Оглавление

1	Уpa	авнени	я первого порядка, разрешённые относительно производной
	1.1	Основные понятися и результаты	
		1.1.1	Объект изучения
		1.1.2	Решения дифференциального уравнения
		1.1.3	Задача Коши
		1.1.4	О существовании решения внутренней задачи Коши
		1.1.5	Продолжимость решения
		1.1.6	Полное решение, интегральная кривая
		1.1.7	Вопросы, связанные с единственностью решения
		1.1.8	Достаточные условия единственности
		1.1.9	Частные и особые решения
		1.1.10	Понятие общего решения
		1.1.11	Поле направлений и метод изоклин
	1.2	Сущес	твование решения внутренней задачи Коши
		1.2.1	Ломаные Эйлера
		1.2.2	Лемма об ε -решении
		1.2.3	Лемма Арпела-Асколи

Глава 1

Уравнения первого порядка, разрешённые относительно производной

1.1 Основные понятися и результаты

1.1.1 Объект изучения

Рассмотрим обыкновенное дифференциальное уравнение первого порядка, разрешённое относительно проиводной:

$$\frac{\mathrm{d}\ y(x)}{\mathrm{d}\ x},$$
 или в краткой записи $y'=f(x,y)$ (1.1)

где x – это независимая переменная, y = y(x) – искомая функция, а f(x,y), если не оговорено иное, – вещественная функция, определённая и непрерывная на множестве $\widetilde{G} = G \cup \widehat{G}$, где:

- $G \subset \mathbb{R}^2$ область
- $\widehat{G} \subseteq \partial G$ (возможно пустое) множество, на котором f(x,y) непрерывна или может быть доопределена с сохранением непрерывности

Напоминание. Область – связное открытое множество

Обозначение. $G^* \coloneqq \partial G \setminus \widehat{G}$

1.1.2 Решения дифференциального уравнения

Обозначение. Символ (подразумевает одну из скобок: (или [, а символ) – скобку) или]

На вещественной оси рассмотрим непустое связное множество, не являющееся точкой. Это будет промежуток $\langle a,b \rangle$

Определение 1. Функция $y = \varphi(x)$, заданная на промежутке $\langle a, b \rangle$ называется решением дифференциального уравнения (1.1), если для любого $x \in \langle a, b \rangle$ выполняются следующие три условия:

- 1. функция $\varphi(x)$ дифференцируема
- 2. точка $(x, \varphi(x)) \in \widetilde{G}$
- 3. $\varphi'(x) = f(x, \varphi(x))$

Замечание. График решения по определению не может состоять из одной точки

Замечание. Первые два условия являются вспомогательными и позволяют записать третье

Замечание. Любое решение является функцией не просто дифференцируемой а гладкой, т. е. $\varphi(x) \in \mathcal{C}^1\Big(\langle a,b \rangle\Big)$

Доказательство. Функция $\varphi(x)$ дифференцируема (по условию 1). Значит, она непрерывна в любой точке $x \in \langle a,b \rangle$

Значит, правая часть тождества из условия 3 непрерывна (как композиция непрерывных функций) Значит, и левая часть непрерывна

При этом, если решение задано на отрезке [a,b], то на его концах существуют и непрерывны односторонние производные

Определение 2. Поскольку решение — гладкая функция, то через люую точку $(x, \varphi(x))$ плоскости можно провести касательную под таким углом $\alpha(x)$ с осью абсцисс, что $\operatorname{tg}\alpha(x) = f(x, \varphi(x)) = \varphi'(x)$ Поэтому графики решений, имеющие общую точку соприкасаются в ней ("пересекаются под нулевым углом")

Определение 3. Решение $y = \varphi(x)$ уравнения (1.1), заданное на промежутке $\langle a, b \rangle$ будем называть:

- внутренним, если $(x, \varphi(x)) \in G$ для любого $x \in \langle a, b \rangle$
- граничным, если $(x, \varphi(x)) \in \widehat{G}$ для любого $x \in \langle a, b \rangle$
- ullet смешанным, если найдутся такие $x_1,x_2\in\langle a,b
 angle$, что точка $\big(x_1,arphi(x_1)\big)\in G$, а точка $\big(x_2arphi(x_2)\big)\in\widehat{G}$

Лемма 1 (о записи решения в интегральном виде). Для того чтобы определённая на промежутке $\langle a,b \rangle$ функция $y=\varphi(x)$ была решением дифференциального уравнения (1.1), необходимо и достаточно, чтобы функция $\varphi(x)$ была непрерывна на $\langle a,b \rangle$, её график лежал в \widetilde{G} и при некотором $x_0 \in \langle a,b \rangle$ выполнялос тождество

$$\varphi(x) \stackrel{\langle a,b \rangle}{\equiv} \varphi(x_0) + \int_{x_0}^x f(s,\varphi(s)) \, ds$$
 (1.2)

Доказательство.

