## **Bank Marketing Analysis**

by Runtian Li, Rafe Chang, Sid Grover, Anu Banga

Repo Link: https://github.com/UBC-MDS/dsci\_522\_group\_8.git

```
In [1]: ## Import necessary Packages
        import altair as alt
        import altair viewer
        alt.data transformers.enable("vegafusion")
        import pandas as pd
        import numpy as np
        import statistics
        import os
        import sys
        import warnings
        warnings.filterwarnings("ignore")
        sys.path.append("code/.")
        # Data
        from ucimlrepo import fetch_ucirepo
        # Machine Learning
        import IPython
        import matplotlib.pyplot as plt
        import mglearn
        from IPython.display import HTML, display
        # from plotting_functions import *
        from sklearn.dummy import DummyClassifier
        from sklearn.linear model import LogisticRegression
        from sklearn.svm import SVC
        from sklearn.model selection import cross val score, cross validate, train t
        from sklearn.pipeline import Pipeline, make_pipeline
        from sklearn.preprocessing import StandardScaler, OneHotEncoder
        from sklearn.compose import ColumnTransformer, make column transformer
        from sklearn.metrics import make scorer, f1 score, recall score, precision s
        from sklearn.model_selection import RandomizedSearchCV
        from scipy.stats import uniform
        from sklearn.metrics import ConfusionMatrixDisplay
        from sklearn.metrics import classification report
        from sklearn.metrics import PrecisionRecallDisplay
        # %matplotlib inline
        pd.set_option("display.max_colwidth", 200)
        from IPython.display import Image
```

Here we build a model of balanced SVC to try to predict if a new client will subscribe to a term deposit. We tested five different classification models, including dummy classifier, unbalanced/balanced logistic regression, and unbalanced/balanced SVC, and chose the optimal model of balanced SVC based on how the model scored on the test data; the model has the highest test recall score of 0.82, which indicates that the model makes the least false negative predictions among all five models.

The balanced support vector machines model considers 13 different numerical/categorical features of customers. After hyperparameter optimization, the model's test accuracy increased from 0.82 to 0.875. The results were somewhat expected, given SVC's known efficacy in classification tasks, particularly when there's a clear margin of separation. The high recall score of 0.875 indicates that the model is particularly adept at identifying clients likely to subscribe, which was the primary goal. It's noteworthy that such a high recall was achieved, as it suggests the model is highly sensitive to true positive cases.

## Introduction

## Background

The data set Bank Marketing was created by Sérgio Moro and Paulo Rita at the University Institute of Lisbon, and Paulo Cortez at the University of Minhom. It is sourced from the UCI Machine Learning Repository. Each row in this data set is an observation related to direct marketing campaigns (phone calls) of a Portuguese banking institution.

## **Research Question**

We are working on a binary classification model. The classification goal is to predict if the client will subscribe a term deposit: "yes" for will subscribe and "no" for won't subscribe.

## **Data Description**

The data is related with direct marketing campaigns of a Portuguese banking institution. The marketing campaigns were based on phone calls. Often, more than one contact to the same client was required, in order to access if the product (bank term deposit) would be ('yes') or not ('no') subscribed. It was sourced from the UCI Machine Learning Repository and can be found here. We will be using bank-full.csv with all examples and 17 inputs, ordered by date (older version of this dataset with less inputs).

These are the detail of all inputs:

| Feature<br>Name | Туре        | Description                                                                                                        | Classes                                                                                                                               |
|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| age             | Numeric     |                                                                                                                    |                                                                                                                                       |
| job             | Categorical | Type of job                                                                                                        | 'admin.','blue-<br>collar','entrepreneur','housemaid','management','retire<br>employed','services','student','technician','unemployec |
| marital         | Categorical | Marital status                                                                                                     | 'divorced','married','single','unknown'                                                                                               |
| education       | Categorical |                                                                                                                    | 'primary', 'secondary', 'tertiary', 'unknown'                                                                                         |
| default         | Categorical | Has credit in default?                                                                                             | 'no', 'yes', 'unknown'                                                                                                                |
| housing         | Categorical | Has housing<br>loan?                                                                                               | 'no', 'yes', 'unknown'                                                                                                                |
| loan            | Categorical | Has personal<br>loan?                                                                                              | 'no', 'yes', 'unknown'                                                                                                                |
| balance         | Numeric     | Balance of the individual                                                                                          |                                                                                                                                       |
| contact         | Categorical | Contact communication type                                                                                         | 'cellular', 'telephone'                                                                                                               |
| month           | Categorical | Last contact<br>month of year                                                                                      | 'jan', 'feb', 'mar',, 'nov', 'dec'                                                                                                    |
| day             | Categorical | Last contact<br>day of the<br>week                                                                                 | 'mon', 'tue', 'wed', 'thu', 'fri'                                                                                                     |
| duration        | Numeric     | Last contact<br>duration, in<br>seconds                                                                            |                                                                                                                                       |
| campaign        | Numeric     | Number of<br>contacts<br>performed<br>during this<br>campaign and<br>for this client                               |                                                                                                                                       |
| pdays           | Numeric     | Number of<br>days that<br>passed by<br>after the client<br>was last<br>contacted<br>from a<br>previous<br>campaign |                                                                                                                                       |
| previous        | Numeric     | Number of contacts performed before this                                                                           |                                                                                                                                       |

|     | ature<br>ame | Туре        | Description                                         | Classes                             |
|-----|--------------|-------------|-----------------------------------------------------|-------------------------------------|
|     |              |             | campaign and for this client                        |                                     |
| pou | ıtcome       | Categorical | Outcome of<br>the previous<br>marketing<br>campaign | 'failure', 'nonexistent', 'success' |
| у   |              | Binary      | Has the client subscribed to a term deposit?        | 'yes', 'no'                         |

The classification goal is to predict if the client will subscribe (yes/no) a term deposit (variable y).

## **Results and Discussion**

## **Exploratory Data Analysis**

```
In [2]: import warnings
        warnings.filterwarnings('ignore', category=FutureWarning)
        # Import the uniques function from the src folder
        sys.path.append('..')
        from src.uniques import get_uniques
        df = pd.read_csv("../data/bank-full.csv", delimiter=";")
        df.rename(columns={"y": "target"}, inplace=True)
        train_df, test_df = train_test_split(df, test_size=0.2, random_state=123)
        get_uniques(df);
In [3]: # Import the eda_plotting functions function from the src folder
        sys.path.append('..')
        from src.eda_plotting import (
                                         EDA_plot,
                                         spearman_correlation_matrix,
                                         text EDA
In [4]: numeric_cols = train_df.select_dtypes(include=['int64', 'float64']).columns.
        categorical_cols = ["job", "marital", "education", "default", "housing", "log

        numerical_cols = numeric_cols
In [5]: text_EDA(train_df)
```

DataFrame Information:

<class 'pandas.core.frame.DataFrame'>
Index: 36168 entries, 28686 to 15725
Data columns (total 17 columns):

| #    | Column     | Non-Nul | l Count | Dtype  |
|------|------------|---------|---------|--------|
|      |            |         |         |        |
| 0    | age        | 36168 n | on-null | int64  |
| 1    | job        | 36168 n | on-null | object |
| 2    | marital    | 36168 n | on-null | object |
| 3    | education  | 36168 n | on-null | object |
| 4    | default    | 36168 n | on-null | object |
| 5    | balance    | 36168 n | on-null | int64  |
| 6    | housing    | 36168 n | on-null | object |
| 7    | loan       | 36168 n | on-null | object |
| 8    | contact    | 36168 n | on-null | object |
| 9    | day        | 36168 n | on-null | int64  |
| 10   | month      | 36168 n | on-null | object |
| 11   | duration   | 36168 n | on-null | int64  |
| 12   | campaign   | 36168 n | on-null | int64  |
| 13   | pdays      | 36168 n | on-null | int64  |
| 14   | previous   | 36168 n | on-null | int64  |
| 15   | poutcome   | 36168 n | on-null | object |
| 16   | target     | 36168 n | on-null | object |
| dtvn | es int64(7 | ) objec | +(10)   |        |

