The Matrix Singular Value Decomposition

The Singular Value Decomposition (SVD) of a matrix $A \in \mathbb{R}^{n \times m}$ is a decomposition of the form

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ are orthogonal matrices and $\Sigma := \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) \in \mathbb{R}^{n \times m}$ is a diagonal matrix with

$$\sigma_1 \geq \sigma_2 \geq \cdots \sigma_p \geq 0$$

for $p = \min\{n, m\}$.

The Singular Value Decomposition (SVD) of a matrix $A \in \mathbb{R}^{n \times m}$ is a decomposition of the form

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ are orthogonal matrices and $\Sigma := \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) \in \mathbb{R}^{n \times m}$ is a diagonal matrix with

$$\sigma_1 \geq \sigma_2 \geq \cdots \sigma_p \geq 0$$

for $p = \min\{n, m\}$.

If A is a complex $n \times m$ matrix, then the above decomposition holds with T replaced by * so that U and V are unitary matrices. However Σ remains unchanged.

The Singular Value Decomposition (SVD) of a matrix $A \in \mathbb{R}^{n \times m}$ is a decomposition of the form

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{n \times n}$ and $V \in \mathbb{R}^{m \times m}$ are orthogonal matrices and $\Sigma := \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) \in \mathbb{R}^{n \times m}$ is a diagonal matrix with

$$\sigma_1 \geq \sigma_2 \geq \cdots \sigma_p \geq 0$$

for $p = \min\{n, m\}$.

If A is a complex $n \times m$ matrix, then the above decomposition holds with T replaced by * so that U and V are unitary matrices. However Σ remains unchanged.

The numbers $\sigma_1, \sigma_2, \dots, \sigma_p$ are called the singular values of A.

Every matrix has an SVD. For example, the SVD of

$$A := \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T,$$

Every matrix has an SVD. For example, the SVD of

$$A := \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right] = \left[\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right] \left[\begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right]^T,$$

$$B := \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}',$$

Every matrix has an SVD. For example, the SVD of

$$A := \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T,$$

$$B := \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^{T},$$

$$D := \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}^T.$$

Every matrix has an SVD. For example, the SVD of

$$A := \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right] = \left[\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right] \left[\begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right]^T,$$

$$B := \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^T,$$

$$D := \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}^T.$$

Clearly if $A = U \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) V^T$ is the SVD of A and rank A = r, then the first r singular values $\sigma_1 \ge \dots \ge \sigma_r > 0$ with $\sigma_k = 0$ for $k = r + 1, \dots, p$ if r < p.

If
$$U = [u_1 \cdots u_n]$$
 and $V = [v_1 \cdots v_m]$, then for $i = 1, \dots, p$,

$$Av_i = \sigma_i u_i$$
 and $u_i^* A = \sigma_i v_i^*$

Hence u_i and v_i are respectively left and right singular vectors of A corresponding to σ_i .

If
$$U = [u_1 \cdots u_n]$$
 and $V = [v_1 \cdots v_m]$, then for $i = 1, \dots, p$,

$$Av_i = \sigma_i u_i$$
 and $u_i^* A = \sigma_i v_i^*$

Hence u_i and v_i are respectively left and right singular vectors of A corresponding to σ_i .

Theorem Every matrix has a Singular Value Decomposition.

If
$$U = [u_1 \cdots u_n]$$
 and $V = [v_1 \cdots v_m]$, then for $i = 1, \dots, p$,

$$Av_i = \sigma_i u_i$$
 and $u_i^* A = \sigma_i v_i^*$

Hence u_i and v_i are respectively left and right singular vectors of A corresponding to σ_i .

Theorem Every matrix has a Singular Value Decomposition.

(a)
$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$$

If
$$U = [u_1 \cdots u_n]$$
 and $V = [v_1 \cdots v_m]$, then for $i = 1, \dots, p$,

$$Av_i = \sigma_i u_i$$
 and $u_i^* A = \sigma_i v_i^*$

Hence u_i and v_i are respectively left and right singular vectors of A corresponding to σ_i .

Theorem Every matrix has a Singular Value Decomposition.

(a)
$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$$
 (Exercise!)

