SAR TEST REPORT

Reference No. : WTS16S0243054E

FCC ID.....: 2AC88-E1

Applicant: HONGKONG UCLOUDLINK NETWORK TECHNOLOGY LIMITED

Manufacturer : Shenzhen Ukelink New Technology Co.,Ltd

Nanshan district, Shenzhen, Guangdong, China

Product Name: 4G Free Roaming Hotspot

Model No. : E1

Brand.....: GlocalMe

FCC 47 CFR Part2(2.1093)

Standards: ANSI/IEEE C95.1-2015

IEEE 1528-2015 & Published RF Exposure KDB Procedures

Date of Receipt sample.... : Feb. 29, 2016

Date of Test : Mar. 3, 2016 - Mar. 28, 2016

Date of Issue : Mar. 29, 2016

Test Result: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Ohilo Zhoon

Reference No.: WTS16S0243054E Page 2 of 180

1 Laboratory Introduction

Waltek Service Co., Ltd. is a professional third-party testing and certification organization with multi-year product testing and certification experience. Established strictly in accordance with ISO/IEC Guide 65 and ISO/IEC 17025, our company has got recognition from CNAS (China National Accreditation Service for Conformity Assessment) and International Laboratory Accreditation Cooperation (ILAC). At the same time, our company has been approved by some authoritative organizations, such as EMSD of Hongkong, UL, Intertek-ETL SEMKO, CSA, MET, TÜV Rheinland, TÜV SÜD, SGS, Nemko, FCC, IC of Canada, CPSC, TMICO and California Energy Commission (CEC). Since the set-up of our company, we sincerely help our customers to improve their products to achieve relative international standards. We are accepted by various clients in international market and well-known in the same industry.

There are several laboratories in our company which are equipped with advanced equipments for fully testing. It can provide testing and certification services for products exported around the world, also it can ensure that the products reach international standards in aspects of safety, electromagnetic compatibility, virulence, energy efficiency, reliability and so on. To enable our customers can get local services more directly and conveniently, and to realize our promise to provide more high quality services. Our company has set up product testing labs in South China and East China (Shenzhen, Dongguan, Foshan, Suzhou and Ningbo). We can provide our clients with accurate test and technical support services in good faith, and actively follow customer demand. These can fully demonstrate Waltek Services concept -- "One-stop Services".

Our company has many experienced engineers and customer service representatives to meet our customer's demand for a number of tests and provide superb technical guidance and modification service; At the same time we can provide global certification services by our global partners to help our customer's products to successfully extend to the global market.

Email: info@waltek.com.cn

2 Contents

1	LABORATORY INTRODUCTION	2
2	CONTENTS	3
3	GENERAL INFORMATION	4
4	INTRODUCTION	7
5	SAR MEASUREMENT SETUP	8
6	EXPOSURE LIMIT	17
7	SYSTEM AND LIQUID VALIDATION	18
8	TYPE A MEASUREMENT UNCERTAINTY	28
9	TEST INSTRUMENT	31
10	OUTPUT POWER VERIFICATION	32
11	EXPOSURE CONDITIONS CONSIDERATION	65
12	SAR TEST RESULTS	67
13	SAR MEASUREMENT REFERENCES	79
14	CALIBRATION REPORTS-PROBE	99
15	DIPOLE IMPEDANCE AND RETURN LOSS	168
16	SAR SYSTEM PHOTOS	178
17	SETUP PHOTOS	179
10	EUT DUOTOS	100

Reference No.: WTS16S0243054E Page 4 of 180

3 <u>General Information</u>

3.1 General Description of E.U.T.

Product Name: 4G Free Roaming Hotspot

Model No.: E1

Model Description: N/A

GSM Band(s): GSM 850/1900MHz

GPRS/EGPRS Class: 12

WCDMA Band(s): FDD Band I/II/V

LTE Bnad(s) FDD Band 2/4/5/17; TDD Band41

Wi-Fi Specification: 802.11b/g/n HT20/n HT40

Bluetooth Version: Bluetooth v4.0 with BLE

GPS: Support

NFC: N/A

Hardware Version LA0908 Ver.B Software Version E1_CTA_V01

Note: Main board:

The EUT Main board support GSM850/900/DCS1800/PCS1900,

WCDMA Band 1/2/4/5/8, CDMA BC0/1, LTE Band

1/2/3/4/5/7/8/17/20/38/40/41 function. It is intended for speech, Multimedia Message Service (MMS) transmission and 4G free roaming hotspot. It is equipped with GPRS/EDGE class 12 for GSM850/900/DCS1800/PCS1900, GPS,Bluetooth and Wi-Fi functions. For more information see the following datasheet.

Vice board:

The EUT Vice board support GSM850/900/DCS1800/PCS1900, WCDMA Band 1/2/4/5/8, CDMA BC0/1. It is intended for system

localization. It is equipped with GPRS/EDGE class 12 for

GSM850/900/DCS1800/PCS1900

WCDMA Band II: 1850~1910MHz

3.2 Details of E.U.T.

Operation Frequency GSM/GPRS/EDGE 850: 824~849MHz

PCS/GPRS/EDGE1900: 1850~1910MHz

WCDMA Band IV: 1710~1755MHz WCDMA Band V: 824~849MHz CDMA BC 0: 824~849MHz CDMA BC 1: 1851~1909MHz LTE Band 2: 1850~1910MHz LTE Band 4: 1710~1755MHz LTE Band 5: 824~849MHz LTE Band 17: 706~714MHz

LTE Band 41: 2498~2688MHz

WiFi:

802.11b/g/n HT20: 2412~2462MHz

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Email:info@waltek.com.cn

Reference No.: WTS16S0243054E Page 5 of 180

802.11n HT40: 2422~2452MHz Bluetooth: 2402~2480MHz

Max. RF output power Main board

GSM 850: 32.62dBm PCS1900:29.68dBm

WCDMA Band II: 22.30dBm WCDMA Band V: 22.25dBm WCDMA Band IV: 22.59dBm CDMA BC 0: 24.64dBm CDMA BC 1: 24.47dBm LTE Band 2: 22.96dBm

LTE Band 5: 23.63dBm LTE Band 17: 23.84dBm LTE Band 41: 23.85dBm

LTE Band 4: 23.5dBm

WiFi: 9.28dBm

Bluetooth: -0.37dBm

Vice Board

GSM 850: 32.75dBm PCS1900:29.79dBm

WCDMA Band II: 22.46dBm WCDMA Band V: 22.5dBm WCDMA Band IV: 22.68dBm CDMA BC 0: 24.81dBm CDMA BC 1: 24.44dBm

Max.SAR: Main board

1.20 W/Kg 1g Hotspot Tissue

Vice Board

1.18 W/Kg 1g Hotspot Tissue

Max Simultaneous SAR Main board

1.39 W/Kg Vice Board 1.37 W/Kg

Type of Modulation: GSM,GPRS: GMSK

EDGE: GMSK, 8PSK WCDMA: BPSK

CDMA: QPSK

LTE: QPSK, 16QAM WiFi: CCK, OFDM

Bluetooth: GFSK, Pi/4 DQPSK,8DPSK

Antenna installation GSM/CDMA/WCDMA/LTE: internal permanent antenna

WiFi/Bluetooth: internal permanent antenna

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

Email:info@waltek.com.cn

Reference No.: WTS16S0243054E Page 6 of 180

Antenna Gain GSM 850: -0.95dBi

PCS1900: -1.9dBi

WCDMA Band II: -1.9dBi WCDMA Band IV: -2.6dBi WCDMA Band V: -0.95dBi

LTE Band 2: -1.8dBi LTE Band 4: 0.05dBi LTE Band 5: -0.95dBi LTE Band 7: 0.9dBi LTE Band 17: -4.5dBi LTE Band 41: 1.5dBi

WiFi: 0dBi Bluetooth: 0dBi

Technical Data Battery DC 3.8V, 13.3Wh

DC 5V, 1.0A, charging from mini USB port

4 INTRODUCTION

Introduction

This measurement report shows compliance of the EUT with ANSI/IEEE C95.1-2006 and FCC 47 CFR Part2 (2.1093)

.

The test procedures, as described in IEEE 1528-2013 Standard for IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques(300MHz~6GHz) and Published RF Exposure KDB Procedures

SAR Definition

SAR: Specific Absorption Rate

The SAR characterize the absorption of energy by a quantity of tissue

This is related to a increase of the temperature of these tissues during a time period.

DAS =
$$\frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

DAS = $\frac{\sigma E^2}{\rho}$

DAS = $\frac{d}{dt} \left(\frac{dW}{dt} \right)$

$$SAR = \frac{\sigma E^2}{\rho}$$

SAR : Specific Absorption Rate

σ : Liquid conductivity

$$o_{\varepsilon_r} = \varepsilon'$$
- $j_{\varepsilon''}$ (complex permittivity of liquid)

$$\circ\sigma = \frac{\varepsilon''\omega}{\varepsilon_0}$$

ρ: Liquid density
 ο ρ = 1000 g/L = 1000Kg/m³

where:

 σ = conductivity of the tissue (S/m) ρ = mass density of the tissue (kg/m3) E = rms electric field strength (V/m)

5 SAR MEASUREMENT SETUP

SAR bench sub-systems

Scanning System (robot)

- It must be able to scan all the volume of the phantom to evaluate the tridimensional distribution of SAR.
- Must be able to set the probe orthogonal of the surface of the phantom (±30°).
- Detects stresses on the probe and stop itself if necessary to keep the integrity of the probe.

SAM Phantom (Specific Anthropomorphic Mannequin)

- The probe scanning of the E-Field is done in the 2 half of the normalized head.
- The normalized shape of the phantom corresponds to the dimensions of 90% of an adult head size.
- The materials for the phantom should not affect the radiation of the device under test (DUT)
 - Permittivity < 5
- The head is filled with tissue simulating liquid.
- The hand holding the DUT does not have to be modeled.

Blustration du fantôme donnant les points de référence des oreilles, RE et LE, le point de référence de la bouche, M, la ligne de référence M-E et la bande centrale

Bi-section sagittale du fantôme avec périmètre étendu (montrée sur le côté comme fors des essais de DAS de l'appareit)

The OPENSAR system for performing compliance tests consist of the following items:

- 1. A standard high precision 6-axis robot (KUKA) with controller and software.
- 2. KUKA Control Panel (KCP).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 4. The functions of the PC plug-in card are to perform the time critical task such as signal filtering, surveillance of the robot operation fast movement interrupts.
- 5. A computer operating Windows 7.
- 6. OPENSAR software.
- 7. Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 8. The SAM phantom enabling testing left-hand right-hand and body usage.
- The Position device for handheld EUT.
- 10. Tissue simulating liquid mixed according to the given recipes (see Application Note).
- 11. System validation dipoles to validate the proper functioning of the system.

Reference No.: WTS16S0243054E Page 11 of 180

Data Evaluation

The OPENSAR software automatically executes the following procedure to calculate the field units from the microvolt readings at the probe connector. The parameters used in the valuation are stored in the configuration modules of the software:

Probe	- Sensitivity	Norm _i
Parameters	- Conversion factor	ConvFi
	- Diode compression point	
	Dcpi	
Device	- Frequency	f
Parameter	- Crest factor	cf
Media Parametrs	- Conductivity	σ
i alamens	- Density	ρ

These parameters must be set correctly in the software. They can either be found in the component documents or be imported into the software from the configuration files issued for the OPENSAR components.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Where V_i = Compensated signal of channel i (i = x, y, z)

 U_i = Input signal of channel i (i = x, y, z)

cf = Crest factor of exciting field(DASY parameter)

dcp_i = Diode compression point (DASY parameter)

Page 12 of 180 Reference No.: WTS16S0243054E

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$

H-field probes: $H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f^2}{f}$

Where V_i = Compensated signal of channel i (i = x, y, z)

 $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z)

 $\mu V/(V/m)$ 2 for E0field Probes

ConvF= Sensitivity enhancement in solution

aii = Sensor sensitivity factors for H-field probes

f = Carrier frequency (GHz)

E_i = Electric field strength of channel i in V/m

H_i = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} - \sqrt{E_{z}^{2} + E_{y}^{2} + E_{z}^{2}}$$

The primary field data are used to calculate the derived field units.

 $SAR - E_{100}^2 - \frac{\sigma}{\rho \cdot 1000}$

where SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

 σ = conductivity in [mho/m] or [siemens/m]

= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

 $P_{per} = \frac{E_{xx}^2}{3770}$ Or $P_{per} = H_{xx}^2 \cdot 37.7$

where P_{pwe} = Equivalent power density of a plane wave in mW/cm2

E_{tot} = total electric field strength in V/m

SAR Evaluation - Peak Spatial - Average

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in OPENSAR software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures 5 x 5 x 7 points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

SAR Evaluation – Peak SAR

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1 g and 10 g. The OPENSAR system allows evaluations that combine measured data and robot positions, such

as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Waltek Services (Shenzhen) Co.,Ltd.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the fourth order least square polynomial method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Definition of Reference Points

Ear Reference Point

Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 6.1 Close-up side view of ERP's

Figure 6.2 Front, back and side view of SAM

Device Reference Points

Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is than located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at it's top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5].

Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

Test Configuration - Positioning for Cheek / Touch

Position the device close to the surface of the phantom such that point A is on the (virtual) extension
of the line passing through points RE and LE on the phantom (see Figure below), such that the plane
defined by the vertical center line and the horizontal line of the device is approximately parallel to the
sagittal plane of the phantom

Figure 7.1 Front, Side and Top View of Cheek/Touch Position

- 2. Translate the device towards the phantom along the line passing through RE and LE until the device touches the ear.
- 3. While maintaining the device in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- 4. Rotate the device around the vertical centerline until the device (horizontal line) is symmetrical with respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the device contact with the ear, rotate the device about the line NF until any point on the device is in contact with a phantom point below the ear (cheek). See Figure below.

Figure 7.2 Side view w/ relevant markings

Reference No.: WTS16S0243054E Page 16 of 180

Test Configuration - Positioning for Ear / 15° Tilt

With the test device aligned in the Cheek/Touch Position":

- 1. While maintaining the orientation of the device, retracted the device parallel to the reference plane far enough to enable a rotation of the device by 15 degrees.
- 2. Rotate the device around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the device, move the device parallel to the reference plane until any part of the device touches the head. (In this position, point A is located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the device shall be reduced. The tilted position is obtained when any part of the device is in contact with the ear as well as a second part of the device is in contact with the head (see Figure below).

Figure 7.3 Front, Side and Top View of Ear/15° Tilt Position

Test Position – Body Configurations

Body Worn Position

- (a) To position the device parallel to the phantom surface with either keypad up or down.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 1.5 cm or holster surface and the flat phantom to 0 cm.

6 EXPOSURE LIMIT

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

7 SYSTEM AND LIQUID VALIDATION

System Validation

Fig 8.1 System Setup for System Evaluation

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. Calibrated Dipole

The output power on dipole port must be calibrated to 30 dBm (1000 mW) before dipole is connected.

Numerical reference SAR values (W/kg) for reference dipole and flat phantom

Frequency (MHz)	1 g SAR	10 g SAR	Local SAR at surface (above feed-point)	Local SAR at surface (y = 2 cm offset from feed-point) ^a
300	3.0	2.0	4.4	2.1
450	4.9	3.3	7.2	3.2
835	9.5	6.2	4.1	4.9
900	10.8	6.9	16.4	5.4
1450	29.0	16.0	50.2	6.5
1800	38.1	19.8	69.5	6.8
1900	39.7	20.5	72.1	6.6
2000	41.1	21.1	74.6	6.5
2450	52.4	24.0	104.2	7.7
3000	63.8	25.7	140.2	9.5

Table 1: system validation (1g)

(19)						
Measurement Date	Frequency (MHz)	Liquid Type (head/body)	Target SAR1g	Measured SAR1g	Normalized SAR1g	Deviation (%)
Date	(IVITIZ)	(Head/body)	(W/kg)	(W/kg)	(W/kg)	(/0)
Mar 3,2016	750	body	8.53	0.0824	8.24	-3.4
Mar 8,2016	835	body	9.44	0.0915	9.15	-3.1
Mar 18,2016	1800	body	37.91	0.3960	39.60	4.5
Mar 25,2016	1900	body	38.58	0.3652	36.52	-5.3
Mar 28,2016	2450	body	50.67	0.5153	51.53	1.7

Note: system check input power: 10mW

Reference No.: WTS16S0243054E Page 20 of 180

Liquid Validation

The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

KDB 865664 recommended Tissue Dielectric Parameters

The head and body tissue parameters given in this below table should be used to measure the SAR of transmitters operating in 100 MHz to 6 GHz frequency range. The tissue dielectric parameters of the tissue medium at the test frequency should be within the tolerance required in this document. The dielectric parameters should be linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

The head tissue dielectric parameters recommended by IEEE Std 1528-2013 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in 1528 are derived from tissue dielectric parameters computed from the 4-Cole-Cole equations described above and extrapolated according to the head parameters specified in 1528.

Target Frequency	Head 1	Tissue	Body	Tissue
MHz	εr	O' (S/m)	εr	O' (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Table 2: Recommended Dielectric Performance of Tissue

	Recommended Dielectric Performance of Tissue									
Ingredients	Frequency (MHz)									
(% by weight)	75	0	83	35	18	00	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	40.52	51.83	41.46	52.4	55.2	70.2	54.9	40.4	62.7	73.2
Salt (Nacl)	1.61	1.52	1.45	1.4	0.3	0.4	0.18	0.5	0.5	0.04
Sugar	57.67	46.45	56.0	45.0	0.0	0.0	0.0	58.0	0.0	0.0
HEC	0.1	0.1	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0
Bactericide	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	44.5	29.4	44.92	0.0	0.0	26.4
Dielectric	40.93	54.32	42.54	56.1	40.0	53.3	39.9	54.0	39.8	52.5
Conductivity	0.87	0.95	0.91	0.95	1.40	1.52	1.42	1.45	1.88	1.78

Page 22 of 180

Table 3: Dielectric Performance of Body Tissue Simulating Liquid

	Temperature: 21°C , Relative humidity: 57%					
Eroguepov(MHz)	Measured Date	Description	Dielectric Parameters			
Frequency(MHz)	Measureu Date	Description	εr	σ(s/m)		
700	Mar 3,2016	Target Value ±5% window	55.2 52.25 — 57.75	0.97 0.922 — 1.018		
. 00	5,2515	Measurement Value	54.19	0.98		
750	Mar 3,2016	Target Value ±5% window	55.2 52.25 — 57.75	0.97 0.922 — 1.018		
		Measurement Value	54.65	0.98		
835	Mar 8,2016	Target Value ±5% window	55.2 52.25 — 57.75	0.97 0.922 — 1.018		
555	Wai 0,2010	Measurement Value	55.44	0.98		
1700	Mar 18,2016	Target Value ±5% window	53.30 50.64 — 55.97	1.52 1.44 — 1.60		
1100	Wai 10,2010	Measurement Value	53.85	1.50		
1800	Mar 18,2016	Target Value ±5% window	53.30 50.64 — 55.97	1.52 1.44 — 1.60		
	Wai 10,2010	Measurement Value	53.71	1.50		
1900	Mar 25,2016	Target Value ±5% window	53.30 50.64 — 55.97	1.52 1.44 — 1.60		
	,	Measurement Value	53.51	1.51		
2450	Mar 28,2016	Target Value ±5% window	52.70 50.07 — 55.34	1.95 1.86 — 2.05		
		Measurement Value	52.95	1.94		
2500	Mar 28,2016	Target Value ±5% window	52.70 50.07 — 55.34	1.95 1.86 — 2.05		
	.7141 20,2010	Measurement Value	52.73	1.94		

System Verification Plots Product Description: Dipole

Model: SID750 Test Date: Mar 3,2016

Side symmetric Segment Constitute Surface Halicital Inconsty Zone Lalifort	200 Visualization Graphical Interface Wilson Relicied Intensity 150-		
SURFACE SAR	VOLUME SAR		
SAR 1g (W/Kg)	0.082422		
SAR 10g (W/Kg)	0.054487		
Variation (%)	0.13		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Area Scan	4mm dx=8mm dy=8mm		
Sensor-surface			
Conversion Factor	5.11		
Duty cycle	1:1		
E-Field Probe	SN 07/15 EP249		
Input power	10mW		
Conductivity (S/m)	0.98		
Relative permittivity (real part)	54.65		
Frequency (MHz)	750.000000		
Medium(liquid type)	MSL_750		

Page 24 of 180

Reference No.: WTS16S0243054E

Product Description: Dipole

Model: SID835 Test Date: Mar 8,2016

SAVE Concel

Medium(liquid type)	MSL_835
Frequency (MHz)	835.000000
Relative permittivity (real part)	55.44
Conductivity (S/m)	0.98
Input power	10mW
E-Field Probe	SN 07/15 EP249
Duty cycle	1:1
Conversion Factor	5.46
Sensor-surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.48
SAR 10g (W/Kg)	0.059353
SAR 1g (W/Kg)	0.091587
SURFACE SAR	VOLUME SAR

Page 25 of 180

Product Description: Dipole

Reference No.: WTS16S0243054E

Model: SID1800

Test Date: Mar 18,2016

Medium(liquid type)	MSL_1800
Frequency (MHz)	1800.000
Relative permittivity (real part)	53.71
Conductivity (S/m)	1.50
Input power	10mW
E-Field Probe	SN 07/15 EP249
Duty cycle	1:1
Conversion Factor	4.37
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.18
SAR 10g (W/Kg)	0.209895
SAR 1g (W/Kg)	0.396029
SURFACE SAR	VOLUME SAR
0.00007	3.0 3/3/18

Page 26 of 180

Product Description: Dipole

Reference No.: WTS16S0243054E

Model: SID1900

Test Date: Mar 25,2016

Medium(liquid type)	MSL_1900
Frequency (MHz)	1900.000
Relative permittivity (real part)	53.51
Conductivity (S/m)	1.51
Input power	1.31 10mW
E-Field Probe	SN 07/15 EP249
Duty cycle	1:1
Conversion Factor	5.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.49
SAR 10g (W/Kg)	0.190576
SAR 1g (W/Kg)	0.365181
SURFACE SAR	VOLUME SAR
Star Visualistican September Interfere Surface Relicial Instantly Zone Indust	SAR Visualization Graphical Interfere Volume Sadiated Intensity Ioon In/Oct
0 360300 (100 - 10	0 1 1915 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Page 27 of 180

Reference No.: WTS16S0243054E

Product Description: Dipole

Model: SID2450 Test Date: Mar 28,2016

Medium(liquid type)	MSL_2450
Frequency (MHz)	2450.000
Relative permittivity (real part)	52.95
Conductivity (S/m)	1.94
Input power	10mW
E-Field Probe	SN 07/15 EP249
Duty cycle	1:1
Conversion Factor	4.49
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.25
SAR 10g (W/Kg)	0.233289
SAR 1g (W/Kg)	0.515317
OUDEA OF OAD	VOLUME OAD

Reference No.: WTS16S0243054E Page 28 of 180

8 TYPE A MEASUREMENT UNCERTAINTY

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table below:

Uncertainty Distribution	Normal	Rectangle	Triangular	U Shape
Multi-plying Factor ^(a)	1/K ^(b)	1 /√3	1 / √6	1 / √2

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) κ is the coverage factor

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type -sumby taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %.

Email:info@waltek.com.cn

The COMOSAR Uncertainty Budget is show in below table:

UNCERTAINTY F	OR S	YST	EM F	PERF	ORMA	ANCE	CHEC	K
Uncertainty Component	Tol. (± %)	Prob. Dist.	Div.	ci (1 g)	ci (10 g)	1 g ui (± %)	10 g ui (± %)	vi
Measurement System								
Probe Calibration	5,8	N	1	1	1	5,8	5,8	∞
Axial Isotropy	3,5	R	√3	(1- cp)1/2	(1- cp)1/2	1,42887	1,42887	∞
Hemispherical Isotropy	5,9	R	√3	√Ср	√Ср	2,40866	2,40866	∞
Boundary Effect	1	R	√3	1	1	0,57735	0,57735	8
Linearity	4,7	R	√3	1	1	2,71355	2,71355	∞
System Detection Limits	1	R	√3	1	1	0,57735	0,57735	∞
Readout Electronics	0,5	N	1	1	1	0,5	0,5	8
Response Time	0	R	√3	1	1	0	0	∞
Integration Time	1,4	R	√3	1	1	0,80829	0,80829	∞
RF Ambient Conditions	3	R	√3	1	1	1,73205	1,73205	∞
Probe Positioner Mechanical Tolerance	1,4	R	√3	1	1	0,80829	0,80829	∞
Probe Positioning with respect to Phantom Shell	1,4	R	√3	1	1	0,80829	0,80829	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	2,3	R	√3	1	1	1,32791	1,32791	∞
Dipole								
Dipole Axis to Liquid Distance	2	N	√3	1	1	1,1547	1,1547	N-1
Input Power and SAR drift measurement	5	R	√3	1	1	2,88675	2,88675	8
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	1	1	2,3094	2,3094	8
Liquid Conductivity - deviation from target values	5	R	√3	0,64	0,43	1,84752	1,2413	8
Liquid Conductivity - measurement uncertainty	4	N	1	0,64	0,43	2,56	1,72	М
Liquid Permittivity - deviation from target values	5	R	√3	0,6	0,49	1,73205	1,41451	∞
Liquid Permittivity - measurement uncertainty	5	N	1	0,6	0,49	3	2,45	М
Combined Standard Uncertainty		RSS				9.6671	9.1646	
Expanded Uncertainty (95% CONFIDENCE INTERVAL)		k				19.3342	18.3292	

UNCERTAINTY EV	/ALU	ATIC	N F	OR H	ANDS	ET S	AR TE	ST
Uncertainty Component	Tol. (± %)	Prob. Dist.	Div.	c _i (1 g)	c _i (10 g)	1 g u _i (± %)	10 g u _i (± %)	Vi
Measurement System								•1
Probe Calibration	5,8	N	1	1	1	5,8	5,8	∞
Axial Isotropy	3,5	R	√3	$(1-c_p)^{1/2}$	$(1-c_p)^{1/2}$	1,43	1,43	8
Hemispherical Isotropy	5,9	R	√3	√C _p	√C _p	2,41	2,41	8
Boundary Effect	1	R	√3	1	1	0,58	0,58	8
Linearity	4,7	R	√3	1	1	2,71	2,71	∞
System Detection Limits	1	R	√3	1	1	0,58	0,58	8
Readout Electronics	0,5	N	1	1	1	0,50	0,50	8
Response Time	0	R	√3	1	1	0,00	0,00	8
Integration Time	1,4	R	√3	1	1	0,81	0,81	8
RF Ambient Conditions	3	R	√3	1	1	1,73	1,73	8
Probe Positioner Mechanical Tolerance	1,4	R	√3	1	1	0,81	0,81	8
Probe Positioning with respect to Phantom Shell	1,4	R	√3	1	1	0,81	0,81	8
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	2,3	R	√3	1	1	1,33	1,33	8
Test sample Related								
Test Sample Positioning	2,6	N	1	1	1	2,60	2,60	N-1
Device Holder Uncertainty	3	N	1	1	1	3,00	3,00	N-1
Output Power Variation - SAR drift measurement	5	R	√3	1	1	2,89	2,89	8
Phantom and Tissue Parameters								
Phantom Uncertainty (shape and thickness tolerances)	4	R	√3	1	1	2,31	2,31	8
Liquid Conductivity - deviation from target values	5	R	√3	0,64	0,43	1,85	1,24	8
Liquid Conductivity - measurement uncertainty	4	N	1	0,64	0,43	2,56	1,72	М
Liquid Permittivity - deviation from target values	5	R	√3	0,6	0,49	1,73	1,41	8
Liquid Permittivity - measurement uncertainty	5	N	1	0,6	0,49	3,00	2,45	М
Combined Standard Uncertainty		RSS				10.39	9.92	
Expanded Uncertainty (95% CONFIDENCE INTERVAL)		k				20.78	19.84	

9 TEST INSTRUMENT

Name of Equipment	Manufacturer	Type/Mod el	Serial Number	Calibratio n Date	Calibration Due
6 AXIS ROBOT	KUKA	KR6 R900 SIXX	502635	N/A	N/A
SATIMO Test Software	MVG	OPENSAR	OPENSAR V_4_02_27	N/A	N/A
PHANTOM TABLE	MVG	N/A	SAR_1215_01	N/A	N/A
SAM PHANTOM	MVG	SAM118	SN 11/15 SAM118	N/A	N/A
MultiMeter	Keithley	MiltiMeter 2000	4073942	2016-03-16	2017-03-15
Data Acquisition Electronics	MVG	DAE4	915	2016-03-16	2017-03-15
S-Parameter Network Analyzer	Agilent	8753E	JP38160684	2016-04-02	2017-04-01
Universal Radio Communication Tester	ROHDE&SCH W ARZ	CMU200	112461	2016-03-23	2017-03-22
E-Field Probe	MVG	SSE5	SN 07/15 EP249	2015-10-19	2016-10-18
DIPOLE 750	MVG	SID750	SN 09/15 DIP 0G759-357	2015-03-16	2017-03-15
DIPOLE 835	MVG	SID835	SN 09/15 DIP 0G835-358	2015-03-16	2017-03-15
DIPOLE 1800	MVG	SID1800	SN 09/15 DIP 1G800-360	2015-03-16	2017-03-15
DIPOLE 1900	MVG	SID1900	SN 09/15 DIP 1G900-361	2015-03-16	2017-03-15
DIPOLE 2450	MVG	SID2450	SN 09/15 DIP 2G450-363	2015-03-16	2017-03-15
Limesar Dielectric Probe	MVG	SCLMP	SN 11/15 OCPG 69	2016-03-16	2017-03-15
Power Amplifier	BONN	BLWA 0830 -160/100/40D	128740	2015-09-14	2016-09-14
Signal Generator	R&S	SMB100A	105942	2015-09-14	2016-09-14
Power Meter	R&S	NRP2	102031	2015-09-14	2016-09-14

Reference No.: WTS16S0243054E Page 32 of 180

10 OUTPUT POWER VERIFICATION

Test Condition:

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The base station simulator was connected to the antenna terminal.

2 Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

3 Environmental Conditions

Temperature 23°C
Relative Humidity 53%
Atmospheric Pressure 1019mbar

Test Date: Mar 3,2016
Tested By: Damon Wang

Test Procedures:

4G Free Roaming Hotspot radio output power measurement

- 1. The transmitter output port was connected to base station emulator.
- 2. Establish communication link between emulator and EUT and set EUT to operate at maximum output power all the time.
- 3. Select lowest, middle, and highest channels for each band and different possible test mode.
- 4. Measure the conducted peak burst power and conducted average burst power from EUT antenna port.

Other radio output power measurement

The output power was measured using power meter at low, mid, and hi channels.

