Coded Slotted ALOHA over Rayleigh Block Fading Channels: BP Threshold and Converse Bound

Yuhei Takahashi 1

Ippei Masuo ¹ Guanghui Song ² Tomotaka Kimura ¹ Jun Cheng ¹

¹ Department of Intelligent Information Engineering and Sciences Doshisha University, Kyoto, Japan

² State Key Laboratory of Integrated Services Networks Xidian University, Xi'an, China

IEEE Globecom

Outline

- > Problem Description
 - ✓ coded slotted ALOHA (C-SA) Systems
 - protocol: transmit & receive
 - performance metric
- Density Evolutions (Rayleigh Channels)
 - ✓ BP threshold

Converse Bound

> Numerical Results

Massive Sensor Networks

N_T devices

each device:

- channel code $\mathcal{C}_{\operatorname{ch}}$
- ullet segment-oriented code set ${\mathcal C}_{n_1}, {\mathcal C}_{n_2}, \!..., \!{\mathcal C}_{n_U}$
- activation probability $\pi << 1$
- a single message

coded slotted ALOHA protocol

Segment- & Channel-Oriented Codes

a device chooses \mathcal{C}_{n_u} with probability Λ_{n_u}

decoding of $(n_{\underline{u}=k+u,\ k})$ -MDS code \mathcal{C}_{n_u} : successful if at most k segments are erased

Channel decoding: threshold decoding

$$\text{SINR} = \frac{\Gamma_i}{1 + \sum_{u \in \mathcal{R} \setminus i} \Gamma_u} > \eta_0 \quad (\eta_0 = 2^{R_0} - 1)$$

MDS code: maximum distance separable code

Coded Slotted ALOHA (C-SA) [Paolini11]

> C-SA access protocol

each active device

- sends a single message
- ullet choose code \mathcal{C}_{n_u} with probability Λ_{n_u}
- sends its n_u coded segment over n_u slice-slots randomly

segment-oriented code set

$$\mathcal{C}_{n_1}, \mathcal{C}_{n_2}, ..., \mathcal{C}_{n_U}$$
 average code length $\overline{n} = \sum_{u=1}^U \Lambda_{n_u} n_u$ average code rate (energy efficiency) $\zeta = k \, / \, \overline{n}$

degree distribution $\{\Lambda_n\}_{n_1}^{n_U}$ to be optimized

Device Degree Distribution: Example

$$\Lambda(x) = \frac{2}{4}x^3 + \frac{1}{4}x^4 + \frac{1}{4}x^5$$

distribution in polynomial
$$\Lambda(x) = \sum_{n=n}^{n_U} \Lambda_n x^n$$

$$k = 2$$

iterative decoding processing between

intra-slice-slot SICs inter-slice-slot SICs

$$k = 2$$

iterative decoding processing between

intra-slice-slot SICs

inter-slice-slot SICs

$$k = 2$$

iterative decoding processing between

intra-slice-slot SICs inter-slice-slot SICs

$$k = 2$$

iterative decoding processing between

intra-slice-slot SICs inter-slice-slot SICs

Performance Metric

 \triangleright average normalized offered traffic G

*N*_T: a total number of devices *M*: number of slots

$$\alpha = N_{\rm T}/M$$

PLR: packet loss rate

Threshold of traffic *G*

MAP: maximum a posteriori BP: belief propagation

E. Paolini, C. Stefanovic, G. Liva, and P. Popovski, "Coded random access: Applying codes on graphs to design random access protocols," IEEE Commun. Mag., vol. 53, no. 6, pp. 144–150, 2015.

Previous Works

- > BP thresholds and converse bound were derived over
 - √ collision channel model
 - √ erasure channel model
 - ✓ multi-packect reception (MPR) model
 - ✓ on-off fading model
- > BP thresholds and converse bound are unknown over
 - √ fading channel

BP threshold of irregular repetition slotted ALOHA over Rayleigh is known.

a repetition code case of generic linear block code in C-SA [Clazzer17]

F. Clazzer, E. Paolini, I. Mambelli, and C'. Stefanovic', "Irregular repetition slotted ALOHA over the Rayleigh block fading channel with capture," in Proc. of IEEE ICC, 2017, pp. 1–6.

