Carnot groups and abnormal dynamics

Eero Hakavuori

SISSA

November 3, 2020

Sub-Riemannian manifolds

A sub-Riemannian manifold consists of

- a smooth manifold M
- ullet a bracket-generating distribution $\Delta \subset TM$
- ullet a smoothly varying inner product on Δ

Assume (for simplicity):

- Δ has a global frame X_1, \ldots, X_r
- the vector fields X_1, \ldots, X_r are complete

The endpoint map

Fix a base point $p \in M$.

Definition (Endpoint map)

The *endpoint map* is the map

End:
$$L^2([0,1]; \mathbb{R}^r) \to M$$
, $u \mapsto \gamma_u(1)$,

where $\gamma_u \colon [0,1] \to M$ is the curve

$$\dot{\gamma}_{u}(t) = \sum_{i} u_{i}(t) X_{i}(\gamma_{u}(t))$$
$$\gamma_{u}(0) = p$$

Assumptions \implies endpoint map well defined and surjective.

The endpoint map

Abnormal \leftrightarrow critical points and values of the endpoint map.

Abnormal control = critical point $u \in L^2$ of the endpoint map Abnormal curve = integral curve γ_u of an abnormal control u Abnormal set = the set of critical values of the endpoint map = the subset of M that can be reached from the basepoint with an abnormal curve.

Open problems

Conjecture (Sard)

The abnormal set has zero measure.

Conjecture (Regularity)

All length-minimizing curves are smooth.

There are two types of length-minimizing curves.

- normal: satisfy a geodesic equation ⇒ are smooth
- 2 abnormal: unknown regularity

Theorem (Barilari, Chitour, Jean, Prandi, and Sigalotti 2020)

In sub-Riemannian manifolds of rank 2 and step 4, abnormal minimizers have C^1 regularity.

Theorem (Boarotto and Vittone 2020)

In Carnot groups of rank 3 step 3, or rank 2 step 4, the abnormal set is a sub-analytic set of codimension at least one.

rank = rank of the distribution Δ

step = length of Lie brackets needed to span TM

step 1 step 2 step 3 step 4 $X_k = [X_i, X_k] = [X_i, [X_i, X_k]] = [X_h, [X_i, [X_i, X_k]]]$

The homogeneous setting

ullet M=G is a Carnot group: a nilpotent Lie group whose Lie algebra is stratified

$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}$$

- The basepoint p is the identity element e.
- Δ is the left-invariant distribution with $\Delta_e = \mathfrak{g}^{[1]}$.
- X_1, \ldots, X_r are left-invariant.

Characterization of abnormal curves

 $\gamma_u \colon [0,1] o M$ abnormal $\iff \lambda$ is a characteristic curve of the symplectic form restricted to Δ^\perp

Examples

Characterization of abnormal curves

 $T^*G \simeq G \times \mathfrak{g}^*$ by right-trivialization

$$\begin{array}{c}
G \times \mathfrak{g}^* \\
(\gamma_u, \lambda) & \downarrow \\
[0, 1] \xrightarrow{\gamma_u} & G
\end{array}$$

$$\gamma_u \colon [0,1] o M$$
 abnormal $\iff \lambda \in \mathfrak{g}^*$ constant with $\lambda(\operatorname{Ad}_{\gamma_u(t)} \mathfrak{g}^{[1]}) = 0$
$$\operatorname{Ad} \colon \operatorname{G} o \operatorname{GL}(\mathfrak{g}), \quad \operatorname{Ad}_{\gamma} X = \frac{d}{ds} \left. \gamma \cdot \exp(sX) \cdot \gamma^{-1} \right|_{s=0}$$

For $X \in \mathfrak{g}^{[1]}$, define the abnormal polynomial

$$P_X \colon G \to \mathbb{R}, \quad P_X(g) = \lambda(\operatorname{Ad}_g X)$$

• γ abnormal $\iff P_X(\gamma(t)) = 0$ for all $X \in \mathfrak{g}^{[1]}$.

Idea: consider the (singular) foliation tangent to $\Delta \cap T\{P_X = 0\}$.

