Şiruri şi serii

ŞIRURI

Definitie

Un **şir de numere reale** este o funcție $n \mapsto a_n$ a cărei domeniu este mulțimea numerelor naturale \mathbb{N} și a cărei valori aparțin mulțimii numerelor reale \mathbb{R} . Notația uzuală: (a_n) .

Proprietăți

- Un şir (a_n) se numeşte **crescător** dacă $a_n \leq a_{n+1}$ pentru orice $n \in \mathbb{N}$.
- Un şir (a_n) se numeşte descrescător dacă $a_n \ge a_{n+1}$ pentru orice $n \in \mathbb{N}$.
- Un şir care este crescător sau descrescător se numește şir monoton.
- Spunem că un şir (a_n) este **mărginit** dacă există un număr M>0 astfel ca $|a_n|\leq M$ pentru orice $n\in\mathbb{N}$.

Definitie

- Sirul (a_n) converge la numărul real L (are limita L) dacă pentru orice $\varepsilon > 0$ există $N = N(\varepsilon) \in \mathbb{N}$ astfel încât $|a_n L| < \varepsilon$ pentru orice $n \ge N$.
- Spunem că limita șirului (a_n) este $+\infty$ dacă pentru orice M>0 există N_M astfel încât $a_n>M$ pentru orice $n>N_M$.
- Spunem că limita șirului (a_n) este $-\infty$ dacă pentru orice M>0 există N_M astfel încât $a_n<-M$ pentru orice $n>N_M$.

Remarci

- Dacă șirul (a_n) este convergent la L, atunci orice subșir (a_{n_k}) al șirului (a_n) converge la L.
- Există șiruri care nu au limită (de exemplu, șirul $a_n = (-1)^n$).
- Dacă limita șirului (a_n) există, atunci ea este unică.
- Dacă șirul (a_n) este convergent la un număr real L, atunci el este mărginit.

Definitii

- Mulțimea punctelor limită a șirului (a_n) (notată cu $\mathcal{L}(a_n)$) este mulțimea punctelor $x \in \mathbb{R}$ pentru care există un subșir (a_{n_k}) al șirului (a_n) astfel încât $\lim_{n_k \to \infty} a_{n_k} = x$.
- Şirul (a_n) este convergent la L, $\lim_{n\to+\infty}a_n=L$, dacă și numai dacă $\mathcal{L}(a_n)=\{L\}$.
- Limita superioară a șirului (a_n) este sup $\mathscr{L}(a_n)$. Notația uzuală: $\limsup_{n\to\infty} a_n$ sau $\varlimsup_{n\to\infty} a_n$.
- Limit inferioară a șirului (a_n) este inf $\mathscr{L}(a_n)$. Notația uzuală: $\liminf_{n\to\infty} a_n$ sau $\varprojlim_{n\to\infty} a_n$.

Convergența șirurilor monotone și mărginite

Orice şir monoton şi mărginit este convergent.

Teorema Bolzano-Weierstrass

Orice şir mărginit (a_n) are cel puţin un subşir convergent.

Reguli de calcul pentru limite

Dacă limitele $\lim_{n\to\infty}a_n=A$ și $\lim_{n\to\infty}b_n=B$ există și sunt finite, atunci:

- 1. Regula de înmulțire cu un scalar: $\lim_{n\to\infty} c\cdot a_n = c\cdot A$ pentru orice $c\in\mathbb{R}$.
- 2. Regula sumei: $\lim_{n\to\infty} (a_n + b_n) = A + B$
- 3. Regula produsului: $\lim_{n\to\infty} a_n b_n = AB$
- 4. Regula raportului: $\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{A}{B}$ (presupunând că $b_n\neq 0$ și $B\neq 0$)

Regula cleştelui pentru şiruri

 $\operatorname{Dac} \ a_n \leq b_n \leq c_n \ \operatorname{pentru} \ \operatorname{orice} \ n \in \mathbb{N} \ \operatorname{si} \ \lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n \ \operatorname{atunci} \ \operatorname{si} \ \lim_{n \to \infty} b_n = L.$

Regula lui L'Hospital pentru şiruri

Presupunem că $a_n = f(n)$ și $b_n = g(n) \neq 0$ unde f și g sunt două funcții derivabile pentru care are loc una din conditiile următoare:

- a. $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$ sau
- b. $\lim_{x \to \infty} f(x) = \pm \infty$ și $\lim_{x \to \infty} g(x) = \pm \infty$.

Atunci $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ (dacă limita din partea dreaptă a egalității există).

Lema lui Stolz-Cesaro

Fie două șiruri (a_n) și (b_n) , șirul (b_n) fiind pozitiv, strict crescător și nemărginit. Atunci:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$

(dacă limita din partea dreaptă a egalității există).

Lema lui Cauchy-d'Alembert

Fie (a_n) un şir de numere reale pozitive. Atunci: $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\sqrt[n]{a_n}$ (dacă limita din partea dreaptă a egalității există).

