

DeepJSCC-I++: Robust and Bandwidth- Adaptive Wireless Image Transmission

Chenghong Bian, Yulin Shao, Deniz Gunduz

Imperial College London

DeepJSCC-I++

- Outline
 - Introduction & Motivation
 - System Model
 - Proposed Method
 - Experimental Results
 - Q & A

Introduction & Motivation

DeepJSCC revisit

- An encoder $f_{\theta}(\cdot)$ and decoder $g_{\phi}(\cdot)$ parameterized by neural networks.
- $x \in \mathbb{R}^{C \times H \times W}$, $z \in \mathbb{C}^k$, with $\rho = \frac{k}{N}$, $N = C \times H \times W$.
- Jointly optimize $\{\theta, \phi\}$ to minimize reconstruction distortion, e.g., $||x \hat{x}||_2^2$.

- Key merit:
 - · avoiding cliff and leveling effect
 - Achieving better reconstruction performance.
- Performance metrics:
 - $PSNR = 10 \log_{10} \frac{255^2}{\frac{1}{N} ||x \hat{x}||_F^2}$

Introduction & Motivation

- Motivation for DeepJSCC-I++
 - $\{\theta, \phi\}$ parameterized by CNNs/ViT, occupy 100+ Mb.
 - $\{\theta, \phi\}$ are optimized for a specific $\{SNR, \rho\}$.
 - 4 different SNR points and 4 bandwidth ratios → 16 models → 1.6 Gb space.
 -- Too large for a mobile device!
 - Is it possible to have a single $\{\theta, \phi\}$ pair for all $\{SNR, \rho\}$?

Possible neural network architectures to parameterize $\{\theta, \phi\}$:

Left: CNN, Right: ViT.

System Model

- System Model
 - Communication over an AWGN channel,
 - $\mathbf{y} = \mathbf{z} + \mathbf{n}$; $\mathbf{z} \in \mathbb{C}^k$, $n_i \sim \mathcal{CN}(0, \sigma^2)$.
 - Assumptions of packets:
 - Possible supported bandwidth ratios $[\rho_1, ..., \rho_L]$ with $\rho_l = l\rho_1$. (discrete)
 - Channel qualities: $SNR \in [SNR_{min}, SNR_{max}]$ (continuous).
 - Channel model shown below:

Solutions

- Solution A: Successive Refinement
- SNR-adaptive solution is given in [2], first focus on the varying bandwidth setting.
- Shown in figure (a):
 - $\tilde{z} = f_{\Theta}(S, SNR)$
 - Partition \tilde{z} to L blocks, denote it as $\tilde{z}[l], l \in [1, L]$.
 - <u>Block-wise</u> Power normalize: $z[l] = \frac{\tilde{z}[l]}{\|\tilde{z}[l]\|_2}$
 - The first $k \in [1, L]$ blocks should be able to reconstruct the image, \hat{S}_l to some level.
 - Loss function:

$$- \mathcal{L} = \sum_{l=1}^{L} ||S - \hat{S}_{l}||_{F}^{2}$$

(a) Successive refinement

(b) Bandwidth adaptive

A concrete example

of L = 4, $\ell = 3$

[2] J. Xu, etc, "Wireless image transmission using deep source channel coding with attention modules," IEEE Trans. Circuits Syst. Video Technol. 2021

- Solution B: Bandwidth Adaptive; in figure (b)
 - Obtain target bandwidth, ℓ, from the user.
 - $\tilde{\mathbf{z}}_{\ell} = f_{\Theta}(S, SNR, \ell)$
 - Masking instead of partitioning:
 - $z_{\ell} = M(\tilde{z}_{\ell}, \ell)$
 - Train the model as:
 - $\mathcal{L} = \mathbb{E}_{\ell \sim \mathcal{U}(1,L)} || \mathbf{S} \widehat{\mathbf{S}}_{\ell} ||_F^2$
 - Compare with Solution A:
 - Additional information from the user is required.
 - The reconstruction can be performed when all the z_ℓ is received.
 - Since different users have different requirements, ℓ, in general, it only fits the point-to-point channel, instead of broadcast channel (where solution A can be easily applied).

A concrete example

of L = 4, $\ell = 3$

(b) Bandwidth adaptive

(a) Successive refinement

- A good backbone Swin Transformer
 - A good neural network backbone makes a difference an improvement from ViT to CNN is observed [3]
 - Make it even better by adopting the state-of-the-art Swin transformer.
 - A brief introduction below:
 - The key idea for Swin is to perform self attention within a (small, e.g., 7x7) window instead of the whole image.
 - Shifting window operations enable communication between different windows.
 - Swin Transformer Block (Left) Illustration of SW-MSA module (Right).

[3] H. Wu, etc, "Vision transformer for adaptive image transmission over MIMO channels," in IEEE International Conference on Communications (ICC), 2023.

[4] Z. Liu, etc., "Swin transformer: Hierarchical vision transformer using shifted windows," in ICCV, October 2021

The overall framework

- Explaining details of the framework:
 - Patch partitioning: $S(C, H, W) \to X'\left(Cp^2, h = \frac{H}{p}, w = \frac{W}{p}\right)$ -- dividing the image evenly.
 - Patch Merging: $X(d, h', w') \to X'\left(d', \frac{h'}{2}, \frac{w'}{2}\right)$ -- can be understood as stacking the patches and transform.
 - Patch Division: $X(d, h', w') \rightarrow X'(d', 2h', 2w')$ -- can be achieved via 2d transpose convolution.

- The overall framework
 - Side information generation:
 - $U = MLP([\rho_{\ell}, SNR])$, Note, if successive refinement, we use only SNR values.
 - Concatenate U to each token of \tilde{X} (d, h, w) to generate X ($d + n_{emb}$, h, w).
 - We show by experiments, we can achieve both SNR and bandwidth adaptive objective by feeding $MLP([\rho_{\ell}, SNR])$ to the framework.
 - Contrary to [2], we don't need to add the SA block to achieve SNR-adaptive! The Swin transformer performs it automatically.

Varying features vs varying tokens:

- The output of the encoder is a matrix with $N_T \times N_F$.
- For different ρ, we can either transmit less amount of N_t or less amount of N_f.
 Simulations show different strategies yield similar reconstruction performance.

Training methodology

- Naïve training strategy for Solution A (successive refinement):
 - Recall: total bandwidth budget, ρ_L , is fixed, number of layers, L, is fixed, the first l layers should recover the original image to some level...
 - $\mathcal{L} = \sum_{l=1}^{L} ||\mathbf{S} \hat{\mathbf{S}}_l||_F^2$ if noise power is fixed, if not:
 - $\mathcal{L} = \mathbb{E}_{\gamma \sim \mathcal{U}(\gamma_1, \gamma_2)} \sum_{l=1}^L ||\mathbf{S} \hat{\mathbf{S}}_{l, \gamma}||_F^2$, where γ_1, γ_2 denote the min and max SNR value.
- Naïve training strategy for Solution B (bandwidth adaptive):
 - Recall: user specific bandwidth ratio ρ_{ℓ} is known to the transmitter, ℓ is a random variable.
 - $\mathcal{L} = \mathbb{E}_{\ell \sim \mathcal{U}(1,L)} ||S \hat{S}_{\ell}||_F^2$ if noise power is fixed, if not:
 - $\mathcal{L} = \mathbb{E}_{\gamma \sim \mathcal{U}(\gamma_1, \gamma_2), \ell \sim \mathcal{U}(1, L)} ||S \hat{S}_{\ell, \gamma}||_F^2$
 - This is achieved by randomly sample γ , ℓ from the uniform distributions and then calculate the end-to-end loss.
 - All the equations assume a same weight $w_{\ell} = 1$ for all the bandwidth ratios.

- Dynamic weight assignment (DWA)
 - Problem of Naïve training for Solution A&B:
 - Having $w_{\ell} = 1$ for all bandwidth ratios results in:
 - the model only focus on optimizing the lower ρ_l with much larger loss \mathcal{L}_{ℓ} .
 - $PSNR_{\ell}$ of the higher bandwidth ratios are much worse than $PSNR_{\ell}^*$ of the separately trained models.
 - · This will be verified in the experiments.

– Solution:

- Consider unequal w_{ℓ} to different ρ_{ℓ} 's.
- However, it is hard to figure out a good configuration of *w* to achieve a good overall performance.
- Instead of pre-assigned values, we have:
 - Dynamic weight assignment: assigning larger w_l^t to \mathcal{L}_l^t with larger ρ_l dynamically during the training epochs t.

- Dynamic weight assignment (DWA)
 - The weights w_t^t are updated according to the reconstruction performance evaluated over the validation dataset:
 - The separately trained models with $[\rho_1, ..., \rho_L]$ yields $[PSNR_1^*, ..., PSNR_L^*]$
 - Use it as a criterion to guide the training process of DeepJSCC-l++
 - we first determine the gap from the optimal results, then calculate the weight for each bandwidth ratio.

$$\Delta_l^t = \text{PSNR}_l^* - \text{PNSR}_l^t,$$

$$w_l^t = \text{clip}(2^{\alpha(\Delta_l^t - \beta)} - 1, 0, \Gamma),$$
(5)

- Explanation of the Parameters
 - α : how sensitive the weight w.r.t to the gap.
 - β : allowable gap from the optimal PSNR value.
 - Γ: designed for stable training, should not be too large.
 - The function in (5) is continuous from [0, Γ].

A summary of the DeepJSCC-I++ framework

```
Algorithm 1 Overall Training Process for DeepJSCC-l++
Model with DWA.
 1: Initialize w_l^1 = 1, \forall l \in [L]
 2: for t = 1, ..., T do
          Training Phase:
 3:
          for each batch do
 4:
               Sample l \in [L], SNR \in [SNR<sub>min</sub>, SNR<sub>max</sub>]
 5:
              Encoder: z_l = f_{\Theta}(S, SNR, l)
 6:
              Decoder: S_l = g_{\Psi}(\boldsymbol{y}, \text{SNR}, l)
               Weighted Loss: \mathcal{L}_{l}^{t} = w_{l}^{t} ||S - \tilde{S}_{l}||_{2}^{2}.
 8:
              Optimize \{\Theta, \Psi\} using \mathcal{L}_{t}^{t}.
 9:
          Validation Phase:
10:
          for l \in [L] do
11:
               Calculate PSNR<sub>I</sub><sup>t</sup>, \Delta_I^t over validation set.
12:
               Update w_I^t according to (5).
13:
```

Analysis of DWA

- Given parameters: $(\alpha, \beta, \Gamma) = (2, 0.25, 10)$.
- Left figure \rightarrow the w_l^t v.s. Δ_l^t .
- Right figure → We train a bandwidth adaptive DeepJSCC-l++ (solution B) with L = 6 and 4000 epochs.
 - · Larger bandwidth ratio needs larger weight.
 - The gap for $\rho_L = 1/4$ is larger than $\beta = 0.25$ dB even when the training ends.

Bandwidth & SNR adaptive

- Experiment setup
 - CIFAR-10 dataset, 32 x 32 resolution
 - Swin encoder/decoder employ I = 2 stages with the numbers of Swin transformer blocks in each stage is set to $M_1 = 4$, $M_2 = 2$, the number of features c is set to 256, the window size to w = 8,.
 - The dimension of the embedding is set to 2.
 - Train for 4000 epochs, varying learning rate initialized at 10–4, which is reduced by a factor of 0.95 if the validation loss does not drop for 20 epochs.
 - DeepJSCC-I++ models for Solution A & B are trained under the conditions:
 - $SNR \in [4, 10] dB$
 - $\rho_l \in \left[\frac{1}{24}, \frac{1}{12}, \frac{1}{8}, \frac{1}{6}, \frac{5}{24}, \frac{1}{4}\right]$
- Benchmark:
 - 1. Separately trained models -- upper bound for the proposed DeepJSCC-I++
 - 2. BPG compression algorithm delivered at the (AWGN) channel capacity.

- Bandwidth & SNR adaptive
 - Left: PSNR under (fixed) SNR = 7 dB, with varying bandwidth ratios.
 - DWA improves the reconstruction performance a lot at larger ρ_l yet only sacrifice very little PSNR at small ρ_l .
 - Solution B can outperform Solution A as its encoding phase is more flexible (known the target ρ_l)
 - Right: PSNR under (fixed) $\rho_l = \frac{1}{6}$, with varying channel qualities.
 - The proposed schemes can significantly outperform the digital baseline while avoiding cliff-effect.
 - Adapting to SNR does not sacrifice the performance at all, the gap between the optimal is from the bandwidth adaptive part.

- Supplementary materials
 - Left → Compare the Swin transformer with ViT.
 - Configuration: SNR = 7 dB, separately trained.
 - Right → varying patches/tokens v.s. varying features.
 - Swin Transformer, with architecture shown in Slide 10.

Table I: Evaluation for the varying patches and varying features DeepJSCC-l++ schemes at SNR = 7 dB in terms of PSNR (dB).

ρ	1/16	1/8	3/16	1/4
varying patches	26.12	30.01	32.53	34.32
varying features	26.14	30.01	32.53	34.31
separate training	26.36	30.23	32.70	34.55

Thanks for Listening!

Any questions are welcomed! ©