Practice Paper for SMO (Senior)

Multiple Choice Questions

	equals			•	e e	
	(A) $\frac{7}{3}$	(B) $\frac{13}{6}$	(C) $\frac{5}{3}$	(D) $\frac{6}{11}$	(E) $\frac{8}{3}$	
2.	(99a/USC/22) Let	a, b and c be the	e three roots of			
	$x^3 - 64x - 14 = 0.$					
	Find the value of a (A) -36	$a^3 + b^3 + c^3$. (B) 12	(C) 36	(D) 42	(E) 64	
3.	. $(00/\text{Fermat/24})$ For the system of equations					
$x^{2} + x^{2}y^{2} + x^{2}y^{4} = 525,$ $x + xy + xy^{2} = 35,$						
	the sum of the real (A) 20	y values that sa (B) 2	tisfy the equations (C) 5	is (D) $\frac{55}{2}$	(E) $\frac{5}{2}$	
		· /	、 /	2	2	
4.	(10/AMC10B/22) Seven distinct pieces of candy are to be distributed among three bags. The red bag and the blue bag must each receive at least one piece of candy; the white bag may remain empty. How many arrangements are possible?					
	(A) 1930	(B) 1931	(C) 1932	(D) 1933	(E) 1934	
5.	(00/SAMO/S2/20) Consider the equation					
2u + v + w + x + y + z = 3.						
	How many solutions (u, v, w, x, y, z) of non-negative integers does this equation have? (A) 27 (B) 25 (C) 30 (D) 40 (E) 35					
	(A) 21	(D) 20	(0) 50	(D) 40	(L) 33	
6.	. (05a/USC/24) Suppose the roots of the quadratic equation $x^2 + ax + b = 0$ are $\sin 15^\circ$ and $\cos 15^\circ$. What is the value of $a^4 - b^2$?					
	(A) -1	(B) 1	(C) $\frac{35}{16}$	(D) $1 + \sqrt{2}$	(E) $3\sqrt{2} - 1$	

1. (05/SAMO/S2/16) If x + y + z = 6, xy + xz + yz = 11 and xyz = 6, then $\frac{x}{yz} + \frac{y}{xz} + \frac{z}{xy}$

7. (05/AMC12B/21) A positive integer n has 60 divisors and 7n has 80 divisors. What is the greatest integer k such that 7^k divides n?

(A) 0

(B) 1

(C) 2

(D) 3

(E) 4

8. (97/Caley/25) In triangle ABC, BR = RC, CS = 3SA, and AT : TB = p : q. If the area of $\triangle RST$ is twice the area of $\triangle TBR$, then p/q is equal to

(A) $\frac{2}{1}$

(C) $\frac{5}{2}$

9. (00/Caley/24) In the diagram shown, $\angle ABC = 90^{\circ}$, $CB \parallel ED$, AB = DF, AD = 24, AE = 25 and O is the centre of the circle. Determine the perimeter of CBDF.

(A) 39

(B) 40

(C) 42

(D) 43

(E) 44

10. (97/USC/27) Given that x > y > 0 and xy = 2, find the smallest possible value of $\frac{x^2 + y^2}{x - y}$?

(A) 2

(B) $\frac{\sqrt{6}}{2}$ (C) $\frac{7}{2}$

(D) 4

(E) 5

Short Questions

11. Let $f(n) = 3n^2 - 3n + 1$. Find the last four digits of

$$f(1) + f(2) + \cdots + f(2012).$$

12. (00/AIME/II/1) The number

$$\frac{2}{\log_4 2000^6} + \frac{3}{\log_5 2000^6}$$

can be written as $\frac{m}{n}$ where m and n are relatively prime positive integers. Find m+n.

13. (07/HKST/13) Let x_1, x_2, x_3, x_4, x_5 be non-negative real numbers whose sum is 300. Let M be the maximum of the four numbers

$$x_1 + x_2$$
, $x_2 + x_3$, $x_3 + x_4$, and $x_4 + x_5$.

Find the least possible value of M.

- 14. (11/HKPSC/18) How many ways are there to arrange 10 identical red balls, 5 identical green balls and 5 identical blue balls in a row so that no two adjacent balls are of the same colour?
- 15. (07/HKST/9) The 3-digit number \overline{abc} consists of three non-zero digits. The sum of the other five 3-digit numbers formed by rearranging a, b and c is 2017. Find \overline{abc} .
- 16. Let the polynomials $P_0(x), P_1(x), P_2(x), \ldots$ be defined by

$$P_0(x) = x^3 - 20x^2 + 12x - 2012,$$

 $P_n(x) = P_{n-1}(x-n)$ for $n = 1, 2, 3,$

What is the coefficient of x in $P_{12}(x)$?

- 17. (00/HKPSC/9) Point B is in the exterior of the regular n-sided polygon $A_1A_2...A_n$ and A_1A_2B is an equilateral triangle. Find the largest value of n such that A_n , A_1 and B are consecutive vertices of a regular polygon.
- 18. (08/COMC/8) Determine the sum of all integer values of the parameter r for which the equation

$$x^3 - rx + r + 11 = 0$$

has at least one positive integer solution for x.

19. Find the value of

$$\frac{\sin 260^{\circ}}{\sin 30^{\circ} \sin 150^{\circ} \sin 340^{\circ}} - \frac{\cos 210^{\circ}}{\cos 60^{\circ} \cos 120^{\circ} \cos 350^{\circ}}$$

- 20. (01/HKPSC/10) A certain number of unit cubes are stuck together to form a cuboid with each dimension being greater than 2. The six faces of the cuboid, none of which is a square, are painted. If x is the number of unit cubes with no face painted, y is the number of unit cubes with exactly 1 face painted and z is the number of unit cubes with exactly 2 faces painted, then x y + z = 2002. Find the volume of the cuboid.
- 21. (01/HKPSC/16) Find the number of distinct (a, b, c, d) such that a, b, c, d are integers, $1 \le a < b < c < d \le 30$ and a + d = b + c.

3

- 22. (01/HKPSC/11) In $\triangle ABC$, M and N are two points on BC such that BM < BN, BM = NC = 4 and MN = 3. If $\angle BAM = \angle MAN = \angle NAC$, find the length of AC.
- 23. (11/HKPSC/10) In $\triangle ABC$, AB = 9, BC = 8 and AC = 7. The bisector of $\angle A$ meets BC at D. The circle passing through A and tangent to BC at D cuts AB and AC at M and N respectively. Find MN.
- 24. (12/AIME/II/10) Find the number of positive integers n less than 1000 for which there exists a positive real number x such that $n = x \lfloor x \rfloor$.
- 25. A circle is inscribed in $\triangle ABC$. D and E are points on AB and AC respectively, such that DE is parallel to BC and is tangent to the circle. If the perimeter of $\triangle ABC$ is 3600, find the maximum length of DE.

Answers

1. A 2. D 3. E 4. C 5. D 6. C 7. C 8. E 9. C 10. D 11. 5728 12. 7 13. 100 15. 425 16. 21 384 14. 1764 17. 42 18. 321 19. 8 20. 3003021. 1925 22. 8 23. 6 24.49625. 450