

Universidad Nacional de La Matanza

Catedra de Base de Datos

Clase Teórica de Algebra Relacional Lunes 05/10/2020

Es un conjunto de operaciones que permiten manipular relaciones (futuras tablas).

Estas operaciones permiten obtener tuplas determinadas y combinar tuplas de distintas relaciones.

El resultado de aplicar estas operaciones es <u>siempre</u> <u>otra relación</u>.

Es un lenguaje de consultas <u>púramente teórico</u> y no se utiliza en la práctica (a diferencia del SQL).

En la clase de hoy vamos a ver las siguientes operaciones:

- Selección
- Proyección
- Unión
- Intersección
- Diferencia
- Producto Cartesiano
- Junta Theta y Junta Natural
- Cociente

SELECCIÓN

Esta operación permite seleccionar un subconjunto de tuplas de una relación que cumplen una determinada condición

Realiza un corte horizontal de la relación.

SELECCIÓN

Forma General

o <condición> (<Nombre de la relación>)

Múltiples condiciones se pueden combinar con AND (Λ), con OR (ν) y con NOT

SELECCIÓN

Forma General

o <condición> (<Nombre de la relación>)

Resultado:

Da como resultado una relación con los mismos atributos que la relación original (el mismo Grado), pero con menor o igual cantidad de tuplas (menor o igual Cardinalidad).

SELECCIÓN

Supongamos que tenemos la siguiente relación:

EMPLEADO(<u>legajo</u>, nya, ciudad, <u>cod_depto</u>, salario, <u>legajo_supervisor</u>)

Ejemplo1: Listar los empleados de la ciudad de San Justo

o ciudad='San Justo' (Empleado)

SELECCIÓN

Supongamos que tenemos la siguiente relación:

EMPLEADO(<u>legajo</u>, nya, ciudad, <u>cod_depto</u>, salario, <u>legajo_supervisor</u>)

Ejemplo2: Listar los empleados que tengan salario mayor a 40000 y que además sean de Haedo o Morón

σ salario>40000 Λ (ciudad='Haedo' v ciudad='Morón') (Empleado)

SELECCIÓN

Es una operación unaria, porque se aplica a una sola relación.

Es conmutativa

$$\mathbf{\sigma}$$
 ($\mathbf{\sigma}$ (R)) = $\mathbf{\sigma}$ ($\mathbf{\sigma}$ (R))

SELECCIÓN

Cascada

Las selecciones en cascada (anidadas) se pueden expresar como una única condición combinada con AND

$$\sigma$$
 (σ (R)) = σ Λ (R)

PROYECCIÓN

Esta operación selecciona ciertos atributos de una relación y descarta los otros.

Realiza un corte vertical de la relación.

PROYECCIÓN

Forma General

T < lista de atributos > (< Nombre de la relación >)

PROYECCIÓN

Forma General

T < lista de atributos > (< Nombre de la relación >)

Resultado:

Da como resultado una relación con un Grado igual a la cantidad de atributos de la lista y con una Cardinalidad igual o menor a la relación original, según si los valores resultantes se repiten o no (las tuplas repetidas se eliminan)

PROYECCIÓN

Supongamos que tenemos la siguiente relación:

EMPLEADO(<u>legajo</u>, nya, ciudad, <u>cod_depto</u>, salario, <u>legajo_supervisor</u>)

Ejemplo: Listar el Nombre y Apellido y el Salario de todos los empleados

T nya, salario (Empleado)

PROYECCIÓN

Es una operación unaria, porque se aplica a una sola relación.

No es conmutativa

$$\pi$$
 < lista 2 > (π < lista 1 > (R)) = π < lista 2 > (R)

Esto funciona siempre y cuando la lista1 incluya a todos los atributos de la lista2 (sino da error)

Relaciones Intermedias y Renombre de atributos

Operaciones anidadas:

Otra forma de hacer esto mismo es utilizando Relaciones intermedias:

Relaciones Intermedias y Renombre de atributos

Es posible Renombrar los atributos de las relaciones resultantes:

Emp (nombre_completo, sueldo)
T nya, salario (Emp40000)

UNION

R U S

Resultado:

Da como resultado una relación con las tuplas que están en R, en S o en ambas.

Descarta las tuplas duplicadas (si una tupla está en ambas relaciones, solo aparece una vez en el resultado)

UNION

EMPLEADO(<u>legajo</u>, nya, ciudad, <u>cod_depto</u>, salario, <u>legajo_supervisor</u>)

Ejemplo: Listar los legajos de los empleados de Haedo junto con los legajos de los Supervisores de los empleados de Morón.

EmpHaedo $\leftarrow \pi$ legajo (σ ciudad='Haedo' (Empleado))

SupMoron $\leftarrow \pi$ legajo_supervisor (σ ciudad='Moron' (Empleado))

EmpHaedo **U** SupMoron

UNION

EmpHaedo ← **π** legajo (**σ** ciudad='Haedo' (Empleado))

SupMoron $\leftarrow \pi$ legajo_supervisor (σ ciudad='Moron' (Empleado))

EmpHaedo **U** SupMoron

El resultado queda con el nombre de los atributos de la primer relación (en este caso: legajo)

UNION

IMPORTANTE:

Para poder hacer la Unión, las relaciones deben ser <u>compatibles</u>, es decir, deben tener igual <u>Grado</u> (misma cantidad de atributos) y además los atributos deben tener igual <u>Dominio</u>:

$$R(a_1, a_2, ..., a_n)$$
 y $S(b_1, b_2, ..., b_n)$
Dom (a_i) = Dom (b_i)

Resultado:

Da como resultado una relación con las tuplas que están tanto en R como en S (en ambas).

Al igual que en la Unión, las relaciones deben ser compatibles.

INTERSECCIÓN

EMPLEADO(<u>legajo</u>, nya, ciudad, <u>cod_depto</u>, salario, <u>legajo_supervisor</u>)

Ejemplo: Listar los códigos de departamento donde trabajan empleados de Haedo y Morón (de ambas ciudades).

DepH ← π cod_depto (σ ciudad='Haedo' (Empleado))

DepM $\leftarrow \pi$ cod_depto (σ ciudad='Morón' (Empleado))

DepH ∩ DepM

Resultado:

Da como resultado una relación con las tuplas que están en R pero no están en S.

Al igual que en la Unión, las relaciones deben ser compatibles.

DIFERENCIA

EMPLEADO(<u>legajo</u>, nya, ciudad, <u>cod_depto</u>, salario, <u>legajo_supervisor</u>)

Ejemplo: Listar los códigos de departamento que no tengan ningún empleado que cobre mas de 80000 pesos.

DepNO $\leftarrow \pi$ cod_depto (σ salario>80000 (Empleado))

T cod_depto (Empleado) − DepNo

La Unión, la Intersección y la Diferencia son operaciones **binarias** ya que se aplican a dos relaciones.

La Unión y la Intersección son conmutativas y asociativas.

$$(RUS)UT = RU(SUT)$$

La Diferencia no es conmutativa ni asociativa.

PRODUCTO CARTESIANO

RXS

Resultado:

Combina las tuplas de ambas relaciones y como resultado se genera una relación con todas las combinaciones de tuplas (todos contra todos).

PRODUCTO CARTESIANO

Ejemplo:

R

Α	В
1	100
2	120
3	100

S

С	D	E
V	4	23
f	5	18

RXS

Α	В	С	D	E
1	100	V	4	23
1	100	f	5	18
2	120	V	4	23
2	120	f	5	18
3	100	V	4	23
3	100	f	5	18

PRODUCTO CARTESIANO

Ejemplo:

R

Α	В
1	100
2	120
3	100

S

С	В	Ш
V	4	23
f	5	18

RXS

A	В	С	B′ ▼	ш/
1	100	V	4	23
1	100	f	5	18
2	120	V	4	23
2	120	f	5	18
3	100	V	4	23
3	100	f	5	18

B prima

PRODUCTO CARTESIANO

El resultado tendrá TODOS los atributos, por mas que tengan el mismo nombre (de ser necesario se le agrega una comilla o apóstrofo).

Grado de RXS = Grado de R + Grado de S

Cardinalidad de RXS = Cardinalidad de R * Cardinalidad de S

No es necesario que las relaciones sean compatibles.

Es una operación binaria.

JUNTAS

La Junta permite combinar tuplas relacionadas de dos relaciones en una única tupla.

JUNTA THETA

Da como resultado aquellas combinaciones que cumplen la condición de junta.

Letra griega Theta, representa la Condición de Junta.

<Atributo de R> <Operador de comparación><Atributo de S>

Se pueden combinar condiciones con AND (A), con OR (V) y con NOT

JUNTA THETA

Ejemplo:

Emp (<u>id</u>, nombre, <u>cod_dep</u>)

Dep (cod, descripcion)

Hacemos la Junta Theta de ambas relaciones a través del código de departamento:

Emp |X| Dep cod_dep=cod

Condición de Junta

JUNTA THETA

Ejemplo:

Emp

	id	nombre	cod_dep	Dep	cod	descripcion
	1	Jorge	10 -	·	- 10	Ventas
ĺ	2	Pablo	11 -		- 11	Sistemas
	3	Juan			12	Compras
Ī	4	Laura	10			Desconocido

Emp|X|Dep cod_dep=cod

JUNTA THETA

Ejemplo:

Emp

id	nombre	cod_dep
1	Jorge	10
2	Pablo	11
3	Juan	
4	Laura	10

Dep

cod	descripcion	
10	Ventas	
11	Sistemas	
12	Compras	
	Desconocido	

Emp|X|Dep cod_dep=cod

id	nombre	cod_dep	cod	descripcion
1	Jorge	10	10	Ventas
2	Pablo	11	11	Sistemas
4	Laura	10	10	Ventas

