See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260241730

Density functional theory study of small X-doped Mgn (X = Fe, Co, Ni, n=1-9) bimetallic clusters: Equilibrium structures, stabilities, electronic and magnetic properties

ARTICLE in JOURNAL OF MOLECULAR MODELING · MARCH 2014

Impact Factor: 1.74 · DOI: 10.1007/s00894-014-2087-x · Source: PubMed

CITATION

1

READS 77

2 AUTHORS:

Fanjie Kong

Yancheng Institute of Technology
32 PUBLICATIONS 79 CITATIONS

SEE PROFILE

Yan-Fei Hu

Sichuan University of Science and Engineer...

16 PUBLICATIONS 25 CITATIONS

SEE PROFILE

Density functional theory study of small X-doped Mg_n (X = Fe, Co, Ni, n=1–9) bimetallic clusters: equilibrium structures, stabilities, electronic and magnetic properties

Fanjie Kong & Yanfei Hu

Journal of Molecular Modeling

Computational Chemistry - Life Science - Advanced Materials - New Methods

ISSN 1610-2940 Volume 20 Number 3

J Mol Model (2014) 20:1-10 DOI 10.1007/s00894-014-2087-x

Your article is protected by copyright and all rights are held exclusively by Springer-**Verlag Berlin Heidelberg. This e-offprint is** for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

ORIGINAL PAPER

Density functional theory study of small X-doped Mg_n (X = Fe, Co, Ni, n=1-9) bimetallic clusters: equilibrium structures, stabilities, electronic and magnetic properties

Faniie Kong · Yanfei Hu

Received: 10 August 2013 / Accepted: 19 November 2013 © Springer-Verlag Berlin Heidelberg 2014

Abstract The geometries, stabilities, and electronic and magnetic properties of Mg_nX (X = Fe, Co, Ni, n=1-9) clusters were investigated systematically within the framework of the gradient-corrected density functional theory. The results show that the Mg_nFe , Mg_nCo , and Mg_nNi clusters have similar geometric structures and that the X atom in Mg_nX clusters prefers to be endohedrally doped. The average atomic binding energies, fragmentation energies, second-order differences in energy, and HOMO-LUMO gaps show that Mg_4X (X = Fe, Co, Ni) clusters possess relatively high stability. Natural population analysis was performed and the results showed that the 3s and 4s electrons always transfer to the 3d and 4p orbitals in the bonding atoms, and that electrons also transfer from the Mg atoms to the doped atoms (Fe, Co, Ni). In addition, the spin magnetic moments were analyzed and compared. Several clusters, such as Mg_{1,2,3,4,5,6,8,9}Fe, Mg_{1,2,4,5,6,8,9}Co, and $Mg_{1,2,5,6,7,9}Ni$, present high magnetic moments (4 μ_B , 3 μ_B , and 2 μ_B , respectively).

Keywords Mg_nX (X = Fe, Co, Ni, n=1-9) clusters · Density functional theory · Structure stability · Magnetic property

Introduction

Metal clusters have been investigated extensively over the last two decades due to their potential applications in physical and chemical fields. In theory, the jellium model successfully

F. Kong (⊠) Yancheng 224051, China e-mail: fanjiekong@gmail.com

Published online: 18 February 2014

Y Hu School of Science, Sichuan University of Science and Engineering, Zigong 643000, China

Department of Physics, Yancheng Institute of Technology,

explains the electronic structures and magic number structures of some pure and doped metal clusters [1]. Magnesium is a good hydrogen storage material due to its light weight, low cost, cyclability, and high H-storage capacity (7.6 % by weight) once the hydride MgH₂ is formed. Mechanically alloying Mg with transition metals (TMs) such as Ni, Fe, V, or Pd allows these metals to be mixed together into a nanocomposite structure [2, 3]. In particular, alloying Mg with TMs can slightly improve the thermodynamic properties of the hydride by favoring H₂ adsorption/dissociation and consequent atomic hydrogen absorption/desorption due to a weakening of the bonding between Mg and H atoms. Therefore, it is essential to investigate the effect of transition metal doping on the structural and electronic properties of the Mg cluster.

Reuse et al. performed electronic structure calculations on neutral, anionic, cationic, and doubly ionized Mg_n ($n \le 7$) clusters to examine the effect of charge on the geometries and stabilities of these clusters [4]. One of the main conclusions that could be drawn from their work is that Mg_n clusters have a strong tendency to form compact structures; that is, most of the neutral, anionic, and singly ionized species tend to form the maximum number of bonds possible. Kumar et al. studied the structure, growth, and bonding characteristics of Mg_n (n=2-13) clusters and found that tetrahedral and trigonal prismatic structures are two important base constituents of the structures of Mg_n clusters, to which atoms can be added by capping the faces [5]. In addition, they suggested that Mg_n clusters show mixed bonding character and an oscillatory and slow convergence to bulk metallic behavior. Gong et al. revealed that the number of 3p electrons involved in sp hybridization increases as the cluster size increases by systematically investigating the electronic structures of magnesium clusters containing up to 57 atoms [6]. Kaplan et al. concluded that alkaline-earth dimers (Be2, Mg2, and Ca2) can be considered van der Waals molecules, while the binding present in

