第三次习题课

王沛林

Question 1. 设 G 为一个群,Z(G), Inn(G), Aut(G) 的关系。(周三题 3 与周五题 11)

Proof. 设 σ 为如下定义的群同态

$$\sigma: G \longrightarrow \operatorname{Aut}(G)$$

$$g \longmapsto \sigma_g: x \longmapsto gxg^{-1}$$

 $(1){\rm ker}\,\sigma=Z(G)\text{, }G/Z(G)\cong {\rm Inn}(G)$

由定义可知 $\operatorname{im} \sigma = \operatorname{Inn}(G)$, 考察 $\ker \sigma$

$$g \in \ker \sigma \iff \sigma_g = id$$

$$\iff gxg^{-1} = x, \ \forall x \in G$$

$$\iff gx = xg, \ \forall x \in G$$

$$\iff g \in Z(G)$$

即 $\ker \sigma = Z(G)$, 由第一同态基本定理即有 $G/Z(G) \cong \operatorname{Inn}(G)$ 。

(2) 若 G/Z(G) 为循环群,则 G 为阿贝尔群。

不妨设 $G/Z(G) = \{Z(G), aZ(G), \cdots, a^{n-1}Z(G)\}$

则 $\forall g_1, g_2 \in G$, 有 $g_1 = a^i x, g_2 = a^j y$, 其中 $x, y \in Z(G)$,

有 $g_1g_2 = a^ixa^jy = a^{i+j}xy = g_2g_1$, 于是 G 为阿贝尔群。

(3) 若 G 非阿贝尔群,则 Aut(G) 非循环群。

设则 $\operatorname{Aut}(G)$ 为循环群,由于 $\operatorname{Inn}(G) \leq \operatorname{Aut}(G)$,从而 $\operatorname{Inn}(G)$ 为循环群。由 (1),我们有 $G/Z(G) \cong \operatorname{Inn}(G)$,从而 G/Z(G) 为循环群,由 (2),G 为循环群,矛盾。

Lemma 0.1. $\forall A \in T_n(\mathbb{R})$ (可逆上三角矩阵群),A 为正交矩阵当且仅当 A 为对角阵,且对角元为 ± 1 。

Proof. 利用 $AA^t = I$ 即可证明。

Question 2. 求 $GL_n(\mathbb{R})$ 关于 $O_n(\mathbb{R})$ 的右陪集代表元。

Date: 2023 年 4 月 8 日.

2 王沛林

Proof. 对 $\forall A \in GL_n(\mathbb{R})$,由 Gram-Schmidt 正交化,有 A = BU,其中 $B \in O_n(\mathbb{R}), U \in GL_n(\mathbb{R})$ 。右陪集代表元类应在 $T_n(\mathbb{R})$ 中找。

下证: $\forall M_1, M_2 \in T_n(\mathbb{R})$,且 $M_1 \neq M_2$,则 $M_1 M_2^{-1} \notin O_n(\mathbb{R})$ 当且仅当 M_1, M_2 主对角元大于 0。

(\iff) 若 $M_1M_2^{-1} \in O_n(\mathbb{R})$ 。由于 M_1, M_2 主对角元大于 0,由引理只能有 $M_1M_2^{-1} = I$,即 $M_1 = M_2$,矛盾。

 (\Longrightarrow) 若允许 M_1, M_2 对角线小于 0,取 $M_1 = 2I, M_2 = -2I$,此时 $M_1 M_2^{-1} = -I$,矛盾。

综上, $GL_n(\mathbb{R})$ 关于 $O_n(\mathbb{R})$ 的右陪集代表元为全体主对角元大于 0 的可逆上三角矩阵。

Question 3. 求 $GL_n(\mathbb{Z}/p^m\mathbb{Z})$ 的阶。

Proof. (1)m = 1 情形。

Way 1:

考虑矩阵的列向量选择。矩阵第一列有 p^n-1 种取法,因矩阵可逆第二列不是第一列的倍数,有 p^n-p 种取法,同理,第三列不为前两列的线性组合,有 p^n-p^2 种取法,以此类推即可得到群的阶为 $\prod_{i=0}^{n-1}(p^n-p^i)$ 。

Way 2:

 $(\mathbb{Z}/p\mathbb{Z})^n$ 构成线性空间,一般线性群是线性空间上的自同构群,有

$$\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})^n \cong GL_n(\mathbb{Z}/p\mathbb{Z})$$

即计算 $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})^n$ 的阶即可。自同构由生成元确定,考虑自同构需要考虑 $\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})^n$ 的生成元。除单位元外所有元的阶为 p,第一个生成元可取除 单位外的所有元,有 p^n-1 种取法,第二个要在不含第一个元生成类的元素中取,共 p^n-p 种取法,依次类推,第 m 个生成元有 p^n-p^m 种取法。自同构把一组生成元映到一组生成元,有

$$|GL_n(\mathbb{Z}/p\mathbb{Z})| = |\operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})^n| = \prod_{i=0}^{n-1} (p^n - p^i)$$

(2)m > 1情形。

考虑群同态

$$P: \mathbb{Z}/p^{m+1}\mathbb{Z} \longrightarrow \mathbb{Z}/p^m\mathbb{Z}$$

$$a \mod p^{m+1} \longmapsto a \mod p^m$$

这个同态诱导一般线性群上的同态 $P^*: GL_n(\mathbb{Z}/p^{m+1}\mathbb{Z}) \longrightarrow GL_n(\mathbb{Z}/p^m\mathbb{Z})$,根据第一同态基本定理,有 $|GL_n(\mathbb{Z}/p^{m+1}\mathbb{Z})| = |GL_n(\mathbb{Z}/p^m\mathbb{Z})| \cdot |\ker P^*|$ 。考虑 $\ker P^*$,

$$A = (a_{ij}) \in \ker P^* \iff a_{ij} \equiv \delta_{ij} \mod p^m$$

从而每个 a_{ij} 有 p 种选择,有 $|\ker P^*|=p^{n^2}$ 。从而有 $|GL_n(\mathbb{Z}/p^m\mathbb{Z})|=p^{(m-1)n^2}\prod_{i=0}^{n-1}(p^n-p^i)$

Remark 0.2. 对于一般的有限阿贝尔群 $\mathbb{Z}/N\mathbb{Z}$,后面会学到有限阿贝尔群的结构定理,将之分解即可计算 $GL_n(\mathbb{Z}/N\mathbb{Z})$ 的阶。