混合交通のボトムアップ改善の先を目指して

—Seminar on Heterosocial Systems 開催のモチベーション—

長濱 章仁1

1 電気通信大学大学院情報理工学研究科

概要

世界の新興各国では、バイクやオート三輪などが入り混じり車線が守られない二次元混合交通が観測され、その渋滞問題は人々の QoL 低下を招いている。筆者は混合交通流を各車両の挙動改善に依ってボトムアップ式に改善することを目指している。本稿では、それらの 3 要素である、A)車列内部の構造「群れ」の検知と再現、B) 渋滞に頑健な安定性の高い「車列」の探索、C) 望ましい群れに「人」を導くための行動改変手法に関する研究を紹介する。また混合交通研究と社会改善との関わりについても指摘し、そのための分野融合の場として筆者が開催している Seminar on Heterosocial Systems についても紹介する。

Aiming beyond bottom-up improvements of mixed traffic
—Motivation for hosting the Seminar on Heterosocial Systems—

Akihito Nagahama¹

Abstract

In developing countries around the world, two-dimensional mixed traffic, in which motorcycles, three-wheelers, etc, are mixed together and lanes are not followed, has been observed, and its congestion problem has caused a decline in people's QoL. The author aims to improve the mixed traffic flow in a bottom-up manner by improving the behavior of each vehicle. This paper introduces research on three elements: A) detection and reproduction of the "group" structure inside the platoon, B) search for a more stable "platoon" that is robust to traffic congestion, and C) behavior modification methods to lead "drivers" to the desired groups. The relationship between mixed traffic research and social improvement is also pointed out, and the Seminar on Heterosocial Systems, which the author is organizing to integrate the fields for this purpose, is introduced.

1 はじめに

交通渋滞は、人類の Quality of Life を低下させる 重大な問題である。特に、世界の新興各国ではバイ クやオート三輪などの車種が入り混じり、車線が守 られず、各車が道路横方向にもある程度自由に走行 する「二次元混合交通」が見られる。 先進国では既に、Intelligent transporation system (ITS) 技術を用いた信号制御やレーン制御といった、トップダウン式の交通改善が運用されている。しかし新興各国では、政府組織の無関心やリソース不足といった要素により、それらの交通改善手法の実装が難しいということが報告されている[1]。また、渋滞吸収運転[2] の様なボトムアップ式交通改善も、似

¹ Graduate School of Informatics and Engineering, The University of Electro-Communications

動することを想定としている。しかし新興各国の道 路では、歩行者・動物がけん引する車両・逆走車と いった、遵法意識が低くリスクテイキングで多彩な 交通参加者が行き交う。

これまでの研究で、前走-後続車の車種組合せに よって運転の特徴が変化することが明らかになって おり[3]、モデル化がなされている[4]。さらに、車線 の守られる混合交通に限れば、前走-後続の車種が連 なってできる「車列順」(車列の内部構造の1つ)が、 交通の効率 (密度に対する流量) や渋滞発生リスク である安定性に影響することが示されている[5,6]。

これらの研究より筆者は、車列順といった車列の 内部構造を変化させることで、渋滞発生リスクや交 通効率を改善する「混合交通ならではのボトムアッ プ式交通流改善」を発想し、その提案に取り組んで いる。具体的には、(A) 車列における内部構造「群 れ」の検知、およびシミュレーション上での再現、 (B) 渋滞に頑健な「車列」の探索手法の開発、(C) 人機-環境系における「人間」行動の理解、の3つに 関する研究を進めている。

本稿ではまずそれらの研究を紹介する。また研究 の過程で混合交通研究が、様々な種類のエージェン トが織り成す社会システムの新たな発展方法に示唆 を与える可能性を見出した。その実現に向けた取り 組みである、Seminar on Heterosocial Systems の概 要も紹介する。

混合交通に潜む内部構造(群れ) $\mathbf{2}$ の検知と再現

群れの検知と新たな視座 2.1

1節で述べた通り、交通流に影響しうる内部構造 が存在することは明らかになっている。つまり、混 合交通流の正確な評価やダイナミクス理解、そして 改善には内部構造の検知と模擬が必要である。例え ば二次元混合交通で頻繁に観測される具体的な内部 構造としてバイクの分離がよく指摘される[7]。しか しこの例を含めて、内部構造を定量的に検出した研 究は存在しない。そこでまず筆者らは、頻繁に観測 される具体的な内部構造を定量的に明らかにする事 を目指した。なおここで検出する内部構造は「長時 間頻繁に近くを走行し加減速を伝えあう車両群」と 定め、「群れ」と呼ぶこととする。

