Proof reading for "Matrix identities involving multiplication and transposition" by Auinger et al

Location	Type	In the proofs	In the original	Should be		
P.1, footnote, line +4	Update	21000	21000	21101		
P.1, footnote,	Update	Faculty of Mathematics	Faculty of Mathematics	Institute of Mathematics		
line +5	•	and Mechanics, Ural State	and Mechanics, Ural State	and Computer Science,		
		University	University	Ural Federal University		
P.1, footnote, line +6	Update	620083	620083	620000		
P.2, line +21	Typo (our	may be a summarized	may be a summarized	may be summarized		
·	fault)	•••	a summarized	•		
P.2, Theorem,	Editor's in-	None of the following sets	Each of following sets of	We quite agree with mov-		
line +1	tervention	of matrix identities admits	matrix identities admits no	ing the negation into the		
		a finite identity basis:	finite identity basis:	subject but according to		
				standards of English gram-		
				mar, when the sense is		
				plural (as indicated by a		
				plural noun or pronoun in		
				the following prepositional		
				phrase—"none of [plural		
				entity]"), "none" is plural.		
				So the phrase should be:		
				None of the following sets		
				of matrix identities admit a finite identity basis:		
P.3, line +18	Editor's in-	then so is u^* .	then so is $(u)^*$.	As in the original (we do		
	tervention			not accept the change)		
P.3, line +20	Editor's in-	$u \mapsto u^*$.	$u\mapsto (u)^*$.	As in the original (we do		
	tervention			not accept the change)		
P.3, line –3	Typo (our fault)	A variety is is said to be	A variety is is said to be	A variety is said to be		
P.7, matrix	Editor's in-	:(produced by \vdots)	·. (produced by \ddots)	As in the original (we do		
$M_n(g)$, entry (4,4)	tervention			not accept the change)		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	continued on next page					

continued from previous page					
Location	Type	In the proofs	In the original	Should be	
P.11, line +5	Editor's intervention	\dots to $(1,2,\dots,r,\dots,1,2,\dots,r)^t$ where the block $1,2,\dots,r$ occurs r times.	\dots to the transpose of the row $(1,2,\dots,r,\dots,1,2,\dots,r)$ in which the block $1,2,\dots,r$ occurs r times.	We do not accept the change in the proposed form. The notation $()^t$ for the transpose is inconsistent with the notation elsewhere in the paper. We suggest: to the transpose of $(1, 2,, r,, 1, 2,, r)$ where the block $1, 2,, r$ occurs r times.	
P.15, lines -20 and -19	Update	We say that b strictly di - vides a and write $a <_{\mathscr{R}} b$ if $a = bs$ for some $s \in S$ but $b \neq a$ and $b \neq at$ for any $t \in S$.	We say that b strictly di - vides a and write $a <_{\mathscr{R}} b$ if $a = bs$ for some $s \in S$ but $b \neq a$ and $b \neq at$ for any $t \in S$.	Remove the whole sentence	
P.15, lines -18 and -17	Update	\mathcal{R} is an equivalence relation (known as the right Green relation in semigroup theory) and $<_{\mathcal{R}}$ is transitive and anti-reflexive.	\mathcal{R} is an equivalence relation (known as the right Green relation in semigroup theory) and $<_{\mathcal{R}}$ is transitive and anti-reflexive.	R is an equivalence relation (known as the <i>right</i> Green relation in semigroup theory). (Remove the part of the sentence after the clause in parentheses.)	
P.15, lines -9, -8, and -7	Update	Further let h denote the length of the longest possible chain of the form $s_1 <_{\mathscr{R}} s_2 <_{\mathscr{R}} \cdots <_{\mathscr{R}} s_k.$	Further let h denote the length of the longest possible chain of the form $s_1 <_{\mathscr{R}} s_2 <_{\mathscr{R}} \cdots <_{\mathscr{R}} s_k.$	Remove the whole sentence	
P.15, line -6	Update	Set $n = h + 1$; Lemma 7 in [37] shows	Set $n = h + 1$; Lemma 7 in [37] shows	Set $n = S + 1$; Lemma 7 in [37] implies	
P.18, line +5	Update	admits an involution	admits an involution	admits a ring involution	
continued on next page					

continued from previous page						
Location	Type	In the proofs	In the original	Should be		
P.24, line +7	Typo (our fault) + Editor's intervention	$b^{\ell_1}a^{k_1}\cdots b^{\ell_{t-1}}a^{k_{t-1}}b^{k_t},$	$b^{\ell_1}a^{k_1}\cdots b^{\ell_{t-1}}a^{k_{t-1}}b^{k_t}$	$b^{\ell_1}a^{k_1}\cdots b^{\ell_{t-1}}a^{k_{t-1}}b^{\ell_t},$		
P.29, line +17	Update	the name suggested in \cite{Kim}	the name suggested in \cite{Kim}	the name suggested in \cite{Schwarz}		
P.31, Acknow- ledgements, line -1	Typo (our fault)	grants 10-01-00524.	grants 10-01-00524.	grant 10-01-00524.		
P.32, item [27]	Update	\bibitem{Kim} Kim, K. H.: The semi- groups of Hall relations. Semigroup Forum 9, 253— 260 (1974) Zbl 0292.20061 MR 0376910	\bibitem{Kim} Kim, K. H.: The semi- groups of Hall relations. Semigroup Forum 9, 253— 260 (1974)	Remove this item		
P.33, item [45], line +2	Typo (our fault)	(2006)	(2006)	(2007)		
P.33, between items [51] and [52]	Update	Insert new item: \bibitem{Schwarz} Schwarz, Š.: The semigroup of fully indecomposable relations and Hall relations. Czechoslovak Math. J. 23, 151–163 (1973) Zbl 0261.20057 MR 0316612				
P.34, item [55], line +2	Туро	Zbk 1074.20036		Zbl 1074.20036		