dtypes: int64(7), object(10)

memory usage: 5.0+ MB

## Descriptive Statistics:

|  |          | count   | mean        | std         | min     | 25%   | 50%   | 75%     | max     |
|--|----------|---------|-------------|-------------|---------|-------|-------|---------|---------|
|  | age      | 36168.0 | 40.944979   | 10.609908   | 18.0    | 33.0  | 39.0  | 48.00   | 95.0    |
|  | balance  | 36168.0 | 1371.354208 | 2999.155128 | -8019.0 | 73.0  | 448.5 | 1448.00 | 98417.0 |
|  | day      | 36168.0 | 15.801095   | 8.309679    | 1.0     | 8.0   | 16.0  | 21.00   | 31.0    |
|  | duration | 36168.0 | 258.955403  | 259.218884  | 0.0     | 103.0 | 180.0 | 319.25  | 4918.0  |
|  | campaign | 36168.0 | 2.759013    | 3.095290    | 1.0     | 1.0   | 2.0   | 3.00    | 58.0    |
|  | pdays    | 36168.0 | 40.199762   | 100.114274  | -1.0    | -1.0  | -1.0  | -1.00   | 871.0   |
|  | previous | 36168.0 | 0.580596    | 2.364362    | 0.0     | 0.0   | 0.0   | 0.00    | 275.0   |

First 5 Rows:

|       | age | job         | marital | education | default | balance | housing | loan | contact  |
|-------|-----|-------------|---------|-----------|---------|---------|---------|------|----------|
| 28686 | 29  | services    | single  | secondary | no      | -205    | no      | no   | cellular |
| 9304  | 53  | blue-collar | married | primary   | no      | 0       | yes     | no   | unknown  |
| 41425 | 55  | management  | married | primary   | no      | 2587    | no      | no   | cellular |
| 44803 | 30  | technician  | single  | tertiary  | no      | 0       | no      | no   | cellular |
| 5878  | 30  | unemployed  | married | secondary | no      | 529     | yes     | yes  | unknown  |

Last 5 Rows:

| contac   | loan | housing | balance | default | education | marital | job         | age |       |
|----------|------|---------|---------|---------|-----------|---------|-------------|-----|-------|
| unknowı  | no   | yes     | 3674    | no      | secondary | married | unemployed  | 50  | 7763  |
| cellula  | no   | yes     | 635     | no      | tertiary  | married | management  | 36  | 15377 |
| telephon | no   | no      | 3664    | no      | primary   | married | blue-collar | 43  | 17730 |
| telephon | no   | no      | 8585    | no      | primary   | married | unemployed  | 55  | 28030 |
| cellula  | no   | yes     | 2154    | no      | tertiary  | single  | management  | 46  | 15725 |

In [6]: display(spearman\_correlation\_matrix(df, numerical\_cols))

|          | age       | balance   | day       | duration  | campaign  | pdays     | previou  |
|----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|
| age      | 1.000000  | 0.096380  | -0.008948 | -0.033257 | 0.037136  | -0.017468 | -0.01190 |
| balance  | 0.096380  | 1.000000  | 0.001329  | 0.042651  | -0.030959 | 0.069676  | 0.07953  |
| day      | -0.008948 | 0.001329  | 1.000000  | -0.058142 | 0.139581  | -0.092226 | -0.08778 |
| duration | -0.033257 | 0.042651  | -0.058142 | 1.000000  | -0.107962 | 0.028698  | 0.03117  |
| campaign | 0.037136  | -0.030959 | 0.139581  | -0.107962 | 1.000000  | -0.112284 | -0.10844 |
| pdays    | -0.017468 | 0.069676  | -0.092226 | 0.028698  | -0.112284 | 1.000000  | 0.98564  |
| previous | -0.011900 | 0.079536  | -0.087780 | 0.031175  | -0.108448 | 0.985645  | 1.00000  |

