$\begin{array}{c} {\rm NUEN~629} \\ {\rm Numerical~Methods~in~Reactor~Analysis} \\ {\rm Homework~4~\&~5~\&~Project} \end{array}$

Due on: Thursday, November 19, 2015 & & Thursday, December 3, 2015

Dr. McClarren

Paul Mendoza

Contents

Homework 4 Problem Statement	3
Homework 4 Problem Background	4
Homework 4 Problem Solution	7
Homework 4 Code	13
Homework 5	30
Project	31

Homework 4 Problem Statement

Solve the following problem and submit a detailed report, including a justification of why a reader should believe your results and a description of your methods and iteration strategies.

1. (150 points + 50 points extra credit) In class we discussed the diamond-difference spatial discretization. Another discretization is the step discretization (this has several other names from other disciplines). It writes the discrete ordinates equations with isotropic scattering as, for $\mu_n > 0$ to

$$\mu_n \frac{\psi_{i,n} - \psi_{i-1,n}}{h_r} + \Sigma_t \psi_{i,n} = \frac{\Sigma_s}{2} \phi_i + \frac{Q}{2}$$
 (1)

and for $\mu_n < 0$

$$\mu_n \frac{\psi_{i+1,n} - \psi_{i,n}}{h_x} + \Sigma_t \psi_{i,n} = \frac{\Sigma_s}{2} \phi_i + \frac{Q}{2}$$
 (2)

The codes provided in class should be modified to implement this discretization.

- (a) (50 Points) Your task (should you choose to accept it) is to solve a problem with uniform source of Q = 0.01, $\Sigma_t = \Sigma_s = 100$ for a slab in vacuum of width 10 using step and diamond difference discretizations. Use, 10, 50, and 100 zones ($h_x = 1, 0.02, 0.01$) and your expert choice of angular quadratures. Discuss your results and how the two methods compare at each number of zones.
- (b) (10 points) Discuss why there is a different form of the discretization for the different signs of μ .
- (c) (40 points) Plot the error after each iteration using a 0 initial guess for the step discretization with source iteration and GMRES.
- (d) (50 points) Solve Reed's problem (see finite difference diffusion codes). Present convergence plots for the solution in space and angle to a "refined" solution in space and angle.
- (e) (50 points extra credit) Solve a time dependant problem for a slab surrounded by vacuum with $\Sigma_t = \Sigma_s = 1$ and initial condition given by $\psi(\mathbf{0}) = \mathbf{1}/h_x$ (original problem statement said $\phi(0) = 1/h_x$ and I'm not sure how to solve that). Plot the solution at t = 1 s, using step and diamond difference. The particles have a speed of 1 cm/s. Which discretization is better with a small time step? What do you see with a small number of ordinates compared to a really large number (100s)?

Homework 4 Problem Background

Due to the complicated nature of this course, I provided this background for the lay person (me), so that they might have some grounding for the solution and hopefully believe the results. It should be noted that most of this background information is copied from various points in Dr. McClarren's notes, and is in no way original. Anything intelligent in the following is due to this fact and for any errors, I blame myself.

Beginning with the weighty neutron transport equation.

$$\left(\frac{1}{v}\frac{\delta}{\delta t} + \hat{\Omega}\cdot\nabla + \Sigma_t\right)\psi = \int_0^\infty dE' \int_{4\pi} d\hat{\Omega}' K(\hat{\Omega}'\cdot\hat{\Omega}, v'\to v)\Sigma_s\psi + \frac{1}{4\pi}\chi\int_0^\infty dE' \bar{\nu}\Sigma_f\phi + q$$

Where $K(\hat{\Omega}' \cdot \hat{\Omega}, v' \to v)$ represents the probability of scattering from one angle and energy to another given a scattering event occurred and Σ_s is the macroscopic scattering cross section. The dependencies for the variables are shown below.

$$\Sigma_{t}(\vec{x}, v, t)$$

$$\psi(\vec{x}, \hat{\Omega}, v, t)$$

$$\Sigma_{s}(\vec{x}, v, t)$$

$$\chi(\vec{x}, v)$$

$$\Sigma_{f}(\vec{x}, v, t)$$

$$\phi(\vec{x}, v, t)$$

$$q(\vec{x}, \hat{\Omega}, v, t)$$

There are 7 free variables (three spatial $[\vec{x}]$, two angular $[\hat{\Omega}]$, one energy [v] and one time [t]) in this equation. In the steady state $\left(\frac{\delta\psi}{\delta t}=0\right)$, i.e. no time dependence, non fissioning $(\Sigma_f=0)$ case the transport equation reduces to,

$$\left(\hat{\Omega} \cdot \nabla + \Sigma_t\right) \psi = \int_0^\infty dE' \int_{4\pi} d\hat{\Omega}' K(\hat{\Omega}' \cdot \hat{\Omega}, v' \to v) \Sigma_s \psi + q.$$

In order to reduce this to a single energy the following definitions are helpful (remembering all time dependence is gone).

