IP Network Management

G54ACC – IP and Up Lecture 7

Recap

- IP provides best-effort packet delivery
- TCP and UDP provide transport over that
 - —TCP reliable ordered byte-stream, UDP not
- Several adjunct control protocols in use
 - -ICMP, routing, &c.

Contents

- Introduction
- Abstractions
- IP network components
- IP network management protocols
- Pulling it all together
- An alternative approach

Contents

- Introduction
 - -What's it all about then?
- Abstractions
- IP network components
- IP network management protocols
- Pulling it all together
- An alternative approach

What is network management?

- One point-of-view: a large field full of acronyms
 - EMS, TMN, NE, CMIP, CMISE, OSS, AN.1, TL1, EML, FCAPS, ITU, ...
 - (Don't ask me what all of those mean, I don't care!)
- From question.com:
 - In 1989, a random of the journalistic persuasion asked hacker Paul Boutin "What do you think will be the biggest problem in computing in the 90s?" Paul's straight-faced response: "There are only 17,000 three-letter acronyms."
- We will ignore most of them ©

What is network management?

- Computer networks are considered to have three operating timescales
 - Data: packet forwarding [μs, ms]
 - Control: flows/connections [secs, mins]
 - Management: aggregates, networks[hours, days]
- ...so we're concerned with "the network" rather than particular devices or protocols
- Standardization is key!

Contents

- Introduction
- Abstractions
 - -ISO FCAPS, TMN EMS, ATM
- IP network components
- IP network management protocols
- Pulling it all together
- An alternative approach

ISO FCAPS: Functional Separation

- Fault
 - Recognize, isolate, correct, log faults
- Configuration
 - Collect, store, track configurations
- Accounting
 - Collect statistics, bill users, enforce quotas
- Performance
 - Monitor trends, set thresholds, trigger alarms
- Security
 - Identify, secure, manage risks

TMN EMS: Administrative Separation

- Telecommunications Management Network
- Element Management System
- "...simple but elegant..." (!)
 - (my emphasis)
 - (often the two go together)

- NEL: network elements (switches, transmission systems)
- EML: element management (devices, links)
- NML: network management (capacity, congestion)
- SML: service management (SLAs, time-to-market)
- BML: business management (RoI, market share, blah)

Network Management

- Models of general communication networks
 - -Tend to be quite abstract and exceedingly tedious!
 - Many practitioners still seem excited about OO programming, WIMP interfaces, etc
 - —...probably because implementation is hard due to so many excessively long and complex standards!
- Basic "need-to-know" requirements are
 - 1. What should be happening? [c]
 - 2. What is happening? [f, p, a]
 - 3. What shouldn't be happening? [f, s]
 - 4. What will be happening? [p, a]

Network Management

- We'll concentrate on IP networks
 - -Still acronym city: ICMP, SNMP, MIB, RFC
 - -Sample size: 10² routers, 10⁵ hosts
- We'll concentrate on the network core
 - Routers, not hosts
- We'll ignore "service management"
 - -DNS, AD, file stores, etc

Contents

- Introduction
- Abstractions
- IP network components
 - −IP, networks, routers
- IP network management protocols
- Pulling it all together
- An alternative approach

IP Primer: You Know This...

- Destination-routed packets no connections
 - Time-to-live field: allow removal of looping packets
- Routers forward packets based on routeing tables
 - Tables populated by routeing protocols
- Routers and protocols operate independently
 - ...although protocols aim to build consistent state
- RFCs ~= standards
 - Often much looser semantics than e.g. ISO, ITU standards
 - Compare for example OSPF [RFC2327] and IS-IS [RFC1142, RFC1195], two link-state routeing protocols

So, how do you build an IP network?

5. Configure end-systems

Someone else's can of worms.

Mwuhahaha.

