

Unidade 5 - Álgebra Relacional

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP aparecidovfreitas@gmail.com

Bibliografia

Álgebra Relacional

- ✓ Historicamente, a Álgebra Relacional e o Cálculo Relacional foram desenvolvidos antes da Linguagem SQL.
- ✓ SQL é baseada nos conceitos da Álgebra Relacional e do Cálculo Relacional.
- ✓ Para se capacitar na escrita de SQL complexa, necessita-se de conhecimento dos conceitos da Álgebra Relacional.

Lembrando do Modelo Relacional...

- ✓ Um modelo de dados contém um conjunto de operações para manipular o Banco de Dados, além da definição do esquema e das restrições.
- ✓ O conjunto de operações do Modelo Relacional é a Álgebra Relacional.
- ✓ Uma sequência de operações da Álgebra Relacional forma uma Expressão da Álgebra Relacional.
- ✓ Na Álgebra Relacional vale a <u>Propriedade</u> do <u>Fechamento</u>: O resultado de uma expressão com relações <u>resulta em uma nova relação</u>.

Qual a importância da Álgebra Relacional?

Álgebra Relacional

- ✓ Fornece alicerce formal para as operações do Modelo Relacional;
- √ É usada como base para a implementação e otimização de consultas em DBMS;
- ✓ Os conceitos da Álgebra Relacional estão incorporados na Linguagem SQL;
- ✓ Módulos internos dos DBMS são baseados em conceitos da Álgebra Relacional.

Cálculo Relacional

- ✓ Oferece uma linguagem declarativa de nível mais alto para a especificação de consultas relacionais.
- ✓ No Cálculo Relacional não existe ordem de operações para se especificar a forma pela qual será recuperado o resultado de uma consulta. (SQL é baseado no Cálculo Relacional de Tupla)
- ✓ Esse é o principal fator que distingue a Álgebra Relacional do Cálculo Relacional.

Operações da Álgebra Relacional

- ✓ Operações de Teoria dos Conjuntos: (UNIÃO, INTERSECÇÃO, DIFERENÇA e PRODUTO CARTESIANO)
- ✓ Operações para Banco de Dados Relacionais: SELEÇÃO, PROJEÇÃO e JUNÇÃO.

Operações Relacionais Unárias SELEÇÃO (o)

- ✓ A operação SELEÇÃO é usada para escolher um **subconjunto** das tuplas de uma relação que satisfaça a uma condição de SELEÇÃO.
- ✓ Pode-se considerar a operação de SELEÇÃO como um **filtro** que mantém apenas as tuplas que satisfazem a uma condição qualificadora.
- ✓ Pode ser vista como uma partição horizontal no conjunto de tuplas.

- ✓ O símbolo σ (sigma) é usado para indicar a operação de SELEÇÃO.
- ✓ Exemplo: Seleção das tuplas da relação FUNCIONARIO do departamento 345.

 σ

(FUNCIONARIO)

DEPTO=345

✓ Exemplo: Seleção das tuplas da relação FUNCIONARIO com salário superior a \$15.000.

σ

(FUNCIONARIO)

SALARIO>15.000

✓ De forma geral, na Álgebra Relacional a operação de SELEÇÃO é indicada por:

- ✓ R é uma expressão da Álgebra Relacional, cujo resultado é uma Relação. A mais simples expressão desse tipo é uma Relação de Banco de Dados. A relação resultante tem os mesmos atributos de R.
- ✓ A Condição de Seleção é uma é uma expressão booleana especificada nos atributos de R.

