Series

```
import pandas as pd
from pandas import Series, DataFrame
In [11]: obj = pd.Series([4, 7, -5, 3])
In [12]: obj
     0
          4
     1
          7
     2
         -5
     dtype: int64
In [13]: obj.values
     array([4, 7, -5, 3])
In [14]: obj.index
     RangeIndex(start=0, stop=4, step=1)
In [15]: obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])
In [16]: obj2
     d
          4
          7
     b
     a
         -5
     С
     dtype: int64
In [17]: obj2.index
     Index(['d', 'b', 'a', 'c'], dtype='object')
In [18]: obj2['d']
     4
In [19]: obj2['d'] = 6
In [20]: obj2[['c', 'a', 'd']]
     C
          3
         -5
```

```
d 6
     dtype: int64
In [21]: obj2[obj2 > 3]
     d
          6
          7
     b
     dtype: int64
In [22]: obj2 * 2
     d
          12
     b
          14
     а
         -10
           6
     C
     dtype: int64
In [24]: 'b' in obj2
     True
In [25]: 'e' in obj2
     False
In [26]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
In [27]: obj3 = pd.Series(sdata)
In [28]: obj3
     Ohio
               35000
     Texas
               71000
     Oregon
               16000
     Utah
                5000
     dtype: int64
In [29]: states = ['California', 'Texas', 'Oregon', 'Utah', 'Ohio']
In [30]: obj4 = pd.Series(sdata, index=states)
In [31]: obj4
     California
                       NaN
     Texas
                   71000.0
     Oregon
                   16000.0
     Utah
                   5000.0
     Ohio
                   35000.0
     dtype: float64
In [32]: pd.isnull(obj4)
```

```
California
                    True
     Texas
                   False
                   False
     Oregon
     Utah
                   False
     Ohio
                   False
     dtype: bool
In [33]: pd.notnull(obj4)
     California
                   False
     Texas
                    True
                    True
     Oregon
     Utah
                    True
     Ohio
                    True
     dtype: bool
In [37]: obj3 + obj4
     California
                         NaN
                    70000.0
     Ohio
     Oregon
                    32000.0
     Texas
                   142000.0
     Utah
                    10000.0
     dtype: float64
In [38]: obj4.name = 'population'
In [39]: obj4.index.name = 'state'
In [40]: obj4
     state
     California
                        NaN
     Texas
                   71000.0
     Oregon
                   16000.0
     Utah
                    5000.0
     Ohio
                   35000.0
     Name: population, dtype: float64
In [41]: obj
     0
          4
          7
     1
     2
         -5
          3
     dtype: int64
In [42]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan']
In [43]: obj
     Bob
              4
              7
     Steve
     Jeff
             -5
```

Ryan 3 dtype: int64

DataFrame

```
data = {'state': ['Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002, 2003],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
frame = pd.DataFrame(data)
frame
```

	state	year	pop
0	Ohio	2000	1.5
1	Ohio	2001	1.7
2	Ohio	2002	3.6
3	Nevada	2001	2.4
4	Nevada	2002	2.9
5	Nevada	2003	3.2

In [46]: frame.tail()

	state	year	pop
1	Ohio	2001	1.7
2	Ohio	2002	3.6
3	Nevada	2001	2.4
4	Nevada	2002	2.9
5	Nevada	2003	3.2

```
In [47]: pd.DataFrame(data, columns=['pop', 'state', 'year'])
```

. .

```
In [48]: frame2 = pd.DataFrame(data, columns=['year', 'state', 'debt', 'pop'],
....: index=['one', 'two', 'three', 'four',
....: 'five', 'six'])
```

frame2

	year	state	debt	pop
one	2000	Ohio	NaN	1.5
two	2001	Ohio	NaN	1.7
three	2002	Ohio	NaN	3.6
four	2001	Nevada	NaN	2.4
five	2002	Nevada	NaN	2.9
six	2003	Nevada	NaN	3.2

frame2.columns

```
Index(['year', 'state', 'debt', 'pop'], dtype='object')
```

In [51]: frame2['state']

