2012年计算专业综合考研真题

<u> </u>	、选择题。			
1,	求整数 n(n≥0)阶乘的算	法如下, 其时间复	杂度是()	
	<pre>int fact(int n)</pre>			
	{ if (n<=1) return	n 1;		
	return n*fact(n-	-1);		
	}			
	A. $O(log_2n)$	B. O(n)	$C. (nlog_2n)$	D. $O(n^2)$
2、	已知操作符包括'+'、'-'	、'*'、'/' 、'('和')'。将中缀表达式 a+b-	a*((c+d)/e-f)+g 转换
	为等价的后缀表达式 a	ab+acd+e/f-**-g-	+时,用栈来存放暂时还	不能确定运算次序的操
	作符, 若栈初始时为空	区,则转换过程中同	同时保存栈中的操作符的	的最大个数是()
	A. 5	B. 7	C. 8	D. 11
3、	若一颗二叉树的前序遍	历序列为 a, e, b, d,	c,后续遍历序列为 b,	e, d, e, a,则根节点的孩
	子节点()	9. 2.		
	A. 只有 e	B. 有 e、b	C. 有 e、c	D. 无法确定
4、	若平衡二叉树的高度为	6,且所有非叶节点	点的平衡因子均为1,则	该平衡二叉树的节点总
	数为()	50		
	A. 10	B. 20	C. 32	D. 33
5、	对有 n 个节点、e 条边	且使用邻接表存储	的有向图进行广度优先	遍历, 其算法时间复杂
	度()			8
	A. O(n)	B. O(e)	C. $O(n+e)$	D. O(n*e)
6、	若用邻接矩阵存储有向	图,矩阵中主对角	线以下的元素均为零,	则关于该图拓扑序列的
	结构是()			
	A. 存在, 且唯一		B. 存在, 且不唯一	
	C. 存在,可能不唯一		D. 无法确定是否存在	200
7、	如下有向带权图, 若采用	用迪杰斯特拉(Dijl	kstra) 算法求源点 a 到	其他各顶点的最短路径,
	得到的第一条最短路径	E的目标顶点是 b,	第二条最短路径的目标	示顶点是 c, 后续得到的
	其余各最短路径的目标	示顶点依次是()		IIII I
		(b)—3	\rightarrow (d)	96
		2	The state of the s	All a
		$\stackrel{\leftarrow}{a}$ $\stackrel{+}{\tau}$ $\stackrel{\gamma}{\gamma}$	f	
		5	_11	196
		(c)—4	\rightarrow e γ	
	A. d, e, f	B. e, d ,f	C. f,d,e	D. f,e,d
8,	下列关于最小生成树的	说法中,正确的是	()	
	I、最小生成树的代例			
	II、所有权值最小的边	也一定会出现在所有	 	
	Ⅲ、使用普里姆(Prin	n)算法从不同顶点	瓦开始得到的最小生成构	对一定相同
	IV、使用普里姆算法和	u克鲁斯卡尔(Kru	skal)算法得到的最小的	生成树总不相同
	A. 仅 I	B. 仅II	C. 仅I、III	D. 仅II、IV
9、	已知一棵 3 阶 B-树,如	下图所示。删除关	链字 78 得到一棵新 B-	树,其最右叶结点中的
	关键字是()			
	A. 60	B. 60, 62	C. 62, 65	D. 65