2087, Page 2 of 10 J Mol Model (2014) 20:2087

alkaline-earth trimers (Be3, Mg3, and Ca3) is a mixture of physical (van der Waals) and chemical (nonadditive exchange). Furthermore, a natural bond orbital (NBO) analysis revealed a relatively large p population in all of the clusters [7]. Akola et al. observed that the onset of metallization of Mg_n clusters is difficult to assign, since both the sp hybridization and the energy gap between the valence band and the conduction band do not evolve rapidly towards known bulk properties [8]. Concerning the issue of a possible electronic structure transition from a phase with localized electrons to one with delocalized electrons, Thomas Diederich presented the first proof of a transition to electron delocalization in free Mg_n clusters, i.e., evidence of the onset of an electronic shell structure [9]. The energetic and structural properties of neutral Mg_n clusters (n=2-22 and selected clusters up to 309) have been investigated by means of density functional theory. Small clusters with n=4, 10, and 20 show enhanced stability, which is in line with the predictions of the shell model. Larger clusters were selected according to the principle of geometric shell closure, and different kinds of shapes and packing types were considered [10]. Owen C. Thomas measured the photoelectron spectra of mass-selected Mg_n cluster anions over the size range n=3-35. The s-p band gap was observed to be narrow for n=18, signaling the onset of metallic behavior. An electronic shell structure was inferred from gap "reopenings" and mass-spectral magic numbers [11]. The binding energies of the two most external electrons in Mg_n (n=2-22) clusters were computed. The results were compared with photoelectron spectroscopy data, and their implications for the finitesize analog of the nonmetal-to-metal transition were analyzed [12]. The geometries of neutral and singly charged Mg_n clusters consisting of up to 21 atoms were optimized, and the electronic shell closures, binding energies per atom, ionization potentials, and the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO gaps) were studied systematically. The hexagonal close-packed (hcp) structures and the metallic evolutions of Mg_n clusters were observed, and the stabilities of linear chains and rings of the Mg atoms were discussed [13]. The abundance distribution of Mg_n clusters can be explained by the presence of an electronic shell structure. The associated metallic bonding was observed at about n=20 atoms. Electronic level crossing at the highest occupied molecular orbital that results in additional magic numbers was resolved [14]. The structural and electronic properties of Mg_n clusters for the size range n=10-56were explored using the minima hopping global geometry optimization method on the density functional potential energy surface. This revealed that most of the global minima are asymmetric beyond n=20 and that the growth follows a peculiar cyclic pattern where the core and surface grow alternately for n > 20 [15].

The electronic structures and stabilities of XMg_8 clusters (X = Be, B, C, N, O, and F) have been studied using first-

The aim of the work described in the present paper was to investigate the structural, electronic, and magnetic properties of a wide range of 3d TM-doped Mg_n clusters: Mg_nX (M = Fe, Co, Ni, n = 1 - 9). We focused on the effect of transition metal doping on the structural and electronic properties of the Mg cluster, how the magnetic properties of the cluster change as the local electrons of an isolated atom begin to delocalize in an Mg_nX cluster, and how the magnetism of Mg_nX clusters varies with increasing cluster size.

Computational details

In this work, we systematically investigated the properties of X-doped Mg_n (X = Fe, Co, Ni, n=1-9) clusters using density functional theory based on the hybrid Becke-type threeparameter exchange functional [17] paired with the gradient-corrected Perdew-Wang 91 correlation functional (B3PW91) [18]. All electron calculations were carried out using the 6-311+G basis set [19-21]. To evaluate the accuracy of the selected scheme at describing Mg_nX clusters, we first carried out benchmark calculations of Mg2, Fe2, Co2, and Ni₂ dimers. The calculated results as well as the available experimental values for the equilibrium bond lengths, dissociation energies, and harmonic vibrational frequencies are summarized in Table 1. The calculated values are in good agreement with the experimental results and those from other available theoretical works [22-38]. The predicted equilibrium bond length for the Mg₂ dimer is 3.683 Å. Although this deviates slightly from the experimental value of 3.891 Å, it is in excellent agreement with previous theoretical values (3.68 Å) [39]. The bond length of the Mg₂ dimer is longer than those of the Fe₂, Co₂, and Ni₂ dimers. It is interesting to note that the dissociation energies of the Fe₂, Co₂, and Ni₂ dimers are larger than that of the Mg₂ dimer.

The initial search for all possible low-lying isomers of pure Mg_n clusters was carried out manually due to the small number of possible structures to be considered during geometry optimizations. For Mg_nX (X = Fe, Co, Ni, n=1-9) clusters, the possible initial isomers were constructed by substituting one X for an Mg atom in the host Mg_n cluster or by placing the X atom at each possible site of the Mg_{n-1} cluster. Furthermore, vibrational frequency calculations were performed to guarantee that the optimized structures corresponded to local minima on the multidimensional

J Mol Model (2014) 20:2087 Page 3 of 10, 2087

Table 1 The computed bond lengths (r_e) , dissociation energies (D_e) , and vibrational frequencies (ω_e) of the Mg₂, Fe₂, Co₂, and Ni₂ dimers

		$r_{\rm e}$ (Å)	$D_{\rm e}$ (eV)	$\omega_{\rm e}~({\rm cm}^{-1})$
Mg_2	B3PW91/6-311+G	3.683	0.0615	77.9
	Experiment	3.891 ^a	$0.0886^{a}, 0.025^{b}$	/
Fe_2	B3PW91/6-311+G	2.117	1.147	305.5
	Experiment	$2.02\pm0.02^{c,d,e}$, 1.87 ± 0.13^{f} , 1.85^{g}	$1.3^{c,d,e}$, 1.14^g , 1.15 ± 0.09^h	299.6 ⁱ , 300 ^{c,d,f,g} , 299.7 ⁱ
Co_2	B3PW91/6-311+G	2.201	1.651	299.0
	Experiment	/	1.69 ± 0.26^{j}	$280\pm20^k,290^k,296.8\pm0.54^l$
Ni_2	B3PW91/6-311+G	2.151	2.055	293.8
	Experiment	$2.155\pm0.01^{m},2.12^{m},2.1545\pm0.0004^{n}$	$2.068\pm0.01^{\mathrm{m}},2.20^{\mathrm{m}}$	$330^{\circ}, 380.9^{p}, 259.2 \pm 3.0^{q}$

^a From [21]

potential-energy surface and to provide the zero-point energy (ZPE). Every initial configuration with various possible spin multiplicities was optimized at the B3PW91 level. The structures with the lowest energies were chosen as the ground-state configurations. The default self-consistent convergence to 10^{-8} a.u. was used, which was exact enough to ensure that the results are valid. All calculations were performed using the Gaussian 09 package [40].

