Exercise 1. Consider the figure which describes a region in the plane. The marked points are x = -4 and



x = -3. Describe the region in polar coordinates.

The region is described by a circular section with radii  $3 \le r \le 4$ . Since we are on the whole  $3^{\rm rd}$  quadrant, this gives us values of  $\theta$  from  $\pi$  to  $3\pi/2$ .

**Exercise 2.** Consider the complex number  $z = e^{2\pi i/3}$ . Show that the argument of  $\bar{z}$  coincides with the argument  $z^2$ .

The number  $\bar{z}$  is  $e^{-2\pi i/3}$ . To find the argument between 0 and  $2\pi$  we add  $2\pi$  to the multiple of i in the exponent.

$$2\pi - \frac{2\pi}{3} = \frac{6\pi - 2\pi}{3} = \frac{4\pi}{3}.$$

 $2\pi-\frac{2\pi}{3}=\frac{6\pi-2\pi}{3}=\frac{4\pi}{3}.$  On the other hand,  $z^2=e^{4\pi i/3}$ , so the argument is  $\frac{4\pi}{3}$ . It follows that the arguments coincide.

**Exercise 3.** Consider the complex number w=2i. What is the real part of  $\frac{w}{1+w^2}$ ?

The number in question is

$$\frac{2i}{1+(2i)^2} = \frac{2i}{1+4i^2} = \frac{-2i}{3}.$$

Therefore the real part of the number in question is zero.

**Exercise 4.** Solve the equation  $z+3\bar{z}=8-5i$  where z is a complex number.

If z = x + iy, then  $\bar{z} = x - iy$ . The equation in question becomes

$$x+iy+3(x-iy) = 8-5i \Rightarrow 4x-2iy = 8-5i.$$

The real and imaginary parts must coincide so we get

$$4x = 8, -2y = -5 \Rightarrow x = 2, y = \frac{5}{2}.$$

Therefore our complex number is  $z = 2 + \frac{5i}{2}$ .