# LEDruino



### Inhalt

| 1 | Einle | eitun | g                                                    | 4  |
|---|-------|-------|------------------------------------------------------|----|
|   | 1.1   | Abg   | renzungen                                            | 4  |
|   | 1.1.  | 1     | Genutzte Hilfsmittel für die Umsetzung des Projektes | 4  |
| 2 | Pflic | hten  | heft                                                 | 6  |
|   | 2.1   | Auft  | rag                                                  | 6  |
|   | 2.1.  | 1     | Projektgrobidee                                      | 6  |
|   | 2.2   | Tear  | m Organisation                                       | 6  |
|   | 2.2.  | 1     | Kriterien für das Endprodukt                         | 7  |
| 3 | Plan  | ung   |                                                      | 9  |
|   | 3.1   | Terr  | ninplanung                                           | 9  |
|   | 3.2   | Kon   | zept Endprodukt                                      | 10 |
|   | 3.2.  | 1     | Einfluss der Sensoren auf die WS2812 Matrix          | 10 |
|   | 3.2.  | 2     | Modi                                                 | 10 |
|   | 3.3   | Har   | dware                                                | 11 |
|   | 3.4   | Case  | 9                                                    | 11 |
|   | 3.5   | Elek  | tronisches Schema                                    | 12 |
|   | 3.6   | Cod   | e                                                    | 13 |
|   | 3.6.  | 1     | Coding Standards                                     | 13 |
|   | 3.6.  | 2     | Versionisierung                                      | 13 |
|   | 3.6.  | 3     | Module                                               |    |
|   | 3.6.  | 4     | Flussdiagramm                                        | 14 |
| 4 | Inbe  | trieb | onahme                                               | 15 |
|   | 4.1   | Cod   | e                                                    | 15 |
|   | 4.1.  | 1     | Ablauf der Umsetzung des Codes                       | 15 |
|   | 4.1.  | 2     | Genutzte Bibliotheken                                | 16 |
|   | 4.1.  | 3     | Aufbau der Module                                    | 16 |
|   | 4.1.4 | 4     | Funktionen                                           | 17 |
|   | 4.1.  | 5     | Besonderheiten im Code                               | 17 |
|   | 4.2   | Verl  | kabelung                                             |    |
|   | 4.2.: |       | Stromversorgung LED Matrix                           |    |
|   | 4.2.  | 2     | Implementierung der IR-Fernbedienung                 |    |
|   | 4.2.3 |       | Implementierung der Stromversorgung ohne USB-Kabel   |    |
|   | 4.2.4 |       | Flussdiagramme                                       |    |
| 5 |       |       |                                                      |    |
|   | 5.1   |       | protokoll                                            |    |
|   |       |       |                                                      |    |

|   | 5.2  | Soll-Ist vergleich | 23  |
|---|------|--------------------|-----|
| 6 | Anh  | ang                | .25 |
|   | 6.1  | Quellen            | .25 |
| 7 | Kurz | rfazit             | 25  |

# 1 Einleitung

Das vorliegende Projekt dient dazu, ein interaktives Kunstobjekt auf Basis eines Arduino-Systems zu entwickeln.

Ziel ist es, technische Kenntnisse in der Programmierung, Elektronik und Gestaltung zu kombinieren, um ein ästhetisches und funktionales Ergebnis zu schaffen, das auf Umweltreize reagiert. Die Arbeit verbindet Kreativität mit technischem Know-how und bietet die Möglichkeit, verschiedene Technologien praktisch anzuwenden.

### 1.1 Abgrenzungen

#### 1.1.1 Genutzte Hilfsmittel für die Umsetzung des Projektes

In diesem Abschnitt werden die unterstützenden Ressourcen und Werkzeuge aufgelistet, die während des Projekts genutzt wurden. Diese Hilfsmittel reichen von sozialen Kontakten und Experten bis hin zu digitalen Tools, die für die Konzeption, Umsetzung und Dokumentation hilfreich waren.

#### Soziale Kontakte

Soziale Kontakte spielen eine zentrale Rolle bei der Umsetzung technischer Projekte. Sie bieten Unterstützung und Wissen, das über die eigene Expertise hinausgeht. Für dieses Projekt wurden folgende Stakeholder konsultiert:

Bei Technischen Fragen werden folgende Steakholder konsultiert.

| Schwager                   | Elektrotechnik Bachelor            |
|----------------------------|------------------------------------|
|                            | Selbst erfahren in Bereich Arduino |
| Lehrer Fachliche Erfahrung |                                    |
|                            | Feedback zu Projektumsetzung       |

#### Internetressourcen

| YouTube                                    | Videos zur Klärung von Fragen und bestehende |
|--------------------------------------------|----------------------------------------------|
|                                            | Herangehensweisen                            |
| Weitere Webseiten wie GitHub für Tools und |                                              |
|                                            | Beispiele                                    |

#### Bestehendes Wissen

Dieser Punkt beschreibt das bereits vorhandene Wissen, das für das Projekt genutzt werden kann. Dazu zählen Programmierkenntnisse, Kenntnisse in Logik und Digitaltechnik sowie Grundlagen der 3D-Modellierung.

