BATCH: 223

DT/NT : DATA SCIENCE

LESSON: STATISTICS-2

SUBJECT: LINEAR REGRESSION

STATISTICS - 2

Data Science Program

Session -4

Herkes önceki dersten hatırladığı 1 cümle yazabilir mi?

Session - 4 Content

Content

- Linear Regression
- Regression Equation
- Coefficient of Determination
- R²

LMS Pre-Class'ta bu dersle ilgili kısma çalıştım

Recap - Previous Lesson

Covariance

Cov(x,y) > 0

- İlişki pozitiftir.
- X artarken Y de artar

Cov(x,y) < 0

- İlişki negatiftir.
- X artarken Y azalır

Cov(x,y)=0

 İki değişkenin arasında ilişki yoktur, birbirinden bağımısızlar.

1 0.8 0.4 0 -0.4 -0.8 -1 1 1 1 1 -1 -1 -1 0 0 0 0 0 0 0 0 0

Correlation - r Calculation

	Per Week	Number of Cars Sold y	Number of TV Ads	Week
	P 20	13	3	1
5 5	■ 5	31	6	2
	0 0	19	4	3
	3"	27	5	4
	1,	23	6	5
	 	19	3	6

Week	Number of TV Ads	Number of Cars Sold y	ху	x ²	y2
1	3	13	39	9	169
2	6	31	186	36	961
3	4	19	76	16	361
4	5	27	135	25	729
5	6	23	138	36	529
6	3	19	57	9	361
	$\Sigma x = 27$	Σy = 132	Σxy = 631	$\Sigma x^2 = 131$	$\Sigma y^2 = 3110$

r =	2 1 2 1 2
$\left[n\sum x^2-\left(\sum x^2-\left(x^2-\left$	$\left[x\right]^{2} \left[\left[n \sum y^{2} - \left(\sum y\right)^{2} \right] \right]$
$n\sum xy - (\sum x)(\sum y)$	(6)(631)-(27)(132)
$i\sum x^2 - (\sum x)^2 \left[p_i \sum y^2 - (\sum y) \right]$	$\sqrt{[(6)(131)-(27)^2][(6)(3110)-(13)^2]}$

 $n\sum_{xy-}(\sum_{x})(\sum_{y})$

Review

- Correlation
- Pearson katsayısı
- Sample ve Population corr.
- R hesaplanması

EDUCATION

Question14: What is the difference between Covariance and Correlation?

Covariance

- Signifies the direction of the linear relationship between two variables
- In simple terms, It is a measure of variance between two variables
- It can take any value from positive infinity to negative infinity

Correlation

- It measures the relationship between two variables, as well as the strength between these two
 variables.
- It can take any value from -1 to 1

Q7. What is correlation and covariance in statistics?

Covariance and Correlation are two mathematical concepts; these two approaches are widely used in statistics. Both Correlation and Covariance establish the relationship and also measure the dependency between two random variables. Though the work is similar between these two in mathematical terms, they are different from each other.

Correlation

Correlation is considered or described as the best technique for measuring and also for estimating the quantitative relationship between two variables. Correlation measures how strongly two variables are related

Covariance: In covariance two items vary together and it's a measure that indicates the extent to which two random variables change in cycle. It is a statistical term; it explains the systematic relation between a pair of random variables, wherein changes in one variable reciprocal by a corresponding change in another variable.

Linear Regression

Lineer Regresyon

- Amaç: İki değişken arasındaki ilişkiye dayanarak ileri dönük tahmin yapmak
- Sebep-sonuç ilişkisi içinde, Independent variable (bağımsız değişken) sebep, bağımlı değişken ise sonuçtur.

X Değişkeni (Sebep - Input) (Independent Variable)

Y Değişkeni (Sonuç - Output) (Dependent Variable)

Linear Regression

Independent Variable

Gelir

- Yaşam konforu

- Araç sahipliliği
- Trafik hacmi

IQ değeri

- İş performansı

• ???

????

Aklınıza gelen Linear Regresyon örneklerini yazar mısınız?

Q52. What is Linear Regression?

Linear regression is a statistical technique where the score of a variable Y is predicted from the score of a second variable X. X is referred to as the predictor variable and Y as the criterion variable.

