Package 'Xeva'

August 27, 2018

August 27, 2010
Type Package
Title Analysis of patient-derived xenograft (PDX) data
Version 1.0.0
Author Arvind Mer, Benjamin Haibe-Kains
Maintainer Arvind Mer <amer@uhnresearch.ca></amer@uhnresearch.ca>
Description Contains set of functions to perform analysis of patient-derived xenograft (PDX) data.
License Artistic-2.0
RoxygenNote 6.0.1
VignetteBuilder knitr
Suggests knitr
Imports methods, BBmisc, Biobase, plyr, stringr, ggplot2, ComplexHeatmap, reshape2, grDevices, PharmacoGx, foreach, parallel, doParallel, doSNOW, acepack, mgcv
R topics documented:
ABC

Index

AUC	3
oatchNames	6
orca.pdxe	7
creatXevaSet	7
lrugInfo	8
lrugInfo<	8
lrugSensitivitySig	9
expDesign	10
expDesignInfo	11
expDesignInfo<	11
geneSensitivityPlot	12
getBatchName	12
getControls	13
getExpDesignDF	13
getExperiment	14
getMolecularProfiles	15
getTreatment	16
mapModelSlotIds	16
model2BiobaseIdMap	17
modelInfo	18
modelInfo<	18
mRECIST	19
odxe	19
PDXMI	20
PDX_MI	20
plotBatch	21
plotmRECIST	22
print.XevaSet	23
response	23
selectModelIds	24
sensitivity	25
setResponse	26
setSensitivity	26
show,XevaSet-method	27
slope	27
subsetXeva	28
summarizeMolecularProfiles	29
summarizeResponse	30
waterfall	31
	32

ABC 3

ABC	compute area between two curves compute area between two time-volume curves

Description

compute area between two curves compute area between two time-volume curves

Usage

```
ABC(contr.time = NULL, contr.volume = NULL, treat.time = NULL, treat.volume = NULL)
```

Arguments

```
contr.time time vector for control

contr.volume volume vector for control

treat.time time vector for treatment

treat.volume volume vector for treatment

degree default TRUE will give angle in Degree and FALSE will return Radians
```

Value

returns batch response object

```
contr.time <- treat.time <- c(0, 3, 7, 11, 18, 22, 26, 30, 32, 35)
contr.volume<- contr.time * tan(60*pi/180)
treat.volume<- treat.time * tan(15*pi/180)
abc <- ABC(contr.time, contr.volume, treat.time, treat.volume)
par(pty="s")
xylimit <- range(c(contr.time, contr.volume, treat.time, treat.volume))
plot(contr.time, contr.volume, type = "b", xlim = xylimit, ylim = xylimit)
lines(treat.time, treat.volume, type = "b")
polygon(c(treat.time, rev(treat.time)), c(contr.volume, rev(treat.volume)), col = "#fa9fb5", border = NA)</pre>
```

4 angle

addExperimentalDesign Add a new experimental design

Description

Add a new experimental design in expDesign slot.

Usage

```
addExperimentalDesign(object, treatment, control = NULL, batch.id = NULL,
  replace = FALSE)
```

Arguments

object The Xeva dataset

treatment The model.id of treatment control The model.id of control batch.id The batch.id for new batch

replace If TRUE will replace the old batch with new values

Value

returns Xeva dataset with new experimental design added

Examples

angle

compute angle computes angle between two time-volume curves

Description

compute angle computes angle between two time-volume curves

Usage

```
angle(contr.time = NULL, contr.volume = NULL, treat.time = NULL,
    treat.volume = NULL, degree = TRUE)
```

