武汉大学 2020-2021 学年第一学期期末考试

概率统计 B (A 卷答题卡)

		考生学号												
												7		
姓名:		a	۵	(a)	(0	8		0	9	9		0	0
班级:		Œ	I	O					1	回		O		O
		2	[2]	[2]	2	[2]	2	2	2	[2]	2	2	2	[2]
										[3]				
	1.答题前,考生先将自己的姓名、班级填写清楚,并填涂相应的学号		4	4	(4)	4	(4)	4	4	(1)	(A)	1	1	4
注	信息点。 2.解答题必须使用黑色原水的签字笔书写、不得用铅笔或圆珠笔作解 答题。字体工整、笔迹清楚。 3.请按照题号顺序在各题目的答题区域内作答。超出答题区域书写的	5	[3]	5	5	[5]	5	5	5	5	5	5	(5)	[5]
意		6	6	6	6	6	6	6	6	6	6	6	6	6
18		7	\Box	\Box	\Box		7	[7]	\mathcal{I}	1		\Box	\square	
事项			(B)	8										
		9	9	(9)	9	(9)	9	(2)	(2)	9	(9)	(a)	(9)	(2)
	各題天效。在草稿纸、试题卷上答题无效。			41	考	古文	٠.		Г	\neg				
	4.保持卡面清洁、不要折叠、不要弄破。			叭	ر ت	35 U	r.		L					

-、(12 分) 若事件 A, B 満足: P(A) = 0.6, P(B) = 0.5, P(AB) = 0.2, (1) 事件 A, B 至少

发生一个的概率? (2) 求P(A|B).

$$P(AB) = P(A) - P(AB) = 0.2 \Rightarrow P(AB) = 0.6 - 0.2 = 0.4$$

$$(2) \ \underline{P(\overline{A}|\overline{B})} = \frac{\underline{P(\overline{A}\overline{B})}}{\underline{P(\overline{B})}} = \frac{\underline{P(\overline{A}\overline{U}\overline{B})}}{\underline{P(\overline{B})}} = \frac{1-\underline{P(A}\overline{U}\overline{B})}{1-\underline{P(B)}} = \frac{1-0.7}{1-0.5} = \frac{3}{5}$$

(12 分) 假设在数字通信中传送信号 0 与 1 的概率为0.8和0.2: 由于随机干扰, 当传送信号 0 时接收到信号 0 的概率为0.8、当传送信号 1 时接收到信号 1 的概率为0.9; 求 (1) 接收到信号 0 的

解: B1:住送信号O, B:住还信号1.

$$(1) P(A) = \sum_{i=1}^{2} P(B_i) \cdot P(A|B_i)$$

(2)
$$P(B_1|A) = \frac{P(B_1A)}{P(A)} = \frac{P(B_1) \cdot P(A|B_1)}{P(A)} = \frac{o.g.xag}{o.66} = \frac{64}{64} = \frac{32}{33}$$

三、(12 分) 若随机变量 X 在区间(-1.3) 服从均匀分布: (1) 求方程 v^2 + $2X_V$ + 1 = 0 有实

根的概率。(2) 若对 X 观测 4 次,Y 表示上方程有实根的次数,写出它的概率分布。

解: (1) P(放放板)= P(△>>0)= P((2×)-4×1×1>0)= P((×|>1))
$$= P((××=1) = \frac{3-1}{3-c-1} = \frac{2}{4} = \frac{1}{2}.$$

 $(2) Y \sim B(4.5)$

$$P(Y=k) = \binom{k}{4} \cdot (\frac{1}{2})^{k} (1-\frac{1}{2})^{4+k} = \binom{k}{4} \cdot \frac{1}{16} \qquad k=0, 1, 2, 3, 4.$$

