Question 2 (Coding)

2(a) How would you preprocess the data? Explain your reasoning for using this preprocessing.

To preprocess the data for training and evaluation, the following steps were implemented:

1. Dropping Non-Numeric or Irrelevant Columns

Columns containing date or time in their names were removed from the dataset. These columns often represent temporal information in formats that are not inherently numeric, which may not contribute meaningfully to predictive modeling in their raw form. Dropping them ensures the model focuses on relevant features while avoiding unnecessary noise or complications during training.

2. Handling Missing Values

Rows with missing values were dropped. Missing values can negatively impact the model's training process by introducing bias or reducing the accuracy of predictions. Removing such rows ensures a clean and consistent dataset for training, validation, and testing.

3. Separating Features and Target

The target variable (Appliances) was separated from the feature variables in all datasets (training, validation, and testing). This separation is critical for supervised learning tasks, as the target variable is used to compute the loss and guide model optimization.

4. Scaling Features

The features were scaled using StandardScaler, which normalizes each feature to have a mean of zero and a standard deviation of one. This step is essential for algorithms like Ridge and Lasso regression, which are sensitive to the scale of input features. Scaling ensures that all features contribute equally to the optimization process and helps improve convergence during training.

Justification for Preprocessing Steps:

- **Relevance and Noise Reduction:** Dropping irrelevant columns ensures the model focuses only on variables that are likely to contribute meaningful information.
- **Data Consistency:** Handling missing values guarantees that the model does not encounter inconsistencies during training and evaluation.
- **Feature-Target Separation:** This is a standard practice in machine learning to properly define the predictive relationship.

• **Normalization:** Scaling features prevents any one variable from disproportionately influencing the model, especially in regression-based tasks.

These preprocessing steps collectively ensure that the data is clean, consistent, and ready for effective model training and evaluation.

2(c) Apply the standard linear regression. Your must return following metrics and the associated values are the numeric values.

Standard Linear Regression Metrics Table

	Metric	Value
1	Train RMSE	98.231038488786 37
2	Train R ²	0.1867540139949 3108
3	Validation RMSE	97.539865787721 72
4	Validation R ²	0.0026790084850 937257
5	Test RMSE	100.03023430387 991
6	Test R ²	-0.2116845123227 3933

2 (f) Report (using a table) the RMSE and R 2 for training, validation, and test for all the different λ values you tried. What would be the optimal parameter you would select based on the validation data performance?

Ri	dge	Regression	Met	rics	Та	bl	е	

	Alpha	Train RMSE	Train R ²	Validation RMSE	Validation R ²	Test RMSE	Test R ²
1	0.001	98.231038489251 3	0.1867540139872 3268	97.539936702056 54	0.0026775583215 15061	100.03039801358 983	-0.2116884784172 65
2	0.01	98.231038535204 69	0.1867540132263 45	97.540574863199 42	0.0026645081897 89472	100.031871318833 03	-0.2117241715699 5582
3	0.1	98.231043055762 29	0.1867539383757 587	97.546949241263 79	0.0025341501060 512917	100.04659488028 08	-0.212080902040 98973
4	1.0	98.231429551188 74	0.1867475388407 0405	97.609545382959 18	0.0012535862888 750637	100.191753669636 09	-0.2156006987179 424
5	10.0	98.244340405997 83	0.1865337483154 843	98.034674191930 45	-0.007465243709 017688	101.185054187146 4	-0.239823094651 10063

Optimal Ridge alpha based on validation RMSE: 0.001

La	Lasso Regression Metrics Table							
	Alpha	Train RMSE	Train R ²	Validation RMSE	Validation R ²	Test RMSE	Test R ²	
1	0.001	98.231053799307 93	0.1867537604860 3287	97.551560536919 82	0.0024398423148 97467	100.05640914229 632	-0.2123187164920 579	
2	0.01	98.232569029351 41	0.1867286713804 7888	97.6759646251081 8	-0.000106087072 51891225	100.33933967409 682	-0.2191845822015 3347	
3	0.1	98.2859103191771 6	0.1858452022780 5845	98.508612433841 7	-0.0172297574309 9764	101.99259625990 9	-0.2596917317172 5	
4	1.0	98.841948148196 75	0.1766072268970 7897	96.531039236097 12	0.0232023271255 85676	96.223880509601 29	-0.1212248611492 1216	
5	10.0	104.84016605524 218	0.0736398638181 0783	96.242296979244 64	0.0290371538435 2512	89.474214843264 5	0.0305558891335 46454	

Optimal Lasso alpha based on validation RMSE: 10.0

2(g) Generate the coefficient path plots (regularization value vs. coefficient value) for both ridge and lasso. Make sure that your plots encompass all the expected behavior (coefficients should shrink towards 0).

Plotting Ridge Coefficient Paths:

Plotting Lasso Coefficient Paths:

2 (h) What are 3 observations you can draw from looking at the coefficient path plots, and the metrics?

Observations:

- 1. For Ridge regression, coefficients shrink smoothly as alpha increases, but rarely become exactly zero.
- 2. For Lasso regression, many coefficients are driven exactly to zero for moderate to high alpha values, effectively performing feature selection.
- 3. The optimal regularization parameter shows a balance between underfitting and overfitting. Here, we selected the alpha value with the lowest validation RMSE as optimal for each model.

3(a) Your function should return a dictionary (paired value) where the key denotes the epoch number and the value of the loss associated with that epoch.

Training Ridge Regression with SGD

Epoch And Loss Table

	Epochs 0-19	Epochs 20-39	Epochs 40-59	Epochs 60-79	Epochs 80-99		
1	Epoch 0: Loss = 10390.297318	Epoch 20: Loss = 9802.436043	Epoch 40: Loss = 9740.496927	Epoch 60: Loss = 9718.03998	Epoch 80: Loss = 9708.10849		
2	Epoch 1: Loss = 10217.931808	Epoch 21: Loss = 9797.848455	Epoch 41: Loss = 9738.897588	Epoch 61: Loss = 9717.34557	Epoch 81: Loss = 9709.989157		
3	Epoch 2: Loss = 10111.190504	Epoch 22: Loss = 9794.046016	Epoch 42: Loss = 9738.889945	Epoch 62: Loss = 9716.380519	Epoch 82: Loss = 9707.474109		
4	Epoch 3: Loss = 10047.088184	Epoch 23: Loss = 9787.906817	Epoch 43: Loss = 9735.634274	Epoch 63: Loss = 9717.889696	Epoch 83: Loss = 9707.048309		
5	Epoch 4: Loss = 10005.490923	Epoch 24: Loss = 9784.104924	Epoch 44: Loss = 9734.546138	Epoch 64: Loss = 9715.482879	Epoch 84: Loss = 9707.594857		
6	Epoch 5: Loss = 9971.888771	Epoch 25: Loss = 9779.586177	Epoch 45: Loss = 9733.738301	Epoch 65: Loss = 9716.715968	Epoch 85: Loss = 9706.555311		
7	Epoch 6: Loss = 9948.745677	Epoch 26: Loss = 9776.619717	Epoch 46: Loss = 9731.610591	Epoch 66: Loss = 9715.568223	Epoch 86: Loss = 9706.221082		
8	Epoch 7: Loss = 9927.784754	Epoch 27: Loss = 9772.443094	Epoch 47: Loss = 9731.366568	Epoch 67: Loss = 9713.901922	Epoch 87: Loss = 9706.593537		
9	Epoch 8: Loss = 9909.444897	Epoch 28: Loss = 9769.897083	Epoch 48: Loss = 9731.628807	Epoch 68: Loss = 9714.609583	Epoch 88: Loss = 9705.461615		
10	Epoch 9: Loss = 9895.157143	Epoch 29: Loss = 9766.049398	Epoch 49: Loss = 9728.961283	Epoch 69: Loss = 9714.628088	Epoch 89: Loss = 9705.394584		
11	Epoch 10: Loss = 9881.248693	Epoch 30: Loss = 9764.027997	Epoch 50: Loss = 9727.466405	Epoch 70: Loss = 9712.343529	Epoch 90: Loss = 9705.435255		
12	Epoch 11: Loss = 9870.037684	Epoch 31: Loss = 9760.204947	Epoch 51: Loss = 9726.150465	Epoch 71: Loss = 9711.462181	Epoch 91: Loss = 9704.806167		
13	Epoch 12: Loss = 9859.380092	Epoch 32: Loss = 9758.044277	Epoch 52: Loss = 9725.111576	Epoch 72: Loss = 9710.982946	Epoch 92: Loss = 9706.039763		
14	Epoch 13: Loss = 9850.15511	Epoch 33: Loss = 9755.274456	Epoch 53: Loss = 9724.223616	Epoch 73: Loss = 9711.54128	Epoch 93: Loss = 9706.803385		
15	Epoch 14: Loss = 9842.440806	Epoch 34: Loss = 9753.699656	Epoch 54: Loss = 9725.123868	Epoch 74: Loss = 9714.212076	Epoch 94: Loss = 9703.494998		
16	Epoch 15: Loss = 9833.288707	Epoch 35: Loss = 9750.68249	Epoch 55: Loss = 9722.025756	Epoch 75: Loss = 9710.106991	Epoch 95: Loss = 9703.838888		
17	Epoch 16: Loss = 9826.939439	Epoch 36: Loss = 9749.402241	Epoch 56: Loss = 9721.02007	Epoch 76: Loss = 9709.770157	Epoch 96: Loss = 9704.762504		
18	Epoch 17: Loss = 9819.324565	Epoch 37: Loss = 9746.351178	Epoch 57: Loss = 9720.315394	Epoch 77: Loss = 9709.421006	Epoch 97: Loss = 9703.460662		
19	Epoch 18: Loss = 9814.05971	Epoch 38: Loss = 9744.179939	Epoch 58: Loss = 9719.707373	Epoch 78: Loss = 9708.522328	Epoch 98: Loss = 9703.763208		
20	Epoch 19: Loss = 9807.681563	Epoch 39: Loss = 9742.278675	Epoch 59: Loss = 9718.758556	Epoch 79: Loss = 9709.302836	Epoch 99: Loss = 9702.511405		

