Linguagens

Exercícios

- **1.1** Seja Σ o alfabeto $\{0,1\}$. Sendo $A = \{10,11\}$ e $B = \{00,1\}$, determina:
 - (a) $A \cup B$
 - (b) *AB*
 - (c) BA
 - (d) A^{3}
 - (e) A*
- 1.2 Mostra que é verdade, ou encontra um contra-exemplo para
 - (a) $A \cap C = B \cap C \Rightarrow A = B$.
 - (b) $A \cup C = B \cup C \Rightarrow A = B$.
 - (c) $((A \cap C = B \cap C) \land (A \cup C = B \cup C)) \Rightarrow A = B$.
- **1.3** Considera $A = \{1, 2, 3, 4, 5, 7, 8, 10, 11, 14, 17, 18\}.$
 - (a) Quantos subconjuntos de A têm 6 elementos?
 - (b) Quantos subconjuntos de A com seis elementos contêm quatro inteiros pares e dois inteiros ímpares?
 - (c) Quantos subconjuntos de A contêm somente inteiros ímpares?
- * 1.4 Sejam L e M linguagens de alfabeto $\Sigma = \{0, 1, 2\}$ dadas por

$$L = \{01, 10, 1\}$$

 $M = \{x \mid x \in \Sigma^*, |x| \le 4 \text{ e o número de 0's em } x \text{ é menor ou igual a dois}\}.$

- (a) Determina $\{xyz \mid x \in L, y \in L, z \in L\}$, ou seja a linguagem L^3 .
- (b) Determina as linguagens ML e LM e verifica se:
 - i) Existe $x \in \Sigma^*$ tal que $x \in (LM) \cap (ML)$?
 - ii) $L \subseteq LM$? $M \subseteq LM$? $L \subseteq ML$? $M \subseteq ML$?
- (c) Seja L^* o conjunto das sequências finitas (incluindo ϵ) de palavras de L. Descreve informalmente L^* .
- **1.5** Considera a palavra aaaba de alfabeto $\Sigma = \{a, b\}$. Indica, justificando, se tal palavra pertence ou não a cada uma das linguagens seguintes:
 - (a) $\{a, b\}^*$
 - (b) {aaa, bab}{ba, bb}
 - (c) $\{aaa\}^*\{b\}^*\{a\}$
 - (d) $\{a\}^*\{b\}^*\{a\}^*$
 - (e) $\{aa\}^*\{a\}^*\{a, ba, bb, \epsilon\}$
- **1.6** Descreve informalmente a linguagem $L \subseteq \{A, B\}^*$ definida indutivamente por:
 - i) $A \in L$
 - ii) $y \in L \Rightarrow By \in L$
 - iii) $y \in L \Rightarrow yB \in L$
 - iv) $y \in L \Rightarrow AyA \in L$

1.7 Seja o alfabeto $\Sigma = \{0, 1\}$ e considera as seguintes linguagens:

$$\begin{array}{rcl} A_1 & = & \{0^n \mid \ n \geq 0\} \\ A_2 & = & \{1^n \mid \ n \geq 0\} \\ A_3 & = & \{0^n 1^n \mid \ n \geq 0\} \end{array}$$

- (a) Determina e descreve informalmente A_1A_2 , $A_1 \cup A_2$, $(A_1 \cup A_2)^*$ e $A_1^* \cup A_2^*$
- (b) Para cada uma das linguagens que calculaste em (a):
 - 1. Determina a sua intersecção com $A_4 = \{w \in \Sigma^* \mid |w| \leq 3\}$
 - 2. Indica, justificando, se é igual a A_3 .
- 1.8 Seja o alfabeto $\Sigma = \{a, b, c\}$ e considera as seguintes linguagens:

$$\begin{array}{lcl} B_1 & = & \{ {\tt a}^n {\tt c} {\tt b}^n \mid n \geq 0 \} \\ \\ B_2 & = & \{ {\tt a} \}^\star \{ {\tt c} \}^\star \{ {\tt b} \}^\star \\ \\ B_3 & = & \{ {\tt wcw} \mid {\tt w} \in \{ {\tt a}, {\tt b} \}^\star \} \end{array}$$

