Національний Технічний Університет України "КПІ ім. Ігоря Сікорського" Інститут прикладного системного аналізу

ЛАБОРАТОРНА РОБОТА № 2

TEMA: Ознайомлення з пакетом прикладних програм EVIEWS версія 3

Прийняв

(підпис, дата)

Виконавці роботи:

Частина перша: загальне ознайомлення з системою Eviews

1. Згідно з номером бригади для свого варіанту, з табл. А.1 головного документу, запишіть АРКС з фактичними значеннями коефіцієнтів моделі. $y(k) = a_0 + a_1 \cdot y(k-1) + a_2 \cdot y(k-2) + a_3 \cdot y(k-3) + \cdots + v(k) + b_1 \cdot v(k-1) + b_2 \cdot v(k-2) + b_3 \cdot v(k-3) + \varepsilon$

До пунктів 1.2-1.4 завдання на виконання лр-2 головного документу.

- 2. Напишіть команди в строгій послідовності їх виконання за допомогою командної строки системи Eviews, що були використані для побудови часових рядів $^{\it V}$ та $^{\it Y}$.
 - 3. Побудуйте графіки рядів v та y, на одній площині Декарта

Частина друга: написання програми в системі Eviews

До пунктів 2.2 - 2.3 (2.3.1-2.3.4) завдання на виконання лр-2 головного документу.

- 4. Роздрукуйте код програми.
- 5. Для кожного набору даних роздрукуйте наступні графіки (на одній площині Декарта відображається два графіка). Достатньо побудувати графіки лише для перших 50 точок часових рядів.
 - (1) графіки індексу та простого КС для N = 5
 - (2) графіки індексу та простого КС для N = 10
 - (3) графіки індексу та експоненційного КС для N=5
 - (4) графіки індексу та експоненційного КС для N=10

Для підвищення сприйняття наочності графіків позначайте індекс – index або англійська абревіатура rts1, rts2, ..., RTSmm (дивиться табл. 1 головного документа); просте КС – _SMA (тобто з англійської simple

moving average. Ім'я змінної *sma* неможна задавати, тому що це ім'я вже зарезервовано в системі **Eviews** для сезонної складової ковзного середнього – *season moving average*); експоненційне КС – EMA (exponential MA).

Осі: ОХ – час, ОҮ – значення.

У кожного варіанту 2 набори даних, для кожного набору даних 4 графіки, всього повинно бути 8 графіків.

6. Заповніть таблицю значень вагових коефіцієнтів, що використовуються при обчисленні експоненційного КС.

Ваговий	N = 5	N = 10
коефіцієнт		
w_1		
w_2		
w_3		
w_4		
W_5		
w_6	None	
w_7	None	
W_8	None	
W_9	None	
w_{10}	None	

7. Для кожного набору даних заповніть наступну таблицю:

Назва набору даних		
Лаг	Значення ЧАКФ	Значення ЧАКФ обчислене
	обчислене програмою	командою correl
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		

Стандартна команда системи Eviews correl використовується в цій лабораторній роботі для перевірки вірності результатів значень ЧАКФ обчислених за допомогою програми.

Приклад застосування команди "*iм'я ряду*".correl

8. Дайте письмові висновки за виконаною роботою.