Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1. (currently amended) An isomer, enantiomer, diastereoisomer, or tautomer of a compound, represented by formula I:

$$R^{2} \xrightarrow{A} M^{1} M^{2} Z$$

$$M^{4} \xrightarrow{M^{3}} Z$$

$$(I)$$

wherein

---- represents either a single or a double bond;

B is -N- and **A** is $=CR^1$ —or—N-; or

B is =C- and A is O, S or NR¹;

is selected from the group consisting of: H, (C₁₋₆)alkyl optionally substituted with: halogen, OR¹¹, SR¹¹ or N(R¹²)₂, wherein R¹¹ and each R¹² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het, said aryl or Het optionally substituted with R¹⁶⁰; or both R¹² are covalently bonded together and to the nitrogen to which they are both attached to form a 5, 6 or 7-membered saturated heterocycle;

the group $-C(=Y^1)-Z$ is covalently linked to either M^2 or M^3 ,

 M^1 is CR^{4a} , $M^2 \text{ or } M^3, \text{ when not linked to } -C(=Y^1)-Z, \text{ is } CR^5,$ $M^4 \text{ is } CR^{4b},$

and in addition one or two of the groups selected from M⁴, M², M³ and M⁴ may also be N, with the proviso that the group M² or M³ to which —C(=Y⁴)-Z is linked is a C atom,

Y¹ is O or S;

- Z is defined as NR^{N2} - SO_2 - R^C or NR^{N3} - SO_2 - $N(R^{N2})R^{N1}$, wherein R^C , R^{N1} or any heterocycle formed by R^{N1} and R^{N2} is optionally substituted with R^{60} ;
- R^2 is selected from: halogen or R^{21} , wherein R^{21} is aryl or **Het**, said R^{21} is optionally substituted with R^{150} :
- R³ is selected from (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl, (C₅₋₇)cycloalkenyl, (C₁₋₃)alkyl-(C₅₋₇)cycloalkenyl, (C₆₋₁₀)bicycloalkyl, (C₁₋₃)alkyl-(C₆₋₁₀)bicycloalkyl, (C₆₋₁₀)bicycloalkyl, (C₆₋₁₀)bicycloalkenyl, HCy or (C₁₋₃)alkyl-HCy, wherein HCy is a saturated or unsaturated 4 to 7-membered heterocyclic group with 1 to 3 heteroatoms selected from O, S and N; said alkyl, cycloalkyl, cycloalkenyl, bicycloalkyl, bicycloalkenyl, HCy and alkyl-HCy being optionally substituted with from 1 to 4 substituents selected from: a) halogen; b) (C₁₋₆)alkyl optionally substituted with:
 - 1 to 3 substituents selected from halogen;
 - OR^{31} or SR^{31} wherein R^{31} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-6}) alkyl- (C_{3-7}) cycloalkyl; or
 - $N(R^{32})_2$ wherein each R^{32} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl; or both R^{32} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;
 - c) OR^{33} or SR^{33} wherein R^{33} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl;
 - d) $N(\mathbf{R}^{35})_2$ wherein each \mathbf{R}^{35} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl; or both \mathbf{R}^{35} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

 R^{4a} , R^{4b} , R^5 each are independently H or defined as R^{150} ;

R⁶⁰ is defined as 1 to 4 substituents independently selected from:

U.S. Appln. No. 10/755,544

- 1 to 3 substituents selected from halogen;
- one of each substituent selected from: OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-8}$)alkyl or C(=NH)NHCO(C $_{1-8}$)alkyl, SO $_3$ H; and
- 1 to 3 substituents selected from:
- a) (C₁₋₆) alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇) spirocycloalkyl optionally containing 1 or 2 heteroatoms selected from N, O and S; (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, all of which optionally being substituted with **R**¹⁵⁰;
- b) OR°;
- c) OC(O)R^o;
- d) SR^0 , SO_2R^c , $SO_2N(R^{N2})R^{N1}$, $SO_2N(R^{N2})C(O)R^c$, $CONR^{N3}SO_2N(R^{N2})R^{N1}$, or $CONR^{N2}SO_2R^c$:
- e) $N(R^{N2})R^{N1}$, $N(R^{N2})COOR^{C}$, $N(R^{N2})SO_{2}R^{C}$ or $N(R^{N1})OR^{O}$;
- f) $N(R^{N2})COR^{C}$;
- g) $N(R^{N3})CON(R^{N2})R^{N1}$;
- h) N(R^{N3})COCOR^C, N(R^{N3})COCOOR^O, N(R^{N3})COCON(R^{N2})OR^O, or N(R^{N3})COCON(R^{N2})R^{N1};
- i) COR^o;
- j) COORO;
- k) $CON(R^{N2})R^{N1}$;
- aryl, Het, (C₁₋₄)alkyl-aryl or (C₁₋₄)alkyl-Het, all of which optionally being substituted with R¹⁵⁰;

wherein said R^{N1}, R^C and/or R^O are optionally substituted with R¹⁵⁰ as defined,

