

Fig. 3. Clearance rates of *Pseudodiaptomus forbesi* (top) and *Limnoithona tetraspina* (bottom) on different prey taxa in 6 experiments. Symbols represent the experiment; black denotes cells counted with the FlowCAM (FC) and grey shows cells counted on an inverted microscope (MIC). Points are means calculated by fitting a generalized linear model with Poisson error distribution to the experimental data; bars show the 95% confidence intervals. For taxa other than 'Diatoms 7–15 μ m' and 'Flagellates 7–15 μ m,' cells in each category are >15 μ m on their longest axis

Kayfetz and Kimmerer 2017

Table 4. Abundance of microplankton taxa (cells ml^{-1} ; mean \pm 95% CI) in initial, control, and treatment bottles from all feeding experiments. Shaded counts from FlowCAM, unshaded counts from microscopy. Blank fields indicate taxa not present or not counted

Expt	Туре	Centric diatoms		Pennate Diatom diatoms 7–15 μr		Flagellates	Flagellates 7–15 µm	Dino- flagellates	Ciliates
1	Initial Control Pseudodiaptomus forbesi	19.5 ± 2.4 33.5 ± 5.9 4.5 ± 4.6	23.1 ± 6.4 43.1 ± 3.2 6.9 ± 4.6	28.4 ± 5.3 22.1 ± 3.2 15.7 ± 6.0		34.5 ± 6.7 18.2 ± 5.9 6.1 ± 2.2			1.0 ± 0.3 1.0 ± 1.2 0.2 ± 0.1
2	Initial Control P. forbesi Limnoithona tetraspina	2.3 ± 0.7 3.5 ± 0.6 1.0 ± 0.9 4.1 ± 0.7	9.1 ± 8.1 6.6 ± 2.2 1.4 ± 1.5 8.1 ± 2.3		15.0 ± 8.4 17.7 ± 3.2 14.9 ± 2.9 29.9 ± 9.3	112 ± 26.5 27.9 ± 13.3 13.2 ± 4.2 23.6 ± 6.0	261 ± 55.1 316 ± 56.5 225 ± 54.5 379 ± 111		1.5 ± 0.5 2.8 ± 0.4 1.5 ± 0.7 2.0 ± 0.6
3	Initial Control <i>P. forbesi</i> <i>L. tetraspina</i>	4.7 ± 1.3 8.4 ± 0.6 0.5 ± 0.2 10.4 ± 1.2	6.9 ± 3.2 14.9 ± 5.0 1.9 ± 1.6 17.2 ± 4.4		19.3 ± 4.3 54.3 ± 6.8 67.3 ± 12.6 79.6 ± 8.2	79.7 ± 18.0 44.8 ± 38.1 15.3 ± 5.1 33.3 ± 9.3	648 ± 54.8 321 ± 84.8 296 ± 146 463 ± 56.7		1.1 ± 0.6 1.4 ± 0.4 0.4 ± 0.1 1.1 ± 0.6
4	Initial Control <i>P. forbesi</i>	1.7 ± 0.1 1.2 ± 0.5 0.3 ± 0.2		6.4 ± 1.1 5.9 ± 0.9 2.5 ± 0.8		61.3 ± 19.5 39.8 ± 9.4 22.0 ± 2.2		0.6 ± 0.1 0.6 ± 0.1 0.3 ± 0.1	1.1 ± 0.3 2.1 ± 0.3 0.8 ± 0.5
5	Initial Control <i>P. forbesi</i>	0.6 ± 0.3 0.7 ± 0.3 0.1 ± 0.1		0.7 ± 0.3 0.2 ± 0.03 0.1 ± 0.1		65.1 ± 11.2 44.1 ± 21.7 15.9 ± 5.8			1.4 ± 0.3 1.7 ± 0.3 0.5 ± 0.2
6	Initial Control <i>P. forbesi</i>	1.1 ± 0.4 1.1 ± 0.2 0.3 ± 0.1		1.9 ± 0.9 2.9 ± 1.3 1.0 ± 0.8		66.7 ± 24.7 50.3 ± 3.8 33.9 ± 7.1			0.9 ± 0.4 1.6 ± 0.8 0.5 ± 0.3

Bouley and Kimmerer 2006

Fig. 6. Limnoithona tetraspina. (A) Clearance rates and (B) ingestion rates on naturally-occurring ciliates as a function of initial ciliate density. Bars show 95% confidence intervals. The curved line in (B) is a rectangular hyperbola fitted to the data, $(5.7 \times \text{Initial Prey Conc.})$ / (1.5 + Initial Prey Conc.). Strombidium A (\blacksquare), Strombidium B (\divideontimes), Strombidium C (\square), Strombidium D (O), Strombidium E (\blacktriangledown), Strombidium F (\times), Mesodinium A (\spadesuit), Mesodinium B (\diamondsuit), Tintinnid B (\bullet), Unidentified ciliate (\triangle)

