Scale Uncertainty in ALDEx2

Michelle Nixon

May 13, 2024

Recap: Sequencing depth can confound conclusions.

Observed data (Y)	Sample 1	Sample 2	Sample 3	
Condition	Health	Health	Disease	Conclusion
Entity 1	5	10	100	Increase
Entity 2	10	25	3	Decrease
Entity 3	0	1	8	Increase
Entity 4	0	0	19	Increase
Sampling Depth	15	36	130	

This can mislead analyses.

System data (W)	Sample 1	Sample 2	Sample 3	
Condition	Health	Health	Disease	Conclusion
Entity 1	227	351	154	Decrease
Entity 2	684	891	3	Decrease
Entity 3	48	32	15	Decrease
Entity 4	43	39	27	Decrease
Scale (W^{\perp})	1,002	1,313	200	

... and lead to unacknowledged bias.

Section 1

Problem Set-Up

Observed Data as a Sample from the System

Notation

- Y is a measurement of the underlying system W.
- ullet W depends on both the composition (W_{dn}^{\parallel}) and system scale (W_{n}^{\perp}) :

$$W_{dn}=W_{dn}^{\parallel}W_{n}^{\perp}$$

$$W_n^{\perp} = \sum_{d=1}^D W_{dn}$$

 \bullet θ is what we want to estimate.

Differential Abundance/Expression Analysis

- Question: How do entities (e.g., taxa or genes) change between conditions?
- In this case, θ is the log-fold change (LFC):

$$\theta_d = \mathsf{mean}_{\mathsf{case}}(\mathsf{log}\ W_{dn}) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}\ W_{dn})$$

The Original ALDEx2 Model

Step 1: Model Sampling Uncertainty

$$Y_{\cdot n} \sim \mathsf{Multinomial}(W_{\cdot n}^{\parallel})$$
 $W_{\cdot n}^{\parallel} \sim \mathsf{Dirichlet}(lpha)$

Step 2: Centered Log-Ratio Transformation

$$\log \textit{W}_{\cdot \textit{n}} = \left[\log \textit{W}_{1\textit{n}}^{\parallel} - \operatorname{mean}(\log \textit{W}_{\cdot \textit{n}}^{\parallel}), ..., \log \textit{W}_{\textit{Dn}}^{\parallel} - \operatorname{mean}(\log \textit{W}_{\cdot \textit{n}}^{\parallel})\right]$$

Step 3: Calculate LFCs and Test if Different from Zero.

$$\theta_d = \mathsf{mean}_{\mathsf{case}}(\mathsf{log}\ W_{dn}) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}\ W_{dn})$$

Implied Assumptions about Scale

Step 1: Model Sampling Uncertainty

$$Y_{\cdot n} \sim \mathsf{Multinomial}(W_{\cdot n}^{\parallel})$$

 $W_{\cdot n}^{\parallel} \sim \mathsf{Dirichlet}(\alpha)$

Step 2: Centered Log-Ratio Transformation

$$\log \textit{W}_{\cdot \textit{n}} = \left[\log \textit{W}_{1\textit{n}}^{\parallel} - \operatorname{mean}(\log \textit{W}_{\cdot \textit{n}}^{\parallel}), ..., \log \textit{W}_{\textit{Dn}}^{\parallel} - \operatorname{mean}(\log \textit{W}_{\cdot \textit{n}}^{\parallel})\right]$$

Step 3: Calculate LFCs and Test if Different from Zero.

$$\theta_d = \mathsf{mean}_\mathsf{case}(\log W_{dn}) - \mathsf{mean}_\mathsf{control}(\log W_{dn})$$

Implied Assumptions about Scale, cont.

Using the relationship $W_{dn}=W_{dn}^{\parallel}W_{n}^{\perp}$ and some math, the CLR normalization implies:

$$\log W_n^{\perp} = \operatorname{mean}(\log W_{\cdot n}^{\parallel}).$$

What does this mean? What does this imply for analyses?

Unacknowledged bias!

Adding Uncertainty in Scale can Help.

Section 2

Scale Reliant Inference (Informal)

Scale Reliant Inference: The Basics

- The CoDA perspective: Research questions that depend on scale are not possible.
- The Normalization perspective: Research questions that depend on scale can be answered after normalization.
- Who is right?

Scale Reliant Inference: The Basics

- The CoDA perspective: Research questions that depend on scale are not possible.
- The Normalization perspective: Research questions that depend on scale can be answered after normalization.
- Who is right?
- The CoDA perspective: Technically yes, but limiting.
- The Normalization perspective: Technically no, but attempting to answer relevant questions.

Scale Reliant Inference: The Basics

- What happens if θ depends on W^{\perp} ?
- Consider LFCs: how are taxa changing between two conditions?

$$\begin{split} \theta_d &= \mathsf{mean}_{\mathsf{case}}(\mathsf{log}\ W_{dn}) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}\ W_{dn}) \\ &= \dots \\ &= (\mathsf{mean}_{\mathsf{case}}(\mathsf{log}\ W_{dn}^{\parallel}) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}\ W_{dn}^{\parallel})) \\ &- (\mathsf{mean}_{\mathsf{case}}(\mathsf{log}\ W_{n}^{\perp}) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}\ W_{n}^{\perp})) \\ &= \theta^{\parallel} + \theta^{\perp} \end{split}$$

Don't we need θ^{\perp} ?

Scale Reliant Inference: Theory Intro

Recall for LFCs:

$$egin{aligned} heta_d &= \mathsf{mean}_\mathsf{case}(\mathsf{log}\ W_{dn}) - \mathsf{mean}_\mathsf{control}(\mathsf{log}\ W_{dn}) \ &= heta^{||} + heta^{\perp} \end{aligned}$$

- What can we say about θ from θ^{\parallel} alone?
- E.g. If $\theta^{\parallel}=20$, what does that say about θ ? If there are no restrictions, nothing!
- Statistical perspective: θ is not identifiable without θ^{\perp} .
- Practical issues: unbiased estimators, calibrated confidence sets, and type-I error control NOT possible!

Scale Simulation Random Variables

Goal: Estimate $\theta = f(W^{\parallel}, W^{\perp})$.

- **1** Draw samples of W^{\parallel} from a measurement model (can depend on Y).
- ② Draw samples of W^{\perp} from a scale model (can depend on W^{\parallel}).
- **3** Estimate samples of $\theta = f(W^{\parallel}, W^{\perp})$.

Section 3

The Updated ALDEx2 Software

ALDEx2 as an SSRV

Step 1: Model Sampling Uncertainty

$$Y_{\cdot n} \sim \mathsf{Multinomial}(W_{\cdot n}^{\parallel})$$

 $W_{\cdot n}^{\parallel} \sim \mathsf{Dirichlet}(lpha)$

Step 2: Draw Samples from a Scale Model

$$\log W_n^{\perp} \sim Q$$
$$\log W_{\cdot n} = \log W_{\cdot n}^{\parallel} + \log W_n^{\perp}$$

Step 3: Calculate LFCs and Test if Different from Zero.

$$\theta_d = \mathsf{mean}_\mathsf{case} (\log \mathit{W}_\mathit{dn}) - \mathsf{mean}_\mathsf{control} (\log \mathit{W}_\mathit{dn})$$

Benefits of Moving Past Normalizations to Scale

Intro to Scale Models

Normalizations are replaced by a scale model:

$$\log W_n^{\perp} \sim Q$$

There are no restrictions on Q, although there are some helpful options:

- Based on normalizations.
- 2 Based on biological knowledge.
- Based on outside measurements.

Section 4

Coding Changes to ALDEx2

Including scale

The new ALDEx2 model removes normalizations in lieu of scale models.

Major updates:

- A new argument gamma which makes it easy to incorporate scale uncertainty.
- A new function aldex.senAnalysis to see how analysis results change as a function of scale uncertainty.

The gamma argument

- Added as argument to the aldex and aldex.clr function.
- gamma can either be a single numeric or a matrix.
 - Single numeric: controls the noise on the default scale model.
 - 2 Matrix: A $N \times S$ matrix of samples of W.
- gamma = NULL returns the default behavior of ALDEx2.

Option 1: Default Scale Model

The default scale model is based on errors in the CLR normalization.

$$\begin{split} \log \hat{W}_n^{\perp(s)} &= -\mathrm{mean}\left(\log \hat{W}_n^{\parallel(s)}\right) + \Lambda^{\perp} x_n \\ \Lambda^{\perp} &\sim \ N(0, \gamma^2). \end{split}$$

Advantages of the Default Scale Model

- 1 It is built off the status quo for ALDEx2.
- ② Any value of $\gamma > 0$ will reduce false positives compared to the CLR normalization.
- 1 It has a concrete interpretation to contextualize scale assumptions.

Interpreting the Default Scale Model

$$\log \hat{W}_n^{\perp(s)} = -\mathrm{mean}\left(\log \hat{W}_{\cdot n}^{\parallel(s)}\right) + \Lambda^{\perp} x_n$$

$$\Lambda^{\perp} \sim N(0, \gamma^2).$$

Empirical Rule: 95% of samples of Λ^{\perp} fall within a factor of $\pm 2\gamma$.

Interpreting the Default Scale Model, cont.

$$\log \hat{W}_n^{\perp(s)} = -\mathrm{mean}\left(\log \hat{W}_{\cdot n}^{\parallel(s)}\right) + \Lambda^{\perp} x_n$$

$$\Lambda^{\perp} \sim N(0, \gamma^2).$$

Option 2: More Complex Scale Models

Alternatively, can pass a matrix of scale samples to gamma so long as:

- **1** The dimension is $N \times S$.
- ② They are samples of W^{\perp} not $\log W^{\perp}$.

Reasons to do this:

- Biological beliefs: Scale is guided by the biological system or the researcher's prior beliefs.
- Outside Measurements: These can be used in building a scale model if they are informative on the scale of interest (e.g., qPCR, flow cytometry).

Sensitivity Analyses

Section 5

Real Data Examples

Simulation Study

Real Example: SELEX

Real Example: Vandputte