15. Approximate Set Cover and Bin Packing CPSC 535

Kevin A. Wortman

This work is licensed under a Creative Commons Attribution 4.0 International License.

Set Cover: Intuition

- list of needs
- list of services
 - each service meets some of the needs
- puzzle: shortest list of products that meets all the needs?

Set Cover: Formal Definition

set cover problem

input: a universe set X, and family \mathfrak{F} of subsets of X, such that

$$X = \bigcup_{S \in \mathfrak{F}} S$$

output: a minimum size subfamily $\mathfrak{C} \subseteq \mathfrak{F}$ whose members cover all of X, so $X = \bigcup_{S \in \mathfrak{C}} S$

Application: Streaming Services

- ▶ **needs:** stream TV shows *A*, *B*, *C*, *D*, *E*, *F*
- $X = \{A, B, C, D, E, F\}$
- services: alternative streaming services; each offer only some shows
- $\mathfrak{F} = \{\{A, F\}, \{A, C, E\}, \{B, E\}, \ldots\}$
- puzzle: subscribe to smallest number of services that provide all desired shows

Application: Menu Design

- needs: menu has a food option available for various dietary needs
- ► X = {carnivore, vegan, kosher, halal, glutenfree, . . .}
- services: alternative entrees
- $\mathfrak{F} = \{\{carnivore, halal\}, \{vegan\}, \{kosher, carnivore\}, \ldots\}$
- puzzle: design a menu with the fewest number of food options so that everyone can eat something

Set Cover Hardness

- set cover is NP-complete
- baseline algorithm: for each subset C⊆ S, check if the sets in C contain all elements, keep track of the smallest such C
- ▶ $\Theta(2^n \cdot n)$ time, slow

Set Cover Approximation Algorithm

```
1: function APPROX-SET-COVER(X,\mathfrak{F})
        U_0 = \emptyset
                                              > still-uncovered elements
 2:
 4: i = 0
5: while U_i \neq \emptyset do
            // choose set with most currently-uncovered elements
6:
            Find S \in \mathfrak{F} that maximizes |S \cap U_i|
 7:
            U_{i+1} = U_i - S
8:
            \mathfrak{C} = \mathfrak{C} \cup \{S\}
9:
           i = i + 1
10:
    end while
11:
12:
        return C
13: end function
```

Efficiency Analysis

- while loop: $\Theta(n)$ iterations
 - ▶ Find: $\Theta(n)$ time (assuming fast data structure to look up U_i)
 - $V_{i+1} = U_i S: \Theta(n)$ time
- other steps: $\Theta(1)$ time each
- total time $\Theta(n^2)$
- ▶ can be sped up to $\Theta(n)$ (CLRS Exercise 35.3-3)

Approximation Ratio

Theorem: APPROX-SET-COVER is a $O(\lg n)$ -approximation algorithm

Proof sketch:

- Let \mathfrak{C}^* be the optimal cover and $k = |\mathfrak{C}|$
- \mathfrak{C} covers all of X, and each $U_i \subseteq X$, so \mathfrak{C}^* covers every U_i
- ▶ each U_i can be covered with $\leq k$ sets from \mathfrak{F}
- on average, \mathfrak{C}^* covers n/k elements/set
- ▶ so at least one set in \mathfrak{F} covers $\geq n/k$ elements
- APPROX-SET-COVER picks the set that covers the most elements, so each S covers at least n/k additional elements, and

$$|U_{i+1} \le |U_i| - |U_i|/k = |U_i|(1-1/k)$$

Approximation Ratio (continued)

$$U_{i+1} \leq |U_i|(1-1/k)$$

- ▶ algorithm stops when some $|U_i| = 0$
- as a recurrence,

$$T(n) = (1 - 1/k)n$$

- ▶ algebra and log rules show $T(n) \in O(k \lg n)$
- ▶ each iteration adds one set to C, so APPROX-SET-COVER picks O(k | g n) sets
- k is the optimal number of sets, so
- ∴ APPROX-SET-COVER is a O(lg n)-approximation algorithm

Set Cover Summary

- set cover is NP-complete, exact algorithm takes exponential time
- fast $O(\lg n)$ -approximate algorithm
- ▶ showed $\Theta(n^2)$ time
- $ightharpoonup \Theta(n)$ time is possible

Big Idea: Linear Programming Relaxation

Recall:

- linear programming with real-valued variables is fast (polynomial time)
- integer linear programming (MIP) is NP-complete and slow (exponential time)

Idea:

- formulate our problem as a MIP
- "cheat" and solve it as a LP
- round off each solution variable to the nearest integer

Big Idea: Linear Programming Relaxation

- ▶ LP relaxation: MIP formulation where no variables are required to be integer
- not correct in general
- but, sometimes we can prove an approximate performance ratio
- next: algorithm that uses LP relaxation to solve vertex cover

Review: Vertex Cover

vertex cover problem input: undirected graph G = (V, E) output: set of vertices $C \subseteq V$, of minimal size |C|, such that every edge in E is incident on at least one vertex in C

- NP-complete
- previous slides: greedy algorithm, 2-approximate, $\Theta(m+n)$ time
- goal: better performance ratio (smaller)
- expect algo. to be more complicated, slower, or both

