Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently amended) A compound of formula (I)

wherein

A is a bivalent radical selected from -C(O)-, -C(O)NH-, -NHC(O)-, -N(R 7)-CH $_2$ -, -CH $_2$ -N(R 7)-, -CH(NR 8 R 9)- and -C(=NR 10)-;

 R^1 is $-O(CH_2)_dXR^{11}$;

 R^2 is hydrogen or a hydroxyl protecting group;

 R^3 is hydrogen, C_{1-4} alkyl, or C_{3-6} alkenyl optionally substituted by <u>a</u> 9 to 10 membered fused bicyclic heteroaryl;

 R^4 is hydroxy, C_{3-6} alkenyloxy optionally substituted by <u>a</u> 9 to 10 membered fused bicyclic heteroaryl, or C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy or $-O(CH_2)_eNR^7R^{12}$,

R⁵ is hydroxy, or

R⁴ and R⁵ taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is a bivalent radical selected from the group consisting of -CH₂-, -CH(CN)-, -O-, -N(\mathbb{R}^{13})- and -CH($\mathbb{S}\mathbb{R}^{13}$)-;

 R^6 is hydrogen or fluorine;

R⁷ is hydrogen or C₁₋₆alkyl;

 R^8 and R^9 are each independently hydrogen, $C_{1\text{-}6}$ alkyl, $-C(=NR^{10})NR^{14}R^{15}$ or $-C(O)R^{14}$, or R^8 and R^9 together form $=CH(CR^{14}R^{15})_{faryl}$, $=CH(CR^{14}R^{15})_{f}$ heterocyclyl, $=CR^{14}R^{15}$ or $=C(R^{14})C(O)OR^{14}$, wherein the alkyl, aryl and heterocyclyl groups are optionally substituted by up to three groups independently selected from R^{16} ;

 R^{10} is -OR¹⁷, $C_{1\text{-}6}$ alkyl, -(CH₂)_garyl, -(CH₂)_gheterocyclyl or -(CH₂)_hO(CH₂)_iOR⁷, wherein each R^{10} group is optionally substituted by up to three groups independently selected from R^{16} ; R^{11} is a heterocyclic group having the following structure:

or

 R^{12} is hydrogen or C_{1-6} alkyl;

 R^{13} is hydrogen or $C_{1\text{-}4}$ alkyl optionally substituted by a group selected from an optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and or optionally substituted 9 to 10 membered fused bicyclic heteroaryl;

 R^{14} and R^{15} are each independently hydrogen or C_{1-6} alkyl;

R¹⁶ is halogen, cyano, nitro, trifluoromethyl, azido, -C(O)R²¹, -C(O)OR²¹, -OC(O)R²¹, -

 ${\rm OC(O)OR^{21}, -NR^{22}C(O)R^{23}, -C(O)NR^{22}R^{23}, -NR^{22}R^{23}, hydroxy, C_{1-6}alkyl, -S(O)_kC_{1-6}alkyl, -S(O)_kC_{1-6}al$

6alkyl, C₁₋₆alkoxy, -(CH₂)_maryl or -(CH₂)_mheteroaryl, wherein the alkoxy group is optionally substituted by up to three groups independently selected from the group consisting of

 $-NR^{14}R^{15}$, halogen and $-OR^{14}$, and the aryl and heteroaryl groups are optionally substituted by up to five groups independently selected from the group consisting of halogen, cyano, nitro, trifluoromethyl, azido, $-C(O)R^{24}$, $-C(O)OR^{24}$, $-OC(O)OR^{24}$, $-NR^{25}C(O)R^{26}$, $-C(O)NR^{25}R^{26}$, $-NR^{25}R^{26}$, hydroxy, C_{1-6} alkyl and C_{1-6} alkoxy;

 R^{17} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}6}$ alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substituents independently selected from the group consisting of optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered

 R^{18} is hydrogen, $-C(O)OR^{29}$, $-C(O)NHR^{29}$, $-C(O)CH_2NO_2$ or $-C(O)CH_2SO_2R^7$;

 R^{19} is hydrogen, C_{1-4} alkyl optionally substituted by hydroxy or C_{1-4} alkoxy, C_{3-7} cycloalkyl, or optionally substituted phenyl or benzyl;

