

Final Report for the Advanced Camera for Surveys (ACS)

Ball Aerospace & Technologies Corp. (BATC)

This page left intentionally blank.

TABLE OF CONTENTS

Sectio	n				Page
	Exec	utive Su	mmary		1
1	Intro	duction .	•••••		8
	1.1	Purpos	se		8
	1.2	Scope			8
2	Appli	icable D	ocuments		10
	2.1	NASA	Documents	5	10
	2.2	Other	Documents		10
3	Verif	ication S	Specification	1	11
	3.1	Introdu	ıction		11
	3.2	Descri	ption		11
		3.2.1	Specifica	tion Tables	12
		3.2.2	STE-47 C	Correlation, STE-50 and ICD 02E/08D Sources	15
		3.2.3	Content a	and Format	15
		3.2.4	Definition	s and Explanations	17
			3.2.4.1	Definitions	17
			3.2.4.2	Explanations	19
		3.2.5	Referenc	ed Documents	19
		3.2.6	Revisions	3	19
4	Requ	uirement	s Verification	on Matrix and Tables	1
5	Adva	anced Camera for Surveys (ACS) Pre-Ship Review			99

Executive Summary

ACS Contract Number
Contract type
Awarded Price
Final negotiated price
Added scope
Cost growth
Original Delivery Schedule
Final Negotiated Delivery Schedule

NAS5-32864 CPIF

> Mar, 2001 Oct, 2001

ACS was launched aboard the Space Shuttle Columbia just before dawn on March 1, 2002. At the time of liftoff, the Hubble Space Telescope (HST) was reflecting the early morning sun as it moved across the sky. After successfully docking with HST, several components were replaced. One of the components was the Advanced Camera for Surveys built by Ball Aerospace & Technologies Corp. (BATC) in Boulder, Colorado. Over the life of the HST contract at BATC hundreds of employees had the pleasure of working on the concept, design, fabrication, assembly and test of ACS. Those employees thank NASA – Goddard Space Flight Center and the science team at Johns Hopkins University (JHU) for the opportunity to participate in building a great science instrument for HST.

After installation in HST, a mini-functional test was performed; a complete functional test was performed later. ACS performed well and has continued performing well since then. One of the greatest rewards for the BATC employees is a satisfied science team. Following is an excerpt from the JHU final report "The foremost promise of ACS was to increase Hubble's capability for surveys in the near infrared by a factor of 10. That promise was kept. "

Delivery Schedule

NASA initially changed the delivery schedule from August 1998 to December 1998 to accommodate changes in their fiscal year budget profile. They changed it a second time to October 1998 when it was determined that it would be in the best interests of the project to perform environmental testing at NASA/GSFC instead of BATC, as had originally been planned. NASA changed the delivery date again to June 2000 to accommodate an additional launch delay and technical issues with the CCD detectors.

Cost Growth

The cost growth includes of added scope and coverrun. The scope increases include the addition of a coronagraphic capability, schedule extensions driven by the customer's fiscal year budget profiles, re-engineering the ACS to accommodate the rising temperatures in the HST's instrument bay, the requirement for additional charged coupled devices focal planes, mission and joint integrated simulation support and two launch delays. The overrun was caused

primarily by technical difficulties experienced by the CCD vendor, the additional efforts required to modify designs and fabricate and test new hardware when the hardware from earlier projects included in the baseline proved to be incompatible with the final ACS requirements, and indirect rate changes.

Design Information

ACS was designed to be an axial replacement instrument for the Hubble Space Telescope and to provide an improvement in discovery efficiency over the current HST camera. ACS discovery efficiency was designed to be a factor of ten improvement – in fact ACS exceeded performance expectations during ground testing and on orbit evaluation. Performance data will be presented in a later section.

The ACS design included three cameras in one package.

- 1. A wide field, high throughput visible camera optimized for 800 nm (WFC)
- 2. A high resolution, critically sampled camera optimized for the blue spectrum (HRC)
- 3. A high throughput far UV camera

Key characteristics are listed below

Features	WFC	HRC	SBC
Maximum throughput	49% @ 600 nm	25% @ 600 nm	6.1% @ 121.6 nm
	36% @ 800 nm	17% @ 800 nm	5.3% @ 130 nm
	24% @ 400 nm	17% @ 400 nm	4.2% @ 140 nm
		11% @ 250 nm	2.9% @ 150 nm
			1.7% @ 160 nm
Field of View	200" x 204"	26"x 29"	26"x 29"

PANEL

Below is a block diagram of the ACS instrument. On the following two pages are diagrams that have one optical channel each.

ACS DETECTORS, OPTICS, MECHANISMS, HEAT PIPES & RADIATORS THERMAL INTERFACE PLATE HEAT PIPES HEAT PIPES THERMAL RADIATOR PANEL CCD ASSY HEATERS -EATERS WFC CCD ASSY E HRC CAL LAMP ASSY OUTER VINDOW WEC/HRC WFC CCD SHUTTER FILTER #1 & #2 WFC CAL SHUTTER LAMP ASSY CAL/CORONAGRAPH MECHANISM SBC-MAMA DETECTOR ASSY TUNGSTEN EUTERIU IM2 IM3 HRC M3 FOLD HRC/SBC MIRROR MECHANISM M1 MECHANISM HEAT PIPES ENCLOSURE BULKHEAD CORONAGRAPH RADIATOR -CORONAGRAPH WFC IMI MECHANISM

This following block diagram shows the light coming in from the lower left, through imaging optics, through two filter wheels, past a shutter mechanism and into the WFC detector assembly. Inside the WFC housing are two 2000 x 4000 detector chips mounted together to make a 4000 x 4000 imaging array. The detector array is cooled with a Thermal Electric Cooler - heat is rejected through heat pipes to the thermal radiator. During the next servicing mission NASA will attach heat pipes to the thermal interface plate so heat will be able to be rejected outside the instrument bay. The end result will be lower operating temperatures within ACS and extended life.

FIELD MASK

DTA PUPIL MASK

ACS DETECTORS, OPTICS, MECHANISMS, HEAT PIPES & RADIATORS (WFC)

Below is the HRC / SBC block diagram. Again, detector heat is carried away from the detectors with heat pipes. A fold mirror directs light to the detector of choice for High Resolution images.

ACS Final Optical Verification at BATC

Below is a picture of ACS as it is lowered into the Hubble Optical Mechanical Simulator (HOMS) at BATC. While in HOMS, ACS was supplied light from the Refractive Aberration Simulator (RAS) to verify proper alignment and optical performance with the spherical aberration of HST's primary mirror.

Discovery Efficiency Calculations

Discovery efficiency was used to determine incentive fee. Estimates were made on the ground by combining detector and optic efficiencies. Three categories were predetermined and the accompanying discovery efficiency factors are below.

Performance requirement	WFC Discovery Efficiency	
Minimum 17200 - 22899		
Exceeds 22900 - 23899	22931 on ground	
Exceptional ≥ 23900	24766 on orbit	Exception al

Performance requirement	HRC Discovery Efficiency	
Minimum 30 - 60		
Exceeds 61 - 133	135 on ground	
Exceptional > 134	139 on orbit	Exceptional

Performance requirement	WFC Efficiency	Discovery	
Minimum 65 - 84			
Exceeds 85 - 109	101 on ground		
Exceptional ≥ 110	101 on orbit		Exceed s

Section 1 Introduction

1.1 Purpose

The purpose of this document, which defines the Requirements Verification Specification, is to provide a comprehensive verification summary of all the performance and design requirements for the Advanced Camera for Surveys (ACS) instrument as identified in Section 4.0 of the Contract End Item Specification (CEI) - Part II, STE-50. This document cross references the requirements of the CEI and ICD Specifications with the specific tests and qualification procedures cited in this document, under "Procedure Number," "Type" and "Method," Planned Verification section, Table 1; or in some cases listed, as identified the ACS System Engineering Reports (SER), as needed to demonstrate complete performance verification of the ACS instrument.

1.2 Scope

This document describes the analyses and tests that are performed to verify the performance of the ACS instrument. The performance requirements are defined by the customer contract end item specification and the HST interface control documents. Thus, this document is organized in a fashion that addresses each of these requirements specifically. While the verification of some instrument performance requirements involve development and subsystem level testing, this document presents the highest level of instrument assembly where verification testing has been planned for each requirement.

Presented in this document is a table that contains requirement information and verification methods for each requirement. This table is derived from the CEI Specification, from the Space Telescope (ST) Interface Control Document (ICD), Level II, Axial Science Instrument (SI) to the Optical Telescope Assembly (OTA) ST-ICD-02E, and the Space Telescope Scientific Instruments to Scientific Instruments Control and Data Handling System Interface Control Document (SI to SI C&DH ICD) ST-ICD-08D.

Where possible, tables in the source documents used to define requirements are internally referenced within the Requirements Verification Matrix by the nomenclature "Incl. as RVS Table [number]". These tables have been reproduced in comparable form in this document as subsequent worksheets following the Requirements Verification Matrix. In some cases where text is organized in table format in the source ICD document, but is presented without use of a specific table number, equivalent tables have been included in appended worksheets and referenced by the nomenclature "Incl. As RVS Table [letter]" to separately identify this class of data entry. Correspondingly, tables cited externally and listed as contained in the source documents are called out as "table [number-number]" using the lower case "t" to help distinguish them as source citations rather than indices to tables contained and referenced internally in this document. The primary documents referenced are identified below:

- 1. ACS Performance and Design Requirements: STE-50. CEI Specification Part II. Sections 3.0, 4.0, and 5.0 of this document has been cited in the first part **Table 1** to provide a complete cross reference to all contract performance and design requirements.
- 2. <u>Science Requirements: STE-47. CEI Specification Part I.</u> The requirements in the first part of **Table 1** have been cross referenced to this CEI specification for tracking the prime science requirements. Paragraph 3.2.2 of this document discusses this cross reference (correlation) in further detail.
- 3. <u>Support System Module Requirements: ICD-02E</u>. The requirements in the second part of **Table 1** have been cross referenced to ICD-02E for tracking the support systems module interface requirements.
- 4. SI <u>C&DH System Requirements: ICD-08D</u>. The requirements in the third part of **Table 1** have been cross referenced to ICD-08D for tracking the science instrument command and data handling system requirements.

Section 2 contains a maintained list of all the primary applicable documents that are referenced in this document along with their included revision types and dates.

Section 3 describes how the test and verification documentation is organized. The format and description of verification documentation are presented. The included listing also summarizes the tables within this document.

Section 4 describes the organization, implementation, evaluation, and control aspects of the management arrangement of the test and verification effort. Assignment of responsibilities is reported in this section.

Section 5 contains the tables that specify the plan for the verification of each requirement. These tables will be updated as the verification tests and analyses are completed.

Section 2 Applicable Documents

The following documents referenced in this specification shall apply only to the extent stated in this specification at the point of reference. Documents listed with a revision letter or a date shall be of the exact issue so indicated. BASD documents are subject to change during the life of the ACS contract and thus are under configuration control. Refer to the ACS Configuration Manager to obtain the current revision status of active document issues.

2.1 NASA Documents

STE-47 27 Mar., 1995	Advanced Camera Contract End Item (CEI) Specification (Part 1) SCN 002, 12 Jul., 1996
STE-50 03 Nov., 1996	Advanced Camera Contract End Item (CEI) Specification (Part II) SCN 003, 21 Aug., 1998 CM Rel. 06 Nov., 1998
LMSC/ST-ICD-02E 29 Jun., 1984	ST Level II Interface Control Document, Axial SI to OTA and SSM IRN 119, 05 May, 2000 CM Rel. 05 May, 2000
LMSC/ST-ICD-08D 22 Jul., 1980	ST Interface Control Document, SI to C&DH IRN 44, 30 June, 2000 CM Rel. 23 Aug., 2000

2.2 Other Documents

GEVS-SE	January 1990 and ELV Payloads, Subsystems, and Components
GSFC PPL-20	GSFC Preferred Parts List
NSTS 1700.7B	NSTS Safety Policy and Requirements
KHB 1700.7B	KSC Safety Policy and Requirements
MIL-STD-883C	Test Methods and Procedures for Microelectronics
FED-STD-209D	Clean Room and Work Station Requirements, Controlled
IRN 119	ICD 02E Interim Revision Notice
STR-43	Performance Assurance Requirements (HST)

Section 3 Verification Specification

3.1 Introduction

Presented herein are tables that summarize the performance verification information and data for the ACS instrument. **Table 1**, the Requirement Verification Matrix, contains verification information for the requirements specified in the CEI Specifications - Part I & II and the requirements specified in ST-ICD-02E and 08D. Information and data presented in the tables is intended to be sufficient to indicate complete verification of the performance requirements identified in the cited source documents.

3.2 Description

The format of the table is a basic layout including: (1) a <u>Requirement</u> section that identifies each requirement parameter item from the referenced document, (2) a <u>Planned Verification</u> section that identifies the planned verification method for each requirement, and (3) a <u>Verification Status</u> section that summarizes the verification data and the results for each requirement, along with all referenced documentation of test circumstances and outcomes.

The layout of **Table 1** is suitable for printing on 8.5 x 11 inch or 11 x 17 inch paper in duplex (double-sided) landscape mode. This method will accomplish the printing, beyond the Title page, of the <u>Requirements</u> and <u>Planned Verification</u> on the odd numbered pages, and printing of the <u>Verification Status</u> on the even numbered pages. The column widths of **Table 1** have been set so as to also allow printing using a dual side by side 8.5 by 11 or 11 x 17 inch paper layout. A 4% reduction in size allows printing the row and column indices. As the document is completed, the page count will change and the lines to be found on a particular page may, of course, move to a subsequent page. Changes in the column count or column use will constitute a primary revision delta. As this is a dynamic document, secondary revision letter deltas (addressing content) will also occur.

The listing on the following pages summarizes the tables within this document. The tables listed are in the same sequence as they are referenced in the CEI specifications. Column content of **Table 1** follows the table list cited in Section 3.2.3 of this document.

3.2.1 Specification Tables

	Requirements Verification Specification Table				
	Number and Title	Description			
Table 1	Performance and Design Requirements	References Sections 3.0, 4.0 and 5.0 of CEI specifications and the ICD performance requirements. Restates the performance and design requirements for the ACS instrument.			
Table 2	Encircled Energy Requirements	References Table 4-2 of CEI ¶ 4.2.2. Summarizes image quality with encircled energy requirements.			
Table 3	ACS Wavelengths	References Table 4-3 of CEI ¶ 4.3.1. Summarizes spectral performance with wavelength range.			
Table 4	ACS Spectral Elements	References table 4-4 of CEI ¶ 4.3.3. Summarizes spectral performance by identifying spectral elements.			
Table 5	WFC Throughput and Noise Performance Requirements	References table 4-5 of CEI ¶ 4.4 Summarizes system performance of the WFC channel.			
Table 6	HRC Throughput and Noise Performance Requirements	References table 4-6 of CEI ¶ 4.4 Summarizes system performance of the HRC channel.			
Table 7	SBC Throughput and Noise Performance Requirements	References table 4-7 of CEI ¶ 4.4 Summarizes system performance of the SBC channel.			
Table 8	WFC CCD Detector Performance Requirements	References table 4-8 of CEI ¶ 4.4.1.1. Summarizes WFC CCD detector performance requirements.			
Table 9	HRC CCD Detector Performance Requirements	References table 4-9 of CEI ¶ 4.4.3.1. Summarizes HRC CCD detector performance requirements.			
Table 10	SBC MAMA Detector Performance Requirements	References table 4-10 of CEI ¶ 4.4.5.1. Summarizes SBC MAMA detector performance requirements.			
Table 11	Guide Block and Guide Strip Build Specification	References Section 4.3, Mechanical Interfaces, guide rails & guide blocks, ICD-02E ¶ 4.3.3, HDOS dwg. nrs.			
Table 12	Guide Block and Guide Strip Mounting Detail	References Section 4.3, Mechanical Interfaces, guide rails & guide blocks, ICD-02E ¶4.3.3, mounting details.			
Table 13	Load Factors (g's) Axial Scientific Instruments	References table 4.5-1, ICD-02E ¶ 4.5.1.4. Tabulates Load Factors (g's) for Axial Science Instruments.			
Table 14	Maximum Internal Ionizing Particle Radiation, Aft Shroud	Reference table 4.6-1, ICD-02E ¶ 4.6.4. Tabulates particle ionizing radiation fluences and energies.			

	Requirements Verification Specification Table				
	Number and Title	Description			
Table 15	Power Connector "A" Pin Assignments	References table 4.11-1, ICD-02E ¶ 4.11.2. Tabulates power connector pin assignments for Connector "A".			
Table 16	Power Connector "B" Pin Assignments	References table 4.11-2, ICD-02E ¶ 4.11.2. Tabulates power connector pin assignments for Connector "B".			
Table 17	Signal/Command Connector "A" Pin Assignments	References table 4.11-3, ICD-02E ¶ 4.11.2. Tabulates sig/cmd connector pin assignments for Connector "A".			
Table 18	Signal/Command Connector "B" Pin Assignments	References table 4.11-4, ICD-02E, ¶ 4.11.2. Tabulates sig/cmd connector pin assignments for Connector "B".			
Table 19	RM Random Vibration Tests	References table 3-2, ICD-08D, ¶ 3.5.2. Tabulates RM random vibration test frequencies and g/db levels.			
Table 20	RM Environmental Conditions	References table 3-3, ICD-08D, ¶ 3.6.1. Tabulates RM environmental test temperatures for operating modes.			
Table 21	Magnetic Field Strength Limits	References table 3-4, ICD-08D, ¶ 3.6.6.1. Tabulates the generated magnetic field strength limits for ST SIs.			
Table 22	EMI/EMC Testing	References table 3-5, ICD-08D, ¶ 3.6.6.2. Tabulates EMI/EMC generation & susceptibility limits of ST SIs.			
Table 23	RM Power Dissipation in Watts	References table 3-6, ICD-08D, ¶ 3.7.1. Tabulates power dissipation limits in watts for ST SI op. modes.			
Table 24	Telemetry Data Rates	References table 3-9, ICD-08D, ¶ 3.9.1. Tabulates engineering and science telemetry channel data rates.			
Table 25	Telemetry Channel Assignments	References table 3-11, ICD-08D, ¶ 3.9.2.4. Tabulates telemetry channel assignments /telemetry multiplexer.			
Table 26	Cables, Interface Connectors, Controlling ICD	References table 3-16, ICD-08D, ¶ 3.12. This table summarizes the contractors responsible for specifying and furnishing the various cables and connectors, along with the controlling ICDs.			
Table 27	RM ST Harness Connectors	References table 3-17, ICD-08D, ¶ 3.12.2. Tabulates RM electrical connector types and part numbers.			

Requirements Verification Specification Table				
	Number and Title	Description		
Table 28	RM Interface Connectors	References table 3-18, ICD-08D, ¶ 3.12.3. Designates RM interface connector functional assignments.		
Table A	Origins of the Four Axial SI coordinate system Mount Points "A"	Refs. text of ICD-02E ¶ 4.3.7.1. Tabulates coordinate origin values from "F" dimenision to V1, V2, and V3.		
Table B	Orientations of Centerlines of the A and C Mount Points	Refs. text of ICD-02E ¶ 4.3.7.1. Tabulates angular orientation for SI positions 1, 2, 3, and 4.		
Table C	Exit Pupil Variation	Refs. text of ICD-02E¶ 4.4.2. Tabulates In-Orbit position and stability of the OTA exit pupil as per the entrance and exit pupil location station numbers.		
Table D	SI/OTA Latch Flexibility	Refs. text of ICD-02E ¶ 4.5.2.1. Tabulates stiffness of mount points A, B, and C (tension, compression, etc.).		
Table E	Attachment Fittings, Maximum Effective Thermal Conductance	Refs. text of ICD-02E ¶ 4.6.1.1.1. Tabulates maximum effective thermal conductance, fitting points A, B, & C.		
Table F	Thermal Power Mode Definitions	Refs. text of ICD-02E ¶ 4.6.1.1.4.1. Specifies Operational and Hold mode temperature limit and acquisition rate requirements.		
Table G	Thermal Power Mode Constraints	Refs text of ICD-02E ¶ 4.6.1.1.4.2. Specifies Operational and Hold mode power dissipation limit and temporal constraints.		
Table I	WFC CCD Backup Performance	Refs table 4-5 of CEI ¶ 4.4 Flight Backup detectors.		
Table II	HRC CCD Backup Performance	Refs table 4-6 of CEI ¶ 4.4 Flight Backup detectors.		
Table III	WFC Backup Throughput	Refs table 4-8 of CEI ¶ 4.4.1.1. Flight Backup detectors.		
Table IV	HRC Backup Throughput	Refs table 4-9 of CEI ¶ 4.4.3.1. Flight Backup detectors.		

3.2.2 STE-47 Correlation, STE-50 and ICD 02E/08D Sources

Certain Requirements Within the CEI Spec. Part II are derived from the level I CEI Spec., STE-47, that identifies the science performance requirements. With the column labeled "Source" and the identifier "-47" within this column, each table herein identifies each CEI Spec. - Part II requirement that is either directly stated in or directly derived from STE-47. All science requirements from Sections 3.0, 4.0 and 5.0 of STE-47 have been identified by the CEI Spec. - Part II and are noted (-47) within these tables. Requirements from the original STE-50 source are noted (CEI) and updated requirements from STE-50 will be noted as (-50). Requirements sourced in ST-ICD-02E are noted as (02E) and requirements

sourced in ST-ICD-08D are noted as (08D). Requirements sourced in STE-47, correlated to STE-50 (in the manner described above) and updated in STE-50 will be noted as (50+).

3.2.3 Content and Format

With only slight variations from one table to another, the format of each table is similar with the basic layout including: (1) a Requirement section that identifies each requirement from the CEI Spec. - Part I and Part II (cross-referenced to STE-47) or the ICD Spec.: ST-ICD-02E and ST-ICD-08D whichever is applicable, (2) a Planned Verification section that identifies the planned verification method(s) for each requirement listed, and (3) a Verification Status section that summarizes the results, the verification data, plus the type and location of the data and any detailed system engineering report (SER) for each requirement.

The layout of the sheets for each requirements matrix page is identical. The printed sheets come in pairs so that one page contains both the Requirement and the Planned Verification sections and the other page contains the Verification Status section for the same requirements identified on the first page, with corresponding row alignment. The matrix can be printed in either of two landscape mode formats, US Letter Size or 11 by 17 ledger size, or in portrait mode format US Letter Size, one panel per page non-duplex. The layout of the reference tables is suitable for printing in landscape mode with 8.5 x 11 inch U.S. letter size or 11 by 14 inch U.S. legal size paper. (An adjustment of the Excel worksheet percent size specification may be necessary on a table-by-table basis).

Specific information contained within the format of the Requirements Verification Matrix, Table 1, includes the subsequently tabulated columns, organized by Requirement, Planned Verification, and Verification Status sections as described above, and presented in the tables displayed on this and the following page:

	Requirements				
Column	Label	Information			
Α	Paragraph Number	The paragraph number from the referenced requirements document.			
В	Parameter	A short identifier for the requirement being specified by the requirements document. Where found, "Note: [Num] refers to the appended list of test objects pertinent to this category [as per the hyperlink, or attached printed list].			
С	Source	CEI = Contract End Item			
		02E = Interface Control Document ST-ICD-02E			
		08D = Interface Control Document ST-ICD-08D			
		-50 = Requirements in the original STE-50			
		50+ = Requirements in the updated STE-50			
		-47 = STE-47, Science Requirements			
		I = Information (concerning verification, and not a line item requirement. May also be IC, I2, or I8, by section.).			
		Gray cell indicates row is appended verification data			
D	Specification	The statement of the specific requirement from the referenced document.			
Е	Level	The level at which the verification is planned to occur			
F	Туре	This indicates the verification type:			
		E = Engineering Development (major or minor)			
		P = Protoflight			
		Q = Qualification			
		A = Acceptance			
		C = Commonality with STIS			
G	Method	This indicates the verification method:			
		a = analysis			
		d = design/demonstration			
		i = inspection			
		t = test			
Н	Verification Description	Short description of the planned verification.			
<u> </u>	Procedure Number	The specific procedure for the verification.			
J	Completion Date	The date of completion of the verification.			
K	Results	Summarizes the verification results:			
		P = passed			
		F = failed			
		W = Waiver (look for citation in column N)			
L	Performance	A summary narrative of the results.			
М	Comments, Notes	Any appropriate comments.			
	, and Document Titles	, The Title of significant Verification Documentation, i.e., SER.			

	Requirements				
Column	Label	Information			
N	Site	Identifies a test site/action code in accordance with the following list:			
		BWT = Ball WFC Test, BHT = Ball HRC Test,			
		BC = Ball Calibration, BPS = Ball Pre-Ship review,			
		Bal = Ball Alignment, GAI = GSFC Alignment,			
		GTV = GSFC Thermal Vac, GTB = GSFC Thermal Bal,			
		GAC = GSFC Acoustic, GCS = Calibration w/ STUFF,			
		GC = GSFC Calibration (ambient), GE = GSFC EMI,			
		GM = GSFC Metrology, GMP = GSFC Mass Properties,			
		GAR = GSFC Acceptance Review.			
		[As Implemented Aug 12, 1999.]			
0	Location and Type of Data (SER, Cert Log, etc.)	Location where details of the verification and the data results may be located, and Type of Verification Data.			
Р	Object	This column is used for arbitrary single character Data Auto-Filtering tags, thus the data included here is not a part of the requirements verification, and is only a tool.			
Q	Uses "." for open items, or "," for open item or waiver header lines.	This column is used for arbitrary single character Data Auto-Filtering tags, thus the data included here is not a part of the requirements verification, and is only a tool.			

Note: Verification for Engineering Development: <u>E</u> or E references either one or the other of class <u>major</u> = new technology (~TQM), minor = design with previous heritage but testable changes (Proc #)

3.2.4 Definitions and Explanations

3.2.4.1 Definitions

Certain nomenclature used in the verification tables must be defined to ensure the clear understanding of the information presented herein.

- 1. "Level" (Column E): This is the highest level at which a particular requirement will be fully verified. This does not negate any functional or verification testing performed at lower levels of assembly to characterize or determine performance. However, only the highest level of verification is of interest within this document.
- 2. "Type" (Column F): This is the type of verification procedure with the following definitions and explanations:
 - a. <u>Commonality</u> with other HST instruments is an ACS-specific implementation of an HST SI design. This design type relies on previously verified HST SI design features rather than design features adapted from hardware implemented for other previously flown and previously known spacecraft systems. The level of adaptation is thus typically less than that which accompanies minor development at the macroscopic level (bearings,

fasteners, materials, and small sub-subassembly elements are usually exactly as they were in a previous HST SI, i.e., built-to-print). The envelope, relative location of subassembly parts, and environmental capabilities may be different from other HST SIs using this design. However, the units in question are systems that would be expected to pass unamended HST SI test procedures, and are expected to be verified using existing HST SI test procedures.

- 3. "Method" (Column G): This is the planned method of verification with the following definitions and explanations:
 - a. Analysis is the rigorous mathematical (or other) derivation or explanation to demonstrate compliance with a requirement.
 - b. Design/Demonstration is the non-rigorous design representation and/or testing or operation of some mechanism, function, or operation of the instrument. This type of verification will be "informal" in that only the presentation of previously verified successful design documentation and/or observation of an event, operation, etc. would be sufficient to demonstrate compliance with the requirement.
 - In addition, "demonstration" is used when the verification of one requirement references the verification of another. In this case the "formal" verification of the latter requirement "demonstrates" the verification of the former requirement.
 - c. Inspection is the verification by visual observation or measurement of something. This may include the inspection of dimensions by metrology, or the inspection of associated drawings (or documents) to verify functionality, configuration, design specifics, etc.
 - d. Test is the rigorous verification demonstrating compliance. This involves limit testing, environmental testing, and multiple testing, etc. that will fully test and characterize a particular capability.

3.2.4.2 Explanations

The tables contained in this specification are interrelated in the following manner:

As previously identified, **Table 1** states all the text of Sections 3.0, 4.0 and 5.0 of the CEI Spec-Part I (where applicable), and Part II. Whenever the CEI Spec. references and presents a table of additional requirements, **Table 1** "points" to those requirements residing in latter tables, **Tables 2-10**. These tables have a three digit decimal extension to delineate sequential table items. This scheme maintains a connection of all the information in the latter table with the main requirement information in **Table 1**.

An example is the following. In Table 1, a requirement under Image Quality, 4.2.2 references Encircled Energy that is to be found as depicted in table 4-2. In that table are items that describe the ACS image quality. This requirement "points" to Table 2 that contains the details of those requirements, planned verification methods, and verification results. Similarly, when examining Table 2, there is a cross reference to Table 1, and to paragraph 4.2.2-001 in order to identify the requirement as item 1 embedded within paragraph 4.2.2 of the STE-50 reference.

3.2.5 Referenced Documents

The "Procedure Number" reference (column I), and "Location and Type of Data" reference (column N), identify documents containing verification plans or status information. These documents use the 3-letter convention for milestones, or, alternatively, identify a BATC or GSFC procedure directly by number (i.e., P538xxx or P-442-15xx).

3.2.6 Revisions

In the matrix presented here, revision levels are not identified on a line-by-line basis; instead, bold borders will identify revised requirement items. The revision-tracking scheme will be a linear list keyed by paragraph and item number, since the row and column indices are subject to change over time. The addition of Verification References is continual and is thus not tracked, except by text differencing techniques on sequential editions.

Section 4

Requirements Verification Matrix and Tables

				Verifi	Verification Status
	Requ	Requirement	nent		
Paragraph Number	Parameter	Source			Comments, Notes, and Document Titles
	The ACS Requirements Verification Specification: Requirements Verification Matrix & Tables	TSST	This workbook is Section 5 of the Requirements Verification Specification (RVS). The RVS includes the Introduction, the Requirements Verification Matrix (this worksheet), plus all other worksheets in this workbook (the Reference Tables).	Objectives, a and b, generation of a streamlined ACS Performance Verification Plan (PVP) and the format of its linear Performance Verification Matrix (PVM) are complete. Objective c, verification tracking is ongoing.	See: ACS Pre-environmental Review, 28-5ep-1938. See: WOA Copies released from GSFC to BATC, inventory.
	CEI: STE-50 SCN-003 21-Aug-1998 (CM REL 06-Nov-1998)	1 8	See: ACS Pre-environmental Review, 28-Sep-1998.	PER Delia: Management & Performance Summary	Fulfillment of deliverables; SERs written for the ACS porformance verification,
3	Н	Œ			
3.1	General Description	CEI			
3.1	Scientific Instrument	I f	The AC is one of five scientific instruments (SIs) which will form part of the Focal Plane Assembly (FPA). See ACS Pre-environmental Review, 28-Sep-1998.		
3.1	Services, OTA and SSM	- 2 8	The Optical Telescope Assembly (OTA) and Support Systems Modute (SSM) will provide the AC with incoming light, target acquisition and.		
3.1	Services, S1 C&DH	› <u>.</u>	via the SI Control & Data Handling (C&DH) System, pointing control, data handling, communications, electrical power, and other services that are common to all SIs.		
;	Mission Requirements	CEI			Camp
7.6		Ť	The AC shall be designed, built, and tested for launch, orbital	Based upon commonality with GHRS, COSTAR, STIS, and	The ACS design and build methodology is adapted from the STIS as
3.2	Space application	CEI	replacement, return to earth in the space shuttle, and operation in a nominal circular earth orbit at orbital altitudes from 398	NICMOS instruments built and delivered by BASD. These instruments either currently are or have been in the past	heritage-based quality, such that the build and test shall produce an instrument rated for launch, orbital, replacement, and return to earth
			km to 593 km at a 28.8° inclination.	successinily operational aboard rist. Critics has been successfully returned to earth.	CITY LOUISING.
2.2		CEI		Initial planning and definition was completed (CDR).	Ref: Advanced Camera System Technical Summary
,			The AC shall be designed to be removed or installed into any	Based upon commonality with GHRS, COSTAR, STIS, and	The ACS design and build methodology is adapted from the VIIS as been assed anality such that the build and test shall produce an
3.2	Installation	CELL	axial bay of HST or the Science Instrument Protective Enclosure (SIPE) in orbit by a suited astronaut performing Extravehicular Activity (EVA), or by technicians working in an		includer lossed quality, such that the only have been proceed instrument rated for launch, orbital replacement, and return to earth environments.
			one g environment.	successfully returned to earth.	Ref. Advanced Camera System Technical Summary
3.2		_	THE STATE OF THE S	initial planting and octiminal was completed (CCA).	
3.2	Launch	-	The SI will be launched in the SIPE.		
3.2	Bay assignment	-	The baseline bay assignment for the AC shall be axial bay 3, replacing the Faint Object Camera (FOC).	Local Cinconnection of the Control o	Course transmoderation loads are no america than lanach loads. I smach load
3.2	Package and loads	E	The total SI shall consist of one integral package designed to Load analysis survive handling and transportation loads as defined in ST-ICD-testing results. 02.	includes structural analysis and dynamic toad	analysis is in the structural SERs.
,	Desfermence Dequirements	CEI			0
4 4			The AC performance requirements shall be met after a suitable commissioning period, which shall not exceed servicing mission orbital verification (SMOV, estimated at six months),		
	Freus and alignment settings	-	during which focus and alignment settings and on-orbit		
,		į	operating parameters snan to octonimos.		0
4.1	ption		The AC shall provide three ontical channels.	Three channels have been implemented.	Ref: ACS Optical Alignment Plan [Replaces OAT-002]
4.1	Optical channels	2	One shall be a large field of view (FOV), wide field channel	The WFC field of view was determine by analysis to be 40618 Ref: Calculated WFC Field of View	Ref: Calculated WFC Field of View
4.1	Wide Field Channel (WFC)	CEI	(WFC) optimized for performance in the I-band and	square arc seconds.	

	20	Dogwinsons	ţ.) in o	Varification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.1	Wavelengths	CEI	Critically sampled at wavelengths greater than 1000 nm.	Verified by analysis of optical design; see System SER.	Ref: Advanced Camera System Technical Summary Ref: Epitaxial Thickness Considerations, WFC CCD Ref: Full Well Capacity Considerations, WFC CCD Ref: CCD MTF, 15 & 21 µ pixels[comp. MTF data] Ref: CCD MTF VS Wavelength @20 & 40µ EPI values
4.1	WFC detector	CEI		ns.	Ref: CTE considerations for the WFC CCD advocates a 4K serial register, split in the middle
4.1	High Resolu ion Channel (HRC)	CEI	The second shall be a smaller FOV, high resolution channel (HRC) that is critically sampled at wavelengths greater than 500 nm.	Confirmation through measurement and calculation.	Ref: Calculated HRC Field of View Ref: CCD MTF, 15 & 21µ pixels[comparative MTF data] Ref: CCD MTF VS Wavelength @20 and 40µ EPI values
4.1	HRC coronagraph capability	-50	The HRC shall include a coronagraphic capability.	though	Ref: ACS Critical Design Review, 02-Apr-96. Ref: ACS Coronagnaph Alignment Analysis See: ACS Pre-environmental Review, 28-Sep-98.
4.1	HRC detector	CEI	The HRC detector shall be a 1024 x 1024 charged coupled device (CCD).		Ref: ACS Critical Design Review, 02-Apr-96. Ref: CCD Procurement Plan - Source Requirements
4.1	Solar Blind Channel (SBC)	СЕІ	vare	ssfully	Ref: Final Results of the ACS SBC MAMA with STF7
4.1	SBC detector	CEI	CC detector shall be a 1024 x 1024 photon counting	DQE Measurements at Operational Angle of Incidence Ref: [Notes that the 9% relative loss is tolerable]	Ref: ACS Critical Design Review, 02-Apr-96. Ref: MAMA DQE Measurements at Operational Angle of Incidence Ref: Final Results of the ACS SBC MAMA with STF7
4.2	Optical Performance	CEI			
4.2	HST input		AC shall be met when provided ordance with the optical	The Source Assembly, together with the Calibration Subsystems, have measured and verified the expected optical performance, as tested in RAS/HOMS.	Ref. RAS Source Plate Offsets for HRC Phase Retrieval Ref. Functional Test of the 538100 Src Assy, HRC Ref. Calibration Subsystem Functional Test Procedure Ref. CAL Subsystem Environmental Test Procedure
4.2	HST aberration	CEI	Correction for HST aberration, as presented to the AC by the OTA, shall be contained within the AC.	Design of WFC & HRC optical paths demonstrates compliance. Compliance is also seen in the commonality with COSTAR and STIS.	Ref: ACS Critical Design Review, 02-Apr-96. Ref: Advanced Camera System Technical Summary Design verified as having commonality with COSTAR and STIS. Xref: #@Commonality with STIS*
4.2.1	Optical Design Parameters	CEI			
4.2.1.1	Optical Spred WFC speed	9 9	The nominal optical speed of the AC channels shall be 1726 for the WPC,	Code V calculated value: 1725 - 1727	Ref: Advanced Camera Technical Summary Ref: Code-V wavefront error data used in ACS Ref: ACS Throughout Model. Radiometric Model
4.2.1.1	HRC speed	CEI	1770 for the HRC, and	Code V calculated value: 170 - 172	Specified values ("nominal") are first order calculations of camera performance and are not indicators of absolute performance.
4.2.1.1	SBC speed	CEI	ITO for the SBC.	Code V calculared value: 1770 - 1772	Performance values are based upon Code V ray trace calculations. Values vary over the FOV due to geometric distortion inherent in the system but demonstrate compliance with the "nominal" values specificied.
4.2.1.2	Pixel Spacing	CEI		П	
4.2.1.2	WFC spacing	CEI	The nominal pixel center-to-center spacing of the AC channels shall be 0.050 arcseconds for the WFC,	Pixel widths are determined from first order calculations documented in SER SYS-004 (3/28/95). Center to center pixel spacing and angular response verified by specified calculation and measurement. SBC resolution satisfactory, according to science team.	SER SYS-004: Advanced Camera System Technical Summary (3/58/95) [requirements reference] References below are detector procurement drawings:

Paragraph			4-0-0	Varifi	Varification Status
Paragraph	ne.	Hednirement	ment		לפונסו כומופי
Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.2.1.2	HRC spacing	CEI	0.026 arcseconds for the HRC, and	Channel SYS Calculations Measurement IEOV/arcsec) Pixel(ta) Pixel(ta) WPC 0.0513 15 (±0.25) HRC 0.0254 21 21 (±0.5)	535110, Rev. A: Detector, WPC, Charged Coupled Device (CID) 534991, Rev: Detector, HRC Charged Coupled Device (SCD)
4.2.1.2		CEI (0.030 arcseconds for the SBC.	SBC 0.0303 25	
4.2.1.3		↦			
4,21.3	WPC FOV	CEI 6	The angular fields of view projected onto the sky for the AC channels shall be / 200 x 200 areseconds for WFC,	Rqmt: / 200 x 200 arcsec Calc: 202.3 x 199.5 arcsec	Ref: SER OFT-053: Calculated WFC Field of View [Specification is based upon first order calculations. Calculated performance includes geometric distortion; these values are acceptable and demonstrate compliance with the requirements.]
4.2.1.3	HRC FOV	CEI	/ 25 x 25 arcseconds for the HRC, and	Rqmt: / 25 x 25 arcsec Calc: 25.65 x 28.9 arcsec	Ref: SER OPT-054: Calculated HRC and SBC Field of View [Considerations as specified above for WFC]
4.2.1.3	SBC FOV	CEI	/ 25 x 25 arcseconds for the SBC.	Rqmt: / 25 x 25 arcsec Cale: 25.65 x 28.9 arcsec	Ref: SER OPT-054: Calculated HRC and SBC Field of View (Considerations as specified above for WFC)
4.2.1.3	Orientation	CEI P	Two edges of the fields of view shall be oriented in a direction parallel to the V3 axis for the AC in Bay 3.	illation	Ref: WFC Detector Installation (535300) & Alignment (538325) Ref: HRC Detector Installation (535088) & Alignment (538318) Ref: SBC Detector Installation (538128) & Alignment (538322)
4.2.1.3		CEI P	Two edges of the fields of view shall be oriented in a direction Detector orientation relative to optical system verified, parallel to the V3 axis for the AC in Bay 3.	Detector orientation relative to optical system verified.	Ref: Advanced Camera system image coordinates and CCD orientation Ref: Orientation of STIS CCD package in AC for ACS HRC CCD
4.2.1.3	Coronagraphic field mask(s)	-50	The coronagraphic field mask(s) may lie within the HRC FOV, each obscuring a portion thereof.	Coronagraphic field masks and their transferred occulting zones verified via cited procedures.	Ref: ACS Coronagraph Alignment Analysis 540556, Assy - Caldoor/Coronagraph Mechanism 537968, Installation, Caldoor/Coronagraph Mechanism
4.2.1.4	Wavefront Error	CEI		П	
4.2.1.4		CEI	The Root Mean Square (RMS) wavefront error introduced by the combination of the HST optics and the AC WFC, HRC, or SBC optical systems in filter mode shall be less than 0.085 waves with a goal of 0.075 waves at 633 nm.	Preliminary Results: ACS Optical components evaluated, system performance analyzed as per cited procedures.	Ref: Code-V wavefront error data used in ACS Ref: Updated Code-V File Names, Chief Ray Intercepts and Corresponding IGES Ref: Interferometric Measurements on Flight Optics
4.2.1.4		CEI		Awating complete performance report. Design, performance of optical elements is satisfactory.	Ref. 1HU Physics & Astronomy web site. See: ACS Pre-environmental Review, 28-Sep-1998. Ref: ACS Polarizer CODE-V Predicted Performance
4.2.1.4	OTA collimation	-	These values assume that the OTA is perfectly collimated and do not include HST line-of-sight jitter.		
4.2.1.4	Applicability	CEI [1]	hin	Calculated field of view used in conjunction with edge-of-field radiometric and photometric analysis to verify extent of effective field of view.	Measurements of "RMS Error" requirement above, plus: Ref: Calculated WFC Field of View Ref: Calculated HRC and SBC Field of View See: ACS Pre-environmental Review, 28-Sep-1998.
4.2.1.5	Geometric Distortion	CEI a	The magnitude and stability of the AC geometric distortion shall be such that the reliative positions of stellar images shall be determinable to within 0.2 pixel over the entire image by application of a correction function.	Results from the SeSI indicate geometric distortion to be a cubic polynomial to the data. Distortion results are: Detector Range for fit (pixel) HRC 0.13 - 0.29 WFCI 0.17 - 0.34 WFCZ 0.15 - 0.47	Ref. RAS Field Distortion Source Plate Design Requirements and Concepts Concepts Ref. RAS Source Plate Redesign Ref. RAS Source Plate Offsets for HRC Phase Retrieval
4.2.1.6	Image Jitter	CEI			
4.2.1.6	AC image jitter	CEI	The image jitter introduced by the AC itself shall be less than 3 milliareseconds (1 sigma) within the WFC and HRC for any integration interval up to 1300 seconds.		In the SES TV chamber at GSFC, using simulated orbital Ref. File memo, dated 18 Nov 2000, "Results of Optical Stability Test in cycles, image degradation due to thermal gradient excitation is the ACS-ASCS TV test, 29 Oct 2000." reported. Short term (< 1300 sec) as 0.05 pixels rms, or < 0.12 Ref. ACS Image displacements due to thermal induced distortions pixels (3 milliareseconds). See: ACS Pre-environmental Review, 28-Sep-1998. Ref also: Prior data.

		ŀ		77	0
	Re	Requirement	ment	Veri	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.2.1.6	Image drift goal	CEI	As a goal, the image drift within the AC for the WFC and HRC shall be less than 10 milliarcseconds peak-to-peak over two orbits.	In the SES TV chamber at GSFC, using simulated orbital cycles, stability was determined as 0.25 pixels, well within the specification of 0.4 pixels (10 milliarcseconds), using measurements of the position of the HRC coronagraphic spot.	Ref: File memo, dated 18 Nov 2000, "Results of Optical Stability Test in the ACS-ASCS TV test, 29 Oct 2000." Ref: ACS Image displacements due to thermal induced distortions Ref: Stability Specifications, Corrector, Cold Mirrors
4.2.1.7	Polarization Sensitivity	I	polarization, assuming ecified in Table 4-1. (See the		
4.2.1.7	WFC	CEI	cd polarization: .000 nm (1 % goal)	Performance data not fully analyzed yet. However, comments from Science Team indicate there is no concern about instrument's ability to meet the performance requirement even though the final analysis and the reported results are not completed.	Ref: ACS Polarization Analysis and Addendum See: ACS Pre-environmental Review, 28-Sep-1998.
4.2.1.7	нкс	CEI	Maximum induced polarization: 6.5 % over 220 - 1000 nm (5 % goal)	Performance data not fully analyzed yet. However, comments from Science Team indicate there is no concern about instrument's ability to meet the performance requirement even though the final analysis and the reported results are not completed.	Ref: ACS Polarization Analysis and Addendum See: ACS Pre-environmental Review, 28-Sep-1998.
4.2.1.7	SBC	I	Maximum induced polarization: n/a		
4.2.1.8	Specification	-	The line of sight (LOS) stability of a target star as imaged by the AC is specified in terms of jitter (short-term stability) and drift (long-term stability) (Section 4.2.1.6).		
4.2.1.8	Short-term stability exposure times	CEI	The short-term stability for the AC shall be such that the specified image quality is achieved for exposure times of 1300 consecutive seconds.	In the SES TV chamber at GSPC, using simulated orbital cycles, image degradation due to thermal gradient excitation is reported. Short term (< 1300 sec) as 0.05 pixels rms, or < 0.12 pixels (3 milliarcseconds). Ref also: Prior data.	Ref: File memo, dated 18 Nov 2000, "Results of Optical Stability Test in the ACS-ASCS TV test, 29 Oct 2000," See: ACS SER: #@OPT-030* requirements analysis.
4.2.1.8	Long-term stability exposure times	CEI	The long-term stability shall allow consecutive exposures to be successfully co-added by exposure registration for elapsed periods of up to 24 hours without re-pointing the telescope or adjusting the AC.	In the SES TV chamber at GSFC, using simulated orbital cycles, stability was determined as 0.25 pixels, well within the specification of 0.4 pixels (10 milliarcseconds), using measurements of the position of the HRC coronagraphic spot.	Ref: File memo, dated 18 Nov 2000, "Results of Optical Stability Test in the ACS-ASCS TV test, 29 Oct 2000." Ref: Final Thermal Design & Analysis Report. Ref: Fixed Optic Ass'y (IM3), EMU Vibration Test Procedure.
4.2.1.9	Flat-Field Repeatability	CEI	The difference between two flat fields taken 60 days apart using the same instrument configuration shall not exceed 2 % irms (1 % goal).	The WFC has been analyzed and passes; the analysis technique is extendable to the HRC, and the WFC reference cited mentions HRC data. The SBC is certified as passed via a waiver.	The WFC has been analyzed and passes; the analysis technique See: ISR ACS 00-10 STScI, "Flats: Preliminary WFC data and plans for fight flats." HRC pending. mentions HRC data. The SBC is certified as passed via a Approved waiver filed for SBC, requirements waived. Ref: Results of efficiency measurements on ACS Spectralon Diffuser from 120 to 280 nm (SBC).
4.2.2	Image Qual ty	CEI	٦		
4.2.2	Encircled Energy: Reference: CEI Table 4-2 (Incl. as RV\$ #@Table 2*)	CEI	The AC image quality requirement for each AC channel in filter mode shall be the encircled energy as presented in Table 4-2.	Verification of Table 2 indicates complete compliance.	See Table 2 for full verification of compliance.
4.2.2	Inclusions (i nage quality)	CEI	The image quality shall be achievable for the range of uncertainty in on-orbit conic constant and shall include all internal AC effects due to thermal, mechanical, and optical contributions, but not those due to spacecraft jitter and guiding errors	Verified determination of image quality as affected by conic constant, in consideration of thermal, mechanical, and optical contributions required an analysis effort. See: ACS Pre-Environmental Review and JHU WEB site, calibration_results_by_item_psf_ima	See: JHU web site, calibration. Ref: Image displacementsthermal induced distortions Ref: Transient Detector Analysis Ref: Pre-Thermal Bal. Temp. Sensor On-Orbit Limits Ref: CCD Operation at -90 deg C
4.2.2		CEI		High quality WFC PS images are shown and analyzed.	See: ACS Pre-Environmental Review, 28-Sep-1998.
4.2.2		CEI		High quality HRC PS images are shown and analyzed.	See: ACS Pre-Environmental Review, 28-Sep-1998.
				24	

		ĺ			
	Re	Requirement	nent	Veri	Vernication Status
Paragraph Number	Parameter	Боитсе	Specification	Performance	Comments, Notes, and Document Titles
4.2.3	Stray Light and Ghost Images	CEL			
4.2.3	Stray light due to optical scatter	CEI	Stray light due to reflected scatter in the optical train from a point source shall result in less than 0.1% of the total incident light within a discrete ghost image.	Testing and analysis indicates that two ghost images on frame 25658 have intensities of -0.4% of a simulated star. These intensities are approximately four (4) times specification of 0.1%.	ACS HRC & WFC Detector Stray Light Ref. ACS RAS/HOMS Optical Performance Test Plan Ref. Spectral Reflactance Measurements on Fastie Finger Black Oxide Straples Ref. Summany of WFC CCD Window Phosphorescence
4.2.3		TES CEI			Ref: Estimate of Ghost Images Due to Internal Reflections in ACS WFC CCD (from Peer Review) See: ACS Pre-environmental Review, 28-Sep-1998. Final test information presented by STScI analysis indicated exceedance.
4.2.4	HRC Coronagraph	ŝ		П	
4.2.4	Coronagraph implementations. Fastic Spot	-50	In addition to the specified camera mode, the HRC shall include two independent coronagraphs: 1) a Fastie spot coronagraph; and	Proce	Ref design drawings: 535100, Fastie Finger, HRC CCD 540578, Coronagraph Obscuration Mask
4.2.4	Aberrated Beam	8	2) an Aberraied Beam Coronagraph.		Ref design drawings: 335100, Fastie Finger, HRC CCD 540578, Coronagraph Obscuration Mask
4.2.4	Coronagraph filter utilization	-50	Each of these shall be uscable with any filter uscable by the HRC.	Passed inspection of occulted field of view for all HRC filter positions. The CalDoor coronagraph/HRC filter wheel optical element interaction complies by design.	Ref drawings: 537920, Optical Bench Assy - ACS 537968, Installation, Caldoor/Coronagraph Mechanism 540556, Assy - Caldoor/Coronagraph Mechanism 540556, Assy - Caldoor/Coronagraph Mechanism 540637, Optical States Assy, Caldoor/Coronagraph Mechanism
		3			יייייייייייייייייייייייייייייייייייייי
4.2.4.1	Fastie Spot Coronagraph Spot field mask mounting	95.	The Fastie spot field mask shall be mounted directly in front of the HRC CCD detector window.		Ref drawing: 535088, Installation, HRC CCD
4,2,4.1	Spot field mask subtended angle	0Ş-	This opaque mask shall be less than or equal to one aresecond in diameter in object space.	Complies by design. One arcsecond (object space) equates to Ref drawing: 535100, Fastie Finger, HRC, CCD 0.03295" diameter mask. Rqmt: 0.03295 " Measured:	Ref drawing: 535100, Fastie Finger, HRC, CCD
4.2.4.1	Spot field mask placement in HRC FOV	-50	It shall lie inside the HRC FOV specified in Section 4.2.1 and may normanently obscure a portion thereof.	Complies by design.	Ref drawing: 535088, Installation, HRC CCD
4.2.4.1	Spot field mask scattered light suppression	-50	Light reflected from this mask shall be suppressed by internal baffles to minimize ghost images from the mask and its supporting structure.	To be checked as per procedures # 537968/538323. RAS-HOMS utilized for system evaluation.	Ref. Estimate of Ghost Images Due to Internal Reflections in ACS WFC CCD (from Peer Review) Ref. Spectral Reflectance Measurements on Fastie Finger Black Oxide Samples
4242	Aberrated Beam Coronagraph	-50			
4.2.4.2	ABC field and pupil masks, description and location	-50	The HRC Aberrated Beam Coronagraph shall consist of commandable, removable field and pupil masks near the OTA circle of least confusion and in front of the pupil formed at the HRC/SBC corrector mirror, respectively.	To be checked as per procedures # 537968/538323. RAS-HOMS utilized for system evaluation.	Ret drawings: 540578. Coronagraph Obscuration Mask 541033. Obscuration Disk Assy, Caldoor/Coronagraph Mechanism 540556. Assy - Caldoor/Coronagraph Mechanism 537968. Installation, Caldoor/Coronagraph Mechanism
4.2.4.2	ABC pupil mask scattered light suppression	-50	The pupil mask shall block scauter from the edges of the OTA primary mirror, secondary mirror, and related support structure	Web page documentation indicates satisfactory performance: See http://adcam.pha.jhu.edu	Ref drawings: 540578, Coronagraph Obscuration Mask 541033, Obscuration Disk Assy, Caldoor/Coronagraph Mechanism 540556, Assy - Caldoor/Coronagraph Mechanism 537968, Installation, Caldoor/Coronagraph Mechanism

	Č	Dogring	÷ •		Valdi andi - Chan.
Paragraph		9011			במניסו כימותם
Number	Parameter	nos		Performance	Comments, Notes, and Document Titles
4.2.4.2	ABC field mask subtended angle	-50	The field mask shall be less than or equal to 2.2 arcseconds in diameter in object space.	Web page documentation indicates satisfactory performance: See http://adcam.pha.jhu.edu	Ref drawings: 540578. Coronagraph Obscuration Mask 541033. Obscuration Disk Assy, Caldoor/Coronagraph Mechanism 541033. Obscuration Disk Assy, Caldoor/Coronagraph Mechanism 537968. Installation, Caldoor/Coronagraph Mechanism
4.2.4.2	ABC field mask placement in HRC FOV	-50	It shall lie inside the HRC FOV specified in Section 4.2.1 and may obscure a portion thereof when deployed.	Image analysis indicates satisfactory performance.	Ref drawings: 540578, Coronagraph Obscuration Mask 541033, Obscuration Disk Assy, Caldoor/Coronagraph Mechanism 540556, Assy - Caldoor/Coronagraph Mechanism 537968, Installation, Caldoor/Coronagraph Mechanism
4.2.4.2	ABC field/parcnt source light rejection ratio	1	As a best effort, the rejection ratio (defined as signal to the parent bright source on a per-pixel basis) should be less than TBD% at a radius of 1.2 arcseconds at a wavelength of 633 nm when the bright source is centered on the field mask.		Ref drawings: 540578, Coronagraph Obscuration Mask 541033, Obscuration Disk Assy, CaldoortCoronagraph Mechanism 540556, Assy - CaldoortCoronagraph Mechanism 537968, Installation, CaldoortCoronagraph Mechanism
4.3	Spectral Performance	CEI			
4.3.1	Wavelength Range	CEI			
4.3.1	Reference: CEI Table 4-3 (Incl. as RVS #@Table 3*)	CEI	The nominal wavelength range of each AC channel shall be as specified in Table 4-3.	The ACS instrument complies with the wavelength bandpass requirements specified in Table 3.	Specifications in STE-50 table 4-3 checked against results listed in STE-50 table 4-4, as annotated herin.
4.3.1	Scientific importance	1	ch e des.		
4.3.2	SBC Spectral Rejection	СЕІ	The SBC detector quantum efficiency shall be less than 0.0001% for wavelengths greater than 400 nm.	Successfully completed final detector characterization	Ref: Final Results of the ACS SBC MAMA with STF7 Ref: MAMA Thermal Vacuum Test As specified in the ACS Pre-Environmental Review.
4.3.3	Spectral components	CEI			
4.3.3	Selectable elements	47	The AC shall contain selectable spectral defining elements distributed across the three channels.	Filter wheel configurations demonstrate the availability of a full complement of filters, polarizers, etc. (38) in a workable combination with clear apertures, etc.	Ref: WFC/HRC Filter Configuration, Geometry & Clear Apertures Ref: Filter Markings [Update to 6/3/96 initial issue] Ref: Table, ACS Optics Physical Characteristics
4.3.3		-47	or more selectable spectral d across the WFC, HRC, and	Initial planning and definition was completed (CDR).	Ref. Advanced Camera System Technical Summary
4.3.3	WFC and HRC spectral selection elements	4	The WFC and HRC shall share 22 or more such components;	See operations manual for description and utilization of available filter combinations.	Ref: Filter Naming Conventions, Rev B. Ref: Operations and Data Management plan for ACS
4.3.3	SBC spectral selection elements	-47	the remaining components shall be part of the SBC.	Verified as per System Engineering Report	SBC Filter Wheel Design Requirements & Config See: ACS Pre-environmental Review, 28-Sep-1998.
4.3.3	WFC and HRC mounting and operation	50+ 2	Mounting and operation of the WPC and HRC elements shall allow in conjunction with one another the use of polarizers, a grism, and spectral limiting filters, and	Filter wheel configurations demonstrate the availability of a full complement of filters, polarizers, etc. (38) in a workable combination with clear apertures, etc.	Ref: WFC/HRC Filter Configuration, Geometry & Clear Apertures Ref: AC Filter Orientation Requirements
4.3.3	Simultaneous observations	-50	shall accommodate simultaneous observations with the WFC sand HRC with mutually complementary elements.	See operations manual for description and utilization of available filter combinations.	Ref: Image Repositioning on WFC & HRC CCDs with filter change and polarizer insertion Ref: STScI Mini-Handbook
4.3.3	Complement of spectral selection elements	4		Publication of component data demonstrates satisfactory performance.	Ref: WFC/HRC Filter Configuration, Geometry & Clear Apertures. See: ACS Pre-environmental Review, 28-Sep-98. Ref: JHU; #@ACS Filters, Master_Table*
4.3.3	Passband and out-of-band rejection	4	Spectral passband and out-of-band rejection shall be selected for best compatibility with stellar photometry standards.	Publication of component data demonstrates satisfactory performance.	Ref: JHU; #@ACS Filters, Master_Table*

		-			Varidication Status
	He	Heduirement	nent		ממוסו לומוס
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.3.3	Spectral characteristics	CEI	The spectral characteristics shall be calibrated, at the component level as a minimum, over each AC channel FOV.	Publication of component data demonstrates satisfactory performance.	Ref: JHU; #@ACS Filters, Master_Table*
4.3.3	Reference: CEI Table 4-4 (Incl. as RVS #@Table 4*)	Œ	The spectral elements are defined in table 4-4.	GSFC science team data indicates satisfactory performance for the bandpass determining components.	GSFC science team data indicates satisfactory performance for Specifications in STE-50 table 4.4, as annotated herin in RVS Table 4. the bandpass determining components.
4.4	Limiting Magnitude and System Performance	СЕІ			
4.4	WFC discovery efficiency	CEI	The WFC discovery efficiency, defined as the product of the total system quantum efficiency and the area of the FOV, shall be greater than ten times that achieved by the wide field channels of the Wide Field Planetary Camera instrument at 800 nm.	ated for 201.58 DE 22212	
4,4	WFC visual magnitude	CEI		the	Results calculated by STScI and provided via e-mail to GSFC & BATC. Ref: ACS Throughput Model, Radiometric Model Ref: Discovery Efficiency Status - WFC, HRC, SBC
4.4	HRC visual magnitude	СЕІ	26.7 V magnitudes for the HRC for 2600 second observations of an F0 star through an F814W spectral filter.	the	Results calculated by STScI and provided via e-mail to GSFC & BATC. Ref: ACS Throughput Model, Radiometric Model Ref: Discovery Efficiency Status - WFC, HRC, SBC
4.4	SBC visual magnitude	СЕІ	The limiting V magnitude observed by the AC at an SNR of 5 shall be equal to or fainter than 27.25 V magnitudes for the SBC for a 2600 second observation of a BOV star through a CaF2 filter.	υ	Results calculated by STScI and provided via e-mail to GSFC & BATC. Ref: ACS Throughput Model, Radiometric Model Ref: Discovery Efficiency Status - WFC, HRC, SBC
4.4	Reference: CEI Table 4-5 (Incl. as RVS #@Table 5*)	-50	The AC throughput and noise performance, excluding the HST OTA, shall be as specified in the Tables 4-5	Throughput of the WFC detector is completely specified in Table 5.	See Table 5 for complete verification status. Data in Tables 5 & 8 comes from the "WPC" page. adcam.pha.jhu.edu/detectors/WPC/]
4.4	Reference: CEI Table 4-6 (incl. as RVS #@Table 6*)	-50	through		See Table 6 for complete verification status. Data in Tables 6 & 9 comes from the "HRC" page. [adcam.pha.jhu.edu/detectors/HRC/]
4.4	Reference: CEI Table 4-7 (Incl. as RVS #@Table 7*)	-50	4-7.		See Table 7 for complete verification status. Data in Tables 7 &10 comes from the "SBC" page. [adcam.pha.jhu.edu/detectors/MAMA/]
4.4.1	WFC Detector Requirements	-50	The WFC detector shall be oriented with the parallel shifts parallel to the V3 direction for an AC in Bay 3.	The alignment of the WFC detector has been set in accordance with the requirements specified.	Ref: WFC Detector Installation (535300) and Alignment (538325) Ref: WFC CCD Detector Alignment System (T128315 Tooling Drawing)
4.4.1.1	WFC Detector Performance Requirements	-50			
4.4.1.1	Quantum efficiency	-50	The WFC CCD detector quantum efficiency (QE) shall be optimized for I-band response in the range of 700 - 900 nm.	zed for the o ormance is 2).	Ref. CCD Procurement Plan - Source Requirements. See: Test Procedures Data in Tables 5 & 8 comes from the "WFC" page. Journal pilu-celudetectors/WFC/J For QE vs. Wavelength plot see SER DET-24, Performance Summary of ACS WFC Flight Unit 4, 928/01.
4.4.1.1	Reference: CEI Table 4-8 (Incl. as RVS #@Table 8*)	-	Detector performance is a derived requirement; desired reference parameters are provided in Table 4-8.		Ref. ACS GSE Detector Simulator Certification Procedure
4.4.1.1	Operating temperature	-50	The performance reference parameters of Table 4-8 are to apply when the CCD is operated at -80°C.	STIS heriage design is qualified by review. Performance is verified by functional test.	Ref: ACS Critical Design Review, 02-Apr-96 Ref: ACS Abbreviated Functional Test

	4 d	Pod iromon	100	Vori	Verification Status
Paragraph	Parameter	nıce	Specification	Performance	Comments, Notes, and Document Titles
4.4.1.1	Notch implants		The CCD design shall incorporate notch implants for radiation damage minimization and	Vendor-proprietary measures were implemented to improve the radiation tolerance of the CCD imagers.	Ref. CCD Procurement Plan - Source Requirements Ref. ACS CCD Radiation Shielding Analysis Peer Ref. Review #1, RFA 14 [Plan for Radiation Hardening of the WFC CCD-81
4.4.1.1	MPP operation	-50	shall accommodate multi-pinned phase (MPP) operation.	The CEB is capable of driving any vendor supplied CCD MPP configuration	Ref. CCD Procurement Plan - Source Requirements [recommendations and requirements for source selection] Ref. WFC CCD State-Machine
4.4.1.2	WFC Detector Operation Requirements	-50			
4.4.1.2	Shuttering	-20	Shuttering shall be provided.	Bench and functional tests verified as applicable tests for the WFC Shutter hardware and software.	Ref. ACS Critical Design Review, 02-Apr-96. Ref. ACS Bench Certification - WFC Shutter Ref. ACS WFC Shutter Functional Test
4.4.1.2	Shutter states	-50	Closed or open shutter states shall be valid operational conditions.	WFC Shutter verified as safe to connect and, when connected was verified as functionally operational	Ref. ACS WFC Shutter/Flight Software Integration Test Results
4.4.1.2	Exposure non-uniformity	-50	Exposure non-uniformity shall be less than or equal to 10 msec for any integration time.	WFC shutter functional open/close profile verified	Ref: ACS WFC Shutter/Flight Software Integration Test Results
4.4.1.2	Integration times	-50	Selectable integration times shall be provided in increments of 0.20 sectods from a minimum of 0.5 sec to a maximum of 60 minutes.	WFC shutter-controlled detector exposure times verified. Macro command JCCDEXP demonstrates integration increments of 0.10 sec for integration times from 0.5 sec to 60 min. Will.	Ref: ACS WFC Shutter/Flight Software Integration Test Results Details are in FQT DM-08 (CDRL DM-03) P-442-1512 & P-442-1528: "System Functional Test" IN0077-403, Rev E (DM-05), Command Blocks, Macros, PSTOLS and Flow Charts for the ACS
4.4.1.2	Readout variations	-50	#	WFC CCD detector readout modes verified via FQT, WFC integration, and instrument functional testing.	Ref. WFC CEB to MEB Integration and Test Ref. WFC CCD to CEB Integration Test Procedure P-442-1512 & P-442-1528: "System Functional Test"
4.4.1.2		-50		WFC CCD detector readout modes verified via FQT, WFC integration, and instrument functional testing.	Ref: WFC CEB to MEB Integration and Test Ref: WFC CCD to CEB Integration Test Procedure P-442-1512 & P-442-1528: "System Functional Test"
4.4.1.2	Readout time	-50		The WFC CCD detector direct readout time was measured and analyzed operationally, and was determined to be equal or less than two minutes.	Ref. WFC CEB to MEB Integration and Test Ref. WFC CCD to CEB Integration Test Procedure
4.4.1.2	Subarray	-50	or readout and storage of one	Figure ional CEB/WFC CCD subarray operation verified via FQT and WFC integration.	Ref: WFC CCD to CEB Integration Test Procedure P 442-1512 & P 442-1528: "System Functional Test"
4.4.1.2	Flush operations	-50	Basic flush operations shall be provided to condition the CCD.	ľ,	Ref: WFC CCD to CEB Integration Test Procedure P-442-1512 & P-442-1528: "System Functional Test"
4.4.1.2	Continuous flushing	.50 i	Continuous flushing shall be the normal mode while not integrating or reading out or in SAA protection condition.	CEB/WFC CCD continuous flushing mode verified via FQT and instrument functional testing.	Ref. WFC CCD to CEB Integration Test Procedure P-442-1512 & P-442-1528: "System Functional Test"
4,4,1,2	Readout electronics	os-	The readout electronics shall have the capability to reduce the VDD bias to ground potential to eliminate amplifier glow.	CEB/WFC CCD bias level programming and control verified via FQT, WFC integration, and instrument functional testing.	Ref. WFC CCD to CEB Integration Test Procedure P-442-1512 & P-442-1528: "System Functional Test"
4.4.1.2	Exposure time	-50	An exposure time of zero shall result in no shutter movement.	WFC Shutter zero load response examined and verified via FQT and instrument functional testing.	Ref: WFC CCD to CEB Integration Test Procedure P-442-1512 & P-442-1528: "System Functional Test"
4.4.1.2	Overscan	-50	Overscan shall be provided to determine line-to-line variations.		Ref: WFC CCD to CEB Integration Test Procedure P-442-1512 & P-442-1528: "System Functional Test"
4.4.1.2	Gain	+50	Gain shall be selectable in up to three binary increments from 1 (to 8 electrons/bit; i.e., Gain can be selectable in up to four binary multiples, as a value of 1,2,4, or 8 (PGA).	CEB/WFC CCD Programmable Gain Amplification setting and response verified via FCT; WFC integration, and instrument functional testing.	Ref: WFC CCD to CEB Integration Test Procedure P-442-1512 & P-442-1528: "System Functional Test"

Requirements Verification Matrix, CEI-ICD Specification

				Jiray	Verification Status
	Re	Requirement	nent .		
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.4.1.2	Optimum gain		The optimum gain shall be determined and used for system C verification and calibration.		Ref: WFC CCD to CEB Integration Test Procedure P-442-1512 & P-442-1528: "System Functional Test"
4.4.1.2	Clock phasing Critical voltage levels	0 0 8 9	Clock phasing and critical voltage levels shall be variable and valenteer in-flight to compensate for on-orbit radiation damage a effects.	WFC CCD detector clocking levels and timing optimization Is and repeatability verified by iterative inspection and test via FQT, WFC integration, and instrument functional testing.	Ref; WFC CCD to CBB Integration Test Procedure P-442-1512 & P-442-1528: "System Functional Test"
4.4.2	WFC Mirror Requirements	-50	The WFC shall baseline protected silver mirror coaling or coatings of similar performance in the WFC spectral range.		Ref. Advanced Camera Primary Imaging Optics. Ref. Stability of Protected Silver Coatings in ACS Ref. Discovery Efficiency Status - WPC, HRC, SBC Ref. Test Data and Visual Inspections of Silver Coatings for WPC Imaging Optics
4.4.3	HRC Detector Requirements	os-	The HRC detector shall be oriented with the parallel shifts parallel to the V3 direction for the AC in Bay 3.	The alignment of the HRC detector has been set in accordance with the requirements specified.	Ref. HRC Detector Installation (535088) & Alignment (538318)
4.4.3.1	HRC Detector Performance	-50			O D C C C C C C C C C C C C C C C C C C
4431	Quantum efficiency	-50	The HRC CCD detector quantum efficiency shall be optimized for the range from 200 - 700 nm.	HRC CCD detector quantum efficiency optimized for 200-700 nm. via vendor manufacturing specification. Piots of QE vs. Wavelength indicate optimum performance is 350 - 900 nm for flight candidates.	HRC CCD detector quantum efficiency optimized for 200-700 [Ref. CCD Procurement Plan - Source Requirements (reconnucnations and non-via vendor manufacturing specification. Plots of QE vs. Wavelength indicate optimum performance is a ladical plat of defectors/HRC/] [adcam_pha_phu.edu/detectors/HRC/]
4.4.3.1	Reference: CEI Table 4-9 (Incl. as RVS #@Table 9*)	-	Detector performance is a derived requirement: desired reference parameters are provided in Table 4-9.	Design parameters are for reference only. Detector performance is cited for comparison with the reference naranters.	Ref. ACS GSE Detector Simulator Certification Procedure
4.4.3.1	Operating temperature	-50		STIS heriage design is qualified by review. Performance is verified by functional test.	Ref. ACS Critical Design Review, 02-Apr-96 Ref. ACS Abbreviated Functional Test
4.4.3.1	Notch implants	0	nplants for radiation		Ref: CCD Procurement Plan - Source Requirements Ref: ACS CCD Radiation Shielding Analysis Peer Ref: Review #1, RFA 14 [Plan for Radiation Hardening of the WFC CCDs]
4.4.3.1	Multi-pinned phase operation	-50	shall accommodate multi-pinned phase (MPP) operation.	The CEB is capable of driving any vendor supplied CCD MPP configuration	Ref. CCD Procurement Plan - Source Requirements Irecontinendations and requirements for source selection.] Ref. WFC CCD State-Machine [applies also to HRC]
4.4.3.2	HRC Detector Operation Requirements	-50			Section Designation Decoduse
4.4.3.2	Shuttering	-50	Shuttering shall be provided.	Bench and functional tests verified as applicable tests for the HRC Shutter hardware and software.	Ket: ACS Pignal HRC Shutter Functional Test Procedure
4.4.3.2	Shutter states	-50	Continuously closed or open shutter states shall be valid operational conditions.	HRC Shutter verified as safe to connect and, when connected was verified as functionally operational	Ref. INC. Shutter Test Report
4.4.3.2	Exposure non-uniformity	-50	Exposure non-uniformity shall be less than or equal to 5 msec for any integration time.	HKC shutter tunctional operaciose profile de la confedence de la confedenc	Dof. URC Chutter Test Record
4.43.2	Integration times	-50	Selectable integration times shall be provided in increments of 0.10 seconds from a minimum of 100 msec to a maximum of 60 minutes.	HRC shutter-controlled detector exposure unrea vertitied. Macro command JCCDEXP demonstrates integration increments of 0.10 sec for integration times from 0.5 sec to 60 min. Exposures 0.1 to 0.5 second duration may not have a linear profile.	Pe42-1512 & P-442-1528: "System Functional Test" IN0077-403, Rev E (DM-05), Command Blocks, Macros, PSTOLS and Flow Charts for the ACS
4.4.3.2	Readout variations	-50	The detector shall be capable of the following readout variations for a single CCD chip: 1) Any one amplifier reads a complete image and transfers it	HRC CCD detector readout modes vertiled via FQ1, fixe- integration, and insurument functional testing.	Ref. DNC CLO to Class Integration of the Purctional Test"
4.4.3.2		-\$0	to memory. 2) A combination of two amplifters reads independently to two sectors of memory; and	HRC CCD detector readout modes verified via FQT, HRC integration, and instrument functional testing.	Ref. HRC CEB to MEB Integration & Test Ref. HRC CCD to CEB Integration & Test P-442-1512 & P-442-1528. "System Functional Test"
				29	

					V-16:
		Reduirement	illuent.		Ication Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.4.3.2		-50	 Any four amplifiers read independently to four sectors of memory. 	HRC CCD detector readout modes verified via FQT, HRC integration, and instrument functional testing.	Ref: MEB Integration Test Procedure Ref: HRC CEB to MEB Integration & Test Ref: HRC CCD to CEB Integration & Test P 442-1512 & P442-1528: "System Functional Test"
4.4.3.2	Readout time	-50	The maximum readout time for four-amplifier operation shall be 7 seconds.	The HRC CCD detector direct readout time was measured and analyzed operationally, and was determined to be equal or less than 7 seconds.	Ref: HRC CCD to CEB Integration & Test P 442-1512 & P-442-1528: "System Functional Test"
4.4.3.2	Subarray	-50	Provision shall also be made for readout and storage of one subатау.	Functional CEB/HRC CCD subarray operation verified via FQT, HRC integration, and instrument functional testing.	Ref: HRC CCD to CEB Integration & Test P 442-1512 & P-442-1528: "System Functional Test"
4.4.3.2	Flush operations	-50	Basic flush operations shall be provided to condition the CCD.	CEB/HRC CCD conditioning via basic flush verified via FQT, HRC integration, and instrument functional testing.	Ref: HRC CCD to CEB Integration & Test P 442-1512 & P 442-1528: "System Functional Test"
4.4.3.2	Continuous flushing	-50	Continuous flushing shall be the normal mode while not integrating or reading out or in SAA protection condition.	CEB/HRC CCD continuous flushing mode verified via FQT and instrument functional testing.	Ref. HRC CCD to CEB Integration & Test P-442-1512 & P-442-1528: "System Functional Test"
4.4.3.2	Readout electionics	-50	The readout electronics shall have the capability to reduce the VDD bias to ground potential to eliminate amplifier glow.	CEB/HRC CCD bias level programming and control verified via FQT, HRC integration, and instrument functional testing.	Ref. HRC CCD to CEB Integration & Test P-442-1512 & P-442-1528: "System Functional Test"
4,4,3,2	Очегусап	-50		CCD line overscan data acquisition, processing and normalization verified via FQT, HRC integration, and instrument functional testing.	Ref: HRC CCD to CEB Integration & Test P-442-1512 & P-442-1528: "System Functional Test"
4.4.3.2	Gain	-50	Gain shall be selectable in up to three binary increments from 1 to 8 electrons/bit; i.e., Gain can be selectable in up to four binary multiples, as a value of 1.2.4, or 8 (PGA).	CEB/WFC CCD Programmable Gain Amplification setting and response verified via FQT, HRC integration, and instrument functional testing.	Ref: HRC CCD to CEB Integration & Test P-442-1512 & P-442-1528: "System Functional Test"
4.4.3.2	Optimum gain	-50	e determined and used for system	Optimum gain setting determined, evaluated and verified via FQT, HRC integration, and instrument functional testing.	Ref: HRC CCD to CEB Integration & Test P 442-1512 & P 442-1528: "System Functional Test"
4.4.3.2	Clock phasing Critical voltage levels	-50	Clock phasing and critical voltage levels shall be variable and selectable in-flight to compensate for on-orbit radiation damage effects.	WFC CCD detector clocking levels and timing optimization and repeatability verified by iterative inspection and test via FQT, HRC integration, and instrument functional testing.	Ref: HRC CCD to CEB Integration & Test P-442-1512 & P-442-1528: "System Functional Test"
4.4.4	HRC Mirror Requirements	-50			
4.4.4	Coatings	-50	coatings overcoated	M1, M2, & M3 coated with MgF ₂ in accordance with design requirements.	Data available in "M1, M2, & M3 ACS Mirrors GSFC Coatings Acceptance Data Package." Available from Dave Rusling (BASD).
4.4.4	Performance	-50		M3 optimized for 200 nm performance in accordance with design requirements.	Data available in "M1, M2, & M3 ACS Mirrors GSFC Coatings Acceptance Data Package." Available from Dave Rusling (BASD).
4.4.4	Shared mirrors	-50	Mirrors shared with the SBC shall be optimized for performance at Lyman alpha.	MI, & M2 optimized for 121.6 nm performance in accordance with design requirements.	Data available in "M1, M2, & M3 ACS Mirrors GSFC Coatings Acceptance Data Package." Available from Dave Rusling (BASD).
4.4.5	SBC Detector Requirements	-50	П		
4.4.5	Detector	-50	The SBC photon-counting detector shall be a multi-anode, microchannel array (MAMA) with a cesium iodide photocathode.	SBC Detector performance meets ACS requirements	Ref: Final Results of the ACS SBC MAMA with STF7 Ref: MAMA Thermal Vacuum Test Ref: MAMA Functional Test Procedure Ref: ACS MAMA Core Performance Test
4.4.5	Bright objec: protection	-50	nical, bright object onds of an overlight quent AC observations,	SBC operational performance is venified through STIS design heritage and (GSFC) integrated system functional test. Operations verified through FQT and instrument functional testing.	Ref: IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" P-442-1512 & P-442-1528: "System Functional Test"
4.4.5	Bright object protection operation	-50	that is independent of operational mode.	SBC operational performance is verified through STIS design heritage and (GSFC) integrated system functional test.	

		-		SHEA	Verification Status
	Hei	Requirement	ment		
Paragraph Number	Parameter	Source		Performance	Comments, Notes, and Document Titles
4.4.5	MAMA high voltage	-50	In addition, capability shall be provided to turn the MAMA shiph voltage off if a safe level is exceeded.	SBC operational performance is verified through STIS design heritage and (GSFC) integrated system functional test.	
4.4.5	Diagnostic and safety indicators	-50	The MAMA electronics and software shall provide the ground Swith diagnostic and safety indicators and	SBC operational performance is verified through STIS design heritage and (GSFC) integrated system functional test.	
4.4.5	Command capability	-50	command capability to maintain calibration and	SBC operational performance is verified through STIS design heritage and (GSFC) integrated system functional test.	
4.4.5	Warning	-50	to provide adequate warning of potential lifetime limitations, sincluding:	SBC operational performance is verified through STIS design heritage and (GSFC) integrated system functional test.	
4.4.5	Fold response	82	commandable fold response from the anode array:	SBC operational performance is verified through STIS design heritage and (GSFC) integrated system functional test.	
4.4.5	Threshold	-50	2) commandable threshold:	SBC operational performance is verified through STIS design heritage and (GSFC) integrated system functional test.	
4.4.5	MCP voltage	-50	commandable microchannel plate voltage;	SBC operational performance is verified through STIS design heritage and (GSFC) integrated system functional test.	
4.4.5	Event ratio	-50	4) valid event/total event ratio; and	SBC operational performance is verified through STIS design heritage and (GSFC) integrated system functional test.	
4.4.5	Rate/Voltage curve	-50		SBC operational performance is verified through STIS design heritage and (GSFC) integrated system functional test.	
4.4.5	Гоп trap	-50	The MAMA detector shall be provided with an ion trap to prevent increase of background from ions and electrons with energies up to 28 eV.	Performance of the SBC ion trap is in accordance with analysis Ref. Final Results of the ACS SBC MAMA with STF7 of the outgassing conditions determined to be copacetic with Ref. Outgassing Requirements for ACS CCD Packages detector operation.	Ref. Final Results of the ACS SBC MAMA with STF7 Ref. Outgassing Requirements for ACS CCD Packages [Notes requirements compatible with 7-year instrument lifetime]
4.4.5.1	SBC Detector Performance Requirements	-50			
4,4.5.1	Reference: CEI Table 4-10 (Incl. as RVS #@Table 10*)	-	Detector performance is a derived requirement; reference parameters reflecting the STIS MAMA performance are provided in Table 4-10.	Design parameters are for reference only. Detector performance is cited for comparison with the reference paramiers. Waiver originally submitted: IN0077-W-014 (Approved, 8/27/98).	Ref: ACS Critical Design Review, 02-Apr-96 Data in Tables 7 & 10 comes from the "SBC" page. [adcam.pha.jhu.cdu/detectors/MAMA/]
4.4.5.2	SBC Detector Operation Requirements	-50			
4.4.5.2	Accumulate mode	-50	The SBC MAMA detector shall operate in accumulate mode. In this mode, the image shall be constructed by co-adding photon events into related memory cells.	SBC operational performance is verified through STIS design heritage and (GSPC) integrated system functional test. Operations verified through FQT and instrument functional testing.	Ref. Software Component Test Procedure for the Advanced Camera for Surveys (ACS) MIE Code Surveys (ACS) MIE Code Software Software P-442-1512 & P-442-1528: "System Functional Test"
4.4.5.2	Subarray operation	-		$\overline{}$	C C C C C C C C C C C C C C C C C C C
4.4.5.2	Readout	-50	The MAMA read-out may be in low-resolution format.		Ket: Software Component 15st Procedure for the Advanced Calificia for Surveys (CAS) MIE COSTS and Test Report for the ACS Flight Software" PA42-1512 & P-442-1528: "System Functional Test"
4.4.6	SBC Mirror Requirements	-50	· · · · · · · · · · · · · · · · · · ·	.6	を必ず のできないないというないないないないないないないないないないないないないないないないな
4.4.6	Coatings	-50	The SBC shall baseline aluminum mirror coatings overcoated with MgF2 and	MI, M2, & M3 coated with MgF ₂ in accordance with design requirements.	Data available in "MI, M2, & M3 ACS Mirrors GSPC Coatings Acceptance Data Package." Available from Dave Rusting (BASD).
				31	

	78	Requirement	Bent	Veri	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.4.6	Performance	-50	optimized for UV performance at Lyman alpha.	M3 optimized for 200 nm performance in accordance with design requirements.	Data available in "M1, M2, & M3 ACS Mirrors GSFC Coatings Acceptance Data Package." Available from Dave Rusling (BASD).
4.4.6	Shared mirrors	-50	Mirrors shared with the HRC shall be optimized for performance at Lyman alpha.	M1, & M2 optimized for 121.6 nm performance in accordance with design requirements.	Data available in "MI, MZ, & M3 ACS Mirrors GSFC Coatings Acceptance Data Package." Available from Dave Rusling (BASD).
4.5	Operational Requirements	CEI			
4.5.1	Parallel Operations	CEI			
4.5.1	Support of modes	CEI	The AC shall support internal parallel operations with the WFC and either the HRC or the SBC.	Operations verified through FQT and instrument functional testing.	IN0077-323, Rev A. "Software Test Report for the ACS Flight Software" P-442-1512 & P-442-1528: "System Functional Test"
4.5.1	Independent and asynchronous scheduling	CEI	Commanding of parallel operations, to the maximum extent operating possible consistent with the physical design requirements of the lesting. AC and Section 5.1.4, shall support independent and asynchronous scheduling of operations.	Operations verified through FQT and instrument functional testing.	IN0077-323. Rev A. "Software Test Report for the ACS Flight Software" P 442-1512 & P-442-1528: "System Functional Test"
4.5.1	WFC and HRC integration	CEI	The AC shall support simultaneous integration of the WPC and the HRC or	Operations verified through FQT and instrument functional testing.	IN0077-323, Rev A. "Software Test Report for the ACS Flight Software" P 442-1512 & P-442-1528: "System Functional Test"
4.5.1	WFC integration and SBC operation	GEI	simultaneous integration of the WFC and operation of the SBC.	Operations verified through FQT and instrument functional testing.	IN0077-323, Rev A. "Software Test Report for the ACS Flight Software" P-442-1512 & P-442-1528: "System Functional Test"
4.5.2	Observation Modes	CEI	一次、からとなりにというというながらなるのではあるのではないのでは、ないのではないないできないというないというないのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、	で見るとは、一般のでは、10mmのでは	このからはある。 第一十年の一年の一日の日本の東京の東京の東京の東京の東京の東京の東京の東京の東京の東京の東京の東京の東京の
4.5.2	Calibration mode	† ···	ion	ed through FQ	Ref: ACS Calibration Subsystems Overview Ref: SI Science Data Header Format for the ACS, CDRL No. DM-06. IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" P-442-1512 & P-442-1528: "System Functional Test"
4.5.2	Imaging Mod:	CEI	2) Imaging	Operations verified through FQT and instrument functional testing.	Ref: ACS SER SW-013a, SI Science Data Header Format for the ACS, CDRL No. DM-06;* IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" P-42-1512 & P-442-1528: "System Functional Test"
4.5.2	Target Acquisition	.50	On-board target acquisition shall be provided to support the coronagraphic imaging modes.	Operations verified through FQT and instrument functional testing. See: Test Results for the ACS Target Acquisition, ACS SER: #@TST-091*	Ref: ACS SER SW-020, Software Component Test Procedure for the ACS Target Acquisition. IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" P 442-1512 & P-442-1528: "System Functional Test"
4.5.3	Data Compression	CEI			
4.5.3	Implementati on	CEI	The AC shall allow for implementation of software data compression in the instrument computer.	Data compression algorithm speed verified as adequate to capture data within specified acquisition time limits. Operations verified through FQT and instrument functional testing.	Ref: Flight S/W data compression speed IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" P-442-1512 & P-442-1528: "System Functional Test"
4.5.3	Commandable	CEI	The compression, if implemented, shall be on/off commandable and	Compression commandability verified through FSW software component verification test. Operations verified through FQT and instrument functional testing.	Ref: Control Section Hardware/Software Interface IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" P-442-1512 & P-442-1528: "System Functional Test"

				BireV	Varification Ctatus
	Rec	Requirement	nent		
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.5.3	Compression capability	CEI	shall compress by a factor of three as a minimum.	Data compression algorithm compression factor verified as greater than three. Compression is variable from 1:1 to 1:3.5. Operations verified through FQT and instrument functional testing.	Ref: Flight S/W data compression speed Ref: Software Component Test Procedure for the Advanced Camera for Surveys (ACS) MIE Code IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" P-442-1512 & P-442-1528: "System Functional Test"
4.5.3	Data packets	GE C	Data packets shall identify whether the data contained has been compressed.	The science data header provides a place where the use of data compression is indicated, verified as per test. Operations verified through FQT and instrument functional testing.	Ref. SI Science Data Header Format for the ACS, CDRL No. DM-06IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" P 442-1512 & P 442-1528: "System Functional Test"
4.5.3	Compression prediction	CEI		ដ	Ref: Flight S/W data compression spectN0077-323, Rev A: "Software Test Report for the ACS Flight Software" P-442-1512 & P-442-1528: "System Functional Test"
4.5.3	Science data packet	CEI (The science data packet size shall be fixed; however, the AC design shall not preclude variable data packet management including identification of packet size when generated.	The science data header provides dynamic data packet size selection if needed Operations verified through FQT and instrument functional testing.	Ref: SI Science Data Header Format for the ACS, CDRL No. DM- 06IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" P-442-1512 & P-442-1528: "System Functional Test"
4.6	Calibration	CEI			
4.6	Capability	CEI			Ref: ACS Calibration Subsystems Overview See: ACS Pre-environmental Review, 28-Sep-1998.
4.6	Internal calibration lamps	CEI	nigh gth		Results are determined by test with HRC and WFC frames illuminated with the tungsten lamps for the period Jan-Aug 2001. All the data were acquired while ACS was in SSDIF with the ACS & flight detectors in their final configurations.
4.6	SNR	CEI	The calibration system shall be capable of providing 100:1 signal-to-noise ratio in all 2 x 2 pixel resolution elements over the full detector in less than 10 hours.	Specification: SNR = 100 for integration times < 10 hrs (36000 sec). Performance: (Longest integration time for SNR = 100) HRC: -1.1 hrs (3830 sec) w/filter F250W WPC: -55 sec w/filter FR38N CEI spec. is easily met for both detectors and all filters	Specification: SNR = 100 for integration times < 10 hrs (36000 Results are published, "HRC and WFC Internal Tangsten and Deuterium tsec). Performance: (Longest integration time for SNR = 100) http://leas.pha.jhu.cdu/instrument/calibration/results/by_iten/flat_flelds/internal_lamps/d2tung/fl WFC: -1.1 hrs (3830 sec) w/filter F250W internal_lamps/d2tung/fl WFC: -55 sec w/filter FR388N CEI spec. is easily met for both detectors and all filters
4.6	Door mechanism	CEL	A calibration door mechanism shall be provided prior to the first optic to temporarity block incoming light to the instrument during detector calibration.	Dark levels are measured with the cal door in the closed position.	Cal Door/Coronagraph Performance Ref: Structural Analysis of the Calibration Door/Coronagraph Redesign Ref: ACS Critical Design Review, 02-Apr-96
5	Design Requirements	CEI			
5.1	System	CEI			
5.1.1	System Interface	CEI		Classifications and familiary and canabilities are detailed	Ref. ACS Electronics Block Diagram & Start at Cabling (Rev A. two
5.1.1		CEI		in the ICD-02 section cited.	shutters, two CCDs, both data paths]
5.1.1	Requirements	CEI	The AC shall meet all interface requirements specified in the Applicable Documents, including requirements to interface with the OTA/SSM and the SI C&DH as defined in ST-ICD-02 and ST-ICD-08, respectively.		Ref: Eval Risk for Advanced Camera Electronics built as STIS [STIS & NICMOS commonality w/ACS, parts interchange]
5.1.1		CEI		Operational interface configurations and capabilities are detailed in the ICD-08 section cited.	Ref: ACS Performance Verification Plan Examine: #@Environmental Testing* See: ACS Pre-environmental Review, 28-Sep-1998.
5.1.2	Useful Life	CEI		OA aft is beginned and and also of best is an	Analyzis of the APS design has considered wear-mit or degradation with
5.1.2	On-orbit operation	CEI	The AC shall be designed for a minimum of five years on-orbit operating life and	No limited life articles have been toenutied in the ACS instrument design."	Attalysis of the ACS tesign has considered wear out of degradation man time (ground and five year flight mission). IN0077-116: Limited Life Matrix for ACS.

