MEEN 673 Assignment 1

Jicheng Lu 525004048

Problem 1

Consider the nonlinear differential equation

$$-\frac{d}{dx} \left[\left(u + \sqrt{2} \right) \frac{du}{dx} \right] = 1, 0 < x < 1, \frac{du}{dx} (0) = 0, u(1) = 0$$

Develop weak form and finite element model of the equation over an element. Compute the tangent coefficient matrix of the model.

$$a = u + \sqrt{2}, b = c = 0, f = 1$$

(1) Weak form:

$$0 = \int_{x_{a}}^{x_{b}} \left[-w_{i} \frac{d}{dx} \left(\left(u + \sqrt{2} \right) \frac{du_{h}}{dx} \right) - w_{i} \right] dx = \int_{x_{a}}^{x_{b}} \left[\left(u_{h} + \sqrt{2} \right) \frac{dw_{i}}{dx} \frac{du_{h}}{dx} - w_{i} \right] dx - w_{i} \left(x_{a} \right) Q_{a} - w_{i} \left(x_{b} \right) Q_{b}$$

$$= \int_{x_{a}}^{x_{b}} \left[\left(u_{h} + \sqrt{2} \right) \frac{dw_{i}}{dx} \frac{du_{h}}{dx} \right] dx - \left[\int_{x_{a}}^{x_{b}} w_{i} dx + w_{i} \left(x_{a} \right) Q_{a} + w_{i} \left(x_{b} \right) Q_{b} \right]$$

where
$$Q_a = -\left(u + \sqrt{2}\right) \frac{du}{dx}\Big|_{x=x_a}$$
, $Q_b = \left(u + \sqrt{2}\right) \frac{du}{dx}\Big|_{x=x_b}$.

(2) Finite element model:

Let
$$u_h^e(x) = \sum_{i=1}^n u_j^e \varphi_j^e(x), w_i = \varphi_i^e(x).$$

$$0 = \int_{x_{a}}^{x_{b}} \left[\left(u_{h} + \sqrt{2} \right) \frac{dw_{i}}{dx} \frac{du_{h}}{dx} \right] dx - \left[\int_{x_{a}}^{x_{b}} w_{i} dx + w_{i} \left(x_{a} \right) Q_{a} + w_{i} \left(x_{b} \right) Q_{b} \right]$$

$$= \sum_{j=1}^{n} u_{j}^{e} \int_{x_{a}}^{x_{b}} \left[\left(\sum_{j=1}^{n} u_{j}^{e} \varphi_{j}^{e} + \sqrt{2} \right) \frac{d\varphi_{i}^{e}}{dx} \frac{d\varphi_{j}^{e}}{dx} \right] dx - \left[\int_{x_{a}}^{x_{b}} \varphi_{i} dx + \varphi_{i} \left(x_{a} \right) Q_{1}^{e} + \varphi_{i} \left(x_{b} \right) Q_{n}^{e} \right]$$

$$= \sum_{j=1}^{n} K_{ij}^{e} u_{j}^{e} - F_{i}^{e}$$

Thus.

(3) Tangent coefficient matrix

$$\begin{split} T_{ij}^{e} &= K_{ij}^{e} + \sum_{m=1}^{n} \frac{\partial K_{im}^{e}}{\partial u_{j}^{e}} u_{m}^{e} = K_{ij}^{e} + \sum_{m=1}^{n} \frac{\partial}{\partial u_{j}^{e}} \left(\int_{x_{a}}^{x_{b}} \left(u_{h} + \sqrt{2} \right) \frac{d \varphi_{i}^{e}}{dx} \frac{d \varphi_{m}^{e}}{dx} dx \right) u_{m}^{e} \\ &= K_{ij}^{e} + \int_{x_{a}}^{x_{b}} \frac{\partial \left(u_{h}^{e} + \sqrt{2} \right)}{\partial u_{j}^{e}} \frac{d \varphi_{i}^{e}}{dx} \left(\sum_{m=1}^{n} u_{m}^{e} \frac{d \varphi_{m}^{e}}{dx} \right) dx = K_{ij}^{e} + \int_{x_{a}}^{x_{b}} \varphi_{j}^{e} \frac{d \varphi_{i}^{e}}{dx} \frac{d u_{h}}{dx} dx \end{split}$$

Program 1

(1)
$$-\frac{d}{dx} \left[u \frac{du}{dx} \right] = -1, 0 < x < 1, \frac{du}{dx}$$
 (0) $= 0, u(1) = \sqrt{2}$

Direct iteration: NONLIN = 1, Newton iteration: NONLIN = 2.

Box 1. An example of input file for the validation case (Ex4.4.1)

						` /						
Example 4.4.1: Nonlinear analysis of a problem (DI)												
0.0	0.0	1.0	0.0	0.0	0.0	AX0,AX1,AU1,AU2,AUX1,AUX2						
0.0	0.0	0.0	0.0	0.0	0.0	BX0,BX1,BU1,BU2,BUX1,BUX2						
0.0	0.0	0.0	0.0	0.0	0.0	CX0,CX1,CU1,CU2,CUX1,CUX2						
-1.0	0.0	0.0	0.0	0.0	0.0	FX0,FX1,FX2						
0.0	1.0					X0,AL						
1	2					IEL, NEM						
1	0	0			NSPV, NSSV, NSMB							
3	1	1.41	42			ISPV(I,J), VSPV(I)						
1	0					NONLIN, NPRNT						
1	10	1.0	E-03	0.0 NLS, ITMAX, EPS, GAMA								
1.0						DP(I)						
1.0	1.0	1.41	42			GP1(I)						

(2)
$$-\frac{d^2u}{dx^2} - 2u\frac{du}{dx} = 0, 0 < x < 1, u(0) = 1, u(1) = 0.5$$

Box 2. An example of input file for Problem 4.5

Examp	Example 4.5: Nonlinear analysis of a problem											
1.0	0.0	0.0	0.0	0.0	0.0 0.0 AX0,AX1,AU1,AU2,AUX1,AUX2							
0.0	0.0	-2.0	0.0	0.0	0.0	0.0 BX0,BX1,BU1,BU2,BUX1,BUX2						
0.0	0.0	0.0	0.0	0.0	0.0 CX0,CX1,CU1,CU2,CUX1,CUX2							
0.0	0.0	0.0	0.0	0.0 0.0 FX0,FX1,FX2								
0.0	1.0					X0,AL						
1	2			IEL, NEM								
2	0	0			NSPV, NSSV, NSMB							
1	1	1.0			ISPV(I,J), VSPV(I)							
3	1	0.5										
1	0			NONLIN, NPRNT								
1	10	1.0	E-03	0.0	0.0 NLS, ITMAX, EPS, GAMA							
1.0						DP(I)						
1.0	1.0	0.5 GP1(I)										

Table 1. Numerical results of the validation case (Ex4.4.1)

X(m)			Direct I	teration		Newton Iteration						
	2L	4L	8L	1Q	2Q	4Q	2L	4L	8L	1Q	2Q	4Q
0.000	0.99992	0.99987	0.99982	0.99993	0.99987	0.99980	0.99998	0.99998	0.99998	0.99998	0.99998	0.99998
0.125	-	1	1.00760	-	-	1.00760	-	-	1.00780	-	-	1.00780
0.250	-	1.03070	1.03060	-	1.03080	1.03060	-	1.03080	1.03080	-	1.03080	1.03080
0.375	-	1	1.06790	-	-	1.06790	-	-	1.06800	-	-	1.06800
0.500	1.11800	1.11800	1.11800	1.11870	1.11800	1.11800	1.11800	1.11800	1.11800	1.11800	1.11800	1.11800
0.625	-	1	1.17920	-	-	1.17920	-	-	1.17920	-	-	1.17920
0.750	-	1.25000	1.25000	-	1.25000	1.25000	-	1.25000	1.25000	-	1.25000	1.25000
0.875	-	-	1.32880	-	-	1.32880	-	-	1.32880	-	-	1.32880
1.000	1.41420	1.41420	1.41420	1.41420	1.41420	1.41420	1.41420	1.41420	1.41420	1.41420	1.41420	1.41420

Table 2. Numerical results of Problem 4.5

X(m)			Direct I	teration		Newton Iteration						
	2L	4L	8L	1Q	2Q	4Q	2L	4L	8L	1Q	2Q	4Q
0.000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
0.125	-	1	0.88857	-	-	0.88883	-	-	0.88855	-	1	0.88881
0.250	-	0.79821	0.79958	-	0.79924	0.80003	-	0.79819	0.79956	-	0.79921	0.80001
0.375	-	1	0.72686	-	-	0.72728	-	-	0.72683	-	1	0.72725
0.500	0.66002	0.66514	0.66631	0.66076	0.66675	0.66670	0.66000	0.66512	0.66629	0.66071	0.66673	0.66667
0.625	-	1	0.61511	-	-	0.61540	-	-	0.61509	-	1	0.61537
0.750	-	0.57063	0.57124	-	0.57132	0.57145	-	0.57062	0.57123	-	0.57131	0.57143
0.875	-	-	0.53324	-	-	0.53334	-	-	0.53323	-	-	0.53333
1.000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.50000	0.5000	0.50000