

Universitatea Tehnică de Construcții București

Facultatea de Construcții Civile, Industriale și Agricole

Lucrare de disertație

Aplicații ale rețelelor neuronale artificiale în ingineria civilă

Conducătorul lucrării de disertație Prof. univ. dr. ing. Sorin Demetriu

Ing. Paul Ionescu

București 2018

Cuprins

- I. Introducere Al
- II. Rețele neuronale artificiale (ANN)
- III. Clasificare binară ANN
- IV. Regresie neliniară ANN
- V. Rețele neuronale artificiale recurente RNN
- VI. Concluzii

Abordarea clasică de validare

Procedura de cross-validare

II. Rețele neuronale artificiale

attached to

receptor

Neuronul natural

[Arizona state university]

Neuronul artificial

$$h_n = f\left(\sum_{i=0}^m x_i * w_i
ight)$$
 (activitatea neuronală)

$$f(t) = \frac{1}{1 + e^{-t}}$$
(functia de activare)

Metoda de propagare înapoi a erorii – Backpropagation

$$J(w) = MSE(w) = \frac{1}{n} \sum_{i=1}^{n} (o_i - h_i)^2 \text{ (funcția de Loss)}$$

$$K(w) = w - \eta \nabla J(w)$$
 (funcția de optimizare)

Activitatea neuronală – vizualizare grafică

III. Clasificare binară - ANN

Aplicația I - Lichefierea terenului

Previzualizare set de date:

	mag	s0	sp0	spt	ag	tau_dinamic	pfine	d50	outcome			
0	7.9	186.4	96.1	20.0	0.32	0.36	0	0.46	1			
1	7.9	130.5	81.4	10.0	0.32	0.32	5	0.28	1			
2	7.9	111.8	71.6	17.0	0.28	0.28	3	0.80	1			
3	7.9	93.2	67.7	13.0	0.28	0.25	4	0.60	1			
4	7.9	122.6	93.2	10.0	0.20	0.16	10	0.25	1			
Di	Dimensiuni set de date = (85, 9) [Goh 1993]											

Legenda

- (1) mag = M magnitudine cutremur
- (2) $s0 = \sigma_0$ efort vertical total
- (3) sp0 = σ'_0 efort vertical efectiv
- (4) spt = $(N_1)_{60}$ valoare test SPT normalizat
- (5) ag = $\frac{a}{g}$ acceleratie maxima orizontala normalizata la g
- (6) tau_dinamic = $\frac{\tau_{av}}{\sigma_0'}$ effort de forfecare dinamic echivalent la adancimea z
- (7) pfine=F(%) procentul de particule fine
- (8) d50 = D_{50} granulometria mediana a pamantului
- (9) outcome 1 = Lichefiere / 0 = Nu sa produs lichefierea solului

- 0.75

- 0.50

- 0.25

- 0.00

- -0.25

III. Clasificare binară - ANN

Aplicația I - Lichefierea terenului dintr-un amplasament

Previzualizare set de date:

	mag	s0	sp0	spt	ag	tau_dinamic	pfine	d50	outcome
0	7.9	186.4	96.1	20.0	0.32	0.36	0	0.46	1
1	7.9	130.5	81.4	10.0	0.32	0.32	5	0.28	1
2	7.9	111.8	71.6	17.0	0.28	0.28	3	0.80	1
3	7.9	93.2	67.7	13.0	0.28	0.25	4	0.60	1
4	7.9	122.6	93.2	10.0	0.20	0.16	10	0.25	1

Dimensiuni set de date = (85, 9)

Legenda

- (1) mag = M Magnitudine Richter cutremur
- (2) s0 = σ_0 Efort vertical total (kPa)
- (3) sp0 = σ_0' Efort vertical efectiv (kPa)
- (4) spt = $(N_1)_{60}$ Valoare test SPT normalizat
- (5) ag = $\frac{a}{g}$ Acceleratie maxima orizontala normalizata la g
- (6) tau_dinamic = $\frac{\tau_{av}}{\sigma_o'}$ Effort de forfecare dinamic echivalent la adancimea z
- (7) pfine=F(%) Procentul de particule fine
- (8) d50 = D_{50} Diametrul median al particulelor(mm)
- (9) outcome 1 = Lichefiere / 0 = Nu s-a produs lichefierea

$$tau_dinamic = \frac{\tau_{av}}{\sigma'_0} = 0.1 \frac{a}{g} (M - 1) \frac{\sigma_0}{\sigma'_0} (1 - 0.015z)$$

