

Recap and Goals

- Installed Python and Anaconda Environments
- Introduction to Python
 - Setting working directory
 - Adding comment lines
 - Docstrings
- Introduction to Pandas
 - Reading a csv
 - Extracting columns (attributes)
 - Extracting rows
 - Obtaining summary measures

Goal of this Module is to introduce Look at Control Statements in Python

Control Constructs

- Python is an interpreter, so the flow of the code is sequentially downwards
 - Sometimes we have to perform repetitive calculations
 - Summing up the numbers in a list to calculate mean
 - We have to make decisions
 - Perform one set of calculations when condition A is satisfied and another set of calculations when condition B is satisfied
- Python provides a set of control statements
 - if, if-else, if-elif-else
 - for loop
 - while loop

Break and **Continue** Statements are also provided by Python and can be used with other control statements

Python Indentation

 A unique feature of Python is lack of brackets for defining code blocks

 Python uses indentation to keep statement sets together

 Data read using pandas can be used with control statements I will illustrate the use of these control statement using a few examples

For Statement

For Statement

- Read the Ogallala.csv file using pandas read_csv function
- Extract the Average Nitrate Concentrations (NO3Av) into a series
- Use the for loop to calculate the mean nitrate concentration in the wells
 - Round it to two decimal places
- Use the python statistics library to calculate the mean value to compare

Steps:

- 1. Import pandas module
- 2. Import os module
- 3. Import statistics module for later use
- 4. Set working directory (where the 'ogallaladata.csv' file is)
- 5. Read the data file as a data frame (read_csv)
- 6. Extract NO3AV into a panda series
- 7. Calculate the length N (Number of data points)
- 8. Use for statement to loop through and sum values
- 9. Divide sum from step 4 by N from step 3 (mean)
- 10. Use the round function to round the result to 2 decimals
- 11. Compute mean using statistics module (round off)
- 12. Compare mean from step 7 to mean from step 9

For Statement

- Notice the indentation around the for statement
- Notice the colon


```
# Script to calculate average NO3 Conc
# Venki Uddameri, 12/26/2019
# Import libraries
import pandas as pd
import os
import statistics as st
# set working directory
os.chdir('D:\Dropbox/000CE5333Machine Learning/Module3/Code')
a = pd.read csv('OgallalaData.csv')
# Extract Average Nitrogen Concentration (NO3Av)
NO3 = a.NO3Av
N = len(NO3) # Number of wells where NO3 is measured
# Use for loop to calculate the mean NO3
sum = 0.0
for i in NO3:
  sum = sum + i
mean = round(sum/N,2) # Round to 2 decimals
mean # write the mean value to the console
round(st.mean(NO3),2) # Use statistics mean function
```

Both methods give a value of 26.23 mg/L

Unlike other programming languages (e.g., R) the index of iteration can be implicit in Python

For statement with range

 One can use the range statement to explicitly have an index of iteration

- Remember Python indexes from 0 to (N-1)
 - Avoid off-by-one error

```
Goes from 0 to N-1
(when N is specified)

# Use for loop with explicit range
idx = range(N) # create a sequence of numbers 0:(N-1)
sum = 0
for j in idx:
    sum = sum + NO3[j]
meanx = sum/N
meanx = round(meanx,2)
```

While Loop

While Loop

- A while loop is generally used when the number of iterations is unknown
 - But can also be known when the number of iterations are known

Usually the *condition* is updated within the loop

Illustrative Example

- Use the while loop to iterate through the AvNO3 data series to calculate its standard deviation
 - You can use the statistics library to compute the sample mean
 - You will need to import the math library to compute the square root (sqrt)
 - Compare the result with that obtained using statistics module

Code

```
# Script to calculate average NO3 Conc
# Venki Uddameri, 12/26/2019
# Import libraries
import pandas as pd
import os
import statistics as st
import math
# set working directory and read data
os.chdir('D:\Dropbox/000CE5333Machine
Learning/Module3/Code')
a = pd.read_csv('OgallalaData.csv')
NO3 = a.NO3Av # extract NO3 data
```

```
This is an 'augmented assignment' operator
Sum = Sum + z can be written as sum += z
```

```
xm = st.mean(NO3) # Compute the mean
N = len(NO3) # Get the length of the data
idx = 0 # Set index to zero
sum = 0 # Set sum to zero
while (idx < N): # Begin while loop
sum += (NO3[idx]-xm)**2 # Add the difference square
idx = idx + 1 #Update index
var = sum/(N-1) # Compute variance
sd = math.sqrt(var) # Take sqrt to obtain Std. Dev
round(sd,2) # Round to 2 decimals
rund(st.stdev(NO3),2) # Compute using stat module</pre>
```

