Document Digitization Pipeline: Comparative Analysis of OCR Approaches

1. Introduction

The task is to develop robust and efficient OCR solutions capable of converting various document types—including handwritten forms, handwritten receipts, printed receipts, and printed forms—into structured, machine-readable data. The objective is to research, compare, and implement OCR approaches that balance accuracy and computational efficiency for effective document digitization.

2. Datasets

Research focused on two broad dataset categories: Printed and Handwritten documents.

- **Printed Dataset:** Includes two categories—Forms and Receipts—sourced from publicly available datasets. Printed data was used to complement our study due to the scarcity of annotated handwritten datasets.
- **Handwritten Dataset:** Since publicly available annotated handwritten data is limited, we manually created and annotated our own handwritten dataset to ensure accurate evaluation on this challenging document type.

Dataset Type	Description	Number of Images	Source
Handwritten Forms	Hand-annotated handwritten forms	5	Manually created & labelled
Handwritten Receipts	Hand-annotated handwritten receipts	5	Manually created & labelled
Printed Receipts	Printed receipts	20	https://www.kaggle.com/datasets/trainingdatapro/ocr-receipts-text-detection
Printed Forms	Printed structured forms	50	-

3. Models Used

For this study, we evaluated a range of OCR and vision-language models across three main categories to cover diverse approaches in document digitization.

1st Category: Large Language Models (LLMs) with Vision Capabilities

- Meta Llama 3.2 Vision: A large-scale vision-language model that requires substantial GPU resources, typically 15GB or more.
- Qwen-2 VL: Comparable to Llama 3.2, this vision-language model also demands high GPU memory (≥15GB) for effective inference.
- Microsoft Florence-2: A vision-language model with a more moderate GPU memory requirement of approximately 5GB, balancing performance and resource usage.

2nd Category: Traditional OCR Systems

• PaddleOCR: An open-source OCR framework optimized for CPU execution, eliminating the need for GPU acceleration.

3rd Category: Cloud-Based OCR APIs

• Google Gemini Vision API: A cloud-hosted OCR service that offloads computation to remote servers, requiring no local hardware resources.

4. Methodology

4.1 Experimental Setup

- Each model evaluated on all datasets.
- Metrics: ROUGE-1, ROUGE-2, ROUGE-L F1 scores for accuracy; inference time per image; GPU/CPU memory usage.

4.2 Evaluation Metrics

- **ROUGE scores:** Measure textual overlap accuracy.
- Inference Time: Efficiency per image processed.
- Computational Resources: GPU memory footprint and CPU/GPU utilization.

5. Results and Analysis

5.1 Handwritten Forms

Model	ROUGE-1 F1	ROUGE-2 F1	ROUGE-L F1	Inference Time (s)	Memorv	GPU Required?
Gemini	0.9333	0.8951	0.9319	4.21	N/A	No
PaddleOCR	0.7795	0.6550	0.7705	2.14	N/A	No
Llama 3.2	0.6962	0.5330	0.6471	33.83	~14,084	Yes
Florence-2	0.4698	0.3696	0.4698	2.21	~4,926	Yes
Qwen-2	0.7634	0.7269	0.7634	46.49	~7,547	Yes

5.2 Handwritten Receipts

Model	ROUGE-1 F1	ROUGE-2 F1	ROUGE-L F1	Inference	Memory	GPU Required?
Gemini	0.8782	0.7502	0.7770	3.95	N/A	No
PaddleOCR	0.5962	0.3689	0.5300	1.43	N/A	No
Llama 3.2	0.4054	0.2140	0.3079	14.15	~14,084	Yes
Florence-2	0.1890	0.0989	0.1827	0.90	~4,926	Yes
Qwen-2	0.5951	0.4614	0.5407	38.67	~7,547	Yes

5.3 Printed Receipts

Model	ROUGE-1 F1	ROUGE-2 F1	ROUGE-L F1	Inference Time (s)	Memory	GPU Required?
Gemini	0.4867	0.3748	0.2456	5.60	N/A	No
PaddleOCR	0.3517	0.1837	0.1758	2.10	N/A	No
Llama 3.2	0.3427	0.1877	0.1767	32.77	~14,084	Yes

Model	ROUGE-1 F1	ROUGE-2 F1	ROUGE-L F1	Inference Time (s)	Memory	GPU Required?
Florence-2	0.1936	0.0532	0.1137	2.23	~4,926	Yes
Qwen-2	0.3071	0.2179	0.1639	45.22	~7,547	Yes

5.4 Printed Forms

Model	ROUGE-1 F1	ROUGE-2 F1	ROUGE-L F1	Inference	Memory	GPU Required?
Gemini	0.9701	0.7361	0.6852	4.08	N/A	No
PaddleOCR	0.8821	0.6221	0.6271	3.65	N/A	No
Llama 3.2	0.0159	0.0000	0.0144	23.11	~14,084	Yes
Florence-2	0.6014	0.3480	0.4872	8.13	~4,926	Yes
Qwen-2	0.8256	0.6285	0.6079	34.31	~7,547	Yes

6. Computational Resource Analysis

• Model Size vs. GPU Memory Usage:

- o Florence-2: ~5GB model size, uses ~4.9GB GPU memory during inference.
- o Llama 3.2 Vision: ∼15GB model size, ∼14GB GPU memory usage.
- Qwen-2 VL: ~15GB model size, uses around ~7.5GB GPU memory (indicating possible memory optimization).

• Inference Speed:

- o PaddleOCR (CPU-only) fastest (1.4 3 seconds).
- o Gemini API (cloud) fast and does not require local hardware.
- Larger LLMs (Llama 3.2, Qwen-2) significantly slower, 14-46 seconds per image.
- o Florence-2 moderate performance, 2-8 seconds inference time.

7. Consolidated Graphs

Fig 1: Handwritten Documents Metrics

Fig 2: Printed Documents Metrics

Fig 3: Computation Comparison

8. Discussion and Recommendations

- **Best Accuracy**: Gemini Vision API consistently highest ROUGE scores across datasets without requiring GPU or heavy local compute.
- **Lightweight Option**: PaddleOCR is excellent for offline use, fast, and requires no GPU, albeit with slightly reduced accuracy.
- Large Model Limitations: Llama 3.2 and Qwen-2 require expensive hardware, with slower inference and only marginally better or worse accuracy depending on dataset.
- **Florence-2**: Moderate GPU usage and speed, performs well on printed forms but struggles with receipts.
- **Hybrid Deployment**: Use PaddleOCR as primary local OCR; fallback to Gemini API for complex cases requiring higher accuracy.

9. Future Work

- Although this research directly utilized pre-existing OCR and vision-language models, future work will explore fine-tuning these models on domain-specific handwritten and printed document layouts for enhanced accuracy.
- Investigate transformer-based OCR architectures such as TrOCR that specialize in handwritten text recognition.

- Explore integration of multimodal large language models like GPT-4 Vision for richer semantic understanding beyond text extraction.
- Focus on optimizing computational efficiency, including GPU memory usage and inference speed, to improve deployment feasibility.

10. Conclusion

- Google Gemini Vision API consistently achieved the highest accuracy across all document types, especially on handwritten forms and receipts.
- PaddleOCR demonstrated strong performance for printed documents and offered fast inference without GPU requirements, making it suitable for offline use.
- Large vision-language models like Llama 3.2 and Qwen-2 VL required significant GPU resources and had slower inference times, limiting practical deployment.
- Microsoft Florence-2 showed moderate accuracy and computational demands, performing better on printed forms than receipts.
- In terms of computational efficiency, PaddleOCR and Google Gemini API were the most practical choices, balancing speed and resource usage.