东南大学

电力电子技术

第10讲

主讲教师: 五念春

380419124@qq. com

自关断器件驱动、保护电路

- 二、电流型自关断器件的驱动 1、GTO 的驱动
 - 基本要求

直接耦合式电容储能驱动电路

- (1) 门极开通电路
- (2) 门极关断电路
- (3) 门极反偏电路

2、大功率晶体管的驱动

(1) 基本要求

(2) 抗饱和电路(贝克钳位电路)

GTR通,如VD₁正偏
$$U_{be}+U_{D2}+U_{D3}=U_{ce}+U_{D1}$$

$$U_{ce}=U_{be}+U_{D2}+U_{D3}-U_{D1}$$

则: $U_{ce}=1.4V$ (饱和)

VD₁:溢流阀作用,过量基流不入基极 变VD₂, VD₃数,可变饱和度

(3) 具体驱动电路

电力电子技术与运动控制技术实验装置

- 三、电压型自关断器件的驱动
 - 1、功率场效应晶体管的驱动
 - (1) 驱动电路

(2) 专用驱动集成电路

IR2110

2、绝缘栅双极型晶体管的驱动

(1) 驱动电路

(2) 集成栅极驱动电路

EXB系列

标准型: EXB850(851)

高速型: EXB840(841)

四、自关断器件的保护

- 1、大功率晶体管的保护
 - (1) 过流保护

受冲击能力差,快熔不起作用 利用电子开关,进行过流保护

可检测: $U_{\rm ce}$ $I_{\rm c}$

要求工作在临界(准)饱和区,工作点 $\mathbf{A}(U_{\text{ceg}},\ I_{\text{cg}})$

测: $I_{\rm C}$, 误差 $\Delta I_{\rm C}$, 到 $I_{\rm C}$ + $\Delta I_{\rm C}$ 才动作

 $A \triangleright A_1$,已为放大区

测:
$$U_{ce}$$
: $DU_{ce}(\frac{DU_{ce}}{U_{ceg}} = \frac{DI_c}{I_{cg}})$ $A \triangleright A_2$

如 $I_{\rm b}$ 减少 $\Delta I_{\rm b}$

测 $I_c: A \rightarrow A_3$ 放大区

测 U_{ce} : $A \rightarrow A_4$ 准饱和区

考虑开关过程要经过放大区,需缓冲(吸收)电路。 GTR开通、关断损耗

1) 开通

前面关断时, I_L 经 VD_F 续流;开通后由 $VD_F \to GTR$, VD_F 仍通, U_{CC} 加至GTR,直至 VD_F 断。 出现高电压、大电流

2) 关断

电感作用, $I_{\rm C}$ 维持,直至 $U_{\rm ce} \rightarrow U_{\rm CC}$, ${\rm VD}_{\rm F}$ 通, $I_{\rm c}$ 才下降。

解决方法: 错开高电压、大电流出现时刻

关断吸收:

电容电压不突变, U_{ce} 上升慢

R: 限制GTR通时电容放电

VD: GTR关断时将R短路

开通吸收:

 $L_{\rm S}$: 使 $i_{\rm C}$ 上升慢

 R_{S} : GTR关断后,续流电流下降

VD: GTR通时,隔离 R_S 旁路作用

复合吸收电路

2、IGBT的保护

措施: 检测过流信号,切断栅极控制信号 吸收电路,限 $\frac{du_{ce}}{}$

dt

测温

过流保护采用集电极电压判别方法

 U_{ces} (集电极饱和压降)与 I_{c} 基本成线性关系

关断时间:

<IGBT允许短路过电流时间 不能太快,di_c/dt过大,自感电势↑ 慢速过流截止

吸收电路:

开通吸收: $L_{\rm S}$ 、 ${\rm VD}_{\rm S1}$ 、 $R_{\rm S}$

关断吸收: VD_S 、 C_S

P88页 本章小节

本章主要内容:

- (1) 对晶闸管触发电路的基本要求;
- (2) 锯齿波同步触发电路;
- (3) 12钟点法的应用。什么代表电网电压?什么代表晶闸管阳极电压?什么代表触发信号电压?
 - (4) 过电压保护与过电流保护。

建议作业:

P. 91 习题 21、22

