Unit 1: Quantities and their measurements

1	C. C F. F		C. G F.P.	K.S system, G.S. system, P.S. system and system			meter, kilogram, second centimetre, gram, second foot, pound, second									
2	Base unus		Leng m etr			Time Tem second kelvi		np vin(K)		urrent mpere(A)	int	ninous ensity ndela (C	Si	mount of ubstance nole		
3	Multiples of units	Tera T 10 ¹²		iga G 10 ⁹	Meg M 10 ⁶		Kilo K 10 ³	Deci d 10 ⁻¹	centi c 10 ⁻²	mill. m 10 ⁻³		micro μ 10 ⁻⁶	nano n 10 ⁻⁹	pico p 10 ⁻¹²	1 -	
4	Celsius to l				$K = \theta^{\circ}$	C+2	73.15			Add kelvi		73.15 to ale	Celsiu	s scale	to conve	ert to
5	Accuracy								, we nee absolut			the true	value	of a ph	ysical q	uantity.
6	Precision											ease by s	ensitiv	e instru	ıment.	
7	Error											lom: due				
8	Calculation	n error			For su	ım Q=		-				erence Q	=a - b	$\Delta a + \Delta b$		
9	Calculating error					roduc	$t Q = a \times \frac{\Delta a}{a} + \frac{\Delta a}{a}$	¢b	Q	For division $Q=a/b$ $\Delta Q = \left(\frac{\Delta a}{a} + \frac{\Delta b}{b}\right) \times Q$						
10	Significant figures (sf) examples				1.234 four sf	1.	2 i	1002 our sf	3.07 three	- 1	0.001 one sj	0.012	2 0.0	0230 ree sf	0.20 two sf	190 2 or 3 sf
11	Uncertaint ∆value	v			the interval of confidence around the best measured value such that the measurement is certain not to lie outside this stated interval measurement = best measured value ± uncertainty											
12	Percentage and relative uncertainty			'e	nercentage =				ncertai asured							
13	Vector and quantities	scalar					nagnitu g. veloc		unit an e etc	Scalar → only magnitude with un Eg. density, pressure, speed, dist						
14	Magnitude of resultant vector c of two vectors a and b				a and b same direction: apply simple addition a and b opposite direction: apply simple subtraction \bot to each other: apply Pythagoras theorem $c = \sqrt{a^2 + b^2}$ Not \bot to each other: apply cosine rule $c^2 = a^2 + b^2 - 2 \times a \times b \times \cos \gamma$											
15	Direction of resultant vector c of two vectors a and b			a	a and b in same direction then c is also the in the same direction a and b opposite direction then c is in the direction of bigger vector $\bot \text{ to each other apply } \theta = \tan^{-1}\frac{b}{a}$ Not \bot to each other: use protractor											
16	Componen making θ w			F		х-	$compo$ $= \mathbf{F} \times$	nent				$y-component$ $\mathbf{F_v} = \mathbf{F} \times \sin \theta$				
17	Measureme ray oscillos			de	Time l horizo	base:	cale or					gain:				

Unit 2: Motion, force and energy (topic 3, 4, 5 and 6 from AS syllabus)

