CÁLCULO NUMÉRICO

Aula 14

Ajuste de Curvas

AJUSTE DE CURVAS

□ Em geral, experimentos geram uma **gama de dados** que devem ser analisados para a criação de um **modelo**.

Obter uma **função** matemática que **represente** (ou que ajuste) os dados permite fazer simulações do processo de forma confiável, reduzindo assim repetições de experimentos que podem ter um **custo alto**.

□ Em geral, **não é aconselhável** usar interpolação polinomial quando:

Deseja-se extrapolar, fazer previsões em regiões fora do intervalo considerado;

Os dados tabelados são **resultados de experimentos**, onde **erros** na obtenção destes resultados podem influenciar a sua qualidade.

O objetivo é obter uma função que seja uma "boa aproximação" e que permita extrapolações com alguma margem de segurança.

□ A escolha das funções pode ser feita:

- □ Observando o gráfico dos pontos tabelados;
- □ Baseando-se em **fundamentos teóricos** do experimento que forneceu a tabela ou;
- □ Através de uma função já conhecida.

O Método dos Mínimos Quadrados é um método

bastante utilizado para ajustar uma determinada

quantidade de pontos e aproximar funções.

MÉTODO DOS MÍNIMOS QUADRADOS

□ O Método dos Mínimos Quadrados consiste em escolher os α_k (k = 1, 2, ..., n) de tal forma que:

$$\phi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \dots + \alpha_n g_n(x)$$
 (1)

se aproxime ao máximo de f(x).

onde: f(x) fornece os **pontos exatos**; g(x) fornece os **pontos estimados**.

 \Box O Método dos Mínimos Quadrados consiste em escolher os α_k (k=1, 2, ..., n) de tal forma que a **soma dos quadrados** dos desvios seja mínima.

$$E = \sum_{k=1}^{m} \left[f(x_k) - \phi(x_k) \right]^2 \tag{2}$$

x_i	$f(x_i)$
1	2
2	4
3	3
4	5

$$\phi\left(x\right)=0.8\,x+1.5$$

X

□ Observe que, se o modelo ajustar exatamente aos dados, o mínimo da função:

$$E = \sum_{k=1}^{m} \left[f(x_k) - \phi(x_k) \right]^2$$

será zero e, portanto, a interpolação é um CASO ESPECIAL dentro do método dos quadrados mínimos.

x_i	$f(x_i)$
1	2
2	4
3	3
4	5

f(x)

$$\phi(x) = x^3 - 7.5 x^2 + 17.5 x - 9$$

X

□ Dado um conjunto de pontos $(x_k; f(x_k)), k = 0, 1, 2, ..., m$ (f dada por TABELA DE VALORES)

 \Box O problema de ajuste de curvas consiste em encontrar funções $g_k(x)$, tais que o desvio em cada ponto k, definido por (2) seja mínimo, ou seja:

$$\phi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x) + \cdots + \alpha_n g_n(x)$$

se aproxime ao máximo de f(x).

 \square COMO ESCOLHER $g_k(x)$????

A escolha das funções $g_k(x)$ depende do gráfico dos pontos, chamado de **DIAGRAMA DE DISPERSÃO**, através do qual pode-se visualizar o tipo de curva que melhor se ajusta aos dados.

AJUSTE LINEAR

X_i	$f(x_i)$
1	2
2	4
3	3
4	5

$$\phi\left(x\right)=0.8\,x+1.5$$

X

□ Como pode ser observado no gráfico anterior, uma possível aproximação seria através de uma função linear do tipo:

$$\phi(x_k) = \alpha_0 + \alpha_1 x_k \tag{3}$$

□ Assim o objetivo é determinar os valores de α_0 e α_1 , que minimizem:

$$E = \sum_{k=1}^{m} [y_{k} - (\alpha_{0} + \alpha_{1} x_{k})]^{2}$$

 \Box Para que E seja mínimo é necessário que:

$$\left| \frac{\partial E}{\partial \alpha_0} = 0 \right| \tag{4}$$

$$\frac{\partial E}{\partial \alpha_1} = 0 \tag{5}$$

□ As equações (4) e (5) simplificam-se nas **EQUAÇÕES NORMAIS**:

$$\alpha_0 m + \alpha_1 \sum_{k=1}^m x_k = \sum_{k=1}^m y_k$$
 (6)

$$\left|\alpha_{0}\sum_{k=1}^{m}x_{k}+\alpha_{1}\sum_{k=1}^{m}x_{k}^{2}=\sum_{k=1}^{m}x_{k}y_{k}\right|^{(7)}$$

 \square Resolvendo este sistema de equações, encontramos os valores de α_0 e α_1 .

