

The GPS Toolkit

A User's Guide for Scientists, Engineers and Students

Tracie Conn, Tom Gaussiran, R. Benjamin Harris, Jon Little Richard Mach, David Munton, Brent Renfro, Brian Tolman Timothy Craddock

Applied Research Laboratories, The University of Texas at Austin

Martin Vermeer

Geophysics Department, Helsinki University of Technology

October 24, 2006 GPSTk Revision 94 Copyright ©2005 The University of Texas at Austin

Contents

Ι	$\mathbf{T}\mathbf{h}$	neory	3
1	The	e Global Positioning System in a Nutshell	5
	1.1	GPS in a Nutshell	5
		1.1.1 The Position Solution	5
	1.2	GPS Data Sources	6
		1.2.1 GPS File Formats	7
		1.2.2 Receiver Protocols	7
2	GP	S File Formats	9
	2.1	FIC	9
	2.2	RINEX	9
3	Cor	nverting Coordinates & Time	11
	3.1	Transformations	11
	3.2	Time Systems	11
		3.2.1 Solar & Sidereal Time	11
		3.2.2 Atomic Time	12
		3.2.3 Time Formats	12
		3.2.4 GPS Time	13
		3.2.5 Z-Count	14
	3.3	Earth Fixed Coordinates	14
		3.3.1 ECI to ECF	14
		3.3.2 WGS-84	15
		3.3.3 Coordinate Systems	15
	3.4	References	18
II	\mathbf{U}	54.50) = 110.11.P100 00 1 1 0 000	19
	3.5	calgps	22
		3.5.1 Overview	22
		3.5.2 Usage	22
		3.5.3 Examples	22
		3.5.4 Notes	22
	3.6	DiscFix	23

	3.6.1	Overview .																	23
	3.6.2	Usage																	23
	3.6.3	Examples .																	24
	3.6.4	Notes																	24
3.7	ephdiff																		25
	3.7.1	Overview .																	25
	3.7.2	Usage																	25
	3.7.3	Examples .																	25
	3.7.4	Notes																	25
3.8	fic2rin																		26
	3.8.1	Overview .																	26
	3.8.2	Usage																	26
	3.8.3	Examples .																	26
	3.8.4	Notes																	26
3.9	ficache	ck ficcheck .																	27
	3.9.1	Overview .																	27
	3.9.2	Usage																	27
	3.9.3	Examples .																	27
	3.9.4	Notes																	27
3.10		ficfica																	28
3.10		Overview .																	28
		Usage																	28
		Examples .																	28
		Notes																	28
3 11																			29
0.11		Overview .																	29
		Usage																	29
		Examples .																	29
		Notes																	29
3 12	IonoBi																		30
0.12		Overview .																	30
		Usage																	30
		Examples .																	31
		Notes																	31
2 12		c mdp2rinex																	32
5.15		Overview .																	$\frac{32}{32}$
		Usage																	$\frac{32}{32}$
																			$\frac{32}{32}$
	9 19 4	Examples .	٠	 •	•	 •	٠	•	 ٠	•	•	 ٠	•	•	•	 •	•	•	$\frac{32}{32}$
9 1 4		Notes																	
5.14	-																		33
		Overview .																	33
		Usage																	33
		Examples .																	33
0.15		Notes																	33
3.15	mergel		٠	 ٠	•	 •	٠	•	 ٠	٠	•	 ٠	•	•	•	 •	•	٠	34
	3 15 1	Overview																	34

	3.15.2	Usage	 	 							34
		Examples									34
	3.15.4	-									34
3.16	mergeF	RinObs mer									35
		Overview									35
		Usage									35
		Examples									35
		Notes									35
		p									36
		Overview									36
	3.17.2										36
:	3.17.3	Examples									36
		Notes									37
		$rge \dots$									38
		Överview									38
		Usage									38
		Examples									38
		Notes									38
	navsun										39
	3.19.1	Overview									39
		Usage									39
		Examples									39
		Notes									40
		$inex \dots$									41
		Overview									41
		Usage									41
		Examples									42
		Notes									42
											43
		Overview									43
		Usage									43
		Examples									43
		Notes									43
		ve									44
		Overview									44
		Usage									44
		Examples									45
	3.22.4	Notes	 	 							45
	ResCor										46
	3.23.1	Overview	 	 							46
	3.23.2	Usage	 	 							46
		Examples									49
		Notes									49
											50
	3.24.1	Overview	 	 							50
		Observed									50

	3.24.3 Double Difference Residuals 50	0
	3.24.4 Data Input	1
	3.24.5 Output	1
	3.24.6 Usage	2
	3.24.7 Examples	4
	3.24.8 Notes	4
3.25	rmwcheck rnwcheck rowcheck	5
	3.25.1 Overview	5
	3.25.2 Usage	5
	3.25.3 Examples	5
	3.25.4 Notes	5
3.26	rmwdiff rnwdiff	6
	3.26.1 Overview	6
	3.26.2 Usage	6
	3.26.3 Examples	6
	3.26.4 Notes	6
3.27	RinexDump	7
	3.27.1 Overview	7
	3.27.2 Usage	
	3.27.3 Examples	
	3.27.4 Notes	
3.28	rinexpvt	
00	3.28.1 Overview	
	3.28.2 Usage	
	3.28.3 Examples	
	3.28.4 Notes	_
3 29	rinexthin	
0.20	3.29.1 Overview	
	3.29.2 Usage	
	3.29.3 Examples	
	3.29.4 Notes	
3 30	RinSum	
0.00	3.30.1 Overview	
	3.30.2 Usage	
	3.30.3 Examples	
	3.30.4 Notes	_
3 31	rtAshtech	
0.01	3.31.1 Overview	
	3.31.2 Usage	
	3.31.3 Examples	
	3.31.4 Notes	
2 21	TECMaps	
ა.ა2	3.32.1 Overview	
	3.32.2 Usage	
	3.32.3 Examples	
	3.32.4 Notes	
	- 3.32.4 NULES	4

CONTENTS	7
----------	---

3.33	timecon	vert															65
	3.33.1	Overvie	W														65
	3.33.2	Usage .															65
	3.33.3	Example	es														65
	3.33.4	Notes.															65
3.34	Where S	$Sat \dots$															66
	3.34.1	Overvie	W														66
	3.34.2	Usage .															66
	3.34.3	Example	es														66
	3.34.4	Notes.															67
3.35	vecsol																68
	3.35.1	Overvie	w														68
	3.35.2	Usage .															68
	3.35.3	Example	es														69
	3.35.4	Notes .															69

The goal of the GPSTk project is to provide a world class, open source computing suite to the satellite navigation community. It is our hope that the GPSTk will empower its users to perform new research and create new applications.

GPS users employ practically every computational architecture and operating system. Therefore the design of the GPSTk suite is as platform-independent as possible. Platform independence is achieved through use of the ANSI-standard C++ programming language. The principles of object-oriented programming are used throughout the GPSTk code base in order to ensure that the code is modular, extensible and maintainable.

The GPSTk suite consists of a core ibrary and a set of applications. The library provides a wide array of functions that solve processing problems associated with GPS such as processing or using RINEX. The library is the basis for the more advanced applications distributed as part of the GPSTk suite.

The GPSTk is sponsored by Space and Geophysics Laboratory, within the Applied Research Laboratories at the University of Texas at Austin (ARL:UT). GPSTk is the by-product of GPS research conducted at ARL:UT since before the first satellite launched in 1978; it is the combined effort of many software engineers and scientists. In 2003 the research staff at ARL:UT decided to open source much of their basic GPS processing software as the GPSTk.

Part I Theory

Chapter 1

The Global Positioning System in a Nutshell

The Global Positioning System is actually a U.S. government satellite navigation system that provides a civilian signal. As of this writing, the signal is broadcast simultaneously by a constellation of 29 satellites each with a 12 hour orbit. From any given position on the Earth, 8 to 12 satellites are usually visible at a time.

1.1 GPS in a Nutshell

Each satellite broadcasts spread spectrum signals at 1575.42 and 1227.6 MHz, also known as L1 and L2, respectively. Currently the civil signal is broadcast only on L1. The signal contains two components: a time code and a navigation message. By differencing the received time code with an internal time code, the receiver can determine the distance, or range, that the signal has traveled. This range observation is offset by errors in the (imperfect) receiver clock; therefore it is called a pseudorange. The navigation message contains the satellite ephemeris, which is a numerical model of the satellite's orbit.

GPS receivers record, besides the pseudorange, a measurement called the carrier phase (or just phase); it is also a range observation like the pseudorange, except (1) it has an unknown constant added to it (the phase ambiguity) and (2) it is much smoother (about 100 times less measurement noise than the pseudorange!), which makes it useful for precise positioning. Because of the way it is measured, the phase is subject to random, sudden jumps; these discrete changes always come in multiples of the wavelength of the GPS signal, and are called cycle slips.

1.1.1 The Position Solution

The standard solution for the user location requires a pseudorange measurement and an ephemeris for each satellite in view. At least four measurements are required as there are four unknowns: 3 coordinates of position plus the receiver clock offset. The basic algorithm for the solution is described in the official GPS Interface Control Document, or ICD-GPS-200. The position solution is corrupted due to two sources of error: errors in the observations and errors in the ephemeris.

Reducing Measurement Errors

The GPS signal travels through every layer of the Earth's atmosphere. Each layers affects the signal differently. The ionosphere, which is the high-altitude, electrically charged part of the atmosphere, introduces a delay, and therefore a range error, into the signal. The delay is frequency dependent, so it can be directly computed if you have data on both the GPS frequencies. There is also a delay due to the troposphere, the lower part of the atmosphere. This delay too can be modeled and removed. There are many other errors associated with the GPS signal: multipath reflections and relativistic effects are two examples.

More precise applications reduce the effect of error sources by a technique referred to as differential GPS (DGPS). By differencing measurements simultaneously collected by the user and a nearby reference receiver, the errors that are common to both receivers (most of them) are removed. The result of DGPS positioning is a position relative to the reference receiver; adding the reference position to the DGPS solution results in the absolute user position.

The alternative to DGPS is to explicitly model and remove errors. Creating new and robust models of phenomena that effects the GPS signal is an area of active research at ARL:UT and other laboratories. The positioning algorithm can be used to explore such models. Essentially, the basic approach is to turn the positioning algorithm inside out to look at the corrections themselves. For example, observations from a network of receivers can create a global map or model of the ionosphere.

Improved Ephemeredes

The GPS position solution can be directly improved by using an improved satellite ephemeris. The U.S National Geospatial-Intelligence Agency (NGA) generates and makes publicly available a number of precise ephemeredes, which are more accurate satellite orbits. Satellite orbits described by the broadcast navigation message have an error on the order of meters; the precise ephemeris has decimeter accuracy. The International GPS Service (IGS) is a global civil cooperative effort that also provides free precise ephemeris products. Global networks of tracking stations produce the observations that make generation of the precise ephemeredes possible.

1.2 GPS Data Sources

GPS observation data from many tracking stations are freely available on the Internet. Many such stations contribute their data to the IGS. In addition,

many networks of stations also post their data to the Internet; for example the Australian Regional GPS Network (ARGN) and global cooperatives such as NASA's Crust Dynamics Data Information System (CDIS).

1.2.1 GPS File Formats

Typically GPS observations are recorded in a standardized format developed by and for researchers. Fundamental to this format is the idea that the data should be independent of the type of receiver that collected it. For this reason the format is called Receiver INdependent Exchange, or RINEX. Another format associated with GPS is SP-3, which records the precise ephemeris. The GPSTk supports both RINEX and SP-3 formats.

1.2.2 Receiver Protocols

GPS receivers have become less expensive and more capable over the years, in particular handheld and mobile GPS receivers. The receivers have many features in common. All of the receivers output a position solution every few seconds. All receivers store a list of positions, called waypoints. Many can display maps that can be uploaded. Many can communicate with a PC or handheld to store information or provide position estimates to plotting software.

Typically communication with a PC and other system follows a standard provided by the National Marine Electronics Association called NMEA-0183. NMEA-0183 defines an ASCII based format for communication of position solutions, waypoints and a variety of receiver diagnostics. Here is an example of a line of NMEA data, or sentence:

\$GPGLL,5133.81,N,00042.25,W*75

The data here is a latitude, longitude fix at 51 deg 33.81 min North, 0 deg 42.25 min West; the last part is a checksum.

As a public standard, the NMEA-0183 format has given the user of GPS freedom of choice. NMEA-0183 is the format most typically used by open source applications that utilize receiver-generated positions.

Closed standards are also common. SiRF is a proprietary protocol that is licensed to receiver manufacturers. Many receiver manufacturers implement their own binary protocols. While some of these protocols have been opened to the public, some have been reverse engineered.

