

Dans ce chapitre,  $\mathbb{K}$  désigne  $\mathbb{R}$  ou  $\mathbb{C}$ , et  $\mathbb{K}^{\mathbb{N}}$  représente l'ensemble des suites d'éléments dans  $\mathbb{K}$ .

### 3.1 Notions de base

**Définition 3.1** Pour tout suite  $(a_n)_{n\in\mathbb{N}}$  de  $\mathbb{K}^{\mathbb{N}}$ , on appelle support de  $(a_n)_{n\in\mathbb{N}}$  l'ensemble

$$J=\{n\in\mathbb{N}\,,\,a_n\neq 0\}.$$

- − Une suite  $(a_n)_{n\in\mathbb{N}}$  de  $\mathbb{K}^{\mathbb{N}}$  est dite presque nulle lorsque son support J est fini.
- Les polynôme à coefficients dans  $\mathbb{K}$  sont les suites presque nulles d'éléments dans  $\mathbb{K}$ , et leur ensemble est noté  $\mathbb{K}^{(\mathbb{N})}$ .

**Propriétés 3.1** – L'ensemble  $(\mathbb{K}^{(\mathbb{N})},+,\cdot)$  est un espace vectoriel sur  $\mathbb{K}$  pour les lois usuelles :

$$(a_n)_{n\in\mathbb{N}}+(b_n)_{n\in\mathbb{N}}=(a_n+b_n)_{n\in\mathbb{N}}\quad\text{et}\quad\lambda\cdot(a_n)_{n\in\mathbb{N}}=(\lambda\,a_n)_{n\in\mathbb{N}}\quad(\forall\,\lambda\in\mathbb{K}).$$

— L'ensemble  $(\mathbb{K}^{(\mathbb{N})},+,\cdot)$  est un anneau commutatif pour le produit suivant :

$$(a_n)_{n\in\mathbb{N}}\cdot(b_n)_{n\in\mathbb{N}}=(c_n)_{n\in\mathbb{N}}$$
 tel que  $c_n=\sum_{k=0}^n a_k\,b_{n-k}.$ 

**Écritures d'un polynôme :** Soient  $(i, j) \in \mathbb{N}^2$ , on définit le symbole de Kronecker  $\delta_{ij}$  par

$$\delta_{ij} = \begin{cases} 1 & \text{si} \quad i = j, \\ 0 & \text{si} \quad i \neq j \end{cases}$$

Notons  $p_k$  la suite  $(\delta_{kn})_{n\in\mathbb{N}}$  (1 en  $k^{\text{\`e}me}$  position et 0 ailleurs). Pour tout  $a\in\mathbb{K}^{(\mathbb{N})}$  de support J, on a

$$a = (a_k)_{k \in \mathbb{N}} = \sum_{k \in \mathbb{N}} a_k p_k = \sum_{k \in J} a_k p_k.$$

Notons  $p_1 = (0, 1, 0, ...)$  par X: c'est l'indéterminée de  $\mathbb{K}^{(\mathbb{N})}$ , et pour tout  $n \in \mathbb{N}$ , on a

$$\forall n \in \mathbb{N}^*, \ p_n = X^n$$
 et par convention, on pose  $X^0 = 1$ .

Par conséquent, tout polynôme  $a = (a_n)_{n \in \mathbb{N}} \in \mathbb{K}^{(\mathbb{N})}$  s'écrit

$$a = \sum_{n \in \mathbb{N}} a_n X^n = \sum_{n \in J} a_n X^n.$$

Avec cette nouvelle écriture, l'ensemble  $\mathbb{K}^{(\mathbb{N})}$  des polynôme à coefficient dans  $\mathbb{K}$ , se notera  $\mathbb{K}[X]$ .

**Remarque** Si  $P = \sum_{n \in \mathbb{N}} a_n X^n \in \mathbb{K}[X]$  est à support I vide, on dit que P est le polynôme nul, on a :

$$P = 0_{\mathbb{K}[X]} \iff \forall n \in \mathbb{N}, \ a_n = 0 \iff I = \emptyset.$$

**Définition 3.2 — Degré d'un polynôme.** Soit  $P = \sum_{n \in \mathbb{N}} a_n X^n \in \mathbb{K}[X]$  un polynôme et I son support. Le degré de du polynôme P, noté  $\deg(P)$ , est l'élément de  $\mathbb{N} \cup \{-\infty\}$  défini par :

- $\deg(P) = \sup(I) \text{ si } I \neq \emptyset,$
- $-\deg(P)=-\infty$  si  $I=\emptyset$ , c'est-à-dire si  $P=0_{\mathbb{K}[X]}$ .

**Remarque** Si le polynôme  $P = \sum_{n \in \mathbb{N}} a_n X^n$  est non nul de degré p, alors le terme  $a_p$  est dit coefficient dominant de P, et le polynôme P est dit unitaire (ou normalisé) lorsque son coefficient dominant est

$$a_{p} = 1$$
.

**Propriétés 3.2** Deux polynômes P et Q sont égaux lorsque ils sont de même degré et leurs coefficients respectifs sont égaux et on écrit P = Q.

**Proposition 3.1** Étant donné deux polynômes  $P = \sum_{n \in \mathbb{N}} a_n X^n$  et  $Q = \sum_{n \in \mathbb{N}} b_n X^n$ , on a

$$deg(P+Q) \leq sup(deg(P), deg(Q)).$$

**Preuve** On sait que  $a_n + b_n = 0$  dès que on  $a : a_n = 0$  et  $b_n = 0$ , et cela prouve que

$$deg(P+Q) \leq sup(deg(P), deg(Q)).$$

**Remarque** Soit  $p = \deg(P)$  et  $q = \deg(Q)$  avec par exemple p < q. On a

$$deg(P+O) \leq sup(deg(P), deg(O)) = q$$

D'autre part,  $a_q = 0$  et  $b_q \neq 0$ , alors  $a_q + b_q \neq 0$  et donc  $\deg(P + Q) \geqslant q$ . Ce qui montre

$$deg(P) \neq deg(Q) \implies deg(P+Q) = sup(deg(P), deg(Q)).$$

3.1 Notions de base

**Corollaire 3.1** Pour tous  $n \in \mathbb{N}$ , l'ensemble des polynôme P tels que  $\deg(P) \leq n$ , noté  $\mathbb{K}_n[X]$ , est un sous-espace vectoriel de l'espace des polynômes  $\mathbb{K}[X]$ .

Preuve Ce sous-ensemble est non vide puisque il contient le polynôme nul. De plus, on a

$$\forall P \in \mathbb{K}_n[X], \forall Q \in \mathbb{K}_n[X] : P + Q \in \mathbb{K}_n[X],$$

puisque

$$deg(P+Q) \leq sup(deg(P), deg(Q)) \leq n.$$

Et on a

$$\forall P \in \mathbb{K}_n[X], \forall \lambda \in \mathbb{K} : \lambda P \in \mathbb{K}_n[X],$$

puisque

$$\lambda P = 0_{\mathbb{K}[X]}$$
 si  $\lambda = 0$  et  $\deg(\lambda P) = \deg(P)$  si  $\lambda \neq 0$ .

**Proposition 3.2** Soient  $P = \sum_{n \in \mathbb{N}} a_n X^n$  et  $P = \sum_{n \in \mathbb{N}} b_n X^n$  deux polynômes de  $\mathbb{K}[X]$ , on a

$$\deg(PQ) = \deg(P) + \deg(Q).$$

**Preuve** Supposons que  $P = \sum_{n=0}^{p} a_n X^n$  et  $Q = \sum_{n=0}^{q} b_n X^n$  sont non nuls, de degrés respectifs p et q. Le produit de PQ a pour coefficients

$$c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Sin > p + q et  $0 \le k \le n$ , on a: k > p ou n - k > q, d'où  $a_k = 0$  ou  $b_{n-k} = 0$ , et donc

$$c_n = 0$$
.

Si n = p + q et  $0 \le k \le n = p + q$ , on a: k > p ou n - k > q ou k = p ou n - k = q, et donc

$$c_n = c_{p+q} = a_p b_q \neq 0 \quad (car \, a_p \neq 0 \, et \, b_q \neq 0).$$

**Corollaire 3.2** L'anneau ( $\mathbb{K}[X], +, \cdot$ ) est un anneau intègre puisque

$$PQ = 0 \implies P = 0 \text{ ou } Q = 0.$$

Les éléments inversibles de  $\mathbb{K}[X]$  sont les scalaire non nuls, c'est-à-dire  $\mathbb{K}^*$ .

**Preuve** Si  $P \in \mathbb{K}[X]$  est inversible, alors il existe  $Q \in \mathbb{K}[X]$  tel que PQ = 1 et donc

$$\deg(PQ) = \deg(P) + \deg(Q) = 0.$$

Ainsi, on trouve

$$\deg(P) = \deg(Q) = 0.$$

Finalement, seul les polynômes constants et non nuls sont inversibles.

**Propriétés 3.3** Soit  $P = \sum_{k \in \mathbb{N}} a_k X^k$  et Q deux polynômes, on appelle polynôme composée de P et Q, le polynôme noté  $P \circ Q$ , et défini par  $P = \sum_{k \in \mathbb{N}} a_k Q^k$ . Si de plus,  $Q \neq 0$ , alors on a

$$\deg(P \circ Q) = \deg(P) \times \deg(Q).$$

**Exercice 3.1** Calculer 
$$P = \sum_{k=0}^{n} C_n^k X^k (1-X)^{n-k}$$
 et  $Q = \sum_{k=0}^{n} k C_n^k X^k (1-X)^{n-k}$  où  $n \in \mathbb{N}$  fixé.

**Exercice 3.2** Déterminer tous les polynômes  $P \in \mathbb{K}[X]$  vérifiant :  $P(X^2) = (X^2 + 1)P(X)$ .

# 3.2 Arithmétique dans $\mathbb{K}[X]$

**Définition 3.3** Soient P et Q deux polynômes de  $\mathbb{K}[X]$  avec  $Q \neq 0$ . On dit que Q divise P (ou encore : P est divisible par Q) lorsqu'il existe  $T \in \mathbb{K}[X]$  tel que P = QT et on écrit  $Q \mid P$ .

**Exemple.** On a  $X^3 - 1 = (X - 1)(X^2 + X + 1)$ , alors (X - 1) divise  $X^3 - 1$ .

On note que le polynôme nul P=0 est divisible par tous les polynômes et que le polynôme constant  $Q=\lambda\in\mathbb{K}^*$  divise tous les polynômes non nuls de  $\mathbb{K}[X]$ .