Gifford and Rollwagen Bollens 2007

Fig. 5. Mean abundance (A) and carbon biomass (B) of microplankton (15 to 200 µm) prey categories available to predators during feeding experiments (*M. rubra = Myrionecta rubra*)

Gifford and Rollwagen Bollens 2007

> Convert ml pred⁻¹ h⁻¹ to d⁻¹ Multiply by 24: Ex: Acartia April 2004, aloricate ciliates, ~ 2ml per hour = ~ 48 ml per day

Acartia April 2005, diatoms ~ 1.5 ml per hour = ~ 36ml per day

Fig. 6. Mean (± SE) mesozooplankton clearance rates on microplankton (15 to 200 µm). (A) Daphnia sp., (B) Limnoithona tetraspina, (C) Oithona davisae, (D) Acartia spp. (M. rubra = Myrionecta rubra). SE could not be calculated for loricate ciliates in (C)

Gifford and Rollwagen Bollens 2007

Convert ng C pred⁻¹ h⁻¹ to μ g C pred⁻¹ d⁻¹ 1 ng = .001 μ g 1 day = 24 hours

Ex: Acartia April 2004, aloricate ciliates, ~ 17 ng C per per hour = ~ .017 μ g C per hour Multiply .017 by 24 = ~ .408 μ g C per day

Acartia April 2005, **diatoms** ~ 5 ng C per per hour = $\sim .005$ µg C per hour Multiply .005 by 24 = $\sim .12$ µg C per day

Diatoms

g. 7. Mean (± SE) mesozooplankton ingestion rates on microplankton (15 to 200 µm). (A) Daphnia sp., (B) Limnoithona tetraspina, (C) Oithona davisae, (D) Acartia spp. (M. rubra = Myrionecta rubra)

Gifford and Rollwagen Bollens 2007

Fig. 8. Mean (\pm SE) weight-specific (A) clearance and (B) ingestion rates on microplankton (15 to 200 μ m) for Acartia spp. and Oithona davisae in November 2004 (M. rubra = Myrionecta rubra)

Klass et al 2008

Table 3. Copepod grazing on different compartments of the plankton during incubation experiments (uncorrected) and after taking into account trophic cascade effects (corrected). Expt: experiment number. Treatment: type of copepod added in grazing treatments: small copepods (Small cop.), Calanus simillimus (C. simil.) and Rhincalanus gigas (R. gigas). N: number of copepod idividuals in treaments. Total grazing by added copepods on nanophytoplankton (Nphyt), microphytoplankton (Mphyt), nanozooplankton (Nzoo) and microzooplankton (Mzoo) for the duration of the incubation. Tot. C: individual copepod total daily carbon ingestion (for the uncorrected estimates of Tot. C, negative grazing values were excluded from calculation).

Ing. C: individual copepod daily carbon ingestion in % body carbon (% BC)

Expt	Treatment	N			— Unc	d	-	Corrected						
_			Nphyt	Mphyt	Nzoo	Mzoo	Tot.C	Ing. C	Nphyt	Mphyt	Nzoo	Mzoo	Tot. C	Ing. C
			(µg C)	(µg C)	(µg C)	(µg C)	(μg C d ⁻¹	(% BC)	(µg C)	(µg C)	(µg C)	(µg C)	(μg C d-1	(% BC)
							$ind.^{-1}$)						$ind.^{-1}$)	
1a	Small cop.	10	0.14	-0.62	0.29	0.34	0.08	2.7	0.19	0.00	0.36	0.40	0.10	3.5
4	Small cop.	20	0.08	0.18	0.43	2.09	80.0	2.9	0.16	0.30	0.59	2.49	0.10	3.7
7a	Small cop.	15	0.48	1.28	0.12	1.42	0.16	5.5	0.71	1.61	0.24	1.66	0.20	7.0
2	C. simil.	5	-0.16	3.90	-0.13	2.21	1.05	2.3	0.18	4.74	0.07	2.53	1.29	2.9
5	C. simil.	5	-0.78	7.25	-0.03	3.58	1.44	3.2	0.00	8.92	0.49	3.86	1.77	3.9
7b	C. simi.	5	-1.13	5.90	-1.44	1.76	1.08	2.4	0.00	7.06	0.00	1.97	1.29	2.8
1b	R. gigas	5	-1.62	-0.90	-1.45	1.90	0.38	0.15	0.00	0.00	0.00	2.86	0.45	0.18
3	R. gigas	4	-2.55	-0.04	-1.01	2.54	0.35	0.14	0.00	0.27	0.00	3.04	0.46	0.19
6	R. gigas	4	-2.18	4.56	-2.04	5.28	1.97	0.79	0.00	5.79	0.00	6.15	2.39	0.96
	A-97													