Chapter 2

GPS File Formats

- 2.1 FIC
- 2.2 RINEX

Chapter 3

Converting Coordinates & Time

3.1 Transformations

Let \mathbf{i}_x , \mathbf{i}_y , \mathbf{i}_z and \mathbf{i}_ε , \mathbf{i}_η , \mathbf{i}_ζ be two sets of orthagonal unit vectors

$$\mathbf{i}_{\xi} = l_1 \mathbf{i}_x + m_1 \mathbf{i}_y + n_1 \mathbf{i}_z$$
$$\mathbf{i}_{\eta} = l_2 \mathbf{i}_x + m_2 \mathbf{i}_y + n_2 \mathbf{i}_z$$
$$\mathbf{i}_{\zeta} = l_3 \mathbf{i}_x + m_3 \mathbf{i}_y + n_3 \mathbf{i}_z$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{R} \begin{bmatrix} \varepsilon \\ \eta \\ \zeta \end{bmatrix} \text{ or } \begin{bmatrix} \varepsilon \\ \eta \\ \zeta \end{bmatrix} = \mathbf{R}^{\mathbf{T}} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \mathbf{i}_{x} \cdot \mathbf{i}_{\varepsilon} & \mathbf{i}_{x} \cdot \mathbf{i}_{\eta} & \mathbf{i}_{x} \cdot \mathbf{i}_{\zeta} \\ \mathbf{i}_{y} \cdot \mathbf{i}_{\varepsilon} & \mathbf{i}_{y} \cdot \mathbf{i}_{\eta} & \mathbf{i}_{y} \cdot \mathbf{i}_{\zeta} \\ \mathbf{i}_{z} \cdot \mathbf{i}_{\varepsilon} & \mathbf{i}_{z} \cdot \mathbf{i}_{\eta} & \mathbf{i}_{z} \cdot \mathbf{i}_{\zeta} \end{bmatrix} = \begin{bmatrix} l_{1} & l_{2} & l_{3} \\ m_{1} & m_{2} & m_{3} \\ n_{1} & n_{2} & n_{3} \end{bmatrix}$$

$$\mathbf{R}^{\mathbf{T}} = \mathbf{R}^{-1}$$

Equations found here [1, pp. 81-82]

3.2 Time Systems

3.2.1 Solar & Sidereal Time

Since the beginning time has been kept by counting the the days. An apparent solar day is the minimum time elapsed between the sun crossing a specified

meridian and then recrossing the same meridian. This form of time keeping is problematic because no two apparent solar days are of the same duration due to Earth's rotation around the sun as well as around its axis (the Earth does a little more than one rotation per apparent solar day). Also, Earth's rotational speed is not constant and its axis of rotation is tilted 23.5° to the orbital plane. These imperfections call for correction, and thus mean solar time was created. A day in mean solar time is defined as one revolution of a hypothetical sun that orbits at the equator, and is more commonly known as Greenwich Mean Time. Another solution is to base our day on the crossing of a star much farther away thus minimizing the effect of the Earth's orbital movement, this method of time keeping is known as sidereal time. A sidereal day is about 4 minutes shorter than a solar day, and is used heavily by astronomers. Sidereal time is not truly stable either so mean sidereal day was introduced, and is known as Greenwich Apparent Sidereal Time. Universal Time (UT) refers to any time scale based on the Earth's rotation. UT0 refers to the mean solar time at the prime meridian as obtained from astronomical observation, and UT1 is UT0 corrected for polar motion. Briefly ephemeris time was introduced to standardize the second, which was defined as 1/31556925.9747 of the year 1900. This was soon replaced by atomic time [4, pp. 84-86].

3.2.2 Atomic Time

The second is now defined by an atomic standard that is based on the resonance frequency of the cesium atom. To be precise, the second is defined as "9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom," whose duration happens to exactly match the ephemeris second discussed in the previous section. The problem with detaching our time keeping method from the Earth is that as the Earth slows its rotation noon will move closer to midnight (over the duration of thousands of years, of course). Coordinated Universal Time (UTC) was introduced to prevent this. UTC is a compromise between the precision of atomic time and the groundedness of Earth based time keeping, it uses the atomic second but introduces leap seconds (positive or negative) when necessary to keep UTC within .9 seconds of UT1 [4, pp. 86-87].

3.2.3 Time Formats

We are used to dealing with months, days, years, hours, minutes, and seconds, but such a time format makes for difficult epoch calculations over long periods. To solve this problem Julian Date (JD) was introduced. JD consists of a day count (days since noon UT on January 1st 4713 B.C.) and a fraction of the current day. This makes for easy time differencing, but the length of the date can become cumbersome and the fact that a new day starts at noon confusing. To make things even easier Modified Julian Date (MJD) was created whos origin

is midnight November 17th, 1858.

$$MJD = JD - 2400000.5$$

In order to make Julian Date useful we need an easy was to go between calendar dates and JD. *timeconvert* does this and more with ease. The equations to convert from calendar date to JD are

$$\label{eq:JD} \begin{split} \text{JD} &= \text{INT}[365.25y] + \text{INT}[30.6001(m+1)] + D + \text{UT}/24 + 1720981.5 \\ y &= Y - 1 \quad \text{and} \ m = M + 12 \quad \text{if} \ M \leq 2 \\ y &= Y \quad \quad \text{and} \ m = M \quad \quad \text{if} \ M > 2 \end{split}$$

where M is the month, D is the day, Y is the year, and INT[x] returns just the integer part of the a number. To go from JD to calendar date

$$a = \text{INT[JD} + 0.5]$$

$$b = a + 1537$$

$$c = \text{INT[}(b - 122.1)/365.25]$$

$$d = \text{INT[}365.25c]$$

$$e = \text{INT[}(b - d)/30.6001]$$

$$D = b - d - \text{INT[}30.6001e] + \text{FRAC[JD} + 0.5]$$

$$M = e - 1 - 12\text{INT[}e/14]$$

$$Y = c - 4715 - \text{INT[}(7 + M)/10]$$

where FRAC[x] returns just the fractional part of a real number. MJD Conversion found here [4, p. 88]. All other date conversions were found here [2, pp. 36-37]

3.2.4 GPS Time

GPS Time (GPST) is a continuously running composite time kept by cesium and rubidium frequency standards aboard the satellites and at monitor stations. While there are no leap seconds in GPST as there are in UTC, it is steered to stay within 1 μ s of UTC, that is the difference between GPST and UTC is an integer number of seconds plus a fraction of a μ s. GPST is formatted in terms of GPS weeks and the number of seconds into the current week. Finding these values is done easily if the Julian Date is known.

GPS WEEK = INT[(JD
$$- 2444244.5)/7$$
]
SOW = FRAC[(JD $- 2444244.5)/7$] × 604800

where INT[x] returns the integer part of a real number, FRAC[x] returns the fractional part, and SOW stands for Second of Week.

Other useful quantities such as Day of Week and Second of Day can be found using *timeconvert* or the following equations.

$$DOW = modulo\{INT[JD + 0.5], 7\}$$

$$SOD = modulo\{FRAC[JD + 0.5], 7\} \times 86400$$

where DOW=0 corresponds to Monday, DOW=1 corresponds to Tuesday, and so on.

JD and GPS Week equations were found here [2, pp. 36-37], SOD derived from DOW equation

3.2.5 **Z-Count**

Satellites keep internal time with Z-count, whose epoch period is 1.5 seconds (a convenient unit for communications timing). The full Z-count is 29 bits, the 10 bit GPS week folloed by a 19 bit Time of Week (TOW) expressed in Z-counts (or 1.5 second units). The truncated Z-count has a 17 bit TOW that is expressed in units of 6 seconds, or the length of one subframe's transmission time. Simply multiply the truncated TOW by 4 to get the full TOW [5, pp. 86-88].

$$TOW = FRAC[(JD - 2444244.5)/7] \times 403200$$

Truncated TOW = FRAC[
$$(JD - 2444244.5)/7$$
] × 100800

Equations derived from SOW equation above

3.3 Earth Fixed Coordinates

3.3.1 ECI to ECF

$$\left[\begin{array}{c} x\\y\\z\end{array}\right]_{ECF}=T_{XYZ}^{xyz}\left[\begin{array}{c} X\\Y\\Z\end{array}\right]_{ECI}$$

$$T_{XYZ}^{xyz} = WSNP$$

P - applies precession, from epoch 2000.0 to the current time; N - applies nutation, from epoch 2000.0 to the current time; S - applies rotation to account for true sidereal time; W - applies polar motion;

Equations found on page 85 of Fundamentals of Orbit Determination paper book

3.3.2 WGS-84

The World Geodetic System 1984 (WGS-84) is fixed physical model of Earth produced by the Department of Defense to which many different reference frames can be attached. WGS-84 consists of two parts, a model of Earth's gravitational field, and an ellipsoid describing the Earth's general shape. When dealing with locations on the Earth's surface the ellipsoid provides the foundation for the geodetic coordinate system used by GPS. The ellipsoid's cross-sections parallel to the equatorial plane are circular while those orthogonal are elliptical. The ellipses are parameterized by an eccentricity e, a flattening f, and sometimes a second eccentricity e'

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

$$f = 1 - \frac{b}{a}$$

$$e' = \sqrt{\frac{a^2}{b^2} - 1} = \frac{a}{b}e$$

where a, the semimajor axis, is the value of the mean equatorial radius of Earth (6,378.137 km) and b, the semiminor axis, is the value of the polar radius of Earth (6,356.7523142 km) [3, pp. 25-26].

3.3.3 Coordinate Systems

Now that WGS-84 is defined it is important to understand what coordinate systems can be attached to the ellipsoid and how to move between these different systems. The GPS Toolkit comes with *poscvt*, an application that gives users the ability to easily convert coordinates in one reference frame to another. The coordinate systems that *poscvt* recognizes are Cartesian (or XYZ), geodetic, geocentric, and spherical coordinates. These systems and the formulas to convert between them are discussed below.

Cartesian (XYZ) Coordinates

The Earth Centered Earth Fixed (ECEF) Cartesian coordinate system is fixed to the WGS-84 ellipsoid and is the common ground that makes going between the Earth Centered Inertial (ECI) reference frame used by the satellites and the systems we are used to (such as latitude, longitude, and height) manageable. The equatorial plane makes the xy-plane with the +x-axis pointing toward 0° longitude and the +y-axis pointing toward 90° E longitude. The z-axis is normal to the equatorial plane and points to the geographical north pole. The conversion formulas presented in the next sections will convert to and from this Cartesian reference frame, and so to convert between two non-Cartesian coordinate systems the XYZ system will be used as an intermediary [3, p. 24].

Geodetic Coordinates

The geodetic coordinate parameters are longitude λ , latitude ϕ , and height h. Longitude is defined as the angle between the position and the x-axis in the equatorial plane, and is easily computed given a position in Cartesian coordinates. Let a user's position $\mathbf{U} = (x_u, y_u, z_u)$, then

$$\lambda = \begin{cases} \arctan\left(\frac{y_u}{x_u}\right), & x_u \ge 0\\ 180^\circ + \arctan\left(\frac{y_u}{x_u}\right), & x_u < 0 \text{ and } y_u \ge 0\\ -180^\circ + \arctan\left(\frac{y_u}{x_u}\right), & x_u < 0 \text{ and } y_u < 0 \end{cases}$$

where negative angles signal west longitude.

Latitude and height are not so straight forward. Latitude is determined by drawing a vector normal to the ellipsoid, beginning somewhere on the equatorial plane and terminating at the users position, we will call this the user vector. The smallest angle between this vector and the equatorial plane is the user's latitude, it is a North latitude for positive angles and South for negative. Notice that unless the user is at a pole or on the equator the vector does not pass through the center of the Earth. The users height is found by taking the magnitude of the vector originating on and normal to the ellipsoid and terminating at the user's position. Latitude ϕ and height h are found using the following equations

$$\phi = \arctan\left(\frac{z_u + e'^2 z_0}{r}\right)$$
$$h = U\left(1 - \frac{b^2}{aV}\right)$$

where

$$r = \sqrt{x_u^2 + y_u^2}$$

$$E^2 = a^2 - b^2$$

$$F = 54b^2 z_u^2$$

$$G = r^2 + (1 - e^2) z_u^2 - e^2 E^2$$

$$c = \frac{e^4 F r^2}{G^3}$$

$$s = \sqrt[3]{1 + c + \sqrt{c^2 + 2c}}$$

$$P = \frac{F}{3\left(s + \frac{1}{s} + 1\right)^2 G^2}$$

$$Q = \sqrt{1 + 2e^4 P}$$

$$r_0 = -\frac{Pe^2r}{1+Q} + \sqrt{\frac{1}{2}a^2\left(1+\frac{1}{Q}\right) - \frac{P(1-e^2)z_u^2}{Q(1+Q)} - \frac{1}{2}Pr^2}$$

$$U = \sqrt{(r-e^2r_0)^2 + z_u^2}$$

$$V = \sqrt{(r-e^2r_0)^2 + (1-e^2)z_u^2}$$

$$z_0 = \frac{b^2z_u}{aV}$$

Going back to Cartesian coordinates from the geodetic system ($\lambda \phi h$) can be done more compactly

$$\mathbf{u} = \begin{bmatrix} \frac{a\cos\lambda}{\sqrt{1 + (1 - e^2)\tan^2\phi}} + h\cos\lambda\cos\phi \\ \frac{a\sin\lambda}{\sqrt{1 + (1 - e^2)\tan^2\phi}} + h\sin\lambda\cos\phi \\ \frac{a(1 - e^2)\sin\phi}{\sqrt{1 - e^2\sin^2\phi}} + h\sin\phi \end{bmatrix}$$

where **u** is the user's position vector [3, 4, pp. 26-28, p. 76].

Geocentric Coordinates

$$x = r \cos \phi \cos \lambda$$
$$y = r \cos \phi \sin \lambda$$
$$z = r \sin \phi$$

where λ and ϕ are geocentric longitude and latitude found on page 82 in the Fundamentals of Orbital Determination paper book

Spherical Coordinates

Topocentric Coordinates

$$\mathbf{r}_t = T_t(\mathbf{r} - \mathbf{r}_s) = T_t \rho$$

 ${f r}$ and ${f r}_s$ are the position vectors of the observer and satellite respectively in the Earth-fixed system

$$T_t = \begin{bmatrix} -\sin\lambda & \cos\lambda & 0\\ -\sin\phi\cos\lambda & -\sin\phi\sin\lambda & \cos\phi\\ \cos\phi\cos\lambda & \cos\phi\sin\lambda & \sin\phi \end{bmatrix}$$

where λ and ϕ are geocentric longitude and latitude found on page 84 in the Fundamentals of Orbital Determination paper book to find *azimuth* (Az) and *elivation* (El)

$$\begin{aligned} \sin \mathbf{El} &= \frac{z_t}{r_t} & -90^\circ \le \mathbf{El} \le 90^\circ \\ \sin \mathbf{Az} &= \frac{x_t}{r_{xy}} \\ \cos \mathbf{Az} &= \frac{y_t}{r_{xy}} & 0^\circ \le \mathbf{Az} \le 360^\circ \end{aligned}$$

Equations found on pages 84-85 in Fundamentals of Orbit Determination paper book

18 REFERENCES

3.4 References

[1] Richard H. Battin. An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Press, Reston, Virginia, revised edition, 1999.

- [2] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. *GPS: Theory and Practice*. Springer-Verlag Wien, New York, NY, 5th edition, 2001.
- [3] Elliot D. Kaplan, editor. *Understanding GPS: Principles and Applications*. Artech House Publishers, 685 Canton Street, Norwood, MA, 1996.
- [4] Pratap Misra and Per Enge. Global Positioning Sytem: Signals, Measurements and Performance. Ganga-Jamuna Press, Lincoln, Massachusetts, 2004.
- [5] James Bao-Yen Tsui. Fundamentals of Global Positioning System Receivers: A Software Approach. John Wiley & Sons, New York, 2000.

Part II Usage, Examples & Notes

	Tool	Description	Execution Example						
	calgps	generates a GPS calendar	calgps -Y 2004						
Transforms	poscvt	converts a given input position to other position formats	poscvtgeodetic="30.28 262.26700 167.64"						
Frans	timeconvert	converts given input time to other time formats	timeconvertcalendar="07 04 2006"						
	WhereSat	outputs expected location of a satellite	WhereSat -b ar12100.06n -p 3						
ng	rtAshtech	records observations from an Ashtech receiver	rtAshtech -p /dev/ttyS1 -o "minute%03j%02H%02m.%06yo"						
Converting	ficfica ficafic fic2rin	convert fic files between ASCII, binary, and RINEX formats	fic2rin fic2100.06 rin121.06n						
Cor	mdp2fic mdp2rinex	convert MDP files to fic or rinex files	mdp2rinex -i mdpfile -o arl2100.06o						
Collecting &	novaRinex	convert Novatel files to RINEX files	novaRinexinput nova2100.06obstype L1						
llecti	navdmp	dumps information from nav files to human readable formats	navdmp -i arl2100.06n -o arl2100.06.dmp						
ලි 	RinexDump	dumps observation data for specified satellites from a RINEX file	RinexDump arl2100.06o 3 4 L1 L2						
	ephdiff	compares the satellite positions from two ephemeris sources	ephdiff arl2100.06n fic2100.06						
ıg	ficdiff	compares contents of two FIC files	ficidff fic12100.06 fic22100.06						
idatir	ficcheck ficacheck	reads a FIC file and checks it for errors reporting the first found	ficcheck fic2100.06 -t "07/20/2006 11:00:00"						
Val	${\rm row/rnw/rmwdiff}$	compares contents of two RINEX files	rowdiff arl1210.06o arl22100.06o						
Comparing & Validating	row/rnw/rmwcheck	read RINEX files and checks it for errors reporting the first found	rnwcheck arl210.06n -e "07/20/2006 11:00:00"						
ıpari	navsum RinSum	summarizes the contents of nav/RINEX files	RinSum -i arl2100.06oEpochBeg 2006,07,20,13,20,00						
Con	mdptool	manipulates MDP data streams	mdptool -i mdpfilepvtobs						
	reszilla	computes various residuals from GPS data	reszilla -o ar1210.06o -e ar12100.06n						
	$\operatorname{mergeFIC}$	sorts and merges input FIC files into a single file	mergeFIC -i fic12100.06 -i fic22100.06 -o ficmerge2100.06						
ಹ	$\rm mergeRinObs/Nav/Met$	sorts and merges RINEX files	mergeRinNav -i arl2100.06n -i arl2110.06n arl210-211.06n						
Editing Data	NavMerge	merges RINEX nav files into a single file	NavMerge -oarlnavs.06n ar12100.06n ar12110.06n						
iting	rinexthin	decimates an input RINEX observation files to desired data rate	rinexthin -f arl2100.06o -s 30 -o arl2100thin.06n						
Ed	ResCor	edits RINEX files and computes corrections	ResCor -IFalr2100.060 -OFarl2100mod.060 -DS12,12:00:00						
	DiscFix	cycle slip corrector	DiscFix -i arl2100.060DT 1.5						
lono	IonoBias	solves interfrequency biases and a simple ionosphere model	IonoBiasinput arl2100.060nav arl2100.06nXSat 3						
Io	TECMaps	creates maps of Total Electron Content (TEC)	TECMapsinput arl2100.060nav arl2100.06nLinearFit						
ρū	PRSolve	generates autonomous position solution	PRSolve -o alr2100.06o -n arl2100.06nnXPRN 12						
onin	rinexpvt	generates autonous position solution	rinexpvt -o alr2100.06o -n ar12100.06n						
Positioning	DDBase	computes a network solution using carrier phase	DDBaseObsFile arl2100.06oPosXYZ x,y,z,1Fix						
	vecsol	estimates short baseline using range or carrier phase	vecsol station12100.06o station22100.06o						

Table 3.0: GPSTk Applications at a Glance

3.5 calgps

3.5.1 Overview

This application generates a dual GPS and Julian calendar. The arguments and format are inspired by the UNIX 'cal' utility. With no arguments, the current argument is printed. The last and next month can also be printed. Also, the current or any given year can be printed.

3.5.2 Usage

Optional Arguments

Short Arg.	Long Arg.	Description
-h	-help	Generates help output.
-3	-three-months	Prints a GPS calendar for the previous, current, and next month.
-y	-year	Prints a GPS calendar for the entire current year.
-Y year	-specific-year=NUM	Prints a GPS calendar for the entire specified year.

3.5.3 Examples

```
> calgps -3
sh: calgps: command not found
> calgps -Y 1998
sh: calgps: command not found
```

3.5.4 Notes

If multiple options are given only the first is considered.

3.6. DISCFIX 23

3.6 DiscFix

3.6.1 Overview

The application reads a data file containing dual-frequency pseudorange and phase measurements and finds and fixes discontinuities in the phase; output is a list of editing commands (for use with PRGM RinexEdit); the program will also (optional) write out the raw (uncorrected) data to a RINEX file.

3.6.2 Usage

DiscFix									
Required A	-								
Short Arg.	Long Arg.	Description							
-i	-inputfile	Input (Rinex obs) file(s)							
Optional A	rguments								
-f		file containing more options							
-d	-directory	Directory of input file(s)							
	-decimate	Decimate data to time interval dt							
	-EpochBeg	Start time, arg is of the form YYYY,MM,DD,HH,Min,Sec							
	-GPSBeg	Start time, arg is of the form GPSweek, GPSsow							
	-EpochEnd	End time, arg is of the form							
		YYYY,MM,DD,HH,Min,Sec							
-GPSEnd		End time, arg is of the form GPSweek, GPSsow							
	-CA	Use C/A code pseudorange if P1 is not available							
$-\mathrm{DT}$		Time interval (s) of data points (needed for -Ps only)							
	-Gap	Time (s) of largest allowed gap within pass							
	-Points	Minimum number of points needed to process a							
		pass							
	-XPRN	Exclude this satellite (prn may be only <system>)</system>							
	-SVonly	Process this satellite ONLY							
	-Log	Output log file name (df.log)							
	$-\mathrm{Err}$	Output error file name (df.err)							
	-Out	Output (editing commands) file name (df.out)							
	-RinexFile	Output Rinex obs file name							
	-RunBy	Output Rinex header 'RUN BY' string							
	-Observer	Output Rinex header 'OBSERVER' string							
	-Agency	Output Rinex header 'AGENCY' string							
	-Marker	Output Rinex header 'MARKER' string							
	-Number	Output Rinex header 'NUMBER' string							
	-Smooth	Smooth pseudorange and debias phase and output both in place of raw							
	-SmoothPR	Smooth pseudorange and debias phase but							
	-SmoothPH	replace only raw pseudorange Smooth pseudorange and debias phase but							
	CAO	replace only raw phase							
	-CAOut	Output C/A code in Rinex							
	-DOut -verbose	Output Doppler in Rinex							
	-verbose	print extended output (NB –DCDebug,7 =; all debugging output)							
-h	-help	print syntax and quit.							

- 3.6.3 Examples
- 3.6.4 Notes

3.7. EPHDIFF 25

3.7 ephdiff

3.7.1 Overview

The application compares the contents of two files containing ephemeris data.

3.7.2 Usage

Optional Arguments

Short Arg.	Long Arg.	Description
-d	-debug	Increase debug level
-v	-verbose	Increase verbosity
-h	-help	Print help usage
-f	-fic = ARG	Name of an input FIC file
-r	-rinex = ARG	Name of an input RINEX NAV file

3.7.3 Examples

```
> ephdiff -f fic06.187 -r ar12800.06n
sh: ephdiff: command not found
```

3.7.4 Notes

Both files can either be a RINEX or a FIC file.

3.8 fic2rin

3.8.1 Overview

This application converts navigation messages between the FIC format, a format for GPS observations established by ARL:UT, and the RINEX format.

3.8.2 Usage

```
fic2rin usage: fic2rin <input FIC file> <output RINEX file name>
```

3.8.3 Examples

```
> fic2rin fic06.187 rin1870.06
sh: fic2rin: command not found
File Snippets
Binary FIC File
0000000
0000020
                                        В
                                                          \0
0000030 \0
                            \0
                               \0
                                    \0
                                       \0
                                           \0 \0
                                                        f 005
                                    " 260
0000040 022 \0
                \0 \0
                        >
                            f 301
                                               {
                                                    - 1
                                                       f \0
                                                               d 026
                                            i
0000050 335 344
                 8
                    \t 002
                            b
                                C 035 205
                                                4 027 241 372 210 006
                    / 301 374
                                            S 021
0000060 006
             }
                 Y
                                ? \0
                                                   8
                                                       >
                                                           f 301
RINEX NAV File
    2.10
                   NAVIGATION
                                                          RINEX VERSION / TYPE
fic2rin
                                       07/13/2006 11:48:58 PGM / RUN BY / DATE
                                                          END OF HEADER
 5 06 7 6 19 59 44.0 .199091155082D-03
                                         .356976670446D-10 .00000000000D+00
     .11800000000D+03 -.65625000000D+00
                                          .538879589355D-08
                                                            .997594152841D+00
    -.409781932831D-07 .710751442239D-02
                                         .655464828014D-05
                                                            .515355578804D+04
     .41758400000D+06 -.104308128357D-06 -.249936238139D+01
                                                           .707805156708D-07
     .938194464982D+00 .24175000000D+03
                                         .105751234129D+01 -.843570852398D-08
     .600024993449D-10
                       .10000000000D+01
                                         .13820000000D+04
                                                            .00000000000D+00
     .24000000000D+01
                       .00000000000D+00 -.419095158577D-08
                                                            .11800000000D+03
     .41142600000D+06 .4000000000D+01
```

3.8.4 Notes

$3.9 \quad ficacheck \ ficcheck$

3.9.1 Overview

These applications read input ASCII or binary FIC and check them for errors. ficcheck checks binary files and ficacheck checks ASCII files.

3.9.2 Usage

Optional Arguments

Short Arg.	Long Arg.	Description
-d	-debug	Increase debug level
-v	-verbose	Increase verbosity
-h	-help	Print help usage
-t	-time=TIME	Time of first record to count (default =
		"beginning of time")
-e	-end-time=TIME	End of time range to compare (default = "end
		of time")

ficacheck usage: ficacheck [options] ¡FICA file; ficcheck usage: ficcheck [options] ¡FIC file

3.9.3 Examples

```
> ficcheck fic06.187
sh: ficcheck: command not found
> ficacheck brokenfica
sh: ficacheck: command not found
```

3.9.4 Notes

Only the first error in each file is reported. The entire file is always checked regardless of time options.

3.10 ficafic ficfica

3.10.1 Overview

These applications convert navigation message data between variations of the FICformat, a format for GPS observations established by ARL:UT. *ficacheck* works with ASCII FIC files and *ficcheck* works with binary FIC files.

