# Bethe-Salpeter equation for the particle-particle propagator

### Antoine Marie, Pina Romaniello, Xavier Blase and Pierre-François Loos

Laboratoire de Chimie et Physique Quantiques, Toulouse

April 10, 2025







This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 863481).

# **Two-body Green's function**

## **Definition**

$$\begin{array}{c|c} \underline{1=(\mathbf{r}_1,\sigma_1,t_1)} \\ G_2(12;1'2')=(-\mathrm{i})^2 \left\langle \begin{array}{c|c} \Psi_0^N \end{array} \middle| \hat{T}[\ \hat{\psi}(1) \ \hat{\psi}(2) \ \hat{\psi}^\dagger(2') \ \hat{\psi}^\dagger(1') \ ] \middle| \ \Psi_0^N \end{array} \right\rangle \\ \hline N\text{-electron ground-state} \\ \hline \text{Field operators}$$

Emerging excited-state methods in electronic structure, Toulouse, April 2025

## **Electron-hole pair propagation**

$$t_2, t_{2'} > t_1, t_{1'} \quad G_2(12; 1'2') = (-i)^2 \left\langle \Psi_0^N \middle| \hat{T} \left[ \hat{\psi}(2) \hat{\psi}^{\dagger}(2') \right] \hat{T} \left[ \hat{\psi}(1) \hat{\psi}^{\dagger}(1') \right] \middle| \Psi_0^N \right\rangle$$

### **Electron-hole pair propagation**

$$\mathbf{t_2}, \mathbf{t_{2'}} > \mathbf{t_1}, \mathbf{t_{1'}} \quad \ \mathsf{G}_2(12; 1'2') = (-\mathrm{i})^2 \left< \Psi_0^{\mathsf{N}} \middle| \hat{T} \left[ \hat{\psi}(2) \hat{\psi}^{\dagger}(2') \right] \hat{T} \left[ \hat{\psi}(1) \hat{\psi}^{\dagger}(1') \right] \middle| \Psi_0^{\mathsf{N}} \right>$$

### **Electron-hole correlation function**

$$-\textit{L}(12;1'2') = \textit{G}_2(12;1'2') - \textit{G}(11')\textit{G}(22')$$

### **Electron-hole pair propagation**

$$\frac{\mathbf{t_2},\mathbf{t_{2'}}>\mathbf{t_1},\mathbf{t_{1'}}}{\mathbf{G}_2(12;1'2')} = (-\mathrm{i})^2 \left<\Psi_0^N \middle| \hat{T} \big[ \hat{\psi}(2) \hat{\psi}^\dagger(2') \big] \hat{T} \big[ \hat{\psi}(1) \hat{\psi}^\dagger(1') \big] \middle| \Psi_0^N \right>$$

### **Electron-hole correlation function**

$$-L(12;1'2') = G_2(12;1'2') - G(11')G(22')$$

### **Electron-hole propagator**

$$\frac{L(\mathbf{x}_{1}\mathbf{x}_{2};\mathbf{x}_{1'}\mathbf{x}_{2'};t_{1}-t_{2}) = \lim_{t_{2}\to t_{2'},t_{1}\to t_{1'}} L(12;1'2')}{\mathbf{x}_{1'} = (\mathbf{r}_{1'},\sigma_{1'})}$$

## **Electron-hole pair propagation**

$$\frac{\mathbf{t_2},\mathbf{t_{2'}}>\mathbf{t_1},\mathbf{t_{1'}}}{\mathbf{G}_2(12;1'2')} = (-\mathrm{i})^2 \left<\Psi_0^N \middle| \hat{T} \big[ \hat{\psi}(2) \hat{\psi}^\dagger(2') \big] \hat{T} \big[ \hat{\psi}(1) \hat{\psi}^\dagger(1') \big] \middle| \Psi_0^N \right>$$

#### **Electron-hole correlation function**

$$-L(12;1'2') = G_2(12;1'2') - G(11')G(22')$$

### **Lehman representation**

$$L(\mathbf{x}_{1}\mathbf{x}_{2};\mathbf{x}_{1'}\mathbf{x}_{2'};\omega) = \sum_{\nu>0} \frac{L_{\nu}^{N}(\mathbf{x}_{2}\mathbf{x}_{2'})R_{\nu}^{N}(\mathbf{x}_{1}\mathbf{x}_{1'})}{\omega - (E_{\nu}^{N} - E_{0}^{N}) + \mathrm{i}\eta} - \sum_{\nu>0} \frac{L_{\nu}^{N}(\mathbf{x}_{2}\mathbf{x}_{2'})R_{\nu}^{N}(\mathbf{x}_{1}\mathbf{x}_{1'})}{\omega - (E_{0}^{N} - E_{\nu}^{N}) - \mathrm{i}\eta}$$
N-th Excitation energies