✓ Buscar os dados dos *empregados* que estão com salário menor que 2.000,00

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

codEmp	Nome	Salario	idade	codDep
203	Ana	1.800,00	25	002

Cláusulas da Condição de Seleção

A condição de Seleção pode ser especificada por:

<nome do atributo> <operador de comparação> <valor constante> OU <nome do atributo> <operador de comparação> <nome do atributo>

- ✓ Nome do atributo: é um atributo de R;
- ✓ Operador de comparação: =, <, <=, >, >=, <>
- ✓ Valor constante: é um valor do domínio do atributo
- ✓ Podem ser ligadas pelos operadores AND, OR e NOT

✓ Buscar os dados dos empregados com salario maior que 2000 e com menos 45 anos

σ_{salario>2000 AND idade < 45} (Empregado)

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

codEmp	Nome	Salario	idade	codDep
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001

SELEÇÃO - Observações

- ✓ A condição de SELEÇÃO é aplicada independentemente para cada tupla individualmente em R.
- ✓ Se a condição for avaliada como TRUE, então a tupla é selecionada.
- ✓ O operador SELEÇÃO é unário; ou seja, aplicado a uma única RELAÇÃO.
- ✓ O grau da relação resultante (seu número de atributos) é o mesmo que o grau de R.
- ✓ O número de tuplas na relação resultante é sempre menor ou igual ao número de tuplas em R, ou seja, | σ (R) | <= | R | para qualquer condição C.
- ✓ A fração de tuplas selecionada por uma condição é conhecida como **SELETIVIDADE** da condição.
- ✓ Em SQL, a condição SELEÇÃO normalmente é especificada na cláusua WHERE.

SELEÇÃO - Propriedades

✓ A operação SELEÇÃO é comutativa.

$$\sigma_{\text{condicao1}}$$
 ($\sigma_{\text{condicao2}}$ (R)) = $\sigma_{\text{condicao2}}$ ($\sigma_{\text{condicao1}}$ (R))

✓ Portanto, uma sequência de SELEÇÃO pode ser aplicada em qualquer ordem.

SELEÇÃO - Propriedade Comutativa

 $\sigma_{\text{salario}>2000}$ ($\sigma_{\text{idade}<45}$ (Empregado)

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado Parcial: condição: idade<45

codEmp	Nome	Salario	idade	codDep
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado: condição: salario > 2000

codEmp	Nome	Salario	idade	codDep
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001

SELEÇÃO - Propriedade Comutativa

 $\sigma_{\text{idade} < 45}$ ($\sigma_{\text{salario} > 2000}$ (Empregado))

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado Parcial: condição: salario > 2000

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001

Resultado: condição: idade < 45

codEmp	Nome	Salario	idade	codDep
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001

SELEÇÃO - Propriedade CASCATA

✓ Uma sequência de operadores SELEÇÃO pode ser reduzida a uma única operação SELEÇÃO por meio de uma condição conjuntiva AND.

$$\sigma_{\text{condicao1}}$$
 ($\sigma_{\text{condicao2}}$ (R)) = $\sigma_{\text{condicao2}}$ AND condicao2 (R))

✓ Exemplo:

equivalentes $\sigma_{\text{idade} < 45}$ ($\sigma_{\text{salario} > 2000}$ (Empregado)) $\sigma_{\text{salario} > 2000 \text{ AND idade} < 45}$ (Empregado)

Projeção (π)

- ✓ A operação PROJEÇÃO considera certas colunas da tabela.
- ✓ O resultado é uma relação que contém apenas os atributos de interesse.
- ✓ Pode ser vista como uma partição vertical no conjunto de tuplas.

Sintaxe – Projeção (π)

 π < lista de atributos > (< R >)

onde:

- ✓ < lista de atributos > é uma sublista desejada de atributos da relação R.
- ✓ <R> é o nome da relação ou uma expressão da álgebra relacional de onde a lista de atributos será considerada.

