

얼굴 감정 분석에 따른 음악 추천 서비스

4조 박수영 이소현 정혜우 한상준

1.프로젝트 개요 및 목적

2. 프로젝트 팀 구성 및 역할

3. 데이터 수집 및 분석 방법

4. 시스템 흐름 및 구성

5. 모델 구현

6. 시스템 운영자 지침

7. 문제점 및 해결방안

8. 결론

Agenda

01프로젝트 개요 및 목적

얼굴감정 분석에 따른 음악추천 서비스

- 인공지능의 급속도 발전
- 감정의 형태를 나타내는 중요한 수단 중 하나가 얼굴 표정
- 감정분석, 딥러닝 모델링 및 웹서버 구축을 직접 경험함으로써 이해
- API의 이용으로 다양하고 재미있는 서비스를 만들어내며 소비자 중심의 UI에 목적

02프로젝트 팀 구성 및 역할

한 상 준

• 웹서비스 구현을 위한 R&D

• streamlit 웹퍼블리싱 작업

• 중립 감정 사진업로드 기능 • AWS 구성 및 웹배포

• QR 코드 배포

• opencv설정 및 캡쳐기능 구현 • streamlit 웹퍼블리싱 작업 • 시연 π 조장: 박 수 영

이 소 현

정 혜 우

- FER2013 및 haarcascade 딥러닝 이용 학습모델 구현 및 효율화
- opencv설정 및 캡쳐기능 구현
- streamlit 웹퍼블리싱 작업
- 발표

- 웹서비스 구현을 위한 R&D
- streamlit 웹퍼블리싱 작업
- · 중립 감정 세부유저 Selection 구현

• FER2013 및 haarcascade 딥러닝

이용 학습모델 구현 및 효율화

- AWS 구성 및 웹배포
- QR 코드 배포

03데이터 수집 및 전처리

New data 20297개

Happiness 7295 Sadness 4839 Surprise 3197 Neutral 4966

데이터 수집 및 전처리

<Function>

Spotify 음악추천방식

Main library Streamlit 소개

convolution layer + 증강

Categorical cross entropy

ResnetV50 + 증강

Zero padding Conv

BatchN

ReLu

Max Pool

Conv Block

ID Block

Conv Block

ID Block

Conv Block ID Block Conv Block

ID Block

Avg Pool

Flatten

S S

Augment

Functional

Dense(512)

Batch Norm (512)

GlobalAvgPooling

Softmax / Sigmoid

Dense (4)

Convolution layer

batch/ epoch	Activate	optimizer	train acc	train loss	val acc	val loss	test acc	test loss
64/50	softmax	RMSprop	0.7396	0.5916	0.7722	0.6207	0.7707	0.6273

<u>별첨: 모델 확률 정리.xlsx - Google Sheets</u>

ResnetV50

batch/ epoch	activate	optimizer	train acc	train loss	val acc	val loss	Test acc	test loss
64/50	softmax	SGD	0.8556	0.4095	0.7812	0.5819	0.7883	0.5786

모델 확률 수정 작업

이미지를 numpy 배열로 변환

- sample_img=cv2.resize(sample_img, (48,48))
 sample_pix=list(sample_img.ravel())
 sample_pix=' '.join(str(s) for s in sample_pix)
 sample_pix
- 13 19 12 12 8 12 17 14 18 26 18 17 14 19 12 15 19 19 21 23 20 14 12 14 12 10 13 10 11 14 12 14 14 14 14 13 12 12 12 12 12 13 15 16 16 17 15 14 16 11 17 11 12 8 11 15 12 15 20 14 14 13 16 11 14 13 15 18 20 20 19 16 14 14 13 14 12 12 13 13 12 13 14 14 13 12 12 12 12 12 13 15 16 16 17 16 15 16 12 16 11 11 9 10 13 11 12 14 10 10 13 14 11 12 12 15 16 16 18 20 18 13 13 14 13 13 13 13 14 14 14 13 13 12 12 12 12 13 13 14 15 15 16 18 17 15 17 14 17 13 12 10 10 12 1 0 9 8 8 8 13 10 10 12 9 11 11 10 14 20 22 19 14 16 12 14 14 13 16 14 15 15 15 15 15 15 15 15 16 17 16 16 18 17 16 18 18 18 15 12 10 9 11 10 7 5 8 7 11 7 9 10 8 8 8 8 10 14 18 19 18 19 14 15 15 13 16 13 16 16 17 18 18 17 17 18 18 18 17 17 18 17 17 18 20 18 16 12 11 8 10 9 7 5 8 7 10 6 9 9 9 9 9 8 8 10 12 18 18 15 16 16 16 16 17 16 16 16 17 18 18 16 16 18 20 20 18 17 18 18 17 20 21 17 17 12 12 9 9 9 7 6 8 8 9 8 9 7 5 6 8 8 8 8 9 12 13 12 13 14 15 17 16 16 15 14 15 17 16 15 15 18 19 20 19 19 19 18 18 21 21 17 18 13 14 9 9 9 6 5 6 7 8 8 8 5 8 9 8 8

