Applied Linear Algebra — Outline for Exam 1

Sections 1.1–1.7

Main ideas

- **A.** Solving linear systems, vector equations, and matrix equations
- **B.** Row reduction process and REF/RREF forms
- C. Representing solution sets parametrically and interpreting geometrically
- **D.** Linear combinations, span, and linear independence
- **E.** Application: network flow

Skills you should have

- 1. Be able to use the row reduction process to transform a matrix to RREF (and REF)
 - Make sure you can recognize when a matrix is in REF and RREF
- 2. Be able to solve linear systems.
 - Usual process: (1) write as augmented matrix, (2) row reduce to REF or RREF, (3) write the solution set (using free variables if necessary).
 - Be able to determine if the system is consistent/inconsistent and if there are infinitely many solutions.
 - Be able to write the solution set in parametric vector form.
 - Be able to interpret solution sets geometrically: point, line, or plane.
- **3.** Be able to multiply a matrix by a vector
- **4.** Be able to solve vector and matrix equations of the form $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_n\mathbf{v}_n = \mathbf{b}$ and $A\mathbf{x} = \mathbf{b}$
 - Usual process: convert to an augmented matrix and then solve as a linear system
- **5.** Be able to determine if a vector **b** is a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$; this is the same as determining if **b** is in Span $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$
 - Usual process: determine if $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_k\mathbf{v}_k = \mathbf{b}$ is consistent by converting to an augmented matrix and solving as a linear system.
 - Make sure you understand the definitions of "linear combination" and "span"
- **6.** Be able to determine if every $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$; this is the same as determining if every $\mathbf{b} \in \mathbb{R}^m$ is in $\mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$
 - Usual process: (1) make the "coefficient" matrix $[\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_k]$, (2) row reduce to REF, (3) if there is a pivot in every row, then YES, every $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$; if there is NOT a pivot in every row, then NO.
 - Note: for this type of problem, you really only need to work with the coefficient matrix $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_k \end{bmatrix}$ instead of the full augmented matrix $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_k \mid \mathbf{b} \end{bmatrix}$

- 7. Be able to determine if $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent or linearly dependent
 - The definition: $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly *independent* if and only if $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_k\mathbf{v}_k = \mathbf{0}$ has only one solution (i.e. if there are no free variables).
 - Usual process: solve the system $[\mathbf{v}_1 \ \mathbf{v}_2 \ \dots \ \mathbf{v}_k \ | \ \mathbf{0}]$ and determine how many solutions there are
 - There are also some theorems that can sometimes help:
 - Assume $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are in \mathbb{R}^m . If k > m, then the vectors must be linearly dependent.
 - If one of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is the zero vector, then the vectors must be linearly dependent.
 - Two vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent if and only if one is a scalar multiple of the other.
- 8. Be able to solve network flow problems
 - The main principle is that "flow in = flow out" at every intersection. Also, the flow into the entire network must equal the flow out of the entire network.

How to study

- I. Review core topics—make sure to have a working understanding of definitions and theorems
- II. Work lots of problems all of the way through—focus on WeBWorK problems and Handout problems
 - WeBWork #1-5, Handout #1-6
 - You can also look in other books for problems to try
- **III.** Practice doing several problems in a short amount of time
- IV. Come talk with me if you have any questions