Math 4573: Number Theory

Lecturer: **James Cogdell**Notes by: Farhan Sadeek

Spring 2025

1 January 8, 2025

Dr. Cogdell explained the logistics of the class and also took attendance.

1.1 Conjectures in Number Theory

- Every number is divisible by 3 if the sum of its digits are deivisimble by 3.
- Fermat's last theorem: Every number is a solution to $x^2 + y^2 = z^2$.
- There are infinitely many primes.
- $\sqrt{2}$ is irrational.
- π is irrational.
- Every number can be written as the sum of 4 squares (Lagrange). e.g. $1000 = 10^2 + 30^2 + 0^2 + 0^2$ and $999 = 30^2 + 9^2 + 3^2 + 3^2$.
- $n^2 n + 41$ is a prime. [This is proven to be false if n = 41]. There is a counterexample to this.
- Euler conjectured that no n^{th} power can be written as the sum of two n^{th} powers for n > 2. [This is proben to be false] e.g. $144^5 = 27^5 + 84^5 + 10^5 + 133^5$
- **Goldbach's Conjecture**: Every even integer greater than 2 can be written as the sum of two primes. e.g. 4=2+2, 6=3+3, 8=3+5, 10=5+5, 12=5+7, 14=7+7, 16=3+13, 18=7+11. [Yet to be proven if it's true or false, but this has been verified till 100,000]

The theory of number is related to **Abstract Algebra**. But also, in other domains like **Combinatorics**, **Analysis**, **Topology**. We will accept a few facts about **Number Theory**.

Fact 1

However, if SSis a set of positive integers, not empty then SScontains a member such that $s \le a$. This is stated as follows: If SSis a set of positive integers that contains 1 and contains n+1 then SScontains all positive integers.

1.2 Divisibility

This has been known since the time of Euclid.

Definition 2

An integer b is divisible by an integer a, not zero, if there is an integer x so that b = ax. So we will write as $a \mid b$. In case, n isn't divisible by b, we write as $a \nmid b$.

There are two derivative notion.

- if 0 < a < b, then a is called a **proper divisor**
- if $a^k \mid\mid b$ means $a^k \mid b$ and $a^{k+1} \nmid b$.

Theorem 3 • If $a \mid b$ then $a \mid bc$.

- If $a \mid b$ then $a \mid b + c$.
- If $a \mid b$ and $a \mid c$ then $a \mid b + c$.
- If $a \mid b$ and $b \mid a$ then a = b.
- If $a \mid b$ and a > 0 and b > 0 then $a \le b$.
- If $m \neq 0$ and $a \mid b$, then $am \mid bm$.
- If $a | b_1, a | b_2, ..., a | b_n \to \sum_{i=1}^n b_i X_i$

Theorem 4 (The division algorithm)

Given integers a b, with a > 0, then there exists unique integers q and r such that $0 \le r < a$ and b = aq + r.

Proof. Consider the arithmetic progression ..., b-3a, b-2a, b-a, b, b+a, b+2a, b+3a, ... In the sequence, select the sequence if the smallest non-negative member. So this definition of r is satisfies the inequalities of the theorem. But also, the being in the sequence of the form

This is defined in terms of qr. To prove the uniqueness of q and r, suppose there is another r pair q_1 , and r_1 satisfies the same conditions.

We first prove that $r=r_1$. For if not, we may assume $r< r_1$, so $0< r_1-r< a$. But we see that $r-1=a(q-q_1)$ meaning $a\mid (r_1-r)$ so it's a contradiction to to the theorem 1, part 5. So $q=q_1$ and $r=r_1$.

Fact 5

If a + b then r satisfies the stronger inequality $0 \le r < a$.

Fact 6

If we stated the theorem, with the assumption, a > 0. However, this hypothesis is not necessary. We may formulate the theorem without a, given integers a and b such that $a \neq 0$ there then exists q and r such that b = qa + r wich $0 \leq |a|$.