 R^{20} is halogen, C_{1-4} alkyl, C_{1-4} thioalkyl, C_{1-4} alkoxy, -NH₂, -NH(C_{1-4} alkyl) or -N(C_{1-4} alkyl)₂;

 R^{21} is hydrogen, C_{1-10} alkyl, $-(CH_2)_p$ aryl or $-(CH_2)_p$ heteroaryl;

 R^{22} and R^{23} are each independently hydrogen, -OR¹⁴, $C_{1\text{-}6}$ alkyl, -(CH₂)_qaryl or -(CH₂)_qheterocyclyl;

R²⁴ is hydrogen, C₁₋₁₀alkyl, -(CH₂)_raryl or -(CH₂)_rheteroaryl;

 R^{25} and R^{26} are each independently hydrogen, $-OR^{14}$, C_{1-6} alkyl, $-(CH_2)_s$ aryl or $-(CH_2)_s$ heterocyclyl;

 R^{27} and R^{28} are each independently hydrogen, $C_{1\text{-4}}$ alkyl or $C_{1\text{-4}}$ alkoxy $C_{1\text{-4}}$ alkyl; R^{29} is hydrogen,

 $C_{1\text{-}6}$ alkyl optionally substituted by up to three groups independently selected from the group consisting of halogen, cyano, $C_{1\text{-}4}$ alkoxy optionally substituted by phenyl or $C_{1\text{-}4}$ alkoxy, $-C(O)C_{1\text{-}6}$ alkyl, $-C(O)OC_{1\text{-}6}$ alkyl, $-OC(O)C_{1\text{-}6}$ alkyl, $-OC(O)C_{1\text{-}6}$ alkyl, $-OC(O)C_{1\text{-}6}$ alkyl, $-OC(O)C_{1\text{-}6}$ alkyl, $-OC(O)C_{1\text{-}6}$ alkyl, $-OC(O)C_{1\text{-}6}$ alkyl,

-(CH₂)_wC₃₋₇cycloalkyl,

-(CH₂)_wheterocyclyl,

-(CH₂)_wheteroaryl,

-(CH₂)_W aryl,

C₃₋₆alkenyl, or

C₃₋₆alkynyl;

R³⁰ is hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzoyl;

 R^{31} is hydrogen or R^{20} , or R^{31} and R^{19} are linked to form the bivalent radical -O(CH₂)₂- or - (CH₂)_t-;

 R^{32} and R^{33} are each independently hydrogen or $C_{1\text{-}6}$ alkyl optionally substituted by phenyl or - $C(O)OC_{1\text{-}6}$ alkyl, or

R³² and R³³, together with the nitrogen atom to which they are bound, form a 5 or 6 membered heterocyclic group optionally containing one additional heteroatom selected from oxygen, nitrogen and sulfur;

X is $-U(CH_2)_VB$ -, $-U(CH_2)_V$ - or a group selected from:

$$-N$$
 N $-$

$$\frac{1}{\sqrt{N}}$$

and

U and B are independently a divalent radical selected from $-N(R^{30})$ -, -O-, $-S(O)_Z$ -, -

 $\rm N(R^{30})\rm C(O)\text{--}, -\rm C(O)\rm N(R^{30})\text{--}$ and -N[C(O)R^30]-;

W is $-C(R^{31})$ - or a nitrogen atom;

d is an integer from 2 to 6;

e is an integer from 2 to 4;

f, g, h, m, p, q, r, s and w are each independently integers from 0 to 4;

i is an integer from 1 to 6;

j, k, n and z are each independently integers from 0 to 2;

t is 2 or 3;

v is an integer from 1 to 8;

or a pharmaceutically acceptable derivative salt thereof.

- 2. (Currently amended) A compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein A is -C(O)- or -N(R⁷)-CH₂-.
- 3. (Currently amended) A compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein X is $-U(CH_2)_VB$ or $-U(CH_2)_V$.
- 4. (Currently amended) A compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein d is 2 or 3.

