On Almost Interpolation by Multivariate Splines

Oleg Davydov Manfred Sommer Hans Strauss

Abstract. A survey on some recent developments in multivariate interpolation, including characterizations of almost interpolation sets with respect to finite-dimensional spaces by conditions of Schoenberg-Whitney type, is given.

1. Introduction

Let U denote a finite-dimensional subspace of real valued functions defined on some set K. The problem of describing those configurations $T = \{t_1, \ldots, t_n\} \subset K$, $n = \dim U$, such that for any given data $\{y_1, \ldots, y_n\}$ there exists a unique function $u \in U$ satisfying

$$u(t_i) = y_i, i = 1, \ldots, n,$$

has attracted considerable interest in recent years, especially for the case when $K \subset \mathbb{R}^k, k \geq 2$. In contrast to the univariate case $K \subset \mathbb{R}$, where all interpolation sets T with respect to a spline space can be characterized by the well-known Schoenberg-Whitney condition [17] (see Section 2), it seems to be no reasonably simple way to characterize interpolation sets in the multivariate case (see [6, p. 136]). Therefore, several sufficient conditions and methods to construct such configurations for multivariate interpolation have been developed (see [3, 5, 6, 15] and references therein).

A new approach to multivariate interpolation has been found by Sommer and Strauss [23] introducing the concept of almost interpolation. A set $T = \{t_1, \ldots, t_s\} \subset K, s \leq \dim U$ is called an almost interpolation set (AI-set) with

Proceedings of Mannheim Conference 1996 G. Nürnberger, J. W. Schmidt, and G. Walz (eds.), pp. 1-14. Copyright © 1997 by Birkhäuser, Basel ISBN x-xxxx-xxx-x. All rights of reproduction in any form reserved. O. Davydov et al.

respect to U if for any system of neighborhoods B_i of t_i , i = 1, ..., s there exist points $t'_i \in B_i$ such that $T' = \{t'_1, ..., t'_s\}$ is an interpolation set (I-set) with respect to U; i.e.,

$$\dim U|_{T'} = s.$$

Otherwise, T' is called an NI-set w.r.t. U.

It is shown in [23] that for a wide class of generalized spline spaces defined on polyhedral partitions AI-sets can be characterized by conditions of Schoenberg-Whitney type (Section 3).

Davydov [8] has considered AI-sets in the case of any finite-dimensional space U of real valued functions defined on an arbitrary topological space K. Using the notion of $local\ dimension$ (see Section 4.1) he has shown that under some minor additional hypotheses on K any U has a piecewise almost Chebyshev structure (Sections 4.2 and 4.3), and AI-sets w.r.t. U can be characterized by a Schoenberg-Whitney type condition (Section 4.4) which extends the results in [23].

In Section 5 we present some results on how to transform a given AI-set into an I-set for the case of multivariate polynomial splines.

In the sequel we shall use the notations I-set and AI-set w.r.t. a space U, respectively, as we have defined them above. We denote by F(K) the linear space of all real valued functions on a topological space K and by C(K) its subspace consisting of all continuous functions. Moreover, we define, for a function $u \in F(K)$

$$\operatorname{supp} u := \overline{\{t \in K : u(t) \neq 0\}},$$

and denote by card M the number of elements of a finite set M.

2. Schoenberg-Whitney Type Conditions for Univariate Spline Interpolation

In this section we shall present some well-known results on univariate spline interpolation.

Assume that $K = [a, b] \subset \mathbb{R}$ and $\Delta : a = x_0 < \ldots < x_{r+1} = b$ denote any partition on K. Let $m \in \mathbb{N}$. The linear space of polynomial spline functions of degree m with r fixed knots is defined by

$$U := S_m(\Delta) := \{ u \in C^{m-1}[a, b] : u|_{[x_i, x_{i+1}]} \in \pi_m, 0 \le i \le r \}$$

where π_m denotes the linear space of polynomials of degree at most m. Then $n := \dim U = m + r + 1$ and interpolation sets w.r.t. U can be characterized by an interlacing property due to Schoenberg and Whitney [17] as follows.

Interlacing property. If $T = \{t_1, \ldots, t_n\} \subset [a, b]$, then T is an I-set w.r.t. U if and only if

$$t_i < x_i < t_{i+m+1}, \quad i = 1, \dots, r.$$
 (2.1)

An equivalent statement to (2.1) is given in terms of a basis of functions in U with minimal support, the so-called B-spline functions (see e.g. [19]).

