

**BCR450 Power LED Driver IC** 

### 1 BCR450 Power LED Driver IC

#### **Features**

- Low voltage drop across sense resistor, 0.15 V typical
- High output current precision
- Operating voltage fro 8 to 27 V
- · Over voltage protection
- Overtemperature current foldback and Thermal shut down function
- Adjustable Constant LED Current up to 85 mA in stand alone operation
- Precise Internal bandgap enables High output current accuracy
- Up to 2.5 A LED current possible by using external transistor
- EN Input for PWM LED brightness control and On/Off control
- Very Low Standby Current
- Minimum number of external components required, no inductors
- Very small SC-74 package: 2.9 mm x 2.5 mm x 1.1 mm

#### **Benefits**

- High level of colour control due to high output current precision
- Small space requirement
- No electro- magnetic interference
- Active thermal monitoring of chip and LED temperature with current fold- back to avoid thermal overstress
- · Low cost device
- Scalable output stage optimizing cost and space

### **Typical Applications**

- General lighting e.g. retrofits
- · Architectural lighting, Medical and Dental lighting
- Transportation like train and aircraft lighting
- Strobe lighting
- · Universal constant current source
- · Signal and marker lights for orientation or navigation
- LED controller for industrial applications, not qualified to AECQ-100





# 2 Description

The BCR450 is a LED driver IC optimized for usage with an external power transistor for driving LED's above 100mA. For currents up to 85mA the BCR450 can be used in stand alone operation. The output current level can be adjusted with an external sense resistor.

The IC can be switched on and off by an external signal, which is also suitable to regulate brightness of the LEDs by PWM dimming.

The precise internal bandgap stabilizes the circuit and provides stable current conditions over temperature range. Additional features are included to protect the LED's from overload, short circuit events as well as from over voltage. The LED's can be also protected against thermal overload by thermally coupling the LED's to the BCR450.

Datasheet 4 Rev. 3.0, 2009-10-15



Description



Figure 1 Block diagram

### **Pin Definition**

Table 1 Pin definition and function

| Pin number | Pin Symbol      | Function                                                  |
|------------|-----------------|-----------------------------------------------------------|
| 1          | $I_{out}$       | Controlled output current to drive LEDs                   |
| 2          | GND             | IC ground                                                 |
| 3          | EN              | Power On control voltage pin (PWM input)                  |
| 4          | $V_{\sf sense}$ | Sense control voltage pin for internal feedback mechanism |
| 5          | GND             | IC ground                                                 |
| 6          | $V_{s}$         | Supply voltage                                            |

Table 2 Marking

| Туре   | Marking | Package |
|--------|---------|---------|
| BCR450 | 50s     | SC74    |



**Description** 



Figure 2 Electrical test circuit

#### Thermal resistance

Table 3 Thermal resistance

| Parameter               | Symbol     | Value | Unit |
|-------------------------|------------|-------|------|
| Junction - solder point | $R_{thJS}$ | 75    | K/W  |

### **Absolute Maximum Ratings**

Table 4 Absolute Maximum ratings

| Parameter                                         | Symbol         | Limit Value | Unit |
|---------------------------------------------------|----------------|-------------|------|
| Supply voltage                                    | $V_{s}$        | 40          | V    |
| Sense Voltage                                     | Vsense         | 200         | mV   |
| Output current                                    | <b>l</b> out   | 100         | mA   |
| Total Power Dissipation; T <sub>s</sub> = 112.5°C | $P_{tot}$      | 500         | mW   |
| Junction temperature                              | $T_{J}$        | 150         | °C   |
| Storage temperature range                         | $T_{STG}$      | -65 150     | °C   |
| ESD capability Human Body Model <sup>1)</sup>     | $V_{ESD\_HBM}$ | 2000        | V    |

<sup>1)</sup> For ESD testing, the chip was mounted in a SC74 package on an application board, where GND is electrically connected to the chip GND



**Electrical Characteristics** 

# 3 Electrical Characteristics

### 3.1 DC Characteristics

8 V <  $V_{\rm S}$  < 27 V; -40 °C <  $T_{\rm J}$  < 150 °C, all voltages with respect to ground; current directions as given in **Figure 2**; unless otherwise specified

