CONGRUÈNCIES QUADRÀTIQUES

Exercici 38. Calculeu totes les solucions de les congruències:

- (i) $x^2 + x + 1 \equiv 0 \pmod{7}$.
- (ii) $x^2 + 5x + 1 \equiv 0 \pmod{7}$.
- (iii) $x^2 + 3x + 1 \equiv 0 \pmod{7}$.

Resolució:

(i) $x^2 + x + 1 \equiv 0 \pmod{7}$

Provem de resoldre la congruència mitjançant la fòrmula quadràtica $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. $\frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{-3}}{2}$. Primer hem de resoldre la congruència $y \equiv \sqrt{-3} \pmod{7}$, que la podem reescriure com $y^2 \equiv -3 \equiv 4 \pmod{7}$, que té les solucions $y = \pm 2$. Ara veiem que dividir per 2 és el mateix multiplicar per la inversa de 2. En $\mathbb{Z}/7\mathbb{Z}$, la inver-

Ara veiem que dividir per 2 és el mateix muniphent per la mateix muniphent pe

Llavors, les solucions de $x^2 + x + 1 \equiv 0 \pmod{7}$ són x = 2, 4.

(ii) $x^2 + 5x + 1 \equiv 0 \pmod{7}$

Provem de resoldre la congruència mitjançant la fòrmula quadràtica $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. $\frac{-5 \pm \sqrt{5^2 - 4}}{2} = \frac{-5 \pm \sqrt{21}}{2}$. Primer hem de resoldre la congruència $y \equiv \sqrt{21} \pmod{7}$, que la podem reescriure com $y^2 \equiv 21 \equiv 0 \pmod{7}$, que té les solucions y = 0. Ara veiem que dividir per 2 és el mateix multiplicar per la inversa de 2. En $\mathbb{Z}/7\mathbb{Z}$, la inversa de 2 és 4. Així doncs, hem de resoldre $(-5 \pm (0))(4) = \{(-5)(4) \equiv 1 \pmod{7}$ Llavors, la solució de $x^2 + 5x + 1 \equiv 0 \pmod{7}$ és x = 1.

(iii) $x^2 + 3x + 1 \equiv 0 \pmod{7}$

Provem de resoldre la congruència mitjançant la fòrmula quadràtica $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. $\frac{-3 \pm \sqrt{3^2 - 4}}{2} = \frac{-3 \pm \sqrt{5}}{2}$. Primer hem de resoldre la congruència $y \equiv \sqrt{5} \pmod{7}$, que la podem reescriure com $y^2 \equiv 5 \pmod{7}$. Com no és immediat, mirem si té arrels amb el símbol de Legendre, usant el criteri d'Euler. $\left(\frac{5}{7}\right) \equiv 5^{\frac{7-1}{2}} \equiv 5^3 \equiv 125 \equiv -1 \pmod{7}$. Així doncs $y^2 \equiv 5 \pmod{7}$ no té solució, així doncs, $x^2 + 3x + 1 \equiv 0 \pmod{7}$ no té solució.