1	Average velocity \bar{v}	$\bar{v} = \frac{s}{s}$		s is the displa	acement in meters and t		
		t		is the time in	seconds.		
2	Instantaneous velocity		Velocity of an object at any particular instant of time.				
3	Average acceleration ā	$\bar{a} = \frac{\Delta v}{\Delta t}$			nge of speed and ∆t is f time. Unit of is ms ⁻²		
4	Acceleration and velocity	Same direction: acceleration opposite direction: accele.		elocity is in +ve direction)			
5	Graphical representation	(stationary) O Time (x-axis)	[constent speed]	Pando O Time (x-axis	[constant acceleration]		
6	Speed-time graph		Area under the graph: distance covered by and object Gradient of the graph: acceleration				
7	Distance-time graph	Gradient of the graphs: sp	eed of an objec	rt			
8	Equation for uniform	$v = \frac{s}{s}$			n acceleration=0 and		
	motion, constant motion	t		no net force			
9	Equations for uniformly accelerated motion - body start motion u=0 - body come to rest v=0 - free fall g=a=9.81ms ⁻² - horizontal motion s=x	$v = u + at$ $s = \frac{(u+v)}{2}t$ $s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2at^{2}$	2	v is the final velocity in ms ⁻¹ , u is the initial velocity in ms ⁻¹ , s is the distance/displacement in m, a is the acceleration in ms ⁻² and t is the time in s.			
	- vertical motion s=h=y			0 . 1	0		
10	Friction→ static and dynamic	Static $f_s = \mu_s \times N$ Dynamic $f_k = \mu_k \times N$ N is the reaction or normal perpendicular to the surface	al force	f_s is the static friction in newton, f_k is the dynamic friction in newton, μ_s is the coefficient of static friction μ_k is the coeff. of dynamic friction			
11	Air resistance or viscous force or viscous drag	 Opposing force to the motion in presence of air or fluid During free fall in the beginning: weight>air resistance+upthrust Later: weight> air resistance+upthrust 					
12	Terminal velocity	- at terminal velocity, weig			st		
13	Projectile: Motion in two dimensions, v and angle θ with	$x\text{-}component \rightarrow \\ no\ acceleration \\ v_x = v\cos\theta$	y -component acceleration $v_y = v$	$\rightarrow is g$ $\theta \sin \theta$	horizontal range $R = \frac{v^2}{g} \sin 2\theta$		
	horizontal, upward is +	$x = v_x t = vt \cos \theta$	$y = v_y t$	_	max range at θ =45°		
14	Weight and mass: weight is force of gravity, mass is the amount of matter, it never changes	$w = m \times g$		the mass in	ight in newton (N), m is kg and g is acceleration ity=9.81 ms ⁻²		
15	Stability of an object	Lower the centre of gravity →more stable the object is Wider the base of an object →more stable the object is					
16	Momentum	$Momentum = mass \times velocity$ $p = m \times v$	V		m.s ⁻¹ or N.s		
17	Conservation of linear momentum	Total momentum before co	llision = total				
18	Elastic collision	Total kinetic energy before	$m_A u_A + m_B u_B = m_A v_A + m_B v_B$ Total kinetic energy before collision =total kinetic energy after collision $\frac{1}{2} m_a u_a^2 + \frac{1}{2} m_b u_b^2 = \frac{1}{2} m_a v_a^2 + \frac{1}{2} m_b v_b^2$				
19	Elastic collision	for two masses $m_a \neq m_b$ of	$or m_a = m_b th$	e equation mi			
		$u_a + u_b = v_a + v_b$					

