EE381 Homework 1 Problems

Chapter 1

Problem 1.1 A 2-kHz sound wave traveling in the *x*-direction in air was observed to have a differential pressure $p(x,t) = 10 \text{ N/m}^2$ at x = 0 and $t = 50 \mu s$. If the reference phase of p(x,t) is 36°, find a complete expression for p(x,t). The velocity of sound in air is 330 m/s.

Problem 1.2 For the pressure wave described in Example 1-1, plot

- (a) p(x,t) versus x at t=0,
- **(b)** p(x,t) versus t at x=0.

Be sure to use appropriate scales for x and t so that each of your plots covers at least two cycles.

* Please use software to do the plotting for Prob. 1.2

Problem 1.5 The height of an ocean wave is described by the function

$$y(x,t) = 1.5\sin(0.5t - 0.6x)$$
 (m).

Determine the phase velocity and the wavelength and then sketch y(x,t) at t=2 s over the range from x=0 to $x=2\lambda$.

Problem 1.11 Given two waves characterized by

$$y_1(t) = 3\cos\omega t,$$

 $y_2(t) = 3\sin(\omega t + 36^\circ),$

does $y_2(t)$ lead or lag $y_1(t)$, and by what phase angle?

Problem 1.14 Evaluate each of the following complex numbers and express the result in rectangular form:

- **(b)** $z_2 = \sqrt{3} e^{j3\pi/4}$,
- (d) $z_4 = j^3$,

Problem 1.16 If z = -2 + j4, determine the following quantities in polar form:

(b)
$$z^3$$
,

Problem 1.21 A voltage source given by $v_s(t) = 25\cos(2\pi \times 10^3 t - 30^\circ)$ (V) is connected to a series RC load as shown in Fig. 1-19. If $R = 1 \text{ M}\Omega$ and C = 200 pF, obtain an expression for $v_c(t)$, the voltage across the capacitor.

* The RC circuit is in Fig. 1-19 of the 5th edition and in Fig. 1-20 of the 6th & 7th editions

Problem 1.23 Find the instantaneous time sinusoidal functions corresponding to the following phasors:

- **(b)** $\tilde{V} = j6e^{-j\pi/4}$ **(V)**,
- (c) $\widetilde{I} = (6 + j8)$ (A),

Problem 1.24 A series RLC circuit is connected to a generator with a voltage $v_s(t) = V_0 \cos(\omega t + \pi/3)$ (V).

- (a) Write down the voltage loop equation in terms of the current i(t), R, L, C, and v_s(t).
- (b) Obtain the corresponding phasor-domain equation.
- (c) Solve the equation to obtain an expression for the phasor current \tilde{I} .

Figure P1.24: RLC circuit.

Exercise problems (for exercise only – don't need to be turned in)

Problem 1.3 A harmonic wave traveling along a string is generated by an oscillator that completes 180 vibrations per minute. If it is observed that a given crest, or maximum, travels 300 cm in 10 s, what is the wavelength?

Problem 1.6 A wave traveling along a string in the +x-direction is given by

$$y_1(x,t) = A\cos(\omega t - \beta x),$$

where x = 0 is the end of the string, which is tied rigidly to a wall, as shown in Fig. 1-21 (P1.6). When wave $y_1(x,t)$ arrives at the wall, a reflected wave $y_2(x,t)$ is generated. Hence, at any location on the string, the vertical displacement y_s will be the sum of the incident and reflected waves:

$$y_s(x,t) = y_1(x,t) + y_2(x,t).$$

- (a) Write down an expression for $y_2(x,t)$, keeping in mind its direction of travel and the fact that the end of the string cannot move.
- (b) Generate plots of $y_1(x,t)$, $y_2(x,t)$ and $y_s(x,t)$ versus x over the range $-2\lambda \le x \le 0$ at $\omega t = \pi/4$ and at $\omega t = \pi/2$.

Problem 1.12 The voltage of an electromagnetic wave traveling on a transmission line is given by $v(z,t) = 5e^{-\alpha z}\sin(4\pi \times 10^9 t - 20\pi z)$ (V), where z is the distance in meters from the generator.

- (a) Find the frequency, wavelength, and phase velocity of the wave.
- (b) At z = 2 m, the amplitude of the wave was measured to be 1 V. Find α .

Problem 1.17 Find complex numbers $t = z_1 + z_2$ and $s = z_1 - z_2$, both in polar form, for each of the following pairs:

- (c) $z_1 = 3 \angle 30^\circ$, $z_2 = 3 \angle -30^\circ$,
- (d) $z_1 = 3 \angle 30^\circ$, $z_2 = 3 \angle -150^\circ$.

Problem 1.14 Evaluate each of the following complex numbers and express the result in rectangular form:

- (e) $z_5 = j^{-4}$, (g) $z_7 = (1-j)^{1/2}$.