Lattice-based Cryptography

40

- 1. $\tilde{U} = B_2^{-1}B_1 = U^{-1} = \begin{pmatrix} 3 & 4 \\ -2 & -3 \end{pmatrix}$.
- 2. $\Lambda_{10}^{\perp}(A)^* = \frac{1}{10}\Lambda_{10}(A)$. The lattice is given by the columns of the matrix $\frac{1}{10}\begin{pmatrix} 4 & 2 \\ -1 & 2 \end{pmatrix}$.
- 3. $\det(\Lambda) = \frac{\sqrt{3}}{2}$. The lattice contains the vector $v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ with ||v|| = 1. By definition of Hermite's constant, one has $\frac{\|v\|^2}{\det(\Lambda)} \leq \gamma_2$. Hence $\frac{2}{\sqrt{3}} \leq \gamma_2$.
- 4. Let $w = (42, 25)^T$. Then $B_1^{-1}w = (3.4, 14.2)^T$. The rounded coordinates are $x = (3, 14)^T$ giving the lattice vector $B_1x = (40, 25)^T$. This is the closest lattice vector the target vector w. On the other hand, using the 'bad' basis gives $B_2^{-1}w = (67, -49.4)^T$. The rounded coordinate vector is $y = (67, -49)^T$ and $B_2y = (46, 21)^T$. This is not the closest lattice vector to w.
- 5. $\Lambda_q(A)$ is generated by the rows of A, where the coordinates are lifted from \mathbb{Z}_q to \mathbb{Z} , and $q\mathbb{Z}^n$. Using the definition of the dual lattice, we see that $\Lambda_q(A)^*$ is the set of all $y \in \frac{1}{q} \mathbb{Z}^n$ such that $x \cdot y \in \mathbb{Z}^n$ for all lifted rows x of A. Hence $q\Lambda_q(A)^*$ is the set of all $y \in \mathbb{Z}^n$ such that $x \cdot y \in q \mathbb{Z}^n$, or equivalently, $x \cdot y \equiv 0 \mod q$. This shows that

$$q\Lambda_q(A)^* = \Lambda_q^{\perp}(A).$$

Since $(\Lambda^*)^* = \Lambda$ and $(q\Lambda)^* = \frac{1}{q}\Lambda^*$, taking the dual of the above equality of

$$\frac{1}{q}\Lambda_q(A) = (q\Lambda_q(A)^*)^* = (\Lambda_q^{\perp}(A))^* \Longrightarrow \Lambda_q(A) = q(\Lambda_q^{\perp}(A))^*.$$

6. $\lambda_1(\Lambda) \leq \sqrt{100} (2^{104})^{\frac{1}{100}} \approx 20.56$. The Gaussian heuristic for $\lambda_1(\Lambda)$ gives:

$$\sqrt{\frac{100}{2\pi e}} (2^{104})^{1/100} \approx 4.98.$$

- 7. (a) $\det(\Lambda) = 611$ and the orthogonality defect is ≈ 2.59 . (b) Let $b_1 = (-13, 31)^T$ and $b_2 = (0, 47)$. We get $\mu_{21} = \frac{1457}{1130}$ and the GSO basis is b_1, b_2^* , where $b_2^* = (\frac{18941}{1130}, \frac{7943}{1130})^T$. The square norms are $B_1 = 1130$ and $B_2 = \frac{373321}{1130}$. We can check that $b_1 \cdot b_2^* = 0$. Now run the size reduction algorithm:

$$b_2 \leftarrow b_2 - \lfloor \mu_{21} \rceil b_1 = b_2 - b_1 = (13, 16)^T$$

 μ_{21} is set to $\mu_{21} - 1 = \frac{327}{1130}$.

(c) The Lovacz condition $\frac{3}{4}B_1 \leq B_2 + \mu_{21}^2 B_1$ is not satisfied. The vectors b_1 and b_2 are swapped: $b_1 = (13, 16)^T$ and $b_2 = (-13, 31)^T$. We compute $\mu_{21} = \frac{327}{425}$. The GSO basis is b_1, b_2^* , where $b_2^* = (-\frac{9776}{425}, \frac{7943}{425})^T$. The square norms are $B_1 = 425$ and $B_2 = \frac{373321}{425}$. We run the size reduction algorithm:

$$b_2 \leftarrow b_2 - \lfloor \mu_{21} \rceil b_1 = b_2 - b_1 = (-26, 15)^T.$$

 μ_{21} is set to $\mu_{21} - 1 = -\frac{98}{425}$. (d) Now the Lovacz condition is satisfied and the LLL-reduced basis is $b_1 = (13, 16)^T$ and $b_2 = (-26, 15)^T$. The orthogonality defect is ≈ 1.01 .

