

Master of Cognitive Science

Data Science Course

Time-Series analysis

Professor: Moran Steven Lecturer: Maiolini Marco

Lecture 7: 6/April/2022

Outline

- Part 1: Book report & discussion (15 minutes)
- Part 2: Understand Time-series analysis (45 minutes)

Break (15 minutes)

- Part 3: Practical
- Part 4: Start the report

What is a Time-Series?

Time-Series

"Collection of observation made sequentially through time"

Economic & Finance

Physic

Biological

Coronavirus in Northern Ireland

Reported new daily confirmed cases

Data from 1 June 2021

Source: Department of Health as of 7 January 2022

Types of time-series

• Discrete: Data taken only in specific fixed time

• Continuous: Data taken continuously through time

• *Deterministic:* Predicted exactly by previous values

• Stochastic: Only partially predicted by past values

Describe

Describe

Explain

Describe

Explain

Predict

Describe

Explain

Predict

Control

• *Mean:* The central value of a finite set of numbers

• Frequency: Sampling frequency

• Variance: Expectation of the squared deviation of a random variable from its mean

• Autocorrelation: Correlation among neighbouring observations

Population growth rate:

How to plot a time-series in R: plot.ts(x, xlab, ylab, main)

Autocorrelation plot

How to do an autocorrelation plot for a specific time-series in R: acf(x, main)

Trend: General development of a feature over time

Trend: General development of a feature over time

Relation between your data and time

Trend: General development of a feature over time

Relation between your data and time

Linear trends

Periodic trends

Trend: General development of a feature over time

Relation between your data and time

Linear trends

Periodic trends

In R you can remove the linear trend with: *diff()*

Models of time-series

White Noise model (WN)

Random walk model (RW)

Simple moving average model (MA)

Autoregressive model (AR)

The simplest model of time-series

The simplest model of time-series

• A fixed, constant mean

The simplest model of time-series

- A fixed, constant mean
- A fixed, constant variance

1980

1985

1990

The simplest model of time-series

- A fixed, constant mean
- A fixed, constant variance
- No correlation over time

2000

1995

2005

2010

2015

residuals(fit213200)

The simplest model of time-series

- A fixed, constant mean
- A fixed, constant variance
- No correlation over time

In R you can fit your data in a WN model using this code:

arima(x, order=c(0,0,0))

residuals(fit213200)

Defined as: Today = Yesterday + Noise

Defined as: Today = Yesterday + Noise → Today - Yesterday = Noise

Defined as:

White noise

diff(RW) → WN model

Defined as:

- No specific mean
- No specific variance
- Strong dependence over time

diff(RW) → WN model

White noise

Defined as:

- No specific mean
- No specific variance
- Strong dependence over time

diff(RW) → WN model

White noise

In R you can fit your data in a RW model using this code:

arima(x, order=c(0,1,0))

Stationarity

Parsimonious models with distributional stability over time

Stationary models can be modelled with fewer values, however few time series are stationary

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous observation

Slope =
$$1 \& Mean = 0$$
 (Today - 0) = $1 * (Yesterday - 0) + Noise$

Linear trend where each observation is regressed on the previous observation

$$\frac{\text{Slope} = 1 \& \text{Mean} = 0}{\text{Today} = \text{Yesterday} + \text{Noise}}$$

Linear trend where each observation is regressed on the previous observation

Slope = 1 & Mean = 0Today = Yesterday + Noise (Today - Mean) = Slope * (Yesterday - Mean) + Noise Slope = 0AR model Slope = 0.7AR model Slope = -0.72 2 Ņ ကု 20 60 80 100 20 60 80 100 0.5 9.0 0.0 0.5 15 20

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous observation

Linear trend where each observation is regressed on the previous innovation, which is not actually observed

Linear trend where each observation is regressed on the previous innovation, which is not actually observed

Linear trend where each observation is regressed on the previous innovation, which is not actually observed

Slope = 0

Linear trend where each observation is regressed on the previous innovation, which is not actually observed

Slope = 0 Today = Mean + Noise + 0 * (Yesterday's Noise)

Linear trend where each observation is regressed on the previous innovation, which is not actually observed

$$\frac{\text{Slope} = 0}{\text{Today}} = \text{Mean} + \text{Noise}$$

Forecast

We can use the <u>Autoregressive models (AR)</u> and the <u>Simple Moving Average models (MA)</u> models to fit our data and try to forecast our time-series

• Fitted values: Forecast (estimation) of an observation using all previous ones

Forecast

We can use the <u>Autoregressive models (AR)</u> and the <u>Simple Moving Average models (MA)</u> models to fit our data and try to forecast our time-series

- Fitted values: Forecast (estimation) of an observation using all previous ones
- Residuals: Difference between the observation and the corresponding fitted values

Forecast

We can use the <u>Autoregressive models (AR)</u> and the <u>Simple Moving Average models (MA)</u> models to fit our data and try to forecast our time-series

- Fitted values: Forecast (estimation) of an observation using all previous ones
- Residuals: Difference between the observation and the corresponding fitted values

Forecast in R

To fit our time-series on AR model:

AR model $\leftarrow arima(x, order = c(1,0,0))$

Forecast in R

To fit our time-series on AR model:

AR model $\leftarrow arima(x, order=c(1,0,0))$

AR model 001 008 009 1880 1900 1920 1940 1960 1980 Time

To fit our time-series on MA model:

MA model $\leftarrow arima(x, order=c(0,0,1))$

Forecast in R

To fit our time-series on AR model:

AR model \leftarrow arima(x, order=c(1,0,0))

Fitted values \leftarrow x - residuals(x)

Forecast \leftarrow predict(x)\$pred

Forecast SD \leftarrow predict(x)\$sd

To fit our time-series on MA model:

MA model \leftarrow arima(x, order=c(0,0,1))

Fitted values \leftarrow x - residuals(x)

Forecast \leftarrow predict(x)\$pred

Forecast SD \leftarrow predict(x)\$sd

Compare different models

When comparing different models we want to find out which model explain better my data regardless the **Individual independent variables** in the model.

It doesn't mean that there is a right and a wrong model!

Compare different models

When comparing different models we want to find out which model explain better my data regardless the **Individual independent variables** in the model.

It doesn't mean that there is a right and a wrong model!

Akaike's information criteria (AIC):

AIC estimates model complexity. It works estimating the expected performance of model's predictions, for that scope it use observed data and hypothetical sample generated by the same model.

The best model show the smallest value; a difference within 4 - 7 units indicate less support, a difference over 10 indicate that the worse model can be omitted

• Limited to previous observations

• Limited to previous observations

Seriously affected by NAs values

• Limited to previous observations

Seriously affected by NAs values

When forecasting doesn't take into account variables