PROJEÇÃO - Exemplo

✓ Buscar o <u>nome</u> e a <u>idade</u> de todos os empregados;

 $\pi_{\text{nome, idade}}$ (Empregado)

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

Nome	idade
Pedro	45
Paulo	43
Maria	38
Ana	25

PROJEÇÃO - Propriedades

π < lista de atributos > (< R >)

- ✓ R, em geral, é uma expressão da Álgebra Relacional cujo resultado é uma relação (Propriedade do Fechamento). No caso, mais simples, R é apenas o nome de uma relação do Banco de Dados.
- ✓ O resultado da operação PROJEÇÃO tem apenas os **mesmos atributos** especificados na lista de atributos> e na **mesma ordem** em que eles aparecem na lista. Logo, seu grau é igual ao número de atributos especificados em lista de atributos>.
- ✓ Se a ✓ Se a de atributos> inclui apenas atributos não chave de R, tuplas duplicadas provavelmente ocorrerão. A operação PROJEÇÃO remove quaisquer tuplas duplicadas, de modo que o resultado da operação é um conjunto de tuplas distintas.

Porque a operação de PROJEÇÃO elimina tuplas duplicadas?

PROJEÇÃO - Duplicadas

π < lista de atributos > (< R >)

- ✓ Se as tuplas duplicadas não fossem eliminadas, o resultado seria um multiconjunto de tuplas, em vez de um conjunto. Isso não é permitido no modelo relacional.
- ✓ A eliminação de duplicadas envolve classificação ou alguma outra técnica algorítmica para detectar duplicadas, o que – naturalmente – aumenta o processamento da operação.

PROJEÇÃO - Observações

π < lista de atributos > (< R >)

- ✓ O número de tuplas em uma relação resultante de uma operação de PROJEÇÃO é sempre menor ou igual ao número de tuplas em R.
- ✓ Se a lista de atributos é uma superchave de R ou seja, inclui alguma chave de R , a relação resultante tem o mesmo número de tuplas de R.

Vale a propriedade comutativa na operação de PROJEÇÃO ?

PROJEÇÃO - Propriedade Comutativa

✓ A operação PROJEÇÃO NÃO é comutativa .

$$\pi_{< lista1>}$$
 ($\pi_{< lista2>}$ (R)) $\neq \pi_{< lista2>}$ ($\pi_{< lista1>}$ (R))

✓ Exemplo

$$\pi_{< cpf>}$$
 ($\pi_{< nome, cpf>}$ (Empregado)) \neq $\pi_{< nome, cpf>}$ ($\pi_{< cpf>}$ (Empregado))

Expressão **incorreta**, pois a lista do lado direito não contém todos os atributos do lado esquerdo....

PROJEÇÃO - Equivalência ao SQL

✓ Em SQL, a lista de atributos de PROJEÇÃO é especificada na cláusula SELEÇÃO de uma consulta.

- ✓ Caso se remova a palavra chave DISTINCT, então as duplicadas não serão removidas, o que não é permitido no modelo relacional.
- ✓ Exemplo

 $\pi_{\langle \text{sexo,salario} \rangle}$ (Funcionario)

✓ Equivale em SQL a:

SELECT DISTINCT SEXO, SALARIO FROM FUNCIONARIO;

SELEÇÃO e PROJEÇÃO

- ✓ Operadores diferentes podem ser aninhados
- ✓ Exemplo: Buscar o nome e o salario dos empregados com mais de 40 anos

$$\pi_{\text{nome, salario}}(\sigma_{\text{idade} > 40}(\text{Empregado}))$$

Empregado

codEmp	Nome	Salario	idade	codDep
200	Pedro	3.000,00	45	001
201	Paulo	2.200,00	43	001
202	Maria	2.500,00	38	001
203	Ana	1.800,00	25	002

Resultado

Nome	Salario
Pedro	3.000,00
Paulo	2.200,00

Sequências de Operações e a operação RENAME

- ✓ As relações obtidas nas operação vistas anteriormente não possuem nome;
- √ É comum aplicar-se várias operações relacionais em sequência para se obter uma consulta, por exemplo: Uma SELEÇÃO seguida de uma PROJEÇÃO.
- ✓ Pode-se aplicar uma operação de cada vez e criar-se uma relação intermediária.
 - ✓ Expressão em linha:

$$\pi_{ ext{Pnome, Unome, Salario}}(\sigma_{ ext{Dnr=5}}(ext{FUNCIONARIO}))$$

✓ Sequência de operações:

$$\begin{aligned} & \text{FUNCS_DEPT5} \leftarrow \sigma_{\text{Dnr=5}} (\text{FUNCIONARIO}) \\ & \text{RESULTADO} \leftarrow \pi_{\text{Pnome, Unome, Salario}} (\text{FUNCS_DEP5}) \end{aligned}$$

