This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-040626

(43)Date of publication of application: 10.02.1997

(51)Int.CI.

C07C237/20

A61K 7/00

A61K 31/165

A61K 31/165

A61K 31/165

A61K 31/165

A61K 31/165

A61K 31/215

CO7C229/34

C07C231/02

C07C271/10

// A23L 1/29

CO7C 47/575

(21)Application number: 07-224490

(71)Applicant: KISSEI PHARMACEUT CO LTD

(22)Date of filing:

27.07.1995

(72)Inventor:

SATO FUMIYASU **IYOBE AKIRA** KOIZUMI TAKASHI KATSUNO KENJI

KOBAYASHI YOSHIO

(54) BIS(2-HYDROXYPHENYLALKYLAMINE) DERIVATIVE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain the subject derivative useful for the prevention and treatment of diseases relating to Maillard reaction e.g. diabetic complications such as retinosis and nephropathy and diseases caused by aging and useful also in the field of cosmetics and foods.

SOLUTION: This bis(2-hydroxyphenylalkylamine) derivative of formula I [R1, R2, R3 and R4 are each an alkoxy, etc.; R is an alkyl, etc.; A is an alkylene, etc.; Y is an alkylene; Z1 and Z2 are each O or NR5; R5 is an alkyl, etc.; X is an alkenylene, etc.], e.g. N,N'-bis(α -amino-2-hydroxyphenylacetyl) octamethylenediamine. The compound of formula I is produced by reacting a compound of formula II [D is a protected hydroxyl group; R6, R7, R8 and R9 are each an alkoxy, etc.) with a benzaldehyde derivative of formula III in the presence of ammonium carbonate and Na cyanide in an inert solvent, hydrolyzing the produced hydantoin derivative under alkaline condition and protecting the amino group, etc., with

LEGAL STATUS

protecting groups.

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] A general formula [Formula 1]

Even if R1, R2, R3, and R4 in a formula are the same respectively, they may differ. A hydrogen atom, a low-grade alkyl group, a lower alkoxy group, a hydroxyl group, a sulfhydryl group. They are a halogen atom, a nitro group, the amino group, the acylamino radical, an acyl group, or a hydroxy low-grade alkyl group. R is a hydrogen atom or a low-grade alkyl group, and A is the low-grade alkylene group which may have the hydroxyl group as single bond or a substituent, or a low-grade alkenylene group. Y is single bond or a low-grade alkylene group, and Z1 and Z2 are O or NR5. R5 — a hydrogen atom or a low-grade alkyl group — it is — X — a low-grade alkylene group or a low-grade alkenylene group — it is — the screw (2-hydroxyphenyl alkylamine) derivative expressed or its salt permitted in pharmacology.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[The technical field to which invention belongs] This invention relates to a screw (2-hydroxyphenyl alkylamine) derivative useful as drugs, or its salt permitted in pharmacology.

[0002] It sets for cosmetics and food as prevention and the therapy agent of the disease relevant to a Maillard reaction in this invention if it states in more detail, and is a useful general formula. [0003]

[0004] even if R1, R2, R3, and R4 in a formula are the same respectively, they may differ from each other, and they are a hydrogen atom, a low-grade alkyl group, a lower alkoxy group, a hydroxyl group, a sulfhydryl group, a halogen atom, a nitro group, the amino group, the acylamino radical, an acyl group, or a hydroxy low-grade alkyl group. the low-grade alkylene group in which R is a hydrogen atom or a low-grade alkyl group, and A may have the hydroxyl group as single bond or a substituent, or a low-grade alkenylene group — it is — Y — single bond or a low-grade alkylene group — it is — Z1 and Z2 — O or NR5 — it is — R5 — a hydrogen atom or a low-grade alkyl group — it is - X - a low-grade alkylene group or a low-grade alkenylene group - it is - it is related with the screw (2-hydroxyphenyl alkylamine) derivative expressed or [0005]

[Description of the Prior Art] In the field of food chemistry, reducing sugars, such as a glucose, react with the amino compound in food, and it is observed that lipofuscin generates. On the other hand, it is checked that the same reaction has occurred also in in the living body in recent years, it is thought that it is involving strongly as one of the onset factors of diseases, such as diabetic complication and arteriosclerosis, and the spotlight is captured. [0006] It is called the Maillard reaction and the above-mentioned reaction is a Maillard reaction in the living body, Carbonyl compounds, such as reducing sugars, such as a glucose, a fructose, and a pentose, those phosphoric ester, or an ascorbic acid, react nonenzymatic with the isolation amino group of protein in the living body, and a Schiff base is formed. By reactions, such as a phase, and continuing oxidation, dehydration, a polymerization, cleavage, the first half when this is changed into an Amadori rearrangement product by the chemistry rearrangement Protein denaturalizes between molecules and with intramolecular arch forming, brown is presented and decomposition by the protease advances by poor solubility by a series of reactions which consist of a later stage which results in a difficult anaphase resultant (AGE:Advanced Glycation End Products).

[0007] The amount of generation of AGE generated in process of the Maillard reaction concerned and its precursive product increases to the concentration and reaction time of sugar and protein correlatively. Therefore, a hyperglycemia condition like diabetes mellitus continues, or it is known for blood with which the protein in the living body which has the half-life of aging with the long period exposed to sugar or protein in a long organization, and path clearance fall, such as a patient of a kidney disease, or the protein under organization that it will be easy to receive a Maillard reaction.

