Секулярни пертурбации на наклоненостите и дължините на възлите. Резултати на Стокуел.

Аналогично на ексцентричните променливи обличните променливи

$$(p_0,\ldots,p_8):=p, \qquad (q_0,\ldots,q_8):=q.$$

удовлетворяват 18 ОДУ от първи ред с постоянни коефициенти

$$\dot{p} = Rq, \quad \dot{q} = -Rp$$

$$R_{js} = R_{sj} = \frac{Gm_j m_s}{2L_j^{\frac{3}{2}} L_s^{\frac{3}{2}}} B_2(a_j, a_s) = \frac{Gm_j m_s}{a_j^{\frac{3}{4}} a_s^{\frac{3}{4}}} \int_0^{2\pi} \frac{\cos \varphi}{(\frac{a_j}{a_s} + \frac{a_s}{a_j} - 2\cos\varphi)^{\frac{3}{2}}} d\varphi,$$
(1)

при $s \neq j$ и,

$$R_{ss} = -\sum_{j \neq s} \frac{Gm_j m_s}{2L_j L_s^2} B_1(a_0, a_8) = -\frac{Gm_s}{a_j^{\frac{3}{4}} a_s^{\frac{3}{4}}} \sum_{j \neq s} \frac{m_j}{\sqrt{a_j}} \int_0^{2\pi} \frac{\cos \varphi}{\left(\frac{a_j}{a_s} + \frac{a_s}{a_j} - 2\cos\varphi\right)^{\frac{3}{2}}} d\varphi.$$

Аналогично на ексцентричния случай, решението на (1) е

$$\sin i_s \cdot \cos \Theta_s = M_{s0} \cos(v_0 t + \delta_0) + M_{s1} \cos(v_1 t + \delta_1) + \dots + M_{s8} \cos(v_8 t + \delta_8)$$

$$\sin i_s \cdot \sin \Theta_s = M_{s0} \sin(v_0 t + \delta_0) + M_{s1} \sin(v_1 t + \delta_1) + \dots + M_{s8} \sin(v_8 t + \delta_8)$$

където константните M_{sj}, ν_s, δ_s зависят от началните условия.

Изключвайки Слънцето, Стокуел пресмята тези три константи за $s \ge 1$. Ако са известни координатите и масите на планетите, масата на Слънцето и при положение, че центъра на тежестта на Слънчевата система е в координатното начало, то лесно може да възстановим координатите на Слънцето. В таблиците долу са вписани резултатите на Стокуел с точност до четвъртия знак след десетичната запетая. Максималната наклоненост на s-та планета е сума от модулите на M_{sj} . Минималната наклоненост се получава от най-голямата по модул наклоненост като от нея извадим модулите на всички останали; ако полученото число е отрицателно, ще считаме, че минималната наклоненост е нула и съответната планета няма средно движение на възела. Такива планети са само Венера, Земя и Марс. Периодът Т на обиколката на възела се получава по формулата $T_s = \frac{2\pi}{\nu_{j0}}$, където долния индекс ј0 отговаря на максималната наклоненост т.е. $max M_{sj} = M_{sj0}$. С тире са означени неизвестни засега стойности.

Таблица 1

ν	δ		Меркурий	Венера	Земя
-5'', 126	21°6′26″	M_{1j}	+0,121	+0,0148	+0,0106
-6'', 592	132°40′57″	M_{2j}	+0,0283	-0,0078	-0,0063
-17'', 393	292°49′55″	M_{3j}	+0,0015	-0,0084	+0,0069
-18'', 408	252°45′8″	M_{4j}	+0,0036	-0,0224	+0,0244
-0'',661	20°31′24″	M_{5j}	+0,0014	+0,0013	+0,0013
-2'',916	135°56′10″	M_{6j}	+0,0031	+0,0018	+0,0016
-25'', 934	306°19′21″	M_{7j}	-0,0002	-0,0002	-0,0027
		M_{8j}	0,0002	0,0003	0,0001

	Mapc	Юпитер	Сатурн	Уран	Нептун
M_{1j}	+0,0021	-0,0000	+0,0000	+0,0000	+0,0021
M_{2j}	-0,0013	+0,0000	-0,0000	-0,0000	-0,0013
M_{3j}	+0,0506	-0,0000	+0,0000	+0,0000	+0,0506
M_{4j}	-0,0375	-0,0000	-0,0000	+0,0000	-0,0375
M_{5j}	+0,0012	+0,0011	-0,0011	-0,0117	+0,0012
M_{6j}	+0,0011	+0,0007	-0,0176	+0,0019	+0,0011
M_{7j}	-0,0094	-0,01569	+0,0006	+0,0000	-0,0092
M_{8j}	0,0004	0,0001	0,0002	0,0001	0,0004

Таблица 2

	Меркурий	Венера	Земя
$\sum_{s} M_{s,j} = \max(\sin i_s)$	9°10′41″	3°16′18″	3°6′0″
$\min(\sin i_s)$	4°44′27″	0	0
средно движение на възела (за година)	-5'', 126	-	-
Т – обиколка на възела	252 823 г.	-	-

Mapc	Юпитер	Сатурн	Уран	Нептун
5°56′2″	0°28′56″	1°0′39″	1°7′10″	0°47′21″
0	0°14′23″	0°47′16″	0°54′25″	0°33′43″
-	-25'', 9346	-25'', 9346	-2'',91608	-0'',66166
-	49 972 г.	49 972 г.	444 432 г.	1 958 709 г.

Цачо Рабчев kalavera@abv.bg Асен Лашков assenmath@hotmail.com