AUC 5

Arguments

contr.time time vector for control
contr.volume volume vector for control
treat.time time vector for treatment
treat.volume volume vector for treatment

degree default TRUE will give angle in Degree and FALSE will return Radians

Value

returns batch response object

Examples

```
contr.time <- treat.time <- c(0, 3, 7, 11, 18, 22, 26, 30, 32, 35)
contr.volume<- contr.time * tan(60*pi/180)
treat.volume<- treat.time * tan(15*pi/180)
ang <- angle(contr.time, contr.volume, treat.time, treat.volume)
par(pty="s")
xylimit <- range(c(contr.time, contr.volume, treat.time, treat.volume))
plot(contr.time, contr.volume, type = "b", xlim = xylimit, ylim = xylimit)
lines(treat.time, treat.volume, type = "b")
abline(lm(contr.volume~contr.time))
abline(lm(treat.volume~treat.time))</pre>
```

AUC

AUC returns area under the curve

Description

AUC returns area under the curve

Usage

```
AUC(time, volume)
```

Arguments

time vector of time

volume first vector of volume

Value

returns angle and slope object

6 batchNames

Examples

```
time <- c(0, 3, 7, 11, 18, 22, 26, 30, 32, 35)
volume1<- time * tan(30*pi/180)
volume2<- time * tan(45*pi/180)
auc1 <- AUC(time, volume1)
auc2 <- AUC(time, volume2)
par(pty="s")
xylimit <- range(c(time, volume1, volume2))
plot(time, volume1, type = "b", xlim = xylimit, ylim = xylimit)
lines(time, volume2, type = "b")
abline(lm(volume1~time))
abline(lm(volume2~time))</pre>
```

batchNames

Get batch names/ids

Description

Get all batch names/ids from a Xeva dataset

Usage

```
batchNames(object)
```

Arguments

object

The XevaSet to replace drug info in

Value

A Vector with all batch.name

```
data(pdxe)
batchNames(pdxe)
```

brca.pdxe 7

brca.pdxe	PDXE breast cancer dataset
-----------	----------------------------

Description

PDXE breast cancer dataset

Usage

```
data(brca.pdxe)
```

Format

A Xeva object of PDXE breast cancer dataset

creatXevaSet

Creat Xeva class object creatXevaSet returns Xeva class object

Description

Creat Xeva class object creatXevaSet returns Xeva class object

Usage

```
creatXevaSet(name, model = data.frame(), drug = data.frame(),
 experiment = data.frame(), expDesign = list(),
 modelSensitivity = data.frame(), batchSensitivity = data.frame(),
 molecularProfiles = list(), modToBiobaseMap = data.frame())
```

Arguments

a character string detailing the name of the dataset name

model a data. frame containg the annotations for all models used in the experiment drug

a data. frame containg the annotations for all the drugs profiled in the data set,

across all data types

a data. frame containg all experiment information experiment

molecularProfiles

a list of ExpressionSet objects containing different molecular profiles

Value

Returns Xeva object

8 drugInfo<-

Examples

drugInfo

get drug information get drug information slot

Description

get drug information get drug information slot

Usage

```
drugInfo(object)
```

Arguments

object

The XevaSet to retrieve drug info from

Value

a data. frame with the drug annotations

Examples

```
data(pdxe)
drugInfo(pdxe)
```

drugInfo<-

set drug information set drug information slot

Description

set drug information set drug information slot

Usage

```
drugInfo(object) <- value</pre>
```

9 drugSensitivitySig

Arguments

object The XevaSet to replace drug info in

value A data. frame with the new drug annotations

Value

Updated XevaSet

Examples

```
data(pdxe)
drugInfo(pdxe) <- drugInfo(pdxe)</pre>
```

drugSensitivitySig

drugSensitivitySig

Description

Given a Xeva object, and drug name it will return sensitivity value for all the genes/fetures

Usage

```
drugSensitivitySig(object, drug, mDataType = NULL, molData = NULL,
  features = NULL, model.ids = NULL, model2bidMap = NULL,
  sensitivity.measure = "slope", fit = c("lm", "maxCor", "gam"),
  standardize = c("SD", "rescale", "none"), nthread = 1, tissue = NULL,
  verbose = TRUE)
```

