

Inteligência Computacional

Dataset: Conjunto de instâncias.

Atributo: Característica de uma entidade, por exemplo, cor dos olhos temperatura,

idade, frequência.

Valor dos atributos: Geralmente são números ou palavras

Tuplas são as linhas da tabela

Classificação e Regressão

Um algoritmo de classificação buscará produzir um classificador capaz de generalizar as informações contidas no conjuntos de treinamento, com a finalidade de classificar posteriormente, objetos cujo rótulo seja desconhecido. **Prevê uma Classificação - Ex: Paciente doente ou nao.**

Quando os valores dos atributos são definidos por uma quantidade limitada de valores discretos (conjunto finito de dados) têm-se um problema de classificação. Quando os valores são contínuos tem-se um problema de regressão. **Prevê um valor numérico- Ex: Prevê o salário de um determinados grupo de pessoas.**

Tipos de medidas

O atributos são classificados como:

- Binário- 0 ou 1
- Nominal: Valeres categoriais, sem ordem. Ex: estado civil
- Ordinal: Valores ordenados mas n\u00e3o distancia entre os pontos. Exemplo: N\u00edvel
 educacional.

- Razão: Valores ordenados em que há distancia entre o pontos. Exemplo: A distancia entre dois objetos.
- Discreto: Conjunto de valores contáveis, muitas vezes representados por valores inteiros. Exemplo: Número de palavras de uma documento.
- Contínuo: Tem números reias como valores de atributos. Exemplo: temperatura, altura.

O conjuntos são classificados como:

- Tabela: Coleção de registros em que cada um consiste de um número fixo de atributos.
- Dados de documento: cada documento é representado como um vetor de termos onde cada atributo registra o numero de vezes que o termo ocorre no documento.
- Dados Transacionais: Conjunto de itens. Exemplo: Em uma mercearia o conjunto de produtos levados por um cliente constitui uma transação.
- Dados de grafos: grafos da WEB com links HTML.
- Séries temporais: Dados gerados de um processo contínuo ao longo do tempo.
 Exemplo: Medições de temperatura.

Qualidade dos dados

- -Presença de ruídos: Erro de medição dos valores físicos.
- -Presença de Outliers: Instâncias de dados com características que são significativamente diferentes da maioria das outras instâncias.
- -Valores ausentes : Valores incompletos por diversos motivos. Podem ser tratados de três maneiras diferentes: remoção das variáveis ou amostras com valores ausentes, imputação dos dados ou deixar em branco e deixar que o algoritmo cuide disso.

Métodos de imputação de dados

- Imputação por zero
- Imputação pela média.
- Imputação pelo último valor.
- Imputação pela última saída;

-Dados duplicados.

28/09/2022

Introdução - Fuzzy

Sistemas inteligentes:

- Inteligência computacional.
- Pesquisa Operacional.
- Inteligência Artificial.
- Análise de dados Reconhecimento.
- Teoria de sistemas.
- Ciências cognitivas.
- Aprendizagem de máquina.
- Teoria de Controle.

Perspectiva da inteligência Computacional

Fuzzy

Trata de mexer com informações imprecisas empregadas usualmente na comunicação humana.

Sistema lógico que visa o raciocínio aproximado.

Transforma o conhecimento tácito em explícito, capturando a experiência e o conhecimento do especialista humano.

Na lógica clássica, uma sentença só pode assumir um dentre os valores verdade: Verdadeiro ou Falso. Não existe situação intermediária.

A lógica fuzzy busca introduzir mecanismos que tornem mais suave a transição entre diferentes conceitos. Um deles é a função de pertinência ($\mu_a:x\to[0,1]$ - Elemento 'x' pertence ao conjunto 'A').

O grau de pertinência μ_a indica o quão o valor de x associado à μ_a é compatível com o conceito representado pelo conjunto A. Quanto mais próximo de 1 mais compatível é o x com o conceito representado pelo conjunto A.

Conjuntos

Os conjuntos são utilizados para classificar elementos em conceitos gerais:

- · Números pares.
- Números ímpares.
- ...

