

School Name:	UDAAN
Test Name:	Weekly Assessment Class XI Week 4
Total Questions:	45
Marks:	45
Duration:	90 minutes

Instructions for Assessment:

- The test is of 11/2 hours (90 minutes) duration.
- The test consists of 45 questions.
- There are three parts in the question paper **A**, **B**, **C** consisting of Physics, Chemistry and Mathematics having 15 questions in each part of equal weightage.
- There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response.
- No candidate is allowed to use any textual material, printed or written, pager, mobile, any electronic device, etc

Section: Physics		
Questions: 15	Marks: 15	

Four rods each of length 1 have been hinged to form a rhombus. Vertex A is fixed to a rigid
support, vertex C being pulled to the right along x-axis with a uniform speed v as shown in fig.
The speed with which vertex B moves toward C at the moment the rhombus takes the shape of a
square is

1.0

- $\mathbf{a.} \quad \frac{v}{4}$
- **b.** $\frac{v}{2}$
- $\mathbf{c.} \quad \frac{v}{\sqrt{2}}$
- **d.** *v*

A rod of length l slides down along the inclined wall as shown in fig. At the instant shown in figure, the speed of the end A is v, then the speed of B will be

2.

1.0

$$V \frac{\cos \phi}{\cos \theta}$$

- $V \frac{\cos \theta}{\cos \phi}$
- b. $\cos \phi$ $V \frac{\sin \phi}{\phi}$
- c. $V \frac{\sin \varphi}{\sin \theta}$
- $\mathbf{d.} \quad V \frac{\sin \theta}{\sin \phi}$
- 3. A rocket is fired vertically upwards and moves with net vertical acceleration of $20 \, m/s^2$. After 1

1.0

	minute the fuel is exhausted. The time taken by it to reach the highest point after the fuel is	
	exhausted will be nearly $(g = 10 \text{ m/s}^2)$	
	a. 4 min	
	b. 2 min	
	c. 1 min	
	d. 0.5 min	
	From the top of a building 40m tall, a ball is thrown vertically upwards with a velocity of 10	
	m/sec. After how long will the ball take to pass through the point from where it was projected?	
	(Take $g = 10 \text{ m/sec}^2$)	
4.	a. 2 sec	1.0
	b. 3 sec	
	c. 1 sec	
	d. 4 sec	
5.	The figure shows the velocity- time graph of a body moving in a straight line. Find the distance travelled by the body in 20 sec. a. 60 m b. 40 m c. 70 m d. 0 m	1.0
6.	A body moving in a straight line covers a distance of 14 m in the 5 th second and 20 m in the 8 th second. How much distance will it cover in the 15 th second? a. 34m b. 33m c. 35m d. 36m	1.0
7.	A police jeep moving at a constant speed v on a straight road chasing a thief riding on motor cycle. The thief starts from rest when the police jeep is at a distance x away and accelerates at a constant rate a. the police will be able to catch thief if (a) $v \ge \sqrt{ax}$ (b) $v \ge \sqrt{2ax}$ (c) $v \ge 2\sqrt{ax}$ (d) $v \ge \sqrt{\frac{ax}{2}}$	1.0

	A balloon is rising vertically upwards with a constant velocity of 10 m/sec. When it is at a height	
	of 45 m above ground, a stone is dropped from it. Find the height of the balloon when the stone	
	hits the ground? Take $g = 10 \text{ m/sec}^2$	
8.	a. 80 m	1.0
	b. 82 m	
	c. 37 m	
	d. 45 m	
	A ball is dropped from the top of a tower. In the last second of its motion, the ball covers a	
	distance of 9/25 times the height of tower. Find the height of the tower?	
9.	a. 112.5 m	1.0
9.	b. 115 m	1.0
	c. 122.5 m	
	d. 125 m	
10.	The velocity-time graph of a stone thrown vertically upward with an initial velocity of 30 ms ⁻¹ is shown in the Fig. 2.35. The velocity in the upward direction is taken as positive and that in the downward direction as negative. What is the maximum height to which the stone rises? A	1.0

