Regression Cont...

Regression equation using Regression Coefficients:

- 1. Using Actual values of X and Y.
- 2. Using deviation from Actual means.
- 3. Using deviation from Assumed means.
- 4. Using r, σ_x , σ_y values

Regression using Actual Values:

Regression equation Y on X:

$$(Y-\overline{Y})=b_{yx}(X-\overline{X})$$

$$b_{yx} = \left(\frac{N\sum XY - \sum X\sum Y}{N\sum X^2 - (\sum X)^2}\right)$$

Regression line X on Y:

$$(X - \overline{X}) = b_{XY}(Y - \overline{Y})$$

$$b_{xy} = \left(\frac{N\sum XY - \sum X\sum Y}{N\sum Y^2 - (\sum Y)^2}\right)$$

1. Calculate the regression equation of X on Y using actual values of X and Y.

X:	1	2	3	4	5
Y:	2	5	3	8	7

X	Y	XY	Y^2	X^2
1	2	2	4	1
2	5	10	25	4
3	3	9	9	9
4	8	32	64	16
5	7	35	49	25
15	25	88	151	55

Regression equation X on Y:

$$\overline{Y} = \frac{\Sigma Y}{N} = 5; \ \overline{X} = \frac{\Sigma X}{N} = 3$$

$$(X - \overline{X}) = b_{xy} (Y - \overline{Y})$$

$$b_{xy} = \left(\frac{N \sum XY - \sum X \sum Y}{N \sum Y^2 - (\sum Y)^2}\right)$$

$$b_{yx} = \left(\frac{5 \times 88 - 15 \times 25}{5 \times 151 - 25^2}\right) = 0.5$$

$$(X - 3) = 0.5(Y - 5)$$

$$X = 0.5Y + 0.5$$

$$N = 5$$
, $\sum X = 15$, $\sum X^2 = 55$, $\sum Y = 25$, $\sum Y^2 = 151$, $\sum XY = 88$

Regression equation Y on X:

$$\overline{Y} = \frac{\Sigma Y}{N} = 5; \overline{X} = \frac{\Sigma X}{N} = 3$$

$$(Y - \overline{Y}) = b_{yx} (X - \overline{X})$$

$$b_{yx} = \left(\frac{N\Sigma XY - \Sigma X\Sigma Y}{N\Sigma X^2 - (\Sigma X)^2}\right)$$

$$b_{yx} = \left(\frac{5 \times 88 - 15 \times 25}{5 \times 55 - 15^2}\right) = 1.3$$

$$(Y - 5) = 1.3(X - 3)$$

$$Y = 1.3X + 1.1$$

2. Calculate the regression equation of Yon X and X on Y, Using deviation from Actual means.

X: 2 4 6 8 10 12

Y: 4 2 5 10 3 6

$$(Y - \overline{Y}) = b_{yx} (X - \overline{X})$$

$$b_{yx} = \left(\frac{\sum (X - \overline{X})(Y - \overline{Y})}{\sum (X - \overline{X})^2}\right)$$

		$(X - \overline{X}) =$	$(Y - \overline{Y}) =$	$(X - \overline{X})(Y - \overline{Y}) = (X - 7)(Y - 5)$	$\left(X - \overline{X}\right)^2 =$	$(Y - \overline{Y})^2 =$
		(X-7)	(Y-5)	(X-7)(Y-5)	$(X-7)^2$	$(Y-5)^2$
X	Y					
2	4	-5	-1	5	25	1
4	2	-3	-3	9	9	9
6	5	-1	0	0	1	0
8	10	1	5	5	1	25
10	3	3	-2	-6	9	4
12	6	5	1	5	25	1
42	30	7 42	$0 \sim V$	18	70	40

$$\overline{X} = \frac{\sum X}{N} = \frac{42}{6} = 7; \quad \overline{Y} = \frac{\sum Y}{N} = \frac{30}{6} = 5$$

$$(Y-5)=b_{yx}(X-7)$$

$$b_{yx} = \left(\frac{\sum (X-7)(Y-5)}{\sum (X-7)^2}\right) = \frac{18}{70} = 0.257$$

$$(Y-5)=0.257(X-7)$$

$$Y = 0.287 X + 3.201$$

Re gression Xon Y

$$(X-5)=b_{XY}(Y-7)$$

$$b_{xy} = \left(\frac{\sum (X-7)(Y-5)}{\sum (Y-5)^2}\right) = \frac{18}{40} = 0.45$$

$$(X-7)=0.45(Y-5)$$

$$X = 0.45 X + 4.75$$

Regression equation using Regression Coefficients, Using deviation from Assumed means. Regression equation Y on X:

$$(Y - \overline{Y}) = b_{yx}(X - \overline{X})$$

$$b_{yx} = \left(\frac{N\sum dX dY - \sum dX \sum dY}{N\sum dX^2 - (\sum dX)^2}\right)$$

where $dX = X - A_x$, and A_x is the assumed mean of X.

