Software Verification

(2021/22, Operational and Denotational Semantics) prof. Francesco Ranzato

Homework: Do all the exercises or choose one project to do and then present it.

Exam: Contact by email the teacher for agreeing on a date for an oral exam, possibly via Zoom; please contact me about 10 days in advance of your preferred date. The oral exam on the exercises will consist in solving a couple of exercises selected by the teacher (for a Zoom exam please be prepared to use some tool for sharing your screen where you will dynamically write your solutions, such as a tablet for free hand-writing or some text editor supporting Latex-like extensions such as Atom). The oral exam on projects 13-15 will consist of a 30 minutes oral presentation with slides (for project 15 please be prepared to share your code, e.g. a github repository).

Exercises on Operational Semantics

Exercise 1

Formally prove the statement of Exercise 2.21 (2007 book), namely, the *composition lemma*: if $\langle S_1, s \rangle \Rightarrow^k s'$ then $\langle S_1, S_2, s \rangle \Rightarrow^k \langle S_2, s' \rangle$.

Exercise 2

- 1. Define formally a function lvar: While $\rightarrow \wp(Var)$ such that for any $S \in While$, lvar(S) is the set of variables in Var that appear in the left-hand side of some assignment that occurs in the statement S.
- 2. Prove that for any $S \in \mathbf{While}$, $s, s' \in \mathbf{State}$:

if
$$\langle S, s \rangle \Rightarrow^* s'$$
 then $\forall x \notin lvar(S)$. $s(x) = s'(x)$.

Exercise 3

Assume that the language While⁺ includes a new iterative command

where $b \in \mathbf{Bexp}$ and $S \in \mathbf{While}^+$, whose semantics should be equivalent to the program

$$S$$
; (while $b \text{ do } S$); S

- (a) Define the small step operational semantics of loop(b, S) without relying on the semantics of different statements.
- (b) Prove that $\mathsf{loop}(b,S) \; \cong_{\mathrm{sos}} \; S; (\mathsf{while} \; b \; \mathsf{do} \; S); S$

Exercise 4

Prove or disprove the following semantic equivalence:

(while
$$b \text{ do } S$$
); if $b \text{ then } S \text{ else skip } \cong_{sos} \text{ while } b \text{ do } S$

where $b \in \mathbf{Bexp}$, $S \in \mathbf{While}$.

Exercise 5

Consider the sublanguage While of While where assignments are not allowed, that is,

While
$$\bar{} \ni S ::= skip \mid S_1; S_2 \mid \text{if } b \text{ then } S_1 \text{ else } S_2 \mid \text{while } b \text{ do } S.$$

Prove that for any $S \in \mathbf{While}^-$ and $s \in \mathbf{State}$, either $\langle S, s \rangle \Rightarrow^* s$ or the execution of $\langle S, s \rangle$ loops.

Exercise 6

Prove or disprove the following semantic equivalence:

while
$$b \text{ do } S \cong_{\text{sos}} \text{ if } b \text{ then } (\text{do } S \text{ while } b) \text{ else skip}$$

where $b \in \mathbf{Bexp}, S \in \mathbf{While}$.

Exercises on Denotational Semantics

Exercise 7

Prove that

while
$$b$$
 do $(S;$ while b do $S) \cong_{\mathrm{ds}}$ while b do S

Exercise 8

Consider

$$P_1 \equiv ext{while } b_1 ext{ do (if } b_2 ext{ then } S ext{ else skip)}$$

$$P_2 \equiv ext{while } (b_1 \wedge b_2) ext{ do } S$$

where $b_1, b_2 \in \mathbf{Bexp}, S \in \mathbf{Stm}$. Prove or disprove the following statements

(a)
$$\mathcal{S}_{ds}\llbracket P_1 \rrbracket \sqsubseteq \mathcal{S}_{ds}\llbracket P_2 \rrbracket$$

(b)
$$\mathcal{S}_{ds}\llbracket P_2 \rrbracket \sqsubseteq \mathcal{S}_{ds}\llbracket P_1 \rrbracket$$

Exercise 9

Prove or disprove the following semantic equivalence:

while
$$b ext{ do } S \cong_{ds} ext{ while } b ext{ do } (S; ext{if } b ext{ then } S ext{ else skip})$$

where $b \in \mathbf{Bexp}, S \in \mathbf{Stm}$.