□ Considerando os dados da Tabela 1, e através do gráfico gerado, pode-se definir que tipo de curva melhor se ajusta aos dados.

Tabela 1

x_k	1	2	3	4	5	6	7	8	9	10
\mathcal{Y}_k	1,3	3,5	4,2	5,0	7,0	8,8	10,1	12,5	13,0	15,6

Figura 1. Diagrama de Dispersão para os dados da Tabela 1

□ Considerando a Tabela 1, e os dados necessários para as equações (8) e (9), a Tabela 2 pode ser construída:

k	x_k	\mathcal{Y}_k	x_k^2	$x_k y_k$	
1	1	1,3	1	1,3	
2	2	3,5	4	7,0	
3	3	4,2	9	12,6	
4	4	5,0	16	20,0	
5	5	7,0	25	35,0	
6	6	8,8	36	52,8	
7	7	10,1	59	70,7	
8	8	12,5	64	100,0	
9	9	13,0	81	117,0	
10	10	15,6	100	156,0	
$oldsymbol{\Sigma}$	55	81	385	572,4	

 \Box Considerando os dados da Tabela 2, os parâmetros α_0 e α_1 podem ser calculados como:

$$\alpha_0 = -0.360$$

$$\alpha_1 = 1,538$$

□ Assim a reta a ser ajustada é determinada por:

$$y = 1,538x - 0,360$$

□ Na Figura 2, pode-se observar o ajuste através da reta:

Figura 2. Ajuste linear

Aula 14 – Ajuste de Curvas
Cálculo Numérico

AJUSTE POLINOMIAL

Ajuste Polinomial

- □ O processo usado para o ajuste linear pode ser estendido para ajuste polinomial.
- \square Assim, uma função polinomial de grau n é dada por:

$$P_{n}(x) = \alpha_{n}x^{n} + \alpha_{n-1}x^{n-1} + \dots + \alpha_{1}x + \alpha_{0}$$

□ O objetivo é minimizar o erro:

$$E = \sum_{k=1}^{m} \left[y_k - P_n(x_k) \right]^2$$

Ajuste Polinomial

Como no caso linear, para que E seja minimizado é necessário que:

$$\left| \frac{\partial E}{\partial \alpha_j} (\alpha_0, \alpha_1, \dots, \alpha_n) = 0 \right| \quad \text{para cada } j = 0, 1, \dots, n.$$

 \square Isto fornece as n+1 equações normais nas n+1 incógnitas α_i :

$$\sum_{i=0}^{n} \alpha_{i} \sum_{k=1}^{m} x_{k}^{j+i} = \sum_{k=1}^{m} x_{k}^{j} y_{k}$$

para cada j = 0, 1, ..., n.

Ajuste Polinomial

$$\alpha_0 m + \alpha_1 \sum_{k=1}^m x_k + \alpha_2 \sum_{k=1}^m x_k^2 + \dots + \alpha_n \sum_{k=1}^m x_k^n = \sum_{k=1}^m y_k$$

$$\alpha_{0} \sum_{k=1}^{m} x_{k} + \alpha_{1} \sum_{k=1}^{m} x_{k}^{2} + \alpha_{2} \sum_{k=1}^{m} x_{k}^{3} + \dots + \alpha_{n} \sum_{k=1}^{m} x_{k}^{n+1} = \sum_{k=1}^{m} y_{k} x_{k}$$

$$\vdots$$

$$\alpha_0 \sum_{k=1}^m x_k^n + \alpha_1 \sum_{k=1}^m x_k^{n+1} + \alpha_2 \sum_{k=1}^m x_k^{n+2} + \dots + \alpha_n \sum_{k=1}^m x_k^{2n} = \sum_{k=1}^m y_k x_k^n$$

□ Ajustar os dados da Tabela 3 com um polinômio de grau dois utilizando o método dos mínimos quadrados.

Tabela 3

k	x_k	y_k
1	0,00	1,0000
2	0,25	1,2840
3	0,50	1,6487
4	0,75	2,1170
5	1,00	2,7183

k	x_k	y_k	x_k^2	x_k^3	x_k^4	$x_k y_k$	$x_k^2 y_k$
1	0,00	1,0000	0,0000	0,0000	0,0000	0,0000	0,0000
2	0,25	1,2840	0,0625	0,1563	0,0039	0,3210	0,0803
3	0,50	1,6487	0,2500	0,1250	0,0625	0,8244	0,4122
4	0,75	2,1170	0,5625	0,4219	0,3164	1,5878	1,1908
5	1,00	2,7183	1,0000	1,0000	1,000	2,7183	2,7183
$oldsymbol{\Sigma}$	2,50	8,7680	1,875	1,5625	1,3828	5,4514	4,4015

Para este problema, n = 2, m = 5 e as três equações normais são:

$$5.0\alpha_0 + 2.5\alpha_1 + 1.875\alpha_2 = 8,7680$$

$$2.5\alpha_0 + 1.875\alpha_1 + 1.5625\alpha_2 = 5,4514$$

$$1.875\alpha_0 + 1.5625\alpha_1 + 1.3828\alpha_2 = 4,4015$$

□ Resolvendo o sistema, obtêm-se:

$$\alpha_0 = 1,0051$$

$$\alpha_0 = 1,0051$$
 $\alpha_1 = 0,8647$ $\alpha_2 = 0,8432$

$$\alpha_2 = 0.8432$$

$$y = 1,0051 + 0,8642x + 0,8437x^2$$

Figura 3. Ajuste polinomial

O erro total

$$E = \sum_{k=1}^{5} [y_k - P(x_k)]^2$$

= 2,74×10⁻⁴

é o mínimo que pode ser obtido usando um polinômio com grau máximo 2

ATENÇAO

□ Os ajustes realizados até aqui, são <u>lineares</u> em relação aos α_k e não às $g_k(x)$.

se

$$g_{\scriptscriptstyle 1}(x) = e^{x}$$

$$g_2(x) = (1+x)^2$$

$$\phi(x) = \alpha_1 g_1(x) + \alpha_2 g_2(x)$$

$$\phi(x) = \alpha_1^2 g_1(x) + e^{\alpha_2} g_2(x)$$

- □ Podemos proceder de forma análoga aos casos anteriores.
- □ Por exemplo, se tivermos:

$$g_0(x) = x$$

$$g_1(x) = \cos(x)$$

com,
$$\phi(x) = \alpha_0 g_0(x) + \alpha_1 g_1(x)$$

$$\begin{cases} \alpha_0 \sum_{k=1}^m x_k^2 + \alpha_1 \sum_{k=1}^m x_k \cos x_k = \sum_{k=1}^m x_k y_k \\ \alpha_0 \sum_{k=1}^m x_k \cos x_k + \alpha_1 \sum_{k=1}^m \cos^2 x_k = \sum_{k=1}^m y_k \cos x_k \end{cases}$$

AJUSTE NÃO-LINEAR

- Existem casos, onde o diagrama de dispersão de uma função indica que os dados devem ser ajustados por uma função não linear.
- Ocasionalmente, é apropriado supor que os dados estejam relacionados exponencialmente.
- \Box **Exemplo:** $\phi(x) = ae^{bx}$, para a e b constantes.

A dificuldade de aplicação do método dos mínimos quadrados neste caso consiste na tentativa de minimizar *E*.

Para estes casos, um **PROCESSO DE LINEARIZAÇÃO** deve ser empregado, para que seja possível aplicar o Método dos Mínimos Quadrados.