Support property. Let $\{B_1, \ldots, B_n\}$ denote the B-spline basis for U. If $T = \{t_1, \ldots, t_n\} \subset [a, b]$, then T is an I-set w.r.t. U if and only if

$$t_i \in \{t \in K : B_i(t) \neq 0\}, \quad i = 1, \dots, n.$$
 (2.2)

A generalization of this support property to the multivariate case plays an important role in the problem of determining AI-sets, especially for locally linearly independent systems of functions (see Theorems 3.7, 4.12 and [10, Theorem 2.3]).

It is easily seen that (2.1) can be reformulated in terms of the restriction of U to certain knot intervals.

Dimension property. If $T = \{t_1, \dots, t_n\} \subset [a, b]$, then T is an I-set w.r.t. U if and only if

$$\operatorname{card}(T \cap [x_i, x_j]) \le \dim U|_{[x_i, x_j]}, \quad i, j = 0, \dots, r, \ i < j.$$
 (2.3)

A property like (2.3) on the dimension behavior of U on certain "subcells" of the partition Δ will enable us to derive Schoenberg-Whitney type conditions for multivariate interpolation. In fact, for that case a more general dimension property as (2.3) will be better suitable.

Strong dimension property. If $T = \{t_1, \ldots, t_n\} \subset [a, b]$, then T is an I-set w.r.t. U if and only if

$$\operatorname{card}\left(T \cap M_P\right) \le \dim U|_{M_P} \tag{2.4}$$

for any $P \subset \{0, ..., r\}$ where $M_P := \bigcup_{i \in P} [x_i, x_{i+1}]$.

Remark. Schoenberg-Whitney type conditions can be used for the characterization of I-sets with respect to some other spaces of univariate functions. Interlacing property (2.1) and support property (2.2), respectively, have been extended in [16, 21] to spaces of generalized splines. An extension of the support property to locally linearly independent weak Descartes systems of functions has been found in [4]. Extensions of the dimension properties (2.3) and (2.4) to weak Chebyshev spaces have been given in [7, 9, 22].

3. Schoenberg-Whitney Type Conditions for Almost Interpolation on Polyhedral Partitions

In this section we shall present some recent results on almost interpolation of multivariate functions defined on polyhedral partitions in \mathbb{R}^k . The conditions which even characterize AI-sets are extensions of (2.2) and (2.4), respectively and therefore, can be considered as conditions of Schoenberg-Whitney type.

Let us begin by introducing the spaces of interest. Assume that \mathcal{K} denotes a finite family of l-dimensional simplices in \mathbb{R}^k where $k \in \mathbb{N}, l \in \mathbb{N} \cup \{0\}$ and $l \leq k$ satisfying the following properties:

- 1) If the simplex s belongs to \mathcal{K} , then every face of s belongs also to \mathcal{K} .
- 2) If $s, \tilde{s} \in \mathcal{K}$, then the intersection of s and \tilde{s} is empty or a common face.

The point-set union of all simplices of the family \mathcal{K} is called a *polyhedron* in \mathbb{R}^k (see [18]).

Let

4

$$K := \bigcup_{i \in I} K_i$$

where every K_i is a polyhedron in \mathbb{R}^k and I denotes a finite set. Assume that $K_i \not\subset \bigcup_{j \in I \setminus \{i\}} K_j$. Moreover, assume that K is regular; i.e., the set $\{K_i\}_{i \in I}$ of polyhedrons in K satisfies also property 2) above.

Example 3.1. If k = 1, then K = [a, b] and $K_i = [x_i, x_{i+1}]$, i = 0, ..., r where $a = x_0 < ... < x_{r+1} = b$.

Example 3.2. (Regular triangulation) Let $K = \bigcup_{i \in I} K_i \subset \mathbb{R}^2$ where $\{K_i\}_{i \in I}$ is a set of triangles with the property that no vertex of K_i lies on the interior of K_j or on the interior of a side of K_j , $i, j \in I$.

Example 3.3. (Rectangular partition) Let $K = [a, b] \times [c, d] \subset \mathbb{R}^2$ and $a = x_0 < \ldots < x_{r+1} = b, c = y_0 < \ldots < y_{s+1} = d$. Then $K = \bigcup_{(i,j) \in I} K_{ij}$ where $K_{ij} = [x_i, x_{i+1}] \times [y_j, y_{j+1}], I = \{(i,j) : i \in \{0, \ldots, r\}, j \in \{0, \ldots, s\}\}.$

If the rectangular partition is refined by drawing in all diagonals with positive slope or both diagonals in every K_{ij} , the resulting partition is called type-1 or type-2 triangulation, respectively (see [6, p. 27]).

Let $p \in \mathbb{N} \cup \{0\}$. For every $i \in I$, assume that U_i denotes a finite-dimensional subspace of $C^p(K_i)$ satisfying the L-property: Let $u \in U_i$ and $\tilde{t} \in K_i$ be a zero of u. If there exists $\epsilon > 0$ such that u(t) = 0 for every $t \in K_i$ satisfying $||\tilde{t} - t|| < \epsilon$, then $u \equiv 0$ on K_i . (In the special case when $K_i \subset \mathbb{R}$, the most important examples of U_i are Haar subspaces.)

