

Bioimmagini

Docente:

Prof. Maria Gabriella Signorini

Dipartimento di Bioingegneria - Politecnico di Milano

Tel. Signorini: 02-2399-3328

E-mail mariagabriella.signorini@polimi.it

Lezione 1 AA 2010-2011 1

Corso di Elaborazione di Segnali e Immagini Biomedici – II parte

Bioimmagini

ESERCITAZIONI

Ing. Elisabetta De Bernardi 02-23993322

Ing. Katia Passera

Ing. Andrea Fanelli 02-23999501

Dipartimento di Bioingegneria - Politecnico di Milano

- Stanza Assegnisti e Post Doc – III piano Ed 21 (ex Ed 34)

- IV piano Ed 21 (ex Ed 34) - Via Colombo, Spazio Dottorandi

E-mail: elisabetta.debernardi@polimi.it

katia.passera@polimi.it andrea .fanelli@polimi.it

BIOIMMAGINI

Orario delle lezioni:

LUNEDI' 10.15-13.15 Aula E.G.4 GIOVEDI' 12.15-14.15 Aula D.0.4

Orario LABORATORIO:

LUNEDI' 14.15-18.15 2 Squadre

Aula: LB.7

I Esercitazione: 28 marzo 2011

Ricevimento:

MARTEDI 11.00-13.00 Dipartimento di Bioingegneria

(via Golgi 39, III piano)

Lezione 1 AA 2010-2011 3

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Obiettivi del corso

- •Fornire concetti di base su bioimmagini ed i principi di alcune tecniche di elaborazione (in particolare la ricostruzione tomografica).
 - •E' ben nota l'importanza assunta dalle bioimmagini in campo clinico. In molti settori (neurologia, cardiologia, ortopedia, etc.), hanno rivoluzionato l'approccio diagnostico

Forte approccio multidisciplinare.

Una trattazione completa comprende vari capitoli:

1) problemi clinici e diagnostici, 2) principi fisici utilizzati, 3) strumentazione, 4) ricostruzione di immagini (2D, tomografiche, 3D), 5) elaborazione di immagini (filtraggio, analisi, segmentazione,

riconoscimento, "volume rendering", etc.)

Programma del corso

- 1. Introduzione ai principali sistemi di diagnostica per immagini
 - 1. Principali caratteristiche:
 - 2. Fourier 2D, PSF, MTF, risoluzione spaziale
 - 3. Contrasto,
 - 4. Rapporto segnale rumore,
 - Artefatti.
- 2. Principi base per la elaborazione e la ricostruzione di immagini:
 - 1. DFT2
 - 2. Campionamento e quantizzazione,
 - Miglioramento della qualita' dell'immagine (filtri spaziali, equalizzazione),
 - 4. Operazioni geometriche,
 - 5. Ricostruzione tomografica.
- 3. Immagini a raggi X:
 - 3. Radiografia planare, interazioni radiazioni/materia, contrasto
 - 4. Radiologia digitale,
 - 5. Mammografia, angiografia, dosi

Lezione 1 AA 2010-2011

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

5

Programma del corso

- 4. Tomografia computerizzata (CT);
 - 1. Applicazioni, generazione, CT spirale.
 - 2. Trasf Radon, Sinogramma, PSF retroproiezione, filtered backprojection, camp angolare.
- 5. Immagini emissive con radiotraccianti:
 - 1. Scintigrafia e gamma-camera.
 - Tomografia ad emissione (SPECT e PET).
- 6. Immagini di Risonanza Magnetica (MRI):
 - 1. Contrasto T1 e T2,
 - 2. Formazione dell'immagini MRI (sequenze base di acquisizione, codifica in frequenza e fase)
 - 3. MRI funzionale (cenni).
- 7. Immagini con ultrasuoni:
 - 1. ecografia e doppler, altri mezzi di contrasto.

Modalità di verifica

I APPELLO → luglio 2011

come anno scorso → verifica in itinere

alla fine del Corso (diventa un pre-appello). Prova Scritta (durata 2 ore circa)

 Fortemente consigliata. Può essere recuperata negli appelli regolari.

La consegna di un nuovo compito annulla il voto precedente. Il voto finale del Corso è la media dei voti delle 2 parti (1 + 2). I voti positivi non registrati valgono 1 anno

Tutti gli studenti sono convocati alla discussione orale delle prove scritte. Voti 16/30 o 17/30 permettono di sostenere un orale per la sufficienza.

Lezione 1 AA 2010-2011 7

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Testi

- G. Valli, G. Coppini, "Bioimmagini", Collana di Ingegneria Biomedica, Pàtron Editore, Bologna, 2002.
- 2. Webb A. Introduction to Biomedical Imaging, IEEE Press-Wiley Interscience, 2003

I file .PDF di lezioni, esercitazioni ed eventuale materiale aggiuntivo sono disponibili sul sito METID Corsi on line

Processo di formazione e trattamento di un'immagine biomedica:

- raccolta di dati relativi alla interazione di qualche forma di energia con l'organismo;
- 2. ricostruzione: trasformazione dei dati in una immagine;
- 3. filtraggio, enhancement, ed altre post elaborazioni;
- 4. analisi, segmentazione, riconoscimento;
- 5. compressione, trasmissione, archiviazione;
- 6. integrazione con altre immagini.

