Εισαγωγή

- Ερώτημα: Δεδομένης μιας γωνίας θ , ποιο είναι το $\sin(\theta)$;
- Αντίστροφο ερώτημα: Δεδομένου ενός αριθμού x, ποια είναι η γωνία θ τέτοια ώστε $\sin(\theta) = x$;

Περιεχόμενα

- Η αντίστροφη συνάρτηση του ημιτόνου \sin^{-1} (ή arcsin)
- Η αντίστροφη συνάρτηση του συνημιτόνου \cos^{-1} (ή arccos)
- Η αντίστροφη συνάρτηση της εφαπτομένης tan^{-1} (ή arctan)

Υπενθύμιση

Ιδιότητες μιας 1-1 συνάρτησης f και της αντίστροφή της f^{-1}

- $f^{-1}(f(x)) = x$ για κάθε x στο πεδίο ορισμού της f
- $f(f^{-1}(x)) = x$ για κάθε x στο πεδίο ορισμού της f^{-1}
- Πεδίο ορισμού της $f = Σύνολο τιμών της <math>f^{-1}$
- Σύνολο τιμών της $f = \Pi \epsilon \delta$ ίο ορισμού της f^{-1}
- Η γραφική παράσταση της f και η γραφική παράσταση της f^{-1} είναι συμμετρικές η μία της άλλης ως προς την ευθεία y=x.

Οι συναρτήσεις *sin* και sin⁻¹

sin(θ) = η τεταγμένη του σημείου P

sin(θ) = η τεταγμένη του σημείου P

sin(θ) = η τεταγμένη του σημείου P

$$\sin^{-1}(x) = \begin{pmatrix} \eta \ \gamma \omega \nu i \alpha \ \theta \ \mu \varepsilon \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \\ \kappa \alpha i \ \sin(\theta) = x \end{pmatrix}$$

10

$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \begin{pmatrix} \eta \ \gamma \omega \nu \iota \alpha \ \theta \ \mu \varepsilon \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \\ \kappa \alpha \iota \ \sin(\theta) = \frac{\sqrt{3}}{2} \end{pmatrix} = \frac{\pi}{3}$$

$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \begin{pmatrix} \eta \ \gamma \omega \nu \iota \alpha \ \theta \ \mu \varepsilon \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \\ \kappa \alpha \iota \ \sin(\theta) = -\frac{\sqrt{2}}{2} \end{pmatrix} = -\frac{\pi}{4}$$

$$\sin^{-1}(1) = \begin{pmatrix} \eta \ \gamma \omega \nu \iota \alpha \ \theta \ \mu \varepsilon \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \\ \kappa \alpha \iota \ \sin(\theta) = 1 \end{pmatrix} = \frac{\pi}{2}$$

$$\sin^{-1}\left(\frac{2}{3}\right) = \begin{pmatrix} \eta \gamma \omega \nu i \alpha \theta \mu \varepsilon - \frac{\pi}{2} \le \theta \le \frac{\pi}{2} \\ \kappa \alpha i \sin(\theta) = \frac{2}{3} \end{pmatrix} = ?$$

$$\sin^{-1}(1) = \begin{pmatrix} \eta \ \gamma \omega \nu \iota \alpha \ \theta \ \mu \varepsilon \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \\ \kappa \alpha \iota \ \sin(\theta) = 1 \end{pmatrix} = \frac{\pi}{2}$$

$$\sin^{-1}\left(\frac{2}{3}\right) = \begin{pmatrix} \eta \ \gamma \omega \nu \iota \alpha \ \theta \ \mu \varepsilon \ -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} \\ \kappa \alpha \iota \ \sin(\theta) = \frac{2}{3} \end{pmatrix}$$

$$\approx 0.7277276$$

 $cos(\theta) = η$ τετμημένη του σημείου P

cos(θ) = η τετμημένη του σημείου P

cos(θ) = η τετμημένη του σημείου P

Οι συναρτήσεις cos και cos^{-1}

$$cos(\theta) = η$$
 τετμημένη του σημείου P

$$cos^{-1}(x) = \begin{pmatrix} \eta \ \gamma \omega \nu \iota \alpha \ \theta \ \mu \varepsilon \ 0 \le \theta \le \pi \\ \kappa \alpha \iota \ \cos(\theta) = x \end{pmatrix}$$