- (a) Determina e descreve informalmente $B_1 \cap B_2$, $B_2 \cap B_3$, $B_3 \setminus B_1$ e B_1^*
- (b) Para cada uma das linguagens que calculaste em (a):
 - 1. Determina a sua intersecção com $B_4 = \{ w \in \Sigma^* \mid |w| \leq 5 \}$
 - 2. Indica, justificando, se alguma é igual a B_1 .
- 1.9 Seja o alfabeto $\Sigma = \{a, b\}$ e considera as seguintes linguagens:

$$\begin{array}{rcl} C_1 &=& \{\mathtt{aa}\}^\star \\ C_2 &=& \{\mathtt{bbb}\}^\star \\ C_3 &=& \{\mathtt{aa},\mathtt{bbb}\}^\star \end{array}$$

- (a) Determina e descreve informalmente C_1C_2 , $(C_1C_2)^*$, $C_3 \setminus C_1$ e $C_1 \cup C_2$
- (b) Para cada uma das linguagens que calculaste em (a):
 - 1. Determina a sua intersecção com $C_4 = \{w \in \Sigma^* \mid |w| \leq 9\}$
 - 2. Indica, justificando, se alguma é igual a C_3 .
- **1.10** Seja o alfabeto $\Sigma = \{0, 1\}$ e considera as seguintes linguagens:

$$D_1=\{00,11\}^\star$$

$$D_2=\{00\}^\star\{11\}^\star$$

$$D_3=\{w\in\Sigma\mid \text{em }w\text{ o número de 0s é igual ao número de 1s}\}$$

- (a) Determina e descreve informalmente $D_2 \cap D_3$, $D_3 \cap D_1$, $D_2 \setminus D_1$ e D_2^*
- (b) Para cada uma das linguagens que calculaste em (a):
 - 1. Determina a sua intersecção com $D_4 = \{w \in \Sigma^* \mid |w| \leq 6\}$
 - 2. Indica, justificando, se alguma é igual a D_1 .

Para cada uma das seguintes afirmações sobre linguagens A, B e C quaisquer diz se é verdadeira ou falsa, demonstrando se for verdadeira ou encontrando um contra-exemplo se for falsa.

1.11 (a)
$$(A \cap B)^* = A^* \cap B^*$$

(b) $A(B \cup C) = AB \cup AC$
1.12 (a) $(A \cup B)^* = (A^* \cup B^*)^*$

- (b) $(AB)^* = A^*B^*$
- **1.13** (a) $(AB)^*A = A(BA)^*$
 - (b) $(A \cup B)^* = A^* \cup B^*$
- **1.14** (a) $\{\epsilon\} \cup AA^* = A^*$
 - (b) $A(B \cap C) = AB \cap AC$
- * 1.15 Sejam L_1 , L_2 e L_3 as linguagens de alfabeto $\{a,b,c\}$ assim definidas:

$$\begin{array}{rcl} L_1 &=& \{w \mathsf{a} w \mid w \in \{\mathsf{b},\mathsf{c}\}^\star\} \\ L_2 &=& \{\mathsf{cccc}\}^\star \{\mathsf{aaa}\}^\star \\ L_3 &=& \{w \mathsf{c}^n \mid w \in \{\mathsf{a},\mathsf{b}\}^\star, n \in \mathbb{N}\} \end{array}$$

(a) Para cada uma das linguagens L_i , determina em extensão

$$L'_i = \{x \mid 7 \le |x| \le 8, x \in L_i \text{ e } x \text{ tem pelo menos três c's}\}.$$

- (b) Descreve, informalmente, cada uma das linguagens L_i .
- (c) Determina, $L_1 \cap L_3$, $L_1 \cap L_2$, $L_1 \cap L_3 \in L_2^*$.
- (d) Mostra que $L_2L_3 = \{cccc\}^*\{a,b\}^*\{c\}^*$ e descreve informalmente esta linguagem.
- 1.16 Para cada uma das seguintes afirmações sobre linguagens diz se é verdadeira ou falsa, demonstrando se for verdadeira ou encontrando um contra-exemplo se for falsa.
 - (a) AB = BA
 - (b) $\emptyset L = L\emptyset = \emptyset$
 - (c) $(L^{\star})^{\star} = L^{\star}$
 - (d) $L^{\star}L^{\star}=L^{\star}$
 - (e) $(A \cup B)^* = A^* \cup B^*$
 - (f) $(A \cap B)^* = A^* \cap B^*$
 - (g) $(AB)^* = A^*B^*$
 - (h) se $L_1 \subseteq L_2$ então $L_1^* \subseteq L_2^*$
- 1.17 Para cada uma das seguintes afirmações, diz se é verdadeira ou falsa, justificando:
 - i) uma linguagem é vazia se só contém a palavra vazia;
 - ii) uma linguagem infinita contém alguma palavra infinita;
 - iii) se L é uma linguagem finita, o seu complementar. $\Sigma^* \setminus L$ é infinito