R¹⁵⁰ is defined as 1 to 4 substituents independently selected from:

- 1 to 3 substituents selected from halogen;
- one of each substituent selected from: OPO $_3$ H, NO $_2$, cyano, azido, SO $_3$ H C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl; and
- 1 to 3 substituents selected from:
- a) (C₁₋₆) alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇)spirocycloalkyl optionally containing 1 or 2 heteroatoms selected from N, O and S; (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₃) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁶⁰;
- b) OR^o;
- c) $OC(O)R^{O}$;
- d) SR^{0} , $SO_{2}R^{C}$, $SO_{2}N(R^{N2})R^{N1}$ or $SO_{2}N(R^{N2})C(O)R^{C}$;
- e) $N(R^{N2})R^{N1}$, $N(R^{N2})COOR^{C}$, $N(R^{N2})SO_2R^{C}$ or $N(R^{N1})OR^{O}$;
- f) $N(R^{N2})COR^{C}$;
- g) $N(R^{N3})CON(R^{N2})R^{N1}$;

U.S. Appln. No. 10/755,544

- h) $N(R^{N3})COCOR^{C}$, $N(R^{N3})COCOOR^{O}$, $N(R^{N3})COCON(R^{N2})OH$, $N(R^{N3})COCON(R^{N2})O(C_{1-4})$ alkyl or $N(R^{N3})COCON(R^{N2})R^{N1}$;
- i) CORO;
- j) COORO;
- k) tetrazole, triazole, $CONR^{N2}SO_2R^C$, $CONR^{N3}-SO_2N(R^{N2})R^{N1}$ or $CON(R^{N2})R^{N1}$; wherein said R^{N1} , R^C and/or R^O are optionally substituted with R^{160} as defined;

R¹⁶⁰ is defined as 1, 2 or 3 substituents independently selected from:

- 1, 2 or 3 fluorine substituents; and
- one of each substituent selected from tetrazole, triazole, chlorine, bromine, iodine, CN, nitro, (C₁₋₄)alkyl, OCF₃, SCF₃, CF₃, COOR¹⁶¹, SO₃H, SR¹⁶¹, SO₂R¹⁶³, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂, SO₂NR¹⁶²COR¹⁶², NR¹⁶²SO₂R¹⁶³, -NR¹⁶¹-CO-COOR¹⁶¹, -NR¹⁶¹-CO-CO(NR¹⁶²)₂, -CONR¹⁶¹SO₂R^c, CONR¹⁶¹-SO₂N(R¹⁶²)₂ or -SO₂-NR¹⁶¹-COR^c, NR¹⁶²COR¹⁶² or CON(R¹⁶²)₂, wherein R¹⁶¹, R¹⁶³ and each R¹⁶² is independently (C₁₋₄)alkyl, (C₃₋₇)cycloalkyl or (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl; and R¹⁶¹ and each R¹⁶² may each independently also be H; or both R¹⁶² are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;
- R^{O} , R^{C} are independently defined as (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₄)alkyl-(C₃₋₇)cycloalkyl, (C₂₋₆)alkenyl, aryl, **Het**, (C₁₋₄)alkyl-aryl, or (C₁₋₄)alkyl-**Het**; or R^{O} is also optionally defined as H.
- R^{N1} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-4}) alkyl- (C_{3-7}) cycloalkyl, (C_{2-6}) alkenyl, aryl, Het, (C_{1-4}) alkyl-aryl, (C_{1-4}) alkyl-Het; and
- R^{N2} , R^{N3} , R^{N4} are independently H, CH_3 , (C_{2-6}) alkyl, (C_{3-6}) cycloalkyl, (C_{1-4}) alkyl- (C_{3-6}) cycloalkyl; all of which being optionally substituted with halogen, carboxy or (C_{1-6}) alkoxycarbonyl; and/or wherein said alkyl, cycloalkyl or alkylcycloalkyl is optionally substituted with hydroxy, (C_{1-6}) alkyl, (C_{1-6}) alkoxy, amino, -NH (C_{1-4}) alkyl and/or -N((C_{1-4}) alkyl)₂; or

in the case

- a) of a group $N(R^{N2})R^{N1}$ the substituents R^{N2} and R^{N1} ; or
- b) of a group NR^{N3}-N(R^{N2})R^{N1} the substituents R^{N3} and R^{N1}, or R^{N2} and R^{N1}; may be covalently bonded together to form a 4-, 5-, 6- or 7-membered saturated or unsaturated N-containing heterocycle or a 8-, 9-, 10- or 11-membered N-containing

U.S. Appln. No. 10/755,544

heterobicycle, each optionally having additionally from 1 to 3 heteroatoms selected from O, N, and S;

wherein **Het** is defined as a 4-, 5-, 6- or 7-membered heterocycle having 1 to 4 heteroatoms selected from O, N and S, or a 8-, 9-, 10- or 11-membered heterobicycle having 1 to 5 heteroatoms selected from O, N and S;

or a salt thereof.