In [7]: display(EDA\_plot(df, numeric\_cols, categorical\_cols))























(None, None)

## Preprocessing

- Since there is no missing values in our dataset, we don't need to do imputation or drop NAs.
- We are going to drop "contact", "day" and "month" column here since they are not helping us in identifying useful underlying pattern in the model.
- We take "age", "balance", "duration", "campaign", "pdays", "previous" as numerical features and we are doing StandardScaler transformation on them.
- We take "job", "marital", "education", "default", "housing", "loan", "poutcome" as categorical features and we are doing one hot encoding on them. We dropped columns only if the categorical is binary.

Out[11]:

|       | age       | balance   | duration  | campaign  | pdays     | previous  | job_admin. |
|-------|-----------|-----------|-----------|-----------|-----------|-----------|------------|
| 28686 | -1.125848 | -0.525607 | -0.250585 | -0.568295 | -0.411533 | -0.245565 | 0.0        |
| 9304  | 1.136220  | -0.457253 | 0.100475  | -0.245219 | -0.411533 | -0.245565 | 0.0        |
| 41425 | 1.324725  | 0.405335  | 0.266360  | -0.245219 | 0.537396  | 0.600341  | 0.0        |
| 44803 | -1.031595 | -0.457253 | -0.173429 | -0.245219 | -0.411533 | -0.245565 | 0.0        |
| 5878  | -1.031595 | -0.280868 | -0.586213 | 0.077857  | -0.411533 | -0.245565 | 0.0        |

5 rows × 32 columns

### **Model Selection**

```
In [12]: # 1. Base Model: Dummy Classifier
    classification_metrics = ["accuracy", "precision", "recall", "f1"]
    dc = DummyClassifier(strategy="most_frequent")
    pipe_dc = make_pipeline(preprocessor, dc)
    # The mean and std of the cross validated scores for all metrics as a datafr
    cross_val_results = {}
    scoring = {
        "accuracy": 'accuracy',
          'precision': make_scorer(precision_score, pos_label="yes", zero_division
          'recall': make_scorer(recall_score, pos_label="yes"),
          'f1': make_scorer(f1_score, pos_label="yes")
} # scoring can be a string, a list, or a dictionary

cross_val_results['dummy'] = pd.DataFrame(cross_validate(pipe_dc, X_train, y)
# Show the train and validation scores
    cross_val_results['dummy']
```

```
Out[12]:
                       mean
                               std
               fit_time 0.061 0.015
            score_time 0.092 0.002
          train_accuracy 0.883 0.000
          test_precision 0.000 0.000
         train_precision 0.000 0.000
             test_recall 0.000 0.000
            train_recall 0.000 0.000
               test_f1 0.000 0.000
               train_f1 0.000 0.000
In [13]: # 2. Logistic regression
         # The logreg model pipeline
         logreg = make_pipeline(preprocessor, LogisticRegression(max_iter=1000, rando
```

# # The mean and std of the cross validated scores for all metrics as a datafr cross\_val\_results['logreg'] = pd.DataFrame(cross\_validate(logreg, X\_train, y # Show the train and validation scores cross\_val\_results['logreg'] Out[13]: mean std fit time 0.906 0.190

```
        fit_time
        0.806
        0.189

        score_time
        0.166
        0.028

        test_accuracy
        0.900
        0.003

        train_accuracy
        0.900
        0.001

        test_precision
        0.652
        0.029

        train_precision
        0.313
        0.019

        train_recall
        0.315
        0.009

        test_f1
        0.423
        0.023

        train_f1
        0.425
        0.009
```

```
In [14]: # 3. Support vector classifier

# The svc model pipeline
svc = make_pipeline(preprocessor, SVC(random_state=123))
```

