MASCHINELLES LERNEN & DATAMINING

Vorlesung im Wintersemester 2017

Prof. E.G. Schukat-Talamazzini

Stand: 25. August 2017

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Analyse von Attributabhängigkeiten

Dependenzanalyse ? Spaltengruppierung

Abhängigkeit ≢ Ähnlichkeit

- Lineare Abhängigkeiten $E = m \cdot c^2$
- Skalenempfindlichkeit Temperatur in °C oder °K
- Skalenübergreifend \mathcal{X}_i Geschlecht, \mathcal{X}_i Gehalt

$Struktur \not\equiv Partition$

- keine Äquivalenzrelation Zeitreihen, Ortsgitter
- keine binäre Relation Alter, Geschlecht, Größe
- Kausalitätsrichtung? \mathcal{X}_n Niederschlag, \mathcal{X}_m Ertrag

Teil VI

Attributabhängigkeiten: graphische & kausale Modelle

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Analyse von Attributabhängigkeiten

Mit welchem Ziel — zu welchem Zweck?

Attributwerteprädiktion

• Voraussage · Imputation · Klassifikation

Strukturaufklärung

Lernen des am einfachsten strukturierten Datenmodells (Occams Razor)

• Interaktionen · Kausalitäten · Assoziationsregeln

Robuste Datenmodelle

Netzwerk ausgewählter Abhängigkeiten statt saturierter W-Modelle

• geringe Kapazität · hohe Effizienz (Zeit/Speicher) · gute Induktivität

Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen Gaußnetze Σ

Korrelation, Regression und Transinformation

Korrelation Assoziation Dependenz Markovnetze Bavesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Statistische Unabhängigkeit von Zufallsvariablen

Statistische Unabhängigkeit

von Zufallsvariablen $\mathbb{X}_1, \dots, \mathbb{X}_N$, falls für alle $x_1, \dots, x_N \in \mathbb{R}^N$ gilt:

$$P(X_1 = x_1, \dots, X_N = x_N) = \prod_{n=1}^N P(X_n = x_n)$$

Statistische Unkorreliertheit

von Zufallsvariablen $\mathbb{X}_1, \dots, \mathbb{X}_N$, falls für alle $x_1, \dots, x_N \in \mathbb{R}^N$ gilt:

$$\mathcal{E}[\prod_{n=1}^{N} \mathbb{X}_n] = \prod_{n=1}^{N} \mathcal{E}[\mathbb{X}_n]$$

Bemerkungen

- 1. Aus der Unabhängigkeit folgt die Unkorreliertheit, aber nicht umgekehrt.
- 2. Für normalverteilte $\mathbb{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{S})$ gilt: \mathbb{X}_i , \mathbb{X}_i korreliert gdw. $\sigma_{ii} \neq 0$.

Statistische Unabhängigkeit von Ereignissen

Paarweise statistische Unabhängigkeit

Faktorisierbarkeit oder (falls $P(A) \neq 0$) Neutralität:

$$A \not\sim B \quad \Leftrightarrow \quad P(A,B) = P(A) \cdot P(B) \quad \Leftrightarrow \quad P(B|A) = P(B)$$

Beispiel: der Wurf zweier fairer Würfel

A = "gerade Augensumme"
$$P(A,B) = \frac{1}{12} = \frac{1}{2} \cdot \frac{1}{6} = P(A) \cdot P(B)$$

B = "erster Wurf ist sechs" $P(B,C) = \frac{1}{36} = \frac{1}{6} \cdot \frac{1}{6} = P(B) \cdot P(C)$
C = "Augensumme ist sieben" $P(A,C) = 0 \neq \frac{1}{2} \cdot \frac{1}{6} = P(A) \cdot P(C)$

Statistische Unabhängigkeit

der Ereignisse A_1, \ldots, A_I , falls für alle Indexmengen $\mathcal{I} \subseteq \{1, \dots, I\}$:

$$P(\bigwedge_{i\in\mathcal{I}}A_i) = \prod_{i\in\mathcal{I}}P(A_i)$$

Stat. Unabhäng. \Rightarrow paarweise s.U. Stat. Unabhäng. # paarweise s.U.

 $A = \text{,,erster Wurf hat gerade Augenzahl}^{"}$ B = ",zweiter Wurf hat gerade Augenzahl" C = ..Augensumme ist ungerade"

$$P(A, B, C) = 0 \neq \frac{1}{8} = P(A) \cdot P(B) \cdot P(C)$$

Beweis.

