01DR01 Decision Making under Uncertainty

2017/2018

Bayesian Learning. Introduction to Markov Decision Processes.

Lecture 3

6.3.2018

Readings:

- Martin Puterman, Markov decision processes, John Wiley & Sons, 1994
- D.P. Bertsekas, Dynamic Programming, Prentice Hall, 1987
- L.P.Kaelbling, M. L. Littman, A.R.Cassandra, Planning and acting in partially observable stochastic domains. Artificial Intelligence 101,99–134, 1998.
- K.J. Aström, Optimal control of Markov decision processes with incomplete state information, J. Math. Anal. Appl. 10, 174–205, 1985.

Announcements:

Mid-term assignment – Apr 3 (Lectures 1-6)

Homework topic approval due March 15.

1.5 and 8.5 are holidays – no class

Possible topics for coursework on 01DRO1

'Research' project (examples of possible topics)

- 1. Dynamic programming for MDP with two-dimensional action, whose entries exploit different knowledge.
- 2. Design of on/off stabilization of a room temperature.
- 3. Design of target-tracking policy based on MDP for known linear-Gaussian environment model and quadratic reward.
- 4. Formulation and solution of sequential estimation as MDP. Inspection of influence of measurement cost.
- 5. Bayesian estimation of unobserved state in Markov model with linear Gaussian state evolution.
- ... any topic related to your BSc, Mgr or research project

Critical literature survey (examples of possible topics)

- 1. Survey of knowledge elicitation techniques.
- 2. Survey of preference elicitation techniques.
- 3. Survey of knowledge transfer methodologies.
- 4. Survey of state of the art in Bayesian networks.
- 5. Survey of possible multi-agents' scenario and interactions.

Implementation of existing approach (examples of possible topics)

- 1. Implementation of MDP with known envir. model, discrete states and actions. Inspecting influence of decision horizon.
- 2. Implementation of discounted MDP with known envir. model, discrete states and actions. Inspection of influence of discounted factor.
- 3. Implementation of MDP for known linear-Gaussian environment model and quadratic reward. Inspecting influence of decision horizon.
- 4. Implementation of discounted MDP for known linear-Gaussian environment model. Inspection of influence of discounted factor.

Where are we?

Last time.. Decision theory = probability theory + utility theory

Probability theory deals with degrees of belief (about env. states, action effects,..)

Utility theory is used to represent and reason about DM preferences.

An agent is *rational* iff it chooses the action yielding the *highest* expected utility, averaged over all *possible* outcomes.

The Maximum Expected Utility (MEU) principle:

$$EU(s,a, K) = \sum_{i} P(result_{i}(a) | a, s) U(result_{i}(a), a, K),$$

$$a^{best} = argmax_a EU(s,a,K)$$
, where

result_i(a) is i-th possible outcome of action a

K is other knowledge available for choice a

Last time.. BN, DT, DN

- Bayesian nets (BN) represent dependencies over a set of random vars.
- Decision trees (DT) represent all possible decision sequences.
- Decision nets (DN) represent a finite sequential decision problem. DN extend BN to include decision variables (actions) and utility.
- DT ②: clear ⊗: multiple paths/nodes; large memory.
- DN ②: concise and clear.

: assume memorizing all past observations/ decisions(actions)

Last time.. Preferences and their ordering

To perform any DM you need preference ordering over states/actions:

- x>y: x is strictly preferred over y
- x≽y : x is preferred over y (incl. indifference x and y)

Ordering must be transitive and $(x \ge y \land y \ge x) => x = y$; $(x > y \land y > x) => \emptyset$

For e.g: for agent $s_1 > s_2 > s_3 > s_4$;

for taxi service (possible loss, if a selection is not accepted) $a_4 > a_2 > a_3 > a_1$

But if *there is*:

- uncertainty in the next state (environ.)
- stochastic actions (agent)
- uncertainty about initial state (environ.)

Then no deterministic solution exists!

^{*} This is only part of constrains on preference ordering. Utility theory axioms require other constrains.

