Near-optimal and tractable estimation under shift-invariance

Dmitrii Ostrovskii

Georgia Tech

ICCOPT 2025

Los Angeles

Toy example #1: polynomial regression

- Let $x_t^* = f(t)$, $t \in \mathbb{Z}$, where f is unknown polynomial, $\deg(f) = s 1$.
- We observe $y_t = x_t^* + \sigma \xi_t$, where $\xi_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$, for $t \in \{-n,...,n\}$.
- Find $\widehat{x} = \widehat{x}(y)$ with small MSE $\frac{1}{2n+1} \sum_{|t| \leq n} |\widehat{x}_t x_t^*|^2$ regardless of x^* .

Toy example #1: polynomial regression

- Let $x_t^* = f(t)$, $t \in \mathbb{Z}$, where f is unknown polynomial, $\deg(f) = s 1$.
- We observe $y_t = x_t^* + \sigma \xi_t$, where $\xi_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$, for $t \in \{-n,...,n\}$.
- Find $\widehat{x} = \widehat{x}(y)$ with small MSE $\frac{1}{2n+1} \sum_{|t| \le n} |\widehat{x}_t x_t^*|^2$ regardless of x^* .

The assumption on x^* can be rephrased geometrically:

$$x^* \in X$$
,

where X is a specific s-dimensional subspace of $\mathbb{C}^{\mathbb{Z}}$ – that of polynomials.

Toy example #1: polynomial regression

- Let $x_t^* = f(t)$, $t \in \mathbb{Z}$, where f is unknown polynomial, $\deg(f) = s 1$.
- We observe $y_t = x_t^* + \sigma \xi_t$, where $\xi_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$, for $t \in \{-n,...,n\}$.
- Find $\widehat{x} = \widehat{x}(y)$ with small MSE $\frac{1}{2n+1} \sum_{|t| \leq n} |\widehat{x}_t x_t^*|^2$ regardless of x^* .

The assumption on x^* can be rephrased geometrically:

$$x^* \in X$$
,

where X is a specific s-dimensional subspace of $\mathbb{C}^{\mathbb{Z}}$ – that of polynomials.

• Projection estimator $\hat{x} = \Pi_X(y)$, a.k.a. linear least-squares, satisfies

$$\mathbb{E}\left[\frac{1}{2n+1}\sum_{|t|\leqslant n}|\widehat{x}_t - x_t^*|^2\right] \leqslant \frac{\sigma^2 s}{2n+1},$$

for **any** $x^* \in X$. Cannot be improved by more than a constant factor.

• X is **shift-invariant**: $f(\cdot -1)$ is a polynomial of the same degree as f.

Toy example #2: trigonometric polynomials

- Let $x_t^* = a_0 + \sum_{k=1}^s a_k \cos\left(\frac{2\pi kt}{T}\right) + b_k \sin\left(\frac{2\pi kt}{T}\right)$. Unknown a_k, b_k .
- f(t) is a T-periodic function, spectrum lives on s lowest frequencies.
- Same conclusions hold, except that now dim(X) = 2s + 1.
- In particular, X is again **shift-invariant**: $f(\cdot -1)$ is T-periodic if f is.
- ullet We can repeat this saga for any shift-invariant subspace X. However:

What if *X* is **unknown**?

• Of course, $\Pi_X[y]$ depends on X, and so is not available anymore

Adaptive estimation

Without knowing X, can we do almost as good as if we knew it?

Nemirovski's question

• Sequence x^* satisfies the unknown linear recurrence of order s, that is

$$\sum_{\tau=0}^{s} p_{\tau} x_{t-\tau}^* \equiv 0 \quad \forall t \in \mathbb{Z}.$$

• We observe x^* on the domain $\{-n,...,n\}$ in Gaussian noise of level σ :

$$y_t = x_t^* + \sigma \xi_t, \quad |t| \leqslant n,$$

where $2n+1\geqslant s$ and ξ is a sequence with i.i.d. entries $\xi_t\sim\mathbb{C}\mathbb{N}(0,1)$.

Nemirovski's question

• Sequence x^* satisfies the unknown linear recurrence of order s, that is

$$\sum_{\tau=0}^{s} p_{\tau} x_{t-\tau}^* \equiv 0 \quad \forall t \in \mathbb{Z}.$$

• We observe x^* on the domain $\{-n,...,n\}$ in Gaussian noise of level σ :

$$y_t = x_t^* + \sigma \xi_t, \quad |t| \leqslant n,$$

where $2n+1\geqslant s$ and ξ is a sequence with i.i.d. entries $\xi_t\sim\mathbb{CN}(0,1)$.

Question

How well can we estimate x^* on this domain without knowing $p_1, ..., p_s$?

Why is it hard?

ullet The class \mathscr{X}_s of sequences satisfying all linear recurrence relations

$$\sum_{\tau=0}^{s} p_{\tau} x_{t-\tau} \equiv 0$$

is described by 2s params specifying $p_1, ..., p_s$ and initial conditions.

