Conocimiento y Razonamiento Automatizado Tema 2: Resolución en el Cálculo de Predicados Grado en Ing. Informática

José Enrique Morais San Miguel

4 de marzo de 2021

Sintaxis del Cálculo de Predicados

Alfabeto formado por:

- a) El conjunto de símbolos de variable $\mathscr{V} = \{X, Y, \ldots\}.$
- b) El conjunto de símbolos de constante $\mathscr{C} = \{a, b, \ldots\}$.
- c) El conjunto de símbolos de función de aridad n, $\mathscr{F} = \{f, g, h, \dots\}$.
- d) El conjunto de símbolos de predicado (o conjunto de símbolos de relación de aridad n), $\mathscr{P} = \{p, q, r, \ldots\}$.
- e) Los conectivos $\{\neg, \lor, \land, \longrightarrow, \leftrightarrow, \oplus, |, \downarrow\}$.
- f) Los cuantificadores \forall y \exists .
- g) Los paréntesis (y).

Sintaxis del Cálculo de Predicados

Términos

Cadenas que pueden formarse aplicando inductivamente las siguientes reglas:

- i) Las variables y las constantes son términos.
- ii) Si f es una función n—aria y t_1, t_2, \ldots, t_n son términos, $f(t_1, \ldots, t_n)$ es un término.

El conjunto de términos lo denotaremos por \mathscr{T} . Por otro lado, un término sin variables se dice **básico**.

Fórmulas

Cadenas que pueden formarse aplicando inductivamente las siguientes reglas:

- i) Toda **fórmula atómica** o **átomo**, es decir, $p(t_1, ..., t_n)$ con p un símbolo de relación n-ario y $t_1, ..., t_n$ términos, es una fórmula.
- ii) Si A y B son fórmulas, también lo son $(\neg A) y (A op B)$, donde op es cualquiera de los conectivos binarios^a.
- iii) Si A es una fórmula y $X \in \mathcal{V}$, $(\forall X)A$ y $(\exists X)A$ son fórmulas.

^aUn átomo o la negación de un átomo suelen recibir el nombre de literal.

Semántica del Cálculo de Predicados

Interpretación

Supongamos un conjunto de fórmulas U. Sean $\{p_1,\ldots,p_j\}$ el conjunto de símbolos de predicado, $\{f_1,\ldots,f_k\}$ el conjunto de símbolos de función y $\{a_1,\ldots,a_l\}$ las constantes de U. Llamaremos interpretación de U a toda tupla

$$I = (D, \{R_1, \ldots, R_j\}, \{F_1, \ldots, F_k\}, \{d_1, \ldots, d_l\}),$$

donde: D es un dominio no vacío, cada símbolo de predicado p_i , de aridad n_i , está asociado con una relación R_i , de aridad n_i ; cada símbolo de función f_i , de aridad n_i , está asociado con una función F_i definida sobre D, de aridad n_i y, finalmente, cada constante a_i está asociada con una constante del dominio d_i .

Semántica del Cálculo de Predicados

Ejemplo

Consideremos la fórmula $(\forall X)$ p(a, X). Las siguientes son distintas interpretaciones numéricas:

$$\mathscr{I}_1 = (\mathbb{N}, \{\leq\}, \{0\}), \ \mathscr{I}_2 = (\mathbb{N}, \{\leq\}, \{1\}), \ \mathscr{I}_3 = (\mathbb{Z}, \{\leq\}, \{0\}).$$

Una interpretación no numérica para la fórmula es la siguiente: si $\mathscr S$ denota el conjunto de cadenas binarias, $\mathscr I_4=(\mathscr S,subcadena,\lambda)$, donde subcadena es la relación binaria "ser subcadena de" y λ representa la cadena vacía.

Definiciones básicas

Definición

Se dice que una fórmula cerrada A es verdadera para la interpretación $\mathscr I$ o que $\mathscr I$ es un modelo para A si $v_{\mathscr I}(A)=T$. Se escribe $\mathscr I \vDash A$.

