Integration of AI and R Programming

Dadong Zhang

Demonstration of inplementing OpenAI in R programming for generating neat document in PDF, Presentation, and Word.

```
rm(list = ls())
library(tidyverse)
library(ggplot2)
library(readxl)
library(writexl)
library(httr)
library(jsonlite)

Attaching package: 'jsonlite'
The following object is masked from 'package:purrr':
    flatten

library(flextable)

Attaching package: 'flextable'
The following object is masked from 'package:purrr':
    compose
```

```
Attaching package: 'table1'
The following objects are masked from 'package:base':
    units, units<-
set.seed(123)
options(width = 70)
source("src/func.R")
Ask AI to generate a dummey patient characteristic, demogrphaic, baseline,
treatment, and binary clinical response data set
question <- "Can you give R code to generate a dummy data frame for 100
opatients with their characteristics such as gender, age, bmi, height,
→ race, baseline, treatment, and binary clinical response data set?"
result1 <- chatgpt_query_with_history(question)</pre>
cat("Assistant's answer:\n", result1$answer, "\n")
Assistant's answer:
 Sure! Here is R code to generate a dummy data frame for 100 patients with the characteristic
```R
Set seed for reproducibility
set.seed(123)
Generate dummy data for 100 patients
gender <- sample(c("Male", "Female"), 100, replace = TRUE)</pre>
age <- round(rnorm(100, mean = 50, sd = 10))
bmi \leftarrow round(rnorm(100, mean = 25, sd = 5), 1)
height \leftarrow round(rnorm(100, mean = 170, sd = 10), 1)
race <- sample(c("White", "Black", "Asian", "Hispanic"), 100, replace = TRUE)</pre>
```

library(table1)

treatment <- sample(c("Placebo", "Drug A", "Drug B"), 100, replace = TRUE)

baseline <- round(runif(100, min = 100, max = 200), 1)

```
clinical_response <- sample(c(0, 1), 100, replace = TRUE)
Create a data frame
patients <- data.frame(Gender = gender, Age = age, BMI = bmi, Height = height, Race = race,</pre>
 Baseline = baseline, Treatment = treatment, Clinical_Response = cl
Display the first few rows of the data frame
head(patients)
This code will create a data frame `patients` with 100 rows and the following columns: Gende:
Optionally, extract R code:
eval(parse(text = extract_r_code(result1)))
 Gender Age BMI Height
 Race Baseline Treatment
 Male 53 28.9 166.2
 147.1
 Black
 Placebo
 Male 50 28.8 164.4
 136.6 Placebo
 White
 Male 50 26.7 166.6
 White 112.1
 Drug A
4 Female 64 20.0 170.9
 Asian 104.7
 Drug B
 Male 48 24.4 186.0 Hispanic
 126.3
 Drug B
6 Female 65 23.6 169.1
 196.9
 White
 Drug A
 Clinical_Response
1
2
 0
 0
3
4
 0
5
 0
 0
6
```

## Continue asking AI to make a characteristics table for the patients betwee treatment

```
Assistant's answer:

Sure! To generate a patient characteristics table using the `table1` package in R between the stable of the stable of the patient characteristics table between treatment groups table1("Gender + Age + BMI + Height + Race + Baseline + Clinical_Response | Treatment, data ...

In this code:

- `~ Gender + Age + BMI + Height + Race + Baseline + Clinical_Response | Treatment` specified - `data = patients` specifies that the data for the analysis is stored in the `patients` data.

When you run this code, you will get a table summarizing the patient characteristics by treatment.
```

eval(parse(text = extract\_r\_code(result2)))

	Drug A	Drug B	Placebo	Overall
	(N=35)	(N=38)	(N=27)	(N=100)
Gender				
Female	14 (40.0%)	18 (47.4%)	$11 \ (40.7\%)$	43~(43.0%)
Male	21~(60.0%)	20~(52.6%)	16 (59.3%)	57 (57.0%)
$\mathbf{Age}$				
Mean (SD)	48.5 (10.3)	50.0(9.17)	49.8 (9.65)	49.5 (9.62)
Median [Min, Max]	48.0 [27.0, 72.0]	49.5 [35.0, 71.0]	51.0 [29.0, 69.0]	49.5 [27.0, 72.0]
BMI				
Mean (SD)	25.4(3.86)	24.5 (5.40)	25.4(4.64)	25.1(4.68)
Median [Min, Max]	25.3 [18.2, 33.4]	23.2 [18.4, 41.2]	25.5 [18.4, 34.8]	24.1 [18.2, 41.2]
Height				
Mean (SD)	173 (9.98)	170 (10.1)	170 (9.53)	171 (9.92)
Median [Min, Max]	174 [153, 190]	171 [150, 193]	170 [153, 190]	171 [150, 193]
Race				
Asian	5~(14.3%)	10~(26.3%)	6~(22.2%)	$21\ (21.0\%)$
Black	5 (14.3%)	9~(23.7%)	8~(29.6%)	$22\ (22.0\%)$
Hispanic	11 (31.4%)	9~(23.7%)	7~(25.9%)	27 (27.0%)
White	$14 \ (40.0\%)$	10~(26.3%)	6~(22.2%)	30 (30.0%)
Baseline				
Mean (SD)	152 (30.6)	147 (30.1)	147 (26.3)	149(29.1)
Median [Min, Max]	157 [100, 199]	149 [101, 199]	149 [101, 181]	152 [100, 199]
$Clinical\_Response$				
Mean (SD)	$0.457 \ (0.505)$	$0.500 \ (0.507)$	$0.444 \ (0.506)$	$0.470 \ (0.502)$
Median [Min, Max]	0 [0, 1.00]	0.500 [0, 1.00]	0 [0, 1.00]	0 [0, 1.00]

# Continue asking AI to make a bar plot for the response rate between the treatment groups

```
question3 <- "Can you give me the R code to make a barplot for the response
rates between treatment groups?"
result3 <- chatgpt_query_with_history(question3, history = result1$history)
cat("Assistant's answer:\n", result3$answer, "\n")</pre>
```

#### Assistant's answer:

Sure! Here is the R code to create a barplot showing the response rates between different to

This code will generate a barplot displaying the clinical response rates for each treatment ;

```
eval(parse(text = extract_r_code(result3)))
```



# Continue asking AI to statistical test for the response rate between the treatment groups

```
question4 <- "Can you give me the R code to evaluate statistical differences
the response rates between treatment groups?"
result4 <- chatgpt_query_with_history(question4, history = result1$history)</pre>
cat("Assistant's answer:\n", result4$answer, "\n")
Assistant's answer:
 Sure! To evaluate statistical differences in response rates between treatment groups, you can
Create a contingency table of Treatment and Clinical_Response
cont_table <- table(patients$Treatment, patients$Clinical_Response)</pre>
Perform a chi-squared test
chi_test <- chisq.test(cont_table)</pre>
Display the results
print(chi_test)
This code will create a contingency table of Treatment and Clinical_Response in the `patients
eval(parse(text = extract_r_code(result4)))
 Pearson's Chi-squared test
data: cont_table
X-squared = 0.23131, df = 2, p-value = 0.8908
```