Part IA - Analysis I Definitions

Lectured by W. T. Gowers

Lent 2015

Limits and convergence

Sequences and series in R and C. Sums, products and quotients. Absolute convergence; absolute convergence implies convergence. The Bolzano-Weierstrass theorem and applications (the General Principle of Convergence). Comparison and ratio tests, alternating series test.

Continuity

Continuity of real- and complex-valued functions defined on subsets of \mathbb{R} and \mathbb{C} . The intermediate value theorem. A continuous function on a closed bounded interval is bounded and attains its bounds.

Differentiability

Differentiability of functions from \mathbb{R} to \mathbb{R} . Derivative of sums and products. The chain rule. Derivative of the inverse function. Rolle's theorem; the mean value theorem. One-dimensional version of the inverse function theorem. Taylor's theorem from \mathbb{R} to \mathbb{R} ; Lagranges form of the remainder. Complex differentiation.

Power series

Complex power series and radius of convergence. Exponential, trigonometric and hyperbolic functions, and relations between them. *Direct proof of the differentiability of a power series within its circle of convergence*.

Integration

Definition and basic properties of the Riemann integral. A non-integrable function. Integrability of monotonic functions. Integrability of piecewise-continuous functions. The fundamental theorem of calculus. Differentiation of indefinite integrals. Integration by parts. The integral form of the remainder in Taylor's theorem. Improper integrals. [6]

Contents

,	Cor	envergence of sequences
	2.1	Sums, products and quotients
	2.2	Monotone-sequences property
	2.3	Cauchy sequences
	2.4	Limit supremum and infimum

1 The real number system

Definition (Field). A *field* is a set X with two binary operations + and \times that satisfies all the familiar properties satisfied by addition and multiplication in \mathbb{Q} , namely

- Associativity: $\forall a, b, c \in X$, a+(b+c)=(a+b)+c and $a\times(b\times c)=(a\times b)\times c$
- Commutativity: $\forall a, b \in X, a + b = b + a \text{ and } a \times b = b \times a$
- Identity: $\exists 0, 1 \in X$ such that $\forall a, a + 0 = a$ and $a \times 1 = a$.
- Inverses: $\forall a \in X, \exists (-a) \in X \text{ such that } a + (-a) = 0. \text{ If } a \neq 0, \text{ then } \exists a^{-1} \text{ such that } a \times a^{-1} = 1.$
- Distributivity: $\forall a, b, c \in F, a \times (b+c) = (a \times b) + (a \times c)$

Definition (Totally ordered set). An (totally) ordered set is a set X with a relation < that satisfies

- (i) Transitivity: if $x, y, z \in X$, x < y and y < z, then x < z
- (ii) Trichotomy: if $x, y \in X$, exactly one of x < y, x = y, y < x holds

Definition (Ordered field). An *ordered field* is a field \mathbb{F} with a relation < that makes \mathbb{F} into an ordered set such that

- (i) if $x, y, z \in \mathbb{F}$ and x < y, then x + z < y + z
- (ii) if $x, y, z \in \mathbb{F}$, x < y and z > 0, then xz < yz

Definition (Least upper bound). Let X be an ordered set and let $A \subseteq X$. An upper bound for A is an element $x \in X$ such that $\forall a \in A (a \leq x)$. If A has an upper bound, then we say that A is bounded above.

An upper bound x for A is a *least upper bound* or *supremum* if nothing smaller that x is an upper bound. That is, we need

- (i) $\forall a \in A(a < x)$
- (ii) $\forall y < x (\exists a \in A (a \ge y))$

We usually write $\sup A$ for the supremum of A when it exists. If $\sup A \in A$, then we call it $\max A$, the maximum of A.

Definition (Least upper bound property). An ordered field has the *least upper bound property* if every non-empty subset of \mathbb{F} that is bounded above has a supremum.

Definition (Real numbers). The *real numbers* is an ordered field with the least upper bound property.

2 Convergence of sequences

Definition (Sequence). A sequence is, formally, a function $a : \mathbb{N} \to \mathbb{R}$ (or \mathbb{C}). Usually (i.e. always), we write a_n instead of a(n). Instead of $a, (a_n), (a_n)_1^{\infty}$ or $(a_n)_{n=1}^{\infty}$ to indicate it is a sequence.

Definition (Convergence of sequence). Let (a_n) be a sequence and $\ell \in \mathbb{R}$. Then a_n converges to ℓ , tends to ℓ , or $a_n \to \ell$, if

$$\forall \varepsilon > 0 \; \exists N \; \forall n \ge N : \; |a_n - \ell| < \varepsilon.$$

Definition (Bounded sequence). A sequence (a_n) is bounded

$$\exists C \ \forall n: \ |a_n| \leq C.$$

A sequnece is eventually bounded if

$$\exists C \ \exists N \ \forall n > N : \ |a_n| < C.$$

2.1 Sums, products and quotients

Definition (Monotone sequence). A sequence (a_n) is increasing if $\forall n, a_n \leq a_{n+1}$. It is strictly increasing $a_n < a_{n+1}$ for all n. (Strictly) decreasing sequences are defined analogously.

A sequence is *(strictly) monotone* if it is (strictly) increasing or (strictly) decreasing.

2.2 Monotone-sequences property

Definition (Monotone sequences property). An ordered field has the *monotone* sequences property if every increasing sequence that is bounded above converges.

Definition (Subsequence). Let (a_n) be a sequence. A *subsequence* of (a_n) is a sequence of the form a_{n_1}, a_{n_2}, \dots , where $n_1 < n_2 < \dots$.

2.3 Cauchy sequences

Definition (Cauchy sequence). A sequence (a_n) is Cauchy if

$$\forall \varepsilon > 0 \ \exists N \ \forall p; q \ge N : \ |a_p - a_q| < \varepsilon.$$

Definition (Complete ordered field). An ordered field (with an appropriate metric) in which every Cauchy sequence converges is called *complete*

2.4 Limit supremum and infimum

Definition (Limit supremum/infimum). Let (a_n) be a bounded sequence. We define the *limit supremum* as

$$\lim_{n \to \infty} \sup a_n = \lim_{n \to \infty} \left(\sup_{m \ge n} a_m \right).$$

To see that this exists, set $b_n = \sum_{m \geq n} a_m$. Then (b_n) is decreasing since we are taking the supremum of fewer and fewer things, and is bounded below by any lower bound for (a_n) since $b_n \geq a_n$. So it converges. Similarly, we define the *limit infimum* as

$$\liminf_{n \to \infty} a_n = \lim_{n \to \infty} \left(\inf_{m \ge n} a_m \right).$$

Convergence of infinite sums 3

Definition (Convergence of infinite sums and partial sums). Let (a_n) be a real sequence. For each N, define

$$S_N = \sum_{n=1}^N a_n.$$

If the sequence (S_N) converges to some limit s, then we say that

$$\sum_{n=1}^{\infty} a_n = s,$$

and we say that the series $\sum_{n=1}^{\infty} a_n$ converges. We call S_N the Nth partial sum.