Topologia rețelei neuronale artificiale folosită

Rezultate - Aplicația 1

Mărime set de date de antrenare: 59 Mărime set de date de antrenare: 26 (30% din setul total) Din cele 26 cazuri de test au fost clasificate corect 24 (92.3%)

Sumar rezultate

	Goh	Studiu curent
Precizie pentru datele de antrenare	97%	98.3%
Precizie pentru datele de testare	92%	92.3%
Precizie generala	95%	96.5%

Aplicația 1 – Studiu parametric

Cazul particular 1:

$$M = 7.5, \ \sigma'_0 = 70kPa,$$

$$D_{50} = f(F(\%)), \frac{\tau_{av}}{\sigma'_{0}} = 0.1, \frac{a}{g} = 0.1$$

Cazul particular 2:

$$M = 7.5, \ \sigma_0' = 70kPa,$$

$$D_{50} = f(F(\%)), \frac{\tau_{av}}{\sigma'_{0}} = 0.2, \frac{a}{g} = 0.2$$

În ambele cazuri se observă relația de proporționalitate inversă între valoarea SPT și probabilitatea de lichefiere.

IV. Regresie neliniară - ANN

Aplicația II – Rezistența axială a specimenelor din beton. Studiul influentei scalării datelor de intrare

Previzualizare set de date:

	cement	slag	fly_ash	water	superplasticizer	coarse_aggregate	fine_aggregate	age	strength		
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99		
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89		
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27		
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05		
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30		
Di	Dimensiuni set de date = (1030, 9) [University of California Irvine]										

Aplicația II - Rezultate

#Epochs

#Epochs

IV. Regresie neliniară - ANN

Aplicația III – Grindă perete - forța tăietoare capabilă. Studiu parametric al topologiei rețelei

Previzualizare set de date:

	b	h	d	fc	fy	fyv	rpl	rl	rv	rh	S	apd	vtest
0	36.0	48.0	40.0	4100	67	61	0.0043	0.0293	0.0031	0.0030	11.0	1.85	1128.3
1	36.0	48.0	40.0	4100	67	61	0.0043	0.0293	0.0086	0.0030	4.0	1.85	1426.0
2	36.0	48.0	40.0	2800	65	63	0.0043	0.0293	0.0022	0.0022	10.0	1.85	1102.0
3	36.0	48.0	40.0	3000	65	63	0.0043	0.0293	0.0031	0.0030	11.0	1.85	930.0
4	36.0	48.0	40.0	4900	68	62	0.0022	0.0293	0.0031	0.0027	11.0	1.85	1096.0
Di	Dimensiuni set de date = (179, 13) [Birrcher 2009]												

Legenda

- (1) b latime grinda (in)
- (2) h inaltime grinda (in)
- (3) d inaltime utila (in)
- (4) fc rezistenta la compresiune a betonului(psi)
- (5) fy rezistenta la intindere a armaturilor longitudinale(ksi)
- (6) fyv rezistenta la intindere a armaturilor transversale(ksi)
- (7) rpl procentul armaturii longitudinale intinse
- (8) rl procentul armaturii longitudinale comprimate
- (9) rv procentul armaturii transversale verticale
- (10) rh procentul armaturii transversale orizontale
- (11) s pasul etrierilor (in)
- (12) apd a/d raportul dintre distanta de aplicare a fortei taietoare și inaltimea utila a grinzii
- (13) vtest forta taietoare maxima (include greutatea proprie)(kips)

IV. Regresie neliniară - ANN

Aplicația III – Grindă perete - forța tăietoare capabilă. Studiu parametric al topologiei rețelei

Previzualizare set de date:

	b	h	d	fc	fy	fyv	rpl	rl	rv	rh	S	apd	vtest
0	36.0	48.0	40.0	4100	67	61	0.0043	0.0293	0.0031	0.0030	11.0	1.85	1128.3
1	36.0	48.0	40.0	4100	67	61	0.0043	0.0293	0.0086	0.0030	4.0	1.85	1426.0
2	36.0	48.0	40.0	2800	65	63	0.0043	0.0293	0.0022	0.0022	10.0	1.85	1102.0
3	36.0	48.0	40.0	3000	65	63	0.0043	0.0293	0.0031	0.0030	11.0	1.85	930.0
4	36.0	48.0	40.0	4900	68	62	0.0022	0.0293	0.0031	0.0027	11.0	1.85	1096.0
Di	Dimensiuni set de date = (179, 13)											rcher	2009]

