Diagramas de Esforços Internos

Prof. Eduardo Lenz

7 de agosto de 2025

Capítulo 1

Introdução

Este material tem como objetivo apresentar um estudo sobre a transmissão de esforços no interior de corpos. Esta é a primeira etapa para entendermos como os esforços externos se distribuem no interior do corpo em estudo.

A versão atual do documento está sendo revisada, assim como as figuras. A ultima versão pode ser sempre encontrada em https://github.com/CodeLenz/Notas-de-aula/MSO1

Capítulo 2

Esforço Cortante

2.1 Definição

Tomemos como exemplo a estrutura

Ao aplicarmos um carregamento sobre a estrutura, essa irá se deformar. Isto ocorre pois as diferentes regiões do corpo exercem esforços umas sobre as outras e o corpo assume uma posição de equilíbrio diferente de quando não existiam esforços externos. Imaginando como o esforço externo se distribui, podemos visualizar o processo de transmissão de esforços. Para isto, vamos exagerar um pouco a posição final da estrutura e podemos visualizar o efeito de um dos esforços que atuam em estruturas: o **esforço cortante**. Para entender o que é o esforço cortante, podemos estudar o diagrama de corpo livre de um pequeno pedaço da estrutura

em que podemos verificar que para o pedaço em destaque estar em equilíbrio

$$\sum F_y = 0 \rightarrow V_y^1 + V_y^2 + \text{Esforços verticais} = 0.$$

A forca V_y que surge de cada um dos lados do elemento é chamada de esforço cortante, pois tende a 'cortar' o material na direção de Y. Os esforços cortantes tem como significado a força vertical (no caso na direção de Y) que o lado (esquerdo ou direito) da estrutura faz sobre o pedaço de material considerado. Portanto, o conhecimento dos esforços cortantes é fundamental para entendermos as solicitações que ocorrem dentro de um corpo.

Convenção de sinal para cortante positivo: toda vez que a parte da direita da estrutura realiza um esforço vertical no sentido positivo (do eixo *Y*), dizemos que o esforço cortante é positivo. Por equilíbrio, temos que a parte da esquerda da estrutura realiza um esforço cortante no sentido negativo do eixo vertical. Assim, considerando um pedaço de material, temos as seguintes opções

2.1.1 Exemplo

Um pino cilíndrico segura duas chapas. Ao puxarmos cada uma das chapas em direções opostas, o pino sofrerá um esforço de corte. A figura ilustra o esforço cortante que a parte 1 faz sobre a parte 2 (cortante *a*) e o esforço cortante que a parte 2 faz sobre a parte 1 (cortante *b*).

2.2 Obtenção da distribuição de esforços cortantes em uma estrutura

Considere o seguinte exemplo, de uma viga engastada submetida a uma força concentrada

Inicialmente, determinamos as reações que atuam no engaste. Como o engaste está restringindo 3 movimentos (graus de liberdade), teremos 3 reações

O equilíbrio estático é descrito por um equilíbrio vetorial de forças

$$\sum \mathbf{F} = R_x \mathbf{i} + R_y \mathbf{j} - F \mathbf{i} = \mathbf{0}$$

e um equilíbrio vetorial de momentos em relação a um ponto

$$\sum \mathbf{M}_{o} = M_{r}\mathbf{k} + \mathbf{Li} \times -F\mathbf{j} = \mathbf{0}$$

que resulta em três equações escalares, com resposta

$$\sum F_x = 0 \rightarrow R_x = 0$$

$$\sum F_y = 0 \rightarrow R_y = F$$

$$\sum M_0 = 0 \rightarrow M_r = FL.$$

Como o objetivo é estudar a distribuição de esforços cortantes, fazemos um corte hipotético no corpo, substituindo a parte da direita do corpo por um esforço cortante que represente a ação da parte da direita da estrutura sobre a parte da esquerda. Para exemplificar o conceito, vamos estudar o que ocorre a uma distância $\frac{L}{3}$ do engaste

