DEPARTMENT OF MATHEMATICS, IIT - GUWAHATI

Odd Semester of the Academic Year 2019-2020

MA 101 Mathematics I

<u>Problem Sheet 2</u>: Partial derivatives, tangent and normals, gradient, directional derivatives and chain rules etc.

Instructors: Dr. J. C. Kalita,

1. Let
$$f(x,y) = \begin{cases} \frac{x^2 - xy}{x+y} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Find $f_x(0,0)$, $f_y(0,0)$.
- (b) Find $\lim_{(x,y)\to(0,0)} f_x(x,y)$, and check whether it is equal to $f_x(0,0)$.
- 2. Let $f(x,y) = \sqrt{x^2 + y^2}$.
 - (a) Find $f_x(x,y)$ and $f_y(x,y)$ for $(x,y) \neq (0,0)$.
 - (b) Show that $f_x(0,0)$ and $f_y(0,0)$ does not exist.
- 3. Let

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Calculate $f_x(x,y)$ and $f_y(x,y)$ at all points where $(x,y) \neq (0,0)$.
- (b) Compute all first and second order partial derivatives at (0,0) if they exist.
- (c) Show that f is discontinuous at (0,0).
- 4. Find the equation of the tangent plane to the surface $z = \sqrt{4 x^2 2y^2}$ at the point (1, -1, 1).
- 5. It is geometrically evident that every plane tangent to the cone $z^2 = x^2 + y^2$ pass through the origin. Show this by the method of calculus.
- 6. Find the equations of the tangent plane and normal line to the given surface at the specified point

(a)
$$x^2 + y^2 - z^2 - 2xy + 4xz = 4$$
, $(1, 0, 1)$.

(b)
$$z + 1 = xe^y \cos z$$
, $(1, 0, 0)$.

7. Suppose you need to know the equation of the tangent plane to a surface S at the point P = (2, 1, 3). You don't have an equation for S, but you know that the curves

$$\mathbf{r}_1(t) = \langle 2+3t, 1-t^2, 3-4t+t^2 \rangle$$

$$\mathbf{r}_2(t) = \left\langle 1 + t^2, 2t^3 - 1, 2t + 1 \right\rangle$$

both lie on S. Find an equation of the tangent plane at P.

- 8. Show that the sum of the x-, y-, and z-intercepts of any tangent plane (at any point of the surface wherever it is defined) to the surface $\sqrt{x} + \sqrt{y} + \sqrt{z} = \sqrt{c}$ is a constant.
- 9. If $z = f(x, y) = x^2 + 3xy y^2$,
 - (a) write the expression for the differential dz at (x, y, z);
 - (b) if x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of Δz and dz.
- 10. Find the directional derivative of the function at the given point in the direction of the vector \mathbf{v} .

(a)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$
, $(1, 2, -2)$ $\mathbf{v} = \langle -6, 6, -3 \rangle$

(b)
$$g(x, y, z) = x \tan^{-1} \left(\frac{y}{z}\right), (1, 2, -2), \mathbf{v} = \mathbf{i} + \mathbf{j} - \mathbf{k}.$$

- 11. Find the directional derivatives of the scalar field $f(x,y) = x^3 3xy$ along the parabola $y = x^2 x + 2$ at the point (1,2).
- 12. Let $f(x,y) = \frac{x}{|x|} \sqrt{x^2 + y^2}$ if $x \neq 0$ and f(x,y) = 0 if x = 0. Show that f is continuous at (0,0) and the directional derivatives exist thereat, but it is not differentiable at (0,0).
- 13. Show that the following functions are differentiable at the respective points mentioned below:
 - (a) Let

$$f(x,y) = \begin{cases} \frac{x}{x+y} & \text{if } x+y \neq 0\\ 0 & \text{if } x+y = 0. \end{cases}$$

Show that f is differentiable at (2,1) but not differentiable at (0,0).

- (b) Show that $f(x,y) = \sqrt{x + e^y}$ is differentiable at (3,0), where x,y is such that $x + e^y \ge 0$.
- 14. Show that the following function is differentiable throughout \mathbf{R}^2 and find the maximum rate of change of $f(x,y) = 6 3x^2 y^2$ at the point (1,2) and the direction in which it occurs.
- 15. If R is the total resistance of three resistors, connected in parallel, with resistances R_1 , R_2 , R_3 , then

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.$$

The resistances are measured in ohms as $R_1 = 100\Omega$, $R_2 = 100\Omega$ and $R_3 = 200\Omega$. R_1 and R_2 are increasing at $1\Omega/s$ whereas R_3 is decreasing at $2\Omega/s$. Is R increasing or decreasing at that instant? At what rate?

16. Assume that w = f(x, y), $x = r \cos \theta$ and $y = r \sin \theta$. Assuming the existence of all the required first and second order partial derivatives of w with respect to x, y, r and θ , show that

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2}.$$

- 17. Suppose w = f(u) where $u = \frac{x^2 y^2}{x^2 + y^2}$. Assuming the existence of all the required first order partial derivatives of w and u show that $xw_x + yw_y = 0$.
- 18. **Implicit differentiation:** If $\phi(x, y, z) = 0$ defines z as an implicit function of x and y in a region R of the xy-plane, assuming the existence of all the required partial derivatives prove that $\frac{\partial z}{\partial x} = -\frac{\phi_x}{\phi_z}$ and $\frac{\partial z}{\partial y} = -\frac{\phi_y}{\phi_z}$, where $\phi_z \neq 0$. Hence find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ when $x^{\frac{2}{3}} + y^{\frac{2}{3}} + z^{\frac{2}{3}} = 1$.
- 19. Suppose that $w = \frac{1}{r} f\left(t \frac{r}{a}\right)$ and that $r = \sqrt{x^2 + y^2 + z^2}$. Assuming the existence of all the required second order partial derivatives, show that

$$\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = \frac{1}{a^2} \frac{\partial^2 w}{\partial t^2}.$$

- 20. A function f is called **homogeneous of degree** n if it satisfies the equation $f(tx, ty) = t^n f(x, y)$ for all t, where n is a positive integer and f has continuous second order partial derivatives.
 - (a) Verify that $f(x,y) = x^3 2xy^2 + 5y^3$ is homogeneous of degree 3.
 - (b) Show that if f is homogeneous of degree n, then

i.
$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf(x, y)$$

ii.
$$x^2 \frac{\partial^2 f}{\partial x^2} + 2xy \frac{\partial^2}{\partial x \partial y} + y^2 \frac{\partial^2 f}{\partial y^2} = n(n-1)f(x,y)$$

iii.
$$f_x(tx, ty) = t^{n-1} f_x(x, y)$$
.