SEARCHING AND SORTING ALGORITHMS 6.0001 LECTURE 12

Kevin Alejandro Hernandez Campillo

Polytechnic University of Victoria

September-December 2022

SEARCH ALGORITHMS

- search algorithm method for finding an item or group of items with specific properties within a collection of items
- collection could be implicit
 - example find square root as a search problem
 - exhaustive enumeration
 - bisection serch
 - Newton-Raphson
- collection could be explicit
 - example is a stident record in a stored collection of data?

SERCHING ALGORITHMS

- linear search
 - brute force search (aka British Museum algorithm)
 - list does not have to be sorted
- bisection search
 - list MUST be sorted to give correct answer
 - saw two different implementations of the algorithm

LINEAR SERCH ON UNSORTED LIST: RECAP

```
def linear_serch(L,e):
   found = False
   for i in range(len(L)):
        if e==L[i]:
        found = True
   return found
```

- must look through all elements to decide it's not there
- O(len(L)) for the loop*O(1) to test if e == L[i]
- ullet overall complexity is O(n)-where n is len(L). Assumes we can retrieve element of list in constant time
- speed up a little by returning True here, but speed up doesn't impact worst case

```
1 if e==L[i]:
2 found = True
```


LINEAR SERCH ON UNSORTED LIST:RECAP

Example code:

```
1 def linear_serch(L,e):
2    found = False
3    for i in range(len(L)):
4        if e==L[i]:
5        found = True
6        return found
7    lista = [4,2,6,7]
8    print(linear_serch(lista,8))
9    print(linear_serch(lista,6))
```

Output:

```
False
True
```


LINEAR SERCH ON **SORTED** LIST:RECAP

```
def search(L,e):
    for i in range(len(L)):
        return True
    if L[i] > e:
        return False
    return False
```

- musto only look until reach a number geater than e
- O(len(L)) for the loop*O(1) to test if e==L[i]
- overall complexity is O(n)-where n is len(L)

LINEAR SERCH ON SORTED LIST:RECAP

Example code:

```
def search(L,e):
    for i in range(len(L)):
        return True

if L[i] > e:
        return False
    return False
    return [salse]

print(linear_serch(lista,6))

print(linear_serch(lista,5))
```

Output:

```
True
False
```


USE BISECTION SERCH: RECAP

- 1 Pick an index, i, that divides list in half
- Ask if L[i]==e
- if not, ask if L[i] is larger or smaller than e
- Depending on answare, sherch left or right half of L for e

A new version of a divide-and conqer algorithm

- Breake into smaller version of problema(smaller list), puls some simple operations
- Answare to smaller version is answer to original problem

BISECTION SERCH IMPLEMENTATION: RECAP

```
def bisect_search2(L,e):
       def bisect_search_helper(L,e,low,high):
           if high == low:
               return L[low] == e
           mid = (low+high)//2
           if L[mid] == e:
               return True
           elif L[mid]>e:
               if low == mid: #nothing left to serach
                   return False
               else:
                   return bisect_search_helper(L,e,low,mid-1)
           else.
14
               return bisect_search_helper(L,e,mid+1,high)
       if len(L) == 0:
16
           return False
       else:
18
           return bisect_search_helper(L.e.0.len(L) -1)
```

COMPLEXITY OF BISECTION SEARCH: RECAP

- bisect_serch2 and its helper
 - O(log n) bisection serch calls
 - reduce size of problem by factor of 2 on each step
 - pass list and indices as parameters
 - list never copied, just re-passed as pointer
 - constant work inside funcion
 - \rightarrow O(log n)

BISECTION SERCH IMPLEMENTATION: RECAP

Example code:

```
def bisect search2(L.e):
       def bisect search helper(L.e.low.high):
           if high == low:
               return L[low] == e
           mid = (low+high)//2
           if L[mid] == e:
               return True
           elif L[mid] > e:
               if low == mid: #nothing left to serach
                   return False
               else:
12
                   return bisect_search_helper(L,e,low,mid-1)
13
           else:
14
               return bisect_search_helper(L.e.mid+1.high)
15
       if len(L) == 0:
16
           return False
       else:
           return bisect_search_helper(L,e,0,len(L) -1)
   lista = [4.2.6.7]
   print(bisect_search2(lista, 6))
   print(bisect search2(lista, 5))
```

Output:

```
True
False
```


SEARCHING A SORTED LIST —n is len(L)

- using linear search, search for an element is O(n)
- using binary search, can search for an element in O(log n)
 - assumes the list is sorted!
- when does it make sense to sort first then search?
 - $SORT + O(log n) < O(n) \rightarrow SORT < O(n) O(log n)$
 - when sorAng is less than O(n)
- NEVER TRUE!
 - to sort a collecEon of n elements must look at each one at least once!