	10	21 37	47 60 6	78	
10、	在内部排序过程中,对		五置的所有元素进	行一遍处理称为一趟	排序。下列
	排序方法中,每一趟扫	非序结束都至少能	能够确定一个元素	专最终位置的方法是()
	I.简单选择排序	II.希尔排序	III.快速排序		
	IV.堆排序	V.二路归并排	序		
	A. 仅I、III、IV		B. 仅I、III	, V	
	C. 仅II、III、IV		D. 仅III、IV	, V	
11.	对一待排序序列分别证	进行折半插入排	序和直接插入排	亨,两者之间可能的	不同之处是
	()	3.			
	A. 排序的总趟数	9.	B. 元素的移	动次数	
	C. 使用辅助空间的数	量	D. 元素之间	的比较次数	
12,	假定基准程序 A 在某				
	I/O 时间。若 CPU 速度	E提高 50%, I/O i	速度不变,则运行	基准程序A所耗费的	J时间是()
	A. 55	B. 60	C. 65	D. 70	
13,	假定编译器规定 int 和	short 型长度分别	別为 32 位和 16 位	立,执行下列 C 语言语	吾句:
	unsighned short x	= 65530;		673	
	unsigned int $y = x$;				
	得到 y 的机器数为())			
	A. 0000 7FFAH		C. FFFF 7FFA		FAH
14,	float 类型(即 IEEE75				
	A. 2 ¹²⁶ - 2 ¹⁰³	B. 2 ¹²⁷ - 2 ¹⁰⁴	C. 2 ¹²⁷ - 2 ¹⁰³	D. 2 ¹²⁸ - 2 ¹⁰	
	某计算机存储器按字节			$\lambda \wedge \lambda \wedge$	
型长	上度分别为 32 位和 16 位	立,并且数据按定	边界对齐存储。身	₹ C 语言程序段如下:	
	struct{			11111	
	int	a;			400
	char	b;			
	short	c;			(C)
	}record;				
	record.a = 273; 若 record 变量的首地均	11-41 0vC008 III	### 0vC008 由 n	b 交及 record c 的抽址	·分别是()
	A. 0x00、0xC00D				` ′
16	下列关于闪存(Flash)				ACOUL
101	A. 信息可读可写, 并	-	· ·	,	
	B. 存储元由 MOS 管组				
	C. 掉电后信息不丢失				
	D. 采用随机访问方式				
17.	假设某计算机按字编址			存之间交换的块大小。	为1个字。
1/1	若 Cache 的内容初始为				
	址依次为 0,4,8,2,0,6,8,				1 1 11 1 1 1 1
	A. 1	В. 2	C. 3	D. 4	
		· ·		 -	

18、某计算机的控制器系	兴用微程序控制方式	1,微指令中的摸	操作控制	字段采用字段直	接编码法,
共有33个微命令,	构成5个互斥类,	分别包含7、3	3、12、	5和6个微命令,	则操作控
制字段至少有()					

A. 5 位 B. 6 位 C. 15 位 D. 33 位

19、设总线频率为 100MHz, 宽度为 32 位, 地址/数据线复用, 每传输一个地址或数据占用 一个时钟周期。若该总线支持突发(猝发)传输方式,则一次"主存写"总线事务传输 128 位数据所需要的时间至少是()

A. 20ns

B. 40ns

C. 50ns

D. 80ns

20、下列关于 USB 总线特性的描述中,错误的是()

A. 可实现外设的即插即用和热拔插 B. 可通过级联方式连接多台设备

C. 是一种通信总线,连接不同外设 D. 同时可传输 2 位数据,数据传输率高

21、下列选项中,在 I/O 总线的数据线上传输的信息包括()

I. I/O 接口中的命令字 II. I/O 接口中的状态字

III. 中断类型号

A. 仅I、II C.仅II、III

D. I , II , III

22、响应外部中断的过程,中断隐指令完成的操作,除保护断点外,还包括()

I. 关中断 II. 保存通用寄存器的内容 III. 形成中断服务程序入口地址并送 PC

A. 仅I、II B.仅I、III C.仅II、III

D. I 、II、III

23、下列选项中,不可能在用户态发生的事件是()

A. 系统调用 B. 外部中断 C. 进程切换

D. 缺页

24、中断处理和子程序调用都需要压栈以保护现场,中断处理一定会保存而子程序调用不需 要保存其内容的是()

A. 程序计数器

B. 程序状态字寄存器

C. 通用数据寄存器

D. 通用地址寄存器

- 25、下列关于虚拟存储器的叙述中,正确的是()

