CSCI 270

Discussion Week 6

Implementation of closest pair points

```
Driver:
```

closest_pair(p):

Construct P_x: list of of points sorted by x-coord

Construct P_v: list of of points sorted by y-coord

 $(p_0, p_1) = closest_pair_rec(P_x, P_y)$

Θ(nlogn)

```
closest_pair_rec(P_x, P_v):
      if |P| ≤3:
            solve directly
                                                                                      Divide
      else
                                                                                      \Theta(1)
            Construct Q<sub>x</sub>, left half of P<sub>x</sub>
                                                                                      \Theta(n)
            Construct Q_v, corresponding points sorted by y-coord
             Construct R<sub>x</sub>, right half of P<sub>x</sub>
            Construct R_v, corresponding points sorted by y-coord
```

$$(q_0, q_1) = closest_pair_rec(Q_x, Q_y)$$

 $(r_0, r_1) = closest_pair_rec(R_x, R_y)$

$$X = min((d(q_0, q_1), d(r_0, r_1))$$

Construct S_y - S sorted by y-coord

 $\theta(n)$

```
for each point in S_v, compute its distance to each of the next 11 points in
S_{y}.
let (s, s') be the pair with closest distance
if d(s, s') < X:
      return (s, s')
elif d(q_0, q_1) < d(r_0, r_1):
      return (q_0, q_1)
else:
```

return (r_0, r_1)

Applying Master's Theorem

$$a = 2, b = 2$$

$$n^{\log_2 2} = n$$

$$f(n) = \Theta(n)$$
Driver: $\Theta(n \log n)$

Case #2 -> $\Theta(nlogn)$

Solve the following recurrences using the Master Method:

- a) A(n) = 3 A(n/3) + 15
- b) $B(n) = 4 B(n/2) + n^3$
- c) $C(n) = 4 C(n/2) + n^2$
- d) D(n) = 4D(n/2) + n

```
a) f(n) = 15 = O(1), n^{\log_b a} = n^{\log_3 3} = n^1 This falls under case 1 A(n) = \theta(n)
b) f(n)=n^3, n^{\log_b a} = n^{\log_2 4} = n^2
      This can fall under case 3. Now we need to check that
      af(n/b) \le cf(n) for some c<1:
      a f(n/b) = 4 * (n/2)^3 = 4 * n^3/8 = n^3/2 = .5 f(n), so we have found c=.5 such
     that
      a f(n/b) \le c f(n) and the inequality checks out, and case 3 applies B(n) = \theta(n^3)
c) f(n)=n^2, n^{\log_b a}=n^{\log_2 4}=n^2
      This falls under case 2 : C(n) = \theta(n^2 \log n)
d) f(n)=n, n^{\log_b a}=n^{\log_2 4}=n^2
      This falls under case 1 : D(n) = \theta(n^2)
```

There are 2 sorted arrays A and B of size n each. Design a D&C algorithm to find the median of the array obtained after merging the above 2 arrays (i.e. array of length 2n). Discuss its runtime complexity.

Find the median of the two arrays. Say the medians are mA and mB. If mA=mB, then this is our median.

Otherwise, say mA < mB then throw away all terms lower than mA in A, and all terms greater than mB in B. Solve the resulting subproblem recursively.

Complexity analysis:

- Divide step takes O(1). This includes finding medians in A and B and throwing away half of A and B.
- There is no combine step
- Number of subproblems (a) at each step is 1. The size of the subproblem (n/b) is n/2 So we can apply the Master Method:

$$f(n) = O(1), n^{\log_b a} = n^{\log_2 1} = n^0 = O(1)$$

This falls under case 2 T(n) = $\theta(\log n)$

A tromino is a figure composed of three 1x1 squares in the shape of an L. Given a $2^{n}x2^{n}$ checkerboard with 1 missing square, tile it with trominoes. Design a D&C algorithm and discuss its runtime complexity.

The figure below shows a 2ⁿx2ⁿ checkerboard with a hole highlighted in dark blue. Here is a divide and conquer solution:

- Divide the grid into 4 equal grids of size 2ⁿ⁻¹x2ⁿ⁻¹
- Add holes to the three grids that do not have a hole in them. The position of the new holes should be at the center of the grid so that when each region is solved/tiled recursively we can cover the remaining three holes with one tromino.
- Solve all 4 subproblems recursively
- When combining the solutions, place a tile over the three holes in the center to complete the tiling.
- During recursion, when we reach 2x2 grids, we can solve the problem directly by placing a single tromino to tile the grid (that has a single hole).

Complexity analysis:

Divide steps takes O(1) time. So does the combine step.

Number of subproblems (a) = 4, size of each subproblem is half the size of the original problem, so b=2.

Let $x = 2^n$

f(x)=O(1), $x^{\log_b a}=x^{\log_2 4}=x^2$ This falls under case 1 : $T(x)=\theta(x^2)$

1. Suppose we have two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, along with T_1 which is a MST of G_1 and T_2 which is a MST of G_2 . Now consider a new graph G = (V, E) such that $V = V_1 \cup V_2$ and $E = E_1 \cup E_2 \cup E_3$ where E_3 is a new set of edges that all cross the cut (V_1, V_2) .

Consider the following algorithm, which is intended to find a MST of G.

```
Maybe-MST(T_1, T_2, E_3)
e_{min} = a \text{ minimum weight edge in } E_3
T = T_1 U T_2 U \{ e_{min} \}
return T
```

Does this algorithm correctly find a MST of G? Either prove it does or prove it does not.

No. Counterexample ->

The correct solution will have edges AB, DC, and AD in the MST. The algorithm will result in an incorrect MST with edges AD, BC, and DC.