| Arduino Programmierung Grundwissen    | Gelernt im Unterricht, sehr grundsätzlich |  |
|---------------------------------------|-------------------------------------------|--|
| Grundwissen Logik und Digitaltechnik  | Aus Teko Unterricht                       |  |
| Programmierungswissen                 | Wissen in anderen Programmiersprachen     |  |
| Basiswissen 3D Modellierungsprogramme |                                           |  |

#### **LLMs**

Generative KI, insbesondere ChatGPT, wurde während des Projekts als Assistenztool in folgenden Bereichen genutzt:

- Beratung bei Textpassagen: Kleinere Textbausteine wurden übernommen
- **Technische Fragen:** Schnelle Klärung von Unsicherheiten in Elektronik, Arduino-Programmierung und Sensorik.
- Ideenfindung: Unterstützung bei den Realistischen Möglichkeiten eigener Ideen
- Codeentwicklung und Workflow:
  - Ideenfindung und erste Umsetzung: Gemeinsam mit ChatGPT wurden grundlegende Codeideen entwickelt und ein erstes funktionierendes Grundgerüst erstellt.
  - Iterative Anpassung: Der Code wurde schrittweise verbessert und neue
     Anforderungen oder Fehler wurden unmittelbar in die Weiterentwicklung integriert.
  - Fehleranalyse und Debugging: Bei auftretenden Problemen unterstützte ChatGPT durch gezielte Debugging-Hilfen und Optimierungsvorschläge.
  - Feinschliff und Validierung: Nach den Anpassungen wurde der Code final überprüft, um sicherzustellen, dass alle Funktionen wie geplant umgesetzt wurden.

Die Zusammenarbeit mit ChatGPT ermöglichte einen dynamischen Workflow, der sowohl Kreativität als auch technische Präzision förderte. Die menschliche Expertise blieb dabei entscheidend, insbesondere bei der praktischen Umsetzung und Validierung.

### 2 Pflichtenheft

### 2.1 Auftrag

Hier werden die grundlegenden Ziele, Anforderungen und Rahmenbedingungen des Projekts beschrieben. Hier wird geklärt, welche Absicht hinter dem Projekt steht und welche Ressourcen zur Verfügung stehen.

| Auftraggeber           | Auftragnehmer                            |  |
|------------------------|------------------------------------------|--|
| Teko – Christian Meier | Valentin Küng – Student HF Systemtechnik |  |

Durch Teko gegebene Vorgabe eines Projekts in der Mikrocomputertechnik zu machen. Was genau umgesetzt wird wurde nicht angegeben. Es soll sich im Rahmen der Mikrocomputertechnik befinden. Entsprechend wurden Vorschläge mit Arduino oder Raspberry Pi gemacht.

Die Vorgaben für die Dokumentation wurden in einer per Bewertungskriterien im Projekt umgesetzt.

#### 2.1.1 Projektgrobidee

In diesem Unterkapitel wird die Vision des Projekts beschrieben. Die Idee ist es, ein Kunstobjekt zu schaffen, das durch den Einsatz moderner Technologien die Umgebung interpretiert und darstellt. Die sensorische Interaktion bietet sowohl einen funktionalen als auch einen künstlerischen Mehrwert.

Der Auftrag wurde vom Studenten selbst definiert. Durch Recherche im Internet und eigene Interessebereiche wurde folgende Idee und ihre Definition gesetzt:

- Eine 16x16 LED-Matrix die Animiert wird durch einen Arduino
- Sensoren, die die Umgebung wahrnehmen und so die Animation bereitstellen
- Die LEDs sollen die Umgebung darstellen mit folgenden Eingängen
  - o Nähe einer Person oder eines Gegenstandes
  - Geräusche
  - o Wärme
  - o Helligkeit

### 2.2 Team Organisation

Das Projekt wurde einzeln von mir allein ausgeführt. Entsprechend ist jede Rolle bei einer Person.

### 2.2.1 Kriterien für das Endprodukt

Die Soll-Situation beschreibt die Zielsetzung des Projekts. Die Muss-Kriterien definieren die minimalen Anforderungen, während optionale Kriterien zusätzliche Funktionen oder Verbesserungen darstellen.

#### Hardware

| Muss Kriterien               | Kann Kriterien                 | Abgenzungskriterien |
|------------------------------|--------------------------------|---------------------|
| LEDs zeigen korrekte         | Ultraschallsensoreneingänge    | Nicht wetterfest    |
| Farben und Helligkeit in der | werden für komplexere          |                     |
| Startanimation an ohne       | Animationen kombiniert         |                     |
| sichtbare Verzögerung        |                                |                     |
| Sensoren geben Daten der     | Eigengestaltetes 3D gedrucktes | Genauigkeit der     |
| Realität entsprechend aus    | Gehäuse                        | Sensoren ist nicht  |
|                              |                                | mehr als 500ms      |

#### Software

| Muss Kriterien                                                                                                                                 | Kann Kriterien                                                                                                             | Abgenzungskriterien                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Startanimation beim<br>Einschalten der Matrix läuft<br>direkt über auf<br>Grundmodus Regenbogen                                                |                                                                                                                            | Es werden keine<br>batteriebetriebenen<br>Komponenten<br>genutzt. |
| Ultraschallfernbedienung<br>wechselt zuverlässig<br>zwischen allen Modi                                                                        | Parameter der Sensorendaten<br>können modifiziert per<br>Pfleitasten oben und unten<br>Rechts der Fernbedienung<br>werden. |                                                                   |
| Ultraschallsensoren<br>erkennen Objekte von drei<br>verschiedenen<br>Umgebungszonen (Links,<br>Mitte, Rechts)                                  | Parameter der Animationen<br>können modifiziert per<br>Pfleitasten Links Rechts der<br>Fernbedienung werden.               |                                                                   |
| Modus zur Erkennung der<br>Lichtverhältnisse nach<br>Lichtgrad bei<br>eingeschaltetem Licht<br>(dunkel) und<br>ausgeschaltetem Licht<br>(hell) |                                                                                                                            |                                                                   |
| Modus für Erkennung der<br>Umgebungsgeräusche mit<br>genauigkeit auf Variation<br>der Geräusche 1-10                                           | Musikvisualisierung kann ein-<br>oder ausgeschaltet werden per<br>Fernbedienung                                            | Reagiert nicht<br>ausserhalb des<br>angegebenen<br>Bereichs       |

| Modus für Erkennung der   | Der Farbwechsel kann             | Temperaturwerte      |
|---------------------------|----------------------------------|----------------------|
| Temperatur von 10 bis 40  | schrittweise in 5 Grad Schritten | ausserhalb des       |
| Grad                      | geändert werden                  | Bereichs werden      |
|                           |                                  | nicht berücksichtigt |
|                           |                                  | _                    |
| Modus für alle Sensoren   | Sensorprioritäten können manuell |                      |
| der alle Inputs erkennbar | über die Fernbedienung gesetzt   |                      |
| wiedergibt                | werden                           |                      |

# 3 Planung

In der Planungsphase werden die zeitlichen und technischen Schritte des Projekts detailliert beschrieben.

### 3.1 Terminplanung

In der Planungsphase werden die zeitlichen und technischen Schritte des Projekts detailliert beschrieben.

#### **GANTT**



#### **Tabelle**

| Task                     | Fertigstellungdatum | Meilenstein |
|--------------------------|---------------------|-------------|
| Terminplanung            | 09.11.2024          |             |
| Pflichtenheft            | 09.11.2024          |             |
| Grobkonzept Endprodukt   | 09.11.2024          | х           |
| Kauf Hardware            | 09.11.2024          |             |
| Flussdiagramme           | 16.11.2024          |             |
| Elektronisches Schema    | 23.11.2024          | х           |
| Code                     | 23.11.2024          |             |
| Inbetriebnahme           | 30.11.2024          |             |
| Tests und Fehlerbehebung | 14.12.2024          | x           |

### 3.2 Konzept Endprodukt

Das Endprodukt wird in einzelne Module zerlegt und schrittweise entwickelt. Am Ende erfolgt die Integration der Module zu einem Gesamtprodukt.

#### 3.2.1 Einfluss der Sensoren auf die WS2812 Matrix

Dieser Abschnitt beschreibt die geplante Interaktion der Sensoren mit der LED-Matrix und die spezifischen Effekte, die durch die Sensoren ausgelöst werden sollen.

| Sensor                   | Animation                                    |
|--------------------------|----------------------------------------------|
| Ultraschallsensor Rechts | Farbänderung von rechts nach links           |
|                          | Änderung der Sättigung                       |
| Ultraschallsensor Links  | Farbänderung von links nach rechts           |
|                          | Änderung der Sättigung                       |
| Ultraschallsensor Mitte  | Farbänderung von unten nach oben             |
|                          | Änderung der Sättigung                       |
| Lichtsensor              | Farbhelligkeitsänderung                      |
|                          | Helligkeitsänderung der LEDs                 |
| Mikrofon                 | Lässt Wellen schlagen in die LED Darstellung |
|                          | Musikmodus                                   |
| Temperatursensor         | Ab 25 grad von Farbtemperatur blau zu        |
|                          | Farbtemperatur rot. Langsamer überlauf       |

#### 3.2.2 Modi

| Modus              | Verhalten                         | Remote Taste |
|--------------------|-----------------------------------|--------------|
| Grundmodus         | Regenbogenmuster ohne             | 0            |
|                    | Sensoren gesteuerte Animation     |              |
| Ultraschnall       | Kombiniert den Input der 3        | 1            |
|                    | Ultraschall Sensoren zu der       |              |
|                    | Farbänderung, die besteht         |              |
| Lichtsensor        | Farbhelligkeit und Helligkeit der | 2            |
|                    | LEDs                              |              |
| Mikrofon           | Von der Mitte gegen aussen Bei    | 3            |
| Umgebungsgeräusche | Geräusche werden LEDs in der      |              |
|                    | Farbe geändert                    |              |
| Mikrofon Musik     | Musikvisualisierungsmodus         | 4            |
| Temperatursensor   | Farbwärme                         | 5            |
| Alle Sensoren      | Kombination aus obigem            | 6            |
| Grundfarbton Rot   | Grundfarbe ist Rot                | 7            |
| Grundfarbton Blau  | Grundfarbe ist Blau               | 8            |
| Grundfarbton Grün  | Grundfarbe ist Grün               | 9            |

### 3.3 Hardware

Die vorhandene Hardware im Arduino Starter-Kit wird aufgelistet. Sie bildet die Basis für die technische Umsetzung und beeinflusst die Planung des Projekts.