Operação de Rename

- ✓ Se nenhuma renomeação for aplicada, os nomes dos atributos na relação resultante das operações SELEÇÃO e PROJEÇÃO permanecem inalterados.
- \checkmark A Álgebra Relacional define um operador formal, chamado ρ que pode renomear o nome da relação ou os nomes dos atributos, ou ambos.

Operação de Rename em SQL

✓ A renomeação em SQL pode ser feita por meio de ALIAS (apelidos) usando a palavra chave AS.

SELECT

F.Pnome AS Primeiro_nome,

F.Unome AS Ultimo_nome,

F.Salario AS Salario

FROM FUNCIONARIO AS F

WHERE F.Dnr = 5;

Operações com base na Teoria dos Conjuntos

- ✓ Operações UNIÃO, INTERSECÇÃO e DIFERENÇA mesclam os elementos de DOIS conjuntos;
- ✓ São operações **binárias**, ou seja, aplicada à dois conjuntos de dados;
- ✓ No modelo relacional, as duas relações precisam ter o mesmo tipo de tuplas. Essa condição é chamada **COMPATIBILIDADE DE TIPO**.
- ✓ Duas relações $R(A_1, A_2,, A_n)$ e $S(B_1, B_2, ..., B_n)$ são compatíveis de tipo se tiverem o mesmo grau n e se dom (A_i) = dom (B_i) , para 1 <= i <= n. Isso significa que as duas relações têm o mesmo número de atributos e cada par correspondente de atributos tem o mesmo domínio.

Operação de UNIÃO

- ✓ RUS;
- ✓ Inclui todas as tuplas que estão em R ou em S ou tanto em R quanto em S;
- ✓ Tuplas duplicadas são eliminadas.

R			S			
\boldsymbol{x}	y	z		\boldsymbol{x}	y	z
1	1	1		1	1	1
1	2	2		1	2	1
2	2	3		1	2	3
3	7	7				

Operação de INTERSECÇÃO

- \checkmark R \cap S;
- ✓ Inclui todas as tuplas que estão tanto em R quanto em S.

 $R \cap S$

Operação de SUBTRAÇÃO (DIFERENÇA)

Operações com Conjuntos - Observações

✓ Tanto UNIÃO quanto INTERSECÇÃO são operações comutativas: $R \cup S = S \cup R \quad e \quad R \cap S = S \cap R;$

✓ Tanto UNIÃO quanto INTERSECÇÃO podem ser tratadas como operações n-árias, aplicáveis a qualquer número de relações, pois ambas são associativas:

$$RU(SUT) = (RUS)UT e R \cap (S \cap T) = (R \cap S) \cap T$$

✓ A operação SUBTRAÇÃO não é comutativa. Em geral: R - S ≠ S - R

✓ A operação INTERSECÇÃO pode ser expressa em termos de UNIÃO e DIFERENÇA: $R \cap S = ((R \cup S) - (R - S)) - (S - R)$

Operações com Conjuntos em SQL

- ✓ Em SQL, existem 3 operações UNION, INTERSECT e EXCEPT que correspondem às operações de conjunto UNIÃO, INTERSECÇÃO e SUBTRAÇÃO.
- ✓ Além disso, existem operações de multiconjunto (UNION ALL, INTERSECT ALL e EXCEPT ALL) que não eliminam tuplas duplicadas.