# The mean and std of the cross validated scores for all metrics as a datafr
cross\_val\_results['svc'] = pd.DataFrame(cross\_validate(svc, X\_train, y\_train
# Show the train and validation scores
cross\_val\_results['svc']

#### Out[14]:

|                 | mean  | std   |
|-----------------|-------|-------|
| fit_time        | 6.465 | 0.129 |
| score_time      | 2.441 | 0.058 |
| test_accuracy   | 0.899 | 0.002 |
| train_accuracy  | 0.907 | 0.001 |
| test_precision  | 0.655 | 0.016 |
| train_precision | 0.726 | 0.007 |
| test_recall     | 0.288 | 0.008 |
| train_recall    | 0.326 | 0.007 |
| test_f1         | 0.400 | 0.010 |
| train_f1        | 0.450 | 0.007 |
|                 |       |       |

```
Out[15]:
                        mean
                                std
               fit_time 0.894 0.197
             score_time
                       0.195 0.050
          test_accuracy 0.829 0.002
          train_accuracy 0.829 0.001
          test_precision 0.386 0.005
         train_precision 0.386 0.003
             test_recall 0.777 0.012
             train_recall 0.778 0.002
                test_f1 0.516 0.006
                train_f1 0.516 0.003
In [16]: # 5. Balanced support vector classifier
         svc_bal = make_pipeline(preprocessor, SVC(random_state=123, class_weight="ba
         # The mean and std of the cross validated scores for all metrics as a datafr
         cross_val_results['svc_bal'] = pd.DataFrame(cross_validate(svc_bal, X_train,
         # Show the train and validation scores
         cross_val_results['svc_bal']
Out[16]:
                        mean
                                 std
               fit_time 11.606 0.144
                       4.384 0.028
             score_time
          train_accuracy
                       0.825 0.001
          test_precision 0.368 0.010
         train_precision 0.388 0.001
                        0.821 0.011
             test_recall
             train_recall 0.864 0.004
                test_f1
                        0.508
                              0.011
                train_f1
                        0.535
                               0.001
In [17]: # Compare the average scores of all the models
         pd.concat(
             cross_val_results,
             axis='columns'
         ).xs(
              'mean',
```

```
axis='columns',

level=1
).style.format(
   precision=2
).background_gradient(
   axis=None
)
```

#### Out[17]:

|                 | dummy | logreg | SVC  | logreg_bal | svc_bal |
|-----------------|-------|--------|------|------------|---------|
| fit_time        | 0.06  | 0.81   | 6.46 | 0.89       | 11.61   |
| score_time      | 0.09  | 0.17   | 2.44 | 0.20       | 4.38    |
| test_accuracy   | 0.88  | 0.90   | 0.90 | 0.83       | 0.81    |
| train_accuracy  | 0.88  | 0.90   | 0.91 | 0.83       | 0.82    |
| test_precision  | 0.00  | 0.65   | 0.66 | 0.39       | 0.37    |
| train_precision | 0.00  | 0.66   | 0.73 | 0.39       | 0.39    |
| test_recall     | 0.00  | 0.31   | 0.29 | 0.78       | 0.82    |
| train_recall    | 0.00  | 0.32   | 0.33 | 0.78       | 0.86    |
| test_f1         | 0.00  | 0.42   | 0.40 | 0.52       | 0.51    |
| train_f1        | 0.00  | 0.42   | 0.45 | 0.52       | 0.54    |

**Dummy Classifier** has low accuracy and zero precision, recall, and F1 scores, indicating it never predicts the positive class (in this case the client subscribed a term deposit). This is expected as it always predicts the most frequent class.

logreg shows improved accuracy over the dummy model. However, its recall is low, suggesting it misses a significant number of true positive cases. svc performed almost the same as logistic regression model among all metrics.

logreg\_bal and svc\_bal have lower accuracy compared to their unbalanced counterparts but significantly higher recall. This indicates they are better at identifying positive cases but at the cost of making more false positive errors.

