

MATHEMATICS DEPARTMENT

Year 11 Methods - Test Number 2 2019

Functions & Equations

Resource Free Section

Name: (Sounds)

Гeacher: _____

Marks:

23

Time Allowed:

20 minutes

Instructions: You ARE NOT permitted any notes or calculator.

The formula sheet will be provided.

1. [2, 3, 4, 3 = 12 marks]

a) Solve the following equations:

(i)
$$12x^{2} = 4x.$$

$$12x^{2} - 4x = 0$$

$$4x(3x - 1) = 0$$

$$x = 0 \text{ at } x = \frac{1}{3}.$$

(ii)
$$x(x-2) = 35$$
.
 $x(x-2) = 35$.
 $(x-7)(x+5) = 0$
 $x = 7 \approx -5$.

b) One solution to the equation $x^3 + 36 = 5x^2 + 12x$ is x = 2. Determine all other solutions.

$$x^{3}-5x^{2}-12x+3b=0$$

$$(x-2)(x^{2}-3x-18)=0$$

$$(x-2)(x-b)(x+3)=0$$

$$x=2 \text{ as } b \text{ as } -3.$$

Vegnate & D and writes (x-2) as factor

c) The curve $y = x^2 + 4x + 2k$ has two real and different zeroes. Find the value(s) of k.

$$\Delta = 16 - 4(1)(2k) > 0$$
 $16 - 8k > 0$
 $-8k > -16$
 $k < 2$

2. [2, 3 = 5 marks]

The graph of the line L_1 is shown below.

a) Determine the equation of L_1 .

$$m = -\frac{1}{3} /$$

:.
$$y = \frac{1}{3}x + c$$

Sub $(2,3)$ $3 = -\frac{1}{3} + c$
:. $c = 3\frac{1}{3}$

:
$$y = -\frac{1}{3}x + 3\frac{2}{3}$$
.

Two points are located at A(-15, 15) and B(9, 27).

b) Line L_2 is perpendicular to L_1 and passes through the mid-point of A and B. Determine the equation of L_2 .

Lz:
$$m = 3$$
 miapoit $AB = (-3, 21)$
 $y = 3 \times + C$
... Sub $(-3, 21)$: $21 = -9 + C$
 $C = 30$

3. [1, 2, 3 = 6 marks]

A function is defined by $f(x) = \sqrt{3x}$.

a) Calculate f(12).

b) State the domain and range of f(x).

c) Sketch the graph of y = f(x) on the axes below.

MATHEMATICS DEPARTMENT

Year 11 Methods - Test Number 2 2019 **Functions & Equations**

Resource Rich Section

Name:	(SOLUTIONS)

Teacher: _____

Marks:

24

Time Allowed:

25 minutes

Instructions: You ARE allowed calculators but NO notes. The formula sheet will be provided.

You must show your working where appropriate to receive full marks.

1. [4 marks]

The area of a sector is $\frac{3\pi}{10}$ cm^2 and the arc length cut off by the sector $\frac{\pi}{5}$ cm. Find the angle subtended at the centre of the circle and the radius of the circle.

$$\frac{3\pi}{10} = \frac{1}{2}1^{2}0 - 0$$

$$\frac{\pi}{5} = 10 - 0$$

$$\therefore \theta = \frac{\pi}{15}^{R}$$

$$1 = 3 \text{ cm}$$

2. [4 marks]

The graphs of $y = -x^2 + 3x + c$, $y = a(x-1)^2 - 4$ and y = (x+b)(x+2) are shown below.

Determine the values of the constants a, b and c.

Sub
$$(5,0)$$
 mip $y = a(x-1)^2 - 4$
 $0 = a(5-1)^2 - 4$
 $0 = 16a - 4$
 $\therefore a = \frac{1}{4}$

3. [2 marks]

Determine the equation of the axis of symmetry for the graph of $y = -2x^2 - 12x - 37$.

(2 marks)

equation of the axis of symmetry for the graph
$$x = -\frac{b}{2a} = \frac{12}{2(-2)} = -3.$$

must have oc=

4. [1, 4, 1, 1, 2 = 9 marks]

The wind speed at a weather station, v metres per second, t hours after recording began, can be modelled by the function

$$v = 20 - 5.8t + 0.75t^2 - 0.02t^3, 0 \le t \le 24$$

a) Calculate the wind speed when t = 11.

b) Sketch the graph of wind speed against time on the axes below.

- c) During the 24-hour period, determine
 - (i) the time at which the wind speed was greatest.

(ii) the minimum wind speed.

(iii) the length of time, in hours and minutes, that the wind speed was increasing.

accept ± 2 min

5. [3, 2 = 5 marks]

Let $f(x) = \frac{2}{4-x}$ and $g(x) = \frac{1}{x+p} + q$, where p and q are constants.

The graph of y = g(x) is shown below.

shows asymptote ox=4 vy-wit vacconacy

- a) Sketch the graph of y = f(x) on the axes above.
- b) Determine the values of p and q.

$$q = 2$$

$$p = -1$$