20	Inelastic collision	Total kinetic energy before collision>to	tal kinetic energy after collision					
		$\frac{1}{2}m_a u_a^2 + \frac{1}{2}m_b u_b^2 > \frac{1}{2}m_a v_a^2 + \frac{1}{2}m_b v_b^2$						
21	Newton's first law of	Object in motion \rightarrow stay in motion forev	ver 7					
	motion	object stationary → stay stationary fore						
22	Newton's second law of	$F_{net} \ltimes a$	- Net force applied ⋈ acceleration					
	motion	$m \ltimes 1/a$	- Mass of an object ⋉ 1/acceleration					
		$F_{net} = kma$	-1 N is the amount of force require					
		$F_{net} = ma$	to create an acceleration of 1 ms ⁻² of mass of 1 kg; k=1Nkg ⁻¹ m ⁻¹ s ²					
23	Newton's third law of	Action and reaction forces applied by tw						
	motion	equal in magnitude and opposite in dire						
24	Momentum and 2nd law of motion	$F = \frac{mv - mu}{t} = ma$	Rate of change of momentum is equal to the net force applied					
25	Impulse	$F\Delta t = mv - mu$	Constant force acting for short time					
26	Density 'ρ' in kgm³ or	$a = \frac{m}{m}$	- ρ of Mercury is 13.6gcm ⁻³					
	gcm ⁻³	$ \rho = \frac{1}{V} $	- ρ of water is 1gcm ⁻³ at 4°C					
		m is the mass and V is the volume	- ρ of air 0.001293gcm ⁻³					
27	Pressure p in pascal (Pa)	$p = \frac{F}{A}$	F is the force in N and A is the area on which the force applied in m ²					
28	Pressure in fluids due to	$p = \rho g h$	ρ is the density of the fluid, g is the					
	depth h in meters	p pg	acceleration due to gravity and h is					
			the height or depth in metre					
29	Upthrust:	$upthrust = h\rho gA$	- Object floats if the density of object					
	- upward force applied by	* upthrust is equal to the weight of the	is less than or equal to the density of					
	fluid on an object	liquid displaced	the fluid and object sinks if the					
			density of object is more than the					
			density of fluid					
30	Measuring the density of liquid using (upthrust) -	density of liquid _	upthrust in liquid					
	Archimedes principle	density of water —	upthrust in water					
31	Torque or moment of	$\tau = Fd \times \sin \theta$	F applied perpendicular to d					
	force							
32	Torque due to a couple or	$Couple = one force \times perpendicular dis$						
2.2	two equal forces	au =						
33	Conditions of equilibrium	$\Sigma F_{net} = 0$	-Total or net force applied is zero					
2.4	TV 1	$\Sigma au_{net} = 0$	-Total torque applied is zero					
34	Work: ΔW is the work in joules	$\Delta W = Fs \times \cos \theta$	F is the force, s is the displacement in the direction of the force applied					
	Avv is the work in joules	work that causes motion $\rightarrow E_k$ work that store energy $\rightarrow E_p$	and θ is the angle between F and s					
35	External work done by an	$\Delta W = p\Delta V$	p is the pressure in Pa and ΔV is the					
33	expanding gas	$\Delta W = \rho \Delta V$ In p-V graph the area under the graph	expansion of gas in m^3					
	expanding gas	is the work done	expansion of gas in in					
35	Work done in stretching a	$\Delta W = \frac{1}{2}kx^2 = \frac{1}{2}Fx$	F is the force applied and x is the					
	spring	Work= area under the F-x graph	extension					
36	Principal of conservation	Loss of gain or E_p =	gain or loss of E_k					
	of mechanical energy	$\Delta E_p =$						
		mgh =						
37	Electrical potential	$E_{P,q} = qV$	q is the quantity of charge in					
	energy:	.,4	coulomb and V is the potential					
	Work done in bring the		difference between the points.					
	unit positive charge from							
	infinity to a point.							

38	Internal energy:	$\Delta Q = \Delta U + \Delta W$	ΔQ heat ap	plied, ΔU increase in the
	Sum of the E_k and E_p of		internal en	ergy and ΔW is the work
	the molecules of a system		done by the system	
39	Power	$P = \frac{W}{t} = Fv$		ver in watts, W is the F is the force and t time
40	Efficiency of a machine	$Efficiency = \frac{useful\ energy\ output}{total\ energy\ input}$	$\times 100$	Efficiency can be expressed as percentage

Unit 3: Electric charge (topic 17, 19 and 20 from the syllabus)

1	Electric field intensity E: force on a unit charge q at any point around another charge Q	between the two parallel plates $E = \frac{V}{d}$ uniform between the plates separation d , unit is Vm^{-1}	due to point charge Q on charge q $E = \frac{F}{q}$ decreases with distance increase, unit is NC^{-1}		
2	Current: Rate of flow of charges in a conductor	$I = \frac{Q}{t}$	I is the current in amperes (A), Q is the charge in coulombs (C) t is the time in seconds (s)		
3	Current path	In circuits the current always choose	the easiest path		
4	Conduction of electric charge		etals) due to free electrons→ conduction		
5	Ohms law	Voltage across the resistor is directly proportional to current, $V \ltimes I$ or $\frac{V}{I} = R$	V is the voltage in volts (V), I is the current in amperes (A) and R is resistance in ohms (Ω)		
6	Voltage	Energy per unit charge $V = \frac{Energy}{Q}$	Q is the charge in coulombs (C), V is the voltage in volts (V) Energy is in joules (J)		
7	Electromotive force(emf)	e.m.f. = lost volts + terminal p.d. e.m.f.=Ir+IR unit of emf is volts (V)	the energy transferred to electrical energy and when 1C charge passes through a circuit.		
8	Max. Power dissipated by the cell	$P = \frac{E^2 R}{(R+r)^2}$	Max. power P when R=r, E is the emf		
9	Resistance and resistivity	$R = \rho \frac{L}{A}$ $\rho \text{ is the resistivity of resistor in } \Omega.m$	R is the resistance a resistor, L is the length of a resistor in meters A is the area of cross-section of a resistor in m ²		
10	Circuit	In series circuit \rightarrow the current stays to In parallel circuit \rightarrow the voltage stay	he same and voltage divides		
11	Resistance in series				
12	Resistance in parallel	$R = R_1 + R_2 + R_3 + \cdots$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$ $\frac{V_1}{V_1} = \frac{R_1}{R_2}$	R , R_1 , R_2 and R_3 are resistances of resistor in ohms		
13	Potential divider	$\frac{V_1}{V_2} = \frac{R_1}{R_2}$ $V_2 = (\frac{R_2}{R_2}) \times V$	V_1 voltage across R_1 V_2 voltage across R_2		
14	Potential divider (V total voltage)	$V_2 = (\frac{R_2}{R_1 + R_2}) \times V$	$V_1 = (\frac{R_1}{R_1 + R_2}) \times V$		
15	Power	$P = I \times V$ $P = I^2 \times R$ $P = \frac{V^2}{R}$	P is the power in watts (W)		
16	Power	$P = \frac{Energy}{time}$	The unit of energy is joules (J)		
17	I-V Characteristics	metals diode fil	amentthermistorLDR $\Gamma \uparrow, R \uparrow, I \downarrow$ $T \uparrow, R \downarrow, I \uparrow$ $L \uparrow, R \downarrow. I \uparrow$		
18	Kirchhoff's law	$\sum I = 0$	$\sum EMF = \sum IR$		
19	Cathode rays	Stream of electrons emitted from hea rays and the process of emission is co	ted metal (cathode) are called cathode alled thermionic emission.		

