Contents

Week 6	
Monday, November 2	2

Week 6

Monday, November 2

1. What is the name of the following molecule?

- ▶ 4-bromo-1-chloro-2-metyhlcyclohexane
 - Lowest sum and alphabetically ordered.
- 2. What is the definition of a molecular conformation?
 - A geometric arrangement in space of a molecule that has a low energy pathway to rearrangement
 - **Conformations**: the variety of possible three-dimensional shapes of a molecule that are interchangeable by low energy pathways.
 - Conformations vary in potential energy.
 - Changes due to rotation about σ bonds.
- What is the following molecule?

(The package that draws newman projections is not compatable with the font I use... working on a fix, but can't draw them at the moment)

> pentane

- \circ Front portion has 3 carbons in the chain: CH₃ (1), CH₂ (2), and the 4° carbon (3) in the center.
- The circle represents the σ bond between the carbon behind it, so thats (4).
- The methyl (CH₃) on the back portion is (5).

4. For the molecule in the previous question, which conformer is the gauche form of the molecule?

▷ choice 1

Can't draw newman projections currently; it's broken... but here's this lame screenshot:

- **Gauche interaction**: unfavorable intereaction between groups, causing an increases in energy due to electron cloud repulsion.
- o Gauche intereaction is a type of steric intereactions present at $\approx \pm 60^{\circ}$ the next eclipsed conformation.
- 5. For the same molecule, which conformation corresponds to the most stable form?

pick number 1 m'lord

▶ ugggghhhhhhhhhhhhhhh so ugly :(

- Other forms represent an eclipsed form and the gauche interaction, both which increases potential energy due to increased torsional strain.
- o More notes for reference:
 - **dihedral (torsional) angle**: the angle between substituents of front and back carbons as the σ bonds rotates.
 - Staggered conformation: lowest energy conformation, when two substituents are at maximum dihedral angle from each other.
 - Eclipsed conformation: the highest energy conformation, when two substituents are at the minimum dihedral angle from each other.

6. For which molecule will the energy of conversion (E_{act}) be the greatest?

▶ butane

- \circ I don't really know what E_{act} is, but I assume it's the energy required to go through the interchangeable pathway.
- o Costs of butane:
 - 19 kJ/mol (eclipsed with methyl overlap; once)
 - 16 kJ/mol (eclipsed, no methyl, but with gauche; twice)
 - 3.8 kJ/mol (gauche only; twice)
- I'm not sure if you add them up or just take max, but either way butane has the greatest out of ethane, propane, and methane.
- 7. Why is the cyclohexane ring more stable than rings of other sizes?
 - b the bond angles are all nearly 109.5°
 - ▶ the ring strain is at a minimum
 - ▶ the overlap of the sp³ hybrid orbitals is at a maximum
 - > all of the above
 - o This is true in the most stable, chair conformaions at least.
- 8. Why can't the cyclobutane ring be square planar?
 - ▶ the 2s orbitals wouldn't overlap well OR the sp³ orbitals wouldn't overlap well
 - Cyclobutane adopts a slightly puckered conformation in order to reduce angle strain (and eclipsed H)... which I now assume is the because 2s orbitals after getting the question wrong twice.
- 9. In the cartoon picture shown below, who's on the chair and who's on the boat forms of cyclohexane?
 - she's on the chair and he's on the boat
 - o Hmmmmmmmmmm....
- 10. What is the total energy for the cyclohexane ring flipping process?
 - ▶ 12.1
 - Appears to be just the cost of the first flip to the half chair.
 - Can't seem to find good explanation to why, however.