Lab2: Unconstrained Optimization

Exercise 1.

Quadratic optimization problems

Consider

$$\min J(x) := \frac{1}{2}x'Ax - b'x + c \tag{P}$$

where A is an $n \times n$ matrix, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$

- 1. When A is symmetric, prove that $\nabla J(x) = Ax b$.
- 2. Prove that (P) has no optimal solution when A is symmetric and admits at least one negative eigenvalue.
- 3. Prove that (P) has a unique solution when A is symmetric positive definite.

Exercise 2.

Gradient type algorithms

We consider the 3 following algorithms.

G.M.C: Gradient Method with Constant step-size

- Choose $x^0 \in \mathbb{R}^n$ and $\rho > 0$.
- for $k = 0; 1; \dots$:

 - Compute $d_k = -\nabla J(x^k)$, Define $x^{k+1} = x^k + \rho d_k$
- Stop if $\|\nabla J(x^{k+1})\| < prec$

G.M.O: Gradient Method with Optimal step-size (Quadratic optimization problems)

- Choose $x^0 \in \mathbb{R}^n$.
- for $k = 0; 1; \dots$:
 - Compute $d_k = -\nabla J(x^k)$,
 - Compute $\rho_k := \frac{d'_k d_k}{d'_k A d_k}$

(explain this choice of step-size)

- Define $x^{k+1} := x^k + \rho_k d_k$
- Stop if $\|\nabla J(x^{k+1})\| \le prec$

C.G.M: Conjugate Gradient Method (Quadratic optimization problems)

- Choose $x^0 \in \mathbb{R}^n$, let $r_0 := \nabla J(x^0)$ and $d_0 := -r_0$.
- Choose $x \in \mathbb{R}$, let r_0 .

 for $k = 1; 2; \dots$:

 $\rho_k := \frac{r'_k r_k}{d'_k A d_k}$, Define $x^{k+1} := x^k + \rho_k d_k$ $r_{k+1} := \nabla J(x^{k+1})$, $\beta_k := \frac{r'_{k+1} r_{k+1}}{r'_k r_k}$ $d_{k+1} := -r_{k+1} + \beta_k d_k$.

$$-r_{k+1} := \nabla J(x^{k+1}), \qquad \beta_k := \frac{r'_{k+1}r_{k+1}}{r'_{k}r_{k}}$$

- Stop if $r_{k+1} \leq prec$
- 1. Write 3 matlab functions: GMC.m, GMO.m and CGM.m and test them on randomly generated quadratic problems.
- 2. Write a matlab function construc.m "[A,b] = construct(n)" to get for $n \in \mathbb{N}$ a vector $b = (1,\ldots,1)^t \in \mathbb{R}^n$ and an $n \times n$ matrix

$$A = \begin{pmatrix} 4 & -2 & 0 & \dots & -1 \\ -2 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -2 \\ -1 & \dots & 0 & -2 & 4 \end{pmatrix}$$

- 3. Prove (using matlab) that such A is positive definite.
- 4. Test the 3 algorithms for a maximum number of iterations (Maxiter=100), when n = 10, $prec = 10^{-10}$ (and $\rho = 0.1$ for G.M.C).

5. We want to check numerically that the number of iterations to reach a given precision depends on the condition number of A.

Theoretically, the number of iterations is proportional to $cond_2(A)$ for G.M.C and G.M.O. For C.G.M it is proportional to $\sqrt{cond_2(A)}$.

Test from an array of dimesions arrn = 10 : 30 and give the corresponding graphs $cond_2(A) = f(item)$.

