

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC150062 1 of 87 Page:

FCC Radio Test Report FCC ID: 2AJ2I-S888

Original Grant

Report No. TB-FCC150062

Fugle Products (HK) Company Limited **Applicant**

Equipment Under Test (EUT)

True wireless earbuds **EUT Name**

S888 Model No.

Series Model No. N/A

Brand Name Earteana

Receipt Date 2016-10-10

Test Date 2016-10-11 to 2016-10-18

Issue Date 2016-10-19

Standards FCC Part 15: 2015, Subpart C(15.247)

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Fax: +86 75526509195

Page: 2 of 87

Contents

COI	NIENIS	
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	9
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	11
	4.2 Test Setup	11
	4.3 Test Procedure	11
	4.4 EUT Operating Mode	12
	4.5 Test Data	12
5.	RADIATED EMISSION TEST	15
	5.1 Test Standard and Limit	15
	5.2 Test Setup	
	5.3 Test Procedure	17
	5.4 EUT Operating Condition	17
6.	RESTRICTED BANDS REQUIREMENT	32
	6.1 Test Standard and Limit	32
	6.2 Test Setup	32
	6.3 Test Procedure	32
	6.4 EUT Operating Condition	33
	6.4 Test Data	33
7.	NUMBER OF HOPPING CHANNEL	46
	7.1 Test Standard and Limit	46
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	46
	7.5 Test Data	46
8.	AVERAGE TIME OF OCCUPANCY	48
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	

Report No.: TB-FCC150062
Page: 3 of 87

Page:

	8.4 EUT Operating Condition	48
	8.5 Test Data	
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	67
	9.1 Test Standard and Limit	67
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 EUT Operating Condition	
	9.5 Test Data	
10.	PEAK OUTPUT POWER TEST	80
	10.1 Test Standard and Limit	80
	10.2 Test Setup	80
	10.3 Test Procedure	80
	10.4 EUT Operating Condition	80
	10.5 Test Data	81
11.	ANTENNA REQUIREMENT	
	11.1 Standard Requirement	
	11.2 Antenna Connected Construction	87

Page: 4 of 87

1. General Information about EUT

1.1 Client Information

Applicant: Fugle Products (HK)Company Limited

Address : ROOM 1103, HANG SENG MONGKOK BUILDING 677 NATHAN

ROAD MONGKOK, KOWLOON HONG KONG

Manufacturer : Shenzhen Shengxingwang Precision Technology Co., Ltd.

Address : No.4 Long Jing Road, YangMei Village, Bantian Street, Longgang

District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	ė	True wireless earbuds				
Models No.	1	S888	S888			
Model Difference		N/A				
TULL		Operation Frequency:	Bluetooth 4.1: 2402~2480 MHz			
		Number of Channel:	Bluetooth: 79 Channels see Note 2			
Product		Max Peak Output Power:	Bluetooth: 0.203 dBm(GFSK)			
Description		Antenna Gain:	-4.65 dBi TDA Antenna			
		Modulation Type:	GFSK 1Mbps(1 Mbps) π /4-DQPSK(2 Mbps) 8-DPSK(3 Mbps)			
Power Supply		DC power by USB cable.				
Dames Dating		DC power by Li-ion battery				
Power Rating		EUT-1: DC 5V by USB Cable. DC 3.7V by 2000mAh Li-ion Battery.				
Connecting I/O		EUT-2: DC 3.7V by 35mAt Please refer to the User's				
Port(S)	ď	Thease refer to the OSE S	iviai iuai			
Note: EUT-1: Charging E EUT-2: Headsets	Зох	1000	THE PARTY OF THE P			

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	

Page: 5 of 87

		E III II II			
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454	= 611	(3)
26	2428	53	2455		TIV!

(3) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested Charging with TX Mode

TX Mode

Page: 6 of 87

1.4 Description of Support Units

Equipment Information								
Name Model FCC ID/DOC Manufacturer Used "√"								
AC/DC Adapter TEKA012		TEKA		1				
		Cable Information						
Number	Number Shielded Type Ferrite Core Length Note							
Cable 1	YES	YES	0.2M	4000				

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	USB Charging Mode			

For Radiated Test				
Final Test Mode	Description			
Mode 1	TX GFSK Mode			
Mode 2	TX Mode(GFSK) Channel 00/39/78			
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78			
Mode 4	TX Mode(8-DPSK) Channel 00/39/78			
Mode 5	Hopping Mode(GFSK)			
Mode 6	Hopping Mode(π /4-DQPSK)			
Mode 7	Hopping Mode(8-DPSK)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode: π /4-DQPSK (2 Mbps)