Family Parison					Veri	Varification Status
Parameter 6 a secret year extendable 16. Calcandar III C CCCI as every year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secry year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year extendable 16. Calcandar III C CCCI as a secret year of the correct y			90			
Calendar life Calendar life begins with the able way of the AC to GSPC and formation designs." Calendar life begins with the able way of the AC to GSPC and formation designs. Calendar life begins with the able way of the AC to GSPC and formation designs. Calendar life begins with the able way of the centre of a mornial free year flight to the ACS of the able of the ACS of	Number	Parameter	Sour	Specification	Performance	Comments, Notes, and Document Titles
1 is deficitely the general value and the control of the Cite CSCS and definition 1 is defined to the period during which as the period during which as the served from the control of	5.1.2	Calendar life	CEI	a seven year calendar life.	"No limited life articles have been identified in the ACS instrument design."	Analysis of the ACS design has considered wear-out or degradation with time (ground and five year flight mission). IN0077-116: Limited Life Matrix for ACS
Internation Internation International processing in the derived from	5.1.2		1	Calendar life begins with the delivery of the AC to GSFC and is defined as the period during which an item can retain its desired performance		
Mochanism Midnime CEI Mochanism Mochanism moniton have been qualified in the ACS CDR.	5.1.2	Calendar definition	I	and reliability characteristics while in storage or installed, operating or non-operating, before being refurbished or recertified.		
Principle transport Principle transport	5.1.2	Mechanism lifetime	CEI	ght	"No limited life articles have been identified in the ACS instrument design."	Analysis of the ACS design has considered wear-out or degradation with time (ground and five year flight mission). IN0077-116: Limited Life Matrix for ACS
In-flight usage In-flight usage shall include, as a mainmum, the mechanism motions have been qualified through full motions for governion, editheration, editoration grains, and motions for operation and an expension of its months as part classification, the calibration door mechanism usage CEI International protection when exposed In-flight usage that the complete cycle per orbit for a period of its months as part capable of motioning sufficiency cycles as to be completely International for a period of its months as part capable of motioning sufficiency cycles as to be completely International form of the capable of motioning sufficiency per-orbit level. International form of the capable of motioning sufficiency per-orbit level. International form of the capable of motioning sufficiency per-orbit level. International form of the capable of motioning sufficiency per-orbit level. International form of the capable of motioning sufficiency per-orbit level. International form of the capable of motioning sufficiency per-orbit level. International form of the capable of motioning sufficiency per-orbit level. International form of the capable of motioning sufficiency per-orbit level. International form of the capable of motioning sufficiency per-orbit level. International form of the capable of motioning sufficiency per-orbit level. International form of the capable of the capab	5.1.2		CEI		Design qualified as of date of ACS CDR.	Ref: CCD Shutter Mechanism Servo Analysis; Simulation and Margins Analysis Results Ref: ACS Mechanism Motor and Resolver Specifications Ref: Fold Mechanism Switch Position
In addition, the calthration door mechanism usage CEI Contingency for AC contained to mechanism operations.	5.1.2	In-flight usage		t usage shall include, as a minimum, the mechanism is for operation, calibration, detector protection, and	Mechanism motions have been qualified through full operational range testing.	Ref. Peer Review #2, Request for Action #2, Filter Wheel, Responses Ref. Peer Review #2, Request for Action #9 Responses Ref. ACS Fold Mirror Motor Margin and Analysis Results Ref. ACS SBC Filter Wheel Motor Margins Analysis Results
The AC shall be designed such that no single operational Tailure aball violate the following: The AC shall be designed such that no single failure; unvignetted throughput shall be the following: 1) For any single failure, the majority of the data from each of FMEA analysis indicates that a failure of the WFC & HRC analysis indicates that a failure of the WFC & HRC (Infer wheel is stuck in the closed position.) 2) For any single failure, the majority of the data from each of FMEA analysis indicates that a failure of the WFC or the HRC, or the	5.1.2	Calibration door mechanism usage	СЕІ	In addition, the calibration door mechanism usage shall include one complete cycle per orbit for a period of six months as part of contingency for AC contamination protection when exposed to bright earth during post-servicing mission operations.	Operations for the cal door mechanism have been verified as capable of enduring sufficient cycles as to be completely functional at a one-operation-per-orbit level.	Ref: ACS Critical Design Review, 02-Apr-96. Ref: Flight Cal Door Functional Test Procedure Ref: FLT CAL Door Environmental Test Procedure
The AC shall be designed such that no single operational available: Lie., no single failure, unvigented throughout shall be the single of the WFC and the WFC & HRC analysis indicates that a failure of the WFC & HRC available: Lie., no single failure, unvigented throughout shall be the wheel (shared between the two channels) will cause than one optical channel. 2) For any single failure, the majority of the data from each of FMIA analysis indicates that a failure of the WFC & HRC (arrefunds) will cause than one optical channel. 2) For any single failure, the majority of the data from each of FMIA analysis indicates that a failure of the WFC & HRC (arrefunds) will cause that a failure of the WFC, or the SBC shall be unaffected. 2) For any single failure, the majority of the data from a teast half of the FMIA analysis indicates that a failure of the WFC & HRC (arrefunds) will cause to the work of the transport of the WFC, or the SBC shall be unaffected. 3) For any single failure (except of the CCD shutters or FMIA analysis indicates that a failure of the WFC & HRC (arrefunds) will cause to the work of the WFC & HRC (arrefunds) will cause to the work of the WFC & WFC functions if the filter wheel is stuck in the closed position. 3) For any single failure (except of the CCD shutters or FMIA analysis indicates that a failure of the WFC & HRC & WFC functions if the filter wheel is stuck in the closed position. 3) For any single failure except of the CCD shutters or filter wheel is stuck in the closed position. 4) For any single failure or a single cause or event and to work affect, except of the ACS, or result in total loss of the ACS angle point failure that affects recovery. 4) The FMIA analysis found no ACS single point failure that affects recovery. 4) The FMIA analysis found no ACS single point failure that affects or would affect crew affery, recovery of the ACS or result in total loss of the ACS o	5.1.3	Single Point Failure	CEI			
Unvignetted throughput CEI available; i.e., no single failure, unvignetted throughput shall be railure of more filter wheel feature between the two channels) will cause 100% loss of HRC & WFC functions if the filter wheel is stuck in the closed position. 2) For any single failure, the majority of the data from each of FMEA analysis indicates that a failure of the WFC & HRC functions if the filter wheel is stuck in the closed position. CEI the WFC, or the HRC, or the SBC shall be unaffected. 3) For any single failure (except of the CCD shutters or implementation of the WFC & HRC filter wheel (shared between the two channels) will cause to the WFC analysis indicates that a failure of the WFC & HRC filter wheel (shared between the two channels) will cause to the WFC analysis indicates that a failure of the WFC & HRC filter wheel (shared between the two channels) will cause to the WFC analysis indicates that a failure of the WFC & HRC filter wheel is stuck in the closed position. CEI primary thermo-clicutic coolers), data from at least half of the filter wheel (shared between the two channels) will cause to cook and the whole is stuck in the closed position. Redundant items will fail due to a single cause or event and to good frace crew asfety, recovery of the ACS or result in total loss of the ACS scientific capability. The PMEA analysis sloud on ACS single point failure that affects recovery The PMEA analysis sloud on ACS single point failure that affects recovery The PMEA analysis sloud on ACS single point failure that analysis also found that no single point failure that would affect crew safety, recovery of the ACS or result in total loss of the ACS scientific capability.	5.1.3	Operation failure	1	The AC shall be designed such that no single operational failure shall violate the following:		
2) For any single failure, the majority of the data from each of fMEA analysis indicates that a failure of the WFC & HRC into work channels) will cause a 100% look channels) will cause a 100% look channels) will cause a 100% look channels) will cause complete that a failure of the WFC or the HRC, or the HRC, or the HRC, or the BRC shall be unaffected. Solution of the CCD shutters or complete that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC & HRC interventing that a failure of the WFC interventing that a failure of the ACS is scientific capability." The AC shall have no single point failure that a failure of the ACS is scientific capability."	5.1.3	Unvignetted :hroughput	CEI		FMEA analysis indicates that a failure of the WFC & HRC filter wheel (shared between the two channels) will cause 100% loss of HRC & WFC functions if the filter wheel is stuck in the closed position.	IN0077-304, Rev A: Failure Mode & Effects Analysis for the ACS
Signature of the CCD shutters or primary thermo-electric coolers), data from at least half of the primary thermo-electric coolers), data from at least half of the primary thermo-electric coolers), data from at least half of the primary thermo-electric coolers), data from at least half of the primary thermo-electric coolers), data from at least half of the probability that redundant items will fail due to a single cause or event and to isolate redundant elems to the maximum extent possible. CEI Provision shall be taken to minimize the probability that redundant items will fail due to a single cause or event and to isolate redundant eritical items to the maximum extent possible. CEI Provision shall be taken to minimize the probability that redundant items would affect crew asfety, recovery of the ACS, or result in total loss of the ACS's scientific capability." The AC shall have no single point failure that affects recovery of the ACS, or result in total loss of the ACS's scientific capability." The AC shall have no single point failure that affects recovery of the ACS's scientific capability." The HST recovery of the ACS's scientific capability." The HST recovery of the ACS's scientific capability." The HACS's scientific capability." The HACS's scientific capability." The HACS's scientific capability." The HACS's scientific capability." The HST recovery of the ACS's scientific capability." The HST recovery of the ACS's scientific capability." The HST recovery of the ACS's scientific capability."	5.1.3	Data effects	CEI	each of	FMEA analysis indicates that a failure of the WFC & HRC filter wheel (shared between the two channels) will cause 100% loss of HRC & WFC functions if the filter wheel is stuck in the closed position.	IN0077-304, Rev A: Failure Mode & Effects Analysis for the ACS
Provision shall be taken to minimize the probability that The FMEA analysis found no ACS single point failure that tedundant items will fail due to a single cause or event and to list a lead or event and to list and affect crew safety, recovery of the ACS, or result in total loss of the ACS's scientific capability." CEI	5.1.3	CCD data effects			FMEA analysis indicates that a failure of the WFC & HRC filter wheel (shared between the two channels) will cause 100% loss of HRC & WFC functions if the filter wheel is stuck in the closed position.	IN0077-304, Rev A: Failure Mode & Effects Analysis for the ACS
CEI The AC shall have no single point failure that affects recovery The FMEA analysis found to no ACS single point failure that affects recovery The FMEA analysis found no ACS single point failure that affects recovery Of the HST. CEI CEI The AC shall have no single point failure that affects recovery would affect crew safety, recovery of the ACS, or result in total loss of the ACS's scientific capability."	5.1.3	Redundant itoms	CEI		The FMEA analysis found no ACS single point failure that would affect crew safety, recovery of the ACS, or result in total loss of the ACS's scientific capability."	IN0077-304, Rev A: Failure Mode & Effects Analysis for the ACS
The AC shall have no single point failure that affects recovery "The FMEA analysis found no ACS single point failure that would affect crew safety, recovery of the ACS, or result in total loss of the ACS's scientific capability."	5.1.3		CEI		The analysis also found that no single point instrument failure would prevent removal of power from the instrument."	
	5.1.3	HST recover,		Il have no single point failure that affects recovery	The FMEA analysis found no ACS single point failure that would affect crew safety, recovery of the ACS, or result in total loss of the ACS's scientific capability."	IN0077-304, Rev A: Failure Mode & Effects Analysis for the ACS

				Silited	Verification Status
	Rec	Requirement	nent		
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
5.1.3		CEI		5	
5.1.3	Losses	CEI	No single point failure shall result in total loss of command, engineering or scientific capability.	"The FMEA analysis found no ACS single point failure that II would affect crew safety, recovery of the ACS, or result in total loss of the ACS's scientific capability."	IN0077-304, Rev A: Failure Mode & Effects Analysis for the ACS
5.1.3		CEI		5	OVA - 1 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2
5.1.3	Bus fuses	CEI	No single point failure shall simultaneously blow both the primary and redundant bus fuses.		IN0077-304, Rev A: Failure Mode & Effects Analysis for the ACS
5.1.3		CEI		"The analysis also found that no single point instrument failure would prevent removal of power from the instrument."	
5.1.4	Commonality	CEI	The AC shall make use of hardware and software design commonality with the STIS, the NICMOS, COSTAR, and the GHRS SIs to the maximum extent practical consistent with the AC scientific objectives.	ACS systems are as STIS-like as feasible. Where variations were introduced, they were tested at the lowest consistent test level prior to becoming a design commitment, subject as it were, to single point hardware/electrical failure analysis.	Commonality referenced to the ACS CDR presentation. See also: #@Commonality with STIS* and, #@Production, Function & Reliability Tests*
5.2	Optical	CEI			Def. ODASS Alignment Summers Drive to ACS Bench Integration:
5.2.1	Optical Interface		The AC shall meet the performance requirements of this specification when presented with optical input from HST that is in accordance with ST-ICD-02, Section 4.4.	The ACS Optical Bench has been aligned to the ACS Alignment System; individual optical components were installed, and referenced to the bench; the bench has been aligned to RAS/Cal and RAS/HOMS for other individual tests, yielding high quality results.	Kef: UBASS Augument Summay 7110t to Acs Bearn integration: Ref: WFC & HRC Calibration Subsystem Alignment Requirements
5.2.1		-		O Verified by design and test; commonality with GHRS, COSTAR, STIS, and NICMOS. See CDR and items in ST-ICD-02E.	Ref: ACS Chief Ray and Optics Positions Ref: Flight Alignment Cube Data (Pre-Integration to Enclosure)
5.2.2	Optical Design	CEI		_	Verification based upon commonality with heritage of previously built
5.2.2	Optical aberrations	CEI	The AC shall correct for the as-built HST spherical aberration, as well as off-axis aberrations.		BASD instruments.
5.2.2	Focus control	CEI	Focus control shall be provided to compensate for uncertainties in location of the SI with respect to the HST focus after insertion in orbit and to compensate for uncertainties in the definition of HST focus.	s Tests designed to determine alignment sensitivity have verified the accuracy, stability, and capacity to adjust for anomalous characteristics found in the optical system. Comprehensive functional testing demonstrates instrument compliance.	Tests designed to determine alignment sensitivity have verified Functional testing performs complete testing of the instrument's systems the accuracy, stability, and capacity to adjust for anomalous and capabilities. P.442-1512 & P.442-1528: "System Functional Test" p.442-1512 compliance.
	Mechanical and Structural	CEI			
5.3	Machanical Interfaces	CEI	•		Dec. ACS Statement Loads and Vibration Test and Apalysis Verification
5.3.1	Applicable Documents requirements	CEI	The AC shall meet the mechanical interface requirements specified in the Applicable Documents,	All ACS components and subsystems are tested to obtain data from which structural verification is accomplished through structural inspection and analysis. The indicated applicable documents were specified at the time of the ACS CDR.	RCI: ACS Structura Logas and Tronaton Tost and Traing*

	B.	İ	Bequirement	Veri	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
5.3.1	OTA/SSM & RIU requirements	CEI	including requirements to interface with the OTA/SSM and Remote Interface Units (RUIs) as defined in ST-ICD-02, Section 4.3 and ST-ICD-08, Section 3.3, respectively.	GFE is embedded in instrument subassemblies and tested along with the other components of the subassembly, both environmentally and functionally.	Ref: ACS Structural Verification Marix (Oct 21, 1996) See: ACS Pre-environmental Review, 28-Sep-1998.
5.3.2	Mechanical Interchangeability	CEI	The AC shall be designed for mechanical compatibility with any of the four axial bays of the HST.	The ACS design satisfies this requirement; however, mounting of heat pipes and other thermal management hardware to some surfaces could require that the instrument be assigned to a particular bay, i.e., bay 3.	Ref: ACS Envelope Waiver in ST-ICD-02
5.3.3	Loads	CEI			
5.3.3	Circumstantial loads	CEI	The AC shall operate within specification after exposure to ground, launch, ascent, in-orbit, and landing loads as specified in ST-ICD-02, Section 4.5.1.	The ACS instrument STIS design heritage allows determination of compliance with this requirement by cyclic testing within flight uest limits. Design is per the ACS CDR, performance is verified according to the ACS PAR, IN0077-105.	Ref: ACS Performance Verification Plan Ref: ACS Structural Verification Matrix (Oct 21, 1996) See: ACS Pre-environmental Review, 28-Sep-1998.
5.3.4	Modal Characteristics	CEI			
5.3.4	Stiffness and modal frequencies	CEI	The AC shall meet the stiffness and modal frequency requirements specified in ST-ICD-02, Section 4.5.2.	Structural analysis verifies compliance. See 4.5.2 for compliance.	See 4.5.2 for compliance. Refs: ACS Optical Truss Structural Analysis, (STR-012) Structural Analysis of the Enclosure, (STR-035) Optical Bench Modal Survey and Model Correlation, Enclosure Modal Survey and Model Correlation, (STR-039), & (STR-040).
5.3.5	Mass Properties	CEI			
5.3.5	Allowable weight	CEI	The allowable weight shall be determined by the variations from the specified center of gravity location as per ST-ICD-02, Section 4.5.3.	The maximum weight of the ACS, not including the GFE, will be 821 lbs., and the C.G. will be held within the following range: P1 = -20 to -50 in., P2 = 12 +/- 1 in., P3 = 12 +/- 1 in.	Justification: Paragraph 4.5.3.1 (weight) of ST-ICD-02E requires Max. weight of 760 lbs., with C.G. held within the following range: P1 = -20 to -50 in, P2 = 12 +/- 1 in, P3 += 12 +/- 1 in.
5.3.5	RIUs	ı	Two SI C&DH Remote Interface Units (RIUs) shall be included in the weight requirement.		
5.3.5	GFE	I	Other Government Furnished Equipment (GFE), as defined in ST-ICD-02, Section 4.5.3, are not included in the weight budget; however, they shall be included in the AC mass properties.		Note: At the weight specified in ST-ICD-02E, IRN-100, Paragraph 4.4.3.1, The C.G., (Paragraph 4.4.3.2) can be P1 = -20 to -50 in, P2 = 12 ++. 5 in, P3 += 12 ++. 5 in. Weight can be greater if the C.G. compliance is tighter.
5.3.5	D)	СЕІ	of gravity and moments of inertia of the complete SI hall be determined to the accuracies specified in ST-ection 4.5.3.	The maximum weight of the ACS, not including the GFE, will be 821 lbs., and the C.G. will be held within the following range: $P1 = -20 \text{ to } -50 \text{ in.}, P2 = 12 + l \cdot 1 \text{ in.}, P3 = 12 + l \cdot 1 \text{ in.}$	Justification: Paragraph 4.5.3.2 (C.G.) of ST-ICD-02E requires that the C.G. be held within the following range: P1 = -20 to -50 in, P2 = 12 +/- 1 in, P3 += 12 +/- 1 in,
5.3.6	Envelope	CEI			
5.3.6	Dimension		The AC outer dimensions shall be as specified in ST-ICD-02, Section 4.3.1 and 4.3.3.	The present ACS envelope complies as waived from requirements; the final envelope will be qualified by GSPC metrology.	IN0077-W-005, ACS Waiver, Envelope: Approved, IN0077-W-015, A, B, C: Waiver Applications Approved: 11/16/01
5.3.6	RIUs	ш	The Remote Interface Units (RUIs) shall be mounted within the The RUIs are presently contain convelope dimensions specified in ST-ICD-02, Section 4.3.1 and required. Complies by design. 4.3.3.	The RIUs are presently contained within the ACS envelope as required. Complies by design.	Drawing 535000: ACS Instrument Assembly
5.3.7	Mounting and Alignment	CEI			
5.3.7	грА		nstallation into, and safe Assembly per ST-ICD-02,	The orbital replacement features and qualities of the ACS instrument comply with the FPA requirements. Installation into HOMS demonstrates compliance.	See specific bay data cited under CEI Section 5.3.2 HOMS installation demonstrates compliance.
5.3.7	SIPE	-	Ę		
5.3.7	SIPE installation	CEI	The AC design shall not preclude installation into, and safe removal from, the SIPE.	The ACS is SIPE compliant by virtue of STIS heritage in the mechanical and environmental design.	Compliance is demonstrated with heritage of ACS with GHRS, COSTAR, NICMOS, and STIS.

				Verific	Verification Status
	Rec	Requirement	nent		
Paragraph Number	Parameter	Source			Comments, Notes, and Document Titles
5.3.7	GPE latching mechanism		The GITE latching mechanisms and crew aids shall be installed prior to delivery of the AC to GSFC.	The GFE latching mechanisms and crew aids have been installed. Compliance is demonstrated by the design as designated on drawing 535000.	Drawing 535000: ACS insument Assembly
5.3.8	Venting	CEI	CO-CLOT OF GT. ICT. ICT.	The AC currently meets the cited venting requirements.	This is based upon commonality with STIS:
5.3.8	Requirements	CEI	The AC shall meet the venting requirements of STACE Sections 4.3.11 and 4.6.6.	\neg	ACS venting is patterned after STIS venting design.
5.3.8	High voltage operations	CEI	rate to permit sufficient outgassing to ing conditions in orbit.		5.115 outgassing is predicted into loads, acted orders operations and days prior to HV activation. ACS is similar. days prior to HV activation. days
5.3.8	Ascent and descent protection	CEI	Adequate structural margins shall be maintained to ensure protection during ascent and descent.	S	Ref. ACS Critical Design Review, 02-Apr-96. Ref. ACS Structural Loads and Vibration Test and Analysis Verification
5.3.8	Optical surfaces	CEI		The flow over optical surfaces has been configured so as to liminize the risk of disturbing the optical systems.	Ref: Optics Contamination: CDR RPA 5 & CDR RPA 7 Ref: Discovery Efficiency Status - WFC, HRC, SBC
5.3.8	Contamination	CEI	shall ensure that the SI is not contaminated during test, ascent, or return in the SIPE.	ACS Optical component status evaluation, system performance analysis, and corrective procedures have adequately preserved and protected the ACS on-orbit instrumental throughput.	ACS Optical component status evaluation, system performance I his is based upon commonantly with 5115. Ac.5 venting is parecined analysis, and corrective procedures have adequately preserved STIS venting design. and protected the ACS on-orbit instrumental throughput.
5.3.8	Purging	CEI	Provision shall also be made to permit purging of the SI when fully assembled, including when installed in the SIPE and interfaced with the presented SIPE SI purge fitting.	The ACS enclosure is fitted for dry nitrogen or mono-atomic gas purge operations to assure achievement of a properly purged optical bay and truss enclosure.	Purging operations are relavent to the ground-based test and pre-launch hold environments only.
5.3.8	Covers	CEI	An entrance aperture cover that allows for external optical stimulation of the SI and vent port covers shall also be provided.	ੜ੍ਹ	Ref drawings: 537987, Flight Cover Assy 537972, Ground Cover Assy 537973, Cover Assy, Purge
5.3.9	Ground Refurbishment and Maintenance	CEI	As a goal, the AC design shall provide case of ground maintenance and ground replacement of a subsystem or commonent.	The ACS truss is improved over the STIS; even the flight imaging detectors may be easily removed and replaced by removing the covers and thermal shelf.	See: ACS Optical Truss ACS DWG: 537950
5.3.10	Orbital Replacement	CEI	The AC surface. The AC signed for in-orbit installation into, and removal from, HST or the SIPE by suited astronauts performing Extravehicular Activity (EVA).		See applicable documentation: Complies by commonality with GHRS, COSTAR, STIS, and NICMOS Complies by commonality with GHRS, COSTAR, STIS, and NICMOS Complies by commonality with GHRS, COSTAR, STIS, and NICMOS Complies by commonality with GHRS, COSTAR, STIS, and NICMOS Complies by commonality with GHRS, COSTAR, STIS, and NICMOS Complies by commonality with GHRS, COSTAR, STIS, and NICMOS Complies by commonality with GHRS, COSTAR, STIS, and NICMOS Complies by commonality with GHRS, COSTAR, STIS, and NICMOS
5.3.11	CCD Replacement Capability	-50	The ACS shall be designed to allow replacement of the HRC or WFC CCD package(s) at any stage of instrument assembly prior to launch.	Detectors are accessible through an outer parer, and are electrically and thermally detachable for removal.	
4 4	Thermal	CEI	_		
5.4.1	Thermal Interfaces	CEI	_	The ACS instrument meets the thermal interface requirements	See: ACS Pre-environmental Review, 28-Sep-1998.
5.4.1	Interfaces	CEI	-	of ST-ICD-02, Section 4.6.1. Beomirgments met through ACS design heritage with GHRS,	
5.4.1	Orbit transport	CEI	The AC design shall not thermally precitude sate in-oron transport from the SIPE to the HST and installation into the HST during the normal EVA period.	COSTAR, STIS, and NICMOS.	
5.4.2	Thermal Design	CEI	in the second second section as the second section is the second section of the second section	Salisfactory performance is predicted within the HST thermal	Ref. ACS Critical Design Review, 02-Apr-96.
5.4.2	Passive design	CEI		limits, as applied to the ACS system thermal model.	Ref. Thermal Analysis of the ACS Full Model

	3 C		***	Ver	Verification Status
	34	rednirement	ment		icarior status
Paragraph Number	Parameter	Source		Performance	Comments, Notes, and Document Titles
5.4.2	Short-term changes	CEI	ST	The ACS instrument observations are not adversely perturbed by short term (1-hour) temperature excursions.	Ref: ACS External Cooling System Interface Requirements. Ref: Pre-Thermal Balance Design and Analysis Thermal Report. Ref: Final Thermal Design & Analysis Report.
5.4.2	Long-term effects	CEI	Long-term effects (greater than 24 hours) shall not result in permanent misalignment of the AC.	The ACS instrument design is tolerant of long-term temperature perturbation.	Ref: ACS External Cooling System Interface Requirements. Ref: Pre-Thermal Balance Design and Analysis Thermal Report. Ref: Final Thermal Design & Analysis Report.
5.5	Electrical	CEI			
5.5.1	Electrical Interfaces	CEI			
5.5.1	Interfaces		The electrical and command/data systems interfaces shall be in accordance with ST-ICD-02, Section 4.7 and 4.11 and ST-ICD-08, Sections 3.9, 3.10, 3.12, and 3.13.	Early STIS heritage-based integration procedures set. The ACS electrical system implementation complies with the cited interface control document references.	Ref: ACS Critical Design Review, 02-Apr-96. Ref: ACS Integration Test Ref: New Baseline AC Electronics System Design
5.5.1		CEI		Deviations from STIS design detail adapt directly to specific ACS/STIS performance goal differences; otherwise, ACS components are build-to-STIS spec.	Ref: Some Changes Required to STIS electronics for ACS use [Early listing of changes to use STIS boards for ACS]
5.5.1	Power conditions	СЕІ		The ACS instrument power conditions are designed to ST-ICD-Ref. Peak Power Estimate 08D reference compliance.	Ref: Peak Power Estimate Ref: Waiver IN0077-W-004, ACS Power; update pending.
5.5.1	RIU power budget	CEI	The RIU power budget, as given in ST-ICD-08, Sections 3.7.1, shall be charged to the AC power allotment.	The RIU power consumption is incorporated into the overall ACS instrument power budget.	Ref. ACS Functional Block Diagram Ref. Waiver, ACS Power
5.5.2	Electrical Design	CEI			
5.5.2	Instrument modes	CEI	The AC electrical design shall be capable of exercising the instrument in all modes as defined by this specification.	The ACS instrument design, as verified by functional testing, provides all of the operating modes specified in the ACS CEI specification. Comprehensive functional testing demonstrates instrument compliance.	Ref: Software Test Plan for ACS, Appendix A Ref: ACS Abbreviated Functional Test See: #@Subsystem Functional Tests* for details.
					Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2	Electrical elements	CEI	It shall include all elements required to support the AC, including 1) spacecraft interface,	The function of the ACS HST interface is verified to be in accordance with currently maintained certified design approaches for all successful BATC HST instruments. Comprehensive functional testing demonstrates instrument compliance.	Ref: RIU-Expander Unit (EU) Connections and Designations Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2		CEI	2) conmand and control,	Command and control design and implementation is verified, and was done as specified in the requirements. Comprehensive functional testing demonstrates instrument compliance.	Command and control design and implementation is verified, Ref. SI Command List, Rev A, CDRL DM-01. Functional testing and was done as specified in the requirements. Comprehensive performs complete testing of the instrument's systems and capabilities. functional testing demonstrates instrument compliance.
5.5.2		CEI	 engineering and science data collection, 	Engineering and science data collection is verified as reliable, in accordance with the capabilities defined in the software data handling documentation. Comprehensive functional testing demonstrates instrument compliance.	Ref: SI Engineering Data (Telemetry) List, Rev. A, CDRL DM-02. Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2		CEI	4) thermal control,	Thermal control verified in the thermal model; active thermal control by heaters inside the enclosure, heat transport via heat pipes, thermo-electric coolers with WFC and HRC detectors. Comprehensive functional testing demonstrates instrument compliance.	Ref: External Cooling System Interface Requirements Ref: Thermal Controller Tester Certification Procedure Ref: 6-Thermal Controller Tested Certification Procedure Functional testing performs complete testing of the instrument's systems and capabilities.

				Verifi	Verification Status
	Regi	Requirement	lent		
Paragraph Number	Parameter	Source	Specification		Comments, Notes, and Document Titles
5.5.2			5) power configuration.	Power configuration is verified by design via relay control listing a STIS heritage design methodology. Comprehensive functional testing demonstrates instrument compliance.	Ref. LVPS Subsystem Functional Test Procedure Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2		CEI	6) electronic configuration, and	Electronic configuration (data and control paths, etc.) is verficed by design via relay, switched bus multiplexer, and control using a STIS heritage design methodology. Comprehensive functional testing demonstrates	Ref: Notes-use of STIS electronics for ACS, various notions [incl COMM board, shutter driver, more buffer memory). Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2		CEI	7) redundancy.	dancy includes both hardware and	Refs. Sourced in the STIS heritage for each subsystem. As is indicated by the range of classes in the documents cited in the Location and Type of Data column, many redundant system implementation and control regimen are used. See cited examples.
5.5.2	RIU	CEI	The AC electrical design shall incorporate the SI C&DH Remote Interface Unit (RIU) and	Comprehensive functional testing demonstrates instrument compliance. System electrical schematic (538680) and interconnect cable diagram (538500) identify redundany.	Functional testing performs complete testing of the instrument's systems and capabilities. 538500: Interconnect Cable Diagram, ACS 538680: System Diagram, Control Electronics
5.5.2	Life requirement	CEI	shall contain sufficient design margin to meet the life requirements of this specification.	The ACS component and subsystem test manifest includes tests for estimated life and verification of compliance with the life specification requirements. "No limited life articles have been identified in the ACS instrument design."	Analysis of the ACS design has considered wear-out or degradation with time (ground and five year flight mission). IN0077-116: Limited Life Matrix for ACS
5.5.2	Provisions	CEI	The AC shall provide for the 1) acquisition,	These verified ACS command and data format functions are handeled by STIS heritage SES boards, some with specific modifications for ACS hardware configurations. Comprehensive functional testing demonstrates instrument compliance.	Function of Support Electronics Section (SES) Boards for STIS and ACS
5.5.2		CEI	2) formatting,	These verified ACS command and data format functions are handeled by STIS heritage SES boards, some with specific modifications for ACS hardware configurations. Comprehensive functional testing demonstrates instrument compliance.	Function of Support Electronics Section (SES) founds for CLE Electronic and capabilities. The complete testing of the instrument's systems and capabilities.
5.5.2		CEI	3) buffering,	These verified ACS command and data format functions are handled by STIS heritage SES boards, some with specific modifications for ACS hardware configurations. Comprehensive functional testing demonstrates instrument compliance.	Function of Support Electronics Section (SES) Boards for STIS and ACS
5.5.2		CEI	4) annotation, and	These verified ACS command and use notinal tunctions are handeled by STIS heritage SES boards, some with specific modifications for ACS hardware configurations. Comprehensive functional testing demonstrates instrument compliance.	functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2		e	5) control of science data through the Science Data Formatter (SDF) interface as specified in ST-ICD-08, Sections 3.9.1, 3.9.3, and 3.13.	Soliware driven performance tests show that this requirement is met by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref. ACS Science Data Format Functional testing performs complete testing of the instrument's systems and capabilities.

