AI Colab Group 1 - Clinical Data Science & Modeling

Machine Learning-Based Prediction of Type 2 Diabetes from Kidney Function and β-cell Dysfunction

Yara Yaghi, Naod Dawit, Kareem Aly, Indira Kuppa

Proposed Research Question

Among U.S. adults with type 2 diabetes, how is kidney function, as measured by estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN), associated with β -cell dysfunction, and how do smoking and alcohol behaviors influence this relationship?

Potential Hypothesis

Among U.S. adults with type 2 diabetes, reduced kidney function — indicated by lower eGFR and higher BUN levels — is associated with decreased β -cell function (as measured by HOMA-B). This association is stronger among individuals who currently smoke or consume alcohol more frequently.

INCLUSION AND EXCLUSION CRITERIA

Included:

- Participants from NHANES cycles 1999-2020
- Age ≥ 30
 - To minimize inclusion of early-onset or Type 1 diabetes
- Has Type 2 diabetes (self-reported)
- Available fasting glucose and fasting insulin values

Excluded:

- Missing key health variables
- Missing demographic & behavioral variables
- eGFR < 30 mL/min/1.73m²
 - Indicates severe chronic kidney disease (Stage 4+)
- Participants without diabetes (self-reported)

DATA DICTIONARY AFTER CLEANING

Descriptio	Unique Values	Missing Values	Data Type	Feature Name	
Respondent sequence number (unique ID for each.	3113	0	float64	SEQN	0
Fasting glucose level (mg/dl	733	0	float64	FastingGlucose	1
Fasting insulin level (μU/ml	1948	0	float64	FastingInsulin	2
Blood urea nitrogen (mg/dL), marker of kidney .	51	0	float64	BUN	3
Serum creatinine (mg/dL), used to estimate kid.	167	0	float64	SerumCreatinine	4
Serum sodium concentration (mmol/l	107	0	float64	LBXSATSI	5
Ever smoked at least 100 cigarettes in life (1.	4	0	float64	EverSmoked100	6
Ever had at least one alcoholic drink (1 = Yes.	3	0	float64	EverDrank	7
Drinking frequency over past 12 months (0 = Ra.	28	0	float64	DrinkFrequency	8
Average number of alcoholic drinks per day ove.	18	0	float64	AvgDrinksPerDay	9
Age in years at time of screening	68	0	float64	Age	10
Gender (1 = Male, 2 = Female	2	0	float64	Gender	11
Education level (1 = Less than 9th grade to 5.	7	0	float64	Education	12
Ratio of family income to poverty leve	464	0	float64	IncomeToPovertyRatio	13
Has doctor-diagnosed diabetes (1 = Yes, 2 = No	1	0	float64	HasDiabetes	14
Currently taking insulin (1 = Yes, 2 = No	3	0	float64	DIQ050	15
Currently taking diabetes pills (1 = Yes, 2 = No	3	0	float64	DIQ070	16
Urine albumin-to-creatinine ratio (mg/g), mark.	2538	0	float64	ACR	17
Flag for likely type 1 diabetes (True/False	1	0	bool	likely_type1	18
Type 2 diabetes classification (1 = Yes, 0 = No	1	0	int64	T2D	19
Flag if income data is missing (True/False	2	0	int64	IncomeMissing	20
Homeostatic Model Assessment of Beta-cell func.	2920	0	float64	HOMA_B	21
Current smoking status: some days (dummy varia.	2	0	int64	CurrentSmoker_2.0	22
Current smoking status: not at all (dummy vari.	2	0	int64	CurrentSmoker_3.0	23
Current smoking status missing (dummy variable	2	0	int64	CurrentSmoker_Missing	24
Current smoking status labeled 'Not at a	2	0	int64	CurrentSmoker_Not at all	25
Survey cycle dummy for 2001–200	2	0	int64	SurveyCycle_2001-2002	26
Survey cycle dummy for 2003–200	2	0	int64	SurveyCycle_2003-2004	27
Survey cycle dummy for 2005–200	2	0	int64	SurveyCycle_2005-2006	28
Survey cycle dummy for 2007–200	2	0	int64	SurveyCycle_2007-2008	29
Survey cycle dummy for 2009–201	2	0	int64	SurveyCycle_2009-2010	30
Survey cycle dummy for 2011–201	2	О	int64	SurveyCycle_2011-2012	31
Survey cycle dummy for 2013–201	2	0	int64	SurveyCycle_2013-2014	32
Survey cycle dummy for 2015–201	2	0	int64	SurveyCycle_2015-2016	33
Survey cycle dummy for 2017–202	2	0	int64	SurveyCycle_2017-2020	34
Label indicating whether participant drinks al.	2	0	int64	EverDrank_Label_Drinks Alcohol	35
Estimated glomerular filtration rate (mL/min/1.	2233	0	float64	eGFR	36

