TensorFrames: Google Tensorflow with Apache Spark

Timothée Hunter Databricks, Inc.

About Databricks

Why Us

- Created Apache Spark to enable big data use cases with a single engine.
- Contributes 75% of Spark's code 10x more than others.

Our Product

- Bring Spark to the enterprise: The justin-time data platform.
- Fully managed platform powered by Apache Spark.
- A unified solution for data science and engineering teams.

About me

Software engineer at Databricks

Apache Spark contributor

Ph.D. UC Berkeley in Machine Learning

(and Spark user since Spark 0.2)

Outline

- Numerical computing with Apache Spark
- Using GPUs with Spark and TensorFlow
- Performance details
- The future

Numerical computing for Data Science

- Queries are data-heavy
- However algorithms are computation-heavy
- They operate on simple data types: integers, floats, doubles, vectors, matrices

The case for speed

- Numerical bottlenecks are good targets for optimization
- Let data scientists get faster results
- Faster turnaround for experimentations
- How can we run these numerical algorithms faster?

Evolution of computing power

Evolution of computing power Theano NLTK Caffe Today's talk: CUDA Spark + TensorFlow Torch

SPARK SUMMIT EUROPE 2016

Evolution of computing power

- Processor speed cannot keep up with memory and network improvements
- Access to the processor is the new bottleneck
- Project Tungsten in Spark: leverage the processor's heuristics for executing code and fetching memory
- Does not account for the fact that the problem is numerical

Outline

Numerical computing with Apache Spark

Using GPUs with Spark and TensorFlow

Performance details

The future

GPGPUs

Graphics Processing Units for General Purpose computations

Google TensorFlow

- Library for writing "machine intelligence" algorithms
- Very popular for deep learning and neural networks

- Can also be used for general purpose numerical computations
- Interface in C++ and Python

Numerical dataflow with Tensorflow

```
x = tf.placeholder(tf.int32, name="x")
y = tf.placeholder(tf.int32, name="y")
output = tf.add(x, 3 * y, name="z")
```


Numerical dataflow with Spark

```
df = sqlContext.createDataFrame(...)
x = tf.placeholder(tf.int32, name="x")
y = tf.placeholder(tf.int32, name="y")
output = tf.add(x, 3 * y, name="z")
output_df = tfs.map_rows(output, df)

output_df.collect()
```


Demo

Outline

- Numerical computing with Apache Spark
- Using GPUs with Spark and TensorFlow
- Performance details
- The future

It is a communication problem

TensorFrames: native embedding of TensorFlow

An example: kernel density scoring

- Estimation of distribution from samples
- Non-parametric
- Unknown bandwidth parameter
- Can be evaluated with goodness of fit

An example: kernel density scoring

In practice, compute:

$$\frac{1}{L}\sum_{x}score\left(x\right)$$

with:

$$score(x) = \log \left[\frac{1}{N} \sum_{k=1}^{N} \exp \left(-\frac{(x-z_k)^2}{\sqrt{2\pi}b} \right) \right]$$

In a nutshell: a complex numerical function

Outline

- Numerical computing with Apache Spark
- Using GPUs with Spark and TensorFlow
- Performance details
- The future

Improving communication

The future

- Integration with Tungsten:
 - Direct memory copy
 - Columnar storage
- Better integration with MLlib data types

Recap

- Spark: an efficient framework for running computations on thousands of computers
- TensorFlow: high-performance numerical framework
- Get the best of both with TensorFrames:
 - Simple API for distributed numerical computing
 - Can leverage the hardware of the cluster

Try these demos yourself

TensorFrames source code and documentation:

<u>github.com/databricks/tensorframes</u> spark-packages.org/package/databricks/tensorframes

- Demo notebooks available on Databricks
- The official TensorFlow website:

www.tensorflow.org