 - A. 虚拟存储只能基于连续分配技术 B. 虚拟存储只能基于非连续分配技术
 - C. 虚拟存储容量只受外存容量的限制 D. 虚拟存储容量只受内存容量的限制
- 26、操作系统的 I/O 子系统通常由四个层次组成,每一层明确定义了与邻近层次的接口。其 合理的层次组织排列顺序是()
 - A. 用户级 I/O 软件、设备无关软件、设备驱动程序、中断处理程序
 - B. 用户级 I/O 软件、设备无关软件、中断处理程序、设备驱动程序
 - C. 用户级 I/O 软件、设备驱动程序、设备无关软件、中断处理程序
 - D. 用户级 I/O 软件、中断处理程序、设备无关软件、设备驱动程序
- 27、假设 5 个进程 P0、P1、P2、P3、P4 共享三类资源 R1、R2、R3, 这些资源总数分别为 18、6、22。T0 时刻的资源分配情况如下表所示,此时存在的一个安全序列是()

进程		己分配资源		资源最大需求				
儿生	R1	R2	R3	R1	R2	R3		
P0	3	2	3	5	5	10		
P1	4	0	3	5	3	6		
P2	4	0	5	4	0	11		
Р3	2	0	4	4	2	5		
P4	3	1	4	4	2	4		

A P0, P2, P4, P1, P3

B P1, P0, P3, P4, P2

C P2, P1, P0, P3, P4

D P3, P4, P2, P1, P0

微信公众号: CSSEKY1 "计算机与软件考研"

28、	若一个用户进程通过 read 系统调用读取一个磁盘文件中的数据,则下列关于此过程的
	叙述中,正确的是()
	I. 若该文件的数据不在内存,则该进程进入睡眠等待状态
	II.请求 read 系统调用会导致 CPU 从用户态切换到核心态
	III.read 系统调用的参数应包含文件的名称
	A. 仅 I 、II B.仅 I 、III C.仅 II 、III D. I 、II和III
29、	一个多道批处理系统中仅有 P1 和 P2 两个作业, P2 比 P1 晚 5ms 到达,它们的计算和
	I/O 操作顺序如下:
	P1: 计算 60ms,I/O80ms,计算 20ms
	P2: 计算 120ms,I/O40ms,计算 40ms
	若不考虑调度和切换时间,则完成两个作业需要的时间最少是()
	A. 240ms B. 260ms C. 340ms D. 360ms
30,	若某单处理器多进程系统中有多个就绪态进程,则下列关于处理机调度的叙述中错误的
	是() 50 50 6
	A. 在进程结束时能进行处理机调度
	B. 创建新进程后能进行处理机调度
	C. 在进程处于临界区时不能进行处理机调度
	D. 在系统调用完成并返回用户态时能进行处理机调度
31,	下列关于进程和线程的叙述中,正确的是()
	A. 不管系统是否支持线程,进程都是资源分配的基本单位
	B. 线程是资源分配的基本单位, 进程是调度的基本单位
	C. 系统级线程和用户级线程的切换都需要内核的支持
	D. 同一进程中的各个线程拥有各自不一的地址空间
32,	下列选项中,不能改善磁盘设备 I/O 性能的是()
	A. 重排 I/O 请求次序 B. 在一个磁盘上设置多个分区
	C. 预读和滞后写 D. 优化文件物理块的分布
33、	在 TCP/IP 体系结构中,直接为 ICMP 提供服务的协议是()
	A. PPP B. IP C. UDP D. TCP
34、	在物理层接口特性中,用于描述完成每种功能的事件发生顺序的是()
	A. 机械特性 B. 功能特性 C. 过程特性 D. 电气特性
35	以太网的 MAC 协议提供的是()
	A. 无连接的不可靠的服务 B. 无连接的可靠的服务
26	C. 有连接的不可靠的服务 D. 有连接的可靠的服务 T. 公式程序 C. T.
36	两台主机之间的数据层采用后退 N 帧协议(GBN)传输数据,数据传输速率为 16kbps,
	单向传播时延为 270ms,数据帧长度范围是 128~512 字节,接收方总是以与数据帧等长
	的帧进行确认。为使信道利用率达到最高,帧序号的比特数至少为()
27	A. 5 B. 4 C. 3 D. 2
3/	下列关于 IP 路由器功能的描述中,正确的是()
	I.运行路由协议,设备路由表
	II.检测到拥塞时,合理丢弃 IP 分组
	III.对收到的 IP 分组头进行差错校验,确保传输的 IP 分组不丢失
	IV.根据收到的 IP 分组的目的 IP 地址,将其转发到合适的输出线路上
	A. 仅III、IV B. 仅 I 、II、III C. 仅 I 、II、IV D. I 、II、III、IV