Features: 37 Rows (# of patients): 3,113 No missing values. No duplicates.

After some further analysis, many features will be dropped.

DATA PREP FOR MODELING

Dropped Features:
'SerumCreatinine'
'CurrentSmoker_Not
at_all'
'DrinkFrequency'

DATA PREP FOR MODELING

Capped Average drinks at 20

DATA PREP FOR MODELING

DATA DICTIONARY BEFORE AFTER

	Feature Name	Data Type	Missing Values	Unique Values	Description
0	BUN	float64	0	51	Blood urea nitrogen (mg/dL), marker of kidney
1	AvgDrinksPerDay	float64	0	16	Average number of alcoholic drinks per day ove
2	Age	float64	0	68	Age in years at time of screening
3	Gender	float64	0	2	Gender (1 = Male, 2 = Female)
4	Education	float64	0	7	Education level (1 = Less than 9th grade to 5
5	IncomeToPovertyRatio	float64	0	464	Ratio of family income to poverty level
6	HOMA_B	float64	0	2920	No description available
7	CurrentSmoker_2.0	int64	0	2	Current smoking status: some days (dummy varia
8	CurrentSmoker_3.0	int64	0	2	Current smoking status: not at all (dummy vari
9	SurveyCycle_2009-2010	int64	0	2	No description available
10	EverDrank_Label_Drinks Alcohol	int64	0	2	Label indicating whether participant drinks al
11	eGFR	float64	0	2233	Estimated glomerular filtration rate (mL/min/1
12	ACR_log	float64	0	2534	Log of ACR to calculate urine albumin-to-creat

MODEL VISUALIZATIONS

Linear Model

```
model <- lm(HOMA_B ~ BUN + CurrentSmoker_2.0 + eGFR +
              CurrentSmoker 3.0 + EverDrank Label Drinks.Alcohol +
              Age + Gender + Education + IncomeToPovertyRatio,
            data = df
summary(model)
predicted <- predict(model, newdata = df)</pre>
# Calculate MSE (Mean Squared Error)
mse_value <- mean((df$HOMA_B - predicted)^2)</pre>
cat("MSE:", mse_value, "\n")
```

Result

Multiple R-squared: 0.01518, Adjusted R-squared: 0.01233

MSE: 27.53435

```
Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                               6.295165
                                          1.287933
                                                     4.888 1.07e-06 ***
BUN
                               0.049987
                                          0.018806
                                                     2.658
                                                            0.0079 **
                                          0.600312
CurrentSmoker_2.0
                               0.374973
                                                     0.625
                                                            0.5323
eGFR
                                          0.006586
                                                             0.0075 **
                              -0.017621
                                                    -2.676
CurrentSmoker_3.0
                               0.136747
                                          0.208495
                                                     0.656
                                                             0.5120
                                          0.203238
                                                     2.471
EverDrank Label Drinks.Alcohol 0.502239
                                                             0.0135 *
                                                    -4.836 1.39e-06 ***
                              -0.046862
                                          0.009691
Age
Gender
                               0.059841
                                          0.196443
                                                     0.305
                                                             0.7607
Education
                               0.042367
                                          0.076222
                                                     0.556
                                                             0.5784
                                          0.072203 -1.115
IncomeToPovertyRatio
                              -0.080492
                                                             0.2650
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Random Forest Model