□ Neste caso, podemos proceder da seguinte forma:

Caso I: Função Exponencial

$$\phi(x) = y = ae^{bx}$$

□ Aplicando logaritmo em ambos os lados, obtêm-se:

$$\ln(y) = \ln(ae^{bx}) = \ln(a) + bx$$

□ Realizando as seguintes substituições:

$$\square$$
 Obtêm-se: $Y=lpha_{_0}+lpha_{_1}X$

$$Y = \ln(y)$$

$$\alpha_0 = \ln(a)$$

$$\alpha_1 = b$$

$$X = x$$

□ Caso II: Função Logarítmica

$$y = a \ln(bx)$$

- Expandindo: $y = a \ln(b) + a \ln(x)$
- □ Realizando as seguintes substituições:

$$Y = y$$

$$\alpha_0 = a \ln(b)$$

$$\alpha_1 = a$$

$$X = \ln(x)$$

$$\square$$
 Obtêm-se: $Y = \alpha_{\scriptscriptstyle 0} + \alpha_{\scriptscriptstyle 1} X$

□ Caso III: Função Potencial

$$y = ax^b$$

Aplicando logaritmo em ambos os lados:

$$\ln(y) = \ln(ax^b) = \ln(a) + \ln(x^b) = \ln(a) + \ln(x)$$

□ Realizando as seguintes substituições:

$$\Box$$
 Obtêm-se: $Y=lpha_{_0}+lpha_{_1}X$

$$Y = \ln(y)$$

$$\alpha_0 = \ln(a)$$

$$\alpha_1 = b$$

$$X = \ln(x)$$

□ Caso IV: Função Hiperbólica

$$y = a + \frac{b}{x}$$

□ Realizando as seguintes substituições:

$$\alpha_0 = a$$

$$\alpha_0 = b$$

$$\alpha_1 = b$$

$$X = x^{-1}$$

□ Usam-se as equações do **Ajuste Linear** para obter α_0 e α_1 :

$$\alpha_0 m + \alpha_1 \sum_{k=1}^m x_k = \sum_{k=1}^m y_k$$

$$\alpha_0 \sum_{k=1}^m x_k + \alpha_1 \sum_{k=1}^m x_k^2 = \sum_{k=1}^m x_k y_k$$

Após aplicar o método dos mínimos quadrados, é

preciso fazer as substituições necessárias para

encontrar os parâmetros a e b da função de

aproximação original.

IMPORTANTE

Observe que os parâmetros a e b assim obtidos não

são ótimos dentro do critério dos quadrados

mínimos, porque estamos ajustando o problema

linearizado e não o problema original.

□ Encontrar uma função que se ajusta aos valores da tabela abaixo:

X	$\boldsymbol{\mathcal{Y}}$
-1,0	36,547
-0,7	17,267
-0,4	8,155
-0,1	3,852
0,2	1,82
0,5	0,86
0,8	0,406
1,0	0,246

Aula 14 – Ajuste de Curvas
Cálculo Numérico

 \Box Como o ajuste será realizado por uma função exponencial é necessário calcular: $Y = \ln y$

k	x_k	\mathcal{Y}_k	$Y_k = ln(y_k)$	x_k^2	$x_k Y_k$
1	-1,0	36,547	3,599	1,00	-3,599
2	-0,7	17,264	2,849	0,49	-1,994
3	-0,4	8,155	2,099	0,16	-0,839
4	-0,1	3,852	1,349	0,01	-0,135
5	0,2	1,820	0,599	0,04	0,120
6	0,5	0,860	-0,151	0,25	-0,075
7	0,8	0,406	-0,901	0,64	-0,721
8	1,0	0,246	-1,402	1,00	-1,402
Σ	0,3	69,15	8,041	3,59	-8,645

$$\alpha_0 = 1,099$$

$$\alpha_0 = \ln(a)$$

$$\alpha_1 = -2,5$$

$$\alpha_1 = -b$$

$$a = 3,001$$

$$b = 2, 5$$

$$y = 3,001e^{-2,5x}$$

LEMBRE-SE!!!!!!!

Os parâmetros α_0 e α_1 que ajustam a função $\varphi(x)$ à função y no sentido dos quadrados mínimos.

NÃO se pode afirmar que os parâmetros **a** e **b** (obtidos através de α_0 e α_1) são os que **ajustam** ϕ (x) à função y dentro dos critérios dos quadrados mínimos.

Teste de Alinhamento

Uma vez escolhida uma função não linear em a, b, ... para ajustar uma função. Uma forma de verificar se a escolha foi razoável é aplicar o **TESTE DE ALINHAMENTO**.

Teste de Alinhamento

□ Fazer a "linearização" da função não linear escolhida;

□ Fazer o diagrama de dispersão dos novos dados;

□ Se os pontos do diagrama estiverem alinhados, isto significará que a **função não linear** escolhida foi uma "boa escolha".