• Необходимость

Пусть функция $y=\varphi(x)$ на $\langle a,b \rangle$ является решением уравнения (1.1)

Тогда, по определению, справедливо тождество $f(x, \varphi(x)) \stackrel{\langle a,b \rangle}{\equiv} \varphi'(x)$

Интегрируя его при любом фиксированном $x_0 \in \langle a, b \rangle$ по s от x до x_0 и перенося $\varphi(x_0)$ в правую часть, получаем тождество (1.2):

$$\int_{x_0}^x f(s, \varphi(s)) ds \stackrel{\langle a, b \rangle}{\equiv} \int_{x_0}^x \varphi'(s) ds = \varphi(x) - \varphi(x_0)$$

• Достаточность

Пусть непрерывная на промежутке $\langle a,b \rangle$ функция $y=\varphi(x)$ удовлетворяет тождеству (1.2) Тогда $\varphi(x)$ непрерывно дифференцируема на $\langle a,b \rangle$ (поскольку по (1.2) она равна интегралу с переменным верхиним пределом от композиции непрерывных функций)

Дифференцируя (1.2), заключаем, что выполняется и третье условие из определения решения

1.1.3 Задача Коши

Задача. Для любой точки $(x_0,y_0)\in \widetilde{G}$ задача Коши с начальными данными x_0,y_0 заключается в том, чтобы найти все решения $y=\varphi(x)$ уравнения (1.1), заданные на промежутках $\langle a,b\rangle\ni x_0$, в том числе внутренние, граничные или смешанные, такие что $\varphi(x_0)=y_0$

При этом говорят, что задача Коши поставлена в точке (x_0, y_0) , а найденные решения – это решения поставленной задачи Коши

Определение 4. Решение задачи Коши уравнения (1.1) с начальными анными x_0, y_0 существует, если существует такое решение $y = \varphi(x)$, определённое на промежутке $\langle a, b \rangle \ni x_0$, что $\varphi(x_0) = y_0$

Определение 5. Внутреннее (граничное, смешанное) решение задачи Коши с начальными данными

 x_0, y_0 существует, если точка $(x_0, y_0) \in G(\widehat{G}, \widetilde{G})$ и найдутся промежуток $\langle a, b \rangle \ni x_0$ и определённое на нём внутреннее (граничное, смешанное) решение $y = \varphi(x)$ такие, что $\varphi(x_0) = y_0$

Определение 6. Задачу Коши, поставленную в точке $(x_0, y_0) \in \widetilde{G}$ будем называть

- внутренней, если $(x_0, y_0) \in G$
- граничной, если $(x_0, y_0) \in \widehat{G}$

1.1.4 О существовании решения внутренней задачи Коши

Напоминание. Компакт в \mathbb{R}^n – замкнутое ограниченное множество

Алгоритм (Пеано). Очевидно, что для любой точки $(x_0,y_0)\in G$ найдутся такие константы a,b>0, что прямоугольник

$$\overline{R} = \{ (x, y) : |x - x_0| \le a, |y - y_0| \le b \}$$

являющийся компактом, лежит в области G

Сразу исключим из рассмотрения простейший случай, когда $f(x,y) \equiv 0$ на \overline{R} , в котором уравнение (1.1) имеет решение $y(x) \equiv y_0$ при $x \in [x_0 - a, x_0 + a]$

По второй теореме Вейерштрасса, f(x,y) достигает своего максимума на \overline{R} . Положим

$$M := \max_{(x,y) \in \overline{R}} |f(x,y)| > 0, \qquad h = \min \left\{ a, \frac{b}{M} \right\} \quad (h > 0)$$

Определение 7. Отрезок $\overline{P_h}(x_0,y_0)=[x_0-h,x_0+h]$ называется отрезком Пеано, постоенным для точки $(x_0,y_0)\in G$

Отрезки $\overline{P_h^+}(x_0,y_0)=[x_0,x_0+h]$ и $\overline{P_h^-}=[x_0-h,x_0]$ называются соответственно правым и левым отрезками Пеано

Теорема 1 (Пеано, о существовании внутреннего решения). Пусть правая часть уравнения (1.1) непрерывна в области G.

Тогда для любой точки $(x_0, y_0) \in G$ и для любого отрезка Пеано $\overline{P_h}(x_0, y_0)$ существует по крайней мере одно решение задачи Коши уравнения (1.1) с начальными данными x_0, y_0 , определённое на $\overline{P_h}(x_0, y_0)$

Доказательство. Будет доказано в §2

1.1.5 Продолжимость решения

Определение 8. Пусть $y=\varphi(x)$ – решение уравнения (1.1) на $\langle a,b\rangle$. Если этот промежуток произвольным образом сузить, то на новом промежутке функция $y=\varphi(x)$ останется решением, которое называют сужением исходного решения

Определение 9. Решение уравнения (1.1), заданное на промежутке (a,b) продолжимо вправо в точку b или на границу, если найдётся такое решение $y = \widetilde{\varphi}(x)$, определённое на промежутке (a,b], что сужение $\widetilde{\varphi}(x)$ на (a,b) совпадает с $\varphi(x)$

Определение 10. Решение уравнения (1.1), заданное на промежутке $\langle a,b \rangle$ продолжимо вправо за точку b или за границу, если найдутся такие $\widetilde{b} > b$ и решение $y = \widetilde{\varphi}(x)$, определённое на промежутке $\left\langle a,\widetilde{b} \right\rangle$, что сужение $\widetilde{\varphi}(x)$ на $\langle a,b \rangle$ совпадает с $\varphi(x)$

Теорема 2 (о продолжимости решения на границу). $\varphi(x)$ – решение уравнения (1.1) на промежутке $\langle a,b\rangle, \quad b<+\infty$

Для того чтобы это решение было продолжимо вправо в точку b необходимо и достаточно, чтобы

существовали последовательность $\{x_k\}_{k=1}^{\infty}$ и число $\eta \in \mathbb{R}^1$ такие, что

$$\forall k \quad \begin{cases} x_k \in \langle a, b \rangle \\ \left(x_k, \varphi(x_k) \right) \xrightarrow[k \to \infty]{} (b, \eta) \in \widetilde{G} \end{cases}$$
 (1.3)

Аналогично формулируется условие для продолжиомсти влево

Доказательство.