**Définition 3.4** Deux polynômes non nuls P et Q sont dits associés s'il existe  $\lambda \in \mathbb{K}^*$  tels que

$$P = \lambda Q$$
.

Exercice 3.3 Soient P et Q deux polynômes non nuls. Montrer que

$$Q \mid P \Rightarrow \deg(Q) \leqslant \deg(P)$$
;  $Q \mid P \text{ et } R \mid Q \Rightarrow R \mid P$ ;  $Q \mid P \text{ et } P \mid Q \Rightarrow \exists \lambda \in \mathbb{K}^*, P = \lambda Q$ .

**Exercice 3.4** *Montrer que, pour tout*  $P \in \mathbb{K}[X]$ *, on* a : P(X) - X *divise* P[P(X)] - X

**Théorème 3.1 — Division euclidienne.** Soient  $A, B \in \mathbb{K}[X]$  deux polynômes avec  $B \neq 0$ . Il existe un unique couple (Q, R) de polynômes de  $\mathbb{K}[X]$  vérifiant

$$A = BQ + R$$
 et  $deg(R) < deg(B)$ .

On dit que Q est le quotient et R est le reste de la division euclidienne de A par B.

**Preuve** Soit A = BQ + R = BQ' + R' avec  $\deg(R) < \deg(B)$  et  $\deg(R') < \deg(B)$ , on a

$$B(Q-Q')=R'-R,$$

et par suite, il vient

$$\deg(B) + \deg(Q - Q') = \deg(R' - R).$$

 $Or \deg(R'-R) \leqslant \sup(\deg(R'), \deg(R)) < \deg(B), alors$ 

$$\deg(B) + \deg(Q - Q') < \deg(B).$$

Par suite, on obtient  $deg(Q - Q') = -\infty$ , c'est-à-dire

$$Q - Q' = 0$$
 d'où  $R - R' = 0$ .

Ainsi, la partie unicité est établie. Pour l'existence, soit B un polynôme de degré p et de coefficient dominant  $b_p$ , alors :

 $- si A = 0 ou A \neq 0 avec \deg(A) < p, on a$ 

$$A = 0 \cdot B + A$$
 et donc  $Q = 0$  et  $R = A$ .

— supposons établit, l'existence du quotient et reste dans la division par B de tout polynôme de degré inférieur ou égal à n. Soit A un polynôme de degré n+1 et de coefficient dominant  $a_{n+1}$ , posons

$$A_1 = A - \frac{a_{n+1}}{b_p} X^{n+1-p} B.$$

On a :  $deg(A_1) \leq n$ , et par hypothèse de récurrence, il existe  $Q_1$  et  $R_1$  tels que

$$A_1 = BQ_1 + R_1$$
 et  $\deg(R_1) < \deg(B)$ .

d'où

$$A = B\left(Q_1 + \frac{a_{n+1}}{b_p}X^{n+1-p}\right) + R_1$$
 et  $\deg(R_1) < \deg(B)$ .

Les polynômes  $R = R_1$  et  $Q = Q_1 + \frac{a_{n+1}}{b_p}X^{n+1-p}$  vérifie la relation voulue, et donc la partie existence est établie par récurrence sur  $n = \deg(A)$ .

**Exemple.** Effections la division euclidienne de  $A = 6X^3 - 2X^2 + 6X + 3$  par  $B = X^2 - X + 1$ 

**Remarque**  $B \mid A$  si et seulement si le reste de la division euclidienne de A par B est nul.

**Exercice 3.5** Effectuer la division euclidienne de  $A = X^5 + 2X^3 - 2X - 2$  par  $B = X^2 + 1$ .

**Exercice 3.6** Exprimer le reste de la division euclidienne de  $P \in \mathbb{K}[X]$  par (X - a)(X - b) où  $a \neq b \in \mathbb{K}$ , en fonction de P(a) et P(b).

**Exercice 3.7** Soient  $A_1 = BQ_1 + R_1$  et  $A_2 = BQ_2 + R_2$  les divisions euclidiennes respectives de  $A_1$  par B et de  $A_2$  par B. Quel est le reste R de la division euclidienne de de  $A_1 + A_2$  par B? A-t-on un résultat similaire pour la division euclidienne dans  $\mathbb{N}$ .

Le résultat suivant, qui est une conséquence de A = BQ + R et R = A - BQ, est la base de l'algorithme d'Euclide qui permet de déterminer le plus grand diviseur commun de deux polynômes.

**Proposition 3.3 — Algorithme d'Euclide.** Soient A et B deux polynômes de  $\mathbb{K}[X]$  avec  $B \neq 0$ . Si Q et R sont le quotient et le reste de la division euclidienne de A par B, alors les diviseurs communs à A et B sont les mêmes que les diviseurs communs à B et B.

**Théorème 3.2** Soient A et B deux polynômes de  $\mathbb{K}[X]$ . Il existe un unique polynôme nul ou unitaire  $D \in \mathbb{K}[X]$  dont les diviseurs sont les diviseurs communs de A et B, c-à-dire

$$\forall P \in \mathbb{K}[X], \quad (P \mid A \text{ et } P \mid B) \iff P \mid D.$$

Le polynôme D est dit le plus grand commun diviseur de A et B et on écrit  $D = \operatorname{pgcd}(A, B)$ .

