DEVOIR SURVEILLÉ 1

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à **encadrer** dans la mesure du possible les résultats de leurs calculs.

Les documents, la calculatrice et tout matériel électronique sont interdits.

Vous pouvez traiter le sujet dans l'ordre que vous souhaitez tant que le correcteur peut clairement identifier la question à laquelle vous répondez. Il est possible d'admettre le résultat d'une question précédente pour répondre à une question tant que cela est spécifié clairement.

Ce sujet comporte 2 pages et est constitué de 9 exercices. Bon courage!

Exercice 1 – Donner l'écriture des nombres suivants sous la forme d'un entier ou d'une fraction irréductible.

1.
$$A = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$$

2.
$$B = \frac{\left(\frac{2}{3} - \frac{4}{5}\right) \times 6}{\frac{2}{15} - \frac{4}{9}}$$

3.
$$C = \left(1 - \left(\frac{1}{2} - \frac{1}{3}\right) \times 3\right) \div \frac{2}{5}$$

4.
$$D = \left(1 - \frac{1}{8}\right) \times \left(\frac{2}{7} + 1\right)^2 \div \left(\frac{1}{3} + \frac{3}{4}\right)$$

Exercice 2 – Simplifier l'écriture des nombres suivants.

1.
$$A = \sqrt{32}$$

2.
$$B = \sqrt{\frac{81}{25}} - \frac{3}{5} \times \frac{\sqrt{9}}{\sqrt{25}}$$

3.
$$C = \sqrt{16 + 9}$$

4.
$$D = (2 - \sqrt{3})(2 + \sqrt{3})$$

Exercice 3 – Développer, réduire et ordonner les expressions suivantes.

1.
$$A(x) = 2x(x+1) - (12x-11)^2$$

3.
$$C(x) = (1-3x)(x+2)(2x+5)$$

2.
$$B(x) = (3-x)(4-2x) + (-5x)^2$$

4.
$$D(x) = 2(x-2)(x-3)$$

Exercice 4 – Factoriser **au maximum** les expressions suivantes.

1.
$$A(x) = (5x+1)(3x-2) - (3x-2)$$

3.
$$C(x) = 9x^2 - 100$$

2.
$$B(x) = (2x+5)^2 + (2x+5)(x-4)$$

4.
$$D(x) = (x+1)^2(x-1) - 16(x-1)$$

Exercice 5 – Résoudre les équations suivantes.

1.
$$2x - 3 = 0$$

2.
$$-x+7=0$$

3.
$$x+3=2x-1$$

4.
$$\frac{1}{3}x + \frac{2}{3} = \frac{3}{4}$$

$$5. \ x^2 - 10x + 21 = 0$$

6.
$$3x^2 + \frac{6}{7}x + \frac{3}{49} = 0$$

7.
$$(x-1)(x+1) = 5x-7$$

8.
$$\sqrt{2}x^2 - 3x + \sqrt{2} = 0$$

Exercice 6 - Résoudre les inéquations suivantes.

1.
$$-2x + 3 > 0$$

2.
$$5x - 6 \le 0$$

3.
$$2x-1 < \frac{1}{2}$$

4.
$$\frac{1}{3}x+1 \geqslant \frac{2}{3}x-\frac{1}{3}$$

5.
$$x^2 + 2x + 1 > 0$$

6.
$$x^2 + x + 1 < 0$$

7.
$$x^2 - 5x + 6 \le 0$$

8.
$$(x-1)(x-2) \leq 2x-4$$

Exercice 7 -

1. Résoudre l'équation $x^2 + \frac{16}{x^2} = 8$ pour un réel x non nul.

2. Montrer que
$$x^2 + \frac{16}{x^2} \ge 8$$
 pour tout $x \in]0, +\infty[$.

Exercice 8 -

1. Soit le polynôme $P(x) = 3x^3 - 7x^2 - 7x + 3$.

a) Montrer que le polynôme P(x) peut se factoriser sous la forme P(x) = (x+1)Q(x), où Q(x) est un polynôme de degré 2 à déterminer.

b) Déterminer alors les solutions de l'équation $3x^3 - 7x^2 - 7x + 3 = 0$.

2. Soit la fraction rationnelle $f(x) = \frac{3x^3 - 7x^2 - 7x + 3}{3x^2 - 12x + 12}$.

a) Déterminer les valeurs interdites de f(x).

b) Résoudre l'inéquation $f(x) \ge 0$.

Exercice 9 – Soit m un nombre réel. On considère l'équation $x^2 + 4x + 2(m-1) = 0$.

1. Cette équation admet-elle une solution lorsque m = 4?

2. a) Calculer, en fonction de *m*, le discriminant de cette équation.

b) Déterminer m pour que cette équation admette une unique solution.

c) Déterminer la valeur de cette solution unique.

3. Préciser les cas, en fonction de *m*, où cette équation admet deux solutions distinctes et où cette équation n'admet aucune solution.