COMP 9517 Computer Vision

Image Formation

Geometry of Image Formation

Mapping between image and world coordinates

- Pinhole camera model
- Projective geometry
 - Vanishing points and lines
- Projection matrix

Image formation

Let us design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

01/03/2018 Slide source: Seitz

Pinhole camera

Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Pinhole camera

f = focal length
c = centre of the camera

Camera obscura: the pre-camera

 Known during classical period in China and Greece (e.g. Mo-Ti, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

Accidental Pinhole and Pinspeck Cameras Revealing the scene outside the picture. Antonio Torralba, William T. Freeman

First Photograph

Oldest surviving photograph

Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Camera and World Geometry

Dimensionality Reduction Machine (3D to 2D)

Projection can be tricky...

Projection can be tricky...

Projective Geometry

What is lost?

Length

Length and area are not preserved

Projective Geometry

What is lost?

Length

Angle

Projective Geometry

What is preserved?

Straight lines are still straight

Vanishing points and lines

Parallel lines in the world intersect in the image at a "vanishing point"

Vanishing points and lines

Vanishing points and lines

01/03/2018

Projection: world coordinates \rightarrow image coordinates

Projection: world coordinates → image

Projection: world coordinates \rightarrow image coordinates

Perspective Projection

- Apparent size of object depends on its distance: far objects appear smaller
- By similar triangles

$$(x', y', z') \rightarrow (f\frac{x}{z}, f\frac{y}{z}, -f)$$

Ignore the third coordinate, and get

$$(x', y') \rightarrow (f\frac{x}{z}, f\frac{y}{z})$$

Affine Projection

- Suitable when scene depth is small relative to the average distance from the camera
- Let magnification $m = -f'/z_0$ be positive constant, since z_0 is negative, i.e. treat all points in the scene as at constant distance from camera
- Leads to weak perspective projection $(x', y') = (-mx, -my), m = -f'/z_0$

Affine Projection-ctd

- Camera always remains at roughly constant distance from the scene
- Orthographic projection when m normalised to -1

$$(x', y') = (x, y), m = -1$$

Homogeneous coordinates

Converting to *homogeneous* coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x,y,z) \Rightarrow \left| egin{array}{c} x \ y \ z \ 1 \end{array} \right|$$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \begin{vmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$
COMP 9517 S1, 2018

01/03/2018

Homogeneous coordinates

Invariant to scaling

$$k \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} kx \\ ky \\ kw \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{kx}{kw} \\ \frac{ky}{kw} \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \end{bmatrix}$$

Homogeneous Coordinates

Cartesian Coordinates

Point in Cartesian is ray in Homogeneous

Projection matrix

$$x = K[R \ t]X$$

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Projection matrix

- Unit aspect ratio
- Optical center at (0,0)
- No skew

Intrinsic Assumptions Extrinsic Assumptions

K

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$
COMP 9517 S1, 2018

01/03/2018

Orthographic Projection

- Special case of perspective projection
 - Distance from the COP to the image plane image plane

- Also called "parallel projection"
$$w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Field of View (Zoom, focal length)

85mm

From London and Upton

Beyond Pinholes: Radial Distortion

Corrected Barrel Distortion

point

 Vanishing points and vanishing lines

 Pinhole camera model and camera projection matrix

Homogeneous coordinates

point

$$(x,y) \Rightarrow \left[\begin{array}{c} x \\ y \\ 1 \end{array} \right]$$

For Reading

• Szeliski Chapter 2.1

Acknowledgement

- Slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth
- Image sources credited where possible