- 38、ARP 协议的功能是()
 - A. 根据 IP 地址查询 MAC 地址
- B. 根据 MAC 地址查询 IP 地址
- C. 根据域名查询 IP 地址
- D. 根据 IP 地址查询域名
- 39、某主机的 IP 地址为 180.80.77.55, 子网掩码为 255.255.252.0。若该主机向其所在子网发送广播分组,则目的地址可以是()
 - A. 180.80.76.0
- B. 180.80.76.255
- C. 180.80.77.255
- D. 180.80.79.255
- 40、若用户1与用户2之间发送和接收电子邮件的过程如下图所示,则图中①、②、③阶段分别使用的应用层协议可以是()

- A. SMTP, SMTP, SMTP
- C. POP3、SMTP、SMTP
- B. POP3, SMTP, POP3
- D. SMTP, SMTP, POP3

二、问答题。

- 41、(10分)设有6个有序表A、B、C、D、E、F,分别含有10、35、40、50、60和200个数据元素,各表中元素按升序排列。要求通过5次两两合并,将6个表最终合并成1个升序表,并在最坏情况下比较的总次数达到最小。请回答下列问题。
 - (1)给出完整的合并过程,并求出最坏情况下比较的总次数。
 - (2) 根据你的合并过程, 描述 N(N≥2)个不等长升序表的合并策略, 并说明理由。
- 42、(13 分)假定采用带头结点的单链表保存单词,当两个单词有相同的后时缀,则可共享相同的后缀存储空间,例如,"loaging"和"being",如下图所示。

设 str1 和 str2 分别指向两个单词所在单链表的头结点,链表结点结构为。 data next ,请设计一个时间上尽可能高效的算法,找出由 str1 和 str2 所指向两个链表共同后缀的起始位置(如图中字符 i 所在结点的位置 p)。要求:

- (1) 给出算法的基本设计思想。
- (2) 根据设计思想,采用C或C++或java语言描述算法,关键之处给出注释。
- (3) 说明你所设计算法的时复杂度。
- 43、(11 分) 假设某计算机的 CPU 主频为 80MHz, CPI 为 4, 平均每条指令访存 1.5 次, 主存与 Cache 之间交换的块大小为 16B, Cache 的命中率为 99%, 存储器总线宽带为 32 位。请回答下列问题。
 - (1)该计算机的 MIPS 数是多少? 平均每秒 Cache 缺失的次数是多少? 在不考虑 DMA 传送的情况下,主存带宽至少达到多少才能满足 CPU 的访存要求?
 - (2) 假定在 Cache 缺失的情况下访问主存时,存在 0.0005%的缺页率,则 CPU 平均每 秒产生多少次缺页异常?若页面大小为 4KB,每次缺页都需要访问磁盘,访问磁

盘时 DMA 传送采用周期挪用方式,磁盘 I/O 接口的数据缓冲寄存器为 32 位,则磁盘 I/O 接口平均每秒发出的 DMA 请求次数至少是多少?

- (3) CPU 和 DMA 控制器同时要求使用存储器总线时,哪个优先级更高?为什么?
- (4) 为了提高性能,主存采用 4 体低位交叉存储模式,工作时每 1/4 个存储周期启动一个体,若每个体的存储周期为 50ns,则该主存能提供的最大带宽是多少?
- 44、(12 分) 某 16 位计算机中,带符号整数用补码表示,数据 Cache 和指令 Cache 分离。 题 44 表给出了指令系统中部分指令格式,其中 Rs 和 Rd 表示寄存器, mem 表示存储单元地址,(x)表示寄存器 x 或存储单元 x 的内容。

