Hugepage

工程实践与科技创新III-D虚拟化与云计算 EI313

李子龙 518070910095 2021 年 11 月 15 日

目录

	安水	
2	配置大内存页。	1
3	创建对照虚拟机 。	2
4	<mark>运行测试</mark> · · · · · · · · · · · · · · · · · · ·	3
5	解释 · · · · · · · · · · · · · · · · · · ·	4
1	要求	
(1) Prepare 2MB or 1GB hugepages on your host server. Present your hugepage configure (e.g.
	/proc/meminfo).	Ü
(2	2) Create a QEMU KVM virtual machine using hugepages on the host.	
(3	3) Create another QEMU KVM VM without hugepages.	
(4	4) In both VMs allocate and use hugepages or not.	
(,	5) Run memory instensive benchmark (e.g. sysbench memory test) on two VMs and reco	ord
	the performance.	
(6) Compare the result and try to give some explanation.	
	Note: If the OS supports transparent huge page, disable it when you do the tests.	

2 配置大内存页

向 /etc/sysctl.conf 中输入 vm.nr_hugepages = 100,然后重启系统,如图 1 所示。 然后显示大内存页的配置信息如图 2 所示:显示有 2MB 大内存页 100 个。

图 1: 配置大页

图 2: 显示配置

接着按照提示,先关闭透明大页。Transparent HugePages是在运行时动态分配内存的,而 标准的HugePages是在系统启动时预先分配内存,并在系统运行时不再改变。因为Transparent HugePages是在运行时动态分配内存的,所以会带来在运行时内存分配延误。[1]

Listing 1: disableTHP.sh

1 sudo -s 2 echo never > /sys/kernel/mm/transparent_hugepage/enabled 3 cat /sys/kernel/mm/transparent_hugepage/enabled

```
root@ubuntu: ~
文件(F) 编辑(E) 查看(V) 搜索(S) 终端(T) 帮助(H)
root@ubuntu:~# echo never > /sys/kernel/mm/transparent_hugepage/enabled
root@ubuntu:~#
root@ubuntu:~# cat /sys/kernel/mm/transparent_hugepage/enabled
always madvise [never]
root@ubuntu:~#
root@ubuntu:~#
```

图 3: 关闭透明大页

3 创建对照虚拟机

在 virt-manager 中克隆虚拟机,并在其中一个虚拟机中按照上述的方法配置大内存页。 两种虚拟机都使用了 QEMU KVM。

图 4: 两种虚拟机

4 运行测试

为了保证公平,测试仅运行于一个虚拟机开启的情况下。测试使用 sysbench。

Listing 2: benchmark.sh

sysbench memory --memory-block-size=2M --memory-total-size=2G run

测试结果分别如图 5 和图 6 所示。

图 5: 含有大内存页

图 6: 不含有大内存页

5 解释

由图 7 可见,对于 2G 内存(2MB 块大小)写入测试上,开启了大内存页的 VM1 确实更占优势(降低了约 56%),且在图 8 的延迟比较上也占上风(总延迟降低了 54%)。

在虚拟内存管理中,内核维护一个将虚拟内存地址映射到物理地址的表,对于每个页面操作,内核都需要加载相关的映射。如果你的内存页很小,那么你需要加载的页就会很多,导致内核会加载更多的映射表。而这会降低性能。使用"大内存页",意味着所需要的页变少了。从而大大减少由内核加载的映射表的数量。这提高了内核级别的性能最终有利于应用程序的性能。从而减少访问的开销。[2]

而使用的大内存页都是 2M 的,并排布了 100 个,至少可以有效减少一部分内存页的访问开销,从而减少访问时间和延迟。

参考文献

- [1] 海东潮. Linux的Transparent Hugepage与关闭方法[EB/OL]. 2018. https://www.cnblogs.com/DataArt/p/9975281.html.
- [2] LAVHATE S. Linux 中的"大内存页"(hugepage) 是个什么? [EB/OL]. 2018. https://linux.cn/article-9450-1.html.