CHAROTAR UNIVERSITY OF SCIENCE & TECHNOLOGY

Sixth Semester of B. Tech (CE) Examination November 2015

CE306/CE306.01 Theory of Computation (TOC)

Date: 27.11.2015, Friday Time: 01.30 p.m. To 04.30 p.m. Maximum Marks: 70

Instructions:

- 1. The question paper comprises of two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Rough work is to be done in the last page of main supplementary, please don't write anything on the question paper.
- 5. Indicate clearly, the option(s) you attempt along with its respective question number.
- 6. Figures to the right indicate marks.

SECTION - I

Q - 1 Choose the appropriate option:

07

- 1. $(AUA) \cap (B \cap B)$ is
 - $A. A \cap B$
 - B. A
 - C.B
 - D. None of the above
- 2. Finite Automata cannot have
 - A. Accepting State
 - B. Transition Function
 - C. Starting State
 - D. More than one transitions for same input from a state
- 3. Tautology is
 - A. Always True
 - B. Always False
 - C. Partially True
 - D. Partially False
- 4. Regular Expressions are closed under
 - A. Union
 - B. Intersection
 - C. Kleen Star
 - D. All of the above
- 5. Can a DFA simulate NFA?
 - A. yes
 - B. no
 - C. sometimes
 - D. depends on NFA

- 6. Pumping Lemma is used to decide whether Language L is
 - A. Not a regular
 - B. Regular
 - C. Proved or not
 - D. None
- 7. (00+01+10)(0+1)* represents
 - A. Strings of not starting with 11
 - B. Strings of odd length
 - C. Strings starting with 00
 - D. Strings of even length

Q-2.a Answer the followings questions:

[04]

- 1. Prove by Contradiction: For any set A, B and C, if $A \cap B = \emptyset$ and C is a subset of B then $A \cap C = \emptyset$.
- 2. The Principle of Mathematical Induction

Q-2.b Answer the following questions (Any Two).

[10]

- (i) Find DFA that recognizes set of all strings on $\Sigma = \{a, b\}$, starting with prefix ab.
- (ii) Prove that for every, $n \ge 1$, $7 + 13 + 19 + \dots + (6n+1) = n (3n+4)$ using PMI.
- (iii) State and Prove Kleen's Theorem Part-I.

Q-3 Answer any two questions.

[14]

a. Convert the following NFA- \wedge to DFA.

b. Suppose L_1 and L_2 are subsets of $\{0, 1\}^*$.

 $L_1 = \{x \mid x \text{ ends with } 01\}$

 $L_2=\{x \mid x \text{ next to last symbol } 0\}$

Find L₁- L₂.

c. An NFA with states 1-5 and input alphabet {a, b} has the following transition table.

Q	δ (q, a)	$\delta(q, b)$
1	{1, 2}	{1}
2	{3}	{3}
3	{4}	{4}
4	{5}	Ø
5	Ø	{5}

Find:

- a. Draw Transition Diagram
- b. Calculate $\delta^*(1, ab)$
- c. Calculate $\delta^*(1, abaab)$

SECTION – II

Q - 4 Do as directed:

- a. Show that the CFG with productions $S \rightarrow SS|(S)|^{\land}$ is ambiguous.
- 01

02

b. Is it possible for a regular grammar to be ambiguous? Why?

- ring 04
- c. Let G be the grammar S \rightarrow aB|bA, A \rightarrow a|aS|bAA, B \rightarrow b|bS|aBB. For the string aaabbabbba, Find:
 - a) left most derivation tree
 - b) rightmost derivation tree
- Q 5.a Reduce the following grammar to CNF:

[04]

 $S \rightarrow ASA|bA$ $A \rightarrow B|S$ $B \rightarrow c$

Q - 5.b Answer the following questions (Any Two).

[10]

- (i) Design a Turing Machine accepting {a, b}*{aba}{a, b}*
- (ii) What do you mean by context free grammar? In each case, find a CFG generating the given language.
 - 1. The set of odd-length strings in {a, b}* with middle symbol a
 - 2. The set of even-length strings in $\{a, b\}^*$ with two middle symbols equal
- (iii) Show using pumping lemma that the given language is not a CFL. $L=\{a^n b^n c^n | i>=1\}$

Q-6 Answer any two questions.

[14]

- a. Define: Turing Machine. Mention Input device, Output device and Storage device in Turing Machine. Also design a Turing Machine to calculate f(x) = x+2.
- **b.** Define: Push Down Automaton. Give transition table for deterministic PDA recognizing the language: $\{x \text{ belongs to } \{a, b\}^* \mid N_a(x) = N_b(x)\}$
- **c.** Write down & Explain an algorithm to minimize the given DFA in detail with an appropriate example.