JUNTA THETA

Nadie trabaja en el depto 12, se pierde al hacer la junta

Ejemplo:

Emp

id	nombre	cod_dep
1	Jorge	10
2	Pablo	11
3	Juan	*
4	Laura	10

Dep

cod	descripcion
10	Ventas
11	Sistemas
12	Compras
7	Desconocido

Valores nulos (no cumplen la igualdad)

Emp|X|Dep cod_dep=cod

id	nombre	cod_dep	cod	descripcion
1	Jorge	10	10	Ventas
2	Pablo	11	11	Sistemas
4	Laura	10	10	Ventas

JUNTA THETA

- Las tuplas cuyos valores sean nulos en los atributos de junta, no cumplirán la condición de junta y por lo tanto no aparecerán en el resultado
- Grado de la Junta Theta = Grado de R + Grado de S

JUNTA NATURAL

R |X| S

Es una Junta automática, en la que se igualan aquellos atributos que tienen en común (atributos con igual nombre).

- Elimina los atributos repetidos y solo deja uno de cada uno de ellos.
- La condición es siempre de igualdad (no hay >, <, etc.)
- Si las relaciones no tienen atributos en común, se comporta como un Producto Cartesiano.
- Si hay atributos en común pero no tienen valores iguales, entonces devuelve una relación vacía.

JUNTA NATURAL

Ejemplo:

R	А	В
	1	100
	2	120

В	С	D
50	4	6
100	5	8
100	9	3

JUNTA NATURAL

Ejemplo:

R

Α	В
1	100
2	120

S

В	С	D
50	4	6
100	5	8
100	9	3

R|X|S

А	В	С	D
1	100	5	8
1	100	9	3

Operaciones Básicas y Derivadas

Operaciones de AR

Básicas: es un <u>conjunto completo</u> porque en base a estas operaciones se pueden obtener las otras. Selección, Proyección, Unión, Diferencia y Producto Cartesiano.

Derivadas: Intersección, Junta Theta, Junta Natural y Cociente

Intersección con Operadores Básicos

$$R \cap S = R - (R - S)$$

Junta Theta con Operadores Básicos

$$R |X| S = \sigma_{\theta} (RXS)$$

Producto Cartesiano seguido de una Selección

Junta Natural con Operadores Básicos

$$R \mid X \mid S = \pi$$
 ($\sigma_{\text{condición con}} (R \mid X \mid S)$)

Producto Cartesiano seguido de una Selección, seguido de una Proyección

COCIENTE / DIVISION

$$R \% S = T$$

Donde:

R (a, b) Llamamos X al conjunto de todos los atributos de R S (b) Llamamos Y al conjunto de todos los atributos de S T (a)

Esta operación da como resultado los valores del atributo "a" de R que están relacionados con <u>TODOS</u> los valores del atributo "b" de S.

COCIENTE / DIVISION

$$R \% S = T$$

Se cumple que:

- 1) Y C X (Y está contenido en X)
- 2) R % S = T donde T (X-Y)
- 3) Cada tupla de T combinada con cada tupla de S debe existir en R, es decir:

COCIENTE / DIVISION

Formula del Cociente con Operadores Básicos

$$R \% S = \pi_a(R) - \pi_a((\pi_a(R) \times S) - R)$$

COCIENTE / DIVISION

Ejemplo:

Listar los Médicos que trabajan en TODOS los Hospitales.

Trabaja_en (cod_med, cod_hosp)
Hospital (cod_hosp)

COCIENTE / DIVISION

Trabaja_en

cod_med	cod_hosp
101	А
101	С
102	В
103	А
103	В
104	А
103	С
102	С
102	А

Hospital

cod_hosp
Α
В
С

¿Cuáles Médicos trabajan en TODOS los Hospitales?

COCIENTE / DIVISION

Trabaja_en

cod_med	cod_hosp
101	А
101	С
102	В
103	А
103	В
104	А
103	С
102	С
102	А

Hospital

cod_hosp
А
В
С

¿Cuáles Médicos trabajan en TODOS los Hospitales? Respuesta: Los médicos 102 y 103

COCIENTE / DIVISION

Trabaja_en

cod_med	cod_hosp
101	А
101	С
102	В
103	А
103	В
104	А
103	С
102	С
102	А

Hospital

cod_hosp
Α
В
С

Trabaja_en % Hospital

cod_med	
102	
103	

COCIENTE / DIVISION

Con Operadores Básicos:

 π cod_med(Trabaja_en) - π cod_med ((π cod_med(Trabaja_en) X Hospital) - Trabaja_en)

COCIENTE / DIVISION

Con Operadores Básicos:

Médicos que trabajan en TODOS los Hospitales