Practice

Solve
$$y' + p(x)y = q(x)$$

Sol

Consider

$$H(x) = \int p(x)dx$$

Multiply $e^{H(x)}$ to both sides

$$e^{H(x)}y' + e^{H(x)}p(x)y = e^{H(x)}q(x)$$

This gives

$$\frac{d}{dx} \left[e^{H(x)} y \right] = e^{H(x)} q(x)$$

Integration gives

$$e^{H(x)}y=\int e^{H(x)}q(x)dx+C$$

and yields

$$y(x) = e^{-H(x)} \biggl[\int e^{H(x)} q(x) dx + C \biggr].$$

Note that $e^{H(x)}$ is called the *integrating factor*.