Some of the most important results (e.g. Cauchy's theorem) are so surprising at first sight that nothing short of a proof can make them credible - Sir Harold Jeffreys

1 Review Topics

Metric spaces, convergence in metric spaces

2 Exercises

- 2.1 Confirm that each of the following is a metric function on the given metric space
 - $d(x, y) = \left| \frac{1}{x} \frac{1}{y} \right|$, on $(0, \infty)$.
 - The "post-office" metric: $d(x, y) = ||x||_2 + ||y||_2$ for $x \neq y$, d(x, x) = 0, on \mathbb{R}^n .

2.2 Prove the triangle inequality for $|\cdot|$, i.e. $|x-y| \le |x-z| + |z-y|$.

2.3 Prove that every monotone increasing sequence in $\mathbb R$ that is bounded above converges to a limit in $\mathbb R$

2.4 Prove that the sequence $a_n = 1 + \frac{(-1)^n}{n}$ converges.

2.5 Let a_n be a sequence of positive real numbers, such that $\frac{a_{n+1}}{a_n}$ converges to a < 1. Prove that a_n converges.

2.6 Prove that if $a_n \to a$, $a_n > 0$ for all n, then $\sqrt{a_n} \to \sqrt{a}$.