Dois grupo distintos:

- Membros: Pertencem ao conjunto.
- Não membros: Não pertencem ao conjunto.

Universo de Discurso: Espaço onde estão definidos os valores possíveis.

Complemento

União

Intercessão

Propriedades

• União → A U B : max

Intercessão → A ∩ B : min

Conjuntos Fuzzy

Função característica ou função de pertinência → mapeia os elementos do conjunto base X em um número real entre 0 e 1.

Conjuntos Discretos

· Conjunto Contínuo

• Domínio:

Aberto.

Fechado.

• Suporte : Subconjuntos dos pontos em que o valor de pertinência é maior que 0.

• Núcleo : Subconjunto de pontos em que o valor de pertinência é igual a 1.

Inclusão:

• Conjunto Fuzzy Singleton: Suporte é em um único ponto em X.

Funções de Pertinência

• Triangular: A(x;a,m,b) = maxmin[(x-a)/(m-a),(b-x)/(b-m),0].

- Trapezoidal: $A(x;a,m,n,b)= \\ maxmin[(x-a)/(m-a),1,(b-x)/(b-n),0].$

• Gaussiana : $A(x)=e^{-k(x-m)^2}$

A escolha da função de pertinência deve refletir:

• A natureza do problema.

• A percepção do conceito a ser capturado

• O nível de detalhe a ser capturado.

• O contexto da aplicação.

• A adequação para ajuste de parâmetros (Otimização).

• Zadeh: N(a) = 1 - a

• Sugeno: $N(a) = \frac{1-a}{1+sa}, s \in (-1, \infty)$

• Yager: $N(a) = (1 - a^w)^{1/w}, w \in (0, \infty)$

Operações

- Complemento.
- Intercessão.
- União.

Operações Generalizadas

Normas Triangulares: Fornecem modelos genéricos para as operações de intercessão e união de conjuntos fuzzy.

- Normas triangulares (t-normas) : intercessão.
- Co-normas triangulares (s-normas) : união.

T-normas

S-normas

T-norma	Nome usual	S-norma	Nome usual
min(x,y)	Zadeh min	max(x,y)	Zadeh max
x.y	Produto algébrico	x + y - xy	Soma probabilística
max[0,(1+p)(x+y-1)-pxy]	Lukasiewicz t - norma: $p \ge -1$	min[1,(x+y+pxy)]	Lukasiewicz s - norma: $p \ge 0$
$\frac{xy}{\gamma + (1 - \gamma)(x + y - xy)}$	Hamacher t - norma: $\gamma > 0$	$\frac{x+y-xy-(1-\gamma)xy}{1-(1-\gamma)xy}$	Hamacher s - norma: $\gamma > 0$
max(x+y-1,0)	Diferença Iimitada	min(x+y,1)	Soma limitada
x se $y = 1y$ se $x = 10$ caso contrário	Weber produto drástico	x se $y = 0y$ se $x = 01 caso contrário$	Weber soma drástica

Conhecimento

O conhecimento é um conjunto de proposições em uma linguagem.

- **Especialista**: Levantado a partir de sessões de engenharia do conhecimento, como no caso dos sistemas especialistas clássicos.
- Dados: Extraído a partir de padrões ou categorias encontradas em conjuntos de dados coletados nos sistemas que se quer representar.

Em sistemas fuzzy o conhecimento é representado através de regras, modelagem da experiência humana em situações específicas. Premissas e conclusões podem ser proposições fuzzy.

Variáveis linguísticas

- Variável numérica: Assume valores numéricos.
- Variável linguística: utilizada para representar de modo impreciso um conceito ou variável. Associado a valores linguísticos - conjunto fuzzy (jovem, velho, alto, baixo, gordo, magro, quente, frio) que são conectados à valores numérico através de funções de pertinência.

- Regras sintáticas : Definem o formato em que será armazenada a informação da base de conhecimento e como serão processados os antecedentes, quais os operadores utilizados.
- Regras semânticas : definem como o conhecimento é extraído e processado na estrutura definida pelas regras sintáticas.

Regras Fuzzy

Se <antecedente> então <consequente>.