Lezione 1 AA 2010-2011 9

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Se vedo l'immagine come matrice di misure parallele che evidenziano strutture biologiche occorre considerare:

- 1) Grandezza fisica.
- 2) Risoluzione fra livelli della misura.
- 3) Indipendenza dalle misure adiacenti.
- 4) Errori di misura (rumore) od artefatti. Statistica del rumore e correlazione con errori adiacenti.
- 5) Accuratezza collocazione spaziale di ciascuna misura.

Elementi che contribuiscono alla generazione e all'interpretazione di un'immagine reale

- 1) soggetto
- contrasto = differente interazione in relazione a differenti caratteristiche
- 3) offuscamento (blur) = confusione di informazione relativa a regioni vicine *risoluzione*
- 4) rumore artefatti
- 5) distorsione
- 6) rappresentazione, supporto, adattamento alla percezione visiva dell'osservatore
- 7) capacità di discriminazione dell'osservatore

Lezione 1 AA 2010-2011 11

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Forme di energia che interagiscono con i tessuti per formare l'immagine

- **1.** energia elettromagnetica radiazioni ionizzanti radiografia, tomografia trasmissiva (CT)
- **2. raggi** γ **emissione singolo fotone** scintigrafia, tomografia emissiva a singolo fotone (SPECT)
- **3. raggi** γ **emissione di positrone --> 2 fotoni** tomografia emissiva a positroni (PET)
- **4. onde radio in forte campo magnetico (Tesla)** immagini a risonanza magnetica (MRI)
- **5. energia meccanica –** ecografia ad ultrasuoni (US)

1. Energia elettromagnetica - radiazioni ionizzanti

 $c = 3x10^8 \text{ m/s} - (\lambda [nm]) = 1240 / E [eV]$

raggi X

da 10 a 100 keV - da 0.12 nm a 0.012 nm - sorgente esterna (tubo a vuoto) - assorbimento PROIEZIONI piane su lastra --> RADIOGRAFIA su intensificatore --> RX VIDEO - ANGIOGRAFIA + digitalizzazione o su array --> RX DIGITALE

Proiezioni piane + tomografia computerizzata = TAC (CT)

Modalità di contrasto:

- densità
- differenti energie
- mezzi di contrasto (Iodio, Bario, nuclei alto Z)

AA 2010-2011 13

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

2. raggi γ - emissione singolo fotone

da 100 a 1000 keV - da 12 a 1.2 pm - sorgente interna (radiofarmaco) - intensità di emissione = concentrazione

Collimazione meccanica + scansione --> immagine piana = SCINTIGRAFIA

Collimazione meccanica + localizzazione --> immagine piana = ANGER CAMERA

Proiezioni piane + tomografia computerizzata = SPECT

Modalità di contrasto:

- differenti radiofarmaci inorganici ed organici

Lezione 1 AA 2010-2011

3. raggi γ - emissione di positrone --> 2 fotoni

511 keV - 2.4 pm - sorgente interna (radiofarmaco) - intensità di emissione = concentrazione

Collimazione elettronica + tomografia computerizzata --> tomografia/volume = PET

Modalità di contrasto:

- differenti composti organici marcati (e.g. F-18 desossiglucosio)
 - differenti parametri farmacocinetici

Lezione 1 AA 2010-2011 15

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

4. Onde radio in forte campo magnetico (Tesla) - MRI

Nuclear Magnetic Resonance (NMR)

- (42.6 MHz/Tesla per il protone) da 40 a 100 Mhz
- intensità di emissione stimolata dall'esterno (antenna)

Metodi di elaborazione complessi (codifica fase + antitrasform di Fourier --> tomografia/volume = MRI) Modalità di contrasto:

- concentrazione
- matrice tessuti
- legami chimici
- flusso sangue, magnetofarmaci (Gd)
- volume sangue arterioso = FUNCTIONAL MRI
- diffusione = DWI, DTI, trattografia

5. Energia meccanica

Ultrasuoni (US) - 1500 m/s (in acqua) da 1 a 10 Mhz - da 1.5 a 0.15 mm - sorgente esterna (cristallo piezoelettrico) – riflessioni

Scansione settore tomografico = ECOGRAFIA, US

Modalità di contrasto:

- salti di impedenza acustica = US tradizionale (B-MODE)
- movimento effetto doppler = COLOR DOPPLER
- eco contrasto (microbolle)
- altre proprietà US = BACKSCATTERING, 2nd HARMONIC...

