Project Report: Music Genre Classification Using Deep Learning

1. Project Title

Music Genre Classification Using CNN and Audio Feature Extraction

2. Abstract

This project explores the use of deep learning for classifying musical genres based on audio input. By converting audio signals into structured, multi-channel image-like data, a convolutional neural network (CNN) is trained to distinguish between 10 music genres from the GTZAN dataset. The model is further deployed through a Flask-based web application for real-time predictions on uploaded audio files.

3. Objectives

- To classify audio files into genres using CNN
- To extract meaningful audio features such as MFCC, tempo, and chroma
- To visualize misclassification and improve model performance
- To deploy a web application for live genre prediction

4. Dataset

GTZAN Dataset: 10 genres, each with 100 audio files (30s)

Genres: blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock

5. Methodology

Audio Feature Extraction: Each audio file is converted to a 3D array using MFCC, Delta and Delta-Delta MFCC, Tempo-synced MFCC (beat-aware), and Chroma. This results in a shape of (40, 130, 5) per audio chunk.

CNN Architecture:

- Conv Block 1: Conv2D(5→32) → ReLU → BatchNorm → MaxPool → Dropout
- Conv Block 2: Conv2D(32 \rightarrow 64) \rightarrow ReLU \rightarrow BatchNorm \rightarrow MaxPool \rightarrow Dropout
- Global Pool: AdaptiveAvgPool2D(1×1)
- FC Layers: Linear(64 \rightarrow 128) \rightarrow ReLU \rightarrow Dropout \rightarrow Linear(128 \rightarrow 10)
- Output: LogSoftmax

6. Training Pipeline

Optimizer: Adam with weight decay (1e-4)

Loss Function: CrossEntropyLoss Metrics: Accuracy, Confusion Matrix

Tools: torchmetrics. Accuracy, GradScaler (AMP training)

7. Deployment

A Flask web application allows users to upload .wav files. Audio is sliced into 3-second chunks, each chunk is classified independently, and majority voting determines the final genre.

8. Result

Achieved high test accuracy on GTZAN.

Confusion matrix revealed common genre misclassifications:

- hiphop \leftrightarrow reggae
- $\text{-} \ \mathsf{metal} \longleftrightarrow \mathsf{rock}$
- disco ↔ pop

9. System Requirement

Python 3.10+

Dependencies: PyTorch, TensorFlow (optional), Librosa, Flask, Jupyter

Compatible with both CPU and CUDA-enabled GPUs

10. Project Structure

mainthing.py - Flask App model/ - CNN model ckpt/ - Trained model weights templates/index.html - Upload UI static/ - CSS/JS if any requirements.txt README.md notebook.ipynb - Training and analysis

11. Final Accuracy Metrics

Train Accuracy: 86.42% Validation Accuracy: 85.62% Test Accuracy: 85.90%