FlashAttention

wooosh!

Erwartung: PyLEGO + Magie

- Layer oder ganze Modelle wie Bausteine behandeln
- ...und magisch funktioniert alles und ist schnell!

→model.to("cuda") nutzt hocheffiziente CUDA Libraries wie cuBLAS, die MatMul durchgespielt haben

Erwartung: PyLEGO + Magie

- Layer oder ganze Modelle wie Bausteine behandeln
- ...und magisch funktioniert alles und ist schnell!

→model.to("cuda") nutzt hocheffiziente CUDA Libraries wie cuBLAS, die MatMul durchgespielt haben

FALSCH! (so'n bisschen)

Hintergrund: Naives MatMul

- Input: matrices *A* and *B*
- Let C be a new matrix of the appropriate size
- For *i* from 1 to *n*:
 - For *j* from 1 to *p*:
 - Let sum = 0
 - For *k* from 1 to *m*:
 - Set sum \leftarrow sum $+ A_{ik} \times B_{kj}$
 - Set $C_{ij} \leftarrow \text{sum}$
- Return C

https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

Hintergrund: MatMul mit Tiling

https://doi.org/10.48550/arXiv.1706.10086

Tiling: The most ancient joke in the book

- Kennt man, seit die Memory Wall wichtig ist
- Wird auch in ETI gelehrt (Einführung in die technische Informatik)

Tut cuBLAS doch sicher auch, oder?

Tiling: The most ancient joke in the book

- Kennt man, seit die Memory Wall wichtig ist
- Wird auch in ETI gelehrt (Einführung in die technische Informatik)

Tut cuBLAS doch sicher auch, oder?

ODER???

Tiling in cuBLAS

- Klar macht cuBLAS Tiling ©
- Blockgröße aber unklar
 - Große Blöcke: Weniger Speicherzugriffe, mehr Rechnen
 - Zu groß: Passt nicht in L1
 - Heuristik zur Auswahl in cuBLAS

Performance of NT GEMM by Tile Size with K = 4096, M = 6912, N = 2048

Roofline Model und Arithmetische Intensität

Arithmetic Intensity =
$$\frac{\text{number of FLOPS}}{\text{number of byte accesses}} = \frac{2 \cdot (M \cdot N \cdot K)}{2 \cdot (M \cdot K + N \cdot K + M \cdot N)} = \frac{M \cdot N \cdot K}{M \cdot K + N \cdot K + M \cdot N}$$

Mit gegebener **Mem BW** und gegebener **Arith. Int.**, wie viele FLOPS können wir erreichen?

https://siboehm.com/articles/22/CUDA-MMM

Der SRAM/Cache/... Refresher für Anja et al.

https://doi.org/10.1109/ICCCS55155.2022.9846079

Der SRAM/Cache/... Refresher für Anja et al.

https://resources.nvidia.com/en-us-tensor-core

Der SRAM/Cache/... Refresher für Anja et al.

https://blog.paperspace.com/a-complete-anatomy-of-a-graphics-card-case-study-of-the-nvidia-a100/

FlashAttention

Kernel Fusion

- Vertikale Zerlegung des Problems
 - …also muss Softmax auch zerlegt werden
- Soweit ersichtlich, Attention teilweise berechnen

$$m(x) := \max_{i} x_{i}, \quad f(x) := \left[e^{x_{1}-m(x)} \dots e^{x_{B}-m(x)}\right], \quad \ell(x) := \sum_{i} f(x)_{i}, \quad \text{softmax}(x) := \frac{f(x)}{\ell(x)}.$$

...wird zu

$$\begin{split} m(x) &= m(\left[x^{(1)} \ x^{(2)}\right]) = \max(m(x^{(1)}), m(x^{(2)})), \quad f(x) = \left[e^{m(x^{(1)}) - m(x)} f(x^{(1)}) \quad e^{m(x^{(2)}) - m(x)} f(x^{(2)})\right], \\ \ell(x) &= \ell(\left[x^{(1)} \ x^{(2)}\right]) = e^{m(x^{(1)}) - m(x)} \ell(x^{(1)}) + e^{m(x^{(2)}) - m(x)} \ell(x^{(2)}), \quad \text{softmax}(x) = \frac{f(x)}{\ell(x)}. \end{split}$$

Tiling in Flash Attention

Algorithm 1 FlashAttention

```
Require: Matrices \mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d} in HBM, on-chip SRAM of size M.
```

- 1: Set block sizes $B_c = \begin{bmatrix} M \\ 4d \end{bmatrix}$, $B_r = \min(\begin{bmatrix} M \\ 4d \end{bmatrix}, d)$.
- 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.
- 3: Divide \mathbf{Q} into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times \underline{d}$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times \underline{d}$ each.
- 4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size m_1, \ldots, m_{T_r} of si
- 5: for $1 \le j \le T_c$ do
- 6: Load \mathbf{K}_i , \mathbf{V}_i from HBM to on-chip SRAM.
- 7: for $1 \le i \le T_r$ do
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$.
- 10: On chip, compute $\tilde{m}_{ij} = \operatorname{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- 11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.
- 12: Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij} m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.
- 13: Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM.
- 14: end for
- 15: end for
- 16: Return **O**.

SRAM-Bedarf:

$$B_r \cdot d + B_c \cdot d \cdot 2 + B_r \cdot 2$$

= $B_r(d+2) + B_c(2d)$

$$= \dots = \frac{M(3d+2)}{4d}$$

Sparsity

http://www.jfrankle.com/lth-block-sparsity.pdf

Ergebnisse

Benchmarks

- Natürlich alles schneller und besser!
 - BERT Training 1.15x besser
 - GPT-2 3x schneller als HuggingFace oder 1.8x schneller als Megatron
 - LRA 2.4x schneller
 - Trainiert GPT-2 mit 4K Context Schneller als vorher mit 1K
 - Erstmals besser-als-random in Path-X
 - Block Sparsity erstmals besser-als-random in Path-256
 - Außerdem speichereffizient

Zu LRA...

Models	ListOps	Text	Retrieval	Image	Pathfinder	Avg	Speedup
Transformer	36.0	63.6	81.6	42.3	72.7	59.3	-
FLASHATTENTION	37.6	63.9	81.4	43.5	72.7	59.8	$2.4 \times$
Block-sparse FlashAttention	-1.437.0-ls	+7 63.0-11	81.3-0.9	43.6 -0	73.3 -o	59.6	$2.8 \times$
Linformer [84]	35.6	55.9	77.7	37.8	67.6	54.9	2.5×
Linear Attention 50	38.8	63.2	80.7	42.6	72.5	59.6	$2.3 \times$
Performer [12]	36.8	63.6	82.2	42.1	69.9	58.9	$1.8 \times$
Local Attention 80	36.1	60.2	76.7	40.6	66.6	56.0	$1.7 \times$
Reformer 51	36.5	63.8	78.5	39.6	69.4	57.6	$1.3 \times$
Smyrf [<u>19</u>]	36.1	64.1	79.0	39.6	70.5	57.9	$1.7 \times$