Source-based Time Averaged Burst Power Calculation:

For TDMA, the following duty cycle factor was used to calculate the source-based time average power

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Duty cycle factor	-9.03 dB	-6.02 dB	-4.26 dB	-3.01 dB
Crest Factor	8	4	2.66	2

Remark: <u>Time slot duty cycle factor = 10 * log (1 / Time Slot Duty Cycle)</u>

Source based time averaged power = Maximum burst averaged power (1 Uplink) - 9.03 dB Source based time averaged power = Maximum burst averaged power (2 Uplink) - 6.02 dB Source based time averaged power = Maximum burst averaged power (3 Uplink) - 4.26 dB Source based time averaged power = Maximum burst averaged power (4 Uplink) - 3.01 dB

Test Result:

	Main board										
Burst Average Power (dBm);											
Band		GS	M850			PCS19	900				
Channel	128	190	251	Tune up Power tolerant	512	661	810	Tune up Power tolerant			
Frequency (MHz)	824.2	836.6	848.8	/	1850.2	1880	1909.8	/			
GPRS 1 slots	32.59	32.62	32.58	32±1	29.65	29.68	29.67	29±1			
GPRS 2 slots	32.47	32.53	32.46	32±1	29.50	29.49	29.49	29±1			
GPRS 3 slots	32.33	32.26	32.30	32±1	29.39	29.35	29.08	29±1			
GPRS 4 slots	32.15	32.21	32.20	32±1	29.30	29.28	29.23	29±1			
EGPRS 1 slots	26.04	26.03	25.82	25.5±1	25.31	25.29	25.03	25±1			
EGPRS 2 slots	25.90	25.66	25.65	25±1	25.21	25.17	24.88	24.5±1			
EGPRS 3 slots	25.64	25.34	25.32	25±1	25.20	25.19	25.08	24.5±1			
EGPRS 4 slots	25.22	25.14	25.03	25±1	25.11	25.08	25.07	24.5±1			

Remark:

GPRS, CS1 coding scheme. EGPRS, MCS5 coding scheme.

Multi 1 Slot , Support Max 4 downlink, 1 uplink , 5 working link

Multi 2 Slots , Support Max 4 downlink, 2 uplink , 5 working link

Multi 3 Slots , Support Max 4 downlink, 3 uplink , 5 working link

Multi 4 Slots , Support Max 4 downlink, 4 uplink , 5 working link

	Main board										
Source Based time Average Power (dBm)											
Band		G	SM850			P	CS1900				
Channel	128	190	251	Time Average factor	512	661	810	Time Average factor			
Frequency (MHz)	824.2	836.6	848.8	/	1850.2	1880	1909.8	/			
GPRS 1 slots	23.56	23.59	23.55	-9.03	20.62	20.65	20.64	-9.03			
GPRS 2 slots	26.45	26.51	26.44	-6.02	23.48	23.47	23.47	-6.02			
GPRS 3 slots	28.07	28.00	28.04	-4.26	25.13	25.09	24.82	-4.26			
GPRS 4 slots	29.14	29.20	29.19	-3.01	26.29	26.27	26.22	-3.01			
EGPRS 1 slots	17.01	17.00	16.79	-9.03	16.28	16.26	16.00	-9.03			
EGPRS 2 slots	19.88	19.64	19.63	-6.02	19.19	19.15	18.86	-6.02			
EGPRS 3 slots	21.38	21.08	21.06	-4.26	20.94	20.93	20.82	-4.26			
EGPRS 4 slots	22.21	22.13	22.02	-3.01	22.10	22.07	22.06	-3.01			

Remark:

Time average factor = 1 uplink , 10*log(1/8)=-9.03dB , 2 uplink , 10*log(2/8)=-6.02dB , 3 uplink , 10*log(3/8)=-4.26dB , 4 uplink , 10*log(4/8)=-3.01dB

Source based time average power = Burst Average power + Time Average factor

Note: DUT was set in GPRS(4Tx slots) due to the Maximum source-base time average output power for body SAR.

	Main board										
	WCDMA - Average Power (dBm)										
Band		WCDM	A Band II			WCDMA Band V					
Channel	9262	9400	9538	9538 Tune up Power tolerant		4183	4233	Tune up Power tolera nt			
Frequency (MHz)	1852.4	1880	1907.6	/	826.4	836.6	846.6	/			
RMC 12.2k	22.25	22.17	22.30	22±1	22.25	22.24	22.15	22±1			
HSDPA Subtest-1	21.41	21.30	21.13	21±1	21.58	21.41	21.37	21±1			
HSDPA Subtest-2	21.36	21.34	21.14	21±1	21.48	21.38	21.28	21±1			
HSDPA Subtest-3	21.32	21.28	21.10	21±1	21.36	21.36	21.26	21±1			
HSDPA Subtest-4	21.28	21.27	21.08	21±1	21.38	21.27	21.30	21±1			
HSUPA Subtest-1	21.26	21.08	21.25	21±1	21.38	21.14	21.09	21±1			
HSUPA Subtest-2	21.14	21.06	21.04	21±1	21.23	21.12	21.07	21±1			
HSUPA Subtest-3	21.20	21.06	21.13	21±1	21.30	21.14	21.06	21±1			
HSUPA Subtest-4	21.12	20.98	21.07	21±1	21.24	21.08	21.11	21±1			
HSUPA Subtest-5	21.09	20.84	20.88	21±1	21.05	21.06	21.01	21±1			

	Main board WCDMA - Average Power (dBm)								
Band									
Channel	1312	1312 1413 1513 Tune Power tolera							
Frequency (MHz)	1712.4	1732.6	1752.6	1					
RMC 12.2k	22.18	22.44	22.59	22±1					
HSDPA Subtest-1	21.24	21.24	21.49	21±1					
HSDPA Subtest-2	21.23	21.20	21.47	21±1					
HSDPA Subtest-3	21.17	21.13	21.36	21±1					
HSDPA Subtest-4	21.16	21.17	21.32	21±1					
HSUPA Subtest-1	21.10	21.22	21.39	21±1					
HSUPA Subtest-2	21.11	21.20	21.25	21±1					
HSUPA Subtest-3	21.23	21.17	21.26	21±1					
HSUPA Subtest-4	21.14	21.06	21.14	21±1					
HSUPA Subtest-5	21.02	21.03	21.22	21±1					

Main board										
Band		CDMA - Burst Average Power (dBm)								
Danu		BC0		Tune up		BC1		Tune up		
Channel	1013	1013 384 777 Power tolerant 25 600 117						Power tolerant		
Frequency (MHz)	824.7	836.52	848.31	/	1851.25	1880	1908.75	/		
Ev-Do Rev.A RTAP 153.6kpbs	24.64	24.14	24.30	24±1	24.34	23.78	24.47	24±1		
Ev-Do Rev.A RETAP 4096Bits	24.52	24.08	24.16	24±1	24.21	23.65	24.33	24±1		

			Vice	Board								
Burst Average Power (dBm);												
Band		GS	M850			PCS19	900					
Channel	128	190	251	Tune up Power tolerant	512	661	810	Tune up Power tolerant				
Frequency (MHz)	824.2	836.6	848.8	/	1850.2	1880	1909.8	/				
GPRS 1 slots	32.75	32.57	32.47	32±1	29.26	29.79	29.49	29±1				
GPRS 2 slots	32.50	32.27	32.02	32±1	29.22	29.54	29.27	29±1				
GPRS 3 slots	32.12	31.92	31.55	32±1	29.20	29.28	28.95	29±1				
GPRS 4 slots	31.57	31.57	30.91	31±1	28.81	28.94	28.64	28±1				
EGPRS 1 slots	26.23	25.89	25.57	26±1	24.90	25.03	25.18.	25±1				
EGPRS 2 slots	25.90	25.59	25.20	25±1	24.66	24.81	24.93	24±1				
EGPRS 3 slots	25.86	25.48	25.21	25±1	24.57	24.80	24.90	24±1				
EGPRS 4 slots	25.79	25.45	25.20	25±1	24.43	24.77	24.88	24±1				

Remark:

GPRS, CS1 coding scheme.

EGPRS, MCS5 coding scheme.

Multi 1 Slot , Support Max 4 downlink, 1 uplink , 5 working link

Multi 2 Slots , Support Max 4 downlink, 2 uplink , 5 working link

Multi 3 Slots , Support Max 4 downlink, 3 uplink , 5 working link

Multi 4 Slots , Support Max 4 downlink, 4 uplink , 5 working link

				Board	(15.)								
	Source Based time Average Power (dBm)												
Band Channel	128	190	251	Time Average factor	512	661	810	Time Average factor					
Frequency (MHz)	824.2	836.6	848.8	/	1850.2	1880	1909.8	/					
GPRS 1 slots	23.72	23.54	23.44	-9.03	20.23	20.76	20.46	-9.03					
GPRS 2 slots	26.48	26.25	26.00	-6.02	23.20	23.52	23.25	-6.02					
GPRS 3 slots	27.86	27.66	27.29	-4.26	24.94	25.02	24.69	-4.26					
GPRS 4 slots	28.56	28.56	27.90	-3.01	25.80	25.93	25.63	-3.01					
EGPRS 1 slots	17.20	16.86	16.54	-9.03	15.87	16.00	16.15.	-9.03					
EGPRS 2 slots	19.88	19.57	19.18	-6.02	18.64	18.79	18.91	-6.02					
EGPRS 3 slots	21.60	21.22	20.95	-4.26	20.31	20.54	20.64	-4.26					
EGPRS 4 slots	22.78	22.44	22.19	-3.01	21.42	21.76	21.87	-3.01					

Remark:

Time average factor = 1 uplink , 10*log(1/8)=-9.03dB , 2 uplink , 10*log(2/8)=-6.02dB , 3 uplink , 10*log(3/8)=-4.26dB , 4 uplink , 10*log(4/8)=-3.01dB

Source based time average power = Burst Average power + Time Average factor

Note: DUT was set in GPRS(4Tx slots) due to the Maximum source-base time average output power for body SAR.

	Vice Board												
	WCDMA - Average Power (dBm)												
Band		WCDM	A Band II		WCDMA Band V								
Channel	9262	9400	9538	Tune up Power tolerant	4132	4183	4233	Tune up Power tolera nt					
Frequency (MHz)	1852.4	1880	1907.6	/	826.4	836.6	846.6	/					
RMC 12.2k	22.46	22.46	22.34	22±1	22.55	22.50	22.44	22±1					
HSDPA Subtest-1	21.52	21.40	21.46	21±1	21.42	21.40	21.23	21±1					
HSDPA Subtest-2	21.44	21.39	21.44	21±1	21.39	21.33	21.20	21±1					
HSDPA Subtest-3	21.36	21.37	21.42	21±1	21.39	21.30	21.19	21±1					
HSDPA Subtest-4	21.26	21.28	21.37	21±1	21.22	21.25	21.17	21±1					
HSUPA Subtest-1	21.47	21.31	21.36	21±1	21.52	21.32	21.13	21±1					
HSUPA Subtest-2	21.42	21.30	21.32	21±1	21.48	21.31	21.12	21±1					
HSUPA Subtest-3	21.43	21.26	21.30	21±1	21.47	21.30	21.09	21±1					
HSUPA Subtest-4	21.39	21.25	21.28	21±1	21.36	21.26	21.07	21±1					
HSUPA Subtest-5	21.32	21.27	21.26	21±1	21.32	21.24	21.06	21±1					

		Board	D)	
	VCDMA - Ave		A BandIV	
Band Channel	1312	1413	1513	Tune up Power tolerant
Frequency (MHz)	1712.4	1732.6	1752.6	/
RMC 12.2k	22.41	22.68	22.41	22±1
HSDPA Subtest-1	21.23	21.46	21.46	21±1
HSDPA Subtest-2	21.23	21.44	21.45	21±1
HSDPA Subtest-3	21.20	21.44	21.40	21±1
HSDPA Subtest-4	21.18	21.26	21.35	21±1
HSUPA Subtest-1	21.17	21.20	21.38	21±1
HSUPA Subtest-2	21.14	21.18	21.29	21±1
HSUPA Subtest-3	21.11	21.17	21.30	21±1
HSUPA Subtest-4	21.10	21.12	21.26	21±1
HSUPA Subtest-5	21.08	21.10	21.21	21±1

Vice Board											
Band		CDMA - Burst Average Power (dBm)									
Danu		BC0		Tune up		BC1		Tune up			
Channel	1013	384	777	Power tolerant	25	600	1175	Power tolerant			
Frequency (MHz)	824.7	836.52	848.31	/	1851.25	1880	1908.75	/			
Ev-Do Rev.A RTAP 153.6kpbs	24.81	24.45	24.23	24±1	24.19	24.44	24.05	24±1			
Ev-Do Rev.A RETAP 4096Bits	24.65	24.31	24.19	24±1	24.30	24.18	24.31	24±1			

Reference No.: WTS16S0243054E Page 41 of 180

LTE Power Reduction

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	>5	>4	>8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤4	≤8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	>5	>4	>8	> 12	> 16	> 18	≤ 2

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signalling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks ($N_{ m RB}$)	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA
			3	>5	≤ 1
		0 4 40 00 05	5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤ 1
			15	>8	≤ 1
			20	>10	≤ 1
NS 04	6.6.2.2.2	41	5	>6	≤ 1
140_04	0.0.2.2.2	71	10, 15, 20	See Table 6.2.4-4	
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2
NS_08	6.6.3.3.3	19	10, 15	> 44	≤3
NS 09	6.6.3.3.4	21	10, 15	> 40	≤ 1
_	0.0.0.0.		-	> 55	≤2
NS_10	00001	20 231	15, 20	Table 6.2.4-3	Table 6.2.4-3
NS_11	6.6.2.2.1	23	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5
NS_32	-	- olock of Band 23, i.e	- carrier places	- d in the 2000-201	- IO MHz region
HOLO I. A	pplies to the lower i	DIOUR OF DATIG 20, 1.6	. a carrior place	4 III tilo 2000-20	io ivii iz rogion.

LTE Band 2:

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	22.28	22.0±1
			QPSK	1	2	21.23	22.0±1
				1	5	22.34	22.0±1
				3	0	21.41	21.0±1
				3	1	21.45	21.0±1
				3	2	21.53	21.0±1
	18607	1050.7		6	0	21.17	21.0±1
	10007	1850.7		1	0	21.43	22.0±1
				1	2	21.39	22.0±1
				1	5	22.23	22.0±1
			16QAM	3	0	22.61	22.0±1
				3	1	21.78	22.0±1
				3	2	21.91	22.0±1
				6	0	21.65	22.0±1
				1	0	22.04	22.0±1
				1	2	22.2	22.0±1
		1880		1	5	22.11	22.0±1
			QPSK	3	0	21.81	21.0±1
				3	1	21.79	21.0±1
				3	2	21.76	21.0±1
1.4MHz	18900			6	0	21.16	21.0±1
1.4IVI⊓Z	10900		16QAM	1	0	21.45	22.0±1
				1	2	21.47	22.0±1
				1	5	21.72	22.0±1
				3	0	21.24	22.0±1
				3	1	21.21	22.0±1
				3	2	21.17	22.0±1
				6	0	21.02	22.0±1
				1	0	22.69	22.0±1
				1	2	22.82	22.0±1
				1	5	22.77	22.0±1
			QPSK	3	0	21.97	21.0±1
				3	1	21.9	21.0±1
				3	2	21.88	21.0±1
	10102	1909.3		6	0	21.95	21.0±1
	19193	1909.3		1	0	22.26	22.0±1
				1	2	22.12	22.0±1
				1	5	22.11	22.0±1
			16QAM	3	0	21.98	22.0±1
				3	1	21.96	22.0±1
				3	2	21.93	22.0±1
				6	0	21.08	22.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	22.5	22.0±1
				1	8	21.23	22.0±1
				1	14	22.52	22.0±1
			QPSK	6	0	21.78	21.0±1
				6	4	21.89	21.0±1
				6	9	21.36	21.0±1
	10615	10E1 E		15	0	21.61	21.0±1
	18615	1851.5		1	0	21.98	22.0±1
				1	8	21.96	22.0±1
				1	14	21.93	22.0±1
			16QAM	6	0	21.08	22.0±1
				6	4	22.5	22.0±1
				6	9	21.23	22.0±1
				15	0	22.52	22.0±1
				1	0	22.35	22.0±1
				1	8	22.21	22.0±1
		1880		1	14	22.3	22.0±1
			QPSK	6	0	21.26	21.0±1
				6	4	21.31	21.0±1
				6	9	21.32	21.0±1
OMI I-	40000			15	0	21.32	21.0±1
3MHz	18900		16QAM	1	0	21.59	22.0±1
				1	8	21.5	22.0±1
				1	14	21.55	22.0±1
				6	0	21.1	22.0±1
				6	4	21.02	22.0±1
				6	9	21	22.0±1
				15	0	21.25	22.0±1
				1	0	22.71	22.0±1
				1	8	22.62	22.0±1
				1	14	22.81	22.0±1
			QPSK	6	0	21.91	21.0±1
				6	4	21.94	21.0±1
				6	9	21.67	21.0±1
	19185	1908.5		15	0	21.98	21.0±1
		1906.5		1	0	22.1	22.0±1
				1	8	22.18	22.0±1
				1	14	22.34	22.0±1
			16QAM	6	0	21.14	22.0±1
				6	4	21.22	22.0±1
				6	9	21.3	22.0±1
				15	0	21.06	22.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	22.47	22.0±1
				1	12	22.25	22.0±1
			QPSK	1	24	22.38	22.0±1
				12	0	21.5	21.0±1
				12	6	21.43	21.0±1
				12	11	21.42	21.0±1
	40005	4050 5		25	0	21.48	21.0±1
	18625	1852.5		1	0	21.43	21.0±1
				1	12	21.18	21.0±1
				1	24	21.51	21.0±1
			16QAM	12	0	20.51	21.0±1
				12	6	20.42	21.0±1
				12	11	20.33	21.0±1
				25	0	20.45	21.0±1
				1	0	22.37	22.0±1
				1	12	22.16	22.0±1
		1880		1	24	22.19	22.0±1
			QPSK	12	0	21.35	21.0±1
				12	6	21.34	21.0±1
				12	11	21.4	21.0±1
5141 I	40000			25	0	21.41	21.0±1
5MHz	18900			1	0	21.13	21.0±1
				1	12	21.46	21.0±1
				1	24	21.28	21.0±1
			16QAM	12	0	20.38	21.0±1
				12	6	20.38	21.0±1
				12	11	20.34	21.0±1
				25	0	20.37	21.0±1
				1	0	22.73	22.0±1
				1	12	22.78	22.0±1
				1	24	22.81	22.0±1
			QPSK	12	0	21.87	21.0±1
				12	6	21.95	21.0±1
				12	11	21.88	21.0±1
	19175	1007.5		25	0	21.95	21.0±1
		1907.5		1	0	21.7	22.0±1
				1	12	21.7	22.0±1
				1	24	22.27	22.0±1
			16QAM	12	0	20.93	21.0±1
				12	6	20.99	21.0±1
				12	11	21.14	21.0±1
				25	0	20.92	21.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	22.54	22.0±1
				1	24	22.51	22.0±1
				1	49	22.42	22.0±1
			QPSK	25	0	21.33	21.0±1
				25	12	21.45	21.0±1
				25	24	21.37	21.0±1
	18650	1855		50	0	21.16	21.0±1
	10000	1000		1	0	22.19	22.0±1
				1	24	21.35	22.0±1
				1	49	21.34	22.0±1
			16QAM	25	0	21.4	22.0±1
				25	12	22.22	22.0±1
				25	24	21.13	22.0±1
				50	0	22.20	22.0±1
				1	0	22.63	22.0±1
				1	24	22.72	22.0±1
		00 1880		1	49	22.37	22.0±1
			QPSK	25	0	21.39	21.0±1
				25	12	21.33	21.0±1
				25	24	21.38	21.0±1
10MHz	18900			50	0	21.38	21.0±1
I UIVII IZ	10900			1	0	21.8	21.0±1
				1	24	21.98	21.0±1
				1	49	21.59	21.0±1
			16QAM	25	0	20.42	21.0±1
				25	12	20.36	21.0±1
				25	24	20.29	21.0±1
				50	0	20.4	21.0±1
				1	0	22.68	22.0±1
				1	24	22.14	22.0±1
				1	49	22.33	22.0±1
			QPSK	25	0	21.78	21.0±1
				25	12	21.81	21.0±1
				25	24	21.95	21.0±1
	19150	1905		50	0	21.86	21.0±1
		1505		1	0	22.13	21.0±1
				1	24	21.91	21.0±1
				1	49	22.35	21.0±1
			16QAM	25	0	20.92	21.0±1
				25	12	21.04	21.0±1
				25	24	21.16	21.0±1
				50	0	20.92	21.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	22.75	22.0±1
				1	37	22.63	22.0±1
			QPSK	1	74	22.66	22.0±1
				36	0	21.72	21.0±1
				36	16	21.6	21.0±1
				36	35	21.55	21.0±1
	40075	4057.5		75	0	21.71	21.0±1
	18675	1857.5		1	0	21.67	21.0±1
				1	37	21.44	21.0±1
				1	74	21.47	21.0±1
			16QAM	36	0	20.75	21.0±1
				36	16	20.53	21.0±1
				36	35	20.66	21.0±1
				75	0	20.65	21.0±1
				1	0	22.78	22.0±1
				1	37	22.48	22.0±1
		1880		1	74	22.44	22.0±1
			QPSK	36	0	21.43	21.0±1
				36	16	21.36	21.0±1
				36	35	21.38	21.0±1
4 EN 41 I -	40000			75	0	21.4	21.0±1
15MHz	18900			1	0	21.95	21.0±1
				1	37	21.72	21.0±1
				1	74	21.68	21.0±1
			16QAM	36	0	20.61	21.0±1
				36	16	20.27	21.0±1
				36	35	20.29	21.0±1
				75	0	20.41	21.0±1
				1	0	22.58	22.0±1
				1	37	22.6	22.0±1
				1	74	22.78	22.0±1
			QPSK	36	0	21.75	21.0±1
				36	16	21.73	21.0±1
				36	35	21.9	21.0±1
	19125	1002.5		75	0	21.77	21.0±1
		1902.5		1	0	22.34	22.0±1
				1	37	22.67	22.0±1
				1	74	22.96	22.0±1
			16QAM	36	0	20.89	21.0±1
				36	16	20.83	21.0±1
				36	35	20.91	21.0±1
				75	0	20.87	21.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	22.82	22.0±1
				1	49	22.7	22.0±1
			QPSK	1	99	22.77	22.0±1
				50	0	21.78	21.0±1
				50	24	21.61	21.0±1
				50	49	21.56	21.0±1
	18700	1860		100	0	21.69	21.0±1
	16700	1000		1	0	22.35	22.0±1
				1	49	22.26	22.0±1
				1	99	22.18	22.0±1
			16QAM	50	0	20.71	21.0±1
				50	24	20.63	21.0±1
				50	49	20.59	21.0±1
				100	0	20.67	21.0±1
				1	0	22.66	22.0±1
				1	49	22.58	22.0±1
				1	99	22.43	22.0±1
		1880	QPSK	50	0	21.73	21.0±1
				50	24	21.77	21.0±1
				50	49	21.52	21.0±1
20MHz	18900			100	0	21.56	21.0±1
ZUIVITIZ	10900			1	0	22.06	22.0±1
				1	49	22.24	22.0±1
				1	99	21.74	22.0±1
			16QAM	50	0	20.64	21.0±1
				50	24	20.59	21.0±1
				50	49	20.65	21.0±1
				100	0	20.58	21.0±1
				1	0	22.34	22.0±1
				1	49	22.66	22.0±1
				1	99	22.79	22.0±1
			QPSK	50	0	21.7	21.0±1
				50	24	21.72	21.0±1
				50	49	21.86	21.0±1
	19100	1900		100	0	21.76	21.0±1
		1900		1	0	21.81	22.0±1
				1	49	22.16	22.0±1
				1	99	22.45	22.0±1
			16QAM	50	0	20.58	21.0±1
				50	24	20.73	21.0±1
				50	49	20.85	21.0±1
				100	0	20.9	21.0±1

LTE Band 4:

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	22.89	23.0±1
				1	2	22.62	23.0±1
				1	5	22.55	23.0±1
			QPSK	3	0	21.93	22.0±1
				3	1	21.83	22.0±1
				3	2	21.72	22.0±1
	19957	1710.7		6	0	21.8	22.0±1
	19937	1710.7		1	0	21.62	22.0±1
				1	2	22.25	22.0±1
				1	5	22.10	22.0±1
			16QAM	3	0	20.57	21.0±1
				3	1	20.64	21.0±1
				3	2	20.51	21.0±1
				6	0	21.96	21.0±1
		5 1732.5		1	0	23	23.0±1
				1	2	23.06	23.0±1
				1	5	22.81	23.0±1
			QPSK	3	0	22.39	22.0±1
				3	1	22.60	22.0±1
				3	2	22.53	22.0±1
4 41411-	004			6	0	21.83	22.0±1
1.4MHz	20175		16QAM	1	0	22.26	22.0±1
				1	2	22.24	22.0±1
				1	5	22.24	22.0±1
				3	0	21.07	21.0±1
				3	1	21.25	21.0±1
				3	2	21.03	21.0±1
				6	0	21.69	21.0±1
				1	0	22.63	23.0±1
				1	2	22.78	23.0±1
				1	5	22.65	23.0±1
			QPSK	3	0	22.49	22.0±1
				3	1	22.55	22.0±1
				3	2	22.53	22.0±1
	20393	47540		6	0	21.64	22.0±1
		1754.3		1	0	21.69	22.0±1
				1	2	21.59	22.0±1
				1	5	21.63	22.0±1
			16QAM	3	0	21.37	21.0±1
				3	1	21.55	21.0±1
				3	2	21.7	21.0±1
				6	0	20.6	21.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	22.92	23.0±1
				1	8	22.94	23.0±1
				1	14	22.89	23.0±1
			QPSK	6	0	21.85	22.0±1
				6	4	21.86	22.0±1
				6	9	21.55	22.0±1
	10065	1711 5		15	0	21.55	22.0±1
	19965	1711.5		1	0	22.63	22.0±1
				1	8	22.54	22.0±1
				1	14	22.81	22.0±1
			16QAM	8	0	21.61	21.0±1
				8	4	21.73	21.0±1
				8	9	21.35	21.0±1
				15	0	21.4	21.0±1
				1	0	23.02	23.0±1
				1	8	22.92	23.0±1
				1	14	22.93	23.0±1
		1732.5	QPSK	6	0	22.02	22.0±1
				6	4	22.01	22.0±1
				6	9	22.03	22.0±1
ON ALL	00475			15	0	22.02	22.0±1
3MHz	20175			1	0	22.21	22.0±1
				1	8	22.04	22.0±1
				1	14	22.03	22.0±1
			16QAM	6	0	20.83	21.0±1
				6	4	20.74	21.0±1
				6	9	20.75	21.0±1
				15	0	20.92	21.0±1
				1	0	22.65	23.0±1
				1	8	22.63	23.0±1
				1	14	22.6	23.0±1
			QPSK	6	0	21.68	22.0±1
				6	4	21.54	22.0±1
				6	9	21.62	22.0±1
	20385	4750 5		15	0	21.55	22.0±1
		1753.5		1	0	22.03	22.0±1
				1	8	21.83	22.0±1
				1	14	21.72	22.0±1
			16QAM	8	0	20.8	21.0±1
				8	4	20.57	21.0±1
				8	9	20.64	21.0±1
				15	0	20.51	21.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	22.83	23.0±1
				1	49	23.08	23.0±1
			QPSK	1	99	22.72	23.0±1
				12	0	22.18	22.0±1
				12	24	22.19	22.0±1
				12	49	22.27	22.0±1
	19975	1712.5		25	0	22.24	22.0±1
	19975	1712.5		1	0	21.9	22.0±1
				1	49	22.04	22.0±1
				1	99	21.81	22.0±1
			16QAM	12	0	21.08	21.0±1
				12	24	21.09	21.0±1
				12	49	21.27	21.0±1
				25	0	21.32	21.0±1
				1	0	23.18	23.0±1
				1	49	22.92	23.0±1
				1	99	22.8	23.0±1
		1732.5	QPSK	12	0	22.06	22.0±1
				12	24	22	22.0±1
				12	49	21.95	22.0±1
5MHz	20175			25	0	22.04	22.0±1
SIVII IZ	20173			1	0	21.92	22.0±1
				1	49	21.85	22.0±1
				1	99	21.84	22.0±1
			16QAM	12	0	20.94	21.0±1
				12	24	20.89	21.0±1
				12	49	20.85	21.0±1
				25	0	20.86	21.0±1
				1	0	22.55	23.0±1
				1	49	22.55	23.0±1
				1	99	22.63	23.0±1
			QPSK	12	0	21.54	22.0±1
				12	24	21.81	22.0±1
				12	49	21.61	22.0±1
	20375	1752.5		25	0	21.73	22.0±1
		1752.5		1	0	21.35	22.0±1
				1	49	21.4	22.0±1
				1	99	21.94	22.0±1
			16QAM	12	0	20.48	21.0±1
				12	24	20.62	21.0±1
				12	49	20.66	21.0±1
				25	0	20.85	21.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	23.28	23.0±1
				1	49	22.85	23.0±1
				1	99	22.7	23.0±1
			QPSK	25	0	22.41	22.0±1
				25	24	22.08	22.0±1
				25	49	22.18	22.0±1
	20000	4745		50	0	22.3	22.0±1
	20000	1715		1	0	22.25	22.0±1
				1	49	22.19	22.0±1
				1	99	22.34	22.0±1
			16QAM	25	0	22.59	22.0±1
				25	24	22.41	22.0±1
				25	49	22.34	22.0±1
				50	0	21.38	22.0±1
				1	0	23.29	23.0±1
		1732.5		1	49	23.13	23.0±1
				1	99	22.9	23.0±1
			QPSK	25	0	22.06	22.0±1
				25	24	22.06	22.0±1
				25	49	22.17	22.0±1
10MHz	20175			50	0	22.02	22.0±1
TUIVITZ	20173		16QAM	1	0	22.73	22.0±1
				1	49	22.34	22.0±1
				1	99	21.95	22.0±1
				25	0	21.11	22.0±1
				25	24	21.09	22.0±1
				25	49	21.06	22.0±1
				50	0	21.1	22.0±1
				1	0	22.86	23.0±1
				1	49	22.96	23.0±1
				1	99	22.97	23.0±1
			QPSK	25	0	21.65	22.0±1
				25	24	21.74	22.0±1
	20350			25	49	21.76	22.0±1
		1750		50	0	21.64	22.0±1
		1730		1	0	21.85	22.0±1
				1	49	22.01	22.0±1
				1	99	21.88	22.0±1
			16QAM	25	0	21.65	22.0±1
				25	24	21.85	22.0±1
				25	49	21.85	22.0±1
				50	0	21.7	22.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	23.41	23.0±1
				1	49	23.08	23.0±1
			QPSK	1	99	23.18	23.0±1
				36	0	22.3	22.0±1
				36	24	22.25	22.0±1
				36	49	22.19	22.0±1
	00005	4747.5		75	0	22.34	22.0±1
	20025	1717.5		1	0	22.59	22.0±1
				1	49	22.41	22.0±1
				1	99	22.34	22.0±1
			16QAM	36	0	21.38	21.0±1
				36	24	21.25	21.0±1
				36	49	21.21	21.0±1
				75	0	21.3	21.0±1
				1	0	23.43	23.0±1
		1732.5		1	49	23.05	23.0±1
				1	99	22.93	23.0±1
			QPSK	36	0	22.2	22.0±1
				36	24	22	22.0±1
				36	49	21.92	22.0±1
4 EN 41 I -	20475			75	0	21.99	22.0±1
15MHz	20175			1	0	22.46	22.0±1
				1	49	22.19	22.0±1
				1	99	21.81	22.0±1
			16QAM	36	0	21.26	21.0±1
				36	24	21.08	21.0±1
				36	49	20.89	21.0±1
				75	0	21.05	21.0±1
				1	0	22.91	23.0±1
				1	49	22.6	23.0±1
				1	99	22.69	23.0±1
			QPSK	36	0	21.71	22.0±1
				36	24	21.74	22.0±1
				36	49	21.72	22.0±1
	20325	1747.5		75	0	21.56	22.0±1
		1747.5		1	0	22.31	22.0±1
				1	49	22.34	22.0±1
				1	99	22.41	22.0±1
			16QAM	36	0	20.57	21.0±1
				36	24	20.65	21.0±1
				36	49	20.62	21.0±1
				75	0	20.57	21.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	23.5	23.0±1
				1	49	23.33	23.0±1
				1	99	23.14	23.0±1
			QPSK	50	0	22.35	22.0±1
				50	24	22.3	22.0±1
				50	49	22.27	22.0±1
	20050	1720		100	0	22.31	22.0±1
	20050	1720		1	0	22.45	22.0±1
				1	49	22.35	22.0±1
				1	99	22.04	22.0±1
			16QAM	50	0	21.39	21.0±1
				50	24	21.33	21.0±1
				50	49	21.3	21.0±1
				100	0	21.29	21.0±1
				1	0	23.37	23.0±1
				1	49	23.45	23.0±1
				1	99	22.76	23.0±1
		1732.5	QPSK	50	0	22.25	22.0±1
				50	24	22.4	22.0±1
				50	49	21.93	22.0±1
20MHz	20175			100	0	22.13	22.0±1
ZUIVINZ	20175		16QAM	1	0	22.79	22.0±1
				1	49	22.78	22.0±1
				1	99	21.84	22.0±1
				50	0	21.28	21.0±1
				50	24	21.03	21.0±1
				50	49	21.09	21.0±1
				100	0	21.08	21.0±1
				1	0	23.18	23.0±1
				1	49	22.86	23.0±1
				1	99	23.01	23.0±1
			QPSK	50	0	21.88	22.0±1
				50	24	21.7	22.0±1
	20300			50	49	21.76	22.0±1
		1745		100	0	21.88	22.0±1
		1743		1	0	21.94	22.0±1
				1	49	21.89	22.0±1
				1	99	21.62	22.0±1
			16QAM	50	0	20.73	21.0±1
				50	24	20.51	21.0±1
				50	49	20.67	21.0±1
				100	0	20.69	21.0±1

