

Entity-Relationship Data Model

Cheng-En Chuang

(Slides Adopted from Jan Chomicki and Ning Deng)

Announcement

- Remember to enroll on Piazza
- Project 1 A Group Project
 - 3 5 people
 - Email the TA your group members (ubit & person#)
 - Hopefully will be published before next lecture (Feb. 4)

Outline

- 1. Level of Abstraction
- 2. ER Model Introduction
- 3. ER Model Basics
- 4. Conceptual Design in ER Model

Level of Abstraction

- Ideas
- High-Level Design (ER Model)
- Relational Database Schema (Relational Schema)
 - The global view of the whole application
 - Uses a high-level data mode, e.g. relational
 - Created and maintained by the database administrator
- Relational DBMS
 - How the database is actually stoed on disk(s)
 - Hidden from users
 - Uses low-level concepts: files, indexes, ...
 - Created and maintained by the DBA with high-level tools

Outline

- 1. Level of Abstraction
- 2. ER Model Introduction
- 3. ER Model Basics
- 4. Conceptual Design in ER Model

ER Model Introduction

- Scheme
 - Structure of data
- How to produce a schema?
 - Data represents concepts
 - Model the concepts

ER Model Introduction

- A pictorial (graphical) representation of a schema
 - Enumerates all entities in the schema
 - Shows how entities are related
 - Shows what is stoed for each entity
 - Shows restrictions (integrity constraints)

Outline

- 1. Level of Abstraction
- 2. ER Model Introduction
- 3. ER Model Basics
- 4. Conceptual Design in ER Model

ER Model Basics – Principle Elements Types

- Entity sets
- Attributes
- Relationships

ER Model Basics – Entity

- A abstract object of some sort
 - a concrete one: Apartments
 - an abstract one: Moods
- An entity is described through a set of attributes
 - The properties of the entity

ER Model Basics – Entity Set, Attributes

- A collection of similar entities (e.g. students)
 - Represented by rectangles in ER diagrams
 - Entities in an entity set have the same set of attributes
- An attribute is a property of the entities in an entity set
 - Represented by ovals in ER diagrams
 - Each attribute has a domain (e.g. integers, string)

ER Model Basics – Domain of attributes

Type class	Description	Example Entities
Primitive	A value that can not be subdivided further	1701, 2.4, or 'John Smith'
Tuple	A fixed-length "struct" of attribute-value pairs (attribute names optional)	<name: 'john',="" id:1234="">,</name:>
Collection	A collection of variable number of records	['John', 'Mary'] [<'John', 1234>, <'Mary', 2234>]

ER Model Basics – Key Constraint

- A **key** for an entity set *E* is a set *K* of one or more attributes such that
 - Given any two distinct entities $e_1, e_2 \in E$, e_1 and e_2 cannot have identical values for each of the attributes in the key K
 - Example

ER Model Basics – Key Constraints

- Some important points of key constraints
 - Every entity must have a key
 - Although in some cases the key actually belongs to another entity set
 - E.g. ISA-Hierarchies, weak entity sets
 - There might be more than one cadidate key for an entity set
 - Pick one from candidate keys as **primary key**, act as if it is the only key
 - Example?

ER Model Basics – Relationships

- Relationship
 - connections among two or more entity sets
- Relationship Set
 - A collection of similar relationships
 - Represented by diamonds in ER diagrams
 - An *n-ary relationship* relates n entity sets $E_1, ..., E_n$
 - May have their own attributes

ER Model Basics – Relationships

- There can be relationships between entities in the same entitiy sets
 - Any other examples?

ER Model Basics – Multiplicity

- Consider if we have the following relationships
 - 1-to-1
 - One untiversity can have only one predident
 - 1-to-many
 - One university can have many students
 - But each student has only one university
 - Many-to-many
 - A tutor can tutor many students
 - A student can have many tutors

ER Model Basics – Multiplicity

ER Model Basics – Multiplicity in Binary Relationships

- "one-X" in binary relationship
 - Identifies entities that participate in at most once
 - Denote that "many" side with an entering arrow
 - There are many other notations for multiplicity constraints
 - What happen when we remove a student or an university?

ER Model Basics – Multiplicity in Multiway Relationships

- A ternary relationship
- What are the pros and cons in this schema?

We denote the 'one' side with an entering arrow

ER Model Basics – Participation Constraints

- Require participation in a relationship, denoted as bold line in ER diagrams
 - Every student must be enrolled in an university
 - Every president must manage a univerisy
 - Every university must have a president
 - Any issues?

ER Model Basics – Referential Integrity

- The referenced entity must exist in the instance of the ER diagram
 - There is a president -> There must be a studio
 - Not vice versa
 - Note the different targets of the arrow

ER Model Basics – Degree Constraints

Indicating limits on the number of entities that can be connected to any one entity of the related entity set

ER Model Basics – Weak Entities

- Some of all of the attributes in an entity set's key belongs to another entity set
- Identified only to the primary key of another (owner) unique entity
 - Sounds familiar? What kind of relationship?
 - The weak entity must participate in a one-to-many relationship
- If there is a studio? If there is a crew?

ER Model Basics – ISA Hierarchies

- Define entity inheritance
 - By A ISA B, then every A is also considered to be a B
 - Every ISA relationship is one-to-one, represented by triangle in ER diagram
- Overlap constraints
 - Can a student be a CSStudent and an EEStudent?
- Covering constraints
 - Does every student have to be a CSStudent or an EEStudent?

ER Model Basics – ISA Hierarchies

- Reasons for using ISA
 - Adding descriptive attributes specific to a subclass, e.g. CSEIT
 - Identifying entities in a specific type of relationship
 - A relastionship only connected to a subset of an entity set
 - Examples?

ER Model Basics – Aggregation

- Allows us to treat a relationship as an entity set
- What does it imply?

ER Model Basics – More on Relationships

- Many-to-Many can be decopsed into?
 - Two 1-to-Many relationships plus an new entity set

Outline

- 1. Level of Abstraction
- 2. ER Model Introduction
- 3. ER Model Basics
- 4. Conceptual Design in ER Model

- Murphy's Law: Anything that can go wrong will go wrong
 - Design a foolproof DB starting from ER model
- Design choices
 - Should a concept be modeled as an entity or an attribute of another entity?
 - What is the difference?
 - Should a concept be model as an entity or a relationship between entities?
 - A noun? Or a verb?
 - What kind of relationship?
 - Binary, Ternary, N-ary?
- Constraints:
 - A lot of data semantics can (and should) be captured
 - Not all constraints are expressible in ER diagrams

- Example
 - Expressing the Major of a student
 - Option 1: Major as an attribute of Students
 - Option 2: Majors entity set and a relationship set *majors-in*
 - Vote your option
 - Depends on semantics
 - Can a student have multiple majors?
 - Are there another detail we want beside major's name?

Problem: No details on relationship majors-in

Solution: Add a duration entity and make majors-in a ternary relationship.

Is this good enough? Can we do better?

Recommended Reading

Database Systems: The Complete Book

Chapter 4.1 – 4.4