We define the linear space S of generalized spline functions of smoothness p by $S:=\{s\in C^p(K): \text{ for every } i\in I \text{ there exists } s_i\in U_i \text{ such that } s|_{K_i}=s_i\}.$ Suppose that $\{u_1,\ldots,u_n\}$ denotes a system of linearly independent functions in S. Set

$$U := \operatorname{span} \{u_1, \dots, u_n\}.$$

Recently, Sommer and Strauss [23] were concerned with the question of when a subset $T = \{t_1, \ldots, t_s\}$ of $K, s \leq n$ is an AI-set w.r.t. U. For that they gave an extension of condition (2.4) as follows.

Definition 3.4. Let $T = \{t_1, \ldots, t_s\} \subset K, s \leq n$. Then T is said to satisfy a condition of Schoenberg-Whitney type or T is called an SWT-set w.r.t. U if

$$\operatorname{card}\left(T \cap \operatorname{int}_{K} M_{P}\right) \leq \dim U|_{M_{P}} \tag{3.1}$$

for any $P \subset I$ where $M_P := \bigcup_{i \in P} K_i$ and $\operatorname{int}_K M_P := K \setminus \bigcup_{i \in I \setminus P} K_i$.

Fig. 3.1.

Using this condition a characterization of all AI-sets w.r.t. U was given in [23].

Theorem 3.5. Let $T = \{t_1, \ldots, t_s\} \subset K, s \leq n$. Then T is an AI-set w.r.t. U if and only if T is an SWT-set w.r.t. U.

It is a nice consequence of this result that in practice it should suffice to use AI-sets for interpolation problems. In fact, in [23] the following result was shown.

Corollary 3.6. If $\mathcal{T} := \{T = \{t_1, \ldots, t_s\} \subset K : T \text{ is an AI-set w.r.t. } U\}$, and $\tilde{\mathcal{T}} := \{T \in \mathcal{T} : T \text{ is an NI-set w.r.t. } U\}$, then $\tilde{\mathcal{T}}$ is a set of first category in \mathcal{T} .

The following result which gives an extension of (2.2) is also due to [23].

Theorem 3.7. Let $T = \{t_1, \ldots, t_s\} \subset K, s \leq n$. The following conditions are equivalent.

- 1) T is an AI-set w.r.t. U.
- 2) For each basis $\{u_1, \ldots, u_n\}$ of U there is some permutation σ of $\{1, \ldots, n\}$ such that

$$t_i \in \text{supp } u_{\sigma(i)}, \quad i = 1, \dots, s.$$

O. Davydov et al.

4. Almost Interpolation by Functions Defined on Topological Spaces

Here we survey some results by Davydov [8], who has shown that a Schoenberg-Whitney type characterization of AI-sets holds in fact for any finite-dimensional linear space of continuous functions on a topological space satisfying some minor restrictions. Particularly, this is true for the spaces of multivariate splines with respect to non-polyhedral partitions.

4.1. Local Dimension

Assume that K is a topological space and U denotes a finite-dimensional subspace of F(K), dim U = n.

Definition 4.1. [8] Let K' be any subset of K. By the local dimension of U on K' we mean

$$\operatorname{l-dim}_{K'} U := \inf \{ \dim U |_B : K' \subset B, B \text{ open } \}.$$

With the help of local dimension it is possible to give a "local" characterization of almost interpolation sets with respect to any finite-dimensional space U.

Theorem 4.2. [8] Let $T = \{t_1, \ldots, t_s\} \subset K, s \leq n$. Then T is an AI-set w.r.t. $U \subset F(K)$ if and only if

$$\operatorname{l-dim}_{T'} U > \operatorname{card} T'$$

for any choice of a nonempty subset $T' \subset T$.

We write $\operatorname{l-dim}_t U$ instead of $\operatorname{l-dim}_{\{t\}} U$. The function $\varphi: K \to \mathbb{Z}_+$ defined by $\varphi(t) := \operatorname{l-dim}_t U$ is evidently upper semicontinuous. Moreover, it is continuous on an open everywhere dense subset $G_U \subset K$. Figure 4.1 presents the graph of the local dimension of the space of univariate splines $S_m(\Delta)$.

Fig. 4.1.

As another example consider the space of linear bivariate splines on the triangulation in Figure 4.2. We have

$$1-\dim_{t_1} U = 3$$
, $1-\dim_{t_2} U = 4$, $1-\dim_{t_3} U = 5$.

Fig. 4.2.