3.10.2 Usage

```
ficafic usage: ficafic <input fica file> <output fic file name> ficfica usage: ficfica <input fic file> <output fica file name>
```

3.10.3 Examples

```
> ficfica fic06.187 fica06.187
sh: ficfica: command not found
File Snippets
Binary FIC File
0000000
0000020
                                   В
                                          K
                                                 m
                                                   \0
                                                       \0
                        \0 \0
                                      \0 \0 \0
                                                f 005
0000030 \0
          \0
              \0
                \0
                               \0
                                  \0
                                                       \0
                                                          \0
                               " 260
0000040 022 \0 \0 \0
                                                       d 026
                     >
                        f 301
                                      i
                                         {
                                            !
                                                f \0
              8 \t 002
0000050 335 344
                        b
                            C 035 205
                                      7
                                         4 027 241 372 210 006
0000060 006
           }
               Y
                  / 301 374
                            ? \0
                                      S 021
                                             8
ASCII FIC File
BLK
      109
               32
                    0
                      583099966
                                 561736112
                                           375652454
      1382
                  18
                                                     154723549
  490955266
            389298053
                      109640353
                                 794393862
                                             4193473
                                                     940659548
  583099966
                                 218793822
                                           800301952
                                                     12009725
            561744492
                      792779231
  793943984
             14182503
                                 427630416
                                                     561753060
                       56922219
                                           583099966
 1073203199
            309077037
                        1329639
                                 15188054
                                           182084772
                                                     733918588
 1072216082
            792738524
BLK
       9
          60
                0
                    0
 .1390000000000D+03 \ .358000000000D+03 \ .4114260000000D+06 \ .10000000000D+01
 .10000000000000D+01 \ .1382000000000D+04 \ .100000000000D+01 \ .000000000000D+00
 .4176000000000D+06 .00000000000D+00-.14779288903810D-11-.24207541719079D-03
```

3.10.4 Notes

3.11. FICDIFF 29

3.11 ficdiff

3.11.1 Overview

The application compares the contents of two FIC files containing ephemeris data.

3.11.2 Usage

Optional Arguments

Short Arg.	Long Arg.	Description
-d	-debug	Increase debug level
-v	-verbose	Increase verbosity
-h	-help	Print help usage
-t	-time = TIME	Start of time range to compare (default =
		"beginning of time")
-e	-end-time=TIME	End of time range to compare (default = "end
		of time")

ephdiff usage: fic
diff [options] fic
1 fic2

3.11.3 Examples

```
> ficdiff -t "08/01/2006 12:00:00" fic1 fic2
<FIC BlockNumber: 9
floats: 139 362 172806 1 1 1386 1 0 0 55296 0 -4.19095e-09 180000 0 . . .
integers:
chars:

<FIC BlockNumber: 9
floats: 139 362 172806 1 1 1386 1 0 0 59392 0 -6.98492e-09 179984 0 . . .
integers:
chars:
. . .</pre>
```

3.11.4 Notes

$3.12 \quad Iono Bias$

3.12.1 Overview

The application will open and read several preprocessed RINEX obs files (containing obs types EL,LA,LO,SR or SS) and use the data to estimate satellite and receiver biases and to compute a simple ionospheric model using least squares and the slant TEC values.

3.12.2 Usage

IonoBias

Optional Arguments

-input Input Rinex obs file name(s)

Optional Arguments

Short Arg. Long Arg. Description

-f file containing more options

-inputdir Path for input file(s)

Ephemeris input

-navdir Path of navigation file(s)

-nav Navigation (Rinex Nav OR SP3) file(s)

Output

-datafile Data (AT) file name, for output and/or input

-log Output log file name

-biasout Output satellite+receiver biases file name

Time limits

-BeginTime Start time, arg is of the form

YYYY, MM, DD, HH, Min, Sec

 $- Begin GPS Time \hspace{0.5cm} Start \hspace{0.1cm} time, \hspace{0.1cm} arg \hspace{0.1cm} is \hspace{0.1cm} of \hspace{0.1cm} the \hspace{0.1cm} form \hspace{0.1cm} GPS week, GPS sow$

-EndTime End time, arg is of the form

YYYY,MM,DD,HH,Min,Sec

-EndGPSTime End time, arg is of the form GPSweek,GPSsow

Processing

-NoEstimation Do NOT perform the estimation (default=false).

-NoPreprocess Skip preprocessing; read (existing) AT file

(false).

-NoSatBiases Compute Receiver biases ONLY (not Rx+Sat

biases) (false).

-Model Ionospheric model: type is linear, quadratic or

cubic

-MinPoints Minimum points per satellite required

-MinTimeSpan Minimum timespan per satellite required

(minutes)

-MinElevation Minimum elevation angle (degrees)

-MinLatitude Minimum latitude (degrees)
-MaxLatitude Maximum latitude (degrees)
-MinLongitude Minimum longitude (degrees)
-MaxLongitude Maximum longitude (degrees)
-TimeSector Time sector (day — night — both)

-TerminOffset Terminator offset (minutes)

3.12. IONOBIAS 31

	-IonoHeight	Ionosphere height (km)
Other o	ptions	
	-XSat	Exclude this satellite (¡sat¿ may be ¡system¿
		only)
-v	-verbose	print extended output info.
-d	-debug	print extended output info.
-h	-help	print syntax and quit.

3.12.3 Examples

```
> IonoBias --inputdir data_set --navdir data_set --input s081213a.99o --input s081214a.99o --input s081215a.99o --nav s081213a.99n --nav s081214a.99n --nav s081215a.99n --datafile output}
IonoBias, built on the GPSTK ToolKit, Ver 1.0 6/25/04, Run 2006/08/17 09:50:59
IonoBias output directed to log file IonoBias.log
IonoBias timing: 6.210 seconds.
```

Output File Snippet

```
3 Number (max, good) stations in this file
010101101100001111110111011101110\\
010101101100001111110111011101110
010100101100001111110111011101110\\
Npt 9737 Sta 85408 LLH 30.2160 262.2746 163.4226
          0.0 0.00000 -463513.64930 0.32 0.000
1021
                                                         1 1
1021
          0.0 0.00000 -463513.64930 0.32
                                                            1 14 1
                                               0.000
                                               0.000
         0.0 0.00000 -463513.64930 0.32
0.0 0.00000 -463513.64930 0.32
0.0 0.00000 -463513.64930 0.32
1021
                                                            1 15
                                                                    1
1021
                                                0.000
                                                            1 21
                                               0.000
                                                            1 22
1021
                                                                    1
1021
          0.0 0.00000 -463513.64930 0.32
                                                 0.000
                                                            1 25
          0.0 0.00000 -463513.64930 0.32
                                                            1 29
1021
                                                 0.000
                                                                    1
         0.0 0.00000 -463513.64930 0.32
30.0 0.00000 -463513.52430 0.32
                                                            1 30
1021
                                                 0.000
                                                                    1
1021
                                                 0.000
                                                             1 1
                                                                    1
         30.0 0.00000 -463513.52430 0.32
1021
                                                 0.000
                                                            1 14
                                                                    1
```

3.12.4 Notes

Input can be either on the command line or put in a file and then input using the -f option. The file is formatted just as if it were the command line.

$3.13 \quad mdp2 fic \ mdp2 rinex$

3.13.1 Overview

The applications convert a variety of GPS related observations from the MDP format to FIC and RINEX formats. MDP is a format for network receiver interfaces derived by ARL:UT that can be used to serve observations over networks.

3.13.2 Usage

mdp2fic			
Required A	Arguments		
Short Arg.	Long Arg.	Description	
-i	-mdp-input=ARG	Filename to read MDP data from. The filename	
		of '-' means to use stdin.	
-n	-nav = ARG	Filename to which FIC nav data will be written.	
Optional A	rguments		
Short Arg.	Long Arg.	Description	
-d	-debug	Increase debug level	
-v	-verbose	Increase verbosity	
-h	-help	Print help usage	
-1	-log=ARG	Filename for (optional) output log file	
	G	(1 / 1 0	
		mdp2rinex	
Required A	\ navmonta	maparinex	
-	9	Description	
Short Arg.	Long Arg.	Description Filename to read MDP data from. The filename	
-i	-mdp-input=ARG	of '-' means to use stdin.	
-n	-obs=ARG	Filename to write RINEX obs data to. The	
		filename of '-' means to use stdout.	
Optional Arguments			
Short Arg.	Long Arg.	Description	
-d	-debug	Increase debug level	
-v	-verbose	Increase verbosity	
-h	-help	Print help usage	
-n	-nav=ARG	Filename to write RINEX nav data to.	
-t	-thinning=ARG	A thinning factor for the data, specified in	
~	8	seconds between points. Default: none.	
-c	-12c = ARG	Enable output of L2C data in C2.	

3.13.3 Examples

```
> mdp2fic -i mdp183.06 -o fic183.06 -l mdp2ficlog183.06
```

3.13.4 Notes

> mdp2rinex -i mdp183.06 -o rin183.060 -n rin183.06n -t 60

3.14. MDPTOOL 33

$3.14 \quad mdptool$

3.14.1 Overview

The application performs verious functions on a stream of MDP data.

3.14.2 Usage

mdptool			
Optional A	rguments		
Short Arg.	Long Arg.	Description	
-d	-debug	Increase debug level	
-v	-verbose	Increase verbosity	
-h	-help	Print help usage	
-i	-input=ARG	Where to get the MDP data from. The default is to use stdin. If the file name begins with "tcp:" the remainder is assumed to be a hostname[:port] and the source is taken from a tcp socket at this address. If the port number is not a position and address to the source is taken from a tcp socket at this address.	
	autmut ADC	not specified a default of 8910 is used.	
	-output=ARG	Where to send the output. The default is stdout.	
-p	-pvt	Enable pvt output	
-O	-obs	Enable obs output	
-n	-nav	Enable nav output	
-t	-test	Enable selftest output	
-x	-hex	Dump all messages in hex	
-b	-bad	Try to process bad messages also.	
-a	-almanac	Build and process almanacs. Only applies to the nav style	
-e	-ephemeris	Build and process engineering ephemerides. Only applies to the nav style	
-S	-output-style=ARG	What type of output to produce from the MDP stream. Valid styles are: brief, verbose, table, track, null, mdp, nav, and summary. The default is summary. Some modes aren't quite	
-1	-timeSpan=NUM -startTime=TIME -stopTime=TIME	complete. Sorry. How much data to process, in seconds Ignore data before this time. (%4Y/%03j/%02H:%02M:%05.2f) Ignore any data after this time	

3.14.3 Examples

3.14.4 Notes

In the summary mode, the default is to only summarize the obs data above 10 degrees. Increasing the verbosity level will also summarize the data below 10 degrees.

$3.15 \quad mergeFic$

3.15.1 Overview

The applications merge multiple FIC files into a single FIC file.

3.15.2 Usage

		mergeFIC
Required A	Arguments	
Short Arg.	Long Arg.	Description
-i	-input = ARG	An input RINEX Obs file, can be repeated as
		many times as needed.
-o	-output=ARG	Name for the merged output RINEX Obs file.
		Any existing file with that name will be
		overwritten.
Optional A	rguments	
Short Arg.	Long Arg.	Description
-d	-debug	Increase debug level
-v	-verbose	Increase verbosity
-h	-help	Print help usage

3.15.3 Examples

```
> mergeFIC -i fic1 -i fic2 -o ficm
sh: mergeFIC: command not found
```

3.15.4 Notes

$3.16 \quad mergeRinObs\ mergeRinNav\ mergeRinMet$

3.16.1 Overview

The applications merge multiple RINEX observation, navigation, or meteroligical data files into a single coherent RINEX obs/nav/met file.

3.16.2 Usage

		mergeRinObs
Required A	Arguments	
Short Arg.	Long Arg.	Description
-i	-input=ARG	An input RINEX Obs file, can be repeated as many times as needed.
-0	-output=ARG	Name for the merged output RINEX Obs file. Any existing file with that name will be overwritten.
Optional A	rguments	
Short Arg.	Long Arg.	Description
-d	-debug	Increase debug level
-v	-verbose	Increase verbosity
-h	-help	Print help usage

mergeRinNav and mergeRinNav have the same usage.

3.16.3 Examples

```
> mergeRinObs -i arl280.06o -i arl2810.06o -o arl280-10.06o
sh: mergeRinObs: command not found
> mergeRinNav -i arl280.06n -i arl2810.06n -o arl280-10.06n
sh: mergeRinNav: command not found
> mergeRinMet -i arl280.06m -i arl2810.06m -o arl280-10.06m
sh: mergeRinMet: command not found
```

3.16.4 Notes

$3.17 \quad navdmp$

3.17.1 Overview

The application prints the contents of an FIC or RINEX file into a human readable file and allows filtering of the data.

