Linux Fundamentals

What is Linux?

Use Cases

Servers (Web, Email, File, Database, Game,...)

Micro-Computers

Data Centers (Cloud Computing)

Cyber-Security

Internet of Things (IoT)

Jerry Bame | AC-IT Consulting

What is Linux?

- Linux is the kernel of a family of open-source Unix-like operating systems (OS)
- OS: A system software that manages computer hardware and provides various services for computer programs
- Unix: A powerful, multitasking, multi-user OS that serves as the basis for many modern OS
- Kernel: The kernel is the core part of an OS
 - It is responsible for managing the hardware, including the CPU, memory, and other devices

What is the GNU Project?

- GNU stands for GNU's Not Unix:
 - The goal: To create a free and open-source operating system
 - Initiated in 1983
 - Most GNU software is released under the GNU General Public License (GPL), promoting the freedom to use, modify, and distribute the code
 - The Linux kernel, created in 1993 by Linus Torvalds, is released under the GPL
- GNU provides many of the additional tools & utilities that we want to use
- Linux provides the kernel
- Together: GNU/Linux

Linux Distributions

- There are various OS built upon GNU/Linux, called Linux distributions (distros)
- Each distribution then adds additional, specific software:
- This allows to cater to the needs of a specific user group
- Most Linux distributions are free

Linux Distributions

- There are 2 popular distributions:
 - Ubuntu:
 - Part of the Debian family
 - Designed to be user-friendly
 - CentOS Stream:
 - Part of the Red Hat family
 - It's free to use, and allows us to familiarize ourselves with the Red Hat family
- We will later have an overview about additional Linux distributions!

Which Linux Distribution Should You Choose?

Which Linux Distribution Should You Choose?

How To Run Linux

How to run Linux

We could install Linux as a main operating system:

 You could then reboot and choose to boot into Linux (depending on how you install it: "dual-boot")

But for learning Linux:

- It's better to run Linux virtualized
- This means we create a virtual computer that runs on your computer
- And on this virtual computer, we'll run Linux

How to run Linux

The advantages:

- If we destroy your system nothing to worry about
- We can just reinstall it
- And we can easily switch between different Linux systems...
- ... or even run them at the same time!

What is VirtualBox?

- VirtualBox is a virtualization software that allows you to create and run virtual machines (VMs) on your computer
 - Developed by Oracle Corporation
 - Free & open-source software
- Installation:
 - https://www.virtualbox.org/wiki/Downloads

How To Install Ubuntu

Installing Ubuntu in VirtualBox

• Ubuntu:

- You also need to download the Ubuntu Desktop image
- This image contains the whole operating system including an installer
- We can then create a virtual machine, and let VirtualBox install Ubuntu for us
- https://ubuntu.com/
- Important:
 - We will be using the latest LTS version of Ubuntu in this course

VirtualBox: Configuring Ubuntu

Configuring Ubuntu

We need to install some drivers to be able to work smoothly with our virtual machine

• For this:

- We need to update our system
- We need to install tools required to compile the drivers
- And then we need to install the drivers

VirtualBox: How to install CentOS Stream

Installing CentOS Stream in VirtualBox

CentOS Stream:

- We need to manually create an empty virtual machine
- And then install CentOS Stream into it

For this:

- We need to go to the website of CentOS:
- https://www.centos.org/
- And download the latest version of CentOS Stream from there!

VirtualBox: How to configure CentOS Stream

- We need to install some drivers to be able to work smoothly with
- our virtual machine

For this:

- We need to update our system
- We need to install additional ways to fetch additional software
- We need to update our system (one more time)
- We need to install tools required to compile the drivers
- And then we need to install the drivers

Let's confirm that you're using Bash

- Let's first confirm that you're running a Bash
- We can do this with the following command:
- echo "\${BASH_VERSION}"
- If it doesn't output anything (or just an empty line):
- Be sure to launch Bash with the following command:
- bash
- For now, you will need to do this any time you open a new window / tab in your terminal

A first command in the Terminal

The command echo

- echo allows us to output text in the terminal
- We can test this:
- echo 'Bash is amazing!'
- For now:
- The string that we want to print should be wrapped in single quotes

The command echo

- By default:
 - echo will by default output a line break at the end
 - We can disable this with the option: -n
 - Example:

echo -n 'Bash is amazing!'