Page: 7 of 87

TX Mode: 8-DPSK (3Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	Airoha.	Airoha.AB1500FamilyLabTestTool.exe			
Frequency	2402 MHz	2441MHz	2480 MHz		
GFSK	DEF	DEF	DEF		
π/4-DQPSK	DEF	DEF	DEF		
8-DPSK	DEF	DEF	DEF		

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
THE PARTY OF THE P	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiated Emission	Level Accuracy:	. 4 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Dedicted Emission	Level Accuracy:	. 4.40 dD
Radiated Emission	30MHz to 1000 MHz	±4.40 dB
Dadiated Emission	Level Accuracy:	. 4 20 dD
Radiated Emission	Above 1000MHz	±4.20 dB

Page: 8 of 87

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 87

2. Test Summary

	FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 1						
Standard Section		T	1 1				
FCC	IC	Test Item	Judgment	Remark			
15.203	٠.	Antenna Requirement	PASS	N/A			
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A			
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A			
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A			
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A			
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A			
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A			
15.247(c)	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A			
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW GFSK:1005.10kHz π/4-DQPSK: 1083.40kHz 8-DPSK: 1129.80KHz			

Note: N/A is an abbreviation for Not Applicable.

Page: 10 of 87

3. Test Equipment

AC Main C	onducted Emis	sion			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test Receiver	ROHDE& SCHWARZ	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 22, 2016	Jul. 21, 2017
L.I.S.N	Rohde & Schwarz	ENV216	101131	Jul. 22, 2016	Jul. 21, 2017
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 22, 2016	Jul. 21, 2017
Radiation Description	Spurious Emiss Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	10\$8880/007	Jul. 22, 2016	Jul. 21, 2017
Bilog Antenna	ETS-LINDGREN	3142E	S88817537	Mar. 20, 2016	Mar. 19, 2017
Horn Antenna	ETS-LINDGREN	3117	S88843207	Mar. 19, 2016	Mar. 18, 2017
Pre-amplifier	Sonoma	310N	185903	Mar. 20, 2016	Mar. 19, 2017
Pre-amplifier	HP	8449B	3008A00849	Mar. 26, 2016	Mar. 25, 2017
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 26, 2016	Mar. 25, 2017
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna C	conducted Emis	sion			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	10\$8880/007	Jul. 22, 2016	Jul. 21, 2017

Page: 11 of 87

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Erequency	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 12 of 87

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Test data please refer the following pages.

Page: 13 of 87

EUT:	True	wireless earb	ouds	Mode	l Name :	S	888
Temperature:	25℃	100	NI -	Relati	ve Humic	dity: 5	5%
Test Voltage:	AC 12	20V/60 Hz				TO DE	
Terminal:	Line	9			a W		
Test Mode:	USB	Charging Mo	de		13	~ [Millian
Remark:	Only	worse case i	s reported	Charles	-	20 .	6
30 dBuV -20 0.150	V	Jan som in the same	MHz)	Market Ma	Marchael Mar	QP: AVG:	peak AVG
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBu∀	dBuV	dB	Detector
1 * 0.	1539	44.59	10.12	54.71	65.78	-11.07	QP
2 0.	1539	31.54	10.12	41.66	55.78	-14.12	AVG
3 0.	1940	40.69	10.12	50.81	63.86	-13.05	QP
4 0.	1940	27.96	10.12	38.08	53.86	-15.78	AVG
5 0.	2340	36.64	10.11	46.75	62.30	-15.55	QP
6 0.	2340	23.68	10.11	33.79	52.30	-18.51	AVG
7 0.	2860	27.65	10.09	37.74	60.64	-22.90	QP
8 0.	2860	13.05	10.09	23.14	50.64	-27.50	AVG
9 0.	5980	23.88	10.02	33.90	56.00	-22.10	QP
10 0.	5980	13.62	10.02	23.64	46.00	-22.36	AVG
11 0.	9500	17.07	10.14	27.21	56.00	-28.79	QP
12 0.	9500	3.62	10.14	13.76	46.00	-32.24	AVG
Emission Level	= Read	Level+ Cor	rect Factor				

Page: 14 of 87

EUT:	True	wireless ear	buds	Model N	ame :	S88	38	
Temperature:	25℃	25℃ Relative Humidity: 55%					6	
Test Voltage:	AC 1:	AC 120V/60 Hz						
Terminal:	Neutr					1133		
Test Mode:		Charging Mo						
Remark:	Only	worse case	is reported	WIII 7			1	
		Lyon, my now how		residing to place of the second	Below Walant State	QP: AVG:	peak	
0.150	0.5	Desdies	(MHz)	5			30.000	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∀	dB	dBu∀	dBuV	dB	Detector	
1 * 0	.1539	44.29	10.12	54.41	65.78	-11.37	QP	
2 0	.1539	31.39	10.12	41.51	55.78	-14.27	AVG	
3 0	.1940	40.41	10.12	50.53	63.86	-13.33	QP	
4 0	.1940	27.78	10.12	37.90	53.86	-15.96	AVG	
5 0	.2740	31.47	10.10	41.57	60.99	-19.42	QP	
6 0	.2740	18.43	10.10	28.53	50.99	-22.46	AVG	
7 0	.3660	22.42	10.06	32.48	58.59	-26.11	QP	
8 0	.3660	10.32	10.06	20.38	48.59	-28.21	AVG	
9 0	.5980	23.40	10.02	33.42	56.00	-22.58	QP	
10 0	.5980	13.40	10.02	23.42	46.00	-22.58	AVG	
	.9860	17.04	10.15	27.19		-28.81	QP	
	.9860	4.94	10.15	15.09		-30.91	AVG	
Emission Level	= Read I	Level+ Corr	ect Factor					

Page: 15 of 87

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class B (dBuV/m)(at 3m)			
(MHz)	Peak	Average		
Above 1000	74	54		

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 16 of 87

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 17 of 87

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 kHz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 18 of 87

EUT:	True wireless earbuds	Model Name :	S888			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V	DC 3.7V				
Ant. Pol.	Horizontal					
Test Mode:	TX GFSK Mode 2402MHz		DITT.			
Remark:	Only worse case is reported					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		36.3814	34.39	-18.07	16.32	40.00	-23.68	peak
2		108.2667	34.47	-21.85	12.62	43.50	-30.88	peak
3		164.9075	34.41	-20.59	13.82	43.50	-29.68	peak
4		309.9977	34.87	-16.26	18.61	46.00	-27.39	peak
5		547.0977	35.19	-9.52	25.67	46.00	-20.33	peak
6	*	906.4824	37.67	-3.52	34.15	46.00	-11.85	peak

^{*:}Maximum data x:Over limit !:over margin

Page: 19 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC120V60Hz		3.9
Ant. Pol.	Vertical		
Test Mode:	TX GFSK Mode 2402MHz		LITTLE OF
Remark:	Only worse case is reported		
80.0 dBuV/m			

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		31.2893	33.36	-14.94	18.42	40.00	-21.58	peak
2		74.9191	34.63	-23.52	11.11	40.00	-28.89	peak
3		154.2786	33.68	-20.69	12.99	43.50	-30.51	peak
4		272.2776	34.44	-17.21	17.23	46.00	-28.77	peak
5		416.1791	33.88	-12.41	21.47	46.00	-24.53	peak
6	*	625.0780	35.07	-7.71	27.36	46.00	-18.64	peak

^{*:}Maximum data x:Over limit !:over margin

Page: 20 of 87

EUT:	True wireless earbuds	Model Name :	S888				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Horizontal						
Test Mode:	TX GFSK Mode 2402MHz		L. C. C.				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

No	o. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.009	38.23	13.44	51.67	54.00	-2.33	AVG
2		4804.162	49.75	13.44	63.19	74.00	-10.81	peak

Page: 21 of 87

EUT:	True wireless earbuds	Model Name :	S888				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	DC 3.7V					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX GFSK Mode 2402MHz		OM.				
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						
00.0 40.47							

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.745	49.28	13.44	62.72	74.00	-11.28	peak
2	*	4803.991	37.52	13.44	50.96	54.00	-3.04	AVG

Page: 22 of 87

True wireless earbuds	Model Name :	S888				
25℃	Relative Humidity:	55%				
Test Voltage: DC 3.7V						
Horizontal						
TX GFSK Mode 2441MHz		MILLION.				
Mo report for the emission which more than 10 dB below the prescribed limit.						
	25°C DC 3.7V Horizontal TX GFSK Mode 2441MHz No report for the emission which	25°C Relative Humidity: DC 3.7V Horizontal TX GFSK Mode 2441MHz No report for the emission which more than 10 dB bel				

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.970	36.14	13.90	50.04	54.00	-3.96	AVG
2		4882.189	47.93	13.90	61.83	74.00	-12.17	peak

Page: 23 of 87

EUT:	True wireless earbuds	Model Name :	S888				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		13				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX GFSK Mode 2441MHz	CI 133	UIII.				
Remark:	No report for the emission which prescribed limit.	ch more than 10 dB bel	ow the				

No	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.784	50.20	13.90	64.10	74.00	-9.90	peak
2	*	4882.009	37.47	13.90	51.37	54.00	-2.63	AVG

Page: 24 of 87

EUT:	True wireless earbuds	Model Name :	S888				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		13				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX GFSK Mode 2480MHz		DITT.				
Remark:	No report for the emission which prescribed limit.	ch more than 10 dB bel	ow the				
00.0 10.41							

N	o. N	۱k.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4959.970	36.70	14.36	51.06	54.00	-2.94	AVG
2			4960.357	48.73	14.36	63.09	74.00	-10.91	peak

Page: 25 of 87

EUT:	True wireless earbuds	Model Name :	S888				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	t Voltage: DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX GFSK Mode 2480MHz		C. C.				
Remark:	Remark: No report for the emission which more than 10 dB below the prescribed limit.						

N	No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4960.009	36.92	14.36	51.28	54.00	-2.72	AVG
2			4960.354	49.56	14.36	63.92	74.00	-10.08	peak

Page: 26 of 87

EUT:	True wireless earbuds	Model Name :	S888					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	tage: DC 3.7V							
Ant. Pol.	Horizontal							
Test Mode:	TX 8-DPSK Mode 2402MHz		DITT:					
Remark: No report for the emission which more than 10 dB below the prescribed limit.								

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.766	47.39	13.44	60.83	74.00	-13.17	peak
2	*	4803.850	38.00	13.44	51.44	54.00	-2.56	AVG

Page: 27 of 87

EUT:	True wireless earbuds	Model Name :	S888				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	Test Voltage: DC 3.7V						
Ant. Pol.	Vertical						
Test Mode:	TX 8-DPSK Mode 2402MHz	TX 8-DPSK Mode 2402MHz					
Remark:	No report for the emission which more than 10 dB below the prescribed limit.						

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.748	38.02	13.44	51.46	54.00	-2.54	AVG
2		4804.369	50.47	13.44	63.91	74.00	-10.09	peak

Page: 28 of 87

EUT:	True wireless earbuds	Model Name :	S888		
Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V		13		
Ant. Pol.	Horizontal				
Test Mode:	TX 8-DPSK Mode 2441MHz		DITT.		
Remark:	No report for the emission which more than 10 dB below the prescribed limit.				

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.772	37.58	13.90	51.48	54.00	-2.52	AVG
2		4881.910	51.04	13.90	64.94	74.00	-9.06	peak

Page: 29 of 87

EUT:	True wireless earbuds	Model Name :	S888	
Temperature:	Temperature: 25℃		55%	
Test Voltage:	DC 3.7V		13	
Ant. Pol.	Vertical			
Test Mode:	TX 8-DPSK Mode 2441MHz		LITTE OF	
Remark: No report for the emission which more than 10 dB below the prescribed limit.				

N	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.811	36.45	13.90	50.35	54.00	-3.65	AVG
2		4882.081	46.82	13.90	60.72	74.00	-13.28	peak

Page: 30 of 87

EUT:	True wireless earbuds	Model Name :	S888			
Temperature:	25℃	55%				
Test Voltage:	DC 3.7V		13			
Ant. Pol.	Horizontal					
Test Mode:	TX 8-DPSK Mode 2480MHz		DIOT: N			
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.		TIME S			

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.832	37.41	14.36	51.77	54.00	-2.23	AVG
2		4960.165	48.69	14.36	63.05	74.00	-10.95	peak

Page: 31 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	The same	13
Ant. Pol.	Vertical		
Test Mode:	TX 8-DPSK Mode 2480MHz		D. C. C.
Remark:	No report for the emission which prescribed limit.	th more than 10 dB bel	ow the

No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.790	36.54	14.36	50.90	54.00	-3.10	AVG
2		4960.168	50.70	14.36	65.06	74.00	-8.94	peak

Page: 32 of 87

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Class B (dE	BuV/m)(at 3m)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

Note: All restriction bands have been tested, only the worst case is reported.

