Commands

Step 1) annotate bacterial genome (make faa files) and make protein database

```
$prokka setupdb
TAGS=$(ls $all_initial_input/*.fna | xargs -n 1 basename)
mkdir $all_final_output/prokka
```

DEBUGGING

for file in \$TAGS; do \$prokka --outdir \$all_final_output/prokka/\$file --force --prefix \$file \$all_initial_input/\$file; done

Step 2) Creating cas database

```
prokka_dir=$"$all_final_output"
tags=$(find $prokka_dir -name '*.faa')
```

concatenating all tags to a database

mkdir \$all_final_output/database touch \$all_final_output/database/seqdb cat \$tags > \$all_final_output/database/seqdb

path to the database created from hmmprofiles

database=\$""\$all final output/database/segdb""

Step 3) Hmm search: Extracting significant hits using HMMSEARCH

```
INDIR=$all_initial_inputs
hmm_search_output=$""$all_final_output/hmmsearch_results""
mkdir $hmm_search_output
```

path to standard hmm profiles

std hmms=\$(Is \$main path/standard hmm profiles/* | xargs -n 1 basename)

for i in \$std_hmms; do hmmsearch --tblout \$hmm_search_output/\${i}.tbl \$main_path/standard_hmm_profiles/\${i} \$database; done

Step 4) Creating final fastas contain sequences from final hits

```
INDIR=$hmm_search_output
lists=$""$hmm_search_output/lists""
cd $INDIR
mkdir $lists
```

```
tables=$(cd $INDIR && Is *.hmm.tbl) for i in $tables; do grep -v "^#" ${i} | awk '{print $1}' >> $lists/$i.cleaned_fasta; done
```

```
INDIR=$lists
clean_fasta=$""$hmm_search_output/final""
mkdir $clean_fasta
```

indexing step (database should be indexed)

esl-sfetch --index \$database

tables=\$(cd \$INDIR && is *.hmm.tbl.cleaned_fasta) for i in \$tables; do esl-sfetch -f \$database \$INDIR/\${i} > \$clean_fasta/\${i%.fasta}; done

Step 5) cluster the sequences

INDIR=\$clean_fasta clustering=\$"\$all_final_output/clustering" mkdir \$clustering

links=\$(ls \$INDIR/*.cleaned_fasta)

this is an important path, it must needs be modified for containerisation

path_to_cdhit=\$'/home/cas_pipeline/cdhit-master/psi-cd-hit'

making soft links to cd_hit_input folder for all cleaned fastas

cd_hit_input=\$path_to_cdhit In -s \$links \$cd_hit_input

TAGS=\$(ls \$cd_hit_input/*.cleaned_fasta | xargs -n 1 basename) for i in \$TAGS; do cd \$path_to_cdhit/; ./psi-cd-hit.pl -i \${i} -o \${i%.hmm.tbl.cleaned_fasta} -c 0.95; done

out_dir_cdhit=\$""\$all_final_output/cdhit"" mkdir \$out_dir_cdhit cp -r \$path_to_cdhit/* \$out_dir_cdhit

Step 6) Muscle alignment

INDIR=\$out_dir_cdhit muscle_dir=\$""\$all_final_output/muscle"" mkdir \$muscle_dir

tags=\$(Is \$INDIR/*.cleaned_fasta | xargs -n 1 basename | sed 's/.hmm.tbl.cleaned_fasta//') for i in \$tags; do muscle -in \$i -out \$muscle_dir/\$i.fasta; done

Step 7) IQTREE

Step 10) IQTREE

```
INDIR=$muscle dir
iqtree_dir=$""$all_final_output/iqtree""
mkdir $iqtree_dir
tags=$(Is $INDIR/*.fasta)
cd $iqtree_dir
for f in $tags; do igtree -s $f -bb 1000 -alrt 1000 -nt 6; done
Step 8) Blast and filtering blast results by 50% identity
INDIR=$out_dir_cdhit
blast dir=$""$all final output/blast""
filtered blast dir=$""$all final output/blast/blast filtered""
mkdir $blast_dir
tags=$(Is $INDIR/*.cleaned fasta)
new_tags=$(ls blast_dir/*)
mkdir $filtered blast dir
# blast
for i in $tags; do blastp -query $INDIR/$i -db nr -evalue 1e-5 -num threads 6 -outfmt 6 -out
$blast_dir/${i%.*}; done
# filter blast
for tag in $new_tags; do awk -F" " 'int($3) > 50' $out_dir_cdhit/$tag >
$filtered blast dir/filtered $tag; done
Step 9) esl-sfetch on the blast filtered ids
INDIR=$""$all final output/blast/blast filtered""
blast fetch=$""$all final output/blast fetch""
mkdir blast_fetch
id_dir==$""$blast_fetch/ids""
mkdir id_dir
tables=$(Is $INDIR)
for i in $tables; do grep -v "^#" $INDIR/${i} | awk '{print $2}' >> $id_dir/$i.ids; done
ids=$(Is $id dir)
for i in $ids; do esl-sfetch -f $database $id_dir/${i} > $blast_fetch/${i%.fasta}; done
```