Lesson 13: Inference for Two Means (Independent Samples)

Preparation

Solutions

roblem	Part	Solution				
1	-	There is no pairing between the two groups. Group 1 does not determine Grove 2.				
		Name of Hypothesis Test	Requirements for test	Name of Distribution from which the test statistic is computed	Null Hypothesis and Possible Alternative Hypotheses	
		Hypothesis test for one mean—sigma known	Data are a simple random sample from the population.	Normal distribution	$H_0: \mu = \mu_0$ $H_a: \mu < \mu_0$	
			The distribution of sample means is normal.		$H_{\alpha}: \mu > \mu_0$ $H_{\alpha}: \mu \neq \mu_0$	
		Hypothesis test for one mean – sigma unknown	Data are a simple random sample from the population.	T-Distribution	H_0 : $\mu = \mu_0$ H_a : $\mu < \mu_0$ H_a : $\mu > \mu_0$	
			The distribution of sample means is normal.		$H_a: \mu \neq \mu_0$ $H_a: \mu \neq \mu_0$	
		Hypothesis test for two means – paired data	Data are a simple random sample from the population.	T-Distribution	H_o : $\mu_d = 0$ H_a : $\mu_d \neq 0$ H_a : $\mu_d < 0$	
			The distribution of the differences means is normal.		H_a : $\mu_d > 0$	
		Hypothesis test for two means – independent samples	Data are a simple random sample from the population.	T-Distribution	H_o : $\mu_1 = \mu_2$ H_a : $\mu_1 \neq \mu_2$	
0		Sampres	The distribution of sample means from each group is normal.		$H_a: \mu_1 < \mu_2 H_a: \mu_1 > \mu_2$	
2 3	Ā	Is there a difference female students?		vages of BYU-Idaho	male students an	
3	В	$H_o: \mu_1 = \mu_2$ $H_a: \mu_1 \neq \mu_2$				
4	-	Students from one of which asked how mu	_	-	ses took a survey	

Problem	Part	Solution
5	-	-Males: $\bar{x} = 11.935$, $s = 10.491$, $n = 85$

- Females: $\bar{x} = 9.759, s = 3.169, n = 91$
- You should also include two histograms here, one for the men and one for the women.

6	A	Independent Samples Hypothesis test
6	В	-The sample size is large for each sample so we can assume normality.
		- It was not a simple random sample.
6	\mathbf{C}	$t = \pm 1.836$
6	D	df = 98.263
6	\mathbf{E}	P-value = 0.069, α = 0.05, p-value > α
6	\mathbf{F}	fail to reject the null hypothesis
6	G	We have insufficient evidence to say that there is a difference between wages of
		male and female BYU-Idaho students.
6	Η	(-0.176, 4.529) or (-4.529, 0.176)

Problem	Part	Solution
6	I	-We are 95% confident that the true difference in mean wages between women and men at BYU-Idaho is somewhere between \$-0.18 and \$4.53, or \$-4.53 and \$0.18. - We can also see that there is insufficient evidence using the confidence interval method because zero is included in our confidence interval.
7		Answers may vary