Derivation Rules of Natural Deduction (System SND)

Conjunction Introduction (&I)

Conditional Introduction $(\supset I)$

$$\begin{array}{c|c} m & \Phi & : \text{AS for } \supset I \\ \hline n & \Psi & : m-n \supset I \\ \hline \end{array}$$

Negation Introduction (\sim I)

$$m$$
 n
 Ψ
 $\sim \Psi$
 $\sim \Phi$
:AS for $\sim I$
 $\sim I$

Disjunction Introduction $(\vee I)$

$$\begin{array}{c|cccc} m & \Phi & & & \\ \hline \Phi \lor \Psi & & :m \lor \mathbf{I} & \\ \hline \Psi \lor \Phi & & :m \lor \mathbf{I} & \\ \end{array}$$

Biconditional Introduction ($\equiv I$)

$$\begin{array}{c|c} i & \Phi & \text{:AS for } \equiv \mathbf{I} \\ j & \Psi & \\ & -- & \\ k & \Phi \equiv \Psi & \text{:AS for } \equiv \mathbf{I} \\ & \Phi \equiv \Psi & \text{:} i-j, \ k-l \equiv \mathbf{I} \\ \end{array}$$

Conjunction Elimination (&E)

$$m$$
 $\Phi \& \Psi$ Φ : $m \& E$ Ψ : $m \& E$

Conditional Elimination $(\supset E)$

$$\begin{array}{c|cccc} m & \Phi \supset \Psi \\ n & \Phi \\ & \Psi & :m, n \supset E \end{array}$$

Negation Elimination (\sim E)

$$m$$
 | $\sim \Phi$:AS for $\sim E$ ψ : $\sim \Psi$ | $\sim \Psi$ | $\sim \Psi$ | $\sim \Psi$ | $\sim \Phi$: $m = o \sim E$

Disjunction Elimination ($\vee E$)

$$\begin{array}{c|c} m & \Phi \vee \Psi \\ i & \Phi \\ j & \Omega \end{array} : \text{AS for } \vee \text{E} \\ -- & \\ k & \Psi \\ l & \Omega \end{array} : \text{AS for } \vee \text{E} \\ l & \Omega : \text{AS for } \vee \text{E} \\ l & \Omega : \text{AS for } \vee \text{E} \\ \end{array}$$