UML slovníček

Diagram aktivit

- K zachycení business procesů (AS-IS a variant TO-BE) v rámci hledání business řešení
- Grafický záznam procesů je rychleji pochopitelný než textový popis
- Vizualizuje procesy
- Každý proces může být složen z dílčích sub-procesů

Typy uzlů:

Diagram tříd

- Evidence business entit
 - o Definice entit se kterými řešení bude pracovat
 - o Definice atributů entit
- Evidence vztahů business entit
- Pojmenování podstatnými jmény
- Nepoužívat zkratky

UML notace třídy:

Název třídy

atribut1: typ atributu atribut2: typ atributu atribut3: typ atributu atribut4: typ atributu

Osoba

jméno: text příjmení: text

datum narození: datum

věk: číslo email: email

Vazby tříd:

Význam násobnosti: minimummaximum		
01	nula nebo 1	
1	právě 1	
0*	nula či více	
*	nula či více	
1*	1 či více	
16	1 až 6	

Diagram stavů

- Slouží k modelování životního cyklu entit
- Základní artefakty digramu:
 - Začátek
 - Konec (nemusí mít vždy)
 - Stavy (podstav, nadstav)
 - Přechody

Typy uzlů:

Příklad diagramu:

Diagram případů užití

- Vyjadřuje, kdo bude jakým způsobem používat systém = uživatele systému a jejich práva
- Modelování případů užití, je způsob zachycení pouze funkčních požadavků.
- Případ užití popisuje jednu systémem podporovanou aktivitu obvykle jednoho účastníka v jednu chvíli.
- Pojmenovává funkce systému z pohledu účastníků. Tedy název odpovídána na otázku: "Co SYSTÉM umožňuje uživateli?"
- Název aktivity / use case má vždy slovesnou vazbu! (Zadat objednávku, Zjistit stav objednávky)
- Každý případ užití popisuje pouze jednu ze základních aktivit v systému (Vytvořit, zobrazit, upravit nebo smazat.)

Příklad diagramu

Sekvenční diagram

- kladou důraz na časové hledisko
- ukazují:
 - o kdo (instance tříd) se podílí na realizaci
 - o jaké zprávy a s jakými parametry si objekty vyměňují
 - o v jakém pořadí

Zprávy mezi instancemi

sender receiver/	typ	sémantika
	synchronní	odesílatel čeká na odpověď
	asynchronní	odesílatel nečeká na odpověď
<	návrat	returning from a synchronous operation call návrat ze synchronního volání
A:	konstrukce	odesílatel vyváří cíl
<u> </u>	destrukce	odesílatel destruuje cíl

Syntaxe

Kombinované fragmenty

- Operator říká jak (režim) budou operandy spouštěny
- Guard condition podmínka spuštění dané ho operandu/ů

Operátory

operator	long name	sémantika
opt	Option	ifthen
alt	Alternatives	switchcase
Іоор	Loop	loop min, max [podmínka] Iteruje minimálně <i>min times,</i> pokračuje do <i>max times</i> dokud podmínka splněna
break	Break	zbytek je přeskočen
ref	Reference	odkaz na jinou interakci= volání procedury

Větvení pomocí opt a alt

Iterace s loop

Diagram nasazení

- Popisuje:
 - HW architekturu systému
 - o Nasazení SW a HW
- Základním elementem je uzel / Node
- Základní vazbou je asociace / Association

Syntaxe

Příklad diagramu nasazení HW

Správně dle UML, ale pro neznalce UML hůře pochopitelné.

Diagram nasazení SW na HW

- Grafický instalační manuál
- Umístění jednotlivých SW částí a popis jejich vztahů

Diagram komponent

- popisuje logickou architekturu systému (tedy rozdělení systému na subsystémy/moduly)
- základním elementem je KOMPONENTA
- chování KOMPONENTY je definováno:
 - POSKYTOVANÝMI ROZHRANÍMI
 - POŽADOVANÝMIROZHRANÍMI
- Komponenta:
 - o zastupuje část modulárního systému
 - o ukrývá (zapouzdřuje) svůj obsah a její chování může být nahrazeno jinou komponentou se stejným chováním
 - o KOMPONENTA je "černá skříňka"
 - je speciálním případem TŘÍDY
 - může obsahovat další komponenty
- DIAGRAM KOMPONENT tedy může popisovat logickou architekturu systému

Syntaxe

Příklad diagramu