SERII

Definiție

- O serie (infinită) de numere reale este o expresie de forma: $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + ... + a_n + ...$ unde (a_n) este un şir de numere reale; termenul a_n se numește **termenul general** al seriei.
- Suma parțială de ordinul n a seriei este suma primilor n termeni: $s_n = a_1 + a_2 + \cdots + a_n$.

Definiție

- Seria $\sum a_n$ este **convergentă** dacă și numai dacă șirul sumelor parțiale (S_n) este convergent.
- Seria $\sum a_n$ este **divergentă** dacă și numai dacă șirul sumelor parțiale (S_n) este divergent.
- Limita șirului sumelor parțiale $S=\lim_{n\to\infty}S_n$ se numește suma seriei și notăm $\sum_{n=1}^\infty a_n=S$.
- Spunem că seria $\sum a_n$ este **absolut convergentă** dacă și numai dacă $\sum |a_n|$ este convergentă.

Remarcă

Convergența absolută implică convergența simplă (dar nu întotdeauna și reciproc).

♠ Serii geometrice

Seria geometrică $\sum_{n=0}^{\infty} ar^n \ (a \neq 0)$ este convergentă d.n.d. |r| < 1. În acest caz, suma ei este $S = \sum_{n=0}^{\infty} r^n = \frac{a}{1-r}$.

♠ Serii armonice

Seria $\sum_{n=0}^{\infty} \frac{1}{n^p}$, unde $p \in \mathbb{R}$, se numește **p-serie**, și este convergentă d.n.d. p>1.

Condiție

 $\overline{\operatorname{Daca}\sum a_n}$ este convergentă, atunci $\lim_{n\to\infty}a_n=0.$

Remarcă

- Dacă $\lim_{n \to \infty} a_n \neq 0$ sau limita nu există, atunci seria infinită $\sum a_n$ este divergentă.
- Inversul condiției anterioare nu este adevărat. ($seria\ armonică\ \sum_{n=1}^{\infty} \frac{1}{n}$ este divergentă).

Criteriul lui Cauchy pentru convergența unei serii

Seria $\sum a_n$ converge dacă și numai dacă pentru orice $\varepsilon>0$ există N astfel încât pentru $n\geq N$ și $p\geq 1$ are loc inegalitatea: $|a_{n+1}+a_{n+2}+\cdots+a_{n+p}|<\varepsilon$.

Adunarea și înmulțirea

Dacă seriile $\sum a_n$ și $\sum b_n$ converg, atunci seriile $\sum (a_n + b_n)$ și $\sum ca_n$ (cu $c \in \mathbb{R}$) converg și

- 1. $\sum (a_n + b_n) = \sum a_n + \sum b_n$
- $2. \sum ca_n = c \sum a_n$

CRITERII DE CONVERGENȚĂ

Criteriul integralei

Fie $f: \mathbb{R}^1_+ \to \mathbb{R}^1_+$ o funcție descrescătoare și șirul (a_n) definit prin $a_n = f(n)$ pentru orice $n \in \mathbb{N}$. Considerăm $j_n = \int_1^n f(x) \, dx$. Seria $\sum a_n$ este convergentă d.n.d. șirul (j_n) este convergent.

Criteriul comparației I

Dacă $0 \le a_n \le b_n$ pentru orice $n \in \mathbb{N}$, atunci:

- 1. dacă $\sum b_n$ este convergentă atunci și $\sum a_n$ este convergentă.
- 2. dacă $\sum a_n$ este divergentă atunci și $\sum b_n$ este divergentă.

Criteriul comparației II

Presupunem că seriile $\sum a_n$ și $\sum b_n$ sunt serii cu termeni pozitivi, astfel încât $\lim_{n\to\infty} \frac{a_n}{b_n} = L \in (0,\infty)$. Atunci, $\sum a_n$ este convergentă dacă și numai dacă $\sum b_n$ este convergentă.

Criteriul lui Leibnitz pentru serii alternante

Dacă (b_n) este un șir descrescător de numere reale astfel încât $\lim_{n\to\infty}b_n=0$ atunci seria alternantă $\sum (-1)^n\cdot b_n$ este convergentă.

Criteriul raportului

Presupunem că limita $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ există sau este infinită. Atunci seria $\sum a_n$

- 1. este absolut convergentă dacă L < 1;
- 2. este divergentă dacă L>1.

Dacă L=1, acest criteriu nu este concludent.

Criteriul rădăcinii

Presupunem că limita $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$ există sau este infinită. Atunci seria $\sum a_n$

- 1. este absolut convergentă dacă L < 1;
- 2. este divergentă dacă L > 1.

Dacă L=1, acest criteriu nu este concludent.

Exemple

Şiruri

Exemplul 1

Să demonstrăm, pe baza definiției, că $a_n=\frac{1}{\sqrt{n}}$ converge la 0.