### **Electron-electron pair propagation**

$$t_1, t_2 > t_{1'}, t_{2'} \quad \ G_2(12; 1'2') = (-\mathrm{i})^2 \left< \Psi_0^N \middle| \hat{T} \big[ \hat{\psi}(1) \hat{\psi}(2) \big] \hat{T} \big[ \hat{\psi}^\dagger(1') \hat{\psi}^\dagger(2') \big] \middle| \Psi_0^N \right>$$

### **Hole-hole pair propagation**

$$\mathbf{t_{1'}}, \mathbf{t_{2'}} > \mathbf{t_{1}}, \mathbf{t_{2}} \qquad G_{2}(12; 1'2') = (-\mathrm{i})^{2} \left\langle \Psi_{0}^{N} \middle| \hat{T} \left[ \hat{\psi}^{\dagger}(1') \hat{\psi}^{\dagger}(2') \right] \hat{T} \left[ \hat{\psi}(1) \hat{\psi}(2) \right] \middle| \Psi_{0}^{N} \right\rangle$$

### **Electron-electron pair propagation**

$$\mathbf{t_1}, \mathbf{t_2} > \mathbf{t_{1'}}, \mathbf{t_{2'}} \qquad \mathsf{G}_2(12; 1'2') = (-\mathrm{i})^2 \left< \Psi_0^{\mathsf{N}} \middle| \hat{T} \left[ \hat{\psi}(1) \hat{\psi}(2) \right] \hat{T} \left[ \hat{\psi}^{\dagger}(1') \hat{\psi}^{\dagger}(2') \right] \middle| \Psi_0^{\mathsf{N}} \right>$$

### **Particle-particle correlation function**

$$2\textit{K}(12;1'2') = \textit{G}_2(12;1'2')$$

### **Electron-electron pair propagation**

$$\begin{array}{ll} \textbf{t_1, t_2} > \textbf{t_{1'}, t_{2'}} & \textit{G}_2(12; 1'2') = (-i)^2 \left< \Psi_0^N \middle| \hat{T} \big[ \hat{\psi}(1) \hat{\psi}(2) \big] \hat{T} \big[ \hat{\psi}^\dagger(1') \hat{\psi}^\dagger(2') \big] \middle| \Psi_0^N \middle> \\ \end{array}$$

### **Particle-particle correlation function**

$$2K(12;1'2') = G_2(12;1'2')$$

### Particle-particle propagator

$$K(\mathbf{x}_1\mathbf{x}_2;\mathbf{x}_{1'}\mathbf{x}_{2'};t_1-t_{1'}) = \lim_{t_2 \to t_1,t_{2'} \to t_{1'}} K(12;1'2')$$

## **Electron-electron pair propagation**

$$\mathbf{t_1}, \mathbf{t_2} > \mathbf{t_{1'}}, \mathbf{t_{2'}} \qquad \mathsf{G}_2(12; 1'2') = (-\mathrm{i})^2 \left< \Psi_0^{\mathsf{N}} \middle| \hat{T} \left[ \hat{\psi}(1) \hat{\psi}(2) \right] \hat{T} \left[ \hat{\psi}^{\dagger}(1') \hat{\psi}^{\dagger}(2') \right] \middle| \Psi_0^{\mathsf{N}} \right>$$

### Particle-particle correlation function

$$2K(12;1'2') = G_2(12;1'2')$$

## **Lehman representation**

$$K(\mathbf{x}_{1}\mathbf{x}_{2}; \mathbf{x}_{1'}\mathbf{x}_{2'}; \omega) = \sum_{\nu} \frac{L_{\nu}^{N+2}(\mathbf{x}_{1}\mathbf{x}_{2})R_{\nu}^{N+2}(\mathbf{x}_{1}'\mathbf{x}_{2}')}{\omega - (E_{\nu}^{N+2} - E_{0}^{N}) + i\eta} - \sum_{\nu} \frac{L_{\nu}^{N-2}(\mathbf{x}_{1}'\mathbf{x}_{2}')R_{\nu}^{N-2}(\mathbf{x}_{1}\mathbf{x}_{2})}{\omega - (E_{0}^{N} - E_{\nu}^{N-2}) - i\eta}$$

