1 Constants

Universal Gas Constant $R=8.314\frac{J}{mol\cdot K}, R=0.821\frac{L\cdot atm}{mol\cdot K}$ Boltzmann Constant $k=1.38064852\times 10^{-23}\frac{J}{K}$ Avogadro's Number $N_A=6.022\times 10^{23}\frac{units}{mol}$

Stefan-Boltzmann Constant $\sigma = 5.67 \times 10^8 \frac{W}{m^2 K^4}$ Planck's Constant $6.63 \times 10^{-34} J \cdot S$ Planck Temperature $T_P = \frac{m_P c^2}{k} = \sqrt{\frac{\hbar c^5}{Gk^2}} \approx 1.416808 \times 10^{32} K$

Specific Heats $(\frac{J}{q^OC})$ Water - 4.186; Ice - 2.108; Steam - 2.010; Gold - .129; Lead - .129; Aluminum - .897; Steel - .490; Liquid Ammonia - 4.700; Gaseous Ammonia -2.060 Latent Heats $(\frac{J}{q})$ Water: $L_f = 334$, $L_v = 2,258$; Aluminum: $L_f = 397$, $L_v = 10,900$; Silicon: $L_f = 1790$, $L_v = 12,800$ $\gamma = 5/3$ for ideal monatomic gas, 1.4 for diatomic gas and air.

1.1 Conversions and Temperature

 $T_C = \frac{5}{9}(T_F - 32); \quad T_F = \frac{9}{5}T_C + 32; \quad T_K = T_C + 273.15 \quad T_R = T_F + 459.67; \quad T_N = \frac{1}{3}T_C; \quad T_{Re} = \frac{4}{5}T_C; \quad T_{Ro} = \frac{21}{40}T_C + 7.5; \quad T_{De} = \frac{3}{2}(100 - T_C)$ 1 cal = .001 Cal = 4.184 J = .00397 BTU = 4.184 × 10⁷ ergs = .3238 ft·lb = 1.1628 × 10⁻⁶ kWh **101.33 J= 1 L · atm** 1 atm= 760 torr= 760 mm Hg = 101.325 kPa = 101325 $\frac{N}{m^2}$

General

First Law $\Delta U = Q - W$ Thermodynamic Temperature $\tau = kT$ Thermodynamic Beta, Inverse Temperature $\beta = \frac{1}{kT}$ Fundamental thermodynamic relation $dU = TdS - PdV + \sum_{i=1}^k \mu_i dN_i \quad \text{Internal Energy of a substance: } \Delta U = NC_V \Delta T \quad \text{Meyer's Equation } C_P - C_V = nR$

3 Heat Engines and Refrigeration

efficiency
$$\eta = \left| \frac{W}{Q_H} \right|$$
 Carnot Efficiency $\eta_c = 1 - \left| \frac{Q_L}{Q_H} \right| = 1 - \frac{T_L}{T_H}$
Refrigeration coefficient of performance $K = \left| \frac{Q_L}{W} \right|$ Carnot Refrigerator $K_C = \frac{|Q_L|}{|Q_H| - |Q_L|} = \frac{T_L}{T_H - T_L}$
 $W_C = Q_H - Q_C = \left(1 - \frac{T_C}{T_H} \right) Q_H$ - Carnot work, also equal to total curve area
Otto Cycle: $\eta = 1 - \frac{1}{1 - r^{(\gamma - 1)}} = 1 - \frac{T_4 - T_3}{T_2 - T_1}$

Otto Cycle:
$$\eta = 1 - \frac{T_H}{1 - r(\gamma - 1)} = 1 - \frac{T_4 - T_3}{T_2 - T_1}$$

4 Heat Transfer

Heat to raise temp
$$Q = mC\Delta T$$
 Latent heat $Q = mL$ heat transfer $q = \frac{Q}{t} = \frac{kA\Delta T}{d}$ linear thermal expansion: $\Delta L = \alpha L_0 \Delta T$, Area: $\Delta A = 2A_0 \alpha \Delta T$, Volume: $\Delta V = 3V_0 \alpha \Delta T$ coefficient of thermal expansion $\alpha_p = -\frac{1}{V} \left(\frac{\partial V}{\partial P}\right)_{T,N}$ Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer $P = \frac{dQ}{dt}$, Thermal Intensity $I = \frac{dP}{dA}$, Thermal/heat flux density (vector analogue of thermal intensity above) (symbol is little q) $Q = \iint q \cdot dS dt$ $C_P = \left(\frac{\partial Q_{rev}}{\partial T}\right)_P = \left(\frac{\partial U}{\partial T}\right)_P + P\left(\frac{\partial V}{\partial T}\right)_P = T\left(\frac{\partial S}{\partial T}\right)_P = T\left(\frac{\partial S}{$

5 Gas Laws

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \text{ - Combined Gas Law} \quad P_1V_1 = P_2V_2 \text{ - Boyle's Law} \quad \frac{V_1}{T_1} = \frac{V_2}{T_2} \text{ - Charles' Law} \quad \frac{P_1}{T_1} = \frac{P_2}{T_2} \text{ - Gay-Lussac's Law} \\ (P + \frac{n^2a}{V^2})(V - nb) = nRT \text{ - van der Waals' Equation (real gas law)} \quad \ln \frac{P_2}{P_1} = -\frac{\Delta H_{vap}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \text{ - Clausius Clapeyron Equation} \quad \gamma = \frac{C_p}{C_V} \text{ Adiabatic Index}$$

