Subgroup Meeting #3

Hao-Yang Yen

NTHU

2024/7/30

DMRG for the SIS Model

- In ordinary quantum mechanics, the operators for the observables live in L(H, H), where H is a C-Hilbert space.
- In the SIS model, the linear operators also live in L(H, H), but here
 H is a ℝ-Hilbert space.
- The linear operators in the SIS model are not hermitian.
- Why does the DMRG work?

Is the Hamiltonian diagonalizable? What is the spectrum of the Hamiltonian? How to get the NESS from the Hamiltonian?

DMRG for the SIS Model

• Diagonalizability:

```
Master equation: \partial_t |P(t)\rangle = \hat{W} |P(t)\rangle
The state: |P(t)\rangle = e^{t\hat{W}} |P(0)\rangle
Write \hat{W} in its Jordan form \rightarrow \hat{W} is diagonalizable or the state will diverge.
```

- The spectrum:
 - \hat{W} is diagonalizable
 - \rightarrow The eigenvalues are **negative** or the state will diverge.
- NESS:

Entries of \hat{W} are $e^{\lambda_i t}$ goes to zero as $t \to \infty$ if $\lambda_i < 0$

- ightarrow the only important entry is $e^{0t}=1$
- \rightarrow the NESS is the **eigenvector of** \hat{W} **with** $\lambda = 0$

DMRG for the SIS Model

- Variational problem: $\min_{A} (A^{\dagger} \hat{W}_{eff} A \lambda A^{\dagger} \hat{N} A)$
 - \rightarrow Consider the gradient: $\nabla_{A^{\dagger}} (A^{\dagger} \hat{W}_{eff} A \lambda A^{\dagger} \hat{N} A) = 0$
 - ightarrow Generalized eigenvalue problem: $\hat{W}_{eff}A = \lambda \hat{N}A$

From NRG to DMRG

• Consider a one-dimensional quantum chain:

```
Hilbert space: \mathcal{H} = \bigotimes_{i=1}^{N} \mathcal{H}_i
Dimension: \dim \mathcal{H} = \prod_{i=1}^{N} \dim \mathcal{H}_i, growing rapidly as N growing.
```

- The Numerical Renormalization Group (NRG) is a kind of numerical algorithm that can find the **groundstate** of a system.
- The key idea of NRG: Truncation \rightarrow Add a new site \rightarrow Diagonalization \rightarrow Truncation $\rightarrow \cdots \rightarrow$ Until Convergence

From NRG to DMRG

- NRG works well in some impurity models but fails in strongly correlated systems. Whole=\(\sumeq \text{Parts} + ? \).
- The entanglement effect, related to many interesting phenomena, is not considered in NRG.
- In the density matrix renormalization group (DMRG), we use the density matrix to measure the entanglement entropy:

2024/7/30

From NRG to DMRG

Algorithms

Infinite-size DMRG Finite-size DMRG

https://kikiyenhaoyang.github.io/kikiyen/Web/TN.html

DMRG as Renormalization Group

• We can obtain the ground state by diagonalizing the infinite tensor:

This is impossible.

We can consider the truncation to reduce the dimension of the MPO:

Variational Perspective of Finite-Size DMRG

• We want to find the ground state of a quantum state:

```
Ground state energy: \inf_{|\Psi\rangle} \frac{\langle \Psi|\hat{H}|\Psi\rangle}{\langle \Psi|\Psi\rangle}. Optimization problem: \min_{|\Psi\rangle} (\langle \Psi|\hat{H}|\Psi\rangle - \lambda \langle \Psi|\Psi\rangle).
```

- The quantum state $|\Psi\rangle$ can be rewritten in MPS.
- In principle, we can solve it by implementing the variational method concerning all the tensors in MPS
 - \rightarrow impossible in the computers \rightarrow implement tensor by tensor.
- Solve the variational problem $\min_{A} (\langle \Psi | \hat{H} | \Psi \rangle \lambda \langle \Psi | \Psi \rangle) = \min_{A} (A^{\dagger} \hat{H}_{eff} A \lambda A^{\dagger} \hat{N} A)$

A: variational parameter

 \hat{H}_{eff} : effective Hamiltonian, $\langle \Psi | \hat{H} | \Psi \rangle$ without A, A^{\dagger} .

 \hat{N} : normalization matrix, $\langle \Psi | \Psi \rangle$ without A, A^{\dagger} .

2024/7/30

Variational Perspective of Finite-Size DMRG

- Variational problem: $\min_{A} (A^{\dagger} \hat{H}_{eff} A \lambda A^{\dagger} \hat{N} A)$
 - \rightarrow Consider the gradient: $\nabla_{A^{\dagger}}(A^{\dagger}\hat{H}_{eff}A \lambda A^{\dagger}\hat{N}A) = 0$
 - \rightarrow Generalized eigenvalue problem: $\hat{H}_{eff}A = \lambda \hat{N}A$

Conjugate gradient method

Gradient Descendent

Tangent space method