$$\psi(\vec{x}, \hat{\Omega}) = \int_0^\infty dE \ \psi(\vec{x}, \hat{\Omega}, v(E))$$

$$\Sigma_t(\vec{x}) = \frac{\int_0^\infty dE \ \Sigma_t(\vec{x}, v(E))\psi(\vec{x}, \hat{\Omega}, v(E))}{\psi(\vec{x}, \hat{\Omega})}$$

$$K(\hat{\Omega}' \cdot \hat{\Omega}, v' \to v) = K(\hat{\Omega}' \cdot \hat{\Omega})K(v' \to v)$$

$$\Sigma_s(\vec{x}) = \frac{\int_0^\infty dE \int_0^\infty dE' \ \Sigma_s(\vec{x}, v(E))K(v' \to v)\psi(\vec{x}, \hat{\Omega}, v(E))}{\psi(\vec{x}, \hat{\Omega})}$$

$$q(\vec{x}, \hat{\Omega}) = \int_0^\infty dE \ q(\vec{x}, \hat{\Omega}, v(E))$$

Using these definitions, integrating the transport equation over all energy, and assuming cross sections and sources do not vary in space or angle, our transport equation reduces again to,

$$\left(\hat{\Omega} \cdot \nabla + \Sigma_t\right) \psi(\vec{x}, \hat{\Omega}) = \int_{A\pi} d\hat{\Omega}' \ K(\hat{\Omega}' \cdot \hat{\Omega}) \Sigma_s \psi(\vec{x}, \hat{\Omega}') + q.$$

Where the double differential was assumed to be separable in angle and energy. The final simplification for our problem will be in space. If we assume that our geometry is infinite in y $\left(\frac{\delta}{\delta y}=0\right)$ and x $\left(\frac{\delta}{\delta x}=0\right)$. This also means that ψ depends only on z and mu, and if we recall that

$$\hat{\Omega} = (\sqrt{1 - \mu^2} \cos(\rho), \sqrt{1 - \mu^2} \sin(\rho), \mu),$$

and

$$\nabla = \left(\frac{\delta}{\delta x}, \frac{\delta}{\delta y}, \frac{\delta}{\delta x}\right)$$

also assuming that

$$K(\hat{\Omega}' \cdot \hat{\Omega}) = \frac{1}{4\pi}$$
 Isotropic Scattering

then our transport equation, and the equation I think we are trying to solve for this homework is.

$$\left(\mu \frac{\delta}{\delta z} + \Sigma_t\right) \psi(z, \mu) = \Sigma_s \frac{2\pi}{4\pi} \int_{-1}^1 d\mu' \ \psi(z, \mu') + q.$$

Checking units,

$$\left(\mu \frac{\delta}{\delta z} + \Sigma_t\right) \left[\frac{1}{cm}\right] \psi(z,\mu) \left[\frac{n \cdot cm}{str \cdot cm^3 \cdot s}\right] = \Sigma_s \frac{1}{2} \left[\frac{1}{cm \cdot rad}\right] \int_{-1}^1 d\mu' \, \psi(z,\mu') \left[\frac{n \cdot cm}{rad \cdot cm^3 \cdot s}\right] + q \left[\frac{n}{str \cdot cm^3 \cdot s}\right].$$

 Σ_s was moved outside the integral because it has no angular dependence integration over the azimuthal angle occurred because $\psi(z,\hat{\Omega})$ is assumed to be uniform and not depend on that angle.

Using Gauss-Legendre Quadrature for the integration term

$$\phi = \int_{-1}^{1} d\mu' \psi(z, \mu') = \sum_{i=1}^{n} w_i \psi(z, \mu'_i)$$

where

$$w_i = \frac{2}{(1 - \mu_i^2)[P_n'(\mu_i)]^2}$$

 P'_n is the differential of the legendre polynomial n, and μ'_i are the roots of P_n . The weights of even n's of the legendre polynomials should sum to 2, the value of $\int_{-1}^{1} d\mu$, which they do.

Putting this all together with time dependence:

$$\left(\frac{1}{v}\frac{\delta}{\delta t} + \mu \frac{\delta}{\delta z} + \Sigma_t\right)\psi_n(z) = \sum_s \frac{1}{2} \sum_{n'=1}^N w_{n'}\psi_{n'}(z) + q$$

Where n and n' denote the direction being solved for and N is the total number of angles being solved for. Also unites of w are rad.

Diamond difference discretization

$$\frac{1}{v}\frac{\psi_{n,i}^{\ell+1,j+1}-\psi_{n,i}^{L,j}}{\Delta t} + \mu_n\frac{\psi_{n,i+1/2}^{\ell+1,j+1}-\psi_{n,i-1/2}^{\ell+1,j+1}}{hz} + \Sigma_t\psi_{n,i}^{\ell+1,j+1} = \Sigma_s\frac{1}{2}\sum_{i=1}^Nw_i\psi_{n',i}^{\ell,j+1} + q.$$

Where n is for angle, i is the midplane of a spacial discretization, ℓ is the iteration index for spacial convergence, j is for a time step and

$$\psi_{n,i}^{\ell+1,j+1} = \frac{1}{2} (\psi_{n,i+1/2}^{\ell+1,j+1} + \psi_{n,i-1/2}^{\ell+1,j+1})$$

Writing this in terms of a steady state

$$\mu_n \frac{\psi_{n,i+1/2}^{\ell+1,j+1} - \psi_{n,i-1/2}^{\ell+1,j+1}}{hz} + \Sigma_t^* \psi_{n,i}^{\ell+1,j+1} = \Sigma_s \frac{1}{2} \sum_{n'=1}^N w_i \psi_{n',i}^{\ell,j+1} + q^*.$$

where

$$\Sigma_t^* = \Sigma_t + \frac{1}{v\Delta t}$$
$$q^* = q + \frac{\psi_{n,i}^{L,j}}{v\Delta t}$$

The above equation has L for the iteration index to indicate that its value was iteratively determined in the previous time step.

