Liebert® eXL™

Installation Manual — 625-800kVA, 1.0PF, 60Hz, Three-Phase, Single-Module

CONTACTING EMERSON NETWORK POWER FOR SUPPORT

To contact Emerson Network Power Liebert Services for information or repair service in the United States, call 800-543-2378. Liebert Services offers a complete range of start-up services, repair services, preventive maintenance plans and service contracts.

For repair or maintenance service outside the 48 contiguous United States, contact Liebert Services, if available in your area. For areas not covered by Liebert Services, the authorized distributor is responsible for providing qualified, factory-authorized service.

For Liebert Services to assist you promptly, please have the following information available:

Part numbers:
Serial numbers:
Rating:
Date purchased:
Date installed:
Location:
Input voltage/frequency:
Output voltage/frequency:
Rattery reserve time:

Product Warranty Registration

To register for warranty protection, visit the **Service and Support** section of our Web site at:

www.liebert.com

Click on **Product Registration** and fill out the form.

TABLE OF CONTENTS

IMPOR	TANT SAFETY INSTRUCTIONS	l
SAVE	THESE INSTRUCTIONS	İ
1.0	MECHANICAL INSTALLATION	1
1.1	Introduction	1
1.2	Preliminary Checks	
1.3	Environmental Considerations	
	1.3.1 UPS Room	
	1.3.2 Storage	5
1.4	Positioning	5
	1.4.1 Moving the Cabinets	
	1.4.2 Clearances	
	1.4.3 Raised-Floor Installations	
	1.4.4 Kick Plate Installation	3
1.5	System Composition	3
1.6	Cable Entry	3
1.7	Cable routing	3
2.0	UPS ELECTRICAL INSTALLATION	3
2.1	External Protective Devices	3
2.2	Power Cables	3
2.3	Sizing the Input Breaker Feeding a Liebert eXL UPS)
	2.3.1 Power Cable Connection Procedure	
2.4	Control Cable and Communication)
	2.4.1 Dry Contacts	3
2.5	Grounding	1
	2.5.1 Three-Wire Input connections	1
	2.5.2 High Resistance Grounding	1
	2.5.3 Preferred Grounding Configuration, Battery Systems	1
2.6	No CB2 Option	5
2.7	Internal Breaker Settings	5
3.0	OPTIONAL EQUIPMENT	ò
3.1	Single-Module System Options	3
	3.1.1 Battery Temperature Sensor	3
	3.1.2 Matching Liebert eXL Battery Cabinet	3
	3.1.3 Remote Alarm Status Panel	3
3.2	Communication and Monitoring	3
	3.2.1 Alber Monitoring System	3
4.0	Installation Drawings	7
5.0	SPECIFICATIONS	1
APPEN	NDIX A - SHIPPING SPLITS, KICKPLATES	Ĺ

FIGURES

Figure 1	Cabinet arrangement—Liebert eXL and battery cabinets	. 7
Figure 2	Liebert eXL customer connections	11
Figure 3	UPS MMS/1+N connectivity	12
Figure 4	No CB2 option	15
Figure 5	Typical main components, 625-800kVA Liebert eXL single-module UPS	17
Figure 6	Outline Drawing, 625-800kVA Liebert eXL single-module UPS	18
Figure 7	Base drawing, 625-800kVA Liebert eXL single-module UPS	19
Figure 8	Input and battery terminal detail, 625-800kVA Liebert eXL single-module UPS	19
Figure 9	Output and bypass terminal detail, 625-800kVA Liebert eXL single-module UPS	20
Figure 10	Input, output and bypass terminal spacing details, 625-800kVA Liebert e XL single-module UPS	20
Figure 11	Low-voltage cable routing	21
Figure 12	Cabling for single input configuration	22
Figure 13	Optional Input Contact Isolator Board	22
Figure 14	Control wiring, Programmable Relay Board	23
Figure 15	Inverter overload data	26
Figure 16	Rectifier overload data	27
Figure 17	Bypass overload data	28
Figure 18	Shipping split, 625-800kVA Liebert e XL single-module UPS	31
Figure 19	Shipping split, 625-800kVA Liebert eXL single-module UPS, continued	32
Figure 20	Kickplate installation—800kVA units	34
Figure 21	Kickplate installation—1200kVA units	35
	TABLES	
Table 1	UPS Digital Inputs	
Table 2	UPS Output	
Table 3	UPS control contacts to Battery Interface Boards	
Table 4	UPS control contacts to Remote Status Panel	
Table 5	Input Contact Isolator Board control wiring connections	
Table 6	Programmable Relay Board pinout	
Table 7	Liebert eXL UPS specifications	
Table 8	Current ratings—rectifier input	
Table 9	Current ratings—bypass input	
Table 10	Current ratings—output	
Table 11	Current ratings—DC source.	
Table 12	Recommended conduit and cable sizes for use with 100% rated breakers	
Table 13	Recommended lug sizes	
Table 14	Recommended torque values	
Table 15	Connections associated with top down view	
Table 16	Section J-J connections	
Table 17	Connections associated with sections in "View" column	33

IMPORTANT SAFETY INSTRUCTIONS

SAVE THESE INSTRUCTIONS

This manual contains important instructions that should be followed during installation of your Liebert *e*XL UPS. Read this manual thoroughly, paying special attention to the sections that apply to your installation, before working with the UPS. **Retain this manual for use by installing personnel.**

WARNING

Risk of electrical shock. Can cause personal injury or death.

This UPS has several circuits that are energized with high DC as well as AC voltages. Check for voltage with both AC and DC voltmeters before working within the UPS. Check for voltage with both AC and DC voltmeters before making contact.

Only properly trained and qualified personnel wearing appropriate safety headgear, gloves, shoes and glasses should be involved in installing the UPS or preparing the UPS for installation. When performing maintenance with any part of the equipment under power, service personnel and test equipment should be standing on rubber mats.

In case of fire involving electrical equipment, use only carbon dioxide fire extinguishers or those approved for use in fighting electrical fires.

Extreme caution is required when performing installation and maintenance.

Special safety precautions are required for procedures involving handling, installation and maintenance of the UPS system. Observe all safety precautions in this manual before handling or installing the UPS system. Observe all precautions in the Operation and Maintenance Manual, SL-26030, before as well as during performance of all maintenance procedures. Observe all DC safety precautions before working on or near the DC system.

AVERTISSEMENT

Risque de décharge électrique pouvant causer des blessures graves, voire mortelles.

Ce système ASC comporte plusieurs circuits à haute tension c.a et c.c. Vérifiez les tensions au moyen de voltmètres c.a. et c.c. avant d'utiliser le système ASC. Vérifiez les tensions avec des voltmètres c.a. et c.c. avant d'établir tout contact.

Seuls des employés qualifiés et dûment formés portant un casque, des gants, des chaussures et des lunettes de sécurité adéquats doivent se charger d'installer le système ASC ou de le préparer pour l'installation. Les responsables de l'entretien et l'équipement d'essai doivent reposer sur des tapis de caoutchouc lors de toute intervention sur une pièce d'équipement sous tension.

En cas d'incendie associé à du matériel électrique, n'utilisez que des extincteurs à dioxyde de carbone ou homologués pour la lutte contre les incendies d'origine électrique.

Les opérations d'installation et d'entretien requièrent une extrême prudence.

1

Des précautions de sécurité spéciales sont requises pour les procédures associées à la manutention, à l'installation et à l'entretien du système ASC. Observez toutes les précautions de sécurité décrites dans le présent manuel avant de manipuler ou d'installer le système ASC. Observez également toutes les précautions décrites dans le manuel d'utilisation et d'entretien, SL-26030, avant et pendant toutes les procédures d'entretien. Observez toutes les précautions de sécurité appropriées lorsque vous travaillez sur à proximité d'une source c.c. de sécurité appropriées dès que vous vous trouvez à proximité d'une source c.c.

Liebert® e*XL*™

WARNING

Risk of heavy unit falling over. Improper handling can cause equipment damage, injury or death.

Exercise extreme care when handling UPS cabinets to avoid equipment damage or injury to personnel. The UPS module weight is up to 5187 lb. (2353kg).

Locate center of gravity symbols and determine unit weight before handling each cabinet. Test lift and balance the cabinets before transporting. Maintain minimum tilt from vertical at all times.

Slots at the base of the module cabinets are intended for forklift use. Base slots will support the unit only if the forks are completely beneath the unit.

Read all of the following instructions before attempting to move, lift, or remove packaging from unit, or prepare unit for installation.

AVERTISSEMENT

Le centre de gravité élevé de l'appareil présente un risque de renversement. Une mauvaise manutention peut entraîner des dommages matériels, des blessures et même la mort.

Faites preuve d'une extrême prudence lors de la manutention des armoires ASC afin d'éviter de les endommager ou de blesser le personnel. Le module ASC pèse jusqu'à 2 353 kg (5 187 lb).

Identifiez les symboles de centre de gravité et déterminez le poids de l'appareil avant de manipuler chaque armoire. Testez le levage et l'équilibre des armoires avant de transporter l'appareil. Maintenez en tout temps l'inclinaison verticale minimale.

Les fentes situées à la base des armoires du module sont conçues pour utiliser le chariot élévateur. Les fentes situées à la base peuvent soutenir le système seulement si les fourches se trouvent complètement sous le système.

Lisez toutes les instructions ci-dessous avant de tenter de déplacer, lever, déballer ou préparer le système en vue de son installation.

WARNING

Risk of electrical shock and fire. Can cause equipment damage, personal injury or death. Under typical operation and with all UPS doors closed, only normal safety precautions are necessary. The area around the UPS system should be kept free of puddles of water, excess moisture and debris.

Only test equipment designed for troubleshooting should be used. This is particularly true for oscilloscopes. Always check with an AC and DC voltmeter to ensure safety before making contact or using tools. Even when the power is turned Off, dangerously high potential electric charges may exist at the capacitor banks and at the DC connections.

All wiring must be installed by a properly trained and qualified electrician. All power and control wiring must comply with all applicable national, state and local codes.

One person should never work alone, even if all power is disconnected from the equipment. A second person should be standing by to assist and to summon help in case of an accident.

AVERTISSEMENT

Risque de décharge électrique et d'incendie. pouvant entraîner des dommages matériels, des blessures et même la mort.

Les précautions de sécurité habituelles suffisent lorsque le système ASC est en mode de fonctionnement normal et que toutes les portes sont fermées. La zone entourant le système ASC doit être exempte de flaques d'eau, d'humidité excessive et de débris.

Seuls des équipements d'essai conçus pour le dépannage doivent être utilisés. Cette mise en garde couvre notamment les oscilloscopes. Utilisez toujours un voltmètre c.a. et c.c. pour vérifier les tensions avant d'établir un contact ou d'utiliser des appareils. Des tensions dangereusement élevées peuvent demeurer dans les batteries de condensateurs et au niveau des raccords c.c., même une fois l'alimentation coupée.

Tous les raccords doivent être effectués par un électricien dûment formé et qualifié. Tous les câbles d'alimentation et de commande doivent être conformes aux codes nationaux et locaux en vigueur.

Une personne ne devrait jamais travailler seule, même si toute l'alimentation d'entrée est coupée. Une deuxième personne devrait toujours être présente pour porter assistance ou chercher de l'aide en cas d'accident.

NOTE

Materials sold hereunder cannot be used in the patient vicinity (e.g., use where UL, cUL or IEC 60601-1 is required). Medical applications such as invasive procedures and electrical life support equipment are subject to additional terms and conditions.

NOTICE

If optional filtering is installed, this unit complies with the limits for a Class A digital device, pursuant to Part 15 Subpart J of the FCC rules. These limits provide reasonable protection against harmful interference in a commercial environment. This unit generates, uses and radiates radio frequency energy and, if not installed and used in accordance with this instruction manual, may cause harmful interference to radio communications. Operation of this unit in a residential area may cause harmful interference that the user must correct at his own expense.

3

1.0 MECHANICAL INSTALLATION

1.1 Introduction

This section describes the requirements that must be taken into account when planning the positioning and cabling of the Liebert *e*XL uninterruptible power supply and related equipment.

This chapter is a guide to general procedures and practices that should be observed by the installing personnel. The particular conditions of each site will determine the applicability of such procedures.

WARNING

Risk of electrical shock. Can cause injury or death.

Special care must be taken when working with the batteries associated with this equipment. When they are connected together, the battery terminal voltage will exceed 400VDC and is potentially lethal.

AVERTISSEMENT

Risque de décharge électrique pouvant causer des blessures graves, voire mortelles.

Des précautions particulières doivent être prises lors de travaux touchant les batteries associées à cet équipement.

Lorsque les batteries sont branchées ensemble, la tension à la borne d'une batterie dépasse 400 V c.c. et est potentiellement mortelle.

NOTE

All equipment not referred to in this manual is shipped with details of its own mechanical and electrical installation.

NOTICE

Three-phase input supply required.

The standard Liebert eXL UPS is suitable for connection to three-phase, three-wire (+ Earth) TN-C and TN-S.

NOTICE

Do not apply electrical power to the UPS equipment before the arrival of the commissioning engineer.

1.2 Preliminary Checks

Before installing the UPS, please carry out the following preliminary checks:

- Visually examine the UPS equipment for transit damage, both internally and externally. Report any damage to the shipper immediately.
- Verify that the correct equipment is being installed. The equipment supplied has an identification tag on the interior doors reporting the type, size and main calibration parameters of the UPS.
- Verify that the UPS room satisfies the environmental conditions stipulated in the equipment specification, paying particular attention to the ambient temperature and air exchange system.

1.3 Environmental Considerations

1.3.1 **UPS Room**

The UPS module is intended for indoor installation and should be located in a cool, dry, clean-air environment with adequate ventilation to keep the ambient temperature within the specified operating range (see **Environmental Parameters** in **Table 7**).

The Liebert *e*XL UPS is cooled with the aid of internal fans. To permit air to enter and exit and prevent overheating or malfunctioning, do not cover the ventilation openings.

The Liebert *e*XL UPS is equipped with air filters located behind the front doors. A schedule for inspection of the air filters is required. The period between inspections will depend upon environmental conditions.

When bottom entry is used, the conduit plate must be installed.

NOTE

The UPS is suitable for mounting on concrete or other non-combustible surface only.

1.3.2 Storage

Should the equipment not be installed immediately, it must be stored in a room for protection against excessive humidity and/or heat sources (see **Environmental Parameters** in **Table 7**).

1.4 Positioning

The cabinet is structurally designed to handle lifting from the base.

Access to the power terminals, auxiliary terminal blocks and power switches is from the front.

The door can be opened to give access to the power connection bars, auxiliary terminal blocks and power isolators. Front door can be opened to 90 degrees, and interior doors can be removed for more flexibility in installations.

NOTE

The UPS must be placed on a non-combustible surface suitable to support the weight of the unit.

1.4.1 Moving the Cabinets

The route to be travelled between the point of arrival and the unit's position must be planned to make sure that all passages are wide enough for the unit and that floors are capable of supporting its weight (for instance, check that doorways, lifts, ramps, etc. are adequate and that there are no impassable corners or changes in the level of corridors).

Ensure that the UPS weight is within the designated surface weight loading (lb/in²) of any handling equipment. For weight details, see **Table 7**.

The UPS can be handled with a forklift or similar equipment. Ensure any lifting equipment used in moving the UPS cabinet has sufficient lifting capacity. When moving the unit by forklift, care must be taken to protect the panels. Do not exceed a 15-degree tilt with the forklift. Bottom structure will support the unit only if the forks are completely beneath the unit.

Handling with straps is not authorized.

WARNING

Risk of heavy unit falling over. Improper handling can cause equipment damage, injury or death.

Because the weight distribution in the cabinet is uneven, use extreme care while handling and transporting. Take extreme care when handling UPS cabinets to avoid equipment damage or injury to personnel.

The UPS module weight is up to 5187 lb. (2353kg).

Locate center of gravity symbols and determine unit weight before handling each cabinet. Test lift and balance the cabinets before transporting. Maintain minimum tilt from vertical at all times.

AVERTISSEMENT

Le centre de gravité élevé de l'appareil présente un risque de renversement. Une mauvaise manutention peut entraîner des dommages matériels, des blessures et même la mort.

En raison de la distribution inégale du poids de l'armoire, vous devez faire preuve d'extrême prudence lors de sa manipulation et de son transport. Faites preuve d'une extrême prudence lors de la manutention des armoires ASC afin d'éviter de les endommager ou de blesser le personnel.

Le module ASC pèse jusqu'à 2 353 kg (5 187 lb).

Identifiez les symboles de centre de gravité et déterminez le poids de l'appareil avant de manipuler chaque armoire. Testez le levage et l'équilibre les armoires avant de transporter l'appareil. Maintenez en tout temps l'inclinaison verticale minimale

1.4.2 Clearances

The Liebert *eXL* has no ventilation grilles at either side or at the rear of the UPS. Clearance around the front of the equipment should be sufficient to permit free passage of personnel with the doors fully opened. It is important to leave a distance of 24in. (610mm) between the top of the UPS and any overhead obstacles to allow the module to be serviced and to permit adequate circulation of air coming out of the unit.

1.4.3 Raised-Floor Installations

If the equipment is to be located on a raised floor, it should be mounted on a pedestal suitably designed to accept the equipment point loading. Refer to **Figure 7** to design this pedestal.

1.4.4 Kick Plate Installation

If the unit is to be installed in a position that does not permit access to rear kick plates, then the kick plates should be installed before the unit is placed in its final position.

1.5 System Composition

A UPS system can include a number of equipment cabinets, depending on the individual system design requirements: e.g., UPS cabinet, battery cabinet, maintenance bypass cabinet. In general, all the cabinets used in a particular installation are of the same height. Refer to the drawings provided in **4.0** - **Installation Drawings** for the positioning of the cabinets as shown in **Figure 1**.

1.6 Cable Entry

Cables can enter the UPS cabinet from bottom or top into the Input/Output (I/O) of the unit; see the figures in 4.0 - Installation Drawings.

1.7 Cable routing

Per NEC 300.20 (NEC 2014 or equivalent), all phase conductors and ground conductors must be grouped together when they are installed in ferrous enclosures or go through ferrous material. This is to avoid heating from induction currents.

Figure 1 Cabinet arrangement—Liebert eXL and battery cabinets

Liebert eXL UPS

If the cabinets are to be bolted together, the side panels and hangers must be removed before beginning.

7

Battery cabinets can be bolted to the left of the UPS and the cabling routed internally. Possible only with Enersys front terminal batteries or equivalent batteries in a Liebert cabinet.

Battery cabinets can be bolted to the right of the UPS. However, the cabling must be routed externally.

2.0 UPS ELECTRICAL INSTALLATION

This chapter provides guidelines for qualified installers who must have knowledge of local wiring practices pertaining to the equipment to be installed.

WARNING

Risk of electrical shock. Can cause injury or death.

The UPS contains high DC as well as AC voltages. Check for voltage with both AC and DC voltmeters before working within the UPS.

Only properly trained and qualified personnel wearing appropriate safety headgear, gloves, shoes and glasses should be involved in installing the UPS or preparing the UPS for installation.

AVERTISSEMENT

Risque de décharge électrique pouvant causer des blessures graves, voire mortelles.

Le système ASC contient des tensions c.c. et c.a. élevées. Vérifiez les tensions au moyen de voltmètres c.a. et c.c. avant d'utiliser le système ASC.

Seuls des employés qualifiés et dûment formés portant un casque, des gants, des chaussures et des lunettes de sécurité adéquats doivent se charger d'installer le système ASC ou de le préparer pour l'installation.

2.1 External Protective Devices

For safety, circuit breakers must be installed in the input AC supply and external battery system. Given that every installation has its own characteristics, this section provides guidelines for qualified installation personnel with knowledge of operating practices, regulatory standards and the equipment to be installed.

External overcurrent protection must be provided. See Figures 15, 16 and 17 for overload capacity.

2.2 Power Cables

The UPS requires both power and control cabling. All control cables, whether shielded or not, should be run separately from the power cables in metal conduits or metal ducts that are electrically bonded to the metalwork of the cabinets to which they are connected.

The cable design must comply with the voltages and currents in **Tables 8** through **11**, follow local wiring practices and take into consideration the environmental conditions (temperature and physical support media), room temperature and conditions of installation of the cable and system's overload capacity (see **5.0 - Specifications**).

WARNING

Risk of electrical shock. Can cause injury or death.

Before cabling the UPS, ensure that you are aware of the location and operation of the external isolators that connect the UPS input/bypass supply to the power distribution panel. Check that these supplies are electrically isolated, and post any necessary warning signs to prevent their inadvertent operation.

AVERTISSEMENT

Risque de décharge électrique pouvant causer des blessures graves, voire mortelles.

Avant de procéder au câblage du système ASC, assurez-vous que vous êtes au courant de l'emplacement et du fonctionnement des isolateurs externes qui raccordent l'alimentation d'entrée ou de dérivation au panneau de distribution électrique.

Vérifiez que ces raccords sont isolés électriquement et installez tous les panneaux d'avertissement nécessaires pour empêcher leur utilisation accidentelle.

When sizing battery cables, a maximum voltage drop of 2VDC is permissible at the current ratings given in **Table 11**.

The following are guidelines only and are superseded by local regulations and codes of practice where applicable:

- The grounding conductor should be sized according to the fault rating, cable lengths, type of protection, etc. The grounding cable connecting the UPS to the main ground system must follow the most direct route possible.
- Consideration should be given to the use of paralleled smaller cables for heavy currents, as this can ease installation considerably.
- AC and DC cables must be run in conduits according to local codes, national codes and standard best practices. This will prevent creation of excess EMI fields.

2.3 Sizing the Input Breaker Feeding a Liebert eXL UPS

Nominal input current (considered continuous) is based on full-rated output load. Maximum current includes nominal input current and maximum battery recharge current (considered noncontinuous). Continuous and noncontinuous current are defined in the NEC.

Maximum input current is controlled by the current limit setting, which is adjustable. Values shown are for default current limit of 125%. If a smaller input feed breaker is used, the input current limit can be adjusted; see your Emerson representative for more information. The input current limit should not be set less than 105% of the current needed to support the inverter at full load for normal operation. This results in sufficient power to recharge the battery in a reasonable time and to operate over the published input voltage range.

2.3.1 Power Cable Connection Procedure

The rectifier input, bypass, output and battery power cables (all require lug-type terminations) are connected to busbars in the I/O sections (refer to **4.0** - **Installation Drawings**).

Equipment Ground

The equipment ground busbars are in the I/O sections (refer to **4.0 - Installation Drawings**). The grounding conductor must be connected to the ground busbar and bonded to each cabinet in the system.

All cabinets and cabling should be grounded in accordance with local regulations.

NOTE

Proper grounding reduces problems in systems caused by electromagnetic interference.

WARNING

Failure to follow adequate grounding procedures can result in electric shock hazard to personnel, or the risk of fire, should a ground fault occur.

All operations described in this section must be performed by properly trained and qualified electricians or technical personnel. If any difficulties are encountered, contact Emerson Network Power. See the back page of this manual for contact information.

AVERTISSEMENT

Le non-respect des procédures de mise à la terre peut entraîner des risques d'électrocution du personnel, ou des risques d'incendie en cas de défectuosité de la mise à la terre.

Toutes les opérations décrites dans cette section ne doivent être effectuées que par des électriciens ou des techniciens professionnels dûment formés et qualifiés . En cas de difficultés, communiquez avec Emerson Network Power. Pour obtenir les renseignements de contact, consultez la dernière page de ce manuel.

Once the equipment has been positioned and secured, connect the power cables as described below (refer to the appropriate cable connection drawing in **4.0** - **Installation Drawings**):

1. Verify that the UPS equipment is isolated from its external power source and all the UPS power isolators are open. Check that these supplies are electrically isolated and post any necessary warning signs to prevent their inadvertent operation.

- 2. Open exterior and interior panels on the front of the I/O sections.
- 3. Connect the ground to the equipment ground busbar located in the I/O sections.
- 4. Make power connections and tighten the connections to the proper torque.

Ensure correct phase rotation.

WARNING

Risk of electrical shock. Can cause injury or death.

If the load equipment will not be ready to accept power on the arrival of the commissioning engineer, ensure that the system output cables are safely isolated at their termination.

AVERTISSEMENT

Risque de décharge électrique pouvant causer des blessures graves, voire mortelles.

Si les équipements branchés ne sont pas prêts à être alimentés à l'arrivée de l'ingénieur de mise en service, assurez-vous que les bornes des câbles de sortie du système soient isolées de façon sécuritaire.

WARNING

Risk of electrical shock. Can cause injury or death.

When connecting the cables between the battery extremities to the circuit breaker, always connect the circuit breaker end of the cable first.

AVERTISSEMENT

Risque de décharge électrique pouvant causer des blessures graves, voire mortelles. Lors du raccordement de câbles entre des bornes de batterie et un disjoncteur, branchez toujours en premier l'extrémité du câble qui se raccorde au disjoncteur.

5. For control connection details, see 2.4 - Control Cable and Communication.

NOTE

If any fault bracing brackets were removed during installation, they MUST be replaced.

- 6. Close and secure the interior and exterior doors.
- 7. Attach the kick plates to the bottom of the unit. See **Figure 20**.

2.4 Control Cable and Communication

Based on your site's specific needs, the UPS may require auxiliary connections to manage the battery system (external battery circuit breaker), communicate with a building management system or provide alarm signaling to external devices, or for Remote Emergency Power Off (REPO). The external interface connections, arranged for this purpose, are next to the option box in the Rectifier section (refer to 4.0 - Installation Drawings).

Figure 2 Liebert eXL customer connections

11

Figure 3 UPS MMS/1+N connectivity

2.4.1 Dry Contacts

Table 1 UPS Digital Inputs

Item	Terminal Block	Pin	Connects to (Description of External Item)
Maintenance Bypass Breaker (MBB)	TB2	1	MBB Aux Contact, Closed = CB Is Closed
Maintenance bypass breaker (MBB)	TB2	2	MBB Aux Contact Common
Maintanance Inelation Progker (MIP)	TB2	3	MIB Aux Contact, Closed = CB is Closed
Maintenance Isolation Breaker (MIB)	TB2	4	MIB Aux Contact Common
Pungas Isolation Progker (PIP)	TB2	5	BIB Aux Contact, Closed = CB is Closed
Bypass Isolation Breaker (BIB)	TB2	6	BIB Aux Contact Common
Not Used	TB2	7	_
Not Osed	TB2	8	_
Not Used	TB2	9	_
DEDO/EDO (N.O.)	TB2	11	REPO Switch, Normally Open Contact
REPO/EPO (N.O.)	TB2	12	REPO Switch, Normally Open Common
DEDO/EDO /Form C or N.C.)	TB2	13	REPO Switch, Normally Closed Contact
REPO/EPO (Form-C or N.C.)	TB2	14	REPO Switch, Normally Closed Common
REPO/EPO (Form-C)	TB2	15	REPO Switch, Normally Open Contact
Voy Status	TB2	17	Key Status Switch, Closed = Key Released
Key Status	TB2	18	Key Status Switch, Common
Not Used	TB2	19	_
NOL OSEG	TB2	20	_

1. All contacts have:

Maximum voltage: 24VDC Maximum current: 10mA Wire range: #14-22AWG Maximum length: 500' (150m)

- 2. All external wire furnished by others
- 3. All wiring must be in accordance with national and local electrical codes.
- 4. If using REPO/EPO with Form-C contacts, Pins 13-15 must be used.
- 5. If using REPO/EPO with normally closed (N.C.) contacts only, a jumper must be placed across Pins 13 and 14.