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 33 of 87

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.4 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 KHz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Page: 34 of 87

(1) Radiation Test

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2402MHz		
Remark:	N/A		1

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	43.48	0.77	44.25	74.00	-29.75	peak
2		2390.000	30.04	0.77	30.81	54.00	-23.19	AVG
3	*	2402.000	78.07	0.82	78.89	Fundament	al Frequency	AVG
4	X	2402.200	81.69	0.82	82.51	Fundament	al Frequency	peak

Page: 35 of 87

EUT:	True wireless earbuds	Model Name :	S888		
Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Vertical				
Test Mode:	TX GFSK Mode 2402MHz				
Remark:	N/A				

No	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	40.48	0.77	41.25	74.00	-32.75	peak
2		2390.000	30.35	0.77	31.12	54.00	-22.88	AVG
3	*	2402.100	77.39	0.82	78.21	Fundamental Frequency		AVG
4	X	2402.200	81.00	0.82	81.82	Fundamental Frequency		peak

Page: 36 of 87

EUT:	True wireless earbuds	Model Name :	S888		
Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V				
Ant. Pol.	Horizontal				
Test Mode:	TX GFSK Mode 2480 MHz				
Remark:	N/A				

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.900	81.23	1.15	82.38	Fundamental Frequency		peak
2	*	2480.000	77.71	1.15	78.86	Fundamental Frequency		AVG
3		2483.500	53.03	1.17	54.20	74.00	-19.80	peak
4		2483.500	40.30	1.17	41.47	54.00	-12.53	AVG

Page: 37 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	The same	13
Ant. Pol.	Vertical		
Test Mode:	TX GFSK Mode 2480 MHz		C. M. C.
Remark:	N/A		

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	79.27	1.15	80.42	Fundamenta	I Frequency	AVG
2	Χ	2480.100	82.99	1.15	84.14	Fundamenta	I Frequency	peak
3		2483.500	63.87	1.17	65.04	74.00	-8.96	peak
4		2483.500	42.16	1.17	43.33	54.00	-10.67	AVG

Page: 38 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	ann'i	1
Ant. Pol.	Horizontal		
Test Mode:	TX 8-DPSK Mode 2402MHz	CHILL STORY	Millian
Remark:	N/A	and the	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	41.87	0.77	42.64	74.00	-31.36	peak
2		2390.000	29.99	0.77	30.76	54.00	-23.24	AVG
3	*	2402.100	74.70	0.82	75.52	Fundamenta	I Frequency	AVG
4	X	2402.200	81.81	0.82	82.63	Fundamenta	l Frequency	peak

Page: 39 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	TX 8-DPSK Mode 2402MHz	WILL STATE OF	Miller
Remark:	N/A	and the	

N	o. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	41.09	0.77	41.86	74.00	-32.14	peak
2		2390.000	30.08	0.77	30.85	54.00	-23.15	AVG
3	*	2402.100	74.54	0.82	75.36	Fundamental	Frequency	AVG
4	X	2402.200	81.38	0.82	82.20	Fundamental	Frequency	peak

Page: 40 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	and the same	27
Ant. Pol.	Horizontal		
Test Mode:	TX 8-DPSK Mode 2480MHz	CHILL STORY	ARCO
Remark:	N/A	COLUMN TO SERVICE STATE OF THE PARTY OF THE	

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		X	2479.800	80.84	1.15	81.99	Fundamental	Frequency	peak
2		*	2480.000	75.48	1.15	76.63	Fundamental	Frequency	AVG
3			2483.500	60.97	1.17	62.14	74.00	-11.86	peak
4			2483.500	44.60	1.17	45.77	54.00	-8.23	AVG

Page: 41 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	mil	
Ant. Pol.	Vertical		
Test Mode:	TX 8-DPSK Mode 2480MHz	THE PARTY OF	Age
Remark:	N/A		

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2480.000	81.69	1.15	82.84	Fundamental	Frequency	peak
2	*	2480.000	76.16	1.15	77.31	Fundamental	Frequency	AVG
3		2483.500	62.61	1.17	63.78	74.00	-10.22	peak
4		2483.500	45.46	1.17	46.63	54.00	-7.37	AVG

Page: 42 of 87

(2) Conducted Test

EUT:	True wireless earbuds	Model Name :	S888				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Test Mode:	TX GFSK Mode 2402MHz / 24	TX GFSK Mode 2402MHz / 2480 MHz					
Remark:	N/A						

Page: 43 of 87

Report No.: TB-FCC150062 Page: 44 of 87

	-					
EUT:	True wireless earbuds	Model Name :	S888			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.7V					
Test Mode:	TX 8-DPSK Mode 2402MHz / 2	TX 8-DPSK Mode 2402MHz / 2480 MHz				

