计算物理 homework15

PB18020616 李明达

2020年12月1日

摘要

这是计算物理第 15 次作业, 作业题目是设体系的哈密顿量为

$$H = \frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2}$$

(以 kT 为单位) Metropolis 抽样法计算 $\langle x^2 \rangle$, $\langle y^2 \rangle$, $\langle x^2 + y^2 \rangle$, 并与解析结果比较。抽样时在 2 维平面上依次标出 Markov 链点分布,从而形象地理解 Markov 链。

1 算法以及公式

1.1 理论计算

理论上我们可以计算得出

$$\begin{split} \langle x^2 \rangle &= \frac{\int_{-\infty}^{\infty} x^2 e^{-\beta H} dx dy}{\int_{-\infty}^{\infty} e^{-\beta H} dx dy} = \frac{\sigma_x^2}{\beta} \\ \langle y^2 \rangle &= \frac{\int_{-\infty}^{\infty} y^2 e^{-\beta H} dx dy}{\int_{-\infty}^{\infty} e^{-\beta H} dx dy} = \frac{\sigma_y^2}{\beta} \\ \langle x^2 + y^2 \rangle &= \frac{\sigma_x^2 + \sigma_y^2}{\beta} \end{split}$$

1.2 算法

对于正则系综,体系的某一构型出现的概率为 $p=e^{-\beta H}$,而本题中 H 的形式比较简单,所以可以直接按照讲义方法来抽样。

1. 随机选取系统的初始构型 (x,y)

2 实验结果 2

2. 设已有抽样点 (x_n,y_n) ,构造下一抽样点。设系统有一个试探解 $x_t=(r-0.5)\times \Delta x+x_n$,其中 r为 [0,1]内均匀分布的随机数。如果试探解 x_t 使系统的能量减小,则接受该试探解, $x_{n+1}=x_t$,否则,以概率 $\frac{p(x_t)}{p(x_n)}$ 接受该试探解,即产生一个新的 [0,1] 间均匀分布随机数 r',并作如下操作:

$$x_{n+1} = \begin{cases} x_t & r' < \frac{p(x_t)}{p(x_n)} \\ x_n & r' > \frac{p(x_t)}{p(x_n)} \end{cases}$$

- 3. 用同样方法产生 y_{n+1}
- 4. 重复 2-3, 直到产生足够多的 Markov 点
- 5. 舍去热化处理的链点, 计算统计量 $\langle x^2 \rangle$, $\langle y^2 \rangle$, $\langle x^2 + y^2 \rangle$

1.3 程序

在程序中, 前面 Seed 和 Schrage_int 是随机数产生器的两部分.

接下来是 Metropolis_xy(int seed,float sigma_x, float sigma_y, float step_length, float beta) 这个函数进行 Metropolis 抽样, 保存抽样结果到"x.txt" 和"y.txt"

2 实验结果

我的模拟采用以下参数:

$$\sigma_x = 1 \tag{1}$$

$$\sigma_y = 1 \tag{2}$$

$$step - length = 2 (3)$$

$$\beta = 1 \tag{4}$$

$$N = 1000 \tag{5}$$

$$x_0 = 1 \tag{6}$$

$$y_0 = 1 \tag{7}$$

其中 N 是总步数, x_0, y_0 是初始值。

2 实验结果 3

C:\Users\11136\Desktop\计算物理A作业\15>第十五题可执行程序.exe The seed is 425520640 The efficient for x is 0.789000 The efficient for y is 0.818000

图 1: 程序给出的数据

2.1 单个粒子的模拟结果和 Markov 链分布

单个粒子的模拟结果如表 1所示,其中程序中直接可以读出种子值和 x、y 的效率 (如图 1),其他值通过数据处理软件处理"第十五题数据单个粒子 x.txt"和"第十五题数据单个粒子 y.txt"得到,数据处理时**含去了前 50 个点的结果来避免热化过程的影响**。

可见尽管步数不多(实际上粒子有 20 个),但计算结果也比较精确,与理论值相近,可见取步长为 2 是合适的,如果想要更好的结果,可以通过改变步长来找到。

表 1: 单个粒子模拟结果	
种子值	425520640
$\langle x^2 \rangle$	0.989365855
$\langle y^2 \rangle$	1.119469931
x 误差值	0.010634145
y 误差值	0.119469931
x 抽样效率	0.789
y 抽样效率	0.818

这个粒子的 Markov 链如图 2所示.

可见,这个 Markov 类似一团毛线,其中心确实在 (0,0) 附近。实际上这是一条折线,其边界不太圆润,有涨落,但 x 边界基本在 r=2 内,而圆外比较稀疏,这是因为理论值告诉我们 x^2 和 y^2 的平均值应该在 1 附近。这个图也反映了这个抽样基本上是正确的(可以计算,抽样的点基本落在概率函数半峰宽内)。这也揭示了单个粒子的 Markov 的轨迹就是一条无记忆的链。

2 实验结果 4

图 2: 多个粒子 Markov 链分布

图 3: 多个粒子 Markov 链分布

2.2 多个粒子的 Markov 轨迹

随后我连续运行五次程序,把每次的 x, y 都记录下来,存为"第十五题数据多个例子"开头的 txt 文件。把这五次的运行结果取前 50 步(防止图片过于繁杂)画在同一个图内,如下图 3所示。

5 个粒子 50 步行走图像如图 3所示。形状与一个粒子的相似,是个位于 (0,0) 的 "毛线团"。初始位置五个粒子都在 $x_0=1,y_0=1$,但经过热化,现在以及变成了"一团毛线"。这个图反映了多个粒子的 Markov 链,也直观示意了这个体系的演化。

3 总结

5

这次作业通过对哈密顿量 $H=\frac{x^2}{2\sigma_x^2}+\frac{y^2}{2\sigma_y^2}$ 在特定参数(式 1-7)下进行 Metropolis 抽样,并且计算了 $\langle x^2 \rangle$, $\langle y^2 \rangle$, $\langle x^2+y^2 \rangle$,与解析结果比较发现 结果吻合的比较好。随后我们又在 2 维平面上依次标出单个粒子和多个粒子的 Markov 链点分布,形象地理解了 Markov 链的演化过程。实验圆满完成。