МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Лекция №9

Предел функции (часть 4)

Непрерывность функции

НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ

Рассмотрим функцию f(x), определенную на множестве X, и точку $x_0 \in X$, которая является предельной точкой этого множества.

Определение 1. Функция f(x) называется непрерывной в точке x_0 , если для любого $\varepsilon > 0$ найдется число $\delta > 0$ (вообще говоря, зависящее от ε) такое, что выполнено неравенство

$$|f(x) - f(x_0)| < \varepsilon,$$

как только выполняется неравенство $|x-x_0|<\delta$.

Вспоминая определение предела функции в точке, можно переписать следующим образом:

Определение 1*. Функция f(x) называется непрерывной в точке x_0 , если $\lim_{x\to x_0} f(x) = f(x_0)$

НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ

Определение 2. Функция f(x) называется непрерывной справа (слева) в точке x_0 , если правое (левое) предельное значение этой функции в точке x_0 существует и равно значению функции в этой точке, т.е. равно $f(x_0)$.

Символические обозначения непрерывности справа (слева):

$$\lim_{x \to x_0 + 0} f(x) = f(x_0) \quad \text{или} \quad f(x_0 + 0) = f(x_0)$$

$$\left(\lim_{x \to x_0 - 0} f(x) = f(x_0), \quad f(x_0 - 0) = f(x_0)\right).$$

Определение 3. Функция f(x) называется непрерывной на множестве X, если она непрерывна в каждой точке множества X.

НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ

Пример 1. Докажем, что функция $\sin x$ непрерывна в любой точке x_0 , т.е. имеет место равенство

$$\lim_{x \to x_0} \sin x = \sin x_0.$$

Возможные типы точек разрыва функции.

1) Устранимый разрыв.

Определение 4. Точка a называется точкой устранимой разрыва функции y = f(x), если предел у функции в этой точке существует, но в точке a функция f(x) или не определена, или ее значение f(a) в точке a не равно предельному значению.

Пример 1. Рассмотрим функцию $f(x) = \frac{\sin x}{x}$.

Функция не определена в точке x=0, но мы знаем, что ее предел в этой точке равен 1. Следовательно, точка x=0 является точкой устранимого разрыва.

Этот разрыв можно устранить. Достаточно определить значение функции в точке устранимого разрыва равным ее предельному значению в этой точке.

Доопределим значение функции $\frac{\sin x}{x}$ в точке x=0 единицей, т.е.

$$\tilde{f}(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0. \end{cases}$$

И уже функция $\tilde{f}(x)$ будет непрерывной в точке x=0.

2) Точки разрыва первого рода.

Определение 5. Точка α называется точкой разрыва первого рода, если в этой точке функция y = f(x) имеет конечные, но не равные друг другу правое и левое предельные значения, т.е.

$$\lim_{x\to a+0} f(x) \neq \lim_{x\to a-0} f(x).$$

Точки разрыва первого рода также называют «скачками».

Пример 2. Для функции

$$sgn x = \begin{cases}
1, & ecли x > 0, \\
-1, & ecли x < 0, \\
0, & ecли x = 0
\end{cases}$$

точка x=0 является точкой разрыва первого рода, так как

$$\lim_{x \to 0+0} \operatorname{sgn} x = 1, \qquad \lim_{x \to 0-0} \operatorname{sgn} x = -1.$$

3) Точки разрыва второго рода.

Определение 6. Точка a называется точкой разрыва второго рода, если в этой точке функция y = f(x) не имеет по крайней мере одного из односторонних пределов или если хотя бы один из односторонних пределов равен $\pm \infty$ (в этом случае точку разрыва иногда называют точкой бесконечного разрыва).

Пример 3. Функция $f(x) = \sin \frac{1}{x}$ в точке x = 0 не имеет ни правого, ни левого предельного значения. Следовательно, x = 0 — точка разрыва второго рода.

СВОЙСТВА НЕПРЕРЫВНЫХ ФУНКЦИЙ

Теорема 1. Пусть функции f(x) и g(x) определены на множестве X и обе непрерывны в точке x_0 . Тогда в этой точке будут также непрерывны функции

$$f(x) \pm g(x), \qquad f(x) \cdot g(x), \qquad \frac{f(x)}{g(x)}$$

последняя при условии, что $g(x_0) \neq 0$.

НЕПРЕРЫВНОСТЬ И МОНОТОННЫЕ ФУНКЦИИ

Теорема 2. Пусть функция f(x) определена на множестве X и монотонно возрастает (убывает). Тогда f(x) может иметь на X только разрывы первого рода, т.е. скачки. (в формулировке теоремы f(x) может быть также неубывающей (невозрастающей)).

Доказательство. Рассмотрим случай монотонно возрастающей функции. Пусть x_0 – любая точка множества X, не являющаяся левым концом этого промежутка. Рассмотрим промежуток, лежащий левее точки x_0 . Поскольку для $x < x_0$, очевидно, $f(x) \le f(x_0)$, то по теореме о монотонной и ограниченной функции существует конечный предел

$$\lim_{x \to x_0 - 0} f(x) \le f(x_0).$$

Если этот предел совпадает с $f(x_0)$, то f(x) является непрерывной в точке x_0 (т.е. разрывов нет), в противном случае имеем разрыв первого рода.

Таким же образом можно убедиться, что в каждой точке x_0 промежутка X (не являющейся его правом концом) справа либо имеет место непрерывность, либо имеем скачок. Теорема доказана.

НЕПРЕРЫВНОСТЬ КОМПОЗИЦИИ ФУНКЦИЙ

Теорема 3. Пусть функция $\varphi(y)$ определена на множестве Y, а функция y = f(x) — на множестве X, причем значения f(x) не выходят за пределы Y, когда $x \in X$. Если f(x) непрерывна в точке $x_0 \in X$, а $\varphi(y)$ непрерывна в соответствующей точке $y_0 = f(x_0) \in Y$, то и сложная функция $\varphi(f(x))$ будет непрерывной в точке x_0 .

Доказательство. Пусть $\varepsilon>0$ — произвольное число. Так как $\,\phi(y)\,$ непрерывна в точке y_0 , то по ε найдется число $\sigma>0$ такое, что

$$|\varphi(y) - \varphi(y_0)| < \varepsilon$$
 как только $|y - y_0| < \sigma$.

В свою очередь, так как f(x) непрерывна в точке x_0 , то по σ найдется число $\delta>0$ такое, что

$$|f(x) - f(x_0)| = |f(x) - y_0| < \sigma$$
 как только $|x - x_0| < \delta$.

Тогда из последних двух утверждений получаем, что для любого числа $\varepsilon>0$ найдется число $\delta>0$ такое, что

$$|\varphi(y) - \varphi(y_0)| = |\varphi(f(x)) - \varphi(f(x_0))| < \varepsilon$$

как только $|x-x_0|<\delta$. Теорема доказана.

Теорема 4 (об обращении функции в нуль). Пусть функция f(x) определена и непрерывна на [a,b] и на концах этого отрезка принимает значения разных знаков. Тогда найдется точка c: a < c < b и

$$f(c)=0.$$

Доказательство. Пусть для определенности f(a) < 0, f(b) > 0. Рассмотрим множество $X = \{x' \in [a,b]: f(x') < 0\}$. Понятно, что множество X будет содержать также точку a и близлежащие к ней точки. Множество X ограничено сверху, например, числом b. Пусть $c = \sup X$. Докажем, что f(c) = 0.

Допустим противное. Тогда либо f(c) < 0, либо f(c) > 0. Пусть f(c) < 0, тогда c < b, так как f(b) > 0, и правее c найдутся значения x', для которых f(x') < 0, а это противоречило бы определению c, как верхней грани для X.

Случай f(c) < 0 приводит к аналогичному результату. Получили противоречие. Теорема доказана.

Теорема 5 (о промежуточном значении). Пусть функция f(x) определена и непрерывна в некотором промежутке X. Если в двух точках x=a и x=b (a < b) этого промежутка функция принимает неравные значения

$$f(a) = A$$
 и $f(b) = B$,

То каково бы ни было число C, лежащее между A и B, найдется точка x=c (a < c < b) такая, что f(c)=C.

Доказательство. Пусть для определенности A < B, тогда A < C < B. Рассмотрим на [a,b] вспомогательную функцию $\varphi(x) = f(x) - C$. Эта функция непрерывна на [a,b] и на его концах имеет разные знаки:

$$\varphi(a) = f(a) - C = A - C < 0,$$

 $\varphi(b) = f(b) - C = B - C > 0.$

Тогда между a и b найдется точка c: f(c) = 0, т.е.

$$\varphi(c) = f(c) - C = 0$$
 или $f(c) = C$.

Теорема доказана.

Теорема 6 (І теорема Вейерштрасса). Если функция f(x) определена и непрерывна на отрезке [a,b], то она ограничена на нем, т.е. существуют такие числа m и M, что $m \le f(x) \le M$ при $a \le x \le b$.

Доказательство. Докажем от противного. Пусть функция f(x) на отрезке [a,b] не ограничена. Тогда для каждого натурального n найдется на [a,b] такое значение $x=x_n$, что

$$|f(x_n)| \ge n$$
.

Из последовательности $\{x_n\}$ можно извлечь частичную последовательность $\{x_{n_k}\}$, сходящуюся к конечному пределу:

$$x_{n_k} \to x_0$$
 (при $k \to +\infty$),

причем, очевидно, $a \le x_0 \le b$. Поскольку f(x) непрерывна в точке x_0 , то

$$f(x_{n_k}) \to f(x_0),$$

а это невозможно, так как

$$|f(x_{n_k})| \to \infty$$
.

Полученное противоречие и доказывает теорему. Теорема доказана

Теорема 7 (II теорема Вейерштрасса). Если функция f(x) определена и непрерывна на отрезке [a,b], то она достигает в этом промежутке своих точных верхней и нижней граней.

Доказательство. Докажем существование верхней грани. Пусть

$$M=\sup\{f(x)\},\,$$

тогда по свойству точной верхней грани, для любого n найдется такое $x=x_n$ на отрезке [a,b], что

$$f(x_n) > M - \frac{1}{n}.$$

Тогда из последовательности $\{x_n\}$ можно извлечь частичную последовательность $\{x_{n_k}\}$, сходящуюся к конечному пределу $x_0 \in [a,b]$: $x_{n_k} \to x_0$, так что, в силу непрерывности функции имеем

$$f(x_{n_k}) \to f(x_0).$$

В то же самое время имеем

$$f(x_{n_k}) > M - \frac{1}{n_k}$$

и при $k \to +\infty$ имеем $f(x_0) \ge M$. Но $f(x_0)$ не может быть больше верхней границы M множества значений функции и, следовательно, $f(x_0) = M$. Теорема доказана.