Module 7 Dynamic Programming

S. Lakshmivarahan
School of Computer Science
University of Oklahoma
USA-73019
Varahan@ou.edu

- Let A and B be two matrices compatible for multiplication and let
 C be the product: C=AB
- If A is n x m and B is m x p, then C is n x p.

Module 7

- Thus, the total cost for finding C is 2nmp since there are np elements in C
- Dropping the factor two, we will say that the cost is nmp
- Consider an expression

$$E_4 = A_1 A_2 A_3 A_4$$

where A_i is a matrix of size $d_{i-1} \times d_i$ for $1 \le i \le 4$

 If we did not parenthesize, the compiler, given the implicit rules for evaluating expressions, will evaluate it as

$$E_4 = A_1(A_2(A_3A_4))$$

 However, it turns out that the total cost evaluation of E is very sensitive to how this expression is parenthesized

To illustrate, let
 A₁
 A₂
 A₃
 A₄
 30 x 1
 1 x 40
 40 x 10
 10 x 25

Then, there are four different ways to parenthesize E₄

• Combining, we get

$$A_1 (A_2 (A_3 A_4))$$
 $(A_1 A_2)(A_3 A_4)$ $A_1 (A_2 A_3) A_4$ $(A_1 A_2)(A_3 A_4)$ $(A_1 A_2)(A_3 A_4)$

Hence, there are only 4 distinct ways to parenthesize E₄

- Now we compute the cost corresponding to each way of computing E
- 1. $A_1(A_2(A_3A_4))$: 40x1x25 + 1x40x25 + 30x1x25 = 11,750
- 2. $A_1((A_2A_3)A_4)$: 1x40x10 + 1x10x25 + 30x1x25 = 1,400
- 3. $(A_1A_2)(A_3A_4)$: 30x1x40 + 40x10x25 + 30x40x25 = 41,200
- 4. $((A_1A_2)A_3)A_4$: 30x1x40 + 30x40x10 + 30x10x25 = 20,700
- Hence, $E = A_1((A_2A_3)A_4)$ is the optimal way

Generalizing, let

$$E_n = A_1 A_2 A_3 \dots A_{n-1} A_n$$

where A_i is a $d_{i-1} \times d_i$ matrix

How many ways to parenthesize E_n?

Let us divide E_n into two subexpressions as

$$E_n = (A_1 A_2 \dots A_k) | (A_{k+1} A_{k+2} \dots A_n)$$
$$= E_k * E_{n-k}$$

i.e. E_n is the product of two subexpressions E_k and E_{n-k} .

- Let P(n) be the number of ways to parenthesize E_n
- Then, by divide and conquer principle,

 Since we can divide E_n in (n-1) ways by changing k=1,2,...,n-1, it follows that

$$P(n) = \sum_{k=1}^{n-1} P(k) P(n-k) \text{ for n} \ge 2 \rightarrow 1$$

where P(1) = 1

• Let $P(k) \ge 2^n$. Then $P(n-k) \ge 2^{n-k}$ substituting

$$P(n) \ge \sum_{k=1}^{n-1} 2^n = (n-1)2^n$$

thus, P(n) grows faster than 2ⁿ.

 The sequence of integers generated by ① is called by Catalan numbers.

It can be verified that

$$P(n) = \Omega\left(\frac{4^n}{n^{3/2}}\right)$$

 Thus, the number of (feasible) ways to parenthesize is way too large so that the simple enumeration scheme used in E₄ will not work.

 Dynamic programming is a method that uses the above divide and conquer principle to exhaust all possible solutions with the condition that no subproblem is solved more than once

- In the case of E₄, the subproblems can be solved in the following order:
- 1. $(A_1A_2) (A_2A_3) (A_3A_4)$
- There is only one way to compute each of these products involving two matrices

- 2. A) Consider $A_1 A_2 A_3$:
- This can be computed as (A₁ A₂) A₃ or A₁ (A₂ A₃). Since the optimal cost of A₁A₂, A₂A₃ are known in step 1, we use those results to find the best between these two ways

- B) Similarly, consider A₂ A₃ A₄:
- This can be computed as A₂ (A₃ A₄) and (A₂ A₃) A₄ since optimal cost of A₃A₄ and to A₃ are known in Step 1, we can now find the best way to compute A₂ A₃ A₄.

- 3. Consider A₁ A₂ A₃ A₄
- We can do it in three ways
- a) $A_1 (A_2 A_3 A_4)$
- b) $(A_1 A_2) (A_3 A_4)$
- c) $(A_1 A_2 A_3) A_4$

- Using the optimal cost for computing (A₂ A₃ A₄) found in Step 2, we can find the cost of computing E₄ using (a)
- Using the optimal cost of computing (A₁ A₂) and (A₃ A₄) from Step 1, we can compute the cost of computing E₄ using (b)
- Using the optimal cost of computing (A₂A₃A₄) in Step 2, we can compute the cost of computing E₄ using (c)

 By comparing these three costs, we can find the optimal cost of computing E₄.

		A_1	A_2	A_3	A_4	
Cost=	A_1	0	1200	700	1400	
	A_2	-	0	400	650	
	A_3	-	-	0	10,000	
	A_4	-	-	-	0	

A₁: 30 x 1

A₂: 1 x 40

A₃: 40 x 10

A₄: 10 x 25

		A_1	A_2	A_3	A_4
	A_1	0	1	1	1
optimal split = point	A ₂	-	0	2	3
point	A_3	-	-	0	3
	A_4	-	-	-	О

- The minimum cost for computing E₄ is 1,400
- The optimal parenthesis that gives this minimum cost is

$$E_4 = A_1(A_2A_3A_4)$$
$$= A_1((A_2A_3))$$

since the split for $A_1A_2A_3A_4$ is at 1 and that for $A_2A_3A_4$ is at 3.

 A general recurrence for the optimal cost M(i,j) to compute the matrix product A_i A_{i+1} ... A_j for i < j is obtained as follows, A_i is a matrix of the size d_{i-1} x d_i

$$E(i:j) = A_i A_{i+1} \dots A_k \mid A_{k+1} \dots A_j$$
Results in a matrix of size $d_{i-1} \times d_k$ of size $d_k \times d_j$

$$\downarrow$$

$$Costs = m(i, k)$$
 Costs = $m(k+1, j)$

Module 7

Hence, for E_n the optimal cost is m(1,n)

Problems:

- 1) Compute the optimal cost and parenthesis for multiplying matrices of order 10 x 3, 3 x 15, 15 x 25 and 25 x 57.
- 2) What happens when all the matrices are square matrices of the same size.