Solutions to homework 11:

- 1. Determine if the following sets are countable, and prove your answers.
 - (a) The set of all functions $f: \{0,1\} \to \mathbb{N}$.
 - Let $G: S \to \mathbb{N} \times \mathbb{N}$ and be defined as $G(f) = \{f(0) = a, f(1) = b : (a, b) \in \mathbb{N} \times \mathbb{N}\}.$
 - Let $f, h \in S$ be functions such that G(f) = G(h) then $G(f) = \{f(0) = a, f(1) = b : (a, b) \in \mathbb{N} \times \mathbb{N}\} = \{h(0) = a, h(1) = b : (a, b) \in \mathbb{N} \times \mathbb{N}\} = G(h)$.
 - This means that both f, h have the same inputs for outputs a, b hence f = h due to the fact that the only possible inputs are 0 and 1.
 - Which shows that f is an injection.
 - Now let $(c,d) \in \mathbb{N} \times \mathbb{N}$, and let's define a function p so that p(0) = c, p(1) = d.
 - Therefore by definition, G(p) = (c, d) showing us that $p \in S$ this a surjection.
 - Hence as G forms a bijection with $|S| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$ and S is countable.
 - (b) The set of all functions $f: \mathbb{N} \to \{0, 1\}$.
 - Let $G: S \to \mathcal{P}(\mathbb{N})$ and be defined as $G(f) = \{n: f(n) = 1\}$.
 - Let $f, h \in S$ be functions such that G(f) = G(h).
 - This implies that $G(f) = \{n : f(n) = 1\} = \{n : h(n) = 1\} = G(h)$.
 - This means that both f, h have outputs 1 and 0 for the same inputs, therefore showing us that f = h.
 - Therefore G is an injection.
 - Now let $X \in \mathcal{P}(\mathbb{N})$ thus $X \subseteq \mathbb{N}$ and define a function $g : \mathbb{N} \to \{0,1\}$ as g(x) = 1 when $x \in X$ otherwise g(x) = 0.
 - Hence by definition, G(g) = X showing us that G is a surjection.
 - Therefore G a bijection showing us that $|S| = |\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$. Thus S is uncountable.
- 2. Prove the following statements
 - (a) If A is countable but B is uncountable, then B A is uncountable.
 - Let's assume, to the contrary, that B-A is countable.
 - Then $(B-A) \cup A = (A \cup B)$ is countable.
 - Therefore B is countable, however this contradicts with out assumption.
 - Hence, B A is uncountable.
 - (b) Between any real numbers a, b such that a < b there are uncountably many irrationals.
 - We can see that we can represent this set of numbers as $S = \{x : a < x < b, x \in \mathbb{I}\}.$
 - We can rephrase this expression to $S = \mathbb{R} \{x : a < x < b, x \in \mathbb{Q}\}.$
 - We know that the set \mathbb{R} is uncountable and \mathbb{Q} is countable.

- Therefore, any subset of \mathbb{Q} is countable hence $\{x: a < x < b, x \in \mathbb{Q}\}$ is therefore countable.
- The original set $S = \mathbb{R} \{x : a < x < b, x \in \mathbb{Q}\}$ is therefore uncountable.
- 3. Prove that \mathbb{R} and $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$ are equinumerous.
 - Let's consider a function $f: \mathbb{R} \to \mathbb{R}^+$.
 - We define the function $f(x) = e^x$ for $x \in \mathbb{R}$.
 - Let $a, b \in \mathbb{R}$ such that f(a) = f(b). Then

$$e^a = e^b \tag{1}$$

$$e^a - e^b = 0 (2)$$

$$e^b \cdot (e^{a-b} - 1) = 0 \tag{3}$$

- We know that $\forall n \in \mathbb{R}, e^n \geq 0$. Hence a b = 0 showing that a = b.
- Thus f forms an injection and $|\mathbb{R}| \leq |\mathbb{R}^+|$.
- Now let's consider a function $g: \mathbb{R}^+ \to \mathbb{R}$ and this function is defined as g(x) = x for $x \in \mathbb{R}$.
- Now let $c, d \in \mathbb{R}^+$ so that g(c) = g(d).
- Then, g(c) = c = d = g(d) and thus shows us that g forms an injection.
- Hence, $|\mathbb{R}^+| \leq |\mathbb{R}|$. And as we proved from earlier that $|\mathbb{R}| \leq |\mathbb{R}^+|$ by CSB \mathbb{R} and \mathbb{R}^+ are equinumerous.
- 4. Let S, T be sets. Prove the following
 - (a) If $|S| \leq |T|$ then $|\mathcal{P}(S)| \leq |\mathcal{P}(T)|$.
 - Let $f: S \to T$ be a well-defined function that is an injection.
 - Now let $q: \mathcal{P}(S) \to \mathcal{P}(T)$ be defined as $q(f) = \{f(A) = B : A \subseteq S, B \subseteq T\}$.
 - Let $P, Q \in \mathcal{P}(S), X \in \mathcal{P}(T)$ such that g(P) = g(Q) = X.
 - Then this implies that $g(P) = \{f(P) = X : P \subseteq S, X \subseteq T\} = \{f(Q) = X : Q \subseteq S, X \subseteq T\} = g(Q).$
 - Hence by definition P = Q showing that g is an injection as we know that f is also an injection therefore $|\mathcal{P}(S)| \leq |\mathcal{P}(T)|$.
 - (b) If |S| = |T| then $|\mathcal{P}(S)| = |\mathcal{P}(T)|$.
 - Let $h: S \to T$ form a bijection.
 - Now let $g: \mathcal{P}(S) \to \mathcal{P}(T)$ be defined as $g(h) = \{h(A) = B : A \subseteq S, B \subseteq T\}$.
 - As we proved in (a) we know that g forms an injection.
 - Now let's prove that q forms a surjection.
 - Let $X \subseteq S, Y \subseteq T$ such that f(X) = Y.
 - Then by definition $g(f) = \{f(X) = Y : X \subseteq S, Y \subseteq T\}.$

- Hence is a surjection as required.
- Therefore, g is a bijection hence $|\mathcal{P}(S)| = |\mathcal{P}(T)|$..
- 5. Show that there exist infinitely many pairs of distinct natural numbers a, b such that $17^a 17^b$ is divisible by 2022.
 - Consider a sequence of 2023 numbers $17^1, 17^2, 17^3, \dots, 17^{2023}$.
 - There are at most 2022 remainders when divided by 2022.
 - However there exists 2023 numbers in the sequence.
 - Thus there must exists two numbers with the same remainder when divided by 2022.
 - Then $\exists a,b \in \mathbb{N}$ where $17^a = 2022k + r, 17^b = 2022\ell + r$ where $r \in \mathbb{N}$ and $k,\ell \in \mathbb{Z}, k,\ell \geq 0$.

$$17^b - 17^a = (2022\ell + r) - (2022k + r) \tag{4}$$

$$=2022(\ell-k)\tag{5}$$

- Hence, $2022 \mid (17^b 17^a)$.
- In the previous example, we considered the sequence with the interval $[17^1, 17^{2023}]$.
- However this relation will still be satisfied for other intervals too.
- To generalize, there will always exist two natural numbers a, b where $2022 \mid (17^b 17^a)$ for all intervals $[17^n, 17^{n+2022}], n \in \mathbb{N}$.
- We know that \mathbb{N} is an infinite set hence there are infinitely many pairs that exist.
- 6. Prove that $(-\infty, -\sqrt{29})$ and \mathbb{R} are equinumerous by constructing an explicit bijection.
 - Let $f:(-\infty,-\sqrt{29})\to\mathbb{R}$ be defined as $f(x)=\log(-x-\sqrt{29})$
 - And also let $g: \mathbb{R} \to (-\infty, -\sqrt{29})$ be defined as $g(y) = -e^y \sqrt{29}$.
 - Then

$$f(g(y)) = \log(-(-e^y - \sqrt{29}) - \sqrt{29}) \tag{6}$$

$$= \log(e^y) \tag{7}$$

$$=y$$
 (8)

$$g(f(x)) = -e^{\log(-x - \sqrt{29})} - \sqrt{29}$$
(9)

$$= -(-x - \sqrt{29}) - \sqrt{29} \tag{10}$$

$$=x\tag{11}$$

- We can see that $f \circ g$ and $g \circ f$ are both identity functions.
- Thus f has a two side inverse which is g.
- Therefore $|(-\infty, -\sqrt{29})| = |\mathbb{R}|$. Thus equinumerous as required.

- 7. Prove or disprove: for any non-empty sets A, B, C if $|A \times B| = |A \times C|$ then |B| = |C|.
 - First, let $f: |A \times B| \to |A \times C|$ be defined as $f((a_k, b_n)) = \{(a_k, c_n) : k, n \in \mathbb{N}\}.$
 - We know that $|A \times B| = |A \times C|$ hence we can see that f is a bijection.
 - Now let $g: B \to C$ be defined as $g(b_k) = \{c_k : f((a_1, b_k)) = (a_1, c_k)\}.$
 - Let's prove whether g is a bijection.
 - Let b_i, b_j such that $g(b_i) = g(b_j)$, then $g(b_i) = \{c_i : f((a_1, b_i)) = (a_1, c_i)\} = \{c_j : f((a_1, b_j)) = (a_1, c_j)\} = g(b_j)$.
 - We know that f is a bijection hence $c_i = c_j$, therefore showing us that g is an injection.
 - Now let $c_{\ell} \in C$, since f is a surjection $\exists (a_1, b_{\ell}) \in A \times B$ such that $f((a_1, b_{\ell})) = (a_1, c_{\ell})$.
 - Therefore, by the definition of $g \exists b_k \in B$ where $g(b_k) = c_k$.
 - Thus, g is also a surjection showing us that g is a bijection.
 - Since we proved that g is a bijection, |B| = |C|.
- 8. Let A be a finite set and $f: \mathbb{R} \to A$. Show that there exists some $a \in A$ such that $f^{-1}(\{a\})$ is uncountable.
 - Let's assume, to the contrary, that $f^{-1}(\{a\})$ is countable.
 - Then we \mathbb{R} can be expressed with $f^{-1}(\{a\})$ as

$$\mathbb{R} = \bigcup_{a \in A} f^{-1}(\{a\}), \forall a \in A.$$

- As we know that A is a finite set, then \mathbb{R} is the union of a finite amount of sets, therefore shows us that \mathbb{R} is finite.
- However, this contradicts with the fact that \mathbb{R} is an infinite set.
- Hence, by contradiction we can declare that $f^{-1}(\{a\})$ is uncountable.