K-07 (ANSYS)

Формулировка задачи:

 $F \cdot R$ E, I_z B X C

Дано: E, I_Z, F, R.

Плоская круглая рама на шарнирных опорах. Нагружена сосредоточенным моментом.

E – модуль упругости материала;

 I_{Z} – изгибный момент инерции.

Найти: 1) Эпюру внутреннего изгибающего момента M_Z ;

2) Перемещения точки C: линейное u_c и угловое θ_c .

Аналитический расчёт (см. К-07) даёт следующее решение:

б) Эпюра внутреннего изгибающего момента.

в) Перемещения точки C:

$$\begin{split} u_c &= 0 \ ; \\ \theta_c &= \frac{\left[8 - 2 \cdot \pi\right]}{16} \cdot \frac{F \cdot R^2}{E \cdot I_z} = 0,1073 \cdot \frac{F \cdot R^2}{E \cdot I_z} \quad (\textit{no часовой стрелке}) \, . \end{split}$$

Задача данного примера: при помощи ANSYS Multyphisics получить этот же результат методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

 $U_M > PlotCtrls > Style > Colors > Reverse Video$

B меню оставить только пункты, относящиеся к прочностным расчётам: M M > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера точек и линий твердотельной модели:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers"> ОК
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22»> ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22»> ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

http://www.tychina.pro/библиотека-задач-1/

Решение задачи:

Приравняв E, I_z , F и l к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

No	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1 > Accept > A=1e6 > Accept > Iz=1 > Accept > F=1 > Accept > R=1 > Accept > nu=0.3 > Accept > > Close	Scalar Parameters
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Defined Element Types U(2.20 to (C.22.4.5)) Add. Options Delete Close Help
3	Первая строчка в таблице параметров («реальных констант») выбранного типа конечного элемента: площадь поперечного сечения = A ; момент инерции = Iz ; высота = $R/100$. С_P> R,1,A,Iz,R/100 > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Defined Real Constant Sets Set 1 Add Edit Delete Close Help

№	Действие	Результат
7	Ключевые точки — границы участков: $A \to 1$, $B \to 2$ и $C \to 3$: M_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1	POINTS POIN NUM 2
	X,Y,Z пишем $R,180,0 > Apply >$ NPT пишем 2 X,Y,Z пишем $R,90,0 > Apply >$ NPT пишем 3 X,Y,Z пишем $R,0,0 > OK$ Прорисовываем всё, что есть: $U_M > Plot > Multi-Plots$	1 XX .3
8	Два участка — две линии: M_M > Preprocessor > Modeling > Create > Lines > Lines > In Active Coord > Левой кнопкой мыши последовательно нажать на ключевые точки: 1 и 2 2 и 3 > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 L-K 2 L2 1 1 X X 3
9	Активируем глобальную декартову систему координат: U_M > WorkPlane > Change Active CS to > Global Cartesian	real=1 csys=0 secn=1

№	Действие	Результат
10	Изометрия: До сих пор модели мы рассматривали, используя фронтальный вид («сбоку»). Вектор изгибающего момента при этом виден плохо, а его направление не определяется вовсе. Меняем угол зрения: справа от рабочего поля нажимаем кнопки - изометрия; автоформат (размер изображения по размеру окна рабочего поля).	1 L-K 1 L2 2 X
11	Внешний сосредоточенный момент: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажать на 2 ключевую точку > ОК > Lab установить "MZ" VALU пишем F*R > ОК Прорисовываем всё, что есть: U_M > Plot > Multi-Plots	1 L-K M L2 L2 X X

No	Действие	Результат			
	Просмотр результатов расчёта				
		Результат 1 E-N М RFOR			
19	В окне "Reactions" NFOR установить "Off" NMOM установить "Symbol+Value" RFOR установить "Symbol+Value" RMOM установить "Symbol+Value" > OK > Обновляем изображение: U_M > Plot > Elements При необходимости корректируйте масштаб кнопками или . Получаем тот же результат, что и на рис. la. (числа, выделенные синим цветом). В рабочем поле видим следующее: - Синим цветом начерчен вектор внешнего момента; - Малиновым цветом нарисованы реактивные силы.	ZXX			

No	Действие	Результат
27	Угловое перемещение узла №32: $ \begin{array}{l} \text{M_M} > \text{General Postproc} > \text{List Results} > \text{Nodal Solution} > \\ \text{Nodal Solution} > \text{DOF Solution} > \text{Z-Component of rotation} > \\ \text{> OK} \\ \hline{\text{Пропечаталась величина углового перемещения узла №32:} \\ \hline{ROTZ} = \theta = -0.1074 \cdot \frac{F \cdot R^2}{E \cdot I_z} \qquad (<0, \textit{mo есть по часовой стрелке}); \\ \hline{Pacxoждение с результатом аналитического расчёта (рис.1г.) меньше 1%. } \end{aligned} $	FILE PRINT ROT HODAL SOLUTION PER NODE ****** POST1 NODAL DEGREE OF FREEDOM LISTING ****** LOAD STEP= 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0 THE FOLLOHING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE ROTZ 32 -0.10735 HAXIMUM ABSOLUTE VALUES NODE 32 VALUE -0.10735

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.