

高知工科大学 経済・マネジメント学群

計量經済学

13. 分析結果の提示法

た内 勇生

yanai.yuki@kochi-tech.ac.jp

今日の目標

- 回帰分析結果の提示法を理解する
 - ▶何を報告すべきか
 - ▶どのように報告すべきか

レポート・論文での報告内容

- 分析の内容
 - ▶ 回帰モデル:式または文章
 - ▶ 応答変数と説明変数(交絡を含む)の**詳細な**説明
 - ▶回帰式の推定結果
 - ▶ **結果の実質的な意味**の解釈・解説

回帰分析の結果の提示

- 図、表または式の形で表す
- ・係数だけでなく、不確実性(標準誤差, t 値, p 値)も一緒に示すことが必要
 - ▶どの不確実性指標を使っているかはっきり示すこと!
 - ▶標準誤差を示すのがもっとも望ましい
- 点推定値と信頼区間を図示するのが現代の常識!
- ・観測数(サンプルサイズ)と決定係数(重回帰の場合は自由度調整済み決 定係数)も示す
- Rのsummary() または broom::tidy() の結果をそのままコピペしない!
 - ▶ 読みやすい、綺麗な表が必要

決定係数 R^2

- 決定係数 R^2 (r-squared), $0 \le R^2 \le 1$
- ・応答変数のばらつき(全変動)のうち、回帰分析に含めた説明変数のばらつき(回帰変動)によって説明できた割合
 - ▶ 単回帰のとき:*R*² の値を報告
 - lacktriangler 重回帰のとき:自由度調整済み R^2 (adjusted r squared, $ar{R}^2$) を報告する
- \mathbf{R}^2 または \mathbf{R}^2 もそれほど重要ではない:とりあえず報告する

結果提示の例:式の場合

身長=107.2 + 0.19 × 父の身長 + 0.21×母の身長 (4.93) (0.02) (0.02)

注:括弧内は標準誤差

- 括弧内には、標準誤差 (se) を書くのがおすすめ
- ・標準誤差が書かれている場合の目安:有意水準5%なら、係 数÷SE の値が2以上なら帰無仮説 (=0) を棄却
- t 値(検定統計量)を書いても理論的には問題ないが、標準誤差のほうが信頼区間を計算しやすい

結果提示の例:単回帰の図示

図 1. ビールの出荷量を気温に回帰した結果。青い直線が回帰直線。直線の周りのグレーの領域は95%信頼区間。

結果提示の例:重回帰の図示

図 2. 得票率(応答変数) に与える影響の推定結果。点は係数の推定 値、線分は95%信頼区間を表す。

非線形の関係がある場合

図 3. 3つの異なる修学年数について、回帰モデルで推定した就業経験年数と年収(万円)の関係。

結果提示の例:表の場合(1)

表1. 回帰分析の結果(応答変数は自民党の得票率)							
			95%信頼区間				
説明変数	推定值	標準誤差	下限	上限			
説明変数1	-0.10	0.37	-0.85	0.65			
説明変数2	0.07	0.46	-0.86	0.99			
説明変数3	1.68	0.27	1.14	2.22			
説明変数4	0.77	0.05	0.67	0.87			
説明変数5	0.25	0.35	-0.45	0.95			
説明変数6	42.15	0.33	41.48	42.83			
 観測数	47						
自由度調整済み決定係数	0.88						
F 統計量	66.11						
自由度 (5, 41)							

結果提示の例:表の場合(2)

表 2. 2009年総選挙の得票率を説明するモデルの推定結果

	モデル 1	モデル 2	モデル 3	
切片	26.53	20.04	27.41	
	(0.49)	(0.37)	(0.51)	
一人あたり選挙費用	0.93	0.91	0.97	
	(0.03)	(0.02)	(0.03)	
民主党ダミー		31.42		
		(0.80)		
一人あたり選挙費用 x 民主党ダミー		-0.83		
		(0.06)		
年齢		, ,	0.03	
			(0.05)	
一人あたり選挙費用 x 年齢			-0.02	
			(0.00)	
決定係数	0.44	0.77	0.46	
自由度調整済み決定 係数	0.44	0.77	0.46	
観測数	1124	1124	1124	

注:括弧内は標準誤差

重回帰分析の場合の注意

- 複数ある説明変数のうち、注目する変数は限られている
 - ▶ 交絡変数の推定値の意味は解釈できないので、報告しない
 - ただし、表を付録に載せる場合は、交絡についての推定値も載せておく
 - ▶注目する説明変数が2つ以上ある場合は、それぞれについて丁寧に説明する
 - ▶ 交差項がある場合は要注意(次回の授業で説明する)
 - 推定値をそのまま報告するだけではダメ

次回

交差項を利用する

まとめ