Results and discussion

Geometric structures

For Mg_nX (X = Fe, Co, Ni, n=1-9) clusters, a great number of initial possible geometries with various possible spin multiplicities were optimized. Only the lowest-energy structure for each Mg_nX cluster is shown in Fig. 1. Meanwhile, the electronic states, symmetries, spin multiplicities, HOMO energies, LUMO energies, as well as vibrational frequencies of the Mg_nX (X = Fe, Co, Ni, n=1-9) clusters are listed in Table 2.

Pure Mg_n (n=1-10) clusters

In order to explore the effect of TM doping on the stabilities and properties of pure Mg_n clusters, the energetically lowest-lying configurations of the Mg_n (n=1-10) clusters were first optimized and obtained at the B3PW91/6-311+G level. Taking lots of possible initial structures into account, the most stable isomers for each size are shown in Fig. 1. From Fig. 1, we can see that the most stable structures of pure Mg_n (n=3-10) clusters are triangular, tetrahedral, trigonal bipyramidal, fused tetrahedral, pentagonal bipyramidal, capped pentagonal bipyramidal, tricapped trigonal prismatic, and tetracapped trigonal prismatic, respectively, in good agreement with previous results [12, 15]. In addition, the average atomic binding energies, fragmentation energies, second-order differences in energy, HOMO-LUMO gaps, and magnetic moments of Mg_n clusters were also studied and compared with Mg_nX (X = Fe, Co, Ni, n=1-9) clusters.

X-doped Mg_n (
$$X = Fe$$
, Co, Ni, $n = 1-9$) clusters

It was found that the bond lengths of the MgX (X = Fe, Co, Ni) clusters gradually decrease in the order Fe > Ni > Co. For

^b From [22]

^c From [23]

d From [24]

e From [25]

^fFrom [26]

^g From [27]

h From [28]

ⁱ From [29]

^j From [30]

k From [31]

¹From [32]

m From [33]

ⁿ From [34]

o From [35]

^p From [36]

^q From [37]

2087, Page 4 of 10 J Mol Model (2014) 20:2087

Fig. 1 Lowest-energy structures for Mg_{n+1} and Mg_nX (X = Fe, Co, Ni, n=1-9) clusters. The *yellow* and *blue balls* represent Mg and X atoms, respectively

the Mg_2X (X = Fe, Co, Ni) clusters, the global minimum structure of Mg₂Fe is isosceles trigonal with C_{2v} symmetry, in which Fe is connected to two Mg atoms. The structures of the Mg₂Co and Mg₂Ni clusters are linear with $C_{\infty v}$ symmetry, where the Co and Ni atoms sit between the two Mg atoms. The structures of the Mg₃X vary significantly for different TM atoms. The Mg₃Fe cluster possesses a linear structure with $C_{\infty V}$ symmetry, the Mg₃Co cluster shows a planar Y-shaped structure with C_{2v} symmetry, while the Mg₃Ni cluster presents a three-dimensional (3D) tetrahedral configuration which can be obtained by adding one Ni atom along the C_3 axis of the triangular Mg₃ cluster (D_{3h}). The structure of Mg₃Ni can also be regarded as a doped structure that is based on the tetrahedral Mg₄ cluster (i.e., it is created by substituting one Mg atom with an Ni atom). Starting from n=4, the ground-state structures of the Mg_nX (X = Fe, Co) clusters show 3D geometries. The symmetries of the Mg₄Fe and Mg₄Co clusters are identical (C_{2v}) , and the structures can be obtained by substituting one Mg atom in the isosceles triangle of a trigonal bipyramidal Mg₅ cluster with an Fe or Co atom, respectively. The groundstate structure of the Mg₄Ni cluster with the electron state ¹A₁ and $T_{\rm d}$ symmetry can be generated by inserting the Ni atom at the tetrahedral interstitial site of the Mg₄ cluster. The groundstate structure of Mg₅Ni is a square pyramidal arrangement in which the Ni atom is located in the middle of the square unit, while the ground-state configurations of Mg₅Fe and Mg₅Co are capped square pyramids, with the Fe and Co atoms located

in the center of the square face. A pentagonal pyramidal arrangement with the Fe located in the center of the pentagon is the global minimum of the Mg₆Fe cluster. The most stable structures of Mg₆Co and Mg₆Ni are square bipyramids in which the Co or Ni atom, respectively, is at the center of the square. The global minimum of the Mg₇X cluster can be generated by adding an Mg atom to the corresponding Mg₆X cluster. The motif of the Mg₈Fe cluster looks quite like that of the Mg₉ cluster but with the top Mg atom removed, and the Fe atom located at the central position of the cluster. The most stable structures of the Mg₈Co and Mg₈Ni clusters can be obtained by adding an Mg atom to the Mg₇Co and Mg₇Ni clusters, respectively, which have similar structures; however, they possess different symmetries (C_s, C_{2v}) and electronic states (⁴A", ¹A₁). For Mg₉X clusters, possible initial structural configurations and spin states were considered to localize the ground-state structure. As a result, the lowest-energy structure of Mg₉Fe can be related to the Mg₁₀ cluster but with the inner Mg atom replaced with one Fe atom. The 3D structure of Mg_9Co with a symmetry of C_{2v} is the lowest-energy structure; this can be obtained by adding two Mg atoms to the Mg₇Co cluster. Also, the ground-state structure of MgoNi can be viewed as the result of inserting one Ni atom into the 3D structure of Mg9, with the Ni atom localizing inside the cluster.