[0008] As the protein in the living body which receives a Maillard reaction from these things, For example, there is much protein, such as glomerular basement membrane of the collagen and elastin of connective tissues, such as eyeball lens crystallin ** serum albumin, the skin, and a blood vessel wall, nerve myelin protein, hemoglobin, and the kidney, and the Maillard reaction is considered to be one of the causes of the onset of the disease resulting from diabetic complication caused by denaturation, abnormalities, or depression of these proteins, such as a retinopathy, a nephropathy, a cardio-vascular system failure, neuropathy, and a cataract, arteriosclerosis, or aging. Therefore, development research is tried that it should grope for the new compound which checks a Maillard reaction towards prevention and the therapy of these diseases.

[Problem(s) to be Solved by the Invention] The purpose of this invention is having Maillard reaction inhibitory action and offering a new screw (2-hydroxyphenyl alkylamine) derivative useful as a Maillard reaction inhibitor. [0010]

[Means for Solving the Problem] As a result of inquiring wholeheartedly in order to find out a compound useful as a Maillard reaction inhibitor, this invention persons acquire knowledge that a screw (2-hydroxyphenyl alkylamine) derivative of a certain kind expressed with said general formula (I) has outstanding Maillard reaction inhibition activity, and came to accomplish this invention.

[0011] In a compound expressed with said general formula (I) of this invention here with a low-grade alkyl group A methyl group, an ethyl group, a propyl group, an isopropyl group, butyl, an isobutyl radical, sec-butyl, tert-butyl, a pentyl radical, an isopentyl radical, An alkyl group of the shape of a straight chain of the carbon numbers 1-6, such as a neopentyl radical, a tert-pentyl radical, and a hexyl group, and a letter of branching is said. With a lower alkoxy group A methoxy group, an ethoxy radical, a propoxy group, an isopropoxy group, a butoxy radical, An alkoxy group of the shape of a straight chain of the carbon numbers 1-6, such as an iso butoxy radical, a sec-butoxy radical, a tert-butoxy radical, a cutting-pliers ROKISHI radical, an iso cutting-pliers ROKISHI radical, a neo cutting-pliers ROKISHI radical, a tert-cutting-pliers ROKISHI radical, and a hexyloxy radical, and a letter of branching is said. A halogen atom means a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and an acyl group means an alkyl carbonyl group of the carbon numbers 2-7 which have an alkyl group of the shape of a straight chain, such as an acetyl group, a propionyl radical, and a butyryl radical, and a letter of branching. A low-grade alkylene group means an alkylene group of the shape of a straight chain of the carbon numbers 1-6, such as a methylene group, ethylene, a propylene radical, a trimethylene radical, a tetramethylen radical, a pentamethylene radical, and a hexamethylene radical, and a letter of branching, and a low-grade alkenylene group means an alkenylene group of the shape of a straight chain of the carbon numbers 2-6, such as a vinylene radical and a pro PENIREN radical, and a letter of branching.

[0012] A screw (2-hydroxyphenyl alkylamine) derivative expressed with said general formula (I) of this invention is a new compound, for example, is the following, and can be made and manufactured. That is, a compound of said general formula (I) of this invention is a general formula. [0013]

[0014] (D in a formula is a hydroxyl group which has a protective group, and E is an amino group which has a protective group. R6, R7, R8, and R9) even when it is the same respectively — differing — **** — a hydrogen atom and a low-grade alkyl group — A lower alkoxy group, the protected hydroxyl group, the protected sulfhydryl group, a halogen atom, a nitro group, the protected amino group, the acylamino radical, an acyl group, or the protected hydroxy low-grade alkyl group — it is — A, R, and Y — the same semantics as the above — having — a general formula with the compound expressed H-Z1-X-Z2-H (III)

Among an inert solvent, after making the compound expressed (with the semantics as the above with X, Z1, and Z2 in a formula) react to the bottom of existence of a dehydrating agent or a condensing agent or nonexistence, it can be easily manufactured by carrying out deprotection with a conventional method. [same]

[0015] The compound expressed with said general formula (II) used in the above-mentioned manufacture method can be manufactured also by combining the method of the method of JP,46-7875,A, JP,48-67245,A, JP,52-36644,A, JP,53-135951,A, J.Agric.Food.Chem., No.4, pp965 (1977), etc. given in reference, methods similar to it, or those

[0016] For example, the general formula among the compounds of said general formula (II) [0017]

[0018] The compound expressed (with the semantics as the above with D, E, R6, R7, R8, and R9 in a formula) is a general formula. [same] [0019]

[0020] The benzaldehyde derivative expressed (with the semantics as the above with D, R6, R7, R8, and R9 in a formula) is made to react in an ammonium carbonate and a sodium cyanide, and an inert solvent, and it is a general formula. [same] [0021]

[0022] After manufacturing the hydantoin derivative expressed (with the semantics as the above with D, R6, R7, R8, and R9 in a formula) and making the obtained compound hydrolyze under an alkali condition, it can manufacture by protecting the amino group etc. by the protective group with a conventional method. [same]

[0023] The compound expressed with said general formula (I) of this invention in using a lysozyme and a fructose In the Maillard reaction inhibition activity trial of vitro The aminoguanidine known as material which has Maillard reaction inhibition activity dimerization of a lysozyme by the concentration of 0.2mM(s) 2.9%, As opposed to preventing 17.2% by the concentration of 2mM(s), respectively, N and N'-screw (alpha-amino-2-hydroxy phenylacetyl) octamethylene diamine and 2 hydrochloride showed 92.2% of inhibition activity with the concentration of 2mM 46.7% by the concentration of 0.2mM.

[0024] Thus, the compound expressed with said general formula (I) of this invention and its salt permitted in pharmacology are compounds very useful as prevention and the therapy agent of the disease to which it has the outstanding Maillard reaction inhibition activity, and a Maillard reaction relates.