 $dY = X - A_{v}$, and A_{v} is the assumed mean of Y

Regression line X on Y $(X - \overline{X}) = b_{xv}(Y - \overline{Y})$

$$b_{xy} = \left(\frac{N\sum dX \, dY - \sum dX \sum dY}{N\sum dY^2 - (\sum dY)^2}\right)$$

where $dX = X - A_x$, and A_x is the assumed mean of X.

 $dY = X - A_y$, and A_y is the assumed mean of Y

3. Calculate the regression of Y on X and X on Y by using deviations from assumed mean.

X	Y	$dX = X - A_x$	dY=Y- A _y	dX^2	dy ²	dX dY
		= X - 69	=Y - 112			
78	125	9	13	81	169	117
89	137	20	25	400	625	500
97	156	28	44	784	1936	1232
69	112	0	0	0	0	0
59	107	-10	-5	100	25	50
79	136	10	24	100	576	240
68	124	-1	12	1	144	-12
61	108	-8	-4	64	16	32
		48	109	1530	3491	2159

$$\overline{X} = A_x + \frac{\Sigma dX}{N} = 69 + \frac{48}{8} = 75; \qquad \overline{Y} = A_y + \frac{\Sigma dY}{N} = 112 + \frac{109}{8} = 125.625$$

$$b_{yx} = \left(\frac{8 \times 2159 - 48 \times 109}{8 \times 1530 - 48^2}\right) = 1.21$$

$$(Y - 125.625) = 1.21(X - 75)$$

$$Y = 1.21X + 34.87$$

$$b_{yx} = \left(\frac{8 \times 2159 - 48 \times 109}{8 \times 3491 - 109^2}\right) = 0.75$$

$$(X - 75) = 0.75(Y - 125.625)$$

$$Y = 1.21X + 34.87$$

Regression Equation using Regression coefficients, using Standard deviation Regression Equation Y on X:

$$(Y-\overline{Y})=b_{vx}(X-\overline{X})$$
 where

Regression Equation X on Y:

$$(X - \overline{X}) = b_{xy}(Y - \overline{Y})$$
 where $b_{xy} = r \frac{\sigma}{\sigma}_{y}$

4. Estimate the value of Y when X = 9

1. Estimate the value of 1 when 21					
	X	Y			
	11	1			
Arithmetic Mean	5	12			
Standard Deviation	2.6	3.6			
		•			
Correlation Coefficient	0.7				
D . E . I		• •			

Re gression Equation Y on X:

Regression Equation 1 on X:

$$(Y - \overline{Y}) = b_{yx} (X - \overline{X})$$
 where $b_{yx} = r \frac{\sigma}{\sigma_{x}}$
 $b_{yx} = 0.7 \frac{3.6}{2.6} = 0.9692$
 $\therefore (Y - 12) = 0.9692(X - 5)$
 $Y = 0.9692X + 7.15$
When $x = 9$
 $Y = 0.9692 \times 9 + 7.5 = 15.87$

5. If the average of X and Y are 25 and 120 and $b_{xy}=2$. Estimate the value of X when Y=30.

$$(X - \overline{X}) = b_{xy} (Y - \overline{Y})$$

$$(X-25)=2(Y-120)$$
 (1),

When $Y = 130, u \sin g \ in(1), X = 45$

6. Given two regression lines 3X + 4Y = 44; 5X + 8Y = 8, Variance of X is 30. Find mean

of X and Y and also r and σ_v

$$3X + 4Y = 44$$
, Re gression line X on Y

so
$$b_{xy} = -\frac{4}{3}$$

$$5 X + 8 Y = 80$$
, Regression line Y on X

so
$$b_{yx} = -\frac{5}{8}$$

Since $(\overline{X} \ \overline{Y})$ is a point lies on the line. It should satisfy both the equations. Solving the equations the solution is $(\overline{X}, \overline{Y})$ and $\overline{X} = 8$, $\overline{Y} = 5$

$$r^2 = b_{xy} \times b_{yx} = -\frac{4}{3} \times -\frac{5}{8} = 0.82$$

$$\therefore r = \sqrt{0.82}$$
.

$$b_{xy} = -\frac{4}{3} = \frac{r \sigma_x}{\sigma_y} \Rightarrow \sigma_y = 3.73$$