ICS>pushtofit_Callback (1 call, 66.754 sec)

Generated 24-Jan-2013 12:04:43 using cpu time. subfunction in file home/dsk03/ugrad/oqadri/Downloads/ICS with Poisson N/ICS.m

Copy to new window for comparing multiple runs

Refresh

Show parent functions

Show busy lines

Show child functions

✓ Show Code Analyzer results ✓ Show file coverage ✓ Show function listing

Parents (calling functions)

Function Name	Function Type	Calls
gui_mainfcn	function	1

Lines where the most time was spent

Line Number	Code	Calls	Total Time	% Time	Time Plot
3917	r1(nbihlfp + v1, nbihlfp + u1,	400384	5.995 s	9.0%	•
3937	end	368640	4.746 s	7.1%	•
<u>3935</u>	r1(nbihlfp + v1, nbihlfp + u1,	368640	4.715 s	7.1%	•
<u>3919</u>	end	400384	4.465 s	6.7%	•
3920	end	400384	3.997 s	6.0%	•
All other lines			42.838 s	64.2%	
Totals			66.754 s	100%	

Children (called functions)

Function Name	Function Type	Calls	Total Time	% Time	Time Plot
lsqcurvefit	function	7	18.359 s	27.5%	_
inputdlg	function	2	4.059 s	6.1%	•
surfc	function	3	1.218 s	1.8%	1
dlmwrite	function	23	0.843 s	1.3%	I
<u>optimset</u>	function	7	0.375 s	0.6%	I
newplot	function	7	0.312 s	0.5%	
imread	function	1	0.125 s	0.2%	
str2double	function	2	0.094 s	0.1%	
fft2	function	12	0.094 s	0.1%	
num2str	function	7	0.062 s	0.1%	
fftshift	function	5	0.062 s	0.1%	

01/24/2013 04:21 PM 1 of 28

axis	function	6	0.062 s	0.1%	
fullfile	function	15	0.062 s	0.1%	
ifft2	function	6	0.062 s	0.1%	
Gausshalf	function	1	0.031 s	0.0%	
colormap	function	2	0.031 s	0.0%	
Crosscorrelation	function	3	0.031 s	0.0%	
guidata	function	9	0.031 s	0.0%	
lineseries	function	7	0.031 s	0.0%	
initprintexporttemplate	function	10	0 s	0%	
Autocorrelation	function	3	0 s	0%	
isdir	function	1	0 s	0%	
Self time (built-ins, overhead, etc.)			40.808 s	61.1%	
Totals			66.754 s	100%	

Code Analyzer results				
Line number	Message			
2587	The function 'pushtofit_Callback' might be unused.			
<u>2587</u>	Input argument 'eventdata' might be unused, although a later one is used. Consider replacing it by \sim .			
<u>2629</u>	The variable 'gRnew' appears to change size on every loop iteration. Consider preallocating for speed.			
<u>2629</u>	The variable 'gRnew' appears to change size on every loop iteration. Consider preallocating for speed.			
<u>2661</u>	The variable 'newcorredfit1' appears to change size on every loop iteration. Consider preallocating for speed.			
<u>2665</u>	The variable 'newcorred1' appears to change size on every loop iteration. Consider preallocating for speed.			
2714	The variable 'gGnew' appears to change size on every loop iteration. Consider preallocating for speed.			
2714	The variable 'gGnew' appears to change size on every loop iteration. Consider preallocating for speed.			
2748	The variable 'newcorgreenfit1' appears to change size on every loop iteration. Consider preallocating for speed.			
<u>2752</u>	The variable 'newcorgreen1' appears to change size on every loop iteration. Consider preallocating for speed.			
2799	The variable 'gBnew' appears to change size on every loop iteration. Consider preallocating for speed.			
2799	The variable 'gBnew' appears to change size on every loop iteration. Consider preallocating for speed.			
2834	The variable 'newcorbluefit1' appears to change size on every loop iteration. Consider preallocating for speed.			
2838	The variable 'newcorblue1' appears to change size on every loop iteration. Consider preallocating for speed.			

/XX /	The variable 'gRGnew' appears to change size on every loop iteration. Consider preallocating for speed.
/XX /	The variable 'gRGnew' appears to change size on every loop iteration. Consider preallocating for speed.
/u/i	The variable 'newcorrgfit1' appears to change size on every loop iteration. Consider preallocating for speed.
7475	The variable 'newcorrg1' appears to change size on every loop iteration. Consider preallocating for speed.
7477	The variable 'gRBnew' appears to change size on every loop iteration. Consider preallocating for speed.
7977	The variable 'gRBnew' appears to change size on every loop iteration. Consider preallocating for speed.
KIIIIh	The variable 'newcorrbfit1' appears to change size on every loop iteration. Consider preallocating for speed.
3010	The variable 'newcorrb1' appears to change size on every loop iteration. Consider preallocating for speed.
3115X	The variable 'gGBnew' appears to change size on every loop iteration. Consider preallocating for speed.
3115 X	The variable 'gGBnew' appears to change size on every loop iteration. Consider preallocating for speed.
311U /	The variable 'newcorgbfit1' appears to change size on every loop iteration. Consider preallocating for speed.
3119h	The variable 'newcorgb1' appears to change size on every loop iteration. Consider preallocating for speed.
3259	FOR might not be aligned with its matching END (line 3270).
3/h/	The variable 'testmatrix1' appears to change size on every loop iteration. Consider preallocating for speed.
3/h/	The variable 'testmatrix1' appears to change size on every loop iteration. Consider preallocating for speed.
3/h3	The variable 'testmatrix2' appears to change size on every loop iteration. Consider preallocating for speed.
3/h3	The variable 'testmatrix2' appears to change size on every loop iteration. Consider preallocating for speed.
3/h4	The variable 'testmatrix3' appears to change size on every loop iteration. Consider preallocating for speed.
3/h4	The variable 'testmatrix3' appears to change size on every loop iteration. Consider preallocating for speed.
3/h5	The variable 'testmatrix4' appears to change size on every loop iteration. Consider preallocating for speed.
3765	The variable 'testmatrix4' appears to change size on every loop iteration. Consider preallocating for speed.
3/hh	The variable 'testmatrix5' appears to change size on every loop iteration. Consider preallocating for speed.
3/hh	The variable 'testmatrix5' appears to change size on every loop iteration. Consider preallocating for speed.
3/h/	The variable 'testmatrix6' appears to change size on every loop iteration. Consider preallocating for speed.
3/h/	The variable 'testmatrix6' appears to change size on every loop iteration. Consider preallocating for speed.

<u>3276</u>	The variable 'newtricorre1' appears to change size on every loop iteration. Consider preallocating for speed.
3277	The variable 'newtricorre2' appears to change size on every loop iteration. Consider preallocating for speed.
3278	The variable 'newtricorre3' appears to change size on every loop iteration. Consider preallocating for speed.
3280	The variable 'newtricorre4' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3281</u>	The variable 'newtricorre5' appears to change size on every loop iteration. Consider preallocating for speed.
3283	The variable 'newtricorre6' appears to change size on every loop iteration. Consider preallocating for speed.
3284	The variable 'newtricorre7' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3285</u>	The variable 'newtricorre8' appears to change size on every loop iteration. Consider preallocating for speed.
3287	The variable 'newtricorre9' appears to change size on every loop iteration. Consider preallocating for speed.
3288	The variable 'newtricorre10' appears to change size on every loop iteration. Consider preallocating for speed.
3290	The variable 'newtricorre11' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3291</u>	The variable 'newtricorre12' appears to change size on every loop iteration. Consider preallocating for speed.
3293	The variable 'newtricorre13' appears to change size on every loop iteration. Consider preallocating for speed.
3294	The variable 'newtricorre14' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3325</u>	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
3403	The variable 'gRnew' appears to change size on every loop iteration. Consider preallocating for speed.
3403	The variable 'gRnew' appears to change size on every loop iteration. Consider preallocating for speed.
3436	The variable 'newcorredfit1' appears to change size on every loop iteration. Consider preallocating for speed.
3440	The variable 'newcorred1' appears to change size on every loop iteration. Consider preallocating for speed.
3479	The variable 'gGnew' appears to change size on every loop iteration. Consider preallocating for speed.
3479	The variable 'gGnew' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3513</u>	The variable 'newcorgreenfit1' appears to change size on every loop iteration. Consider preallocating for speed.
3517	The variable 'newcorgreen1' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3555</u>	The variable 'gBnew' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3555</u>	The variable 'gBnew' appears to change size on every loop iteration. Consider preallocating for speed.

<u>3590</u>	The variable 'newcorbluefit1' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3594</u>	The variable 'newcorblue1' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3632</u>	The variable 'gRGnew' appears to change size on every loop iteration. Consider preallocating for speed.
3632	The variable 'gRGnew' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3666</u>	The variable 'newcorrgfit1' appears to change size on every loop iteration. Consider preallocating for speed.
3670	The variable 'newcorrg1' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3712</u>	The variable 'gRBnew' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3712</u>	The variable 'gRBnew' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3745</u>	The variable 'newcorrbfit1' appears to change size on every loop iteration. Consider preallocating for speed.
3749	The variable 'newcorrb1' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3793</u>	The variable 'gGBnew' appears to change size on every loop iteration. Consider preallocating for speed.
<u>3793</u>	The variable 'gGBnew' appears to change size on every loop iteration. Consider preallocating for speed.
3827	The variable 'newcorgbfit1' appears to change size on every loop iteration. Consider preallocating for speed.
3831	The variable 'newcorgb1' appears to change size on every loop iteration. Consider preallocating for speed.
3998	The variable 'testmatrix1' appears to change size on every loop iteration. Consider preallocating for speed.
3998	The variable 'testmatrix1' appears to change size on every loop iteration. Consider preallocating for speed.
3999	The variable 'testmatrix2' appears to change size on every loop iteration. Consider preallocating for speed.
3999	The variable 'testmatrix2' appears to change size on every loop iteration. Consider preallocating for speed.
4000	The variable 'testmatrix3' appears to change size on every loop iteration. Consider preallocating for speed.
4000	The variable 'testmatrix3' appears to change size on every loop iteration. Consider preallocating for speed.
<u>4001</u>	The variable 'testmatrix4' appears to change size on every loop iteration. Consider preallocating for speed.
<u>4001</u>	The variable 'testmatrix4' appears to change size on every loop iteration. Consider preallocating for speed.
<u>4002</u>	The variable 'testmatrix5' appears to change size on every loop iteration. Consider preallocating for speed.
4002	The variable 'testmatrix5' appears to change size on every loop iteration. Consider preallocating for speed.
4003	The variable 'testmatrix6' appears to change size on every loop iteration. Consider preallocating for speed.