4.2. Almost Chebyshev Systems

It is well-known that Chebyshev systems (T-systems) play an important role in the approximation theory. Recall that a system of functions $u_1, \ldots, u_n \in F(K)$ is said to be a Chebyshev system if every nonzero function $u \in U = \text{span } \{u_1, \ldots, u_n\}$ has at most n-1 zeros. The linear span of a Chebyshev system is called a Haar space. (Some authors prefer the notation "Chebyshev space".) It is an important feature of Haar spaces that they are as good for interpolation as possible: any set $T = \{t_1, \ldots, t_n\} \subset K$ is an interpolation set w.r.t. such a space. In fact, this property can be taken as a definition of a Haar space or a Chebyshev system.

Mairhuber's theorem [14] shows that the existence of a Haar space $U \subset F(K)$ of dimension $n \geq 2$ implies some severe restrictions on K. Particularly, K cannot be homeomorphic to a subset of \mathbb{R}^k , $k \geq 2$, with nonempty interior. Hence, Chebyshev systems cannot be used for approximation of multivariate functions. Because of this we consider an "almost interpolation" analogue of Chebyshev systems.

Definition 4.3. A system of functions $u_1, \ldots, u_n \in F(K)$ is said to be an almost Chebyshev system if any set $T = \{t_1, \ldots, t_n\} \subset K$ is an AI-set w.r.t. $U = \text{span } \{u_1, \ldots, u_n\}$. The linear span U of an almost Chebyshev system is called an almost Haar space.

In the next theorem we give some characteristic properties of almost Haar spaces.

Theorem 4.4. Let K be a topological space and let $U \subset F(K)$ denote a finite-dimensional linear space, dim U = n.

1) U is an almost Haar space if and only if for any nonempty open set $B \subset K$,

$$\dim U|_B = \min \{n, \operatorname{card} B\}.$$

- 2) Suppose that every nonempty open set $B \subset K$ is infinite. Then U is an almost Haar space if and only if no nonzero function $u \in U$ can vanish identically on an open subset B of K.
- 3) Suppose that K is a compact metric space and $U \subset C(K)$. Then U is an almost Haar space if and only if it is an almost Chebyshev subspace of the

normed space C(K) in the sense that the set of elements $f \in C(K)$ for which there exists a unique best approximation to f from U, is of the second category in C(K).

4) Suppose that K is connected and satisfies T_1 -axiom of separation. Then U is an almost Haar space if and only if 1-dim $_t U = constant$, $t \in K$.

The notion of almost Chebyshev subspaces mentioned in 3) was introduced by Stechkin [24]. Garkavi [12, 13] showed that there exist almost Chebyshev subspaces of arbitrary finite dimensions in any separable Banach space. Parts 1) (in the case of K being a compact metric space) and 3) of the above theorem are due to Garkavi [13]. 2) is an immediate consequence of 1). 4) is proved in [8] with the help of the following result.

Proposition 4.5. [8] Under the hypotheses of Theorem 4.4, let K' be a connected subset of K. If $1-\dim_t U = m$, $t \in K'$, then $1-\dim_{K'} U = m$.

It is easily seen from Theorem 4.4 that the class of almost Haar spaces is rather wide. For example, any finite-dimensional space of analytic functions on a domain $K \subset \mathbb{R}^k$ is a space of this type. In the case $K \subset \mathbb{R}$ the same is true for any subspace of a Haar space.

4.3. Piecewise Almost Chebyshev Structure

8

Consider again the function $\varphi(t) = \text{l-dim}_t U$, where $U \subset F(K)$ is a finite-dimensional linear space and K denotes a topological linear space. Denote by G_U the set of all points of continuity of $\varphi(t)$ and decompose G_U into the union of its connected components,

$$G_U = \bigcup_{i \in I} K_i.$$

Then G_U is open and everywhere dense in K, so that

$$\overline{\bigcup_{i\in I} K_i} = K.$$

Because of this we consider the set $\{K_i : i \in I\}$ as a partition of K. The cells K_i of this partition are disjoint and connected.

Since $\varphi(t)$ takes only integer values, it remains constant on each cell $K_i, i \in I$. Theorem 4.4 then shows that $U|_{K_i}$ is an almost Haar space if K_i is not a singleton, satisfies T_1 -axiom of separation and, additionally,

$$1-\dim_t U = 1-\dim_t U|_{K_i}, \ t \in K_i.$$

This last condition can be guaranteed by imposing some restrictions on K.

Theorem 4.6. [8] Let K be a locally connected T_1 -space and let $U \subset F(K)$ be a finite-dimensional linear space. Define the partition $K = \overline{\bigcup_{i \in I} K_i}$ as above. Then the following conditions hold.

- 1) The cells K_i are open and connected subsets of K.
- 2) $U|_{K_i}$ is an almost Haar space for any $i \in I$.

