CET 141: Day 14 -15

Dr. Noori KIM

Finite State Machine -A quick guide first-

Dr. Noori Kim

Introduction

State machines are an important tool to use when designing complex sequential circuits. For example, to implement a USB protocol in hardware, the circuit must be "aware" and respond appropriately whether data is coming-in, coming-out, or under the error state. State machines can also connect different circuits that are operating asynchronously by placing part of the circuit into an "idle" state to wait for another circuit to send or receive data.

This lab serves as a springboard for topics that will be discussed in the Digital Electronics II course.

Pre-lab

You will derive and implement a Moore Machine state detector to look for the sequence '1001' with overlaps on a digital input line.

To complete this lab, your work must be checked by TAs during lab session and upload your report on the moodle. Failure to complete your demo will result in a reduction of the grade by 10% for the current lab.

- 1) Derive a Moore machine state transition diagram for the sequence detector that looks for the sequence '1001' with overlaps on a digital input line.
- 2) Find the state transition table from the diagram.
- 3) Derive the logic for the flip-flop inputs based on the state table (using JK Flip-Flop or D Flip-Flop).
- 4) Prepare a circuit schematic (Eagle).

To complete our lab, we need to know the followings

- a. State Transition Diagram
- b. State Encoding and Output Encoding tables
- c. State Transition Table (both without and with encoding)
- d. Next State Logic Boolean (with K-maps)
- e. Output Logic Boolean (with K-map and Boolean expression)

- Let me take an example and explain what they are
 - A sequence detector for 01 or 10 with overlap
 - Don't forget we are using Moore Machine (The output is a function of states)
 - This example uses D flip-flops
 - If you want to use other FFs, you must consider different input Boolean logic customized to each FF.
 - For your lab implementation, use D Flip-flops

Excitation table of D FF

Flip-flop's memory property

Sta		
Present Q _t	Next Q _{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

A Side Bar

Excitation table of T FF

Sta		
Presen t Q _t	Next Q _{t+1}	T
0	0	0
0	1	1
1	0	1
1	1	0

Excitation table of JK FF

St	atus			
Present Q _t	Next Q _{t+1}	J	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

State Transition Diagram - Moore-

01 or 10 detector

State Encoding (both state encoding table and output encoding table)

Encoding means we get rid of any words (alphabets) and translates them as binary numbers!!

State	3-bits Encoding (D2 D1 D0)
Α	000
В	001
С	010
D	011
E	100

State	Output Y
000	0
001	0
010	0
011	1
100	1

Output Encoding Table

State Encoding Table

State Transition Table (both without and with encoding

State transition table without encoding

Then we encode each state column using our encoding

State

Α

В

C

D

E

How many bits do we need?

	Cun	rent Stat	e, S	Input	Next State, S'		, S'	Output
Reset	Q2 (MSB)	Q1	Q0		Q2 _{mext}	Q1 _{mext}	Q0 _{mext}	Y
1	-	-		_	0	Ø	0	0
0	0	A	0	0	0	B	1	0
0	0	A	0	1	0	C	0	0
0	0	В	1	0	0	B	1	0
0	0	В	1	1	0	D	1	0
0	0	C	0	0	1	Œ	0	0
0	0	C	0	1	0	C	0	0
0	0	D	1	0	1	Œ	0	1
0	0	D	1	1	0	C	0	1
0	1	Ð	0	0	0	B	1	1
0	1	Ø	0	1	0	D	1	1

Next State Logic Boolean (K-maps)

Karnaugh	map for	D2
----------	---------	----

	Cur	Current State, S			Ne
Reset	Q2 (MSB)	Q1	Q0	I	Q2 _{next}
1	-			-	0
0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	0	0
0	0	0	1	1	0
0	0	1	0	0	1
0	0	1	0	1	0
0	0	1	1	0	1
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	0

Sta		
Present Q _t	Next Q _{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

	Rairia	Namaagii map 101 B2					
Q_2Q_1 Q_0I	00	01	11	10			
00	0	1	X	0			
01	0	0	X	0			
11	0	0	X	X			
10	0	1	X	X			

