MCMC Predictions of •••

COVID19 Infections

Understanding the problem

Problem

COVID19 outbreak in a small Indian town

Predict # of cases for the next 2 months

SIRD Model

The (SIRD)

- **S**usceptible
- **I**nfected
- **R**ecovered
- **D**eaths

model is a set of ODEs that mimic viral dynamics.

Objective

- Use Markov Chain
 Monte Carlo
 Methods to predict
 cases
- Make conclusions for policymakers
- Compare with observed data

SIRD MODEL

(Compartmental Model)

SIRD Model

Differential Form

- \bullet β \rightarrow rate of infection
- γ \rightarrow rate of recovery
- $\kappa \longrightarrow \text{rate of mortality}$

Constraints:

- $\bullet \quad N = S + I + R + D$
- $0 = \overline{\frac{dS}{dt} + \frac{dI}{dt} + \frac{dR}{dt} + \frac{dD}{dt}}$

$$\frac{dS}{dt} = -\frac{\beta SI}{N}$$

$$\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I - \kappa I$$

$$\frac{dR}{dt} = \gamma I$$

$$\frac{dD}{dt} = \kappa I$$

Solution to SIRD Model

- 51 days worth of infection data provided
- Runge Kutta Method of 5(4)
 was used to generate a solution
 using Delhi parameters
 - \circ $\beta \rightarrow 0.2070$
 - \circ $\gamma \rightarrow 0.0505$
 - \circ $\kappa \rightarrow 0.0155$

Conclusion:

• True parameters ~ Delhi parameters

Prior Dist v. Data

The Histogram and Normal Distribution of the Prior Data

Markov Chain Monte Carlo Method

Initial Setup

- Define Prior
- Define Likelihood

Compute current (cur) probability

• Get the posterior probability of the current parameters

Compute updated (new) probability

- Perform random walk
- Get posterior probability

Conditional Accept

- If new/cur > 1 : accept
- Elif (0 < random < new/cur < 1) : accept

Long Term MC Simulation

As $t \to \infty$

 $\bullet \quad \gamma \to 0.0477$

• $\kappa \rightarrow 0.0150$

90% Credibility Intervals

Parameter	Beta	Gamma	Kappa	Phi
Lower Bound	0.1760	0.0353	0*	0.0112
Upper Bound	0.2025	0.0613	0.0075	0.0202

^{*} negative value

Future Predictions & Envelope

- Predictions fitted against observations
 - \circ Infections \rightarrow overestimate
 - \circ Recovery \rightarrow accurate
 - \circ Deaths \rightarrow underestimate
- Envelope
 - Infection data not contained
 - Recovery and Deaths contained

Recommendations to Policymakers

- According to prediction →
 almost at peak even without
 interference
- Light restrictions
 - masking
 - social distancing

Sources of Error

- Due to overflow/underflow errors → inconvenient values dumped
- Extra parameter phi → extra uncertainty
- Overall model is very simple