• Достаточность

Пусть выполняется условие (1.3)

Утверждение 1. В силу того, что функция f(x,y) определена и непрерывна на множестве \widetilde{G} , найдутся такие c>0 и $M\geq 1$, что

$$\forall (x,y) \in \widetilde{G} \cap \overline{B_c}(b,\eta) \quad |f(x,y)| \le M$$

Доказательство.

 $-(b,\eta)\in G$, т. е. является внутренней Тогда существует $\overline{B_c}(b,\eta)\subset G$ – компакт, и на нём функция ограничена

 $-(b,\eta)\subset\widetilde{G}$ и "вблизи" находятся точки "плохой" границы Приведём рассуждение **от противного**: Допустим, $|f(b,\eta)|=M-1$ и существует последовательность $c_m\xrightarrow[m\to\infty]{}0$ $(c_m>0)$ и последовательность точек $(x_m,y_m)\in\widetilde{G}\cap\overline{B_{c_m}}(b,\eta)$ такие, что $|f(x_m,y_m)|>M$ Тогда $(x_m,y_m)\xrightarrow[m\to\infty]{}(b,\eta)$, а это значит, что функция |f(x,y)| терпит разрыв в точке (b,η) , так как $|f(x_m,y_m)|-|f(b,\eta)|>1$ для любого m

Докажем, что существует $\lim_{x \to b-} \varphi(x)$ и он равен η :

Для этого покажем, что для любого сколь угодно малого $\varepsilon > 0$ найдётся число $\delta \in (a,b)$, что

$$\forall x \in [\delta, b) : |\varphi(x) - \eta| < \varepsilon \tag{1.4}$$

Зафиксируем произвольный $0<\varepsilon\leq c$

Тогда $|f(x,y)| \leq M$ для любой точки $(x,y) \in \widetilde{G} \cap \overline{B_{\varepsilon}}(b,\eta)$ и по условию (1.3) найдётся такой номер m, что выполняются равентсва

$$b - x_m > \frac{\varepsilon}{2M}, \qquad |\varphi(x_m) - \eta| < \frac{\varepsilon}{2}$$
 (1.5)

По формуле Ньютона-Лейбница для всякого $x \in [x_m, b)$ имеем:

$$|\varphi(x) - \varphi(x_m)| = \left| \int_{x_m}^x \varphi'(s) \, \mathrm{d}s \right| = \left| \int_{x_m}^x f(s, \varphi(s)) \, \mathrm{d}s \right| \le \int_{x_m}^x |f(s, \varphi(s))| \, \mathrm{d}s \le$$

$$\le M(x - x_m) < M(b - x_m) < \frac{\varepsilon}{2} \qquad (x_m \le x < b)$$

Поэтому

$$|\varphi(x) - \eta| \le |\varphi(x) - \varphi(x_m)| + |\varphi(x_m) - \eta| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Неравенство (1.4) верно при $\delta=x_m,$ а занчит, $\varphi(x)\xrightarrow[x\to b^{-0}]{}\eta$

Доопределим функцию $y=\varphi(x)$ в точке b, положив $\varphi(b)=\eta$

Согласно (1.2) $\varphi(x) = \varphi(x_0) + \int_{x_0}^x f(s, \varphi(s)) ds$ для любых $x_0, x \in \langle a, b \rangle$

В этом тождестве можно перейти к пределу при $x \to b^{-0}$, получая равенство $\eta = \varphi(x_0) + \int_{x_0}^x f \big(s, \varphi(s) \big) \, \mathrm{d} \, s$, так как по условию точка $(b, \eta) \in \widetilde{G}$, а занчит, функция f(x, y) определена и непрерывна в этой точке

В результате функция

$$\widetilde{\varphi}(x) = \begin{cases} \varphi(x), & x \in \langle a, b \rangle \\ \eta & x = b \end{cases}$$

по определению является продолжением решения $y = \varphi(x)$ на $\langle a, b |$

• Необходимость

Допустим, что на промежутке (a,b] существует решение $y=\widetilde{\varphi}(x)$ такое, что $\widetilde{\varphi}(x)\equiv\varphi(x)$ на (a,b) Поскольку $\widetilde{\varphi}(x)$ непрерывна, то $\widetilde{\varphi}(x)=\eta=\lim_{x\to b}\widetilde{\varphi}(x)$

Но тогда $\eta=\lim_{x\to b^-}\varphi(x)$ и требуемая послеовательность точек x_k существует, причём по поределению решения точка $(b,\eta)\in \widetilde{G}$