Report No.: TB-FCC150062 Page: 45 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		13
Test Mode:	8-DPSK Hopping Mode		
Remark:	N/A		CHILL

Page: 46 of 87

7. Number of Hopping Channel

7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Page: 47 of 87

EUT:	True wireless earbuds	Model Name :	S888	
Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	DC 3.7V			
Test Mode:	Hopping Mode (GFSK/8-DPSK)			

Frequency Range	Quantity of Hopping Channel	Limit
2402MU- 2490MU-	79	>4 E
2402MHz~2480MHz	70	>15

GFSK Mode

8-DPSK Mode

Page: 48 of 87

8. Average Time of Occupancy

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)/ RSS-210	Average Time of	0.4.000
Annex 8(A8.1d)	Occupancy	0.4 sec

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 ${Total of Dwell} = {Pulse Time} * (1600 / X) / {Number of Hopping Frequency} * {Period} = 0.4s * {Number of Hopping Frequency}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2,3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

The EUT was set to the Hopping Mode by the Customer.

Page: 49 of 87

8.5 Test Data

EUT:	True wireless earbuds Model Name :		S888		
Temperature:	25℃		Relative Humidity:		55%
Test Voltage:	DC 3.7V	DC 3.7V			
Test Mode:	Hopping Mod	de (GFSK DH1)	CHILD ST		Marie
Channel	Pulse Time	Total of Dwell	Period Time	Limit	Popult
(MHz)	(ms)	(ms)	(s)	(ms)	Result
2402	0.450	144.00		400 PAS	
2441	0.450	144.00	31.60		PASS
2480	0.460	147.20			
Nets Duell time. Bules Time (ms) (4000 2 70) 24.0					

Note: Dwell time=Pulse Time (ms) \times (1600 \div 2 \div 79) \times 31.6

GFSK Hopping Mode DH1

Page: 50 of 87

Page: 51 of 87

EUT:	True wirele	ss earbuds	Model Name	e :	S888
Temperature:	25 ℃	25℃		idity:	55%
Test Voltage:	oltage: DC 3.7V				
Test Mode:	Hopping M	ode (GFSK DH3)		S. Comment	
Channel	Pulse Time	Total of Dwell	Period Time	Limit	Result
(MHz)	(ms)	(ms)	(s)	(ms)	Result
2402	1.760	281.60			
2441	1.760	281.60	31.60	400	PASS
2480	1.760	281.60			

Note: Dwell time=Pulse Time (ms) \times (1600 \div 4 \div 79) \times 31.6

GFSK Hopping Mode DH3

Page: 52 of 87

Page: 53 of 87

- 24 5			1 26 45	114 (14)	
EUT:	True wireless earbuds Model Name :		S888		
Temperature	: 25 ℃	25℃		idity:	55%
Test Voltage:	Test Voltage: DC 3.7V				
Test Mode:	Hopping M	ode (GFSK DH5)		F. British	
Channel	Pulse Time	Total of Dwell	Period Time	Limit	Decult
(MHz)	(ms)	(ms)	(s)	(ms)	Result
2402	3.000	320.00			
2441	3.000	320.00	31.60	400	PASS
2480	3.000	320.00			
ALC: D. H.C.		() (1000 0 7	(0) 04.0		•

Note: Dwell time=Pulse Time (ms) \times (1600 \div 6 \div 79) \times 31.6

GFSK Hopping Mode DH5

Page: 54 of 87

GFSK Hopping Mode DH5

Page: 55 of 87

EUT:	EUT: True wireless earbuds Model Name :		S888		
Temperature:	Temperature: 25℃ Relative Humidity:		55%		
Test Voltage:	DC 3.7V	N. C.			3
Test Mode:	Hopping M	ode (π/4-DQPSK [DH1)	N. B.	
Channel	Pulse Time	Total of Dwell	Period Time	Limit	Result
(MHz)	(ms)	(ms)	(s)	(ms)	Result
2402	0.460	147.20			
2441	0.460	147.20	31.60	400	PASS
2480	0.460	147.20			

Note: Dwell time=Pulse Time (ms) \times (1600 \div 2 \div 79) \times 31.6

π /4-DQPSK Hopping Mode DH1

Page: 56 of 87

Page: 57 of 87

EUT:	True wireless earbuds	Model Name :	S888	
Temperature:	25℃	Relative Humidity:	55%	
Test Voltage:	DC 3.7V	mn is		

Test Mode: Hopping Mode (π /4-DQPSK DH3)

Channel	Pulse Time	Total of Dwell	Period Time	Limit	Result
(MHz)	(ms)	(ms)	(s)	(ms)	Result
2402	1.740	278.40			
2441	1.740	278.40	31.60	400	PASS
2480	1.740	278.40			
2441	1.740	278.40	31.60	400	

Note: Dwell time=Pulse Time (ms) \times (1600 \div 4 \div 79) \times 31.6

π /4-DQPSK Hopping Mode DH3

Page: 58 of 87

Page: 59 of 87

EUT:	True wirele	ess earbuds	Model Name	:	S888
Temperature	: 25 ℃		Relative Humi	dity:	55%
Test Voltage:	DC 3.7V	W. Comment			3
Test Mode:	Hopping M	ode (π/4-DQPSK [DH5)	N. D.	
Channel	Pulse Time	Total of Dwell	Period Time	Limit	Result
(MHz)	(ms)	(ms)	(s)	(ms)	Result
2402	3.000	320.00			
2441	3.000	320.00	31.60	400	PASS
2480	3.000	320.00			

Note: Dwell time=Pulse Time (ms) \times (1600 \div 6 \div 79) \times 31.6

π /4-DQPSK Hopping Mode DH5

Page: 60 of 87

Page: 61 of 87

EUT:	True wirel	True wireless earbuds		Model Name :	
Temperature	: 25℃	25℃		dity:	55%
Test Voltage:	DC 3.7V				
Test Mode:	Hopping N	Hopping Mode (8-DPSK DH1)			
Channel	Pulse Time	Total of Dwell	Period Time	Limit	Result
(MHz)	(ms)	(ms)	(s)	(ms)	Result
2402	0.460	147.20			
2441	0.460	147.20	31.60	400	PASS
2/180	0.460	1/17 20			

Note: Dwell time=Pulse Time (ms) x (1600 \div 2 \div 79) x31.6

8-DPSK Hopping Mode DH1

Page: 62 of 87

8-DPSK Hopping Mode DH1

Page: 63 of 87

EUT:	True wirele	True wireless earbuds		Model Name :	
Temperature:	25℃	25℃		Relative Humidity:	
Test Voltage:	DC 3.7V	DC 3.7V		1000	
Test Mode:	Hopping M	ode (8-DPSK DH3)			
Channel	Pulse Time	Total of Dwell	Period Time	Limit	Decult
(MHz)	(ms)	(ms)	(s)	(ms)	Result
2402	1.720	275.20			
2441	1.720	275.20	31.60	400	PASS
2480	1.720	275.20			

Note: Dwell time=Pulse Time (ms) \times (1600 \div 4 \div 79) \times 31.6

8-DPSK Hopping Mode DH3

Page: 64 of 87

Page: 65 of 87

EUT:	True wirele	True wireless earbuds		Model Name :	
Temperature:	25 ℃	25℃		Relative Humidity:	
Test Voltage:	DC 3.7V		1		
Test Mode:	Hopping M	ode (8-DPSK DH5)		F. B.	
Channel	Pulse Time	Total of Dwell	Period Time	Limit	Result
(MHz)	(ms)	(ms)	(s)	(ms)	Result
2402	3.000	320.00			
2441	3.000	320.00	31.60	400	PASS
2480	3.000	320.00	7		

Note: Dwell time=Pulse Time (ms) \times (1600 \div 6 \div 79) \times 31.6

8-DPSK Hopping Mode DH5

Page: 66 of 87

Page: 67 of 87

9. Channel Separation and Bandwidth Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=30 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

Page: 68 of 87

9.5 Test Data

EUT:	True wireless earbuds		Model Name :	S888
Temperature:	nture: 25°C		Relative Humidity:	55%
Test Voltage:	DC 3.7V			
Test Mode:	TX Mode (GFSK)			HAR
Channel frequency (MHz)		99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402		1003.80	1048.00	698.67
2441		1005.10	1049.00	699.33
2480		1004.80	1049.00	699.33

GFSK TX Mode

Page: 69 of 87

Page: 70 of 87

EUT: True wireless earbuds		Model Name :	S888
Temperature: 25°C		Relative Humidity:	55%
Test Voltage:	est Voltage: DC 3.7V		13
Test Mode:	TX Mode (π /4-DQPSK)		
Channel frequen	ev 99% OBW	20dB Bandwidth	20dB
(MHz)	(kHz)	(kHz)	Bandwidth
(11112)	(1112)	(11.12)	*2/3 (kHz)
2402	1056.50	1109.00	739.33
2402 2441	1056.50 1082.40	1109.00 1149.00	739.33 766.00