Last time.. Evaluation of DM Policy

sequence of actions (plan) ≠ policy

Plan: a_1, a_2, a_3, a_4

Policy: if $state = s_i$ then action a_i else a_k

- Policy assigns a decision (action) to each reachable state.
- Policy can generate more state trajectories than plan.
- Do not compare values at states but policies
- Indistinguishable policies: policies differing at a number of unreachable decision nodes (states)

Write the number to sequence the stor

The snowman is

collecting The s

Today..

Learning

Different fields gave birth to similar ideas and (with different emphasize)

- Computer Science: Al, computer vision, information retrieval, ...
- Statistics: learning theory, learning and inference from data, ...
- Economics: game theory, operational research, decision theory,...
- Psychology: perception, reinforcement learning,...
- Computational Neuroscience: neuronal networks,...
- Engineering: signal processing, system identification, adaptive and optimal control, information theory, robotics, ...
- others..

DM and learning as inference

Inference task: given the knowledge (observation) what is the implication on non-observed variable?

You have (any of):

knowledge about the environment, observations; assumed type of model; prior probability over model parameters, etc.

You can obtain decision about:

- optimal actions to influence environment (knowledge& prefer. elicitation)
- a particular model (model structure estimation)
- posterior on model parameter (identification)
- data classification (non-typical behaviour, fault, malware detection)
- future data (prediction)

Inference

How can we reason about the environment from *observations*?

Types of variables considered:

- observations, measurement, any evidence
- unknown parameters
- auxiliary variables, noises

Given the observations and prior probabilities, what are the probabilities of the unknown parameters?

Basics of Bayesian learning

- P(θ) the *prior* probability of a parameter $\theta \in \theta^*$ Reflects background knowledge; before data is observed.

 If no information available, use uniform distribution.
- P(d) the probability that data d is observed (no knowledge of the parameter $\theta \in \theta^*$ is at disposal) evidence
- $P(d|\theta)$ *likelihood* of the data, i.e. the probability of observing the data d, given parameter θ
- $P(\theta | d)$ the *posterior* probability of θ . The probability of θ given that d has been observed.

Bayes rule:
$$P(\theta | d) = P(d | \theta) P(\theta) / P(d)$$

here P(d) serves as scaling factor that guarantees the posterior is sum up to 1

Bayesian learning

Addresses problem of inverse probabilities: knowing the conditional probability (cp) of x given y, compute cp of y given x

Example: 70% AMSM students attend DROS while only 25% of MI students attend DROS. Given a random student that attends DROS is he/she from AMSM? (59% of all students are from AMSM, the rest from MI).

Frequentist probabilities are defined as limit of infinite number of trials (0.05% of banknotes in circulation are fakes)

Bayesian (subjective) probabilities quantify degrees of belief based on experience

(what is the probability belief that my 100Kc is fake?)

Recap: Bayesian Learning

Given:

data observed $d=\{x_1,...,x_{n-1}\}$, parameterised model $p(x_i|x_{i-1},\theta)$ with parameter $\theta \in \theta^*$, likelihood model $p(d|\theta)$, evidence p(d), Find: $p(x_i|x_{i-1})$ – prediction model

- if d is Markov $p(d \mid \theta) = \prod_{i=1} p(x_i \mid x_{i-1}, \theta)$ chain rule, Markov assumption
- posterior probability of model parameters $p(\theta | d) = p(d | \theta) p(\theta)/p(d)$ Bayes rule
- prediction model of interest

$$p(x_n|x_{n-1}, d) = \int_{\theta \in \Theta^*} p(x_n|x_{n-1}, \theta, d) p(\theta|d) d\theta$$

more details about learning, see 01HBM

Learning: testing hypotheses

The coin can be *fair* or *biased* 55% in favor of tails. Find bias of the coin. H-heads, T-tails.

