SPREADSHEETBENCH

雷翔麟

华中科技大学计算机科学与技术学院

2024年10月10日

- 1 Ideas
- 2 Details
- 3 Codes
- 4 Conclusion
- **6** Motivation

- 1 Ideas
- 2 Details
- 3 Codes
- 4 Conclusion
- 6 Motivation

Five Key Ideas

Ideas

- Collect high-quality data from real-world sources and select the questions by rigorous criteria
- Utilize GPT-4 to recreate a coherent instruction
- Categorize answer positions into sheet-level and cell-level
- Create multiple spreadsheets and develop multiple test cases for each instruction
- Use various methods to mitigate data leakage

Figure 1: The benchmark construction pipeline and OJ-style evaluation.

- 2 Details
- 3 Codes
- 4 Conclusion
- 6 Motivation

Data Info

Figure 2: Key statistics of SPREADSHEETBENCH.

Details

Data Leakage

Issue: Datasets initially **obtained from online** forums may be susceptible to data leakage issues, given that many LLMs are pre-trained using a vast corpus of web text.

Solutions:

- Revise the original questions in the posts during the Instruction Generation process.
- modifying the original provided spreadsheets during the Spreadsheet Modification.
- alter the position of the tabular data in the original spreadsheets and the corresponding answer in the resulting spreadsheets during the Answer Position Changing

Evaluation Metrics

Soft Restriction:

$$S_{\text{soft}} = \frac{1}{|D|} \sum_{i=1}^{|D|} \left(\frac{1}{|T_i|} \sum_{j=1}^{|T_i|} 1_{r_i = ACC} \right)$$

Hard Restriction:

$$S_{hard} = \frac{1}{|D|} \sum_{i=1}^{|D|} 1_{rij} = ACC, \forall j = 1, 2, \dots, |T_i|$$

SPREADSHEETBENCH

Inference Setting

Evaluate LLMs under two distinct settings:

- Single-Round: present the model with the initial few rows of spreadsheet files within the prompt, allowing for **only one** inference.
- Multi-Round: Building on the single-round prompt setting, furnish error feedback if the code fails to execute, enabling the model to refine its code in subsequent iterations.

- 1 Ideas
- 3 Codes
- 4 Conclusion

$\mathsf{GitHub}\ \mathsf{Link}$

GitHub Link:

https://github.com/RUCKBReasoning/SpreadsheetBench

Conclusion •0

- 1 Ideas
- 2 Details
- 3 Codes
- **4** Conclusion
- 6 Motivation

Table 2: Performance of representative models on SPREADSHEETBENCH (%).

Model	Soft Restriction (†)			Hard Restriction (†)		
	Cell-Level	Sheet-Level	Overall	Cell-Level	Sheet-Level	Overall
Binder (GPT-3.5)	1.58	0.05	1.17	0.00	0.00	0.00
CodeQwen (7B) w / Multi-Round DeepseekCoder (33B) w / Multi-Round	0.36 1.49 0.59 3.15	0.76 7.14 5.81 8.76	0.51 3.66 2.60 5.31	0.36 0.89 0.36 1.96	0.29 6.29 5.14 6.86	0.33 2.97 2.20 3.85
Mixtral-8x7B w / Multi-Round Llama-3 (70B) w / Multi-Round	2.97 3.39 0.18 1.13	3.33 4.67 3.14 7.90	3.11 3.88 1.32 3.74	2.32 2.32 0.00 0.71	2.57 3.71 2.86 7.14	2.42 2.85 1.10 3.18
GPT-3.5 w / Multi-Round GPT-40 w / Multi-Round	1.31 3.33 15.03 13.49	3.99 13.11 23.65 22.51	2.34 7.09 18.35 16.96	0.71 2.50 11.94 10.52	3.13 9.97 19.94 17.66	1.64 5.37 15.02 13.27
SheetCopilot (GPT-4)* Copilot in Excel*	16.67 23.33	10.00 15.00	14.00 20.00	-	-	-
Human Performance	75.56	65.00	71.33	66.67	55.00	62.00

Figure 3: Performance of representative models on SPREADSHEETBENCH %.

- 3 Codes
- 4 Conclusion
- 6 Motivation

- Data quality
- Data construction
- Data diversity
- Methods to address data leakage issues
- Developing a pipeline for evaluating problems using LLMs