Remarque On note que

$$pgcd(A,B) = 0 \iff A = B = 0$$
;  $B \mid A \iff pgcd(A,B) = B$  normalisé.

Et que le pgcd(A, B) est le dernier reste non nul et normalisé de l'algorithme d'Euclide.

**Théorème 3.3 — d'Euclide.** Si les A, B, Q et  $R \in \mathbb{K}[X]$  non nuls vérifient A = BQ + R, alors  $\operatorname{pgcd}(A, B) = \operatorname{pgcd}(B, R)$ .

**Exemple.** Calculons  $\operatorname{pgcd}(A, B)$  pour  $A = X^3 + 2X^2 - X - 2$  et  $B = X^2 + 4X + 3$ . On a

alors

$$pgcd(A,B) = pgcd(B,R_0) = \frac{1}{4}(4X+4) = X+1.$$

**Exercice 3.8** Calculer:  $pgcd(X^5 - 4X^4 + 6X^3 - 6X^2 + 5X - 2; X^4 + X^3 + 2X^2 + X + 1)$ 

**Exercice 3.9** *Soient n, m*  $\in$   $\mathbb{N}^*$  *et*  $\delta = \operatorname{pgcd}(n,m)$ *. Montrer que* 

$$pgcd(X^{n}-1, X^{m}-1) = X^{\delta}-1.$$

37

**Théorème 3.4** Soient A et B deux polynômes tels que D = pgcd(A, B), alors

$$\exists U, V \in \mathbb{K}[X], \quad AU + BV = D.$$

Le couple (U,V) est dit un couple de coefficients de Bézout de A et B.

**Propriétés 3.4** Si  $\Delta$  divise A et divise B, alors  $\Delta$  divise  $D = \operatorname{pgcd}(A, B)$ .

**Preuve** On sait qu'il existe U et V tels que D = UA + VB. Comme  $\Delta$  divise A et B, alors

$$\Delta \mid UA + VB = D.$$

**Propriétés 3.5** Soient A, B et C trois polynômes non nuls tels que C est unitaire, alors on a

$$pgcd(AC,BC) = pgcd(A,B)C$$
.

**Définition 3.5** Deux polynômes non nuls A et B sont dits premiers entre eux lorsque

$$pgcd(A, B) = 1.$$

**Exemple.** Soient A = X - a et B = X - b avec  $a \neq b$ . Le reste de la division euclidienne de X - a par X - b est  $B = b - a \neq 0$ , alors d'après l'algorithme d'Euclide, on a

pgcd(A,B) = 1 et donc A et B sont premiers entre eux.

**Théorème 3.5 — de Bezout.** A et B non nuls, sont premiers entre eux si et seulement si

$$\exists U, V \in \mathbb{K}[X], \quad AU + BV = 1.$$

**Preuve**  $(\Rightarrow)$ : si A et B sont premiers entre eux, pgcd(A,B) = 1 et donc il existe U et V tels que

$$AU + BV = 1.$$

 $(\Leftarrow)$ : inversement, s'il existe U et V tels que AU + BV = 1, alors 1 est un diviseur commun à A et B, et par suite il est le polynôme unitaire de degré minimal qui divise A et B. C'est donc le pgcd de A et B, et alors A et B sont premiers entre eux.

**Exemple.** En remontant l'algorithme d'Euclide, on peut alors trouver un couple de coefficients de Bézout. Considérons par exemple  $A = X^4 + 3X^3 - 2X^2 - X - 1$  et  $B = -X^3 + 2X^2 - 4X + 3$ , alors

d'où  $D = \operatorname{pgcd}(A, B) = R_1$  normalisée = X - 1. De plus, on a

$$A = B(-X - 5) + R_0$$
 et  $B = R_0(-\frac{1}{4}X - \frac{5}{8}) + R_1$ .

alors

$$R_{1} = B - R_{0} \left( -\frac{1}{4}X - \frac{5}{8} \right)$$

$$= B - \underbrace{\left[ A - B \left( -X - 5 \right) \right]}_{R_{0}} \left( -\frac{1}{4}X - \frac{5}{8} \right)$$

$$= \left( -\frac{1}{4}X - \frac{5}{8} \right) A + \left[ \frac{1}{4}X^{2} + \frac{15}{4}X + \frac{33}{8}X \right] B.$$

Et donc

$$D = -\frac{4}{47} R_1 = \underbrace{\left[\frac{1}{47}X + \frac{5}{94}\right]}_{V_I} A + \underbrace{\left[\frac{-1}{47}X^2 - \frac{15}{47}X - \frac{33}{94}X\right]}_{V_I} B.$$

**Exercice 3.10** Soit A et B tels que pgcd(A,B) = 1. Montrer que si C divise A, alors

$$pgcd(C, B) = 1.$$

**Remarque** Soit *D* normalisé, un diviseur commun de *A* et *B*, c-à-dire  $A = DA_1$  et  $B = DB_1$ , on a

$$pgcd(A,B) = D \iff pgcd(A_1,B_1) = 1.$$

**Propriétés 3.6** Soient A, B et C des polynômes, alors on a :

$$pgcd(A,BC) = 1 \iff [pgcd(A,B) = 1 \text{ et } pgcd(A,C) = 1].$$

**Preuve**  $(\Rightarrow)$ : supposons pgcd(A,BC) = 1, il existe U et V tels que UA + VBC = 1. En utilisant

$$UA + (VB)C = 1$$
 et  $UA + (VC)B = 1$ ,

il vient que

$$pgcd(A, B) = 1$$
 *et*  $pgcd(A, C) = 1$ .