Karnaugh map for D1

	Current State, S		Input	Ne	ext State, S	
Reset	Q2 (MSB)	Q1	Q0	I	Q2 _{next}	Q1 _{next}
1	-			-	0	0
0	0	0	0	0	0	0
0	0	0	0	1	0	1
0	0	0	1	0	0	0
0	0	0	1	1	0	1
0	0	1	0	0	1	0
0	0	1	0	1	0	1
0	0	1	1	0	1	0
0	0	1	1	1	0	1
0	1	0	0	0	0	0
0	1	0	0	1	0	1

Sta		
Present Q _t	Next Q _{t+1}	D
0	0	0
0	1	1
1	0	0
1	1	1

Q_2Q_1 Q_0I	00	01	11	10
00	0	0	X	0
01	1	1	X	1
11	1	1	X	X
10	0	0	X	X

	Cur	rent State	, S	Input	Ne	ext State,	, S'	Karnaugh map for D0				
Reset	Q2 (MSB)	Q1	Q0	I	Q2 _{next}	Q1 _{next}	Q0 _{next}	Q_2Q_1				
1	-			-	0	0	0		00	01	11	10
0	0	0	0	0	0	0	1	$ Q_0I\rangle$		O1	TT	10
0	0	0	0	1	0	1	0					
0	0	0	1	0	0	0	1 -			1		
0	0	0	1	1	0	1	1					
0	0	1	0	0	1	0	0	00	1 1		X	1 1 1
0	0	1	0	1	0	1	0	0 0				_
0	0	1	1	0	1	0	0					
0	0	1	1	1	0	1	0		_			
0	1	0	0	0	0	0	1	01	0		X	1
0	1	0	0	1	0	1	1					_
			atus					11	1	0	X	X
		Present Q _t	Nex Q _{t+}	1)			10	1	0	X	X
		0	1		L					<u> </u>		

Output Logic Boolean (with K-map and Boolean expression)

Current State, S			Input	Ne	Output		
Q2 (MSB)	Q1	Q0	_	Q2 _{next}	Q1 _{next}	Q0 _{next}	Υ
-			-	0	0	0	0
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0
0	0	1	0	0	0	1	0
0	0	1	1	0	1	1	0
0	1	0	0	1	0	0	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	0	1
0	1	1	1	0	1	0	1
1	0	0	0	0	0	1	1
1	0	0	1	0	1	1	1

Karnaugh map for Output

Because it is a Moore machine, the output is not a function of input

FYI

- Special attention to Preset and CLR pins on 7474 IC (datasheet please)
- Once you implement your circuit, give a slow clock (around 0.5-1 hz → 0.5-1 cycle per sec)
- Simulate your input 1001
 (Vcc→GND→GND→Vcc)
- Watch your output response via LED

FYI 2: The same example- Mealy implementation, you try

reset	input	current state (Q)			ent output
1	_	_	Α	0	
0	0	Α	В	0	
0	1	Α	С	0	
0	0	В	В	0	
0	1	В	С	1	
0	0	С	В	1	
0	1	С	С	0	

	Current	State, S	Input	Next State, S'		Output
Reset	Q1 (MSB)	Q0	I	Q1 _{next}	Q0 _{next}	Υ
1	-		-	0	0	0
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	0	1	0
0	0	1	1	1	0	1
0	1	0	0	0	1	1
0	1	0	1	1	0	0

reset	input	current state	next state	current output	
1	_	_	Α	0	D1 =IQ1'Q0'+IQ1'Q0+IQ1Q0'=IQ1'(Q0'+Q0)+I
0	0	Α	В	0	Q1Q0'=I(Q1'+Q1Q0')= I(Q1'+Q0')
0	1	Α	С	0	D0 =I'Q1'Q0'+I'Q1'Q0+I'Q1Q0'=I'Q1'(Q0'+Q0)
0	0	В	В	0	
0	1	В	С	1	+l'Q1Q0'=l'(Q1'+Q1Q0')= l'(Q1'+Q0')
0	0	С	В	1	Y=Q1'Q0I+Q1Q0'I'
0	1	С	С	0	

D1=I(Q1'+Q0')=I(Q1*Q2)' D0=I'(Q1'+Q0')=I'(Q1*Q0)' Y=Q1'Q0I+Q1Q0'I'

More on Finite state machine (Moore, Mealy)

Edward F. Moore (1925–2003)

George H. Mealy (1927 – 2010)

George H. Mealy (1927 – 2010) worked at the Bell Laboratories in 1950's and was a Harvard University professor in 1970's http://boards.ancestry.com/surnames.mealy/56.1.1/mb. ashx

Finite State Machine (FSM)

- Consists of:
 - State register
 - Stores current state
 - Loads next state at clock edge
 - Combinational logic
 - Computes the next state
 - Computes the outputs

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
 - Moore FSM: outputs depend only on current state
 - Mealy FSM: outputs depend on current state and inputs

Moore FSM

Mealy FSM

Mealy Machine	Moore Machine
Output depends both upon present state and present input.	Output depends only upon the present state.
Generally, it has fewer states than Moore Machine.	Generally, it has more states than Mealy Machine.
Output changes at the clock edges.	Input change can cause change in output change as soon as logic is done.
Mealy machines react faster to inputs.	In Moore machines, more logic is needed to decode the outputs since it has more circuit delays.

A general procedure of finite state machine implementation (5 steps)

FSM Example 2 (page 124)

- Traffic light controller (using Moore)
 - Traffic sensors (Inputs or outputs?): T_A , T_B (TRUE when there's traffic)
 - Lights (Inputs or **outputs**?): L_A , L_B

light before there are fatalities. Ben decides to solve the problem with an FSM. He installs two traffices are Academic Ave. and Bravado Blvd., respectively. Ben decides to solve the problem. Ben decides to solve the problem and Bravado Blvd., respectively sensors, T_A and T_B , on Academic Ave. and Bravado Blvd., respectively sensors, T_A and T_B , on Academic sensors, T_A and T_B , on Academic sensor indicates TRUE if students are present and FALSE if the Each sensor indicates TRUE if students are present and T_B and T_B if the Each sensor indicates TROD is the street is empty. He also installs two traffic lights, L_A and L_B , to control street is empty. He also installs two traffic lights, L_A and L_B , to control street is empty. street is empty. He also installs the street is empty. He also installs traffic. Each light receives digital inputs specifying whether it should be traffic. Each light receives digital inputs specifying whether it should be green, yellow, or red. Hence, his FSM has two inputs, T_A and T_B , and green, yellow, or red. Hence, and two outputs, L_A and L_B . The intersection with lights and sensors is shown in Figure 3.23. Ben provides a clock with a 5-second period. On each clock tick (rising edge), the lights may change based on the traffic sensors, He also provides a reset button so that Physical Plant technicians can put the controller in a known initial state when they turn it on. Figure 3.24 shows a black box view of the state machine. Ben's next step is to sketch the state transition diagram

Black Box: in/out defs

Inputs: CLK, Reset, T_A, T_B

• Outputs: L_A , L_B

Ben's next step is to sketch the state transition diagram, shown in Figure 3.25, to indicate all the possible states of the system and the transitions between these states. When the system is reset, the lights are green on Academic Ave. and red on Bravado Blvd. Every 5 seconds, the controller examines the traffic pattern and decides what to do next. As long as

traffic is present on Academic Ave., the lights do not change. When there is no longer traffic on Academic Ave., the light on Academic Ave. becomes yellow for 5 seconds before it turns red and Bravado Blvd.'s light turns green. Similarly, the Bravado Blvd. light remains green as long as traffic is present on the boulevard, then turns yellow and eventually red.

