Introduction to Algorithms

6.046J/18.401J

LECTURE 3

Divide and Conquer

- Binary search
- Powering a number
- Fibonacci numbers
- Matrix multiplication
- Strassen's algorithm
- VLSI tree layout

Prof. Erik D. Demaine

The divide-and-conquer design paradigm

- 1. Divide the problem (instance) into subproblems.
- 2. Conquer the subproblems by solving them recursively.
- 3. Combine subproblem solutions.

Merge sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. Combine: Linear-time merge.

Merge sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. Combine: Linear-time merge.

Master theorem (reprise)

$$T(n) = a T(n/b) + f(n)$$

Case 1:
$$f(n) = O(n^{\log_b a - \varepsilon})$$
, constant $\varepsilon > 0$
 $\Rightarrow T(n) = \Theta(n^{\log_b a})$.

CASE 2:
$$f(n) = \Theta(n^{\log_b a} \lg^k n)$$
, constant $k \ge 0$
 $\Rightarrow T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

Case 3: $f(n) = \Omega(n^{\log_b a + \varepsilon})$, constant $\varepsilon > 0$, and regularity condition

$$\Rightarrow T(n) = \Theta(f(n))$$
.

Master theorem (reprise)

$$T(n) = a T(n/b) + f(n)$$

Case 1:
$$f(n) = O(n^{\log_b a - \varepsilon})$$
, constant $\varepsilon > 0$
 $\Rightarrow T(n) = \Theta(n^{\log_b a})$.

CASE 2:
$$f(n) = \Theta(n^{\log_b a} \lg^k n)$$
, constant $k \ge 0$
 $\Rightarrow T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

Case 3: $f(n) = \Omega(n^{\log_b a + \varepsilon})$, constant $\varepsilon > 0$, and regularity condition

$$\Rightarrow T(n) = \Theta(f(n))$$
.

Merge sort:
$$a = 2$$
, $b = 2 \implies n^{\log_b a} = n^{\log_2 2} = n$
 \Rightarrow Case 2 $(k = 0) \Rightarrow T(n) = \Theta(n \lg n)$.

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

5

7

8

9

12

15

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

3

5

7

8

9

12

15

Recurrence for binary search

Recurrence for binary search

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \implies \text{CASE 2 } (k = 0)$$

 $\implies T(n) = \Theta(\lg n)$.

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

$$T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\lg n)$$
.

Fibonacci numbers

Recursive definition:

$$F_{n} = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

$$0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad \cdots$$

Fibonacci numbers

Recursive definition:

$$F_{n} = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

$$0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad \cdots$$

Naive recursive algorithm: $\Omega(\phi^n)$ (exponential time), where $\phi = (1 + \sqrt{5})/2$ is the *golden ratio*.

Computing Fibonacci numbers

Bottom-up:

- Compute $F_0, F_1, F_2, ..., F_n$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Computing Fibonacci numbers

Bottom-up:

- Compute $F_0, F_1, F_2, ..., F_n$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Naive recursive squaring:

 $F_n = \phi^n / \sqrt{5}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\lg n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.

Theorem:
$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n.$$

Theorem:
$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n.$$

Algorithm: Recursive squaring.

Time =
$$\Theta(\lg n)$$
.

Theorem:
$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n.$$

Algorithm: Recursive squaring.

Time =
$$\Theta(\lg n)$$
.

Proof of theorem. (Induction on *n*.)

Base
$$(n = 1)$$
: $\begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{1}$.

Inductive step $(n \ge 2)$:

$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} F_n & F_{n-1} \\ F_{n-1} & F_{n-2} \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n$$

Matrix multiplication

Input:
$$A = [a_{ij}], B = [b_{ij}].$$

Output: $C = [c_{ij}] = A \cdot B.$ $i, j = 1, 2, ..., n.$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Standard algorithm

for
$$i \leftarrow 1$$
 to n

$$\mathbf{do} \ \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n$$

$$\mathbf{do} \ c_{ij} \leftarrow 0$$

$$\mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ n$$

$$\mathbf{do} \ c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$$

Standard algorithm

for
$$i \leftarrow 1$$
 to n

$$\mathbf{do} \ \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n$$

$$\mathbf{do} \ c_{ij} \leftarrow 0$$

$$\mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ n$$

$$\mathbf{do} \ c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$$

Running time = $\Theta(n^3)$

Divide-and-conquer algorithm

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = ae + bg$$

 $s = af + bh$
 $t = ce + dg$
 $u = cf + dh$
8 mults of $(n/2) \times (n/2)$ submatrices
4 adds of $(n/2) \times (n/2)$ submatrices

