SEQUENCES + NLP

DEEP LEARNING SERIES (WWC-AI)

Tim Scarfe

Machine learning appreciator from the UK! http://aka.ms/mdml

TALK DUTLINE

- Deep learning intro
- Distilled concepts of deep learning
- Why are neural networks good at sequence processing?
- What is sequence processing?
- Working with text data
- Recurrent neural networks
- 1d convolutional neural networks

WHAT IS A NEURAL NETWORK?

WHAT IS A DEEP NEURAL NETWORK?

- The networks have many levels of depth
- Machine learns a hierarchy of representations
- No feature extraction required

ENTIRE MACHINE IS TRAINABLE

Unlike other shallow ML algorithms; you can map between data domains

UNIVERSAL FUNCTION APPROXIMATORS

Unlike other algorithms, NNs can natively encode useful and obvious relationships in the data domain

- Local spatial dependencies (vision)
- Time dependencies (language, speech)

Recurrent Neural Networks

NATIVE DATA-DOMAIN FEATURES

- Composability
- Deep Learning research is very applied
- Accessibility
- Software analogy

COMPOSABILITY

WHAT IS A SEQUENCE?

Hypothetical S&P 500 High Corporate Tax Rate Stock Portfolio vs. S&P 500 (Initial Value = 100)

WHAT IS SEQUENCE PROCESSING

- RNNs
 - Timeseries classification
 - Anomaly detection in timeseries
 - Entity recognition
 - Revenue forecasting
 - Question + Answer
- 1d Convnets
 - Spelling correction
 - Document classification
 - Machine translation

WHAT IS SEQUENCE PROCESSING

- RNNs
 - When global order matters
- 1d Convnets
 - Speed
 - Local temporal dependencies
- You can stack them!

TOKENIZATION

- Words
- Characters
- N-grams

```
Text
"The cat sat on the mat."

Tokens
"the", "cat", "sat", "on", "the", "mat", "."

Vector encoding of the tokens

0.0 0.0 0.4 0.0 0.0 1.0 0.0

0.5 1.0 0.5 0.2 0.5 0.5 0.0

1.0 0.2 1.0 1.0 1.0 0.0 0.0

the cat sat on the mat .
```

N-Grams example

```
{"The", "The cat", "cat", "cat sat", "The cat sat",
    "sat", "sat on", "on", "cat sat on", "on the", "the",
    "sat on the", "the mat", "mat", "on the mat"}
```


WORD VECTORS VS WORD EMBEDDINGS?

One-hot word vectors:

- Sparse
- High-dimensional
- Hard-coded

Word embeddings:

- Dense
- Lower-dimensional
- Learned from data

WORD EMBEDDINGS

- Word2Vec
- GloVe

RECURRENT NEURAL NETWORKS

Microsoft

RECURRENT NEURAL NETWORKS

LSTMS(2)


```
i_t = activation(dot(state_t, Ui) + dot(input_t, Wi) + bi)
f_t = activation(dot(state_t, Uf) + dot(input_t, Wf) + bf)
k_t = activation(dot(state_t, Uk) + dot(input_t, Wk) + bk)
```

LSTM VS GRU

LSTM

GRU

BI-DIRECTIONAL LSTMS

1D-CNNS

2DCNNS – SAME CONCEPT

STACKING IS COOL

UNIVERSAL MACHINE LEARNING PROCESS

- Define problem
- Define success
- Validation process
- Vectorise/normalize data
- Develop naïve model
- Refine model based on validation performance