Unit 4: Matter (topic 9, and 10 from the syllabus)

1	Density: ratio of mass to	$\rho = \frac{m}{V}$			m is	the mass and V is
2	volume, gcm ⁻³ , kgm ⁻³ Kinetic molecular	tiny particles, in constant collision, held by strong el		4	- f 1	
2	Kinetic molecular theory of matter	space, temp increases the s		, ,	ectri	c Jorce, targe empty
3	Kinetic molecular theory of matter - energies	Solids: Liquids: vibrates at mean position called vibrational energy translational (move energy			Gases: Vibrational, translational and rotational energies	
4	Brownian Motion	Random, zigzag motion of p				
5	Pressure, p	$p = \frac{force \ applied \ at \ rig}{}$	ect Unit is pascal (Pa)			
		$p = \frac{1}{area o}$	f contact			
6	Pressure due to liquid	$p = \rho \times g \times h$				density, g is gravity h is depth
7	Kinetic energy of the particles of a substance	proportiona	al energy of a		<u> </u>	
8	Potential energy of the particles of a substance	Due to electrosto	-	ween particle:	s of a	n substance
9	Types of solids (based on the arrangement of atoms or molecules)	Atoms or molecules are arranged in regular three dimensional pattern Atom			rystalline or amorphous solids: is or molecules are not nged in regular pattern	
10	Hooke's Law	Polymer solids are either crystalline polymer if the molecules are arranged in some form of regular pattern or amorphous polymer if there is no particular systematic arrangement The extension of a spring Δx is directly proportional to the force applied F_{app} provide the elastic limit is not reached $F_{app} = kx or$ $F_{s} = -kx$				
		k is the spring constant and	$l F_s$ is the res	toring force o		
11	Elastic limit	Gradient or slope of the graxis) is the elastic limit of a		force F (y-axi	is) a	nd extension x (x-
12	Stress σ (unit pascal)	$\sigma = \frac{F}{A}$			0.5.5-,5	pplied and A is the ection perpendicular
13	Strain ε (no unit)	$\varepsilon = \frac{L}{x}$			ange	in length and L is
14	Young modulus E (unit is pascal)	$E = \frac{\sigma}{\varepsilon} = \frac{F/A}{x/I} = \frac{F}{A}$	$\frac{F \times L}{1 \times x}$	ratio	of si	tress over strain
15	Young modulus E	Gradient or slope of the graits the Young modulus of a s		stress σ (y-ax	is) a	nd strain ε (x-axis)
16						e is called elastic sipated by change in
17	Strain energy	$W = \frac{1}{2}kx^2 = \frac{1}{2}$	Fx	It is the e	energ iange i und	gy stored in an object e of shape or size. er force-extension

