Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Tomáš Plšek **Naměřeno:** 20. dubna 2018

Obor: Astrofyzika Ročník: II Semestr: IV Testováno:

Úloha č. 4: Optická emisní spektra atomů a molekul

Úkoly:

- 1. Identifikujte spektrální čáry emitované parami materiálu elektrod v obloukovém výboji a určete jejich intenzitu. Ze sklonu pyrometrické přímky určete teplotu oblouku.
- 2. Určete z naměřeného molekulového spektra radikálu OH rotační teplotu.

1. Úvod

Látky excitované na vyšší energiové hladiny mohou následně tuto energii ztratit ve formě záření. K excitaci atomů dochází vlivem nenulové teploty, srážek s elektrony, energetického záření a mnoha dalších procesů. Ve spektrech látek s diskrétními energetickými hladinami můžeme vidět jednotlivé izolované spektrální čáry. Ze studia emisního spektra prvku lze zjistit spousta informací například teploty nebo koncentrace částic.

V první části budeme zpracovávat emisní spektrum atomů železa vypařeného z elektrod při obloukovém výboji. Pro intenzitu spektrálních čar platí vztah:

$$I_{mn} \sim \frac{A_{mn}g_m}{\lambda_m} \cdot exp\left(-\frac{E_m}{kT}\right),$$
 (1)

kde A_{mn} je pravděpodobnost přechodu z m-té hladiny o energii E_m na n-tou hladinu, g_m je statistická váha horního energiového stavu a T je teplota na elektrodách. Po úpravě a zlogaritmování dostáváme vztah pro pyrometrickou přímku:

$$\ln\left(\frac{I_{mn}\lambda_{mn}}{A_{mn}g_m}\right) \sim -\frac{E_m}{kT}.$$
 (2)

V další části se budeme zabývat spektry radikálu OH. Budeme zkoumat závislost intenzity na rotačním kvantovém čísle. Pro rotační teplotu molekul platí vztah:

$$\ln \frac{I_{n''v''J''}^{n''v''J''}}{\tilde{v}^4 S_{J'J''}} = -\frac{B_{v'}hc}{kT}N'(N'+1) + konst, \tag{3}$$

kde $B_{v'}$ je rotační konstanta pro horní vibrační stav, N' je rotační kvantové číslo, $S_{J'J''}$ je Hönl-Londonův intenzivní faktor daného přechodu, \tilde{v}^4 je vlnočet.

2. Měření

V první části jsem pomocí programu $Span\ 1.6^{[1]}$ a databáze $NIST^{[2]}$ identifikoval a zkalibroval emisní spektrum železa a zjistil jsem intenzity spektrálních čar. Intenzity měříme v a.u., pro ověření platnosti vztahu to však nevadí a není tedy třeba intenzity nemusíme kalibrovat.

Tabulka 1: Závislost intenzity spektrálních čar železa na vlnové délce.

$\lambda \text{ [nm]}$	I [a.u.]	$E_m [eV]$	$A_{mn}g_m [10^8]$	$\ln\left(\frac{I_{mn}\lambda_{mn}}{A_{mn}g_m}\right)$
429.412	2879	4.371	0.71	-24.77
429.923	4128	5.308	5.20	-26.40
430.790	9035	4.434	5.90	-25.74
431.508	1861	5.070	1.50	-25.95
432.576	9659	4.473	6.10	-25.71
433.705	1260	4.415	0.23	-24.46
435.273	1188	5.070	1.00	-25.99
436.977	758	5.882	2.20	-27.22
437.593	922	2.832	0.01	-21.57
438.354	12022	4.312	7.70	-25.71
440.475	8131	4.371	4.40	-25.53
441.512	5452	4.415	2.80	-25.48
442.730	858	2.851	0.01	-21.68
444.319	1773	5.647	1.90	-26.21
444.772	1127	5.009	1.10	-26.11
446.165	1716	2.865	0.01	-20.34
446.655	1873	5.606	5.30	-27.17
447.602	1712	5.614	5.40	-27.28
452.861	3292	4.913	1.80	-25.52

Graf 1: Určení teploty oblouku z pyrometrické přímky.

Teplota oblouku určená ze směrnice pyrometrické přímky: $T=(5900\pm 100)~{\rm K}.$ Teplota oblouku určená pomocí programu Span~1.6: $T=(6900\pm 1300)~{\rm K}.$

Teploty oblouku určené z pyrometrické přímky a pomocí programu *Span 1.6* se liší přibližně o 1000 K, což není zanedbatelná hodnota. Program *Span 1.6* pravděpodobně používá jiné konstanty. Obě hodnoty se však dají u obloukového výboje očekávat.

Ve druhé části jsem zpracovával emisní spektra radikálu OH. Pro zpracování jsem tentokrát použil dvojici programů $Span\ 1.6$ a $Lifbase\ 2.0^{[3]}$. Při zpracování jsem nadále postupoval podobně jako v případě železa.

Tabulka 2: Závislost intenzity spektrálních čar radikálu OH na rotačním kvantovém čísle.

N'	$\lambda \text{ [nm]}$	<i>I</i> [a.u.]	$S_{J'J''}$	$\ln\left(\frac{I}{\tilde{v}^4 S_{J'J''}}\right)$
1	307.844	38475	0.563	-48.84
2	307.995	41843	1.065	-49.39
4	308.328	23350	2.100	-50.65
5	308.520	13293	2.640	-51.44
6	308.734	6350	3.160	-52.36

Graf 2: Spektrum radikálu OH a identifikované spektrální čáry.

Rotační teplota radikálu OH určená ze směrnice pyrometrické přímky: $T=(282\pm4)~{\rm K}.$ Rotační teplota radikálu OH určená pomocí programu Span~1.6: $T=(315\pm12)~{\rm K}.$

Hodnota rotační teploty radikálu OH vyšla velice podobně ze směrnice pyrometrické přímky i pomocí programu $Span\ 1.6$. Rozdíl v teplotách je opět nejspíše způsobený použitím různých konstant.

Graf 3: Určení rotační teploty radikálu OH.

3. Závěr

Nejprve jsem určil teplotu obloukového výboje pomocí emisního spektra železa. Tuto teplotu jsem stanovil na hodnotu $T=(5900\pm100)$ K, pomocí softwaru Span~1.6 mi vyšla hodnota $T=(6900\pm1300)$ K. Rozdíl teplot je nejspíš způsoben použitím různých spektroskopických konstant a obě hodnotu se u obloukového výboje dají očekávat.

Obdobně jsem z emisního spektra určil i rotační teplotu radikálu OH. Ze směrnice pyrometrické přímky jsem získal hodnotu $T=(282\pm4)$ K a pomocí softwaru Span~1.6 hodnotu $T=(315~\pm~12)$ K. Rozdíl v teplotách je pravděpodobně opět způsoben použitím různých konstant.

4. Zdroje

- [1] Spectrum Analyzer Homepage. physics.muni.cz [online].
 Dostupné z: http://www.physics.muni.cz/zdenek/span/download.php.
- ^[2] LIBS; Atomic Spectra Database. | NIST. National Institute of Standards and Technology. Dostupné z https://physics.nist.gov/PhysRefData/ASD/LIBS/libs-form.html.
- [3] Lifbase Download Request | SRI International. Home | SRI International [online]. Dostupné z: https://www.sri.com/contact/form/lifbase.