEM_CONFIG4[9] = 1
	Name	i.	TSIN1ERROR
	Description		Transport stream1 data error input
	Direction		1
PIO12[3]/ PIO15[3]	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO12[3], SYSTEM_CONFIG4[9] = 0 when PIO15[3], SYSTEM_CONFIG4[9] = 1
	Name	i.	TSIN1PACKETCLK
	Description		Transport stream1 packet clock input
	Direction		1
PIO12[4]/ PIO15[0]	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO12[4], SYSTEM_CONFIG4[9] = 0 when PIO15[0], SYSTEM_CONFIG4[9] = 1

Table 33. STi7105 Serial Transport Stream inputs mapping (continued)

Pin	Parameter	Interface	Details
	Name		TSIN2SER/DATA[7]
	Description		Transport stream2 serial data input
	Direction		I
PIO14[1]/ PIO6[0]	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO6[0], SYSTEM_CONFIG4[10] = 0 when PIO14[1], SYSTEM_CONFIG4[10] = 1
	Name	Ī	TSIN2BYTECLK
	Description		Transport stream2 data clock input
	Direction		I
PIO14[2]/ PIO6[1]	Configuration	,	For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO6[1], SYSTEM_CONFIG4[10] = 0 when PIO14[2], SYSTEM_CONFIG4[10] = 1
	Name		TSIN2BYTECLKVALID
	Description	1	Transport stream2 data valid input
DIO1/I[3]/	Direction	Serial	I
PIO14[3]/ PIO6[2]	Configuration	transport stream input 2	For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO6[2], SYSTEM_CONFIG4[10] = 0 when PIO14[3], SYSTEM_CONFIG4[10] = 1
	Name	†	TSIN2ERROR
	Description	-	Transport stream2 data error input
	Direction	-	I
PIO14[4]/ PIO6[3]	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO6[3], SYSTEM_CONFIG4[10] = 0 when PIO14[4], SYSTEM_CONFIG4[10] = 1
	Name	†	TSIN2PACKETCLK
	Description	1	Transport stream2 packet clock input
	Direction	1	I
PIO14[5]/ PIO6[4]	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO6[4], SYSTEM_CONFIG4[10] = 0 when PIO14[5], SYSTEM_CONFIG4[10] = 1

Table 33. STi7105 Serial Transport Stream inputs mapping (continued)

Table 33.	511/105 Seriai Transport Stream inputs mapping (continued)		
Pin	Parameter	Interface	Details
	Name		TSIN3SER/DATA[7]
DIO10[E]	Description		Transport stream3 serial data input
PIO12[5]	Direction		I
	Configuration		No configuration is required
	Name	Ī	TSIN3BYTECLK
DIO10[6]	Description		Transport stream3 data clock input/output
PIO12[6]	Direction		I
	Configuration		No configuration is required
	Name	0	TSIN3BYTECLKVALID
DIO10[7]	Description	Serial transport	Transport STREAM3 data valid input
PIO12[7]	Direction	stream	I
	Configuration	Input 3	No configuration is required
	Name		TSIN3ERROR
PIO13[0]	Description		Transport stream3 data error input
FIOTS[0]	Direction		I
	Configuration		No configuration is required
	Name		TSIN3PACKETCLK
PIO13[1]	Description		Transport stream3 packet clock input
	Direction		I
	Configuration		No configuration is required

Table 34. STi7105 Parallel Transport Stream inputs/output mapping

Pin	Parameter	Interface	Details
	Name		TSIN0DATA[7]
DIO40[4]	Description		Transport stream0 parallel data input
PIO13[4]	Direction		I
	Configuration		No configuration is required
	Name		TSIN0BYTECLK
	Description		Transport stream0 data clock input/output
DIO40[E]	Direction		В
PIO13[5]	Configuration	Parallel transport	For OUTPUT selection: Config register: SYSTEM_CONFIG49[23:0] Config bus: PIO13_ALTFOP[2:0]_MUX_SEL_BUS[5]=0x000
	Name		TSIN0BYTECLKVALID
PIO13[6]	Description	stream input 0	Transport stream0 data valid input
F1013[0]	Direction	iiiput o	1
	Configuration		No configuration is required
	Name		TSIN0ERROR
PIO13[7]	Description		Transport stream0 data error input
1 10 15[7]	Direction		I
	Configuration		No configuration is required
	Name		TSIN0PACKETCLK
PIO14[0]	Description		Transport stream0 packet clock input
1.1017[0]	Direction		I
	Configuration		No configuration is required

Table 34. STi7105 Parallel Transport Stream inputs/output mapping (continued)

Pin	Parameter	Interface	Details
PIO14[1]	Name	-	TSIN0DATA[6]
	Description		Transport stream0 parallel data input
	Direction		I
	Configuration		No configuration is required
	Name		TSIN0DATA[5]
DIO14[0]	Description		Transport stream0 parallel data input
PIO14[2]	Direction		I
	Configuration		No configuration is required
	Name		TSIN0DATA[4]
DIO14[0]	Description		Transport stream0 parallel data input
PIO14[3]	Direction		I
	Configuration		No configuration is required
	Name	Davallal	TSIN0DATA[3]
PIO14[4]	Description	Parallel transport stream input 0	Transport stream0 parallel data input
FIO 14[4]	Direction		I
	Configuration		No configuration is required
	Name		TSIN0DATA[2]
PIO14[5]	Description		Transport stream0 parallel data input
FIO 14[5]	Direction		I
	Configuration		No configuration is required
	Name		TSIN0DATA[1]
PIO14[6]	Description		Transport stream0 parallel data input
FIO 14[6]	Direction		I
	Configuration		No configuration is required
PIO14[7]	Name		TSIN0DATA[0]
	Description		Transport stream0 parallel data input
	Direction		I
	Configuration		No configuration is required

Table 34. STi7105 Parallel Transport Stream inputs/output mapping (continued)

Table 34.	STi7105 Parallel Transport Stream inputs/output mapping (continued)		
Pin	Parameter	Interface	Details
PIO12[0]	Name		TSIN1DATA[7]/TSOUTDATA[7]
	Description		Transport STREAM1 parallel data input/output
	Direction		В
	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG48[23:0] Config bus: PIO12_ALTFOP[2:0]_MUX_SEL_BUS[0]=0x000 PIO12_ALTFOP[2:0]_MUX_SEL_BUS[0]=0x001
	Name		TSIN1BYTECLK/TSOUTBYTECLK
	Description		Transport stream1 data clock input/output
	Direction	Parallel transport stream input 1/ output 0	В
PIO12[1]	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG48[23:0] Config bus: PIO12_ALTFOP[2:0]_MUX_SEL_BUS[1]=0x000 PIO12_ALTFOP[2:0]_MUX_SEL_BUS[1]=0x001
	Name		TSIN1BYTECLKVALID/TSOUTBYTECLKVALID
	Description		Transport stream1 data valid input/output
	Direction		В
PIO12[2]	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG48[23:0] Config bus: PIO12_ALTFOP[2:0]_MUX_SEL_BUS[2]=0x000 PIO12_ALTFOP[2:0]_MUX_SEL_BUS[2]=0x001
	Name		TSIN1ERROR/TSOUTERROR
	Description		Transport stream1 data error input/output
	Direction		В
PIO12[3]	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG48[23:0] Config bus: PIO12_ALTFOP[2:0]_MUX_SEL_BUS[3]=0x000 PIO12_ALTFOP[2:0]_MUX_SEL_BUS[3]=0x001
PIO12[4]	Name		TSIN1PACKETCLK
	Description		Transport stream1 packet clock input/output
	Direction		
	Configuration		No configuration is required

Table 34. STi7105 Parallel Transport Stream inputs/output mapping (continued)

Table 34.	STi7105 Parallel Transport Stream inputs/output mapping (continued)		
Pin	Parameter	Interface	Details
PIO12[5]	Name		TSIN1DATA[6]/TSOUTDATA[6]
	Description		Transport stream1 parallel data input/output
	Direction		В
	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG48[23:0] Config bus: PIO12_ALTFOP[2:0]_MUX_SEL_BUS[5]=0x000 PIO12_ALTFOP[2:0]_MUX_SEL_BUS[5]=0x001
	Name		TSIN1DATA[5]/TSOUTDATA[5]
	Description		Transport stream1 serial data input/output
	Direction	-	В
PIO12[6]	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG48[23:0] Config bus: PIO12_ALTFOP[2:0]_MUX_SEL_BUS[6]=0x000 PIO12_ALTFOP[2:0]_MUX_SEL_BUS[6]=0x001
	Name		TSIN1DATA[4]/TSOUTDATA[4]
	Description		Transport stream1 parallel data input/output
	Direction	Parallel transport stream input 1/ output 0	В
PIO12[7]	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG48[23:0] Config bus: PIO12_ALTFOP[2:0]_MUX_SEL_BUS[7]=0x000 PIO12_ALTFOP[2:0]_MUX_SEL_BUS[7]=0x001
	Name		TSIN1DATA[3]/TSOUTDATA[3]
	Description		Transport STREAM1 parallel data input
	Direction		В
PIO13[0]	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG49[23:0] Config bus: PIO13_ALTFOP[2:0]_MUX_SEL_BUS[0]=0x000 PIO13_ALTFOP[2:0]_MUX_SEL_BUS[0]=0x001
PIO13[1]	Name		TSIN1DATA[2]/TSOUTDATA[2]
	Description		Transport stream1 parallel data input
	Direction		В
	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG49[23:0] Config bus: PIO13_ALTFOP[2:0]_MUX_SEL_BUS[1]=0x000 PIO13_ALTFOP[2:0]_MUX_SEL_BUS[1]=0x001

Table 34. STi7105 Parallel Transport Stream inputs/output mapping (continued)

Pin	Parameter	Interface	Details
PIO13[2]	Name		TSIN1DATA[1]/TSOUTDATA[1]
	Description		Transport stream1 parallel data input
	Direction		В
	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG49[23:0] Config bus: PIO13_ALTFOP[2:0]_MUX_SEL_BUS[2]=0x000 PIO13_ALTFOP[2:0]_MUX_SEL_BUS[2]=0x001
PIO13[3]	Name		TSIN1DATA[0]/TSOUTDATA[0]
	Description		Transport stream1 parallel data input
	Direction		В
	Configuration		For OUTPUT selection: Config register: SYSTEM_CONFIG49[23:0] Config bus: PIO13_ALTFOP[2:0]_MUX_SEL_BUS[3]=0x000 PIO13_ALTFOP[2:0]_MUX_SEL_BUS[3]=0x001

Table 34. STi7105 Parallel Transport Stream inputs/output mapping (continued)

Pin	Parameter	Interface	Details
PIO14[1]/ PIO6[0]	Name		TSIN2SER/DATA[7]
	Description		Transport stream2 parallel data input
	Direction		I
	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO6[0], SYSTEM_CONFIG4[10] = 0 when PIO14[1], SYSTEM_CONFIG4[10] = 1
	Name		TSIN2BYTECLK
	Description		Transport stream2 data clock input
	Direction		I
PIO14[2]/ PIO6[1]	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO6[1], SYSTEM_CONFIG4[10] = 0 when PIO14[2], SYSTEM_CONFIG4[10] = 1
	Name		TSIN2BYTECLKVALID
	Description	Parallel transport stream input 2	Transport stream2 data valid input
PIO14[3]/	Direction		I
PIO6[2]	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO6[2], SYSTEM_CONFIG4[10] = 0 when PIO14[3], SYSTEM_CONFIG4[10] = 1
	Name		TSIN2ERROR
	Description		Transport stream2 data error input
	Direction		I
PIO14[4]/ PIO6[3]	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO6[3], SYSTEM_CONFIG4[10] = 0 when PIO14[4], SYSTEM_CONFIG4[10] = 1
	Name		TSIN2PACKETCLK
PIO14[5]/ PIO6[4]	Description		Transport stream2 packet clock input
	Direction		I
	Configuration		For INPUT selection: Config register: SYSTEM_CONFIG4[31:0] Config bus: when PIO6[4], SYSTEM_CONFIG4[10] = 0 when PIO14[5], SYSTEM_CONFIG4[10] = 1

108/313 8065505 Rev D

Table 34. STi7105 Parallel Transport Stream inputs/output mapping (continued)

Table 34. STi7105 Parallel Transport Stream inputs/output mapping (continue							
Pin	Parameter	Interface	Details				
	Name		TSIN2DATA[6]				
DIOCE	Description		Transport stream2 parallel data input				
PIO6[5]	Direction		I				
Configuration			No configuration is required				
	Name		TSIN2DATA[5]				
PIO6[6]	Description		Transport stream2 parallel data input				
المالمالم	Direction		I				
	Configuration		No configuration is required				
	Name	Ī	TSIN2DATA[4]				
PIO6[7]	Description		Transport stream2 parallel data input				
P106[7]	Direction		I				
	Configuration	1	No configuration is required				
	Name		TSIN2DATA[3]				
DIO7[0]	Description	Parallel transport	Transport stream2 parallel data input				
۲۱۵/[۵]	PIO7[0] Direction		I				
	Configuration		No configuration is required				
	Name	Ī	TSIN2DATA[2]				
DIO7[4]	Description		Transport stream2 parallel data input				
PIO7[1]	Direction		I				
	Configuration		No configuration is required				
	Name		TSIN2DATA[1]				
DIO7[0]	Description		Transport stream2 parallel data input				
PIO7[2] Direction		1	I				
Configuration			No configuration is required				
	Name		TSIN2DATA[0]				
PIO7[3]	Description		Transport stream2 parallel data input				
FIO/[3]	Direction		I				
	Configuration		No configuration is required				

7.2 Ethernet interface multiplexing in standard mode

The Ethernet interface can be configured in the following ways:

- MII mode
- RMII mode

The mapping is shown in Table 35.

Confidential

Table 35. STi7105 Ethernet muxing details (in standard mode)

Pin	Parameter	Configuration0	Configuration1
		Ethernet MII mode	Ethernet RMII mode
	Configuration	CONTROL_CONFIG7[16] =1 CONTROL_CONFIG7[18] =1 CONTROL_CONFIG7[26:25] =00	CONTROL_CONFIG7[16] =1 CONTROL_CONFIG7[18] =0 CONTROL_CONFIG7[26:25] =01
ETHMII_TXCLK	Name	ETHMII_TXCLK	
	Description	Transmit clock	
	Direction	I	
ETHMII_TXEN	Name	ETHMII_TXEN	ETHRMII_TXEN
	Description	Transmit enable flag	Transmit enable flag
	Direction	0	0
ETHMII_TXD[3]	Name	ETHMII_TXD[3]	
	Description	Transmit data BIT3	
	Direction	О	
ETHMII_TXD[2]	Name	ETHMII_TXD[2]	
	Description	Transmit data BIT2	
	Direction	О	
ETHMII_TXD[1]	Name	ETHMII_TXD[1]	ETHRMII_TXD[1]
	Description	Transmit data BIT1	Transmit data BIT1
	Direction	О	0
ETHMII_TXD[0]	Name	ETHMII_TXD[0]	ETHRMII_TXD[0]
	Description	Transmit data BIT0	Transmit data BIT0
	Direction	0	0
ETHMII_RXCLK	Name	ETHMII_RXCLK	
	Description	Receive clock	
	Direction	1	
ETHMII_RXDV	Name	ETHMII_RXDV	ETHRMII_CRS_DV
	Description	Receive data valid flag	Receive data valid flag
	Direction	1	I
ETHMII_RXER	Name	ETHMII_RXER	ETHRMII_RXER
	Description	Receive data error flag	Receive data error flag
	Direction	I	I
ETHMII_RXD[3]	Name	ETHMII_RXD[3]	
	Description	Receive data BIT3	
	Direction	I	
ETHMII_RXD[2]	Name	ETHMII_RXD[2]	

Table 35. STi7105 Ethernet muxing details (in standard mode) (continued)

Parameter	Configuration0	Configuration1
Description	Receive data BIT2	
Direction	1	
Name	ETHMII_RXD[1]	ETHRMII_RXD[1]
Description	Receive data BIT1	Receive data BIT1
Direction	I	1
Name	ETHMII_RXD[0]	ETHRMII_RXD[0]
Description	Receive data BIT0	Receive data BIT0
Direction	1	1
Name	ETHMII_CRS	
Description	Carrier sense flag	
Direction	1	
Name	ETHMII_COL	
Description	Carrier collision detect flag	
Direction	1	
Name	ETHMII_MDC	ETHRMII_MDC
Description	Management data clock	Management data clock
Direction	0	0
Name	ETHMII_MDIO	ETHRMII_MDIO
Description	Management data	Management data
Direction	В	В
Name	ETHMII_MDINT	ETHRMII_MDINT
Description	Management data interrupt	Management data interrupt
Direction	1	I
Name	ETHMII_PHYCLK	ETHRMII_PHYCLK
Description	PHY clock	PHY clock
Direction	0	0
	Description Direction Name	Description Receive data BIT2 Direction I Name ETHMII_RXD[1] Description Receive data BIT1 Direction I Name ETHMII_RXD[0] Description Receive data BIT0 Direction I Name ETHMII_CRS Description Carrier sense flag Direction I Name ETHMII_COL Description Carrier collision detect flag Direction I Name ETHMII_MDC Description Management data clock Direction O Name ETHMII_MDIO Description Management data Direction B Name ETHMII_MDIO Description Management data Direction B Name ETHMII_MDINT Description Management data interrupt Direction I Name ETHMII_PHYCLK Description PHY clock

7.3 DVB common interface (DVB-CI) transport mode

In the DVB common interface mode, the transport stream is demodulated by the front-end subsystem, sent to the external DVB-CI decryption module through the transport interface (in parallel mode) and sent back again (in parallel mode) to the STi7105.

Figure 18. Chip operating modes multiplexing: DVB-CI mode

Details of transport interface mapping on PIOs are provided in *Section 7.1: Transport interfaces multiplexing* and *Table 34*.

Refer to Section 7.4.6: DVB-CI modes for DVB-CI mapping on EMI pads.

7.4 External memory interface (EMI) operating modes

The EMI can support the following device types, each one associated with different pin mappings:

- 1. Peripheral/SRAM on page 113
- 2. Asynchronous NOR-FLASH on page 113
- 3. Synchronous NOR-FLASH on page 114
- 4. NAND-FLASH on page 114
- 5. Serial FLASH on page 115
- 6. DVB-CI on page 115
- 7. ATAPI-PIO on page 116
- 8. PCI on *page 116*
- 9. Multi-Chip; independent from all other modes (except PCI) on page 117

8065505 Rev D

7.4.1 Peripheral/SRAM mode

Table 36. EMI peripheral/SRAM mode: pin mapping

EMI assignment	Peripheral/SRAM mode assignment	I/O	Voltage	Description
NOTEMICSE,D,C,B,A	NOTEMICSE,D,C,B,A	0	3.3	Peripheral chip select E,D,C,B,A
NOTEMIBE[1:0]	NOTEMIBE[1:0]	0	3.3	External device databus byte enable
NOTEMIOE	NOTEMIOE	0	3.3	External device output enable
EMITREADYORWAIT	EMITREADYORWAIT	I	3.3	External memory device target ready indicator
EMIRDNOTWR	EMIRDNOTWR	0	3.3	External read/write access indicator. Common to all devices.
EMIDATA[15:0]	EMIDATA[0]	I/O	3.3	External common databus
EMIADDR[25:1]	EMIADDR[25:1]	0	3.3	External common address bus

Note: EMINOTLBA, EMINOTBAA, EMINANDREADYNOTBUSY, and EMIFLASHCLK are not used.

7.4.2 Asynchronous NOR-Flash mode

Table 37. EMI asynchronous NOR-Flash mode: pin mapping

EMI assignment	Asynchronous NOR-Flash mode assignment	I/O	Voltage	Description
NOTEMICSE,D,C,B,A	NOTEMICSE,D,C,B,A	0	3.3	Chip select E,D,C,B,A
NOTEMIOE	NOTEMIOE	0	3.3	External device output enable
EMITREADYORWAIT	EMITREADYORWAIT	I	3.3	External memory device target ready indicator
EMIRDNOTWR	EMIRDNOTWR	0	3.3	External read/write access indicator. Common to all devices.
EMIDATA[15:0]	EMIDATA[15:0]	I/O	3.3	External common databus
EMIADDR[25:1]	EMIADDR[24:0]	0	3.3	External common address bus

Note: EMINOTLBA, EMINOTBAA, EMINANDREADYNOTBUSY, and EMIFLASHCLK are not used.

7.4.3 Synchronous NOR-Flash mode

Table 38. EMI synchronous NOR-Flash mode: pin mapping

EMI assignment	Synchronous NOR-Flash mode assignment	I/O	Voltage	Description
NOTEMICSE,D,C,B,A	NOTEMICSE,D,C,B,A	0	3.3	Chip select E,D,C,B,A
NOTEMIOE	NOTEMIOE	0	3.3	External device output enable
NOTEMILBA	NOTEMILBA	0	3.3	Flash device load burst address
NOTEMIBAA	NOTEMIBAA	0	3.3	Flash burst address advanced
EMITREADYORWAIT	EMITREADYORWAIT	I	3.3	External memory device target ready indicator
EMIRDNOTWR	EMIRDNOTWR	0	3.3	External read/write access indicator. common to all devices.
EMIDATA[15:0]	EMIDATA[15:0]	I/O	3.3	External common databus
EMIADDR[25:1]	EMIADDR[24:0]	0	3.3	External common address bus
EMIFLASHCLK	EMIFLASHCLK	I/O	3.3	Flash clock

7.4.4 NAND-Flash mode

Features

- Embeds a 1-bit error correcting code (ECC) hardware controller.
- Can support single level cell (SLC) NAND Flash devices from main Flash providers.
- Support of 16 Mbyte device per CS.
- Multiple Flash devices can be addressed, each EMI_CS being statically configured by software, such as EMI Flash CS. An external NOR is issued on READY_NOT_BUSY signals in that case.

Table 39. EMI NAND-Flash mode: pin mapping

EMI assignment	NAND-Flash mode assignment	I/O	Voltage	Description
NOTEMICSA	NAND_CS0	0	3.3	
NOTEMICSB	NAND_CS1	0	3.3	
NOTEMICSC	NAND_CS2	0	3.3	Chip select E,D,C,B,A
NOTEMICSD	NAND_CS3	0	3.3	
NOTEMICSE	NAND_CS4	0	3.3	
NOTEMIOE	NAND_REN	0	3.3	External device output enable
EMIRDNOTWR	NAND_WEN	0	3.3	External read/write access indicator

Note:

Confidential

Table 39. EMI NAND-Flash mode: pin mapping (continued)

EMI assignment	NAND-Flash mode assignment	I/O	Voltage	Description		
EMIDATA[15:0]	NAND_AD[15:0]	I/O	3.3	External common address/databus		
EMIADDR[18]	NAND_ALE	0	3.3			
EMIADDR[17]	NAND_CLE	0	3.3			

EMIADDR[16:1], and EMIFLASHCLK are not used.

NOTEMIBE[1:0], NOTEMILBA, NOTEMIBAA, EMITREADYORWAIT, EMIADDR[25:19],

7.4.5 Serial-Flash mode

Table 40. EMI Serial-Flash pins as PIO alternates

Assignment	I/O	Voltage	Description	Comments
SPIBOOT_CLOCK	0	3.3		PIO15[0]
SPIBOOT_DATA_OUT	0	3.3		PIO15[1]
SPIBOOT_DATA_IN	I	3.3		PIO15[3]
SPIBOOT_CS	0	3.3		PIO15[2]

7.4.6 DVB-CI modes

The DVB-CI modes are only available on banks 2 and 3.

Table 41. EMI DVB-CI mode: pin mapping

EMI assignment	Peripheral/SRAM mode assignment	I/O	Voltage	Description
NOTEMICSD,C	DVBCI_NOTCEx	0	3.3	Peripheral chip select D,C
NOTEMIBE[0]	DVBCI_NOTIOWR	0	3.3	Write command
NOTEMIOE	DVBCI_NOTOE	0	3.3	Output enable
EMIRDNOTWR	DVBCI_NOTWE	0	3.3	Write enable DVBCI
NOTEMIBAA	DVBCI_NOTIORD	0	3.3	Read command
EMITREADYORWAIT	DVBCI_NOTWAIT	I	3.3	Wait signal
EMIDATA[7:0]	DVBCI_DATA[7:0]	I/O	3.3	External common databus
EMIADDR[15:1]	DVBCI_A[15:1]	0	3.3	Address bus

Note: EMI_NOTCSE/B/A, EMI_NOTBE[1], EMI_NOTLBA, EMI_NANDREADYNOTBUSY, EMI_DATA[15:8], EMI_ADDR[25:16], EMI_FLASHCLK are not used

4

7.4.7 ATAPI-PIO modes

The ATAPI-PIO modes are only available on banks 2 and 3.

Table 42. EMI ATAPI-PIO mode: pin mapping

EMI assignment	Peripheral/SRAM mode assignment	I/O	Voltage	Description
NOTEMICSD,C	ATAPI_NOTCEx	0	3.3	Peripheral chip select D,C
NOTEMIBE[0]	ATAPI_NOTDIOWR	0	3.3	Write command
NOTEMIBAA	ATAPI_NOTDIORD	0	3.3	Read command
EMITREADYORWAIT	ATAPI_IORDY	I	3.3	Wait signal
EMIDATA[15:0]	ATAPI_DATA[15:0]	I/O	3.3	External common databus
EMIADDR[20:19]	ATAPI_CS[1:0]	0	3.3	Chip select
EMIADDR[2:1]	ATAPI_A[2:1]	0	3.3	Address bus

Note: NOTEMICSE/B/A, NOTEMIBE[1], NOTEMICE, NOTEMILBA, EMIADDR[25:21],

EMIADDR[18:3], EMIFLASHCLK are not used.

7.4.8 **PCI** mode

Table 43. EMI PCI mode: pin mapping

EMI assignment	Peripheral/SRAM mode assignment	I/O	Voltage	Description
NOTEMICSE	PCI_NOTFRAME	I/O	3.3	PCI frame
NOTEMIBE[1:0]	PCI_CBE[1:0]	I/O	3.3	PCI command/byte enable
EMIRDNOTWR	PCI_NOTPERR	I/O	3.3	PCI parity error flag
EMIDATA[15:0]	PCI_AD[15:0]	I/O	3.3	Common PCI address/data bus
EMIADDR[24:23]	PCI_CBE[3:2]	I/O	3.3	PCI command/byte enable
EMIADDR[22]	PCI_NOTDEVSEL	I/O	3.3	PCI device select
EMIADDR[20]	PCI_NOTSTOP	I/O	3.3	PCI target stop request
EMIADDR[19]	PCI_NOTIRDY	I/O	3.3	PCI initiator ready flag
EMIADDR[18]	PCI_NOTTRDY	I/O	3.3	PCI target ready flag
EMIADDR[17]	PCI_PAR	I/O	3.3	PCI parity flag
EMIADDR[16:1]	PCI_AD[31:16]	I/O	3.3	Common PCI address/data bus
EMIFLASHCLK	PCI_CLK	I/O	3.3	PCI clock
EMIBUSREQ	PCI_REQ[0]	I/O	3.3	PCI bus access request
EMIBUSGNT	PCI_GNT[0]	I/O	3.3	PCI bus access grant

Note: NOTEMICSD/C/B/A, NOTEMIOE, EMIADDR[25], EMIADDR[21], NOTEMILBA, and EMITREADYORWAIT are not used.

Caution: Memory read transfers from non-prefetchable memory are always signalled as 32 bits

transfers (all byte enables active) by the STi7105. This should be taken into account when

considering PCI devices to be used with STi7105.

577

Table 44. EMI PCI pins as PIO alternates

Assignment	I/O	Voltage	Description	Comments
PCI_BUS_REQ[1]	I	3.3	PCI bus access request	PIO6[5]
PCI_BUS_REQ[2]	I	3.3	PCI bus access request	PIO6[6]
PCI_BUS_GNT[1]	0	3.3	PCI bus access grant	PIO7[1]
PCI_BUS_GNT[2]	0	3.3	PCI bus access grant	PIO7[2]
PCI_LOCK_IN	I	3.3	PCI lock function	PIO7[0], PIO15[5]
PCI_PME_IN	I	3.3	PCI PME function	PIO15[6]
PCI_INT_FROM_DEVICE[0]	1	3.3	PCI interrupt input (when host)	PIO6[0]/PIO15[3]
PCI_INT_FROM_DEVICE[1]	ı	3.3	PCI interrupt input (when host)	PIO6[1]
PCI_INT_FROM_DEVICE[2]	ı	3.3	PCI interrupt input (when host)	PIO6[2]
PCI_INT_TO_HOST	0	3.3	PCI interrupt output (when device)	PIO15[3], PIO6[0]
PCI_RESETN_FROM_HOST_TO_DEVI CE	ļ	3.3	PCI reset input (when host)	PIO15[7]
PCI_SYSTEM_ERROR	0	3.3	PCI error flag	PIO15[4]

7.4.9 Multi-chip mode

With the exception of PCI, this mode is independent from all other modes and uses dedicated balls.

Table 45. EMI multi-chip mode: pin mapping

EMI assignment	Peripheral/SRAM mode assignment	I/O	Voltage	Description
EMIBUSREQ	EMIBUSREQ	I/O	3.3	Bus access request
EMIBUSGNT	EMIBUSGNT	I/O	3.3	Bus access grant

EMI multi-chip mode: pins as PIO alternates

Assignment	I/O	Voltage	Description	Comments
EMI_SS_BUS_FREE_ACCESSPEND/ EMI_SS_BUS_FREE_OUT	I	3.3	Access pending flag	PIO15[2]

Memory map STi7105

8 Memory map

The STi7105 memory space is populated with non-volatile memories, with external peripherals (EMI) at base address 0 (ST40 boots at address 0), and with DDR2-SDRAM devices (LMI) at base address 0x0C00 0000 (128 Mbytes) in 29-bit mode or at base address 0x4000 0000 (1024 Mbytes) in 32-bit mode.

The STi7105 on-chip peripherals are mapped in area 6 of the ST40 in 29-bit mode. The *Figure 19* shows the STi7105 memory and peripheral mapping.

STi7105 Memory map

Figure 19. STi7105 memory and peripheral mapping

Note:

Confidential

In SE mode, the ST40 Core Peripherals (P4) appear twice in the STBUS address map. The LMI base address is programmable.

4

Memory map STi7105

8.1 Global Mapping

The internal peripherals addresses are located in ST40-300 P4 region. Grouping is done so that peripherals which belong to the same physical block have contiguous addresses, requiring only one address decoder in each physical block.

The *Table 46* gives the base address of the external interfaces and internal peripherals.

Table 46. Internal peripheral base addresses

Table 46. Internal	periprierai base			
Target Name	Start Offset	End Offset	Size	Description
EMI	0x0000 0000	0x07FF FFFF	128M	EMI
PCI_MASTER_29B	0x0800 0000	0x0BFF FFFF	64M	PCI Master, 29-bit mode
LMI0_HP_29B	0x0C00 0000	0x1BFF FFFF	256M	LMI #0 - HP, 29-bit mode
LMI0_LP_29B	0x0C00 0000	0x1BFF FFFF	256M	LMI #0 - LP, 29-bit mode
RESERVED	0x1C00 0000	0x3FFF FFFF	576M	Reserved
LMI0_HP_32B	0x4000 0000	0x7FFF FFFF	1024M	LMI #0 - HP, 32-bit mode
LMI0_LP_32B	0x4000 0000	0x7FFF FFFF	1024M	LMI #0 - LP, 32-bit mode
RESERVED	0x8000 0000	0xBFFF FFFF	1024M	Reserved
PCI_MASTER_32B	0xC000 0000	0xFBFF FFFF	960M	PCI Master, 32-bit mode
SH4 CORE DEBUG	0xFC00 0000	0xFCFF FFFF	16M	ST40 Core Debug
COMMs	0xFD00 0000	0xFD0F FFFF	1M	Comms config registers (details in <i>Table 47</i>)
SPARE0_PLUG	0xFD10 0000	0xFD10 0FFF	4K	Spare 0 plug
RESERVED	0xFD10 1000	0xFD10 17FF	2K	Reserved
PCMP1	0xFD10 1800	0xFD10 1FFF	4K	PCM player 1 port & config registers
PCMR0	0xFD10 2000	0xFD10 2FFF	4K	PCM reader port & config registers
СРХМ	0xFD10 3000	0xFD10 3FFF	4K	CPXM registers
TVOUT_FDMA	0xFD10 4000	0xFD10 5FFF	8K	TVOUT FDMA (HDMI, PCM_p1,SPDIF_p, TTxT) (details in <i>Table 48</i>)
RESERVED	0xFD10 6000	0xFD10 FFFF	44K	Reserved
GMAC0	0xFD11 0000	0xFD11 7FFF	32K	Ethernet 0 config registers
RESERVED	0xFD11 8000	0xFD11 FFFF	32K	Reserved
SPARE1_PLUG	0xFD12 0000	0xFD12 7FFF	32K	Spare 1 plug
RESERVED	0xFD12 8000	0xFDFF FFFF	15200K	Reserved
CLKGENB	0xFE00 0000	0xFE00 0FFF	4K	Clock Generator B config registers
SYSC_A	0xFE00 1000	0xFE00 1FFF	4K	System config registers (GP Registers)
HD_DISPLAY	0xFE00 2000	0xFE00 2FFF	4K	HD display config registers

Table 46. Internal peripheral base addresses (continued)

iable 46. Internal p	eripilerai base	addresses (co	iiiiiueu)	
Target Name	Start Offset	End Offset	Size	Description
SD_DISPLAY	0xFE00 3000	0xFE00 3FFF	4K	SD display config registers
RESERVED	0xFE00 4000	0xFE00 BFFF	32K	Reserved
RESERVED	0xFE00 C000	0xFE00 FFFF	16K	Reserved
T1_PIO	0xFE01 0000	0xFE01 FFFF	64K	T1 PIO - 10 Banks PIOs config registers
KEY_SCAN	0xFE02 0000	0xFE02 07FF	2K	Key scanning
RESERVED	0xFE02 0800	0xFE02 FFFF	62K	Reserved
TVOUT_CPU	0xFE03 0000	0xFE03 7FFF	32K	TVOUT Config Regs (Denc, VTGs, TVO_glue, FlexDVO, HD formatter, CEC) (details in <i>Table 49</i>)
RESERVED	0xFE03 8000	0xFE0F FFFF	800K	Reserved
USB2_1	0xFE10 0000	0xFE1F FFFF	1M	USB 2.0 #1 config registers
RESERVED	0xFE20 0000	0xFE20 7FFF	32K	Reserved
RESERVED	0xFE20 8000	0xFE20 8FFF	4K	Reserved
SATA	0xFE20 9000	0xFE20 9FFF	4K	SATA config registers
СОМРО	0xFE20 A000	0xFE20 AFFF	4K	Compositor config registers
BLITTER	0xFE20 B000	0xFE20 BFFF	4K	Blitter display config registers
RESERVED	0xFE20 C000	0xFE20 D3FF	5K	Reserved
RESERVED	0xFE20 D400	0xFE20 FFFF	11K	Reserved
AUDIO_CONF	0xFE21 0000	0xFE21 0FFF	4K	Audio config registers
MBX0	0xFE21 1000	0xFE21 17FF	2K	Mailbox #0 (LX Delta_Mu) config registers
RESERVED	0xFE21 1800	0xFE21 1FFF	2K	Reserved
MBX1	0xFE21 2000	0xFE21 27FF	2K	Mailbox #1 (LX Delta_Mu) config registers
RESERVED	0xFE21 2800	0xFE21 2FFF	2K	Reserved
CLKGENA	0xFE21 3000	0xFE21 3FFF	4K	Clock Generator A config registers
RESERVED	0xFE21 4000	0xFE21 FFFF	48K	Reserved
FDMA_0	0xFE22 0000	0xFE22 FFFF	64K	FDMA_0 memory and config registers
PTI_0	0xFE23 0000	0xFE23 FFFF	64K	PTI_0 config registers
RESERVED	0xFE24 0000	0xFE24 0FFF	4K	Reserved
DVP	0xFE24 1000	0xFE24 1FFF	4K	DVP config registers
TSMERGER	0xFE24 2000	0xFE24 2FFF	4K	TSMerger config registers
RESERVED	0xFE24 3000	0xFE24 FFFF	52K	Reserved
RESERVED	0xFE25 0000	0xFE25 0FFF	4K	Reserved

Confidential

Memory map STi7105

Table 46. Internal peripheral base addresses (continued)

Table 46. Internal p	Table 46. Internal peripheral base addresses (continued)						
Target Name	Start Offset	End Offset	Size	Description			
RESERVED	0xFE25 1000	0xFE25 FFFF	60K	Reserved			
PTI_1	0xFE26 0000	0xFE26 FFFF	64K	PTI_1 config registers			
RESERVED	0xFE27 0000	0xFE3F FFFF	1600K	Reserved			
EMISS	0xFE40 0000	0xFE40 7FFF	32K	EMISS config registers (EMISS) (details in <i>Table 50</i>)			
RESERVED	0xFE40 8000	0xFE40 FFFF	32K	Reserved			
FDMA_1	0xFE41 0000	0xFE41 FFFF	64K	FDMA_1 config registers			
FDMA_MUX	0xFE42 0000	0xFE42 0FFF	4K	FDMA Mux config registers			
RESERVED	0xFE42 1000	0xFE53 FFFF	1148K	Reserved			
DMU	0xFE54 0000	0xFE55 FFFF	128K	Delta Mu configuration registers			
PCI_MASTER_REGS	0xFE56 0000	0xFE56 0FFF	4K	AHB-PCI config registers (on T3 I)			
RESERVED	0xFE56 1000	0xFE5F FFFF	636K	Reserved			
LX_DMU	0xFE60 0000	0xFE6F FFFF	1M	ST231 Delta Mu peripherals			
EMIREG	0xFE70 0000	0xFE7F FFFF	1M	EMI configuration registers (details in <i>Table 50</i>)			
LX_AUD	0xFE80 0000	0xFE8F FFFF	1M	ST231 audio peripherals			
TSMERGER_T2	0xFE90 0000	0xFE90 0FFF	4K	TSMerger-Type2 space			
LMI0_REG	0xFE90 1000	0xFE90 1FFF	4K	GPLMI0 control registers			
RESERVED	0xFE90 2000	0xFE9F FFFF	1016K	Reserved			
USB2_2	0xFEA0 0000	0xFEAF FFFF	1M	USB 2.0 #2 config registers			
RESERVED	0xFEB0 0000	0xFEFF FFFF	4M	Reserved			
SH4 CORE PERIPH	0xFF00 0000	0xFFFF FFFF	16M	ST40 core peripherals			

Table 47. STi7105 Comms sub-blocks memory map (base address: 0xFD00 0000)

Region Name	Start Offset	End Offset	Size (Bytes)	Description
ILC3	0x00000	0x0FFF	1K	ILC
RESERVED	0x01000	0x07FFF	7K	Reserved
LPC	0x08000	0x08FFF	1K	LPC
RESERVED	0x09000	0x0FFFF	7K	Reserved
PWM0	0x10000	0x10FFF	1K	PWM0
RESERVED	0x11000	0x17FFF	7K	Reserved
IRB	0x18000	0x18FFF	1K	IRB group
RESERVED	0x19000	0x1FFFF	7K	Reserved

Table 47. STi7105 Comms sub-blocks memory map (base address: 0xFD00 0000) (continued)

Region Name	Start Offset	End Offset	Size (Bytes)	Description
PIO0	0x20000	0x20FFF	1K	
PIO1	0x21000	0x21FFF	1K	
PIO2	0x22000	0x22FFF	1K	
PIO3	0x23000	0x23FFF	1K	— PIO
PIO4	0x24000	0x24FFF	1K	FIO
PIO5	0x25000	0x25FFF	1K	
PIO6	0x26000	0x26FFF	1K	
PIO7	0x0101 0000	0x0101 0FFF	1K	
PIO8	0x0101 1000	0x0101 1FFF	1K	PIO
PIO9	0x0101 2000	0x0101 2FFF	1K	
PIO10	0x0101 3000	0x0101 3FFF	1K	
PIO11	0x0101 4000	0x0101 4FFF	1K	
PIO12	0x0101 5000	0x0101 5FFF	1K	
PIO13	0x0101 6000	0x0101 6FFF	1K	
PIO14	0x0101 7000	0x0101 7FFF	1K	
PIO15	0x0101 8000	0x0101 8FFF	1K	
PIO16	0x0101 9000	0x0101 9FFF	1K	
RESERVED	0x27000	0x2FFFF	9K	Reserved
UART0	0x30000	0x30FFF	1K	
UART1	0x31000	0x31FFF	1K	— UART
UART2	0x32000	0x32FFF	1K	UANI
UART3	0x33000	0x33FFF	1K	
RESERVED	0x34000	0x3FFFF	12K	Reserved
SSC0	0x40000	0x40FFF	1K	
SSC1	0x41000	0x41FFF	1K	Synohranaua Sarial Cantrallar
SSC2	0x42000	0x42FFF	1K	Synchronous Serial Controller
SSC3	0x43000	0x43FFF	1K	
RESERVED	0x44000	0x47FFF	4K	Reserved
RESERVED	0x48000	0x48FFF	1K	Pagaryad
RESERVED	0x49000	0x49FFF	1K	Reserved
RESERVED	0x4A000	0x57FFF	14K	Reserved
MAFE	0x58000	0x58FFF	1K	MAFE
RESERVED	0x59000	0x6FFFF	23K	Reserved
RESERVED	0x71000	0xFFFFF	143K	Reserved

Memory map STi7105

Table 48. STi7105 TVOUT_FDMA sub-blocks memory map (base address: 0xFD10 4000)

Region Name	Start Offset		Size (Bytes)	Description
HDMI_REG	0x0000	0x07FF	512	
RESERVED	0x0800	0x0BFF	256	Reserved
SPDIFPLAYER_REG	0x0C00	0x0CFF	64	
RESERVED	0x0E00	0x0FFF	128	Reserved
I2S2SPDIF_1	0x1000	0x13FF	256	
I2S2SPDIF_2	0x1400	0x17FF	256	
I2S2SPDIF_3	0x1800	0x1BFF	256	
I2S2SPDIF_4	0x1C00	0x1FFF	256	
HDCP	0x4800	0x48FF	64	
PCMPLAYER0_REG	0x4D00	0x4DFF	64	
TOP_GLUE_AUX	0x4E00	0x4EFF	64	

Table 49. STi7105 TVOUT_CPU sub-blocks memory map (base address: 0xFE03 0000)

Region Name	Start Offset	End Offset	Size (Bytes)	Description
DENC	0x0000	0x01FF	128	
AUX_VTG	0x0200	0x02FF	64	
MAIN_VTG	0x0300	0x03FF	64	
HDTVOUT_TOP_GLUE_MAIN	0x0400	0x05FF	64	
Flex-DVO0	0x0600	0x07FF	128	
HDTVOUT_HDF1	0x0800	0x08FF	64	HD formatter 1
HDTVOUT_HDF2	0x0900	0x09FF	64	HD formatter 2
HDTVOUT_HDF3	0x0A00	0x0AFF	64	HD formatter 3
HDTVOUT_HDF4	0x0B00	0x0BFF	64	HD formatter 4
CEC	0x0C00	0x0CFC	63	
RESERVED	0x1000	0x2FFF	8 K	

577

Confidential

Confidential

STi7105

Table 50. STi7105 EMISS and EMI sub-blocks memory map

Region Name	Start Offset	End Offset	Size (Bytes)	Description
EMISS_ARBITER_REG	0xFE40 0000 + 0x1000	0xFE40 0000 + 0x13FF	256	EMI/PCI Arbiter registers
EMISS_PCI_BRIDGE_REG	0xFE40 0000 + 0x1400	0xFE40 0000 + 0x17FF	256	PCI STbus Bridge registers
EMI_CONF_REG	0xFE70 0000 + 0x0000	0xFE70 0000 + 0x0FFF	1K	EMI registers
EMI_NAND_REG	0xFE70 0000 + 0x1000	0xFE70 0000 + 0x1FFF	1K	EMI Nand Controller registers
EMI_SPI_REG	0xFE70 0000 + 0x2000	0xFE70 0000 + 0x2FFF	1K	EMI SPI Controller registers
RESERVED	0xFE70 0000 + 0x3000	0xFE70 0000 + 0xFFFF	13K	Reserved

9 Interrupt networks

9.1 Interrupt network organization

The STi7105 has two interrupt networks. One network is associated with the ST40 CPU and the other network is associated with the DeltaMu-ST231 CPU when used as as an application processor.

The interrupt lines are routed to both ST40 and partially to DeltaMu-ST231. It is up to the software to handle the interrupts with ST40 or DeltaMu-ST231.

Figure 20. STi7105 interrupt network

9.1.1 STi7105 interrupt network

ILC3 interrupt level controller

The STi7105 interrupt network includes an ILC3 interrupt level controller. The ILC3 accepts 96 synchronous interrupt inputs and eight asynchronous interrupt inputs. The external

STi7105 Interrupt networks

interrupts can have up to five programmable triggering conditions (active high, active low, falling edge, rising edge, or any edge).

The ILC3 maps any of these interrupts onto a group of 16 interrupt level outputs that are used in the STi7105 for internal and external interrupts and onto a group of four interrupt levels that are not used.

The ILC3 mapping is described in *Table 51* and *Table 52*.

Wake up by interrupt

The ILC3 also has an interrupt output dedicated to the wake-up process. A pulse stretcher receives a transition from the UHF and IR input pins and generates an interrupt connected to one of the external interrupt inputs.

Internal peripheral interrupts

Both the ST40 and the DeltaMu ST231 receive all the internal interrupt requests. It is up to the software to define the CPU that will serve each interrupt request.

All the internal interrupts are routed to the INTC2, ST231 Interrupt controller and ILC3. All the internal interrupts are level sensitive and active HIGH.

External interrupts inputs

The four external asynchronous interrupts and the MDINT interrupts (the Ethernet phy interrupt or fifth IRQ if the Ethernet/DVO pins are configured for Ethernet but the Ethernet phy is either not connected or does not use the MDINT) are routed to the ILC3 interrupt controller before reaching the ST40 and ST231 in order to synchronize and change the polarity if needed. The ST40 expects the interrupts to be active high. These interrupts are then output from the ILC3 to be routed toward the ST40 and DeltaMu ST231.

External interrupts outputs

The ILC3 has the capability to output a subset of the interrupts that are connected to it. Four of these interrupts are software selectable to be output externally for remote devices.

Control of the external interrupts direction

The direction of the external interrupts is controlled by the configuration register SYSTEM_CONFIG10.

Table 51. ILC3 internal interrupt mapping

Interrupt source		ILC3 mapping
	PIO0_INTERRUPT	0
	PIO1_INTERRUPT	1
	PIO2_INTERRUPT	2
Comms/PIO	PIO3_INTERRUPT	3
	PIO4_INTERRUPT	4
	PIO5_INTERRUPT	5
	PIO6_INTERRUPT	6

nformation classified Confidential - Do not copy (See last page for obligations)

Table 51. ILC3 internal interrupt mapping (continued)

Confidential

Interrupt source	ILC3 mapping	
	SSC0_INTERRUPT	7
000	SSC1_INTERRUPT	8
SSC	SSC2_INTERRUPT	9
	SSC3_INTERRUPT	10
	UARTO_INTERRUPT	11
Commo // IADT	UART1_INTERRUPT	12
Comms/UART	UART2_INTERRUPT	13
	UART3_INTERRUPT	14
Comms/MAFE	MAFE_INTERRUPT	15
Comms/PWM	PWM_INTERRUPT	16
Comms/IRB	IRB_INTERRUPT	17
Comms/TTXT	TTXT_INTERRUPT	18
Comms/DAA	DAA_INTERRUPT	19
DVP	DVP_INTERRUPT	20
Reserved	RESERVED	21
ClockGen	DCXO_INTERRUPT	22
PTI1	PTI1_INTERRUPT	23
	ST40_LX_DELTAMU_INTERRUPT	24
MAILBOX	LX_DELTAMU_ST40_INTERRUPT	25
WAILDOX	ST40_AUDIO_INTERRUPT	26
	LX_AUDIO_ST40_INTERRUPT	27
	FDMA_1_MBOX_INTERRUPT	28
FDMA0/1	FDMA_0_MBOX_INTERRUPT	29
	I2S2SPDIF_INTERRUPT0	30
	SPDIFPLYR_INTERRUPT	31
Audio	PCMRDR_INTERRUPT	32
	PCMPLYR1_INTERRUPT	33
	PCMPLYR0_INTERRUPT	34
Reserved	RESERVED	35
TVOLITA/TGe	AUX_VTG_INTERRUPT (1) OR AUX_VTG_INTERRUPT (0)	36
TVOUT/VTGs	MAIN_VTG_INTERRUPT (1) OR MAIN_VTG_INTERRUPT (0)	37
Main Video Display Pipe	MAIN_VDP_END_PROCESSING_IRQ	38
мант чиео ызрау гіре	MAIN_VDP_FIFO_EMPTY_IRQ	39

Table 51. ILC3 internal interrupt mapping (continued)

Interrupt source		ILC3 mapping
	HDCP_INTERRUPT	40
LIDAU/LIDAD	HDMI_INTERRUPT	41
HDMI/HDCP	HDMI_CEC_IRQ	42
	HDMI_CEC_WAKEUP_INT	43
Blitter display	BDISP_AQ1_IRQP OR BDISP_AQ2_IRQP OR BDISP_AQ3_IRQP OR BDISP_AQ4_IRQP	44
	RESERVED	45
RESERVED	RESERVED	46
	RESERVED	47
PTI0	PTI0_INTERRUPT	48
RESERVED	RESERVED	52
USBH	EHCI_INTERRUPT	53
ОЗВП	OHCI_INTERRUPT	54
RESERVED	RESERVED	55
NEGENVED	RESERVED	56
RESERVED	RESERVED	57
TS Merger	TS_MERGER_INTERRUPT	58
Ethernet GMAC	PMT_INT	59
PCI	INT_PCI_DMA	60
BLITTER DISPLAY	BDISP_CQ1_IRQP OR BDISP_CQ2_IRQP	62
RESERVED	RESERVED	63

Table 52. ILC3 external interrupt mapping table

Interrupt source		ILC3 mapping
	EXT_INTERRUPT[0]	0
External	EXT_INTERRUPT[1]	1
Interrupts from external devices	EXT_INTERRUPT[2]	2
	EXT_INTERRUPT[3]	3
From pins through pulse stretcher	IRB_WAKEUP_INTERRUPT	4
NMI Pin	NMI_INTERRUPT	5
Ethernet PHY interrupt /SYSITRQ[4]	MDINT	6
From LPC timer	LOWPOWEROUT_FROM_LPC	7
From Pads through PIO alt (PCI wake-up interrupts)	PCI_PME_IN	8
FDMA0 requests line	selected FDMA_REQ among 32 FDMA DREQ lines	9

Table 52. ILC3 external interrupt mapping table (continued)

Interrupt source		ILC3 mapping	
-CATA	SATA_IINTRQ_DMAC_0	10	
eSATA	SATA_IINTRQ_HOSTC_0	11	
Key Scanner	KEY_SCANNER_INTERRUPT	12	
Ethernet Gmac	GMAC_MAC_INTR	13	
Standalone 10 banks PIOs	STANDALONE_10_BANKS_PIO (10 ORED INTERRUPTS)	14	
VDD ALIV	AUX_VDP_END_PROCESSING_IRQ	15	
VDP AUX	AUX_VDP_FIFO_EMPTY_IRQ	16	
Compo Capture	COMPO_CAP_BF	17	
Compo Capture	COMPO_CAP_TF	18	
FDMA1 requests lines	SELECTED FDMA_REQ AMONG 32 FDMA DREQ LINES	19	
Reserved	RESERVED	20	
ClockGen A	IRQ_CLKOBS	21	
D-H-M.	DELPHI_MBE_INTERRUPT	22	
DeltaMu	DELPHI_PRE0_INTERRUPT	23	
NAND Controller	INT_NAND	24	
	IRQ_PCI_ERROR	25	
	IRQ_PCI_FROM_DEVICE[0]	26	
PCI	IRQ_PCI_FROM_DEVICE[1]	27	
	IRQ_PCI_FROM_DEVICE[2]	28	
	RESERVED	29	
	I2S2SPDIF_INTERRUPT1	30	
Audio	I2S2SPDIF_INTERRUPT2	31	
	I2S2SPDIF_INTERRUPT3	32	
Reserved	RESERVED	33	
TICGOT VOC	RESERVED	34	
	RESERVED	33	
	RESERVED		
	RESERVED	95	

9.1.2 ST40 interrupt network

Internal and external interrupts

The ST40-300 CPU has two types of interrupts.

STi7105 Interrupt networks

External interrupts

Non maskable interrupts (NMI)—external interrupt source.

 Interrupt request level INTerrupts (IRLINT)—four external interrupt sources IRL0 to IRL3 which can be configured as four independent interrupts or encoded to provide 15 external interrupt levels.

These interrupts are managed by the INTC interrupt controller integrated into the ST40-300 CPU core.

The four external asynchronous interrupts and the MDINT interrupts (that is, the Ethernet phy interrupt or fifth IRQ if the Ethernet phy is either not connected or does not use the MDINT) are routed to the ILC3 interrupt controller before reaching the ST40 and ST231 in order to synchronize and change the polarity if needed.

Internal peripheral interrupts

On-chip peripherals interrupt sources.

These interrupts are managed by INTC and INTC2 which is an expansion to INTC.

All interrupts (except NMI) are assigned a priority level between 0 and 15: level 15 is the highest and level 1 the lowest, level 0 means that the interrupt is masked. The NMI is defined to have a fixed priority level of 16.

INTC controls the following interrupt sources:

- NMI, IRL[3...0] from external inputs
- ST40-P130 peripherals interrupts:
 - user debug interface (UDI)
 - timer unit (TMU0, 1)
 - real time clock (RTC)
 - serial controller interface (SCI)
 - watch dog timer (WDT)

The INTC2 controls all the on-chip peripherals interrupts and is connected to the INTC through an interrupt expansion bus.

The INTC2 accepts 16 groups of four interrupts (64 total), each group can be assigned a priority by software (INTPRIxx registers). Within each group (of four interrupts), there is a fixed priority, with interrupt four having the highest priority. All interrupts are synchronized in INTC2.

Interrupt service routine address

Whenever an interrupt occurs, the ST40 CPU branches to the interrupt handling vector address determined by adding the fixed offset 0x600 to the vector base address (VBR) register. Each interrupt type is assigned a code which is stored in the INTEVT (Interrupt Event) register when the interrupt occurs. This enables the interrupt service routine to identify the interrupt source type.

The interrupt controller is responsible for mapping each interrupt to its code (INTEVT).

Figure 21 displays the ST40-300 interrupt network, and *Table 53* describes the internal interrupts with their INTEVT code.

Information classified Confidential - Do not copy (See last page for obligations)

ST40-300 ST40-C300 **IRQ** (CPU core) Interrupt status signals WDT TMU UDI INTC NMI IRL[3:0] **External Interrupt Sources** Interrupt expansion bus GLOBAL_POWER_DOWN (refer to low power chapter) intreq_n intlevel[3:0] intevent[8:0] ext_intstb Encode to 5 bits WAKEUP_BY_INT (refer to low power chapter) Interrupt priority [15:0] INTC2 ILC3 16 groups of 4 interrupts Internal interrupts (x64) External interrupts (x96) On-chip peripherals

Figure 21. ST40 interrupt network

Table 53. ST40-300 P130 interrupts

Confidential

Interrupt source		INTEVT code	IPR (bit numbers)	Interrupt priority (initial value)
NMI		0x1C0	-	16
	IRL0	0x240	IPRD[15:12]	15-0 (13)
IRL	IRL1	0x2A0	IPRD[11:8]	15-0 (10)
independent encoding	IRL2	0x300	IPRD[7:4]	15-0 (7)
	IRL3	0x360	IPRD[3:0]	15-0 (4)
IRL	level encoding	0x200~0x3C0	-	1-15
TMU0	TUNI0	0x400	IPRA[15:12]	15-0 (0)
TMU1	TUNI1	0x420	IPRA[11:8]	15-0 (0)

Table 53. ST40-300 P130 interrupts (continued)

Interrupt source		INTEVT code	IPR (bit numbers)	Interrupt priority (initial value)
TMUO	TUNI2	0x440	IPRA[7:4]	15-0 (0)
TMU2	TICPI2	0x460	IFNA[7.4]	15-0 (0)
WDT	ITI	0x560	IPRB[15:12]	15-0 (0)
UDI	H-UDI	0x600	IPRC[3:0]	15-0 (0)

Table 54. ST40-300 on-chip peripheral interrupts

Group	Interrupt source		INTEVT code	IPR (bit numbers)	INTREQ/INTMSK (bit number)
		I2S2SPDIF_INTERRUPT0	0xA00		INTREQ00[0]
	AUDIO	I2S2SPDIF_INTERRUPT1	0xA20	INTPRI00[3:0]	INTREQ00[1]
	AODIO	I2S2SPDIF_INTERRUPT2	0xA40	11417 (100[3.0]	INTREQ00[2]
		I2S2SPDIF_INTERRUPT3	0xA60		INTREQ00[3]
	eSATA	INTRQ_DMAC	0xA80		INTREQ00[4]
	ESAIA	INTRQ_HOSTC	0xB00		INTREQ00[5]
	DVP	DVP_INTERRUPT	0xB20	INTPRI00[7:4]	INTREQ00[6]
group 0	Standalone 10 banks PIOs	STANDALONE_10_BANKS_PI O (10 ORED INTERRUPTS)	0xB40		INTREQ00[7]
	VDP AUX	AUX_VDP_END_PROCESSIN G_IRQ	0xB60	INTPRI00[11:8]	INTREQ00[8]
		AUX_VDP_FIFO_EMPTY_IRQ	0xB80		INTREQ00[9]
	Compo Capture	COMPO_CAP_BF	0xBA0		INTREQ00[10]
		COMPO_CAP_FF	0xBC0		INTREQ00[11]
		PIO0_INTERRUPT	0xC00	INTPRI00[15:12]	INTREQ00[12]
	COMMs/PIO	PIO1_INTERRUPT	0xC80	INTPRI00[19:16]	INTREQ00[13]
		PIO2_INTERRUPT	0xD00	INTPRI00[23:20]	INTREQ00[14]
		PIO6_INTERRUPT	0x1000		INTREQ04[0]
group1	COMMs/PIO	PIO5_INTERRUPT	0x1020	INTPRI04[3:0]	INTREQ04[1]
group	COMMINIS/FIO	PIO4_INTERRUPT	0x1040	1101 Phi04[3.0]	INTREQ04[2]
		PIO3_INTERRUPT	0x1060		INTREQ04[3]
		SSC0_INTERRUPT	0x10E0	INTPRI04[7:4]	INTREQ04[7]
group2	SSC	SSC1_INTERRUPT	0x10C0		INTREQ04[6]
groupz	SSC	SSC2_INTERRUPT	0x10A0	7	INTREQ04[5]
		SSC3_INTERRUPT	0x1080		INTREQ04[4]

Confidential

Table 54. ST40-300 on-chip peripheral interrupts (continued)

Group	Interrupt source		INTEVT code	IPR (bit numbers)	INTREQ/INTMSK (bit number)
		UARTO_INTERRUPT	0x1160		INTREQ04[11]
		UART1_INTERRUPT	0x1140	INTERPLOATA A COL	INTREQ04[10]
group3	COMMs/UART	UART2_INTERRUPT	0x1120	- INTPRI04[11:8]	INTREQ04[9]
		UART3_INTERRUPT	0x1100		INTREQ04[8]
	COMMs/MAFE	MAFE_INTERRUPT	0x11E0		INTREQ04[15]
1	COMMs/PWM	PWM_INTERRUPT	0x11C0	INTERDIOAGAE.401	INTREQ04[14]
group4	COMMA /IDD	IRB_INTERRUPTS	0x11A0	INTPRI04[15:12]	INTREQ04[13]
	COMMs/IRB	IRB_WAKEUP_INTERRUPT	0x1180		INTREQ04[12]
	COMMs/TTXT-	TTXT_INTERRUPT	0x1260		INTREQ04[19]
	DAA	DAA_INTERRUPT	0x1240		INTREQ04[18]
group5	BLITTER DISPLAY	BDISP_AQ1_IRQP OR BDISP_AQ2_IRQP OR BDISP_AQ3_IRQP OR BDISP_AQ4_IRQP	0x1220	INTPRI04[19:16]	INTREQ04[17]
	RESERVED	RESERVED	0x1200		INTREQ04[16
	TS merger	TS_MERGER_INTERRUPT	0x12E0		INTREQ04[23]
	Ethernet GMAC	PMT_INT	0x12A0	INTERPLOAGO OO	INTREQ04[21]
group 6		GMAC_MAC_INTR	0x12C0	INTPRI04[23:20]	INTREQ04[22]
	PCI	INT_PCI_DMA	0x1280		INTREQ04[20]
	PTI1	PTI1_INTERRUPT	0x1360		INTREQ04[27]
	ClockGen	DCXO INTERRUPT	0x1340		INTREQ04[26]
group7	MAILBOXes	LX_AUDIO_ST40_INTERRUP T	0x1320	INTPRI04[27:24]	INTREQ04[25]
	MAILBOXES	LX_DELTAMU_ST40_INTERR UPT	0x1300		INTREQ04[24]
	USB2	EHCI1_INTERRUPT	0x13E0		INTREQ04[31]
ara.ua0	USB2	OHCI1_INTERRUPT	0x13C0	INTERIO4[24,20]	INTREQ04[30]
group8	FDMA0/1	FDMA_1_MBOX_INTERRUPT	0x13A0	- INTPRI04[31:28]	INTREQ04[29]
	FDIVIAU/ I	FDMA_0_MBOX_INTERRUPT	0x1380		INTREQ04[28]
		SPDIFPLYR_INTERRUPT	0x1460		INTREQ08[3]
		PCMRDR_INTERRUPT	0x1440		INTREQ08[2]
group9	Audio	PCMPLYR1_INTERRUPT (AUDIO SS)	0x1420	INTPRI08[3:0]	INTREQ08[1]
		PCMPLYR0_INTERRUPT (TVOUT SS)	0x1400		INTREQ08[0]

Table 54. ST40-300 on-chip peripheral interrupts (continued)

Group	Interrupt source		INTEVT code	IPR (bit numbers)	INTREQ/INTMSK (bit number)
	VIDEO DELTAMU	DELTAMU_MBE_INTERRUPT	0x14E0		INTREQ08[7]
group10		DELTAMU_PP_INTERRUPT	0x14C0	INTPRI08[7:4]	INTREQ08[6]
	NAND Controller	INT_NAND	0x14A0	- IIV I P NIUO[7.4]	INTREQ08[5]
	RESERVED	RESERVED	0x1480		INTREQ08[4]
	TVOUT/VTGs	AUX_VTG_INTERRUPT (1) OR AUX_VTG_INTERRUPT (0)	0x1560		INTREQ08[11]
group11	17001/VTGS	MAIN_VTG_INTERRUPT (1) OR MAIN_VTG_INTERRUPT (0)	0x1540	INTPRI08[11:8]	INTREQ08[10]
	VDP MAIN	MAIN_VDP_END_PROCESSI NG_IRQ	0x1520		INTREQ08[9]
	DISPLAY PIPE	MAIN_VDP_FIFO_EMPTY_IR Q	0x1500		INTREQ08[8]
	HDMI/HDCP	HDCP_INTERRUPT	0x15E0	- - INTPRI08[15:12]	INTREQ08[15]
group12		HDMI_INTERRUPT	0x15C0		INTREQ08[14]
group 12		HDMI_CEC_INT	0x15A0		INTREQ08[13]
		HDMI_CEC_WAKEUP_INT	0x1580		INTREQ08[12]
		RESERVED 0x1660		INTREQ08[19]	
group13		RESERVED	0x1640	INTPRI08[19:16]	INTREQ08[18]
group ro		RESERVED	0x1620		INTREQ08[17]
	PTI0	PTI0_INTERRUPT	0x1600		INTREQ08[16]
	RESERVED	RESERVED	0x16E0		INTREQ08[23]
group14	RESERVED	RESERVED	0x16C0	INTPRI08[23:20]	INTREQ08[22]
group 14	RESERVED	RESERVED	0x16A0	11411 11100[23.20]	INTREQ08[21]
	RESERVED	RESERVED	0x1680		INTREQ08[20]
	BLITTER DISPLAY	BDISP_CQ1_IRQP OR BDISP_CQ2_IRQP	0x1760		INTREQ08[27]
group15	RESERVED	RESERVED	0x1740	INTPRI08[27:24]	INTREQ08[26]
•	LICD1	EHCI_INTERRUPT	0x1720		INTREQ08[25]
	USB1	OHCI_INTERRUPT	0x1700]	INTREQ08[24]
	RESERVED	RESERVED	0x17E0		INTREQ08[31]
around C	Key Scanner	KEY_SCANNER_INTERRUPT	0x17C0	INTERPLOSISTING	INTREQ08[30]
group16		RESERVED	0x17A0	- INTPRI08[31:28]	INTREQ08[29]
		RESERVED	0x1780		INTREQ08[28]

9.1.3 DeltaMU and LX_AUDIO ST231 interrupt network

The ST231 accepts 60 external interrupts (from 63 to 3). Interrupts 0 to 2 are Reserved to the ST231 internal timers. All the interrupts are maskable but with a single level of priority. Multiple level priority must be implemented in the software.

When used as an application processor, the DeltaMU ST231 processor receives a subset of the internal interrupts from the ST40 processor.

The interrupts are active high and are re-synchronized in the ST231 clk_bus clock domain.

When used as an application processor, the DeltaMU ST231 processor receives the same internal interrupts as ST40 processor except the interrupts generated by the DeltaMU coprocessors, the MES, ICAM3 interrupts, and Blitter Display interrupts.

The DeltaMu ST231 also receives the external interrupts through the ILC3 interrupt controller.

The AUDIO_LX receives audio peripherals and FDMA interrupts in order to manage audio applications without relying on the ST40 Host. Also, it executes soft modem (MAFE, DAA interrupts)

Table 55 describes the mapping of the interrupts on the DeltaMU ST231 interrupt controller.

Table 55. DeltaMU ST231 interrupts

Interrupt source		INT number
	TIMER0_INTERRUPT	0
ST231 Timers	TIMER1_INTERRUPT	1
31231 Tilllers	TIMER2_INTERRUPT	2
	RESERVED	3
	PIO0_INTERRUPT	4
	PIO1_INTERRUPT	5
Comms/PIO	PIO2_INTERRUPT	6
Comms/PiO	PIO3_INTERRUPT	7
	PIO4_INTERRUPT	8
	PIO5_INTERRUPT	9
	SSC0_INTERRUPT	10
SSC	SSC1_INTERRUPT	11
330	SSC2_INTERRUPT	12
	SSC3_INTERRUPT	13
	UART0_INTERRUPT	14
Comms/UART	UART1_INTERRUPT	15
Comms/OART	UART2_INTERRUPT	16
	UART3_INTERRUPT	17
Comms/MAFE	MAFE_INTERRUPT	18
Comms/PWM	PWM_INTERRUPT	19

Table 55. DeltaMU ST231 interrupts (continued)

Interrupt source INT numb				
Commo/IDD	IRB_INTERRUPT	20		
Comms/IRB	IRB_WAKEUP_INTERRUPT	21		
Comms/TTXT	TTXT_INTERRUPT	22		
Comms/DAA	DAA_INTERRUPT	23		
DVP	DVP_INTERRUPT	24		
TS Merger	TS_MERGER_INTERRUPT	25		
Ethornot CMAC	GMAC_MAC_INTR	26		
Ethernet GMAC	PMT_INT	27		
ClockGen	DCXO_INTERRUPT	28		
MAILBOX	ST40_TX_DELTAMU_INTERRUPT	29		
PTI1	PTI1_INTERRUPT	30		
EDMA	FDMA_1_MBOX_INTERRUPT	31		
FDMAs	FDMA_0_MBOX_INTERRUPT	32		
	I2S2SPDIF_INTERRUPT0 OR I2S2SPDIF_INTERRUPT1 OR I2S2SPDIF_INTERRUPT2 OR I2S2SPDIF_INTERRUPT3	33		
Audio	SPDIFPLYR_INTERRUPT	34		
	PCMRDR_INTERRUPT	35		
	PCMPLYR1_INTERRUPT	36		
	PCMPLYR0_INTERRUPT	37		
RESERVED	RESERVED	38		
TVOUT/VTGs	AUX_VTG_INTERRUPT (1) OR AUX_VTG_INTERRUPT (0)	39		
17001/7145	MAIN_VTG_INTERRUPT (1) OR MAIN_VTG_INTERRUPT (0)	40		
Main Video Display Pipe	VDP_END_PROCESSING_IRQ	41		
IVIAIN VIDEO DISPLAY FIPE	VDP_FIFO_EMPTY_IRQ	42		
	HDCP_INTERRUPT	43		
HDMI/HDCP	HDMI_INTERRUPT	44		
I IDIVII/I IDOF	HDMI_CEC_IRQ	45		
	HDMI_CEC_WAKEUP_IRQ	46		
BLITTER DISPLAY	BDISP_AQ1_IRQP OR BDISP_AQ2_IRQP OR BDISP_AQ3_IRQP OR BDISP_AQ4_IRQP	47		

Confidential

Table 55. DeltaMU ST231 interrupts (continued)

Interrupt source		INT number
	RESERVED	48
RESERVED	RESERVED	49
	RESERVED	50
PTI0	PTI0_INTERRUPT	51
RESERVED	RESERVED	54
RESERVED	RESERVED	55
USB1	EHCI0_INTERRUPT	56
0361	OHCI0_INTERRUPT	57
PADS	NMI_INTERRUPT	58
FADS	RESERVED	59
	EXT_INTERRUPT[0]	60
External interrupta	EXT_INTERRUPT[1]	61
External interrupts	EXT_INTERRUPT[2]	62
	EXT_INTERRUPT[3]	63

Caution:

Confidential

In case of USB signals, the usual naming convention is not used. In order to align with the STi7105 ballout names, this manual mentions two instances of USB as USB1 and USB2 rather than USB0 and USB1. Therefore, in this manual the first instance of USB is USB1 and the second instance is USB2.

The *Table 56* describes the mapping of the interrupts on the LX_AUDIO ST231 interrupt controller.

Table 56. LX_AUDIO ST231 interrupts

Interrupt source	INT number	
	TIMER0_INTERRUPT	0
ST231 timers	TIMER1_INTERRUPT	1
	TIMER2_INTERRUPT	2
MAILBOX1	ST40_LX_AUDIO_INTERRUPT	3
RESERVED	RESERVED	17-4
Comms/MAFE	MAFE_INTERRUPT	18
RESERVED	RESERVED	22-19
Comms/DAA	DAA_INTERRUPT	23
RESERVED	RESERVED	30-24
Audio	RESERVED(CPXM_INTERRUPT)	31
	I2S2SPDIF_INTERRUPT	32
FDMA	FDMA_1_MBOX_INTERRUPT	33
	FDMA_0_MBOX_INTERRUPT	34

Table 56. LX_AUDIO ST231 interrupts (continued)

Interrupt source	INT number	
Audio	SPDIFPLYR_INTERRUPT0	35
	SPDIFPLYR_INTERRUPT1	36
	SPDIFPLYR_INTERRUPT2	37
	SPDIFPLYR_INTERRUPT3	38
	PCMRDR_INTERRUPT	39
	PCMPLYR1_INTERRUPT	40
	PCMPLYR0_INTERRUPT	41
RESERVED	RESERVED	42-51
RESERVED	RESERVED	54
	RESERVED	55
RESERVED	RESERVED	56-62
Reserved	RESERVED	63

Confidential

FDMA STI7105

10 FDMA

10.1 Overview

The STi7105 integrates two multiple-channel general purpose DMA engines, FDMA0 and FDMA1. Each FDMA engine is a general purpose direct memory access controller capable of supporting 16 independent DMA channels. Their purpose is to move data efficiently from memory to memory, memory to peripheral, and peripheral to peripheral.

The FDMA supports free-running and paced transfers. The CPU sets up each DMA transfer by writing linked-lists of data structures in to main memory, then the CPU initializes the transfer by writing the pointer to the first node in the control word interface (CWI) of the FDMA. The FDMA then executes the necessary operations to complete the transfer and informs the CPU (through interrupts) after completion of the transfer.

The FDMA1 includes video stream parsing functionalities:

- video PES parsing and start-code detection (PES/SCD) for H264, VC1, AVS, and MPEG2
- dual PES parsing channel on same FDMA

10.1.1 FDMA0 and FDMA1 Partitioning

In STi7105, one FDMA is dedicated to serve real-time processes while the other FDMA handles the other processes, such as PES parsing, free-running, and non-critical paced channels.

The partitioning between FDMA0 and FDMA1 is as follows:

- FDMA0—real time paced channels: PCM players 0, 1, S/PDIF players, and SWTS (or playback)
- FDMA1—free-running channels, PES parsing, and non-real-time paced channels (that is, COMMS and PCI)

This partitioning is defined by software and is flexible. The Dreq crossbar-router, in front of the FDMAs, allows to route any paced peripheral Dreq signal to any FDMA Dreq input.

10.1.2 Peripheral and memory access

Each FDMA has two STBus Type-2 initiator ports. The Port0 (high priority port) has a direct connection to the paced peripherals. This direct connection minimizes the latency between the FDMA and peripherals. While defining the FDMA node, the Port0 is used to access the peripherals and Port1 (low priority port) is used to access the memory.

LMI can be accessed by FDMA0 and FDMA1.

10.1.3 FDMA processing power

The FDMA slim core frequency is configurable up to 450 MHz.

10.1.4 FDMA firmware

FDMA0 uses real-time firmware, and FDMA1 uses non-real-time firmware.

STi7105 FDMA

10.1.5 FDMA features

Following are the FDMA features:

- Support for 16 concurrent DMA channels
- Free-running transfer of aligned or unaligned data structure
 - Single location (0D)
 - Incrementing linear arrays (1D)
 - Incrementing rectangular arrays (2D)
- Transfer units of 1-32 bytes
- Up to 128 bytes message support
- Programmable opcode for paced transfer, support for up to 30 request generating peripherals (Dreq)
- Linked-list control allowing complex transfer sequence
- Video PES parsing (VC1, H264, MPEG2, AVS) on channel 0 and 1
- Audio compressed or PCM data output through S/PDIF player
- Hold off support per channel
- Secure/insecure transfer support
- NAND controller channel for AFM mode transfer to/from NAND devices

FDMA STI7105

10.2 Block diagram

Figure 22. FDMA block diagram

Each FDMA comprises a SLIM CPU, an instruction memory, a data memory, peripherals, an STBus T1 target interface, and a SLIM STBus initiator coprocessor.

Each FDMA interfaces with the STBus interconnect through two STBus T2 initiator ports to execute the data transfers and through one STBus T1 target port to access the FDMA2 registers and memories.

Each STBus port has its own separate asynchronous clock input.

10.3 DMA requests

The FDMA receives a number of requests where pacing is required for flow control in the system. This signal is a simple high-level sensitive signal used in conjunction with a hold-off counter. The blocks generating a request signal are the audio peripherals (PCM players, PCM reader, and S/PDIF player), transport TSMerger (software stream), UARTs, SSCs, PCI controller, NAND controller and external DMA requests.

STi7105 **FDMA**

Figure 23. **FDMA** requests

The FDMA accepts up to 30 DMA requests or events that are used to drive the paced channels of the FDMA. Requests 0 and 31 are reserved for the counter request and are internally connected to the FDMA counter to provide timed DMA channels. Request #0 has the lowest priority and request #31 has the highest priority.

Confidential

FDMA STi7105

Table 57. FDMA request configuration

Confidential

Unit	PACING SIGNAL	Xbar Input Index	FDMA #0	FDMA #1	FDMA DREQ line index	Opcode	Transfer Size	Comments
PCI controller	PCI_HALF_FULL	52	Х		10	ST32	ST32 x4	
NAND controller	NAND_AFM_DATA_REQ	50		х	28	ST32	ST32 x1	Data request in Advanced Flex mode
	NAND_AFM_SEQ_REQ	49		х	27	LD32	LD32 xn	Sequence request in Advanced Flex mode
	IRB_UHF_RX_BUFFER_FULL	46		х	19	LD4	LD4 x1	IRB requests
IRB/UHF	IRB_UHF_RX_BUFFER_HALF 8FULL	45		x	18	LD4	LD4 x1	
TeleText DENC #0	TELETEXT_DREQ	42		х	30	ST4	ST4 x11	Ttxt FIFO is 2x48 bytes = 2 lines
HDMI S/PDIF Player	HDMI_SPDIF_DREQ	40	х		30	ST4	ST4 x4	Includes a 24 bytes FIFO
HDMI PCM Player #0	HDMI_PCM_DREQ	39	x		29	ST4	ST4 x20	Includes a 160 bytes FIFO
PCM reader	PCMIN_DREQ	37	х		27	LD4	LD4 x2	Includes a 8 bytes FIFO
PCM Player #1	PCMOUT1_DREQ	34	х		23	ST4	ST4 x20	Includes a 160 bytes FIFO
CSS/CPxM encryption	CPXM_ENCRYPT_OUT_DRE Q	32	x		21	LD4	LD4 x32	128 bytes fifo
	CPXM_ENCRYPT_IN_DREQ	31	х		20	ST4	ST4 x32	
CSS/CPxM decryption	CPXM_DECRYPT_OUT_DRE Q	30	x		19	LD4	LD4 x32	128 bytes fifo
	CPXM_DECRYPT_IN_DREQ	29	х		18	ST4	ST4 x32	
External DMA req	EXTDMAREQ1_DREQ	28	x		16	ST/LD32	ST/LD32 x4	
	EXTDMAREQ0_DREQ	27		x	21	ST/LD32	ST/LD32 x4	
	EXTDMAREQ2_DREQ	3	x		17	ST/LD32	ST/LD32 x4	
	EXTDMAREQ3_DREQ	4		х	20	ST/LD32	ST/LD32 x4	
UART#3 Tx	UART3_TX_HALF_EMPTY	26		х	16	ST4	ST4 x1	
UART#2 Tx	UART2_TX_HALF_EMPTY	25		х	15	ST4	ST4 x1	
UART#1 Tx	UART1_TX_HALF_EMPTY	24		х	14	ST4	ST4 x1	
UART#0 Tx	UART0_TX_HALF_EMPTY	23		х	13	ST4	ST4 x1	
UART#3 Rx	UART3_RX_HALF_FULL	22		х	12	LD4	LD4 x1	
UART#2 Rx	UART2_RX_HALF_FULL	21		х	11	LD4	LD4 x1	

STi7105 FDMA

Table 57. FDMA request configuration (continued)

Table 57. Folia request configuration (continued)								
Unit	PACING SIGNAL	Xbar Input Index	FDMA #0	FDMA #1	FDMA DREQ line index	Opcode	Transfer Size	Comments
UART#1 Rx	UART1_RX_HALF_FULL	20		х	10	LD4	LD4 x1	
UART#0 Rx	UART0_RX_HALF_FULL	19		х	9	LD4	LD4 x1	
SSC#3 Tx	SSC3_TX_BUF_EMPTY	17		х	7	ST4	ST4 x1	
SSC#2 Tx	SSC2_TX_BUF_EMPTY	16		х	6	ST4	ST4 x1	
SSC#1 Tx	SSC1_TX_BUF_EMPTY	15		х	5	ST4	ST4 x1	
SSC#0 Tx	SSC0_TX_BUF_EMPTY	14	х		15	ST4	ST4 x1	
SSC#3 Rx	SSC3_RX_BUF_FULL	12		х	3	LD4	LD4 x1	
SSC#2 Rx	SSC2_RX_BUF_FULL	11		х	2	LD4	LD4 x1	
SSC#1 Rx	SSC1_RX_BUF_FULL	10		х	1	LD4	LD4 x1	
SSC#0 Rx	SSC0_RX_BUF_FULL	9	х		14	LD4	LD4 x1	
	SWTS0_REQ	7		х	24	ST32	ST32 x1	Software Transport
TS Merger	SWTS1_REQ	6		х	23	ST32	ST32 x1	Stream play through
	SWTS2_REQ	5		х	22	ST32	ST32 x1	PTI4L.
HDMI AVI buffer	AVI_BUFF_EMPTY	2		х	26	ST4	ST4 x1	Should be handled by Host CPU not FDMA
FDMA #1 counter	FDMA1_COUNTER_REQ	1		x	0			Connects counter output to dreq #0
FDMA #0 counter	FDMA0_COUNTER_REQ	0	x		0			Connects counter output to dreq #0

Table 58. FDMA requests table

Request source REQUEST SIGNAL		Request	Description
FDMA# counter	O_COUNTER_REQ		FDMA internal counter output, used for timed DMA-channel.
FDMA# cross-bar	REQ_OUT[31:0]	31:0	
FDMA# counter	O_COUNTER_REQ		FDMA internal counter output, used for timed DMA-channel.

Note: # in Table 58 is 0 or 1.

577

10.4 Examples of DMA Data flow

The following figures describe various DMA data flows.

Figure 24. DMA data flows (I)

Figure 25. DMA data flows (II)

STi7105 Clocking

11 Clocking

The STi7105 includes four clock generator subsystems:

ClockGen A: 2x PLLs main CPU, transport, and interconnect clocks

- ClockGen B: 2x FreqSynth: video, display, and peripheral clocks
- ClockGen C: 1x FreqSynth and audio clocks
- ClockGen D: 1x PLL memory clocks

11.1 Clock input/output pins

The SYSCLKIN/SYSCLKOSC pair is a crystal interface, a part of the SATA analog interface, integrating an oscillator requiring 30 MHz crystal. In addition to driving the SATA and two USB interfaces, the clock can be used as a reference clock to generate the Group A, B, C, and D clocks.

The SYSCLKINALT input provides an alternate reference clock for the Group A, B, C, and D clocks instead of using an oscillator clock inside the SATA Phy. The default state is to use the 30 MHz SATA clock, however, an alternate reference clock can be selected through a configuration register. The SYSCLKINALT pin is driven by either a 27 MHz fixed or voltage controllable oscillator or a fixed 30 MHz oscillator. A PWM output is provided as a part of an external VCXO configuration.

The internal clocks can be observed:

- ClockGen A through the TRIGGEROUT pad
- ClockGenB through the SYSCLKOUT pad
- ClockGen C frequency synthesizer #2 through the PIO10[3] pad
- ClockGen D through the LMICLKOUT pad

Encoder clock recovery

The STi7105 integrates a clock recovery module to recover the encoder clock. This module (DCXO) uses the digitally controllable frequency synthesizers and an integrated digital clock recovery module. This feature replaces the external VCXO functionality and allows the usage of a fixed oscillator. Nevertheless, the external VCXO functionality is still available.

When the external VCXO functionality is used, the VCXO oscillator must be connected to the SYSCLKINALT, and the SYSCLKIN is connected either to a fixed oscillator or to the VCXO oscillator.

When the DCXO is used the SYSCLKIN pin is connected to a fixed oscillator, and the SYSCLKINALT is connected either to the SYSCLKIN or left unconnected (in that case the SATA/USB 30 MHz clock is used).

The system counter inside the programmable transport interface (PTI), which is used to compare the arriving PCRs, is clocked by the recovered 27 MHz clock generated by the Clock Generator B.

Clocking

Figure 26. STi7105 clocking scheme sources with optional external VCXO mode pin 'ckgA_src_lposc' 27MHz fixed or ClockGen SYSCLKINALT VCXO Α (optional) oscillator ClockGen В PWM (optional) ClockGen С Ckg A mux is controlled by ClockGen one bit mode pin D Ckg B,C and D have sw controller source muxes 30 MHz clock USB (2x) SATA **Iposc** 30 MHz SYSCLKOSC SYSCLKIN 30 MHz Crystal Sys config reg (default is lposc)

Table 59. STi7105 clocking scheme sources

Table 33. 311/103 clocking scheme sources						
ClockGen module	Reset default STi7105	Clock selection				
А	Selection by modepin	STi7105 has mode pin to select default clock reference for ClockGen A				
В	SATA/USB LP-Osc 30 MHz	ClockGen B config register				
С	SATA/USB LP-Osc 30 MHz	Audio SS config register				
D	SATA/USB LP-Osc 30 MHz	System config register				
USB/SATA	SATA/USB LP-Osc 30 MHz	System config register				

Information classified Confidential - Do not copy (See last page for obligations)

STi7105

STi7105 Clocking

11.2 **Clock domains**

The Table 60 describes the clocking of the functional units integrated in STi7105. Column S is the clock source, indicating A, B, C, D for ClockGen, or T for Tap. **Functional blocks clocking**

Block	Clock pin	Clock signal	s	Max frequency	Comment		
TMC							
TMC	TCK	TCK	Т	50 MHz	JTAG clock from pad		
		MAIN Interconnect	and	NOC			
STNoC		CLK_IC_STNOC	Α	400 MHz	CPU processing clock		
N_CPU		CLK_IC_IF_200	Α	200 MHz			
N_PERIPH		CLK_IC_IF_100	Α	100 MHz			
RESERVED		RESERVED					
N_DVP		CLK_IC_DISP_200	Α				
N_DISPLAY		CLK_IC_DISP_200	Α				
N_COMPO		CLK_IC_COMPO_200	Α				
N_DMU		CLK_BLIT_PROC	Α	266 MHz			
N_PCI		CLK_EMI_MASTER	Α				
N_PCI_TS		CLK_IC_TS_200	Α				
N_TS		CLK_IC_TS_200	Α				
N_IF		CLK_IC_IF_100	Α				
N_BDISP		CLK_IC_BDISP_200	Α				
N_CPU_REG		CLK_IC_IF_100	Α				
	•	SYSTEM	1				
SYSCLKINALT	pad	SYSCLKINALT		30 MHz	These are the clock		
LPOSC	ZI	CLK_LPOSC_30	IN	30 MHz	sources, from the tw possible inputs Clock from pad Clock from SATA/US osc		
	CLK_STBUS	CLK_IC_IF_100	Α	100 MHz			
	CLK_OSC_A	NOT USED					
ClockGenA	CLK_OSC_B	CLK_LPOSC_30		30 MHz	from SATA/USB oscillator		
	CLK_OSC_C	SYSCLKINALT		27/30 MHz	direct from pad crysta		
	CLK_OSC_D	NOT USED					

Confidential

Table 60. Functional blocks clocking (continued)

Block	Clock pin	Clock signal	s	Max frequency	Comment	
	CLK_IC	CLK_IC_IF_100	Α		STBus clock	
	CLK_OSC_A	NOT USED				
ClockGenB	CLK_OSC_B	CLK_LPOSC_30		30 MHz	from SATA/USB oscillator	
	CLK_OSC_C	SYSCLKINALT		27/30 MHz	direct from pad crystal	
	CLK_OSC_D	NOT USED				
	CLK_OSC_A	NOT USED				
ClockGen C	CLK_OSC_B	CLK_LPOSC_30		30 MHz	from SATA/USB oscillator	
	CLK_OSC_C	SYSCLKINALT		27/30 MHz	direct from pad crystal	
	CLK_OSC_D	NOT USED				
	CLK_OSC_A	NOT USED				
ClockGenD	CLK_OSC_B	CLK_LPOSC_30		30 MHz	from SATA/USB oscillator	
	CLK_OSC_C	SYSCLKINALT		27/30 MHz	direct from pad crystal	
	CLK_OSC_D	NOT USED				
MAIN CPU						
SH4-300	CLK_ST40_IC K	CLK_SH4_ICK	А	450 MHz	CPU processing clock	
3114-300	CLK_ST40_PC K	CLK_IC_IF_100	А	100 MHz	Interface clock	
Mailbox	CLK	CLK_IC_IF_100	А	100 MHz	Type 1 interconnect clock	
		DMA				
	IC_CK	CLK_IC_BDISP_200	Α	200 MHz	Type 3 interconnect clock	
BlitterDisplay	CPU_CK	CLK_IC_IF_100	А	100 MHz	Type 1 interconnect clock	
	BDISP_CK	CLK_BLIT_PROC	Α	266 MHz	Bdisp processing clock	
	CLK_SLIM	CLK_FDMA0	Α	450 MHz	SLIM Processing clock	
	CLK_STBUS_ T2_0	CLK_IC_IF_100	А	100 MHz	High priority FDMA port	
FDMA0	CLK_STBUS_ T2_1	CLK_IC_TS_200	А	200 MHz	Low priority FDMA port	
	CLK_STBUS_ T1	CLK_IC_IF_100	А	100 MHz	Type 1 interconnect clock	

150/313 8065505 Rev D

STi7105 Clocking

Table 60. Functional blocks clocking (continued)

able 80. Functional blocks clocking (continued)						
Block	Clock pin	Clock signal	S	Max frequency	Comment	
	CLK_SLIM	CLK_FDMA1	Α	450 MHz	SLIM Processing clock	
	CLK_STBUS_ T2_0	CLK_IC_IF_100	Α	100 MHz	High priority FDMA port	
FDMA1	CLK_STBUS_ T2_1	CLK_IC_TS_200	Α	200 MHz	Low priority FDMA port	
	CLK_STBUS_ T1	CLK_IC_IF_100	Α	100 MHz	Type 1 interconnect clock	
		DISPLAYS COMP	OSI	ITION		
	CLK_PROC	CLK_DISP_PIPE_200	Α	200 MHz	Display pipeline processing clock	
HD Display	CLK_SYS	CLK_IC_DISP_200	Α	200 MHz	Type 3 interconnect clock	
Tib Display	CLK_PIX	CLK_DISP_HD	В	148.5 MHz	Display-to-Compositor pixel clock	
	CLK_REG	CLK_IC_DISP_200	Α	200 MHz	Type 1 interconnect clock	
	CLK_DISP	CLK_DISP_PIPE_200	Α	200 MHz	Display pipeline processing clock	
SD Display	CLK_IC	CLK_IC_DISP_200	Α	200 MHz	Type 3 interconnect clock	
3D Display	CLK_PIXEL	CLK_DISP_ID or CLK_DISP_HD	В	13.5 MHz in SD and 148.5 MHz in HD (PIP)	Display-to-Compositor pixel clock	
	CLK_REG	CLK_IC_DISP_200	Α	200 MHz	Type 1 interconnect clock	
	ST_CK	CLK_IC_COMPO_200	Α	200 MHz	Type 3 Interconnect clock	
	MAIN_CK	CLK_DISP_HD	В	148.5 MHz Max	Main mixer (HD) pixel clock	
Compositor	AUX_CK	CLK_DISP_ID	В	108 MHz Max	Aux mixer (SD) pixel clock	
	VP2_CK	CLK_DISP_ID	В	108 MHz Max	Video2 pixel clock (SD or HD)	
	GDP3_CK	CLK_DISP_HD or CLK_DISP_ID (CLK_GDP3)	В	148.5 MHz	GDP3 pixel clock (HD or SD)	

Confidential

Clocking STi7105

Table 60. Functional blocks clocking (continued)

Confidential

Block	Clock pin	Clock signal	s	Max frequency	Comment
		VIDEO OUTPUT	STA	AGE	_1
	CLK_IC	CLK_IC_IF_100	A 100 MHz		Type 1 interconnect clock
DENC	PIX_CLK	CLK_PIX_SD	В	27MHz Max	DENC processing clock
BENO	PIX_CLK_FRO M_PAD	VIDINCLK FROM PAD	В	27 MHz	This clock is used by DVP in functional mode. Used for testing also.
RGB-to-YCbCr 601/709/240M	CLK_DISP_HD	CLK_DISP_HD	В	148.5 MHz	HD Display Clock
DWCS AWG	CLK_IC	CLK_IC_IF_100	Α	100 MHz	Type 1 interconnect clock
	CLK_PIX	CLK_PIX_SD	В	27MHz	SD pixel input clock
	CLK_DISP_HD	CLK_DISP_HD	В	148.5 MHz	HD pixel input clock
UpSampler	CLK_PIXEL_S D	CLK_PIX_SD	В	27 MHz	SD pixel input clock
	CLK_PIXEL_H D	CLK_PIX_HD	В	148.5 MHz	Pixel output clock
VTG0	CLK_DISP	CLK_DISP_HD	В	148.5 MHz	HD display clock
VTG1	CLK_DISP	CLK_DISP_SD	В	13.5 MHz	ID display clock
HD Video DAC	CLK	CLK_PIX_HD	В	148.5 MHz	HD Video DAC sampling clock
SD Video DAC	CLK	CLK_PIX_SD	В	108 MHz	SD Video DAC sampling clock
		AUDIO DECO	DIN	G	
	CLK_CPU	CLK_LX_AUD_CPU	Α	450 MHz Max	LX processing clock
LX- Audio	CLK_BUS	CLK_IC_100	Α	100 MHz	Peripheral Interconnect clock
Audio Glue	CLK_IC	CLK_IC_IF_100	Α	100 MHz	Peripheral Interconnect clock in audio peripherals
DCM player 1	CLK_STBUS	CLK_IC_IF_100	Α	100 MHz	Interconnect clock
PCM player 1 see audio clocking scheme	CLK_PCM	CLK_PCM1	С	50 MHz Max	PCM oversampling clock (256xFs) = 256x 192kHz
PCM reader	CLK_STBUS	CLK_IC_IF_100	Α	100 MHz	Interconnect clock
see audio clocking scheme	CLK_I2S	I2S_SCLK	С	5 MHz	PCM input serial clock

152/313 8065505 Rev D

Information classified Confidential - Do not copy (See last page for obligations)

STi7105 Clocking

Table 60. Functional blocks clocking (continued)

Block	Clock pin	Clock signal	s	Max frequency	Comment
Audio DAC see audio clocking scheme	MCLK	CLK_PCM1	С	256 x Fs, 15 MHz Max	Oversampling clock (Fs = 48 kHz Max)
		VIDEO DECO	DDIN	G	
	CLK_CPU	CLK_LX_DMU_CPU	Α	450 MHz	LX Processing clock
DeltaMu ST231	CLK_BUS	CLK_IC_IF_100	Α	100 MHz	Peripheral Interconnect clock
	CLK_VID	CLK_VID	Α	225 MHz (clk_lx_dh_cpu/2)	DeltaMu Hdw processing clock
DeltaMu Hdw	CLK_BUS (CLK_IC_DELT A_200 ON SS)	CLK_BLIT_PROC	Α	266 MHz	DeltaMu STBus initiator and target port clock
	CLK_PP	CLK_PP	В	150 MHz	DeltaMu Hdw Pre- processor clock
		TRANSPO	RT		
	CLK_SYSTEM	CLK_IC_TS_200	Α	200 MHz	Interconnect clock
TSMerger	TSMerger CLK_27MHZ	CLK_PIX_SD	В	27 MHz	For free running and programmable counters (timestamp)
PTI	CLK_SYSTEM	CLK_IC_TS_200	Α	200 MHz	200 MHzType 1 & 2 Interconnect clock
FII	CLK_TIMER	CLK_PIX_SD	В	27 MHz Max	PCR Timer clock for AV services
RESERVED	RESERVED	RESERVED		-	-
		CONNECTI	VITY		
	CLK100	CLK_IC_IF_100	Α	100 MHz	Type 1 and 2 interconnect clock
	PAD	CLK_ETHERNET	Α	75 MHz	potential clock for Ethernet interface
	PHY_TX_CLK PHY_TX_CLK_ PS	PAD		75 MHz	Timing reference for MII RX interface (_ps is inverted clock)
GMAC	PHY_RX_CLK PHY_RX_CLK _PS	PAD		75 MHz	Timing reference for MII TX interface (_ps is inverted clock)
	PHY_RMII_CL K	CLK_ETHERNET (VIA PAD)	Α	50 MHz	Clock to PHY in MII mode (output through PIOX(Y) pad) REF clock in RMII mode (input or output through PIOX(Y) pad)

Confidential

Confidential

Table 60. Functional blocks clocking (continued)

Block	Clock pin	Clock signal	s	Max frequency	Comment
	STBUS_CLOC K	CLK_IC_IF_100	Α	100 MHz	Type 1 & 2 Interconnect clock
USB2.0 Host	CLOCK48	CLK_USB48	В	48 MHz	From USB FSyn pending confirmation that PHY will supply
	PHY_CLK_I	CLK_USB60		60 MHz	From USB PLL
	UTMI_PHY_CL K_I	CLK_PHY_USB60		60 MHz	From USB2.0 Phy
LICDO O Dhy	REFCLK_CUS T	CLK_USB60		60 MHz	From USB PLL
USB2.0 Phy	REFCLKBYPA SS_CUST	TST_CLK_USB60		60 MHz	From pad for test
	STBUS_CLOC K	CLK_IC_IF_100	Α	100 MHz	Type-1 interconnect clock
HDMI Frame	PIX_CLOCK	CLK_DISP_HD	В	148.5 MHz Max	Pixel clock
formatter	TMDS_CLOCK	CLK_TMDS_HDMI	В	148.5 MHz Max	TMDS clock is 1x or 2x pixel clock
	BCH_CLOCK	CLK_BCH_HDMI	В	148.5 MHz Max	BCH clock is 2x or 4x TMDS clock
PCM player 0	CLK_PCM	CLK_PCM0	С	50 MHz Max	PCM oversampling clock (256xFs, Fs = 192 kHz Max)
S/PDIF player	SPDIF_CLOCK	CLK_PCM2	С	15 MHz Max	S/PDIF clock 256xFs = 256 x 48 kHz
LIDMI Angles	CKPXDLL	CLK_PLL_HDMI_PHY	В	148.5 MHz	From rejection PLL
HDMI Analog	CKPX	CLK_TMDS_HDMI	В	74.25 MHz	From ClockGen B
	ST_CK	CLK_IC_IF_200	A 200 MHz		Type 1 & 2 interconnect clock
DVP	DVP_PIX2_CK	CLK_DVP	В	148.5 MHz in HD mode	D1 video stream clock provided by ClockGen B when in compositor capture mode
l		VidInClk from pad	В	148.5 MHz in HD mode	D1 video stream clock

STi7105 Clocking

Table 60. Functional blocks clocking (continued)

able 60. Functional blocks clocking (continued)						
Block	Clock pin	Clock signal	s	Max frequency	Comment	
	CLK_STBUS	CLK_IC_IF_100	Α	100 MHz	Type 1 & 2 interconnect clock	
	CLK_RBC0	CLK_RBC0		75 MHz	Recovery clock, synchronous with received data (75 MHz) (provided by SATA PHY)	
SATA HOST	CLK_ASIC	CLK_ASIC		75 MHz	Used into transport and link layer blocks (75 MHz) (provided by SATA PHY)	
	CLK_RXOOB	CLK_SATA		30 MHz	Used to OOB detectio and also used as possible reference clock for ClockGen E and C (provided by SATA PHY)	
		MEMORY INTER	RFAC	CES		
	SYSTEM_CLO CK	CLK_EMI_MASTER	Α	100 MHz	EMI & PCI can also be clocked from external	
EMI-PCI	PCI_CLOCK	CLK_PCI	Α	33/66 MHz	pads, STBus side will be synchronized to SYSTEM_CLOCK	
Subsystem	DEVICE_CLK_ IN	EMI_FLASHCLK (PAD)		50 MHz	EMI SS clock when in EMI clock slave mode or PCI clock when in PCI clock slave mode	
GPLMI0	MCLK	MCLK		400 MHz	From GPLMI0 padlogic after divider and DLL	
GPLMI0PL	LMI_PL_MCLK	LMI_PL_MCLK	D	800 MHz	From PLL	
RESERVED	RESERVED	RESERVED				
		COMMS	;		<u>'</u>	
	CLK_IC	CLK_IC_IF_100	Α	100 MHz	Type 1 & 2 interconnect clock	
COMMs	LP_CLOCK	CLK_LPC	В	46.875 kHz	Low power clock	
	CLK_DAA	CLK_DAA	В	32.768 MHz	DAA clock	
	CLK_DSS	CLK_DSS	В	36.864 MHz	Smart card clock	

11.3 CPUs and interconnect clock generation (ClockGen A)

The reference clock can be either an internal 30 MHz clock signal or a clock connected to the SYSCLKINALT pin. The reset value is defined by mode pin[0] value.

This ClockGen is responsible for clocking the following units.

Table 61. ClockGen A mapping

Table 61. Clock	Gen A mapping	30	900	450	800	
					_	
div#	STi7105 Clk name	osc	PLL0 HS	PLL0 LS	PLL1	Comment
CLK_DIV_HS[0]	CLK_IC_STNOC		/3=300		/3=266 /2=400	
CLK_DIV_HS[1]	CLK_FDMA0		/3=300		/3=266	
CLK_DIV_HS[2]	CLK_FDMA1		75=500		/2=400	
CLK_DIV_HS[3]	NOT USED				/3=266 /4=200	
CLK_DIV_LS[4]	CLK_SH4_ICK	/32=0.95		/1=450		
CLK_DIV_LS[5]	CLK_IC_IF_100				/8=100	
CLK_DIV_LS[6]	CLK_LX_DMU_CPU			/1=450	/2=400	
CLK_DIV_LS[7]	CLK_LX_AUD_CPU			/1=450	/2=400	
CLK_DIV_LS[8]	CLK_IC_DISP_200				/4=200	
CLK_DIV_LS[9]	CLK_IC_BDISP_200				/4=200	
CLK_DIV_LS[10]	CLK_IC_TS_200				/4=200	
CLK_DIV_LS[11]	CLK_DISP_PIPE_200				/4=200	
CLK_DIV_LS[12]	CLK_BLIT_PROC				/3=266	DeltaMu IC at 266 MHz
				/6=75		
CLK_DIV_LS[13]	CLK_ETHERNET_PHY			/9=50 /18=25		
				/10=23	/12=66	
CLK_DIV_LS[14]	CLK_PCI				/24=33	
CLK_DIV_LS[15]	CLK_EMI_MASTER					
CLK_DIV_LS[16]	CLK_IC_COMPO_200					
CLK_DIV_LS[17]	CLK_IC_IF_200					two outputs; full
CLK_IC_LS	not used					speed and half speed

11.3.1 Block diagram

At POR, all clocks are output at 30 MHz (x1 from USB/SATA osc). The $\it Figure~27$ shows the STi7105 ClockGen A block diagram.

STi7105 Clocking

PLL0 (1600) DIVO HS Matrix OR CLK_DIV_HS[3:0] source selection HS (900) DIVO_1 LS (450) DIVO_OSC DIVO_HS PLL1 (800) Matrix OR source selection DIVO 1 DIV2 clk_osc_a clk_osc_b CLK_OSC Optional Pre divider CLK_DIV_LS[17] DIV_OSC clk_osc_c by 16 CLK_IC_LS \bowtie CLKGENA_CLOCKOBS_MUX_1_OF(Internal/interface ClockGenA clocks clk_osc_d Obs Counter \boxtimes Obs CLK_FUNCOBS CLK OP divider control source switch internal/interface clockgenA clocks

Figure 27. STi7105 ClockGen A block diagram

11.3.2 Clock-off and reduced power

T1 target interfac

Clocks in group A can be slowed to less than 1MHz, through register programming or low power signal from LPC, or stopped.

Obs

CLK_FUNCOBS2

div

CLKGENA CLOCKOBS MUX 2 CFG

11.3.3 **Clock observability**

CLK_STBUS

All the clocks of the ClockGen A can be observed on the TRIGGEROUT pad.

The CLOCK_OUT_SEL[5:0] bits of the CLKGNA_CLKOBS_MUX_X_CFG (where X = 1 and 2) configuration register is provided to select the clock which will be routed to the pad.

11.4 Video decoder, display, and Comms clock generation (ClockGen B)

This ClockGen is mainly responsible for generating the clocks used by the video display pipeline. This includes the following units:

- SD and HD displays
- compositor
- video output stage (formatters, HDMI, and DENC)

STBus interface

HD and SD video DACs

In addition, ClockGen B also generates some processing clocks for the following units:

comms-LPC/PWM

Clocking STi7105

ClockGen B comprises two digitally controlled frequency synthesizers (FS0 and FS1). The reference clock can be either an internal 30 MHz clock (USB) signal or a clock connected to the SYSCLKINALT pin. The reset value is the SATA Phy clock.

The ClockGen B also includes a digital clock recovery module to recover the encoder clock.

The block diagram of ClockGen B is shown in Figure 29.

11.4.1 Clock signals

The Table 62 lists the group B clocks with their maximum frequency.

Table 62. Clock generator B

Clock name	Maximum frequency (MHz)	Description
CLK_PIX_HD	148.5	HD pixel clock
CLK_PIX_SD	148.5	SD pixel clock (support HD format)
CLK_DISP_HD	148.5	HD display clock
CLK_DISP_ID	13.5	SD display clock
CLK_GDP3	148.5	GDP3 pixel clock (HD or SD)
CLK_656	148.5	DVO0 pixel clock
CLK_PP	150	Delta Preprocessors
CLK_DAA	32.768	DAA clock
CLK_DSS	36.864	DSS clock
CLK_LPC	46.875	Low Power Controller clock
CLK_TTXT	27	Teletext clock
CLK_SERLZR_HDMI	148.5	HDMI serializer clock
CLK_BCH_HDMI	148.5	HDMI BCH clock
CLK_TMDS_HDMI	148.5	HDMI TMDS clock
CLK_656_1	148.5	DVO1 pixel clock

The frequency of all the clocks is programmable. Especially, the video clocks must be set up with respect to the display standard in use.

The *Table 63* gives some programming examples with respect to the targeted application.

Table 63. Video clock domains by applications

Application Main 1090n/60Hz CDD2 on main		CLK_PIXEL_HD	CLK_DISP_HD	CLK_PIXEL_SD	CLK_DISP_ID	CLK_656	CLK_TMDS_HDMI	CLK_GDP3	
Main (1080p60) &	Main 1080p/60Hz	GDP3 on main	148.5	148.5	27	13.5	148.5	148.5	148.5
Aux	or 720p/60Hz (HD) Aux: 480i / 576i (SD)	GDP3 on aux	148.5	148.5	27	13.5	148.5	NA	13.5

158/313 8065505 Rev D

STi7105 Clocking

Table 63. Video clock domains by applications

lable 63. Video	clock domains by ap	piications			1				
Application			CLK_PIXEL_HD	CLK_DISP_HD	CLK_PIXEL_SD	CLK_DISP_ID	CLK_656	CLK_TMDS_HDMI	CLK_GDP3
	Main 1080i/30Hz	GDP3 on main	148.5	74.25	27	13.5	148.5	74.25	74.25
Main (HD) & Aux (HD)	or 720p/60Hz (HD) Aux: 1080i/30 Hz or 720p/60Hz(HD) (no DACs outputs)	GDP3 on aux	148.5	148.5	148.5	74.25	148.5	NA	74.25
	Main 1080i/30Hz	GDP3 on main	148.5	74.25	27	13.5	148.5	74.25	74.25
Main & Aux	or 720p/60Hz (HD) Aux: 480i / 576i (SD)	GDP3 on aux	148.5	74.25	27	13.5	148.5	NA	13.5
Main & Aux	Main 480p/576p (ED)	GDP3 on main	108	27	27	13.5	54	27	27
Ivialii & Aux	Aux: 480i / 576i (SD)	GDP3 on aux	108	27	27	13.5	54	NA	13.5
Alternate (main to denc)	Main 480i/576i (SD) Aux: 480i / 576i (SD)	GDP3 on main	108	13.5	27	NA	27	27	13.5
Main & Aux SCART	Main 1080i/30Hz or 720p/60Hz (HD) Aux: 480i / 576i (SD)	GDP3 on main	108 (from FS0)	74.25	27	13.5	148.5	74.25	74.25
	Aux. 4001 / 5701 (5D)	GDP3 on aux	148.5	74.25	27	13.5	148.5	NA	13.5
	Main 480i/ 576i (SD) -	GDP3 on main	108	13.6	27	13.6	NA	NA	13.5
Main & Aux pseudo- SCART	TV (video + gfx) Aux: 480i / 576i (SD) - VCR (video only)	GDP3 on aux	108	13.5	27	13.5	NA	NA	13.5

11.4.2 Clock generator B startup configuration

After the reset phase, the ClockGen B is by default configured with a 13.5 MHz display clock on both the Main and Auxiliary video outputs.

Table 64. Clock generator B default configuration

Clock name	Frequency (MHz)	Description
CLK_PIX_HD	148.5	HD pixel clock
CLK_PIX_SD	148.5	SD pixel clock
CLK_DISP_HD	13.5	HD display clock
CLK_DISP_ID	13.5	SD display clock
CLK_GDP3	148.5	GDP3 pixel clock (HD or SD)
CLK_656	148.5	DVO pixel clock
CLK_DVP	27	DVP clock
CLK_DAA	32.768	DAA clock
CLK_DSS	36.864	DSS clock

Clocking STi7105

Table 04. Clock generator b detault configuration (continued)				
Clock name	Frequency (MHz)	Description		
CLK_LPC	46.875	Low Power Controller clock		
CLK_PP	27	DeltaMu Preprocessor clock must be re-programmed for 150 MHz frequency.		
CLK_FSO_CHAN0	108	Clock to HDMI PII rejection		
CLK_TMDS_HDMI	27	HDMI TMDS clock		
CLK 656 1	13.5	DVO1 pixel clock		

Table 64. Clock generator B default configuration (continued)

11.4.3 Clock frequency change

The clock generator always starts with the default configuration as defined in *Table 64*. Nevertheless, the frequency synthesizers FS0 and FS1 can be re-configured to produce different frequencies.

Clock generator programming—lock/unlock

To prevent any unwanted ClockGen reprogramming, a protection mechanism is provided using the CKGB_LOCK register. This register must be written first with the keyword 0xC0DE to authorize any ClockGen registers update. Writing another data to the CKGB_LOCK register locks all the ClockGen registers.

Clock ratio change without changing FS0 and FS1 programming

The clocks CLK_BCH_HDMI, CLK_TMDS_HDMI, Clk_656_1, CLK_PIX_HD, CLK_DISP_HD, CLK_656, CLK_GDP2, CLK_DISP_ID, and CLK_PIX_SD are generated from a master clock (from FS0 and FS1), which is then divided by programmable dividers (by 2, 4, 8, or 1024). These dividers can be redefined using the register CKGB_DISP_CFG without changing the FS0 and FS1 setup. The clock generator design ensures a glitch-free frequency change.

FS0 and FS1 frequency definition

The frequencies generated by FS0 and FS1 are defined by the registers CKGB_FS0/1_MDx, CKGB_FS0/1_PEx and CKGB_FS0/1_SDIVx and is given by the formula:

$$\mathsf{F}_{out} = \frac{2^{15} \cdot \mathsf{F}_{PLL}}{\mathsf{sdiv} \times \left[\left(\mathsf{pe} \cdot \left(1 + \frac{\mathsf{md}}{32} \right) \right) - \left((\mathsf{pe} - 2^{15}) \cdot \left(1 + \frac{\mathsf{md} + 1}{32} \right) \right) \right]}$$

with F_{PLL} = 216 MHz, if the reference clock is 27 MHz or with F_{PLL} = 240 MHz, if the reference clock is 30 MHz.

To avoid glitches at the frequency synthesizer output, only the MD, PE, and EN_PRG parameters can be changed. The other parameters can be changed but glitches will occur.

11.4.4 Clock frequency reduction

Most of the group B clocks can be divided to reduce the power consumption with the register CKGB_CLK_DIV without stopping the clocks.

11.4.5 Clocks observation

Any group B clock can be routed and observed on the SYSCLKOUT pad.

The configuration register CKGB_CLKOUT_SEL is provided to select the clock which will be routed to the pad.

CKGB_CLOCKOUT0_SEL[3:0] RESERVED _ CLK_TMDS_HDMI -RESERVED -2 3 CLK_PIX_HD -CLK_DISP_HD -CLKB_OBS 5 CLK_656 -(SYSCLKOUT pad) CLK_GDP3 -6 7 CLK_DISP_ID -CLK_PIX_SD _ 8 CLK_DSS -9 CLK_DAA -10 11 **RESERVED** 12 CLK_LPC -13 14 **RESERVED** 15 **RESERVED** CKGB_CLOCKOUT1_SEL[3:0] 0 RESERVED -CLK_TMDS_HDMI 1 2 **RESERVED** 3 CLK_PIX_HD CLK_DISP_HD 5 CLK_656 CLK_GDP3 CLK_DISP_ID CKGB_CLKOUT1 CLK_PIX_SD 8 CLK_DSS CLK_DAA 10 11 CLK_PP FS0_CHAN3 -12 CLK_LPC -13 14 **RESERVED RESERVED** 15 Note: SYSCLKOUT pad is rated to operate up to 100 MHz.

Figure 28. FS0 and FS1 clocks observation

Confidential

STi7105 Clocking

Figure 29. ClockGen B block diagram

11.4.6 Frequency synthesizers reference clock

The reference clock of two frequency synthesizers is selectable and can be chosen between the 30 MHz clock coming from the SATA Phy or from the pad SYSCLKINALT.

11.5 Audio clock generation (ClockGen C)

The ClockGen C is responsible for clocking the following units:

- multichannel PCM Player 0 (CLK_PCM0) connected to HDMI or external DACs (stereo)
- stereo PCM Player 1 (CLK_PCM1) connected to internal audio DACs and to HDMI stereo channels
- S/PDIF Player
- stereo audio DAC

Clocking STi7105

> The audio clock generator is a quad-frequency synthesizer which generates the 256 x Fs (audio sampling frequency) from which the I²S serial clock, left-right clock and DAC oversampling clocks are derived.

Typical audio sampling frequencies are: 32 kHz, 44.1 kHz, and 48 kHz for Set-top box applications, and can be up to 192 or 96 kHz for DVD applications.

The three audio players have independent clock generators issued from the same quadfrequency synthesizer. The frequency synthesizer channel#0 clocks the PCM player#0, the channel#1 clocks the PCM player#1, and the channel#2 clocks the S/PDIF player.

Refer to Section 3.12: Audio subsystem on page 28 for a full overview of the Audio system clocking.

The Figure 30 shows the block diagram of ClockGen C.

Figure 30. ClockGen C block diagram

11.5.1 Frequency synthesizer reference clock

The reference clock of the frequency synthesizer is selectable and can be chosen between the 30 MHz clock coming from the SATA Phy or from the pad SYSCLKINALT. The reset value is the SATA Phy clock.

11.6 LMI memory clocks (ClockGen D)

The ClockGen D supplies clocks to the LMI memory interface(s). This is a simple ClockGen with a PLL only, the dividing function, to generate the GPLMI IP Mclk, is done inside the LMI padlogic.

Information classified Confidential - Do not copy (See last page for obligations)

STi7105 Clocking

11.6.1 Clock signals

The *Table 65* lists group D clocks with their maximum and reset frequency.

Table 65. Clock Generator D

Clock name	Maximum frequency (MHz)	Reset frequency (MHz)	Description
CLK_LMI_PL	800	0	
CLK_LMI	400	0	Phase altered and divided by 2 version of CLK_LMI_PL

11.6.2 Reference clock

The reference clock can be either an internal 30 MHz clock signal or a clock connected to the SYSCLKINALT pin. The reset value is SYSCLKALTIN.

11.6.3 Clock frequency reduction

Flexible, CPU can reprogram the PLL controls.

11.7 MPEG clock recovery

The MPEG clock recovery is a mechanism to adjust the locally generated clocks with the encoder clock referenced in the program counter reference (PCR) located in the adaptation field of the incoming transport stream.

The STi7105 generates three local clocks from internal frequency synthesizers using a fixed and stable 27 MHz reference clock produced by a crystal.

These three clocks are:

- CLK_PIX_SD used for standard definition display
- CLK_PIX_HD used for high definition display
- CLK_PCM (256 x Fs, where Fs can take several possible values, such as 32 kHz, 44.1 kHz, and 48 kHz) used for audio output

11.7.1 Clock recovery principle

The mechanism assumes that these three clocks are related to each other.

The recovery is done as usual for the CLK_PIX_SD (generated by the frequency synthesizer FS#0) by comparing the 42 bits PCR value located in the adaptation field of the stream with the local system timer counter (STC) value when a packet arrives. This generates a potential correction that is applied to the CLK_PIX_SD frequency synthesizer. The frequency synthesizer is programmed with new setup values to slow or accelerate the clock.

Regarding the Audio PCM clock recovery, two counters are used.

- A PCM free-running counter, clocked by the PCM Audio frequency synthesizer FS#2.
- A reference counter, clocked by the SD video frequency synthesizer FS#0. The
 maximum value of this counter is programmable defining the time interval between two
 consecutive resets. This counter is used as a time-base.

When the reference counter resets, the values of the free-running counter clocked off CLK_PCM is captured into a readable register. This event generates an interrupt to the CPU (CRU_IRQ). The CPU reads the value and compares it with the previously captured value. The difference between two adjacent values gives an indication of the correction to apply to the PCM audio frequency synthesizer FS#2.

The decision to correct the frequency synthesizer's setup is under the control of the software.

The same principle applies for the recovery of the CLK_PIX_HD. A free-running counter is clocked with the HD video frequency synthesizer FS#1. The same reference counter is used. When this counter resets then the output of the free-running counter clocked at CLK_PIX_HD is captured into a readable register.

The Figure 31 shows the block diagram of clock recovery unit (CRU).

Figure 31. CRU block diagram

12 Power-On-Reset and system reset

12.1 Reset sources

The different reset sources are:

- Power-On-Reset (POR) signal, which is applied on the RESETN pad (with glitch suppression using a Schmitt type pad)
- watchdog reset generated by the ST40 internal Watchdog Timer (WDT)
- UDI reset sent through the ST40 debug port
- software reset from the ST40 to the ST231 CPU through the ST231 reset filters
- smartcard insertion
- long time-out reset (front-panel reset button)

The ST40 manual reset is not used, only the PMU_PRESET_N POR reset is used.

12.2 POR reset (cold reset) vs. system reset (warm reset)

In the POR sequence (cold reset), everything is reset including the clock generators and captured mode pins values.

In the system reset (warm reset) sequence, everything is reset except clock generators and a part of system configuration. The system reset sequence is executed when the reset source is watchdog, UDI, long-time-out reset, or smart card insertion.

The long-time-out reset can be performed with an interrupt generated from a PIO. The CPU can use this interrupt to identify a long-time-out reset, and then use the WDT to generate a system reset.

12.3 Reset test mode

The reset generator includes a test mode that allows to bypass all the stretchers, and to directly apply a reset signal simultaneously to all the units.

Mode pins STi7105

13 Mode pins

The *mode pins* are a group of pads configured in the input mode, and are dedicated to capture values during the power-on-reset sequence that are used to configure certain defined functionalities. The captured values are viewed in the SYSTEM_STATUS1 register.

The mode pins are captured at the rising-edge of the RST_N signal during the reset phase, and are made available to the system to define operating modes, such as ClockGen boot configuration. The *Table 66* describes the mapping of the mode pins on PIO pads.

Table 66. Mode pins mapping

Bit	Bit field	Controlled unit	Controlling Pad
MODE[0]	Ref clock selection for Clockgen A 0: SYSCLKINALT (Ext) 1: Osc (SATA)	ClockGen A	MIIMDIO [PIO8(3)]
MODE[2:1]	PLL0 startup configuration ⁽¹⁾ 00: Fin/Fout–27/900 MHz 01: Fin/Fout–27/604.8 MHz 10: Fin/Fout–30/900 MHz 11: Fin/Fout–30/600 MHz	ClockGen A	[PIO16(1,0)]
MODE[4:3]	PLL1 startup configuration ⁽¹⁾ 00: Fin/Fout–27/799.2 MHz 01: Fin/Fout–27/399.6 MHz 10: Fin/Fout–30/800 MHz 11: Fin/Fout–30/400 MHz	ClockGen A	MIIMDINT: MIIMDC [PIO9(6):PIO8(4)]
MODE[6:5]	Reset bypasses ⁽²⁾ CPU_RST_OUT_BYPASS[1]: bypass of (LX_Audio+LXDelphi) reset loop back CPU_RST_OUT_BYPASS[0]: bypass of (SH4+LX_Audio+LXDelphi) reset loop back		[PIO16(3:2)]
MODE[7]	Resetout mode (see SYSTEM_CONFIG9, long_reset_mode bit) ⁽³⁾	Reset generator	MIITX_EN [PIO8(2)]
MODE[9:8]	BOOT mode selection: 00: SH4-300 boot first 01: ST231 DeltaMu boot first 10: ST231 Audio boot first		MIIRXD[3:2] [PIO9(1:0)]
MODE[10]	Reserved (Do not connect)	Reserved	MIIRX_DV [PIO7(4)]
MODE[11]	nand_addr_short_not_long ⁽⁴⁾	Nand Controller	MIIRX_ER [PIO7(5)]
MODE[12]	Serial Flash usage: 0: ATMEL 1: ST Flash	EMI4	MIIRXD[0] PIO8(6)
MODE[13]	Boot device port size at boot: (4) 0: 16 bits 1: 8 bits	EMI4 and Nand Controller	[PIO16(4)]

168/313 8065505 Rev D

STi7105 Mode pins

Table 66. Mode pins mapping (continued)

Bit	Bit field	Controlled unit	Controlling Pad
MODE[14]	emiss_slave_not_master	EMI subsystem	MIIRXD[1] [PIO8(7)]
MODE[16:15]	Boot Device: 00: NOR Flash (EMI controller) 01: Nand Flash (Nand Controller) 10: Serial Flash (SPI controller) 11: Reserved	EMI subsystem	MIITXD[1:0] [PIO7(7:6)]
MODE[17]	emiss_clock_slave_not_master	EMI subsystem	MIITXD[2] [PIO8(0)]
MODE[18]	nand_page_large_not_small ⁽⁴⁾	Nand Controller	MIITXD[3] [PIO8(1)]

- 1. It allows to setup ClockGen A PLL0 and PLL1 configurations (freq input /freq output) without relying on software. The ClockGen A registers CLKGENA_CLKOPSRC_SWITCH_CFG/CFG2 have to be configured to switch the source of STi7105 clocks from oscillator (default mode after reset) to PLL. The usage of mode pins allows to speed-up the ClockGen A configuration. By the time the software changes the CLKGENA_CLKOPSRC_SWITCH_CFG/CFG2 setting, the PLL may already be locked (so normally that allows to mask the PLL lock time). For more details, please contact your local ST representative to access ClockGen A functional specifications.
- 2. Allows to bypass the CPUs handshake in the chain of the reset generator. After boot, the modepin value can be bypassed by using the SYSTEM_CONFIG9[28:27] register (this register is not reset in case of watchdog reset, also it takes the value of the two modepins at reset). A typical usage of this system config bit is to bypass the ST231 resetout. Infact, the ST40 may change the boot address of the ST231 (by default 0x0). To allow the ST231 to take into account this new boot address it must be reset again through a config register (SYSTEM_CONFIG29). In that case, you do not propagate the resetout of the ST231 to the others IPs which may have already been configured.
- 3. It selects the resetout mode (SYS_WDOGRSTOUT pin):

In Long ResetOut mode, the reset value guarantees a 200 ms reset out for the resetout.

In Short ResetOut mode, resetout lasts 100 us.

The resetout period is loaded during reset (RST_CONF) on the SYSTEM_CONFIG9[25:0] register (being the resetout period value depending on the mode pin 7 value). This register is not reset in case of watchdog reset and it can be reprogrammed after reset to allow for a resetout period of 2.48 s.

 The Nand controller selects among the different memory types based on the three input signals: nand_page_large_not_small, nand_add_short_not_long, and nand_data_8_not_16. Refer Table 67.

Table 67. Memory type based on static input pins

Type select signal				
nand_page_lar ge_not_small	nand_add_shor t_not_long	nand_data_8_n ot_16	Туре	Comment
0	0	1	3	small page devices
0	0	0	4	
0	1	1	1	
0	1	0	2	
1	0	1	7	large page devices
1	0	0	8	
1	1	1	5	
1	1	0	6	

System configuration registers reset

Some System configuration registers are not affected by a system reset. They keep the value which was written either during the POR reset or by the software.

These registers are:

- mode pins value captured during the POR sequence
- reset generator configuration—resetout duration, CPUresetout bypass(1:0)
- boot mode
- boot size—boot Flash bus width (8 or 16 bits)

14 Low power control

Power down mode in the STi7105 consists of having some or almost all clocks running 1024 times as slow as their normal speed. This reduces power consumption dramatically and still enables some software to be running, also, it enables the chip to be woken up fairly quickly without having to reboot the application.

Note:

Certain precautions must be taken to achieve this: In particular, the DDR SDRAM must be put into self-refresh mode prior to entering this mode, and at wake up there must be no access to DDR until the DDR and associated PadLogic have been restored to their normal mode of operation. If the LMI clock is slowed down (to less than 100 MHz), the DDL of the LMI padlogic will no longer be operational. It will also be necessary to update the refresh interval.

Additionally, a standby mode is provided whereby some clocks can be completely switched off. This can be a power saving feature for applications where functionalities clocked by a dedicated clock will never be needed.

The standby mode includes different mechanisms: switch-off clocks by programming the ClockGen or some bits of the system configuration module (for the EMI and DDR self-refresh), standby, and sleep modes in the ST40.

The ST40 also supports two main low power modes: sleep and standby (see *ST40 sleep* and standby modes overview on page 175).

The EMI clock cannot be switched off with the ClockGen. Both IPs support the powerdown protocol: this is managed by a simple hand-shake between the system configuration register (under control of the CPU) and the two IPs. This mechanism allows the EMI clock to be switched off selectively.

The same mechanism is used to send the DDR into self-refresh mode (powerdown protocol between the LMI Core and the system config module).

14.1 Entering low power modes

Method 1.1: by programming configuration bits in the ClockGen

Using configuration bits of the ClockGen, some clocks can selectively be slowed down (divided by 1024) to enter power down mode whilst others keep their nominal speed. Refer to the ClockGen specifications.

Note:

Standby mode (clocks halted) is also controllable through configuration bits of the ClockGen.

Method 1.2: using the low power controller (LPC) module

A global power down command can be issued by using the low power alarm (LPA) timer of the LPC module (part of STi7105 COMMs). Refer to *Figure 32 on page 174*.

Low power control STi7105

All clocks, for which the 1024 divider ratio is available inside the two ClockGens, will be slowed down: the 1024 division is not currently implemented for the following clocks:

- In the ClockGen A:
 - CLK_EMI_MASTER_A (EMI clock @ 100 MHz)
 - CLK_ETHERNET_A (Ethernet clock @ 100 MHz)
- In the ClockGen B:

LPC specification for details.

- CLK DSS (DSS clock @ 36.768 MHz)
- CLK_DAA (DAA clock @ 32.768 MHz)
- CLK_EMI_MASTER_B (EMI clock @ 100 MHz)
- CLK_ETHERNET_B (Ethernet clock @ 100 MHz)

Power Down mode is entered upon programming of the LPA timer.

Note: 1 The usage of the LPA Counter is not compatible with use as a WatchDog Timer. Refer to the

- 2 Standby mode (clocks completely switched off) cannot be entered through the LPC.
- 3 The only way to slow down the clocks for which the 1024 divider ratio is not implemented inside the ClockGen, is to bypass the PLL (By doing this it is possible to reach frequencies in the range of a few MHz), or to use the clockgen configuration registers to reduce the clock frequency generated by the PLL. Refer to clockgen specifications for details.

Method 1.3: using a global power down control bit

A global power down command (all clocks slowed down) can be issued by setting the appropriate configuration bit located in the CONF block register (refer to the System Configuration bit SYSTEM_CONFIG7[23]). Global standby mode (clocks completely switched off) cannot be entered this way.

14.2 Exiting low power modes

Method 2.1: through configuration bits in the ClockGen

If power down is entered by Method 1.1 above, it can clear the bits that are already set in ClockGen while exiting.

Note:

This is also valid for standby mode (that is, when clocks were halted through ClockGen configuration).

Method 2.2: through the LPC

If power down is entered by Method 1.2 above: when the LPA counter reaches zero, the LPC releases the global power down command and the ClockGen exits power down mode. The duration of the countdown is user programmable, and can be programmed from a few milliseconds to up to 271 days after LPA has been programmed (LPA counter is 40 bits clocked at 46.87 kHz).

Method 2.3: upon detection of activity on the UHF or IRB inputs

This generates an interrupt (IRB_WAKEUP_INTERRUPT) to the ILC3, which, assuming it has first been programmed accordingly, treats it as a wake up request that it routes to the LPC and also to the CONF module (to clear the global powerdown bit). Refer to *Figure 32* on page 174.

172/313 8065505 Rev D

Note:

IMPORTANT: the IRB_WAKE_UP interrupt routed to the ILC3 will be generated only if the global power down command is received by the wake-up interrupt generator module. This implies that the LPC must be programmed (METH 1.2). Of course this has also the effect of slow down by 1024 the frequency clocks.

If power down is entered by method 1.2: the LPC, when it receives the wake up request from the ILC, clears the global power down command that goes to the ClockGen and normal speed is restored.

If power down is entered by method 1.3: the global powerdown control bit in the CONF block, when it receives the wake up request from the ILC, clears the global power down command that goes to the ClockGen and normal speed is restored.

If power down is entered by method 1.1: the configuration bits in the ClockGen must be set back to their normal value. This can be done by an interrupt routine. However, if DDR is not operational (because it was sent in self-refresh) this means the interrupt servicing routine is stored in the ST40 cache or stored in external Flash, if EMI is not switched off.

In the case that the interrupt going to the ILC3 upon detection of IRB/UHF activity can be treated as a normal interrupt, servicing it then consists of restoring the ClockGen configuration bits.

Note:

The same interrupt can be also used to wake-up the ST40 from sleep or standby mode since four interrupt levels provided by the ILC3 are connected to the ST40 IRL.

Method 2.4: upon firing of any selected interrupt

This is just an extension of the latter case. In fact if the condition that the relevant interrupt handler is not located in DDR is fulfilled, then any source can be programmed to trigger the interrupt routine that will clear configuration bits in the ClockGen if power down was entered in that way (method 1.1), or clear the LPA counter to restore normal operation if power down was controlled from the LPC (method 1.2).

Low power control STi7105

WAKE-UP_PULSE_RC_IRDA/UHF/IRD_ASC 3 Wake-up Int. generator PIOs IRB2 \times Rx processor (IRB/UHF inputs) GLOBAL POWER DOW To ClockGen IRB_WAKEUP_INTERRUPT IRQ_EXT[4] Interrupt level controller (ILC3) wakeup CLK_IC_100 GLOBAL_POWER_DOWN ILC_EXT_ R/W 4 Interrupt levels to ST40 IRL Low LOWPOWEROUT_FROM_LPC WAKEUP_BY_INT power controller) μC LOW_POWER_II To ILC3 ext interrupt [7]

Figure 32. Low power mode control hardware

14.3 DDR self-refresh

Confidentia

To send the DDR in self-refresh the CPU needs to write a bit in the system config register:

SYSTEM_CONFIG11: GP-LMI / LMI padlogic config control register

bit[12] LMIPL_PLL_POWERDOWN: PLL power down

This write operation activates the powerdown protocol for the LMI Core (a powerdown request is received by the LMI). The LMI core completes all of the outstanding operations, it

174/313 8065505 Rev D

STi7105 Low power control

puts the DDR in self-refresh mode and then answers with a powerdown grant. This can be monitored by means of a status bit in the system conf register:

SYSTEM_STATUS4: LMI padlogic status register, bit[0] **LMI_PWRD_ACK**: LMI power acknowledge

As soon the acknowledge is received the LMI clock can be switched off or slowed down using the methods described before.

After exiting from low power mode the DLLs inside the LMI padlogic must be reset by means of a soft reset using the sys conf bit and the lock condition must be reached:

SYSTEM_CONFIG11: GP-LMI / LMI padlogic config control register

bit[27] RST_N_LMI: LMI sub system reset. Active Low

Note: This procedure has the effect of resetting the LMI core. This implies that the LMI core configuration must be re-done.

The software needs to guarantee that no access is performed to the LMI during powerdown and until LMI and padlogic are restored to the normal mode of operation.

14.4 EMI and PCI clocks stopping

The clocks of these three IPs can be switched off with the same mechanism used to put the DDR into self-refresh (that is, by means of the powerdown protocol executed between the system config and the two IPs). For that case the system config bits to be used are:

- SYSTEM_CONFIG32: Power down config register
 - bit[1] EMI_POWER_DOWN_REQ: Power down request for EMI module
 - bit[2] PCI_POWER_DOWN_REQ: Power down request for PCI module
- SYSTEM_STATUS15: Power down status register
 - bit[1] POWER_DOWN_ACK_EMI: EMI power down acknowledge
 - bit[2] POWER_DOWN_ACK_PCI: PCI power down acknowledge

14.5 ST40 sleep and standby modes overview

The ST40-300 ISA includes a sleep instruction that can be used to suspend operation of the core to the point where the clocks can be stopped. The ST40-300 top also provides signals to inform an SoC level power or clock controller when it is safe to remove the clock and to determine whether the CSP clock should be stopped or not.

Note: The STi7105 ClockGenA does not allow the ST40 clocks to be switched off because of the missing hand-shake with the ST40. ST40 clocks can only be slowed-down.

Sleep mode

On executing the sleep instruction the ST40-300 core will flush the instructions in the pipeline and complete all outstanding STBus transactions on the initiator port. Once this has been completed the CPU will assert the EXT_ST40_CORE_PDACK signal to indicate that the clock to the core can be removed.

Information classified Confidential - Do not copy (See last page for obligations)

Low power control STi7105

The actual gating of the clock provided to the core is expected to be performed at the SoC level from the clock controller itself in response to the EXT_ST40_CORE_PDACK signal being asserted. This is done to allow the entire clock tree to be stopped and therefore to maximize the dynamic power-saving.

Note:

The STi7105 ClockGenA does not allow the ST40_ICK clock to be switched off because of the missing hand-shake with the ST40.

The CSP also provides a mechanism to enter sleep mode as directed by a system level clock or power controller. In this case the CSP is instructed to enter sleep mode by the system level assertion of the EXT_ST40_CSP_PDREQ signal. At this point the CSP will complete all outstanding STBus requests that it has received. Once the CSP is idle it will internally switch the relevant wake-up control signals to operate correctly with the CSP clock removed and will then assert EXT_ST40_CSP_PDACK to indicate that it is safe to stop the clock to the CSP.

The actual gating of the clock provided to the CSP is expected to be performed at the SoC level from the clock controller itself in response to the EXT_ST40_CSP_PDACK signal being asserted. This is done to allow the entire clock tree to be stopped and therefore to maximize the dynamic power-saving.

Note:

- Neither the core nor the CSP will signal readiness to have their clocks removed until all outstanding transactions are completed. Consequently, a pending access to a non-responding peripheral will prevent the ST40-300 entering sleep mode. The system designer must ensure that other initiators and targets in the system are shut down in a manner that ensures all transactions can be completed safely.
- 2 The STi7105 ClockGenA does not allow the ST40_PCK clock to be switched off because of the missing hand-shake with the ST40.

Exiting sleep mode

Two conditions will cause the ST40 core to exit sleep mode.

- An interrupt on the NMI, IRL, through the interrupt expansion interface or generated by one of the CSP peripherals (if the CSP is still being clocked).
- Either a manual or power-on reset. This can be applied either through the relevant pins on the core, the UDI, or by the watchdog timer.

De-asserting EXT_ST40_CSP_PDREQ will not cause the CSP or core to resume from sleep and will be ignored. When a return from sleep mode is requested the CSP will deassert the EXT_ST40_CSP_PDACK signal to indicate to the system level clock controller that it is ready for its clock to be started.

Note:

Before starting the CSP clock the system level clock controller should de-assert EXT_ST40_CSP_PDREQ to prevent the CSP from re-entering sleep mode.

Once it has started to receive a clock the CSP will return to functional mode and will assert the STBus default grant signal to indicate it can start to accept transactions from the STBus.

The CSP will also internally signal to the core that it is to wake-up from sleep mode, at which point the core will de-assert its EXT_ST40_CORE_PDACK and wait until the core clock is re-started by the clock controller therefore allowing the core to continue with execution of instructions.

Note:

There is no mechanism in place to prevent the CSP from transitioning into sleep even if the CPU is in functional mode. An operation where the core is being clocked and the CSP is powered down is not supported and should be avoided except during the transition to and from sleep mode.

176/313 8065505 Rev D

15 System config module

15.1 Brief overview

The System Config is a module that holds general purpose configuration registers. It can also be used to read back some system configurations.

Register addresses are shown as SystemConfigBaseAddress + Offset

The SystemConfigBaseAddress is: 0xFE00 1000

15.1.1 Register summary

Table 68. Register summary

Address offset	Register	Description	Reference		
0x0000	DEVICE_ID	Device identifier	on page 180		
0x0004	EXTRA_DEVICE_ID	Reserved	on page 180		
		Status registers			
8000x0	SYSTEM_STATUS0	USB/SATA PHY status register	on page 181		
0x000C	SYSTEM_STATUS1	Mode pin status captured during power-on-reset	on page 181		
0x0010	SYSTEM_STATUS2	OSC status register	on page 182		
0x0014	SYSTEM_STATUS3	LMI-PADLOGIC (LMI_SYS) status register	on page 182		
0x0018	SYSTEM_STATUS4	LMI-PADLOGIC (LMI_SYS) status register	on page 183		
0x001C	SYSTEM_STATUS5	ClockGen D Jitter estimator capture pattern monitor	on page 183		
0x0020	SYSTEM_STATUS6	ClockGen D Jitter estimator beat edge monitor	on page 184		
0x0024	SYSTEM_STATUS7	Compensation status registers	on page 184		
0x0028	SYSTEM_STATUS8	ClockGenD Jitter estimator beat edge counter monitor	on page 185		
0x002C	SYSTEM_STATUS9	HDMI PLL status register	on page 185		
0x0030	SYSTEM_STATUS10	USB/LMI PLI Bist counter status register	on page 186		
0x0034	SYSTEM_STATUS11	Reserved	on page 186		
0x0038	SYSTEM_STATUS12	Thermal sensor status register	on page 187		
0x003C	SYSTEM_STATUS13	Reserved	on page 187		
0x0040	SYSTEM_STATUS14	Reserved	on page 188		
0x0044	SYSTEM_STATUS15	Power down status register	on page 188		
Configuration registers					
0x0100	SYSTEM_CONFIG0	Transport config register	on page 189		
0x0104	SYSTEM_CONFIG1	HDMI PHY compensation code register	on page 190		

Confidential

Address offset	Register	Description	Reference
0x0108	SYSTEM_CONFIG2	HDMI PHY configuration register	on page 191
0x010C	SYSTEM_CONFIG3	DAC /HDMI config register	on page 192
0x0110	SYSTEM_CONFIG4	USB / Delta -Mu config register	on page 193
0x0114	SYSTEM_CONFIG5	EMI/PCI config register	on page 194
0x0118	SYSTEM_CONFIG6	Vidout config register	on page 195
0x011C	SYSTEM_CONFIG7	COMMS /Ethernet config register	on page 196
0x0120	SYSTEM_CONFIG8	SH4 boot control config register	on page 198
0x0124	SYSTEM_CONFIG9	ResetGen config register (only sensitive to preset)	on page 199
0x0128	SYSTEM_CONFIG10	ITRQ pads control pin config register	on page 200
0x012C	SYSTEM_CONFIG11	LMI padlogic config register	on page 200
0x0130	SYSTEM_CONFIG12	LMI padlogic config register	on page 201
0x0134	SYSTEM_CONFIG13	LMI padlogic config register	on page 203
0x0138	SYSTEM_CONFIG14	LMI padlogic config register	on page 204
0x13C	SYSTEM_CONFIG15	Key scan / FDMA config register	on page 204
0x0140	SYSTEM_CONFIG16	Comms SSC configuration register	on page 205
0x0144	SYSTEM_CONFIG17	CPXM config control register	on page 206
0x0148	SYSTEM_CONFIG18	pad state config control register	on page 207
0x014C	SYSTEM_CONFIG19	PIO 0 alternate function control register	on page 207
0x0150	SYSTEM_CONFIG20	PIO 1 alternate function control register	on page 208
0x0154	SYSTEM_CONFIG21	PIO 2 alternate function control register	on page 208
0x0158	SYSTEM_CONFIG22	Compensation config registers	on page 209
0x015C	SYSTEM_CONFIG23	Compensation config registers	on page 210
0x0160	SYSTEM_CONFIG24	Osc config register	on page 211
0x0164	SYSTEM_CONFIG25	PIO 3 alternate function control register	on page 211
0x0168	SYSTEM_CONFIG26	ST230 Lx - AUDIO boot	on page 212
0x016C	SYSTEM_CONFIG27	ST230 Lx - AUDIO reset control and periph address	on page 212
0x0170	SYSTEM_CONFIG28	ST230 DELTA - MU boot	on page 213
0x0174	SYSTEM_CONFIG29	ST230 DELTA -MU reset control and periph address	on page 213
0x0178	SYSTEM_CONFIG30	Reserved	on page 214
0x017C	SYSTEM_CONFIG31	EMI config register	on page 214
0x0180	SYSTEM_CONFIG32	Power Down config register	on page 215
0x0184	SYSTEM_CONFIG33	SOFT_JTAG register for the USB2.0 tap controller	on page 216

178/313 8065505 Rev D

Address offset	Register	Description	Reference
	CVCTEM CONFICOA	DIO 4 alternate from etion, control versietes	
0x0188	SYSTEM_CONFIG34	PIO 4 alternate function control register	on page 216
0x018C	SYSTEM_CONFIG35	PIO 5 alternate function control register	on page 217
0x0190	SYSTEM_CONFIG36	PIO 6 alternate function control register	on page 217
0x0194	SYSTEM_CONFIG37	PIO 7 alternate function control register	on page 218
0x0198	SYSTEM_CONFIG38	LMI config register	on page 218
0x019C	SYSTEM_CONFIG39	Reserved	on page 219
0x01A0	SYSTEM_CONFIG40	Clock select config register	on page 219
0x01A4	SYSTEM_CONFIG41	Thermal sensor config register	on page 220
0x01A8	SYSTEM_CONFIG42	LMI config register	on page 220
0x01AC	SYSTEM_CONFIG43	LMI config register	on page 221
0x01B0	SYSTEM_CONFIG44	Reserved	on page 221
0x01B4	SYSTEM_CONFIG45	Reserved	on page 222
0x01B8	SYSTEM_CONFIG46	PIO 8 alternate function control register	on page 222
0x01BC	SYSTEM_CONFIG47	PIO 9 alternate function control register	on page 223
0x01C0	SYSTEM_CONFIG48	PIO 12 alternate function control register	on page 223
0x01C4	SYSTEM_CONFIG49	PIO 13 alternate function control register	on page 224
0x01C8	SYSTEM_CONFIG50	PIO 15 alternate function control register	on page 224
0x01CC	SYSTEM_CONFIG51	LMI config register	on page 225
0x01D0	SYSTEM_CONFIG52	LMI config register	on page 226
0x01D4	SYSTEM_CONFIG53	Reserved	on page 226
0x01D8	SYSTEM_CONFIG54	Reserved	on page 227
0x01DC	SYSTEM_CONFIG55	LMI config	on page 227
		INTC2 registers	1
0x0300	INTC2_PRIORITY00	Reserved	on page 228
0x0304	INTC2_PRIORITY04	Reserved	on page 228
0x0308	INTC2_PRIORITY08	Reserved	on page 229
0x0320	INTC2_REQUEST00	Reserved	on page 229
0x0324	INTC2_REQUEST04	Reserved	on page 229
0x0328	INTC2_REQUEST08	Reserved	on page 230
0x0340	INTC2_MASK00	Reserved	on page 230
0x0344	INTC2_MASK04	Reserved	on page 230
0x0348	INTC2_MASK08	Reserved	on page 231
0x0360	INTC2_MASK_CLEAR00	Reserved	on page 231
0x0364	INTC2_MASK_CLEAR04	Reserved	on page 231

Confidential

Information classified Confidential - Do not copy (See last page for obligations)

Address offset	Register	Description	Reference
0x0368	INTC2_MASK_CLEAR08	Reserved	on page 232
0x0380	INTC2_MODE	Reserved	on page 232

15.1.2 Device ID register descriptions

DEVICE_ID

Device ID register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	NOISGEN	VENSION				9	טורף טטהף							i c	טרעם. טר										MANUFACTURER_ID						JTAG_BIT	

Address: SystemConfigBaseAddress + 0x0000

Type: R

Reset: 0x2D43E041⁽¹⁾ **Description:** JTAG deviceID

[31:28] **VERSION**

[27:22] **GROUP_ID**

[21:12] **DEVICE_ID**

[11:1] MANUFACTURER_ID

[0] JTAG_BIT

EXTRA_DEVICE_ID

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0004

Type: R

Reset: 0xXXXX

Description: Reserved

[31:0] RESERVED

^{1.} This reset value is for cut 3.0. The reset value is 0x1D43E041 for cut 2.0 and 0x0D43E041 for cut 1.0.

15.1.3 System status register description

SYSTEM_STATUS0

USB/SATA PHY status register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													מויימומו															BISTOK	TDO_USB	rdo_sata	RESERVED

Address: SystemConfigBaseAddress + 0x0008

Type: R

Reset: 0x0000

Description: USB/SATA Phy status

[31:4] RESERVED

[3] BISTOK: High level means that bist is running into USB PHY device and no error is detected.

[2] **TDO_USB**: USB2 PHY TDO signal.

[1] TDO_SATA: SATA PHY TDO signal.

[0] RESERVED

SYSTEM STATUS1

Confidential

Mode pins values register

3	1 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г							Ü																z									
							≨																虱									
							敱																Ы									
							Ш																፬									
							ш																2									

Address: SystemConfigBaseAddress + 0x000C

Type: R

Reset: Undefined⁽¹⁾

Description: Mode pins values

[31:19] **RESERVED**

[18:0] MODE_PIN: Mode pins are captured during the power-on-reset period.

477

^{1.} Reset value depends on modepins value

OSC status register

Address: SystemConfigBaseAddress + 0x0010

Type: R

Reset: 0x00000000

Description: OSC status

[31:1] RESERVED

[0] OSCI30_OSCIOK:

1: OSCI 30 MHz oscillation stable (ZI output enabled)

0: OSCI 30 MHz oscillation unstable

SYSTEM STATUS3

LMI status register

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		RESERVED		LMIPL_IOREF_COMPOK				LMIPL_IOREF_NASRC[6:0]				LMIPL_DLL2_LOCK					-MIPL_DLL2_COMMAND[8:0]					LMIPL_DLL1_LOCK					-MIPL_DLL1_COMMAND[8:0]					LMIPL_PLL_LOCK	

Address: SystemConfigBaseAddress + 0x0014

Type: R

Reset: 0xXXXX⁽¹⁾ **Description:** LMI status

[31:29] **RESERVED**

- [28] LMIPL_IOREF_COMPOK: Can be high only in normal mode and when a new measured code is available on the ASRC lines. When macrocell turns from any other mode to normal mode, delay constraints are applied to COMPOK signal.
- [27:21] **LMIPL_IOREF_NASRC[6:0]:** Input code to be copied on the AxSRC lines by the compensation cell in Read mode.
 - [20] LMIPL_DLL2_LOCK: DLL2 lock.

1: DDL2 is locked

0: DDL2 is unlocked

^{1.} From LMI Padlogic

[19:11] LMIPL_DLL2_COMMAND[8:0]: DLL2 command. Reports the command currently being generated by DLL2.

[10] LMIPL_DLL1_LOCK: DLL1 lock.

1: DDL1 is locked 0: DDL1 is unlocked

[9:1] LMIPL_DLL1_COMMAND[8:0]: DLL1 command. Reports the command currently being generated by DLL1.

[0] LMIPL_PLL_LOCK: LMIPL PLL lock signal.

1: LMI PLL is locked 0: LMI PLL is unlocked

SYSTEM_STATUS4

LMI padlogic status register

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													RESERVED															DDR2_DIAG_MONITOR[4:0]			LMI_DQS_FAIL	LMI_PWRD_ACK

Address: SystemConfigBaseAddress + 0x0018

Type: R

Reset: 0x00000000

Description: LMI padlogic config status

[31:7] RESERVED

[6:2] **DDR2_DIAG_MONITOR[4:0]:** For future development.

[1] LMI_DQS_FAIL:

1: Notification for DQS spurious/missing behavior

[0] LMI_PWRD_ACK:

1: LMI power acknowledge

SYSTEM_STATUS5

Clockgen D Jitter estimator capture pattern monitor

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				JITT	ER_	CAP	TUR	E_N	OT_I	PATT	ERN									JI	TTE	R_C	APTI	JRE.	_PAT	TER	RN				

Address: SystemConfigBaseAddress + 0x001C

Type: R

Reset: 0x00000000

Description: ClockGenD Jitter estimator capture pattern monitor

[31:16] JITTER_CAPTURE_NOT_PATTERN

[15:0] JITTER_CAPTURE_PATTERN

Information classified Confidential - Do not copy (See last page for obligations)

SYSTEM_STATUS6

Clockgen D Jitter estimator beat edge monitor

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

JITTER_BEAT_EDGE

Address: SystemConfigBaseAddress + 0x0020

Type: R

Reset: 0x00000000

Description: ClockGenD Jitter estimator beat edge monitor

[31:21] **RESERVED**

[20:0] JITTER_BEAT_EDGE

SYSTEM_STATUS7

Compensation status register

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				נו נו נו	RESERVED							CONF_3V3COMP2_NASRC				CONF_3V3COMP2_COMPOK				CONF_3V3COMP1_NASRC				CONF_3V3COMP1_COMPOK				CONF_3V3COMP0_NASRC				CONF_3V3COMP0_COMPOK

Address: SystemConfigBaseAddress + 0x0024

Type: R

Reset: 0x00000000

Description: Compensation status

[31:24] **RESERVED**

[23:17] CONF_3V3COMP2_NASRC: 3V3 compensation 2: NASRC code

[16] CONF_3V3COMP2_COMPOK: 3V3 compensation 2: COMPOK signal

[15:9] CONF_3V3COMP1_NASRC: 3V3 compensation 1: NASRC code

[8] CONF_3V3COMP1_COMPOK: 3V3 compensation 1: COMPOK signal

[7:1] CONF_3V3COMP0_NASRC: 3V3 compensation 0: NASRC code

[0] CONF_3V3COMP0_COMPOK: 3V3 compensation 0: COMPOK signal

ClockGenD Jitter estimator beat edge counter monitor

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			, i	KESEKVED							CONF_3V3COMP3_NASRC				CONF_3V3COMP3_COMPOK								HTTED BEAT EDGE COUNTER	יון ובח_שבאו_בטמב_כססויובח							

Address: SystemConfigBaseAddress + 0x0028

Type: R

Reset: 0x00000000

Description: ClockGenD Jitter estimator beat edge pattern monitor

[31:24] **RESERVED**

[23:17] CONF_3V3COMP3_NASRC: 3V3 compensation 3: nasrc code

[16] CONF_3V3COMP3_COMPOK: 3V3 compensation 3: compok signal

[15:0] JITTER_BEAT_EDGE_COUNTER

SYSTEM STATUS9

HDMI PLL status register

Address: SystemConfigBaseAddress + 0x002C

Type: R

Reset: 0x00000000

Description: HDMI PLL status

[31:1] RESERVED

[0] HDMI_PLL_LOCK: Used to check lock condition of HDMI rejection PLL.

1: HDMI rejection PLL is locked 0: HDMI rejection PLL is unlocked

USB/LMI PLI Bist counter status register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RESERVED							USB2_PLL_BIST_COUNT									USB1_PLL_BIST_COUNT									LMI_PLL_BIST_COUNT				

Address: SystemConfigBaseAddress + 0x0030

Type: R

Reset: 0x00000000 Description: Reserved

[31:27] **RESERVED**

[26:18] USB2_PLL_BIST_COUNT: Value of USB2 PLL Bist counter value

[17:9] USB1_PLL_BIST_COUNT: Value of USB1 PLL Bist counter value

[8:0] LMI_PLL_BIST_COUNT: Value of LMI PLL Bist counter value

Caution:

In case of USB signals, the usual naming convention is not used. In order to align with the STi7105 ballout names, this manual mentions two instances of USB as USB1 and USB2 rather than USB0 and USB1. Therefore, in this manual the first instance of USB is USB1 and the second instance is USB2.

SYSTEM_STATUS11

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 RESERVED

Address: SystemConfigBaseAddress + 0x0034

Type: R

Reset: 0xXXXX

Description: Reserved

[31:0] RESERVED

Thermal sensor status register

3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						C L	HESEHVED							VOBS				DATA				DATAREADY	OVERFLOW				INTREG				COMPOUT

Address: SystemConfigBaseAddress + 0x0038

Type: R

Reset: 0x00000000

Description: Thermal sensor status

[31:18] **RESERVED**

[17] VOBS: Reserved to debug - not connected in application.

[16:10] DATA: Output data.

- [9] DATAREADY: Set to '1' every 32 clock cycles when conversion is over, valid for 1 clock period, held at '0' as long as the bandgap has not started.
- [8] OVERFLOW: Overflow of digital adder, corresponds to the upper limit of the temperature range after calibration.
- [7:1] **INTREG:** Reserved to debug not connected in application.
 - [0] **COMPOUT:** Reserved to debug not connected in application.

SYSTEM STATUS13

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RESERVED

Address: SystemConfigBaseAddress + 0x003C

Type: R

Reset: 0x00000000

Description: Reserved

[31:0] **RESERVED**

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0040

Type: R

Reset: 0x00000000 Description: Reserved

[31:0] **RESERVED**

SYSTEM_STATUS15

Power down status register

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
												1 1 1 1													POWER_DOWN_ACK_SATA1	RESERVED	POWER_DOWN_ACK_USB2	POWER_DOWN_ACK_USB1	POWER_DOWN_ACK_KEY_SCAN	POWER_DOWN_ACK_PCI	POWER_DOWN_ACK_EMI	RESERVED	

Address: SystemConfigBaseAddress + 0x0044

Type:

Confidentia

Reset: 0x00000000

Description: Power down status

- [31:8] RESERVED
 - [7] POWER_DOWN_ACK_SATA1:
 - 1: SATA host power down acknowledge
 - [6] RESERVED
 - [5] POWER_DOWN_ACK_USB2:
 - 1: USB2 host power down acknowledge.
 - [4] POWER_DOWN_ACK_USB1:
 - 1: USB1 host power down acknowledge
 - [3] POWER_DOWN_ACK_KEY_SCAN:
 - 1: Key scanner power down acknowledge
 - [2] POWER_DOWN_ACK_PCI:
 - 1: PCI power down acknowledge
 - [1] POWER_DOWN_ACK_EMI:
 - 1: EMI power down acknowledge
 - [0] RESERVED

15.1.4 System configuration register description

SYSTEM_CONFIG0

Transport stream config register

A SERVED CFG_TSINA_PARALLEL_NOT_SERIAL COFG_TSINA_SELECT CFG_TSINA_SELECT CFG_TSINA_SELECT

Address: SystemConfigBaseAddress + 0x0100

Type: RW

Reset: 0x00000000

Description: Transport stream config register

[31:5] RESERVED

[4] CFG_TSIN3_PARALLEL_NOT_SERIAL:

1: TSIN3 is in parallel mode 0: TSIN3 is in serial mode

[3] CFG_TSIN3_SELECT:

1: TSIN3 of TS_Merger receives TSIN3

0: TSIN3 of TS_Merger receives output of mux_1 (that is, TSIN0, TSIN1, OR TSIN2 depending upon CFG_TSIN0_TSIN1_SELECT and CFG_TSIN2_NOTSELECT)

[2] CFG_TSIN2_NOTSELECT:

1: input TSIN2 of TSMerger receives output of mux_0 (i.e. TSIN0 or TSIN1 depending of CFG_TSIN0_TSIN1_SELECT)

0: input TSIN2 of TSMerger recieves TSIN2

[1] CFG_TSIN0_TSIN1_SELECT:

- 1: TSIN1 routed through mux_0 to input 1 of mux_1
- 0: TSIN0 routed through mux_0 to input 1 of mux_1
- [0] RESERVED

CFG_TSIN2_NOTSELECT CFG TSIN3 SELECT CFG_TSIN0_TSIN1_SELECT CFG_TSIN1_SRC_SELECT TSIN0 TSin0 PIO13(7: 4), PIO14(7:0) TSin0 parallel TSin1 PIO15(4:0), PIO12(4:0) parallel / serial TSin 1 TSIN1 mux 0 TSin1 PIO12(7: 0), PIO13(3 parallel / serial mux_5 **TSMerger** mux_3 PIO14(5:1) TSIN2 TSin2 TSin2 0 0 serial/parallel PIO6(7: 0), PIO7(3:0) TSin3 PIO14(5: 1), PIO7(3:0) TSin3 TSIN3 CFG TSIN2 SRC SELECT \times PIO12(7:5) PIO13 (1:0) **TSOUT** TS1394 **PIO12** TSIN1 or TSout1394 mux_4 (1394 interface) PIO12_ALTFOPJ_MUX_SEL_BUS(7:0) & PIO13_ALTFOPJ_MUX_SEL_BUS(3:0) = MUX4_SELECT Transport subsystem

Figure 33. Transport stream routing to TSMerger

Note: CFG_TSIN3_PARALLEL_NOT_SERIAL is an extra programming required to select parallel mode. On reset, the TSIN3 stream by default is in serial mode. Since, on PIO TSIN3 can be selected both in parallel and serial mode, therefore, to receive TSIN3 in parallel mode this bit must be first programmed to 1. Then, serial not parallel configuration inside TSmerger

will also be required to process TSIN3 in serial/parallel mode.

SYSTEM CONFIG1

Confidentia

HDMI PHY compensation config register

 $31 \quad 30 \quad 29 \quad 28 \quad 27 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 \quad 19 \quad 18 \quad 17 \quad 16 \quad 15 \quad 14 \quad 13 \quad 12 \quad 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$

USER_COMP

Address: SystemConfigBaseAddress + 0x0104

Type: RW

Reset: 0x00000000

Description: HDMI PHY compensation config register

[31:0] USER_COMP: External compensation code command to be applied to the HDMI phy.

HDMI / HDMI phy config register

 $31 \quad 30 \quad 29 \quad 28 \quad 27 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 \quad 19 \quad 18 \quad 17 \quad 16 \quad 15 \quad 14 \quad 13 \quad 12 \quad 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3$ PREEMPWDTHEXT HDMI_PHY_PREEMPWDTH[2:0 ENABLE COMPENSATION_BYPASS DIVSEL ENABLE PREEMPON SEL HDMI PHY PREEMPSTRI HDMI_POFF_ENABLE USER_COMP[47:32] SRC HDMI_HOT_PLUG_ PROG[1:0] BCH_HDMI ž AUDIO PH SEC HDMI_PHY_ HDMI HDMI HDMI SLK L

Address: SystemConfigBaseAddress + 0x0108

Type: RW **Reset:** 0x0000

Description: HDMI PHY config register

[31] RESERVED

[30] HDMI_AUDIO_SRC_SEL:

1: Audio SRC is 8-channel PCM out 0: Audio SRC is 2-channel stereo

[29] HDMI_CEC_RX_ENABLE:

[28] CLK_BCH_HDMI_DIVSEL

[27] HDMI_HOT_PLUG_ENABLE:

1: Enables mapping of HDMI_HOT_PLUG_IN on PIO

[26] **HDMI_POFF_ENABLE:**

1: Enables power off on HDMI 0: Disables POFF

[25] HDMI_PHY_PREEMPWDTHEXT

[24:22] HDMI_PHY_PREEMPWDTH[2:0]

[21:20] HDMI_PHY_PREEMPSTR[1:0]

[19] HDMI_PHY_PREEMPON

[18:17] PROG[1:0]: Programs the output buffer speed for PROGB/PROGA.

x0: Speed set up to 1.6 Gbps 01: Speed set up to 800 Mbps

1: Speed set up to 400 Mbps

[16] COMPENSATION_BYPASS: Selects internally generated compensation bits or external compensation code.

1: Provides compensation bits generated by Pivot compensation cell

0: Provides external bits generated by USER_COMP to compensation cell

[15:0] USER_COMP[47:32]: External compensation command bit.

Confidentia

Video DAC / HDMI config register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				PLL_S_HUMI_MUIV													PLL_S_HDMI_PDIV		PLL_S_HDMI_ENABLE	S_HDMI_RST_N	DVONOTPAD_DVP_MAIN	TST_DAC_HD_CMDR	TST_DAC_HD_CMDS	TST_DAC_SD_CMDR	TST_DAC_SD_CMDS	DAC_HD_HZU	DAC_HD_HZV	DAC_HD_HZW	DAC_SD_HZU	DAC_SD_HZV	DAC_SD_HZW

Address: SystemConfigBaseAddress + 0x010C

Type: RW

Reset: 0x32644000

Description: DAC config

[31:24] PLL_S_HDMI_MDIV[7:0]: Sets the dividing factor of the 8-bit programmable input divider.

[23:16] PLL_S_HDMI_NDIV[7:0]: Sets the dividing factor of the 8-bit programmable loop divider.

[15:13] PLL_S_HDMI_PDIV[2:0]: Sets the dividing factor of the 3-bit programmable output divider.

[12] PLL_S_HDMI_ENABLE: This signal determines the mode of operation of the rejection PLL.0: PLL is powered down1: Rejection PLL is powered up

[11] S_HDMI_RST_N:

0: HDMI serializer reset is asserted 1: HDMI serializer is de-asserted

[10] **DVONOTPAD_DVP_MAIN**:

0: DVP video input coming from pads 1: DVP video input coming from DVO

- [9] TST_DAC_HD_CMDR: Functions with CMDR signals. Can be used to force DAC HD O/P.
- [8] TST_DAC_HD_CMDS: Functions with CMDS signal. Can be used to force DAC HD O/P.
- [7] TST_DAC_SD_CMDR: Functions with CMDR signals. Can be used to force DAC SD O/P.
- [6] TST_DAC_SD_CMDS: Functions with CMDS signal. Can be used to force DAC SD O/P.
- [5] DAC_HD_HZU:
 - 1: Disables the DAC HD output current and puts the O/P in high impedance mode, but leaves the reference circuitry powered for fast recovery to active mode.
- [4] DAC HD HZV:
 - 1: Disables the DAC HD output current and puts the O/P in high impedance mode, but leaves the reference circuitry powered for fast recovery to active mode.
- [3] **DAC_HD_HZW**:
 - 1: Disables the DAC HD output current and puts the O/P in high impedance mode, but leaves the reference circuitry powered for fast recovery to active mode.
- [2] DAC_SD_HZU:
 - 1: Disables the DAC SD output current and puts the O/P in high impedance mode, but leaves the reference circuitry powered for fast recovery to active mode.
- [1] DAC_SD_HZV:
 - 1: Disables the DAC SD output current and puts the O/P in high impedance mode, but leaves the reference circuitry powered for fast recovery to active mode.
- [0] DAC_SD_HZW:
 - 1: Disables the DAC SD output current and puts the O/P in high impedance mode, but leaves the reference circuitry powered for fast recovery to active mode.

192/313 8065505 Rev D

STBus / USB config control register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
							RESERVED								USBPHY_INEDGECTRL2	USB_INDCSHIFT2	USBPHY_INEDGECTRL1	USB_INDCSHIFT1	CFG_USB2_OVRCURR_ENABLE	CFG_USB1_OVRCURR_ENABLE	CFG_TSIN2_SRC_SELECT	CFG_TSIN1_SRC_SELECT	RESERVED	USB_PHY_XTAL_VALID	USB2_PRT_OVCURR_SEL	USB1_PRT_OVCURR_SEL	USB2_PRT_OVCURR_POL	USB1_PRT_OVCURR_POL	PLI_CLOCK_STOP	USB_HOST_SOFT_RESET_ENABLE	ENABLE_TID_DELTAMU	

Address: SystemConfigBaseAddress + 0x0110

Type: RW

Reset: 0x00000126

Description: STBus/ USB Config

[31:17] **RESERVED**

Confidential

[16] USBPHY_INEDGECTRL2:

1: USBPHY_INEDGECTRL2 is active 0: USBPHY_INEDGECTRL2 is inactive

[15] USB_INDCSHIFT2

1: USBPHY_INDCSHIFT2 is active 0: USBPHY_INDCSHIFT2 is inactive

[14] USBPHY_INEDGECTRL1:

1: USBPHY_INEDGECTRL1 is active 0: USBPHY_INEDGECTRL1 is inactive

[13] USB_INDCSHIFT1:

1: USBPHY_INDCSHIFT1 is active 0: USBPHY_INDCSHIFT1 is inactive

[12] CFG_USB2_OVRCURR_ENABLE:

1: USB2_overcurrent is enabled 0: Disabled

[11] CFG_USB1_OVRCURR_ENABLE:

1: USB1_overcurrent is enabled 0: Disabled

[10] CFG_TSIN2_SRC_SELECT:

1: TSin2 is from PIO14 0: TSin2 is from PIO6

[9] CFG_TSIN1_SRC_SELECT:

1: TSin1 is selected from PIO15 0: TSin1 is from PIO12

[8] RESERVED

[7] USB_PHY_XTAL_VALID:

1: OSC input to USB PHY is stable 0: OSC input is invalid

[6] USB2_PRT_OVCURR_SEL:

1: USB2_PRT_OVCURR_IN is from PIO14[6] 0: From PIO4[6]

[5] USB1_PRT_OVCURR_SEL:

1: USB1_PRT_OVCURR_IN is from PIO12[5] 0: From PIO4[4]

5//

[4] USB2_PRT_OVCURR_POL:

1: USB2_PRT_OVCURR is active high 0: USB2_PRT_OVCURR is sensed active low

[3] USB1_PRT_OVCURR_POL:

1: USB1_PRT_OVCURR is active high 0: USB1_PRT_OVCURR is sensed active low

[2] PLI_CLOCK_STOP:

1: Stops the PLL1600 clock output to LMI padlogic

[1] USB_HOST_SOFT_RESET_ENABLE:

1: Allows soft reset of USB host (active low)

[0] **ENABLE_TID_DELTAMU**:

1: Enables TID[3:0] generation for DeltaMu Rasta STBUS plug2

20 20 27 26 25 24 22 22 21 20 10 10 17 16 15 14 12 12 11 10 0 0 7

SYSTEM CONFIG5

EMI / PCI config register

31 3	30 2	29	28	27 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11 10	9 8	-/	ь	5 4	3	2	- 1	U
RESERVED		'CI_DEVICE_NOT_HOST_ENA	PCI_CLOCK_MASTER_NOT_SLAVE	RESERVED	PCI_LOCK_IN_SEL	PCI_SYS_ERROR_ENABLE	PCI_RESETN_ENABLE	PCI_INT_TO_HOST_ENABLE	PCI_INT0_FROM_DEVICE	PCI_INT1_FROM_DEVICE	PCI_INT2_FROM_DEVICE	RESERVED	PCI_LOCK_IN_ENABLE			RESERVED			FMI_PULLUP_DISABLE[1:0]	FMI_GEN_CFG[1:0]	RESERVED	FMI_BUSFREE_ACCESS_ENABLE	RESERVED	RESERVED	RESERVED	RESERVED	DVBCI_MODE_ENABLE

Address: SystemConfigBaseAddress + 0x0114

Type: RW

Reset: 0x04000040

Description: EMI / PCI config

[31:30] **RESERVED**

[29] PCI_DEVICE_NOT_HOST_ENABLE:

1: PCI is a device 0: PCI is a host

[28] PCI_CLOCK_MASTER_NOT_SLAVE:

1: PCI clock is master 0: PCI clock is slave

[27:26] **RESERVED**

[25] PCI_LOCK_IN_SEL:

1: PCI_LOCK_IN is from PIO15[5] 0: PCI_LOCK_IN is from PIO7[0]

[24] PCI_SYS_ERROR_ENABLE:

1: Indicates PCI_SYSTEM_ERROR enabled 0: ISs disabled

[23] PCI_RESETN_ENABLE:

1: Indicates PCI_RESETN_FROM_HOST_TO_DEVICE is enabled

0: Indicates PCI_RESETN_FROM_HOST_TO_DEVICE is disabled

194/313 8065505 Rev D

[22] PCI_INT_TO_HOST_ENABLE:

1: Indicates INT_PCI_TO_HOST enabled 0: Indicates INT_PCI_TO_HOST is disabled

[21] PCI_INTO_FROM_DEVICE:

1: Indicates PCI_INT_FROM_DEVICE[0] is enabled 0: Indicates disabled

[20] PCI_INT1_FROM_DEVICE:

1: Indicates PCI_INT_FROM_DEVICE[1] is enabled 0: Indicates disabled

[19] PCI_INT2_FROM_DEVICE:

1: Indicates PCI_INT_FROM_DEVICE[2] is enabled 0: Indicates disabled

[18] RESERVED

[17] PCI_LOCK_IN_ENABLE:

1: Indicates usage of PCI_LOCK_IN is enabled 0: indicates disabled

[16:12] **RESERVED**

[11:10] **FMI_PULLUP_DISABLE[1:0]:**

1: Pullup is disabled 0: Pullup is enabled

[9:8] FMI_GEN_CFG[1:0]: Decides whether re-timing stages are used or not in FMI padlogic

[7] RESERVED

[6] FMI_BUSFREE_ACCESS_ENABLE:

1: EMI_BUS_FREE_ACCESSPENDING_IN enabled 0: Indicates disabled

[5:4] **RESERVED**

[3] RESERVED

[2] RESERVED

[1] RESERVED

[0] **DVBCI_MODE_ENABLE**:

1: Indicates DVB-CI mode is enabled 0: DVBCI mode is disabled

SYSTEM CONFIG6

Video-out config control register

31	30	29	28	27	26	25	24 2	3 2	2 2	1 2	20	19	18	17	16	15	14	13	12	11 10	9	8	/	6	5	4	3	2	1	0	
							RESERVED									OLD_FASHIONED_DVO1	AUX_NOT_MAIN_DVO1	REF_NO_SYNCH_DVO1	H_NOT_V_DVO1	SPDIF_CHANNEL_SEL		PCMPLYR0_OUT_SEL		OLD_FASHIONED_DVO0	AUX_NOT_MAIN_DVO0	REF_NO_SYNCH_DV00	H_NOT_V_DV00	BOT_NOT_TOP_INVERSION	AUDIO_SYNC_MAIN_NOT_AUX	PIP_MODE	

Address: SystemConfigBaseAddress + 0x0118

Type: RW **Reset:** 0x0000

Description: Video-out config

[31:16] **RESERVED**

[15] OLD_FASHIONED_DVO1:

1: H/V reference and synch are from main 0: H/V reference and synch are from VTG1

[14] AUX_NOT_MAIN_DVO1:

1: H/V reference is taken from AUX channel 0: H/V reference is taken from main channel

[13] REF_NO_SYNCH_DVO1:

1: Input from pad is H/V reference 0: Input is H/V sync for DVO1

[12] **H_NOT_V_DVO1**:

1: H ref/sync is selected 0: V ref/sync is selected for DVO1

[11:10] SPDIF_CHANNEL_SEL:

00: SPDIF_CH0 is selected 01: SPDIF_CH1 is selected 10: SPDIF_CH2 is selected 11: SPDIF_CH3 is selected

[9:7] **PCMPLYR0_OUT_SEL:**

000: PCM channel 0 is routed to PCM_READER

[6] OLD_FASHIONED_DVO0:

1: H/V reference and synch are from main 0: H/V reference and synch are from VTG0

[5] AUX_NOT_MAIN_DVO0:

1: H/V reference is taken from AUX channel 0: H/V reference is taken from main channel

[4] REF_NO_SYNCH_DVO0:

1: Input from pad is H/V reference 0: Input is H/V sync for DVO0

[3] **H_NOT_V_DVO0**:

1: H ref/sync is selected 0: V ref/sync is selected for DVO0

[2] BOT_NOT_TOP_INVERSION:

1: Inversion is enabled 0: Inversion is disabled

[1] AUDIO_SYNC_MAIN_NOT_AUX:

1: Audio synch is taken from VTG_MAIN 0: Audio synch is taken from VTG_AUX

[0] PIP_MODE:

1: Video2 plug of compositor is routed to main mixer else on AUX mixer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

SYSTEM CONFIG7

Comms/Ethernet config control register

Address: SystemConfigBaseAddress + 0x011C

Type: RW

Reset: 0x08081000

Description: COMMS/Ethernet config

196/313 8065505 Rev D

- [31:28] **RESERVED**
 - [27] **ENMII**:

1: MII mode 0: Reverse MII mode

[26:25] PHY_INTF_SELECT: Selects the type of Ethernet mode

00: MII mode (Default) 01: Reserved

1x: Reserved

- [24] RESERVED
- [23] GLOBAL POWER DOWN:

1: Activate low power 0: Normal mode

- [22] DAA_CONFIG_CTRL: DAA configuration control
- [21] RESERVED
- [20] MAC_SPEED_SEL:
 - 1: Indicates that the MAC is running at 100 Mbps speed
 - 0: Indicates that the MAC is running at 10 Mbps speed

Remark: Useless if RMII interface is not activated (SYSTEM_CONFIG7[18]). MAC speed does not need to be specified in MII mode.

- [19] RESERVED
- [18] **RMII_MODE**:

1: RMII interface activated 0: MII

0: MII interface activated

- [17] MIIM_DIO_SELECT:
 - 1: MIIM_DIO from external input, else from GMAC
- [16] ETHERNET_INTERFACE_ON:

1: Ethernet on (pads enables controlled by MAC) 0: All MII pads in input mode

- [15:13] **RESERVED**
 - [12] DAA_SERIAL_MODE: DAA serial interface mode select pin
 - 1: Sets a start pulse on FSYNC at the beginning of the transition
 - 0: Sets a low level on FSYNC at the beginning of the transition
 - [11] SC1_COND_VCC_ENABLE: Enables control of smart card VCC upon detection of smart card removal or insertion. This bit is overridden by PDES_SC_MUXOUT, which is driven by a configuration bit in the PDES.
 - 1: Alternate PIO output pin SC_NOT_SETVCC is controlled according to input SC_DETECT
 - 0: Alternate PIO output pin SC_NOT_SETVCC is driven permanently low
 - [10] SC_DETECT_VPP_POL:
 - 1: Output pin SC_NOT_SETVPP is inverted of PDES_SC_SETVPP
 - 0: Output pin SC_NOT_SETVPP is PDES_SC_SETVPP
 - [9] IRB_DATA_OUT_POL_OD: Selection of polarity of IRB output signal routed as alternate function IRB_DATA_OUT_OD to PIO_3[6] (normally configured as open-drain)
 - 0: IRB_DATA_OUT_OD has same polarity as IRB_DATA_OUT
 - 1: Polarity of IRB_DATA_OUT_OD is inverted
 - [8] SC0_DETECT_VCC_POL:
 - 1: Output pin SC_NOT_SETVPP is inverted 0: Output pin SC_NOT_SETVPP is not inverted

- [7] SCO_COND_VCC_ENABLE: Enables control of smart card VCC upon detection of smart card removal or insertion. This bit is overridden by PDES_SC_MUXOUT, which is driven by a configuration bit in the PDES.
 - 1: Alternate PIO output pin SC_NOT_SETVCC is controlled according to input SC_DETECT
 - 0: Alternate PIO output pin SC_NOT_SETVCC is driven permanently low
- [6] SC0 NOT SC1 SELECT:

1: Smartcard 0 is selected 0: Smartcard1 is selected

- U. Silialicaluli is selec
- [5] SCCLK1_NOT_CLKDSS: Smartcard clock muxing selection.
 - 1: Smart card clock sourced from smart card clock generator (COMMS): SCCLKGEN1_CLK_OUT
 - 0: Smart card clock sourced from CLK_DSS (CLKgen B)
- [4] SCCLK0_NOT_CLKDSS: Smartcard clock muxing selection.
 - 1: Smart card clock sourced from smart card clock generator (COMMS): SCCLKGEN0_CLK_OUT
 - 0: Smart card clock sourced from CLK_DSS (CLKgen B)
- [3] SC1_DETECT_VCC_POL:
 - 1: Output pin SC1_NOT_SETVCC is inverted
 - 0: Output pin SC1_NOT_SETVCC is un-inverted
- [2] UART2 CTS SRC SELECT:

1: UART2_CTS is from PIO12[2]

0: From PIO4[2]

[1] UART2_RXD_SRC_SELECT:

1: UART2_RXD is from PIO12[1]

0: From PIO4[1]

[0] **SCIF_PIO_OUTEN**:

1: SCIF output enable 0: Used as regular PIO

SYSTEM_CONFIG8

SH4 boot config control register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												SH4_RESET_ADDRESS[27:2]																RESERVED			SH4_ALLOW_BOOT

Address: SystemConfigBaseAddress + 0x0120

Type: RW **Reset:** 0x01⁽¹⁾

Description: This register configures the ST40 boot process. Bit 0 controls the ST40 boot request

upon reset. Its value depends on the mode_pins (9:8) captured during the reset

period.

[31:6] SH4_RESET_ADDRESS[27:2]: NDS compliance.

198/313 8065505 Rev D

^{1. 0}x01 when MODE[9:8]=00; ST40 boots, 0x00 for other values of MODE[9:8]

[5:1] RESERVED

[0] SH4_ALLOW_BOOT: SH4 request filter control.

1: Request enabled

0: Request bypassed

SYSTEM CONFIG9

Reset Gen config control register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CHVER		LONG_RESET_MODE	CPU_RST_OUT_BYPASS[1:0]		RESERVED														RESELOUI_PERIOD												

Address: SystemConfigBaseAddress + 0x0124

Type: RW

Reset: 0xXXXX⁽¹⁾

Description: Reset Gen config

[31:30] **RESERVED**

[29] LONG_RESET_MODE: ResetOut mode. Reset value from mode pin (7)

[28:27] CPU_RST_OUT_BYPASS[1:0]:

CPU_RST_OUT_BYPASS (1): bypass of (LX_Audio+LXDelphi) reset loop back CPU_RST_OUT_BYPASS (0): bypass of (SH4+LX_Audio+LXDelphi) reset loop back

Reset value from mode pin (6:5).

[26] RESERVED

[25:0] **RESETOUT_PERIOD**: Period of ResetOut in 27MHz cycles.

In Long ResetOut mode, the reset value guarantees a 200 ms reset out.

In short ResetOut mode, reset out lasts 100 us.

This dynamic of this register allows for a max reset out of 2.48 s.

Reset value: 0x5265C0 in long ResetOut mode^(a), 0x000A8C in short ResetOut mode

a. Long ResetOut mode is selected when the CONF input $mode_pin(7)$ is set to 1.

^{1.} Depends on mode pin

Information classified Confidential - Do not copy (See last page for obligations)

SYSTEM_CONFIG10

ITRQ pins config control register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													טיי	יר ק														3_DIR	_DIR	_DIR	_DIR
													0	753														ITRO3	ITRO2	ITRQ1	ITROC

Address: SystemConfigBaseAddress + 0x0128

Type: RW **Reset:** 0x000F

Description: ITRQ pins config

[31:4] RESERVED

[3] **ITRQ3_DIR**:

1: ITRQ3 is configured as input 0: ITRQ3 is configured as output

[2] ITRQ2_DIR:

1: ITRQ2 is configured as input 0: ITRQ2 is configured as output
[1] ITRQ1_DIR: 1: ITRQ1 is configured as input 0: ITRQ1 is configured as output

[0] ITRQ0_DIR: ITRQ0 pin direction:

0: ITRQ0 configured as output 1: ITRQ0 configured as input

SYSTEM CONFIG11

Confidentia

GP-LMI / LMI padlogic config control register

WNNACK_OPZ _OPZ _TO_PLI _TO_PLI _ECT _DOSEN
CMOS_MODE_LMI_POWERI LMIPL_DQS270_DEL RST_N_LMI RESERVED CLK1_ENABLE SINGLE_RANK_SEL

Address: SystemConfigBaseAddress + 0x012C

Type: RW

Reset: 0x00000D28

Description: LMI padlogic config

[31:30] **RESERVED**

[29] CMOS_MODE_LMI_POWERDWNACK_ENB

1: CMOS mode power mode is enabled 0: CMOS mode power mode is disabled

200/313 8065505 Rev D

- [28] LMIPL_DQS270_DEL_OPZ: Selects dqs270_del as 3T/4 or T/2 (1=T/2)
- [27] **RST_N_LMI**:

1: LMI sub system reset. Active Low.

[26:20] **RESERVED**

[19] LMI GLUE RETIME LMI TO PLI:

1: Re-time is done 0: No re-time

[18] CLK1_ENABLE:

1: clk1 is enabled 0: clk1 is disabled

[17] SINGLE_RANK_SELECT:

1: Single rank is selected 0: Dual rank (default)

[16] LMIPL BYPASS PDL DQSEN:

1: Bypasses PDL component of DQS_EN_DEL timing.

[15] LMIPL_BYPASS_PAD_DQS_VALID:

1: Bypasses dummy pad component of DQS_EN_DEL timing.

[14] LMI_SINGLE_RANK_SELECT:

1: Single rank is selected 0: Dual rank is selected

[13] LMIPL_ENABLE_ENZI:

1: Overrides ENZI disable when MODEZI = 0 (differential input mode).

[12] LMIPL_PLL_POWERDOWN: PLL power down

0: Normal mode 1: Power down mode

[11:9] LMIPL_PLLDIV_R[2:0]: Default values for PLL output clock at 666 MHz Values for PLL output clock at 800 MHz:
LMIPL0_PLLDIV_R(2:0) = 100

[8:1] LMIPL_PLLDIV_D[7:0]: Default values for PLL output clock at 666 MHz Values for PLL output clock at 800 MHz: LMIPL0_PLLDIV_R[2:0] = 100

[0] RST_N_LMIPL: LMISYS_PL reset. Active low.

SYSTEM CONFIG12

GP-LMI / LMI padlogic config control register

Address: SystemConfigBaseAddress + 0x0130

Type: RW

Reset: 0xA200180F

Description: GP-LMI / LMI padlogic config

[31] CONF_LMIPL_FUNC_OTHERS_PD (func_pdn_active_hi): Other pads than CMD, DQSN, CKN pulldown command.

- [30] CONF_LMIPL_FUNC_OTHERS_PU (func_pu_active_high): Other pads than CMD, DQSN, CKN pullup command.
- [29] CONF_LMIPL_FUNC_CMDDQSNCKN_PD (func_pdn_active_lo): CMD, DQSN, CKN pad pulldown command.
- [28] CONF_LMIPL_FUNC_CMDDQSNCKN_PU (func_pu_active_lo): CMD, DQSN, CKN pad pullup command.
- [27] LMIPL_IOREF_TQ:

1: IDDQ mode select.

[26] LMIPL_IOREF_DDR_COMP:

1: Controls PSW compensation signal.

[25] LMIPL_IOREF_ACCURATE:

1: Accurate mode select.

[24] LMIPL_IOREF_FREEZE:

1: Freezes compensation code.

- [23] LMIPL_IOREF_COMPTQ: Operating mode.
- [22] LMIPL IOREF COMPEN: Operating mode.
- [21:15] LMIPL_IOREF_RASRC[6:0]: Input code.
 - [14] LMIPL_FUNC_TQ_VREF: TQ setting for VREFIN pad control.
 - [13] LMIPL_FUNC_USEPAD_VREF: Use PAD setting for VREFIN pad.
 - [12] LMIPL_FUNC_ODTB:
 - [11] **LMIPL_FUNC_ODTA:** ODTA / ODTB controlling On Die Termination 00: Disabled 01: RTT2 = 150 Ω

10: RTT2 = 150 Ω

11: RTT1 = 75 Ω

- [10] LMIPL_FUNC_MODEZI: Receiver mode select (I/O MODEZI)
 - 0: Differential 2.5V receiver for DDR1 or Differential 1.8V receiver for DDR2
 - 1: 2.5V Digital CMOS receiver for DDR1 or 1.8V Digital CMOS receiver for DDR2
- [9] LMIPL_FUNC_ZOUTPROGA_CMD (func_zoutproga_abc): Outputs buffer impedance (I/O ZOUTPROGA).
- [8] LMIPL_FUNC_ZOUTPROGA_CK (func_zoutproga_k): Outputs buffer impedance (I/O ZOUTPROGA).
- [7] LMIPL_FUNC_ZOUTPROGA_DQDQSDM (func_zoutproga_d): Outputs buffer impedance(I/O ZOUTPROGA).

0: 25 Ω (Strong SSTL2)

1: 40 Ω (Weak SSTL2)

- [6] LMIPL_FUNC_PROGB_CMD (func_progb_abc): PROGB for CMD pads.
- [5] LMIPL_FUNC_PROGB_CK (func_progb_k): PROGB for CK/CKN pads.

- [4] LMIPL_FUNC_PROGB_DQDQSDM (func_progb_d): PROGB for DQ/DQS/DQSN/DM pads.
- [3] LMIPL_FUNC_PROGA_CMD (func_proga_abc): PROGA for CMD pads.
- [2] LMIPL_FUNC_PROGA_CK (func_proga_k): PROGA for CK/CKN pads.
- [1] LMIPL_FUNC_PROGA_DQDQSDM (func_proga_d): PROGA for DQ/DQS/DQSN/DM pads.
- [0] LMIPL_FUNC_DDR: DDR mode

0: DDR1 operation mode (2.5V)

1: DDR2 operation mode (1.8V)

SYSTEM CONFIG13

GP-LMI / LMI padlogic config control register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RESERVED					LMIPL_FORCE_DQS_VALID_MINUS_HALF	LMIPL_FORCE_ODT_INT_MINUS_HALF		RESERVED		LMIPLO_SEL_OEN_DEL					LMIPL0_DLL1_USR_CMD[8:0]							1		LMIPL0_DLL1_INT_CMD_CON	LMIPL0_DLL1_EXT_CMD_CON	LMIPL0_PDL_CLK_OPZ_DLL1	LMIPL0_DLL1_SOFT_RST

Address: SystemConfigBaseAddress + 0x0134

Type: RW

Reset: 0x00000000

Description: LMI padlogic config

- [31:23] **RESERVED**
 - [22] LMIPL_FORCE_DQS_VALID_MINUS_HALF: Utilizes negative shift of DDR 0.5 CAS latency in DDR2 mode for dqs270_valid timing.

0: Aligned 1: T/2

[21] LMIPL_FORCE_ODT_INT_MINUS_HALF: Utilizes negative shift of DDR 0.5 CAS latency in DDR2 mode for odt_int timing.

0: Aligned 1: T/2

- [20:18] **RESERVED**
 - [17] LMIPLO_SEL_OEN_DEL: DATA/DM output enable timing options (T/4 resolution).
- [16:8] LMIPLO_DLL1_USR_CMD[8:0]: Allows user control of DLL1 delay.
- [7:4] LMIPL0_DLL1_LOCK_CON[3:0]: Defines lock condition for DLL1.
 - [3] LMIPLO_DLL1_INT_CMD_CON: Controls which internal delay command is used for DLL1.
 - [2] LMIPLO DLL1_EXT_CMD_CON: Controls which external delay command is used for DLL1.
 - [1] **LMIPLO_PDL_CLK_OPZ_DLL1:** Selects CLK_COMMAND inputs for DLL1 PDLs (LOW = PDL output, HIGH = DLL output).
 - [0] LMIPLO_DLL1_SOFT_RST: DLL1 soft reset.

LMI padlogic config control register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RESERVED												LMIPL_DLL2_USR_CMD							LIVIII L_DLLK_LOON_COIN		LMIPL_DLL2_INT_CMD_CON	LMIPL_DLL2_EXT_CMD_CON	LMIPL_PDL_CLK_OPZ_DLL2	LMIPL_DLL2_SOFT_RST

Address: SystemConfigBaseAddress + 0x0138

Type: RW

Reset: 0x0000

Description: LMI Padlogic config

[31:17] **RESERVED**

[16:8] LMIPL_DLL2_USR_CMD: Allows user control of DLL2 delay.

[7:4] LMIPL_DLL2_LOCK_CON: Defines lock condition for DLL2.

- [3] LMIPL_DLL2_INT_CMD_CON: Controls which internal delay command is used for DLL2.
- [2] LMIPL_DLL2_EXT_CMD_CON: Controls which external delay command is used for DLL2.
- [1] **LMIPL_PDL_CLK_OPZ_DLL2:** Selects CLK_COMMAND inputs for DLL2 PDLs (LOW = PDL output, HIGH = DLL output).
- [0] LMIPL_DLL2_SOFT_RST: DLL2 soft reset.

1: DLL2 soft reset is active

0: DLL2 soft reset is inactive

SYSTEM CONFIG15

FDMA and key scan config register

,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FDMA_REQ3	FDMA_REQ2	FDMA_REQ1	FDMA_REQ0	FDMA_REQ3_ENABLE	FDMA_REQ2_ENABLE	FDMA_REQ1_ENABLE	FDMA_REQ0_ENABLE											RESERVED										KEY_SCANIN3_ENABLE	KEY_SCANIN2_ENABLE	KEY_SCANIN1_ENABLE	KEY_SCANINO_ENABLE

Address: SystemConfigBaseAddress + 0x013C

Type: RW

Reset: 0x000000

Description: FDMA and key scan config

[31] FDMA_REQ3: Internal FDMA req 3 ORed with external FDMA req 3

[30] FDMA_REQ2: Internal FDMA req 2 ORed with external FDMA req 2

[29] FDMA_REQ1: Internal FDMA req 1ORed with external FDMA req 1

[28] FDMA_REQ0: Internal FDMA req 0 ORed with external FDMA req 0

[27] FDMA_REQ3_ENABLE: External FDMA req 3 enable

[26] FDMA_REQ2_ENABLE: External FDMA req 2 enable

[25] FDMA_REQ1_ENABLE: External FDMA req 1 enable

[24] FDMA_REQ0_ENABLE: External FDMA req 0 enable

[23: 4] **RESERVED**

[3] KEY_SCANIN3_ENABLE:

[2] KEY_SCANIN2_ENABLE:

1: Indicates key_scanin2 enabled 0: Indicates key_scanin2 disabled

[1] KEY_SCANIN1_ENABLE:

1: Indicates key_scanin1 enabled 0: Indicates key_scanin1 disabled

[0] KEY_SCANINO_ENABLE:

1: Indicates key_scanin0 enabled 0: Indicates key_scanin0 disabled

SYSTEM_CONFIG16

Comms SSC configuration register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
					01/01/01	חבארם							SSC3_SCLK_IN		SSC3_MTSH_IN_SEL[1:0]	SSC3 MRST IN SEL[1:0]		RESERVED	7 100	1	1 0 N	_^^	SSC2 MBST IN SELLIO	75-Juli 01-in-01-i		RESERVED		SSC1_MRST_IN_SEL	BESERVED		SSC0_MRST_IN_SEL	

Address: SystemConfigBaseAddress + 0x0140

Type: RW

Reset: 0x000000

Description: Comms SSC config

[31:20] **RESERVED**

[19:18] SSC3_SCLK_IN:

 00: Invalid
 01: ssc3_sclk_in from PIO3[6]

 10: ssc3_sclk_in from PIO13[2]
 11: ssc3_sclk_in from PIO13(6)

[17:16] SSC3_MTSR_IN_SEL[1:0]:

 00: ssc3_mtsr_in from PIO2[1]
 01: ssc3_mtsr_in from PIO3[7]

 10: ssc3_mtsr_in from PIO13[3]
 11: ssc3_mtsr_in from PIO13[7]

[15:14] **SSC3_MRST_IN_SEL[1:0]:**

 00: ssc3_mrst_in from PIO2[1]
 01: ssc3_mrst_in from PIO3(7)

 10: ssc3_mrst_in from PIO13[3]
 11: ssc3_mrst_in from PIO13(7)

[13] RESERVED

[12:11] SSC2_SCLK_IN[1:0]:

0x: ssc2_sclk_in from PIO3[4] 10: ssc2_sclk_in from PIO12[0]

11: ssc2_sclk_in from PIO13[4]

[10:9] **SSC2_MTSR_IN_SEL[1:0]:**

[8:7] **SSC2_MRST_IN_SEL[1:0]:**

 00: ssc2_mrst_in from PIO2[0]
 01: ssc2_mrst_in from PIO3[5]

 10: ssc2_mrst_in from PIO12[1]
 11: ssc2_mrst_in from PIO13[5]

[6:4] **RESERVED**

[3] SSC1_MRST_IN_SEL:

1: ssc1_mrst_in is from PIO2[7] 0: ssc1_mrst_in is from PIO2[6]

[2:1] RESERVED

[0] SSC0_MRST_IN_SEL:

1: ssc0_mrst_in is from PIO2[4] 0: ssc0_mrst_in is from PIO2[3]

SYSTEM CONFIG17

CPXM CPRM enable configuration register

Address: SystemConfigBaseAddress + 0x0144

Type: RW

Confidentia

Reset: 0x00000002

Description: CPXM CPRM encode enable config

[31:2] RESERVED

[1] CPXM_ENCRYPT_DISABLE:

1: CPXM_ENCRYPT is disabled 0: Enabled only if CPXM feature is enabled

[0] RESERVED

PAD State control register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address: SystemConfigBaseAddress + 0x0148

Type: RW **Reset:** 0x0000

Description: Pad state config

[31:2] RESERVED

[1] PULL_UP_ENABLE:

1: Indicates pad pullup is active 0: Indicates pull up is de-active

[0] SLEEP_MODE_ON:

1: Indicates sleep mode control switched on 0: Indicates switched off

SYSTEM CONFIG19

Alternate function output control for PIO 0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						R	ESE	RVE	D							PIC	00_A	LTF	DP1_	_MU	X_SE	L_B	US	PIC	00_A	LTF	DP0_	_MU	X_SE	L_B	US

Address: SystemConfigBaseAddress + 0x014C

Type: RW **Reset:** 0x0000

Description: PIO0 alternate function output config

[31:16] **RESERVED**

[15:8] PIOO_ALTFOP1_MUX_SEL_BUS

[7:0] PIOO_ALTFOPO_MUX_SEL_BUS

Note:

Confidentia

Alternate 1: $PIOO_ALTFOPJ_MUX_SEL_BUS(n) = 00 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 2: $PIOO_ALTFOPJ_MUX_SEL_BUS(n) = 01 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 3: $PIOO_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 4: $PIOO_ALTFOPJ_MUX_SEL_BUS(n) = 11 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

Alternate function output control for PIO 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PIO1_ALTFOP1_MUX_SEL_BUS PIO1_ALTFOP0_MUX_SEL_BUS

Address: SystemConfigBaseAddress + 0x0150

Type: RW

Reset: 0x00000000

Description: Alternate Function PIO1 Output Control

[31:16] **RESERVED**

[15:8] PIO1_ALTFOP1_MUX_SEL_BUS [7:0] PIO1_ALTFOP0_MUX_SEL_BUS

Note:

Confidentia

Alternate 1: $PIO1_ALTFOPj_MUX_SEL_BUS(n) = 00 \ [(j=0,1); (n=0,1,2,3,4,5,6,7)]$ Alternate 2: $PIO1_ALTFOPj_MUX_SEL_BUS(n) = 01 \ [(j=0,1); (n=0,1,2,3,4,5,6,7)]$ Alternate 3: $PIO1_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(j=0,1); (n=0,1,2,3,4,5,6,7)]$ Alternate 4: $PIO1_ALTFOPj_MUX_SEL_BUS(n) = 11 \ [(j=0,1); (n=0)]$

SYSTEM_CONFIG21

Alternate function output control for PIO 2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

PIO2_ALTFOP1_MUX_SEL_BUS

PIO2_ALTFOP0_MUX_SEL_BUS

Address: SystemConfigBaseAddress + 0x0154

Type: RW

Reset: 0x00000000

Description: PIO2 alternate function output config

[31:16] **RESERVED**

[15:8] PIO2_ALTFOP1_MUX_SEL_BUS

[7:0] PIO2_ALTFOP0_MUX_SEL_BUS

Note:

Alternate 1: $PIO2_ALTFOPj_MUX_SEL_BUS(n) = 00$ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)] Alternate 2: $PIO2_ALTFOPj_MUX_SEL_BUS(n) = 01$ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)] Alternate 3: $PIO2_ALTFOPj_MUX_SEL_BUS(n) = 10$ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)] Alternate 4: $PIO2_ALTFOPj_MUX_SEL_BUS(n) = 11$ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]

Compensation config register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	וארם החטם				CONF_3V3COMP2_RASRC				CONF_3V3COMP2_FREEZE	CONF_3V3COMP2_COMPTQ	CONF_3V3COMP2_COMPEN				CONF_3V3COMP1_RASRC				CONF_3V3COMP1_FREEZE	CONF_3V3COMP1_COMPTQ	CONF_3V3COMP1_COMPEN				CONF_3V3COMP0_RASRC				CONF_3V3COMP0_FREEZE	CONF_3V3COMP0_COMPTQ	CONF_3V3COMP0_COMPEN

Address: SystemConfigBaseAddress + 0x0158

Type: RW

Reset: 0x00000000

Description: Compensation config

[31:30] **RESERVED**

[29:23] CONF_3V3COMP2_RASRC: 3V3 COMPENSATION 2: Input code

[22] CONF_3V3COMP2_FREEZE: 3V3 COMPENSATION 2: Freezes ASRC code to its last value

[21] CONF_3V3COMP2_COMPTQ:

[20] CONF_3V3COMP2_COMPEN: 3V3 COMPENSATION 2: Operating mode (comptq/compen)

00: Normal mode 01: HZ mode

11: Read mode

[19:13] CONF_3V3COMP1_RASRC: 3V3 COMPENSATION 1: Input code

[12] CONF_3V3COMP1_FREEZE: 3V3 COMPENSATION 1: Freezes ASRC code to its last value

[11] CONF_3V3COMP1_COMPTQ:

[10] CONF_3V3COMP1_COMPEN: 3V3 COMPENSATION 1: Operating mode (comptq/compen)

00: Normal mode 01: HZ mode

11: Read mode

[9:3] CONF_3V3COMP0_RASRC: 3V3 COMPENSATION 0: Input code

[2] CONF_3V3COMP0_FREEZE: 3V3 COMPENSATION 0: Freezes ASRC code to its last value

[1] CONF_3V3COMP0_COMPTQ:

[0] CONF_3V3COMP0_COMPEN: 3V3 COMPENSATION 0: Operating mode (comptq/compen)

00: Normal mode 01: HZ mode

11: Read mode

Compensation config register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			RESERVED				CONF4_3V3COMP_TQ	CONF_3V3COMP4_FREEZE	CONF_3V3COMP4_COMPTQ	0 10100000	COINF_SV3COMP4_COMPEN					CONF_3V3COMP4_RASRC					CONF3_3V3COMP_TQ				CONF_3V3COMP3_RASRC				CONF_3V3COMP3_FREEZE	CONF_3V3COMP3_COMPTQ	CONF_3V3COMP3_COMPEN	

Address: SystemConfigBaseAddress + 0x015C

Type: RW

Reset: 0x00000000

Description: Compensation config

[31:25] **RESERVED**

[24] CONF4_3V3COMP_TQ: Drives the 4 compensations TQ pin 1 to put the cells in IDDQ mode

[23] CONF_3V3COMP4_FREEZE: 3V3 COMPENSATION 4: Freezes ASRC code to its last value

[22] CONF_3V3COMP4_COMPTQ:

[21:20] CONF_3V3COMP4_COMPEN: 3V3 COMPENSATION 4: Operating mode (comptq/compen)

00: Normal mode 01: HZ mode

11: Read mode

[19:11] CONF_3V3COMP4_RASRC: 3V3 COMPENSATION 4: Input code

[10] CONF3_3V3COMP_TQ: Drives the 4 compensations TQ pin

1: Puts the cells in IDDQ mode

[9:3] CONF_3V3COMP3_RASRC: 3V3 COMPENSATION 3: Input code

[2] CONF_3V3COMP3_FREEZE: 3V3 COMPENSATION 3: Freeze ASRC code to its last value

[1] CONF_3V3COMP3_COMPTQ:

[0] CONF_3V3COMP3_COMPEN: 3V3 COMPENSATION 3: Operating mode (comptq/compen)

00: Normal mode 01: HZ mode

11: Read mode

SYSTEM_CONFIG24 OSC config register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
												RESERVED														CLKGENA_OBSCLK_ENABLE	SYSCLKOUT_ENABLE	RESERVED	OSCI_BYPASS	BESERVED		

Address: SystemConfigBaseAddress + 0x0160

Type: RW

Reset: 0x0000000C

Description: Oscillator config

[31:6] RESERVED

[5] CLKGENA_OBSCLK_ENABLE:

1: ClockGenA clk output is enabled 0: Disabled

[4] SYSCLKOUT_ENABLE:

1: ClockGenB clk output is enabled 0: Disabled

[3] RESERVED

[2] OSCI_BYPASS:

1: OSC is not bypassed 0: OSC is bypassed

[1:0] RESERVED

SYSTEM_CONFIG25

Alternate function output control for PIO 3

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						В	RESE	RVE	D							PIC)3_A	LTFC	DP1_	MU	K_SE	L_B	US	PIC)3_A	LTFC	DP0_	_MU	(_SE	L_B	US

Address: SystemConfigBaseAddress + 0x0164

Type: RW **Reset:** 0x0000

Description: PIO3 alternate function output register

[31:16] **RESERVED**

[15:8] PIO3_ALTFOP1_MUX_SEL_BUS [7:0] PIO3_ALTFOP0_MUX_SEL_BUS

Note: Alternate 1: $PIO3_ALTFOPj_MUX_SEL_BUS(n) = 00 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

 $Alternate \ 2: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 01 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 3: PIO3_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (n=0,1,2,3,4,5,6,7)] \\ Alternate \ 4: PIO3_ALTFOPJ_MUX_SEL_BUS(n) = 10 \ [(\ j=0,1); \ (\ j=0,1); \ ($

Alternate 4: $PIO3_ALTFOPj_MUX_SEL_BUS(n) = 11 [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

LX audio config register

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												E-901900A TOOG GIIA VI	LA_AUD_BUU _AUUn[23:0]														מואמוטומ				LX_AUD_GNT_FILTER_DISABLE	LX_AUD_ALLOW_BOOT

Address: SystemConfigBaseAddress + 0x0168

Type: RW

Reset: 0xXXXX⁽¹⁾

Description: LX Audio config

[31:8] LX_AUD_BOOT_ADDR[29:6]: ST230 AUDIO boot address.

[7:2] RESERVED

[1] LX_AUD_GNT_FILTER_DISABLE:

1: Filter is disabled

[0] LX_AUD_ALLOW_BOOT: ST230 AUDIO request filter.

1: Request enabled 0: Request bypassed

SYSTEM CONFIG27

LX audio config register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									RESERVED															ממיל א	LA_AUU_PERIPR_AUUR						LX_AUD_RST_N_CTRL

Address: SystemConfigBaseAddress + 0x016C

Type: RW Reset: 0x1FD0

Description: LX Audio config

[31:13] **RESERVED**

[12:1] LX_AUD_PERIPH_ADDR: ST230 AUDIO peripheral address.

577

Depends on mode pins; Reset value is 1, when MODE[9:8]=10 AND LX_AUDIO_BOOT_ENABLE=1, and reset value is 0, For other values of MODE[9:8] and LX_AUDIO_BOOT_ENABLE

[0] LX_AUD_RST_N_CTRL: ST230 AUDIO reset active low control bit.
 0: Reset of ST230 driven by hardware reset
 1: Reset of ST230 fixed to active state

SYSTEM_CONFIG28

LX Delta Rasta config register

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												19.001ddd y FOOd Hd XI	LA_Dn_BOO I_ADDn[29:0]															RESERVED				LX_DH_ALLOW_BOOT

Address: SystemConfigBaseAddress + 0x0170

Type: RW

Reset: 0xXXXX⁽¹⁾

Description: LX Delta Rasta config

[31:8] LX_DH_BOOT_ADDR[29:6]: ST230 DELPHI boot address.

[7:1] RESERVED

[0] LX_DH_ALLOW_BOOT: ST230 DELPHI request filter:

1: Request enabled 0: Request bypassed

SYSTEM_CONFIG29

LX Delta Rasta config register

;	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										RESERVED																LA_UN_PERIPR_AUUN						LX_DH_RST_N_CTRL

Address: SystemConfigBaseAddress + 0x0174

Type: RW
Reset: 0x1FCC

Description: LX Delta Rasta config

[31:13] **RESERVED**

477

^{1.} Depends on Mode pins. Reset value is:

^{1:} When MODE[9:8]=01 AND LX_DELTA_BOOT_ENABLE=1

^{0:} For other values of MODE[9:8] and LX_DELTA_BOOT_ENABLE

[12:1] LX_DH_PERIPH_ADDR: ST230 DELPHI peripheral address.

[0] LX_DH_RST_N_CTRL: ST230 DELPHI reset active low control bit.

0: Reset of ST230 driven by hardware reset 1: Reset of ST230 fixed to active state

SYSTEM_CONFIG30

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0178

Type: RW

Reset: 0x0000

Description: Reserved

[31:0] RESERVED

SYSTEM_CONFIG31

Confidential

EMI config register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					RESERVED						EMI_PAD_MODE								OESTE VED	nesenved									DMA SBC ID[3:0]		

Address: SystemConfigBaseAddress + 0x017C

Type: RW

Reset: 0x0000

Description: EMI config

[31:21] **RESERVED**

[20] EMI_PAD_MODE:

0: TTL bi-directional mode (EMI) 1: PCI mode

[19:4] **RESERVED**

[3:0] DMA_SRC_ID[3:0]: DMA source ID.

Power down config register

Address: SystemConfigBaseAddress + 0x0180

Type: RW

Reset: 0x0B35

Description: Power down config

[31:12] **RESERVED**

[11] SATA_HC_POWER_DOWN_REQ:

1: SATA host power down 0: SATA host power up

[10] RESERVED

[9] SATA_PHY_POWER_DOWN_REQ:

1: Power down request for SATA PHY module

[8] RESERVED

[7] USB2_PHY_POWER_DOWN_REQ:

1: USB2 phy is in power down 0: USB2 phy is power up

[6] USB1_PHY_POWER_DOWN_REQ:

1: USB1 phy is in power down 0: USB1 phy is power up

[5] USB2_HC_POWER_DOWN_REQ:

1: Power down request for USB2 HC module

[4] USB1_HC_POWER_DOWN_REQ:

1: Power down request for USB1 HC module

[3] KEY_SCAN_POWER_DOWN_REQ:

1: Power down request for Key scanner module

[2] PCI_POWER_DOWN_REQ:

1: Power down request for PCI module is active

[1] EMI_POWER_DOWN_REQ:

1: Power down request for EMI module is active

[0] RESERVED

Note: 1 Due to the reset value of bit 0, 2,4,5,9, and 11 the PCI and USB PHY's and SATA HC+PHY are switched off by default.

2 USB PHY's power down are active low.

 \overline{A}

SOFT_JTAG register (USB) config register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EXTERNAL_DAA_SEL												BESEBVED	Ú												SOFT_JTAG_EN	TMS_SATA	TRSTN_SATA	TMS_USB	TRSTN_USB	IQT	TCK

Address: SystemConfigBaseAddress + 0x0184

Type: RW

Reset: 0x00000000

Description: SOFT_JTAG register (USB) config

[31] EXTERNAL_DAA_SEL

[30:7] RESERVED

- [6] SOFT_JTAG_EN: High level means that USB2.0 or SATA TAP is managed by SOFT_JTAG register; Low level means JTAG is through PAD.
- [5] TMS_SATA: TEST mode select for SATA TAP only
- [4] TRSTN_SATA: Asynchronous reset for SATA TAP only.
- [3] TMS_USB: Test mode select USB2.0 TAP only.
- [2] TRSTN_USB: Asynchronous reset USB2.0 TAP only.
- [1] TDI: Test data input for the USB2.0 TAP or SATA TAP.
- [0] TCK: Test clock for the USB2.0 TAP or SATA TAP.

SYSTEM CONFIG34

Alternate function PIO output control for PIO 4

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						R	ESE	RVE	D							PIC	04_A	LTF	DP1_	_MU	K_SE	L_B	US	PIC)4_A	LTFC)P0_	MU	_SE	L_Bl	JS

Address: SystemConfigBaseAddress + 0x0188

Type: RW

Reset: 0x00000000

Description: PIO4 alternate function output config

[31:16] **RESERVED**

[15:8] PIO4_ALTFOP1_MUX_SEL_BUS

[7:0] PIO4_ALTFOP0_MUX_SEL_BUS

Note: Alternate 1 : $PIO4_ALTFOPj_MUX_SEL_BUS(n) = 00 [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

Alternate 2 : $PIO4_ALTFOPj_MUX_SEL_BUS(n) = 01 [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

Alternate 3 : $PIO4_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

Alternate 4 : $PIO4_ALTFOPj_MUX_SEL_BUS(n) = 11 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

216/313 8065505 Rev D

SYSTEM_CONFIG35

Alternate function PIO output control for PIO 5

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PIO5_ALTFOP1_MUX_SEL_BUS PIO5_ALTFOP0_MUX_SEL_BUS

Address: SystemConfigBaseAddress + 0x018C

Type: RW **Reset:** 0x0000

Description: PIO5 alternate function output config

[31:16] **RESERVED**

[15:8] PIO5_ALTFOP1_MUX_SEL_BUS

[7:0] PIO5_ALTFOP0_MUX_SEL_BUS

Alternate 1: $PIO5_ALTFOPj_MUX_SEL_BUS(n) = 00 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 2: $PIO5_ALTFOPj_MUX_SEL_BUS(n) = 01 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 3: $PIO5_ALTFOPj_MUX_SEL_BUS(n) = 10 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 4: $PIO5_ALTFOPj_MUX_SEL_BUS(n) = 11 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

SYSTEM_CONFIG36

Alternate Function PIO Output Control for PIO 6

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ							В	ESE	RVE	D							PIC	06_A	LTFO	DP1	MU	X_SE	L_B	US	PIC	06_A	LTF	OP0_	MU	X_SE	EL_E	BUS

Address: SystemConfigBaseAddress + 0x0190

Type: RW **Reset:** 0x0000

Description: PIO6 alternate function output config

[31:16] **RESERVED**

[15:8] PIO6_ALTFOP1_MUX_SEL_BUS

[7:0] PIO6_ALTFOP0_MUX_SEL_BUS

Note:

Confidentia

Alternate 1 : $PIO6_ALTFOPj_MUX_SEL_BUS(n) = 00$ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)] Alternate 2 : $PIO6_ALTFOPj_MUX_SEL_BUS(n) = 01$ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)] Alternate 3 : $PIO6_ALTFOPj_MUX_SEL_BUS(n) = 10$ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)] Alternate 4 : $PIO6_ALTFOPj_MUX_SEL_BUS(n) = 11$ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]

SYSTEM_CONFIG37

Alternate function PIO output control for PIO 7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PIO7_ALTFOP1_MUX_SEL_BUS PIO7_ALTFOP0_MUX_SEL_BUS

Address: SystemConfigBaseAddress + 0x0194

Type: RW

Reset: 0x00000000

Description: PIO7 alternate function output config

[31:16] **RESERVED**

[15:8] PIO7_ALTFOP1_MUX_SEL_BUS

[7:0] PIO7_ALTFOP0_MUX_SEL_BUS

Alternate 1 : $PIO7_ALTFOPj_MUX_SEL_BUS(n) = 00 [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

 $Alternate\ 2: PIO7_ALTFOPj_MUX_SEL_BUS(n) = 01\ [(\ j=0,1);\ (n=0,1,2,3,4,5,6,7)]$

Alternate 3 : $PIO7_ALTFOPj_MUX_SEL_BUS(n) = 10 [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

Alternate 4 : $PIO7_ALTFOPj_MUX_SEL_BUS(n) = 11 [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

SYSTEM_CONFIG38

LMI / LMI padlogic config register

•	31 3	30 2	29	28	27	26	25	24 23	22	21	20	19 18	17 16	15	14	13	12	11	10	9	8	/	6	5	4	3	2	1	U
				RESERVED				CONF_LMI_SEL_SYNC_FLOP_NB[1:0]	CONF_LMI_SEL_SYNC_FLOP_HALF	CONF_LMI_SEL_CLK_PHASE	CONF_LMI_PWRD_REQ	CONF_LMI_HP_EN_AP[1:0]	CONF_LMI_LP_EN_AP[1:0]					HESERVED								CONF_LMI_MEM_BASE_ADDR[7:0]			

Address: SystemConfigBaseAddress + 0x0198

Type: RW

Reset: 0x0000000C

Description: LMI / LMI padlogic config

[31:25] **RESERVED**

[24:23] CONF_LMI_SEL_SYNC_FLOP_NB[1:0]: Selection of the number of flops used in the

synchronizer to prevent metastability.

00: two flops are used 01: three flops are used

10 : four flops are used 11: one flop is used; For test/characterization only

[22] **CONF_LMI_SEL_SYNC_FLOP_HALF:** Selection of the clk_m clock or clk_m180 used for the first resync. flop used to prevent metastability:

0: both rising and falling edges of clk_m are used

1: only rising edge of clk_m is used

[21] CONF_LMI_SEL_CLK_PHASE: Selection of the clock edges used in FIFO control:

0: both rising and falling edges of clk_m are used

1: only rising edges of clk_m is used

[20] CONF_LMI_PWRD_REQ: LMI power down request.

[19:18] CONF_LMI_HP_EN_AP[1:0]: Enables read with autoprecharge on Imi0 high priority port.

[17:16] CONF_LMI_LP_EN_AP[1:0]: Enables read with autoprecharge on lmi0 low priority port.

[15:8] **RESERVED**

[7:0] **CONF_LMI_MEM_BASE_ADDR[7:0]:** LMI memory base address.

29-bit LMI base address : 0x0C 32-bit LMI base address : 0x40

SYSTEM_CONFIG39 Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 (

RESERVED

Address: SystemConfigBaseAddress + 0x019C

Type: RW

Reset: 0x0000

Description: Reserved

[31:0] **RESERVED**

SYSTEM_CONFIG40

Clock select config register

;	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															RESERVED															USB_PHY_CLOCK_SELECT	RESERVED	LMI_PLL_CLOCK_SELECT

Address: SystemConfigBaseAddress + 0x01A0

Type: RW

Reset: 0x00000004

Description: Clock select config

[2] USB_PHY_CLOCK_SELECT: Select clock for USB PHY.

0: Clock from SATA OSC 1: Clock from alternate pad

[1] RESERVED

[0] LMI_PLL_CLOCK_SELECT: Select clock for LMI PII imput.

0: Clock from alternate pad 1: Clock from SATA OSC

SYSTEM CONFIG41

Thermal sensor config register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
										מו	טם ארופיות													DCORRECT			PDN	COL	CMD		OBS	

Address: SystemConfigBaseAddress + 0x01A4

Type: RW

Reset: 0x00000008

Description: Thermal sensor config

[31:10] **RESERVED**

[9:5] **DCORRECT:** Digital code to correct systematic offset by addition to the digital output.

[4] PDN: Power Down

0: Power down mode 1: Normal mode; asynchronous

[3:2] **CMDTCO:** Reserved to debug. To be fixed to 10 in application.

[1:0] **OBS:** Reserved to debug. To be fixed to 00 in application.

SYSTEM CONFIG42

LMI / LMI padlogic config register

31	30	0 2	9	28	27	26)	25	24	2	3 22	2 2	21	20	19	18	17	16	15	14	13	- 12	2	11	10	9	8	/	6	5	4	3	2	1	0
RESERVED			LMIPL_SEL_DQS_VALID_DEL[3:0]								IMIPL DSO2 OFFSETI8:01										LMIPL_DSQ1_OFFSET[8:0]										LMIPL_DSQ0_OFFSET[8:0]				

Address: SystemConfigBaseAddress + 0x01A8

Type: RW **Reset:** 0x0000

Description: LMI padlogic config register

[31] RESERVED

220/313 8065505 Rev D

[30:27] LMIPL_SEL_DQS_VALID_DEL[3:0]: 'dqs_valid' timing options (T/4 resolution).

[26:18] LMIPL_DSQ2_OFFSET[8:0]: Offset command for DQS[2] PDL.

[17:9] LMIPL_DSQ1_OFFSET[8:0]: Offset command for DQS[1] PDL.

[8:0] LMIPL_DSQ0_OFFSET[8:0]: Offset command for DQS[0] PDL.

SYSTEM CONFIG43

LMI / LMI Padlogic config register

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TNITOC 3 IAN SIG IGINI	PL_DISABLE_ODI		!	LMIPL_SEL_ODI_INI_DEL[3:0]						LMIPL_DQS_VALID_OFFSET[8:0]									RESERVED									LMIPL_DSQ3_OFFSET[8:0]				

Address: SystemConfigBaseAddress + 0x01AC

Type: RW

Reset: 0x0000

Description: LMI / LMI Padlogic config

[31] LMIPL_DISABLE_ODTINT: Disables Internal ODT function (as in DDR1 mode).

[30:27] LMIPL_SEL_ODT_INT_DEL[3:0]: Internal odt timing options (T/4 resolution).

[26:18] LMIPL_DQS_VALID_OFFSET[8:0]: Offset command for 'dqs_en_del' PDL.

[17:9] **RESERVED**

[8:0] LMIPL_DSQ3_OFFSET[8:0]: Offset command for DQS[3] PDL.

SYSTEM_CONFIG44

ClockgenD Jitter estimator

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			נ נ נ	הפטבועבוע			TST_PLL	TST_PLL_BIST_RUN												TO TOT	ISI_SEL_CITTER_PAITERN											

Address: SystemConfigBaseAddress + 0x01B0

Type: RW

Reset: 0x00000000

Description: ClockGen D Jitter estimator config

4

[31:26] **RESERVED**

[25] TST PLL

[24] TST_PLL_BIST_RUN

[23:0] TST_SEL_JITTER_PATTERN

SYSTEM_CONFIG45

Reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x01B4

Type: RW

Reset: 0x00000000 Description: Reserved

[31:0] RESERVED

SYSTEM_CONFIG46

Alternate function PIO output control for PIO 8

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0 PIOS_ALTFOP1_MUX_SEL_BUS

Address: SystemConfigBaseAddress + 0x01B8

Type: RW **Reset:** 0x0000

Description: PIO8 alternate function output config

[31:16] **RESERVED**

[15:8] PIO8_ALTFOP1_MUX_SEL_BUS [7:0] PIO8_ALTFOP0_MUX_SEL_BUS

Note:

Confidential

Alternate 1 : $PIO8_ALTFOPj_MUX_SEL_BUS(n) = 00 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 2 : $PIO8_ALTFOPj_MUX_SEL_BUS(n) = 01 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 3 : $PIO8_ALTFOPj_MUX_SEL_BUS(n) = 1x \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

SYSTEM_CONFIG47

Alternate function PIO output control for PIO 9

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PIO9_ALTFOP1_MUX_SEL_BUS PIO9_ALTFOP0_MUX_SEL_BUS

Address: SystemConfigBaseAddress + 0x01BC

Type: RW **Reset:** 0x0000

Description: PIO9 alternate function output config

[31:16] **RESERVED**

[15:8] PIO9_ALTFOP1_MUX_SEL_BUS [7:0] PIO9_ALTFOP0_MUX_SEL_BUS

Note:

Confidentia

Alternate 1 : $PIO9_ALTFOPj_MUX_SEL_BUS(n) = 00 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 2 : $PIO9_ALTFOPj_MUX_SEL_BUS(n) = 01 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 3 : $PIO9_ALTFOPj_MUX_SEL_BUS(n) = 1x \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

SYSTEM_CONFIG48

Alternate function PIO output control for PIO 12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PIO12_ALTFOP2_MUX_SEL_BUS PIO12_ALTFOP1_MUX_SEL_BUS PIO12_ALTFOP0_MUX_SEL_BUS

Address: SystemConfigBaseAddress + 0x01C0

Type: RW **Reset:** 0x0000

Description: PIO12 alternate function output config

[31: 24] **RESERVED**

[23:16] PIO12_ALTFOP2_MUX_SEL_BUS [15:8] PIO12_ALTFOP1_MUX_SEL_BUS [7:0] PIO12_ALTFOP0_MUX_SEL_BUS

Note:

Alternate 1: $PIO12_ALTFOPj_MUX_SEL_BUS(n) = 000\ [(j=0,1,2);\ (n=0,1,2,3,4,5,6,7)]$ Alternate 2: $PIO12_ALTFOPj_MUX_SEL_BUS(n) = 001\ [(j=0,1,2);\ (n=0,1,2,3,4,5,6,7)]$ Alternate 3: $PIO12_ALTFOPj_MUX_SEL_BUS(n) = 010\ [(j=0,1,2);\ (n=0,1,2,3,4,5,6,7)]$ Alternate 4: $PIO12_ALTFOPj_MUX_SEL_BUS(n) = 011\ [(j=0,1,2);\ (n=0,1,2,3,4,5,6,7)]$ Alternate 5: $PIO12_ALTFOPj_MUX_SEL_BUS(n) = 1xx\ [(j=0,1,2);\ (n=0,1,2,3,4,5,6,7)]$

SYSTEM_CONFIG49

Alternate function PIO output control for PIO 13

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED PIO13_ALTFOP2_MUX_SEL_BUS PIO13_ALTFOP1_MUX_SEL_BUS PIO13_ALTFOP0_MUX_SEL_BUS

Address: SystemConfigBaseAddress + 0x01C4

Type: RW **Reset:** 0x0000

Description: PIO13 alternate function output config

[31: 24] **RESERVED**

[23:16] PIO13_ALTFOP2_MUX_SEL_BUS [15:8] PIO13_ALTFOP1_MUX_SEL_BUS [7:0] PIO13_ALTFOP0_MUX_SEL_BUS

Note:

Alternate 1: $PIO13_ALTFOPj_MUX_SEL_BUS(n) = 000\ [(j=0,1,2);\ (n=0,1,2,3,4,5,6,7)]$ Alternate 2: $PIO13_ALTFOPj_MUX_SEL_BUS(n) = 001\ [(j=0,1,2);\ (n=0,1,2,3,4,5,6,7)]$ Alternate 3: $PIO13_ALTFOPj_MUX_SEL_BUS(n) = 010\ [(j=0,1,2);\ (n=0,1,2,3,4,5,6,7)]$ Alternate 4: $PIO13_ALTFOPj_MUX_SEL_BUS(n) = 011\ [(j=0,1,2);\ (n=0,1,2,3,4,5,6,7)]$ Alternate 5: $PIO13_ALTFOPj_MUX_SEL_BUS(n) = 1xx\ [(j=0,1,2);\ (n=0,1,2,3,4,5,6,7)]$

SYSTEM CONFIG50

Alternate function PIO output control for PIO 15

31	1 3	0 29	9 2	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								(KESEKVED											7 N 4 C C L L V C C C C C C C C C C C C C C C	PIOI3_ALI FOP I_IMUA_SEL_BUS							PIO45 ALTEODO MINY SEL	7019_AELTOTO_MOA_GEL_BOO			

Address: SystemConfigBaseAddress + 0x01C8

Type: RW

Reset: 0x00000400

Description: PIO15 alternate function output config

[31:16] **RESERVED**

[15:8] PIO15_ALTFOP1_MUX_SEL_BUS [7:0] PIO15_ALTFOP0_MUX_SEL_BUS

Note:

Alternate 1: $PIO15_ALTFOPj_MUX_SEL_BUS(n) = 00 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 2: $PIO15_ALTFOPj_MUX_SEL_BUS(n) = 01 \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$ Alternate 3: $PIO15_ALTFOPj_MUX_SEL_BUS(n) = 1x \ [(j = 0,1); (n = 0,1,2,3,4,5,6,7)]$

Note: F

PIO10, PIO11 and PIO14 do not require any alternate function output muxing as they are dedicated.

SYSTEM_CONFIG51

LMI / LMI Padlogic config register

3	1 3	0 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			RESERVED								LCONF_MIPL0_DQS270_DEL1_OFFSET[8:0]								RESERVED								LCONF_MIPLO_DQS270_DEL0_OFFSET[8:0]				

Address: SystemConfigBaseAddress + 0x01CC

Type: RW

Confidential

Reset: 0x0000

Description: LMI / LMI Padlogic config

[31:25] **RESERVED**

[24:16] LCONF_MIPL0_DQS270_DEL1_OFFSET[8:0]: Offset command for 'dqs270_del1' PDL.

[15:9] **RESERVED**

[8:0] LCONF_MIPL0_DQS270_DEL0_OFFSET[8:0]: Offset command for 'dqs270_del0' PDL.

SYSTEM_CONFIG52

LMI / LMI Padlogic config register

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			RESERVED								LCONF_MIPL0_DQS270_DEL3_OFFSET[8:0]								RESERVED								LCONF_MIPL0_DQS270_DEL2_OFFSET[8:0]					

Address: SystemConfigBaseAddress + 0x01D0

Type: RW **Reset:** 0x0000

Description: LMI / LMI Padlogic config

[31:25] **RESERVED**

[24:16] LCONF_MIPL0_DQS270_DEL3_OFFSET[8:0]: Offset command for 'dqs270_del1' PDL.

[15:9] **RESERVED**

[8:0] LCONF_MIPL0_DQS270_DEL2_OFFSET[8:0]: Offset command for 'dqs270_del0' PDL.

SYSTEM_CONFIG53

Reserved

HESERVI

SystemConfigBaseAddress + 0x01D4

Type: RW

Address:

Reset: 0x00000000 Description: Reserved

SYSTEM_CONFIG54 Reserved

 $31 \quad 30 \quad 29 \quad 28 \quad 27 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 \quad 19 \quad 18 \quad 17 \quad 16 \quad 15 \quad 14 \quad 13 \quad 12 \quad 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$

RESERVED

Address: SystemConfigBaseAddress + 0x01D8

Type: RW

Reset: 0x00000000 Description: Reserved

[31:0] RESERVED

SYSTEM_CONFIG55

LMI / LMI Padlogic config register

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RESERVED		LMIPL_USERMODE_PDL_DQS_VALID	LMIPL_USERMODE_PDL_DQS270_DEL	LMIPL_USERMODE_PDL_DQS					LMIPL_USER_COMMAND_DQS_VALID							RESERVED		LMIPL_RETIME_PLI_LMI	10:FITHING BAHA IDIMI	- - - - -	LMIPL_LOWER_16BIT_ONLY		LMIPL_FILTER_SHIFT_PARAM[2:0]		LMIPL_DUMMY_PCB_TRACE	LMIPL_DOUBLE_WIDTH			LMIPL_DDR2_DIAG_CONTROL[4:0]		

Address: SystemConfigBaseAddress + 0x01DC

Type: RW

Confidentia

Reset: 0x00002000

Description: LMI / LMI Padlogic config

[31:30] **RESERVED**

[29] LMIPL_USERMODE_PDL_DQS_VALID:

0: T/4 DLL1 command routed to dqs_valid PDL

1: user_command_dqs_valid<8:0> routed to dqs_valid PDL

[28] LMIPL_USERMODE_PDL_DQS270_DEL:

0: 3T/4 (or T/2) DLL2 command routed to dqs270_del<3:0> PDLs

1: dll2_usr_cmd<8:0> routed to dqs270_del<3:0> PDLs

[27] LMIPL_USERMODE_PDL_DQS:

0: T/4 DLL command routed to dqs<3:0> PDLs

1: dll1_usr_cmd<8:0> routed to dgs<3:0> PDLs

[26:18] LMIPL_USER_COMMAND_DQS_VALID: User command for forcing delay of dqs_valid

PDL(also diagnostics).

[17:14] **RESERVED**

[13] LMIPL_RETIME_PLI_LMI: Active high retiming stage enable for lmisys_pl.

4

- [12:11] LMIPL_PHASE_SHIFT[1:0]: Shift padlogic clock in T/4 increments; needs clk_pll stopped when rst_n released.
 - [10] LMIPL_LOWER_16BIT_ONLY: 16/32-bit mode switch; High = 16-bit mode.
 - [9:7] LMIPL_FILTER_SHIFT_PARAM[2:0]: Programmable filter characteristic.
 - [6] LMIPL_DUMMY_PCB_TRACE: Active high to enable dummy PCB trace option.
 - [5] LMIPL_DOUBLE_WIDTH: Enable half speed LMI-PLI interface.
 - [4:0] LMIPL_DDR2_DIAG_CONTROL[4:0]: For future development. Tied off.

15.1.5 INTC2 registers description

INTC2_PRIORITY00 INTC2 priority 00 register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

RESERVED

Address: SystemConfigBaseAddress + 0x0300

Type: RW Reset: 0

Description: INTC2 priority 00 register

[31:0] RESERVED

INTC2 PRIORITY04

Confidential

INTC2 priority 04 register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0304

Type: RW Reset: 0

Description: INTC2 priority 04 register

INTC2_PRIORITY08

INTC2 priority 08 register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0308

Type: RW Reset: 0

Description: INTC2 priority 08 register

[31:0] RESERVED

INTC2_REQUEST00 INTC2 request 00 register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0320

Type: RW Reset: 0

Description: INTC2 request 00 register

[31:0] RESERVED

INTC2 REQUEST04

Confidentia

INTC2 request 04 register

 $31 \quad 30 \quad 29 \quad 28 \quad 27 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 \quad 19 \quad 18 \quad 17 \quad 16 \quad 15 \quad 14 \quad 13 \quad 12 \quad 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$

RESERVED

Address: SystemConfigBaseAddress + 0x0324

Type: RW
Reset: 0

Description: INTC2 request 04 register

INTC2_REQUEST08

INTC2 request 08 register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0328

Type: RW Reset: 0

Description: INTC2 request 08 register

[31:0] RESERVED

INTC2_MASK00

INTC2 mask 00 register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0340

Type: RW Reset: 0

Description: INTC2 mask 00 register

[31:0] RESERVED

INTC2 MASK04

Confidentia

INTC2 mask 04 register

 $31 \quad 30 \quad 29 \quad 28 \quad 27 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 \quad 19 \quad 18 \quad 17 \quad 16 \quad 15 \quad 14 \quad 13 \quad 12 \quad 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$

RESERVED

Address: SystemConfigBaseAddress + 0x0344

Type: RW
Reset: 0

Description: INTC2 mask 04 register

NTC2_MASK08

INTC2 mask 08 register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0348

Type: RW Reset: 0

Description: INTC2 mask 08 register

[31:0] RESERVED

INTC2_MASK_CLEAR00 INTC2 mask clear 00 register

 $31 \ \ 30 \ \ 29 \ \ 28 \ \ 27 \ \ 26 \ \ 25 \ \ 24 \ \ 23 \ \ 22 \ \ 21 \ \ 20 \ \ 19 \ \ 18 \ \ 17 \ \ 16 \ \ 15 \ \ 14 \ \ 13 \ \ 12 \ \ 11 \ \ 10 \ \ 9 \ \ 8 \ \ 7 \ \ 6 \ \ 5 \ \ 4 \ \ 3 \ \ 2 \ \ 1 \ \ 0$

RESERVED

Address: SystemConfigBaseAddress + 0x0360

Type: RW Reset: 0

Confidentia

Description: INTC2 mask clear 00 register

[31:0] RESERVED

INTC2_MASK_CLEAR04 INTC2 mask clear 04 register

 $31 \quad 30 \quad 29 \quad 28 \quad 27 \quad 26 \quad 25 \quad 24 \quad 23 \quad 22 \quad 21 \quad 20 \quad 19 \quad 18 \quad 17 \quad 16 \quad 15 \quad 14 \quad 13 \quad 12 \quad 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$

RESERVED

Address: SystemConfigBaseAddress + 0x0364

Type: RW Reset: 0

Description: INTC2 mask clear 04 register

INTC2_MASK_CLEAR08 INTC2 mask clear 08 register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0368

Type: RW Reset: 0

Description: INTC2 mask clear 08 register

[31:0] RESERVED

INTC2_MODE INTC2 mode register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESERVED

Address: SystemConfigBaseAddress + 0x0380

Type: RW Reset: 0

Description: INTC2 mode register

16 External circuitry recommendations

16.1 Power supplies

16.1.1 Decoupling recommendations

It is recommended to:

- 1. connect all balls of the same group (with the same names) together
- 2. add decoupling capacitors between each VDD and GND group, respectively:
 - VDD3V3 group and GND3V3 group
 - AVDD2V5 group and AGND2V5 group
 - VDD1V8_2V5 group and LMI_GND1V8 group
 - DVDD1V2 group and DGND1V2 group

The decoupling capacitor values must be carefully considered and fully simulated prior to the board design cycle.

16.1.2 Power-up recommendations

There is no specific recommendation for power-up sequence.

16.2 System

The SYS oscillator recommended external circuitry is shown in *Figure 34*.

Figure 34. Oscillator recommended external circuitry

Two differential signals (VDDSENSE and GNDSENSE) are used to provide loopback information on the core supply voltage to an external voltage regulator.

Most of the signals have internal pull-up or pull-down, and do not require an external resistor when not in use. Refer to the 'I/O value' field of the *Table 32* for details.

For the electrical specifications, please contact your local ST representative to access SATA application notes describing oscillators electrical specifications.

16.3 JTAG

The JTAG recommended connections are shown in *Figure 35*.

Figure 35. Recommended connections

Note:

If there is a lot of noise on the clock line, a capacitor in the range 10 to 100 pF can be fitted between TCK and ground near the target STi7105, however, this may limit the maximum TAP clock rate.

16.4 Display analog output interface

16.4.1 Video DACs description

There are two identical sets of triple video DACs for HD and SD output. Both are triple high performance 10-bit digital to analog converters, and consist of three 10-bit DAC modules joined together. A reference circuit controlled by one external resistor sets the full-scale output for each DAC set. Each DAC is able to drive 10 mA.

The blocks are powered by 2.5 V analog and 1.2 V digital supplies, with separate analog and digital grounds.

The blocks require an external precision resistor (Rref) to provide a bandgap reference. The Rref optimum value is 7.81 k Ω +/- 1%.

The blocks' analog current sources provide a voltage output range of 1.4 V with an optimum linearity through an external precision resistor (Rload). The Rload optimum value is 140 Ω +/- 1%.

The exact calculation for the voltage output range is:

Vout = Din * 0.0625 * [(Rext-Mass_quiet)/Rref]*Rload

where:

- Din-Code value in decimal
- Rext-Mass_quiet—VbandGap(=1.2214 V)
- Rref—reference resistor; optimum value is 7.81 kΩ
- Rload—load resistor (=140 Ω)

47/

16.4.2 Power mode

Each DAC has two power modes—normal mode and high-impedance mode—that are controlled by the SYSTEM_CONFIG3 system configuration register.

The high impedance mode allows fast recovery from the low power consumption state, and can be used to reduce power during line and frame refresh.

Each DAC takes 100 ns time interval to switch from normal mode to high-impedance mode, and vice-versa.

16.4.3 Video DACs output-stage adaptation and amplification

Please contact your local ST representative to access application notes describing video DACs output stage adaptation and amplification.

16.5 HDMI interface

Please contact your local ST representative to access application notes describing HDMI PCB design guidelines.

16.6 Audio digital interface

Please contact your local ST representative to access application notes describing audio digital interface.

16.7 Audio analog interface

The audio DAC provides differential current source outputs for each channel. The use of a differential mode interface circuit is recommended to achieve the best signal to noise ratio performance. A single-ended mode interface circuit can be used, by grounding pins AUDA_LEFTOUTN and AUDA_RIGHTOUTN, but this is not recommended as the resulting signal to noise ratio is less than 90 dB.

An external 1% resistor R_{REF} should be connected between AUDA_IREF and AUDA_GND2V5. A typical value for R_{REF} is 575 Ω to get proper band gap functionality.

An external 10 μF capacitance should be connected between AUDA_VREF and AUDA_GND2V5.

Figure 36 describes an audio output stage to deliver a 2 VRMS signal.

Figure 36. V_{RMS} external audio analog schematic with +9V power supply

16.8 Programmable inputs/outputs

There is no specific external circuitry recommendations for this interface.

16.9 External memory interface (EMI)

The EMI is designed to be connected to up to:

- 1 PCI/33 MHz slot + 4 TTL/100 MHz/40 pF slots
- 1 PCI/66 MHz slot + 3 TTL/100 MHz/30 pF slots

236/313 8065505 Rev D

16.10 Local memory interface

Apart from the direct signal connections between the LMI and the DDR memories (refer to *Figure 37* and *Figure 38* for details), several extra connections are required.

An external resistor of 121 K Ω +/- 1% is to be connected between LMI_COMP_REF AND LMI_COMP_GND to enable the internal pad drive compensation mechanism.

The two voltage reference signals LMIVREF[0]/LMIVREF[1] are to be connected together to the memories' VREF signals and to a resistor pair whose pedestal is connected to VDD1V8_2V5 and LMI_GND1V8.

The LMIDUMMY[0]/LMIDUMMY[1] signals act as a PCB track delay estimator, and have to be connected through a dummy PCB trace. If all signal lengths are equal to an ideal TL_{signal} , TL_{dummy} is also equal to this TL_{signal} . If this is not the case, the ideal TL_{dummy} length is defined by the following equation:

```
TL_{dummy} = \\ 0.5 \times \{(TL_{LMICLK[0]} + TL_{NOTLMICLK[0]} + TL_{LMICLK[1]} + TL_{NOTLMICLK[1]}) / 4 + \\ (TL_{LMIDQS[0]} + TL_{LMIDQSN[0]} \\ + TL_{LMIDQS[1]} + TL_{LMIDQSN[1]} \\ + TL_{LMIDQS[2]} + TL_{LMIDQSN[2]} \\ + TL_{LMIDQS[3]} + TL_{LMIDQSN[3]} \\ ) / 8 \}
```

For further information on LMI PCB design guidelines, please contact your local ST representative.

In red: ballout optimized for TOP pcb routing In blue: ballout optimized for BOTTOM pcb routing STi7105 DDR0 LMICLK[0]/ CK/CKN NOTLMICLK[0] x16 LMIDATA[7:0] DQ[7:0] LMIDATAMASK[0] LDM LMIDQS[0]/ LMIDQSN[0] LDQS/LDQSN LMIDATA[15:8] DQ[15:8] UDM LMIDATAMASK[1] LMIDQS[1]/ UDQS/UDQSN LMIDQSN[1] LMIADDR[13:0] A[n:0] BA[m:0] NOTLMICS[0] CSN CASN/RASN/WEN LMICLKEN[0] CKE ODT[0] ODT LMIVREF[0] **VREF** vdd1v8 NOTLMICS[1] R LMIVREF[1] DDR1 **VREF** x16 ODT1 R ODT CKE NOTLMICAS/ NOTLMIRAS/ NOTLMIWE and1v8 CASN/RASN/WEN CSN LMIBA[2:0] BA[m:0] A[n:0] LMICLKEN[1] LMIDATA[31:24] UDQS/UDQSN LMIDATAMASK[3] **UDM** LMIDQS[3]/ DQ[15:8] LMIDQSN[3] LMIDATA[23:16] LDQS/LDQSN LMIDATAMASK[2] LDM LMIDQS[2]/ DQ[7:0] LMI_DQSN[2 LMICLK[1]/ CK/CKN NOTLMICIK[1] LMIDUMMY[0] LMIDUMMY[1] pcb track with similar length as other signals LMI COMP REF LMI_COMP_GND Note: series resistances not shown

Figure 37. LMI: connections to a (single rank/2 x16 devices) DDR 32-bit configuration

Confidential

Figure 38. LMI: connections to a (single rank/1 x16 devices) DDR 16-bit configuration

Confidential

16.11 Ethernet interface

Some mode pins are mapped on some Ethernet interface signals. Pull-up or pull-down resistors have to be added depending upon the chosen reset configuration. Refer to *Mode pins* for details.

16.12 USB interface

The USB external recommended connections are shown in Figure 39.

Figure 39. USB 2.0 application circuit

For PCB design guidelines, refer to the 'USB PCB design guidelines' specific document (ADCS #7991152). For access to this ST internal document please contact your local ST representative.

16.13 SATA

Confidential

Please contact your local ST representative to access application notes describing SATA PCB design guidelines.

16.14 Peripherals

The DAA external recommended connections are shown in Figure 40.

240/313 8065505 Rev D

No ground plane in DAA section R11 R3 Si307x C4 QE DCT2 DCT IGND R10 STi7105 RX DCT3 C1 ΙB QB DAA_C1A Q3 C1B QE2 C2B SC DAA_C2A **VREG** VREG2 R13 ReservedReserved R14 R9 C5 R8 FB1 . C9 FB2 Tip

Figure 40. Example of DAA application circuit

Note:

The ISO-Link capacitors C1 and C2, (33 pF) should be as close to the line-side device as possible. They should also be as close to the embedded system-side DAA module as possible and no further than 6 inches away.

17 Electrical specifications

Values in this chapter are provisional and may change after characterization

17.1 Absolute maximum ratings

Table 69. Absolute maximum ratings

Symbol	Parameter	Min	Тур	Max	Units
VDD3V3 _{max}	Digital 3.3 V maximum voltage	-0.6		3.9	V
VDD2V5 _{max}	Analog 2.5 V maximum voltage	-0.5		3.3	V
VDD1V8_2V5 _{max}	Digital 1.8 V maximum voltage	-0.5		3.3	V
VDD1V2 _{max}	Digital 1.2 V maximum voltage	-0.5		1.4	V
V _{ESD_HBM}	Electrostatic discharge voltage (HBM modem)			1000	V
V _{ESD_CDM}	Electrostatic discharge voltage (CDM modem)			250	V
T _{STG}	Storage temperature	- 60		150	°C

17.2 Operating conditions

Table 70. Operating conditions

Symbol	Parameter	Min	Тур	Max	Units
VDD3V3	Digital 3.3 V operating voltage	3.0	3.3	3.6	V
VDD2V5	Analog 2.5 V operating voltage	2.25	2.5	2.75	V
VDD1V8	Digital 1.8 V operating voltage	1.7	1.8	1.9	V
VDD1V2	Digital 1.2 V operating voltage	1.14	1.2	1.26	V
I _{3V3}	Digital 3.3 V current			TBD	Α
I _{2V5}	Analog 2.5 V current			TBD	Α
I _{1V8}	Digital 1.8 V current			TBD	А
I _{1V2}	Digital 1.2 core current			TBD	Α
C _L	Load capacitance per pin			100	pF
TA	Operating ambient temperature	0		70	°C
PD _{FP}	Full-Power consumption		TBD		W
PD_{LP}	Low-Power consumption		TBD		W
R _{THJAa}	Junction-to-ambient thermal resistance		TBD		°C/W

242/313 8065505 Rev D

17.3 Audio DAC

17.3.1 Electrical characteristics

Absolute maximum ratings

The Table 71 describes absolute maximum ratings for audio DAC.

Table 71. Absolute maximum ratings

Symbol	Parameter	Min	Тур	Max	Units
ANA1_VDD2V5	Analog power supply			4	V
AUDA_DVDD1V2	Digital power supply			2	V
T _{stg}	Storage temperature	- 60		150	°C

Operating conditions

The Table 72 describes operating conditions for audio DAC.

Table 72. Operating conditions

Symbol	Parameter	Min	Тур	Max	Units
AUDA_DVDD1V2	Digital power supply	1	1.2	1.4	V
T _{oper}	Operating Temperature	-40	27	125	°C
I _D	Digital Supply Current		2		mA
ANA1_VDD2V5	Analog power supply	2.25	2.5	2.75	V
I _A	2.5 Analog Supply Current			TBD	mA
I _{PD}	Supply Current in Power Down Mode			10	μА

Output current

In case of no input data, the DAC provides a common mode output current (Icom), as shown in *Figure 41*.

Figure 41. Current output

The output current is fixed by internal reference current or can be fixed externally.

Table 73. Audio DAC output current

Parameter	Imin	Icom	lmax	Unit
Output current	0	_0.8 Rext	_ <u>1.613</u> Rext	Α

17.4 Triple HD video DACs

The *Table 74* describes absolute maximum ratings for triple video DACs.

Table 74. Absolute maximum rating

Symbol	Parameter	Min	Тур	Max	Unit
_	Analog power supply for current matrix & bias blocks 2.75 V			2.75	V
VIDA1_VCCA2/ VIDA2_VCCA2	Analog power supply for level shifters			2.75	V
T _{stg}	Storage temperature	-60		150	degrees

The Table 75 describes operating conditions for triple video DACs.

Table 75. Operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
VIDA1_VCCA1/ VIDA2_VCCA1	Analog power supply for current matrix & bias blocks 2.75 V	2.25	2.5	2.75	V
VIDA1_VCCA2/ VIDA2_VCCA2	Analog power supply for level shifters	2.25	2.5	2.75	V
T _{op}	Operating junction temperature	-40	25	125	degrees

The Table 76 describes static electrical performance of TriDAC.

Table 76. Static electrical performance Rref = 7.81 k Ω ; Rload = 140 Ω

Symbol	Parameter	Min	Тур	Max	Unit
Nb	DAC resolution		10		bits
PonAnalog	Power consumption analog/ active ⁽¹⁾		110	133	mW
PonDigital	Power consumption digital/ active ⁽²⁾		3.0	3.9	mW
PHZ	Power consumption / HZ mode ⁽³⁾		12.7	15.6	mW
POFF	Power consumption / Off mode ⁽⁴⁾		2.5	102.0	μW
INL	Integral non linearity		+/- 0.4	+/- 1.0	LSB
DNL	Differential non linearity		+/- 0.2	+/- 0.5	LSB
DAC to DAC matching	DAC to DAC matching ⁽⁵⁾		+/- 0.5	+/- 3	
Compliance	Output compliance 0 V < Vout < 1.4 V			0.03	LSB
lout Rref = 7.81 kΩ	DAC output current	0 (code min)		10.0 (code max)	mA
Full scale Gain Error	Full scale gain error ⁽⁶⁾			+/7	%
Rout	DAC output resistance @ DC	100			kΩ

^{1.} Typical consumption at 2.5 V/1.2 V supply; and Max. at 2.75 V/1.32 V supply

The Table 77 describes dynamic electrical performance of video DACs.

Confidential

^{2.} Typical consumption at 2.5 V/1.2 V supply; and Max. at 2.75 V/1.32 V supply

^{3.} Independent of dk activity

^{4.} Transistor off-stage leakage only

^{5.} Under ideal supply conditions

^{6.} This value includes the 1% variation of reference resistor (Rref) and 1% of load resistor (Rload)

Confidential

Table 77. Dynamic electrical performance Rref = 7.81 k Ω ; Rload = 140 Ω

Symbol	Parameter	Min	Тур	Max	Unit
F_CLK	Clock speed			160	MHz
BDW	Output 3 dB bandwidth @ Fclk=160 MHz	DC to 30			MHz
THD	Total harmonic distortion Fin =4 MHz, F_clk =160 MHz	-44.27	-46.47		dB
SFDR	Spurious free dynamic range Fin=4 MHz, Fclk=160 MHz Output full scale	-44.88	-47.79		dB
PSRR (dVout/dVvcca)	Power supply rejection ratio @ 1 Hz (full scale)	-50	-55		dB
	Power supply rejection ratio @1 MHz(full scale)	-22	-25		dB

17.5 DAA electrical characteristics

The Table 78 describes absolute maximum ratings for DAA.

Table 78. Absolute maximum ratings

Symbol	Parameter	Conditions	Min	Max	Units
V ₁	Input voltage on IO pin with respect to GND		-	3.6	V

17.6 DDR electrical characteristics

17.6.1 Limiting values

The Table 79 describes the limiting values for DDR.

Table 79. DDR limiting values

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VDDE	1.8 V pad supply voltage	DDR II mode	1.7	1.8	1.9	V
VDDL		DDR I mode	2.25	2.5	2.75	V
VREF(DC)	Input reference voltage connected on REFSSTL (corresponding to supply VDDE)	(1)	(0.49 * VDDE)	(0.5 * VDDE)	(0.51 * VDDE)	٧
VTT	Termination voltage	(2)	VREF - 0.04	VREF	VREF +0.04	V

The value of VREF is expected to be (0.49-0.51) x VDDE of the transmitting device and VREF is expected to track variations in VDDE.

17.6.2 Output buffer DC characteristics

Table 80. Output buffer DC characteristics

Symbol	Mode of I/O buffer	Parameter	Conditions	Min	Тур	Max	Unit
lol	DDRI	Output minimum DC current sink	Vol = 0.36V ⁽¹⁾	16.2	-	-	mA
loh	DUNI	Output minimum DC current source	Voh = VDDE - 0.36V	-16.2	-	-	mA
lol	DDRII	Output minimum DC current sink	Vol = 0.28V	13.4	-	-	mA
loh	ווחטט	Output minimum DC current source	Voh = VDDE - 0.28V ⁽²⁾	-13.4	-	-	mA

^{1.} SSTL2 classII specification with ZOUTPROGA set low.

^{2.} Peak to peak AC noise on VREF may not exceed +/-2% of VREF(DC). VTT of transmitting device must track VREF of receiving device.

^{2.} SSTL_18 specification with ZOUTPROGA set low.

17.6.3 Input buffer DC specifications

Table 81. Input buffer DC characteristics for DDRI

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VREF	Voltage reference	-	0.49 * VDDE = 1.1	0.5 * VDDE = 1.25	0.51 * VDDE = 1.4	V
Vil (DC)	DC input logic low	-	-0.3	-	VREF - 0.15	V
Vih (DC)	DC input logic high	-	VREF + 0.15	-	VDDE + 0.3	V
Vil (AC)	AC input logic low	-	-	-	VREF - 0.31	V
Vih(AC)	AC input logic high	-	VREF + 0.31	-	-	V

Table 82. Input buffer DC characteristics for DDRII

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VREF	Voltage reference	-	0.49 * VDDE = 0.833	0.5 * VDDE = 0.9	0.51 * VDDE = 0.969	٧
Vil (DC)	DC input logic low	-	-0.3	-	VREF - 0.125	٧
Vih (DC)	DC input logic high	-	VREF + 0.125	-	VDDE + 0.3	٧
VTT (DC)	Termination voltage		VREF - 0.04	-	VREF + 0.04	٧
Vil (AC)	AC input logic low	-	-	-	VREF - 0.25	V
Vih(AC)	AC input logic high	-	VREF + 0.25	-	-	٧

17.7 SATA PHY electrical characteristics

17.7.1 Absolute maximum ratings

Table 83 describes the absolute maximum ratings.

Table 83. Absolute maximum ratings

Symbol	Parameter	Min	Max	Unit
SATAVDDR				
SATAVDDT	Supply Voltage (1.2 V nom.)		1.35	V
SATAVDD_PLL				
SATAVDD2_PLL	Supply Voltage (2.5 V)		2.75	V
V _{INL}	Input low level	TBD		V
V _{INH1}	Input high level (oscillator and pll 2v5 inputs)		2.75	V
V _{INH2}	Input high level (all other inputs)		1.35	V

248/313 8065505 Rev D

17.7.2 Operating conditions

Table 84 describes the operating conditions.

Table 84. Operating conditions

Symbol	Parameter	Min	Тур	Max	Units
SATAVDDR					
SATAVDDT	1v2 supply voltage range	1.08	1.20	1.32	V
SATAVDD_PLL					
SATAVDD2_PLL	Supply Voltage (2.5 V)	2.25	2.50	2.75	V
	Supply ripple (1MHz to 3GHz)			50	mV(pk-pk)
TJ	Operating junction temperature	-40		125	°C

17.7.3 General electrical specifications

Table 85 describes the general electrical specifications.

Table 85. General electrical specifications

Table 66. General electrical specifications							
Symbol	Parameter	Min	Тур	Max	Unit		
Rref	External reference resistor (from refers pin to the vdd_pll pin)	-1%	475	+1%	Ohm		
TUI _{SATASAS1}	Unit Interval for SATA/SAS gen1 (1.5 Gbps)		666.67		ps		
F _{SSC}	Spread spectrum modulation frequency	30		33	kHz		
SSC _{TOL}	Spread spectrum modulation deviation	-5000		+0	ppm		
V _{cm,ac}	AC coupled common mode voltage	0		2000	mV		
Z _{diff}	Nominal differential impedance		100				
t _{settle,cm}	Common mode transient settle time (SATA gen1 only)			10	ns		
V _{trans}	Sequencing transient voltage	-2.0		2.0	V		

17.8 External memory interface (EMI)

The EMI pads are TTL/PCI dual-mode. TTL electrical specifications are shown in *Table 86* and PCI electrical specifications in *Table 87*.

Table 86. TTL-mode 3V3 EMI pads DC specifications

Symbol	Parameter	Min	Typical	Max	Units	Notes					
V _{IH}	Input logic 1 voltage	2.0		VDD3V3 + 0.5	V						
V _{IL}	Input logic 0 voltage	-0.5		0.8	V						
V _{OH}	Output logic 1 voltage	VDD3V3 - 0.2			V	(1)					
V _{OL}	Output logic 0 voltage			0.2	V	(2)					
R _{PU}	Equivalent pull-up resistance		50		kΩ						
R _{PD}	Equivalent pull-down resistance		50		kΩ						
I _{IN}	Input leakage current (input pin)			4	μΑ	(3)					
C _{IN}	Input capacitance			10	pF						

^{1.} $I_{OUT} = -8 \text{ mA}$

Confidential

Table 87. PCI-mode 3V3 EMI pads DC specifications

Symbol	Parameter	Min	Typical	Max	Units	Notes
V _{IH}	Input logic 1 voltage	0.5*VDD3V3		VDD3V3 + 0.5	V	
V _{IL}	Input logic 0 voltage	-0.5		0.3*VDD3V3	V	
V _{OH}	Output logic 1 voltage	0.9*VDD3V3			V	(1)
V _{OL}	Output logic 0 voltage			0.1*VDD3V3	V	(2)
R _{PU}	Equivalent pull-up resistance		50		kΩ	
R _{PD}	Equivalent pull-down resistance		50		kΩ	
I _{IN}	Input leakage current (input pin)			4	μΑ	(3)
C _{IN}	Input capacitance			10	pF	

^{1.} $I_{OUT} = -0.5 \text{ mA}$

^{2.} I_{OUT} = 8 mA

^{3.} $0 \le V_{in} \le VDD3V3$

^{2.} $I_{OUT} = 1.5 \text{ mA}$

^{3.} $0 \le V_{in} \le VDD3V3$

17.9 USB

Table 88 describes the operating conditions of USB.

Table 88. USB operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
USB1_VDD3V3	Analog supply voltage	3.0	3.3	3.6	V
USB2_VDD3V3	Analog supply voltage	3.0	3.3	3.0	V
USB_VDD1V2	Digital supply voltage	1.1	1.2	1.3	V
USB_VDD2V5	Analog supply voltage	2.3	2.5	2.7	V
V _{LFS-cm}	Low and full speed mode input common mode level	800		2500	mV
V _{HS-cm}	High speed mode input common mode level	-50	200	500	mV
V _{chirp-cm}	Chirp mode input common mode level	-50		600	mV
V_{diff}	Differential input signal amplitude	100	400	1100	mV

Timing interfaces STi7105

18 **Timing interfaces**

Digital audio interface 18.1

Digital PCM reader input interface 18.1.1

Digital PCM Player timing waveform

The Figure 42 shows the timing waveforms of the digital Audio PCM input to the PCM reader.

Figure 42. Digital PCM audio input timing waveforms

Table 89. Digital audio PCM input timing parameters

Symbol	Parameter	Min	Max	Units
f _{pcmi_sclk}	PCMI_SCLK max frequency		32	MHz
t _{pcmi_sclkl}	PCMI_SCLK low pulse	12		ns
t _{pcmi_sclkh}	PCMI_SCLK high pulse	12		ns
t _{pcmidSH}	PCMI_data setup time to PCMI_SCLK rising edge	5		ns
t _{pcmidHD}	PCMI_data hold time from PCMI_SCLK rising edge	5		ns

Information classified Confidential - Do not copy (See last page for obligations)

Timing interfaces

18.2 Digital PCM player output interface

18.2.1 PCM player output timing waveform

The *Figure 43* shows the timing waveforms of the PCM player output interface.

Figure 43. PCM player timing output waveforms

STi7105

Table 90. PCM player output timing parameters

Symbol	Parameter	Min	Max	Units
t _{SCLPD}	SCLK low to PCMDATA valid		10	ns
t _{SCLLR}	SCLK low to LRCLK		10	ns
t _{SCHPD}	SCLK high to PCMDATA valid		50	ns
t _{SCHLR}	SCLK high to LRCLK		50	ns
PCM _{jitter}	Dedicated PCMCLK pin jitter			

Timing interfaces STi7105

18.3 Transport stream input AC specification

18.3.1 Parallel transport stream input interface

The *Figure 44* shows the timing waveforms of parallel transport stream input interface.

Figure 44. Parallel transport stream input timing waveform

Table 91. Parallel transport stream input timing parameter

Symbol	Parameter	Min	Mon	Max	Units
t _{LCLLCL}	TSnINBYTECLK period	37			ns
t _{LCHLCH}	TSnINBYTECLK pulse width high	10			ns
t _{LCLLCL}	TSnINBYTECLK pulse width low	10			ns
t _{LDVLCH}	TSnIN signals valid to TSnINBYTECLK high	4			ns
t _{LCHLDX}	TSnIN signals hold after TSnINBYTECLK high	0			ns

Information classified Confidential - Do not copy (See last page for obligations)

STi7105 Timing interfaces

18.3.2 Serial transport stream input interface

The *Figure 45* shows the timing waveforms of serial transport stream input interface.

Figure 45. Serial transport stream input timing waveform

Table 92. Serial transport stream input timing parameter

Symbol	Parameter N		Mon	Max	Units			
t _{LCLLCL}	TSnINBITCLK period	10			ns			
t _{LCHLCH}	TSnINBITCLK pulse width high	3			ns			
t _{LCLLCL}	TSnINBITCLK pulse width low	3			ns			
t _{LDVLCH}	TSnIN signals valid to TSnINBITCLK high				ns			
t _{LCHLDX}	TSnIN signals hold after TSnINBITCLK high	0			ns			

18.4 Transport stream output AC specification

The Figure 46 shows the timing waveforms of transport stream output interface.

Figure 46. Transport stream output timing

Timing interfaces STi7105

Table 93. Transport stream output port timings

Symbol Parameter		Min	Max	Units
t _{TSINBYTECLK}	TSINBYTECLK clock period	10		ns
t _{TSBYTECLK}	Output delay to TSINBYTECLK		0	ns
t _{ACHACH}	TSnINOUTBYTECLK pulse width high	40		ns
t _{ACLLAL}	TSnINOUTBYTECLK pulse width low	40		ns

18.5 JTAG interfaces AC specification

Input clocks: TCK (rising edge)

Inputs: TDI, TMS

Figure 47. JTAG interface timing

Table 94. JTAG input/output port timings

Symbol	Parameter Parameter		Max	Units
Input clock	TCK period	20		ns
tTAPHCLK	Inputs setup to TCK rising edge	5		ns
tTAPSCLK	Inputs hold to TCK rising sdge	5		ns
tPTAPCLK	Output delay to TCK falling edge		15	ns

18.6 EMI timings

All of the outputs come from a multiplexer controlled by the clock. It is assumed that the EMI will be programmed so that all the outputs will be changed on the falling edge of the clock.

Following tables assume an external load of 25 pF on every EMI pad.

577

STi7105 Timing interfaces

18.6.1 Synchronous devices

All synchronous transactions originate and terminate at flip flops within the padlogics. Outputs are generated with respect to the falling edge of the bus clock, and inputs are sampled with respect to the rising edge.

EMI-Clock: EMISFLASH

EMI-outputs: EMIADDR[*], EMIDATA[*], NOTEMICS*, NOTEMIBE, NOTEMIOE,

NOTEMILBA, NOTEMIBAA, EMIRDNOTWR EMI-inputs: EMIDATA[*], EMIREADYORWAIT

Figure 48. EMI synchronous device timing

Table 95. EMI / SFLASH synchronous interface parameters

Symbol	Parameter	Min	Max	Units
Input clock	EMISFLASHCLK period	33		ns
t _{ECHEOV}	Bus clock falling edge to valid data	0	4	ns
t _{EIVECH}	Input valid to rising clock edge (input setup time)	5.5		ns
t _{ECHEIX}	Rising clock edge to input invalid (input hold time)	0		ns
t _{ECHEON}	Falling clock edge to data valid (after tristate output)	2		ns
t _{ECHEOZ}	Falling clock edge to data valid (before tri-state output)		-3	ns

These values are static offsets within a bus cycle, they should be read in conjunction with the waveforms in *external memory interface* (EMI), which are cycle accurate only.

Timing interfaces STi7105

Asynchronous memory/peripherals

The EMI strobes are programmed in terms of internal clock phases, that is to say with half cycle resolution. The clock to output delay for all outputs (address, data, strobes) are closely matched with a skew tolerance of -3 ns / +3 ns (assuming an external load of 25 pF on pads).

The input latch point for a read access is determined by the number of programmed EMI subsystem clock cycles for the latch point. The correction allows the latch point to be measured from the edge of an active chip select, that has been programmed to rise at the programmed read latch point.

Time between the address bus switching and a chip select or data bus output switching is n programmed phases +/- 3 ns. That is, worst case, the chip select or data is maximum of 3 ns after the address, or worst case the chip select or data is 3 ns before the address.

For a read cycle, the data is latched by the STi7105 at the programmed number of EMI subsystem clock cycles from the end of the access plus a latch point correction time, which is effectively the read setup time. The latch point correction time (read setup time) is a minimum of 5 ns + skew tolerance correction of the output signal used as a reference. This is 5 + -3 ns, thus the minimum read setup time relative to a strobe is 8 ns. This ensures the read hold time is always a minimum of 0 ns, guaranteed by design.

Asynchronous access - READ

STi7105 Timing interfaces

Asynchronous access - WRITE

Figure 50. EMI asynchronous write timing

Table 96. EMI / Asynchronous memory/peripherals interface parameters

Symbol	ol Parameter		Max	Units	Note
t _{AVSV}	Address valid to output strobe valid	-1.5	3	ns	(1)
t _{RDVSV}	Read data valid to strobe valid (read setup time)	8		ns	(2)
t _{SVRDX}	Read data hold time after strobe valid (read hold time)	0		ns	(3)
t _{AVWDON}	Address valid to write data valid (after tristate output)	3		ns	(4)
t _{AVWDOZ}	Address valid to write data valid (before tristate output)		-4.5	ns	
t _{AVWDV}	Address valid to write data valid	-2	2	ns	

- 1. Skew plus nominal N programmed EMI subsystem clock cycles of strobe delay.
- 2. Skew from nominal programmed read latch point.
- 3. Minimum values are guaranteed by design.
- 4. Skew from nominal programmed phases of data drive delay.

Table 96 assumes an external load of 25 pF on EMI pads.

18.7 LMI DDR2-SDRAM timings

The DDR2 interface is compliant to the Jedec DDR2 specs (DDR2-800 grade).

4

Information classified Confidential - Do not copy (See last page for obligations)

Timing interfaces STi7105

18.8 PIO output AC specification

Reference clock in this case means the last transition of any PIO signal.

Note: There are two different sets of PIO timings, one for the SSC (I²C) outputs and one for all other PIO outputs.

Figure 51. PIO timing

Table 97. PIO timings: SSC (I²C bus)

Symbol	Parameter	Min	Max	Units
t _{PCHPOV}	PIO_REFCLOCK high to PIO output valid	-20.0	0.0	ns
t _{PCHWDZ}	PIO tristate after PIO_REFCLOCK high	-20.0	5.0	ns
t _{PlOr}	Output rise time		30.0	ns
t _{PIOf}	Output fall time	3.0	30.0	ns

Information classified Confidential - Do not copy (See last page for obligations)

18.9 Ethernet interface

18.9.1 MII interface

MII receive interface

The Figure 52 shows the timing waveform for the Receive MII interface.

Figure 52. Receive signal timing relationship at the MII PHY interface

MII transmit interface

The Figure 53 shows the timing waveform for the Transmit MII interface.

Figure 53. Transmit signal timing relationship at the MII PHY interface

Timing interfaces STi7105

MII control interface

The Figure 54 shows the timing waveform for the MII control interface.

Figure 54. Control signal timing relationship at the MII PHY interface

18.9.2 RMII interface

RMII timing parameters

The Table 98 describes RMII timings parameters.

Table 98. RMII timing parameters

Parameter	Min	Тур	Max	Units
REF_CLK Frequency		50		MHz
REF_CLK Duty Cycle	35		65	%
TXD[1:0], TX_EN,RXD[1:0], CRS_DV, RX_ER (Data Setup to REF_CLK rising edge)	4			ns
TXD[1:0], TX_EN,RXD[1:0], CRS_DV, RX_ER (Data hold from REF_CLK rising edge)	2			ns

Δ//

Information classified Confidential - Do not copy (See last page for obligations)

19 Alternate functions on PIO

19.1 Alternate functions

To improve flexibility and to allow the STi7105 to fit into different set-top box application architectures, the input and output signals from some of the peripherals and functions are not directly connected to the pins of the device. Instead, they are assigned to the alternate function inputs and outputs of a PIO port bit, or an I/O pin. This allows the pins to be configured with their default function if the associated input or output is not required in that particular application.

Some pins have several alternate functions, for inputs and outputs, or both. *Table 99* to *Table 115* list the different alternate functions.

Inputs connected to the alternate function input are permanently connected to the input pin. The output signal from a peripheral is only connected when the PIO bit is configured into either push-pull or open drain driver alternate function mode.

Some alternate function signals are available on more than one PIO port.

The STi7105 uses 7 PIO banks (PIO#0 to PIO#6) that are controlled by the COMMS IP and 10 banks that are driven by a standalone PIO module called STD PIO.

The STi7105 embeds two types of PIOs alternate functions.

- Functions that are enabled by a register located inside the COMMS (or STD_PIO module).
- Functions that are enabled by a register located inside the system config module. This configuration is required for the pins
 where the alternate functions are enabled already at reset (by default the pins controlled by the COMMS are in the PIO mode
 and not alternate).

In addition to the multiplexing on the PIO pins, the STi7105 uses other pin multiplexing to provide different signal options depending upon the device application. For these other multiplexing options see Section 7: Basic chip operating modes and multiplexing scenarios on page 98.

Alternate functions on PIO

In case of alternate functions controlled by the System Config bit, the enabling of the pad is driven by the alternate function itself when in the alternate mode or by the COMMS (or STD_PIO) signals when in the PIO mode.

STi7105

8065505 Rev D

19.2 PIO0 alternate functions

PIO0 is on COMMS block. It provides:

- first digital video output extension (8 to 16-bit) DVO0
- second digital video output (24-bit) DVO1
- smartcard interfaces SC0 and SC1
- **UARTO** interfaces

Table 99. PIO0 alternate functions

PIO0	Config register: SYSTEM_CONFIG19[15:0]								
PIOU	Config bus: PIO0_ALTFOP[1:0]_MUX_SEL_BUS[7:0]								
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4	Alternate 5			
		Digital video output 1	Digital video output 0	Smart card 0	UART 0	Reserved			
	Name	DVO1[0]	DVO0[16]	SC0_DATAOUT	UART0_TXD	RESERVED			
PIO0[0]	Description	Second DVO output	First DVO output	Smartcard 0	UART 0	RESERVED			
FIOU[U]	Direction	0	0	0	0	RESERVED			
	Configuration	SYSTEM_CONFIG19[8,0]=00	SYSTEM_CONFIG19[8,0]=01	SYSTEM_CONFIG19[8,0]=10	SYSTEM_CONFIG19[8,0]=11	RESERVED			
	Name	DVO1[1]	DVO0[17]	SC0_DATAIN	UART0_RXD	RESERVED			
DIOO[4]	Description	Second DVO output	First DVO output	Smartcard 0	UART 0	RESERVED			
PIO0[1]	Direction	0	0	I	1	RESERVED			
	Configuration	SYSTEM_CONFIG19[9,1]=00	SYSTEM_CONFIG19[9,1]=01	Not required	Not required	RESERVED			
	Name	DVO1[2]	DVO0[18]	SC0_EXTCLKIN	UART0_NOT_OE	RESERVED			
DIOOEOI	Description	Second DVO output	First DVO output	Smartcard 0	UART 0	RESERVED			
PIO0[2]	Direction	0	0	I	0	RESERVED			
	Configuration	SYSTEM_CONFIG19[10,2]=00	SYSTEM_CONFIG19[10,2]=01	Not required	SYSTEM_CONFIG19[10,2]=11	RESERVED			
	Name	DVO1[3]	DVO0[19]	SC0_CLKOUT	UART0_RTS	RESERVED			
DIOOESI	Description	Second DVO output	First DVO output	Smartcard 0	UART 0	RESERVED			
PIO0[3]	Direction	0	0	0	0	RESERVED			
	Configuration	SYSTEM_CONFIG19[11,3]=00	SYSTEM_CONFIG19[11,3]=01	SYSTEM_CONFIG19[11,3]=10	SYSTEM_CONFIG19[11,3]=11	RESERVED			

PIO0 alternate functions (continued) Table 99.

PIO0	Config register:	Config register: SYSTEM_CONFIG19[15:0]								
PIOU	Config bus: PIO0_ALTFOP[1:0]_MUX_SEL_BUS[7:0]									
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4	Alternate 5				
		Digital video output 1	Digital video output 0	Smart card 0	UART 0	Reserved				
	Name	DVO1[4]	DVO0[20]	SC0_RESET	UARTO_CTS	RESERVED				
PIO0[4]	Description	Second DVO output	First DVO output	Smartcard 0	UART 0	RESERVED				
100[4]	Direction	0	0	0	1	RESERVED				
	Configuration	SYSTEM_CONFIG19[12,4]=00	SYSTEM_CONFIG19[12,4]=01	SYSTEM_CONFIG19[12,4]=10	Not required	RESERVED				
	Name	DVO1[5]	DVO0[21]	SC0_COND_VCC		RESERVED				
	Description	Second DVO output	First DVO output	Smartcard 0		RESERVED				
PIO0[5]	Direction	0	0	0		RESERVED				
	Configuration	SYSTEM_CONFIG19[13,5]=00	SYSTEM_CONFIG19[13,5]=01	SYSTEM_CONFIG19[13,5]=10		RESERVED				
	Name	DVO1[6]	DVO0[22]	SC0_COND_VPP		RESERVED				
NO0[6]	Description	Second DVO output	First DVO output	Smartcard 0		RESERVED				
PIO0[6]	Direction	0	0	0		RESERVED				
	Configuration	SYSTEM_CONFIG19[14,6]=00	SYSTEM_CONFIG19[14,6]=01	SYSTEM_CONFIG19[14,6]=10		RESERVED				
	Name	DVO1[7]	DVO0[23]	SC0_DETECT		RESERVED				
PIO0[7]	Description	Second DVO output	First DVO output	Smartcard 0		RESERVED				
100[7]	Direction	0	0	I		RESERVED				
	Configuration	SYSTEM_CONFIG19[15,7]=00	SYSTEM_CONFIG19[15,7]=01	Not required		RESERVED				

Alternate functions on PIO

8065505 Rev D

268/313

19.3

PIO1 alternate functions

PIO1 is on COMMS block. It provides:

smart card interface SC1

MAFE interface **UART** interfaces

Table 100. PIO1 alternate functions

second Digital Video Output (24-bit) DVO1

DIO	Config register: SYSTEM_CONFIG20[15:0]							
PIO1	Config bus: PIO0	_ALTFOP[1:0]_MUX_SEL_BUS[7:0]						
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4			
		Digital video output 1	MAFE I/F	Smartcard 1	UART 1			
	Name	DVO1[8]	MAFE_DIN	SC1_DATAOUT	UART1_TXD			
PIO1[0]	Description	Second DVO output	MAFE	Smartcard 1	UART 1			
	Direction	0	I	0	0			
	Configuration	SYSTEM_CONFIG20[8,0]=00	Not required	SYSTEM_CONFIG20[8,0]=10	SYSTEM_CONFIG20[8,0]=11			
	Name	DVO1[9]	MAFE_SCLK	SC1_DATAIN	UART1_RXD			
DIO4[4]	Description	Second DVO output	MAFE	Smartcard 1	UART 1			
PIO1[1]	Direction	О	I	I	I			
	Configuration	SYSTEM_CONFIG20[9,1]=00	Not required	Not required	Not required			
	Name	DVO1[10]	MAFE_HC1	SC1_EXTCLKIN				
DIO4[0]	Description	Second DVO output	MAFE	Smartcard 1				
PIO1[2]	Direction	0	0	I				
	Configuration	SYSTEM_CONFIG20[10,2]=00	SYSTEM_CONFIG20[10,2]=01	Not required				
	Name	DVO1[11]	MAFE_DOUT	SC1_CLKOUT	UART1_RTS			
DIO4[0]	Description	Second DVO output	MAFE	Smartcard 1	UART 1			
PIO1[3]	Direction	0	0	0	0			
	Configuration	SYSTEM_CONFIG20[11,3]=00	SYSTEM_CONFIG20[11,3]=01	SYSTEM_CONFIG20[11,3]=10	SYSTEM_CONFIG20[11,3]=11			

Table 100. PIO1 alternate functions (continued)

DIO4	Config register: SYSTEM_CONFIG20[15:0]							
PIO1	Config bus: PIO0_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4			
		Digital video output 1	MAFE I/F	Smartcard 1	UART 1			
	Name	DVO1[12]		SC1_RESET	UART1_CTS			
PIO1[4]	Description	Second DVO output		Smartcard 1	UART 1			
PIO 1[4]	Direction	О		0	I			
	Configuration	SYSTEM_CONFIG20[12,4]=00		SYSTEM_CONFIG20[12,4]=10	Not required			
	Name	DVO1[13]	MAFE_FS	SC1_COND_VCC				
DIO4[E]	Description	Second DVO output	MAFE	Smartcard 1				
PIO1[5]	Direction	0	I	0				
	Configuration	SYSTEM_CONFIG20[13,5]=00	Not required	SYSTEM_CONFIG20[13,5]=00				
	Name	DVO1[14]		SC1_COND_VPP				
DIO4[6]	Description	Second DVO output		Smartcard 1				
PIO1[6]	Direction	0		0				
	Configuration	SYSTEM_CONFIG20[14,6]=00		SYSTEM_CONFIG20[14,6]=10				
	Name	DVO1[15]		SC1_DETECT				
DIO4[7]	Description	Second DVO output		Smartcard 1				
PIO1[7]	Direction	0		I				
	Configuration	SYSTEM_CONFIG20[15,7]=00		Not required				

19.4 PIO2 alternate functions

PIO2 is on COMMS block. It provides:

- second Digital Video Output (24-bit) DVO1
- SSC0 and SSC1 interfaces with I2C half-duplex/full-duplex modes selectable by the ssc0_mux_sel and ssc1_mux_sel bits
- SSC2 and SSC3 interfaces with I2C half-duplex modes selectable

Table 101. PIO2 alternate functions

2100	Config register: SYSTEM_CONFIG21[15:0]							
PIO2	Config bus: PIO2_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4			
		Digital video output 1	SSC2, SSC3	SSC 0,1,2,3	SSC 0,1,2,3			
	Name	DVO1[16]		SSC2_MTSR	SSC2_MRST			
	Description	Second DVO output		SSC2 Data bit: master transmit/slave receive, full duplex	SSC2 Data bit: master receive/slave transmit, full duplex			
PIO2[0]	Direction	0		I/O	I/O			
	Configuration	SYSTEM_CONFIG21[8,0]=00		In: SYSTEM_CONFIG16[10,9]=00 Out: SYSTEM_CONFIG21[8,0]=10	In: SYSTEM_CONFIG16[8,7]=00 Out: SYSTEM_CONFIG21[8,0]=11			
	Name	DVO1[17]		SSC3_MTSR	SSC3_MRST			
	Description	Second DVO output		SSC3 Data bit: master transmit/slave receive, full duplex	SSC3 Data bit: master receive/slave transmit, full duplex			
PIO2[1]	Direction	0		I/O	I/O			
	Configuration	SYSTEM_CONFIG21[9,1]=00		In: SYSTEM_CONFIG16[17:16]=00 Out: SYSTEM_CONFIG21[9,1]=10	In: SYSTEM_CONFIG16[15,14]=00 Out: SYSTEM_CONFIG21[9,1]=11			
	Name	DVO1[18]		SSC0_SCL	SSC0_SCL			
	Description	Second DVO output		SSC0 serial clock in/out	SSC0 serial clock in/out			
PIO2[2]	Direction	0		I/O	I/O			
	Configuration	SYSTEM_CONFIG21[10,2]=00		In: Not required Out: SYSTEM_CONFIG21[10,2]=10	In: Not required Out: SYSTEM_CONFIG21[10,2]=11			

270/313

Alternate functions on PIO

Table 101. PIO2 alternate functions (continued)

DIO.	Config register: SYSTEM_CONFIG21[15:0]							
PIO2	Config bus: PIO2_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4			
		Digital video output 1	SSC2, SSC3	SSC 0,1,2,3	SSC 0,1,2,3			
	Name	DVO1[19]		SSC0_MTSR	SSC0_MRST			
	Description	Second DVO output		SSC0 Data bit: master transmit/slave receive, full duplex	SSC0 Data bit: master receive/slave transmit, full duplex			
PIO2[3]	Direction	0		1/0	I/O			
	Configuration	SYSTEM_CONFIG21[11,3]=00		In: Not required Out: SYSTEM_CONFIG21[11,3]=10	In: SYSTEM_CONFIG16[0]=0 Out: SYSTEM_CONFIG21[11,3]=11			
	Name	DVO1[20]		SSC0_MRST	SSC0_MRST			
	Description	Second DVO output		SSC0 Data bit: master receive/slave transmit, full duplex	SSC0 Data bit: master receive/slave transmit, full duplex			
PIO2[4]	Direction	0		I/O	I/O			
	Configuration	SYSTEM_CONFIG21[12,4]=00		In: SYSTEM_CONFIG16[0]=1 Out: SYSTEM_CONFIG21[12,4]=10	In: SYSTEM_CONFIG16[0]=1 Out: SYSTEM_CONFIG21[12,4]=11			
	Name	DVO1[21]		SSC1_SCL	SSC1_SCL			
	Description	Second DVO output		SSC1 Serial Clock	SSC1 Serial Clock			
PIO2[5]	Direction	0		I/O	I/O			
	Configuration	SYSTEM_CONFIG21[13,5]=00		In: Not required Out: SYSTEM_CONFIG21[13,5]=10	In: Not required Out: SYSTEM_CONFIG21[13,5]=11			
	Name	DVO1[22]		SSC1_MTSR	SSC1_MRST			
	Description	Second DVO output		SSC1 Data bit: master transmit/slave receive, full duplex	SSC1 Data bit: master receive/slave transmit, full duplex			
PIO2[6]	Direction	0		I/O	I/O			
[6]	Configuration	SYSTEM_CONFIG21[14,6]=00		In: Not required Out: SYSTEM_CONFIG21[14,6]=10	In: SYSTEM_CONFIG16[3]=0 Out: SYSTEM_CONFIG21[14,6]=11			

Table 101. PIO2 alternate functions (continued)

	Config register	Config register: SYSTEM_CONFIG21[15:0] Config bus: PIO2_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
PIO2	Config bus: Pl								
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4				
		Digital video output 1	SSC2, SSC3	SSC 0,1,2,3	SSC 0,1,2,3				
	Name	DVO1[23]		SSC1_MRST	SSC1_MRST				
	Description	Second DVO output		SSC1 Data bit: master receive/slave transmit, full duplex	SSC1 Data bit: master receive/slave transmit, full duplex				
PIO2[7]	Direction	0		I/O	I/O				
	Configuration	SYSTEM_CONFIG21[15,7]=00		In: SYSTEM_CONFIG16[3]=1 Out: SYSTEM_CONFIG21[15,7]=10	In: SYSTEM_CONFIG16[3]=1 Out: SYSTEM_CONFIG21[15,7]=11				

19.5 PIO3 alternate functions

PIO3 is on COMMS block. It provides:

- first digital video output (16-bit) DVO0
- second digital video output (24-bit) DVO1
- digital video port extension(16-bit) DVP0
- SSC2 and SSC3 interfaces with I2C half-duplex modes selectable
- infra red blaster interface IRB
- auxiliary VTG synchronizations

Table 102. PIO3 alternate functions

PIO3	Config registe	Config register: SYSTEM_CONFIG25[15:0]							
	Config bus: PIO3_ALTFOP[1:0]_MUX_SEL_BUS[7:0]								
PIN	Parameter	Alternate 4							
		Digital video output 1	Digital video input 0, ssc 2,3	Infra-red blaster, ssc 2,3	AUX video timing h/v refs				
	Name	DVO1HS		IRB_IR_IN	VTG_AUX_HS				
DIOGEOI	Description	DVO horizontal sync		IRB IR data input	Aux video				
PIO3[0]	Direction	0		I	0				
	Configuration	SYSTEM_CONFIG25[8,0]=00		Not required	SYSTEM_CONFIG25[8,0]=11				
	Name	DVO1_CLK		IRB_UHF_IN					
DIOOI41	Description	DVO clock		IRB UHF data input					
PIO3[1]	Direction	0		I					
	Configuration	SYSTEM_CONFIG25[9,1]=00		Not required					
	Name	DVO1VS	IRB_IR_DATA_OUT	IRB_IR_DATA_OUT	VTG_AUX_VS				
DIO3[3]	Description	DVO vertical sync	IRB IR data output	IRB IR data output	Aux video				
PIO3[2]	Direction	0	0	0	0				
	Configuration	SYSTEM_CONFIG25[10,2]=00	SYSTEM_CONFIG25[10,2]=01	SYSTEM_CONFIG25[10,2]=10	SYSTEM_CONFIG25[10,2]=11				

STi7105

Confidential

Table 102. PIO3 alternate functions (continued)

DIGG	Config register: SYSTEM_CONFIG25[15:0]							
PIO3	Config bus: Pl	O3_ALTFOP[1:0]_MUX_SEL_	BUS[7:0]					
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3		Alternate 4		
		Digital video output 1	Digital video input 0, ssc 2,3	Infra-red blaster, ssc 2,3	Infra-red blaster, ssc 2,3			
	Name	DVO1DE	IRB_DATA_OUT_OD	IRB_DATA_OUT_OD		VTG_AUX_BOTNOTTOP		
PIO3[3]	Description	Second DVO output	IRB data output open drain	IRB data output open drain		Aux video		
FiOs[s]	Direction	0	0	0		0		
	Configuration	SYSTEM_CONFIG25[11,3]=00	SYSTEM_CONFIG25[11,3]=01	SYSTEM_CONFIG25[11,3]=1	0	SYSTEM_CONFIG25[11,3]=11		
	Name	DVO0[0]	DVP0[8]/SSC2_SCL	SSC2_SCL				
	Description	First DVO output	DVP input/SSC2 SCL out	SSC2 SCL out	SSC2 SCL out			
PIO3[4]	Direction	0	I/O	I/O				
	Configuration	SYSTEM_CONFIG25[12,4]=00	In: Not required Out: SYSTEM_CONFIG25[12,4]=01	In: SYSTEM_CONFIG16[12,11]=00/01 Out: SYSTEM_CONFIG25[12,4]=10				
	Name	DVO0[1]	DVP0[9]/SSC2_MTSR	SSC2_MTSR	SSC2_MRST			
	Description	First DVO output	DVP input/SSC2 Data bit: master transmit/slave receive, full duplex	SSC2 Data bit: master transmit/slave receive, full duplex	SSC2 Data bit: master receive/slave transmit, full duplex			
PIO3[5]	Direction	0	I/O	I	I/O			
	Configuration	SYSTEM_CONFIG25[13,5]=00	In: Not required Out: SYSTEM_CONFIG25[13,5]=01	SYSTEM_CONFIG16[10,9]=	In: SYSTEM_CONFIG16[8,7]=01 Out: SYSTEM_CONFIG25[13,5]=10			
	Name	DVO0[2]	DVP0[10]/SSC3_SCL	SSC3_SCL				
	Description	First DVO output	DVP input/SSC3 SCL out	SSC3 SCL in/SSC3 SCL out				
PIO3[6]	Direction	0	I/O	I/O				
	Configuration	SYSTEM_CONFIG25[14,6]=00	In: Not required Out: SYSTEM_CONFIG25[14,6]=01	In:				

SYSTEM_CONFIG25[15,7]=01

		Digital video output 1	2,3	illia-red blaster, 350 2,5		AOX video tilling liv leis
	Name	DVO0[3]	DVP0[11]/SSC3_MTSR	SSC3_MTSR	SSC3_MRST	
	Description	First DVO output	DVP input/ SSC3 Data bit: master transmit/slave receive, full duplex	SSC3 Data bit: master transmit/slave receive, full duplex	SSC3 Data bit: master receive/slave transmit, full duplex	
PIO3[7]	Direction	0	I/O	1	I/O	
	Configuration	SYSTEM CONFIG25[15.7]=00	In: Not required	In:	In: SYSTEM_CONFIG16[15,14]=0	

=01

Out:

SYSTEM_CONFIG25[15,7]=10

Confidential

Alternate functions on PIO

276/313

19.6 PIO4 alternate functions

PIO4 is on COMMS block. It provides:

- first digital video output (16-bit) DVO0
- digital video port extension(16-bit) DVP0
- UART2 interface
- pulse width modulator interface PWM
- USB power control

Table 103. PIO4 alternate functions

PIO4	Config register: SYSTEM_CONFIG34[15:0]							
PIO4	Config bus: PIO4_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4			
		Digital video output 0	Digital video input 0	UART 2, PWM 0,1	PWM 0, USB 1,2 Power ctrl			
	Name	DVO0[4]	DVP0[12]	UART2_TXD				
DIO 4101	Description	First DVO output	DVP input	UART				
PIO4[0]	Direction	0	1	0				
	Configuration	SYSTEM_CONFIG34[8,0]=00	Not required	SYSTEM_CONFIG34[8,0]=10				
	Name	DVO0[5]	DVP0[13]	UART2_RXD				
DIO 4[4]	Description	First DVO output	DVP input	UART				
PIO4[1]	Direction	0	1	I				
	Configuration	SYSTEM_CONFIG34[9,1]=00	Not required	Not required				
	Name	DVO0[6]	DVP0[14]	UART2_CTS				
DIO 4[0]	Description	First DVO output	DVP input	UART				
PIO4[2]	Direction	0	I	I				
	Configuration	SYSTEM_CONFIG34[10,2]=00	Not required	Not required				

Table 103.	PIO4 alternate	functions ((continued)	
------------	----------------	-------------	-------------	--

DIO4	Config register: SYSTEM_CONFIG34[15:0]							
PIO4	Config bus: PIO4_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4			
		Digital video output 0	Digital video input 0	UART 2, PWM 0,1	PWM 0, USB 1,2 Power ctrl			
	Name	DVO0[7]	DVP0[15]	PWM_CAPTURE_IN0/UART2_RTS				
	Description	First DVO output	DVP input	PWM 0 capture input/UART				
PIO4[3]	Direction	0	I	I/O				
	Configuration	SYSTEM_CONFIG34[11,3]=00	Not required	In: Not required Out: SYSTEM_CONFIG34[11,3]=10				
	Name	DVO0[8]		PWM_OUT0	USB1_PRT_OVCUR			
PIO4[4]	Description	First DVO output		PWM 0 output	USB 1 PRT overcurrent			
F104[4]	Direction	0		0	I			
	Configuration	SYSTEM_CONFIG34[12,4]=00		SYSTEM_CONFIG34[12,4]=10	SYSTEM_CONFIG4[5]=0			
	Name	DVO0[9]		PWM_OUT1	USB1_PRT_PWR			
PIO4[5]	Description	First DVO output		PWM 1 output	USB 1 PRT power			
F104[5]	Direction	0		0	0			
	Configuration	SYSTEM_CONFIG34[13,5]=00		SYSTEM_CONFIG34[13,5]=10	SYSTEM_CONFIG34[13,5]=11			
	Name	DVO0[10]		PWM_COMPARE_OUT1	USB2_PRT_OVCUR			
PIO4[6]	Description	First DVO output		PWM 1 compare output	USB 2 PRT overcurrent			
F104[0]	Direction	0		0	I			
	Configuration	SYSTEM_CONFIG34[14,6]=00		SYSTEM_CONFIG34[14,6]=10	SYSTEM_CONFIG4[6]=0			
	Name	DVO0[11]		PWM_CAPTURE_IN1	USB2_PRT_PWR			
PIO4[7]	Description	First DVO output		PWM 1 compare output	USB 2 PRT power			
F104[/]	Direction	0		I	0			
	Configuration	SYSTEM_CONFIG34[15,7]=00		Not required	SYSTEM_CONFIG34[15,7]=11			

Caution:

In case of USB signals, the usual naming convention is not used. In order to align with the STi7105 ballout names, this manual mentions two instances of USB as USB1 and USB2 rather than USB0 and USB1. Therefore, in this manual the first instance of USB is USB1 and the second instance is USB2.

19.7 PIO5 alternate functions

PIO5 is on COMMS block. It provides:

- first digital video output (16-bit) DVO0
- key scanner interface KEY SCAN
- **UART3** interface
- main VTG synchronization signals

Table 104. PIO5 alternate functions

DIOC	Config registe	Config register: SYSTEM_CONFIG35[15:0]							
PIO5	Config bus: PI	Config bus: PIO5_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4				
		Digital video output 0	Key scanning I/F, UART 3	UART 3, Key scanning	Main video timing h/v refs				
	Name	DVO0[12]	UART3_TXD	KEY_SCAN_OUT[0]					
DIOEIO	Description	First DVO output	UART 3	Key scanning					
PIO5[0]	Direction	0	0	0					
	Configuration	SYSTEM_CONFIG35[8,0]=00	SYSTEM_CONFIG35[8,0]=01	SYSTEM_CONFIG35[8,0]=10					
	Name	DVO0[13]		UART3_RXD/KEY_SCAN_OUT[1]					
	Description	First DVO output		UART 3/Key scanning					
PIO5[1]	Direction	0		I/O					
.,	Configuration	SYSTEM_CONFIG35[9,1]=00		In: Not required Out: SYSTEM_CONFIG35[9,1]=10					

Table 104. PIO5 alternate functions (continued)

DIO -	Config register: SYSTEM_CONFIG35[15:0]							
PIO5	Config bus: PIO5_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
PIN	PIN Parameter Alternate 1 Alternate 2 Alternate 3 Alternate 3				Alternate 4			
		Digital video output 0	Key scanning I/F, UART 3	UART 3, Key scanning	Main video timing h/v refs			
	Name	DVO0[14]	UART3_RTS	KEY_SCAN_OUT[2]				
PIO5[2]	Description	First DVO output	UART 3	Key scanning				
F105[2]	Direction	0	0	0				
	Configuration	SYSTEM_CONFIG35[10,2]=00	SYSTEM_CONFIG35[10,2]=01	SYSTEM_CONFIG35[10,2]=10				
	Name	DVO0[15]		UART3_CTS/KEY_SCAN_OUT[3]				
	Description	First DVO output		UART 3/Key scanning				
PIO5[3]	Direction	0		I/O				
	Configuration	SYSTEM_CONFIG35[11,3]=00		In: Not required Out: SYSTEM_CONFIG35[11,3]=10				
	Name	DVO0_HSYNC	KEY_SCAN_IN[0]		VTG_MAIN_HS			
DIOEIAI	Description	First DVO output	Key scanning		VTG main			
PIO5[4]	Direction	0	I		0			
	Configuration	SYSTEM_CONFIG35[12,4]=00	Not required		SYSTEM_CONFIG35[12,4]=11			
	Name	DVO0CLK	KEY_SCAN_IN[1]					
PIO5[5]	Description	First DVO output	Key scanning					
PiO5[5]	Direction	0	I					
	Configuration	SYSTEM_CONFIG35[13,5]=00	Not required					
	Name	DVO0_VSYNC	KEY_SCAN_IN[2]		VTG_MAIN_VS			
DIOEE	Description	First DVO output	Key scanning		VTG main			
PIO5[6]	Direction	0	I		0			
	Configuration	SYSTEM_CONFIG35[14,6]=00	Not required		SYSTEM_CONFIG35[14,6]=11			

Table 104. PIO5 alternate functions (continued)

	i	•	,				
PIO5	Config register: SYSTEM_CONFIG35[15:0] Config bus: PIO5_ALTFOP[1:0]_MUX_SEL_BUS[7:0]						
FIOS							
PIN	Parameter Alternate 1 Alternate 2 Alternate 3 Alternate 4						
		Digital video output 0	Key scanning I/F, UART 3	UART 3, Key scanning	Main video timing h/v refs		
	Name	DVO0_DATA_EN	KEY_SCAN_IN[3]		VTG_MAIN_BOTNOTTOP		
DIOE[7]	Description	First DVO output	Key scanning		VTG main		
PIO5[7]	Direction	0	1		0		
	Configuration	SYSTEM_CONFIG35[15,7]=00	Not required		SYSTEM_CONFIG35[15,7]=11		

19.8 PIO6 alternate functions

PIO6 is on COMMS block. It provides:

- digital video port (8-bit) DVP0
- third transport input interface TSIN2
- second PCMCIA interface
- input VTG synchronization signals
- EMI SS arbiter signals/PCI support
- EMI SS arbiter signals

Table 105. PIO6 alternate functions

PIO6	Config register: SYSTEM_CONFIG36[15:0] Config bus: PIO6_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
			Digital video input 0, PCMCIA 2 I/F	Transport stream input 2	PCI I/F, PCMCIA 2 i/F, Video input timing h/v refs		PCI I/F, EMI I/F	
PIO6[0]	Name	DVP0[0]/PCMCIA2_OE	TSIN2SER/DATA[7]	PCI_INT_TO_HOST		PCI_INT_FROM_DEVICE[0]		
	Description	DVP input/ PCMCIA 2 I/F	TS2 input	PCI host		PCI device		
	Direction	I/O	I	0		I		
	Configuration	In: Not required Out: SYSTEM_CONFIG36[16,8,0]=000	SYSTEM_CONFIG4[10]=0	SYSTEM_CONFIG36[16,8,0]=0 10		SYSTEM_CONFIG5[27]=0		
	Name	DVP0[1]/PCMCIA2_WE	TSIN2BYTECLK			PCI_INT_FROM_DEVICE[1]		
	Description	DVP input/ PCMCIA 2 I/F	TS2 input			PCI device		
PIO6[1]	Direction	I/O	I			I		
	Configuration	In: Not required Out: SYSTEM_CONFIG36[17,9,1]=000	SYSTEM_CONFIG4[10]=0			Not required		

Table 105. PIO6 alternate functions (continued)

DIGG	Config register: SYSTEM_CONFIG36[15:0]								
PIO6	Config bus: PIO6_ALTFOP[1:0]_MUX_SEL_BUS[7:0]								
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4	Alternate 5			
		Digital video input 0, PCMCIA 2 I/F	Transport stream input 2	PCI I/F, PCMCIA 2 i/F, Video input timing h/v refs		PCI I/F, EMI I/F			
	Name	DVP0[2]/PCMCIA2_IORD	TSIN2BYTECLKVALID			PCI_INT_FROM_DEVICE[2]			
	Description	DVP input/PCMCIA 2 i/F	TS2 input			PCI Host/device			
PIO6[2]	Direction	I/O	I			I			
	Configuration	In: Not required Out: SYSTEM_CONFIG36[18,10,2]=000	SYSTEM_CONFIG4[10]=0			Not required			
	Name	DVP0[3]/PCMCIA2_IOWR	TSIN2ERROR						
	Description	DVP input/PCMCIA 2 I/F	TS2 input						
PIO6[3]	Direction	I/O	I						
	Configuration	In: Not required Out: SYSTEM_CONFIG36[19,11,3]=000	SYSTEM_CONFIG4[10]=0						
	Name	DVP0[4]	TSIN2PACKETCLK	PCMCIA2_WAIT					
	Description	DVP input	TS2 input	PCMCIA 2 I/F					
PIO6[4]	Direction	I	I	1					
	Configuration	Not required	In: SYSTEM_CONFIG4[10]=0	Not required					
	Name	DVP0[5]	TSIN2DATA[6]	PCMCIA_INT		PCI_BUS_REQ[1]			
	Description	DVP input	TS2 input	PCMCIA 2 I/F		PCI Host/device			
PIO6[5]	Direction	I	I	1		1			
	Configuration	Not required	In: SYSTEM_CONFIG4[10]=0	Not required		Not required			

Not required

Configuration

PIO6	Config register: SYSTEM_CONFIG36[15:0] Config bus: PIO6_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
		Digital video input 0, PCMCIA 2 I/F	Transport stream input 2	PCI I/F, PCMCIA 2 i/F, Video input timing h/v refs		PCI I/F, EMI I/F		
	Name	DVP0[6]	TSIN2DATA[5]	VTG_IN_HS		PCI_BUS_REQ[2]		
	Description	DVP input	TS2 input	VTG input lock		PCI Host/device		
PIO6[6]	Direction	I	I	I		I		
	Configuration	Not Required	In: SYSTEM_CONFIG4[10]=0	Not required		Not required		
	Name	DVP0[7]	TSIN2DATA[4]	VTG_IN_VS				
	Description	DVP input	TS2 input	VTG				
PIO6[7]	Direction	I	I	I				

Not required

In: SYSTEM_CONFIG4[10]=0

Alternate functions on PIO

19.9 PIO7 alternate functions

PIO7 is PIO0 on GPIO standalone block. It provides:

- digital video port (8-bit) DVP0
- third transport input interface TSIN2
- MII and RMII interfaces
- key scanner interface KEY SCAN
- EMI SS arbiter signals/PCI support
- EMI SS arbiter signals

During reset PIO7[7:4] are in input mode for mode pin capture. Note:

Table 106. PIO7 alternate functions

PIO7	Config register: SYSTEM_CONFIG37[15:0] Config bus: PIO7_ALTFOP[1:0]_MUX_SEL_BUS[7:0]								
PIO7									
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4	Alternate 5			
		Digital video input 0	Transport stream input 2	Key scanning	PCI I/F	PCI I/F, EMI I/F			
	Name	DVP0_HSYNC	TSIN2DATA[3]	KEY_SCAN_OUT[0]		PCI_LOCK_IN			
	Description	DVP input	TS2 input	Key scanning		PCI Host/device			
PIO7[0]	Direction	1	I	0		I			
	Configuration	Not required	SYSTEM_CONFIG4[10]=0	SYSTEM_CONFIG37[16,8,0]=01 0		SYSTEM_CONFIG5[25]=0			
	Name	DVP0_VSYNC	TSIN2DATA[2]	KEY_SCAN_OUT[1]	PCI_BUS_GNT[1]	PCI_BUS_GNT[1]			
	Description	DVP input	TS2 input	Key scanning	PCI Host/device	PCI host/device			
PIO7[1]	Direction	1	I	0	0	0			
	Configuration	Not required	SYSTEM_CONFIG4[10]=0	SYSTEM_CONFIG37[17,9,1]=01	Out: SYSTEM_CONFIG37[17,9,1]= 011	SYSTEM_CONFIG37[17,9,1]=1 00			

Confidential

Alternate functions on PIO

Table 106. PIO7 alternate functions (continued
--

DIO.	Config register: SYSTEM_CONFIG37[15:0]								
PIO7	Config bus: P	PIO7_ALTFOP[1:0]_MUX_SEL	_BUS[7:0]						
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4	Alternate 5			
		Digital video input 0	Transport stream input 2	Key scanning	PCI I/F	PCI I/F, EMI I/F			
	Name	DVP0_CLK	TSIN2DATA[1]	KEY_SCAN_OUT[2]	PCI_BUS_GNT[2]	PCI_BUS_GNT[2]			
	Description	DVP input	TS2 input	Key scanning	PCI Host/device	PCI Host/device			
PIO7[2]	Direction	1	I	0	0	0			
	Configuration	Not required	SYSTEM_CONFIG4[10]=0	SYSTEM_CONFIG37[18,10,2]=0 10	Out: SYSTEM_CONFIG37[18,10,2] =011	SYSTEM_CONFIG37[18,10,2]= 101			
	Name		TSIN2DATA[0]	KEY_SCAN_OUT[3]					
	Description		TS2 input	Key scanning					
PIO7[3]	Direction		I	0					
	Configuration		SYSTEM_CONFIG4[10]=0	SYSTEM_CONFIG37[19,11,3]=0 10					
	Name	MIIRX_DV/MII_EXCRS	RMIICRS_DV						
	Description	MII receive data valid	RMII receive data valid						
PIO7[4]	Direction	I/O	I						
F107[4]	Configuration	In: Not required Out: SYSTEM_CONFIG37[20,12,4]=0 00	SYSTEM_CONFIG4[10]=0						
	Name	MIIRX_ER/MII_EXCOL	RMIIRX_ER						
	Description	MII receive error	RMII receive error						
DIO7[F]	Direction	I/O	I						
PIO7[5]	Configuration	In: Not required Out: SYSTEM_CONFIG37[21,13,5]=0 00	SYSTEM_CONFIG4[10]=0						

Table 106. PIO7 alternate functions (continued)

	Config register: SYSTEM_CONFIG37[15:0]									
PIO7		Conning register. 3131 Em_Contrictor[13.0]								
ı	Config bus: PIO7_ALTFOP[1:0]_MUX_SEL_BUS[7:0]									
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4	Alternate 5				
		Digital video input 0	Transport stream input 2	Key scanning	PCI I/F	PCI I/F, EMI I/F				
	Name	MIITXD[0]	RMIITXD[0]							
	Description	MII transmit data	RMII transmit data							
PIO7[6]	Direction	0	0							
	Configuration	SYSTEM_CONFIG37[22,14,6]=0 00	SYSTEM_CONFIG37[22,14,6]= 001							
	Name	MIITXD[1]	RMIITXD[1]							
	Description	MII transmit data	RMII transmit data							
PIO7[7]	Direction	0	0							
	Configuration	SYSTEM_CONFIG37[23,15,7]=0 00	SYSTEM_CONFIG37[23,15,7]= 001							

19.10 PIO8 alternate functions

PIO8 is PIO1 on GPIO standalone block. It provides:

- MII and RMII interfaces
- DVO1 ALPHA coefficient output

Note: During reset PIO8[7:0] are in input mode for mode pin capture.

Table 107. PIO8 alternate functions

PIO8	Config register: SYSTEM_CONFIG46[15:0]							
PIU6	Config bus: Pl	Config bus: PIO8_ALTFOP[1:0]_MUX_SEL_BUS[7:0]						
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3				
		MII I/F	RMII I/F, Digital video output 1					
	Name	MIITXD[2]	DVO1_ALPHA[0]					
DIOGEOI	Description	MII transmit data	Second DVO/Alpha output					
PIO8[0]	Direction	0	0					
	Configuration	SYSTEM_CONFIG46[8,0]=00	SYSTEM_CONFIG46[8,0]=01					
	Name	MIITXD[3]	DVO1_ALPHA[1]					
PIO8[1]	Description	MII transmit data	Second DVO/Alpha output					
FIOO[1]	Direction	0	0					
	Configuration	SYSTEM_CONFIG46[9,1]=00	SYSTEM_CONFIG46[9,1]=01					
	Name	MIITX_EN	RMIITX_EN					
PIO8[2]	Description	MII TX Enable	RMII TX Enable					
F100[2]	Direction	0	0					
	Configuration	SYSTEM_CONFIG46[10,2]=00	SYSTEM_CONFIG46[10,2]=01					

Table 107. PIO8 alternate functions (continued)

DIOO	Config register: SYSTEM_CONFIG46[15:0]						
PIO8	Config bus: PIO8_ALTFOP[1:0]_MUX_SEL_BUS[7:0]						
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3			
		MII I/F	RMII I/F, Digital video output 1				
	Name	MIIMDIO	RMIIMDIO				
	Description	MII mgmt data	RMII mgmt data				
PIO8[3]	Direction	1/0	1/0				
	Configuration	In: Not required Out: SYSTEM_CONFIG46[11,3]=00	In: Not required Out: SYSTEM_CONFIG46[11,3]=01				
	Name	MIIMDCI/MIIMDCO	RMIIMDC				
	Description	MII Mgmg Clock input/output	RMII Mgmg Clock				
PIO8[4]	Direction	1/0	0				
	Configuration	In: Not required Out: SYSTEM_CONFIG46[12,4]=00	SYSTEM_CONFIG46[12,4]=01				
	Name	MIIRXCLK	DVO1_ALPHA[2]				
PIO8[5]	Description	MII receive clock for RXD	Second DVO/Alpha output				
rioo[3]	Direction	I	0				
	Configuration	Not required	SYSTEM_CONFIG46[13,5]=01				
	Name	MIIRXD[0]	RMIIRXD[0]				
PIO8[6]	Description	MII receive data	RMII receive data				
FIOO[0]	Direction	I	I				
	Configuration	Not required	Not required				
	Name	MIIRXD[1]	RMIIRXD[1]				
PIO8[7]	Description	MII receive data	RMII receive data				
1 100[7]	Direction	I	1				
	Configuration	Not required	Not required				

19.11 PIO9 alternate functions

PIO9 is PIO2 on GPIO standalone block. It provides:

- MII and RMII interfaces
- DVO1 ALPHA coefficient output

Note: During reset PIO9[6, 1:0] are in input mode for mode pin capture.

Table 108. PIO9 alternate functions

DIG.	Config register: SYSTEM_CONFIG47[15:0] Config bus: PIO9_ALTFOP[1:0]_MUX_SEL_BUS[7:0]						
PIO9							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3			
		MII I/F	RMII I/F, Digital video output 1				
	Name	MIIRXD[2]	DVO1_ALPHA[3]				
PIO9[0]	Description	MII receive data	Second DVO/Alpha output				
FIO9[0]	Direction	I	0				
	Configuration	Not required	SYSTEM_CONFIG47[8,0]=01				
	Name	MIIRXD[3]	DVO1_ALPHA[4]				
PIO9[1]	Description	MII receive data	Second DVO/Alpha output				
PiO9[1]	Direction	I	0				
	Configuration	Not required	SYSTEM_CONFIG47[9,1]=01				
	Name	MIITXCLK	DVO1_ALPHA[5]				
DIOOIOI	Description	MII Transmit clock for TXD	Second DVO/Alpha output				
PIO9[2]	Direction	I	0				
	Configuration	Not required	SYSTEM_CONFIG47[10,2]=01				
	Name	MIICOL	DVO1_ALPHA[6]				
DIO0[3]	Description	MII collision detected	Second DVO/Alpha output				
PIO9[3]	Direction	I	0				
	Configuration	Not required	SYSTEM_CONFIG47[11,3]=01				

Table 108. PIO9 alternate functions (continued)

DIO0	Config register: SYSTEM_CONFIG47[15:0] Config bus: PIO9_ALTFOP[1:0]_MUX_SEL_BUS[7:0]						
PIO9							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3			
		MII I/F	RMII I/F, Digital video output 1				
	Name	MIICRS	DVO1_ALPHA[7]				
PIO9[4]	Description	MII carrier sense detected	Second DVO/Alpha output				
F109[4]	Direction	I	0				
	Configuration	Not required	SYSTEM_CONFIG47[12,4]=01				
	Name	MIIPHYCLK	RMIIREF_CLK				
	Description	Clock to PHY	RMII REF CLOCK				
PIO9[5]	Direction	0	I/O				
1100[0]	Configuration	SYSTEM_CONFIG47[13,5]=00	In: Not required Out: SYSTEM_CONFIG47[13,5]=01				
	Name	MIIMDINT	RMIIMDINT				
DIOOIOI	Description	Mgmt data interrupt	RMII Mgmt data interrupt				
PIO9[6]	Direction	I	1				
	Configuration	Not required	Not required				
	Name	HDMI_PLUGIN/MDO_EN					
	Description	HDMI, MDO					
PIO9[7]	Direction	I/O					
	Configuration	In: Not required Out: SYSTEM_CONFIG47[15,7]=00					

19.12 **PIO10 alternate functions**

PIO10 is PIO3 on GPIO standalone block. It provides:

- multichannel digital audio PCM output AUDDIG1PCMOUT
- audio S/PDIF output S/PDIF
- stereo digital Audio PCM input AUDDIG

Table 109. PIO10 alternate functions

PIO10	Config register: Not required					
	Config bus: Not required					
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3		
		Digital audio output 0, SPDIF I/F, Audio digital input 0				
	Name	AUDDIG0_PCM_OUT_DATA0				
PIO10[0]	Description	PCMOUT 0 - data 0				
PIOTO[0]	Direction	0				
	Configuration	Not required				
	Name	AUDDIG0_PCM_OUT_DATA1				
DIO10[1]	Description	PCMOUT 0 - data 1				
PIO10[1]	Direction	0				
	Configuration	Not required				
	Name	PCI_IDSEL/AUDDIG0_PCM_OUT_DATA2				
PIO10[2]	Description	PCI, PCMOUT 0 - data 2				
PIO 10[2]	Direction	I/O				
	Configuration	Not required				
	Name	AUDDIG0_PCM_OUT_CLKIN/CLK				
DIO40[3]	Description	PCMOUT 0 - clock				
PIO10[3]	Direction	I/O				
	Configuration	Not required				

Table 109. PIO10 alternate functions (continued)

PIO10	Config register: Not required Config bus: Not required						
		Digital audio output 0, SPDIF I/F, Audio digital input 0					
	Name	AUDDIG0_PCM_OUT_LRCLK					
DIO10[4]	Description	PCMOUT0 - LRCLK					
PIO10[4]	Direction	0					
	Configuration	Not required					
	Name	AUDDIG0_PCM_OUT_SCLK					
DIO10[E]	Description	PCMOUT0 - SCLK					
PIO10[5]	Direction	0					
	Configuration	Not required					
	Name	AUD_SPDIF_OUT					
PIO10[6]	Description	SPDIF out					
PIO 10[6]	Direction	0					
	Configuration	Not required					
	Name	AUDDIG0_PCM_DATAIN/AUDDIG1_PCM_OUT_DATA0					
PIO10[7]	Description	PCMIN0/PCMOUT1 - data					
F1010[/]	Direction	I/O					
	Configuration	Not required					

19.13 **PIO11 alternate functions**

PIO11 is PIO4 on GPIO standalone block. It provides:

- stereo digital audio PCM input AUD0PCMIN
- stereo digital audio PCM output AUD1PCMOUT

Note: PIO11 alternate function is controlled by SYS_CFG5[29]

Table 110. PIO11 alternate functions

PIO11	Config register: Not required Config bus: Not required						
		Digital audio input 0	Genlock				
	Name	AUDDIG0_PCM_STRBIN/AUDDIG1_PCM_OUT_LRCLK					
PIO11[0]	Description	PCMINO - SCLK/PCMOUT1 - LRCLK					
FIOTI[0]	Direction	I/O					
	Configuration	Not required					
	Name	AUDDIG0_PCM_LRCLKIN/AUDDIG1_PCM_OUT_SCLK					
DIO11[1]	Description	PCMINO - LRCLK/PCMOUT1 - SCLK					
PIO11[1]	Direction	I/O					
	Configuration	Not required					
	Name						
DIO11[0]	Description						
PIO11[2]	Direction						
	Configuration						
PIO11[3]	Name						
	Description						
	Direction						
	Configuration						

Table 110. PIO11 alternate functions (continued)

PIO11	Config register: Not required Config bus: Not required						
		Digital audio input 0	Genlock				
	Name						
PIO11[4]	Description						
PIO11[4]	Direction						
	Configuration						
	Name		PIXCLK_FROM_PAD				
DIO44[E]	Description		Genlock				
PIO11[5]	Direction		I				
	Configuration		Not required				
	Name		VSYNC_FROM_PAD				
DIO44[6]	Description		Genlock				
PIO11[6]	Direction		I				
	Configuration		Not required				
	Name		HSYNC_FROM_PAD				
DIO11[7]	Description		Genlock				
PIO11[7]	Direction		I				
	Configuration		Not required				

19.14 PIO12 alternate functions

PIO12 is PIO5 on GPIO standalone block. It provides:

- second transport input TSIN1
- transport output TSOUT
- SSC2 interface with I2C half-duplex modes selectable
- **UART2** interface
- USB1 power control
- fourth transport input TSIN3 (serial only)

Table 111. PIO12 alternate functions

PIO12	Config register: SYSTEM_CONFIG48[23:0] Config bus: PIO12_ALTFOP[2:0]_MUX_SEL_BUS[7:0]							
PIU12								
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3		Alternate 4	Alternate 5	
		Transport stream input 1	Transport stream input	SSC 2, USB 1 po	ower ctrl	Transport stream input 3, UART2, SSC2	UART2	
	Name	TSIN1SER/DATA[7]	TSOUTSER/DATA[7]	SSC2_SCL		SSC2_SCL	UART2_TXD	
	Description	TS1 input	TS output	SSC2 serial clock in	n/out	SSC2 serial clock out	UART	
PIO12[0]	Direction	I	0	I/O		0	0	
	Configuration	SYSTEM_CONFIG4[9]=0	SYSTEM_CONFIG48[16,8,0]=001	In: SYSTEM_CONFIG16[12,11]=10 Out: SYSTEM_CONFIG48[16,8,0]=010		SYSTEM_CONFIG48[16,8,0] =011	SYSTEM_CONFIG48[16,8,0]= 100	
	Name	TSIN1BYTECLK	TSOUTBYTECLK	SSC2_MTSR	SSC2_MRST	UART2_RXD		
	Description	TS1 input	TS output	SSC2 Data bit: master transmit/slave receive, full duplex	SSC2 Data bit: master receive/slave transmit, full duplex	UART		
PIO12[1]	Direction	I	I/O	I/O	I	I		
	Configuration	SYSTEM_CONFIG4[9]=0	In: Not required Out: SYSTEM_CONFIG48[17,9,1]=001	In: SYSTEM_CONFI G16[10,9]=10 Out: SYSTEM_CONFI G48[17,9,1]=010	SYSTEM_CONFI G16[8,7]=10	Not required		

296/313

PIO12	Config register: SYSTEM_CONFIG48[23:0]							
FIO12	Config bus: PIO12_ALTFOP[2:0]_MUX_SEL_BUS[7:0]							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4	Alternate 5		
		Transport stream input 1	Transport stream input	SSC 2, USB 1 power ctrl	Transport stream input 3, UART2, SSC2	UART2		
	Name	TSIN1BYECLKVALID	TSOUTBYTECLKVALID		UART2_CTS			
PIO12[2]	Description	TS1 input	TS output		UART			
F1012[2]	Direction	I	0		I			
	Configuration	SYSTEM_CONFIG4[9]=0	SYSTEM_CONFIG48[18,10,2]=001		Not required			
	Name	TSIN1ERROR	TSOUTERROR			UART2_RTS		
	Description	TS1 input	TS output			UART		
PIO12[3]	Direction	I	0			0		
	Configuration	SYSTEM_CONFIG4[9]=0	SYSTEM_CONFIG48[19,11,3]=001			SYSTEM_CONFIG48[19,11,3] =100		
	Name	TSIN1PACKETCLK	TSOUTPACKETCLK					
PIO12[4]	Description	TS1 input	TS output					
FIO12[4]	Direction	I	0					
	Configuration	SYSTEM_CONFIG4[9]=0	SYSTEM_CONFIG48[20,12,4]=001					
	Name	TSIN1DATA[6]	TSOUTDATA[6]	USB1_PRT_OVCUR	TSIN3SER/DATA[7]			
PIO12[5]	Description	TS1 input	TS output	USB 1 PRT overcurrent	TS3 input			
FIO 12[5]	Direction	I	0	I	I			
	Configuration	SYSTEM_CONFIG4[9]=0	SYSTEM_CONFIG48[21,13,5]=001	SYSTEM_CONFIG4[5]=1	Not required			
	Name	TSIN1DATA[5]	TSOUTDATA[5]	USB1_PRT_PWR	TSIN3BYTECLK			
DIO10[6]	Description	TS1 input	TS output	USB 1 PRT power	TS3 input			
PIO12[6]	Direction	I	0	0	I			
	Configuration	SYSTEM_CONFIG4[9]=0	SYSTEM_CONFIG48[22,14,6]=001	SYSTEM_CONFIG48[22,14,6]=010	Not required			

Table 111. PIO12 alternate functions (continued)

	Config regist	Config register: SYSTEM CONFIG48[23:0]							
PIO12		Config bus: PIO12_ALTFOP[2:0]_MUX_SEL_BUS[7:0]							
PIN	Parameter	Alternate 1	Alternate 2 Alte	Alternate 3	Alternate 4	Alternate 5			
		Transport stream input 1	Transport stream input	SSC 2, USB 1 power ctrl	Transport stream input 3, UART2, SSC2	UART2			
	Name	TSIN1DATA[4]	TSOUTDATA[4]		TSIN3BYTECLKVALID				
PIO12[7]	Description	TS1 input	TS output		TS3 input				
	Direction	I	0		I				
	Configuration	SYSTEM_CONFIG4[9]=0	SYSTEM_CONFIG48[23,15,7]=001		Not required				

298/313

Confidential

19.15 **PIO13 alternate functions**

PIO13 is PIO6 on GPIO standalone block. It provides:

- second transport input TSIN1
- first transport input TSIN0
- fourth transport input TSIN3 (serial only)
- transport output TSOUT
- pulse width modulator interface PWM
- SSC2 and SSC3 interfaces with I2C half-duplex modes selectable

Table 112. PIO13 alternate functions

PIO13	Config register: SYSTEM_CONFIG49[23:0] Config bus: PIO13_ALTFOP[2:0]_MUX_SEL_BUS[7:0]							
		Transport stream input 0,1	Transport stream output, ssc 2,3	Transport stream output, ssc 3	Transport stream input 3, PWM 0,1	PWM 0,1, SSC3		
	Name	TSIN1DATA[3]	TSOUTDATA[3]	TSOUTDATA[3]	TSIN3ERROR/PWM_OUT0	PWM_OUT0		
	Description	TS1 input	TS output	TS output	TS3 input/PWM out	PWM out		
PIO13[0]	Direction	I	0	0	I/O	0		
	Configuration	Not required	SYSTEM_CONFIG49[16,8,0]=001	SYSTEM_CONFIG49[16,8,0]=010	In: Not required Out: SYSTEM_CONFIG49[16,8,0]=011	SYSTEM_CONFIG49[16,8,0]= 100		
	Name	TSIN1DATA[2]	TSOUTDATA[2]	TSOUTDATA[2]	TSIN3PACKETCLK/PWM_OUT1	PWM_OUT1		
	Description	TS1 input	TS output	TS output	TS3 input	PWM out		
PIO13[1]	Direction	I	0	0	I/O	0		
	Configuration	Not required	SYSTEM_CONFIG49[17,9,1]=001	SYSTEM_CONFIG49[17,9,1]=010	In: Not required Out: SYSTEM_CONFIG49[17,9,1]=011	SYSTEM_CONFIG49[17,9,1]= 100		

Alternate functions on PIO

	Config register: SYSTEM_CONFIG49[23:0]
PIO13	

	Config bus: PI	Config bus: PIO13_ALTFOP[2:0]_MUX_SEL_BUS[7:0]							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4	Alternate 5			
		Transport stream input 0,1	Transport stream output, ssc 2,3	Transport stream output, ssc 3	Transport stream input 3, PWM 0,1	PWM 0,1, SSC3			
	Name	TSIN1DATA[1]	TSOUTDATA[1]	SSC3_SCL/TSOUTDATA[1]	SSC3_SCL	SSC3_SCL			
	Description	TS1 input	TS output	SSC3 input/TS output	SSC3 output	SSC3 output			
PIO13[2]	Direction	I	0	I/O	0	0			
PIO 13[2]	Configuration	Not required	SYSTEM_CONFIG49[18,10,2]=001	In: SYSTEM_CONFIG16[19:18]=10 Out: SYSTEM_CONFIG49[18,10,2]=01 0	SYSTEM_CONFIG49[18,10,2]=01 1	SYSTEM_CONFIG49[18,10,2] =100			
	Name	TSIN1DATA[0]	TSOUTDATA[0]	SSC3_MTSR/SSC3_MRST/TSOU TDATA[0]	SSC3_MTSR	SSC3_MTSR			
	Description	TS1 input	TS output	SSC3 Data bit: master transmit/slave receive, full duplex/TS output	SSC3 Data bit: master receive/slave transmit, full duplex				
PIO13[3]	Direction	I	0	I/O	0	0			
	Configuration	Not required	SYSTEM_CONFIG49[19,11,3]=001	In: SYSTEM_CONFIG16[17,16]=10/ SYSTEM_CONFIG16[15,14]=10 Out: SYSTEM_CONFIG49[19,11,3]=01 0	SYSTEM_CONFIG49[19,11,3]=01 1	SYSTEM_CONFIG49[19,11,3] =100			
	Name	TSIN0SER/DATA[7]	SSC2_SCL	SSC2_SCL					
	Description	TS0 input	SSC2 serial clock in/out	SSC2 serial clock out					
PIO13[4]	Direction	1	I/O	0					
	Configuration	Not required	In: SYSTEM_CONFIG16[12,11]=11 Out: SYSTEM_CONFIG49[20,12,4]=001	SYSTEM_CONFIG49[20,12,4]=01 0					

Confidential

Table 112 PIO12 alternate functions (continued)

Table 1	12. PIO13 ali	ternate functions	(continued)							
DIO12	Config regist	Config register: SYSTEM_CONFIG49[23:0]								
PIO13	Config bus: PIO13_ALTFOP[2:0]_MUX_SEL_BUS[7:0]									
	Parameter	Alternate 1	Alternate 2		Alternate 3	Alternate 4	Alternate 5			
		Transport stream input 0,1 Transport stream output, ssc 2,3		Transport stream output, ssc 3	Transport stream input 3, PWM 0,1	PWM 0,1, SSC3				
	Name	TSINOBYTECLK	SSC2_MTSR	SSC2_MRST	SSC2_MRST					
	Description	TS input	SSC2 Data bit: master transmit/slave	SSC2 Data bit: master receive/slave						

0

SSC3 SCL

SSC3 serial clock out

SYSTEM_CONFIG49[21,13,5]=01

SYSTEM_CONFIG49[22,14,6]=01

transmit, full

SYSTEM_CONFI

G16[8,7]=11

duplex

receive, full duplex

SYSTEM_CONFI G16[10,9]=11

SYSTEM_CONFI G49[21,13,5]=001

SSC3 serial clock

SYSTEM_CONFI G16[19,18]=11

SYSTEM_CONFI G49[22,14,6]=001

SSC3_SCL

I/O

Out:

in/out I/O

Confidential

8065505 Rev D

PIO13[5]

PIO13[6]

Direction

Name

Description

Configuration

Direction

Configuration

I/O

In:

Out:

Not required

TS0 input

Not required

SYSTEM_CONFIG49[21,13,5]=000

TSIN0BYTECLKVALID

300/313

STi7105

Confidential

Table 112. PIO13 alternate functions (continued)

PIO13	Config registe	Config register: SYSTEM_CONFIG49[23:0]								
PIOTS	Config bus: PIO13_ALTFOP[2:0]_MUX_SEL_BUS[7:0]									
PIN	Parameter	Alternate 1	Alternate 2		Alternate 3	Alternate 4	Alternate 5			
		Transport stream input 0,1	Transport stream 2,3	m output, ssc	Transport stream output, ssc 3 Transport stream in PWM 0,1		³ , PWM 0,1, SSC3			
	Name	TSIN0ERROR	SSC3_MTSR	SSC3_MRST	SSC3_MRST					
	Description	TS0 input	SSC3 Data bit: master transmit/slave receive, full duplex	SSC3 Data bit: master receive/slave transmit, full duplex	SSC3 Data bit: master receive/slave transmit, full duplex					
PIO13[7]	Direction	I	I/O	1	0					
	Configuration	Not required	In: SYSTEM_CONFI G16[17,16]=11 Out: SYSTEM_CONFI G49[23,15,7]=001	SYSTEM_CONFI G16[15,14]=11	SYSTEM_CONFIG49[23,15,7]=01					

19.16 PIO14 alternate functions

PIO14 is PIO7 on GPIO standalone block. It provides:

- first transport input TSIN0
- third transport input in serial mode only TSIN2 (serial only)
- USB2 power control

Table 113. PIO14 alternate functions

PIO14	Config register: Not required Config bus: Not required								
		Transport stream input 0	Transport stream input 2, USB 2 power ctrl						
	Name	TSIN0PACKETCLK							
DIO44[0]	Description	TS 0 input							
PIO14[0]	Direction	I							
	Configuration	Not required							
	Name	TSIN0DATA[6]	TSIN2SER/DATA[7]						
PIO14[1]	Description	TS 0 input	TS 2 input						
PIO 14[1]	Direction	I	I						
	Configuration	Not required	SYSTEM_CONFIG4[10]=1						
	Name	TSIN0DATA[5]	TSIN2BYTECLK						
	Description	TS 0 input	TS 2 input						
PIO14[2]	Direction	I	I						
	Configuration	Not required	In: SYSTEM_CONFIG4[10]=1						
	Name	TSIN0DATA[4]	TSIN2BYTECLKVALID						
DIO14[3]	Description	TS 0 input	TS 2 input						
PIO14[3]	Direction	I	I						
	Configuration	Not required	SYSTEM_CONFIG4[10]=1						

Table 113. PIO14 alternate functions (continued)

PIO14	Config register: Not required Config bus: Not required							
		Transport stream input 0	Transport stream input 2, USB 2 power ctrl					
	Name	TSIN0DATA[3]	TSIN2ERROR					
PIO14[4]	Description	TS 0 input	TS 2 input					
PIO 14[4]	Direction	I	I					
	Configuration	Not required	SYSTEM_CONFIG4[10]=1					
DIO 4 4753	Name	TSIN0DATA[2]	TSIN2PACKETCLK					
	Description	TS 0 input	TS 2 input					
PIO14[5]	Direction	I	I					
	Configuration	Not required	SYSTEM_CONFIG4[10]=1					
	Name	TSIN0DATA[1]	USB2_PRT_OVCUR					
DIO14[6]	Description	TS 0 input	USB2 PRT overcurrent					
PIO14[6]	Direction	I	I					
	Configuration	Not required	SYSTEM_CONFIG4[10]=1					
	Name	TSIN0DATA[0]	USB2_PRT_PWR					
PIO14[7]	Description	TS 0 input	USB2 PRT power					
	Direction	I	0					
	Configuration	Not required	Not required					

8065505 Rev D

Confidential

19.17 PIO15 alternate functions

PIO15 is PIO8 on GPIO standalone block. It provides:

- SPI boot interface
- EMI SS arbiter signals/PCI support
- PCI interface

Table 114. PIO15 alternate functions

DIO45	Config register: SYSTEM_CONFIG50[15:0] Config bus: PIO15_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
PIO15								
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4			
		Serial peripheral I/F	Transport stream input 1	PCI I/F, EMI I/F				
	Name	SPIBOOT_CLOCK	TSIN1PACKETCLK					
DIO45[0]	Description	SPI	TS1 input					
PIO15[0]	Direction	0	I					
	Configuration	SYSTEM_CONFIG50[8,0]=00	SYSTEM_CONFIG4[9]=1					
	Name	SPIBOOT_DATA_OUT	TSIN1BYTECLK					
DIO45(4)	Description	SPI	TS1 input					
PIO15[1]	Direction	0	I					
	Configuration	SYSTEM_CONFIG50[9,1]=00	SYSTEM_CONFIG4[9]=1					
	Name	SPIBOOT_CS	TSIN1BYTECLKVALID	EMI_SS_BUS_FREE_ACCESSPEND/EMI_SS_BU S_FREE_OUT	EMI_SS_BUS_FREE_OUT			
	Description	SPI	TS1 input	EMI I/F	EMI I/F			
PIO15[2]	Direction	0	I	I/O	0			
	Configuration	SYSTEM_CONFIG50[10,2]=00	SYSTEM_CONFIG4[9]=1	In: Not required Out: SYSTEM_CONFIG50[10,2]=10	SYSTEM_CONFIG50[10,2]=11			

Table 114. PIO15 alternate functions (continued)

PIO15	Config register: SYSTEM_CONFIG50[15:0]							
PIOTS	Config bus: PIO15_ALTFOP[1:0]_MUX_SEL_BUS[7:0]							
PIN	Parameter	Alternate 1	Alternate 2	Alternate 3	Alternate 4			
		Serial peripheral I/F	Transport stream input 1	PCI I/F, EMI I/F				
	Name	SPIBOOT_DATA_IN	TSIN1ERROR	PCI_INT_FROM_DEVICE[0]/PCI_INT_TO_HOST	PCI_INT_TO_HOST			
	Description	SPI	TS1 input	PCI host/device	PCI Host			
PIO15[3]	Direction	I	I	I/O	0			
11010[0]	Configuration	Not required	SYSTEM_CONFIG4[9]=1	In: SYSTEM_CONFIG5[27]=1 Out: SYSTEM_CONFIG50[11,3]=10	SYSTEM_CONFIG50[11,3]=11			
	Name		TSIN1SER/DATA[7]	PCI_SYSTEM_ERROR	PCI_SYSTEM_ERROR			
	Description		TS1 input	PCI Host/device	PCI Host/device			
PIO15[4]	Direction		1	I/O	0			
	Configuration		SYSTEM_CONFIG4[9]=1	In: Not required Out: SYSTEM_CONFIG50[12,4]=10	SYSTEM_CONFIG50[12,4]=11			
	Name			PCI_LOCK_IN				
DIO15[5]	Description			PCI Host/device				
PIO15[5]	Direction			I				
	Configuration			SYSTEM_CONFIG5[25]=1				
	Name			PCI_PME_IN				
PIO15[6]	Description			PCI Host/device				
F1015[6]	Direction			I				
	Configuration			Not required				
	Name			PCI_RESETN_FROM_HOST_TO_DEVICE				
PIO15[7]	Description			PCI Host/device				
1 10 10[7]	Direction			I				
	Configuration			Not required				

PIO16 is PIO9 on GPIO standalone block. It provides:

MPEG recovered clock

During reset PIO16[6:0] is in input mode for mode pin capture. Note:

Table 115 PIO16 alternate functions

PIO16	Config register:Not required							
	Config bus:Not required							
		Alternate 1	Alternate 2					
	Name	RESERVED	RESERVED					
PIO16[0]	Description	RESERVED	RESERVED					
PIOTO[U]	Direction	RESERVED	RESERVED					
	Configuration	RESERVED	RESERVED					
	Name	RESERVED	RESERVED					
PIO16[1]	Description	RESERVED	RESERVED					
FI010[1]	Direction	RESERVED	RESERVED					
	Configuration	RESERVED	RESERVED					
	Name	RESERVED	RESERVED					
PIO16[2]	Description	RESERVED	RESERVED					
PIO 16[2]	Direction	RESERVED	RESERVED					
	Configuration	RESERVED	RESERVED					
	Name	RESERVED	RESERVED					
PIO16[3]	Description	RESERVED	RESERVED					
ေပးပျ	Direction	RESERVED	RESERVED					
	Configuration	RESERVED	RESERVED					
	Name	RESERVED	RESERVED					
DIO40[4]	Description	RESERVED	RESERVED					
PIO16[4]	Direction	RESERVED	RESERVED					
	Configuration	RESERVED	RESERVED					

Confidential

306/313

Table 115. PIO16 alternate functions (continued)

PIO16	Config register:Not required Config bus:Not required						
		Name	RESERVED	RESERVED			
DIO16[E]	Description	RESERVED	RESERVED				
PIO16[5]	Direction	RESERVED	RESERVED				
	Configuration	RESERVED	RESERVED				
	Name	RESERVED	RESERVED				
DIO16[6]	Description	RESERVED	RESERVED				
PIO16[6]	Direction	RESERVED	RESERVED				
	Configuration	RESERVED	RESERVED				
	Name	MPEG_RECOVERED_CLOCK	1				
PIO16[7]	Description	MPEG recovered clock					
	Direction	0					
	Configuration	Not required					

307/313

Licenses STi7105

20 Licenses

Supply of this product does not convey a license under the relevant intellectual property of the companies mentioned in this chapter nor imply any right to use this intellectual property in any finished end-user or ready to use final product. An independent license for such use is required and can be obtained by contacting the company or companies concerned.

Once the license is obtained, a copy must be sent to STMicroelectronics.

The details of all the features requiring licenses are not provided within the datasheet and register manual. They are provided only after a copy of the license has been received by STMicroelectronics.

The features requiring licenses include:

CSS

CSS DVD Copy Protection is intellectual property of Matsushita Electronics Industrial Co. The CSS DVD Copy Protection license allows the use of the CSS decryption cell embedded in the STi7105.

For all details, contact Matsushita at: Matsushita Electronics Industrial Co. LTD, CSS Interim License Organization, 1006 Kadoma, Kadoma-Shi, Osaka 571-8503 JAPAN

Dolby[®] Digital EX, Pro Logic[®] II, MLP Lossless[™]

Dolby Digital, Pro Logic and MLP Lossless are intellectual properties of Dolby Labs. The Dolby Digital, Pro Logic or MLP Lossless license allows the use of the corresponding decoder embedded in the STi7105.

Two types of license exist: S license must be obtained for samples (up to 25 units). P license must be obtained for production.

For all details, contact Dolby Labs at: Dolby Labs, 100 Potrero Avenue, San Francisco, CA 94103, USA

Macrovision[®]

Macrovision Anti-Copy System for DVD is intellectual property of Macrovision Corporation. The Macrovision license allows the use of the Macrovision feature embedded in STi7105.

For all details, contact Macrovision at: Macrovision Corp., 1341 Orlean Drive, Sunnyvale, CA 94089 USA

Dwight Cavendish

The STi7105 is enabled with the Dwight Cavendish copy protection process. Activation of the Dwight Cavendish copy protection is subject to Dwight Cavendish Intellectual Property Rights and is not permitted otherwise than with an express written licence from Dwight Cavendish.

For more details, click www.dwightcav.com

STi7105 Licenses

TruSurround XT[™], CircleSurround[™] II

The CircleSurround II, TruSurround XT and SRS technology rights incorporated in this chip are owned by SRS Labs, a U.S. corporation and licensed to ST Microelectronics. Purchasers of this chip, who use the SRS technology incorporated herein, must sign a license for use of the chip and display of the SRS trademarks. Any product using the SRS technology incorporated in this chip must be sent to SRS Labs for review. Circle Surround II, TruSurround XT and SRS are protected under U.S. and foreign patents issued and/or pending.

Neither the purchase of this chip, nor the corresponding sale of audio enhancement equipment conveys the right to sell commercialized recordings made with any SRS technology. SRS requires all set makers to comply with all rules and regulations as outlined in the SRS Trademark Usage Manual.

For all details, contact SRS Labs at: SRS Labs Inc., 2909 Daimler Street, Santa Ana, CA 92705 USA

DTS® (ES, 96/24, Neo)

DTS ES, DTS 96/24 and DTS Neo are intellectual properties of Digital Theater Systems Inc. The DTS licenses allow the use of the corresponding decoder executed in the STi7105.

For all details, contact Digital Theater Systems Inc at: DTS, 5171 Clareton Drive, Agoura Hills, CA 91301, USA

CPRM/CPPM

CPRM/CPPM technology is intellectual property of 4C Entity. The CPRM/CPPM license allows the use of the CPRM/CPPM technology embedded in the STi7105.

For all details, contact 4C Entity at: 4C Entity, LLC, 225 B Cochrane Circle, Morgan Hill, CA 95037, USA

Windows Media® (audio [WMA] and video [WMV])

Windows Media is intellectual property of Microsoft Corporation. The Windows Media license allows the use of the Windows Media audio and video decoders executed in the STi7105.

For all details, contact Microsoft at: Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399, USA

USB (Universal Serial Bus)

USB is intellectual property of USB-IF. The USB license gives the right to display the certified USB logo with a product when the product has passed USB-IF compliance testing for product quality.

For all details, contact USB-IF:

USB Implementers Forum, Inc., 5440 SW Westgate Drive, Suite 217, Portland, OR 97221, USA

HDMI[™] (High-definition multimedia interface[™])

HDMI and High-definition multimedia interface are intellectual properties of HDMI Licensing, LLC. The HDMI license allows the use of HDMI in the STi7105.

Licenses STi7105

For all details, contact HDMI Licensing, LLC at: 1060 E. Arques Avenue, Suite 100, Sunnyvale, CA 94085, USA

HDCP

HDCP is an intellectual property of Digital Content Protection, LLC. The HDCP license allows the use of HDCP in the STi7105.

For all details, contact Digital Content Protection, LLC at: C/O Intel Corporation, Stephen Balogh, JF2-55, 2111 NE 25th Ave, Hillsboro, OR 97124

AACS

AACS is an intellectual property of Koninklijke Philips Electronics N.V.

For all details, contact AACS LA, LLC at: c/o AACS Administration, 5440 SW Westgate Drive, Suite 217, Portland, Oregon 97221

AAC

AAC is an intellectual property of Fraunhofer Institut Integrierte Schaltungen. For all details, contact Fraunhofer Institute IIS, Am Wolfsmantel 33, 91058 Erlangen, Germany.

21 Revision history

Table 116. Document revision history

Date	Revision	Changes
20-Feb-2009	Rev D	Changes: The Figure 1 is updated In Figure 3, STV6440AJ replaces the devices TSH94 & TSH110 In Figure 33, mux_2 is moved from TSIN2 path to TSIN3 path The ClockGen B block diagram (Figure 29) is updated The SYSTEM_CONFIG5(16) bit is made reserved Pins and signal names with prefix USB0 and USB1 are changed to USB1 and USB2 respectively throughout in the datasheet The DEVICE_ID register is updated for the reset value The de-ringing feature is removed from the corresponding sections The SYSTEM_CONFIG16 register definition is updated PIO tables for SSC2/SSc3 input configuration are updated The Figure 34: Oscillator recommended external circuitry is updated The Table 32.: Pad reset conditions is updated.
01-Dec-2008 Rev C		Changes:PIO tables in Chapter 19: Alternate functions on PIO are updatedReferences to TSOUT1 and TSOUT2 are removed from PIO tablesThe value of external resistors for VIDA0_REXT and VID1_REXT is changed to 7.81 kohm in Section 6.5: Display analog output interfaceMention of DVO1HS/DVO1VS is swapped in Chapter 19: Alternate functions on PIO. Now, PIO3[0]=DVO1HS and PIO3[2]=DVO1VSMode pin 13 functionality to select 8/16 bits is chnaged to—0: 16 bits and 1: 8 bits—in Chapter 13: Mode pinsBit field description for Mode pin 0 is changed to —0: SYSCLKINALT (Ext) and 1: Osc (SATA)—in Chapter 13: Mode pins16 H/W perfect match MAC address filters in Chapter 3.14.2: Ethernet controller is changed to 32 H/W perfect match MAC address filtersSYSCLKIN and SYSCLKOSC pins are changed to 2.5 V in Table 5 Updated electrostatic discharge voltage V _{ESD_HBM} (HBM modem) in Section 17.1: Absolute maximum ratings on page 242.

Revision history STi7105

Table 116. Document revision history (continued)

Date	Revision	Changes
22-Aug-2008	Rev B	Major changes:Added Interrupt network, FDMA, system config, Low power mode, and Clocking chaptersRenamed AF22 ball to GNDSATA instead of USB_GND1V2 in Figure 17:: Bottom-right quadrant, Table 3.: Pin list, and Table 4.: Power/ground pinsMentioned Dwight Cavendish for HDTV video output in 3.10.1: Main HDTV video output sectionOutput Enable column is removed from 6.17: Pad reset conditions section of the connection chapterIn Figure 34.: Oscillator recommended external circuitry of 16.2: System section, CL1 and CL2 are connected to GND not vdd2v5In 11.6.2: Reference clock, the reset value is sysclkaltinSBAG I/F information is removed from the datasheet due to security constraintsThe Chapter 16.1.2: Power-up recommendations section is updated by deleting the power-up sequence, and specifying no specific power-up sequence in STi7105.
01-Jul-2008	Rev A	Initial release

CONFIDENTIALITY OBLIGATIONS:

This document contains sensitive information. Its distribution is subject to the signature of an Non-Disclosure Agreement (NDA).

It is classified "CONFIDENTIAL".

At all times you should comply with the following security rules (Refer to NDA for detailed obligations):

Do not copy or reproduce all or part of this document Keep this document locked away

Further copies can be provided on a "need to know basis", please contact your local ST sales office.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Confidentia

8065505 Rev D 313/313