$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \begin{pmatrix} \eta \ \gamma \omega \nu \iota \alpha \ \theta \ \mu \varepsilon \ 0 \le \theta \le \pi \\ \kappa \alpha \iota \ \cos(\theta) = \frac{\sqrt{3}}{2} \end{pmatrix} = \frac{\pi}{6}$$

$$\cos^{-1}\left(-\frac{1}{2}\right) = \begin{pmatrix} \eta \ \gamma \omega \nu \iota \alpha \ \theta \ \mu \varepsilon \ 0 \le \theta \le \pi \\ \kappa \alpha \iota \ \cos(\theta) = -\frac{1}{2} \end{pmatrix} = \frac{2\pi}{3}$$

Γραφική Παράσταση της \sin^{-1}

Γραφική Παράσταση της \sin^{-1}

Πεδίο Ορισμού: [-1,1] Σύνολο τιμών: $[-\frac{\pi}{2},\frac{\pi}{2}]$

Γραφική Παράσταση της cos⁻¹

Γραφική Παράσταση της \cos^{-1}

Πεδίο Ορισμού: [-1,1]

Σύνολο τιμών: [0, π]

Απλοποιήσεις

Ισχύει

$$\sin^{-1}(\sin x) = x \quad av \quad x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$\sin(\sin^{-1} x) = x \quad av \quad x \in [-1,1]$$

Παράδειγμα

Βρείτε την ακριβή τιμή των

a)
$$\sin^{-1}\left(\sin\frac{\pi}{8}\right)$$
 b) $\sin^{-1}\left(\sin\frac{5\pi}{8}\right)$

Παράδειγμα

Βρείτε την ακριβή τιμή των

a)
$$\sin^{-1}\left(\sin\frac{\pi}{8}\right)$$

a)
$$\sin^{-1}\left(\sin\frac{\pi}{8}\right)$$
 b) $\sin^{-1}\left(\sin\frac{5\pi}{8}\right)$

a)
$$\frac{7}{8} \in \left[-\frac{9}{2}, \frac{9}{2}\right]$$

$$Sin^{-1} \left(Sin \frac{\Omega}{8} \right) = \frac{\Omega}{8}$$

$$\frac{50}{8} \mathcal{A} \left[-\frac{0}{2}, \frac{0}{2} \right]$$

$$\Rightarrow$$
 sin $\left(\frac{5n}{8}\right) =$

$$= \sin\left(\frac{8n}{8} - \frac{3n}{8}\right)$$

$$= Sim\left(n - \frac{3n}{8}\right)$$

$$= sin\left(\frac{30}{8}\right)$$

$$\frac{30}{8} \in \left[-\frac{9}{2}, \frac{9}{2}\right]$$

$$\sin^{-1}\left(\sin\left(\frac{50}{8}\right)\right) = \sin^{-1}\left(\sin\left(\frac{30}{8}\right)\right) = \frac{30}{8}$$

Η συνάρτηση αντίστροφη εφαπτομένη tan^{-1}

- H συνάρτηση $y = \tan x \delta \epsilon v$ είναι 1-1.
- Περιορίζουμε το πεδίο ορισμού της εφαπτομένης στο $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Η συνάρτηση αντίστροφη εφαπτομένη tan^{-1}

Γραφική παράσταση της $tan^{-1} x$

Πεδίο Ορισμού: $(-\infty, \infty)$

Σύνολο τιμών: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Γραφική παράσταση της tan⁻¹ x

Η συνάρτηση $y = \cot^{-1} x$

Πεδίο Ορισμού: $(-\infty, \infty)$

Σύνολο τιμών: (0, π)

$$\cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x).$$

Η συνάρτηση $y = \cot^{-1} x$

Πεδίο ορισμού: $-1 \le x \le 1$

Πεδίο τιμών: $0 \le y \le \pi$

Πεδίο ορισμού: $-\infty < x < \infty$

Πεδίο τιμών: $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Πεδίο ορισμού: -1 ≤ x ≤ 1