Given the context of our bank marketing data set, we aim to detect the clients who will subscribe a term deposit given the features. Missing a potential "yes" could be more costly than false positives, as it represents a lost opportunity for the sales team to transform this potential customer. Therefore, we chose svc\_bal as the model has the highest test\_recall score.

```
y_train,
values_format="d",)
confmat_svc_bal
```

Out[18]: <sklearn.metrics.\_plot.confusion\_matrix.ConfusionMatrixDisplay at 0x1693c70
 40>



In [19]: # Import the scoring\_metrics functions function from the src folder
 sys.path.append('..')
 from src.scoringmetrics import scoring\_metrics
 result=scoring\_metrics(svc\_bal, X\_train, y\_train, X\_test, y\_test, pos\_label=
 result

| Out[19]: |   | train_accuracy | test_accuracy | train_precision | test_precision | train_recall | test_rec |
|----------|---|----------------|---------------|-----------------|----------------|--------------|----------|
|          | 0 | 0.823822       | 0.815659      | 0.386556        | 0.369435       | 0.861531     | 0.8164   |

## **Hyperparameter Optimization**

Optimizing hyperparameters in SVC with a smaller sample size of 10,000 instances is a strategy aimed at enhancing computational efficiency. This approach expedites the exploration of hyperparameter possibilities, aiding in the discovery of potential configurations. While the outcomes validate the concept, it's crucial to recognize and manage the constraints stemming from the smaller dataset size when interpreting the results.

```
In [20]: # Creating a sample of 10000 observations
         sample data = df.sample(n=10000, random state=123)
         train_df_sampled, test_df_sampled = train_test_split(sample_data, test_size=
         X train sampled = train df sampled.drop(columns=["target"])
         X_test_sampled = test_df_sampled.drop(columns=["target"])
         y_train_sampled = train_df_sampled["target"]
         y test sampled = test df sampled["target"]
         # Transformation on the sample training data
         sample preprocessor = make column transformer(
             (StandardScaler(), numerical_features),
             (OneHotEncoder(drop="if_binary"), categorical_features),
             ("drop", drop_features),
         # X train sampled enc = pd.DataFrame(sample preprocessor.fit transform(X tra
         svc_bal_sample = make_pipeline(sample_preprocessor, SVC(random_state=123, cl
         param dist = {
             'svc__C': uniform(0.1, 10),
             'svc gamma': uniform(0.001, 0.1),
             'svc__kernel': ['rbf', 'sigmoid', 'linear']
         }
         # Perform RandomizedSearchCV for hyperparameter optimization
         random_search = RandomizedSearchCV(svc_bal_sample, param_distributions=param
         random_search.fit(X_train_sampled, y_train_sampled)
         # Best hyperparameters
         best_params_random = random_search.best_params_
         print("Best Hyperparameters (Randomized Search):", best_params_random)
        Best Hyperparameters (Randomized Search): {'svc C': 4.331064601244609, 'svc
        gamma': 0.09907641983846155, 'svc kernel': 'rbf'}
In [21]: pd.DataFrame(random_search.cv_results_)[
             Г
                 "mean test score",
                 "param_svc__gamma",
                 "param_svc__C",
                 "mean_fit_time",
                 "rank test score",
         ].set index("rank test score").sort index().T
```

```
Out[21]:
             rank_test_score
                                                                                   3
                                                  0.8275
                                                            0.8275
                                                                     0.8275
            mean_test_score 0.831875
                                       0.82775
                                                                               0.8275 0.
          param_svc__gamma 0.099076 0.008709 0.044086 0.073905 0.069326
                                                                             0.018537 0.
               param_svc__C 4.331065 1.640822
                                                4.437012
                                                           3.53178
                                                                   5.073088
                                                                             5.40062 7.0
               mean_fit_time 0.677113
                                        0.7783
                                                 1.51885
                                                          1.317613 1.537338 1.499696
```