解: (1) fx(x) =
$$\int_{-\infty}^{+\infty} f(x,y) dy = \begin{cases} \int_{x}^{+\infty} e^{3} dy, x \ge 0 \\ \int_{x}^{+\infty} f(x,y) dx = \int_{x}^{+\infty} e^{3} dx, y > 0 \end{cases} = \begin{cases} e^{3}, x \ge 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y > 0 \\ 0, x < 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y < 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y < 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y < 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y < 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} e^{3} dx, y < 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} f(x,y) dx = 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} f(x,y) dx = 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} f(x,y) dx = 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} f(x,y) dx = 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} f(x,y) dx = 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} f(x,y) dx = 0 \end{cases}$$

$$f_{x}(y) = \int_{x}^{+\infty} f(x,y) dx = \begin{cases} \int_{x}^{+\infty} f(x,y) dx = 0 \end{cases}$$

(2) 初一· 龙林星图 = P(Z≤3) = P(Y-Z≤3) = P(区外台)

$$\frac{1}{|z|} = \frac{1 - \bar{e}^3}{|z|} = \frac{1 - \bar{e}^3}{|$$

 $\hat{f}_{2}(3) = \hat{f}_{3}(3) = \begin{cases} \hat{e}^{3}, 3^{20}, \\ \hat{f}_{2}(3) = \begin{cases} \hat{e}^{3}, 3^{20}, \\ \hat{f}_{2}(3) = \begin{cases} \hat{e}^{3}, 3^{20}, \\ \hat{f}_{2}(3) = \end{cases} \end{cases}$

解: 没愿进美女士单位的利润的 当的 以教徒 god (Eg) (Eg) y (Es) : 进经 & 严律住 E(g(Z)) = (gw.frx)dx = (2007):40 = ((600x-100y) -todx + ((300x+100y)-todx = - = + 2004 + 1800 六、(12分) 若 X1, X2, ..., X2 是正态总体 N(0,4) 的样本, (1) 求常数 a,b,c,n (这里 abc $\neq 0$), $(x + aX)^2 + b(2X - X_1)^2 + c(3X_1 - 2X_1 - X_2)^2 - \chi^2(n)$; (2) (" E(232-X1) = 2HX2)-HX1)=-ZE(X)-E(X) =0 (D(252-到)2012 D(25)+D(5)=4D(5)+D(5)=40(X)+D(5)=4444) £6, te, 3\$,-2\$,-\$(~N(0,56) ⇒ 3\$,-2\$,-\$(~N(0,1)) : (3) + (3) + (3) ~ \(\chi_{10}^{2}\)) \(\chi_{10}^{2}\)) \(\chi_{10}^{2}\) : a =4, b= 50 = 6, n=3

 $3 - 3 \sim N(0,8) \Rightarrow \frac{3-3}{\sqrt{8}} \sim N(9) \Rightarrow \left(\frac{3-3}{\sqrt{8}}\right)^2 \sim \chi(1), \text{ In this$

 $\frac{Z+Z+Z_1}{\sqrt{|Z-Z_1|^2}} \sim t(1) \quad \text{for} \quad \sqrt{3} \cdot \frac{Z+Z+Z_2}{|Z-Z_1|} \sim t(1) .$

 $E(\mathbf{Z}) = \begin{pmatrix} \infty & \lambda & \lambda \\ \mathbf{Z} & \lambda &$ 3/aL(N/N) =0 => -n/x + /x (xx+..+xx-1/N)=0 ーレーフス かける からないなり $E(\hat{X}) = E(\bar{X} - \hat{A}) = E(\bar{X}) - E(\hat{A})$ なん一方式を使いまかいまか、 $E(\hat{X}) = E(\bar{X} - \hat{A}) = E(\bar{X}) - E(\hat{A})$ = E(Z)-E(A) = M+) - (M+) 分) 某班有25个同学,某次测验平均分数为81.5、标准差为5、问:该 次测验的分数是否显著大于 80?假定分数近似服从正态分布。(α = 0.05) $(t_{0.05}(24) = 1.711, t_{0.05}(25) = 1.708, z_{0.05} = 1.65)$ 雅: Ho: 11=80 H1: U>80 本館村董 t= 至-80 ~ tang) 推修成 W= { 至今 > 大(11-1)} = { 至多 > 1.711}

解: Ho: A=go H: A>go
本行は対量 t = 豆-go ~ tcn+1)

推修成 W = {豆-go ~ tcn+1} = {ত-go ~ tcn+1} = {o-go ~ tcn+1} = {o