Departamento de Análisis Matemático, Universidad de Granada

Prueba intermedia de Variable Compleja I Grado en Matemáticas y Grado en Física y Matemáticas

Ejercicio 1. (2.5 puntos) Probar que la serie $\sum_{n\geqslant 1} \frac{z^n}{1-z^{n+1}}$ converge absolutamente en todo punto de D(0,1) y uniformemente en cada subconjunto compacto contenido en D(0,1).

Ejercicio 2. (2.5 puntos) Dado $\beta \in \mathbb{C} \setminus \mathbb{Z}$ probar que existe una única función $f \in \mathcal{H}(D(0,1))$ verificando

$$z^2 f'(z) + \beta z f(z) = \log(1+z) \qquad \forall z \in D(0,1).$$

Ejercicio 3. (2 puntos) Dado R > 0 con $R \ne 1$ y $R \ne 2$, calcular la integral

$$\int_{C(0,R)} \frac{e^z}{(z+1)^2(z-2)} dz.$$

Ejercicio 4. Sea $\Omega \subset \mathbb{R}^2 \equiv \mathbb{C}$ un abierto. Decimos que una función $\phi \colon \Omega \longrightarrow \mathbb{R}$ es armónica en Ω si $\phi \in C^2(\Omega)$ y

$$\frac{\partial^2 \phi}{\partial x^2}(x,y) + \frac{\partial^2 \phi}{\partial y^2}(x,y) = 0 \qquad \forall (x,y) \in \Omega.$$

a) (1.5 puntos) Sea $\phi: \Omega \longrightarrow \mathbb{R}$ armónica en Ω . Probar que la función $g: \Omega \longrightarrow \mathbb{C}$ dada por

$$g(x+iy) = \frac{\partial \phi}{\partial x}(x,y) - i\frac{\partial \phi}{\partial y}(x,y)$$

es holomorfa en Ω .

b) (1.5 puntos) Suponiendo que Ω es un dominio estrellado probar que existe $f \in \mathcal{H}(\Omega)$ de modo que Re $f = \emptyset$ y que f es única salvo una constante.