Soluție:

Fie $\varepsilon > 0$. Atunci

$$\left|\frac{1}{\sqrt{n}} - 0\right| < \varepsilon \Leftrightarrow \frac{1}{\sqrt{n}} < \varepsilon \right|^2 \Leftrightarrow \frac{1}{n} < \varepsilon^2 \Leftrightarrow n > \frac{1}{\varepsilon^2}.$$

 $\text{Considerăm } N(\varepsilon) = \left\lceil \frac{1}{\varepsilon^2} \right\rceil + 1.$

Atunci pentru orice $\varepsilon>0$, există $N=N(\varepsilon)=\left[\frac{1}{\varepsilon^2}\right]+1\in\mathbb{N}$ astfel încât pentru orice $n\in\mathbb{N},\,n\geq N,$ avem $\left|a_n-0\right|<\varepsilon.$ În concluzie, $\lim_{n\to\infty}a_n=0.$

Exemplul 2

 $\text{Calculăm} \lim_{n \to \infty} \frac{3n^2 - 1}{5n^2 + 10n}.$

Solutie:

$$\lim_{n \to \infty} \frac{3n^2 - 1}{5n^2 + 10n} = \lim_{n \to \infty} \frac{n^2 \left(3 - \frac{1}{n^2}\right)}{n^2 \left(5 + \frac{10}{n}\right)} = \lim_{n \to \infty} \frac{3 - \frac{1}{n^2}}{5 + \frac{10}{n}} = \frac{3}{5}$$

Exemplul 3

Calculăm $\underline{\lim}_{n\to\infty} a_n$ și $\overline{\lim}_{n\to\infty} a_n$ pentru șirul $a_n=(-1)^n$.

Soluție:

$$n = 2k \qquad \Rightarrow a_{2k} = (-1)^{2k} = 1 \xrightarrow[n \to \infty]{} 1$$

$$n = 2k + 1 \Rightarrow a_{2k+1} = (-1)^{2k+1} = -1 \xrightarrow[n \to \infty]{} -1$$

Mulțimea punctelor limită este $\mathcal{L}(a_n) = \{-1, 1\}$. Atunci

$$\underline{\lim}_{n \to \infty} a_n = \inf \mathcal{L}(a_n) = \inf \{-1, 1\} = -1$$

$$\overline{\lim}_{n \to \infty} a_n = \sup \mathcal{L}(a_n) = \sup\{-1, 1\} = 1$$

Remarcă: Cum $\varliminf_{n\to\infty} a_n = -1 \neq 1 = \varlimsup_{n\to\infty} a_n$, rezultă că **nu** există $\varliminf_{n\to\infty} a_n$

Exemplul 4

 $\operatorname{Calcul\,\ddot{a}m\,\,\lim_{n\to\infty}}\frac{\cos n^2}{2^n}.$

Soluție:

Fie $n \in \mathbb{N}$. Atunci

$$-1 \le \cos n^2 \le 1 \mid \cdot \frac{1}{2^n} \Leftrightarrow -\frac{1}{2^n} \le \frac{\cos n^2}{2^n} \le \frac{1}{2^n}$$

 $\operatorname{Cum} \lim_{n \to \infty} \left(-\frac{1}{2^n} \right) = \lim_{n \to \infty} \frac{1}{2^n} = 0, \text{ aplicând criteriul cleştelui, rezultă că } \lim_{n \to \infty} \frac{\cos n^2}{2^n} = 0.$

Exemplul 5

Calculăm $\lim_{n\to\infty} a_n$, unde $a_n = \frac{e^{2n}}{n}$.

Solutie.

Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{e^{2x}}{x}$. Observăm că $f(n) = a(n) = a_n$.

Atunci, aplicând regula lui l'Hospital, avem că

$$\lim_{n \to \infty} \frac{e^{2n}}{n} = \lim_{x \to \infty} \frac{e^{2x}}{x} = \lim_{x \to \infty} \frac{2e^{2x}}{1} = +\infty.$$

Exemplul 6

$$\operatorname{Calcul\,{\breve{a}}m}\lim_{n\to\infty}\frac{1+\frac{1}{2}+\ldots+\frac{1}{n}}{n}.$$

Soluție:

Notăm $a_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$ and $b_n = n$. Avem că $b_n \nearrow \infty$ (exercițiu)

Atunci, aplicând Lema lui Stolz-Cesaro, obținem

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \ldots + \frac{1}{n}}{n} = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n \to \infty} \frac{1 + \frac{1}{2} + \ldots + \frac{1}{n} + \frac{1}{n+1} - \left(1 + \frac{1}{2} + \ldots + \frac{1}{n}\right)}{n+1-n} = \lim_{n \to \infty} \frac{1}{n+1} = 0$$

Exemplul 7

Calculăm $\lim_{n\to\infty} \sqrt[n]{n^2}$.