- Reset: Green on Academic/Red on Bravado
- If Yes traffic on Academic: Stay
- If No traffic on Academic: Yellow -> Red on Academic and Green on Bravado.
- If Yes traffic on Bravado: Stay
- After Green on Bravado, No traffic on Bravado:
 Yellow->Red on Bravado and Green on Academic

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state (L_A and L_B)
- States: Circles (A,B,C, and D→ 4 kinds therefore we need 2 bits to represent all states, 2²)
- Transitions: Arcs

FSM State Transition Table

Current State	Inp	Next State	
\boldsymbol{S}	$T_{\!A}$	T_B	S'
A	0	X	
A	1	X	
В	X	X	
С	X	0	
С	X	1	
D	X	X	

FSM Encoded State Transition Table

Current State		Inp	Inputs		Next State	
S_1	S_0	$T_{\!A}$	T_B	S'_1	S'_0	
0	0	0	X			
0	0	1	X			
0	1	X	X			
1	0	X	0			
1	0	X	1			
1	1	X	X			

Encoding
00
01
10
11

$$S'_1 = S'_0 =$$

FSM Output Table

Current State			Out	outs	
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0				
0	1				
1	0				
1	1				

Output	Encoding
green	00
yellow	01
red	10

 $L_{A1} = L_{A0} = L_{B1} = L_{B0}$

FSM Schematic: State Register

state register

FSM Schematic: Next State Logic

$$L_{A1} = S_1$$

$$S'_1 = S_1 \oplus S_0$$

$$L_{A0} = \overline{S}_1 S_0$$

$$L_{A0} = \overline{S}_1 S_0$$

$$L_{B1} = \overline{S}_1$$

$$L_{B1} = S_1$$

$$L_{B0} = S_1 S_0$$

FSM Example 3

 Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.

• The snail smiles whenever the last two digits it has crawled over are 01.

Design Moore and Mealy FSMs of the snail

State Transition Diagrams

Moore FSM

Mealy FSM

Mealy FSM: arcs indicate input/output

Moore FSM State Transition Table

Current State		Inputs	Next	State
S_1	S_0	X	S'_1	S'_0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		

Moore FSM

State	Encoding
A	00
В	01
С	10

$$S_1' = S_0' =$$

Current State		Inputs	Next	State
S_1	S_0	\boldsymbol{X}	S'_1	S'_0
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0

X S_1S_0	0	1
0 0	0	0
0 1	0	1
1 1	X	X
10	0	0

X S_1S_0	0	1
0 0	1	0
0 1	1	0
1 1	X	X
10	1	0

Moore FSM Output Table

Current	Output	
S_1 S_0		Y
0	0	
0	1	
1	0	

$egin{array}{c} S_0 \ S_1 \ \end{array}$	0	1
0	0	0
1	1	X

Moore FSM Schematic

 $Y = S_1$

Mealy FSM State Transition & Output Table

Current State	Input	Next State	Output
S_0	X	S'_0	Y
0	0		
0	1		
1	0		
1	1		

$egin{array}{c} X \ S_0 \end{array}$	0	1
0	1	0
1	1	0

$egin{array}{c} X \ S_0 \end{array}$	0	1
0	0	0
1	0	1

$$S_0'$$

Mealy FSM

State	Encoding
A	0
В	1

Mealy FSM Schematic

Check yourself!

- By looking at circuit implementations, can you
 - Come up with a transition diagram?
 - Come up with next state's Boolean expression?
 - Determine whether it is Moore or Mealy FSM?
 - Determine output's Boolean expression?

Synchronous counter implementations steps:

- 1. Decide the number of FFs (based on the states) and a kind of FF
 - i.e., 3 bits, JK FF
- 2. Excitation table of FF (relates Q_t and Q_{t+1})
- 3. State transition diagram
 - State encoding

- 4. Circuit excitation table
- Obtain simplified equations using K map
- 6. Draw the logic diagram

A general procedure of finite state machine implementation

- Defining Inputs/Outputs from given problems
- 2. State Transition Diagram
 - Decide the number of FFs (based on the states) and a kind of FF

- 3. Encoding (both states/inputs/outputs)
- 4. State Transition Table (both without and with encoding)
- 5. Next State Logic Boolean (with K-maps or Boolean simplification)
- 6. Output Logic Boolean (with K-map (or Boolean simplification) and Boolean expression)
- 7. Draw the logic diagram

- Note that asynchronous counter has a different implementation concept
- It is a synchronous counter which makes you confused with in-general FSM
- Counters in general:
 - A popular subset of FSM
 - No input FSM
 - Therefore transition between each state is fixed (only one arrow)