Problem 8.1: (3.4 #13.(a,b,d) *Introduction to Linear Algebra:* Strang) Explain why these are all false:

- a) The complete solution is any linear combination of \mathbf{x}_p and \mathbf{x}_n .
- b) The system $A\mathbf{x} = \mathbf{b}$ has at most one particular solution.
- c) If A is invertible there is no solution \mathbf{x}_n in the nullspace.
- a) Suppose $Ax_p = b$ and $Ax_n = 0$. While it is true that $A(x_p + x_n) = Ax_p + Ax_n = b$, if C_1, C_2 are scalars we have $A(c_1x_p + c_2x_n) = c_1Ax_p + c_2Ax_n = c_1b \neq b$ generally.
- b) This is true iff A has full rank. Otherwise, the nullspace is nontrivial, meaning $\exists x_n \neq 0$ s.t. $Ax_n = 0$. But then if $Ax_p = b$, $A(x_p + x_n) = b$ and $x_p \neq x_p + x_n$.
- c) $x_n = \bar{o}$ will always be in the nullspace. It is the only vector in the nullspace if A is invertible.

Problem 8.2: (3.4 #28.) Let

$$U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix}$$
 and $\mathbf{c} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$.

Use Gauss-Jordan elimination to reduce the matrices $[U \ 0]$ and $[U \ c]$ to $[R \ 0]$ and $[R \ d]$. Solve Rx = 0 and Rx = d.

Check your work by plugging your values into the equations $U\mathbf{x} = \mathbf{0}$ and $U\mathbf{x} = \mathbf{c}$.

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 0 & 4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{\chi_1 = -2\chi_2} , \quad \chi = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} , \quad \mathcal{U}\chi = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \checkmark$$

$$\begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & 0 & 4 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\chi_1 = -1 & -2\chi_2} , \quad \chi = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} , \quad \mathcal{U}\chi = \begin{bmatrix} 8 \\ 8 \end{bmatrix} \checkmark$$

Problem 8.3: (3.4 #36.) Suppose $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{b}$ have the same (complete) solutions for every \mathbf{b} . Is it true that A = C?

Yes. If b is set to be the jth column of A, the vector $x=e_j$ solves Ax=b. But then since $Cx=Ce_j=b$, we have $c_{ij}=a_{ij}$, $c_{2j}=a_{2j}$,..., $c_{mj}=a_{mj}$. That is, the jth column of C matches the jth column of A. This holds for each j, so A=C.