3.17.2 Usage

navdmp			
Required A	Arguments		
Short Arg.	Long Arg.	Description	
-i	-input = ARG	Name of an input navigation message file	
-O	-output = ARG	Name of an output file	
Optional A	Arguments		
Short Arg.	•	Description	
-d	-debug	Increase debug level	
-v	-verbose	Increase verbosity	
-h	-help	Print help usage	
-a	-all-records	Unless otherwise specified, use default values for record filtration.	
-t	-time = TIME	Start time (of data) for processing	
-e	-end-time=TIME	End time (of data) for processing	
-p	-prn=NUM	PRN(s) to include	
-b	-block=NUM	FIC block number(s) to process ((9)109	
		(Engineering) ephemerides, (62)162	
		(engineering) almanacs)	
-r	-RINEX	Assume input file is a RINEX navigation	
		message file	

3.17.3 Examples

```
> navdmp -i data_set/s081213a.99n -o summary --RINEX
Current filtering options:
       Start time: 01/06/1980 00:00:00
       End time:
                     01/01/4713 00:00:00
       PRNs:
                    using all PRNs
Choose an option by number then push enter:
       1) Change the start time
       2) Change the end time
       3) Select specific PRNs
       5) Process the file
use ctrl-c to exit
? 5
processing...
Summary File Snippet
```

3.17. NAVDMP 37

Broadcast Ephemeris (Engineering Units)

PRN : 14

Week(10bt) SOW DOW UTD SOD MM/DD/YYYY HH:MM:SS Clock Epoch: 1021(1021) 7200 Sun-0 213 7200 08/01/1999 02:00:00 Eph Epoch: 1021(1021) 7200 Sun-0 213 7200 08/01/1999 02:00:00

Transmit Week:1021 Fit interval flag: 0

SUBFRAME OVERHEAD

SOW DOW:HH:MM:SS ALERT A-S 6 Sun-0:00:00:06 0x023 SF1 HOW: 0 off SF2 HOW: 6 Sun-0:00:00:06 0x23 off SF3 HOW: 6 Sun-0:00:00:06 0x23 0 off

CLOCK

Bias T0: 2.82567926E-05 sec Drift: 1.02318154E-12 sec/sec
Drift rate: 0.00000000E+00 sec/(sec**2)
Group delay: -2.32830644E-09 sec

ORBIT PARAMETERS

 Semi-major axis:
 5.15359685E+03 m**.5

 Motion correction:
 4.44732811E-09 rad/sec

 Eccentricity:
 8.10711295E-04

 Arg of perigee:
 2.16661714E+00 rad

 Mean anomaly at epoch: 1.75307843E-01 rad

Right ascension: 2.02857661E+00 rad -8.31963226E-09 rad/sec Inclination: 9.77089255E-01 rad 2.20723480E-10 rad/sec

HARMONIC CORRECTIONS

Sine: 1.31875000E+01 m Cosine: 3.31593750E+02 m Radial Inclination Sine: 5.77419996E-08 rad Cosine: -1.86264515E-08 rad Sine: 2.74367630E-06 rad Cosine: 6.27711415E-07 rad In-track

SV STATUS

URA index: 7 Health bits: 0x00 Code on L2: P only L2 P Nav data: on

3.17.4 Notes

$3.18 \quad NavMerge$

3.18.1 Overview

The application merges RINEX Nav files into a single file.

3.18.2 Usage

NavMerge			
Optional A	rguments		
Short Arg.	Long Arg.	Description	
-O		Write all data to an output Rinex nav file. If	
		omitted, a data summary is written to the	
		screen.	
-tb		Output only if epoch is within 4 hours of the	
		interval (tb,te).	
-te		If te or th is missing, they are made equal.	
		Timetags have the form	
		year,mon,day,HH,min,sec OR GPSweek,sow	

3.18.3 Examples

```
> NavMerge -os081213-214.99n s081213a.99n s081214a.99n
sh: NavMerge: command not found
```

3.18.4 Notes

NavMerge will also correct the output data when the GPS full week number is inconsistent with the epoch time.

3.19. NAVSUM 39

3.19 navsum

3.19.1 Overview

The application prints the contents of an FIC or RINEX file into a human readable format and allows for the filtering of the data.

3.19.2 Usage

navsum			
Required A	Arguments		
Short Arg.	Long Arg.	Description	
-i	-input=ARG	Name of an input navigation message file	
-O	-output $=$ ARG	Name of an output file	
Optional A	Arguments		
Short Arg.	•	Description	
-d	-debug	Increase debug level	
-v	-verbose	Increase verbosity	
-h	-help	Print help usage	
-a	-all-records	Unless otherwise specified, use default values for record filtration	
-t	-time = TIME	Start time (of data) for processing	
-е	-end-time=TIME	End time (of data) for processing	
-p	-prn=NUM	PRN(s) to include	
-b	-block=NUM	FIC block number(s) to process ((9)109	
		(Engineering) ephemerides, (62)162	
		(engineering) almanacs)	
-r	-RINEX	Assume input file is a RINEX navigation	
		message file	

3.19.3 Examples

Type # Blocks Found

```
> navsum -i s081213a.99n -o summary --RINEX
Current filtering options:
       Start time: 01/06/1980 00:00:00
       End time:
                     01/01/4713 00:00:00
       PRNs:
                    using all PRNs
Choose an option by number then push enter:
       1) Change the start time
       2) Change the end time
       3) Select specific PRNs
       5) Process the file
use ctrl-c to exit
? 5
processing...
Summary of data processed
Block Type Summary
```

9	•		0	
109	•	0		
62	2		0	
162	2		0	
Ephe	emeris	Blocks	by	PRN
PRN	${\tt Block}$	Nu	ım	
01	9		()
01	109		()
02	9		()
02	109		()
03	9		()
03	109		()
04	9		()
04	109		()
05	9		()

3.19.4 Notes

3.20. NOVARINEX 41

$3.20 \quad novaRinex$

3.20.1 Overview

The application will open and read a binary Novatel file (OEM2 and OEM4 receivers are supported), and convert the data to Rinex format observation and navigation files. The Rinex header is filled using user input (see below), and optional records are filled.

3.20.2 Usage

		NavMerge
Required A	Arguments	ivaomerge
Short Arg.	Long Arg.	Description
	-input	Novatel binary input file
	•	• •
Optional A	rguments	
-f		Name of file containing more options ('#' to
	1.	EOL: comment)
	-dir	Directory in which to find input file (defaults to
	-obs	./) Rinex observation output file (RnovaRinex.obs)
	-nav	Rinex navigation output file (RnovaRinex.nav)
	nav	Timex havigation output me (timovartmex.nav)
Output RI	NEX Header Fields	
	-noHDopt	If present, do not fill optional records in the
		output Rinex header
	$-\mathrm{HDp}$	Set output Rinex header 'program' field
	***	('novaRinex v1.1 2/06')
	$-\mathrm{HDr}$	Set output Rinex header 'run by' field
	IID - zahana	('ARL:UT/GPSTk')
	-HDo <obser> -HDa <agency></agency></obser>	Set output Rinex header 'observer' field (' ') Set output Rinex header 'agency' field
	-IIDa \agency>	('ARL:UT/GPSTk')
	-HDm <marker></marker>	Set output Rinex header 'marker' field (' ')
	-HDn <number></number>	Set output Rinex header 'number' field (' ')
	-HDrn < number>	Set output Rinex header 'Rx number' field (' ')
	$-\mathrm{HDrt} < \mathrm{type} >$	Set output Rinex header 'Rx type' field
		('Novatel')
	–HDrv <vers></vers>	Set output Rinex header 'Rx version' field ('OEM2/4')
	-HDan <number></number>	Set output Rinex header 'antenna number' field (' ')
	-HDat <type></type>	Set output Rinex header 'antenna type' field (' ')
	-HDc <comment></comment>	Add comment to output Rinex header (¿1 allowed).
Output DI	NEX Observation D)oto
Output Iti	-obstype <ot></ot>	Output this Rinex (standard) obs type (i.e.
	ossi, pe	OT> is one of L1,L2,C1,P1,P2,D1,D2,S1,or S2); repeat for each type. NB default is ALL std. types that have data.
0 4 6	C 4 ! -	
Output Co	nfiguration	Start time and is of the form
	-begin <arg></arg>	Start time, arg is of the form YYYY,MM,DD,HH,Min,Sec
		,,— — ,, - ,~~~

 $-{\rm beginGPS}\ {\rm <arg>}$ Start time, arg is of the form $\operatorname{GPSweek}, \operatorname{GPSsow}$ -end <arg> End time, arg is of the form $\rm YYYY, MM, DD, HH, Min, Sec$ $-\mathrm{endGPS}$ <arg> End time, arg is of the form GPSweek, GPSsow -week <week>GPS Week number of this data, NB: this is for OEM2; this command serves two functions, resolving the ambiguity in the 10-bit week (default uses –begin, –end, or the current system time) and ensuring that ephemeris records that precede any obs records are not lost. -debiasRemove an initial bias from the phase -h -help print this message and quit -d -debug print extended output info

3.20.3 Examples

3.20.4 Notes

Input is on the command line, or of the same format in a file (-f<file>).

3.21. POSCVT 43

$3.21 \quad poscvt$

3.21.1 Overview

This application allows the user to convert among different coordinate system on the command line. Coordinate systems handled include Cartesian, geocentric, and geodetic.

3.21.2 Usage

Optional A	rguments	
Short Arg.	Long Arg.	Description
-d	-debug	Increase debug level
-v	-verbose	Increase verbosity
-h	-help	Print help usage
	-ecef=POSITION	ECEF "X Y Z" in meters
	-geodetic=POSITION	Geodetic "lat lon alt" in deg, deg, meters
	-geocentric=POSITION	Geocentric "lat lon radius" in deg, deg, meters
	-spherical=POSITION	Spherical "theta, pi, radius" in deg, deg, meters
-l	-list-formats	List the available format codes for use by the
		input and output format options.
-F	-output-format = ARG	Write the position with the given format

If no options are given poscvt assumes XYZ 0 0 0.

3.21.3 Examples

```
> poscvt --ecef="-4346070.69263 4561978.26297 803.498856837"
sh: poscvt: command not found
> poscvt -1
sh: poscvt: command not found
> poscvt --ecef="-4346070.69263 4561978.26297 803.498856837" -F "\%A \%L \%h"
sh: poscvt: command not found
```

3.21.4 Notes

3.22 PRSolve

3.22.1 Overview

The application reads one or more RINEX observation files, plus one or more navigation (ephemeris) files, and computes an autonomous pseudorange position solution, using a RAIM-like algorithm to eliminate outliers. Output is to the log file, and also optionally to a RINEX obs file with the position solutions in auxiliary header blocks.

3.22.2 Usage

		navdmp
Required A	Arguments	
Short Arg.	Long Arg.	Description
-O	-obs	Input Rinex observation file(s)
-n	-nav	Input navigation (ephemeris) file(s) (Rinex or
		SP3)
Optional A	arguments: Input	
-f		File containing more options
	–obsdir	Directory of input observation file(s)
	-navdir	Directory of input navigation file(s)
	-decimate	Decimate data to time interval dt
	-EpochBeg	Start time, arg is of the form
		YYYY,MM,DD,HH,Min,Sec
	-GPSBeg	Start time, arg is of the form GPSweek, GPSsow
	-EpochEnd	End time, arg is of the form
		YYYY,MM,DD,HH,Min,Sec
	-GPSEnd	End time, arg is of the form GPSweek, GPSsow
	-CA	Use C/A code pseudorange if P1 is not available
Optional A	Arguments: Configurati	
	-RMSlimit	Upper limit on RMS post-fit residuals (m) for a good solution
	-SlopeLimit	Upper limit on RAIM 'slope' for a good solution
	-Algebra	Use algebraic algorithm (otherwise linearized LS)
	- Distance Criterion	Use distance from a priori as convergence criterion (else RMS)
	-ReturnAtOnce	Return as soon as a good solution is found
	-NReject	Maximum number of satellites to reject
	-NIter	Maximum iteration count (linearized LS
		algorithm)
	-Conv	Minimum convergence criterion (m) (LLS
		algorithm)
	-MinElev	Minimum elevation angle (deg) (only if
		-PosXYZ)
	-XPRN	Exclude this satellite.
	-Trop < model, T, P, H >	Trop model (one of BL,SA,NB,GG,GGH
	• , , ,	(cf.GPSTk)), with OPTIONAL weather
		Temp(C),Press(mb),RH(%)
Optional A	arguments: Output	
_	–Log	Output log file name (prs.log).
	-PosXYZ <x,y,z></x,y,z>	Known position (ECEF,m), used to compute output residuals.

3.22. PRSOLVE 45

-APSout Output autonomous pseudorange solution (APS

- no RAIM)

-TimeFormat Output time format (ala DayTime) (default:

%4F %10.3g)

Optional Arguments: RINEX Output

-RinexFile Output Rinex obs file name
-RunBy Output Rinex header 'RUN BY' string
-Observer Output Rinex header 'OBSERVER' string
-Agency Output Rinex header 'AGENCY' string
-Marker Output Rinex header 'MARKER' string

-Number Output Rinex header 'NUMBER' string

Optional Arguments: Help

-verbose Print extended output.
-debug Print very extended output.
-h Print syntax and quit.

3.22.3 Examples

```
> PRSolve -o ar12800.06o -n ar12800.06n
```

sh: PRSolve: command not found

> PRSolve -o ar12800.06o -n ar12800.06n --EpochBeg 2006,1,1,00,00,00 --EpochEnd 2006,1,1,12,00,00

sh: PRSolve: command not found

3.22.4 Notes

$3.23 \quad ResCor$

3.23.1 Overview

The application will open and read a single RINEX observation file, apply editing commands using the RinexEditor package, compute any of several residuals and corrections and register extended RINEX observation types for them, and then write the edited data, along with the new extended observation types, to an output RINEX observation file.

