Stat 343, Mon 19-Oct-2020 -- Mon 19-Oct-2020 Probability and Statistics Fall 2020

Monday, October 19th 2020

Wk 8, Mo

Topic:: Joint continuous distributions

Read:: FASt 3.8

Joint Distributions for Continuous r.v.s

Definition 1: Let X, Y be r.v.s. The **bivariate distribution function**, or **joint cdf**, is the function F given by

$$F(x,y) := P(X \le x, Y \le y),$$

where it is understood that these conditions are happening simultaneously (i.e., $X \le x$ and $Y \le y$). More generally, if X_1, \ldots, X_n are r.v.s and $\mathbf{X} = (X_1, \ldots, X_n)$, the joint cdf is the function

$$F(\mathbf{x}) = P(X_1 \leq x_1, \dots, X_n \leq x_n).$$

We call **X** a **random vector**.

Definition 2: Let $\mathbf{X} = (X_1, ..., X_n)$ be a random vector. If there exists a nonnegative function $f(\mathbf{x}) = f(x_1, ..., x_n)$ such that

$$F(\mathbf{x}) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \cdots \int_{-\infty}^{x_n} f(t_1, t_2, \dots, t_n) dt_n \cdots dt_2 dt_1,$$

then X_1, \ldots, X_n are said to be **jointly continuous r.v.s** with **joint probability density function** $f(\mathbf{x})$; **X** is said to be a **continuous random vector**.

We will generally consider bivariate distributions for random vectors $\mathbf{X} = (X_1, X_2)$, but most results carry over naturally to multivariate distributions.

Theorem 1: Suppose X_1, \ldots, X_n are jointly continuous r.v.s with joint cdf $F(x_1, \ldots, x_n)$ and joint density function $f(x_1, \ldots, x_n)$. Then

(i) given a subset $A \subset \mathbb{R}^n$,

$$P(\mathbf{X} \in A) = \int_A f(\mathbf{x}) \, d\mathbf{x}.$$

(ii)
$$F(-\infty, x_2, ..., x_n) = F(x_1, -\infty, ..., x_n) = \cdots = F(x_1, x_2, ..., -\infty) = 0.$$

(iii)
$$F(\infty, \infty, \cdots, \infty) = \int_{\mathbb{R}^n} f(\mathbf{x}) d\mathbf{x} = 1.$$

Definition 3: Let f be the joint pdf for continuous r.v.s X, Y. The **marginal distribution** of X has pdf

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy.$$

Similar definitions for f_Y , or when there are more r.v.s.

Definition 4: Let f be the joint pdf for continuous r.v.s X, Y. The **conditional distribution** of X given Y = y has pdf

$$f_{X|Y=y}(x) = f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

Similar definitions for f_Y , or when there are more r.v.s.

Definition 5: Say two continuous r.v.s X and Y with joint pdf f(x,y) are **independent** if $f(x,y) = f_X(x)f_Y(y)$, for all x,y.

Lemma 1: If X, Y are independent continuous r.v.s, then for each x, y,

- (i) $f_X(x) = f_{X|Y}(x|y)$, and
- (ii) $f_Y(y) = f_{Y|X}(y|x)$.

Lemma 2: Let X, Y be independent r.v.s, t and s transformations. Then t(X), s(Y) are independent.

Theorem 2: Let X, Y be r.v.s. Then

- (i) E(X + Y) = E(X) + E(Y).
- (ii) E(XY) = E(X)E(Y), if X, Y are independent.
- (iii) Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y), with Cov(X, Y) = 0 when X, Y are independent.

Theorem 3: Let M_X , M_Y be moment generating functions, defined on an interval containing 0, for independent r.v.s X, Y. Then $M_{X+Y}(t) = M_X(t)M_Y(t)$, with M_{X+Y} defined on the intersection of intervals of definition for M_X , M_Y .

Definition 6: Suppose $\mathbf{X} = (X_1, X_2, \dots, X_n)$ is a random vector with joint pdf $f_{\mathbf{X}}(\mathbf{x})$. Suppose there is a single density function f(x) that serves as the pdf for the marginal distribution for each X_j , so that

$$f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{X}}(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i).$$

Then the r.v.s X_1, \ldots, X_n are said to be **independent and identically distributed**, or i.i.d..

In particular, if the X_j are independent with each $X_j \sim \mathsf{Exp}(\lambda)$, we will denote this by $\mathbf{X} \overset{\text{i.i.d.}}{\sim} \mathsf{Exp}(\lambda)$.

