Prova 2 (P2) - Grafos (INE5413)

Ciências da Computação – Universidade Federal de Santa Catarina Prof. Rafael de Santiago

Nome:			
Matrícula:			

Observações gerais:

- A prova deverá entregue até as 11h50m.
- Pode ser utilizado material para consulta. Não será permitido compartilhamento de material de consulta.
- Caso seja necessário, uma das questões poderá ser entregue depois. Essa entrega deverá ser realizada
 de forma manuscrita (a próprio punho) em uma única página. A resposta deverá estar no escaninho do
 professor no prédio do INE (depto de Informática e Estatística) até 24/06/2022 às 12h00 (meio dia). A
 resposta deverá ser redigida individualmente sem apoio de outros colegas.

> Informe aqui qual questão será entregue posteriormente: _____

- 1. (2.5pts) Considere uma ordenação topológica O para o grafo dirigido G = (V, A). Considere também o grafo G' = (V', A'), no qual $V' = V \cup \{x\}$ e $A' = A \cup \{a\}$, $a \in \{(x, v), (v, x)\}$ para um vértice $v \in V$. Desenvolva um algoritmo eficiente (usando pseudocódigo ou alguma linguagem de programação) que receba G', O, o vértice x e o arco a, depois, retorne uma ordenação topológica para G' sem ter que utilizar o algoritmo para Ordenação Topológica visitado na disciplina.
- 2. (2.5pts) Dado um grafo dirigido G = (V, A) que corresponde a malha viária de uma cidade, considere um conjunto $R \subset A$. R é o potencial subconjunto de vias que seriam interditadas (removidas temporariamente da malha viária). Elabore um algoritmo (usando pseudocódigo ou alguma linguagem de programação) que receba o grafo G e o conjunto R e retorne o maior subconjunto possível de R no qual haja garantia de que há um caminho possível (de ida e de volta) entre qualquer par de vértices em G.
- 3. (2.5pts) Considere dois grafos não-dirigidos e ponderados $G_1 = (V_1, E_1, w_1)$ e $G_2 = (V_2, E_2, w_2)$, para os quais $V_1 \cap V_2 = \emptyset$. Considere também o grafo $G = (V_1 \cup V_2, E_1 \cup E_2 \cup \{\{x,y\}\}, w)$ no qual $x \in V_1$, $y \in V_2$, $w(\{u,v\}) = w_1(\{u,v\})$ se $\{u,v\} \in E_1$, $w(\{u,v\}) = w_2(\{u,v\})$ se $\{u,v\} \in E_2$ e $w(\{x,y\}) = \rho$. Sabendo que a árvore geradora mínima de G_1 é $A_1 \subseteq E_1$ e a árvore geradora mínima de G_2 é $A_2 \subseteq E_2$, é possível afirmar que $A_1 \cup A_2 \cup \{\{x,y\}\}\}$ é a árvore geradora mínima de G? Justifique sua resposta.
- 4. (2.5pts) Considere um grafo não-dirigido e ponderado G = (V, E, w) e sua árvore geradora mínima $A \subseteq E$. Considere também o grafo $G' = (V, E \cup \{e\}, w')$ no qual $e = \{v_1, v_2\}$ e $w'(e) < w(\{u, v\})$ para qualquer $\{u, v\} \in E$. O algoritmo abaixo encontra uma árvore geradora mínima para G'?

```
Input : G = (V, E, w), e = \{v_1, v_2\}, A

1 S' \leftarrow \{x \in N(v_1) : \{x, v_1\} \in A\}

2 S'' \leftarrow \{x \in N(v_2) : \{x, v_2\} \in A\}

3 v' \leftarrow \operatorname{argmax}_{x \in S'} \left\{w(\{v_1, x\})\right\}

4 v'' \leftarrow \operatorname{argmax}_{x \in S''} \left\{w(\{v_2, x\})\right\}

5 if w(\{v_1, v'\}) > w(\{v_2, v''\}) then

6 \mid R \leftarrow A - \left\{\{v_1, v'\}\right\}

7 end

8 else

9 \mid R \leftarrow A - \left\{\{v_2, v''\}\right\}

10 end

11 R \leftarrow R \cup \left\{\{v_1, v_2\}\right\}

12 return R
```

Boa Prova!