#### **Bestehende Hardware**

| Arduino Board Fundiono Mega 2560     | 1x |
|--------------------------------------|----|
| Breadboard                           | 1x |
| Lichtsensor                          | 1x |
| Ultraschall Distanzmesser HC-SR05    | 1x |
| Wärmesensor                          | 1x |
| Infrarot Fernbedienung und Empfänger | 1x |

#### Zu kaufende Hardware

| NeoPixel FlexMatrix 1cxyc6x16 – 25dfafsd6 x WS2812B RGB LED | 1x |
|-------------------------------------------------------------|----|
| Ultraschall Distanzmesser HC-SR05                           | 2x |
| Mikrofon Geräuschsensor KY-037                              | 1x |
| DC-Buchse Female Barrel Jack 5.5mm / 2.1mm                  | 1x |
| mit Schraubklemmen                                          |    |
| 5V DC 3000mA Stecknetzteil AC/DC-Adapter                    | 1x |
| 5.5mm/2.1mm Stecker                                         |    |

### 3.4 Case

Es folgt ein visuell vereinfachtes Mock-Up des Case das erstellt wird. Es dient dazu die Position der Elemente zu bestimmen innerhalb des Case.



### 3.5 Elektronisches Schema

Hier wird die Schaltung des Projekts dokumentiert, einschließlich aller Verbindungen zwischen den Komponenten und der Arduino-Plattform.



#### 3.6 Code

Hier wird die Planung der Entwicklung des Codes thematisiert. Der Fokus liegt auf der Strukturierung und Umsetzung der Programmierung für die Steuerung der Hardware und LEDs.

#### 3.6.1 Coding Standards

#### Trennung und Logik

Erstellte Module wird klar nach Logik der Funktionaler Ebene des Programms gemacht:

- Logische Verarbeitung
- Ein- und Ausgänge

Die config.h Datei dient zur Anpassung von allen Relevanten Parameter für Erweiterung.

#### Funktionen als weitere Modulisierungsebene

Das Programm verwendet Funktionen, um alle wichtigen Teile des Programm dezentral anzusteuern. Diese werden in den Config Files der einzelnen Module definiert.

#### Namenskonventionen

Alle Variablen im Config File sind in CAPSLOCK und bei mehreren Wörtern mit Unterstrich definiert

Alle Funktionen sind im Camel-Case mit erstem Buchstaben klein definiert.

#### 3.6.2 Versionisierung

Die Versionisierung wird per Ordner gemacht. Abgelegt wird diese Versionisierung auf GitHub.

#### **3.6.3** Module

Die Module stellen einzelne Funktionseinheiten dar, die unabhängig voneinander entwickelt und getestet werden, bevor sie in das Gesamtsystem integriert werden.

Die Module werden in logische Ebenen eingeteilt

- Logische Verarbeitung und Operative Kontrolle
  - Oberste Ebene die den Hauptprogrammablauf definiert
  - Verarbeitung der Sensoren Signale und LED Output
- Steuerung von Input und Output
  - o Alle Sensoren
    - Ultraschall
    - Mikrophon
    - Licht
    - Temperatur
  - o Das LED Ausgangs Modul
  - o Infrarot Fernbedienung Input

### 3.6.4 Flussdiagramm

Es folgt das Flussdiagram nach der Planung.



## 4 Inbetriebnahme

Die Realisierungsphase umfasst die praktische Umsetzung des Projekts, von der Programmierung bis zur physischen Montage.

### 4.1 Code

### 4.1.1 Ablauf der Umsetzung des Codes

Das LLM GPT-40 und GPT-01 wurden konstant zum Draften des Codes und schreiben gebraucht. Code selbstgeschrieben wurde nur minimal. Es wurde der Code Iterativ getestet und angepasst durch die Menschliche Komponente.

| Iteration | Umsetzungsschritt                                                       |
|-----------|-------------------------------------------------------------------------|
| 1         | Ultraschallsensor mit 8 LEDs                                            |
| 2         | Infrarot Remote für Wählen der Modi                                     |
| 3         | Implementierung der Codestruktur des Hauptprojekt mit 16x16 Grid        |
| 4         | Anpassung, Troubleshooting und Verbesserung Module                      |
| 5         |                                                                         |
| 6         | Mikrophon mit 8 LEDs                                                    |
| 7         | Temperatursensor mit Serieller Ausgabe                                  |
| 8         | Lichtsensor mit Serieller Ausgabe                                       |
| 9         | Zusammenfügen aller Sensoren in einem Programm                          |
| 10        | Anpassung, Troubleshooting und Verbesserung der Zusammengefügten Module |
| 11        | Zusammengefügter Modus ausfeilen                                        |
| 12        | Einzelne Sensoren Modi aus Zusammengefügten Modus generieren            |
| 13        | Abkoppeln der Variablen für Animations- und Sensorparameter             |
| 14        | Troubleshooting und Verbesserungen                                      |

