| ${\mathcal T}_{1^-}^{\#1}{}_{\alpha}$                                                                | 0                                         | 0                                 | 0                                  | $-\frac{2i\sqrt{2}k}{a_0(2+k^2)}$      | $-\frac{ik(4+k^2)}{a_0(2+k^2)^2}$                   | $\frac{i k (6+5 k^2)}{\sqrt{6} a_0 (2+k^2)^2}$  | $-\frac{i\sqrt{\frac{5}{6}} k}{a_0 (2+k^2)}$                    | $\frac{2ik(3+k^2)}{\sqrt{3}a_0(2+k^2)^2}$     | $-\frac{i}{a_0} \sqrt{\frac{2}{3}} k$        | $\frac{2k^2}{a_0(2+k^2)^2}$                    |
|------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------|------------------------------------|----------------------------------------|-----------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------|
| $\Delta_{1}^{\#6}{}_{\alpha}$                                                                        | 0                                         | 0                                 | 0                                  | 0                                      | $-\frac{k^2}{\sqrt{6} \ a_0 (2+k^2)}$               | $\frac{1}{-2a_0 - \frac{8a_0}{2+3k^2}}$         | $\frac{\sqrt{5}}{6a_0}$                                         | $-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$   | 340                                          | $i \sqrt{\frac{2}{3}} k$ $2a_0 + a_0 k^2$      |
| $\Delta_{1}^{\#5}{}_{\alpha}$                                                                        | 0                                         | 0                                 | 0                                  | $\sqrt{\frac{2}{3}} k^2$ $a_0 (2+k^2)$ | $\frac{k^2 (5+2k^2)}{\sqrt{3} a_0 (2+k^2)^2}$       | $\frac{-2+k^2}{3\sqrt{2} a_0 (2+k^2)^2}$        | $\sqrt{\frac{5}{2}}$ $-\frac{\sqrt{\frac{5}{2}}}{6a_0+3a_0k^2}$ | $\frac{2(17+14k^2+3k^4)}{3a_0(2+k^2)^2}$      | $-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$  | $-\frac{2ik(3+k^2)}{\sqrt{3}a_0(2+k^2)^2}$     |
| $\Delta_{1^-}^{\#4}{}_{\alpha}$                                                                      | 0                                         | 0                                 | 0                                  | 0                                      | $-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$ | $\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$    | $\frac{1}{12 a_0}$                                              | $\sqrt{\frac{5}{2}}$ - $6a_0 + 3a_0 k^2$      | <u>√5</u><br>6 a 0                           | $i \sqrt{\frac{5}{6}} k$ $2 a_0 + a_0 k^2$     |
| $\Delta_{1}^{\#3}{}_{\alpha}$                                                                        | 0                                         | 0                                 | 0                                  | $-\frac{2k^2}{\sqrt{3}a_0(2+k^2)}$     | $\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$     | $-\frac{76+52k^2+3k^4}{12a_0(2+k^2)^2}$         | $\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$                    | $\frac{-2+k^2}{3\sqrt{2} \ a_0 \ (2+k^2)^2}$  | $\frac{1}{-2 a_0 - \frac{8 a_0}{2 + 3 k^2}}$ | $-\frac{ik(6+5k^2)}{\sqrt{6}a_0(2+k^2)^2}$     |
| $\Delta_{1}^{\#2}{}_{\alpha}$                                                                        | 0                                         | 0                                 | 0                                  | $\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$ | $\frac{(4+k^2)^2}{2 a_0 (2+k^2)^2}$                 | $\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$ | $-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$             | $\frac{k^2 (5+2k^2)}{\sqrt{3} a_0 (2+k^2)^2}$ | $-\frac{k^2}{\sqrt{6}\;(2a_0+a_0k^2)}$       | $\frac{ik(4+k^2)}{a_0(2+k^2)^2}$               |
| $\Delta_{1^{-}\alpha}^{\#1}$                                                                         | 0                                         | 0                                 | 0                                  | 0                                      | $\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$              | $-\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$           | 0                                                               | $\sqrt{\frac{2}{3}} k^2$ $2 a_0 + a_0 k^2$    | 0                                            | $\frac{2i\sqrt{2}k}{2a_0 + a_0k^2}$            |
| $\Delta_1^{\#3}{}_+\alpha\beta$                                                                      | 0                                         | 0                                 | $\frac{4}{a_0}$                    | 0                                      | 0                                                   | 0                                               | 0                                                               | 0                                             | 0                                            | 0                                              |
| $\Delta_{1}^{\#1}_{\alpha\beta} \; \Delta_{1}^{\#2}_{\alpha\beta} \; \Delta_{1}^{\#3}_{\alpha\beta}$ | $-\frac{2\sqrt{2}}{a_0}$                  | $\frac{2}{a_0}$                   | 0                                  | 0                                      | 0                                                   | 0                                               | 0                                                               | 0                                             | 0                                            | 0                                              |
| $\Delta_1^{\#1}_+ \alpha \beta$                                                                      | 0                                         | $-\frac{2\sqrt{2}}{a_0}$          | 0                                  | 0                                      | 0                                                   | 0                                               | 0                                                               | 0                                             | 0                                            | 0                                              |
|                                                                                                      | $\Delta_{1}^{\#1} \dagger^{\alpha \beta}$ | $\Delta_{1}^{\#2} + \alpha \beta$ | $\Delta_{1}^{\#3} +^{\alpha\beta}$ | $\Delta_{1}^{\#_{1}} +^{\alpha}$       | $\Delta_{1}^{\#2} +^{lpha}$                         | $\Delta_{1}^{#3} +^{lpha}$                      | $\Delta_{1}^{\#4} +^{\alpha}$                                   | $\Delta_{1}^{\#5} +^{lpha}$                   | $\Delta_{1^{-}}^{\#6} +^{\alpha}$            | ${\mathcal T}_{1^{\text{-}}}^{\#1} +^{\alpha}$ |

|                                            | $\Delta_{3}^{\#1}{}_{\alpha\beta\chi}$ | $\Gamma_{3}^{\#1}{}_{\alpha\beta\chi}$    |                  |  |  |  |
|--------------------------------------------|----------------------------------------|-------------------------------------------|------------------|--|--|--|
| $\Delta_3^{\#1} \dagger^{\alpha\beta\chi}$ | $-\frac{2}{a_0}$                       | $\Gamma_3^{#1} \dagger^{\alpha\beta\chi}$ | $-\frac{a_0}{2}$ |  |  |  |

| $\Delta_{0}^{\#1}$       | 0                                            | 0                                            | 0                                             | 0                                             | 0                                              | 0                                              | $-\frac{2}{a_0}$          |
|--------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------|
| $\tau_{0}^{#2}$          | $-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$         | $\frac{72ik}{a_0(16+3k^2)^2}$                | $-\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$        | $\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$ | $\frac{4\sqrt{3}}{16a_0 + 3a_0 k^2}$           | $-\frac{36k^2}{a_0(16+3k^2)^2}$                | 0                         |
| ${\mathcal T}^{\#1}_{0}$ | $\frac{2 \tilde{l} \sqrt{2}}{a_0 k}$         | $-\frac{8i\sqrt{3}}{16a_0k+3a_0k^3}$         | $\frac{8i}{\sqrt{3} (16a_0 k + 3a_0 k^3)}$    | $\frac{8i\sqrt{\frac{2}{3}}}{16a_0k+3a_0k^3}$ | 4<br>a <sub>0</sub> k <sup>2</sup>             | $\frac{4\sqrt{3}}{16a_0 + 3a_0 k^2}$           | 0                         |
| $\Delta_{0}^{\#4}$       | $\sqrt{3} (16a_0 + 3a_0 k^2)$                | $-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$ | $-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$ | $\frac{32(13+3k^2)}{3a_0(16+3k^2)^2}$         | $-\frac{8i\sqrt{\frac{2}{3}}}{16a_0k+3a_0k^3}$ | $-\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$ | 0                         |
| $\Delta_{0}^{\#3}$       | $-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$ | $\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$         | $-\frac{16(35+6k^2)}{3a_0(16+3k^2)^2}$        | $-\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$ | $\frac{8i}{\sqrt{3}(16a_0k+3a_0k^3)}$          | $\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$          | 0                         |
| $\Delta_{0}^{\#2}$       | $4 \sqrt{6} \\ 16a_0 + 3a_0 k^2$             | $-\frac{144}{a_0(16+3k^2)^2}$                | $\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$          | $-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$  | $\frac{8i\sqrt{3}}{16a_0k+3a_0k^3}$            | $-\frac{72ik}{a_0(16+3k^2)^2}$                 | 0                         |
| $\Delta_{0}^{\#1}$       | 0                                            | $\frac{4 \sqrt{6}}{16 a_0 + 3 a_0 k^2}$      | $-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$  | $\frac{8}{\sqrt{3}(16a_0+3a_0k^2)}$           | 2 i √2<br>a 0 k                                | $\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$            | 0                         |
|                          | $\Delta_{0}^{\#1} +$                         | $\Delta_{0}^{#2}$ †                          | Δ#3+                                          | $\Delta_{0}^{\#4}$ †                          | $\mathcal{T}_{0}^{\#1}$ †                      | $\mathcal{T}_{0}^{\#2}$ †                      | $\Delta_{0}^{\#1}\dagger$ |

| Source constraints                                                                                                      |   |
|-------------------------------------------------------------------------------------------------------------------------|---|
| SO(3) irreps                                                                                                            | # |
| $2\mathcal{T}_{0^{+}}^{\#2} - i k \Delta_{0^{+}}^{\#2} == 0$                                                            | 1 |
| $\Delta_{0^{+}}^{#3} + 2 \Delta_{0^{+}}^{#4} + 3 \Delta_{0^{+}}^{#2} == 0$                                              | 1 |
| $6 \mathcal{T}_{1}^{\#1\alpha} - i k (3 \Delta_{1}^{\#2\alpha} - \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha}) == 0$ | 3 |
| $2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$            | 3 |
| Total #:                                                                                                                | 8 |

| Lagrangian density                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $-\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha}_{\alpha}{}^{\beta} \Gamma^{\chi}_{\beta\chi} -$               |
| $\frac{1}{4} a_0 h_{\chi}^{\chi} \partial_{\beta} \Gamma_{\alpha}^{\alpha\beta} + \frac{1}{4} a_0 h_{\chi}^{\chi} \partial_{\beta} \Gamma_{\alpha}^{\alpha\beta} -$ |
| $\frac{1}{2} a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \frac{1}{2} a_0 h_{\beta\chi} \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha}$            |
| Added source term: $h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$                                                  |

| $h_1^{\#1}$                                   | 0                                | 0                              | 0                              | $-\frac{ia_0k}{4\sqrt{2}}$   | 0                            | $\frac{i a_0 k}{4 \sqrt{6}}$   | $-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$ | $\frac{ia_0k}{4\sqrt{3}}$           | $\frac{i a_0 k}{4 \sqrt{6}}$ | 0                                          |
|-----------------------------------------------|----------------------------------|--------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------|---------------------------------------------|-------------------------------------|------------------------------|--------------------------------------------|
| $\Gamma_{1}^{\#6}$                            | 0                                | 0                              | 0                              | 0                            | 0                            | $\frac{a_0}{6}$                | $-\frac{\sqrt{5} a_0}{6}$                   | $\frac{a_0}{6\sqrt{2}}$             | $\frac{5a_0}{12}$            | $-\frac{i a_0 k}{4 \sqrt{6}}$              |
| $\Gamma_1^{\#5}$                              | 0                                | 0                              | 0                              | 0                            | 0                            | $-\frac{a_0}{6\sqrt{2}}$       | $-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$         | 8<br>0 <u>v</u>                     | $\frac{a_0}{6\sqrt{2}}$      | $-\frac{i a_0 k}{4 \sqrt{3}}$              |
| $\Gamma_1^{\#4}$                              | 0                                | 0                              | 0                              | 0                            | 0                            | $\frac{\sqrt{5} a_0}{6}$       | 3<br>3                                      | $-\frac{1}{6}\sqrt{\frac{5}{2}}a_0$ | $-\frac{\sqrt{5} a_0}{6}$    | $\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$ |
| $\Gamma_{1}^{\#3}{}_{\alpha}$                 | 0                                | 0                              | 0                              | 0                            | 0                            | - <u>a0</u>                    | $\frac{\sqrt{5} \ a_0}{6}$                  | $-\frac{a_0}{6\sqrt{2}}$            | $\frac{a0}{6}$               | $-\frac{ia_0k}{4\sqrt{6}}$                 |
| $\Gamma_{1}^{\#2}$                            | 0                                | 0                              | 0                              | $\frac{a_0}{2\sqrt{2}}$      | 0                            | 0                              | 0                                           | 0                                   | 0                            | 0                                          |
| $\Gamma_{1^{-}\alpha}^{\#1}$                  | 0                                | 0                              | 0                              | - <u>a</u> 0<br>4            | $\frac{a_0}{2\sqrt{2}}$      | 0                              | 0                                           | 0                                   | 0                            | $\frac{i a_0 k}{4 \sqrt{2}}$               |
| $\Gamma_1^{\#3}$                              | 0                                | 0                              | 4                              | 0                            | 0                            | 0                              | 0                                           | 0                                   | 0                            | 0                                          |
| $\Gamma_{1}^{\#1}_{+}$ $\Omega_{1}^{\#2}_{+}$ | $-\frac{a_0}{2\sqrt{2}}$         | 0                              | 0                              | 0                            | 0                            | 0                              | 0                                           | 0                                   | 0                            | 0                                          |
| $\Gamma_{1}^{\#1}_{+}{}_{\alpha\beta}$        | - <u>a0</u> 4                    | $-\frac{a_0}{2\sqrt{2}}$       | 0                              | 0                            | 0                            | 0                              | 0                                           | 0                                   | 0                            | 0                                          |
|                                               | $\Gamma_1^{#1} + \alpha^{\beta}$ | $\Gamma_1^{#2} + \alpha \beta$ | $\Gamma_1^{#3} + \alpha \beta$ | $\Gamma_1^{\#1} + ^{\alpha}$ | $\Gamma_1^{\#^2} +^{\alpha}$ | $\Gamma_{1}^{\#3} + ^{\alpha}$ | $\Gamma_1^{\#4} + ^{\alpha}$                | $\Gamma_1^{\#5} + ^{\alpha}$        | $\Gamma_1^{\#6} + ^{lpha}$   | $h_1^{#1} +^{\alpha}$                      |

|                                            | $\Gamma_{2}^{\#1}{}_{\alpha\beta}$ | $\Gamma_{2}^{\#2}{}_{\alpha\beta}$ | $\Gamma_{2}^{\#3}_{\alpha\beta}$ | $h_{2}^{\#1}{}_{lphaeta}$     | $\Gamma_{2}^{\#1}_{\alpha\beta\chi}$ | $\Gamma_{2}^{\#2}{}_{\alpha\beta\chi}$ |
|--------------------------------------------|------------------------------------|------------------------------------|----------------------------------|-------------------------------|--------------------------------------|----------------------------------------|
| $\Gamma_{2}^{\#1} \dagger^{\alpha\beta}$   | <u>a<sub>0</sub></u><br>4          | 0                                  | 0                                | $\frac{i a_0 k}{4 \sqrt{2}}$  | 0                                    | 0                                      |
| $\Gamma_{2}^{#2} \dagger^{\alpha\beta}$    | 0                                  | $-\frac{a_0}{2}$                   | 0                                | $\frac{i a_0 k}{4 \sqrt{3}}$  | 0                                    | 0                                      |
| $\Gamma_{2}^{#3} \dagger^{\alpha\beta}$    | 0                                  | 0                                  | <u>a<sub>0</sub></u><br>4        | $-\frac{i a_0 k}{4 \sqrt{6}}$ | 0                                    | 0                                      |
| $h_2^{\#1} \dagger^{\alpha\beta}$          | $-\frac{i a_0 k}{4 \sqrt{2}}$      | $-\frac{i a_0 k}{4 \sqrt{3}}$      | $\frac{i a_0 k}{4 \sqrt{6}}$     | 0                             | 0                                    | 0                                      |
| $\Gamma_2^{\#1} \dagger^{\alpha\beta\chi}$ | 0                                  | 0                                  | 0                                | 0                             | <u>a<sub>0</sub></u><br>4            | 0                                      |
| $\Gamma_2^{\#2} + \alpha\beta\chi$         | 0                                  | 0                                  | 0                                | 0                             | 0                                    | <u>a<sub>0</sub></u><br>4              |

|                                | $\Gamma_0^{\#1}$             | $\Gamma_{0}^{\#2}$        | Γ <sub>0</sub> <sup>#3</sup>   | Γ <sub>0</sub> <sup>#4</sup>  | $h_{0}^{\#1}$                 | $h_{0}^{\#2}$                | Γ <sub>0</sub> - |
|--------------------------------|------------------------------|---------------------------|--------------------------------|-------------------------------|-------------------------------|------------------------------|------------------|
| Γ <sub>0</sub> <sup>#1</sup> † | - <u>a_0</u><br>2            | 0                         | 0                              | 0                             | $-\frac{ia_0k}{2\sqrt{2}}$    | 0                            | 0                |
| Γ <sub>0</sub> <sup>#2</sup> † | 0                            | 0                         | <u>a<sub>0</sub></u><br>2      | $-\frac{a_0}{2\sqrt{2}}$      | 0                             | 0                            | 0                |
| Γ <sub>0</sub> <sup>#3</sup> † | 0                            | <u>a<sub>0</sub></u><br>2 | 0                              | $-\frac{a_0}{2\sqrt{2}}$      | $\frac{i a_0 k}{4 \sqrt{3}}$  | $-\frac{1}{4}ia_0k$          | 0                |
| Γ <sub>0</sub> <sup>#4</sup> † | 0                            | $-\frac{a_0}{2\sqrt{2}}$  | $-\frac{a_0}{2\sqrt{2}}$       | <u>a<sub>0</sub></u><br>2     | $-\frac{i a_0 k}{4 \sqrt{6}}$ | $\frac{i a_0 k}{4 \sqrt{2}}$ | 0                |
| $h_{0}^{#1}$ †                 | $\frac{i a_0 k}{2 \sqrt{2}}$ | 0                         | $-\frac{i a_0 k}{4 \sqrt{3}}$  | $\frac{i a_0 k}{4 \sqrt{6}}$  | 0                             | 0                            | 0                |
| $h_{0}^{#2}$ †                 | 0                            | 0                         | <u>i a <sub>0</sub> k</u><br>4 | $-\frac{i a_0 k}{4 \sqrt{2}}$ | 0                             | 0                            | 0                |
| Γ <sub>0</sub> -1 †            | 0                            | 0                         | 0                              | 0                             | 0                             | 0                            | $-\frac{a_0}{2}$ |
|                                |                              |                           |                                |                               |                               |                              |                  |

|                                               | $\Delta_{2^{+}\alpha\beta}^{\#1}$ | $\Delta_{2^{+}\alpha\beta}^{\#2}$ | $\Delta_{2}^{\#3}_{\alpha\beta}$    | $\mathcal{T}^{\#1}_{2^+lphaeta}$     | $\Delta_{2}^{\#1}{}_{\alpha\beta\chi}$ | $\Delta_{2}^{\#2}{}_{\alpha\beta\chi}$ |
|-----------------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|
| $\Delta_{2}^{#1} \dagger^{\alpha\beta}$       | 0                                 | $\frac{2\sqrt{\frac{2}{3}}}{a_0}$ | $\frac{4}{\sqrt{3} a_0}$            | $\frac{4i\sqrt{2}}{a_0k}$            | 0                                      | 0                                      |
| $\Delta_{2}^{#2} \dagger^{\alpha\beta}$       | $\frac{2\sqrt{\frac{2}{3}}}{a_0}$ | $-\frac{8}{3a_0}$                 | $-\frac{2\sqrt{2}}{3a_0}$           | $-\frac{4i}{\sqrt{3} a_0 k}$         | 0                                      | 0                                      |
| $\Delta_{2}^{#3} \dagger^{\alpha\beta}$       | $\frac{4}{\sqrt{3} a_0}$          | $-\frac{2\sqrt{2}}{3a_0}$         | $\frac{8}{3a_0}$                    | $-\frac{4i\sqrt{\frac{2}{3}}}{a_0k}$ | 0                                      | 0                                      |
| $\mathcal{T}_{2}^{\sharp 1}\dagger^{lphaeta}$ | $-\frac{4i\sqrt{2}}{a_0k}$        | $\frac{4i}{\sqrt{3} a_0 k}$       | $\frac{4i\sqrt{\frac{2}{3}}}{a_0k}$ | $-\frac{8}{a_0 k^2}$                 | 0                                      | 0                                      |
| $\Delta_{2}^{#1} \dagger^{\alpha\beta\chi}$   | 0                                 | 0                                 | 0                                   | 0                                    | $\frac{4}{a_0}$                        | 0                                      |
| $\Delta_2^{\#2} \dagger^{\alpha\beta\chi}$    | 0                                 | 0                                 | 0                                   | 0                                    | 0                                      | $\frac{4}{a_0}$                        |



(No massive particles)