

Randomized Low-Memory Singular Value Projection

Stephen Becker

Volkan Cevher

Anastasios Kyrillidis

Laboratory for Information and Inference Systems (LIONS), EPFL Laboratoire JLL, UPMC Paris 6

stephen.becker@upmc.fr, {anastasios.kyrillidis, volkan.cevher}@epfl.ch

Motivation: Quantum Tomography

• Quantum computers: much faster computation than conventionally possible.

Problem	Complexity	(Quantum) Complexity	Algorithm
Perform discrete Fourier transform in N-dimensions	$\mathcal{O}\left(N\log N ight)$	$\mathcal{O}\left((\log N)^2\right)$	quantum Fourier algorithm
Factor integer N into prime factors	$\mathcal{O}\left(\exp(1.9(\log N)^{1/3}(\log\log N)^{2/3})\right)$	$\mathcal{O}\left((\log N)^3\right)$	Shor's algorithm

- State-of-the-art: far away from desiderata...
- Current status: measure quantum systems for further understanding:

Quantum Tomography

- **Definition of QT:** verifying a quantum state of *q*-bits
 - Mathematical representation via density matrix X:

$$X = \sum_{i=1}^{r} c_i |\psi_i\rangle\langle\psi_i|$$

- $X \succeq 0 \in \mathbb{R}^d$, $d = 2^q$ -dimensional complex space, $\operatorname{rank}(X) = r \ll d$, $\operatorname{trace}(X) = 1$.
- Challenge: X is huge even for moderate number of qubits $q... \longrightarrow Solution$: subsample X!

$$u = \mathcal{A}(X) + z$$
 where $\mathcal{A} \in \mathbb{S}_{+}^{d \times d} \to \mathbb{C}^{m}$, $m \ll d^{2}$ is a Rank-RIP linear operator. $(1 - \delta_{k}) \leq \|\mathcal{A}(X)\|_{2} / \|X\|_{F} \leq (1 + \delta_{k})$, $\forall X$ s.t. $\operatorname{rank}(X) \leq k$

Contributions:

• R-RIP:

- 1. **Fast** quantum tomography through **approximate matrix decomposition schemes** e.g, q = 16.
- 2. Low-memory implementation with working space \propto degrees of freedom.
- 3. Provable recovery guarantees.

Optimization criteria

• Affine rank minimization (ARM) problem:

$$\min_{X\in\mathbb{R}^{m\times n}} f(X)$$
 s.t.
$$\mathrm{rank}(X) \leq r,$$
 Non-convex! where
$$f(X):=\frac{1}{2}\|u-\mathcal{A}X\|_2^2.$$

• Convexify rank (\cdot) \longrightarrow Nuclear norm metric:

$$\min_{X \in \mathbb{R}^{m \times n}} \quad f(X) \qquad \min_{X \in \mathbb{R}^{m \times n}} \quad \|X\|_*$$
 s.t.
$$\|X\|_* \leq \lambda, \qquad \text{s.t.} \qquad f(X) \leq \varepsilon,$$

Not exactly...

Why $||\cdot||_*$ -metric is not applicable to large-scale QT?

→ computation/storage:		nnz(A)	storage	range(A*)
Examples	netflix	O(rd)	~0.9GB	sparse
LAampies	QT	$O(rd^2)$	~400GB	dense

- Computational overheads:
 - (i) Calculation of $\nabla f(X) := -\mathcal{A}^* (u \mathcal{A}(X))$ is expensive.
- (ii) Nuclear norm-based algorithms often require at least one full eigenvalue / singular value decomposition.
- Overall: the curse of dimensionality rules out $\|\cdot\|_*$ -based schemes

• True constraints result in fixed $||\cdot||_*$ metric:

$$\begin{aligned} &\operatorname{trace}(X) = 1 \\ &\operatorname{rank}(X) = 1 \\ &X \succeq 0 \end{aligned} \right\} \Longrightarrow \|X\|_* = 1$$

- Nuclear norm minimization:
 - Not always meaningful results
 - Noise overfitting
- Requires heuristic tuning

Randomized Low-memory Singular Value Projection

• Low-rank + trace recovery via projected gradient descent:

$$X_{i+1} \in \mathcal{P}_{\mathcal{C}}\left(\mathcal{P}_r^{\epsilon}(X_i - \frac{\mu}{2}\nabla f(X_i))\right)$$

where $C = \{X \succeq 0, \operatorname{trace}(X) = 1\}$ or $\{X \succeq 0\}$.

- Provably: $\mathcal{P}_{r\cap\mathcal{C}} = \mathcal{P}_{\mathcal{C}} \circ \mathcal{P}_r$.
- Efficient eig. decomposition using randomized schemes.
- For QT: Kronecker form of Pauli operator results in low-memory distributed A^* operations.

THEOREM. Pick an accuracy $\epsilon < 1/12$ and define $\ell = r + \rho$. Let c be an integer such that $\ell = (c-1)r$. Let $\mu = \frac{1}{2(1+\delta_{cr})}$. The projected gradient descent scheme has the following iteration invariant

$$\mathbb{E}f(X_{i+1}) \le \theta f(X_i) + \tau ||z||^2,$$

in expectation, where

$$\theta \leq 12 \cdot \frac{1 + \delta_{2r}}{1 - \delta_{cr}} \cdot \left(\epsilon + (1 + \epsilon) \frac{3\delta_{cr}}{1 - \delta_{2r}}\right) \quad \text{and} \quad \tau \leq \frac{1 + \delta_{2r}}{1 - \delta_{cr}} \cdot \left(12 \cdot (1 + \epsilon) \left(1 + \frac{2\delta_{cr}}{1 - \delta_{2r}}\right) + 8\right).$$

The expectation is taken with respect to Gaussian random designs.

QT experimental results

• Scalability:

• 16-qubit Convergence $(2^{16} \times 2^{16})$:

Comparison with splitting schemes:

Qubits	Dimension	Time per iteration		Time to 10^{-1} error	
		SVP	Splitting	SVP	Splitting
8	256	$0.012 \; \mathrm{s}$	$0.006 \; \mathrm{s}$	$0.64 \; {\rm s}$	5.25 s
9	512	$0.045 \mathrm{\ s}$	$0.028 \mathrm{\ s}$	$2.90 \mathrm{\ s}$	$47.4 \mathrm{\ s}$
10	1024	$0.225 \mathrm{\ s}$	$0.156 \mathrm{\ s}$	$17.1 \mathrm{s}$	$516.3 \mathrm{\ s}$

