§ 12.6 静电场的几何描述方法

一.电场线 $(\vec{E}$ 线)

为形象地描写场强的分布,引入 \vec{E} 线。

 $1.\vec{E}$ 线上某点的切向,即为该点 \vec{E} 的方向;

 $2.\vec{E}$ 线的密度给出 \vec{E} 的大小。

几种场源电荷的 至线分布:

几种场源电荷的 \vec{E} 线分布的实验现象:

单个点电极

正负点电极

两个同号的点电极

单个带电平板电极

分别带正负电的平行平板电极

带异号电荷的点电极和平板电极

"怒发冲冠"

二. 电通量 Φ_e

通过面元S的电通量:

$$\Phi_e = \int_S \vec{E} \cdot d\vec{s}$$

- (1) Ф。是对面而言,不是点函数
- (2) Ф。是代数量,有正、负之分

❷ 的几何意义:

$$\mathbf{d}\boldsymbol{\Phi}_{e} = \vec{E} \cdot \mathbf{d}\,\vec{s} = E\cos\boldsymbol{\theta} \cdot \mathbf{d}\,s$$
$$= E \cdot \mathbf{d}\,s_{\perp} = \mathbf{d}\,N$$

 $\therefore \Phi_e = N$ (穿过S的E线条数)

$$\mathbf{d}\boldsymbol{\Phi}_{e} = \vec{E} \cdot \mathbf{d}\,\vec{s} = E\cos\boldsymbol{\theta} \cdot \mathbf{d}\,s$$
$$= E \cdot \mathbf{d}\,s_{\perp}$$

对闭合曲面,

$$\Phi_e = \oint_S \vec{E} \cdot d\vec{s}$$

约定: 闭合曲面以向外为曲面法线的正方向。

通过面元 S_1 的电通量:

$$\Phi_{e1} = \int_{S_1} \vec{E} \cdot d\vec{s}$$

通过面元 S_2 的电通量:

$$\Phi_{e2} = \int_{S_2} \vec{E} \cdot d\vec{s}$$

三、等势面: 电势相等的点组成的曲面

电偶极子的电场线和等势面

两个等量的正电荷的电场线和等势面

等势面: 电势相等的点组成的曲面

电势与电场的关系:

- 1: 等势面与电场线处处正交
- 2: 等势面相距较近处的场强数值大,相距较远的场强数值小

§ 12.7 静电场的高斯定理

高斯定理是反映静电场性质的一个基本定理。

一. 问题的提出:

由
$$\vec{E} = \int_{q} \frac{\vec{e}_r \, \mathrm{d} q}{4\pi \varepsilon_0 r^2}$$
,原则上,任何电荷分布的电场

强度都可以求出,为何还要引入高斯定理?

- 目的: ①进一步搞清静电场的性质;
 - ② 便于电场的求解;
 - ③解决由场强求电荷分布的问题。

二. 高斯定理的内容

高斯定理: 在真空中的静电场内,

通过任意闭合曲面的电通量,等于该曲面所包围电量的代数和除以 ε_0 。

$$\Phi_e = \oint_S \vec{E} \cdot d\vec{s} = \frac{\sum q_{|\gamma|}}{\varepsilon_0}$$

三.高斯定理的证明

证明可按以下四步进行:

- 1. 求以点电荷为球心的球面的 Φ_e
- 2. 求点电荷场中任意闭合曲面的电通量
- 3. 求点电荷系的电场中任意闭合曲面的电通量
- 4. 将上结果推广至任意连续电荷分布

三.高斯定理的证明

证明可按以下四步进行:

1. 求以点电荷为球心的球面的 Φ_e

由此可知:点电荷电场对球面的 Φ_e 与r无关,

即各球面的 Φ_e 连续 \rightarrow 点电荷的 E 线连续。

2. 求点电荷场中任意曲面的电通量

$$\therefore$$
 $\Phi_e = \begin{cases} rac{q}{arepsilon_0}, & q 在 S 内; \\ 0, & q 在 S 外. \end{cases}$

3. 求点电荷系的电场中任意闭合曲面的电通量

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots + \vec{E}_n$$

$$\Phi_{e} = \oint_{S} \vec{E} \cdot d\vec{s}$$

$$= \oint_{S} (\vec{E}_{1} + \vec{E}_{2} + \vec{E}_{3} + \dots + \vec{E}_{n}) \cdot d\vec{s}$$

$$= \sum_{i=all} \Phi_{ei}$$

$$= \sum_{i=\text{internal}} \frac{q_i}{\mathcal{E}_0} + 0 = \frac{\sum q_{\text{ph}}}{\mathcal{E}_0}$$

4. 将上结果推广至任意连续电荷分布

- 说明: 1) 高斯定理是平方反比定律的必然结果;
 - 2) Φ_e 由 $\Sigma q_{\text{内}}$ 的值决定,与 $q_{\text{内}}$ 分布无关;
 - 3) \vec{E} 是总场强,它由 q_{h} 和 q_{h} 共同决定;
 - 4) 高斯定理也适用于变化电场;

