Analyse I (Partie B): Plan du cours

- Limite et continuité de fonctions d'une variable réelle.
 - · Adhérence du domaine
 - · Limite de fonction en terme de suite
 - · Unicité de la limite d'une fonction
 - · Règles de calcul
 - · Convergence dominée
 - · Recouvrement exhaustif
 - · Limite de fonction en $\varepsilon \delta$
 - · Continuité + propriétés
 - · Théorème des valeurs intermédiaires
 - · Théorème des valeurs intermédiaires généralisé
 - · Algorithme pour estimer ξ
 - · Maximum et minimum d'une fonction
 - · Théorème des bornes atteintes + interprétation géométrique
 - · Interval compact
- Dérivée de fonction d'une variable réelle
 - · Interprétation géométrique
 - · Dérivabilité d'une fonction + propriété (dérivable \rightarrow continue)
 - · Régles de calcul
 - · Théorème de la moyenne + propriété de croissance
 - · Théorème de Rolle + équivalence avec le théorème de la moyenne
 - · Minimum/Maximum local + propriété
 - \cdot "Petit o
"+propriété
- Développement de Taylor (DT) et séries
 - · "Petit o"
 - · DT
 - · Unicité du DT
 - · Calcul du DT
 - L'ensemble C^k où $k \in \mathbb{N}$ et C^{∞}
 - · Formule du reste + lien avec le théorème de la moyenne
 - · Rappel du Binôme de Newton
 - · Séries
 - · Convergence d'une série
 - · Convergence absolue + propriété (convergence absolue → convergence)
 - · Critère du quotient
 - · Critère de la racine
- Les équation différentielles ordinaires (EDO)
 - · Équation différentielles ordinaires
 - · Solution d'une EDO
 - · Théorème : Condition d'une unique solution
 - · EDO linéaire (affine)
 - · Principe de superposition
 - · EDO homogène
 - · Résolution de Lu=0
 - · Solution réelle
 - · EDO inhomogène
 - · Théorème : Forme de la solution particulière

Analyse I (Partie B): Définitions des limites

$$\cdot \lim_{x \to +\infty} f(x) = +\infty \iff \forall R > 0, \exists B > 0, \forall x \ge B, f(x) \ge R$$

$$\lim_{x \to -\infty} f(x) = -\infty \iff \forall R > 0, \exists A < 0, \forall x \le A, f(x) \le R$$

· Soit
$$\lambda \in \mathbb{R}$$
, $\lim_{x \to +\infty} f(x) = \lambda \iff \forall \varepsilon > 0, \exists A > 0, \forall x \ge A, |f(x) + \lambda| \le \varepsilon$

· Soit
$$\lambda \in \mathbb{R}$$
, $\lim_{x \to -\infty} f(x) = \lambda \iff \forall \varepsilon > 0, \exists B < 0, \forall x \leq B, |f(x) + \lambda| \leq \varepsilon$

· Soit
$$a \in \mathbb{R}$$
, $\lim_{x \to a} f(x) = +\infty \iff \forall R > 0, \exists \delta > 0, \forall x \in \mathbb{R}, |x - a| \le \delta \Rightarrow f(x) \ge R$

· Soit
$$a \in \mathbb{R}$$
, $\lim_{x \to a} f(x) = -\infty \iff \forall R > 0, \exists \delta > 0, \forall x \in \mathbb{R}, |x - a| \le \delta \Rightarrow f(x) \le R$

· Soient
$$a, \lambda \in \mathbb{R}$$
, $\lim_{x \to a} f(x) = \lambda \iff \forall \varepsilon > 0, \exists \delta > 0, \forall x \in \mathbb{R}, |x - a| \le \delta \Rightarrow |f(x) - \lambda| \le \varepsilon$

Analyse I (Partie B) : Développements de Taylor et séries

DT d'ordre n en 0 à connaitre par coeur (pour rapidité)

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + o(x^n)$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + o(x^n)$$

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\cdot \sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$ch(x) = 1 + \frac{x^2}{2} + \frac{x^4}{24} + \dots + \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$sh(x) = x + \frac{x^3}{6} + \frac{x^5}{120} + \dots + \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

Séries : critères de convergence

· si
$$\sum_{n=0}^{+\infty} X_n$$
 converge, alors $X_n \to 0$

· si
$$\sum_{n=0}^{+\infty} |X_n|$$
 converge, alors si $\sum_{n=0}^{+\infty} X_n$ converge.

· Soient
$$(X_n)_{n\in\mathbb{N}}$$
 et $(Y_n)_{n\in\mathbb{N}}$ tels que $\forall n\in\mathbb{N}, |X_n|\leq Y_n$,

Si
$$\sum_{n=0}^{+\infty} Y_n$$
 converge, alors $\sum_{n=0}^{+\infty} X_n$ converge.

· Soit
$$x \in \mathbb{R}$$
,

Si
$$|x| < 1$$
, alors $\sum_{n=0}^{+\infty} x^n$ converge et vaut $\frac{1}{1-x}$.

· Si
$$\alpha > 1$$
, alors $\sum_{n=0}^{+\infty} \frac{1}{n^{\alpha}}$ converge.

· Une suite est de Cauchy ssi
$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq m \geq n_0, |X_m - X_n| \leq \varepsilon.$$

Analyse I (Partie B): Les équations différentielles ordinaires

Définition

- · Une EDO (d'ordre n) est une équation de type $f(t, \partial_t^n u, ..., \partial_t^1 u, u) = 0$
- · Une solution pour une EDO de ce type est une fonction $u:I\to\mathbb{R}$ où $I\subseteq\mathbb{R}$ qui satisfait l'EDO i.e u est n fois dérivable sur I et $\forall t \in I, f(t, \partial_t^n u, ..., \partial_t^1 u, u) = 0$

Les EDO linéaires homogènes

· Forme générale : Une EDO linéraire homogène est de la forme :

$$\sum_{i=0}^{n} a_i(t) \partial_t^i u(t) = 0$$

- $\sum_{i=0}^n a_i(t)\partial_t^i u(t)=0$ Exemple : $\sin(t)\partial_t^3 u(t)+t^2\partial_t u(t)-5u(t)=0$
- - $-\frac{\partial^k (u_1(t) + u_2(t))}{\partial^k (\alpha u_1(t))} = \partial^k u_1(t) + \partial^k u_2(t)$ $-\frac{\partial^k (\alpha u_1(t))}{\partial^k (\alpha u_1(t))} = \alpha \partial^k u_1(t)$

 - $-\partial^k$ est un opérateur linéaire.

Conséquences

Si

- · $u_1(t)$ est solution de $\sum_{i=0}^n a_i(t) \partial_t^i u(t) = 0$ et
- · $u_2(t)$ est solution de $\sum_{i=0}^n a_i(t) \partial_t^i u(t) = 0$,

- · $u_1(t) + u_2(t)$ est solution de $\sum_{i=0}^n a_i(t) \partial_t^i u(t) = 0$
- · $\alpha u_1(t)$ est solution de $\sum_{i=0}^n a_i(t) \partial_t^i u(t) = 0$.

Principe de superposition

Si on connaît une solution particulière de l'équation notée $u_p(t)$ et si $u_0(t)$ est solution de l'EDO homogène, alors les solutions de l'EDO seront de la forme $u(t) = u_p(t) + u_0(t)$.

Résoudre une EDO

Par principe de superposition, on va devoir trouver une solution particulère et une solution de l'équation homogène.

Résoudre une équation homogène

- · Trouver le polynome caractéristique $\sum_{i=0}^{n} a_i(t)x^i$.
- · Trouver les racines du polynome caractéristique et leurs multiplicité. · Les solutions du polynôme de la forme $\sum_{i} P_{i}(t)e^{\lambda it}$ où λi est la racine du polynome caractéristique et $P_i(t)$ est le polynôme de degré $< m_i$ qui est la multiplicité de la racine λ_i .

Trouver une solution particulière de l'équation $\sum_{i=0}^{n} a_i(t) \partial_t^i u(t) = q(t)e^{ut}$ où $u \in$ \mathbb{R} , q(t) est un polynôme.

Il y a deux cas:

- \cdot Si u est racine du polynome caractéristique, alors il existe une solution de la forme $t^m r(t) e^{ut}$ où m
 est la multiplicité de u et r(t) est un polynome de degré
 \leq au degré de
- · Si u n'est pas une racine du polynome caractéristique, alors il existe une solution particulière de la forme $r(t).e^{ut}$ où r(t) est un polynome de degré \leq degré q(t)

Remarque

- · Pour trouver les solution réelles de l'EDO, il faut prendre la partie réelle des solution \mathbb{C} .
- $cos(t) = \frac{e^{it} + e^{-it}}{2}$ $sin(t) = \frac{e^{it} e^{-it}}{2i}$
- $\cdot cosh(t) =$
- $\cdot sinh(t) =$

Analyse I (Partie B) : Propriétés sur les petits o

1 Définition de petit o

Soit $f: \mathbb{R} \to \mathbb{R}$, $a \in Dom(f)$, on dit que f est un petit o de $(x-a)^n$ ssi

$$f(a) = 0$$
 et $\lim_{x \to a} \frac{f(x)}{(x-a)^n} = 0$

2 Propriétés

i Soit $m, n \in \mathbb{N}$, si $m \le n$, alors $o((x-a)^n) = o((x-a)^m)$

Soit
$$f(x) = o((x-a)^n)$$
,

Donc par définition de petit o,

$$f(a) = 0$$
 et $\lim_{x \to a} \frac{f(x)}{(x-a)^n} = 0$

Montrons que $f(x) = o((x-a)^m)$ c'est-à-dire montrons que f(a) = 0 et $\lim_{x \to a} \frac{f(x)}{(x-a)^m} = 0$

$$f(a) = 0$$
 par hypothèse

$$\lim_{x \to a} \frac{f(x)}{(x-a)^m} = \lim_{x \to a} \frac{f(x)}{(x-a)^n (x-a)^{m-n}}$$

$$= \lim_{x \to a} \frac{f(x)}{(x-a)^n} \cdot \lim_{x \to a} \frac{1}{(x-a)^{m-n}} \quad \text{car la limite du produit est le produit des limites}$$

$$= 0 \cdot \lim_{x \to a} (x-a)^{n-m} \quad \text{par hypothèse et car } m \le n \text{ donc } n-m \ge 0$$

$$= 0.0 \quad \text{car } x \to a$$

Cqfd.

ii Soit $m, n \in \mathbb{N}$, $o((x-a)^n).o((x-a)^m) = o((x-a)^{n+m})$

Soit
$$f(x) = o((x-a)^n$$
,
Soit $g(x) = o((x-a)^m$,

Donc par définition de petit o,

$$f(a) = 0 \text{ et } \lim_{x \to a} \frac{f(x)}{(x-a)^n} = 0$$

$$g(a) = 0 \text{ et } \lim_{x \to a} \frac{f(x)}{(x-a)^m} = 0$$

Posons h(x) = f(x).g(x),

Montrons que $h(x) = o((x-a)^{n+m})$ c'est à dire montrons que h(a) = 0 et $\lim_{x \to a} \frac{h(x)}{(x-a)^{n+m}} = 0$

$$h(a) = f(a).g(a)$$
 par définition de h
= 0.0 par hypothèse
= 0

$$\begin{array}{lll} \lim\limits_{x\to a}\frac{h(x)}{(x-a)^{n+m}} &=& \lim\limits_{x\to a}\frac{h(x)}{(x-a)^n(x-a)^m} \\ &=& \lim\limits_{x\to a}\frac{f(x)}{(x-a)^n}.\lim\limits_{x\to a}\frac{g(x)}{(x-a)^m} & \text{car la limite du produit est le produit des limites} \\ &=& 0.0 & \text{par hypothèse} \\ &=& 0 \end{array}$$

Cqfd.

iii Soit
$$m, n \in \mathbb{N}$$
, $(o((x-a)^n))^m = o((x-a)^{n.m})$

Soit
$$f(x) = o((x-a)^n)$$
,

Donc par définition de petit o,

$$f(a) = 0$$
 et $\lim_{x \to a} \frac{f(x)}{(x-a)^n} = 0$

Posons $h(x) = (f(x))^m$,

Montrons que $h(x) = o((x-a)^{n.m})$ c'est à dire montrons que h(a) = 0 et $\lim_{x \to a} \frac{h(x)}{(x-a)^{n.m}} = 0$

$$h(a) = (f(a))^m$$
 par définition de h
= $(0)^m$ par hypothèse
= 0

$$\lim_{x \to a} \frac{h(x)}{(x-a)^{n.m}} = \lim_{x \to a} \frac{(f(x))^m}{(x-a)^{n.m}} \quad \text{par d\'efinition de } h$$

$$= \lim_{x \to a} \frac{(f(x))^m}{((x-a)^n)^m} \quad \text{par une propri\'et\'e sur les exposants}$$

$$= \lim_{x \to a} \left(\frac{f(x)}{(x-a)^n}\right)^m \quad \text{par une propri\'et\'e sur les exposants}$$

$$= \left(\lim_{x \to a} \frac{f(x)}{(x-a)^n}\right)^m \quad \text{car la limite du produit est le produit des limites}$$

$$= 0^m \quad \text{par hypoth\`ese}$$

Cqfd.

iv Soit
$$n \in \mathbb{N}$$
, $o((x-a)^n) = o(1).(x-a)^n$

Soit
$$f(x) = o((x-a)^n)$$
,

Donc par définition de petit o,

$$f(a) = 0$$
 et $\lim_{x \to a} \frac{f(x)}{(x-a)^n} = 0$

· si $x \neq a$ alors prenons $g(x) = \frac{f(x)}{(x-a)^n}$ g(x) est un petit o de 1 car :

$$g(a) = \frac{f(a)}{(x-a)^n} = \frac{0}{(x-a)^n} = 0 \text{ et } \lim_{x \to a} \frac{g(x)}{1} = \lim_{x \to a} \frac{f(x)}{(x-a)^n} = 0$$

On a bien:

$$f(x) = g(x).(x-a)^n$$

=
$$\frac{f(x)}{(x-a)^n}.(x-a)^n$$

=
$$f(x)$$

Cqfd.

· si x = a alors prenons g(x) = 0

$$g(a) = 0$$
 et $\lim_{x \to a} \frac{g(x)}{1} = 0$

On a bien:

$$f(x) = g(x).(x-a)^n$$

= $0.(x-a)^n$ par définition de g(x) et car $x=a$
= 0

Cqfd.

v Soit
$$n \in \mathbb{N}$$
, $o(1).(x-a)^n = o((x-a)^n)$

Soit
$$f(x) = o(1)$$
,

Donc par définition de petit o,

$$f(a) = 0 \text{ et } \lim_{x \to a} \frac{f(x)}{1} = 0$$

Posons $h(x) = f(x).(x-a)^n$,

Montrons que $h(x) = o((x-a)^n)$ c'est à dire montrons que h(a) = 0 et $\lim_{x \to a} \frac{h(x)}{(x-a)^n} = 0$

$$h(a) = f(a).(x-a)^n$$
 par définition de h
= $0.(x-a)^n$ par hypothèse
= 0

$$\lim_{x \to a} \frac{h(x)}{(x-a)^n} = \lim_{x \to a} \frac{f(x) \cdot (x-a)^n}{(x-a)^n} \quad \text{par définition de } h$$

$$= \lim_{x \to a} f(x)$$

$$= 0 \quad \text{par hypothèse}$$

Cqfd.

Analyse I (Partie B) : $\forall n \in \mathbb{N}, \sqrt[n]{x}$ est continue sur son domaine.

Tenons pour vrai que:

(i)
$$x - a = (\sqrt[n]{x} - \sqrt[n]{a}) \sum_{k=0}^{n-1} \sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k}$$

(ii) $\forall n \in \mathbb{N}, n \text{ pair } \rightarrow Dom(\sqrt[n]{x}) = \mathbb{R}^+$
(iii) $\forall n \in \mathbb{N}, n \text{ impair } \rightarrow Dom(\sqrt[n]{x}) = \mathbb{R}$

Montrons que $\forall n \in \mathbb{N}, \sqrt[n]{x}$ est continue sur son domaine.

i.e $\forall n \in \mathbb{N}, \forall a \in Dom(\sqrt[n]{x}), \forall \varepsilon > 0, \exists \delta > 0, \forall x \in Dom(\sqrt[n]{x}), |x - a| \leq \delta \rightarrow |\sqrt[n]{x} - \sqrt[n]{a}| \leq \varepsilon$

Preuve:

Soit $n \in \mathbb{N}$,

· Si n est pair, alors le domaine de $\sqrt[n]{x}$ est \mathbb{R}^+ . (ii) Soit $a \in \mathbb{R}^+$, Soit $\varepsilon > 0$, Prenons $\delta = \varepsilon \sqrt[n]{a^{n-1}} > 0$, Soit $x \in \mathbb{R}^+$ tel que $|x - a| \le \delta$, On a :

$$|\sqrt[n]{x} - \sqrt[n]{a}| = |\frac{(\sqrt[n]{x} - \sqrt[n]{a})\sum_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})}{\sum_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})}|$$
i.e $|\sqrt[n]{x} - \sqrt[n]{a}| = \frac{|x-a|}{|\sum_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})|}$ (i) et par une prop. des $|.|$
i.e $|\sqrt[n]{x} - \sqrt[n]{a}| \le \frac{\delta}{|\sum_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})|}$ par hyp.

i.e $|\sqrt[n]{x} - \sqrt[n]{a}| \le \frac{\delta}{|\sqrt[n]{x^{n-1}} + \sqrt[n]{x^{n-2}} \sqrt[n]{a} + \dots + \sqrt[n]{x} \sqrt[n]{a^{n-1}} + \sqrt[n]{x^{n-2}} + \sqrt[n]{a^{n-1}}|} \stackrel{(\alpha)}{\le} \frac{\delta}{\sqrt[n]{a^{n-1}}} \le \varepsilon$

$$(\alpha) : |\sqrt[n]{x^{n-1}} + \sqrt[n]{x^{n-2}} \sqrt[n]{a} + \dots + \sqrt[n]{x} \sqrt[n]{a^{n-2}} + \sqrt[n]{a^{n-1}}|$$

$$= \sqrt[n]{x^{n-1}} + \sqrt[n]{x^{n-2}} \sqrt[n]{a} + \dots + \sqrt[n]{x} \sqrt[n]{a^{n-2}} + \sqrt[n]{a^{n-1}}|$$

$$= \sqrt[n]{x^{n-1}} + \sqrt[n]{x^{n-2}} \sqrt[n]{a} + \dots + \sqrt[n]{x} \sqrt[n]{a^{n-2}} + \sqrt[n]{a^{n-1}}|$$

 $\operatorname{Car} a > 0 \text{ et } x > 0$

Par transitivité,

$$|\sqrt[n]{x} - \sqrt[n]{a}| \le \varepsilon$$

Cqfd

- · Si n est impair, alors le domaine de $\sqrt[n]{x}$ est \mathbb{R} . (iii) Soit $a \in \mathbb{R}$,
 - Si a>0, Soit $\varepsilon>0,$ Prenons $\delta=\min{(\frac{a}{2},\varepsilon\sqrt[n]{a^{n-1}})}>0$, Soit $x\in\mathbb{R}$ tel que $|x-a|\leq \delta$ i.e $a-\delta\leq x\leq a+\delta$ donc en prenant $\delta=\frac{a}{2}>0,$ on a $a-\frac{a}{2}\leq x\leq a+\frac{a}{2}$ i.e $0<\frac{a}{2}\leq x\leq \frac{3a}{2}.$ Donc par transitivé, 0< x. On a :

$$|\sqrt[n]{x} - \sqrt[n]{a}| = |\frac{(\sqrt[n]{x} - \sqrt[n]{a}) \sum_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})}{\sum_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})}|$$
i.e $|\sqrt[n]{x} - \sqrt[n]{a}| = \frac{|x-a|}{|\sum_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})|}$ (i) et par une prop des $|.|$
i.e $|\sqrt[n]{x} - \sqrt[n]{a}| \le \frac{\delta}{|\sum_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})|}$ par hyp.
i.e $|\sqrt[n]{x} - \sqrt[n]{a}| \le \frac{\delta}{|\sqrt[n]{x^{n-1}} + \sqrt[n]{x^{n-2}} \sqrt[n]{a} + ... + \sqrt[n]{x} \sqrt[n]{a^{n-2}} + \sqrt[n]{a^{n-1}}|} \le \frac{\delta}{\sqrt[n]{a^{n-1}}} \le \varepsilon$

Par transitivité,

$$|\sqrt[n]{x} - \sqrt[n]{a}| \le \varepsilon$$

Cqfd

- **Si** a = 0,

Soit $\varepsilon > 0$,

Prenons $\delta = \varepsilon^n > 0$,

Soit $x \in \mathbb{R}$ tel que $|x - a| \le \delta$ i.e $|x| \le \delta$ i.e $-\delta \le x \le \delta$ donc en prenant $\delta = \varepsilon^n$, on a $-\varepsilon^n \le x \le \varepsilon^n$.

Comme $\forall x \in \mathbb{R}, \forall m \in \mathbb{N}, (-x)^{2m+1} = -x^{2m+1}, \text{ on a } (-\varepsilon)^n \leq x \leq \varepsilon^n \text{ i.e. } -\varepsilon \leq \sqrt[n]{x} \leq \varepsilon$ cette dernière inégalité est équivalente à $|\sqrt[n]{x}| \leq \varepsilon$.

Cqfd

- **Si** a < 0,

Soit $\varepsilon > 0$,

Prenons $\delta = \min\left(\frac{|a|}{2}, \varepsilon \sqrt[n]{a^{n-1}}\right) > 0$, Soit $x \in \mathbb{R}$ tel que $|x - a| \le \delta$ i.e $|x| \le \delta$ i.e $a - \delta \le x \le a + \delta$ donc en prenant $\delta = \frac{|a|}{2} = \frac{-a}{2} > 0 \text{ car } a < 0, \text{ on a } \frac{3a}{2} \le x \le \frac{a}{2} < 0.$ Donc par transitivité, x < 0.

On a:

$$|\sqrt[n]{x} - \sqrt[n]{a}| = |\frac{(\sqrt[n]{x} - \sqrt[n]{a})\sum\limits_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})}{\sum\limits_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})}|$$
 i.e $|\sqrt[n]{x} - \sqrt[n]{a}| = \frac{|x-a|}{|\sum\limits_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})|}$ (i) et par unr prop. des $|.|$ i.e $|\sqrt[n]{x} - \sqrt[n]{a}| \le \frac{\delta}{|\sum\limits_{k=0}^{n-1} (\sqrt[n]{x^{n-1-k}} \sqrt[n]{a^k})|}$ par hyp. i.e $|\sqrt[n]{x} - \sqrt[n]{a}| \le \frac{\delta}{|\sqrt[n]{x^{n-1}} + \sqrt[n]{x^{n-2}} \sqrt[n]{a} + \ldots + \sqrt[n]{x} \sqrt[n]{a^{n-2}} + \sqrt[n]{a^{n-1}}| \le \frac{\delta}{\sqrt[n]{a^{n-1}}} \le \varepsilon$ Par transitivité,

$$|\sqrt[n]{x} - \sqrt[n]{a}| \le \varepsilon$$

Cqfd

Conclusion: On a bien prouvé que $\forall n \in \mathbb{N}, \sqrt[n]{x}$ est continue sur son domaine.

Trouver le S permettant de résoudre $(\sqrt[n]{x} - \sqrt[n]{y}) * S = x - y$

- · On sait que $a^n b^n = (a b) \sum_{k=0}^{n-1} a^{n-1-k} b^k$ (cf Internet)
- En remplaçant a par $x^{1/n}$ et b par $y^{1/n}$
- · On a alors:

$$(x^{1/n})^n - (y^{1/n})^n = (x^{1/n} - y^{1/n}) \sum_{k=0}^{n-1} (x^{1/n})^{n-1-k} (y^{1/n})^k$$

i.e $x - y = (\sqrt[n]{x} - \sqrt[n]{y}) \sum_{k=0}^{n-1} \sqrt[n]{x^{n-1-k}} \sqrt[n]{y^k}$

· Ainsi, le Srecherché est $\sum\limits_{k=0}^{n-1}\sqrt[n]{x^{n-1-k}}\sqrt[n]{y^k}$

Sources:

- http://villemin.gerard.free.fr/Wwwgvmm/Identite/IdentAut.htm#idform
- http://villemin.gerard.free.fr/Wwwgvmm/Decompos/Divanmbn.htm