Definición

Una fórmula cerrada A se dice **satisfacibe** si para alguna interpretación \mathscr{I} , $\mathscr{I} \models A$. Si toda interpretación es un modelo para A se dice que la fórmula es **válida** y se nota $\models A$. La fórmula A se dice **insatisfacible** si no es satisfacible y se dice **falsificable** si no es válida.

Ejemplo

Veamos algunos ejemplos de fórmulas cerradas y estudiémoslas desde el punto de vista de la satisfabilidad:

- La fórmula $(\forall Xp(X)) \longrightarrow p(a)$ es válida.
- La fórmula $\forall X \forall Y (p(X,Y) \longrightarrow p(Y,X))$ es satisfacible, pero no válida.
- La fórmula ∃X∃Y(p(X) ∧ ¬p(Y)) es satisfacible, pero no válida. Obsérvese que cualquier modelo para la fórmula ha de contener, necesariamente, más de un elemento.
- La fórmula satisfacible ∀Xp(a,X) postula la existencia de algún elemento especial en el dominio de cualquier modelo. Por ejemplo, el cero para los naturales.

Equivalencia lógica

Definición

Dos fórmulas cerradas A_1 y A_2 , se dicen **lógicamente equivalentes** si $v_{\mathscr{I}}(A_1) = v_{\mathscr{I}}(A_2)$ para cualquier interpretación \mathscr{I} . Se escribe $A \equiv B$

Ejemplo

Algunas equivalencias de interés son las siguientes:

$$\begin{array}{rcl}
\neg(\exists \rho(X)) & \equiv & \forall \neg \rho(X) \\
\neg(\forall \rho(X)) & \equiv & \exists \neg \rho(X) \\
\exists X(\rho(X) \lor q(X)) & \equiv & ((\exists X \rho(X)) \lor (\exists q(X))) \\
\forall X(\rho(X) \land q(X)) & \equiv & ((\forall X \rho(X)) \land (\forall q(X)))
\end{array}$$

En los dos casos siguientes, las fórmulas a derecha e izquierda no son equivalentes, pero se tienen las implicaciones:

$$((\forall X p(X)) \lor (\forall X q(X))) \longrightarrow (\forall X (p(X) \lor q(X))) (\exists X (p(X) \land q(X))) \longrightarrow ((\exists X p(X)) \land (\exists X q(X)))$$

- Misma idea que el el Cálculo Proposicional: búsqueda de un modelo.
- Además de las β -reglas y α -reglas, necesitamos reglas para lidiar con los cuantificadores.

Ejemplo

$$\neg \left[\forall X (p(X) \longrightarrow q(X)) \longrightarrow (\forall X p(X) \longrightarrow \forall X q(X)) \right].$$

Si aplicamos dos veces α -reglas de la forma \neg ($A \longrightarrow B$), se obtiene:

$$\forall X(p(X) \longrightarrow q(X)), \forall Xp(X), \neg \forall Xq(X).$$

La fórmula $\neg \forall Xq(X)$ es equivalente a $\exists X \neg q(X)$. Por lo tanto, en cualquier modelo, algún elemento del dominio no debe verificar q. En vez de escoger un dominio específico, tomamos una letra genérica del conjunto de constantes $a \in \mathscr{A} y$ especificamos la fórmula. Así, tenemos un nuevo nodo en el tablero:

$$\forall X(p(X) \longrightarrow q(X)), \forall Xp(X), \neg q(a).$$

Las dos primeras fórmulas están cuantificadas universalmente. Así pues, podemos instanciarlas en cualquier elemento. En particular, en a. De esta forma, llegamos a

$$p(a) \longrightarrow q(a), p(a), \neg q(a).$$

Aplicando una β — regla, llegamos a un tablero cerrado. Habríamos probado que la negación de la fórmula es insatisfacible y que, por lo tanto, la fórmula es válida.

Ejemplo

Ahora consideremos la negación de la siguiente fórmula que es satisfacible pero no válida: $F = \forall X(p(X) \lor q(X)) \longrightarrow (\forall Xp(X) \lor \forall Xq(X)).$

Construyamos un tablero de la misma forma que antes:

Aplicando una β — regla se llega a un tablero cerrado. De este modo, habríamos probado que la fórmula inicial es válida. ¿Qué es lo que hemos hecho mal?

Veamos los errores cometidos con el ejemplo anterior:

En

primer lugar, no deberíamos haber utilizado la misma letra para instanciar $\neg \forall X p(X)$ y $\neg \forall X q(X)$. Haciéndolo, asumimos que en un cierto dominio hay un mismo elemento que no verifica las relaciones denotadas por p y q simultáneamente. Así, debemos introducir un nuevo símbolo de constante para instanciar $\neg \forall X p(X)$ una vez usada la constante a para $\neg \forall X q(X)$. De este modo la quinta línea en el tablero sería:

$$\forall X(p(X) \lor q(X)), \neg p(b), \neg q(a).$$

Por lo tanto, cada vez que instanciemos una fórmula existencial debemos usar un símbolo de constante distinto a los ya utilizados, lo que sugiere la necesidad de tomar nota de los símbolos de constante utilizados.

Ahora podríamos instanciar la fórmula $\forall X(p(X) \lor q(X))$ en b por estar cuantificada universalmente, pero ya la hemos utilizado y "borrado" del tablero. Para prevenir esta circunstancia, ninguna fórmula universal se borra del tablero. Siguiendo este criterio, la sexta línea del tablero quedaría

$$\forall X(p(X) \vee q(X)), p(a) \vee q(a), \neg p(b), \neg q(a).$$

Ahora podemos instanciar la fórmula universal en b y se llega a

$$\forall X(p(X) \lor q(X)), p(a) \lor q(a), p(b) \lor q(b), \neg p(b), \neg q(a).$$

Si se aplican β —reglas para finalizar la construcción del tablero, una de las ramas que se obtienen es:

$$\forall X(p(X) \lor q(X)), p(a), q(b), \neg p(b), \neg q(a).$$

Esta rama es abierta y, por lo tanto, nos da un modelo para la negación de F:

$$D = \{a, b\}, P = \{a\}, Q = \{b\}$$

Jamás hubiésemos llegado a este modelo sin instanciar la fórmula universal en *b*. Por lo tanto, debemos instanciar todas las fórmulas universales en todos los símbolos de constante que se hayan ido añadiendo en la construcción del tablero.

Algoritmo (Construcción de un tablero semántico)

Input: Una fórmula A del cálculo de predicados.

Output: Un tablero semántico \mathcal{T} para A: sus ramas son finitas o infinitas con hojas marcadas como abiertas o cerradas.

Un tablero semántico T para A es un árbol en el que cada nodo está etiquetado con un par W(n) = (U(n), C(n)), donde U(n) es un conjunto de fórmulas y C(n) contiene los símbolos de constante que aparecen en U(n). Inicialmente, el árbol consta de un sólo nodo, la raíz, etiquetada por el conjunto de fórmulas {A} y por el conjunto $\{a_1,\ldots,a_k\}$ que es el conjunto de símbolos de constante que aparecen en A. En el caso de que la fórmula A no contenga ningún símbolo de constante, escogemos uno arbitrario, digamos a, y etiquetamos el nodo raíz con $(\{A\}, \{a\})$. El tablero se construye inductivamente aplicando alguna de las siguientes reglas a una hoja etiquetada por W(I) = (U(I), C(I)):

- Si en U(1) cualquier regla que se pueda aplicar no genera un hijo distinto y hay literales complementarios, la rama se marca cerrada x; en caso contrario se marca abierta ...
- Si U(I) no verifica la condición anterior, escogemos una fórmula F ∈ U(I) que no sea literal y se aplica alguna de las realas:
 - Si $F \in U(I)$ es una α -fórmula, se crea un nuevo nodo hijo I', y se etiqueta con

$$W(I') = (U(I'), C(I')) = ((U(I) \setminus \{F\}) \cup \{\alpha_1, \alpha_2\}, C(I)).$$

En el caso de que F sea de la forma $\neg \neg F_1$, no hay α_2 .

