Reg / DFA / NFA

	$\overline{\text{REG}}$	REG	CFL	DEC.	REC.	P	NP	NPC
$L_1 \cup L_2$	no	✓	✓	✓	✓	✓	✓	no
$L_1\cap L_2$	no	✓	no	✓	✓	✓	✓	no
\overline{L}	1	√	no	✓	no	✓	?	?
$L_1 \cdot L_2$	no	✓	✓	✓	✓	✓	✓	no
L^*	no	✓	✓	✓	✓	✓	✓	no
$_L\mathcal{R}$	✓	✓	✓	✓	✓	✓		
$L_1 \setminus L_2$	no	✓	no	√	no	√	?	
$L\cap R$	no	✓	✓	✓	✓	✓		

- $\begin{array}{l} \text{(DFA)} \ M = (Q, \Sigma, \delta, q_0, F), \ \delta : Q \times \Sigma \to Q. \ \text{(NFA)} \ M = (Q, \Sigma, \delta, q_0, F), \\ \delta : Q \times \Sigma_\varepsilon \to \mathcal{P}(Q). \ \text{(GNFA)} \ (Q, \Sigma, \delta, q_0, q_\mathrm{a}), \ \delta : (Q \setminus \{q_\mathrm{a}\}) \times (Q \setminus \{q_\mathrm{start}\} \longrightarrow \mathcal{R} \\ \text{(where } \mathcal{R} = \{\text{all regex over } \Sigma\}) \end{array}$
- GNFA accepts $w\in \Sigma^*$ if $w=w_1\cdots w_k$, where $w_i\in \Sigma^*$ and there exists a sequence of states q_0,q_1,\ldots,q_k s.t. $q_0=q_{\rm start},\,q_k=q_{\rm a}$ and for each i, we have $w_i\in L(R_i)$, where

- $R_i = \delta(q_{i-1}, q_i).$
- · Every NFA has an equivalent NFA with a single accept state.
- (NFA → DFA)
- $N = (Q, \Sigma, \delta, q_0, F)$
- $D=(Q'=\mathcal{P}(Q),\Sigma,\delta',q_0'=E(\{q_0\}),F')$
- $\bullet \quad F' = \{q \in Q' \mid \exists p \in F : p \in q\}$
- $E(\{q\}) := \{q\} \cup \{\text{states reachable from } q \text{ via } \varepsilon\text{-arrows}\}$
- $ullet \ orall R \subseteq Q, orall a \in \Sigma, \delta'(R,a) = E\left(igcup_{r \in R} \delta(r,a)
 ight)$
- Regular Expressions Examples:
- $\{a^nwb^n:w\in\Sigma^*\}\equiv a(a\cup b)^*b$
- $\{w \in \Sigma^* : \#_w(\mathtt{0}) \geq 2 \land \#_w(\mathtt{1}) \leq 1\} \equiv ((0 \cup 1)^*0(0 \cup 1)^*0(0 \cup 1)^*) \cup (0^*(\varepsilon \cup 1)0^*)$
- $\{w \mid \#_w(\mathtt{01}) = \#_w(\mathtt{10})\} \equiv arepsilon \cup \mathtt{0}\Sigma^*\mathtt{0} \cup \mathtt{1}\Sigma^*\mathtt{1}$
- $\{w \in \{a,b\}^* : |w| \bmod n = m\} \equiv (a \cup b)^m ((a \cup b)^n)^*$
- $\{w \in \{a,b\}^*: \#_b(w) mod n = m\} \equiv (a^*ba^*)^m \cdot ((a^*ba^*)^n)^*$

$\textbf{PL:}\ A\in\mathrm{REG} \implies \exists p: \forall s\in A\text{, } |s|\geq p\text{, } s=xyz\text{, (i)}\ \forall i\geq 0, xy^iz\in A\text{, (ii)}\ |y|>0 \ \text{and (iii)}\ |xy|\leq p\text{.}$

- $egin{aligned} \{w=a^{2^k}\}; & k=\lfloor\log_2|w|\rfloor, s=a^{2^k}=xyz.\ 2^k=|xyz|<|xy^2z|\leq|xyz|+|xy|\leq 2^k+p<2^{k+1}. \end{aligned}$
- $|w| = w^{\mathcal{R}}; \quad s = 0^p 10^p = xyz. \text{ then } xy^2z = 0^{p+|y|} 10^p \notin L.$
 - $\{a^nb^n\}; \quad s=a^pb^p=xyz, ext{ where } |y|>0 ext{ and } |xy|\leq p. ext{ Then } xy^2z=a^{p+|y|}b^p
 otin L.$
 - $L=\{a^p: p ext{ is prime}\}; \quad s=a^t=xyz ext{ for prime } t\geq p. \ r:=|y|>0$

$L \in \mathbf{CFL} \Leftrightarrow \exists \mathop{G}\limits_{\mathsf{CFG}} : L = L(G) \Leftrightarrow \exists \mathop{M}\limits_{\mathsf{PDA}} : L = L(M)$

- (**CFG**) $G=(\underset{\mathsf{n.t. ter.}}{V},\underset{\mathsf{ter.}}{\Sigma},R,S).$ Rules: $A \to w.$ (where $A \in V$ and $w \in (V \cup \Sigma)^*$).
- A derivation of w is a leftmost derivation if at every step the leftmost remaining variable is the one replaced.
- w is derived **ambiguously** in G if it has at least two different l.m. derivations. G is **ambiguous** if it generates at least one string ambiguously. A CFG is ambiguous iff it generates some string with two different parse trees. A CFL is **inherently ambiguous** if all CFGs that generate it are ambiguous.
- (CNF) $A \to BC, \, A \to a, \, \text{or} \, S \to arepsilon$, (where $A,B,C \in V, \, a \in \Sigma$, and B,C
 eq S).
- rules of the form $A \to \varepsilon$ (except for $S_0 \to \varepsilon$). and a rule $S_0 \to S$. (2.) Remove ε -rules of the form $A \to \varepsilon$ (except for $S_0 \to \varepsilon$). and remove A's occurrences on the RH of a rule (e.g.: $R \to uAvAw$ becomes $R \to uAvAw \mid uAvw \mid uvAw \mid uvw$. where $u, v, w \in (V \cup \Sigma)^*$). (3.) Remove unit rules $A \to B$ then whenever $B \to u$ appears, add $A \to u$, unless this was a unit rule previously removed. $(u \in (V \cup \Sigma)^*)$. (4.) Replace each rule $A \to u_1u_2 \cdots u_k$ where $k \geq 3$ and $u_i \in (V \cup \Sigma)$, with the rules $A \to u_1A_1$, $A_1 \to u_2A_2$, ..., $A_{k-2} \to u_{k-1}u_k$, where A_i are new variables. Replace terminals u_i with $U_i \to u_i$.
- If $G \in \mathsf{CNF}$, and $w \in L(G)$, then $|w| \leq 2^{|h|} 1$, where h is the height of the parse tree for w
- $orall L \in \mathsf{CFL}, \exists G \in \mathsf{CNF} : L = L(G).$
- (derivation) $S\Rightarrow u_1\Rightarrow u_2\Rightarrow \cdots\Rightarrow u_n=w$, where each u_i is in $(V\cup\Sigma)^*$. (in this case, G generates w (or S derives w), $S\stackrel{*}{\Rightarrow}w$)

- **(PDA)** $M=(Q,\sum\limits_{\text{input}},\prod\limits_{\text{stack}},\delta,q_0\in Q,\sum\limits_{\text{accepts}}\subseteq Q)$. (where Q,Σ,Γ,F finite). $\delta:Q\times \Sigma_{\varepsilon}\times \Gamma_{\varepsilon}\longrightarrow \mathcal{P}(Q\times \Gamma_{\varepsilon}).$
- M accepts $w\in \Sigma^*$ if there is a seq. $r_0,r_1,\ldots,r_m\in Q$ and $s_0,,s_1,\ldots,s_m\in \Gamma^*$ s.t.:
 - $\bullet \quad r_0=q_0 \text{ and } s_0=\varepsilon$
 - For $i=0,1,\ldots,m-1$, we have $(r_i,b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_\varepsilon$ and $t\in\Gamma^*$.
 - $r_m \in F$
- A PDA can be represented by a state diagram, where each transition is labeled by the notation " $a,b\to c$ " to denote that the PDA: **Reads** a from the input (or read nothing if $a=\varepsilon$). **Pops** b from the stack (or pops nothing if $b=\varepsilon$). **Pushes** c onto the stack (or pushes nothing if $c=\varepsilon$)
- $\{w: w=w^{\mathcal{R}}\}; S o aSa\mid bSb\mid a\mid b\mid arepsilon.$
- $\bullet \quad \{w: w \neq w^{\mathcal{R}}\}; S \rightarrow aSa \mid bSb \mid aXb \mid bXa; X \rightarrow aX \mid bX \mid \epsilon.$
- $\{ w\#x : w^\mathcal{R} \subseteq x \}; S \rightarrow AX; A \rightarrow 0A0 \mid 1A1 \mid \#X; X \rightarrow 0X \mid 1X \mid \varepsilon.$
- $\quad \{w: \#_w(a) > \#_w(b)\}; S \rightarrow TaT, \quad T \rightarrow TT \mid aTb \mid bTa \mid a \mid \varepsilon.$
- $\{w: \#_w(a) \geq \#_w(b)\}; S
 ightarrow SS \mid aSb \mid bSa \mid a \mid arepsilon$
- $\overline{\{a^nb^n\}};S\rightarrow XbXaX\mid A\mid B;A\rightarrow aAb\mid Ab\mid b;B\rightarrow aBb\mid aB\mid a;X\rightarrow aX\mid bX\mid \varepsilon.$
- $\{a^nb^m\mid n
 eq m\};S
 ightarrow aSb\mid A\mid B;A
 ightarrow aA\mid a;B
 ightarrow bB\mid b.$
- $\{a^ib^jc^k \mid i \leq j \text{ or } j \leq k\};$
 - $S \to S_1C \mid AS_2; \, S_1 \to \mathtt{a}S_1\mathtt{b} \mid S_1\mathtt{b} \mid \varepsilon; S_2 \to \mathtt{b}S_2\mathtt{c} \mid S_2\mathtt{c} \mid \varepsilon; A \to A\mathtt{a} \mid \varepsilon; C \to C\mathtt{c} \mid \varepsilon$
- $\{x \mid x \neq ww\}; S \rightarrow A \mid B \mid AB \mid BA; A \rightarrow CAC \mid 0; B \rightarrow CBC \mid 1; C \rightarrow 0 \mid 1$

$\textbf{PL:}\ L\in \mathrm{CFL} \implies \exists p: \forall s\in L, |s|\geq p,\ s=uvxyz, \textbf{(i)}\ \forall i\geq 0, uv^ixy^iz\in L, \textbf{(ii)}\ |vxy|\leq p, \textbf{and (iii)}\ |vy|>0.$

- $\{w = a^n b^n c^n\};$ $s = a^p b^p b^p = uvxyz. vxy$ can't contain all of a, b, c thus $uv^2 xy^2 z$ must
- pump one of them less than the others.
- $\{ww:w\in\{a,b\}^*\};$

$L \in \text{DECIDABLE} \iff (L \in \text{REC. and } L \in \text{co-REC.}) \iff \exists M_{\mathsf{TM}} \text{ decides } L.$

- (**TM**) $M=(Q,\sum\limits_{\mathsf{input}}\subseteq\Gamma,\prod\limits_{\mathsf{tape}},\delta,q_0,q_{\mathrm{accept}},q_{\mathrm{reject}}),$ where
- $\sqcup \in \Gamma$ (blank), $\sqcup
 otin \Sigma$, $q_{ ext{reject}}
 eq q_{ ext{accept}}$, and $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$
- (recognizable) accepts if $w \in L$, rejects/loops if $w \notin L$.
- $L \in \text{RECOGNIZABLE} \iff L \leq_{\text{m}} A_{\mathsf{TM}}.$
- A is **co-recognizable** if \overline{A} is recognizable.
- Every inf. recognizable lang. has an inf. dec. subset.
- (decidable) accepts if $w \in L$, rejects if $w \notin L$.
- $L \in \text{DECIDABLE} \iff L \leq_{\text{m}} 0^*1^*.$

- $L \in \text{DECIDABLE} \iff L^{\mathcal{R}} \in \text{DECIDABLE}.$
- (decider) TM that halts on all inputs
 - (Rice) Let P be a lang. of TM descriptions, s.t. (i) P is nontrivial (not empty and not all TM desc.) and (ii) for each two TM M_1 and M_2 , we have
 - $L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P).$ Then P is undecidable.
- $\{all\ TMs\}$ is countable; Σ^* is countable (for every finite Σ); {all languages} is uncountable; {all infinite binary sequences} is uncountable.
- $f:\Sigma^* o\Sigma^*$ is **computable** if $\exists M_{\mathsf{TM}}: \forall w\in\Sigma^*,\, M$ halts on w and outputs f(w) on its tape.

 $\mathsf{DFA} \equiv \mathsf{NFA} \equiv \mathsf{GNFA} \equiv \mathsf{REG} \, \subset \, \mathsf{NPDA} \equiv \mathsf{CFG} \, \subset \, \mathsf{DTM} \equiv \mathsf{NTM}$

- If $A \leq_{\mathrm{m}} B$ and B is decidable, then A is dec.
- If $A \leq_{\mathrm{m}} B$ and A is undecidable, then B is undec.
- If $A \leq_{m} B$ and B is recognizable, then A is rec.
- If $A \leq_{\mathrm{m}} B$ and A is unrecognizable, then B is unrec.
- (transitivity) If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$.
- $A \leq_{\mathrm{m}} B \iff \overline{A} \leq_{\mathrm{m}} \overline{B} \text{ (esp. } A \leq_{\mathrm{m}} \overline{A} \iff \overline{A} \leq_{\mathrm{m}} A)$
- If $A \leq_{\mathrm{m}} \overline{A}$ and $A \in \operatorname{RECOGNIZABLE}$, then $A \in \operatorname{DEC}$.

$FINITE \subset REGULAR \subset CFL \subset CSL \subset DECIDABLE \subset RECOGNIZABLE$

- (unrecognizable) $\overline{A_{TM}}$, $\overline{EQ_{\mathsf{TM}}}$, EQ_{CFG} , $\overline{HALT_{\mathsf{TM}}}$, $REGULAR_{TM} = \{M \text{ is a TM and } L(M) \text{ is regular}\}, E_{TM}$, $EQ_{\mathsf{TM}} = \{M_1, M_2 \text{ are TMs and } L(M_1) = L(M_2)\},$ ALL_{CFG} , EQ_{CFG}
- (recognizable but undecidable) A_{TM} , $HALT_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM halts on } w \},$
- $D = \{p \mid p \text{ is an int. poly. with an int. root}\}, \overline{EQ_{\mathsf{CFG}}},$
- E_{CFG} , A_{LBA} , $ALL_{\mathsf{DFA}} = \{ \langle M \rangle \mid M \text{ is a DFA}, L(A) = \Sigma^* \}$, $A\varepsilon_{\mathsf{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG that generates } \varepsilon \},$
- INFINITEDEA, INFINITEDDA
- $(\textbf{decidable}) \ A_{\text{DFA}}, \ A_{\text{NFA}}, \ A_{\text{REX}}, \ E_{\text{DFA}}, \ EQ_{\text{DFA}}, \ A_{\text{CFG}},$
- $\{ww \mid w \in \{a,b\}^*\}, \{a^{n^2} \mid n \geq 0\},\$ $\{w \in \{a, b, c\}^* \mid \#_a(w) = \#_b(w) = \#_c(w)\},$ $\{a^p \mid p \text{ is prime}\}, L = \{ww^{\mathcal{R}}w : w \in \{a, b\}^*\}$ (CFL but not REGULAR) $\{w \in \{a,b\}^* \mid w = w^{\mathcal{R}}\},\$
- $\{ww^{\mathcal{R}} \mid w \in \{a, b\}^*\},\$ $\{a^nb^n\mid n\in\mathbb{N}\}, \{w\in\{\mathtt{a},\mathtt{b}\}^*\mid \#_\mathtt{a}(w)=\#_\mathtt{b}(w)\},$ $L = \{a^n b^m : n \neq m\}$

Mapping Reduction: $A \leq_{\mathrm{m}} B$ if $\exists f : \Sigma^* \to \Sigma^* : \forall w \in \Sigma^*, \ w \in A \iff f(w) \in B$ and f is computable.

- $A_{TM} \leq_{\mathrm{m}} S_{TM} = \{ \langle M \rangle \mid w \in L(M) \iff w^{\mathcal{R}} \in L(M) \};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x, if $x \notin \{01, 10\}$, reject; if x = 01, return M(x); if x = 10, accept;"
- $A_{TM} \leq_{\mathrm{m}} L = \{\langle M, D \rangle \mid L(M) = L(D)\};$
 - $f(\langle M, w \rangle) = \langle M', D \rangle$, where M' ="On x: if x = w return M(x); otherwise, reject;" D is DFA s.t. $L(D) = \{w\}$.
- $A \leq_{\mathrm{m}} HALT_{\mathsf{TM}}; f(w) = \langle M, \varepsilon \rangle$, where $M = \mathsf{"On } x$: if $w \in A$, halt; if $w \notin A$, loop;"
- $A_{TM} \leq_{\mathrm{m}} CF_{\mathsf{TM}} = \{ \langle M \rangle \mid L(M) \text{ is CFL} \};$ $f(\langle M,w \rangle) = \langle N \rangle$, where N ="On x: if $x = a^n b^n c^n$, accept; otherwise, return M(w);"
- $A \leq_{\mathrm{m}} B = \{0w : w \in A\} \cup \{1w : w \notin A\}; f(w) = 0w.$
- $E_{\mathrm{TM}} \leq_{\mathrm{m}} \mathrm{USELESS}_{\mathrm{TM}}; \ f(\langle M \rangle) = \langle M, q_{\mathrm{accept}} \rangle$
- $A_{\mathrm{TM}} \leq_{\mathrm{m}} EQ_{\mathrm{TM}}; \quad f(\langle M, w \rangle) = \langle M_1, M_2 \rangle$, where $M_1 =$ "Accept all"; M_2 ="On x: return M(w);"
- $A_{\rm TM} \leq_{\rm m} \overline{EQ_{\rm TM}}; \quad f(\langle M, w \rangle) = \langle M_1, M_2 \rangle, \text{ where } M_1 =$ "Reject all"; M_2 ="On x: return M(w);"
- $ALL_{\mathrm{CFG}} \leq_{\mathrm{m}} EQ_{\mathrm{CFG}}; f(\langle G \rangle) = \langle G, H \rangle, \text{ s.t. } L(H) = \Sigma^*.$ $\text{HALT}_{\text{TM}} \leq_{\text{m}} \{ \langle M_{TM} \rangle \mid \exists x : M(x) \text{ halts in } > |\langle M \rangle| \text{ step} \}$
- $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: if M(w) halts, make $|\langle M \rangle| + 1$ steps and then halt; otherwise, loop"
- $A_{\mathrm{TM}} \leq_{\mathrm{m}} \{\langle M \rangle \mid M \text{ is TM}, |L(M)| = 1\};$ $f(\langle M, w \rangle) = \langle M' \rangle$, where M' ="On x: if $x = x_0$, return M(w); otherwise, reject;" (where $x_0 \in \Sigma^*$ is fixed).

$\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(n^k)$. $\mathbf{NP} = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}(n^k) = \{L \mid L \text{ is decidable by a PT verifier}\}.$

- ((Running time) decider M is a f(n)-time TM.) $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the max. num. of steps that DTM (or NTM) M takes on any n-length input (and any branch of any n-length input. resp.).
- $\mathsf{TIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ DTM} \}.$
- $\mathsf{NTIME}(t(n)) = \{L \mid L \text{ is dec. by } O(t(n)) \text{ NTM}\}.$
- (verifier for L) TM V s.t.
 - $L = \{ w \mid \exists c : V(\langle w, c \rangle) = \mathsf{accept} \}.$

- (certificate for $w \in L$) str. c s.t. $V(\langle w, c \rangle) = \text{accept.}$
- $P \subseteq NP$.
- $f:\Sigma^* o \Sigma^*$ is **PT computable** if there exists a PT TM M s.t. for every $w \in \Sigma^*$, M halts with f(w) on its tape.
- If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$, then $A \in \mathbf{P}$.
- If $A \leq_{\mathbf{P}} B$ and $B \leq_{\mathbf{P}} A$, then A and B are **PT equivalent**, denoted $A \equiv_P B$. \equiv_P is an equivalence relation on NP. $P \setminus \{\emptyset, \Sigma^*\}$ is an equivalence class of
- CLIQUE, SUBSET-SUM, SAT, 3SAT, VERTEX-COVER, HAMPATH, UHAMATH, $3COLOR \in NP$ -complete.

NP-complete = $\{B \mid B \in \text{NP}, \forall A \in \text{NP}, A \leq_{\text{P}} B\}.$

- $\emptyset, \Sigma^* \notin NP$ -complete.
- If $B \in NP$ -complete and $B \in P$, then P = NP.
- If $B \in \text{NP-complete}$ and $C \in \text{NP}$ s.t. $B \leq_P C$, then $C \in \text{NP-complete}$.
- If $\mathrm{P}=\mathrm{NP}$, then $\forall A\in\mathrm{P}\setminus\{\emptyset,\Sigma^*\},\,A\in\mathrm{NP}\text{-complete}.$

Polytime Reduction: $A \leq_P B$ if $\exists f : \Sigma^* \to \Sigma^* : \forall w \in \Sigma^*, w \in A \iff f(w) \in B$ and f is polytime computable.

- $SAT \leq_{P} DOUBLE-SAT; \quad f(\phi) = \phi \land (x \lor \neg x)$
- SUBSET-SUM ≤_P SET-PARTITION; $f(\langle x_1,\ldots,x_m,t
 angle)=\langle x_1,\ldots,x_m,S-2t
 angle$, where S sum of x_1, \ldots, x_m , and t is the target subset-sum.
- $3COLOR \leq_{\operatorname{P}} 3COLOR_{almost}; \quad f(\langle G \rangle) = \langle G' \rangle$, where $G' = G \cup K_4$
- VERTEX-COVER \leq_{P} WVC; $f(\langle G, k \rangle) = (G, w, k)$, $\forall v \in V(G), w(v) = 1$
- $HAM-PATH \leq_P 2HAM-PATH;$ $f(\langle G, s, t \rangle) = \langle G', s', t' \rangle$, where $V' = V \cup \{s', t', a, b, c, d\},\$ $E' = E \cup \{(s', a), (a, b), (b, s)\} \cup \{(s', b), (b, a), (a, s)\}$ $\cup \{(t,c),\, (c,d),\, (d,t')\} \cup \{(t,d),\, (d,c),\, (c,t')\}.$
- $\begin{array}{c} \text{CLIQUE} \\ \text{lir. } G \text{ has } k\text{-clique} \end{array} \leq_{\text{P}} \begin{array}{c} \text{HALF-CLIQUE} ; \\ \text{undir. } G \text{ has } |V|/2\text{-clique} \end{array}$ $f(\langle G=(V,E),k \rangle)=\langle G'=(V',E')
 angle$, if $k=rac{|V|}{2}$, E=E', V'=V. if $k>\frac{|V|}{2},$ $V'=V\cup\{j=2k-|V| \text{ new nodes}\}.$
- if $k < rac{|V|}{2}, \, V' = V \cup \{j = |V| 2k ext{ new nodes}\}$ and $E' = E \cup \{ \text{edges for new nodes} \}$
- $UHAMPATH \leq_P PATH_{>k};$ $f(\langle G, a, b \rangle) = \langle G, a, b, k = |V(G)| - 1 \rangle$
- VERTEX-COVER < D CLIQUE; $f(\langle G, k \rangle) = \langle G^{\complement} = (V, E^{\complement}), |V| - k \rangle$
- $CLIQUE_k \leq_P \{\langle G, t \rangle : G \text{ has a } 2t\text{-clique}\};$ $f(\langle G, k \rangle) = \langle G', t = k/2 \rangle$
- $CLIQUE \leq_P INDEPENDENT\text{-}SET$
- $SET\text{-}COVER \leq_{P} VERTEX\text{-}COVER$
- $3SAT \leq_P SET\text{-}SPLITTING$
- $INDEPENDENT\text{-}SET \leq_{P} VERTEX\text{-}COVER$

Counterexamples

- $A \leq_{\mathrm{m}} B$ and $B \in \mathrm{REG}$, but, $A \notin \mathrm{REG}$: $A = \{0^n 1^n \mid n \geq 0\}, B = \{1\}, f : A \rightarrow B,$
- $f(w) = egin{cases} 1 & ext{if } w \in A \ 0 & ext{if } w
 otin A \end{cases}$
- $L \in \mathrm{CFL} \; \mathrm{but} \; \overline{L}
 otin \mathrm{CFL}
 vert: \quad L = \{x \; | \; \forall w \in \Sigma^*, x
 eq ww\},$ $\overline{L} = \{ww \mid w \in \Sigma^*\}.$
- $L_1, L_2 \in \operatorname{CFL}$ but $L_1 \cap L_2
 otin \operatorname{CFL}$: $L_1 = \{a^nb^nc^m\}$, $L_2 = \{a^mb^nc^n\}, L_1 \cap L_2 = \{a^nb^nc^n\}.$
- $L_1 \in \mathrm{CFL}$, L_2 is infinite, but $L_1 \setminus L_2
 otin \mathrm{REG}: \quad L_1 = \Sigma^*$, $L_2=\{a^nb^n\mid n\geq 0\}$, $L_1\setminus L_2=\{a^mb^n\mid m
 eq n\}$.
- $L_1, L_2 \in \text{REG}, L_1 \not\subset L_2, L_2 \not\subset L_1$, but, $(L_1 \cup L_2)^* = L_1^* \cup L_2^*: \quad L_1 = \{\mathtt{a},\mathtt{b},\mathtt{ab}\}, \, L_2 = \{\mathtt{a},\mathtt{b},\mathtt{ba}\}$
- $L_1 \in \mathrm{REG}$, $L_2
 otin \mathrm{REG}$, but, $L_1 \cap L_2 \in \mathrm{REG}$, and $L_1 \cup L_2 \in \operatorname{REG}: \quad L_1 = L(\mathbf{a}^*\mathbf{b}^*), L_2 = \{\mathbf{a}^n\mathbf{b}^n \mid n \geq 0\}.$
- $L_1, L_2, L_3, \dots \in \mathrm{REG}$, but, $\bigcup_{i=1}^{\infty} L_i \notin \mathrm{REG}$: $L_i = \{\mathtt{a}^i\mathtt{b}^i\}, \ igcup_{i=1}^\infty L_i = \{\mathtt{a}^n\mathtt{b}^n \mid n \geq 0\}.$
- $L_1 \cdot L_2 \in \mathrm{REG}$, but $L_1 \notin \mathrm{REG}$: $L_1 = \{ \mathtt{a}^n \mathtt{b}^n \mid n \geq 0 \}$, $L_2 = \Sigma^*$.
- $L_2 \in \mathrm{CFL}$, and $L_1 \subseteq L_2$, but $L_1 \not\in \mathrm{CFL}: \quad \Sigma = \{a,b,c\}, \quad A \not\in \mathrm{DEC.}, A \leq_\mathrm{m} \overline{A}: C \subseteq A \subseteq_\mathrm{m} \overline{A}: C \subseteq_\mathrm{m}$ $L_1 = \{a^n b^n c^n \mid n \ge 0\}, L_2 = \Sigma^*.$
- $L_1, L_2 \in \mathrm{DECIDABLE}$, and $L_1 \subseteq L \subseteq L_2$, but $L \in \mathrm{UNDECIDABLE}: \quad L_1 = \emptyset, \, L_2 = \Sigma^*, \, L ext{ is some}$ undecidable language over Σ .
- $L_1 \in \mathrm{REG},\, L_2
 otin \mathrm{CFL},\, \mathsf{but}\,\, L_1 \cap L_2 \in \mathrm{CFL}:\quad L_1 = \{arepsilon\},$ $L_2 = \{a^n b^n c^n \mid n \ge 0\}.$
- $L^* \in \text{REG}$, but $L \notin \text{REG}$: $L = \{a^p \mid p \text{ is prime}\},$ $L^* = \Sigma^* \setminus \{a\}.$
- $A \nleq_m \overline{A}: A = A_{TM} \in RECOGNIZABLE,$ $\overline{A} = \overline{A_{TM}} \notin \text{RECOG}.$