Reinforcement learning

Dr. Aissa Boulmerka

The National School of Artificial Intelligence aissa.boulmerka@ensia.edu.dz

2024-2025

Chapter 3 Finite Markov Decision Processes

Outline

- Markov Decision Processes
- Bellman Equation
- Bellman's Optimality equations

Markov Decision Processes

Introduction

The dynamics of MDP

$$p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \to [0,1]$$

$$\sum_{s' \in \mathcal{S}} \sum_{r \in \mathcal{R}} p(s', r | s, a) = 1, \forall s \in \mathcal{S}, a \in \mathcal{A}(s)$$

The present state contains all the information necessary to predict the future

Example 1: Recycling robot

Example1: Recycling robot

		,		
s	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	$r_{\mathtt{search}}$
high	search	low	$1-\alpha$	$r_{\mathtt{search}}$
low	search	high	$1-\beta$	-3
low	search	low	β	$r_{\mathtt{search}}$
high	wait	high	1	$r_{\mathtt{Wait}}$
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	$r_{\mathtt{Wait}}$
low	recharge	high	1	0
low	recharge	low	0	-

Generalization of MDP formalism

 The MDP framework can be used to formalize a wide variety of sequential decision-making problems, in many different ways.

States:

- States can be low-level sensory readings, for example, in the pixel values of the video frame.
- They can also be high-level such as object descriptions.

Actions:

- Actions can be low-level, such as the wheel speed of this robot.
- Actions can also be high-level, such as go to the charging station.

Time-steps:

 Time-steps can be very small or very large. For example, they can be one millisecond or one month.

Example 2: Robot arm in a pick-and-place task

Task: The goal of the robot is to pick-and-place objects.

There are many ways to formalize this task:

State: The state could be the readings of the joint angles and velocities.

Action: the amount of voltage applied to each

motor.

Reward: +100 for successfully placing each object.

-1 for each unit of energy consumed.

Goal of an agent: formal definition

- In RL, the goal of the agent is to maximize future reward.
- Formally, the return at time step t, is simply the sum of rewards obtained after time step t. We denote the return with the G_t .

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$

- The return is a random variable because the dynamics of the MDP can be stochastic.
- In general, many different trajectories from the same state are possible.
 This is why we maximize the expected return.
- For this to be well-defined, the sum of rewards must be finite.

$$\mathbb{E}(G_t) = \mathbb{E}[R_{t+1} + R_{t+2} + R_{t+3} + \dots R_T]$$

Episodic task

Episodic and continuing tasks

Episodic task

- Interaction breaks naturally into episodes
- Each episode ends in a terminal state
- Episodes are independent

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \cdots R_T$$

Continuing task

- Interaction goes on continually
- No terminal state

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \cdots$$
$$= \infty?$$

⇒ Discounting

Discounting

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \cdots + R_{t+k} + \cdots$$

How to make sure G_t is **finite**?

Discount the rewards in the future by γ where $0 < \gamma < 1$

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \gamma^{k-1} R_{t+k} + \cdots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

where γ is a parameter, $0 < \gamma < 1$, called the **discount rate**.

Effect of γ on agent behavior

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots \gamma^{k-1} R_{t+k} + \cdots$$

- The **discount rate** γ determines the present value of future rewards: a reward received k time steps in the future is worth only γ^{k-1} times what it would be worth if it were received immediately.
 - $\gamma < 1$, the infinite sum has a finite value as long as the reward sequence $\{R_k\}$ is bounded.
 - $\gamma = 0$, in this case, the agent is concerned only with maximizing immediate rewards. The agent is called **Short-sighted agent.**
 - $\gamma \to 1$, the return objective takes future rewards into account more strongly. The agent becomes Far-sighted agent.

Recursive nature of returns

 Returns at successive time steps are related to each other in a way that is important for the theory and algorithms of reinforcement learning:

$$G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$G_{t} = R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots)$$

$$G_{t} = R_{t+1} + \gamma G_{t+1}$$

- Although the return is a sum of an infinite number of terms, it is still finite if the reward is nonzero and constant.
- **Example:** if $\gamma < 1$, if the reward is a constant +1, then the return is:

$$G_t = \sum_{k=0}^{\infty} \gamma^k = \frac{1}{1 - \gamma}.$$

Examples of episodic and continuing tasks

Pole-Balancing:

The goal is to move a cart along a track to **keep a hinged pole from falling**, also known as the inverted pendulum problem.

- It can be seen as an episodic task, where each attempt to balance the pole is an episode.
- A reward of +1 can be given for each time step without failure, with the total reward being the number of steps before failure.
- Alternatively, it can be treated as a continuous task using discounting.

Deterministic policy notation

 A policy is a mapping from states to probabilities of selecting each possible action.

State	Action	
s_0	a_1	
s_1	a_0	
s_2	a_0	

Example of deterministic policy

Stochastic policy

- If the agent is following a stochastic policy π at time t, then $\pi(a|s)$ is the **probability** that $A_t = a$ if $S_t = s$.
- Note that $\sum_{a \in \mathcal{A}(s)} \pi(a|s) = 1$ and $\pi(a|s) \leq 1$.

