The dance of error, confidence, and sample size

The dance of error, confidence, and sample size

How well does S_n/n approximate p?

••••••
000000000000000000

			Accumulated successes							
			Binomial(10, 0.6)							
X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X9	X ₁₀	S ₁₀
1	0	0	1	1	1	0	0	0	0	4

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^k (1 - 0.6)^{10 - k} \qquad (k = 0, 1, ..., 10)$$

			Accumulated successes							
			Binomial(10, 0.6)							
X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X ₉	X ₁₀	S ₁₀
1	0	0	1	1	1	0	0	0	0	4

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^{k} (1 - 0.6)^{10-k} \qquad (k = 0, 1, ..., 10)$$

			Accumulated successes							
			Binomial(10, 0.6)							
X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X ₁₀	S ₁₀
1	0	0	1	1	1	0	0	0	0	4

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^k (1 - 0.6)^{10 - k} \qquad (k = 0, 1, \dots, 10)$$

$$(k = 0, 1, ..., 10)$$

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^k (1 - 0.6)^{10 - k} \qquad (k = 0, 1, \dots, 10)$$

$$(k = 0, 1, ..., 10)$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{S_{10}}{10} \le 0.6 + 0.1\}$$

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^k (1 - 0.6)^{10 - k} \qquad (k = 0, 1, ..., 10)$$

$$(k = 0, 1, ..., 10)$$

$$P{0.6 - 0.1 \le \frac{S_{10}}{10} \le 0.6 + 0.1} = P{5 \le S_{10} \le 7}$$

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^k (1 - 0.6)^{10 - k} \qquad (k = 0, 1, ..., 10)$$

$$(k = 0, 1, ..., 10)$$

$$P{0.6 - 0.1 \le \frac{S_{10}}{10} \le 0.6 + 0.1} = P{5 \le S_{10} \le 7}$$

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^k (1 - 0.6)^{10 - k} \qquad (k = 0, 1, ..., 10)$$

$$(k = 0, 1, ..., 10)$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{s_{10}}{10} \le 0.6 + 0.1\} = \mathbf{P}\{5 \le s_{10} \le 7\}$$

$$= b_{10}(5; 0.6) + b_{10}(6; 0.6) + b_{10}(7; 0.6)$$

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^k (1 - 0.6)^{10 - k} \qquad (k = 0, 1, ..., 10)$$

$$(k = 0, 1, ..., 10)$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{s_{10}}{10} \le 0.6 + 0.1\} = \mathbf{P}\{5 \le s_{10} \le 7\}$$

$$= b_{10}(5; 0.6) + b_{10}(6; 0.6) + b_{10}(7; 0.6)$$

$$= 0.201 + 0.251 + 0.215 = 0.667$$

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^k (1 - 0.6)^{10 - k} \qquad (k = 0, 1, ..., 10)$$

$$(k = 0, 1, ..., 10)$$

$$\mathbf{P}\{0.6 - \mathbf{0.1} \le \frac{S_{10}}{10} \le 0.6 + \mathbf{0.1}\} = \mathbf{P}\{5 \le S_{10} \le 7\}$$

$$= b_{10}(5; 0.6) + b_{10}(6; 0.6) + b_{10}(7; 0.6)$$

$$= 0.201 + 0.251 + 0.215 = 0.667$$

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^k (1 - 0.6)^{10 - k} \qquad (k = 0, 1, \dots, 10)$$

$$(k = 0, 1, ..., 10)$$

P{0.6 - 0.1
$$\leq \frac{S_{10}}{10} \leq 0.6 + 0.1$$
} = P{5 $\leq S_{10} \leq 7$ }
= $b_{10}(5; 0.6) + b_{10}(6; 0.6) + b_{10}(7; 0.6)$
= 0.201 + 0.251 + 0.215 = 0.667
confidence

$$\mathbf{P}\{S_{10} = k\} = b_{10}(k; 0.6) := {10 \choose k} 0.6^k (1 - 0.6)^{10 - k} \qquad (k = 0, 1, \dots, 10)$$

$$(k = 0, 1, ..., 10)$$

P{0.6 - 0.1
$$\leq \frac{S_{10}}{10} \leq 0.6 + 0.1$$
} = P{5 $\leq S_{10} \leq 7$ }
= $b_{10}(5; 0.6) + b_{10}(6; 0.6) + b_{10}(7; 0.6)$
= 0.201 + 0.251 + 0.215 = 0.667
confidence

For a given error, how does the confidence vary with the sample size n?

$$\mathbf{P}\{S_n = k\} = b_n(k; 0.6) := \binom{n}{k} 0.6^k (1 - 0.6)^{n-k} \qquad (k = 0, 1, ..., n)$$

$$\mathbf{P}\{S_n = k\} = b_n(k; 0.6) := \binom{n}{k} 0.6^k (1 - 0.6)^{n-k} \qquad (k = 0, 1, \dots, n)$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{s_{10}}{10} \le 0.6 + 0.1\} = b_{10}(5; 0.6) + b_{10}(6; 0.6) + b_{10}(7; 0.6)$$

$$\mathbf{P}\{S_n = k\} = b_n(k; 0.6) := \binom{n}{k} 0.6^k (1 - 0.6)^{n-k} \qquad (k = 0, 1, \dots, n)$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{s_{10}}{10} \le 0.6 + 0.1\} = b_{10}(5; 0.6) + b_{10}(6; 0.6) + b_{10}(7; 0.6)$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{s_{50}}{50} \le 0.6 + 0.1\} = b_{50}(25; 0.6) + b_{50}(26; 0.6) + \dots + b_{50}(35; 0.6)$$

$$\mathbf{P}\{S_n = k\} = b_n(k; 0.6) := \binom{n}{k} 0.6^k (1 - 0.6)^{n-k} \qquad (k = 0, 1, ..., n)$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{S_{10}}{10} \le 0.6 + 0.1\} = b_{10}(5; 0.6) + b_{10}(6; 0.6) + b_{10}(7; 0.6)$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{s_{50}}{50} \le 0.6 + 0.1\} = b_{50}(25; 0.6) + b_{50}(26; 0.6) + \dots + b_{50}(35; 0.6)$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{s_{100}}{100} \le 0.6 + 0.1\} = b_{100}(50; 0.6) + b_{100}(51; 0.6) + \dots + b_{100}(70; 0.6)$$

$$\mathbf{P}\{S_n = k\} = b_n(k; 0.6) := \binom{n}{k} 0.6^k (1 - 0.6)^{n-k} \qquad (k = 0, 1, \dots, n)$$

error confidence
$$\mathbf{P}\{0.6-0.1 \leq \frac{S_{10}}{10} \leq 0.6+0.1\} = b_{10}(5;0.6) + b_{10}(6;0.6) + b_{10}(7;0.6) = 0.667$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{s_{50}}{50} \le 0.6 + 0.1\} = b_{50}(25; 0.6) + b_{50}(26; 0.6) + \dots + b_{50}(35; 0.6) = 0.889$$

$$\mathbf{P}\{0.6 - 0.1 \le \frac{s_{100}}{100} \le 0.6 + 0.1\} = b_{100}(50; 0.6) + b_{100}(51; 0.6) + \dots + b_{100}(70; 0.6) = 0.968$$