

## 13.6: Cylinders and Quadric Surfaces

## Cylinders and Traces:

When talking about three-dimensional surfaces, a cylinder refers to a surface that is parallel to a line. When considering surfaces that is parallel to one of the coordinate axes, that the associated variable is missing (e.g.  $3y^2 + z^2 = 8$  is parallel to the x-axis).

## Definition. (Trace)

A trace of a surface is the set of points at which the surface intersects a plane that is parallel to one of the coordinate planes. The traces in the coordinate planes are called the xy-trace, the yz-trace, and the xz-trace (Figure 13.80).



**Example.** Roughly sketch the following functions:

1. 
$$x^2 + 4y^2 = \underline{16}$$

2. 
$$x - \sin(z) = 0$$



$$\chi=0$$
,  $-sin(t)=0$ 

$$\chi = \sin(z)$$

$$\chi = \sin(z)$$

13.6: Cylinders and Quadric Surfaces

Y-0

Math 2060 Class notes Spring 2021





## Quadric Surfaces:

Quadric surfaces are described by the general quadratic (second-degree) equation in three variables,

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,$$

Where the coefficients  $A, \ldots, J$  and not all zero. To sketch quadric surfaces, keep the following ideas in mind:  $\chi_{-}$  in the coefficients  $A, \ldots, J$  and not all zero. To sketch quadric surfaces, keep the

- 1. Intercepts Determine the points, if any, where the surface intersects the coordinate axes. To find these intercepts, set x, y, and z equal to zero in pairs in the equation of the surface, and solve for the third coordinate.
- 2. Traces Finding traces of the surface helps visualize the surface. Setting x, y, and z equal to zero in pairs gives the planes parallel in that pair's plane.
- 3. Completing the figure Sketch some traces in parallel planes, then draw smooth curves that pass through the traces to fill out the surface.

**Example** (An ellipsoid). The surface defined by the equation  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ . Graph a = 3, b = 4 and c = 5.

$$\frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} = 1$$

$$\frac{2^{2}}{25} = 1$$

$$\chi = 0 \Rightarrow \frac{1}{25} = 1$$

$$16$$

$$\frac{2^{2}}{25} = 1$$

$$\chi$$
-int  $(y=0, Z=0)$ 

$$\frac{\chi^2}{9} = 1 \rightarrow \chi = \pm 3$$

$$y-int$$

$$\frac{y^2}{16} = 1 \rightarrow y = \pm 4$$

$$z = \pm 5$$





**Example** (An elliptic parabaloid). The surface defined by the equation  $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ . Graph the elliptic paraboloid with a=4 and b=2.

$$\chi = \frac{y^2}{b^2} + \frac{z^2}{z^2}$$

$$\frac{\sum_{x} dx}{x = 0} \qquad (y = 0, z = 0)$$

$$y = 0$$

$$z = 0$$

$$\begin{array}{c}
T(aaS) \\
\chi=0 \Rightarrow Z=\frac{y^2}{4} \\
\chi=0 \Rightarrow Z=\frac{x^2}{16} \\
Z=0 \Rightarrow 0 \Rightarrow 16 + \frac{y^2}{4}
\end{array}$$

$$Z = 1 = \frac{\chi^{2}}{16} + \frac{y^{2}}{4}$$

$$Z = 4 = \frac{\chi^{2}}{16} + \frac{y^{2}}{4}$$

$$Shape^{2}$$

$$ellipse$$

$$Z = 9 = \frac{\chi^{2}}{16} + \frac{y^{2}}{4}$$

Example (A hyperboloid of one sheet).

$$\frac{\chi^2}{a^2} + \frac{y^2}{b^2} - \frac{\overline{z}^2}{c^2} = 1$$

Graph the surface defined by the equation  $\frac{x^2}{4} + \frac{y^2}{9} - \underbrace{z^2}_{2} = 1$ .

$$\begin{array}{cccc}
T_{ot} \\
y=z=o \Rightarrow & \chi=\pm 2 \\
\chi=z=o \Rightarrow & y=\pm 3 \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{2}=1 & N_o & 2^{-1}n + c \varphi^{+} \\
\chi=y=o \Rightarrow & -2^{$$



$$-\frac{\chi^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

**Example** (A hyperboloid of two sheets). Graph the surface defined by the equation  $-16x^2 - 4y^2 + z^2 + 64x - 80 = 0$ .

$$-16x^{2} + 14x - 4y^{2} + 2^{2} = 80$$

$$-16(x^{2} - 4x + 4 - 4) - 4y^{2} + 2^{2} = 80$$

$$-16(x - 2)^{2} + 64 - 4y^{2} + 2^{2} = 80$$

$$-16(x - 2)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$

$$-(x - 4)^{2} - 4y^{2} + 2y^{2} = 16$$



$$\frac{1}{(aces)}$$

$$\frac{\chi^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$

**Example** (Elliptic cones). Graph the surface defined by the equation  $\frac{y^2}{4} + z^2 = 4x^2$ .

$$\chi = \gamma = 0 \implies Z = 0$$

$$\chi = 7 = 0 \implies \gamma = 0$$

$$\gamma = 7 = 0 \implies \chi = 0$$

$$\frac{T_{ra}(e)}{let \chi=0} \rightarrow \frac{\chi^{2}_{1}r^{2}=0}{let \chi=0} \rightarrow fomt@ (0,0,0)$$

$$let \chi=0 \rightarrow \frac{\chi^{2}_{1}r^{2}=0}{let \chi=0} \rightarrow fomt@ (0,0,0)$$

$$let \chi=0 \rightarrow \frac{\chi^{2}_{1}r^{2}=0}{let \chi=0} \rightarrow fomt@ (0,0,0)$$



$$Z = \frac{\chi^2}{\Lambda^2} - \frac{y^2}{c^2}$$

Example (A hyperbolic paraboloid).

Graph the surface defined by the equation  $z = x^2 - \frac{y^2}{4}$ .

upringles Chip"



| Name                      | Standard Equation                                          | Features                                                                                                               | Graph |
|---------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------|
| Ellipsoid                 | $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  | All traces are ellipses.                                                                                               |       |
| Elliptic<br>paraboloid    | $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$                    | Traces with $z = z_0 > 0$ are ellipses.<br>Traces with $x = x_0$ or $y = y_0$ are parabolas.                           | y     |
| Hyperboloid of one sheet  | $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$  | Traces with $z = z_0$ are ellipses for all $z_0$ . Traces with $x = x_0$ or $y = y_0$ are hyperbolas.                  | z y y |
| Hyperboloid of two sheets | $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ | Traces with $z = z_0$ with $ z_0  >  c $ are ellipses. Traces with $x = x_0$ and $y = y_0$ are hyperbolas.             | x, y  |
| Elliptic cone             | $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$      | Traces with $z = z_0 \neq 0$ are ellipses.<br>Traces with $x = x_0$ or $y = y_0$ are hyperbolas or intersecting lines. | y     |
| Hyperbolic<br>paraboloid  | $z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$                    | Traces with $z = z_0 \neq 0$ are hyperbolas. Traces with $x = x_0$ or $y = y_0$ are parabolas.                         | X y   |