Introduction to Information Theory

(EDAN96)

Luigi Nardi

https://cs.lth.se/luigi-nardi

Lund University

Material

- ► T. M. Cover. Elements of Information Theory. John Wiley & Sons, 1999 Sections 2.1 2.4
- C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. New York: Springer, 2006¹ – Section 1.6
- ► C. Olah. "Visual Information Theory". 2015. URL: http://colah.github.io/posts/2015-09-Visual-Information/
- L. Papenmeier. Reading group notes

¹The Bishop PRML book is publicly available: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-web-sol-2009-09-08.pdf

Lecture Aims

Understand basic concepts in Information theory

- Entropy
- ► Kullback-Leibler Divergence (aka KL divergence)
- Mutual information (aka information gain)

Introduction

Information theory gives a precise language to describe:

- ► How uncertain am I?
- ► How much does knowing the answer to question A tell me about the answer to question B?
- ▶ How similar is one set of beliefs to another?
- ▶ What is the ultimate data compression? (answer: the entropy)

It is used in a variety of applications:

- ► Machine Learning
- Data compression
- Etc.

Entropy: Entropy is a measure of uncertainty or disorder in a set of data. It's often used to describe the randomness or unpredictability of a dataset. Higher entropy indicates higher disorder or unpredictability.

Relationship to Other Fields²

Codes

0 0 0 1 0 0 1 ... encoded string

Codes

Codes

▶ Our code uses codewords that are 2 bits long:

$$L(x) = 2, \forall x \in \{``dog", ``cat", ``fish", ``bird"\}$$

- Our code uses codewords that are 2 bits long: $L(x) = 2, \forall x \in \{\text{"dog", "cat", "fish", "bird"}\}$
- ► However, some words are more common: Dog lover's example: p("dog") > p("bird")

- Our code uses codewords that are 2 bits long: $L(x) = 2, \forall x \in \{\text{"dog", "cat", "fish", "bird"}\}$
- ► However, some words are more common: Dog lover's example: p("dog") > p("bird")

<u>Visualization</u>: prob. of each word p(x) vs length of codeword L(x)

- Our code uses codewords that are 2 bits long: $L(x) = 2, \forall x \in \{\text{"dog", "cat", "fish", "bird"}\}$
- ► However, some words are more common: Dog lover's example: p("dog") > p("bird")

<u>Visualization</u>: prob. of each word p(x) vs length of codeword L(x)

▶ Our code uses codewords that are 2 bits long:

$$L(x) = 2, \forall x \in \{\text{"dog"}, \text{"cat"}, \text{"fish"}, \text{"bird"}\}$$

► However, some words are more common:

Dog lover's example: p("dog") > p("bird")

Some words are more common than others

<u>Visualization</u>: prob. of each word p(x) vs length of codeword L(x)

The area is the average length of a word we send: $\bar{L}(x) = 2$ bits

8 / 36

▶ Idea: common codewords are made very short

- ▶ Idea: common codewords are made very short
- ► Challenge: competition between codewords

- ▶ Idea: common codewords are made very short
- ► Challenge: competition between codewords

<u>Visualization</u>: prob. of each word p(x) vs length of codeword L(x)

- Idea: common codewords are made very short
- ► Challenge: competition between codewords

<u>Visualization</u>: prob. of each word p(x) vs length of codeword L(x)

The area is the average length of a word we send:

$$\bar{L}(x) = \frac{1}{2} * \frac{1}{1} + \frac{1}{4} * \frac{2}{1} + \frac{1}{8} * \frac{3}{1} + \frac{1}{8} * \frac{3}{1} = 1.75 \text{ bits} = \frac{\text{smaller area}}{1}$$

Entropy

- ▶ The code of the previous example is the best possible code
- lacktriangle For this distribution, $\bar{L}(x)=1.75$ bits is the best you can do
- ► There is simply a fundamental limit
- ► We call this fundamental limit the entropy of the distribution

entropy: the minimum average length of a message without losing any information

codewords

source

symbols

Variable-length codewords 0100111 string "dog" 0 "cat" 10 0 10 0 111 codewords "fish" 110 "bird" 111 dog cat dog bird source

▶ How do we split the encoded string back into the codewords?

