이름	박수호	학번	201911274
프로젝트명 (활동, 경험) 또는 학습 주제	2025 폭염예상	지역 선정 및 폭염대피	시설 입지선정

1. 프로젝트 개요

• 수행인원: 1명

수행기간: 2024.9 ~ 2025.12(약 4개월간)

• 개발환경: Python(Colab, VSCode), R, GitHub

• 대표적인 기술: 시계열 분석(ARIMA, SARIMA, LSTM), 입지선정 알고리즘(MCLP, GAAS)

2. 주제선정이유

- 2024년 기록적인 폭염 발생 → 역대 두번째로 많은 폭염 피해자
- 폭염피해자의 60%, 사망자의 70%는 55세 이상의 고령자(폭염취약계층)
- 서울시의 폭염대피시설(안전숙소) 운영성과에 주목
- 2025년 폭염예상지역을 사전 예측하고, 고령자 대상 안전숙소 최적입지를 제안하고자 기획

3. 데이터 수집

- 2025년 폭염예상지역 선정 → 기상청 기후 데이터(2014.10.05~2024.10.05)
- 안전숙소 최적입지 선정 → V월드 GIS건물통합정보 데이터(광주시)

4. 기후 데이터 주요 전처리 및 EDA

파생변수 생성	체감온도(Target Variable), 습구온도, 지역정보, 폭염발생여부 등
결측치 처리	1차 선형 보간, 평균치 보간, 데이터 삭제
후보지역 선정	평균 폭염 발생횟수 상위 10개 지역에 대해서 모델링하기로 결정

이름	박수호	학번	201911274
프로젝트명 (활동, 경험) 또는 학습 주제	2025 폭염예상	지역 선정 및 폭염대피	시설 입지선정

5. 2025년 폭염예상지역 선정

- 평균폭염발생 횟수 상위 10개 지역에 대해 시계열 모델링 수행
- 초기 모델로 전통적 시계열 모델 채택(ARIMA, SARIMA)

- 모델링 수행결과, 전통적 시계열 모형의 한계 체감
 - ▶ 체감온도 변수의 비선형성, 전통시계열 모형의 Linear Base 구조 등
- 고도화된 시계열 모델 탐색 → LSTM이 기후예측분야에서 좋은 성과를 내는 것을 발견
- 기존 전통적 시계열 모델에서 LSTM 모델로 변경

LSTM 설계		
구조	2×LSTM층 → Dense → Reshape	
변수추가	내생변수(체감온도, 강수량, 평균기온 등), 외생변수(시간정보)	
예측방식	one-step-prediction, multi-step-prediction 성능 비교	
성능지표	MAE, sMAPE	
모델 최적화	하이퍼 파라미터 조정(window, LSTM unit, epoch, 손실함수 등)	
정지조건	Early Stopping 방식	

- 10개 지점에 모델링 수행 결과. 광주시의 2025년 예상 폭염발생일수 50일로 최고치
- 광주시를 2025년 폭염 예상 지역으로 선정 → 폭염대피시설 입지선정 지역으로 채택

이름	박수호	학번	201911274
프로젝트명 (활동, 경험) 또는 학습 주제	2025 폭염예상	지역 선정 및 폭염대피	시설 입지선정

6. 광주시 건물정보 데이터 주요 전처리 및 EDA

타겟 지역 구체화	광주시 시군구별 폭염취약계층 비율 산정, 광주시 동구 선택
	입지선정시 가중치로 사용
입지선정계수 생성	반경내 의료시설, 근린시설, 노유자 시설의 개수를 구한 뒤 스케일링
	폭염취약계층에게 유리한 입지선정이 가능
필요 변수만 추출	GRS80 좌표계, 건물명, 건축물용도명, 층수, 지번 등

7. 폭염대피시설 최적입지 선정

- 제한된 조건 하에서 가장 효율적인 입지를 제공하는 MCLP 알고리즘 채택
- 제한된 조건 설정
 - ▶ 광주시 동구 폭염대피시설 설치 예산(3억), 야놀자 숙박시설 데이터, 건물군 데이터 활용
 - ▶ 총 10곳의 안전숙소 운영이 가능함을 확인
- MCLP 특성상 후보지의 모든 조합 고려 ightarrow 연산량 문제 발생 $(_{285}C_{10})$
 - ▶ 휴리스틱 알고리즘(GAAS) 도입
 - ▶ 입지선정계수를 가중치로 활용, 초기 후보지를 30곳으로 축소 후 MCLP로 10곳 선택
- 알고리즘 성능비교 후 최종입지 10곳 제안 및 사실 여부 확인(네이버 지도 로드맵)

방식	커버비율
휴리스틱 알고리즘	49.8%
결합 알고리즘(휴리스틱+MCLP)	68.7%(약 18.9%p향상)