Double electron affinities Double ionization potentials

### **Electron-hole Bethe-Salpeter equation**

$$L(12;1'2') = L_0(12;1'2') + \int d(3456) L_0(14;1'3) \Xi^{\text{eh}}(36;45) L(52;62')$$
Independent particle propagator

eh kernel

where

$$L_0(12; 1'2') = G(12')G(21')$$

$$L_0(12; 1'2') = G(12')G(21')$$
  $\Xi^{\text{eh}}(12; 34) = \frac{\delta \Sigma(13)}{\delta G(42)}\Big|_{U=0}$ 

$$1' \longrightarrow 2 \qquad 1' \longrightarrow 2 \qquad 1' \longrightarrow 2 \qquad 1' \longrightarrow 2$$

$$1 \longrightarrow 2' \qquad 1 \longrightarrow 2' \qquad 1 \longrightarrow 3 \qquad 4' \qquad 2'$$

### Eigenvalue problem

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\dagger} & \mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$$

$$A_{ia,jb} = (\epsilon_a - \epsilon_i)\delta_{ab}\delta_{ij} + \Xi^{eh}_{ia,jb}(\omega = 0)$$
  
$$B_{ia,bj} = \Xi^{eh}_{ia,bj}(\omega = 0)$$

# Approximate kernels

### **RPA** kernel

$$\Xi^{\text{eh},\textit{RPA}}(12;1'2') = \mathrm{i} \left. \frac{\delta \Sigma_{\mathrm{H}}(11')}{\delta G(2'2)} \right|_{\mathcal{U}=0} = \left. \frac{\delta \left[ G(3'3) \mathrm{v}(13;1'3') \right]}{\delta G(2'2)} \right|_{\mathcal{U}=0} = \mathrm{v}(12;1'2')$$

# Approximate kernels

#### **RPA** kernel

$$\Xi^{\text{eh},\text{RPA}}(12;1'2') = \mathrm{i} \left. \frac{\delta \Sigma_{\text{H}}(11')}{\delta G(2'2)} \right|_{\mathcal{U}=0} = \left. \frac{\delta \left[ G(3'3) \mathrm{v}(13;1'3') \right]}{\delta G(2'2)} \right|_{\mathcal{U}=0} = \mathrm{v}(12;1'2')$$

#### **GW kernel**

$$\begin{split} \Xi^{\text{eh},\text{GW}}(12;1'2') &= \mathrm{i} \left. \frac{\delta \Sigma^{\text{GW}}_{\text{Hxc}}(11')}{\delta G(2'2)} \right|_{\mathcal{U}=0} = v(12;1'2') - \left. \frac{\delta \left[ G(33') W(11';33') \right]}{\delta G(2'2)} \right|_{\mathcal{U}=0} \\ &= v(12;1'2') - W(11';2'2) - G(33') \left. \frac{\delta W(11';33')}{\delta G(2'2)} \right|_{\mathcal{U}=0} \end{split}$$

### **Eigenvalue problem**

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\dagger} & \mathbf{A} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$$

$$\begin{aligned} &A_{ia,jb} = (\epsilon_a - \epsilon_i)\delta_{ab}\delta_{ij} + \Xi^{\text{eh}}_{ia,jb}(\omega = 0) \\ &B_{ia,bj} = \Xi^{\text{eh}}_{ia,bj}(\omega = 0) \end{aligned}$$

#### **Kernels**

$$\Xi^{\rm eh,RPA}_{ia,jb} = \langle ib|aj\rangle \qquad \Xi^{\rm eh,GW}_{ia,jb} = \langle ib|aj\rangle - W_{ibja}(\omega=0)$$

- Second-order kernel
- T-matrix kernel
- ...