From the above discussion, it is clear that the X atom tends to reside at the center of the doped Mg_n cluster, leading to an

J Mol Model (2014) 20:2087 Page 5 of 10, 2087

Table 2 Electronic states, symmetries, spin multiplicities, HO-MO energies, LUMO energies, and vibrational frequencies of the Mg_nX (X = Fe, Co, Ni, n=1-9) clusters

Cluster	State	Symm	Multi	HOMO (hartrees)	LUMO (hartrees)	Frequency (cm ⁻¹)
MgFe	/	$C_{\infty ext{v}}$	5	-0.15425	-0.07835	193.1
Mg ₂ Fe	$^{5}\mathrm{B}_{1}$	C_{2v}	5	-0.15886	-0.08574	77.1, 162.0, 192.1
Mg ₃ Fe	⁵ \(\sum_{1}\)	$C_{\infty ext{v}}$	5	-0.13636	-0.07681	24.6, 68.0, 95.8, 175.1, 230.5
Mg ₄ Fe	${}^{5}A_{2}$	C_{2v}	5	-0.15827	-0.08920	64.4, 95.6, 140.1, 142.8, 174.9
Mg ₅ Fe	$^{5}\mathrm{B}_{1}$	C_{2v}	5	-0.14934	-0.09632	38.6, 66.4, 75.9, 80.0, 85.0
Mg ₆ Fe	${}^{5}A_{1}$	$C_{5\mathrm{v}}$	5	-0.15551	-0.10065	58.3, 76.4, 92.8, 127.4, 157.7
Mg ₇ Fe	³ A'	$C_{\rm s}$	3	-0.14848	-0.10723	20.0, 35.3, 61.8, 77.7, 103.0
Mg ₈ Fe	${}^{5}A_{1}$	$D_{ m 4d}$	5	-0.14393	-0.08718	50.0, 100.0, 117.3, 130.7, 144.0
Mg ₉ Fe	⁵ A	C_1	5	-0.14480	-0.09114	41.8, 43.5, 62.5, 74.4, 95.4
MgCo	/	$C_{\infty ext{v}}$	4	-0.15976	-0.08070	208.2
Mg_2Co	/	$C_{\infty ext{v}}$	4	-0.14395	-0.07847	43.8, 168.1, 193.6
Mg_3Co	$^{2}A_{2}$	C_{2v}	2	-0.13815	-0.09118	33.4, 37.4, 49.4, 160.0, 166.2
Mg ₄ Co	$^4\mathrm{B}_2$	C_{2v}	4	-0.15366	-0.09435	54.0, 63.4, 93.0, 106.4, 121.1
Mg ₅ Co	^{4}A	C_1	4	-0.14398	-0.08864	72.5, 74.6, 77.8, 82.9, 93.0
Mg ₆ Co	$^{4}A_{1g}$	O_{h}	4	-0.13899	-0.08216	87.9, 118.2, 126.9, 215.7, 246.2
Mg ₇ Co	$^{2}A''$	$C_{\rm s}$	2	-0.14206	-0.08986	32.2, 55.5, 78.8, 86.1, 102.6
Mg_8Co	⁴ A"	$C_{\rm s}$	4	-0.14646	-0.09711	35.7, 36.4, 51.1, 67.3, 69.9
Mg ₉ Co	^{4}A	C_1	4	-0.14959	-0.10578	66.0, 71.1, 84.0, 95.9, 104.5
MgNi	$^{3}\Sigma$	$C_{\infty ext{v}}$	3	-0.16004	-0.08474	206.3
Mg_2Ni	/	$C_{\infty ext{v}}$	3	-0.14457	-0.08198	42.4, 178.0, 201.3
Mg_3Ni	$^{1}A_{1}$	C_{3v}	1	-0.16736	-0.09007	80.6, 254.0, 260.1,
Mg_4Ni	$^{1}A_{1}$	$T_{\rm d}$	1	-0.17448	-0.08337	32.1, 64.2, 226.8, 289.0
Mg ₅ Ni	$^{3}A_{2}$	$C_{ m 4v}$	3	-0.14048	-0.09005	45.3, 70.3, 87.5, 102.9, 244.5
Mg_6Ni	$^{3}A_{1g}$	$O_{ m h}$	3	-0.12634	-0.10393	58.7, 70.8, 97.4, 249.0, 306.0
Mg ₇ Ni	$^{3}A_{1}$	$C_{2\mathrm{v}}$	3	-0.13350	-0.09446	33.3, 65.9, 68.5, 73.8, 75.8
Mg ₈ Ni	$^{1}A_{1}$	$C_{2\mathrm{v}}$	1	-0.15176	-0.08771	57.0, 65.8, 71.8, 85.8, 98.6
Mg ₉ Ni	$^{3}A_{2}$	$C_{ m 2v}$	3	-0.15619	-0.10433	59.0, 74.3, 92.5, 93.7, 108.1

increased number of X–Mg bonds. However, if a large X atom is placed at the center of the cluster, the Mg_nX cluster will undergo slight expansion, leading to an increase in the Mg–Mg bond length. The presence of such a central dopant in an Mg_nX could easily increase the energies of the Mg–Mg bonds. The Fe, Co, and Ni dopant atoms dramatically affect the ground-state geometries of the Mg_n clusters. Furthermore, the optimized geometries reveal that the substitution of an Mg atom with X and the capping of one Mg atom in an $Mg_{n-1}X$ cluster are the dominant growth patterns for Mg_nX clusters.

Relative stability

In order to gauge the relative stabilities and size-dependent behavior of the Mg_nX clusters, we plotted the average binding energies $E_b(n)$, the fragmentation energies $\Delta_1E(n)$, and the second-order differences in the total energy $\Delta_2E(n)$ for the ground-state structures of Mg_{n+1} and Mg_nX (X = Fe, Co, Ni,

n=1-9) clusters (see Figs. 2 and 3), which allowed us to gain insight into the variations in those parameters.

Fig. 2 Size dependences of the average binding energies of Mg_{n+1} and Mg_nX (X = Fe, Co, Ni, n=1-9) clusters

2087, Page 6 of 10 J Mol Model (2014) 20:2087

Fig. 3 Size dependences of the fragmentation energies and the second-order differences in energies of Mg_{n+1} and Mg_nX (X = Fe, Co, Ni, n=1-9) clusters

For Mg_nX (X = Fe, Co, Ni, n=1–9) clusters, $E_b(n)$, $\Delta_1 E(n)$, and $\Delta_2 E(n)$ are defined as follows:

$$E_{b}(n) = \frac{E(X) + nE(Mg) - E(Mg_{n}X)}{n+1}$$

$$\tag{1}$$

$$\Delta_1 E(n) = E(Mg_{n-1}X) + E(Mg) - E(Mg_nX) \tag{2}$$

$$\Delta_2 E(n) = E(Mg_{n-1}X) + E(Mg_{n+1}X) - 2E(Mg_nX). \tag{3}$$

Here, *E* is the total energy of the corresponding system.

From Fig. 2, it is clear that the average atomic binding energies of both pure and X-doped magnesium clusters increase as the cluster size increases. Slight oscillations are seen in the binding energies of Mg_{n+1} and Mg_nX (X = Fe, Co, Ni, n=1-9) clusters. There are several local peaks corresponding to Mg₄Fe, Mg₆Fe, Mg₈Fe, Mg₂Co, Mg₆Co, and Mg₅Ni, respectively, indicating that these structures are more stable than their neighboring clusters. It is noteworthy that the binding energies of the studied Mg_{n+1} and Mg_nX clusters decrease in the sequence $Mg_nNi > Mg_nFe > Mg_nCo > Mg_nMg$, except for the Mg₆Fe and Mg₆Co clusters. This indicates that Mg_n cluster stability is enhanced by doping the cluster with Fe, Co, and Ni atoms in sequence. Figure 3 shows the fragmentation energies and the second-order differences in energy of Mg_nX clusters. The results for bare Mg_n clusters agree with those given in a previous work by Lyalin et al. [13]. For Mg_nFe and Mg_nCo clusters, the fragmentation energies and the secondorder differences in energy show an alternating even-odd phenomenon as the cluster size increases. This indicates that the clusters with even numbers of atoms are more stable than

Electronic properties

The HOMO-LUMO gap is usually considered a measure of the kinetic stability of a compound. A larger gap indicates that the compound is inert with respect to chemical reactivity. The HOMO-LUMO gaps are displayed in Fig. 4 for Mg_nX (X = Fe, Co, Ni, n=1-9) clusters. As can be seen, the HOMO-LUMO gaps for the most stable Mg_nX (X = Fe, Co, Ni, n=1-9) clusters range from 0.610 to 2.479 eV. However, they are smaller than those of the corresponding Mg_{n+1} clusters (1.605–3.284 eV). Although the HOMO– LUMO energy gap does not correlate directly with the fragmentation energy and second-order difference in energy, one can see from Fig. 4 that the curves of the HOMO-LUMO gaps show similar trends to those of the fragmentation energies and the second-order differences in energy of Mg_nX (X = Fe, Co, Ni, n=1-9) clusters. Evidently, the HOMO-LUMO gaps of the various Mg_nX (X = Fe, Co, Ni, n=1-9)

Fig. 4 Size dependence of the HOMO–LUMO gaps of Mg_{n+1} and Mg_nX (X = Fe, Co, Ni, n=1–9) clusters

J Mol Model (2014) 20:2087 Page 7 of 10, 2087

Author's personal copy

Fig. 5 Calculated molecular energy levels of Mg₄X (X = Fe, Co, Ni) clusters, together with molecular orbital contour maps of the HOMOs and LUMOs

clusters reach a maximum at n=4, confirming the relatively high chemical stabilities of those clusters.

In light of the phenomenon that the Mg_4X (X = Fe, Co, Ni) clusters are the most stable of the Mg_nX (X = Fe, Co, Ni, n = 1-9) clusters, the molecular energy levels and orbital contour maps for the HOMO and LUMO were obtained and are

displayed in Fig. 5. This figure shows that the molecular orbitals are split for the Mg_4Fe and Mg_4Co clusters, while they are not split at all for the Mg_4Ni cluster. The chemical bonding associated with the HOMOs and LUMOs can be analyzed via the contributions of the different atomic orbital components (s, p, d) to the molecular orbital. A systematic

Table 3 Natural populations of X atoms, natural electron configurations of X and Mg atoms, and Wiberg bond indices (WBI) of Mg–X and Mg–Mg bonds for Mg_nX clusters