 $(\Leftarrow)$ : supposons  $\operatorname{pgcd}(A,B) = 1$  et  $\operatorname{pgcd}(A,C) = 1$ , il existe U, V, S et T tels que

$$UA + VB = 1$$
 et  $SA + TC = 1$ .

Multiplions les deux égalités, membre par membre, on obtient

$$(UAS + VBS + UTC)A + (VT)BC = 1.$$

*Ce qui montre que* pgcd(A, BC) = 1.

**Corollaire 3.3** A est premier avec un produit  $\prod_{i=1}^{n} B_i = B_1 B_2 \cdots B_n$  si et seulement si

$$\forall i = 1, ..., n : pgcd(A, B_i) = 1.$$

**Corollaire 3.4** Soient A et B des polynômes non nuls, alors, pour tous n et p dans  $\mathbb{N}^*$ , on a :

$$pgcd(A,B) = 1 \iff pgcd(A^n,B^p) = 1.$$

**Théorème 3.6** — **de Gauss.** Si pgcd(A, B) = 1 et si A divise BC, alors A divise C.

**Preuve** On déduit de pgcd(A, B) = 1 qu'il existe U et V tels que UA + VB = 1, et donc

$$UAC + VBC = C$$
.

Or A divise UAC et divise VBC, alors il divise également C.

**Propriétés 3.7** Si pgcd(A,B) = 1 alors pgcd(A,BC) = pgcd(A,C).

**Preuve** Si D divise A et C, il divise A et BC. Soit D un diviseur commun de A et BC, de D | A et pgcd(A,B) = 1, il vient pgcd(D,B) = 1 et donc, d'après le théorème de Gauss, D | C. Puisque, les diviseurs communs à A et C sont les mêmes que les diviseurs communs à A et BC, il vient

$$pgcd(A, C) = pgcd(A, BC)$$
.

**Propriétés 3.8** Si  $A_1$  divise B,  $A_2$  divise B et  $pgcd(A_1, A_2) = 1$ , alors

$$A_1A_2$$
 divise B.

**Preuve** On a  $A_1$  divise B, soit  $B = A_1Q$ , et puisque  $A_2 \mid B$ , on trouve

$$A_2 \mid B = A_1 Q$$
.

 $Or \operatorname{pgcd}(A_1, A_2) = 1$ ,  $donc \ d$ 'après le théorème de  $Gauss, A_2 \mid Q$ , soit  $Q = A_2S$ . Ainsi, il vient

$$B = A_1 A_2 S$$
.

**Corollaire 3.5** Si  $A_1, \dots, A_n$  sont deux à deux premiers entre eux et si tout les  $A_i$  divise B, alors

$$\prod_{i=1}^{n} A_i = A_1 A_2 \cdots A_n \text{ divise } B.$$

**Exercice 3.11** *Soient A et B*  $\in$   $\mathbb{K}[X]^*$ *, montrer que* 

$$pgcd(A, B) = 1 \iff pgcd(A + B, AB) = 1.$$

# 3.3 Fonctions polynomiales et divisibilité

La fonction polynomiale associée à  $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$  est l'application, notée  $\tilde{P}$  ou P, suivante :

$$\tilde{P}: \mathbb{K} \to \mathbb{K}$$
 $x \mapsto \sum_{k=0}^{n} a_k x^k$ 

**Définition 3.6** On dit qu'un élément  $\alpha \in \mathbb{K}$  est racine de  $P \in \mathbb{K}[X]$  lorsque  $\tilde{P}(\alpha) = 0$ .

**Exemple.** Soit  $P = X^{n+1} + X^n - 2X^{n-1} + nX - n$  où  $n \in \mathbb{N}^*$  un polynôme de  $\mathbb{R}[X]$ . On a P(1) = 1 + 1 - 2 + n - n = 0 et alors  $\alpha = 1$  est une racine de P.

**Théorème 3.7** Un polynôme est divisible par  $X - \alpha$  si et seulement si  $\alpha$  est racine de P.

**Preuve** Dans la division euclidienne de P par  $X - \alpha$ , le reste est un polynôme constant

$$P = (X - \alpha)Q + r \text{ avec } r \in \mathbb{K}.$$

Par conséquent, on obtient  $P(\alpha) = r$ , d'où le résultat voulu.

**Corollaire 3.6** Si un polynôme P admet n racines  $\alpha_1, \alpha_2, \dots, \alpha_n$  deux à deux distincts, alors

$$(X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n)$$
 divise P.

**Preuve** On procède par récurrence sur n. La propriété est vraie pour n = 1, supposons-la vraie pour  $n \in \mathbb{N}^*$  et soit  $P \in \mathbb{K}[X]$  admettant n + 1 racines distincts  $\alpha_1, \alpha_2, \ldots, \alpha_{n+1}$ . D'après le théorème précédent, P est divisible par  $X - \alpha_{n+1}$ , donc

$$P(X) = (X - \alpha_{n+1}) Q(X).$$

Comme  $\alpha_1, \ldots, \alpha_n$  sont des racines de Q, l'hypothèse de récurrence implique que

$$(X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n)$$
 divise  $Q$ ,

donc il existe  $R \in \mathbb{K}[X]$  tel que  $Q(X) = (X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n)R(X)$ . Finalement, on a

$$P(X) = (X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n)(X - \alpha_{n+1}) R(X).$$

Ce qui prouve que la la propriété est récurrente.

