NASA Technical Memorandum 84608

NASA-TM-84608 1983 002 5238

Archival of Aircraft Scatterometer Data From AAFE RADSCAT Missions

LIBRARY COPY

Lyle C. Schroeder and John L. Mitchell

ACHT TO MOS

LANGLEY RESERVATOR SERVER

LIERARY, RASA

HAMPION MECHAN

AUGUST 1983

NASA Technical Memorandum 84608

Archival of Aircraft Scatterometer Data From AAFE RADSCAT Missions

Lyle C. Schroeder Langley Research Center Hampton, Virginia

John L. Mitchell Kentron International, Inc. Hampton, Virginia

Scientific and Technical Information Branch

Use of trade names or names of manufacturers in this report does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.
constitute an official endorsement of such products or manufacturers, either
constitute an official endorsement of such products or manufacturers, either
constitute an official endorsement of such products or manufacturers, either
constitute an official endorsement of such products or manufacturers, either
constitute an official endorsement of such products or manufacturers, either
constitute an official endorsement of such products or manufacturers, either

SUMMARY

This report documents aircraft scatterometer data obtained over the ocean with the NASA Langley Research Center developed Radiometer-Scatterometer (RADSCAT) instrument. The normalized radar cross section (NRCS) data have been obtained at 13.9 GHz for a variety of ocean surface wind conditions, which are also presented. All such valid RADSCAT ocean scatterometer data for which surface truth have been obtained are included, except for ice research missions during the last year of RADSCAT's lifetime (1977-1978). Aircraft scatterometer data for the SeaSat underflights were obtained with a second Langley instrument, the Airborne Microwave Scatterometer (AMSCAT) but are not reported herein. The RADSCAT data are archived on card image computer tapes and on microfiche, which are both available from the National Technical Information Service.

INTRODUCTION

The Radiometer-Scatterometer (RADSCAT) instrument was developed through the Advanced Applications Flight Experiment (AAFE) program to study the capability of the sensor to make measurements of target signature from a remote platform. The AAFE RADSCAT was similar to the S-193 RADSCAT that flew on the Skylab (ref. 1), except that it was designed to make measurements from an aircraft. A detailed description of the AAFE RADSCAT is available in reference 2. The RADSCAT was designed to make k_u -band scatterometer normalized radar cross-section (NRCS) measurements and radiometric brightness temperature measurements of the same target on the Earth's surface. Only the scatterometer data are reported here, since the radiometer measurement precision was found to be coarse (greater than $\pm 10~{\rm K}$). Furthermore, only valid data over the ocean are presented.

Missions were flown with the RADSCAT antenna mounted on the open cargo ramp of a C-130 aircraft starting in 1972 and continuing through 1978. This report archives all data taken during this time period which have been reduced to NRCS values for which surface truth exists, except for ice research missions during 1977 and 1978.

The development of the AAFE RADSCAT instrument, under the guidance of Richard K. Moore, professor at the University of Kansas, and Willard J. Pierson, professor at the City College of the City University of New York, and direction of flight missions, by W. Linwood Jones, formerly of NASA Langley Research Center, are acknowledged.

SCATTEROMETER DESCRIPTION

The AAFE RADSCAT, which operated at 13.9 GHz, was developed to measure the microwave brightness temperature and scattering coefficient of the ocean from aircraft altitudes. The radiometer measurement precision was found to be coarse (greater than ±10 K); hence, no radiometer data are presented herein. A detailed description of the AAFE RADSCAT and its operations is given in references 2 and 3; therefore, only a brief description of the scatterometer portion is given herein. Figure 1 is a simplified block diagram of the scatterometer subsystem.

For the scatterometer measurement, "long" pulses (32 μ sec at 1524 m) were transmitted to the surface so that the area illuminated was defined by the antenna pattern (beam-limited conditions). The antenna beamwidth was 1.5°, and the scatterometer receiver was range-gate controlled. The scatterometer signal processor selected a single spectral line by narrow-bandpass filtering 2- μ sec scatterometer return signal samples.

For smooth seas and light winds, the backscattered signal at 13.9 GHz has a dynamic range of approximately 60 dB for measurements from the nadir to 55° incidence angle. Since the useful power measurement range of a square-law detector is typically 20 dB, four receiver channels were used in parallel with staggered sensitivities to ensure continuous operation over the complete dynamic range of the receiver. In each channel, the signal was square-law detected and then integrated for a selectable period ranging from 300 to 924 msec. The integrator outputs were analog-to-digital converted and recorded in a PCM format on an analog magnetic tape recorder.

In making scatterometer measurements, the quantity of interest is the normalized radar scattering cross section $\sigma^{\rm o}$ of the ocean. This quantity is determined by the target and is independent of the type of radar performing the measurement. In terms of the RADSCAT transfer function, the expression for $\sigma^{\rm o}$ is

$$\sigma^{O} = (16\pi)^{2} \frac{A^{2}}{\lambda^{2}} \frac{V_{\text{sea}}}{V_{\text{cal}}} \frac{\tau_{\text{cal}}}{\tau_{\text{sea}}} \frac{\alpha \text{ GXR}}{G^{2} \cos \theta (\beta)^{2}}$$
(1)

where

A altitude of aircraft, m

G antenna gain

GXR receiver calibration loop attenuator

V output voltage of scatterometer integrator, V

α calibration attenuator value for appropriate channel

λ free-space wavelength, m

 θ incidence angle, deg

τ scatterometer integration time, sec

β equivalent beamwidth, rad

and subscripts are

cal during calibration

sea during ocean operation

The measurements presented in this paper were obtained with the RADSCAT operating on a C-130B cargo aircraft (NASA-929). The instrument antenna and gimbal were mounted on the cargo ramp (lower door in the aft of the aircraft). For in-flight

ocean measurements, the ramp was lowered and the RADSCAT was extended to its operational position outside the fuselage. In this configuration, the antenna had an unobstructed view of the ocean surface without the use of a radome.

NRCS DATA

The flight experimental data reported herein were measured between 1973 and 1977. Table I identifies the mission number assigned by NASA, the flight number, the geographic location of the flight lines, and the time during which measurements were made referenced to Greenwich mean time (GMT).

The quality of the instrument (and hence, the measurements) has improved with time. In the earlier period (1973 and 1974), the instrument was under constant development. Therefore, many caveats have to be provided to qualify the use of the data. The most important have to do with uncertainties in $\sigma^{\rm O}$ due to the lack of temperature stabilization of the RF system and bandpass filters and with the stability of the periodic gain calibrations. (A discussion of the development and calibration of the instrument is given in ref. 2, and a brief description of the RADSCAT experimental measurement system is given in ref. 3.) These and other shortcomings in the data are indicated in table I and later in the text where important.

All data from runs listed in table I have been processed to produce NRCS (σ^{O}) using the AAFE RADSCAT processing algorithms developed for Langley Research Center (ref. 4). The resulting output data vectors have been filed on microfiche, and in card image form on magnetic tape with the following characteristics:

- Nine track
- 800 bits per inch
- Written on a CDC CYBER 175
- ASCII/BCD
- Unlabelled
- Each file contains a flight line or a segment of a flight line
- · Each block is one record long
- Each record is 80 bytes long

The record format and contents are given in table II. The instrument output parameters include NRCS for all channels, instrument mode, integration time, depolarization factor, and data validation code. The remaining parameters, time (GMT), antenna incidence and cross track angles, polarity, and aircraft location and attitude are all used to characterize the geophysics of the measurement. For a detailed discussion and definition of these parameters, see reference 4.

A typical example of the data stored on these archival media is given in figure 2. The last four elements in the list of table II have not been shown since they are redundant with or supplemental to the data already shown.

Three algorithms have been developed to derive statistical properties and to perform parametric averages of the processed RADSCAT data. Archival copies of the source code of these algorithms are available on request. These algorithms are described as follows:

- 1. LINSTAT This computer program performs a statistical analysis on RADSCAT straight and level flight-line data. For each antenna gimbal position, mode, and polarization combination that occurs in a given flight line, the mean of both incidence angle and σ^{O} (NRCS) in both ratio and decibels are calculated. These values, along with the number of data samples, are output. Plots of σ^{O} versus incidence angle are also produced. After these calculations have been performed for each specified flight line in a particular computer run, data from all flight lines analyzed in the computer run are used to form a composite statistical summary. This summary contains the mean and variance for each incidence angle, the mean and standard deviation of σ^{O} (ratio and decibels), and the number of data samples. This computer program is archived on tape LNSTAT.
- 2. UNCOREC The purpose of this computer program is to perform a statistical analysis on RADSCAT circle flight-line data that have not been corrected to a constant incidence angle. For each polarization, the data are sorted into bins 10° wide in azimuth. For each of these bins, the mean and variance are calculated for both the incidence angle and $\sigma^{\rm O}$ (NRCS). These values, along with the number of data samples in each bin and the mean aircraft heading for each bin, are output. A composite statistical summary of all flight lines analyzed within a computer run is output at the end of the run. Plots of $\sigma^{\rm O}$ versus flight direction are produced. This computer program is stored on tape UNCORC.
- 3. CIRCLES The purpose of this computer program is to correct RADSCAT circle flight-line data to the average incidence angle of the circle and to perform a statistical analysis on the corrected data. The data sorting and output products are the same as for computer program UNCOREC. This computer program contains subroutines that use regression curves or tables of NRCS versus incidence angle at upwind, downwind, and crosswind azimuths as the basis for incidence-angle corrections. The tables containing NRCS versus incidence-angle values are based on upwind, downwind, and crosswind straight and level flight lines. Corrections at intermediate azimuths are obtained by interpolating between the bounding correction tables. This computer program is stored on tape CORECT.