<u>4003</u>	The variable 'testmatrix6' appears to change size on every loop iteration. Consider preallocating for speed.
4011	The variable 'newtricorre1' appears to change size on every loop iteration. Consider preallocating for speed.
4012	The variable 'newtricorre2' appears to change size on every loop iteration. Consider preallocating for speed.
<u>4015</u>	The variable 'newtricorre4' appears to change size on every loop iteration. Consider preallocating for speed.
<u>4016</u>	The variable 'newtricorre5' appears to change size on every loop iteration. Consider preallocating for speed.
4018	The variable 'newtricorre6' appears to change size on every loop iteration. Consider preallocating for speed.
4019	The variable 'newtricorre7' appears to change size on every loop iteration. Consider preallocating for speed.
4022	The variable 'newtricorre9' appears to change size on every loop iteration. Consider preallocating for speed.
4023	The variable 'newtricorre10' appears to change size on every loop iteration. Consider preallocating for speed.
4025	The variable 'newtricorre11' appears to change size on every loop iteration. Consider preallocating for speed.
4026	The variable 'newtricorre12' appears to change size on every loop iteration. Consider preallocating for speed.
4028	The variable 'newtricorre13' appears to change size on every loop iteration. Consider preallocating for speed.
4029	The variable 'newtricorre14' appears to change size on every loop iteration. Consider preallocating for speed.
4052	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
<u>4095</u>	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
<u>4096</u>	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
4097	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
4098	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
<u>4104</u>	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
<u>4105</u>	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
<u>4106</u>	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
<u>4107</u>	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
4108	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
4109	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
4110	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
4111	Use of brackets [] is unnecessary. Use parentheses to group, if needed.
_	

Coverage results
[Show coverage for parent directory]

Total lines in function	1560
Non-code lines (comments, blank lines)	693

01/24/2013 04:21 PM 6 of 28

Code lines (lines that can run)	867
Code lines that did run	435
Code lines that did not run	432
Coverage (did run/can run)	50.17 %