		Requirement	ment	Ne.	Varification
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
5.5.2	Science data	CEI	The science data shall include, as a minimum, observation data and engineering data required to 1) annotate.	Software driven performance tests show that this requirement is met by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref. SI Science Data Header Format for the ACS, CDRL No. DM-06 Ref. SI Engineering Data (Telemetry) List, CDRL No. DM-02 [an actively updated content listing] Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2		CEI	2) calibrate,	Software driven performance tests show that this requirement is met by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref: SI Science Data Header Format for the ACS, CDRL No. DM-06 Ref: SI Engineering Data (Telemetry) List, CDRL No. DM-02 [an actively updated content listing] Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2		CEI	3) categorize, and	Software driven performance tests show that this requirement is ract by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref: SI Science Data Header Format for the ACS, CDRL. No. DM-06 Ref: SI Engineering Data (Telemetry) List, CDRL. No. DM-02 [an actively updated content listing] Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2		CEI	4) clearly identify the telemetered science data.	Software driven performance tests show that this requirement is met by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref: SI Science Data Header Format for the ACS, CDRL No. DM-06 Ref: SI Engineering Data (Telemetry) List, CDRL No. DM-02 [an actively updated content listing] Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2	Time code updates	СЕІ		Software driven performance tests show that this requirement is met by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref: ACS Time Management Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2	Buffer memory	CEI	least one	Software driven performance tests show that this requirement is met by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref. ACS CS Buffer Memory Management Functional testing performs complete testing of the instrument's systems ' and capabilities.
5.5.2	Instrumentation	CEI	rovide the necessary itoring and evaluation of IU interface as specified in ST- nd 3.13.	Software driven performance tests show that this requirement is met by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref. SI Engineering Data (Telemetry) List, CDRL No. DM-02 [an actively updated content listing] Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2	Monitoring	CEI	It shall provide continuous, on-board, real-time monitoring of sitical elements and C	Software driven performance tests show that this requirement is met by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref. SI Engineering Data (Telemetry) List, CDRL No. DM-02 [an actively updated content listing] Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2	Safe condition switching	CEI	vithout ns exist.	Software driven performance tests show that this requirement is met by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref. ACS RIU Command and Data List, incl comparison to STIS Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.2	Detectors		The AC design shall permit the WFC and HRC or SBC S detectors to be powered on when in the operate mode.	Software driven performance tests show that this requirement is met by the ACS instrument. Comprehensive functional testing demonstrates instrument compliance.	Ref: ACS RIU Command and Data List, incl comparison to STIS Functional testing performs complete testing of the instrument's systems and capabilities.
5.5.3	Electrical Redundancy	CEI			

			Verifi	Verification Status
	Redui	Requirement		
Paragraph Number	Parameter Source	Specification	Performance	Comments, Notes, and Document Titles
5.5.3	System redundancy	System redundancy shall be provided that is capable of controlling all AC internal subsystems and of interfacing with the RIUs and the SDF.	Software driven performance tests show this requirement is with met by ACS. Comprehensive functional testing demonstrates instrument compliance. System electrical schematic (538680) and interconnect cable diagram (538500) identify redundancy.	Functional testing performs complete testing of the instrument's systems and capabilities. 538500: Interconnect Cable Diagram, ACS 538680: System Diagram, Control Electronics
5.5.3	Redundant operation CE	The AC shall be capable of operating through either RIU and either SDF port.		Functional testing performs complete testing of the instrument's systems and capabilities. 538500: Interconnect Cable Diagram, ACS 538680: System Diagram, Control Electronics
5.5.3	Design	The electrical design shall use redundancy where practical and		Functional testing performs complete testing of the instrument's systems and capabilities. 538500: Interconnect Cable Diagram, ACS 538680: System Diagram, Control Electronics
5.5.3	Operational workarounds Cf	shall not preclude operational workarounds in the event of different failures on each of the redundant systems. CEI	of Software driven performance lests show this requirement is met by ACS. Comprehensive functional testing demonstrates instrument compliance. System electrical schematic (538680) and interconnect cable diagram (538500) identify redundancy.	Functional testing performs complete testing of the instrument's systems and capabilities. 538500: Interconnect Cable Diagram, ACS 538680: System Diagram, Control Electronics
5.6	Software	CEI		ACS Flight software implementation is heritage-based.
5.6.1	ltware Interfaces	Ref. IN0077-601. Control Section Flight Software Requirements Document for the Advanced Camera for Surveys (ACS), CDRL. No. DM-03.		IN0077-623, Rev A.: Software Design Document for C.S Software for the ACS." IN0077-323, Rev A.: Software Test Report of the ACS Flight Software."
5.6.1		Ref. IN0077-604, (Rev. A) Flight Software Requirements Document for the NSSC-1 Application Processor Software for the Advanced Camera for Surveys (ACS), CDRL No. DM-03. [Including specific items as listed below]	Γ.	
5.6.1	Partitioning	The AC flight software shall be partitioned between the NSSC-I application processors and the AC processors.	NSSC- Commonality with GHRS, STIS, and NICMOS as well as the results of the basic software design.	IN0077-623, Rev A."Software Design Document for CS Software of the ACS" "ACS Flight Software" PDL/81 V2.0 (vb),908 (http://hstplsrv.gsfc.nasa.gov/payload1/NSSC1/pdl/acsdrp1.html)
5.6.1	Operations control	The AC flight software in the NSSC-1 shall control the following operations: a) Monitor AC engineering data for unsafe conditions.		
193		I b) Retrieve and forward the HST Take-Data-Flag.		
5.6.1		c) Receive special engineering data from the AC instrument and respond to requests embedded in this special engineering data, including: 1) small angle maneuvers:	nent sering	
		I 2) posting Executive Status Buffer Messages		
5.6.1		I 3) commanding the AC to a safe or suspend state.		
2.0.1		d) Send macro commands to the AC instrument flight software.	oftware.	
7.0.1				

		Requirement	ment	Ver	Varification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
5.6.1	Functions	CEI	The light software in the AC shall perform the following functions, as a minimum: a) Receive, decode, and execute commands.	SW designed to meet all requirements for instrument control. All requirements for the Boot PQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A: "Software Design Doc for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software"
5.6.1		CEI	b) Control mechanisms.	SW designed to meet all requirements for instrument control. All requirements for the Boot PQT and the Operate PQT were successfully passed with no anomalies.	IN0077-523, Rev A. "Software Design Doc for CS Software of the ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software"
5.6.1		CEI	c) Control and acquire science data from the detectors.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-523, Rev A. "Software Design Doc for CS Software of the ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software"
5.6.1		CEI	d) Perform on-board processing of science data.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A. "Software Design Doc for CS Software of the ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software"
5.6.1		4	e) Command HST movements via the NSSC-1.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A. "Software Design Doc for CS Software of the ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software"
5.6.1		CEI	f) Format, buffer, and queue science data for output.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A: "Software Design Doc for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software"
5.6.1		-47	g) Collect, format, and process engineering data for output to the NSSC-1.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A: "Software Design Doc for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software"
5.6.1		50÷	h) Control and coordinate AC activities.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-523, Rev A: "Software Design Doc for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software"
5.6.1		СЕІ	i) Monitor engineering data for unsafe conditions and report to the NSSC-1 need to safe or suspend.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-523, Rev A: "Software Design Doe for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software"
5.6.1		CEI	j) Perform self tests.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-523, Rev A: "Software Design Doc for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software"
5.6.1		CEI	k) Collect error conditions for output to the NSSC-1.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-523, Rev A: "Software Design Doc for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software"
5.6.2	Software Design	CEI	Ref: IN0077-600, Flight Software Requirements Document for the Advanced Camera for Surveys (ACS), CDRL No. DM-03.		
5.6.2	Exercise modes	CEI	The AC Software design shall be capable of exercising the instrument in all modes to the performance and functional requirements as defined by this specification.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomaliea.	IN0077-623, Rev A."Software Design Document for CS Software of the ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software" SER ACS-SW-008b: "CS Hardware/Software Interface"

S.6.2 Commands S.6.2 Commands S.6.2 Instrument operation S.6.2 Data S.6.2 Cosmic Ray data corruption S.6.2 Anomalous Data	Parameter Parameter O It shall include the control of the contr	Specification I include all elements required to support the AC, fing receipt, decode, and execution of commands received the SI C&DH:		Vernication Status Comments, Notes, and Document Titles
agraph miber		Specification It shall include all elements required to support the AC, including receipt, decode, and execution of commands received from the SI C&DH control of instrument operations:	•	Comments, Notes, and Document Titles
		It shall include all elements required to support the AC, including receipt, decode, and execution of commands received from the SI C&DH control of instrument operations:	Performance	
		control of instrument operations;	SW designed to meet all requirements for instrument control. In All requirements for the Boot PQT and the Operate PQT were A successfully passed with no anomalies.	IN0077-623, Rev A."Software Design Document for CS Software of the ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software" SER ACS-SW-008b: "CS Hardware/Software Interface"
			SW designed to meet all requirements for instrument control. Its All requirements for the Boot FQT and the Operate FQT were A successfully passed with no anomalies.	IN0077-623, Rev A. Software Design Document for CS Software of the ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software" SER ACS-SW-008b: "CS Hardware/Software Interface"
		collection, formatting, processing, and output of engineering and science data to the NSSC-1 and SDF, respectively;	SW designed to meet all requirements for instrument control. In All requirements for the Boot FQT and the Operate FQT were A successfully passed with no anomalies.	IN0077-623, Rev A:"Software Design Document for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" SER ACS-SW-008b: "CS Hardware/Software Interface"
		performance of cosmic ray removal;		IN0077-623, Rev A."Software Design Document for CS Software of the ACS" SER SW-020 "Target Acquisition Component Test"
	ED	detection of instrument anomalies;	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A."Software Design Document for CS Software of the ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software" SER ACS-SW-008b: "CS Hardware/Software Interface"
	Cel	maintenance of the instrument in a safe state;		IN/077-623, Rev A."Software Design Document for CS Software of the ACS" IN/0777-323, Rev A: "Software Test Report for the ACS Flight Software" ISER ACS-SW-008b; "CS Hardware/Software Interface"
5.6.2 Memory management	cent	management of instrument memory; and	SW designed to meet all requirements for instrument control. It All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A."Software Design Document for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" SER ACS-SW-008b: "CS Hardware/Software Interface"
5.6.2 Self-diagnostics	CEI	self-diagnostics.	SW designed to meet all requirements for instrument control. It All requirements for the Boot FQT and the Operate FQT were All successfully passed with no anomalies.	IN0077-623, Rev A."Software Design Document for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software" SER ACS-SW-008b: "CS Hardware/Software Interface"
5.6.2 Capabilities	CEI	All flight software and operational code, with the exception of boot code, shall be capable of 1) modification.		IN0077-623, Rev A."Software Design Document for CS Software of the ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software"
5.6.2	CEI	2) paich-around.		IN0077-623, Rev A."Software Design Document for C.S Software of the ACS. IN0077-323, Rev A."Software Test Report for the ACS Flight Software"
5.6.2	CEI	 or complete replacement from the ground. 	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A.: "Software Design Document for C.S. Software of the ACS" IN0077-323, Rev A.: "Software Test Report for the ACS Flight Software"

|--|

		eauir	Requirement		
		ð		Ver	Verification Status
Paragraph Number	Parameter	Source		Performance	Comments, Notes, and Document Titles
5.6.2	Ground test	I .			
5.6.2		4			
5.6.2	SEIS	- -			
7:0:0	2110	-	shall be an integral part of the ground test system.		
5.6.2	SITS use	CEI	The SIT'S shall be used during the development, subsystem The ACS Abb integration, environmental tests, pre-delivery, and post-delivery with the SITS. [Unctional tests to develop and verify HST ground operation software systems	The ACS Abbreviated Functional Test operates in conjunction Ref. ACS Abbreviated Functional Test with the SITS.	Ref. ACS Abbreviated Functional Test
5.7	Operations	CE	+		
5.7.1	Operations Interfaces	CEI			
5.7.1	Operations	CEI	Operation of the AC shall occur in the same manner as the STIS and NICMOS.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A."Software Design Document for CS Software of the ACS" IN0077-323, Rev A.: "Software Test Report for the ACS Flight Software"
5.7.1	Command blccks	I	Time-tagged command blocks will be transmitted from the ground to the NSSC-1 on HST.		
			These commands shall be structured such that observations can		
5.7.1	Command structure	-	begin, terminate, and the pre-specified amount of data dispositioned at pre-specified times.		
5.7.1	Command effects on data	-	For observations, a pre-specified amount of data at the per- specified time shall be provided by the AC. [from STE-47.]		
	HST provisions	I	The HST will provide the following to the AC: a) RUU discrete commands.		
5.7.1			b) Observation and maintenance commands		
2.7.1		-	c) Spacecraft time.		
5.7.1		-	d) Target lock indicator.		
5.7.1		-			
5.7.1		I	 Transmission of engineering and science data to the ground. 		
7		\neg	g) Error handling.		
5.7.2	Operations Design	CEI			
5.7.2	Operating requirements	-	In addition to the basic function of conducting scientific observations, the AC design shall support the following operating requirements;		
5.7.2	Lock loss	CEI	a) Response to loss of lock.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A. Software Design Document for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software"
			b) South Atlantic Anomaly safe operation (WFC, HRC).		IN0077-623. Rev A: "Software Design Document for CS Software of the
5.7.2	SAA	CEI			ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software."
		1			

	Rec	Requirement	ment		Vernication Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
5.7.2	Transfers	CEI	c) Transfer of science data at commandable times.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A: "Software Design Document for CS Software of the ACS" IN0077-323, Rev A: "Software Test Report for the ACS Flight Software"
5.7.2	Configuration states	CEI	d) Hierarchical instrument configuration states and transitions between states.	SW designed to meet all requirements for instrument control. All requirements for the Boot FQT and the Operate FQT were successfully passed with no anomalies.	IN0077-623, Rev A. "Software Design Document for CS Software of the ACS" IN0077-323, Rev A. "Software Test Report for the ACS Flight Software"
4	ORI REQUIREMENTS ST-ICD-02E IRN- 119 05-May-2000	02E			
1.1	Axial Orbital Replacement	I	The purpose of Section 4.0 of the ICD is to define the interface requirements for the Axial Orbital Replacement Instruments (Axial ORIs), being developed for installation in the HST onorbit.		
1.4	Instruments	1	This is required to describe the actual HST optical characteristics and because a number of other interfaces have changed significantly since the original HST launch.		
4.2	General Interface Characteristics	02E			
4.2.1	Interfaces	H	The interfaces with the SIs consist of mechanical, optical, structural, and electrical, with the OTA; environmental (thermal, pressure, loads, contamination) with the		
4.2.1		I	OTA/SSM in combination, and functional (power, commands, telemetry, data, pointing control, structural, environmental, SSE) interfaces with the SSM.		
4.2.1		I	Selected SIs will have additional interfaces with the SSM/OTA via the Aft Shroud Cooling System/NICMOS Cooling System (ASCS/NCS) stated for installation on HST during SM3.		
4.2.1		I	The purpose of the ASCS/NCS is to enhance the science capabilities of axial SIs by providing additional cooling directly to the targeted SIs.		
4.2.1		I	The interfaces between the ASCS/NCS and the SISSM/OTA are defined and controlled by ST-ICD-98, except for mass properties which are identified in Section 4.5.3.1 of ST-ICD-02.		
4.2.2	Coordinate Systems	1	The HST and Axial SI coordinate systems shall be as defined in Figure 4.2-1.		
4.2.2	Definition	1	Initially, the SI to OTA and SSM Interface Requirements Document, STR-02, defined the HST (V1, V2, V3) coordinate system. The following paragraphs provide current definition information.		
4.2.2	Units	I	The SI coordinate systems, required to properly define the SI to the HST coordinate system, are defined in the following paragraphs. Station position values are given in inches unless otherwise noted.		
4.2.2.1	Axial SI Coordinate System	02E			
4.2.2.1	Definition	02E	An orthogonal coordinate system P1, P2, P3 is defined in Figure 4.2-1 for each of the axial S1 positions such that the P1 axis is parallel to the HST V1 axis with the S1 installed in the HST.	Compliance by design.	Ref: ACS Critical Design Review, 02-Apr-96. Ref: Advanced Camera, 535000

	ã	100	Demirement	IAN	Varification Status
		ə			
Number	Parameter	Sourc	Specification	Performance	Comments, Notes, and Document Titles
4.2.2.1	Axes rotation	I	The P2 and P3 axes rotate 90 degrees clockwise into each position, number one to two, two to three, three to four, and four to one.		
4.2.2.1	Coordinate origin	I	The origin, Point "A", of each SI system is the center of the forward SI to OTA registration fitting (see paragraph 4.3.7.1).		
4.2.2.1	SI mounting	02E	Each SI shall be designed to be capable of being mounted in any of the four quadrants as shown in Figure 4.2-1 if possible.	Compliance by design.	Ref. ACS Critical Design Review, 02-Apr-96. Ref. Advanced Camera, Enclosure, 535030
4.2.2.1	Specific mounting, design implications,	02E	However if specific design requirements necessitate a critical feature on one particular side of the SI, such as a thermal radiator with heat pipes,	Compliance by analysis.	Ref: Structural Analysis of the Radiator and Left Panels and Interface Plate Ref: Unit Loads Deflections of the optical instruments Due to Loads on the IF Plate
4.2.2.1	and placement specification	02E	then the SI must be capable of being mounted in either of two quadrants, the odd positions 1 or 3, or the even positions 2 or 4.	Compliance by design.	ACS fits in bay 3 Ref: Advanced Camera, 535000
4.2.2.1	COSTAR	·I	This requirement does not apply to COSTAR which is being designed specifically for bay 4.		
4.2.2.1	Interface requirements	02E	Each of the SIs must meet all of the interfaces as defined in this Verified as consistent with CDR requirements. section of the ICD.	Verified as consistent with CDR requirements.	Ref: ACS Critical Design Review, 02-Apr-96. See: ACS Pre-environmental Review, 28-Sep-1998.
4.3	Mechanical Interfaces	02E			
4.3	Definitions	H	The mechanical interfaces described in this section include the SI envelope, SI mounting, guiderail/OTA changeout guides, ground handling, space support equipment, EV crewmember handholds, alignment, in-orbit removal and		
4.3		ı	installation, electrical connector locations, SI accessibility, venting, pressurization, and purge interface definitions.		
4.3	Dimensions and Tolerances	02E	Unless otherwise noted, all dimensions are in inches and tolerances are as follows: • XXX = \pm 0.005 inches • XX = \pm 0.01 inches • X = \pm 0.05 inches • X = \pm 0.05 inches All dimensions of the above figures are applied at 21°C.	ACS instrument mechanical drawing dimensions are expressed [Ref: ACS Critical Design Review, 02-Apr-96. in inches with the tolerance formats specified in the requirement.	Ref: ACS Critical Design Review, 02-Apr-96. Ref: Advanced Camera, Enclosure, 535030
4.3	Interface surfaces	02E	nterface paints of no	ACS instrument structural interface surfaces meet the finish specifications in the requirement.	See: Enclosure Panels, Drawing Details
4.3	Helicoils and compatible bolts	02E	UNF Helicoils are compatible with UNJF bolts and are acceptable. The threaded length of a UNJF bolt is twice the diameter of the threaded bolt end.	Compliance based upon the following: 1. BASD does not use fine threads as standard practice. A review of the drawings will show that coarse threads are used with the appropriate insert and 1.5 dia engagement.	See "Performance" descriptions in the preceeding box. Compliance is by (1) design,
4.3		02E		 Structural analyses performed used coarse threads with appropriate engagement to demonstrate sufficient strength margins. 	(2) analysis, and
4.3		02E		3. Heritage with prior HST instruments: all (GHRS, COSTAR, STIS, NICMOS) have used coarse threads.	(3) heritage.

		1			
	Req	Requirement	nent	LIAN .	Vernication Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.3.1	SI Envelope 0	02E			
4.3.1	Static envelope 0	02E F	Each Advanced Axial SI shall fit within the envelope shown in Figure 4.3-1 of ICD-02E except for local intrusions and details as specified in Figures 4.3-3, through 4.3-18.		See waiver IN0077-W-005 (Approved: 11/18/97); See waiver IN0077-W-01Sabc (Approved: 11/16/01)
4.3.1	Dynamic envelope 0	OZE T	The dynamic envelope is shown in Figure 4.3-2.	Envelope OK, Block and Rail function retrofilted, found suitable.	See waiver IN0077-W-005; (Approved: 11/18/97); See waiver IN0077-W-015abc (Approved 11/16/01)
4.3.2	Mounting Points & Constraints 0	02E			
4.3.2	Mounting supports	-	Each SI is supported and constrained by the OTA at three points (A.B.C) shown in Figure 4.3-1 of ICD-02E.		
43.2	Constraint directions	0 8 11	Constraint directions applicable to each of the three points are as follows: Point Direction A ± V1 ± V2 ± V3 B ± V2 ± V3 C ± Perpendicular to the		
			Bisector of V2, V3		
4.3.2.1	Mount Point Fitting Interfaces 0	02E			
4.3.2.1		02E "	The OTA/SI Mount Point Fitting "A" is a ball-in-socket fitting whose interface is shown in Figure 4.3-3. The ball half of the fitting (shown in Figure 4.3-4) is mounted to the SI.	Compliance by design.	Mount point installation and functional test completed.
4.3.2.1	Fiting B	02E b	u The 6) is	Compliance by design.	Mount point installation and functional test completed.
4.3.2.1	Fiting C 0	7 02E C 11	e e unted to	Compliance by design.	Mount point installation and functional test completed.
4.3.2.1	GFE hardware 0	7 02E C 1c	The SI half of fittings A, B, and C (including bolts) are provided as government furnished equipment (GFE) to the SI Contractor(s) and are installed by the SI Contractor(s). Bolt locking is performed by the SI Contractor using GFE material and procedure.	Mount points installed as per requirement.	Mount point installation procedure and functional test completed. SI half of installation inspected and qualified as per above items included in this section.
433	Guiderail Interface	02E			
4.3.3	р ацасһтел		Guiderails attached to the OTA facilitate in-orbit removal and replacement of SIs. Two guide blocks and one guide strip are attached to each SI as shown in Figures 4.3-9, 4.3-10, 4.3-11, and 4.3-12.	ACS instrument drawing demonstrates compliance.	Top level drawing, 535000: Assembly, ACS Instrument
4.3.3	SI envelope	T 02E ir	, ř,	Satisfactory performance achieved.	See Waiver IN0077-W-015abc (Approved: 11/16/01)
4.3.3	Drawing details Ref. RVS #@Table 11* Ref. RVS #@Table 12*	I E So	Hughes Danbury Optical Systems (HDOS), formerly Perkin- Elmer (PE), drawing numbers for the guide blocks and guide strips are as follows: Table 11 (Ref.). Mounting details are given on the following HDOS drawings: Table 12 (Ref).		

		Requirement	ement		Varification States
,		ə			ilcation status
Paragraph Number	Parameter	Sourc	Specification	Performance	Comments, Notes, and Document Titles
4.3.3	GFE hardware	-	The two guide blocks, one guide strip and associated attach hardware for each SI are provided as GFE and are installed by the SI Contractor(s). Loads for these guide blocks and guide strips are specified in paragraph 4.5.1.8.2.		
4.3.4	Ground Handling Interface	02E			
4.3.4	Installation or removal	02E	All SIs shall be designed for installation or removal into test fixtures, during ground operations, in the vertical position (+PI pointing up), or in the horizontal position.	Complies by design.	Ref. ACS Critical Design Review, 02-Apr-96. Ref. Advanced Camera, 535000
4.3.4	Government GSE to S1 interface	-	Government provided ground support equipment (GSE) interfaces to the SI, in a statically determinate manner, at the GSE interface hard-points shown in Fig. 4.3-14.		
4.3.4	SI handling lift attitude	I	The GSE provides the capability to lift the SI from either the P1 horizontal or the P1 vertical attitude.		
4.3.4	Static deflection of the SI	02E		Performance meets required specification.	Ref: ACS Structural Math Model SE-04 IN/077-204 Ref: ACS Structural Model Correlation. Also see: Shipping Procedure for the Loading/Transit/Unloading of Space Telescope Axial Science Instruments (ASI)
43.4	Accessibility of interface points	02E	Each of the +P2 and +P3 faces of the SI, containing the GSE interface points, shall be readily accessible and unobstructed when the SI is presented to the GSE (either from its shipping container or receiving dolly as appropriate).	Complies by design.	Ref: ACS Chitical Design Review, 02-Apr-96. Ref: Advanced Camera, 535000
43.4	SI support by GSE attach points	02E	The SI design shall be such that either of the two GSE three- point attachment patterns supports the full SI weight in any attitude prior to installation into the SIPE or other GSE.	Complies by design.	Ref. ACS Critical Design Review, 02-Apr-96. Ref. Advanced Camera, 535000
4.3.5	Space Support Equipment Interface	02E			
4.3.5	Handle position	02E	The Space Support Equipment (SSE) interface on the SI for the axial SI positioning handle is given in Figure 4.3-15.	Space Support Equipment reviewed, checked, and found to be satisfactorily addressed as required.	Ref: ACS Critical Design Review, 02-Apr-96. Ref: Advanced Camera, 535000
4.3.5	Interface points EV Crew Member Handholds	02E 02E	Other SSE may be provided that interfaces with the GSE interface points as shown in Figure 4.3-14.	Space Support Equipment reviewed, checked, and found to be satisfactorily addressed as required.	Ref: ACS Critical Design Review, 02-Apr-96. Ref: Advanced Camera, 535000
4.3.6	Handbold attach points	02E	The EVA handhold interface for the first servicing mission Si, S COSTAR, is shown in figure 4.3-15a. For the second and subsequent servicing missions, the interfaces shall be as shown in Figure 4.3-15b.	Space Support Equipment reviewed, checked, and found to be satisfactorily addressed as required.	Ref. ACS Critical Design Review, 02-Apr-96. Ref. Advanced Camera, 535000
4.3.6	Locations	02E	These are for the attachment of handholds and/or equipment S tethers as shown in Figure 4.3-16.	Space Support Equipment reviewed, checked, and found to be satisfactorily addressed as required.	Ref. ACS Critical Design Review, 02-Apr-96. Ref. Advanced Camera, 535000
4.3.6	Loads	02E	Loads for these handholds and tethers are specified in A paragraph 4.5.1.8.1.	oad requirements.	Systems Engineering Report (SER) STR-035: Structural Analysis of the Enclosure
	GrE		Handholds and fasteners are provided as GFE and are installed by the SI Contractor.		
4.3.7	Alignment	OZE			
4.3.7	Values	-	Alignment values in this section include all mechanical, latching mechanism, thermal, and optical effects.		
4.3.7	Stability	-	The alignment stability applies to any point in the data field of view.		

		1		Verif	Verification Status
	Rec	Requirement	nent		
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.3.7.1	Alignment of SIs within the OTA	02E			
4.3.7.1	Coordinate origin Ref: RVS #@Table A* for (table) content	02E	The origins of the four axial SI coordinate systems, mount points "A", are located at the following HST coordinates: (table)	Complies by design.	Ref: ACS Critical Design Review, 02-Apr-96. Ref: Advanced Camera, 535000
4.3.7.1	Centerline orientation Ref: RVS #@Table B* for (table) content	02E	entations of the centerlines of the A and C mount points spect to the HST coordinates as measured in a positive on from the +V2 axis are as follows: (table)	Complies by design.	Ref: ACS Critical Design Review, 02-Apr-96. Ref: Advanced Camera, 535000
4.3.7.1	Axes	, <u></u>	The SI P1 axis is parallel to the HST V1 axis within 30 arc sec. The SI P2 and P3 axes are oriented by the A and C mount points, as defined above, to within 40 arc sec.		
4.3.7.2	Short term stability of OTA/SI alignment (24 hours)	02E			
4.3.7.2	Maximum displacement	-	During science mission observations by an SI, the maximum displacement of the SI registration fitting "A" with respect to the OTA focal surface is ± 0.3 µm in V2 or V3 and ± 7.5 µm in V1 during any single exposure period.	Compliance is by commonality of design with GHRS, COSTAR, STIS, and NICMOS.	Ref. AC'S Critical Design Review, 02-Apr-96. Ref. Advanced Camera, 535000
4.3.7.2	Single exposure period	-	The single exposure period is the entire period of time that the HST is registered on a target and is receiving information.		
4.3.7.2	Registration fitting rotation	-	Maximum rotations of any SI about its registration fitting "A", constrained by the OTA focal plane structure, are less than ± 0.2 arc-sec. during any single exposure period.		
4.3.7.2	Axial separation	-	Axial separation between surfaces A and E. (Figure 4.3-5) shall not change by more than 0.050 inches during any HST constant orientation 24 hour period.		
4.3.7.2	Axial length change	_	If the axial SI is held in single mode (operational or hold) for this period the axial length change shall be less than 0.040 inches.		
4.3.7.2	Sink temperature change	I	The maximum change in SI average effective sink temperature during this period shall be as specified in paragraph 4.6.1.1.3.2.		
4.3.7.2	Focus change	1	OTA focus change during any 24 hour period is less than 250 microns (3 sigma).		
43.73	Long Term Stability of OTA/SI	02E			20 O
4.3.7.3	Registration fitting displacement	I	Long term stability is defined as that which is applicable to pointing repeatability. The maximum displacement of the SI registration fitting "A" with respect to the OTA focal surface is ± 1 µm in V2 or V3 and to within ± 7.5 µm in V1.	Compliance is by commonality of design with CHRSs. COSTAR, STIS, and NICMOS.	Ref. Advanced Camera, \$35000
4.3.7.3	Registration fitting rotation	-	Maximum rotations of any axial SI about its registration fitting "A" constrained by the OTA focal plane structure, are less than ± 0.5 are-sec.		
4.3.8	Orbit Removal and Installation	-	All Sis are designated as Orbit Replaceable Units (ORUs).		
4.3.8	Removal and installation	-	Removal and installation of each axial SI is primarily along the V2 axis and this does not require the removal of any other scientific instrument.		
				40	

		i	Decuirement	Vari	Varification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.3.8	Interface alignment	I	The OTA/SI interface is indexed to the OTA structure to provide the necessary alignment within allowable tolerances without in-orbit adjustment.		
4.3.8.1	Crew and SI Safety During Change-out	02E			
4.3.8.1	Shields and covars	02E	Shields or covers shall be provided by the SI for non- ruggedized portions and external optical elements of the axial SI to protect them from damage by an EV crew member and from contamination during in-orbit changeout operations.	Compliance is by commonality of design with GHRS, COSTAR, STIS, and NICMOS.	ACS is designed with the same external requirements that these instruments, all HST/STS compatible, were designed with.
4.3.8.1	Exposed corner; and edges	02E	All corners and edges exposed to the EV crewmember shall have 0.25 inch minimum radius. These radii can be replaced with a 45 degree chamfer with leg dimension equal to the specified radius with the resulting edges broken to 0.06 inch radius.	Commonality with BASD HST heritage instruments.	ACS is designed with the same external requirements that these instruments, all HST/STS compatible, were designed with.
4.3.8.1	Protrading edges	02E	Prorruding edges of thickness less than 0.25 inches exposed to the EV crewmember shall have full radius or shall be rolled or curled.	Commonality with BASD HST heritage instruments.	ACS is designed with the same external requirements that these instruments, all HST/STS compatible, were designed with.
4.3.8.1	Access holes and openings	02E	e dimensional range of 0.75 to exposed to the EV crewmember	Commonality with BASD HST heritage instruments.	ACS is designed with the same external requirements that these instruments, all HST/STS compatible, were designed with.
4.3.8.1	Small protrusions	02E	Small protrusions of less than 0.187 inches shall be rounded to a radius of 0.06 inches.	Commonality with BASD HST heritage instruments.	ACS is designed with the same external requirements that these instruments, all HST/STS compatible, were designed with.
4.3.8.1	Mismatched surfaces	02E	Edges of exposed mismatched surfaces (of less than 0.187 inches) shall be either smoothed and rounded to 0.06 inch radius, chamfered to 0.06 inch by 45 degrees or covered by an appropriate material.	Commonality with BASD HST heritage instruments.	ACS is designed with the same external requirements that these instruments, all HST/STS compatible, were designed with.
4.3.8.1	Exterior MLI	02E	When exterior MLI is used on the axial SI, the outer layer must be 0.002 inches minimum.	Complies by design.	Ref: ACS Critical Design Review, 02-Apr-96.
4.3.8.1	MLI vent holes	02E	Vent holes in the exposed surface of MLI shall be less than 0.4 inches in diameter to prevent snagging.	Complies by design.	Ref: ACS Critical Design Review, 02-Apr-96.
4.3.8.1	MLI removal cr alteration	02E	SI changeout shall not require MLI removal or alteration.	Complies by design.	Ref: ACS Critical Design Review, 02-Apr-96.
4.3.8.1	MLI thickness	02E	The total MLI blanket thickness shall be included in design solutions to meet the edge and corner requirements for crew safety.	Complies by design.	Ref: ACS Critical Design Review, 02-Apr-96.
4.3.9	Electrical Connector Locations	02E			
4.3.9	Location	1	g .		
4.3.9	Waiver of requirement for ACS	02E	A-A and	IN0077-D-001, Connector Keyway Alignment Interface is the same as for FOC.	Ref: Dev., Connector Keyway Alignment Interface.
4.3.9	Description of keyway alignment	-	٦		
4.3.9	ACS keyway rotation requirement	02E	ACS keyway Rotation will be +/- 45 to the P1 direction to match the FOC keyway position.	IN0077-D-001, Connector Keyway Alignment Interface is the same as FOC. Special EVA awareness required, because it is different from the other instruments.	Matching the current FOC keyway alignment will reduce possible crew confusion during EVA. ACS will be the same as the FOC to be removed. Refer to FOC waiver 017 and CCBD AN2-01-1809.
4.3.9	ACS consistency with keyway marking	02E	keyway marking.	Same as for FOC.	Ref: Dev., Connector Keyway Alignment Interface.
4.3.9	GFE connector	1	A test connector cover is provided as GFE.		
4.3.9.1	Cround Strap Location	UZE			

				2F - 2A	And the second s
	Req	Requirement	nent		Ication Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.3.9.1	Ground strap	IS			
4.3.9.1	Ground strap attachment fitting	02E 1	A Crew Aid Ground Strap Attachment Fitting, which contains a captive bolt for securing the ground strap, is also shown in Figure 4.3-17. The Crew Aid Ground Strap Attachment Fitting is supplied as GFE and is installed by the SI contractor.	The ground strap attachment is on the specified panel, and functions as required.	Drawings indicate compliance: 535204, Panel, Connector - Enclosure 535030, Assembly, Enclosure - ACS
4.3.10	(Deleted)	02E			
4.3.11	Pressurization & Purge	02E			
4.3.11		02E f	-P1 02E.	The littings are confirmed as in-place.	Drawings indicate compliance: 535189, Panel, Modification, Aft Bulkhead 535030, Assembly, Enclosure - ACS
4.3.11	Purge fitting location	-	The purge fitting may be located on each SI as shown in Figures 4.3.17 and 4.3-18. Other configurations for the purge fitting, such as on a removable contamination cover on the forward end of the SI, will be considered on a case by case basis.		
4.3.11	Purge gas	OZE S	Specification of the purge gas is the responsibility of the SI contractor. Purge gas with a specification greater than Grade B shall be supplied by the SI contractor.	The purge gas subsystem functions as required.	ACS purge gas is specified as grade B. See Ref: paragraph 7.7.2, ACS TV/TB test plan P-442-1520.
4.3.12	Cryogenic System	-	For any SI using, cryogenic cooling the options for the location of the cryogenic exhaust vents, fill tubes and associated components are shown in Fig. 4.3-19 of ICD-02E.		
4.3.12.1	Venting System	02E			
4.3.12.1	Discharge of spent cryogen	-	The venting system shall discharge the spent cryogen to space and shall not leak any cryogen into the aft shroud.		
4.3.12.1	Bulkhead adapters	1 E	The HST aft shroud bulkhead has two adapters. Either one can be removed in orbit and replaced with components needed by an SI for venting cryogen.		
4.3.12.1	Vent port locations	1	Figure 4.3-20 shows the aft shroud locations of the cryogenic vent ports.		
4.3.12.1	Vent port details	1	Figure 4.3-21 shows the details of the cryogenic vent ports which are in the aft bulkhead of the HST.		
4.3.12.1	Venting System Design	1	The venting system shall be designed and supplied by the SI contractor.		
4.3.12.1	System performance	3 1	The system shall satisfy its performance requirements during ground testing and after delivery and installation into the orbiting HST.		
4.3.12.1	Minimizing EVA time	-	The design shall put high priority on minimizing the EVA time required to connect the system to the HST.		
4.3.12.2	Hold Time	-	The cryogenic system shall be designed and serviced so as to require no operational venting until after installation of the SI and its vent line in the HST.		
4.3.12.3	Safety	02E			
4.3.12.3	Safety category	-	The cryogenic system shall meet Category 1 safety requirements for shuttle and astronaut safety.		
4.3.12.3	Fault tolerance	-	The system shall be two fault tolerant to loss of the HST mission.		
4.3.12.4	Light Leaks	-	The venting system shall be light tight.		

Toll	
	-

	A.	quire	Requirement	Verifi	Verification Status
Paragraph Number	Parameter	Source	Specification		Comments, Notes, and Document Titles
4.3.12.5	Angular Momeritum	1	To a first order the discharge of cryogen shall not impart angular momentum to the HST.		
4.3.12.6	Material Compatibility	I	In order that cryogen venting shall not degrade coatings or any other materials used in the HST, the cryogens selected shall be approved by the HST Project.		
4.3.13	Aft Shroud Cooling System/NICMOS Cooling System	I	SIs targeted for additional cooling will have mechanical interfaces with the ASCS/NCS as defined in ST-ICD-98. Where ground installed intermediate hardware is required to achieve this interface, such hardware shall be GFE.		
4.4	Optical Interfaces	02E			
4.4	Prescription	1	Conic constant K = -1.0139 ± 0.00025; Intervertex Distance: 4907.01 ± 0.005		See: CEI Paragraph 4.2
4.4	Prescription details	1	The above optical prescription, while complete for interface tasks, is incomplete in other details. See ST-ICD-02E for remainder.		See: CEI Paragraph 4,2
4.4.1	Optical Throughput	02E	The OTA nominal spectral throughput is given in Figures 4.4-2 Performance meets required specification, and 4.4-3 of ST-ICD-02E.		Ref: ACS Critical Design Review, 02-Apr-96 See: ACS Pre-environmental Review, 28-Sep-1998.
4.4.2	Pupil Properties	02E			
4.4.2		I	The OTA entrance pupil shape is as shown in Figure 4.4.4.		
4.4.2	Exit pupil Ref. RVS #@Table C*	Ħ	There are three mechanical elements which limit the incoming beam as shown in table 4.4-1. All values in this table are in inches. (Ref. Table C for table 4.4-1 data).		
4.4.3	Focal Plane Properties	02E			
4.4.3	Field format	I	The focal plane scientific data field format is shown in Figure 4.4-5 except for the deviation given in Figure 4.4-6.		
4.4.3	Field curvatures for sagittal and tangential foci	1	The field curvalure characteristics are found in Figure 4.4-7.		
4.4.3	Field curvature and astigmatism values	I	The field curvature and astigmatism values are given in table 4.4-2.		
4.4.4	Stray Light	1	OTA stray light from a full sunlit earth whose limb is no less than 70° from the optical axis shall be no greater than one star of 23rd visual magnitude per arc-second in the f/24 focal plane from all sources.		
4.4.4	HST design and COSTAR degradation limit	-	In addition the presence of COSTAR does not degrade the OTA stray light performance. The HST stray light design is shown in Figure 4.4-8.		
4.4.4	Central surface reference flat	-	Note that the center of the secondary mirror contains an area of 24 mm in diameter which was figured to be flat and extremely parallel to the back surface of the secondary mirror.		
4,4,4	OTA central alignment reticle	1	A relicle was then eiched on that surface to be used in the OTA alignment.		
4.4.4	Reference flat coating specification	-	The flat was coated with the same coating as the secondary mirror, Al (650 Angstroms) / MgF2 (275 Angstroms).		
4.4.4	Reference surface drawing identification	-	For additional information refer to PE drawing 679-1873-005.		

		-		Verifi	Verification Status
	Re	Requirement	nent		
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.4.4	Intended purpose for the reference flat	1	The flat, which was used in the build and alignment of the OTA on the ground, reflects light sources or reflections in the focal plane area of the OTA.		
4.4.4.1	Aft Shroud Light Leak Environment	1	The SSM aft shroud structure, with insulation installed, limits internal radiant energy from light leaks (exclusive of that entering the telescope aperture) to		
4.4.4.1		1	1x10 ⁻³ watts/m ² , measured with an S-20 photocathode (approximately 1x10 ⁻³ lumens/m ³). This fight level applies at the external surfaces of the S1s where they directly face the SSM structure.		
4.4.4.1	Aft Shroud Light Leak	02E	Each SI shall be an opaque enclosure except for its optical entrance aperture and vent opening(s).	Outboard vent of aft bulkhead showed a 1% light leak for WFC detector. No other "leaks" were observed in the instrument.	Data presented here is from the "WFC" page. [adcam_pha_jhu.edu/instrument/calibration/results/by item/stray light] See "Enclosure Light leak Characterization." "ACS enclosure is completely light tight." Statement from "WFC#4:Gain, Linearity. Saturation"
4.4.5	Infrared Background (Deleted)	02E			
4.5	Structural Interface	I	See: ACS Pre-environmental Review, 28-Sep-1998.	Structural Analysis results are tabulated as referenced.	See: ACS Pre-environmental Review, 28-Sep-1998.
4.5.1	Loads	1	See: ACS Pre-environmental Review, 28-Sep-1998.		
4.5.1	Operation	02E	SIs shall operate within specifications after exposure to the ground, launch, ascent and landing loads.	Loads performance of components, subsystems, and the ACS instrument overall is described in the structural design model. See ST-ICD-02E paragraph 4.12.1 detail.	Ref. ACS Structural Math Model SE-04 IN0077-204 Ref. ACS Structural Model Correlation
4.5.1	Servicing	-	For servicing mission the loads environment of the SI are no greater than for initial launch, ascent and landing in the HST.	Tests referenced in the CEI affirm performance has been maintained through a variety of loads testing runs.	Servicing missions subject payloads to loads less than those cited as above for launch, ascent, and landings.
4.5.1.1	Ground Handling Loads	-	The ground handling limit loads are 2 g's applied at the SI c.g. and act in any direction.		
4512	St Latching Loads	02E			
4.5.1.2	Preload compressive force		Each Axial SI shall be designed to withstand a preload compressive force of 800 + 50 lbs., applied at point "B" toward point "A".	ACS SI structure and optical bench shows acceptably low deformation under preload. Analysis of enclosure demonstrates verification.	Systems Engineering Report (SER) STR-035: Structural Analysis of the Enclosure
4.5.1.2	Spring constant	I	The spring constant of the preload mechanism at point "B" is 330 pounds/inch maximum. Preload variation during any 24 hour period in-orbit is ± 25 lbs.		
4.5.1.2	Residual moments	1	Residual moments before rotation at Point "A" is 23 ft-lbs maximum, and at point "B" is 40 ft-lbs maximum.		
4.5.1.2	Maximum moments (neighboring SI)	I	The maximum moment variation at point "A" for any axial SI due to structural/thermal deformation of a neighboring SI is less than 0.25 ft-lbs in any 24 hour period.		
4.5.1.2	Maximum moments (OTA FPS)	I	The maximum moment variation at point "A" for any axial SI due to structural/thermal deformations of the OTA FPS is less than 0.25 fi-lbs in any 24 period.		
4.5.1.3	Ground Transportation Loads	ı	When the SI is installed in the Axial SIPE or in a shipping container, the SI experiences ground transportation loads no greater than those loads given in paragraphs 4.5.1.4 to 4.5.1.7.		
4.5.1.4	Liftoff and Landing Overall Load Factors	02E			

		equire	Requirement	Veril	Verification Status
Paragraph Number	Farameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.5.1.4	SI load factors Ref: RVS #@Table 13* for table 4.5-1 content	02E	The SI liftoff and landing limit load factors for the SIs are given in table 4.5-1. See: ACS Pre-environmental Review, 28- Sep-1998.	Analysis of both the enclosure and the optical bench demonstrate verification.	Ref: Systems Engineering Report (SER) STR-035: Structural Analysis of the Enclosure SER STR-012: ACS Optical Truss Structural Analysis
4.5.1.4	Design analysis	02E	These load factors act through the c.g. They must be multiplied by appropriate design safety factors per GEVS-SE. Sec: ACS Pre-environmental Review, 28-Sep-1998.	Analysis of both the enclosure and the optical bench demonstrate verification.	Ref: Systems Engineering Report (SER) STR-0355 Structural Analysis of the Enclosure SER STR-012: ACS Optical Truss Structural Analysis
4.5.1.5	Emergency Landing Overall Factors Ref: RVS #@Table 13* for table 4.5-1 content	02E	The SI shall survive the emergency loads given in table 4.5-1. These loads act through the SI c.g.	Analysis of both the enclosure and the optical bench demonstrate verification.	Ref: Systems Engineering Report (SER) STR-035: Structural Analysis of the Enclosure SER STR-012: ACS Optical Truss Structural Analysis
4.5.1.6	Random Mechanical Vibration	02E	Random mechanical vibration levels at the registration interface (mount points A, B, & C) are given in Figure 4.5-1 of ICD-02E and apply only to components directly coupled to these points.	tems subjected to these tests are known to have passed.	Ref: ACS Structural Verification Matrix (Oct 21, 1996) See: ACS Pre-environmental Review, 28-Sep-1998.
4.5.1.6	summary review	-	See: ACS Pre-environmental Review, 28-Sep-1998.		
4.5.1.7	Acoustic Loads	02E	e given in 28-Sep-	Acoustic test was conducted without problems: "no components (experienced) levels higher than the previous component proto-flight random vibration tests," (Ref. SER STR-046, 9/27/01)	Acoustic environment: GSFC testing: WOA #8416 (3/27/01) See: Top level CertLog, CL 9726B Many items have passed at the Subsystem level.
4.5.1.8	In Orbit Loads	-			
4.5.1.8.1	Maximum EV Crew member Applied Loads on Hancholds & Equipment Tethers	02E	4)	Structural performance of hand holds and tethers is reportedly satisfactory. Analysis of the enclosure demonstrates verification.	Ref. Systems Engineering Report (SER) STR-035: Structural Analysis of the Enclosure
4.5.1.8.2	SI Guiderail Loads	02E	e guide blocks and guide strips ted to a crew member imposed	Analysis of the enclosure demonstrates verification.	Ref. Systems Engineering Report (SER) STR-035: Structural Analysis of the Enclosure
4.5.1.8.3	Connector Loads Structural Characteristics	02E	The maximum load applied to the connector interface is 300 lbs A ultimate in any direction with a combined torque of 50 in-lbs in the plane of the connector plate.	Analysis of the enclosure demonstrates verification.	Ref: Systems Engineering Report (SER) STR-035: Structural Analysis of the Enclosure
	Axial Suffness	02E	Axial stiffness (in P1 direction) of the S1 structure between A support points "A" and "B" shall not be less than 75000 lbs/in. St	Analysis of the enclosure demonstrates verification. Stiffness of ACS is 113,000 lbs/in	Ref: Systems Engineering Report (SER) STR-035: Structural Analysis of the Enclosure
4.5.2	Lateral Stiffness	02E	The optical bench and exostructure lateral stiffness shall be A such that the generalized mass of the first two lateral modes de taken individually fall below the curve of 4.5-3.	Analysis of both the enclosure and the optical bench demonstrate verification.	Ref. Systems Engineering Report STR-012: ACS Optical Truss Structural Analysis Ref. Systems Engineering Report (SER) STR-035: Structural Analysis of the Encioure.
4.5.2	Generalized mass	I	An equation providing an evaluation of generalized mass is presented in the text of ST-ICD-02E, paragraph 4.5.2 in terms of the eigenvectors of the given modes. Vibration modes are calculated neglecting flexibility in the latching mechanisms.		
4.5.2	SI / HST Mode susceptibility	02E	When all SIs are installed in the HST, the combined OTA/SI Religious mode is 18 Hz. An SI shall not have any mechanism be operating element that will excite this 18 Hz mode.	Results of modal surveys for both the enclosure and the optical Secure and analysis indicate Grequencies > 35 Hz.	Results of modal surveys for both the enclosure and the optical SER STR-039; ACS Optical Bench Modal Survey and Structural Model bench demonstrate compliance. Both test and analysis indicate Correlation SER STR-040: ACS Enclosure Modal Survey and Structural Model Correlation
4.5.2.1	SVOTA Latch Flexibility Ref: RVS #@Table D* for (lable) content	02E	The nominal stiffness characteristics that include both sides of An the OTA contractor supplied latches at Points "A", "B", and "C" are as follows: (table).	Analysis of the enclosure demonstrates verification.	Systems Engineering Report (SER) STR-035: Structural Analysis of the Enclosure

				hiev	Verification Status
	Req	Requirement	nent		
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.5.3	Mass Properties (02E	T		
4.5.3.1	Weight	I	The maximum weight of a single axial SI, not including the GFE listed below, is normally 700 lbs. (318 Kg)	The instrument qualifying weight is 866 lb. The fly-away weight is 875 lb. Another waiver covers the C.G.	
		, ,			
4.5.3.1	Maximum Weight	-	P1=-20 to -50 inches, P2=12 ±5 inches. P3=12±5 inches. PHowever, since the maximum weight of an SI is actually immediately by the allowable latch loads, which are	excluded (as listed). The C.G. restrictions are detailed below in paragraphs 4.5.3.1 and 4.5.3.2.	
				As above. See waiver IN0077-W-003A or later.	See: "Report on ACS Mass Properties Measurement Test in March, 2001"
45.3.1	Weight, C.G. dependent	02E	be increased to 760 lbs (345 kg) if ge:	Closed. The revised warver application and approval will be submitted at the General Acceptance Review (GAR).	(188ued 5/42/01).
	exception		P1=-20 to -50 inches, P2±12 ±1 inches, P3= 12 ±1 inches.		
		Ī	If the center of gravity of the SI is not covered by either of the		
4.5.3.1	Alternate Weight Limit Determination Method	02E	above cases then the following procedure shall be used to determine the maximum weight.		
		Ť	Using the larger absolute magnitude of the deviation of the P2		
4.5.3.1		_	or P, value from the nominal 12 inch location as a parameter, Pl. a linear interpolation shall be made to determine the		
		1	maximum weight of the SI		
			P can be stated mathematically as: Let: delta P3 = P3 - 12		
4531		-	delta P2 = P2 -12		
			 If: delta P3 is greater or equal delta P2 Then: P = delta P3 		
			Else: P = delta P2.		
4.5.3.1		-	As a design aid, the maximum weight of an SI is plotted as a function of P in Figure 4.5-4.		
4.5.3.1	Measure Instrument Weight	02E	The weight of each SI shall be measured to within \pm 5 lbs. prior Expected to be 866 lbs. \pm 5 lbs. no installation into HST.	Expected to be 866 lbs. ± 5 lbs.	Bascline Weight given. Fly-away weight -> 875 lb.
			lied hardware items which are not	Flight hardware weighing 22.31 lb not present during test P-	See: "Report on ACS Mass Properties Measurement Test in March, 2001"
4.5.3.1	Accounting for weight of GFE supplied hardware	02E	included within the SI weight budget, but which must be accounted for in the SI mass properties reporting are:	442-1514	(usauco 2, 2200). Total weight of non-flight hardware included for this test was 6.55 lb. See IN0077-W-003A and updates.
		آ	1		
4.5.3.1		OZE	Ground Strap & Attachment Itting 0.5 lbs. Guide Strips & Guide Blocks 3.0 lbs.		
			Rear registration fitting 5.7 lbs.		-
4.5.3.1	•	02E	gistration many		
			Purge Fitting 0.2 105. Axial SI Handles 12 155.		
		360			
4.5.3.1			ASCS Interface Plate for bay 4 SI TBD lbs. Heatpipe Interface Plate for bay 1 SI TBD lbs.	,	
4.5.3.2	Center of Gravity	02E			Winner anniversity and the Weight Hotel as constrained by C G
4.5.3.2	Axial center of gravity	02E	Each axial SI c.g. shall be within the volume defined by the coordinates: $P_1 = -20 \text{ in ches. } P_2 = 12 \pm 5 \text{ in ches. } P_3 = 12 \pm 5 \text{ in ches. } P_$	Acceptable, pending linal ventication by single net weighing with allowance made for tare weight.	Walver application storing of the cight, instead as constrained by every measurement. Waiver IN0077-W-003A approved 11/5/97.