Vertex Cover Example

Images credit: Wikipedia user Miym, CC BY-SA 3.0,

https://commons.wikimedia.org/wiki/File:Vertex-cover.svg,

Review: Formulating Vertex Cover

Variables: for each $v \in V$, create an integer variable x_v such that

$$x_v = 1 \Leftrightarrow v \in C$$

Objective: minimize

$$\sum_{v \in V} x_v$$

Constraints: $0 \le x_v \le 1 \quad \forall v \in V \quad (0 \text{ or } 1 \text{ indicator}) \\ x_u + x_v \ge 1 \quad \forall (u, v) \in E \quad (\text{each edge is covered})$

Review: Vertex Cover Outcomes

- Infeasible:
 - never happens
 - ▶ \exists a solution: setting all $x_v = 1$ satisfies all constraints
- Unbounded:
 - never happens
 - objective is bounded: the objective function is to minimize

$$\sum_{v\in V} x_v;$$

since every $x_v \ge 0$, the minimum objective value is zero, which is finite, so the program is never unbounded

▶ **Solution:** Construct *C* as

$$C = \{v \mid v \in V \text{ and } x_v = 1\}$$

Vertex Cover LP Relaxation

Variables: for each $v \in V$, create a <u>real-valued</u> variable x_v such that

$$x_v = 1 \Leftrightarrow v \in C$$

Objective: minimize

$$\sum_{v \in V} x_v$$

Constraints: $0 \le x_v \le 1$ $\forall v \in V$ (fuzzy 0 or 1 indicator) $x_u + x_v \ge 1$ $\forall (u, v) \in E$ (each edge is covered)

LP Relaxation Vertex Cover Algorithm

```
1: function APX-VC-RELAX(G = (V, E))
       C = \emptyset
 2:
3: LP = the linear program from the previous slide
 4: \bar{x} = SOLVE - LP(LP)

    ⇒ assume LP has solution

 5: for each vertex v \in V do
           if x_v \ge \frac{1}{2} then
 6:
                                                         \triangleright using x_v \in \bar{x}
               C = C \cup \{v\}
7:
           end if
8:
       end for
9.
       return C
10:
11: end function
```

Correctness

- LP is never unbounded or infeasible
- must prove that C is a valid vertex cover
- ▶ need, for each edge $\{u, v\} \in E$, that $u \in C$ or $v \in C$ (or both)
- ▶ LP relaxation has constraints $x_u + x_v \ge 1 \quad \forall (u, v) \in E \quad \text{(each edge is covered)}$
- solution \bar{x} satisfies all constraints, so

$$x_u + x_v \ge 1$$

is true and

$$x_u \ge \frac{1}{2}$$
 and $x_v \ge \frac{1}{2}$

▶ so the **for** loop adds at least one of *u*, *v* to *C*

Efficiency Analysis

- create $LP : \Theta(n+m)$
- ▶ solve *LP* : polynomial
- ▶ post-processing **for** loop: $\Theta(n)$
- total time

$$\Theta(n+m) + \Theta(\text{solve LP}) + \Theta(n) = \Theta(\text{solve LP})$$

polynomial time

Approximation Ratio

Theorem: APX-VC-RELAX is a 2-approximation algorithm Proof sketch:

- ▶ let C* be an optimal vertex cover for G
- ▶ need to prove $|C| \le 2|C^*|$
- use a "common ground" comparison between |C| and $|C^*|$
- let

$$z^*$$
 = objective function value of LP
= $\sum_{v \in V} x_v$ using each $x_v \in \bar{x}$

• we use z^* to relate |C| to $|C^*|$

Relating z^* to $|C^*|$

- $ightharpoonup z^*$ is objective value f(C) for our relaxed LP
- C^* is solution to MIP, with more constraints (integer x_v)
- ▶ so

$$z^* \le f(C^*)$$
$$= |C^*|$$

Relating z^* to |C|

• now relate z^* to |C|:

$$z^* = \sum_{v \in V} x_v$$

$$\geq \sum_{v \in V, x_v \geq 1/2} x_v$$

$$\geq \sum_{v \in V, x_v \geq 1/2} (\frac{1}{2})$$

$$= \sum_{v \in C} \frac{1}{2}$$

$$= \frac{1}{2} |C|$$

Completing the Proof of Approximation Ratio

Combine

$$z^* \leq |C^*|$$

with

$$z^* \geq \frac{1}{2}|C|$$

to obtain

$$\frac{1}{2}|C| \le z^* \le |C^*|$$

or

$$|C| \leq 2 \cdot |C^*|$$
.

Vertex Cover LP Relaxation Summary

- LP relaxation approach:
 - formulate vertex cover as MIP
 - remove integer constraints, solve as LP
 - round each solution variable to nearest integer
- same polynomial runtime as linear programming
- 2-approximation
- compared to greedy algorithm in previous slides, this algo. is
 - simpler
 - slower
- generalizes to weighted case (see textbook section 35.5)

Bin Packing: Intuition

- have a collection of objects
- want to pack them tightly into containers
- puzzle: which items go together in each container?

Bin Packing: Formal Definition

bin packing problem input: a multiset $I = \{i \in \mathbb{Q}, 0 < i \le 1\}$ of items output: a partition I_1, I_2, \ldots, I_k of I into k sets, such that the sum of each I_i is at most 1

- bin capacity is 1
- each item $i \in I$ has a fractional size
- ex. $I = \{\frac{2}{3}, \frac{1}{2}, \frac{1}{9}, \frac{1}{2}, \dots\}$
- k = number of bins used

Bin Packing Examples

Bin Packing Hardness

Bin Packing Approximation Algorithm

Efficiency Analysis

Approximation Ratio

Bin Packing Summary