MATH 503: Mathematical Statistics

Lecture 5: More on Point Estimation Reading: C&B Sec. 6.2, and HMC Sec. 7.7

Kimberly F. Sellers

Department of Mathematics & Statistics

Today's Topics

- Final comments connecting Rao-Blackwell and Lehmann-Scheffé
- Joint sufficiency
- Minimal sufficiency
- Ancillary statistics
- Sufficiency, Completeness & Independence

Rao-Blackwell Theorem

Let X_1, \dots, X_n, n a fixed positive integer, denote a random sample from a distribution that has pdf/pmf $f(x;\theta)$, $\theta \in \Omega$. Let $Y_1 = u_1(X_1, ..., X_n)$ be a sufficient statistic for θ , and let $Y_2 = u_2(X_1, ..., X_n)$, not a function of Y_1 alone, be an unbiased estimator of θ . Then $E(Y_2|y_1) = \varphi(y_1)$ defines a statistic $\varphi(Y_1)$. This statistic $\varphi(Y_1)$ is a function of the sufficient statistic for θ ; it is an unbiased estimator of θ ; and its variance is less than that of Y_2 .

Lehmann-Scheffé Theorem

Let X_1, \dots, X_n, n a fixed positive integer, denote a random sample from a distribution that has pdf/pmf $f(x;\theta), \theta \in \Omega$, let $Y_1 = u_1(X_1, ..., X_n)$ be a sufficient statistic for θ , and let the family $\{f_{Y_1}(y_1;\theta):\theta\in\Omega\}$ be complete. If there is a function of Y_1 that is an unbiased estimator of θ , then this function of Y_1 is the unique UMVUE of θ_{-}

Theorem

Let $f(x;\theta), \gamma < \theta < \delta$, be a pdf/pmf of a rv X whose distribution is a regular case of the exponential class. Then if $X_1, X_2, ..., X_n$ (where n is a fixed positive integer) is a random sample from the distribution of X, the statistic $Y_1 = \sum_{i=1}^n K(X_i)$ is a sufficient statistic for θ and the family $\{f_{Y_1}(y_1;\theta): \gamma < \theta < \delta\}$ of pdfs of Y_1 is complete. That is, Y_1 is a <u>complete sufficient statistic</u> for θ .

Implication: After determining the sufficient statistic, $Y_1 = \sum_{i=1}^n K(X_i)$, we form a function, $\varphi(Y_1)$, so that $E(\varphi(Y_1)) = \theta \Rightarrow \varphi(Y_1)$ is unique MVUE of θ .

Let $X_1, ..., X_n \sim \text{Bernoulli}(\theta) \text{ iid, } 0 < \theta < 1. \text{ Find the UMVUE of } \theta$.

Let a random sample of size n, i.e. $X_1, ..., X_n$, be taken from a distribution that has the pdf $f(x; \theta) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right) I_{(0,\infty)}(x)$. Find the MLE and the UMVUE of $P(X_1 \le 2)$.

Joint Sufficiency

Let $X_1, ..., X_n$ denote a random sample from a distribution that has pdf/pmf $f(x; \theta)$, $\theta \in \Omega \subset R^p$. Let S denote the support of X. Let Y be an m-dimensional random vector of statistics, $Y = (Y_1, ..., Y_m)'$, where $Y_i = u_i(X_1, ..., X_n)$, for i = 1, ..., m. Denote the pdf/pmf of Y by $f_Y(y; \theta)$ for $y \in R^m$. The random vector of statistics Y is jointly sufficient for θ iff.

$$\frac{\prod_{i=1}^{n} f(x_i; \boldsymbol{\theta})}{f_Y(\boldsymbol{y}; \boldsymbol{\theta})} = H(x_1, \dots, x_n) \ \forall x_i \in S$$

where $H(x_1, ..., x_n)$ does not depend on θ .

The (Generalized) Factorization Thm

The vector of statistics Y is jointly sufficient for the parameter $\theta \in \Omega$ iff we can find two nonnegative functions k_1 and k_2 s.t.

$$\prod_{i=1}^n f(x_i; \boldsymbol{\theta}) = k_1(\boldsymbol{y}; \boldsymbol{\theta}) k_2(x_1, \dots, x_n) \text{, for all } x_i \in S$$

where the function $k_2(x_1, ..., x_n)$ does not depend on $\boldsymbol{\theta}$.

Let $X_1, ..., X_n$ be a random sample from a distribution having pdf

$$f(x; \theta_1, \theta_2) = \begin{cases} \frac{1}{2\theta_2} & \theta_1 - \theta_2 < x < \theta_1 + \theta_2 \\ 0 & \text{elsewhere,} \end{cases}$$

Find the joint sufficient statistics for θ_1 and θ_2 .

(Extension of) Exponential Families

Let X be a rv with pdf/pmf $f(x; \theta)$ where the vector of parameters $\theta \in \Omega \subset R^m$. Let S denote the support of X. If X is continuous assume that S = (a, b), where a or b may be $-\infty$ or ∞ , respectively. If X is discrete assume that $S = \{a_1, a_2, ...\}$. Suppose $f(x; \theta)$ is of the form

$$f(x; \boldsymbol{\theta}) = \begin{cases} \exp\left(\sum_{j=1}^{m} p_j(\boldsymbol{\theta}) K_j(x) + S(x) + q(\theta_1, \theta_2, \dots, \theta_m)\right) & \text{for all } x \in S \\ 0 & \text{elsewhere} \end{cases}$$

Then we say this pdf/pmf is a <u>member of the</u> <u>exponential class</u>.

(Ext. of) Exponential Families (cont.)

It is a <u>regular case of the exponential family</u> if, addition,

- 1) The support does not depend on the vector of parameters $oldsymbol{ heta}$
- 2) The space Ω contains a nonempty, m-dimensional open rectangle,
- 3) The $p_j(\theta)$, j = 1, ..., m, are nontrivial, functionally independent, continuous functions of θ ,
- 4) and
 - (a) If X is a continuous r.v., then the m derivatives $K_j'(x)$, for $j=1,\ldots,m$, are continuous for a < x < b and no one is a linear homogeneous function of the others and S(x) is a continuous function of x, a < x < b.
 - (b) If X is discrete, the $K_j(x)$, j = 1, ..., m are nontrivial functions of x on the support S and no one is a linear homogeneous function of the others.

Further Extensions

- Rao-Blackwell
- Lehmann-Scheffe
- Joint complete sufficient statistics for θ

Minimal Sufficiency

 Goal: reduce data contained in entire sample as much as possible without losing relevant information about important characteristics of underlying distribution

• **Definition**: a sufficient statistic, $T(X) = T(X_1, ..., X_n)$, is called a <u>minimal</u> sufficient statistic if, for any other sufficient statistic T'(X), T(x) is a function of T'(x) [i.e. if T'(x) = T'(y), then T(x) = T(y)].

Theorem

Let $f(x|\theta)$ be the pmf/pdf of a sample $X_1, ..., X_n$. Suppose there exists a function T(x) s.t., for two sample points x and y, the ratio

$$\frac{f(\boldsymbol{x}|\theta)}{f(\boldsymbol{y}|\theta)}$$

is constant as a function of θ iff T(x)=T(y). Then T(X) is a minimal sufficient statistic for θ .

Let $X_1, ..., X_n \sim N(\mu, \sigma^2)$ iid, both μ and σ^2 unknown. Let x and y denote two sample points and let (\bar{x}, s_x^2) and (\bar{y}, s_y^2) be the sample means and variances corresponding to the x and y samples, respectively. Then, the ratio of densities is

$$\frac{f(\boldsymbol{x} \mid \mu, \sigma^2)}{f(\boldsymbol{y} \mid \mu, \sigma^2)} = \frac{(2\pi\sigma^2)^{-n/2} \exp(-[n(\bar{x} - \mu)^2 + (n-1)s_x^2]/(2\sigma^2))}{(2\pi\sigma^2)^{-n/2} \exp(-[n(\bar{y} - \mu)^2 + (n-1)s_y^2]/(2\sigma^2))}$$

$$= \exp([-n(\bar{x}^2 - \bar{y}^2) + 2n\mu(\bar{x} - \bar{y}) - (n-1)(s_x^2 - s_y^2)]/(2\sigma^2))$$

This ratio will be constant as a function of μ and σ^2 iff $\bar{x} = \bar{y}$ and $s_x^2 = s_y^2$. Thus, (\bar{X}, S^2) is a minimal sufficient statistic for (μ, σ^2) .