Substituindo toda a parte a direita do corte pela ação que esta faz sobre a seção em x = L/3, utilizamos os esforços internos N, esforço normal, V_y , esforço cortante e M_z , momento fletor, de acordo com o DCL

Assim, como a estrutura está em equilíbrio,

$$\sum F_y = 0 \to F + V_y = 0$$

ou seja,

$$V_{y} = -F$$

em x = L/3, indicando que a parte da direita faz um esforço cortante de valor F, para baixo. Por definição, esse cortante é negativo. Pode-se observar, também, que para qualquer corte realizado entre x = 0 e x = L, o valor do esforço cortante será o mesmo, pois não existem forças verticais aplicadas ao longo do corpo, somente nas extremidades. Isto quer dizer que a equação de equilíbrio acima não se altera para diferentes valores de x.

Graficamente, ilustramos a distribuição de esforços cortantes com um diagrama, chamado de diagrama de esforços cortantes

2.2.1 Exemplo

Seja a viga engastada submetida a duas forças verticais

Novamente, iniciamos o problema com a determinação das reações nos apoios (no caso, o engaste). Para o problema em questão,

$$\sum \mathbf{F} = R_x \mathbf{i} + R_y \mathbf{j} + 200 \mathbf{j} - 100 \mathbf{j} = \mathbf{0}$$

e

$$\sum \mathbf{M}_{o} = M_{r}\mathbf{k} + \frac{L}{2}\mathbf{i} \times 200\mathbf{j} + L\mathbf{i} \times -100\mathbf{j} = \mathbf{0}$$

tal que

$$\sum F_x = 0 \rightarrow R_x = 0$$

$$\sum F_y = 0 \rightarrow R_y = -100$$

$$\sum M_0 = 0 \rightarrow M_r = 0$$

Para obtermos o diagrama de esforços cortantes no corpo em estudo, fazemos um corte hipotético no corpo, substituindo a parte retirada por um conjunto de esforços que represente a ação da parte retirada sobre a parte em estudo. Conforme observamos no exemplo anterior, o diagrama de esforços cortantes só tem seus valores alterados quando aplicamos uma força vertical sobre o corpo. Neste exemplo, temos três forças verticais aplicadas: a reação R_y e as duas forças concentradas. Com isto, esperamos que ocorram três saltos no diagrama.

Procedendo com o primeiro corte, em qualquer posição entre x > 0 e x < L/2, obtemos

$$\sum F_y = 0 \to V_y - 100 = 0 \to V_y = 100$$
textrm[N]

e não é difícil de observar que o valor de V_y não se altera para qualquer corte entre 0 e L/2. No entanto, em x = L/2 existe uma força concentrada. Isto faz com que o equilíbrio de forças formulado acima não tenha validade para $x \ge L/2$ e, portanto, um novo corte é necessário, com DCL

e equilíbrio

$$\sum F_y = 0 \rightarrow V_y - 100 + 200 = 0 \rightarrow V_y = -100$$
 [N].

Observe que o novo corte é definido a uma distância x' a partir de x = L/2. Embora isto não seja necessário neste exemplo, é uma prática que no futuro evitará uma série de problemas. Novamente, não temos nenhum outro carregamento aplicado entre L/2 < x < L (ou 0 < x' < L/2), de tal forma que o diagrama de esforços internos para este exemplo é

Com auxílio dos dois exemplos anteriores, podemos podemos obter as seguintes conclusões:

- o diagrama de esforços cortantes apresenta saltos de valores em pontos onde a estrutura é submetida a esforços transversais concentrados. Na convenção de sinais utilizada neste texto, observamos que o salto tem sentido oposto ao da aplicação da força, apresentado a mesma magnitude;
- em regiões onde não existe carregamento transversal aplicado, o diagrama de esforços cortantes tem valor constante.