Лемма 2 (о продолжимости решения за границу отрезка). Пусть решение $y = \varphi(x)$ уравнения (1.1) определено на промежутке $\langle a,b \rangle$ и точка $(b,\varphi(b)) \in G$ Тогда это решение продолжимо вправо за точку b на полуотрезок Пеано, построенный для точки $(b,\varphi(b))$

Доказательство. По теореме Пеано (теор. 1) на отрезке Пеано $\overline{P_h}(b,\varphi(b))$ существует внутреннее решение $y=\psi(x)$ задачи Коши с начальными данными $(b,\varphi(b))$ Тогда функция $y=\widetilde{\varphi}(x)$, где

$$\widetilde{\varphi}(x) = \begin{cases} \varphi(x), & x \in \langle a, b | \\ \psi(x), & x \in [b, b+h] \end{cases}$$

по определению является решением уравнения (1.1) на $\langle a,b+h]$

В самом деле, в точке b производная функции $\widetilde{\varphi}(x)$ существует, так как

$$\widetilde{\varphi}'_{-}(b) = \varphi'_{-}(b) = f(b, \varphi(b)) = \psi'_{+}(b) = \widetilde{\psi}'_{+}(b)$$

А выполнение других условий из определения решения для $\widetilde{\varphi}(x)$ очевидно

Утверждение о продолжимости решения, определённого на промежутке $[a,b\rangle$, влево за точку a формулируется аналогично

Следствие. Если решение $y = \varphi(x)$ уравнения (1.1) определено на промежутке (a, b] и не продолжимо вправо за точку b, то $(b, \varphi(b)) \in \widehat{G}$

A если оно определено на промежутке $[a,b\rangle$ и не продолжимо влево за точку a, то $(a,\varphi(a))\in \widehat{G}$

Доказательство. Предположение противного противоречит лемме

Из теоремы о продолжимости решения на границу и последней леммы вытекает следующее утверждение:

Лемма 3 (о продолжимости решения на границу интервала). Пусть решение $y = \varphi(x)$ уравнения (1.1) определено на промежутке (a,b), существует число $\eta = \lim_{x \to b^-} \varphi(x)$ и точка $(b,\eta) \in G$ Тогда это решение продолжимо вправо за точку b

Утверждение о продолжимости решения, заданного на (a,b), влево за точку a формулируется аналогично

1.1.6 Полное решение, интегральная кривая

Определение 11. Решение называется полным, или максимально продолженным, или непродолжимым в случае, если его нельзя продолжить ни влево, ни вправо, или что то же самое, когда оно не является сужением никакого другого решения

Определение 12. Внутреннее (граничное) решение называется полным, если его нельзя продолжить ни влево, ни вправо так, чтобы оно осталось внутренним (граничным)

Определение 13. Промежуток, на котором определено полное решение, бедм называть максимальным интервалом существования и обозначим I_{\max} , а если для полного решения была поставлена задача Коши с начальными данными x_0, y_0 , то $I(x_0, y_0)$

Из леммы о продолжимости решения за границу отрезка с очевидностью вытекает следующий факт:

Утверждение 2. Максимальный интервал существования любого внутреннего решения – это интервал

Теорема 3 (о существовании полного решения). Любое решение уравнения (1.1) может быть продолжено до полного решения

Другая формулировка. Любое решение уравнения (1.1), не являющееся полным, является сужением некоторого полного решения

Доказательство. Приведено в дополнении 14

Определение 14. График полного решения будем называть интегральной кривой уравнения (1.1) Дуга интегральной кривой – это график решения, заданного на любом промежутке $\langle a,b \rangle \subsetneq I_{\max}$

Таким образом, интегральные кривые уравнения (1.1) лежат в \widetilde{G} , не могут иметь вертикальных касательных и не могут пересекаться под ненулевым углом, т. е. могут только соприкасаться

Теорема 4 (о поведении интегральной кривой полного внутреннего решения). Предположим, что внутреннее решение $y = \varphi(x)$ уравнения (1.1) определено на промежутке $\langle a, \beta \rangle$ и не продолжимо вправо. Тогда для любого компакта $\overline{H} \subset G$ найдётся такое число $\delta \in \langle a, \beta \rangle$, что для всякого $x \in (\delta, \beta)$ точка $(x, \varphi(x)) \in G \setminus \overline{H}$

Другая формулировка. При стремлении аргумента полного внутреннего решения к границе максимального интервала существования дуга интегральной кривой покидает любой компакт, лежащий в области G, и никогда в него не возвращается

Доказательство. Переходя в условиях теоремы на язык последовательностей, докажем, что для любого компакта $\overline{H} \subset G$ и для любой последовательности $x_k \xrightarrow[k \to \infty]{} \beta, \ x_k \in \langle a, \beta \rangle$ существует K > 0 такое, что $(x_k, \varphi(x_k)) \in G \setminus \overline{H}$ при всех k > K

Рассуждая от противного, допустим, что существуют компакт $\overline{H}_* \subset G$ и последовательность $x_k \to \beta$, $x_k \in \langle a, \beta \rangle$ такие, что $(x_k, \varphi(x_k)) \in \overline{H}_*$ для k = 1, 2, ...

Отсюда сразу же вытекает, что $\beta < +\infty$, так как в противном случае найдётся такой индекс k^* , что точка $(x_{k^*}, \varphi(x_{k^*}))$ будет лежать вне компакта в силу его ограниченности

НУО считаем, что последовательность x_k – сходящаяся (иначе перейдём к сходящейся подпоследовательности)

Пусть $(\beta, \eta) = \lim_{k \to \infty} (x_k, \varphi(x_k))$

Тогда предельная точка (β, η) также принадлежит компакту \overline{H}_* , а значит, выполняются условия теоремы о продолжимости решения (теор. 2), согласно которой решение $y = \varphi(x)$ продолжимо на промежуток $\langle a, \beta \rangle - \not$ с условием теоремы

Аналогичный результат имеет место для внутреннего решения, определённого на (α,b) и непродолжимого влево

1.1.7 Вопросы, связанные с единственностью решения

Определение 15. Точка $(x_0,y_0)\in \widetilde{G}$ называется точкой неединственности, если существуют такие решения $y=\varphi_1(x)$ и $y=\varphi_2(x)$ задачи Коши уравнения (1.1) с начальными данными x_0,y_0 , определённые на промежутке $\langle a,b\rangle$, и такая последовательность $x_k\xrightarrow[k\to\infty]{}x_0,\,x_k\in\langle a,b\rangle$, что $\varphi_1(x_k)\neq\varphi_2(x_k)$ (k=1,2,...)

В противном случае точка (x_0, y_0) называется точкой единственности

Замечание. Любая точка граничного множества \widehat{G} , в которой решение задачи Коши отсутствует, по определению будет точкой единственности

Определение 16. Точка $(x_0, y_0) \in \widetilde{G}$ называется точкой неединственности, если найдутся такие решения $y = \varphi_1(x)$ и $y = \varphi_2(x)$ задачи Коши уравнения (1.1) с начальными данными x_0, y_0 , определённые на $\langle a, b \rangle$, что

$$\forall (\alpha, \beta) \ni x_0 \quad \exists x^* \in (\alpha, \beta) \cap \langle a, b \rangle : \quad \varphi_1(x^*) \neq \varphi_2(x^*)$$

Утверждение 3. Определения точки неединственности равносильны

Доказательство.

- опр. 15 \Longrightarrow опр. 16 Из опр. 15 вытекает, что для всякого интервала $(\alpha, \beta) \ni x_0$ найдётся такой индекс k^* , что $x_{k^*} \in (\alpha, \beta)$, поэтому в опр. 16 $x^* = x_{k^*}$
- опр. 16 \Longrightarrow опр. 15 Можно выбрать последовательность интервалов (α_k, β_k) , которая с ростом k стягивается в точку x_0 . Тогда по опр. 16 для всякого k найдётся $x_k^* \in (\alpha_k, \beta_k) \cap \langle a, b \rangle$, что $\varphi_1(x_k^*) \neq \varphi_2(x_k^*)$, т. е. x_k^* последовательность из опр. 15

Отрицая опр. 16, получаем "прямое" определение точки единственности:

Определение 17. Точку $(x_0, y_0) \in \widetilde{G}$ будем называть точкой единственности в следующих случаях:

- 1. задача Коши уравнения (1.1) с начальными данными x_0, y_0 не имеет решений
- 2. для любых двух решений $y = \varphi_1(x)$ и $y = \varphi_2(x)$ этой задачи Коши, определённых на некотором промежутке $\langle a, b \rangle$, найдётся интервал $(\alpha, \beta) \ni x_0$ такой, что

$$\forall x \in (\alpha, \beta) \cap \langle a, b \rangle \quad \varphi_1(x) = \varphi_2(x)$$

Примечание. Здесь надо иметь в виду следующее:

- Если $(x_0, y_0) \in G$:
 - Случай 1 не может возникнуть
 - По теореме Пеано (теор. 1) все решения задачи Коши определены на отрезке Пеано $[x_0 h, x_0 + h]$ (h > 0)

Поэтому в определении точки единственности для любых двух решений достаточно требовать наличия интервала $(\alpha, \beta) \ni x_0$, на котором они совпадают

• Если $(x_0, y_0) \in \widehat{G}$ и, например, решение нельзя продолжить за точку x_0 вправо, то в определнии для любых двух решений задач Коши при их наличии надо потребовать существования промежутка $(\alpha, x_0]$, на котором они совпадают

Определение 18. Решение задачи Коши уравнения (1.1), поставленной в точке $(x_0, y_0) \in \widetilde{G}$ называется:

- ullet неединственным, если (x_0,y_0) точка неединственности
- ullet единственным в точке, если оно сущетвует и (x_0,y_0) точка единственности

Определение 19. Решение внутренней задачи Коши уравнения (1.1), поставленной в точке (x_0, y_0) называется локально единственным, если существует интервал $(\alpha, \beta) \ni x_0$ такой, что все решения этой задачи продолжимы на (α, β) и для любых двух её решений $y = \varphi_1(x)$ и $y = \varphi_2(x)$, при необходимости произвольным образом продолженных на (α, β) , имеем $\varphi_1(x) \equiv \varphi_2(x)$ на (α, β)

