Experimento de Millikan

Uma demonstração que a carga é quantizada

A carga elétrica transportada por um elétron, é uma constante fundamental na física. Durante os anos de 1909 a 1913, Millikan usou o experimento da gota de óleo para demonstrar a discrição do valor da carga do elétron, e fazer a primeira medição precisa do valor desta constante.

Nesse experimento, uma pequena gota carregada de óleo é observada em uma câmara fechada entre dois placas paralelas horizontais e submetidas a uma diferença de potencial ΔV . Ao medir a velocidade da queda sob a gravidade e sua velocidade de ascensão quando as placas estão em diferença de potencial elétrico, os dados são obtidos a partir dos quais a carga elétrica das gotículas pode ser calculada.

Quando o campo elétrico é zero:

$$F_g = mg = F_d = 6\pi \eta R v_f$$

- -A viscosidade do meio é: η
- -A força viscosa é: F_d
- -A velocidade terminal é: v_f
- -A massa da gota de óleo é: m
- -A força peso é: F_g
- -A densidade da gota de óleo é: ρ
- -O raio da gota de óleo é: R

$$m = (4/3)\pi R^3 \rho$$
 $(4/3)\pi R^3 \rho g = 6\pi \eta R v_f$

$$R = \sqrt{\frac{9\eta v_f}{2\rho g}}$$
 Raio da gotícula de óleo

A velocidade terminal consiste na velocidade atingida por um objeto, no momento em que a somatória das forças que atuam sobre ele é nula, portanto o objeto não tem aceleração e está se movendo velocidade constante.

Quando o campo elétrico é diferente de zero:

- -A viscosidade do meio é η
- -A velocidade terminal em presença de campo elétrico é: v_r
- -A densidade da gota de óleo é ho
- -O raio da gota de óleo é: R
- -A carga elétrica "q" é um múltiplo da carga do elétron: q=n*e
- -A diferença de potencial é: V
- -A separação entre os eletrodos: d

$$qE = F_g + kv_r$$

$$q = \frac{d}{V} (kv_f + kv_r)$$

$$q = \frac{d}{V} (v_f + v_r)k$$

$$q = \frac{d}{V} (v_f + v_{\mathbf{r}}) 6\pi \eta \sqrt{\frac{9\eta v_f}{2\rho g}}$$

$$mg - qE + 6\pi \eta Rv_r = 0$$

*As velocidades terminais: v_f , $v_{\mathbf{r}}$ têm valores diferentes

$$q = \left(v_f + v_r\right) \frac{\sqrt{v_f}}{V} \eta^{3/2} \frac{18\pi d}{\sqrt{2\rho g}}$$

A carga total apresentada por cada gotícula de óleo não depende do raio e massa

Experimento:

- -Borrifar gotículas de óleo dentro da câmara do capacitor
- -A tensão aplicada ao capacitor é de 560 Volts
- -Em ausência de campo elétrico, as gotículas de óleo caem verticalmente, a imagem do telescópio é de partículas subindo (isto é devido ao telescópio inverter a orientação da imagem).
- -Em presença de campo elétrico as gotículas de óleo sobem verticalmente, a imagem do telescópio é de gotículas descendo.
- -A velocidade terminal típica é da ordem de 10⁻² mm/s
- -O telescópio tem uma escala de 100 unidades, que corresponde a um comprimento efetivo de 5 mm, cada unidade dessa escala corresponde a 0,05 mm.
- -Importante: Cada partícula terá massa, volume e cargas diferentes, então para determinar a velocidade terminal é necessário acompanhar o movimento de subida e descida de **uma partícula especifica** cada vez.

