Serratec - Residência de Software - Introdução a T.I. - 32H

Prof.: Marlan Külberg

Email marlankulberg@gmail.com

10/09/2019

Ementa:

- Ética no ambiente de T.I (Web)
- Gestão de projetos
- Versionamento Git
- Introdução ao Docker

Ética

- Um conjunto de regras locais definidas por uma comunidade estipulando certo e errado
- Ponto de vista ético é pessoal, subjetivo e cultural
- Comportamento convencionado por maioria é tratado como ética

Obs: Se há argumentação entre certo/errado, está sendo discutido a subjetividade do assunto, não a ética

Ética profissional

Profissional de computação → usuário de computação dentro de um ambiente de trabalho

Ex de Falta de ética \rightarrow receber emails pessoais em ambiente de trabalho, usar licenças ou produtos piratas, etc.

Automação de Decisões

- Nível de automação de um sistema
- Garantir melhor distribuição das tarefas entre usuário e computador
- Informação para apoio a decisão
- Garantir conteúdo correto para tomada de decisão pelo usuário

Violação de informação

- Acesso indevido a dados armazenados
- Garantir e respeitar a confidencialidade de dados
- Violação de comunicação
- Garantir e respeitar a segurança da comunicação
- Não danificar o sistema computacional
- Damos ao sistema (vírus)
- Garantir a proteção cobra ações de vírus, malwares, etc

11/09/2019

Internet

- Igualitária
- Flexível e adaptável
- Instantânea, imediata, alcance mundial, descentralizada, interativa expansível ao infinito

Prós

- Liberdade democrática
- Aumenta horizontes educativos e culturais
- Promove o desenvolvimento humano

Contras

- Aumento do isolamento e à alienação
- Promove divisão tanto a nível individual ou grupos
- Terrorismo cibernético

Internet - Acesso à Informação

- Conhecer a verdade é um direito humano fundamental
- Liberdade de expressão é a essência da democracia
- Regimes autoritários são conhecidos por ocultar e manipular informações, nas democracias liberais também usam o artificio de forma mais discreta
- Jornalismo é sensível às pressões ideológicas e comerciais
- Concorrência económica e natureza do jornalismo através da Internet contribuem para o sensacionalismo, fusão de notícias, publicidades e diversão, em detrimento das reportagens sérias
- Conteúdos de sites
- Comércio eletrônico

Sistemas Críticos

- Sistemas cujas falhas podem causar morte, grande prejuízo e graves danos ao ambiente
- Sistemas de controle de aeronave, equipamentos médicos, controle de plantas químicas

 Necessitam de técnicas de desenvolvimento e de avaliação que garantam que o produto é seguro

Código de Ética

- Software Engineering Code of Ethics and Professional Practice
- IEEE-CS/ACM Joint Task Force on Software Engineering Ethics and Professional Practices (versão 5.2)
- https://www.computer.org/education/code-of-ethics

Código de Conduta para Área de Informática

- Sociedade em geral, zelando pelo bem estar de todas as pessoas sem qualquer discriminação, visando construir ou manter uma sociedade livre, justa e solidária;
- Empregadores, usualmente quando estes não têm conhecimento na área e o supervisionamento técnico do trabalho é todo realizado com base na confiança
- Clientes, se estes forem leigos como no caso dos empregadores, quando o profissional é um prestador de serviços ou consultor
- Sociedade de classe, no caso, a comunidade computacional, com o intuito de proteger os interesses da associação criadora do código e de seus membros
- Cologas de profissão, que compartilham os mesmos interesses e colaboram para o bem estar de todos
- Profissão em geral, com o objetivo de não difamar os outros trabalhadores da área e evitar que a profissão não seja mau vista pelo restante da sociedade.