18	Strain energy per unit volume	$= \frac{1}{2} \times \frac{F}{A} \times \frac{x}{L}$ $= \frac{1}{2} \times stress \times strain$	The area under the stress-strain graph is called strain energy per unit volume. The unit of energy is joules (J).
19	Ductile and brittle	Ductile:	Brittle:
	material	→ drawn into wire without breaking	→ cannot drawn into wire
		→ small elastic region and large ductile	→ small or large elastic region
		→ eg copper wire	but small ductile region, eg glass

Unit 4: Nuclear physics (topic 27 from the syllabus)

1	Elementary particles	<u>Proton:</u>	<u>Electron:</u>		Neutron:		
	of an atom	Positive charge, negative charge,		,	no charge,		
		inside the nucleus,	revolve around the m			inside the nucleus,	
		same mass as neutron	mass is .	1/1836 of pi	oton	same mass as proton	
2	Nucleon no 'A'	also called mass number	r or atomic	weight, it is	sum of	protons and neutrons	
3	Proton no 'Z'	also called atomic numb	er, total nu	mber of pro	tons		
4	Alpha particles	Helium nucleus			⁴ ₂ He		
	α-particles	Stopped by paper			or	_	
		Highest ionization poten	tial			$\frac{4}{2}\alpha$	
5	Beta-particles	Fast moving electrons				$^{4}_{2}\alpha$ $^{0}_{-1}e$	
	β-particles	Stopped by aluminum			or	-1	
	, 1	Less ionization potentia	l			$^{0}_{-1}\beta$	
6	Gamma-particles	Electromagnetic radiation	on				
	y-particles	Only stopped by thick a sheet of lead				$^0_0 \gamma$	
	, -	Least ionization potential					
7	Alpha decay	$A_{V} \rightarrow A^{-4}V + 4H_0 + argument$ Parent m		Parent nuc	uclei X emit two protons and two		
		${}_{Z}^{A}X \Rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He + energy$ Parent in neutrons			o make i	alpha particle	
8	Beta decay	${}_{Z}^{A}X \Rightarrow {}_{Z+1}^{A}Y + {}_{-1}^{0}\beta + energy$ changes in		In parent i	nuclei X one of the neutrons		
				changes into neutron and electron. The			
				electron ei	emits as beta		
9	Gamma decay	$_{Z}^{A}X \Rightarrow _{Z}^{A}Y + _{0}^{0}Y$ Gamma			na decay is the simple loss of energy		
		$Z^{\Lambda} \Rightarrow Z^{\Gamma} + {}_{0}\gamma$		from the n			
10	Radioactivity is a	Does not depend upon th	he environm	iental factoi	rs eg atn	n. Pressure,	
	spontaneous process	temperature, humidity, b					
11	Radioactivity is a	All the nuclei have equa		y of decay a	t any tin	ne, cannot predict	
	random process	which nucleus will emit	radiation.				
12	Half-life	Time in which the activit	ty or mass o	of a radioac	tive sub	stance becomes half	
13	Atomic symbol	<i>A</i> v	7		A is the	e total no of protons and	
		$\frac{1}{7}\lambda$	ĺ		neutro		
		Examples: ${}_{1}^{1}H$, ${}_{6}^{12}C$, ${}_{8}^{16}O$			Z is the	e total no of protons	
14	Isotopes	Elements having atoms of	ns of same number of			$C_{1}^{14}C_{6}$ or ${}_{1}^{1}H_{1}^{2}H_{1}^{3}H_{1}$ or	
		protons but different nun	nber of neu	trons	$^{235}_{92}U$, 2		

Unit 5: Waves (topic 15 and 16 from the syllabus)