LTE Band 5:

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	22.41	23.0±1
				1	2	22.19	23.0±1
				1	5	22.85	23.0±1
			QPSK	3	0	22.2	22.0±1
				3	1	22.47	22.0±1
				3	2	21.12	22.0±1
	20407	824.7		6	0	21.89	22.0±1
	20407	024.7		1	0	22.16	22.0±1
				1	2	22.07	22.0±1
				1	5	22.31	22.0±1
			16QAM	3	0	22.89	22.0±1
				3	1	22.82	22.0±1
				3	2	22.43	22.0±1
				6	0	22.31	22.0±1
				1	0	23.51	23.0±1
				1	2	23.21	23.0±1
			QPSK	1	5	23.25	23.0±1
		836.5		3	0	22.34	22.0±1
				3	1	22.25	22.0±1
				3	2	22.24	22.0±1
1.4MHz	20525			6	0	22.41	22.0±1
1. TIVII 12	20323		16QAM	1	0	22.95	22.0±1
				1	2	22.84	22.0±1
				1	5	22.66	22.0±1
				3	0	22.28	22.0±1
				3	1	22.32	22.0±1
				3	2	22.11	22.0±1
				6	0	21.99	22.0±1
				1	0	23.19	23.0±1
				1	2	23.51	23.0±1
				1	5	23.33	23.0±1
			QPSK	3	0	22.15	22.0±1
				3	1	22.19	22.0±1
	20634			3	2	22.22	22.0±1
		848.3		6	0	22.14	22.0±1
		040.3		1	0	22.33	22.0±1
				1	2	22.37	22.0±1
				1	5	22.45	22.0±1
			16QAM	3	0	22.03	22.0±1
				3	1	22.22	22.0±1
				3	2	22.23	22.0±1
				6	0	21.31	22.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	23.46	23.0±1
				1	8	22.6	23.0±1
				1	14	22.82	23.0±1
			QPSK	6	0	22.73	22.0±1
				6	4	22.59	22.0±1
				6	9	22.57	22.0±1
	00445	005.5		15	0	22.18	22.0±1
	20415	825.5		1	0	22.09	22.0±1
				1	8	22.05	22.0±1
				1	14	21.75	22.0±1
			16QAM	8	0	21.9	22.0±1
				8	4	22.42	22.0±1
				8	9	21.1	22.0±1
				15	0	21.3	22.0±1
				1	0	23.41	23.0±1
				1	8	23.15	23.0±1
		836.5		1	14	23.18	23.0±1
			QPSK	6	0	22.48	22.0±1
				6	4	22.28	22.0±1
				6	9	22.28	22.0±1
01411-	00505			15	0	22.47	22.0±1
3MHz	20525		16QAM	1	0	22.94	22.0±1
				1	8	22.86	22.0±1
				1	14	22.61	22.0±1
				6	0	21.61	22.0±1
				6	4	21.43	22.0±1
				6	9	21.38	22.0±1
				15	0	21.59	22.0±1
				1	0	23.1	23.0±1
				1	8	23.12	23.0±1
				1	14	23.37	23.0±1
			QPSK	6	0	22.01	22.0±1
				6	4	22.21	22.0±1
				6	9	22.06	22.0±1
	20635	047 5		15	0	22.19	22.0±1
		847.5		1	0	21.85	22.0±1
				1	8	22.2	22.0±1
				1	14	22.47	22.0±1
			16QAM	8	0	21.12	22.0±1
				8	4	21.89	22.0±1
				8	9	21.16	22.0±1
				15	0	21.07	22.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	23.31	23.0±1
				1	49	22.89	23.0±1
				1	99	22.82	23.0±1
			QPSK	12	0	22.43	22.0±1
				12	24	22.31	22.0±1
				12	49	22.25	22.0±1
	20425	000 5		25	0	22.39	22.0±1
	20425	826.5		1	0	22	22.0±1
				1	49	21.71	22.0±1
				1	99	21.61	22.0±1
			16QAM	12	0	21.36	22.0±1
				12	24	21.4	22.0±1
				12	49	21.19	22.0±1
				25	0	21.5	22.0±1
				1	0	23.25	23.0±1
				1	49	23.04	23.0±1
				1	99	23.02	23.0±1
		836.5	QPSK	12	0	22.46	22.0±1
				12	24	22.38	22.0±1
				12	49	22.25	22.0±1
CN41.1-	20525			25	0	22.41	22.0±1
5MHz	20525		16QAM	1	0	22.25	22.0±1
				1	49	21.99	22.0±1
				1	99	21.98	22.0±1
				12	0	21.45	22.0±1
				12	24	21.48	22.0±1
				12	49	21.37	22.0±1
				25	0	21.6	22.0±1
				1	0	22.82	23.0±1
				1	49	23.03	23.0±1
				1	99	23.3	23.0±1
			QPSK	12	0	22.05	22.0±1
				12	24	22.18	22.0±1
				12	49	22.09	22.0±1
	20625	946 F		25	0	22.05	22.0±1
		846.5		1	0	21.75	22.0±1
				1	49	21.9	22.0±1
				1	99	22.42	22.0±1
			16QAM	12	0	21.1	22.0±1
				12	24	21.3	22.0±1
				12	49	21.98	22.0±1
				25	0	21.08	22.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	23.51	23.0±1
				1	49	23.63	23.0±1
			QPSK	1	99	23.3	23.0±1
				25	0	22.43	22.0±1
				25	24	22.13	22.0±1
				25	49	22.44	22.0±1
	20450	920		50	0	22.24	22.0±1
	20450	829		1	0	22.01	22.0±1
				1	49	22	22.0±1
				1	99	22.19	22.0±1
			16QAM	25	0	22.05	22.0±1
				25	24	22.39	22.0±1
				25	49	22.18	22.0±1
				50	0	21.32	22.0±1
				1	0	23.18	23.0±1
		836.5		1	49	23.63	23.0±1
				1	99	22.96	23.0±1
			QPSK	25	0	22.43	22.0±1
				25	24	22.48	22.0±1
				25	49	22.18	22.0±1
10MHz	20525			50	0	22.2	22.0±1
TUIVITZ	20323		16QAM	1	0	22.46	22.0±1
				1	49	22.95	22.0±1
				1	99	22.13	22.0±1
				25	0	21.52	22.0±1
				25	24	21.63	22.0±1
				25	49	21.3	22.0±1
				50	0	21.43	22.0±1
				1	0	23.13	23.0±1
				1	49	23.14	23.0±1
				1	99	23.24	23.0±1
			QPSK	25	0	22.01	22.0±1
				25	24	22	22.0±1
				25	49	22.19	22.0±1
	20600	844		50	0	22.05	22.0±1
		044		1	0	22.39	22.0±1
				1	49	22.18	22.0±1
				1	99	22.32	22.0±1
			16QAM	25	0	21.99	22.0±1
				25	24	21.94	22.0±1
				25	49	21.1	22.0±1
				50	0	21.1	22.0±1

LTE Band 17:

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm
				1	0	23.25	23.0±1
				1	49	23.46	23.0±1
				1	99	23.47	23.0±1
			QPSK	12	0	22.23	22.0±1
				12	24	22.45	22.0±1
				12	49	22.45	22.0±1
	22755	706 F		25	0	22.5	22.0±1
	23755	706.5		1	0	22.64	22.0±1
				1	49	22.82	22.0±1
				1	99	22.75	22.0±1
			16QAM	12	0	21.25	22.0±1
				12	24	21.48	22.0±1
				12	49	21.52	22.0±1
				25	0	21.25	22.0±1
				1	0	23.18	23.0±1
		710		1	49	23.22	23.0±1
				1	99	23.22	23.0±1
			QPSK	12	0	22.22	22.0±1
				12	24	22.3	22.0±1
				12	49	22.46	22.0±1
CN 41 1-	22700			25	0	22.32	22.0±1
5MHz	23790		16QAM	1	0	22.47	22.0±1
				1	49	22.51	22.0±1
				1	99	22.33	22.0±1
				12	0	21.37	22.0±1
				12	24	21.46	22.0±1
				12	49	21.26	22.0±1
				25	0	21.33	22.0±1
				1	0	23.36	23.0±1
				1	49	23.46	23.0±1
				1	99	23.2	23.0±1
			QPSK	12	0	22.58	22.0±1
				12	24	22.49	22.0±1
				12	49	22.29	22.0±1
	23825	713.5		25	0	22.62	22.0±1
		1 13.5		1	0	22.33	22.0±1
				1	49	22.25	22.0±1
				1	99	21.8	22.0±1
			16QAM	12	0	21.28	22.0±1
				12	24	21.28	22.0±1
				12	49	21.2	22.0±1
				25	0	21.61	22.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)	
				1	0	23.49	23.0±1	
				1	49	22.23	23.0±1	
				1	99	22.45		
			QPSK	25	0	22.45	22.0±1	
				25	24	22.5	limited(dBm) 23.0±1 23.0±1 23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 23.0±1 22.0±1	
				25	49	22.64		
	23780	709		50	0	22.82	22.0±1	
	23/00	709		1	0	22.75	22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1	
				1	49	21.25	22.0±1	
				1	99	21.48	22.0±1	
			16QAM	25	0	23.20	22.0±1	
				25	24	21.62	22.0±1	
				25	49	22.53	22.0±1	
				50	0	22.41	22.0±1	
				1	0	23.25	23.0±1	
				1	49	23.79	23.0±1	
				1	99	23.39	23.0±1 23.0±1 23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 22.0±1	
			QPSK	25	0	22.44	22.0±1	
			25	24	22.6	22.0±1		
			10	25	49	22.48	22.0±1	
10MHz	23790	710		50	0	22.49	22.0±1	
TOWN 12	23790	710		1	0	22.65	22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 22.0±1	
				1	49	23	22.0±1	
				1	99	22.5	22.0±1	
			16QAM	25	0	21.6	22.0±1 22.0±1 22.0±1 22.0±1 22.0±1	
				25	24	21.46	22.0±1	
				25	49	21.32	22.0±1 22.0±1 22.0±1 22.0±1 22.0±1	
				50	0	21.4	22.0±1	
				1	0	23.74	23.0±1	
				1	49	23.84	23.0±1	
				1	99	23.57	23.0±1	
			QPSK	25	0	22.56	22.0±1	
				25	24	22.53	22.0±1	
				25	49	22.51	22.0±1	
	23800	711		50	0	22.5	22.0±1	
	23000	'''		1	0	22.41	22.0±1	
				1	49	22.87	22.0±1	
				1	99	22.34	22.0±1 23.0±1 23.0±1 23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1	
			16QAM	25	0	21.45	22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1	
				25	24	21.56	22.0±1	
				25	49	21.41	22.0±1	
			-	50	0	21.46	22.0±1	

LTE Band 41:

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)		
				1	0	23.42	23.0±1		
				1	49	23.33	, ,		
				1	99	23.61	23.0±1		
			QPSK	12	0	22.38	22.0±1		
				12	24	22.47	22.0±1		
				12	49	22.42	22.0±1		
	39675	2409 F		25	0	22.34	22.0±1		
	39075	2498.5		1	0	22.09	22.0±1		
				1	49	22.05	limited(dBm) 23.0±1 23.0±1 23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 22.0±1		
				1	99	21.93	22.0±1		
			16QAM	12	0	21.14	22.0±1		
				12	24	21.17	22.0±1		
				12	49	21.14	22.0±1		
			25	0	21.31	22.0±1			
				1	0	23.33	23.0±1		
				1	49	23.45	23.0±1		
				1	99	23.26	23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 23.0±1 22.0±1		
			QPSK	12	0	22.36	22.0±1		
				12	24	22.32	22.0±1		
				12	49	22.36	22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 23.0±1		
CN41.1-	40000	2502		25	0	22.27			
5MHz	40620	2593		1	0	22.52	22.0±1 22.0±1		
				1	49	22.29	22.0±1		
				1	99	22.42	22.0±1		
			16QAM	12	0	21.24	22.0±1		
				12	24	21.23	22.0±1		
				12	49	21.19	22.0±1		
				25	0	21.25			
				1	0	23.12			
				1	49	22.67	23.0±1		
				1	99	22.72	23.0±1		
			QPSK	12	0	22.83			
				12	24	22.38			
				12	49	22.44			
	44505	2607.5		25	0	22.49			
	41565	2687.5		1	0	22.35			
				1	49	22.2	22.0±1		
				1	99	22.28	22.0±1		
			16QAM	12	0	21.49	22.0±1		
				12	24	21.52	22.0±1		
				12	49	21.36	22.0±1		
				25	0	21.36	22.0±1		

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	23.61	23.0±1
				1	49	22.33	23.0±1
				1	99	22.52	23.0±1
			QPSK	25	0	22.45	22.0±1
				25	24	22.37	22.0±1
				25	49	22.20	limited(dBm) 23.0±1 23.0±1 23.0±1 22.0±1
	20700	2501		50	0	22.21	
	39700	2501		1	0	22.14	22.0±1
				1	49	22.10	22.0±1
				1	99	22.28	22.0±1
			16QAM	25 0 21.47	22.0±1		
				25	24	22.35	limited(dBm) 23.0±1 23.0±1 23.0±1 22.0±1
				25	49	21.37	
_				50	0	22.33	22.0±1
				1	0	23.31	23.0±1
				1	49	23.37	23.0±1
				1	99	23.34	limited(dBm) 23.0±1 23.0±1 23.0±1 22.0±1
			QPSK	25	0	22.38	22.0±1
				25	24	22.42	22.0±1
				25	49	22.39	22.0±1
10MHz	40620	2593		50	0	22.34	22.0±1
TUIVINZ	40020	2595		1	0	22.59	22.0±1
			16QAM	1	49	22.53	22.0±1
				1	99	22.43	22.0±1
				25	0	21.21	22.0±1
				25	24	21.34	22.0±1
				25	49	21.31	22.0±1
				50	0	21.38	22.0±1
				1	0	22.88	22.0±1
				1	49	22.7	22.0±1
				1	99	22.16	22.0±1
			QPSK	25	0	22.79	22.0±1
				25	24	22.59	22.0±1
				25	49	22.46	22.0±1
	41540	2685		50	0	22.52	22.0±1
	71040	2000		1	0	22.26	22.0±1
				1	49	22.22	22.0±1
				1	99	21.71	22.0±1
			16QAM	25	0	22.05	22.0±1
				25	24	21.29	22.0±1
				25	49	21.47	22.0±1
				50	0	21.61	22.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	23.47	23.0±1
				1	49	23.17	23.0±1
				1	99	22.98	23.0±1
			QPSK	36	0	22.53	22.0±1
				36	24	22.33	limited(dBm) 23.0±1 23.0±1 23.0±1
				36	49	22.27	
	20725	2502.5		75	0	22.29	
	39725	2503.5		1	0	22.88	22.0±1
				1	49	22.56	22.0±1
				1	99	22.84	22.0±1
			16QAM	36	0	21.34	22.0±1
				36	24	21.1	22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 22.0±1 23.0±1 23.0±1 23.0±1 23.0±1
				36	49	21.03	22.0±1
				75	0	21.42	22.0±1
				1	0	23.56	23.0±1
				1	49	23.24	23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 22.0±1
				1	99	23.32	
			QPSK	36	0	22.47	22.0±1
				36	24	22.39	22.0±1
				36	49	22.34	22.0±1
15MHz	40620	2593		75	0	22.3	22.0±1
I JIVII IZ	40020	2393		1	0	22.9	22.0±1
			16QAM	1	49	22.77	22.0±1
				1	99	22.72	22.0±1
				36	0	21.47	22.0±1
				36	24	21.38	22.0±1
				36	49	21.34	22.0±1
				75	0	21.35	22.0±1
				1	0	23.52	23.0±1
				1	49	22.74	23.0±1
				1	99	22.45	23.0±1
			QPSK	36	0	22.54	22.0±1
				36	24	22.45	22.0±1
				36	49	22.48	22.0±1
	41515	2682.5		75	0	22.49	
	1.515	2002.0		1	0	22.83	23.0±1 23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 23.0±1 22.0±1
				1	49	22.16	
				1	99	21.89	22.0±1
			16QAM	36	0	22.18	22.0±1
				36	24	21.38	22.0±1
				36	49	21.4	22.0±1
				75	0	21.61	22.0±1

BW(MHz)	Ch	Freq(MHz)	Mode	UL RB Allocation	UL RB Offset	Average Power (dbm)	Tune up limited(dBm)
				1	0	23.75	23.0±1
				1	49	23.61	23.0±1
				1	99	22.87	
			QPSK	50	0	22.45	
				50	24	22.38	22.0±1
				50	49	22.18	limited(dBm) 23.0±1 23.0±1 23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 23.0±1 23.0±1 22.0±1
	00750	0500		100	0	22.27	
	39750	2506		1	0	22.86	
				1	49	22.47	22.0±1
				1	99	22.06	
			16QAM	50	0	21.44	
				50	24	21.29	
				50	49	21.09	
				100	0	21.24	
				1	0	23.85	
				1	49	23.74	23.0±1
				1	99	23.42	
			QPSK	50	0	22.56	23.0±1 23.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1
				50	24	22.46	
				50	49	22.49	22.0±1 22.0±1 22.0±1 22.0±1 22.0±1 22.0±1
001411	40000	0500		100	0	22.4	
20MHz	40620	2593	16QAM	1	0	22.47	
				1	49	22.01	22.0±1
				1	99	22.19	
				50	0	21.69	
				50	24	21.57	
				50	49	21.61	
				100	0	21.41	
				1	0	23.68	
				1	49	22.88	23.0±1
				1	99	22.13	23.0±1
			QPSK	50	0	23.11	22.0±1
				50	24	22.52	
				50	49	22.52	
	44400	2600		100	0	22.57	
	41490	2680		1	0	22.55	
				1	49	22.38	22.0±1
				1	99	21.65	22.0±1
			16QAM	50	0	22.22	
				50	24	21.73	
				50	49	21.59	
				100	0	21.45	22.0±1

WIFI Mode (2.4G)

Mode	Channel number	Frequency (MHz)	Data rate(Mbps)	Average Output Power(dBm)	Average Tune up limited(dBm)
	1	2412	1	8.97	8.5±1
802.11b	6	2437	1	9.01	8.5±1
	11	2462	1	9.08	8.5±1
	1	2412	6	8.96	8.5±1
802.11g	6	2437	6	9.23	8.5±1
	11	2462	6	9.21	8.5±1
	1	2412	MCS0	9.16	8.5±1
802.11n(HT20)	6	2437	MCS0	9.02	8.5±1
	11	2462	MCS0	9.28	8.5±1

Bluetooth Measurement Result

Mode	Frequency (MHz)	Output Power(dBm)	Tune up limited(dBm)
	2402	-2.07	-2.0±1
GFSK	2441	-2.77	-2.0±1
	2480	-0.78	-1.0±1
	2402	-1.15	-2.0±1
π/4DQPSK	2441	-1.60	-2.0±1
	2480	-0.37	-1.0±1
	2402	-1.75	-2.0±1
8DPSK	2441	-2.25	-2.0±1
	2480	-1.45	-1.0±1

BLE Measurement Result

Channel number	Frequency (MHz)	Output Power(dBm)	Tune up limited(dBm)
0	2402	-0.20	-1.0±1
19	2440	-1.19	-1.0±1
39	2480	-0.03	-1.0±1

11 EXPOSURE CONDITIONS CONSIDERATION

EUT antenna location:

Test position consideration:

rest position consideration.								
Distance of EUT antenna-to-edge/surface(mm), Test distance:10mm								
Antennas	Back side	Front side	Left Edge	Right Edge	Top Edge	Bottom Edge		
WWAN(Main board)	3	8	3	29	4	113		
WWAN(Vice Board)	3	8	5	27	118	2		
WLAN	3	8	47	3	5	109		
Bluetooth	3	8	47	3	5	109		

Test distance:10mm								
Antennas	Back side	Front side	Left Edge	Right Edge	Top Edge	Bottom Edge		
WWAN(Main board)	YES	YES	YES	NO	YES	NO		
WWAN(Vice Board)	YES	YES	YES	NO	NO	YES		
WLAN	NO	NO	NO	NO	NO	NO		
Bluetooth	NO	NO	NO	NO	NO	NO		

Note:

- 1. Hotspot mode SAR assessments are required.
- 2. Referring to KDB 941225 D06v02r01, when the overall device length and width are ≥ 9cm * 5cm, the test distance is 10mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.
- 3. Per KDB 447498 D01v06, for handsets the test separation distance is determined by the smallest distance between the outer surface of the device and the user, which is 10 mm for hotspot SAR.

Reference No.: WTS16S0243054E Page 66 of 180

RF Exposure

Standard Requirement:

According to §15.247 (i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\sim [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, 16 where

- · f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation¹⁷
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is ≤ 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Routine SAR evaluation refers to that specifically required by § 2.1093, using measurements or computer simulation. When routine SAR evaluation is not required, portable transmitters with output power greater than the applicable low threshold require SAR evaluation to qualify for TCB approval.

Exclusion Thresholds = $P\sqrt{F}/D$

P= Maximum turn-up power in mW

F= Channel frequency in GHz

D= Minimum test separation distance in mm

Test Distance (5mm)

rear Biotania (cinin)										
Mode	MAX Power (dBm)	Tune Up Power (dBm)	Max Tune Up Power (dBm)	Max Tune Up Power (mW)	Exclusion Thresholds	Limit				
WIFI	9.28	8.5±1	9.5	8.91	2.796	3				
Bluetooth	-0.37	-1.0±1	0	1	0.315	3				
BLE	-0.03	-1.0±1	0	1	0.315	3				

Test Distance (10mm)

Mode	MAX Power (dBm)	Tune Up Power (dBm)	Max Tune Up Power (dBm)	Max Tune Up Power (mW)	Exclusion Thresholds	Limit
WIFI	9.28	8.5±1	9.5	8.91	1.398	3
Bluetooth	-0.37	-1.0±1	0	1	0.157	3
BLE	-0.03	-1.0±1	0	1	0.157	3

Result: Compliance

No SAR measurement is required.

Reference No.: WTS16S0243054E Page 67 of 180

12SAR TEST RESULTS

Test Condition:

SAR Measurement

The distance between the EUT and the antenna of the emulator is more than 50 cm and the output power radiated from the emulator antenna is at least 30 dB less than the output power of EUT.

2 Environmental Conditions Temperature 23°C

Relative Humidity 57%

Atmospheric Pressure 1019mbar

3 Test Date: Mar 3,2016-Mar 28,2016

Tested By: Damon Wang

Generally Test Procedures:

1. Establish communication link between EUT and base station emulation by air link.

- 2. Place the EUT in the selected test position. (Cheek, tilt or flat)
- 3. Perform SAR testing at middle or highest output power channel under the selected test mode. If the measured 1-g SAR is ≤ 0.8 W/kg, then testing for the other channel will not be performed.
- 4. When SAR is < 0.8W/kg, no repeated SAR measurement is required

For CDMA2000 test:

According to KDB941225 D01v03r01: Hotspot SAR is required at 1XEVDO RevA.

For WCDMA test:

- KDB941225 D01-Body SAR is not required for HSDPA when the average output of each RF channel with HSDPA active is less than 0.25dB higher than measured without HSDPA using 12.2kbps RMC or the maximum SAR for 12.2kbps RMC<75% of the SAR limit.
- 2. KDB941225 D01-Body SAR is not required for handset with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25dB higher than that measure without HSUPA/HSDPA using 12.2kbps RMC AND THE maximum SAR for 12.2kbps RMC is<75% of the SAR limit

For LTE test:

- 1. According to FCC KDB 941225 D05v02r05:
 - a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
- i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
 - b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
 - c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
 - d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.

Page 68 of 180

SAR Summary Test Result:

Reference No.: WTS16S0243054E

Table 4: SAR Values of GSM 850MHz Band (Main board)

			Channel		Power	(dBm)	SAR 1g(Limit(1.0	Diet	
Test Positions		СН.	MHz	Test Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
	Front side	190	836.6	GPRS 4 slots	33	32.21	0.745	0.89	
	Back side	128	824.2	GPRS 4 slots	33	32.15	0.847	1.03	
Hotspot	Back side	190	836.6	GPRS 4 slots	33	32.21	0.944	1.13	1
(10mm Separation)	Back side	190	836.6	GPRS 4 slots	33	32.21	0.932	1.12	
Oeparation)	Back side	251	848.8	GPRS 4 slots	33	32.20	0.904	1.09	
_	Left EDGE	190	836.6	GPRS 4 slots	33	32.21	0.475	0.57	
	Top EDGE	190	836.6	GPRS 4 slots	33	32.21	0.203	0.24	

Table 5: SAR Values of WCDMA BAND V (Main board)

			nnel	Test	Power	(dBm)	SAR 1g(Limit(1.	Diet	
Test Positions		CH.	MHz	Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
	Front side	4183	836.6	RMC 12.2kbps	23	22.24	0.372	0.44	
Hotspot (10mm	Back side	4183	836.6	RMC 12.2kbps	23	22.24	0.466	0.56	2
Separation)	Left EDGE	4183	836.6	RMC 12.2kbps	23	22.24	0.163	0.19	
	Top EDGE	4183	836.6	RMC 12.2kbps	23	22.24	0.149	0.18	

Table 6: SAR Values of GSM 1900MHz Band (Main board)

			Channel		Powe	er(dBm)	SAR 1g Limit(1.		
Test Positions		CH.	MHz	Test Mode	Maximum Turn-up Power(dB m)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
	Front side	661	1880	GPRS 4 slots	30	29.28	0.773	0.91	
	Back side	512	18502	GPRS 4 slots	30	29.30	0.852	1.00	
Hotopot	Back side	661	1880	GPRS 4 slots	30	29.28	0.947	1.12	
Hotspot (10mm Separation)	Back side	810	1909.8	GPRS 4 slots	30	29.23	1.009	1.20	3
Separation)	Back side	810	1909.8	GPRS 4 slots	30	29.23	0.984	1.17	
	Left EDGE	661	1880	GPRS 4 slots	30	29.28	0.549	0.65	
	Top EDGE	661	1880	GPRS 4 slots	30	29.28	0.375	0.44	

Page 69 of 180

Table 7: SAR Values of WCDMA BAND II (Main board)

			annel	Test	Power(dBm)		SAR 1g(Limit(1.		Diet
Test Positions		CH.	MHz	Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
	Front side	9400	1880	RMC 12.2kbps	23	22.17	0.404	0.49	
Hotspot	Back side	9400	1880	RMC 12.2kbps	23	22.17	0.497	0.60	4
(10mm Separation)	Left EDGE	9400	1880	RMC 12.2kbps	23	22.17	0.298	0.36	
	Top EDGE	9400	1880	RMC 12.2kbps	23	22.17	0.235	0.28	

Table 8: SAR Values of WCDMA BANDIV(Main board)

CAD 4 ~ (\M/// ~)													
			annel	Test	Power	(dBm)	SAR 1g(Limit(1.		Plot				
Test Positions		CH.	MHz	Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.				
	Front side	1413	1732.6	RMC 12.2kbps	23	22.44	0.528	0.60					
Hotspot	Back side	1413	1732.6	RMC 12.2kbps	23	22.44	0.760	0.86	5				
(10mm Separation)	Left EDGE	1413	1732.6	RMC 12.2kbps	23	22.44	0.382	0.43					
	Top EDGE	1413	1732.6	RMC 12.2kbps	23	22.44	0.304	0.35					

Table 9: SAR Values of CDMA (Main board)

Table 9: SAR values of CDIMA (Main board)												
			Ch	annel	Test	Power	(dBm)	SAR 1g Limit(1.		Plot		
Band	Test Posi			MHz	Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.		
	BC0 Hotspot (10mm Separation)	Front side	1013	824.7		25	24.64	0.124	0.13			
BC0		Back side	1013	824.7	1xEVDO (Rel.A)	25	24.64	0.168	0.18	6		
500		Left EDGE	1013	824.7		25	24.64	0.072	0.08			
		Top EDGE	1013	824.7		25	24.64	0.058	0.06			
		Front side	1175	1908.75		25	24.47	0.358	0.40			
BC1		Back side	1175	1908.75	1xEVDO	25	24.47	0.531	0.60	7		
BC1	Left EDGE	1175	1908.75	(Rel.A)	25	24.47	0.219	0.25				
	Top EDGE	1175	1908.75		25	24.47	0.118	0.13				

Reference No.: WTS16S0243054E

Page 70 of 180

Table 10: SAR Values of LTE BAND 2, 20MHz, QPSK (Main board)

Test			Char	nnel	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		Plot
Mode	Test Posi	tions	CH.	MHz	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.
1RB Hotspot		Front side	18900	1880	23	22.58	0.592	0.65	
		Back side	18900	1880	23	22.58	0.772	0.85	8
#49	(10mm Separation)	Left EDGE	18900	1880	23	22.58	0.348	0.38	
		Top EDGE	18900	1880	23	22.58	0.201	0.22	
		Front side	18900	1880	22	21.77	0.493	0.52	
50%RB	Hotspot	Back side	18900	1880	22	21.77	0.649	0.68	
#26	(10mm Separation)	Left EDGE	18900	1880	22	21.77	0.238	0.25	
		Top EDGE	18900	1880	22	21.77	0.135	0.14	

Table 11: SAR Values of LTE BAND 4, 20MHz, QPSK (Main board)