The regression line is the one with the least value of D

Matching on Peardeck

Daily temperature

Amount of time spent studying

Annual Salary

Electricity Consumption

Number of exams passed

GDP per Capita

Life Expectancy

Number of vacations taken

Linear Regression and Equation

En küçük Kareler Yöntemi

- The least squares (en küçük kareler) yöntemi
- X bağımsız değişkenin değerine bağlı olarak, Y bağımlı değişkenin değerini tahmin etmek için kullanılan bir yöntem

Linear Regression Requirement

Değişken Sayısı

1 Bağımlı değişken 1 Bağımsız değişken

Lineerlik

Lineer ilişki olmalı, nonlineer vb. değil

Ölçülebilirlik

Interval veya ratio scale

Linear Regression Sample

Herhangi Ekranda geçirilen süre -X	Ağırlıklı Genel Not Ortalaması - Y
3	2,7
5	2,2
2	3,3
0,5	3,4
5	2
3	3
1	3,6
4	2,4
3	3,3
4	2,6
3,05 (ort)	2,85 (ort)

Linear Regression Sample

X-X _{ort}	$(x-x_{ort})^2$	y-y ort	(y-y _{ort}) ²	(x-x _{ort})*(y-y _{ort})
-0,05	0,0025	-0,15	0,0225	0,0075
1,95	3,8025	-0,65	0,4225	-1,2675
-1,05	1,1025	0,45	0,2025	-0,4725
-2,55	6,5025	0,55	0,3025	-1,4025
1,95	3,8025	-0,85	0,7225	-1,6575
-0,05	0,0025	0,15	0,0225	-0,0075
-2,05	4,2025	0,75	0,5625	-1,5375
0,95	0,9025	-0,45	0,2025	-0,4275
-0,05	0,0025	0,45	0,2025	-0,0225
0,95	0,9025	-0,25	0,0625	-0,2375
	21,225		2,725	-7,025 Toplam
	SSx		SSy	SP

SSx: Sum of Square for independent variable

SSy: Sum of Square for dependent variable

SP: Sum of products

$$a = yort - b*xort = 2,85 - (-0,3310)*3,05 = 3,85$$

slope

EDUCATION

intercept

Linear Regression Sample

En iyi eğilim çizgisi (Line of Best Fit)

Regresyon çizgisi, gerçek değerler ve tahmin edilen değerler arasındaki 'sum of square farklarını' minimize eder

Linear Regression Sample - Python

Linear Regression Sample

```
python™
```

```
In [3]: Ekran_sure = np.array([3,5,2,0.5,5,3,1,4,3,4])
```

```
In [4]: AGNO = np.array([2.7,2.2,3.3,3.4,2,3,3.6,2.4,3.3,2.6])
```

```
In [5]: reg = stats.linregress(Ekran sure, AGNO)
```

```
In [7]: print("a: ", reg.intercept)
    print("b: ", reg.slope)
```

from scipy import stats

In [2]: import numpy as np

a: 3.859481743227327 b: -0.330977620730271

YOUTUBE VIDEO ONERI

How to calculate linear regression using least square method

https://www.youtube.com/watch?v=JvS2triCgOY

Pearson's r Calculation

X-X _{ort}	$(x-x_{ort})^2$	y-y ort	(y-y _{ort}) ²	(x-x _{ort})*(y-y _{ort})
-0,05	0,0025	-0,15	0,0225	0,0075
1,95	3,8025	-0,65	0,4225	-1,2675
-1,05	1,1025	0,45	0,2025	-0,4725
-2,55	6,5025	0,55	0,3025	-1,4025
1,95	3,8025	-0,85	0,7225	-1,6575
-0,05	0,0025	0,15	0,0225	-0,0075
-2,05	4,2025	0,75	0,5625	-1,5375
0,95	0,9025	-0,45	0,2025	-0,4275
-0,05	0,0025	0,45	0,2025	-0,0225
0,95	0,9025	-0,25	0,0625	-0,2375
	21,225		2,725	-7,025 Toplam
	SSx		SSy	SP

Formula of Pearson's Correlation Coefficient

$$r = rac{\sum \left(x_i - ar{x}
ight)\left(y_i - ar{y}
ight)}{\sqrt{\ \sum \left(x_i - ar{x}
ight)^2 \left(y_i - ar{y}
ight)^2}}$$

$$r = \frac{SP}{\sqrt{SS_x SS_y}}$$

$$r = -0.92$$

Residual term (e)

Residual = Observed value - Predicted value

Regression Model

Coefficient of Determination - R²

Determinasyon – Belirlilik Katsayısı

Coefficient of Determination - R²

R² R-square

- Analizimizde iki değişken arasındaki ilişki hakkında fikir sunar
- R² değeri bize bağımlı değişkendeki toplam varyansın yüzde kaçının bağımsız değişken tarafından açıklandığını söyler.
- R² 0 -1 arasında değişir

r = -0.92

 $R^2 = 0.85$

$$R^{2} = \frac{SSR}{SST} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

YOUTUBE VIDEO ONERI

https://www.youtube.com/watch?v=w2FKXOa0HGA

How to Calculate R Squared Using Regression Analysis

Kahoot Uygulaması

Python Calculation

It is time to code by Python...

