ІЕС-таймер и ІЕС-счетчик

19

Обзор главы

В раз-деле	Вы найдете	на стр.
19.1	Создание импульса с помощью SFB 3 "TP"	19–2
19.2	Создание задержки включения с помощью SFB 4 "TON"	19–3
19.3	Создание задержки выключения с помощью SFB 5 "TOF"	19–4
19.4	Прямой счет с помощью SFB 0 "CTU"	19–5
19.5	Обратный счет с помощью SFB 1 "CTD"	19–6
19.6	Прямой и обратный счет с помощью SFB 2 "CTUD"	19–7

19.1 Создание импульса с помощью SFB 3 "TP"

Описание

SFB 3 "TP" создает импульс длительностью РТ.

Нарастающий фронт на входе IN вызывает запуск импульса. Выход Q остается установленным в течение промежутка времени PT, независимо от дальнейшего хода входного сигнала (то есть даже тогда, когда вход IN снова сменяет состояние с 0 на 1 до того, как истекло время PT). Выход ET доставляет время, в течение которого выход Q уже является установленным. Он может принимать значение входа PT в качестве максимума. Он сбрасывается, когда вход IN сменяет состояние на 0, однако, самое раннее, по истечении промежутка времени PT.

SFB 3 "TP" соответствует стандарту IEC 1131-3.

Операционная система при новом пуске не сбрасывает SFB 3 "TP". Если SFB 3 "TP" после нового пуска должен инициализироваться, то Вы должны в OB 100 предварительно занять значением 0 соответствующие инстанции (например, с помощью SFC 21 "FILL").

Временная диаграмма

Таблица 19-1. Параметры для SFB 3 "TP"

Параметр	Объявление	Тип данных	Область памяти	Описание
IN	INPUT	BOOL	E, A, M, D, L, Konst.	Вход запуска.
PT	INPUT	TIME	E, A, M, D, L, Konst.	Длительность импульса.
Q	OUTPUT	BOOL	E, A, M, D, L	Состояние времени.
ET	OUTPUT	TIME	E, A, M, D, L	Истекшее время.

19.2. Создание задержки включения с помощью SFB 4 "TON"

Описание

SFB 4 "TON" задерживает нарастающий фронт на время РТ.

Нарастающий фронт на входе IN имеет своим следствием нарастающий фронт на выходе Q по истечении промежутка времени PT. Потом Q остается установленным до тех пор, пока вход IN не сменит состояние на 0. Если вход IN сменяет состояние на 0 до того, как истекло время PT, то выход Q остается на 0. Выход ET доставляет время, которое прошло с момента последнего нарастающего фронта на входе IN, однако, самое большее, до значения входа PT. Выход ET сбрасывается, когда вход IN сменяет состояние на 0.

SFB 4 "TON" соответствует стандарту IEC 1131-3.

Операционная система при новом пуске не сбрасывает SFB 4 "TON". Если SFB 4 "TON" после нового пуска должен инициализироваться, то Вы должны в ОВ 100 предварительно занять значением 0 соответствующие инстанции (например, с помощью SFC 21 "FILL").

Временная диаграмма

Таблица 19-2. Параметры для SFB 4 "TON"

Параметр	Объявление	Тип данных	Область памяти	Описание
IN	INPUT	BOOL	E, A, M, D, L, Konst.	Вход запуска.
PT	INPUT	TIME	E, A, M, D, L, Konst.	Промежуток времени, на который задерживается нарастающий фронт на входе IN.
Q	OUTPUT	BOOL	E, A, M, D, L	Состояние времени.
ET	OUTPUT	TIME	E, A, M, D, L	Истекшее время.

19.3. Создание задержки выключения с помощью SFB 5 "TOF"

Описание

SFB 5 "TOF" задерживает падающий фронт на время РТ.

Нарастающий фронт на входе IN вызывает нарастающий фронт на выходе Q. Падающий фронт на входе IN имеет своим следствием падающий фронт на выходе Q по истечении промежутка времени PT. Если вход IN снова сменяет состояние на 1 до того, как истекло время PT, то выход Q остается на 1. Выход ET доставляет время, которое прошло с момента последнего падающего фронта на входе IN, однако, самое большее, до значения входа PT. Выход ET сбрасывается, когда вход IN сменяет состояние на 1.

SFB 5 "TOF" соответствует стандарту IEC 1131-3.

Операционная система при новом пуске не сбрасывает SFB 5 "TOF". Если SFB 5 "TOF" после нового пуска должен инициализироваться, то Вы должны в OB 100 предварительно занять значением 0 соответствующие инстанции (например, с помощью SFC 21 "FILL").

Временная диаграмма

Таблица 19-3. Параметры для SFB 5 "TOF"

Параметр	Объявление	Тип данных	Область памяти	Описание
IN	INPUT	BOOL	E, A, M, D, L, Konst.	Вход запуска.
PT	INPUT	TIME	E, A, M, D, L, Konst.	Промежуток времени, на который задерживается падающий фронт на входе IN.
Q	OUTPUT	BOOL	E, A, M, D, L	Состояние времени.
ET	OUTPUT	TIME	E, A, M, D, L	Истекшее время.

19.4. Прямой счет с помощью SFB 0 "СТU"

Описание

С помощью SFB 0 "CTU" Вы можете вести прямой счет. Счетчик увеличивается на 1 при нарастающем фронте на входе CU (по сравнению с последним вызовом SFB). Если счетное значение достигает верхней границы 32 767, то оно больше не увеличивается. После этого каждый следующий нарастающий фронт на входе CU остается без действия. Уровень 1 на входе R вызывает сброс счетчика в 0, независимо от того, какое значение имеет место на входе CU. На выходе Q отображается, является ли текущее счетное значение большим или равным предварительно заданному значению PV.