- ▶ How do we split the encoded string back into the codewords?
- Easy for fixed-length codes, e.g., split every 2 steps

- ▶ How do we split the encoded string back into the codewords?
- Easy for fixed-length codes, e.g., split every 2 steps
- Code must be uniquely decodable. Example:
 - ightharpoonup if 0, 1 and 01 are codewords, can you decode 001?

Variable-length codewords

- ► How do we split the encoded string back into the codewords?
- Easy for fixed-length codes, e.g., split every 2 steps
- Code must be uniquely decodable. Example:
 - ightharpoonup if 0, 1 and 01 are codewords, can you decode 001? Not decodable
- Prefix codes: no codeword is the prefix of another codeword

Eg. 0 and 1 in 01

The Space of Codewords

The Space of Codewords

One useful way to think about Prefix codes is:

- Every codeword requires a sacrifice from the codewords space
- ▶ If we take the codeword 01, we lose codewords with that prefix
 - \Rightarrow We can't use 010 or 011010110 anymore (ambiguity)

0	0	0
		1
	1	0
1	0	1
		0
	O	1
	1	0
	1	1
bit 1	bit 2	bit 3

The Space of Codewords

One useful way to think about Prefix codes is:

- Every codeword requires a sacrifice from the codewords space
- \blacktriangleright If we take the codeword 01, we lose codewords with that prefix
 - \Rightarrow We can't use 010 or 011010110 anymore (ambiguity) \Rightarrow 0

- ► Limited budget to spend on getting short codewords
 - ► Short codewords ⇒ short average message lengths

- Limited budget to spend on getting short codewords
 - ► Short codewords ⇒ short average message lengths
- One codeword costs a fraction of possible codewords
 - Examples: the cost of a codeword of length
 - 0 is 1, all possible codewords
 - 1, like "0", is 1/2
 - 2, like "01", is 1/4

- Limited budget to spend on getting short codewords
 - ► Short codewords ⇒ short average message lengths
- One codeword costs a fraction of possible codewords
 - Examples: the cost of a codeword of length
 - 0 is 1, all possible codewords
 - 1. like "0", is 1/2
 - 2, like "01", is 1/4
- lackbox Law: the cost of codewords decreases exponentially: $\frac{1}{2^{L(x)}}$

Find the best codeword for a given problem

- Limited budget to spend on getting short codewords
 - ► Short codewords ⇒ short average message lengths
- One codeword costs a fraction of possible codewords
 - Examples: the cost of a codeword of length
 - 0 is 1, all possible codewords
 - 1, like "0", is 1/2
 - 2, like "01", is 1/4
- Law: the cost of codewords decreases exponentially: $\frac{1}{2^L}$

What's the best way to use our limited budget?

Distribute our budget in proportion to how common an event is

- ► This is optimal: Huffman coding <= optimal
- Examples: if one event happens this number of times
 - ▶ 50%: we spend 50% of our budget buying a short codeword
 - ▶ 1%: we only spend 1% of our budget

Calculating Entropy

$$cost(x) = \frac{1}{2^{L(x)}} \Rightarrow L(x) = \log_2\left(\frac{1}{cost(x)}\right)$$

Calculating Entropy

$$cost(x) = \frac{1}{2^{L(x)}} \Rightarrow L(x) = \log_2\left(\frac{1}{cost(x)}\right)$$

- Optimal encoding (Huffman): cost(x) = p(x)
- L(x) are the optimal lengths given p(x)

Calculating Entropy

$$cost(x) = \frac{1}{2^{L(x)}} \Rightarrow L(x) = \log_2\left(\frac{1}{cost(x)}\right)$$

- Optimal encoding (Huffman): cost(x) = p(x)
- $lackbox{L}(x)$ are the optimal lengths given p(x)

$$H(p) = \underbrace{\sum_{x} p(x) \log_2 \left(\frac{1}{p(x)}\right)}_{\text{Entropy of } p} = 1.75 \text{ bits}$$

Entropy is measured in bits, shortest average message length which is the fundamental limit without losing any info

Calculating Entropy

$$cost(x) = \frac{1}{2^{L(x)}} \Rightarrow L(x) = \log_2\left(\frac{1}{cost(x)}\right)$$

- Optimal encoding (Huffman): cost(x) = p(x)
- lackbox L(x) are the optimal lengths given p(x)

$$H(p) = \underbrace{\sum_{x} p(x) \log_2 \left(\frac{1}{p(x)}\right)}_{\text{Entropy of } p} = 1.75 \text{ bits}$$

Remark: entropy is often written as $H(p) = -\sum_{x} p(x) \log_2 p(x)$

Entropy High-level View

- ► The entropy has clear implications for compression
- ▶ But are there other reasons we should care about it? Yes!
 - ► It describes how uncertain I am
 - ► Gives a way to quantify information

The entropy of a random variable

is the <u>average level of "information", "surprise", or "uncertainty"</u> inherent in the variable's possible outcomes

Thus, by knowing the entropy of a random variable we can in ML know how much information it is giving

Entropy High-level View

- The entropy has clear implications for compression
- ▶ But are there other reasons we should care about it? Yes!
 - ► It describes how uncertain I am
 - Gives a way to quantify information

The entropy of a random variable

is the average level of "information", "surprise", or "uncertainty" inherent in the variable's possible outcomes

► Can the entropy of a discrete RV be negative?

Can never be negative, a message can't have a length less than 0

Entropy (Formally)

Definition (Entropy)

The entropy H(X) of a discrete random variable X is defined by $H(X) = -\sum_{x \in \mathcal{X}} p(x) \log_2 p(x)$

lacksquare X is a random variable with alphabet $\mathcal X$ and probability mass function $p(x)=Pr\{X=x\},\quad x\in\mathcal X$

Entropy as Expectation

The entropy depends only on the probabilities of the RV X

▶ Not on the outcomes

If $X \sim p(x)$, then the expectation of the RV g(X) is written as

$$\mathbb{E}_p[g(X)] = \sum_{x \in \mathcal{X}} p(x)g(x)$$

Now, if $g(X) = \log \frac{1}{p(X)}$

$$H(X) = \mathbb{E}_p[g(X)] = \mathbb{E}_p\left[\log\frac{1}{p(X)}\right] = \mathbb{E}_p[-\log p(X)]$$

This definition is related to the definition of entropy in thermodynamics

Let's Continue with Our Story

Images by freepik

18 / 36

Cross-entropy

▶ Joe and Gaby say the same words, just at different frequencies

Cross-entropy

▶ Joe and Gaby say the same words, just at different frequencies

- ▶ Joe sends a message: $\bar{L}_{Joe}(x) = 1.75 \text{ bits}$
- ▶ Gaby uses Joe's code: $\bar{L}_{Gaby}(x) = 2.25 \text{ bits } \geq 1.75$

Need to adjust for every probability distribution

Cross-entropy

▶ Joe and Gaby say the same words, just at different frequencies

- ▶ Joe sends a message: $\bar{L}_{Joe}(x) = 1.75$ bits
- ▶ Gaby uses Joe's code: $\bar{L}_{Gaby}(x) = 2.25 \text{ bits } \geq 1.75$

$$H_p(q) = \underbrace{\sum_{x} q(x) \log_2 \left(\frac{1}{p(x)}\right)}_{\text{Cross-entropy}} = 2.25 \text{ bits}$$

Reads: the cross-entropy of q wrt p

Cross-entropy is Asymmetric

$$H_p(q) \neq H_q(p)$$

Code Used	(Cross-)Entropy	Value
Joe using his own code	H(p)	1.75 bits
Gaby using Joe's code	$H_p(q)$	$2.25~\mathrm{bits}$
Gaby using her own code	H(q)	1.75 bits
Joe using Gaby's code	$H_q(p)$	$2.375 \ bits$

Cross-entropy is Asymmetric

$$H_p(q) \neq H_q(p)$$

unsymmetrical

		anoyminothodi
Code Used	(Cross-)Entropy	Value
Joe using his own code	H(p)	1.75 bits
Gaby using Joe's code	$\rightarrow H_p(q)$	2.25 bits
Gaby using her own code	H(q)	1.75 bits
Joe using Gaby's code	$\rightarrow H_q(p)$	2.375 bits

Why should we care about cross-entropy?

