Dirty limit. Quasiclassical Green function θ -parameterization

Masaru Okada

October 24, 2025

The Usadel equation in zero magnetic field is

$$iD\vec{\nabla}(\check{g}\vec{\nabla}\check{g}) + \check{H}_0\check{g} - \check{g}\check{H}_0 = 0, \tag{1}$$

where the quasiclassical Nambu-Green function \check{g} and the non-perturbative Hamiltonian \check{H}_0 are respectively

$$\check{g} = \begin{pmatrix} g & f \\ -f^{\dagger} & -g \end{pmatrix}, \qquad \check{H}_0 = \begin{pmatrix} -i\omega_n & -\Delta \\ \Delta^* & i\omega_n \end{pmatrix}.$$
(2)

g(f) is the (anomalous) Green function. Δ is a constant superconducting gap.

Especially, in homogeneous state, Green functions can be written as

$$g = -\frac{\omega_n}{\sqrt{\omega_n^2 + |\Delta|^2}}, \qquad f = \frac{\Delta}{i\sqrt{\omega_n^2 + |\Delta|^2}}.$$
 (3)

Matsubara frequency ω_n is able to be extended (retarded) analytical continuation: $i\omega_n \to E + i\eta$ where superconducting excitation energy $E = \sqrt{\varepsilon^2 + |\Delta|^2}$ is real and η is infinitesimal positive number.

 \check{g} satisfy the condition of 2-dimensional rotation matrix that $\operatorname{Tr}\check{g}=0$ and $\det\check{g}=1$.

Therefore \check{g} can be parameterized by $\theta(x)$:

$$\check{g}(x) = \begin{pmatrix} \cos[\theta(x)] & \sin[\theta(x)]e^{i\chi} \\ \sin[\theta(x)]e^{-i\chi} & -\cos[\theta(x)] \end{pmatrix}.$$
(4)

In zero-field, χ is constant. It can be put $\chi = 0$.

The (2,1) element of the Usadel equation in the nomal metal has the form

$$-iD\frac{\partial}{\partial x} \left\{ \cos[\theta(x)] \frac{\partial}{\partial x} \left(-\sin[\theta(x)] \right) + \sin[\theta(x)] \frac{\partial}{\partial x} \cos[\theta(x)] \right\} = 2i\omega_n \sin[\theta(x)]. \tag{5}$$

Further, there are useful relations

$$\frac{\partial}{\partial x}\sin[\theta(x)] = \cos[\theta(x)]\frac{\partial\theta(x)}{\partial x}, \qquad \frac{\partial}{\partial x}\cos[\theta(x)] = -\sin[\theta(x)]\frac{\partial\theta(x)}{\partial x}.$$
 (6)

After analytical continuation, the obtained form becomes much easier

$$D\frac{\partial^2 \theta(x)}{\partial x^2} + 2iE\sin[\theta(x)] = 0.$$
 (7)