Prva domaća zadaća

Zadaću treba predati do 17.11.2011. do 17.00 sati.

- 1. Riješite primjer 4 iz prve bilješke za predavanje. Rješenje, pored ostalog, treba uključivati skicu prostora primjera \mathcal{X} i skicu parcijalnog uređaja hipoteza iz \mathcal{H} .
- 2. U prostoru primjera $\mathcal{X} = \mathbb{Z}^2$ razmatramo dva modela: \mathcal{H}_1 (kružnice s poizvoljno odabranim ishodištem) i \mathcal{H}_2 (pravokutnici sa stranicama poravnatima s koordinatnim osima).
 - (a) Formalno definirajte \mathcal{H}_1 i \mathcal{H}_2 .
 - (b) Vrijedi li $H_1 \cap \mathcal{H}_2 = \emptyset$? Obrazložite odgovor.
 - (c) Odredite $VC(\mathcal{H}_1)$ i $VC(H_2)$.
 - (d) Odredite koje su moguće vrijednosti za $VC(\mathcal{H}_1 \cup \mathcal{H}_2)$ te obrazložite odgovor.
 - (e) Identificirajte dvije najspecifičnije, ali međusobno neusporedive hipoteze iz $\mathcal{H}_1 \cup \mathcal{H}_2$.
- 3. Na skupu \mathcal{D} od N=400 primjera naučen je linearan klasifikator. Svaki primjer $x^{(i)}$ sastoji se od n=10 značajki. Greška na skupu za učenje je 10%.
 - (a) Kolika je VC-dimenzija ovog klasifikatora?
 - (b) Izračunajte gornju granicu pogreške klasifikatora uz pouzdanost 95%.
 - (c) Na istom skupu naknadno je isprobano 10 različitih linearnih klasifikatora $(h_1, h_2, \ldots, h_{10})$. Modeli se međuobno razlikuju po broju značajki koje koriste: model h_i koristi samo prvih i značajki. Eksperimentalno su na skupu za učenje dobiveni ovi rezultati:

Klasifikator	Greška (%)
h_1	28.00
h_2	28.00
h_3	28.00
h_4	28.75
h_5	30.25
h_6	30.75
h_7	18.25
h_8	11.75
h_9	11.50
h_{10}	10.00

Korištenjem načela minimizacije strukturnog rizika uz VC-dimenziju (SRMVC) odaberite najbolji klasifikator.

(d) Je li u ovom slučaju opravdano korištenje načela minimizacije strukturnog rizika za pronalazak najboljeg klasifikatora umjesto npr. metode unakrsne provjere?

- 4. Odabrali smo model \mathcal{H} koji ima hiperparametar α kojim se može ugađati složenost modela. Za odabrani α naučili smo hipotezu koja minimizira empirijsku pogrešku. Unakrsnom provjerom ustanovili smo da je pogreška generalizacije znatno veća od empirijske pogreške. Je li naš odabir parametra α optimalan? Obrazložite odgovor.
- 5. Ovaj zadatak izvodite u okružju Matlab ili Octave. Opis učitavanja i obrade potadaka u tim sustavima dan je u Dodatku.
 - (a) Potrebno je skinuti podatke o 398 automobila s adrese: http://archive.ics.uci.edu/ml/datasets/Auto+MPG

Ciljna varijabla jest energetska učinkovitost vozila (miles-per-gallon) i nju promatramo kao zavisnu od ostalih varijabli koje opisuju broj cilindara (cylinders), zapreminu motora (displacement), snagu (horsepower), težinu (weight), ubrzanje (acceleration), godinu modela (model year), podrijetlo (origin¹). Također su dana i imena automobila, no njih nećemo koristiti kao varijable modela. Svaku nedostajuću vrijednost potrebno je zamijeniti sa srednjom vrijednošću ostalih redaka u dotičnome stupcu.

