CSE/ECE 848 Introduction to Evolutionary Computation

Module 3 - Lecture 11 - Part 3

Genetic Programming - Tree Representation

Wolfgang Banzhaf, CSE
John R. Koza Chair in Genetic Programming

Representations

- Tree GP
- AIM GP
- Linear GP
- Graph GP (PADO example)
- Cellular Encoding
- CF Grammar GP

Tree GP

- Individuals are expression or parse trees
- Trees consist of functions and terminals (variables, constants)
- Trees are evaluated in a depth-first fashion
- Functions are protected to provide functional closure
- Trees are modified by different types of mutation and crossover operators.

Sample Tree

How you read it?

$$x/(4-x/x) = x/3$$

%: Protected division

Tree GP: Mutation

Point Mutation

Permutation

Tree GP: Mutation

Hoist Mutation

Expansion mutation

Tree GP: Mutation

Collapse Subtree-Mutation

Subtree mutation

Tree GP: Xover

Subtree Crossover

Module Crossover

Tree GP: Xover

Self Crossover

Homologous Crossover

Tree GP: Sample Run

- Fix terminal and function set
 - Variable x, integer constants in interval [-5,+5]
 - Arithmetic operations: +, -, *, %
- Determine Fitness Function
 - Root mean square error over the fitness cases
- Fix GP run parameters, see Koza tableau

Koza Tableau

Parameters	Values	
Objective:	Evolve function fitting the values	
	of the fitness case table	
Terminal set:	x, Integers from -5 to +5	
Function set:	ADD, SUB, MUL, DIV	
Population size:	600	
Crossover probability:	90 percent	
Mutation probability:	5 percent	
Selection:	Tournament selection, size 4	
Termination criterion:	None	
Maximum number of generations:	100	
Maximum depth of tree after crossover:	200	
Maximum mutant depth:	4	
Initialization method:	Grow	

Initialization

Full Depth of Trees: D

Choose until D-1:

Nodes ∈ {Function set}

On level D:

Nodes ∈ {Terminal set}

Grow Depth of Trees: D

Choose until D:

Nodes ∈ {Function set} OR {Terminal set}

Ramped Half-and-Half Depth of Trees: D

For each depth until D choose:

Half of assigned individuals according to Full

Half of assigned individuals according to Grow

	Input	Output
Fitness Case I	0	0
Fitness Case 2	0.1	0.005
Fitness Case 3	0.2	0.02
Fitness Case 4	0.3	0.045
Fitness Case 5	0.4	0.08
Fitness Case 6	0.5	0.125
Fitness Case 7	0.6	0.18
Fitness Case 8	0.7	0.245
Fitness Case 9	0.8	0.32
Fitness Case 10	0.9	0.405

Example of GP for Symbolic Function Regression

Snapshots from sample run of GP

 $y = \frac{x^2}{2}$

Function regression problem:

Best individual of generation 0

Best individual of generation 1

Tree-GP: Example

 $y = \frac{x^2}{2}$

Function regression problem:

Best individual of generation 3

Best individual of generation 2

Tree-GP: Example

$$y = \frac{x^2}{2}$$

Example of Tree GP

After perfect solution has been found: Evolution continues

Best individual of generation 5

Mackey-Glass Chaotic Time Series

Want to know more?