```
install.packages("randomForest")
library(randomForest)
predictors <- c("BUN", "CurrentSmoker_2.0", "CurrentSmoker_3.0", "eGFR",</pre>
                 "AvaDrinksPerDay", "Gender", "Age", "Education", "IncomeToPovertyRatio")
outcome <- "HOMA B"
df_rf <- df[, c(outcome, predictors)]</pre>
df_rf <- na.omit(df_rf)</pre>
set.seed(123)
rf_model <- randomForest(HOMA_B ~ ., data = df_rf, importance = TRUE, ntree = 500)
print(rf_model)
predicted_rf <- predict(rf_model, newdata = df_rf)</pre>
mse_rf <- mean((df_rf$HOMA_B - predicted_rf)^2)
r2_rf <- 1 - (sum((df_rf$HOMA_B - predicted_rf)^2) / sum((df_rf$HOMA_B - mean(df_rf$HOMA_B))^2))
cat("Random Forest MSE:", mse_rf, "\n")
cat("Random Forest R2:", r2_rf, "\n")
```

Results

```
> r2_rf <- 1 - (sum((df_rf$HOMA_B - predicted_rf)^2) / sum((df_rf$HOMA_B - mean(df_rf$HOMA_B))^2))
> cat("Random Forest MSE:", mse_rf, "\n")
Random Forest MSE: 8.454876
> cat("Random Forest R²:", r2_rf, "\n")
Random Forest R²: 0.6975955
```

SHAP-Based Model Interpretation

SHAP Waterfall Plot: Individual Prediction Breakdown

References

- Akhuemonkhan, E. & Lazo, M. (2017). Association between family history of diabetes and cardiovascular disease and lifestyle risk factors in the U.S. population (NHANES 2009–2012). Preventive Medicine, 96, 129–134. https://doi.org/10.1016/j.ypmed.2016.12.015
- Baliunas, A., Taylor, B., Irving, H., Roerecke, M., Patra, J., Mohapatra, S., & Rehm, J. (2009). Alcohol as a Risk Factor for Type 2 Diabetes. *Diabetes Care, 32*(11), 2123-2132. https://doi.org/10.2337/dc09-0227
- Brambilla, P., La Valle, E., Falbo, R., Limonta, G., Signorini, S., Cappellini, F., & Mocarelli, P. (2011). Normal fasting plasma glucose and risk of type 2 diabetes. *Diabetes Care, 34*(6), 1372–1374. https://doi.org/10.2337/dc10-2263
- CDC. (2024, May 15). About Type 2 Diabetes. Diabetes. https://www.cdc.gov/diabetes/about/about-type-2-diabetes.html
- Dludla, P. V., Mabhida, S. E., Ziqubu, K., Nkambule, B. B., Mazibuko-Mbeje, S. E., Hanser, S., Basson, A. K., Pheiffer, C., & Kengne, A. P. (2023). Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. *World Journal of Diabetes*, 14(3), 130–146. https://doi.org/10.4239/wjd.v14.i3.130
- Kim, J. Y., Lee, J., Kim, S. G., & Kim, N. H. (2024). Recent Glycemia Is a Major Determinant of β-Cell Function in Type 2 Diabetes Mellitus. *Diabetes & Metabolism Journal*, 48(6), 1135-1146. https://doi.org/10.4093/dmj.2023.0359
- Mayo Clinic. (2025, February 27). Type 2 diabetes. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/type-2-diabetes/symptoms-causes/syc-20351193
- Sung, K. C., Reaven, G., & Kim, S. (2009). Utility of Homeostasis Model Assessment of β-Cell Function in Predicting Diabetes in 12,924 Healthy Koreans. *Diabetes Care, 33*(1), 200-202. https://doi.org/10.2337/dc09-1070
- Zhao, J., Zhang, Y., Wei, F., Song, J., Li, W.-D., Chen, C., Zhang, K., & Feng, S. (2019). Triglyceride is an independent predictor of type 2 diabetes among middle-aged and older adults: A prospective study with 8-year follow-ups in two cohorts. *Journal of Translational Medicine*, *17*, 354. https://doi.org/10.1186/s12967-019-02156-3