Correction to "High Resolution Beacon-Based Proximity Detection for Dense Deployment"

Pai Chet Ng[®], James She, Member, IEEE, and Soochang Park[®], Member, IEEE

T HE authors of "High Resolution Beacon-Based Proximity Detection for Dense Deployment" which appeared in the June issue of this journal [1] would like to point out an error that occurred in their paper on page 4.

On page 4, the equation should be corrected as follows:

"Based on the resultant energy loss vector $\mathbf{E} \in \mathbb{R}^n$, we can identify the target PoI. The intuition here is that the RN should measure the highest energy from the target PoI, which means there is only a minimum energy loss for signals to travel from the target PoI to the RN. Hence, the proximity detection model can be formulated as follows:

$$\widehat{i} := \underset{i \in b_n}{argmin} \{E_i\}$$

where E_i is the energy required by the signal to travel from PoI_i to the RN. b_n is the reduced set of the PoI's indexes subject to the n number of PoIs observed during Ts, and $b_n \subseteq b''$.

Similarly, on page 8, the Eq. (22) should be corrected as follows:

$$i_0:= \ \underset{i \in b_n}{argmin} \Big\{ E_{\mathbb{T}}{}^{(G)}, \ E_{i_0}{}^{(G-1)} \Big\}.$$

Algorithm 1 and 2 should be corrected as follows:

Algorithm 1. Adaptive Scanning (AS)

Input: $T_s = t$, $\max Iter = 100$ Output: Observed vectors, $\widetilde{\Phi}$ and \widetilde{T} Initialize: $count = size(\widetilde{\Phi})$, iter = 1, $compare\ Ratio = 0$ while $t >= T_s$ do if iter > 2 then Compare $\widetilde{\Phi}^{(iter-1)}$ and $\widetilde{T}^{(iter-1)}$ with $\widetilde{\Phi}^{(iter-1)}$ and $\widetilde{T}^{(iter-1)}$ and update the $\widetilde{\Phi}$ and \widetilde{T} Set $compareRatio = \frac{size(\widetilde{\Phi})}{size(\widetilde{\Phi})}$ else if iter > 1 then Store and average:

- the instantaneous $P_{r,d,Bm}$ into $\widetilde{\Phi}^{(\mathit{iter})}$
- the inter-arrival time into $\widetilde{\mathrm{T}}^{(iter)}$
- The authors are with the Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China. E-mail: {pcng, eejames, eewinter}@ust.hk.

Manuscript received 22 Nov. 2016; revised 7 Sept. 2017; accepted 2 Oct. 2017. For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.org, and reference the Digital Object Identifier below. Digital Object Identifier no. 10.1109/TMC.2018.2858518

```
else if iter = 1 then Store and average:

- the instantaneous P_{r,d,Bm} into \widetilde{\Phi}

- the inter-arrival time into \widetilde{T} Increase iter by 1 if count \geq 3 or compareRatio = 1 or iter > maxiter then Forward the current \Phi and T to the sDE function BREAK and exit the WHILE loop end end
```

Algorithm 2. Spontaneous Differential Evolution (sDE)

Input: Observed vectors, Φ and T, maxG = 100

```
Output: Detection output, i<sub>0</sub>
Initialize: population = size(\widetilde{\Phi}), G = 1, M = 0.8, C = 0.5
while G < maxG do
  if G > 1 then
    Select the top two elements Calculate the turning
     parameter using Eq. (23)
  else
    Select the top three elements Set S = 1
  Forward the turning parameter to AS
  Perform:
        mutation using Eq. (17) and (18)
        crossover using Eq. (19)
        selection using Eq. (22)
  if G > 2 then
    if i_0^{(G-2)} == i_0^{(G-1)} == i_0^{(G)} or G > maxG then
         BREAK and exit the WHILE loop
    end
  end
  Increase G by 1
```

REFERENCES

[1] P. C. Ng, J. She, and S. Park, "High resolution beacon-based proximity detection for dense deployment, " *IEEE Trans. Mobile Comput.*, vol. 17, no. 6, pp. 1369–1382, Jun. 2018.