"大数据算法"作业 2 (计分) 2023 年春

截止时间: 2023 年 4 月 17 日 17:59

习题 1 (15 分)

令 $\sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ 为矩阵 A 的奇异值分解 (SVD), 其中 $A \in \mathbb{R}^{n \times d}$ 。证明 $\|\boldsymbol{u}_1^{\top} A\| = \sigma_1$ 和 $\|\boldsymbol{u}_1^{\top} A\| = \max_{\|\boldsymbol{u}\|=1} \|\boldsymbol{u}^{\top} A\|$ 。 注: 对于向量 $\boldsymbol{x} \in \mathbb{R}^d$, $\|\boldsymbol{x}\| = \sqrt{\sum_{i=1}^d x_i^2}$ 。

习题 2 (25 分)

令 A 为一个 $n \times d$ 的矩阵, 其奇异值分解 (SVD) 为 $A = \sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\top}$ 。令 $\boldsymbol{x} \in \mathbb{R}^d$ 为一个向量, 满足 $\|\boldsymbol{x}\|_2 = 1$ 并且对于某个 $\delta > 0$,有 $|\boldsymbol{x}^{\top} \boldsymbol{v}_1| \geq \delta$ 。假设 $\sigma_2 < \frac{1}{2}\sigma_1$ 。令 \boldsymbol{w} 为经过 $k = \log(1/\varepsilon\delta)$ 次幂法迭代后得到的向量,即

$$\boldsymbol{w} = \frac{(A^{\top}A)^k \boldsymbol{x}}{\|(A^{\top}A)^k \boldsymbol{x}\|_2}.$$

证明 w 在第一个奇异向量 v_1 上投影的长度至少为 $1-\varepsilon$, 即 $|w^{\top}v_1| \ge 1-\varepsilon$ 。

习题 3 (20 分)

假设 k < d。假设 $U \in \mathbb{R}^{d \times k}$ 是一个随机矩阵, 其第 (i,j) 个元素记作 u_{ij} 。这里 $\{u_{ij}\}$ 是独立的随机变量, 满足:

$$u_{ij} = \begin{cases} 1 & \text{if } \frac{1}{2} \text{ in } \mathbb{M}^{\frac{1}{2}}, \\ -1 & \text{if } \frac{1}{2} \text{ in } \mathbb{M}^{\frac{1}{2}}. \end{cases}$$

我们使用矩阵 U 作为一个随机投影矩阵。也就是说,对于一个行向量 $\mathbf{a} \in \mathbb{R}^d$,我们把它映射到

$$f(\boldsymbol{a}) = \frac{1}{\sqrt{k}} \boldsymbol{a} U.$$

对于 $1 \le j \le k$ 中的每个 j, 定义 $b_j = [f(\mathbf{a})]_j$, 即 b_j 是 $f(\mathbf{a})$ 的第 j 个元素。

- 计算 E[b_j]。
- 计算 E[b_i²]。
- 计算 E[||f(a)||²]。

习题 4 (20 分)

在本课程中,我们学习了一个解决 (c,r)-ANN 问题的算法 (记作 A),其成功概率至少为 0.6。也就是说,针对一个查询点 x,如果数据集合 \mathcal{P} 中存在一个点 a^* 满足 $d(x,a^*) \leq r$,那么算法 A 将会以至少 0.6 的概率输出某个点 $a \in \mathcal{P}$,满足 $d(x,a) \leq c \cdot r$ 。

假设 $\delta \in (0,1)$ 。使用上述算法 \mathcal{A} 作为一个子程序,给出一个成功概率至少为 $1-\delta$ 的新算法 \mathcal{B} 。也就是说,对于上述查询点 x,算法 \mathcal{B} 将会以至少 $1-\delta$ 的概率输出某个点 $a \in \mathcal{P}$,满足 $d(x,a) \leq c \cdot r$ 。你的算法应该使用尽可能少的查询时间。假设 \mathcal{A} 的查询时间是 $T_{\mathcal{A}}$,说明你的算法的正确性和查询时间。

习题 5 (20 分)

假设 $\alpha \in (0,1]$ 。假如我们将 (基本的) Morris 算法修改如下:

- (a) 初始化 $X \leftarrow 0$.
- (b) 对于每次更新, 以 $\frac{1}{(1+\alpha)^X}$ 的概率使 X 增加 1.
- (c) 对于查询, 输出 $\tilde{n} = \frac{(1+\alpha)^X 1}{\alpha}$.

记 X_n 为上述算法中 n 次更新以后的 X。令 $\tilde{n} = \frac{(1+\alpha)^{X_n}-1}{\alpha}$ 。

- 计算 $E[\tilde{n}]$ 并给出 $Var[\tilde{n}]$ 的一个上界。
- 假设 $\varepsilon, \delta \in (0,1)$ 。基于上述算法(你可以任意指定 α 的具体值),给出一个新算法,使得新算法以至少 $1-\delta$ 的概率输出一个估计值 \tilde{n} ,满足 $|\tilde{n}-n| \leq \varepsilon n$ 。说明你的算法的正确性与(**最坏**)空间复杂度(即 算法使用的比特数)。你的算法只需要满足以至少 $1-\delta'$ 的概率,其**最坏**空间复杂度为关于 $\frac{1}{\delta}$, $\frac{1}{\delta'}$, $\frac{1}{\varepsilon}$ 和 $\log\log n$ 的多项式(即 $\operatorname{poly}(\frac{1}{\delta},\frac{1}{\delta'},\frac{1}{\varepsilon},\log\log n)$)。

习题 6 (附加题 10 分)

在本课程中,我们学习了一个基于降维来解决 (c,r)-ANN 问题的算法 (见 Lecture 7 讲义)。假设 $0 。证明对于任意 <math>\boldsymbol{x}, \boldsymbol{y} \in \{0,1\}^d$,都有

$$\Pr[(U\boldsymbol{x})_i \neq (U\boldsymbol{y})_i] = \frac{1}{2} \left(1 - (1 - 2p)^{\operatorname{Ham}(\boldsymbol{x}, \boldsymbol{y})} \right),$$

其中 U 是一个 $k \times d$ 的随机矩阵, 其中的每个元素都是独立同分布的, 满足:

$$u_{ij} = \begin{cases} 1 & \text{if } p \text{ in } m \neq n, \\ 0 & \text{if } 1 - p \text{ in } m \neq n, \end{cases}$$

并且所有的运算都在有限域 GF(2) 中进行 (即加法和乘法的结果都要模 2)。

提示: 你可以考虑使用如下事实: 假设 $\boldsymbol{w} \in \{0,1\}^d$ 为一个随机向量, 其中的每个元素 w_i 都是独立同分布的, 并且对于每个 $i \leq d$, 都有 $\Pr[w_i = 1] = \Pr[w_i = 0] = \frac{1}{2}$ 。那么如果 $\boldsymbol{x} \neq \boldsymbol{y}$,有 $\Pr[\boldsymbol{w}^\top \boldsymbol{x} \neq \boldsymbol{w}^\top \boldsymbol{y}] = \frac{1}{2}$ 。