3.23.2 Usage

		ResCor
_	ion Arguments	Description
Short Argf <file></file>	Long Arg.	Description File containing more options
-1<111e>	-nav <file></file>	Navigation (Rinex Nav OR SP3) file(s)
	-navdir <dir></dir>	Directory of navigation file(s)
	navan (an)	Encouring of navigation mo(e)
Reference	position input	
	-RxLLH <1,1,h>	1.Receiver position (static) in geodetic lat, lon(E), ht (deg,deg,m)
	-RxXYZ < x,y,z>	2.Receiver position (static) in ECEF coordinates (m)
	-Rxhere	3.Reference site positions(time) from this file (i.eIF <rinexfile>)</rinexfile>
	$-RxRinex <\!fn\!>$	4.Reference site positions(time) from another Rinex file named <fn></fn>
	-RxFlat < fn >	5.Reference site positions and times given in a flat file named <fn></fn>
	-Rxhelp	(Enter –Rxhelp for a description of the -RxFlat file format)
	-RAIM	6.Reference site positions computed via RAIM (requires P1,P2,EP) NB the following two options apply only if
		-RAIM is found)
	-noRAIMedit	Do not edit data based on RAIM solution
	-RAIMhead	Output average RAIM solution to Rinex header (if -HDf also appears)
	-noRefout	Do not output reference solution to Rinex
Residual/C	Correction comput	ation
	-debias <ot,l></ot,l>	Debias new output type <ot>; trigger a bias reset with limit <l></l></ot>
	-Callow	Allow C1 to replace P1 when P1 is not available
	-Cforce	Force C/A code pseudorange C1 to replace P1
	-IonoHt <ht></ht>	Height of ionosphere in km (default 400) (needed for LA,LO,VR,VP)
	-SVonly < prn >	Process this satellite ONLY
Output file	25	
Surpur me	-Log <file></file>	Output log file name (rc.log)
	-Err <file></file>	Output error file name (rc.err)

3.23. RESCOR 47

Help

Print extended output -verbose -debug Print debugging information. -h Print syntax and quit. -help

Rinex Editor commands:

Commands begin with a '-' or '/', followed by an identifier, then data fields. Fields beyond the initial 2- or 3-character identifier are comma delimited. <SV> gives a satellite; SV=<PRN><System(optional)> eg. 19G or 19 = PRN 19 GPS. <System> is a single character (G=GPS, R=GLONASS, T=Transit, S=Geosynchronous). <OT> gives a Rinex observation type, e.g. L1 or P2 (case sensitive). <time> gives a time; time=<week,sow> OR time=<year,mon,day,hour,min,second>.

File I/O

-IF<file> Input Rinex observation file name (required) -ID < dir >Directory in which to find input file -OF < file >Output Rinex file name (required, or

-OF < file>, < time>)

-OF < f >, < time >At time=<time>, close output file and open

another named $\langle f \rangle$

 $\text{-OD}{<}\text{dir}{>}$ Directory in which to put output file(s)

Output Rinex header fields

-HDf If present, fill optional records in the output

Rinex header (NB EditObs() and EditFile() will

do this, but NOT EditHeader().)

-HDpprogram> Set output Rinex header 'program' field Set output Rinex header 'observer' field -HDo<observer> -HDa<agency> Set output Rinex header 'agency' field -HDm<marker> Set output Rinex header 'marker' field -HDn<number> Set output Rinex header 'number' field -HDc<comment> Add comment to output Rinex header (more

than one allowed).

-HDdc Delete all comments in output Rinex header

(NB -HDdc cannot delete comments created by

subsequent -HDc commands)

-AO<OT> Add observation type OT to header and

observation data

General edit commands

-TB < time >Begin time: reject data before this time (also

used for decimation)

-TE<time> End time: reject data after this time -TT < dt >Tolerance in comparing times, in seconds

(default=1ms)

-TN < dt >Decimate data to epochs = Begin + integer*dt

(within tolerance)

Specific edit commands:

(Generally each '+' command (e.g DA+, <time>) has a corresponding '-' command, and vice-versa; if not, End-of-file or Begin-of-file is assumed.

Note commands at one time are applied AFTER other commands of the same type.)

Delete Command	
-DA+ <time></time>	Delete all data beginning at this time
-DA- <time></time>	Stop deleting data at this time
-DO <ot></ot>	Delete observation type OT entirely (including in header)
-DS < SV >	Delete all data for satellite SV entirely (SV may be system only)
$-\mathrm{DS}\!\!<\!\!\mathrm{SV}\!\!>,\!<\!\!\mathrm{time}\!\!>$	Delete all data for satellite SV at this single time (only)
-DA- <time></time>	Stop deleting data at this time
-DO < OT >	Delete observation type OT entirely (including
-DS <sv></sv>	inchetadael) data for satellite SV entirely (SV may be system only)
-DS <sv>,<time></time></sv>	Delete all data for satellite SV at this single time (only)
-DS+ <sv>,<time></time></sv>	Delete all data for satellite SV beginning at this time
$-DS-<\!SV>,<\!time>$	Stop deleting all data for satellite SV at this time
	(NB DS commands with SV=system (only)
-DD $<$ SV,OT,t $>$	delete all satellites of that system.) Delete a single Rinex data(SV,OT,t) at time <t></t>
-DD+ <sv,ot,t></sv,ot,t>	Delete all (SV,OT) data, beginning at time <t></t>
-DD- $\langle SV, OT, t \rangle$	Stop deleting all (SV,OT) data at time <t></t>
	(NB deleting data for one OT means setting it
	to zero - here and in Rinex)
Set Commands	
-SD < SV, OT, t, d >	Set $data(SV,OT,t)$ to $<$ d $>$ at time $<$ t $>$
-SS < SV, OT, t, s >	Set $ssi(SV,OT,t)$ to $\langle s \rangle$ at time $\langle t \rangle$
-SL+ <sv,ot,t,l></sv,ot,t,l>	Set all lli(SV,OT,t) to <l> at time <t></t></l>
-SL- <sv,ot,t,l></sv,ot,t,l>	Stop setting $lli(SV,OT,t)$ to $< l > at time < t > (',< l >' is optional)$
-SL < SV, OT, t, l >	Set lli(SV,OT,t) to <l> at the single time <t> (only)</t></l>
	(NB SL commands with SV=system (only)
	modify all satellites of that system.)
Bias Commands	
	(NB. BD commands apply only when data is
DZ	non-zero, unless -BZ appears)
-BZ	Apply bias data commands (BD) even when data is zero
$\text{-BD}{<}\text{SV,OT,t,d}{>}$	Add the value of <d> to data(SV,OT,t) at time <t></t></d>
$\text{-BD+}{<}\text{SV,OT,t,d}{>}$	Add value of $<$ d $>$ to data(SV,OT) beginning at time $<$ t $>$
$\text{-BD-}\!<\!\!\text{SV,OT,t,d}\!\!>$	Stop adding <d> to data(SV,OT) at time <t> (',<d>' optional)</d></t></d>
$\text{-BS}{<}\text{SV,OT,t,s}{>}$	Add the value of <s> to ssi(SV,OT,t) at time <t></t></s>
$\text{-BL} \small{<} \text{SV,OT,t,l} \small{>}$	Add the value of <l> to lli(SV,OT,t) at time <t></t></l>

3.23. RESCOR 49

The list of available extended Rinex obs types:

п	e ı	list of available exte	enaea kinex	ODS	з туре	es:		
	OΤ	Description	Units	Requ	ired	inpu	ıt ((EP=ephemeris,PS=Rx Position)
	ER	Ephemeris range	meters				ΕP	PS
	RI	Iono Delay, Range	meters			P1		
	ΡI	Iono Delay, Phase	meters	L1	L2			
	TR	Tropospheric Delay	meters				ΕP	PS
	RL	Relativity Correct.	meters				ΕP	
	SC	SV Clock Bias	meters				ΕP	
	EL	Elevation Angle	degrees				ΕP	PS
	ΑZ	Azimuth Angle	degrees				EP	PS
	SR	Slant TEC (PR)	TECU			P1		
	SP	Slant TEC (Ph)	TECU	L1	L2			
	VR	Vertical TEC (PR)	TECU			P1	ΕP	PS
	۷P	Vertical TEC (Ph)	TECU	L1	L2		ΕP	PS
	LA	Lat Iono Intercept	degrees				ΕP	PS
	LO	Lon Iono Intercept	degrees				ΕP	PS
	РЗ	TFC(IF) Pseudorange	meters			P1		
	L3	TFC(IF) Phase	meters	L1	L2			
	P4	GeoFree Pseudorange	meters			P1		
	L4	GeoFree Phase	meters	L1	L2			
	P5	WideLane Pseudorange	meters			P1		
	L5	WideLane Phase	meters	L1	L2			
	MP	Multipath (=M3)	meters	L1	L2	P1		
	M1	L1 Range minus Phase	meters	L1		P1		
	M2	L2 Range minus Phase	meters		L2			
	МЗ	IF Range minus Phase	meters	L1	L2	P1		
	M4	GF Range minus Phase	meters	L1	L2	P1		
		WL Range minus Phase		L1	L2	P1		
	XR	Non-dispersive Range	meters	L1	L2	P1		
	ΧI	Ionospheric delay	meters	L1	L2	P1		
		Range Error L1	meters	L1	L2	P1		
	Х2	Range Error L2	meters	L1	L2	P1		
		Satellite ECEF-X	meters				EP	
	SY	Satellite ECEF-Y	meters				EP	
	SZ	Satellite ECEF-Z	meters				ΕP	

3.23.3 Examples

3.23.4 Notes

3.24 reszilla

3.24.1 Overview

Reszilla is an application that computes various residuals from GPS pseudorange, phase and doppler data. These data are often referred to as raw observations. The two types of residuals that are currently computed are an Observed Range Deviation (ORD), and a double difference (DD). Once these residuals are computed, statistical summaries of these differences are computed and output to the user. Optionally, the residuals themselves may be output.

3.24.2 Observed Range Deviations

An ORD is basically the observed range to an SV differenced from the estimated range to that SV. There are many terms that go into computing the estimated range and/or correcting the observed range for known effects. When all of these effects are accounted for (as reszilla is capable of doing) ORDs can be in the 10-30 cm range for a geodetic quality GPS receiver. Pretty impressive when you consider that the range to the SV is somewhere between 20 to 26 million meters.

For many GPS receivers, the most significant effect to account for is the receiver clock offset. This is the difference between the receivers internal time and true GPS time. This parameter is often computed as part of a PVT solution. This is not how reszilla works. Reszilla is provided a surveyed position of the receiver antenna, and it makes a more accurate estimate of the receiver clock offset by averaging the residuals of all SVs in track.

The ORD Options:

\item -n, --search-near
\item --svtime
\item --check-obs
\item --omode

3.24.3 Double Difference Residuals

While many double differences exist, reszilla computes an the first difference to a master SV and the second difference to a second receiver. This double difference removes receiver clock error, iono, trop, and SV clock errors. When the two receivers are connected to a common antenna (often referred to as a zero-baseline setup) and are of the same type, even the multipath is differenced out. What is left is basically receiver tracking noise and receiver tracking errors.

One complicating factor in computing this DD is that while the clock errors in the receivers cancel out, there is still an error associated with the motion of the satellite during the interval between when the two receivers computing their observation. To remove this error, an estimate of the clock offset between the two receivers is need. Reszilla can get this estimate in one of two ways; estimates this by computing a clock estimate for each receiver as described under the

3.24. RESZILLA 51

ORD section or reading the estimates from the rinex obs data files. These two estimates are then differenced to get the offset between the two receivers.

Another complicating factor is that the phase observations normally have an "integer ambiguity" associated with them. When the DD phase observation is computed, it will have the difference between the two receivers ambiguity. Often this number can be quite big. Removing this ambiguity is often referred to as debiasing the data. This process involves much black magic and slight of hand. Do not delve into this or even look too closely at the details or you will be sullied.

DD Options:

```
\item --ddmode
\item --min-arc-time
\item --min-arc-gap
\item --min-arg-length
```

3.24.4 Data Input

Several different types of data are required to compute these residuals; the raw observations, the receiver antenna position, the satellite position, and optionally weather observations. The raw observations may be supplied to reszilla in one of several formats; rinex obs (see RinexObsData class), smodf (see SMODFData class), and MDP (see MDPObsEpoch class in apps/MDPtools). The reciever antenna postion may be specified in the rinex obs header or via a station coordinates file (see MSCData class).

Options:

```
\item -o, --obs1
\item -2, --obs2
\item -e, --eph
\item -w, --weather
\item -c, --clock-from-rinex
\item -m, --msid
\item --msc
```

3.24.5 Output

There are two general types of output that reszilla produces - statistical summaries and the raw residuals. The mean, standard deviation, and maximum value of the residuals are calculated as a function of specified elevation ranges and are output in a statistics table. Looking at the results for each elevation bin is useful as ORDs tend to be much a higher when satellites are lower on the horizon. For a more thorough analysis, the ORD or DD residuals calculated by reszilla may be output in a matrix format to a file with columns for time, PRN, elevation, ORD or clock residual, IODC, satellite health, and a flag for the residual type. The flag specifies exactly which of the 13 possible residual types the data on that row represent, depending on the method used for calculation.

One benefit of this output feature is that residuals can be looked at for particular time periods or PRNs. Fortunately there is a companion plotting tool that makes this simple. Given a reszilla output file, the dplot program will plot residuals and, if specified, receiver clock estimates versus time using gnuplot. A user may specify the time range, stripping value, and PRN(s) to use in the plot, as well as a filename for saving the result.

Output Options:

\item --keep-unhealthy \item -s, --no-stats \item --cycle-slips \item -r, --raw-output \forall item -t, --time-format \item --clock-est \item -b, --elev-bin \item --sigma \item -v, --verbosity

3.24.6 Usage

Short Arg.	Long Arg.	Description
-O	-obs1=ARG	Observation data file name. If this option is
		specified more than once the contents of all files
		will be used.