Soluție:

Notăm $a_n=n^2$. Atunci, pentru orice $n\in\mathbb{N}$, avem că $a_n\geq 0$. Rezultă, aplicând Lema lui Cauchy-d'Alembert, că

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{2}{n} + \frac{1}{n^2}\right)}{n^2} = \lim_{n \to \infty}$$

$$= \lim_{n \to \infty} \left(1 + \frac{2}{n} + \frac{1}{n^2} \right) = \lim_{n \to \infty} 1 + 2 \lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} \frac{1}{n^2} = 1 + 2 \cdot 0 + 0 = 1.$$

Serii

Exemplul 1

Calculăm suma parțială de rang n și determinăm suma seriei pentru $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Soluție:

Observăm că $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$. (verificați!). Atunci

$$k = 1 \Rightarrow \frac{1}{1 \cdot 2} = 1 - \frac{1}{2}$$

$$k = 2 \Rightarrow \frac{1}{2 \cdot 3} = \frac{1}{2} - \frac{1}{3}$$

$$k = 3 \Rightarrow \frac{1}{3 \cdot 4} = \frac{1}{3} - \frac{1}{4}$$

...

$$k=n-1\Rightarrow \frac{1}{(n-1)n}=\frac{1}{n-1}-\frac{1}{n}$$

$$k = n \Rightarrow \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

Suma parțială de ordinul (rangul) n este

$$\Rightarrow S_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n-1}$$

Suma seriei este

$$s=\lim_{n\to\infty}S_n=\lim_{n\to\infty}\left(1-\frac{1}{n+1}\right)=\lim_{n\to\infty}1-\lim_{n\to\infty}\frac{1}{n+1}=1-0=1.$$

Remarcă: Cum suma seriei este $s=1<\infty$, avem că $\sum_{n=1}^{\infty}\frac{1}{n(n+1)}$ este convergentă.

Exemplul 2

Studiem convergența seriilor: a) $\sum_{n=1}^{\infty} (\arcsin 1)^n$; b) $\sum_{n=1}^{\infty} \frac{2n^2}{3n^2+1}$.

Soluție:

a) Seria
$$\sum_{n=1}^{\infty} (\arcsin 1)^n = \sum_{n=1}^{\infty} \left(\frac{\pi}{2}\right)^n$$
 este o serie geometrică cu $r = \frac{\pi}{2}$.

As
$$|r| = \left|\frac{\pi}{2}\right| = \frac{\pi}{2} > 1$$
, rezultă că $\sum_{n=1}^{\infty} (\arcsin 1)^n$ este divergentă.

b) Cum

$$\lim_{n \to \infty} \frac{2n^2}{3n^2 + 1} = \lim_{n \to \infty} \frac{2n^2}{n^2 \left(3 + \frac{1}{n^2}\right)} = \lim_{n \to \infty} \frac{2}{3 + \frac{1}{n^2}} = \frac{2}{3 + 0} = \frac{2}{3} \neq 0$$

rezultă că $\sum_{n=1}^{\infty} \frac{2n^2}{3n^2+1}$ este divergentă.

Exemplul 3

Studiem convergența seriilor: a) $\sum_{n=1}^{\infty} \frac{1}{n^2}$; b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ folosind criteriul integralei.

a) Fie
$$f: \mathbb{R}_+ \to \mathbb{R}_+, f(x) = \frac{1}{x^2}$$
.

Observăm că funcția f este descrescătoare (verificați!) și $f(n) = \frac{1}{n^2}$.

$$j_n = \int_{1}^{n} f(x)dx = \int_{1}^{n} \frac{1}{x^2}dx = -\frac{1}{x}\Big|_{1}^{n} = -\frac{1}{n} + 1$$

$$\lim_{n \to \infty} j_n = \lim_{n \to \infty} \left(-\frac{1}{n} + 1\right) = -\lim_{n \to \infty} \frac{1}{n} + \lim_{n \to \infty} 1 = -0 + 1 = 1$$

 $\lim_{n\to\infty}j_n=\lim_{n\to\infty}\left(-\frac{1}{n}+1\right)=-\lim_{n\to\infty}\frac{1}{n}+\lim_{n\to\infty}1=-0+1=1$ Cum $\lim_{n\to\infty}j_n=1<\infty\text{, rezultă că }(j_n)\text{ este șir convergent și, aplicând criteriul integralei, obținem că }\sum_{n=1}^{\infty}\frac{1}{n^2}\text{ este }(j_n)$ convergentă.

b) Fie $f: \mathbb{R}_+ \to \mathbb{R}_+$, $f(x) = \frac{1}{x \ln x}$. Observăm că funcția f este descrescătoare (verificați) și $f(n) = \frac{1}{n \ln n}$

$$\begin{aligned} &j_n = \int\limits_2^n f(x) dx = \int\limits_2^n \frac{1}{x \ln x} dx = \ln(\ln x) \Big|_2^n = \ln(\ln n) - \ln(\ln 2) \\ &\lim_{n \to \infty} j_n = \lim_{n \to \infty} \left(\ln(\ln n) - \ln(\ln 2)\right) = \lim_{n \to \infty} \ln(\ln 2) - \lim_{n \to \infty} \ln(\ln 2) = \infty - \ln(\ln 2) = \infty \end{aligned}$$

Cum $\lim_{n\to\infty} j_n = \infty$, rezultă că (j_n) este şir divergent şi, aplicând criteriul integralei, obținem că $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ este divergentă.

