5.3 回归与分类初步

前面我们已经看到过不少例子,实际问题调用算法,总是需要先将"数据"转化为向量。分类问题从算法的角度来看,主要着眼点在于如何将已经完成**向量化**的"数据点"(一般是高维的)进行归类操作。如前一节所讲的聚类方法其实是一些很有效的分类算法。

一、最小二乘拟合与线性回归

最小二乘拟合

多项式拟合:找出一组多项式系数 $a_i(i=0,1,...,n)$,使得多项式

$$Q_n(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$$

能够较好地拟合原始数据(注意与插值法的区别)

例1: 在[-1,1]上比较不同次数多项式拟合Runge函数。

```
In [3]: p3 = polyfit(x, y, 3); y3 = polyval(p3, xx);
    p5 = polyfit(x, y, 5); y5 = polyval(p5, xx);
    p8 = polyfit(x, y, 8); y8 = polyval(p8, xx);
    p10= polyfit(x, y, 10); y10= polyval(p10, xx);
```

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

```
In [5]: plot(xx,yy,'k-',xx,y3,'m:',xx,y5,'b-.',xx,y8,'r--',xx,y10,'g:');
legend('accurate','p3','p5','p8','p10');
print -dpng polyfitdiff.png %% save the figure in a .png file
```


注:最小二乘拟合的数值实现,可以用正规矩阵方法(在科学计算或数值分析中应已详细介绍过)、QR分解法(用 Householder变换和Givens变换可以节省计算量)等类型丰富的技巧,本课程中我们不予详细展开,有兴趣的读者可以参考更多数值分析的教材。

例2:数据拟合:非线性模型。

某人内喝下2瓶啤酒后,每隔一定时间(h)测得血液酒精含量(mg/100ml)如下

时间 0.25 0.5 0.75 1 1.5 2 酒精 30 68 75 82 82 77 时间 2.5 3 3.5 4 4.5 5 酒精 68 68 51 50 41 58 时间 7 9 6 8 10 11 酒精 38 35 28 25 18 15 时间 12 14 15 13 16 酒精 7 12 10 4

 $Loading\ [MathJax]/jax/element/mml/optable/General Punctuation.js$

3. classification

试用如下函数拟合得到a, b, c:

$$\psi(t) = at^b e^{ct}$$

解: 录入数据

```
In [8]: t = [0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15
16];
h = [30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7
4];
```

对拟合函数做对数变换

$$\ln\psi(t) = \ln a + b \ln t + ct$$

```
In [10]: h1 = log(h); f = inline('x(1) + x(2).*log(t) + x(3).*t','x','t'); % 定义拟合模型
```

调用线性拟合方法计算参数lna, b 和 c.

```
In [1]: pkg load optim
In [13]: [x,r] = lsqcurvefit(f, [1,0.5,-0.5], t, h1);
```

拟合结果可视化:

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

```
In [16]: tt = 0.2:0.1:16; hh = feval(f, x, tt);
plot(tt, exp(hh), 'b-',t, h, '*'); grid on; axis([0 16 0 100]);
```


线性回归 (模型)

回归 (Regession) 模型

• 应用广泛, 如: 预测房价、销售额、气温等输出值为连续值的问题

回归模型输出的是连续值

• 多元线性回归:

$$y = \beta_0 + \beta_1 \mathbf{x}_1 + \dots + \beta_n \mathbf{x}_m + \varepsilon$$

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

第4页 共23页 20/07/10 10:44

然而拟合只需给出"拟合曲线":

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

第5页 共23页 20/07/10 10:44

Octave 线性回归分析

- x, y~分别表示自变量和因变量,每列表示一个向量
- α~表示显著性水平
- b, bint~是回归系数的估计值和置信区间
- r, rint~是残量的估计值和置信区间
- stats~含四个统计量,用于判断回归模型是否可信,依次为:
 - 决定系数\$R^2\$ (刻画自变量引起的因变量变化程度)
 - F值
 - F分布大于F值的概率\$p\$,\alert{当\$p<\alpha\$时回归模型有效}
 - 剩余方差\$s^2\$

In []:	
In []:	