Example of stochastic policy

Value Functions

- The value function of a state s under a policy π , denoted $v_{\pi}(s)$, is the expected return when starting in s and following the policy π .
- For MDPs, we can define v_{π} formally by

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s\right], \quad \text{for all } s \in \mathcal{S}$$

- Note that the value of the terminal state, if any, is always zero. We call the function v_{π} the **state-value function for policy** π .
- Similarly, the value of taking action a in state s under a policy $\pi:q_{\pi}(s,a)$, is the expected return starting from s, taking the action a, and following policy π :

$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right].$$

• We call $q_{\pi}(s, a)$ the action-value function for policy π .

Value function predict rewards into the future

Bellman Equation

State-value Bellman equation

- A fundamental property of value functions used throughout reinforcement learning and dynamic programming is that they satisfy recursive relationships.
- For any policy π and any state s, the following consistency condition holds between the value of s and the value of its possible successor states:

$$\begin{split} v_{\pi}(s) &\; \doteq \mathbb{E}_{\pi}[G_{t} | \, S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_{t} = s] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) \big[r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s'] \big] \\ &= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[r + \gamma v_{\pi}(s') \big], \quad \text{for all } s \in \mathcal{S} \end{split}$$

- This equation is the **Bellman equation** for v_{π} .
- It expresses a relationship between the value of a state and the values of its successor states.

Action-value Bellman equation

- A similar equation for the action-value function.
- It will be a recursive equation for the value of a state action pair in terms of its possible successors state action pairs.

$$\begin{aligned} \mathbf{q}_{\pi}(s, a) &\doteq \mathbb{E}_{\pi}[G_{t} | S_{t} = s, \mathbf{A}_{t} = a] \\ &= \sum_{s'} \sum_{r} p(s', r | s, a) \big[r + \gamma \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s'] \big] \\ &= \sum_{s'} \sum_{r} p(s', r | s, a) \left[r + \gamma \sum_{a'} \pi(a' | s') \mathbb{E}_{\pi}[G_{t+1} | S_{t+1} = s', \mathbf{A}_{t+1} = a'] \right] \\ &= \sum_{s'} \sum_{r} p(s', r | s, a) \left[r + \gamma \sum_{a'} \pi(a' | s') \mathbf{q}_{\pi}(s', a') \right] \end{aligned}$$

- This equation is the Bellman equation for the action-value function $q_{\pi}(s,a)$.
- Similar to state-value function, this equation provide relationships between the state-action pair and the possible future state-action pairs.

$$\gamma = 0.7$$

$$\gamma = 0.7$$

$$V_{\pi}(A) \doteq \mathbb{E}_{\pi}[G_t | S_t = A]$$

$$V_{\pi}(B) \doteq \mathbb{E}_{\pi}[G_t | S_t = B]$$

$$V_{\pi}(C) \doteq \mathbb{E}_{\pi}[G_t | S_t = C]$$

$$V_{\pi}(D) \doteq \mathbb{E}_{\pi}[G_t | S_t = D]$$

$$\gamma = 0.7$$

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

$$V_{\pi}(A) = \frac{1}{4} \left(5 + 0.7 V_{\pi}(B) \right) + \frac{1}{4} 0.7 V_{\pi}(C) + \frac{1}{2} 0.7 V_{\pi}(A)$$

$$V_{\pi}(B) = \frac{1}{2} \left(5 + 0.7 V_{\pi}(B) \right) + \frac{1}{4} 0.7 V_{\pi}(A) + \frac{1}{4} 0.7 V_{\pi}(D)$$

$$V_{\pi}(C) = \frac{1}{4} 0.7 V_{\pi}(A) + \frac{1}{4} 0.7 V_{\pi}(D) + \frac{1}{2} 0.7 V_{\pi}(C)$$

$$V_{\pi}(D) = \frac{1}{4} \left(5 + 0.7 V_{\pi}(B) \right) + \frac{1}{4} 0.7 V_{\pi}(C) + \frac{1}{2} 0.7 V_{\pi}(D)$$

A system of for equations for 4 variables that can be solved by hand or by an automatic equation solver.

$$\gamma = 0.7$$

$$V_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

$$V_{\pi}(A) = 4.2$$

$$V_{\pi}(B) = 6.1$$

$$V_{\pi}(C) = 2.2$$

$$V_{\pi}(D) = 4.2$$

We can only directly solve small MDPs

- We can use Bellman Equations to solve for a value function by writing a system of linear equations.
- We can only solve small MDPs directly, but Bellman Equations will factor into solutions we see later for large MDPs.

Optimal Policies

• A policy π_1 is defined to be **better than or equal** to a policy π_2 if its **expected return** is greater than or equal to that of π_2 for all states. In other words, $\pi_1 \geq \pi_2$ if $v_{\pi_1}(s) \geq v_{\pi_2}(s)$, $\forall s \in \mathcal{S}$.