- Yet, \mathscr{X}_s is extremely rich: all exponential polynomials of degree s.
- In particular, a **harmonic oscillation** regularly sampled on [-n, n],

$$x_t = \sum_{1 \leqslant k \leqslant s} c_k e^{i\omega_k t}, \quad t \in \{-n, ..., n\},$$

might itself resemble Gaussian noise for some frequencies $\omega_1,...,\omega_s$.

• We'll revisit this later, when discussing Super-Resolution.

Analysis perspective: difference equations

Let Δ be the unit shift (delay) operator on $\mathbb{C}^{\mathbb{Z}}$:

$$(\Delta x)_t = x_{t-1}, \quad t \in \mathbb{Z}.$$

• Linear recurrence relations are homogeneous difference eqs (ODiffEs):

$$\sum_{\tau=0}^{s} p_{\tau} x_{t-\tau} \equiv 0 \qquad \iff \quad p(\Delta) x \equiv 0$$

where $p(z) := \sum_{ au \in \mathbb{Z}} p_{ au} z^{ au}$ denotes the formal z-transform of $p \in \mathbb{C}^{\mathbb{Z}}$.

• The theory of such ODiffEs closely parallels that of continuous ODEs:

$$P(\frac{d}{dt})f \equiv 0.$$

Description via the *roots* $z_1, ..., z_s$ of characteristic polynomial $p(\cdot)$.

- Stability: |z| < 1 for ODiffEs, Re(z) > 0 for ODEs.
- There is a 1-to-1 correspondence between p and P, such that solutions to ODE and ODiffE are pairwise related via discretization $x_t = f(t)$.

Geometric perspective: shift-invariant subspaces

Let Δ be the unit shift (delay) operator on $\mathbb{C}^{\mathbb{Z}}$:

$$(\Delta x)_t = x_{t-1}, \quad t \in \mathbb{Z}.$$

• Linear recurrence relations are homogeneous difference eqs (ODiffEs):

$$\sum_{\tau=0}^{s} p_{\tau} x_{t-\tau} \equiv 0 \qquad \iff \quad p(\Delta) x \equiv 0$$

where $p(z):=\sum_{ au\in\mathbb{Z}}p_{ au}z^{ au}$ denotes the formal z-transform of $p\in\mathbb{C}^{\mathbb{Z}}$.

- For any p(z): $\deg(p) = s$, the solution set of the ODiffE $p(\Delta)x \equiv 0$ is a **shift-invariant** (i.e. Δ -invariant) s-dimensional subspace of $\mathbb{C}^{\mathbb{Z}}$.
 - Indeed: if x is such that $p(\Delta)x \equiv 0$, then $p(\Delta)\Delta x \equiv \Delta p(\Delta)x \equiv 0$.

Geometric perspective: shift-invariant subspaces

Let Δ be the unit shift (delay) operator on $\mathbb{C}^{\mathbb{Z}}$:

$$(\Delta x)_t = x_{t-1}, \quad t \in \mathbb{Z}.$$

• Linear recurrence relations are homogeneous difference eqs (ODiffEs):

$$\sum_{\tau=0}^{s} p_{\tau} x_{t-\tau} \equiv 0 \qquad \iff \quad p(\Delta) x \equiv 0$$

where $p(z) := \sum_{ au \in \mathbb{Z}} p_{ au} z^{ au}$ denotes the formal z-transform of $p \in \mathbb{C}^{\mathbb{Z}}$.

- For any p(z): $\deg(p) = s$, the solution set of the ODiffE $p(\Delta)x \equiv 0$ is a **shift-invariant** (i.e. Δ -invariant) s-dimensional subspace of $\mathbb{C}^{\mathbb{Z}}$.
 - Indeed: if x is such that $p(\Delta)x \equiv 0$, then $p(\Delta)\Delta x \equiv \Delta p(\Delta)x \equiv 0$.
- Any shift-invariant X with $dim(X) = s \iff ODiffE$ with deg(p) = s.
 - Proving it is a **great** exercise (Beurling '49, Halmos '61, Nikolskii '67).

 $\mathscr{X}_s =$ union of **all** s-dimensional shift-invariant subspaces of $\mathbb{C}^{\mathbb{Z}}$.

Minimax risk

$$||x||_{n,2}^2 := \frac{1}{2n+1} \sum_{|t| \le n} |x_t|^2,$$

- $\|\widehat{x} x^*\|_{n,2}^2$ is the mean-squred error (MSE) of an estimate \widehat{x} of x^* .
- Fix a confidence level 1δ . Worst-case δ -risk of $\widehat{x}(\cdot)$ over $X \subseteq \mathbb{C}^{\mathbb{Z}}$:

$$\mathsf{Risk}_{n,\delta}(\widehat{x}(\cdot)|\mathsf{X}) := \min\Big\{\varepsilon > 0: \ \mathbb{P}\left(\|\widehat{x}(y) - x^*\|_{n,2}^2 > \varepsilon\right) \leqslant \delta \ \forall x^* \in \mathsf{X}\Big\},\,$$

i.e. uniform over $x^* \in X$, tight $1 - \delta$ -confidence bound on MSE.

