Notas Curso Topología II

Cristo Daniel Alvarado

24 de septiembre de 2024

Índice general

1.	Metrizabilidad		
	1.1.	Introducción	2
	1.2.	Lema de Urysohn e implicaciones	8
	1.3.	Espacios $T_{3,5}$ y Completamente Regulares	14
	1.4.	El Teorema de Metrizabilidad de Urysohn	17
	1.5.	Espacios Paracompactos	20

Capítulo 1

Metrizabilidad

1.1. Introducción

¿Cuándo un espacio topológico es metrizable? Supongamos que tenemos un espacio topológico (X, τ) , queremos una métrica $d: X \times X \to \mathbb{R}$ tal que $\tau_d = \tau$.

La respuesta a esta pregunta es que no siempre será posible encontrar tal métrica. Por ejemplo, tome cualquier espacio topológico que no sea T_1 .

- Pável Urysohn 1898-1924. El Lema de Urysohn fue publicado en 1924 póstumo a la muerte de su autor.
- Primera guerra mundial 28 de julio de 1914 a 11 de noviembre de 1918, inició con el asesinato del Archiduque Franciso de Austria.
- Segunda guerra mundial 1939 a 1945, cuando Hitler invade Polonia.
- En 1950 Bing, Nagata y Morita resuelven el problema de metrizabilidad de espacios topológicos.

Lo que veremos a continuación tiene como base fundamental el siguiente lema:

Lema 1.1.1 (Lema de Urysohn)

Sea (X,τ) espacio topológico. Entonces, (X,τ) es T_4 si y sólo si dados $A,B\subseteq X$ cerrados disjuntos existe una función continua $f:X\to [0,1]$ tal que

$$f(A) = \{0\}$$
 y $f(B) = \{1\}$

Este lema se probó en el curso pasado.

Proposición 1.1.1

Sea (X, τ) un espacio topológico segundo numerable. Entonces

- 1. (X, τ) es primero numerable.
- 2. (X,τ) es de Lindelöf.
- 3. (X,τ) es separable.

Sea $\mathcal{B} = \{B_i\}_{i \in \mathbb{N}}$ una base numerable para τ .

De (1): Sea $x \in X$. Tomemos

$$\mathcal{B}_x = \left\{ B_n \in \mathcal{B} \middle| x \in B_n \right\}$$

este es un conjunto no vacío pues al ser \mathcal{B} base, existe $B \in \mathcal{B}$ tal que $x \in B$. Además es a lo sumo numerable por ser subcolección de \mathcal{B} .

Sea $U \subseteq X$ abierto tal que $x \in U$. Como \mathcal{B} es base de τ , existe $B \in \mathcal{B}$ tal que $x \in B \subseteq U$, luego $B \in \mathcal{B}_x$. Por tanto, \mathcal{B}_x es un sistema fundamental de vecindades de x. Al ser el x arbitrario, se sigue que (X, τ) es primero numerable.

De (2): Sea $\mathcal{A} = \{A_{\alpha}\}_{{\alpha} \in I}$ una cubierta abierta de (X, τ) . Dado $x \in X$ existe $A_{\alpha} \in \mathcal{A}$ tal que $x \in A_{\alpha}$, como $A_{\alpha} \in \tau$, existe $B_x \in \mathcal{B}$ tal que

$$x \in B_x \subseteq A_\alpha$$

Sea

$$\mathcal{K} = \left\{ n \in \mathbb{N} \middle| \exists A_{\alpha} \in \mathcal{A} \text{ tal que } B_n \subseteq A_{\alpha} \right\}$$

por la observación anterior, esta colección es no vacía. Dado $k \in \mathcal{K}$ escogemos un único A_{α_k} tal que

$$B_k \subseteq A_{\alpha_k}$$

Sea

$$\mathcal{A}' = \left\{ A_{\alpha_k} \right\}_{k \in \mathcal{K}}$$

se tiene que $\mathcal{A}' \subseteq \mathcal{A}$ es numerable. Sea $x \in X$, Como \mathcal{A} es cubierta, existe $A' \in \mathcal{A}$ tal que

$$x \in A' \in \tau$$

luego, al ser \mathcal{B} base existe $B_n \in \mathcal{B}$ tal que

$$x \in B_n \subseteq A'$$

Se sigue pues que $x \in A_{\alpha_n}$. Por ende, $x \in \bigcup_{n \in \mathbb{N}} A_{\alpha_n}$. Así, \mathcal{A} posee una subcubierta a lo sumo numerable. Se sigue que al ser la cubierta abierta arbitraria que el espacio (X, τ) es Lindelöf.

Proposición 1.1.2

Si (X, τ) es metrizable, entonces los coneptos de espacio de Lindelöf, espacio separable y espacio segundo numerable son equivalentes.

Demostración:

Probaremos que Lindelöf implica separabilidad que implica segunda numerabilidad.

Suponga que (X, τ) es metrizable, entonces existe una métrica $d: X \times X \to \mathbb{R}$ tal que $\tau_d = \tau$.

• Suponga que (X,τ) es Lindelöf. Sea $n\in\mathbb{N}$ y tomemos

$$\mathcal{U}_n = \left\{ B_d\left(x, \frac{1}{n}\right) \middle| x \in X \right\}$$

 \mathcal{U}_n es una cubierta abierta de (X, τ) . Como el espacio de Lindelöf, existe \mathcal{V}_n a lo sumo numerable tal que

$$\mathcal{V}_n = \left\{ B_d\left(y, \frac{1}{n}\right) \middle| y \in Y_n \right\}$$

siendo $Y_n \subseteq X$ un conjunto a lo sumo numerable, de tal suerte que \mathcal{V}_n es subcubierta de \mathcal{U}_n . Sea

$$A = \bigcup_{n \in \mathbb{N}} Y_n$$

este es un conjunto a lo sumo numerable. Sea $U \in \tau$ con $U \neq \emptyset$. Como $U \neq \emptyset$, existe $x \in U$, así existe $\varepsilon > 0$ tal que $B_d(x, \varepsilon) \subseteq U$. Sea $m \in \mathbb{N}$ tal que $\frac{1}{m} < \varepsilon$. Tenemos que \mathcal{V}_m es una cubierta de X, luego existe $y \in Y_m$ tal que

$$x \in B_d\left(y, \frac{1}{m}\right)$$

Por tanto, $y \in B_d(x, \frac{1}{m}) \subseteq B(x, \varepsilon) \subseteq U$, así $y \in U$. Pero como $y \in Y_m$ se tiene que $y \in A$. Por ende

$$U \cap A \neq \emptyset$$

lo que prueba el resultado.

• Suponga que (X, τ) es separable, entonces existe $A \subseteq X$ subconjunto denso a lo sumo numerable. Sea

$$\mathcal{B} = \left\{ B_d \left(a, \frac{1}{n} \right) \middle| a \in A \text{ y } n \in \mathbb{N} \right\}$$

Si probamos que \mathcal{B} es base para τ , se probará el resultado (pues \mathcal{B} es a lo sumo numerable). Sea $x \in X$ y $\varepsilon > 0$. Tomemos $m \in \mathbb{N}$ tal que

$$\frac{2}{m} < \varepsilon$$

como $\overline{A} = X$, entonces existe $a \in A$ tal que $a \in B_d\left(x, \frac{1}{m}\right)$. Entonces

$$x \in B_d\left(a, \frac{1}{m}\right) \subseteq B_d\left(x, \frac{2}{m}\right) \subseteq B_d\left(x, \varepsilon\right)$$

por tanto, \mathcal{B} es una base para la topología τ , luego el espacio (X,τ) es segundo numerable.

Ejemplo 1.1.1

Considere el espacio topológico (\mathbb{R}, \leq). Entonces el conjunto

$$\mathcal{B}_{l} = \left\{ [a, b) \middle| a, b \in \mathbb{R} \right\}$$

es una base para una topología sobre \mathbb{R} . La topología generada por esta base la denotamos por τ_l y se dice la topología del límite inferior.

Ejemplo 1.1.2

El espacio (\mathbb{R}, τ_l) es T_2 . Dados $a, b \in \mathbb{R}$ se tiene que si a < x < b.

$$(a,b) = \bigcup \left\{ [x,b) \middle| a < x < b \right\}$$

por tanto, $\tau_u \subseteq \tau_l$, luego (\mathbb{R}, τ_l) es T_2 pues con la topología usual lo es.

Más aún, (\mathbb{R}, τ_l) es primero numerable.

En efecto, sea $x \in \mathbb{R}$. Afirmamos que la colección

$$\left\{ [x, x + 1/n) \middle| n \in \mathbb{N} \right\}$$

es un sistema fundamnetal de vecindades de x, por lo que este espacio es primero numerable.

Ejemplo 1.1.3

El espacio (\mathbb{R}, τ_l) no es segundo numerable.

Demostración:

Sea \mathcal{B} una base para τ_l . Para $x \in \mathbb{R}$ escogemos $B_x \in \mathcal{B}$ tal que

$$x \in B_x \subseteq [x, x+1)$$

Se tiene que $x = \inf B_x$. Para $x, y \in \mathbb{R}$ se tiene que $B_x \neq B_y$ (pues si fueran iguales, tendrían el mismo ínfimo). Por tanto la colección \mathcal{B} es no numerable.

Así, el espacio (\mathbb{R}, τ_l) no es segundo numerable.

Ejemplo 1.1.4

El espacio (\mathbb{R}, τ_l) es separable.

Demostración:

Tome $\mathbb{Q} \subseteq \mathbb{R}$.

Ejemplo 1.1.5

 (\mathbb{R}, τ_l) es normal.

Demostración:

Sean $A, B \subseteq \mathbb{R}$ cerrados tales que $A \cap B = \emptyset$. Sea $a \in A$, entonces $a \notin B = \overline{B}$. Existe pues $x_a \in \mathbb{R}$ tal que

$$[a, x_a) \subseteq \mathbb{R} - B$$

(por ser el conjunto de la derecha abierto). Entonces

$$A \subseteq \bigcup_{a \in A} [a, x_a) = U \in \tau_l$$

У

$$B \subseteq \bigcup_{b \in P} [b, x_b) = V \in \tau_l$$

Si $U \cap V \neq \emptyset$, entonces existe $a \in A$ y $b \in B$ tales que

$$[a, x_a) \cap [b, x_b) \neq \emptyset$$

Si a < b entonces $b \in [a, x_a)$, lo cual es una contradición. Por tanto, $U \cap V = \emptyset$. Así, el espacio (\mathbb{R}, τ_l) es normal.

Proposición 1.1.3

Si (X, τ) es metrizable, entonces (X, τ) es normal.

Sea d una métrica definida sobre X tal que $\tau_d = \tau$. Como (X, τ) es metrizable, entonces es \mathbb{T}_2 y por lo tanto es T_1 . Veamos que (X, τ) es T_4 .

Sean $A, B \subseteq X$ cerrados disjuntos con $A \cap B \neq \emptyset$. Sea $a \in A$, entonces $a \in X - B \in \tau$. Entonces existe $\varepsilon_a > 0$ tal que

$$B_d(a, \varepsilon_a) \subseteq X - B$$

Sea

$$U = \bigcup_{a \in A} B_d\left(a, \frac{\varepsilon_a}{2}\right) \in \tau$$

es claro que $A \subseteq U$. De forma análoga se construye V:

$$V = \bigcup_{b \in B} B_d\left(b, \frac{\varepsilon_b}{2}\right) \in \tau$$

es tal que $B \subseteq V$. Suponga que $U \cap V \neq \emptyset$. Entonces existe $a \in A$ y $b \in B$ tales que

$$B_d\left(a, \frac{\varepsilon_a}{2}\right) \cap B_d\left(b, \frac{\varepsilon_b}{2}\right) \neq \emptyset$$

se tiene que $d(a,b) < d(a,x) + d(x,b) < \frac{\varepsilon_a}{2} + \frac{\varepsilon_b}{2} < \max\{\varepsilon_a, \varepsilon_b\}$. Por tanto, $a \in B_d(b, \varepsilon_b)$ o $b \in B_d(a, \varepsilon_a)$, lo cual contradice la elección de estas bolas. Por tanto, $U \cap B = \emptyset$.

Así, el espacio
$$(X, \tau)$$
 es T_4 .

Corolario 1.1.1

Si (X, τ) es metrizable, entonces es regular.

Demostración:

Inmediato del hecho que normalidad implica regularidad.

Proposición 1.1.4

Si (X,τ) es metrizable, entonces (X,τ) es primero numerable.

Demostración:

Sea d una métrica definida sobre X tal que $\tau = \tau_d$. Sea $x \in X$, considere

$$\mathcal{V} = \left\{ B_d \left(x, \frac{1}{n} \right) \middle| n \in \mathbb{N} \right\}$$

entonces \mathcal{V} es una colección numerable de vecindades de X y es fundamental (por construcción). Por tanto, (X, τ) es primero numerable.

Proposición 1.1.5

Sea (X,τ) un espacio T_3 y de Lindelöf, entonces (X,τ) es T_4

Demostración:

Sean $A, B \subseteq X$ cerrados disjuntos. Sea $a \in A \subseteq X - B \in \tau$. Como (X, τ) es T_3 , existe $U_a \in \tau$ tal que

$$a \in U_a \subseteq \overline{U}_a \subseteq X - B$$

Por ser (X,τ) de Lindelöf y ser $A\subseteq X$ cerrado, tenemos que (A,τ_A) es de Lindelöf. Se tiene que

$$A \subseteq \bigcup_{a \in A} U_a$$

donde $U_a \in \tau$ y $\overline{U}_a \cap B \neq \emptyset$. Existe pues $\{U_{a_n}\}_{n \in \mathbb{N}}$ tales que

$$A \subseteq \bigcup_{n \in \mathbb{N}} U_{a_n} U_{a_n}$$

y cumplen que

$$\overline{U}_{a_n} \cap B = \emptyset, \quad \forall n \in \mathbb{N}$$

De forma análoga podemos encontrar una familia $\{V_{b_n}\}_{n\in\mathbb{N}}$ de abiertos tales que

$$V \subseteq \bigcup_{n \in \mathbb{N}} U_{b_n} V_{b_n}$$

y que cumplan:

$$\overline{V}_{b_n} \cap A = \emptyset, \quad \forall n \in \mathbb{N}$$

Sea $m \in \mathbb{N}$. Se define

$$U_m = U_{a_m} - \bigcup_{l=1}^m \overline{V}_{b_l} \in \tau$$

y V_m se define de forma similar:

Observación 1.1.1

Por el ejemplo de (\mathbb{R}, τ_l) , se sigue que el recíproco de esta proposición anterior no es cierta.

Observación 1.1.2

Del ejemplo anterior se deduce de forma inmediata que el recíproco del teorema anterior no es cierto.

El objetivo de los siguientes resultados va a ser el de probar estos siguientes dos teoremas:

Teorema 1.1.1 (Teorema de Urysohn)

Si (X,τ) es un espacio normal y segundo numerable, entonces es metrizable.

Teorema 1.1.2 (Teorema de Tychonoff)

Si (X,τ) es un espacio regular y segundo numerable, entonces es metrziable.

los cuales caracterizan en su totalidad a los espacios metrizables.

Notemos antes que se cumple lo siguiente (dados los resultados probados anteriormente):

 $Metrizabilidad \Rightarrow Normalidad \Rightarrow Regularidad$

pero, más adelante se verá que

Metrizabilidad

⇒ Segunda numerabilidad

y,

Definición 1.1.1

Para todo $n \in \mathbb{N} \cup \{0\}$ se define:

$$\mathcal{D}_n = \left\{0, \frac{1}{2^n}, \frac{2}{2^n}, \dots, \frac{2^n - 1}{2^n}, 1\right\}$$

y con ello, se construye el subconjunto de \mathbb{Q} :

$$\mathcal{D} = \bigcup_{n=0}^{\infty} \mathcal{D}_n$$

Proposición 1.1.6

Sea [0,1] como subespacio de (\mathbb{R}, τ_u) , entonces \mathcal{D} es denso en $([0,1], \tau_{u[0,1]})$.