例3: carsmallm是一个关于小型汽车的重量(Weight)、功率(Horsepower)与油耗(MPG)之间的统计数据。请给出三者之间的关系

```
In [9]: load carsmallm; %% this dataset is borrow from matlab, by executing load carsmall, and then save carsmallm. please make sure that you can find carsmallm.dat in the current folder x1 = Weight; x2 = Horsepower; y = MPG; %% check out these data

In []: x = [ones(size(x1)) x1 x2 x1.*x2]; % 猜测 y 与 x1 和 x2 是何种函数关系 (即Model, 拟合模型)
```

In [10]: [b, bint, r, rint, stats] = regress(y, x); % 执行回归
Loading[MathJax]/jax/element/mml/optable/GeneralPunctuation.js

In [13]: scatter3(x1,x2,y,'filled'); axis tight % plot the original data

 $Loading\ [MathJax]/jax/element/mml/optable/General Punctuation.js$

第7页 共23页 20/07/10 10:44

```
In [14]: [xx,yy] = meshgrid(min(x1):100:max(x1), min(x2):10:max(x2));
zz = b(1) + b(2)*xx + b(3)*yy + b(4)*xx.*yy;
mesh(xx,yy,zz); view(50,10); % plot the regression data
xlabel('Weight'); ylabel('Horsepower'); zlabel('MPG');
hold on; scatter3(x1,x2,y,'filled'); hold off;
```



```
In [15]: figure; rcoplot(r, rint); % plot the residual, not implemented in Octav
e, a sample from matlab see blow
```

warning: the 'rcoplot' function belongs to the statistics package fro $\ensuremath{\text{m}}$ Octave

Forge but has not yet been implemented.

Please read http://www.octave.org/missing.html to learn how you can contribute missing functionality.

error: 'rcoplot' undefined near line 1 column 9

Inline plot failed, consider trying another graphics toolkit
error: print: no axes object in figure to print
error: called from
 _make_figures>safe_print at line 125 column 7
 make figures at line 49 column 13

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Residual Case Order Plot

练习1: 试着去掉"异常数据"后再实施回归,以减少Residuals。给出你的分析结果。

练习2: 有一些列关于血压与年龄、体重指数、吸烟习惯的关系的调查数据,如下表所示

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

血压	年 龄	体 重	吸 烟	血压	年 龄	体 重	吸 烟	血压	年 龄	体 重	吸
144	39	24.2	0	162	64	28.0	1	136	36	25.0	0
215	47	31.1	1	150	56	25.8	0	142	50	26.2	1
138	45	22.6	0	140	59	27.3	0	120	39	23.5	0
145	47	24.0	1	110	34	20.1	0	120	21	20.3	0
162	65	25.9	1	128	42	21.7	0	160	44	27.1	1
142	46	25.1	0	130	48	22.2	1	158	53	28.6	1
170	67	29.5	1	135	45	27.4	0	144	63	28.3	0
124	42	19.7	0	114	18	18.8	0	130	29	22.0	1
158	67	27.2	1	116	20	22.6	0	125	25	25.3	0
154	56	19.3	0	124	19	21.5	0	175	69	27.4	1

试建立血压与其他各因素之间的模型,并做回归分析。分情形

- 只考虑年龄因素
- 考虑年龄、体重、吸烟等三个因素

并根据得到的结果评价数据并改进模型。

Octave 非线性回归分析

• 回归模型

$$y = f(\mathbf{x}, \beta), \quad \mathbf{x} = (x_1, x_2, ..., x_m), \beta = (\beta_1, \beta_2, ..., \beta_m)$$

• Octave函数

 $Loading\ [MathJax]/jax/element/mml/optable/General Punctuation.js$

```
In [17]: nlinfit
```

error: Invalid call to nlinfit. Correct usage is:

- -- Function File: nlinfit (X, Y, MODELFUN, BETA0)
- -- Function File: nlinfit (X, Y, MODELFUN, BETAO, OPTIONS)
- -- Function File: nlinfit (..., NAME, VALUE)
- -- Function File: [BETA, R, J, COVB, MSE] = nlinfit (...)

Additional help for built-in functions and operators is available in the online version of the manual. Use the command 'doc <topic>' to search the manual index.

Help and information about Octave is also available on the WWW at http://www.octave.org and via the help@octave.org mailing list.

