

planetmath.org

Math for the people, by the people.

dimension of a poset

Canonical name DimensionOfAPoset Date of creation 2013-03-22 16:33:29 Last modified on 2013-03-22 16:33:29

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Definition
Classification msc 06A06
Classification msc 06A07
Defines dimension

Let P be a finite poset and \mathcal{R} be the family of all realizers of P. The dimension of P, written $\dim(P)$, is the cardinality of a member $E \in \mathcal{R}$ with the smallest cardinality. In other words, the dimension n of P is the least number of linear extensions L_1, \ldots, L_n of P such that $P = L_1 \cap \cdots \cap L_n$. (E can be chosen to be $\{L_1, \ldots, L_n\}$).

If P is a chain, then $\dim(P) = 1$. The converse is clearly true too. An example of a poset with dimension 2 is an antichain with at least 2 elements. For if $P = \{a_1, \ldots, a_m\}$ is an antichain, then one way to linearly extend P is to simply put $a_i \leq a_j$ iff $i \leq j$. Called this extension L_1 . Another way to order P is to reverse L_1 , by $a_i \leq a_j$ iff $j \leq i$. Call this L_2 . Note that L_1 and L_2 are duals of each other. Let $L = L_1 \cap L_2$. As both L_1 and L_2 are linear extensions of P, $P \subseteq L$. On the other hand, if $(a_i, a_j) \in L$, then $a_i \leq a_j$ in both L_1 and L_2 , so that $i \leq j$ and $j \leq i$, or i = j and whence $a_i = a_j$, which implies $(a_i, a_j) = (a_i, a_i) \in P$. $L \subseteq P$ and thus $\dim(P) = 2$.

Remark. Let P be a finite poset. A theorem of Dushnik and Miller states that the smallest n such that P can be embedded in \mathbb{R}^n , considered as the n-fold product of posets, or chains of real numbers \mathbb{R} , is the dimension of P.

References

[1] W. T. Trotter, Combinatorics and Partially Ordered Sets, Johns-Hopkins University Press, Baltimore (1992).