Exemplul 4

Studiem convergența seriilor: a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+3)}}$; b) $\sum_{n=1}^{\infty} 5^n \sin \frac{1}{7^n}$

Soluție:

a) Notăm
$$a_n = \frac{1}{\sqrt{n(n+1)(n+3)}} = \frac{1}{\sqrt{n^3 + 4n^2 + 3n}}$$
.

Observăm că
$$0 < a_n = \frac{1}{\sqrt{n^3 + 4n^2 + 3n}} \le \frac{1}{\sqrt{n^3}}$$

a) Notăm $a_n=\frac{1}{\sqrt{n(n+1)(n+3)}}=\frac{1}{\sqrt{n^3+4n^2+3n}}.$ Observăm că $0< a_n=\frac{1}{\sqrt{n^3+4n^2+3n}}\leq \frac{1}{\sqrt{n^3}}.$ MI: Cum $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n^3}}=\sum_{n=1}^{\infty}\frac{1}{n^{\frac{3}{2}}}$ este o serie armonică cu $p=\frac{3}{2}>1$, rezultă că $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n^3}}$ este convergentă și, aplicând criteriul I al comparației, rezultă că $\sum_{n=1}^{\infty} a_n$ este convergentă.

MII: Calculăm

$$l = \lim_{n \to \infty} \frac{\frac{1}{\sqrt{n^3 + 4n^2 + 3n}}}{\frac{1}{\sqrt{n^3}}} = \lim_{n \to \infty} \frac{\sqrt{n^3}}{\sqrt{n^3 + 4n^2 + 3n}} = \lim_{n \to \infty} \frac{\sqrt{n^3}}{\sqrt{n^3 \left(1 + \frac{4}{n} + \frac{3}{n^2}\right)}}$$
$$= \lim_{n \to \infty} \frac{\sqrt{n^3}}{\sqrt{n^3} \cdot \sqrt{1 + \frac{4}{n} + \frac{3}{n^2}}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{4}{n} + \frac{3}{n^2}}} = \frac{1}{\sqrt{1 + 0 + 0}} = \frac{1}{1} = 1$$

Cum $l=1\in(0,\infty)$ și $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n^3}}$ este o serie convergentă (serie armonică cu $p=\frac{3}{2}>1$), aplicând criteriul II al comparației, rezultă că $\sum\limits_{n=1}^{\infty}a_n$ este convergentă.

b) Notăm
$$a_n = 5^n \sin \frac{1}{7^n}$$
.

MI: Cum
$$0 \le \sin x \le x$$
, $x \in \left(0, \frac{\pi}{2}\right)$ și $\frac{1}{7^n} \in \left(0, \frac{\pi}{2}\right)$, pentru orice $n \ge 1$, obținem

$$0 \le \sin \frac{1}{7^n} \le \frac{1}{7^n} \mid \cdot 5^n \Leftrightarrow 0 \le 5^n \sin \frac{1}{7^n} \le \frac{5^n}{7^n} \Leftrightarrow 0 \le a_n \le \left(\frac{5}{7}\right)^n.$$

Cum $\sum_{n=1}^{\infty} \left(\frac{5}{7}\right)^n$ este o serie convergentă (serie geometrică cu $|r| = \left|\frac{5}{7}\right| = \frac{5}{7} < 1$), aplicând criteriul I al comparației, obținem că $\sum_{n=1}^{\infty} a_n$ este convergentă.

MII: Cum
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 și $\frac{1}{7^n} \to 0$, calculăm

$$l = \lim_{n \to \infty} \frac{5^n \sin \frac{1}{7^n}}{\frac{5^n}{7^n}} = \lim_{n \to \infty} 5^n \cdot \frac{7^n}{5^n} \cdot \sin \frac{1}{7^n} = \lim_{n \to \infty} \frac{\sin \frac{1}{7^n}}{\frac{1}{7^n}} = 1.$$

Cum $l=1\in(0,\infty)$ și $\sum\limits_{n=1}^{\infty}\left(\frac{5}{7}\right)^n$ este convergentă, aplicând criteriul II al comparației, rezultă că $\sum\limits_{n=1}^{\infty}a_n$ este convergentă.

Exemplul 5

Studiem convergența seriei alternante $\sum\limits_{n=1}^{\infty} \frac{(-1)^n}{3^n}$.

Soluție.

Notăm $b_n = \frac{1}{3^n}$. Observăm că $b_n > 0$, pentru orice $n \ge 1$ și (b_n) este un șir descrescător, deoarece

$$\frac{b_{n+1}}{b_n} = \frac{\frac{1}{3^{n+1}}}{\frac{1}{3^n}} = \frac{3^n}{3^{n+1}} = \frac{3^n}{3^n \cdot 3} = \frac{1}{3} < 1.$$

Mai mult, $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{3^n} = 0.$

Atunci, aplicând criteriul lui Leibniz pentru serii alternante, obținem că $\sum_{n=1}^{\infty} (-1)^n \cdot b_n$ este convergentă.

Exemplul 6

Studiem convergența seriilor: a) $\sum_{n=1}^{\infty} \frac{(n+3)!}{2^n((n+1)!)^2}$; b) $\sum_{n=1}^{\infty} (\sqrt{n^2+3n}-n)^n$.