Теорема 5. ро локальной единственности решения внутренней задачи Коши] Пусть $(x_0, y_0) \in G$ – это точка единственности

Тогда решение задачи Коши уравнения (1.1) с начальными данными x_0, y_0 является локально единственным

Доказательство. Будет доказано в $\S4$, п. 1^0

Следствие. Из этой теоремы вытекает, что для внутренней задачи Коши понятия единственности решения в точке и локальной единственности равносильны

1.1.8 Достаточные условия единственности

Определение 20. Будем говорить, что решение задачи Коши $y = \varphi(x)$, поставленное в точке $(x_0, y_0) \in \widetilde{G}$ и определённое на промежутке $\langle a, b \rangle \ni x_0$, единственно на этом промежутке, или, просто, единственно, если для любого $x \in \langle a, b \rangle$ точка $(x, \varphi(x))$ является точкой локальной единственности

Определение 21. Область $G^0 \subset G$ будем называть областью единственности для уравнения (1.1), если каждая точка G^0 является точкой единственности. Множество $\widetilde{G}^0 = G^0 \cup \widehat{G}^0$, в котором \widehat{G}^0 – это множество граничных точек G^0 , являющихся точками единственности, будем называть множеством единсвтенности

Теорема 6 (о единственности; слабая). Пусть в уравнении (1.1) функция f(x,y) определена и непрерывна в области G, а частная производная $\frac{\partial f(x,y)}{\partial y}$ определена и непрерывна в области $G^0 \subset G$ Тогда G^0 является областью единственности

Доказательство. Эта теорема является следствием более сильных теорем о единственности, которые будут свормулированы и доказаны в $\S4$, п. 4^0 , причём не только для области G, а для всего множества \widetilde{G}

1.1.9 Частные и особые решения

Определение 22. Решение уравнения (1.1), заданное на промежутке $\langle a,b \rangle$, будем назвыать частным (особым), если его график состоит только из точек единственности (неединственности) и это решение является полным в том смысле, что не может быть продолжено ни влево, ни вправо так, чтобы его график состоял только из точек единственности (неединственности). В этом случае промежуток $\langle a,b \rangle$ будем называть максимальным интервалом существования частного (особого) решения

1.1.10 Понятие общего решения

Определение 23. Общим решением уравнения (1.1) на некотором связном множестве A^* , лежащем в области единственности G^0 , называется функция $y = \varphi(x, C)$, определённая и непрерывная по совокупности аргументов на множестве $Q_{A^*} = \{ (x, C) \mid x \in \langle a(C), b(C) \rangle$, $C \in \langle C_1, C_2 \rangle$ }, если выполняются следующие два условия:

- 1. для любой точки $(x_0, y_0) \in A^*$ уравнение $y_0 = \varphi(x_0, C)$ имеет единственное решение $C = C_0$
- 2. функция $y = \varphi(x, C_0)$ это решение задачи Коши уравнения (1.1) с начальными данными $x_0, y_0,$ определённое на промежутке $\langle a(C_0), b(C_0) \rangle$

Теорема 7 (о существовании общего решения). Для произвольной точки (x_0^*, y_0^*) из области единственности G^0 уравнения (1.1) найдётся связное множество $A^*: (x_0^*, y_0^*) \in A^* \subset G^0$, на котором существует общее решение

Доказательство. Приведено в §5

1.1.11 Поле направлений и метод изоклин

Определение 24. Отрезок проивольной длины с центром в точке $(x_0, y_0) \in \widetilde{G}$ и тангенсом угла наклона, равным $f(x_0, y_0)$, будем называть отрезком поля направлений, построенным в точке (x_0, y_0) Само множество \widetilde{G} , запоненное отрезками поля направлений будем называть полем направлений, ин-

дуцированным уравнением (1.1)

Кривая, лежащая в \widetilde{G} , является интегральной тогда и только тогда, когда она гладкая и в каждой точке направление касательной к ней совпадает с направлением поля в этой точке

Определение 25. Изоклиной уравнения (1.1) называется любая кривая, расположенная во множестве \widetilde{G} , в каждой точке которой направление поля имеет один и тот же угол наклона

Замечание. Все изоклины задаются уравнением f(x,y) = k, где k – любое вещественное число из области значений f(x,y)

Метод изоклин заключается в том, чтобы, нарисовав достаточное число изоклин и отрезков поля на них, начертить характерные интегральные кривые, которые, опадая на очередную изоклину, должны касаться отрезков поля направлений, построенных на ней

1.2 Существование решения внутренней задачи Коши

В этом параграфе будет доказана теорема Пеано о существовании решения внутренней задачи Коши уравнения (1.1) y' = f(x,y) (теор. 1), т. е. будет рассматриваться задача Коши, поставленная в любой внутренней точке \widetilde{G} , и строиться решение этой задачи, график которого лежит в области G Будем строить решение при помощи "метода ломаных Эйлера"

1.2.1 Ломаные Эйлера

Выберем в области G произвольную точку (x_0, y_0) и построим в ней отрезок поля направлений столь малой длины, что он целиком лежит в G, начинаясь в какой-то точке (x_{-1}, y_{-1}) и заканчиваясь в точке (x_1, y_1)

