Predicting PlanetTerp Professor Ratings

CMSC 320 – HW 4, Spring 2025 Boubacar Sall

Problem & Motivation

PlanetTerp: student-submitted ratings of UMD professors

- ▶ Why predict ratings?
 - Help students choose courses
 - Potentially used to higher professors based on their qualities
- Challenge: Cannot use existing average ratings directly

Data Sources & Table Creation

Extracted the data from the PlanetTerp website via API:

I split the data into 3 tables to form a database schema structure

Data Cleaning

- Reviews:
- $37,401 \rightarrow 37,365$ reviews (drop duplicates)
- Fill missing course names ("unknown")
- Add review word count
- Grades:
- 71,543 rows
- Aggregate total_enrolled, graded_count, avg_gpa

- Professors:
- $13,421 \rightarrow 4,536$ professors (with 1 review)
- Compute num_courses, semesters_taught

- Final Table:
- 4,538 professors

Feature Engineering

X Feature Engineering:

- num_courses number of distinct courses taught
- num_semesters_taught semesters with recorded teaching
- review_count number of student reviews
- avg_expected_grade mapped to numeric scale
- avg_review_word_count average review length
- total_enrolled_prof total students enrolled across courses
- avg_gpa_prof average GPA from grades table

Sentiment

- Sentiment Analysis:
- Used VADER to score review text (-1 to +1)
- Aggregated average sentiment per professor

Exploratory Data Analysis

Modeling Approaches

- ***** Models Used:
- K-Nearest Neighbors (KNN)
- Random Forest
- XGBoost

- >> Why These Models?
- Balance between simplicity, power, and speed

Model Evaluation Setup

- Data Splitting:
- 70% Training Set
- 30% Test Set (held out for final evaluation)
- 🔄 Validation Strategy:
- 10-Fold Cross Validation
- Training set split into 10 folds
- Train on 9 folds, validate on 1 fold (repeated $10\times$)
- Used for hyperparameter tuning

- **©** Final Evaluation:
- After tuning, best model evaluated on full test set
- Metrics: RMSE (error), R² (variance explained)

Hyperparameter Tuning

- ☆ GridSearchCV Process:
- Defined a range of possible hyperparameters for each model
- Systematically tried all combinations across the grid
- Used 10-Fold Cross Validation to evaluate each combination
- Selected the hyperparameters that minimized RMSE on validation folds

Model Results

```
KNN → RMSE: 0.697, R²: 0.635
Random Forest → RMSE: 0.669, R²: 0.664
XGBoost → RMSE: 0.653, R²: 0.680
```

© Best Model:

• XGBoost achieved the lowest RMSE and highest R²

Interpretation:

RMSE, meaning on average its predictions were off by about 0.65 stars on a 5-star rating scale.

Most important Features

	Feature	Random Forest	Importance	XGBoost Importance
3	avg_sentiment_compound		0.829764	0.752410
1	avg_review_word_count		0.116762	0.116428
0	avg_expected_grade		0.046171	0.109970
2	avg_gpa_prof		0.007302	0.021192

Conclusions

- XGBoost achieved the best performance:
 - Average prediction error of ~0.65 stars
 - Explained 68% of variance in professor ratings ($R^2 = 0.680$)

- Key Features:
 - avg_sentiment_compound was the most important predictor
 - avg_expected_grade, avg_review_word_count, avg_gpa_prof also contributed

- Overall:
 - Combining sentiment analysis with structured data successfully improved rating predictions

Next Steps

- Enhance Sentiment Analysis:
- Fine-tune using BERT models on review text for deeper language understanding
- Feature Engineering:
 - Add course-level variables (e.g., difficulty ratings, course size)
- Deployment:
 - Build a live API/dashboard to predict ratings for new professors