- (e) The shortest nonzero vector is b_1 .
- 8. (a) $c = Hm + r = (-1, -4, -20)^T$.
 - (b) $m' = \lfloor H^{-1}c \rceil = (-1, -4, 1) \neq m$. Decryption fails since H is the public 'bad' basis.
 - (c) SageMath computes the short LLL-reduced basis B:

```
sage: H=matrix([[1,0,0],[0,1,0],[14,18,63]])
sage: H.transpose().LLL().transpose()
[-2 -1 4]
[-2 1 -3]
[-1 4 2]
```

(d) We recover the plaintext using the private basis B.

$$H^{-1}B\lfloor B^{-1}c\rceil = H^{-1}B \left[\begin{pmatrix} \frac{22}{21} \\ -\frac{13}{3} \\ -\frac{17}{21} \end{pmatrix} \right] = H^{-1}B \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix}$$

9. The ciphertext is

$$c = prh + m \equiv 22x^4 + 25x^3 + 18x^2 + 18x + 3 \mod 29.$$

For decryption, we compute

$$a = fc \equiv 28x^4 + 25x + 4 \equiv -x^4 - 4x + 4 \mod 29.$$

We lift a to $\mathbb{Z}[x]$ and recover the plaintext

$$m = f_n a \equiv 2x^4 + 2x^2 + 1 \equiv -x^3 - x^2 + 1 \mod 3.$$

10. The ciphertext is the polynomial $c = prh + m \mod q$ and hence

$$c(1) = p r(1)h(1) + m(1) \mod q$$
.

By construction, $r \in \mathcal{T}(d, d)$ and so r(1) = 0. It follows that $c(1) = m(1) \mod q$. An adversary can exploit this to win the IND-CPA experiment. They choose two plaintexts m_0 and m_1 with $m_0(1) = 0$ and $m_1(1) = 1$, and can thus distinguish between the plaintexts given the ciphertext c.

This problem can be fixed by reserving one coefficient of m and setting this coefficient so that $m(1) = 0 \mod q$.

- 11. (a) We choose $a = (0, 1, 1, 1, 0, 0, 1, 0)^T$. Then $u = (0, 16, 9, 7)^T$ and $c = (20, 2, 22, 15)^T$.
 - (b) For decryption, we get $c S^T u = (12, 20, 22, 10)^T$. Coefficients close to 0 mod 23 give 0 and coefficients close to 12 mod 23 give 1. Hence we recover the plaintext $v = (1, 0, 0, 1)^T$.
 - (c) We can assume that the coefficients of E^Ta are integers between $-\frac{q}{2}$ and $\frac{q}{2}$. A decryption error occurs if the magnitude (absolute value) of a coordinate of E^Ta is greater than $\frac{q}{4} = \frac{23}{4}$. However, with the given matrix E and any binary vector a, the magnitude of the coefficients is 4 at most and encryption errors are impossible. In our example, we have $E^Ta = (0, -3, -1, -2) \mod 23$.

Now suppose one of the columns of E is $e = (0, 0, 1, 1, 2, 2, -1, -1)^T$. Then a decryption error occurs if $a = (0, 0, 1, 1, 1, 1, 0, 0)^T$, since $e \cdot a = 6$.

- 12. Follow the example on Kannan's embedding technique to attack LWE, but use the *second* column of P, i.e., P[:,1]. For M=1,2 or 3, the shortest vector of the lattice is $\binom{e}{M}$, where $e=(-1,-1,-1,0,0,0,-1,0)^T$ is the second column of E. Choosing M=4 gives $\binom{e}{4}$ as the second shortest vector.
- 13. Follow the instructions. Note: in part (d), the last line should read return $\mathsf{ZZ}(\mathsf{round}(\mathsf{y}))$ % 2. Alternatively, interpret multiples of 2 in the coordinates of w and v-w as 0.

Decryption should recover the plaintext, possibly up to one or two bit errors, i.e., almost all coordinates of $v-w \mod 2$ are zero. The difference $(c-S^Tu)-1002v$ is equal to the error vector E^Ta . We observe that the coefficients of the difference between $c-S^Tu$ and 1002v are close to multiples of 2003, with an error of less than $\frac{q}{4}=\frac{2003}{4}$, except at the error positions. The public key (A,P) contains $2008\cdot 136+2008\cdot 136=546,176$ integers

The public key (A, P) contains $2008 \cdot 136 + 2008 \cdot 136 = 546,176$ integers modulo 2003, the private key S has $136^2 = 18,496$ integers modulo 2003, the plaintext length is 136 bits, and the ciphertext length is 136 + 136 = 272 integers modulo 2003.