π/4-DQPSK TX Mode

71 of 87 Page:

15:34:19 Oct 11, 2016 * Agilent Ref 10 dBm #Atten 20 dB #Peak Log dB/ Center Offst 2.480000000 GHz

2480 MHz

Center 2.48 GHz Span 3 MHz #Res BW 30 kHz **#VBW 100 kHz** Sweep 5 ms (401 pts) Occupied Bandwidth Occ BW % Pwr -20.00 dB x dB 1.0834 MHz

Transmit Freq Error -3.283 kHz x dB Bandwidth 1.148 MHz

10

dΒ

99.00 %

Page: 72 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Test Mode:	TX Mode (8-DPSK)		CHI LIVE

Channel frequency (MHz)	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402	1129.80	1186.00	790.67
2441	1129.70	1185.00	790.00
2480	1124.60	1186.00	790.67

8-DPSK TX Mode

Page: 73 of 87

8-DPSK TX Mode

Page: 74 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

Test Mode: Hopping Mode (GFSK)

Channel frequency	Separation Read Value	Separation Limit	
(MHz)	(kHz)	(kHz)	
2402	997.50	698.67	
2441	997.50	699.33	
2480	997.50	699.33	

GFSK Hopping Mode

Report No.: TB-FCC150062 Page: 75 of 87

GFSK Hopping Mode

Page: 76 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Toot Mode:	Hopping Mode (T // DODSK)		Call Line

Test Mode: Hopping Mode (π /4-DQPSK)

Channel frequency	Separation Read Value	Separation Limit
(MHz)	(kHz)	(kHz)
2402	997.50	739.33
2441	997.50	766.00
2480	997.50	765.33

π /4-DQPSK Hopping Mode

Report No.: TB-FCC150062 Page: 77 of 87

π /4-DQPSK Hopping Mode

Page: 78 of 87

EUT:	True wireless earbuds	Model Name :	S888
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		
Total Manday	Hamping Made (0 DDCIC)		6.11111

Test Mode: Hopping Mode (8-DPSK)

Channel frequency	Separation Read Value	Separation Limit
(MHz)	(kHz)	(kHz)
2402	997.50	790.67
2441	997.50	790.00
2480	997.50	790.67

8-DPSK Hopping Mode

Page: 79 of 87

8-DPSK Hopping Mode

Page: 80 of 87

10. Peak Output Power Test

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm)	2400~2483.5
CIO DE	Other <125 mW(21dBm)	

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 81 of 87

10.5 Test Data

			Na. A. A. Marian	
EUT:	True wirel	ess earbuds	Model Name :	S888
Temperature:	25℃	THU:	Relative Humidity:	55%
Test Voltage:	DC 3.7V		COLUMN TO SERVICE STATE OF THE PARTY OF THE	A RULL
Test Mode:	TX Mode	(GFSK)		3
Channel frequer	ncy (MHz)	Test Result (di	Bm) Lim	it (dBm)
2402		-0.985		
2441		-0.704		21
2480		0.203		
		GFSK TX Mo	de	
		2402 MHz		
4				

Page: 82 of 87

GFSK TX Mode

Page: 83 of 87

EUT:	True wirel	ess earbuds	Model Name :	S888
Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	DC 3.7V			130
Test Mode:	TX Mode	(π /4-DQPSK)		
Channel frequen	cy (MHz)	Test Result (de	3m) Lim	it (dBm)
2402		-0.100		
2441		-0.700		30
2480		-0.814		
		# /4 DODGK TV I	Modo	

π /4-DQPSK TX Mode

Page: 84 of 87

Page: 85 of 87

EUT:	True wirel	ess earbuds	Model Name :	S888
Temperature:	25℃		Relative Humidity:	55%
Test Voltage:	DC 3.7V			13
Test Mode:	TX Mode	(8-DPSK)		
Channel frequen	cy (MHz)	Test Result (de	Bm) Limi	it (dBm)
2402		0.114		
2441		-0.453	-0.453 30 -0.610	
2480		-0.610		
		8-DPSK TX Mc	nde	

Page: 86 of 87

Page: 87 of 87

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is -4.65 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

The EUT antenna is a TDA antenna. It complies with the standard requirement.

	Antenna Type
	▼ Permanent attached antenna
	□ Unique connector antenna
1	□ Professional installation antenna

----END OF REPORT----