Introduction

- The report goes over the reproducibility of coin cell data
- It also compares different materials between each other

Design of experiments

This protocol helps us calculate capacity of the coin cells

Time (s)

• Batteries are discharged and charger at C/5 rate

HPPC

- This protocol helps us calculate the resistance of the battery
- A 10-s C/5 pulse is used to calculate resistance. The process is repeat at all SOCs. The cells are discharged by a C/30

Design of experiments

Cell #	Material in Cell	Voltage (V)	Capacity (mAh)	Type of Holder	Channel	PreCondition	HPPC	C-50	C-150
1	NMC111	1.784	1.94		2	2	1		
2	NMC111	2.078	1.99	Α	2	2(4)	3	1	
3	NMC111	2.010	2.02	В	4	2(3)			
4	LFP	3.029	2.93	Α	4	1(2)			
5	LFP	2.871	2.96		4	2(3)			
6	LFP	3.029	2.77		4	2	2	3	
7	Sa1520	2.820	4.66	Α	7	3(6)	2	3	
8	Sa1520	2.980	4.49		8	2	1	2	
9	Sa1520	2.984	4.59	0	8	1	Î		

- We conducted 3 cells for each material
- We picked two cathodes and one anode: NMC111, LFP and Graphite(Sa1520)

Results: Pre-Conditioning - Same Cell

- The capacity tends to increase after repeating preconditioning protocol
- Generally, the capacity is not stable
- An increasing trend over multiple cycles can be seen due to the possible deeper insertion of liquid electrolyte inside the layered graphite
- The decrease in capacity can be caused by multiple reasons including unstable SEI, dendritic growth and electrolyte leakage.

Results: Pre-Conditioning - Different Cell

- The comparison between the same cycle provides more stable results
- A potential reason behind a great variation in LFP is the 3 month difference between cell 4 and cell 5

Results: HPPC

- Overall, resistance tends to increase as more protocols are ran.
- One of the possible reasons may be the resistance growth of lithium metal
- Graphite material has a distinctive bump at around 50% SOC which was reproduced in two different coin cells. Moreover both ends indicate an increase in resistance
- Moreover, Graphite expresses a much lower resistance compared to the two cathodes (300 400 vs 100)
- Each material has distinctive resistance shape and Graphite's graph was inverted since it is an anode

Conclusions

Certainly, it is clear that careful management is necessary while working with coin cells: the data can be
reasonably compared only if exactly the same sequence of protocols was run on the cell and if
researchers keep track of the time

Future Work

- Explore electrochemical impedance spectroscopy to dive deeper in the processes of the coin cells.
- Possibly research the effect of time on the batteries
- Introduce a new independent variable: temperature of our coin cells