 $AXB = \{(x,y)|x \in A e y \in B\}$

Par ordenado

Operações PRODUTO CARTESIANO

- ✓ Também conhecida por PRODUTO CRUZADO ou JUNÇÃO CRUZADA;
- ✓ Indicada por x;
- ✓ Também é uma operação binária, mas as relações sobre as quais ela é aplicada não precisam ser compatíveis na união;
- ✓ Produz um novo elemento combinando cada membro (tupla) de uma relação (conjunto) com cada membro (tupla) de outra relação (conjunto).

PRODUTO CARTESIANO - Observações

- ✓ O resultado de R (A_1 , A_2 , ..., A_n) x S (B_1 , B_2 , ..., B_m) é uma relação Q com grau $\mathbf{n} + \mathbf{m}$ atributos Q (A_1 , A_2 , ..., A_n , B_1 , B_2 , ..., B_m) nessa ordem.
- ✓ Logo, se R tem n_r tuplas (indicado por $|R| = n_r$) e S tem m_s tuplas, então RxS terá $n_r^* m_s$ tuplas.
- ✓ Com frequência, a operação **PRODUTO CARTESIANO**, aplicada isoladamente, não tem significado prático.

- ✓ Indicada por ⋈.
- ✓ Permite processar relacionamentos (tuplas relacionadas) entre duas relações.
- ✓ O resultado da JUNÇÃO é uma relação Q com n + m atributos Q (A₁, A₂, ..., Aₙ, B₁, B₂, ... B๓) nessa ordem, que tem uma tupla para cada combinação de tuplas uma de R e outra de S sempre que a combinação satisfaz a condição de junção.
- ✓ Essa é a principal diferença entre PRODUTO CARTESIANO e JUNÇÃO.
- ✓ Em JUNÇÃO apenas combinações de tuplas que satisfazem a condição de junção aparecem no resultado, enquanto que no PRODUTO CARTESIANO todas as combinações de tuplas são incluídas no resultado.

✓ Necessita-se recuperar o nome do Gerente de cada Departamento;

DEPARTAMENTO PK FK

<u>idDepto</u>	NomeDepto	idGerente
10	COMPRAS	1000
20	ENGENHARIA	1200
40	VENDAS	2000
55	FINANCEIRO	5000

<u>idFunc</u>	NomeFunc
1000	Paulo de Souza Alves
1100	José da Silva
1200	Pedro Rangel de Souza
1450	Angela Silva Medeiros
2000	Alceu de Almeida

Saulo de Araujo

Pedro Silva

Roberto Boschetti

Ana de Souza Almeida

FUNCIONARIO

PK

3000

3400

5000

5400

✓ Aplicando-se a operação de JUNÇÃO com a condição idGerente = idFunc

DEPARTAMENTO		
<u>idDepto</u>	NomeDepto	idGerente

FUNCIONARIO

<u>idFunc</u>	NomeFunc

A

<u>idDepto</u>	NomeDepto	idGerente	idFunc	NomeFunc
10	COMPRAS	1000	1000	Paulo de Souza Alves
20	ENGENHARIA	1200	1200	Pedro Rangel de Souza
40	VENDAS	2000	2000	Alceu de Almeida
55	FINANCEIRO	5000	5000	Roberto Boschetti

✓ Aplicando-se a operação de PROJEÇÃO na relação intermediária

Α

	<u>idDepto</u>	NomeDepto	idGerente	<u>idFunc</u>	NomeFunc
- 1					

RESULTADO $\leftarrow \pi$ NomeDepto, NomeFunc (A)

NomeDepto	NomeFunc
COMPRAS	Paulo de Souza Alves
ENGENHARIA	Pedro Rangel de Souza
VENDAS	Alceu de Almeida
FINANCEIRO	Roberto Boschetti

✓ Renomeando-se os atributos da relação RESULTADO

RESULTADO

NomeDepto	NomeFunc

 ρ (NomeDepto, NomeGerente) (RESULTADO)