5. (Currently amended) A compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein R¹¹ is a heterocyclic group of the following formula:

or

wherein the heterocyclic is linked in the 6 or 7 position and j, R^{18} , R^{19} and R^{20} are as defined in claim 1;

a heterocyclic group of the following formula:

wherein the heterocylic is linked in the (ii) or (iii) position, W is -C(R 31)- and R 31 and R 19 are linked to form the bivalent radical -(CH $_2$)_t- as defined in claim 1, and j, R 18 , R 19 and R 20 are as

defined in claim 1; or

a heterocyclic group of the following formula:

$$(R^{20})_{j}$$
 $(R^{20})_{j}$
 $(R^{3})_{j}$
 $(R^{3})_{j}$

wherein the heterocyclic is linked in the 7 or 8 position and j, R^{18} , R^{19} and R^{20} are as defined in claim 1.

6. (Canceled)

7. (Currently amended): A compound selected from:

4"-*O*-(2-{[2-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinolin-7-ylamino)-ethyl]-methylamino}-ethyl)-6-*O*-methyl-erythromycin A 11,12-carbonate;

4"-*O*-(3-{[2-(3-carboxy-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydro-quinolin-7-ylamino)ethyl]-methylamino}-propyl)-6-*O*-methyl-erythromycin A 11,12-carbonate;

4"-*O*-{3-[2-(2-carboxy-1-oxo-6,7-dihydro-1*H*,5*H*-pyrido[3,2,1-*ij*]quinoline-9-yloxy)-ethylamino]-propyl}-6-*O*-methyl-erythromycin A 11,12-carbonate;

4"-*O*-(3-{[3-(3-carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)propyl]-methylamino}-propyl)-6-*O*-methyl-erythromycin A 11,12-carbonate;

4"-*O*-(3-{[2-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-[1,8]naphthyridin-7-ylamino)ethyl]-methylamino}-propyl)-6-*O*-methyl-erythromycin A 11,12-carbonate;

4"-*O*-{2-[2-(3-carboxy-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-[1,8]naphthyridin-7-ylamino)ethyl]-methylamino}-ethyl }-6-*O*-methyl-erythromycin A;

4"-*O*-{3-[[3-(3-carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-yl)-propyl}-methylamino]-propyl}-6-*O*-methyl-11-desoxy-11-(R)-amino-erythromycin A 11,12-carbamate;

4"-*O*-{3-[[2-(3-carboxy-1-ethyl-4-oxo-1,4-dihydro-quinolin-6-ylsulfanyl)-ethyl]-methylamino]-propyl}-6-*O*-methyl-11-desoxy-11-(R)-amino-erythromycin A 11,12-carbamate;

4"-*O*-{3-[2-(3-carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethylcarbamoyl]-propyl}-azithromycin;

4"-*O*-{2-[2-(3-carboxy-6-fluoro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-7-ylamino)-ethyl}-azithromycin 11,12-cyclic carbonate;

4"-*O*-{2-[2-(3-carboxy-7-chloro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-6-ylamino)-ethyl}-azithromycin; and

4"-*O*-{2-[2-(3-carboxy-6-fluoro-1-cyclopropyl-4-oxo-1,4-dihydro-quinolin-7-ylamino)-ethyl}-azithromycin;

or a pharmaceutically acceptable derivative salt thereof.

- 8. (Currently amended) A process for the preparation of a compound as claimed in claim 1 which comprises:
- a) reacting a compound of formula (II)

$$HN(R^{30})(CH_2)_VB^aR^{11a} \qquad \qquad HN(R^{30})(CH_2)_VR^{11a} \label{eq:hn}$$
 (IIIa) (IIIb)

with a suitable amine (IIIa) or (IIIb), wherein B^a and R^{11a} are B and R¹¹ as defined in claim 1 or groups convertible to B and R¹¹;

b) reacting a compound of formula (V)

with a compound of formula X^aR^{11a} (IV), wherein R^{11a} is R^{11} as defined in claim 1 or a group convertible to R^{11} and X^a is $-U(CH_2)_V$ - or $-U(CH_2)_V$ B-, or a group convertible to $-U(CH_2)_V$ - or $-U(CH_2)_V$ B-, in which U is a group selected from $-N(R^{30})$ - and -S-, and L is suitable leaving group, to produce a compound of formula (I) wherein U is a group selected from $-N(R^{30})$ - and -S-;

c) converting one compound of formula (I) into another compound of formula (I); oxidizing a compound of formula (I) wherein U or B is -S(O)_Z and wherein z is 0 to provide a compound of formula (I) wherein U or B is -S(O)_Z and z is 1 or 2;

d) where U is -O-, reacting a compound of formula (VII)

with a suitable compound of formula XaR11a in the presence of a catalyst; or

e) where U is $-C(O)N(R^{30})$ -, reacting a compound of formula (VIII)

with a suitable amine compound,

and thereafter, if required, subjecting the resulting compound to one or more of the following operations:

- i) removal of the protecting group R²,
- ii) conversion of XaR11a to XR11,
- iii) conversion of BaR11a to R11,
- iv) conversion of R^{11a} to R¹¹,

and

v) conversion of the resultant compound of formula (I) into a pharmaceutically acceptable derivative salt thereof.

9-11. (Canceled)

- 12. (Currently amended) A method for the treatment of the human or non-human animal body to combat microbial a bacterial infection comprising administration to a body in need of such treatment of an effective amount of a compound as claimed in claim 1 or a pharmaceutically acceptable salt thereof.
- 13. (Currently amended) A pharmaceutical composition comprising at least one compound as claimed in claim 1, or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable excipient, diluent and/or carrier.

14. (Currently amended) A compound of formula (IA)

wherein

A is a bivalent radical selected from -C(O)-, -C(O)NH-, -NHC(O)-, -N(R 7)-CH $_2$ -, -CH $_2$ -N(R 7)-, -CH(NR 8 R 9)- and -C(=NR 10)-;

 R^1 is $-O(CH_2)_dXR^{11}$;

 ${\sf R}^2$ is hydrogen or a hydroxyl protecting group;

 R^3 is hydrogen, $C_{1\text{--}4}$ alkyl, or $C_{3\text{--}6}$ alkenyl optionally substituted by \underline{a} 9 to 10 membered fused bicyclic heteroaryl;

 R^4 is hydroxy, C_{3-6} alkenyloxy optionally substituted by \underline{a} 9 to 10 membered fused bicyclic heteroaryl, or C_{1-6} alkoxy optionally substituted by C_{1-6} alkoxy or $-O(CH_2)_eNR^7R^{12}$,

R⁵ is hydroxy, or

R⁴ and R⁵ taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is a bivalent radical selected from the group consisting of ${}^{-}$ CH₂-, ${}^{-}$ CH(CN)-, ${}^{-}$ O-, ${}^{-}$ N(R¹³)- and ${}^{-}$ CH(SR¹³)-;

R⁶ is hydrogen or fluorine;

R⁷ is hydrogen or C₁₋₆alkyl;

 R^8 and R^9 are each independently hydrogen, $C_{1\text{-}6}$ alkyl, $-C(=NR^{10})NR^{14}R^{15}$ or $-C(O)R^{14}$, or R^8 and R^9 together form $=CH(CR^{14}R^{15})_{faryl}$, $=CH(CR^{14}R^{15})_{f}$ heterocyclyl, $=CR^{14}R^{15}$ or $=C(R^{14})C(O)OR^{14}$, wherein the alkyl, aryl and heterocyclyl groups are optionally substituted by up to three groups independently selected from R^{16} ;

 R^{10} is $-OR^{17}$, C_{1-6} alkyl, $-(CH_2)_g$ aryl, $-(CH_2)_g$ heterocyclyl or $-(CH_2)_hO(CH_2)_iOR^7$, wherein each R^{10} group is optionally substituted by up to three groups independently selected from R^{16} ; R^{11} is a heterocyclic group having the following structure:

or

R¹² is hydrogen or C₁₋₆alkyl;

 R^{13} is hydrogen or $C_{1\text{--}4}$ alkyl substituted by a group selected from the group consisting of optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and optionally substituted 9 to 10 membered fused bicyclic heteroaryl;

R¹⁴ and R¹⁵ are each independently hydrogen or C₁₋₆alkyl;

 R^{16} is halogen, cyano, nitro, trifluoromethyl, azido, $-\mathrm{C(O)R^{21}}$, $-\mathrm{C(O)OR^{21}}$, $-\mathrm{OC(O)R^{21}}$, $-\mathrm{OC(O)R^{23}}$, $-\mathrm{C(O)R^{23}}$, $-\mathrm{C(O)R^{22}R^{23}}$, $-\mathrm{NR^{22}R^{23}}$, hydroxy, $C_{1\text{-}6}$ alkyl, $-\mathrm{S(O)_kC_{1\text{-}6}}$ alkyl, $C_{1\text{-}6}$ alkoxy, $-(\mathrm{CH_2)_m}$ aryl or $-(\mathrm{CH_2)_m}$ heteroaryl, wherein the alkoxy group is optionally substituted by up to three groups independently selected from the group consisting of -NR 14 R 15 , halogen and -OR 14 , and the aryl and heteroaryl groups are optionally substituted by up to five groups independently selected from the group consisting of halogen, cyano, nitro, trifluoromethyl, azido, -C(O)R^{24}, -C(O)OR^{24}, -OC(O)OR^{24}, -NR^{25}C(O)R^{26}, -C(O)NR^{25}R^{26}, -NR^{25}R^{26}, hydroxy, $C_{1\text{-}6}$ alkyl and $C_{1\text{-}6}$ alkoxy;

 R^{17} is hydrogen, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}6}$ alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substituents independently selected from the group consisting of optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heteroaryl, $-OR^{27}$, $-S(O)_nR^{27}$, $-NR^{27}R^{28}$, $-CONR^{27}R^{28}$, halogen and cyano;

 R^{18} is hydrogen, $-C(O)OR^{29}$, $-C(O)NHR^{29}$ or $-C(O)CH_2NO_2$;

 R^{19} is hydrogen, C_{1-4} alkyl optionally substituted by hydroxy or C_{1-4} alkoxy, C_{3-7} cycloalkyl, or optionally substituted phenyl or benzyl;

 R^{20} is halogen, C_{1-4} alkyl, C_{1-4} thioalkyl, C_{1-4} alkoxy, -NH₂, -NH(C_{1-4} alkyl) or -N(C_{1-4} alkyl)₂;

 R^{21} is hydrogen, C_{1-10} alkyl, $-(CH_2)_p$ aryl or $-(CH_2)_p$ heteroaryl;

 R^{22} and R^{23} are each independently hydrogen, -OR 14 , $C_{1\text{-}6}$ alkyl, -(CH₂)_q aryl or -(CH₂)_q heterocyclyl;

R²⁴ is hydrogen, C₁₋₁₀alkyl, -(CH₂)_raryl or -(CH₂)_rheteroaryl;

 R^{25} and R^{26} are each independently hydrogen, -OR¹⁴, $C_{1\text{-}6}$ alkyl, -(CH₂)_Saryl or - (CH₂)_Sheterocyclyl;

 R^{27} and R^{28} are each independently hydrogen, C_{1-4} alkyl or C_{1-4} alkoxy C_{1-4} alkyl;

 R^{29} is hydrogen or $C_{1\text{-}6}$ alkyl optionally substituted by up to three groups independently selected from the group consisting of halogen, $C_{1\text{-}4}$ alkoxy, $-OC(O)C_{1\text{-}6}$ alkyl and $-OC(O)OC_{1\text{-}6}$ alkyl; R^{30} is hydrogen, $C_{1\text{-}4}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzyl;

 R^{31} is hydrogen or R^{20} , or R^{31} and R^{19} are linked to form the bivalent radical -O(CH₂)₂- or - (CH₂)_t-;

X is $-U(CH_2)_VB$ -, $-U(CH_2)_V$ - or a group selected from:

$$-N$$
 N $-$

and

U and B are independently a divalent radical selected from $-N(R^{30})$ -, -O-, $-S(O)_Z$ -, -

 $N(R^{30})C(O)$ -, $-C(O)N(R^{30})$ - and $-N[C(O)R^{30}]$ -;

W is $-C(R^{31})$ - or a nitrogen atom;

d is an integer from 2 to 6;

e is an integer from 2 to 4;

f, g, h, m, p, q, r and s are each independently integers from 0 to 4;

i is an integer from 1 to 6;

 $j,\,k,\,n$ and z are each independently integers from 0 to 2;

t is 2 or 3;

v is an integer from 2 to 8;

or a pharmaceutically acceptable derivative salt thereof.