Multiple router flavours

- Core
 - OC-12 (622Mbps) and up (to OC-768 ~= 40Gbps)
 - Big, fat, fast, expensive
 - E.g. Cisco HFR, Juniper T-640
 - HFR: 1.2Tbps each, interconnect up to 72 giving 92Tbps, start at \$450k
- Transit/Peering-facing
 - OC-3 and up, good GigE density
 - ACLs, full-on BGP, uRPF, accounting
- Customer-facing
 - FR/ATM/...
 - Feature set as above, plus fancy queues, etc
- Broadband aggregator
 - High scalability: sessions, ports, reconnections
 - Feature set as above
- Customer-premises (CPE)
 - 100Mbps, maybe
 - NAT, DHCP, firewall, wireless, VoIP, ...
 - Low cost, low-end, perhaps just software on a PC

Multiple router flavours

C Tr

-50k

Cisco CRS-1 Multi-shelf system

Network Design

- Whose network?
 - ISPs, IXs, enterprise, campus
 - POPs, DCs
- Many designs: flat, hierarchical, hybrids, multiple scales
- Many constraints
 - Business
 - Backwards compatibility. Who to connect. Peering.
 - Technology
 - Power directly (24x7 operation) and indirectly (cooling)
 - Port density vs. raw bandwidth
 - Software reliability
 - Hardware/software capability
 - Addressing schemes for scalability, summarization
 - Can't run feature X with feature Y on vendor C in network size N
 - Connectivity/resiliency
 - "All core routers connect to at least 2 other core routers"
 - "All edge routers connect to at least 2 core routers"

Router Configuration

- Initialization
 - Name the router, setup boot options, setup authentication options
- Configure interfaces
 - Loopback, ethernet, fibre, ATM
 - Subnet/mask, filters, static routes
 - Shutdown (or not), queueing options, full/half duplex
- Configure routeing protocols (OSPF, BGP, IS-IS, ...)
 - Process number, addresses to accept routes from, networks to advertise
- Access lists, filters, ...
 - Numeric id, permit/deny, subnet/mask, protocol, port
- Route-maps, matching routes rather than data traffic
- Other configuration aspects: traps, syslog, etc
- (Oh, and switch configuration is about as painful)

Router configuration fragments

```
hostname FOOBAR
boot system flash slot0:a-boot-image.bin
boot system flash bootflash:
logging buffered interface Loopback0
logging console
                  description router-1.network.corp.com
aaa new-model
                  ip address 10.65.21.43 255.255.255.255
aaa authenticati ,
authentication 1
                 interfac
aaa authenticati
                          router ospf 2
                  descri
                           log-adjacency-changes
aaa authorizatid
                  ip add
                           passive-interface FastEthernet0/0/0
ip tftp source-i
                  ip acc
                           passive-interface FastEthernet0/1/0
no ip domain-lod
                  ip heli
ip name-server 1
                           passive-interface FastEthernet1/0/0
                  ip pim
                           passive-interface FastEthernet1/1/0
                  ip cgm
                           passive-interface FastEthernet2/0/0
ip multicast-rou
                  ip dvm
                           passive-interface FastEthernet2/1/0
ip dvmrp route-1
                  full-di
in cof distribu
                           nassive-interface FastEthernet3/0/0
access-list 24 remark Mcast ACL
access-list 24 permit 239.255.255.254
access-list 24 permit 224.0.1.111
access-list 24 permit 239.192.0.0 0.3.255.255
access-list 24 permit 232.192.0.0 0.3.255.255
tftp-server slot1:some-other-image.bin
                                                                         00.0000.0000 0xD1 2 eq 0x42
tacacs-server host 10.65.0.2
                                                                         ff.ffff.ffff
tacacs-server key xxxxxxxx
rmon event 1 trap Trap1 description "CPU Utilization>75%" owner config
rmon event 2 trap Trap2 description "CPU Utilization>95%" owner config
```

Router Configuration

- Lots of large, fragile text files
 - 00s/000s routers, 00s/000s lines per config
 - Errors are hard to find and have non-obvious results
 - Router configuration also editable on-line
 - Order matters!
- How to keep track of them all?
 - Naming schemes, directory trees, CVS, ssh upload and atomic commit to router
 - Perhaps even a proper database

This counts as advanced!