- 2. (currently amended) The compound according to claim 1, wherein
- ---- represents either a single or a double bond;

B is -N- and A is CR1 or =N-; or

B is =C- and A is O, S or NR¹;

is selected from the group consisting of: H, (C₁₋₆)alkyl optionally substituted with: halogen, OR¹¹, SR¹¹ or N(R¹²)₂, wherein R¹¹ and each R¹² is independently H, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, (C₁₋₆)alkyl-aryl or (C₁₋₆)alkyl-Het, said aryl or Het optionally substituted with R¹⁶⁰; or both R¹² are covalently bonded together and to the nitrogen to which they are both attached to form a 5, 6 or 7-membered saturated heterocycle;

the group $-C(=Y^1)-Z$ is covalently linked to either M^2 or M^3 ,

M¹ is CR^{4a} , one of M² and M³ is CR⁵, M⁴ is CR^{4b},

and in addition one or two of the groups selected from M⁴, M², M³ and M⁴ may also be N, with the proviso that the group M² or M³ to which C(=Y⁴)-Z is linked is an C atom,

Y¹ is O or S;

Z is defined as NR^{N2} - SO_2 - R^C , wherein R^C is optionally substituted with R^{60} ;

 R^2 is selected from: halogen or R^{21} , wherein R^{21} is aryl or **Het**, said R^{21} is optionally substituted with R^{150} :

R³ is selected from (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl, (C₅₋₇)cycloalkenyl, (C₁₋₃)alkyl-(C₅₋₇)cycloalkenyl, (C₆₋₁₀)bicycloalkyl, (C₁₋₃)alkyl-(C₆₋₁₀)bicycloalkyl, (C₆₋₁₀)bicycloalkenyl, (C₆₋₁₀)bicycloalkenyl, HCy or (C₁₋₃)alkyl-HCy, wherein HCy is a saturated or unsaturated 4 to 7-membered heterocyclic group with 1 to 3 heteroatoms selected from O, S and N; said alkyl, cycloalkyl, cycloalkenyl, bicycloalkyl, bicycloalkenyl, HCy and alkyl-HCy being optionally substituted with from 1 to 4 substituents selected from: a) halogen;

- b) (C₁₋₆)alkyl optionally substituted with:
 - OR^{31} or SR^{31} wherein R^{31} is H, (C₁₋₆alkyl), (C₃₋₇)cycloalkyl or (C₁₋₈alkyl-(C₃₋₇)cycloalkyl; or
 - $N(R^{32})_2$ wherein each R^{32} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl; or both R^{32} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;
- c) OR^{33} or SR^{33} wherein R^{33} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl;
- d) $N(R^{35})_2$ wherein each R^{35} is independently H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl or (C_{1-3}) alkyl- (C_{3-7}) cycloalkyl; or both R^{35} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

R^{4a}, R^{4b}, R⁵ each are independently H or defined as R¹⁵⁰;

 $\mathbf{R}^{\mathbf{60}}$ is defined as 1 to 4 substituents independently selected from:

- 1 to 3 substituents selected from halogen;
- one of each substituent selected from: OPO $_3$ H, NO $_2$, cyano, azido, C(=NH)NH $_2$, C(=NH)NH(C $_{1-6}$)alkyl or C(=NH)NHCO(C $_{1-6}$)alkyl, SO $_3$ H; and
- 1 to 3 substituents selected from:
- a) (C₁₋₆) alkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatom selected from N, O and S; (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₆)alkyl-(C₃₋₇)cycloalkyl, all of which optionally being substituted with \mathbf{R}^{150} ;
- b) OR^o;
- c) OC(O)RO;

