

Smart Guards

Design and development of vital sign monitoring wearable device that alerts possible complications to health care providers

TEAM MEMBERS

- 1. YOSBEK ENDALU
- 2. EBISA ACHAME
- 3. ERMIAS FIKRU
- 4. FIKADU GOBENA

- 5. LEIKUN TADESSE
- 6. SEYID TIYOSHE

ASMAMAW GETU (MENTOR)

HARAMAYA, ETHIOPIA

Introduction

- Maternal mortality remains a pressing global health challenge particularly in low-resource settings.
- Ethiopia had one of the highest maternal mortality rates in the world.
- According to data from the World Bank, as of 2017, the maternal mortality ratio in Ethiopia was 401 deaths per 100,000 live births.

Ethiopia's Maternal Mortality Ratio

- This project focuses on the design and development of vital signs monitoring wearable devices specifically tailored for pregnant women.
- These devices aim to continuously monitor key vital signs, including...
 - Heart rate, blood pressure,
 - Oxygen saturation, and
 - Body temperature.
- The data collected by these devices is transmitted to a central monitoring system, where it is analyzed in real-time.

Current Clinical Environment and Pin Points...

• The absence of a vital sign monitoring wearable device that alerts healthcare providers of possible complications can present several challenges for hospitals.

☐ High Patient Loads

☐ Hospitals and clinics often have a high patient-to-staff ratio, leading to insufficient monitoring of each patient.

■ Nursing Shortage

☐ There is a widespread shortage of nurses and medical staff, further complicating patient monitoring and care.

Current Clinical Environment and Pin Points...

- Manual Monitoring Challenges
 - □ Intermittent Monitoring: Vital signs are typically checked at intervals, leading to potential gaps in patient data.
 - Human Error: Manual recording of vital signs is prone to errors, including mis-recording or omission.
- **Delayed Response to Complications**

Lack of Continuous Monitoring: Intermittent checks can miss rapid changes in a patient's condition, delaying necessary interventions.

Slow Alert Systems: Traditional methods of detecting complications rely heavily on routine checks and manual reporting, which can be slow.

Proposed Solution

- □ Continuous Monitoring: Develop wearable devices capable of continuously monitoring key vital signs such as heart rate, blood pressure, oxygen saturation, and body temperature in pregnant women.
- □ **Real-Time Data Transmission:** Ensure that the collected data is transmitted in real-time to a central monitoring system, facilitating immediate analysis and response.
- □ Early Detection and Alerts: Implement data analysis algorithms that can detect abnormalities and potential complications early, triggering instant alerts to healthcare providers.
- □ Integration with Healthcare Systems: Design the system to integrate seamlessly with existing healthcare infrastructure, allowing healthcare providers to access and monitor patient data remotely.

Impact on Patient Care

- ☐ Early Detection of Complications
- Continuous Monitoring
- Timely Intervention
- Reduced Emergency Admissions
- ☐ Enhanced Patient Safety:
- 24/7 Monitoring
- Reduced Human Error
- ☐ Improved Overall Care Quality
- Personalized Care
- Data-Driven Decisions
- Patient Engagement

Technical Feasibility

- □ **Technological Stack:** The project will leverage state-of-the-art sensor technology and IoT platforms to ensure accurate data collection and seamless device connectivity.
- **Resource Availability:** Adequate human and financial resources are allocated to support the research, development, and testing phases of the wearable device.
- □ Infrastructural Support: The hospital's existing IT infrastructure is capable of integrating with the new device for data analysis and storage.
- □ Integration and Compatibility: The device will be designed to be compatible with various hospital information systems and electronic health records for smooth integration.

- □ **Risk Assessment:** A comprehensive risk analysis will be conducted to identify and mitigate potential technical and operational risks associated with the device.
- **Security:** Advanced cybersecurity measures will be implemented to protect sensitive health data against unauthorized access and breaches.
- □ Compliance: The device will be developed in accordance with relevant healthcare regulations and standards to ensure compliance and certification for hospital use.

System Design

System Components

Wearable Device sensor

- Heart Rate (HR)
- Blood Pressure (BP)
- Oxygen Saturation (SpO2)
- Body Temperature: Thermistors or infrared sensors
- Fetal Heart Rate (for pregnancy): Doppler ultrasound or ECG

Others

Smoke and fire detector sensors

- Smartphones: Connect to the system by going to the web browser and entering the IP of the registration server and logging in using ID and Password.
- Home Gateway: Central hub for processing data and managing communication.
- Switches: Network switches for device connectivity.

Overall System Architecture.

