Mathematik II

27.04.2016

Inhaltsverzeichnis

1	Ree	lle Funktionen	2
	1.1	Wiederholung Mathe 1: Funktionen	2
	1.2	Reelle Funktionen	2
	1.3	Neue Funktionen aus Alten, Kompositionen	3
	1.4	Beispiel	3
	1.5	Wiederholung Mathe 1: Injektivität, Surjektivität, Bijektivität; Um-	
		kehrfunktion	4
	1.6	Elementare Funktionen (naive Einführung)	4
2	Folg	gen	11
	2.1	Definition: Folge	11
	2.2	Beispiel	11
	2.3	Definition: Eigenschaften von Folgen	12
	2.4	Beispiel	12
	2.5	Definition: Konvergenz	12
	2.6	Bemerkung	12
	2.7	Beispiel	12
	2.8	Bemerkung	13
	2.9	Satz: Beschränktheit von Folgen	13
	2.10	Bemerkung	14
	2.11	Wichtiges Beispiel (geometrische Folgen)	14
	2.12	Beispiel	14
	2.13	Satz: Rechenregeln für konvergente Folgen	15
	2.14	Beispiel	16
	2.15	Anmerkung (Landau-Symbole, \mathcal{O} -Notation)	16
	2.16	Definition	17
	2.17	Beispiel	17
	2.18	Bemerkung	18
	2.19	Satz (Monotone Konvergenz)	18

1 Reelle Funktionen

1.1 Wiederholung Mathe 1: Funktionen

Definition

Eine Funktion/Abbildung $f\colon A\to B$ besteht aus

- zwei Mengen:
 - -A: Definitionsbereich von f
 - -B: Bildbereich von f
- und einer Zuordnungsvorschrift, die jedem Element $a \in A$ genau ein Element $b \in B$ zuordnet.

Wir schreiben dann b = f(a), nennen b das <u>Bild</u>/den <u>Funktionswert</u> von a (unter f) sowie a (ein) <u>Urbild</u> von b (unter f).

Notation

$$f \colon A \to B$$

 $a \mapsto f(a)$

Beispiel

 \rightarrow Folien 11.04.2016

1.2 Reelle Funktionen

Definition

Eine <u>reelle Funktion</u> einer <u>Veränderlichen</u> ist eine Abbildung $f: D \to \mathbb{R}$, wobei $D \subseteq \mathbb{R}$ (oft ist D endliche Vereinigung von Intervallen, z.B.

- $\bullet \ D=(-\infty,a]=\{x\in \mathbb{R}|x\leq a\}$
- $D = \mathbb{R}_0^+ = [0, \infty) = \{x \in \mathbb{R} | x \ge 0\}$
- $D = (-\infty, \infty) = \mathbb{R}$
- $D = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$

1.3 Neue Funktionen aus Alten, Kompositionen

Definition

Seien $f, g: D \to \mathbb{R}$ reelle Funktionen.

a) $(f \pm g)(x) := f(x) \pm g(x) \quad \forall x \in D$ Summe/Differenz von f und g(genauer:

$$f \pm g \colon D \to \mathbb{R}$$

 $x \mapsto (f \pm g)(x) = f(x) \pm g(x)$

- b) $(f \cdot g)(x) := f(x) \cdot g(x)$ $\forall x \in D$ <u>Produkt</u> von f und g
- c) falls $g(x) \neq 0 \quad \forall x \in D$, dann $(\frac{f}{g})(x) \coloneqq \frac{f(x)}{g(x)} \quad \forall x \in D$ Quotient von f und g
- d) Komposition/Hintereinanderausführung $f: D_f \to \mathbb{R}, \quad g: D_g \to \mathbb{R}, \text{ wobei } f(D_f) \subseteq D_g$

