

Engenharia de Automação e Controle Engenharia Mecânica

Projeto Theoprax de Conclusão de Curso

Doogie: um projeto de robô micromouse

Apresentada por: Caio Amaral

Élisson Riller Elton Marques Iure Pinheiro Mateus Menezes

Orientador: Prof. Marco Reis, M.Eng.

Setembro de 2019

Caio Amaral Élisson Riller Elton Marques Iure Pinheiro Mateus Menezes

Doogie: um projeto de robô micromouse

Projeto Theoprax de Conclusão de Curso apresentada ao, Curso de Engenharia de Automação e Controle e Engenharia Mecânica do Centro Universitário SENAI CIMATEC, como requisito parcial para a obtenção do título de Bacharel em Engenharia.

Área de conhecimento: Interdisciplinar Orientador: Prof. Marco Reis, M.Eng.

Salvador Centro Universitário SENAI CIMATEC 2019

Resumo

Escreva aqui o resumo da dissertação, incluindo os contextos geral e específico, dentro dos quais a pesquisa foi realizada, o objetivo da pesquisa, assunção filosófica, os métodos de pesquisa usados e as possíveis contribuições que o que é proposto pode trazer à sociedade.

Palavra-chave: Palavra-chave 1, Palavra-chave 2, Palavra-chave 3, Palavra-chave 4, Palavra-chave 5

Abstract

Escreva aqui, em inglês, o resumo da dissertação, incluindo os contextos geral e específico, dentro dos quais a pesquisa foi realizada, o objetivo da pesquisa, assunção filosófica, os métodos de pesquisa usados e as possíveis contribuições que o que é proposto pode trazer à sociedade.

Keywords: Keyword 1, Keyword 2, Keyword 3, Keyword 4, Keyword 5

Sumário

1	Intr	rodução	1
	1.1	Objetivos	1
		1.1.1 Objetivos Específicos	1
	1.2	Justificativa	1
	1.3	Organização do Projeto Theoprax de Conclusão de Curso	2
2	Fun	damentação Teórica	3
	2.1	Micromouse	3
	2.2	Robotics Frameworks	3
	2.3	Estudo do estado da arte	3
	2.4	Benchmark	5
		2.4.1 GreenGiant	5
		2.4.2 WPISmartMouse	6
		2.4.3 Kumamoto National College	7
	2.5	Assunto 2	8
3		teriais e Métodos	9
	3.1	Metodologia	9
	3.2	Descrição do sistema	9
		3.2.1 Especificação técnica	9
		3.2.2 Arquitetura geral do sistema	9
		3.2.3 Arquitetura de software	9
	3.3	Desdobramento da função qualidade	9
		1	10
		1	10
	3.4	1 3 1	10
		1 1	10
		1	10
	3.5	8	10
	3.6	1 3 3	10
		0	11
		1	11
	3.7	1 ,	11
		,	11
			11
			11
			11
	3.8		12
	3.9	Simulação do sistema	12
4	Res	ultados	13
	4.1		13
	4.2		13
	4.3		13
	4.4		13

SUMÁRIO		MÁRIO
	4.5 Trabalhos futuros	13
5	Conclusão 5.1 Considerações finais	14 14
\mathbf{A}	$_{ m QFD}$	15
В	Diagramas mecânicos	16
\mathbf{C}	Diagramas eletro-eletrônicos	17
D	Wireframes	18
\mathbf{E}	Logbook	19
R	eferências	20

Lista de Tabelas

Lista de Figuras

2.1	Moonlight Special - Primeiro modelo <i>micromouse</i> a ganhar uma competição.	4
2.2	Green Giant.	E
2.3	WPISmartMouse	6
2.4	Kumamoto	7

Lista de Siglas

 $\operatorname{tprax} \ \dots \dots$

WWW World Wide Web

Lista de Simbolos

∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble
∂	Bla bla bla
\prod	ble ble ble

Introdução

O mundo é - e sempre foi - um mundo de rede. Todavia apenas nas últimas duas décadas a teoria de redes tornou-se um tópico que atraido atenção de pesquisadores e da mídia (refletida nos trabalhos de (BARABÁSI, 2003), (WATTS, 2003), (NEWMAN; WATTS, 2006)), especialmente em relação às redes sociais: os relacionamentos entre os terroristas do 11/9, a forma como a SARS se espalhou em 2002/03 e o mito dos "6 graus de separação" entre dois indivíduos. Até mesmo a forma como a obesidade se espalha pode ser explicada através da análise de redes. O aumento da popularidade dos sites de rede social como Facebook, Google+ ou LinkedIn (ou a Plataforma Lattes brasileira) aumenta a nossa percepção de rede formada por nossos amigos, colegas e família e isso constitui a base invisível de nossa vida social.

1.1 Objetivos

Nesta seção os objetivos principal (também pode-se se utilizar a palavra meta) da monografia de graduação ou especialização, dissertação de mestrado ou tese de doutorado são apresentados.

1.1.1 Objetivos Específicos

Nesta seção os objetivos específicos (também pode-se se utilizar a palavra meta) da monografia de graduação ou especialização, dissertação de mestrado ou tese de doutorado são apresentados.

1.2 Justificativa

O pesquisador/estudante deve apresentar os aspectos mais relevantes da pesquisa ressaltando os impactos (e.g. científico, tecnológico, econômico, social e ambiental) que a pesquisa causará. Deve-se ter cuidado com a ingenuidade no momento em que os argumentos forem apresentados.

1.3 Organização do Projeto Theoprax de Conclusão de Curso

Este documento apresenta 5 capítulos e está estruturado da seguinte forma:

- Capítulo 1 Introdução: Contextualiza o âmbito, no qual a pesquisa proposta está inserida. Apresenta, portanto, a definição do problema, objetivos e justificativas da pesquisa e como este projeto theoprax de conclusão de curso está estruturado;
- Capítulo 2 Fundamentação Teórica: XXX;
- Capítulo 3 Materiais e Métodos: XXX;
- Capítulo 4 Resultados: XXX;
- Capítulo 5 Conclusão: Apresenta as conclusóes, contribuições e algumas sugestões de atividades de pesquisa a serem desenvolvidas no futuro.

Fundamentação Teórica

Quanto maior for a rapidez de transformação de uma sociedade, mais temporárias são as necessidades individuais. Essas flutuaçõess tornam ainda mais acelerado o senso de turbilh da sociedade.

(Alvin Toffler)

Quanto maior for a rapidez de transformação de uma sociedade, mais temporárias são as necessidades individuais. Essas flutuações tornam ainda mais acelerado o senso de turbilhão da sociedade.

(Alvin Toffler)

2.1 Micromouse

2.2 Robotics Frameworks

2.3 Estudo do estado da arte

A competição Micromouse é um concurso anual na qual estudantes do mundo todo desenvolvem pequenos robôs autônomos, denominados *micromouse*, postos a correr dentro de um labirinto. Dessa forma, o *micromouse* que mais rápido chegar ao seu centro é o vencedor da competição.

Figura 2.1: Moonlight Special - Primeiro modelo micromouse a ganhar uma competição.

Sua ideia surge em 1977, quando a *IEEE Spectrum Magazine* trouxe pela primeira vez o conceito de robôs autônomos para resolução de labirintos. Pouco tempo depois, sua primeira competição foi realizada, em junho de 1979, na primeira *IEEE Amazing Micromouse Maze Contest* organizada na cidade de Nova York. Rapidamente, o conceito da competição se espalhou e, já no começo da década de 90, vários clubes voltados para Micromouse surgiam em escolas e universidades do mundo todo. [From: The inception of Chedda]

Atualmente, a *IEEE Micromouse Competition* adota uma configuração que consiste-se de um labirinto de 16 x 16 blocos. Cada bloco possui 18 cm x 18 cm. As paredes, que possuem 5 cm de altura, são pintadas de branco de modo a ser reflexiva à luz infravermelho. O chão, por outro lado, é pintado de preto, para que não seja reflexivo. Além disso, o *micromouse* sempre inicia a partir de um dos cantos do labirintos e termina em seu centro. Com base nisso, os competidores devem usar de algoritimos de busca para explorar o labirinto para encontrar a rota mais otimizada para a resolução do labirinto. O robô por sua vez, não pode ter suas dimensões maiores que uma seção de 25cm x 25 cm. As regras completas estão dispostas como anexo no final do documento.