			Requirement		Control Control
Daragraph		eo E			Vernication Status
Number	Parameter	Sour	Specification	Performance	Comments, Notes, and Document Titles
4.5.3.2	Location of center of gravity	02E	The location of the c.g. for each SI shall be determined and marked on the +P2 and +P3 surfaces to within \pm 0.25 inches of true location prior to installation in the Axial SIPE.		Acceptance is pending final check.
4.5.3.2	Marking of the c.g. location	02E	The c.g. marking symbol is described in ST-ICD-02E paragraph 4.5.3.2; the size is given as 1" diameter for the marking symbol, used with 1" high block letters "CC".	C.G. Marked as required. Acceptance is pending final check. Cert Log # 9726B,	See photo library. Operation # R1484.127
4.6	Environmental Interface	I	The SI environmental conditions of thermal, contamination, magnetics, SSM internal pressure, ionized particle radiation, meteoroid and humidity are specified below.		
4.6.1	Thermal Interfaces Operational Thermal Interface	02E 02F			
4.6.1.1	Thermal environment	02E	The thermal environment for in-orbit HST science mission operation is controlled by a balance between the heat generated by the combined OTA/SSM and SIs, and the heat radiated to space by the SSM aft shroud.	Thermal analysis shows instrument compliance when operating within this specified thermal environment.	Ref: Pre-Thermal Balance Design and Analysis Thermal Report. Ref: Final Thermal Design & Analysis Report.
4.6.1.1	Thermal radiation	02E	Thermal radiation is permitted from the SIs in either or both ± V2 and ± V3 directions from the SI +P2 and/or +P3 faces within the limits discussed in paragraph 4.6.1.1.3.1 below.	Thermal analysis shows instrument compliance when operating within this specified thermal environment.	Ref. Fre-Thermal Balance Design and Analysis Thermal Report. Ref. Final Thermal Design & Analysis Report.
4.6.1.1.1	Mount Point Conductance.	02E			
4.6.1.1.1		I	At each of the three attachment points (A, B, C in Figure 4.3-1) the following conditions are maintained during science orbital operations:		
4.6.1.1.1		I	(a). The temperature at the OTA side of each attachment fitting is within the range $21^{\circ}C \pm 1^{\circ}C$.		
4.6.1.1.1	Ref. RVS #@Table E* for (table) content	1	(b). The maximum effective thermal conductance of each attachment fitting provided by the OTA is as follows: (table) Figure 4.6-1a shows how this interface should be represented in the thermal model.		
4.6.1.1.1		02E		Thermal analysis shows instrument compliance when operating within this specified thermal environment.	Ref. Final Thernal Design & Analysis Report.
4.6.1.1.1		02E	the variation during a single exposure (or 24 hours, which ever its less) shall be a maximum of 4°C. The 4°C limit applies to the operating SI and only if the operating SI requires full OTA focus and image stability compliance.	Thermal analysis shows instrument compliance when operating within this specified thermal environment.	Ref: Final Thermal Design & Analysis Report.
4.6.1.1.2	Electrical Cable, Ground Strap, Vent Line and Purge Line Conductances.	02E			
4.6.1.1.2	Cable/ground strap effective conductance	I	Cable effective conductances (K) are less than or equal to 0.1 watt/°C. Ground strap effective conductances (K) are less than or equal to 0.1 watt/°C.		Note: Cables are GFE; See Table 26 for supplier.
4.6.1.1.2	Ven/purge linz effective conductance	-	Vent line conductance (K) shall be determined by the SI needing the vent line. The purge line effective conductance, if connected, is equal to or less than 0.01 W/°C.		

				iliteA	Verification Status
	Req	Requirement	nent		
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.6.1.1.2	Thermal model	I A	These conductors represent the heat path between the SI and Aft Shroud environment. Figure 4.6-1b shows how these interfaces should be represented in a thermal model of the SI.		
4.6.1.1.3		02E			
4.6.1.1.3.1	Obscurations and Surface Characteristics.	02E			
4.6.1.1.3.1	FPS thermal barrier	-	The FPS thermal barrier and FPS obscurations and surface characteristics are shown in Figure 4.6-1.		Ulamandi anima and alona anima basanili.
4.6.1.1.3.1	Views	-	The ± V3 direction view of the SI enclosure to the SSM wall is obscured by the FPS, and the -V3 direction view is obscured by the equipment shelf containing FHSTs and RSUs, which are included in the effective sink temperatures.		Note that design configurations must not place acuve mentioning unevaluated components anywhere near HST's existing thermally radiative hot spots.
4.6.1.1.3.1	Radiating surfaces	02E	рэ		Initial thermal vacuum testing in the spring of 1999 showed no indication of thermal sensitivity to the placement of ACS subsystems.
4.6.1.13.1	Thermal barrier	-	Figures 4.6-1c, d. e, and f show how the FPS thermal barrier should be represented in the thermal math model.		
4.6.1.1.3.1	Surface property requirements	02E	The SIs exterior structure temperature and surface property requirements during HST science mission operations are shown in Figure 4.6-2.	ACS subsystems are proven as qualified in TV tests.	The use of MLI on interior surfaces follows a successful STIS heritage. Ref. Final Thermal Design & Analysis Report.
461132	Effective Sink Temperatures.	02E			
4.6.1.1.3.2	Radialive environment		The radiative heat transfer environment in the SSM aft shroud compartment is defined in terms of "effective sink temperatures". This temperature represents all thermal contributions including the -V3 equipment shelf, as a single		
4.6.1.1.3.2	Effective Sink Temperature	02E	parameter. The effective sink temperature (T _{nink}) for a given SI radiator should be used as follows:	Thermal analysis shows instrument compliance when operating within this specified thermal environment.	Ref. Pre-Thermal Balance Design and Analysis Thermal Report. Ref. Final Thermal Design & Analysis Report.
4.6.1.1.3.2		1	- The view factor between the SI external node and the effective sink is 1.0.		
4.6.1.1.3.2		-	 The radiative conductor between the SI node and the (T_{kink}) is the product of the node area and its emittance. The emittance of the effective sink node is 1.0. 		
4.6.1.1.3.2		1	 The SI node coupled to an effective sink should not be radiatively coupled to any other external node. 		
4.6.1.1.3.2	Sink temperature ranges	1	The effective sink temperature ranges for an axial SI in the Operational and Hold modes are defined in Figure 4.6-3.		
4.6.1.1.3.2	Sink temperature values	-	The values shown in Figure 4.6-3 represent the orbital average effective sink temperatures averaged for all the nodes on the particular SI surface.		
4.6.1.13.2	Operational effective sink temperatures	-	The operational effective sink temperatures shown in Figure 4.6-3 (1 and 2) define the radiative environment for an SI which complies with the Operational Power constraints specified in section 4.6.1.1.4.		
				27	

			9 44 4 44 4	Yer	Varification Status
	Ť		requirement		ication status
Paragraph Number	Farameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.6.1.1.3.2		I	The hold temperatures in Figure 4.6.3 represent the cold case temperatures for these power modes.		
4.6.1.1.3.2		I	For a constant power dissipation from each SI (constant in time and distribution) the orbital fluctuation in the effective sink temperatures is less than \pm 8°C.		
4.6.1.1.3.2		1	For time varying power dissipations up to the maximum SI power levels defined in section 4.6.1.1.4. (20% over orbital average, 50% duty cycle) the orbital fluctuation in the effective sink temperatures is less than ± 12°C.		
4.6.1.1.3.2		I	The effective sink temperatures in Figures 4.6-3 (1, 2, and 3) are averaged over the entire SI surface.		
4.6.1.1.3.2		1	Sink temperatures for individual nodes on the same SI surface will vary by no more than the values shown in Figure 4.6-3 (4 and 5).		
4.6.1.1.3.2		I	The sink temperatures increase in the forward (+VI) direction.		
4.6.1.1.3.2		-	The maximum difference in the effective sink temperatures, as seen by any two nodes anywhere on the SI surfaces, is less than or equal to 20° C with the \pm V3 axes' sink temperatures warmer		
			than the \pm V2 axes sink temperatures.		i
4.6.1.1.3.2		I	Effective sink temperatures in Figure 4.6-3 (6) are provided for the evaluation of cryogenic dewar life.		
4.6.1.1.4	Thermal Power	02E	The SIs have two different power modes during HST Science Mission Operations.	Selectability of Hold and Operate modes confirmed.	Modes confirmed in first thermal vac tests.
4.6.1.1.4.1	Thermal Power Mode Definitions Ref: RVS #@Table F* for (table) content	02E	The SI power modes are defined as follows: (table)	ACS instrument has required Operate and Hold modes.	Ref: Finat Thermal Design and Analysis Report. Power dissipation for the modes is identified.
4.6.1.1.4.2	Thermal Power Mode Constraints Ref: RVS #@Tablc G* for (able) content	02E	The SI power constraints for each of these modes are as follows: (table).	Power level performance figures subjected to ongoing analysis. Ref. Final Thermal Design and Analysis Report. See Waiver IN0077-W-004.	Ref: Final Thermal Design and Analysis Report. See Waiver IN0077-W-004.
4.6.1.1.4.2	Hold to Operat onal Transition	ı	The transition from hold mode to operational mode has operational power constraints. These thermal constraints on SI power are in addition to the electrical constraints of Section 4.7.		
4.6.1.1.4.3	Normal Science Mission Thermal Power Configuration	Ħ	The aff shroud compartment radiative heat transfer interface, as defined in Section 4.6.1.1.3, is based on a normal science mission configuration for the SIs which consists of: (table).		
4.6.1.1.4.3		1	One axial SI at operational power		
4.6.1.1.4.3		-	Three axial SIs at hold power		
4.6.1.1.4.3		-[-	One radial SI at operational power		
4.6.1.1.4.3		-	Three FHSTs operating		
4.6.1.1.4.3		I	Four of the six gyro channels operating		
4.6.1.1.4.3		I	However, this does not specifically prohibit operations that include having the radial SI and more than one axial SI at operate power simultaneously, as long as all equipment within		
			the aft shroud remains within acceptable temperature limits.		

				Verifi	Verification Status
	Rec	Requirement	nent		
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.6.1.1.4.3		I P A	The number of SIs that can be in operate mode simultaneously is also limited by power constraints, and will be an operational decision based on the electrical power system load capability as well as thermal considerations.		
4.6.1.2	Non-Operational Thermal Interfaces	02E			
4.6.1.2	Non-operational modes	-	9 2		
4.6.1.2	Interface temperatures	02E c		Thermal Balance testing demonstrates compliance.	Ref. Final Thermal Design & Analysis Keport.
4.6.1.2.1	Pre-Flight	-	The pre-flight environments include transportation, storage, pre- launch and ground testing.		
4.6.1.2.1.1	Transportation and Storage.	02E	be held within the temperature range 3°F); the relative humidity shall be all be .34 to 1.07 Atmospheres.	The ACS instrument is bagged and gas purged during transportation and storage handling intervals.	There are brief intervals during which the purge gas is not connected to incinstrument.
4.6.1.2.1.2	Prelaunch and Ground Testing.	02E		The ACS instrument is gas purged during pre-launch and ground test operation intervals.	There are brief intervals during which the purge gas is not connected to the instrument, i.e., as loaded into TV.
4.6.1.2.2	Flight	-	The non-operational flight modes are defined as launch, ascent, initial deployment, unscheduled maintenance, retrieval, scheduled maintenance, orbiter re-entry and return to earth, post landing and safing.		
4.6.1.2.2.1	Launch and Ascent	02E			
	Lift-off effective sink temperatures	-	Lift-off effective sink temperatures are between 21°C and 25°C.		
461222	Denloyment	02E			
	SIPE	I	The SI will be housed in the SIPE during the deployment phase. The SIPE will maintain all SI components between 18 to 25 °C.		Parison Property CECT many isolated
4.6.1.2.2.2	Mission timeline	02E	During transport of the SI from the SIPE to the HST, and until hold mode power is applied, the mission timeline will be designed to maintain the SI within the non-operational temperature limits specified by the SI.	Analysis indicates transport temperature requirements witt be met.	Analysis under model out to the control of the cont
46.1223	Retrieval	02E			
4.6.1.2.2.3	Sink temperatures	-	The SI effective sink temperatures during HST retrieval are between -50°C (TBR) and 0°C, (TBR). During retrieval, when power is available, the power provided will be hold mode power.		
4.6.1.2.2.3	Power	-	Additional power is provided, if available, to prevent damage prior to a power-off period. The maximum time power-off during retrieval is three hours.		
4.6.1.2.2.4	Scheduled Maintenance	02E			

$$\begin{split} & \lim_{x \to \infty} \sqrt{b^2 - 4ac} \, \sqrt{\frac{b^2 - 4ac}{2an!r!(n-r)!}} \\ & \frac{\partial^2 \Omega}{\partial u^2} \begin{pmatrix} a_1 & 3 & 0 \\ 6 & \ddots & 8 \\ 0 & 4 & a_n \end{pmatrix} \frac{\text{Opposite}}{\text{Hypotenuse}} e^{i\theta} \left(\frac{\pi}{2}\right) \cos^{-1}\theta \\ & \overleftrightarrow{AB} \, \widehat{ABC} \, \sum_{n=1}^{n-w_{4^2}=0} x \frac{3}{6\Psi \xi \varpi} \end{split}$$

		Requirement	ment	Ver	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.6.1.2.2.4	Maintenance power mode	-	The SI effective sink temperatures during HST maintenance are between -50°C (TBR) and 0°C (TBR). During maintenance when power is available, the power provided will be hold mode power.		
4.6.1.2.2.4	Power off endurance time	1	Additional power is provided to prevent damage prior to a power-off period. The maximum time power is off is 6 hours. The minimum time the power is on prior to the power off period is 18 hours.		
4.6.1.2.2.5	Safing	02E			
4.6.1.2.2.5		I	The SI effective steady-state sink temperatures during HST Safing Condition (HST in sun pointing orientation) are between -40°C to 0°C.		
4.6.1.2.2.5	Hold/Operate effective transition temperature	I	During the transition from hold or operate mode to safe mode, the effective temperature is defined by a formula: (Ref. ST-ICD-02E, paragraph 4.6.1.2.2.5).		
4.6.1.2.2.5		02E	SIs are limited to hold power during saling.	The ACS requires only HOLD mode power levels during safing. STIS heritage, Compliance by design.	Ref: ACS Critical Design Review, 02-Apr-96. See ACS SER THM-040 for initial thermal analusis
4.6.1.2.2.6	Entry	1	The SI effective sink temperatures during entry are between - 40°C and 50°C. The entry period is a maximum of 45 minutes.		
4.6.1.2.2.7	Post Landing.	02E	The SI effective sink temperatures during Post-Landing are between 10°C and 32°C after 4 hours from start to entry.	Compliance by design.	Ref: ACS Critical Design Review, 02-Apr-96. See ACS SER THM-030 for initial thermal analysis.
4.6.1.3	Contingency Retrieval	02E			
4.6.1.3	Sink temperatures	02E	Contingency retrieval is a mode after which the HST is in gravity gradient orientation and is not required to be returned to science mission operations. The SI effective sink temperatures during contingency retrieval are between -65°C and -40°C.	Thermal analysis indicates compliance.	Ref: ACS Critical Design Review, 02-Apr-96. Ref: Final Thermal Design & Analysis Report.
4.6.1.3	Hold power	02E	SIs are limited to hold power.	Functional testing verifies functional compliance. Thermal model demonstrates compliance to waived power. Waiver IN0077-W-004 approved 11/5/97.	See: Final Thermal Design & Analysis Report, #@THM-034*, 01-0ct-2001
4.6.1.3	Structural integrity	02E	SIs shall maintain structural integrity and not become a hazard to the shuttle during return to earth.	Instrument not a structural hazard to STS operations. Analysis of both the enclosure and the optical bench demonstrate verification	Ref. Systems Engineering Report (SER) STR-035: Structural Analysis of the Enclosure SER STR 019: ACS Ordinal Trans Continual Analysis
4.6.2	Magnetic Environment	I	The cumulative magnetic field on an SI is obtained by adding the fields given below:		מינים ביינים
4.6.2.1	Magnetic Fields	02E			
4.6.2.1	SI component performance	-	All axial SI components, when subjected to the following magnetic fields, shall be without any degradation in their performances:		
4.6.2.1	Earth's magnetic field	02E	~	Design verified through STIS heritage.	Ref: ACS Critical Design Review, 02-Apr-96.
4.6.2.1	Time varying magnetic field	02E			Ref: ACS Critical Design Review, 02-Apr-96.
4.6.2.1	Fixed magneti; field	02E	c. A magnetic field that remains fixed with respect to the HST axes for any HST orientation as given by Figure 4.6-5. This field is in addition to the earth's field.	Design verified through STIS heritage.	Ref: ACS Critical Design Review, 02-Apr-96.

				Neciti	Verification Status
	Нес	Requirement	nent		
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.6.2.2	SSM and SI Magnetic Field Intensity	02E			
4.6.2.2	SI magnetic field	02E 0		Design verified through STIS heritage. Performance as indicated, EMI/EMC at GSFC. WOA No. 4670 1/6/99. Sec IN0077-W-016	Waiver application submitted 03/15/99. Waiver IN0077-W-016 approved 06/30/99.
4.6.2.2	SSM magnetic field	<u>.</u>	The maximum total magnetic field caused by the SSM in any orientation within the SIs volume shall not exceed 0.2 gauss.		
4.6.2.3	OTA Magnetic Field Intensity	1	The maximum magnetic field generated by the OTA at any HST attitude orientation, when operating in the earth's magnetic field, does not exceed the levels specified below: (table)		
4.6.2.3		I the	 a. A level of I.0 gauss time-varying field at the boundary of the envelope allocated to the axial SI as shown in Figure 4.3-1 but bounded by the VI station plane 198.44 and the aft end of the SI(-VI). 		
4.6.2.3		I o	 A level of 0.1 gauss constant magnetic field at the boundary of the envelope allocated to the axial SI as shown in Figure 4.3- 1. 		
4.6.2.4	Magnetic Induction Field		The "Spike Test" requirement of MIL-STD-461A/3, Method RSO2 shall be applied to all standard wire cable bundles interfacing with the unit under test. Sixty volts peak will be used for these tests.	Design verified through STIS heritage. Performance verified through EMI/EMC testing at GSPC.	HST Flight Systems & Servicing Program, Engineering Memorandum EM: FS&S 1200 13-Oct-2000
4.6.3		02E			
4.6.3.1	Volumetric Cleanliness	02E			10 Value of the contract of th
4.63.1	Contamination environment	02E 6	The contamination environment to which the SIs are subjected during all ground operations and during ascent and orbital operations is class 10K volumetric cleanliness per Figure 4.6-6.	Contamination control implemented in accordance with the control plan. This plan is in compliance with the requirement.	Ker: INOO77-109, Cleaniness and Contamination Control rian, FA-01 See: ASI Handling Procedure, as-run data.
4.6.3.1	Reentry and landing	-			
4.6.3.2	Surface Cleanliness	O2E I	ORIs the external surfaces shall conform to level 400 IL STD 1246 B. Internal surfaces shall also conform quirements of level 400 B as a minimum,	Cleanliness control implemented in accordance with control plan. This plan is in compliance with the requirement.	Ref. IN0077-109, Cleanliness and Contamination Control Plan, PA-01
4.6.3.2	Contractor options	-	however the individual instrument contractor may specify a tighter internal requirement.		
4.6.3.3	Material Outgassing	02E			D. C. INIONET COE D. A Material and Decouses I jet/Material House
4.6.3.3	Total Mass Loss (TML)	02E	Each non-metallit material used must have a Total Mass Loss of less than 1% and	Ali materiais used in the ACS instrument are quantied.	Ref. 110077-1021, teV, finatelia and 110052. Ref. 110077-109, Cleanliness and Contamination Control Plan for the ACS (PA-01): Due 15-Mar-2000
4.6.3.3	Collected Volatile Condensible Material (CVCM)	02E	Collected Volatile Condensible Materials of less than 0.1% when tested under the following conditions:	All materials used in the ACS are CVCM tested.	Ref: IN0077-625, Rev A, Material and Process ListMaterial Usage Agreements (MUA) for the ACS. (PA-10/PA-11) Ref: SPS2746, Rev A, Cleaning and Contamination Control Ref: IN0077-109, Cleanliness and Contamination Control Plan for the ACS (PA-01)
4.6.3.3	Material testing	-	Material temperature shall be $128^\circ C \pm 1^\circ C$, with collector plate temperature at $28^\circ C \pm 1^\circ C$, pressure at $5 \times 10^\circ 5$ for or less and vacuum exposure time of 24 hours.		

			Position	i o N	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.6.4	lonizing Particle Radiation Ref: RVS #@Table 14* for table 4.6-1 content	02E	The omni-directional ionizing particle environment within the all stroud is specified in Table 4.6-1.	The ACS Instrument has been designed for operation with degradation limits as specified in CEI paragraph 4.4.1.1 and 4.4.3.1 for a mission duration of 5 years.	See referenced paragraphs, plus updates to CCD-017: Ref: WFC Radiation Shield Analysis Ref: HRC Radiation Shield Analysis
4.6.4.1	Galactic Cosmic Environment	-	Electronic parts used shall meet full performance in the galactic cosmic environment specified.		rest. East of the first of the pass
4,6,4,1	LET tolerance	_	A plot of the integral flux versus LET (Linear Energy Transfer) of the various energetic ions is shown in Figure 4.6-8 as a function of several shielding thicknesses. Except for the imaging components (mirrors, baffles etc.),		
4.6.4.1	Critical Support electronic components	02E	all electronic components (CCDs, electro-optical devices, ICs, discrete semiconductors etc.) that support scientific measurements, navigation and guidance must operate through the galactic cosmic environment without impacting system operation.	CCD devices have been tested at 63 MeV via the U of Calif. Davis Crocker Nuclea, Laboratory cyclotron.	Ref: ACS WFC CCD Radiation Test: The Radiation Environment (isr0009) pdf May 15, 2000) Ref: Dose to Electronic Parts from X-Ray Imaging
4.6.4.1	Design require nents	02E	All designs must attempt to select parts with LET threshold > 25 MeVcm ² /mg.	Design verified through STIS heritage. Parts selection accomplished through standard Q/A procedures (examine Cert Log, CILs).	Ref: ACS Critical Design Review, 02-Apr-96. Ref: ACS Requirements Verification methods review at GSPC, 31-Mar-99.
4.6.4.1	Alternate limits for non-critical components	Ħ	However, if a LET threshold of > 25 MeVcm ² /mg can not be achieved, the following approach shall be taken. Due to the sharp drop in the integral flux intensity of the environment at a LET of 1.5 MeVcm ² /mg.		
4.6.4.1	Non-critical support electronic components	02E	all electronic parts must have a LGT threshold greater than 3 MeVcm²/mg.	All components tracked in Cert Logs, procured as per STIS heritage procedures and qualifications described in NICMOS SIR-EL-044 Section 3, "STIS And NICMOS Common Radiation Plan,"	Ref. ACS Radiation Tolerance SERs Ref: NICMOS SER EL-044 (heriage baseline)
4.6.4.1	Sensitive component applications defined,	н	Applications where parts with less than 25 MeVcm ² /mg, such as opto-couplers (<1MeVcm ² /mg). Dynamic Random Access Memory (DRAM) or Static Random Access Memory (SRAM) (1-4 MeVcm ² /mg) must be used,		•
4.6.4.1	hardening technique used for sensitive components	02E	ons shall employ hardening techniques to ossibility of single event effects.	Vendor-proprietary measures were implemented to improve the radiation tolerance of the CCD imagers.	Ref: CCD Procurement Plan - Source Requirements Ref: ACS CCD Radiation Shielding Analysis Peer Ref: Review #1, RFA 14 [Plan for Radiation Hardening of the WFC CCDs]
4.6.4.1	SEU system risk analysis requirements	02E		The system rejects MCE reset line SEUs of less than 113 ns. duration, is able to reject serial command line SEUs of less than 125 ns. duration, and is tolerant to SC and Reset input transients up to 750 microseconds long.	Ref: Design Changes to ACS Electronics Ref: Testing to Demonstrate Single Event Upset Resistance
4.6.5	Meteoroid	ı	Meteoroid protection is supplied by the SSM when subjected to the meteoroid flux model as defined in Section 2.5 of NASA TMX-64627.		
4.6.5	SSM protection provided to SIs	I	The SSM shall provide a probability of no failure of SI components of at least 0.95 for two years.	117	
4.6.5	Servicing mission meteoroid protection	1	During servicing meteoroid protection is afforded an SI while it is a SIPE.		
4.6.6	Pressure Environment and SI Differential Pressure	02E			

		1	•) I o l	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.6.6	Operational environment	02E	The operational pressure environment for the ACS Axial SI, which is carried within the Axial SIPE during launch, varies in accordance with the pressure characteristics of the Shuttle cargo bay.	Compliance by design (commonality with STIS).	The ACS venting is based upon the STIS design which has been fully tested and launched successfully.
4.6.6	Ascent and descent profiles	02E	The cargo bay ascent and descent pressure profiles are shown in NSTS 07700, Volume XIV, Figures 10.6.1.2-1 and 10.6.1.3-1.	Compliance by design (commonality with STIS).	The ACS venting is based upon the STIS design which has been fully tested and launched successfully.
4.6.6	Wall differential pressure	_	Maximum SI wall differential pressure versus a ratio of vent area to volume is given in Figure 4.6-7.	Compliance by design (commonality with STIS).	The ACS venting is based upon the STIS design which has been fully tested and launched successfully.
4.6.7	Humidity	02E			
4.6.7	Ground operations	02E	,	Analysis of the design shows under 10 milliarcseconds alignment drift expected over two orbits. During ground ops, instrument will be purged to preclude contamination by excessive humidity. Reference Cleanliness and Contamination Control Plan.	Ref: IN0077-109, Cleanliness and Contamination Control Plan, PA-01 Ref: Response to ACS CDR RFA #15, Truss Moisture Absorption
4.6.7	STS re-entry	02E	During entry, descent and landing the humidity of the air on entering the SIPE is uncontrolled. All SI surfaces which are at temperatures below the dewpoint of the incoming air are subject to condensation.	Environmental tests qualify the ACS subsystems as able to survive without permanent damage the conditions described in the requirement.	ACS subsystem designs are asserted as able to meet the requirements specified in the ACS Performance Verification Plan.
4.6.7	Touchdown	1	After touchdown, a post landing purge maintains the absolute humidity of the cargo bay at less than 34 grains of water vapor per pound of air.		
4.7	Electrical Power	02E			
4.7	Averige Power	02E	wer ne orbit ower ed in	The ACS instrument design and production provides power economy and performance within the tested requirements and waived specifications, in accordance with the ACS Performance Verification Plan.	General Information (system and major subassemblies) Includes average power. Ref: Final Thermal Design & Analysis Report.
4.7	Peak Power	02E	A peak power of 250 waits/SI for 2 minutes per orbit is permitted as long as the thermal constraints of 4.6.1 are maintained.	As above.	General Information (system and major subassemblies) Includes peak power. Ref: Final Thermal Design & Analysis Report.
4.7.1	Power Busses	02E			
4.7.1	WSS	-	The SSM supplies each SI two switched power buses for SI operating power and two switched power buses for the RM power as shown in Figure 4.7-1. Each bus conforms to the requirements specified in the following paragraphs.		
4.7.1	Normal operations	I	Under normal operating conditions the SSM powers all power buses simultaneously.		
4.7.1	Primary power returns	02E	Each SI ensures that all primary power returns are isolated from structure by a minimum of one megohm and returned through the interface connector to the SSM negative return bus.	Power returns are tested and verified to be in compliance.	Test is performed in accordance with ACS EICIT Electrical Isolation & Continuity Integration Test, ACS SER: TST-075.
4.7.2	SI Interchangeability	02E	All SI power interfaces are identical such that any SI can operate from either power bus and from any axial bay in the FPS.	Comprehensive functional testing demonstrates instrument compliance and capable of operating from either redundant side.	Functional testing performs complete testing of the instrument's systems and capabilities.
4.7.3	Fusing	02E	Each power bus is fused in the SSM EPS to protect harnessing and other HST equipment from shorts occurring in SI equipment.		

B	

		equire	Requirement		Verification Status
Paragraph	Parameter	nrce	Specification		0.000
Number		108	checincanon	Performance	Comments, Notes, and Document Titles
4.7.3	SSM fuse design	-	The SSM fuse size ensures that the steady state current, surge current, and in-rush currents (of the SI having the highest load) have no deleterious effects on fuse operation.		
4.7.3	SSM Fuse size	-	Fuse size and characteristics are as shown in Figure 4.7-1 and table 4.7-1.		
4.7.3	SSM Filter capacitor size limitation	1	The input filter capacitance in the RM is limited to a maximum of 500 microfarads to keep from blowing the three ampere fuse.		
4.7.3	Table 4.7-1	ı.	Table 4.7-1 Blow Time Rated Fuse Blow Current (sec.) size (Amps) (Amps) 0.1* 3 8.3 0.1* 20 72		
4.7.3	Fuse blow current basis	-	* Fuse blow current based on -55°C and a max rating factor of 110%.		
4.7.4	Switching	02E			
4.7.4	SSM Switch fuse protection		SSM switching devices used for control of the primary and redundant buses are capable, as a minimum, of switching currents up to the fuse rating to ensure "soft shorts" below the fuse rating can be removed from the SSM power buses.	,	
4.7.4	SSM Switch load current rating	-	Each switch contact is capable of switching the rated currents shown in table 4.7-1.		
4.7.4	SI power control in-rush current rating	02E	The internal SI power control shall be capable of switching in- rush currents and turn-on voltage transients.	Comprehensive functional testing demonstrates instrument compliance and capability of operating within voltage and curent transient environment.	P-442-1531, "ACS Interface Verification Test"
4.7.5	Operating Voltage	02E			
4.7.5	Nominal Operating Voltage	02E	The SSM supplies to each SI power interface connector a nominal operating voltage of +24 to +32 Vdc under maximum load conditions.	Comprehensive functional testing demonstrates instrument compliance and capable of operating within prescribed voltage range.	Finctional testing performs complete testing of the instrument's systems and capabilities.
4.7.5	Out of Nomina! Voltage	02E	Each SI shall be capable of surviving, but is not required to operate within specification, during application of voltages of +21 to +24 and +32 to +35 Vdc.	Comprehensive functional testing demonstrates instrument compliance and capable of operating within prescribed voltage range.	Functional testing performs complete testing of the instrument's systems and capabilities.
4.7.6	Bus Control Circuit	02E	No single point failure within an SI shall simultaneously blow both primary and redundant bus fuses,	FMEA indicates no single point failure within the electrical circuits of the instrument.	IN0077-304, Rev A. Failure Mode & Effects Analysis for the ACS
4.7.7	(Not used)	02E			
4.7.8	Grounding of SIs to HST Structures	02E			
4.7.8	Ground loop avoidance	1	The HST will utilize a central single point grounding system.		
4.7.8	Isolation of primary power returns	02E	t be isolated from the SI egohm.	Power returns are tested and verified to be in compliance.	Contractors: Required internally, ACS subassemblies. Test is performed in accordance with ACS EICIT Electrical Isolation & Continuity Integration Test, ACS SER: TST-075.
4.7.8	Bond straps	ı	The SI cases shall be grounded to the aff shroud by the existing le short copper grounding straps in the OTA. The bonding straps of are removable for in-orbit maintenance.	to the aff shroud by the existing Performance assured from commonality with GHRS, in the OTA. The bonding straps COSTAR, STIS, and NICMOS. Itenance.	Internal bonding straps are tested and verified as per CertLog citations. ACS instrument to HST bonding straps are verified as per on-orbit procedure.

				Verifie	Verification Status
	Hec	Requirement	nent		
Paragraph Number	Parameter	Source	Specification		Comments, Notes, and Document Titles
4.7.8	Bond strap resistance	. I	-	Performance assured from commonality with GHRS, COSTAR, STIS, and NICMOS.	Internal bonding straps are tested and venified as per CertLog citations. ACS instrument to HST bonding straps are verified as per on-orbit procedure.
4.7.8	Bond strap dimensions	-	The bond strap dimensions are 22.0 inch max. x 1.62 inch min. x 0.010 inch.		
4.7.8	Bond strap impedance analysis	<u> </u>	The bond strap resistance does not exceed 2.0 milliohms and the inductance does not exceed 0.4 microhemies when determined by analysis in accordance with the following formula: (Ref. ST-ICD-02E, paragraph 4.7.8)		
4.7.8.1	Mount Point Fitting Resistance	02E	П		
4.7.8.1	Minimum Resistance	02E	Minimum resistance of each mount point fitting is 1K ohm.	Heritage-based design meets HST requirements.	Ref. ACS Critical Design Review, 02-Apr-96.
4.7.8.2	Multi-Layer Insulation (MLI)	02E	П		
4.7.8.2	Grounding of MLJ	-	For multi-layer insulation forming an exterior surface, all the conductive MLI Layers shall be grounded to each other and the ISI structure to prevent static charge buildup.		
4.7.8.2	Resistance between MLJ ground and Outer MLJ layer	-		There are no MLJ blankets on the ACS exterior. Therefore, these requirements are not applicable.	
4.7.8.2	MLI ground connection	-	The measurement is from the ground connection to a point 1 inch distant on the MLI.	There are no MLI blankets on the ACS exterior. Therefore, these requirements are not applicable.	
4.7.8.2	Maximum MLI ground connection	-	ground connection to the SI structure	There are no MLI blankets on the ACS exterior. Therefore, these requirements are not applicable.	
	resistance	Ţ	_	Verified by design: commonality with GHRS, COSTAR.	Ref: ACS Critical Design Review, 02-Apr-96.
4.7.8.3	Non Conductive Surfaces	02E	, ,	STIS, and NICMOS.	
4.7.9	ЕМС	-		1 MADOLAN A	A C C C D T T T D T T T T T T T T T T T T
4.7.9.1	Dynamic Impedance	-	The impedance of the power line (Figure 4.7-1) as seen by the Sf is shown in Fig. 4.7-3. These values include the bus impedance and the cable impedance between the SSM Power Distribution Unit and the SI connector.	Qualified by comprehensive functional testing plus V ES 1, and 1&T.	Kef. Filter Box Test Procedure
4762	In-Bush Current	02E			
4.7.9.2	In-rush		With power applied, the SI shall limit in-rush currents on any single bus during turn-on and during switching events to values within the envelope shown in Figure 4.7-4.		Waived in-rush exceedance has been analyzed and found to be See WOA 7496. With IVT configured to measure olde 1 and olde 2 in- tolerable without stressing of fusing elements or degradation of rush, there is a slight exceedance in the in-rush. Required is 50 amp (at 100 microsec), measured is 56 amp (at 166 microsec).
4.7.9.2	Rate of rise	02E	Rate of rise shall not exceed 6 amps/µsec. These values apply at 30 ± .5Vdc.	Verified by design: commonality with GHRS, COSTAR, STIS, and NICMOS.	Ref. A.S. Critical Design Review, 02-Apr-90. P-442-1531, "ACS Interface Verification Test"
	Or O Disale & Noice	O.F.			
4.7.9.3	St Generated Rippie & Solds	02E	The SI shall not generate ripple and noise on any single power bus in excess of the values shown in Figure 4.7-5. These values apply at 30 ± .5 Vdc.	Design verified through STIS heritage. Satisfactory performance verified through EMI/EMC testing at GSI*C. Exceedances identified as per approved waiver, IN0077-W-20A.	HST Flight Systems & Servicing Program, Engineering Memorandum EM: FS&S 1200 13-Oct-2000
4794	Ripple and Noise Susceptibility	02E		T. U. Samuel	Tree Tri - Lt C
4.7.9.4		02E	The SI shall not be susceptible to ripple and noise on the power lines. Susceptibility limits are shown in Figure 4.7-6. These values apply at 24 ± .1 Vdc.	Design verified through STIS heriage. Performance ventied through EMI/EMC testing at GSFC.	H3.1 Fight Systems & Serveing Frogram, Engineering Meinsmanderin
4.7.9.5	Transient Susceptibility	02E			
27777					

	B
l	(3)

	Ř	Requirement	ment	Veri	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.7.9.5	Transients between power return and structure	02E	The SI shall not be susceptible to transients that may appear on the power lines, and between power line return and structure. Figure 4.7-7 defines the transient waveforms. These values apply at 24.0 \pm .1 Vdc.	Performance verified through EMI/EMC testing at GSFC.	HST Flight Systems & Servicing Program, Engineering Memorandum EM: FS&S 1200 13-Oct-2000
4.7.9.6	Survival	02E	The SIs must survive power interruptions up to 500 milliseconds duration, assuming diode isolation between power source and SI.	Instrument design incoprorates DC-DC converters with low voltage protection when input voltage is below 16 Vdc.	522909: "LVPS No. 1" (Schematic and PWA dwgs) 522910: "LVPS No. 2" (Schematic and PWA dwgs) 522951: "LVPS No. 3" (Schematic and PWA dwgs)
4.7.9.7	Radiated Susceptibility (E-Field) (Peak Field Strengths)	02E			
4.7.9.7		02E	ied to	Design verified through STIS heritage. Performance verified through EMI/EMC testing at GSFC.	HST Flight Systems & Servicing Program, Engineering Memorandum EM: FS&S 1200 13-Oct-2000
4.7.9.7	Peak Field Strength Test Levels	1	14 KHz to 35 MHz: 1 volu/meter CW (continuous wave) 35 MHz to 1 GHz: 1 volu/meter AM (modulation peak amplitude) 1 GHz to 3 GHz: 5 volts/meter AM (modulation peak amplitude)		
4.7.9.7	Peak Servicing Field Strength Test Levels	1	*1.8 GHz to 2.3 GHz: 10 volts/meter ("S" band) *14.5 GHz to 15.5 GHz 35 volts/meter ("KU" band)		
4.7.9.7	Modulation	1	Modulation 30 to 100 percent at 1.0 KHz (square wave) *These requirements apply only during servicing operations with the shuttle.		
4.7.9.8	Radiated Electric Field Emissions	02E	The SI shall not produce radiated electric field emissions, both narrowband and broadband, in excess of the limits shown in Figure 4.7-8 and 4.7-9. Test method will be in accordance with MIL-STD-462, Method RE02.	Design verified through STIS herlage. Satisfactory performance verified through EM/IEMC testing at GSFC. Exceedances identified as per approved waiver, IN0077-W-20A.	HST Flight Systems & Servicing Program, Engineering Memorandum EM: FS&S 1200 13-Oct-2000
4.7.9.9	Return System DC Offsets	02E	Equipment shall withstand without susceptability DC offsets between any two return systems or between returns and structure of up to \pm 0.5 VDC. (This does not apply to returns tied together or to structure inside the unit.)	:+/- 15 V transions were sent from 28V Rtn to Chassis (they are isolated from each other) with no susceptibility.	Ref: ACS EMI Testing Eng. Data, Book 2 CS-06 WOA#7424
4.8	Pointing Control	1	The HST Pointing Control System (PCS) has a functional interface with the SIs via the SI-C&DH. This interface includes the peak-up mode, Mode II target acquisition and verification, and the scan request flag in the Processor Interface Table (PIT).		
4.8	SI-PCS functional interface	I	The HST PCS has a functional interface with the SI via the Space Telescope Operations Control Center (STOCC). This interface includes fine pointing, Modes I and III target acquisition and verification, scans, maneuvers, and solar system object tracking.		
4.8.1	Fine Pointing	I	The SSM shall position stars in the FGSs field of view such that the target star is located in an entrance aperture of any SI with an accuracy of 0.01 arc sec.		
4.8.2	Modes I, II and III Target Acquisition and Verification	I	The following modes of operation are required:		
4.8.2	Mode I	-	The SI C&DH will transmit an image of the target field via the SSM to the ground control system where offset pointing corrections are computed based on the analysis of the scene and transmitted to the SSM.		