Thus, under the hypotheses of Theorem 4.6, U is generated on the cells by some almost Chebyshev systems and, hence, may be thought of as a "piecewise almost Chebyshev" space.

In the case $K \subset \mathbb{R}$ we obtain a similar result without requiring that K is locally connected.

Theorem 4.7. [8] Let K be any subset of \mathbb{R} and let $U \subset F(K)$ denote a finite-dimensional linear space. Define the partition $K = \overline{\bigcup_{i \in I} K_i}$ as above. Then the following is true.

- 1) Each cell K_i is either a singleton or an (finite or infinite) open, closed or half-open interval. In particular, I is countable.
- 2) $U|_{K_i}$ is an almost Haar space for any $i \in I$.

We can say more about $U|_{K_i}$ in the case when K=[a,b] and $U\subset C[a,b]$ is a weak Chebyshev space; i.e., every nonzero function $u\in U$ has at most n-1 sign changes $(n=\dim U)$. By Theorem 4.6, K_i are open connected subsets of [a,b], so that

$$G_U = [a, a') \cup \bigcup_{j \in J} (\alpha_j, \beta_j) \cup (b', b],$$

where $a \leq a', b' \leq b$ (we mean $[x, x) = (x, x] = \emptyset$), $(\alpha_j, \beta_j), j \in J$, are disjoint open subintervals of $(a', b'), \cup_{j \in J} (\alpha_j, \beta_j)$ is everywhere dense in (a', b').

We say that a point $t \in K$ is essential w.r.t. $U \subset F(K)$ if there exists $u \in U$ such that $u(t) \neq 0$.

Theorem 4.8. Let $U \subset C[a,b]$ be a weak Chebyshev space. Suppose that any point $t \in [a,b]$ is essential w.r.t. U. Then

$$U|_{(a,a')}, \ U|_{(b',b)}, \ U|_{(\alpha_i,\beta_i)}, \ j \in J,$$

are Haar spaces.

Proof: Indeed, by [20, Theorem 1.4] these spaces are weak Chebyshev because U is weak Chebyshev. Theorem 4.6 states that they are also almost Haar spaces, so that no nonzero function vanishes identically on a nondegenerate proper subinterval of [a, a'], [b', b] or $[\alpha_j, \beta_j]$ respectively. Since every point $t \in [a, b]$ is essential w.r.t. U, it follows that each of $U|_{[a,a']}$, $U|_{[b',b]}$ and $U|_{[\alpha_j,\beta_j]}$, $j \in J$, has Chebyshev rank at most n-1. Then Remark i in [20, p. 59] implies that the restrictions of U to corresponding open intervals are in fact Haar spaces.

The statement of Theorem 4.8 can be strengthened for the important case when a weak Chebyshev subspace U of C[a,b] does not contain functions with "arbitrarily small" zero intervals. Following Bartelt [1] we say that U satisfies condition (I) if there exists $\delta > 0$ such that if $u \in U$ and $u \equiv 0$ on $[c,d] \subset [a,b], \ c,d \in \operatorname{supp} u \cup \{a,b\}$, then $d-c \geq \delta$. This implies a "spline-like" behavior as the following result shows.

Theorem 4.9. [20] Let U be a weak Chebyshev subspace of C[a, b] and suppose that U satisfies condition (I). The following statements hold.

1) There exists a finite set of points $a = x_0 < \ldots < x_{r+1} = b$ such that for each $i = 0, \ldots, r$,

$$U|_{[x_i,x_{i+1}]}$$

is an almost Haar subspace of $C[x_i, x_{i+1}]$.

2) If in addition every $t \in [a, b]$ is essential w.r.t. U, then there exists a finite set of points $a = x_0 < \ldots < x_{r+1} = b$ such that for each $i = 0, \ldots, r$,

$$U|_{[x_i,x_{i+1}]}$$

is even a Haar subspace of $C[x_i, x_{i+1}]$.

4.4. Schoenberg-Whitney Type Conditions

Suppose that K is a locally connected T_1 -space and $U \subset F(K)$ is a finite-dimensional linear space, dim U = n. Define the partition $K = \bigcup_{i \in I} K_i$ as in the previous subsection. Then Theorem 4.6 can be applied so that $U|_{K_i}$ is an almost Haar space when K_i is not a singleton. Assuming additionally that $U \subset C(K)$, we give a Schoenberg-Whitney type characterization of almost interpolation sets through an extension of conditions (2.4) and (3.1). The next two theorems are immediate consequences of Theorem 3.10 and Corollary 4.18 in [8].