Optional A	rguments	
Short Arg.	Long Arg.	Description
-h	-help	Generates help and usage.
-2	-position=ARG	Second receiver's observation data file name.
		Only used when computing a double difference.
		If this option is specified more than once the
		contents of all the files will be used.
	-msc = ARG	Station coordinate file.
-e	-ephemeris=ARG	Ephemeris data file name (either broadcast in
		RINEX nav, broadcast in FIC, or precise in
		SP3).
-W	-weather	Weather data file name (RINEX met format
		only).
-n	-search-near	Use BCEphemeris.searchNear()
-c	-clock-from-rinex	Use the receiver clock offset from the rinex obs
		data.
	-svtime	Observation data is in SV time frame. The
		default is RX time frame.
	-check-obs	Report data rate, order of data, data present,
		data gaps.
	-keep-unhealthy	Keeps unhealthy SVs in the statistics, default is
		to toss.
-s	-no-stats	Don't compute output the statistics.
	-cycle-slips	Output a list of cycle slips.
-r	-raw-output=ARG	Dump the computed residuals/ords into
		specified file. If '-' is given as the file name, the
		output is sent to standard output. The default
		is to not otput the raw residuals.

3.24. RESZILLA 53

	-start-time $=$ TIME	Ignore obs data prior to this time in the analysis. The time is specified using the format %4Y/%03j/%02H:%02M:%05.2f. The default value is to start with the first data found.
	-stop-time=TIME	Ignore obs data after to this time in the analysis. The time is specified using the format %4Y/%03j/%02H:%02M:%05.2f. The default value is to process all data.
-t	-time-format=ARG	Daytime format specifier used for the timestamps in the raw output. The default is "%Y %3j %02H:%02M:%04.1f". If this option is specified with the format as "s", the format "%Y %3j %7.1s" is used. If this option is specified with the format as "s", the format "%Y %3j %02H:%02M:%02S" is used.
	-omode=ARG	ORD mode: P1P2, C1P2, C1, P1, P2. The default is p1p2
	-clock-est	Compute a linear clock estimate.
	-ddmode=ARG	Double difference residual mode: none, sv, or
		c1p2. The default is sv.
	-min-arc-time = ARG	The minimum length of time (in seconds) that a sequence of observations must span to be considered as an arc. The default value is 60.0
	-min-arc-gap=ARG	seconds. The minimum length of time (in seconds) between two arcs for them to be considered separate arcs. The default value is 60.0 seconds.
	-min-arc-length = NUM	The minimum number of epochs that can be considered an arc. The default value is 5 epochs.
-b	-elev-bin=ARG	A range of elevations, used in computing the statistical summaries. Repeat to specify multiple bins. The default is "-b 0-10 -b 10-20 -b 20-60 -b 10-90".
	-sigma=NUM	Multiplier for sigma stripping used in computation of statistics on the raw residuals. The default value is 6.
-v	-verbosity = NUM	How much detail to provide about intermediate steps.
	0	nothing but the results
	1	Output status before potentially time
		consuming operations (default)
	2	more details about each step and the options chosen
	3	add the reasons for editing data
	4	dump intermediate values for each epoch (can be QUITE verbose)
		

Types in the raw output files:

0 - c1p2 observed range deviation 50 - computed clock, difference from estimate, strip

51 - linear clock estimate, abdev

```
13 - d1 23 - d2
14 - s1 24 - s2
```

3.24.7 Examples

reszilla --omode=p1 --svtime --msc=mscoords.cfg -m 85401 -o asm2004.138 -e s011138a.04n

3.24.8 Notes

The criteria min-arc-time and min-arc-length are both required to be met for a arc to be valid in double difference mode. All output quantities (stddev, min, max, ord, clock, double difference, ...) are in meters.

3.25 rmwcheck rnwcheck rowcheck

3.25.1 Overview

The applications read a RINEX observation (rowcheck), navigation(rnwcheck), or meteorological (rmwcheck) data file and check it for errors.

3.25.2 Usage

Optional Arguments

Short Arg.	Long Arg.	Description
-d	-debug	Increase debug level
-v	-verbose	Increase verbosity
-h	-help	Print help usage
-t	-time = TIME	Time of first record to count (default =
		"beginning of time")
-e	-end-time=TIME	End of time range to compare (default = "end
		of time")

rmwcheck usage: rmwcheck [options] <RINEX Met file>rnwcheck usage: rnwcheck [options] <RINEX Nav file>rowcheck usage: rowcheck [options] <RINEX Obs file>

3.25.3 Examples

```
> rnwcheck -t "08/01/2006 12:00:00" -e "08/01/2006 15:00:00" s081213a.99n
sh: rnwcheck: command not found
```

3.25.4 Notes

Only the first error in each file is reported. The entire file is always checked regardless of time options.

$3.26 \quad \textit{rmwdiff rnwdiff rowdiff}$

3.26.1 Overview

The applications difference RINEX observation, navigation, and meteorological data files.

3.26.2 Usage

Optional Arguments

Short Arg.	Long Arg.	Description
-d	-debug	Increase debug level
-v	-verbose	Increase verbosity
-h	-help	Print help usage
-t	-time=TIME	Start of time range to compare (default =
		"beginning of time")
-e	-end-time=TIME	End of time range to compare (default = "end
		of time")

rmwdiff usage: rmwdiff [options] <RINEX Met file> <RINEX Met file> rnwdiff usage: rnwdiff [options] <RINEX Nav file> <RINEX Nav file> rowdiff usage: rowdiff [options] <RINEX Obs file> <RINEX Obs file>

3.26.3 Examples

3.26.4 Notes

3.27. RINEXDUMP 57

3.27 RinexDump

3.27.1 Overview

The application reads a RINEX file and dumps the obervation data for the given satellite(s) to the standard output.

3.27.2 Usage

RinexDump usage: RinexDump [-n] <rinex obs file> [<satellite(s)> <obstype(s)>]

The optional argument -n tells RinexDump its output should be purely numeric.

3.27.3 Examples

```
> RinexDump algo1580.060 3 4 5
# Rinexdump file: algo1580.06o Satellites: G03 G04 G05 Observations: ALL
# Week GPS_sow Sat
                          L1 L S
                                          L2 L S
                                                          C1 L S
1378 259200.000 G03 -3843024.647 0 3 -2994560.443 0 1 23796436.087 0 0
1378 259230.000 G03 -3954052.735 0 3 -3081075.654 0 2 23775308.750 0 0
1378 259260.000 G03 -4064994.465 0 2 -3167523.561 0 3 23754197.617 0 0
1378 259290.000 G03 -4175846.973 0 3 -3253901.944 0 3 23733104.211 0 0
1378 259320.000 G03 -4286607.460 0 4 -3340208.647 0 3 23712026.249 0 0
1378 259350.000 G03 -4397272.869 0 4 -3426441.227 0 3 23690967.159 0 0
        P2 L S
                        P1 L S
                                       S1 L S
                                                       S2 L S
23796439.457 0 0 23796436.350 0 0
                                    21.100 0 0
                                                    11.000 0 0
23775311.168 0 0 23775308.182 0 0
                                    22.100 0 0
                                                    17.800 0 0
                                  17.000 0 0
23754199.648 0 0 23754196.550 0 0
                                                   18.600 0 0
23733104.928 0 0 23733102.480 0 0
                                 19.900 0 0
                                                  21.600 0 0
23712027.682 0 0 23712024.790 0 0 24.200 0 0
                                                  19.300 0 0
23690968.861 0 0 23690965.837 0 0
                                    25.600 0 0
                                                    19.900 0 0
```

3.27.4 Notes

MATLAB and Octave can read the purely numeric output.

3.28 rinexpvt

3.28.1 Overview

The application generates a user position based on RINEX observation data with the option of including navigation and meteriological data to aid error correction.

3.28.2 Usage

		navdmp
Required A	Arguments	
Short Arg.	Long Arg.	Description
-O	-obs-file=ARG	RINEX obs file
Optional A	rguments	
Short Arg.	Long Arg.	Description
-d	-debug	Increase debug level
-v	-verbose	Increase verbosity
-h	-help	Print help usage
-n	-nav-file $=$ ARG	RINEX Nav file. Required for single frequency
		ionosphere correction.
-p	-pe-file=ARG	SP3 Precise Ephemeris File. Repeat this for
		each input file.
-m	-met-file $=$ ARG	RINEX Met File
-t	-time-format = ARG	Alternate time format string.
-e	-enu=ARG	Use the following as origin to solve for
		East/North/Up coordinates, formatted as a
		string: "X Y Z"
-l	-elevation-mask=ARG	Elevation mask (degrees)
-s	-single-frequency	Use only C1 (SPS)
-f	-dual-frequency	Use only P1 and P2 (PPS)
-i	-no-ionosphere	Do NOT correct for ionosphere delay.
-x	-no-closest-ephemeris	Allow ephemeris use outside of fit interval.
-c	-no-carrier-smoothing	Do NOT use carrier phase smoothing.

3.28.3 Examples

```
> rinexpvt -o arl2800.06o -n arl2800.06n
sh: rinexpvt: command not found
> rinexpvt -o arl2800.06o -n arl2800.06n -m arl2800.06m
sh: rinexpvt: command not found
```

3.28.4 Notes

Though not stated in the required options lists either a RINEX navigation file or an SP3 Precise Ephemeris File is needed, using the -n or -p option respectively. When using precise ephemeris 3 files must be included, the previous day, the current day and the next day.

3.29. RINEXTHIN 59

3.29 rinexthin

3.29.1 Overview

This application decimates an input RINEX observation file to a specified data rate.

3.29.2 Usage

navdmp

Required Arguments

Short Arg. Long Arg. Description
-f -filename=ARG RINEX obs file to be thinned.
-s -Seconds=NUM The desired data rate.
-o -filename=ARG RINEX obs file with thinned obs.

3.29.3 Examples

```
> rinexthin -f arl2800.06o -s 60 -o arl2800thin.06o
sh: rinexthin: command not found
```

3.29.4 Notes

3.30 RinSum

3.30.1 Overview

The application reads a RINEX file and summarizes it content.

3.30.2 Usage

RinSum

Optional A	rguments	
Short Arg.	Long Arg.	Description
-i	-input	Input file name(s)
-f		file containing more options
-O	-output	Output file name
-p	-path	Path for input file(s)
-R	-Replace	Replace header with full one.
-s	-sort	Sort the PRN/Obs table on begin time.
-g	-gps	Print times in the PRN/Obs table as GPS
		times.
	-EpochBeg	Start time, arg is of the form
		YYYY,MM,DD,HH,Min,Sec
	-GPSBeg	Start time, arg is of the form GPSweek, GPSsow
	-EpochEnd	End time, arg is of the form
		YYYY,MM,DD,HH,Min,Sec
	-GPSEnd	End time, arg is of the form GPSweek, GPSsow
-h	-help	print syntax and quit.
-d	-debug	print debugging info.

3.30.3 Examples

```
> RinSum -i data_set/s081213a.99o --EpochBeg 2006,08,1,12,0,0'
Rinex header:
              ----- REQUIRED -----
Rinex Version 2.10, File type Observation, System G (GPS).
Prgm: RinexObsWriter, Run: 11-14-01 10:04:27, By: NIMA
Marker name: 85408.
Obs'r : Monitor Station, Agency: NIMA
Rec#: 1, Type: ZY12, Vers:
Antenna # : 85408, Type : AshTech Geodetic 3
Position (XYZ,m): (-740289.7851, -5457071.6555, 3207245.8294).
Antenna offset (ENU,m): (0.0000, 0.0000, 0.0000).
Wavelength factors (default) L1:1, L2: 1.
Observation types (7):
Type #0 = L1 L1 Carrier Phase (L1 cycles).
Type #1 = L2 L2 Carrier Phase (L2 cycles).
Type #2 = C1 C/A-code pseudorange (meters).
Type #3 = P1 Pcode L1 pseudorange (meters).
Type #4 = P2 Pcode L2 pseudorange (meters).
Type #5 = D1 Doppler Frequency L1 (Hz).
Type #6 = D2 Doppler Frequency L2 (Hz).
Time of first obs 1999/08/01 00:00:00.0000000 GPS
```

3.30. RINSUM 61

```
(This header is VALID 2.1 Rinex.)
----- OPTIONAL -----
Comments (3):
The AS bit flag is set if receiver is in Z mode
Signal to Noise ratio information is omitted
This file contains SMOOTHED obs data
    ----- END OF HEADER -----
{\tt WARNING:} Computed first time does not agree with header
Computed interval is 0.00
Computed first epoch is -4713/01/01 00:00:00.0000000
Computed last epoch is 1999/08/01 23:59:30.0000000
There were 0 epochs (-0.00% of -2147483647 possible epochs in this timespan) and 0 inline header blocks.
        Summary of data available in this file: (Totals are based on times and interval)
       L1 L2 C1 P1 P2 D1 D2 Total Begin - End time 0 0 0 0 0 0 0 0
PRN/OT:
TOTAL
WARNING: ObsType L1 should be deleted from header.
WARNING: ObsType L2 should be deleted from header.
WARNING: ObsType C1 should be deleted from header.
WARNING: ObsType P1 should be deleted from header.
WARNING: ObsType P2 should be deleted from header.
WARNING: ObsType D1 should be deleted from header.
WARNING: ObsType D2 should be deleted from header.
++++++++ End of RinSum summary of data_set/s081213a.99o ++++++++++++
```

3.30.4 Notes

3.31 rtAshtech

3.31.1 Overview

This application logs observations from an Ashtech Z-XII receiver. It records observations directly into the RINEX format. A number of optional outputs are possible. The raw messages from a receiver can be recorded. Observations can also be recorded in a format that is easily imported into numerical packages.