其中,

- X, Y含义同线性回归函数
- 'MODELFUN'是模型的函数 (以M-函数形式给出)
- BETA、BETAO分别是回归系数的返回值和初始值
- R是残差
- J是用于估计预测误差的Jacobi矩阵

 $Loading\ [MathJax]/jax/element/mml/optable/General Punctuation.js$

```
In [41]: x = [27.1 30.2 24.0 33.4 24.9 24.3 30.9 27.8 29.4 24.8 36.5 29.1]';
y = [1.34 1.49 1.14 1.57 1.19 1.17 1.39 1.21 1.26 1.06 1.64 1.44]';
plot(x,y,'ro'); grid on; axis tight;
```



```
In [37]: function y = myfun(b,x)
y = b(1)*x./(b(2) + x); % change to other funciton
end
```

```
In [38]: b0 = [143, 0.03];
   [b,R,J] = nlinfit(x,y,'myfun',b0);
   error: f(0.03,_): subscripts must be either integers 1 to (2^31)-1 or logicals
```

error: called from
__nonlin_residmin__ at line 585 column 9
nonlin_curvefit at line 83 column 18
nlinfit at line 169 column 18

In []: 可用于分析输出结果的辅助函数:

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

```
In [40]: nlparci % bi = nlparci(b,R,J)
```

warning: the 'nlparci' function belongs to the statistics package fro ${\tt m}$ Octave

Forge but has not yet been implemented.

Please read http://www.octave.org/missing.html to learn how you can contribute missing functionality.

error: 'nlparci' undefined near line 1 column 1

尽管目前它们在Octave中尚未实现,但是在matlab中调用的格式是一致的,我们给出分析的实例及其结果。

```
In [19]: nlintool % nlintool(x,y,'myfun', b);
```

warning: the 'nlintool' function belongs to the statistics package fr om Octave

Forge but has not yet been implemented.

Please read http://www.octave.org/missing.html to learn how you can contribute missing functionality.

error: 'nlintool' undefined near line 1 column 1

In []:

二、支持向量机

 $Loading\ [MathJax]/jax/element/mml/optable/General Punctuation.js$

在机器学习领域中,支持向量机(Support Vector Machine, SVM) 根据其统计学习理论方面的数学基础,提供了一类有效的分类方法,线性分类和非线性分类都支持。SVM已经被广泛地应用于(有监督)分类问题、回归分析以及特征降维中。 这里我们以点集的分类问题为例:

在超平面 $w \cdot x + b = 0$ 上方的我们定义为y = 1,在超平面 $w \cdot x + b = 0$ 下方的我们定义为y = -1。可以看出满足这个条件的超平面并不止一个!

问:哪个超平面用于分类 (泛化能力) 是最好的呢?

方案 1:最小二乘法(即感知机模型):
$$\min_{w,b} \sum_{x_i \in M} -y^i (w \cdot x^i + b)$$

观察:

- 可以找到多个可以分类的超平面将数据分开,并且优化时希望所有的点都被准确分类
- 实际上,离超平面很远的点已经被正确分类,它们对超平面的位置没有影响!
- 那些离超平面很近的点很容易被误分类!

 $Loading\ [MathJax]/jax/element/mml/optable/General Punctuation.js$

方案2: 最小距离最大化(SVM的几何意义): 即将散点到超平面的间隔 \gamma = \min_{x^i\in M} \frac{|y^i(w\cdot x^i + b)|}{| w \|_2} 最大化! 即支持向量机,几何关系如下图所示:

此外,SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的的学习策略就是间隔最大化,可形式化为一个求解凸二次规划的问题,也等价于正则化的合页损失函数的最小化问题。SVM的的学习算法就是求解凸二次规划的最优化算法。

 $Loading\ [MathJax]/jax/element/mml/optable/General Punctuation.js$

SVM的程序实现: LIBSVM - 编译安装!

LIBSVM是一个由台湾大学林智仁(Lin Chih-Jen)教授等开发的SVM模式识别与回归的软件包

(https://www.csie.ntu.edu.tw/~cjlin/libsvm/) ,使用简单,功能强大。matlab也自带了svm实现函数,但自带的svm实现函数仅支持分类问题,不支持回归问题;而libsvm不仅支持分类问题,亦支持回归问题,参数可调节,功能更强大。源码的下载:https://github.com/cjlin1/libsvm/(https://github.com/cjlin1/libsvm/(https://github.com/cjlin1/libsvm/

这里svmtrain事实上是由libsvm实现的核心算法,同时libsvm提供了matlab,python, R,...等语言的接口。octave 经过接口适当的修正和调试也可以享用matlab实现的接口。 为简便起见,我们假设用户已经安装了libsvm的matlab接口,更详细的安装方式,请参阅libsvm的安装方法。

- Windows + matlab: https://blog.csdn.net/qq_31781741/article/details/82666861 (https://blog.csdn.net/qq_31781741/article/details/82666861)
- Linux + matlab: https://blog.csdn.net/johnnyconstantine/article/details/45936933 (https://blog.csdn.net/johnnyconstantine/article/details/45936933)

两个步骤:训练建模——>模型预测

分类 model = svmtrain(trainlabel, traindata, '-s 0 -t 2 -c 1.2 -g 2.8');

回归 model = symtrain(trainlabel, traindata, '-s 3 -t 2 -c 2.2 -g 2.8 -p 0.01');

参数说明:

-t 核函数类型:核函数设置类型(默认2) 0 – 线性: u'v 1 – 多项式: (ru'v + coef0)^degree 2 – RBF函数: exp(-r|u-v|^2) 3 –sigmoid: tanh(ru'v + coef0)

-g r(gama): 核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)

-c cost:设置C-SVC, e-SVR和v-SVR的参数(损失函数)(默认1),惩罚系数

-n nu:设置v-SVC,一类SVM和v-SVR的参数(默认0.5)

-p p: 设置e -SVR 中损失函数p的值(默认0.1)

-d degree:核函数中的degree设置(针对多项式核函数)(默认3)

-wi weight: 设置第几类的参数C为weight*C(C-SVC中的C)(默认1)

-v n: n-fold交互检验模式, n为fold的个数, 必须大于等于2

案例一、鹫尾花分类

 $Loading\ [MathJax]/jax/element/mml/optable/General Punctuation.js$

鹫尾花数据集共分为3类花(前50个样本为一类,中间50个样本为一类,后50个样本为一类。这里我们只使用了前100个数据。其中,每组前40个用作训练,后10个用作测试。因而,训练样本80个,测试样本20个。

```
In [1]: clear
 In [1]: data = load('../data/iris.dat');
        data = data(:, 1:2); % 为了svmtrain能使用'showplot',true, 此处使用数据的前
        data = data(1:100, :); % 由于symtrain只能处理二分类问题,因而此处使用前100个数
        label = [ones(50, 1); zeros(50, 1)];
                                              * 每组前40个用于训练
 In [2]: | trainData = data(1:40, :);
        * 每组后10个用于测试
        testData = data(41:50, :);
                                            * 每组后10个用于测试
        testData = [testData; data(91:100, :)];
                                             % 每组前40个用于训练
        trainLabel = label(1:40, :);
        trainLabel = [trainLabel; label(51:90, :)]; % 每组前40个用于训练
                                             。每组后10个用于测试
        testLabel = label(41:50, :);
        testLabel = [testLabel; label(91:100, :)]; % 每组后10个用于测试
 In [3]: | % 将距离和类别传入svm中,trainLabel为标签,即类别,trainData为特征
        svmModel = svmtrain(trainLabel, trainData, '-s 0 -t 0');
        optimization finished, #iter = 12
        nu = 0.183712
        obj = -9.349088, rho = -3.920516
        nSV = 16, nBSV = 13
        Total nSV = 16
 In [4]: predict label = sympredict(testLabel, testData, symModel);
        Accuracy = 95\% (19/20) (classification)
 In [ ]:
     请尝试用更多的数据(测试集数量多于100?其他分类问题?),调整训练参数(参考libsvm的文档获
得更多的分类参数设计技巧),以获得95%以上的准确率?
 In [ ]:
```

案例二、人脸分类/识别

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

这是一个网络上流传广泛的人脸识别实现的入门程序! matlab版本代码的介绍可以参考这里: (Part I) https://blog.csdn.net/misscoder/article/details/51094205 (https://blog.csdn.net/misscoder/article/details/26747269 (https://blog.csdn.net/light_lj/article/details/26747269) (https://blog.csdn.net/light_lj/article/details/26747269)

• 数据: ORL人脸库, 40人, 每人10幅图, 图像大小为112*92像素

• 数据预处理: 主成分分析法 (PCA) , 主要是降维与规格化

• 分类器: 支持向量机 (SVM)

人脸识别算法步骤:

- 1、读取训练数据集;
- 2、主成分分析法降维并去除数据之间的相关性;
- 3、数据规格化;
- 4、SVM训练(选取径向基和函数);
- 5、读取测试数据、降维、规格化;
- 6、用步骤4产生的分类函数进行分类(多分类问题,采用投票策略);
- 7、计算正确率。

代码在Octave环境下阅读和展示,文件目录:

【1】预处理程序:

- ReadFace.m 读入人脸图像
- fastPCA.m 降维预处理成数十维
- scaling.m 归一化图像数值
- visualize.m 可视化特征人脸

【2】利用二分类SVM实现多分类:训练和推断

- multiSVMtrain.m
- multiSVM.m
- 【3】main.m 主程序: 可以再octave命令窗口逐句执行解释巩固走过程

Remark: 该算例已经被很多人进行了改写,并辅助以其他语言形式,比如用java的改进尝试,可以参考: https://blog.csdn.net/mate_ge/article/details/47316475 (https://blog.csdn.net/mate_ge/article/details/473164

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Remark: libsym训练函数train和预测函数predict的参数函义:

• https://www.cnblogs.com/LuffySir/p/6060694.html (https://www.cnblogs.com/LuffySir/p/6060694.html)

练习:

- 1. 编译libsvm,将所生成的四个.mex文件放到当前工作目录下。
- 2. 调整PCA降维参数和svm的参数,看是否能进一步提高准确率?

Optional:

- YaleB (http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/Yale%20Face%20Database.htm) 人脸数据库是另一个早期的小型人脸识别数据库,附件中给的YaleB_32x32.mat是被调整为分辨率32x32的简单数据(如果分类准确率较差,请下载原始大图并PCA降维后再做),请尝试用这个数据重做上述试验,给出你的结果。
- 2. 探索更高效的基于SVM的多分类方法

In []:	
In []:	

三、分类算法的要点讨论

请注意:以下要点还需不断补充,请同学们进一步补充你认为对于分类模型与算法比较重要的点:

1.代价函数的选择

选择不同的代价函数,对于分类问题的效果是有较大影响的。让我们简要回顾以下最小二乘线性回归模型的解法:

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

求解线性回归模型 $Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + e_i$

1. 代价函数

$$Q = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)^2$$

2. 极值必要条件(一阶最优性条件)

$$\begin{cases} \frac{\partial Q}{\partial \hat{\beta}_0} = 2\sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)(-1) = \mathbf{0} \\ \frac{\partial Q}{\partial \hat{\beta}_1} = 2\sum_{i=1}^n (Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)(-X_i) = \mathbf{0} \end{cases}$$

3. 求得最优解

$$\hat{\beta}_{1} = \frac{n \sum X_{i} Y_{i} - \sum X_{i} \sum Y_{i}}{n \sum X_{i}^{2} - (\sum X_{i})^{2}}$$

$$\hat{\beta}_{0} = \frac{\sum X_{i}^{2} \sum Y_{i} - \sum X_{i} \sum X_{i} Y_{i}}{n \sum X_{i}^{2} - (\sum X_{i})^{2}}$$

如果将代价函数的形式做不同的选择,那么所得最优解的表达式就会有所不同(往往是不容易解析计算得到)。 拟合问题是一个"超定"问题,解往往是不唯一的(这里暂且不讨论模型解的存在性问题),往往需要通过试验不同的代价函数以获得最满意的分类效果。

数学模型的目的在于或是模拟黑箱的工作原理,或是求得一个可用的解。为此,需要增加一些"条件"来限定哪一个解是"最优的":

- 经验风险最小化 (最小二乘法)
- 结构风险最小化 (岭回归)
- 最大似然估计 (MSE)
- 最大后验估计 (MAP)

其他还有很多类型的代价函数。在深度学习领域,如果在使用深度学习库pytorch/tensorflow或者著名的机器学习库scikit-learn的时候,会得到文档所提供的大约十几种不同的代价函数可供日常使用。感兴趣的读者可以参阅相关材料获取这些信息。

Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

In []:		
---------	--	--

2.不同的模型求解方法

在机器学习中,模型的求解方法也被称为"训练方法",理由是任一模型往往被视为某种"机器"(如著名的"支持向量机")。从数值算法的观点来看,只是针对不确定性问题的不同求解方法将会导致不一样的收敛点!我们能找到一个或多个这样的收敛点,可能的化,去分析收敛的可能性或某种条件。

机器学习 N 大算法!!

In []:						
In []:						
		22 22 22 23 23 24 24 24 25 26 27 27 27 28 27 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28		分类结果会有所不同 ≥的可计算指标	,这是由问题	题本身的不适定性
VIV 9CHX 1.0	יור , צאנייו אל נילי	, (1 <u>194 ユー</u> 〜2) (公本名), し.)を (шј <u>=</u> #/Д/0/			

In []:	
In []:	

3.混淆矩阵 (Confusion Matrix)

是常用的度量分类算法准确性的指标,也被称为误差矩阵。以二分类为例,模型最终输出判断样本的结果是 0(negative)或1(positive)。这样,就能得到这样四个基础指标:

- 真实值是positive,模型认为是positive的数量 (True Positive=TP)
- 真实值是positive,模型认为是negative的数量(False Negative=FN):这就是统计学上的第二类错误(Type II Error)
- 真实值是negative,模型认为是positive的数量(False Positive=FP):这就是统计学上的第一类错误(Type I Error)
- 真实值是negative,模型认为是negative的数量 (True Negative=TN)

 $Loading\ [MathJax]/jax/element/mml/optable/General Punctuation.js$

将这四个指标一起呈现在表格中,就能得到如下这样一个矩阵,我们称它为混淆矩阵

細胞	矩阵	真实值		
ik/fi	THE PERSON NAMED IN COLUMN TO SERVICE AND ADMINISTRATION OF THE PE	Positive	Negative	
3东州/士	Positive	TP	FP Type I	
预测值	Negative	FN Type II	TN	

预测性分类模型,肯定是希望越准越好。那么,对应到混淆矩阵中,那肯定是希望TP与TN的数量大,而FP与FN的数量小。所以当我们得到了模型的混淆矩阵后,就需要去看有多少观测值在第二、四象限对应的位置,这里的数值越多越好;反之,在第一、三象限对应位置出现的观测值肯定是越少越好。

利用上述指标,可以计算一些误差指标,如下图所示:

	公式	意义
准确率 ACC	$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$	分类模型所有判断正确的结果占总观测值的比重
精确率 PPV	$Precision = \frac{TP}{TP + FP}$	在模型预测是Positive的所有结果中,模型预测对的比重
灵敏度 TPR	$Sensitivity = Recall = \frac{TP}{TP + FN}$	在真实值是Positive的所有结果中,模型预测对的比重
特异度 TNR	Specificity = $\frac{TN}{TN + FP}$	在真实值是Negative的所有结果中,模型预测对的比重 https://blog.csdn.net/Orange_Spotty_Cat

其中,灵敏度 (Sensitivity) 也被称为: 召回率 (Recall) 。具体的计算例子,参考这里: https://blog.csdn.net/weixin_42462804/article/details/100015334 (https://blog.csdn.net/weixin_42462804/article/details/100015334)

此外,还有其他指标,如多分类问题的混淆矩阵、ROC曲线和AUC面积等,可以参考这里: https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839) 获得一些例子

In []:

4. 欠拟合与过拟合现象

 $Loading \ [MathJax]/jax/element/mml/optable/General Punctuation.js$

- 模型在训练集上错误率很低,但是在未知数据上错误率很高的现象。
- 从模型的角度来看,一般认为是所选择的模型相对于训练数据而言"过于复杂"。简单来说是因训练数据少和噪声等原因造成的

• 理想状态: 达到样本数量与模型复杂度的某种balance!

|--|

 $Loading\ [MathJax]/jax/element/mml/optable/General Punctuation.js$