AMORTIZED COST –n is len(L)

- why bother sorting first?
- in some cases, may sort a list once then do many searches
- AMORTIZE cost of the sort over many searches
- SORT + kO(log n) < kO(n)
 - ightarrow for large K, SORT time becomes irrelevant, if cost of sorting is small enough

SORT ALGORITHMS

- Want to efficiently sort a list of entries (typically numbers)
- Will see a range of methods, including one that is quite efficient

MONKEY SORT

- aka bogosort, stupid sort, slowsort, permutaAon sort, shotgun sort
- to sort a deck of cards
 - throw them in the air
 - pick them up
 - are they sorted?
 - repeat if not sorted

COMPLEXITY OF BOGO SORT

```
def bogo_sort(L):
    while not is_sorted(L):
    random.shuffle(L)
```

- best case: O(n) where n is len(L) to check if sorted
- worst case: O(?) it is unbounded if really unlucky

COMPLEXITY OF BOGO SORT

Example code:

```
import random
def is_sorted(L):
    sort = True
    for i in range(0,len(L)-1):
        if L[i] > L(i+1):
        sort = False
    return sort

def bogo_sort(L):
    while not is_sorted(L):
        random.shuffle(L)

return L

lista=[2,1,7,9,10]
print(bogo_sort(lista))
```

Output:

```
[1, 2, 7, 9, 10]
```


BUBBLE SORT

- compare consecutive pairs of elements
- swap elements in pair such that smaller is first
- when reach end of list,start over again
- stop when no more swaps have been made
- largest unsorted element always at end a_er pass, so at most n passes

COMPLEXITY OF BUBBLE SORT

```
def bubble_sort(L):
    swap = False
    while not swap:
    swap = True
    for j in range(1,len(L)):
        if L[j-1] > L[j]:
        swap = False
        temp = L[j]
        L[j] = L[j-1]
        L[j] = temp
```

- inner for loop is for doing the **comparisons**
- outer while loop is for doing multiple passes unti no more swaps
- $O(n^2)$ where n is len(L) to do len(L)1 comparsions and len(L)1 passes

COMPLEXITY OF BUBBLE SORT

Example code:

Output:

```
[1, 3, 4, 5, 7]
```


SELECTION SORT

- first step
 - extract minimum element
 - swap it with element at index 0
- subsequent step
 - in remaining sublist, extract minimum element
 - swap it with the element at index 1
- keep the left portion of the list sorted
 - at i'step, first i elements in list are sorted
 - all other elements are bigger than first i elements

ANALYZING SELECTION SORT

- loop invariant
 - given prefix of list L[0:i] and suffix L[i+1:len(L)], then prefix is sorted and no element
 in prefix is larger than smallest element in suffix
 - base case: prefix empty, suffix whole list invariant true
 - ② induction step: move minimum element from suffix to end of prefix. Since invariant true before move, prefix sorted after append
 - when exit, prefix is entire list, suffix empty, so sorted

COMPLEXITY OF SELECTION SORT

```
def selection_sort(L):
    suffixSt = 0

while suffixSt != len(L):
    for i in range(suffixSt, len(L)):
    if L[i]<L[suffixSt]:
        L[suffixSt], L[i] = L[i], L[suffixSt]

suffixSt +=1</pre>
```

- outer loop executes len(L) times
- inner loop executes len(L) i tomes
- complexity of selection sort is O(n2) where n is len(L)

COMPLEXITY OF SELECTION SORT

Example code:

```
def selection_sort(L):
    suffixSt = 0
    while suffixSt != len(L):
    for i in range(suffixSt, len(L)):
        if L[i] < L[suffixSt]:
            L[suffixSt], L[i] = L[i], L[suffixSt]
    suffixSt +=1
    return L
    lista=[4,2,5,9,3]
    print(selection_sort(lista))</pre>
```

Output:

```
[2, 3, 4, 5, 9]
```


- use a divide-and-conquer approach:
 - 1 if list is of length 0 or 1, already sorted
 - 2 if list has more than one element, split into two lists, and sort each
 - merge sorted sublists
 - 1 look at first element of each, move smaller to end of the result
 - when one list empty, just copy rest of other list

• divide and conquer

• split list in half until have sublists of only 1 element

divide and conquer

merge such that sublists will be sorted after merge

• divide and conquer

- merge sorted sublists
- sublists will bee sorted after merge

• divide and conquer

- merge sorted sublists
- soblists will be sorted after merge

• divide and conquer - done!

sort

EXAMPLE OF MERGING

Left in list 1 [1,5,12,18,19,20] [5,12,18,19,20] [5,12,18,19,20] [5,12,18,19,20] [12,18,19,20] [18,19,20] [18,19,20]	Left in list 2 [2,3,4,17] [2,3,4,17] [3,4,17] [4,17] [17] [17] [17] [17] [17]	Compare 1,2 5,2 5,3 5,4 5,17 12,17 18,17 18,17	Result [] [1] [1,2] [1,2,3] [1,2,3,4] [1,2,3,4,5] [1,2,3,4,5,12] [1,2,3,4,5,12,17] [1,2,3,4,5,12,17,18,19,20]
--	---	--	---

MERGING SUBLISTS STEP

```
def merge(left, right):
     result = []
     i, j = 0.0
     while i < len(left) and j < len(right):
       if left[i] < right[j]:</pre>
         result.append(left[i])
         i += 1
       else:
         result.append(right[i])
         j += 1
     while (i < len(left)):
       result.append(left[i])
       i += 1
14
     while (j < len(right)):
15
       result.append(right[j])
16
       i += 1
     return result
```


MERGING SUBLISTS STEP - CODE EXPLAINED

```
1 if left[i] < right[j]:
2    result.append(left[i])
3    i += 1
4 else:
5    result.append(right[j])
6    j += 1</pre>
```

- left and right sublists are ordered
- move indices for sublists depending on which sublist holds next smallest element

```
1 while (i < len(left)):
2    result.append(left[i])
3    i += 1</pre>
```

when right sublist is empty

```
1 while (j < len(right)):
2    result.append(right[j])
3    j += 1</pre>
```

when left sublist is empty

MERGING SUBLISTS

Example code:

```
merge(left, right):
       result = []
       i.i = 0.0
       while i < len(left) and j < len(right):
           if left[i] < right[i]:
               result.append(left[i])
               i += 1
           else:
               result.append(right[j])
               j += 1
       while (i < len(left)):
           result.append(left[i])
           i += 1
14
       while (j < len(right)):
           result.append(right[i])
           j += 1
       return result
18 lista1=[2,4,7,9]
19 lista2=[3,8,13]
20 merge(lista1, lista2)
```

Output:

```
[2, 3, 4, 7, 8, 9, 13]
```


COMPLEXITY OFMERGING SUBLISTS STEP

- go through two lists, only one pass
- compare only smallest elements in each sublist
- O(len(left) + len(right)) copied elements
- O(len(longer list)) comparisons
- linear in length of the lists

MERGE SORT ALGORITHM – RECURSIVE

```
def merge_sort(L):
    if len(L) < 2:
        return L[:]

else:
    middle = len(L)//2
    left = merge_sort(L[:middle])
    right = merge_sort(L[middle:])
    return merge(left, right)</pre>
```

- divide list successively into halves
- depth-first such that conquer smallest pieces down one branch first before moving to larger pieces

COMPLEXITY OF MERGE SORT

- at first recursion level
 - n/2 elements in each list
 - O(n) + O(n) = O(n) where n is len(L)
- at second recorsion level
 - n/4 elements in each list
 - \bullet two merges \to O(n) where n is len(L)
- each recursion level is O(n) where n is len(L)
- dividing list in half with each recursive call
 - O(log(n)) where n is len(L)
- overall complexity is O(n log(n)) where n is len(L)

SORTING SUMMARY –n is len(L)

- bogo sort
 - randomness, unbonded O()
- bubble sort
 - $O(n^2)$
- selection sort
 - $O(n^2)$
 - guaranteed the first i elements were sorted
- merge sort
 - O(n log(n))
- $O(n \log(n))$ is the fastest a sort can be

WHAT HAVE WE SEEN IN 6.0001?

KEY TOPICS

- represent knowledge with data structures
- iteration and recursion as computational metaphors
- abstraction of procedures and data types
- organize and modularize systems using object classes and methods
- different classes of algorithms, searching and sorAng
- complexity of algorithms

OVERVIEW OF COURSE

- learn computational modes of thinking
- begin to master the art of computational problem solving
- make computers do what you want them to do

Hope we have started you down the path to being able to think and act like a computer scientist

WHAT DO COMPUTER SCIENTISTS DO?

- they think computationally
 - abstractions, algorithms, automated execution
- just like the three r's: reading, 'riting, and 'rithmetic - computational thinking is becoming a fundamental skill that every well-educated person will need

Alan Turing Image in the Public Domain, courtesy of Wikipedia Commons.

Ada Lovelace Image in the Public Domain, courtesy of Wikipedia Commons.

THE THREE A'S OF COMPUTATIONAL THINKING

abstraction

- choosing the right abstractions
- operationg in multiple layers of abstraction simultaneously
- defining the relationships between the abstraction layers

automation

- think in terms of mechanizing our abstractions
- mechanization is possible because we have precise and exacting notations and models; and because there is some "machine" that can interpret our notations

algorithms

- anguage for describing automated processes
- also allows abstaction of details
- language for communicating ideas & processes

ASPECTS OF COMPUTATIONAL THINKING

- how difficult is this problem and how best can I solve it?
 - theoretical computer science gives precise meaning to these and related questions and their answers
- thinking recursively
 - reformulating a seemingly difficult problem into onewhich we know how to solve
 - reduction, embedding, transformation, simulaAon

MIT OpenCourseWare https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python Fall 2016

For information about citing these materials or our Terms of Use, visit:https://ocw.mit.edu/terms