## **Usual linear response**

### **Schwinger relation**

$$-G_{2}(12; 1'2') + G(11')G(22') = \frac{\delta G(11'; [U])}{\delta U^{\text{eh}}(2'2)} \bigg|_{U=0} = L(12; 1'2')$$
External potential

## **External potential**

$$\hat{\mathcal{U}}(t_1) = \int d(\mathbf{x}_1 \mathbf{x}_{1'} t_1') \, \hat{\psi}^{\dagger}(\mathbf{x}_1) \mathbf{U}^{\mathsf{eh}}(\mathbf{1}\mathbf{1}') \hat{\psi}(\mathbf{x}_{1'})$$

# Pairing field linear response

### Another external potential ...

$$\hat{\mathcal{U}}(t_1) = \frac{1}{2} \left( \int d(\mathbf{x}_1 \mathbf{x}_{1'} t_1') \, \hat{\psi}(\mathbf{x}_1) \mathcal{U}^{\mathsf{hh}}(11') \hat{\psi}(\mathbf{x}_{1'}) + \int d(\mathbf{x}_1 d\mathbf{x}_{1'} t_1') \, \hat{\psi}^{\dagger}(\mathbf{x}_{1'}) \, \mathcal{U}^{\mathsf{ee}}(11') \, \hat{\psi}^{\dagger}(\mathbf{x}_{1'}) \right) \\ \text{Non-number conserving}$$

# Pairing field linear response

### Another external potential ...

$$\hat{\mathcal{U}}(t_1) = \frac{1}{2} \left( \int d(\mathbf{x}_1 \mathbf{x}_{1'} t_1') \, \hat{\psi}(\mathbf{x}_1) U^{\mathsf{hh}}(11') \hat{\psi}(\mathbf{x}_{1'}) + \int d(\mathbf{x}_1 d\mathbf{x}_{1'} t_1') \, \hat{\psi}^{\dagger}(\mathbf{x}_{1'}) \, U^{\mathsf{ee}}(11') \, \hat{\psi}^{\dagger}(\mathbf{x}_{1'}) \right)$$

$$\mathsf{Non-number conserving}$$

...leading to an alternative Schwinger relation

$$\frac{1}{2} \left. \left( \mathsf{G}_2(12;1'2';[U]) - \mathsf{G}^{\mathsf{hh}}(12;[U]) \mathsf{G}^{\mathsf{ee}}(2'1';[U]) \right) \, \right|_{U=0} = \left. \frac{\delta \mathsf{G}^{\mathsf{ee}}(2'1';[U])}{\delta U^{\mathsf{hh}}(12)} \right|_{U=0} = \mathcal{K}(12;1'2')$$

# Description of a non-number conserving Hamiltonian

### **Anomalous propagators**

$$G^{\mathsf{hh}}(11';[U]) = (-\mathrm{i}) \langle \Psi_0 | \hat{\mathcal{T}} \big[ \hat{\psi}(1) \hat{\psi}(1') \big] | \Psi_0 \rangle \quad G^{\mathsf{ee}}(11';[U]) = (-\mathrm{i}) \langle \Psi_0 | \hat{\mathcal{T}} \big[ \hat{\psi}^\dagger(1) \hat{\psi}^\dagger(1') \big] | \Psi_0 \rangle$$

### Nambu formalism and the Gorkov propagator

$$\mathbf{G}(11') = (-i) \, \langle \Psi_0 | \hat{\mathcal{T}} \left[ \begin{pmatrix} \hat{\psi}(1) \hat{\psi}^\dagger(1') & \hat{\psi}(1) \hat{\psi}(1') \\ \hat{\psi}^\dagger(1) \hat{\psi}^\dagger(1') & \hat{\psi}^\dagger(1) \hat{\psi}(1') \end{pmatrix} \right] | \Psi_0 \rangle = \begin{pmatrix} \mathsf{G}^{\mathsf{he}}(11') & \mathsf{G}^{\mathsf{hh}}(11') \\ \mathsf{G}^{\mathsf{ee}}(11') & \mathsf{G}^{\mathsf{eh}}(11') \end{pmatrix}.$$

## **Gorkov-Dyson equation**

$$\mathbf{G}^{-1}(11') = \mathbf{G}_0^{-1}(11') - \begin{pmatrix} \Sigma^{\text{he}}(11') & \Sigma^{\text{hh}}(11') + U^{\text{ee}}(11') \\ \Sigma^{\text{ee}}(11') + U^{\text{hh}}(11') & \Sigma^{\text{eh}}(11') \end{pmatrix}$$