It expresses how different two probability distributions are

The more difference \Rightarrow the more $H_q(p)$ will be bigger than H(p)

Kullback-Leibler Divergence

The interesting thing is:

- ► The difference between the entropy and the cross-entropy
- Price to pay for using optimized code wrt another distribution
- ► The distributions are the same ⇔ difference is zero

Kullback-Leibler Divergence

The interesting thing is:

- ► The difference between the entropy and the cross-entropy
- Price to pay for using optimized code wrt another distribution
- ► The distributions are the same ⇔ difference is zero

Reads: the KL divergence of p with respect to q

Kullback-Leibler Divergence

The interesting thing is:

- ► The difference between the entropy and the cross-entropy
- Price to pay for using optimized code wrt another distribution
- ► The distributions are the same ⇔ difference is zero

$$\begin{array}{c|c} H(p) \\ \hline H_q(p) \\ \hline D(p||q) \end{array}$$

$$D(p||q) = H_q(p) - H(p)$$
Kullback-Leibler (KL) divergence

Cross-entropy: measure of how well the predicted probabilities match the true distribution

Reads: the KL divergence of p with respect to q

Cross-Entropy and KL divergence are incredibly useful in ML

Example: we want predicted and GT distributions to be close

KL divergence as a distance: the KL divergence acts like a distance metric between two distributions.

Kullback-Leibler Divergence (Formally)

Definition (KL Divergence)

The <u>Kullback-Leibler divergence</u>, aka <u>relative entropy</u>, between two probability mass functions p(x) and q(x) is defined as

$$D(p||q) = H_q(p(X)) - H(p(X))$$

$$= \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

$$= \mathbb{E}_p \left[\log \frac{p(X)}{q(X)} \right]$$

KL or Relative Entropy: Properties

Non-negative

<u>Intuition</u>: If D(p||q) < 0, we could transmit p more efficiently using the code of q. But we coded p according to H(p), which already gives us the <u>optimal average code length for p.</u>

Non-symmetric

Intuition: p(x) encodes all symbols with same probability (p(x)) has a uniform distribution), q(x) puts almost all probability mass on one symbol. Then using the code of q for p is more wasteful than the other way round ("multi-purpose" vs. "specialized" code).

Zero iff equal

$$D(p||q) = 0 \Leftrightarrow p = q.$$

Entropy and Multiple Variables

- \blacktriangleright X is a RV for the weather: $X \in \{\text{sun}, \text{rain}\}$
- ightharpoonup Y is a RV for clothing: $Y \in \{\text{tee}, \text{coat}\}$
- ► Message about clothing and weather today:

$$(X,Y) \in \{(\underbrace{\mathsf{sun},\mathsf{tee}}_{55\%}), (\underbrace{\mathsf{sun},\mathsf{coat}}_{20\%}), (\underbrace{\mathsf{rain},\mathsf{tee}}_{5\%}), (\underbrace{\mathsf{rain},\mathsf{coat}}_{20\%})\}$$

Entropy and Multiple Variables

- ightharpoonup X is a RV for the weather: $X \in \{\text{sun}, \text{rain}\}$
- ▶ Y is a RV for clothing: $Y \in \{\text{tee}, \text{coat}\}$
- ► Message about clothing and weather today:

$$(X,Y) \in \{(\underbrace{\mathsf{sun},\mathsf{tee}}_{55\%}), (\underbrace{\mathsf{sun},\mathsf{coat}}_{20\%}), (\underbrace{\mathsf{rain},\mathsf{tee}}_{5\%}), (\underbrace{\mathsf{rain},\mathsf{coat}}_{20\%})\}$$

▶ Now we can figure out the optimal average message length:

Entropy and Multiple Variables

- ightharpoonup X is a RV for the weather: $X \in \{\text{sun}, \text{rain}\}$
- ▶ Y is a RV for clothing: $Y \in \{\text{tee}, \text{coat}\}$
- Message about clothing and weather today:

$$(X,Y) \in \{(\underbrace{\mathsf{sun},\mathsf{tee}}_{55\%}), (\underbrace{\mathsf{sun},\mathsf{coat}}_{20\%}), (\underbrace{\mathsf{rain},\mathsf{tee}}_{5\%}), (\underbrace{\mathsf{rain},\mathsf{coat}}_{20\%})\}$$

▶ Now we can figure out the optimal average message length:

⇒ Joint Entropy

- Suppose you know the weather (check it on the news)
 - ► How much information do I need to provide for the clothing?
- ▶ I need to send less, the weather strongly implies clothing
 - ► When it's sunny: sunny-optimized code
 - When it's raining: raining-optimized code

⇒ Conditional Entropy

Joint Entropy (Formally)

Definition (Joint Entropy)

The joint entropy H(X,Y) of a pair of discrete RVs X, Y with a joint distribution p(x,y) is defined as

$$H(X,Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{1}{p(x,y)}$$

It can also be expressed as

$$H(X,Y) = -\mathbb{E}_p[\log p(X,Y)]$$

Conditional Entropy (Formally)

Definition (Conditional Entropy)

The conditional entropy H(Y|X) of a pair of discrete RVs \underline{X} , \underline{Y} with a joint distribution p(x,y) is defined as

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x)$$

$$= -\mathbb{E}_{p(x,y)}[\log p(Y|X)]$$

X	1	2	3	4	p(y)	➤ Marginal	
1	1/8	1/16	1/32	1/32	1/4	distribution Sum all	
2	1/16	1/8	1/32	1/32	1/4	whole row	
3	1/16	1/16	1/16	1/16	1/4		
4	1/4	0	0	0	1/4		
p(x)	1/2	1/4	1/8	1/8	1		
·	1				•		
Sum the whole columns							

	X	1	2	3	4	p(y)	
	1	1/8	1/16	1/32	1/32	1/4	
	2		1/8			1/4	
	3	1/16	1/16	1/16	1/16	1/4	\ \
	4	1/4	0	0	0	1/4	
	p(x)	(1/2)	1/4	1/8	1/8	1	
H(X) =	$= \sum_{x} p(x) \log_{2} 2 + \frac{1}{2} \log_{2} 2 + \frac{1}{4} \log_{2} 4 + \frac{1}{$	$\frac{1}{4}\log_2$	$\frac{1}{2}4 + \frac{1}{8}$		1		

 $H(X|Y) = \sum_{i} p(y)H(X|Y=y), \qquad \text{P(x,y)} = \text{P(x,y)}$

$$= \sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} p(x|y) \log_2 \left(\frac{1}{p(x|y)}\right)$$

$$= \sum_{y \in \mathcal{Y}} p(y) \sum_{x \in \mathcal{X}} \frac{p(x,y)}{p(y)} \log_2 \left(\frac{1}{\frac{p(x,y)}{p(y)}}\right)$$

27 / 36

X	1	2	3	4	p(y)
1	1/8	1/16	1/32	1/32	1/4
2	1/16	1/8	1/32	1/32	1/4
3	1/16	1/16	1/16	1/16	1/4
4	1/4	0	0	0	$^{1/_{4}}$
p(x)	1/2	1/4	1/8	1/8	1

Similarly:

$$\frac{H(Y|X)}{H(X,Y)} = \sum_{x \in \mathcal{X}} p(x)H(Y|X=x) = \frac{13}{8} \text{ bits}$$

$$\frac{H(X,Y)}{H(X,Y)} = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \frac{1}{p(x,y)} \log p(x,y) = \frac{27}{8} \text{ bits}$$

Remark: $\underbrace{H(Y|X)}_{\frac{1}{9} \text{ bits}} \neq \underbrace{H(X|Y)}_{\frac{1}{9} \text{ bits}}$ conditional entropy is asymmetric