[0025] The compound expressed with said general formula (I) of this invention and its salt permitted in pharmacology have Maillard reaction inhibition activity, and is effective to the disease to which the Maillard reaction relates. The disease considered to be caused by aging of diabetic complication, such as a coronary artery nature disease, peripheral circulatory bisturdance, the cerebrovascular disease, the diabetes—mellitus sexual nerosis, a nephropathy, arteriosclerosis, arthrosclerosis, a cataract, a retinopathy, ***********, and diabetic *********, atherosclerosis, glomerulonephritis, senile cataract, an osteoarthropathy, perimeter [joint] ******, the arthrosclerosis, senile osteoporosis, etc. as such a disease can be mentioned, and it is very useful as prevention and the therapy agent of the disease concerned. Moreover, since a Maillard reaction advances also in the cosmetics and food containing protein or amino acid as everyone knows and deterioration of protein and amino acid takes place, it is useful as a compound which checks the Maillard reaction concerned also in cosmetics or food.

[0026] The screw (2-hydroxyphenyl alkylamine) derivative expressed with said general formula (I) of this invention can be made into the salt permitted in pharmacology with a conventional method. As such a salt, a hydrochloric acid, a hydrobromic acid, a hydroiodic acid, a sulfuric acid, a nitric acid, An acid addition salt with mineral acids, such as a phosphoric acid, a formic acid, an acetic acid, methansulfonic acid, benzenesulfonic acid, P-toluenesulfonic acid, a propionic acid, a citric acid, a succinic acid, a tartaric acid, A salt with inorganic bases, such as 1 thru/or a diacid addition salt with organic acids, such as a fumaric acid, butanoic acid, oxalic acid, a malonic acid, a maleic acid, a lactic acid, a malic acid, carbonic acid, glutamic acid, and an aspartic acid, sodium salt, potassium salt, and a calcium salt, and a salt with amino acid can be mentioned.

[0027] Moreover, as a compound expressed with said general formula (I) of this invention, a hydrate and solvate with the solvent permitted as drugs, such as ethanol, are also contained.

[0028] Since it has two or more asymmetric carbon atoms, in each asymmetrical carbon, two optical isomerisms, R arrangement and S arrangement, exist, but the screw (2-hydroxyphenyl alkylamine) derivative expressed with said general formula (I) of this invention is set to this invention, the optical isomer of a gap may be used for it, and even if it is the mixture of those optical isomers, it is not cared about.

[0029] Moreover, although two geometrical isomers exist in the compound which has an unsaturated bond among the compounds expressed with said general formula (I) of this invention, in this invention, any of the compound of a cis-(Z) object or the compound of a transformer (E) object may be used.

[0030] When using the screw (2-hydroxyphenyl alkylamine) derivatives expressed with said general formula (I) of this invention, and those pharmacology salts permitted for an actual therapy, a medicine is prescribed for the patient taking-orally-wise as a suitable drugs constituent, for example, a tablet, powder, a fine grain agent, a granule, a capsule, liquids and solutions, injections, external preparations, ophthalmic solutions, suppositories, etc., or parenterally. These drugs constituents can be prepared by using the support and the excipient for pharmaceutical preparation which are usually used, and other additives by the galenical pharmacy-method performed in general dispensing.

[0031] Although the dose is suitably determined by the degree of the target patient's sex, age, weight, and a symptom etc., in internal use, in the case of 1–1000mg of adult 1 sunny, and parenteral administration, a medicine is prescribed in general for the patient in 1 time or several steps within the limits of 0.1–100mg of adult 1 sunny. [0032] When using the compound expressed with said general formula (I) of this invention as ophthalmic solutions, it blends in 0.05 W/V% – 5 W/V% of range, and prepares with a conventional method, and the count of administration is suitably determined by the degree of a patient's symptom etc.

[0033] Moreover, when using the compound expressed with said general formula (I) of this invention as external preparations or cosmetics, it can blend so that the content of the compound of this invention may serve as 0.05 - 10

weight section in general to the whole pharmaceutical preparation, and can manufacture by preparing with a conventional method using a general external use basis or a cosmetics basis. Furthermore, the compound of this invention can also be prepared to a food grade with a conventional method, and can also be added and used for food.

[0034]

[Embodiment of the Invention] Although the following examples of reference and examples explain the contents of this invention to details further, this invention is not limited to the contents, either.

[0035]

[Example]

example of reference 12-methoxy methoxy benzaldehyde salichlaldehyde 15g — 150ml of methylene chlorides — dissolving — the bottom of ice-cooling — diisopropyl ethylamine 23.5ml — subsequently in addition, chloromethyl-methyl-ether 10.3ml 20ml solution of methylene chlorides was dropped and stirred at the room temperature for 2 hours. The reaction mixture was washed after reaction termination in order of 2 convention sodium-hydroxide solution, saturation brine, 10% citric-acid aqueous solution, and saturation brine, and after drying an organic layer with magnesium sulfate, reduced pressure distilling off of the solvent was carried out. The silica gel column chromatography refined residue and 2-methoxy methoxy benzaldehyde 20.4g was obtained. [0036] Colorless oil NMR (CDCl3,270MHz)

delta ppm: — 3.52 (3H, s), 5.31 (2H, s), and 7.00- 7.15 (1H, m), 7.22 (1H, d, J= 7.9Hz), 7.45-7.60 (1H, m), and 7.85 (1H, dd, J= 7.4Hz, 2.0Hz) and 10.51 (1H, br d, J= 1.0Hz)