Our Objective

- to derive BP threshold and converse bound over Rayleigh block channels
 - ✓ We formulate density evolution (DE) equations
 - We obtain BP threshold with iteration between the DE equations
 - We obtain converse bound from the sum of two EXIT curves

- We will show that
 - ✓ MDS coding provide more flexible values of energy efficiency
 and higher BP thresholds than repetition coding
 - ✓ Converse bound is tight

Outline

- > Problem Description
 - ✓ coded slotted ALOHA (C-SA) Systems
 - protocol: transmit & receive
 - performance metric
- Density Evolutions (Rayleigh Channels)
 - ✓ BP threshold

> Converse Bound

> Numerical Results

Bipartite Graph and Protograph

bipartite graph

slice-slot nodes (SN)

device nodes (SN)

 $M \to \infty$ with constant $\alpha = N_{\rm T}/M$

$$\alpha = N_{\rm T}/M$$

protograph

slice-slot nodes (SN)

device nodes (DN)

degree distributions

(node-perspective)

$$\rho(x) = e^{-\frac{\alpha}{R}(1-x)}$$

Poission distribution in polynomial

$$\lambda(x) = \sum_{u=n_1}^{n_c} \lambda_u x^{u-1}$$

Density Evolution (DE): Iterative Equations

> average prob. that a DN-to-SN message is erased

$$\ell p = \pi \sum_{n=n}^{n_U} \lambda_n f_{\mathbf{b}}^{(n)}(\ell^{(\ell-1)}q) \triangleq \pi \tilde{\lambda}(\ell^{(\ell-1)}q)$$

> average prob. that a SN-to-DN message is erased

$$\ell_q = 1 - \chi (1 - \ell_p)$$
 $\ell = 0, 1, 2 \cdots$

$$^{(0)}p = \pi, \ ^{(0)}q = 1$$

$$G^{\mathrm{BP,blk}} = \sup\{G = \alpha\pi : \underline{\Lambda(^{(\infty)}q)} < \mathrm{PLR}^*\}$$

$$\mathbf{average} \ \underline{\mathrm{PLR}}$$

Distribution $\Lambda(x)$ can be optimized by differential evolution algorithm

Density Evolution (cont.) $\epsilon_m = 1 - \sum_{t=1}^m \frac{(m-1)!}{(m-t)!} \frac{e^{-\frac{1}{\Gamma^m}((1+\eta_0)^t - 1)}}{(1+\eta_0)^{t(m-(t+1)/2)}}$

error probability of decoding *m*-collision within a slice-slot [Clazzer17]

$$\tilde{\lambda}(^{(\ell-1)}q) = \sum_{u=n_1}^{n_c} \lambda_u f_{\mathbf{b}}^{(u)}(^{(\ell-1)}q)$$

probability that among the other n_u -1 incoming message to the DN, at most k-1 segments are successfully recovered

$$f_{\rm b}^{(u)}(q) = \sum_{i=0}^{k-1} \binom{n_u - 1}{i} (1 - q)^i q^{n_u - i - 1}$$

MDS code

κ-MaxDecoding: the intra-slice-slot SIC is carried out only when the number of collisions is equal to or less than a given constant κ

K: a finite number

$$\chi(1-{}^\ell p) \ \triangleq \ e^{-\frac{\alpha}{\zeta}\,{}^\ell p} \sum_{m=0}^{\infty} \frac{(\frac{\alpha}{\zeta}\,{}^\ell p)^m}{m!} (1-\overline{\epsilon}_{m+1}) \text{ due to fading}$$

F. Clazzer, E. Paolini, I. Mambelli, and C'. Stefanovic',

"Irregular repetition slotted ALOHA over the Rayleigh block fading channel with capture," in Proc. of IEEE ICC, 2017.

Outline

- > Problem Description
 - ✓ coded slotted ALOHA (C-SA) Systems
 - protocol: transmit & receive
 - performance metric
- **▶** Density Evolutions (Rayleigh Channels)
 - ✓ BP threshold

Converse Bound

> Numerical Results

Extrinsic Information Transfer (EXIT) Chart

A necessary condition for successful decoding is to have an open tunnel between the two curves.

