

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

Facultad de Ingenieria

TAREA 4

Normalización de Bases de Datos

Grupo 5

Semestre 2020-2

BASES DE DATOS

Profesor: Ing. Fernando Arreola Franco

Integrantes:

Vivanco Quintanar, Diego Armando

26 de marzo de 2020

1. EJERCICIO

A partir de la siguiente tabla normalizar hasta la segunda forma.

staffNo	branchNo	${ m branchAddress}$	name	position	hoursPerWeek
S4555	B002	City Center Plaza, Seattle, WA 98122	Ellen Layman	Assistant	16
S4555	B004	16-14th Avenue, Seattle, WA 98128	Ellen Layman	Assistant	9
S4612	B002	City Center Plaza, Seattle, WA 98122	Dave Sinclair	Assistant	14
S4612	B004	16-14th Avenue, Seattle, WA 98128	Dave Sinclair	Assistant	10

Tabla 1: Tabla con los datos del personal de una empresa.

Como podemos observar en la tabla 1 grupos repetidos tanto para staffNo, branchNo, name y position, la forma de evitar estos grupos repetidos es normalizando dicha tabla a primera forma normal. Sin embargo en la clase hemos podido ver que al obtener las dependencias funcionales de la tabla se nos facilita llegar a la segunda formal y por consiguiente a la primer forma normal. Partiendo de lo anterior vamos a definir lo siguiente:

- \bullet A = staffNo
- \blacksquare B = branchNo
- \blacksquare D = name
- \blacksquare E = position
- \blacksquare F = hoursPerWeek

Entonces las dependencias las podemos ver de la siguiente manera:

- $* A -> \{D, E\}$
- $*A,B > \{F\}$
- $* B > \{ C \}$

Como sabemos la segunda forma normal evita las dependencias parciales, a través de A podemos obtener la información contenida en D y E, a su vez a partir de B podemos visualizar la información de C. Ahora observemos lo siguiente, a partir de la clave primaria compuesta: A y B podemos llegar a F pero tambien partiendo de A o de B podemos llegar a los demas atributos de nuestra tabla por lo que no hay dependencias parciales.

Asi pues las tablas normalizadas en 2FN quedan de la siguiente manera:

StaffNo	name	position
S4555	Ellen Layman	Assistant
S4612	Dave Sinclair	Assistan

Tabla 2: Tabla con los atributos StaffNo, name y position del personal

StaffNo	branchNo	hoursPerWeek
S4555	B002	16
S4555	B004	9
S4612	B002	14
S4612	B004	10

Tabla 3: Tabla con la clave primaria compuesta (StaffNo y branchNo) y las horas que labora el personal.

branchNo	${ m branchAddress}$
B002	City Center Plaza, Seattle, WA 98122
B004	16-14th Avenue, Seattle, WA 98128

Tabla 4: Tabla con los atributos branch No y las horas que labora el personal.

2. Conclusiones

En este ejercicio se pudo observar que el identificar las dependencias funcionales de la tabla nos permite llegar a la 2FN sin la necesidad de primero pasar por la 1FN y de esa manera hacer una buena normalización de nuestros datos.