All parameters are tested at 25 °C, unless otherwise specified

Table 5 DC Characteristics

| Parameter                           | Symbol                      | Values |      |      | Unit | Note / Test Condition                                                                                                                                  |
|-------------------------------------|-----------------------------|--------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                             | Min.   | Тур. | Max. |      |                                                                                                                                                        |
| Overall current consumption         | Is <sub>short</sub>         | 70     | 90   |      | mA   | $I_{\rm s}$ short; $V_{\rm s}$ = 827 V $V_{\rm sense}$ = 20 mV                                                                                         |
| Overall current consumption         | Is <sub>short</sub>         |        |      | 600  | μΑ   | $I_{\rm s}$ short; $V_{\rm s}$ = 42 V $V_{\rm sense}$ = 20 mV                                                                                          |
| Overall standby current consumption | Is standby                  |        |      | 200  | nA   | EN = 0 V; $V_s$ = 827 V<br>$V_{sense}$ = 20 mV                                                                                                         |
| Current of enable input             | $I_{EN}$                    | 20     | 40   | 70   | μΑ   | $V_{\rm sense}$ = 0-200 mV                                                                                                                             |
| Current of driver output            | $I_{\mathrm{outhigh}}$      | 70     | 90   |      | mA   | $V_{\rm sense}$ = 20 mV;<br>$V_{\rm s}$ = 8 V                                                                                                          |
| Current of driver output            | $I_{outlow}$                |        |      | 100  | nA   | $V_{\rm sense}$ = 200 mV;<br>$V_{\rm s}$ = 8V                                                                                                          |
| Current of Sense input              | $I_{\mathrm{sense}}$        |        |      | 200  | nA   | $V_{\rm sense}$ = 20200 mV                                                                                                                             |
| Voltage of Driver output            | $V_{ m out}$                |        | 6    |      | V    | $I_{\rm out}$ = 15 mA;<br>S1, S6, S8, S9 = on;<br>R1 = 390 $\Omega$ ;<br>R2 = 10 $\Omega$ ;<br>see <b>Figure 2</b>                                     |
| Voltage of Sense input              | V <sub>sense</sub>          | 135    | 150  | 165  | mV   | $I_{\rm out}$ = 15 mA;<br>$V_{\rm s}$ = 827 V<br>S3, S6, S8 = on;<br>R1 = 390 $\Omega$ ;R2 = 10 $\Omega$<br>$T_{\rm J}$ = 115 °<br>see <b>Figure 2</b> |
| Enable voltage range                | $U_{Pon}$                   | -0.3   |      | 5    | V    |                                                                                                                                                        |
| Control voltage for power on        | $U_{On}$                    | 0.6    | 0.85 | 5    | V    |                                                                                                                                                        |
| Control voltage for power off       | $U_{Off}$                   | -0.3   |      | 0.35 | V    |                                                                                                                                                        |
| Over voltage Protection             | $V_{s,OV}$                  | 27     |      |      | V    | I <sub>out</sub> -> 0 A                                                                                                                                |
| Delta sense voltage                 | $\Delta V_{\mathrm{sense}}$ | 2      | 10   | 50   | mV   | I <sub>out</sub> : 0 -> 50 mA                                                                                                                          |
| Drop Voltage                        | $V_{\rm s}$ - $V_{ m out}$  |        | 1.2  |      | V    | I <sub>out</sub> < 40 mA                                                                                                                               |
| Temperature shut down               | $T_{SD}$                    | 130    | 150  | 170  | °C   | $I_{\text{out}} \rightarrow 0 \text{ A; refer to } T_{\text{J}}$                                                                                       |



