Lab. 7 Transformacja falkowa – właściwości i zastosowania				
Nazwisko, Imię	Data wykonania ćwiczenia	Planowy dzień zajęć	Planowa godzina zajęć	
Dziuba Wojciech	14.04.2019	Środa	08:00	

1. W jaki sposób zastosować falki do ekstrakcji cech?

Mając falki od a1 do d5 każda zawiera próbki o innej częstotliwości przechowując unikalne nieskorelowane informacje o sygnale

2. Jakie parametry falek możemy zmieniać w toolboxie?

Rodzaj falki, poziom dekompozycji, defilment, można dokonać modyfikacji falek w ustawieniach matlaba.

3. Czym różnią się współczynniki a1, d1, d2, d3, d4, d5?

Częstotliwościami:

a1 - 0: 11025

d1 - 11025 : 22050

a2 - 0:5512,5

d2 - 5512,5 : 11025

a3 - 0: 2756,25

d3 – 2756,25 : 5512,5

a4 - 0: 1378,125

d4 - 1378,125 : 2756,25

a5 - 0: 689,0625

d5 – 689,0625 : 1378,125

4. Czym różni się transformacja falkowa od filtrów?

W falce nie tracimy danych, które oddzielamy. Możemy zawsze zrekonstruować badany wcześniej sygnał. W filtrach tracimy wszystkie odfiltrowywane informacje.

Table of Contents

zadl		1
zad3		2
Laao	••••••••••••••••••••••••••••••••••••	U

zad1

```
[c,l] = wavedec(wiatrak_20, 5, 'db2');
[d5] = detcoef(c,l,[5]);
fid = fopen('wiatrak_20_d5.txt','w+t','n');
fprintf(fid,'%f\n',abs(d5));
fclose(fid);
plot(d5);
```



```
[c,1] = wavedec(wiatrak_20, 4, 'coif2');
```

```
a4 = appcoef(c,1,'coif2');
fid = fopen('wiatrak_20_a4.txt','w+t','n');
fprintf(fid,'%f\n',abs(a4));
fclose(fid);
plot(a4);
```



```
[c,l] = wavedec(wiatrak_20, 8, 'coif2');
a8 = appcoef(c,l,'coif2');
fid = fopen('wiatrak_20_a8.txt','w+t','n');
fprintf(fid,'%f\n',abs(a8));
fclose(fid);
plot(a8);
```



```
[c,l] = wavedec(wiatrak_20, 10, 'haar');
[d10_haar] = detcoef(c,l,[10]);
fid = fopen('wiatrak_20_d5.txt','w+t','n');
fprintf(fid,'%f\n',abs(d10_haar));
fclose(fid);
plot(d10_haar);
```



```
[c,l] = wavedec(wiatrak_20, 10, 'dmey');
[d10_dmey] = detcoef(c,l,[10]);
fid = fopen('wiatrak_20_d5.txt','w+t','n');
fprintf(fid,'%f\n',abs(d10_dmey));
fclose(fid);
plot(d10_dmey);
```



```
[c,1] = wavedec(wiatrak_20, 8, 'bior3.5');
a8_bior = appcoef(c,1,'bior3.5');
fid = fopen('wiatrak_20_a8.txt','w+t','n');
fprintf(fid,'%f\n',abs(a8_bior));
fclose(fid);
plot(a8_bior);
```



```
figure
subplot(2,1,1)
plot(wiatrak_20);
legend('Sygna# przed dekompozycj#')
[c,1] = wavedec(wiatrak_20,12, 'coif2');
Rec = waverec(c,1,'coif2');
subplot(2,1,2)
plot(Rec);
legend('Sygna# po rekonstrukcji')

figure
plot(wiatrak_20);
hold on
plot(Rec);
legend('Sygna# przed dekompozycj#','Sygna# po rekonstrukcji')
```



```
figure
subplot(2,1,1)
plot(wiatrak_20);
legend('Sygna# przed dekompozycj#')
[c,1] = wavedec(wiatrak_20,12, 'coif2');
Rec = waverec(c,1,'haar');
subplot(2,1,2)
plot(Rec);
legend('Sygna# po rekonstrukcji')
figure
plot(wiatrak_20);
[c,1] = wavedec(wiatrak_20,12, 'coif2');
Rec = waverec(c,1,'haar');
hold on
plot(Rec);
legend('Sygna# przed dekompozycj#','Sygna# po rekonstrukcji')
```


Published with MATLAB® R2019a