RESULTADO

NomeDepto	NomeGerente
COMPRAS	Paulo de Souza Alves
ENGENHARIA	Pedro Rangel de Souza
VENDAS	Alceu de Almeida
FINANCEIRO	Roberto Boschetti

JUNÇÃO - Observações

- ✓ Quando a condição de junção for TRUE, a combinação de TUPLA é incluída na relação resultante;
- ✓ Uma condição geral tem a forma: <condição> AND <condição> AND <condição>
- ✓ As condições podem podem ter os operadores de comparação { =, <, >, <=, >= , ≠ };
- ✓ Uma JUNÇÃO com essa condição geral é chamada JUNÇÃO THETA;
- ✓ Na JUNÇÃO THETA, as informações das relações originais não são preservadas, uma vez que as tuplas combinadas que resultam em FALSE não aparecem no resultado.

EQUIJOIN

- ✓ O uso mais comum de JUNÇÃO envolve condições de junção em apenas comparações de IGUALDADE;
- ✓ Esse tipo de JUNÇÃO, em que se usa somente o operador de comparação =, é chamado EQUIJUNÇÃO ou EQUIJOIN;
- ✓ Na EQUIJUNÇÃO sempre se tem um ou mais pares de atributos com VALORES IDÊNTICOS.

EQUIJOIN - Exemplo

A ← DEPARTAMENTO ⋈ idGerente = idFunc FUNCIONARIO

JUNÇÃO NATURAL

- ✓ Corresponde a uma EQUIJUNÇÃO (condição de junção de igualdade) no qual **elimina-se** o segundo atributo (desnecessário) uma vez que possuem valores idênticos.
- ✓ A definição padrão de JUNÇÃO NATURAL requer que os dois atributos de junção tenham o MESMO NOME nas duas relações. Se isto não ocorrer, deve-se aplicar uma operação de renomeação antes da operação de junção.
- ✓ A JUNÇÃO NATURAL é indicada por um *.

✓ Suponha que se queira combinar cada tupla de **PROJETO** com uma tupla de **DEPARTAMENTO** que controla um projeto.

DEPARTAMENTO

	L

PK	
<u>idDepto</u>	NomeDepto
10	COMPRAS
20	ENGENHARIA
40	VENDAS
55	FINANCEIRO
90	RH

PK	PROJETO	FK
<u>idProj</u>	NomeProj	DeptoResponsavel
1000	Controle de Pedidos	10
1200	Projeto ABX	20
2000	Projeto Vendas Otimizadas	40
3000	Saulo de Araujo	55

✓ Nesse exemplo, as tuplas a serem combinadas devem ser relacionadas pelos atributos idDepto na relação de DEPARTAMENTO e DeptoResponsavel na relação PROJETO.

✓ Renome-se o nome de um dos atributos, para deixá-los com mesmo nome.

<u>idProj</u>	NomeProj	DeptoResponsavel
<u> 101 10</u> j	Nomer roj	Deptokesponsaver

ρ (idProj, NomeProj, idDepto) (PROJETO)

PK PROJETO		FK
<u>idProj</u>	NomeProj	idDepto
1000	Controle de Pedidos	10
1200	Projeto ABX	20
2000	Projeto Vendas Otimizadas	40
3000	Saulo de Araujo	55

✓ As relações agora ficam com o atributo de join com mesmo nome (idDepto) nas relações de DEPARTAMENTO e PROJETO>.

PK DEPARTAMENTO		
<u>idDepto</u>	NomeDepto	
10	COMPRAS	
20	ENGENHARIA	
(40)	VENDAS	
(55)	FINANCEIRO	
90	RH	

PK	PROJETO	FK FK
<u>idProj</u>	NomeProj	idDepto
1000	Controle de Pedidos	10
1200	Projeto ABX	20
2000	Projeto Vendas Otimizadas	40
3000	Saulo de Araujo	55

- ✓ Aplica-se o JOIN NATURAL, com o atributo de junção idDepto.
- ✓ Somente um valor de atributo de junção será mantido na relação resultando.

