EE 222 – Homework 4

(Due November 8, 2011, 12:45pm)

- 1. Write a function GaussJordan that will solve the given system of equations using the Gauss-Jordan Method. (50)
- 2. Write a function GaussSiedel that will solve the given system of equations iteratively, using the Gauss-Siedel Method. The algorithm is attached below. (50)

ALGORITHM GAUSS-SEIDEL (A, b, $\mathbf{x}^{(0)}$, ϵ , N)

This algorithm computes a solution \mathbf{x} of the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ given an initial approximation $\mathbf{x}^{(0)}$, where $\mathbf{A} = [a_{jk}]$ is an $n \times n$ matrix with $a_{jj} \neq 0, j = 1, \cdots, n$.

INPUT: A, b, initial approximation $\mathbf{x}^{(0)}$, tolerance $\epsilon > 0$, maximum number of iterations N

OUTPUT: Approximate solution $\mathbf{x}^{(m)} = [x_j^{(m)}]$ or failure message that $\mathbf{x}^{(N)}$ does not satisfy the tolerance condition

For
$$m = 0, \dots, N-1$$
, do:

For $j = 1, \dots, n$, do:

$$x_j^{(m+1)} = \frac{1}{a_{jj}} \left(b_j - \sum_{k=1}^{j-1} a_{jk} x_k^{(m+1)} - \sum_{k=j+1}^n a_{jk} x_k^{(m)} \right)$$
End

If $\max_j |x_j^{(m+1)} - x_j^{(m)}| < \epsilon |x_j^{(m+1)}|$ then OUTPUT $\mathbf{x}^{(m+1)}$. Stop

[Procedure completed successfully]

End

OUTPUT: "No solution satisfying the tolerance condition obtained after N iteration steps." Stop

[Procedure completed unsuccessfully]

End GAUSS-SEIDEL

EXTRA CREDIT

3. Write a function **determinant** to find the determinant of an n×n matrix using recursion. (10)