Πεδίο τιμών: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Πεδίο ορισμού: −∞ < x < ∞

Πεδίο τιμών: 0 < y < π

Οι συναρτήσεις $y = csc^{-1}x$ και $y = sec^{-1}x$

Πεδίο ορισμού: x ≤ -1 ή x ≥ 1

Πεδίο τιμών: $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, $y \ne 0$

Πεδίο ορισμού: x ≤ -1 ή x ≥ 1

Πεδίο τιμών: $-\frac{\pi}{2} < y < \frac{\pi}{2}$

Μετατροπή τριγωνομετρικής έκφρασης σε αλγεβρική-Το χρήσιμο τρίγωνο

Γωνία
$$\sin^{-1}(x) = \theta$$

```
\sin(\sin^{-1} x) = ?

\cos(\sin^{-1} x) = ?

\tan(\sin^{-1} x) = ?

\cot(\sin^{-1} x) = ?
```

Μετατροπή τριγωνομετρικής έκφρασης σε αλγεβρική-Το χρήσιμο τρίγωνο

Γωνία $\sin^{-1}(x) = \theta$

```
\sin(\sin^{-1} x) = x \quad \text{yia } x \in [-1,1]

\cos(\sin^{-1} x) = ?

\tan(\sin^{-1} x) = ?

\cot(\sin^{-1} x) = ?
```

Το χρήσιμο τρίγωνο

Γνωρίζοντας

$$\sin(\sin^{-1} x) = x$$

κατασκευάζουμε ένα ορθογώνιο τρίγωνο στο οποίο η μια οξεία γωνία είναι $\sin^{-1} x$. Για να είναι το \sin αυτής της γωνίας ίσο με x θα πρέπει η απέναντι πλευρά να τεθεί ίση με x και η υποτείνουσα ίση με x. Η τρίτη πλευρά προκύπτει από το Πυθαγόρειο θεώρημα.

Το χρήσιμο τρίγωνο

$$\sin(\sin^{-1} x) = x$$

$$\cos(\sin^{-1} x) = \sqrt{1 - x^2}$$

$$\tan(\sin^{-1} x) = \frac{x}{\sqrt{1 - x^2}}$$

$$\cot(\sin^{-1} x) = \frac{\sqrt{1-x^2}}{x}$$

Χρήσιμα τρίγωνα

Επιλέγοντας το κατάλληλο τρίγωνο, μπορούμε να υπολογίσουμε τους τριγωνομετρικούς αριθμούς όλων των αντίστροφων τριγωνομετρικών συναρτήσεων

Παράδειγμα

Υπολογίστε το $sin(tan^{-1}(x))$

Παράδειγμα

Υπολογίστε το $sin(tan^{-1}(x))$

$$\Delta \dot{von}$$
: $tan^{1}(x) = 0$ (=)
 $tan(0) = x$

$$tan(\theta) = \frac{anev. ka\theta}{npook. ka\theta} = \frac{x}{1} = x$$

$$Sim(tan^{-1}(x)) = Sim(\theta) = \frac{x nev. val \theta}{v no \tau} = \frac{x}{\sqrt{1+x^2}}$$

Επίλυση τριγωνομετρικών εξισώσεων ΙΙ

Χρησιμοποιήστε αριθμομηχανή για να λύσετε την εξίσωση $4\cos x - 3 = 0$

Επίλυση τριγωνομετρικών εξισώσεων ΙΙ

Χρησιμοποιήστε αριθμομηχανή για να λύσετε την εξίσωση $4\cos x - 3 = 0$

Λύση: Η εξίσωση γράφεται

$$\cos x = \frac{3}{4} \quad \Rightarrow \quad x = \cos^{-1}(\frac{3}{4})$$

Χρησιμοποιώντας τη αριθμομηχανή βρίσκουμε

$$\cos^{-1}(\frac{3}{4}) = 0.7227 \ (rad)$$

Άρα όλες οι λύσεις της εξίσωσης είναι

$$x = 2k\pi + 0.7227$$
 $\dot{\eta}$ $x = 2k\pi - 0.7227$ $k \in \mathbb{Z}$