2.2.2 Carregamentos Distribuídos

Seja um carregamento distribuído q(x) [N/m] em $x \in [0,L]$ e origem em o

Se desejarmos calcular a força total provocada pelo carregamento distribuído, devemos considerar uma pequena região d ζ a uma distância ζ de o. Por mais geral que seja q(x), podemos considerar que o comportamento no entorno da posição ζ é o valor constante $q(x=\zeta)=q(\zeta)$ [N/m] que, multiplicado por d ζ [m] resulta em um **diferencial de força** dF(ζ) = $q(\zeta)$ d ζ [N]. Assim, podemos calcular a **força total** por

$$\mathbf{F}_{\mathbf{q}} = \int_{0}^{L} \mathbf{q}(\zeta) \mathrm{d}\zeta \, \mathbf{j} \, [N].$$

Pode-se notar que a utilização da variável ζ não é estritamente necessária, sendo que, na prática, podemos utilizar a variável x.

O diferencial de momento em relação a origem de q(x) é obtido pelo produto vetorial do vetor posição de o até ζ pelo diferencial de força

$$d\mathbf{M}_{o} = \zeta \mathbf{i} \times dF(\zeta) \mathbf{j} = \zeta \mathbf{i} \times q(\zeta) d\zeta \mathbf{j}$$

que pode ser visualizado na figura abaixo

tal que o momento total em o será

$$\mathbf{M}_{\mathrm{o}} = \int_{0}^{L} \zeta \mathbf{i} \times \mathbf{q}(\zeta) \mathrm{d}\zeta \mathbf{j} [Nm].$$

É importante salientar que podemos calcular o diferencial de momento em relação a qualquer ponto, não só em relação a origem de q(x). Por exemplo, podemos obter o diferencial de momento em relação a o'

em que podemos notar que o vetor posição de o' até ζ aponta para a esquerda, tal que está em -i. Assim, o momento total em o' é dado por

$$\mathbf{M}_{\mathrm{o}} = \int_{0}^{L} -(\mathbf{L} - \boldsymbol{\zeta})\mathbf{i} \times \mathbf{q}(\boldsymbol{\zeta}) \mathrm{d}\boldsymbol{\zeta}\mathbf{j} \ [Nm].$$

2.2.3 Exemplo

Seja a viga engastada submetida a um carregamento distribuído constante q₀ [N/m]

Como a viga está engastada, teremos até três reações

O equilíbrio de forças será

$$\sum \mathbf{F} = R_x \mathbf{i} + R_y \mathbf{j} + \int_0^L -q_0 dx \mathbf{j} = \mathbf{0}$$

tal que $R_x = 0$ e $R_y = q_0 L$. O equilíbrio de momentos em relação a o é

$$\sum \mathbf{M}_o = M_r \mathbf{k} + \int_0^L x \mathbf{i} \times (-\mathbf{q}_0) \mathbf{j} dx = \mathbf{0}$$

tal que $M_r = \frac{q_0 L^2}{2}$.

Para obtermos os diagramas de esforços, inicialmente observamos que não existem forças concentradas ao longo do comprimento, somente forças distribuídas. Como a equação da força distribuída não se altera ao longo do comprimento (neste exemplo o carregamento é constante), podemos estudar o equilíbrio de forças em um corte hipotético a uma distância x do engaste

obtendo

$$\sum F_y = 0 \to V_y + R_y + \int_0^x -q_0 \, dx = 0$$

resultando em

$$V_y = q_0(x - L).$$

Neste ponto é importante enfatizarmos algumas conclusões obtidas com este exemplo:

- neste exemplo o maior valor de esforço cortante se situa no engaste (x = 0), significando que a parte da direita da estrutura está aplicando uma força (para baixo) de magnitude q_0L ;
- neste exemplo no ponto x = L o valor do esforço cortante é nulo, pois não existe força aplicada no ponto;
- na presença de um carregamento distribuído de valor constante, o diagrama de esforços cortantes tem variação linear.