Soluție:

a) Notăm
$$a_n = \frac{(n+3)!}{2^n((n+1)!)^2}$$
 și observăm că $a_n > 0$, pentru orice $n \ge 1$.

Calculăm

$$l = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+4)!}{2^{n+1}((n+2)!)^2} \cdot \frac{2^n((n+1)!)^2}{(n+3)!} = \lim_{n \to \infty} \frac{(n+3)!(n+4)}{2^n \cdot 2((n+1)!)^2(n+2)^2} \cdot \frac{2^n((n+1)!)^2}{(n+3)!}$$

$$= \lim_{n \to \infty} \frac{n+4}{2(n+2)^2} = \lim_{n \to \infty} \frac{n\left(1+\frac{4}{n}\right)}{2n^2\left(1+\frac{2}{n}+\frac{1}{n^2}\right)} = \lim_{n \to \infty} \frac{1+\frac{4}{n}}{2n\left(1+\frac{2}{n}+\frac{1}{n^2}\right)} = 0$$

Cum l=0<1, aplicând criteriul raportului, rezultă că $\sum\limits_{n=1}^{\infty}a_n$ este convergentă.

b) Notăm $a_n = (\sqrt{n^2 + 3n} - n)^n$ și observăm că $a_n > 0$, pentru orice $n \ge 1$. Calculăm

$$\begin{split} l &= \lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{(\sqrt{n^2 + 3n} - n)^n} = \lim_{n \to \infty} (\sqrt{n^2 + 3n} - n) = \lim_{n \to \infty} \frac{(\sqrt{n^2 + 3n} - n)(\sqrt{n^2 + 3n} + n)}{\sqrt{n^2 + 3n} + n} \\ &= \lim_{n \to \infty} \frac{(\sqrt{n^2 + 3n})^2 - n^2}{\sqrt{n^2 + 3n} + n} = \lim_{n \to \infty} \frac{n^2 + 3n - n^2}{\sqrt{n^2 + 3n} + n} = \lim_{n \to \infty} \frac{3n}{\sqrt{n^2 + 3n} + n} = \lim_{n \to \infty} \frac{3n}{\sqrt{n^2 + 3n} + n} = \lim_{n \to \infty} \frac{3n}{\sqrt{n^2 + 3n} + n} = \lim_{n \to \infty} \frac{3n}{\sqrt{1 + \frac{3}{n} + 1}} =$$

Cum $l=rac{3}{2}>1$, aplicând criteriul rădăcinii, rezultă că $\sum\limits_{n=1}^{\infty}a_n$ este divergentă.

Exerciții

- 1. Să se demonstreze riguros (pe baza definiției) că $a_n = \frac{1}{n}$ este convergent la 0.
- 2. Să se demonstreze riguros (pe baza definiției) că $a_n = \frac{n}{5n-3}$ is este convergent la $\frac{2}{5}$.
- 3. Să se demonstreze riguros (pe baza definiției) că $a_n = 1 + \left(\frac{9}{10}\right)^n$ este convergent la 1.
- 4. Calculați limitele următoarelor șiruri:

a.
$$a_n = \left(1 - \frac{2}{n^2}\right)^n$$

b.
$$a_n = \frac{\sin n}{3^n}$$

c.
$$a_n = \frac{1 + (-1)^n}{\sqrt{n}}$$

$$\mathbf{d.} \ a_n = \frac{\ln n}{n^x}, x \in \mathbb{R}$$

e.
$$a_n = \frac{n^{2005}}{(n+1)^x - n^x}, x > 0$$

f.
$$a_n = \frac{1 + \frac{1}{2} + \dots + \frac{1}{n+1}}{\ln(n+1)}$$

g.
$$a_n = \frac{1 + \sqrt{2} + ... + \sqrt[n]{n}}{n}$$

h. $a_n = \frac{1}{n+1} \left(\frac{1}{\ln 2} + \frac{1}{\ln 3} + \dots + \frac{1}{\ln (n+2)} \right)$

i.
$$a_n = \frac{1}{n+1} \sum_{k=1}^{n+1} \frac{1}{k}$$

j.
$$a_n = \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}, p \in \mathbb{N}$$

k.
$$a_n = \sqrt[n]{n}$$

1.
$$a_n = \sqrt[n]{n!}$$

m.
$$a_n = \sqrt[n]{\frac{(n!)^2}{(2n+1)!}}$$

n.
$$a_n = \frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(2n-1)}$$

5. Găsiți $\liminf_{n \to \infty} x_n$ și $\limsup_{n \to \infty} x_n$ pentru următoarele șiruri:

a.
$$a_n = \begin{cases} 0, & n = 2k + 1 \\ 1, & n = 2k \end{cases}$$

b.
$$a_n = \begin{cases} 1, & n = 3k \\ \frac{1}{n}, & n = 3k+1 \\ n, & n = 3k+2 \end{cases}$$

