STATS 310B: Theory of Probability II

Winter 2016/17

Lecture 5: January 24

Lecturer: Sourav Chatterjee

Scribes: Kenneth Tay

5.1 (Sub)martingale Convergence Theorem

We will develop the lemmas needed to prove the (sub)martingale convergence theorem in this lecture.

Lemma 5.1 Let $\{Z_n, \mathcal{F}_n\}_{n=1}^{\infty}$ be a submartingale with $\mathbb{E}Z_1 \geq 0$. Let $X_1 = Z_1$, $X_n = Z_n - Z_{n-1}$ for $n \geq 2$. Let U_1, U_2, \ldots be $\{0, 1\}$ -valued random variables such that for all n, U_n is \mathcal{F}_{n-1} -measurable ($\mathcal{F}_0 = trivial \sigma$ -algebra).

Let
$$\tilde{Z}_n = \sum_{i=1}^n U_i X_i$$
. Then $\mathbb{E} \tilde{Z}_n \leq \mathbb{E} Z_n$.

Proof: Since U_n is \mathcal{F}_{n-1} -measurable,

$$\mathbb{E}\tilde{Z}_n = \sum_{i=1}^n \mathbb{E}[U_i X_i]$$

$$= \sum_{i=1}^n \mathbb{E}[X_i 1_{\{U_i = 1\}}]$$

$$= \sum_{i=1}^n \mathbb{E}[\mathbb{E}[X_i \mid \mathcal{F}_{i-1}] 1_{\{U_i = 1\}}].$$

Note that $\mathbb{E}[X_i \mid \mathcal{F}_{i-1}] = \mathbb{E}[Z_i \mid \mathcal{F}_{i-1}] - Z_{i-1}$ is a non-negative random variable since $\{Z_n\}$ is a submartingale. Thus

$$\mathbb{E}\tilde{Z}_{n} = \sum_{i=1}^{n} \mathbb{E}[\mathbb{E}[X_{i} \mid \mathcal{F}_{i-1}]1_{\{U_{i}=1\}}]$$

$$\leq \sum_{i=1}^{n} \mathbb{E}[\mathbb{E}[X_{i} \mid \mathcal{F}_{i-1}]]$$

$$= \sum_{i=1}^{n} \mathbb{E}X_{i}$$

$$= \mathbb{E}Z_{n}.$$

5-1

5.1.1 Upcrossings

Let $\{Z_n, \mathcal{F}_n\}_{n=1}^{\infty}$ be a non-negative submartingale. Take any b>0. For $i\in\mathbb{N}$, define

$$\tau_i = \begin{cases} 0 & \text{if } i = 0, \\ \inf\{n : n > \tau_{i-1}, Z_n = 0\} & \text{if } i \text{ is odd,} \\ \inf\{n : n > \tau_{i-1}, Z_n > b\} & \text{if } i \text{ is even.} \end{cases}$$

Definition 5.2 If i is odd, the interval $\{\tau_i + 1, \tau_i + 2, \dots \tau_{i+1}\}$ is called an **upcrossing of** [0,b] **by the** submartingale $\{Z_n\}$.

Lemma 5.3 Let β_n be the number of completed upcrossings by time n. Then

$$b \cdot \mathbb{E}\beta_n \leq \mathbb{E}Z_n$$
.

Proof: Let $U_i = I\{i \in \text{some upcrossing}\}$. Note that U_i is \mathcal{F}_{i-1} -measurable.

Let
$$X_1 = Z_1$$
, $X_n = Z_n - Z_{n-1}$ for $n \ge 2$.

For any complete upcrossing A, we have $\sum_{i \in A} X_i \ge b$. If A is an incomplete upcrossing, $\sum_{i \in A} X_i \ge 0$. Therefore

$$\sum_{i=1}^{n} U_i X_i \ge b\beta_n.$$

By Lemma 5.1,

$$b\mathbb{E}\beta_n \le \mathbb{E}\left[\sum_{i=1}^n U_i X_i\right] \le \mathbb{E}Z_n.$$

5.1.2 Proof of (Sub)martingale Convergence Theorem

Theorem 5.4 ((Sub)martingale Convergence Theorem) Let $\{Z_n, \mathcal{F}_n\}_{n=1}^{\infty}$ be a submartingale. Suppose $\sup_n \mathbb{E} Z_n^+ < \infty$.

