# NEC

# PNP SILICON POWER TRANSISTOR 2SA1394

**DESCRIPTION** The 2SA1394 is PNP silicon epitaxial transistor designed for

switching regulator, DC-DC converter and high frequency power

amplifier application.

#### **FEATURES**

- Easy mount by eliminating Insulation Sheet and Bushing.
- Low Collector Saturation Voltage.
- High Switching Speed.
- Complementary to 2SC3566.

#### **ABSOLUTE MAXIMUM RATINGS**

| Maximum Temperatures                                   |                                    |   |  |  |  |  |  |
|--------------------------------------------------------|------------------------------------|---|--|--|--|--|--|
| Storage Temperature                                    |                                    |   |  |  |  |  |  |
| Junction Temperature 150 °C Maximum                    |                                    |   |  |  |  |  |  |
| Maximum Power Dissipation (T <sub>a</sub> = 25 °C)     |                                    |   |  |  |  |  |  |
| Total Power Dissipation 25                             |                                    |   |  |  |  |  |  |
| Maximum Voltages and Currents (T <sub>a</sub> = 25 °C) |                                    |   |  |  |  |  |  |
| V <sub>CBO</sub>                                       | Collector to Base Voltage $-80$    | ٧ |  |  |  |  |  |
| V <sub>CEO</sub>                                       | Collector to Emitter Voltage $-60$ | ٧ |  |  |  |  |  |
| $V_{EBO}$                                              | Emitter to Base Voltage $-12$      | ٧ |  |  |  |  |  |
| I <sub>C(DC)</sub>                                     | Collector Current (DC)5            | Α |  |  |  |  |  |
| (C(pulse)                                              | Collector Current (pulse)*10       | Α |  |  |  |  |  |
| I <sub>B(DC)</sub>                                     | Base Current (DC) −2.5             | Α |  |  |  |  |  |
| * PW ≤ 300 μs, Duty Cycle ≤ 10 %                       |                                    |   |  |  |  |  |  |



# ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

| SYMBOL                  | CHARACTERISTIC                          | MIN. | TYP. | MAX. | UNIT | TEST CONDITIONS                                                                                              |  |
|-------------------------|-----------------------------------------|------|------|------|------|--------------------------------------------------------------------------------------------------------------|--|
| ton                     | Turn-on Time                            |      |      | 0.5  | μs   | (.                                                                                                           |  |
| t <sub>stg</sub>        | Storage Time                            |      |      | 2.5  | μs   | $(I_C = -3.0 \text{ A}, I_{B1} = -I_{B2} = -0.3 \text{ A})$<br>$R_L = 17 \Omega, V_{CC} = -50 \text{ V}$     |  |
| tf                      | Fall Time                               |      |      | 0.5  | μs   | (,, vec = -50 v                                                                                              |  |
| hFE1                    | DC Current Gain*                        | 40   |      |      | _    | $V_{CE} = -5.0 \text{ V}, I_{C} = -0.3 \text{ A}$                                                            |  |
| hFE2                    | DC Current Gain*                        | 40   |      | 200  | _    | $V_{CE} = -5.0 \text{ V, I}_{C} = -3.0 \text{ A}$                                                            |  |
| V <sub>CE(sat)</sub>    | Collector Saturation Voltage*           |      |      | -0.6 | V    | $I_C = -3.0 \text{ A}, I_B = -0.3 \text{ A}$                                                                 |  |
| V <sub>BE(sat)</sub>    | Base Saturation Voltage*                |      |      | -1.5 | ٧    | $I_C = -3.0 \text{ A}, I_B = -0.3 \text{ A}$                                                                 |  |
| VCEO(SUS)               | Collector to Emitter Sustaining Voltage | -60  |      |      | V    | $I_C = -3.0 \text{ A}, I_B = -0.3 \text{ A}, L = 1 \text{ mH}$                                               |  |
| V <sub>CEX</sub> (SUS)1 | Collector to Emitter Sustaining Voltage | -60  |      |      | V    | $I_C = -3.0 \text{ A}, I_{B1} = -I_{B2} = -0.3 \text{ A},$<br>L = 180 $\mu$ H, Clamped                       |  |
| V <sub>CEX</sub> (SUS)2 | Collector to Emitter Sustaining Voltage | 60   |      |      | V    | $I_C = -6.0 \text{ A}, I_{B1} = -0.6 \text{ A},$<br>$-I_{B2} = 0.3 \text{ A}, L = 180 \mu\text{H}, Clamped}$ |  |
| ICBO                    | Collector Cutoff Current                |      |      | -10  | μΑ   | $V_{CB} = -60 \text{ V}, I_E = 0$                                                                            |  |
| CER                     | Collector Cutoff Current                |      |      | -1.0 | mA   | $V_{CE} = -60 \text{ V}, R_{BE} = 51 \Omega, T_a = 125 ^{\circ}\text{C}$                                     |  |
| ICEX1                   | Collector Cutoff Current                |      |      | -10  | μΑ   | $V_{CE} = -60 \text{ V}, V_{BE(OFF)} = 1.5 \text{ V}$                                                        |  |
| CEX2                    | Collector Cutoff Current                |      |      | -1.0 | mA   | $V_{CE} = -60 \text{ V}, V_{BE(OFF)} = 1.5 \text{ V},$<br>$T_a = 125 ^{\circ}\text{C}$                       |  |
| IEBO                    | Emitter Cutoff Current                  |      |      | -10  | μΑ   | $V_{EB} = -10 \text{ V, I}_{C} = 0$                                                                          |  |

\* PW  $\leq$  350  $\mu$ s, Duty Cycle  $\leq$  2 %

## Classification of hFE2

| Rank  | М        | L         | к          |
|-------|----------|-----------|------------|
| Range | 40 to 80 | 60 to 120 | 100 to 200 |

Test Conditions:  $V_{CE} = -5.0 \text{ V}$ ,  $I_{C} = -3.0 \text{ A}$ 

## TYPICAL CHARACTERISTICS (Ta = 25 °C)



















SWITCHING TIME  $(t_{on}, t_{stg}, t_f)$  TEST CIRCUIT