Step discretization

Writing this in terms of a steady state for $\mu > 0$

$$\mu_n \frac{\psi_{n,i}^{\ell+1,j+1} - \psi_{n,i-1}^{\ell+1,j+1}}{hz} + \Sigma_t^* \psi_{n,i}^{\ell+1,j+1} = \Sigma_s \frac{1}{2} \sum_{n'=1}^N w_i \psi_{n',i}^{\ell,j+1} + q^*.$$

and for $\mu < 0$

$$\mu_n \frac{\psi_{n,i+1}^{\ell+1,j+1} - \psi_{n,i}^{\ell+1,j+1}}{hz} + \Sigma_t^* \psi_{n,i}^{\ell+1,j+1} = \Sigma_s \frac{1}{2} \sum_{n'=1}^N w_i \psi_{n',i}^{\ell,j+1} + q^*.$$

where

$$\Sigma_t^* = \Sigma_t + \frac{1}{v\Delta t}$$
$$q^* = q + \frac{\psi_{n,i}^{L,j}}{v\Delta t}$$

GMRES

The generalized minimium residual (GMRES) method is an iterative method for solving linear systems of equations. The method approximates the solution by the vector in a Krylov subspace with a minimum residual (see wikipedia or Dr. McClarren's notes, I'm not really sure how this method works, but python has a solver for it).

The system $A\vec{\phi} = b$ is solved with GMRES, where for our situation,

$$A = \left(I - \sum_{n'=1}^{N} L^{-1} \Sigma_{s} \frac{1}{2}\right)$$

where L^{-1} is a sweep solve for our system and acts as an operator (I think), and

$$b = \sum_{n'=1}^{N} L^{-1} q^*$$

Reeds Problem

Reeds problem is a similar system as above, except the source and scattering and total cross sections are variable in z, and the width of z is 16.

Homework 4 Problem Solution

The code for this problem will be at the end of this section. The answers are below.

(a) (50 Points) Your task is to solve a problem with uniform source of Q = 0.01, $\Sigma_t = \Sigma_s = 100$ for a slab in vacuum of width 10 using step and diamond difference discretizations. Use, 10, 50, and 100 zones $(h_x = 1, 0.02, 0.01)$ and your expert choice of angular quadratures. Discuss your results and how the two methods compare at each number of zones.

The angular quadrature used was the Gauss-Legendre Quadrature because of the integration range. Its form was shown in the background section. The plot below was produced with the GMRES method, but the source iteration scheme produced the same results.

Both of the iterative solutions converged with max iterations of 100,000 and a slight modification on cross section ($\Sigma_t = \Sigma_t \cdot 1.0001$) to help the system converge. As the number of zones increased for the step solution, the flux magnitude kept increasing to match with the diamond difference and maintained a cosine(ish) shape. As the number of zones increased with the diamond difference, the shape started to converge towards the cosine, but maintained the proper magnitude.

Something else I would like to point out in the solution is that the step solution always had one more point plotted than the diamond difference. The reason for this is due to how each solution was solved. This is easier highlighted (for me) with an example, which is shown in the case where the number of zones is 10.

For the Diamond difference, the average locations (remember they were averaged), $\psi_{n,i}^{L,j+1}$, being solved for were,

$$z = [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5]$$

The points for $\psi_{n,i+1/2}^{L,j+1}$ and $\psi_{n,i-1/2}^{L,j+1}$ were at the points,

$$z = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]$$

When sweeping to the right, $\psi_n(z=0)$ was set to zero, because the incoming flux is zero, and all points were solved for up to where z=10, and $\psi_{n,i}$ values were determined with averaging. This same thing occurred when sweeping to the left (except here $\psi_n(z=10)$ was set to zero). This would yield 10 values at the points [0.5, 1.5, ..., 9.5].

For the step discretization scheme, the locations (non averaged), $\psi_{n,i}^{L,j+1}$, being solved for were,

$$x = \begin{cases} [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] & \mu > 0 \\ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], & \mu < 0 \end{cases}$$

When combining these two lists for ϕ , this was considered, and hence the step discretization scheme had one extra point (both lists have 10 points, but the location 10 is unquie in the first list, and 0 in the second).

- (b) (10 points) Discuss why there is a different form of the discretization for the different signs of μ .
 - The different forms are needed in the step discretization because in both the diamond and step approaches to the solution a value is needed from a previous zone. Our vacuum boundary condition states that the incoming neutrons are zero, which at the left side of the boundary, determines the angular flux moving to the right, and at the right side of the boundary, the angular flux moving to the left (these values are 0).
- (c) (40 points) Plot the error after each iteration using a 0 initial guess for the step discretization with source iteration and GMRES.

Error will be determined with the following:

$$Error = \frac{||\phi^{\ell+1} - \phi^{\ell}||}{||\phi^{\ell+1}||}$$

(d) (50 points) Solve Reed's problem (see finite difference diffusion codes). Present convergence plots for the solution in space and angle to a "refined" solution in space and angle.

Plots are below, reduced the number of points so that figures wouldn't take so long to load.

The solution converges with more spatial slices. Increasing the number of angular slices helps upto when N=4, but beyond that it doesn't do much.

(e) (50 points extra credit) Solve a time dependant problem for a slab surrounded by vacuum with $\Sigma_t = \Sigma_s = 1$ and initial condition given by $\psi(\mathbf{0}) = \mathbf{1}/h_x$ (original problem statement said $\phi(0) = 1/h_x$ and I'm not sure how to solve that). Plot the solution at t = 1 s, using step and diamond difference. The particles have a speed of 1 cm/s. Which discretization is better with a small time step? What do you see with a small number of ordinates compared to a really large number (100s)?