Demostración:

Es inmediata.

1.2. Lema de Urysohn e implicaciones

Lema 1.2.1 (Lema de Urysohn)

Sea (X, τ) un espacio topológico. Entonces, (X, τ) es T_4 si y sólo si para todos $A, B \subseteq X$ cerrados disjuntos, existe una función continua $f: (X, \tau) \to ([0, 1], \tau_u)$ tal que $f(A) = \{1\}$ y $f(B) = \{0\}$.

Demostración:

⇒): Para probar el resultado, debemos hacer varias cosas antes:

1. Sea

$$P = \mathbb{Q} \cap [0, 1]$$

Nuestro objetivo es que para cada $p \in P$ le asignemos un conjunto abierto $U_p \subseteq X$ tal que si $p,q \in P$ son tales que

$$p < q \Rightarrow \overline{U}_p \subseteq U_q$$

de esta forma, la familia $\{U_p | p \in P\}$ estará simplemente ordenada de la misma forma en la que sus subíndices lo están en P. Como el conjunto P es numerable, podemos usar inducción para definir cada uno de los U_p . Ordenemos los elementos de P en una sucesión de tal forma que los números 0 y 1 son los primeros de la sucesión (denotada de ahora en adelante por $\{p_n\}_{n=1}^{\infty}$).

Definiremos ahora los conjuntos U_p como sigue: defina

$$U_1 = X - B$$

Como A es un cerrado contenido en U_1 , por ser (X, τ) T_4 , se tiene que existe un conjunto abierto $U_0 \subseteq X$ tal que

$$A \subseteq U_0$$
 y $\overline{U}_0 \subseteq U_1$

En general, sea P_n el conjunto de los primeros n números racionales en la sucesión de los elementos de P. Suponga que U_p está definido para cada $p \in P_n$ y, satisface la condición:

$$p, q \in P_n$$
 tal que $p < q \Rightarrow \overline{U}_p \subseteq U_q$

8

Sea r el siguiente número racional en la sucesión $\{p_n\}_{n=1}^{\infty}$, esto es $r=p_{n+1}$. Definiremos U_r . Considere el conjunto

$$P_{n+1} = P_n \cup \{r\}$$

Este es un subconjunto finito del intervalo [0,1] y, tiene un orden simple derivado del orden simple < de [0,1].

En un conjunto finito simplemente ordenado, todo elemento tiene un predecesor inmediato y un sucesor inmediato. El número 0 es el elemento más pequeño y, 1 es el elemento más grande de P_{n+1} y, r no es 0 o 1. Por tanto, r tiene un sucesor y un predecesor inmediato, denotados respectivamente por q y p. Los conjuntos U_p y U_q están definidos y son tales que

$$\overline{U}_p \subseteq U_q$$

por hipótesis de inducción. Como (X, τ) es T_4 , entonces existe un conjunto abierto $U_r \subseteq X$ tal que

$$\overline{U}_p \subseteq U_r \quad \text{y} \quad \overline{U}_r \subseteq U_q$$

Es claro (pues los conjuntos U_p con $p \in P_n$ están ordenados por la contención), que

$$p, q \in P_{n+1}$$
 tal que $p < q \Rightarrow \overline{U}_p \subseteq U_q$

Usando inducción, tenemos definidos los conjuntos U_p , para todo $p \in P$.

2. Ahora que se tiene definido U_p para todo número en $\mathbb{Q} \cap [0, 1]$, extenderemos esta definición a todo \mathbb{Q} , haciendo

$$U_p = \emptyset, \quad p < 0$$

$$U_p = X, \quad 1 < p$$

para todo $p \in \mathbb{Q}$. Se sigue cumpliendo que para todo $p, q \in \mathbb{Q}$

$$p < q \Rightarrow \overline{U}_p \subseteq U_q$$

3. Dado un punto $p \in X$, definamos el conjunto $\mathbb{Q}(x)$ como el conjunto de todos los números racionales $p \in \mathbb{Q}$ tales que los correspondientes U_p contengan a x, es decir:

$$\mathbb{Q}(x) = \left\{ p \in \mathbb{Q} \middle| x \in U_p \right\}$$

Este conjunto no contiene a ningún número menor que 0 ya que $x \notin U_p$ para todo $p \in \mathbb{Q}^-$, además, contiene a todo número mayor que 1, pues $x \in U_p$ para todo $p \in \mathbb{Q}$, p > 1. Por tanto, $\mathbb{Q}(x)$ es acotado inferiormente y no vacío, luego tiene ínfimo en el intervalo [0, 1]. Defina

$$f(x) = \inf \mathbb{Q}(x) = \inf \left\{ p \in \mathbb{Q} \middle| x \in U_p \right\}$$

4. Afirmamos que f es la función deseada. Si $x \in A$, entonces $x \in U_p$ para todo $p \in \mathbb{Q}_{\geq 0}$, luego

$$f(x) = \inf \mathbb{Q}(x) = 0$$

Similarmente, si $x \in B$, entonces $x \notin U_p$ para todo $p \in \mathbb{Q}$ con $p \leq 1$. Luego, $\mathbb{Q}(x)$ consiste de todos los números racionales mayores a 1 y, por ende, f(x) = 1.

Probaremos que f es continua. Para ello, probaremos que se cumplen dos cosas:

- I) $x \in \overline{U}_r$ implica que $f(x) \le r$.
- II) $x \notin U_r$ implica que $f(x) \ge r$.

Para probar (1), notemos que si $x \in \overline{U}_r$, entonces $x \in U_s$, para todo s > r. Entonces, $\mathbb{Q}(x)$ contiene a todos los números racionales mayores que r, así que, por definición tenemos que

$$f(x) = \inf \mathbb{Q}(x) \le r$$

Para probar (2), notemos que si $x \notin U_r$, entonces x no está en U_s para todo s < r. Por tanto, $\mathbb{Q}(x)$ no contiene números racionales menores que r, por lo cual

$$f(x) = \inf \mathbb{Q}(x) \ge r$$

Ahora probaremos la continuidad de f. Sea $x_0 \in X$ y un intervalo abierto (c, d) en \mathbb{R} tal que

$$c < f(x_0) < d$$

podemos encontrar números racionales $p, q \in \mathbb{Q}$ tales que

$$c$$

Afirmamos que el conjunto

$$U = U_q - \overline{U}_p$$

es un abierto que cumple que $f(U) \subseteq (c,d)$ y es tal que $x_0 \in U$. En efecto, notemos que $x_0 \in U_q$ pues $f(x_0) < q$ implica por (2) que $f(x_0) \in U_q$ y, como $p < f(x_0)$, implica por (1) que $f(x_0) \notin \overline{U}_p$. Por tanto, $f(x_0) \in U$.

Sea $x \in U$, entonces $x \in U_q \subseteq \overline{U}_q$, por lo cual de (1), $f(x) \leq q$ y, $x \notin \overline{U}_p$ implica que $x \notin \overline{U}_p$ por lo cual de (2) se sigue que $p \leq f(x)$. Por tanto, $f(x) \in [p,q] \subseteq (c,d)$.

Luego, $f(U) \subseteq (c,d)$. Así, f es continua en $x_0 \in X$. Como el punto fue arbitrario, se sigue que f es continua en X.

Por los 4 incisos anteriores, se sigue el resultado.

 \Leftarrow): Sean $A, B \subseteq X$ cerrados disjuntos. Por hipótesis existe una función continua $f:(X,\tau) \to ([0,1],\tau_u)$ tal que f(A)=1 y f(B)=0. Los conjuntos $U=f^{-1}((r,1])$ $V=f^{-1}([0,r))$, donde $r \in (0,1)$, son dos abiertos (ya que f es continua y $[0,r),(r,1],\in\tau_u$) tales que:

$$A \subseteq U \quad B \subseteq V$$

y, $U \cap V = \emptyset$.