Assim, o diagrama de esforços cortantes para este exemplo é

2.2.4 Exemplo

Seja a viga bi-apoiada e submetida a um carregamento distribuído com variação linear entre x=0 e x=L/2

O primeiro passo consiste em determinar a equação que descreve o carregamento, no caso, a equação de uma reta

$$q(x) = a + bx$$
.

Para obter os coeficientes da equação da reta, utilizamos os valores conhecidos

$$q(x=0) = a + b0 = 0 \rightarrow a = 0$$

e

$$q(x = L/2) = a + bL/2 = q_0 \rightarrow b = \frac{2q_0}{L}$$

tal que a equação que descreve o carregamento é

$$q(x) = \frac{2q_0}{L}x[N/m]$$

estando definida no intervalo 0 < x < L/2. Com a expressão do carregamento, podemos proceder com a determinação das reações nos apoios. Como os apoios são rotulados, as únicas reações existentes são forças verticais e/ou horizontais

O equilíbrio de forças e de momentos é descrito por

$$\sum \mathbf{F} = R_1 \mathbf{j} + R_2 \mathbf{j} + R_3 \mathbf{i} + \int_0^{L/2} \mathbf{q}(x) \mathbf{j} \, dx = \mathbf{0}$$

e

$$\sum \mathbf{M}_{o} = \mathbf{L}\mathbf{i} \times R_{2}\mathbf{j} + \int_{0}^{L/2} x\mathbf{i} \times \mathbf{q}(x)\mathbf{j} \, dx = \mathbf{0}$$

resultando em

$$R_1 = -\frac{q_0 L}{6}, \ R_2 = -\frac{q_0 L}{12}, \ R_3 = 0$$

De posse das reações, podemos agora estudar a distribuição de esforços internos. Para isto, observamos que a estrutura é submetida a um carregamento distribuído linear entre x = 0 e x = L/2 e está livre de carregamentos até x = L. Assim, devido a mudança no carregamento, devemos estudar dois cortes hipotéticos.

O primeiro corte deve ser realizado para 0 < x < L/2, com DCL

O somatório de forças em Y é

$$\sum F_y = 0 \to R_1 + V_y + \int_0^x q(x) dx = 0$$
$$= R_1 + V_y + \int_0^x \frac{2q_0}{L} x dx = 0$$

resultando em

$$V_y = \frac{q_0 L}{6} - \frac{q_0 x^2}{L}$$

que é uma expressão quadrática.

Para obtermos a expressão do segundo trecho, definimos um novo sistema de coordenadas, com origem o' em x=L/2, de acordo com o DCL

e o equilíbrio de esforços verticais resulta em

$$\sum F_y = 0 \to R_1 + V_y(x') + \int_0^{L/2} q(x) dx = 0$$
$$= R_1 + V_y(x') + \frac{q_0 L}{4} = 0$$

tal que

$$V_y(x') = +\frac{q_0L}{6} - \frac{q_0L}{4} = -\frac{q_0L}{12}$$

é constante em todo o trecho. Assim, o diagrama de esforços cortantes para o exemplo é

Com este exemplo, chegamos as seguintes conclusões:

- quando o carregamento distribuído tem variação linear, o diagrama de esforços cortantes apresenta variação quadrática;
- é aconselhável realizar uma mudança de variável ao realizarmos novos cortes. Isto evitará problemas futuros ao lidarmos com carregamentos distribuídos mais complicados.

