Homework for Computational Complexity

Created: 14/05/2020 Spring 2020, UPC Barcelona Last modified: 14/05/2020

Instructor: Albert Atserias

Homework

Exercise: More on hash functions Let p be a prime number, let \mathbb{Z}_p denote the field of arithmetic mod p. For each $a,b,c\in\mathbb{Z}_p$, let $P_{a,b,c}:\mathbb{Z}_p\to\mathbb{Z}_p$ be the quadratic polynomial defined by $P_{a,b,c}(x) = ax^2 + bx + c \mod p$. Show that the family of functions $\{P_{a,b,c} : a,b,c \in \mathbb{Z}_P\}$ satisfies the following 3-universal property: for every three distinct $x_1, x_2, x_3 \in \mathbb{Z}_p$ and every $y_1, y_2, y_3 \in \mathbb{Z}_p$ we have

$$\Pr_{a,b,c\in_{r}\mathbb{Z}_{p}}[P_{a,b,c}(x_{i}) = y_{i} \text{ for } i = 1,2,3] = \frac{1}{p^{3}}.$$

The notation " $a,b,c\in_r\mathbb{Z}_p$ " under "Pr" means that a,b and c are chosen uniformly and independent dently at random in \mathbb{Z}_p .

Exercise: More on hashing for estimating sizes of sets Let m and k be positive integers and let $U = U_{m,k}$ be a 2-universal family of hash functions from m bits to k bits. For any fixed set $S \subseteq \{0,1\}^m$ and a randomly chosen $h \in U$, let I(S,h) be the indicator random variable for the event that h has collisions on S: "there exist two distinct $x, y \in S$ with h(x) = h(y)". Prove the following:

- 1. If $|S| > 2^{2k}$, then $\Pr_{h \in JU}[I(S, h) = 1] = 1$
- 2. If $|S| < 2^k$, then $\Pr_{h \in \mathcal{M}}[I(S, h) = 1] < 1 2^{-k}$.

Recall that the notation " $h \in_r U$ " under "Pr" means that h is chosen uniformly at random in U.

Exercise: Approximate counting up to a square Use the result of the previous exercise to show that for any #P function f there exists a deterministic polynomial time algorithm that, given an n-bit input x and access to an NP^{NP}-oracle, outputs a number t satisfying $t < f(x) < t^2$.