SURFACE-TRUTH MEASUREMENTS

For each flight, the local ocean surface wind speed and wave conditions were measured by either in-situ instrumentation or by onboard aircraft sensors. Typical in-situ measurements consisted of 10-min anemometer averages of wind speed and direction, air temperature, and near-surface sea temperature obtained hourly during the scatterometer experiment. Aircraft-derived surface truth was usually obtained at the beginning and the end of the flight, with these observations separated by 3 to 4 hours. These surface-truth flight lines were about 30 km long and were flown at low altitudes (100 to 150 m) in the upwind and downwind directions. The wind speed and direction measurements were obtained from the aircraft inertial navigation system (Litton LTN-51), and wave measurements were obtained from a laser profilometer (Spectra-Physics Geodolite 3A).

The surface wind measurements are presented at the conventional anemometer height of 19.5 m. The wind direction measured by the aircraft in the 100- to 150-m altitude range was assumed to be the same as at 19.5 m. The wind speed, however, was extrapolated using a boundary-layer wind profile model described in reference 5. In this model, the wind speed was first extrapolated to the ocean surface using the profile determined by the air-sea temperature difference and was then extrapolated back to 19.5 m using a logarithmic profile for zero air-sea temperature differential (neutral stability conditions). This wind speed is considered proportional to the surface wind stress and is not the actual wind speed at 19.5 m. During the low-altitude flight lines, the required air and sea surface temperatures were measured onboard using a Barnes PRT-5 infrared radiometer (sea surface temperature) and a Rosemont Model 103 temperature sensor (total air temperature).

A summary of surface truth for missions 230, 238, and 288 is given in reference 3. For all other missions, table III gives a summary of the surface-truth measurements corresponding to these flight data. The list is chronological and gives the time, location, and source of the surface-truth data. The RADSCAT mission and flight are also given for cross reference. Winds given are the neutral-stability, 19.5-m winds, which have been calculated by using the model of reference 5. Where possible, the sea surface temperature, air temperature, and wave and swell height and direction are provided. Surface truth is not available for all missions.

DATA FROM OTHER SENSORS

As mentioned previously, laser profilometer measurements were made during most missions. The purpose of these measurements was to provide information about surface wave height and spectra. Also, photographs were made of the ocean surface with an onboard camera. These data have, in general, not been analyzed, and are not archived with these RADSCAT data.

DATA ANALYSIS

This report provides data archival of the RADSCAT NRCS measurements over the ocean and the corresponding surface-truth measurements. No analyses of these data have been presented herein. However, analyses of these data have been included in several publications. Among these are:

- 1. Missions 230, 238, and 288 references 3 and 6
- 2. Mission 318 (JONSWAP) references 7 and 8
- 3. Mission 335 reference 8
- 4. Mission 353 reference 9
- 5. All mission data reference 10

DATA TAPE AVAILABILITY

Copies of data tapes and microfiche are available upon request to

National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, VA 22161

Langley Research Center National Aeronautics and Space Administration Hampton, VA 23665 May 20, 1983

REFERENCES

- 1. Cardone, Vincent J.; Young, James D.; Pierson, Willard J.; Moore, Richard K.; Greenwood, J. Arthur; Greenwood, Catherine; Fung, Adrian K.; Salfi, Robert; Chan, H. L.; Afarani, Mustafa; and Komen, Mark: The Measurement of the Winds Near the Ocean Surface With a Radiometer-Scatterometer on Skylab. E76-10187 (Contract NAS9-13642), CUNY Inst. Marine & Atmospheric Sci. and Univ. Kansas Space Technol. Center, [1976]. (Available as NASA CR-147487.)
- 2. Schroeder, Lyle C.; Jones, W. L., Jr.; and Mitchell, John L.: Laboratory Calibration of AAFE Radiometer/Scatterometer (RADSCAT). NASA TM X-73900, 1976.
- 3. Jones, W. Linwood; Schroeder, Lyle C.; and Mitchell, John L.: Aircraft
 Measurements of the Microwave Scattering Signature of the Ocean. IEEE J.
 Oceanic Eng., vol. OE-2, no. 1, Jan. 1977, pp. 52-61.
- 4. Claassen, John P.: AAFE RADSCAT Data Reduction Programs User's Guide. NASA CR-144992, 1973.
- 5. Cardone, Vincent J.: Specification of the Wind Distribution in the Marine Boundary Layer for Wave Forecasting. Geophys. Sci. Lab. TR-69-1 (Contract Nos. Nonr 285(57), N62306-1589, Task Order No. 3, and N62306-68-C-0249), School of Engineering & Sci., New York Univ., Dec. 1969. (Available from DTIC as AD 702 490.)
- 6. Wentz, Frank J.: Radar Backscattering From a Sea Having an Anisotropic Large-Scale Surface. NASA CR-145278, [1978].
- 7. Wentz, Frank J.: A Two-Scale Scattering Model With Application to the JONSWAP '75 Aircraft Microwave Scatterometer Experiment. NASA CR-2919, 1977.
- 8. Moore, R. K.; Fung, A. K.; Dome, G. J.; and Birrer, I. J.: Wind Speed and Directional Properties of Radar Backscatter at 13.9 GHz. RSL TR 343-3 (Contract NSG 1397), Remote Sensing Lab., Univ. Kansas Center for Research, Inc., 1979. (Available as NASA CR-166090.)
- 9. Brucks, John T.; Jones, W. Linwood; and Leming, Thomas D.: Comparison of Surface Wind Stress Measurements: Airborne Radar Scatterometer Versus Sonic Anemometer. J. Geophys. Res., vol. 85, no. C9, Sept. 20, 1980, pp. 4967-4976.
- 10. Schroeder, Lyle C.; Jones, W. Linwood; Schaffner, Phil T.; and Mitchell, John L.: Flight Measurement and Analysis of AAFE RADSCAT Wind Speed Signature of the Ocean. NASA TM-85646, 1983.

TABLE I.- AAFE RADSCAT FLIGHT EXPERIMENTAL OCEAN NRCS DATA

					At	line st	art			At	line sto	p	Number	Average	_			Archive	tape
Mission	Flight	Date	Line	Run	Time H M S	N.lat., deg	E.long., deg		Tim M		N.lat., deg	E.long., deg	of samples	altitude, ft	Mode ¹	Polariza- tion ²	Data quality	Number	File
230	FCF ³	4/11/73	2	2	19 22 50	39.0317	-74.7626	19	30	30	38.7973	-74.7533 -74.3539		4789 4822	FA FA	HH,VV HH,VV	4,5	M230	1 2
			2 2 2	4 5 6	20 01 00 20 10 53	38.9783 38.7066	-74.7129 -74.1783	20 20	07 37	51 52	38.7950 37.8283	-74.7617 -74.3334 -72.8867	612 314 1470	4825 4840 4837	FA FA SS,FA,AA	HH,VV HH,VV			3 4 5
			3 4	1	20 40 56	37.8833	-72.7600	20	52	21	37.9100	-72.6467 -72.8833	600	4824 4820	SS,FA,AA SS	HH,VV HH,VV			6 7
	1	4/18/73	5 2 4	2 2 1	16 53 06	36.9411	-73.8733	17	01	14	36.6250	-73.7816 -73.8519 -73.9017		2273 2021	SS SS,FA,AA	VV HH,VV	4,5,6		8
			5 2	3 4	17 40 42 17 58 46	36.9371 36.8949	-73.8776 -73.9750	17 18	46 07	40 36	36.7109 36.5583	-73.8567 -73.9648	607 653 420	1995 4714 5034	SS SS,FA,AA	HH HH,VV HH,VV			10 11 12
			2 4 5	5 5 4	18 27 11 18 57 41	36.9957 36.6889	-74.0011 -73.8427	18 19	32 02	32 20	37.0286 36.9070	-73.9950 -73.9870 -73.8321	592 584 310	5086 5026 7941	SS,FA,AA SS FA	HH,VV HH VV			13 14 15
			2 2 3	6 7 1	19 07 02 19 21 47	36.9548 36.5324	-73.8667 -73.7967	19 19	16 30	43 26	36.5279 36.9647	-73.8367 -73.7715 -73.4050	502 362 95	10027 9979 10068	SS,FA,AA SS,FA,AA	HH,VV HH,VV			16 17
			3 4	2 13	19 41 17 19 57 00	37.0450 36.9477	-73.4925 -73.7933	19 20	43 07	43 49	37.0417 36.9867	-73.6156 -73.7284	267 1179	10013	AA SS SS	HH,VV HH,VV HH,VV			18 19 20
			2 5	7	20 35 08	36.5750	- 73.6967	20	43	30	36.9531	-73.7617 -73.6814	537 474	9944 7777	AA FA	HH,VV VV			21 22
238	20	6/5/73	2 2	5	18 10 44 18 27 28	24.9867 24.7128	-92.7033 -92.1133	18 18	20 33	20 34	24.7867 24.6000	-92.7567 -92.2838 -91.8418	660 499 345		FA FA FA	HH,VV HH,VV HH,VV	4,5	м238	1 2 3
			3 5 4	1 2	19 04 27 19 29 41	24.5185 25.3100	-92.0156 -92.7730	19 19	25 40	55 03	25.2761 25.3367	-92.1317 -92.7533 -92.7700	1129		FA FA SS	HH,VV HH,VV HH,VV	'		5 6
			5 4 5	2 9	19 49 36 20 15 16	25.4408 26.3383	-92.9342 -93.7883	20 20	11 28	24 15	26.2010 26.3709	-93.6694		5117 5372 5294	FA SS FA	HH,VV HH,VV HH,VV			7 8
			5 4	5	21 40 53	27.7762	-95.3780	22	01	35	28.5496	-96.1147 -96.0767	1066		FA SS	HH,VV HH,VV			9 10 11

IFA = Fixed Angle; AA = Alternating Angle; SS = Short Scat. All modes defined in reference 2.

Polarization (e.g., HV = Horizontal transmit, vertical receive).

FCF = Functional Check Flight.

Thermal environment of bandpass filter estimated, rather than controlled.

Average calibration voltage of flight used, since periodic calibrations exhibited drift.

Surface truth shows variability or questionable quality.

Bandpass filter characteristics reconstructed subsequent to flight.

Additional -2.33 dB added to calibration loop gain to normalize average flight NRCS to 5.5 dB at incidence angle of 10°.

TABLE I.- Continued

					At	line sta	art	At	line st	юр	Number	Average	_	Polariza-	Data	Archive	tape
Mission	Flight	Date	Line	Run	Time H M S	N.lat., deg	E.long.,	Time H M S	N.lat., deg	E.long., deg	of samples	altitude, ft	Mode ¹	tion ²	quality	Number	File
238	27	6/11/73	2	3	16 30 32	26.4250	-88.5944	16 40 56	26.2768	-88.0984	584	5489	FA	HH,VV	4,5	м238	12
230		0,11,73	2	4	16 50 00	26.5241	-88.3986	17 01 10	26.6862	-88.9333	621	5508	FA	HH,VV		İ	13
			3	1	17 03 15	26.5997	-88.9667	17 03 48	26.5752	-88.9750	38	5514	FA	VV	[-	14
			3	1	17 04 21	26.5540	-88.9850	17 16 30	26.1333	-89.2683	684	5512	FA	HH,VV			15
			3	2	17 19 27	26.2683	-89.2233	17 30 40	26.7864	-89.0452	1	5515	FA	HH,VV			16
			5	1	17 39 54	26.7850	-89.4074	18 02 20	27.5966	-90.1683	1235	5522	FA	HH,VV			17
			4	2	18 04 57			18 17 37	-	-90.1500	1	5509	SS	HH,VV		ļ	18
			5	2	18 27 13			18 48 49		-90.7993	1	5518	FA	HH,VV			19
	ł		4	12	18 51 41	28.4505	-90.7972	19 03 39	28.5083	-90.7800	1306	5488	SS	HH,VV			20
247	37	9/12/73	3	1	18 27 41	25.7283	-92 2417	18 37 13	25.5833	-91.7854	342	3080	AA	HH,VV,HV	4.5	M247	1
241		3/12/13	4	ı –		25.8933		19 00 41	1 -	-92.0583		3099	AA	HH, VV	.,,		2
			5		19 03 28	1	1	19 13 20	l I	-91.8768	383	3104	AA	HH,VV,HV	ļ		3
258	10	12/2/73	3	1	17 18 31	27.0365	-89-0717	17 30 04	27.5550	-89.0667	767	3022	FA	HH,VV	4,5	M258	1
230	•	12, 2, 13	4			27.3717		17 51 50		-89.4517	741	3019	FA	HH,VV	'-	1	2
			4	2	17 57 23	1	I	18 04 42	27.3667	-89.1594	481	3015	FA	HH,VV			3
			4		18 13 03	27.3683	-89.1944	18 21 14	27.3667	-88.8326	550	3022	FA	HH,VV			4
	44	2/1/74	5	1	17 35 52	45.0705	-126.1822	18 00 25	45.5374	-127.3724	1355	10037	FA	HH,VV	4,5	1	5
		2/1//3	2	3			-127.5266					10097	FA	HH,VV			6
			2				-127.4766					10084	FA	HH,VV			7
			3	2			-127.3752					10112	FA	HH,VV			8
		Ì	4	1			-127.6883					10141	SS	HH,VV			9
		1	5	2			-127.1684					10280	FA	HH,VV	}		10
]	2	7			-128.4783					10297	FA	HH,VV	1		11
	1		2	8			-128.6684					10300	FA	HH,VV			12
i	1	1	3	4	20 06 47	45.7952	-128.4415	20 09 50	45.6593	-128.5457	173	10307	FA	HH,VV	<u> </u>	<u> </u>	1.13

TABLE I.- Continued

				ļ	At	line st	art		t line s	top	Number	Average		7-3		Archive	tape
Mission	Flight	Date	Line	Run	Time H M S	N.lat., deg	E.long., deg	Time H M S	N.lat., deg	E.long., deg	of samples	altitude, ft	Mode ¹	Polariza- tion ²	Data quality	Number	File
288	5	11/11/74	4	1	11 31 52	57.0533	0.8696	11 40 39	57.0817	1.1363	964	9398	ss	нн, уу	7,8	M288	1
			2	3	11 48 16	57.0773			57.5267	2.0326	4	9512	FA	HH,VV	,,,	11200	2
			2	4	12 04 24	57.5630	2.1033	12 11 19	57.4226	1.8259	309	9524	FA	HH,VV			3
			2	5	12 18 24	1	1.5556	12 35 16	56.9450	.8950	834	9585	FA	HH,VV		ļ	4
			2	6	12 41 41		1.1911	12 56 58	57.6950	2.3666	790	9540	FA	HH,VV		1	5
			3	1	13 00 44			ľ.	58.0383	1.8167	1	9489	FA	нн, ۷۷			6
			3	2	13 12 38				57.7591	2.3143	1	9474	FA	HH,VV			7
			3	3	13 27 48				57.4447	2.7986	1	9629	FA	HH,VV			8
			3	4 7	13 34 05		1		57.6067	2.4217	•	9564	FA	HH,VV			9
			2 4	1	13 43 43 14 09 58			13 59 10	1	1.6040		9606	FA	HH,VV			10
				<u> </u>	14 09 58	37.3067	2.2145	14 26 34	57.6189	2.5978	1816	9582	SS	HH,VV]	11
	6	11/14/74	4		13 05 44				56.9496	4.0350	908	9426	ss	HH,VV	7,8		12
			2		13 24 20				56.5708	3.8600	637	9549	FA	HH,VV			13
			2		13 41 06			l	56.0033	3,6759	633	9568	FA	HH,VV			14
			2		14 02 16		l .	l	55.3683	3.4790	610	9541	FA	HH,VV	i		15
			2		14 20 10				56.0349	3.6900	620	9466	FA	HH,VV		1	16
			2 4		14 37 30				57.0302	4.0119	699	9450	FA	HH,VV		1	17
			3		14 55 09				57.2083	4.1283	1	9380	SS	HH,VV		Į.	18
			3		15 47 19 16 04 09				56.9133	2.8867	643	9482	FA	HH,VV			19
			2	1	16 26 10				56.7512 57.2803	4.1301	654 626	9513	FA	HH,VV			20
				10	10 20 10	30.3929	3.9003	16 39 30	37.2803	4.0956	626	9458	FA	HH,VV			21
306	FCF	4/4/75	4	1	20 01 32		-72,4183	20 09 49	37.9974	-72.2729	444	5327	FA	HH,VV	6	м306	1
			4	4	20 09 53		-72.2731	20 17 09	37.9514	-72.1800	347	5333	FA	HH,VV			2
			4	7	20 17 19	37.9433	-72.1800	20 27 04	37.8517	-72.0450	594	5337	FA	HH,VV			3
			4		20 30 57		-72.1667			-72.0751	436	5312	FA	HH,VV			4
			4		20 39 08		-72.0717			-71.9278	414	5307	FA	HH,VV			5
			3	2	20 54 54	37.4817	-72.0183	21 04 49	37.0817	-72.2083	455	5428	FA	HH,VV			6
	3	4/17/75	1	ı	14 07 50	40.4752	- 73.8567	14 17 49	40.4133	-73.8356	434	9772	FA	нн			7
			7	1	14 34 44	40.4317	-73.4994	14 45 01	40.3667	-73.5148	1049	9790	ss	нн		İ	8
			6		14 48 10		-73.4767			-73.4450	1131	9815	ss	нн			9
			5		15 05 02		-73.5433	15 15 30	40.0583	-73.5464	1068	9827	ss	нн			10
		i	13		15 19 51		-73.59 50			-73.5647	1121	9834	ss	нн]	11
			12		15 37 58		-73.4500			-73.4462	1071	9833	ss	нн			12
	į		11		15 53 58		-73.1860			-73.1717	1095	9824	ss	нн			13
			10 9	1 1	16 11 47		-73.2074			-73.2250	1066	9831	SS	нн			14
			9		16 24 24		-73.1733	16 27 59	40.3767	-73.0817	228	9838	SS	нн			15
		İ	8		16 29 28 16 41 21		-73.0586			-73.0900	1079	9844	SS	НН			16
			8		16 41 21		-73.1532 -73.3631			-73.3083	206	9826	SS	НН			17
	i		8		16 46 50		-73.3631 -73.5717			-73.3967	1097	9841	SS	HH			18
		ł	ı		17 05 14		-73.5717 -73.8867			-73.7683 -73.9049	145 1048	9838 9898	SS SS	HH HH			19 20
				لــــــــا		-3.4001	,3,0007	* . TO 14	1-0.3030	-73.5049	L 1040	9090	33	nn		l	1 20