1 Wave equation 1		$v = f \times \lambda$	v is the speed of wave in ms ⁻¹			
		$\nu = j \times \lambda$	f is the frequency in Hz			
			λ is the wavelength in metre			
2 Wave equation 2		1	T is the time period of wave in			
2 wave equation 2		$f = \frac{1}{T}$	second			
3 Movement of the	particles Longitudir	1	and forth same direction as waves			
of the medium			dicular to the direction of waves			
4 Wavelength 'λ'			or two troughs, unit metre (m)			
5 Frequency 'f'			e second, unit hertz (Hz)			
6 Time period 'T'			wave, unit second (s)			
7 Speed of wave m	otion 'v' Distance n	nove by crest in dir	rection of wave in Isecond, unit ms ⁻¹			
8 Displacement of			from its mean position in either			
's '		direction, unit metre (m)				
9 Amplitude 'a'	The maxin	num distance move	by the particle, unit metre (m)			
10 Wave fronts			wave by straight line perpendicular			
			ance between two wave fronts is			
	wavelengti					
11 Progressive wave		s waves created by				
12 Phase difference			of two waves do not overlap each			
		two waves have ph				
13 Coherent waves			es and originate from same source			
14 Intensity of a wa	ve 'I'	$I = \frac{P}{A}$	P the amount of wave energy			
	Unit of int	A ensity is Wm ⁻²	per second at particular point falling on surface area A			
15 Intensity of a way	va 'I' Intensity o	ensuy is mm fwaya is dinaatly r	proportional to the amplitude square			
			$I \ltimes a^2$			
16 Compression reg			come close to each other			
17 Rarefaction region			move further apart from each other			
18 Diffraction			narrow gap, they spread out.			
19 Interference of li		ictive interference:				
	I	crests-crests and	0 0			
		oughs of two wave.				
	become ad	ch other, amplitud	es amplitudes cancel each other			
20 Young double eli	t -	bright fringes:				
20 Young double sli	f For	n l D	For dark fringes:			
20 Young double sli experiment	f For	$x = \frac{n\lambda D}{n}$	For dark fringes: $x = \frac{(n+1)\lambda D}{}$			
	107	$x = \frac{n\lambda D}{a}$	$x = \frac{(n+1)\lambda D}{a}$			
	a is the dis	$x = \frac{n\lambda D}{a}$ tance between the	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between			
	a is the dis	$x = \frac{n\lambda D}{a}$ stance between the ae screen, λ is the α	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between wavelength of light, n is the order of			
	a is the dis slits and th bright or a	$x = \frac{n\lambda D}{a}$ Example 1 tance between the series, λ is the value of the firing and the series.	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between wavelength of light, n is the order of g from the first bright fringe at the			
experiment	a is the dis slits and th bright or a centre, x is	$x = \frac{n\lambda D}{a}$ tance between the secreen, λ is the value fringe counting the distance of n t	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between vavelength of light, n is the order of g from the first bright fringe at the h fringe from the centre			
	a is the dis slits and th bright or a centre, x is	$x = \frac{n\lambda D}{a}$ tance between the se screen, λ is the value fringe counting the distance of λ is the distance λ	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between vavelength of light, n is the order of g from the first bright fringe at the h fringe from the centre the gap between two grating lines, θ			
experiment	a is the dis slits and th bright or a centre, x is	$x = \frac{n\lambda D}{a}$ itance between the screen, λ is the value fringe counting the distance of n t is the n in n is the n is the n is the n in	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between wavelength of light, n is the order of g from the first bright fringe at the h fringe from the centre the gap between two grating lines, θ he angle of the order of maxima, n is			
experiment	a is the dis slits and th bright or a centre, x is	$x = \frac{n\lambda D}{a}$ $tance between the action of the stance of not the distance of the action of the a$	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between vavelength of light, n is the order of g from the first bright fringe at the h fringe from the centre the gap between two grating lines, θ he angle of the order of maxima, n is order of a maxima and λ is the			
experiment 21 Diffraction gration	a is the dis slits and th bright or a centre, x is ng dsin	$x = \frac{n\lambda D}{a}$ $tance between the endown strong counting the distance of not the end of the end $	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between wavelength of light, n is the order of g from the first bright fringe at the h fringe from the centre the gap between two grating lines, θ he angle of the order of maxima, n is order of a maxima and λ is the selength			
experiment 21 Diffraction gration	a is the dissilts and the bright or a centre, x is dising	$x = \frac{n\lambda D}{a}$ $tance between the answer of the stance of not the distance of not the answer of the distance of the answer of the answer of the the answer of the the the answer of the the the the the the the the the the$	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between wavelength of light, n is the order of g from the first bright fringe at the h fringe from the centre the gap between two grating lines, θ are angle of the order of maxima, n is order of a maxima and λ is the relength tic field of light waves oscillates			
experiment 21 Diffraction gration	a is the dissilts and the bright or a centre, x is distinct. When the equal to the angle in one only in one	$x = \frac{n\lambda D}{a}$ $tance between the answer of the stance of not the distance of not the answer of the distance of the answer of the answer of the the answer of the the the answer of the the the the the the the the the the$	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between wavelength of light, n is the order of g from the first bright fringe at the h fringe from the centre the gap between two grating lines, θ he angle of the order of maxima, n is order of a maxima and λ is the relength titc field of light waves oscillates process of transforming un-polarized			
experiment 21 Diffraction gration	a is the dis slits and the bright or a centre, x is a dsin when the e only in one light into p	$x = \frac{n\lambda D}{a}$ itance between the se screen, λ is the value of nt is the distance of nt is the distance of θ and θ is $\theta = n\lambda$ is the wavelectric and magnetic dimensions, this polarized light is constant.	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between wavelength of light, n is the order of g from the first bright fringe at the h fringe from the centre the gap between two grating lines, θ he angle of the order of maxima, n is order of a maxima and λ is the relength titc field of light waves oscillates process of transforming un-polarized			
experiment 21 Diffraction gration 22 Polarized light	a is the dissits and the bright or a centre, x is mg When the e only in one light into ponary A wave rese	$x = \frac{n\lambda D}{a}$ $tance between the secreen, \lambda is the value of not set the distance of not set the way are dimensions, this products when two way are set to sults when two ways are set to sults when the set to sults when$	$x = \frac{(n+1)\lambda D}{a}$ two slits, D is the distance between wavelength of light, n is the order of g from the first bright fringe at the h fringe from the centre the gap between two grating lines, θ he angle of the order of maxima, n is order of a maxima and λ is the selength tic field of light waves oscillates process of transforming un-polarized alled polarization.			