1. Die uniforme Verteilungsdichte auf dem Träger

$$\{(x,y) \mid |x| + |y| \le 1\} \subseteq \mathbb{R}^2$$

ist wegen

$$\mathcal{E}[XY] = 0 = \mathcal{E}[X] \cdot \mathcal{E}[Y]$$

zwar unkorreliert, aus ihrer (hypothetischen) Unabhängigkeit folgt aber wegen

$$P(0,\cdot) \cdot P(\cdot,0) = P(0,0) = P(0,1) = P(0,\cdot) \cdot P(\cdot,1)$$

und $P(0,\cdot) \neq 0$ sofort der Widerspruch $P(\cdot,0) = P(\cdot,1)$.

2. Es gilt nach Kovarianzdefinition

$$\sigma_{ij} = \operatorname{Cov}[X_i, X_j] = \mathcal{E}[X_i X_j] - \mathcal{E}[X_i] \cdot \mathcal{E}[X_j];$$

daraus folgt die Behauptung — auch für nicht-normal verteilte Variablen.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Korrelation und Kovarianz

Definition

Es sei $\omega \subset \mathbb{R}^N$ ein Datensatz mit der (empirischen) Kovarianzmatrix $\mathbf{S} = [\sigma_{ii}]$. Die Zahlen

$$\rho_{ij} \stackrel{\mathsf{def}}{=} \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}} \cdot \sqrt{\sigma_{jj}}}, \quad 1 \leq i, j \leq N$$

heißen Pearsonsche Korrelationskoeffizienten der Attributpaare (x_i, x_j) .

Bemerkungen

- 1. Betragsmäßig kleine (große) Werte σ_{ij} markieren einen schwachen (starken) Zusammenhang zwischen x_i und x_j .
- 2. Die Kovarianzen sind aber extrem skalierungsempfindlich $(\sigma_{ii}, \sigma_{jj})$.
- 3. Die Korrelationskoeffizienten ρ_{ij} liegen stets im Intervall [-1, +1].
- 4. Der Wert $\rho_{ij}=0$ markiert Unkorreliertheit, die Werte $\rho_{ij}\in\{+1,-1\}$ hingegen **deterministische Abhängigkeit** (mit positiver/negativer Steigung).

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Korrelationsgruppierung

GEGEBEN:

Daten $\omega \subset \mathbb{R}^N$, Schwelle θ_o , "leere" Gruppierung $\gamma : i \mapsto \bot$.

- 1 INITIALISIERUNG Berechne alle Korrelationskoeffizienten ρ_{ij} .
- ABSTEIGEND SORTIEREN

$$|\rho_{i_1i_1}| \geq |\rho_{i_2i_2}| \geq |\rho_{i_3i_3}| \geq |\rho_{i_4i_4}| \geq \ldots \geq \ldots \geq$$

- **3** FÜR ALLE r = 1, 2, ..., N(N-1)/2:
 - 1. Wenn $|\rho_{i_r j_r}| < \theta_{\rho}$ dann \rightsquigarrow ENDE.
 - 2. Wenn $\gamma(n) \neq \bot$ für alle *n* dann \rightsquigarrow ENDE.
 - 3. Wenn $\gamma(i_r) = \bot = \gamma(j_r)$ dann erzeuge neue Gruppe $\{i_r, j_r\}$.
 - 4. Wenn $\gamma(i_r) = \bot$ dann setze $\gamma(i_r) \leftarrow \gamma(i_r)$.
 - 5. Wenn $\gamma(j_r) = \bot$ dann setze $\gamma(j_r) \leftarrow \gamma(i_r)$.
 - 6. Wenn $\gamma(i_r) \neq \gamma(j_r)$ dann vereinige die Gruppen: $\gamma(i_r) \cup \gamma(j_r)$.

Beispiel — Korrelationsanalyse synthetischer Daten

Zufällig generierte Datenvektoren

 $\omega = \{ {\it x}_1, \ldots, {\it x}_{100} \} \subset {\rm I\!R}^{15}$ mit Wertetupeln der Zufallsvariablen

$$\mathbb{X}_n = \begin{cases} \mathcal{N}(0,1) & n = 1, \dots, 10 \\ \sin(\mathbb{X}_{n-10}) + \mathcal{N}(0, \frac{1}{10}) & n = 11, \dots, 15 \end{cases}$$

(10 Kanäle weißes Rauschen & 5 Kanäle verrauschte Sinuskopien)

rrelation Assoziation Dependenz Markovnetze Bavesnetze Inferenz P-Lernen S-Lernen Gaußnetze X

Korrelationsgruppierung

Was tut dieser Algorithmus?