TABLE I.- Continued

					At	line sta	ırt	А	t line st	top	Number	Average			D-4-	Archive	: tape
Mission	Flight	Date	Line	Run	Time H M S	N.lat., deg	E.long., deg	Time H M S	N.lat., deg	E.long., deg	of samples	altitude, ft	Mode 1	Polariza- tion ²	Data quality	Number	File
318	13	8/29/75	3	1	08 22 37	54.9333	7,6117	08 26 03	54.8383	7.8367	157	10247	FA	HH,VV	1	м318	1
310	13	0, 23, 13	3	2	08 38 55		7.1167	08 42 13	55.3133	6.8983	158	10228	FA	HH,VV	ļ		2
			6	1	09 15 27			09 19 20		6.8433	149	10224	FA	HH,VV	1		3
		*	2	2	09 55 57			10 01 17		7.3483	217	10193	FA	HH,VV		l	4
			2	22	10 01 33			10 02 21		7.2933	35	10192	FA	HH,VV			5
			4	1	10 12 05	_		10 16 00		7.8183	226	10176	FA FA	HH,VV			7
			4	2	10 16 05			10 16 55		7.8550 7.8783	48 284	10179 10160	FA	HH,VV HH,VV]	8
	· '		4	3	10 17 24 10 33 36			10 22 26 10 38 12		7.8417	241	10148	FA	HH,VV			9
			4	1 -	10 33 36			10 51 31		7.7983	614	10158	FA	HH,VV			10
	ļ		 		<u> </u>	 	 			<u> </u>					<u> </u>	1	
	14	9/2/75		3	08 26 16			08 35 38		7.2683		10042	FA	HH,VV		ļ	11
			3	1	08 51 42	l l		08 58 42	1	7.7183		10040	FA FA	HH,VV HH,VV		1	12
	ł		3	11	08 59 26			09 01 31 09 18 30		7.8883 7.8133	L	10040	FA	HH,VV			14
			3	2 22	09 13 29 09 19 08			09 20 38		7.6750		10030	FA	HH,VV	1	!	15
	ļ		4	1 1	09 44 35			09 58 26		7.8250		9982	FA	HH,VV			16
		i	4	6	09 58 41			10 00 13				10033	FA	HH,VV	}	1	17
			4	7	10 00 44	1		10 12 15				9970	FA	HH,VV		1	18
		ļ	4	11	10 12 27	55.0033	7.7433	10 13 17	55.0067	7.7950	33	10074	FA	HH,VV	1		19
	İ	1	4	12	10 13 32	54.9950	7.8017	10 25 31	54.9667	7.7233	480	10068	FA	HH,VV		1	20
	15	9/4/75	2	3	08 36 00	54.9400	8.0183	08 39 10	55.0017	7.8363	325	2552	SS	vv			21
		1 ., .,	3	1	08 45 02	54.9067	7.9117	08 47 03	54.9817	7.9500	217	2558	SS	vv			22
			2	4	08 51 17	54.9383		08 54 35				2541	SS	vv			23
			3	2		54.8750		09 02 40				2559	SS	VV			24
		1	2	5	1	54.9333		09 10 18			1	2563	SS	HH HH			25 26
	1		3	3		54.8833		09 17 06				2575 2566	SS SS	VV			27
			3	6	09 21 48			09 24 22				2578	SS	VV			28
			2	7	09 29 36			09 38 34				2572	SS	нн			29
			3	5	09 43 26			09 46 20				2576	ss	нн			30
	16	9/8/75	2	5	14 52 58	54 7201	7 8517	14 59 20	55 0117	8.1133	280	10129	FA	HH,VV			31
	1 10	3/0//3	4	4	15 30 35			15 44 52			1	10080	FA	HH,VV	1		32
			4	9	15 45 02			15 59 02			1	10077	FA	HH,VV	1		33
			4	14		55.1283		16 13 13				10044	FA	HH,VV			34
			3	2	16 21 24	55.1414		16 23 57				10105	FA	HH,VV			35
			3	22	16 24 23			16 30 54		L		10097	FA	HH,VV			36
			3	3	16 35 54	55.2950	6.8267	16 46 37	55.0267	7.6550	416	10094	FA	HH,VV		<u> </u>	37

TABLE I .- Continued

					At	line sta	ırt	A	t line st	ор	Number	Average				Archive	tape
Mission	Flight	Date	Line	Run	Time H M S	N.lat., deg	E.long., deg	Time H M S	N.lat., deg	E.long., deg	of samples	altitude,	Mode 1	Polariza- tion ²	Data quality	Number	File
318	17	9/9/75	2 3 3 4 4	2 3 4 1 6 8	07 50 16 08 08 35 08 17 54 08 33 53 08 46 54 08 53 08	55.0083 54.9617 54.8517 54.9233	7.6583 8.1717 7.5689 7.6483	08 00 .22 08 15 09 08 25 09 08 46 23 08 53 00 08 59 29	54.8883 55.1467 54.9200 54.9883	7.7467 8.2083 7.7133 7.6800 7.7000 7.7633	329 731 318	9878 10074 10076 9989 9977 9938	SS,FA FA FA FA FA	НН, VV НН, VV НН, VV НН, VV НН, VV		м318	38 39 40 41 42
			4	11	08 59 42 09 01 50	54.9733	7.7517	09 01 12 09 12 58	55.0017	7.7633 7.8200 7.9283	73	10169 10199	FA FA	HH,VV HH,VV			43 44 45
	18	9/9/75	4 4 4 4	1 2 6 11	13 58 01 13 59 33 14 10 43 14 23 21	54.8600 54.9533	7.6358 7.7867	13 58 55 14 10 18 14 23 10 14 36 06	54.9467 55.1000	7.5833 7.8100 7.9900 8.1583	648	6165 6142 6149 6140	FA FA FA	HH,VV HH,VV HH,VV			46 47 48 49
	19	9/10/75	2 3 4 4 4	6 3 5 6 7 8	13 14 57 13 27 36 13 50 46 13 55 22 13 56 30 13 58 59	55.0717 54.8883 54.9300 54.9017	7.8433 7.7467 7.7517 7.7733	13 21 45 13 34 19 13 52 46 13 56 06 13 57 59 14 01 23	54.8183 54.9167 54.9100 54.9450	7.7950 8.1317 7.7320 7.7867 7.7757 7.8283	291 297 115 52 100 143	9988 10017 9992 9981 9937 9937	FA FA FA FA FA	HH,VV HH,VV HH,VV HH,VV HH,VV			50 51 52 53 54
			4 4 4	10 12 13	14 03 13 14 09 26 14 11 35 14 19 51	54.9783 54.9850 55.0117	7.8383 7.8933 7.9450	14 08 54 14 11 08 14 18 53 14 34 26	54.9967 55.0267 55.0783	7.9133 7.9317 7.9967 8.0433	333 107 409 383	9957 9957 9942 9955 9947	FA FA FA FA	HH,VV HH,VV HH,VV HH,VV			55 56 57 58 59
	24	9/17/75	2 2 4	11	14 00 30 14 14 19 14 27 32	54.8367	7.5600	14 11 58 14 20 08 14 37 26	55.0417	7.4567 8.0350 7.9567	502 276 589	10127 10079 10028	FA FA FA	HH,VV HH,VV HH,VV			60 61 62
335	3	1/16/76	2 2 4 4 4 4	1 2 3 6	16 20 15 16 23 13 16 36 47 16 40 00 16 42 53 16 50 07	36.7600 36.3167 36.3550 36.3721 36.3950	72.3333 71.9467 71.8977 71.8550	16 23 02 16 33 35 16 39 42 16 42 46 16 50 00 16 58 10	36.3983 36.3483 36.3733 36.3883	72.3406 71.9867 71.9167 71.8633 71.8283 71.7683	162 955 216 213 494 503	10054 10062 10011 10033 10010 10016	FA FA,SS FA FA FA	HH, VV HH, VV, VH HH, VV HH, VV HH, VV		M335	1 2 3 4 5 6
			4		16 58 29 17 02 58			17 02 50 17 03 15		71.7267 71.7350	238 18	9984 10032	FA FA	HH,VV HH,VV			7 8

