

Learning Attributed Subgraph Matching

Yanxi Lu

Supervisor: Dr. Qing Wang

Outline

- Introduction and problem definition
- Existing methods and Motivation
- Methodology
- Experiments and Results
- Future Work

Graph

Nodes {1, 2, 3}

Enough information for real tasks?

Attributed graphs

Richer graph representations

Figure 1: Example Attributted Graph

Application of Attributed Graph

- Pattern representation in images

Figure 2: Attributed graph representation of image features^[2]

Application of Attributed Graph

Social system

Figure 3: Attributed graph representation of social system^[1]

Attributed Graph Matching

Given: 2 attributed graphs

Find: pairwise matching of the nodes across graphs

NP-complete

Figure 4: attributed graph matching example^[3]

Attributed Graph Matching

Applications

- Computer Vision
 - Object recoginition
- Medicine
 - Diagnostics
- Biology
 - Biometric identification
- NLP
 - Document matching
- Recommender System

• • •

Inexact Attributed graph Matching

Observation: exact matches don't always exist, find the best match

Figure 5: Inexact attributed graph matching example^[4].

Attributed subgraph Matching

Find best match among in the graph(both structural and attibute)

Figure 6: Crowd^[5].

Problem Definition

Given: 2 attributed graphs G and G', as well as a (query) subgraph g from G

Find: The best matching subgraph *in G'*

NP-hard Gap in existing methods

- Possible to enumerate all the candidate subgraphs, but inpractical.
- Existing approaches are all approximations

Index-based

- 1. Develop index functions for nodes to capture node information.
- 2. Apply approximation algorithms to find the optimal matching.

pros: index usually intuitive, e.g. node neighbourhood

cons: Require handcraft index function

Do not generalize well

Graph kernels

- ML kernel methods applied on graphs.
- Measures graph similarity.
- stackable
- Subgraph matching kernel, Optimal Assignment(OA) kernel

pros: many available kernels

cons: handcraft kernel function

Substructure-similarity based

- 1. Compute similarity for every pairs of substructures across graphs
- 2. Matching based on substructure similarity

pros: Can use ML to learn similarity measure

cons: Prone to error

Hard to reason about matching process

Space complexity

Our model

Purpose: To mitigate the problems in current approaches

- Use neural network to learn node representations and similarity
- considering the query subgraph as a whole

Our model

An overview

Figure 7: Model Overview. H(g) is the set of node embedding for nodes in g

Training stage

Novel idea: Train with pairs of matching subgraphs

Figure 8: Model for the training stage.

Embedding process

Graph Neural Network(GNN)

Figure 9: An illustration of 1-degree (hop) graph neural network^[6]. The network works based on the principle of message passing.

Embedding process

- Fully connected layer
 - Combine the separate node embeddings, learn two graphs jointly
- Embedding Loss
 - L_e = difference in embeddings between graphs in the training pair

- Inspired by NLP
- In sentences, words are closely correlated.
- Same for nodes in the same graph
- Novel idea: Treat graphs as sequence of nodes
- Learn the sequence
- LSTM: capture long-short term dependencies

- How to sequence the nodes?
 - random sequence

Bi-directional LSTM learns dependencies in both directions

Bi-directional LSTM(BiLSTM)

Figure 10: 1 layer Bi-directional LSTM used in the model. [7] The input is one subgraph in each pair.

- Finding the best match
 - look for closest neighbour for each node using its embedding
- Matching Loss:
 - Let g" be the best matching found,
 L_M = difference in distance matrix between query graph g and g".
- Total loss:

 $L_E + \gamma L_M$ where γ is a hyperparameter, default is 0.5.

Testing stage

Only have the query subgraph

Experiments

- Three datasets:
 - 1. Synthetic dataset
 - 2. Cora
 - 3. MovieLens
- Three early (~2010) baselines:
 - 1. TALE(index-based)
 - 2. Optimal Assignment(OA) kernel
 - 3. LG method(substructure-similarity based).
- Measure:
 - 1. Accuracy
 - 2. Precision

Synthetic Dataset

- Randomly generate 200 pairs of matching subgraphs of size 3, 4, 5 with attributes Color ∈ {R, G, B}
- Each pair obtained by randomly generating one and get the other with small modifications
- Aggregate the pairs to form the large graphs

Cora Dataset

- Classification dataset
- Entries: 2708 machine learning papers
- Each has 1433 features denoting the presence of 1433 keywords
- Class: type of paper
- Randomly extract 200 pairs of matching subgraphs of size 3, 4, 5 using a greedy approach.

MovieLens Dataset

- Dataset recording movie rating
- Entries: movies
- Each has 22 features denoting its information and rating
- Randomly extract 200 pairs of matching subgraphs of size 3, 4, 5.

Experimental Result

Result for our model on different datasets, taking average of 10 runs

Dataset	Subgraph size	Accuracy	Precision
Synthetic	3	0.61	0.70
Synthetic	4	0.57	0.70
Synthetic	5	0.50	0.62
Cora	3	0.62	0.72
Cora	4	0.52	0.68
Cora	5	0.48	0.66
MovieLens	3	0.59	0.71
MovieLens	4	0.52	0.64
MovieLens	5	0.40	0.59

Results: Ok but not exceptional

For different datasets, scalablility changes

Comparison with baselines

• Synthetic dataset: Simple attributes, Little number of nodes

Table 4.1: Accuracy comparison on the four models on the 40 instances in the syn-

Subgraph size	Our model	LG	OA kernel	TALE
3	0.61	0.52	0.49	0.75
4	0.57	0.43	0.45	0.70
5	0.50	0.29	0.38	0.63

Second among the four methods

Comparison with baselines

• Cora dataset: Very complex attributes, Large number of nodes

Table 4.2: Accuracy comparison on the four models on the 40 instances in the Cora

Subgraph size	Our model	LG	OA kernel	TALE
3	0.62	0.39	0.28	0.56
4	0.52	0.34	0.19	0.49
5	0.48	0.32	0.15	0.44

The best model in this set of experiment.

Result analysis

- For a model which introduces novel ideas, achieved moderate performance
- Performance problem-dependent, probably attributed to the loss function
- Some error may be resulted by the dataset processing step(the matching pairs found not accurate)
- Naive graph sequencing process

Future Work

- Compare with more recent baselines
- Try other models for processing sequential data
- Try embedding into other spaces
- Include edge attributes
- Involve heterogeneous graphs

Thank you!

References

- [1]: Image from: https://medium.com/@brkyataman/knowledge-graph-and-youtube-29d259fd3dc1
- [2]: Image from: A. Wong and M. You, Entropy and Distance of Random Graphs with Applications to Structural Pattern Recognition
- [3]: Image from: https://www.kissclipart.com/silhouette-person-thinking-clipart-silhouette-clip-10cl2p/
- [4]: Image from: https://www.slideshare.net/mobile/raul_A/attributed-graph-matching-of-planar-graphs
- [5]: Image from: https://huaban.com/pins/1112150236/
- [6]. Image from: Jun Wu, Jingrui He, Jiejun Xu, https://www.kdd.org/kdd2019/
- [7]. Image from: https://www.sohu.com/a/283978749_717210