Seminar class 4

Exercise 1 (exercise 6.6 in the book)

. Consider the class \mathcal{H}^d_{mcon} of monotone Boolean conjunctions over $\{0,1\}^d$. Monotonicity here means that the conjunctions do not contain negations. As in \mathcal{H}_{con}^d , the empty conjunction is interpreted as the all-positive hypothesis. We augment \mathcal{H}_{mcon}^d with the all-negative hypothesis h^- . Show that $VCdim(\mathcal{H}_{mcon}^d) = d$.

Exercise 2 (exercise 6.3 in the book)

6.3 Let X be the Boolean hypercube $\{0,1\}^n$. For a set $I \subseteq \{1,2,\ldots,n\}$ we define a parity function h_1 as follows. On a binary vector $\mathbf{x} = (x_1, x_2, ..., x_n) \in \{0, 1\}^n$,

$$h_I(\mathbf{x}) = \left(\sum_{i \in I} x_i\right) \mod 2.$$

(That is, h_I computes parity of bits in I.) What is the VC-dimension of the class of all such parity functions, $\mathcal{H}_{n-parity} = \{h_I : I \subseteq \{1, 2, ..., n\}\}$?

Exercise 3 (exercise 6.2 in the book)

- 6.2 Given some finite domain set, \mathcal{X} , and a number $k \leq |\mathcal{X}|$, figure out the VC-dimension of each of the following classes (and prove your claims):
 - H^X_{=k} = {h ∈ {0,1}^X : |{x : h(x) = 1}| = k}: that is, the set of all functions that assign the value 1 to exactly k elements of X.
 H_{at-most-k} = {h ∈ {0,1}^X : |{x : h(x) = 1}| ≤ k or |{x : h(x) = 0}| ≤ k}.