Theorem 4.10. Suppose that $U \subset C(K)$ and let $T = \{t_1, \ldots, t_s\} \subset K, s \leq n$. Then T is an AI-set w.r.t. U if and only if

$$\operatorname{card}\left(T \cap \operatorname{int} M_P\right) \le \dim U|_{M_P} \tag{4.1}$$

for any $P \subset I$ where $M_P := \overline{\bigcup_{i \in P} K_i}$ and int M_P denotes the set of all interior points of M_P w.r.t. topology on K.

When I is infinite, we have in (4.1) an infinite set of inequalities. However, we are able to show that for each fixed $T = \{t_1, \ldots, t_s\}$ it is enough to check (4.1) for a finite number of M_P 's.

Theorem 4.11. Under the hypotheses of Theorem 4.10, let B_1, \ldots, B_s be open L-neighborhoods of t_1, \ldots, t_s , respectively; i.e.,

$$\dim U|_{B_i} = \operatorname{l-dim}_{t_i} U, \quad j = 1, \dots, s.$$

In order for $T = \{t_1, \ldots, t_s\}$ to be an AI-set w.r.t. U it is sufficient that (4.1) holds for any $P \subset I$ of the form

$$P = \bigcup_{j \in Q} P_j, \quad Q \subset \{1, \dots, s\},\$$

where $P_j := \{i \in I : K_i \cap B_j \neq \emptyset\}, \quad j = 1, \dots, s.$

It is easily seen that the Theorems 4.10 and 4.11 can be applied to the spaces of generalized splines considered in Section 3 as well as to any space of continuous piecewise polynomial functions with respect to an arbitrary partition of a domain $K \subset \mathbb{R}^k$.

A general version of Theorem 3.7 is also true.

Theorem 4.12. [11] Suppose that K is a topological space and $U \subset F(K)$ is a finite-dimensional linear space, dim U = n. Let $T = \{t_1, \ldots, t_s\} \subset K, s \leq n$. Then the following conditions are equivalent.

- 1) T is an AI-set w.r.t. U.
- 2) For each basis $\{u_1, \ldots, u_n\}$ of U there exists some permutation σ of $\{1, \ldots, n\}$ such that $t_i \in \text{supp } u_{\sigma(i)}$, for all $i = 1, \ldots, s$.

5. Transforming AI-sets into I-set

In the preceding sections we have considered the problem of characterizing AI-set w.r.t. finite-dimensional subspaces U of F(K).

By Corollary 3.6 we know, at least for spaces of generalized splines U, that if \mathcal{T} denotes the set of all AI-sets w.r.t. U and $\tilde{\mathcal{T}}$ its subset of NI-sets w.r.t. U, then $\tilde{\mathcal{T}}$ is a set of first category in \mathcal{T} .

Hence the question arises whether it is possible to find simple methods for transforming AI-sets T into I-sets in some neighborhood of T.

Let $T = \{t_1, \ldots, t_s\}$, $s \leq n$, $n = \dim U$, be an AI-set w.r.t. U and let some neighborhoods B_1, \ldots, B_s of the points t_1, \ldots, t_s , respectively, be given. Set $n_i := \dim U|_{B_i}$, $i = 1, \ldots, s$. It is always possible to choose some points $t_{i,j} \in B_i$, $j = 1, \ldots, n_i, i = 1, \ldots, s$, in such a way that $T_i := \{t_{i,1}, \ldots, t_{i,n_i}\}$ is an I-set w.r.t. $U|_{B_i}$, $i = 1, \ldots, s$.

Theorem 5.1. [8] For any $i \in \{1, ..., s\}$ there exists $\mu(i) \in \{1, ..., n_i\}$ such that $\{t_{i,\mu(i)} : i = 1, ..., s\}$ is an *I*-set w.r.t. U.

Assume now that S denotes the linear space of polynomial splines of smoothness p and degree m defined as in Section 3 on the set $K = \bigcup_{i \in I} K_i \subset \mathbb{R}^k$ where K_i is a convex polyhedron for all $i \in I$, such that $S|_{K_i}$ coincides with the set of polynomials of total degree at most $m, i \in I$. We consider the following situation.

Let a set $T = \{t_1, \ldots, t_n\} \subset \mathbb{R}^k$ where $n = \dim S$ be given. Assume that T is an AI-set w.r.t. S satisfying $t_i \in K_{i_i}$, $i = 1, \ldots, n$. Moreover, let $V = \{v_1, \ldots, v_n\}$

be an I-set w.r.t. S such that $v_i \in K_{j_i}$, i = 1, ..., n. Notice that by the definition of AI-sets every neighborhood of T contains such an I-set. We now define the straight lines through t_i and v_i ,

 $l_i := \{t \in K_{j_i} : \text{ there exists } \lambda \in \mathbb{R} \text{ such that } t = t_i(\lambda) = (1 - \lambda)t_i + \lambda v_i\}.$

Since K_{j_i} is convex, we have $t_i(\lambda) \in K_{j_i}$ for all $0 \le \lambda \le 1$. Under these assumptions we obtain the following result.

