CWE: An Outsider's Perspective (or: a Retrospective on the new Microarchitectural Weaknesses)

Scott Constable (Intel Labs)

HW CWE SIG Meeting 2024-03-08

Outline

- Recap of microarchitectural weaknesses before CWE 4.14
- Timeline of the new microarchitectural weakness proposal
- Overview the new weaknesses, with an example
- Clarify nuances

CVEID: CVE-2021-0089

Description: Observable response discrepancy in some Intel(R) Processors may allow an authorized user to potentially enable information disclosure via local access.

CVSS Base Score: 6.5 Medium

CVSS Vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N

Source: <u>INTEL-SA-00516</u>

CVEID: CVE-2021-0089

Description: Observable response discrepancy in some Intel(R) Processors may allow an authorized user to potentially enable information disclosure via local access.

CVSS Base Score: 6.5 Medium

CVSS Vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N

Source: INTEL-SA-00516

Overview

An in-domain transient execution attack methodology known as Speculative Code Store Bypass (SCSB) may allow data values to be inferred during the transient execution of self-modifying code (SMC) on some Intel processors. SCSB has been assigned CVE-2021-0089 with a base score of CVSS 6.5 CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N. Refer to the Affected Processors table for a list of processors affected by SCSB.

Source: <u>Speculative Code Store Bypass (intel.com)</u>

Source: <u>CWE - CWE-204</u>: <u>Observable Response Discrepancy (4.14) (mitre.org)</u>

CWE	Title	Description
1037	Processor Optimization Removal or Modification of Security-critical Code	The developer builds a security-critical protection mechanism into the software, but the processor optimizes the execution of the program such that the mechanism is removed or modified.
<u>1264</u>	Hardware Logic with Insecure De- Synchronization between Control and Data Channels	The hardware logic for error handling and security checks can incorrectly forward data before the security check is complete.
<u>1303</u>	Non-Transparent Sharing of Microarchitectural Resources	Hardware resources shared across execution contexts (e.g., caches and branch predictors) can violate the expected architecture isolation between contexts.
<u>1342</u>	Information Exposure through Microarchitectural State after Transient Execution	The processor does not properly clear microarchitectural state after incorrect microcode assists or speculative execution, resulting in transient execution.

CWE	Title	Description
1027	Processor Optimization Removal or Modification of Security-critical Code CWE-1037 isn't relevant. There isn't any particular software protection mechanism that is bypassed by SCSB	The developer builds a security-critical protection mechanism into the software, but the processor optimizes the execution of the program such that the mechanism is removed or modified.
<u>1264</u>		The hardware logic for error handling and security checks can incorrectly forward data before the security check is complete.
<u>1303</u>	wherearenteetarar Nesources	Hardware resources shared across execution contexts (e.g., caches and branch predictors) can violate the expected architecture isolation between contexts.
<u>1342</u>	Information Exposure through Microarchitectural State after Transient Execution	The processor does not properly clear microarchitectural state after incorrect microcode assists or speculative execution, resulting in transient execution.

CWE	Title	Description
<u>1037</u>	Processor Optimization Removal or Modification of Security-critical Code CWE-1264 isn't relevant. An SMC	The developer builds a security-critical protection mechanism into the software, but the processor optimizes the execution of the program such that the mechanism is removed or modified.
<u>12</u> 6	machine clear doesn't involve error handling or security checks.	The hardware logic for error handling and security checks can incorrectly forward data before the security check is complete.
<u>1303</u>	Iviici our critteeturur Nesources	Hardware resources shared across execution contexts (e.g., caches and branch predictors) can violate the expected architecture isolation between contexts.
<u>1342</u>	Information Exposure through Microarchitectural State after Transient Execution	The processor does not properly clear microarchitectural state after incorrect microcode assists or speculative execution, resulting in transient execution.

	CWE	Title	Description
1037	<u>1037</u>	Processor Optimization Removal or Modification of Security-critical	The developer builds a security-critical protection mechanism into the software, but the processor optimizes the execution of the program such that the mechanism is removed or
		SCSB doesn't require shared	modified.
	<u>1264</u>	resources to exploit, for example it could potentially be exploited within a JIT runtime (within a single process) or remotely over a network.	The hardware logic for error handling and security checks can incorrectly forward data before the security check is complete.
	<u>1</u> 3		Hardware resources shared across execution contexts (e.g., caches and branch predictors) can violate the expected architecture isolation between contexts.
	<u>1342</u>	Information Exposure through Microarchitectural State after Transient Execution	The processor does not properly clear microarchitectural state after incorrect microcode assists or speculative execution, resulting in transient execution.