Regra fuzzy é a relação fuzzy a partir da qual é possível obter um valor de pertinência (grau de ativação).

O resultado é uma agregação das relações (regras) individuais por um operador de agregação, geralmente uma s-norma.

Modus Pones

Premissa 1 (fato): x é A

Premissa 2 (regra): Se x é A então y é B

Consequência (conclusão): y é B

Premissa 1 (fato): O tomate está vermelho

Premissa 2 (regra): Se o tomate está vermelho então o tomate está maduro

Consequência (conclusão): O tomate está maduro

Raciocínio Fuzzy

▼ Uma regra e apenas um antecedente.

Regra: Se x é A então y é B

Fato: x é A'

Conclusão: y é B'

▼ Uma regra e dois antecedentes.

• É feito um and , ou seja, a intercessão dos dois graus de pertinência.

Regra: Se x é A e y é B então z é C

Fato: $x \in A' \in y \in B'$

Conclusão: z é C'

▼ Duas regras e dois antecedentes

Regra 1: Se x é A_1 e y é B_1 Então z é C_1 Regra 2: Se x é A_2 e y é B_2 Então z é C_2

Fato: $x \in A' \in y \in B'$

Conclusão: z é C'

Sistema Fuzzy baseado em regra

Métodos de inferência

- Mamadani
- Larsen
- Kosko e Mizumoto

Método de Mamdami

Ordem das etapas necessárias.

Identificar variáveis

Entradas e saídas, por exemplo v1, v2, v3 de entradas e u de saída.

Criar regras - and é o mínimo
 se v1 é A11 and v2 é A22 → u é A12
 se v1 é A21 and v2 é A21 → u é A23
 se V1 é A31 and v2 é A12 → u é A23

• Aplicar max-min

Método de Larsen

Mesmas regras, a única mudança é a forma que ele faz o calculo.

Ao invés de fazer o mínimo - and- na hora de calcular o grau de ativação, é feito o produto.

Método de Kosko e Mizumoto

Mesma coisa do mamdaime porém ele soma ao invés de utilizar o método min-max.

Método de defuzificação

A defuzificação tem como principal objetivo traduzir para um valor linguístico, convertendo para um valor numérico.

Centro da área, Centro de gravidade, centróide

- Computacionalmente é ineficiente.
- Não leva em conta áreas sobrepostas.

$$CoA(Z) = \frac{\sum_{i=1}^{n} Z_i C(Z_i)}{\sum_{i=1}^{n} C(Z_i)}$$

Centro das somas

• Semelhante ao centro de área mas considera as áreas sobrepostas.

$$CoS(Z) = \frac{\sum_{i=1}^{n} z_{i} \cdot \sum_{k=1}^{N'} C'_{k}(z_{i})}{\sum_{i=1}^{n} \sum_{k=1}^{N'} C'_{k}(z_{i})}$$

$$z = \frac{\sum_{i=1}^{n} z_{i} \sum_{k=1}^{N} C_{k}(z_{i})}{\sum_{i=1}^{n} \sum_{k=1}^{N} C_{k}(z_{i})}$$

$$Z = [z_1, \dots, z_n]$$

N' = número de regras ativas

Mínimo, média e máximo dos máximos

Método das altura

Modelo de TSK - Takagi-Sugeno-Kang

Similar ao método de mamdani em vários aspectos: Fuzzificação de entradas, aplicação de operadores e base de regras condicionais de inferência.

Nesse caso, os consequentes das regras, ao invés de serem formados por relações fuzzy. sem compõe de equações paramétricas relacionando as entradas e as saídas do processo.

$$z = \frac{\sum_{k=1}^{N} m_k.z_k}{\sum_{k=1}^{N} m_k}$$

- FIS MAMDANI
 - Mais intuitivo
 - Bem aceito
 - Mais apropriado para aceitar entradas humanas (descrições linguísticas das entradas e das saídas)
- FIS Takagi-Sugeno
 - Computacionalmente eficiente
 - Facilmente combinado com técnicas de controle PID e métodos de adaptação e otimização
 - Continuidade garantida da superfície de saída