5.1 Ideal Gases

				$-nRT \ln \frac{P_1}{P_2}$	$\frac{1-\gamma}{1-\gamma} = C_V(T_2 - T_1)$
Heat Capacity C		(monatomic) or $C_p = \frac{7}{2}nR$ (diatomic)	$C_V = \frac{5}{2}nR'$ (diatomic)		
Internal Energy ΔU	$\Delta U = C_V \Delta T$	$Q + W$ or $Q_p - p\Delta V$	$Q ext{ or } C_V(T_2 - T_1)$	$\begin{array}{ccc} 0 & \text{or} & Q & = \\ -W & & & & \\ \end{array}$	$W ext{ or } C_V(T_2 - T_1)$
Enthalpy ΔH	H = U + PV	$C_p(T_2-T_1)$	$Q_V + V\Delta p$	0	$C_p(T_2 - T_1)$
Entropy ΔS	$\Delta S = C_V \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1}$ $\Delta S = C_p \ln \frac{T_2}{T_1} - nR \ln \frac{P_2}{P_1}$	$C_p \ln \frac{T_2}{T_1}$	$C_V \ln \frac{T_2}{T_1}$	$nR \ln \frac{V_2}{V_1} \frac{Q}{T}$	$C_p \ln \frac{V_2}{V_1} + C_V \ln \frac{P_2}{P_1} = 0$
constant		$\frac{V}{T}$	$\frac{P}{T}$	PV	PV^{γ}

Statistical Thermodynamics

mean speed $\langle v \rangle = \sqrt{\frac{8kT}{\pi m}}$ Root mean square speed $v_{rms} = \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3kT}{m}}$ most probable speed $v_{mode} = \sqrt{\frac{2kT}{m}}$ Mean free path $\lambda = \frac{RT}{\sqrt{2}\pi d^2 N_A P}$ avg. KE per molecule $KE_{avg} = \frac{3}{2}kT$, per mole: $KE_{avg} = \frac{3}{2}RT$

6 Chem

 $\Delta H = U + PV - \text{Enthalpy} \qquad \Delta_r H^\Theta = \Sigma v H^\Theta_{products} - \Sigma v H^\Theta_{reactants} - \text{Standard Enthalpy of Formation}$ $S = k \log W, \, dS = \frac{dQ}{T}, \, \Delta S_{surroundings} = -\frac{\Delta H}{T} - \text{Entropy} \qquad \Delta G = \Delta H - T\Delta S, \, G = U + PV - TS - \text{Gibbs Free Energy} \qquad \textbf{Other Potentials Helmholtz Free Energy}$ $F = U - TS, \, \text{Landau potential (Landau Free Energy, Grand Potential)} \, \Omega = U - TS - \mu N \, (\mu = \text{chemical potential}), \, \text{Massieu Potential, Helmholtz free entropy} \, \Phi = S - \frac{U}{T}, \, Planck \, \text{potential, Gibbs free entropy} \, \Xi = \Phi - \frac{PV}{T}$

7 processes

Process	Equations
Isentropic	$\Delta Q = 0, \ \Delta U = -\Delta W$
(Adiabatic	For an ideal gas:
Reversible)	$\begin{array}{cccc} P_1 V_1^{\gamma} & = & P_2 V_2^{\gamma}, \end{array}$
	$T_1 V_1^{\gamma - 1} = T_1 V_2^{\gamma - 1},$
	$P_1^{\gamma - a} T_1^{\gamma} = P_2^{\gamma - 1} T_2^{\gamma}$ $\Delta U = 0, \ \Delta W = \Delta Q,$
Isothermal	$\Delta U = 0, \ \Delta W = \Delta Q,$
	For an ideal gas: $W =$
	$kTN \ln \frac{V_2}{V_1}$
Isobaric	$P_1 = P_2, P = constant,$
	$\Delta W = P\Delta V, \Delta q =$
	$\Delta U + P\delta V$
Isochoric	$V_1 = V_2, V = constant,$
	$\Delta W = 0, \Delta Q = \Delta U$
Free expansion	$\Delta U = 0$
Work Done by	Process:
expanding a gas	$_{\ell V_2}$
	$\Delta W = \int_{V_1}^{V_2} P dV$
	, Net work in Cyclic pro-
	cesses:
	$\Delta W = \oint_{cycle} PdV$

8 Quantum Properties

$$U = NkT^2 \left(\frac{\partial \ln Z}{\partial T}\right)_V \qquad S = \frac{U}{T} + N, \text{ For indistinguishable particles: } S = \frac{U}{T} + Nk \ln N + Nk$$

Degree of free-	Partition Function
dom	
Translation	$Z_t = \frac{(2\pi mkT)^{\frac{3}{2}}V}{h^3}$
Vibration	$Z_v = \frac{1}{1 - e^{(\frac{-h\omega}{2\pi kT})}}$
Rotation	$Z_r = \frac{2\tilde{I}kT}{\sigma\hbar^2}$, $\sigma=1$ for heteronuclear molecules and $\sigma=2$ for homonuclear.

9 other

9.1 electricity

resistors -
$$Q=I^2Rt=tIV=\frac{tV^2}{R}$$