Arguments

The Xeva dataset object Name of the drug drug mDataType molecular data type

molData External data matrix. Rows as features and columns as samples features which molecular data fetures to use. Default NULL will use all fetures model.ids which model.id to use from the dataset. Default NULL will use all model.id model2bidMap a datafram with model.id and biobase.id. Default NULL will use internal mapping

sensitivity.measure

Name of the sensitivity measure

fit Default 1m. Name of the model to be fitted. Options are "lm", "maxCor", "gam"

Tissue type. Default is NULL which will use 'tissue' from object type

Details

A matrix of values can be directly passed to molData. fit can be "lm", "maxCor" or "gam". In case where a model.id map to multipal biobase.id the first biobase.id in the datafram will be used.

10 expDesign

Value

A datafram with fetures and values

Examples

expDesign

Given a batch.name get batch

Description

Given a batch.name get batch from a Xeva dataset

Usage

```
expDesign(object, batch.name)
```

Arguments

object The XevaSet
object The batch.name

Value

A Vector with all batch.name

```
data(pdxe)
expDesign(pdxe, batch.name = "X-6047.paclitaxel")
```

expDesignInfo 11

expDesignInfo

expDesignInfo Generic Generic for expDesignInfo method

Description

expDesignInfo Generic Generic for expDesignInfo method

Usage

```
expDesignInfo(object)
```

Arguments

object

The XevaSet to retrieve drug info from

Value

a list with the all experiment designs

Examples

```
data(pdxe)
expDesignInfo(pdxe)
```

expDesignInfo<-

expDesignInfo<- Generic Generic for expDesignInfo replace method

Description

expDesignInfo<- Generic Generic for expDesignInfo replace method

Usage

```
expDesignInfo(object) <- value</pre>
```

Arguments

object The XevaSet to replace drug info in value A list with the experiment designs

Value

Updated XevaSet

```
data(pdxe)
expDesignInfo(pdxe) <- expDesignInfo(pdxe)</pre>
```

12 getBatchName

```
geneSensitivityPlot geneSensitivityPlot
```

Description

Given a Xeva object, feture name and drug name it will plot feture values against sensitivity value

Usage

```
geneSensitivityPlot(object, mDataType, feature, drug,
  sensitivity.measure = "slope", standardize = c("SD", "rescale", "log",
  "none"))
```

Details

Plot a gene expression against sensitivity signatures for a drug

Examples

```
data(pdxe)
geneSensitivityPlot(object=pdxe, mDataType="RNASeq", feature="A1BG", drug="binimetinib",
sensitivity.measure="slope", standardize="log")
```

getBatchName

Get batch.name for a given model.id

Description

Get batch.name for a given model.id. If no batch.name found it will return NULL

Usage

```
getBatchName(object, model.id)
```

Arguments

object The Xeva dataset

model.id The model.id for which batch name required

Value

a vector with all batch names

getControls 13

Examples

```
data(pdxe)
# extract batch.name for a given model.id
getBatchName(object=pdxe, model.id="X.1655.uned")
getBatchName(object=pdxe, model.id="X.010.fiab")
```

getControls

Get controls for a given model.id

Description

Get controls for a given model.id. If no control found it will return NULL

Usage

```
getControls(object, model.id)
```

Arguments

object The Xeva dataset model.id The model.id

Value

a vector with control model.id

Examples

```
data(pdxe)
# extract controls for a given model.id
getControls(object=pdxe, model.id="X.1655.LE11.biib")
# if no control found it will return NULL
getControls(object=pdxe, model.id="X.1655.uned")
```

getExpDesignDF

Given a model.id it will return a data.fram of experiemt design with columns as "treatment", "control", "batch.name"

Description

Given a model.id it will return a data.fram of experiemt design with columns as "treatment", "control", "batch.name"

Usage

```
getExpDesignDF(object, model.id)
```

14 getExperiment

Arguments

object The Xeva dataset model.id The model.id

Value

a data. fram with treatment, control and batch.name

Examples

```
data(pdxe)
# This will give a data.fram with columns as "treatment", "control", "batch.name"
getExpDesignDF(object=pdxe, model.id="X.1655.LE11.biib")
```

getExperiment

For a given model.id, it will return a data.fram containing all data stored in experiment slot

Description

For a given model.id, it will return a data.fram containing all data stored in experiment slot

Usage

```
getExperiment(object, model.id = NULL, batchName = NULL, expDig = NULL,
  treatment.only = FALSE, max.time = NULL, vol.normal = FALSE,
  return.list = FALSE, impute.value = FALSE, concurrent.time = FALSE)
```

Arguments

object The XevaSet

model.id The model.id for which data is required, multipal allowed

batchName batch name from the Xeva set

expDig Experiment design

treatment.only Default FALSE. If TRUE give data only for non-zero dose periode (if dose data

avalible)

max.time maximum time for data vol.normal default TRUE will use

return.list default FALSE will return a datafram

impute.value default FALSE. If TRUE will impute the values

concurrent.time

default FALSE. If TRUE will cut the batch data such that control and treatment

will end at same time point

getMolecularProfiles 15

Value

a data. fram will all the the values stored in experiment slot

Examples

```
data(pdxe)
getExperiment(pdxe, model.id="X.6047.uned", treatment.only=TRUE)
getExperiment(pdxe, model.id=c("X.6047.uned", "X.6047.pael"), treatment.only=TRUE)
getExperiment(pdxe, batchName="X-6047.paclitaxel", treatment.only=TRUE)
expDesign <- list(batch.name="myBatch", treatment=c("X.050.LE11","X.050.LE11.evus"), control=c("X.050.uned"))
getExperiment(pdxe, expDig=expDesign)</pre>
```

getMolecularProfiles Get Molecular Profiles

Description

Get Molecular Profiles

Usage

```
getMolecularProfiles(object, data.type)
```

Arguments

object The XevaSet

data.type character, which one of the molecular data types is needed

Value

a ExpressionSet where sample names are biobase.id of model

```
data(pdxe)
pdxe_RNA <- getMolecularProfiles(pdxe, data.type="RNASeq")</pre>
```

mapModelSlotIds

OPT	[reat	ment	

Get treatment for a given model.id

Description

Get treatment for a given model.id. If no treatment found it will return NULL

Usage

```
getTreatment(object, model.id)
```

Arguments

```
object The Xeva dataset model.id The model.id
```

Value

a vector with treatment model.id

Examples

```
data(pdxe)
# extract treatment model.id for a given model.id
getTreatment(object=pdxe, model.id="X.1655.uned")
```

 ${\tt mapModelSlotIds}$

Map ids of model slot

Description

Map one id type to another in model slot. For example map a model.id to patient.id

Usage

```
mapModelSlotIds(object, id, id.name, map.to = "all", unique = TRUE)
```

Arguments

object	The Xeva dataset
id	The id
id.name	The id name
map.to	The name of the mapped id. Default all
unique	Default TRUE. If unique=FALSE output will be mapped to input

model2BiobaseIdMap 17

Value

```
a data. fram with id and mapped id
```

Examples

```
data(pdxe)
mapModelSlotIds(object=pdxe, id="X-007", id.name="patient.id", map.to="model.id")
##map batch ids
mapModelSlotIds(pdxe, id= "X-011.INC280", id.name = "batch.name", map.to = "tissue")
```

model2BiobaseIdMap

model2BiobaseIdMap Gives model.id to biobase.id mapping datafram

Description

model2BiobaseIdMap Gives model.id to biobase.id mapping datafram

Usage

```
model2BiobaseIdMap(object, mDataType = NULL)
```

Arguments

object The XevaSet

mDataType Data type for which ids to be retrive. Default NULL will return full datafram

