Introduction to the basics of Al

Session 4

F. TAIA-ALAOUI

Outline

Definitions

T-est

ANOVA Test

Implementation

Statistical Tools - Dataset

IRIS DATASET

Sample

$$X_{k \in [1,N]} \in R^p$$

Set of samples

$$\mathbf{X} = \{X_k \in \mathbb{R}^p\}_{k \in [1, N]}$$

		<i>p</i> varial	oles					
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width				
1	5.1	3.5	1.4	0.2				
2	4.9	3.0	1.4	0.2				
3	Row = Sample - Observation = Measurement							
4	4.6	3.1	1.5	0.2				
5	5.0	3.6	1.4	0.2				
6	5.4	3.9	1.7	0.4				
7	4.6	3.4	1.4	0.3				
8	5.0	3.4	1.5	0.2				

Statistical Tools - Dataset

Set of N samples expressed in a space of p Variables

Statistical Tools - Variance

Three sets of normally distributed bivariate random samples with variance
$$(1, 1)$$
, $(10, 10)$ and $(30, 30)$

$$\overline{V}_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

$$Var(V_{j}) = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

$$Variance 1$$

$$Variance 10$$

$$Variance 30$$

$$Variance 30$$

Statistical Tools - Co-Variance

$$Cov(V_i, V_j) = \frac{1}{N-1} \sum_{k=1}^{N} (x_{ki} - \overline{V}_i)(x_{kj} - \overline{V}_j)$$

A T-test is used to infer whether two sets of data come from the same

distribution.

 The t-test consists in assessing whether the distance between means of two groups is significant regarding their respective variances.

 A high t-value indicates high significance, meaning the two samples come from different distributions.

- Calculating a t-test requires three elements:
 - the mean values of the two groups, or the mean difference,
 - the standard deviation of each group,
 - o and the number of data samples in each group.

Results: A value of t (degrees of freedom = n1 + n2 - 2)

 Interpretation of a t-value is realized using the t-table based on the values of t and df.

Equal-Variance Samples/ Pooled T-Test (eq. N° of samples)

$$ext{T-value} = rac{mean1-mean2}{rac{(n1-1) imes var1^2+(n2-1) imes var2^2}{n1+n2-2} imes \sqrt{rac{1}{n1}+rac{1}{n2}}}$$

Welch's t-test (unequal sample size / variances)

$$ext{T-value} = rac{mean1-mean2}{\sqrt{\left(rac{var1}{n1}+rac{var2}{n2}
ight)}}$$

T-distribution vs Normal Distribution

T-test

$$f(t) = rac{\Gamma\left(rac{
u+1}{2}
ight)}{\sqrt{\pi\,
u}\,\,\Gamma\left(rac{
u}{2}
ight)} igg(1+rac{t^2}{
u}igg)^{-(
u+1)/2} \ \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}\,\,\mathrm{d}t, \qquad \mathfrak{R}(z) > 0$$

t Table											
cum. prob	t.50	t.75	t.80	t.85	t.90	t.95	t.975	t.99	t.995	t.999	t,9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.000
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	(2.145)	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29 30	0.000	0.683 0.683	0.854 0.854	1.055 1.055	1.311	1.699 1.697	2.045 2.042	2.462 2.457	2.756 2.750	3.396 3.385	3.659
40	0.000	0.683	0.854	1.055	1.310	1.684	2.042	2.457	2.750	3.385	3.646 3.551
60	0.000	0.679	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.232	3.460
80	0.000	0.679	0.848	1.045	1.290	1.664	1.990	2.390	2.639	3.195	3.416
100	0.000	0.677	0.845	1.043	1.292	1.660	1.984	2.364	2.639	3.195	3.416
1000	0.000	0.675	0.842	1.042	1.282	1.646	1.962	2.330	2.581	3.098	3.300
	100 (0.00)										200000000000000000000000000000000000000
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
-	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
	Confidence Level										

T-test

A p-value less than 0.05 is typically considered to be statistically significant, in which case the null hypothesis should be rejected

ANOVA extends the use of the t-test to k>=2 groups

• H0 (Null hypothesis): $\mu 1 = \mu 2 = \mu 3 = ... = \mu k$

 H1 (Alternate hypothesis): It states that there will be at least one population mean that differs from the rest

 Factor: A variable under consideration that influences an observation (example: The type of flower in regards to sepal length)

 Level: A value for this factor (example: 0,1,2 for the type of flower in IRIS dataset)

• Assumptions:

Normality for each factor level

Equal Variances inside each level

 Variables are drawn independently and randomly from each factor level

Number of samples (or levels) = k

Number of observations in *i*th sample = n_i , i = 1, 2, ..., k

Total number of observations $= n = \sum_{i} n_{i}$

Observation j in ith sample $= x_{ij}, j = 1, 2, ..., n_i$

Sum of n_i observations in *i*th sample $= T_i = \sum_j x_{ij}$

Sum of all *n* observations $= T = \sum_{i} T_{i} = \sum_{i} \sum_{j} x_{ij}$

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ x_{NI} & \vdots & \vdots & \ddots & x_{Np} \end{pmatrix}$$