If
$$U = [u_1 \cdots u_n]$$
 and $V = [v_1 \cdots v_m]$, then for $i = 1, \dots, p$,

$$Av_i = \sigma_i u_i$$
 and $u_i^* A = \sigma_i v_i^*$

Hence u_i and v_i are respectively left and right singular vectors of A corresponding to σ_i .

Theorem Every matrix has a Singular Value Decomposition.

- (a) $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$ (Exercise!)
- (b) $A^* = V \Sigma^T U^*$ is an SVD of A^* .

If
$$U = [u_1 \cdots u_n]$$
 and $V = [v_1 \cdots v_m]$, then for $i = 1, \dots, p$,

$$Av_i = \sigma_i u_i$$
 and $u_i^* A = \sigma_i v_i^*$

Hence u_i and v_i are respectively left and right singular vectors of A corresponding to σ_i .

Theorem Every matrix has a Singular Value Decomposition.

- (a) $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$ (Exercise!)
- (b) $A^* = V \Sigma^T U^*$ is an SVD of A^* . (Exercise!)

If
$$U = [u_1 \cdots u_n]$$
 and $V = [v_1 \cdots v_m]$, then for $i = 1, \dots, p$, $Av_i = \sigma_i u_i$ and $u_i^* A = \sigma_i v_i^*$

Hence u_i and v_i are respectively left and right singular vectors of A corresponding to σ_i .

Theorem Every matrix has a Singular Value Decomposition.

- (a) $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$ (Exercise!)
- (b) $A^* = V\Sigma^T U^*$ is an SVD of A^* . (Exercise!)
- (c)

$$R(A) = \text{span}\{u_1, \dots, u_r\},$$
 $N(A) = \text{span}\{v_{r+1}, \dots, v_m\}$
 $R(A^*) = \text{span}\{v_1, \dots, v_r\}$ $N(A^*) = \text{span}\{u_{r+1}, \dots, u_n\}.$

If
$$U = [u_1 \cdots u_n]$$
 and $V = [v_1 \cdots v_m]$, then for $i = 1, \dots, p$, $Av_i = \sigma_i u_i$ and $u_i^* A = \sigma_i v_i^*$

Hence u_i and v_i are respectively left and right singular vectors of A corresponding to σ_i .

Theorem Every matrix has a Singular Value Decomposition.

- (a) $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$ (Exercise!)
- (b) $A^* = V\Sigma^T U^*$ is an SVD of A^* . (Exercise!)
- (c)

$$R(A) = \text{span}\{u_1, \dots, u_r\},$$
 $N(A) = \text{span}\{v_{r+1}, \dots, v_m\}$
 $R(A^*) = \text{span}\{v_1, \dots, v_r\}$ $N(A^*) = \text{span}\{u_{r+1}, \dots, u_n\}.$

(d)
$$||A||_2 = \sigma_1$$
.

If
$$U = [u_1 \cdots u_n]$$
 and $V = [v_1 \cdots v_m]$, then for $i = 1, \dots, p$,

$$Av_i = \sigma_i u_i$$
 and $u_i^* A = \sigma_i v_i^*$

Hence u_i and v_i are respectively left and right singular vectors of A corresponding to σ_i .

Theorem Every matrix has a Singular Value Decomposition.

Theorem Let $A = U\Sigma V^*$ be an SVD of $A \in \mathbb{F}^{n \times m}$ with rank A = r.

(a)
$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$$
 (Exercise!)

(b)
$$A^* = V\Sigma^T U^*$$
 is an SVD of A^* . (Exercise!)

(c)

$$R(A) = \text{span}\{u_1, \dots, u_r\},$$
 $N(A) = \text{span}\{v_{r+1}, \dots, v_m\}$
 $R(A^*) = \text{span}\{v_1, \dots, v_r\}$ $N(A^*) = \text{span}\{u_{r+1}, \dots, u_n\}.$

(d)
$$||A||_2 = \sigma_1$$
.

(e)
$$||A||_F = \sqrt{\sum_{k=1}^r \sigma_k^2}$$
.

(Here
$$\mathbb{F} = \mathbb{R}$$
 or $\mathbb{F} = \mathbb{C}$.)

Corollary Let $A = U\Sigma V^*$ be an SVD of $A \in \mathbb{F}^{n \times m}$.