[0037] 20.2g of example of reference 25–(2–methoxy methoxypheny) hydantoin ammonium carbonates and 4.43g of sodium cyanides were dissolved in 75ml of water, the 2–methoxy methoxy benzaldehyde 10g ethanol 75ml solution was added, and it stirred for two days at 50 degrees C. Reduced pressure distilling off of the about 1/2 amount of a solvent was carried out after reaction termination, and the solid–state which deposits was separated after ice-cooling. After washing in order of water and the ether, reduced pressure drying of the organic layer was carried out under diphosphorus pentaoxide existence, and 5–(2-methoxy methoxypheny) hydantoin 7.4g was obtained. [0038] White powder NMR (DMSO–d6,400MHz)

delta 8.06 (1H, br s) ppm:3.36 (3H, s), 5.18 (2H, s) and 5.20 (1H, s), 6.96-7.04 (1H, m), 7.09 (1H, d, J= 8.2Hz) and 7.25 (1H, dd, J= 7.6Hz, 1.6Hz), 7.28-7.36 (1H, m), 10.68 (1H, br s)

[0039] Example of reference 3 alpha-tert-butyloxy carbonylamino-2-methoxy methoxypheny acetic-acid 5-(2-methoxy methoxypheny) hydantoin 4.0g was added to 40ml solution of water of 2.02g of sodium hydroxides, and heating reflux was carried out for two days. Reduced pressure distilling off of the solvent was carried out after reaction termination until it added 31.9ml of 2 convention hydrochloric acids and stopped having foamed to them under ice-cooling. After adding dioxane 30ml to this mixture, triethylamine 3.24ml and 2 carbonic-acid JI t-butyl 4.06g were added, and it stirred for one day at the room temperature. After reaction termination, chloroform and a small amount of methanol were added to the reaction mixture, and it washed in order of a citric-acid aqueous solution and saturation brine 10%, and after drying an organic layer with magnesium sulfate, reduced pressure distilling off of the solvent was carried out. The silica gel column chromatography refined residue and 3.65g of alpha-tert-butyloxy carbonylamino-2-methoxy methoxypheny acetic acids was obtained.

[0040] Colorless amorphous NMR (CDCl3,400MHz) delta ppm:1.43 (9H, s), 3.46 (3H, s), 5.21 (1H, d, J= 6.7Hz), 5.25 (1H, d, J= 6.7Hz), 5.60 (1H, br), 5.66 (1H, br) and 7.02 (1H, t, J= 7.5Hz), 7.13 (1H, d, J= 8.3Hz) 7.24-7.36 (2H, m)

[0041] 4 Ns of examples of reference and 100mg of N'-screw (alpha-tert-butyloxy carbonylamino-2-methoxy METOKISHIKISHI phenylacetyl) octamethylene diamine alpha-tert-butyloxy carbonylamino-2-methoxy methoxypheny acetic acids were dissolved in acetonitrile 3ml, and octamethylene diamine 24mg and diethyl phosphoryl cyanide 52mg were added under ice-cooling, and it stirred for 2 hours, returning to a room temperature. After reaction termination, reduced pressure distilling off of the solvent was carried out, chloroform was added and it washed in order of 10% citric-acid aqueous solution, saturation brine, a saturation sodium bicarbonate aqueous solution, and saturation brine, and after drying an organic layer with magnesium sulfate, reduced pressure distilling off of the solvent was carried out. The silica gel column chromatography refined residue and N and N'-screw (alpha-tert-butyloxy carbonylamino-2-methoxy METOKISHIKISHI phenylacetyl) octamethylene diamine 89mg was obtained.

[0042] White solid-state NMR (CDCl3,400MHz) delta ppm:1.1-1.5 (30H, m), 3.11-3.25 (4H, m), 3.52(6H,s),5.24-5.30(4H,m),5.5-5.6(2H,m),6.0-6.1(2H,m),6.2-6.3(2H,m),6.98-7.06(2H,m),7.07-7.14(2H,m),7.20-7.35(4H,m)

[0043] Example N and N'-screw (alpha-amino-2-hydroxy phenylacetyl) octamethylene diamine and 2 hydrochlorides N and N'-screw (alpha-tert-butyloxy carbonylamino-2-methoxy METOKISHIKISHI phenylacetyl) octamethylene diamine 40mg was dissolved in methanol 1ml, and 1ml of hydrogen chloride-methanol solutions was added under ice-cooling, and it stirred for 2 hours, returning to a room temperature. Reduced pressure distilling off of the solvent was carried out after reaction termination, and the silica gel column chromatography refined residue. After adding a hydrogen chloride-2-propanol solution to the obtained fraction, reduced pressure distilling off of the solvent was carried out, and 27mg of N and N'-screw (alpha-amino-2-hydroxy phenylacetyl) octamethylene diamine and 2 hydrochlorides was obtained.

[0044] Colorless amorphous NMR (DMSO-d6,400MHz) delta ppm:1.10-1.18 (8H, m), 1.30-1.40 (4H, m), 2.98-3.08(2H,m),3.08-3.18(2H,m),5.00(2H,br s),6.84(2H,t,J=7.5Hz),6.95(2H,d,J=8.4Hz),7.20-7.28(4H,m),8.08(2H,m),8.34(6H,br),10.34(2H,br)

[Translation done.]

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平9-40626

(43) 公開日 平成9年(1997) 2月10日

(51) Int. C1. 6 C 0 7 C 237/ 識別記号 庁内整理番号

FI.

技術表示箇所

C 0 7 C 237/20 A 6 1 K 7/00 9547 - 4 H

C 0 7 C 237/20 A 6 1 K 7/00

0

1 K 7/00 31/165

.