Sum of Two Areas < Area of Entire Domain

 π : activation prob.

$$A_{\rm d} + A_{\rm s} < \pi$$

$$A_{\rm s} = \int_0^{\pi} f_{\rm s}(p) \mathrm{d}p$$

$$A_{\rm d} = \int_0^1 f_{\rm d}(q) \mathrm{d}q$$

$$\underline{\underline{G^{C,blk}}} = \sum_{m=0}^{\infty} \left((1 - \overline{\epsilon}_{m+1}) (1 - e^{-\underline{\underline{G^{C,blk}}} \frac{1}{\zeta}} \sum_{r=0}^{m} \frac{(\underline{\underline{G^{C,blk}}} \frac{1}{\zeta})^r}{r!}) \right)$$

The solution of the equation give the converse bound $G^{\mathrm{C,blk}}$.

 $G = \pi \alpha$

Outline

- > Problem Description
 - ✓ coded slotted ALOHA (C-SA) Systems
 - protocol: transmit & receive
 - performance metric
- **▶** Density Evolutions (Rayleigh Channels)
 - ✓ BP threshold

> Converse Bound

> Numerical Results

Specifications in Analysis and Simulations

Paramters	Values
ratio of number of devices to slots $lpha$	100
SNR threshed of decoding η_0	1
average received SNR per device $ar{\Gamma}$	20 dB
number of fading samples	10000
target PLR*	$\leq 10^{-2}$

Distribution $\Lambda(x)$ were optimized by differential evolution algorithm

BP Thresholds of C-SA

BP Thresholds & Converse Bound $(\zeta = 1/2)$

	$G^{ m BP,blk}$			$G^{ m C,blk}$	
<u> </u>	k = 1	k=2	k = 3	k = 4	G -,
1/2	2.8769	2.9231	2.9377	2.9405	3.1315

BP thresholds are close to converse bounds with increasing k.

energy efficiency $\zeta=k$ / \overline{n} (average code rate of MDS codes)

BP Thresholds of SC-C-SA & Converse Bounds

 $(\kappa = 15)$

SC-C-SA: spatially-coupled slotted ALOHA

$G^{\dagger \mathrm{BP,Conv}}$							
ζ				$G^{ m C,blk}$			
-	k = 1	k=2	k = 3	6			
3/4	-	-	2.2668	2.4063			
2/3	-	2.5992	-	2.7281			
3/5	-	-	2.9098	2.9245			
1/2	3.0463	3.1218	3.1295	3.1315			
3/7	-	-	3.2251	3.2270			
2/5	-	3.2511	-	3.2520			
3/8	-	-	3.2706	3.2707			
1/3	3.2906	3.2932	3.2933	3.2934			
3/10	-	-	3.3048	3.3048			
2/7	-	3.3082	-	3.3084			
3/11	-	-	3.3108	3.3108			
1/4	3.3129	3.3139	3.3139	3.3139			
3/13	-	-	3.3155	3.3155			
2/9	-	3.3160	-	3.3161			
3/14	-	-	3.3164	3.3164			
1/5	3.3159	3.3169	3.3169	3.3169			
3/16	-	-	3.3172	3.3172			
2/11	-	3.3172	-	3.3172			
3/17	-	-	3.3173	3.3173			
1/6	3.3163	3.3173	3.3174	3.3174			

tight

Converse Bounds & BP Thresholds (c-sa & sc-c-sa)

energy efficiency $\,\zeta=k\,/\,\overline{n}\,$

Summary

- We derive BP threshold and converse bound for coded slotted ALOHA systems over Rayleigh channels
 - ✓ We formulate density evolution (DE) equations
 - ✓ We obtain BP threshold with iteration between the DE equations
 - ✓ We obtain converse bound from the sum of two EXIT curves

- Our numerical results show that
 - MDS coding provide more flexible values of energy efficiency and higher BP thresholds than repetition coding
 - Converse bound is tight

Thank you for your attention.

Source code can be found here.

cyjk1101@mail4.doshisha.ac.jp