References

¹The Random House College Dictionary, Rev. ed., Random House, New York, 1975.

²NOAA, NASA, and USAF, "U.S. Standard Atmosphere, 1976," U.S. Government Printing Office, Washington, DC, Oct. 1976.

³"1989 AIAA/General Dynamics Corporation, Team Aircraft Design Competition, Engine Data Package," Director of Student Programs, AIAA, Washington, DC, 1988.

⁴Oates, G. C. (ed.), Aerothermodynamics of Gas Turbine and Rocket Propulsion, third ed., AIAA Education Series, AIAA, Reston, VA, 1997.

5"2000 Is (Nearly) Now," Air Force Magazine, Feb. 1987, pp. 52-63.

6"Squeezing More Power from Turbine Engines," *Machine Design*, 10 March, 1988, pp. 44-60.

⁷Mattingly, J. D., "Improved Methodology for Teaching Aircraft Gas Turbine Engine Analysis and Performance," 1992 ASEE Annual Conference Proceedings, Vol. 1, ASEE, Washington, DC, 1992, pp. 240–247.

⁸Nicolai, L. M., Fundamentals of Aircraft Designs, METS, San Jose, CA, 1975.

⁹Raymer, D. P., *Aircraft Design: A Conceptual Approach*, fourth ed., AIAA Education Series, AIAA, Reston, VA, 2006.

¹⁰Hale, F. J., Introduction to Aircraft Performance, Selection and Design, Wiley, New York, 1984.

¹¹Anderson, J. D., *Introduction to Flight*, 3rd ed., McGraw-Hill, New York, 1989.

¹²Mattingly, J. D., Heiser, W. H., and Pratt, D. T., *Aircraft Engine Design*, second ed., AIAA Education Series, AIAA, Reston, VA, 2002.

¹³Heiser, W. H., and Pratt, D. T., *Hypersonic Airbreathing Propulsion*, AIAA Education Series, AIAA, Washington, DC, 1994.

¹⁴Penner, S. S., *Chemistry Problems in Jet Propulsion*, Pergamon Press, London, 1957.

¹⁵Keenan, J. H., and Kaye, J., Gas Tables, Wiley, New York, 1948.

¹⁶McKinney, J. S., "Simulation of Turbofan Engine (SMOTE)," AFAPL-TR-67-125, Air Force Aero Propulsion Laboratory, Wright-Patterson AFB, OH, Nov. 1967.

¹⁷Pratt, D. T. and Heiser, W. H., "Isolator-Combustor Interaction in a Dual-mode Scramjet Engine," AIAA Paper 93-0358, 1993.

¹⁸Gordon, S., and McBride, B., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions," NASA SP-273, 1971.

¹⁹Sutton, G. P., Rocket Propulsion Elements, 6th ed., Wiley, New York, 1992. ²⁰Summerfield, M., Foster, C. R., and Swan, W. C., "Flow Separation in

Overexpanded Supersonic Exhaust Nozzles," Jet Propulsion, Vol. 24, Sept. – Oct. 1954, pp. 319–321.

²¹Kubota, N. "Survey of Rocket Propellant and their Combustion Characteristics," Fundamentals of Solid-Propellant Combustion, Vol. 90, Progress in Astronautics and Aeronautics, AIAA, New York, 1984.

²²Hill, P. G., and Peterson, C. R., Mechanics and Thermodynamics of Propulsion, 2nd ed., Addison-Wesley, Reading, MA, 1992.

²³Haven, B. A., and Wood, C. W., "The Rocket Laboratory in the USAF Aero-Propulsion Curriculum," AIAA Paper 93-2054, 1993.

²⁴Ferri, A., and Naucci, L. M., "Preliminary Investigation of a New Type of Supersonic Inlet," NACA Rept. 1104, 1953.

²⁵Wyatt, D. D., "Aerodynamic Forces Associated with Inlets of Turbojet

Installations," Aero Engr. Review., Oct. 1951.

²⁶Sibulkin, M., "Theoretical and Experimental Investigation of Additive Drag," NACA Rept. 1187, 1954.

²⁷"Definition of the Thrust of a Jet Engine and Internal Drag...," Journal of the Royal Society, Aug. 1955, pp. 517-526.

²⁸Kerrebrock, J. L., Aircraft Engines and Gas Turbines, second ed., MIT Press, Cambridge, MA, 1992.

²⁹Cohen, H., Rogers, G. F. C., and Saravanamuttoo, H. I. H., Gas Turbine Theory, Wiley, New York, 1972.

³⁰"Gas Turbine Engine Performance Station Identification and Nomenclature," Aerospace Recommended Practice (ARP) 755A, Society of Automotive Engineers, Warrendale, PA, 1974.

³¹Heiser, W. H., and Pratt, D. T., "Thermodynamic Cycle Analysis of Pulse Detonation Engines," Journal of Propulsion and Power, Vol. 18, No. 1, Jan.-Feb. 2002.

³²Kailasanath, K., "Applications of Detonations to Propulsion: A Review," AIAA Paper 99-1067, 1999.