CWE	Title	Description
<u>1037</u>	Processor Optimization Removal or Modification of Security-critical Code Clearing microarchitectural state	The developer builds a security-critical protection mechanism into the software, but the processor optimizes the execution of the program such that the mechanism is removed or modified.
<u>1264</u>	before or after an SMC machine clear is impractical for many commodity processors	The hardware logic for error handling and security checks can incorrectly forward data before the security check is complete.
<u>1303</u>	wherearemeetaral nesources	Hardware resources shared across execution contexts (e.g., caches and branch predictors) can violate the expected architecture isolation between contexts.
1 4	Information Exposure through Microarchitectural State after Transient Execution	The processor does not properly clear microarchitectural state after incorrect microcode assists or speculative execution, resulting in transient execution.

• Oct. '21: Priya and Scott first discuss HW CWE challenges

- Oct. '21: Priya and Scott first discuss HW CWE challenges
- Apr. '22: Intel submits initial proposal for one new HW CWE

- Oct. '21: Priya and Scott first discuss HW CWE challenges
- Apr. '22: Intel submits initial proposal for one new HW CWE
- Sep. '22: First discussion in the CWE HW SIG; decision to expand the proposal into multiple new CWEs

- Oct. '21: Priya and Scott first discuss HW CWE challenges
- Apr. '22: Intel submits initial proposal for one new HW CWE
- Sep. '22: First discussion in the CWE HW SIG; decision to expand the proposal into multiple new CWEs
- Oct. '22: New CWE hierarchy presented and discussed in HW SIG

• Oct. '21: Priya a

• Apr. '22: Intel su

 Sep. '22: Tirst di proposal into m

• Oct. '22: New C

New Sketch with Four CWEs

CWE B: Sharing of predictor state

- BTI (Spectre v2)
- BHI

CWE C: Behavior arising from same-domain predictor training

- Spectre v1
- IMBTI
- SSB (Spectre v4)

8

- Oct. '21: Priya and Scott first discuss HW CWE challenges
- Apr. '22: Intel submits initial proposal for one new HW CWE
- Sep. '22: First discussion in the CWE HW SIG; decision to expand the proposal into multiple new CWEs
- Oct. '22: New CWE hierarchy presented and discussed in HW SIG
- Dec. '22: Intel submits draft documentation for four new CWEs

- Oct. '21: Priya a
- Apr. '22: Intel s
- Sep. '22: First oproposal into p
- Oct. '21: New (
- Dec. '22: Intel s

New Sketch with Four CWEs

CWE B: Sharing of predictor state

• BTI (Spectre v2)

CWE C: Behavior arising from same-domain predictor training

- Spectre v1
- IMBTI
- SSB (Spectre v4)

8

- Oct. '21: Priya and Scott first discuss HW CWE challenges
- Apr. '22: Intel submits initial proposal for one new HW CWE
- Sep. '22: First discussion in the CWE HW SIG; decision to expand the proposal into multiple new CWEs
- Oct. '22: New CWE hierarchy presented and discussed in HW SIG
- Dec. '22: Intel submits draft documentation for four new CWEs
- Jan.-Sep. '23: Collaborative effort to refine proposal

- Oct. '21: Priya and Scott first discuss HW CWE challenges
- Apr. '22: Intel submits initial proposal for one new HW CWE
- Sep. '22: First discussion in the CWE HW SIG; decision to expand the proposal into multiple new CWEs
- Oct. '22: New CWE hierarchy presented and discussed in HW SIG
- Dec. '22: Intel submits draft documentation for four new CWEs
- Jan.-Sep. '23: Collaborative effort to refine proposal
- Oct. '23: MITRE formally accepts the proposal outline

- Oct. '21: Priya and Scott first discuss HW CWE challenges
- Apr. '22: Intel submits initial proposal for one new HW CWE
- Sep. '22: First discussion in the CWE HW SIG; decision to expand the proposal into multiple new CWEs
- Oct. '22: New CWE hierarchy presented and discussed in HW SIG
- Dec. '22: Intel submits draft documentation for four new CWEs
- Jan.-Sep. '23: Collaborative effort to refine proposal
- Oct. '23: MITRE formally accepts the proposal outline
- Feb. '23: Four new CWEs incorporated into CWE 4.14

