CS 8725: Report for assignment 1

Chanmann Lim

September 1, 2015

Let $\hat{\theta}$ be the estimation of the probability of the coin show up head P(Head), and θ^* be the true value of P(Head). If $P(|\hat{\theta} - \theta^*| > \epsilon) \le \delta$ is true then δ would be the upper bound of the failure probability where the error is falling within the error range ϵ .

According to Hoeffding's inequality

$$P(|\hat{\theta} - \theta^*| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$

Then

$$2e^{-2n\epsilon^2} \le \delta$$

$$ln(2) - 2n\epsilon^2 \le ln(\delta)$$

$$ln(2) - ln(\delta) \le 2n\epsilon^2$$

$$ln(2/\delta) \le 2n\epsilon^2$$

$$\frac{ln(2/\delta)}{2\epsilon^2} \le n$$

Therefore,

$$n \geq \frac{\ln(2/\delta)}{2\epsilon^2}$$