- We can also use different options:
 - The option -e enables backslash escapes
 - Example:

echo -e 'Line 1\nLine 2'

Here, \n will now be converted into a line break

Combining Options

- Quite often, we want to combine multiple options
- Usually, all of those are equivalent:
 - echo -e -n 'Hello\nworld'
 - echo -en 'Hello\nworld'
 - echo -ne 'Hello\nworld'

Navigating the filesystem

The pwd command

In our terminal:

- We're always in a directory
- This directory is called the working directory
- It is the folder that the shell is currently operating at
- Commands can access this folder and act relative to this directory
- To find out our current directory:
 - pwd
 - (print working directory)

Changing the directory:cd

- If we want to change the directory, we can use the cd command
- cd stands for: "change directory"
- Examples:
- cd [directory_name]:
- Moves into the directory specified by [directory_name]
- Example:
- cd Desktop
- cd /
- cd ..:
- Move into the parent directory
- cd ~ or cd:
- Move to the user's home directory
- cd ~/Desktop:
- Move to the user's desktop

Listing contents of a folder

To list the contents of the current working directory:

- Is
- We can also add additional options:
- Syntax: Is [option...] [path]
- -a: List all entries, including hidden files starting with .
- We will learn more about hidden files later
- -r: Reverse order while sorting
- -t: Sort by modification time, newest first
- --color:
- Enables colorful output
- --color={always,never,auto}

Example:

- Is -ta --color ~/Desktop
- Is -ta --color=auto ~/Desktop

Absolute vs. Relative Paths

Absolute paths:

- Start with a "/"
- They define the complete path to a file
- Thus, they work everywhere no matter our current working directory

Example:

- /home/bmawein/Desktop
- ~/Desktop

Relative paths:

Are being resolved according to our current working directory

Example:

- ./Desktop
- Desktop
- ../Desktop

Executing Multiple Commands

- We can also execute multiple commands
- For this, we can just add a semicolon between them: command1; command2;
- For example:

```
echo -n 'Hello '; echo 'World'
```

echo -n 'Hello '; echo -n 'World '; echo 'of Linux Learning!'

How to get Help in Linux

- --help / -h:
- For a lot of commands, we can just add a -h or a --help:
- Is --help
- We will then be shown a list of possible options and arguments

man:

- If this doesn't work, we can check the built-in manuals
- man Is

Important:

man pages (documentation) must be installed on your system

Otherwise:

- Many tools have extensive online documentation
- Communities such as Stack Overflow, or Reddit's Linux communities can also be great for help

First Steps with Linux

User Management

In Linux, users can be categorized into three general categories:

System accounts:

- They are responsible for running background tasks on your system (such as: webserver, database,...)
- They don't have a home directory

Regular users:

- They have access to their own files and directories
- They cannot perform administrative tasks or access other user's files without permission

User Management

Superuser (root):

- The superuser (root) has unrestricted access to the entire system (including files in the home directories of regular users)
- Can add / remove users, install software
- Can change the configuration of the system

Elevating Privileges: sudo

 If we want to temporarily elevate our privileges, we can put a sudo in front of our command

Example:

- sudo ls /root
- Usually, we could not access this directory
- Only the root user can access it
- sudo elevates our privileges

But be careful:

- Always make sure you understand what a command does
- Especially when sudo is involved

Example:

- Important: DO NOT EXECUTE!
- sudo rm -rf /etc

Package Management on Linux

Package Management on Linux

Package management:

- Most Linux distributions offer a centralized way to install software
- This process is called package management
- This is an enormous benefit of many Linux systems as it helps us to keep our system up to date

How does it work?