Observation *j* in *i*th sample

$$= x_{ij}, j = 1, 2, ..., n_i$$

Sum of n_i observations in *i*th sample

$$=T_i=\sum_j x_{ij}$$

Sum of all *n* observations

$$= T = \sum_{i} T_{i} = \sum_{i} \sum_{j} x_{ij}$$

Total sum of squares,

$$SS_T = \sum_{i} \sum_{j} x_{ij}^2 - \frac{T^2}{n}$$

Between samples sum of squares,

$$SS_B = \sum_{i} \frac{T_i^2}{n_i} - \frac{T^2}{n}$$

Within samples sum of squares,

$$SS_W = SS_T - SS_B$$

$$= x_{ij}, \quad j = 1, 2, ..., n_{i}$$

$$= T_{i} = \sum_{j} x_{ij}$$

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & ... & x_{1p} \\ x_{21} & x_{22} & ... & ... \\ ... & ... & ... \\ x_{NI} & ... & ... & x_{Np} \end{pmatrix}$$

Total Sum of Squares (SST): The SST is the sum of all squared differences between the mean of a sample and the individual values in that sample

Total sum of squares,
$$SS_T = \sum_{i} \sum_{j} x_{ij}^2 - \frac{T^2}{n}$$

Between samples sum of squares,
$$SS_B = \sum_{i} \frac{T_i^2}{n_i} - \frac{T^2}{n}$$

Within samples sum of squares,
$$SS_W = SS_T - SS_B$$

Total mean square,
$$MS_T = \frac{SS_T}{n-1}$$

Between samples mean square,
$$MS_B = \frac{SS_B}{k-1}$$

Within samples mean square,
$$MS_W = \frac{SS_W}{n-k}$$

Source of variation	Sum of squares	Degrees of freedom	Mean square	F ratio	
Between samples	SS_B	k-1	MS_B	$\frac{MS_B}{MS_W}$	
Within samples	SS_W	n-k	MS_W		
Total	SS_{τ}	n-1			

Fisher Test - Critical Value

F - Distribution (α = 0.01 in the Right Tail)

		r .	Numerator Degrees of Freedom							
	$df_2 d$	r լ լ	2	3	4	5	6	7	8	9
	1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5
	2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388
	3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345
	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659
	5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158
	6	13.745	10.925	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.97
	7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.71
	8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.910
-	9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.35
ot Freedom	10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5,0567	4.94
g	11	9.6460	7.2057	6.2167	5.6683	5.3160	5,0692	4.8861	4.7445	4.63
ē	12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.38
E	13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.19
	14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.02
Denominator Degrees	15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.89
9	16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.78
g	17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.68
دَ	18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.59
ò	19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.52
ŧ	20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3,45
≘	21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.39
5	22	7.9454	5.7190	4.8166	4.3134	3.9880	3.7583	3.5867	3.4530	3.34
Ĕ	23	7.8811	5.6637	4.7649	4.2636	3.9392	3.7102	3.5390	3.4057	3.29
മ്	24	7.8229	5.6136	4,7181	4.2184	3.8951	3.6667	3.4959	3.3629	3.25
	25	7.7698	5.5680	4.6755	4.1774	3.8550	3.6272	3.4568	3.3239	3.21
	26	7.7213	5.5263	4.6366	4.1400	3.8183	3.5911	3.4210	3.2884	3.18
	27	7.6767	5.4881	4.6009	4.1056	3.7848	3.5580	3.3882	3.2558	3.14
	28	7.6356	5.4529	4.5681	4.0740	3.7539	3.5276	3.3581	3.2259	3.11
	29	7.5977	5.4204	4.5378	4.0449	3.7254	3.4995	3.3303	3.1982	3.09
	30	7.5625	5.3903	4.5097	4.0179	3.6990	3,4735	3.3045	3.1726	3.06
	40	7.3141	5.1785	4.3126	3.8283	3.5138	3.2910	3.1238	2.9930	2.88
	60	7.0771	4.9774	4.1259	3.6490	3.3389	3.1187	2.9530	2.8233	2.71
	120	6.8509	4.7865	3.9491	3.4795	3.1735	2.9559	2.7918	2.6629	2.55
	œ	6.6349	4.6052	3.7816	3.3192	3.0173	2.8020	2.6393	2.5113	2.40

Sources

https://en.wikipedia.org/wiki/Gamma function

https://en.wikipedia.org/wiki/Student%27s t-distribution

https://www.investopedia.com/terms/t/t-test.asp#:~:text=A%20t%2Dtest%20is%20an.flipping%20a%20coin%20100%20times

https://dmn92m25mtw4z.cloudfront.net/img_set/stat-6-6-x-6-article/v1/stat-6-6-x-6-article-1253w.png

https://www.kaggle.com/code/bhagyashree12/anova-test-on-iris-dataset

https://www.automacaodedados.com.br/en/stories/estatistica-em-testes-para-nao-matematicos-parte-5/images/thumbnail.jpg7

https://arxiv.org/html/2404.13664v1/extracted/5549913/TrueClusterPlot.png

https://analystprep.com/cfa-level-1-exam/quantitative-methods/t-distribution-and-degrees-of-freedom/

https://en.wikipedia.org/wiki/F-test

https://www.cimt.org.uk/projects/mepres/alevel/fstats_ch7.pdf