Optimal cutoff point from ROC curve

Suppose we are devising a screening test for some disease $D \in \{0, 1\}$. Continuous measurements from patients Y's are obtained, and patients are deemed "positive" (or at "high risk") if $Y \ge t$ for some threshold t.

Let T(t) and F(t) be the true positive rate (sensitivity) and false positive rate (1 - specificity) at threshold level t, respectively. The area under curve (AUC) of the receiver operating characteristic (ROC) curve is defined as

$$AUC = \int_0^1 T(F) dF.$$

We can write T as a function of F. This is possible because F(t) is monotone increasing with respect to t. Furthermore, assume that $F(t) = \mathbb{P}(Y \ge t | D = 0)$ has derivative $f(t) \ge 0$. Then the AUC can be computed as

$$\begin{aligned} \text{AUC} &= \int_0^1 T(F) \mathrm{d}F \\ &= \int_0^1 \mathbb{P}(Y \ge t | D = 1) \mathrm{d}\mathbb{P}(Y \ge t | D = 0) \\ &= \int_{\mathcal{T}} T(t) |f(t)| \mathrm{d}t \\ &= \mathbb{P}(Y_D > Y_{\bar{D}} | \mathcal{D}). \end{aligned}$$

Given the true disease status \mathcal{D} , AUC is the probability that the test result Y_D from a randomly selected case is larger than the test result $Y_{\bar{D}}$ from a randomly selected control.

This is a nice interpretation, huh! It makes sense because if Y_D and $Y_{\bar{D}}$ can be easily told apart, the screening test will likely be quite effective.

Now what if we'd like to choose a cutpoint from all the possible values? Should we always choose the point closest to the upper left corner?

The short answer is no. It depends on the disease prevalence π and the cost for false positives c_+ and false negatives c_- . Naturally, for a disease status d and action $a \in \{0,1\}$, we have a loss function L(d,a) defined as

$$L(0,0) = 1,$$
 $L(0,1) = c_+,$
 $L(1,0) = c_-,$ $L(1,1) = 0.$

As a decision rule with threshold value t, we define $m_t(Y) := 1\{Y \ge t\}$. The risks for different disease status are

$$R(0, m_t) = \mathbb{E}_{D=0}L(0, m_t(Y)) = \mathbb{P}(Y \ge t | D = 0)c_+ = F(t)c_+,$$

$$R(1, m_t) = \mathbb{E}_{D=1}L(1, m_t(Y)) = \mathbb{P}(Y < t | D = 1)c_+ = (1 - T(t))c_-.$$

With prior distribution $\mathbb{P}(D=d)=\pi^d(1-\pi)^{1-d}$, the Bayes risk for m_t is

$$r_{\pi}(m_t) = \pi c_{-}(1 - T(t)) + (1 - \pi)c_{+}F(t).$$

To find a point on the ROC curve that minimises the expression, we set the derivative with respect to ${\cal F}$ to zero, hence

$$\frac{\partial T}{\partial F} = \frac{1 - \pi}{\pi} \frac{c_+}{c_-}.$$

That is, the optimal point is such whose tangent line has the slope above.