Function listing

Color highlight code according to time

```
calls line
time
            2587 function pushtofit_Callback(hObject, eventdata, handles)
            2588 % hObject
                              handle to pushtofit (see GCBO)
            2589 % eventdata reserved - to be defined in a future version of MATLAB
            2590 % handles
                              structure with handles and user data (see GUIDATA)
            2591
            2592
            2593
            2594 switch handles.str{handles.val};
            2595
          1 2596
                     case 'Choose...' % User selection
            2597
            2598
                         errordlg('You need to choose a fitting model', 'Bad Input', 'modal')
            2599
            2600
                     case 'ICS red' % User selection
            2601
            2602
            2603
                         if isempty(handles.filename) ~= 1
            2604
                              if isdir(handles.filename) ~= 1
            2605
                                  mkdir(handles.filename);
            2606
                              end
            2607
                         end
            2608
            2609
            2610
            2611
            2612
                             imag = imread('Redtemp.bmp');
            2613
            2614
                             R = double(imag(:, :, 1));
            2615
            2616
                             %gets dimensions of orig matrix
            2617
                             SR = size(R);
            2618
            2619
                             %calculates average of all matrix entries
            2620
                            avgR = sum(sum(R))/(SR(1)*SR(2));
            2621
            2622
            2623
                             gR = (ifft2((fft2(R).*conj(fft2(R)))))/(avgR^2*SR(1)*SR(2)))-1;
            2624
            2625
                             range = handles.range;
            2626
            2627
                             for i = 1:range
            2628
                                 for j = 1:range
            2629
                                     gRnew(i, j) = gR(i, j);
            2630
                                 end
            2631
                             end
            2632
            2633
                             %Removing the value of g(0, 0) by assigning to it the adjacent
                             %value g(1 ,1)
            2634
            2635
                             tempvalueR = gRnew(1, 1);
            2636
                              gRnew(1, 1) = gRnew(1, 2);
            2637
            2638
                             delta = [0:range-1; 0:range-1];
                              delta1 = [1:range-1; 1:range-1];
            2639
            2640
                              AutoGinitialR = [handles.g0, handles.w, handles.ginf];
            2641
                             1b = [0, 0, -1000];
            2642
                             ub = [10000000, 100000000, 1000];
            2643
            2644
                              options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals', 1
```

```
2645
                 AutoGfitR = lsqcurvefit(@Autocorrelation, AutoGinitialR, delta, gRnew, lb, ub, options);
2646
2647
                  gRfit = Autocorrelation(AutoGfitR, delta);
2648
2649
                  pathname = handles.filename;
2650
                  filename1 = 'ACr.txt';
                 filename2 = 'ACrFit.txt';
2651
2652
                  File1 = fullfile(pathname, filename1);
2653
                  File2 = fullfile(pathname, filename2);
2654
2655
                  gRnew(1, 1) = tempvalueR;
2656
                  dlmwrite(File1, gRnew, 'delimiter', '\t');
2657
                  dlmwrite(File2, gRfit, 'delimiter', '\t');
2658
2659
                  for mm = 1:handles.range
2660
2661
                      newcorredfit1(mm) = gRfit(mm, 1);
2662
2663
2664
                  for mm = 1:handles.range-1
2665
                      newcorred1(mm) = gRnew(mm+1, 1);
2666
2667
2668
2669
2670
                  figure('Name','Autocorrelation Red Y','NumberTitle','off')
2671
                  plot(delta1,newcorred1,'or',...
                      delta,newcorredfit1,'--r',...
2672
2673
                      'LineWidth',2)
2674
                  if newcorred1(1) >= newcorredfit1(1)
2675
                      axis([0 range 0 newcorred1(1)])
2676
                  else
2677
                      axis([0 range 0 newcorredfit1(1)])
2678
                  end
2679
2680
2681
                  guidata(hObject,handles);
2682
2683
2684
2685
                  set(handles.timer, 'String', ceil(toc));
2686
2687
         case 'ICS green' % User selection
<u> 2688</u>
2689
2690
2691
             if isempty(handles.filename) ~= 1
2692
                  if isdir(handles.filename) ~= 1
2693
                      mkdir(handles.filename);
2694
                 end
2695
2696
             imag = imread('Greentemp.bmp');
2697
2698
2699
                G = double(imag(:, :, 2));
2700
2701
                %gets dimensions of orig matrix
                SG = size(G);
2702
2703
2704
                 %calculates average of all matrix entries
2705
                avgG = sum(sum(G))/(SG(1)*SG(2));
2706
2707
2708
                gG = (ifft2((fft2(G).*conj(fft2(G))))/(avgG^2*SG(1)*SG(2)))-1;
2709
2710
                 range = handles.range;
2711
2712
                 for i = 1:range
2713
                     for j = 1:range
2714
                         gGnew(i, j) = gG(i, j);
2715
                     end
                 end
2716
```

```
2717
                 %Removing the value of g(0, 0) by assigning to it the adjacent
2718
2719
                 %value g(1,1)
2720
                 tempvalueG = gGnew(1, 1);
2721
                 gGnew(1, 1) = gGnew(1, 2);
2722
                  delta = [0:range-1; 0:range-1];
2723
2724
                  delta1 = [1:range-1; 1:range-1];
2725
2726
                  AutoGinitialG = [handles.g0, handles.w, handles.ginf];
2727
                 1b = [0, 0, -1000];
2728
                 ub = [10000000, 100000000, 1000];
2729
                  options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals', 1
2730
2731
                 AutoGfitG = lsqcurvefit(@Autocorrelation, AutoGinitialG, delta, gGnew, lb, ub, options);
2732
                  gGfit = Autocorrelation(AutoGfitG, delta);
2733
2734
2735
                  pathname = handles.filename;
2736
                 filename1 = 'ACg.txt';
2737
                 filename2 = 'ACgFit.txt';
2738
                  File1 = fullfile(pathname, filename1);
2739
                 File2 = fullfile(pathname, filename2);
2740
2741
             gGnew(1, 1) = tempvalueG;
2742
                  dlmwrite(File1, gGnew, 'delimiter', '\t');
2743
2744
                  dlmwrite(File2, gGfit, 'delimiter', '\t');
2745
2746
2747
                  for mm = 1:handles.range
2748
                      newcorgreenfit1(mm) = gGfit(mm, 1);
2749
                  end
2750
2751
                  for mm = 1:handles.range-1
2752
                      newcorgreen1(mm) = gGnew(mm+1, 1);
2753
                  end
2754
2755
2756
                  figure('Name','Autocorrelation Green Y','NumberTitle','off')
2757
                  plot(delta1,newcorgreen1,'og',...
2758
2759
                      delta,newcorgreenfit1,'--g',...
2760
                      'LineWidth',2)
2761
                  if newcorgreen1(1) >= newcorgreenfit1(1)
2762
                      axis([0 range 0 newcorgreen1(1)])
2763
2764
                      axis([0 range 0 newcorgreenfit1(1)])
2765
                  end
2766
2767
2768
2769
2770
                  guidata(hObject,handles);
2771
2772
             case 'ICS blue' % User selection
2773
2774
                  if isempty(handles.filename) ~= 1
2775
                      if isdir(handles.filename) ~= 1
2776
                          mkdir(handles.filename);
2777
                      end
2778
                 end
2779
2780
2781
2782
             imag = imread('Bluetemp.bmp');
2783
2784
                 B = double(imag(:, :, 3));
2785
                %gets dimensions of orig matrix
2786
2787
                SB = size(B);
2788
```

```
2789
                %calculates average of all matrix entries
2790
                 avgB = sum(sum(B))/(SB(1)*SB(2));
2791
2792
2793
                 gB = (ifft2((fft2(B).*conj(fft2(B))))/(avgB^2*SB(1)*SB(2)))-1;
2794
2795
                 range = handles.range;
2796
2797
                 for i = 1:range
2798
                     for j = 1:range
2799
                         gBnew(i, j) = gB(i, j);
2800
                     end
2801
                 end
2802
2803
2804
                 %Removing the value of g(0, 0) by assigning to it the adjacent
2805
                 %value g(1 ,1)
2806
                 tempvalueB = gBnew(1, 1);
2807
                  gBnew(1, 1) = gBnew(1, 2);
2808
2809
                  delta = [0:range-1; 0:range-1];
2810
                  delta1 = [1:range-1; 1:range-1];
2811
2812
                  AutoGinitialB = [handles.g0, handles.w, handles.ginf];
                  1b = [0, 0, -1000];
2813
2814
                  ub = [10000000, 100000000, 1000];
2815
                  options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals', 1
2816
2817
                  AutoGfitB = lsqcurvefit(@Autocorrelation, AutoGinitialB, delta, gBnew, lb, ub, options);
2818
2819
                  gBfit = Autocorrelation(AutoGfitB, delta);
2820
2821
                  pathname = handles.filename;
2822
                  filename1 = 'ACb.txt';
                  filename2 = 'ACbFit.txt';
2823
                  File1 = fullfile(pathname, filename1);
2824
2825
                  File2 = fullfile(pathname, filename2);
2826
2827
             gBnew(1, 1) = tempvalueB;
2828
2829
                  dlmwrite(File1, gBnew, 'delimiter', '\t');
                  dlmwrite(File2, gBfit, 'delimiter', '\t');
2830
2831
2832
2833
                  for mm = 1:handles.range
2834
                      newcorbluefit1(mm) = gBfit(mm, 1);
2835
2836
2837
                  for mm = 1:handles.range-1
2838
                      newcorblue1(mm) = gBnew(mm+1, 1);
2839
2840
2841
2842
2843
                  figure('Name','Autocorrelation Blue Y','NumberTitle','off')
2844
                  plot(delta1,newcorblue1,'ob',...
2845
                      delta,newcorbluefit1,'--b',...
                      'LineWidth',2)
2846
2847
                  if newcorblue1(1) >= newcorbluefit1(1)
2848
                      axis([0 range 0 newcorblue1(1)])
2849
                  else
2850
                      axis([0 range 0 newcorbluefit1(1)])
2851
2852
2853
                  guidata(hObject,handles);
2854
2855
2856
             case 'XCS red/green' % User selection
2857
2858
                  if isempty(handles.filename) ~= 1
2859
                      if isdir(handles.filename) ~= 1
2860
                          mkdir(handles.filename);
```

```
2861
                      end
2862
                 end
2863
2864
2865
2866
2867
                 imag1 = imread('Redtemp.bmp');
2868
                 imag2 = imread('Greentemp.bmp');
2869
2870
                R = double(imag1(:, :, 1));
2871
                G = double(imag2(:, :, 2));
2872
2873
                %gets dimensions of orig matrix
2874
                SR = size(R);
2875
2876
                %calculates average of all matrix entries
2877
                avgR = sum(sum(R))/(SR(1)*SR(2));
2878
                avgG = sum(sum(G))/(SR(1)*SR(2));
2879
2880
                gRG = (ifft2((fft2(R).*conj(fft2(G))))/(avgR*avgG*SR(1)*SR(2)))-1;
2881
2882
2883
                range = handles.range;
2884
2885
                for i = 1:range
2886
                     for j = 1:range
2887
                         gRGnew(i, j) = gRG(i, j);
2888
                    end
2889
                end
2890
2891
                %Removing the value of g(0, 0) by assigning to it the adjacent
2892
                %value g(1,1)
                 tempvalueRG = gRGnew(1, 1);
2893
2894
                 gRGnew(1, 1) = gRGnew(1, 2);
2895
2896
                 delta = [0:range-1; 0:range-1];
                 delta1 = [1:range-1; 1:range-1];
2897
2898
2899
                 CrossGinitialRG = [handles.g0, handles.w, handles.ginf];
2900
                 1b = [0, 0, -1000];
2901
                 ub = [10000000, 100000000, 1000];
2902
2903
                 options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals', 1
2904
                 CrossGfitRG = lsqcurvefit(@Crosscorrelation, CrossGinitialRG, delta, gRGnew, lb, ub, opt
2905
2906
                 gRGfit = Crosscorrelation(CrossGfitRG, delta);
2907
2908
                 pathname = handles.filename;
2909
                 filename1 = 'XCrg.txt';
2910
                 filename2 = 'XCrgFit.txt';
2911
                 File1 = fullfile(pathname, filename1);
2912
                 File2 = fullfile(pathname, filename2);
2913
2914
             gRGnew(1, 1) = tempvalueRG;
2915
2916
                 dlmwrite(File1, gRGnew, 'delimiter', '\t');
2917
                 dlmwrite(File2, gRGfit, 'delimiter', '\t');
2918
2919
2920
                 for mm = 1:handles.range
2921
                      newcorrgfit1(mm) = gRGfit(mm, 1);
2922
                 end
2923
2924
                 for mm = 1:handles.range-1
2925
                      newcorrg1(mm) = gRGnew(mm+1, 1);
2926
                 end
2927
2928
2929
                 figure('Name','Crosscorrelation Red Green Y','NumberTitle','off')
2930
2931
                 plot(delta1,newcorrg1,'oy',...
2932
                      delta, newcorrgfit1, '--y',...
```

```
2933
                      'LineWidth',2)
2934
                  if newcorrg1(1) >= newcorrgfit1(1)
2935
                      axis([0 range 0 newcorrg1(1)])
2936
2937
                      axis([0 range 0 newcorrgfit1(1)])
2938
                  end
2939
                  guidata(hObject,handles);
2940
2941
2942
2943
             case 'XCS red/blue' % User selection
2944
2945
                  if isempty(handles.filename) ~= 1
2946
                      if isdir(handles.filename) ~= 1
2947
                          mkdir(handles.filename);
2948
                      end
2949
2950
2951
2952
                  imag1 = imread('Redtemp.bmp');
2953
                  imag2 = imread('Bluetemp.bmp');
2954
2955
                 R = double(imag1(:, :, 1));
2956
                 B = double(imag2(:, :, 3));
2957
2958
                 %gets dimensions of orig matrix
2959
                 SR = size(R);
2960
2961
                %calculates average of all matrix entries
2962
                 avgR = sum(sum(R))/(SR(1)*SR(2));
2963
                 avgB = sum(sum(B))/(SR(1)*SR(2));
2964
2965
2966
                 gRB = (ifft2((fft2(R).*conj(fft2(B))))/(avgR*avgB*SR(1)*SR(2)))-1;
2967
2968
                 range = handles.range;
2969
2970
                 for i = 1:range
2971
                     for j = 1:range
2972
                         gRBnew(i, j) = gRB(i, j);
2973
                     end
2974
2975
2976
                 %Removing the value of g(0, 0) by assigning to it the adjacent
2977
                 %value g(1 ,1)
2978
                  tempvalueRB = gRBnew(1, 1);
2979
                  gRBnew(1, 1) = gRBnew(1, 2);
2980
2981
                  delta = [0:range-1; 0:range-1];
2982
                  delta1 = [1:range-1; 1:range-1];
2983
2984
                  CrossGinitialRB = [handles.g0, handles.w, handles.ginf];
2985
                  1b = [0, 0, -1000];
2986
                  ub = [10000000, 100000000, 1000];
2987
                  options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals', 1
2988
2989
                  CrossGfitRB = lsqcurvefit(@Crosscorrelation, CrossGinitialRB, delta, gRBnew, lb, ub, opt
2990
2991
                  gRBfit = Crosscorrelation(CrossGfitRB, delta);
2992
2993
                  pathname = handles.filename;
                  filename1 = 'XCrb.txt';
2994
2995
                  filename2 = 'XCrbFit.txt';
2996
                  File1 = fullfile(pathname, filename1);
2997
                  File2 = fullfile(pathname, filename2);
2998
2999
3000
                   gRBnew(1, 1) = tempvalueRB;
3001
                  dlmwrite(File1, gRBnew, 'delimiter', '\t');
3002
3003
                  dlmwrite(File2, gRBfit, 'delimiter', '\t');
3004
```

```
3005
                  for mm = 1:handles.range
3006
                      newcorrbfit1(mm) = gRBfit(mm, 1);
3007
                 end
3008
3009
                  for mm = 1:handles.range-1
3010
                      newcorrb1(mm) = gRBnew(mm+1, 1);
3011
                  end
3012
3013
3014
3015
                  figure('Name','Crosscorrelation Red Blue Y','NumberTitle','off')
3016
                  plot(delta1,newcorrb1,'om',...
3017
                      delta, newcorrbfit1, '--m',...
3018
                      'LineWidth',2)
3019
                  if newcorrb1(1) >= newcorrbfit1(1)
3020
                      axis([0 range 0 newcorrb1(1)])
3021
3022
                      axis([0 range 0 newcorrbfit1(1)])
3023
                  end
3024
3025
3026
                  guidata(hObject,handles);
3027
3028
3029
             case 'XCS green/blue' % User selection
3030
3031
                  if isempty(handles.filename) ~= 1
3032
                      if isdir(handles.filename) ~= 1
                          mkdir(handles.filename);
3033
3034
3035
                  end
3036
3037
3038
                  imag1 = imread('Greentemp.bmp');
3039
                  imag2 = imread('Bluetemp.bmp');
3040
                G = double(imag1(:, :, 2));
3041
3042
                 B = double(imag2(:, :, 3));
3043
3044
                %gets dimensions of orig matrix
3045
                 SG = size(G);
3046
3047
                 %calculates average of all matrix entries
3048
                 avgG = sum(sum(G))/(SG(1)*SG(2));
3049
                 avgB = sum(sum(B))/(SG(1)*SG(2));
3050
3051
3052
                 gGB = (ifft2((fft2(G).*conj(fft2(B))))/(avgG*avgB*SG(1)*SG(2)))-1;
3053
3054
                 range = handles.range;
3055
3056
                 for i = 1:range
                     for j = 1:range
3057
3058
                         gGBnew(i, j) = gGB(i, j);
3059
                     end
3060
                 end
3061
3062
                 %Removing the value of g(0, 0) by assigning to it the adjacent
3063
                 %value g(1 ,1)
3064
                  tempvalueGB = gGBnew(1, 1);
                  gGBnew(1, 1) = gGBnew(1, 2);
3065
3066
3067
                  delta = [0:range-1; 0:range-1];
3068
                  delta1 = [1:range-1; 1:range-1];
3069
3070
                  CrossGinitialGB = [handles.g0, handles.w, handles.ginf];
3071
                  1b = [0, 0, -1000];
3072
                  ub = [10000000, 100000000, 1000];
3073
                  options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals', 1
3074
3075
                  CrossGfitGB = lsqcurvefit(@Crosscorrelation, CrossGinitialGB, delta, gGBnew, lb, ub, opt
3076
```

```
3077
                               gGBfit = Crosscorrelation(CrossGfitGB, delta);
             3078
             3079
             3080
                               pathname = handles.filename;
             3081
                               filename1 = 'XCgb.txt';
                               filename2 = 'XCgbFit.txt';
             3082
             3083
                               File1 = fullfile(pathname, filename1);
             3084
                               File2 = fullfile(pathname, filename2);
             3085
             3086
                           gGBnew(1, 1) = tempvalueGB;
             3087
             3088
                               dlmwrite(File1, gGBnew, 'delimiter', '\t');
             3089
                               dlmwrite(File2, gGBfit, 'delimiter', '\t');
             3090
             3091
                               for mm = 1:handles.range
             3092
                                   newcorgbfit1(mm) = gGBfit(mm, 1);
             3093
             3094
             3095
                               for mm = 1:handles.range-1
             3096
                                   newcorgb1(mm) = gGBnew(mm+1, 1);
             3097
             3098
             3099
             3100
             3101
                               figure('Name','Crosscorrelation Green Blue Y','NumberTitle','off')
             3102
                               plot(delta1,newcorgb1,'oc',...
             3103
                                   delta,newcorgbfit1,'--c',...
             3104
                                   'LineWidth',2)
             3105
                               if newcorgb1(1) >= newcorgbfit1(1)
             3106
                                   axis([0 range 0 newcorgb1(1)])
             3107
             3108
                                   axis([0 range 0 newcorgbfit1(1)])
             3109
                               end
             3110
             3111
                               guidata(hObject,handles);
             3112
0.03
           1 3113
                           case 'Triple ICS' % User selection
             3114
             3115
             3116
             3117
                              if isempty(handles.filename) ~= 1
             3118
                                   if isdir(handles.filename) ~= 1
             3119
                                       mkdir(handles.filename);
             3120
                                   end
             3121
                              end
             3122
             3123
             3124
                              imag = imread('RGBtemp.bmp');
             3125
             3126
             3127
                              R = double(imag(:, :, 1));
             3128
                              G = double(imag(:, :, 2));
             3129
                              B = double(imag(:, :, 3));
             3130
             3131
                              %gets dimensions of orig matrix
             3132
                              SG = size(R);
             3133
                              %calculates average of all matrix entries
             3134
             3135
                              avgR = sum(sum(R))/(SG(1)*SG(2));
             3136
                              avgG = sum(sum(G))/(SG(1)*SG(2));
             3137
                              avgB = sum(sum(B))/(SG(1)*SG(2));
             3138
             3139
             3140
                               deltaimagred = R - avgR;
             3141
                               deltaimaggreen = G - avgG;
             3142
                               deltaimagblue = B - avgB;
             3143
             3144
             3145
                               % Calculating triple correlation function through bispectrum
             3146
             3147
             3148
```

 $14 { of } 28$ $01/24/2013 { 04:}21 { PM}$

```
3149
                 % Calculating Fast Fourier Transform of deltasignal
3150
3151
                 fftdeltaimagred = fftn(deltaimagred);
3152
                 fftdeltaimaggreen = fftn(deltaimaggreen);
3153
                 fftdeltaimagblue = fftn(deltaimagblue);
3154
3155
                 sfftdeltaimagred = fftshift(fftdeltaimagred);
3156
                 sfftdeltaimaggreen = fftshift(fftdeltaimaggreen);
3157
                 sfftdeltaimagblue = fftshift(fftdeltaimagblue);
3158
3159
                 figure('Name','Fourier Transform of RED','NumberTitle','off')
3160
                 surfc(abs(sfftdeltaimagred))
3161
3162
3163
                 prompt = {'Enter starting point:'};
                 dlg_title = 'Input for calculating bispectrum';
3164
3165
                 num_lines = 1;
3166
                 def = {'64'};
3167
                 lowlim = inputdlg(prompt,dlg_title,num_lines,def);
3168
                 lowlim = str2double(lowlim);
3169
3170
                 highlim = SG(1) - lowlim;
3171
                 lim = highlim - lowlim;
3172
3173
3174
                 nhlf = SG(1)/2;
3175
                 nhlfp = nhlf+1;
3176
                 nhlfm = nhlf-1;
3177
3178
                 nbi = lim;
3179
                 nbihlfp = nbi/2+1;
3180
3181
                 r1 = zeros(lim, lim, lim, lim);
3182
3183
                 tic
3184
3185
                      for v1 = (-nhlf+lowlim):0
3186
                          for u1 = (-nhlf+lowlim)-(v1-1):(nhlfm-lowlim)
3187
                              for v2 = (-nhlf+lowlim):(nhlfm-lowlim)
3188
                                  for u2 = (-nhlf+lowlim):(nhlfm-lowlim)
3189
                                      if abs(u2+v2) \le nhlfm
3190
3191
                                          r1(nbihlfp + v1, nbihlfp + u1, nbihlfp + v2, nbihlfp + u2) = sff
3192
3193
                                      end
                                  end
3194
3195
                              end
                          end
3196
3197
                     end
3198
3199
3200
3201
3202
3203
                      for v1 = 1:(nhlfm-lowlim)
3204
                          for u1 = (-nhlf+lowlim):(nhlfm-lowlim)-v1
3205
                              for v2 = (-nhlf+lowlim):(nhlfm-lowlim)
3206
                                  for u2 = (-nhlf+lowlim):(nhlfm-lowlim)
3207
                                      if abs(u2+v2) \le nhlfm
3208
3209
                                          r1(nbihlfp + v1, nbihlfp + u1, nbihlfp + v2, nbihlfp + u2) = sff
3210
3211
                                      end
3212
                                  end
                              end
3213
3214
                          end
3215
                      end
3216
                      toc
3217
3218
3219
                      figure('Name','Bispectrum','NumberTitle','off')
3220
```

```
3221
                     colormap hsv
3222
3223
3224
                     bispectdisp = real(r1(:, :, nbihlfp, nbihlfp));
3225
                     surfc(bispectdisp)
3226
3227
3228
         % End of calculating bispectrum
3229
3230
3231
3232
3233
3234
         % Calculating triple correlation function
3235
3236
3237
         bispectorig = fftshift(r1);
3238
         tricorr = ifftn(bispectorig).*((lim^4)/(SG(1)^2*SG(2)^2)); %compute the triple correlation (in
3239
3240
3241
         tricorrnorm = tricorr/(avgR*avgG*avgB);
3242
         figure('Name','Triple Correlation Function 3D','NumberTitle','off')
3243
3244
         tricorrdisp = fftshift(real(tricorrnorm(:,:,1, 1)));
3245
         surfc(tricorrdisp)
3246
         colormap hsv
3247
3248
3249
3250
3251
                 prompt = {'Enter number of pixels:'};
3252
                 dlg_title = 'Fitting range';
3253
                 num_lines = 1;
3254
                 def = {'20'};
3255
                 range = inputdlg(prompt,dlg_title,num_lines,def);
3256
                 range = str2double(range);
3257
3258
3259
                 for ii = 1:range
3260
             for jj = 1:range
3261
3262
                 testmatrix1(ii, jj) = real(tricorrnorm(ii, jj, 1, 1));
                 testmatrix2(ii, jj) = real(tricorrnorm(1, ii, jj, 1));
3263
3264
                 testmatrix3(ii, jj) = real(tricorrnorm(1, 1, ii, jj));
3265
                 testmatrix4(ii, jj) = real(tricorrnorm(1, ii, 1, jj));
                 testmatrix5(ii, jj) = real(tricorrnorm(ii, 1, jj, 1));
3266
                 testmatrix6(ii, jj) = real(tricorrnorm(ii, 1, 1, jj));
3267
3268
3269
             end
3270
         end
3271
3272
3273
3274
         for mm = 1:range
3275
3276
              newtricorre1(mm) = testmatrix1(1, mm);
3277
              newtricorre2(mm) = testmatrix1(mm, 1);
3278
              newtricorre3(mm) = testmatrix1(mm, mm);
3279
3280
              newtricorre4(mm) = testmatrix2(1, mm);
              newtricorre5(mm) = testmatrix2(mm, 1);
3281
3282
3283
              newtricorre6(mm) = testmatrix3(1, mm);
3284
              newtricorre7(mm) = testmatrix3(mm, 1);
3285
              newtricorre8(mm) = testmatrix3(mm, mm);
3286
3287
              newtricorre9(mm) = testmatrix4(1, mm);
3288
              newtricorre10(mm) = testmatrix4(mm, 1);
3289
3290
              newtricorre11(mm) = testmatrix5(1, mm);
3291
              newtricorre12(mm) = testmatrix5(mm, 1);
3292
```

```
3293
                         newtricorre13(mm) = testmatrix6(1, mm);
            3294
                         newtricorre14(mm) = testmatrix6(mm, 1);
            3295
            3296
                    end
            3297
            3298 %
                    disp(newtricorre1)
            3299 %
                     disp(newtricorre2)
            3300 %
                     disp(newtricorre3)
            3301
                     disp(newtricorre4)
            3302 %
                     disp(newtricorre5)
            3303 %
                     disp(newtricorre6)
            3304 %
                    disp(newtricorre7)
            3305 % disp(newtricorre8)
            3306 % disp(newtricorre9)
            3307 %
                     disp(newtricorre10)
            3308 %
                     disp(newtricorre11)
            3309
                 %
                     disp(newtricorre12)
            3310 %
                     disp(newtricorre13)
            3311
                 %
                     disp(newtricorre14)
            3312
            3313
            3314
                    newt = ((newtricorre1+newtricorre2+newtricorre3+newtricorre4+newtricorre5+newtricorre6+newtricorre6)
            3315
            3316
            3317
            3318
                    % End of calculating triple correlation function
            3319
                     %______
            3320
            3321
            3322 % End of calculating triple correlation function through bispectrum
            3323 %-----
            3324
                            correctionw = SG(1)/lim;
            3325
                            delta = [0:range-1];
            3326
                            TripleGinitialRGB = [handles.g0, handles.w, handles.ginf];
            3327
                            1b = [0, 0, -1000];
                            ub = [10000000, 100000000, 1000];
            3328
            3329
                            options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals', 1
            3330
            3331
                            TripleGfitRGB = lsqcurvefit(@Gausshalf, TripleGinitialRGB, delta, newt, lb, ub, options)
            3332
            3333
                            TripleRGBfit = Gausshalf(TripleGfitRGB, delta);
            3334
            3335
                            TripleGfitRGB(2) = round(TripleGfitRGB(2)*correctionw*10)/10;
                            set(handles.wfit, 'String', TripleGfitRGB(2));
            3336
            3337
            3338
            3339
                            pathname = handles.filename;
            3340
                            filename1 = 'TripleCrgb.txt';
                            filename2 = 'TripleCrgbFit.txt';
            3341
            3342
                            File1 = fullfile(pathname, filename1);
            3343
                            File2 = fullfile(pathname, filename2);
            3344
            3345
            3346
            3347
                            dlmwrite(File1, newt, 'delimiter', '\t');
            3348
                            dlmwrite(File2, TripleRGBfit, 'delimiter', '\t');
            3349
            3350
            3351
                            figure('Name','Triple Correlation Function','NumberTitle','off')
            3352
                            plot(delta,newt,'ok',...
                                delta,TripleRGBfit,'--k',...
            3353
            3354
                                'LineWidth',2)
            3355
            3356
                            guidata(hObject,handles);
            3357
            3358
            3359
            3360
0.03
          1 3361
                            case 'All' % User selection
            3362
            3363
          1 3364
                                if isempty(handles.filename) ~= 1
```

```
1 3365
                                         if <u>isdir</u>(handles.filename) ~= 1
              3366
                                             mkdir(handles.filename);
              3367
                                         end
0.03
            1 3368
                                    end
              3369
              3370
0.12
            1 3371
                                imag = imread('RGBtemp.bmp');
              3372
              3373
             <u>3374</u>
                               R = double(imag(:, :, 1));
             3375
                               G = double(imag(:, :, 2));
             3376
                               B = double(imag(:, :, 3));
              3377
              3378
            1 3379
                            AutoGfitR=0;
             3380
                            AutoGfitG=0;
             3381
                            AutoGfitB=0;
              3382
                            CrossGfitRG=0;
              3383
                            CrossGfitRB=0;
             3384
                            CrossGfitGB=0;
             3385
                            TripleGfitRGBforfile=0;
              3386
              3387
            1 3388
                               if sum(sum(R)) \sim = 0
              3389
              3390
                                        %gets dimensions of orig matrix
             3391
                                   SR = size(R);
              3392
              3393
                                   %calculates average of all matrix entries
             3394
                                   avgR = sum(sum(R))/(SR(1)*SR(2));
              3395
              3396
0.12
           1 3397
                                   gR = (\underline{ifft2}((\underline{fft2}(R).*conj(\underline{fft2}(R))))/(avgR^2*SR(1)*SR(2)))-1;
              3398
             3399
                                   range = handles.range;
              3400
                                   for i = 1:range
           1 3401
          20 3402
                                        for j = 1:range
         400 3403
                                            gRnew(i, j) = gR(i, j);
         400 3404
                                        end
          20 3405
                                   end
              3406
              3407
                                   %Removing the value of g(0, 0) by assigning to it the adjacent
              3408
                               %value g(1,1)
           1 3409
                               tempvalueR = gRnew(1, 1);
             3410
                                gRnew(1, 1) = gRnew(1, 2);
              3411
            1 3412
                                delta = [0:range-1; 0:range-1];
             <u>34</u>13
                                delta1 = [1:range-1; 1:range-1];
              3414
             3415
                                    AutoGinitialR = [handles.g0, handles.w, handles.ginf];
              3416
                                    1b = [0, 0, -1000];
              3417
                                    ub = [10000000, 100000000, 1000];
              3418
0.16
                                    options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals
            1 3419
3.09
             3420
                                    AutoGfitR = lsqcurvefit(@Autocorrelation, AutoGinitialR, delta, gRnew, lb, ub, optio
              3421
                                    gRfit = Autocorrelation(AutoGfitR, delta);
           1 3422
              3423
             <u>3424</u>
                                    pathname = handles.filename;
              3425
                                    filename1 = 'ACr.txt';
                                    filename2 = 'ACrFit.txt';
           1 3426
                                    File1 = fullfile(pathname, filename1);
0.03
             3427
             3428
                                    File2 = fullfile(pathname, filename2);
              3429
             3430
                                gRnew(1, 1) = tempvalueR;
              3431
0.37
             3432
                                dlmwrite(File1, gRnew, 'delimiter', '\t');
                                dlmwrite(File2, gRfit, 'delimiter', '\t');
              3433
              3434
                                for mm = 1:handles.range
           1 3435
           20 3436
                                    newcorredfit1(mm) = gRfit(mm, 1);
```

```
20 3437
                                end
              3438
           1 3439
                                for mm = 1:handles.range-1
           19 3440
                                    newcorred1(mm) = gRnew(mm+1, 1);
           19 3441
                                end
              3442
              3443
              3444
0.37
             3445
                                figure('Name','Autocorrelation Red Y','NumberTitle','off')
0.19
              3446
                                plot(delta1,newcorred1,'or',...
              3447
                                    delta, newcorredfit1, '--r',...
                                    'LineWidth',2)
              3448
             3449
                                if newcorred1(1) >= newcorredfit1(1)
              3450
                                    axis([0 range 0 newcorred1(1)])
             3451
                                else
             <u>3452</u>
0.03
                                    axis([0 range 0 newcorredfit1(1)])
           1
              3453
              3454
              3455
              3456
