

Aufgaben zu Riemannsche Flächen - WS 2025/26

9. Blatt

Aufgabe 27: Zeigen Sie den Residuensatz auf \mathbb{CP}^1 mit Hilfe des Residuensatzes aus der Funktionentheorie.

Hinweis: Wählen Sie einen geeigneten Integrationsweg auf $\mathbb{CP}^1 = \mathbb{C} \sqcup \{\infty\}$.

Aufgabe 28: Sei $f:X\to\mathbb{CP}^1$ eine nicht-konstante, holomorphe Abbildung, X kompakte Riemannsche Fläche. Wir wissen (aus der Überlagerungstheorie), dass jeder Wert $c\in\mathbb{CP}^1$ gleich oft angenommen wird (mit Vielfachheit). Wie folgt das auch aus dem Residuensatz?

Aufgabe 29: Sei X eine Riemannsche Fläche und γ ein geschlossener Weg in X, der weder Null- noch Polstelle einer meromorphen Funktion $f \in \mathcal{M}(X)$ trifft. Zeigen Sie, dass

$$\int_{\gamma} \frac{df}{f} \in 2\pi i \mathbb{Z}$$

gilt.

Aufgabe 30: Sei $\Gamma = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2 \subset \mathbb{C}$ ein vollständiges Gitter und $T = \mathbb{C}/\Gamma$ der entsprechende Torus. Zeigen Sie, dass für eine meromorphe Funktion $f \in \mathcal{M}(T)$ gilt:

$$\sum_{p \in T} \nu_p(f) \cdot p = 0 \in T,$$

wobei $\nu_p(f)$ die Null-/Polstellenordnung¹ von f bei p als doppelt-periodische meromorphe Funktion auf $\mathbb C$ bezeichnet.

Hinweis: Beachte, dass $T=\mathbb{C}/\Gamma$ mit der von \mathbb{C} induzierten Addition eine abelsche Gruppe ist. Zudem ist die meromorphe 1-Form

$$\frac{z \cdot f'(z)}{f(z)} \, dz$$

ganz hilfreich zu sein — dabei ist f als doppelt-periodische, meromorphe Funktion zu lesen, wenn von f'(z) die Rede ist.

 $^{^1\}text{Beachten Sie den Unterschied zur Definition der Ordnung einer holomorphen Abbildung }g:X\to Y\text{ (§3), bei der wir zur Definition Karten }h\text{ für }X\text{ und }k\text{ für }Y\text{ gewählt haben, so dass }h(p)=0\text{ und }k(f(p))=0\text{. Damit ist }ordp(f)\geq 1\text{. Im Gegensatz dazu ist }\nu_p(f)=0\text{, wenn }f\text{ dort keine Null-/Polstelle hat. Man könnte das auch so ausdrücken, dass wir hier auf }Y=\mathbb{CP}^1\text{ im Gegensatz zur Wahl einer Karte }k\text{ mit }k(f(p))=0\text{ immer eine der zwei Standardkarten auf }\mathbb{CP}^1\text{, also id auf }\mathbb{C}\text{ und }\frac{1}{z}\text{ auf }\mathbb{CP}^1\setminus\{0\}\text{, verwenden.}$