

IIC2223 — Teoría de autómatas y lenguajes formales — 2'2020

Examen

Indicaciones

- La duración del examen es 3 horas pero puede tomarse más tiempo si estima necesario.
- Responda cada pregunta en una hoja separada y ponga su nombre, sección y número de lista en cada hoja de respuesta.
- Debe entregar una copia digital de cada pregunta por el buzón del curso, antes de las 23:59 horas del día del examen.
- Debe preocuparse que la copia digital y su calidad sea legible. Se recomienda usar hojas blancas y un lápiz oscuro que sea visible en la versión digital. En caso de no ser legible, no podrá ser evaluada su solución.
- Durante la evaluación puede hacer uso de sus apuntes o slides del curso.
- Esta es una evaluación estrictamente individual y, por lo tanto, no puede compartir información con sus compañeros o usar material fuera de sus apuntes o slides del curso. En caso de hacerlo, el examen no reflejará su progreso en el curso, viéndose perjudicada su formación personal y profesional.
- Al comienzo de cada pregunta debe escribir la siguiente oración y firmarla:

"Doy mi palabra que la siguiente solución de la pregunta X fue desarrollada y escrita individualmente por mi persona según el código de honor de la Universidad."

En caso de no escribir esto al comienzo de cada pregunta, su solución no será evaluada.

Pregunta 1

Sea $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ un autómata finito no-determinista. Considere el lenguaje:

 $\mathcal{S}(\mathcal{A}) = \{ p \cdot q \cdot w \in I \cdot F \cdot \Sigma^* \mid \text{ existe una ejecución de } \mathcal{A} \text{ sobre } w \text{ desde el estado } p \text{ al estado } q \}$

Demuestre que $\mathcal{S}(\mathcal{A})$ es un lenguaje regular.

Pregunta 2

1. Sea $\Sigma = \{a, \#\}$ y considere el lenguaje L de todas las palabras de la forma $u_1 \# u_2 \# \dots \# u_n$ con $n \ge 1$ tal que $u_i \in \{a\}^*$ para todo $i \le n$ y $u_j \ne u_k$ para todo $j, k \le n$ con $j \ne k$.

Demuestre que L NO es regular.

2. Demuestre la siguiente versión del lema de bombeo para lenguajes libres de contexto:

"Existe un N > 0 tal que para toda palabra $z \in L$ con $|z| \ge N$ existe una descomposición z = u v w x y con $v \ne \epsilon$ tal que para todo $i \ge 0$, se cumple que $u \cdot v^i \cdot w \cdot x^i \cdot y \in L$."

Pregunta 3

Demuestre que para todo lenguaje regular L, existe una gramática libre de contexto \mathcal{G} tal que $L = \mathcal{L}(\mathcal{G})$ y \mathcal{G} es una gramática LR(k) para algún k.

Para esta pregunta, usted NO puede hacer su solución demostrando que L es $\mathrm{LL}(k)$ y, después, que toda gramática $\mathrm{LL}(k)$ es también $\mathrm{LR}(k)$.

Pregunta 4

Para un lenguaje $L \subseteq \Sigma^*$, se define $first_k(L) = \{ w|_k \mid w \in L \}$.

Escriba un algoritmo que reciba como entrada un autómata finito no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$, una palabra $w \in \Sigma^*$ y k > 0, y responda TRUE si, y solo si, $w \in \mathtt{first}_k(\mathcal{L}(\mathcal{A}))$. Su algoritmo debe tomar tiempo lineal en $|Q| + |\Delta|$, |w| y k. Por último, demuestre la correctitud de su algoritmo.