

Vekstfart

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

- 1 Vekstfart
 - Gjennomsnittlig vekstfart
 - Momentan vekstfart

2 Derivasjon

3 Potensfunksjoner og rotfunksjoner

Gjennomsnittlig vekstfart

Vekst i periode

- Når grafen ikke er en linje, gir ikke stigningstall mening.
- Men vi kan finne gjennomsnittlig stigning mellom to punkt.
- Vi bruker samme formel som før:

$$\frac{\Delta y}{\Delta x}$$

I eksempelet er den gjennomsnittlige vekstfarten fra x = -1 til x = 1 gitt ved

$$\frac{\Delta y}{\Delta x} = \frac{2-1}{1-(-1)} = \frac{1}{2}.$$

Formel for gjennomsnittlig vekstfart

Stigningstallet til linja gjennom punktene (x_1, y_1) og (x_2, y_2) er

$$a=\frac{y_2-y_1}{x_2-x_1}.$$

- Når vi skal finne gjennomsnittlig vekstfart er punktene på grafen.
- Det betyr at $y_1 = f(x_1)$ og $y_2 = f(x_2)$.
- Formel for gjennomsnittlig vekstfart mellom $x = x_1$ og $x = x_2$ blir derfor

$$a=\frac{f(x_2)-f(x_1)}{x_2-x_1}.$$

Momentan vekstfart

Vekstfart i et punkt

- Vi er sjeldent interessert i stigningen over tid.
- Vi vil vite hva stigningen er nå.
- Vi finner den ved å ta et lite steg til siden.
- I tegningen til venstre prøver vi å finne vekstfarten når x = 1.
- Vi går et lite steg, $\Delta x = 0.1$ til siden, og får

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{f(1.1) - f(1)}{0.1}.$$

- Dette tilnærmer den momentane vekstfarten.
- Jo mindre Δx er, jo bedre blir tilnærmingen.

Tilnærming til momentan vekstfart

Oppgave

Høyden til en stein som kastes er gitt ved $h(t) = -5t^2 + 20t$. Finn farten etter ett sekund.

■ Vi vil finne hvor fort grafen vokser når t = 1. Vi vil derfor regne ut

$$\frac{h(t+\Delta t)-h(t)}{\Delta t}$$

når t = 1 og Δt er liten.

■ Vi velger $\Delta t = 0.01$ og får:

$$\frac{h(1,01) - h(1)}{0.01} = \frac{15,0995 - 15}{0.01} = \frac{0,0995}{0.01} = 9,95.$$

Tilnærming til momentan vekstfart

- Vi fant på forrige side en tilnærming til farten.
- Vi brukte $\Delta t = 0.01$.
- Hvis vi bruker andre verdier for Δt , får vi litt andre svar

$$\Delta t = 0.1 \implies \frac{\Delta h}{\Delta t} = 9.5$$
 $\Delta t = -0.1 \implies \frac{\Delta h}{\Delta t} = 10.5$ $\Delta t = 0.01 \implies \frac{\Delta h}{\Delta t} = 9.95$ $\Delta t = -0.01 \implies \frac{\Delta h}{\Delta t} = 10.05$ $\Delta t = 0.001 \implies \frac{\Delta h}{\Delta t} = 9.995$ $\Delta t = -0.001 \implies \frac{\Delta h}{\Delta t} = 10.005$

- Vi ser at vi nærmer oss 10 når Δt går mot 0.
- Vi har derfor at $\lim_{\Delta t \to 0} \frac{h(1+\Delta t)-h(1)}{\Delta t} = 10$.

Momentan vekstfart og derivert

- Vi har sett at vi kan få den momentane vekstfarten ved å regne ut en grense.
- Vi har at den momentane vekstfarten til f(x) når x = a er gitt ved

$$\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}.$$

- Vi kan lage oss en ny funksjon som gir ut vekstfarten for alle *x*-verdier.
- Denne funksjonen kaller vi den deriverte til f(x), og vi skriver f'(x).
- Vi har

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Deriverte, eksempel

Oppgave

Finn den deriverte til $f(x) = x^3 - 2$.

Vi får:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^3 - 2 - (x^3 - 2)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^3 + 3x^2 \Delta x + 3x(\Delta x)^2 + (\Delta x)^3 - 2 - x^3 + 2}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\Delta x (3x^2 + 3x\Delta x + (\Delta x)^2)}{\Delta x} = \lim_{\Delta x \to 0} 3x^2 + 3x\Delta x + (\Delta x)^2$$

$$= 3x^2 + 3 \cdot 0 + 0^2 = 3x^2.$$

$$f'(x) = 3x^2.$$

Deriverte uten funksjonsnavn

- Vi fant at $f'(x) = 3x^2$ når $f(x) = x^3 2$.
- Vi kan også skrive dette som $(x^3 2)' = 3x^2$.
- Dette gjør at vi ikke trenger å gi navn til en funksjon for å skrive ned den deriverte.
- Vi kan for eksempel skrive $(2x^2 x)' = 4x 1$.
- Vi slapp å skrive «Dersom $f(x) = 2x^2 x$ blir f'(x) = 4x 1.»
- Om vi har et uttrykk som y = 3x + 2 vil vi også skrive y' for «Den deriverte til funksjonen f(x) = 3x + 2.»
- Vi kan derfor skrive «Om $y = x^3 2$ er $y' = 3x^2$.»

Andre symboler for deriverte

Det er mange måter å skrive deriverte på.

- Den vanligste måten er å skrive den deriverte som f'(x).
- Det er også vanlig å skrive $\frac{df}{dx}$.
 - Denne skrivemåten minner oss om definisjonen, $\lim_{\Delta x \to 0} \frac{\Delta t}{\Delta x}$.
 - Den har også andre fordeler når vi kommer til integrasjon.
- I fysikk skriver man tidsderiverte, f'(t), som \dot{f} . Dette var notasjonen Newton brukte.
- I senere mattekurs skal vi også skrive f_x for f'(x). Dette brukes mest når funksjonen har flere variable.
- Noen skriver også bare en D foran, D f.

Vi kommer til å bruke de to første måtene i dette kurset.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET