§3. Векторное произведение двух векторов

Определение 3.1. Упорядоченная тройка некомпланарных векторов \vec{a} , \vec{b} , \vec{c} , приведённых к общему началу, называется *правоориентированной* или *правой* (соответственно *певой*), если поворот от вектора \vec{a} к вектору \vec{b} на наименьший угол виден из конца вектора \vec{c} происходящим против (по) часовой стрелке (рис. 3.1, 3.2).

Рис. 3.1. Тройка векторов $\vec{a}, \vec{b}, \vec{c}$ – правая Рис. 3.2. Тройка векторов $\vec{a}, \vec{b}, \vec{c}$ – левая

Замечание 3.1. Угол ϕ поворота от \vec{a} к \vec{b} в этом определении, очевидно, равен по величине углу между векторами \vec{a} и \vec{b} , $\phi = (\vec{a}, \vec{b})$, и поэтому $0 < \phi < \pi$. Он не может быть равным 0 или π , так как \vec{a} , \vec{b} , \vec{c} — некомпланарные векторы и, следовательно, \vec{a} , \vec{b} — неколлинеарные векторы.

Замечание 3.2. В соответствии с ориентацией ортов декартовой прямоугольной системы координат, последняя называется *правой* или *левой*. В дальнейшем, если не оговорено противное, используется правая система координат.

Определение 3.2. Векторным произведением вектора \vec{a} на вектор \vec{b} называется вектор \vec{c} , удовлетворяющий следующим трем условиям:

- 1. $|\vec{c}| = |\vec{a}| |\vec{b}| \sin(\vec{a}, \vec{b});$
- 2. вектор \vec{c} перпендикулярен векторам \vec{a} и \vec{b} ;
- 3. векторы $\vec{a}, \vec{b}, \vec{c}$ образуют правую тройку.

Замечание 3.3. Если векторы \vec{a} и \vec{b} коллинеарны или хотя бы один из них нулевой, то их векторное произведение \vec{c} считается равным нульвектору. В самом деле, в этом случае $|\vec{c}| = 0$, так

как либо $\sin(\vec{a}, \vec{b}) = 0$, либо $|\vec{a}| = 0$, либо $|\vec{b}| = 0$.

Для векторного произведения векторов \vec{a} и \vec{b} принято обозначение: $\vec{a} \times \vec{b}$, иногда $[\vec{a}, \vec{b}]$.

Пример 3.1. Даны векторы $\vec{a} = \vec{i} + \vec{j}$, $\vec{b} = -\vec{i} + \vec{j}$, где \vec{i} , \vec{j} – орты прямоугольного базиса. Найти векторное произведение $\vec{a} \times \vec{b}$ и изобразить его на чертеже.

 $\vec{a} \times \vec{b} = 2\vec{k}$ \vec{k} \vec{i} \vec{j}

Рис. 3.3. К примеру 3.1

Рассмотрим прямоугольный базис $(\vec{i},\vec{j},\vec{k})$ и построим векторы \vec{a} и \vec{b} (рис. 3.3). Так как $(\vec{a},\vec{b}) = \pi/2$ и $|\vec{a}| = |\vec{b}| = \sqrt{2}$, то $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\vec{a},\vec{b}) = 2$. Вектор \vec{k} перпендикулярен векторам \vec{a} и \vec{b} , а тройка \vec{a},\vec{b},\vec{k} — правая (рис. 3.3). Поэтому векторы $\vec{a} \times \vec{b}$ и \vec{k} коллинеарны и сонаправлены, и $\vec{a} \times \vec{b} = \frac{|\vec{a} \times \vec{b}|}{|\vec{k}|} \vec{k} = 2\vec{k}$. ◀

Векторное произведение применяют, например, в физике для вычисления

Рис. 3.4. К понятию момента силы \vec{F} относительно точки O

момента \vec{M} силы \vec{F} относительно данной точки O, который по определению равен $\vec{r} \times \vec{F}$, где \vec{r} – радиус-вектор точки P – точки приложения силы \vec{F} , отложенный от точки O (рис. 3.4). Таким образом,

$$\vec{M} = \vec{r} \times \vec{F} \,. \tag{3.1}$$

Свойства векторного произведения

- **1.** Модуль векторного произведения двух неколлинеарных векторов численно равен площади параллелограмма, построенного на этих векторах, как на сторонах.
- 2. Векторное произведение ненулевых векторов равно нуль-вектору тогда и только тогда, когда его сомножители коллинеарны (линейно зависимы).

Следствие: $\vec{a} \times \vec{a} = \vec{0}$ для любого вектора \vec{a} .

- **3.** $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (антикоммутативность).
- **4.** $(\lambda \vec{a}) \times \vec{b} = \lambda (\vec{a} \times \vec{b})$.
- **5.** $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ (дистрибутивность).
- ▶1. Как известно из планиметрии, площадь параллелограмма S равна произведению длин его смежных сторон на синус угла между ними. Поэтому имеем $S = |\vec{a}| |\vec{b}| |\widehat{\sin}(\vec{a}, \vec{b}) = |\vec{a} \times \vec{b}|$.
- **2.** Из равенства $\vec{a} \times \vec{b} = \vec{0}$ следует коллинеарность этих векторов. Действительно, предположив, что \vec{a} и \vec{b} неколлинеарны из определения 3.2 (условие 1) получаем $\vec{a} \times \vec{b} \neq \vec{0}$, поскольку в этом случае $\sin(\vec{a}, \vec{b}) \neq 0$, $|\vec{a}| \neq 0$, $|\vec{b}| \neq 0$. Если векторы \vec{a} и \vec{b} коллинеарны, то $(\vec{a}, \vec{b}) = 0$ или π , поэтому $\sin(\vec{a}, \vec{b}) = 0$, либо один из векторов нулевой. В любом из этих случаев имеем $\vec{a} \times \vec{b} = \vec{0}$.

 \vec{b} , \vec{a} , $\vec{b} \times \vec{a}$ — правая \vec{a} , \vec{b} , $\vec{a} \times \vec{b}$ — правая \vec{b} , \vec{a} , $\vec{a} \times \vec{b}$ — левая тройка тройка

Рис. 3.5. Иллюстрация к доказательству свойства 3 – свойства антикоммутативности векторного произведения

- **3.** Доказываемое равенство очевидно, если \vec{a} и \vec{b} коллинеарны или один из них нулевой. Далее предполагаем, что \vec{a} и \vec{b} неколлинеарные и, следовательно, ненулевые векторы. Длины векторов $\vec{a} \times \vec{b}$ и $\vec{b} \times \vec{a}$ равны в силу первого условия из определения $\vec{a} \cdot \vec{b} \cdot \vec{a}$, так как $(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$. Они коллинеарны, поскольку перпендикулярны одной и той же паре неколлинеарных векторов. Остаётся показать, что они противонаправлены. В самом деле, тройки векторов \vec{b} , \vec{a} , $\vec{b} \times \vec{a}$ и \vec{a} , \vec{b} , $\vec{a} \times \vec{b}$ обе правые по определению $\vec{a} \cdot \vec{b} \cdot \vec{a}$ и $\vec{b} \cdot \vec{a}$ противонаправлены.
- **4.** Доказываемое соотношение очевидно, если векторы \vec{a} и \vec{b} коллинеарны, либо один из них нулевой, либо $\lambda = 0$. Для неколлинеарных (и, следовательно,

ненулевых) векторов \vec{a} и \vec{b} и $\lambda \neq 0$ покажем, что вектор $\lambda(\vec{a} \times \vec{b})$ является векторным произведением векторов $\lambda \vec{a}$ и \vec{b} . Имеем

$$|\lambda(\vec{a}\times\vec{b})| = |\lambda|\cdot|\vec{a}\times\vec{b}| = |\lambda|\cdot|\vec{a}|\cdot|\vec{b}|\sin(\vec{a},\widehat{\vec{b}}) = |\lambda\vec{a}|\cdot|\vec{b}|\sin(\vec{a},\widehat{\vec{b}}).$$

Углы (\vec{a}, \vec{b}) и $(\lambda \vec{a}, \vec{b})$ либо совпадают (при $\lambda > 0$, рис. 3.6), либо в сумме равны π (при $\lambda < 0$, рис. 3.6), отсюда $\sin(\vec{a}, \vec{b}) = \sin(\lambda \vec{a}, \vec{b})$. Окончательно получаем $|\lambda(\vec{a} \times \vec{b})| = |\lambda \vec{a}| \cdot |\vec{b}| \sin(\lambda \vec{a}, \vec{b}) = |(\lambda \vec{a}) \times \vec{b}|$. Условие 1 из определения 3.2 выполнено.

Условие 2 также выполнено, ибо вектор $\lambda(\vec{a} \times \vec{b})$ перпендикулярен векторам \vec{a} и \vec{b} , поэтому перпендикулярен и векторам $\lambda \vec{a}$ и \vec{b} . Наконец, векторы $\lambda \vec{a}$, \vec{b} и $\lambda(\vec{a} \times \vec{b})$ при любом $\lambda \neq 0$ образуют правую тройку (рис. 3.7).

Свойство 5 будет доказано в §4 настоящей главы.

Рис. 3.7. Иллюстрация к доказательству св. 4 векторного произведения **Пример 3.2.** Найти площадь параллелограмма, построенного на векторах $\vec{a} = 2\vec{p} - \vec{q}$ и $\vec{b} = \vec{p} + 3\vec{q}$, если $|\vec{p}| = 2$, $|\vec{q}| = 3$, а $(\widehat{\vec{p}}, \widehat{\vec{q}}) = \pi/6$.

• Искомая площадь $S = |\vec{a} \times \vec{b}|$ (свойство 1), $\vec{a} \times \vec{b} = (2\vec{p} - \vec{q}) \times (\vec{p} + 3\vec{q})$. Используем свойство 5: $\vec{a} \times \vec{b} = (2\vec{p}) \times \vec{p} - \vec{q} \times \vec{p} + (2\vec{p}) \times (3\vec{q}) - \vec{q} \times (3\vec{q})$. По следствию из свойства 2: $(2\vec{p}) \times \vec{p} = \vec{q} \times (3\vec{q}) = \vec{0}$, а по свойству 4: $(2\vec{p}) \times (3\vec{q}) = 6(\vec{p} \times \vec{q})$. В результате получаем равенство $\vec{a} \times \vec{b} = -\vec{q} \times \vec{p} + 6(\vec{p} \times \vec{q})$. Поменяем местами сомножители в первом слагаемом в правой части (3.2). В силу свойства 3 это слагаемое изменяет знак. После приведения подобных членов приходим к соотношению $\vec{a} \times \vec{b} = 7(\vec{p} \times \vec{q})$. Теперь имеем

$$S = |7(\vec{p} \times \vec{q})| = 7|\vec{p} \times \vec{q}| = 7|\vec{p}| |\vec{q}| \sin(\vec{p}, \vec{q}) = 7 \cdot 2 \cdot 3 \cdot 1/2 = 21$$
 (кв. ед.).