U.S. Appln. No. 10/755,544

- d) SR^0 , SO_2R^C , $SO_2N(R^{N2})R^{N1}$, $SO_2N(R^{N2})C(O)R^C$ or $CONR^{N2}SO_2R^C$;
- e) $N(R^{N2})R^{N1}$, $N(R^{N2})COOR^{C}$ or $N(R^{N2})SO_{2}R^{C}$;
- f) $N(R^{N2})COR^{C}$;
- g) $N(R^{N3})CON(R^{N2})R^{N1}$;
- h) N(R^{N3})COCOR^C, N(R^{N3})COCOOR^O or N(R^{N3})COCON(R^{N2})R^{N1};
- i) CORO;
- j) COOR^o;
- k) CON(R^{N2})R^{N1};
- I) aryl, **Het**, (C₁₋₄alkyl)aryl or (C₁₋₄alkyl)**Het**, all of which optionally being substituted with R¹⁵⁰:

wherein said R^{N1}, R^C and/or R^O are optionally substituted with R¹⁵⁰ as defined,

R¹⁵⁰ is defined as 1 to 4 substituents independently selected from:

- 1 to 3 substituents selected from halogen;
- one of each substituent selected from: OPO_3H , NO_2 , cyano, azido, $C(=NH)NH_2$, $C(=NH)NH(C_{1-6})$ alkyl or $C(=NH)NHCO(C_{1-6})$ alkyl; and
- 1 to 3 substituents selected from:
- a) (C₁₋₆) alkyl, (C₃₋₇)cycloalkyl, C₃₋₇ spirocycloalkyl optionally containing 1 or 2 heteroatoms selected from N, O and S; (C₂₋₆)alkenyl, (C₂₋₈)alkynyl, (C₁₋₃) alkyl-(C₃₋₇)cycloalkyl, all of which optionally substituted with R¹⁶⁰;
- b) OR⁰;
- c) OC(O)R^o;
- d) SR^0 , SO_2R^C , $SO_2N(R^{N2})R^{N1}$ or $SO_2N(R^{N2})C(O)R^C$;
- e) $N(R^{N2})R^{N1}$, $N(R^{N2})COOR^C$ or $N(R^{N2})SO_2R^C$;
- f) $N(R^{N2})COR^{C}$;
- g) $N(R^{N3})CON(R^{N2})R^{N1}$;
- N(R^{N3})COCOR^C, N(R^{N3})COCOOR^O or N(R^{N3})COCON(R^{N2})R^{N1};
 wherein R^{N1} is as defined or OH, OAlkyl;
- i) COR°;
- j) COOR^o;
- k) tetrazole or CON(R^{N2})R^{N1};

wherein said R^{N1}, R^C and/or R^O are optionally substituted with R¹⁶⁰ as defined;

R¹⁶⁰ is defined as 1, 2 or 3 substituents independently selected from:

- 1, 2 or 3 fluorine substituents; and
- one of each substituent selected from tetrazole, chlorine, bromine, iodine, CN, nitro, C_{1.4}alkyl, CF₃, COOR¹⁶¹, SO₃H, SR¹⁶¹, SO₂R¹⁶³, OR¹⁶¹, N(R¹⁶²)₂, SO₂N(R¹⁶²)₂,

 $SO_2NR^{162}COR^{162}$, $NR^{162}SO_2R^{163}$, $NR^{162}COR^{162}$ or $CON(R^{162})_2$, wherein R^{161} , R^{163} and each R^{162} is independently (C_{1-4})alkyl, (C_{3-7})cycloalkyl or (C_{1-3})alkyl-(C_{3-7})cycloalkyl; and R^{161} and each R^{162} may each independently also be H; or both R^{162} are covalently bonded together and to the nitrogen to which they are attached to form a 5, 6 or 7-membered saturated heterocycle;

- R^{O} , R^{C} are independently defined as (C_{1-6}) alkyl, (C_{3-6}) cycloalkyl, (C_{1-4}) alkyl- (C_{3-6}) cycloalkyl, (C_{2-6}) alkenyl, aryl, Het, (C_{1-4}) alkyl-aryl, (C_{1-4}) alkyl-Het;
- R^{N1} is H, (C_{1-6}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-4}) alkyl- (C_{3-6}) cycloalkyl, (C_{2-6}) alkenyl, aryl, Het, (C_{1-4}) alkyl-Het; or
- R^{N2}, R^{N3}, R^{N4} are independently H, CH₃, (C₂₋₆alkyl), (C₃₋₆)cycloalkyl, (C₁₋₄)alkyl-(C₃₋₆)cycloalkyl; all of which being optionally substituted with halogen, carboxy or C₁₋₆-alkoxycarbonyl; and/or wherein said alkyl, cycloalkyl or alkylcycloalkyl is optionally substituted with hydroxy, C₁₋₆-alkyl, C₁₋₆-alkoxy, amino, -NH(C₁₋₄-alkyl) and/or -N(C₁₋₄-alkyl)₂; and

