

SPARQA: Skeleton-based Semantic Parsing for Complex Questions over Knowledge Bases

Yawei Sun, Lingling Zhang, Gong Cheng, Yuzhong Qu National Key Laboratory for Novel Software Technology, Nanjing University

Outline

- Background
- Our approach
 - Overview
 - Skeleton Parsing
 - Multi-Strategy Scoring
- Experiment
- Conclusion

Question Answering over Knowledge Base (KBQA)

Question: Who is the wife of Barack Obama?

Knowledge Base

KBQA Classification

- Simple KBQA
 - Single Predicate
- Complex KBQA
 - Multiple Predicates or Aggregation

Example: What movie that Miley Cyrus acted in had a director named Tom Vaughan?

Complex KBQA – Challenge 1

Syntactic Parsing Error

Incorrect relation between "in" and "had"

Miss long-distance dependency relation between "movie" and "had"

Complex KBQA – Challenge 2

Structural Heterogeneity

Our approach

Challenges	Our solutions
Syntactic Parsing Error	Skeleton Parsing
Structural Heterogeneity	Multi-Strategy Scoring

Overview

Example

What movie that Miley Cyrus acted in had a director named Tom Vaughan?

(1) Question

(2) Skeleton

(3) Ungrounded Query

So Undercover

(6) Answer

Skeleton Parsing

- Skeleton
 - Span: minimum semantic unit (S, NP, VP, PP)
 - Attachment relation: seven dependency relations (acl, acl:relcl, nmod, nmod:poss, conj, xcomp, advcl)

What movie had a director ? [S] acl:relcl acl

that Miley Cyrus acted in [S] | named Tom Vaughan [VP] |

Parsing example – What movie that Miley Cyrus acted in had a director named Tom Vaughan? Step 1 What movie that Miley Cyrus acted in had a <u>director</u>? acl named Tom Vaughan Step 2 What movie had a director? acl:relcl acl that Miley Cyrus acted in named Tom Vaughan

Multi-Strategy Scoring – Sentence-level Scorer

Multi-Strategy Scoring – Word-level Scorer

Experiment – Dataset, Baseline and Metric

Dataset	GraphQuestions	ComplexWebQuestions
Baseline	SEMPRE PARASEMPRE JACANA UDEPLAMBDA SCANNER PARA4QA	MHQA-GRN SIMPQA + PRETRAINED SPLITQA + PRETRAINED SPLITQA + data augment PullNet
Metric	F1	Precision@1(P@1)

Experiment – Result

■ GraphQuestions

Method	F1
SEMPRE	10.80
PARASEMPRE	12.79
JACANA	5.08
UDEPLAMBDA	17.70
SCANNER	17.02
PARA4QA	20.40
SPARQA	<u>21.53</u>

Experiment – Result

ComplexWebQuestions

Method	P@1
MHQA-GRN	30.10
SIMPQA + PRETRAINED	19.90
SPLITQA + PRETRAINED	25.90
SPLITQA + data augmentation	<u>34.20</u>
PullNet	<u>45.90</u>
SPARQA	<u>31.48</u>

Experiment – Ablation Study

ComplexWebQuestions

Method	P@1
SPARQA	31.48
SPARQA w/o skeleton parsing	29.39
SPARQA w/o sentence-level scorer	26.45
SPARQA w/o word-level scorer	26.11

Experiment – Simple KBQA

■ 1,172 simple questions

Method	F1
PARA4QA	27.42
SPARQA	27.68

Experiment – Skeleton Evaluation

■ 1,000 complex questions

Overall Skeleton	93.73(LAS)
Split	99.42(ACC)
TextSpanPrediction	97.17(ACC)
HeadwordIdentification	97.22(ACC)
AttachmentRelationClassification	99.14(ACC)

Experiment – Error Analysis

Node Recognition and Linking

Who have a concert tour named Rihanna: Live in Concert Tour ?

Skeleton Parsing

What <u>country</u> speaks Germanic languages <u>with a capital called Brussels</u>?

Structural Heterogeneity

• Who is the <u>prime minister</u> of the country that has national anthem March Forward, Dear Mother Ethiopia?

Candidate Queries Scoring

Conclusion

- SPARQA
 - Skeleton Parsing
 - Multi-Strategy Scoring
- Future Work
 - Node Recognition and Linking
 - Structural Heterogeneity
 - Aggregation Question

Appendix - Skeleton Parsing

```
Algorithm 1 Skeleton Parsing
Require: A sentence Q
Ensure: The skeleton of Q
  T \leftarrow \text{tree with a root node } Q
   while Split(Q) is true do
     s \leftarrow \text{TextSpanPrediction}(Q)
     h \leftarrow \text{HeadwordIdentification}(s, Q)
     r \leftarrow \text{AttachmentRelationClassification}(s, Q)
     Remove s from Q
     Grow T with relation r from h \in Q to s
   end while
   return T
```

Appendix – Split

Appendix – TextSpanPrediction

Appendix – HeadwordIdentification

Appendix – AttachmentRelationClassification

Thanks for your listening

■ Skeleton

https://github.com/nju-websoft/SPARQA