Knowing X can mean that communicating Y requires less info:

joint entropy \geq marginal entropy \geq conditional entropy

$$H(X,Y) \ge H(X) \ge H(X|Y)$$

Knowing X can mean that communicating Y requires less info:

joint entropy
$$\geq$$
 marginal entropy \geq conditional entropy
$$H(X,Y) \geq H(X) \geq H(X|Y)$$

Knowing X can mean that communicating Y requires less info:

joint entropy \geq marginal entropy \geq conditional entropy

$$H(X,Y) \ge H(X) \ge H(X|Y)$$

Knowing X can mean that communicating Y requires less info:

joint entropy
$$\geq$$
 marginal entropy \geq conditional entropy
$$H(X,Y) \geq H(X) \geq H(X|Y)$$

Knowing X can mean that communicating Y requires less info:

joint entropy
$$\geq$$
 marginal entropy \geq conditional entropy
$$H(X,Y) \geq H(X) \geq H(X|Y)$$

Mutual information: I(X;Y)

Knowing X can mean that communicating Y requires less info:

joint entropy
$$\geq$$
 marginal entropy \geq conditional entropy
$$H(X,Y) \geq H(X) \geq H(X|Y)$$

Mutual information: I(X;Y)

$$I(X;Y) = H(X) - H(X|Y)$$

$$I(X;Y) = H(Y) - H(Y|X)$$

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

I(X;Y) = I(Y;X)

$$I(X;X) = H(X)$$

$$I(X;Y) \ge 0$$

Mutual Information (Formally)

Definition (Mutual Information)

Consider two RVs X and Y with a joint probability mass function p(x,y) and marginal probability mass function p(x) and p(y). The mutual information I(X;Y) is the relative entropy between the joint distribution and the product distribution p(x)p(y), i.e.,

$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$= D(p(x,y)||p(x)p(y))$$
$$= \mathbb{E}_{p(x,y)} \left[\log \frac{p(X,Y)}{p(X)p(Y)} \right]$$

Mutual information is also known as Information gain

Entropy and Mutual Information Relationship

The mutual information can be rewritten as

$$I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x,y} p(x,y) \log \frac{p(x|y)}{p(x)}$$

$$= -\sum_{x,y} p(x,y) \log p(x) + \sum_{x,y} p(x,y) \log p(x|y)$$

$$= -\sum_{x} p(x) \log p(x) - \left(-\sum_{x,y} p(x,y) \log p(x|y)\right)$$

$$= \underbrace{H(X) - H(X|Y)}_{\text{Reduction of uncertainty of } X}_{\text{due to the knowledge of } Y}$$

By symmetry, it also follows that I(X;Y) = H(Y) - H(Y|X)

Mutual Information: Example I

X	1	2	3	4	p(y)	_
1	1/16	1/16	1/16	1/16	1/4	I(
2	1/16	1/16	1/16	1/ ₁₆ 1/ ₁₆	1/4	H H
3	1/16	1/16	1/16	1/16	1/4	
4	1/16	1/16	1/16	1/16	1/4	H
p(x)	1/4	1/4	1/4	1/4	1	H

$$H(X) = 2$$

$$H(Y) = 2$$

$$I(X;Y) = 0$$

$$H(X|Y) = 2$$

$$H(Y|X) = 2$$
$$H(X,Y) = 4$$

Information gain: how much do we learn about Y if we know X? I(X;Y) = 0 means that X and Y are independent, no exchange of information

Mutual Information: Example I

X	1	2	3	4	p(y)	H(X) = 2 $H(Y) = 2$
1	1/16	1/16	1/16	1/16	1/4	I(X;Y) = 0
2	1/16	1/16	1/16	1/16	1/4	
3	1/16	1/16	1/16	1/16	1/4	H(X Y) = 2
4	1/16	1/16	1/16	1/16	1/4	H(Y X) = 2
p(x)	1/4	1/4	1/4	1/4	1	H(X,Y)=4

Corollary

$$I(X;Y) = 0 \Leftrightarrow X$$
 and Y are independent

Proof.

"\(\phi\)":
$$I(X;Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} = \sum_{x,y} p(x,y) \log \frac{p(x)p(y)}{p(x)p(y)} = 0$$
"\(\phi\)": $\log \frac{p(x,y)}{p(x)p(y)} = 0 \Leftrightarrow \frac{p(x,y)}{p(x)p(y)} = 1 \Leftrightarrow p(x)p(y) = p(x,y)$

"
$$\Rightarrow$$
": $\log \frac{p(x,y)}{p(x)p(y)} = 0 \Leftrightarrow \frac{p(x,y)}{p(x)p(y)} = 1 \Leftrightarrow p(x)p(y) = p(x,y)$

Mutual Information: Example II

X	1	2	3	4	p(y)
1	1/8	1/16	1/32	1/32	1/4
2	1/8	1/16	1/32	1/32	1/4
3	1/8	1/16	1/32	1/32	1/4
4	1/8	1/16	1/32	1/32	1/4
p(x)	1/2	1/4	1/8	1/8	1
		,			ı

$$H(X|Y) = 1.75$$

$$H(Y|X) = 2$$

$$H(X,Y) = 3.75$$

 $H(X) = \underline{1.75}$ $H(Y) = \underline{2}$ I(X;Y) = 0

$$p(y \mid x = 1)$$

$$p(y \mid x = 2)$$

$$p(x, y) \rightarrow p(y \mid x = 1)$$

$$p(x, y) = p(y|x)p(x)$$

$$\frac{\sqrt{z}}{\sqrt{e}} = \frac{1}{4} \quad p(y=1|x=1) = \frac{1}{4}$$

$$= \frac{1}{4} \quad p(y=2|x=1) = \frac{1}{4}$$

$$= \frac{1}{4} \quad p(y=2|x=1) = \frac{1}{4}$$

Mutual Information: Example III

X	1	2	3	4	p(y)	H(X) = 2 $H(Y) = 2$
1	1/8	1/16	1/32	1/32	1/4	II(I) = 2 $I(X;Y) = 0.25$
2	1/32	1/8	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{4}$	H(X Y) = 0.25 $H(X Y) = 1.75$
$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$	$\frac{1}{32}$ $\frac{1}{16}$	$\frac{1}{32}$ $\frac{1}{32}$	$\frac{1}{8}$ $\frac{1}{32}$	$\frac{1}{16}$ $\frac{1}{8}$	$\frac{1}{4}$ $\frac{1}{4}$	H(X Y) = 1.75 $H(Y X) = 1.75$
p(x)	1/4	1/4		1/4	1	H(X,Y) = 3.75

The uncertainty about X is reduced after observing Y:

ightharpoonup Depending on Y, certain outcomes of X|Y are more likely

Mutual Information: Example IV

X	1	2	p(y)	H(X) = 1 $H(Y) = 1$
2	0	$\frac{0}{1/2}$	$\frac{1/2}{1/2}$	I(X;Y) = 1 $H(X Y) = 0$
p(x)	1/2	1/2	1	H(X Y) = 0 $H(X,Y) = 1$

No uncertainty about X if Y has been observed

Speaker's Bio and Contact Info:

- Current:
 - Assistant Professor at Lund University
 - Researcher at Stanford University
 - ► Founder & CEO at DBtune
- Previously: Imperial College London, Sorbonne Université (Paris), LAAS (Toulouse), Universidad Autónoma de Madrid, La Sapienza (Rome)
- Research: Bayesian Optimization, AutoML
- ▶ Applications: HW design, compilers, CV, robotics, DBs
- Offices: E-huset 4128 (LU), Gates building (Stanford campus)

Luigi Nardi

□ luigi.nardi@cs.lth.se

cs.lth.se/luigi-nardi

GitHub: @luinardi

Twitter: @luiginardi

Research Team

Luigi Nardi Assistant Professor Lund University Researcher Stanford University

Erik Hellsten Postdoc

Simon Kristoffersson Lind Ph.D. Student

Leonard Papenmeier Ph.D. Student

Carl Hvarfner Ph.D. Student