Then there is a random variable Z taking values in $[-\infty, \infty)$ such that $Z_n \to Z$ a.s.

Proof: Recall that $\{Z_n, \mathcal{F}_n\}_{n=1}^{\infty}$ is a submartingale with $\sup_n \mathbb{E} Z_n^+ < \infty$. Let $M = \sup_n \mathbb{E} Z_n^+ < \infty$.

In the previous lecture, we reduced the problem to showing that for any a < b with $a, b \in \mathbb{Q}$,

$$P\{\liminf Z_n < a, \text{ and } \limsup Z_n > b\} = 0.$$

Fix some a < b. Let $Z_n^* := (Z_n - a)^+$. Since $f(x) = (x - a)^+$ is a non-decreasing convex function, $\{Z_n^*\}$ is a non-negative submartingale.

If $\liminf Z_n < a$ and $\limsup Z_n > b$, then Z_n^* has infinitely many upcrossings of [0, b-a]. Let β_n be the number of complete upcrossings of [0, b-a] by $\{Z_n^*\}$ within time n, and let β be the total number of complete crossings by $\{Z_n^*\}$. Then, $\beta_n \nearrow \beta$ and $\mathbb{E}\beta = \lim \mathbb{E}\beta_n$ by the Monotone Convergence Theorem.

Lecture 5: January 24 5-3

By Lemma 5.3,

$$\mathbb{E}\beta_n \le \frac{1}{(b-a)} \mathbb{E}Z_n^*$$

$$= \frac{\mathbb{E}(Z_n - a)^+}{b-a}$$

$$\le \frac{\mathbb{E}Z_n^+ + |a|}{b-a}$$

$$\le \frac{M + |a|}{b-a}$$

for all n. Hence, $\mathbb{E}\beta < \infty$ and so $\beta < \infty$ a.s.. This implies that

$$P\{\liminf Z_n < a, \text{ and } \limsup Z_n > b\} = 0,$$

as required.

Corollary 5.5 If $\{Z_n\}$ is a non-negative martingale, then $\lim Z_n$ exists a.s. in $[0,\infty]$.

Proof: $\{-Z_n\}$ is a submartingale, and $(-Z_n)^+ = 0$ a.s., implying that $\sup \mathbb{E}[(-Z_n)^+] = 0$. Thus, $\lim(-Z_n)$ exists a.s. in $[-\infty, \infty)$.

5.2 Pólya's Urn Model

An urn contains one black and one white ball. Each time, you pick a ball at random and put it back into the urn, together with another ball of the same color. (Number of balls at time n is n + 2.)

Let B_n be the proportion of black balls at time n, \mathcal{F}_n be the σ -algebra generated by all events up to time n. Then

$$\mathbb{E}[B_{n+1} \mid \mathcal{F}_n] = (B_{n+1} \mid \text{black ball picked}) P\{\text{black ball picked}\}$$

$$+ (B_{n+1} \mid \text{white ball picked}) P\{\text{white ball picked}\}$$

$$= \frac{(n+2)B_n + 1}{n+3} \cdot B_n + \frac{(n+2)B_n}{n+3} \cdot (1 - B_n)$$

$$= \frac{(n+2)B_n^2 + B_n + (n+2)B_n - (n+2)B_n^2}{n+3}$$

$$= B_n.$$

Thus, $\{B_n, \mathcal{F}_n\}$ is a non-negative martingale. By the Martingale Convergence Theorem, $B = \lim B_n$ exists. In fact, $B \sim \text{Unif}[0,1]$.

5.3 Uniform Integrability

Definition 5.6 A sequence of random variables $\{X_n\}$ is uniformly integrable if:

1. $\mathbb{E}|X_n| < \infty$ for all n, and

5-4

2.

$$\lim_{a \to \infty} \sup_{n} \mathbb{E}(|X_n|; |X_n| \ge a) = 0.$$

A single random variable X with $\mathbb{E}|X| < \infty$ is uniformly integrable: the conditions hold by the Dominated Convergence Theorem.

Lemma 5.7 If $\{X_n\}$ is uniformly integrable, then $\sup_n \mathbb{E}|X_n| < \infty$.

Proof: Choose a such that $\mathbb{E}(|X_n|;|X_n|\geq a)\leq 1$ for all n. Then

$$\mathbb{E}|X_n| \le a + \mathbb{E}(|X_n|; |X_n| \ge a) \le a + 1.$$