Value

```
a data. frame with the model.id and biobase.id
```

```
data(pdxe)
idMap <- model2BiobaseIdMap(pdxe, mDataType="RNASeq")
head(idMap)</pre>
```

18 modelInfo<-

modelInfo

modelInfo Generic Generic for modelInfo method

Description

modelInfo Generic Generic for modelInfo method

Usage

```
modelInfo(object, mDataType = NULL)
```

Arguments

object

The XevaSet to retrieve drug info from

Value

a data. frame with the model annotations

Examples

```
data(pdxe)
mid <- modelInfo(pdxe)
head(mid)</pre>
```

modelInfo<-

modelInfo<- Generic Generic for modelInfo replace method

Description

modelInfo<- Generic Generic for modelInfo replace method

Usage

```
modelInfo(object) <- value</pre>
```

Arguments

object The XevaSet to replace drug info in

value A data. frame with the new model annotations

Value

Updated XevaSet

```
data(pdxe)
modelInfo(pdxe) <- modelInfo(pdxe)</pre>
```

mRECIST 19

mRECIST

Computes the mRECIST

Description

mRECIST returns the mRECIST for given volume response

Usage

```
mRECIST(time, volume, min.time = 10, return.detail = FALSE)
```

Arguments

time Value of best response

volume Value of best average response

min.time minimum time after which tumore volume will be considered return.detail default FALSE. If TRUE will return all intermediate values

Value

Returns the mRECIST

Examples

```
time <- c(0, 3, 7, 11, 18, 22, 26, 30, 32, 35)
volume<- c(250.8, 320.4, 402.3, 382.6, 384, 445.9, 460.2, 546.8, 554.3, 617.9)
mRECIST(time, volume, min.time=10, return.detail=FALSE)
```

pdxe

Example dataset with 1x1x1 experiment design

Description

This is PDXE dataset without microarray data.

Usage

data(pdxe)

Format

A Xeva object with 1x1x1 experiment design and moleculer data

20 PDX_MI

PDXMI

PDX-MI data

Description

A dataset containing PDX models minimal information (PDX-MI) standard and corresponding Xeva variable.

Usage

data(PDXMI)

Format

An object of class data. frame with 45 rows and 4 columns.

Details

For details about PDX-MI see:

Meehan, Terrence F., et al. "PDX-MI: minimal information for patient-derived tumor xenograft models." Cancer research 77.21 (2017): e62-e66.

Source

http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-17-0582

PDX_MI

PDX-MI: Minimal Information for PDX

Description

PDX-MI: Minimal Information for PDX

Usage

PDX_MI(object)

plotBatch 21

plotBatch	Plot batch data		
-----------	-----------------	--	--

Description

Plot data for a batch id or experiment design

Usage

```
plotBatch(object, batchName = NULL, expDig = NULL, max.time = NULL,
  treatment.only = FALSE, vol.normal = FALSE, impute.value = TRUE,
  concurrent.time = FALSE, control.col = "#6baed6",
  treatment.col = "#fc8d59", title = "", xlab = "Time", ylab = "Volume",
  log.y = FALSE, drug.name = NULL, SE.plot = c("all", "none", "errorbar",
  "ribbon"), aspect.ratio = c(1, NULL), minor.line.size = 0.5,
  major.line.size = 0.7)
```

Arguments

object	Xeva object
batchName	batch name
expDig	Experiment design list
max.time	maximum time point of the plot, default NULL will plot complete data
treatment.only	$\label{thm:constraint} \mbox{default FALSE. Given full data treatment.} \mbox{only=TRUE will plot data only during treatment}$
vol.normal	default FALSE . If TRUE volume will ne normalised
impute.value	default TRUE, will impute values where missing
control.col	color for control plots
treatment.col	color for treatment plots
title	title of the plot
xlab	title of x axis
ylab	title of y axis
log.y	default FALSE, if TRUE y axis will be in log
drug.name	default NULL will extract drug name from data
SE.plot	plot type. Default "all" will plot all plots and average curves. Possible values are "all", "none", "errorbar", "ribbon"
aspect.ratio	default 1 will create equeal width and height plot
minor.line.size	
	line size for minor lines default 0.5
major.line.size	
	line size for major lines default 0.7

