Applying Evolutionary Computation to Robotics

Adrian Thomas Schiller

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

28 April 2014

- Overview
- 2 Background
- Research Cases
- Simulation
- 5 EvolutionaryProcess
- Results
- Questions and Acknowledgements

The big picture

- Robots are faced with difficult problems
- Evolutionary computation is a process which can can solve difficul t problems in programming
- Since a robot interacts with the physical world, EC is slower by s everal magnitudes
- It is possible to use EC to evolve robots

Bluedrakon http://tr.im/pWUi

- Overview
- Background
 - EC
 - GA
 - OneMax
 - ANN
- Research Cases
- Simulation
- EvolutionaryProcess

Evolutionary Computation

 Evolutionary Computation (EC) is a problem solving technique which mimics natural selection

Evolutionary Computation: Requirements

- A population of candidates
- A fitness function

Evolutionary Computation: Process

- Candidates are evaluated
- The best performing candidates are selected
 - Two candidates cross-over with one another
 - Some candidates are subject to mutation
- This process repeats until the population is recreated

GA

Genetic Algorithm

- Genetic Algorithms are a type of EC
- Candidates are represented as bit strings

Genetic Algorithm: Cross-over

- A Cross-over point is selected from two candidates. All bits are swapped beyond the point, creating two new candidates.
- Before:

$$C_1 = [1, 0, 1, 0, |0, 0, 1, 0, 0, 1]$$

 $C_2 = [0, 0, 1, 1, |0, 1, 1, 0, 1, 0]$

After:

$$[1,0,1,0,0,1,1,0,1,0]$$
$$[0,0,1,1,0,0,1,0,0,1]$$

Genetic Algorithm: Candidate Manipulation

• Mutation:

Example: "One Max"

$$\rho \begin{cases} [1,\ 0,\ 1,\ 1,\ 0,\ 1,\ 0,\ 1,\ \cdots\ 1] \\ [1,\ 0,\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ \cdots\ 0] \\ & \cdots \\ [0,\ 0,\ 1,\ 1,\ 0,\ 1,\ 0,\ 0,\ \cdots\ 0] \end{cases}$$

Artificial Neural Networks

- Overview
- 2 Background
- Research Cases
 - SwimmingRobot
 - WalkingRobot
 - CoordRobot
- Simulation
- EvolutionaryProcess
- 6 Results

Swimming Robot

Walking Robot

Coordinate Tracking Robot

- Overview
- 2 Background
- Research Cases
- Simulation
 - SimSwimmingRobot
 - SimWalkingRobot
 - SimCoordRobot
 - SimCoordRobot
- EvolutionaryProcess

Swimming Robot: Simulation

Walking Robot: Simulation

Coordinate Tracking Robot: Simulation

Coordinate Tracking Robot

- Overview
- 2 Background
- Research Cases
- Simulation
- EvolutionaryProcess
 - EPSwimmingRobot
 - EPWalkingRobot: Evolutionary Process
 - EPCoordRobot: Evolutionary Process
- Results

Swimming Robot: Evolutionary Process

Walking Robot: Simulation

Coordinate Tracking Robot: Simulation

- Overview
- 2 Background
- Research Cases
- Simulation
- EvolutionaryProcess
- Results
 - Station Keeping Robot
 - ResultsWalkingRobot
 - ResultsCoordRobot

Station Keeping Robot: Results

Moore et al.

- Each trial had a candidate which successfully maintained the position
- When the flow was coming from behind, the evolved candidate would flip end-over-head to orient itself (http://y2u.be/UufbnEGFwV4)

Results Robot: Results

Coordinate Tracking Robot: Results

- Overview
- 2 Background
- Research Cases
- Simulation
- EvolutionaryProcess
- Results
- Questions and Acknowledgements

Any Questions?
Thank you to Nic McPhee, Elena Machkasova, and Alex Jarvis