Both methods should give value of 36.24 mg/L

IF Statement

Python If statement

- Python offers three variants of the if statement
 - If statement
 - If-else statement
 - If-elif-...-else statement

if condition A: do something if condition A is true

elif condition B:

do something if condition B is true
elif condition C:

do something if condition C is true
else:

do something if condition C is false Get out of the loop

if condition:

do something if condition is true do something if condition is true do something if condition is true Get out of the loop

if condition:

do something if condition is true do something if condition is true

else:

do something if condition is false Get out of the loop

Illustrative Example

- Compute the coefficient of variation of the Average Nitrate Concentrations for those wells that are in compliance with the drinking water standard (AvNO3 <= 10 mg/L) and those that are not (AvNO3 > 10 mg/L)
 - You can use the mean function in the statistics library
 - Compute the variance and standard deviation by summing up appropriately
- Subset the data using pandas loc method and check your calculations

Code

```
# Script to calculate COV for contaminated and not
contaminated
# Venki Uddameri, 12/26/2019
# Import libraries
import pandas as pd
import os
import statistics as st
import math
# set working directory
os.chdir('D:\Dropbox/000CE5333Machine
Learning/Module3/Code')
a = pd.read_csv('OgallalaData.csv')
# Extract Average Nitrogen Concentration (NO3Av)
NO3 = a.NO3Av
N = len(NO3) # Number of wells where NO3 is measured
```

```
# Estimate Mean values
# Initialize variables c for contaminated n of not
sumc = 0
sumn = 0
lenc = 0
lenn = 0
for i in NO3: # loop through all samples
  if(i > 10.0): #update if contaminated
    sumc += i
    lenc += 1
  else: # Update if not contaminated
    sumn += i
    lenn += 1
NO3cav = round(sumc/lenc,2) # Final Average Contaminated
NO3nav = round(sumn/lenn,2) # Final Average Not Cont.
```

Code Cont..

```
# Estimate Standard Deviations
sumc = 0
sumn = 0
for i in NO3: # loop through all samples
  if(i > 10.0): #update if contaminated
    sumc += (i-NO3cav)**2
  else: # Update if not contaminated
    sumn += (i-NO3nav)**2
NO3csd = math.sqrt(sumc/(lenc-1)) # Final SD Contaminated
NO3nsd = math.sqrt(sumn/(lenn-1)) # Final SD Not
Contaminated
# Calculate Coefficient of Variation
NO3ccov = round(NO3csd/NO3cav,2) # Round and write to
console
NO3ncov = round(NO3nsd/NO3nav,2) # Round and write to
console
```

(Both methods give same results)

COV contaminated	1.00
COV not contaminated	0.37

Estimating COV using Pandas Subsetting

NO3c = a.loc[a['NO3Av'] > 10,['NO3Av']] #Subset contaminated

NO3c = NO3c['NO3Av'].tolist() # Convert to list

NO3COVc = round(st.stdev(NO3c)/st.mean(NO3c),2) # Round COV

NO3n = a.loc[a['NO3Av'] <= 10,['NO3Av']] # Subset Not Cont.

NO3n = NO3n['NO3Av'].tolist() # Convert to list

NO3COVn = round(st.stdev(NO3n)/st.mean(NO3n),2) # Round COV

Subset Pandas dataframe and convert it into a python list to pass to stdev and mean functions in statistics package

Boolean Operators

- Decision (control)
 Statements can have
 more than one criterion
- Python offers two Boolean operators
 - and is used when more than one criteria have to be simultaneously met
 - **or** is used when at least obe criteria is to be met

Find the mean NO3Av Concentration for shallow well defined here as WellDepth < 100 ft **or** depth to water table (DWT) < 50 ft

Compare by subsetting using pandas

Code

```
# Script to calculate mean NO3 of Shallow Wells
# Venki Uddameri, 12/26/2019
# Import libraries
import pandas as pd
import os
import statistics as st
import math
# set working directory
os.chdir('D:\Dropbox/000CE5333Machine
Learning/Module3/Code')
a = pd.read_csv('OgallalaData.csv')
```

```
# Extract Average Nitrogen Concentration (NO3Av)
NO3 = a.NO3Av
DWT = a.DWT
WD = a.WellDepth
N = len(NO3) # Number of wells where NO3 is measured
# Initialize variables
sum = 0.0
len = 0
for i in range(N): # Loop through all wells
  if(WD[i]<100 or DWT[i] < 50): # Check shallow condition
    sum += NO3[i]
    len += 1
NO3sh = round(sum/len,2) #Compute shallow
```

Code – Subsetting using pandas

```
# Subset using Pandas iloc statement

# Note Pandas uses & (and) and | (or) as Boolean Operators

NO3sw = a.loc[(a['DWT'] <50) | (a['WellDepth'] <
100),['NO3Av']]

NO3sw = NO3sw['NO3Av'] # Convert to list

round(st.mean(NO3sw),2)
```

You should Know

- Control statements in R
 - if statement
 - if-else
 - if-elif-else
 - for loop
 - while loop
- Boolean Statement
 - and
 - or

Pandas uses & and | as Boolean operators within loc