(a) If A is square and nonsingular, then $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$ is an SVD of A^{-1} and where F is the $n \times n$ 'flip' matrix and $||A^{-1}||_2 = \frac{1}{\sigma_n}$.

Corollary Let $A = U\Sigma V^*$ be an SVD of $A \in \mathbb{F}^{n \times m}$.

(a) If A is square and nonsingular, then $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$ is an SVD of A^{-1} and where F is the $n \times n$ 'flip' matrix and $||A^{-1}||_2 = \frac{1}{\sigma_n}$. (Exercise!)

- (a) If A is square and nonsingular, then $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$ is an SVD of A^{-1} and where F is the $n \times n$ 'flip' matrix and $||A^{-1}||_2 = \frac{1}{\sigma_n}$. (Exercise!)
- (b) If $p = \min\{m, n\}$, then assuming $\kappa_2(A) = \frac{\max a_A^I}{\min a_B A^T}$ if n < m, $\kappa_2(A) = \begin{cases} \frac{\sigma_1}{\sigma_p} & \text{if rank } A = p, \\ \infty & \text{otherwise} \end{cases}$

- (a) If A is square and nonsingular, then $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$ is an SVD of A^{-1} and where F is the $n \times n$ 'flip' matrix and $||A^{-1}||_2 = \frac{1}{\sigma_n}$. (Exercise!)
- (b) If $p = \min\{m, n\}$, then assuming $\kappa_2(A) = \frac{\max \operatorname{ag} A^T}{\min \operatorname{ag} A^T}$ if n < m, $\kappa_2(A) = \begin{cases} \frac{\sigma_1}{\sigma_p} & \text{if } \operatorname{rank} A = p, \\ \infty & \text{otherwise} \end{cases}$ (Exercise!)

- (a) If A is square and nonsingular, then $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$ is an SVD of A^{-1} and where F is the $n \times n$ 'flip' matrix and $||A^{-1}||_2 = \frac{1}{\sigma_n}$. (Exercise!)
- (b) If $p = \min\{m, n\}$, then assuming $\kappa_2(A) = \frac{\max a A^T}{\min A A}$ if n < m, $\kappa_2(A) = \begin{cases} \frac{\sigma_1}{\sigma_p} & \text{if rank } A = p, \\ \infty & \text{otherwise} \end{cases}$ (Exercise!)
- (c) Assuming, $\sigma_k = 0$ for $k > \min\{m, n\}$, $A^*Av_i = \sigma_i^2 v_i$, i = 1, ..., m, and $AA^*u_j = \sigma_j^2 u_j$, j = 1, ..., n.

- (a) If A is square and nonsingular, then $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$ is an SVD of A^{-1} and where F is the $n \times n$ 'flip' matrix and $\|A^{-1}\|_2 = \frac{1}{\sigma_n}$. (Exercise!)
- (b) If $p = \min\{m, n\}$, then assuming $\kappa_2(A) = \frac{\max a A^T}{\min A A}$ if n < m, $\kappa_2(A) = \begin{cases} \frac{\sigma_1}{\sigma_p} & \text{if rank } A = p, \\ \infty & \text{otherwise} \end{cases}$ (Exercise!)
- (c) Assuming, $\sigma_k = 0$ for $k > \min\{m, n\}$, $A^*Av_i = \sigma_i^2v_i$, i = 1, ..., m, and $AA^*u_j = \sigma_j^2u_j$, j = 1, ..., n. (Exercise!)

- (a) If A is square and nonsingular, then $A^{-1} = (VF)(F\Sigma^{-1}F)(UF)^*$ is an SVD of A^{-1} and where F is the $n \times n$ 'flip' matrix and $||A^{-1}||_2 = \frac{1}{\sigma_n}$. (Exercise!)
- (b) If $p = \min\{m, n\}$, then assuming $\kappa_2(A) = \frac{\max A^T}{\min A}$ if n < m, $\kappa_2(A) = \begin{cases} \frac{\sigma_1}{\sigma_p} & \text{if rank } A = p, \\ \infty & \text{otherwise} \end{cases}$ (Exercise!)
- (c) Assuming, $\sigma_k = 0$ for $k > \min\{m, n\}$, $A^*Av_i = \sigma_i^2 v_i$, i = 1, ..., m, and $AA^*u_j = \sigma_i^2 u_j$, j = 1, ..., n. (Exercise!)
- (d) If n=m and A is a singular matrix, then for any $\epsilon>0$, there exists a nonsingular matrix $B\in\mathbb{F}^{n\times n}$ such that $\|A-B\|_2<\epsilon$.