10 Mandamentos para Ética da Computação

- 1. Você não deverá usar o computador para produzir danos em outra pessoa
- 2. Você não deve interferir no trabalho de computação de outra pessoa
- 3. Você não deve interferir nos arquivos de outra pessoa
- 4. Você não deve usar o computador para roubar
- 5. Você não deve usar o computador para dar falso testemunho
- 6. Você não deverá usar software pirateado

- 7. Você não deverá usar recursos de computadores de outras pessoas
- 8. Você não deverá se apropriar do trabalho intelectual de outra pessoa
- 9. Você deverá refletir sobre as consequências sociais do que escreve
- 10. Você deverá usar o computador de maneira que mostre consideração e respeito ao interlocutor

Definições de "Ética" na Computação

- Como problemas éticos são agravados ou transformados pela Tecnologia de Informação (TI)
- Definições de políticas sobre como TI deveria ser usada
- Impacto de TI sobre valores humanos tais como saúde, riqueza, oportunidades, liberdade, democracia, conhecimento, privacidade, segurança, realização pessoal, etc.
- Padrões de conduta de profissionais da computação (ética profissional)

Exemplo Real de Falta de Ética (1)

- Continental Can
- Na década de 80, a empresa desenvolveu uma base de dados de pessoal, na qual incluiu todos os seus empregados.
- Incluiu um campo (red flag), que sinalizava aposentadoria próxima ou habilitação à pensão
- Sempre que o sistema sinalizava alguém, a empresa o despedia, mesmo após décadas de serviços leais.
- Em 1991, uma corte federal reconheceu o direito de ex-empregados, por demissão injusta, e determinou o pagamento de indenizações que chegaram ao montante de US\$ 445 milhões

Exemplo Real de Falta de Ética (2)

- Revlon
- Contratou uma empresa de software para desenvolver o software de controle de estoque pela quantia de US\$ 600.000.

- 2 anos depois, a Revlon tentou romper o contrato alegando que o sistema tinha ficado aquém das expectativas
- a Ravion devia US\$ 160,000, mas não quis pagar
- A seguir, a divisão de sistemas da Revlon relatou queda genaralizada no sistema de estoque Um fax da empresa de software, relatou que a empresa tinha desabilitado o software, mas com todos os cuidados para não corromper nenhum dado. Caso tentasse restaurar o software, haveria uma possibilidade real de perda dos dados
- Durante 3 dias, as vendas de dois centros de distribuição foram interrompidas resultando na perda de milhões de dólares, e dispensa temporária de centenas de trabalhadores

 Reveillon Acionou judicialmente a empresa, acusando-a de interferência, transgressão. Roubo de segredos comerciais, quebra de contrato e garantia

Crime com Computador

- Vírus, worms, cavalos de Tróia, bombas lógicas
- Fraude
- Frequentemente perpetrada através de profissionais de computação
- Privacidade e Anonimato
- Acesso a grandes bancos de dados com informação pessoal sobre cidadãos
- Acesso a informação sensível
- Anonimato pode funcionar como uma forma de obter privacidade

Propriedade intelectual

- Há debates sobre o que pode ser protegido na área de software
- Como proteger?
- Há problemas imensos com pirataria
- Há investidas com Free Software
- Há um grande debate sobre a obtenção de patentes sobre algoritmos

Globalização

- Grandes redes como a Internet A Web podem ter grande impacto
- Homogeneização da cultura?
- As leis de que país se aplicam quando estou na rede?
- Que práticas de negócio são aceitáveis quando estou na rede?
- Aumentaremos o hiato entre ricos e pobres?
- No final das contas, a TI é boa? Quando? Onde?