**Electrical Characteristics** 

# 3.2 Digital Signals

All parameters are tested at 25 °C, unless otherwise specified

Table 6 Digital Control Parameter (EN)

| Parameter            | Symbol           | Values |      |      | Unit | Note /                                                                             |
|----------------------|------------------|--------|------|------|------|------------------------------------------------------------------------------------|
|                      |                  | Min.   | Тур. | Max. |      | <b>Test Condition</b>                                                              |
| PWM signal frequency | $f_{\sf PWM}$    |        |      | 1000 | Hz   | t <sub>dutycycle</sub> = 1%;<br>signal level<br>reaches 100% in<br>on and off mode |
| PWM Duty cycle       | $t_{ m dutyPWM}$ | 5      |      |      | %    | F = 5 kHz; signal level reaches 100% in on and off mode                            |
| PWM voltage          | $U_{PWM}$        |        |      | 5    | V    |                                                                                    |

### 3.3 Transient Parameters

8 V <  $V_{\rm S}$  < 27 V; -40 °C <  $T_{\rm J}$  < 150 °C, all voltages with respect to ground; current directions as given in **Figure 2**; unless otherwise specified

All parameters are tested at 25 °C, unless otherwise specified

Table 7 Digital Control Parameter (EN)

| Parameter     | Symbol    | Values |      |      | Unit | Note / Test Condition                                                                                                                                            |
|---------------|-----------|--------|------|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |           | Min.   | Тур. | Max. |      |                                                                                                                                                                  |
| Response Time | $T_{ON}$  |        |      | 10   | μs   | EN: 0 -> 5 V @ $t_{rise}$ < 20 ns $t_{risetime}$ @(1090%) * $V_{sense}$ ( $I_{out} \sim 15$ mA); $R_{sense} = 10$ $\Omega$                                       |
|               | $T_{OFF}$ |        |      | 70   | μs   | EN: 5 V -> 0 @ $t_{\text{fall}}$ < 20 ns<br>$t_{\text{falltime}}$ @(9010%) * V <sub>sense</sub><br>( $I_{\text{out}}$ ~ 15 mA); $R_{\text{sense}}$ = 10 $\Omega$ |

Datasheet 8 Rev. 3.0, 2009-10-15



## 4 Measured Parameters

BCR450 IC has been measured in test bench with undefined high thermal resistance This is valid for all diagramed DC- and AC- Parameters

### 4.1 DC- Parameter

 $V_{\rm out}$  = 1.0 V, EN = 2.4 V

 $I_{\rm S}$  vers Temperature ( $V_{\rm S}$ );  $V_{\rm sense}$  = 20 mV







Is vers Vs\_Temp\_20mV\_Vout1V.vsd

 $I_{\rm en}$  vers Temperature ( $V_{\rm S}$ );  $V_{\rm sense}$  = 20 mV



 $len\ vers\ Temp\_Vs\_20mV\_Vout1V.vsd$ 





len vers Vs\_Temp\_20mV\_Vout1V.vsd

Datasheet 9 Rev. 3.0, 2009-10-15



 $I_{\text{sense}}$  vers Temperature ( $V_{\text{S}}$ );  $V_{\text{sense}}$  = 20 mV



 $I_{\text{sense}}$  vers  $V_{\text{s}}$  (Temperature);  $V_{\text{sense}}$  = 20 mV



Isense vers Vs\_Temp\_20mV\_Vout1V.vsd

 $I_{\text{out}}$  vers Temperature ( $V_{\text{S}}$ );  $V_{\text{sense}}$  = 20 mV



 $I_{\text{out}}$  vers  $V_{\text{s}}$  (Temperature);  $V_{\text{sense}}$  = 20 mV



 $lout\,vers\,Temp\_Vs\_20mV\_Vout1V.vsd$ 

 $V_{\rm s}$  = 14 V,  $V_{\rm out}$  = 1 V; EN = 2.4 V

 $I_{\text{out}}$  vers Temperature ( $V_{\text{Sense}}$ )



lout vers Temp\_Vsense\_Vs14V\_Vout1V.vsd

 $I_{\text{out}}$  vers  $V_{\text{sense}}$  (Temperature)



lout vers Vsense\_Temp\_Vs14V\_Vout1V.vsd



### $V_{\rm s}$ = 14 V, $V_{\rm out}$ = 6 V; EN = 20 mV

 $I_{\text{out}}$  vers EN (Temperature)



lout vers Ven\_Vsense20mV\_Vs14V\_Vout6V.vsd

### $V_{\rm s}$ = 14 V, $V_{\rm sense}$ = 20 mV; EN = 2.4 V

 $I_{\text{out}}$  vers Temperature ( $V_{\text{out}}$ )