 \Box Gráfico de *x* versus Y = ln y

k	x_k	${\cal Y}_k$	$Y_k = ln(y_k)$
1	-1	36,547	3,599
2	-0,7	17,264	2,849
3	-0,4	8,155	2,099
4	-0,1	3,852	1,349
5	0,2	1,820	0,599
6	0,5	0,860	-0,151
7	0,8	0,406	-0,901
8	1	0,246	-1,402
Σ	0,3	69,15	8,041

Aula 14 – Ajuste de Curvas Cálculo Numérico

Teste de Alinhamento

Diagrama de dispersão dos novos dados $(Y = \ln y \times X = x)$.

□ Usando o Método dos Mínimos Quadrados, ajustar uma curva do tipo $s = q t^p$ aos dados abaixo:

t	2,2	2,7	3,5	4,1
S	65	60	53	50

- \square Qual o valor de *s* quando t = 4,5?
- \Box Qual o vaor de *t* quando s = 40?

□ Caso III: Função Potencial

$$s = qt^p$$

□ Aplicando logaritmo em ambos os lados:

$$\log s = \log q + p \log t$$

□ Realizando as seguintes substituições:

$$Y = \log s$$

$$\alpha_0 = \log q$$

$$\alpha_1 = p$$

$$X = \log t$$

$$\square$$
 Obtêm-se: $Y = \alpha_1 X + \alpha_0$

□ Temos então:

k	t	S	X_k	Y_k	X_k^2	$X_k Y_k$
1	2,2	65	0,3424	1,8129	0,1172	0,6207
2	2,7	60	0,4314	1,7782	0,1861	0,7671
3	3,5	53	0,5441	1,7243	0,2960	0,9382
4	4,1	50	0,6128	1,6990	0,3755	1,0411
Σ			1,9307	7,0144	0,9748	3,3671

$$4\alpha_0 + 1,9307\alpha_1 = 7,0144$$
$$1,9307\alpha_0 + 0,9748\alpha_1 = 3,3671$$

$$\alpha_0 = 1,963$$

$$\alpha_0 = \log q$$

$$q = 91,83$$

$$\alpha_1 = -0,434$$

$$\alpha_1 = p$$

$$p = -0.434$$

$$s = 91,83t^{-0,434}$$

□ Se:

$$s = 91,83t^{-0,434}$$

 \Box então, para $t=4.5; s\approx 48$, e para $s=40; t\approx 6.8$.

COEFICIENTE DE DETERMINAÇÃO

Coeficiente de Determinação

 \Box O coeficiente de determinação (r^2) nos fornece uma estimativa da qualidade do ajuste.

$$r^2 = \frac{S_t - S_r}{S_t}$$

onde:

- \Box S_t é a soma total dos quadrados dos desvios entre os pontos dados e a média;
- \Box S_r é a soma dos quadrados dos desvios entre o y medido e o y calculado (que chamamos aqui de E).

Coeficiente de Determinação

$$S_t = \sum_{k=1}^m (y_k - \overline{y})^2$$

 \Box S_t mede o quadrado da discrepância entre os dados e uma única estimativa da medida de tendência central — a média.

$$S_r = E = \sum_{k=1}^{m} [f(x_k) - \phi(x_k)]^2$$

 \Box S_r mede o quadrado da distância vertical entre os dados e uma outra medida da tendência central (a curva ajustada).

Coeficiente de Determinação

□ Para implementação computacional, é conveniente usar:

$$r^{2} = \left[\frac{m\sum_{k=1}^{m} x_{k} y_{k} - \left(\sum_{k=1}^{m} x_{k}\right) \left(\sum_{k=1}^{m} y_{k}\right)}{\sqrt{m\sum_{k=1}^{m} x_{k}^{2} - \left(\sum_{k=1}^{m} x_{k}\right)^{2}} \sqrt{m\sum_{k=1}^{m} y_{k}^{2} - \left(\sum_{k=1}^{m} y_{k}\right)^{2}}\right]^{2}$$

