## Chapter ML:II (continued)

### II. Machine Learning Basics

- □ On Data
- Regression
- □ Concept Learning: Search in Hypothesis Space
- □ Concept Learning: Search in Version Space
- Measuring Performance

ML:II-123 Basics ©STEIN/LETTMANN 2005-2013

True Misclassification Rate

### **Definition 8 (True Misclassification Rate)**

Let X be a feature space with a finite number of elements. Moreover, let C be a set of classes, let  $y:X\to C$  be a classifier, and let c be the target concept to be learned. Then the true misclassification rate, denoted as  $\mathit{Err}^*(y)$ , is defined as follows:

$$\textit{Err}^*(y) = \frac{|\{\mathbf{x} \in X : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|X|}$$

True Misclassification Rate

### **Definition 8 (True Misclassification Rate)**

Let X be a feature space with a finite number of elements. Moreover, let C be a set of classes, let  $y:X\to C$  be a classifier, and let c be the target concept to be learned. Then the true misclassification rate, denoted as  $\mathit{Err}^*(y)$ , is defined as follows:

$$\mathit{Err}^*(y) = \frac{|\{\mathbf{x} \in X : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|X|}$$

#### Problem:

 $\Box$  Usually c is unknown.

#### Solution:

□ Estimation of  $Err^*(y)$  with  $Err(y, D_s)$ , i.e., by evaluating y on a sample  $D_s \subseteq D$ . Recall that for the feature vectors in D the target concept c is known.

- The English word "rate" can be used to denote both the mathematical concept of a flow quantity (a change of a quantity per time unit) as well as the mathematical concept of a *portion*, a *percentage*, or a *ratio*, which has a stationary (= time-independent) semantics. This latter semantics is meant here when talking about the misclassification rate.
- □ Unfortunately, the German word "Rate" is often (mis)used to denote the mathematical concept of a portion, a percentage, or a ratio. Taking a precise mathematical standpoint, the correct German words are "Anteil" or "Quote". I.e., a semantically correct translation of misclassification rate is "Missklassifikationsanteil", and not "Missklassifikationsrate".

True Misclassification Rate (continued)

### Probabilistic foundation [ML:IV Probability Basics]:

□ Let X and C be defined as before. Moreover, let P be a probability measure on  $X \times C$ . Then  $P(\mathbf{x}, c)$  (precisely:  $P(\mathcal{H} = \mathbf{x}, \mathcal{C} = c)$ ) denotes the probability that feature vector  $\mathbf{x} \in X$  belongs to class  $c \in C$ . Illustration:



ML:II-127 Basics

True Misclassification Rate (continued)

### Probabilistic foundation [ML:IV Probability Basics]:

Let X and C be defined as before. Moreover, let P be a probability measure on  $X \times C$ . Then  $P(\mathbf{x}, c)$  (precisely:  $P(\mathcal{H} = \mathbf{x}, \mathcal{C} = c)$ ) denotes the probability that feature vector  $\mathbf{x} \in X$  belongs to class  $c \in C$ . Illustration:



$$\Box \quad \textit{Err}^*(y) = \sum_{\mathbf{x} \in X} \sum_{c \in C} P(\mathbf{x}, c) \cdot I(y(\mathbf{x}), c), \quad \text{with } I(y(\mathbf{x}), c) = \left\{ \begin{array}{l} 0 \quad \text{if } y(\mathbf{x}) = c \\ 1 \quad \text{otherwise} \end{array} \right.$$

ML:II-128 Basics ©STEIN/LETTMANN 2005-2013

True Misclassification Rate (continued)

### Probabilistic foundation [ML:IV Probability Basics]:

Let X and C be defined as before. Moreover, let P be a probability measure on  $X \times C$ . Then  $P(\mathbf{x}, c)$  (precisely:  $P(\mathcal{H} = \mathbf{x}, \mathcal{C} = c)$ ) denotes the probability that feature vector  $\mathbf{x} \in X$  belongs to class  $c \in C$ . Illustration:



$$\Box \quad \textit{Err}^*(y) = \sum_{\mathbf{x} \in X} \sum_{c \in C} P(\mathbf{x}, c) \cdot I(y(\mathbf{x}), c), \quad \text{with } I(y(\mathbf{x}), c) = \left\{ \begin{array}{l} 0 \quad \text{if } y(\mathbf{x}) = c \\ 1 \quad \text{otherwise} \end{array} \right.$$

 $D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C$  is a set of examples whose elements are drawn independently and according to the same P.