11.	 At t = 0, an arrow is fired vertically upwards with a speed of 98 ms⁻¹. A second arrow is fired vertically upwards with the same speed at t = 5 s. Then (a) the two arrows will be at the same height above the ground at t = 10 s (b) the two arrows will reach back their starting points at t = 20 s and at t = 30 s (c) the ratio of the speeds of the first and the second arrows at t = 20 s will be 2: 1 (d) the maximum height attained by either arrow will be 980 m 	1.0
12.	The variation in the speed of a car during its two hour journey is shown in the graph of Fig. 2.36. The magnitude of the maximum acceleration of the car occurs during the interval 100- 80- 100- 80- 100- 100- 100- 100-	1.0
13.	A parachutist drops freely from an aeroplane for 10 s before the parachute opens out. Then he descends with a net retardation of 2.5 ms^{-2} . If he bails out of the plane at a height of 2495 m and $g = 10 \text{ ms}^{-2}$, his velocity on reaching the ground will be (a) 2.5 ms^{-1} (b) 7.5 ms^{-1} (c) 5 ms^{-1} (d) 10 ms^{-1}	1.0

	some time after which β to come to rest. I	om rest at a constant rate α for the chit decelerates at a constant rate of the total time elapsed is t , the acquired by the car is given by	
14.	(a) $\frac{\alpha\beta}{\alpha+\beta} t$ (c) $\frac{\alpha^2+\beta^2}{\beta\alpha} t$	(b) $\frac{\alpha + \beta}{\alpha \beta} t$ (d) $\frac{\alpha^2 - \beta^2}{\beta \alpha} t$	1.0
15.	of 10 ms ⁻¹ . When ground, a parache opens his parache	g vertically upwards at a velocity it is at a height of 45 m from the utist bails out from it. After 3s he te and decelerates at a constant rate was the height of the parachutist	1.0
	Take $g = 10 \text{ ms}^{-2}$	d when he opened his parachute?	
	(a) 15 m	(b) 30 m	
	(c) 45 m	(d) 60 m	

Section: Chemistry		
Questions: 15 Marks: 15		

П		
	The energy of an electron in n^{th} orbit of hydrogen atom is	
	a. $\frac{13.6}{p^4}$ eV	
16.	b. $\frac{n}{n^3} eV$	1.0
	$c. \frac{13.6}{n^2} eV$	
	d. $\frac{13.6}{n}$ eV	
	The value of the energy for the first excited state of hydrogen atom is	
	a. -13.6 <i>eV</i>	
17.	b. -3.40 eV	1.0
	c. −1.51 eV	
	d. −0.85 eV	
	Ratio of radii of second and first Bohr orbits of H atom	
	a. 2	
18.	b. 4	1.0
100	c. 3	
	d. 5	
	Which of the following transitions are allowed in the normal electronic emission spectrum of an	
	atom?	
	a. $2s \rightarrow 1s$	
19.	$\mathbf{b.} 2p \to 1s$	1.0
	$\mathbf{c.} 3d \to 2p$	
	$\mathbf{d.} 5d \to 2s$	
	Which of the following has the smallest radius of the first orbit?	
20.	a. A hydrogen atomb. A tritium atom	1.0
	c. Triply ionized beryllium	
	d. Doubly ionized helium What happens, when an electron jumps from L to K shall?	
	What happens, when an electron jumps from L to K shell? a. Energy is absorbed	
21.	b. Energy is released	1.0
	c. Energy becomes zerod. Energy remains unchanged	
22.	Which of the following relation could be drawn from Bohr theory?	1.0

	a. Velocity of electron $\propto \frac{1}{n}$	
	b. Frequency of revolution $\propto \frac{1}{n^3}$	
	c. Radius of orbit $\propto n^2 Z$	
	d. Force on electron $\propto \frac{1}{n}$	
	Which one of the following is considered as the main postulate of Bohr's model of atom?	
	a. Protons are present in the nucleus	
	b. Electrons are revolving around the nucleus	
23.	c. Centrifugal force produced due to the revolving electrons balances the force of attraction	1.0
	between the electron and the protons	
	d. Angular momentum of electron is an integral multiple of $\frac{h}{2\pi}$	
	The maximum energy is present in any electron at	
	a. Nucleus	
24.	b. Ground state	1.0
	c. First excited state	
	d. Infinite distance from the nucleus	
	The postulate of Bohr theory that electrons jump from one orbit to the other, rather than flow is	
	according to	
25.	a. The quantization concept	1.0
25.	b. The wave nature of electron	1.0
	c. The probability expression for electron	
	d. Heisenberg uncertainty principle	
	Bohr's model can explain	
	a. The spectrum of hydrogen atom only	
26.	b. Spectrum of atom or ion containing one electron only	1.0
	c. The spectrum of hydrogen molecule	
	d. The solar spectrum	
	The radius of which of the following orbit is same as that of the first Bohr's orbit of hydrogen	
25	atom	1.0
27.	a. $He^+(n=2)$	1.0
	a. $He^+(n=2)$ b. $Li^{2+}(n=2)$	

	c.	$Li^{2+}(n=3)$	
	d.	$Be^{3+}(n=2)$	
	Which	of the following is the correct outer configuration of chromium?	
	a.		
28.	b.		1.0
	c.	\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow	
	d.	$\uparrow\downarrow\uparrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow$	
	The nur	mber of unpaired electrons in Mn^{4+} (Z = 25) is	
	a.	Four	
29.	b.	Two	1.0
	c.	Five	
	d.	Three	
	The con	nfiguration 1s ² 2s ² 2p ⁵ 3s ¹ is valid for the	
	a.	ground state of fluorine	
30.	b.	excited state of fluorine	1.0
	с.	excited state of neon	
	d.	excited state of the O_2^- ion	
	1		