Examples

Rank 2: for $P = P_X$

$$0 = \frac{d}{dt}P(\gamma_u(t)) = u_1(t)X_1P(\gamma_u(t)) + u_2(t)X_2P(\gamma_u(t)).$$

When $(X_1P, X_2P) \neq 0$, up to reparametrization

$$u_1(t) = -X_2 P(\gamma_u(t))$$

$$u_2(t) = X_1 P(\gamma_u(t))$$

 \Longrightarrow ODE for γ_{μ} .

Theorem (Barilari, Chitour, Jean, Prandi, and Sigalotti 2020)

In sub-Riemannian manifolds of rank 2 and step 4, abnormal minimizers have C^1 regularity.

Theorem (Boarotto and Vittone 2020)

In Carnot groups of rank 3 step 3, or rank 2 step 4, the abnormal set is a sub-analytic set of codimension at least one.

Proof strategy:

- The dynamics is linear.
- Separate cases by the Jordan form of the linear part.
- 3 Study the dynamics explicitly in the normal forms.

Abnormal dynamics is complicated

Theorem (H. 2020)

Let $\dot{x} = P(x)$ be a polynomial ODE system in \mathbb{R}^r .

There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

For
$$x = (x_1, \ldots, x_r)$$
, a lift is γ_u where $u_i = \dot{x}_i$.

Proof idea:

- Every polynomial ODE has a polynomial first integral in a lift.
- 2 Curves contained in an algebraic variety are abnormal in a lift.

Construction of a first integral

Theorem (H. 2020)

Let $\dot{x} = P(x)$ be a polynomial ODE system in \mathbb{R}^r .

There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

For
$$x = (x_1, \ldots, x_r)$$
, a lift is γ_u where $u_i = \dot{x}_i$.

Proof idea:

- Every polynomial ODE has a polynomial first integral in a lift.
- 2 Curves contained in an algebraic variety are abnormal in a lift.

Horizontal gradients

Lemma

Background

Every polynomial vector field $P: \mathbb{R}^r \to \mathbb{R}^r$ is the horizontal gradient of some polynomial in a Carnot group of high enough step.

For the frame X_1, \ldots, X_r the horizontal gradient of $Q \colon G \to \mathbb{R}$ is

$$\nabla_{\mathsf{hor}} Q = \sum (X_i Q) X_i \colon G \to TG.$$

In coordinates, lift $P \colon \mathbb{R}^r \to \mathbb{R}^r$ to the horizontal vector field

$$P: G \to TG, \quad P(x_1, \ldots, x_r, \ldots, x_n) = \sum_{i=1}^r P_i(x_1, \ldots, x_r) X_i(x)$$

Examples

Gradients in \mathbb{R}^r

$$P = (P_1, \dots, P_r) = \nabla Q$$
 for some $Q \colon \mathbb{R}^r \to \mathbb{R} \iff \partial_i P_j = \partial_j P_i$

Recursion for Q:

$$Q_1 = \int P_1 dx_1$$

$$Q_2 = Q_1 + \int (P_2 - \partial_2 Q_1) dx_2$$

$$\vdots$$

$$Q = Q_r = Q_{r-1} + \int (P_r - \partial_r Q_{r-1}) dx_r$$

A non-gradient vector field in \mathbb{R}^r

 $P(x) = (x_1 - x_2, x_1 + x_2) \neq \nabla Q$ for any $Q: \mathbb{R}^2 \to \mathbb{R}$. Lift to a horizontal vector field in the Heisenberg group.

$$X_1(x) = \partial_1$$

$$X_2(x) = \partial_2 + x_1 \partial_3$$

$$X_3(x) = [X_1, X_2](x) = \partial_3$$

$$P: H \to TH, \quad P(x) = (x_1 - x_2)X_1(x) + (x_1 + x_2)X_2(x)$$

Then $P = \nabla_{hor}Q$ for the polynomial

$$Q(x) = \frac{1}{2}x_1^2 - x_1x_2 + \frac{1}{2}x_2^2 + 2x_3$$

Recursion for horizontal gradient integration

$$X_1Q = x_1 - x_2$$
$$X_2Q = x_1 + x_2$$

Compute commutators:

$$X_3Q = [X_1, X_2]Q = X_1(X_2Q) - X_2(X_1Q) = 2$$

Integrate backwards:

$$Q_3 = \int X_3 Q \, dx_3$$

$$Q_2 = Q_3 + \int (X_2 Q - X_2 Q_3) \, dx_2$$

$$Q = Q_1 = Q_2 + \int (X_1 Q - X_1 Q_2) \, dx_1$$

$$= \frac{1}{2} x_1^2 - x_1 x_2 + \frac{1}{2} x_2^2 + 2x_3$$

Recursion for horizontal gradient integration

Why it works:

- As weighted differential operators, $[X_1, X_2]$ is a degree 2 operator, $[X_1, [X_1, X_2]]$ is degree 3, etc.
 - ⇒ partial derivatives of a polynomial eventually vanish
- There exist coordinates such that $X_i = \partial_i + \sum_{j>i} c_{ij}\partial_j$. \implies integration variable by variable is possible

A horizontal first integral

For an ODE

$$\dot{x}_i = P_i(x), \quad x \in \mathbb{R}^r, \quad i = 1, \dots, n$$

integrate any nonzero orthogonal vector field.

E.g. if $P_1 \neq 0$, integrate

$$X_1Q = -P_2$$
, $X_2Q = P_1$ $X_3Q = X_4Q = \cdots = X_rQ = 0$.

Then for a trajectory $x: [0,1] \to G$ of $\dot{x} = \sum P_i(x)X_i(x)$

$$\frac{d}{dt}Q(x) = P_1(x)X_1Q(x) + \cdots + P_r(x)X_rQ(x) = 0.$$

Abnormal factors

Theorem (H. 2020)

Let $\dot{x} = P(x)$ be a polynomial ODE system in \mathbb{R}^r . There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

Proof idea:

- Every polynomial ODE has a polynomial first integral in a lift.
- Curves contained in an algebraic variety are abnormal in a lift.

Higher order abnormality

$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}.$$

Definition

$$\gamma \colon [0,1] o G$$
 abnormal $\iff \lambda(\operatorname{Ad}_{\gamma(t)} \mathfrak{g}^{[1]}) = 0$

Definition

$$\gamma$$
 abnormal of order $k \iff \lambda(\mathsf{Ad}_{\gamma(t)}(\mathfrak{g}^{[1]} \oplus \cdots \oplus \mathfrak{g}^{[k]})) = 0$

Lemma

If $\gamma(0) = e$ and $\lambda(Ad_{\gamma(t)}\mathfrak{g}^{[k]}) = 0$, then γ is abnormal of order k.

Examples

Abnormal factors

Background

Proposition

For any polynomial $Q: H \to \mathbb{R}$, there exists

- a Carnot group G with a projection $\pi \colon \mathsf{G} \to \mathsf{H}$
- \bullet $\lambda \in \mathfrak{g}^*$
- $k \in \mathbb{N}$

such that $Q \circ \pi \colon G \to \mathbb{R}$ is a factor of the polynomial $x \mapsto \lambda(\operatorname{Ad}_x Y)$ for every $Y \in \mathfrak{g}^{[k]}$.

Examples

Abnormal factors proof

Consider a linear system

$$P_i^{\lambda} = Q \cdot S_i^{\nu}, \quad i = 1, \dots, m$$

in the variables (λ, ν) , where

- $P_i^{\lambda}(x) = \lambda(\operatorname{Ad}_x Y_i)$ for a basis Y_1, \ldots, Y_m of $\mathfrak{g}^{[k]}$
- S_i^{ν} are generic polynomials of the form

$$S^{\nu} = \nu_0 + \nu_1 x_1 + \nu_2 x_2 + \nu_3 x_3 + \nu_4 x_1^2 + \nu_5 x_1 x_2 + \nu_6 x_2^2 + \dots$$

such that $\deg(S_i^{\nu}) + \deg(Q) = \deg(P_i)$.