22 plotmRECIST

Value

A ggplot2 plot with control and treatment

Examples

```
data(pdxe)
plt <- plotBatch(pdxe, batchName="X-1228.CKX620", vol.normal=TRUE)
expDesign <- list(batch.name="myBatch", treatment=c("X.1228.LC61.pael","X.1228.pael"), control=c("X.1228.uned")
plotBatch(pdxe, expDig=expDesign, vol.normal=T)
plotBatch(pdxe, expDig=expDesign, vol.normal=F, SE.plot = "errorbar")</pre>
```

plotmRECIST

To plot mRECIST values

Description

plotmRECIST plots the mRECIST matrix obtained from summarizeResponse

Usage

```
plotmRECIST(mat, control.name = NA, control.col = "#238b45",
  drug.col = "black", colPalette = NULL, name = "Drug & Models",
  sort = TRUE, row_fontsize = 12, col_fontsize = 12, draw_plot = TRUE)
```

Arguments

object The Xeva dataset model.id The model.id

Value

plot

print.XevaSet 23

print.XevaSet

print Xeva object

Description

print displays Xeva object information or model or batch information

Usage

```
## S3 method for class 'XevaSet'
print(object, id = NULL)
```

Arguments

object

Xeva object

id

default NULL, id can be model.id or batch.name

Value

Prints object, model or batch information.

Examples

```
data(pdxe)
# to print object information
print(pdxe)

# to print a model
model.id = modelInfo(pdxe)$model.id[1]
print(pdxe, id = model.id)

# to print a batch
batch.id = batchNames(pdxe)[1]
print(pdxe, id = batch.id)
```

response

response computes response of a PDX model or batch

Description

response computes response of a PDX model or batch

Usage

```
response(object, model.id = NULL, batchName = NULL, expDig = NULL,
  res.measure = c("angle", "mRECIST", "AUC", "angle", "abc"),
  treatment.only = TRUE, max.time = NULL, impute.value = TRUE,
  min.time = 10, concurrent.time = TRUE, vol.normal = F, verbose = TRUE)
```

24 selectModelIds

Arguments

object Xeva object

model.id model id for which response to be computed batchName batch id for which response to be computed

expDig experiment design for which response to be computed

res.measure response measure

treatment.only Default FALSE. If TRUE give data only for non-zero dose periode (if dose data

avalible)

max.time maximum time for data

impute.value default FALSE. If TRUE will impute the values min.time default **10** days. Used for mRECIST computation

concurrent.time

default FALSE. If TRUE will cut the batch data such that control and treatment

will end at same time point

vol.normal default TRUE will use

verbose default TRUE will print infromation

Value

returns model or batch response object

Examples

```
data(pdxe)
response(pdxe, model.id="X.1270.LK36", res.measure="mRECIST")
response(pdxe, model.id="X.1270.LK36", res.measure="AUC")

response(pdxe, batchName="X-1270.HDM201", res.measure="angle")
ed <- list(batch.name="b1", treatment=c("X.1228.LC61.pael","X.1228.pael"), control=c("X.1228.uned"))
response(pdxe, expDig=ed, res.measure="angle")</pre>
```

selectModelIds

To select model ids based on drug name and/or tissue

Description

To select model ids based on drug name and/or tissue

Usage

```
selectModelIds(object, drug = NULL, drug.match.exact = TRUE,
   tissue = NULL)
```

sensitivity 25

Arguments

object The XevaSet drug Name of the drug

drug.match.exact

Default TRUE

tissue Tumor type. Default NULL

Value

a vector with the matched model.ids

Examples

```
data(pdxe)
selectModelIds(pdxe, drug="paclitaxel", drug.match.exact=TRUE, tissue="BRCA")
```

sensitivity

Get sensitivity for an Xeva object

Description

Given a Xeva object, it will return sensitivity datafram

Usage

```
sensitivity(object, type = c("model", "batch"), sensitivity.measure = NULL)
```