Exercise 10

Prove or disprove the following semantic equivalence:

while
$$b \text{ do } S \cong_{ds} \text{ if } b \text{ then } (\text{do } S \text{ while } b) \text{ else skip}$$

where $b \in \mathbf{Bexp}, S \in \mathbf{Stm}$.

Exercise 11

Let D be a CPO and let $f, g: D \to D$ be continuous maps. Prove that

$$FIX(f \circ q) = f(FIX(q \circ f)).$$

Exercise 12

Let D and E be CPOs and let $f:D\to E$ be a monotonic map. Assume that D satisfies the ascending chain condition (ACC): any infinite denumerable ascending chain $d_0\leq d_1\leq d_2\leq d_3\leq \cdots$ in D eventually stabilizes, i.e., $\exists n\in\mathbb{N}. \forall m\geq n.\ d_m=d_n$. Prove that f is continuous.

Projects

Project 13

Read, understand and then expose Chapter 6 "The axiomatic semantics of IMP" of the book

"The formal semantics of programming languages" by G. Winskel, The MIT Press, 1993.

Proofs and exercises can be omitted.

Project 14 (possibly two students together)

Let **Aexp** include integer division $a_1 \div a_2$ and expressions whose evaluations may modify the current state, such as ++x, x++, --x, x--. Modify the operational and denotational semantics of **Aexp**, **Bexp** and **Stm** accordingly.

Project 15 (possibly two students together)

Design an interpreter I for the call-by-value (eager) and/or call-by-name (lazy) denotational semantics of the functional language **REC** (a small core of SML for call-by-value and Haskell for call-by-name) as defined in Chapter 9 of the book:

"The formal semantics of programming languages" by G. Winskel, The MIT Press, 1993.

This means to write an interpreter program I — in the programming language you prefer — such that (in what follows we consider the call-by-value case):

- I takes as input any declaration $d = \{f_i(x_1, ..., x_{a_i}) = t_i\}_{i=1}^n$ with terms $t_i \in \mathbf{REC}$, a term $t \in \mathbf{REC}$ and (some representation of) an environment $\rho \in \mathbf{Env}_{va}$.
- It must always happen that $I(d, t, \rho) = [\![t]\!]_{va} \delta_d \rho$, where δ_d is defined by $f\!ix(F_d)$ and $F_d : \mathbf{FEnv}_{va} \to \mathbf{FEnv}_{va}$ is the functional induced by the declaration d. Thus, it is required that:
 - 1. if $[\![t]\!]_{va}\delta_d\rho = \bot \in \mathbf{N}_\bot$ then the interpreter $I(d,t,\rho)$ does not terminate. **Remark:** this does not mean that the execution $I(d,t,\rho)$ gives rise to a run-time error or to an exception.
 - 2. if $[\![t]\!]_{va}\delta_d\rho=\lfloor n\rfloor\in \mathbf{N}_\perp$ then the interpreter $I(d,t,\rho)$ terminates and outputs the integer n.
- I therefore relies on Kleene-Knaster-Tarski fixpoint iteration sequence for evaluating $I(d,t,\rho)$. This means that if $F_d: \mathbf{FEnv}_{va} \to \mathbf{FEnv}_{va}$ is the continuous functional induced by a declaration d then $I(d,t,\rho)$ must be implemented as $\sqcup_{n\geq 0}F_d^n(\bot_{\mathbf{FEnv}_{va}})$. Therefore a call $I(d,t,\rho)$ has to look for the least $k\geq 0$ such that $[\![t]\!]_{va}(F_d^k(\bot_{\mathbf{FEnv}_{va}}))\rho = \lfloor n\rfloor$ for some $\lfloor n\rfloor \in \mathbf{N}_\perp$, so that the call $I(d,t,\rho)$ outputs the integer n, whereas if this least k cannot be found, namely for all $n\geq 0$, $[\![t]\!]_{va}(F_d^n(\bot_{\mathbf{FEnv}_{va}}))\rho = \bot$, then the call $I(d,t,\rho)$ does not terminate with no run-time error; $\mathbf{Remark:}$ you have to be careful with stack overflow and out-of-memory run-time errors.
- **REC** may contain some basic functions as syntactic sugar.

For parsing programs terms and declarations one could use parsing capabilities of programming languages (e.g., pattern matching in functional(-oriented) programming languages, see https://en.wikipedia.org/wiki/Pattern_matching) or an automatic parser generator (GNU Bison, Yacc and JavaCC are popular open source parser generators).