Abnormal factors proof

Let

- $k = \deg Q + 1$
- G_s a free Carnot group of step s

Lemma

The linear system

$$P_i^{\lambda} = Q \cdot S_i^{\nu}, \quad i = 1, \dots, m$$

has a non-trivial solution (λ, ν) in G_s for large s.

Monomial counting

Background

Proof of Lemma:

• Hall basis argument $\implies \exists \lambda = \lambda(\nu)$ such that $P_1^{\lambda(\nu)} = Q \cdot S_1^{\nu}$ Consider the remaining system

$$P_i^{\lambda(\nu)} = Q \cdot S_i^{\nu}, \quad i = 2, \dots, m$$

② In step s, $\deg(P_i^{\lambda}) \leq s - k$. The number of equations is

$$(m-1) \cdot \#\{\text{monomials of degree up to } s-k\}$$

and the number of variables is

$$m \cdot \#\{\text{monomials of degree up to } s - k - \deg(Q)\}$$

3 Poincaré series asymptotics for $s \to \infty$ \implies #variables \gg #equations.

Examples

The entire proof

Theorem (H. 2020)

Let $\dot{x} = P(x)$ be a polynomial ODE system in \mathbb{R}^r . There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

Proof:

- Every polynomial ODE has a polynomial first integral in a lift.
 - Consider an orthogonal vector field.
 - Every polynomial vector field is a horizontal gradient.
- 2 Curves contained in an algebraic variety are abnormal in a lift.
 - Common factors of abnormal polynomials = linear system.
 - ullet Monomial counting \Longrightarrow the system is underdetermined.

Abnormals in the free Carnot group of rank 2 and step 7

 $\exists \lambda \colon \mathbb{R}^6 \to \mathfrak{g}^*$ semi-algebraic such that trajectories of

$$\dot{x} = ax + by + c$$
 $\dot{y} = dx + ey + f$

are abnormal with covector $\lambda(a, b, c, d, e, f)$.

Concatenations of trajectories

Abnormals in the free Carnot group of rank 2 and step 13

Let $E \subset [0,1]$ be nowhere dense. \exists abnormal curve that is

- injective
- parametrized by arc length
- C¹
- not C^2 at any point $x \in E$

An inefficient formula

Let $P: \mathbb{R}^r \to \mathbb{R}^r$ be a polynomial vector field.

Let
$$d(r, k) = \dim \mathfrak{f}_r^{[k]} = \frac{1}{k} \sum_{d|k} \mu(d) r^{k/d}$$
.

Consider the rational function

$$\sum_{k=0}^{\infty} C_k t^k = \frac{\left(1 - (d(r, \deg(P) + 1))(1 - t^{\deg(P)})\right) t^{\deg(P) + 1}}{\prod_{k=1}^{\deg(P)} (1 - t^k)^{d(r,k)}}$$

If $\sum_{k=0}^{s} C_k > 0$, then trajectories of P are abnormal in step s.

Inefficient numbers from an inefficient formula

P a polynomial vector field in \mathbb{R}^r . Trajectories abnormal in step:

$r \backslash \deg(P)$	1	2	3	4	5
2	11	38	172	577	2372
3	89	724	6034	46036	365813
4	386	5322	73109	983505	13529000

Example

A polynomial vector field in \mathbb{R}^4 of degree 5 has abnormal lifts in the free Carnot group G of rank 4 and step 13529000.

dim
$$G \approx 4.1338 \cdot 10^{8145262}$$

Inefficient numbers from an inefficient formula

P a polynomial vector field in \mathbb{R}^r . Trajectories abnormal in step:

$r \backslash \deg(P)$	1	2	3	4	5
2	11	38	172	577	2372
3	89	724	6034	46036	365813
4	386	5322	73109	983505	13529000

Example

A polynomial vector field in \mathbb{R}^4 of degree 5 has abnormal lifts in the free Carnot group G of rank 4 and step 2372?

$$\dim G \approx 6.857 \cdot 10^{1425}$$

Conjecture

The abnormality step only depends on deg(P) and not the rank r.

Thank you for your attention!