Lemma 3: Suppose X_1, \ldots, X_n are i.i.d. and that each $E(X_i) = \mu$, each $Var(X_i) = \sigma^2$. Let $S = X_1 + X_2 + \cdots + X_n$, and $\overline{X} = \frac{1}{n}S$. Then

- (i) $E(S) = n\mu$ and $Var(S) = n\sigma^2$.
- (ii) $E(\overline{X}) = \mu$ and $Var(\overline{X}) = \frac{\sigma^2}{n}$.

Lemma 4: Suppose $\mathbf{X} \stackrel{\text{i.i.d.}}{\sim} \mathsf{Norm}(\mu, \sigma)$, and define S, \overline{X} as in the previous lemma. Then

- (i) $S \sim \text{Norm}(n\mu, \sigma\sqrt{n})$, and
- (ii) $\overline{X} \sim \text{Norm}(\mu, \sigma/\sqrt{n})$.

Proof: By induction on Theorem 3, we have that

$$M_S(t) = \prod_{j=1}^n M_{X_j}(t) = \prod_{j=1}^n e^{\mu t + \sigma^2 t^2/2} = e^{n\mu t + n\sigma^2 t^2/2},$$

which is the mgv for a normal r.v. with distribution Norm $(n\mu, n\sigma^2)$. This proves (i).

For (ii), Theorem 3.3.6 (p. 133) gives that $M_{\overline{X}}(t) = M_{X/n}(t) = M_X(t/n) = e^{\mu t + (\sigma^2/n)t^2/2}$, which is the mgf for an r.v. distributed as Norm(μ , σ^2/n).

Say
$$f(x,y) = \begin{cases} xy^2 & k & \text{for } 0 \leq x \leq y \leq 1 \\ 0 & \text{otherwise.} \end{cases}$$

y=X

What k makes this a PDF?

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = \int_{0}^{\infty} \int_{0}^{\infty} f(x,y) dx dy = \int_{0}^{\infty} \int_{0}^{\infty} (xy^{2} \cdot k) dx dy$$

inside integral =
$$\int_{0}^{y} xy^{2} \cdot k dx = ky^{2} \cdot \frac{1}{2} x^{2} \Big|_{p}^{p}$$

$$= ky^2 \cdot \frac{1}{2}y^2$$

Full double jutegral

$$\int_{0}^{1} \int_{0}^{k} kxy^{2} dx dy = \int_{0}^{1} ky^{4} \cdot \frac{1}{2} dy$$

$$= \frac{1}{2}k \int_{0}^{1} y^{4} dy = \frac{1}{10}k y^{5}\Big|_{0}^{1} = \frac{1}{10}k$$

$$= \frac{k}{10}$$

To be a pdf, we want this to be 1: \Rightarrow k = 10.

Find
$$f_{\chi}(x)$$
 the marginal distribution of χ

Nith discrete $f_{\chi,y}(x,y)$
 $f_{\chi(x)} = \sum_{y} f_{\chi,y}(x,y)$

So, for continues joint v.v.s. χ , χ = χ | χ |

$$f_{\chi|\gamma=\gamma} = \frac{f_{\chi_{\chi}(x,y)}}{f_{\chi(y)}}$$

When X_1 Y are independent (so $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$)

$$f_{X|Y=y}(x) = \frac{f_{\chi(x)} \cdot f_{\chi(y)}}{f_{\chi(y)}} = f_{\chi(x)}.$$

PDF -> CDF

Given CDF -> PDF

$$f_{X,Y}(x,y) = \frac{3}{3} \frac{3}{5} F_{X,Y}(x,y)$$

Q: Can
$$F(x,y) = \begin{cases} 1 - e^{-\lambda(x+y)}, & 0 \le x,y < \infty \\ 0, & \text{otherwise} \end{cases}$$

Serve as the CDF for jointly distributed continuous vars. X, Y?

If so, the corrisp PDF (for x,y>0) would be

$$\frac{\partial}{\partial x} \frac{\partial}{\partial y} \left[1 - e^{-\lambda(x+y)} \right] = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}{\partial y} \left(1 - e^{-\lambda(x+y)} \right) \right)$$

$$= -\lambda \left(\frac{\partial}$$

Generalizable to a variable
$$X_1, X_2, X_3, \dots, X_n$$

pdf $f_{X_1, \dots, X_n}(X_1, \dots, X_n) \longrightarrow Coursep$. CDF

Say $X = \langle X_1, X_2, \dots, X_n \rangle$ is random vector.