	170	
名称	指令的汇编格式	指令功能
加法指令	ADD Rs, Rd	(Rs)+(Rd)->Rd
算术/逻辑左移	SHL Rd	2*(Rd)->Rd
算术右移	SHR Rd	(Rd)/2 -> Rd
取数指令	LOAD Rd, mem	(mem)->Rd
存数指令	STORE Rs. mem	(Rs)->mem

题 44 表指令系统中部分指令格式

该计算机采用 5 段流水式执行指令,各流水段分别是取指(IF),译码/读寄存器(ID)、执行/计算有效地址(EX)、访问存储器(M)和结果写回寄存器(WB),流水线采用"按序发射,按序完成"方式,没有采用转发技术处理数据相关,并且同一个寄存器的读和写操作不能在同一个时钟周期内进行。请回答下列问题:

- (1) 若 int 型变量 x 的值为-513,存放在寄存器 R1 中,则执行"SHL R1"后,R1 中的内容是多少?(用十六进制表示)
- (2) 若某个时间段中,有连续的 4 条指令进入流水线,在其执行过程中没有发生任何阻塞,则执行这 4 条指令所需的时钟周期数为多少?
- (3) 若高级语言程序中某赋值语句为 x = a+b, $x \cdot a$ 和 b 均为 int 型变量,它们的存储单元地址分别表示为[x]、[a]和[b]。该语句对应的指令序列及其在指令流水线中的执行过程如题 44 图所示。
 - I1 LOAD R1, [a]
 - I2 LOAD R2, [b]
 - I3 ADD R1, R2
 - I4 STORE R2, [x]

	时间单元													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
I1	IF	ID	EX	M	WB									
12		IF	ID	EX	M	WB								
13			IF				ID	EX	M	WB				
I4							IF				ID	EX	M	WB

题 44 图 指令序列及其执行过程示意图

则这 4 条指令执行过程中, I3 的 ID 段和 I4 的 IF 段被阻塞的原因各是什么?

(4) 若高级语言程序中某赋值语句为 x=x*2+a, x 和 a 均为 unsigned int 类型变量,它们的存储单元地址分别表示为[x]、[a],则执行这条语句至少需要多少个时钟周期?要求模仿题 44 图画出这条语句对应的指令序列及其在流水线中的执行过程示意图。

45、(7分)某请求分页系统的局部页面置换策略如下:

从 0 时刻开始扫描,每隔 5 个时间单位扫描一轮驻留集(扫描时间忽略不计),本 轮没有被访问过的页框将被系统回收,并放入到空闲页框链尾,其中内容在下一次分配 之前不被清空。当发生缺页时,如果该页曾被使用过且还在空闲页链表中,则重新放回 进程的驻留集中;否则,从空闲页框链表头部取出一个页框。

假设不考虑其它进程的影响和系统开销。初始时进程驻留集为空。目前系统空闲页框链表中页框号依次为 32、15、21、41。进程 P 依次访问的<虚拟页号,访问时刻>为<1,1>、<3,2>、<0,4>、<0,6>、<1,11>、<0,13>、<2,14>。请回答下列问题。

- (1) 访问<0.4>时,对应的页框号是什么?
- (2) 访问<1,11>时,对应的页框号是什么?说明理由。
- (3) 访问<2,14>时,对应的页框号是什么?说明理由。
- (4) 该策略是否适合于时间局部性好的程序?说明理由。
- 46、(8分)某文件系统空间的最大容量为 4TB (1TB = 2⁴⁰),以磁盘块为基本分配单元。磁盘块大小为 1KB。文件控制块(FCB)包含一个 512B 的索引表区。请回答下列问题。
 - 1) 假设索引表区仅采用直接索引结构,索引表区存放文件占用的磁盘块号,索引表项中块号最少占多少字节?可支持的单个文件最大长度是多少字节?
 - 2)假设索引表区采用如下结构:第0~7字节采用<起始块号,块数>格式表示文件创建时预分配的连续存储空间。其中起始块号占6B,块数占2B;剩余504字节采用直接索引结构,一个索引项占6B,则可支持的单个文件最大长度是多少字节?为了使单个文件的长度达到最大,请指出起始块号和块数分别所占字节数的合理值并说明理由。
- 47、(9分) 主机 H 通过快速以太网连接 Internet, IP 地址为 192.168.0.8, 服务器 S 的 IP 地址为 211.68.71.80。H 与 S 使用 TCP 通信时,在 H 在捕获的其中 5 个 IP 数据报如下表所示。

IP 分组的前 40 字节内容(十六进制) 45 00 00 30 01 9b 40 00 80 06 1d c8 c0 a8 00 08 d3 44 47 50 0b d9 13 88 84 6b 41 c5 00 00 00 00 70 02 43 80 5d b0 00 00 00 00 40 00 31 06 6e 83 d3 44 47 50 c0 a8 00 08 45 00 00 30 e0 59 9f ef 84 6b 41 c6 70 12 16 d0 37 e1 00 00 13 88 0b d9 80 06 1d ef c0 a8 00 08 d3 44 47 50 45 00 00 28 01 9c 40 00 3 0b d9 13 88 84 6b 41 c6 e0 59 9f f0 50 f0 43 80 2b 32 00 00 45 00 00 38 01 9d 40 00 80 06 1d de c0 a8 00 08 d3 44 47 50 0b d9 13 88 84 6b 41 c6 e0 59 9f f0 50 18 43 80 e6 55 00 00 45 00 00 28 68 11 40 00 31 06 06 7a d3 44 47 50 c0 a8 00 08 13 88 0b d9 e0 59 9f f0 84 6b 41 d6 50 10 16 d0 57 d2 00 00

题 47-a 表

回答下列问题。

- (1) 题 47-a 表中的 IP 分组中,哪几个是由 H 发送的?哪几个完成了 TCP 连接建立过程?哪几个在通过快速以太网传输时进行了填充?
- (2) 根据题 47-a 表中的 IP 分组,分析 S 已经收到的应用层数据字节数是多少?
- (3) 若题 47-a 表中的某个 IP 分组在 S 发出时的前 40 字节如题 47-b 表所示,则该 IP 分组到达 H 时经过了多少个路由器?

题 47-b 表

来自S的	45 00 00 28	68 11 40 00	40 06 ec ad	d3 44 47 50	ca 76 01 06
分组	13 88 a1 08	e0 59 9f f0	84 6b 41 d6	50 10 16 d0	b7 d6 00 00

注: IP 分组头和 TCP 段头结构分别如题 47-a 图,题 47-b 图所示。

bit 0	101.1.15	8	16	24	32
	版本	头部长度	服务类型	长度	
		标识		标志	片偏移
	生存时	筒(TTL)	协议	头部	7校验和
			源 IP 地址		
			目的 IP 地址	-	

题 47-a 图 IP 分组头结构

题 47-b 图 TCP 段头结构

2012计算机专业基础综合试题参考答案

- 一、单项选择题:每小题 2 分,共 80 分。
- 1 5 BAABC 6-10 CCADA 11-15 DDBDD 16-20 ACCCD
- 21-25 DBCBB 26-30 ADABC 31-35 ABBCA 36-40 BCADD
- 二、综合应用题: 41~47 小题, 共 70 分。

41.【解析】

(1) 对于长度分别为 m, n 的两个有序表的合并过程,最坏情况下需要一直比较到两个表尾元素,比较次数为 m+n-1 次。已知需要 5 次两两合并,故可设总比较次数为 X-5, X 就是以 N 个叶子结点表示升序表,以升序表的表长表示结点权重,构造的二叉树的带权路径长度。故只需设计方案使得 X 最小。这样受哈夫曼树和最佳归并树思想的启发,设计哈夫曼树如下:

这样,最坏情况下比较的总次数为:

$$N = (10 + 35) \times 4 + (40 + 50 + 60) \times 3 + 200 - 5 = 825$$

(2) N(N≥2) 个不等长升序表的合并策略:

以 N 个叶子结点表示升序表,以升序表的表长表示结点权重,构造哈夫曼树。合并时,从深度最大的结点所代表的升序表开始合并,依深度次序一直进行到根结点。

理由: N 个有序表合并需要进行 N-1 次两两合并,可设最坏情况下的比较总次数为 X-N+1, X 就是以 N 个叶子结点表示升序表,以升序表的表长表示结点权重,构造的二叉树的带权路径长度。根据哈夫曼树的特点,上述设计的比较次数是最小的。

42.【解析】

- (1) 算法思想: 顺序遍历两个链表到尾结点时,并不能保证两个链表同时到达尾结点。这是因为两个链表的长度不同。假设一个链表比另一个链表长 k 个结点,我们先在长链表上遍历 k 个结点,之后同步遍历两个链表。这样我们就能够保证它们同时到达最后一个结点了。由于两个链表从第一个公共结点到链表的尾结点都是重合的。所以它们肯定同时到达第一个公共结点。于是得到算法思路:
- ① 遍历两个链表求的它们的长度 L1, L2;
- ② 比较 L1, L2, 找出较长的链表, 并求 L=|L1-L2|;
- ③ 先遍历长链表的 L 各结点;

- ④ 同步遍历两个链表, 直至找到相同结点或链表结束。
 - (2) 算法的 C 语言代码描述

```
LinkList Search_First_Common(LinkList L1,LinkList L2){
    //本算法实现线性时间内找到两个单链表的第一个公共结点
    int len1=Length(L1);,len2=Length(L2);
    LinkList longList, shortlist; //分别指向较长和较短的链表
    if(len1>len2){
         longList=L1->next;
         shortlist=L2->next;
         L=len1-len2;//表长之差
    }
    else{
        ongList=L2
hortlist=L1->next;
h=len2-len1;//表长之差

e(L-+)
longList=longList->next;
e(longList!=NULL){
if(longList==shortList)//同步寻找共同结点
    return longList;
         longList=L2->next;
    While(L--)
    while(longList!=NULL){
         }
    }//while
    return NULL;
```

(3) 算法的时间复杂度为 O(len1+len2), 空间复杂度为 O(1)。

43.【解析】

- (1) MIPS=CPU 主频×10-6/CPI=80M/4=20; 平均每条指令访存 1.5 次, Cache 的命中率为 99%, 故每秒 Cache 缺失的次数=20M×1.5×1%=300000(次);
- (2) 在不使用 DMA 传送的情况下,所有主存的存取操作都需要经过 CPU,所以主存带宽至少应为 20M/s×1.5×4B=120MB/s。

由于页式虚拟存储方式的页表始终位于内存,则产生缺页异常的只能是指令的访存。每秒产生缺页中断 20M/s×1.5×0.0005%=150 次。因此平均每秒发出的 DMA 请求次数至少是 150×4KB/4B=150K 次。

- (3) 优先响应 DMA 请求。DMA 通常连接高速 I/O 设备,若不及时处理可能丢失数据。
- (4) 当 4 体低位交叉存储器稳定运行时,能提供的最大带宽为 4×4B/50ns=320MB/s。

44. 【解析】

- (1) x 的机器码为[x]*=1111 1101 1111B, 即指令执行前(R1)=FDFFH, 右移 1 位后位 1111 1110 1111 1111B, 即指令执行后(R1)=FEFFH。
 - (2) 至少需要 4+ (5-1) =8 个时钟周期数。
 - (3) l3 的 ID 段被阻塞的原因: 因为 l3 与 l1 和 l2 都存在数据相关,需等到 l1 和 l2 将结果写回寄存器后,l3 才能

读寄存器内容, 所以 l3 的 ID 段被阻塞。

- I4 的 IF 段被阻塞的原因: 因为 I4 的前一条指令 I3 在 ID 段被阻塞, 所以 I4 的 IF 段被阻塞。
 - (4) 因 2*x 操作有左移和加法两种实现方法,故 x=x*2+a 对应的指令序列为

I1 LOAD R1, [x]

12 LOAD R2, [a]

I3 SHL R1 //或者 ADD R1, R1

I4 ADD R1, R2

I5 STORE R2, [x]