             3457
                                guidata(hObject,handles);
0.03
             3458
                               end
              3459
              3460
              3461
              3462
              3463
             3464
                               if sum(sum(G)) \sim = 0
              3465
              3466
                                   %gets dimensions of orig matrix
             3467
                               SG = size(G);
              3468
              3469
                               %calculates average of all matrix entries
             3470
                               avgG = sum(sum(G))/(SG(1)*SG(2));
              3471
              3472
0.03
           1 3473
                               gG = (\underline{ifft2}((\underline{fft2}(G).*conj(\underline{fft2}(G))))/(avgG^2*SG(1)*SG(2)))-1;
              3474
             3475
                               range = handles.range;
              3476
                               for i = 1:range
           1
             3477
          20 3478
                                   for j = 1:range
         400 3479
                                       gGnew(i, j) = gG(i, j);
         400 3480
                                   end
          20 3481
                               end
              3482
              3483
                               %Removing the value of g(0, 0) by assigning to it the adjacent
              3484
                               %value g(1,1)
           1 3485
                               tempvalueG = gGnew(1, 1);
              3486
                                gGnew(1, 1) = gGnew(1, 2);
              3487
              3488
                                delta = [0:range-1; 0:range-1];
              3489
                                delta1 = [1:range-1; 1:range-1];
              3490
           1 3491
                                AutoGinitialG = [handles.g0, handles.w, handles.ginf];
             3492
                                1b = [0, 0, -1000];
             3493
                                ub = [10000000, 100000000, 1000];
              3494
0.03
             3495
                                options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals', 1
2.25
              3496
                                AutoGfitG = lsqcurvefit(@Autocorrelation, AutoGinitialG, delta, gGnew, lb, ub, options);
              3497
             3498
                                gGfit = Autocorrelation(AutoGfitG, delta);
              3499
             3500
                                pathname = handles.filename;
             <u>3501</u>
                                filename1 = 'ACg.txt';
           1 3502
                                filename2 = 'ACgFit.txt';
              3503
                                File1 = fullfile(pathname, filename1);
           1
              3504
                                File2 = fullfile(pathname, filename2);
              3505
             3506
                                gGnew(1, 1) = tempvalueG;
              3507
0.06
                                dlmwrite(File1, gGnew, 'delimiter', '\t');
           1 3508
```

```
0.03
            1 3509
                                dlmwrite(File2, gGfit, 'delimiter', '\t');
              3510
              3511
           1 3512
                                for mm = 1:handles.range
           20 3513
                                    newcorgreenfit1(mm) = gGfit(mm, 1);
           20 3514
                                end
              3515
             3516
                                for mm = 1:handles.range-1
           1
           19 3517
                                    newcorgreen1(mm) = gGnew(mm+1, 1);
          19 <u>3518</u>
                                end
              3519
              3520
              3521
0.41
            1 3522
                                figure('Name','Autocorrelation Green Y','NumberTitle','off')
             3523
0.03
                                plot(delta1,newcorgreen1,'og',...
              3524
                                    delta,newcorgreenfit1,'--g',...
              3525
                                     'LineWidth',2)
             3526
                                if newcorgreen1(1) >= newcorgreenfit1(1)
              3527
                                    axis([0 range 0 newcorgreen1(1)])
            1 3528
                                else
             3529
                                    axis([0 range 0 newcorgreenfit1(1)])
            1 3530
                                end
              3531
              3532
             3533
                                guidata(hObject,handles);
              3534
0.03
             3535
                               end
              3536
              3537
              3538
              3539
             3540
                               if sum(sum(B)) \sim = 0
              3541
              3542
                                   %gets dimensions of orig matrix
             3543
                               SB = size(B);
              3544
                               %calculates average of all matrix entries
              3545
            1 3546
                               avgB = sum(sum(B))/(SB(1)*SB(2));
              3547
              3548
            1 3549
                               gB = (\underline{ifft2}((\underline{fft2}(B).*conj(\underline{fft2}(B))))/(avgB^2*SB(1)*SB(2)))-1;
              3550
              3551
                               range = handles.range;
              3552
                               for i = 1:range
             3553
          20 3554
                                   for j = 1:range
         400 3555
                                        gBnew(i, j) = gB(i, j);
                                   end
         400 3556
          20 3557
                               end
              3558
              3559
                               %Removing the value of g(0, 0) by assigning to it the adjacent
              3560
                               %value g(1 ,1)
            1 3561
                               tempvalueB = gBnew(1, 1);
             3562
                                gBnew(1, 1) = gBnew(1, 2);
              3563
             3564
                                delta = [0:range-1; 0:range-1];
             3565
                                delta1 = [1:range-1; 1:range-1];
              3566
                                AutoGinitialB = [handles.g0, handles.w, handles.ginf];
             <u>3567</u>
              <u>3568</u>
                                1b = [0, 0, -1000];
              3569
                                ub = [10000000, 100000000, 1000];
              3570
0.06
            1 3571
                                options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals', 1
3.03
             3572
                                AutoGfitB = lsqcurvefit(@Autocorrelation, AutoGinitialB, delta, gBnew, lb, ub, options);
              3573
             3574
                                gBfit = Autocorrelation(AutoGfitB, delta);
              3575
             3576
                                pathname = handles.filename;
              3577
                                filename1 = 'ACb.txt';
             <u>3578</u>
                                filename2 = 'ACbFit.txt';
0.03
             3579
                                File1 = fullfile(pathname, filename1);
           1
            1 3580
                                File2 = fullfile(pathname, filename2);
```

```
3581
              3582
             3583
                                  gBnew(1, 1) = tempvalueB;
              3584
                                dlmwrite(File1, gBnew, 'delimiter', '\t');
0.03
            1 3585
0.03
             3586
                                dlmwrite(File2, gBfit, 'delimiter', '\t');
              3587
              3588
             3589
                                for mm = 1:handles.range
           20 3590
                                    newcorbluefit1(mm) = gBfit(mm, 1);
             3591
           20
                                end
              3592
             3593
                                for mm = 1:handles.range-1
           19 3594
                                     newcorblue1(mm) = gBnew(mm+1, 1);
           19 3595
              3596
              3597
              3598
0.28
             <u>3599</u>
                                figure('Name','Autocorrelation Blue Y','NumberTitle','off')
0.03
              3600
                                plot(delta1,newcorblue1,'ob',...
              3601
                                     delta,newcorbluefit1,'--b',...
              3602
                                     'LineWidth',2)
             3603
                                if newcorblue1(1) >= newcorbluefit1(1)
              3604
                                     axis([0 range 0 newcorblue1(1)])
              3605
0.03
              3606
                                     axis([0 range 0 newcorbluefit1(1)])
              3607
                                end
              3608
             3609
                                guidata(hObject,handles);
              3610
              3611
             3612
                               end
              3613
              3614
              3615
                               if sum(sum(R)) \sim= 0 && sum(sum(G)) \sim= 0
             3616
              3617
              3618
                                        %gets dimensions of orig matrix
            1 3619
                                   SR = size(R);
              3620
              3621
                                   %calculates average of all matrix entries
             3622
                                   avgR = sum(sum(R))/(SR(1)*SR(2));
              3623
                                   avgG = sum(sum(G))/(SR(1)*SR(2));
              3624
              3625
0.03
             3626
                                   gRG = (\underline{ifft2}((\underline{fft2}(R).*conj(\underline{fft2}(G))))/(avgR*avgG*SR(1)*SR(2)))-1;
              3627
             3628
                                   range = handles.range;
              3629
             <u>3630</u>
                                   for i = 1:range
           1
          20 3631
                                        for j = 1:range
         400 3632
                                            gRGnew(i, j) = gRG(i, j);
         400 3633
                                        end
          20 3634
                                   end
              3635
              3636
                                %Removing the value of g(0, 0) by assigning to it the adjacent
              3637
                               %value g(1,1)
             3638
                                tempvalueRG = gRGnew(1, 1);
              3639
                                gRGnew(1, 1) = gRGnew(1, 2);
              3640
                                delta = [0:range-1; 0:range-1];
             <u>3641</u>
             3642
                                delta1 = [1:range-1; 1:range-1];
              3643
             3644
                                     CrossGinitialRG = [handles.g0, handles.w, handles.ginf];
             <u>3645</u>
                                     1b = [0, 0, -1000];
             3646
                                     ub = [10000000, 100000000, 1000];
              3647
0.03
              3648
                                     options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals
2.25
              3649
                                     CrossGfitRG = lsqcurvefit(@Crosscorrelation, CrossGinitialRG, delta, gRGnew, lb, ub,
              3650
0.06
             3651
                                     gRGfit = Crosscorrelation(CrossGfitRG, delta);
              3652
```

```
1 3653
                                     pathname = handles.filename;
              3654
                                     filename1 = 'XCrg.txt';
                                     filename2 = 'XCrgFit.txt';
           1 3655
            1 3656
                                     File1 = fullfile(pathname, filename1);
            1 3657
                                     File2 = fullfile(pathname, filename2);
              3658
            1 3659
                                 gRGnew(1, 1) = tempvalueRG;
              3660
0.03
             3661
                                 dlmwrite(File1, gRGnew, 'delimiter', '\t');
                                 dlmwrite(File2, gRGfit, 'delimiter', '\t');
              <u>3662</u>
              3663
              3664
                                 for mm = 1:handles.range
             <u>3665</u>
           20 3666
                                     newcorrgfit1(mm) = gRGfit(mm, 1);
           20 3667
              3668
            1
             3669
                                 for mm = 1:handles.range-1
           19 3670
                                     newcorrg1(mm) = gRGnew(mm+1, 1);
           19 <u>3671</u>
                                 end
              3672
              3673
              3674
0.25
                                 figure('Name','Crosscorrelation Red Green Y','NumberTitle','off')
             <u>3675</u>
0.03
             3676
                                 plot(delta1,newcorrg1,'oy',...
              3677
                                     delta,newcorrgfit1,'--y',...
              3678
                                     'LineWidth',2)
              <u>3679</u>
                                 if newcorrg1(1) >= newcorrgfit1(1)
              3680
                                     axis([0 range 0 newcorrg1(1)])
            1 3681
                                 else
                                     axis([0 range 0 newcorrgfit1(1)])
             3682
             3683
                                 end
              3684
              3685
              3686
             <u>3687</u>
                                     guidata(hObject,handles);
              3688
              3689
            1 3690
                                end
              3691
              3692
              3693
             3694
                                if sum(sum(R)) \sim= 0 && sum(sum(B)) \sim= 0
              3695
              3696
              3697
              3698
                                    %gets dimensions of orig matrix
             3699
                                    SR = size(R);
              3700
              3701
                                    %calculates average of all matrix entries
                                    avgR = sum(sum(R))/(SR(1)*SR(2));
            1 3702
              3703
                                    avgB = sum(sum(B))/(SR(1)*SR(2));
              3704
              3705
0.03
            1 3706
                                    gRB = (\underline{ifft2}((\underline{fft2}(R).*conj(\underline{fft2}(B))))/(avgR*avgB*SR(1)*SR(2)))-1;
              3707
             3708
                                    range = handles.range;
              3709
                                    for i = 1:range
            1
             3710
           20 3711
                                        for j = 1:range
          400 3712
                                             gRBnew(i, j) = gRB(i, j);
          400 3713
                                        end
           20 3714
                                    end
              3715
              3716
                                 %Removing the value of g(0, 0) by assigning to it the adjacent
              3717
                                %value g(1,1)
            1 3718
                                 tempvalueRB = gRBnew(1, 1);
              3719
                                 gRBnew(1, 1) = gRBnew(1, 2);
              3720
             <u>3721</u>
                                 delta = [0:range-1; 0:range-1];
              3722
                                 delta1 = [1:range-1; 1:range-1];
              3723
                                     CrossGinitialRB = [handles.g0, handles.w, handles.ginf];
            1 3724
```

```
1 3725
                                    1b = [0, 0, -1000];
                                    ub = [10000000, 100000000, 1000];
             <u>3726</u>
             3727
0.03
           1 3728
                                    options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals
2.59
           1 3729
                                    CrossGfitRB = lsqcurvefit(@Crosscorrelation, CrossGinitialRB, delta, gRBnew, lb, ub,
             3730
           1 3731
                                    gRBfit = Crosscorrelation(CrossGfitRB, delta);
             3732
             3733
                                    pathname = handles.filename;
             <u>3734</u>
                                    filename1 = 'XCrb.txt';
             3735
                                    filename2 = 'XCrbFit.txt';
                                    File1 = fullfile(pathname, filename1);
           1 3736
                                    File2 = fullfile(pathname, filename2);
             3737
             3738
           1 3739
                                gRBnew(1, 1) = tempvalueRB;
              3740
0.06
                                dlmwrite(File1, gRBnew, 'delimiter', '\t');
           1 3741
0.03
             3742
                                dlmwrite(File2, gRBfit, 'delimiter', '\t');
             3743
           1 3744
                                for mm = 1:handles.range
          20 3745
                                    newcorrbfit1(mm) = gRBfit(mm, 1);
          20 3746
             3747
           1 3748
                               for mm = 1:handles.range-1
          19 3749
                                    newcorrb1(mm) = gRBnew(mm+1, 1);
          19 3750
             3751
             3752
             3753
0.19
           1 3754
                                figure('Name','Crosscorrelation Red Blue Y','NumberTitle','off')
0.03
             3755
                                plot(delta1,newcorrb1,'om',...
             3756
                                    delta, newcorrbfit1, '--m',...
                                    'LineWidth',2)
             3757
             3758
                                if newcorrb1(1) >= newcorrbfit1(1)
             3759
                                    axis([0 range 0 newcorrb1(1)])
           1 3760
                                else
           1 3761
                                    axis([0 range 0 newcorrbfit1(1)])
                                end
           1 3762
             3763
             3764
             3765
                                    guidata(hObject,handles);
             <u>3766</u>
             3767
             3768
             3769
             3770
0.03
             3771
                               end
             3772
             3773
             3774
             <u>3775</u>
                               if sum(sum(G)) \sim= 0 && sum(sum(B)) \sim= 0
             3776
             3777
             3778
             3779
                                   %gets dimensions of orig matrix
            1 3780
                                   SG = size(G);
             3781
             3782
                                   %calculates average of all matrix entries
             3783
                                   avgG = sum(sum(G))/(SG(1)*SG(2));
             <u>3784</u>
                                   avgB = sum(sum(B))/(SG(1)*SG(2));
             3785
             3786
           1 3787
                                   gGB = (ifft2((fft2(G).*conj(fft2(B))))/(avgG*avgB*SG(1)*SG(2)))-1;
             3788
                                   range = handles.range;
           1 3789
             3790
           1 3791
                                   for i = 1:range
          20 3792
                                       for j = 1:range
         400 3793
                                           gGBnew(i, j) = gGB(i, j);
         400 3794
                                       end
          20 3795
                                   end
             3796
```

```
3797
                                %Removing the value of g(0, 0) by assigning to it the adjacent
             3798
                               %value g(1,1)
           1 3799
                                tempvalueGB = gGBnew(1, 1);
             3800
                                gGBnew(1, 1) = gGBnew(1, 2);
             3801
             3802
                                delta = [0:range-1; 0:range-1];
             3803
                                delta1 = [1:range-1; 1:range-1];
             3804
             3805
                                    CrossGinitialGB = [handles.g0, handles.w, handles.ginf];
             3806
                                    1b = [0, 0, -1000];
                                    ub = [10000000, 100000000, 1000];
             3807
             3808
0.03
                                    options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunEvals
           1 3809
2.90
             <u>3810</u>
                                    CrossGfitGB = lsqcurvefit(@Crosscorrelation, CrossGinitialGB, delta, gGBnew, lb, ub,
              3811
             3812
                                    gGBfit = Crosscorrelation(CrossGfitGB, delta);
              3813
             3814
             <u>3815</u>
                                    pathname = handles.filename;
           1 3816
                                    filename1 = 'XCgb.txt';
                                    filename2 = 'XCgbFit.txt';
           1 3817
           1 3818
                                    File1 = fullfile(pathname, filename1);
             <u>3819</u>
                                    File2 = fullfile(pathname, filename2);
             3820
             3821
                                gGBnew(1, 1) = tempvalueGB;
             3822
0.03
             3823
                                dlmwrite(File1, gGBnew, 'delimiter', '\t');
             3824
                                dlmwrite(File2, gGBfit, 'delimiter', '\t');
0.03
             3825
             3826
                                for mm = 1:handles.range
          20 3827
                                    newcorgbfit1(mm) = gGBfit(mm, 1);
          20 3828
             3829
             3830
                                for mm = 1:handles.range-1
          19 <u>3831</u>
                                    newcorgb1(mm) = gGBnew(mm+1, 1);
          19 3832
                                end
             3833
             3834
             3835
0.22
             3836
                                figure('Name','Crosscorrelation Green Blue Y','NumberTitle','off')
             <u>383</u>7
                                plot(delta1,newcorgb1,'oc',...
              3838
                                    delta,newcorgbfit1,'--c',...
              3839
                                    'LineWidth',2)
             <u>3840</u>
                                if newcorgb1(1) >= newcorgbfit1(1)
             3841
                                    axis([0 range 0 newcorgb1(1)])
           1 3842
             3843
                                    axis([0 range 0 newcorgbfit1(1)])
             3844
                                end
              3845
0.03
             3846
                                    guidata(hObject,handles);
              3847
             3848
             3849
             3850
             3851
                               end
             3852
             3853
             3854
             3855
                               if sum(sum(R)) \sim= 0 \&\& sum(sum(G)) \sim= 0 \&\& sum(sum(B)) \sim= 0
             3856
             3857
             3858
                                           %gets dimensions of orig matrix
             3859
                                       SG = size(R);
              3860
                                       %calculates average of all matrix entries
             3861
           1 3862
                                       avgR = sum(sum(R))/(SG(1)*SG(2));
             3863
                                       avgG = sum(sum(G))/(SG(1)*SG(2));
             3864
                                       avgB = sum(sum(B))/(SG(1)*SG(2));
             3865
             3866
           1 3867
                                        deltaimagred = R - avgR;
            1 3868
                                        deltaimaggreen = G - avgG;
```

```
1 3869
                                        deltaimagblue = B - avgB;
             3870
             3871
             3872
                                        % Calculating triple correlation function through bispectrum
             3873
             3874
             3875
             3876
                                        % Calculating Fast Fourier Transform of deltasignal
             3877
             <u>3878</u>
                                        fftdeltaimagred = fftn(deltaimagred);
             3879
                                        fftdeltaimaggreen = fftn(deltaimaggreen);
             3880
                                        fftdeltaimagblue = fftn(deltaimagblue);
              3881
             3882
                                        sfftdeltaimagred = fftshift(fftdeltaimagred);
             3883
                                        sfftdeltaimaggreen = fftshift(fftdeltaimaggreen);
           1 3884
0.03
                                        sfftdeltaimagblue = fftshift(fftdeltaimagblue);
              3885
0.34
             3886
                                        figure('Name','Fourier Transform of RED','NumberTitle','off')
             3887
0.84
                                        surfc(abs(sfftdeltaimagred))
             3888
             3889
                                        prompt = {'Enter starting point:'};
             3890
                                        dlg_title = 'Input for calculating bispectrum';
             3891
                                        num_lines = 1;
           1 3892
                                        def = {'96'};
                                        lowlim = inputdlg(prompt,dlg_title,num_lines,def);
2.40
             3893
           1
0.03
             3894
                                        lowlim = str2double(lowlim);
             3895
             3896
                                        highlim = SG(1) - lowlim;
             3897
             3898
                                        lim = highlim - lowlim;
             3899
           1 3900
                                        nhlf = SG(1)/2;
             3901
                                        nhlfp = nhlf+1;
             3902
                                        nhlfm = nhlf-1;
             3903
             3904
                                        nbi = lim;
             3905
                                        nbihlfp = nbi/2+1;
             3906
           1 3907
                                        r1 = zeros(lim, lim, lim, lim);
             3908
             3909
                                        tic
              3910
             3911
                                            for v1 = (-nhlf+lowlim):0
          17 <u>3912</u>
                                                for u1 = (-nhlf+lowlim)-(v1-1):(nhlfm-lowlim)
         391 3913
                                                     for v2 = (-nhlf+lowlim):(nhlfm-lowlim)
0.19
       12512 3914
                                                         for u2 = (-nhlf+lowlim):(nhlfm-lowlim)
      400384 3915
                                                             if abs(u2+v2) \le nhlfm
             3916
5.99
      400384 3917
                                                                 r1(nbihlfp + v1, nbihlfp + u1, nbihlfp + v2, nbihlfp + u
              3918
4.46 400384 <u>3919</u>
                                                             end
                                                         end
4.00
      400384 3920
      12512 3921
                                                     end
0.22
         391 3922
                                                end
          17 3923
                                            end
             3924
             3925
             3926
             3927
             3928
             3929
                                            for v1 = 1:(nhlfm-lowlim)
          15 3930
                                                for u1 = (-nhlf+lowlim):(nhlfm-lowlim)-v1
         360 3931
                                                     for v2 = (-nhlf+lowlim):(nhlfm-lowlim)
0.16
       11520 3932
                                                         for u2 = (-nhlf+lowlim):(nhlfm-lowlim)
      368640 <u>3933</u>
3.97
                                                             if abs(u2+v2) \le nhlfm
             3934
4.71
      368640 3935
                                                                 r1(nbihlfp + v1, nbihlfp + u1, nbihlfp + v2, nbihlfp + u
              3936
4.75
      368640 <u>3937</u>
                                                             end
3.59 368640 3938
                                                         end
      11520 3939
                                                    end
         360 3940
                                                end
```