Hypothesis		Prior
h1: "fair"	p(H)=0.5; p(T)=0.5	p(h1)=0.9
h2: "biased"	p(H)=0.45; p(T)=0.55	p(h2)=0.1

Observed data: d={H}

Goal: find the most probable hypothesis given the observed (or training) data

$$p(d='H')=p(d|h1)p(h1)+p(d|h2)p(h2)=0.5*0.9+0.45*0.1=0.545$$

Testing hypotheses (learning):

 $p(h1|d) = p(d|h1)p(h1)/p(d) = 0.5*0.9/0.545 \approx 0.826$ - more likely variant $p(h2|d) = p(d|h2)p(h2)/p(d) = 0.45*0.1/0.545 \approx 0.082$

Learning: testing hypotheses

- Maximum A Posteriori hypothesis h_{MAP} = argmax h_{={h1,h2}} p(h|d) was used and after one data (head) the coin is more likely to be fair.
 MAP assumes a prior over the hypotheses p(h) and finds hypothesis maximising the posterior p(h|d)
- if priors were the same, one can use Maximum Likelihood hypothesis $h_{ML} = \underset{h=\{h1,h2\}}{\operatorname{argmax}} p(d \mid h)$
- ML does not assume a prior over the hypotheses and finds hypothesis maximising the likelihood of the data p(d|h). It coincides with MAP for uniform prior.

Task to think:

Modify priors above, compare ML and MAP for 100 tosses and 77 tails.

Which method is more consistent with data observed?

Bernoulli distribution

$$x \in \{0,1\}$$
 $dom(x) = \{0,1\}$
 $P(x=1|\theta) = \theta$ $P(x=0|\theta) = 1-\theta$

Bern $(x(\theta) = \theta^{x}(1-\theta)^{1-x})$

fiven data set $D = \{x_{1},...,x_{n}\}$, $x_{i} \in \{0,1\}$

if $x_{i} \sim Bern(x_{i}|\theta)$ then

 $P(x=0|\theta) = \{x_{1},...,x_{n}\}$, $x_{i} \in \{0,1\}$

if $X_{i} \sim Bern(x_{i}|\theta)$ then

 $P(x=0|\theta) = \{x_{1},...,x_{n}\}$, $x_{i} \in \{0,1\}$

if $X_{i} \sim Bern(x_{i}|\theta) = \{x_{1},...,x_{n}\}$, $x_{i} \in \{0,1\}$
 $P(x=0|\theta) = 1-\theta$

Bern $(x_{i}|\theta) = 1-\theta$
 $P(x=0|\theta) = 1-\theta$
 $P(x=0|\theta) = 1-\theta$
 $P(x=0|\theta) = 1-\theta$

Bern $(x_{i}|\theta) = 1-\theta$
 $P(x=0|\theta) = 1-\theta$
 $P(x=0|\theta) = 1-\theta$
 $P(x=0|\theta) = 1-\theta$

Bern $P(x=0|\theta) = 1-\theta$
 $P(x=0|$

Inference example: Bayesian Learning the coin

The coin is either fair or biased 55% in favor of tails.

Assume:

- possible observations x = {'Tail', 'Head'} = {T,H}
- data set observed D = $\{x_1,...,x_n\}$, m tails
- i.i.d data $x_i \sim Bern(x_i \mid \theta)$ with $\theta \in \theta^* = \{0.5; 0.55\}$ $p(x = 'T' \mid \theta) = \theta; p(x = 'H' \mid \theta) = 1 - \theta$

Task: learn parameter $\theta \in \theta^*$.

Bayesian Learning assumes a prior over the model parameters $\theta \in \theta^*$ and computes the posterior distribution of the parameters: $P(\theta \mid D)$.

Learning the coin (cont.)

Likelihood:
$$P(x | \theta, D) = P(x | \theta) = \theta^{\delta x_i r} (1-\theta)^{\delta x_i H}$$
, where $\delta_{x_i y} = \begin{cases} 0 & \text{if } x \neq y, \\ 1 & \text{if } x = y. \end{cases}$

Probability $P(x_1, \dots, x_n | \theta) = \prod_{i=1}^{n} P(x_i | x_{i-1}, \theta) = \prod_{i=1}^{n} P(x_i | \theta) = \prod_{i=1}^{n} \theta^{\delta x_i, \tau} (1-\theta)^{\delta x_i, H}$