**Théorème 3.8** Si  $P \in \mathbb{K}_n[X]$  admet au moins n+1 racines distincts, alors P est nul.

**Preuve** D'après le corollaire précédent, il existe  $R \in \mathbb{K}[X]$  tel que

$$P(X) = (X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n)(X - \alpha_{n+1})R(X).$$

Pour  $R \neq 0$ , on a deg $(P) \geqslant n+1$ , ce qui est contraire à l'hypothèse, donc

$$R = 0$$
 et puis  $P = 0$ .

**Remarque** Pour démontrer qu'un polynôme est nul, on utilise souvent :

- si P ∈  $\mathbb{K}[X]$  admet une infinité de racines dans  $\mathbb{K}$ , alors P = 0.
- si P ∈  $\mathbb{K}_n[X]$  admet plus que n racines distincts dans  $\mathbb{K}$ , alors P = 0.

**Exemple.** Soit  $n \in \mathbb{N}$ , on sait qu'il existe un polynôme P tel que

$$\forall x \in \mathbb{R} : P(\cos x) = \cos(nx).$$

Montrons l'unicité du polynôme P, supposons qu'il en existe deux, soit P et Q, alors

$$\forall x \in \mathbb{R} : (P - Q)(\cos x) = 0.$$

Comme la fonction cosinus a pour image [-1,1], alors

$$\forall u \in [-1, 1], (P - Q)(u) = 0.$$

Donc le polynôme P-Q possède une infinité de racines, et par suite

$$P = Q$$
.

**Exercice 3.12** Montrer que si P est de degré n admettant n racines distincts  $\alpha_1, \dots, \alpha_n$ , alors

$$P = c_n \prod_{i=1}^n (X - \alpha_i)$$
 où  $c_n$  est le coefficient dominant de  $P$ .

## 3.4 Dérivation des polynômes - Ordre de multiplicité d'une racine

**Définition 3.7** Le polynôme dérivé de  $P = \sum_{k=0}^{n} a_k X^k$  est le polynôme

$$P' = \sum_{k=0}^{n} (k+1) a_{k+1} X^{k}.$$

On définit les dérivées successives de  $P \in \mathbb{K}[X]$ , par les relations suivantes :

$$P^{(0)} = P$$
,  $P^{(1)} = P'$  et  $\forall k \ge 2$ ,  $P^{(k)} = (P^{(k-1)})'$ .

**Proposition 3.4** Soit  $P = \sum_{k=0}^{n} a_k X^k$  un polynôme de degré n > 0, alors

$$\begin{cases} P^{(j)} = \sum_{k=j}^{n} k(k-1)\cdots(k-j+1) \ a_k \ X^{k-j} & \text{si} \quad j \leqslant n \\ P^{(j)} = 0 & \text{si} \quad j > n. \end{cases}$$

Remarque Les règles sur la dérivation des polynômes sont identiques à celles des fonctions. On a

$$(P+Q)' = P' + Q'$$
;  $(\lambda P)' = \lambda P'$ ;  $(PQ)' = PQ' + P'Q$ ,

$$(PQ)^{(n)} = \sum_{k=0}^{n} C_n^k P^{(k)} Q^{(n-k)}$$
 (formule de Leibnitz).

**Exercice 3.13** 1. Soient  $n \in \mathbb{N}$  et  $a \in \mathbb{R}$ . Démontrer que pour tout entier  $j \in [1,n]$ , on a

$$((X-a)^n)^{(j)} = n(n-1)\cdots(n-j+1)(X-a)^{n-j} = j!C_n^j(X-a)^{n-j}.$$

2. En utilisant la formule de Leibnitz, calculer la dérivée  $n^{\text{ème}}$  en 1 de  $P = (X^2 - 1)^n$ .

Par un raisonnement par récurrence sur le degré d'un polynôme P, on obtient

**Théorème 3.9 — Formule de Taylor.** Soient  $P \in \mathbb{K}[X]$  un polynôme de degré n et  $a \in \mathbb{K}$ , alors

$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} (X - a)^{k}.$$

**Remarque** — Formule de Mac Laurin. Dans le cas particulier où a = 0, on a

$$P(X) = \sum_{k=0}^{n} \frac{P^{(k)}(0)}{k!} X^{k}.$$

**Exercice 3.14** *Trouver tout*  $P \in \mathbb{K}[X]$  *unitaires non constants divisibles par* P'.

**Exercice 3.15** Déterminer tous les polynômes  $P \in \mathbb{C}[X]$  vérifiant :  $(X^2 + 1)P'' - 6P = 0$ .

**Exercice 3.16** Déterminer les polynômes  $P \in \mathbb{K}[X]$  qui vérifie

$$P(2) = 6$$
,  $P'(2) = 1$ ,  $P''(2) = 4$  et  $(\forall n \ge 3)$ ,  $P^{(n)}(2) = 0$ .

**Définition 3.8 — ordre de multiplicité d'une racine.** Soit  $\alpha \in \mathbb{K}$  une racine de P, on dit que  $\alpha$  est d'ordre de multiplicité  $k \in \mathbb{N}^*$  lorsque

$$(X-a)^k$$
 divise  $P$  et  $(X-a)^{k+1}$  ne divise pas  $P$ .