$$g \circ f \colon D_f \to \mathbb{R}$$

 $x \mapsto g(f(x))$

1.4 Beispiel

$$f, g: \mathbb{R} \to \mathbb{R}$$

 $f(x) = x^2$
 $g(x) = x - 1$

$$(f+g)(x) = x^{2} + x - 1$$

$$(f \cdot g)(x) = x^{2} \cdot (x-1) = x^{3} - x^{2}$$

$$(\frac{f}{g})(x) = \frac{x^{2}}{x-1} \quad \text{für } x \neq 1 \quad (D_{g} = \mathbb{R} \setminus \{1\})$$

$$(g \circ f)(x) = g(f(x)) = g(x^{2}) = x^{2} - 1$$

$$(f \circ g)(x) = f(g(x)) = f(x-1) = (x-1)^{2} = x^{2} - 2x + 1$$

$$\Rightarrow (g \circ f)(x) \neq (f \circ g)(x)$$

1.5 Wiederholung Mathe 1: Injektivität, Surjektivität, Bijektivität; Umkehrfunktion

 \rightarrow Folien 13.04.2016

1.6 Elementare Funktionen (naive Einführung)

a) Konstante Funktionen für $c \in \mathbb{R}$ (fest):

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto c$$

b) Die identische Funktion (Identität)

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x$$

Durch mehrfache Anwendung von 1.3 entstehen aus a) und b) viele weitere Funktionen.

c) Potenzen (Monome) für $n \in \mathbb{N}_0$ (fest):

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^n$$

-n = 0: die konstante 1-Funktion

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^0 = 1$$

-n ungerade:

f punktsymmetrisch zum Ursprung (0|0), bijektiv

-n gerade:

 \boldsymbol{f} achsensymmetrisch zur $y\text{-}\mathsf{Achse},$ nicht bijektiv

$$f(x) \ge 0 \quad \forall x \in \mathbb{R}$$

d) Wurzelfunktionen

Wurzelfunktionen sind die Umkehrfunktionen der Monome. Dazu musss die Gleichung $f(x)=x^n=y$ ($y\in\mathbb{R}$ gegeben) gelöst werden.

-n ungerade:

f ist bijektiv, dann gibt es zu jedem $y \in \mathbb{R}$ genau ein $x \in \mathbb{R}$ mit $x^n = y$. Dieses wird die n-te Wurzel aus y genannt: $x = \sqrt[n]{y}$.

$$\sqrt[n]{}: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sqrt[n]{x}$$

- ngerade: Dann hat die Gleichung $x^n=y$ in $\mathbb R$

- $\ast\,$ keine Lösung, fallsy<0
- $\ast\,$ genau eine Lösung, falls y=0 (nämlich x=0)
- * zwei Lösungen, falls y > 0:

$$x_1 = \sqrt[n]{y} \quad (>0)$$
$$x_2 = -\sqrt[n]{y} \quad (<0)$$

Die positive Lösung wird hier dann als n-te Wurzel bezeichnet:

e) Polynome

 $\overline{a_0, \ldots, a_n} \in \mathbb{R}$ (Koeffizienten) Ein Polynom ist eine Funktion p mit

$$p \colon \mathbb{R} \to \mathbb{R}$$

$$x \mapsto a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 x^0 = \sum_{k=0}^n a_k x^k$$

Falls $a_n \neq 0$ ist, heißt n Grad des Polynoms.

f) Rationale Funktionen

Rationale Funktionen sind Quotienten von Polynomen (mit p, q...Polynome):

$$f \colon D \to \mathbb{R}$$

$$x \mapsto \frac{p(x)}{q(x)}$$

$$mit D = \{x \in \mathbb{R} | q(x) \neq 0\}$$

g) Exponentialfunktionen

Exponentialfunktionen sind Funktionen

$$f \colon \mathbb{R} \to \mathbb{R}^+$$

$$x \mapsto q^x$$

wobei die Basis $\mathbb{R}\ni q>0,\,q\neq 1$ vorgegeben ist.

$$q > 1$$
: f steigt

$$0 < q < 1$$
: f fällt

Bekannte Rechenregeln:

$$-q^{x} \cdot q^{y} = q^{x+y}$$

$$-\frac{q^{x}}{q^{y}} = q^{x-y}$$

$$-(q^{x})^{y} = q^{x \cdot y}$$

$$-(p \cdot q)^{x} = p^{x} \cdot q^{x}$$

$$-(\frac{p}{q})^{x} = \frac{p^{x}}{q^{x}}$$

Zur Beschreibung von Exponentialfunktionen genügt es, <u>eine</u> bestimmte Basis zu benutzen (man kann $g(x) = p^x$ durch $f(x) = q^x$ ausdrücken, siehe Teil h).