Ejemplo 1.2.1

Sea (X, τ) un espacio topológico T_4 y $A, B \subseteq X$ cerrados disjuntos y considere al espacio $(A \cup B, \tau_{A \cup B})$. Sea $g: (A \cup B, \tau_{A \cup B}) \to ([0, 1], \tau_u)$ la función definida como

$$g(x) = \begin{cases} 0 & \text{si} \quad x \in A \\ 1 & \text{si} \quad x \in B \end{cases}, \quad \forall x \in A \cup B$$

esta función es continua. Como (X,τ) es T_4 , por el Lema de Urysohn existe $G:(X,\tau)\to ([0,1],\tau_u)$ función continua tal que $G(A)=\{0\}$ y $G(B)=\{1\}$. Se tiene pues que G es una extensión continua de la función g.

Ejercicio 1.2.1

Pruebe que

$$\frac{1}{3} \sum_{i=1}^{\infty} \left(\frac{2}{3}\right)^{i-1} = 1$$

y,

$$\frac{1}{3} \sum_{i=n+1}^{\infty} \left(\frac{2}{3}\right)^{i-1} = \left(\frac{2}{3}\right)^n$$

Proposición 1.2.1

Sea (X, τ) un espacio topológico T_4 y sea $A \subseteq X$ cerrado. Tomemos $r \in \mathbb{R}^+$ y considere [-r, r] dotado de la topología usual. Si $f: (A, \tau_A) \to ([-r, r], \tau_u)$ es una función continua, entonces existe una función continua $g: (X, \tau) \to (\mathbb{R}, \tau_u)$ tal que

- I. $\forall x \in X, |g(x)| \leq \frac{r}{3}$.
- II. $\forall a \in A, |f(a) g(a)| \leq \frac{2r}{3}$.

Demostración:

Definimos $I_1 = [-r, -r/3]$, $I_2 = [-r/3, r/3]$ e $I_3 = [r/3, r]$. Hacemos $B = f^{-1}(I_1)$ y $C = f^{-1}(I_3)$. Como f es continua entones B y C son dos cerrados en (A, τ_A) , al ser A cerrado en X, se sigue que B y C son cerrados en X y además son disjuntos. Por el Lema de Urysohn existe una función continua $g: (X, \tau) \to ([-r/3, r/3], \tau_u)$ tal que

$$g(B) = \{-r/3\}$$
 y $g(C) = \{r/3\}$

además, para todo $x \in X$ se cumple que $|g(x)| \leq \frac{r}{3}$.

Tenemos lo siguiente: sea $a \in A$, entonces:

• Si $a \in B$ se tiene que $f(a) \in I_1$ y g(a) = -r/3, por lo cual $f(a), g(a) \in I_1$, lo cual implica que

$$|f(a) - g(a)| \le \frac{2r}{3}$$

■ Si $a \in C$ se tiene que $f(a) \in I_3$ y g(a) = r/3, por lo cual $f(a), g(a) \in I_3$, lo cual implica que

$$|f(a) - g(a)| \le \frac{2r}{3}$$

• $a \notin B \cup C$, entonces $f(a) \in I_2$ y ya se sabe que $g(a) \in I_2$, lo cual implica que

$$|f(a) - g(a)| \le \frac{2r}{3}$$

viendo a g como una función de (X, τ) en (\mathbb{R}, τ_u) se tiene el resultado.

Teorema 1.2.1 (Teorema de extensión de Tietze)

Sea (X, τ) un espacio topológico T_4 . Considere [a, b] como subespacio de (\mathbb{R}, τ_u) con $a, b \in \mathbb{R}$ tales que a < b. Si $f: (A, \tau_A) \to ([a, b], \tau_u)$ es una función continua, entonces existe una función continua $F: (X, \tau) \to ([a, b], \tau_u)$ tal que para todo $a \in A$

$$F(a) = f(a)$$

La función $h:([a,b],\tau_u)\to([-1,1],\tau_u)$ definida como

$$h(x) = \frac{2x - a - b}{b - a}, \quad \forall x \in [a, b]$$

es un homeomorfismo.

Si para la función continua $h \circ f: (A, \tau_A) \to ([-1, 1], \tau_u)$ existe una función continua $H: (X, \tau) \to ([-1, 1], \tau_u)$ tal que para todo $a \in A$, $H(a) = (h \circ f)(a)$, entonces $h^{-1} \circ H: (X, \tau) \to ([a, b], \tau_u)$ es una función continua tal que

$$(h^{-1} \circ H)(a) = f(a), \quad \forall a \in A$$

Tomando $F = h^{-1} \circ H$ se tiene el resultado. Por tanto, podemos suponer sin pérdida de generalidad que $f: (A, \tau_A) \to ([-1, 1], \tau_u)$. Podemos usar el resultado anterior para r = 1.

- 1. Tenemos por la proposición anterior que existe una función continua $g_1:(X,\tau)\to(\mathbb{R},\tau_u)$ tal que
 - $\forall x \in X, |g_1(x)| \le \frac{1}{3}.$
 - $\forall a \in A, |f(a) g_1(a)| \le \frac{2}{3}.$
- 2. Consideremos la función continua $f g_1 : (A, \tau_A) \to ([-2/3, 2/3], \tau_u)$ (esto por (1)). Para $r = \frac{2}{3}$ existe una función continua $g_2 : (X, \tau) \to (\mathbb{R}, \tau_u)$ tal que
 - $\forall x \in X, |g_2(x)| \leq \frac{1}{3} \cdot \frac{2}{3}$.
 - $\forall a \in A, |(f g_1)(a) g_2(a)| = |(f g_1 g_2)(a)| \le \frac{2}{3} \cdot \frac{2}{3}$.
- 3. Suponga construidas funciones continuas $g_1, ..., g_n : (X, \tau) \to (\mathbb{R}, \tau_u)$ con $n \in \mathbb{N}$ tal que $n \geq 2$ tales que
 - $\forall x \in X, |g_i(x)| \le \frac{1}{3} \cdot \left(\frac{2}{3}\right)^{i-1}$, para todo $i \in [1, n]$.
 - $\forall a \in A, |f(a) \sum_{i=1}^{n} g_i(a)| \leq (\frac{2}{3})^n.$

Entonces, por la proposición anterior para la función $f - \sum_{i=1}^{n} g_i : (A, \tau_A) \to \left(\left[-\left(\frac{2}{3}\right)^n, \left(\frac{2}{3}\right)^n \right], \tau_u \right)$ existe una función continua $g_{n+1} : (X, \tau) \to (\mathbb{R}, \tau_u)$ tal que

- $\forall x \in X, |g_{n+1}(x)| \leq \frac{1}{3} \cdot \left(\frac{2}{3}\right)^n.$
- $\forall a \in A, |(f \sum_{i=1}^{n} g_i)(a) g_{n+1}(a)| \leq \frac{2}{3} \cdot \left(\frac{2}{3}\right)^n = \left(\frac{2}{3}\right)^{n+1}.$

por inducción tenemos definida una sucesión de funciones $\{g_i:(X,\tau)\to(\mathbb{R},\tau_u)\}_{i=1}^{\infty}$ que cumple las condiciones anteriores para todo $i\in\mathbb{N}$. Defina

$$G_k = \sum_{i=1}^n g_i$$

sean $m, k \in \mathbb{N}, x \in X$. Se tiene que

$$|G_{n+k}(x) - G_n(x)| = \left| \sum_{i=n+1}^{n+k} g_i(x) \right|$$

$$\leq \sum_{i=n+1}^{n+k} |g_i(x)|$$

$$\leq \frac{1}{3} \sum_{i=n+1}^{n+k} \left(\frac{2}{3}\right)^{i-1}$$

$$< \frac{1}{3} \sum_{i=n+1}^{\infty} \left(\frac{2}{3}\right)^{i}$$

$$= \left(\frac{2}{3}\right)^n$$

por ende, dado $\varepsilon > 0$, existe $N \in \mathbb{N}$ tal que si $n \geq N$ se cumple que