Legenda

- (1) b latime grinda (in)
- (2) h inaltime grinda (in)
- (3) d inaltime utila (in)
- (4) fc rezistenta la compresiune a betonului(psi)
- (5) fy rezistenta la intindere a armaturilor longitudinale(ksi)
- (6) fyv rezistenta la intindere a armaturilor transversale(ksi)
- (7) rpl procentul armaturii longitudinale intinse
- (8) rl procentul armaturii longitudinale comprimate
- (9) rv procentul armaturii transversale verticale
- (10) rh procentul armaturii transversale orizontale
- (11) s pasul etrierilor (in)
- (12) apd a/d raportul dintre distanta de aplicare a fortei taietoare și inaltimea utila a grinzii
- (13) vtest forta taietoare maxima (include greutatea proprie)(kips)

Schema statică a experimentului

Aplicația III – Grinda perete – Studiu topologie

Sumar rezultate

	Model	Timp antrenare	Precizie test	Nr. epoci	Total neuroni
1	(Referință)	6.9 minute	86%	1857	24
2	(1 S.a.)	9.5 minute	85%	7455	22
3	(2 S.a.)	29.9 minute	90%	21165	34
4	(3 S.a.)	6.2 minute	81%	905	51

Aplicația III – Grinda perete – Studiu topologie

Comparație precizie în funcție de numărul de neuroni

Se constată necesitatea studieri in amănunt a topologiei. Numărul ridicat de neuroni nu conduce neapărat la creșterea preciziei modelului.

Comparație precizie în funcție de perioda de antrenare

Creșterea preciziei conduce la creșterea semnificativa a timpului de antrenare.
O creștere de 1% a preciziei conduce la o extindere de 100% a timpului de antrenare.

Vizualizare grafică a ponderilor din stratul ascuns de-a lungul epocilor de antrenament

dense_1/kernel_0_1/image/0
step 1,120
Mon Jun 25 2018 21:26:03 GMT+0300 (GTB Daylight Time)

Modelul 2 - Rețea cu un singur strat ascuns

Se observă tendința de uniformizare.

Evoluția histogramei ponderilor din stratul ascuns de-a lungul epocilor de antrenament

Modificarea ponderilor este pronunțată în primele epoci de antrenament. Se constată tendința de netezire spre finalul antrenamentului.

Aplicația III - Grinda perete - Rețeaua III

Graful general de calcul

V. Rețele neuronale artificiale recurente

Exemplu topologie rețea recurentă

Algoritmul BPTT (Backpropagation through time)

V. Rețele neuronale artificiale recurente

Exemplu topologie rețea recurentă

V. Rețele neuronale artificiale recurente

Aplicația IV – Predicția vitezei de referință a vântului

Previzualizare set de date Primele 3 intrari

	YEARMODA	TEMP	WDSP	MXSPD
0	19520101	41.5	3.0	6.0
1	19520102	40.5	3.4	9.9
2	19520103	40.5	1.5	4.1

Ultimele 3 intrari

	YEARMODA	TEMP	WDSP	MXSPD
21304	20180602	68.3	3.9	7.8
21305	20180603	68.1	3.8	7.8
21306	20180604	67.9	2.5	3.9

Dimensiuni set de date initial= (21307, 4)

Legenda

TEMP = Temperatura medie zilnică (°F)

MXSPD= Viteza maximă zilnică a vântului de referință (noduri)

[NOAA - Constanta]

WDSP = Viteza medie zilnică a vântului (noduri)

Analiză exploratorie a datelor

Rezultatele antrenării modelului unidimensional

Rezultatele antrenării modelului tridimensional

Sumar indicatori statistici

Set	μ	σ	CV	Skew	Kurt	u	α
Initial	18.535	5.809	0.313	1.14	2.4	15.559	5.588
Extins - ann1	17.077	6.161	0.361	1.14	2.4	14.027	5.418
Extins - ann3	17.28	5.948	0.344	1.14	2.4	14.345	5.172

VI. Concluzii

- Utilizarea ANN este justificată doar dacă se dispun în prealabil seturi de date extinse
- Este necesară controlarea abilității de generalizare a modelului prin evitarea supramodelării datelor de intrare (overfitting) și utilizarea procedurii de cross-validare
- Pentru creșterea preciziei este de preferat scalarea datelor de intrare
- Sunt necesare studii ale topologiei. Aceasta depinde teoretic de fenomenul fizic studiat
- După un anumit prag creșterea preciziei de predicție conduce la o extindere majoră a timpului de antrenare

Contribuții personale:

- Prezentarea aspectelor teoretice
- Confirmarea unor studii de referință din sfera aplicaților inginerești
- Abordare modernă în studiul serilor de date (Celule LSTM)

Vă mulțumesc pentru atenție!

Paul Ionescu

Aplicații ale rețelelor neuronale artificiale în ingineria civilă