A Akhmedor

left-orderable groups were first introduced by Hölder.

Theorem (Hölder) If G = Homeo+ (R), and G acts freely, Then G is abelian.

There are of course Hölder spaces; which we know; and:

 $C^{I+\varepsilon}[0,1] = \{f \in C'[0,1] \mid |f'(x)-f'(y)| < K|x-y|^{\varepsilon} \}$ $\forall x,y \in [0,1]$

Similarly Diff HE [o, 1].

Definition: A linear order on a group G is called

a) A left-order if \X,y, \ZeG,

x<y => zx<zy.

This allows a partition of G, G=G+UG-LISID

b) A bi-order if Yxiy, ZEG,

X<Y => ZX < Zy and XZ < YZ.

This also gives a partition.

c) A left-ordered group G is called Archimedean if $\forall x, y \in G_+ \exists n \ s.t. \ x^n > y$.

Example: Homeo, (R) is left-orderable. To order it, proceed as follows. Choose a dense sequence $(x_n)_{n\geq 1}$ in R. For $f,g\in Homeo_+(R)$ let $f\leq g$ if $\exists m\geq 1$ s.t. f(xi) = g(xi) Viem, & f(xm) < g(xm). Then check that

f<g >> hf<hg, but not necessarily fh<gh. This group contains bi-orderable subgroups: PL+(I) and Diff+ (I) are BO. To see this, you can BO Diff, as follows:

f<g if I \(\in \in \) o \(\text{s.t.} \) f(x) < g(x) \(\text{V} \text{x.e.} \) (0,\(\text{s.} \) (this works Since maps in Diff, (I) have finitely many fixed points). We could generalize this to higher dimensions in several ways, one way would be to define; Def: M is a Holder manifold of, whenever free by homeomorphisms => 1 13 abelian. E.g. R. S', and even-dimensional rational homology spieres are Hölden

and we arrive att some open questions almost immediately:
Q: Is (D², D2) Hölder?
Q: (Calegari-Rolfsen) Is Homes, (D², 2D²) 1eft-orderable?
Returning to orders, note we have an easy implication LO => no torsion, since 1 < g => 1 × g < g ² < cg ³ <
A connection exists here with some of the biggest open conjectures concerning torsion-free groups. E.g.
Kaplansky (1940.) It G is a torsion-free group and k is a field, then kG ho no Zero divisors.
This conjecture is open, but it holds when G is left-orderable. The proof is to take two elements:
Zidigi, Zibifi.
and multiply: (Zi xig) (Zi Biti) = Zi Si hi,
where hi's are products. But if fi is the least of all fi, it gives rise to a smallest hi, which cannot cancel with other terms. So the product is not Zero.

Note the Kaplansky conjecture is not the
Note the Kaplansky conjecture is not the
Exercise: If $g^n = 1$ for some $g \in G_1$ —then check that $(1-g)(1+g++g^{n-i}) = 0$,
$(1-q)(1+q++q^{n-1})=0$
D 11:11
There's a remarkable extension of Holder's
There's a remarkable extension of Holder's theorem: (Akhmeda) Let $\Gamma = Diff_{+}(I)$ s.t. JN so that $V = \Gamma$, I has at most Γ fixed points. Then Γ is meta-abelian, in fact, $\Gamma = A + f_{+} R$.
I has at most in fixed points. Then I'is
meta-abelian, in fact, P& Aff, R.
Either relevant examples of 10 and BD anner.
Further relevant examples of LO and BO groups.
· Any torsion-free nilpotent group is BO.
· ·
and all other surface groups are BO.
Knot groups are LD, but may be Bo or not Bo
There are knot tables, with knots disted by enossing number:
enossing number:
3 cossings
4 crossings, etc.

The crossing number c(L) is the minimal number of crossings required to draw the knot, this is how we sort knots in the tables. Open question: c(L#L2) = c(L)+c(L2)? We compute fundamental groups: If $K \subset S^3$,
then π , $(S^3 \setminus \nu(K))$ is the knot groups E : q. Eg. Kp,q, for p,q relatively prime, is the (p,q) torus knot. We have

TI (Kp,q) = (x,y | x' = y'). Then this group is not BO, for example powers of x, y commuting => X, y commute holds in BO groups. Knots are called fibred if the complement S' W(K) towards fibres over S', or alternatively, if the Seifert surface provides a fibre for the complement. Directing enters the picture here by investigating bi-orderability of $\pi_1(S^3 \mid V(K))$. The latest results address bi-orderability of all knots with = 7 crossings, however 62 and 76 are unknown!

Tomt work with Cody Martin : Prove that 6, and
To are not bi-orderable.
Technique: Comprète the knot group wary the Seifert surface and "push-offs" of generators of the surface, which is essentially a Seifth-Van Kampen trich:
(53/v(K)) 2 cuthry along withry along withry along ends, The space of free.
Then re-glue: the forecover S3 \v(K),
use 3. v. K theorem to represent $\pi(5^3 \nu(K))$ as an HNN extension of a free group, with conjugating generator t as shown above.
So, bi-orderability of $\pi_i(S^2 \nu(K))$ boils down to ordering the free group in a way that is invariant under the conjugation of t.
Then examine lower central series quebents, and