LINEAR ALGEBRA

Eigenvectors and Eigenvalues

Muhammad Afif Hendrawan, S.Kom., M.T.

Intro to Eigenvectors and Eigenvalues

The Illustration #1

- The transformation of $x \mapsto Ax$ can be move vectors in a variety of direction
- However, it often happened that there are special vectors on which the action of A is quite simple.
- Example

$$\circ$$
 Let $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$, $u = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

- \circ The multiplication of u and v by A shown in the figure
- Check! Av is just 2v

The Illustration #2

Therefore, we try to find the equations such as,

$$Ax = 2x$$
 or $Ax = -4x$

 Where specials vectors are transformed by A into scalar multiples of themself

Formal Definition

An eigenvectors of an $n \times n$ matrix A is nonzero vector x such that,

$$Ax = \lambda x$$

For some scalar λ

A scalar λ is called **eigenvalue** of A

If there is a nontrivial solution x of $Ax = \lambda x$

Such an x is called an eigenvector corresponding of λ

Formal Definition – Example 1 #1

Let
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, and $v = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Are u and v eigenvectors of A ?

Solution

$$A\mathbf{u} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix} = -4\mathbf{u}$$
$$A\mathbf{v} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -9 \\ 11 \end{bmatrix} \neq \lambda \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

So, u is an eigenvector of A corresponding to an eigenvalue (-4); but v is not an eigenvector of A because Av is not a multiple of v

Formal Definition – Example 1 #2

If you try to plot the projection of the vectors u and v, you will get,

Formal Definition – Example 2 #1

Show that 7 is an eigenvalue of matrix A from previous example and find the corresponding eigenvectors.

Solution \rightarrow The scalar 7 is an eigenvalues of A if and only if the equation

$$Ax = 7x$$

Has a nontrivial solution. That equation about equivalent to,

$$Ax - 7x = 0$$

Or

$$(A-7I)x=0$$

Where *I* is an identity matrix

Formal Definition – Example 2 #2

Solve that homogeneous equation → Form the matrix

$$A - 7I = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix}$$

The column of A - 7I are **linearly dependent**. Therefore (A - 7I)x = 0 has nontrivial solution.

The corresponding eigenvector can be found by row operation:

$$\begin{bmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Formal Definition – Example 2 #3

$$\begin{bmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The general solution has a form,

$$x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Each vector of this form with $x_2 \neq 0$ is an eigenvector corresponding to $\lambda = 7$

Formal Definition – The Generalization of The Equation

The equation of,

$$Ax = \lambda x$$

Can be written as,

$$Ax = \lambda Ix$$

Also can be written as,

$$Ax - \lambda Ix = 0$$

Or can be simplified as,

$$(A - \lambda I)x = 0$$

Determine The Eigenvalues and Eigenvectors

Determine The Eigenvalues

- To make λ the eigenvalue of $Ax = \lambda x$, the solution of that equation should be nontrivial (at least there is one solution)
- The $Ax = \lambda x$ is nontrivial if and only if,

$$\det(A - \lambda I) = 0$$

It also can be written as,

$$\det(\lambda I - A) = 0$$

Determine The Eigenvalues Example #1

Let
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$
, find the eigenvalue of A

Compute the $A - \lambda I$

$$A - \lambda I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$
$$A - \lambda I = \begin{bmatrix} -\lambda & -1 & 0 \\ 0 & -\lambda & -1 \\ 4 & -17 & 8 - \lambda \end{bmatrix}$$

Determine The Eigenvalues Example #2

Calculate $\det(A - \lambda I) \rightarrow$ You can use any method!

$$\det\begin{bmatrix} -\lambda & -1 & 0\\ 0 & -\lambda & -1\\ 4 & -17 & 8 - \lambda \end{bmatrix} = -\lambda^3 + 8\lambda^2 - 17\lambda + 4$$

By using $det(A - \lambda I) = 0$,

$$-\lambda^{3} + 8\lambda^{2} - 17\lambda + 4 = 0$$
$$\lambda^{3} - 8\lambda^{2} + 17\lambda - 4 = 0$$
$$(\lambda - 4)(\lambda^{2} - 4\lambda + 1) = 0$$

By quadratic equation, the solution of $(\lambda^2 - 4\lambda + 1) = 0$ is $2 + \sqrt{3}$ and $2 - \sqrt{3}$

So, the eigenvalues is 4, $2 + \sqrt{3}$, and $2 - \sqrt{3}$

Intro to Eigenspace #1

- Row reduction was used in Formal Definition Example 2 to find eigenvectors, it cannot to be used to find eigenvalues
- An Echelon form of a matrix A usually does not display the eigenvalues of A
- The equivalence of equation Ax = 7x and (A 7I)x = 0 holds for any λ in place of $\lambda = 7$
- Thus, λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation $(A \lambda I)x = 0$

Has a nontrivial solution

- The set of **all solution** of $(A \lambda I)x = 0$ is just the null space of the matrix $A \lambda I$
- So, this set is a subspace of \mathbb{R}^n and is called the **eigenspace** of A corresponding to λ
- The eigenspace consist of the zero vector and all eigenvectors corresponding to λ

Intro to Eigenspace #2

- From Formal Definition Example 2 shows that for matrix A in Formal Definition Example 1, the eigenspace corresponding to λ consist of all multiples of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ \rightarrow The line through $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and the origin
- From Formal Definition Example 1, we can check that the eigenspace corresponding to $\lambda = -4$ is line through $\begin{bmatrix} 6 \\ -5 \end{bmatrix}$
- These eigenspace depict in the figure beside

So, How to determine the eigenvector using basis of eigenspaces? #1

- Let we call $\mathbb{E}(\lambda)$ the λ -eigenspace for matrix A when λ is an eigenvalue for A
- So, we need to seek a basis for the eigenspace for $\mathbb{E}(\lambda) = A \lambda I$
- For example,

$$\lambda = 2$$
 is an eigenvalue for $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$. Find all the basis for the corresponding eigenvalue

- Solution,
 - We try to find $\mathbb{E}(2) = A 2I$, so

$$O A - 2I = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow x_2 \text{ and } x_3 \text{ are free} \Rightarrow \text{let say } x_2 = 2s \text{ and } x_3 = t$$

 \circ We get $2x_1 - 2s + 6t = 0$

So, How to determine the eigenvector using basis of eigenspaces? #2

Solution,

- The general solution of (A 2I)x = 0 has the form of $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} s 3t \\ 2s \\ t \end{bmatrix} = s \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$
- So, $\left\{\begin{bmatrix}1\\2\\0\end{bmatrix}\right\}$ is the basis for $\mathbb{E}(\lambda)$ and we can see that $\mathbb{E}(\lambda)$ is the plane in \mathbb{R}^3 spanned by two eigenvector $\begin{bmatrix}1\\2\\0\end{bmatrix}$ and $\begin{bmatrix}-3\\0\\1\end{bmatrix}$

So, How to determine the eigenvector using basis of eigenspaces? #3

Theorems

The 1st Theorem → Eigenvalues

The Eigenvalues of a triangular matrix are the entries of its main diagonal

Examples,

Let
$$A = \begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 1 & 0 \\ 5 & 3 & 4 \end{bmatrix}$

The eigenvalue of A are 3,0,2 and the eigenvalues of B are 4 and 1

NB: You can proof it by using $(A - \lambda I)x = 0$

The 2nd Theorem → Eigenvectors

If $v_1, ..., v_r$ are eigenvectors that correspond to distinct eigenvalues $\lambda_1, ..., \lambda_r$ of an $n \times n$ matrix A, then the set $\{v_1, ..., v_r\}$ is linearly independent

Exercise!

Find the eigenvalue and eigenvector for this following matrices,

$$\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{bmatrix}$$

References

- https://www2.math.upenn.edu/~wziller/math114f13/ch12-4+5-1.pdf
- https://math.etsu.edu/multicalc/prealpha/Chap1/Chap1-3/printversion.pdf