Contextualized Bilinear Attention Network for Visual Dialog

Gi-Cheon Kang¹, Byoung-Tak Zhang^{1,2} Seoul National University¹, Surromind Robotics² {gckang, btzhang}@bi.snu.ac.kr

Introduction

An agent that can see everyday scenes and fluently communicate with people is one of the ambitious goals of artificial intelligence.

Visual Dialog

- Novel AI task introduced as a general version of visual question answering.
- It requires to answer a sequence of questions which has an interdependent property.

Two key challenges

- Exploiting visually-grounded information.
- Capturing the temporal topic of dialogs (Das et al., 2017)

Methods

- We extend the idea of Bilinear Attention Networks, BAN (Kim et al., 2018) to utilize visually-grounded information.
- We employ newly proposed word embeddings, ELMo (Peters et al., 2018) to utilize a contextualized word representations.

Model

Overview of our proposed model

• Contextualized Bilinear Attention Network (CBAN)

Inspired by Low-rank Bilinear Pooling (Kim et al., 2017), our model efficiently extracts bilinear attention maps of N questions. I and Q denote image feature and N question features, respectively.

$$\mathbf{A} = softmax((P^T \odot VI^T)QU^T)$$

As a sequence of questions has an interdependent property, capturing the context (e.g. co-reference and temporal topic) from previous conversion (history) is one of the key challenges. To make the best of ELMo, we define a history as follows. h_n and c denotes history of nth round and caption of image, respectively.

$$h_n = (c, (q_1, a_1), \dots, (q_{n-1}, a_{n-1}))$$

 $H = (h_1, h_2, \dots h_N)$

CBAN gets I, Q, H and attention map as inputs. E denotes a fused representation of our model.

$$E = CBAN(I, Q, H; \mathbf{A})$$

Image feature	Faster-RCNN feature (pretrained)				
Language feature	re ELMo embedding + LSTM				
Fusion method	Concatenation(BAN $(I, Q), H$)				
Decoder type	Discriminative				

Experimental Results

Quantitative Analysis

Test-standard performance on Visual Dialog v1.0 dataset.

Model	ENS	ATT	MRR	R@1	R@5	R@10	Mean
HRE [1]		_	54.16	39.93	70.45	81.50	6.41
Memory Network [1]		_	55.49	40.98	72.30	83.30	5.92
Late Fusion [1]		_	55.42	40.95	72.45	82.83	5.95
Memory Network [1]		✓	56.90	42.43	74.00	84.35	5.59
Late Fusion [1]		✓	57.07	42.08	74.83	85.05	5.41
CBAN (ours)		✓	57.53	41.48	76.95	88.52	4.49
CBAN (ours, 2 models)	✓	✓	58.86	42.85	78.70	90.38	4.13

* ENS and ATT denote an ensemble method and a use of attention mechanism, respectively.

Validation performance on Visual Dialog v1.0 dataset.

Model	ENS	ATT	MRR	R@1	R@5	R@10	Mean
BAN (baseline) [2]		✓	54.59	39.74	71.76	82.13	6.20
CBAN (ours)		✓	60.10	44.30	79.92	90.70	4.06
							3.79

Qualitative Analysis

Original Image

Caption Question		A young man jumping his skateboard on a ramp				
		Answer	CBAN	BAN		
Q1	Where is he?	In a skate park	0	0		
Q2	Is he the only one?	No, I see people in the background	0	0		
Q3	Are there others skating?	No	0	0		
Q4	Are they watching him or doing something else?	Possibly watching him from a far	0	X		
Q5	Is he young or old?	Young	0	0		
Q6	Does he have crazy hair?	No	0	0		
Q 7	How about clothes?	Pants and Shirts	0	X		
Q8	Does he look like he knows what he's doing?	Yes he does	0	X		
Q9	Can you see his skateboard?	Yes	0	0		
Q10	Does it look like a nice one?	Not really, wooden	0	X		

References

- Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J.M., Parikh, D., Batra, D.: Visual dialog. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Volume 2. (2017)
- Kim, J.H., Jun, J., Zhang, B.T.: Bilinear attention networks. arXiv preprint arXiv:1805.07932 (2018)
- Peters, M.E., Neumann, M., lyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L.: Deep contextualized word representations. In: NAACL (2018)
- Kim, J.H., On, K.W., Lim, W., Kim, J., Ha, J. W., & Zhang, B. T.: Hadamard product for low-rank bilinear pooling. In: ICLR (2017)

^{*} Above performances are recorded in VisDial challenge leaderboard (https://evalai.cloudcv.org)