감정, 픽셀 통합하여 DataFrame으로 저장

	emotion	pixels
0	5.0	10 8 7 9 10 21 25 37 39 34 45 82 82 82 88 93 9
1	5.0	69 78 83 92 97 107 124 119 58 32 62 79 106 157
2	5.0	219 217 218 218 224 151 59 75 51 50 107 163 14
3	5.0	254 253 255 254 255 255 250 101 33 54 73 74 64
4	5.0	99 98 82 78 69 56 53 55 51 52 58 67 83 110 118
20292	6.0	47 53 84 119 93 62 51 56 52 56 56 56 57 57 57
20293	6.0	30 23 25 21 28 36 50 77 97 104 110 113 119 127
20294	6.0	42 31 6 6 0 3 3 0 0 0 10 71 133 169 187 198 20
20295	6.0	220 221 195 129 122 128 131 123 126 135 140 14
20296	6.0	118 24 15 16 34 31 56 85 87 89 90 103 106 112

20297 rows × 2 columns

ResnetV50

Sparse categorical crossentropy

Functional
BatchN
Drop out
Dense
BatchN
Drop out

batch/ epoch	activate	optimizer	train acc	train loss	val acc	val loss	test acc	test loss
64/50	softmax	SGD	0.3115	1.8336	0.405	1.2954	0.3927	1.3192

미세조정

Sparse categorical crossentropy

동결 해제 후 하단 9층 빼고 다시 동결 새로운 층 다시 추가

Functional	BatchN	Flatten	Dense	BatchN	Drop out	Dense	BatchN	Drop out	Dense	BatchN	Drop out	Dense	Softmax
------------	--------	---------	-------	--------	----------	-------	--------	----------	-------	--------	----------	-------	---------

batch/ epoch	activate	optimizer	train acc	train loss	val acc	val loss	test acc	test loss
64/50	softmax	Adam	0.5845	1.0043	0.5149	1.1067	0.5178	1.1257

Convolution layer + 증강

Categorical cross entropy

batch/ epoch	activate	optimizer	train acc	train loss	val acc	val loss	test acc	test loss
64/50	softmax	RMSprop	0.8513	0.3879	0.8073	0.5149	0.8081	0.5113

Confusion matrix

	presicion	recall	f1-score	support
(Happiness) 0	0.91	0.87	0.89	1459
(Sadness) 1	0.76	0.68	0.72	968
(Surprise) 2	0.87	0.90	0.88	640
(Neutral) 3	0.67	0.77	0.72	993
accuracy			0.80	4060
macro avg	0.80	0.80	0.80	4060
weighted avg	0.81	0.80	0.81	4060

Text(69.0, 0.5, 'Truth')

Image test prediction

메인 화면

감정 분석 음악 추천 서비스

얼굴이미지 캡처

이미지업로드

새로운 노래 추천

당신의 얼굴 사진을 캡처합니다.

캡처 진행을 하시려면 SHIFT+C를 눌러주세요!

카메라에서 얼굴감정 캡쳐 후 분석

어이쿠! 많이 놀라셨나요? 당신을 진정시켜줄 노래입니다. 기분 좋은 하루 보내세요~

사진 업로드 기능

기분이 좋으시네요. 당신을 행복하게해 줄 노래입니다! 기분 좋은 하루 보내세요^^

중립 Selection 기능

웹서버

QR 코드 배포

07문제점 및 해결 방안

▲ 해결방안

JavaScript로 카메라 캡쳐 부분 다시 설정

08결론 및 후기

08결말 및 후기

인원감소 및 시간부족

갑작스런 인원감소로 다양한 시도를 하지 못한 것에 대해 아쉬움이 남습니다. 프로젝트 마감에 임박하여 결국 웹에서 캠 구동을 완성시키지 못하고 마무리 짓게 되어 아쉬움이 크다.

아쉬운 점

계획 수립의 미흡

구체적인 계획 수립 및 툴의 정확한 정보를 미리 파악하지 못하여 문제를 겪을 때 이를 해결하는데 많은 시간이 소요되었다.

팀원 간 소통과 협력

팀 프로젝트에서 팀원 간의 소통이 얼마나 중요한지 다시 한번 느낄 수 있는 시간이었고, 화합해서 좋은 결과물을 낼 수 있어 뜻깊었다.

배운 점

다양한 기술 및 지식 습득

프로젝트를 통해 각자의 전공 외에도 전무했던 지식을 연구하고 학습할 수 있었습니다.

딥러닝 및 얼굴인식 원리에 대해 이해를 높일 수 있었으며 다양한 기술을 접할 수 있어 좋았다.

THANK YOU

Music Recommendation