МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Домашнее задание по курсу «Методы машинного обучения»

ИСПОЛНИТЕЛЬ:	Сметанкин К.И
HN/5 22M	ФИО
группа ИУ5-22М	
	""2020 г.
ПРЕПОДАВАТЕЛЬ:	<u>Гапанюк Ю.Е</u> _{ФИО}
	""2020 г.
Москва - 2020	

Задание

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее двух метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее трех моделей, хотя бы одна из которых должна быть ансамблевой.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется подбирать не более 1-2 гиперпараметров. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

%matplotlib inline
sns.set(style="ticks")
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.p y:19: FutureWarning: pandas.util.testing is deprecated. Use the func tions in the public API at pandas.testing instead. import pandas.util.testing as tm

In [0]:

```
url = 'https://raw.githubusercontent.com/Smet1/bmstu_ml/master/lab4/data.csv'
df = pd.read_csv(url, error_bad_lines=False)
```

```
In [3]:
```

```
df.head()
```

Out[3]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	С
0	2014- 05-02 00:00:00	313000.0	3.0	1.50	1340	7912	1.5	0	0	
1	2014- 05-02 00:00:00	2384000.0	5.0	2.50	3650	9050	2.0	0	4	
2	2014- 05-02 00:00:00	342000.0	3.0	2.00	1930	11947	1.0	0	0	
3	2014- 05-02 00:00:00	420000.0	3.0	2.25	2000	8030	1.0	0	0	
4	2014- 05-02 00:00:00	550000.0	4.0	2.50	1940	10500	1.0	0	0	

In [4]:

```
row_number = df.shape[0]
column_number = df.shape[1]

print('Данный датасет содержит {} строк и {} столбца.'.format(row_number, column_number))
```

Данный датасет содержит 4600 строк и 18 столбца.

Проведение разведочного анализа данных

Подготовка данных

Обработка пропусков в данных

```
In [5]:
```

```
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator

df.isnull().sum()
```

Out[5]:

date 0 0 price 0 bedrooms bathrooms 0 sqft living sqft lot 0 floors 0 0 waterfront view 0 condition 0 sqft above 0 sqft basement yr built 0 yr_renovated 0 0 street city 0 statezip country dtype: int64

Кодирование признаков

In [6]:

```
from sklearn.preprocessing import LabelEncoder

cols = []
for col in df.columns:
   column_type = df[col].dtype
   if column_type == 'object':
      cols.append(col)

cols
```

Out[6]:

```
['date', 'street', 'city', 'statezip', 'country']
```

```
In [7]:
```

```
# кодируем
for col in cols:
  print(col)
  le = LabelEncoder()
  df[col] = le.fit transform(df[col])
date
street
city
statezip
country
In [0]:
# проверяем остались ли признаки
for col in df.columns:
  column_type = df[col].dtype
  if column_type == 'object':
    print(col)
```

Визуальное исследование датасета

In [9]:

```
import seaborn as sns
# Оценка распределения целевого признака
sns.distplot(df['price']);
```


In [10]:

Зависимость цены от площади (ограничивая цену от 100κ до 10000κ и площади от 500 до 3500) sns.jointplot(x='sqft_living', y='price', data=df, xlim=(500, 3500), ylim=(100000, 1000000), height=10, alpha=.5)

Out[10]:

<seaborn.axisgrid.JointGrid at 0x7f70d30a1208>

In [11]:

```
# Зависимость цены от даты постройки sns.jointplot(x='yr_built', y='price', data=df, kind='hex');
```


In [12]:

Парные диаграммы sns.pairplot(df, plot_kws=dict(linewidth=0));

In [13]:

df.corr()

Out[13]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
date	1.000000	0.033906	0.005762	0.019263	0.029481	-0.020393	0.029607
price	0.033906	1.000000	0.200336	0.327110	0.430410	0.050451	0.151461
bedrooms	0.005762	0.200336	1.000000	0.545920	0.594884	0.068819	0.177895
bathrooms	0.019263	0.327110	0.545920	1.000000	0.761154	0.107837	0.486428
sqft_living	0.029481	0.430410	0.594884	0.761154	1.000000	0.210538	0.344850
sqft_lot	-0.020393	0.050451	0.068819	0.107837	0.210538	1.000000	0.003750
floors	0.029607	0.151461	0.177895	0.486428	0.344850	0.003750	1.000000
waterfront	0.017586	0.135648	-0.003483	0.076232	0.117616	0.017241	0.022024
view	0.005844	0.228504	0.111028	0.211960	0.311009	0.073907	0.031211
condition	0.007853	0.034915	0.025080	-0.119994	-0.062826	0.000558	-0.275013
sqft_above	0.041038	0.367570	0.484705	0.689918	0.876443	0.216455	0.522814
sqft_basement	-0.015050	0.210427	0.334165	0.298020	0.447206	0.034842	-0.255510
yr_built	0.001356	0.021857	0.142461	0.463498	0.287775	0.050706	0.467481
yr_renovated	-0.018437	-0.028774	-0.061082	-0.215886	-0.122817	-0.022730	-0.233996
street	-0.005089	0.029366	-0.035507	0.007175	0.006411	-0.023028	0.056191
city	-0.020325	0.018625	-0.130447	-0.097026	-0.109686	-0.079135	0.078481
statezip	-0.004546	-0.043385	-0.152773	-0.194497	-0.198918	-0.128466	-0.038943
country	NaN	NaN	NaN	NaN	NaN	NaN	NaN