Ética profissional

- Examinando o código de Ética da ACM
- Como o profissional deve se comportar?
- Veremos o código da ACM (Association for Computing Machinery)
- Imperativos morais gerais
- Responsabilidades profissionais específicas
- Imperativos de liderança organizacional
- Na sua vida profissional, siga esses princípios éticos

Comportamento Profissional

- Informática trouxe transformações profundas no modo como as pessoas resolvem os problemas do cotidiano corporativo
- Tecnologia também representa uma variedade de problemas sociais e jurídicos, pois nem sempre o trabalhador utiliza-se destes recursos visando aplicar-lhes a destinação pretendida
- Atividades diferentes ao interesse do empregador
- Acesso a correio eletrônico pessoal
- Sites de relacionamento
- Conteúdo adulto
- Humor
- Servicos de comunicacao pessoal

Consequências do mau Comportamento Profissional

- Contraria o senso ético
- Indica ociosidade por parte do empregado.
- Expõe a segurança da empresa

Limites Éticos e Legais no Ambiente de Trabalho

- Quais os limites para uso de internet e recursos tecnológicos no ambiente de trabalho?
- Não existe atualmente no país, legislação para disciplinar o uso de internet e tecnologia pelo trabalhador
- É necessário ao empregador estabelecer políticas de segurança, termos de uso de ferramentas eletrônicas códigos de ética e de conduta

Visão do Empregador

- Direito e dever do empregador zelar pelo seu patrimônio
- Oferece os recursos tecnológicos necessários para a atividade laboral
- Não seguir as regras para a operação do equipamento, sujeita o empregado a demissão por justa causa
- Ausência de legislação específica não significa desproteção jurídica
- Práticas preventivas garantem a proteção jurídica

Imperativos morais gerais

- Devo contribuir para a sociedade e o bem-estar humano
- Devo evitar causas mal/danos a outros
- Devo ser honesto e digno de confiança
- Devo ser justo e agir para n\u00e3o discriminar
- Devo honrar direitos de propriedade, incluindo copyrights e patentes
- Devo dar crédito adequado à propriedade intelectual

- Devo respeitar a privacidade dos outros
- Devo honrar acordos de confiança

Responsabilidades profissionais específicas (1)

- Devo tentar atingir a máxima qualidade, eficácia e dignidade nos processos e produtos de trabalho profissional
- Devo adquirir e manter competência profissional
- Devo conhecer e respeitar as leis relacionadas ao trabalho profissional
- Devo aceitar e prover avaliação ("review") profissional apropriada

Responsabilidades profissionais específicas (2)

- Devo dar avaliações de sistemas de computadores e seu impacto de forma compreensiva e completa, incluindo uma análise de possiveis riscos
- Devo honrar contratos, acordos e responsabilidades designadas
- Devo melhorar o conhecimento público da computação e de suas consequências
- Devo acessar recursos de computação e comunicação apenas quando receber autorização para tal

Gestão de Projetos

Projeto: Esforço temporário para se chegar a um objetivo/resultado

Projeto X Operação

- As operações são esforços contínuos que geram saídas repetitivas, com recursos designados para realizar basicamente o mesmo conjunto de tarefas
- O gerenciamento de operações é responsável pela supervisão. orientação e controle das operações de negócios.
- Os projetos exigem atividades de gerenciamento de projetos e conjuntos de habilidades, enquanto que as operações exigem gerenciamento de processos de negócios.
- Diferentemente da natureza contínua das operações, os projetos são esforços temporários.

Processo: Algo que uma vez ativado, gera alguma execução

Gerenciamento de Projetos

- Gerenciamento de projetos é a aplicação do conhecimento, habilidades, ferramentas e técnicas às atividades do projeto para atender aos seus requisitos
- Realizado por meio da aplicação e integração apropriadas de 47 processos de gerenciamento de projetos, logicamente agrupados em cinco grupos de processos:
- Iniciação
- Planejamento
- Execução
- Monitoramento e controle
- Encerramento

Projeto x Operação - Aspectos em Comum

- Realizados por pessoas.
- Restringidos por recursos limitados.
- Planejados, Executados e Controlados