31/165 ABL

AB L AB N

ABN

AC I

AC J

審査請求 未請求 請求項の数1

書面

(全6頁) 最終貞に続く

(21)出願番号

特願平7-224490

(22)出願日

平成7年(1995)7月27日

(71) 出願人 000104560

キッセイ薬品工業株式会社 長野県松本市芳野19番48号

(72) 発明者 佐藤 文康

長野県松本市筑摩2-12-3

(72) 発明者 伊與部 亮

長野県松本市井川城2-16-57 ファース

トアベニュー203号

(72) 発明者 小泉 隆

長野県南安曇郡豊科町大字豊科4061-1

レジデンス千野F-202号

(72) 発明者 勝野 健次

長野県上伊那郡辰野町小野272-1

最終頁に続く

(54) 【発明の名称】ビス (2-ヒドロキシフェニルアルキルアミン) 誘導体

(57)【要約】

【課題】 メイラード反応阻害剤として有用なビス(2-ヒドロキシフェニルアルキルアミン) 誘導体又はその 塩を提供する。

【解決手段】メイラード反応阻害活性を有しており、糖 尿病性合併症や老化によって引き起こされる疾患等の予 防剤又は治療剤、化粧品、食品として有用な、

【化1】 (式中のR¹~R*はH, アルキル基, アルコキシ基, 水酸基, メルカプト基, ハロゲン, ニトロ基, アミノ基, アシルアミノ基, アシル基, ヒドロキシアルキル基、RはH, アルキル基, Aは単結合, アルキレン基等, Yは単結合, アルキレン基、乙¹、乙²は〇, NR°、R°はH, アルキル基、Xはアルキレン基, アルケニレン基) で表されるビス (2ーヒドロキシフェニルアルキルアミン) 誘導体およびその塩。

【化1】

【特許請求の範囲】 【請求項1】一般式

【化1】

(式中のR¹、R²、R³およびR⁴は、それぞれ同じ 10 でも異なっていてもよく、水素原子、低級アルキル基、低級アルコキシ基、水酸基、メルカプト基、ハロゲン原子、ニトロ基、アミノ基、アシルアミノ基、アシル基またはヒドロキシ低級アルキル基であり、Rは水素原子または低級アルキル基であり、Aは単結合または置換基として水酸基を有していてもよい低級アルキレン基または低級アルケニレン基であり、Yは単結合または低級アル

【0004】(式中のR'、R²、R³およびR⁴は、それぞれ同じでも異なっていてもよく、水素原子、低級アルキル基、低級アルコキシ基、水酸基、メルカプト基、ハロゲン原子、ニトロ基、アミノ基、アシルアミノ基、アシル基またはヒドロキシ低級アルキル基であり、Rは水素原子または低級アルキル基であり、Aは単結合または置換基として水酸基を有していてもよい低級アルキレン基または低級アルケニレン基であり、Yは単結合または低級アルキレン基であり、C²およびZ²はOまたはNR°であり、R°は水素原子または低級アルキル基であり、Xは低級アルキレン基または低級アルキル基であり、Xは低級アルキレン基または低級アルケニレン基である)で表されるビス(2ーヒドロキシフェニルアルキルアミン)誘導体又はその薬理学的に許容される塩に関するものである。

[0005]

【従来の技術】食品化学の分野では、食品中でグルコース等の還元糖がアミノ化合物と反応し、褐色色素が生成 40 することが観察されている。一方、近年、生体内においても同様の反応が生起していることが確認され、糖尿病性合併症や動脈硬化症などの疾患の発症要因の一つとして強く関与していると考えられて注目を浴びている。

【0006】上記の反応はメイラード反応と呼ばれており、生体内のメイラード反応は、グルコース、フルクトースやペントースなどの還元糖、それらのリン酸エステルあるいはアスコルビン酸等のカルボニル化合物が生体内蛋白質の遊離アミノ基と非酵素的に反応してシッフ塩基が形成され、これが化学転位によりアマドリ転位生成50

キレン基であり、Z およびZ はOまたはNR っであり、R らは水素原子または低級アルキル基であり、Xは低級アルキレン基または低級アルケニレン基である)で表されるビス(2- ヒドロキシフェニルアルキルアミン)誘導体又はその薬理学的に許容される塩。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、医薬品として有用なビス(2-ヒドロキシフェニルアルキルアミン)誘導体又はその薬理学的に許容される塩に関するものである。

【0002】さらに詳しく述べれば、本発明はメイラード反応に関連する疾患の予防および治療剤として、また、化粧品および食品において有用な、一般式

[0003]

【化2】

物に変換される前期段階と、続く酸化、脱水、重合、開 裂等の反応により、蛋白が分子間および分子内架橋形成 を伴い変性し、褐色を呈し難溶性でプロテアーゼによる 分解が困難である後期反応生成物(AGE: Advan ced Glycation End Product s)に至る後期段階からなる一連の反応により進行す る。

【0007】当該メイラード反応の過程で生成するAG Eおよびその前駆生成物の生成量は、糖と蛋白の濃度および反応時間に相関して増加する。従って、糖尿病のような高血糖状態が持続したり、糖に暴露される期間が長い加齢により、または、蛋白質の半減期が長い組織にある生体内の蛋白質、クリアランスが低下するような腎臓疾患の患者等の血液や組織中の蛋白質ではメイラード反応を受けやすいことが知られている。

【0008】これらのことより、メイラード反応を受ける生体内の蛋白質としては、例えば、眼球レンズクリスタリン、血清アルブミン、皮膚や血管壁等の結合組織のコラーゲンやエラスチン、神経ミエリン蛋白質、ヘモグロビン、腎臓の糸球体基底膜等の多くの蛋白質があり、メイラード反応は、これらの蛋白の変性、異常または機能低下により引き起こされる網膜症、腎症、心臓血管系障害、神経障害や白内障等の糖尿病性合併症や動脈硬化症あるいは老化に起因する疾患の発症原因の一つと考えられている。そのため、これらの疾患の下防および治療に向けて、メイラード反応を阻害する新規な化合物を模索すべく開発研究が試みられている。

Ď.

