

VPN (Virtual Private Network) Lösungen für Privatpersonen

Joel Hatsch, LUG Ottobrunn

Worum geht es?

- Übersicht von VPN Lösungen für Heimanwender
- Vorstellung von modernen Ansätzen und deren Möglichkeiten

Worum geht es nicht ?

- Detaillierte Anleitung zum Aufsetzen eines VPN
- VPN zum Zugrif auf ausländische Videoserver usw
- Allzu Advanced Features

Historie eti 2004

- LIT 2019: Unser Nextcloud Server am LUG Stand ist nicht erreichbar! VPN wäre doch ein Thema für ein Vortrag
- 2020, 2021, 2022 : leider kein LIT
- Januar 2023 : CfP LIT 2023 Vortrag vorgeschlagen und angenommen
- Februar 2023: VPN Artikel in gefühlt jeder 2. c't Ausgabe
- März 2023 : es gibt sogar 2 VPN Vorträge beim LIT 2023 !

Was ist ein VPN?

- Ein Virtual Private Network, ist ein virtuelles (Software) Netzwerk
- Anders als etwa beim Heimnetzwerk sind die verschiedenen Endgeräte nicht direkt physisch miteinander verbunden. Das Heimnetzwerk wird um zusätzliche Geräte erweitert
- Ein VPN nutzt die Verbindungswege im öffentlichen Internet
- Zwischen dem Endgerät und dem VPN-Server werde alle übertragenen Daten durch Verschlüsselung vom restlichen Internet abgeschottet.

Wieso braucht man sowas?

- Remote Zugriff Unterwegs, im Urlaub etc
- Freigabe von Diensten aus dem Heimnetz
 - Nextcloud, Home Automation, Backup, Synchting, Telefonie...
- Zugriff auf IT von Familie (Eltern...) und Bekannten
- Advanced : Zugriff auf Rootserver / VPS
- Sichere Datenübertragung trotz unsicherer Verbindungsweg
- Sicherheit der jeweiligen Infrastruktur

Ohne VPN geht (ging) es auch...

- Öffentliche IPv4 Addrese
- Portfreigabe / Portweiterleitung von der Internet Box zum PC im eigenen LAN

Wieso sollte man es nicht tun?

- Port ist aus dem Internet erreichbar
- Jeder kann sich drauf verbinden weltweit!
- Port wird an PC weitergeleitet wie sicher ist der ?
 - Update einspielen, System absichern und aktuell halten

Früher war alles besser – auch der Internetzugang

Früher

1 IPv4 Adresse, direkt aus dem Internet erreichbar

Heutzutage: IPv4 Adressmangel

- IP Adresse ist dynamisch vergeben mit DynDNS lösbar
- CGnat / DoppelNAT
- IPV6-only z.B. in Handy-Netzen

Das Evergreen: OpenVPN

- "abgehangen", funktioniert theoretisch
- Recht umfangreiche text-basierte Konfigurationsdatei
 - Verwirrend für Anfänger, komplex für Erfahrene Benutzer
- Zertifikate müssen selber erstellt und gewartet werden
 - inkl. CA
- Routing etc muss per Hand dazu kommen
- TUN/TAP Device Support im Kernel notwendig
- Android Apps verfügbar

Das Schweizer Taschenmesser: SSH

- Ermöglicht Weiterleitung von Ports
 - Kein richtiges Netzwerk im Sinne von VPN
 - Trotzdem hilfreich für Peer-to-Peer Verbindungen
- Option für "leite alle Ports weiter"
 - ssh -w any:any root@rmt
 - Es wird ein TUN Device angelegt, über welches man Traffic leiten kann
- SSH meistens auf den Systemen vorhanden
- Siehe Vorträge von Richard Albrecht auf den früheren LITs

Der Klassiker : MyFritz

- Setzt Fritzbox voraus :-)
- DynDNS über AVM, Weiterleitung
 - Fritzbox meldet sich bei AVM
 - Verbindungen laufen direkt zur heimischen Box
 - Fester Host Name (meinebox.myfritz.net) statt variabler IP Adresse
- MyFritz App für's Handy
- Auf dem Laptop: Ipsec Tunnel einrichten
- Einschränkung : Zugriff nur über IPv6 möglich falls Fritzbox nur IPv6 Adresse hat

Revolution: Wireguard

- Eine sehr kleine Config-Datei, 3 Befehle und das VPN läuft
- Erstellen der Schlüssel händisch
- Hosts identifiziert über ihren Schlüssel
- IP Adressvergabe händisch
- Routing, NAT etc muss per Hand dazu kommen
- Mittlerweile im Linux Kernel integriert hochperformant, sicher, ausgereift
- Apps für's Handy
- Unterstützt durch Fritzbox! (siehe Vortrag Oliver Rath)

Die jungen Wilden

- Weg von Client-Server Architektur hin zu Peer-to-Peer / Meshed Network
 - Stichwort "Software Defined Network"
- Optimaler Durchsatz durch direkte Verbindungen
- Keinen offenen Port benötigt
- Einfache Handhabung
- Zusätzliche Funktionalitäten
- "Zentrale" Anlaufstelle ("Lighthouse") um Verbindungen aufzubauen ist weiterhin notwendig

Exkurs: private IP Ranges

https://de.wikipedia.org/wiki/Private_IP-Adresse

Netzadressbereich	CIDR-Notation	Verkürzte CIDR-Notation	Anzahl Adressen	Anzahl Netze gemäß Netzklasse (historisch)
10.0.0.0 bis 10.255.255.255	10.0.0.0/8	10/8	2 ²⁴ = 16.777.216	Klasse A: 1 privates Netz mit 16.777.216 Adressen; 10.0.0.0/8
172.16.0.0 bis 172.31.255.255	172.16.0.0/12	172.16/12	2 ²⁰ = 1.048.576	Klasse B: 16 private Netze mit jeweils 65.536 Adressen; 172.16.0.0/16 bis 172.31.0.0/16
192.168.0.0 bis 192.168.255.255	192.168.0.0/16	192.168/16	2 ¹⁶ = 65.536	Klasse C: 256 private Netze mit jeweils 256 Adressen; 192.168.0.0/24 bis 192.168.255.0/24

Shared Bereich für Internetdienstanbieter

Netzadressbereich CIDR-Notation		Verkürzte CIDR-Notation	Anzahl Adressen	Anzahl Netze gemäß Netzklasse (historisch)	
100.64.0.0 bis 100.127.255.255	100.64.0.0/10	100.64/10	2 ²² = 4.194.304	-	

- Kommerzielles Programm, gratis für Heimgebrauch
- 1 Netzwerk, mehrere Clients mit privaten IPs
 - Netzwerke konfiguriert man in der Web Oberfläche
 - IP Adressen selber vergeben, werden vorgeschlagen
- Versucht eine Direkte Verbindung herzustellen
 - Über Zerotier eigene Server ("Planet", 12 Weltweit) wenn keine direkte Verbindung möglich
- Clients für Windows, Mac, Linux, Android, iPhone

Zerotier Verbindungen

<ztaddr></ztaddr>	<ver></ver>	<role></role>	<lat></lat>	k>	<lasttx></lasttx>	<lastrx></lastrx>	<path></path>
3cb2039735	_	LEAF	-1	RELAY -			Handy im 4G Netz
3cb2039735 93.61.60.7/		LEAF	6	DIRECT	1401	1390	
b60f7973c6 35.208.177.			127	DIRECT	1897	1768	Handy im WLAN
62f865ae71 50.7.252.13		PLANET	252	DIRECT	16915	46693	Zerotier Server
778cde7190 103.195.103		PLANET	129	DIRECT	16915	46816	Lighthouse Server

Keine Wünsche übrig: Tailscale

- Kommerzielles Produkt, kostenlos bis 20 100 Geräte
- Web GUI zur vollständigen Konfiguration
- Tailscale Paket installieren, anmelden, fertig
- Anmeldung über externer Provider zB Google, Github
- Anbieter vertrauen ?

- Schicht über Wireguard
- Kümmert sich um alles
 - Key Management, Routing, NAT, DNS, SSH
- Tunnelt (fast) alles durch
 - Direkte Verbindung wenn möglich (zB Geräte im selben LAN)
 - Über Tailscale eigene Lighthouse Server (US, EU, AP...) wenn keine direkte Verbindung möglich
- IP Adressen werden jedem Client einzeln vergeben
 - Keine Netze von zusammenhängenden IPs, nur virtuelle Tailnets
- Clients aus anderen Accounts können eingebunden werden

Clients im Tailnet

Tailscale Verbindungen

IPv6 only Server

```
100.75.139.61
                                  joel@ linux
                moxy
100.91.141.52
                                  joel@ linux
                                                 active; relay "fra"
                euserv
100.91.45.38
                obermox.tail92cd5.ts.net obermox@
                                                        linux
                                                                 idle
                galaxy-s10
100.83.15.72
                                  joel@ android active; relay "ams"
100.90.164.55
                                                 offline
                racknerd
                                  joel@ linux
                                                           Handy im 4G Netz
```

Server freigegeben aus einem anderen Tailnet

OpenSource: Headscale

- Open Source Implementierung eines Tailscale Servers
- Lighthouse Server notwendig
 - Selber betreiben setzt einen eigenen Server im Internet voraus
 - Kosten ab 1€/Monat (günstiger VPS)
 - Ausfallsicherheit : Redundanz nicht vergessen !
- Keinen eigenen Client für Handys außer man kompiliert ihn selber
- Siehe ansonsten Tailscale

- Firmeninterne Lösung von Slack
 - Es muss nur ein Go Executable installiert werden
- Freigegeben als OpenSource, keine Mengenbegrenzung
- Basiert genauso auf dem Noise Protocol wie Signal & Wireguard
- Lighthouse Server notwendig damit sich die Clients finden
 - Selber betreiben wie bei Headscale
- Zertifikate für Clients werden händisch erzeugt
 - IP Adressen im Zertifikat fest kodiert
- Routing, NAT ... muß selber verwaltet werden
- Doppeltes durchbohren von Firewalls nur über Lighthouse
- Backbone vom Jitsi System von Freifunk München

Ottobrum Minney of Ottobrum Seit 2004

Weiterführende Links

- c't 2023-07 VPN einrichten
 - Viele Artikel zum Thema VPN in den 2023er Ausgaben
- Vorträge von Richard Albrecht zu SSH https://rleofield.de/vortraege.html
- Vortrag von Oliver Rath auf den LIT2023 zu Wireguard
- Freifunk München https://netzpolitik.org/2020/muenchen-spricht-online/
- Jeweilige Programm-Homepages
 - https://www.wireguard.com/
 - https://www.zerotier.com/
 - https://www.tailscale.com
 - https://github.com/juanfont/headscale
 - https://www.defined.net/

Anregungen? Fragen?

joel.hatsch@lug-ottobrunn.de