Suppose $X_1, ..., X_n \sim \text{Bernoulli}(\theta)$ iid, $0 \leq \theta \leq 1$. Find the MLE of θ and show that it is a sufficient statistic for θ and hence a minimal sufficient statistic for θ .

Suppose $X_1, ..., X_n \sim \text{Unif}(\theta, \theta + 1)$ iid. Determine the minimal sufficient statistic for θ .

Note: the dimension of minimal sufficient statistic doesn't have to equal number of parameters.

Ancillary Statistics

- **Definition:** A statistic S(X) whose distribution does not depend on the parameter θ is an <u>ancillary statistic</u>.
- Alone, contains no information about θ
- Observation on a r.v. whose distribution is fixed and known, unrelated to θ
- When used in conjunction with other statistics, sometimes contain valuable information for inferences about θ

Let $X_1, X_2 \sim \text{Gamma}(\alpha, \theta)$ iid, α known. Show that $Z = X_1/(X_1 + X_2)$ is an ancillary statistic for θ .

Consider X_1, \ldots, X_n random sample having the model $X_i = \theta + W_i, \ i = 1, \ldots, n$, where $-\infty < \theta < \infty$ and W_1, \ldots, W_n are iid r.v.'s whose pdf does not depend on θ .

Let $Z = u(X_1, ..., X_n)$ be a statistic s.t.

$$u(x_1 + d, ..., x_n + d) = u(x_1, ..., x_n)$$
, for all real d.

Hence, $Z = u(W_1 + \theta, ..., W_n + \theta) = u(W_1, ..., W_n)$ is a function of Ws alone (ie, no θ).

 \Rightarrow Z has a distribution that doesn't depend on θ , therefore Z is ancillary.

Z is called a location-invariant statistic.

Example (cont.)

- Location-invariant statistics are ancillary.
- Examples of location-invariant statistics:
 - Sample variance, S²
 - Sample range, $R = X_{(n)} X_{(1)}$
 - Mean deviation from the sample median,

$$\frac{1}{n} \sum_{i=1}^{n} |X_i - \operatorname{med}(X_i)|$$

Analogous arguments for scale-invariant statistics

Consider $X_1, ..., X_n$ random sample having the model $X_i = \theta W_i, i = 1, ..., n$, where $\theta > 0$ and $W_1, ..., W_n$ are iid r.v.'s whose pdf does not depend on θ .

Let $Z = u(X_1, ..., X_n)$ be a statistic s.t.

$$u(dx_1, ..., dx_n) = u(x_1, ..., x_n)$$
, for all real d.

Hence, $Z = u(\theta W_1, ..., \theta W_n) = u(W_1, ..., W_n)$ is a function of Ws alone (ie, no θ).

 \Rightarrow Z has a distribution that doesn't depend on θ , therefore Z is ancillary.

Z is called a scale-invariant statistic.

Theorem

Let X_1, \ldots, X_n denote a random sample from a distribution having a pdf $f(x;\theta), \theta \in \Omega$, where Ω is an interval set. Suppose that the statistic Y_1 is a complete and sufficient statistic for θ . Let $Z = u(X_1, \ldots, X_n)$ be any other statistic (not a function of Y_1 alone). If the distribution of Z does not depend upon θ , then Z is independent of the sufficient statistic Y_1 .

Basu's Theorem

If T(X) is a complete and minimal sufficient statistic, then T(X) is independent of every ancillary statistic.

Let $X_1, ..., X_n$ be a random sample from a distribution having pdf $f(x; \theta) = \exp[-(x - \theta)]$, $\theta < x < \infty$, $-\infty < \theta < \infty$. Show that $X_{(1)}$ is independent of location-invariant statistics.

Let X_1, X_2 be a random sample from a distribution having pdf $f(x;\theta) = (1/\theta) \exp(-x/\theta), \ 0 < x < \infty, \ 0 < \theta < \infty$. Show that $Y = X_1 + X_2$ is a complete sufficient statistic for θ . Hence, Y is independent of scale-invariant statistics.