- Our system connects to centralized repositories
- They provide a list of available packages (including available versions, and their dependencies)
- This list can then be used to install updates, or install additional tools

How to Install Software in Ubuntu (apt)

- How to update software with apt
- On Debian-based distributions (such as Ubuntu), we can use the tool apt to keep our system up to date
- It provides several commands for us:

apt update:

- Refreshes the list of available packages
- We should run this before doing anything else with apt

How to Install Software in Ubuntu (apt)

apt upgrade:

- Runs a small upgrade of our system
- Small means: Upgrades existing packages (and when using apt, also allows the installation of additional dependencies)

apt full-upgrade or apt dist-upgrade:

- Runs a large upgrade of our system
- Large means: Upgrades existing packages, and removes / installs additional packages (dependencies)

How to install / remove software

To install / remove software:

apt install [package]:

- This will install an additional package on our system
- Example: apt install cowsay

apt remove [package]:

Removes a package from our system

apt auto remove:

- Removes packages that are no longer needed
- You can run this if there're any errors during an upgrade or full-upgrade

CentOS: How to update software with dnf

 On RHEL-related distributions (such as CentOS Stream), we can use the tool dnf to keep our system up to date

With just one command, we can keep our system up to date:

- dnf upgrade or dnf update:
- Fetches the latest version of the package list and upgrades our system

Important:

- dnf always keeps the local package list up to date
- We don't have to manually refresh it (in contrast to Ubuntu)

CentOS: How to install / remove software

To install / remove software:

- dnf install [package]:
- This will install an additional package on our system
- Example:
- dnf install epel-release
- dnf install cowsay
- dnf remove [package]:
- Removes a package from our system

CentOS: How to install / remove software

Important:

- For now, please install epel-release on your system
- This adds additional package lists to be able to install additional tools on your system
- Command: dnf update; dnf install epel-release; dnf update;
- We should also run: crb enable
- We will have a more detailed look at epel-release later

Heads-up: dnf

Important:

- There're additional commands for dnf
- We will have a more in-depth look at package management on CentOS later in this course

Also, a quick heads-up:

- yum used to be a package manager on CentOS previously
- Nowadays, it is replaced by dnf
- But yum commands still works perfectly:
- yum install –y cowsay

MacOS: Package Management & Installing Bash

- On Mac, we can use Homebrew to install additional packages
- We can find it here:
- https://brew.sh/
- This gives us a package manager, that we can then use to install additional packages

Once we've installed Homebrew:

- To update the package definitions:
- brew update
- To install a package:
- brew install bash
- And to install available updates:
- brew upgrade

Launching Bash on MacOS

- Once we've installed Bash on a Mac:
- We can launch Bash in Version 5.x+ by launching a terminal, and executing the following command:
- bash
- We can confirm that we're running a recent version of Bash:
- echo "\${BASH_VERSION}"
- To launch the original (3.x) version of Bash:
- /bin/bash

Important Points

- Now, you know quite a bit of the Linux operating system
- This is now a great foundation we can keep building on top
- You can:
 - Launch a terminal
 - Keep your system up to date
 - Install additional software
 - And you have even explored the first few commands in the Terminal

Bash CLI

Bash CLI

Overview

- We will have a look how to manage files through the command line
- We will see how we can redirect the output of programs into files / use files as input for programs
- We will see how we can use pipes to combine tools
- We will see how the Bash environment works and how this influences the way programs are executed
- And we will configure your prompt to achieve a more beautiful terminal

File Management in Bash

File Management in Bash: touch and mkdir

touch

- typical use case: create an empty file (or multiple files)
- more precisely:
 - to modify the timestamp of a file
 - if the file already exists, only its timestamp will be modified
 - otherwise, a new (and empty) file is created

mkdir (make directory)

create a new directory

File Management in Bash: mv and cp

mv (move)

- move an existing file to another location
- can also be used to rename an existing file

mv file4.txt /home/bmawein/linuxtraining/test4.txt

cp (**c**o**p**y)

• to copy an existing file

cp file1.txt /home/bmawein/linuxtraining/

• cp -R: copies a whole folder

cp -R awstraining/ /home/bmawein/linuxtraining/

How to delete files and folders

```
rm (remove)
touch file{1..4}.txt
rm file1.txt

    to remove a file (or multiple files at once)

    for deleting a directory, you need to use the option —r

    works for empty and non-empty directories

rmdir (remove directory)

    to delete an empty directory

mkdir dir{1..4}
```

rm -rf dir1

rmdir dir2 dir3 dir4

To delete a directory with files: