KOMUTATIVNA ALGEBRA, 2019/20

9. DN/9nd HW: 6.5.2020

Rok za oddajo/ Deadline: 23:59, 12. 5. 2020

- (1) Naj bo $m = k^2 n \in \mathbb{Z}$, kjer je n brez kvadratnih faktorjev. Pokaži, da je celostno zaprtje $\mathbb{Z}[\sqrt{m}]$ v svojem obsegu ulomkov enako $\mathbb{Z}[\frac{1+\sqrt{n}}{2}]$, če je $n \equiv 1 \mod 4$ in $\mathbb{Z}[\sqrt{n}]$ sicer.
- (2) Naj bo S celostna razširitev R in k algebraično zaprto polje. Pokaži, da lahko vsak homomorfizem $f: R \to k$ razširimo do homomorfizma $g: S \to k$ $(g|_R = f)$. Poišči primera, ko se homomorfizma ne da razširiti, če;
 - a) S ni celostna razširitev R.
 - b) k ni algebraično zaprto polje (Vedar še vedno polje).
- (1) Let $m = k^2 n \in \mathbb{Z}$ where n is without quadratic factors. Show that integral closure of $\mathbb{Z}[\sqrt{m}]$ in its field of fractions is $\mathbb{Z}[\frac{1+\sqrt{n}}{2}]$, if $n \equiv 1 \mod 4$ and $\mathbb{Z}[\sqrt{n}]$ otherwise.
- (2) Let S be an integral extension R and k an algebraically closed field. Show, that every homomorphism $f: R \to k$ can be extended to a homomorphism $g: S \to k$ $(g|_R = f)$. Find example where extension does not exist if;
 - a) S is not integral over R.
 - b) k is not algebraically closed field (But still a field).