Mg_nX	n	Q(X)	NEC(X)	NEC(Mg)	WBI(Mg-X)	WBI(Mg-Mg)
X = Fe	1	-0.16571	$4s^{1.17}3d^{6.93}4p^{0.06}4d^{0.01}$	$3s^{1.64}3p^{0.19}$	0.49	_
	2	-0.35967	$4s^{1.12}3d^{6.94}4p^{0.29}4d^{0.01}$	$3s^{1.63}3p^{0.19}4s^{0.01}$	0.51	0.18
	3	-0.39609	$4s^{1.26}3d^{6.95}4p^{0.15}4d^{0.03}$	$3s^{1.57-1.79}3p^{0.13-0.30}$	0.06-0.51	0.02-0.32
	4	-0.87266	$4s^{1.09}3d^{6.94}4p^{0.79}4d^{0.04}5p^{0.02}$	$3s^{1.26-1.37}3p^{0.41-0.51}4p^{0.01}$	0.54-0.65	0.10-0.47
	5	-2.23862	$4s^{1.09}3d^{7.20}4p^{1.88}4d^{0.07}$	$3s^{1.27-1.28}3p^{0.24-0.37}4p^{0.01}$	0.66-0.92	0.05-0.15
	6	-2.81683	$4s^{0.94}3d^{7.64}4p^{2.15}5s^{0.01}4d^{0.09}$	$3s^{1.10-1.11}3p^{0.24-0.45}4p^{0.01}$	0.66-0.82	0.10-0.24
	7	-2.94868	$4s^{1.19}3d^{7.36}4p^{2.30}5s^{0.01}4d^{0.09}5p^{0.01}$	$3s^{0.99-1.14}3p^{0.40-0.60}4p^{0.01}$	0.55-0.74	0.06-0.31
	8	-4.20885	$4s^{1.13}3d^{7.84}4p^{3.06}4d^{0.18}$	$3s^{0.98}3p^{0.49}4p^{0.01}$	0.65	0.05-0.15
	9	-3.91102	$4s^{1.04}3d^{7.71}4p^{3.04}4d^{0.12}$	$3s^{0.95-1.37}3p^{0.31-0.71}4p^{0.01-0.02}$	0.12-0.63	0.02-0.34
X = Co	1	-0.20729	$4s^{1.17}3d^{7.98}4p^{0.04}$	$3s^{1.61}3p^{0.18}$	0.49	_
	2	-0.47106	$4s^{1.28}3d^{8.01}4p^{0.16}4d^{0.02}$	$3s^{1.63}3p^{0.13}$	0.42	0.08
	3	-1.06033	$4s^{0.81}3d^{8.58}4p^{0.63}4d^{0.03}$	$3s^{1.50}3p^{0.04-0.18}4s^{0.01}4p^{0.00-0.01}$	0.71-0.77	0.06-0.15
	4	-1.47307	$4s^{1.10}3d^{8.11}4p^{1.23}5s^{0.01}4d^{0.03}5p^{0.01}$	$3s^{1.27-1.35}3p^{0.27-0.36}4p^{0.01}$	0.63-0.76	0.06-0.34
	5	-2.97620	$4s^{1.12}3d^{8.56}4p^{2.22}5s^{0.01}4d^{0.07}$	$3s^{1.13-1.20}3p^{0.24-0.30}$	0.73-0.94	0.07-0.12
	6	-4.81354	$4s^{1.06}3d^{9.47}4p^{3.25}4d^{0.04}$	$3s^{0.91}3p^{0.29}$	0.73	0.06-0.08
	7	-4.05675	$4s^{0.95}3d^{9.07}4p^{3.00}4d^{0.04}$	$3s^{0.93-1.40}3p^{0.24-0.51}4p^{0.00-0.01}$	0.20-0.84	0.04-0.45
	8	-2.28721	$4s^{1.05}3d^{8.13}4p^{2.06}5s^{0.01}4d^{0.04}5p^{0.01}$	$3s^{1.06-1.40}3p^{0.30-0.80}4p^{0.01-0.02}$	0.17-0.65	0.04-0.47
	9	-1.28865	$4s^{0.93}3d^{8.04}4p^{1.29}5s^{0.01}4d^{0.02}5p^{0.01}$	$3s^{1.02-1.16}3p^{0.49-1.08}4s^{0.01-0.03}4p^{0.03}$	0.12-0.52	0.03-0.44
X = Ni	1	-0.23183	$4s^{1.18}3d^{9.01}4p^{0.04}$	$3s^{1.59}3p^{0.18}$	0.49	_
	2	-0.54488	$4s^{1.39}3d^{8.97}4p^{0.17}4d^{0.02}$	$3s^{1.61}3p^{0.12}$	0.42	0.09
	3	-1.48260	$4s^{0.77}3d^{9.81}4p^{0.89}5p^{0.01}$	$3s^{1.38}3p^{0.13}$	0.81	0.15
	4	-2.92793	$4s^{0.97}3d^{9.89}4p^{2.06}5p^{0.01}$	$3s^{1.14}3p^{0.13}$	0.97	0.09
	5	-3.60678	$4s^{1.14}3d^{9.82}4p^{2.62}5s^{0.01}4d^{0.01}$	$3s^{0.99-1.10}3p^{0.24-0.27}$	0.73-0.99	0.06-0.10
	6	-4.79247	$4s^{1.47}3d^{9.82}4p^{3.48}5s^{0.02}$	$3s^{0.97}3p^{0.23}$	0.81	0.07-0.13
	7	-4.27623	$4s^{1.11}3d^{9.85}4p^{3.32}$	$3s^{0.88-1.48}3p^{0.25-0.53}4p^{0.01}$	0.10-0.70	0.00-0.45
	8	-3.87364	$4s^{0.93}3d^{9.87}4p^{3.07}$	$3s^{0.97-1.39}3p^{0.22-0.68}4p^{0.00-0.02}$	0.14-0.81	0.06-0.37
	9	-3.76145	$4s^{0.95}3d^{9.73}4p^{3.07}4d^{0.02}$	$3s^{0.86-1.17}3p^{0.38-0.81}4p^{0.01-0.02}$	0.15-0.61	0.02-0.38

2087, Page 8 of 10 J Mol Model (2014) 20:2087

analysis reveals that the HOMOs and LUMOs of the Mg_4Fe and Mg_4Co clusters are very similar. For the Mg_4Fe and Mg_4Co clusters, the HOMO involves the 3s and $3p_z$ orbitals from the Mg atoms and the 4s, $3d_x^2$, and $3d_z^2$ orbitals from the 3s and $3p_z$ orbitals of the Mg atoms as well as the 4s, $3d_x^2$, and $3d_z^2$ orbitals of the 3s and $3p_z$ orbitals of 3s and 3s orbitals of 3s orbitals of 3s and 3s orbitals of 3s

