Cálculo Integral - Actividad 2

Resolver los siguientes ejercicios de forma analítica y comprobar los resultados con Python.

Hallar la derivada de las siguientes funciones:

1.
$$y = x^3$$

2.
$$y = ax^4 - bx^2$$

3.
$$y = x^{\frac{4}{3}} + 5$$

4.
$$y = (x^2 - 3)^5$$

5.
$$y = \sqrt{a^2 + x^2}$$

6.
$$y = (3x^2 + 2)\sqrt{1 + 5x^2}$$

7.
$$y = 3x^4 - 2x^2 + 8$$

8.
$$y = 4 - 3x - 2x^3$$

9.
$$s = at^5 - 5bt^3$$

10.
$$y = \frac{2}{x} - \frac{3}{x^2}$$

11.
$$s = 2t^{\frac{4}{3}} - 3t^{\frac{2}{3}}$$

12.
$$y = \frac{a+bx+cx^2}{x}$$

13.
$$y = \frac{\sqrt{x}}{2} - \frac{2}{\sqrt{x}}$$

$$14. \ s = \frac{a + bt + ct^2}{\sqrt{t}}$$

15.
$$r = \sqrt{1 - 2\theta}$$

16.
$$s = (2 - 3t^2)^3$$

17.
$$y = \frac{1}{\sqrt{a^2 - x^2}}$$

$$18. \ y = \left(a - \frac{b}{x}\right)^2$$

19.
$$y = \left(a + \frac{b}{x^2}\right)^3$$

20.
$$y = \frac{a^2 + x^2}{a^2 - x^2}$$

21.
$$y = \frac{\sqrt{a^2 + x^2}}{x}$$

$$22. \ y = \sqrt{\frac{1-cx}{1+cx}}$$

23.
$$y = \sqrt{\frac{a^2 + x^2}{a^2 - x^2}}$$

24.
$$s = \sqrt[3]{\frac{2+3t}{2-3t}}$$

25.
$$y = \frac{b}{a}\sqrt{a^2 - x^2}$$

26.
$$y = \left(a^{\frac{2}{3}} - x^{\frac{2}{3}}\right)^{\frac{3}{2}}$$

$$27. \ y = \frac{x}{\sqrt{a - bx}}$$

28.
$$r = \frac{\sqrt[3]{a+b\theta}}{\theta}$$

29.
$$y = x\sqrt[3]{2+3x}$$

30.
$$s = \sqrt{2t - \frac{1}{t^2}}$$