Homework 4 Code

Listing 1: Main Code For Parts a,b and c

```
#!/usr/bin/env python3
 import time
 start_time = time.time()
 import Functions as f
 # Constants
 0 = 0.01
 Sigma_t = 100;Sigma_s=100
 # Add adsorption to help converge
 if Sigma_t==Sigma_s:
   Sigma_t=Sigma_t * 1.0001
 # Geometry
                  # Width of slab
 L = 10.
                 # Number of cuts in slab (looped)
 slices=[10,50,100,500]
_{25} N = 4
                  # Number of angle slices
 BCs = f.np.zeros(N)
                  # Zero incoming flux
 #Time
 T=0
                  # total Time (A plot made at T)
                  # Time steps width
 dt=1
                  # Velocity
 v=1
 MAXITS=100000
                 # Max iterations for source iter
 loud=False
                  # Echo every Iteration?
 #Method
 Methods=['GMRES:step', # 'Iteration' or 'GM.
'GMRES:dd'] # Methods to solve with?
                  # 'Iteration' or 'GMRES'
                 # 'step' or 'dd'
 tol=1e-8
 PlotError=False # Do we plot the error?
 NumOfPoints=100
                 # Max Number of points for plots
 50
```

```
Check=0
 fig=f.plt.figure(figsize=f.FigureSize) # Plot all Methods
 ax=fig.add_subplot(111)
 if PlotError:
    erfig=f.plt.figure(figsize=f.FigureSize) # Err Plot
    erax=erfig.add_subplot(111)
  for Scheme in Methods:
    Method=Scheme.split(':')[1]
65
    for II in slices:
      if Method == 'step': #Step Dude needs one extra
       elif Method == 'dd':
         I = II
      #Width, ang lists for materials
      hx = L/II
      q = f.np.ones(I) *Q
      Sig_t_discr = f.np.ones(I) *Sigma_t
80
      Sig_s_discr = f.np.ones(I) *Sigma_s
      #Initialize psi (for time steps)
      if T==0:
         psi=f.np.zeros((N,I))
         Time=[0]
85
      else:
         psi=f.np.ones((N,I))*(1/hx)
         Time=f.Timevector(T, dt)
      label_tmp=Scheme+":hx="+str(hx)+",N="+str(N)+",T="
      for t in Time: #Loop over time
         label=label_tmp+str(t)
         #Determine phi (new psi is determined for time steps)
         x,phi,it,er,psi=f.solver(I,hx,q,Sig_t_discr,
         Sig_s_discr, N, psi, v, dt, Time, BCs, Scheme, tol, MAXITS, loud)
```

```
ax, fig=f.plot(x,phi,ax,label,fig,Check,NumOfPoints)
         if t==0 and PlotError:
            erfig
            erax,erfig=f.plotE(it,er,erax,label,erfig,
110
                       Check, NumOfPoints)
         Check=Check+1
  fiq
  f.Legend(ax)
  #f.plt.savefig('Plots/FluxPlot.pdf')
  if PlotError:
    erfia
    f.Legend(erax)
    #f.plt.savefig('Plots/ErrorPlot.pdf')
    f.plt.savefig('Plots/ErrorPlotTime.pdf')
125
    #f.plt.clf()
    f.plt.close()
  fiq
  f.plt.savefig('Plots/FluxPlotTime.pdf')
  #f.plt.show()
  #Why is tmp_psi in the GMRES going negative?
  print("--- %s seconds ---" % (time.time() - start_time))
```

Listing 2: Main Code For Part d

```
#!/usr/bin/env python3
##################### Import packages ###########################
import time
start_time = time.time()
import Functions as f
# Geometry
L = 18.
             # Width of slab
slices=[500] # Number of cuts in slab (looped)
           # Number of angle slices
NN = [2, 4, 8, 16]
```

```
#Time
 T=0
                   # total Time (A plot made at T)
                    # Time steps width
 dt=1
 v=1
                   # Velocity
                 # Max iterations for source iter
 MAXITS=1000000
 loud=False
                   # Echo every Iteration?
 #Method
 Methods=['GMRES:step']#, # 'Iteration' or 'GMRI
# 'GMRES:step'] # Methods to solve with?
                    # 'Iteration' or 'GMRES'
                   # 'step' or 'dd'
 tol=1e-8
 PlotError=True # Do we plot the error?
 NumOfPoints=100
                  # Max Number of points for plots
  Check=0
 fig=f.plt.figure(figsize=f.FigureSize) # Plot all Methods
 ax=fig.add_subplot(111)
 if PlotError:
   erfig=f.plt.figure(figsize=f.FigureSize) # Err Plot
    erax=erfig.add_subplot(111)
                            # at T=0
  for Scheme in Methods:
    Method=Scheme.split(':')[1]
    60
    for II in slices:
      if Method == 'step': #Step Dude needs one extra
         I = II + 1
      elif Method == 'dd':
        T = T T
      #Width, ang lists for materials
      hx = L/II
      q = f.np.zeros(I)
70
      Sig_t_discr = f.np.zeros(I)
```

```
Sig_s_discr = f.np.zeros(I)
         if Method == 'step':
           x = f.np.linspace(0, (I-1)*hx, I)
         elif Method == 'dd':
           x = f.np.linspace(hx/2,I*hx-hx/2,I)
         for i in range (0, len(x)):
           q[i]=f.QReed(x[i])
           Sig_t_discr[i]=f.Sigma_tReed(x[i])
           Sig_s_discr[i]=Sig_t_discr[i]-f.Sigma_aReed(x[i])
        for N in NN:
           BCs = f.np.zeros(N)
                                  # Zero incoming flux
            #Initialize psi (for time steps)
            if T==0:
              psi=f.np.zeros((N,I))
              Time=[0]
            else:
              psi=f.np.ones((N,I))*(1/hx)
              Time=f.Timevector(T, dt)
           label tmp=Scheme+":hx="+str(hx)+", N="+str(N)+", T="
95
            for t in Time: #Loop over time
              label=label_tmp+str(t)
               #Determine phi (new psi is determined for time steps)
              x, phi, it, er, psi=f.solver(I, hx, q, Sig_t_discr,
              Sig_s_discr, N, psi, v, dt, Time, BCs, Scheme, tol, MAXITS, loud)
               ############# Plot Information ###################
               110
              ax, fig=f.plot(x,phi,ax,label,fig,Check,NumOfPoints)
               if t==0 and PlotError:
                 erfig
                  erax, erfig=f.plotE(it, er, erax, label, erfig,
115
                                Check, NumOfPoints)
              Check=Check+1
   ############## Legend/Save
                           ###########################
   fiq
  f.Legend(ax)
```