#### 4.1.2 Genutzte Bibliotheken

- FastLED 3.9.4
- Keypad 3.1.1

#### 4.1.3 Aufbau der Module

#### **Logische Verarbeitung und Operative Kontrolle**

main.ino sensorLedManager.cpp modes.cpp

#### **Verarbeitung von Input und Output**

ledModule.cpp remoteControl.cpp ultrasonicSensorModule.cpp microphoneModule.cpp tempSensorModule.cpp lightSensorModule.cpp

| Modulname                  | Zweck                        | Ebene                      |
|----------------------------|------------------------------|----------------------------|
| main.ino                   | Low code Hauptebene          | Logische und Operative     |
|                            |                              | Kontrolle                  |
| sensorLedManager           | Verwaltung und               | Logische und Operative     |
|                            | Zusammenführung der          | Kontrolle                  |
|                            | Sensorinputs und Ausgabe auf |                            |
|                            | LEDs                         |                            |
| modes.cpp                  | Modi, die Daten der          | Logische und Operative     |
|                            | Sensorinputs verschieden     | Kontrolle                  |
|                            | verwenden                    |                            |
| ledModule.cpp              | Output auf LEDs              | Verarbeitung von Input und |
|                            |                              | Output                     |
| ultrasonicSensorModule.cpp | Verwaltung der               | Verarbeitung von Input und |
|                            | Ultraschallsensoreingänge    | Output                     |
|                            |                              |                            |
| microphoneModule.cpp       | Eingangsverarbeitung Mikro   | Verarbeitung von Input und |
|                            |                              | Output                     |
|                            |                              |                            |
| tempSensorModule.cpp       | Eingangsverarbeitung         | Verarbeitung von Input und |
|                            | Temperatur                   | Output                     |
|                            |                              |                            |
| lightSensorModule.cpp      | Eingangsverarbeitung Licht   | Verarbeitung von Input und |
|                            |                              | Output                     |
|                            |                              |                            |

#### 4.1.4 Funktionen

| Modul         | Funktionen                             |
|---------------|----------------------------------------|
| ledModule.c   | XY                                     |
| рр            | initLEDs                               |
| lightSensorM  | initLightSensor                        |
| odule.cpp     | readLightSensor                        |
| microphone    | initMicrophone                         |
| Module.cpp    | readMicrophone                         |
| modes.cpp     | update Multiple Sensors Mode           |
|               | updateUltrasonicMode                   |
|               | updateLightSensorMode                  |
|               | updateTempSensorMode                   |
|               | updateRainbowMode                      |
|               | updateMicrophoneMode                   |
|               | updateTestPatternMode (für Testzwecke) |
| remoteContr   | checkRemoteInput                       |
| ol.cpp        |                                        |
| sensorLedMa   | initSensorsAndLEDs                     |
| nager.cpp     | readAllSensors                         |
|               | updateLEDsBasedOnMode                  |
|               | printSensorValues (für Testzwecke)     |
| tempSensor    | initTempSensor                         |
| Module.cpp    | readTempSensor                         |
| ultrasonicSen | initUltrasonicSensors,                 |
| sorModule.c   | smoothUltrasonicValue                  |
| рр            | readUltrasonicDistance                 |
| _main.ino     | setup, loop (Standarfunktionen)        |

#### 4.1.5 Besonderheiten im Code

In diesem Abschnitt werden einzelne, ausgewählte Besonderheiten, die im Code verwendet wurden dokumentiert.

#### Millis als nicht Programm-Blockierender "Unterbruch"

In der Read all Sensors Funktion, wird die Millis Funktion in der Iteration verwendet, um Ultraschall sowie Geräusche Priorisiert (5ms) im Gegensatz zu Temperatur und Licht (5000ms) abzufragen.

Das hat den Vorteil, dass die Priorität auf Geräuschen und Ultraschall ist. Das liegt daran, dass es dort schnellere Reaktion auf Veränderung benötig.

#### XY Funktion

Diese Funktion indiziert das XY Array in dem Zick-Zack Muster, in welchem die LEDs aufgebaut sind. Der Index für jeden LED i ist eine Zahl von 256. Entsprechend ist das Array eindimensional, was Leistungsfähiger ist.

# 4.2 Verkabelung

Hier wird die physische Verbindung der elektronischen Komponenten, inklusive der Verwendung des Breadboards und der Kabel.

