

Equivariant vs. Invariant Layers: A Comparison of Backbone and Pooling for Point Cloud Classification

Abihith Kothapalli¹ Ashkan Shahbazi¹ Xinran Liu¹ Robert Sheng¹ Soheil Kolouri¹

¹Department of Computer Science, Vanderbilt University

Motivation

- Geometric deep learning provides a blueprint for set neural networks that leverage the permutation symmetry of set-structured data (e.g. point clouds).
- In particular, we consider permutation invariant networks, composed of a permutation equivariant backbone, permutation invariant global pooling, and regression/classification head.
- Existing literature has extensively explored improving equivariant backbones, while the impact of the pooling layer is often overlooked.

Objective: Explore the interplay between backbone architecture and pooling approach on model performance for point cloud classification.

Limited Training Data

Depth vs. Width

Paired Poolings

Findings

- Complex pooling methods, such as transport-based or attention-based poolings, can significantly boost the performance of simple backbones, but the benefits diminish for more complex backbones.
- Even complex backbones can benefit from high-complexity pooling layers in low data scenarios.
- Surprisingly, the choice of pooling layers can have a more significant impact on the model's performance than adjusting the width and depth of the backbone.
- Pairwise combination of pooling layers can significantly improve the performance of a fixed backbone.