Use gm/ID methodology to design a diff input SE output operational transconductance amplifier (OTA) that achieves the following specs.

Spec.		
Supply Voltage	1.2 V	VDD
Open loop DC voltage gain	≥ 32 dB	IB/2 ♥
CMRR @ DC	≥ 70 dB	M2a M2b
BW	≥ 200 kHz	Vout
Phase Margin	≥ 70°	Vin+ o Mla Mlb o Vin-
Power Consumption	≤ 30 uW	▼IB
Reference current	10 uA	Vbiasn • M3
CM input range low	≤ 0.6 V	
CM input range high	≥ 1 V	*
Load	2 pF	

- 1. As CMIR: 0.6 to 1v is closer to VDD, I used a NMOS input transistors
- 2. Design of input transistors

$$\begin{split} P_{cons} &= V_{DD} \; I_{ss} \leq 30 \; uW \rightarrow I_{ss} \leq 20 \; uA \\ GBW &= \frac{g_{m1}}{2\pi C_L} \geq 8 \; MHz \rightarrow g_{m1} \geq 100.5 \; uS \rightarrow g_m = 120 \; uS \rightarrow \frac{g_m}{I_D} = 12 \\ A_v &= g_m R_{out} = 40 \rightarrow R_{out} = 335 \; k\Omega \rightarrow Rout = r_{o1} || r_{o2} = \frac{r_o}{2} \rightarrow r_o = 670 \; k\Omega \end{split}$$

$$L_1 = 2.2 \text{ um}, V_{GS1} = 418.1 \text{ mV}, W_1 = 5.63 \text{ um}$$

3. Diode connected load

$$\begin{split} \text{CMIR}_{\text{H}} \geq 1 \to \text{V}_{\text{GS1}} - \text{V}_{1}^{*} - \text{V}_{\text{SG2}} + \text{V}_{\text{DD}} \geq 1 \to \text{V}_{\text{SG2}} \leq 452 m \\ \text{V}_{\text{SG2}} = 400 \text{m} \text{ and } r_{\text{o2}} = 670 \text{ k}\Omega \to L_{2} = 1.15 \text{ um}, W_{2} = 12.08 \text{ um} \end{split}$$

4. Current mirror

$$A_{VCM} = \frac{1}{2g_m R_{ss}} = (70 - 32) dB = 0.01259 \rightarrow R_{ss} = 331 k\Omega$$

$$\text{CMIR}_{L} < 0.6 \rightarrow \text{V}_{\text{GS1}} + \text{V}_{3}^{*} \leq 0.6 \rightarrow \text{V}_{3}^{*} \leq 0.189 \rightarrow \text{V}_{3}^{*} = 0.17 \rightarrow \left(\frac{\text{g}_{\text{m}}}{\text{I}_{\text{D}}}\right)_{3} = 11.76$$

$$L_3 = 2 \text{ um}, W_2 = 4.833 \text{ um}$$

1. Circuit Test Bench

2. DC OP

3. Diff Small Signal Analysis

4. CM Small Signal Analysis

5. Diff Large Signal

6. CM Large Signal