Projeto X Operação

PROJETO	OPERAÇÃO
Início e fim definidos antes do começo dos trabalhos	Prazo determinado
Termina quando objetivos do alcançados objetivos não podem ou não serão atingidos a necessidade não existe mais	Não termina
Atender demanda específica do negócio Fluxo de caixa negativo	Finalidade é manter o negócio Fluxo de caixa positivo
Trabalho temporário, produz resultado único. Elaborado progressivamente, por etapas Resultado probabilístico	Trabalho contínuo, produz o mesmo produto ou serviço Resultado determinístico

Subprojeto

- Podem ser tratados como um pequeno projeto.
- São mais facilmente gerenciáveis e estão inter-relacionados ao projeto maior
- Se um subprojeto não for cumprido, necessariamente afetará os outros subprojetos e o projeto maior como um todo.

Programa

• Grupo de projetos relacionados e gerenciados de modo coordenado

- Obtenção de benefícios e controle que não estariam disponíveis se fossem gerenciados individualmente
- Envolve empreendimentos repetitivos ou cíclicos e geralmente tem tempo de duração maior
- Grupo de projetos relacionados e gerenciados de modo coordenado
- Obtenção de benefícios e controle que não estariam disponíveis se fossem gerenciados individualmente
- Envolve empreendimentos repetitivos ou cíclicos e geralmente tem tempo de duração maior

Exemplos de programas:

- Programa Cidadania e Justiça.
- Programa Bolsa Família.
- Programa Trabalho, Emprego e Renda
- Programa Fome Zero do Governo Brasileiro.
- Programa do Governo Brasileiro para Concessão de Bolsas de Estudos
- Programa de Combate à AIDS do Governo Brasileiro

Programa x Projeto

- Projetos são iniciativas fundamentais para impactar indicadores dos programas
- projetos oferecem produtos tangíveis e claros que têm sua efetividade alinhada ao objetivo definido para o programa

Influências Organizacionais

- A cultura, estilo e estrutura da organização influenciam a maneira como os projetos são executados
- O nível de maturidade em gerenciamento de projetos de uma organização seus sistemas de gerenciamento também podem influenciar o projeto.
- Se projeto envolve entidades externas como as que são parte de joint ventures ou parcerias, ele será influenciado por mais de uma organização.

Gerenciamento na Prática

Itens que integram o Gerenciamento de Projetos

- Escopo, cronograma, orçamento, qualidade, recursos e riscos.
- Levantamento das necessidades e expectativas dos clientes e das partes interessadas
- Estabelecimento de objetivos claros e alcançáveis.
- Adaptação das especificações, dos planos e da abordagem às diferentes preocupações e expectativas das diversas partes interessadas
- Balanceamento das demandas conflitantes de escopo, cronograma orçamento, qualidade, recursos e riscos

12/09/2019

Projeto na prática

- Um projeto de sucesso é aquele que é realizado conforme o planejado
- O sucesso de um projeto está relacionado à:
 - o Entrega do produto.

- Serviço ou resultado solicitado dentro do escopo e prazo
- o Orçamento e recursos determinados.
- A qualidade do projeto é afetada pelo balanceamento desses fatores
- Não existe uma receita ou um conjunto de atividades que garantam o êxito de um projeto
- Mas é possível destacar as seguintes diretrizes
- Foco em produtos claus e tangíveis a serem entregues nas várias fases do projeto
- Comunicação eficiente e eficaz entre todos os envolvidos em todas as fases do projeto
- Existência de liderança forte que combina com a função de gerente do projeto
- Simplicidade dos processos de gerenciamento de projetos, somando se as práticas e cultura da organização empreendedora do projeto
- Sistematização de metodologia ferramentas de gerenciamento de projetos

Banhado a Ouro

É necessário esforço para estabelecer as expectativas do cliente, para, só então, atendê-las.

Não é um procedimento correto entregar mais do que foi solicitado pelo cliente, mesmo em nível de qualidade.

Isso é errado por dois motivos.

- Foco principal é entregar o que o cliente solicitou, dentro do prazo e dentro do orçamento. Corre-se o risco do projeto n\u00e3o cumprir com o prazo ou com o orçamento
- 2. O cliente pode ter motivos para não ter pedido as características adicionais

Stakeholder

- Sem tradução para o português
- Geralmente traduzida como "parte interessada e "parte envolvida"
- Descreve grupo de pessoas e organizações que não são acionistas, mas que, sem seu suporte, a empresa não pode operar ou existir.

Gerente funcional

Responsável pelos recursos alocados no projeto

Cliente

Também conhecido como beneficiário em projeto finalísticos em organizações públicas, são representados pata comunidade ou população beneficiada Instituição responsável pelo empreendimento.

Organização

Instituição responsável pelo empreendimento. Equipe responsavel pela execução do projeto

Patrocinador

Responsável pelo aporte financeiro ou apoio político do projeto.

Gerente do projeto

Responsável pelo sucesso ou insucesso do projeto.

PMI e PMBOK

- Project Management Institute (PMI) criou Guia do Conjunto de Conhecimentos em Gerenciamento de Projeto (PMBOK)
- PMBOK descreve o que é exclusivo dessa área

Fases e Ciclo de Vida do Projeto

- Projetos são divididos em fases
- Melhoria de controle e gerenciamento.
- O conjunto das fases é conhecido como Ciclo de Vida de um projeto(ALM)
- Não existe uma maneira ideal para definir um ciclo de vida
 - Políticas que padronizam todos os projetos com um único ciclo de vida
 - Escolha do ciclo de vida mais adequado para cada projeto

OBS: ALM → Application Lifecycle Management

Ciclo de Vida do Projeto

Exemplo de ciclo de vida

Fases do Projeto

- Projeto pode ser dividido em qualquer número de fases
- Fase é um conjunto de atividades relacionadas de maneira lógica que culmina na conclusão de uma ou mais entregas
- Pode enfatizar os processos de um grupo específico de processos de gerenciamento do projeto
- Fases sao terminadas sequencialmente, mas podem se sobrepor em algumas situações do projeto
- Cada fase é marcada pela conclusão de um ou mais produtos principais
- Conclusão é marcada pela revisão dos resultados e do desempenho do projeto até esta data

Características do Ciclo de Vida do Projeto

Processos de Gerência de Projetos

- Projetos são compostos por processos
- Processos são uma série de ações que geram produtos.
- Processos de projetos s\u00e3o realizados por pessoas e, se enquadram em duas categorias:
 - Processos orientados ao Produto (especificação em riacho dos produtos do projeto).
 - Processos da Gerência de Projetos (descrição, organização e trabalho do projeto).

Grupos de processos

- Grupo de Processos de iniciação
 - Define autoriza o projeto ou uma fase do projeto
- Grupo de Processos de Planejamento
 - Datine e reline os objetivos e planejar a acho na para alcançar os objetivos e o escopo para os quais o projeto foi realizado
- Grupo de Processos de Execução
 - Integra pessoas e outros recurso para realizar o plano de gerenciamento do projeto
- Grupo de Processos de Monitoramento e Controle!
 - Mede e monitora regularmente o processo para identificar variações em relação ao plano de gerenciamento do projeto de forma que possam ser tomadas ações corretivas, quando necessário, para atender aos objetivos do projeto
- Grupo de Processos de Encerramento
 - Formaliza a aceleração do produto serviço ou resultado conduz o projeto ou uma fase do projeto a um final ordenado

Relações entre grupos de Processos

- Grupos de processos estão ligados pelos resultados que produzem.
- Resultado pode se tornar a base de início de outro.

