1. Consider the finite automaton M_1 and answer the following questions.

- (a) What is the start state?
- (b) What is the set of accept states?
- (c) What sequence of states does M_1 go through on input abab?
- (d) Does M_1 accept the string abab?
- (e) Does M_1 accept the empty string, ϵ ?
- (f) Define M_1 formally.
- 2. The formal description of a finite state machine M_2 is $(\{q_1, q_2, q_3, q_4, q_5\}, \{u, d\}, \delta, q_3, \{q_3\})$, where δ is given by the following table.

	u	d
q_1	q_1	q_2
q_2	q_1	q_3
q_3	q_2	q_4
q_4	q_3	q_5
q_5	q_4	q_5

Draw the state diagram of M_2 .

3. Consider the finite automaton M_3 and answer the related questions.

(a) For each of the following strings specify whether or not it is accepted/recognized by M_3 .
i. 0100
ii. 1001
iii. 0101
iv. 1
v. 11111
vi. 0101011
(b) Describe in English the language that M_3 accepts/recognizes.

- 4. Consider alphabet $\Sigma = \{0, 1\}$.
 - (a) Design a finite state machine that accepts all strings that end with 01.

(b) Design a finite state machine whose language includes only the empty string.