in the case

- a) of a group N(R^{N2})R^{N1} the substituents R^{N2} and R^{N1}; or
- b) of a group NR^{N3}-N(R^{N2})R^{N1} the substituents R^{N3} and R^{N1}, or R^{N2} and R^{N1}; may be covalently bonded together to form a 4-, 5-, 6- or 7-membered saturated or unsaturated N-containing heterocycle or a 8-, 9-, 10- or 11-membered N-containing heterobicycle each may have additionally from 1 to 3 heteroatoms selected from O, N, and S, wherein said heterocycle or heterobicycle is optionally substituted as defined;

wherein **Het** is defined as a 4-, 5-, 6- or 7-membered heterocycle having 1 to 4 heteroatoms selected from O, N and S, or a 8-, 9-, 10- or 11-membered heterobicycle having 1 to 5 heteroatoms selected from O, N and S;

or a salt thereof.

3. (currently amended) The compound according to claim 1 selected from the group of formulas I.1 to I.5 and I.2

R^{2} R^{3} M^{1} M^{2} M^{3} Z	1.1
R^{2} M^{1} M^{2} M^{2} M^{3} Z	1.2
$ \begin{array}{c c} & M^{1} \\ & M^{2} \\ & M^{3} \end{array} $	1.3
$ \begin{array}{c c} & M^{1} \\ & M^{2} \\ & M^{4} \\ & M^{3} \end{array} $	1.4
$ \begin{array}{c c} & & & & & & & & & \\ & & & & & & & & &$	1.5

wherein $\mathbf{R^1}$, $\mathbf{R^2}$, $\mathbf{R^3}$, $\mathbf{Y^1}$, \mathbf{Z} , $\mathbf{M^1}$, $\mathbf{M^2}$, $\mathbf{M^3}$ and $\mathbf{M^4}$ are defined as in claim 1.

- 4. (original) The compound according to claim 1, wherein \mathbf{R}^1 is selected from the group consisting of: H and (C_{1-6}) alkyl.
- 5. (original) The compound according to claim 4, wherein \mathbf{R}^1 is H, CH₃, ethyl, or isobutyl.

- 6. (original) The compound according to claim 5, wherein R¹ is H or CH₃.
- 7. (original) The compound according to claim 6, wherein R¹ is CH₃.
- 8. (original) The compound according to claim 1, wherein Y¹ is O.
- 9. (original) The compound according to claim 1, wherein Z is NR^{N3} - SO_2 - $N(R^{N2})R^{N1}$, wherein R^{N1} or any heterocycle formed by R^{N1} and R^{N2} is optionally substituted with R^{60} , and wherein R^{N3} , R^{N2} , R^{N1} and R^{60} are defined as in claim 1.
- 10. (original) The compound according to claim 1, wherein Z is NR^{N2}-SO₂-R^C, wherein R^C is optionally substituted with R⁶⁰, and wherein Het, R^{N2}, R^C and R⁶⁰ are defined as in claim 1.
- 11. (original) The compound according to claim 10, wherein **Z** is NH-SO₂-**R**^c, wherein **R**^c is selected from the group consisting of (C₁₋₆)alkyl, (C₃₋₆)cycloalkyl, (C₁₋₃)alkyl-(C₃₋₆)cycloalkyl, (C₂₋₆)alkenyl, phenyl, naphthyl, **Het**, (C₁₋₃)alkyl-phenyl, (C₁₋₃)alkyl-naphthyl, (C₁₋₃)alkyl-**Het**, wherein said alkyl, cycloalkyl, alkyl-cycloalkyl, alkenyl, phenyl, naphthyl, **Het**, alkyl-phenyl, alkyl-naphthyl, or alkyl-**Het**, are all optionally substituted with 1 to 4 substituents selected from **R**⁶⁰, wherein **R**⁶⁰ and **Het** are defined as in claim 10.
- 12. (original) The compound according to claim 11, wherein **Z** is NH-SO₂-R^c, wherein R^c is selected from the group consisting of methyl, ethyl, n-propyl, i-propyl, cyclopropyl, cyclopentyl, cyclopentyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, pyrrolidine, piperidine, morpholine, thiomorpholine, piperazine, phenyl, naphthyl, benzyl, thiophene, furan, pyrrole, imidazole, pyrazole, oxazole, isoxazole, thiazole, pyridazine, pyrimidine, pyrazine, diazepine, azepine, quinoline, isoquinoline, benzofuran, benzothiophene, benzothiazole, purine, pteridine,

B][1,3]thiazole

all of which are optionally substituted with 1 to 3 substituents selected from R^{60} , wherein R^{60} is defined as in claim 11.

13. (original) The compound according to claim 1, wherein R^2 is R^{21} , wherein R^{21} is phenyl or **Het** selected from the group of formulas

and wherein said R^{21} is unsubstituted or substituted with R^{150} , being defined as in claim 1.

- 14. (original) The compound according to claim 1, wherein R^2 is R^{21} , wherein R^{21} is defined as in claim 1, and wherein R^{21} is optionally substituted with 1, 2 or 3 substituents selected from:
 - 1 to 3 substituents selected from halogen;
 - one of each substituent selected from: NO2, cyano, azido; and
 - 1 to 2 substituents selected from:
 - a) (C₁₋₄)alkyl or (C₁₋₄)alkoxy, both optionally substituted with OH, O(C₁₋₄)alkyl, SO₂(C₁₋₄)alkyl), 1 to 3 halogen atoms, amino, NH(C₁₋₄)alkyl) or N((C₁₋₄)alkyl)₂;
 - b) NR¹¹¹R¹¹² wherein both R¹¹¹ and R¹¹² are independently H, (C₁₋₄)alkyl, or R¹¹² is (C₃₋₇)cycloalkyl, (C₁₋₃)alkyl(C₃₋₇)cycloalkyl, phenyl, benzyl; or both R¹¹¹ and R¹¹² are covalently bonded together and to the nitrogen to which they are attached to form a nitrogen-containing heterocycle, each of said alkyl, cycloalkyl, alkylcycloalkyl, phenyl and benzyl, being optionally substituted with halogen or:
 - OR^{2h} or $N(R^{2h})_2$, wherein each R^{2h} is independently H, (C_{1-4}) alkyl, or both R^{2h} are covalently bonded together and to the nitrogen to which they are attached to form a nitrogen-containing heterocycle;
 - c) NHCOR¹¹⁷ wherein R^{117} is (C_{1-4}) alkyl, $O(C_{1-4})$ alkyl or $O(C_{3-7})$ cycloalkyl; and
 - e) $CONH_2$, $CONH(C_{1.4})$ alkyl), $CON((C_{1.4})$ alkyl)₂.
- 15. (original) The compound according to claim 1, wherein \mathbb{R}^3 is selected from (C_{3-7}) cycloalkyl, (C_{5-7}) cycloalkenyl, (C_{6-10}) bicycloalkyl, (C_{6-10}) bicycloalkenyl, or \mathbb{H}^3 wherein said groups are unsubstituted or mono- or disubstituted by halogen, cyano, nitro, hydroxy, (C_{1-4}) alkyl and/or \mathbb{O} - (C_{1-4}) alkyl, wherein the alkyl groups may be fluorinated.
- **16.** (original) The compound according to claim 15, wherein **R**³ is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl, or a group selected from

wherein all said groups are unsubstituted or substituted by fluorine, (C1.3)alkyl or CF3.

- 17. (original) The compound according to claim 16, wherein \mathbb{R}^3 is cyclopentyl or cyclohexyl.
- 18. (original) The compound according to claim 1 wherein R^{4a} , R^{4b} , R^5 each are independently H, hydroxy, halogen, cyano, nitro, carboxyl, (C_{1-4}) alkyl, CF_3 , (C_{1-4}) alkoxy, $-O_1$ (C_{3-7})cycloalkyl, $-O_2$ (C_{1-3})alkyl- (C_{3-7}) cycloalkyl, $-O_3$ (C_{1-3})alkyl-aryl, $-O_3$ (C_{1-3})alkyl-Het, $NR^{N1}R^{N2}$, COR^0 , $NR^{N2}COR^0$, $CONR^{N2}R^{N1}$, or $NR^{N3}CONR^{N1}R^{N2}$; wherein Het, R^0 , R^0 , R^{N1} , R^{N2} , R^{N3} and R^{160} are as defined in claim 1; and wherein all said alkyl groups, including alkoxy, may be mono-, di- or trisubstituted by fluorine or mono-substituted by chlorine or bromine.
- 19. (original) The compound according to claim 18 wherein R^c , R^o and R^{N1} are independently of each other H, (C_{1-4}) alkyl, aryl, (C_{1-3}) alkyl-aryl; wherein aryl is defined as phenyl optionally substituted with R^{160} , wherein R^{160} is defined as in claim 18; and wherein all said alkyl groups may be mono-, di- or trisubstituted by fluorine or monosubstituted by chlorine or bromine; and wherein R^{N2} and R^{N3} are independently H or methyl.
- 20. (original) The compound according to claim 18 wherein R⁴a, R⁴b, R⁵ each are independently H, hydroxy, halogen, cyano, nitro, methyl, CF₃, methoxy, carboxy, amino, -NMe₂, -CONH₂, -NHCONH₂, -CO-NHMe, -NHCONHMe, -CO-NMe₂ or -NHCONMe₂.
- (original) The compound according to claim 20 wherein R^{4a}, R^{4b}, R⁵ each are
 H, methyl or methoxy.
- 22. (original) The compound according to claim 1 wherein \mathbb{R}^{4a} is H or methyl.
- 23. (original) The compound according to claim 1 wherein at least two of the substituents selected from R^{4a}, R^{4b}, R⁵ are H.