- (b) U okružuju Matlab ili Octave potrebno je načiniti linearni regresijski model nad više varijabli. Učitajte podatke i podijelite ih na skup za učenje (slučajnih 249 zapisa) i skup za provjeru (preostalih 149 zapisa). Najprije naučite model (h_1) koji predviđa energetsku učinkovitost vozila na temelju snage i težine vozila. Zatim naučite model (h_2) koji koristi tri varijable snagu, težinu i ubrzanje. Treći model (h_3) neka koristi broj cilindara, zapreminu motora, snagu, težinu, ubrzanje i godinu modela. Za svaki od tri modela izračunajte empirijsku pogrešku i pogrešku generalizacije. Komentirajte rezultate. U izvještaju navedite izračunate pogreške, ispis kôda i komentare.
- (c) Načinite novu podjelu podataka, i to tako da je skup za učenje sačinjen samo od zapisa o američkim automobilima, a skup za provjeru od preostalih zapisa. Na novom skupu za učenje naučite tri modela (h'_1, h'_2, h'_3) s istim varijablama kao i kod modela h_1 , h_2 odnosno h_3 . Izračunajte pogreške i komentirajte ih. Usporedite h_1 s h'_1 , h_2 s h'_2 te h_3 s h'_3 . Što se iz toga može zaključiti?
- (d) Za modele h_3 i h'_3 pronađite tri automobila čiji podatci najviše odstupaju od modela i pokušajte objasniti zašto je tome tako.
- (e) Naučite tri modela (h_1'', h_2'', h_3'') s istim varijablama te skupovima za učenje i provjeru koje ste koristili pri učenju modela h_1 , h_2 odnosno h_3 iz podzadatka 5b. Neka novi modeli (h_1'', h_2'', h_3'') budu polinomi drugog stupnja (dakle riječ je o kvadratnoj regresiji), definirani na sljedeći način:

$$h(\mathbf{x}|\boldsymbol{\alpha},\boldsymbol{\beta},\gamma) = \sum_{\substack{i,j\\i\leqslant j}} \alpha_{ij} x_i x_j + \sum_i \beta_i x_i + \gamma.$$

Provjerite je li u svim slučajevima linearni model ima bolju generalizaciju od kvadratnog.

¹SAD=1, Europa=2, Japan=3.

²Za navedene alate postoji dobra podrška (tj. *help* stranice) u kojoj se detaljno opisuju procedure za linearno regresijsko modeliranje (engl. *multiple linear regression*).

- 6. (a) U zadatku 5 koristili ste linearni regresijski model. Svaki algoritam strojnog učenja sastoji se se od tri osnovne komponente. Identificirajte i objasnite te komponente na slučaju linearnog regresijskog modela iz zadatka 5.
 - (b) Objasnite koja je induktivna pristranost tog modela i koje je vrste.
 - (c) Je li linearni regresijski model koji ste koristili u zadatku 5 parametarski ili neparametarski pristup strojnom učenju? Obrazložite odgovor.
 - (d) Obrazložite u kojim sitacijama preferiramo koristiti matricu gubitka koja nije tipa nula-jedan. Izmislite neki primjer u kojem bi takva matrica gubitka bila od koristi.

Dodatak: Učitavanje i obrada podataka u sustavu MATLAB

Ovaj isječak koda prikazuje jedan način učitavanja i obrade podataka u okruženju MA-TLAB/Octave:

```
% Učitaj podatke u jedan string.
url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data';
tekst_podatci = urlread(url);

% Funkcija textscan nije prisutna u programu octave starijem od verzije 3.4.

% U slučaju da radite sa starijom verzijom možete koristiti kombinaciju

% funkcija fopen i fscanf.

% Ovaj poziv funkcije textscan radi sljedeće:

% - pretvori string u matricu po zadanoj specifikaciji,

% - sve nepoznate vrijednosti (označene znakom ?) zamijeni vrijednosti NaN,

% - više stupaca spoji u jednu matricu.

tmp = textscan(tekst_podatci,'%f %f %f %f %f %f %f %f %*q','TreatAsEmpty','?', ...

'CollectOutput',1);

% Tražena matrica

m = tmp{1};
```

Popunjavanje vrijednosti koje nedostaju:

```
% NaN vrijednosti nalaze se samo u četvrtom stupcu (horsepower).
redak_ima_nan = isnan(m(:,4));
m(redak_ima_nan,4) = mean(m(~redak_ima_nan,4));
```

Primjer računanja linearne regresije na temelju snage, težine i godine modela:

```
% ciljna vrijednost
mpg = m(:,1);

% varijable snaga, težina i godina modela
X = m(:,[4,5,7]);

% izračunaj koeficijente linearne regresije
k = regress(mpg, [ones(size(X)) X]);

% predviđanje modela:
[ones(size(X)) X] * k
```

Funkcija regress nalazi parametre a_1, a_2, \ldots, a_n u funkciji $a_1x_1 + a_2x_2 + \cdots + a_nx_n$. Mi želimo da funkcija ima oblik $a_0 + a_1x_1 + a_2x_2 + \cdots + a_nx_n$, pa zato svim primjerima dodajemo jednu jedinicu kao prvu dimenziju (tj. postavljamo $x_0 = 1$ svakom primjeru).