$$\left| \sum_{i=n+1}^{n+k} g_i(x) \right| < \varepsilon, \quad \forall x \in X$$

y para todo $k \in \mathbb{N}$. Luego, dado $x \in X$ la serie $\sum_{i=1}^{\infty} g_i(x)$ es convergente y así podemos definir una función $g:(X,\tau)\to(\mathbb{R},\tau_u)$ tal que

$$g(x) = \sum_{i=1}^{\infty} g_i(x)$$

Veamos que la función $g:(X,\tau)\to(\mathbb{R},\tau_u)$ es continua. Para todo $m\in\mathbb{N},\ G_m$ es continua y para $x\in X,\ k,n\in\mathbb{N}$ con n< k se tiene

$$|G_{n+k}(X) - G_n(x)| = \left| \sum_{i=n+1}^{n+k} g_i(x) \right|$$

$$< \left(\frac{2}{3} \right)^n$$

para n fijo y $k \to \infty$ tenemos que para todo $x \in X$:

$$|g(x) - G_n(x)| \le \left(\frac{2}{3}\right)^n$$

por tanto, G_n converge uniformemente a g, por ende g es continua.

Además, para todo $a \in A$

$$|f(a) - G_n(a)| = \left| f(a) - \sum_{i=1}^n g_i(a) \right|$$

$$\leq \left(\frac{2}{3}\right)^n$$

por tanto, para todo $a \in A$, f(a) = g(a). Tomando F = g se tiene el resultado.

Observación 1.2.1

Considere $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ como subespacio de (\mathbb{R}, τ_u) . Sea $h: (\mathbb{R}, \tau_u) \to \left(\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \tau_u\right)$ la función definida como:

$$h(x) = \arctan(x), \quad \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

el cual es un homeomorfismo. Como a su vez el intervalo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ es homeomorfo a (-1, 1) como

subespacios de (\mathbb{R}, τ_u) , tenemos que

$$(\mathbb{R}, \tau_u) \cong ((-1, 1), \tau_u)$$

Observación 1.2.2

Además, si (X, τ) es un espacio topológico y $f: (X, \tau) \to ((-1, 1), \tau_u)$ es una función continua, entonces la función $F: (X, \tau) \to ([-1, 1], \tau_u)$ definida por

$$F(x) = f(x), \quad \forall x \in X$$

es una función continua.

Proposición 1.2.2

Sea (X, τ) un espacio T_4 y tomemos $A \subseteq X$ cerrado. Si $f: (A, \tau_A) \to (\mathbb{R}, \tau_u)$ es una función continua, entonces existe una función continua $F: (X, \tau) \to (\mathbb{R}, \tau_u)$ tal que

$$F(a) = f(a), \quad \forall a \in A$$

Demostración:

Podemos considerar a la función $f:(A,\tau_A)\to ([-1,1],\tau_u)$ con $f(A)\subseteq (-1,1)$ (esto por las observaciones anteriores). Por el Teorema de extensión de Tietze existe una función continua $\widetilde{F}:(X,\tau)\to ([-1,1],\tau_u)$ tal que

$$\widetilde{F}(a) = f(a), \quad \forall a \in A$$

Definimos

$$D = \widetilde{F}^{-1}(\{-1\}) \cup \widetilde{F}^{-1}(\{1\})$$

este es un conjunto cerrado (pues \widetilde{F} es continua). Se tiene que $A \subseteq X$ es un cerrado tal que $f(A) \subseteq (-1,1)$, luego entonces

$$A \cap D = \emptyset$$

Por el Lema de Urysohn existe una función continua $g:(X,\tau)\to([0,1],\tau_u)$ tal que

$$g(D) = \{0\}$$
 y $g(A) = \{1\}$

definimos $F = g \cdot \widetilde{F}$, esta es una función con dominio (X, τ) y contradominio (\mathbb{R}, τ_u) . Por ser producto de funciones continuas, esta es una función continua. Además, como para todo $x \in X$, $g(x) \in [0, 1]$, se tiene que

$$|F(x)| = \left| g(x) \cdot \widetilde{F}(x) \right| \le \left| \widetilde{F}(x) \right| \le 1, \quad \forall x \in X$$

- Si $x \in D$, entonces g(x) = 0, esto es que F(x) = 0.
- Si $x \notin D$, entonces $\widetilde{F}(x) \in (-1,1)$, luego |F(x)| < 1, se sigue que $F(x) \in (-1,1)$.

Luego, $F:(X,\tau)\to((-1,1),\tau_u)$ es una función continua tal que

$$F(a) = g(a) \cdot \widetilde{F}(a) = 1 \cdot \widetilde{F}(a) = f(a), \quad \forall a \in A$$

Luego F es la función continua buscada.

1.3. Espacios $T_{3,5}$ y Completamente Regulares

Definición 1.3.1

Sea (X, τ) un espacio topológico. Decimos que (X, τ) es **un espacio** $T_{3,5}$ si dados $A \subseteq X$ cerrado no vacío y $x \notin A$, existe una función $f: (X, \tau) \to ([0, 1], \tau_u)$ tal que f es continua y

$$f(A) = \{1\}$$
 y $f(x) = 0$

Definición 1.3.2

Un espacio topológico (X, τ) que es $T_{3,5}$ y T_1 se llama **espacio completamente regular** (también llamado **espacio de Tychonoff**).

Ejemplo 1.3.1

Sea $(X = \{0, 1\}, \tau_I = \{X, \emptyset\})$. Este espacio es $T_{3.5}$ por vacuidad y no es T_1 .

Proposición 1.3.1

La propiedad de ser un espacio $T_{3,5}$ se hereda.

Demostración:

Sea (X,τ) un espacio $T_{3,5}$ y $Y\subseteq X$. Sea $A\subseteq Y$ un conjunto cerrado no vacío de (Y,τ_Y) . Sea $y\in Y-A$. Recordemos que

$$\overline{A}^Y = A = \overline{A} \cap Y$$

(siendo \overline{A}^Y la cerradura de A en Y y, \overline{A} la cerradura de A en X) donde en particular $y \in X - \overline{A}$. Tenemos pues que existe una función continua $f:(X,\tau) \to ([0,1],\tau_u)$ tal que

$$f(\overline{A}) = \{1\}$$
 y $f(y) = 0$

Entonces, la función $f|_Y:(Y,\tau_Y)\to([0,1],\tau_u)$ es una función continua tal que

$$f|_{Y}(a) = f(a) = 1, \quad \forall a \in A$$

pues $A \subseteq \overline{A}$, y $f|_{Y}(y) = f(y) = 0$. Se sigue entonces que (Y, τ_Y) es un espacio $T_{3,5}$.

Corolario 1.3.1

La propiedad de ser completamente regular se hereda.

Demostración:

Inmediata del hecho de que las propiedades $T_{3,5}$ y T_1 son hereditarias.

Ejercicio 1.3.1

La propiedad de ser $T_{3,5}$ es topológica.

Demostración:

Corolario 1.3.2

La propiedad de ser completamente regular es topológica.

Demostración:

Es inmediata del ejercicio anterior y de que la propiedad de ser T_1 es topológica.

Proposición 1.3.2

Si (X,τ) es un espacio topológico $T_{3,5}$, entonces (X,τ) es un espacio T_3 .

Demostración:

Sea $A \subseteq X$ cerrado y $x \in X - A$ con $A \neq \emptyset$. Al ser (X, τ) espacio $T_{3,5}$, existe pues una función continua $f: (X, \tau) \to ([0, 1], \tau_u)$ tal que

$$f(A) = \{1\}$$
 y $f(x) = 0$

Sean $U=f^{-1}([0,1/2))$ y $V=f^{-1}((1/2,1])$, al ser f función continua se tiene que $U,V\in\tau$ son disjuntos para los que se cumple que

$$x \in U$$
 y $A \subseteq V$

por tanto, (X, τ) es T_3 .