The probability $P(x_1, \dots, x_n | \theta) = \prod_{i=1}^{n} P(x_i | x_{i-1}, \theta) = \prod_{i=1}^{n} P(x_i | \theta) = \prod_{i=1}^{n} \theta^{\delta x_i, \tau} (1-\theta)^{\delta x_i, H}$

Posterior $P(x_1, \dots, x_n | \theta) = P(x_1, \dots, x_n | \theta) = P($

Prior:
$$\rho_{0}(\theta) = \beta \frac{1}{2} \delta_{\theta,qs} + \frac{1}{4} \delta_{\theta,qss} \text{ or } \rho_{0}(\theta) = \theta^{d}. \quad \theta^{\beta}$$

Prediction

$$P\left(X_{n+1} = T \mid X_{n} \dots X_{n}\right) = \int \rho\left(X_{n} = T \mid \theta\right) P\left(\theta \mid X_{n} \dots X_{n}\right) d\theta$$

WHAT is the probability of next $T \mid \theta^{\dagger}$

$$P\left(X_{n} = T \mid \theta\right) P\left(X_{n} \dots X_{n} \mid \theta\right) \cdot P_{0}(\theta) d\theta$$

$$= \int \theta^{\delta_{X_{n}} T}. \quad \theta^{\xi_{n}} \delta_{X_{n}} T \left(1 - \theta\right)^{\xi_{n}} \delta_{X_{n}} H. \quad P_{0}(\theta) d\theta.$$

Continue the example, define prior and compute $p(x_{n+1}='H'|x_1, ... x_n)$

Recap: Bayesian learning

- Assigns probabilities to hypotheses
- Combines prior knowledge (prior probabilities) and observations
- Provides practical (feasible) learning algorithms for Markov chains and linear gaussian models
- Serves as a basis for machine learning
- Serves for evaluating other learning algorithms
- •

Recall: MDP formalisation

MDP is defined by (*T, S, A, R, Pr*):

- S finite set of all possible states, |S| = n
- A_s finite set of allowable *actions* (decisions) in state s.

$$A = \bigcup_{s \in S} A_s$$
 - the set of all possible actions, $|A| = m$

- $Pr(s_{t+1}|s_t,a_t)$ state transition function
 - represented by set of $n \times n$ probability matrices for each a_t
 - each $Pr(s_{t+1}|s_t,a_t)$ is a distribution over S
- bounded, real-valued reward function R(s)
 - represented by an *n*-vector
 - can be generalised to include action costs R(s,a)
 - can be negative to reflect the cost incurred
 - generally can be stochastic (replaceable by expectation)

Recall: Decision Epochs

- Times at which decisions are made (analogous to period start times in Markov Process)
- The set T of decisions epochs can be either a discrete set or a continuum.
- The set *T* can be finite (*finite horizon problem*) or infinite (*infinite horizon*).

Recall: States and Transition Functions

States s are analogous to states in Markov Processes and include all info from the past relevant to the future.

Transition function is a distribution that governs how the state changes as actions are taken over time.

As a result of choosing action $a \in A_s$ in state s at decision epoch t, the system state at t+1 is determined by the probability distribution $p_t(., s, a)$.

For each state s and a

$$\sum_{s_{t+1} \in S} Pr(s_{t+1} | s_t, a_t) = 1$$

Actions

Actions *a* are means by which the agent interacts with the environment

- permissible actions can be state dependent
- no exact analogy to Markov Processes
- way of selecting decisions is usually modelled outside MDP

Decision rule

A *decision rule* prescribes a procedure for action selection in each state *s* at a specified decision epoch *t*.

A decision rule $d_t(s)$ can be either:

- Markovian (memoryless) if the selection of action a_t is based only on the current state s_t ;
- History dependent if the action selection depends on the past history, i.e. the sequence of state/actions $h_t = (s_1, a_1, ..., s_{t-1}, a_{t-1}, s_t)$
- Deterministic if the decision rule $d_t(s)$ selects one action with certainty
- Randomised if the decision rule $d_t(s)$ specifies a probability distribution on the set of actions

Policy

Policy (strategy) is a collection of decision rules for all states.

$$\pi = (d_1(s), d_2(s), ..., d_N(s)) \text{ or } \pi = (d_1(s), d_2(s), ...)$$

Note: expession above is simplified as $d_i(s)$ and $d_i(s)$, can generally operate on different states

What does a policy look like?

You can pick action based on states visited & actions used so far, i.e. s(1) a(1), s(2) a(2),... or pick actions randomly using decision rule Policy π is a mapping from each state $s \in S$ s to an action $a \in A_s$ For Markov fully observable process and deterministic decision rule:

Non-stationary policy

$$\pi: S \times T \rightarrow A$$

 $\pi(s,t)$ is action to do at state s with t -stages-to-go

• Stationary policy $\pi: S \to A$ $\pi(s) = (d(s), d(s), ...)$ is action to do at state s (independent of time)

Policy (cont.)

- MDP trying to find the minimum cost path
- fixed paths won't suffice for MDPs, because we don't know which states the random environment will take.
- policy specifies an action for every single state, not just the states along some path. This cover all paths and advises what action to take no matter which state is.
- no need to take different actions at a given state, i.e the state contains all information needed to act optimally for the future. Every time we are in s we have the same DM problem and hence should take the same optimal action (recall: the transitions and rewards satisfy the Markov property).

Goals and Rewards

Goal:

- should specify what we want to achieve not how
- is not the path to a specific state but reaching a specific state
- must be outside the agent's direct influence

Reward:

should serve an agent to measure success of reaching the goal explicitly and frequently during all decision epochs.

Reward

As a result of choosing action $a \in A_s$ in state s at decision epoch t,

- the agent considers a reward $R_t(s, a)$ that is expected immediate income/gain associated with taking a particular action at state s. (analogous to state utilities in Markov Processes)
- If the reward depends on the state at next decision epoch, then $R_t(s, a) = \sum_{j \in S} r_t(s, a, j) p_t(j|s, a)$, where $r_t(s, a, j)$ is the immediate reward if the

next state is *i*.

Utility function

Executing a policy yields a sequence of rewards R_1 , R_2 , ...

How good is a policy π in a state s?

Define utility function $U(R_1, R_2, ...)$ to be some "quality measure" of a reward sequence

(The utility of a policy is the sum of the rewards on the path i.e utility is a random quantity).

- For deterministic actions criterion is sum of rewards obtained problem: infinite horizon => infinite result
- For *stochastic* actions, criterion is expected total reward obtained—again typically yields *infinite* value.

How do we compare policies of **infinite** value?

Utility function (cont.)

 Assume stationary agent preferences = agent's preferences do not change with time, i.e.

$$[s_0, s_1, s_2, ...] > [s_0, s_1', s_2', ...]$$
 iff $[s_1, s_2, ...] > [s_1', s_2', ...]$

Note: a way how state s was reached does not affect the best policy from s

- Stationarity assumption allows to define utilities of state sequences
 - Additive rewards: $U(s_0, s_1, s_2, ...) = \Sigma_t R(s_t)$
 - Discounted rewards : $U(s_0, s_1, s_2, ...) = \Sigma_t \gamma^t R(s_t)$, with discount factor $0 \le \gamma \le 1$

Intuitive interpretation: prefer utility sooner than later;

y indicates degree of agent's preference for the current over future reward

 $\gamma = 0$ future rewards are considered insignificant; $\gamma = 1$ future reward are important as the current one

Utility function (cont.)

Consider no terminal state (or if the agent never reaches it); additive utilities and reward is bounded by R_{max} .

Then total utility of an infinite action sequence is finite:

$$U(s_0, s_1, s_2, \dots) = \sum_{t=0,1,\dots} \gamma^t R(s_t, a_t) \le \sum_{t=0,1,\dots} \gamma^t R_{max} = \gamma^t R_{max} (1-\gamma).$$

Notes:

An *utility* function maps infinite sequences of rewards to single real numbers.

Discounting is the most analytically tractable approach

With a proper policy (with guaranteed terminal state) no discounting is needed.

An alternative to discounting in infinite-horizon problems is to optimize the average reward over the long run that is more complicated computationally (beyond the scope of this course)