Lesson 3

Digital Logic

Junying Chen

Chapter 2 :: Topics

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Logic
- X's and Z's
- Karnaugh Maps
- Combinational Building Blocks
- Timing

Introduction

A logic circuit is composed of:

- Inputs
- Outputs
- Functional specification
- Timing specification

Circuits

Nodes

- Inputs: A, B, C
- Outputs: Y, Z
- Internal: n1
- Circuit elements
 - E1, E2, E3
 - Each a circuit

Types of Logic Circuits

Combinational Logic

- Memoryless
- Outputs determined by current values of inputs

Sequential Logic

- Has memory
- Outputs determined by previous and current values of inputs

Rules of Combinational Composition

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths
- Example:

Boolean Equations

- Functional specification of outputs in terms of inputs
- Example: $S = F(A, B, C_{in})$ $C_{out} = F(A, B, C_{in})$

$$\begin{array}{c}
A \\
B \\
C_{\text{in}}
\end{array}$$

$$\begin{array}{c}
C \\
C_{\text{out}}
\end{array}$$

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Some Definitions

- Complement: variable with a bar over it \overline{A} , \overline{B} , \overline{C}
- Literal: variable or its complement
 A, A, B, B, C, C
- Implicant: product of literals
 ABC, AC, BC
- Minterm: product that includes all input variables

ABC, ABC, ABC

Maxterm: sum that includes all input variables

$$(A+B+C)$$
, $(\overline{A}+B+\overline{C})$, $(\overline{A}+B+C)$

Sum-of-Products (SOP) Form

- All equations can be written in SOP canonical form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	A B	m_1°
1	0	0	\overline{A}	m_2
1	1	1	АВ	m_3^-

$$Y = \mathbf{F}(A, B) =$$

Sum-of-Products (SOP) Form

- All equations can be written in SOP canonical form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
A	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	ΑB	m_2
1	1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) =$$

Sum-of-Products (SOP) Form

- All equations can be written in SOP canonical form
- Each row has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

				minterm
A	В	Y	minterm	name
0	0	0	$\overline{A} \ \overline{B}$	m_0
0	1	1	Ā B	m_1
1	0	0	ΑB	m_2
1	1	1	АВ	m_3

$$Y = \mathbf{F}(A, B) = \overline{\mathbf{A}}\mathbf{B} + \overline{\mathbf{A}}\mathbf{B} = \Sigma(\mathbf{m}_1, \mathbf{m}_3) = \Sigma(1, 3)$$

Product-of-Sums (POS) Form

- All Boolean equations can be written in POS canonical form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the output is FALSE
- Thus, a product (AND) of sums (OR terms)

				maxterm
_ A	В	Y	maxterm	name
0	0	0	A + B	M_0
0	1	1	$A + \overline{B}$	M_1
1	0	0	Ā + B	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = F(A, B) = (A + B)(\overline{A} + B) = \Pi(M_0, M_2) = \Pi(0, 2)$$