### Particle-particle Bethe-Salpeter equation

$$K(12; 1'2') = K_0(12; 1'2') - \int d(3456) K(12; 56) \Xi^{pp}(56; 34) K_0(34; 1'2')$$

t particle propagator

pp kernel

Independent particle propagator

where  $K_0(12; 1'2') = \frac{1}{2} [G(11')G(22') - G(21')G(12')]$   $\Xi^{pp}(56; 34) = \frac{\delta \Sigma^{ee}(34)}{\delta G^{ee}(56)} \Big|_{U=0}$ 

### Eigenvalue problem

$$\begin{pmatrix} \mathbf{C} & \mathbf{B} \\ \mathbf{B}^{\dagger} & \mathbf{D} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$$

$$\begin{split} &C_{ab,cd}^{\text{RPA}} = (\epsilon_a + \epsilon_b)\delta_{ac}\delta_{bd} + \Xi_{ab,cd}^{\text{pp}}(\omega = 0) \\ &B_{ab,ij}^{\text{RPA}} = \Xi_{ab,ij}^{\text{pp}}(\omega = 0) \\ &D_{ij,kl}^{\text{RPA}} = -(\epsilon_i + \epsilon_j)\delta_{ik}\delta_{jl} + \Xi_{ij,kl}^{\text{pp}}(\omega = 0) \end{split}$$

# Approximate kernels

### **RPA kernel**

$$\begin{split} \Xi^{\text{pp,RPA}}(12;1'2') &= \mathrm{i} \left. \frac{\delta \Sigma_{\text{B}}^{\text{ee}}(22')}{\delta G^{\text{ee}}(11')} \right|_{\mathcal{U}=0} = \frac{1}{2} \left. \frac{\delta \left[ G^{\text{ee}}(33') [v(33';22') - v(3'3;22')] \right]}{\delta G^{\text{ee}}(11')} \right|_{\mathcal{U}=0} \\ &= \frac{1}{2} [v(11';22') - v(1'1;22')] \end{split}$$

# **Approximate kernels**

### **RPA kernel**

$$\begin{split} \Xi^{\text{pp,RPA}}(12;1'2') &= \mathrm{i} \left. \frac{\delta \Sigma_{\mathrm{B}}^{\mathrm{ee}}(22')}{\delta G^{\mathrm{ee}}(11')} \right|_{U=0} = \frac{1}{2} \left. \frac{\delta \left[ G^{\mathrm{ee}}(33') \left[ v(33';22') - v(3'3;22') \right] \right]}{\delta G^{\mathrm{ee}}(11')} \right|_{U=0} \\ &= \frac{1}{2} \left[ v(11';22') - v(1'1;22') \right] \end{split}$$

### pp GW kernel

$$\begin{split} \Xi^{\text{pp,GW}}(11';22') &= \mathrm{i} \left. \frac{\delta \Sigma_{\text{Bxc}}^{\text{ee,GW}}(22')}{\delta G^{\text{ee}}(11')} \right|_{\mathcal{U}=0} = \frac{1}{2} \left. \frac{\delta \left[ G^{\text{ee}}(33') \left[ W(33';22') - W(3'3;22') \right] \right]}{\delta G^{\text{ee}}(11')} \right|_{\mathcal{U}=0} \\ &= \frac{1}{2} \left[ W(11';22') - W(1'1;22') \right] \end{split}$$

### Eigenvalue problem

$$\begin{pmatrix} \mathbf{C} & \mathbf{B} \\ \mathbf{B}^{\dagger} & \mathbf{D} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$$

$$\begin{split} &C_{ab,cd}^{\text{RPA}} = (\epsilon_a + \epsilon_b)\delta_{ac}\delta_{bd} + \Xi_{ab,cd}^{\text{pp}}(\omega = 0) \\ &B_{ab,ij}^{\text{RPA}} = \Xi_{ab,ij}^{\text{pp}}(\omega = 0) \\ &D_{ij,kl}^{\text{RPA}} = -(\epsilon_i + \epsilon_j)\delta_{ik}\delta_{jl} + \Xi_{ij,kl}^{\text{pp}}(\omega = 0) \end{split}$$

#### **Kernels**

$$\Xi_{ij,kl}^{\mathrm{pp,RPA}} = \ \langle ij||kl\rangle \quad \ \Xi_{ij,kl}^{\mathrm{pp,GW}} = W_{ijkl}(\omega=0) - W_{ijlk}(\omega=0)$$

- Second-order kernel
- T-matrix kernel
- ...