Lezione 1 AA 2010-2011 17

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Esempio di immagine mammografica

RX MRI ECHO GAMMA CAMERA

Mercato delle Bioimmagini in M\$

	Nord America	Europa	Resto del Mondo	Totale	Italia
Radiologia Ultrasuoni Risonanza Magnetica Tomografia computerizzata Altre tecniche Agenti contrasto	1550 950 710 520 370 1600	1440 760 210 230 160 1200	710 590 280 250 170 700	3700 2300 1200 1000 700 3500	175 135 50 70 70 200
Totale	5700	4000	2700	12400	700

Tabella 1.1 Il mercato delle bioimmagini in milioni di USD (1994). Il tasso medio di crescita è circa 8% l'anno. Il totale stimato per il 2001 è circa 21000 milioni, di cui 1200 per l'Italia

Lezione 1 AA 2010-2011 21

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Bioimmagini - Cenni storici RX

- 1895 (8 Nov., Wurtzburg) Roentgen scopre i raggi X .
- 1896 (Gennaio) Pubblicazione su Nature. (Genn., Birmingham): Prima radiografia diagnostica (ago in una mano). (Febbr. New Hampshire): Frattura di un polso. Circa 1000 articoli su Nature in 12 mesi.
- 1915 Mezzo di contrasto gastrointestinale.
- 1927 Egaz Moniz (Francia) Prima angiografia cerebrale con contrasto.
- ----- Radiografia ad assorbimento differenziale.
- 1972 (UK) Hounsfield Prima tomografia computerizzata. Presupposti matematici, Radon (1917). CT Russa 1958? Oldendorf (1961) esperimenti su manichino.

Corso di Elaborazione di Segnali e Immagini Biomedici - Il parte

Bioimmagini - Cenni storici Medicina Nucleare

- 1896 Becquerel scopre la radioattività
- 1923 George de Hevesey. Primi traccianti in fisiologia (autoradiografie).
- 1931 Lawrence inventa il ciclotrone.
- 1937 Perrier e Segre E. → Scoprono il Tc-99m.
- 1941 Moore G.E. somministra I-131 per la detezione di tumori cerebrali (senza immagini)
- 1946 Prima diffusione commerciale di radiofarmaceutici.
- 1950-58 Green, Tucker e Richards. Generatore di Tc-99m
- 1950 Cassen. Prima scintigrafia a scansione rettilinea; I-131 detezione di noduli nella tiroide.
- 1952 Anger. Prima gamma camera con collimatore, Nal, pellicola. 1957 (Anger) gamma camera con fotomoltiplicatori.
- 1961 Prima applicazione clinica del Tc-99m
- 1963 Kuhl e Edwards. Prima tomografia ad emissione gamma con elaborazione analogica.
- 1978 Prime tomografie computerizzate ad emissione singolo fotone (SPECT) commerciali con gammacamera rotante. 1979 Prime SPECT a singola sezione
- 1951 Wrenn; conta delle annichilazioni di positroni. 1953 Brownell e Sweet, Rankowitz et al.; prime scansioni; nascita della tomografia ad emissione di positroni (PET).
- 1975 Ter-Pogossian, Phelps, Hoffman. PET computerizzata; esagonale, Nal.
- 1976-1977 PET ad anello di detettori. Detettori BGO (germanato di bismuto).

Corso di Elaborazione di Segnali e Immagini Biomedici - Il parte

Bioimmagini - Cenni storici RISONANZA MAGNETICA

- 1946 Bloch e Purcell indipendentemente scoprono la risonanza magnetica nucleare (NMR).
 Spettroscopia NMR.
- 1971 Damadian; 1973 Lauterbur. Prime immagini NMR (MRI) di phantom.
- 1975 Ernst et al., Fourier MRI
- 1976-77 Prime MRI cliniche.
- 1978 Clow e Young; Mansfield. Prime MRI planari.
 1980 Hawkes; prima diagnosi con MRI.

Bioimmagini - Cenni storici ULTRASUONI

- 1951 Wild e Reid. Prime immagini US diagnostiche.
- 1954 Sviluppo uso diagnostico della ecografia della linea mediana dell'encefalo.
- 1958 Prima US commerciale.

Lezione 1 AA 2010-2011 25

Corso di Elaborazione di Segnali e Immagini Biomedici – Il parte

Attuali linee di sviluppo nell'imaging

- •acquisizione volumetrica 3D
- •rappresentazione volumetrica,
- indagine funzionale,
- •integrazione multimodale
- •analisi dinamica 4D (3D + tempo)

Evoluzione di sistemi tradizionali. Nuovi sistemi

- •X-ray angiografia 3D con C-arm
- spiral/multislice CT;
- •PET 3D
- CT/PET; (MRI/PET)
- •US real time 3D non-lineare, miglior contrasto, proprietà mecc.;
- •MRI intrinsecamente 3D largo spettro di indagini di struttura e funzione fMRI, CSI, Angio-MRI, DWI, DTI (trattografia)
- •metodi spettrografici ottici