Capítulo 3

Momentos

Podemos separar momentos em dois tipos, de acordo com seu efeito sobre o corpo em estudo: momentos fletores e momentos torsores. O momento torsor é aquele que faz com que a seção transversal do corpo gire em torno do seu eixo axial, que será chamado de eixo *x* no presente texto

Quando observamos a peça em uma vista perpendicular ao eixo onde o momento torsor é aplicado, utilizamos a notação de dupla flecha, mostrada no canto superior da figura. A convenção de sinal para o momento torsor positivo é a indicada na figura acima: se o momento aplicado faz a seção girar em torno do eixo axial, no sentido anti-horário (o sentido em que os ângulos são tomados como positivos na trigonometria), então o momento torsor é positivo. Assim, se isolarmos um pedaço de material de um corpo submetido a momentos torsores, obtemos a seguinte convenção de sinais

Momentos fletores, por sua vez, são as componentes de momento que fazem as seções transversais da peça girarem em torno dos eixos Y e Z. Assim, um momento que faz a seção transversal girar em torno do eixo Z é chamado de momento fletor M_z , e um momento que faz a seção transversal girar em torno do eixo Y é chamado de momento fletor M_y

A convenção de sinal para momentos fletores positivos é a indicada na figura acima.

3.0.1 Exemplo

Considere uma viga engastada submetida a um momento fletor concentrado M_c

Como este é o único carregamento aplicado na estrutura, observamos que de todas as possíveis reações no engaste, apenas a reação de momento fletor M_r existirá

Por equilíbrio de momentos

$$\sum \mathbf{M}_A = M_r \mathbf{k} - M_c \mathbf{k} = \mathbf{0}$$

tal que

$$M_r = M_c$$
.

O procedimento para obtermos a distribuição de momentos fletores na estrutura é a mesma utilizada para obtermos os diagramas de esforços cortantes: realizamos um corte hipotético em uma seção transversal e determinamos quais esforços internos são realizados por uma parte da estrutura sobre a parte remanescente. Para o exemplo observamos que não existe alteração do carregamento externo entre 0 e L, de tal forma que, para um corte a uma distância qualquer x

$$\sum M_A = M_c + M_z(x) = 0$$

tal que

$$M_z(x) = -M_c$$

em que o sinal negativo indica que a estrutura do exemplo está sendo curvada para baixo (sentido negativo do eixo Y). O diagrama de momentos fletores M_Z da estrutura é

3.0.2 Exemplo

Neste exemplo, verificamos que existem somente reações verticais, uma vez que os apoios rotulados não apresentam reações de momento fletor. As reações são obtidas por relações de equilíbrio

$$\sum \mathbf{F} = R_1 \mathbf{j} + R_2 \mathbf{j} + R_3 \mathbf{j} = \mathbf{0}$$
$$\sum \mathbf{M}_A = M_c \mathbf{k} + L \mathbf{i} \times R_2 \mathbf{j} = \mathbf{0}$$

resultando em

$$R_1 = \frac{M_c}{L} e R_2 = -\frac{M_c}{L}$$

Devido ao fato de existir uma descontinuidade no carregamento em x = L/2 devemos estudar a distribuição de esforços internos com o auxílio de dois cortes hipotéticos. Para x < L/2 temos o DCL

estudamos o equilíbrio da seção

$$\sum \mathbf{F} = R_1 \mathbf{j} + V_y(x) \mathbf{j} = \mathbf{0}$$

$$\sum \mathbf{M}_A = M_z(x) \mathbf{k} + x \mathbf{i} \times V_y(x) \mathbf{j} = \mathbf{0}$$

de onde obtemos

$$V_y(x) = -R_1 = -\frac{M_c}{L}$$

$$M_z(x) = R_1 x = \frac{M_c}{L} x.$$

Para o trecho após o momento concentrado (x > L/2), devemos estudar novamente o equilíbrio de um corte hipotético. Para isto, realizamos um novo corte, a uma distância x' do ponto B, com DCL

e, novamente estudando o equilíbrio,

$$\sum \mathbf{F} = R_1 \mathbf{j} + V_y(x') \mathbf{j} = \mathbf{0}$$

$$\sum \mathbf{M}_A = M_z(x') \mathbf{k} + \left(x' + \frac{L}{2}\right) \mathbf{i} \times V_y(x') \mathbf{j} + M_c \mathbf{k} = \mathbf{0}$$