• Entre grupos de processos centrais algumas ligações são repetidas

Processos de Projetos

Fases do Projeto

Introdução ao Git

Sistemas de Controle de Versão

- Responsável por registrar mudanças feitas em um arquivo ou um conjunto de arquivos
- Recuperação de versões específicas.
- Pode ser utilizado com praticamente qualquer tipo de arquivo
- Reverte arquivos ou um projeto inteiro para um estado anterior, compara mudanças ao decorrer do tempo, visualiza quem modificou por último, introduziu bugs e etc.

Sistemas de Controle de Versão Locais

- Método preferido é copiar arquivos em outro diretório
- Fácil gravar no arquivo errado ou sobrescrever arquivos
- Desenvolvidos VCS locais que armazenam todas as alterações dos arquivos sob controle de revisão

Sistemas de Controle de Versão Centralizados

- Único servidor central contém todos os arquivos versionados e vários clientes podem resgatar os arquivos do servidor
- Por muito tempo, modelo padrão para controle de versão.
- Possível saber o que os outros desenvolvedores estão fazendo no projeto.
- Administradores controlam quem faz o quê
- Mais fácil administrar CVCS do que bancos de dados locais em cada cliente.
- Servidor central é um ponto único de falha
- Se disco do servidor do banco de dados foi corrompido e n\u00e3o existir um backup, perde-se tudo

Git - Noções básicas

- Baseado no Bitkeeper, responsável pela atualização do Kernel do Linux
- Objetivos da ferramenta
 - Velocidade
 - Design simples
 - Suporte robusto a desenvolvimento n\u00e3o linear
 - Totalmente distribuído
 - Capaz de lidar eficientemente com grandes projetos como o kernel do Linux

Git - Snapshot

- Maior parte dos SVC armazena informação como uma lista de mudanças por arquivo.
- Tratam a informação como um conjunto de arquivos e mudanças a cada arquivo ao longo do tempo
- Git considera dados como um conjunto de snapshots de um mini sistema de arquivos.
- Ao salvar ou consolidar o estado do projeto, é como se tirasse foto de todos os arquivos naquele momento e armazena uma referência para essa captura.

Git - Comparação entre Git e outros SVC

Git - Quase todas Operações Locais

- Maior parte das operações usam apenas recursos e arquivos locais
- Nenhuma outra informação é necessária de outro computador na rede
- Não precisa requisitar o histórico ao servidor. Lê diretamente do banco de dados local
- Cálculo de mudanças de versão feito localmente
- E possível fazer commit mesmo offline

Git - Integridade e Dados

- Tudo no Git tem verificação de integridade calculada antes que seja armazenado
- Impossível mudar o conteúdo de qualquer arquivo ou diretório sem conhecimento do Git
- Mecanismo que o Git usa para fazer o checksum é o hash SHA-1
- Muito difícil fazer qualquer coisa no sistema que não seja reversível ou remover dados de qualquer forma.
- Possível perder ou embaralhar mudanças antes da consolidação
- Depois da consolidação de um snapshot, é muito difícil a perca de dados

Git - Os 3 Estados

• 3 estados fundamentais:

- Preparado (staged) marcado para que faça parte do snapshot do próximo commit
- Modificado (modified) sofreu mudanças mas ainda não foi consolidado

 Consolidado (committed) - seguramente armazenado em base de dados local

• 3 seções principais de projeto Git:

- Diretório do Git (git directory, repository) onde o Git armazena metadados e o banco de objetos do projeto. Parte copiada ao clonar repositório de outro computador.
- Diretório de trabalho (working directory) checkout de uma versão do projeto. Arquivos são obtidos a partir da base de dados no diretório do Git e colocados em disco para manipulação.
- Área de preparação (staging area) arquivo no diretório Git, que armazena informações sobre o que irá no próximo commit. Bastante conhecido como índice (index)

Git - Workflow

- 1. Modificação de arquivos no diretório de trabalho.
- 2. Seleção dos arquivos, adicionando snapshots deles para a área de preparação.
- 3. Efetua o commit, levando arquivos como eles estão na área de preparação e armazenando-os permanentemente no diretório Git.
- Se uma versão particular de um arquivo está no diretório Git, está consolidada.
- Se foi modificada e adicionada à área de preparação, está preparada
- Se foi alterada desde que foi obtida mas não foi preparada, está modificada.

O que é o Docker?

- Plataforma aberta, com o objetivo de facilitar o desenvolvimento, a implantação e a execução de aplicações em ambientes isolados
- Desenhado para disponibilizar uma aplicação da forma mais rápida possível
- Nuvem pública para compartilhamento de ambientes prontos
- Modelo de container "empacota" a aplicação, permitindo que seja reproduzida em plataforma de qualquer porte
- Velocidade para viabilizar o ambiente desejado

Porque usar Docker?

- Gerencia facilmente infraestrutura da aplicação, agilizando o processo de criação, manutenção e modificação do serviço
- Processo realizado sem necessidade de acesso privilegiado à infraestrutura corporativa
- "Linguagem comum entre desenvolvedores e administradores de servidores.
- "Linguagem" utilizada para construir arquivos com definições da infraestrutura necessária e como a aplicação será disposta

Ambientes Semelhantes

- Imagem Docker pode ser instanciada como container em qualquer ambiente que desejar
- A mesma imagem pode se comportar de formas diferentes entre distintos ambientes, através de parâmetros aplicados na inicialização
- Criação de um único artefato que migra entre ambientes. O artefato Docker é a própria imagem com todas as dependências requeridas para executar código, compilado ou dinâmico.

Aplicação como Pacote Completo

- Possível empacotar toda a aplicação e dependências, facilitando a distribuição
- Basta disponibilizar a imagem em repositório e liberar o acesso para o usuário
- Na atualização, a estrutura de camadas viabiliza que apenas a parte modificada seja transferida
- Imagens podem utilizar tags, permitido o armazenamento de múltiplas versões da mesma aplicação

Padronização e Replicação

- Imagens são construídas com de arquivos de definição, garantindo seguir um padrão, aumentando confiança na replicação
- Apenas um download de imagem e de arquivos orquestração permite reproduzir rapidamente o ambiente na estação de um novo desenvolvedor que poderá codificar seguindo o padrão da equipe
- Basta a mudança de um ou mais parâmetros do arquivo de definição de uma imagem para iniciar um ambiente modificado com versão requerida para avaliação.

Idioma Comum entre Infraestrutura e Desenvolvimento

- Sintaxe usada para parametrizar imagens e ambientes é considerada um idioma comum entre áreas com comunicação diversa
- Comunicação entre setores de infraestrutura e desenvolvimento feita a partir de comentários e aceitação de merge e pull request do sistema de controle de versão

Comunidade

- Repositório de imagens do Docker permite conseguir bons modelos de infraestrutura de aplicações ou serviços prontos
- Se uma aplicação necessita de recursos, não é preciso instalar e configurar totalmente os serviços. Utilizando as imagens de um repositório, basta configurar parâmetros mínimos para adequação com o ambiente.

Virtualização

- Virtualização permite que o kernel execute múltiplos processos no mesmo host de forma isolada
- Esses processos em execução são chamados de container
- Docker usa a funcionalidade chamada namespaces, que cria ambientes isolados entre containers
- Processos de aplicação em execução não tem acesso aos recursos de outra.

 Docker cria limites de uso do hardware para evitar a exaustão dos recursos da máquina por apenas um ambiente isolado

Virtualização

Instalação

- Docker é um ecossistema, sendo um conjunto de softwares
- Principais ferramentas do ecossistema Docker:
 - Docker Engine: software base de toda solução. É o daemon responsável pelos containers e o cliente usado que envia comandos para o daemon.
 - Docker Compose: define e executa múltiplos contêineres a partir de um arquivo de definição
 - Docker Machine: possibilita criar e manter ambientes Docker em máquinas virtuais, ambientes de nuvem e em máquinas físicas.