	Table 11. SAR Values of LTE BAND 4, ZUMITZ, QFSR (Maili board)												
Toot			Cha	nnel	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		Plot				
Test Mode	Test Posi	tions	CH.	MHz	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.				
I IKK I '		Front side	20175	1732.5	24	23.45	0.114	0.13	1				
	Hotspot	Back side	20175	1732.5	24	23.45	0.170	0.19	9				
#49	(10mm Separation)	Left EDGE	20175	1732.5	24	23.45	0.073	0.08	1				
		Top EDGE	20175	1732.5	24	23.45	0.041	0.05	!				
		Front side	20175	1732.5	23	22.4	0.084	0.10	1				
50%RB	Hotspot (10mm	Back side	20175	1732.5	23	22.4	0.132	0.15	1				
#26	Separation)	Left EDGE	20175	1732.5	23	22.4	0.031	0.04	1				
		Top EDGE	20175	1732.5	23	22.4	0.028	0.03	1				

Page 71 of 180

Reference No.: WTS16S0243054E

Table 12: SAR Values of LTE BAND 5, 10MHz, QPSK (Main board)

Toot			Cha		Power	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		
Test Mode	Test Positions		CH.	MHz	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.	
1RB Hotspot		Front side	20525	836.5	24	23.63	0.104	0.11	-	
	•	Back side	20525	836.5	24	23.63	0.147	0.16	10	
#25	(10mm Separation)	Left EDGE	20525	836.5	24	23.63	0.079	0.09		
		Top EDGE	20525	836.5	24	23.63	0.048	0.05		
		Front side	20525	836.5	23	22.48	0.082	0.09		
25%RB	Hotspot	Back side	20525	836.5	23	22.48	0.094	0.11	-	
#13	(10mm Separation)	Left EDGE	20525	836.5	23	22.48	0.036	0.04		
		Top EDGE	20525	836.5	23	22.48	0.019	0.02		

Table 13: SAR Values of LTE BAND 17, 10MHz, QPSK (Main board)

Test			Char	nel	Power	(dBm)	SAR 1g(W/Kg), Limit(1.6W/kg)		Plot
Mode	Test Positions		CH.	MHz	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.
1RB Hotspot	Front side	23790	710	24	23.79	0.087	0.09		
		Back side	23790	710	24	23.79	0.102	0.11	11
#25	(10mm Separation)	Left EDGE	23790	710	24	23.79	0.048	0.05	
		Top EDGE	23790	710	24	23.79	0.023	0.02	
		Front side	23790	710	23	22.6	0.066	0.07	
25%RB	Hotspot	Back side	23790	710	23	22.6	0.089	1.00	
#13	(10mm Separation)	Left EDGE	23790	710	23	22.6	0.016	0.02	
		Top EDGE	23790	710	23	22.6	0.008	0.01	

Reference No.: WTS16S0243054E Page 72 of 180

Table 14: SAR Values of LTE BAND 41, 20MHz, QPSK (Main board)

Test			Char	nnel	Power	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)	
Mode	Test Posi	tions	CH.	MHz	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
1RB Hotspot		Front side	40620	2593	24	23.74	0.164	0.17	
		Back side	40620	2593	24	23.74	0.270	0.29	12
#49	(10mm Separation)	Left EDGE	40620	2593	24	23.74	0.084	0.09	
		Top EDGE	40620	2593	24	23.74	0.045	0.05	
		Front side	40620	2593	23	22.46	0.148	0.17	
50%RB	Hotspot	Back side	40620	2593	23	22.46	0.237	0.27	
#26	(10mm - Separation)	Left EDGE	40620	2593	23	22.46	0.066	0.07	
		Top EDGE	40620	2593	23	22.46	0.039	0.04	

Page 73 of 180

Reference No.: WTS16S0243054E

Table 15: SAR Values of GSM 850MHz Band (Vice Board)

		Channel		Test	Power(dBm)		SAR 1g(W/Kg), Limit(1.6W/kg)		Plot
		CH.	MHz	Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.
	Front side	190	836.6	GPRS 4 slots	32	31.57	0.583	0.64	
Hotspot	Back side	190	836.6	GPRS 4 slots	32	31.57	0.767	0.85	13
(10mm Separation)	Left EDGE	190	836.6	GPRS 4 slots	32	31.57	0.295	0.33	
	Bottom EDGE	190	836.6	GPRS 4 slots	32	31.57	0.172	0.19	

Table 16: SAR Values of WCDMA BAND V (Vice Board)

			Channel		Power(dBm)		SAR 1g(Limit(1.		Diet
		CH.	MHz	Test Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
	Front side	4183	836.6	RMC 12.2kbps	23	22.50	0.338	0.38	1
Hotspot	Back side	4183	836.6	RMC 12.2kbps	23	22.50	0.594	0.67	14
(10mm Separation)	Left EDGE	4183	836.6	RMC 12.2kbps	23	22.50	0.207	0.23	
	Bottom EDGE	4183	836.6	RMC 12.2kbps	23	22.50	0.114	0.13	

Table 17: SAR Values of GSM 1900MHz Band (Vice Board)

		Cha	annel		Powe	r(dBm)	SAR 1g(Limit(1.		
Test Positions		CH.	MHz	Test Mode	Maximum Turn-up Power(dB m)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
	Front side	661	1880	GPRS 4 slots	29	28.94	0.794	0.81	
	Back side	512	18502	GPRS 4 slots	29	28.81	0.885	0.92	
Hotspot	Back side	661	1880	GPRS 4 slots	29	28.94	0.968	0.98	
(10mm Separation)	Back side	810	1909.8	GPRS 4 slots	29	28.64	1.085	1.18	15
Jeparation)	Back side	810	1909.8	GPRS 4 slots	29	28.64	1.043	1.13	
	Left EDGE	661	1880	GPRS 4 slots	29	28.94	0.493	0.50	
	Bottom EDGE	661	1880	GPRS 4 slots	29	28.94	0.246	0.25	

Reference No.: WTS16S0243054E Page 74 of 180

Table 18: SAR Values of WCDMA BAND II (Vice Board)

Test Positions		Channel		Test	Power	Power(dBm)		(W/Kg), 6W/kg)	Plot
		CH.	MHz	Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.
	Front side	9400	1880	RMC 12.2kbps	23	22.46	0.535	0.61	
Hotspot	Back side	9400	1880	RMC 12.2kbps	23	22.46	0.719	0.81	16
(10mm Separation)	Left EDGE	9400	1880	RMC 12.2kbps	23	22.46	0.243	0.28	
	Bottom EDGE	9400	1880	RMC 12.2kbps	23	22.46	0.106	0.12	

Table 19: SAR Values of WCDMA BANDIV(Vice Board)

		Channel		Test	Power(dBm)		SAR 1g(Limit(1.		Diet
		CH.	MHz	Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	Plot No.
	Front side	1413	1732.6	RMC 12.2kbps	23	22.68	0.116	0.12	
Hotspot	Back side	1413	1732.6	RMC 12.2kbps	23	22.68	0.198	0.21	17
(10mm Separation)	Left EDGE	1413	1732.6	RMC 12.2kbps	23	22.68	0.069	0.07	
	Bottom EDGE	1413	1732.6	RMC 12.2kbps	23	22.68	0.020	0.02	

Table 20: SAR Values of CDMA (Vice Board)

			Tab	1 0 20. 07	iii value	OI CDIMA (1	rice Board)			
			Ch	annel	Test	Power	(dBm)	SAR 1g(Limit(1.		Plot
Band	Band Test Positions		CH.	MHz	Mode	Maximum Turn-up Power(dBm)	Measured output power(dBm)	Measured SAR 1g(W/kg)	Scaled SAR 1g(W/kg)	No.
		Front side	1013	824.7		25	24.81	0.148	0.15	
BC0		Back side	1013	824.7	1xEVDO	25	24.81	0.184	0.19	18
500		Left EDGE	1013	824.7	(Rel.A)	25	24.81	0.076	0.08	
	Hotspot (10mm	Top EDGE	1013	824.7		25	24.81	0.035	0.04	
	Separation)	Front side	1175	1908.75		25	24.44	0.287	0.33	
BC1		Back side	1175	1908.75	1xEVDO	25	24.44	0.401	0.46	19
BOT		Left EDGE	1175	1908.75	(Rel.A)	25	24.44	0.105	0.12	
		Top EDGE	1175	1908.75		25	24.44	0.083	0.09	

Note:1. KDB941225 D01-Body SAR is not required for HSDPA when the average output of each RF channel with HSDPA active is less than 0.25dB higher than measured without HSDPA using 12.2kbps RMC or the maximum SAR for 12.2kbps RMC<75% of the SAR limit.

2. KDB941225 D01-Body SAR is not required for handset with HSPA capabilities when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25dB higher than that measure without HSUPA/HSDPA using 12.2kbps RMC AND THE maximum SAR for 12.2kbps RMC is<75% of the SAR limit

Reference No.: WTS16S0243054E Page 75 of 180

Measurement variability consideration

According to KDB 865664 D01v01r04 section 2.8.1, repeated measurements are required following the procedures as below:

- 1. Repeated measurement is not required when the original highest measured SAR is < 0.80W/kg; steps 2) through 4) do not apply.
- 2. When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4. Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Repeated SAR:

					measured SAR(W/kg)				
Band	SIM	Position	Channel	Mode	Original	1st Rep	peated	2nd Re	peated
					Original	Value	Ratio	Value	Ratio
GPRS850	Main board	Back side	190	GPRS 4 slots	0.944	0.932	1.01	NA	NA
GPRS1900	Main board	Back side	810	GPRS 4 slots	1.009	0.984	1.03	NA	NA
GPRS1900	Vice board	Back side	810	GPRS 4 slots	1.085	1.043	1.04	NA	NA

Simultaneous Transmission SAR Analysis.

List of Mode for Simultaneous Multi-band Transmission:

No.	Configurations	Head SAR	Body-worn SAR	Hotspot SAR
1	GPRS (Data) + WLAN 2.4GHz(Data)	-	-	Yes
2	GPRS (Data) + Bluetooth(Data)	-	-	Yes
3	WCDMA (Data) + WLAN 2.4GHz(Data)	-	-	Yes
4	WCDMA (Data) + Bluetooth(Data)	-	-	Yes
5	CDMA (Data) + WLAN 2.4GHz(Data)	-	-	Yes
6	CDMA (Data) + Bluetooth(Data)	-	-	Yes
7	LTE (Date) + WLAN 2.4GHz(Data)	-	-	Yes
8	LTE (Date) + Bluetooth(Data)	-	-	Yes

Remark:

- 1. GSM/CDMA/WCDMA share the same antenna, and cannot transmit simultaneously.
- 2. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 3. According to the KDB 447498 D01 v06, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion: (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

(max. power of channel, including tune-up tolerance, mw)/(min. test separation distance

mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 v06 as below:

WIFI:

Tune-Up Power (dBm)	Max. Power (mW)	Distance (mm	Frequency (GHz)	Х	SAR(1g) 5mm	SAR(1g) 10mm
9.5	8.91	5/10	2.462	7.5	0.37	0.19

Bluetooth:

Tune-Up Power (dBm)	Max. Power (mW)	Distance (mm	Frequency (GHz)	Х	SAR(1g) 5mm	SAR(1g) 10mm
0	1	5/10	2.480	7.5	0.04	0.02

4. The maximum SAR summation is calculated based on he same configuration and test position

Hotspot SAR WWAN and WLAN (Main board)

	WWAN (maxir	mum)	WLAN(10mm)	Cummond CAD
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Back	GSM850	1.13	0.19	1.32
Back	GSM1900	1.20	0.19	1.39
Back	WCDMA Band V	0.56	0.19	0.75
Back	WCDMA Band II	0.60	0.19	0.79
Back	WCDMA Band IV	0.86	0.19	1.05
Back	CDMA BC0	0.18	0.19	0.37
Back	CDMA BC1	0.60	0.19	0.79
Back	LTE BAND 2(1RB)	0.85	0.19	1.04
Back	LTE BAND 4(1RB)	0.19	0.19	0.38
Back	LTE BAND 5(1RB)	0.16	0.19	0.35
Back	LTE BAND 17(1RB)	0.11	0.19	0.30
Back	LTE BAND 41(1RB)	0.29	0.19	0.48

WWAN and BT (Main board)

	WWAN (maxir	mum)	WLAN(10mm)	C
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Back	GSM850	1.13	0.02	1.15
Back	GSM1900	1.20	0.02	1.22
Back	WCDMA Band V	0.56	0.02	0.58
Back	WCDMA Band II	0.60	0.02	0.62
Back	WCDMA Band IV	0.86	0.02	0.88
Back	CDMA BC0	0.18	0.02	0.20
Back	CDMA BC1	0.60	0.02	0.62
Back	LTE BAND 2(1RB)	0.85	0.02	0.87
Back	LTE BAND 4(1RB)	0.19	0.02	0.21
Back	LTE BAND 5(1RB)	0.16	0.02	0.18
Back	LTE BAND 17(1RB)	0.11	0.02	0.13
Back	LTE BAND 41(1RB)	0.29	0.02	0.31

Remark: WIFI/BT the 1g SAR value is not being captured by the measurement system, the 1g-SAR value is conservatively used for simultaneous transmission analysis.

Page 78 of 180

WWAN and WLAN (Vice Board)

Reference No.: WTS16S0243054E

1117 111 4114 1127 111 (1100 20414)				
	WWAN (maximum)		WLAN(10mm)	Cummond CAD
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Back	GSM850	0.85	0.19	1.04
Back	GSM1900	1.18	0.19	1.37
Back	WCDMA Band V	0.67	0.19	0.86
Back	WCDMA Band II	0.81	0.19	1.00
Back	WCDMA Band IV	0.21	0.19	0.40
Back	CDMA BC0	0.19	0.19	0.38
Back	CDMA BC1	0.46	0.19	0.55

WWAN and BT (Vice Board)

	WWAN (maximum)		WLAN(10mm)	Current od CAD
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Back	GSM850	0.85	0.02	0.87
Back	GSM1900	1.18	0.02	1.20
Back	WCDMA Band V	0.67	0.02	0.69
Back	WCDMA Band II	0.81	0.02	0.83
Back	WCDMA Band IV	0.21	0.02	0.23
Back	CDMA BC0	0.19	0.02	0.21
Back	CDMA BC1	0.46	0.02	0.48

Remark: WIFI/BT the 1g SAR value is not being captured by the measurement system, the 1g-SAR value is conservatively used for simultaneous transmission analysis.

13SAR MEASUREMENT REFERENCES

References

- 1. FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- 2. IEEE Std. C95.1-2005, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz", 2005
- 3. IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices:Measurement Techniques", June 2013
- 4. IEC 62209-2, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices—Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate(SAR) for wireless communication devices used in close proximity to the human body(frequency range of 30MHz to 6GHz)", April 2010
- 5. FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 23th, 2015
- 6. FCC KDB 941225 D01 v03r01, "3G SAR Measurement Procedures", Oct 23th, 2015
- 7. FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 16th, 2015
- 8. FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 23th, 2015
- 9. FCC KDB865664 D01 v01r04, "SAR Measurement Requirements 100MHz to 6GHz", Aug 7th, 2015
- 10.FCC KDB865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations", Oct 23th, 2015
- 11.FCC KDB648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 23th", 2015
- 12.FCC KDB 248227 D01 v01r02, SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters, Oct 23th, 2015.

