Errata zur 1. Auflage von Computer Networks / Computernetze – Bilingual Edition / Zweisprachige Ausgabe.

Erschienen 2019 bei Springer Vieweg. ISBN: 978-3-658-26355-3

Seite 6, Tabelle 2.2

Das niederwertigste Bit ist x_0 und nicht x_1 und das höchstwertigste Bit ist im konkreten Beispiel x_7 und nicht x_8 .

	Quotient	Remainder		
k	k DIV 2	k MODULO 2		
164	82	$0 = x_0$		
82	41	$0 = x_1$		
41	20	$1 = x_2$		
20	10	$0 = x_3$		
10	5	$0 = x_4$		
5	2	$1 = x_5$		
2	1	$0 = x_6$		
1	0	$1 = x_7$		

Seite 6, Abschnitt 2.2.4, linke Spalte, letzte Zeile

Ersetze in der linken Spalte "tetrade" durch "tetrad".

Seite 7, Abschnitt 2.2.4, linke Spalte, 3. Zeile

Ersetze in der linken Spalte "tetrades" durch "tetrads".

Seite 7, Abschnitt 2.2.4, linke Spalte, 4. Zeile

Ersetze in der linken Spalte "tetrads" durch "tetrad".

Seite 8, Tabelle 2.4

In der dritten Spalte muss das Tausendertrennzeichen in allen Zeilen korrigiert werden.

Aus mathematischer und didaktischer Sicht ist es sinnvoller "Bytes" und nicht "Bedeutung" als Überschrift der dritten Spalte zu verwenden.

Name	Symbol	Bytes
Kilobyte	kB	$2^{10} = 1,024$
Megabyte	MB	$2^{20} = 1,048,576$
Gigabyte	GB	$2^{30} = 1,073,741,824$
Terabyte	TB	$2^{40} = 1,099,511,627,776$
Petabyte	PB	$2^{50} = 1,125,899,906,842,624$
Exabyte	EB	$2^{60} = 1,152,921,504,606,846,976$
Zettabyte	ZB	$2^{70} = 1,180,591,620,717,411,303,424$
Yottabyte	YB	$2^{80} = 1,208,925,819,614,629,174,706,176$

Seite 27, Abschnitt 3.6.6, rechte Spalte, 4. Zeile

Streiche ein mal "hat".

Seite 30, Abbildung 3.7

In der rechten Abbildung oberhalb des Echtzeitkernels (Real-time kernel) steht fälschlicherweise "User-space (non-real-time-tasks)". Der Echtzeitkern ist aber für die Echtzeitprozesse zuständig.

Seite 61, letzter Absatz

Ersetze in der linken Spalte "Diffie-Hellmann algorithm" durch "Diffie-Hellman algorithm".

Ersetze in der rechten Spalte "Diffie-Hellmann-Algorithmus" durch "Diffie-Hellman-Algorithmus".

Seite 69, Abbildung 5.16

Ersetze "Grund" durch "Ground".

Seite 70, Abschnitt 5.2.2, rechte Spalte, 3. Zeile von unten

Ersetze in der rechten Spalte "Kategorien 6A" durch "Kategorie 6A".

Seite 79, linke Spalte, 2. Absatz, 9. Zeile

Ersetze "logic" durch "logical".

Seite 85, Abschnitt 5.6, rechte Spalte, 1. Zeile

Streiche "bis"

Seite 85, Abschnitt 5.6, rechte Spalte, 4. Zeile

Ersetze in der linken Spalte "For NRZI, MLT-3, unipolar RZ and AMI, sequences of zero-bits are a problem." durch "For NRZI, MLT-3 and unipolar RZ, sequences of zero-bits are a problem."

Ersetze in der rechten Spalte "Bei NRZI, MLT-3, Unipolarem RZ und AMI besteht nur das Problem aufeinanderfolgender Nullen." durch "Bei NRZI, MLT-3 und Unipolarem RZ besteht nur das Problem aufeinanderfolgender Nullen."

Bei AMI führen Sequenzen aufeinanderfolgender Nullen nicht zu einer Verschiebung des Durchschnitts, da AMI drei Signalpegel verwendet und der Datenwert Null wird immer als mittlerer Signalpegel übertragen.

Seite 94, Abschnitt 6.1.2, 2. Aufzählungspunkt

Ersetze in der linken Spalte "to node C" durch "to node B".

Ersetze in der rechten Spalte "zu Knoten C" durch "zu Knoten B".

Seite 94, Abschnitt 6.1.2, 3. Aufzählungspunkt

Ersetze in der linken Spalte "to node C" durch "to node B".

Ersetze in der rechten Spalte "zu Knoten C" durch "zu Knoten B".

Seite 97, Abschnitt 6.1.3, 6. bis 8. Zeile unterhalb der Überschrift "Aufbau der Kennung (Bridge-ID)"

Entferne in der linken Spalte "port with the lowest port ID"

Ersetze in der rechten Spalte "... des Bridge-Ports mit der niedrigsten Port-ID (siehe Abbildung 6.5)." durch "... der Bridge (siehe Abbildung 6.5)."

Seite 97, Abschnitt 6.1.3, oberhalb von Abbildung 6.5

Ersetze in der linken Spalte "65,536" durch "65,535".

Ersetze in der rechten Spalte "65.536" durch "65.535".

Seite 97, Abbildung 6.5

Falsch

Bridge	MAC address of the bridge port
priority	with the lowest port ID
16 bits	48 bits

Korrekt

Bridge priority	MAC address of the Bridge
16 bits	48 bits

Seite 98, Abbildung 6.6

Falsch

Korrekt

Seite 102, letzte Zeile von Abschnitt 6.2.1

Ersetze in der linken Spalte "nicht in andere physische Netze übertragen." durch "über alle Ports weitergeleitet."

Ersetze in der rechen Spalte "are not forwarded to other physical networks by Bridges and Switches." durch "are forwarded by Bridges and Switches via all ports."

Seite 105, Abbildung 6.12

Bei der Abbildung im Buch handelt es sich um die Version in deutscher Sprache. In englischer Sprache sind die Beschriftungen wir folgt:

8 bytes	6 bytes	6 bytes	2 bytes		4 bytes
Preamble	MAC address	MAC address	Length	Payload	CRC
	Destination address	Source address	Number of		Checksum

Seite 116, Abschnitt 6.6.2, 1. Abschnitt unterhalb von Tabelle 6.6

Ersetze in der linken Spalte "the generator polynomial CRC-5" durch "the bit sequence 100110 as generator polynomial".

Ersetze in der rechten Spalte "das Generatorpolynom CRC-5" durch "die Bitfolge 100110 als Generatorpolynom".

Grund der Änderung: Das im Rechenbeispiel verwendete Generatorpolynom ist nicht CRC-5. Wie in Tabelle 6.6 korrekt angegeben verwendet CRC-5 die Bitfolge 100101 und nicht die im Beispiel verwendete Bitfolge 100110.

Seite 144, Abbildung 7.8

In der Abbildung ist das erste Byte der MAC-Adresse (hexadezimal: 1c) falsch.

Falsch

Extended Unique Identifier (64 Bits)
Seite 146, linke Spalte, vorletzte Zeile

Ersetze "bytes" durch "bits".

Korrekt

Extended Unique Identifier (64 Bits)

Seite 146, rechte Spalte, letzte Zeile

Ersetze "Bytes" durch "Bits".

Seite 147, 8. Zeile von Abschnitt 7.2.10

Ersetze in der linken Spalte "UCP" durch "UDP".

Seite 147, 9. Zeile von Abschnitt 7.2.10

Ersetze in der rechte Spalte "UCP" durch "UDP".

Seite 147, 2. Zeile des 5. Absatzes

Ersetze in der linken Spalte

"Examples of link state routing protocols include the Border Gateway Protocol (BGP) and Open Shortest Path First (OSPF).)"

durch

"One example of a link state routing protocol is *Open Shortest Path First* (OSPF).)"

Ersetze in der rechte Spalte

"Beispiele für Link-State-Routing-Protokolle sind das Border Gateway Protocol (BGP) und Open Shortest Path First (OSPF)"

durch

"Ein Beispiel für ein Link-State-Routing-Protokoll ist Open Shortest Path First (OSPF)"

Das BGP implementiert Pfad-Vektor-Routing und nicht Link-State-Routing.

Seite 168, Abbildung 7.22

Ersetze im IP-Paket, das Router A an Router B sendet, "Ziel" durch "Dest.".

Seite 201, Abbildung 9.3

In der Abbildung war die Beschriftung neben dem Zustand "Selecting" in deutscher und nicht in englischer Sprache.

Seite 245, Glossar (Eintrag zu "Binary System")

Ersetze "siehe Dezimalsystem." durch "siehe Dualsystem".

Seite 255, Literaturverzeichnis, 5. Eintrag

Ersetze "Grumm H" durch "Gumm H"