Condensed Singular Value Decomposition

Let $A = U\Sigma V^*$ be an SVD of $A \in \mathbb{F}^{n \times m}$ with rank A = r. Let $U = [u_1 \ u_2 \cdots u_r] \in \mathbb{F}^{n \times r}, \ V_r = [v_1 \ v_2 \cdots v_r] \in \mathbb{F}^{m \times r}$ and $\Sigma_r = \mathrm{diag}(\sigma_1, \ldots \sigma_r) \in \mathbb{F}^{r \times r}$. Then

$$A = U_r \Sigma_r V_r^*$$

is called the Condensed Singular Value Decomposition of A.

Condensed Singular Value Decomposition

Let $A = U\Sigma V^*$ be an SVD of $A \in \mathbb{F}^{n \times m}$ with rank A = r. Let $U = [u_1 \ u_2 \cdots u_r] \in \mathbb{F}^{n \times r}, \ V_r = [v_1 \ v_2 \cdots v_r] \in \mathbb{F}^{m \times r}$ and $\Sigma_r = \operatorname{diag}(\sigma_1, \dots \sigma_r) \in \mathbb{F}^{r \times r}$. Then

$$A = U_r \Sigma_r V_r^*$$

is called the Condensed Singular Value Decomposition of A.

Computing the Condensed SVD for small matrices:

- 1. Find the nonzero eigenvalues, say λ_i , i = 1, ..., r, of A^*A or AA^* , whichever is smaller in size and corresponding eigenvectors. Here rank A = r.
- 2. Set $\Sigma_r = \operatorname{diag}(\sigma_1 \cdots \sigma_r)$ where $\sigma_i = \sqrt{\lambda_i}, i = 1, \dots, r$.
- 3. If the eigenvectors of A^*A were found, call them $v_i, i = 1, \ldots, r$. Compute $u_i = \frac{v_i}{\sigma_i}, i = 1, \ldots, r$ and set $U_r = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix}$. Otherwise if the eigenvectors of AA^* were found, call them $u_i, i = 1, \ldots, r$. Compute $v_i = \frac{u_i}{\sigma_i}, i = 1, \ldots, r$, and set $V_r = \begin{bmatrix} v_1 & \cdots & v_r \end{bmatrix}$.
- 4. Then $A = U_r \Sigma_r V_r^*$ is a Condensed SVD of A.

Let $A = U\Sigma V^*$ be an SVD of $A \in \mathbb{F}^{n \times m}$ with rank A = r. The Moore-Penrose pseudoinverse A^{\dagger} of A is defined as

$$A^{\dagger} := V \Sigma^{\dagger} U^*$$

where $\Sigma^{\dagger} = \operatorname{diag}(\sigma_1^{-1}, \dots, \sigma_r^{-1}, 0, \dots 0) \in \mathbb{R}^{m \times n}$.

Let $A = U\Sigma V^*$ be an SVD of $A \in \mathbb{F}^{n \times m}$ with rank A = r. The Moore-Penrose pseudoinverse A^{\dagger} of A is defined as

$$A^{\dagger} := V \Sigma^{\dagger} U^*$$

where $\Sigma^{\dagger} = \text{diag}(\sigma_1^{-1}, \dots, \sigma_r^{-1}, 0, \dots 0) \in \mathbb{R}^{m \times n}$.

Examples: The SVD of

$$A := \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right] = \left[\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right] \left[\begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{array} \right]'.$$

Therefore,

$$A^{\dagger} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}^{T} = \begin{bmatrix} -1/3 & 2/3 \\ -2/3 & -1/3 \end{bmatrix} = A^{-1}.$$

The SVD of

$$B := \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}'.$$

Therefore,

$$B^{\dagger} = \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} \\ 0 \end{bmatrix} [1] = \begin{bmatrix} 1/5 \\ 2/5 \end{bmatrix}$$

The SVD of

$$B := \begin{bmatrix} 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}^{T}.$$

Therefore,

$$B^{\dagger} = \begin{bmatrix} \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{5}} \\ 0 \end{bmatrix} [1] = \begin{bmatrix} 1/5 \\ 2/5 \end{bmatrix}$$

Finally the SVD of

$$D := \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}^T.$$

Therefore,

$$D^{\dagger} = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^{T} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Properties of the Moore-Penrose Pseudoinverse

Theorem Let $A \in \mathbb{F}^{n \times m}$. Then,

- (a) $A^{-1} = A^{\dagger}$ if n = m and A is nonsingular. (Exercise!)
- (b) $A^{\dagger} = (A^*A)^{-1}A^*$ if rank A = m (Exercise!)
- (c) $A^{\dagger} = A^*(AA^*)^{-1}$ if rank A = n. (Exercise!)
- (d) $(AA^{\dagger})^* = AA^{\dagger}$, $(A^{\dagger}A)^* = A^{\dagger}A$, $AA^{\dagger}A = A$, $A^{\dagger}AA^{\dagger} = A^{\dagger}$.

Also, if $B \in \mathbb{F}^{m \times n}$, such that $(AB)^* = AB$, $(BA)^* = BA$, ABA = A, BAB = B, then $B = A^{\dagger}$. (Exercise!)

- (f) $(A^{\dagger})^* = (A^*)^{\dagger}$. (Exercise!)
- (g) $A^{\dagger} = V_r \Sigma_r^{-1} U_r^*$. (Exercise!)

Moore-Penrose Pseudoinverse and the LSP

Theorem Let Ax = b where $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$ with $n \ge m$. Then $x_0 = A^{\dagger}b$ is the unique least squares solution of the system Ax = b if rank A = m.

If $\operatorname{rank} A < m$, then x_0 is the least squares solution of the system with the smallest 2-norm.

Moore-Penrose Pseudoinverse and the LSP

Theorem Let Ax = b where $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$ with $n \ge m$. Then $x_0 = A^{\dagger}b$ is the unique least squares solution of the system Ax = b if rank A = m.

If rank A < m, then x_0 is the least squares solution of the system with the smallest 2-norm.

The main flop count of solving the LSP problem associated with an overdetermined system Ax = b is that of computing the Condensed SVD of A.

Eckart-Young Theorem

Theorem[Schmidt, 1907], [Eckart & Young, 1936] Let $A \in \mathbb{F}^{n \times m}$ with rank A = r. Let $A = U\Sigma V^*$ be an SVD of A. For $k = 1, \dots, r-1$, define

$$A_k = U\Sigma_k V^*$$

where $\Sigma_k = \operatorname{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, 0) \in \mathbb{R}^{n \times m}$ is a diagonal matrix. Then rank $A_k = k$ and

$$\|A - A_k\|_2 = \min\{\|A - B\|_2 : B \in \mathbb{F}^{n \times m} \text{ with rank } B \le k\} = \sigma_{k+1}.$$

Eckart-Young Theorem

Theorem[Schmidt, 1907], [Eckart & Young, 1936] Let $A \in \mathbb{F}^{n \times m}$ with rank A = r. Let $A = U \Sigma V^*$ be an SVD of A. For $k = 1, \ldots, r - 1$, define

$$A_k = U\Sigma_k V^*$$

where $\Sigma_k = \operatorname{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, 0) \in \mathbb{R}^{n \times m}$ is a diagonal matrix. Then rank $A_k = k$ and

$$\|A - A_k\|_2 = \min\{\|A - B\|_2 : B \in \mathbb{F}^{n \times m} \text{ with rank } B \le k\} = \sigma_{k+1}.$$

Corollary Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Let $A = U \Sigma V^*$ be an SVD of A. Then,

$$\sigma_n = \min\{\|A - B\|_2 : B \in \mathbb{F}^{n \times n} \text{ is singular}\}.$$

(Exercise!)