Population analysis

Natural population analysis (NPA) provides a reasonable explanation of the charge transfer within the cluster. The results of NPA for the lowest-energy Mg_nX (X = Fe, Co, Ni, n=1-9) clusters are summarized in Table 3. NPA shows that, overall, the X atom always gains electrons from its neighboring Mg atoms, and is therefore negatively charged. In the ground-state isomers, the charge on the X atom is -4.81354e to -0.16571efor n=1-9. This can be attributed to the higher electronegativity of the X atoms than the Mg atom. In order to gain a detailed understanding of the charge transfer, the natural electron configurations (NECs) for the most stable Mg_nX systems were investigated (the results are tabulated in Table 3). It was found that the 4s, 3d, and 4p orbitals of the X atoms behave predominantly as core orbitals, while the 4d, 5s, and 5p states make only weak contributions. The valence electron configurations of the free Fe, Co, and Ni atoms are $3d^64s^2$, $3d^74s^2$, and $3d^84s^2$, respectively. When the X and Mg atoms combine to form the Mg_nX (X = Fe, Co, Ni, n=1-9) clusters, the NPA results illustrate that the valence electron configurations change to $4s^{0.94-1.26}3d^{6.93-7.84}4p^{0.06-3.06}$ (for Fe), $4s^{0.81-1.28}3d^{7.98-9.47}4p^{0.04-3.25}$ (for Co), and $4s^{0.77-1.47}3d^{8.97-1.28}3d^{7.98-9.47}4p^{0.04-3.25}$ $^{9.89}4p^{0.04-3.48}$ (for Ni). Strong spd hybridization stemming from electron transfer from the 3s orbitals of the Mg atoms and the 4s orbital of the X atom to the 3d and 4p atomic orbitals of the X atom is observed in the Mg_nX clusters. The stabilities of the Mg_nX (X = Fe, Co, Ni, n=1-9) clusters are mainly enhanced by direct electron transfer from the Mg atoms to the X atom due to electronegativity differences. In the MgFe, MgCo, and MgNi dimers, all of the Mg-X single bonds have a Wiberg bond index (WBI) of 0.49. However, the WBI values for the Mg–X and Mg–Mg bonds in the Mg_nX clusters are small, which indicates that the Mg-X and Mg-Mg bonds are weak single bonds. In addition, the WBIs of the Mg-X bonds (0.06–0.99) are generally larger than those of the Mg-Mg bonds (0.02-0.47). Therefore, the interactions between Mg and X atoms are generally stronger than the Mg-Mg interactions.

Magnetic properties

The total magnetic moments of the studied Mg_{n+1} and Mg_nX (X = Fe, Co, Ni; n=1-9) clusters as well as the local magnetic moments of Fe, Co, and Ni atoms in Mg_nX clusters are plotted as a function of cluster size in Fig. 6. The local magnetic moments of open 3d transition metals gradually decrease in the order Fe > Co > Ni, which is in accord with the gradual reduction in the number of unpaired 3d electrons. For the pure Mg_{n+1} systems, the magnetic moments are zero, because two 3s electrons are paired. When an Mg atom in an Mg_{n+1} cluster is replaced with an Fe, Co, or Ni atom, the resulting Mg_nX (X = Fe, Co, Ni) cluster may possess a magnetic moment. In particular, Mg_nFe clusters (except for n=7) have the largest magnetic moments (4 μ_B). The Mg₇Fe cluster has the smallest atomic magnetic moment of 2 μ_B among the Mg₁₋₉Fe clusters. For the Mg_nFe clusters, the total magnetic moment is mainly located on the Fe atom. The irregularity in the trend in the magnetic moments of these clusters at n=7is due to the fact that the most stable structure of Mg7Fe possesses triplet spin multiplicity. The magnetic moments of the Mg_nCo isomers are 3 μ_B except for the Mg_3Co and Mg₇Co isomers, which have magnetic moments of 1 μ_B . The magnetic moments of the Mg_{3.7}Co clusters are mainly located on the Co atom. The ground-state structures of the

Fig. 6 Total magnetic moments of the Mg_nX (X = Fe, Co, Ni, Mg_n = 1–9) clusters and local magnetic moments of the Fe, Co, and Ni atoms

Author's personal copy

Page 9 of 10, 2087

Mg_{3.7}Co clusters possess doublet spin multiplicity. It can be seen in Fig. 6 that the magnetic moments of Mg_{1,2,5,6,7,9}Ni clusters are 2 µ_B. However, the magnetic moments of Mg_{3,4,8}Ni clusters are quenched. The magnetic moments of Mg_{3,4.8}Ni clusters are due to the local magnetic moment of the Ni atom. The 3d valence shell of the Ni atom is fully filled and the local magnetic moment of Ni is zero according to the natural population. Therefore, the magnetic moments of Mg_nNi clusters are quenched for Mg_nNi (n=3, 4, and 8).

Conclusions

In summary, the growth behavior, stabilities, and the electronic and magnetic properties of Mg_nX (X = Fe, Co, Ni) clusters were studied systematically using DFT based on the generalized gradient approximation. It was found that the Mg_nFe, Mg_nCo , and Mg_nNi clusters have similar geometric structures and that the X atom is endohedrally localized in Mg_nX clusters. The stabilities of the ground-state structures of these clusters were examined by analyzing the average atomic binding energies, fragmentation energies, second-order differences in energy, and the HOMO-LUMO gaps, and the results show that Mg₄X clusters are relatively stable. Results from natural population analysis (NPA) showed that the dopant atom (Fe, Co, or Ni) acts as an electron acceptor due to its high electronegativity relative to that of the Mg atom. The strong spd hybridizations observed in the Mg_nX clusters stems from electron transfer from the 3s orbitals of the Mg atoms and the 4s orbital of the X atom to the 3d and 4p atomic orbitals of the X atom. Moreover, the spin magnetic moments were analyzed and compared. Various clusters, such as $Mg_{1,2,3,4,5,6,8,9}$ Fe, $Mg_{1,2,4,5,6,8,9}$ Co, and $Mg_{1,2,5,6,7,9}$ Ni, present high magnetic moments of 4 μ_B , 3 μ_B , and 2 μ_B , respectively. However, the Mg₇Fe, Mg_{3,7}Co, and Mg_{3,4,8}Ni clusters have low magnetic moments of 2 μ_B , 1 μ_B , and 0, respectively.