£ 7-

[0009]

【発明が解決しようとする課題】本発明の目的は、メイラード反応阻害作用を有し、メイラード反応阻害剤として有用な新規なビス(2ーヒドロキシフェニルアルキルアミン)誘導体を提供することである。

[0010]

(:

【課題を解決するための手段】本発明者らは、メイラード反応阻害剤として有用な化合物を見出すべく鋭意研究した結果、前記一般式(I)で表されるある種のビス(2ーヒドロキシフェニルアルキルアミン)誘導体が、優れたメイラード反応阻害活性を有するという知見を得、本発明を成すに至った。

【0011】ここで、本発明の前記一般式(I)で表さ れる化合物において、低級アルキル基とは、メチル基、 エチル基、プロピル基、イソプロピル基、プチル基、イ ソプチル基、sec-ブチル基、tert-ブチル基、 ペンチル基、イソペンチル基、ネオペンチル基、ter t ペンチル基、ヘキシル基等の炭素数1~6の直鎖状 または枝分かれ状のアルキル基をいい、低級アルコキシ 基とは、メトキシ基、エトキシ基、プロポキシ基、イソ 20 プロポキシ基、プトキシ基、イソプトキシ基、sec-プトキシ基、tert-プトキシ基、ペンチロキシ基、 イソペンチロキシ基、ネオペンチロキシ基、tert-ペンチロキシ基、ヘキシルオキシ基等の炭素数1~6の 直鎖状または枝分かれ状のアルコキシ基をいう。ハロゲ ン原子とはフッ素原子、塩素原子、臭素原子、ヨウ素原 子をいい、アシル基とは、アセチル基、プロピオニル 基、ブチリル基等の直鎖状または枝分かれ状のアルキル 基を有する炭素数2~7のアルキルカルボニル基をい

H-Z1-X-Z2-H

(式中のX、Z ¹ およびZ ² は前記と同じ意味をもつ)で表される化合物とを、不活性溶媒中、脱水剤または縮合剤の存在下または非存在下に反応させた後、常法により、脱保護することにより容易に製造することができる。

【0015】上記製造方法において用いられる前記一般式 (II) で表される化合物は、特開昭46-7875 号公報、特開昭48-67245号公報、特開昭52-36644号公報、特開昭53-135951号公報、 J. Agric. Food. Chem., No. 4, p 40 p965 (1977) 等の文献記載の方法の方法または それと類似の方法、またはそれらの方法を組み合わせる ことによっても製造することができる。

【0016】例えば、前記一般式(I I)の化合物のう ち、一般式

[0017]

【化4】

う。低級アルキレン基とは、メチレン基、エチレン基、 プロピレン基、トリメチレン基、テトラメチレン基、ペ ンタメチレン基、ヘキサメチレン基等の炭素数1~6の 直鎖状または枝分かれ状のアルキレン基をいい、低級ア ルケニレン基とは、ビニレン基、プロペニレン基等の炭 素数2~6の直鎖状または枝分かれ状のアルケニレン基 をいう。

【0012】本発明の前記一般式(I)で表されるビス(2ーヒドロキシフェニルアルキルアミン)誘導体は新規な化合物であり、例えば、以下のようにして製造することができる。すなわち、本発明の前記一般式(I)の化合物は、一般式

[0013]

[化3]

【0014】(式中のDは保護基を有する水酸基であり、Eは保護基を有するアミノ基であり、R^c、R^c、R^cおよびR^cは、それぞれ同じでも異なっていてもよく、水素原子、低級アルキル基、低級アルコキシ基、保護された水酸基、保護されたメルカプト基、ハロゲン原子、ニトロ基、保護されたアミノ基、アシルアミノ基、アシル基または保護されたヒドロキシ低級アルキル基であり、A、R、およびYは前記と同じ意味をもつ)で表される化合物と、一般式

【0018】 (式中のD、E、R"、R⁷、R⁸および R⁸は前記と同じ意味をもつ) で表される化合物は、一 般式

[0019]

【化5】

【0020】(式中のD、R"、R⁷、R⁸およびR" は前記と同じ意味をもつ)で表されるベンズアルデヒド 誘導体を、炭酸アンモニウムおよびシアン化ナトリウム と不活性溶媒中で反応させ、一般式

50 [0021]

【化6】

(....

【0022】(式中のD、R°、R⁷、R⁸およびR⁸は前記と同じ意味をもつ)で表されるヒダントイン誘導体を製造し、得られた化合物をアルカリ条件下に加水分 10 解させた後、アミノ基等を常法により保護基で保護することにより製造することができる。

【0023】本発明の前記一般式(I)で表される化合物は、リゾチームとフルクトースを用いたin vit roのメイラード反応阻害活性試験において、メイラード反応阻害活性を有する物質として知られているアミノグアニジンがリゾチームの二量化を0.2mMの濃度で2.9%、2mMの濃度で17.2%それぞれ阻害するのに対し、例えば、N,N'ーピス(αーアミノー2ーヒドロキシフェニルアセチル)オクタメチレンジアミン20・2塩酸塩は、0.2mMの濃度で46.7%、2mMの濃度では92.2%の阻害活性を示した。

【0024】このように、本発明の前記一般式(1)で表される化合物およびその薬理学的に許容される塩は優れたメイラード反応阻害活性を有するものであり、メイラード反応が関連する疾患の予防および治療剤として非常に有用な化合物である。