Capítulo Dois 2.4. Benchmark

2.4 Benchmark

2.4.1 GreenGiant

A Green Giant é uma desenvolvedora de múltiplas plataformas de robótica, especializada em eletrônica embarcada, tendo como seu carro-chefe o *micromouse*. Seu modelo mais recente, 2016 - 2017, é voltado para alto desempenho em competições, alcançando a posição de quarto lugar durante a APEC de 2016. Sua interface de usuário possui display LED, sinalizadores luminosos de led, butões, buzzer, além de possuir um sistema de comunicação Bluetooth 4.0. Ademais, o modelo usa um sistema de ventoinhas de sucção para aumentar o nível de aderência das rodas, permitindo alcançar maiores velocidades sem derrapar.

Green Giant 5.19V		
Fabricante	Green Ye	
Ano	2017	
Linguagem de Programação	C/C++	
Sensores	IR, MPU, IE	
Controlador	STM32	
Simulador	-	
Bateria	LiPo 300mAh (7,4V)	
Rodas	3D printed mount&wheel + mini-z tyres	
Motor	DC-Motor 6 540RPM 0,21Nm (6V)	
User Interface	DMD 5x7, LEDs, buttons, Bluetooth	
Outros	sistema de ventoinhas de sucção	

Figura 2.2: Green Giant.

Pontos Positivos:

- Produto de alto desempenho em competições;
- Sistema de ventoinhas de sucção;

Pontos Negativos:

- Não possui suporte à simulação;
- Projeto pouco documentado;
- Não possui guia para usuário;
- Não possui suporte nativo para ambiente ROS;

Capítulo Dois 2.4. Benchmark

2.4.2 WPISmartMouse

A organização estudantil, WPI CollabLab, compartilham um espaço de laboratório entre seus membros para projetos com viez colaborativo a sociedade. Nesse espaço desenvolveu-se o Smartmouse, projeto *micromouse* voltado para a competição Micromouse *Brown IEEE Robotic Olympiad*. O projeto também se extendeu para o desenvolvimento de um ambiente de simulação apartir dos projetos Gazebo e Ignition, não possuindo entretanto suporte para ROS.

Smartmouse			
Fabricante	WPI CollabLab		
Ano	2018		
Linguagem	Arduino/C, Python, BASCOM		
Sensores	IR, Magnetic Encoder		
Controlador	Teensy 3.6		
Simulador	Gazebo		
Bateria	LiPo 1500mAh (7,4V)		
Rodas	Solarbotics RW2i Wheel		
Motor	DC-Motor 650RPM 2,35Nm(6V)		
User Interface	LEDs		
Outros	documentação no git		

Figura 2.3: WPISmartMouse.

Pontos Positivos:

- Provê ferramenta de simulação;
- Documentação disponível no gitub;
- Possui portabilidade para mais de uma linguagem de programação;

Pontos Negativos:

- Não possui suporte nativo para ambiente ROS;
- Pouca variedade de sensores;
- Não possui guia para usuário;
- Poucos recursos na interface com o usuário;

Capítulo Dois 2.4. Benchmark

2.4.3 Kumamoto National College

O Instituto Nacional de Tecnologia de Kumamoto, Kumamoto National College, apresentou no ano de 2008 um projeto de desenvolvimento de ferramentas educacionais voltada para integração de sistemas e suas implementações. O projeto é direcionado aos seus estudantes do 5º ano de engenharia, através da produção de um micromouse para a competição do ramo de Kyushu. O hardware do robô foi bastante simplificado, visando facilitar o desenvolvimento pelos estudantes ainda não familiarizados com a robótica e eletrônica, além de buscar reduzir os custos de produção do robô. Como ferramenta educativa, o projeto conseguiu que seus estudantes produzissem o micromouse em um semestre de atividades. Contudo, conceitos da robótica (ex: robótica móvel, fusão de sensores, visão, navegação) não foram trabalhados ou não foram citados no artigo gerado a partir do projeto.