### 4.2.1 Stromversorgung LED-Matrix

Es folgt der Ablauf der Inbetriebnahme der Stromversorgung für die LED-Matrix

| Iteration | Umsetzung                       | Ergebnis               | Grund                |
|-----------|---------------------------------|------------------------|----------------------|
| 1         | Direkte Verbindung mit Arduino  | Nur 1 Pixel bekam      | Zu wenig Leistung    |
|           |                                 | schwach licht          | auf die Matrix       |
| 2         | Verbindung mit Klemmadapter     | Die Matrix wurde bei 8 | Vermutlich erster    |
|           |                                 | Pixel korrekt          | LED zerstört da kein |
|           |                                 | beleuchtet. Bei        | Kondensator          |
|           |                                 | Versuchen mit 256 war  | verwendet wurde.     |
|           |                                 | die Darstellung falsch | Die Matrix war       |
|           |                                 |                        | somit zerstört       |
| 3         | Verbindung mit Klemmadapter und |                        |                      |
|           | Kondensator dazwischen          |                        |                      |
| 4         | Verbindung mit Klemmadapter und | Erfolgreich            | Datensignal benötigt |
|           | Kondensator und GND für Data    |                        | saubere              |
|           |                                 |                        | Referenzspannung     |

### 4.2.2 Implementierung der IR-Fernbedienung

| Umsetzung                                                                          | Ergebnis                                                                                                                                                                                                                                                                                                                  | Grund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anschluss des IR Remote nach<br>Schaltplan und Übernahme<br>bestehenden Codes      | Befehl immer 0                                                                                                                                                                                                                                                                                                            | Unklar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Kleiner Sketch mit nur dem Receiver<br>und Remote                                  | Befehle werden korrekt<br>dekodiert                                                                                                                                                                                                                                                                                       | Keine Störsignale<br>oder<br>Hauptprogramm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Übernahme Code aus Sketch und<br>hinzufügen einer Ausgabe der<br>Rohdaten          | Rohdaten sind bei<br>Drücken der Taste<br>immer gleich                                                                                                                                                                                                                                                                    | Störsignale oder<br>Programm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Code angepasst, um<br>Unterbrechungen bei dem Empfang<br>des Signals zu verhindern | Rohdaten sind bei<br>Drücken der Taste<br>immer unterschiedlich                                                                                                                                                                                                                                                           | Störsignale oder<br>Programm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Als Workaround Keypad<br>angeschlossen und das Modul<br>umgeschrieben              | Erfolgreich                                                                                                                                                                                                                                                                                                               | Keine Störsignale,<br>andere Verarbeitung<br>der Daten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                    | Anschluss des IR Remote nach Schaltplan und Übernahme bestehenden Codes Kleiner Sketch mit nur dem Receiver und Remote Übernahme Code aus Sketch und hinzufügen einer Ausgabe der Rohdaten Code angepasst, um Unterbrechungen bei dem Empfang des Signals zu verhindern Als Workaround Keypad angeschlossen und das Modul | Anschluss des IR Remote nach Schaltplan und Übernahme bestehenden Codes  Kleiner Sketch mit nur dem Receiver und Remote  Übernahme Code aus Sketch und hinzufügen einer Ausgabe der Rohdaten  Code angepasst, um Unterbrechungen bei dem Empfang des Signals zu verhindern  Als Workaround Keypad angeschlossen und das Modul  Befehl immer 0  Befehle verden korrekt dekodiert |

### 4.2.3 Implementierung der Stromversorgung ohne USB-Kabel

Es folgt der Ablauf der Inbetriebnahme der Stromversorgung für die LED-Matrix

| Iteration | Umsetzung                          | Ergebnis                | Grund               |
|-----------|------------------------------------|-------------------------|---------------------|
| 1         | Wegschneiden der Plastik des       | Stromversorgung dafür   |                     |
|           | Stromstecker mit Männlichen Pins   | Matrix, jedoch keine    |                     |
|           | und anschrauben des Klemmadapter   | Daten und Arduino kein  |                     |
|           |                                    | Strom                   |                     |
| 2         | Anschluss des Arduino an die LED-  | Nicht erfolgreich, nach | VIN Erwarte höhere  |
|           | Matrix per VIN Port und            | paar Sekunden LED-      | Spannung            |
|           | bestehendem GND                    | Darstellung falsch      |                     |
| 3         | Anschluss des Arduino an die LED-  | Erfolgreich             | 5V ist der korrekte |
|           | Matrix per 5V Port und bestehendem |                         | PIN                 |
|           | GND                                |                         |                     |

### 4.2.4 Flussdiagramme

Es folgt eine stark vereinfachte Version des ganzen Programms. Das Diagramm, das alles beschreibt ist im Ordner "Grafiken" zu finden.



# 5 Kontrolle

Die Kontrollphase dient dazu, das Projekt zu bewerten und den Erfolg der Umsetzung zu prüfen.

### 5.1 Testprotokoll

Das Testprotokoll dokumentiert die durchgeführten Tests und deren Ergebnisse. Es wird überprüft, ob die Soll-Kriterien erfüllt wurden.