Arguments

object The Xeva dataset

type sensitivity type (either model or batch)

sensitivity.measure

Name of the sensitivity.measure. Default NULL, will return all

Value

a data.fram with model or batch id and sensitivity values

```
data(cm.pdxe)
head(sensitivity(cm.pdxe, type="batch"))
head(sensitivity(cm.pdxe, type="model"))
```

26 setSensitivity

seth	Response	

setResponse sets response of an Xeva object

Description

setResponse sets response of an Xeva object

Usage

```
setResponse(object, res.measure = c("mRECIST", "slope", "AUC", "angle",
   "abc"), min.time = 10, treatment.only = TRUE, max.time = NULL,
   vol.normal = TRUE, impute.value = TRUE, concurrent.time = TRUE,
   verbose = TRUE)
```

Arguments

object Xeva object

res.measure response measure, multipal measure allowed min.time default 10 days. Used for mRECIST computation

treatment.only Default FALSE. If TRUE give data only for non-zero dose periode (if dose data

avalible)

max.time maximum time for data vol.normal default TRUE will use

impute.value default FALSE. If TRUE will impute the values

concurrent.time

default FALSE. If TRUE will cut the batch data such that control and treatment

will end at same time point

verbose default TRUE will print infromation

Value

returns updated Xeva object

setSensitivity

add new sensitivity in a Xeva object

Description

This will add a add new sensitivity in a Xeva object

Usage

```
setSensitivity(object, type, name, value)
```

show,XevaSet-method 27

Arguments

object The Xeva dataset

type sensitivity type (either model or batch)

name of new sensitivity column

value a vector of values. If vector is named, values will be filled by name. Missing

values will be NA

Value

a Xeva object with updated with updated sensitivity

Examples

```
data(pdxe)
s <- sensitivity(pdxe, "model")
pdxe <- setSensitivity(pdxe, "model", "mR", s$mRECIST)</pre>
```

show, XevaSet-method

A method to display object for "show" setGeneric is already defined

Description

A method to display object for "show" setGeneric is already defined

Usage

```
## S4 method for signature 'XevaSet'
show(object)
```

slope

Computes slope

Description

slope returns the slope for given time and volume data

Usage

```
slope(time, volume, degree = TRUE)
```

Arguments

time vector of time volume vector of volume

degree default TRUE will give angle in Degree and FALSE will return Radians

28 subsetXeva

Value

returns the slope and a fit object

Examples

```
time <- c(0, 3, 7, 11, 18, 22, 26, 30, 32, 35)
volume<- c(250.8, 320.4, 402.3, 382.6, 384, 445.9, 460.2, 546.8, 554.3, 617.9)
sl <- slope(time, volume)
par(pty="s")
xylimit <- range(c(time, volume))
plot(time, volume, type = "b", xlim = xylimit, ylim = xylimit)
abline(lm(volume~time))</pre>
```

subsetXeva

Subset Xeva object

Description

Subset Xeva object

Usage

```
subsetXeva(object, ids, id.name, keep.batch = TRUE)
```

Arguments

object the XevaSet

ids ids to be selected for

id.name names of the id

keep.batch Default is TRUE. If FALSE will remove all the other model.ids from the ex-

periemt design that do not belong to selection

Value

New Xeva object

```
data(pdxe)
df <- subsetXeva(pdxe, ids = c("X-1008", "X-1027"), id.name="patient.id", keep.batch=TRUE)</pre>
```

summarizeMolecularProfiles

```
summarizeMolecularProfiles
```

summarizeMolecularProfiles

Description

summarizeMolecularProfiles

Usage

```
summarizeMolecularProfiles(object, drug, mDataType, tissue = NULL,
  sensitivity.measure = NULL, unique.model = TRUE, batchName = NULL,
  expDig = NULL)
```