Maximum SAR measurement Plots

Main board

Plot 1: GPRS850MHz, Middle channel (Hotspot, Back Surface)

Product Description:4G Free Roaming Hotspot

Model:E1

Medium(liquid type)	MSL_850
Frequency (MHz)	836.60000
Relative permittivity (real part)	55.44
Conductivity (S/m)	0.98
Signal	GPRS (Duty cycle: 1:2)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.46
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	3.62
SAR 10g (W/Kg)	0.702955
SAR 1g (W/Kg)	0.943743

Page 81 of 180 Reference No.: WTS16S0243054E

Plot 2: WCDMA BAND V, Middle channel (Hotspot, Back Surface)

Product Description: 4G Free Roaming Hotspot

Model: E1

Medium(liquid type)	MSL_850
Frequency (MHz)	836.6000
Relative permittivity (real part)	55.44
Conductivity (S/m)	0.98
Signal	WCDMA (Duty cycle: 1:1)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.46
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	1.02
SAR 10g (W/Kg)	0.319995
SAR 1g (W/Kg)	0.466448
SURFACE SAR	VOLUME SAR
\$ 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0. 56(25) 0. 56(

Reference No.: WTS16S0243054E Page 82 of 180

Plot 3: GPRS1900, High channel (Hotspot, Back Surface)

Product Description: 4G Free Roaming Hotspot

Model: E1

Medium(liquid type)	MSL_1900
Frequency (MHz)	1909.8000
Relative permittivity (real part)	53.51
Conductivity (S/m)	1.51
Signal	GPRS (Duty cycle: 1:2)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.33
SAR 10g (W/Kg)	0.571290
SAR 1g (W/Kg)	1.008689
SURFACE SAR	VOLUME SAR
1 0 0 0 0 0 0 0 0 0	1 0316-6 1230 123

Reference No.: WTS16S0243054E Page 83 of 180

Plot 4: WCDMA BAND II, Middle channel (Hotspot, Back Surface)

Product Description: 4G Free Roaming Hotspot

Model: E1

Medium(liquid type)	MSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	53.51
Conductivity (S/m)	1.51
Signal	WCDMA(Duty cycle: 1:1)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.23
SAR 10g (W/Kg)	0.285951
SAR 1g (W/Kg)	0.497086
SURFACE SAR	VOLUME SAR
SURFACE SAR	WOLUME SAR
0 11025 0 100 0 100 0 100 100 100 100 100 100	2. 66-633 3. 61-6327 3. 61-6327 3. 52-622 3. 52-622

Reference No.: WTS16S0243054E Page 84 of 180

Plot 5: WCDMA BANDIV, Middle channel (Hotspot, Back Surface)

Product Description: 4G Free Roaming Hotspot

Model: E1

Test Date: Mar 18.2016

Medium(liquid type)	MSL_1800
Frequency (MHz)	1732.6000
Relative permittivity (real part)	53.85
Conductivity (S/m)	1.50
Signal	WCDMA(Duty cycle: 1:1)
E-Field Probe	SN 07/15 EP249
Conversion Factor	4.37
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.48
SAR 10g (W/Kg)	0.440612
SAR 1g (W/Kg)	0.759814
SURFACE SAR	VOLUME SAR
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 400214 0.0 5010121 0.0 501

Plot 6:CDMA BC0 1xEVDO, Low channel (Hotspot, Back Surface) Product Description:4G Free Roaming Hotspot

Model: E1

Medium(liquid type) Frequency (MHz) Relative permittivity (real part) Conductivity (S/m) Signal E-Field Probe Conversion Factor Sensor-Surface Area Scan	MSL_850 824.7000 55.44 0.98 Duty cycle: 1:1 SN 07/15 EP249 5.46 4mm dx=8mm dy=8mm
Zoom Scan Variation (%) SAR 10g (W/Kg)	5x5x7,dx=8mm dy=8mm dz=5mm 0.28 0.096683 0.167536
SAR 1g (W/Kg) SURFACE SAR	VOLUME SAR
Calland Scale (Calland Scale	Calura Scale (Calura

Plot 7: CDMA BC1 1xEVDO, High channel (Hotspot, Back Surface)

Product Description:4G Free Roaming Hotspot

Model: E1

Medium(liquid type)	MSL_1900
Frequency (MHz)	1908.7500
Relative permittivity (real part)	53.51
Conductivity (S/m)	1.51
Signal	Duty cycle: 1:1
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.05
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.44
SAR 10g (W/Kg)	0.371059
SAR 1g (W/Kg)	0.530876
SURFACE SAR	VOLUME SAR
SA Vysodiskra Segunal Interface See Infort	200 Visualization frequency Interface Volume Labout Canada
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Plot 8:LTE BAND2, Middle channel (Hotspot, Back Surface) Product Description:4G Free Roaming Hotspot

Model: E1

NA P	NO. 4000
Medium(liquid type)	MSL_1900
Frequency (MHz)	1880.0000
Relative permittivity (real part)	53.51
Conductivity (S/m)	1.51
Signal	Duty cycle: 1:1
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.05
Bandwidth(MHz)	20
RB Allocation	1
RB Offset	49
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-1.46
SAR 10g (W/Kg)	0.453600
SAR 1g (W/Kg)	0.771758
SURFACE SAR	VOLUME SAR
SAN Visionis etra an Singha col Saterfield Sint Face Hadra clad Secontly Zees Individual Secontly	502 Visualization Graphical Interfere Volume: Enduated Interview Inc. Int. Int. Inc. Int. Int. Int. Int. Int. Int. Int. Int
3 - Section 1 - 150 - 170 - 100 - 10 - 10 - 10 - 10 - 10 -	0 50465 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Plot 9:LTE BAND4, Middle channel (Hotspot, Back Surface) Product Description:4G Free Roaming Hotspot

Model: E1

Test Date: Mar 18,2016

Medium(liquid type)	MSL_1800
Frequency (MHz)	1732.5000
Relative permittivity (real part)	53.71
Conductivity (S/m)	1.50
Signal	Duty cycle: 1:1
E-Field Probe	SN 07/15 EP249
Conversion Factor	4.37
Bandwidth(MHz)	20
RB Allocation	1
RB Offset	49
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.83
SAR 10g (W/Kg)	0.101880
SAR 1g (W/Kg)	0.169914
SURFACE SAR	VOLUME SAR
200 Visualistica Segunia Interfese Surface Relicial Intentity Zees In/Ont	The viscous and an appear and an appear and a second and
1	0. 1 (1921.4) 0. 1 (1921.4) 0. 1 (1921.4) 0. 1 (1921.4) 0. 1 (1921.4) 0. 1 (1921.4) 0. 0 (

Plot 10:LTE BAND5, Middle channel (Hotspot, Back Surface) Product Description:4G Free Roaming Hotspot

Model: E1

Medium(liquid type) Frequency (MHz) Relative permittivity (real part) Conductivity (S/m) Signal E-Field Probe Conversion Factor Bandwidth(MHz)	MSL_850 836.5000 55.44 0.98 Duty cycle: 1:1 SN 07/15 EP249 5.46 10
RB Allocation RB Offset Area Scan Zoom Scan Variation (%)	1 25 dx=8mm dy=8mm 5x5x7,dx=8mm dy=8mm dz=5mm -0.78
SAR 10g (W/Kg) SAR 1g (W/Kg) SURFACE SAR	0.079613 0.146700 VOLUME SAR
Columb Scale 1590	Volume Radiated Intensity Callors Scale (Volume Radiated Intensity) (1907 (1907)

Plot 11:LTE BAND17, Middle channel (Hotspot, Back Surface) Product Description:4G Free Roaming Hotspot

Model: E1

Medium(liquid type)	MSL_700
Frequency (MHz)	710.0000
Relative permittivity (real part)	54.19
Conductivity (S/m)	0.98
Signal	Duty cycle: 1:1
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.11
Bandwidth(MHz)	10
RB Allocation	1
RB Offset	25
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-2.24
SAR 10g (W/Kg)	0.055124
SAR 1g (W/Kg)	0.102200
SURFACE SAR	VOLUME SAR
28 Vindiretra Seglical Interface Service Initials Interface Too Initials	SAN Visualization drophical Taterfore Visitum Entertal Intention Town Int/Ont
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 OSSITE 0 O

Plot 12:LTE BAND41, Middle channel (Hotspot, Back Surface) Product Description:4G Free Roaming Hotspot

Model: E1

SAR 1g (W/Kg) SURFACE SAR The Variation Segment State for the Secretary See 15/99. Selection of the Secretary Secretary See 15/99. Selection of the Secretary Secr	0.269611 VOLUME SAR Sol Visualization Graphical Zator (see Visious Scale (0/kg) 10 000101 0.01010101
Sub-Visual tates of regions State fact Surface Sub-Visual tates Sub-Visual tates	SAL Visualization Sraphical Interference Visionalization (Sraphical
SAR 10g (W/Kg) SAR 1g (W/Kg) SURFACE SAR	
Zoom Scan Variation (%)	5x5x7,dx=8mm dy=8mm dz=5mm -0.38
RB Allocation RB Offset Area Scan	1 49 dx=8mm dy=8mm
Conversion Factor Bandwidth(MHz)	5.11 20
Conductivity (S/m) Signal E-Field Probe	1.94 Duty cycle: 1:1 SN 07/15 EP249
Frequency (MHz) Relative permittivity (real part)	MSL_2450 2593.0000 52.73

Vice board

Plot 13: GPRS850MHz, Middle channel (Hotspot, Back Surface) Product Description:4G Free Roaming Hotspot

Model:E1

SURFACE SAR	VOLUME SAR
SAR 1g (W/Kg)	0.767011
SAR 10g (W/Kg)	0.438828
Variation (%)	1.36
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Area Scan	dx=8mm dy=8mm
Conversion Factor	5.46
E-Field Probe	SN 07/15 EP249
Signal	GPRS (Duty cycle: 1:2)
Conductivity (S/m)	0.98
Relative permittivity (real part)	55.44
Frequency (MHz)	836.60000
Medium(liquid type)	MSL_850

Reference No.: WTS16S0243054E Page 93 of 180

Plot 14: WCDMA BAND V, Middle channel (Hotspot, Back Surface)

Product Description: 4G Free Roaming Hotspot

Model: E1

Test Date: Mar 8.2016

Medium(liquid type)	MSL_850
Frequency (MHz)	836.6000
Relative permittivity (real part)	55.44
Conductivity (S/m)	0.98
Signal	WCDMA (Duty cycle: 1:1)
E-Field Probe	SN 07/15 EP249
Conversion Factor	5.46
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	0.35
SAR 10g (W/Kg)	0.339598
SAR 1g (W/Kg)	0.593547
SURFACE SAR	VOLUME SAR
Ad Visodississa Geght di Interfese	Shk Visandination Graphical Interface
0 02312 0 02513 0 0 02513	0 0 00006 0 0 00006 0 0 0 0 0 0 0 0

Reference No.: WTS16S0243054E Page 94 of 180

Plot 15: GPRS1900, High channel (Hotspot, Back Surface)

Product Description: 4G Free Roaming Hotspot

Model: E1

Medium(liquid type)	MSL_1900	
Frequency (MHz)	1909.8000	
Relative permittivity (real part) 53.51		
Conductivity (S/m)	1.51	
Signal	GPRS (Duty cycle: 1:2)	
E-Field Probe	SN 07/15 EP249	
Conversion Factor	5.05	
Sensor-Surface	4mm	
Area Scan	dx=8mm dy=8mm	
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm	
Variation (%)	2.88	
SAR 10g (W/Kg)	0.583135	
SAR 1g (W/Kg)	1.084503	
SURFACE SAR	VOLUME SAR	
1, 13, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	1 177621 1 19754 1 19754 1 19754 1 19754 1 19754 1 19754 1 19755 1 197	

Page 95 of 180 Reference No.: WTS16S0243054E

Plot 16: WCDMA BAND II, Middle channel (Hotspot, Back Surface)

Product Description: 4G Free Roaming Hotspot

Model: E1

Medium(liquid type)	MSL_1900		
Frequency (MHz)	1880.0000		
Relative permittivity (real part)	53.51		
Conductivity (S/m)	1.51		
Signal	WCDMA(Duty cycle: 1:1)		
E-Field Probe	SN 07/15 EP249		
Conversion Factor	5.05		
Sensor-Surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	-2.16		
SAR 10g (W/Kg)	0.379461		
SAR 1g (W/Kg)	0.719485		
SURFACE SAR	VOLUME SAR		
Sal-Vysnaksekran Snykkon Deterfore Surface Redicted Intentity Zees InVite	SE Visualization (regional Interfere Volume School Interfere 2008 Indianal Internativ Iona Indian		
2 - 1 0 - 10	0 - CT-600 0 - CT-600 0 - 205-		

Reference No.: WTS16S0243054E Page 96 of 180

Plot 17: WCDMA BANDIV, Middle channel (Hotspot, Back Surface)

Product Description: 4G Free Roaming Hotspot

Model: E1

Test Date: Mar 18.2016

Medium(liquid type)	MSL_1800
Frequency (MHz)	1732.6000
Relative permittivity (real part)	53.85
Conductivity (S/m)	1.50
Signal	WCDMA(Duty cycle: 1:1)
E-Field Probe	SN 07/15 EP249
Conversion Factor	4.37
Sensor-Surface	4mm
Area Scan	dx=8mm dy=8mm
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm
Variation (%)	-0.69
SAR 10g (W/Kg)	0.105838
SAR 1g (W/Kg)	0.198203
SURFACE SAR	VOLUME SAR
0 170914 00 - 100013 00 - 1000	0. 19997 0. 15656 0. 1 1517 0. 1 162

Reference No.: WTS16S0243054E Page 97 of 180

Plot 18: CDMA BC0 1xEVDO, Low channel (Hotspot, Back Surface)

Product Description:4G Free Roaming Hotspot

Model: E1

Medium(liquid type) Frequency (MHz) Relative permittivity (real part) Conductivity (S/m) Signal E-Field Probe Conversion Factor Sensor-Surface Area Scan	MSL_850 824.7000 55.44 0.98 Duty cycle: 1:1 SN 07/15 EP249 5.46 4mm dx=8mm dy=8mm
Zoom Scan Variation (%) SAR 10g (W/Kg)	5x5x7,dx=8mm dy=8mm dz=5mm 0.11 0.102073
SAR 1g (W/Kg) SURFACE SAR	0.183634 VOLUME SAR
28h W seeds with an interface Calcus State (Fig.) (Price) (Pric	Callest Scale Venimen Reducted Interestry Zoon 25/Ord Callest Scale Venimen Reducted Interestry Zoon 25/Ord O 167701 1797-

Reference No.: WTS16S0243054E Page 98 of 180

Plot 19: CDMA BC1 1xEVDO, Middle channel (Hotspot, Back Surface)

Product Description:4G Free Roaming Hotspot

Model: E1

Medium(liquid type)	MSL_1900		
Frequency (MHz)	1880.0000		
Relative permittivity (real part)	53.51		
Conductivity (S/m)	1.51 Duty cycle: 1:1		
Signal			
E-Field Probe	SN 07/15 EP249		
Conversion Factor	5.05		
Sensor-Surface	4mm		
Area Scan	dx=8mm dy=8mm		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Variation (%)	0.26		
SAR 10g (W/Kg)	0.225869		
SAR 1g (W/Kg)	0.400726		
SURFACE SAR	VOLUME SAR		
id Vissalisatra ingland lotarisa	Std. Vissabination Graphical Interface		
## (100 1	(Control Control Contr		

14 Calibration reports-Probe

COMOSAR E-Field Probe Calibration Report

Ref: ACR.307.1.15.SATU.A

WALTEK SERVICES (SHENZHEN) CO., LTD 1/F., FUKANGTAI BUILDING, WEST BAIMA ROAD, SONGGANG STREET BAOAN DISTRICT, SHENZHEN GUANGDONG, 518105.

BAOAN DISTRICT, SHENZHEN GUANGDONG 518105, CHINA

MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 07/15 EP249

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 10/19/2015

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.307.1.15.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	11/3/2015	JES
Checked by:	Jérôme LUC	Product Manager	11/3/2015	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	11/3/2015	- Man Trethonists

	Customer Name
Distribution:	Waltek Services (Shenzhen) Co., Ltd

Issue	Date	Modifications	
A 11/3/2015	Initial release		
111		1 1	

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG.

The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.