Let us consider a sample dataset have one input (1;) and one output (y;) and mumber of samples 4. Develop a simple linear reggression model using Stochastic gradient desent optimizes

Sample (1)	N.9	y;ª
1	0.2	2.4
2	0.4	3.8
3	0.6	4.2
4	0.8	4.6

* Do manual calculations for two iterations with first two samples

write the python code to build simple linear reggression model using SGD optimizer (consider all 4 Samples)

Step 1: $n, y, m=1, C=-1, \eta=0.1, epoches=2,$ $n_{s}=2$

step 21 it =1

$$\frac{dE}{dc} = -C_{2.8} - C_{1.084} \gamma(0.4) + 0.88)$$

$$= -3.9464$$

$$Step S: Am = -(0.1)(-1.5785) = 0.1578$$

$$AC = -(0.1)(-3.9464) = 0.3946$$

$$Step 8: DM = M + DM = 1.084 + 0.1578$$

$$= 1.2418$$

$$C = C + DC = -0.58 + 0.2146$$

$$= -0.1856$$

$$Step 8: If (Sample > PS)$$

$$= 221$$

$$= 322$$

$$= 3940 \text{ Step 9}$$

$$= 442$$

$$= 322$$

$$= 3464$$

$$= -0.1578$$

$$= -0.1578$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1856$$

$$= -0.1866$$

$$= -0.1866$$

$$= -0.1866$$

$$= -0.1866$$

$$= -0.1866$$

$$= -0.1866$$

$$= -0.1866$$

$$= -0.1866$$

$$= -0.1866$$

$$=$$

step 3: Sample =1

step 4:
$$dE = -(3.4 - (11)(0.2) + 0.18) 0.2$$
 $= -(3.94) 0.2$
 $= -0.668$
 $dE = -(3.4 - (1.2)(0.2) + 0.19)$
 $= -3.34$

Step 5: $Am = -(0.1)(-0.668)$
 $= 0.0688$
 $step 6: $m = m + \Delta m = 1.24 + 0.066 = 1.3$
 $c = c + \Delta c = 0.18 + 0.33 = 0.15$
 $step 7: sample $t = 1$
 $1+1 = 2$
 $1+1 = 2$
 $go to . step - 9$
 $glse = -(3.8 - (1.5)(0.4) - 0.15)0.4$
 $dE = -(3.8 - (1.5)(0.4) - 0.15)$
 $dE = -(3.8 - (1.5)(0.4) - 0.15)$$$

```
Step-5: Am = -(0.1) C-1.25) = 0.12
       QC = - (0.1) (-3. 13) = 0.31
Step-6: m= m+ Am = 1.3+0.12 = 1.42
         c = c + \Delta c = 0.15 + 0.31 = 0.41
step-7: saraple - Saraple +1
              2+1=3
step 8: it ( Sample > ns)
                372
                goto step-9
         else goto step4
Stop q: its = its+)
             = 2+1 = 3
 step 10: if (ito > epoches)
                3 >2 ,
              goto step 1)
           else
goto-step-3
 step 11 : prind m & C
           m=1.42, C=0.46
```