3.31.2 Usage

rtAshtech

Optional Arguments				
Short Arg.	Long Arg.	Description		
-h	-help	Print help usage		
-v	-verbose	Increased diagnostic messages		
-r	-raw	Record raw observations		
-l	$-\log$	Record log entries		
-t	-text	Record observations as simple text files		
-p	-port=ARG	Serial port to use		
-O	-rinex-obs=ARG	Naming convention for RINEX obs files		
-n	-rinex-nav=ARG	Naming convention for RINEX nav message files		
-T	-text-obs = ARG	Naming convention for obs in simple text files		

3.31.3 Examples

```
> rtAshtech -p /dev/ttyS1
```

> rtAshtech -o "minute\%03j\%02H\%02M.\%02yo"

3.31.4 Notes

rtAshtech only works on UNIX systems with POSIX compliant serial ports.

3.32. TECMAPS 63

3.32 TECMaps

3.32.1 Overview

The application will open and read several preprocessed RINEX obs files (containing obs types EL,AZ,VR—SR) and use the data to create maps of the Total Electron Content (TEC).

3.32.2 Usage

TECMaps

Required Arguments

-input Input Rinex obs file name(s)

Optional Arguments

-f file containing more options

Reference station position (one required)

-RxLLH <1,1,h> Reference site position in geodetic lat, lon (E),

ht (deg,deg,m)

-RxXYZ <x,y,z> Reference site position in ECEF coordinates (m)

-inputdir Path for input file(s)

Ephemeris input

-navdir Path of navigation file(s)

-nav Navigation (Rinex Nav OR SP3) file(s)

Output

-log Output log file name

Time limits

-BeginTime Start time, arg is of the form

YYYY,MM,DD,HH,Min,Sec

-BeginGPSTime Start time, arg is of the form GPSweek,GPSsow

-EndTime End time, arg is of the form

YYYY,MM,DD,HH,Min,Sec

-EndGPSTime End time, arg is of the form GPSweek,GPSsow

Processing

-noVTECmap Do NOT create the VTEC map.

-MUFmap Create MUF map as well as VTEC map. -F0F2map Create F0F2 map as well as VTEC map

 $\begin{array}{lll} -\text{Title1} & \text{Title information} \\ -\text{Title2} & \text{Second title information} \\ -\text{BaseName} & \text{Base name for output files (a)} \end{array}$

-DecorrError Decorrelation error rate in TECU/1000km (3) -Biases File containing estimated sat+rx biases (Prgm

IonoBias)

 $\begin{array}{ll} - Elev Thresh & Minimum \ elevation \ (6 \ deg) \\ - MinAcq Time & Minimum \ acquisition \ time \ (0 \ sec) \end{array}$

-FlatFit Flat fit type (default)
 -LinearFit Linear fit type
 -IonoHeight Ionosphere height (km)

Grid

-UniformSpacing Grid uniform in space (XYZ) (default)

-UniformGrid Grid uniform in Lat and Lon

 $\begin{array}{ll} - Output Grid & Output \ the \ grid \ to \ file < basename. LL> \\ - Gnuplot Output & Write \ the \ grid \ file \ for \ gnuplot \ (default: \ for \ f$

Matlab)

-NumLat
 -NumLon
 -BeginLat
 -BeginLon
 -DeltaLat
 -DeltaLon
 -DeltaLon
 -DeltaLon
 -DeltaLon
 -DeltaLon
 -DeltaLon
 Number of latitude grid points (40)
 Beginning latitude (21 deg)
 Beginning longitude (230 deg E)
 Grid spacing in latitude (0.25 deg)
 Grid spacing in longitude (1.0 deg)

Other options

-XSat Exclude this satellite (¡sat¿ may be ¡system¿

only)

Help

-v -verbose print extended output info.
 -d -debug print extended output info.

-h —help print syntax and summary of input, then quit.

3.32.3 Examples

3.32.4 Notes

Input is on the command line, or of the same format in a file (-f<file>).

3.33 time convert

3.33.1 Overview

This application allows the user to convert between time formats associated with GPS. Time formats include: civilian time, Julian day of year and year, GPS week and seconds of week, Z counts, and Modified Julian Date (MJD).

3.33.2 Usage

Optional Arguments			
Short Arg.	Long Arg.	Description	
-d	-debug	Increase debug level	
-v	-verbose	Increase verbosity	
-h	-help	Print help usage	
-c	-calendar=TIME	"Month(numeric) DayOfMonth Year"	
-r	-rinex=TIME	"Month(numeric) DayOfMonth Year	
		Hour:Minute:Second"	
-R	-rinex-file=TIME	"Year(2-digit) Month(numeric) DayOfMonth	
		Hour Minute Second"	
-y	-doy=TIME	"Year DayOfYear SecondsOfDay"	
-m	$-\mathrm{mjd}{=}\mathrm{TIME}$	"ModifiedJulianDate"	
-O	-shortweekandsow=TIME	"10bitGPSweek SecondsOfWeek Year"	
-z	-shortweekandzcounts $=$ TIME	"10bitGPSweek ZCounts Year"	
-f	-fullweekandsow $=$ TIME	"FullGPSweek SecondsOfWeek"	
-w	-full week and z counts = TIME o	"FullGPSweek ZCounts"	
-u	-unixtime = TIME	"UnixSeconds UnixMicroseconds"	
$-\mathbf{Z}$	-fullZcounts = TIME	"fullZcounts"	
-F	-format $=$ ARG	Time format to use on output	
-a	-add-offset= NUM	add NUM seconds to specified time	
-s	-sub-offset = NUM	subtract NUM seconds from specified time	

3.33.3 Examples

```
> timeconvert -r "05 06 1985 13:50:02"
sh: timeconvert: command not found
> timeconvert -o "1379 500 2006"
sh: timeconvert: command not found
> timeconvert -o "1379 500 2006 -a 86400"
sh: timeconvert: command not found
> timeconvert: command not found
> timeconvert -w "1381 500" -s 200
sh: timeconvert: command not found
```

3.33.4 Notes

If no arguments are given it will convert the current time to all formats.

3.34 Where Sat

3.34.1 Overview

This application uses input ephemeris to compute the predicted location of a satellite. The Earth-centered, Earth-fixed (ECEF) position of the satellite is reported. Optionally, the topocentric coordinates—azimuth, elevation, and range—can be generated. The user can specify the time interval between successive predictions. Also the output can generated in a format easily imported into numerical packages.

3.34.2 Usage

Required Arguments					
Short Arg.	Long Arg.	Description			
-b	-broadcast=ARG	Specify a RINEX navigation file. The user may enter multiple files.			
-p	-prn=NUM	Specify which SV to analuze.			
Optional A	rguments				
Short Arg.	Long Arg.	Description			
-h	-help	Generates help and usage.			
-u	-position=ARG	Specify antenna position in ECEF (x,y,z)			
		coordinates as "X Y Z". Used to give			
		user-centered data (SV range, azimuth &			
		elevation).			
-s	-start = ARG	Specify time to begin analysis as			
		"MO/DD/YYYY HH:MM:SS". The default is			
		the end of the file.			
-e	-end=ARG	Specify time to end analysis as			
		"MO/DD/YYYY HH:MM:SS". The default is			
		the beggning of the file.			
-O	-output-filename=ARG	Outputs results to a MATLAB readable file.			
-t	-time=NUM	Specify time increment for ephemeris calculation in seconds. Default is 900 (15 min.)			

3.34.3 Examples

```
> WhereSat -b aira1720.06n -p 2 -u "918129.01 -4346070.45 803.18"
 -s "06/21/2006 17:00:00" -e "06/21/2006 20:00:00" -t 1800
Antenna Position: 918129 -4.34607e+06 803.18
Navigation File: aira1720.06n
                 06/21/2006 17:00:00
Start Time:
End Time:
                 06/21/2006 20:00:00
PRN:
Prn 2 Earth-fixed position and clock information:
Date
          Time(UTC) X (meters)
                                       Y (meters)
                                                         Z (meters)
06/21/2006 18:00:00 12758891.971859
                                    18901201.616227
                                                         -14049016.596144
06/21/2006 18:30:00 12847888.097031
                                     21541501.416411
                                                         -9315422.851798
```

3.34. WHERESAT 67

3.34.4 Notes

3.35 vecsol

3.35.1 Overview

The application computes a 3D vector solution using dual-frequency carrier phases. A double difference algorithm is applied with properly computed weights (elevation sine weighting) and correlations. The program iterates to convergence and attempts to resolve ambiguities to integer values if close enough. Crude outlier rejection is provided based on a triple-difference test. Ephemeris used are either broadcast or precise (SP3). Alternatively, also P code processing is provided. The solution is computed using either the ionosphere-free linear combination, or the average of L1 and L2. The ionospheric model included in broadcast ephemeris may be used. A standard tropospheric correction is applied, or tropospheric parameters (zenith delays) may be estimated for the first station (vector mode) or both.

3.35.2 Usage

vecsol usage: vecsol <
RINEX Obs file 1> <
RINEX Obs file 2>

RINEX Observation Files

The two arguments are names of RINEX observation files. The contain the observations collected at the two end points 1 and 2 of the baseline. They must contain a sufficient set of simultaneous observations to the same satellites.

If no separate station coordinate files are provided, the initial station coordinates are taken from the RINEX headers. Upon finishing, vecsol creates or updates the coordinate file of the first station (vector mode) or both.

Configuration File vecsol.conf

The file vecsol.conf contains the input options for the program, one per line.

Options	Value	Meaning
obsMode	3/2/1/0	If 1 or 3, process carrier phase data (instead of
		P code data). If 0 or 1, iterate on
		ionosphere-free vector (not $L1 + L2$)
truecov	1/0	If 1, use true double difference covariances. If 0,
		ignore any possible correlations
precise	1/0	If 1, use precise ephemeris, if 0, use broadcast
		ephemeris
iono	1/0	If 1, use the 8-parameter ionospheric model that
		comes with the broadcast ephemeris (.nav) files
tropo	1/0	If 1, estimate troposphere parameters (zenith
		delays relative to the standard value, which is
		always applied)
vecmode	1/0	If 1, solve the vector, i.e. the three co-ordinate
		differences between the baseline end points. If 0,
		solve for the absolute co-ordinates of both end
		points
debug	1/0	If 1, produce lots of gory debugging output. See
		the source for what it all means

3.35. VECSOL 69

refsat elev number Minimum elevation (degs) of the reference satellite used for computing inter-satellite differences. Good initial choice: 30.0 cutoff elev number cut-off elevation (degs). Good initial choice: 10.0 - 20.0 rej TP, rej TC two numbers Phase, code triple differences rejection limit (m) reduce 1/0 Apply post-reduction to combine dependent unknowns

Ephemeris File Lists

The file vecsol.nav contains the names of the navigation RINEX files ("nav files", extension). Good navigation RINEX files that are globally valid can be found from the CORS website at http://www.ngs.noaa.gov/CORS/

The file vecsol.eph contains the names of the precise ephemeris SP3 files (extension .sp3) to be used. These should cover the time span of the observations, with time to spare on both ends. Note that the date in the filenames of the SP3 files is given as GPS week + weekday, not year + day of year, as in the observation and nav files.

In the .nav and .eph files, comment lines have # in the first position.

3.35.3 Examples

3.35.4 Notes

Currently, vecsol does not recover from cycle slips, so the RINEX observation files used have to be fairly clean.

Index

calgps	application writeup, 35
application writeup, 22	navdmp
DiscFix	application writeup, 36
application writeup, 23	NavMerge
application writeap, 20	application writeup, 38
ephdiff	navsum
application writeup, 25	application writeup, 39
	novaRinex
fic2rin	application writeup, 41
application writeup, 26	application writeup, 41
ficacheck	poscvt
application writeup, 27	application writeup, 43
ficafic	theory, 15
application writeup, 28	PRSolve
ficcheck	application writeup, 44
application writeup, 27	······································
fiediff	ResCor
application writeup, 29	application writeup, 46
ficfica	reszilla
application writeup, 28	application writeup, 50
IonoBias	RinexDump
application writeup, 30	application writeup, 57
application writeup, 50	rinexpvt
mdp2fic	application writeup, 58
application writeup, 32	RinSum
mdp2rinex	application writeup, 60
application writeup, 32	$\operatorname{rmwcheck}$
mdptool	application writeup, 55
application writeup, 33	$\operatorname{rmwdiff}$
mergeRinFic	application writeup, 56
application writeup, 34	rnwcheck
mergeRinMet	application writeup, 55
application writeup, 35	rnwdiff
mergeRinNav	application writeup, 56
application writeup, 35	rowcheck
mergeRinObs	application writeup, 55

INDEX 71

rowdiff	
application writeup, 5	6
rtAshtech	
application writeup, 6	52
TECMaps	
application writeup, 6	3
timeconvert	
application writeup, 6	55
theory, 13, 14	
vecsol	
application writeup, 6	8
WhereSat	
application writeup, 6	66