Single-linkage Agglomeration — aber:

Terminiert bei Unterschreiten der Korrelationsschwelle. Terminiert sobald alle Einermengen "verbraucht" sind.

Synthesedatenbeispiel

Für die Daten $\omega \subset {\rm I\!R}^{15}$ werden in den ersten fünf Schritten die Gruppen

$$\{1,11\}, \{2,12\}, \{3,13\}, \{4,14\}, \{5,15\}$$

gebildet; anschließend gibt es jeweils drei gleichwahrscheinliche Möglichkeiten:

- 1. Eine der "alten" Gruppen wird mit einem neuen Index aufgefüllt.
- 2. Zwei "alte" Gruppen werden vereinigt.
- 3. Aus zwei "frischen" Indizes wird eine neue Gruppe gebildet.

Mit der Ausnahme von 1. sind all diese Optionen höchst unerwünscht.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze X

Gestörte (lineare) Abhängigkeit

 $\mathbb{Y} = f(\mathbb{X}) + \mathbb{E}$ mit Funktionsprototyp $f: \mathbb{R} \to \mathbb{R}$ und Residuum \mathbb{E}

Lemma

Für zwei normalverteilte Zufallsvariablen X, Y mit

$$\mathbb{Y} = a\mathbb{X} + b + \mathbb{E} , \qquad \mathbb{X} \sim \mathcal{N}(\mu_x, \sigma_x^2) , \qquad \mathbb{E} \sim \mathcal{N}(0, \sigma_e^2)$$

gehorcht \mathbb{Y} der Verteilungsaussage

$$\mathbb{Y} \sim \mathcal{N}(a\mu_x + b, a^2\sigma_x^2 + \sigma_e^2)$$
.

Die **Kovarianz** und die **Korrelation** zwischen X und Y betragen

$$\sigma_{xy} = a \cdot \sigma_x^2$$
 bzw. $\rho_{xy} = \operatorname{sign}(a) \cdot \left(1 + \frac{\sigma_e^2}{a^2 \cdot \sigma_x^2}\right)^{-\frac{1}{2}}$.

Bemerkung

Die Korrelation ρ_{xy} erbt das Vorzeichen von a.

Der Betrag wächst und fällt mit $\sigma_{\rm e}^{-2}$ im Einheitsintervall.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Kausalität und Scheinzusammenhang

Verursacht Diät-Cola wirklich Übergewicht?

Ursache und Wirkung

Korrelation und Abhängigkeit haben keine Vorzugsrichtung:

$$\left\{ \begin{aligned} &\mathbb{X}_i = \text{,,K\"{o}rpergewicht [kg]''} \\ \mathbb{X}_i = \text{,,Konsum kalorien reduzier ter Getr\"{a}nke [\ell]''} \end{aligned} \right\}$$

Hohe (positive) Korrelation(en) $\rho_{ij} = \rho_{ji}$ ohne Hinweis auf Kausalrichtung.

Versteckte gemeinsame Ursache oder Lederallergie?

Das Korrelationsmaß hat keine Vorzugsrichtung:

Hohe (positive) Korrelation ρ_{ij} ohne jeden (direkten) kausalen Zusammenhang.

Beweis.

Berechnung der Kovarianz (o.B.d.A. ist $\mu_x = 0$):

$$\sigma_{xy} = \operatorname{Cov}[\mathbb{X}, \mathbb{Y}] = \mathcal{E}[\mathbb{X}\mathbb{Y}] - \mu_x \mu_y$$

$$= \mathcal{E}[a\mathbb{X}^2 + b\mathbb{X} + \mathbb{E}\mathbb{X}] - \mu_x \mu_y$$

$$= a \cdot (\sigma_x^2 + \mu_x^2) + b\mu_x + \mu_e \mu_x - \mu_x \mu_y$$

$$= a\sigma_x^2 + a\mu_x^2 + b\mu_x + \mu_e \mu_x - \mu_x \mu_y$$

$$= a\sigma_x^2$$

Berechnung der Korrelation:

$$\rho_{xy} = \frac{a\sigma_x^2}{\sqrt{\sigma_x^2 \cdot (a^2 \sigma_x^2 + \sigma_e^2)}}$$

$$= \operatorname{sign}(a) \cdot \frac{a\sigma_x^2}{a\sigma_x^2 \cdot \sqrt{1 + \sigma_e^2 / (a^2 \sigma_x^2)}}$$

$$= \operatorname{sign}(a) \cdot \left(1 + \frac{\sigma_e^2}{a^2 \sigma_x^2}\right)^{-\frac{1}{2}}$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

(Bi-) Partielle Korrelation

Vergleich nach Subtraktion der Ausgleichsgeraden

Definition

Es seien Zufallsvariablen X_1, \ldots, X_N gegeben; ferner bezeichne

$$\mathbb{X}_{i|k} = a_{i|k} \cdot \mathbb{X}_k + b_{i|k} , \qquad (i, k \in \{1, \ldots, N\}, i \neq k)$$

den linearen **Quadratmittelprädiktor** für X_i aus X_k ("Ausgleichsgerade").

Dann heißt

$$\rho_{ii|k} \stackrel{\text{def}}{=} \operatorname{Corr}[\mathbb{X}_i - \mathbb{X}_{i|k}, \mathbb{X}_i - \mathbb{X}_{i|k}]$$

die **partielle Korrelation** zwischen X_i und X_i hinsichtlich X_k und es heißt

$$\rho_{i|k,j|\ell} \stackrel{\text{def}}{=} \operatorname{Corr}[\mathbb{X}_i - \mathbb{X}_{i|k}, \mathbb{X}_j - \mathbb{X}_{j|\ell}]$$

die **bipartielle Korrelation** zwischen X_i und X_i hinsichtlich X_k und X_ℓ .

(Bi-) Partielle Korrelation

Berechnung aus den gewöhnlichen Korrelationskoeffizienten

Lemma

Es seien die Zufallsvariablen $X_1, ..., X_N$ und ihre Korrelationen ρ_{ij} , $i, j \in \{1, ..., N\}$ gegeben.

1. Die partielle Korrelation zwischen \mathbb{X}_i und \mathbb{X}_j ohne den Einfluß von \mathbb{X}_k hat den Wert

$$\rho_{ij|k} = \frac{\rho_{ij} - \rho_{ik} \cdot \rho_{jk}}{\sqrt{(1 - \rho_{ik}^2) \cdot (1 - \rho_{jk}^2)}}.$$

2. Die bipartielle Korrelation zwischen \mathbb{X}_i und \mathbb{X}_j ohne den Einfluß von \mathbb{X}_k bzw. \mathbb{X}_ℓ hat den Wert

$$\rho_{i|k,j|\ell} = \frac{\rho_{ij} - \rho_{ik}\rho_{jk} - \rho_{i\ell}\rho_{j\ell} + \rho_{i\ell}\rho_{k\ell}\rho_{j\ell}}{\sqrt{(1 - \rho_{ik}^2) \cdot (1 - \rho_{j\ell}^2)}}.$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Regressionsanalyse

Definition

Eine Familie

$$\left[f(\cdot|\boldsymbol{a}): \mathbb{R}^N \to \mathbb{R}\right]_{\boldsymbol{a} \in \mathcal{M}}$$

von Abbildungen heißt **Funktionsprototyp** der Dimension N; ein Element $f(\cdot|\mathbf{a})$ der Familie heißt **Funktionsinstanz** zu \mathbf{a} .

Für einen Datensatz $\omega\subset {\rm I\!R}^N imes {\rm I\!R}$ definieren wir den **Regressionsfehler**

$$\varepsilon(f, \mathbf{a}, \omega) \stackrel{\text{def}}{=} \sum_{(\mathbf{x}, \mathbf{y}) \in \omega} (\mathbf{y} - f(\mathbf{x}, \mathbf{a}))^2$$

von $f(\cdot|\mathbf{a})$ über ω . Eine Funktionsinstanz $f(\cdot|\mathbf{a}^*)$ mit minimalem Regressionsfehler heißt **Regressionfunktion** von ω , ihre Parameter \mathbf{a}^* heißen **Regressionsparameter**.

Beispiel — lineare Regression

Die spezielle Familie der $f(\cdot|\mathbf{a}):(x_1,\ldots,x_N)\mapsto a_0+\sum_{n=1}^N a_nx_n$ mit $\mathbf{a}\in\mathbb{R}^{N+1}$ heißt **affiner** oder — im Fall $a_0\equiv 0$ — **linearer** Funktionsprototyp.

Beispiel — U.S. Arrests

Mord/Überfall · Metropol/Vergewaltigung · Mord/Vergewaltigung

orrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Beispiel — Ausgleichsgerade

Funktionsprototyp der Dimension N=1 \Longrightarrow Geradengleichungen y=a+bx

Regressionsparameter

für einen gegebenen Datensatz $\omega\subset {\rm I\!R}\times {\rm I\!R}$

$$b = \frac{\sigma_{xy}}{\sigma_{xx}}$$
 und $a = \mu_y - b\mu_x = \mu_y - \frac{\sigma_{xy}}{\sigma_{xx}} \cdot \mu_x$

Regressionsfehler

einer Geraden y=a+bx (Verschiebung \leadsto o.B.d.A. $\mu_x=0$)

$$\frac{1}{T} \cdot \varepsilon(a, b, \omega) = \frac{1}{T} \sum_{t} (y_t - a - bx_t)^2 = \dots$$

$$= \sigma_{yy} + \mu_y^2 + a^2 + b^2 \sigma_{xx} - 2a\mu_y - 2b\sigma_{xy}$$

$$= \sigma_{yy} \cdot (1 - \rho_{xy}^2) \quad \text{(Einsetzen } a = \mu_y \text{ und } b = \sigma_{xy}/\sigma_{xx} \text{)}$$

Aufgeklärte Varianz

Die quadrierte Korrelation $\rho_{xy}^2 \in [0,1]$ ist der proportionale Anteil der Varianz σ_{yy} von \mathbb{Y} , der durch die ZV $\hat{\mathbb{Y}} = a + b \cdot \mathbb{X}$ aufgeklärt werden konnte.

Correlation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Lineare und nichtlineare Regression

Kein Fall für Ausgleichsgeraden

Betrachte die Taylorreihenentwicklung der sinusoidalen Abhängigkeit

$$y = \sin(x + \alpha) = \underbrace{\sin \alpha + x \cos \alpha}_{\text{linear}} - x^2 \frac{\sin \alpha}{2} - x^3 \frac{\cos \alpha}{6} \pm \dots$$

Ausgleichspolynome

Affiner Regressionsansatz mit Termexpansion, z.B. polynomial für N = 3:

$$(x_1, x_2, x_3) \mapsto (1, x_1, x_2, x_3, x_1^2, x_2^2, x_3^2, x_1x_2, x_1x_3, x_2x_3, \ldots)$$

Korrelation Assoziation Dependenz Markovnetze Bavesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Lokale Regression

Eine Frage der guten Nachbarschaft

Nächster-Nachbar-Regel

Belegmenge $\omega^{(x)} = \{x_s\}$ ist einelementig.

$$\varepsilon(f, \boldsymbol{a}, \omega \mid \boldsymbol{x}) \stackrel{\text{def}}{=} (y_s - f(\boldsymbol{x}_s | \boldsymbol{a}))^2$$
, $s = \underset{t=1...T}{\operatorname{argmin}} d(\boldsymbol{x}, \boldsymbol{x}_t)$

k-Nächste-Nachbarn-Regel

Scharfe Belegmenge $\omega^{(x)}$ mit genau k Elementen.

$$\varepsilon(f, \boldsymbol{a}, \omega \mid \boldsymbol{x}) \stackrel{\text{def}}{=} \sum_{i=1}^{k} (y_{s_i} - f(\boldsymbol{x}_{s_i} | \boldsymbol{a}))^2$$

Gewichtete Mittelung

Unscharfe Belegmenge $\omega^{(x)}$ mit T Elementen.

$$\varepsilon(f, \boldsymbol{a}, \omega \mid \boldsymbol{x}) \stackrel{\text{def}}{=} \sum_{t=1}^{T} w_t \cdot (y_t - f(\boldsymbol{x}_t | \boldsymbol{a}))^2 , \quad w_t \propto \exp\left\{-\frac{1}{2\sigma^2} \cdot \|\boldsymbol{x} - \boldsymbol{x}_t\|^2\right\}$$

Lokale Regression

Verzögertes Lernen

- lokales Modell "just in time"
- kein globales Modell

$$f(\mathbf{x}_t|\mathbf{a}^*) \approx y_t \ (\forall t)$$

GEGEBEN:

Lerndatenprobe $\omega = [(x_t, y_t)]_1^T \subset \mathbb{R}^N \times \mathbb{R}$ und Eingabevektor $z \in \mathbb{R}^N$