Section: Mathematics		
Questions: 15	Marks: 15	

	The number of points in $(-\infty, \infty)$ for which $x^2 - x \sin x - \cos x = 0$ is	
31.	a. 6 b. 4 c. 2 d. 0	1.0
	The greatest value of the function $f(x) = \frac{\sin 2x}{\sin(x + \frac{\pi}{4})}$ in the interval	
32.	$\left[0,\frac{\pi}{2}\right]$ is:	1.0
	a. $\frac{1}{\sqrt{2}}$ b. 1 c. $\sqrt{2}$ d. $2\sqrt{2}$	
	If $x \cos \lambda = y \cos \left(\frac{2\pi}{3} + \lambda\right) = z \cos \left(\frac{4\pi}{3} + \lambda\right)$, then the value of [xy + yz + zx] is :	
33.	a. 0 b. 1 c. 2 d1	1.0
	If $\sin x + \sin^2 x = 1$, then the value of $\cos^{12} x + 3\cos^{10} x + 3\cos^8 x + \cos^6 x - 1$ is:	
34.	a. 0 b. 1 c. 2 d2	1.0

	Maile A constant to A constant C D. Harris C A constant	
	If sin A, cos A and tan A are in G.P., then $\cot^6 A - \cot^2 A$ equals :	
35.	a. 0	1.0
	b. 1	
	c. 2	
	d. 3	
	The number of solutions of the equation : $\sin 2x + \cos 2x + \sin x + \cos x + 1$	
	= 0 in the first quadrant are :	
36.	. 2	1.0
	a. 3	
	b. 2	
	c. 1	
	d. 0	
	The number of roots of the equation: $tan^2 \theta - 3sec\theta + 3 = 0$ in the	
	interval $[0,2\pi]$ is :	
37.	a. 1	1.0
	b. 2	
	c. 3	
	d. 4	
	Poth roots of the equation, a social their 0 - a are equal if	
	Both roots of the equation; $a\cos\theta + b\sin\theta = c$ are equal if	
20	a. $a^2 + b^2 + c^2 = 1$	1.0
38.	b. $a^2 = b^2 + c^2$	1.0
	c. $b^2 = a^2 + c^2$	
	d. $c^2 = a^2 + b^2$	
	If $\tan \alpha = n \tan \beta$, then the maximum value of $\tan^2(\alpha - \beta)$ is:	
	12 (34 P) = 1	
	$(-1)^2$	
	a. $\frac{(n+1)}{}$	
	4n	
	a. $\frac{(n+1)^2}{4n}$ b. $\frac{(n-1)^2}{n}$	
39.	0	1.0
	$(2n+1)^2$	
	c. $\frac{4n}{(2n+1)^2}$ d. $\frac{(2n-1)^2}{(2n-1)^2}$	
	$4n_{1}$	
	d. $\frac{(2n-1)^2}{n}$	
	$\frac{3}{4n}$	

	The general solution of the equation $\sin^{50}x - \cos^{50}x = 1$ is :	
40.	a. $2n\pi + \frac{\pi}{\frac{2}{2}}$ b. $2n\pi + \frac{\pi}{\frac{3}{3}}$ c. $n\pi + \frac{\pi}{\frac{2}{3}}$ d. $n\pi + \frac{\pi}{\frac{3}{3}}$	1.0
41.	If the equation $\cos 2x + a \sin x = 2a - 7$ possess a real solution, then 'a' lies in the interval $a. \ (-\infty,2)$ $b. \ [2, 6]$ $c. \ (6, 9)$ $d. \ (9, \infty)$	1.0
42.	The perimeter of a triangle is 6 times the Arithmetic Mean of the sines of its angles. If side a = 1, then $\angle A$ is equal to : $ a. \frac{\pi}{6} $ $b. \frac{\pi}{4} $ $c. \frac{\pi}{3} $ $d. \frac{\pi}{2} $	1.0
43.	Solution of the system of equations $x+y=\frac{\pi}{4},\ \tan x+\tan y=1_{is}$ a. $x=\frac{\pi}{2}-n\pi,y=n\pi$ b. $x=\frac{\pi}{4}-n\pi,y=n\pi$ c. $x=\frac{\pi}{4}-n\pi,y=2n\pi$ d. None of these	1.0