Table 2 UPS Output

Item	Terminal Block	Pin	Connects to (Description of External Item)	Maximum Voltage	Maximum Current	Wire Range	Maximum Length
		1	Maintenance Bypass Cabinet, Common	400) (4.0	1A	#14AWG	164ft (50m)
SKRU Enable	able TB3 2		Normally Closed (NC)	120VAC			
		3	Normally Open (NO)				

- To prevent signal interference, low-voltage (<48V) and low-current (5A) cable groups should be run in separate, grounded conduit from high-voltage or high-current cable groups.
- 2. All external wire furnished by others.
- 3. All wiring must be in accordance with national and local electrical codes.

Table 3	UPS control	contacts to	Battery	Interface Boards
---------	-------------	-------------	---------	------------------

Item	Terminal Block	Pin	Connects to (Description of External Item)	Maximum Voltage	Maximum Current	Wire Range	Maximum Length
		1	CAN +24V				
Battery Cabinet	TB1154	2	CAN Common	24VDC	2A	18AWG	1000ft
Communication	161134	3	CANbus High	24700	ZA	TOAWG	(305m)
		4	CANbus Low				

- 1. To prevent signal interference, low voltage (<48V) and low current (5A) cable groups should be run in separate grounded conduit from high voltage or high current cable groups.
- 2. All external wire furnished by others.
- 3. All wiring must be in accordance with national and local electrical codes.
- 4. The maximum length must take into account all battery communications connections in the system.

Table 4 UPS control contacts to Remote Status Panel

Item	Terminal Block	Pin	Connects To (Description of External Item)	Maximum Voltage	Maximum Current	Wire Range	Maximum Length
		1	CAN +24V				
Remote Status Panel	TB1	2	CAN Common	24VDC	150mA	18AWG	1000ft
Remote Status Parier	IDI	3	CANbus High	24000	TOUTIA	IOAWG	(305m)
		4	CANbus Low				

- 1. To prevent signal interference, low voltage (<48V) and low current (5A) cable groups should be run in separate grounded conduit from high voltage or high current cable groups.
- 2. All external wire furnished by others.
- 3. All wiring must be in accordance with national and local electrical codes.

2.5 Grounding

2.5.1 Three-Wire Input connections

This module must NOT be used when single-phase loads are directly connected to the UPS. Note that whenever the UPS module transfers to or from bypass, two AC sources (UPS output and bypass) are briefly connected together and circulating current must flow. In this configuration, the current flows through the ground path and may trip ground fault interrupters (GFI's), distorting the output voltage waveform. Proper adjustment of GFI's is necessary to avoid unwanted tripping. The time delay should be set to at least 0.2 seconds to prevent tripping when the UPS performs a transfer or retransfer operation.

NOTICE

Failure to set the ground fault interrupters properly could cause loss of power to the critical load.

2.5.2 High Resistance Grounding

Contact your Emerson® representative or the factory to determine whether the Liebert eXL is compatible with the specific type of HRG system involved.

2.5.3 Preferred Grounding Configuration, Battery Systems

Open-rack battery systems, depending on local code requirements and customer preference, are normally:

- Floating (ungrounded) OR
- · Center-tapped and floating

Battery cabinet systems must be connected as floating (ungrounded) systems.

Center-tapped or grounded battery systems are not possible with battery cabinet systems.

Whether the battery system is open-rack or cabinet, the metal rack parts or cabinet must be grounded to the UPS module ground bus.

2.6 No CB2 Option

Figure 4 No CB2 option

If a module does not have the inverter output breaker CB2, an overcurrent protection device with a manual disconnect must be supplied by others in a readily accessible location.

This overcurrent protection device must be appropriately sized. See **Table 10** for rated module output current. For system breaker coordination, see **Figures 15** through **17** for the overload capabilities of the modules.

NOTE

This option does not allow the Liebert eXL module to be isolated from critical load. Emerson recommends installing a wraparound maintenance bypass. If a wraparound bypass is not installed, according to the latest OSHA safety regulations, the output of the module may need to be shut down to maintain the module.

2.7 Internal Breaker Settings

All internal breakers—CB1, CB2 and BFB—were installed and set at the factory.

NOTICE

Risk of incorrect adjustment. Can cause equipment damage.

Factory circuit breaker settings must not be altered without contacting Emerson Network Power® customer support.

3.0 OPTIONAL EQUIPMENT

3.1 Single-Module System Options

3.1.1 Battery Temperature Sensor

The optional external battery temperature sensor kit, supplied separately from the battery circuit breaker, contains one probe and one temperature transport board.

3.1.2 Matching Liebert eXL Battery Cabinet

The optional matching Liebert *e*XL Battery Cabinet can be used to obtain the desired autonomy time. The battery cabinets are designed to be either attached to the UPS or separate from the UPS (for details, see the Liebert *e*XL Battery Cabinet installation manual, SL-26035, available at Emerson Network Power's Liebert Web site: www.liebert.com).

3.1.3 Remote Alarm Status Panel

The remote alarm status panel has LED alarm lights. An audible alarm sounds upon any alarm condition. The surface- or flush-mounted NEMA 1 enclosed panel indicates: Load on UPS, Load on Bypass, Battery Discharging, Low Battery Warning, Overload Warning, Ambient Overtemp Warning, UPS Alarm Condition, New Alarm Condition (For a Second UPS Alarm Condition).

3.2 Communication and Monitoring

The Liebert eXL has these monitoring options:

· Liebert IntelliSlot® Unity-DP (Dual Protocol) Card

The Liebert IntelliSlot Unity Card provides Web, embedded Emerson® LIFE™ Technology, Emerson Protocol, SNMP, BACnet IP/MSTP, Modbus TCP/RTU, SMTP, SMS, and telnet communication and control capabilities in one unified communication platform. The platform supports 10/100 Mbit Ethernet, IPv4 and IPv6, HTTP/HTTPS for device Web page access, SMTP interface for e-mail, SMS interface for text messaging, Emerson Protocol for communicating with Trellis™ and Liebert Nform® software applications and LIFE technology for supporting Liebert Remote Service Delivery.

SNMP v1/v2c/v3, Modbus TCP/IP, BACnet IP, Modbus RTU, BACnet MSTP and YDN23 third-party protocols are also supported for building management and network management applications. The Liebert IntelliSlot Unity card provides ground fault isolated 10/100 baseT Ethernet and RS-485 network connectivity.

- · Programmable Relay Board
- · Input Contact Isolator Board

3.2.1 Alber Monitoring System

The matching Liebert eXL Battery Cabinet has space for an Alber battery monitoring system. The battery monitoring system can be factory-installed or field-installed later.

The Alber Battery Monitor by Emerson continuously checks all critical battery parameters, such as cell voltage, overall string voltage, current and temperature. Automatic periodic tests of internal resistance of each battery will verify the battery's operating integrity. Capabilities include automatic internal patented DC resistance tests and trend analysis, providing the ability to analyze performance, aid in troubleshooting and detect failing cells before they fail.

4.0 INSTALLATION DRAWINGS

Figure 5 Typical main components, 625-800kVA Liebert eXL single-module UPS

Figure 6 Outline Drawing, 625-800kVA Liebert eXL single-module UPS

1. 24" (610mm) minimum clearance above unit required for air exhaust, and 36" (914mm) front access required for service.

- 2. Keep cabinet within 15 degrees of vertical while handling.
- 3. Top and bottom cable entry available through removable access plates. Remove punch to suit conduit size and replace.
- 4. Unit bottom is structurally adequate for forklift handling.
- 5. Control wiring and power wiring must be run in separate conduits.
- 6. All wiring is to be in accordance with national and local electrical codes.
- 7. Width dimension includes side panels. Subtract 1.4" (35mm) when removing both side panels.

8. See technical information drawing for shipping split weights.

U46-8C-2001

RIGHT SIDE VIEW

Rev. 3

Figure 7 Base drawing, 625-800kVA Liebert eXL single-module UPS

Figure 8 Input and battery terminal detail, 625-800kVA Liebert eXL single-module UPS

Figure 9 Output and bypass terminal detail, 625-800kVA Liebert eXL single-module UPS

Figure 10 Input, output and bypass terminal spacing details, 625-800kVA Liebert eXL single-module UPS

U46-8E-3200A

Rev. 0

Liebert[®] eXL[™]

3. All wiring is to be in accordance with national and local electrical codes.

4. See Page 2, Drawing U46-8E-3200B and Page 3, Drawing U46-8E-3200C.

Figure 11 Low-voltage cable routing

Figure 12 Cabling for single input configuration

NOTES

- 24" (610) minimum clearance above unit required for air exhaust.
- Top and bottom cable entry available through removable access plates. Remove punch to suit conduit size and replace.
- All wiring is to be in accordance with national and local electrical codes.
- See Table 12 for cable sizing
- Connection between the rectifier and bypass busbars are supplied by others.
- Based on NEC 408.56 minimum spacing, all live parts, including lugs, must be at least 1 inch (25.4mm) from any other live part from a different phase or the chassis frame. If lug stacking is required, the method of stacking and required minimum spacing is the responsibility of the installing contractor and authority having jurisdiction. See **Figures 8-10** for busbar details.

Figure 13 Optional Input Contact Isolator Board

- Customer control wiring connection points are terminals 1 through 16 (see Table 5).
- Customer provided normally open dry contacts for user alarm messages.
- All control wiring (by others) must be run separate from power wiring. Signal voltage: 100mA @ 12VDC. 3.
- 4.
- 5. Maximum cable length 500 ft. (152m) with #16AWG and flexible stranded
- 6. All wiring must be in accordance with national and local electrical codes.

Table 5 **Input Contact Isolator Board** control wiring connections

Input Contact	Pin No.
1	1
ı	2
2	3
2	4
3	5
3	6
4	7
7	8
5	9
3	10
6	11
0	12
7	13
1	14
8	15
O	16

Figure 14 Control wiring, Programmable Relay Board

- Customer control wiring connection points are terminals 1 through 15. (Pin 16 not used on J71, J72, and J73.)
- 2. Programmable Relay Board option includes eight signal channels with two Form-C dry contacts per channel (see **Table 6**).
- 3. All control wiring (by others) must be run separate from power wiring.
- 4. Contact ratings: 1A @ 30VDC or 125VAC @ 0.45A
- 5. Maximum cable length 500 ft. (152m) with #16AWG and flexible stranded cable.
- 6. All wiring must be in accordance with national and local electrical codes.

Table 6 Programmable Relay Board pinout

Terminal Block	Channel		Pin No.	Common	Normally Closed	Normally Open
	CH1	Α	1-3	1	2	3
	CITI	В	4-6	4	5	6
J71	CH2	Α	7-9	7	8	9
	CITZ	В	10-12	10	11	12
	CH3	Α	13-15	13	14	15
	CHS	В	1-3	1	2	3
	J72 CH4	Α	4-6	4	5	6
J72		В	7-9	7	8	9
		Α	10-12	10	11	12
	CHIS	В	13-15	13	14	15
	CH6	Α	1-3	1	2	3
	CHO	В	4-6	4	5	6
J73	CH7	Α	7-9	7	8	9
	Citi	В	10-12	10	11	12
	CH8	Α	13-15	13	14	15
J74	CITO	В	1-3	1	2	3

Note: Pin 16 not used on J71, J72, and J73.

5.0 SPECIFICATIONS

Table 7 Liebert eXL UPS specifications

Table / Liebert ext OFS specifications	
Model Size	625-800kVA
Input Parameters	
Input Voltage to Rectifier, VAC	480V 3-phase, 3-wire
Input Voltage to Bypass, VAC	480V 3-phase, 3-wire
Input Voltage Range, VAC	+10% to -30%
Input Frequency, Hz	60
Permissible Input Frequency Range, Hz	55 to 65
Reflected Input THDi, Nominal Voltage, Full Load, %	<5%
Power Walk-In, sec	1 to 30 (selectable) in 1 sec. Increment
Battery & DC Parameters	
Battery Type	VRLA (Valve Regulated Lead Acid) or FLA (Flooded Lead Acid)
Nominal Battery Bus, VDC	480V
Battery Float Voltage, VDC	540V
Minimum End of Discharge Voltage, VDC	384V (for VRLA / Flooded Lead Acid)
DC Ripple Voltage in Float & Const V Ch. Mode, %	<1 (RMS value) < 3,4% V _{DD}
Temperature Compensated Battery Charging	Optional (with temperature probe)
Output Parameters	
Inverter Type	IGBT-based Sine Wave PWM Controlled
Output Power, kW	625 750 800
Output Voltage, VAC	480V 3-ph, 3-wire
Output Voltage Regulation, %	< 1% (3-phase RMS average)
Output Voltage Regulation (50% Unbalanced Load)	< 2% (3-phase RMS average)
Output Frequency, Hz	60
Output Frequency Regulation, %	± 0.1
Output THDv Linear Load at Nominal Voltage, %	<3%
Output THDv at Nominal Voltage Including a 100kVA	
Non-Linear Load per EN 62040-3, %	6% (max)
Capacity to Handle High Crest Factor Load	3:1
Capacity to handle Step Load, %	0-100 or 100-0
Step Load Transient Recovery (linear loads), %	IEC 62040-3, Section 5.3.1 Figure 1
Unbalance Loads Current Capacity	100% of nominal phase current
Load Power Factor Supported (Without Derating)	0.7 Leading to 0.7 Lagging
Voltage Displacement, ° (Electrical Degree)	120° ±1° (with 50% unbalanced load)
Overload Conditions, % FL	See Figures 15, 16 and 17
Physical Parameters and Standards	
Width, in (mm), With Static Bypass	123.6 (3140)
Depth, in (mm)	34.4 (874)
Height, in (mm)	77.5 (1969)
Weight, Unpackaged, lb. (kg) approximate with Static Bypass (SMS)	5187 (2353)
Maximum Heat Dissipation, Full Load, BTU/hr (kW)	625kVA UPS: 77,348 (22.7) 750kVA UPS: 92,817 (27.2) 800kVA UPS: 101,940 (29.9)
Cooling Air, CFM	<4,800
Color	Black (ZP-7021)
Front Door Opening (for serviceability)	90°
Degree of Protection for UPS Enclosure	IP 20 (with and without front door open)
Minimum Clearance, Top, in (mm)	24 (610)
Minimum Clearance, Back, in (mm)	0
	1

Table 7 Liebert eXL UPS specifications (continued)

Model Size	625-800kVA
Minimum Clearance, Sides, in (mm)	0
Location of Cable Entrance	Top or Bottom
Standards and Conformities	UL 1778, 4th Ed. CSA 22.2 107.3 FCC Part 15, Class A (with optional filters installed) IEC62040-2, Level 4, Criteria A ANSI C62.41, Category A3 &B3 ISTA WEEE
Environmental Parameters	
Storage Temperature Range, °F (°C)	-13 to 158 (-25 to 70)
Operating Temperature Range, °F (°C)	32°F to 95°F (0°C to 35°C) at full rated load 1.5% maximum kW / degrees C derating up to 50°C 122°F (50°C) absolute maximum with derating
Relative Humidity	95% or less Non-Condensing (Operating and Non-Operating)
Maximum Altitude Above MSL	3300 ft.(1000m) (per IEC 62040/3) - 1% Maximum kW derating / 1000 ft. rise between 3300 and 10,000 ft.(305m rise between 1000 and 3000m)

Width dimensions are with side panels attached. Subtract 1.4" (35mm) for dimensions without side panels. Depth dimensions include the front door and rear panel.

Table 8 Current ratings—rectifier input

UPS Rating		Voltage	Nominal	Maximum
kVA	kW	VAC Current		Current
625	625	480	779	818
750	750	480	935	982
800	800	480	995	1044

Table 9 Current ratings—bypass input

UPS Rating		Voltage	Nominal	
kVA	kW	VAC	Current	
625	625	480	752	
750	750	480	902	
800	800	480	962	

Table 10 Current ratings—output

UPS Rating		Voltage	Nominal	
kVA	kW	VAC	Current	
625	625	480	752	
750	750	480	902	
800	800	480	962	

Table 11 Current ratings—DC source

UPS Rating		Voltage	Nominal
kVA	kW	VAČ	Current
625	625	480	1624
750	750	480	1949
800	800	480	2079

Notes on Tables

- 1. Nominal rectifier AC input current (considered
 - continuous) is based on full rated output load. Maximum current includes nominal input current and maximum battery recharge current (considered non-continuous).
- 2. The rectifier overload current is controlled by the input current limit setting, which is adjustable from 25 to 200% (default:125%).
- 3. For breaker coordination while the module is overloaded, see the current versus time values on the overload curves.
- 4. Nominal battery voltage is shown at 2.0 volts/cell.
- 5. DC Source current based at 401VDC.

Figure 15 Inverter overload data

106%: 15005 secs

Figure 16 Rectifier overload data

Figure 17 Bypass overload data

Table 12 Recommended conduit and cable sizes for use with 100% rated breakers

Rectif	ier Inpu	ıt				
UPS Rating			(# of conduits); size of conduits; # -size of phase cables per conduit; size of cable for ground per conduit			
kVA	kW	Voltage VAC	Cable Entry	Copper Conductors	Aluminum Conductors	
605	COF		Тор	(3) 2.5"C 3-350kcmil; #2/0AWG	(3) 3"C 3-500kcmil; #4/0AWG	
625	625		Bottom	(3) 3"C 3-350kcmil; #2/0AWG	(3) 3.5"C 3-500kcmil; #4/0AWG	
750	750	400	Тор	(3) 3"C 3-500kcmil; #2/0AWG	(3) 3"C 3-600kcmil; #4/0AWG	
750	750	480	Bottom	(3) 3.5"C 3-500kcmil; #2/0AWG	(3) 3.5"C 3-600kcmil; #4/0AWG	
900	800		Тор	(4) 2.5"C 3-350kcmil; #3/0AWG	(4) 3"C 3-500kcmil; 250kcmil	
800	800		Bottom	(4) 3"C 3-350kcmil; #3/0AWG	(4) 3.5"C 3-500kcmil; 250kcmil	
Вура	ss Inpu	t				
UPS F	Rating	Voltage VAC	Cable		- size of phase cables per conduit round per conduit	
kVA	kW		Entry	Copper Conductors	Aluminum Conductors	
005	005		Тор	(3) 2.5"C 3-350kcmil; #1/0AWG	(3) 3"C 3-500kcmil; #3/0AWG	
625	625		Bottom	(3) 3"C 3-350kcmil; #1/0AWG	(3) 3.5"C 3-500kcmil; #3/0AWG	
750	750	400	Тор	(3) 3"C 3-500kcmil; #2/0AWG	(3) 3"C 3-600kcmil; #4/0AWG	
750	750	480	Bottom	(3) 3.5"C 3-500kcmil; #2/0AWG	(3) 3.5"C 3-600kcmil; #4/0AWG	
000	000		Тор	(3) 3"C 3-500kcmil; #2/0AWG	(3) 3"C 3-600kcmil; #4/0AWG	
800	800		Bottom	(3) 3.5"C 3-500kcmil; #2/0AWG	(3) 3.5"C 3-600kcmil; #4/0AWG	
Outp	ut					
UPS F	Rating	Voltage	Cable		f-size of phase cables per conduit; pround per conduit	
kVA	kW	VAC	Entry	Copper Conductors	Aluminum Conductors	
005	005		Тор	(3) 2.5"C 3-350kcmil; #1/0AWG	(3) 3"C 3-500kcmil; #3/0AWG	
625	625		Bottom	(3) 3"C 3-350kcmil; #1/0AWG	(3) 3.5"C 3-500kcmil; #3/0AWG	
750	750	400	Тор	(3) 3"C 3-500kcmil; #2/0AWG	(3) 3"C 3-600kcmil; #4/0AWG	
750	750	480	Bottom	(3) 3.5"C 3-500kcmil; #2/0AWG	(3) 3.5"C 3-600kcmil; #4/0AWG	
000	000		Тор	(3) 3"C 3-500kcmil; #2/0AWG	(3) 3"C 3-600kcmil; #4/0AWG	
800	800		Bottom	(3) 3.5"C 3-500kcmil; #2/0AWG	(3) 3.5"C 3-600kcmil; #4/0AWG	
Batte	ry					
UPS F	Rating	Voltage	Cable		f-size of phase cables per conduit; pround per conduit	
kVA	kW	VAC	Entry	Copper Conductors	Aluminum Conductors	
625	605		Тор	(5) 3"C 3-600kcmil; 250kcmil	(6) 3"C 3-600kcmil; 400kcmil	
625	625		Bottom	(5) 3"C 3-600kcmil; 250kcmil	(6) 3.5"C 3-600kcmil; 400kcmil	
750	750	465	Тор	(5) 3"C 3-600kcmil; 250kcmil	(6) 3"C 3-600kcmil; 400kcmil	
750	750	480	Bottom	(5) 3"C 3-600kcmil; 250kcmil	(6) 3.5"C 3-600kcmil; 400kcmil	
	800		Тор	(6) 3"C 3-600kcmil; 350kcmil	(7) 3"C 3-700kcmil; 600kcmil	
800						

^{1.} Recommended cable sizes are 167°F (75°C) (THW) wire at 86°F (30°C) ambient. Unless otherwise noted, use copper or aluminum conductors suitable for at least 75°C.

^{2.} Recommended cables and conduits are based on breaker trip setting sized for the maximum continuous rated current for the rectifier input and the nominal current for the bypass and output listed in **Tables 8** through **11**.

^{3.} Conduit size is based on RNC type conduit for bottom input and EMT-type conduit for top input.

^{4.} Emerson recommends that the site planner choose the appropriate cable type based on the particular installation requirements.

Table 13 Recommended lug sizes

Cable Size	T&B Copper One Hole	T&B Copper Two Hole	T&B Aluminum One Hole	T&B Aluminum Two Hole
#8AWG	54930BE	54850BE	60104-TB	_
#6AWG	54905BE	256-30695-868	60109-TB	_
#4AWG	54906BE	256-30695-733	60114-TB	_
#2-3AWG	54942BE	54811BE	60120	_
#1AWG	54947BE	54857BE	60126	_
#1/0AWG	54950BE	256-30695-593	60132	_
#2/0AWG	54951BE	54862BE	60138	60238
#3/0AWG	54965BE	54864BE	60144	60244
#4/0AWG	54970BE	54866BE	60150	60250
250kcmil	54913BE	54868BE	60156	60256
300kcmil	54914BE	54870BE	60162	60262
350kcmil	54915BE	54872BE	60165	60267
400kcmil	54916BE	54874BE	60168	60269
500kcmil	54918BE	54876BE	60171	60273
600kcmil	54920BE	54878BE	60176	60275
750kcmil	54922BE	54880BE	60178	60277 (750kcmil)

Table 14 Recommended torque values

Grade 5 Steel: Unified Thread System Torque, lbf.*in.					
Fasten	er Finish ⇒	Plain Steel	Zinc Plating		
Size	Threads/ Inch, T _{pi}	No Washer/ Flat Washer	No Washer/ Flat Washer		
1/4	20	101	91		
1/4	28	116	104		
5/16	18	209	188		
5/10	24	231	208		
3/8	16	370	333		
3/0	24	420	378		
7/16	14	593	534		
7710	20	662	596		
1/2	13	904	814		
1/2	20	1,020	918		
9/16	12	1305	1,175		
9/10	18	1456	1310		

Class 8.8 Steel: Metric Thread System Torque, N*m				
Faster	er Finish ⇒	Plain Steel	Zinc Plating	
Size	Thread Pitch, T _p	No Washer/ Flat Washer	No Washer/ Flat Washer	
M5	0.8	6.1	5.5	
IVIO	0.5	6.9	6.2	
M6	1	10	9	
IVIO	0.75	11	10	
M8	1.25	25	23	
IVIO	1 27	27	24	
M10	1.5	50	45	
IVITO	1.25	53	47	
M12	1.75	87	78	
IVI I Z	1.25	95	86	
M14	2	139	125	
IVIII	1.5	151	136	

APPENDIX A - SHIPPING SPLITS, KICKPLATES

Figure 18 Shipping split, 625-800kVA Liebert eXL single-module UPS

Reads Institute from Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

From Ingol.

Fr

Core 2 PRECHR PHB (Orange Wire)

Figure 19 Shipping split, 625-800kVA Liebert eXL single-module UPS, continued

Table 15 Connections associated with top down view

SECTION J-J

		•		
Cabinet Start	Connector Label	Cabinet Finish	Connector Label	Duct
Input	J100	Bypass	P100	Rear
Input	J13	Bypass	P13	Rear
Input	J200	Bypass	P200	Rear
Input	J300	Bypass	P300	Rear
Input	J11	Core 1	P11	Rear
Input	J400	Core 1	P400	Rear

Table 16 Section J-J connections

Core 1 PRECHR PHB (Orange Wire)

Cabinet Start	Connector Label	Cabinet Finish	Cabinet Finish	Duct
Input	Core Prechg Ph A	Core 1 Prechg Ph A	Core 2 Prechg Ph A	Rear
Input	Core Prechg Ph B	Core 1 Prechg Ph A	Core 2 Prechg Ph A	Rear

Table 17 Connections associated with sections in "View" column

Cabinet Start	Connector Label	Cabinet Finish	Connector Label	Duct	View
Bypass	P20	Input	HVAB P20	Front	Section F-F
Input	P1	Bypass	BypassConnector Board	Front	Section G-G
Input	P99A	Bypass	CB2 I/F BD	P99 Front	Detail H
Input	P1	Core 1	Core Connector Board	Front	Detail E
Input	P2	Core 1	Core Connector Board	Front	Detail E
Input	P3	Core 1	Core Connector Board	Front	Detail E
Input	P66	Core 1	FIB 1	Front	Detail E
Input	P1	Core 2	Core Connector Board	Front	Detail E
Input	P2	Core 2	Core Connector Board	Front	Detail E
Input	P3	Core 2	Core Connector Board	Front	Detail E
Bypass	P99	Core 1	FIB 1 P99	Front	Detail E

Figure 21 Kickplate installation—1200kVA units

800-543-2378
Outside North America: 614-841-6598
Environmental Systems
800-543-2778
Outside the United States: 614-888-0246
Locations
United States
1050 Dearborn Drive
P.O. Box 29186

Via Leonardo Da Vinci 8 Zona Industriale Tognana 35028 Piove Di Sacco (PD) Italy +39 049 9719 111

Technical Support / Service

liebert.monitoring@emerson.com

Outside North America: +00800 1155 4499 **Single-Phase UPS & Server Cabinets** liebert.upstech@emerson.com

Outside North America: +00800 1155 4499
Three-Phase UPS & Power Systems

Web Site www.liebert.com Monitoring

800-222-5877

800-222-5877

Fax: +39 049 5841 257

Columbus, OH 43229

Asia

29/F, The Orient Square Building F. Ortigas Jr. Road, Ortigas Center Pasig City 1605 Philippines +63 2 687 6615 Fax: +63 2 730 9572

SL-26025_REV2_03-15

All names referred to are trademarks

© 2014 Liebert Corporation

without notice.

While every precaution has been taken to ensure the accuracy and completeness of this literature, Liebert Corporation assumes no responsibility and disclaims all liability for damages resulting from use of

® Liebert is a registered trademark of Liebert Corporation.

or registered trademarks of their respective owners.

All rights reserved throughout the world. Specifications subject to change

this information or for any errors or omissions.

Emerson Network Power

Liebert

www.emerson.com