• Si $F \in U(I)$ es una β -fórmula, se crean dos nuevos nodos hijos I' y I'', y se etiquetan

$$W(I') = (U(I'), C(I') = ((U(I) \setminus F)) \cup \{\beta_1\}, C(I)),$$

$$W(I'') = (U(I''), C(I'') = ((U(I) \setminus F)) \cup \{\beta_2\}, C(I)),$$

• Si $F \in U(I)$ es una δ -fórmula, se crea un nuevo nodo hijo I', y se etiqueta con

$$W(I') = (U(I'), C(I')) = (U(I) \setminus \{F\}) \cup \{\delta(b)\}, C(I) \cup \{b\}).$$

de acuerdo a las tablas anteriores y siendo b una constante que no aparezca en U(I). • Si $F \in U(I)$ es una γ -fórmula y $b \in C(I)$, se crea un nuevo nodo hijo I' y se etiqueta

is that
$$\gamma$$
-formula y $b \in C(1)$, so the authors hold high i y so eliqueta

$$W(l') = (U(l'), C(l')) = (U(l) \cup {\gamma(b)}, C(l)).$$

Nota

Es importante señalar que el algoritmo no sirve, en general, para buscar un modelo para la fórmula dada. Es obvio que sólo podremos exhibir un modelo finito y es posible que haya fórmulas satisfacibles que no admitan modelos finitos. Un ejemplo de esta situación está dado en el Teorema que sigue.

Teorema

La fórmula $A_1 \wedge A_2 \wedge A_3$, donde

$$A_1 = \forall X \exists Y p(X, Y)$$

$$A_2 = \forall X \neg p(X, X)$$

$$A_3 = \forall X \forall Y \forall Z (p(X,Y) \land p(Y,Z)) \rightarrow p(X,Z)$$

no admite un modelo finito.

Demostración.

Supongamos, por reducción al absurdo, que la fórmula sí admite un modelo con un dominio finito D y consideremos $d_1 \in D$. Por A_1 , existe $d_2 \in D$ t.q. $p(d_1, d_2)$. Repitiendo el proceso, construimos una secuencia de elementos de D d_1, \ldots, d_n, \ldots , tales que $p(d_i, d_{i+1})$. Por A_3 , se tendría que, para todo i < j,con $i, j \in \mathbb{N}$, $p(d_i, d_j)$. Como D es finito, existen $i, j \in \mathbb{N}$ t.q. $d_i = d_j$, por lo tanto, gracias a A_2 , tenemos $\neg p(d_i, d_j)$. Lo que contradice que $p(d_i, d_j)$.

Robustez y completitud de los tableros semánticos

Teorema

Sea A una fórmula válida. La construcción del tablero para ¬A cierra.

Teorema

Sea A una fórmula y T un tablero para A. Si T es cerrado, A es insatisfacible.

Probar la validez de la fórmula

$$F = (\forall X (p(X) \longrightarrow q(X))) \longrightarrow ((\forall p(X)) \longrightarrow (\exists X q(X)))$$

$$(\forall X \ (p(X) \longrightarrow q(X)), \ \forall \ ((\forall X \ p(X)) \longrightarrow (\exists X \ q(X))), \ \exists a \in F_3, \ \forall X \ p(X), \ \forall X \ \forall q(X), \ \exists a \in F_3, \ F_3, \ F_4, F_5, \ p(a) \longrightarrow q(a), \ \forall q(a), p(a), \ da \in F_4, F_2, F_3, q(a), \ \forall q(a), p(a), \ da \in X$$

$$\times \times \times$$

Ejemplo

Estudiar la validez de la fórmula

$$F = (\forall X \forall Y (p(X,Y) \longrightarrow q(Y))) \longrightarrow ((\forall X \forall Y p(X,Y)) \land (\exists Y q(Y)))$$

Ejemplo