44.	The values of x between 0 & 2π which satisfy the equation $\sin x \sqrt{8\cos^2 x} = 1$ are in A.P. The common difference of the A.P. is a. $\frac{\pi}{8}$ b. $\frac{\pi}{4}$ c. $\frac{3\pi}{8}$ d. $\frac{5\pi}{8}$	1.0
45.	The equation $\sin^4 x - (K-2)\sin^2 x - (K+3) = 0$ possesses a solution if : a. $K > -3$ b. $K < -2$ c. $-3 < K < -2$ d. $K = -2$ d. $K = -2$ is any positive integer	1.0

Key

Question	Correct	Question	Correct	Question	Correct
Number	Option	Number	Option	Number	Option
1.	C	16.	C	31.	C
2.	В	17.	В	32.	C
3.	В	18.	В	33.	A
4.	A	19.	A	34.	A
5.	A	20.	C	35.	В
6.	A	21.	В	36.	D
7.	В	22.	A	37.	C
8.	В	23.	D	38.	D
9.	C	24.	D	39.	В
10.	В	25.	A	40.	С
11.	C	26.	В	41.	В
12.	В	27.	D	42.	A
13.	C	28.	C	43.	В
14.	A	29.	D	44.	В
15.	В	30.	С	45.	C

Explanation

Question	Explanation		
Number			
1.	Using vector addition of two vectors $ A $		
	$v'^{2} + v'^{2} = v^{2}$ $(\theta = 90^{0})$ $2 v'^{2} = v^{2}$ $v' = \frac{v}{\sqrt{2}}$		
	\mathbf{y} \mathbf{y} \mathbf{y} \mathbf{x}		
2.	$l = Ax' + B'P$ $l = y \cos \phi + x \cos \theta$ $\frac{dl}{dt} = \cos \phi \frac{dy}{dy} + \cos \theta \frac{dx}{dy}$ $0 = v_{Q}\cos \phi + v_{P}\cos \theta$ $v_{Q}\cos \phi = -v_{P}\cos \theta$ $\because v_{P} = v$ $v_{Q} = \frac{v \cos \theta}{\cos \phi}$		
3.	$v = u + at \Rightarrow v = 0 + 20 \text{ x } 60 = 1200 \text{ m/s}$ $v = u - \text{gt (when fuel is exhausted)}$ $0 = 1200 - 10 \text{ x t}$ $t = 120 \text{ s} = 2 \text{ min}$		

4.	$s = 0$, $u = +10 \text{ ms}^{-1}$ and $a = -10 \text{ ms}^{-2}$. Therefore $0 = 10t - 5t^2 \implies t = 2 \text{ s}$	
5.	Distance = area under speed – time graph which is shown in Fig. 2.17. $ \uparrow \text{Speed} \atop \text{(ms}^{-1}) 6 \\ 0 \qquad 5 \qquad 10 \qquad 15 \qquad 20 \qquad t(s) \rightarrow \\ Fig. 2.17 $ $ \therefore \text{ Distance travelled in 20 s = area of } OAB + \text{ area of } BCD $ $ = \frac{1}{2} \times 6 \times 10 + \frac{1}{2} \times 6 \times 10 = 60 \text{ m} $	
6.	$S_n = u + \frac{a}{2}(2n-1)$ $S_5 = u + \frac{9a}{2} $ $S_8 = u + \frac{15a}{2} $ Solving (1) and (2), we get $a = 2 \text{ ms}^{-2}$ and $u = 5 \text{ ms}^{-1}$. $S_{15} = u + \frac{29a}{2} = 5 + \frac{29 \times 2}{2} = 34 \text{ m}$	

SOLUTION Suppose the thief is caught at a time t after the starting of the motorcycle. The distance travelled by the motorcycle in this time t is

$$S = \frac{1}{2}at^2 \tag{i}$$

During this time, the jeep must travel a distance

$$S + x = vt (ii)$$

Using (i) and (ii)

7.

$$\frac{1}{2}at^2 + x = vt$$

$$at^2 - 2vt + 2x = 0$$

The roots of this quadratic equation are

$$t = \frac{v \pm \sqrt{v^2 - 2ax}}{a}$$

Since t must be real and positive, we must have

$$v^2 \ge 2 \ ax \Rightarrow v \ge \sqrt{2ax}$$

SOLUTION At time t = 0 (when the stone is dropped), its velocity is $u = +10 \text{ ms}^{-1}$ (vertically upwards). Displacement s = -45 m (vertically downwards) and a = -g