Proposición 1.3.3

Si (X,τ) es un espacio normal, entonces es completamente regular.

Demostración:

Suponga que (X, τ) es T_4 y T_1 . Sean $A \subseteq X$ cerrado no vacío y $x \in X - A$. Como (X, τ) es T_1 , el conjunto $B = \{x\}$ es cerrado para el que se cumple que $A \cap B = \emptyset$ siendo ambos conjuntos cerrados. Luego, por el Lema de Urysohn al ser (X, τ) un espacio T_4 existe una función continua $f: (X, \tau) \to ([0, 1], \tau_u)$ tal que

$$f(A) = \{1\}$$
 y $f(B) = \{0\}$

la segunda condición es equivalente a que f(x) = 0.

Por tanto,
$$(X, \tau)$$
 es $T_{3,5}$.

Nos preguntamos ahora que sucede con el producto de espacios regulares.

Proposición 1.3.4

Sea $\{(X_{\alpha}, \tau_{\alpha})\}_{{\alpha} \in I}$ una familia de esapcios topológicos y tomemos $X = \prod_{{\alpha} \in I} X_{\alpha}$. Entonces, (X, τ_p) es $T_{3,5}$ si y sólo si $(X_{\alpha}, \tau_{\alpha})$ lo es, para todo $\alpha \in I$.

Demostración:

 \Rightarrow): Suponga que (X, τ_p) es $T_{3,5}$, como la propiedad de ser $T_{3,5}$ es hereditaria y topológica, se sigue de forma inmediata que $(X_{\alpha}, \tau_{\alpha})$ es $T_{3,5}$, para todo $\alpha \in I$.

 \Leftarrow): Suponga que para todo $\alpha \in I$ se tiene que $(X_{\alpha}, \tau_{\alpha})$ es $T_{3,5}$. Sea $A \subseteq X$ cerrado no vacío y $x \in X - A$. Tenemos que $X - A \in \tau_p$, por lo cual existe un básico $U \in \tau_p$ tal que

$$U \subseteq X - A$$

siendo

$$U = \prod_{\alpha \in I} U_{\alpha}$$

con $U_{\alpha} \in \tau_{\alpha}$ para todo $\alpha \in I$ y tal que $U_{\alpha} = X_{\alpha} \, \forall \alpha \in I$. Digamos que $J = \{\alpha_1, ..., \alpha_m\} \subseteq I$ es tal que

$$U_{\alpha_i} \neq X_{\alpha}, \quad \forall i \in [1, m]$$

Se tiene que $x=(x_{\alpha})_{\alpha\in I}\in U$, luego se cumple en particular para todo $i\in [1,m]$, $x_{\alpha_i}\notin X_{\alpha_i}-U_{\alpha_i}$.

Como $X_{\alpha_i} - U_{\alpha_i}$ es un cerrado no vacío que no contiene a x_{α_i} , para todo $i \in [1, m]$, al tenerse que $(X_{\alpha_i}, \tau_{\alpha_i})$ es un espacio $T_{3,5}$, existe una función continua $f_{\alpha_i} : (X_{\alpha_i}, \tau_{\alpha_i}) \to ([0, 1], \tau_u)$ tal que:

$$f_{\alpha_i}(X_{\alpha_i} - U_{\alpha_i}) = \{0\} \quad \text{y} \quad f_{\alpha_i}(x_{\alpha_i}) = \{1\}$$
 (1.1)

Ahora, para $i \in [1, m]$ consideremos la función proyección $p_{\alpha_i}: (X, \tau_p) \to (X_{\alpha_i}, \tau_{\alpha_i})$. Definimos:

$$g_{\alpha_i} = f_{\alpha_i} \circ p_{\alpha_i}$$

se tiene que $g_{\alpha_i}:(X,\tau)\to([0,1],\tau_u)$ es una función continua, para todo $i\in[1,m]$. Definimos la función $f:(X,\tau)\to([0,1],\tau_u)$ dada por:

$$f(x') = g_{\alpha_1} \cdot g_{\alpha_2} \cdots g_{\alpha_m}(x')$$

para todo $x' \in X$.

Se tiene que la función f es continua. Además, cumple que:

$$f(x) = g_{\alpha_1} \cdot g_{\alpha_2} \cdots g_{\alpha_m}(x)$$
$$= 1 \cdot 1 \cdots 1$$
$$= 1$$

ahora, sea $a \in A$, se tiene que $a \notin U$, luego existe $i \in [1, m]$ tal que $x_{\alpha_i} \in X_{\alpha_i} - U_{\alpha_i}$, por lo que $g_{\alpha_i}(x_{\alpha_i}) = 0$, esto es que f(x) = 0.

Así,
$$(X, \tau_p)$$
 es $T_{3.5}$.

Corolario 1.3.3

Sea $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in I}$ una familia de esapcios topológicos y tomemos $X = \prod_{\alpha \in I} X_{\alpha}$. Entonces, (X, τ_p) es completamente regular si y sólo si $(X_{\alpha}, \tau_{\alpha})$ lo es, para todo $\alpha \in I$.

Demostración:

Inmediata del teorema anterior.

Observación 1.3.1

Se sabe que si (X, τ) es un espacio compacto y Hausdorff, entonces (X, τ) es normal y por ende, completamente regular.

Proposición 1.3.5

Sea (X, τ) un espacio localmente compacto que no es compacto y además, es de Hausdorff, entonces (X, τ) es completamente regular.

Demostración:

Considere $(\hat{X}, \hat{\tau})$ (la compactificación unipuntual de (X, τ)). Sabemos que (X, τ) es un espacio compacto y Hausdorff, lo cual implica inmediatamente por la observación anterior que es normal (esto se probó el semestre pasado) y, en consecuencia, $(\hat{X}, \hat{\tau})$ es completamente regular. En particular, como (X, τ) es subespacio de $(\hat{X}, \hat{\tau})$ y la propiedad de ser completamente regular es hereditaria, entonces (X, τ) es completamente regular.

1.4. El Teorema de Metrizabilidad de Urysohn

Definición 1.4.1

Considere el espacio de sucesiones $l_2(\mathbb{R})$ de sucesiones dos convergentes, es decir que $\{x_n\}_{n=1}^{\infty} \in l_2(\mathbb{R})$ si y sólo si

$$\sum_{n=1}^{\infty} |x_n|^2 < \infty$$

Se define una métrica ρ sobre $l_2(\mathbb{R})$ dada por:

$$\rho(x,y) = \left[\sum_{n=1}^{\infty} (x_n - y_n)^2 \right]^{1/2}$$

Se define el Cubo de Hilbert como el subespacio métrico de $l_2(\mathbb{R})$ dado por:

$$\mathcal{H} = \left\{ \left\{ x_n \right\}_{n=1}^{\infty} \middle| |x_n| \le \frac{1}{n} \text{ para todo } n \in \mathbb{N} \right\}$$

Teorema 1.4.1 (Teorema de metrización de Urysohn)

Todo espacio regular (X, τ) y segundo numerable es metrzable.

Demostración:

Como (X, τ) es regular, entonces es T_3 y T_1 . Al ser segundo numerable, se tiene que es Lindelöf. Por la proposición 1.1.5 se tiene que (X, τ) es T_4 .

Sea $\mathcal{B} = \{B_n\}_{n \in \mathbb{N}}$ una base numerable para τ . Por ser base se cumple:

(*): Dados $x \in X$, $U \in \tau$ con $x \in U$ existe $k \in \mathbb{N}$ tal que $x \in B_k \subseteq U$.