【0025】本発明の前記一般式(1)で表される化合 物およびその薬理学的に許容される塩は、メイラード反 応阻害活性を有しており、メイラード反応が関連してい 30 することができる。 る疾患に対して有効である。このような疾患としては、 冠動脈性疾患, 末梢循環障害, 脳血管障害, 糖尿病性神 経症,腎症,動脈硬化症,関節硬化症,白内障,網膜 症、凝固障害症、糖尿病性骨減少症等の糖尿病性合併 症、アテローム性動脈硬化症,糸球体腎炎,老人性白内 障,骨関節症,関節周囲硬直症,関節硬化症,老人性骨 粗鬆症等の老化によって引き起こされると考えられてい る疾患等を挙げることができ、当該疾患の予防および治 療剤として非常に有用である。また、周知の通り、蛋白 質やアミノ酸を含有する化粧品、食品においてもメイラ ード反応が進行し、蛋白質やアミノ酸の劣化が起こるた め、化粧品や食品においても当該メイラード反応を阻害 する化合物として有用である。

【0026】本発明の前記一般式(1)で表されるビス(2-ヒドロキシフェニルアルキルアミン)誘導体は、常法により、薬理学的に許容される塩とすることができる。このような塩としては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、硝酸、リン酸などの鉱酸との酸付加塩、ギ酸、酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、プロピオン酸、クエン酸、コ 50

6

ハク酸、酒石酸、フマル酸、酪酸、シュウ酸、マロン酸、マレイン酸、乳酸、リンゴ酸、炭酸、グルタミン酸、アスパラギン酸等の有機酸との1ないし2酸付加塩、ナトリウム塩、カリウム塩、カルシウム塩等の無機塩基との塩、アミノ酸との塩を挙げることができる。 【0027】また、本発明の前記一般式(1)で表され

【0027】また、本発明の前記一般式(I)で表される化合物としては、水和物や、エタノール等の医薬品として許容される溶媒との溶媒和物も含まれる。

【0028】本発明の前記一般式(I)で表されるビス(2-ヒドロキシフェニルアルキルアミン)誘導体は、2個以上の不斉炭素原子を有するため、各不斉炭素においてR配置およびS配置の2つの光学異性が存在するが、本発明においてはいずれの光学異性体を使用してもよく、それらの光学異性体の混合物であっても構わない。

【0029】また、本発明の前記一般式(I)で表される化合物のうち、不飽和結合を有する化合物には2つの幾何異性体が存在するが、本発明においてはシス(Z)体の化合物またはトランス(E)体の化合物のいずれを使用してもよい。

【0030】本発明の前記一般式(I)で表されるビス(2-ヒドロキシフェニルアルキルアミン)誘導体およびそれらの薬理学的の許容される塩を実際の治療に用いる場合、適当な医薬品組成物、例えば、錠剤、散剤、細粒剤、顆粒剤、カプセル剤、液剤、注射剤、外用剤、点眼剤、坐剤などとして経口的あるいは非経口的に投与される。これらの医薬品組成物は一般の調剤において行われる製剤学的方法により、通常用いられている製剤用の担体や賦形剤、その他の添加剤を用いることにより調製することができる。

【0031】その投与量は対象となる患者の性別、年齢、体重、症状の度合いなどによって適宜決定されるが、経口投与の場合、概ね成人1日当たり1~100mg、非経口投与の場合、概ね成人1日当たり0 1~100mgの範囲内で、回または数回に分けて投与される。

【0032】本発明の前記一般式(I)で表される化合物を点眼剤として使用する場合、0.05W/V%~5W/V%の範囲で配合して常法により調製し、その投与回数は患者の症状の度合い等により適宜決定される。

【0033】また、本発明の前記一般式(I)で表される化合物を外用剤または化粧品として使用する場合、製剤全体に対して本発明の化合物の含有量が概ね0.05~10重量部となるように配合し、一般的な外用基剤または化粧品基剤を用いて常法により調製することにより製造することができる。さらに、本発明の化合物は常法により食品用に調製することもでき、食品に添加して使用することもできる。

[0034]

【発明の実施の形態】本発明の内容を以下の参考例およ

び実施例でさらに詳細に説明するが、本発明はその内容 に限定されるのもではない。

[0035]

【実施例】

参考例1

2ーメトキシメトキシベンズアルデヒドサリチルアルデヒド15gを塩化メチレン150mlに溶解し、氷冷下でジイソプロピルエチルアミン23.5ml、次いでクロロメチルメチルエーテル10.3mlの塩化メチレン20ml溶液を滴下して加え室温で2時間攪拌した。反応終了後、反応混合物を2規定水酸化ナトリウム溶液、飽和食塩水、10%クエン酸水溶液、飽和食塩水の順に洗浄し、有機屬を硫酸マグネシウムで乾燥したのち溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーにて精製し、2ーメトキシメトキシベンズアルデヒド20.4gを得た。

【0036】無色オイル

NMR (CDC1 1, 270MHz)

δ ppm: 3. 52 (3H, s), 5. 31 (2H, s), 7. 00-7. 15 (1H, m), 7. 22 (1H, d, J=7 9Hz), 7. 45-7. 60 (1H, m), 7. 85 (1H, dd, J=7. 4Hz, 2. 0Hz), 10. 51 (1H, br d, J=1 0Hz)

【0037】参考例2

5- (2-メトキシメトキシフェニル) ヒダントイン 炭酸アンモニウム 2 0. 2 g とシアン化ナトリウム 4. 4 3 gを水 7 5 m l に溶解し、2-メトキシメトキシベンズアルデヒド 1 0 gのエタノール 7 5 m l 溶液を加え 5 0℃で2日間費拌した。反応終了後、溶媒の約 1 / 2 30 量を減圧留去し、氷冷後、析出する固体を濾取した。 水、エーテルの順に洗浄した後、有機層を五酸化ニリン 存在下で減圧乾燥し5- (2-メトキシメトキシフェニル) ヒダントイン 7. 4 gを得た。