Kumamoto National College		
Fabricante	Kiyoteru Hayama and Tsutomu Matsumoto	
Ano	2008	
Linguagem	С	
Sensores	IR	
Controlador	H8Tiny-3664	
Simulador	-	
Bateria	LiPo 900mAh (7,4V)	
Rodas	wheels, tires	
Motor	Step Motor 0,78Nm (5,6V)	
User Interface	LEDs	
Outros	Documentação em artigo	

Figura 2.4: Kumamoto.

Pontos Positivos:

- Projeto com fins educacionais;
- Fácil desenvolvimento;

Pontos Negativos:

- Não possui suporte nativo para ambiente ROS;
- Pouca variedade de sensores;
- Não possui guia para usuário;
- Poucos recursos na interface com o usuário;

Capítulo Dois 2.5. Assunto 2

• Não possui nenhuma ferramenta de simulação;

2.5 Assunto 2

 ${\rm flkjasdlkfjasdlkfjs}$

Materiais e Métodos

asdfasdfsdf

3.1 Metodologia

adadfasf

3.2 Descrição do sistema

lasdjflsadjf

3.2.1 Especificação técnica

lakjfldksjfdslakjf

3.2.2 Arquitetura geral do sistema

lkasjdflksdajflk;

3.2.3 Arquitetura de software

3.3 Desdobramento da função qualidade

asdfsdafsf

3.3.1	Requisitos	do	cliente
0.0.1	100901000	\sim	CIICIICC

asdfsadfdsf

3.3.2 Requisitos técnicos

asdfsadfdsf

3.4 Especificação dos componentes

asjdflkdjsaf

3.4.1 Estrutura analítica do protótipo

asdkjfsdalkjf

3.4.2 Lista de componentes

asfkjdsahfkjs

3.5 Diagramas mecânicos

asdfsdaf

3.6 Modelo esquemático de alimentação e comunicação

asdfadsfsdfs

3.6.1 Diagramas elétric	OS
-------------------------	----

asdfsdaf

3.6.2 Esquemas eletrônicos

asdfsdaf

3.7 Especificação das funcionalidades

as d fads fs dfs

3.7.1 Fluxo das informações

asdfsaf

3.7.2 Funcionalidade 1

asdfsaf

3.7.3 Funcionalidade 2

asdfs af

3.7.4 Funcionalidade 3

asdfsaf

3.8 Interface do Usuário

asdfadsfsdfs

3.9 Simulação do sistema

asdfadsfsdfs

Capítulo Quatro
Resultados

asdfdsfdsf

4.1 Testes unitários

asdfadsfsdfs

4.2 Integração do sistema

hhajshfdsahf

4.3 Testes integrados

asdfadsfsdfs

4.4 Avaliação da prontidão tecnológica

asdfadsfsdfs

4.5 Trabalhos futuros

asdfadsfsdfs

Conclusão

Chegou a hora de apresentar o apanhado geral sobre o trabalho de pesquisa feito, no qual são sintetizadas uma série de reflexões sobre a metodologia usada, sobre os achados e resultados obtidos, sobre a confirmação ou rechaço da hipótese estabelecida e sobre outros aspectos da pesquisa que são importantes para validar o trabalho. Recomendase não citar outros autores, pois a conclusão é do pesquisador. Porém, caso necessário, convém citá-lo(s) nesta parte e não na seção seguinte chamada **Conclusões**.

5.1 Considerações finais

Brevemente comentada no texto acima, nesta seção o pesquisador (i.e. autor principal do trabalho científico) deve apresentar sua opinião com respeito à pesquisa e suas implicações. Descrever os impactos (i.e. tecnológicos, sociais, econômicos, culturais, ambientais, políticos, etc.) que a pesquisa causa. Não se recomenda citar outros autores.

·	Apêndice A	
	QFD	

	Apêndice B	
Diagra	mas med	cânicos

Apêndice C		
Diagramas eletro-eletrônicos		

	Apêndice D	
Wireframes		

Apêno	dice E	
Logbook		

Referências Bibliográficas

BARABÁSI, A. L. *Linked: A Nova Ciência dos Networks*. São Paulo: Leopardo Editora, 2003. 1

NEWMAN, A.-L. B. M.; WATTS, D. J. *The Structure and Dynamics of Networks*. Princeton, NJ, USA: Princeton University Press, 2006. 1

WATTS, D. J. Six Degrees: The Science of a Connected Age. New York: W W Norton & Co., 2003. 1