CWE	Title	Description
1420	Exposure of Sensitive Information during Transient Execution	A processor event or prediction may allow incorrect operations (or correct operations with incorrect data) to execute transiently, potentially exposing data over a covert channel.
<u>1421</u>	Exposure of Sensitive Information in Shared Microarchitectural Resource during Transient Execution	A processor event may allow transient operations to access architecturally restricted data (for example, in another address space) in a shared microarchitectural resource (for example, a CPU cache), potentially exposing the data over a covert channel.
1422	Exposure of Sensitive Information caused by Incorrect Data Forwarding during Transient Execution	A processor event or prediction may allow incorrect or stale data to be forwarded to transient operations, potentially exposing data over a covert channel.
1423	Exposure of Sensitive Information caused by Shared Microarchitectural Predictor State that influences Transient Execution	Shared microarchitectural predictor state may allow code to influence transient execution across a hardware boundary, potentially exposing data that is accessible beyond the boundary over a covert channel.

CWE	Title	Description
1420	Exposure of Sensitive Information during Transient Execution	A <u>processor event or prediction</u> may allow <u>incorrect</u> <u>operations</u> (or correct operations with incorrect data) to execute transiently, potentially exposing <u>data</u> over a covert channel.
<u>1421</u>	Exposure of Sensitive Information in Shared Microarchitectural Resource during Transient Execution	A <u>processor event</u> may allow <u>transient operations</u> to access <u>architecturally restricted data</u> (for example, in another address space) in a <u>shared microarchitectural resource</u> (for example, a CPU cache), potentially exposing the data over a covert channel.
1422	Exposure of Sensitive Information caused by Incorrect Data Forwarding during Transient Execution	A <u>processor event or prediction</u> may allow <u>incorrect or stale</u> <u>data</u> to be forwarded to <u>transient operations</u> , potentially exposing <u>data</u> over a covert channel.
<u>1423</u>	Exposure of Sensitive Information caused by Shared Microarchitectural Predictor State that influences Transient Execution	Shared <u>microarchitectural predictor state</u> may allow <u>code</u> to influence transient execution across a <u>hardware boundary</u> , potentially exposing <u>data</u> that is accessible beyond the <u>boundary</u> over a covert channel.

CWE	Title	Description
1420	Exposure of Sensitive Information during Transient Execution	A <u>processor event or prediction</u> may allow <u>incorrect</u> <u>operations</u> (or correct operations with incorrect data) to execute transiently, potentially exposing <u>data</u> over a covert channel.
<u>1421</u>	Exposure of Sensitive Information in Shared Microarchitectural Resource during Transient Execution	A <u>processor event</u> may allow <u>transient operations</u> to access <u>architecturally restricted data</u> (for example, in another address space) in a <u>shared microarchitectural resource</u> (for example, a CPU cache), potentially exposing the data over a covert channel.
1422	Exposure of Sensitive Information caused by Incorrect Data Forwarding during Transient Execution	A <u>processor event or prediction</u> may allow <u>incorrect or stale</u> <u>data</u> to be forwarded to <u>transient operations</u> , potentially exposing <u>data</u> over a covert channel.
1423	Exposure of Sensitive Information caused by Shared Microarchitectural Predictor State that influences Transient Execution	Shared <u>microarchitectural predictor state</u> may allow <u>code</u> to influence transient execution across a <u>hardware boundary</u> , potentially exposing <u>data</u> that is accessible beyond the <u>boundary</u> over a covert channel.

"Speculative Code Store Bypass (SCSB) may allow data values to be inferred during the transient execution of self-modifying code (SMC)" Source: Speculative Code Store Bypass (intel.com)

CWE	Title	Description
1420	Exposure of Sensitive Information during Transient Execution	A <u>processor event or prediction</u> may allow <u>incorrect</u> <u>operations</u> (or correct operations with incorrect data) to execute transiently, potentially exposing <u>data</u> over a covert channel.

New Description:

Reminder – Original Description:

CVEID: CVE-2021-0089

Description: Observable response discrepancy in some Intel(R) Processors may allow an authorized user to potentially enable information disclosure via local access.

