Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów w sterowania (projekt grupowy)

Sprawozdanie z projektu i ćwiczenia laboratoryjnego nr 3, zadanie nr 1

Zespół Z01

Hubert Kozubek, Przemysław Michalczewski

Spis treści

1.	Labo	oratorium	2
	1.	Cel laboratorium	2
	2.	Przebieg laboratorium	2
	3.	Punkt pracy stanowiska	3
	4.	Wzmocnienie w funkcji sterowania	3

1. Cel laboratorium

Celem niniejszego laboratorium była implementacja, weryfikacja poprawności działania i dobór parametrów algorytmów regulacji jednowymiarowego nieliniowego procesu laboratoryjnego dla stanowiska grzejąco-chłodzłcego przedstawionego na rys. 1.1.

Rys. 1.1. Stanowisko grzejąco-chąodzące używane w trakcie laboratoriów.

2. Przebieg laboratorium

Rozpoczynając pracę na stanowisku grzejąco-chłodzącym sprawdzono możliwość sterowania i pomiaru w komunikacji za stanowiskiem. W szczegżlności sygnały sterujące wykorzystywane podczas niniejszego laboratorium W1, G1, Z oraz pomiaru T1 (elementy wykonawcze przedstawiono na rys. 1.2). Przez cały czas trwania laboratorium moc wentylatora W1 była ustawiona na 50%, a wentylator był traktowany jako cecha otoczenia. Dodatkowo sprawiał on, że temperatura grzałki opadała szybciej, co było szczególnie przydatne pomiędzy doświadczeniami.

W ramach laboratorium należało wykonać 6 zadań:

- 1. Odczytać wartość pomiaru temperatury dla termometru T1 dla mocy 26% grzałki G1 w stanie ustalonym (wyznaczyć punkt pracy).
- 2. Przeprowadzić eksperyment mający na celu określenie wzmocnienie w funkcji sterowania: dla kolejnych wartości sterowania: 20, 30, ..., 80 pozyskać wartość ustabilizowanego sygnału wyjściowego i na ich podstawie narysować punkty tworzące charakterystykę statyczną
- 3. Dla trajektorii zmian sygnałów zadanych: $T_{\rm pp}, T_{\rm pp}+5, T_{\rm pp}+15, T_{\rm pp}$ przetestować regulatory z laboratorium 1

4. Zaimplementować rozmyty algorytm PID i dla tej samej trajektorii zmian sygnału wartości zadanej spróbować dobrać parametry lokalnych algorytmów PID w taki sposób, aby osiągnąć lepszą jakość regulacji w porównaniu z regulatorem pojedynczym

- 5. Zaimplementować rozmyty algorytm DMC w najprostszej wersji analitycznej, o parametrach $N_{\rm u}=N=D$ i $\lambda=1$ i dla powyższej trajektorii zmian sygnału wartości zadanej wykonać eksperymenty dla 3 regulatorów lokalnych.
- 6. Dobrać parametry określające karę za przyrosty sterowania lokalnych algorytmów DMC metodą eksperymentalną.

Rys. 1.2. Schemat stanowiska grzejąco-chłodzącego; zaznaczone elementy wykonawcze: wentylatory W1, W2, W3, W4, grzałki G1, G2, czujniki temperatury T1, T2, T3, T4, T5 (temperatura otoczenia), pomiar prądu P1, pomiar napięcia P2.

3. Punkt pracy stanowiska

W celu wyznaczenia punktu pracy stanowiska dla mocy grzałki G1=26% zadano tę wartość dla sygnału sterującego grzałką za pomocą polecenia sendNonlinearControls(u). Następnie poczekano, aż temperatura T1 ustali się. Wynik eksperymentu przedstawiono na rys. 1.3. Odczytana wartość temperatury dla termometru T1 wyniosła 31,06 °C.

4. Wzmocnienie w funkcji sterowania

W celu wyznaczenia wzmocnienia w funkcji sterowania na stanowisku zadawano kolejne wartości sterowania, a następnie czekano aż wyjście się ustabilizuje. W taki sposób przeprowadzono 6 eksperymentów zadając kolejno wartości sterowania: 20, 30, ·, 80. Wyniki eksperymentów przedstawiono na rys. 1.4

Na podstawie przeprowadzonych eksperymentów sporządzono wykres punktowy pokazujący charakterystykę statyczną procesu. Wykres ten jest przedstawiony na rys. 1.5

Rys. 1.3. Ustalanie się temperatury dla punktu pracy.

Rys. 1.4. Odpowiedzi stanowiska dla kolejnych wartości sterowania

Rys. 1.5. Charakterystyka statyczna procesu