de onde obtemos

$$V_{y}(x') = -\frac{M_{c}}{L}$$

$$M_{z}(x') = M_{c}\left(\frac{x'}{L} - \frac{1}{2}\right)$$

para $x' \in (0, \frac{L}{2}]$. Assim, os diagramas de esforços internos para esta estrutura são

e

Com base neste exemplo, podemos verificar que

- a presença de um momento fletor concentrado faz com que existe uma descontinuidade (salto) no diagrama de momentos fletores. A magnitude desta descontinuidade é igual a do momento fletor aplicado no ponto;
- apoios não restringem o giro da seção e portanto não tem reação de momento. Desta forma, o diagrama de momentos fletores deve apresentar valores nulos em apoios (a não ser que um momento concentrado seja aplicado sobre o apoio);
- a presença de um momento concentrado não implica em descontinuidades no diagrama de esforços cortantes.

3.0.3 Exemplo

Seja a estrutura bi-apoiada e submetida a um carregamento distribuído constante:

O DCL utilizado para calcularmos as reações nos apoios é

tal que

$$\sum \mathbf{F} = R_1 \mathbf{j} + R_2 \mathbf{j} + R_3 \mathbf{i} + \int_0^L -\mathbf{q}_0 \mathbf{j} \, dx = \mathbf{0}$$

e

$$\sum \mathbf{M}_A = L\mathbf{i} \times R_2\mathbf{j} + \int_0^L x\mathbf{i} \times -\mathbf{q}_0\mathbf{j} \, dx = \mathbf{0},$$

resultando em

$$R_1 = R_2 = \frac{q_0 L}{2}.$$

Como o carregamento distribuído é contínuo por todo o comprimento da estrutura, observamos que um corte hipotético e genérico é suficiente para descrever corretamente a distribuição de esforços internos. Assim, o DCL do corte é

e as equações de equilíbrio no corte são

$$\sum \mathbf{F} = \frac{\mathbf{q}_0 \mathbf{L}}{2} \mathbf{j} + V_y(x) \mathbf{j} + \int_0^x -\mathbf{q}_0 \mathbf{j} \, dx = \mathbf{0}$$
$$\sum \mathbf{M}_A = x \mathbf{i} \times V_y(x) \mathbf{j} + M_z(x) \mathbf{k} + \int_0^x x \mathbf{i} \times -\mathbf{q}_0 \mathbf{j} \, dx = \mathbf{0}$$

resultando em

$$V_{y}(x) = q_{0}\left(x - \frac{L}{2}\right)$$

$$M_{z}(x) = \frac{q_{0}L}{2}x - \frac{q_{0}}{2}x^{2}$$

com diagramas

e

Com este exemplo verificamos que

- um carregamento distribuído de valor constante implica em um diagrama de esforços cortantes com variação linear e em um diagrama de momentos fletores com variação quadrática;
- o ponto com o máximo valor de momento (x = L/2) é o ponto com esforço cortante nulo;

Capítulo 4

Relações Diferenciais entre q, V e M

De posse de todas as conclusões obtidas nos exemplos anteriores, observamos de forma empírica que:

- nos pontos onde existem forças concentradas ocorrem descontinuidades de mesma magnitude nos diagramas de esforços cortantes;
- nos pontos onde existem momentos concentrados ocorrem descontinuidades de mesma magnitude nos diagramas de momentos fletores;
- em regiões sem carregamento, o diagrama de esforços cortantes mantém um valor constante;
- os diagramas de momentos fletores só são constantes em regiões com esforços cortantes nulos;
- em regiões com carregamento distribuído constante, os esforços cortantes; têm variação linear e os momentos fletores tem variação quadrática;
- em regiões com carregamento distribuído linear, os esforços cortantes têm variação quadrática.