SFB 0 "CTU" соответствует стандарту IEC 1131-3.

Операционная система при новом пуске не сбрасывает SFB 0 "CTU". Если SFB 0 "CTU" после нового пуска должен инициализироваться, то Вы должны в ОВ 100 предварительно занять значением 0 соответствующие инстанции (например, с помощью SFC 21 "FILL").

Таблица 19-4. Параметры для SFB 0 "CTU"

Параметр	Объявление	Тип данных	Область памяти	Описание
CU	INPUT	BOOL	E, A, M, D, L, Konst.	Счетный вход.
R	INPUT	BOOL	E, A, M, D, L, Konst.	Вход сброса R преобладает над CU.
PV	INPUT	INT	E, A, M, D, L, Konst.	Предварительно заданное значение. О воздействии PV смотрите параметр Q.
Q	OUTPUT	BOOL	E, A, M, D, L	 Состояние счетчика: Q имеет значение 1, если CV ≥ PV 0 в противном случае
CV	OUTPUT	INT	E, A, M, D, L	Текущее счетное значение. (Возможные значения: от 0 до 32 767).

19.5. Обратный счет с помощью SFB 1 "СТD"

Описание

С помощью SFB 1 "CTD" Вы можете выполнять обратный счет. Счетчик уменьшается на 1 при нарастающем фронте на входе CD (по сравнению с последним вызовом SFB). Если счетное значение достигает нижней границы -32 767, то оно больше не уменьшается. После этого каждый следующий нарастающий фронт на входе CD остается без действия. Уровень 1 на входе LOAD вызывает то, что счетчик предварительно устанавливается на предварительно заданное значение PV. Это происходит независимо от того, какое значение имеет место на входе CD. На выходе Q отображается, является ли текущее счетное значение меньшим или равным нулю. SFB 1 "CTD" соответствует стандарту IEC 1131-3.

Операционная система при новом пуске не сбрасывает SFB 1 "CTD". Если SFB 1 "CTD" после нового пуска должен инициализироваться, то Вы должны в OB 100 предварительно занять значением 0 соответствующие инстанции (например, с помощью SFC 21 "FILL").

Таблица 19-5. Параметры для SFB 1 "CTD"

Параметр	Объявление	Тип данных	Область памяти	Описание
CD	INPUT	BOOL	E, A, M, D, L, Konst.	Счетный вход.
LOAD	INPUT	BOOL	E, A, M, D, L, Konst.	Вход загрузки. LOAD преобладает над CD.
PV	INPUT	INT	E, A, M, D, L, Konst.	Предварительно заданное значение. Счетчик устанавливается на PV, когда на входе LOAD действует уровень 1.
Q	OUTPUT	BOOL	E, A, M, D, L	 Состояние счетчика: Q имеет значение 1, если CV ≤ 0 0 в противном случае
CV	OUTPUT	INT	E, A, M, D, L	Текущее счетное значение. (Возможные значения: от -32 768 до 32 767).

19.6. Прямой и обратный счет с помощью SFB 2 "CTUD"

Описание

С помощью SFB 2 "CTUD" Вы можете вести прямой и обратный счет. Счетчик при нарастающем фронте (по сравнению с последним вызовом SFB) на входе

- СU увеличивается на 1
- СD уменьшается на 1.

Если счетное значение достигает

- нижней границы -32 768, то оно больше не уменьшается
- верхней границы 32 767, то оно больше не увеличивается.

CU преобладает над CD.

Уровень 1 на входе LOAD вызывает то, что счетчик предварительно устанавливается на предварительно заданное значение PV. Это происходит независимо от того, какие значения действуют на входах CU и CD. Уровень 1 на входе R вызывает сброс счетчика в 0, независимо от того, какие значения действуют на входах CU, CD и LOAD. На выходе QU отображается, является ли текущее счетное значение большим или равным предварительно заданному значению PV; на выходе QD отображается, является ли оно меньшим или равным нулю.

SFB 2 "CTUD" соответствует стандарту IEC 1131-3.

Операционная система при новом пуске не сбрасывает SFB 2 "CTUD". Если SFB 2 "CTUD" после нового пуска должен инициализироваться, то Вы должны в ОВ 100 предварительно занять значением 0 соответствующие инстанции (например, с помощью SFC 21 "FILL").

Таблица 19-6. Параметры для SFB 2 "CTUD"

Параметр	Объявление	Тип данных	Область памяти	Описание
CU	INPUT	BOOL	E, A, M, D, L, Konst.	Вход прямого счета. CU преобладает над CD.
CD	INPUT	BOOL	E, A, M, D, L, Konst.	Вход обратного счета.
R	INPUT	BOOL	E, A, M, D, L, Konst.	Вход сброса. R преобладает над LOAD.
LOAD	INPUT	BOOL	E, A, M, D, L, Konst.	Вход загрузки. LOAD преобладает над CU и CD.
PV	INPUT	INT	E, A, M, D, L, Konst.	Предварительно заданное значение. Счетчик предварительно PV, когда на входе LOAD действует 1.
QU	OUTPUT	BOOL	E, A, M, D, L	 Состояние прямого счетчика: QU имеет значение 1, если CV ≥ PV 0, в противном случае
QD	OUTPUT	BOOL	E, A, M, D, L	 Состояние обратного счетчика: QD имеет значение 1, если CV ≤ 0 0 в противном случае
CV	OUTPUT	INT	E, A, M, D, L	Текущее счетное значение. (Возможные значения: от -32 768 до 32 767).