CVSS Base Score: 6.5 Medium

CVSS Vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N

"Speculative Code Store Bypass (SCSB) may allow data values to be inferred during the transient execution of self-modifying code (SMC)" Source: Speculative Code Store Bypass (intel.com)

CWE	Title	Description
1420	Exposure of Sensitive Information during Transient Execution	A <u>processor event or prediction</u> may allow <u>incorrect</u> <u>operations</u> (or correct operations with incorrect data) to execute transiently, potentially exposing <u>data</u> over a covert channel.

New Description: A machine clear triggered by self-modifying code

Reminder – Original Description:

CVEID: CVE-2021-0089

Description: Observable response discrepancy in some Intel(R) Processors may allow an authorized user to potentially enable information disclosure via local access.

CVSS Base Score: 6.5 Medium

CVSS Vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N

"Speculative Code Store Bypass (SCSB) may allow data values to be inferred during the transient execution of self-modifying code (SMC)" Source: Speculative Code Store Bypass (intel.com)

CWE	Title	Description
1420	Exposure of Sensitive Information during Transient Execution	A <u>processor event or prediction</u> may allow <u>incorrect</u> <u>operations</u> (or correct operations with incorrect data) to execute transiently, potentially exposing <u>data</u> over a covert channel.

New Description: A machine clear triggered by self-modifying code may allow incorrect operations to execute transiently,

Reminder – Original Description:

CVEID: CVE-2021-0089

Description: Observable response discrepancy in some Intel(R) Processors may allow an authorized user to potentially enable information disclosure via local access.

CVSS Base Score: 6.5 Medium

CVSS Vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N

"Speculative Code Store Bypass (SCSB) may allow data values to be inferred during the transient execution of self-modifying code (SMC)" Source: Speculative Code Store Bypass (intel.com)

CWE	Title	Description
1420	Exposure of Sensitive Information during Transient Execution	A <u>processor event or prediction</u> may allow <u>incorrect</u> <u>operations</u> (or correct operations with incorrect data) to execute transiently, potentially exposing <u>data</u> over a covert channel.

New Description: A machine clear triggered by self-modifying code may allow incorrect operations to execute transiently, potentially exposing data over a covert channel.

Reminder – Original Description:

CVEID: CVE-2021-0089

Description: Observable response discrepancy in some Intel(R) Processors may allow an authorized user to potentially enable information disclosure via local access.

CVSS Base Score: 6.5 Medium

CVSS Vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N

"Speculative Code Store Bypass (SCSB) may allow data values to be inferred during the transient execution of self-modifying code (SMC)" Source: Speculative Code Store Bypass (intel.com)

CWE	Title	Description
1420	Exposure of Sensitive Information during Transient Execution	A <u>processor event or prediction</u> may allow <u>incorrect</u> <u>operations</u> (or correct operations with incorrect data) to execute transiently, potentially exposing <u>data</u> over a covert channel.

New Description: A machine clear triggered by self-modifying code may allow incorrect operations to execute transiently, potentially exposing data over a covert channel.

Reminder – Original Description:

CVEID: CVE-2021-0089

Description: Observable response discrepancy in some Intel(R) Processors may allow an authorized user to potentially enable information disclosure via local access.

CVSS Base Score: 6.5 Medium

CVSS Vector: CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N

Microarchitectural Weakness Flowchart

Microarchitectural Weakness Flowchart

▼ Vulnerability Mapping Notes

Usage: ALLOWED (this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities

Comments:

Use only when the weakness arises from forwarding of incorrect/stale data, and the data is not architecturally restricted (that is, the forwarded data is accessible within the current processor context).

If a weakness arises from forwarding of incorrect/stale data that is not accessible within the current processor context, then CWE-1421 may be more appropriate for the mapping task.

Source: CWE-1422

Other Content in these CWEs

- Modes of introduction At what point in hardware design, system configuration, or software development (etc.) can these weaknesses potentially be introduced?
- Potential mitigations How can transient execution weaknesses be mitigated during hardware design and, for those that can't, how can they be mitigated by software techniques? The CWEs provide more than a dozen best-known methods, many of which are currently being used in the hardware industry and by software vendors.
- Detection methods How can transient execution weaknesses be detected in hardware designs, in post-silicon hardware samples, or in software programs?
- Demonstrative examples These brief expository examples are derived from real CVEs.
- Additional general information about each weakness and how certain hardware behaviors can contribute to the introduction of vulnerabilities.