Using $S = ut + \frac{1}{2} at^2$, we have $-45 = 10 t + \frac{1}{2} (-10)t^2$

8.

$$-45 = 10t - 5t^2$$
$$t^2 - 2t - 9 = 0$$

The two roots of t are

$$t = \frac{1 \pm \sqrt{4 + 36}}{2} = \frac{1 \pm 6.32}{2}$$
$$= -2.7 \text{ s or } 3.7 \text{ s}$$

The negative value of t is not possible. Therefore t = 3.7 s. During this time the balloon has moved up a distance = ut= $10 \times 3.7 = 37$ m. Hence the balloon is at a height of 45 +37 = 82 m above the ground.

1 from the top of

	Helian or may we will be the second of the s
	SOLUTION Let h be the height of the tower. If t is the time taken by the ball to reach the ground, then
	$h = \frac{1}{2} gt^2 \tag{i}$
	The distance covered in $(t-1)$ seconds is
	$h'=\frac{1}{2}g(t-1)^2$
	Given $h' = h - \frac{9}{25} h = \frac{16 h}{25}$
9.	$\therefore \frac{16h}{25} = \frac{1}{2}g(t-1)^2 $ (ii)
	Dividing (ii) by (i)
	$\frac{16}{25} = \frac{(t-1)^2}{t^2}$
	or $\frac{4}{5} = \frac{t-1}{t} \Rightarrow t = 5s$
	Using $t = 5$ s in Eq (i), we get
	$h = \frac{1}{2} \times 9.8 \times (5)^2 = 122.5 \text{ m}$
	Given $u = 30 \text{ ms}^{-1}$. From Fig. 2.35, the acceleration
	$a = \text{slope of line } AB = \frac{30 \text{ ms}^{-1}}{-3s} = -10 \text{ ms}^{-2}$. The
	maximum height is reached when final velocity $v = 0$.
10.	Using the values of u , v and a in relation $v^2 - u^2 = 2$ as, we have
	$0-30\times30=2\times-10\times s$
	30×30
	or $s = \frac{30 \times 30}{20} = 45 \text{ m}$
	The two arrows will be at the same height at $t = n$ if
	$98 - 4.9n^2 = 98 (n - 5) - 4.9 (n - 5)^2$. This gives $n = 12.5$ s. The time to reach the highest point is given
	by $0 = 98 - 9.8 t$ i.e., $t = 10$ s. therefore, time of flight
11.	is 2×10 s or 20 s. The speed of the first arrow at $t =$
11.	20 s is 98 ms ⁻¹ again while that of the second arrow
	is $(98 - 9.8 \times 0.5) \text{ ms}^{-1}$ i.e. 49 ms ⁻¹ . The maximum
	heights attained are 490 m each.
	Hence the correct choice is (c)
	1

12.	The acceleration is given by the slope of the speed—time graph. The slope of the graph is maximum during the interval BC. Hence the correct choice is (b).	
13.	The velocity of the parachutist at the end of $10 \text{ seconds} = 10 \text{ g} = 10 \times 10 = 100 \text{ ms}^{-1}$ and the distance fallen in $10 \text{ seconds} = v^2/2g = 100 \times 100/2 \times 10 = 500 \text{ m}$. The distance travelled after he bails out is $s = 2495 - 500 = 1995 \text{ m}$. For this distance $u = 100 \text{ ms}^{-1}$ and $a = -2.5 \text{ ms}^{-2}$. Therefore, the final velocity v is given by	
	or $v^{2} - u^{2} = 2as$ $v^{2} = u^{2} + 2as$ $= (100)^{2} - 2 \times 2.5 \times 1995$	
	which gives $v = 5 \text{ ms}^{-1}$. Hence, the correct choice is (c).	
	Let t_1 be the time during which the car accelerates at a rate α . The velocity at the end of time t_1 will be	
	$v \text{ at } t_1 = u + \alpha t_1 = 0 + \alpha t_1 = \alpha t_1 \qquad (:: u = 0)$	
	The time during which the car decelerates is $t_2 = t - t_1$. For this time t_2 , the initial velocity is αt_1 and the final velocity is zero and the acceleration is $-\beta$. Therefore	
14.	which gives $t_1 = \frac{\beta t}{\alpha + \beta}$. Therefore, maximum	
	velocity = v at $t_1 = \alpha t_1 = \frac{\alpha \beta t}{\alpha + \beta}$.	
	Hence the correct choice is (a).	

