EXTRA PRACTICE PROBLEMS FOR EXAM 2

Variation 1 of **Problem 6.** Verify the identity

$$\sec t - \cos t = \sin^2 t \sec t.$$

Variation 2 of **Problem 6.** Verify the identity

$$\frac{1}{1 + \csc x} + \frac{1}{1 - \csc x} = -2\tan^2 x.$$

Variation of 1 **Problem 8.** Suppose $\sin \alpha = -\frac{24}{25}$ and $\cos \alpha = -\frac{7}{25}$, and consider the angle $\beta = \pi + \alpha$.

- (a) Find $\sin \beta$ and $\cos \beta$.
- (b) Indicate the Quadrant the angle β belongs to.

Variation of 2 **Problem 8.** Same as above, except that $\beta = 2\pi - \alpha$.

- (a) Find $\sin \beta$ and $\cos \beta$.
- (b) Indicate the Quadrant the angle β belongs to.

$$\Rightarrow \frac{1}{\cos t} - \cos t \Rightarrow \frac{\sin^2 t}{\cos t}$$

$$=) \frac{1-\cos^2 t}{\cos t}$$

$$\frac{1}{1+cscx} + \frac{1}{1-cscx} = -2tay^{2}x$$

$$\Rightarrow \frac{2}{1-cs(X)}$$

$$\Rightarrow \frac{2}{-\cot^2 x} \Rightarrow -2 + q_n^2 x$$

$$5m^2 + \cos^2 = 1$$

$$\frac{1}{5m}$$

$$1 + \cot^2 x = \csc^2 x$$

Prob 8 VI

$$\delta_{M} \alpha = \frac{-24}{25}$$

$$Cos \alpha = \frac{-7}{25}$$

$$\beta = \pi + \alpha$$

a) Find sings =
$$\frac{24}{25}$$

b) Quadruft: I. On Use "Add TI finds"
$$\sin(\pi + \alpha) = -\sin \alpha$$

$$\cos(\pi + \alpha) = -\cos \alpha^{\frac{3}{2}}$$

Prob 8
$$V^2$$

Same data on α .

 $\beta = 2\pi - \alpha$
 $\alpha = -\alpha$

$$Jin \beta = \frac{24}{25}$$

$$\cos\beta = \frac{-7}{25}$$