Проведём вправо через точку (x_1,y_1) и влево через точку (x_{-1},y_{-1}) полуотрезки поля, лежащие в G и заканчивающиеся в точках (x_2,y_2) и (x_{-2},y_{-2}) соответственно, и так далее

Этот процесс можно продолжать любое конечное число шагов N, поскольку область G — открытое множество

График полученной таким образом непрерывной кусочно-линейной функции $y=\psi(x)$ называется ломаной Эйлера

Итак, установлено, что ломаная Эйлера лежит в

области G, проходит через точку (x_0, y_0) и абсциссы её угловых точек равны x_j $(j = \overline{-N, N})$

Определение 26. Рангом дробления ломаной Эйлера назовём число, равное

$$\max_{j=1-N,N} \{ x_j - x_{j-1} \}$$

Формула, реккурентно задающая ломаную Эйлера $y=\psi(x)$, иммеет вид: $\psi(x_0)=y_0$ и далее при j=0,1,...,N-1 для любого $x\in(x_j,x_{j+1}]$ или при j=0,-1,...,1-N для любого $x\in[x_{j-1},x_j)$

$$\psi(x) = \psi(x_j) + f(x_j, \psi(x_j))(x - x_j)$$
(1.6)

В частности, при j=0 отрезок ломаной Эйлера определён для любого $x\in[x_{-1},x_1]$ и, делясь на два полуотрезка, проходит через точку (x_0,y_0) под углом, тангенс которого равен $f(x_0,y_0)$

Из формулы (1.6) вытекает, что для всякого $j=\overline{0,N-1}$ производная $\psi'(x)=f\left(x_j,\psi(x_j)\right)$ при $x\in(x_j,x_{j+1}),$ а в точке x_{j+1} она не определна, как и в точках x_{j-1} при $j\leq 0$

Доопределим $\psi'(x)$ в точках разрыва как левостороннюю производную при $x > x_0$ и как правостороннюю производную при $x < x_0$, положив

$$\psi'(x_j) = \psi'_{\mp}(x_j) \lim_{x \to x_j^{\mp 0}} \frac{\psi(x) - \psi(x_j)}{x - x_j} \qquad (j = \pm 1...., \pm N)$$

А при j=0 существует полная производная $\psi'(x_0)=f(x_0,y_0)$ Таким образом, для любого $x\in (x_j,x_{j+1}]$ (j=0,1,...,N-1) или для любого $x\in [x_{j-1},x_j)$ (j=0,-1,...,1-1)

$$\psi'(x) = f(x_j, \psi(x_j)), \qquad j \in \{1 - N, ..., N - 1\}$$
(1.7)

1.2.2 Лемма об ε -решении

Покажем, что на некотором промежутке всегда можно построить функцию, график которой проходит через заданную точку области G, такую, что при подстановке этой функции в уравнение (1.1) окажется, что разность между левой и правой частями уравнения по модулю не превосходит любого сколь угодно малого наперёд заданного положительного числа

Определение 27. Для всякого $\varepsilon > 0$ непрерывная и кусочно-гладкая на отрезке [a,b] функция $y = \psi(x)$ называется ε -решением уравнения (1.1) на [a,b], если для любого $x \in [a,b]$ точка $(x,\psi(x)) \in G$ и

$$\left|\psi'(x) - f(x,\psi(x))\right| \le \varepsilon$$
 (1.8)

Лемма 4 (о ломаных Эйлера в роли ε -решения). Для любой точки $(x_0,y_0)\in G$ и для любого отрезка Пеано $\overline{P_h}(x_0,y_0)$ имеем:

- 1. Для любого $\delta > 0$ на $\overline{P_h}$ можно построить ломаную Эйлера $y = \psi(x)$ с рангом дробления, не превосходящим δ , график которой лежит в прямоугольнике \overline{R} из определения отрезка Пеано
- 2. Для любого $\varepsilon > 0$ найдётся такое $\delta > 0$, что всякая ломаная Эйлера $y = \psi(x)$ с рангом дробления, не превосходящим δ , является ε -решением уравнения (1.1) на $\overline{P_h}(x_0, y_0)$

Доказательство.

1. Для произвольной точки (x_0, y_0) из G построим прямоугольник $\overline{R} \subset G$ с центром в (x_0, y_0) и два лежащих в нём равнобедренных треугольника $\overline{T^-}, \overline{T^+}$ с общей вершиной в точке (y_0, x_0) и основаниями, параллельными оси ординат, как это было сделано при построении отрезка Пеано При этом зафиксируются константы a, b, M, h

Выберем $\delta_* < \delta$ так, чтобы число $\frac{h}{\delta_n} =: N \in \mathbb{N}$

Положим $x_{j+1} \coloneqq x_j + \delta_* \ (j = \overline{0, N-1})$, тогда $x_N = x_0 + h$

Для всякого $x>x_0$ будем последовательно строить отрезки ломаной Эйлера $y=\psi(x)$ с узлами в точках x_i

Для любого j=0,...,N это сделать возможно, так как модуль тангенса укла наклона каждого отрезка равен $|f(x_j,\psi(x_j))|$, а тангенсы углов наклона боковых сторон треугольника $\overline{T^+}$ по построению равны $\pm M$, где $M=\max|f(x,y)|$ на компакте \overline{R}