15.	When the parachutist bails out, he shares the velocity of the balloon and has an upward velocity of 10 ms^{-1} , i.e. $u = +10 \text{ ms}^{-1}$. Also $g = -10 \text{ ms}^{-2}$ (acting downwards). The displacement in $t = 3s$ is given by $s = ut + \frac{1}{2} gt^2$ $= 10 \times 3 + \frac{1}{2} \times (-10) \times (3)^2$ $= -15 \text{ m}$ Since the displacement is negative, it is directed downwards. So the height from the ground when he opened his parachute = $45 - 15 = 30 \text{ m}$. Thus, the correct choice is (b).
16.	According to Bohr's theory $E_n = -\frac{13.6}{n^2} eV$
17.	In first exited state n=2 because in one excitation electron jumps to 2^{nd} energy level. Hence, $E_n = -\frac{13.6}{n^2}eV = E_n = -\frac{13.6}{2^2}eV = -3.40 \ eV$
18.	$r_n=a_0n^2/z$, where a_0 and z are constants For radii of first orbit $r_1=1(given)$, $r_2=2^2(given)$ hence, $r_2/r_1=r_n=\frac{a_02^2/z}{a_01^2/z}=2^2/1^2=4$
19.	Because, there are no orbitals in between.
20.	Radius of an atom is given by $r_n = \frac{n^2}{Z} \times 0.529 \text{Å}$ Beryllium have atomic no.(z)= 4 As atomic number is maximum, it would have smallest radius.
21.	Electron is moving from higher to lower energy level. ∴ Energy is absorbed.

22.	$V_n = \frac{2.188 \times 10^8 Z}{n} cm. sec^{-1}$
23.	The electron can move only in these circular orbits where the angular momentum is a whole number multiple of $\frac{h}{2\pi}$ or it is quantized.
24.	As the distance increases, energy increases. At infinite distance increases from the Nucleus therefore energy increases.
25.	The quantization concept explains that electron have particle nature and when electron jumps from one orbit of higher energy to another lower one, it loses energy in the form of quantum. The energy of quantum is equal to the difference of energy of orbitals
26.	Bohr's model is applicable to one electron system only, that can be neutral atom or ion.
27.	$r_n = \frac{n^2}{Z} \times 0.529 \text{ Å}$ For Hydrogen atom: $r_1 = 0.529 \text{ Å}$ $For Be^{3+}ion \ r_2 = \left(2^2/4\right) \times 0.529 \text{ Å} = 0.529 \text{ Å}$
28.	The electronic configuration of chromium is [Ar] 4s ¹ , 3d ⁵ , hence it has 6 unpaired electron with parallel spin.
29.	The electronic configuration of $Mn^{4+}=1s^2,2s^22p^6,3s^23p^63d^3$. Hence no. of unpaired electrons = 3
30.	Here in the electronic configuration total electron is 10. i.e. atomic no. of Ne. Hence it is exited state of Ne.

•	
	We have $f(x) = x^2 - x \sin x - \cos x$
	Put x=0,we get f(0)=-1 \Longrightarrow f is intersecting y-axis at $(0,-1)$
	Consider $f'(x) = x(2 - \cos x)$
	Clearly $f'(x) =$
31.	$\begin{cases} >0 & \forall x > 0 \\ 0 & \forall x = 0 \\ <0 & \forall x < 0 \end{cases} \implies f \text{ is increasing in} \\ (0, \infty) \& f \text{ is decreasing in } (-\infty, 0) \text{Now, consider} \lim_{x \to \infty} f(x) = \infty \\ \lim_{x \to -\infty} f(x) = \infty \implies \text{There are two points where the function vanishes.} \end{cases}$
32.	$\sin 2x \text{ attains greatest value 1 at } x = \frac{\pi}{4} \in \left[0, \frac{\pi}{2}\right]; \text{ and}$ $\sin \left(x + \frac{\pi}{4}\right) \text{ attains minimum value } \frac{1}{\sqrt{2}} \text{ at } x = 0 \text{ or } x = \frac{\pi}{2}$ Thus, greatest value of $f(x) = \frac{\sin 2x}{\sin \left(x + \frac{\pi}{4}\right)} \text{ in the interval}$ $[0, \frac{\pi}{2}] = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2}$

Let
$$x \cos \lambda = t \cos \left(\frac{2\pi}{3} + \lambda\right) = z \cos \left(\frac{4\pi}{3} + \lambda\right) = k \text{(say)}$$

Then,
$$x = \frac{k}{\cos \lambda}, y = \frac{k}{\cos \left(\frac{2\pi}{3} + \lambda\right)}, z = \frac{k}{\cos \left(\frac{4\pi}{3} + \lambda\right)}$$

$$\Rightarrow xy + yz + zx = xyz \left[\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right]$$

$$= \frac{xyz}{k} \left[\cos \lambda + \cos \left(\frac{2\pi}{3} + \lambda\right) + \cos \left(\frac{4\pi}{3} + \lambda\right)\right]$$

$$= \frac{xyz}{k} \left[\cos \lambda + 2 \cos \frac{2\pi + 2\lambda}{2} \cos \frac{2\pi}{6}\right]$$

$$= \frac{xyz}{k} \left[\cos \lambda + 2 \cos (\pi + \lambda) \cos \frac{\pi}{3}\right]$$

$$= \frac{xyz}{k} \left[\cos \lambda - 2 \cos \lambda \times \frac{1}{2}\right] = 0$$

$$\sin x + \sin^2 x = 1 \text{ gives } \cos^2 x = \sin x$$
Now,
$$\cos^{12} x + 3 \cos^{10} x + 3 \cos^{8} x + \cos^{6} x - 1$$

$$= \cos^{6} x (\cos^{6} x + 3 \cos^{4} x + 3 \cos^{2} x + 1) - 1$$

$$= \cos^{6} x (\cos^{2} x + 1)^{3} - 1$$

$$= (\sin^{2} x + \sin x)^{3} - 1$$

35.	Since $\sin A$, $\cos A$ and $\tan A$ are $\sin G.P.$, $\cos^2 A = \sin A \tan A$ $\Rightarrow \cot^2 A = \sec A$ $\Rightarrow \cot^4 A = \sec^2 A$ $\Rightarrow \cot^4 A = 1 + \tan^2 A$ $\Rightarrow \cot^4 A - \tan^2 A = 1$ $\Rightarrow \cot^4 A - \frac{1}{\cot^2 A} = 1$ $\Rightarrow \cot^6 A - \cot^2 A = 1$
36.	$\sin 2x + \cos 2x + \sin x + \cos x + 1 = 0$ $\Rightarrow 2\sin x \cos + 2 + 2\cos^2 x - 1 + \sin x + \cos x + 1 = 0$ $\Rightarrow (2\cos x + 1)(\sin x + \cos x) = 0$ $\Rightarrow 2\cos x + 1 = 0 \text{ or } \sin x + \cos x = 0$ $\Rightarrow \cos x = -\frac{1}{2} \text{ or } \tan x = -1$ Since both $\cos x$ and $\tan x$ are positive in the first quadrant, the given equation has no solution.
37.	$tan^{2}\theta - 3\sec\theta + 3 = 0 \text{ is equivalent to}$ $\sec^{2}\theta - 3\sec\theta + 2 = 0$ $\Rightarrow (\sec\theta - 1)(\sec\theta - 2) = 0$ $\Rightarrow \sec\theta = 1 \operatorname{orsec}\theta = 2$ $\Rightarrow \theta = 0^{\circ}, 60^{\circ} \text{ and } 300^{\circ}$
38.	$a\cos\theta + b\sin\theta = c \text{ implies}$ $a^2\cos^2\theta = (c - b\sin\theta)^2$ $\Rightarrow a^2(1 - \sin^2\theta) = c^2 + b^2\sin^2\theta - 2bc\sin\theta$ $\Rightarrow (a^2 + b^2)\sin^2\theta - 2bc\sin\theta + (c^2 - a^2) = 0$ Since both the roots are equal, the discriminant is zero. Thus, $4b^2c^2 = 4(a^2 + b^2)(c^2 - a^2)$ $\Rightarrow c^2 = a^2 + b^2$

	,
	$\tan \alpha = n \tan \beta$ gives
	$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} = \frac{(n-1)\tan \beta}{1 + n\tan^2 \beta}$
	$\Rightarrow \tan(\alpha - \beta) = \frac{(n-1)}{\cot \beta + n \tan \beta}$
	$\cot \beta + n \tan \beta$
39.	$\Rightarrow \tan^{2}(\alpha - \beta) = \frac{(n-1)^{2}}{\cot^{2}\beta + n^{2}\tan^{2}\beta + 2n}$
	$\int \tan^2(\alpha - \beta) = \frac{1}{\cot^2(\beta + n^2)} \tan^2(\beta + 2n)$
	For $\tan^2(\alpha - \beta)$ to be maximum, $(\cot^2\beta + n^2\tan^2\beta + 2n)$ to be
	minimum, which will be when $tan^2 \beta = \frac{1}{-}$
	n
	Thus, the maximum value of $\tan^2(\alpha-\beta)$ is $\frac{(n-1)^2}{2}$, i.e., $\frac{(n-1)^2}{2}$
	0+4n $4n$
	$\sin^{50} x - \cos^{50} x = 1$ gives $\sin^{50} x = \cos^{50} x + 1$ (1)
	Now, $\sin^{50}x \le 1$ and $\cos^{50}x + 1 \ge 1$
40.	(1) gives $\sin^{50}x=1$ and $\cos^{50}x+1=1$
	$\Rightarrow \sin^{50} x = 1 \operatorname{and} \cos^{50} x = 0$
	$\Rightarrow x = n\pi + \frac{\pi}{2}, n \in \mathbb{Z}$
	2

$$\cos 2x + a \sin x = 2a - 7 \text{ gives}$$

$$1 - 2\sin^2 x + a \sin x = 2a - 7$$

$$\Rightarrow 2 \sin^2 x - a \sin x + (2a - 8) = 0$$

$$\Rightarrow \sin^2 x - \frac{a}{2} \sin x + (a - 4) = 0$$

$$\Rightarrow \sin x = \frac{\frac{a}{2} \pm \sqrt{\frac{a^2}{4} - 4(a - 4)}}{\frac{a}{4}}$$

$$\Rightarrow \sin x = \frac{a \pm (a - 8)}{4}$$

$$\Rightarrow \sin x = 2, \frac{a - 4}{2}$$
As $\sin x$ cannot be 2 ,
Therefore, we have $\sin x = \frac{a - 4}{2}$
It means,
$$-1 \le \frac{a - 4}{2} \le 1,$$
i.e. $2 \le a \le 6$

$$a = [2, 6]$$
Here
$$a + b + c = 6 \frac{\sin A + \sin B + \sin C}{3}$$

$$= 2(\sin A + \sin B + \sin C)$$
Let by sine formula, $\sin A = a\lambda$, $\sin B = b\lambda$, $\sin C = c\lambda$. Then $2\lambda = 1$
i.e., $\lambda = \frac{1}{2}$
so, $\sin A = a \frac{1}{2}$. Thus, $\sin A = \frac{1}{2}$ as $a = 1$

$$\Rightarrow A = \frac{\pi}{4}$$

43.	Given: $x + y = \frac{\pi}{4}$, $\tan x + \tan y = 1$ Now, $\tan x + \tan y = \tan(x + y)(1 - \tan x \tan y) = 1$ $\Rightarrow \tan(x + y)(1 - \tan x \tan y) = 1$ Now $x + y = \frac{\pi}{4}$ $\therefore \tan\left(\frac{\pi}{4}\right)(1 - \tan x \tan y) = 1$ $\Rightarrow 1 - \tan x \tan y = 1$ $\Rightarrow \tan x \tan y = 0$ $\Rightarrow \text{ either } \tan x = 0 \text{ or } \tan y = 0$ $\Rightarrow \text{ either } x = n\pi \text{ and so } y = \frac{\pi}{4} - x = \frac{\pi}{4} - n\pi$ OR $y = n\pi$ & so $x = \frac{\pi}{4} - n\pi$
44.	Given: $\sin x\sqrt{8\cos^2 x} = 1$ $\Rightarrow 2\sqrt{2}\sin x \cos x = 1$ $\Rightarrow 2\sin x \cos x = \frac{1}{\sqrt{2}}$ $\Rightarrow \sin 2x = \frac{1}{\sqrt{2}} \text{if } \cos x > 0$ or $\sin 2x = -\frac{1}{\sqrt{2}} \text{if } \cos x < 0$ (i) when $\cos x > 0$, $\sin 2x = \frac{1}{\sqrt{2}} \Rightarrow x = \frac{\pi}{8}$, $3\frac{\pi}{8}$ (ii) when $\cos x < 0$, $\sin 2x = \frac{-1}{\sqrt{2}} \Rightarrow x = \frac{5\pi}{8}$, $\frac{7\pi}{8}$ $\therefore \text{The desired values of } x \text{ are } : \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8}$ This is an A.P. with common difference $\frac{\pi}{4}$.

We have,
$$\sin^4 x - (K-2)\sin^2 x - (K+3) = 0$$

$$\Rightarrow \sin^2 x = \frac{(K+2) \pm \sqrt{(K+2)^2 + 4(K+3)}}{2}$$

$$= \frac{(K+2) \pm (K+4)}{2}$$

$$\Rightarrow \sin^2 x = K+3 \text{ or } \sin^2 x = -1$$

$$\sin^2 x = -1 \text{ is not possible}$$

$$\therefore \sin^2 x = K+3$$

$$\text{Now } 0 \le \sin^2 x \le 1$$

$$\Rightarrow 0 \le K+3 \le 1$$

$$\Rightarrow 0 \le K+3 \le 1$$

$$\Rightarrow 3 < K < -2$$