✓ PK DE	PARTAMENTO
idDepto	NomeDepto
10	COMPRAS
20	ENGENHARIA
40	VENDAS
55	FINANCEIRO
90	RH

PK	PROJETO	FK FK
<u>idProj</u>	NomeProj	idDepto
1000	Controle de Pedidos	10
1200	Projeto ABX	20
2000	Projeto Vendas Otimizadas	40
3000	Saulo de Araujo	55

RESULTADO ← DEPARTAMENTO

(idDepto) PROJETO

<u>idDepto</u>	NomeDepto	<u>idProj</u>	NomeProj
10	COMPRAS	1000	Controle de Pedidos
20	ENGENHARIA	1200	Projeto ABX
40	VENDAS	2000	Projeto Vendas Otimizadas
55	FINANCEIRO	3000	Saulo de Araujo

JUNÇÃO NATURAL

✓ Uma definição mais geral, para JUNÇÃO NATURAL é:

$$Q \leftarrow R *_{(\langle lista1 \rangle),(\langle lista2 \rangle)} S$$

✓ Nesse caso, lista1> especifica uma lista de i atributos de R e lista2> uma lista de i atributos de S. As listas são usadas para formar condições de comparação de igualdade entre pares de atributos correspondentes. (As condições passam por um AND).

JUNÇÃO - Observações

- ✓ Se nenhuma combinação de tuplas satisfazer a condição de junção, o resultado de uma JUNÇÃO é uma relação VAZIA;
- ✓ Se não houver condição de junção, todas as combinações de tuplas se qualificam e a JUNÇÃO se degenera em um PRODUTO CARTESIANO, chamado PRODUTO CRUZADO ou JUNÇÃO CRUZADA;
- ✓ Considerando que somente as linhas que atenderem a condição de junção serão selecionadas, essa operação de JUNÇÃO é denominada INNER JOIN.

JUNÇÃO NATURAL - Observações

- ✓ As operações com JUNÇÃO **NATURAIS** e **EQUIJUNÇÃO** são também conhecidas por **JUNÇÕES INTERNAS** (inner joins).
- ✓ São chamadas de inners joins para diferenciá-las de uma variação de JUNÇÃO diferente conhecida por outer joins.
- ✓ Informalmente, uma junção interna é um tipo de operação definida como uma combinação de PRODUTO CARTESIANO e SELEÇÃO.

OUTER JOIN (Junção Externa)

- ✓ Corresponde a uma extensão da operação JUNÇÃO;
- ✓ As operações de JUNÇÃO vistas até aqui combinam com tuplas que satisfazem a condição de junção. Ou seja, as tuplas sem uma tupla correspondente (ou relacionada) são eliminadas do resultado de JUNÇÃO;
- ✓ As tuplas com valores NULL nos atributos de junção também são eliminadas;
- ✓ **Junções externas** (outer joins) são junções especiais desenvolvidas para o caso em que o usuário deseja manter todas as tuplas em **R**, ou todas em **S**, ou todas aquelas nas duas relações no resultado da Junção, independentemente delas possuírem ou não tuplas correspondentes na outra relação.

LEFT OUTER JOIN

- ✓ Indicada por
- ✓ Tuplas correspondentes em R e S são selecionadas;
- ✓ Tuplas de R <u>sem</u> correspondente em S, <u>são também selecionadas</u> e os atributos de S são preenchidos com o valor NULL.

RIGHT OUTER JOIN

- ✓ Indicada por
- ✓ Tuplas correspondentes em R e S são selecionadas;
- ✓ Tuplas de S sem correspondente em R, são também selecionadas e os atributos de R são preenchidos com o valor NULL.

FULL OUTER JOIN

- ✓ Indicada por
- ✓ Tuplas correspondentes em R e S são selecionadas;
- ✓ Mantém todas as tuplas nas relações da esquerda e da direita quando nenhuma tupla correspondente for encontrada, preenchendo com valores NULL conforme a necessidade.