25 of 28

```
15 3941
                                            end
             3942
                                            toc
             3943
             3944
0.34
           1 3945
                                            figure('Name','Bispectrum','NumberTitle','off')
             3946
           1 3947
0.06
                                            colormap hsv
             3948
             3949
             <u>3950</u>
                                            bispectdisp = real(r1(:, :, nbihlfp, nbihlfp));
             3951
0.34
                                            surfc(bispectdisp)
             3952
             3953
             3954
                               % End of calculating bispectrum
             3955
             3956
             3957
             3958
             3959
             3960
                               % Calculating triple correlation function
             3961
             3962
0.03
                               bispectorig = fftshift(r1);
             3963
             3964
0.50
             3965
                               tricorr = ifftn(bispectorig).*((lim^4)/(SG(1)^2*SG(2)^2));
                                                                                              %compute the triple correla
             3966
0.09
             <u>3967</u>
                               tricorrnorm = tricorr/(avgR*avgG*avgB);
             3968
0.62
           1 3969
                               figure('Name','Triple Correlation Function 3D','NumberTitle','off')
             3970
                               tricorrdisp = fftshift(real(tricorrnorm(:,:,1, 1)));
0.06
           1 3971
                               surfc(tricorrdisp)
             3972
                               colormap hsv
             3973
             3974
                                       prompt = {'Input GO:','Input w:', 'Input Ginf:', 'Input fitting range:', 'Input
             <u>3975</u>
             3976
                                       dlg_title = 'Parameters for fitting';
           1 3977
                                       num_lines = 1;
           1 3978
                                       def = {'50','2', '0', '15', '30'};
1.75
           1 3979
                                       parforfit = str2double(inputdlg(prompt,dlg_title,num_lines,def));
             3980
                                       handles.g0 = parforfit(1);
             3981
                                       handles.w = parforfit(2);
           1
                                       handles.ginf = parforfit(3);
             3982
             3983
                                       range = parforfit(4);
             3984
                                       handles.niter = parforfit(5);
             3985
             3986
             3987
             3988
             3989
             3990
             3991
             3992
             3993
             3994
           1 3995
                               for ii = 1:range
          15 3996
                                   for jj = 1:range
             3997
         225 3998
                                        testmatrix1(ii, jj) = real(tricorrnorm(ii, jj, 1, 1));
                                        testmatrix2(ii, jj) = real(tricorrnorm(1, ii, jj, 1));
         225 3999
         225 4000
                                        testmatrix3(ii, jj) = real(tricorrnorm(1, 1, ii, jj));
         225 4001
                                       testmatrix4(ii, jj) = real(tricorrnorm(1, ii, 1, jj));
         225 4002
                                       testmatrix5(ii, jj) = real(tricorrnorm(ii, 1, jj, 1));
         225 4003
                                       testmatrix6(ii, jj) = real(tricorrnorm(ii, 1, 1, jj));
             4004
         225 4005
                                   end
          15 4006
                               end
             4007
             4008
             4009
                               for mm = 1:range
             4010
          15 4011
                                    newtricorre1(mm) = testmatrix1(1, mm);
          15 4012
                                    newtricorre2(mm) = testmatrix1(mm, 1);
```

```
4013
                                                                  % newtricorre3(mm) = testmatrix1(mm, mm);
                         4014
                   15 <u>4015</u>
                                                                    newtricorre4(mm) = testmatrix2(1, mm);
                   15 4016
                                                                    newtricorre5(mm) = testmatrix2(mm, 1);
                         4017
                   15 <u>4018</u>
                                                                    newtricorre6(mm) = testmatrix3(1, mm);
                   15 <u>4019</u>
                                                                    newtricorre7(mm) = testmatrix3(mm, 1);
                         4020
                                                               % newtricorre8(mm) = testmatrix3(mm, mm);
                         4021
                   15 <u>4022</u>
                                                                    newtricorre9(mm) = testmatrix4(1, mm);
                   15 <u>402</u>3
                                                                    newtricorre10(mm) = testmatrix4(mm, 1);
                         4024
                                                                    newtricorre11(mm) = testmatrix5(1, mm);
                   15 <u>4025</u>
                   15 <u>4026</u>
                                                                    newtricorre12(mm) = testmatrix5(mm, 1);
                         4027
                   15 4028
                                                                    newtricorre13(mm) = testmatrix6(1, mm);
                   15 4029
                                                                    newtricorre14(mm) = testmatrix6(mm, 1);
                         4030
                   15 <u>4031</u>
                                                          end
                         4032
                         4033
                         4034
                                                          newt = ((newtricorre1+newtricorre2+newtricorre4+newtricorre5+newtricorre6+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newtricorre7+newt
                        <u>4035</u>
                         4036
                         4037
                         4038
                         4039
                                                          % End of calculating triple correlation function
                         4040
                                                          4041
                         4042
                         4043
                                                  % End of calculating triple correlation function through bispectrum
                         4044
                         4045
                         4046
                         4047
                         4048
                         4049
                         4050
                     1 4051
                                                                          correctionw = SG(1)/lim;
                        4052
                                                                          delta = [0:range-1];
                     1 4053
                                                                          TripleGinitialRGB = [handles.g0, handles.w, handles.ginf];
                     1 4054
                                                                          1b = [0, 0, -1000];
                     1 4055
                                                                          ub = [10000000, 100000000, 1000];
                         4056
                                                                          options = optimset('outputfcn',@outfun1, 'TolFun',1e-50, 'TolX', 1e-50, 'MaxFunE
0.09
                     1 4057
2.34
                     1 4058
                                                                          TripleGfitRGB = lsqcurvefit(@Gausshalf, TripleGinitialRGB, delta, newt, lb, ub,
                         4059
                                                                          TripleRGBfit = Gausshalf(TripleGfitRGB, delta);
0.03
                     1 4060
                         4061
                     1 4062
                                                                          TripleGfitRGB(2) = round(TripleGfitRGB(2)*correctionw*10)/10;
                        4063
                                                                          set(handles.wfit, 'String', TripleGfitRGB(2));
                         4064
                     1 4065
                                                                          TripleGfitRGBforfile = [TripleGfitRGB(1), TripleGfitRGB(2), TripleGfitRGB(3)];
                         4066
                         4067
                     1 4068
                                                                          pathname = handles.filename;
                     1 4069
                                                                          filename1 = 'TripleCrgb.txt';
                     1 4070
                                                                          filename2 = 'TripleCrgbFit.txt';
                        <u>4071</u>
                                                                          File1 = fullfile(pathname, filename1);
                        4072
                                                                          File2 = fullfile(pathname, filename2);
                         4073
                         4074
                         4075
0.03
                     1 4076
                                                                          dlmwrite(File1, newt, 'delimiter', '\t');
                                                                          dlmwrite(File2, TripleRGBfit, 'delimiter', '\t');
0.03
                     1 4077
                         4078
                         4079
0.22
                        4080
                                                                          figure('Name','Triple Correlation Function','NumberTitle','off')
0.03
                         4081
                                                                          plot(delta,newt,'ok',...
                                                                                  delta,TripleRGBfit,'--k',...
                         4082
                         4083
                                                                                  'LineWidth',2)
                         4084
```

```
4085
                                     guidata(hObject,handles);
          1 4086
            4087
          1 4088
                            end
            4089
            4090 %-----
            4091 %Saving fitting parameters into a file
            4092
            4093
            4094
          1 4095
                        Title1 = ['parameters:
                                                      '1:
          1 4096
                        Title2 = ['G(0)]';
                                          '];
          1 4097
                        Title3 = ['w]
                        Title4 = ['Ginf'];
          1 4098
            4099
          1 4100
                         Title = cat(2, Title1, Title2, Title3, Title4);
            4101
          1 4102
                         fname = cat(2, handles.filename, '.txt');
            4103
          1 4104
                         empty1= [' '];
          1 4105
                         head1 = ['RED
                                                      '];
                                                     '];
          1 4106
                         head2 = ['GREEN
                                                     '];
          1 4107
                         head3 = ['BLUE
          1 4108
                         head4 = ['RED-GREEN
                                                      '];
          1 4109
                         head5 = ['RED-BLUE
                                                      '];
          1 4110
                         head6 = ['GREEN-BLUE
                                                      '];
          1 4111
                         head7 = ['RED-GREEN-BLUE
            4112
                         red = cat(2, head1, num2str(AutoGfitR, '%-10.5f'));
0.03
          1 4113
0.03
          1 4114
                         green = cat(2, head2, num2str(AutoGfitG, '%-10.5f'));
                         blue = cat(2, head3, num2str(AutoGfitB, '%-10.5f'));
          1 4115
          1 4116
                         redgreen = cat(2, head4, num2str(CrossGfitRG, '%-10.5f'));
          1 4117
                         redblue = cat(2, head5, num2str(CrossGfitRB, '%-10.5f'));
          1 4118
                         greenblue = cat(2, head6, num2str(CrossGfitGB, '%-10.5f'));
                         redgreenblue = cat(2, head7, num2str(TripleGfitRGBforfile, '%-10.5f'));
          1 4119
            4120
                         File = fullfile(handles.filename, fname);
          1 4121
0.06
          1 4122
                         dlmwrite(File, Title, '');
                         dlmwrite(File, empty1, '-append', 'delimiter', '');
0.03
          1 4123
            4124
          1 4125
                         dlmwrite(File, red, '-append', 'delimiter', '');
0.03
                         dlmwrite(File, green, '-append', 'delimiter', '');
dlmwrite(File, blue, '-append', 'delimiter', '');
          1 4126
          1 4127
                         dlmwrite(File, redgreen, '-append', 'delimiter', '');
0.03
          1 4128
          1 4129
                         dlmwrite(File, redblue, '-append', 'delimiter', '');
                         dlmwrite(File, greenblue, '-append', 'delimiter', '');
          1 4130
                         dlmwrite(File, redgreenblue, '-append', 'delimiter', '');
0.03
          1 4131
            4132
            4133
            4134
            4135
          1 4136
                         guidata(hObject, handles)
            4137
            4138
            4139 %End saving fitting parameters into a file
            4140 %-----
            4141
            4142
            4143
           1 <u>4144</u> end
            4145
          1 4146
                        guidata(hObject,handles);
```

Other subfunctions in this file are not included in this listing.