- Let A and B denote two events, e.g.,  $A = {}^{"}\mathcal{H} = \mathbf{x}"$  and  $B = {}^{"}\mathcal{C} = c"$ . Then the following expressions are syntactic variants, i.e., they are semantically equivalent: P(A,B), P(A and B),  $P(A \wedge B)$
- $\square$   $\mathcal{H}$  and  $\mathcal{C}$  are random variables with domains X and C respectively.
- The function  $c(\mathbf{x})$  has been modeled as random variable, C, since in the real world the classification of a feature vector  $\mathbf{x}$  may not be deterministic but the result of a random process. Keyword: label noise.
- □ The elements in *D* are considered as random variables that are both independent of each other and identically distributed. This property of a set of random variables is abbreviated with "i.i.d."

### **Training Error**

- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$
- $\Box$   $D_{tr} = D$  is the training set.
- $\neg y: X \to C$  is a classifier learned on the basis of  $D_{tr}$ .

Training error = misclassification rate with respect to  $D_{tr}$ :

$$Err(y, D_{tr}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{tr} : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|D_{tr}|}$$

### **Training Error**

- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$
- $\Box$   $D_{tr} = D$  is the training set.
- $\neg y: X \to C$  is a classifier learned on the basis of  $D_{tr}$ .

Training error = misclassification rate with respect to  $D_{tr}$ :

$$Err(y, D_{tr}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{tr} : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|D_{tr}|}$$

#### Problems:

- $\Box$  *Err*(y,  $D_{tr}$ ) is based on examples that are also exploited to learn y.
- $\rightarrow$   $Err(y, D_{tr})$  quantifies memorization but not the generalization capability of y.
- $\rightarrow$   $Err(y, D_{tr})$  is an optimistic estimation, i.e., it is constantly lower compared to an application of y in the wild.

### **Holdout Estimation**

- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$
- $\Box$   $D_{tr} \subset D$  is the training set.
- $\neg y: X \to C$  is a classifier learned on the basis of  $D_{tr}$ .
- $\Box$   $D_{ts} \subset D$  with  $D_{ts} \cap D_{tr} = \emptyset$  is a test set.

Holdout estimation = misclassification rate with respect to  $D_{ts}$ :

$$Err(y, D_{ts}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{ts} : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|D_{ts}|}$$

#### **Holdout Estimation**

- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$
- $\Box$   $D_{tr} \subset D$  is the training set.
- $\neg y: X \to C$  is a classifier learned on the basis of  $D_{tr}$ .
- $\Box$   $D_{ts} \subset D$  with  $D_{ts} \cap D_{tr} = \emptyset$  is a test set.

Holdout estimation = misclassification rate with respect to  $D_{ts}$ :

$$Err(y, D_{ts}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{ts} : c(\mathbf{x}) \neq y(\mathbf{x})\}|}{|D_{ts}|}$$

### Requirements:

- $\Box$   $D_{tr}$  and  $D_{ts}$  must be drawn <u>i.i.d.</u>
- $lue{}$   $D_{tr}$  and  $D_{ts}$  must have similar sizes.

|   | A typical valu | ue for splitting | D into training | set $D_{tr}$ and te                                                       | st set $D_{ts}$ is 2:1 |
|---|----------------|------------------|-----------------|---------------------------------------------------------------------------|------------------------|
| _ | ,              |                  |                 | $=$ $\cup$ |                        |

 $\Box$  When splitting D into  $D_{tr}$  and  $D_{ts}$  one has to ensure that the underlying distribution is maintained. Keywords: stratification, sample selection bias

ML:II-135 Basics ©STEIN/LETTMANN 2005-2013

Cross Validation: k-Fold

Improved cross validation for small sets D:

- $\Box$  Form k test sets by splitting D into disjoint sets  $D_1, \ldots, D_k$  of similar size.
- $\Box$  For  $i = 1, \ldots, k$  do:
  - 1.  $y_i: X \to C$  is a classifier learned on the basis of  $D \setminus D_i$

2. 
$$Err(y_i, D_i) = \frac{|\{(\mathbf{x}, c(\mathbf{x}) \in D_i : y_i(\mathbf{x}) \neq c(\mathbf{x})\}|}{|D_i|}$$

Cross-validated misclassification rate:

$$\textit{Err}_{cv}(y, D, k) = \frac{1}{k} \sum_{i=1}^{k} \textit{Err}(y_i, D_i)$$

| Rationale: For large $k$ the set $D \setminus D_i$ is of similar size as $D$ . Hence $Err^*(y_i)$ is close |
|------------------------------------------------------------------------------------------------------------|
| to $Err^*(y)$ , where y is the classifier learned on the basis of D.                                       |

□ For the construction of tree classifiers, tenfold cross-validation has been reported to give good results. [Breiman]

ML:II-137 Basics ©STEIN/LETTMANN 2005-2013

Cross Validation: Leave One Out

Special case of cross validation with k = n:

figspace Determine the cross-validated misclassification rate for  $D \setminus D_i$  where

$$D_i = \{(\mathbf{x}_i, c(\mathbf{x}_i))\}, i \in \{1, \dots, n\}$$
.

Cross Validation: Leave One Out

### Special case of cross validation with k = n:

Determine the cross-validated misclassification rate for  $D \setminus D_i$  where  $D_i = \{(\mathbf{x}_i, c(\mathbf{x}_i))\}, i \in \{1, \dots, n\}$ .

#### **Problems:**

- $\Box$  High computational effort if D is large.
- $\Box$  Singleton test sets ( $|D_i|=1$ ) are never stratified since they contain a single class only.

### Bootstrapping

### Multiple exploitation of D:

- $\Box$  For  $i = 1, \ldots, k$  do:
  - 1. Form training set  $D_i$  by drawing n examples from D with replacement.
  - 2.  $y_i: X \to C$  is a classifier learned on the basis of  $D_i$

3. 
$$Err(y_i, D \setminus D_i) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D \setminus D_i : y_i(\mathbf{x}) \neq c(\mathbf{x})\}|}{|D \setminus D_i|}$$

### Bootstrapped misclassification rate:

$$\textit{Err}_{bt}(y,D) = \frac{1}{k} \sum_{i=1}^{k} \textit{Err}(y_i,D \setminus D_i)$$

- Let |D| = n. The probability that an example is not considered is  $(1 1/n)^n$ . Similarly, the probability that an example is considered at least once is  $1 (1 1/n)^n$ .
- If n is large, then  $1 (1 1/n)^n \approx 1 1/e \approx 0.632$ . I.e., each training set contains about 63.2% of the examples in D.
- $\Box$  The classifiers  $y_1, \ldots, y_k$  can be used in a combined fashion, called *ensemble*, where the class is determined by means of a majority decision:

$$y(\mathbf{x}) = \operatorname*{argmax}_{j \in C} |\{i \in \{1, \dots, k\} : y_i(\mathbf{x}) = j\}|$$

□ For the construction of tree classifiers, bootstrapping has been reported to improve the misclassification rate about 20% – 47% compared to a standard approach. [Breiman]

#### Misclassification Costs

Use of a cost measure for the misclassification of a feature vector  $\mathbf{x}$  in class c' instead of in class c:

$$\cos\!t(c'\mid c) \left\{ \begin{array}{ll} \geq 0 & \text{if } c'\neq c \\ = 0 & \text{otherwise} \end{array} \right.$$

Estimation of  $\mathit{Err}^*_{\mathit{cost}}(y)$  based on a sample  $D_s \subseteq D$ :

The misclassification rate Err is a special case of  $Err_{cost}$  with  $cost(c' \mid c) = 1$  for  $c' \neq c$ .

ML:II-143 Basics © STEIN/LETTMANN 2005-2013