Hardware

| Testfall                                                                          | Erwartetes<br>Ergebnis                                                           | Ergebnis    | Abweichung                                           |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------|------------------------------------------------------|
| Einstecken der LED-Matrix                                                         | Einstecken der<br>LED-Matrix<br>zeigt<br>Startanimation                          | Erfolgreich | -                                                    |
| Farben und Helligkeit wird<br>nach Definition im Code<br>beim Einschalten gezeigt | Rot Blau Grün<br>wird<br>Pixelweise<br>über die<br>Matrix<br>geschoben           | Erfolgreich | Kleine Wiederholung<br>beim Anschalten der<br>Matrix |
| Ultraschallsensor vorne<br>erkennt, wenn jemand auf<br>vor dem mittigen steht     | Der Wert der<br>Nähe ändert<br>sich<br>entsprechend<br>der wirklichen<br>Distanz | Erfolgreich | -                                                    |

#### Code

| Testfall                                                                          | Erwartetes<br>Ergebnis                                                           | Ergebnis                                                        | Abweichung                                                                                                                           |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Farben und Helligkeit wird<br>nach Definition im Code<br>beim Einschalten gezeigt | Rot Blau Grün<br>wird Pixelweise<br>über die Matrix<br>geschoben                 | Erfolgreich                                                     | Kleine Wiederholung<br>beim Anschalten der<br>Matrix                                                                                 |
| Ultraschallsensor vorne<br>erkennt, wenn jemand auf<br>vor dem mittigen steht     | Der Wert der<br>Nähe ändert<br>sich<br>entsprechend<br>der wirklichen<br>Distanz | Erfolgreich                                                     | -                                                                                                                                    |
| Ultraschallsensor rechts<br>erkennt, wenn jemand auf<br>vor dem rechten steht     | Der Wert der<br>Nähe ändert<br>sich<br>entsprechend<br>der wirklichen<br>Distanz | Erfolgreich                                                     | -                                                                                                                                    |
| Ultraschallsensor links<br>erkennt, wenn jemand auf<br>vor dem linken steht       | Der Wert der<br>Nähe ändert<br>sich<br>entsprechend<br>der wirklichen<br>Distanz | Erfolgreich                                                     | -                                                                                                                                    |
| Temperatur wird erkannt<br>entsprechend der<br>Raumtemperatur                     | Temperatur des<br>Raumes wird<br>nach 5<br>Sekunden<br>korrekt<br>angezeigt      | Teilweise<br>erfolgreich                                        | Temperatur der LED-<br>Farben ändert zufällig.<br>Bei kalter Temperatur<br>jedoch in Richtung<br>Blau und<br>Raumtemperatur<br>Grün. |
| Geräusch wird nach<br>Lautstärke erkannt                                          | Bei blasen in das<br>Mikrophon<br>erhöht sich der<br>Wert um<br>mindestens 5     | Erfolgreich                                                     | -                                                                                                                                    |
| Ausschalten des Licht im<br>Raum                                                  | Ändert den<br>Wert der<br>Lichtverhältnisse<br>um mindestens<br>5                | Erfolgreich                                                     | -                                                                                                                                    |
| Infrarotfernbedienung<br>funktioniert korrekt                                     | Drücken der<br>Fernbedienung<br>ändert alle Modi<br>zuverlässig                  | Keypad als<br>Workaround<br>vorhanden<br>Hiermit<br>erfolgreich | -                                                                                                                                    |
| Benutzer kann<br>Sensordatenwerte Ändern                                          | Pfeil nach rechts<br>Verstärkt die<br>Intensität des                             | Funktion<br>nicht<br>vorhanden                                  | -                                                                                                                                    |

|                    | Signal um den<br>Faktor 1.5<br>Pfeil nach links<br>vermindert das |           |   |
|--------------------|-------------------------------------------------------------------|-----------|---|
|                    | Signal um die 0.75                                                |           |   |
| Benutzer kann Modi | Pfeil nach oben                                                   | Funktion  | - |
| Parameter ändern   | verändert die                                                     | nicht     |   |
|                    | Sensibilität des                                                  | vorhanden |   |
|                    | Modus um den                                                      |           |   |
|                    | Faktor 1.5                                                        |           |   |
|                    | Pfeil nach unten                                                  |           |   |
|                    | verändert die                                                     |           |   |
|                    | Sensibilität des                                                  |           |   |
|                    | Modus um den                                                      |           |   |
|                    | Faktor 0.75                                                       |           |   |

# 5.2 Soll-Ist vergleich

Hier wird überprüft, inwieweit die im Pflichtenheft definierten Soll-Kriterien erreicht wurden.