Поэтому любой отрезок ломаной Эйлера, начиная с первого, не может пересечь боковую стенку $\overline{T^+}$, а значит, содержится в нём

В результате для всех $x \in [x_0, x_0 + h]$ точка $(x, \psi(x)) \in \overline{T^+}$ и требуемая ломаная Эйлера построена на $[x_0, x_0 + h]$

Для левого отрезка Пеано всё аналогично

2. Зафиксируем теперь произвольное положительное число ε

Функция f(x,y) непрерывна на компакте \overline{R} , следовательно, по теореме Кантора f равномерно непрерывна на нём. По определнию это занчит, что существует такое $\delta_1 > 0$, что для любых двух точек (x'y') и (x'',y'') из прямоугольника \overline{R} таких, что $|x'-x''| \leq \delta_1$ и $|y'-y''| < \delta_1$, выполняется неравенство $|f(x',y')-f(x'',y'')| \leq \varepsilon$

Положим $\delta \coloneqq \min\left\{\delta_1, \frac{\delta_1}{M}\right\}$ и покажем, что для любой ломаной Эйлера $y = \psi(x)$ с рангом дробления меньшим, чем δ на отрезке Пеано $\overline{P_h}(x_0, y_0) = [x_0 - h, x_0 + h]$, справедливо неравенство (1.8):

Возьмём любую точку x из отрезка Пеано, например справа от x_0

Найдётся индекс $j \in \{0,...,N-1\}$ такой, что $x \in (x_j,x_{j+1}]$, т. е. x_j – ближайшая к x левая угловая точка ломаной Эйлера

Согласно (1.7)

$$\psi'(x) - f(x, \psi(x)) = f(x_i, \psi(x_i)) - f(x, \psi(x))$$

Оценим близость аргументов функции f:

По выбору δ и j имеем

$$|x - x_j| \le \delta \le \delta_1, \qquad |\psi(x) - \psi(x_j)| \xrightarrow[\text{(1.6)}]{} |f(x_j, \psi(x_j))| \cdot |x - x_j| \le M\delta \stackrel{\text{def } \delta}{\le} \delta_1$$

Поэтому из равномерной непрерывности функции f вытекает, что

$$|f(x_j, \psi(x_j)) - f(x, \psi(x))| \le \varepsilon$$

А значит, неравенство (1.8) из определения ε -решения выполняется на отрезке Пеано

1.2.3 Лемма Арцела-Асколи

Пусть последовательность функций $\{h_n(x)\}_{n=1}^\infty$ задана на [a,b]

Определение 28. Каждая из функций последовательности $\{h_n(x)\}_{n=1}^{\infty}$ ограничена на [a,b], если

$$\forall n \geq 1 \quad \exists K_n > 0: \quad \forall x \in [a, b] \quad |h_n(x)| \leq K_n$$

Определение 29. Последовательность $\{h_n(x)\}_{n=1}^{\infty}$ **равномерно** ограничена на отрезке [a,b], если

$$\exists K > 0: \forall n \geq 1 \quad \forall x \in [a, b] \quad |h_n(x)| \leq K$$

Определение 30. Каждая из функций последовательности $\{h_n(x)\}_{n=1}^{\infty}$ непрерывна на отрезке [a,b], значит, согласно теореме Кантора, равномерно непрерывна на [a,b], если

$$\forall \varepsilon > 0 \quad \forall n \ge 1 \quad \exists \, \delta_n > 0 : \quad \forall x', x'' \in [a, b] \quad \left(|x' - x''| \le \delta_n \implies |h_n(x') - h_n(x'')| \le \varepsilon \right)$$

Определение 31. Последовательность $\{h_n(x)\}_{n=1}^{\infty}$ равностепенно непрерывна на отрезке [a,b], если

$$\forall \varepsilon > 0 \quad \exists \, \delta > 0 : \quad \forall n \ge 1 \quad \forall x', x'' \in [a, b] \quad \left(|x' - x''| \le \delta \implies |h_n(x') - h_n(x'')| \le \varepsilon \right)$$

Определение 32. Последовательность функций $\{h_n(x)\}_{n=1}^{\infty}$ поточечно сходится к некоторой функции h(x) на отрезке [a,b], если

$$\forall \varepsilon > 0 \quad \forall x \in [a, b] \quad \exists N_x > 0: \quad \forall i, j \ge N_x \quad |h_i(x) - h_j(x)| \le \varepsilon$$

Определение 33. Последовательность $\{h_n(x)\}_{n=1}^{\infty}$ **равномерно** сходится к некоторой функции h(x) на отрезке [a,b], если

$$\forall \varepsilon > 0 \quad \exists N > 0: \quad \forall i, j \geq N \quad \forall x \in [a, b] \quad |h_i(x) - h_j(x)| \leq \varepsilon$$

Обозначение. Для любого $x \in [a,b]$ поточечная сходимость обозначается $h_n(x) \to h(x)$

Обозначение. Равномерная относительно [a,b] сходимость обозначается $h_n(x) \xrightarrow[x \to \infty]{[a,b]} h(x)$

Замечание. В определениях 29 и 31 слова "равномерно" и "равностепенно" означают, что константы K, δ не зависят от выбора n, а в 33 – что номер N не зависит от выбора x