³³Strehlow, R. A., Combustion Fundamentals, McGraw-Hill, New York, 1984.

³⁴Shapiro, A. H., The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. 1, Ronald, New York, 1953.

³⁵Pratt, D. T., Humphrey, J. W., and Glenn, D. E., "Morphology of Standing Oblique Detonation Waves," Journal of Propulsion and Power, Vol. 7, No. 5, 1991.

³⁶Model Specification for Engines, Aircraft, Turboiet, MIL-SPEC MIL-E-5008B, U.S. Dept. of Defense, Jan. 1959.

³⁷Dixon, S. L., *Thermodynamics of Turbomachinery*, 3rd ed., Pergamon Press, Elmsford, NY, 1978.

³⁸Oates, G. C. (ed.), Aerothermodynamics of Aircraft Engine Components, AIAA Education Series, AIAA, Washington, DC, 1985.

³⁹Horlock, J. H., Axial Flow Compressors, Krieger, Melbourne, FL, 1973.

⁴⁰Horlock, J. H., Axial Flow Turbines, Krieger, Melbourne, FL, 1973.

⁴¹Johnsen, I. A., and Bullock, R. O. (eds.), *Aerodynamic Design of Axial-Flow Compressors*, NASA SP-36, 1965.

⁴²Glassman, A. J. (ed.), Turbine Design and Application, Vols. 1-3, NASA

SP-290, 1972.

⁴³Wilson, D. G., *The Design of High-Efficiency Turbomachinery and Gas Turbines*, MIT Press, Cambridge, MA, 1984.

⁴⁴Sorensen, H. A., Gas Turbines, Ronald, New York, 1951.

⁴⁵Hess, W. J., and Mumford, N. V., *Jet Propulsion for Aerospace Applications*, 2nd ed., Pitman, New York, 1964.

⁴⁶Bathie, W. W., Fundamentals of Gas Turbines, Wiley, New York, 1972.

⁴⁷Treager, I. E., Aircraft Gas Turbine Engine Technology, 2nd ed., McGraw-Hill, New York, 1979.

⁴⁸Glauert, H., *The Elements of Aerofoil and Airscrew Theory*, 3rd ed., Cambridge Univ. Press, Cambridge, UK, 1959.

⁴⁹Theodorsen, T., *Theory of Propellers*, McGraw-Hill, New York, 1948.

⁵⁰Theodorsen, T., "Theory of Static Propellers and Helicopter Rotors," Paper 326, 25th Annual Forum, American Helicopter Society, Alexandria, VA, May 1969.

⁵¹Abbott, I. H., and Von Doenhoff, A. E., *Theory of Wing Sections*, Dover, New York, 1959.

⁵²Nikkanen, J. P., and Brooky, J. D., "Single Stage Evaluation of Highly Loaded High Mach Number Compressor Stages V," NASA CR 120887 (PWA-4312), March 1972.

⁵³Zweifel, O., "The Spacing of Turbomachinery Blading, Especially with Large Angular Deflection," *Brown Boveri Review*, Vol. 32, 1945, p. 12.

⁵⁴Seddon, J., and Goldsmith, E. L., *Intake Aerodynamics*, second ed., AIAA Education Series, AIAA, New York, 1999.

⁵⁵Goldsmith, E. L., and Seddon, J., Practical Intake Aerodynamic Design, AIAA Education Series, AIAA, 1993.

⁵⁶Younghans, J., "Engine Inlet Systems and Integration with Airframe," lecture notes for aero propulsion short course, Univ. of Tennessee Space Institute, Tullahoma, TN, 1980.

⁵⁷McCloy, R. W., *The Fundamentals of Supersonic Propulsion*, Publ. D6A-10380-1, Supersonic Propulsion Test Group, Boeing, Seattle, WA, May 1968.

⁵⁸Kline, S. J., "On the Nature of Stall," *Journal of Basic Engineering*, Vol. 81, Series D, No. 3, Sept. 1959, pp. 305–320.

⁵⁹Taylor, H. D., "Application of Vortex Generator Mixing Principle to Diffusers, Concluding Report," Air Force Contract W33-038 AC-21825, United Aircraft Corp. Rept. R-15064-5, United Aircraft Corp. Research Dept., East Hartford, CT, Dec. 31, 1948.

⁶⁰"Stealth Engine Advances Revealed in JSF Designs," *Aviation Week and Space Technology*, 19 March 2001.

⁶¹Fabri, J. (ed.), Air Intake Problems in Supersonic Propulsion, Pergamon Press, Elmsford, NY, 1958.

⁶²Sedlock, D., and Bowers, D., "Inlet/Nozzle Airframe Integration," lecture notes for aircraft design and propulsion design courses, U.S. Air Force Academy, Colorado Springs, CO, 1984.

⁶³Swan, W., "Performance Problems Related to Installation of Future Engines in Both Subsonic and Supersonic Transport Aircraft," 2nd International Symposium on Air-Breathing Engines, Sheffield, UK, March 1974.