Plot of Loss Over Epochs

3 (b) Tuning the learning rate: I trained with following learning rate: 0.000, 0.001, 0.01 and 0.1

Learning Rate Selection for Ridge Regression with SGD

Four learning rates were tested (lr=0.0001lr=0.0001lr=0.0001, 0.0010.0010.001, 0.010.010.01, and 0.10.10.1) over 100 epochs, and the results are visualized in the graph.

Observations:

- **lr=0.0001:** Converges very slowly, making training inefficient.
- lr=0.001: Steady and smooth convergence, optimal balance between speed and stability.
- **lr=0.01:** Faster convergence but minor oscillations in loss.
- **lr=0.1:** Significant instability and divergence, unsuitable for training.

Conclusion:

The best learning rate is **lr=0.001** due to its smooth and reliable convergence without instability. It provides an effective balance between training speed and model stability.

3(C) I trained with Batch size:1,16,32,64,128

Batch Size Tuning for Ridge Regression with SGD

The impact of batch size on training was evaluated using batch sizes: 1,16,32,64,128 with the selected learning rate from **Q3b** (**Ir=0.001**). The loss was tracked over 100 epochs, as shown in the graph.

Observations:

- **Batch Size = 1:** Results in noisy loss curves due to high variance in gradient updates. While the model converges well, the instability may hinder reproducibility.
- **Batch Sizes = 16 and 32:** Achieve smooth and fast convergence with relatively low loss values. These sizes balance computational efficiency and effective gradient estimation.
- **Batch Size = 64:** Shows slower convergence compared to smaller batch sizes but maintains stability. Suitable for larger datasets or when computational resources are limited.
- Batch Size = 128: Converges the slowest and results in higher loss values initially.
 Larger batches can struggle to capture the nuances in the data due to lower update frequency.

Conclusion:

Batch sizes **16 and 32** are optimal as they provide a good trade-off between convergence speed and stability. Smaller batch sizes (e.g., 1) are prone to noise, while larger sizes (e.g., 64 and 128) reduce update frequency, slowing convergence.

RUN ALL CODES ON JUPITER NOTBOOK TO GENERATE RESULT