- 1、下列关于高斯定理的说法正确的是(A)
 - A、如果高斯面上E处处为零,则面内未必无电荷。
 - \mathbf{B} 、如果高斯面上 \mathbf{E} 处处不为零,则面内必有静电荷。
 - \mathbb{C} 、如果高斯面内无电荷,则高斯面上 \mathbb{E} 处处为零。
 - D、如果高斯面内有净电荷,则高斯面上E处处不为零。
- 2. 如图所示,在电场强度E的均匀电场中,有一半径为R的半球面,场强E的方向与半球面的对称抽平行,穿过此半球面的电通量为(D)

$$A \cdot 2\pi R^2 E$$

$$B\sqrt{2}\pi R^2 E$$

$$C \cdot \frac{1}{2} \pi R^2 E$$

$$D \cdot \pi R^2 E$$

3. 如图所示,一个点电荷位于立方体一顶点A上,则通过

abcd面上的电通量为(C)

$$A, \frac{q}{36\varepsilon_0}$$

$$B \cdot \frac{q}{6\varepsilon_0}$$

$$C \cdot \frac{q}{24\varepsilon_0}$$

$$D_{1}\frac{q}{12\varepsilon_{0}}$$

四、高斯定理应用

高斯定理
$$\Phi_e = \oint_S \vec{E} \cdot d\vec{s} = \frac{\sum q_{|\gamma|}}{\varepsilon_0}$$

应用 分析电场 由场强求电荷分布 例1 已知:均匀带电球壳的 ρ (或 q)及 R_1 、 R_2 求:电场强度的分布。

选高斯面*S*为与带电球壳同心的球面,有:

$$\oint_{S} \vec{E} \cdot d\vec{S} = \oint_{S} E(r) \vec{e}_{r} \cdot d\vec{s}$$

$$R_1$$
 R_2
 S

$$\vec{E} = E(r)\vec{e}_r = \frac{q_{\text{ph}}}{4\pi\varepsilon_0 r^2}\vec{e}_r$$

$$\oint_{S} \vec{E} \cdot d\vec{S} = \oint_{S} E(r)\vec{e}_{r} \cdot d\vec{s} = \oint_{S} E(r) ds$$

$$= E(r) \int_{S} ds_{0}$$

$$= 4\pi r^{2} \cdot E(r)$$

根据高斯定理
$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{q_{\text{ph}}}{\varepsilon_{0}}$$
 $4\pi r^{2} \cdot E(r) = \frac{q_{\text{ph}}}{\varepsilon_{0}}$

$$R_1$$
 R_2
 S

$$\vec{E} = E(r)\vec{e}_r = \frac{q_{\text{ph}}}{4\pi\varepsilon_0 r^2}\vec{e}_r$$

(1)当
$$\mathbf{r}$$
< $\mathbf{R}_{\mathbf{1}}$ 时, $q_{\mathbf{p}}=0$,有

、′(2)当R₁<r<R₂时,

$$q_{\text{pl}} = \frac{4\pi}{3} (r^3 - R_1^3) \rho \quad \vec{E} = \frac{\rho}{3\varepsilon_0} (r - \frac{R_1^3}{r^2}) \vec{e}_r$$

(3)当r>R₂时,
$$q_{\text{内}} = \frac{4\pi}{3}(R_2^3 - R_1^3)\rho = q$$
,

$$\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \vec{e}_r$$
 (同点电荷的电场)

讨论:

1.E 的分布

- 2. 特殊情况
 - 1) 令 $R_1 = 0$,得均匀带电球的情形:

$$\vec{E} = \begin{cases} \frac{\rho \vec{r}}{3\varepsilon_0} & (\Rightarrow \vec{r}) \\ \frac{q\vec{e}_r}{4\pi\varepsilon_0 r^2} & (\Rightarrow \vec{r}) \end{cases}$$

$$\vec{E} = \begin{cases} \frac{\rho R_2}{3\varepsilon_0} = \frac{q}{4\pi\varepsilon_0 R_2^2} \\ \frac{q\vec{e}_r}{4\pi\varepsilon_0 r^2} & (\Rightarrow \vec{r}) \end{cases}$$

2) 令 $R_1 = R_2 = R$,且 q 不变,得均匀带电球面

$$ec{E} = egin{cases} 0 & (球面内) \ \dfrac{q ec{e}_r}{4\pi arepsilon_0 r^2} & (球面外) \end{cases}$$

在r = R处 E 不连续,这是因为忽略了电荷层的厚度。

5. 如图,在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O指向球形空腔球心O的矢量用 ā 表示。证明球形空腔中任一点电场强度是常数。

证: 球形空腔可以看成是由电荷体密度分别为p和-p的均匀带电大球体和小球体叠加而成。空腔内任一点P处的场强,可表示为

$$\vec{E} = \vec{E}_1 + \vec{E}_2 = \frac{\rho}{3\varepsilon_0}\vec{r}_1 + \frac{-\rho}{3\varepsilon_0}\vec{r}_2 = \frac{\rho}{3\varepsilon_0}(\vec{r}_1 - \vec{r}_2)$$

其中 E_1 和 E_2 分别为带电大球体和小球体在P点的场强。 有几何关系 $\vec{\mathbf{r}}_1 - \vec{\mathbf{r}}_2 = \vec{\mathbf{a}}$

因此
$$E = \frac{\rho}{3\varepsilon_0}a$$