Minimax δ -risk:

$$\mathsf{Risk}_{n,\delta}^*(\mathsf{X}) := \inf_{\widehat{\mathsf{x}}(\cdot):\mathbb{C}^{2n+1} \to \mathsf{X}} \mathsf{Risk}_{n,\delta}(\widehat{\mathsf{x}}|\mathsf{X}).$$

Question (formalized)

$$\mathsf{Risk}_{n,\delta}^*(\mathscr{X}_s) \simeq ?$$

Minimax risk

$$||x||_{n,2}^2 := \frac{1}{2n+1} \sum_{|t| \le n} |x_t|^2,$$

- $\|\widehat{x} x^*\|_{n,2}^2$ is the mean-squred error (MSE) of an estimate \widehat{x} of x^* .
- Fix a confidence level 1δ . Worst-case δ -risk of $\widehat{x}(\cdot)$ over $X \subseteq \mathbb{C}^{\mathbb{Z}}$:

$$\mathsf{Risk}_{n,\delta}(\widehat{x}(\cdot)|\mathsf{X}) := \min\Big\{\varepsilon > 0: \ \mathbb{P}\left(\|\widehat{x}(y) - x^*\|_{n,2}^2 > \varepsilon\right) \leqslant \delta \ \ \forall x^* \in \mathsf{X}\Big\},\,$$

i.e. uniform over $x^* \in X$, tight $1 - \delta$ -confidence bound on MSE.

Minimax risk on a subspace

For any subspace X with $\dim(X)=s$, not necessarily a shift-invariant one, $\mathrm{Risk}_{n,\delta}^*(X) \asymp \frac{\sigma^2}{2n+1}(s+\log(\delta^{-1})).$

Question (formalized)

$$\mathsf{Risk}_{n,\delta}^*(\mathscr{X}_s) \asymp ?$$

Classes of shift-invariant subspaces

Define the unit circle $\mathbb T$ and its discretization $\mathbb T_n:=\{z\in\mathbb C:z^{2n+1}=1\}.$

ullet Define the set $\mathbb{T}_n^{\langle s \rangle} := \binom{\mathbb{T}_n}{s}$ of s-tuples from \mathbb{T}_n , and the larger set

$$\mathbb{T}_{s,n}:=\left\{\left(z_1,...,z_s\right)\in\mathbb{T}^s:\ \mathsf{dist}\left(z_{k'},z_k\right)\geqslant \tfrac{2\pi}{2n+1}\ \text{ for }\ k'\neq k\right\}.$$

of $\frac{2\pi}{2n+1}$ -separated s-tuples from \mathbb{T} , where $\operatorname{dist}(\cdot,\cdot)$ is the arc distance.

• Let $X(z_1,...,z_s) := \left\{ x \in \mathbb{C}^{\mathbb{Z}} : p(\Delta)x \equiv 0 \text{ with } p(z) = \prod_{k=1}^s (z-z_k) \right\}$, and $\mathscr{X}(\Omega) := \bigcup_{z_1,...,z_s \in \Omega} X(z_1,...,z_s)$ the corresponding subclass of \mathscr{X}_s .

Hierarchy of classes

$$\underbrace{\mathscr{X}(\mathbb{T}_n^{\langle s \rangle})}_{\text{grid spectra}} \subset \underbrace{\mathscr{X}(\mathbb{T}_{s,n})}_{\text{separated line spectra}} \subset \underbrace{\mathscr{X}(\mathbb{T}^s)}_{\text{arbitrary line spectra}} \subset \underbrace{\mathscr{X}(\mathbb{C}^s) = \mathscr{X}_s}_{\text{our problem}}.$$

Grid spectra

$$\underbrace{\mathscr{X}\left(\mathbb{T}_{n}^{\langle s\rangle}\right)}_{\text{grid spectra}}\subset\underbrace{\mathscr{X}\left(\mathbb{T}_{s,n}\right)}_{\text{separated line spectra}}\subset\underbrace{\mathscr{X}\left(\mathbb{T}^{s}\right)}_{\text{our problem}}\subset\underbrace{\mathscr{X}\left(\mathbb{C}^{s}\right)=\mathscr{X}_{s}}_{\text{our problem}}.$$

• Discrete Fourier transform is a unitary operator $\mathfrak{F}_n:\mathbb{C}^\mathbb{Z}\to\mathbb{C}^{2n+1},$

$$(\mathcal{F}_n u)_k = \frac{1}{\sqrt{2n+1}} \sum_{|t| \leq n} u_t \chi_{n,k}^{-t} \quad \text{for } k \in \{-n, ..., n\},$$

where $\chi_{n,k}=\exp\left(\frac{i2\pi k}{2n+1}\right)$ are the roots of unity, i.e. the nodes of \mathbb{T}_n .