Resolução de exercícios escolhidos

- **1.4** (a) $L^3 = \{010101, 01011, 010110, 011001, 01101, 011010, 0111, 01110, 100101, 100111, 100110, 101001, 10101, 10101, 10101, 10111, 10110, 1111, 11101\}$
 - (b)

 $ML = \{x \mid x \in \Sigma^*, |x| \le 6 \text{ termina em 10 ou 01 e o número de zeros é menor ou igual a 3}$ $\cup \{x \mid x \in \Sigma^*, |x| \le 5 \text{ termina em 1 e o número de zeros é menor ou igual a 2} \}$

 $LM = \{x \mid x \in \Sigma^*, |x| \le 6 \text{ começa com 10 ou 01 e o número de zeros é menor ou igual a 3}$ $\cup \{x \mid x \in \Sigma^*, |x| \le 5 \text{ começa em 1 e o número de zeros é menor ou igual a 2} \}$

- i) Como $\epsilon \in M$ temos $L \subseteq (LM \cap ML)$.
- ii) $-L \subseteq LM \text{ pois } \epsilon \in M;$
 - $-\ M\not\subseteq LM$ pois 2222 $\in M\ \land$ 2222 $\not\in LM,$ porque nenhuma palavra de L começa com o caracter 2 e $\epsilon\not\in L;$
 - $-L \subseteq ML \text{ pois } \epsilon \in M;$
 - $-\ M \not\subseteq ML$ pois 2222 $\in M \land$ 2222 $\not\in ML$, porque nenhuma palavra de L termina com o caracter 2 e $\epsilon \not\in L.$
- iii) L^{\star} é a linguagem formada pelas palavras de caracteres 0 e 1 em que os 0's ocorrem sempre na vizinhança imediata de um 1.
- **1.15** (a)

```
L'_1 = \{ \text{cccacc}, \text{ccbaccb}, \text{cbcaccc} \}
L'_2 = \{ \text{ccccaaa}, \text{ccccccc} \}
L'_3 = \{ \text{``n\~ao tenho paci\^encia!!!"} \}
```

- (b) Para todas as linguagens vamos subentender que têm alfabeto $\{a,b,c\}...$
 - $-L_1$ é a linguagem formada por palavras com exactamente um a, e cujas subpalavras à esquerda e direita deste a, são iguais;
 - $-L_2$ é a linguagem formada por um número (eventualmente nulo) de blocos de quatro c's seguido por um número (eventualmente nulo) de blocos de três a's;
 - $-L_3$ é a linguagem formada pelas palavras formadas por um bloco (eventualmente vazio) de a's e b's seguido por um qualquer número de c's.

(c)

$$\begin{array}{rcl} L_1 \cap L_3 & = & \{w \mathsf{a} w \mid w \in \{\mathsf{b}\}^\star\} \\ L_1 \cap L_2 & = & \emptyset \\ L_2 \cap L_3 & = & \{\mathsf{aaa}\}^\star \\ & L_2^\star & = & \{\mathsf{aaa}, \mathsf{cccc}\}^\star \end{array}$$

(d)

$$\begin{array}{rcl} L_2L_3 & = & \{wv \mid w \in L_2 \wedge v \in L_3\} \\ & = & \{\mathsf{cccc}\}^{\star}\{\mathsf{aaa}\}^{\star}\{\mathsf{a},\mathsf{b}\}^{\star}\{\mathsf{c}\}^{\star} \; (\mathsf{mas\;como}\; \{\mathsf{aaa}\}^{\star}\{\mathsf{a},\mathsf{b}\}^{\star} = \{\mathsf{a},\mathsf{b}\}^{\star}\;) \\ & = & \{\mathsf{cccc}\}^{\star}\{\mathsf{a},\mathsf{b}\}^{\star}\{\mathsf{c}\}^{\star} \end{array}$$

 L_2L_3 é a linguagem de alfabeto $\{a,b,c\}$ formada por um conjunto de c's com tamanho múltiplo de 4, seguida por uma qualquer bloco (eventualmente vazio) formado somente por a's e b's, seguido por um qualquer número de c's.

DCC-FCUP 4 2018–2019