TABLE I.- Continued

					At	line sta	ırt		A	t line st	юр	Number	Average		Polariza-	Data	Archive	: tape
Mission	Flight	Date	Line	Run	Time H M S	N.lat., deg	E.long., deg		ime M S	N.lat., deg	E.long., deg	of samples	altitude, ft	Mode ¹	tion ²	quality	Number	File
335	4A	1/22/76	4	1	16 51 08	38.7483	73.9617	16	53 03	38.7533	73,9050	145	10090	FA	HH,VV		м335	9
		1, 11, 10	4		16 53 10					38.7500	73.9050	1	9987	FA	HH,VV			10
			4	3	16 56 49					38.7533	73.8100	264	10010	FA	HH,VV			11
			4	5	17 00 36	38.7400	73.8033	17	05 58	38.7210	73.7367	395	10018	FA	HH,VV			12
			4	7	17 06 19		73.7500	17	09 44	38,7317	73.7117	271	9991	FA	HH,VV			13
			4	8	17 10 04	38.7383	73.6917	17	11 21	38.7017	73.6700	108	9970	FA	HH,VV			14
			2	3	17 15 52	38.7600	73.8300	17	31 50	38.9117	74.4533	864	10029	FA	HH,VV,VH			15
į			4	9	17 36 11	38.8783	74.2601	17	40 58	38.8677	74.2017	321	10007	FA	HH,VV			16
ł			4	11	17 41 17	38.8600	74.1833	17	51 05	38.8383	74.0667	665	9980	FA	HH,VV			17
			4	15	17 51 25	38.8250	74.0500	17	53 09	38.8283	74.0539	135	10016	FA	HH,VV			18
1			4	16	17 53 37	38.8267	74.0233	17	55 09	38.8050	74.0333	100	10100	FA	HH,VV			19
			4	19	17 55 35	38.8200	74.0200	17	56 06	38.8210	73.9867	26	10033	FA	HH,VV			20
ł			3		17 58 12		73,8767	18	08 00	39.2067	73.5217	504	9982	FA	HH,VV			21
]			3	11	18 08 11	39.2133	73.5133	18	11 14	39.3267	73.4017	163	9922	FA	HH,VV			22
			4	17	18 13 28	39.3217	73.3532	18	17 36	39.3250	73.2400	233	10020	FA	HH,VV			23
			4	18	18 17 42		73.2383	18	26 35	39.2933	73.1333	498	10046	FA	HH,VV			24
	·		4	22	18 27 58	39.3200	73.1550	18	39 12	39.2617	72.9517	654	9997	FA	HH,VV			25
	4B	1/22/76	4	1	19 41 23	38.1267	71.3567	19	50 54	38.1483	71.1633	605	10057	FA	нн, уу			26
			4		19 51 12					38,1483	71.1583	268	10021	FA	HH,VV		}	27
		•	4	6	19 54 59					38.1367	71.1050	135	10076	FA	HH,VV			28
		1	4	7	19 56 54	38.1367	71.1167	19	58 28	38.1683	71.0683	132	10113	FA	HH,VV		İ	29
			4	8	19 58 52	38.1517	71.0600	20	00 22	38.1717	71.0797	126	10014	FA	HH,VV		!	30
			4	9	20 00 43	38.1800	71.0583	20	03 46	38.1750	71.0067	240	10043	FA	HH,VV			31
			4	10	20 04 47	38.1483	71.0183	20	08 22	38.1850	70.9900	256	10012	FA	HH,VV			32
			4	11	20 08 53	38.1850	70.9567	20	10 24	38.1700	70.9800	117	9948	FA	HH,VV			33
			4	12	20 11 02	38.1933				38.1550	70.9283	103	10045	FA	HH,VV			34
į.			4	13	20 12 42	38.1517	70.9400	20	17 26	38.1567	70.8783	312	10031	FA	HH,VV			35
			4	14	20 17 31	38.1567	70.8783	20	20 33	38.1400	70.8733	213	9942	FA	HH,VV			36
	:		4	16	20 20 52	38.1483	70.8833	20	24 25	38.1633	70.8283	239	10061	FA	HH,VV]		37
			4	17	20 24 57	38.1483	70.7983	20	45 40	38.1033	70.5267	1140	10025	FA	HH,VV,HV		İ	38
			3	1	20 48 04					37.7700	70.5300	316	10099	FA	HH,VV,HV		1	39
			3	11	20 53 39					37.6567	70.5333	149	10145	FA	HH,VV		1	40
			3	111	20 56 22	37.6517				37.5367	70.5367	155	10165	FA	HH,VV		i	41
			3		20 59 47					37.2917	70.5683	272	10626	FA	HH,VV			42
			2	3	21 07 14					37.3783	70.8417	355	11106	FA	HH,VV			43
			2	1	21 13 57	1				37.5333	71.1750		11111	FA	HH,VV		•	44
L	l		3	2	21 24 50	37.5683	71.2033	21	34 10	37.9583	70.8650	544	11074	FA	HH,VV,HV	<u> </u>		45

TABLE I .- Continued

					At	line sta	art			Αt	line st	ор	Number	Average	,			Archive	tape
Mission	Flight	Date	Line	Run	Time H M S	N.lat., deg	E.long., deg		ime M S		N.lat., deg	E.long., deg	of samples	altitude, ft	Mode	Polariza- tion ²	Data quality	Number	File
335	5	1/23/76	4	1	18 48 50	38.1367	71.1700	18	53 1	7	38.1517	71.1150	325	10021	FA	HH,VV		M335	46
			4		18 53 42		71.0833			- 1		70.7950		10062	FA	HH,VV		11333	47
			4		19 11 33	1	70.8050			1		70.7367	141	10167	FA	HH,VV		1	48
			4	10	19 13 48	38.0983	70.7383	19	33 0	3	38.0200	70.3317	1297	9976	FA	HH, VV			49
	! I		4	17	19 33 10	38.0183	70.3367	19	33 5	4	38.0417	70.3383	47	10020	FA	HH,VV		1	50
			4	18	19 34 22	38.0550	70.3067	19	38 C	7	38.0067	70,2033	226	9954	FA	HH, VV			51
			4	19	19 38 11	38.0033	70.2033	19	47 1	7	37.9733	70.0567	500	10028	FA	HH, VV			52
			4	22	19 47 38	37.9883	70.0467	19	54 3	5	37.9433	69.8683	404	10011	FA	HH,VV			53
			2	5	19 59 35	37.9733	69.8767	20	05 3	0	38.0717	70.0600	345	10027	FA	HH,VV			54
	i		2	55	20 06 49	38.0950	70.1017	20	16 2	27	38.2500	70.3990	551	9995	FA	HH,VV,VH			55
	1 1		3	1	20 19 04	38.1967	70.4500	20	35 2	24	37,4217	70.5233	923	10052	FA	HH,VV,HV			56
			3	2	20 38 44		70.5333	20	55 2	25	38.0817	69.7483	937	9998	FA	HH,VV			57
			4	25	21 21 47	37.8650	70.7833	21	35 1	.0 :	37.8033	70.4933	833	9992	FA	HH,VV			58
	6	1/28/76	4	1	20 49 31	38.2567	71.3600	20	56 2	4	38.3353	71,2300	479	9945	FA	HH,VV		1	59
			4	4	20 56 36	38.3283	71.2233	21	11 3	3 :	38.4350	71.1050	1045	9932	FA	HH,VV			60
			4	9	21 11 54	38.4533	71.0912	21	15 0	3 :	38.4700	71.0383	212	9958	FA	HH,VV			61
			4		21 15 24		71.0233	21	22 1	.7 :	38.4890	71.0100	464	9908	FA	HH,VV			62
]		4		21 22 17		71.0100	21	33 0	15 3	38.5349	70.9047	625	9882	FA	HH,VV			63
			4		21 33 33		70.8834	21	43 5	7	38.5933	70.7600	689	9899	FA	HH,VV			64
			4		21 44 06		70.7533					70.5800	624	9900	FA	HH,VV			65
			3	1	22 00 22		70.6833					70.7183	331	9944	FA	HH,VV			66
			3		22 06 35		70.7233					70.7567	382	9912	FA	HH,VV			67
			2		22 15 26		70.8183					71.1600	713	9917	FA	HH,VV			68
			3	2	22 33 02		71.1617					71.5317	730	9888	FA	HH,VV			69
			4	25	22 49 07	38.2200	71.4667	23	00 2	6	38.2400	71.2983	704	9856	FA	HH,VV			70
353	9	3/2/77	4	1	20 10 00	32.7617	-117.5083	20	23 5	3	32.6633	-117.4218	1348	9684	ss	HH,VV		M3531	1
	1 1		4	6	20 38 02	32.9767	-117.6100	20	50 0	9 :	32.9000	-117.5433	473	9757	ss	HH,VV		1	2
			4	11	20 51 00	32.8683	-117.5150	21	03 4	6	32.7800	-117.4283	1222	9748	ss	HH,VV			3
			4	16	21 03 53	32.7733	-117.4300	21	16 3	4	32.6933	-117.3633	1245	9728	ss	HH,VV			4
			3	3	22 14 22	32.0133	-117.7983	22	24 1	9 :	32.2483	-117.3383	818	9742	ss	HH,VV			5
			3	33	22 26 13	32.2517	-117.3698	22	28 3	3 :	32.1617	-117.4517	204	9732	SS	HH,VV		1	6
	10	3/3/77	4	1	20 25 42	32.7583	-117.4983	20	38 3	7 :	32.7083	-117.3833	1272	9528	SS	HH,VV			7
			4				-117.4633						1168	9513	ss	HH,VV			8
			4				-117.5633						1373	9519	SS	HH,VV			9

TABLE I.- Concluded

					At	line sta	irt			Αt	line st	:op	Number	Average	_	Polariza-	D-1-	Archive	tape
Mission	Flight	Date	Line	Run	Time H M S	N.lat., deg	E.long., deg	T H	ime M		N.lat., deg	E.long., deg	of samples	altitude, ft	Mode ¹	tion ²	Data quality	Number	File
353	11	3/8/77	2 3 2 4 4 4	5 2 6 1 6	22 10 17 22 27 28 22 40 44 22 53 41	42.8517 42.5005 42.3783 42.5017	-129.8200 -129.9083 -129.6400 -130.0917 -129.8367 -129.5950	22 22 22 23	19 37 53 06	45 34 29 39	42.5183 42.4050 42.5000 42.5983	-129.4417 -129.9800 -129.8283 -129.5900	1126 1251	9352 9514 9513 9537 9539 9335	SS SS SS SS SS	НН, VV НН, VV НН, VV НН, VV НН, VV		м3531	10 11 12 13 14 15
	13	3/10/77	4 4 4 4 4 2		00 27 13 00 42 37 00 59 42 01 09 58	32.9317 32.7750 32.8067 32.7400	-117.7500 -117.5550 -117.4933 -117.4983 -117.4867 -117.5217	00 00 01 01	41 56 09 19	06 10 49 58	32.8283 32.6833 32.7350 32.6800	-117.5300 -117.4983 -117.4867 -117.4700	1374 1335 560 967	9583 9535 9595 9645 9650 9635	SS SS SS SS SS	НН, VV НН, VV НН, VV НН, VV НН, VV			16 17 18 19 20 21
	14	3/11/77	2 3 4 4 4	2 1 6	23 09 24 23 56 38 00 09 54	42.3733 42.3567 42.4017	-129.9217 -130.2467 -130.2617 -130.1233 -129.9783	23 00 00	24 09 23	00 42 21	41.7647 42.4050 42.4533	-130.2200 -130.1367 -129.9883	1243 1046 1304	9486 9514 9481 9473 9485	SS SS SS SS SS	нн, vv нн, vv нн, vv нн, vv нн, vv		M3532	1 2 3 4 5
	15	3/14/77	4 4 4 4	11	20 31 02 20 48 17	32.8333 32.9217	-117.5450 -117.4517 -117.5583 -117.5083	20 20	36 56	29 27	32.8317 32.9283	-117.4317 -117.5150	13 782	9492 9586 9498 9503	SS SS SS SS	HH,VV VV HH,VV			6 7 8 9
	20	3/22/77	4 4 4 4 4	6	20 04 13 20 22 14 21 09 56 21 21 47	32.8133 32.8500 32.8983 32.9067	-117.5583 -117.2767 -117.5067 -117.3317 -117.3883 -117.4383	20 20 21 21	18 36 18 35	28 00 07 14	32.8550 32.8683 32.9233 32.9300	-117.3217 -117.5450 -117.3450 -117.4317	1385 1335 139 1305	9756 9663 9687 9697 9729 9765	SS SS SS SS SS	нн, vv нн, vv нн, vv нн, vv нн, vv	6		10 11 12 13 14 15
	21	3/24/77	4 4 4 3	1 7 12 3	20 24 32 20 37 20	32.8333 32.8483	-117.5867 -117.5533 -117.4617 -117.4433	20 20	37 49	11 58	32.8417 32.8733	-117.4650 -117.3567	1243 1007	9416 9459 9500 9519	SS SS SS SS	нн, vv, нv нн, vv нн, vv нн, vv, нv			16 17 18 19

TABLE II. - RECORD FORMAT FOR SCATTEROMETER DATA ARCHIVAL

Parameter description	Scale	Length, bytes
Time (GMT), sec	0.1	6
RADSCAT operating mode 1	1	1
Antenna incidence angle, deg	.1	3
Antenna cross-track angle, deg	•1	5
Transmit/receive polarity ²		1
Scat integration time, sec	.001	3
Normalized radar scattering cross section, dB	•01	5
Depolarization factor	.001	4
Data validation code ³		6
Aircraft altitude, ft		5
Aircraft heading, deg	.1	4
Aircraft latitude, deg north	.001	6
Aircraft longitude, deg east	.001	7
Aircraft drift angle, deg	.1	4
SCAT 1, dB	.01	5
SCAT 2, dB	•01	5
SCAT 3, dB	.01	5
SCAT 4, dB	.01	5
L		

 $[\]frac{1}{0}$ = Radiometer only mode; 1 = Short Scat mode;

^{2 =} Fixed-angle mode; 3 = Alternating-angle mode.

²Transmit/receive polarity: 0 = HH, 1 = VV, 2 = HV, 3 = VH.

³Key to codes - 0 No flag

¹ Possibly outside range gate

¹⁰ Outside dynamic range

¹⁰⁰ Excessive Doppler

¹⁰⁰⁰ Polarization reversal

¹⁰⁰⁰⁰ Excessive depolarization

¹⁰⁰⁰⁰⁰ Receiver temperature abnormal

TABLE III .- SURFACE TRUTH FOR RADSCAT MISSIONS

Mission	Eliab+	Date	Data source	Locati	on, đeg	Time		l stability —m winds	Temp	., •c	Anen	ometer	Wave height,	1	well	Data
MISSION	riigiic	Date	pata source	Lat.	Long.	н м	Speed, m/sec	Direction, deg	Air	Sea	Height,	Average time, min	m	Height,	Direction, deg	quality (a)
306	FCF	4/4/75	NASA-929 S.S. Wilmington Geddy	37.391 37.6 38.1	-72.730 -73.7 -74.1	19 48 18 00 24 00		300 290 330		13.9 12.2	135	23	^C 3.0 ^C 4.5			·Average
306	3	4/17/75	Ambrose Tower	40.444	-73.846	14 00 17 00		315 270								Good
318	13	8/29/75	Land Station	54.926	8.305	8 45 9 45 10 45	b3.0	124 146 146			>20		Smooth			Fair
			List	55.021	8.425	11 45 9 45 10 45 11 45	b _{4.9} b _{4.9}	146 149 149 149			>20					
318	14	9/2/75	Land Station .	54.926		9 15 10 15	b _{5.1}	34 34 34					1.1			Good
			List	55.021	8.425	9 15 10 15	b4.2 b5.4 b5.6 b4.7	34 50 50 70								
			Pisa	54.995		11 15 8 15 9 15 10 15 11 15	b4.1 4.4 5.0 5.7 5.3	70 45 47 46 60			17	10				
318	16	9/8/75	Land Station	54.926		15 45 16 45	b _{4.9} b _{4.5} b _{4.5}	214 214 191					1.1			Good
	į		List	55.021	8.425	15 45 16 45	b4.2 b6.1 b5.5 b5.6	191 240 230 220	15.6	17.9						
			Pisa	54.995	7.906	15 45 16 45	^b 5.7 '7.9 8.0 7.8	220 198 198 188								
			Hornum Pile	54.958	8.210	15 45 16 45	8.3 5.7 5.6 5.9	184 238 236 232								
			NASA-929	54.986	7.913	17 45 14 45	7.3	230 212			225.5	258				

aData quality is defined in terms of the standard deviation of wind speed and wind direction, respectively, as follows: Good - 1.0 m/sec, 10°;

Fair - 1.5 m/sec, 15°; Average - 2.0 m/sec, 20°.

Measurements uncorrected for height and stability.

CMeasurements were in World Meteorological Organization units of half-meters, and hence were divided by 2 before entry into this table.

dSnow could affect the quality of RADSCAT data.

eWind speeds in parentheses are from reference 9.

TABLE III.- Continued

_				Location, deg		Time		l stability -m winds	Temp	., °C	Aner	nometer	Wave height,	Swell		Data
Mission	Flight	Date	Data source	Lat.	Long.	н м	Speed, m/sec	Direction, deg	Air	Sea	Height,	Average time, min	m	Height,	Direction, deg	quality (a)
318	17	9/9/75	Land Station	54.926	8.305	7 45 8 45	b _{9.4} b _{8.8}	214 214					1.5		240	Good
			List	55.021	8.425	9 45 7 45 8 45	p9.8	214 230 230	17.9	17.7						
			Pisa	54.995	7.906	9 45 7 45 8 45	D12.1	230 209 205								İ
			Hornum Pile	54.958	8.210	9 45 7 45 8 45		206 237 239								
			NASA-929	54.982	7.798	9 45 7 45		239 233			161.5	52	Ŧ 			
318	18	9/9/75	Land Station	54.926	8.305	14 15 15 15		191					1.8		240	Fair
			List	55.021	8.425	14 15 15 15	b10.6	191 220 220	18.7	17.7						
			Pisa	54.995	7.906	14 15 15 15	11.3	187 188								
			Hornum Pile	54.958	8.210	14 15 15 15	10.5	237 236								
1			NASA-929	55.029	7.811	14 15		202			228.6	174				
318	19	9/10/75	Land Station	54.926	8.305	11 15 13 15 14 15 15 15	b _{8.5}	214 214 214 214					2.4		240	Good
			List	55.021	8.425	11 15 13 15 14 15 15 15	b _{8.2} b _{8.0}	270 270 270 270 270	16.9	17.4						
			Pisa	54.995	7.906	11 15 13 15 14 15 15 15	9.2 7.8 8.0	248 245 245 245 244								
			Hornum Pile	54.958	8.210	11 25	1	260							-	
318	24	9/17/75	Land Station	54.926	8.305	14 15	b _{10.4} b _{10.4} b _{8.9}	214 214					2.7		226	Good
			List	55.021	8.425	14 15	b11.8 b10.9	214 240 240	17.0	16 ± 1.0						
			Pisa	54.995	7.906	15 15 13 15 14 15 15 15	13.0	250 222 216 233								