Ahora, por ser (X, τ) un espacio T_3 , existe $V \in \tau$ tal que $x \in V \subseteq \overline{V} \subseteq B_k$. Nuevamente, como $V \in \tau$ entonces existe $j \in \mathbb{N}$ tal que $x \in B_j \subseteq V$. Por ende:

$$x \in B_j \subseteq \overline{B_j} \subseteq B_k$$

Definimos

$$\mathcal{L} = \left\{ (B_j, B_k) \middle| B_j, B_k \in \mathcal{B} \text{ son tales que } \overline{B}_j \subseteq B_k \right\}$$

Por (*) se tiene que $\mathcal{L} \neq \emptyset$. Como $\mathcal{L} \subseteq \mathcal{B} \times \mathcal{B}$, entonces \mathcal{L} es numerable, por lo que podemos escribir a \mathcal{L} como:

$$\mathcal{L} = \{(B_{m_i}, B_{n_i})\}_{i \in \mathbb{N}}$$

Sea $i \in \mathbb{N}$, se tiene que para $(B_{m_i}, B_{n_i}) \in \mathcal{L}$ se cumple:

$$\overline{B}_{m_i} \subseteq B_{n_i}$$

luego, los conjuntos cerrados:

$$\overline{B}_{m_i}$$
 y $X - B_{n_i}$

son ambos cerrados disjuntos.

Ahora, como el espacio (X, τ) es T_4 , para cada $i \in \mathbb{N}$ existe una función $h_i : (X, \tau) \to (\left[0, \frac{1}{i}\right], \tau_u)$ continua tal que

$$h_i(\overline{B}_{m_i}) = \{0\} \text{ y } h_i(X - B_{n_i}) = \frac{1}{i}$$

Sea $x \in X$, tenemos que la suma

$$\sum_{i=1}^{\infty} h_i(x)^2 \le \sum_{i=1}^{\infty} \frac{1}{i^2} < \infty$$

es convergente para todo $x \in X$. Por tanto, podemos definir una función $h: X \to \mathcal{H}$ dada por:

$$h(x) = (h_1(x), ..., h_n(x), ...), \quad \forall x \in X$$

Veamos que

1. h es inyectiva. Sean $x, y \in X$ puntos distintos. Se tiene que $x \in X - \{y\}$, como el espacio es T_1 este conjunto es abierto. Por la observación anterior existen $(B_{i_i}, B_{k_i}) \in \mathcal{L}$ tales que

$$x \in B_{j_i} \subseteq \overline{B}_{j_i} \subseteq B_{k_i} \subseteq X - \{y\}$$

por ende, $x \in \overline{B}_{j_i}$ y $y \in X - B_{k_i}$. Por ende

$$h_i(x) = 0$$
 y $h_i(y) = \frac{1}{i}$, $\forall i \in \mathbb{N}$

por ende, $h_i(x) \neq h_i(y)$, se sigue que $h(x) \neq h(y)$.

2. $h: (X, \tau) \to (\mathcal{H}, \tau_{\rho})$ es continua. Sea $x_0 \in X$ y $\varepsilon > 0$, encontremos $U \in \tau$, con $x_0 \in U$ tla que $h(U) \subseteq B_{\rho}(h(x_0), \varepsilon)$, es decir que para todo $x \in U$,

$$\rho(h(x_0), h(x)) < \varepsilon$$

Sea $N \in \mathbb{N}$ tal que dado $x \in X$:

$$\sum_{n=N}^{\infty} |h_n(x_0) - h(x)|^2 < \frac{\varepsilon^2}{2}$$

Además, para todo $m \in \{1, ..., N\}$, la función $h_m : (X, \tau) \to ([0, 1/m], \tau_u)$ es continua, podemos encontrar $W_m \in \tau$ tal que $x_0 \in W_m$ y además, para todo $x \in W_m$,

$$\left|h_m(x) - h_m(x_0)\right|^2 < \frac{\varepsilon^2}{2N}$$

En particular se tiene que

$$x_o \in \bigcap_{m=1}^N W_m = W \in \tau$$

Sea $x \in W$:

$$\rho(h(x), h(x_0)) = \left| \sum_{n=1}^{N} |h_n(x) - h_n(x_0)|^2 + \sum_{n=N+1}^{\infty} |h_n(x) - h_n(x_0)|^2 \right|^{1/2}$$

$$\leq \left| \sum_{n=1}^{N} \frac{\varepsilon^2}{2N} + \frac{\varepsilon^2}{2} \right|^{1/2}$$

$$= \left[\frac{\varepsilon^2}{2} + \frac{\varepsilon^2}{2} \right]^{1/2}$$

$$= \varepsilon$$

lo que prueba la continuidad de h en x_0 , que al ser arbitrario, se sigue que h es continua en X.

3. $h:(X,\tau)\to (h(X),\tau_\rho)$ es abierta. Sea $A\in\tau$. Tomemos $x\in h(A)$, sea $a\in A$ tal que

$$h(a) = x$$

por la observación anterior existe $(B_{m_i}, B_{n_i}) \in \mathcal{L}$ con

$$a \in B_{m_i} \subseteq \overline{B}_{m_i} \subseteq B_{n_i} \subseteq A$$

por tanto, tenemos que $h_i(a) = 0$ y $h_i(X - A) = \left\{\frac{1}{i}\right\}$. Por tanto,

$$y \in h(X - A) = h(X) - h(A)$$

se cumple que

$$\rho(x,y) \ge \frac{1}{i}$$

luego, $y \notin B_{\rho}(x, 1/i)$. Se sigue que

$$B_{\rho}(x, 1/i) \subseteq h(A)$$

se sigue entonces que $h:(X,\tau)\to(h(X),\tau_{\rho}).$

De los tres incisos anteriores, se sigue que $h:(X,\tau)\to (h(X),\tau_\rho)$ es un homeomorfismo y como $(h(X),\tau_\rho)$ es metrizable, entonces (X,τ) es metrizable.

Ejercicio 1.4.1

Sea (X, τ) un espacio topológico segundo numerable, entonces las siguientes proposiciones son equivalentes:

- 1. (X, τ) es completamente regular.
- 2. (X, τ) es normal.
- 3. (X, τ) es metrizable.

Demostración:

1.5. Espacios Paracompactos

Observación 1.5.1

El concepto de espacio paracompacto fue definido por Dieudonné en 1944.

Definición 1.5.1

Sea (X, τ) espacio topológico, $x \in X$ y $\mathcal{U} = \{U_{\alpha}\}_{{\alpha} \in I}$ una familia de subconjuntos de X.

- 1. La familia \mathcal{U} es **punto finita en** $x \in X$, si existe un subconjunto finito K de I tal que para todo $\alpha \notin K$, $x \notin U_{\alpha}$.
- 2. La familia \mathcal{U} es **localmente finita en** $x \in X$ si existe una vecindad V de x y un subconjunto finito $J \subseteq I$ tales que para todo $\alpha \notin J$,

$$V \cap U_{\alpha} = \emptyset$$

3. La familia \mathcal{U} es punto (resp. localmente) finita en el espacio (X, τ) si \mathcal{U} es punto (resp. localmente) finita en cada uno de los putos de X.

4. La familia \mathcal{U} es σ -localmente finita si \mathcal{U} se puede escribir como una unión numerable de colecciones localmente finitas.

Observación 1.5.2

Se tiene lo siguiente:

- 1. Si \mathcal{U} es localmente finita, entonces \mathcal{U} es punto-finita.
- 2. Si \mathcal{U} es una colección finita, entonces \mathcal{U} es localmente finita.

En los siguientes ejemplos, considere (\mathbb{R}, τ_u) .

Ejemplo 1.5.1

Sea $\left\{\left(\frac{1}{n}, \frac{1}{n}\right)\right\}_{n \in \mathbb{N}}$. Esta colección no es punto finta en 0, luego tampoco es localmente finita en 0.

Ejemplo 1.5.2

Considere la colección de intervalos $\{(n, n+2)\}_{n\in\mathbb{N}}$. Esta es una colección localmente finita en (\mathbb{R}, τ) . Sea $r \in \mathbb{R}$, existe $m \in \mathbb{Z}$ tal que:

$$m < r < m + 1$$

Considere el entero n = m - 1, se tiene que

$$n < r < n + 2$$

Ejemplo 1.5.3

Dado $n \in \mathbb{N}$, sea $A_n = (0, 1/n)$. Se tiene que $\{A_n\}_{n \in \mathbb{N}}$ es punto finita, pero no es localmente finita.

Sea $r \in \mathbb{R}$. Podemos suponer que $r \in (0,1)$ (ya que la colección solo contiene puntos de este conjunto) (es el único caso que genera problemas), luego existe $N_r \in \mathbb{N}$ tal que

$$\frac{1}{m} \le r, \quad \forall m \ge N_r$$

Sea $J_r = \{1, ..., N_r\}$. Se tiene que

$$r \notin A_m \quad \forall m \notin J_r$$

así que $\{A_n\}_{n\in\mathbb{N}}$ es punto finita, pero claramente no es localmente finita (observe que sucede con cualquier vecindad de 0).

Ejemplo 1.5.4 (**)

Sea $n \in \mathbb{N}$, definitions $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ y $B_n = \mathbb{R} - A_n = (-\infty, -1/n] \cup [1/n, \infty)$. Tenemos que $B_n = \overline{B}_n$.

Sea $m \in \mathbb{N}$ con $m \geq 2$, esto es que $\frac{1}{m} \leq \frac{1}{2}$. Se tiene que $\frac{1}{2} \in B_m$. Por tanto,

$$\{B_n\}_{n\in\mathbb{N}}$$

no es punto finita en $\frac{1}{2}$.

Por otro lado, se tiene que $0 \notin B_n$ para todo $n \in \mathbb{N}$, por lo cual

$$\bigcup_{n\in\mathbb{N}} B_n \subsetneq \mathbb{R}$$

sin embargo,

$$\overline{\bigcup_{n\in\mathbb{N}} B_n} = \overline{\bigcup_{n\in\mathbb{N}} (\mathbb{R} - A_n)} = \overline{\mathbb{R} - \bigcap_{n\in\mathbb{N}} A_n} = \overline{\mathbb{R} - \{0\}} = \mathbb{R}$$

por ende,

$$\overline{\bigcup_{n\in\mathbb{N}}B_n} \subsetneq \bigcup_{n\in\mathbb{N}}B_n = \bigcup_{n\in\mathbb{N}}\overline{B}_n$$

Observación 1.5.3

Sea
$$\mathcal{A} = \{A_{\alpha}\}_{{\alpha} \in I} \subseteq \mathcal{P}(X)$$
. Escribimos $\overline{\mathcal{A}} = \{\overline{A}_{\alpha}\}_{{\alpha} \in I}$.

Proposición 1.5.1

Sea (X, τ) un espacio topológico. Tomemos $\mathcal{A} = \{A_{\alpha}\}_{{\alpha} \in I}$ una colección de subconjuntos de X que es localmente finita en (X, τ) . Entonces, se cumple lo siguiente:

- 1. Sea $J \subseteq I$ y sea $\mathcal{B} = \{B_{\alpha}\}_{{\alpha} \in J} \subseteq \mathcal{P}(X)$ tal que para todo ${\alpha} \in J$, $B_{\alpha} \subseteq A_{\alpha}$. Entonces, \mathcal{B} es localmente finita.
- 2. Sea $\overline{\mathcal{A}} = \left\{ \overline{A}_{\alpha} \middle| \alpha \in I \right\}$, entonces $\overline{\mathcal{A}}$ es localmente finita.
- 3. $\overline{\bigcup_{\alpha \in I} A_{\alpha}} = \bigcup_{\alpha \in I} \overline{A}_{\alpha}$.

Demostración:

Corolario 1.5.1

Sea (X, τ) un espacio topológico.

- 1. Sean $\mathcal{L}, \mathcal{B} \subseteq \mathcal{P}(X)$ tales que $\mathcal{L} \subseteq \mathcal{B}$ y \mathcal{B} es localmente finita, entonces \mathcal{L} es localmente finita.
- 2. Si \mathcal{A} es una colección de conjuntos cerrados de (X,τ) y \mathcal{A} es localmente finita, en tonces $\bigcup \mathcal{A} = \bigcup_{A \in \mathcal{A}} A$ es un conjunto cerrado.

Demostración:

Definición 1.5.2

Sea X un conjunto y sean \mathcal{V},\mathcal{U} dos colecciones de subconjuntos de X. Decimos que \mathcal{U} es un **refinamiento** de \mathcal{V} , o que \mathcal{U} refina a \mathcal{V} y se escribe por $\mathcal{U} < \mathcal{V}$, si para cada $U \in \mathcal{U}$ existe $V \in \mathcal{V}$ tal que $U \subseteq V$.

Observación 1.5.4

Sean $\mathcal{U}, \mathcal{V}, \mathcal{W}$ tres colecciones de subconjuntos de un conjunto X. Entonces:

- 1. $\mathcal{U} < \mathcal{U}$.
- 2. $\mathcal{U} < \mathcal{V}$ y $\mathcal{V} < \mathcal{W}$ implican que $\mathcal{U} < \mathcal{W}$.

Ejemplo 1.5.5

Considere $\mathcal{U} = \{(-1/n, 1/n)\}_{n \in \mathbb{N}}$ y $\mathcal{V} = \{(-1, 1)\}_{n \in \mathbb{N}}$. Entonces $\mathcal{U} < \mathcal{V}$ y $\mathcal{V} < \mathcal{U}$.

El ejemplo anterior muestra que la relación < no es antisimétrica.

Definición 1.5.3

Un espacio topológico (X, τ) es **paracompacto** si para cada cubierta abierta \mathcal{U} de X, existe una cubierta abierta \mathcal{V} de X tal que \mathcal{V} es localmente finita y $\mathcal{V} < \mathcal{U}$.

Ejemplo 1.5.6

Considere el espacio topológico (\mathbb{R}, τ_D) y la familia $\mathcal{M} = \{\{r\}\}_{r \in \mathbb{R}}$. Se tiene que \mathcal{M} es una cubierta abierta localmente finita de (\mathbb{R}, τ_D) . Ahora, si $\mathcal{U} = \{U_\alpha\}_{\alpha \in I}$ es una cubierta abierta de (\mathbb{R}, τ_D) se tiene de forma inmediata que:

$$\mathcal{M} < \mathcal{U}$$

Por tanto, (\mathbb{R}, τ_D) es paracompacto.

El ejemplo anterior muestra que no todo espacio paracompacto es compacto. Sin embargo, veremos que el converso es cierto.

Ejercicio 1.5.1

Sea (X, τ) un espacio topológico. Entonces, (X, τ) es compacto si y sólo si dada una cubierta abierta \mathcal{U} de (X, τ) existe una cubierta abierta finita \mathcal{V} de (X, τ) tal que $\mathcal{V} < \mathcal{U}$.

Demostración:

Es inmediata de la definición de compacidad.

Proposición 1.5.2

Sea (X, τ) un espacio topológico y $A \subseteq X$. Entonces, (A, τ_A) es paracompacto si y sólo si dada $\mathcal{U} \subseteq \tau$ tal que

$$A\subseteq\bigcup_{U\in\mathcal{U}}U$$

existe $V \subseteq \tau$ tal que $A \subseteq \bigcup_{V \in \mathcal{V}} V$, $\mathcal{V} < \mathcal{U}$ y \mathcal{V} es localmente finita en (A, τ_A) .

Demostración:

Proposición 1.5.3

Sea (X, τ) un espacio paracompacto y $A \subseteq X$ cerrado, entonces (A, τ_A) es paracompacto.

Demostración:

Proposición 1.5.4

La propiedad de ser paracompacto es topológica.

Proposición 1.5.5

Sea (X, τ) un espacio topológico. Se cumple:

- 1. Si (X, τ) es compacto, entonces (X, τ) es paracompacto.
- 2. Si (X, τ) es paracompacto y T_3 , entonces es T_4 .
- 3. Si (X, τ) es paracompacto y Hausdorff, entonces es regular.
- 4. Si (X, τ) es paracompacto y Hausdorff, entonces (X, τ) es normal.

Demostración:

De (1): Ya se tiene.

De (2):

24