 $I_{\mathrm{out}} \ \mathrm{vers} \ V_{\mathrm{out}} \ (\mathit{Temperature})$ 



·- - -

 $V_{\rm out}$  = 1 V,  $V_{\rm sense}$  = 20 mV; EN = 2.4 V

 $I_{\rm s}$  vers  $V_{\rm S}$  (Temperature)



Is vers Vs\_Temp\_20mV\_Vout1V\_entire range.vsd

Datasheet 11 Rev. 3.0, 2009-10-15



# $V_{\rm out}$ = 6 V, V<sub>sense</sub> = 20 mV; EN = 2.4 V

# $I_{\rm s}$ vers $V_{\rm S}$ (Temperature)

# 

### $I_{s}$ vers $V_{s}$ (Temperature)



Is vers Vs\_Temp\_20mV\_Vout6V\_entire range.vsd

## $I_{\rm s\,short}$ -> $V_{\rm out}$ = 0 V, $V_{\rm sense}$ = 0 mV; EN = 2.4 V

# $I_{\rm s}$ vers $V_{\rm S}$ (Temperature)



Is vers  $Vs\_Temp\_0mV\_Vout0V.vsd$ 

# $I_{\rm s\ standby}$ -> $V_{\rm out}$ = 0 V, $V_{\rm sense}$ = 0 mV; EN = 0 V

## $I_{\rm s}$ vers $V_{\rm S}$ (Temperature)



Is vers Vs\_Temp\_0mV\_Vout0V\_EN0V.vsd



 $V_{
m out}$  = 6 V,  $I_{
m out}$  = 15 mA; EN = 2.4 V

 $V_{\rm sense}$  vers  $V_{\rm S}$  (Temperature)



 $Vsense\ vers\ Vs\_Temp\_lout15mA\_Vout6V.vsd$ 

 $V_{\rm s}$  = 12 V,  $I_{\rm out}$  = 350 mA , Booster Application , see Figure 3

 $I_{out}$  vers  $T_{solder}$ 



TSD.vsd

Datasheet 13 Rev. 3.0, 2009-10-15



### **EN = 2.4 V**



 $V_{
m drop}$  vers  $I_{
m out}$ 



Vdrop.vsd

### 4.2 AC- Parameter

### Response Time

$$T_{\rm on}$$
 &  $T_{\rm off}$ ;  $V_{\rm s}$ = 12 V;  $f_{\rm Pulse}$ = 1 kHz;  $t_{\rm duty}$ = 50 %



Datasheet 14 Rev. 3.0, 2009-10-15



**Evaluation Board** 

## 5 Evaluation Board

The evaluation board is designed to test the BCR450 as a stand alone device for lower LED current applications and also with additional external "booster" transistors for high current, high brightness LEDs. Up to three external transistors BCX68 or BC817SU each could be used on the PCB to minimize thermal problems.

3 LEDs in series for high current mode or 3 LEDs for low current applications can be chosen by setting resistors (for further application hints see **AN105**). The particular sense voltage can be derived by jumpers which are provided in the layout for each test case. Additional test circuit is included to measure AC characteristics, and the ENABLE input is designed to connect a PWM signal. The PCB is manufactured in double sided FR4 with substrate thickness of 1.0 mm.



Figure 3 Evaluation board schematic



## **Package Information**



Figure 4 Cross section of evaluation board

# 6 Package Information



Figure 5 Package outline; SC74



Figure 6 Tape loading



| LED Driver IC                                |
|----------------------------------------------|
| History: 2009-10-15, Rev. 3.0                |
| s Version: 2007-09-26, Rev. 2.1              |
| Subjects (major changes since last revision) |
| Editorial changes                            |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |
|                                              |

Datasheet 3 Rev. 3.0, 2009-10-15

#### Edition 2009-10-15

Published by Infineon Technologies AG, 81726 München, Germany
© Infineon Technologies AG 2009.
All Rights Reserved.

#### Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

#### Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.