- State of the art is pretty basic
 - Few tools to check consistency, design goals
 - Generally generate configurations from templates and have humanintensive process to control access to running configs
- Topic of current research [Feamster et al]

Contents

- Introduction
- Abstractions
- IP network components
- IP network management protocols
 - -ICMP, SNMP, NetFlow
- Pulling it all together
- An alternative approach

ICMP

- Internet Control Message Protocol [RFC792]
 - IP protocol #1
 - In-band "control"
- Variety of message types
 - echo/echo reply
 [PING (packet internet groper)]
 - time exceeded [TRACEROUTE]
 - destination unreachable, redirect
 - source quench

Ping (Packet INternet Groper)

- Test for liveness
 - ...also used to measure (round-trip) latency
- Send ICMP echo
- Valid IP host [RFC1122, RFC1123] must reply with ICMP echo response
- Subnet PING?
 - Useful but often not available/deprecated
 - "ACK" implosion could be a problem
 - RFCs ~= standards

Traceroute

- Which route do my packets take to their destination?
 - Send UDP packets with increasing time-to-live values
 - Compliant IP host must respond with ICMP "time exceeded"
 - Triggers each host along path to so respond
- Not quite that simple
 - One router, many IP addresses: which source address?
 - Router control processor, inbound or outbound interface
 - Asymmetric routes (return path != outbound path)
 - Routes change
- Do we want full-mesh host-host routes anyway?!
 - Size of data set, amount of probe traffic
 - This is topology, what about load on links?

SNMP

- Protocol to manage information tables at devices
- Provides get, set, trap, notify operations
 - get, set: read, write values
 - trap: signal a condition (e.g. threshold exceeded)
 - notify: reliable trap
- Complexity mostly in the MIB design
 - Some standard tables, but many vendor specific
 - Non-critical, so often tables populated incorrectly
 - Many tens of MIBs (thousands of lines) per device
 - Different versions, different data, different semantics
- Yet another configuration tracking problem
 - Inter-relationships between MIBs

IPFIX

- IETF working group
 - Export of flow based data out of IP network devices
 - Developing suitable protocol from Cisco NetFlow™ v9
 - [RFC3954, RFC3955]
- Statistics reporting
 - Setup template
 - Send data records matching template
- Many variables
 - Packet/flow counters, rule matches, quite flexible

Contents

- Introduction
- Abstractions
- IP network components
- IP network management protocols
- Pulling it all together
 - Network mapping, statistics gathering, control
- An alternative approach

An Hypothetical NMS

- GUI around ICMP (ping, traceroute), SNMP, etc
 - Recursive host discovery
 - Broadcast ping, ARP, default gateway: start somewhere
 - Recursively SNMP query for known hosts/connected networks
 - Ping known hosts to test liveness
 - Iterate
- Display topology: allow "drill-down" to particular devices
- Configure and monitor known devices
 - Trap, Netflow[™], syslog message destinations
 - Counter thresholds, CPU utilization threshold, fault reporting
 - Particular faults or fault patterns
- Interface statistics and graphs (MRTG)

NOC, NOC. Calling AT&T...

What are they all looking at?

http://www.stat.ee.ethz.ch/mrtg/

An Hypothetical NMS

- All very straightforward? No, not really
 - A lot of software engineering: corner cases, traceroute interpretation, NATs, etc
- Correctness
 - MIBs may contain rubbish
 - Can only view inside your network anyway
 - Tunnelled, encrypted protocols becoming prevalent
- Efficiency
 - Rate pacing discovery traffic: ping implosion/explosion
 - SNMP overloading router CPUs
- Using NMSs also not straightforward
 - How to setup "correct" thresholds?
 - How to decide when something "bad" has happened?
 - How to present (or even interpret) reams and reams of data?

Summary

- Network management is the problem of designing, building, configuring and maintaining the network
- There are many older standards and processes around this
- IP has very little inherent support for it so numerous protocols have been developed and deployed