Listing 3: Main Code For Part e

```
#!/usr/bin/env python3
import time
start_time = time.time()
import Functions as f
# Geometry
L = 10
                 # Width of slab
# Constants
Q = 0.01
Sigma_t = 1;Sigma_s=1
# Add adsorption to help converge
if Sigma_t==Sigma_s:
  Sigma_t=Sigma_t * 1.0001
slices=[200]  # Number of cuts in slab (looped)
NN = [4]  # Number of angle slices
NN = [4]
#Time
                  # total Time (A plot made at T)
dtt=[0.01,0.05,0.1]
                  # Time steps width
                  # Velocity
v=1
MAXITS=100000
                 # Max iterations for source iter
loud=False
                 # Echo every Iteration?
#Method
Methods=['GMRES:step', # 'Iteration' or 'GMRES'
```

```
'GMRES:dd']
                 # Methods to solve with?
                   # 'step' or 'dd'
 tol=1e-8
 PlotError=True
                  # Do we plot the error?
 NumOfPoints=100
                  # Max Number of points for plots
 Check=0
 fig=f.plt.figure(figsize=f.FigureSize) # Plot all Methods
 ax=fig.add_subplot(111)
 if PlotError:
   erfig=f.plt.figure(figsize=f.FigureSize) # Err Plot
                            # at T=0
   erax=erfig.add_subplot(111)
 for Scheme in Methods:
    Method=Scheme.split(':')[1]
    for II in slices:
      if Method == 'step': #Step Dude needs one extra
        T = TT + 1
      elif Method == 'dd':
        T = T T
      #Width, ang lists for materials
      hx = L/II
      q = f.np.ones(I) *Q
      Sig_t_discr = f.np.ones(I) *Sigma_t
      Sig_s_discr = f.np.ones(I) *Sigma_s
80
      for N in NN:
        BCs = f.np.zeros(N) # Zero incoming flux
         for dt in dtt:
           #Initialize psi (for time steps)
85
           if T==0:
             psi=f.np.zeros((N,I))
             Time=[0]
           else:
```

```
psi=f.np.ones((N,I))*(1/hx)
90
                Time=f.Timevector(T, dt)
             label_tmp=Scheme+":hx="+str(hx)+",N="+str(N)+",T="
              ################# Determine phi ####################
95
              for t in Time: #Loop over time
                label=label_tmp+str(t)
                #Determine phi (new psi is determined for time steps)
                x,phi,it,er,psi=f.solver(I,hx,q,Sig_t_discr,
                Sig_s_discr, N, psi, v, dt, Time, BCs, Scheme, tol, MAXITS, loud)
105
                ############## Plot Information ############
                ax, fig=f.plot(x,phi,ax,label,fig,Check,NumOfPoints)
110
                if t==0 and PlotError:
                   erfig
                   erax, erfig=f.plotE(it, er, erax, label, erfig,
                                Check, NumOfPoints)
                Check=Check+1
115
  120
  fig
  f.Legend(ax)
  #f.plt.savefig('Plots/FluxPlot.pdf')
  if PlotError:
125
     erfig
     f.Legend(erax)
     #f.plt.savefig('Plots/ErrorPlot.pdf')
     f.plt.savefig('Plots/ErrorPlotTime.pdf')
     #f.plt.clf()
     f.plt.close()
  fig
  f.plt.savefig('Plots/FluxPlotTime.pdf')
  #f.plt.show()
  print("--- %s seconds ---" % (time.time() - start_time))
```

Listing 4: Functions holder

```
#!/usr/bin/env python3
```

```
FractionAM converts atom fractions to mass fractions
and mass fractions to atom fractions. Input is a
  single string with MCNP style fractions.
  __author__ = "Paul Mendoza"
10 __copyright__ = "Copyright 2016, Planet Earth"
  __credits__ = ["Sunil Chirayath",
                "Charles Folden",
                "Jeremy Conlin"]
  __license__ = "GPL"
            = "1.0.1"
  __version__
  __maintainer__ = "Paul Mendoza"
  __email__ = "paul.m.mendoza@gmail.com"
  __status__ = "Production"
  ##################### Import packages ###########################
  import sys
  import numpy as np
  import scipy.sparse.linalg as spla
  import scipy.special as sps
  import matplotlib.pyplot as plt
  plt.rcParams["font.family"] = "monospace"
  import matplotlib
  matplotlib.rc('text', usetex=True)
  matplotlib.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"]
  import random as rn
  import matplotlib.mlab as mlab
  import copy
  import os
  # Basic information
FigureSize = (11, 6) # Dimensions of the figure
TypeOfFamily='monospace' # This sets the type of font for text
  font = {'family' : TypeOfFamily} # This sets the type of font for text
  LegendFontSize = 12
  Lfont = {'family' : TypeOfFamily} # This sets up legend font
  Lfont['size'] = LegendFontSize
  Title = ''
  TitleFontSize = 22
  TitleFontWeight = "bold" # "bold" or "normal"
 #Xlabel='E (eV)' # X label
  XFontSize=18
                  # X label font size
```

```
XFontWeight="normal" # "bold" or "normal"
  XScale="linear" # 'linear' or 'log'
  XScaleE='log' # Same but for error plot
  YFontSize=18
                          # Y label font size
  YFontWeight="normal"
                          # "bold" or "normal"
  YScale="linear"
                          # 'linear' or 'log'
  YScaleE='log'
  Check=0
  Colors=["aqua", "gray", "red", "blue", "black",
               "green", "magenta", "indigo", "lime", "peru", "steelblue",
               "darkorange", "salmon", "yellow", "lime", "black"]
   # If you want to highlight a specific item
  # set its alpha value =1 and all others to 0.4
75 # You can also change the MarkSize (or just use the highlight option below)
  # Can change all these to "." or "" for nothing "x" isn't that good
  MarkerType=["8", "s", "p", "D", "*", "H", "h", "d", "^", ">"]
   # LineStyles=["solid", "dashed", "dash_dot", "dotted", "."]
  LineStyles=["solid"]
  SquishGraph = 0.75
  BBOXX = 1.24
  BBOXY = 0.5
               # Set legend on right side of graph
  NumberOfLegendColumns=1
  Xlabel='z position [cm]'
  Ylabel="$\phi\left[\\frac{n\cdot cm}{cm^3\cdot s}\\right]$"
  XlabelE='Iterations'
  YlabelE="Error =  \frac{||\phi^{(l+1)-\phi^(\ell)}}{||\phi^{(\ell)}} 
   def Sigma_tReed(r):
     value = 0 + ((1.0*(r>=14) + 1.0*(r<=4)) +
               5.0 * ((np.abs(r-11.5)<0.5)  or (np.abs(r-6.5)<0.5)) +
105
               50.0 * (np.abs(r-9) <= 2))
     return value;
  def Sigma_aReed(r):
     value = 0 + (0.1*(r>=14) + 0.1*(r<=4) +
```

```
5.0 * ((np.abs(r-11.5)<0.5)) or (np.abs(r-6.5)<0.5)) +
110
                     50.0 * (np.abs(r-9) \le 2))
        return value:
    def QReed(r):
        value = 0 + 1.0*((r<16) * (r>14)) + 1.0*((r>2) * (r<4)) + 50.0*(np.abs(r-9)<=2)
115
    def Timevector(T, dt):
        Time=[dt]
        while Time[-1]<T:
            Time.append(Time[-1]+dt)
        return (Time)
    def diamond_sweep1D(I, hx, q, sigma_t, mu, boundary):
      """Compute a transport diamond difference sweep for a given
125
      Inputs:
        I:
                         number of zones
        hx:
                        size of each zone
                         source array
        q:
        sigma_t:
                         array of total cross-sections
                         direction to sweep
130
        mu:
                        value of angular flux on the boundary
        boundary:
      Outputs:
                         value of angular flux in each zone
        psi:
     assert(np.abs(mu) > 1e-10)
135
      psi = np.zeros(I)
      ihx = 1./hx
      if (mu > 0):
        psi_left = boundary
        for i in range(I):
140
          psi\_right = (q[i] + (mu*ihx-0.5*sigma\_t[i])*psi\_left) \setminus
                      /(0.5*sigma_t[i] + mu*ihx)
          psi[i] = 0.5*(psi\_right + psi\_left)
          psi_left = psi_right
145
        psi_right = boundary
        for i in reversed(range(I)):
          psi_left = (q[i] + (-mu*ihx-0.5*sigma_t[i])*psi_right)
                     /(0.5*sigma_t[i] - mu*ihx)
          psi[i] = 0.5*(psi_right + psi_left)
150
          psi_right = psi_left
      return psi
    def step_sweep1D(I,hx,q,sigma_t,mu,boundary):
      """Compute a transport step sweep for a given
      Inputs:
        I:
                         number of zones
        hx:
                         size of each zone
                         source array
        q:
        sigma_t:
                         array of total cross-sections
160
                         direction to sweep
        mu:
        boundary:
                        value of angular flux on the boundary
```

```
Outputs:
       psi:
                          value of angular flux in each zone
      11 11 11
165
      assert(np.abs(mu) > 1e-10)
      psi = np.zeros(I)
      ihx = 1./hx
      if (mu > 0):
       psi_left = boundary
170
       psi[0] = 0
        for i in range(1,I):
          psi_right = (q[i] + mu*ihx*psi_left)/(mu*ihx + sigma_t[i])
          psi[i] = 0.5*(psi\_right + psi\_left)
          psi_left = psi_right
175
      else:
       psi_right = boundary
        psi[-1] = 0
        for i in reversed(range(0, I-1)):
          psi_left = (q[i] - mu*ihx*psi_right)/(sigma_t[i] - mu*ihx)
180
          psi[i] = 0.5*(psi_right + psi_left)
          psi_right = psi_left
      return psi
185
    def source_iteration(I,hx,q,sigma_t,sigma_s,N,psiprevioustime,
                          v, dt, Time, BCs, sweep_type,
                          tolerance = 1.0e-8, maxits = 100, LOUD=False ):
      """Perform source iteration for single-group steady state problem
      Inputs:
190
       I:
                        number of zones
        hx:
                         size of each zone
        q:
                         source array
                       array of total cross-sections
        sigma_t:
                        array of scattering cross-sections
195
        sigma_s:
        N:
                          number of angles
        BCs:
                        Boundary conditions for each angle
        sweep_type: type of 1D sweep to perform solution
tolerance: the relative convergence tolerance for the iterations
                         the maximum number of iterations
       maxits:
200
       LOUD:
                        boolean to print out iteration stats
      Outputs:
        X:
                         value of center of each zone
                        value of scalar flux in each zone
        phi:
      n n n
      iterations = []
      Errors = []
      phi = np.zeros(I)
      phi_old = phi.copy()
      converged = False
      MU, W = np.polynomial.legendre.leggauss(N)
      iteration = 1
      tmp_psi=psiprevioustime.copy()
      if len(Time) == 1:
215
          sigma_ts=sigma_t
```

```
else:
          sigma_ts=sigma_t+1/(v*dt)
      while not (converged):
        phi = np.zeros(I)
220
        #sweep over each direction
        for n in range(N):
          \#qs = (q*W[n])/2 + (phi_old*sigma_s)/2 + psiprevioustime[n,:]/(v*dt)
          qs=(q)/2+(phi_old*sigma_s)/2+psiprevioustime[n,:]/(v*dt)
          if sweep_type == 'dd':
225
            tmp_psi[n,:] = diamond_sweep1D(I,hx,qs,sigma_ts,MU[n],BCs[n])
          elif sweep_type == 'step':
            tmp_psi[n,:] = step_sweep1D(I,hx,qs,sigma_ts,MU[n],BCs[n])
          else:
            sys.exit("Sweep method specified not defined in SnMethods")
230
          phi = phi+tmp_psi[n,:]*W[n]
        #check convergence
        change = np.linalg.norm(phi-phi_old)/np.linalg.norm(phi)
        iterations.append(iteration)
        Errors.append(change)
        #iterations.append(iteration)
        #Errors.append(change)
        converged = (change < tolerance) or (iteration > maxits)
        if (LOUD>0) or (converged and LOUD<0):</pre>
240
          print("Iteration", iteration, ": Relative Change =", change)
        if (iteration > maxits):
          print("Warning: Source Iteration did not converge: "+\
                sweep_type+", I : "+str(I)+", Diff : %.2e" % change)
        #Prepare for next iteration
245
        iteration += 1
        phi_old = phi.copy()
      if sweep_type == 'step':
          x = np.linspace(0,(I-1)*hx,I)
      elif sweep_type == 'dd':
          x = np.linspace(hx/2, I*hx-hx/2, I)
250
      return x, phi, iterations, Errors, tmp_psi
    def gmres_solve(I,hx,q,sigma_t,sigma_s,N,psiprevioustime,
                    v, dt, Time, BCs, sweep_type,
255
                    tolerance = 1.0e-8, maxits = 100, LOUD=False,
                    restart = 20):
      """Solve, via GMRES, a single-group steady state problem
      Inputs:
       I:
                         number of zones
        hx:
                       size of each zone
                        source array
        q:
        sigma_t:
                         array of total cross-sections
        sigma_s:
                         array of scattering cross-sections
                         number of angles
        N:
                         Boundary conditions for each angle
        BCs:
                       type of 1D sweep to perform solution
        sweep_type:
        tolerance:
                         the relative convergence tolerance for the iterations
```

```
the maximum number of iterations
        maxits:
270
        LOUD:
                          boolean to print out iteration stats
      Outputs:
                          value of center of each zone
        X:
                         value of scalar flux in each zone
        phi:
      11 11 11
      iterations = []
275
      Errors = []
      #compute RHS side
      RHS = np.zeros(I)
280
      MU, W = np.polynomial.legendre.leggauss(N)
      tmp_psi=psiprevioustime.copy()
      if len(Time) ==1:
          sigma_ts=sigma_t
      else:
285
          sigma_ts=sigma_t+1/(v*dt)
      for n in range(N):
        qs=q/2+psiprevioustime[n,:]/(v*dt)
        if sweep_type == 'dd':
290
          tmp_psi[n,:] = diamond_sweep1D(I,hx,qs,sigma_ts,MU[n],BCs[n])
        elif sweep_type == 'step':
          tmp_psi[n,:] = step_sweep1D(I,hx,qs,sigma_ts,MU[n],BCs[n])
        \#tmp\_psi = sweep1D(I, hx, q, sigma\_t, MU[n], BCs[n])
        RHS += tmp_psi[n,:]*W[n]
      #define linear operator for gmres
      def linop(phi):
        tmp = phi * 0
        #sweep over each direction
        for n in range(N):
          if sweep_type == 'dd':
            tmp_psi[n,:] = diamond_sweep1D(I,hx,(phi*sigma_s)/2,
                                       sigma_ts, MU[n], BCs[n])
          elif sweep_type == 'step':
305
            tmp_psi[n,:] = step_sweep1D(I,hx,(phi*sigma_s)/2,
                                         sigma_ts,MU[n],BCs[n])
          tmp += tmp_psi[n,:]*W[n]
        return phi-tmp
      A = spla.LinearOperator((I,I), matvec = linop, dtype='d')
310
      #define a little function to call when the iteration is called
      iteration = np.zeros(1)
      def callback(rk, iteration=iteration):
315
        iteration += 1
        if (LOUD>0):
          print("Iteration", iteration[0], "norm of residual", np.linalg.norm(rk))
        iterations.append(iteration[0])
        Errors.append(np.linalg.norm(rk))
320
```

```
#Do the GMRES Solve
     phi, info = spla.gmres(A, RHS, x0=RHS, tol=tolerance,
                          restart=int(restart), callback=callback)
325
     #Print important information
     if (LOUD):
       print("Finished in", iteration[0], "iterations.")
     if (info >0):
       print("Warning, convergence not achieved :"+str(sweep_type)+" "+str(hx))
330
     if sweep_type == 'step':
         x = np.linspace(0, (I-1)*hx, I)
     elif sweep_type == 'dd':
         x = np.linspace(hx/2, I*hx-hx/2, I)
335
     #Calculate Psi for time iterations
     phi2 = np.zeros(I)
     #sweep over each direction
     for n in range(N):
         \#qs = (q*W[n])/2 + (phi_old*sigma_s)/2 + psiprevioustime[n,:]/(v*dt)
340
         qs=(q)/2+(phi*sigma_s)/2+psiprevioustime[n,:]/(v*dt)
         if sweep_type == 'dd':
             tmp_psi[n,:] = diamond_sweep1D(I,hx,qs,sigma_ts,MU[n],BCs[n])
         elif sweep_type == 'step':
            tmp_psi[n,:] = step_sweep1D(I,hx,qs,sigma_ts,MU[n],BCs[n])
345
         else:
             sys.exit("Sweep method specified not defined in SnMethods")
         phi2 = phi2+tmp_psi[n,:]*W[n]
     return x, phi, iterations, Errors, tmp_psi
350
   def solver(I,hx,q,Sig_t,Sig_s,N,psi,v,dt,Time,BCs,Scheme,tol,MAXITS,loud):
       Method=Scheme.split(':')[1]
       if "Iteration" in Scheme:
           x, phi, iterations, errors, psi =source_iteration(I,
              hx,q,Sig_t,Sig_s,N,psi,v,dt,Time,BCs,
              Method, tolerance=tol, maxits=MAXITS, LOUD=loud)
       elif "GMRES" in Scheme:
           x, phi, iterations, errors, psi =gmres_solve(I,
              hx,q,Sig_t,Sig_s,N,psi,v,dt,Time,BCs,
              Method, tolerance=tol, maxits=MAXITS, LOUD=loud, restart=MAXITS)
       else:
           print("Improper sweep selected")
       return x, phi, iterations, errors, psi
365
   370
   def reduceList(List, N):
       List2=[List[0]]
       Div=int(len(List)/N)
       for i in range(1,len(List)-1):
```

```
if i % Div == 0:
375
                 List2.append(List[i])
        List2.append(List[-1])
        return (List2)
    def loop_values(list1,index):
        This function will loop through values in list even if
        outside range (in the positive sense not negative)
        while True:
            try:
                 list1[index]
                 break
            except IndexError:
                 index=index-len(list1)
        return(list1[index])
    def plot(x,y,ax,label,fig,Check,NumOfPoints):
        if len(x) > 300:
            x=reduceList(x,NumOfPoints)
395
            y=reduceList(y,NumOfPoints)
        \#Plot\ X\ and\ Y
        ax.plot(x,y,
                 linestyle=loop_values(LineStyles, Check),
                 marker=loop_values(MarkerType, Check),
400
                 color=loop_values(Colors, Check),
                 markersize=loop_values(MarkSize,Check),
                 alpha=loop_values(Alpha_Value, Check),
                 label=label)
        #Log or linear scale?
        ax.set_xscale(XScale)
        ax.set_yscale(YScale)
        #Set Title
410
        fig.suptitle(Title, fontsize=TitleFontSize,
                      fontweight=TitleFontWeight, fontdict=font,
                                                                  ha='center')
        #Set X and y labels
        ax.set_xlabel(Xlabel,
                       fontsize=XFontSize, fontweight=XFontWeight,
                       fontdict=font)
        ax.set_ylabel(Ylabel,
                       fontsize=YFontSize,
                       fontweight=YFontWeight,
420
                       fontdict=font)
        return (ax, fig)
    def plotE(x, y, erax, label, erfig, Check, NumOfPoints):
        if len(x) > 300:
425
            x=reduceList(x, NumOfPoints)
            y=reduceList(y,NumOfPoints)
```

```
\#Plot\ X\ and\ Y
        erax.plot(x,y,
                linestyle=loop_values(LineStyles, Check),
430
                marker=loop_values (MarkerType, Check),
                color=loop_values(Colors, Check),
                markersize=loop_values(MarkSize,Check),
                alpha=loop_values(Alpha_Value,Check),
                label=label)
435
        #Log or linear scale?
        erax.set_xscale(XScaleE)
        erax.set_yscale(YScaleE)
        #Set Title
440
        erfig.suptitle(Title, fontsize=TitleFontSize,
                      fontweight=TitleFontWeight, fontdict=font,
                                                                  ha='center')
        \#Set\ X\ and\ y\ labels
        erax.set_xlabel(XlabelE,
                       fontsize=XFontSize, fontweight=XFontWeight,
                       fontdict=font)
        erax.set_ylabel(YlabelE,
                       fontsize=YFontSize,
                       fontweight=YFontWeight,
450
                       fontdict=font)
        return (erax, erfig)
    def Legend(ax):
        handles, labels=ax.get_legend_handles_labels()
455
        ax.legend(handles, labels, loc='best',
                   fontsize=LegendFontSize,prop=font)
        return (ax)
    # def Legend(ax):
460
              handles, labels=ax.get_legend_handles_labels()
    #
              box=ax.get_position()
              ax.set_position([box.x0, box.y0, box.width*SquishGraph,
                                box.height])
              ax.legend(handles, labels, loc='center',
465
                         bbox_to_anchor=(BBOXX, BBOXY),
    #
                         fontsize=LegendFontSize, prop=font,
    #
                         ncol=NumberOfLegendColumns)
    #
              return(ax)
```

Homework 5

 $\psi(\Omega, \bar{x}, t, E)$

Page 30 of 31

Project

Page 31 of 31