- 6. Let now A $(n \times n)$ be a tridiagonal symmetric matrix with $A_{i,i} = 3i^2$, i = 1, ..., n and $A_{i,i+1} = 1$, i = 1, ..., n 1.
 - Write a new matlab function to construct such matrix A for any value of n.
 - Compute $cond_2(A)$ for n = 10, 100, 1000. Comment
 - For n = 1000, $prec = 10^{-10}$ and itermax = 2000, test C.G.M to solve this new problem.
 - Consider the $n \times n$ diagonal matrix C defined by $C_{i,i} = \frac{1}{i}$ and define $\tilde{A} := CAC$ and $\tilde{b} = Cb$.
 - Compute $cond_2(\tilde{A})$ for n = 10, 100, 1000. Comment.
 - Show that $\tilde{A}\tilde{u} = \tilde{b} \Leftrightarrow Au = b$, and $u = C\tilde{u}$.
 - For $n=1000,\,prec=10^{-10}$ and $itermax=2000,\,$ test C.G.M to solve the new problem (with \tilde{A} and \tilde{b}). Comment.

Exercise 3.

Extensions to unconstrained nonlinear problems

To solve nonlinear non quadratic optimization problems, we can do the following adaptations . Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g(x) = \nabla f(x)$

S.D.M: Steepest Descent Method

— Replace in G.M.O, the definition of ρ_k by

$$\rho_k = \operatorname{argmin} \{ f(x^k + \rho d_k | \rho \ge 0) \}$$

or compute ρ_k using Armijo.

F.R: Fletcher Reeves Method

— In C.G.M, replace the definition of ρ_k by

$$\rho_k = \operatorname{argmin} \{ f(x^k + \rho d_k \mid \rho \ge 0 \}$$

or compute ρ_k using Armijo.

- Change the definition of β_k : to $\beta_k := \frac{\|g(x^{k+1})\|^2}{\|g(x^k)\|^2}$.
- 1. Write 2 matlab functions corresponding to S.D.M and F.R.
- 2. Test these functions for

(a)
$$f(x) = x_1^2 + 6x_1x_2 + 25x_2^2 - 12x_1 - 2x_2 - 6$$

(b) Rosenbrock

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

(c) Himmelblau

$$f(x_1, x_2) = (x_2 + x_1^2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

(d) DENNI
$$F(x) = \sum_{1 \le k \le n} k \cdot x_k^2 + \left(\sum_{1 \le k \le n} x_k\right)^2$$
.

(e) VAR
$$F(x) = \sum_{1 \le k \le n} x_k^2 + \left(\sum_{1 \le k \le n} \sqrt{k} x_k\right)^2 + \left(\sum_{1 \le k \le n} \sqrt{k} x_k\right)^4$$
.

(f) MONDIA
$$F(x) = \sum_{2 \le k \le n} 100(x_1 - x_k^2)^2 + \sum_{1 \le k \le n} (1 - x_k)^2$$
.

Exercise 4.

Second order Newton type methods

Classical Newton Method

- choose an initial point x^0 near a solution
- for $k \ge 0$,
 - compute $\nabla f(x^k)$ et $\nabla^2 f(x^k)$.
 - solve the linear system

$$\nabla^2 f(x^k) \, d_k = -\nabla f(x^k)$$

The well known BFGS Method

- choose an initial point x^0 and a symmetric positive definite matrix H_0 (default one can be the identity matrix). Compute $g_0 := \nabla f(x^0)$.
- for $k \geq 0$,
 - compute $d_k = -H_k g_k$.
 - compute α_k minimising $\phi(\alpha) := f(x^k + \alpha d_k)$ (or use armijo)
 - define $x^{k+1} = x^k + \alpha_k d_k$, then let $p_k := \alpha_k d_k$, $g_{k+1} = \nabla f(x^{k+1})$ and $q_k := g_{k+1} g_k$.
 - Stop if $\|\nabla f(x^{k+1})\| \le prec$
 - update the matrix H_{k+1} using the following (CR_2) formula.

$$(CR_2) \quad H_{k+1} = H_k + \left(1 + \frac{q_k^T H_k q_k}{q_k^T p_k}\right) \frac{p_k p_k^T}{p_k^T q_k} - \frac{p_k q_k^T H_k + H_k q_k p_k^T}{q_k^T p_k}$$

- 1. Write 2 matlab functions corresponding to Newton and BFGS methods.
- 2. Test these functions using the examples in exercise 3. Comment.