这 5 条指令在流水线中执行过程如下图所示。

		时间单元															
指令	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
I1	IF	ID	EX	М	WB												
12		IF	ID	EX	М	WB											
13			IF (74 124	R	ID	EX	М	WB								
14					3	IF				ID	EX	М	WB				
15			40.					3		IF				ID	EX	М	WB

故执行 x=x*2+a 语句最少需要 17 个时钟周期。

45.【解析】

- (1) 页框号为 21。因为起始驻留集为空,而 0 页对应的页框为空闲链表中的第三个空闲页框(21),其对应的页框号为 21。
- (2) 页框号为 32。理由: 因 11>10 故发生第三轮扫描,页号为 1 的页框在第二轮已处于空闲页框链表中,此刻该页又被重新访问,因此应被重新放回驻留集中,其页框号为 32。
- (3) 页框号为 41。理由: 因为第 2 页从来没有被访问过,它不在驻留集中,因此从空闲页框链表中取出链表头的页框 41, 页框号为 41。
- (4) 合适。理由:如果程序的时间局部性越好,从空闲页框链表中重新取回的机会越大,该策略的优势越明显。

46.【解析】

- (1) 文件系统中所能容纳的磁盘块总数为 4TB/1KB=232。要完全表示所有磁盘块,索引项中的块号最少要占 32/8=4B。而索引表区仅采用直接索引结构,故 512B 的索引表区能容纳 512B/4B=128 个索引项。每个索引项对应一个磁盘块,所以该系统可支持的单个文件最大长度是 128×1KB=128KB。
- (2)这里的考查的分配方式不同于我们所熟悉的三种经典分配方式,但是题目中给出了详细的解释。所求的单个文件最大长度一共包含两部分:预分配的连续空间和直接索引区。

连续区块数占 2B, 共可以表示 2₁₆ 个磁盘块,即 2₂₆B。直接索引区共 504B/6B=84 个索引项。所以该系统可支持的单个文件最大长度是 2₂₆B+84KB。

为了使单个文件的长度达到最大,应使连续区的块数字段表示的空间大小尽可能接近系统最大容量 4TB。分别设起始块号和块数分别占 4B,这样起始块号可以寻址的范围是 232 个磁盘块,共 4TB,即整个系统空间。同样的,块数字段可以表示最多 232 个磁盘块,共 4TB。

47.【解析】

(1) 由于题 47-a 表中 1、3、4 号分组的原 IP 地址均为 192.168.0.8(c0a8 0008H),所以 1, 3, 4 号分组是由 H 发送的。

题 47-a 表中 1 号分组封装的 TCP 段的 FLAG 为 02H (即 SYN=1, ACK=0), seq=846b 41c5H, 2 号分组封装的 TCP 段的 FLAG 为 12H (即 SYN=1, ACK=1), seq=e059 9fefH, ack=846b 41c6H, 3 号分组封装的 TCP 段的 FLAG 为 10H (即 ACK=1), seq=846b 41c6H, ack= e059 9ff0H, 所以 1、2、3 号分组完成了 TCP 连接建立过程。

微信公众号: CSSEKY1 "计算机与软件考研"

由于快速以太网数据帧有效载荷的最小长度为 46 字节,表中 3、5 号分组的总长度为 40 (28H) 字节,小于 46 字节,其余分组总长度均大于 46 字节。所以 3、5 号分组通过快速以太网传输时进行了填充。

- (2) 由 3 号分组封装的 TCP 段可知,发送应用层数据初始序号为 seq=846b 41c6H,由 5 号分组封装的 TCP 段可知,ack 为 seq=846b 41d6H,所以 5 号分组已经收到的应用层数据的字节数为 846b 41d6H 846b 41c6H=10H=16。
- (3) 由于 S 发出的 IP 分组的标识=6811H, 所以该分组所对应的是题 47-a 表中的 5 号分组。S 发出的 IP 分组的 TTL=40H=64, 5 号分组的 TTL=31H=49, 64-49=15, 所以,可以推断该 IP 分组到达 H 时经过了 15 个路由器。