TABLE III .- Continued

Mission	Flight	Date	Data source	Locati	on, deg	Tim	e		stability winds	Temp	., •c	Anem	nometer	Wave height,	s	well	Data
MISSION	riigne	Date	Data Source	Lat.	Long.	н	м	Speed, m/sec	Direction, deg	Air	Sea	Height,	Average time, min	m	Height,	Direction, deg	quality (a)
335	3	1/16/76	NASA-929	36.7	-72.7	16	00	14.6	159	18.0	19.0	137	30	2.0			Fair
335	4A	1/22/76	NOAA buoy EB-41	38.7	-73.6			17.0	280	6	7.9	5	10	3.0	İ		Good
	1			l				26.7	275	6	7.9	5	10	3.0	1		
	1 :		NASA-929	38.82	-73.61			17.5	289	.0	8.5	98	22				1
			NOAA buoy EB-41					16.9 17.0	291 287	6 5	8.0 7.9	5 5	10 10	3.0 2.6			
335	4B	1/22/76	Weather ship Hotel	38.0	-71.0	15	00 2	11.6	290	3.7	12.8	21	,	5.5			Good
	·		•					20.2	300	3.4		21	i	5.5			GOOG
	1		NASA-929	38.06	-71.15				290	2.9	13.3	162	18	5.0			
			Weather ship Hotel					25.2	290		12.8	21	1 1	5.5			ļ
	1					23	00 2	5.6	300		l l	21	1 1				
						24	00 2	2.7	290	2.7	12.8	21	1	6.0			
335	5	1/23/76	Weather ship Hotel	38.0	-71.0	15	00 1	9.5	310	-3.0	11.9	21	1 1	4.5	5.5	340	Good
			NASA-929	38.07	-71.06	17			295			101	24	4.3	3.3	340	Good
				38.07	-71.07	18	10 1	5.4	293		12.0	158	30				
			Weather ship Hotel			18	00 1	8.8	300	2	11.5	21	1	4.0	5.0	330	
						19 (00 1	5.2	300	3	11.5	21	10	3.0	3.4	285	
						20	00 1	2.1	294	3	11.5	21	10	3.8	1.8	281	
						21 (3.8	291	3	11.5	21	10	3.4	2.3	280	
						21		6.8	300	.4	11.5	21	1	3.5	2.7	330	
						22 (2.1	294			21	10	2.8	2.1	288	
			NASA-929	38.20	-71.29				286	1.3	13.2	146	44			1	
				38.00	-70.70			3.4	288		13.2	98	44				
]		Weather ship Hotel			24	00 1	2.1	270	2.0	13.3	21	1	2.5	4.0	300	
335	6	1/28/76	Weather ship Hotel	38.0	-71.0	18 (00 1	7.7	300	9.2	15.0	21	1	2.5	4.0	300	Good
					i	20		6.0	292	9.2	15.0	21	10	1.8	4.6	185	
			NASA-929	38.25	-71.26			5.0	294	7.9	13.7	101	44				
	i		Weather ship Hotel			21 (250	7.9	13.7	21	10	3.8	3.7	189	
				ŀ		21 (6.8	300		13.4	21	1	2.5	4.0	240	d _{Snow}
	1			i		22 (316		13.4	21	10	2.4	3.7	180	
	ĺ					23 (0 1	1.0	315	7.7	13.4	21	10	2.7	2.7	180	
353	9	3/2/77	NASA-929		-118.57				318		14.3	190.5	20				Good
		J	Sonic anemometer		-117.29			5.4	320		14.2	8.0				1	
			NASA-929 Sonic anemometer		-117.45			7.1 (6.9) 6.1	294	10.5		175.3 8.0	8				
	4.5			I	Ī		-			J		0.3	1				
353	10	3/3/77	Sonic anemometer NASA-929		-117.29 -117.38			5.2 5.6 (5.4)	180 234	12.8		8.0 100.6	6			1	Fair
353	11	3/8/77	NASA-929														
333	''	3/0/11	NASA-929 NOAA buoy EB-16		-130.08				246	10.0	11.0	211.8	11	5.5		ļ	Good
-		j	NASA-929		-130.00 -130.00				250	اہ	اء مه	10.0	8	ļ	i	l	
]			NOAA buoy EB-16		-130.00				277 270	8.6	10.6	103.6	10		ļ	ŀ	
		ı		42.30	.30.00	24 U	, o '		210	- 1		10.0	8	6.0	i		

TABLE III .- Concluded

Mission				Location, deg		Time Neutral s				., °C Anemometer		Wave height,	Swell		Data		
	Flight	Date	Data source	Lat.	Long.	Н	ч	Speed, m/sec	Direction, deg	Air	Sea	Height, m	Average time, min	m	Height,	Direction, deg	quality (a)
353	13	3/10/77	Sonic anemometer	32.78	-117.29	21	25	4.4	315	14.0	14.3	8.0					Good
			NASA-929	32.92	-117.86	22	57	7.9	295	13.0	15.2	85.3	10		Ì	1	
			Sonic anemometer	32.78	-117.29	23	35	5.7	315	14.2	14.5	8.0					
			NASA-929	32.88	-117.53	01	46 1	13.1	306	11.0	14.4	100.6	11				
353	14	3/11/77	NOAA buoy EB-16	42.50	-130.00	21 (00 1	13.2	290	,	1	10.0	8	3.5			Fair
	'-	-, ,	NASA-929	42.43	-130.25	21	37 1	10.5	276	5.6	10.2	207.3	18				ł
			NASA-929	42.75	-130.00	23	45 1	13.7	252	4.9	10.7	96.0	11				1
			NOAA buoy EB-16	42.50	-130.00	24	00 1	18.9	280			10.0	8	3.0			ļ
353	15	3/12/77	Sonic anemometer	32.78	-117.29	20	10	4.2	270			8.0					Good
353	20	3/22/77	Sonic anemometer	32.78	-117.29	20	05	2.4	245	13.3	15.1	8.0		Ì			Variable
	1	, ,		İ		21	00	1.3	245	13.6	15.1		ĺ		i		Į.
						21	40	2.5	245				İ	!	l		
			NASA-929	32.67	-117.51	22	13	2.8 to 8.3	265	10.2	14.7	86.9	19			,	
353	21	3/24/77	Sonic anemometer	32.78	-117.29			5.9	300			8.0					Fair
				ŀ		19	1	5.5	300	1	.			1	1		
	1		NASA-929		-117.67			5.4 (4.7)	284		15.5	71.6	5]	1	
		ļ			-118.11		- 1		Ì	10.8	1	91.4	30	ļ			
		l		32.78	-118.02	23	00	6.0	282	10.6	14.2	84.4	30	[1		1

Figure 1.- Block diagram of scatterometer.

MICROWAVE DATA

MISSION-	286 FLI	GHT- 5	DATE- 11	11 1974	FLT	LINE-	4 RUI	N- 1					
TIME	MODE	INCID ANGLE (DEG)	CROSS ANGLE (DEG)	T/R POL	S INT TIME (SEC)	SCAT (DB)	DEPOL FACTOR	S/R CODE	ALT (FT)	A/C HEADING (DEG)	LATITUDE (DEGREES)	LONG (TUDE	DRIFT ANGLE (DEGREES)
41511.7 41512.1 41512.6 41513.0	S.S. S.S. S.S.	23.9 24.4 24.8 25.0	-88.8 -88.8 -88.9 -89.0	H H H H	.300 .300 .300	-9.21 -9.42 -10.71	0.000	101000 101000 101000	9495. 9495. 9494.	231.8 230.7 229.4	57.053 57.053 57.053	.870 .868 .867	-7.9 -8.8 -9.8
41513.9 41514.3 41514.8	2.2.	25.4 25.5 25.6	-89.9 -90.0 -90.1	H H H H H H	.300 .300 .300	-10.52 -9.29 -8.56 -8.52	0.000 0.000 0.000	101000 101000 101000 101000	9491. 9487. 9486. 9485.	228.8 227.5 227.0 225.3	57.053 57.053 <u>57.053</u> 57.053	.867 .867 .867. .867	-10.0 -10.9 -11.5 -12.0
41515.2 41515.7 41516.1 41517.0	5.5. 5.5. 5.5.	25.6 25.7 25.8 25.9	-90.1 -89.5 -89.7 -90.1	H H	.300 .300	-10.47 -9.32 -10.16	0.000	101000 101000 101000	9486. 9486. 9487.	223.3 221.5 221.0	57.053 57.053 57.053	.867 .867 .867	-12.4 -12.8 -13.1
41517.4 41517.9 41518.3	S.S. S.S.	25.9 25.9 25.9	-90.3 -90.4 -90.6	H H H H H H	.300 .300 .300	-7.78 -8.36 -10.11 -9.51	0.000 0.000 0.000	101000 101000 101000 101000	9486. 9484. 9483. 9482.	217.2 214.6 213.5 213.1	57.053 57.053 57.053 57.053	.866 .865 .865	-14.0 -14.4 -14.7 -14.9
41518.8 41519.2 41520.1 41520.5	S.S. S.S.	26.1 26.4 27.2 27.7	-90.6 -91.1 -91.0 -90.4	H H	.300 .300	-9.67 -8.80 -10.41	0.000 0.000 0.000	101000 101000 101000	9483. 9484. 9485.	211.4 209.5 206.8	57.052 57.050 57.048	.864 .864 .864	-15.5 -16.2 -16.9
41521.0 41521.4 41522.3	5.5. 5.5. 5.5.	28.3 28.8 29.4	-90.3 -90.2 -90.4	H H H H H H	.300 .300 .300	-9.55 -11.57 -10.23 -10.25	0.000 0.000 0.000	101000 101000 101000 101000	9485. 9485. 9485.	205.9 204.2 202.8 199.4	57.048 57.048 57.048 57.048	.864 .864 .865	-17.0 -17.3 -17.6 -18.0
41522.7 41523.2 <u>41523.6</u> 41524.1	5.5. 5.5. 5.5.	29.6 29.8 29.9 30.1	-90.3 -89.9 -89.8 -89.4	H H H H H H	.300 .300 .300	-10.79 -9.70 -10.32 -9.97	0.000 0.000 0.000	101000 101000 101000 101000	9486. 9486. 9486. 9486.	198.1 196.9 195.5 192.7	57.048 57.048 57.048 57.048	.865 .865 .865	-18.3 -18.8 -19.1
41524.5 41525.4 41525.8	\$.S. S.S.	30.3 30.5 36.5	-89.3 -89.3 -89.5	н н н н	.300 .300	-10.63 -10.73 -10.51	0.000 0.000 0.000	101000 101000 101000	9486. 9484. 9483.	190.5 189.2 186.8	57.047 57.047 57.046	.865 .865 .865 .865	-19.3 -19.5 -19.8 -19.8
41526.3 41526.7 41527.6 41528.5	2.2. 2.2. 2.2.	30.5 30.5 30.6 30.6	-89.7 -89.6 -90.5 -90.7	H H H H H H	.300 .300 .300	-11.42 -10.20 -10.20 -10.78	0.000 0.000 0.000	101000 101000 101000 101000	9481. 9479. 9476. 9474.	183.1 181.3 179.5 174.0	57.046 57.045 57.045 57.043	.865 .865 .865	-19.8 -19.8 -19.8 -19.5
41528.9 41529.4 41529.8 41530.7	5.5. 5.5. 5.5.	30.6 30.5 30.5 30.4	-90.5 -90.6 -90.7 -90.7	H H H H H H	.300 .300 .300	-11.04 -10.93 -10.09 -10.22	0.000 0.000 0.000 0.000	101000 101000 101000 101000	9474. 9474. 9476. 9480.	173.4 172.7 171.8 169.4	57.043 57.043 57.043 57.043	.865 .865 .866	-19.5 -19.5 -19.4 -19.3
41531.1 41531.6 41532.0	5.5. 5.5.	30.4 30.4 3C.4	-90.6 -91.1 -91.1	H H H H H H	.300 .300	-9.30 -9.43 -9.67	0.000	101000 101000 101000	9478. 9476. 9475.	167.7 165.7 164.6	57.043 57.043 57.043	.867 .867 .867	-19.2 -19.1 -19.0
41532.5 41532.9 41533.8	S.S. S.S.	30.4 30.4 36.4	-90.6 -96.7 -90.9	H H H H	.300 .300	-9.29 -9.48 -9.46	0.000	101000	9474. 9475.	163.2	57.043 57.042	.867	-18.8 -18.6
.91534.2 41534.7 41535.1	5.5. 5.5. 5.5.	30.5 30.5 30.6	-90.8 -90.8 -90.7	H H H H	.300 .300	-9.37 -8.92 -9.42	0.000 0.000 0.000	101000 101000 101000 101000	9477. 9477. 9478. 9479.	156.9 156.3 154.5 151.6	57.040 57.039 57.038 57.038	.867 .867 .867 .868	-18.1 - <u>17.9</u> -17.7 -17.4
41536.0 41536.4 41536.9 41537.3	5.5. 5.5. 5.5.	30.6 30.6 30.6 30.6	-90.8 -90.8 -90.8 -90.7	H H H H H H	.300 .300 .300	-10.00 -9.94 -8.57 -10.78	0.000 0.000 0.000	101000 101000 101000 101000	9479. 9479. 9479.	148.1 147.6 145.4 143.3	57.038 57.038 57.038 .57.037	.868 .869 .871 .872	-17.0 -16.9 -16.7 -16.5
41537.8 41538.2 41539.1 41539.5	5.5. 5.5. 5.5.	30.5 30.5 30.4 30.4	-90.6 -90.5 -90.9 -90.9	H H H H H H	.300 .300 .300	-10.37 -9.84 -10.16 -9.89	0.000 0.000 0.000	101000 101000 101000 101000	9478. 9477. 9476. 9476.	141.5 140.5 137.4 135.9	57.037 57.037 57.037 57.037	.873 .874 .875 .875	-16.4 -16.4 -15.9
41540.0 41540.4 41540.9 41541.3	5.5. 5.5. 5.5.	30.4 30.5 30.5 30.5	-90.5 -90.5 -90.6 -96.6	н н н н н н	.300 .300 .300	-9.83 -9.93 -10.52 -9.81	0.000 0.000 0.000	101000 101000 101000	9475. 9475. 9474.	133.7 132.0 130.4	57.036 57.036 57.036	.875 .876 .876	-15.6 -15.3 -15.1 -14.6
41542.2 41542.6 41543.1	5.5. 5.5. 5.5.	30.6 30.6 36.7	-90.6 -90.6 -90.6	H H H H H H	.300 .300	-9.91 -10.47 -9.66	0.000 0.000 0.000	101000 101000 101000 101000	9472. 9470. 9468. 9465.	129.3 124.7 122.8 122.1	57.035 57.035 57.035 57.035	.876 .877 .878 .878	-14.0 -13.5 -13.4 -13.2
41543.5 41544.4 41544.8 41545.3	5.5. 5.5. 5.5.	30.8 31.1 31.1 31.2	-90.6 -91.0 -91.0 -91.0	H H H H H H		-9.12 -10.02 -10.91 -10.62	0.000 0.000 0.000	101000 101000 101000 101000	9462. 9459. 9458. 9457.	121.5 115.1 114.0 113.2	57.035 57.035 57.035 57.035	.878 .882 .883 .883	-13.0 -12.0 -11.7 -11.5
41545.7 41546.2 41546.6 41547.5	5.5. 5.5. 5.5.	31.2 31.1 31.0 30.8	-90.6 -90.6 -90.7 -90.5	H H H H H H	.300 .300 .300	-10.99 -11.27 -11.10 -10.66	0.000 0.000 0.000	101000 101000 101000 101000	9456. 9454. 9452. 9450.	111.8 108.8 106.8 104.1	57.035 57.034 57.033 57.034	.884 .866 .867 .888	-11.1 -10.4 -9.9 -9.6
41547.9 41548.4 41548.8 41549.7	5.5. 5.5. 5.5.	30.7 30.6 36.6 30.7	-90.6 -90.3 -90.4 -91.1	н н н н н н	.300 .300 .300	-10.77 -11.34 -12.17 -12.16	0.000 0.000 0.000	101000 101000 101000 101000	9447. 9443. 9441. 9437.	102.4 100.1 98.3 94.5	57.034 57.035 57.035 57.035	.889 .890 .890 .892	-9.0 -8.2 -7.8 -7.1
41550.6 41551.0 41551.5 41551.9	5.5. 5.5. 5.5.	31.0 31.1 31.2 31.2	-91.4 -91.5 -91.7 -91.8	H H H H H H	.300 .300 .300	-11.31 -12.27 -10.80 -11.93	0.000 0.000 0.000	101000 101000 101000 101000	9438. 9435. 9432. 9431.	91.5 89.2 86.3	57.035 57.035 57.035 57.035	.894 .894 .896	-5.9 -5.5 -4.9
41552.8 41553.2 41553.7 41554.1	S.S. S.S. S.S.	31.1 31.0 30.9 30.8	-91.9 -92.0 -92.0 -92.1	H H H H H H	.300 .300	-11.69 -11.98 -10.91 -11.54	0.000 0.000 0.000	101000 101000 101000 101000	9429. 9428. 9428. 9430.	82.5 79.5 77.2 76.9	57.035 57.035 57.035 57.035	.998 .999 .900	-4.5 -3.5 -3.0 -2.5 -2.3
KEY TO CO	DDE S -		0 NO F				100	O POLAR F	EVERSAL			-	
				IBLY DUT IDE DYNA SSIVE DO	MIC RANG		1000	O REC TER	IVE. DEPO IP ABNOR	MAL	OMĢINATIONS	OF FLAGS CAR	OCCUR.

Figure 2.- Typical output listing of archived data. (Last four elements of table II not listed because they are redundant.)

1. Report No.	2. Government Acces	sion No.	3. Rec	ipient's Catalog No.			
NASA TM-84608							
4. Title and Subtitle ARCHIVAL OF AIRCRAFT SCAT	TEROMETER DATA FR	OM	1 '	ort Date rust 1983			
AAFE RADSCAT MISSIONS			- 1	orming Organization Code -40-05-05			
7. Author(s) Lyle C. Schroeder and Joh	n L. Mitchell		1	orming Organization Report No. 5590			
Performing Organization Name and Address	ess		10. Wor	k Unit No.			
NASA Langley Research Cen Hampton, VA 23665	ter		11. Con	tract or Grant No.			
			13. Typ	e of Report and Period Covered			
12. Sponsoring Agency Name and Address		Technical Memorandum					
National Aeronautics and Washington, DC 20546	Space Administrat	ion	14. Spo	nsoring Agency Code			
15. Supplementary Notes							
Lyle C. Schroeder: Langl John L. Mitchell: Kentro	ey Research Cente n International,	r, Hampto Inc., Han	on, Virginia. Mpton, Virgini	a.			
16. Abstract							
This report documents air Radiometer-Scatterometer Center. The normalized r 13.9 GHz for a variety of All such valid RADSCAT oc obtained are included, ex RADSCAT's lifetime (1977-underflights were with a terometer (AMSCAT), but a card image computer tapes National Technical Inform	(RADSCAT) instrum adar cross section ocean surface with ean scatterometer cept for ice rese 1978). Aircraft second Langley in renot reported hand on microfich	ent devel n (NRCS) nd condit data for arch miss scatteror strument, erein.	loped at NASA data have bee cions, which a which surfactions during the ter data obto the RADSCAT da	Langley Research n obtained at re also presented. e truth has been he last year of ained for the SeaSat Microwave Scat- ta are archived on			
17 Kov Words (Conserved by A. a.)	····		 	···			
 Key Words (Suggested by Author(s)) k₁, band 			ion Statement	.];;			
k _u band Scatterometer		Unc	:lassified - U	lTIMITED			
Ocean wind vector							
Radar cross section			C -	shingt Catarray 10			
10. 6		 ,		ubject Category 48			
19. Security Classif. (of this report)	20. Security Classif. (of this	page)	21. No. of Pages	22. Price			
Unclassified	Unclassified		24	A02			

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return