one Ohio
two Ohio
three Ohio
four Nevada
five Nevada
six Nevada

Name: state, dtype: object

In [52]: frame2.debt

one NaN two NaN three NaN four NaN six NaN

Name: debt, dtype: object

In [53]: frame2.loc['three']

year 2002 state Ohio debt NaN pop 3.6

Name: three, dtype: object

In [54]: frame2['debt'] = 16.5

In [55]: frame2

	year	state	debt	pop
one	2000	Ohio	16.5	1.5
two	2001	Ohio	16.5	1.7
three	2002	Ohio	16.5	3.6
four	2001	Nevada	16.5	2.4
five	2002	Nevada	16.5	2.9
six	2003	Nevada	16.5	3.2

import numpy as np

In [56]: frame2['debt'] = np.arange(6.)

In [57]: frame2

	year	state	debt	рор
one	2000	Ohio	0.0	1.5
two	2001	Ohio	1.0	1.7
three	2002	Ohio	2.0	3.6
four	2001	Nevada	3.0	2.4
five	2002	Nevada	4.0	2.9
six	2003	Nevada	5.0	3.2

In [58]: val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])

In [59]: frame2['debt'] = val

In [60]: frame2

	year	state	debt	pop
one	2000	Ohio	NaN	1.5
two	2001	Ohio	-1.2	1.7
three	2002	Ohio	NaN	3.6
four	2001	Nevada	-1.5	2.4
five	2002	Nevada	-1.7	2.9
six	2003	Nevada	NaN	3.2

In [61]: frame2['eastern'] = frame2.state == 'Ohio'
frame2

	year	state	debt	pop	eastern
one	2000	Ohio	NaN	1.5	True
two	2001	Ohio	-1.2	1.7	True
three	2002	Ohio	NaN	3.6	True
four	2001	Nevada	-1.5	2.4	False
five	2002	Nevada	-1.7	2.9	False
six	2003	Nevada	NaN	3.2	False

```
In [63]: del frame2['eastern']
```

In [64]: frame2.columns

```
Index(['year', 'state', 'debt', 'pop'], dtype='object')
```

```
In [65]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},
....: 'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
In [66]: frame3 = pd.DataFrame(pop)
```

In [67]: frame3

	Nevada	Ohio
2001	2.4	1.7
2002	2.9	3.6
2000	NaN	1.5

In [68]: frame3.T

In [70]: pdata = {'Ohio': frame3['Ohio'][1:2],
....: 'Nevada': frame3['Nevada'][2:3]}

In [71]: pd.DataFrame(pdata)

	Ohio	Nevada
2000	NaN	NaN
2002	3.6	NaN

```
In [72]: frame3.index.name = 'year'; frame3.columns.name = 'state'
In [73]: frame3
```

year		
2001	2.4	1.7
2002	2.9	3.6
2000	NaN	1.5

state Nevada Ohio

Index Objects

Reindexing

```
In [91]: obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])
https://colab.research.google.com/drive/1Q5chql r3BDnWXoFsFYA8A5Zo9nlHpx0#printMode=true
```

```
In [92]: obj
     d
          4.5
     b
          7.2
         -5.3
     а
          3.6
     C
     dtype: float64
In [93]: obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])
In [94]: obj2
         -5.3
     а
     b
          7.2
     С
          3.6
     d
          4.5
     e
          NaN
     dtype: float64
In [95]: obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
In [96]: obj3
     0
            blue
          purple
     2
          yellow
     dtype: object
In [97]: obj3.reindex(range(6), method='ffill')
            blue
     0
     1
            blue
     2
          purple
     3
          purple
     4
          yellow
          yellow
     dtype: object
import numpy as np
In [98]: frame = pd.DataFrame(np.arange(9).reshape((3, 3)), index=['a', 'c', 'd'], columns=['
In [99]: frame
         Ohio Toyas California
```

	OUTO	rexas	California
а	0	1	2
С	3	4	5
d	6	7	8

```
In [100]: frame2 = frame.reindex(['a', 'b', 'c', 'd'])
```

In [101]: trame2

	Ohio	Texas	California
а	0.0	1.0	2.0
b	NaN	NaN	NaN
С	3.0	4.0	5.0
d	6.0	7.0	8.0

```
In [102]: states = ['Texas', 'Utah', 'California']
In [103]: frame.reindex(columns=states)
```

Dropping Entries from an Axis

```
In [105]: obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])
In [106]: obj
          0.0
     а
          1.0
     C
          2.0
     d
          3.0
          4.0
     dtype: float64
In [107]: new_obj = obj.drop('c')
In [108]: new_obj
          0.0
     а
     b
          1.0
     d
          3.0
          4.0
     dtype: float64
In [110]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
....: index=['Ohio', 'Colorado', 'Utah', 'New York'],
....: columns=['one', 'two', 'three', 'four'])
In [111]: data
```

	one	two	three	four
Ohio	0	1	2	3
Colorado	4	5	6	7
Utah	8	9	10	11
New York	12	13	14	15

```
In [112]: data.drop(['Colorado', 'Ohio'])
```

	one	two	three	four
Utah	8	9	10	11
New York	12	13	14	15

In [114]: data.drop(['two', 'four'], axis='columns')

	one	three
Ohio	0	2
Colorado	4	6
Utah	8	10
New York	12	14

obj.drop('b')

d

3.0 dtype: float64

C 2.0

4.0

dtype: float64

Indexing, Selection, and Filtering

```
In [117]: obj = pd.Series(np.arange(4.), index=['a', 'b', 'c', 'd'])
In [118]: obj
     а
          0.0
     b
          1.0
     С
          2.0
          3.0
     dtype: float64
In [121]: obj[1:3]
     b
          1.0
     C
          2.0
     dtype: float64
In [123]: obj[[1, 3]]
     b
          1.0
```

```
In [124]: obj[obj < 3]</pre>
          0.0
     а
     b
          1.0
          2.0
     C
     dtype: float64
In [125]: obj['a':'c']
          0.0
     а
     b
          1.0
          2.0
     dtype: float64
In [126]: obj['b':'c'] = 5
In [127]: obj
          0.0
     а
     b
          5.0
     С
          5.0
          3.0
     dtype: float64
In [128]: data = pd.DataFrame(np.arange(16).reshape((4, 4)),
....: index=['Ohio', 'Colorado', 'Utah', 'New York'],
....: columns=['one', 'two', 'three', 'four'])
In [129]: data
```

	one	two	three	four
Ohio	0	1	2	3
Colorado	4	5	6	7
Utah	8	9	10	11
New York	12	13	14	15

	three	one
Ohio	2	0
Colorado	6	4
Utah	10	8

In [132]: data[:2]

	one	two	three	four
Ohio	0	1	2	3
Colorado	4	5	6	7

In [133]: data[data['three'] > 5]

	one	two	three	four
Colorado	4	5	6	7
Utah	8	9	10	11
New York	12	13	14	15

In [134]: data < 5

	one	two	three	four
Ohio	True	True	True	True
Colorado	True	False	False	False
Utah	False	False	False	False
New York	False	False	False	False

In [135]: data[data < 5] = 0

In [136]: data

	one	two	three	four
Ohio	0	0	0	0
Colorado	0	5	6	7
Utah	8	9	10	11
New York	12	13	14	15

Selection with loc and iloc

```
ser = pd.Series(np.arange(3.))
ser

     0     0.0
     1     1.0
     2     2.0
     dtype: float64

ser[-1]
```

```
ValueError
                                               Traceback (most recent call last)
     /usr/local/lib/python3.6/dist-packages/pandas/core/indexes/range.py in get_loc(self,
     key, method, tolerance)
In [145]: ser2 = pd.Series(np.arange(3.), index=['a', 'b', 'c'])
In [146]: ser2[-1]
     2.0
     The shows exception was the direct sauce of the following exception:
In [147]: ser[:1]
          0.0
     0
     dtype: float64
     key, method, toterance)
In [148]: ser.loc[:1]
     0
          0.0
     1
          1.0
     dtype: float64
     Reyenmon. -1
```

Arithmetic and Data Alignment

```
In [150]: s1 = pd.Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])
In [151]: s2 = pd.Series([-2.1, 3.6, -1.5, 4, 3.1],
....: index=['a', 'c', 'e', 'f', 'g'])
In [152]: s1
          7.3
     а
         -2.5
     С
          3.4
     d
     e
          1.5
     dtype: float64
s2
         -2.1
     а
         3.6
     C
         -1.5
     e
     f
          4.0
          3.1
     dtype: float64
In [154]: s1 + s2
          5.2
     а
     С
          1.1
     d
          NaN
          0.0
     e
```

```
g NaN
dtype: float64
```

```
In [155]: df1 = pd.DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),
....: index=['Ohio', 'Texas', 'Colorado'])
In [156]: df2 = pd.DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),
....: index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [157]: df1
```

	b	C	d
Ohio	0.0	1.0	2.0
Texas	3.0	4.0	5.0
Colorado	6.0	7.0	8.0

df2

	b	d	е
Utah	0.0	1.0	2.0
Ohio	3.0	4.0	5.0
Texas	6.0	7.0	8.0
Oregon	9.0	10.0	11.0

In [159]: df1 + df2

	b	С	d	e
Colorado	NaN	NaN	NaN	NaN
Ohio	3.0	NaN	6.0	NaN
Oregon	NaN	NaN	NaN	NaN
Texas	9.0	NaN	12.0	NaN
Utah	NaN	NaN	NaN	NaN

```
In [165]: df1 = pd.DataFrame(np.arange(12.).reshape((3, 4)),
....: columns=list('abcd'))
In [166]: df2 = pd.DataFrame(np.arange(20.).reshape((4, 5)),
....: columns=list('abcde'))
In [167]: df2.loc[1, 'b'] = np.nan
In [168]: df1
```

	а	b	C	d
0	0.0	1.0	2.0	3.0
1	4.0	5.0	6.0	7.0
2	8.0	9.0	10.0	11.0

df2

	a	b	С	d	е
0	0.0	1.0	2.0	3.0	4.0
1	5.0	NaN	7.0	8.0	9.0
2	10.0	11.0	12.0	13.0	14.0
3	15.0	16.0	17.0	18.0	19.0

In [170]: df1 + df2

	a	b	С	d	е
0	0.0	2.0	4.0	6.0	NaN
1	9.0	NaN	13.0	15.0	NaN
2	18.0	20.0	22.0	24.0	NaN
3	NaN	NaN	NaN	NaN	NaN

In [171]: df1.add(df2, fill_value=0)

	a	b	С	d	е
0	0.0	2.0	4.0	6.0	4.0
1	9.0	5.0	13.0	15.0	9.0
2	18.0	20.0	22.0	24.0	14.0
3	15.0	16.0	17.0	18.0	19.0

In [174]: df1.reindex(columns=df2.columns, fill_value=0)

- - - - -

Operations between DataFrame and Series

```
In [175]: arr = np.arange(12.).reshape((3, 4))
In [176]: arr
    array([[ 0., 1., 2., 3.],
           [ 4., 5., 6., 7.],
            [8., 9., 10., 11.]])
In [177]: arr[0]
    array([0., 1., 2., 3.])
In [178]: arr - arr[0]
    array([[0., 0., 0., 0.],
           [4., 4., 4., 4.],
            [8., 8., 8., 8.]])
In [179]: frame = pd.DataFrame(np.arange(12.).reshape((4, 3)),
....: columns=list('bde'),
....: index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [180]: series = frame.iloc[0]
In [181]: frame
               b
                     d
                          е
                   1.0
                        2.0
       Utah
              0.0
       Ohio
              3.0 4.0
                       5.0
      Texas
              6.0
                  7.0
                       8.0
      Oregon 9.0 10.0 11.0
In [182]: series
    b
         0.0
    d
         1.0
         2.0
    Name: Utah, dtype: float64
In [183]: frame - series
```

```
        b
        d
        e

        Utah
        0.0
        0.0
        0.0

        Ohio
        3.0
        3.0
        3.0

        Texas
        6.0
        6.0
        6.0
```

```
In [184]: series2 = pd.Series(range(3), index=['b', 'e', 'f'])
In [185]: frame + series2
```

	b	d	е	f
Utah	0.0	NaN	3.0	NaN
Ohio	3.0	NaN	6.0	NaN
Texas	6.0	NaN	9.0	NaN
Oregon	9.0	NaN	12.0	NaN

```
In [186]: series3 = frame['d']
```

In [187]: frame

	b	d	е
Utah	0.0	1.0	2.0
Ohio	3.0	4.0	5.0
Texas	6.0	7.0	8.0
Oregon	9.0	10.0	11 0

```
In [188]: series3
```

Utah 1.0 Ohio 4.0 Texas 7.0 Oregon 10.0

Name: d, dtype: float64

In [189]: frame.sub(series3, axis='index')

h d a

Function Application and Mapping

```
In [190]: frame = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'),
....: index=['Utah', 'Ohio', 'Texas', 'Oregon'])
In [191]: frame
```

	b	d	e
Utah	0.800704	0.055542	-1.171911
Ohio	-1.587904	-0.706285	-1.309765
Texas	-0.976592	-0.381089	-1.638524
Oregon	-0.822151	-0.737718	0.266883

In [192]: np.abs(frame)

	b	d	е
Utah	0.800704	0.055542	1.171911
Ohio	1.587904	0.706285	1.309765
Texas	0.976592	0.381089	1.638524
Oregon	0.822151	0.737718	0.266883

```
b 2.388608
d 0.793259
e 1.905408
dtype: float64
```

Sorting and Ranking

```
In [201]: obj = pd.Series(range(4), index=['d', 'a', 'b', 'c'])
In [202]: obj.sort_index()
```

```
b
         2
         3
     C
    d
         0
    dtype: int64
In [203]: frame = pd.DataFrame(np.arange(8).reshape((2, 4)),
....: index=['three', 'one'],
....: columns=['d', 'a', 'b', 'c'])
In [204]: frame.sort_index()
            d a b c
      one
           4 5 6 7
     three 0 1 2 3
In [205]: frame.sort_index(axis=1)
            a b c d
     three 1 2 3 0
      one 5 6 7 4
In [207]: obj = pd.Series([4, 7, -3, 2])
In [208]: obj.sort_values()
    2
        -3
    3
         2
    0
         4
         7
     1
    dtype: int64
In [209]: obj = pd.Series([4, np.nan, 7, np.nan, -3, 2])
In [210]: obj.sort_values()
    4
         -3.0
    5
         2.0
    0
         4.0
    2
         7.0
    1
         NaN
         NaN
    dtype: float64
In [211]: frame = pd.DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]})
In [212]: frame
```

```
b a
      0
         4 0
      1 7 1
     2 -3 0
     3
        2 1
In [213]: frame.sort_values(by='b')
         b a
     2 -3 0
      3
        2 1
      0
        4 0
      1 7 1
In [214]: frame.sort_values(by=['a', 'b'])
In [215]: obj = pd.Series([7, -5, 7, 4, 2, 0, 4])
In [216]: obj.rank()
    0
          6.5
    1
          1.0
    2
         6.5
    3
         4.5
    4
         3.0
     5
          2.0
          4.5
    dtype: float64
In [217]: obj.rank(method='first')
    0
          6.0
    1
          1.0
     2
          7.0
    3
         4.0
    4
          3.0
     5
          2.0
          5.0
    dtype: float64
In [219]: frame = pd.DataFrame({'b': [4.3, 7, -3, 2], 'a': [0, 1, 0, 1],
....: 'c': [-2, 5, 8, -2.5]
In [220]: frame
In [221]: frame.rank(axis='columns')
```

Axis Indexes with Duplicate Labels

```
In [222]: obj = pd.Series(range(5), index=['a', 'a', 'b', 'b', 'c'])
In [223]: obj
In [224]: obj.index.is_unique
In [225]: obj['a']
In [227]: df = pd.DataFrame(np.random.randn(4, 3), index=['a', 'a', 'b', 'b'])
In [228]: df
In [229]: df.loc['b']
```