Arguments

object The XevaSet
drug Name of the drug

mDataType character, which one of the molecular data types is needed

tissue default NULL will return all across all tissue

sensitivity.measure

default NULL will return all sensitivity measure

unique.model default TRUE will return only one sequncing id, in case where one model id

mapes to several sequencing ids

Details

- If a sequencing sample belong to multipal models, summarizeMolecularProfiles will creat saperate column for each model.
- All the models without the moleculer data will be removed from the output expression set.

Value

A ExpressionSet where sample names are model.id and sensitivity measure will be present in pData

30 summarizeResponse

summarizeResponse

Summarize Response of PDXs

Description

Summarize Response of PDXs.

Usage

```
summarizeResponse(object, response.measure = "mRECIST", model.id = NULL,
batch.id = NULL, group.by = "patient.id", summary.stat = c(";", "mean",
   "median"), tissue = NULL)
```

Arguments

object The XevaSet

response.measure

character. Which response measure to use? Use the responseMeasures func-

tion to find out what measures are available for each Xeva set.

group.by default patient.id. How the models should be grouped togather. See details

summary.stat which summary method to use if multipal ids were found

batch.name a vector of batch names. Default NULL will return all batchs

Details

There can be two types of response measure

- per model response : One response value for each Model, e.g. mRECIST_recomputed for each model
- per batch response : One response value for each Batch, e.g. angle between treatment and control groups

In case of per model response output columns will be model.id (or group.by). For per batch response group.by value can be "batch.name".

Value

a matrix with rows as drug names, coulmn as group. by and each cell contains response. measure for the pair.

waterfall 31

wate	rfs	11
wate	110	111

waterfall plot creates waterfall plot for a given drug

Description

waterfall plot creates waterfall plot for a given drug

Usage

```
waterfall(object, drug, res.measure, group.by = NULL, tissue = NULL,
model.id = NULL, model.type = NULL, type.color = "#cc4c02",
legend.name = NULL, yname = NULL, title = NULL, sort = TRUE)
```

Arguments

object the XevaSet drug name of the drug

res.measure PDX model response measure

group.by group response data

tissue tissue

model.id which model.id to plot. Default is NULL will plot all models

model.type type of model such as mutated or wild type

type.color a list with colors used for each type

legend.name name of the legend yname name for y axis title title of the plot

sort default TRUE will sort the data

Index

*Topic datasets	plotmRECIST, 22
brca.pdxe,7	print.XevaSet, 23
pdxe, 19	
PDXMI, 20	response, 23
ABC, 3	selectModelIds, 24
addExperimentalDesign, 4	sensitivity, 25
angle, 4	setResponse, 26
AUC, 5	setSensitivity, 26
,	show, XevaSet-method, 27
batchNames, 6	slope, 27
brca.pdxe, 7	subsetXeva, 28
	summarizeMolecularProfiles, 29
creatXevaSet, 7	summarizeResponse, 30
drugInfo, 8	waterfall, 31
drugInfo<-,8	
drugSensitivitySig,9	
expDesign, 10	
expDesignInfo, 11	
expDesignInfo<-,11	
geneSensitivityPlot, 12	
getBatchName, 12	
getControls, 13	
getExpDesignDF, 13	
getExperiment, 14	
getMolecularProfiles, 15	
getTreatment, 16	
mapModelSlotIds, 16	
model2BiobaseIdMap, 17	
modelInfo, 18	
modelInfo<-, 18	
mRECIST, 19	
PDX_MI, 20	
pdxe, 19	
PDXMI, 20	
plotBatch, 21	