- **Detection Layer:** Comprises vital sign like Temperature, blood pressure, heart rate and smoke detectors placed in each hospital room.
- Communication Layer: Uses wired and wireless communication protocols to transmit data to the home gateway.
- Control Layer: The home gateway processes the data and manages the system's overall operation.
- Response Layer: displays the vital signs data on smart devices

Data Flow and Processing

Steps,

1, Vital sign and fire detector.

2)central data management.

3)Smart phone(Alerted).

Use case and diagram of the system

Use case diagram

Sequence diagram

Sequence diagram

Implementation

• We used Cisco packet Tracer to implement the system because it is a powerful network simulation tool that allows for the design, visualization, and analysis of network systems, including **IoT** devices.

Connecting and Configuring Smoke and Fire Detectors

- Place Detectors: Position Vital sign on woman giving birth and smoke and fire detectors in each hospital room ceil .
- Connect to Gateway via switch: Connect detectors to the Home Gateway via Wi-Fi and Ethernet cable.
- Configure Detection Parameters: Set detection thresholds and ensure detectors are calibrated correctly

Programming Notifications.

- Add Smartphones/Tablets: Simulate smartphones using PC/Tablets.
- Connect to Gateway: Ensure these devices are connected to the Home Gateway for receiving notifications.
- **Notification Settings:** Program the Home Gateway to send alerts to these devices upon detection of vital fire or smoke.

System Architecture.

List of devices remotely connected device

Set of condition

Network Configuration.

- IP Addressing and DHCP.
- Assign IP Addresses: Assign static IP addresses to critical devices like the Home Gateway, switches, and servers.
- **DHCP Setup: C**onfigure the Home Gateway to act as a DHCP server for dynamic IP addressing of other IoT devices.
- Wireless Configuration.
- Configure Wi-Fi: Set up SSID and security parameters for the wireless network.
- Ensure Coverage: Place Wi-Fi access points to ensure coverage in all areas of the dormitory.

The System Database Architecture.

Web Front End Pages

Educate Mothers:
Give General Maternal
Health Information

PCN - Pregnancy Care Network

Home > Educate

Educate administration

Mothers' Follow-up

PCN - Pregnancy Care Network

Home > Mother

Mother administration

MOTHER		
Advices	+ Add	🖋 Change
Cares	+ Add	Change
Conditions	+ Add	🖋 Change
Donts	+ Add	Change
Dos	+ Add	🖋 Change
Mothers	+ Add	Change
Procedures	+ Add	🖋 Change
Symptoms	+ Add	Change
Tests	+ Add	🖋 Change
Treatments	+ Add	Change
Vital signs	+ Add	🔗 Change

Business Model

Key Partner

Haramaya University (Supplier)
East Hararge zone Health Bureau
(End users)
Ethiopian Ministry of Health

Marketing Activities

The health Bureau will develop comprehensive marketing and sales strategy to Hospitals effectively reach and engage the target customer segments, including pregnant women and new mothers

Team and Key roles

CEO: Overall strategy and leadership CTO: Technology and product development CMO: Marketing strategy and execution CFO: Financial planning and management Head of R&D: Oversees development of the wearable device and software Sales Director: Manages sales strategies and partnerships Customer Support Manager: Handles customer inquiries and support.

SWOT Analysis

Strengths: Advanced technology, strong team, growing market.

Weaknesses: High development costs, need for regulatory approval.

Opportunities: Increasing health

Opportunities: Increasing health awareness, growing wearable tech market.

Threats: Competitive market, rapid technological changes.

Revenue Stream

The revenue model will include device sales to pregnant women and new mothers, as well as potential subscription-based services for data analytics and remote monitoring

Channels

- Professional Conferences and Medical Trade Shows
- Medical Journals and Industry Publications
- Direct Sales Representatives
- Online Webinars and Training Programs

Key resources
□ Sensors
□ Switches
□ Gate ways
□ Cables
□ Smart electronic devices

Cost Structure (per unit)

Home gateway......60-100\$ Switches.......75-90\$ Smartphone......250-300\$

Wearable device:

be completed.

realable active.	
Oxygen sensor	55-75\$
Temperature sensor	30-45\$
Pressure sensor	50-60\$
Smoke and fire sensor	57-65\$
Smart door	68-90\$
Smart window	46-60\$
Fire Splinker	50-60\$
Ethernet cable	
Human resource	100-200
otal *57 ETB	

This is the cost required for one unit to

Milestone

As customers such as Hospitals, Clinics and health institute need growth wearable device for vital sign will advertise in target market specially in advance of emergency case.