• Any $x^* \in X(z_1,...,z_s)$ with $(z_1,...,z_s) \in \mathbb{T}_n^{\langle s \rangle}$ has s-sparse DFT $\mathcal{F}_n x^*$. Moreover, $\mathcal{F}_n \xi$ has the same distribution as ξ , i.e. $(\mathcal{F}_n \xi)_k \stackrel{\text{iid}}{\sim} \mathbb{C} \mathcal{N}(0,1)$.

Thus, estimation on $\mathscr{X}(\mathbb{T}_n^{\langle s \rangle})$ is equivalent to denoising of a sparse vector:

$$\mathsf{Risk}_{n,\delta}(\mathscr{X}_s) \geqslant \mathsf{Risk}_{n,\delta}^*(\mathscr{X}(\mathbb{T}_n^{\langle s \rangle})) \asymp \frac{\sigma^2}{2n+1}(s \, \log(en/s) + \log(\delta^{-1})).$$

• Poll: how to get the correct tail behavior with a tractable estimator?

Separated line spectra

$$\mathscr{X}(\mathbb{T}_n^{\langle s \rangle}) \subset \mathscr{X}(\mathbb{T}_{s,n}) \subset \mathscr{X}(\mathbb{T}^s) \subset \mathscr{X}(\mathbb{C}^s) = \mathscr{X}_s.$$
grid spectra separated line spectra arbitrary line spectra our problem

Spectral signed measure ν^* of $x^* \in X(z_1,...,z_s)$ with $z_1 \neq ... \neq z_s \in \mathbb{T}$ is discrete.

• Lasso analog (Candès & Fernandez-Granda '14; Tang & Recht '14):

$$\hat{x} = \Phi(\hat{\nu})$$
 where $\hat{\nu} \in \underset{\nu \in \mathcal{L}^1(\mathbb{T})}{\operatorname{Argmin}} \|y - \Phi(\nu)\|_{n,2}^2 + \lambda \|\nu\|_1$

and $\Phi(\nu) \in \mathbb{C}^{\mathbb{Z}}$ is the sequence of moments of ν : $[\Phi(\nu)]_t = \int_{z \in \mathbb{T}} z^t d\nu(z)$.

• RIP analog: $\begin{pmatrix} z_1^{-n} & \cdots & z_s^{-n} \\ \vdots & & \vdots \\ z_1^n & \cdots & z_s^n \end{pmatrix}$ is nearly orthogonal if $(z_1,...,z_s) \in \mathbb{T}_{s,n}$.

$$\mathsf{Risk}^*_{2n,\delta}(\mathscr{X}(\mathbb{T}_{s,n})) \lesssim \frac{\sigma^2}{2n+1} s \log(en\delta^{-1}).$$

- Cannot go beyond $\mathscr{X}(\mathbb{T}_{s,n})$: RIP fails for $(z_1,...,z_s) \in \mathbb{T}_{s,N}$ with $N \geqslant n$.
 - No exact recovery on $\mathscr{X}(\mathbb{T}_{s,n})$ from noiseless observations $x_{-n},...,x_n$.

Reproducing filters...

Let $\mathbb{C}_m^\mathbb{Z}$ be the space of sequences supported on $\{-m,...,m\}$. For $\varphi\in\mathbb{C}_m^\mathbb{Z}$

$$[\varphi(\Delta)x]_t = \sum_{|\tau| \leqslant m} \varphi_\tau x_{t-\tau}$$

is the convolution ("LTI filtering") of x with a filter φ of width m.

Definition

Filter $\varphi \in \mathbb{C}_m^{\mathbb{Z}}$ is **reproducing** on $X \subseteq \mathbb{C}^{\mathbb{Z}}$ if $\varphi(\Delta)x \equiv x$ for all $x \in X$.

ullet Any shift-invariant subspace X, $\dim(X)=s$ is reproduced by $p\in\mathbb{C}^\mathbb{Z}_s$.

...as unbiased estimators

- If $\varphi \in \mathbb{C}_m^{\mathbb{Z}}$, then $[\varphi(\Delta)y]_t$ is a linear estimate of x_t^* from $y_{t-m},...,y_{t+m}$.
- If φ is **reproducing** on X, then this estimate is **unbiased** over X:

$$\mathbb{E}[\varphi(\Delta)y]_t - x_t^* = [\varphi(\Delta)x^*]_t - x_t + \sigma \mathbb{E}(\varphi(\Delta)\xi)_t = 0.$$

Its MSE is controlled by $\|\phi\|_2$, namely $\mathbb{E}\|\varphi(\Delta)y - x^*\|_{n,2}^2 = \sigma^2\|\phi\|_2^2$.

Projector trick

Lemma (Juditsky, ca. 2016)

Let $m+1\geqslant s$. Any shift-invariant X with $\dim(X)=s$ is reproduced by $\phi\in\mathbb{C}_m^\mathbb{Z}$

$$\|\phi\|_2 \leqslant \sqrt{\frac{2s}{2m+1}}.$$

- Filter ϕ is constructed from the projector on X, hence the name.
- By Parseval, same ℓ_2 -norm of the spectrum:

$$\|\mathfrak{F}_m\phi\|_2\leqslant\sqrt{\frac{2s}{2m+1}}.$$

• We verify the known minimax risk on a *fixed* shift-invariant subspace:

$$\operatorname{Risk}_{n,\delta}(X) \lesssim \frac{\sigma^2}{2n+1} (s + \log(\delta^{-1})).$$

Squaring trick (ℓ_2 -to- ℓ_1 conversion)

Lemma (Nemirovski, 1990s)

The autoconvolution $\phi^2 \in \mathbb{C}_{2m}^{\mathbb{Z}}$ of a reproducing filter $\phi \in \mathbb{C}_m^{\mathbb{Z}}$ is reproducing, and

$$\|\mathcal{F}_{2m}\phi^2\|_2 \le \|\mathcal{F}_{2m}\phi^2\|_1 = \sqrt{4m+1}\|\phi\|_2^2.$$

Proof:

- 1. $I \phi^2(\Delta) = (I + \phi(\Delta))(I \phi(\Delta))$ erases $x \in X$ because $I \phi(\Delta)$ does so.
- 2. For the norm,

$$\|\mathcal{F}_{2m}\phi^2\|_1 = \frac{1}{\sqrt{4m+1}} \sum_{z \in \mathbb{T}_{2-}} |\phi^2(z)| = \sqrt{4m+1} \|\mathcal{F}_{2m}\phi\|_2^2 = \sqrt{4m+1} \|\phi\|_2^2. \quad \Box$$

Corollary

Let $m+1\geqslant s$. Any shift-invariant X with $\dim(X)=s$ is reproduced by $\varphi\in\mathbb{C}_{2m}^\mathbb{Z}$:

$$\|\mathfrak{F}_{2m}\varphi\|_2 \leqslant \|\mathfrak{F}_{2m}\varphi\|_1 \leqslant \frac{4s}{\sqrt{4m+1}}.$$

• Conversion of ℓ_2 -norm to ℓ_1 -norm with \sqrt{s} inflation, "as if" under sparsity!

Result #1: Oracle inequality

$$\widehat{\varphi} \in \underset{\varphi \in \mathbb{C}_n^{\mathbb{Z}}}{\operatorname{Argmin}} \left\{ \| \varphi(\Delta) y - y \|_{n,2}^2 : \ \| \mathfrak{F}_n \varphi \|_1 \leqslant \frac{\mathsf{R}_1}{\sqrt{2n+1}}, \quad \| \mathfrak{F}_n \varphi \|_{\infty} \leqslant \frac{\mathsf{R}_{\infty}}{\sqrt{2n+1}} \right\}.$$

Theorem 1 (O.'24)

Assume $x^* \in X$ where X has dimension s and is reproduced by $\varphi \in \mathbb{C}_n^\mathbb{Z}$ such that

$$\|\mathfrak{F}_n\varphi\|_2\leqslant \frac{\mathsf{R}_2}{\sqrt{2n+1}},\quad \|\mathfrak{F}_n\varphi\|_1\leqslant \frac{\mathsf{R}_1}{\sqrt{2n+1}},\quad \|\mathfrak{F}_n\varphi\|_\infty\leqslant \frac{\mathsf{R}_\infty}{\sqrt{2n+1}}.$$

As long as $n \geq s$, estimator $\hat{x} = \hat{\varphi}(\Delta)y$ with probability at least $1 - \delta$ satisfies

$$\|\widehat{x} - x\|_{n,2}^2 \lesssim \frac{\sigma^2}{2n+1} \left(s + \mathsf{R}_2^2 + \log(2s) \, \mathsf{R}_1 \log(2n/s) + \log^2(2s) \, \mathsf{R}_\infty \log(\delta^{-1}) \right).$$

- Projector+Squaring: $R_{\infty} \leqslant R_2 \leqslant R_1 \asymp s$, giving us $s^2 + s \log(n) + s \log(\delta^{-1})$.
- But ensuring $R_{\kappa} \simeq s^{1/\kappa}$ for $\kappa \in \{1, 2, \infty\}$ would give us $s \log(n) + \log(\delta^{-1})$.
- It suffices to guarantee $R_1 \leq s$ and $R_\infty \leq 1$; then $R_2^2 \leq R_\infty R_1 \leq s$ by Young.

Result #2: Oracle existence

Theorem 2 (O.'24)

Let $m+1\geqslant s$. Any shift-invariant subspace X is reproduced by $arphi^\star\in\mathbb{C}_{9m}^\mathbb{Z}$:

$$\|\varphi\|_2 \leqslant \frac{6\mathsf{c}_\star\sqrt{2s}}{\sqrt{18m+1}}, \quad \|\mathcal{F}_{9m}\varphi^\star\|_1 \leqslant \frac{36\mathsf{c}_\star s}{\sqrt{18m+1}}, \quad \|\mathcal{F}_{9m}\varphi^\star\|_\infty \leqslant \frac{2\mathsf{c}_\star}{\sqrt{18m+1}}$$

- where $c_{\star} := 1.08\pi^2 + 3$.
- Constant c_* can be replaced with something like 3, using <u>higher-order</u> smoothing splines on $\mathbb T$ instead of the Fejér kernel (spline of order 2).
- Conjecture: worst case is grid: $X = X(z_1, \ldots, z_s)$ for $(z_1, \ldots, z_s) \in \mathbb{T}_n^{\langle s \rangle}$.

Result #2: Oracle existence

Theorem 2 (0.'24)

Let $m+1\geqslant s$. Any shift-invariant subspace X is reproduced by $arphi^\star\in\mathbb{C}_{9m}^\mathbb{Z}$:

$$\|\varphi\|_2 \leqslant \frac{6\mathsf{c}_\star \sqrt{2s}}{\sqrt{18m+1}}, \quad \|\mathcal{F}_{9m}\varphi^\star\|_1 \leqslant \frac{36\mathsf{c}_\star s}{\sqrt{18m+1}}, \quad \|\mathcal{F}_{9m}\varphi^\star\|_\infty \leqslant \frac{2\mathsf{c}_\star}{\sqrt{18m+1}}$$

where
$$c_{\star} := 1.08\pi^2 + 3$$
.

- Constant c_* can be replaced with something like 3, using <u>higher-order</u> smoothing splines on $\mathbb T$ instead of the Fejér kernel (spline of order 2).
- Conjecture: worst case is grid: $X = X(z_1, \ldots, z_s)$ for $(z_1, \ldots, z_s) \in \mathbb{T}_n^{\langle s \rangle}$.

Corollary

As long as $n \geq s$,

$$\mathsf{Risk}_{n,\delta}^*(\mathscr{X}_{\mathbf{s}}) \leq \frac{\sigma^2}{2n+1} \log(n/s) \left(\log(2s) \, \mathbf{s} \log(2n) + \log^2(2s) \log(\delta^{-1}) \right).$$

 $\setminus begin\{proof\}$

Oracle construction

Intuition:

- Let ϕ be "small" in ℓ_2 . ϕ^2 is small in ℓ_1 but might be "large" in ℓ_2 .
- Since $|\phi^2(z)| \gg |\phi(z)|$ requires that $|\phi^2(z)| \gg 1$, the only possible way for $\|\mathcal{F}_n\phi^2\|_2$ to be large is due to $z \in \mathbb{T}_n$ at which $|\phi(z)| \geqslant 1$.
- Can we correct $\phi^2(z)$ by renormalizing it at the bad frequencies?

Oracle construction

Intuition:

- Let ϕ be "small" in ℓ_2 . ϕ^2 is small in ℓ_1 but might be "large" in ℓ_2 .
- Since $|\phi^2(z)| \gg |\phi(z)|$ requires that $|\phi^2(z)| \gg 1$, the only possible way for $\|\mathcal{F}_n\phi^2\|_2$ to be large is due to $z \in \mathbb{T}_n$ at which $|\phi(z)| \geqslant 1$.
- Can we correct $\phi^2(z)$ by renormalizing it at the bad frequencies?

Construction:

1. Let n=9m. Define the "approximate support" of $\phi\in\mathbb{C}_m^\mathbb{Z}$ on \mathbb{T}_n as

$$\mathsf{Supp}_n(\phi) := \{z \in \mathbb{T}_n : |\phi(z)| \geqslant 1\}.$$

2. Let $\rho^{\star} \in \mathbb{C}^{\mathbb{Z}}_{5m}$ interpolate $\frac{1}{\phi^2(z)}$ on $\mathrm{Supp}_n(\phi)$ with minimal sup-norm on \mathbb{T} :

$$\rho^{\star} \in \operatorname*{Argmin}_{\rho \in \mathbb{C}^{\mathbb{Z}}_{\mathsf{Sm}}} \left\{ \|\rho\|_{\mathbb{T}} \ \mathsf{s.r.} \ \rho(z) \phi^{2}(z) = 1 \ \forall z \in \mathsf{Supp}_{n}(\phi) \right\}.$$

3. Choose $\varphi^* \in \mathbb{C}_{0m}^{\mathbb{Z}}$ as

$$\varphi^*(z) := \varphi^2(z) + \rho^*(z)(\varphi^2(z) - \varphi^4(z)).$$

Preparation

$$\mathsf{Supp}_n(\phi) := \{z \in \mathbb{T}_n : |\phi(z)| \geqslant 1\}.$$

$$\begin{split} \rho^{\star} \in & \operatorname*{Argmin}_{\rho \in \mathbb{C}^{\mathbb{Z}}_{\mathsf{Sm}}} \left\{ \|\rho\|_{\mathbb{T}} \ \mathsf{s.r.} \ \rho(z) \phi^{2}(z) = 1 \ \forall z \in \mathsf{Supp}_{n}(\phi) \right\}, \\ & \mathsf{E}_{m,n}(\phi) := 1 \vee \|\rho^{\star}\|_{\mathbb{T}}. \end{split}$$

$$\varphi^*(z) := \varphi^2(z) + \rho^*(z)(\varphi^2(z) - \varphi^4(z)).$$

• φ^{\star} is reproducing on X. Indeed: ϕ^2 is reproducing, and $1-\phi^2$ divides $1-\varphi^{\star}$:

$$1 - \varphi^* = (1 - \phi^2)(1 - \rho\phi^2).$$

Lemma (Error bound on \mathbb{T}_n)

$$\|\phi^2\rho\|_{\mathbb{T}_n}\leqslant \mathsf{E}_{m,n}(\phi).$$

Proof:

- For $z \in \operatorname{Supp}_n(\phi)$, one has $|\rho^*(z)\phi^2(z)| = 1$.
- For $z \in \mathbb{T}_n \setminus \operatorname{Supp}_n(\phi)$, $|\phi(z)| \leq 1$ and $|\rho^*(z)\phi^2(z)| \leq |\rho^*(z)| \leq \operatorname{E}_{m,n}(\phi)$. \square

Control of norms

Proposition 1

$$\|\mathcal{F}_n\varphi\|_1 \lesssim \frac{s\mathsf{E}_{m,n}(\phi)}{\sqrt{2n+1}}, \quad \|\mathcal{F}_n\varphi\|_{\infty} \leqslant \frac{3\mathsf{E}_{m,n}(\phi)}{\sqrt{2n+1}}.$$

Proof:

• Factor out ϕ^2 from φ^* :

$$\varphi^* = \phi^2 (1 + \rho^* - \phi^2 \rho^*).$$

• For ℓ_1 -norm,

$$\|\mathcal{F}_n\varphi^{\star}\|_1 = \frac{1}{\sqrt{2n+1}} \sum_{z \in \mathbb{T}_n} |\varphi(z)| \leqslant \|\mathcal{F}_n\phi^2\|_1 \Big(1 + \sup_{z \in \mathbb{T}_n} |\rho^{\star}(z)| + \sup_{z \in \mathbb{T}_n} |\rho^{\star}(z)\phi^2(z)|\Big)$$

$$\begin{aligned} [\mathsf{Error \ Bound \ Lemma}] &\leqslant 3\mathsf{E}_{m,n}(\phi)\|\mathcal{F}_n\phi^2\|_1 \\ & [\mathsf{Squaring}] &\leqslant \mathsf{E}_{m,n}(\phi)\frac{s}{\sqrt{2n+1}}. \end{aligned}$$

• For ℓ_{∞} -norm, note that $\varphi^{\star}(z)=1$ for all $z\in \operatorname{Supp}_n(\phi)$. On the other hand, for $z\in \mathbb{T}_n\setminus \operatorname{Supp}_n(\phi)$ one has $|\phi(z)|\leqslant 1$ by the definition of $\operatorname{Supp}_n(\phi)$, so

$$|\varphi^*(z)| \le |\varphi^2(z)| (1+|\rho^*(z)|+|\rho^*(z)||\phi^2(z)|) \le 1+2|\rho^*(z)| \le 3\mathsf{E}_{m,n}(\phi).$$

Bounding $E_{m,n}(\phi)$

Proposition 2

$$\mathsf{E}_{m,9m}(\phi) \leqslant 1.08\pi^2 + 2.$$

Proof:

$$\mathsf{E}_{m,n}(\phi) = \inf_{\rho \in \mathbb{C}_{\mathsf{E}_m}^{\mathbb{Z}}} \left\{ \|\rho\|_{\mathbb{T}} \; \; \mathsf{s.t.} \; \; \rho(z) \phi^2(z) = 1 \quad \forall z \in \mathsf{Supp}_n(\phi) \right\}.$$

Consider the Fejér interpolation polynomial on $Supp_n(\phi)$,

$$\hat{\rho}(z) = \sum_{w \in \operatorname{Supp}_n(\phi)} \frac{1}{\phi^2(w)} \frac{\operatorname{Fej}_{5m}(z/w)}{5m+1},$$

where $\text{Fej}_{5m} \in \mathbb{C}^{\mathbb{Z}}_{5m}$ is the Fejér kernel of width 5m:

$$\mathsf{Fej}_{5m}(z) := \sum_{|\tau| \leqslant 5m} \left(1 - \frac{|\tau|}{5m+1} \right) z^{\tau}.$$

Note that $\operatorname{Fej}_{5m} \in \mathbb{C}^{\mathbb{Z}}_{5m}$ and $\operatorname{Fej}_{5m}(1) = 5m+1$, so $\hat{\rho}$ is feasible: $\operatorname{E}_{m,n}(\phi) \leqslant \|\hat{\rho}\|_{\mathbb{T}}$.

$$\hat{\rho}(z)\leqslant \sum_{w\,\in\,\operatorname{Supp}_n(\phi)}\frac{1}{|\phi(w)|^2}\frac{|\operatorname{Fej}_{5m}(z/w)|}{5m+1}\leqslant \sum_{w\,\in\,\mathbb{T}_n}\frac{|\operatorname{Fej}_{5m}(z/w)|}{5m+1}\leqslant 2+\left(\frac{2n+1}{5m+1}\right)^2\!\!\frac{\pi^2}{12}.$$

Perspectives

Future work:

- Deconvolution (ordinary and blind).
- Support estimation.
- Multi-index?

Fin!

Projector trick, cont'd

Lemma (Juditsky, ca. 2016)

Let $m+1\geqslant s$. Any shift-invariant X with $\dim(X)=s$ is reproduced by $\phi\in\mathbb{C}_m^\mathbb{Z}$

$$\|\phi\|_2^2 \leqslant \frac{2s}{2m+1}.$$

Proof:

- 1. Slices $(x_0,...,x_m)$ of $x \in X$ form a subspace $X_m \subseteq \mathbb{C}^{m+1}$ with $\dim(X_m) \leqslant s$.
- 2. Hence, the projector $\Pi_m \in \mathbb{C}^{m+1} \to \mathbb{C}^{m+1}$ on X_m satisfies $\|\Pi_m\|_F^2 \leqslant s$, and

$$\|\pi^*\|_2^2 \leqslant \frac{s}{m+1} \leqslant \frac{2s}{2m+1}$$

for some row π^* of Π_m . Let $t_0 \in \{0,...,m\}$ be the index of that row π^* .

3. On the other hand, the fact that π^* is row $\#t_0$ of the projector Π_m reads

$$x_{t_0} = \sum_{0 \le \tau \le m} \pi_{\tau}^* x_{\tau} = (\phi(\Delta)x)_{t_0}, \quad \forall x \in X,$$

where $\phi \in \mathbb{C}_m^{\mathbb{Z}}$ is constructed by shifting and zero-padding π^* appropriately.

Separated line spectra, made simple

$$\underbrace{\mathscr{X}\left(\mathbb{T}_{n}^{\langle s\rangle}\right)}_{\text{grid spectra}}\subset\underbrace{\mathscr{X}\left(\mathbb{T}_{s,n}\right)}_{\text{separated line spectra}}\subset\underbrace{\mathscr{X}\left(\mathbb{T}^{s}\right)}_{\text{our problem}}\subset\underbrace{\mathscr{X}\left(\mathbb{C}^{s}\right)=\mathscr{X}_{s}}_{\text{our problem}}.$$

• For $x \in X(z_1,...,z_s)$ with distinct $z_1,...,z_s \in \mathbb{T}$, we get $\mathcal{F}_n x$ by evaluating on \mathbb{T}_n the convolution of a discrete measure supported on $\{z_1,...,z_s\}$ with

$$\mathsf{Dir}_n(z) = \sum_{|t| \leqslant n} z^t, \quad z \in \mathbb{T}.$$

• If $\operatorname{dist}(z_1, z_2) \gtrsim \frac{4\pi}{2n+1}$, then $\theta^* = \mathcal{F}_n x^*$ is nearly sparse, so take $\widehat{x} = \mathcal{F}_n^{\dagger} \widehat{\theta}$ with $\widehat{\theta} \in \operatorname{Argmin} \|y - \mathcal{F}_n^{\dagger} \theta\|_2^2 + \lambda \|\theta\|_1$.

$$\theta \in \mathbb{C}^{2n+1}$$

$$\mathsf{Risk}^*_{2n,\delta}(\mathscr{X}(\mathbb{T}_{s,n})) \lesssim \frac{\sigma^2}{2n+1} s \log(en\delta^{-1}).$$

• Cannot go beyond $\mathscr{X}(\mathbb{T}_{s,n})$.

Nonparametrics beyond smoothness

Differential inequalities of the form:

$$\mathcal{H}_{s,q,L} = \{ f \in \mathsf{C}^s(\mathbb{R}) : \| \tfrac{d^s}{dt^s} f \|_{L_q} \leqslant L \}.$$

Smooth functions – those close to polynomials (Sobolev, Hölder, etc.)

Arbitrary differential inequalities:

$$\mathfrak{H}_{\mathbf{P},q,L} = \{ f \in \mathsf{C}^{\mathsf{s}}(\mathbb{R}) : \| \mathbf{P}(\frac{d}{dt}) f \|_{L_q} \leqslant L \}.$$

Functions close to exponential polynomials, possibly very nonsmooth

- In classical nonparametrics, the minimax risk (\approx s) on the subspace of polynomials controls the minimax rates on Sobolev, Hölder, etc. balls $\mathcal{H}_{s,q,L}$.
- For any fixed subspace with $\dim(s)$, the minimax risk is the same. Bias defined by $L \Rightarrow$ same bias-variance tradeoff & minimax rates on $\mathcal{H}_{P,q,L}$.
- If it turns out that the minimax risk on the whole union \mathscr{X}_s is still \times s, then the minimax rates on $\mathscr{H}^*_{s,q,L} := \bigcup_{\deg(\mathsf{P})=s} \mathscr{H}_{\mathsf{P},q,L}$ are the same as on $\mathscr{H}_{s,q,L}$.