In [14]:

```
fig, ax = plt.subplots(figsize=(20,10))
sns.heatmap(df.corr(), annot=True, fmt=".2f");
```


In [15]:

```
corr_matrix = df.corr()
# наиболее коррелирующие признаки
corr_matrix['price'].nlargest(5)
```

Out[15]:

Видно, что цена несколько зависит от жилой площади и количества ванных комнат (но они сильно коррелируют с площадью, поэтому их можно не учитывать)

Подготовка данных для обучения моделей

In [16]:

```
# попробуем ограничить цену сверху и снизу (100000, 1000000)
indexNames = df[ df['price'] < 100000 ].index
df.drop(indexNames, inplace=True)

indexNames = df[ df['price'] > 1000000 ].index
df.drop(indexNames, inplace=True)

corr_matrix = df.corr()
# наиболее коррелирующие признаки
corr_matrix['price'].nlargest(6)
```

Out[16]:

In [17]:

```
# и площадь (500,3500)
indexNames = df[ df['sqft_living'] < 500 ].index
df.drop(indexNames, inplace=True)

indexNames = df[ df['sqft_living'] > 3500 ].index
df.drop(indexNames, inplace=True)

corr_matrix = df.corr()
# наиболее коррелирующие признаки
corr_matrix['price'].nlargest(6)
```

Out[17]:

In [18]:

```
#Разделим на целевой столбец и признаки

# x = df.drop('price', axis=1)

# показания хуже только с наиболее коррелирующими признаками

# x = df[['sqft_living', 'sqft_above', 'bathrooms', 'bedrooms', 'floors']]

x = df.drop(['city', 'street', 'country', 'statezip', 'price'], axis=1)

y = df['price']

print(x.head())

date bedrooms bathrooms ... sqft_basement yr_built yr_renov
```

```
ated
      0
                3.0
                           1.50
                                                             1955
2005
2
       0
                3.0
                           2.00
                                                     0
                                                             1966
0
3
       0
                                                 1000
                3.0
                           2.25
                                                             1963
                                  . . .
0
4
      0
                4.0
                           2.50
                                                  800
                                                             1976
1992
       0
                2.0
                           1.00
                                                     0
                                                             1938
5
                                 . . .
1994
[5 rows x 13 columns]
     313000.0
0
2
     342000.0
     420000.0
3
4
     550000.0
5
     490000.0
Name: price, dtype: float64
```

In [19]:

```
print('Признаки: {} строк и {} столбца.'.format(x.shape[0], x.shape[1]))
print('Целевой столбец: {} строк'.format(y.shape[0]))
```

Признаки: 4019 строк и 13 столбца. Целевой столбец: 4019 строк

In [20]:

```
from sklearn.preprocessing import StandardScaler

columns = x.columns
scaler = StandardScaler()

x = scaler.fit_transform(x)
pd.DataFrame(x, columns=columns).describe()
```

Out[20]:

flooi	sqft_lot	sqft_living	bathrooms	bedrooms	date	
4.019000e+C	4.019000e+03	4.019000e+03	4.019000e+03	4.019000e+03	4.019000e+03	count
5.701115e-1	8.190623e-18	-1.785362e-16	4.151665e-16	-5.427634e-16	-8.762447e-16	mean
1.000124e+C	1.000124e+00	1.000124e+00	1.000124e+00	1.000124e+00	1.000124e+00	std
-8.849427¢ C	-3.675494e- 01	-2.124490e+00	-1.942118e+00	-2.709556e+00	-1.830185e+00	min
-8.849427¢	-2.431324e- 01	-7.726561e-01	-8.034232e-01	-3.557885e-01	-8.631978e-01	25%
-8.849427¢	-1.726860e- 01	-8.110902e-02	-4.429358e-02	-3.557885e-01	1.037889e-01	50%
9.820309e-C	-9.344090e- 02	7.118446e-01	7.148360e-01	8.210954e-01	8.671995e-01	75%
3.782491e+C	3.050179e+01	2.419745e+00	4.890049e+00	5.528631e+00	1.681504e+00	max

In [0]:

```
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import median_absolute_error
from sklearn.metrics import r2_score

# функция, которая считает метрики построенной модели
def test_model(model):
    print('mean_absolute_error: {}'.format(round(mean_absolute_error(y_test, mod
el.predict(x_test)), 2)))
    print('median_absolute_error: {}'.format(round(median_absolute_error(y_test,
model.predict(x_test)), 2)))
    print('r2_score: {}'.format(round(r2_score(y_test, model.predict(x_test)), 2)))
```