- 1 NACHBARSCHAFT FIXIEREN Berechne Nachbarschaftsmenge $\omega^{(z)} \subset \omega$, eventuell mit Gewichten $\{w_t\}_1^T$.
- 2 LOKALE AUSGLEICHSRECHNUNG Schätze lokale Regressionsfunktion $f(\cdot|\mathbf{a}^{(z)})$ für den $\omega^{(z)}$ -Datensatz.
- 3 VORHERSAGE TREFFEN Setze $\hat{y}(z) := f(z|a^{(z)})$.

rrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Lokale Regression

Konstante Funktionsprototypen · Disjunkte Nachbarschaften

Konstanter Funktionsprototyp

$$f(\cdot|a): \left\{ \begin{array}{ccc} \mathbb{R}^{N^{J}} & \to & \mathbb{R} \\ x & \mapsto & a \end{array} \right., \qquad a \in \mathbb{R}$$

NN-Regel	k-NN-Regel	Distanzgewichte
$f_n(\mathbf{x}) = y_{t(\mathbf{x})}$	$f_k(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^k y_{t_i(\mathbf{x})}$	$f_{g}(x) = \mathbf{w}^{\top} \mathbf{y} / \ \mathbf{w}\ _{1}$
"Kopie"	"Ortsmittel"	"Schwerpunkt"

Stückweise lineare Regression

- **1** GRUPPIERUNG Lerne extensionale Partition $\omega_1, \ldots, \omega_K$ von x_1, \ldots, x_T (*K*-means).
- 2 STÜCKWEISE REGRESSION Lerne lokale Regressionsfunktionen $f(\cdot|\mathbf{a}_1), f(\cdot|\mathbf{a}_2), \dots, f(\cdot|\mathbf{a}_K)$.
- VORHERSAGEPHASE
 - · Bestimme zu $\mathbf{x} \in \mathbb{R}^{N}$ den Gruppenindex λ , also mit $\mathbf{x} \in \mathbf{\Omega}_{\lambda} \supset \omega_{\lambda}$.
 - · Berechne den Vorhersagewert $\hat{y}(x) = f(x|a_{\lambda})$.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Informationstheorie

Der gedächtnislose Informationskanal — Claude Shannon, 1949

Der Informationskanal

ist durch die gemeinsame Verteilung $f_{xy}(\cdot,\cdot)$ seiner **Eingangsvariablen** $\mathbb X$ und seiner **Ausgangsvariablen** $\mathbb Y$ charakterisiert.

Kanalentropien

Eingangsentropie Ausgangsentropie Gesamtentropie $\mathcal{H}(\mathbb{X}) = \mathcal{E}[-\log f_{x}(\mathbb{X})]$ $\mathcal{H}(\mathbb{Y}) = \mathcal{E}[-\log f_{y}(\mathbb{Y})]$ $\mathcal{H}(\mathbb{X}\mathbb{Y}) = \mathcal{E}[-\log f_{xy}(\mathbb{X},\mathbb{Y})]$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Transinformation normalverteilter Attribute

Lemma

Für die (differentiellen) Entropien und die Transinformation normalverteilter Zufallsvariablen gelten die nachfolgenden Aussagen:

1. Wenn $\mathbb{X} \sim \mathcal{N}(\mu, \sigma^2)$, so gilt:

$$\mathcal{H}(\mathbb{X}) = \frac{1}{2} \cdot (\log \sigma^2 + 1 + \log(2\pi))$$

2. Wenn $(\mathbb{X}_1, \dots, \mathbb{X}_N) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{S})$, so gilt:

$$egin{array}{lcl} \mathcal{H}(\mathbb{X}_1 \ldots \mathbb{X}_{\mathcal{N}}) & = & rac{1}{2} \cdot (\log \det(oldsymbol{\mathcal{S}}) + \mathcal{N} + \mathcal{N} \log(2\pi)) \ \\ \mathcal{H}(\mathbb{X}_i \mathbb{X}_j) & = & rac{1}{2} \cdot \log(\sigma_{ii} \cdot \sigma_{jj} - \sigma_{ij}^2) + 1 + \log(2\pi) \end{array}$$

3. Für jedes bivariat normale Variablenpaar (X_i, X_j) gilt:

$$\Im(\mathbb{X}_i; \mathbb{X}_j) = -\frac{1}{2} \cdot \log(1 - \rho_{ij}^2)$$

Bedingte Kanalentropien

Was Sie schon immer über Entropien wissen wollten, aber noch nie zu fragen wagten

Definition

Der Informationskanal sei durch f_{xy} charakterisiert.