車線の守られる交通では、加減速が影響する/さ

た性質の車両がおおよそ車線内を走行しつつ協力行 れる「追従関係」が前走-後続車の間に一対一で結ば れると見なされることが多い。一方、二次元混合交 通では、後続車の進行方向に複数車両が存在しうる ため、一対多の車両間で追従関係をもつ可能性が高 まる。そのため交通はノードが各車種、エッジが追 従関係である図1に示すネットワークとみなすこと ができる。ノードの m·r·c·h はそれぞれ、バイ ク・三輪車・乗用車・大型車を示す。

> 交通をネットワークとみなすことで、既存手法[8] を用い「頻出サブネットワーク」を検知可能になっ た。これに報告者の考案した、サブネットの存在時 間/車両数の偏りを鑑みる統計的手法を合わせるこ とで、ある車両群が長時間特定のネットワーク構造 で群れを作りやすいと統計的に結論づけることが可 能になった。

図 1: 車列をネットワークと見なすイメージ図

インドはムンバイの実交通から検出された「群れ」 の例を図2に示す。図中(a-c)は単独車種による群 れの例、(d) は複数車種による群れの例である。形 成されている群れが具体的に明らかになった他、車 種毎の群れ形状の傾向や、複数車種が混じる群れも 確認できた。また本結果より、内部構造の形成要因 が従前提案されてきた「粉体の偏析」に類似するも のだけではないこと、群れを保持しているダイナミ クスも車種毎に異なる可能性が示唆された [9, 10]。

図 2: 検出された群れの例

群れが発見されたことにより、混合交通は図3の ように、群れとそれ以外のおおよそランダムな部分 (集まり)が入り混じるものだと見なすことが可能 になった。

図 3: 車列を「群れ」とそれ以外の「集まり」にわ ける視座のイメージ

群れを含む車列の再現に向けて 2.2

2.1 節の視座に基づくと、混合交通のミクロシミュ レーション上での再現には、シミュレーション領域 端で群れと集まりに属する車両を発生させるモデル が必要となる。そこで発生させる車種を予測すると ともに、その予測の確信度を同時に出力するモデル、 特に「分類器」の構築が必要である。予測確信度の 低い車両は、ランダムな集まりに属する車両だと見 なすことが可能である。

筆者らは、ガウス過程回帰 (GP) モデルおよび Evidential deep learning (EDL) モデルを用いた車 両発生器を試作した。ガウス過程回帰は予測確から しさとして信頼区間を出力できる。一方 EDL は主観 論理のフレームワークを用いることで、各車種の確 率とともに「車種不明」の度合いを示す Uncertainty を出力できる。

GP/EDL の予測確からしさである信頼区間と Uncertainty の相関を調べることで、試作した GP/EDL では異なる部分を群れと認識していることがわかり、 現在改善を進めている。

車列改善アルゴリズムの提案 3

様々な速度や密度を通して、車列の渋滞発生リスク を評価する指標は提案されておらず、リスクの低い 車列を探索するアルゴリズムも提案されていなかっ た。筆者らは車線に基づく範囲で混合交通を評価す る指標を確立し、探索するアルゴリズムを提案した。

まず渋滞への頑健性指標として、車列の密度-速度 図における安定自由流領域の面積 (VF-VS) を提案 した。また VF-VS を用いつつ組み換え車列を探索 する VOO-G-NSGA-II を提案した。本手法には進 化的計算を用いている。車列の最適化を狙うのでは なく「現在の車列からある組み換え回数内でより渋れる、社会システム改善の第一歩となり得る。

滞しにくい車列へ変更する」ことを目指したもので

例として、一列に並んだ乗用車5台トラック3台 からなる車列を3回の組み換えで至ることができる、 より渋滞に頑健な車列を探索した[11]。その結果、よ り頑健な車列の探索に成功し、全ての車列からそれ らに至ることができることを確認した。VF-VSを何 らかの手法で二次元混合交通でも描くことができれ ば、二次元混合交通での車列探索が可能となる。

人間行動の改変

交通流改善のためには、例えば後続車に道を譲ら せるといった、通常取らない行動を促す必要がある。 このような行動改変を促すため「無意識に行動を変 えさせる仕掛け」や、「『納得感・信頼感』をもって 行動変容を『長期的に』促す情報提示・運転支援」 に活用できる各種手法の有効性や人間の認知特性を 測定している。なお、本テーマは基礎的研究として、 運転に限らず様々な状況を再現して被験者実験を実 施している。実験装置として、VR を含むドライビ ングシミュレータや歩行者実験、e-learning や災害 発生時の行動を模擬体験するデスクトップアプリを 活用している。ドライバーの無意識・意識に働きか ける各種手法の有効性に関する示唆を得ている。