【0038】白色粉末

NMR (DMSO-dn, 400MHz)

δ ppm: 3. 36 (3H, s), 5. 18 (2H, s), 5. 20 (1H, s), 6. 96-7. 04 (1H, m), 7. 09 (1H, d, J=8. 2Hz), 7. 25 (1H, dd, J=7. 6Hz, 1. 6Hz), 7. 28-7. 36 (1H, m), 8. 06 (1H, br s), 10. 68 (1H, br s)

【0039】参考例3

αーtertーブチルオキシカルポニルアミノー2ーメ トキシメトキシフェニル酢酸

5- (2-メトキシメトキシフェニル) ヒダントイン 4- 0gを水酸化ナトリウム2- 02gの水40ml溶 液に加え、2日間加熱環流した。反応終了後、氷冷下で 2規定塩酸31- 9mlを加え、発泡しなくなるまで溶 媒を減圧留去した。この混合物にジオキサン30mlを 50

加えたのち、トリエチルアミン3.24mlと二炭酸ジ tープチル4.06gを加え室温で1日間攪拌した。反 応終了後、反応混合物にクロロホルムと少量のメタノー ルを加え10%クエン酸水溶液、飽和食塩水の順に洗浄 し、有機層を硫酸マグネンウムで乾燥したのち溶媒を減 圧留去した。残渣をシリカゲルカラムクロマトグラフィーにて精製し、αーtertープチルオキシカルボニル アミノー2ーメトキシメトキシフェニル酢酸3.65g を得た。

| 【0040】無色アモルファス

NMR (CDCln, 400MHz)

δ ppm: 1. 43 (9H, s), 3. 46 (3H, s), 5. 21 (1H, d, J=6.7Hz), 5. 2 5 (1H, d, J=6.7Hz), 5. 60 (1H, br), 5. 66 (1H, br), 7. 02 (1H, t, J=7.5Hz), 7. 13 (1H, d, J=8.3Hz), 7. 24-7.36 (2H, m)

【0041】参考例4

 δ ppm: 3. 52 (3H, s), 5. 31 (2H, N, N' -UX (α -tert-Jf μ X+ ν A μ X- ν S), 7. 00-7. 15 (1H, m), 7. 22 (1 20 μ X+ ν S), 7. 45-7. 60 (1 μ) π 1-7. 9Hz) 7. 45-7. 60 (1 μ) π 1-8 μ 4 μ 5 μ 7.

αーtertーブチルオキシカルボニルアミノー2ーメトキシメトキシフェニル酢酸100mgをアセトニトリル3mlに溶解し、氷冷下でオクタメチレンジアミン24mg、ジエチルホスホリルシアニド52mgを加え、室温に戻しながら2時間攪拌した。反応終了後、溶媒を減圧留去しクロロホルムを加え10%クエン酸水溶液、飽和食塩水、飽和食塩水の順に洗浄し、有機層を硫酸マグネシウムで乾燥したのち溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーにて精製し、N、N'ービス(αーtertーブチルオキシカルボニルアミノー2ーメトキシメトキシキシフェニルアセチル)オクタメチレンジアミン89mgを得た。

【0042】白色固体

NMR (CDC14, 400MHz)

δ ppm: 1. 1-1. 5 (30H, m), 3. 11
-3. 25 (4H, m), 3. 52 (6H, s), 5
24-5. 30 (4H, m), 5. 5-5. 6 (2H,
40 m), 6. 0-6. 1 (2H, m), 6. 2-6. 3
(2H, m), 6. 98-7. 06 (2H, m), 7.
07-7. 14 (2H, m), 7. 20-7. 35 (4H, m)

【0043】実施例

N, N' ービス (αーアミノー2ーヒドロキシフェニルアセチル) オクタメチレンジアミン・2塩酸塩N, N' ービス (αーtertーブチルオキシカルボニルアミノー2ーメトキシメトキシキシフュニルアセチル) オクタメチレンジアミン40mgをメタノール1m1に溶解し、氷冷下で塩化水素-メタノール溶液1m1

を加え、室温に戻しながら2時間攪拌した。反応終了後、溶媒を滅圧留去し、残渣をシリカゲルカラムクロマトグラフィーにて精製した。得られたフラクションに塩化水素-2-プロパノール溶液を加えた後、溶媒を減圧留去しN、N'ービス(αーアミノー2ーヒドロキシフェニルアセチル)オクタメチレンジアミン・2塩酸塩27mgを得た。

【0044】無色アモルファス

*NMR (DMSO-d n, 400MHz)

\$ ppm: 1. 10-1 18 (8H, m), 1. 3

0-1. 40 (4H, m), 2 98-3 08 (2

H, m), 3. 08-3 18 (2H, m), 5 00

(2H, br s), 6 84 (2H, t, J=7 5

Hz), 6. 95 (2H, d, J=8 4Hz), 7

20-7. 28 (4H, m), 8. 08 (2H, m),

8. 34 (6H. br), 10. 34 (2H, br)

10

フ		ン	トペー	ジロ	つ続き
---	--	---	-----	----	-----

(51) Int. Cl. 6	識別記号	庁内整理番号	FI		技術表示箇所
A 6 1 K 31/165	ACV		A 6 1 K 31/165	ACV	
	ADĎ			ADD	
31/215	AAA		31/215	AAÁ	
C 0 7 C 229/34		9450-4H	C O 7 C 229/34		
231/02			231/02		
271/10			271/10		
// A 2 3 L 1/29			A 2 3 L 1/29		
C 0 7 C 47/575			C 0 7 C 47/575		

(72)発明者 小林 美穂

(1

長野県南安曇郡豊科町南穂高2583