Acknowledgments This project was supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (grant no. 13KJB140018), the foundation of the Yancheng Institute of Technology (grant nos. XKR2011023 and XKY2013014), the research fund of the Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (grant nos. AE201128 and AE201313), the research fund of the Open Project of Key Laboratory for Ecological-Environment Materials of Jiangsu Province (grant no. EML2012011), the Education Department of Sichuan Province (grant no. 11ZB099), and the research fund of the Sichuan University of Science and Engineering (grant no. 2012PY16)

References

1. Larsson P, Araújo CM, Larsson JA, Jena P, Ahuja R (2008) Proc Natl Acad Sci 105:8227-8231

- 2. Liang G, Huot J, Boily S, Van Neste A, Schulz R (1999) J Alloys Compd 292:247-252
- 3. Khrussanova M, Grigorova E, Mitov I, Radev D, Peshev P (2001) J Alloys Compd 327:230-234
- 4. Reuse F, Khanna SN, de Coulon V, Buttet J (1990) Phys Rev B 41: 11743-11759
- 5. Kumar V, Car R (1991) Phys Rev B 44:8243-8255
- 6. Gong XG, Zheng QQ, He Y-Z (1993) Phys Lett A 181:459-464
- 7. Sanabria SJ, Hilbers U, Neuenschwander J, Niemz P, Sennhauser U, Thoemen H, Wenker JL (2013) Ultrasonics 53:157-170
- 8. Akola J. Rytkönen K. Manninen M (2001) Eur Phys J D 16:21–24
- 9. Diederich T, Döppner T, Braune J, Tiggesbäumker J, Meiwes-Broer K-H (2001) Phys Rev Lett 86:4807-4810
- 10. Kohn A, Weigend F, Ahlrichs R (2001) Phys Chem Chem Phys 3: 711-719
- 11. Thomas OC, Zheng W, Xu S, Bowen KH Jr (2002) Phys Rev Lett 89: 213403
- 12. Acioli PH, Jellinek J (2002) Phys Rev Lett 89:213402
- 13. Lyalin A, Solov'yov IA, Solov'yov AV, Greiner W (2003) Phys Rev A 67:063203
- 14. Diederich T, Döppner T, Fennel T, Tiggesbäumker J, Meiwes-Broer KH (2005) Phys Rev A 72:023203
- 15. Heidari I, De S, Ghazi SM, Goedecker S, Kanhere DG (2011) J Phys Chem A 115:12307-12314
- 16. Medel VM, Reber AC, Reveles JU, Khanna SN (2012) J Chem Phys 136:134311-134318
- 17. Becke AD (1988) Phys Rev A 38:3098-3100
- 18. Perdew JP, Wang Y (1992) Phys Rev B 45:13244-13249
- 19. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:
- 20. Blaudeau J-P, McGrath MP, Curtiss LA, Radom L (1997) J Chem Phys 107:5016-5021
- 21. Glukhovtsev MN, Pross A, McGrath MP, Radom L (1995) J Chem Phys 103:1878-1885
- 22. Ruette F, Sánchez M, Añez R, Bermúdez A, Sierraalta A (2005) J Mol Struct THEOCHEM 729:19-37
- 23. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules. Van Nostrand Reinhold, New York
- 24. Moskovits M, DiLella DP, Limm W (1984) J Chem Phys 80:626-633
- 25. Purdum H, Montano PA, Shenoy GK, Morrison T (1982) Phys Rev B 25:4412-4417
- 26. Cox DM, Trevor DJ, Whetten RL, Rohlfing EA, Kaldor A (1985) Phys Rev B 32:7290-7298
- 27. Montano PA, Shenoy GK (1980) Solid State Commun 35:53-56
- 28. Lian L, Su CX, Armentrout PB (1992) J Chem Phys 97: 4072-4083
- 29. Loh SK, Lian L, Hales DA, Armentrout PB (1988) J Phys Chem 92: 4009-4012
- 30. Moskovits M, DiLella DP (1980) J Chem Phys 73:4917-4924
- 31. Kant A, Strauss B (1964) J Chem Phys 41:3806-3808
- 32. Leopold DG, Lineberger WC (1986) J Chem Phys 85:51-55
- 33. Dong J-G, Hu Z, Craig R, Lombardi JR, Lindsay DM (1994) J Chem Phys 101:9280-9282
- 34. Morse MD, Hansen GP, Langridge-Smith PRR, Zheng L-S, Geusic ME, Michalopoulos DL, Smalley RE (1984) J Chem Phys 80:5400-
- 35. Pinegar JC, Langenberg JD, Arrington CA, Spain EM, Morse MD (1995) J Chem Phys 102:666-674
- 36. Moskovits M, Hulse JE (1977) J Chem Phys 66:3988-3994
- 37. Ahmed F, Nixon ER (1979) J Chem Phys 71:3547-3549
- 38. Wang H, Haouari H, Craig R, Lombardi JR, Lindsay DM (1996) J Chem Phys 104:3420-3422
- 39. Fuyang T, Yuanxu W, Qun J, Kai T, Youhua L (2008) Acta Phys Sin 57:1648-1655

2087, Page 10 of 10 J Mol Model (2014) 20:2087

40. Frisch MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J,

Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc., Wallingford