Theorem

For any Markov Decision Process

lacktriangle There exists an optimal policy $oldsymbol{\pi}_*$ that is better than or equal to all other policies,

$$\pi_* \geq \pi, \forall \pi$$

All optimal policies achieve the optimal value function,

$$v_{\pi_*}(s) = v_*(s)$$

All optimal policies achieve the optimal action-value function,

$$q_{\pi_*}(s,a)=q_*(s,a)$$

Example

$$\pi_1(X) = A_1 \quad \pi_2(X) = A_2$$

What is the optimal policy?

$$y = 0$$

$$v_{\pi_1}(X) = 1$$

$$v_{\pi_2}(X) = 0$$

$$\gamma = 0.9$$

$$v_{\pi_1}(X) = 1 + 0.9 \times 0 + 0.9^2 \times 1 + \dots = \sum_{k=0}^{\infty} (0.9)^{2k} = \frac{1}{1 - 0.9^2} \approx 5.3$$

$$v_{\pi_2}(X) = 0 + 0.9 \times 2 + 0.9^2 \times 0 + \dots = \sum_{k=0}^{\infty} (0.9)^{2k+1} * 2 = \frac{0.9}{1 - 0.9^2} * 2 \approx 9.5$$

We can only directly solve small MDPs

- In general it is not possible to implement this solution **exactly**. Even if we limit ourselves to deterministic policies, the number of possible policies is $|\mathcal{A}|^{|\mathcal{S}|}$.
- We can use a brute force search to compute the value function for every policy to find the optimal policy ⇒ intractable for even moderately large MDPs.
- Fortunately, there's a better way to organize the search of the policy space.
- The solution will come in the form of yet another set of Bellman equations, called the Bellman's Optimality equations. We consider a variety of such methods in the following chapters.

Bellman's Optimality Equations

Optimal value functions

Recall that

$$\pi_1 \geq \pi_2$$
 if and only if $v_{\pi_1}(s) \geq v_{\pi_2}(s)$ for all $s \in \mathcal{S}$

$$\boldsymbol{\mathcal{V}}_*$$
 $v_{\pi_*}(s) \doteq \mathbb{E}_{\pi_*}[G_t|S_t = s] = \max_{\pi} v_{\pi}(s)$ for all $s \in \mathcal{S}$

$$q_*$$
 $q_{\pi_*}(s,a) = \max_{\pi} q_{\pi}(s,a)$ for all $s \in \mathcal{S}$ and $a \in \mathcal{A}$

Optimal value functions

Recall that

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

$$v_*(s) = \sum_a \pi_*(a|s) \sum_{s'} \sum_r p(s',r|s,a) [r + \gamma v_*(s')]$$

$$v_*(s) = \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma v_*(s')]$$

Bellman Optimality Equation for v_*

Optimal value functions

Recall that

$$q_{\pi}(s, a) = \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma \sum_{a'} \pi(a'|s') \, q_{\pi}(s', a') \right]$$

$$q_{*}(s,a) = \sum_{s'} \sum_{r} p(s',r|s,a) \left[r + \gamma \sum_{a'} \pi_{*}(a'|s') \, q_{\pi}(s',a') \right]$$

$$q_{*}(s,a) = \sum_{s'} \sum_{r} p(s',r|s,a) \left[r + \gamma \max_{a'} q_{*}(s',a') \right]$$

$$\mathbf{q}_*(s,a) = \sum_{s'} \sum_{r} p(s',r|s,a) \left[r + \gamma \max_{a'} \mathbf{q}_*(s',a')\right]$$

Bellman Optimality Equation for q_*

Finding an Optimal Policy

• An optimal policy can be found by maximizing over $v_*(s)$

$$\pi_*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma v_*(s')]$$

• Similarly, it can be found by maximizing over $q_*(s, a)$

$$\pi_*(s) = \operatorname*{argmax}_{a} q_*(s, a)$$

Example: Solving the Gridworld

- Suppose we solve the **Bellman optimality equation** for v_* for the Gridworld.
- State A is followed by a reward of +10 and transition to state A', while state B is followed by a reward of +5 and transition to state B' and supposing $\gamma = 0.9$
- The optimal policy π_* can be found using the Bellman optimality equation :

Note: there are multiple arrows in a cell, all of the corresponding actions are optimal.

Solving the optimal value functions

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s',r|s,a)[r + \gamma v_{\pi}(s')]$$

$$\pi, p, \gamma \longrightarrow \text{Linear System Solver} \qquad v_{\pi}$$

Bellman Optimality Equation is non-linear

Non linear
$$\mathbf{v}_*(s) = \max_{a} \sum_{s'} \sum_{r} p(s', r|s, a) [r + \gamma \mathbf{v}_*(s')]$$

- No closed (exact) form solution (in general).
- Many iterative solution methods such as: Value Iteration, Policy Iteration,
 Q-learning, Sarsa etc.

Thank you! Q/A