Autrement dit, la racine  $\alpha$  est d'ordre de multiplicité k si et seulement si

$$P = (X - \alpha)^k Q + R$$
 avec  $R(\alpha) \neq 0$ .

**Exemple.** Le polynôme  $P = (X-1)(X+1)^2(X-2)^3$  possède les trois racines :

- $\alpha_1 = 1$ : racine d'ordre de multiplicité 1 (racine simple).
- $\alpha_2 = -1$ : racine d'ordre de multiplicité 2 (racine double).
- $\alpha_3 = 2$ : racine d'ordre de multiplicité 3 (racine triple).

**Proposition 3.5** Une racine  $\alpha$  de P est d'ordre de multiplicité k si et seulement si

$$P(\alpha) = P'(\alpha) = \dots = P^{(k-1)}(\alpha) = 0$$
 et  $P^{(k)}(\alpha) \neq 0$ .

Preuve En écrivant la formule de Taylor, on obtient

$$P(X) = \sum_{n \in \mathbb{N}} \frac{P^{(n)}(\alpha)}{n!} (X - \alpha)^n$$

$$= \left[ \sum_{n > k} \frac{P^{(n)}(\alpha)}{n!} (X - \alpha)^{n-k} + \frac{P^{(k)}(\alpha)}{k!} \right] (X - \alpha)^k + \sum_{n=0}^{k-1} \frac{P^{(n)}(\alpha)}{n!} (X - \alpha)^n.$$

*C'est la division euclidienne de P par*  $(X - \alpha)^k$ :

$$P = (X - \alpha)^k Q + R$$
 avec  $\deg(R) < k$ .

Par suite, on trouve

- Si  $\alpha$  est d'ordre de multiplicité k, P est divisible par  $(X - \alpha)^k$  et donc R = 0, d'où

$$P^{(n)}(\alpha) = 0$$
 pour tout  $n = 0, ..., k-1$ .

De plus, P n'est pas divisible par  $(X - \alpha)^{k+1}$ , alors Q n'est pas divisible par  $X - \alpha$  d'où

$$O(\alpha) \neq 0$$
.

Puis, en utilisant  $Q(\alpha) = \frac{P^{(k)}(\alpha)}{k!}$ , il vient que

$$P^{(k)}(\alpha) \neq 0.$$

- Inversement,  $P^{(n)}(\alpha) = 0$  pour tout n = 0, ..., k-1 et  $P^{(k)}(\alpha) \neq 0$  implique que R est nul et donc P est divisible par  $(X - \alpha)^k$  et non divisible par  $(X - \alpha)^{k+1}$  (puisque Q n'est pas divisible par  $(X - \alpha)$ . Ainsi,  $\alpha$  est une racine d'ordre de multiplicité k, du polynôme P.

**Proposition 3.6** Si P est un polynôme non nul, admettant p racines distincts  $\alpha_1, \dots, \alpha_p$  d'ordre de multiplicité respectives  $k_1, \dots, k_p$ , alors P est divisible par

$$\prod_{i=1}^{p} (X - \alpha_i)^{k_i} = (X - \alpha_1)^{k_1} (X - \alpha_2)^{k_2} \cdots (X - \alpha_p)^{k_p}.$$

**Corollaire 3.7** Si P est un polynôme non nul de degré n, admettant p racines distincts  $\alpha_1, \dots, \alpha_p$  d'ordre de multiplicité respectives  $k_1, \dots, k_p$  telles que  $k_1 + \dots + k_p = n$ , alors

$$P = c_n \prod_{i=1}^p (X - a_i)^{k_i}$$
 où  $c_n$  est le coefficient dominant de  $P$ .

**Exercice 3.17** *Soit*  $n \in \mathbb{N}^* \setminus \{1\}$ .

- 1. Montrer que  $P = (X-2)^{2n} + (X-1)^n 1$  est divisible par  $X^2 3X + 2$ .
- 2. Déterminer les réels a et b pour que  $P = aX^{n+1} + bX^n + 1$  soit divisible par  $(X-1)^2$ .
- 3. Montrer que  $(X-1)^3 \mid P = nX^{n+2} (n+2)X^{n+1} + (n+2)X n$ . A-t-on  $(X-1)^4 \mid P$ ?

**Exercice 3.18** Soient P un polynôme de  $\mathbb{R}[X]$  et  $\alpha \in \mathbb{C}$ . Démontrer que si  $\alpha$  si est une racine de P, alors  $\overline{\alpha}$  est également une racine de P (les racines complexes d'un polynôme à coefficients réels sont deux à deux conjugués).

# 3.5 Polynômes irréductibles - Factorisation des polynômes

**Définition 3.9** Un polynôme P de  $\mathbb{K}[X]$  est dit irréductible lorsque  $\deg(P) \geqslant 1$  et les seuls diviseurs de P sont les polynômes constants et les polynômes associés à P.

Autrement dit, P est irréductible s'il n'est pas constant et si pour tout A,  $B \in \mathbb{K}[X]$ , on a

$$P = AB \implies \deg(A) = 0$$
 ou  $\deg(B) = 0$ .

