NAME: ENTRY No.:

1. Write a Boolean expression to represent the function implemented by the circuit shown. There is no need to draw truth table or Karnaugh map.

Solution:

Denoting the multiplexer inputs as x0, x1, x2 and x3, we can express f as follows.

```
f = enable.(s1'.s0'.x0 + s1'.s0.x1 + s1.s0'.x2 + s1.s0.x3),
where s1 and s0 are the two bits of input s.
```

We can replace x0, x1, x2, x3 and enable by '0', (a.b)', (a+b)', '1' and '1' respectively. This leads to the following expression for f.

```
f = 1.(s1'.s0'.0 + s1'.s0.(a.b)' + s1.s0'.(a+b)' + s1.s0.1)
= s1'.s0.(a.b)' + s1.s0'.(a+b)' + s1.s0
= s1'.s0.a' + s1'.s0.b' + s1.s0'.a'.b' + s1.s0
```

This may be simplified to (not required by the question) the following.

$$f = s0.a' + s0.b' + s1.a'.b' + s1.s0$$

[2]

NAME:	ENTRY No.:
-------	------------

2. Construct state diagram and state table of a synchronous sequential circuit that looks at input w in frames or sequences of 2 bits. In each frame, it checks if both the bits are identical (both 1's or both 0's). The result of this check is shown on output z during the next frame in both its clock cycles. Output z is made 1 if the bits in the previous frame were identical and made 0 otherwise. Assume that in the initial state, the circuit is ready to start looking at a new frame (i.e., the first 2 bits form the 1st frame, the next 2 bits form the 2nd frame and so on) and z is to be kept 0 during the first frame. The input is synchronized with the clock.

[2]

Solution:

State transition diagram.

State table

Present state	Next state for $w = 0$	Next state for $w = 1$	Output z
S0	S1	S2	0
S1	S3	S0	0
S2	S0	S3	0
S3	S4	S5	1
S4	S3	S0	1
S5	S0	S3	1

NAME:	ENTRY No.:
-------	------------

3. Behaviour of a circuit with one input w and two outputs Q₁, Q₂ is depicted by the waveforms shown below. The circuit consists of two JK flip-flops and a combinational circuit that drives their JK inputs. Inputs to this combinational circuit are w and flip-flop outputs. Derive expressions for the functions implemented by this combinational circuit.

Solution:

Transitions required at various clock edges and corresponding J K values.

clock	W	present	next	Q1	Q2	J1 K1	J2 K2
edge		Q1 Q2	Q1 Q2	transition	transition		
1	0	0 0	0 0	0 => 0	0 => 0	0 -	0 -
2	1	0 0	1 0	0 => 1	0 => 0	1 -	0 -
3	1	1 0	1 0	1 => 1	0 => 0	- 0	0 -
4	0	1 0	1 1	1 => 1	0 = > 1	- 0	1 -
5	0	1 1	1 1	1 => 1	1 => 1	- 0	- 0
6	1	1 1	0 1	1 => 0	1 => 1	- 1	- 0
7	1	0 1	0 1	0 => 0	1 => 1	0 -	- 0
8	0	0 1	0 0	0 => 0	1 => 0	0 -	- 1
9	0	0 0	0 0	0 => 0	0 => 0	0 -	0 -
10	1	0 0	1 0	0 => 1	0 => 0	1 -	0 -
11	1	1 0	1 0	1 => 1	0 => 0	- 0	0 -
12	0	1 0	1 1	1 => 1	0 = > 1	- 0	1 -
13	0	1 1	1 1	1 => 1	1 => 1	- 0	- 0
14	1	1 1	0 1	1 => 0	1 => 1	- 1	- 0
15	1	0 1	0 1	0 => 0	1 => 1	0 -	- 0

Table for J1 K1

	Q1' Q2'	Q1' Q2	Q1 Q2	Q1 Q2'
w'	0 -	0 -	- 0	- 0
W	1 -	0 -	- 1	- 0

$$J1 = w Q2'$$

$$K1 = w Q2$$

Table for J2 K2

	Q1' Q2'	Q1' Q2	Q1 Q2	Q1 Q2'
w'	0 -	- 1	- 0	1 -
W	0 -	- 0	- 0	0 -

$$J2 = w' Q1$$

 $K2 = w' Q1'$

NAME:	ENTRY No.:
-------	------------

4. Give entity and architecture description in VHDL for a 4 to 2 encoder, a purely combinational circuit. It has two output ports. If exactly one of the 4 inputs is 1, it outputs a 2 bit code on the first port. Otherwise, it indicates an error on the second port. The 2 bit code on the first port indicates which input is 1. In case of error, the code is ignored.

[2]

Solution:

```
ENTITY encoder 4 2 IS
 PORT (X: IN bit vector (3 DOWNTO 0);
       code: OUT bit vector (1 DOWNTO 0);
       error: OUT bit
END encoder 4 2;
ARCHITECTURE casestmt OF encoder 4 2 IS
PROCESS (X)
  BEGIN
    CASE X IS
      WHEN "1000"
                      => code <= "11"; error <= '0';
      WHEN "0100"
                      => code <= "10"; error <= '0';
                      => code <= "01"; error <= '0';
      WHEN "0010"
      WHEN "0001"
                      => code <= "00"; error <= "0";
      WHEN OTHERS => code <= "00"; error <= '1';
    END CASE;
  END PROCESS;
END ARCHITECTURE casestmt;
alternatively,
ARCHITECTURE ssa OF encoder 4 2 IS
BEGIN
 error <= '0' WHEN (X = "1000" or X = "0100" or X = "0010" or X = "0001") ELSE
      '1';
 WITH X SELECT
  code <= "11" WHEN "1000",
       "10" WHEN "0100",
       "01" WHEN "0010",
       "00" WHEN OTHERS:
END ARCHITECTURE ssa;
```