2023 年度京都大学線形代数学(演義) A 第 1 回問題解答例

中安淳

2023年4月14日

問題 1

次の式の値を計算せよ。

- (1) 3 + 5.
- (2) 12345 + 6789.
- (3) 13 9.
- (4) 3 5.
- (5) 1+2+3+4+5-4-3-2-1.
- (6) 3×5 .
- $(7) \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$.
- $(8) \ \frac{2\times4\times6}{1\times2\times3\times4\times5\times6}.$
- (9) $(\sqrt{3} + \sqrt{2} + 1)(\sqrt{3} \sqrt{2} + 1)$.
- $(10) (i+1)^2$.

解答

- (1) 3 + 5 = 8.
- (2) 12345 + 6789 = 19134.
- (3) 13 9 = 4.
- (4) 3-5=-2.
- (5) 1+2+3+4+5-4-3-2-1=5.
- (6) $3 \times 5 = 15$.
- (7) $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{5}{6} + \frac{1}{4} = \frac{13}{12}$.
- (8) $\frac{2\times4\times6}{1\times2\times3\times4\times5\times6} = \frac{1}{3\times5} = \frac{1}{15}$.
- (9) $(\sqrt{3} + \sqrt{2} + 1)(\sqrt{3} \sqrt{2} + 1) = (\sqrt{3} + 1)^2 (\sqrt{2})^2 = 1 + 3 + 2\sqrt{3} 2 = 2 + 2\sqrt{3}.$
- (10) $(i+1)^2 = i^2 + 2i + 1 = 2i$.

- 問題 2

ツルとカメが合わせて 8 匹いて脚の数が合計して 26 本である時、ツルとカメはそれぞれ何匹いるか答えよ。ただし、1 匹のツルの脚の数は 2 本で、1 匹のカメの脚の数は 4 本である。

解答 ツルを x 匹、カメを y 匹とおくと合わせて 8 匹なので x+y=8 が成り立つ。また脚の数に注目すると 2x+4y=26 である。したがって連立方程式 x+y=8, 2x+4y=26 を解

けばいい。2 式目から 1 式目の 2 倍を引いて、2y=10。よって y=5 で x=3 であり、これは問題文に適する。答えはツルは 3 匹、カメは 5 匹である。

- 問題 3 一

命題 P と Q に対して、命題 $\operatorname{not}(P \Rightarrow Q)$ と命題 P and $\operatorname{not}(Q)$ は同値であることを真理値表を用いて示せ。

解答 真理値表は以下のようになる。

P	Q	$P \Rightarrow Q$	$not(P \Rightarrow Q)$	$\mathrm{not}Q$	Pand(not Q)
\mathbf{T}	Τ	${ m T}$	\mathbf{F}	F	F
\mathbf{T}	F	\mathbf{F}	${f T}$	${ m T}$	${f T}$
\mathbf{F}	Τ	${ m T}$	\mathbf{F}	F	F
F	\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	\mathbf{F}

よって $not(P \Rightarrow Q)$ と Pand(notQ) は同値である。

- 問題 4

次の集合を計算せよ。

- $(1) \ \{x \in \mathbb{R} \mid x^3 = 2\}.$
- (2) $\{x \in \mathbb{C} \mid x^3 = 2\}.$
- (3) $\{x \in \mathbb{Q} \mid x^3 = 2\}.$

解答

- (1) $x^3=2$ を実数範囲で解くと $x=\sqrt[3]{2}$ より、 $\{x\in\mathbb{R}\mid x^3=2\}=\{\sqrt[3]{2}\}$ である。
- (2) $x^3-2=(x-\sqrt[3]{2})(x^2+\sqrt[3]{2}x+\sqrt[3]{4})$ より、 $\{x\in\mathbb{C}\mid x^3=2\}=\{\sqrt[3]{2},\frac{-1\pm\sqrt{3}i}{2}\sqrt[3]{2}\}$ である。
- (3) $\sqrt[3]{2}$ は無理数のはずなので、空集合であることを示す。 有理数 $x=\frac{q}{p}$ が $x^3=2$ を満たしたとする。約分して p と q は互いに素な整数としてよい。 $q^3=2p^3$ なので、q は偶数であり q=2q' とおくと、 $4(q')^3=p^3$ なので、p は偶数である。そのため p と q は共通の因数 2 を持つので矛盾である。よって、 $\{x\in\mathbb{Q}\mid x^3=2\}=\emptyset$ である。