Multivariate Analysis Final Report

公車路線資料

統博一 鍾興潔 統碩一 黃三騰 統碩一 林子祥 應數四 蔡伊婷

Outline

- > Introduction
- **>** Data
- **>** Objective
- > Method
- **Conclusion**

Introduction

Introduction

- ✓ 偏鄉地區
- ✓交通方式
- ✓有些停靠站少有人使用

上車資訊

下車資訊

	Α	В	С	D	Е	F	G	Н	I	J	K
1	路線	卡號	票種	上車日期	上車時間	上車分鐘	上車站名	下車日期	下車時間	下車分鐘	下車站名
2	11	F23A1C03	敬老票	2016/3/7	15:12	912	ZUFC	2016/3/7	15:27:47	927	CSPK
3	11	F218BA02	敬老票	2016/4/6	10:20	620	ZUFC	2016/4/6	10:33:23	633	CSPK
4	11	12271A03	敬老票	2016/9/6	10:20	620	ZUFC	2016/9/6	10:34:15	634	CSPK
5	11	223FBC02	敬老票	2016/10/7	10:37	637	ZUFC	2016/10/7	10:52:27	652	CSPK
6	11	F23A1C03	敬老票	2016/1/20	08:18	498	ZUFC	2016/1/20	08:32:43	512	CSPK
7	11	C2361C03	敬老票	2016/1/19	08:29	509	ZUFC	2016/1/19	08:45:51	525	CSPK
8	11	C2361C03	敬老票	2016/3/21	08:25	505	ZUFC	2016/3/21	08:38:40	518	CSPK
9	11	F23A1C03	敬老票	2016/3/3	08:21	501	ZUFC	2016/3/3	08:34:56	514	CSPK
10	11	C2361C03	敬老票	2016/3/8	08:22	502	ZUFC	2016/3/8	08:38:26	518	CSPK
11	11	C2EB1B03	敬老票	2016/3/15	08:32	512	ZUFC	2016/3/15	08:49:22	529	CSPK
12	11	223FBC02	敬老票	2016/3/14	08:22	502	ZUFC	2016/3/14	08:37:51	517	CSPK
13	11	C2EB1B03	敬老票	2016/3/23	08:28	508	ZUFC	2016/3/23	08:41:38	521	CSPK
14	11	C2EB1B03	敬老票	2016/12/26	08:21	501	ZUFC	2016/12/26	08:37:18	517	CSPK
15	11	F23A1C03	敬老票	2016/12/13	08:23	503	ZUFC	2016/12/13	08:37:36	517	CSPK

- ○路線
- ○票種
- ○上下車時間與日期
- ○上下車分鐘數
- ○上下車站名
 - 資料來源:東部運輸中心(105年搭乘公車刷卡紀錄)

- 路線: 11(上車54站,下車71站)、22(上車51站,下車68站)、33(上車50站,下車60站)、44(上車51站,下車62站)
- 票種: 敬老票、學生票、一般票(類別)
- 上下車時間: 時間轉換為分鐘數(e.g. 09:08→60*9+8=548)
- 上下車站名:各個站點的名稱(類別)
- 去程與回程資料分開
- 資料來源:東部運輸中心(105年搭乘公車刷卡紀錄)

路線(去程)	樣本數	上車站數	下車站數
11	8380	54	71
22	13982	51	68
33	4771	50	60
44	5337	51	62
總共	32470		
路線(回程)	樣本數	上車站數	下車站數
11	2392	62	60
22	14589	66	61
33	2160	55	53
44	4456	63	52
總共	23597		

路線刷卡站點與時間(整年-去回程)

Objective

Objective

- >路線整併、區間直達車
 - ○各路線重要站點-使用率高
 - ○不同客群-老人 → 不能廢除
 - ○不同客群-學生 → 學生專車

Method

路線11站點與使用次數

	u_1	u_2	u_3	u_4		u_{8380}	總使用次數
TD	1	1	0	0		0	7 128
SCS	1	0	1	0		0	1693
CM	0	1	0	0		1	965
SDH	0	0	1	1		0	578
:	:	:	:	:	••	:	
	0	0	0	1		1	

路線11站點與使用次數

- ○每一站的使用次數 = 8380筆刷卡的貢獻
- - → PCA降維 (n=72,p=8380)
 - →保持原始資料變異的資訊

路線11站點與使用次數

- OHierarchical Clustering
- ○每一站視為一個cluster
- 〇將距離(歐氏)最近站點合併

Cluster Dendrogram

路線11站點與搭車模式

			搭車	模式			
	m_1	m_2	m_3	m_4		m_{591}	
$A \mid$	15	0	0	5		0	1
B	15	3	0	0		0	
C	0	0	9	0		0	
D	0	3	0	0		1	
•	:	:	:	:	••	:	
	0	0	9	0		1	

72站 X 591種

路線11站點與搭車模式

- ○每一站的使用次數 = 591種搭車模式的貢獻
- OWant: 把72個點畫出來
 - → PCA降維 (n=72,p=591)
 - → 保持原始資料變異的資訊

PCA Plot

Kmeans Plot

Hierarchical Plot

Cluster Dendrogram

路線11站點與搭車模式

- ○使用次數高卻沒被分出來 e.g. SCS
 - > 零散的搭車模式所貢獻
- 〇客群之間搭車模式不同

路線11(敬老票)站點與搭車模式

- ○每一站的使用次數 = 444種搭車模式的貢獻
- ○Want: 把72個點畫出來
 - → PCA降維 (n=72,p=444)
 - → 保持原始資料變異的資訊

PCA Plot

Kmeans Plot

路線11(敬老票)站點與搭車模式

OSCS GS CM MF LYTO
K means

SCS · GS · CM · JF · MF · LY · LYTO - Hierarchical

○SCS、GS、CM、JF、MF、LY、LYTO:不能廢除

Hierarchical Plot

路線11(學生票)站點與搭車模式

- ○每一站的使用次數 = 230種搭車模式的貢獻
- ○Want: 把72個點畫出來
 - → PCA降維 (n=72,p=230)
 - → 保持原始資料變異的資訊

PCA Plot

Kmeans Plot

Hierarchical Plot

Cluster Dendrogram

路線11(學生票)站點與搭車模式

- 3個群 (WL、LY), (HD、JP), (GS、CL2) 附近有國中小學
- 模式: 1. WL → LY:424

2. HD JP : 377

CL2:349

3. GS ← CL2:418

O 專車: GS→ HD→ CL2→ JP

K means

- O Initial set of k means $m_1^{(1)}$, $m_2^{(1)}$, ..., $m_k^{(1)}$.
- OStep 1: consider $S_i^{(t)} = \left\{ x_p : \left| \left| x_p m_i^{(t)} \right| \right|^2 \le \left| \left| x_p m_j^{(t)} \right| \right|^2 \ \forall \ 1 \le j \le k \right\},\ i = 1, ..., k$

each $x_p \in some S_i^{(t)}$.

OStep 2: update new means by $m_i^{(t+1)} = \frac{1}{|S_i^{(t)}|} \sum_{x_j \in S_i^{(t)}} x_j$, i = 1, ..., k

PCA

PCA(Principal Component Analysis),主成分分析。 去除多餘資訊,將原有複雜的數據降維但保留數據 對變異數貢獻最大的特徵。主要原理為降低資料維 度,又希望遺失的訊息能降到最低。

PCA

OLet
$$X_{n \times p}$$
, find $u_1 \in R^p$, $\left| |u_1| \right| = 1$

$$\min_{u_1} \sum_{i=1}^n \left| \left| X_i - \widehat{X}_i \right| \right|^2$$

$$\iff \max_{u_1} u_1^T X^T X u_1$$

- \iff find largest eigenvalue of X^TX
- The projection coordinate $Y_1 = Xu_1 \implies PC1$

Hierarchical Clustering

Example

	PCA1	PCA2		A站	B站	C站	D站	E站
A站	1	1	A站	0	1	1.4	3.2	4.5
B站	1	0	B站	1	0	2.2	4.1	5.4
C站	0	2	C站	1.4	2.2	0	2.8	4.2
D站	2	4	D站	3.2	4.1	2.8	0	1.4
E站	3	5	E站	4.5	5.4	4.2	1.4	0

	AB站	C站	D站	E站
AB站	0	1.8	3.6	4.9
C站	1.8	0	2.8	4.2
D站	3.6	2.8	0	1.4
E站	4.9	4.2	1.4	0

Conclusion

Conclusion

- ○資訊: 使用次數長條圖無法得知
- ○路線11 重要站點分析

學生族群 > 學生專車

老人族群一不能廢除

Conclusion

- ONext:
- ○路線22、33、44的重要站點分析
- ○使用率高 ≠ 特定模式高

Q & A

Thanks for listening