Para descrevermos estes comportamentos de forma estruturada, vamos realizar um estudo de um pedaço qualquer de uma estrutura submetida a um carregamento distribuído genérico

Mesmo sendo q(x) uma função qualquer, podemos estudar um pedaço de comprimento $d\zeta$ como estando submetido a uma distribuição constante q(x=zeta) (isto é, o valor da função q(x) no ponto onde realizamos o corte), pois $d\zeta$ é arbitrário. Para manter o equilíbrio do pedaço em estudo, devemos considerar os possíveis acréscimos dos esforços internos. Por este motivo, escrevemos V+dV e

M+dM no corte da direita. O nosso objetivo é justamente determinar qual é a forma desses incrementos. Por equilíbrio de forças verticais

$$\sum F_y = 0 \quad \to \quad -V + (V + dV) + q d\zeta = 0$$

o que leva a concluir que

$$\mathrm{d}V = -\mathrm{q}\,\mathrm{d}\zeta$$

ou

$$\boxed{\frac{\mathrm{d}V(\zeta)}{\mathrm{d}\,\zeta} = -\mathrm{q}(\zeta)}$$

que justifica uma boa parte das conclusões obtidas anteriormente, pois a expressão mostra que a distribuição de esforços cortantes será dado pela integral do carregamento distribuído. Assim, se o carregamento distribuído tem forma polinomial, o grau do polinômio que descreve o esforço cortante será $1 \times$ maior. Se o carregamento distribuído é nulo, então verificamos que a distribuição de esforços cortantes deve ser constante.

Para o equilíbrio de momentos em torno da face esquerda da seção

$$\sum M = 0 \rightarrow -M + (M + dM) + (V + dV) d\zeta + \frac{q d\zeta^2}{2} = 0$$

de onde observamos que alguns dos termos são muito pequenos, pois são produtos de termos infinitesimais ($d\zeta^2 e dV d\zeta$). Assim, obtemos

$$\frac{\mathrm{d}M(\zeta)}{\mathrm{d}\,\zeta} = -V(\zeta)$$

que permite explicar o acréscimo de 1×no grau do polinômio que descreve a distribuição de esforços cortantes e também o fato de o diagrama de momentos fletores ser linear quando a distribuição de esforços cortantes é nula. De igual importância é a observação de que os pontos de maior (em módulo) valor da solicitação de momento fletor se situarem em pontos com cortante nulo. Para o último exemplo, observamos que a distribuição de esforços cortantes é dada por

$$V(x) = q_0 \left(x - \frac{L}{2} \right)$$

que assume valor nulo em x = L/2, justamente o ponto de maior momento fletor.

Para o caso de forças concentradas observamos que

tal que o equilíbrio na seção é dada por

$$\sum F_y = 0 \rightarrow -V + F + (V + dV) = 0$$

tal que

$$dV(\zeta) = -F$$

ou seja, ocorre um salto no diagrama de esforços cortantes na posição de F, no sentido contrário à força. No entanto, o somatório de momentos em relação a face da esquerda do corte é dado por

$$\sum M = 0 \to -M + (M + dM) + (V + dV) d\zeta + F \frac{d\zeta}{2} = 0$$

ou

$$\sum M = dM + Vd\zeta - F\frac{d\zeta}{2} = 0$$

e no limite $\mathrm{d}\zeta \to 0$ verificamos que $\mathrm{d}M \to 0$, ou seja, uma força concentrada não provoca salto no diagrama de momentos.

Da mesma forma, para o caso de um momento concentrado

temos somatório de forças

$$\sum F_y = -V + dV = 0 \to dV = 0$$

tal que não temos salto no diagrama de esforços cortantes. O balanço de momento em relação à face esquerda da seção é dado por

$$\sum M_o = 0 \quad \rightarrow \quad -M + M_c + (M + dM) + (V + dV) d\zeta = 0$$

e, lembrando que neste caso não temos variação de esforço cortante, concluímos que a única fonte de variação de momentos fletores é o momento concentrado aplicado, isto é

$$\boxed{\mathrm{d}M(\zeta) = -M_c}$$

ou seja, teremos um salto no diagrama de momentos concentrados, de valor igual ao momento concentrado e sinal oposto.