Eckart-Young Theorem

Theorem[Schmidt, 1907], [Eckart & Young, 1936] Let $A \in \mathbb{F}^{n \times m}$ with rank A = r. Let $A = U \Sigma V^*$ be an SVD of A. For $k = 1, \dots, r-1$, define

$$A_k = U\Sigma_k V^*$$

where $\Sigma_k = \operatorname{diag}(\sigma_1, \dots, \sigma_k, 0, \dots, 0) \in \mathbb{R}^{n \times m}$ is a diagonal matrix. Then rank $A_k = k$ and

$$\|A - A_k\|_2 = \min\{\|A - B\|_2 : B \in \mathbb{F}^{n \times m} \text{ with rank } B \le k\} = \sigma_{k+1}.$$

Corollary Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Let $A = U \Sigma V^*$ be an SVD of A. Then,

$$\sigma_n = \min\{\|A - B\|_2 : B \in \mathbb{F}^{n \times n} \text{ is singular}\}.$$

(Exercise!)

Corollary Let $A \in \mathbb{F}^{n \times n}$ be nonsingular. Then,

$$\frac{1}{\kappa_2(A)} = \min \left\{ \frac{\|\Delta A\|_2}{\|A\|_2} : A + \Delta A \text{ is singular} \right\}$$

(Exercise!)

Numerical rank determination via SVD

Let $A = U\Sigma V^*$ be an SVD of an $n \times m$ real or complex matrix A with

$$\Sigma := \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) \in \mathbb{R}^{n \times m}$$

where $\sigma_1 \ge \sigma_2 \ge \cdots \sigma_p \ge 0$ for $p = \min\{n, m\}$. If rank A = r, then $r \le p$. In particular if r < p, then

$$\sigma_1 \geq \sigma_2 \geq \cdots \sigma_r > 0 = \sigma_{r+1} = \cdots = \sigma_p$$
.

However, due to rounding error, the computed singular values of *A* are likely to satisfy

$$\sigma_1 \ge \sigma_2 \ge \cdots \sigma_k > \epsilon >> \sigma_{k+1} \ge \cdots \ge \sigma_p \ge 0$$

for some $1 \le k \le p$, where $0 < \epsilon << 1$.

Numerical rank determination via SVD

Let $A = U\Sigma V^*$ be an SVD of an $n \times m$ real or complex matrix A with

$$\Sigma := \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) \in \mathbb{R}^{n \times m}$$

where $\sigma_1 \ge \sigma_2 \ge \cdots \sigma_p \ge 0$ for $p = \min\{n, m\}$. If rank A = r, then $r \le p$. In particular if r < p, then

$$\sigma_1 \geq \sigma_2 \geq \cdots \sigma_r > 0 = \sigma_{r+1} = \cdots = \sigma_p$$
.

However, due to rounding error, the computed singular values of *A* are likely to satisfy

$$\sigma_1 \ge \sigma_2 \ge \cdots \sigma_k > \epsilon >> \sigma_{k+1} \ge \cdots \ge \sigma_p \ge 0$$

for some $1 \le k \le p$, where $0 < \epsilon << 1$.

In such cases, we may set $\sigma_j = 0$, for j = k + 1, ..., p, and state that the *numerical rank* of A is k.

Numerical rank determination via SVD

Let $A = U\Sigma V^*$ be an SVD of an $n \times m$ real or complex matrix A with

$$\Sigma := \operatorname{diag}(\sigma_1, \sigma_2, \dots \sigma_p) \in \mathbb{R}^{n \times m}$$

where $\sigma_1 \ge \sigma_2 \ge \cdots \sigma_p \ge 0$ for $p = \min\{n, m\}$. If rank A = r, then $r \le p$. In particular if r < p, then

$$\sigma_1 \geq \sigma_2 \geq \cdots \sigma_r > 0 = \sigma_{r+1} = \cdots = \sigma_p$$
.

However, due to rounding error, the computed singular values of *A* are likely to satisfy

$$\sigma_1 \ge \sigma_2 \ge \cdots \sigma_k > \epsilon >> \sigma_{k+1} \ge \cdots \ge \sigma_p \ge 0$$

for some $1 \le k \le p$, where $0 < \epsilon << 1$.

In such cases, we may set $\sigma_j = 0$, for j = k + 1, ..., p, and state that the *numerical rank* of A is k.

If the entries of A are affected only by rounding error, then we may set $\epsilon=2\max\{n,m\}u\|A\|_2$. This is the default threshold for Matlab's rank command which can be modified by the user.