| Muss Kriterien                   | Erfüllt | Grund (falls nicht oder fast erfüllt)           |
|----------------------------------|---------|-------------------------------------------------|
| LEDs zeigen korrekte Farben und  | ✓       | ,                                               |
| Helligkeit in der Startanimation |         |                                                 |
| an ohne sichtbare Verzögerung    |         |                                                 |
| Sensoren geben Daten der         | ~✓      | Linker Ultraschallsensor ist anderes Modell als |
| Realität entsprechend aus        |         | andere, LEDs schalten manchmal aus.             |
| Startanimation beim Einschalten  | ✓       |                                                 |
| der Matrix läuft direkt über auf |         |                                                 |
| Grundmodus Regenbogen            |         |                                                 |
| Ultraschallfernbedienung         | ~✓      | Fernbedienung wurde durch Keypad ersetzt        |
| wechselt zuverlässig zwischen    |         |                                                 |
| allen Modi                       |         |                                                 |
| Ultraschallsensoren erkennen     | ✓       |                                                 |
| Objekte von drei verschiedenen   |         |                                                 |
| Umgebungszonen (Links, Mitte,    |         |                                                 |
| Rechts)                          |         |                                                 |
| Modus zur Erkennung der          | ✓       |                                                 |
| Lichtverhältnisse nach Lichtgrad |         |                                                 |
| bei eingeschaltetem Licht        |         |                                                 |
| (dunkel) und ausgeschaltetem     |         |                                                 |
| Licht (hell)                     |         |                                                 |
| Modus für Erkennung der          | ✓       |                                                 |
| Umgebungsgeräusche mit           |         |                                                 |
| Genauigkeit auf Variation der    |         |                                                 |
| Geräusche 1-10                   |         |                                                 |
| Modus für Erkennung der          | ×       | Temperatursensor gibt falsche Werte aus         |
| Temperatur von 10 bis 40 Grad    |         |                                                 |
| Modus für alle Sensoren der alle | ✓       |                                                 |
| Inputs erkennbar wiedergibt      |         |                                                 |

| Wunsch Kriterien               | Erfüllt | Grund (falls nicht oder fast erfüllt)         |
|--------------------------------|---------|-----------------------------------------------|
| Ultraschallsensoreingänge      | ✓       | -                                             |
| werden für zu einer Animation  |         |                                               |
| kombiniert                     |         |                                               |
| Eigengestaltetes 3D gedrucktes | ×       | Keine Priorität, entsprechend fehlte die Zeit |
| Gehäuse                        |         |                                               |
| Parameter der Sensordaten      | ×       | Keine Priorität, entsprechend fehlte die Zeit |
| können modifiziert per         |         |                                               |
| Pfeiltasten oben und unten und |         |                                               |
| rechts der Fernbedienung       |         |                                               |
| werden                         |         |                                               |
| Parameter der Animationen      | ×       | Keine Priorität, entsprechend fehlte die Zeit |
| können modifiziert per         |         |                                               |
| Pfeiltasten Links Rechts der   |         |                                               |
| Fernbedienung werden           |         |                                               |
| Musikvisualisierung kann ein-  | ×       | Keine Priorität, entsprechend fehlte die Zeit |
| oder ausgeschaltet werden per  |         |                                               |
| Fernbedienung                  |         |                                               |
| Der Farbgrundton kann per      | ×       | Keine Priorität, entsprechend fehlte die Zeit |
| Fernbedienung geändert werden  |         |                                               |
| Sensorprioritäten können       | ×       | Keine Priorität, entsprechend fehlte die Zeit |
| manuell über die Fernbedienung |         |                                               |
| gesetzt werden                 |         |                                               |

# 6 Anhang

#### 6.1 GitHub Link

https://github.com/valvinc/LEDruino-1.0

#### 6.2 Quellen

ChatGPT - bei weitem nicht alle Chats.

#### Code

 $\frac{https://chatgpt.com/share/67606059-fcec-8013-83d9-3cd23bd75409}{https://chatgpt.com/share/67606068-3d2c-8013-816d-d944d595eb4b} Stromversorgung$ 

https://chatgpt.com/share/676060a2-402c-8013-99df-9a8d4c4e3d48

YouTube - LED Matrix - Connect, Power & Control - Setup Guide
<a href="https://www.youtube.com/watch?v=6XGeM2">https://www.youtube.com/watch?v=6XGeM2</a> Zx4&pp=ygUbYXJkdWlubyBsZWQgbWF0cml4IHR1dG
<a href="https://www.youtube.com/watch?v=6XGeM2">9yaWFs</a>

### 7 Kurzfazit

Im Endeffekt bin ich auf das Projekt stolz. Während der Umsetzung ist mir aufgefallen, dass ich viel vorgenommen habe. Es ist auch nur ein Teil der Idee Projekts fertig.

Der Versuch ein Programm mit viel Inhalt hauptsächlich durch GPT zu schreiben ist sicherlich gelungen. Jedoch darf wie bereits erwähnt nie die Menschliche Verantwortlichkeit bei dem ganzen unterschätzt werden. Ein Prompt "Mach mir ein Arduino Projekt mit LEDs" war es sicher nicht.

Ein grossteil der Zeit wurde für die Realisierung selbst als die Dokumentation aufgewendet. Auch gab es viel Zeitverlust durch die Stromversorgung der Matrix. Entsprechend war für den Feinschliff des Dokuments sehr wenig Zeit. Hier könnte sehr viel noch einheitlicher sein. Auch sind einzelne Variablen noch auf ausserhalb des config.h, das Stört, Gerne hätte ich das Flussdiagramm auch noch besser dargestellt. Es gab Teilweise sehr viel Chaos, auch in der Umsetzung, das kann ich nächstes Mal sicher besser machen.

Aus dem Grund des Fokus an anderen Orten entschuldige ich mich beim Leser für allfällige Rechtschreibfehler und Stilkatastrophen. Ich habe mich auf die alles in allem 663 Zeilen Code konzentriert.