Divide-and-conquer algorithm

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = ae + bg$$

 $s = af + bh$
 $t = ce + dh$
 $u = cf + dg$
 $recursive$
8 mults of $(n/2) \times (n/2)$ submatrices
4 adds of $(n/2) \times (n/2)$ submatrices

Analysis of D&C algorithm

Analysis of D&C algorithm

$$n^{\log_b a} = n^{\log_2 8} = n^3 \implies \text{CASE } 1 \implies T(n) = \Theta(n^3).$$

Analysis of D&C algorithm

$$n^{\log_b a} = n^{\log_2 8} = n^3 \implies \text{CASE } 1 \implies T(n) = \Theta(n^3).$$

No better than the ordinary algorithm.

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$

 $P_{2} = (a + b) \cdot h$
 $P_{3} = (c + d) \cdot e$
 $P_{4} = d \cdot (g - e)$
 $P_{5} = (a + d) \cdot (e + h)$
 $P_{6} = (b - d) \cdot (g + h)$
 $P_{7} = (a - c) \cdot (e + f)$

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$
 $r = P_{5} + P_{4} - P_{2} + P_{6}$
 $P_{2} = (a + b) \cdot h$ $s = P_{1} + P_{2}$
 $P_{3} = (c + d) \cdot e$ $t = P_{3} + P_{4}$
 $P_{4} = d \cdot (g - e)$ $u = P_{5} + P_{1} - P_{3} - P_{7}$
 $P_{5} = (a + d) \cdot (e + h)$
 $P_{6} = (b - d) \cdot (g + h)$
 $P_{7} = (a - c) \cdot (e + f)$

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$

 $P_{2} = (a + b) \cdot h$
 $P_{3} = (c + d) \cdot e$
 $P_{4} = d \cdot (g - e)$
 $P_{5} = (a + d) \cdot (e + h)$
 $P_{6} = (b - d) \cdot (g + h)$
 $P_{7} = (a - c) \cdot (e + f)$

$$r = P_5 + P_4 - P_2 + P_6$$

$$s = P_1 + P_2$$

$$t = P_3 + P_4$$

$$u = P_5 + P_1 - P_3 - P_7$$

7 mults, 18 adds/subs.

Note: No reliance on commutativity of mult!

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h) \qquad r = P_{5} + P_{4} - P_{2} + P_{6}$$

$$P_{2} = (a + b) \cdot h \qquad = (a + d)(e + h)$$

$$P_{3} = (c + d) \cdot e \qquad + d(g - e) - (a + b)h$$

$$P_{4} = d \cdot (g - e) \qquad + (b - d)(g + h)$$

$$P_{5} = (a + d) \cdot (e + h) \qquad = ae + ah + de + dh$$

$$P_{6} = (b - d) \cdot (g + h) \qquad + dg - de - ah - bh$$

$$P_{7} = (a - c) \cdot (e + f) \qquad + bg + bh - dg - dh$$

$$= ae + bg$$

Strassen's algorithm

- 1. Divide: Partition A and B into $(n/2)\times(n/2)$ submatrices. Form terms to be multiplied using + and -.
- 2. Conquer: Perform 7 multiplications of $(n/2)\times(n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2)\times(n/2)$ submatrices.

Strassen's algorithm

- 1. Divide: Partition A and B into $(n/2) \times (n/2)$ submatrices. Form terms to be multiplied using + and -.
- 2. Conquer: Perform 7 multiplications of $(n/2)\times(n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2)\times(n/2)$ submatrices.

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \text{Case } 1 \implies T(n) = \Theta(n^{\lg 7}).$$

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \text{CASE } 1 \implies T(n) = \Theta(n^{\lg 7}).$$

The number 2.81 may not seem much smaller than 3, but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \ge 32$ or so.

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \text{Case } 1 \implies T(n) = \Theta(n^{\lg 7}).$$

The number 2.81 may not seem much smaller than 3, but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \ge 32$ or so.

Best to date (of theoretical interest only): $\Theta(n^{2.376\cdots})$.

$$H(n) = H(n/2) + \Theta(1)$$
$$= \Theta(\lg n)$$

H-tree embedding

H-tree embedding

H-tree embedding

$$L(n) = 2L(n/4) + \Theta(1)$$
$$= \Theta(\sqrt{n})$$

Area =
$$\Theta(n)$$

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- The divide-and-conquer strategy often leads to efficient algorithms.