- $\mathcal{H}(X|Y) = \mathcal{E}[-\log f_{x|y}(X|Y)]$ heißt Äquivokation des Kanals.
- $\mathcal{H}(\mathbb{Y}|\mathbb{X}) = \mathcal{E}[-\log f_{y|x}(\mathbb{Y}|\mathbb{X})]$ heißt **Dissipation** des Kanals.
- $\Im(\mathbb{X}; \mathbb{Y}) = \mathcal{E}[-\log \frac{f_{\mathbf{x}}(\mathbb{X}) \cdot f_{\mathbf{y}}(\mathbb{Y})}{f_{\mathbf{x}\mathbf{y}}(\mathbb{X},\mathbb{Y})}]$ heißt **Transinformation** des Kanals.

Lemma

In einem gedächtnislosen Informationskanal gelten die Aussagen:

Divergenz (Kullback-Leibler)

1. $\mathcal{H}(\mathbb{X}|\mathbb{Y}) = \mathcal{H}(\mathbb{X}\mathbb{Y}) - \mathcal{H}(\mathbb{Y})$ 2. $\mathcal{H}(\mathbb{Y}|\mathbb{X}) = \mathcal{H}(\mathbb{X}\mathbb{Y}) - \mathcal{H}(\mathbb{X})$

 $\mathcal{D}(f||g) = \mathcal{E}_f[\log f/g]$

3. $\Im(\mathbb{X}; \mathbb{Y}) = \mathcal{H}(\mathbb{X}) + \mathcal{H}(\mathbb{Y}) - \mathcal{H}(\mathbb{X}\mathbb{Y})$

4. $\Im(\mathbb{X}; \mathbb{Y}) = \mathcal{D}(f_{xy} || f_x \cdot f_y)$

Beweis.

1. Univariater Fall:

$$\mathcal{H}(\mathbb{X}) = \mathcal{E}[-\log \mathcal{N}(\mathbb{X} \mid \mu, \sigma^2)] = \mathcal{E}[\frac{1}{2}\log(2\pi\sigma^2) + \frac{1}{2}\left(\frac{\mathbb{X} - \mu}{\sigma}\right)^2]$$
$$= \mathcal{E}[\frac{1}{2}\log(2\pi\sigma^2) + \frac{1}{2}\tilde{\mathbb{X}}^2] = \frac{1}{2} \cdot (\log \sigma^2 + 1 + \log(2\pi))$$

Beachte, daß $\tilde{\mathbb{X}} = {(\mathbb{X} - \mu)}_{\sigma}$ standardnormalverteilt ist, d.h. $\tilde{\mathbb{X}} \sim \mathcal{N}(0, 1)$.

2. Multivariater Fall:

$$\mathcal{H}(\mathbb{X}) = \mathcal{E}[-\log \mathcal{N}(\mathbb{X} \mid \boldsymbol{\mu}, \boldsymbol{S})] = \mathcal{E}[\frac{1}{2} \log \det(2\pi \boldsymbol{S}) + \frac{1}{2} \cdot (\mathbb{X} - \boldsymbol{\mu})^{\top} \boldsymbol{S}^{-1} (\mathbb{X} - \boldsymbol{\mu})]$$
$$= \mathcal{E}[\frac{1}{2} \log \det(2\pi \boldsymbol{S}) + \frac{1}{2} \cdot \tilde{\mathbb{X}}^{\top} \tilde{\mathbb{X}}] = \frac{1}{2} \cdot (\log \det(\boldsymbol{S}) + N + N \log(2\pi))$$

Bivariater Fall: gilt wegen det $\begin{pmatrix} \sigma_{ii} & \sigma_{ij} \\ \sigma_{ji} & \sigma_{jj} \end{pmatrix} = \sigma_{ii} \sigma_{jj} - \sigma_{ij}^2$.

3. Transinformationen:

$$\begin{split} \Im(\mathbb{X}_i; \mathbb{X}_j) &= \mathcal{H}(\mathbb{X}_i) + \mathcal{H}(\mathbb{X}_j) - \mathcal{H}(\mathbb{X}_i \mathbb{X}_j) \\ &= +\frac{1}{2} \cdot \log \left(\frac{\sigma_{ii} \sigma_{jj}}{\sigma_{ii} \sigma_{jj} - \sigma_{ii}^2} \right) = -\frac{1}{2} \cdot \log \left(1 - \rho_{ij}^2 \right) \end{split}$$

 $(1ho_{ii}^2)$ ist der Anteil **unaufgeklärter** Varianz.

Transinformation diskreter Attribute

Wertebereiche und Verteilung

Es sei $\mathbb{X} \in \{\xi_1,\dots,\xi_K\}$ und $\mathbb{Y} \in \{\eta_1,\dots,\eta_L\}$ verteilt gemäß

$$p_{k\ell} = P(X = \xi_k, Y = \eta_\ell)$$

Marginale und gemeinsame Entropien

$$\mathcal{H}(\mathbb{XY}) = -\sum_{k} \sum_{\ell} p_{k\ell} \cdot \log p_{k\ell}$$

$$\mathcal{H}(\mathbb{X}) = -\sum_{k} \left(\sum_{\ell} p_{k\ell}\right) \cdot \log \left(\sum_{\ell} p_{k\ell}\right)$$

$$\mathcal{H}(\mathbb{Y}) = -\sum_{\ell} \left(\sum_{k} p_{k\ell}\right) \cdot \log \left(\sum_{k} p_{k\ell}\right)$$

$$\text{Transinformation } \Im(\mathbb{X}; \mathbb{Y})$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Korrelation, Regression und Transinformation

Assoziationsregeln und Netzwerkanalyse

Bedingte statistische Unabhängigkei

Graphische Modelle: ungerichtete Grapher

Kausale Modelle: gerichtete azyklische Grapher

Berechnen bedingter Wahrscheinlichkeiter

Parameterschätzung in Bayesnetzen und Loglinearmodellei

Aufdeckung der Abhängigkeitsstruktu

مرواني والمستورات المستورات

Transinformation gemischtskaliger Attribute

$$\mathbb{X} \in \mathrm{I\!R} \; \mathsf{und} \; \mathbb{Y} \in \{\eta_1, \dots, \eta_L\}$$

Punktweise Transinformation

$$\Im(\mathbb{X};\mathbb{Y}) = \int_{\mathbb{X}} \sum_{\mathbf{y}} f(\mathbf{x},\mathbf{y}) \cdot \Im(\mathbf{x};\mathbf{y})$$

Die "mutual information" zwischen korrespondierenden Werten x und y:

$$\log \frac{f(x|y)}{f(x)} = \underbrace{\log \frac{f(x,y)}{f(x) \cdot f(y)}}_{\Im(x;y)} = \log \frac{f(y|x)}{f(y)}$$

Faktor diskret

Gaußsche Mischverteilung

Faktor stetig

Diskriminantverteilung

$$f(\mathsf{x},\eta_\ell) \; = \; \pi_\ell \cdot \mathcal{N}(\mathsf{x} \mid \mu_\ell, \sigma_\ell^2)$$

$$f(x, \eta_{\ell}) = f_{\mathbb{X}}(x) \cdot p(\eta_{\ell}|x)$$

Schätzformel

$$\sum_{t=1}^{\mathcal{T}} \frac{1}{\mathcal{T}} \cdot \log \frac{\mathcal{N}(\mathsf{x}_t \mid \mu_{\ell(t)}, \sigma^2_{\ell(t)})}{\sum_{\ell} \pi_{\ell} \cdot \mathcal{N}(\mathsf{x}_t \mid \mu_{\ell}, \sigma^2_{\ell})}$$

Schätzformel

$$\sum_{t=1}^{T} \frac{1}{T} \cdot \log \frac{p(\eta_{\ell(t)}|x_t)}{\pi_{\ell(t)}}$$

Assoziationsanalyse

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Agrawal (SIGMOD Conference 1993) — mehr als $6.000 \times$ zitiert!

Warenkorbdaten

 $Objekte = {\tt qualitative} \ \textbf{St\"{u}cklisten}$

$$\leadsto \Omega = \mathfrak{P}(\mathfrak{A})$$

$$\omega \subset \mathbf{\Omega} = \{0,1\}^N$$

über einem globalem **Artikelinventar** $\mathfrak{A} = \{\mathfrak{a}_1, \dots, \mathfrak{a}_N\}$

Assoziationsregeln

"Wer alle Produkte aus A kauft, der kauft auch alle Produkte aus B."

IF
$$A$$
 THEN B , $A,B\in \mathbf{\Omega}$, $A\cap B=\varnothing$

Beispielregeln

IF {Windeln} THEN {Bier}

IF {Brot, