Physics of Data. Part XI

Physics of Data. Part XI | Alfonso R. Reyes

Applications of Physics Learning Machines

- a.k.a. Physics-Informed Neural Networks;
- a.k.a. Neural ODEs;
- a.k.a. Physics-informed deep learning;
- a.k.a. Multi physics-informed neural networks;
- a.k.a. Physics-integrated neural networks;
- a.k.a. Physics-informed neural ODEs;
- a.k.a. Physics-informed deep learning;
- a.k.a. Physics-informed machine learning;
- a.k.a. Deep hidden physics models;
- a.k.a. Physics-Informed DeepONets;
- a.k.a. Physics Graph Neural Networks;
- a.k.a. Physics-informed Generative Adversarial Networks;
- a.k.a. Hybrid Physics-informed neural networks;
- a.k.a. Conservative physics-informed neural networks;
- a.k.a. Self-adaptive physics-informed Quantum machine learning;
- a.k.a. Bayesian physics-informed Korlmorov-Arnold networks;
- a.k.a. Finite Basis physics-informed neural networks;
- a.k.a. Stochastic physics-informed neural ODEs;

etc.

These are the top 10 applications of <u>PINNs</u> found in 200+ papers, exclusively, on <u>Physics</u> enforced neural networks:

- 1. inverse problems
- 2. Navier-Stokes equations
- 3. Burgers' equation
- 4. simulation
- 5. forward problems
- 6. surrogate modeling
- 7. fluid dynamics
- 8. time-series
- 9. uncertainty quantification
- 10. image classification

This research is still work in progress and may change as more papers are being documented in a dataset built with <u>Obsidian</u>. There are other 262 applications in the PDF attached.

The list still needs to be classified in super-classes, classes, and sub-classes.

SciML Neural Networks PINN Physics Physics Of Data SPE Petroleum Engineering

Physics of Data. Part XI

Applications of Physics Learning Machines

- a.k.a. Physics-Informed Neural Networks;
- a.k.a. Neural ODEs;
- a.k.a. Physics-informed deep learning;
- a.k.a. Multi physics-informed neural networks;
- a.k.a. Physics-integrated neural networks;
- a.k.a. Physics-informed neural ODEs;
- a.k.a. Physics-informed deep learning;
- a.k.a. Physics-informed machine learning;
- a.k.a. Deep hidden physics models;
- a.k.a. Physics-Informed DeepONets;
- a.k.a. Physics Graph Neural Networks;
- a.k.a. Physics-informed Generative Adversarial Networks;
- a.k.a. Hybrid Physics-informed neural networks;
- a.k.a. Conservative physics-informed neural networks;
- a.k.a. Self-adaptive physics-informed Quantum machine learning;
- a.k.a. Bayesian physics-informed Korlmorov-Arnold networks;
- a.k.a. Finite Basis physics-informed neural networks;
- a.k.a. Stochastic physics-informed neural ODEs;
 etc.

These are the top 10 applications of **#PINNs** found in 200+ papers, exclusively, on **#physics** enforced neural networks:

- inverse problems
- 2. Navier-Stokes equations
- 3. Burgers' equation
- 4. simulation
- forward problems
- 6. surrogate modeling
- 7. fluid dynamics
- 8. time-series
- uncertainty quantification
- image classification

This research is still work in progress and may change as more papers are being documented in a dataset built with #Obsidian. There are other 262 applications in the PDF attached.

The list still needs to be classified in super-classes, classes, and subclasses.

..

Object (272)	Count
inverse problems	47
Navier-Stokes Equations	46
Burgers' equation	28
<u>Simulation</u>	23
<u>forward problems</u>	17
<u>surrogate modeling</u>	17
fluid dynamics	14
<u>time-series</u>	13
uncertainty quantification	12
<u>Image Classification</u>	11
Nonlinear Allen-Cahn equation	11
Advection-diffusion-reaction system	10
<u>Korteweg-de Vries equation</u>	10
<u>Poisson equation</u>	10
<u>Schrodinger's Equations</u>	9
<u>parameter estimation</u>	9
<u>continuous-time models</u>	8
<u>heat equation</u>	8
<u>Image Recognition</u>	7
<u>Lotka-Volterra model</u>	7
<u>biological systems</u>	7
Brownian Motion	6