GYNEYE

YOLO You only look once

Machine Learning

YOLO:

YOLO algorithm detects and classifies objects in an image. It just needs one forward pass of the network at the test time

About NetWork Returning Values:

- 1. p(object)*IOU
- 2. X
- 3. Y
- 4. W
- 5. H
- 6. p(class1)
- 7. p(class2)
- 8. p(classs(3)

Loss Function:

- YOLO uses sum-squared error between the predictions and the ground truth to calculate loss. The loss function composes of:
 - the classification loss.
 - the **localization loss** (errors between the predicted boundary box and the ground truth).).
 - the **confidence loss** (the objectness of the box

Classification loss

If *an object is detected*, the classification loss at each cell is the squared error of the class conditional probabilities for each class:

$$\sum_{i=0}^{S^2} \mathbb{1}_i^{ ext{obj}} \sum_{c \in ext{classes}} \left(p_i(c) - \hat{p}_i(c)
ight)^2$$

where

 $\mathbb{1}_{i}^{obj} = 1$ if an object appears in cell *i*, otherwise 0.

 $\hat{p}_i(c)$ denotes the conditional class probability for class c in cell i.

Localization loss

The localization loss measures the errors in the predicted boundary box locations and sizes. We only count the box responsible for detecting the object.

$$\begin{split} &\lambda_{\mathbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ &+ \lambda_{\mathbf{coord}} \sum_{i=0}^{S^2} \sum_{i=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \end{split}$$

where

 $\mathbb{1}_{ii}^{obj} = 1$ if the j th boundary box in cell i is responsible for detecting the object, otherwise 0.

 λ_{coord} increase the weight for the loss in the boundary box coordinates.

We do not want to weight absolute errors in large boxes and small boxes equally. i.e. a 2-pixel error in a large box is the same for a small box. To partially address this, YOLO predicts the square root of the bounding box width and height instead of the width and height. In addition, to put more emphasis on the boundary box accuracy, we multiply the loss by $\lambda coord$ (default: 5)

Confidence loss

If an object is detected in the box, the confidence loss (measuring the objectness of the box) is:

$$\sum_{i=0}^{S^2} \sum_{j=0}^B \mathbb{1}_{ij}^{ ext{obj}} \left(C_i - \hat{C}_i
ight)^2$$

where

 \hat{C}_i is the box confidence score of the box j in cell i.

 $\mathbb{1}_{ii}^{obj} = 1$ if the j th boundary box in cell i is responsible for detecting the object, otherwise 0.

$$\lambda_{ ext{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{ ext{noobj}} \left(C_i - \hat{C}_i \right)^2$$

where

 $\mathbb{1}_{ij}^{noobj}$ is the complement of $\mathbb{1}_{ij}^{obj}$.

 \hat{C}_i is the box confidence score of the box j in cell i.

 λ_{noobj} weights down the loss when detecting background.

Loss

The final loss adds localization, confidence and classification losses together.

$$\begin{split} \lambda_{\textbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ + \lambda_{\textbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \\ + \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2 \\ + \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_i - \hat{C}_i \right)^2 \\ + \sum_{i=0}^{S^2} \mathbb{1}_{i}^{\text{obj}} \sum_{j=0}^{S^2} \left(p_i(c) - \hat{p}_i(c) \right)^2 \end{split}$$