Name: Rollno:

## CSE340: Theory of Computation (Homework Assignment 2)

Due Date: 12th September, 2017 (in class)

Total Number of Pages: 4

Total Points 40

Question 1. (5 points) Give a regular expression for the following language.

 $B = \{x \in \{0,1\}^* \mid x \text{ does not contain the substring } 101\}$ 

## Solution:

$$0*(1*000*)*1*0*$$

The expression in bracket encodes the fact that 1 is either followed by a 1 or a 00. The initial  $0^*$  and the last  $1^*0^*$  cover the boundary cases.

**Question 2.** (5 points) Prove that  $\{0^i 1^j \mid gcd(i,j) = 1\}$  is not regular?

**Solution:** We prove this using the pumping lemma for regular languages. Let  $p_i$  be the *i*th prime number.

Given k, choose  $w = 0^{p_{k+1}} 1^{p_1 p_2 \dots p_k}$ . Note that  $gcd(p_{k+1}, p_1 p_2 \dots p_k) = 1$  for all  $k \ge 1$ . Now given partition, w = xyz, such that  $|xy| \le k$  and  $|y| \ge 1$ , observe that x and y consists of 0's only. Let |y| = l. Now by choosing i = 0 we have  $xy^0z = 0^{p_{k+1}-l}1^{p_1 p_2 \dots p_k}$ .

Observe that any positive integer strictly smaller than a prime number (in this case  $p_{k+1}$ ) must have some prime factor  $p_i$  such that  $p_i \leq p_k$ . Therefore  $gcd(p_{k+1} - l, p_1p_2 \dots p_k) > 1$  and thus  $xy^0z$  is not in the given language.

Question 3. (6 points) Let  $A \subseteq \mathbb{N}$  be a subset of natural numbers. A is said to be *ultimately periodic* if there exists numbers p > 0 and  $n \ge 0$ , such that for all  $m \ge n$ ,  $m \in A$  if and only if  $m + p \in A$ . In other words, after a certain point (the number n) the numbers in the set A occur in a fixed regular interval of length p.

Consider  $L \subseteq \{a\}^*$ . Prove that L is regular if and only if the set  $\{m \mid a^m \in L\}$  is ultimately periodic. (Hint: Think how will the DFA of a unary regular language look like.)

**Solution:** Suppose L is regular and let M be a DFA for L. Since every state in M has exactly one outgoing transition, M will have the following structure.

Name: Rollno:



Now set n to be the length of the initial "non-cyclic" portion and p be the length of the cycle in M. Now if a string  $a^m$  such that  $m \ge n$ , terminates at a state q then  $a^{m+p}$  will also terminate at the state q. Therefore  $a^m \in L$  then  $a^{m+p}$  is also in L.

For the other direction, suppose the set  $\{m \mid a^m \in L\}$  is ultimately periodic. Let  $n \geq 0$  and p > 0 be the constants as per the definition of ultimate periodicity. Construct a DFA  $M_{n,p}$  which has an initial linear portion of length n, followed by a cycle of length p as shown in the above figure. For all strings  $w' \in L$  of length at most n + p, make the state which is at a distance |w'| from the start state, an accept state. Clearly this DFA accepts all strings in L.

Question 4. (12 points) Give CFGs for the following languages

(a) 
$$L_1 = \{a^i b^j c^k d^l \mid i, j, k, l \ge 1, i = l, j = k\}$$

## Solution:

$$S \longrightarrow aSd \mid aTd$$

$$T \longrightarrow bTc \mid bc$$

Important point to be noted here is that a string contains at least one a, b, c, d.

(b) 
$$L_2 = \{a^n b^m \mid n, m \ge 0, \ n \ne m\}$$

**Solution:** We divide the language into two parts: strings where n > m and strings where

Name:

Rollno:

n < m and design a grammar accordingly.

$$S \longrightarrow AT \mid TB$$

$$T \longrightarrow aTb \mid \epsilon$$

$$A \longrightarrow aA \mid a$$

$$B \longrightarrow bB \mid b$$

(c)  $L_3 = \{a^i b^j c^k \mid i, j, k \ge 0, i > j \text{ or } j > k\}$ 

**Solution:** Once again we consider the two cases differently: i > j and j > k.

$$S \longrightarrow AaT_1C \mid ABbT_2$$

$$T_1 \longrightarrow aT_1b \mid \epsilon$$

$$T_2 \longrightarrow bT_2c \mid \epsilon$$

$$A \longrightarrow aA \mid \epsilon$$

$$B \longrightarrow bB \mid \epsilon$$

$$C \longrightarrow cC \mid \epsilon$$

**Question 5.** Consider the following CFG G over the set of terminals  $T = \{+, *, 0, 1, (,)\}$ 

$$S \longrightarrow S + S \mid S * S \mid (S) \mid 0 \mid 1$$

(a) (2 points) Give a string of length 5 that is ambiguous with respect to G.

**Solution:** 0 + 1 \* 0

(b) (4 points) Give two parse trees for the string in part (a) with respect to G.

**Solution:** Below are the two parse trees for 0 + 1 \* 0.





(c) (6 points) Give an unambiguous CFG for the language generated by the above grammar that gives proper precedence to the operators (i.e. highest precedence to brackets followed by the \* operator and then the + operator).

Name: Rollno:

Solution:

$$\begin{array}{ccc} S & \longrightarrow & S+A \mid A \\ A & \longrightarrow & A*B \mid B \\ B & \longrightarrow & (S) \mid 0 \mid 1 \end{array}$$