- □ Usando os dados do Exemplo 1, obtenha o coeficiente de determinação para o ajuste realizado.
- □ No Exemplo 1, ajustamos a seguinte reta aos dados:

$$y = 1,538x - 0,360$$

onde:

$$\alpha_0 = -0.360$$

$$\alpha_1 = 1,538$$

□ Para calcular o coeficiente de determinação, precisamos:

k	x_k	y_k	$\left(y_k - \overline{y}\right)^2$	$\phi(x_k)$	$\left[y_k - \phi(x_k)\right]^2$
1	1	1,3	46,24	1,1780	0,0149
2	2	3,5	21,16	2,7160	0,6147
3	3	4,2	15,21	4,2540	0,0029
4	4	5,0	9,61	5,7920	0,6273
5	5	7,0	1,21	7,3300	0,1089
6	6	8,8	0,49	8,8680	0,0046
7	7	10,1	4,00	10,4060	0,0936
8	8	12,5	19,36	11,9440	0,3091
9	9	13,0	24,01	13,4820	0,2323
10	10	15,6	56,25	15,0200	0,3364
$oldsymbol{\Sigma}$	-	-	197,54	-	2,3447

□ Assim:

$$r^2 = \frac{197,54 - 2,3447}{197,54} = 0,9881$$

- □ Podemos concluir que a reta se ajustou bem aos dados.
- □ O coeficiente de determinação indica que a reta explica 98,81% da variação dos dados.

- □ Usando os dados do Exemplo 4, obtenha o coeficiente de determinação para o ajuste realizado.
- □ No Exemplo 4, fizemos um ajuste não-linear. Nestes casos, para calcular o Coeficiente de Determinação (r^2), usamos as informações da equação linearizada:

$$Y = \ln y = \alpha_0 + \alpha_1 X$$

com:
$$\alpha_0 = 1,099, \quad \alpha_1 = -2,5$$

 \square Como o ajuste será realizado por uma função exponencial é necessário calcular: $Y = \ln y$

k	x_k	${\cal Y}_k$	$Y_k = ln(y_k)$	x_k^2	$x_k Y_k$
1	-1,0	36,547	3,599	1,00	-3,599
2	-0,7	17,264	2,849	0,49	-1,994
3	-0,4	8,155	2,099	0,16	-0,839
4	-0,1	3,852	1,349	0,01	-0,135
5	0,2	1,820	0,599	0,04	0,120
6	0,5	0,860	-0,151	0,25	-0,075
7	0,8	0,406	-0,901	0,64	-0,721
8	1,0	0,246	-1,402	1,00	-1,402
Σ	0,3	69,15	8,041	3,59	-8,645

□ Para calcular o coeficiente de determinação, precisamos:

k	X_k	Y_k	$(Y_k - \overline{Y})^2$	$\alpha_0 + \alpha_1 X$	$\left[y_k - \left(\alpha_0 + \alpha_1 X\right)\right]^2$
1	-1,0	3,599	6,7282	3,599	0
2	-0,7	2,849	3,3999	2,849	0
3	-0,4	2,099	1,1966	2,099	0
4	-0,1	1,349	0,1183	1,349	0
5	0,2	0,599	0,1649	0,599	0
6	0,5	-0,151	1,3366	-0,151	0
7	0,8	-0,901	3,6333	-0,901	0
8	1,0	-1,402	5,7943	-1,402	0
$oldsymbol{\Sigma}$	-	-	22,3720	-	0

média
$$\overline{Y} = 1,0051$$

□ Assim:

$$r^2 = \frac{22,3720 - 0}{22,3720} = 1$$

- □ Podemos concluir que a função exponencial se ajustou bem aos dados.
- □ O coeficiente de determinação indica que a função exponencial encontrada explica 100% da variação dos dados.