- 24. (original) The compound according to claim 1, wherein R⁶⁰ is each defined as 1 to 4 substituents independently selected from:
 - 1 to 3 substituents selected from halogen;
 - one of each substituent selected from: NO2, cyano, azido; and
 - 1 to 3 substituents selected from:
 - a) (C₁₋₄) alkyl, (C₃₋₇)cycloalkyl, (C₂₋₄)alkenyl, (C₂₋₄)alkynyl, (C₁₋₃)alkyl-(C₃₋₇)cycloalkyl, all of which optionally being substituted with \mathbf{R}^{150} ;
 - b) OR^o;
 - e) $N(R^{N2})R^{N1}$;
 - f) $N(R^{N2})COR^{C}$;
 - j) COOR^o;
 - k) $CON(R^{N2})R^{N1}$;
 - I) phenyl, Het, (C₁₋₃alkyl)phenyl or (C₁₋₃alkyl)Het; wherein Het is selected from furan, tetrahydrofuran, thiophene, tetrahydrothiophene, tetrahydropyran, pyridinyl, azetidine, pyrrolidine, piperidine, piperazine, morpholine, thiomorpholine, homopiperidine and homopiperazine, all of which optionally being substituted with R¹⁵⁰;

wherein said R^{N1} , R^{C} and/or R^{O} are optionally substituted with R^{150} as defined, and R^{150} , R^{N1} , R^{N2} , R^{C} and R^{O} are defined as in claim 1.

25. (original) The compound according to claim 1, wherein

R¹⁵⁰ is defined as 1 to 4 substituents independently selected from:

- 1 to 3 fluorine-substituents;
- one of each substituent selected from: chlorine, bromine, iodine, NO₂, cyano, azido; and
- 1 to 3 substituents selected from:
- a) (C₁₋₃) alkyl, CF₃, (C₃₋₆)cycloalkyl, (C₁₋₃) alkyl-(C₃₋₆)cycloalkyl, all of which optionally substituted with **R**¹⁶⁰;
- b) OR^o:
- e) $N(R^{N2})R^{N1}$;
- f) $N(R^{N2})COR^{C}$;
- j) COOR^o;
- k) $CON(R^{N2})R^{N1}$:

wherein said R^{N1} , R^{C} and/or R^{O} are optionally substituted with R^{160} as defined; and R^{160} , R^{N1} , R^{N2} , R^{C} and R^{O} are defined as in claim 1.

26. (original) The compound according to claim 1, wherein

R¹⁶⁰ is defined as 1, 2 or 3 substituents independently selected from:

- 1, 2 or 3 fluorine substituents; and
- one of each substituent selected from chlorine, bromine, iodine, CN, nitro, methyl, trifluoromethyl, ethyl, n-propyl, i-propyl, COOH, COOCH₃, OH, OCH₃, OCF₃, NH₂, NHCH₃, N(CH₃)₂, SO₂NH₂, SO₂NHCOCH₃, NHCOCH₃ or CONH₂, CONHCH₃ and CON(CH₃)₂.
- 27. (original) The compound according to claim 1, wherein
 - R^o, R^c are independently defined as (C₁₋₄)alkyl, (C₃₋₆)cycloalkyl, (C₁₋₃)alkyl-(C₃₋₆)cycloalkyl, phenyl, benzyl, **Het**, (C₁₋₃)alkyl-**Het**; all of which are optionally substituted as defined; and R^o may also be H;
 - R^{N1} is H, (C₁₋₄)alkyl, (C₃₋₆)cycloalkyl, (C₁₋₃)alkyl-(C₃₋₆)cycloalkyl, phenyl, benzyl, phenylethyl, **Het**, (C₁₋₃)alkyl-Het; wherein said alkyl, cycloalkyl, alkyl-cycloalkyl, phenyl, benzyl, phenylethyl, **Het** and alkyl-**Het** are optionally substituted as defined; or
 - R^{N2}, R^{N3}, R^{N4} are independently H, methyl, ethyl, n-propyl, i-propyl, cyclopropyl, cyclopropyl, cyclopropylmethyl; all of which being optionally substituted with fluorine, carboxy or methoxycarbonyl; and/or wherein said ethyl, n-propyl or i-propyl is optionally substituted with hydroxy, methyl, methoxy, amino, -NH(CH₃) and/or -N(CH₃)₂; and

in the case

- a) of a group $N(R^{N2})R^{N1}$ the substituents R^{N2} and R^{N1} or
- b) of a group NR^{N3}-N(R^{N2})R^{N1} the substituents R^{N3} and R^{N1} or R^{N2} and R^{N1} may be covalently bonded together to form a 5-, 6- or 7-membered saturated heterocycle which may have additionally one heteroatom selected from O, N, and S, wherein said heterocycle is optionally substituted as defined;

wherein Het is defined as in claim 1.