	string of leng	gth 'L' and		mental mode t harmonic:	First overtone or second harmonic:	Second overtone or third harmonic:			
	speed of wav	e is 'v'			$L = \lambda or f_2 = \frac{v}{L}$ (two loops)	$L = \frac{3\lambda}{2} \text{ or } f_3 = \frac{3\nu}{2L}$			
25	G:		(one lo		, , ,	(three loops)			
25	Stationary w				r nth harmonic freque				
	string of leng	gtn L		$f_n = \frac{nv}{2L}$ where $n = 1, 2, 3,$					
26	Stationary w	ave in an air	Funda	mental mode	First overtone or				
	column one e		1	t harmonic:	second harmonic:				
	end close	1			$L = \frac{3}{2}\lambda$ or $f_0 = \frac{3v}{2}$	$L = \frac{5\lambda}{4} \text{ or } f_3 = \frac{5v}{4L}$			
			(½ loo	<i>p)</i>	$(1 \frac{1}{2} loops)$	$(1 \frac{1}{2} loops)$			
				Fo	r nth harmonic freque	ency:			
					$=\frac{(2n-1)v}{4L}$ where $n=1$				
				Jn	$-{4L}$ where $n-1$,2,3.			
27	Speed of ligh	ıt	In air:	$3 \times 10^{8} m/s$ 1	n glass: 2×10 ⁸ m/s	In water: 2.25×10 ⁸ m/s			
28					cy decreases and wav				
					'R ↔ Micro waves ↔				
29	1	· · · · · · · · · · · · · · · · · · ·		Electromagneti					
				Chart by LRSP/University of Col					
		10-6 nm	5						
		10-5 nm				20			
		10-4 nm		Gamma-Rays					
		10-3 nm							
		10-2 nm 1 Å							
		10-1 nm							
		2007 300000		X-Rays	v	fiolet			
		1 nm							
		10 nm				ndigo			
		100 nm		Ultraviolet		lue			
		10 ³ nm 1 μm		Visible Light	Asible Light: ~400 nm - ~700 nm	reen			
		10 μm		Near Infrared	Y	ellow			
		100 µm		Far Infrared	0	range			
		1000 μm 1 mm			R	ed			
		10 mm 1 cm							
		10 cm		Microwave		30			
		100 cm 1 m			UHF				
		10 m			VHF				
		100 m			HF				
		1000 m 1 km		H	MF				
		10 km		Radio	LF				
		100 km	0						
		1 Mm			Audio				
		10 Mm	8						
		100 Mm							
	1		n-nanometer	A=anostrom um=mi	crometer, mm=millimeter,	I			