混合交通研究と社会改善

本ボトムアップ式改善手法が提案されたあかつき には例えば、時間に余裕のある乗用車ドライバーが、 自然に少し走行位置を左右にずらすことで、後続バ イクに追い抜かれ、望ましい群れが創発されるよう な交通が実現できる可能性がある。

また今後、先進国でも電気バイク/ITS 搭載車と いった、多彩な加減速特性/認知レベルをもつ車両が 混在していくだろう。本手法は、このような道路交 通の将来的動向と親和性が高い。

さらに本手法の探求は、ルールやモラル(規律) が低く多様な特性の人々が混ざり合う社会が、効率 的に営まれる状況とダイナミクスを探る、研究例で ある。Boehm は、人類が進化の過程で、規律を高め つつ社会を改善することと、規律を守らない個体へ の制裁感情を、表裏一体としたことを指摘している [12]。もし本手法の探求を通して「規律が少ない効 率的な社会」の実現方法を見出すことができれば、 高まる規律と他者への制裁感情の両方から解き放た

6 Seminar on Heterosocial Systemsの開催

多様な特性の人々が緩やかな規律の下、社会を効率的に営む状況とダイナミクスを研究/活用する体系的な学術分野の確立には、工学/複雑系科学/生物学/社会学といった分野の融合が必要である。そのような分野融合の場を得るため、筆者は2023年9月より節題のセミナーを開催している。年に数度の頻度で、様々なエージェントが混じりあう系を取り扱う研究者を招待し、約一時間のご講演と議論を賜る予定である。第一回はJia Xiaolu 氏に講演を賜り、様々な特性をもつ歩行者を混ぜた際、歩行者の特性毎に認知する混雑感が異なる可能性をご議論いただいた[13]。

7 おわりに

本稿では、混合交通のボトムアップ改善をめざした、群れ・車列・人に関わる研究を紹介した。また混合交通研究と社会改善との関わりについても指摘し、そのための分野融合の場として筆者が開催している Seminar on Heterosocial Systems についても紹介した。

謝辞

筆者の取り組みについて紹介する場をご提供下さいました、杉山雄規先生をはじめとする交通流数理研究会の皆様に感謝申し上げます。本稿で紹介した研究の一部は JSPS 科研費 18H05923・19K15246・23K13512 の助成を受けて実施しました。

参考文献

- K. Shaaban, M. Elamin, and M. Alsoub, Transportation Research Procedia 55, 1373 (2021).
- [2] R. Nishi, A. Tomoeda, K. Shimura, and K. Nishinari, Transportation Research Part B: Methodological 50, 116 (2013).
- [3] K. Aghabayk, W. Young, M. Sarvi, and Y. Wang, in Australasian Transport Research Forum (ATRF), 34th, 2011, Adelaide, South Australia, Australia, Vol. 34 (2011).
- [4] C. R. Munigety, P. A. Gupta, K. M. Guru-

- murthy, S. Peeta, and T. V. Mathew, in *Transportation Research Board 95th Annual Meeting*, 16-5025 (2016).
- [5] A. D. Mason and A. W. Woods, Physical Review E 55, 2203 (1997).
- [6] D. Chen, S. Ahn, S. Bang, and D. Noyce, Transportation Research Record: Journal of the Transportation Research Board, 89 (2016).
- [7] T.-C. Lee, An agent-based model to simulate motorcycle behaviour in mixed traffic flow, Ph.D. thesis, Imperial College London (University of London) (2007).
- [8] P. C. Nguyen, K. Ohara, H. Motoda, and T. Washio, in Advances in Knowledge Discovery and Data Mining: 9th Pacific-Asia Conference, PAKDD 2005, Hanoi, Vietnam, May 18-20, 2005. Proceedings 9 (Springer, 2005) pp. 639-649.
- [9] A. Nagahama, T. Wada, D. Yanagisawa, and K. Nishinari, Physica A: Statistical Mechanics and its Applications 570, 125789 (2021).
- [10] A. Nagahama, T. Wada, D. Yanagisawa, and K. Nishinari, Journal of the Eastern Asia Society for Transportation Studies 14, 1794 (2022).
- [11] 古屋敬祐, 中理怡恒, 長濱章仁, 佐藤寛之, and 高玉圭樹, "車列表現の一般化による多様な車 列に適用可能な車両入替手順の進化的最適化," (2022), 進化計算シンポジウム 2022, S3-11.
- [12] C. Boehm, Moral origins: The evolution of virtue, altruism, and shame (Soft Skull Press, 2012).
- [13] X. Jia, "Exploring heterogeneous pedestrian flow with an obstacle: the gap between physical and psychological congestion," (2023), the First Seminar on Heterosocial Systems.