## Error distribution (w.r.t. FCI) for 46 DIP of 23 small molecules in the aug-cc-pVTZ basis set



## Error distribution (w.r.t. FCI) for 46 DIP of 23 small molecules in the aug-cc-pVTZ basis set



## Error distribution (w.r.t. FCI) for 46 DIP of 23 small molecules in the aug-cc-pVTZ basis set



### **Tamm-Dancoff approximation**

$$\begin{pmatrix} \mathbf{C} & \mathbf{B} \\ \mathbf{B}^{\dagger} & \mathbf{D} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \omega \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} \qquad \qquad \rightarrow \qquad \qquad \qquad \mathbf{C}\mathbf{X} = \omega \mathbf{X}$$
 
$$\mathbf{D}\mathbf{Y} = -\omega^{\mathsf{T}}$$

# Dynamical perturbative correction

## Static eigenvalue problem

$$\mathbf{D}^{(0)}\mathbf{Y}_{n}^{(0)} = -\Omega_{n}^{(0)}\mathbf{Y}_{n}^{(0)}$$

## **Partitioning**

$$\mathbf{D}(\omega) = \mathbf{D}^{(0)} + \mathbf{D}^{(1)}(\omega)$$

### **Perturbative correction**

$$\Omega_n^{(1)} = (\mathbf{Y}_n^{(0)})^{\dagger} \cdot \mathbf{D}^{(1)} (-\Omega_n^{(0)}) \cdot \mathbf{Y}_n^{(0)}$$

Sangalli et al. J. Chem. Phys. 158 034115 (2011)

## Error distribution (w.r.t. FCI) for 46 DIP of 23 small molecules in the aug-cc-pVTZ basis set



# Core double ionization potentials

## Error with respect to CVS-FCI in the aug-cc-pCVTZ basis set



# **Conclusion and open questions**

### **Conclusions**

- Simple expression for the kernel of the particle-particle channel
- ppBSE brings quantitative improvements for double ionization
- More details in J. Chem. Phys. 162, 134105 (2025)



# Particle-particle Bethe-Salpeter equation

#### **Derivation**

$$\begin{split} \textit{K}(12;1'2') &= \left. \frac{\delta G^{\text{ee}}(2'1')}{\delta \textit{U}^{\text{hh}}(12)} \right|_{\textit{U}=0} \\ &= \textit{G}(32') \left. \frac{\delta (\textit{G}^{-1})^{\text{ee}}(33')}{\delta \textit{U}^{\text{hh}}(12)} \right|_{\textit{U}=0} \textit{G}(3'1') \\ &= -\textit{G}(32') \left. \frac{\delta \textit{U}^{\text{hh}}(33')}{\delta \textit{U}^{\text{hh}}(12)} \right|_{\textit{U}=0} \textit{G}(3'1') - \textit{G}(32') \left. \frac{\delta \Sigma^{\text{ee}}(33')}{\delta \textit{U}^{\text{hh}}(12)} \right|_{\textit{U}=0} \textit{G}(3'1') \\ &= \textit{K}_0(12;1'2') - \left. \frac{\delta \textit{G}^{\text{ee}}(44')}{\delta \textit{U}^{\text{hh}}(12)} \right|_{\textit{U}=0} \left. \frac{\delta \Sigma^{\text{ee}}(33')}{\delta \textit{G}^{\text{ee}}(44')} \right|_{\textit{U}=0} \textit{G}(3'1') \textit{G}(32') \end{split}$$

### **Gorkov** GW

### **Self-energy**

$$\boldsymbol{\Sigma}(11') = \mathrm{i} \int \mathrm{d}(33') \begin{pmatrix} W(13';31') G^{\mathsf{he}}(33') & -W(13';31') G^{\mathsf{hh}}(33') \\ -W(31';13') G^{\mathsf{ee}}(33') & W(31';13') G^{\mathsf{eh}}(33') \end{pmatrix}$$

### **Screened interaction**



## Error distribution (w.r.t. FCI) for 46 DIP of 23 small molecules in the aug-cc-pVTZ basis set



## Alternative kernels

## Error distribution (w.r.t. FCI) for 46 DIP of 23 small molecules in the aug-cc-pVTZ basis set