⁶⁴Surber, L., "Trends in Airframe/Propulsion Integration," lecture notes for aircraft design and propulsion design courses, Dept. of Aeronautics, U.S. Air Force Academy, Colorado Springs, CO, 1984.

⁶⁵Hunter, L., and Cawthon, J., "Improved Supersonic Performance Design for the F-16 Inlet Modified for the J-79 Engine," AIAA Paper 84-1271, 1984.

⁶⁶Stevens, C., Spong, E., and Oliphant, R., "Evaluation of a Statistical Method for Determining Peak Inlet Flow Distortion Using F-15 and F-18 Data," AIAA Paper 80-1109, 1980.

⁶⁷Oates, G. C. (ed.), *The Aerothermodynamics of Aircraft Gas Turbine Engines*, AFAPL-TR-7852, Air Force Aero Propulsion Laboratory, Wright-Patterson AFB, OH, July 1978. (Note: This extensive reference is no longer available. However, the contents have been updated and are published in three textbooks; see Refs. 4, 38, and 70.

⁶⁸Aronstein, D., and Piccirillo, A., *Have Blue and the F-117A: Evolution of the "Stealth Fighter," AIAA, Reston, VA, 1997.*

⁶⁹Lefebvre, A. H., Gas Turbine Combustion, Hemisphere, New York, 1983.

⁷⁰Oates, G. C. (ed.), Aircraft Propulsion Systems Technology and Design, AIAA Education Series, AIAA, Washington, DC, 1989.

Williams, F. A., Combustion Theory, Addison-Wesley, Reading, MA, 1965.
Spalding, D. B., Combustion and Mass Transfer, Pergamon Press, Elmsford, NY, 1979.

⁷³Grobman, J., Jones, R. E., and Marek, C. J., "Combustion," *Aircraft Propulsion*, NASA SP-259, 1970.

⁷⁴Barclay, L. P., "Pressure Losses in Dump Combustors," AFAPL-TR-72-57, Air Force Aero Propulsion Laboratory, Wright-Patterson AFB, OH, 1972.

⁷⁵Nealy, D. A., and Reider, S. B., "Evaluation of Laminated Porous Wall Materials for Combustor Liner Cooling," American Society of Mechanical Engineers, Paper 79-GT-100, March 1979.

⁷⁶Hopkins, K. N., "Turbopropulsion Combustion—Trends and Challenges," AIAA Paper 80-1199, 1980.

⁷⁷Norgren, C. T., and Riddlebaugh, S. M., "Advanced Liner-Cooling Techniques for Gas Turbine Combustors," AIAA, Paper 85-1290, 1985.

⁷⁸Bahr, D. W., "Technology for the Design of High Temperature Rise Combustors," AIAA Paper 85-1292, 1985.

⁷⁹Taylor, J. R., "Combustion System Design," lecture notes for aero propulsion short course, Univ. of Tennessee Space Institute, Tullahoma, TN, 1978.

⁸⁰McAuley, J. E., and Abdelwahab, M., "Experimental Evaluation of a TF30-P-3 Turbofan Engine in an Altitute Facility: Afterburner Performance and Engine-Afterburner Operating Limits," NASA TN D-6839, July 1972.

⁸¹Marshall, R. L., Canuel, G. E., and Sullivan, D. J., "Augmentation Systems for Turbofan Engines," *Combustion in Advanced Gas Turbine Systems*, Cranfield International Symposium Series, Vol. 10, Pergamon Press, Elmsford, NY, 1967.

⁸²Cornell, W. G., "The Flow in a Vee-Gutter Cascade," *Transactions of the American Society of Mechanical Engineers*, Vol. 78, 1956, p. 573.

83 VonMises, R., Theory of Flight, Dover, New York, 1958.

⁸⁴Cifone, A. J., and Krueger, E. L., "Combustion Technology: A Navy Perspective," AIAA Paper 85-1400, 1985.

⁸⁵Climatic Information to Determine Design and Test Requirements for Military Equipment, MIL-SPEC MIL-STD-210C, Rev. C, U.S. Dept. of Defense, Jan. 1997.

⁸⁶Climatic Information to Determine Design and Test Requirements for Military Equipment, MIL-SPEC MIL-STD-210A, U.S. Dept. of Defense, Nov. 1958.

⁸⁷Aerospace Structural Metals Handbook, Batelle, Columbus Laboratories, Columbus, OH, 1984.

⁸⁸Sims, C. T., and Hagel, W. C., *The Superalloys*, Wiley, New York, 1972.

⁸⁹Smith, W. F., Structure and Properties of Engineering Alloys, 2nd ed., McGraw-Hill, New York, 1993.

⁹⁰Brick, R. M., Pense, A. W., and Gordon, R. B., Structure and Properties of Engineering Materials, 4th ed., McGraw-Hill, New York, 1977.

⁹¹Imarigeon, J. P., "The Super Alloys: Materials for Gas Turbine Hot Section Components," *Canadian Aeronautics and Space Institute Journal*, Vol. 27, 1981.