**Remarques.** – L'irréductibilité dépend de l'ensemble  $\mathbb{K}$ . Par exemple,  $P = X^2 + 1$  est irréductible dans  $\mathbb{R}[X]$  et il est réductible dans  $\mathbb{C}[X]$  puisque  $(X + i) \mid P$ .

- Tout polynôme de degré 1 est irréductible dans  $\mathbb{K}[X]$ . Et tout polynôme irréductible possédant une racine de  $\mathbb{K}$  est nécessairement de degré 1.
- Un polynôme qui n'a pas de racine, n'est pas nécessairement irréductible, par l'exemple

$$P = (X^2 + 1)^2 \ dans \ \mathbb{R}[X].$$

- Un polynôme degré 2 ou 3 qui n'admet pas de racine dans  $\mathbb{K}$  est irréductible.
- Un polynôme de degré 2 est irréductible dans  $\mathbb{R}[X]$  lorsque son discriminant est strictement négatif (polynôme sans racines réelles).

#### Théorème 3.10 — Théorème de D'Alembert-Gauss.

- Tout polynôme non constant dans  $\mathbb{C}[X]$  admet au moins une racine dans  $\mathbb{C}$ .
- Tout polynôme non constant de  $\mathbb{C}[X]$  de degré n admet exactement n racines dans  $\mathbb{C}$ .

Ce théorème assure que les polynômes irréductibles de  $\mathbb{C}[X]$  sont les polynômes de degré 1.

**Proposition 3.7 — Factorisation dans**  $\mathbb{C}[X]$ . Tout polynôme non nul  $P \in \mathbb{C}[X]$  de degré nadmettant p racines complexes distincts  $\alpha_1, \dots, \alpha_p$  d'ordre de multiplicités respectives  $k_1, \dots, k_p$ et de coefficient dominant  $c_n$ , s'écrit sous la forme

$$P = c_n \prod_{i=1}^p (X - \alpha_i)^{k_i}$$
 (  $P$  est dit un polynôme scindé).

**Exemple.** Les racines du polynôme  $P = X^4 + 1$  dans  $\mathbb{C}$  sont

$$e^{i\frac{\pi}{4}} = \frac{1+i}{\sqrt{2}}; \ e^{i\frac{3\pi}{4}} = \frac{-1+i}{\sqrt{2}}; \ e^{i\frac{5\pi}{4}} = \frac{-1-i}{\sqrt{2}}; \ e^{i\frac{7\pi}{4}} = \frac{1-i}{\sqrt{2}}.$$

Alors, la factorisation du polynôme P dans  $\mathbb{C}[X]$  est

$$P = \left(X - e^{i\frac{\pi}{4}}\right) \left(X - e^{i\frac{3\pi}{4}}\right) \left(X - e^{i\frac{5\pi}{4}}\right) \left(X - e^{i\frac{7\pi}{4}}\right).$$

**Exercice 3.19** Factoriser en produit de polynômes irréductibles dans  $\mathbb{C}[X]$ , les polynômes

$$P = X^4 + X^2 + 1$$
,  $R = X^5 - 1$ ,  $Q = X^5 + 1$ ,  $S = X^6 + 1$  et  $T = X^6 - 1$ .

Étant donné que les polynômes irréductibles de  $\mathbb{R}[X]$  sont les polynômes de degré 1 et les polynômes de degré 2 sans racine réel (c'est-à-dire de discriminant strictement négatif), alors

**Proposition 3.8** — Factorisation dans  $\mathbb{R}[X]$ . Tout polynôme  $P \in \mathbb{R}[X]$  de degré n et de coefficient dominant  $c_n$  s'écrit sous la forme

$$P = c_n \prod_{i=1}^{p} (X - \alpha_i)^{k_i} \prod_{j=1}^{q} (X^2 + \beta_j X + \gamma_j)^{s_j}.$$

- où  $\alpha_i$  les racines réelles de P d'ordre de multiplicité  $k_i$ ,  $X^2 + \beta_j X + \gamma_j$  des polynômes de  $\mathbb{R}[X]$  de discriminant strictement négatif,
  - ont des entiers naturels.

**Remarque** En calculant le produit des termes à racines conjuguées dans la factorisation de P dans  $\mathbb{C}[X]$ , on obtient une factorisation de P dans  $\mathbb{R}[X]$ . Par exemple,  $P = X^4 + 1$  s'écrit dans  $\mathbb{C}[X]$ :

$$P = \left(X - e^{i\frac{\pi}{4}}\right) \left(X - e^{i\frac{7\pi}{4}}\right) \left(X - e^{i\frac{3\pi}{4}}\right) \left(X - e^{i\frac{5\pi}{4}}\right).$$

En calculant le produit des termes à racines conjuguées, on obtient la factorisation de P dans  $\mathbb{R}[X]$ :

$$P = (X^2 - \sqrt{2}X + 1)(X^2 + \sqrt{2}X + 1).$$

**Exercice 3.20** Factoriser dans  $\mathbb{R}[X]$  les polynômes suivants

$$P = X^4 + X^2 - 6$$
,  $Q = X^4 - 2X^2 + 9$ ,  $S = X^6 + 9X^3 + 8$ , et  $T = X^8 + X^4 + 1$ .

**Exercice 3.21** *Factoriser dans*  $\mathbb{C}[X]$ , *puis dans*  $\mathbb{R}[X]$  :  $P = (X^2 - 4X + 1)^2 - (3X - 5)^2$ .