Формирование обучающей и тестовой выборок

In [0]:

```
from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.10, random _state=2)
```

```
In [23]:

print('Признаки обучающие: {} строк и {} столбца.'.format(x_train.shape[0], x_train.s hape[1]))

print('Признаки тестовые: {} строк и {} столбца.'.format(x_test.shape[0], x_test.shape [1]))

print('Целевой столбец обучающий: {} строк'.format(y_train.shape[0]))

print('Целевой столбец тестоый: {} строк'.format(y_test.shape[0]))
```

Признаки обучающие: 3617 строк и 13 столбца. Признаки тестовые: 402 строк и 13 столбца. Целевой столбец обучающий: 3617 строк Целевой столбец тестоый: 402 строк

Построение базового решения

```
In [0]:

from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
```

Метод k ближайших соседей

Дерево решений

r2_score: 0.33

```
In [27]:
# С неограниченной глубиной
dt none = DecisionTreeRegressor(max depth=None)
dt none.fit(x train, y train)
Out[27]:
DecisionTreeRegressor(ccp alpha=0.0, criterion='mse', max depth=Non
                      max features=None, max leaf nodes=None,
                      min impurity decrease=0.0, min impurity split=
None,
                      min samples leaf=1, min samples split=2,
                      min_weight_fraction_leaf=0.0, presort='depreca
ted',
                      random state=None, splitter='best')
In [28]:
test model(dt none)
mean absolute error: 156197.96
median absolute error: 135000.0
r2 score: -0.14
Случайный лес
In [29]:
# C гиперпараметром n=100:
ran 100 = RandomForestRegressor(n estimators=100)
ran 100.fit(x train, y train)
Out[29]:
RandomForestRegressor(bootstrap=True, ccp alpha=0.0, criterion='ms
e',
                      max depth=None, max features='auto', max leaf
nodes=None,
                      max samples=None, min impurity decrease=0.0,
                      min impurity split=None, min samples leaf=1,
                      min samples split=2, min weight fraction leaf=
0.0,
                      n estimators=100, n jobs=None, oob score=Fals
```

```
In [30]:
```

e,

e)

```
test_model(ran_100)
```

random state=None, verbose=0, warm start=Fals

```
mean_absolute_error: 113565.27
median_absolute_error: 94677.9
r2 score: 0.41
```

Подбор гиперпараметров

```
In [0]:
```

```
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import ShuffleSplit
```

Метод к ближайших соседей

```
In [32]:
```

```
# Список настраиваемых параметров

param_range = np.arange(1, 50, 2)

tuned_parameters = [{'n_neighbors': param_range}]

tuned_parameters
```

Out[32]:

```
[{'n_neighbors': array([ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49])}]
```

In [0]:

In [34]:

```
plt.plot(param range, gs.cv results ["mean train score"]);
```



```
In [35]:
```

```
plt.plot(param_range, gs.cv_results_["mean_test_score"]);
```

```
0.4

0.2

0.1

0.0

-0.1

0 10 20 30 40 50
```

In [36]:

```
reg.fit(x_train, y_train)
test_model(reg)
```

mean_absolute_error: 117338.61
median_absolute_error: 103549.25
r2 score: 0.38

Дерево решений

In [37]:

```
# Список настраиваемых параметров

param_range = np.arange(1, 50, 2)

tuned_parameters = [{'max_depth': param_range}]

tuned_parameters

Out[37]:
```

[{'max_depth': array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 2 3, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49])}]

In [0]:

```
In [39]:
```

```
plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```


In [40]:

```
plt.plot(param_range, gs.cv_results_["mean_test_score"]);
```


In [41]:

```
reg.fit(x_train, y_train)
test_model(reg)
```

mean_absolute_error: 123951.39
median_absolute_error: 104020.85

r2_score: 0.31

Случайный лес

In [42]:

```
# Список настраиваемых параметров

param_range = np.arange(20, 201, 20)

tuned_parameters = [{'n_estimators': param_range}]

tuned_parameters
```

Out[42]:

```
[{'n_estimators': array([ 20, 40, 60, 80, 100, 120, 140, 160, 18 0, 200])}]
```

In [0]:

In [44]:

```
plt.plot(param_range, gs.cv_results_["mean_train_score"]);
```


In [45]:

```
plt.plot(param_range, gs.cv_results_["mean_test_score"]);
```


In [46]:

```
reg.fit(x_train, y_train)
test_model(reg)
```

mean_absolute_error: 114582.66
median_absolute_error: 95899.38
r2 score: 0.4

Видно что модели с подобранными гиперпараметрами показывают лучший результат.

Мы построили 3 модели с оптимальными гиперпараметрами

• К ближайших соседей: 0.38

• Дерево решений: 0.31

• Случайный лес: 0.4

Значения отличаются в пределах 0.1, для более точной оценки нужен датасет с большим количеством данных. Но для текущего состояния лучшим является случайный лес