

Matrix BFS

- Matrix BFS is similar to binary tree BFS with a few minor changes
 - When pushing neighbors into the queue, there will usually be up to 4 or 8 neighbors (assuming 4-directional or 8-directional) instead of just two.
 - With graphs, we must ensure that we do not re-visit visited nodes.
 - One way we can solve this is by tracking visited nodes in a "visited set".
 - We must ensure that we do not go out of bounds.
- Generally used when we want to find the "shortest path" or if we are working with a problem that involves layers
- Demo:
 - Shortest Path in Binary Matrix

start		X	
	X		
	Х	Х	X
	Х		
	X		finish

start	1	2	Х	5
1	X	2	3	4
2	X	3	X	X
3	X	4	4	5
4	X	5	5	finish 5

Questions?

Let's practice!

- Review
 - Rotting Oranges
 - o <u>01 Matrix</u>
- Bonus
 - o <u>Shortest Bridge</u>