Regressão Linear Múltipla

Regressão Linear Múltipla

- □ Em diversas situações, temos uma variável dependente (resposta) que depende de duas ou mais variáveis independentes (explanatórias, preditoras).
- □ Por exemplo:

$$\phi(x_k) = \alpha_0 + \alpha_1 x_{1k} + \alpha_2 x_{2k}$$

□ Vamos, então, minimizar:

$$S_r = \sum_{k=1}^{m} \left[y_k - (\alpha_0 + \alpha_1 x_{1k} + \alpha_2 x_{2k}) \right]^2$$

Regressão Linear Múltipla

 \square Para que E seja mínimo é necessário que:

$$\frac{\partial S_r}{\partial \alpha_0} = 0$$

$$\frac{\partial S_r}{\partial \alpha_1} = 0$$

$$\frac{\partial S_r}{\partial \alpha_2} = 0$$

Regressão Linear Múltipla

□ Em forma matricial, teremos:

$$\begin{bmatrix} m & \sum_{k=1}^{m} x_{1k} & \sum_{k=1}^{m} x_{2k} \\ \sum_{k=1}^{m} x_{1k} & \sum_{k=1}^{m} x_{1k}^{2} & \sum_{k=1}^{m} x_{1k} x_{2k} \\ \sum_{k=1}^{m} x_{2k} & \sum_{k=1}^{m} x_{1k} x_{2k} & \sum_{k=1}^{m} x_{2k}^{2} \\ \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{m} y_{k} \\ \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{m} x_{1k} y_{k} \\ \sum_{k=1}^{m} x_{1k} y_{k} \\ \sum_{k=1}^{m} x_{2k} y_{k} \end{bmatrix}$$

 \Box Resolvendo este sistema de equações, encontramos os valores de α_0 , α_1 e α_2

□ Use regressão linear múltipla para ajustar os dados abaixo:

x_1	x_2	y
0,0	0,0	5,0
2,0	1,0	10,0
2,5	2,0	9,0
1,0	3,0	0,0
4,0	6,0	3,0
7,0	2,0	27,0

k	y	x_1	x_2	x_1^2	$x_2^{\ 2}$	x_1x_2	$x_{l}y$	x_2y
1	5,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
2	10,0	2,0	1,0	4,0	1,0	2,0	20,0	10,0
3	9,0	2,5	2,0	6,25	4,0	5,0	22,5	18,0
4	0,0	1,0	3,0	1,0	9,0	3,0	0,0	0,0
5	3,0	4,0	6,0	16,0	36,0	24,0	12,0	18,0
6	27,0	7,0	2,0	49,0	4,0	14,0	189,0	54,0
\sum	54	16,5	14	76,25	54,0	48,0	243,5	100,0

□ Teremos então:

$$\begin{bmatrix} 6,0 & 16,5 & 14,0 \\ 16,5 & 76,5 & 48,0 \\ 14,0 & 48,0 & 54,0 \end{bmatrix} \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 54,0 \\ 243,5 \\ 100,0 \end{bmatrix}$$

□ Resolvendo o sistema:

$$\alpha_0 = 5.0, \quad \alpha_1 = 4.0 \quad e \quad \alpha_2 = -3.0$$

 \Box Após realizar o ajuste, a equação linear de y em função de x_1 e x_2 será:

$$y = 5 + 4x_1 - 3x_2$$

□ Para calcular o coeficiente de determinação, precisamos:

k	$x_{1,k}$	$x_{2,k}$	\mathcal{Y}_k	$(y_k - \overline{y})^2$	$\phi(x_1,x_2)$	$\left[y_{k}-\phi\right]^{2}$
1	0,0	0,0	5,0	16	5,0	0,0
2	2,0	1,0	10,0	100	10,0	0,0
3	2,5	2,0	9,0	81	9,0	0,0
4	1,0	3,0	0,0	0	0,0	0,0
5	4,0	6,0	3,0	9	3,0	0,0
6	7,0	2,0	27,0	729	27,0	0,0
$\mathbf{\Sigma}$	_	-	-	935	-	0,0

média
$$\bar{y} = 9,0$$

$$r^2 = 1$$

Referências

- □ BURDEN, Richard L.; FAIRES, J. Douglas. Análise numérica. São Paulo, SP: Cengage Learning, 2008. xiii, 721 p. ISBN 8522106010.
- □ RUGGIERO, Marcia A. Gomes; LOPES, Vera Lucia da Rocha. **Cálculo numérico:** aspectos teóricos e computacionais. 2. ed. São Paulo, SP: Makron, c1997. xvi, 406 p. ISBN 8534602042.
- □ CHAPRA, Steven C.; CANALE, Raymond P. **Métodos numéricos para engenharia**. 5. ed. São Paulo: McGraw-Hill, 2008. 809 p. ISBN 978-85-86804-87-8.