Algorithms of Information Security

Exercises for Error-correcting codes II

- 1. Let C be a binary cyclic code of length 7 over F_2 with a generator polynomial: $g(x) = x^3 + x + 1$.
 - a) Verify that the code C is cyclic.
 - b) Find the generator matrix and parity check matrix for the given binary cyclic code C.

Hint for a): Note that every cyclic code is a polynomial code. Verify that g divides $x^7 - 1$.

[Results: a) g(x) divides $x^7 - 1$ and hence, C is cyclic, b) the generator matrix is

$$G = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

and the parity check matrix is

$$H = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

]

2. Find all binary cyclic codes of length 3 over F_2 .

Hint: find all divisors of the polynomial $x^3 - 1$.

[Result:

generator polynomial	- 17 \
1	$F_2[x]/(x^3-1)$
x+1	$\{0, 1+x, x+x^2, 1+x^2\}$
$x^2 + x + 1$	$\{0, 1 + x + x^2\}$
$x^3 - 1$	{0}

]

Optional exercise: Find all cyclic codes of length 4 over F_3 .

3. Decide whether there is a Reed-Solomon code with parameters $[7,5,3]_q$. If such a code exists, find its parity check matrix.

Hint:

element from F_8^*	modulo $x^3 + x + 1$
α	x
α^2	x^2
α^3	x+1
α^4	$x^2 + x$
α^5	$x^2 + x + 1$
α^6	$x^2 + 1$
α^7	1

Result:

$$H = \begin{pmatrix} 1 & \alpha & \alpha^2 & \alpha+1 & \alpha^2+\alpha & \alpha^2+\alpha+1 & \alpha^2+1 \\ 1 & \alpha^2 & \alpha^2+\alpha & \alpha^2+1 & \alpha & \alpha+1 & \alpha^2+\alpha+1 \end{pmatrix}$$

]

4. Consider the Reed-Muller code R(2,4). Find the generator matrix of the code.

Hint: Consider the following monomials: $\{1, x_1, x_2, x_3, x_4, x_1x_2, x_1x_3, x_1x_4, x_2x_3, x_2x_4, x_3x_4\}$.

[Result: