COMP90054 - Week 9 tutorial

Prepared by Zijie Xu. Last updated: 4 October 2023

Multi-armed Bandits (MABs)

Definition

- A stochastic multi-armed bandit is a set of random variables $X_{i,t}$ where each variable represents a reward from playing arm i at time t
 - o $i \in \{1, \dots, N\}$ is the arm of the bandit
 - o $k \in \{1, \dots, K\}$ represents the index of play
- Successive plays are assumed to be independent from each other
- Each arm provides a reward drawn from an unknown probability distribution
- MAB in RL Context: At state s, the agent has a range of "arms" (a set of actions A(s)) that it can choose from, but the reward it receives from playing an arm is uncertain

MAB Strategies

- Aim: To learn $\pi(k)$, i.e. learn which arm to play at the k-th play to maximise the sum of the rewards collected over all rounds
- Problem: want to only play good actions, but don't know which ones are good
- Aim: To learn $\pi(k)$, i.e. learn which arm to play at the k-th play to maximise the sum of the rewards collected over all rounds
- Problem: want to only play good actions, but don't know which ones are good
- Intuition: find balance between
 - o exploitation: play the arms deemed as the best so far
 - o exploration: play other arms to potentially identify better arm

Idea behind some MAB strategies

- Epsilon-greedy: Explore with probability of ϵ , exploit with probability of $1-\epsilon$
- Epsilon-decreasing: Explore less often as we play more rounds (ϵ decays)
 - \circ Softmax: Probability of choosing a depends on the empirical expected reward of a, can be controlled by the temperature parameter τ
- Upper Confidence Bounds (UCB1): An asymptotically optimal approach that considers both the empirical mean reward of each arm and the uncertainty about the true mean reward, used in Upper Confidence Tree

Temporal difference reinforcement learning

Model-free reinforcement learning

- Idea: To learn a policy from the simulated episodes of the MDP problem
 - \circ e.g., learn Q(s,a) for all state-action pairs, then extract policy
- During each *episode*, starting from initial state s_0 , a simulator generates a sequence of actions, rewards, and subsequent states.
 - \circ At each state s, an action a is chosen, and reward r new state s' are observed
 - \circ Model-free RL techniques *reinforce* the Q estimates of applying a in s with the new observation
- Terminate the process if:
 - we run out of training time
 - we think our policy has converged to the optimal policy (for each new episode we see no improvement)
 - o our policy is 'good enough' (for each new episode we see minimal improvement)

Model-based RL vs Model-free RL

- Similarity: both work with MDPs
- Difference: whether they have/use knowledge on $P_a(s'|s)$ and r(s, a, s')
 - o Model-based RL uses this knowledge, e.g. value iteration
 - Model-free RL does not, and they rely on a simulator and learn through experience
- Given s and a, the simulator provides observations of s' according to $P_a(s'|s)$ and r(s,a,s')
- Model-free RL can use (but doesn't have to) use MAB strategies to select actions

Temporal difference (TD) methods

- TD methods use bootstrapping to alleviate the high variance issue in learning Q(s,a) via Monte-Carlo RL
- Bootstrapping: update value function with agent's estimates rather than waiting for actual discounted rewards to be realised
- TD methods update Q(s, a) by

$$Q(s,a) \leftarrow \underbrace{Q(s,a)}_{ ext{old value}} + \underbrace{\overbrace{lpha}^{ ext{learning rate}}}_{ ext{TD target}} \cdot \underbrace{[\overbrace{r}^{ ext{reward}} + \underbrace{\gamma}_{ ext{to vertex}} \cdot V(s')}_{ ext{TD target}} - \underbrace{\overbrace{Q(s,a)}^{ ext{do not count extra } Q(s,a)}_{ ext{Q}(s,a)}]$$

- \circ New value of Q(s,a) is a weighted average between TD target and the old value weighted by learning rate α
- Q-learning and SARSA are two examples of TD methods

Q-learning

- Idea: Estimate V(s') with $\max_{\alpha' \in A(s')} Q(s', \alpha')$
 - \circ Execute a, Observe reward r and new state s'

$$\circ \quad Q(s,a) \leftarrow Q(s,a) + \alpha \cdot \left[r + \gamma \cdot \max_{a' \in A(s')} Q(s',a') - Q(s,a)\right]$$

SARSA

- State-Action-Reward-State-Action
 - \circ s-a-r-s'-a'
- Idea: Estimate V(s') with the actual Q(s', a') obtained in simulation
 - \circ Execute a, observe reward r and new state s'
 - \circ Select a' to apply in s' (thereby determining both state and action for next step)
 - $\circ \quad Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [r + \gamma \cdot Q(s',a') Q(s,a)]$

Comparing Q-learning and SARSA

- Q-learning is off-policy
 - it uses the greedy reward estimate for next state in its update rather than following the policy
 - o it will converge to the optimal policy (assuming that all state-action pairs are sampled infinitely often), irrespective of the policy followed
- SARSA is on-policy
 - it chooses its action using the same policy used to choose the previous action, and then uses this difference to update its Q-function
 - o its learning is dependent on the policy used