- 28. (currently amended) Use of A method of inhibiting HCV polymerase activity comprising contacting an HCV polymerase with a compound of the formula I according to claim 1, or a pharmaceutically acceptable salt thereof, as an inhibitor of HCV polymerase.
- 29. (currently amended) Use of A method of inhibiting the RNA dependent RNA polymerase activity of the enzyme NS5B, encoded by HCV, comprising contacting the enzyme NS5B, encoded by HCV, with a compound of the formula I according to claim 1, or a pharmaceutically acceptable salt thereof., as an inhibitor of RNA dependent RNA polymerase activity of the enzyme NS5B, encoded by HCV.
- **30.** (currently amended) Use of A method of inhibiting the replication of the Hepatitis C virus comprising contacting the Hepatitis C virus with a compound of the formula I according to claim 1, or a pharmaceutically acceptable salt thereof, as an inhibitor of HCV replication.
- **31.** (original) A method of treating or preventing HCV infection in a mammal, comprising administering to the mammal an effective amount of a compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof.
- **32.** (currently amended) A method of treating or preventing HCV infection in a mammal, comprising administering to the mammal an effective amount of <u>a combination of</u> a compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, in combination with another antiviral agent.
- 33. (original) A pharmaceutical composition for the treatment or prevention of HCV infection, comprising an effective amount of a compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- **34.** (currently amended) The composition according to claim 33 further comprising a therapeutically effective amount of one or more <u>other</u> antiviral agents.

U.S. Appln. No. 10/755,544

- **35.** (original) The composition according to claim 34, wherein said antiviral agent is selected from: ribavirin and amantadine.
- **36.** (original) The composition according to claim 34 wherein the antiviral agent is an other anti-HCV agent.
- 37. (currently amended) The pharmaceutical composition according to claim 36, wherein the other anti-HCV agent is an immunomodulatory agent, in particular selected from β , δ - γ , and ω interferon.
- **38.** (currently amended) A composition according to claim 36, wherein said the other anti-HCV agent is another inhibitor of HCV polymerase.
- **39.** (original) The composition according to claim 36, wherein the other anti-HCV agent is an inhibitor of HCV NS3 protease.
- **40.** (original) The composition according to claim 36, wherein the other anti-HCV agent is an inhibitor of another target in the HCV life cycle.
- 41. (original) A composition according to claim 40, wherein said inhibitor of another target in the HCV life cycle is an agent that inhibits a target selected from HCV helicase, HCV NS2/3 protease and HCV IRES.
- 42. (cancelled)
- **43.** (new) A compound of the following formula:

$$R^2$$
 R^3

wherein A, B, R², R³ and Z are as defined in the following table:

Cpd. #	A	В	R²	R³	Z
101	-N(CH₃)-	=C-			HZ SSO SSO SSO SSO SSO SSO SSO SSO SSO SS
114	-N(CH₃)-	=C-			, N-S
115	-N(CH₃)-	=C-			N'S
116	-N(CH₃)-	=C-			, N-s
117	-N(CH₃)-	=C-			HZ N
118	=C(CH₃)-	-N-			H N S
119	=C(CH ₃)-	-N-		7	N S CH3

Cpd. #	A	В	R²	R³	Z
123	-N(CH₃)-	=C-			O CH ₃
124	-NH-	=C-			
125	-NH-	=C-			O CH3
126	-N(CH₃)-	=C-			
127	=C(CH ₃)-	-N-	NH ₂	5	O O OMe N S OMe
129	-N(CH₃)-	=C-	=======================================		N-S

44. (new) A compound of the following formula:

wherein R^2 , R^3 , R^{4a} , p and Z are as defined in the following table, wherein p designates the C-atom on the benzene ring to which the group C(=O)-Z is bonded:

Cpd. #	R ²	R³	R ^{4a}	р	Z
201		7	-OCH₃	2	O O N/S H CH ₃
202			-OCH₃	2	H N N N N N N N N N N N N N N N N N N N
203			-H	3	O N N CH ₃
204			†	3	