				Verifi	Verification Status
	Requ	Requirement	ent		
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.8.2		I Re	Real-time operation is presumed although delays in transmission can be accomodated on an infrequent basis.		
4.8.2	Mode II		The SSM shall point the ST to a predetermined target position.		
4.8.2		- - -	The SI C& DH subsystem shall determine the exact location of the target in the SI aperture and transmit an offset correction (with respect to the SI coordinate system) to reposition the telescope.		
4.8.2		- 8 .E	Command and data request message formats shall be established between the SSM and SI C&DH computers to insure positive control over this mode of operation.		
4.8.2	Mode III	ы П	Pointing of the telescope is base on the program target coordinates alone.		
4.8.2		- 5 ± 6	The locations of each aperture with respect to the field coordinates as defined by the FGSs are updated on an infrequent basis by a calibrating search scheme involving the positive acquisition of the target star by the instrument sensor.		
4.8.3	Scans, (Scan modes description)	1 1 1 1 1	The SSM PCS has capability for performing three scan modes: inear scan, continuous scan, and dwell scan. These modes are used for target acquisition and verification and for science observations.		
4.8.3.1	Linear Scan	-	is a slew of the celestial spher		
4.8.3.1	Linear scan definition	I II	The HST scan begins before point A and continues after point B to attain and maintain a constant rate between A and B. Pointing accuracy during linear scans is given in Figure 4.8-1.		
4.8.3.2	Continuous Scan	-	A continuous scan (same as serpentine or raster scan) consists of a series of linear scans alternating in direction and offset from one another by a commanded small-angle separation (see Figure 4.8-2, ST-ICD-02E).		
4.8.3.2	Scan direction and turn around method	1	The principal scan direction is arbitrary with respect to the HST axes. There is a "dead-time" at the end of each linear scan line during the turn around (decelerate, small angle maneuver, accelerate). Turn around times are given in Figure 4.8-1.		
4.8.3.3	Dwell Scan	-	The dwell scan pattern is shown on Figure 4.8-2. The basic unit of a dwell scan is a commanded incremental maneuver and a commanded dwell (integration) time. This basic unit is repeated until the number of increments is completed.		
4.8.3.3	Small-angle optical axes offset command	-	A small-angle maneuver is then commanded to offset the HST optical axes to the next line where a series of basic units is repeated in the opposite direction. A dwell scan of one line only is also permitted.		
4.8.3.3	Science observation circumstance	-	The science observation occurs at the dwell points. The time required to move between dwell points is given in Figure 4.8-3.		

				15)	Variet = 01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
			nednirement		cation status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.8.3.4	Scan Control Parameters	-	The following typical parameters are provided to the SI in the downlink data: For a linear scan, start and stop time of data collection region of each line. For a dwell scan, arrival and departure time for each dwell point for data integration purposes.		
4.8.3.4	Command Execution	1	Scans are commanded from the STOCC and executed by the SSM computer.		
4.8.3.5	Scan Times	I	Total scan time is composed of two parts: time spent within the scan field and turn-around time. Time within the field is determined by the scan rate for continuous scans.		
4.8.3.5	Dwell scans	I	For dwell scans, time is determined by the integration time at each dwell point, the number of dwell points, and the distance and rate between dwell points as given in Figures 4.8-3 and 4.8-4.		
4.8.3.5	Dwell scan line change	I	The line change in a dwell scan is done by a small-angle maneuver with times given in Figures 4.8-3 and 4.8-4. Turnaround times are given in Figure 4.8-1, for continuous scans.		
4.8.3.6	Peak-up Mode	I	A peak-up scan consists of any scan followed by a peak-up slew. The peak-up slew is commanded by passing a time word from the SI (SI-C&DH) to the SSM to identify the position of peak intensity within the scan as determined by the SI.		
4.8.3.6		I	The SSM stores or maintains an algorithm by which to locate the equivalent of 400 points uniformly distributed within the scan.		
4.8.4	Solar System Object Tracking	1	Solar system object tracking is the same mode as a linear scan (para, 4.8.3.1).		
4.9	Maneuver Characteristics	1	Small-angle maneuvers are for rotations of 900 arc-sec or less. Time for small-angle maneuvers under RGA control are given in Figure 4.8-4.		
4.9	Large angle mansuver rates	I	Time as a function of angle is given in Figure 4.9-1 for large- ungle maneuvers (greater than 900 arc-sec).		
4.9	Maneuvering resolution	-	The HST position command word resolution for all maneuvers is less than 0.002 arc-sec.		
4.9	Maneuver curve application	I	The mancuver curves given apply to any axis, including roll.		
4.10	Alignment Stability of SIs / Uncompensated Momentum	1			
4.10	Image Stability	I	Image stability for periods to 24 hours = 0.007 arc sec rms.		
4.10	HST Pointing Repeatability	I	HST pointing repeatability for periods up to 100 hours = 0.01 arc sec.		
4.10	Line Of Sight Error Budget	1	These HST requirements, in terms of line of sight (LOS) errors, are subdivided among the contributing modules as shown in table 4,10-1.		
4.10	Table 4.10-1 FIST Stability Requirements	-	Pointing repeatability: Image Stability: arc sec for 100 hours arc sec rms for 24 hours		

	Ä	Requirement	ment	Veri	Verification Status
Paragraph Number	Farameter	Source	Specification	Performance	Comments, Notes, and Document Titles
4.11.1	Power receptacles	02E	2 power receptacles, each containing 21, 16 AWG contacts: LJTPQOORT23-21P453 (-101) (Power Connection A) LJTPQOORT23-21PA453 (-102) (Power Connection B)	Parts provided Gi-E: (or Ci-E) have been verified and installed Parts specified in drawings and cert log: in accordance with engineering (i.e., drawings and certification 538801: Cable Assy, W01, Power in Side 1 538502, W02: Cable Assy, W02, Power in Subst. Cert log 8792B, Cable Assy, W01 - W25	Parts specified in drawings and cert log: 538501: Cable Assy, W01, Power in Side 1 538502, W02. Cable Assy, W02, Power in Side 2 Cert log 8792B, Cable Assy, W01 - W25
4,11,1	Signal receptacles	02E	2 signal receptacles, each containing 21, 20 AWG contacts and 2, 16 AWG contacts: LJTPQOORT17-99P/453 (-106) (Signal Connector A) LJTPQOORT17-99PA/453 (-107) (Signal Connector B)	Parts provided GHE (or CFE) have been verified and installed in accordance with engineering (i.e., drawings and certification logs),	Parts specified in drawings and cert log: 538506: Cable Assy, W06, ORU-RIU/SDF Interface Cert log 8792B, Cable Assy, W01 - W25
4.11.1		02E	1 RG 316 U Coax Pin contact: 21-33122-563 1 test receptacte containing 55, 22 AWG contacts: LJTPQ00RT17-35P/453 (-105)	As above.	
4.11.2	Pin Assignments	02E			
4,11,2	Power connectors: Ref: RVS #@Table 15* for table 4.11-1 content Ref: RVS #@Table 16* for table 4.11-2 content	02E	Each redundant power connector contains the connections as indicated in table 4.11-1 and -2 of ICD-02E.	Wired as per the referenced tables.	See Tables 15 and 16.
4.11.2	Signal/Commanc connector Ref. RvS #@Table 17* for table 4.11-3 content Ref. RVS #@Table 18* for table 4.11-4 content	02E	Each redundant signal/command connector contains the connections as indicated in Table 4.11-3 and -4 of ICD-02E.	Wired as per the referenced tables.	See Tables 17 and 18.
4.12	SI Math Models	02E			
4.12.1	Structural Math Models	02E			
4.12.1	Simplified Representations	02E	The SI structural models provided by SI Contractors to the HST Project shall be simplified representations of the detailed models used by SI Contractors in the design, development and performance analysis of the instruments.	Produced as required.	Ref. ACS Structural Math Model SE-04 IN0077-204 Ref. ACS Structural Model Correlation
4,12.1	First lateral and torsion modes	02E	The first lateral and torsion modes determined from these simplified models shall agree within ± 3%, with those predicted by the more detailed models. Agreement is determined by comparing natural frequency and modal effective weight properties.	Modes verified to be within 3%.	Ref: SER STR-040: ACS Enclosure Modal Survey and Structural Model Correlation
4,12,1	Simplified mode.s	02E	The simplified models shall be a reduced model using NASTRAN ASIST reduction technique.	Done as required.	Ref: ACS Structural Math Model SE-04 IN0077-204 Ref: ACS Structural Model Correlation
4.12.1	шсрээл јо кълвод	02E	The simplified model shall consist of up to 900 degrees of freedom and may be in the form of either a mass and a stiffness matrix (in double precision) or a Craig-Bampton model with appropriate LTM.	Done as required.	Ref: ACS Structural Math Model SE-04 IN0077-204 Ref: ACS Structural Model Correlation
4.12.1	Predictions	02E	In either case, the model must be able to predict motion of major mass items, motors and points of mechanical disturbance, and all elements in the optical path(s).	Designed as required.	Ref: ACS Structural Math Model SE-04 IN0077-204 Ref: ACS Structural Model Correlation
4.12.1	Modes	02E		Done as required.	Ref: ACS Structural Math Model SE-04 IN0077-204 Ref: ACS Structural Model Correlation
4.12.1	Data transmission	02E	Data shall be transmitted by magnetic tape (9-track, 1600 BPI, fixed record format, logical record length = 80, blocksize = 800).	Produced as required.	Ref: ACS Structural Math Model SE-04 IN0077-204 Ref: ACS Structural Model Correlation

	Š	3	taon.	Vari	Varification Status
	ř	o a linear			icanon orange
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.2	Procedural Interface	08D		Structural and functional testing proves the placement of this connection interface to have commonality with STIS and compatibility with the HST environment.	Ref. Design Changes to ACS Electronics Ref. Testing to Demonstrate Single Event Upset Resistance
3.2	Communication Icsses due to failures	1	In the event of certain SI C&DH failures, one or more of the SI C&DH capabilities to support and communicate with one or more SIs will be lost.		
3.2	Enduring extended corrective action	I	In this case, any corrective action must be taken by the ground system, and it may be as long as nine hours before full SI C&DH function is restored.		
3.2	Surviving C&DH capability loss	08D		Compliance by design.	Design description is in IN0077-623 (DM-03) Implementation is in IN0077-403 (DM-05)
3.2	Absence of spurious C&DH at power up/down	I	The ST C&DH does not cmit spurious output signals during application or removal of power or during changes in mode.		
3.2	SI unit reference numbering	08D	Within the commands, telemetry, and software of the SI C&DH, the five Sis are referenced by the numbers 1 through 5. (Each SI-unique appendix to this ICD specifies the number assigned to that SI.)	The OTA position and SI number for the ACS instrument are defined in the unique appendix.	The ACS instrument is assigned to Bay 3, SI number 1.
3.2	SI position reference numbering	1	SI positions on the Optical Telescope Assembly (OTA) are also numbered 1 through 5. The relation between SI numbers and OTA position numbers is given in table 3-1.		From table 3-1: OTA Position 3 is SI number 1:
3.2		I	lable 3-1: SI Number 1 OTA Position 3 SI Number 2 OTA Position 2 SI Number 3 OTA Position 1 SI Number 4 OTA Position 4 SI Number 5 OTA Position 5		
3.3	Mechanical Interface	O8D			From IN0077-610: Figure 10-3 shows the location of the Remote Interface Units (RIU) and Expander Units (RIU) within the ACS enclosure. As seen in the drawing, the RIUs and EUs are mounted on the forward side of the each Main Electronics Box (MEB).
3.3		O8D			Mounted as part of the outer enclosure panel is a saddle-bracket assembly containing two redundant sets of electronics (Figure 10-4) these are the Main Electonics Box 1 (MEB-1) and Main Electronics Box 2 (MEB-2).
3.3.1	Pictorial Representation.	1	Figure 3-1 is an outline drawing showing the maximum envelope size, mounting surface, and connector area of the RU. Figure 3-2 is a similar drawing for the BU.		
3.3.2	Envelope Dimensions	O8D	The dimensions of the RtU and EU envelopes are shown in Pigures 3-1 and 3-2. Adequate clearance about the envelope must be maintained to avoid interference with other portions of the SI and/or the Focal Plane Structure (FPS).	RIU and EU placement is satisfactory.	The RUOs and EUs have mounting positions that do not interfere with ACS Instrument optical paths, adjustments, or the insertion / extraction of system components.
33.3	Assembly, Test, and Orbit Maintenance	O8D	Both the RIU and EU should be accessible for mechanical removal during the assembly/lest phases of the program.	Design is acceptable.	After removal of the external cover panels, the RIUs and EUs are removable from the ACS MEB walls.
3.3.3	Access and Installation Provisions	08D	If mounted internal to the SI, they (RIU and EU) should be accessible for removal with minimal disassembly of the SI and without compromising SI internal optical alignment and cleanliness.	Internal optical alignment and cleanliness is preserved.	The CDR cites IPT activities directed toward improving the accessibility of various instrument components as the ACS instrument is developed.

100

	Be	Requirement	ment	Verif	Verification Status
Paragraph Number	Parameter	Боигсе	Specification	Performance	Comments, Notes, and Document Titles
3.5.2	RM Vibration. Ref: RVS #@Table 19* for table 3-2 content	I	The RM is tested to the qualification and acceptance random vibration levels specified in table 3-2.		IN0077-610: "Overall RIU and EU vibration levels (test or flight) will not exceed 4.6 G rms, based on ACS structural math model results using input levels for the OAT/SI interface specified in the document ST-ICD-02 (reference Figure 4 of ST-ICD-02)."
3.5.2	RIU acoustic test levels	-	The ST RIU will be tested with the SI C&DH subsystem on the ORU tray to acoustic qualifications test at an overall sound pressure level of 135.4db + 3db, as defined in LMSC 4171769A, Figure 3.5.1-4.		
3.5.3	Structural Characteristics.	080	the structural characteristics of rigid nay be considered as such in the matical model.	Testing completed successfully.	
3.5.4	Weight and Mass Properties.	-	The RIU has a weight of 4.7 ± 0.1 lb. It has a center of mass as shown in Figure 3-1 and moments of inertia appropriate to a homogeneous mass. The EU has a weight of 2.0 ± 0.1 lb.		
3.5.4	EU center of mass	I	It has a center of mass as shown in Figure 3-2 and moments of inertia appropriate to a homogeneous mass.		
3.6	Environmental Interface	08D			
3.6.1	Ambient Temperatures - Post integration data Ref: RVS #@Table 20* for ICD-08D table 3-3 content applicable to RUMEU source pre-	O8D	The RLU and the EU will be maintained within a temperature I range as listed in table 3-3. The temperatures shown are the allowable base-plate temperatures of the RM in either the individual or stacked configuration.	Thermal analysis shows instrument compliance when operating within the specified thermal environment.	Expected Temperatures (IN0077-610 ST-ICD-08B): Hot Operate, +35 °C Cold Operate, +5 °C Hold Whetaters and SSM at 40 °C, -20 °C Hold Whetaters and SSM at Analysis Report.
3.6.1	Ambient Temperatures, Transportation and Storage	O8D	(survival - non-operating) -50 to +50 °C	Complies by design.	Ref: Final Thermal Design & Analysis Report.
3.6.1	Ambient Temperatures, Prelaunch and Ground Test	08D	(survival - non-operating) -50 to +50 °C	Complies by design.	Ref: Final Thermal Design & Analysis Report.
3.6.1	Ambient Temperatures, Prelaunch and Ground Test	O8D	(turn-on and operate within specs) -40 to +40 °C	Complies by design.	Ref. Final Thermal Design & Analysis Report.
3.6.1	Ambient Tempera ures, Launch		(survival - non-operating) -50 to +50 °C	Complies by design.	Ref. Final Thermal Design & Analysis Report.
3.6.1	Ambient Tempera ures, Orbit		(survival - non-operating) -50 to +50 °C	Complies by design.	Ref: Final Thermal Design & Analysis Report.
3.6.1	Ambient Tempera ures, Orbit Ambient Tempera ures, Entry and Post-	080	(turn-on and operate within specs) -40 to +40 °C (survival - non-operating) -50 to +50 °C	Complies by design. Complies by design.	Ref. Final Thermal Design & Analysis Report. Ref. Final Thermal Design & Analysis Report.
3.6.2	Landing RIU/EU Therma' Modal.		The emissivity for the Chenglaze Z306 black coating is approximately 0.85. For the electroless nickel mating surfaces the emissivity is 0.04.		
3.6.2		-	Thermal characteristics of the RIU and EU singly and in stacked configurations are defined in Thermal/Math Models of the RIU, RIU/RIU, RIU/IU Configurations, FSEC 919SR-3000, 7 December, 1979.		
3.6.3	Atmospheric Pressure.	-	The RIU and the EU are designed to withstand pressures in the range of standard atmospheric to vacuum conditions.		
3.6.4	Radiation.	-	The units are designed to operate under all radiation conditions which may be expected during flight.		
3.6.5	Cleanliness.	I	When delivered to the SI contractor, the RMs will be visibly clean under oblique white light of 100 to 125 ft. candles when viewed from 40 cm.		
3.6.5	RM surface cleanliness	-	This requirement applies to the internal and external surfaces of the RMs. The internal volume of the RMs will be cleaned and inspected during manufacturing to these requirements.		
				7.	

	Be	Souire	Requirement	Verif	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.7	Electrical power system bus	-	The RM operates from the electrical power system bus defined in the SI to Optical Telescope Assembly (OTA) and Support Systems Module (SSM) ICDs.		
3.7	Power lines	08D	Power lines from the SI power interface connectors to the RUIs shall run as twisted pairs with the power return lines. The power carry through from the SI - OTA interface to the SI - RIU/EU interface is shown in Figure 3-3.	The design drawings cited carry the twisted pair shielded specification needed to meet this requirement.	W01 and W02 cable harness drawings as cited.
3.7.1	RIU/EU Required Power. Ref: RVS #@Table 23* for table 3-6 content	-	The power dissipation for the RIU and the EU in the temperature range -40°C to +40° C are as given in table 3-6. The power dissipation of the active RIU is a function of the supervisory bus activity.		
3.7.1	Average RM power dissipation	G80	Average RM power dissipation for several assumed activity foads is shown in table 3-7.	RIU power dissipation is included in cited summary.	The CDR provides a summary, components and total.
3.7.1	RIU +5.3 V STBY 2 circuit output current	08D	The conditioned +5.3V STBY 2 output circuit interface from the RIU is shown in Figure 3.4. The maximum current that a user can draw from this signal is 12mA.	RIU power dissipation is included in cited summary.	The CDR provides a summary, components and total.
3.7.2	Grounding Requirements.	O8D	The internal grounding scheme for each SI is discussed in the SI unique appendixes.	This drawing is listed as "TBS" in IN0077-610 even though it does exist in the configuration drawing file.	IN0077-610 ST-ICD-08B Figure 10-5 ACS Grounding Dispersm
3.7.2		08D			The comment of the contract of
3.7.2.1	RIU Grounding.	I	Within the RIU the dc resistance to chassis from signal, power, and multiplex data bus and between each other is greater than 10 megohrns.		
3.7.2.1	RIU power filter capacitors	I	Power and signal grounds have feed-through filter capacitors rated at 1.0 microfarad at 1 KHz. All connector receptacles are metal- to-metal bonded to the RIU chassis with no more than 10 milliohms resistance.		
3.7.2.2	CU/SDF Grounding.	-	All six interface signals (as described in paragraph 3.9.3.5 of this ICD) are differential signals transferred between the SIs and SI C&DH over shielded, balanced, twisted pairs.		
3.7.2.2	Balanced line shield termination	I	Neither side of the twisted pairs is grounded. The shields are lied to chassis ground.		
3.7.3	RM Power During Testing.	O8D	sting prior to launch, the RM power bus intained at greater than 0V and less than cess of 5 minutes.	Tracked, ongoing,	All main test procedures monitor the power busses.
3.8	Data Management System Interface	1	The 6.144 MHz sine wave clock signal transmitted directly from the DMS to the radial SI is the only direct interface between the DMS and the SIs or the RUs.		
3.9	Telemetry and Data Interface	08D			
3.9	CU/SDF operation	1	All telemetry and data interfaces between the SIs and the SI C&DH involve the CU/SDF. The two CU/SDFs are managed in a standby redundant fashion. That is, only one CU/SDF is active at a time.		
3.9	CU/SDF parity	I	outs.		
3.9	CU/SDF single point failure analysis	08D	ect which any single SI or SI n any signal line in the SI/SI bagating further into the system.	ACS Instrument design porformance meets or exceeds contract Srequirements.	ACS Instrument design performance meets or exceeds contract [See IN0077-610 ST-ICD-08B Figure 10.6 Block Diagram [errain: requirements.

	Ball
•	

		\$momorphic Co		Voisi	Varification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.9.2.3	SI major frame synchronization pulse	1	Every 60 see, the SI C&DH receives a major frame indicator from the SSM and broadcasts a major frame synchronization pulse to the SIs. These synchronization pulse rates apply whenever the telemetry format described above is in use.		
3.9.2.3	Engineering minor frame data requests	1	To each 500 msec minor frame interval, the engineering data requests required to collect the minor frame are issued at 2-msec intervals, beginning 2 msec after the minor frame synchronization pulse.		
3.9.2.3	SI Application minor frame data requests	1	Requests generated by SI applications processors in the NASA Standard Spacecraft Computer (NSSC-1) follow those required for the minor frame and are also spaced 2 msec apart.		
3.9.2.3	NSSC-1 Executive services and resources	1	The services and resources provided to each SI by the NSSC-1 Executive for the collection, processing, and storage of engineering data described in paragraph 3.13, Software Interface.		
3.9.2.3	Other telemetry transmission requirements	1	If the NSSC-1 is inoperative but the SSM is still outputting at least 1 kbps of SI C&DH/SI telemetry, a fixed format stored in ROM in the CU/SDF is used. This format consists of a single minor frame of 64 words, 10 of which are allocated to each SI.		
3.9.2.3	SI telemetry request issues	1	The 10 telemetry requests issued to each SI are: bilevel group 4, bilevel group 5, and conditioned analog samples on lines 16 through 23. A new minor frame is collected whenever a synchronization pulse is received from the SSM.		
3.9.2.3	Alternate ROM-fixed data format		The 64 telemetry requests are issued at 2 msec intervals, beginning 2 msec after the synchronization pulse.		
3.9.2.3	Alternate reduced telemetry format	-	Under certain mission conditions (such as deployment, retrieval, and emergencies) the ST outputs a reduced telemetry format in which the SI C&DH/SI contribution is 60 words per major frame, 10 of which are allocated to each SI.		
3.9.2.3	ROM-fixed data format length limitation	-	The ROM stored format and collection scheme described above are used, but only the first 60 words in the format are actually sampled by the SSM.		
3.9.2.3	ROM-fixed format during Payload Safing	-	The Payload Safing Sequence contains a command to use the ROM-stored format.		
3.9.2.4	RIU Input Signals	-	Each RIU has a multiplexer which can accept four types of input signals.		
3.9.2.4	RIU Input signal 1ypes	-	These signals and their characteristics are listed in table 3-10. The nomenclature for these signals is specified in GSFC-S-440-3B.		
3.9.2.4	Engineering Data Allocation, Expander use	-	Engineering data are allocated so that each multiplexer has 64 input channels which may acquire the data listed in table 3-10. The number of telemetry inputs available to any given SI may be increased through the use of EUs.		
3.9.2.4	Expander Unit channel capacity	-	Each EU provides two 64-channel multiplexers. Up to seven multiplexers may be added through the use of EUs, for a total of 512 channels, including the 64 channels in the RIU multiplexer.		

				77-77	1/2-1/1-1/2-1/2-1/2-1/2-1/2-1/2-1/2-1/2-
		Requirement	ment		ICATION STATUS
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.9.2.4	Other input signal handling requirements	08D	Analog signals for which a switched gate signal is desired at the time of sampling should be assigned to channels 0 to 15. Analog signals not requiring a sync signal may be assigned to any remaining channel.	No inputs, other than serial inputs requiring a synchronous clock, or bilevel inputs requiring a strobe for any group of eight, are connected to telemetry.	Document IN0077-610 provides full RIU and EU input signal listings in section 3.9.2.4 as applicable here.
3.9.2.4	Bilovol data requests	1	e telemetry inputs, analog rhich contains bilevel inputs, level data when bilevel data is		
3.9.2.4	b. Conditioned Aralog Inputs.	O8D	Sixteen inputs may be selectively conditioned by a 1 mA (\pm 0.5 percent) constant current.	The ACS has two RIUs and two EUs, thus providing constant current source excitation for as many as 64 input signals.	IN0077-610 Figure 10-7 lists 23 conditioned analog signals (Instrument Thermistors); this number of inputs can be accommodated by either two RIUs or two EUs.
3.9.2.4	Conditioned Analog Input use	ı	의		
3.9.2.4	User parametric load resistance	08D	These outputs will be energized on an individual basis only. The drive circuit is shown in Figure 3-3, with the recommended user load being a resistance that varies with the parameter to be measured, but this resistance should be less than 5.1k ohms.	Document IN0077-610 details the ACS driving circuit impedances for the four input classes, and specifies the controlling conditioned analog impedance as 5.1 K Ohms.	IN0077-610 is the ACS ICD-08 unique appendix document CM-06.
3.9.2.4	Passive transducer channel assignments	08D	The maximum voltage output of the drive circuit is +6.4V. The 1-mA constant current source required to drive passive transducers is available only over channels 16 to 31. Therefore, passive analog inputs must be assigned to the 16 to 31 block.		Inputs requiring excitation for passive transducers are assigned Document IN0077-610 provides full RIU and EU input signal listings in to the channel range 16 through 31. Functional testing verifies this.
3.9.2.4	Alternate active or bilevel channel use	-	The telemetry channel address contains message type information which directs the RUU to supply the 1-mA current fif indicated. Channels in the 16 to 31 block not used for passive analog signals may be used for active analog or bilevel telemetry inputs.		
3.9.2.4	Input analog signal digitization timing	1	The timing is shown in Figure 3-9.		
	c. Bi-level Digita: Inputs Ref: RVS #@Table 25* for table 3-11 content	08D	The 64 telemetry input channels of an RIU or EU are divided into 8 groups (blocks) of 8 inputs as shown in table 3-11.	The ACS instrument has exactly 30 bilevel inputs per side, cach side (A or B) being serviced by a single RIU.	RIU/ISU input channels are listed in Figure 10-7, ST-ICD-08B (IN0077- · 610).
3.9.2.4	Bilevel telemetry addressing	08D	A bi-level telemetry request shall address only the first (lowest numbered) input in a block. In response to a bilevel telemetry request, each of the inputs in a specific block of eight telemetry inputs is sampled in a break-before-make mode.	The ACS instrument circuit presented in IN0077-610, Figure 10-10b shows a six line latch for providing data using one strobe pulse derived from an address decoder.	Bight of the six line latch packages may be used to provide 8, 16, 24, 32, 64, or 128 multiplexed bilevel telemetry signals.
3.9.2.4	Bilevel telemetry sampling	I	Bitevel sampling differs from analog in that the multiplexer switches through the eight inputs, reads each of the eight samples, makes a logic level decision and combines the eight inputs into a single 8-bit word.		
3.9.2.4	Effect of bilevel sampling on other input signals	08D	Should another type of telemetry input be assigned to a block of eight inputs being used for bilevel telemetry, those channels will also be enabled briefly when bilevel inputs are being sampled.	In the ACS design, only bilevel signals or inconsequential Active Analog signals are included in groups of eight designed for bilevel signal transfer.	Reference the channel assignment list in IN0077-610, Table 10-1 a through c.
3.9.2.4	Bilevel input signal channel assignment restrictions	08D	Bilevel inputs should, therefore, be assigned, if possible, in groups of eight (e.g., 32 to 39, 40 to 47, etc.). Any group of eight may be used, if not already assigned to serial digital or passive analog.	Tentative channel assignments were discussed in the CDR, Reference the channel a particularly with respect to STIS heritage. Channel assignment c. Consult early SERs, listings are shown in IN0077-601.	Reference the channel assignment list in IN0077-610, Table 10-1 a through c. Consult early SERs.
3.9.2.4	Grouping of bilevel input signal assignments	08D	Since bilevel sampling causes a complete group of eight channels to be enabled and sampled sequentially, bilevel signals should be assigned to channels 0-15 only in complete groups of eight (0-7 or 8-15).	Tentative channel assignments were discussed in the CDR, Reference the channel a particularly with respect to STIS heritage. Channel assignment c. Consult carly SERs, listings are shown in IN0077-601.	Reference the channel assignment list in IN0077-610, Table 10-1 a through c. Consult early SERs.

	B	l a	Bequirement	Veri	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.9.2.6	Submultiplexer advancement option	1	Telemetry synchronization signals may be used in conjunction with any channel to advance SI submultiplexers. These signals are 46.9 usec in duration.		
3.9.2.6	Submultiplexer advancement timing	-			
3.9.2.6	Synchronization signal form/definition	O8D	Each synchronization signal is switch closures to ground identical to that described in paragraph 3.10.1.1, except that the current sinking capability is limited to 20 m.A.	C&DH system operation confirms that current sinking of switched control signals has been properly implemented.	The STIS heritage based MEB/RIU cross-strapping allows selection of the timing signal source as per ACS CDRL CM-06 and DM-06, IN0077-610, Figure 10-13.
3.9.3	Science Data	08D			
3.9.3.1	Data Flow	-	Science data is transferred from a SI to the CU/SDF.		
3.9.3.1	Data routing alternatives	-	From the CU/SDF the science data is transforred to either the NSSC-I or the SSM. If the data is transferred to the SSM, it is either recorded on the Science Tape Recorder (STR) or transmitted to the ground.		
3.9.3.1	Some CU/SDF data flow functions	-	Data logs, memory dumps, and processed science data are transferred from the NSSC-1 to the SSM via the CU/SDF and the science data interface.		
3.9.3.1	Required SI data flow functions:	08D	Prior to the start of a science data transfer from a given SI, realtime or delayed commands must be executed to perform the following functions:		
3.9.3.1	Loading format specifications	08D	 Load a format specification into one of two format positions for that SI in CU/SDF RAM (see section 3.9.3.3, ST-ICD- 08D). 	Capability to load specific formats is confirmed in system functional tests.	The demonstration of these capabilites is dispersed among many different functional test operations.
3.9.3.1	Selecting format position	08D	 Select the format position which contains the format to be used. 	Selection of format to be used is confirmed in system functional tests.	
3.9.3.1	Selecting science cata destination	08D	 Select the destination (NSSC-1 or SSM) for science data from that SI. 	Selection of science data destination is confirmed in functional testing.	
3.9.3.1	Enabling SDF science data input	O8D	d. Enable the science data input section of the CU/SDF.	Science Data Facility ready to receive data on extablished path is confirmend in functional testing.	
3.9.3.1	Enabling the science data interface	O8D	 Enable the science data interface for that SI (see section 3.9.3.5, ST-ICD-08D). 	Science Data Interface for the ACS enabled and ready is confirmed in functional tests.	
3.9.3.1	Activating an appl cation processor for NSSC-1	08D	 If the data destination is the NSSC-I, activate an application processor to tell the executive how much data is coming and what to do with it. 	Executive verified as ready for the programmed data delivery via the application in the NSSC-I.	
3.9.3.1	or, for SSM	08D	g. If the data destination is the SSM:		
3.9.3.1	Set Ok to Send	08D	1. Set the Ok to Send flag in NSCC-1 memory.	Ok to send science data flag can be set in NSCC-1 memory.	The demonstration of these capabilites is dispersed among many different functional test operations.
3.9.3.1	Condition the USE STR flag	08D	Correctly condition the Use STR flag in NSSC-I memory.	Correct configuration of the STR flag in the NSSC-1 memory demonstrated in functional testing.	
3.9.3.1	Specify encoding	08D	3. Enable or disable Reed-Solomon encoding.	Data encoding specification setting action and SI response successfully demonstrated in tests.	
3.9.3.1	Control noise-related processing options	08D	Enable or disable pseudorandom noise sequence addition.	Noise processing option activation demonstrated in functional testing.	
3.9.3.1	Select data rate and initialize transmission	08D	5. Select a science data output rate and start the science data transmitter.	Science data output rate selected and initiated successfully during functional testing.	
3.9.3.1	Initialize science data transfer from the NSSC-1	08D	r nsfer ndard d b are	Initialization of data flow functions in advance of science data transfer demonstrated in functional tests.	
3.9.3.1	Initialize science data transfer to the C&DH	08D	Functions a, b, c, and e condition SI-Unique logic in the CU/SDF. These are the recommended procedural steps to start the science data transfer from the SI to the SI C&DH.	SI to C&DH data transfer setup procedures tested and found to function as required.	
				87	

	Rec	Requirement	ment	Veri	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.9.3.3	Commanding the format choice	1	For the SIs, this is accomplished by commands to the CU/SDI: For the NSSC-I, this is accomplished by control words which precede the data.		
3.9.3.3	Utilizing SI-specific format positions	I	Each SI is assigned two unique format positions in a RAM in the CU/SDF. Each of these positions may be loaded with any format specification desired, via serial magnitude commands to the CU/SDF.		
3.9.3.3	Format choice commands [Partial (deleted text)]	F	A total of nine commands are needed to supply all the information required for a format specification: Source ID, Packet Length, Packet Format Code, Source ID parity, Observation Number, Number of Packets Per Transfer, Number of Data Words Per Packet.		
3.9.3.3	Format specification changes and loading of changes		The information may be supplied in any order. When the specification in a given format position is altered, only the information which changes needs to be loaded.		
3.9.3.3	Content retention of CU/SDF RAM	<u> </u>	Once loaded, the contents of a given word of the CU/SDF RAM remain intact until altered by a subsequent command, so long as power to the active CU/SDF is not interrupted.		
3.9.3.3	User SI responsibility for loading and selecting correct formats for transmission	08D	It is the responsibility of the user SIs to load and select the correct formats prior to the transmission of SI-unique logs or lines of science data.	The ACS Science Data Format meets the core ICD-08D requirements.	The SI Science Data Format is defined in Ref: SI Science Data Format for the ACS, DRD DM-06
3.9.3.4	Science Tape Recorder Control	1	The SSM provides an onboard Science Tape Recorder (STR) for storage of up to 1x109 bits of science data.		
3.9.3.4	Efficient tape utilization	- S	For efficient tape utilization, the recorder is operated in a start/stop mode. When the STR is used, it must be brought to the desired speed, which can take as long as 10 seconds.		
3.9.3.4	Outputting clock signal and data packets	1 1 1	A command to the CU/SDF causes it to begin outputting the science data clock signal and packets of fill data to the SSM at the commanded rate.		
3.9.3.4	Inputing the Control Word	-	Receipt of a Frame Start signal or an appropriate control word from the NSSC-1 causes the CU/SDF to input a control word to the NSSC-1. The NSSC-1 sets a flag in the SI C&DH PIT to turn the STR on.		
3.9.3.4	Synchronizing the STR with clock/data		The STR adjusts its speed until it has synchronized with the clock signal. When the STR has reached the proper speed, a flag is set in the SSM PIT. When the NSSC-I detects this flag, it instructs the CU/SDF to begin transferring science data.		
3.9.3.5	Science Data Transfer	-	Science data transfer from a SI to the CU/SDF is accomplished with a six-signal protocol.		
3.9.3.5	Transfor timing relationships	-	The timing relationships among these signals at the start of a data transfer and between successive lines of data are shown in Figures 3-17 and 3-18.		
3.9.3.5	Interface circuitry	-	The interface circuits are shown in Figure 3-19.		
3.9.3.5	Driver/receiver interconnections	-	Figure 3-20 shows the suggested interconnections for the possible driver/receiver circuit pairs.		
3,9,3,5	Spurious signal con Jitions	-	The line drivers used for the science data interface can emit spurious signals as they are turned on and off.		

|--|

				Visit	Varification Status
	94	Reduirement	ment		ולמונטו סומוס
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.9.3.5	Fatal error conditions and resulting action	1	The following error conditions cause the CU/SDF to input a control word to the NSSC-1, disable the SD interface of the SI involved, and continue with normal operations:		
3.9.3.5	a. NSSC-1 cancellation control word issue	-	Receipt of a control word from the NSSC-I saying to cancel a transaction	::	
3.9.3.5	b. Delayed detection of Data Ready	O8D	betect a Data Ready signal within 10 ms after the Line Start signal or within 10 ms after completing of a word which was not the last word of a line.	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.9.3.5	c. Detection of an extra Data Ready signal,	Q80	Valid data ready signals are those occurring after line start in transfer to the SI up to the number defined by the active format within the CU/SDF as the number of words per line.	Performance is in accordance with unique ACS appendix description, which has features in addition to those of the core ICD-08D requirement.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3,9,3.5	Extra Data Ready signal setup time	08D	Extra data ready signals must be active for a minimum of 300 lt µsec to be detected by the CU/SDF.	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.9.3.5	d. Incomplete u+B1269ansfer	1	Failure of the NSSC-I to complete transfer of a line of SD to the CU/SDF within 100 ms.		
3.9.3.5	Error condition and data source identification	H	The control word sent to the NSSC-1 as a result of any of these conditions identifies the condition and the data source (NSSC-1 or one of five S1s) involved.		
3.9.3.5	Error condition reporting to the Status Buffer and the telematry stream	1	Upon receipt of any of the error condition control words, the NSSC-1 writes a message in the Status Buffer and sets appropriate flags in the telemetry stream.		
3.9.3.5	Clearing the error condition and re-enabling SD transfer	-	Before any more SD can be output by the SI involved, the SD interface for that SI must be enabled, and the SI must issue a Frame Start signal (which the CU/SDF interprets as the start of a completely new data transfer.)		
3.9.3.5	Non-Fatal data transfer errors:	1	The following error conditions involving Science Data input to the NSSC-I cause the NSSC-I to write a message in the Status Buffer and set appropriate error flags in the telemetry stream but do not halt the transfer of data:		
3.9.3.5	a. The number of words per line	-	The number of words per line as specified by the control word from the CD/SDF that precedes each line of data and the request from the SI application processor controlling the transfer do not agree. In this case, the number in the control word is used.		
3.9.3.5	b. Impending scratch area overflow		The 4200-word scratch area is being used, and the next line would overflow the area. In this case, the data is stored at the hoginning of the scratch area.		
3.9.3.5	c. Invalid AP request	I	An application processor request is not made between lines. In this case, the next line of data is written over the previous line.		
3.9.3.5			"If the NSSC-1 does not receive a response to a request to output science data within 20.5 seconds, the NSSC-1 clears the request, sets an error flag in the telemetry stream, and writes an appropriate message in the Status Buffer."		
3.9.3.6	Science Data Transfer Rates	08D			
3.9.3.6	CU/SDF science data capabilities	-	The CU/SDF can handle science data from five SIs and the NSSC-1 concurrently.		

	Ball
۰	

					Variation Chair
					בימונים סימותים
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.9.3.6	Example of SI output rate to the NSSC-I	ı	A SI outputing a frame composed of a single line of 520 words at a rate of 512 Kbps can input a frame to the NSSC-I every 70 ms.		
3.9.3.7	Science Data Bit Error Rate	1	The science data bit error (BER) in the SI C&DH is less than one error in 10 ^a bits.		
3.9.3.7	Error encoding parameters	1	As a commandable function, the CU/SDF applies Reed-Solomon error correction encoding with J=8, I=8, and E=8 to all science data transmitted to the SSM.		
3.9.3.7	Data encoding overhead	I	This encoding, if commanded, adds an overhead of one Reed-Solomon check bit segment for every 14 data segments (7.1 percent) to the transmitted data stream.		
3.9.3.7	STOCC Bit error rate (BER)	I	Uncoded data received at the Space Telescope Operations Control Center (STOCC) has a corrected BER of tess than one error in 10 ⁷ bits for a return link BER no greater than one error in 10 ⁵ bits.		
3.9.3.8	Standard Header Picket	I	A Standard Header Packet (SHP) is maintained in the NSSC-1		
3.9.3.8	SHP output limitations and request requirements	-	The SHP is output only on request and must be requested prior to the output of each logical grouping (e.g., observation) of science data from a given SI.		
3.9.3.8	SHP Contents	1	The contents of the SHP are as follows: requesting SI source ID and observation number (1 word). Current Value Table (744 words), the latest SSM PIT (20 words), forward linked data (60 words), and SI-unique data (22 words per SI).		
3.9.3.8	Requesting SI source ID requirements	1	Requesting SI source IDs are defined in the SI-unique appendices and occupy the eight most significant bits of the 16-bit word.		
3.9.3.8	NSSC-I executive sterage allocation properties	1	The NSSC-1 executive allocates storage for five observation numbers (one for each SI) which are loaded by ground commanded memory load.		
3.9.3.8	SI identification utilization	1	When output is requested the executive uses the SI identification to load the proper observation number into the SHP?		
9.5.9.5	Ancillary Data Requirements	О80	The ancillary data required for ground processing and interpretation of science data is specified in the SI-unique appendixes to this ICD.	Ancillary data identified in DM-02, Engineering Data List for DM-02: IN0077-318, Rev C: Engineering Data List for ACS ACS	DM-02: IN0077-318, Rev C: Engineering Data List for ACS
3.9.4.	1.024-MIIz Clock.	1 -11			
3.9.4.	Availability of clock signals from the RMs	08D	Two clock outputs from SNS5114 differential line drivers are available from each RM, and each provides a continuous 1.024-6. MHz square wave derived from the SI C&DH supervisory bus.	Performance is in accordance with unique ACS appendix description, using the SNS5115 line receiver.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.9.4.	Clock signal source and synchronization qualities	I	This clock signal is synchronous with all other clocks and strobe signals from the RM or EU. The source for each signal is a differential driver, and the jitter component of the signal is less than five percent.		

	Rec	quire!	Requirement	Veril	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.10.1.2	Relay command spurious voltage immunity	O8D	It is recommended that SI circuits be designed so as to ignore spurious pulses of as much as +30 Vdc for durations as great as 100 usec on Relay command lines.	Qualified as a STIS heritage, build to print design at the circuit [Ref: ACS Critical Design Review (STIS Heritage) level, confirmed by test to operate correctly.	Ref. ACS Critical Design Review (STIS Heritage). Procedure: GSFC Verification testing, as-run data.
3.10.1.2	Detailed circuit feature requirements	O8D	es of	Qualified as a STIS heritage, build to print design at the circuit [Ref: ACS Critical Design Review (STIS Heritage). level, confirmed by test to operate correctly.	Ref. ACS Critical Design Review (STIS Heritage). Procedure: GSFC Verification testing, as-run data.
3.10.1.2	Normal maximum relay drive current	080	[a.] The normal maximum current from the RIU through the user load into the switch is 200 mA.	Qualified as a STIS heritage, build to print design at the circuit [Ref: ACS Critical Design Review (STIS Heritage)] Procedure: GSFC Verification testing, as-run data.	Ref: ACS Critical Design Review (STIS Heritage). Procedure: GSFC Verification testing, as-run data.
3.10.1.2	Isolation and Suppression diodes, requirement	Q80	[b.] Diodes for isolation (DI) and for suppression (DS) of back EMF, are required for each relay coil. Isolation diodes should be in parallel and suppression diodes in series to protect against diode failures, as shown in Figure 3-23.	Qualified as a STIS heritage, build to print design at the circuit [Ref. ACS Critical Design Review (STIS Heritage). [evel, confirmed by test to operate correctly.] Procedure: GSFC Verification testing, as-run data.	Ref: ACS Critical Design Review (STIS Heritage). Procedure: GSFC Verification testing, as-run data.
3.10.1.2	Return for +28V pulse DCSC, requirement	O80	[c.] The return for the +28V pulse must be connected directly back to the selected Discrete Command Switch Closure (refer lite Figure 3-25).	Qualified as a STIS heritage, build to print design at the circuit level, confirmed by test to operate correctly.	ACS specific circuitry for a discrete command shown in Figure 10-26, p62 IN0077-610, validated by test.
3.10.1.2	Timing requirements for +28V pulse DCSC	08D	[d.] The +28V pulse and Discrete Command Switch Closure (timing are shown in Figure 3-26 of ST-ICD-08D.	Qualified as a STIS heritage, build to print design at the circuit level, confirmed by test to operate correctly.	Ref: ACS Critical Design Review (STIS Heriage). Procedure: GSFC Verification testing, as-run data.
3.10.1.3	Discrete Commands from Redundant Remote Modules	O80	Remote Modules (RM) should be connected redundantly to provide two command sources for each Discrete command. Use Figure 3-25 of ST-ICD-08D for a typical system showing both relay and logic command use.	Qualified as a STIS heritage, build to print design, block diagram, confirmed by test to operate correctly.	See ACS specific design for cross-strapped RIUs A/B, Figure 10-23, p57 IN0077-610, validated by test.
3.10.1.3	Redundant Discrete command resources		A maximum of 62 Discrete commands is available for SI use in the redundant configuration. Second Maximinds commands are 16 bits in least		
3.10.1.4	received by		a command k signal, a gnal.	ACS implemented system is described in the unique appendix, addressing command requirement details.	ACS implemented system is described in the unique appendix, See ACS specific design, "Serial Magnitude Command Interface for CS in addressing command requirement details. MEB1(2)" Figure 10-27 -p64, and other figure references, IN0077-610.
3.10.1.4	Detailed command transfer circuit description	C80		ACS implemented system is described in the unique appendix, addressing command requirement details.	See ACS specific design, figure references, 1N0077-610.
3.10.1.4	Enable	-			Reference: DRD DM-01, IN0077-302, Command List Specification for the Advanced Camera for Surveys.
3.10.1.4	Data.	_	Four Serial Command Data outputs are provided for each RM. The data output is a burst of 16 bits, NR2-L, and bracketed within the Serial Command Enable active interval.		
3.10.1.4	Clock.	-	Four Serial Command Clock signals are provided in each RM. Three signals are bursts of 16 clock pulses at 256 kHz with a 50 percent duty cycle used to strobe the Serial Command Data (see Figure 3-27 of ST-ICD-08D).		
3.10.1.4	Driver Circuit.	ı	The driver circuit is a Texas Instruments SNSS114 line driver.		
3.10.1.4	Receiver circuit	-	The receiver circuit (line receiver) is the high reliability version of the Texas Instruments SN55115 or the DS7820A. Figure 3-20 if ST-ICD-08D shows the SI interface.		

		Requirement	mant	Non	Veritination Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.10.6	Handling of detrimental delayed commands	ı	If the combination of realtime and delayed commands would violate timing constraints for a given SI, execution of the delayed commands must be halted by realtime commands prior to transmission of the conflicting realtime commands.		
3.10.7	Contingency Commanding.	08D	Provisions for failed or degraded system commanding are specified for each SI in the applicable Appendix.	Provisions for failed or degraded system commanding procedures are documented as required	Ref: Command Blocks, Macros, PSTOLS and Flow Charts, DRD OP-01 & DM As
3.10.7	Contingency commanding opportunities for SIs	1	ill be		
3.10.8	Safing Commands.	O8D	A Payload Safing Sequence (PSS) is stored in command Memory in the NSSC-I. The PSS is issued by the NSSC-I whenever the main Stored Command Processor in the NSSC-I is enabled and one or more of the following occur:		
3.10.8	Safing circumstances, occurrences list	08D	(Ref. Sating circumstance occurrences listed in parts (a) Ithrough (h), lirst portion of paragraph 3.10.8, ST-ICD-08D.)	Requirements met through ACS design heritage with GHRS, COSTAR, STIS, and NICMOS.	The saling sequence for the ACS instrument meets the requirements specified in the core ICD-08D document. Ref: SI Command Blocks, Macros, PSTOLS, and Flow Charts, DRD OP-01 & DM-05.
3.10.8	Safing conditions	1	If any of the following conditions exist, the NSSC-1 will report the error in the status buffer, set an error bit in the engineering data and cease toggling the SI C&DH OK bit in the SI C&DH PIT.		
3.10.8	Safing, conditions list	08D	(Ref. Safing conditions listed in parts (a) through (g), second portion of paragraph 3.10.8, ST-ICD-08D.)	Requirements met through ACS design heritage with GHRS, COSTAR, STIS, and NICMOS.	The saling sequence for the ACS instrument meets the requirements specified in the core ICD-08D document. Ref. SI Command Blocks, Macros, PSTOLS, and Flow Charts, DRD OP-01 & DM-05.
3.10.8	Payload Safing Sequence (PSS)	1	The PSS is a master relative time (delta T) command sequence which initiates five individual SI T safing sequences and safes the SI C&DH.		
3.10.8	PSS safing memory allocation	1	Three hundred words of command memory are allocated for the master PSS and the five SI safing sequences. Fifty of these words are allocated for each SI safing sequence.		
3.10.8	SI safing sequence transition requirement	O8D		Requirements met through ACS design heritage with GHRS, COSTAR, STIS, and NICMOS.	The safing sequence for the ACS instrument meets the requirements specified in the core ICD-08D document. Ref. SI Command Blocks, Macros, PSTOL.S, and Flow Charts, DRD OP-01 & DM-05.
3.10.8	SI safing sequence completion time	08D	Since SI and/or SI C&DH power may be removed 120 seconds Rafler the safing sequence is initiated, the sequence for each SI C must be executable in at most 120 seconds.	Requirements met through ACS design heritage with GHRS, COSTAR, STIS, and NICMOS.	The safing sequence for the ACS instrument meets the requirements specified in the core ICD-08D document. Ref: SI Command Blocks, Macros, PSTOLS, and Flow Charts, DRD OP-01 & DM-05.
3.10.8	SI safing sequence definition	08D	dne	Requirements met through ACS design heritage with GHRS, COSTAR, STIS, and NICMOS.	The safing sequence for the ACS instrument meets the requirements specified in the core ICD-08D document. Ref. SI Command Blocks, Macros, PSTOLS, and Flow Charts, DRD OP-01 & DM-05.
3.10.8	NSSC-I safing sequence provision for SIs	1	The NSSC-1 provides the capability to execute the single SI safing sequence within the PSS without executing the complete PSS. The single SI safing sequence can be initiated by an executive request, a software command, or a processor request.		

1
1831

	16G	Begiirement	and the state of t	Verif	Verification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.12.1	SI interconnect maximum wire length	G80	Maximum lengths for this cable are: 40 feet from the SI C&DH Cable length verified from SI IF (ORU) to SD IF (MEBS). ORU connectors to the SI ocience data interfaces. SI ORU connectors to the SI science data interfaces. ORU(A):W06J3 to MEB2: 54 inches. ORU(B):W06J4 to MEB1: 52 inches. ORU(B):W06J4 to MEB1: 52 inches.	Cable length verified from SI IF (ORU) to SD IF (MEBs): Cable W06 (538506) ORU(A): W06J3 to MEB1: 54 inches, ORU(A): W06J4 to MEB2: 55 inches, ORU(B): W06J4 to MEB2: 52 inches, ORU(B): W06J4 to MEB2: 54 inches,	Measured flight cables.
3.12.1	Bay 1 SI interconnest minimum wire length	1 c	The minimum length of this cable between the SI C&DH ORU connectors and the axial instruments' ORU connectors in bay 1 shall be 30 feet.		
3.12.2	Electrical Connectors Ref: RVS #@Table 27* for table 3-17 content	T 3 0 3	The RM interface connectors, listed in table 3-17, ST-ICD- 08D, meet specification GSPC-S-311-P4. Mating connectors (with insertion tools and 10 percent contact overage, if supplied with loose contacts) are supplied by the RM supplier.		
3.12.2	SI interface connectors	8 1	SI interface connectors are as specified in the SI to OTA/SSM ICDs.		
3.12.3	Assignment of RM Connectors Ref: RVS #@Table 28* for table 3-18 content	1 [The RM interface connectors are arranged as shown in Figure 3-29, ST-ICD-08D. These connectors correspond to the functions and designations listed in table 3-18 of ST-ICD-08D.		
3.12.3	Interface connector layout	I C	ST-ICD-08D Figures A-1 and A-2 in Appendix A show a map of each connector to indicate, in general, how each has been laid out.		
3.12.4	Pin Designation	s I	RM and SI connectors have general pin assignments which are shown in Tables A-1 through A-13 in Appendix A. Refer to ST-ICD-08D for table content.		
3.12.4	SI specific signals and characteristics, by function	080 1	Specific signals and characteristics for each data function are listed in the applicable SI Appendix.	IN0077-610 -p65 states: The ACS instrument uses R1U connectors 14, 15, 16, 18, 19, and 11 Tables10-4 through 10-16 list the pin assignments for these connectors.	IN0077-610, Rev A: Appendix X, ACS Unique Appendix
3.12.5	Test Connector Requirements	-	The RIU test connector J2 is deleted.		
3.12.5	s	080 /	The SI test connector pin assignments are listed in Table A-12 of Appendix A with the specific assignments listed in each SI Appendix.	IN0077-610 Table 10-17—p87 lists pin assignments for SI(ACS) ORU Test Connector, Table 10-18 lists pin assignments for SI(ACS) backdoor test connector, and Table 10-19 lists pin assignments for SI(ACS) thermal / vacuum test thermistor(s) connector.	IN0077-610, Rev A: Appendix X, ACS Unique Appendix
3.12.6	Code Designations	1 8	Establishing the correct address or A/B assignment is accomplished on the RIU Bus Connector (14) by connecting a given address or A/B pin to signal ground.		
3.12.6	Address A/B bit log, cal state		If so connected, the address or A/B bit becomes a logical "O". Left unconnected, it is a logical "I" because the pin is connected to a gate input tied high through a pull-up resistor.		
3.12.6	Address A/B bit pin-out redundant distribution		For the A/B bit, A = 0 and B = 1. Two pins are provided for this function for the purposes of redundancy. Pin 21 goes to the Bus Receiver and pin 24 goes to the Discrete Command Logic where independent A/B select verification is accomplished.		

			***************************************	, inch	Verification Status
	É	"			Icanol Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Titles
3.13.1	d. SI to SSM Interface	O8D	1. Processor Interface Table (PIT) Read/Write.	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1		O8D	_	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1	e. Ground to SI Interface	08D	1. Memory Load by Absolute Location.	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1		CI80	2. Memory Load by Delayed Command Processor.	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1		G80	3. Table Load (Realtime).	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3,13,1		O8D	4. Memory Dump.	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1		08D	5. Data Output	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1	f. Resource Allocation	08D		Performance is as required by core ICD-08D spec.	Instrument configuration shall be driven by the execution of macros prestored in the Control Section non-volatile memory area.
3.13.1		08D	 Scratch Pad. Additional memory available to a designated instrument. 	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1		08D		Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1	g. Process Control.	O8D	This information defines the operational environment for the SI Application Processors.		
3.13.1		08D	1. Task Types	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1		08D	2. Scheduler	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1		08D	3. Interrupts	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1		08D		Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.1		G80	5. Processor Initialization	Performance is as required by core ICD-08D spec.	This implementation is in accordance with STIS heritage and can be passed as Type C.
3.13.2	Data Input	08D			
3.13.2.1	Engineering Data for Telemetry	1	The SI C&DH collects and transmits to the SSM 10 words of engineering data from each SI per minor frame (0.5 second).		
3.13.2.2	Special Engineering Data for Onboard Processing	I	Each 0.5 second, the SI C&DH can obtain for each SI up to 35 additional engineering parameters which are not included in the telumetry stream.		
3.13.2.3	Science Data for Onboard Processing	1	A command is used to direct the CU/SDF to send science data from an SI to the SSM or to input the data to the NSSC-I.		
3.13.3	General Services	O8D			
3.13.3.1	Engineering Data Limit Checking	-	Each application processor may have up to three sets of engineering data items in the Current Value Table to be limit-checked.		
3.13.3.2	Timekeeping	-	A time code is maintained and made available for application processors.		
3.13.3.3	Access to Engineering Data by Table	1	There is a data reference table in the executive which contains the addresses of engineering data items in the Current Value Table.		

	Req	quire	Requirement	Veril	erification Status
Paragraph Number	Parameter	Source	Specification	Performance	Comments, Notes, and Document Triles
3.13.8.5	Processor Initialization	ı	Each application and system processor is responsible for its own initialization.		

Sile responsibility creles (column N) are listed below
Ball WFC Test
Ball HRC Test
Ball Calibration
Ball Alignment
Ball Pre-ship Review (N) Notes: (1) BWT (2) BHT (3) BC (4) BAL (5) BPS

HUBBLE SPACE TELESCOPE PRESENTATION # PD-003924 LIBRARY #TM-030320

Advanced Camera for Surveys Pre-Ship Review ACS

Goddard Space-Flight Center December 4, 2001

Agenda

Pre-ship

ACS Review

Paul Volmer

- I. Overview
- A. Agenda
- B. ACS Overview
- C. Program Overview and history since 2000 Delta PER
- II. Changes since 2000 Pre-Environmental Review
- A. Detectors
- B. Electronics
- C. Mechanical
- D. Thermal
- E. Optical
- F. Operations

- Paul Volmer
- Tim Schoeneweis
 - Paul Volmer
- Greg Johnson
 - Joe Sullivan
- Tim Schoeneweis

Agenda

III. System Level Test Results (cont.)

- H. Calibration

+ 1. Component Level

◆ 2. System Level

→ 3. Optical Stability

IV. Telescope Level Testing

A. ACS/CS TV Compatibility

B. ACS/CS EMI Compatibility Ambient

Launch Readiness

A. RVM Status

B. Waiver Summary

C. Documentation Status

D. Project Assessment Launch Readiness

VI. Launch Site Processing

A. Logistics (Transport to KSC, AE to VPF)

Launch Site Operations

Mark Clampin George Hartig George Hartig

Teri Gregory Pam Sullivan Lester Farwell Paul Volmer Paul Volmer Pam Sullivan

Paul Volmer Paul Volmer

December 4, 2001

Acronyms, Cont'd

ACS is ready for launch

Pre-ship

ACS Review

Instrument testing complete

- Over 35,000 images taken with ACS
- Over 12,000 miles on the road
- MEB #1: over 3,000 hours
- MEB #2: over 1,000 hours
- Completed 3 thermal vacuum tests
- ◆ 1 with all flight hardware
- 2 acoustic tests
- ◆ 1 with all flight hardware
- 2 EMI tests
- 1 with all flight hardware

Detector Subsystem

- Flight SBC detector in ACS
- Flight WFC #4 installed in ACS
- Flight HRC #1 installed in ACS
- Spare CCD detectors complete and on the shelf
- WFC #5 and HRC #2

WFC Schematic

Pre-ship

Review ACS

Environmental Test Sequence

Changes Since June 2000 PER CCD Cameras

Bill Koldewyn Section II-A

CCD Cameras Flight Configuration

Pre-ship ACS Review

	Status at Delta PER	Flight
WFC Camera	WFC-3	WFC-4
Radiation shield	Directly on TECs	On flexures with thermal
mounting		straps
Black mirror coating	Yes	No change
Post-flash	Yes	No change
Outer pre-amp	Grounded	No change
ground-planes		

HRC Camera	HRC-1	HRC-1
Black mirror coating	Yes	No change
CCD AR coating	SITe	No change
Post-flash	Yes	No change
Outer pre-amp	Grounded	No change
ground-planes		

WFC4 Thermal Strap

WFC-4 Performance Summary

Pre-ship

ACS Review

WFC-4 Cam	ıera (S/N 9	8242MAB	C-4 Camera (S/N 98242MABR10-01, 98242MABR10-02	MABR10-0	12)
		units	Derived Req.	Performance	nance
				A-B	α-5
Full Well		e-	>20000	00022	77000
Dark Current		e-/pix/hr	05>	6.2	7
Quantum Efficiency	450 nm	%	>75	65 @ 400	66 @400
	800 nm	%	89<	62	09
	1000 nm	%	>12	13	12
Read Noise (e-)		-	7 >	4.9 4.9	5.3 5
Transfer Efficiency Parallel	Parallel	fraction	66666`<	0.999997	0.999995
	Serial	fraction	66666.<	0.999995	0.999998
0.8					
	\ 				
0.7		/			
90					

A-B chipC-D chip

300 400 500 600 700 800 900 1000 Data contained herein is exempt from ITAR regulations under CFR 125.4(13) -- data approved for public disclosure.

Summary of Electrical Changes

Pre-ship ACS Review

System Electronics Modifications:

<u>Change Description</u>	PWB changed	Rational for change
Installed the flight WFC and HRC detectors. WFC Build 4 and HRC Build 1 CCDs were installed in the ACS in Dec. 2000	ı	1
Added 12 filtering capacitors and changed 3 resistor values.	LVPS #2 and LVPS #3	close HAR 1533
 Corrected susceptibility of WFC, HRC and Shield TEC voltage and current telemetry monitors 	boards in both MEBs.	
 Modifications were made in Dec. 2000. (LVPS2, E.O. A1) (LVPS3 E.O. B4) 		
Changed AS/PC BIAS board in the WFC CEB.	Changed out	Match electronics
 Installed ASPC/bias board that matched WFC T 	the whole	gains and offsets
 Board received full vibe and thermal tests. 	ASPC/BIAS	to the flight
 This board was changed out in Dec. 2000 	WFC CEB	detector nead
Changed 3 select resistors in the HRC CEB ASPC/BIAS board.	ASPC/BIAS in	Match electronics
 These resistors were changed in Dec. 2000. 	the HRC CEB	gains and offsets
		to the flight
		detector head

Summary Electrical and Cable Changes (Continued)

Pre-ship ACS Review

- System Cable Modifications:
- W23 and W24 WFC CEB to CCD cables were replaced in 1/2001

ACS Is Ready to Launch

Pre-ship ACS Review

- Disassembly of ACS started 11/17/00
- removed HRC S/N 002 and the WFC S/N 003
- The Instrument was reassembled starting 1/12/01
- Installed and aligned flight HRC S/N 001 and flight WFC S/N 004
- Installed new interconnect cables between the cameras and the
- Removed one electronic box to facilitate disassembly
- No connectors de-mated to perform this operation.
- All other electronic boxes and cables remained in place.

Changes Since June 2000 PER Thermal

Greg Johnson Section II-D

Thermal Impact to Changes

Pre-ship

ACS Review

- Moved thermal shelf control sensor on Zone 2B
- Old location under heat pipe support mount was artificially lowering thermal shelf temp, thereby increasing heater demand.
- Impact is a reduction of heater power consumption of 2-4 watts.
- Decision made that ACS would operate in early years without ASCS.
- Raised WFC minimum temperature from -83°C to -77°C
- Increased maximum detector anneal temperature by 7°C
- Increased MAMA maximum operating temperature by 3°C

ACS Optical Subsystem Configuration

Optical Witness Samples (OWS)

Pre-ship

ACS Review

- OWS Integrators are used to track coating performance over the integration phase of the program.
- The AlMgF2 coated samples are the most sensitive to molecular contamination and are therefore used as contamination monitors.
- Two OWS contamination monitors are located inside the ACS enclosure and are measured after significant events such as shipments and environmental tests.

Internal Contamination Monitors Confirm That ACS Is Free Of Molecular Contaminants

Significant changes since 2000 PER

Pre-ship

ACS Review

- Updated servicing mission functional test
- In line with pass / fail criteria
- Removed SBC commanding
- Added one full frame WFC cal lamp image
- Improved filter wheel positioning repeatability
- Previous implementation met specification of +/- 1 step
- Ground processing of science data proved difficult if filter position was off by a step (for certain filters, i.e. ramp filters)
- Significantly increased order of transform used to correct raw resolver readings

4 ACS Software Releases Since PER

Pre-ship ACS Review

- 9/20/00 CS 3.09, MIE 1.07
- Added timing pattern updates for both HRC and WFC
- Transitioned to code 582 SI Memory Manager
- 2/16/01 CS 3.0A, MIE 1.07
- Completed timing pattern updates
- Updated clock and bias voltage values for flight WFC CCD
- Updated thermal telemetry limits (based on TV #2)
- 6/15/01 CS 3.0B, MIE 1.07
- Improved filter wheel positioning repeatability
- Fixed start position sensing for fold and cal door mechanisms
- 8/30/01 CS 3.0C, MIE 1.07
- Updated FSW error response table
- Updated thermal telemetry limits (based on TV #3)

December 4, 2001

Test Flow

Mark Erickson Section III-A

EMI #1 & EMI #2 Test Summary

Tim Schoeneweis Section III-B

EMI Testing

Pre-ship ACS Review

- Standard test suites were executed
- CE-01 and CE-03; Conducted Emissions
- CS-01, CS-02 and CS-06; Conducted Susceptibility
- RE-02; Electric Field Radiated Emissions
- RS-01, RS-02; Magnetic Field Radiated Susceptibility
- RS-03; Electric Field Radiated Susceptibility
- Inrush current testing (performed using the VEST)

EMI Testing

Pre-ship

ACS Review

EMI TEST # 1 out of spec measurements

- One broadband and narrowband emission 0.4 to 4.9 dBuA over the ICD-02 limit at 549.9 KHz yielding a margin of about 60dB.
- Radiated emission levels exceeded the ICD-02 requirements from 1MHz to 40 MHz. Most outages were less than 20dB out of spec, yielding a margin of greater than 72dB.
- Inrush current measurement slightly exceeded the current-time contour of the ICD-02 specification.
- TEC telemetry was noisy during CS and RS testing.

EMI Testing

Pre-ship ACS Review

EMI TEST # 2 out of spec measurements

- One broadband and narrowband emission 0.2 dBuA over the ICD-02 limit at 549.9 KHz yielding a margin of about 60dB (same as previous EMI test).
- spec). This was done to show that the radiated emissions were due shielded during this run. Only 1 emission at 10.99 MHz (2 dB over Radiated emissions were measured with the ACS GSE cables to the GSE cables and not the ACS.
- Inrush current measurement slightly exceeded the ICD-02 spec. ļ
- testing. The EO was found to be implemented incorrectly and was One reworked TEC telemetry item was noisy during CS and RS reworked. Retest showed the telemetry item to be acceptable.

Acoustic Tests #1 & #2

John Gerber Section III-C

Overview of Data Shows Successful Acoustic Test

Pre-ship ACS Review

Acoustic Test Response Summary for Critical Locations

		Response		
Location	First Test	139 dB Level	Second Test	142 dB Level
	Overall(g _{rms})	Peak (g ² /Hz)	Overall(g _{rms})	Peak (g ² /Hz)
WFC Detector	1.0	.04 at 65 Hz	1.3	.1 at 65 Hz
WFC/HRC Filter wheel shelf	9.0	.012 at 68 Hz	6.0	.01 at 68 Hz
X-fitting	1.4	.007 at 1000Hz	2.6	.015 at 1000Hz
K-fitting (MAMA mount)	9.0	.008 at 68 Hz	0.8	.012 at 60 Hz
MEB outboard edge	0.5	.009 at 32 Hz	0.7	.004 at 120 Hz
Outboard panel	6.4	.7 at 220 Hz	8.7	1.1 at 220 Hz

Comparison of Component Random Vibration and Acoustic Test Responses

		Component Response	Response	
Location	Random	Workmanship	Acoustic	Acoustic 142 dB Level
	Overall(g _{rms})	Peak (g ² /Hz)	Overall(g _{rms})	Peak (g²/Hz)
WFC Detector	4.0	.13 at 390 Hz	1.3	.1 at 65 Hz
WFC/HRC Filter wheel shelf	4.8	.05 at 40-80Hz	6.0	.01 at 68 Hz
X-fitting	na	na	2.6	.015 at 1000Hz
K-fitting (MAMA mount)	5.2	.05 at 40-80Hz	8.0	.012 at 60 Hz
MEB outboard edge	10.9	.7 at 570 Hz	2.0	.004 at 120 Hz
Outboard panel	na	na	8.7	1.1 at 220 Hz

Conducted in the RAS/HOMS Facility ACS Optical Performance Testing

Pre-ship ACS Review

- Image Quality
- Encircled Energy over the field
- Phase Retrieval
- Stray light performance of detector baffles
- Ascent vent stray light evaluation
- Instrument Calibration
- Instrument Flat Field evaluation
- ◆ Broad band white light
- ◆ Monochromatic
- Geometric Distortion evaluation

RAS/HOMS Optical Performance **Facility**

Pre-ship ACS Review

- Developed for HST programs
- Simulates the HST optical performance and instrument mounting interfaces
- $\lambda/20$ wavefront match to the HST OTA
- < 0.30 mm image position match to HST</p>
- Used for optical performance testing
- COSTAR
- STIS
- NICMOS
- ACS
- Simulator performance validated by GSFC Independent Verification Team (IVT)

Ball

Stray Light Test Configuration Instrument Ascent Vent

ACS Review

Pre-ship

Tungsten Fiber Light

Geometric Distortion Test Configuration

Pre-ship ACS Review

Detector Baffle Stray light Test

Pre-ship ACS

Review

Scanned Across Mask RAS Source Image Edges

Data contained herein is exempt from ITAR regulations under CFR 125.4(13) -- data approved for public disclosure.

Optical Performance Test Issues

- 2 mm offset simultaneously on both WFC and HRC detectors is not consistent with angular or translational errors possible inside ACS.
- WFC lateral optical magnification approximately 1. HRC lateral optical magnification approximately 3.
- Opt-Mechanical lever arms are not equivalent between the WFC and
- Each detector is mounted on separate structures within ACS.
- Identified Action: Re-measure ACS WFC and HRC images over the field in RAS/HOMS to confirm image locations.
- 2001, showed close image position repeatability to Feb 2001 HST image plane, HRC pixel X,Y ∆ = (12, -1), 0.080 mm at measurements (WFC pixel X,Y Δ = (1.3, 4.5), 0.070 mm at Final testing in RAS/HOMS, post shipment to BATC Nov HST image plane).
- Issue Status: Closed

Ball

ACS Optical Performance Summary (Continued)

Pre-ship	ACS	Review
·	٠	

Document	Paragrah	Paragraph Title	Requirement	Performance	Status
STE-50	4.2.1.7	Polarization Sensitivity	Maximum Induced Polarization WFC - 2% over 500 - 1000 nm (1% Goal)	Measurements completed. Analysis in progress.	Open
			HRC - 6.5% over 220-1000 nm (1% Goal) SBC - NA		
STE-50	4.2.1.8	Line of Sight Stability	Short Term = Image Jitter (4.2.1.6)	Short term eference section 4.2.1.6.	In Spec
			Long-Term = Co-added exposures up to 24	Long Term Co-added exposures will be met	
		-	hrs	based upon results of SES TV drift test over	
				simulated orbit thermal cycles.	
STE-50	4.2.1.9	Flat-Field Repeatability	Difference over 60 days $\leq 2\%$ rms (1% Goal)	2 % rms over 60 days confirmed (measured	WFC and
				approximately 0.5% rms over greater than	HRC
				240 days). All channels meet global	In Spec
				uniformity spec of $< +/-10\%$.	SBC Waiver
				Flat field repeatability of SBC out of spec	#14
				(detector dependent) and requires a waiver.	(Approved)
STE-50	4.2.2	Image Quality	WFC (at 632.8 nm in 0.25 arcsec diameter)	WFC	In Spec
			Spec > 75% Center and Edge of Field	81% to 84% over the entire field	
			Goal > 80% Center and Edge of Field	HRC	
			HRC (at 632.8 nm in 0.25 arcsec diameter)	86% to 87% over the entire field	
			Spec > 75% Center and Edge of Field	SBC	
			Goal > 80% Center and Edge of Field	36% over the entire field	
			SBC (at 121.6 nm in 0.10 arcsec diameter)		
			Spec > 30% Center and Edge of Field		
			Goal < 35% Center and Edge of Field		
STE-50	4.2.3	Stray Light and Ghost	l incident	One feature, reflected from WFC CCD	Waiver #26
		Images	light within a discrete ghost image	surface to windows and back to CCD show	
				out of spec at approximately 0.4% of incident	
				energy. HRC within specifcation.	
STE-50	4.2.4	HRC Coronagraph		NA	
			2) Aberrated Beam Coronograph		
STE-50	4.2.4.1	Fastie Spot Coronagraph	In front of HRC detector window	Fastie coronograph finger located in front of	In Spec
				HKC detector window.	

ACS Optical Performance Summary (Continued)

Pre-ship ACS Review

S		ပ္ပ	ပွ	ပ	Q	5	ပ
Status		In Spec	In Spec	In Spec	In Spec	In Spec	In Spec
Performance		ACS designed to as built optical prescription	Used to evaluate combined ACS/OTA optical throughput performance.	Used to define OTA pupil for ACS optical design.	RAS/HOMS facility performance verified by GSFC Independent Verification Team for conformance to OTA to within 0.05 waves at 632.8 nm.	OTA stray light performance factored into ultimate OTA/ACS performance.	HST aft shroud light leak environment limits used to evaluate ACS light leak performance through the instrument enclosure. No significant light leaks through ACS vents, panel seams, or connectors were detected.
Requirement	HST OTA Optical Interfaces	OTA as built optical prescription	OTA nominal spectral throughput	OTA pupil mechanical locations	OTA field format, field curvature and field dependent astigmatism.	OTA stray light performance provided	HST aft shroud light leak environment limits provided. used to evaluate ACS light leak performance through the instrument enclosure. No significant light leaks through ACS vents, panel seams, or connectors were detected.
Paragraph Title		Optical Interfaces	Optical Throughput	Pupil Properties	Focal Plane Properties	Stray Light	Aft Shroud Light Leak Environment
Paragrah		4.4	4.4.1	4.4.2	4.4.3	4.4.4	4.4.4.1
Document		ST-ICD-02E	ST-ICD-02E	ST-ICD-02E	ST-ICD-02E	ST-ICD-02E	ST-ICD-02E

SBC RAS/Cal

Pre-ship ACS Review

Encircled Energy Results

- SBC Requirements
- At 121.6 nm in 0.10 arcsec diameter
- Center of Field > 30%, Goal > 35%
- Edge of Field >30%, Goal > 35%
- Prediction At 121.6 nm SBC EE Performance
- Model Based Upon 184.9 nm Measurement
- And OTA Micro-Roughness And mid-Frequency Errors

December 4, 2001

(Measured With RAS Using Phase Retrieval) Wavefront Error Results

December 4, 2001

ACS Thermal Balance Test #1 and #3

Greg Johnson Section III-E-1

Thermal Balance #1 Test Recap

- Thermal Balance test conducted at GSFC from 15 Feb 99 to 23 Feb 99
- Stabilization data collected at 8 separate plateaus
- ASCS simulator employed for 7 out of 8 plateaus
- Validated detector performance with ASCS
- Additional validation with ASCS occurred during Nov 00 testing.
- Interface plate stability of ±0.5°C maintained throughout all
- Non-flight WFC detector in instrument during test
- 99% of total instrument power accounted for and allocated to appropriate subsystems
- Thermal model correlated all 824 temperature predictions with test results to within 3°C.
- Two thermal anomalies resulted from test
- One thermal shelf heater zone used excessive power.
- Several temp sensors failed to perform properly.

Thermal Balance Test #3

Pre-ship

ACS Review

- Thermal balance test conducted at GSFC from 6-12 Jul 01 with flight detectors
- Stabilization data collected at 5 separate plateaus:
- Cold Safe
- Cold Operate with WFC/HRC on
- Determine coldest stable temperatures for WFC and HRC
- Cold Anneal
- Hot Operate with WFC/HRC on
- Determine coldest stable temperatures for WFC and HRC
- Assess cal lamp performance
- Deuterium lamp maximum operating time is 1 hour
- Hot Operate with WFC/SBC on
- ASCS simulator not employed for any plateaus
- Instrument performance verified in prior testing

Thermal Balance Test #3 Results

- Over 500 data points correlated to within 3°C.
- Success criterion was defined to be within 5°C.
- Fewer than 7% were more than 2°C different.
- Test revealed how total instrument power was allocated to individual subsystems.
- LVPS efficiency was high for heaters (~80%)
- LVPS efficiency was low for TECs (~50%)
- Cold Safe demonstrated that all instrument temperatures held above lower limits
- Worst case heater power used less than 70% of available power.
- Detectors meet all performance requirements in Cold Operate
- HRC achieved a minimum stable temperature of -92°C
- WFC achieved a minimum stable temperature of -87°C

December 4, 2001

TB #3 Cold Anneal Results

Pre-ship

ACS Review

- Cold Anneal detector transitions and maximum temperatures were verified.
- HRC warmed up to 22°C steady state.
- ◆ The CCD reached 14°C within 1 hour.
- WFC warmed up to 16°C steady state.
- ◆ The CCD reached 3°C within 2 hours.
- About 21 hours from the onset of anneal the TECs were turned on
- HRC cooled back to operating temperature in 20 minutes.
- WFC cooled back to operating temperature in 53 minutes.
- New anneal commanding similar to flight Institute commanding was verified.

TB #3 Hot Operate Results

Pre-ship ACS Review

- Thermal Shelf heaters turned off in Hot Operate.
- Thermal shelf remained within 20°C ± 4°C.
- Stability is achieved through the thermal mass of the instrument.
- Minimum achievable WFC temperature was -77°C.
- Minimum achievable HRC temperature was -83°C.
- Maximum Deuterium Lamp temperature with one hour of allowed operating time was 34°C.
- Correlated model analysis predicts 42°C steady state.
- Acceptance testing for this lamp was at 50°C.
- Maximum SBC operating temperature was 39°C.
- This is 3°C warmer than with the ASCS operating.
- No hot temperature limits were exceeded in this worst case mode.

ACS SYSTEM THERMAL-VACUUM TEST Outgassing Verification

Radford Perry
Contamination Control Engineer
Code 545 / Swales

ACS Outgassing Verification

QCM at -20°C (ACS CCIP, P442-2494, 5.2.3.4) Requirement: $< 1.56 \times 10^{-9} \text{ g/cm}^2 - \text{hr} (4.33 \times 10^{-13} \text{ g/cm}^2 - \text{s})$ averaged over 8 hours as measured by a

ACS MASS PROPERTIES

JIM METZGER

II F 1-0

ACS MASS PROPERTIES

Final ACS Mass Properties test completed at Ball on March3, 2001.

RESULTS: The fly-away weight of ACS is projected to be 885 lb.

Center of Gravity calculated to be: (relative to 'A' latch)

P1 = -46.62 inches, P2 = 12.26 inches, P3 = 10.93 inches

Requirement: P1 = -20 to -50 inches, P2, P3 = 12 + 1/-2 inches

Post test rework of LVPS had no significant affect on ACS weight

ACS MASS PROPERTIES

The ACS waiver to ICD-02E allows an instrument weight up to 821 lb.

With a total instrument weight of 885 lb,

Excluding GFE listed in ICD-02E at 19.3 lb,

And deducting other GFE hardware at 44.7 lb,

The delivered ACS weight is at the waivered limit of 821 lb.

<u>Ref.</u> Memo to P. Sullivan, 3/22/01, "Report on ACS Mass Properties..."

ACS Pre-Ship Review: Metrology

James Cooper Lockheed Martin

Scope and Methodology

- Must verify that ACS is mechanically compatible with SSE & HST:
- Interfaces
- Volume / envelope clearances.
- Verification methods are similar to those used on previous missions.
 - Use database of HST drawings, ICD's, and metrology data to define interface requirements.
- Verify with fit checks whenever possible.
- Use as-built (measured) dimensions whenever possible.
- Include measurement uncertainties.
- Use worst-case drawing tolerances if as-built data is not available.
- Consider uncertainties on both the HST (or SSE) & ACS side of each interface.
- ICD waivers are thoroughly researched and evaluated.
- Only allow envelope violations in areas where the data supports fit in HST, with margin.

Metrology Verification Overview

- ACS to HST:
- ST-ICD-02 controls Axial SI envelope and HST interfaces.
- All latch interfaces were verified against Master Tool (ASIS).
- ACS violates ST-ICD-02 envelope limits in several places.
- New "Oil Pan" structure was installed to reduce envelope.
- Envelope measurements were repeated.
- Remaining envelope violations have been evaluated and are acceptable for fit in HST.
- Waivers have been reviewed & approved: ACS is acceptable for flight.
- A few items that were identified as potential "snag hazards" on HST MLI have been smoothed over using HST standard procedure (flight approved epoxy.)
- Fit checks in HFMS successfully completed after all ACS modifications.
- ACS to ASIPE (SAC):
- ST-ICD-91 controls Axial SI to SSE interfaces.
- Fit checks complete (including Safety Bar).

Structure Envelope

- Figures on following charts illustrate areas of ICD violation.
- New Oil Pan is entirely within ICD-02 requirements.
- Refer to ICD-02 IRN 115, CCR 4598R2, and CCR 4877 for waiver info.
- Lockheed EM1458 also addresses envelope issues in detail, based on 1998 metrology data (before new Oil Pan).

ACS Envelope Illustrations

ACS Envelope Illustrations, cont.

LASER TRACKER STATION 4

Guide Blocks

- Figure at right shows areas of ICD violation.
- Refer to ICD-02 CCR 4877 for waiver info.
- (Lockheed EM1458 also addresses guide block issues, based on 1998 data.)

III.F.2-6

Envelope Summary

- Structure Envelope:
- Metrology data shows gap > .25" to HST structure in all areas where ACS violates ICD envelope limits.
- Axial SI Envelope Simulator is larger than ACS, and was also a valid check for these areas.
- Simulator was installed in HST pre-launch.
- Guide Blocks:
- Blocks & as-built HST Bay 3 Guide Rail (using metrology data). CAD layout shows clearance between as-built ACS Guide
- Ref SAI-TM-1865.
- Considered the installation process & final latched position.
- Min clearance .023".
- Fit checks in HFMS confirm that envelope is acceptable.
- Bottom Line: ACS will fit in HST.

Fit-check with Cooling System

- ACS was integrated with Aft Shroud Cooling System in HFMS:
- Flight Ground Cable installed between ACS ground lug and ESM.
- Flight ASCS CPL's were integrated with ACS Flight Saddle successfully.
- No anomalies.
- (Thermal joint integrity tested in ACS/CS TV Compatibility Test)

System-Level Test Operations

Chuck Harguth Section III-G-1

ACS TV Results -- Ops

- comprehensive ACS system functional test at both hot Successfully performed several runs of the and cold plateaus.
- Verified STScl commanding and transition logic
- Included transitions from SAFE to OPERATE and transitions into and out of ANNEAL
- Successfully performed an ACS 'cold start'
- Demonstrated ACS' ability to operate at the input voltage ICD limits (24V, 32V)
- Performed full system functional tests at both extremes
- Demonstrated ACS' ability to survive at survival input voltage level (21V and 35 V)

System level test results -- Ops

Pre-ship

ACS

Review

- the servicing mission aliveness and functional tests during Successfully executed a safing/recovery test as well as integration testing with VEST
- Successfully demonstrated STScl's ability to command ACS during standalone SMGT
- Test consisted of executing a 19 hour STScl-generated SMS
- ACS' ability to perform nominal operations in an integrated Successfully demonstrated, in System Compatibility test, payload environment
- Also verified nominal operations for rest of payload with ACS

System level test results -- Ops

- test, ability to perform ACS' aliveness and functional tests Successfully demonstrated, in the Integrated Timeline within the framework of the current mission timeline
- Science data pipeline to the STScI has been verified
- Integrity of science data downlinked from ACS through the pipeline has also been verified
- ACS SI SE procedures are complete, signed off, and tested
- CARD/OLD complete
- Fault Isolation Procedures (FIPs)
- Contingency Operations Procedures (COPs)
- Routine Operations Procedures (ROPs)
- All ACS project database elements have been level 3 certified and delivered to the database office

System level test results -- Ops

Pre-ship ACS Review

Currently running operate software versions

- CS 3.0C

MIE 1.07

ACS o

r		
Total Accum Hrs	3242	1167
Hrs Since New Detectors [12/7/00]	801	563
Hrs Since LVPS Mod [6/14/01]	348	394
odometer	MEB 1	MEB 2

Summary of Software Change Requests

- 24 SCRs (of 302 total) are currently open
- 13 open SCRs have officially been deferred by the CCB
- 1 open SCR is waiting for a documentation update
- ◆ Update has been completed; SCR will be closed at next CCB
- 3 open SCRs have resulted from on-going error message response review with the ACS, COS, and WFC3 teams
- CCB and, if appropriate, scheduled for upload to ACS (post-SMOV) ◆ Upon completion of review, these updates will be reviewed by the
- 4 open SCRs will be patched at the start of SMOV
- Update Target Acquisition Patchable Constants (SCR 293)
- Update MIE Invalid Mode error response action (SCR 297)
- Correct Flight Software CPU over utilization (SCR 298)
- Correct CCD exposure BIAS voltage "OFF" values (SCR 300)
- 3 open SCRs are miscellaneous and minor in nature and will be dispositioned at the next CCB
- Current flight software load is well tested and safe for launch
- Current load will be used for servicing mission AT and FT

ACS/CS TV results -- Ops

Pre-ship ACS Review

- Determined appropriate integrated commanding (ACS, Cooling System) necessary for state transitions
- SAFE/OFF to OPERATE
- ANNEAL to OPERATE
- Data from this test used to generate STScI "commanding tree" for ACS and Cooling System on-orbit transitions

Final ACS Electrical Status

Tim Schoeneweis Section III-G-2

Summary of Completed Electrical Tests

- Completed 2 EMI test suites (pre and post flight detector installation)
- Performed multiple ACS Electrical Isolation and Continuity Interface Tests (EICIT) without anomaly.
- This test is run prior to and after every major ACS move.
- Verifies ICD-02 and ICD-08 Continuity and Isolation requirements.
- Completed 2 Electrical Interface Verification Tests (IVT) with the
- Verifies electrical interfaces between ACS, the Science Instruments Control & Data Handling Subsystem (SIC&DH) and the Power Distribution Units
- Inrush current slightly out of spec. (Waiver 1N0077-W-023)
- All other electrical interfaces meet the ICD-02 and ICD-08 requirements.
- Completed two VEST Electrical and Functional Integration Test Phases (pre and post flight detectors installation)
- completed instrument without anomaly (includes the on-orbit Completed ~ 40 System Functional Tests (SFT) on the Aliveness and Functional Tests).

Sall

ACS Summary

ACS Review

Pre-ship

ACS is ready for flight!

ACS Ground Calibration

George Hartig

ACS Ground Calibration

Goals

- Fully characterize ACS scientific performance
- Exercise ACS in manner similar to on-orbit science
- Determine instrument settings, scales, exposure times, etc. required to operate ACS in optimal manner
- Produce data required to develop the initial set of reference files for use by STScI pipeline
- Over 35,000 images were obtained, logged, processed and archived during the course of the ACS verification and calibration testing
- http://acs.pha.jhu.edu/instrument/calibration/results/ Calibration results posted publicly at:

- Complete instrument characterization conducted in a series of campaigns in both vacuum and ambient environments
- TV#1 (Feb-Mar '99): SBC throughput, flats
- TV#2 (Oct '00): Image stability, thermal performance
- Ball (Feb '01): Image quality, flats, geometric distortion, straylight
- GSFC (Apr '01): CCD performance, grism/prism dispersion, SBC/HRC confocality
- TV#3 (Jul '01): CCD performance, internal flats
- GSFC (Aug '01): Abs. throughput, polarimetric cal
- Ball (Nov '01): Image quality, flash performance, flats

- 3 external stimuli were used to perform calibration
- RAS/HOMS: Full field, refractive OTA simulator
- Produces hi-fidelity point source images at 633nm
- Transmissive diffuser at pupil used for flats
- Precision Ronchi ruling used for distortion cal
- RAS/Cal: Single field point, reflective OTA simulator
- Covers full wavelength range of ACS
- Photometer used for throughput cal
- Prism polarizer added for polarimetric cal
- STUFF: Far UV flatfield stimulus (TV # 1 only)
- Provided FF illumination at 125, 147 nm for SBC
 - Throughput also measured at 125, 147 nm

RAS/Cal Configuration

December 4, 2001

RAS/Cal

December 4, 2001

ACS Ground Calibration

Detector properties, WFC and HRC CCDs:

- Dark count rates very low at operational T, << spec
- 6 e-/px/h WFC; 11e-/px/h HRC (specs: 50, 25 e-/px/h)
- Bias level, shape measured; stability meets requirement
- · "leading edge ramp" sufficiently suppressed with delay after parallel shift
- Gain, well capacity calibrated; in spec
- Read-noise measured; WFC, HRC meet total noise spec
- CTE vs signal level measured; FPR and EPER methods
- Fringing calibrated, modeled by ST-ECF; found stable
- No indication of QE hysteresis

ACS Ground Calibration

Detector properties, SBC MAMA:

- measured and performance optimized at assembly level Geometric distortion, linearity, QE, resolution all at BATC (Argabright)
- Open anode: 5 adjacent defective rows (of 1024)
- Dark count rate measured vs tube T in TV#1, TV#3
- Strong function of T: varies 0.5-5x10-5 ct/s/px
- Meets 6.25x10⁻⁵ ct/s/px spec at hot operate T
- Flat field stability measured in TV#3; readily meets spec (<2% change/month; <1%/week)

- Geometric calibration for WFC and HRC performed in RAS/HOMS, Feb '01
- Plate scale measured; matches models
- Orientation of detectors in S/C coord system measured
- Aperture location in S/C coord's determined
- Distortion measured with precision Ronchi ruling
- 3rd order fit yields residuals ~.2-.4 px over field, limited by ruling and measurement errors
- Conclude: will likely meet correctability spec (.2 px) on orbit with repeated star field measurements

ACS Ground Calibration

Geometric Distortion Test Grid RAS/HOMS

December 4, 2001

III.H.2-10

- Prism and grism characteristics measured with RAS/Cal, illuminated with spectral line sources, at GSFC
- SBC prisms measured under dry N₂ purge (Pt lamp)
- Grism and HRC prism and measured at 5 field positions with aid of RAMP (Ar, Hg lamps)
- Disperser data being reduced and analyzed by the ACS group at the ST-ECF (Garching) to produce spectrum extraction and calibration tools
- Spectral resolution, wavelength coverage and dispersion match optical models, meet specs

- Response uniformity (flat fields) measured for all channels and filters with broadband OTA-like illumination
- All channels meet global uniformity specs (<+/- 10%)
- Flat-field stability verified within spec (2% rms over 60 days, goal 1%, measured ~0.5% rms over >240 days)
- Monochromatic flats obtained from 380nm to 1.1µ in RAS/HOMS for 2 purposes:
- Model interference fringes in CCDs (STECF project), esp. for removal from grism spectra
- Calibrate ramp filter wavelength vs. wheel position

ACS Ground Calibration

WFC Straylight Features RAS/HOMS 633nm

HI.H.2-17

- Quantum throughput measured for all channels, selected
- SBC checked at 124, 147 nm only with STUFF in TV#1
- WFC, HRC measured with RAS/Cal in Aug '01
- All channels match expectation (product of component efficiencies) within measurement errors
- SBC throughput stability monitored through TV#1
- No significant variation detected over 23 days in vacuum

- Straylight performance characterized for WFC, HRC
- RAS/HOMS laser source viewed at multiple field points
- One feature, reflected from WFC CCD surface to window and back out of spec at ~.4% of incident energy (req. waiver)
- Source scanned across mask edges, WFC gap
- Improvements to mask design and black coating inner dewar, heat shield walls greatly reduced certain straylight effects ("dragon's breath")
- Enclosure light leak tests performed at GSFC, Ball
- No significant leakage through vents, panel seams, etc. was detected.

ACS Ground Calibration

WFC Straylight Features RAS/HOMS 633nm

HI.H.2-17

- Coronagraph performance characterized in RAS/HOMS
- Suppression of residual PSF wings is as expected
- Wing intensity reduced by factor of ~10 by ABC
- Performance limited by OTA, not ACS
- Sensitivity to target centration on field masks and Fastie finger investigated
- Pupil mask alignment verified in RAS/HOMS with corrector tip/tilt scans
- Symmetrical behavior of residual PSF indicates excellent alignment

ACS Ground Calibration

Coronagraph Residual PSFs at 633 nm, RAS/HOMS

Small ABC spot

Fastie finger

ACS Ground Calibration

- CCD Flash CTI mitigation capability verified, calibrated
- WFC, HRC Flash LEDs characterized for both ACS sides
- Shutter side (A,B) dependence evaluated
- Significant on WFC, not on HRC
- Repeatability at short flash duration (1s) measured
- Misses exposure level goal (< 1% variation) at $\sim 2\%$
- Use longer exposures to improve repeatability
- Deep exposures obtained to evaluate uniformity and create reference files for flash subtraction
- WFC meets 50% goal; HRC exhibits 70% variation
- All 3 LED current levels exercised
- Desired exposure range achievable for all config's

December 4, 2001

ACS Ground Calibration

WFC Flash

HRC Flash

December 4, 2001 100.00 arcsec

III.H.2-21

- Internal calibration lamp system verified, measured
- Count rates tabulated for all useful detector/filter/lamp configurations
- Deuterium lamp ND filter adjusted after TV#1 to optimize SBC count rates; checked in TV#3
- Cal system meets specs; no issues remain

ACS Ground Calibration

Mechanism performance verified

- WFC and HRC shutter accuracy, repeatability measured
- Exposure non-uniformity ("shading") present at low (<0.5%) level in shortest exposures; meets spec
- HRC/SBC Fold mechanism repeatability measured
- now meets requirements at <0.5 px at HRC detector Early positioning anomaly corrected after TV#2;
- Cal door/coronagraph repeatability measured; meets requirements at < 0.5 px at HRC detector
- Corrector mirror tip/tilt/focus performance verified
- Filter wheel repeatability assessed: in spec, but nonoptimal, at +/- 1 motor step (FF of filter features)

ACS Ground Calibration

Ratio w/ 1 step

RAS/HOMS-FF

5 Nov 01

FW1 offset

WFC F606W

December 4, 2001

ACS Image Stability Verification

George Hartig

ACS Image Stability Verification

- Following mods to ACS optical bench to reduce sensitivity to residual loads, image stability was verified in TV#2, TV#3
- Location of HRC coronagraph spot, backlit with external Pt-Ne lamp/Spectralon diffuser source, monitored during simulated orbital thermal variations
- environment detected; stability in spec (<0.4 HRC px/2 orbits) No significant correlation of image motion with thermal
- HRC/SBC Fold mirror mechanism anomaly discovered
- Mechanism moves when commanded to HRC, when already there, producing shift in image location
- required to permit optical encoder to indicate true pos'n Fix identified, implemented and tested: short wait time

December 4, 200

ACS Image Stability Verification

ACS Image Stability Verification

ACS/CS Compatibility TV Test

Jorge Piquero/LMTO Teri Gregory/J&T

Introduction/Objectives

- Thermal vacuum testing of the ACS with the ASCS was conducted in October 2000
- Test Objectives with ACS
- Characterize ACS behavior with the ASCS
- Characterize the ACS noise in presence of Cryo-cooler
- Demonstrate CPL start-up procedures with ACS Demonstrate ACS anneal with CPL operating
 - Verify ACS/ASCS interface control law
- Demonstrate stability of ACS I/F plate under operational conditions
- Verify ACS operations with the ASCS under hot and cold environmental conditions
- Characterize the ACS optical stability during steady state and under a commanded interface plate temperature change

Approach

- Approach
- Test with and without the ACS instrument
- Hardware which had been tested at the subsystem level was taken to "acceptance" levels
- Hardware which had not been tested (i.e., radiators, conduits, etc) were tested per GEVS guidelines
- Radiator survival heaters were not tested while attached to ACS to protect the instrument.
- components and provide the predicted environments both external and Component shrouds were designed to isolate the cooling system internal to HST
- Environments of the various ASCS and NCS components and the ACS were derived from the HST system thermal math model
- ACS
- The ACS was environmentally controlled through its thermal balance fixture used in the ACS instrument testing

ASCS Attached to ACS

IV.A-3 CRYO VENT PORT

(-V2 INTERIOR VIEW)

COOLING

COS CPL Stowage

SES Chamber Layout

Clean Room/SES Set-up

SES Chamber Set-up

ACS Results

- Under stable environments the ASCS maintained the ACS interface plate within a ±0.25°C control band
- Under transient conditions the plate stability was maintained within $\pm 0.50^{\circ}$ C
- In the hot case, WFC reached -83°C at an interface temperature of-2°C
- low power needed to maintain the detector at temperature.
- CPL start-up and anneal transitions were successfully demonstrated
- In cold anneal the WFC reached 9°C and the HRC 15°C
- In hot anneal the WFC reached 14°C and the HRC 21°C

Conclusions

- ASCS/ACS with NCS compatibility test showed the system is capable of working under the worst case environments
- ACS detected no noise issues associated with NCC/NCS operations
- demonstrated under both steady state and orbit transient ACS interface plate temperature stability was conditions
- Adjustments to the start up and anneal procedures were made based on the test results

ACS/HST Cooling System EMI Compatibility

Pam Sullivan

Cooling System EMI Compatibility

- Test Objective:
- System (NCS), the Aft Shroud Cooling System (ASCS) Demonstrate Electromagnetic Compatibility between ACS and the NICMOS Cryo-Cooler (NCC) Cooling and the Electronics Support Module (ESM)
- Test Overview:
- System Electronics while Monitoring Detector Noise Connect Cooling System to ACS; Operate Cooling
- Results:
- ACS is Unaffected by Presence and Operation of Cooling System Hardware

Test Overview

- Several Test Configurations Executed over Aug Oct 2000:
- Ambient Conditions using Cooling System Hardware Electrical System Testbed (CHEST)
- Baseline (ACS Standalone)
- CS Connected to ACS/Non Operating
- CS Connected/Operating
- Ambient Conditions, installed in High-Fidelity Mech Simulator, using Vehicle Electrical System Testbed (VEST) as EGSE
- CS Connected/Non-Operating
- CS Connected/Operating
- Thermal/Vacuum Conditions using CHEST
- CS Connected/Non-Operating
- CS Connected/Operating

Full Up CHEST Electrical Configuration

Layout for CHEST Tests

Layout for VEST Tests in HFMS

Data Analysis

- Detector Performance Monitored over Time
- WFC and HRC CCDs
- Trend Read Noise from Detector Dark Images
- Perform FFT Analysis on Dark Images
- SBC MAMA
- Trend Count Values
- Visual Inspection of Image Quality

ž

200

쭚

Hubble Space Telescope Advanced Camera for Surveys

WFC Noise, NCC Operating, CHEST TV

WFC FFT, Typical

- FFT Analysis Executed on Each Image
- Only Features Present are ACS-Generated Components at 153Hz and its Harmonics
- No Added Noise Components from Cooling System

ACS-CS EMI Results

- VEST/HFMS CCD Data Difficult to Analyze
- CCDs Unable to Maintain Constant Operating Temp due to Heat Pipe Orientation in HFMS
- SBC Detector Data Valid & Shows no EMI Effects
- Unaffected by Cooling System Presence and Operation CHEST Data (Ambient and TV) Show that ACS is
- CCD Read Noise Constant with/without CS
- CCD FFTs have no Frequency Content Other than ACS-Generated Components
- SBC MAMA Counts Constant with/without CS

Component Level Testing

Marco Sirianni Mark Clampin

IV.H.1.0

WFC CCD: Quantum Efficiency

Quantum Efficiency

 Total throughput Including HST OTA

WFC Read Noise

WFC Read Noise (e- rms)

D	5.24
ပ	5.56
В	4.88
A	5.23
	Gain1
PI Bench	

C D	5.20 4.73	5.42 5.15	6.18 6.17	9.17 9.29
В	4.72 5.	5.12 5.	6.04 6	8.83
A	4.81	5.28	90.9	8.82
	Gain1	Gain 2	Gain 4	Gain 8
TV #3				

IV.H.1.2

WFC Charge Transfer Efficiency

Serial	0.999998	0.999999	0.999995	0.999999
Parallel	0.999994	966666.0	0.999994	0.999998
	Α	В	O	D

Fe⁵⁵ (1620 e-)

IV.H.1.3

WFC Dark Current

Average of the four amps: - 5.77+/-1.17 e-/pix/hr (-76.6°C)

IV.H.1.4

-80 Temp (C)

WFC Flat Fields (400 nm)

IV.H.1.5

WFC Flat Fields (800 nm)

HRC Quantum Efficiency

Total throughput Including HST OTA

HRC Read Noise

HRC default configuration: 4.74 e- RMS

D	4.47	
ပ	4.36	
В	4.03	
A	4.64	
	Gain1	
PI Bench		

Q	4.70	4.60	5.78
၁	4.51	4.74	4.60
В	4.17	4.40	4.40
A	4.41	4.60	5.65
	Gain1	Gain 2	Gain 4
		TV #3	

• HRC (-80.4°C)

- 11.41 +/- 3.6 e-/pix/hr

HRC Charge Transfer Efficiency

Fe⁵⁵ (1620 e-)

HRC Flat Fields

600 nm

800 nm IV.H.1.10

950 nm

Launch Readiness

Section V

Verification Matrix Summary

Lester Farwell Section VA

Program and Instrument Status (11/16/01) Verification Summary Current

Pre-ship ACS Review

Design and Performance	Total	By Sot	urce	Ramts	Rgmts Rgmts Ramts Ramts	Ramts	Ramts	Percent	Comments
Requirements	Ramts	47 Only	- 50 Only	Passing	Waived Failing	Failing	Open	Comp (%)	
CEI Specification: Totals	333	30	85	315	15	0	3	%66	99% Open (3): Optical Performance (2 - polarization, 1 - HRC flat field non-uniformity)
ICD-02E: Totals	167	$\dot{\phi}_{\omega_{\infty}}$		145	22	0	0	100%	
ICD-08D: Totals	161	13,46	10,00	161	0	0	0	100%	
ACS Total	169	30	85	159	37	0	3	99.57%	

Requirements are contractual

- Requirements are specified and not derived
- CEI Specifications: -47 & -50
- ICD-02E & ICD-08D
- Requirements are design & performance (quantitative); not "programmatic" (qualitative: i.e. DRLs, PA, etc.)

CEI Verification Will Conclude with Final Analyses of Data (11/16/01)

Pre-ship ACS Review

CEI	CEI Paragraph Title	Total	By S	By Source	Ramts	Ramts	Ramts	Ramts	Percent	Comments
Paragraph No		Rqmts	- 47 Only	- 50 Only	Passing	Waived	Failing	Open	Comp (%)	
3	Science Instrument Definition	97 77 97			\$ 115	And the late of the same of			The second section of	
3.1	General Description		100			a comoderno		Professional Control		では、100mmので
3.2	Mission Requirements	3	ı		3				100%	ALIDAR IS A TAXABLE DATA SEED A SEED AS SEED A
4	Performance Requirements		4	小学院の主体を	大学を発する	なななない				
4.1	Channel Description	6		-	6				100%	
4.2	Optical Performance	2			2				100%	
4.2.1	Optical Design Parameters	21		1	18	-	J	۲,	%06	IW: Flat field repeatibility (SBC): Approved (#14) 2 Onen : 2 polarization sensitivity.
4.2.2	Image Ouglity	2			2				100%	
Table 4-2	Encircled Energy	9			9				100%	
4.2.3	Stray Light & Ghost Image:	1				-			100%	1W: Ghost image exceeds spec: Submitted (#26)
4.2.4	HRC Coronagraph	=		11	11				100%	
4.3	Spectral Performance		*	MINES TANGENIA	排料性 本本本	********	有数据制度			
4.3.1	Wavelength Range	I			1				100%	
Table 4-3	Wavelength Range	9			9				100%	
4.3.2	SBC Spectral Rejection				1				100%	
4.3.3	Spectral Components	10	9	2	10				100%	
Table 4-4	Spectral Elements	46			46				100%	
4	Limiting Magnitude and System	_ 7		3	7				100%	
	Performance									
Table 4-5	WFC Throughput and Performance	8	8		5	3		(100%	
Table 4-6	HRC Throughput and Performance	8	8		\$	2		_) %88 (I W for 2 remts: Throughput @ 600 nm & N in Throughput: Submitted (#25)
Table 4-7	SBC Throughput and Performance	S	5		5				100%	
4.4.1	WFC Detector Requirements	21	ΙI	21	21				%001	
Table 4-8	WFC Detector Performance									
4.4.2	WFC Mirror Requirements	1		1	1				100%	
4.4.3	HRC Detector Requirements	_ 21		21	21			el contenta material antique acres.	100%	all light altition above to the complete of th
Table 4-9	HRC Detector Performance						Sec. Section 1998			
4.4.4	HRC Mirror Requirements	3		3	3				100%	
4.4.5	SBC Detector Requirements	15		15	15		Harman State of the Control	Records Charles MAC and passed	100%	the second and the second of t
Table 4-10	SBC Detector Requirements									
4.4.6	SBC Mirror Requirements	3			3				100%	The special state of the state
4.5	Operational Requirements			機機	非职员的事项等	· ·			The second second	
4.5.1	Parallel Operations	4			4				100%	Opon itomo rogiliro
4.5.2	Observation Modes	3		_	3				100%	
4.5.3	Data Compression	9			9				100%	
4.6	Calibration	Ш	į		4	,		,	100%	, data analysis.
	CEI Performance Requirements: Totals	877	17	83	218	_		n	93.70	
										Testing completed.

CEI Verification Will Conclude with Final Analyses of Data (concluded)

Comments				SAN PER CONTROL OF THE PROPERTY OF THE PROPERT		3Ws. Approved (#018): ACS SPF		the said of the self-in terms are the search to be self-in the contract of the self-in the			IW: Approved (#005): Static Envelope			2W: Approved (#003): Weight & CG	IW: Approved (#005): Static Envelope								IW: Approved (#004): ACS Power								
ınt	<u> </u>			9,	9,		Î			9		T	9			T	,	,0	,	,	, o	,0		,0	,	,0	, o	, o	,0	٠	I
Ramts Percent				100%	100%	100%	100%		100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	,000
Ramts			MTMS.																												
Ramts	Waived					3		A. 1888			1			2	1								1							8	16
Ramts	Passing y				5	4	1		2	2		1	1		1	3	7	1	_	1	2	3	2	25	4	12	13	1	4	65	315
By Source	-47 -50 Only Only											_								1						2 1	1			3 2	
Total	Rqmts		Contract of	1	5	7	1		2	2	1.	1	1	2	2	3	7	1	1	1	2	3	3	25	4	12	13	1	4		111
CEI Paragraph Title		Design Requirements	System	System Interface	Useful Life	Single Point Failure	Commonality	Optical Interface	Optical Design	Mechanical Interface	Mechanical Interchangeability	Loads	Modal Characteristics	Mass Properties	Envelope	Mounting and Alignment	Venting	Ground Refurbishment and Maintenance	Orbital Replacement	CCD Replacement Capability	Thermal Interfaces	Thermal Design	Electrical Interfaces	Electrical Design	Electrical Redundancy	Flight Software Interfaces	Software Design	Operations Inferface	Operations Design	Design Requirements: Totals	OEI Specification: Totals
CEI	Paragraph No	5	5.1	5.1.1	5.1.2	5.1.3	5.1.4	5.2.1	5.2.2	5.3.1	5.3.2	5.3.3	5.3.4	5.3.5	5.3.6	5.3.7	5.3.8	5.3.9	5.3.10	5.3.11	5.4.1	5.4.2	5.5.1	5.5.2	5.5.3	5.6.1	5.6.2	5.7.1	5.7.2		CEI Total

ICD-02E Verification Is Completed (11/16/01)

Pre-ship ACS Review

Comments	Company (1997) and the company of th					1 0 10000000000000000000000000000000000	1W; Approved (#005); Static Envelope. 1W; Approved (#015); Static envelope.		IW: Approved (#015): Static envelope.	3Ws. Approved (#015): Static envelope.	1W: Approved (#015): Static envelope.								3Ws. Deviation approved (#001): Connector Keyway alignments comply with FOC design		dia di dina mandingia mada cinado de mentena mana mana da a menengan tanggan da mentena da mana da mentena men	A the state of the	の では、「一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一	ing allements of the photostrate and the second of the condition of the second of the second of the second of	A COMPANY OF THE PROPERTY OF T	diametra estili	This is on aft chrond light leak (masses) vs. whost image strav	light of CEI 4.2.3 (waived).					de die Leide Gebeure des des die die die de		1W: Approved (#003): .ACS Weight	
Percent Comp	201 00 00		And the second s	-	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%		100%	10 mm 12 mm		100%	The second se		78	100%			100%	100%	100		100%	100%
Rqmts <u>Open</u>					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		200	0				0			0	0	0		0	0
Rqmts <u>Failing</u>	Co. 40 Same States			THE PARTY OF THE																		40.0														0
Rqmts Waived	Vision and an instability	and the second second	200				2		1	3	1			:					3															WHAT WAS	_	=
Rqmts Passing	A property of the control of the con	Salar bearing the second second		A STATE OF THE STA	5	3		4	1			4	2	3	2	4	4	10	1												10	3	4		5	69
Total Rqmts	di an albhanilana	A Comment of the same of the same	A Commence of the Commence of		5	3	2	4	2	3	1	4	2	3	2	4	4	10	4		2	でを発する	を変え	-				1		******	10	3	4		9	08
ICD Paragraph Title	ORI Requirements	Axial Orbital Replacement Instruments	General Interface Characteristics	Interfaces	Coordinate Systems	Mechanical Interfaces	SI Envelope	Mounting Points & Constraints	Guiderail Interfaces	Guide Block and Guide Strip Build Spec	Guide Block and Guide Strip Mounting Detai	Ground Handling Interface	Space Support Equipment Interface	EV Crew Member Handholds	Alignment	Origins of Axial SI Coord Sys	Orientations of Centerlines of A&C Mounts	Orbit Removal and Installatior	Electrical Connector Locations	(Deleted)	Venting Pressurization & Purge	Cryogenic System (n/a)	Optical Interfaces	Optical Throughput	Pupil Properties	Exit Pupil Variation	Focal Plane Properties	Stray Light	Infrared Background (Deleted)	Structural Interface	Loads	Load Factors Axial SIs	Structural Characteristics	SI/OTA Latch Flexibility	Mass Properties	Section 4 4.5.3: Totals
ICD-02E Paragraph No	4	4.1	4.2	4.2.1	4.2.2	4.3	4.3.1	43.2	4.3.3	Table 11	Table 12	4.3.4	4.3.5	4.3.6	4.3.7	Table A	Table B	4.3.8	4.3.9	4.3.10	43.11	4.3.12	4.4	4.4.1	4.4.2	Table C	4.4.3	4.4.4	4.4.5	4.5	4.5.1	Table 13	4.5.2	Table D	4.5.3	

ICD-02E Verification Is Completed (concluded)

ACS Review

Pre-ship

	ICD Decement Title	Total	Rqmts	Rqmts	Rqmts	Rqmts	Percent	,
	ICU FARAGRADII IIIIG	Ramts			Failing	Open	Comp	Comments
Environm	Environmental Interface		Plante Mary Inc. 1			网络		The second se
Thermal Interfaces	ıterfaces	19	17	2		0	100%	
Attachment Fit	Attachment Fittings, Max Eff Thermal	Parent In Control of the Control of						
Thermal	Thermal Power Mode Definitions	2				0	100%	ere ere de la companya del companya del companya de la companya del la companya de la companya d
Thermal		2		2		0	100%	2Ws: Approved (#004);
Magnet	Magnetic Environment	5	4	1		0	100%	IW: Approved (#016):
Contan	Contamination Control	4	4			0	%00I	
Ionizir	Ionizing Particle Radiation	9	9			0	100%	
Max Int	Max Internal Ionizing Part Radiation, Aff Shroud	- Daniel	A comment of the comm				The second supply light	
Meteoroid	roid		Second States	- Anna Company			was a same of the same	Anna de la
Pressure Pressure	Pressure Environment and SI Differential	3	3			0	100%	
Humidity	dity	2	2			0	100%	
Elect	Electrical Power	2		2		0	100%	2Ws: Approved (#004);
Power	Power Busses					_	100%	
SI In	SI Interchangeability	-	1			0	100%	
Fusing	,		建筑是建筑	作物概念的法统	建	经产生	新工作工作	
Switching	hing	-	_			0	100%	
Oper	Operating Voltage	2	2			0	100%	
Bus (Bus Control Circuit	1	1			0	100%	
(Not	(Not used)				"我你就我们我 "			
Gro	Grounding of SIs to HST Structures	3	3			0	100%	
EMC	O	10	9	4		0	1000	2Ws: Approved (#23) 2Ws: Submitted (#20A)
Poin	Pointing Control		The State of the s	网络斯奇尼尔	"种"以	经验的	ない。	
Fine	Fine Pointing		10000000000000000000000000000000000000	WATER STATE	196.455	在表现		to the limit will be a second of the second
Mod Veri	d III Target Acquisition and							de de la companya de
Scan							Section Assessment	The second secon
Sola	System Object Tracking		Sa.E					the control of the co
Man								
Unc	Uncompensated Momentum	2	2			0		
Inte	Interface Connectors and Pin Assignments					新城湖湖		
Con	Connectors	3	3			0	100%	
Pin /	Pin Assignments	2	2			0	100%	
Pwr	Pwr Connector A: Pin Assign	1	I			0	100%	
Pwr	Pwr Connector B: Pin Assign	1	1			0	100%	
Sig-(Sig-Cmd Connector A: Pin Assigr	1	1			0	100%	
Sig-C	Sig-Cmd Connector B: Pin Assigr	-	1			0	100%	
W IS	SI Math Models			沙教创新制		国政策		
Struc	Structural Math Models	8	8			0	100%	
Them		4	4 (-	0	100%	
	Section 4.6 - 4.5.3: Totals	87	92	=	c	0	%00I	

ICD-08D Verification Is Completed (11/16/01)

Pre-ship ACS Review

And the state of t	(1) は、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これで	THE RESIDENCE AND ADMINISTRATION OF A COMMAND RESIDENCE AND A SECOND RESIDENCE AND ADMINISTRATION OF A COMMAND ADM						er en																				Older the American Alberta and Control	The second section of the section of the second section of the section of the second section of the second section of the section of th		the sections of the section of the s		A harden word 2 AAN and a consequent of the Control				
P. W. Sales	the second second second	100%			100%	100%		a de la company	ď.	100%	100%	100%	THE PERSON NAMED IN	Market See		Marie Mari	100%	建筑地域的		100%		THE PERSON NAMED IN	100%			-		100%		Associated Section 1		100%	100%		100%	100%	100%
		0	30.74		0	0				0	0	0	WHITE STATES				0			0	学生を		0	4				0				0	0		0	0	0
	و در این اور درسانه در اور			THE STREET				The Assess	金子等							金属和						-															0
			WALTER S	Marie Salaha			No. of the contract of the con	E. Comment	建筑建筑				ANALYSIS OF	计图解	使好客情况	小麦纳维索		神器的神术	海療機構機能			电子电子			Ė	WATER STATES	thank the c				AND STREET						0
			李章 () () () () ()	PRINTER PRINT	1	2			建物的物质	1	1	1	新校园建筑 即	THE PERSON NAMED IN	STATES OF STREET	排作的時期	2	OF THE PARTY OF	*************************************			WANTED AND MINES	8	A STATE OF THE STA			祖和建筑地面			THE PERSON IN	THE WATER	1	2	Section of the second	1	1	29
T. W.		_			1	2				1	1	1	**	家的影響學	新松子等	沙洲东北北省	2					THE PERSON	8					2			100 miles		2	STATE OF THE STATE	1	-	29
	Interface Functions	General Interface Characteristics	Mechanical Interface	Pictorial Representation.	Envelope Dimensions	Assembly, Test, and Orbit Maintenance	Crew Provisions	Mating Surface	Mounting Hole Location.	Fastening Technique.	Venting Requirements.	Finishing and Coatings.	Corrosion Resistance.	Grounding to Structure.	Optical Interface	Structural Interface	RIU Static Loads.	RM Vibration.	RM Random Vibration Tests	Structural Characteristics.	Weight and Mass Properties.	Environmental Interface	Ambient Temperatures	RM Environmental Conditions	RIU/EU Thermal Modal.	Atmospheric Pressure.	Radiation.	Cleanliness.	EMC/EMI.	Magnetic Field Strungths	EMI/EMC Testing	Electrical Power Interface	RIII/EIJ Required Power.	RM Power Dissipation in Watts	Grounding Requirements.	RM Power During Testing.	Sections 3.1 - 3.7.3: Totals
	3.1	3.2	3.3	3.3.1	3.3.2	3.3.3	3.3.4	3.3.5	3.3.6	3.3.7	3.3.8	3.3.9	3.3.10	3.3.11	3.4	3.5	3.5.1	3.5.2	Table 3-2	3.5.3	3.5.4	3.6	3.6.1	Table 3-3	3.6.2	3.6.3	3.6.4	3.6.5	3.6.6	Table 3-4	Table 3-5	3.7	3.7.1	Table 3-6	3.7.2	3.7.3	

ICD-08D Verification Is Completed

(concluded)

Pre-ship ACS Review

	A Sea of the second control of the c	the state of the s	%001			100%	100%	100%	100%	100%	001	100%	The second s	%001	100%	100%	100%	100%	100%	100%	100%	100%		100%	And the state of t		100%	100%	100%	100%	100%		And the State of State of the S	en de la companya de	ere alterne et en	employees and the second of th	delice to the second or delegated the second control of the second second second second and the second seco	The second control of	100%	100%
			0			0	0	0	0	. 0	0	0		0	0	0	0	0	0	0	0	0		0			0	0	0	0	0			is what is to delice	in makes and the state of		A Company of the Comp	Section 1	0	0
		Harry St. A. S.		The second second second	Birth of particular particular																		A													1			0	0
				the second second									W. M. C. C.										[本]		新加州加州	"我们"								The state of the state of				新州州州	0	0
			1			32	8	29	1	2	22	1		1	1	1	1	5	2	2	5	5	Philipping Company	13			_	-	-		26	THE REPORT OF		E with the same with the					162	161
il Di			1	Section 1		32	8	56	1	2	22	1		1	1	1	1	5	2	2	5	5	A STATE OF THE PARTY.	13			1	_		_	26	操業器							162	161
icologie et al vitte	Interface Functions	Data Management System Interface	Telemetry and Data Interface	Rates	Telemetry Data Rates	Engineering Data	TLM Channel Assignments	Science Data	1.024-MHz Clock.	Command Signal Interface	Command Requirements.	Command Restraints.	equirements.	Preoperation Commands.	Critical Commands.	Operational Timing.	Contingency Commanding,	Safing Commands.	Pointing Control Interface	Cables, Interface Connectors, and Pin Assignments	Cables, Interface Connectors, Controlling ICD	Cabling Requirements.		RM ST Harness connectors	Assignment of RM Connectors.	Interface Connectors	Pin Designation.	Test Connector Requirements	Code Designations	Software Interface	General	Data Input	General Services	Command Handling	SI to SSM Interface	Ground to SI Interface	Resource Allocation	Processor Control	Sections 3.8 - 3.13.8: Totals	ICD-08D: Totals
Paracaoh Paracaoh Paracaoh	3.1	3.8	3.9	3.9.1	Table 3-9	3.9.2	Table 3-11	3.9.3	3.9.4	3.10	3.10.1	3.10.2	3.10.3	3.10.4	3.10.5	3.10.6	3.10.7	3.10.8	3.11	3.12	Table 3-16	3.12.1	3.12.2	Table 3-17	3.12.3	Table 3-18	3.12.4	3.12.5	3.12.6	3.13	3.13.1	3.13.2	3.13.3	3.13.4	3.13.5	3.13.6	3.13.7	3.13.8		

Verification Status Indicates ACS Ready for Shipment

Pre-ship ACS Review

• Failures: None

In process (#20A, 24, 25, & 26) Waivers:

Open Requirements:

_ CEI:

Testing concluded.

Analyses to be completed

◆ No surprises expected (based upon test)

ICD-02E: - Verified

ICD-08D: - Verified

Waiver Summary

John Meadows Section V-B

Waivers & Deviations

Deviations

Waivers

- Closed

Open

Waiver Number	Title	CCR	Approved	Approved CCB report
IN0077-W-015F	AXIAL ORI STATIC ENVELOPE EXCEDENCE	4598R2	11/15/97	566, 567
IN0077-W-018B	ACS "SINGLE POINT FAILURE"	4768R1	11/15/97	267
IN007-W-020A	ACS EMI/EMC	4887		295
IN0077-W-021B	"C" FITTING ORIENTATION	4848	08/12/97	562
IN0077-W-022A	GUIDE BLOCKS, Forward & Aft	4877	11/4/97	266
IN0077-W-023	INRUSH CURRENT EXCEEDANCE	4888	11/15/97	267
	ACS WFC PERFORMANCE NON-CONFORMANCE			
IN0077-W-024	(CEI SPEICIFICATION, TABLE 4-5)	4902		
	ACS HRC PERFORMANCE NON-CONFORMANCE			
IN0077-W-025	(CEI SPECIFICATION, TABLE 4-6)	4903		
	ACS "STRAY LIGHT & GHOST IMAGE" NON-			
	CONFORMANCE (CEI SPECIFICATION,			
IN0077-W-026	PARAGRAPH 4.2.3)	4904		į

Ball

Configuration as Shipped

Pre-ship

ACS Review

ACS 535000-500 Rev C

Bench 537970-500 Rev E

MEBs: 538450-500/-501 both Rev -5

- CEBs:

+ HRC 538600-500 Rev -5

♦ WFC 538620-500 Rev -5

HRC 540960-500 Rev A4 S/N 001

WFC 535165-500 Rev D1 S/N 004 SBC 541052-500 Rev A S/N 001

Documentation Status

Paul Volmer Section V-C

Document Mass > Hardware Mass We're Ready

Pre-ship ACS Review

- All HARs should be closed
- Technical issues all resolved
- Four Cert. logs still open
- 535165-500 WFC-4 detector being finalized
- 535300 WFC Install
- → Done -- awaiting 535165-500
- 537920 optical bench
- → Done -- awaiting 535300
- 535000 Top Assembly
- ◆ Remains open until launch
- All document will be completed and closed by year end

Hubble Space Telescope Advanced Camera for Surveys

Project Assessment of Launch Readiness

- Hardware/Software Qualified
- Environmental Test Program Complete
- All Requirements Verified or Waived
- All Anomaly Reports Closed
- ACS is Ready for Launch
- Mission Operations Readiness Verified
- Nominal Procedures Verified with Flight Instrument
- Contingency Procedures Documented
- Mission Operations Training Ongoing per Plan
- 4 Simulations Complete
- 2 Additional Simulations Planned for January

Hubble Space Telescope Project SM3B Flight Readiness Review

Actions From SM3B PSR

Background:

CEI Spec states "For any single failure, the majority of data from ... each channel ... shall be unaffected."

WFC & HRC Filter Wheel Mechanism Failure would cause loss of majority of data from Both Channels

Rationale for Closure

Filter Wheels are Electrically Redundant

· Failure Mechanism is Shaft/Bearing Seizure

Bearing/Lube Analysis indicates Sufficient Margin against Lube Polymerization, Bearing Metal Fatigue, and Lube Evaporation

Successful Life Test Completed (4X # of On-Orbit Cycles)

Hubble Space Telescope Project SM3B Flight Readiness Review

Actions From SM3B PSR (cont'd)

Provide Failure-free and Total Run time on the instrument

No failures have occurred since the last minor Reconfiguration (which was replacing 4 relays with pure tin coating in Jun 01):

Side 1: 348

• Side 2: 394

No failures have occurred since the last major Reconfiguration (which was the installation of the flight WFC & HRC detectors in Dec 00):

Side 1: 824 hrs

Side 2: 578 hrs

Total run time on Instrument:

Side 1: 3265 hrs

Side 2: 1182 hrs

Launch-Site Processing

Mark Erickson Section VI

Launch-Site Readiness

& Launch-Site Operations

Mark Erickson Sections VI-A,B

Ball

ACS Transportation to KSC

Pre-ship

ACS Review

- ACS was Double Bagged and Sealed in Shipping Container
- Air Ride Van with Ball Escort Vehicle
- Instrumented for Shock Monitoring
- Environmental Controlled
- Nitrogen Purged

Ball

KSC Processing

Pre-ship

ACS

- System Functional Test
- Red-tag/green-tag procedures
- Latch inspection and lubrication
- Contamination Inspection to verify surface level requirements for launch
- ASIPE Installation
- Continuous Purge Monitoring
- Monitor all critical moves of payload/ACS

				139. IEL	EF HORE NUMBER (INCIDUE AFEA CODE)
	AGE		. 4020		EPHONE NUMBER (Include area code)
a. REPORT b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES	Pamela	Sullivan
16. SECURITY CLASSIFICATION	OF:	17. LIMITATION OF	18. NUMBER	19b. NAN	ME OF RESPONSIBLE PERSON
	, ,,	- · r · · · · · · · · · · · · · · · · · · ·	J :F: (-	-/,-	1
Advanced Camera for Survey	s (ACS), Ball	Aerospace & Technol	ogies Corp. (I	BATC), I	Hubble Space Telescope (HST)
15. SUBJECT TERMS				. ·	
science instrument for HST.					
	cience team at	Johns Hopkins Univer	rsity (JHU) fo	or the opp	portunity to participate in building a great
pleasure of working on the co	ncept, design,	fabrication, assembly,	and test of A	CS. Thos	se employees thank NASA- Goddard
Technologies Corp. (BATC) i	n Boulder, Co	olorado. Over the life o	f the HST cor	ntract at I	BATC, hundreds of employees had the
components were replaced. Of					
					02. At the time of liftoff, the Hubble Space successfully docking with HST, several
	. C Cl	- Colombia: 41.6	J 3.7		00 At the time of 10 of 1 17 111 of
14. ABSTRACT					
13. SUPPLEMENTARY NOTES					40° 00 mm /
			, 		-,, - (501)021 0570
			on,7121 Stand	lard Driv	e, Hanover, MD 21076. (301)621-0390
Unclassified-Unlimited, Sub	iect Category				
12. DISTRIBUTION/AVAILABILITY	Y STATEMENT				
					REPORT NUMBER
Washington, DC 20546-0001					11. SPONSORING/MONITORING
National Aeronautics and Spa		ation			
					`
9. SPONSORING/MONITORING	AGENCY NAM	E(S) AND ADDRESS(ES)		10. SPONSORING/MONITOR'S ACRONYM(S)
Greenbelt, MD 20771					CR-2004-212755
Goddard Space Flight Center					
					REPORT NUMBER
7. PERFORMING ORGANIZATIO	N NAME(S) AN	ID ADDRESS(ES)			8. PERFORMING ORGANIZATION
				5f. WOR	K UNIT NUMBER
	 .			5e. TASK	NUMBER
Ball Aerospace & Technologi	ies Corp.				
6. AUTHOR(S)				5d. PRO	JECT NUMBER
				5c. PROC	GRAM ELEMENT NUMBER
				5b. GRAI	NT NUMBER
Final Report for the Advance	d Camera for	Surveys (ACS)			NAS5-32864
4. TITLE AND SUBTITLE				5a. CON	TRACT NUMBER
08-01-2004	Conti	ractor Report			
1. REPORT DATE (DD-MM-YYYY	() 2. REPO	RT TYPE			3. DATES COVERED (From - To)
PLEASE DO NOT RETURN YOUR FO	RM TO THE ABO	VE ADDRESS.			
notwithstanding any other provision of least	aw, no person sha	all be subject to any penalty fo	or failing to comply	with a colle	ection of information if it does not display a currently
any other aspect of this collection of infi	omation, including	g suggestions for reducing thi	is burden, to Department	artment of D	the time for reviewing instructions, searching existing on. Send comments regarding this burden estimate or befense, Washington Headquarters Services, Directorate 202-4302. Respondents should be aware that ection of information if it does not display a currently
The public reporting burden for this coll data sources, gathering and maintaining	ection of informati	on is estimated to average 1	hour per response	e, including	the time for reviewing instructions, searching existing
					OMB No. 0704-0188
DEDA	APT DOCUM	ENTATION PAGE			Form Approved