4 rows × 25 columns

## Test results after hyperparameter optimization

```
In [22]: # Evaluate the best model on the test set
         best_model_random = random_search.best_estimator_
         accuracy_random = best_model_random.score(X_test, y_test)
         print("Accuracy on Test Set:", accuracy_random)
        Accuracy on Test Set: 0.8613292049098751
In [23]: predictions = best_model_random.predict(X_test)
         recall = recall_score(y_test, predictions, pos_label='yes')
         print("Recall on Test Set:", recall)
        Recall on Test Set: 0.8751182592242195
In [24]: results = pd.DataFrame(random_search.cv_results_)
         scatter = alt.Chart(results).mark_circle().encode(
             x='param_svc__C:Q',
             y='param_svc__gamma:Q',
             color=alt.Color('mean_test_score:Q',
                             scale=alt.Scale(scheme='viridis', reverse=True)
         ).properties(
             width=400,
             height=300,
             title='C and gamma vs. Mean Test Score'
         scatter
```

Out[24]:



# **Discussions**

## **Key Findings**

In this bank marketing analysis project, we aimed to develop a binary classification model to predict client subscription to term deposits. We tested Logistic Regression and Support Vector Classifier (SVC) models, focusing on recall as a key performance metric. The SVC model outperformed Logistic Regression in recall, and after hyperparameter optimization, it achieved a recall score of 0.875 on the test dataset, which is quite promising!

## **Reflection on Expectations**

The results were somewhat expected, given SVC's known efficacy in classification tasks, particularly when there's a clear margin of separation. The high recall score of 0.875 indicates that the model is particularly adept at identifying clients likely to subscribe, which was the primary goal. It's noteworthy that such a high recall was achieved, as it suggests the model is highly sensitive to true positive cases.

## Impact of Finding

The high recall score of this model has significant implications for targeted marketing strategies. It suggests that the bank can confidently use the model's predictions to focus its marketing efforts on clients predicted to subscribe, potentially increasing the

efficiency and effectiveness of its campaigns. This targeted approach could lead to higher conversion rates with lower marketing expenses. However, it's important to balance such a high recall with precision to ensure that the bank doesn't unnecessarily target unlikely prospects.

## **Future Improvements**

The success of this model leads to several potential areas for further exploration:

- Balancing Precision and Recall: Investigating methods to enhance precision without substantially reducing recall.
- Feature Analysis: Identifying which features most significantly influence subscription predictions. Model Interpretability: Improving the model's interpretability to better understand the basis for its predictions.
- Temporal Adaptability: Assessing the model's adaptability to evolving trends and customer behaviors over time.
- Testing Alternative Models: Exploring whether ensemble methods or more advanced machine learning algorithms could yield better or comparable results.
- Customer Segmentation: Evaluating the model's performance across different customer segments to tailor more specific marketing strategies.

# References

Moro,S., Rita,P., and Cortez,P., 2012. Bank Marketing. UCI Machine Learning Repository. https://doi.org/10.24432/C5K306"

Timbers, T., Ostblom, J., and Lee, M., 2023. Breast Cancer Predictor Report. GitHub repository,

https://github.com/ttimbers/breast\_cancer\_predictor\_py/blob/0.0.1/src/breast\_cancer\_predic

Moro, S., Cortez, P., & Rita, P. (2014). A data-driven approach to predict the success of bank telemarketing. Decis. Support Syst., 62, 22-31.

Alsolami, F.J., Saleem, F., & Al-Ghamdi, A.S. (2020). Predicting the Accuracy for Telemarketing Process in Banks Using Data Mining.

Vajiramedhin, C., & Suebsing, A. (2014). Feature Selection with Data Balancing for Prediction of Bank Telemarketing. Applied mathematical sciences, 8, 5667-5672.

Moura, A.F., Pinho, C.M., Napolitano, D.M., Martins, F.S., & Fornari Junior, J.C. (2020). Optimization of operational costs of Call centers employing classification techniques. Research, Society and Development, 9.