c.
$$a_n = \cos(n\pi)$$

$$d. \ a_n = \frac{n}{n+1} \sin^2\left(\frac{n\pi}{4}\right)$$

e.
$$a_n = \frac{[na]}{n+1}, a \in \mathbb{R}^*$$

f.
$$a_n = \frac{(-1)^n}{n} + \frac{1 + (-1)^n}{2}$$

g.
$$a_n = \frac{n^{(-1)^n}}{n} + \sin^2 \frac{n\pi}{4}$$

h.
$$\cos^n \frac{2n\pi}{3}$$

6. Calculați suma parțială de rang n și determinați suma seriei:

a.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}}$$

$$c. \sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

e.
$$\sum_{n=1}^{\infty} \ln \frac{n+1}{n}$$

a.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}}$$
 c. $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$ e. $\sum_{n=1}^{\infty} \ln \frac{n+1}{n}$ g. $\sum_{n=1}^{\infty} \frac{2}{n(n+1)(n+2)}$ i. $\sum_{n=1}^{\infty} \frac{1}{9n^2 + 3n - 2}$

i.
$$\sum_{n=1}^{\infty} \frac{1}{9n^2 + 3n - 2}$$

b.
$$\sum_{1}^{\infty} \frac{1}{4n^2 - 1}$$

d.
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$

$$f. \sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

h.
$$\sum_{n=3}^{\infty} \frac{6n}{n^4 - 5n^2 + 4}$$

b.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$
 d. $\sum_{n=1}^{\infty} \frac{2n + 1}{n^2(n+1)^2}$ f. $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ h. $\sum_{n=3}^{\infty} \frac{6n}{n^4 - 5n^2 + 4}$ j. $\sum_{n=1}^{\infty} \frac{1}{16n^2 - 8n - 3}$

7. Stabiliti dacă următoarele serii sunt convergente sau divergente.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sin \frac{1}{n}}$$

c.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{3}{e}\right)^n$$
 e. $\sum_{n=1}^{\infty} \left(\frac{2}{n} - \frac{1}{2^n}\right)$ g. $\sum_{n=1}^{\infty} \frac{1}{5^n + 3^n}$

$$e. \sum_{n=1}^{\infty} \left(\frac{2}{n} - \frac{1}{2^n} \right)$$

$$g. \sum_{n=1}^{\infty} \frac{1}{5^n + 3^n}$$

i.
$$\sum_{n=1}^{\infty} (\arctan 1)^n$$

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$$

d.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\ln(n+1)}$$

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$$
 d. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\ln(n+1)}$ f. $\sum_{n=1}^{\infty} \frac{1+2^n+5^n}{3^n}$ h. $\sum_{n=1}^{\infty} \frac{1}{\ln n}$

h.
$$\sum_{n=1}^{\infty} \frac{1}{\ln n}$$

$$\text{j. } \sum_{n=1}^{\infty} \left[\left(\frac{7}{11} \right)^n - \left(\frac{3}{5} \right)^n \right]$$

8. Folosind criteriul integralei, determinati dacă următoarele serii sunt convergente sau divergente.

a.
$$\sum_{n=1}^{\infty} \frac{n^2}{e^n}$$

b.
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

c.
$$\sum_{n=1}^{\infty} \frac{\arctan n}{n^2 + 1}$$
 d.
$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n^2}$$

d.
$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n^2}$$

e.
$$\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^p}, p \in \mathbb{R}$$

9. Folosind criteriile comparației, determinați dacă următoarele serii sunt convergente sau divergente.

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n + 1}$$
 e. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$ i. $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2 + 1}$ m. $\sum_{n=1}^{\infty} \frac{e^{1/n}}{n}$

e.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$$

i.
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2 + 1}$$

$$m. \sum_{n=1}^{\infty} \frac{e^{1/n}}{n}$$

q.
$$\sum_{n=1}^{\infty} 3^n \sin \frac{\pi}{5^n}$$

b.
$$\sum_{n=1}^{\infty} \frac{n^3 + 1}{n^4 + 2}$$
 f. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + n}$ j. $\sum_{n=1}^{\infty} \frac{\cos^2 n}{3^n}$ n. $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$

f.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + n}$$

$$j. \sum_{n=1}^{\infty} \frac{\cos^2 n}{3^n}$$

$$n. \sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

r.
$$\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^{n+1}}$$

c.
$$\sum_{n=1}^{\infty} \frac{1}{n+n^{3/2}}$$
 g. $\sum_{n=1}^{\infty} \frac{1}{\ln n}$

$$g. \sum_{n=1}^{\infty} \frac{1}{\ln n}$$

$$k. \sum_{n=1}^{\infty} \frac{n+2^n}{n+3^n}$$

o.
$$\sum_{n=1}^{\infty} \frac{2n^2 - 1}{n^2 \cdot 3^n}$$

k.
$$\sum_{n=1}^{\infty} \frac{n+2^n}{n+3^n}$$
 o. $\sum_{n=1}^{\infty} \frac{2n^2-1}{n^2\cdot 3^n}$ s. $\sum_{n=1}^{\infty} \arctan \frac{1}{n^2+n+1}$

d.
$$\sum_{n=1}^{\infty} \frac{10n^2}{n^4 + 1}$$

$$h. \sum_{n=1}^{\infty} \frac{1}{n - \ln n}$$

1.
$$\sum_{n=1}^{\infty} \frac{1}{5^n + 3^n}$$

d.
$$\sum_{n=1}^{\infty} \frac{10n^2}{n^4 + 1}$$
 h. $\sum_{n=1}^{\infty} \frac{1}{n - \ln n}$ l. $\sum_{n=1}^{\infty} \frac{1}{5^n + 3^n}$ p. $\sum_{n=1}^{\infty} \frac{2 + \sin n}{n^2}$

t.
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{3}{n^2 + 4n} \right)$$

10. Determinați dacă următoarele serii alternante sunt convergente sau divergente.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

c.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{\sqrt{n^2 + 2}}$$

e.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{2^n}$$

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 c. $\sum_{n=1}^{\infty} \frac{(-1)^n n}{\sqrt{n^2 + 2}}$ e. $\sum_{n=1}^{\infty} \frac{(-1)^n n}{2^n}$ g. $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n}$ i. $\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n)!}$

i.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n)!}$$

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{3n^2 + 2}$$

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{3n^2 + 2}$$
 d. $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{\sqrt{n}}$ f. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{2}}$ h. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n}}$ j. $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{3/2}}$

f.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{2}}$$

h.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n}}$$

$$j. \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{3/2}}$$

11. Folosind criteriile raportului sau rădăcinii, determinați dacă următoarele serii sunt convergente sau divergente.

a.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

c.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

e.
$$\sum_{n=1}^{\infty} \left(\frac{\ln n}{n} \right)^r$$

$$g. \sum_{n=1}^{\infty} \frac{a^n}{n^2}, a \in \mathbb{R}$$

e.
$$\sum_{n=1}^{\infty} \left(\frac{\ln n}{n}\right)^n$$
 g. $\sum_{n=1}^{\infty} \frac{a^n}{n^2}$, $a \in \mathbb{R}$ i. $\sum_{n=1}^{\infty} a^n \left(1 + \frac{1}{n}\right)^n$, $a > 0$

b.
$$\sum_{n=1}^{\infty} 3^{-\sqrt{n^2-2}}$$
 d. $\sum_{n=1}^{\infty} \frac{(n!)^2 n^2}{(2n)!}$ f. $\sum_{n=1}^{\infty} \frac{3^n}{n!n}$

d.
$$\sum_{n=1}^{\infty} \frac{(n!)^2 n^2}{(2n)!}$$

f.
$$\sum_{n=1}^{\infty} \frac{3^n}{n!n}$$

h.
$$\sum_{n=1}^{\infty} \frac{(an)^n}{n!}, a \in \mathbb{R}$$

h.
$$\sum_{n=1}^{\infty} \frac{(an)^n}{n!}, a \in \mathbb{R}$$
 j. $\sum_{n=1}^{\infty} \left(\frac{an+1}{bn+2}\right)^n, a, b > 0$

Exerciții suplimentare

12. Fie (F_n) șirul lui Fibonacci dat de relația de recurență $F_{n+2} = F_{n+1} + F_n$, cu $F_0 = F_1 = 1$. Arătați că $\lim_{n \to \infty} \frac{F_{n+1}}{F_n}$ există și este egală cu $\frac{1+\sqrt{5}}{2}$.

13. Se dă șirul (a_n) definit prin relația de recurență:

$$a_1 = 2$$
 $a_{n+1} = \frac{1}{2}(a_n + 4)$

Demonstrați prin inducție că $a_n < 4$ pentru orice n și arătați că sirul (a_n) este crescător. Găsiți limita șirului.

14. Studiați dacă următoarele serii sunt absolut convergente, convergente sau divergente.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}, p \in \mathbb{R}$$
 c. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n(n+1)}}$ e. $\sum_{n=1}^{\infty} \frac{(-10)^n}{n!}$ g. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^n}$ i. $\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{3^{n^2}}$ b. $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$ d. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \sqrt[n]{n}}$ f. $\sum_{n=1}^{\infty} \frac{(-1)^n \sin n}{n}$ h. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \sqrt[n]{n}}$ j. $\sum_{n=1}^{\infty} \frac{(n+2)!}{3^n (n!)^2}$

c.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n(n+1)}}$$

$$e. \sum_{n=1}^{\infty} \frac{(-10)^n}{n!}$$

$$g. \sum_{n=1}^{\infty} \frac{(-1)^n}{n^n}$$

i.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{3^{n^2}}$$

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$$

$$d. \sum_{n=1}^{\infty} \frac{(-1)^n}{n \sqrt[n]{n}}$$

$$f. \sum_{n=1}^{\infty} \frac{(-1)^n \sin n}{n}$$

h.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n \sqrt[n]{n}}$$

j.
$$\sum_{n=1}^{\infty} \frac{(n+2)!}{3^n (n!)^2}$$