Früher: Basis 10

Heute: Basis $e \approx 2.781828...$ (Eulersche Zahl)

Informatik: oft Basis 2

h) Logarithmen

Die Exponentialfunktion

$$\exp(x) \colon \mathbb{R} \to \mathbb{R}^+$$
$$x \mapsto e^x$$

ist bijektiv.

Um sie umzukehren, muss zu gegebenem $y \in \mathbb{R}^+$ die Gleichung $\mathrm{e}^x = y$ gelöst werden.

Die Lösung ist für y>0 in $\mathbb R$ eindeutig und wird als der <u>natürliche Logarithmus</u> von y bezeichnet: $x=\ln y$.

In $\mathbb R$ ist die Gleichung für $y \leq 0$ unlösbar.

Analoges gilt für andere Exponentialfunktionen.

$$f: \mathbb{R} \to \mathbb{R}^+$$

 $x \mapsto q^x \quad (q > 0, q \neq 1)$

Es gilt: $q^x = y \Leftrightarrow x = \log_q y$ (Logarithmus zur Basis q).

Es genügt wieder, <u>eine</u> feste Basis zu betrachten, z.B. e, denn $q^x = (e^{\ln q})^x = e^{x \cdot \ln q}$. Es gilt:

$$q^{x} = y \Leftrightarrow e^{x \cdot \ln q} = y$$
$$\Leftrightarrow \ln(e^{x \cdot \ln q}) = \ln y$$
$$\Leftrightarrow x \cdot \ln q = \ln y$$
$$\Leftrightarrow x = \frac{\ln y}{\ln q} \quad ,$$

also gilt $\log_q y = \frac{\ln y}{\ln q}$.

Rechenregeln für den Logarihmus lassen sich aus den Regeln für die Exponentialfunktion herleiten:

Sei $u \coloneqq \ln x$, $v \coloneqq \ln y$, dann ist $x = e^u$ und $y = e^v$, daraus folgt

$$x \cdot y = e^u \cdot e^v = e^{u+v} \quad ,$$

also ist

$$\ln(x \cdot y) = \ln(e^{u+v}) = u + v = \ln x + \ln y$$
.

Genauso kann man mit beliebiger Basis $q > 0, q \neq 1$ verfahren, wir erhalten für jede Logarithmusfunktion log: $\mathbb{R}^+ \to \mathbb{R}$:

$$-\log(x \cdot y) = \log x + \log y \quad \forall x, y > 0$$

$$-\log(\frac{x}{y}) = \log x - \log y \quad \forall x, y > 0$$

$$-\log(x^{\alpha}) = \alpha \cdot \log x \quad \forall x > 0, \alpha \in \mathbb{R}$$

i) Trigonometrische Funktionen

Wir betrachten einen Punkt \overline{P} auf dem Einheitskreis (Kreis um O, Radius 1).

Der Winkel, der von der positiven x_1 -Achse und der Geraden durch O und P eingeschlossen wird, sei x.

Dann heißt die x_1 -Koordinate von P der <u>Kosinus</u> von x (cos x), die x_2 -Koordinate heißt der <u>Sinus</u> von x (sin x).

Der Winkel x kann im Gradmaß oder im Bogenmaß (Länge des Bogens von (1|0) bis P) gemessen werden, es gilt:

$$\frac{\text{Gradmaß}}{360^{\circ}} = \frac{\text{Bogenmaß}}{2\pi}$$

So lassen sich die Funktionen cos und sin definieren:

$$\cos \colon \mathbb{R} \to [-1; 1]$$

 $x \mapsto \cos x$

$$\sin \colon \mathbb{R} \to [-1; 1]$$

 $x \mapsto \sin x$

und weiter

$$\tan x \coloneqq \frac{\sin x}{\cos x}$$
 (Tangens) und

$$\cot x \coloneqq \frac{\cos x}{\sin x} \qquad \text{(Kotangens)}$$

(Tangens und Kotangens sind jeweils nur dort definiert, wo der Nenner $\neq 0$ ist!)

Strahlensatz: $\frac{\sin x}{\cos x} = \frac{\tan x}{1}$

Wertetabelle: s. PÜ 02

Graphen:

Additions theoreme:

$$\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y$$
$$\cos(x+y) = \cos x \cdot \cos y - \sin x \cdot \sin y$$
$$(\sin x)^2 + (\cos x)^2 = \sin^2 x + \cos^2 x = 1 \qquad \text{(Satz des Pythagoras)}$$

Es gilt: $\cos x = \sin(x + \frac{\pi}{2})$ (Verschiebung um $\frac{\pi}{2}$).

sin und cos sind 2π -periodisch, d.h.

$$\sin x = \sin(x + 2\pi)$$
 $\forall x$
 $\cos x = \cos(x + 2\pi)$ $\forall x$

tan ist π -periodisch:

 $\tan x = \tan(x + \pi)$ $\forall x$ auf Definitionsbereich

2 Folgen

2.1 Definition: Folge

Definition

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung von der Menge der natürlichen Zahlen \mathbb{N} in eine Menge M (oft $M\subset\mathbb{R}$).

Die a_n (n = 1, 2, 3, ...) heißen <u>Glieder</u> der Folge, n heißt <u>Index</u>.

(Bemerkung: Das 1. Glied der Folge muss nicht a_1 sein. durch Umbenennung, z.B. $b_1 := a_7, b_2 := a_8$, ist auch $(a_7, a_8, a_9, ...)$ eine Folge im sinne der Definition 2.1)

Schreibweisen

$$(a_n)_{n\in\mathbb{N}}$$

 $(a_n)_{n\geq n_0}$ (z.B. $(a_n)_{n\geq 7}$) oder nur
 (a_n)

2.2 Beispiel

- a) $a_n = c$ $\forall n \ge 1, c \in \mathbb{R}$ konstant $(a_n)_{n \in \mathbb{N}} = (c)_n$ (c, c, c, c, ...)
- b) $a_n = n$ (1, 2, 3, 4, ...)
- c) $a_n = (-1)^n$ (-1, 1, -1, 1, -1, ...)
- d) $a_n = \frac{1}{n}$ $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...)$
- e) $a_n = [0, \frac{2}{n})$ Folge von Intervallen
- f) a_n rekursiv definiert:

$$a_{1} := 1$$
 $a_{n+1} := (n+1)a_{n} \qquad (n \ge 1)$
 $a_{2} = 2 \cdot a_{1} = 2$
 $a_{3} = 3 \cdot a_{2} = 6$
 $a_{4} = 4 \cdot a_{3} = 24$

2.3 Definition: Eigenschaften von Folgen

Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen heißt

- a) beschränkt, wenn die Menge der Folgenglieder beschränkt ist (s. Mathe 1), d.h. wenn es eine Zahl $K \geq 0$ gibt mit $|a_n| \leq K \quad \forall n \in \mathbb{N}$ (d.h. alle Folgenglieder liegen im Intervall $[-K,K] \quad \forall n; \quad (-K \leq a_n \leq K)$).
- b) <u>alternierend</u>, falls ihre Glieder abwechselnd positiv und negativ sind.

2.4 Beispiel

Beispiele aus 2.2:

beschränkt: a), c), d) [für c) und d) z.B. K=1]

alternierend: c)

2.5 Definition: Konvergenz

- a) Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen heißt konvergent gegen $a\in\mathbb{R}$, wenn es zu jeder positiven Zahl $\varepsilon > 0$ ein $N\in\mathbb{N}$ gibt (das von ε abhängen darf), so dass gilt: $|a_n a| < \varepsilon$ für alle $n \geq N$.
 - (kurz: $\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \ge N : |a_n a| < \varepsilon$)
- b) Die Zahl a heißt dann <u>Grenzwert</u> oder <u>Limes</u> der Folge, wir schreiben: $\lim_{n\to\infty}a_n=a$ oder

$$a_n \to a$$
 für $n \to \infty$ (a_n strebt gegen a)

- c) Eine Folge, die gegen 0 konvergiert, heißt Nullfolge.
- d) Eine Folge, die nicht konvergiert, heißt divergent (die Folge divergiert).

2.6 Bemerkung

 \rightarrow Folien 20.04.16

2.7 Beispiel

a) $a_n = \frac{1}{n}$ ist Nulfolge, d.h. $\lim_{n \to \infty} \frac{1}{n} = a = 0$, denn:

Sei $\varepsilon > 0$ beliebig. Dann wähle N als $N > \frac{1}{\varepsilon}$, denn damit gilt für alle a_n mit n > N:

$$|a_n - 0| = |\frac{1}{n} - 0| = \frac{1}{n} \le \frac{1}{N}$$
, da $n \ge N$ und $\frac{1}{N} < \frac{1}{\frac{1}{\varepsilon}} = \varepsilon \Rightarrow |a_n - 0| < \varepsilon$.

(z.B. falls $\varepsilon = \frac{1}{10}$, wähle N > 10, z.B. N = 11; ab a_{11} haben alle Folgenglieder einen Abstand $< \frac{1}{10}$ von 0)

- b) (a_n) mit $a_n = \frac{n+1}{3n}$. Behauptung: $a = \frac{1}{3}$. Beweis: Sei $\varepsilon > 0$ beliebig. Dann wähle $N > \frac{1}{3\varepsilon}$. Für alle a_n mit $n \ge N$ gilt dann: $|a_n a| = |\frac{n+1}{3n} \frac{1}{3}| = |\frac{n+1-n}{3n}| = \frac{1}{3n} < \frac{1}{3N} < \varepsilon$. genau dann, wenn $N > \frac{1}{3\varepsilon}$.
- c) $(a_n)_{n\in\mathbb{N}}$ mit $a_n=c$ $\forall n$. $\lim_{n\to\infty}a_n=c$ Sei $\varepsilon>0$ beliebig. Dann ist $|a_n-c|=|c-c|=0<\varepsilon$ $\forall n\geq 1$, hier ist also N=1, hängt nicht von ε ab, untypisch.

2.8 Bemerkung

N muss nicht optimal gewählt werden.

Beispiel: $\lim_{n\to\infty} \frac{1}{n^3+n+5} = 0$, [...]

 $|\frac{1}{n^3+n+5}-0|=\frac{1}{n^3+n+5}\leq \frac{1}{N^3+N+5}\stackrel{!}{<}\varepsilon.$ Für optimales $N:\frac{1}{N^3+N+5}<\varepsilon$ nach N auflösen, schwer.

Deshalb grob abschätzen, z.B. so:

 $\frac{1}{N13+N+5} < \frac{1}{N} < \varepsilon$, also wähle $N > \frac{1}{\varepsilon}$.

2.9 Satz: Beschränktheit von Folgen

Jede konvergente folge ist beschränkt.

Beweis: (zu zeigen: (a_n) konvergente Folge: $\exists K \in \mathbb{N}$, so dass $|a_n| \leq K \quad \forall n \in \mathbb{N}$) Sei $(a_n)_{n \in \mathbb{N}}$ konvergent gegen a.

dann existiert für alle $\varepsilon > 0$, also auch speziell für $\varepsilon = 1$, ein $N \in \mathbb{N}$ mit $|a_n - a| < 1 \quad \forall b \geq N$.

Also gilt für alle $n \geq N$:

$$|a_n| = |a_n + a - a|$$
 $\leq |a_n - a| + |a|$
'Einschiebetrick' Dreiecksungleichung $|a_n|$ $< 1 + |a|$

(also für $n \ge N$ sind die $|a_n| < 1 + |a|$; aber für n = 1, 2, 3, ..., N - 1?) Definiere K als $K := \max\{|a_1|, |a_2|, |a_3|, ..., |a_{N-1}|, 1 + |a|\}$ Dann gilt $|a_n| \leq K \quad \forall n$. (Anmerkung: Durch den vorletzten Schritt ist meist $K \in \mathbb{R}^+$.)

2.10 Bemerkung

Nach 2.9 gilt:

 (a_n) konvergiert \Rightarrow (a_n) ist beschränkt

Das ist äquivalent zu:

 (a_n) ist nicht beschränkt \Rightarrow (a_n) konvergiert nicht

(Kontraposition). Unbeschränkte Folgen sind also immer divergent.

Bsp. (a_n) mit $a_n = n$

2.11 Wichtiges Beispiel (geometrische Folgen)

Für
$$q \in \mathbb{R}$$
 gilt: $\lim_{n \to \infty} q^n = \begin{cases} 0, \text{ falls } |q| < 1 \\ 1, \text{ falls } |q| = 1 \end{cases}$
Die Folge $(q^n)_n \in \mathbb{N}$ divergiert, falls $q = -1$ oder $|q| > 1$.

Beweis:

1. Fall |q| < 1 (zu zeigen $q^n \to 0$ für $n \to \infty$) Sei $\varepsilon > 0$ beliebig. Dann ist

$$|q^{n} - 0| = |q^{n}| = |q|^{n} < \varepsilon$$

$$\Leftrightarrow n \cdot \ln|q| < \ln \varepsilon$$

$$\Leftrightarrow n \stackrel{da|q| < 1}{\geq} \frac{\ln \varepsilon}{\ln|q|}$$

Wähle $\mathbb{N} \ni N > \frac{\ln \varepsilon}{\ln |q|}$, dann ist also $|q|^n < \varepsilon \quad \forall n \ge N$.

- 2. Fall $q = 1 \rightarrow$ konstante 1-Folge, konvergiert, s. 2.7 c)
- 3. Fall $|q| \ge 1, q \ne 1$

Für |q| > 1 ist (q^n) unbeschränkt, also divergent (s. 2,9/2.10).

Für q = -1: können wir erst später beweisen (\rightarrow Cauchy-Folgen)

2.12 Beispiel

Nach 2.11 sind die Folgen $((\frac{1}{2})^n)_{n\in\mathbb{N}} = (\frac{1}{2^n})_{n\in\mathbb{N}}, \quad ((-\frac{7}{8})^n)_n \in \mathbb{N}$ Nullfolgen.

2.13 Satz: Rechenregeln für konvergente Folgen

Seien $(a_n), (b_n)$ reelle Folgen mit $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$. Dann gilt:

- a) Die Folge $(c \cdot a_n)$ konvergiert gegen $c \cdot a, c \in \mathbb{R}$.
- b) Die Folge $(a_n \pm b_n)$ konvergiert gegen $a \pm b$.
- c) Die Folge $(a_n \cdot b_n)$ konvergiert gegen $a \cdot b$.
- d) Die Folge $(\frac{a_n}{b_n})$ konvergiert gegen $\frac{a}{b}$, falls $b_n, b \neq 0$ und $|a_n| \to |a|$.

Seien weiter $(d_n), (e_n)$ reelle Folgen mit $\lim_{n\to\infty} d_n = 0$, dann gilt:

- e) Ist (e_n) beschränkt, dann ist $(d_n \cdot e_n)$ auch eine Nullfolge.
- f) Gilt $|e_n| \leq d_n \quad \forall n$, so ist (e_n) auch eine Nullfolge.

Beweis [exemplarisch für a) und b), Rest s. Moodle]:

a) Falls c=0: klar, konstante 0-Folge. Falls $c\neq 0$: Sei $\varepsilon>0$ beliebig. Dann existiert $N\in\mathbb{N}$, so dass $|a_n-a|<\frac{\varepsilon}{|c|}$ $\forall n\in\mathbb{N}$ (denn $a_n\to a$)

Dann ist aber $|c \cdot a_n - c \cdot a| = |c \cdot (a_n - a)| = |c| \cdot |a_n - a| < \varepsilon \quad \forall n \ge N$, also $c \cdot a_n \to c \cdot a$

b) Sei $\varepsilon > 0$ beliebig.

Dann $\exists N_1 \in \mathbb{N}$, so dass $|a_n - a| < \frac{\varepsilon}{2} \quad \forall n \geq N_1 \text{ (denn } a_n \to a)$ und $\exists N_2 \in \mathbb{N}$, so dass $|b_n - b| < \frac{\varepsilon}{2} \quad \forall n \geq N_2 \text{ (denn } b_n \to b)$. Dann gilt:

$$|(a_n + b_n) - (a + b)| = |\overbrace{(a_n - a)}^{<\frac{\varepsilon}{2}} + \overbrace{(b_n - b)}^{<\frac{\varepsilon}{2}}| \stackrel{\triangle\text{-Ungleichung}}{\leq} |a_n - a| + |b_n - b|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall n \geq N_1 \text{ und } N_2$$

(also z.B. für $n \ge N := \max\{N_1, N_2\}$).

Also gilt $(a_n + b_n) \to a + b$.

2.14 Beispiel

- a) $\frac{(-1)^n+5}{n} \to 0$ für $n \to \infty$, denn $\frac{1}{n} \to 0$ für $n \to \infty$ und $(-1)^n+5$ ist beschränkt: $|(-1)^n+5| \le 6 \quad \forall n \in \mathbb{N} \text{ (nach 2.13 d)}$
- b) $\frac{3n^2-2n+1}{-n^2+n} \to -3 \text{ für } n \to \infty, \text{ denn}$ $\frac{3n^2-2n+1}{-n^2+n} = \frac{n^2 \cdot (3-\frac{2}{n}+\frac{1}{n^2})}{n^2 \cdot (-1+\frac{1}{n})} = \frac{3-\frac{2}{n}+\frac{1}{n^2}}{-1+\frac{1}{n}} \quad \xrightarrow{\to 3 \text{ für } n \to \infty} \longrightarrow \frac{3}{-1} \text{ für } n \to \infty \text{ (nach } 2.13 \text{ b,d)}_{[\text{Nullfolgen}]}$
- c) Wichtiges Beispiel Sei $x \in \mathbb{R}$ mit |x| < 1, d.h. $|x| = \frac{1}{1+t}$ mit t > 0. Sei $k \in \mathbb{N}_0$. Dann ist $\lim_{n \to \infty} (n^k \cdot x^n) = 0$, denn

$$(1+t)^{n} \stackrel{\text{Mathe 1: 7.17}}{=} \sum_{j=0}^{n} \left[\binom{n}{j} \cdot 1^{n-j} \cdot t^{j} \right]$$

$$= \underbrace{1}_{\text{nur Term}}^{j=0} + \underbrace{nt}_{\text{j}} + \underbrace{\frac{j=2}{n \cdot (n-1)} t^{2}}_{2!} + \underbrace{\frac{n \cdot (n-1) \cdot (n-2)}{3!} t^{3}}_{\text{j}} + \dots$$

$$\geq \underbrace{\frac{n}{j=k+1} \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot (n-k)}{(k+1)!} t^{k+1}}_{\text{mur Term}} = \binom{n}{k+1} t^{k+1}$$

Damit gilt:

$$|n^k \cdot x^n| = \left| \frac{n^k}{(1+t)^n} \right| \le \frac{n^k}{\binom{n}{k+1}t^{k+1}} = \frac{n^k}{n^{k+1} + \dots} \to 0$$

für $n \to \infty$.

Es gilt also z.B. $(k = 10000, x = \frac{1}{2})$: $\frac{n^{10000}}{2^n} \to 0$ für $n \to \infty$ Exponentialfkt. $\Rightarrow (1+t)^n$ wächst schneller als jede Potenz n^k !

2.15 Anmerkung (Landau-Symbole, O-Notation)

(Informatik, VL Algorithmen)

Sei (a_n) eine strikt positive Folge, d.h. $a_n > 0 \quad \forall n \in \mathbb{N}$. Dann ist

- a) $\mathcal{O}(a_n) = \mathcal{O}((a_n)) = \{(b_n) | (\frac{b_n}{a_n}) \text{ ist beschränkt } \}$ ("Menge aller Folgen, für die ... gilt")
- b) $o(a_n) = \{(b_n) | \frac{b_n}{a_n} \text{ ist Nullfolge } \} ((a_n) \text{ wächst schneller als } (b_n))$

 \mathcal{O}, o : Landau-Symbole

c)
$$(a_n) \sim (b_n)$$
, falls $\lim_{n \to \infty} (\frac{a_n}{b_n})_n = 1$

Beispiel:

- $(2n^2 + 5n + 1)_n \in \mathcal{O}(n^2)$, denn $(\frac{2n^2 + 5n + 1}{n^2}) = \frac{n^2 \cdot (2 + \frac{5}{n} + \frac{1}{n^2})}{n^2} \to 2$ für $n \to \infty$, beschränkt
- $(n^2) \in o(n^3)$
- $(n^3) \in o(2^n)$
- $(n13-3) \sim (n^3)$, denn $(\frac{n^3}{n^3-3}) = (\frac{n^3 \cdot (1)}{n^3 \cdot (1-\frac{3}{n^3})}) \to 1$ für $n \to \infty$
- häufig auch laxe Schreibweise

$$2n^2 + 5n + 1 = \mathcal{O}(n^2)$$
$$n^2 = o(n^3)$$

Außerdem:

 $\mathcal{O}(1) = \text{Menge der beschränkten Folgen}$

o(1) = Menge der Nullfolgen

Wichtige Formel: Stirling: $(n!) \sim (\sqrt{2\pi n} (\frac{n}{e})^n)$

Problem: Wie zeigt man die Konvergenz einer Folge, wenn man den Grenzwert nicht kennt?

2.16 Definition

Eine Folge reeller Zahle $(a_n)_n$ heißt

- a) (streng) monoton steigend/wachsend, falls $a_{n+1} \stackrel{>}{\geq} a_n \quad \forall n \in \mathbb{N}$, Schreibweise: $(a_n) \nearrow$
- b) <u>(streng) monoton fallend</u> $(a_n) \searrow$, falls $a_{n+1} \leq a_n \quad \forall n \in \mathbb{N}$
- c) monoton, falls a) oder b) gilt (oder beides)

2.17 Beispiel

- $(a_n) = (\frac{1}{n})$ ist streng monoton fallend
- $(a_n) = (1)$ ist monoton fallend und monoton steigend
- $(a_n) = ((-1)^n)$ ist nicht monoton

2.18 Bemerkung

 $(a_n) \nearrow \text{zeigt man so:}$

$$a_{n-1} - a_n \ge 0$$
 oder
$$\frac{a_{n+1}}{a_n} \ge 1$$

2.19 Satz (Monotone Konvergenz)

Jede beschränkte, monotone Folge reeller Zahlen $(a_n)_n$ konvergiert, und zwar gegen

- $\sup\{a_n \colon n \in \mathbb{N}\}$, falls (a_n) monoton steigend oder gegen
- $\inf\{a_n \colon n \in \mathbb{N}\}$, falls (a_n) monoton falend ist.