Theorem 5.2. [22] Let $T(\lambda) := \{t_1(\lambda), \ldots, t_n(\lambda)\}$. Then $T(\lambda)$ is an *I*-set w.r.t. S for all $0 \le \lambda \le 1$ with the exception of a finite number of points $0 \le \lambda_1 < \dots > \lambda_q \le 1$ where $0 \le q \le mn$.

Corollary 5.3. [22] Let the assumptions of Theorem 5.2 be given. Then there exists a real number $\lambda_0 > 0$ such that $T(\lambda)$ are I-sets w.r.t. S for all $0 < \lambda \le \lambda_0$.

Remark 5.4. 1) Let $V=\{v_1,\ldots,v_n\}$ be an I-set w.r.t. S such that $v_i\in K_{j_i}$. Then it follows from Theorem 3.5 that every set $T=\{t_1,\ldots,t_n\}$ satisfying $t_i\in K_{j_i},\ i=1,\ldots,t_n\}$ $1,\ldots,n$, is an AI-set w.r.t. S. Hence we choose an arbitrary set $\tilde{T}=\{\tilde{t_1},\ldots,\tilde{t_n}\}$ satisfying $\tilde{t}_i \in K_{j_i}$, $i = 1, \ldots, n$. It follows from Corollary 5.3 that there is a real number $\lambda_0 > 0$ such that $\{(1-\lambda)\tilde{t}_i + \lambda v_i\}_{i=1}^n$ is an *I*-set w.r.t. S for all $0 < \lambda < \lambda_0$. This means the following: If we have an *I*-set *V* such that $v_i \in K_{i_i}$, i = 1, ..., n, then we can move the points v_i to arbitrary points \tilde{t}_i in the same polyhedron and we always have I-sets on the lines connecting v_i and \tilde{t}_i in a neighborhood of \tilde{t}_i , $i=1,\ldots,n$. But this is not true if both T and V are AI-sets which fail to be I-sets. It can be shown by simple examples that $\{(1-\lambda)t_i + \lambda v_i\}_{i=1}^n$ can be NI-sets for all $0 \le \lambda \le 1$. Therefore, starting with some special interpolation configuration (a variety of methods of constructing them can be found in [3, 5, 6, 15]), we can apply the above method in order to obtain interpolation configurations with desirable location. For example, for the space of continuous bivariate spline functions on regular triangulations an initial I-set can be easily constructed by well-known finite-element methods (see e.g. [2, p. 155]).

2) Let us consider the case of Theorem 5.2 such that V is an I-set and T is an AI-set. We shall give an example where $T(\lambda)$ is an NI-set for some $0 \le \lambda < 1$: Define a set of vertices in \mathbb{R}^2 by $e_1 = (1,0), e_2 = (0,1), e_3 = (-1,0)$ and $e_4 =$ (0,-1) and let $K=K_1\cup K_2$ be a triangulation such that K_1 is the convex hull of $\{e_1, e_2, e_4\}$ and K_2 is the convex hull of $\{e_2, e_3, e_4\}$. Assume that S is the space of linear continuous splines defined on K. Then the set $V = \{e_1, \ldots, e_4\}$ is an I-set w.r.t. S. The set $T = \{t_1, \ldots, t_4\}$ given by $t_1 = (1/2, 0), t_2 = (1/2, -1/2), t_3 =$ (-1/2,0) and $t_4=(-1/2,1/2)$ is an AI-set, but fails to be an I-set. We now define the lines

$$t_i(\lambda) = (1 - \lambda)t_i + \lambda e_i, i = 1, \dots, 4.$$

For $\lambda = 1/3$ all points $t_i(1/3)$, $i = 1, \ldots, 4$ are contained in the x-axis. Hence $\{t_i(\lambda)\}_{i=1}^4$ is an NI-set for $\lambda=0$ and $\lambda=1/3$. It is easily seen that for any other $\lambda \in (0, 1/3) \cup (1/3, 1], \{t_i(\lambda)\}_{i=1}^4 \text{ is an } I\text{-set.}$

Finally we give a description of a wide class of I-sets for linear bivariate splines.

