OBJECTIFS 👌

- Découvrir les sécantes à une courbe passant par un point donné, et faire le lien avec le taux de variation en un point.
- Définir la tangente à une courbe en un point en tant que position limite des sécantes passant par ce point.
- Découvrir la notion de nombre dérivé en un point, défini comme limite du taux de variation en ce point.
- Connaître la formule de l'équation réduite de la tangente d'une fonction en un point.

Tangentes

1. Sécante à une courbe

À RETENIR 99

Définition

Soit f une fonction dont on note \mathscr{C}_f la courbe représentative. On appelle **sécante** à \mathscr{C}_f toute droite passant par deux points distincts $A(x_A; y_A)$ et $B(x_B; y_B)$ de \mathscr{C}_f . Pour rappel, le **coefficient directeur** de cette sécante est donné par la formule

À RETENIR 99

Définition

Soit f une fonction définie sur un intervalle I et soient $a, b \in I$ distincts. On appelle **taux de variation** ou **taux d'accroissement** de f entre a et b, le quotient

$$\frac{f(b) - f(a)}{b - a}$$

c'est aussi le coefficient directeur de la sécante à \mathscr{C}_f aux points de coordonnées (a; f(a)) et (b; f(b)).

EXERCICE 1

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 4$.

2. Tangente en un point

À RETENIR 99

Définition

Soit f une fonction définie sur un intervalle et « suffisamment régulière » et soient deux points A et B situés sur la courbe \mathscr{C}_f . Quand B se rapproche de A, la sécante (AB) semble se rapprocher d'une droite limite « collée » à \mathscr{C}_f .

Cette droite s'appelle la **tangente** à la courbe \mathscr{C}_f au point A. Elle est unique : on ne peut pas tracer deux tangentes différentes à une courbe en un même point.

EXERCICE 2

On a tracé la courbe représentative d'une fonction f ci-contre ainsi que sa tangente au point d'abscisse 1.

1. Déterminer le coefficient directeur et l'ordonnée à l'origine de cette tangente.

2. Quelle est son équation réduite?

With a mating the state of the

Nombre dérivé

À RETENIR 99

Définition

Soit f une fonction définie sur un intervalle I et soit $a \in I$. On note \mathcal{T}_a la tangente à \mathcal{C}_f au point de coordonnées (a; f(a)) lorsqu'elle existe.

On appelle **nombre dérivé** de f en a le coefficient directeur de \mathcal{T}_a . On le note f'(a).

EXERCICE 3

À RETENIR 99

Propriété

Soit f une fonction définie sur un intervalle I et soit $a \in I$. Alors, une équation de la tangente au point (a; f(a)) est

$$y = f'(a)(x - a) + f(a)$$

√ Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/nombre-derive/#correction-4

Ш

Interprétation

À RETENIR 99

Propriétés

Soit f une fonction définie sur un intervalle I et soient $a,b \in I$. Alors :

- 1. le taux de variation de f entre a et b correspond à la **vitesse moyenne** de croissance de f entre a et b;
- **2.** f'(a) correspond à la **vitesse instantanée** de le croissance de f en a.

EXERCICE 5

Sur le graphique ci-dessous, on observe la distance d parcourue en mètres par un sprinteur en fonction du temps en secondes.

Distance parcourue (en m)

- **2.** Estimer graphiquement la vitesse instantanée du coureur à 5 sec.

◆ Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/nombre-derive/#correction-5.