Prefix Probabilities for Linear Indexed Grammars

TAG+ 4, IRCS/University of Pennsylvania

Mark-Jan Nederhof (DFKI)

Anoop Sarkar (UPenn)

Giorgio Satta (Univ. di Padova)

Prefix Probabilities

- Language model: given a string a_1, \ldots, a_{i-1} , a_i can be any word in the vocabulary Σ , what is $P(a_i \mid a_1, \ldots, a_{i-1})$?
- Standard techniques use trigram models: $P(a_i \mid a_{i-2}, a_{i-1})$
- A stochastic grammar can be used by computing the prefix probability:

$$\sum_{w \in \Sigma^*} P(a_1, \dots, a_n w)$$

Stochastic Tree Adjoining Grammars

Let prefix = abd

Problem

- Derivations are a combination of two kinds of subderivations:
 - 1. potentially unbounded subderivations, independent of input
 - 2. bounded subderivations, depend on input symbols
- Problem: how to partition derivations uniquely into subderivations.
- Without unique partitions, algorithm will return incorrect probabilities.

TAG Derivations and LIGs

- CFGs with stack symbols, Indexed Grammars: $A[..\eta_r] \rightarrow B[..\eta_1]C[..\eta_2]$
- Unique rhs gets stack = Linear Indexed Grammars: $A[..\eta_r] \rightarrow B[..\eta_1]C[\$\eta_2]$
- LIGs and TAGs are weakly equivalent.
- Given a TAG, a strongly equivalent LIG can be built.
- LIGs offer a convenient way to denote TAG derivations.

TAG Derivations and LIGs

vertical subderivation

Summary

- LIGs offer a convenient way to denote TAG derivations.
- Potentially unbounded subderivations, independent of input. Probability is computed off-line.
- Bounded subderivations, depends on input symbols. Inside probability computed as prefix is recognized.
- Algorithm partitions derivations uniquely into subderivations.