Lab01-Proof

CS363-Computability Theory, Xiaofeng Gao, Spring 2015

- * Please upload your assignment to FTP or submit a paper version on the next class.

 * Name:_____ StudentId: _____ Email: _____
- 1. Use the method "proof by contradiction" to prove that $\sqrt{2}$ is irrational. (A real number x is rational if there are two integers m and n so that x = m/n.)
- 2. Prove the following statement by mathematical induction:
 - For any $x \in \{0,1\}^*$, if x begins with 0 and ends with 1 (i.e., x = 0y1 for some string y), then x must contain the substring 01. (Note that * is the *Kleene star*. $\{0,1\}^*$ means "every possible string consisted of 0 and 1, including the empty string".)
- 3. Use the method of minimal counterexample to prove that every integer $n \geq 7$ can be written as n = 2a + 3b, where a and b are positive integers.