Theorem 5.5. [22] Let $K = \bigcup_{i \in I} K_i \subset \mathbb{R}^2$ be a regular triangulation and S denote the space of linear continuous splines on K. Assume that $\{e_1, \ldots, e_n\}$ denotes the set of vertices of K. Then $S = \operatorname{span}\{u_1, \ldots, u_n\}$ where $u_i \in S$ is defined by $u_i(e_j) = \delta_{ij}, i, j = 1, \ldots, n$. Let us define a set M_i by

$$M_i := \{t \in K : u_i(t) > \frac{1}{2}\}, i = 1, \dots, n.$$

Then every set $\{t_1, \ldots, t_n\}$ satisfying $t_i \in M_i$ for $i = 1, \ldots, n$ is an *I*-set w.r.t. S. Note that the result is no longer true if we replace each set M_i by its closure.

Acknowledgements. O. Davydov was supported by the Alexander von Humboldt Foundation, under Research Fellowship.

References

- Bartelt M. W., Weak Chebyshev sets and splines, J. Approx. Theory 14 (1975), 30–37.
- 2. Becker E. B., Carey G. F. and Oden J. T., Finite Elements: An Introduction, Vol. I, Prentice-Hall, New Jersey, 1981.
- 3. Bojanov B. D., Hakopian H. A. and Sahakian A. A., Spline Functions and Multivariate Interpolations, Kluwer Academic Publishers, Dordrecht, 1993.
- 4. Carnicer J. M. and Peña J. M., Spaces with almost strictly totally positive bases, Math. Nachrichten 169 (1994), 69–79.
- 5. Cheney E. W., Multivariate Approximation Theory: Selected Topics, CBMS—SIAM, Philadelphia, 1986.
- 6. Chui C. K., Multivariate Splines, CBMS-SIAM, Philadelphia, 1988.
- 7. Davydov O., A class of weak Chebyshev spaces and characterization of best approximations, J. Approx. Theory 81 (1995), 250–259.
- 8. Davydov O., On almost interpolation, J. Approx. Theory, to appear.
- 9. Davydov O. and Sommer M., Interpolation by weak Chebyshev spaces, preprint.
- 10. Davydov O., Sommer M. and Strauss H., Locally linearly independent systems and almost interpolation, this volume.
- 11. Davydov O., Sommer M. and Strauss H., On almost interpolation and locally linearly independent bases, preprint.
- Garkavi A. L., On Chebyshev and almost Chebyshev subspaces, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 799–818 [in Russian]; English translation in Amer. Math. Soc. Transl. (2) 96 (1970), 153–175.
- 13. Garkavi A. L., Almost Chebyshev systems of continuous function, Izv. Vyssh. Uchebn. Zaved. Mat. (2) **45** (1965), 36–44 [in Russian]; English translation in Amer. Math. Soc. Transl. (2) **96** (1970), 177–187.

14. Mairhuber J. C., On Haar's theorem concerning Chebyshev approximation problems having unique solutions, Proc. Amer. Math. Soc. 7 (1956), 609–615.

- 15. Nürnberger G., Approximation by univariate and bivariate splines, in *Second International Colloquium on Numerical Analysis* (Bainov D. and Covachev V., Eds.), VSP, 1994, 143–153.
- 16. Nürnberger G., Schumaker L. L., Sommer M. and Strauss H., Interpolation by generalized splines, Numer. Math. 42 (1983), 195–212.
- 17. Schoenberg I. J. and Whitney A., On Polya frequency functions III. The positivity of translation determinants with application on the interpolation problem by spline curves, Trans. Amer. Math. Soc. **74** (1953), 246–259.
- 18. Schubert H., Topologie, Teubner, Stuttgart, 1975.
- 19. Schumaker L. L., Spline Functions: Basic Theory Wiley-Interscience, New York, 1981.
- 20. Sommer M., Weak Chebyshev spaces and best L_1 -approximation, J. Approx. Theory **39** (1983), 54–71.
- 21. Sommer M. and Strauss H., Weak Descartes systems in generalized spline spaces, Constr. Approx. 4 (1988), 133–145.
- 22. Sommer M. and Strauss H., Interpolation by uni- and multivariate generalized splines, J. Approx. Theory 83 (1995), 423–447.
- 23. Sommer M. and Strauss H., A condition of Schoenberg-Whitney type for multivariate spline interpolation, Advances in Comp. Math. 5 (1996), 381–397.
- 24. Stechkin S. B., Approximation properties of sets in normed linear spaces, Rev. Math. Pures Appl. 8 (1963), 5–18 [in Russian].

Oleg Davydov

Department of Mechanics and Mathematics Dnepropetrovsk State University pr.Gagarina 72 Dnepropetrovsk GSP 320625, Ukraine davydov@euklid.math.uni-mannheim.de

Manfred Sommer Mathematisch-Geographische Fakultät Katholische Universität Eichstätt 85071 Eichstätt, Germany manfred.sommer@ku-eichstaett.de

Hans Strauß Institut für Angewandte Mathematik Universität Erlangen-Nürnberg 91058 Erlangen, Germany strauss@am.uni-erlangen.de