1T01831 - F.E.(SEM I)(ALL BRANCHES) (Rev - 2019 C Scheme) / 58651 - Engineering Mathematics - I QP CODE: 10031556 DATE: 04/07/2023

(Time: 3 hours)

Max.Marks:80

N.B

- (1) Question No.1 is compulsory
- (2) Answer any three questions from Q.2 to Q.6
- (3) Use of Statistical Tables permitted
- (4) Figures to the right indicate full marks.
- 1 a) Solve the equation $7 \cosh x + 8 \sinh x = 1$, for real values of x.

5

b) Find α, β, γ when $A = \begin{bmatrix} 0 & 2\beta & \gamma \\ \alpha & \beta & -\gamma \\ \alpha & -\beta & \gamma \end{bmatrix}$ is orthogonal.

5)

show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$

5

d) Find nth derivative of $y = \frac{x}{x^2 + a^2}$

2 a) If $\cos \alpha + 2\cos \beta + 3\cos \gamma = \sin \alpha + 2\sin \beta + 3\sin \gamma = 0$ then prove 6 that $\sin 3\alpha + 8\sin 3\beta + 27\sin 3\gamma = 18\sin (\alpha + \beta + \gamma)$

If $u = 3(ax + by + cz)^2 - (x^2 + y^2 + z^2)$ and $a^2 + b^2 + c^2 = 1$

b) If $v = (x^2 - y^2) f(xy)$, show that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = (x^4 - y^4) f''(xy)$

c) If $y = e^{m\cos^{-1}x}$, then prove that $(1-x^2)y_{n+2} - (2n+1)x y_{n+1} - (n^2 + m^2)y_n = 0 \text{ . Find } y_n(0)$

3 a) Prove that $\sinh^{-1}(\tan x) = \log \left[\tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right]$

b) Verify Euler's theorem for $u = \left(\frac{x^2 + y^2}{x + y}\right)$

Examine the consistency of the system of equations 2x - y - z = 2, x + 2y + z = 2, 4x - 7y - 5z = 2 and solve then if found consistent.

31556

- 4 a) Find the real values of λ for which the system has non-zero solutions. $x + 2y + 3z = \lambda x$, $3x + y + 2z = \lambda y$, $2x + 3y + z = \lambda z$
 - b) Find the product of all the values of $\left(\frac{1}{2} i\frac{\sqrt{3}}{2}\right)^{3/4}$
 - c) If $u = \sin^{-1} \left[\left(x^2 + y^2 \right)^{\frac{1}{5}} \right]$ then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{2}{25} \tan u \left(2 \tan^2 u 3 \right)$
- 5 a) Using De Moivre's theorem, express $\frac{\sin 7\theta}{\sin \theta}$ in powers of $\sin \theta$ 6
 - b) If xyz = 8 find the values of x,y,z for which $u = \frac{5xyz}{x + 2y + 4z}$ is maximum. 6
 - c) Considering only principle value, if $(1+i\tan\alpha)^{(1+i\tan\beta)}$ is real prove that its value is $\sec\alpha^{\sec^2\beta}$
- 6 a) Reduce to normal form and find its rank $A = \begin{bmatrix} 3 & 2 & 5 & 7 & 12 \\ 1 & 1 & 2 & 3 & 5 \\ 3 & 3 & 6 & 9 & 15 \end{bmatrix}$
 - b) Find the extreme value of $u = x^3 + xy^2 + 21x 2y^2 12x^2$
 - c) Show that $\tan^{-1} \left(\frac{x + iy}{x iy} \right) = \frac{\pi}{4} + \frac{i}{2} \log \left(\frac{x + y}{x y} \right)$ 8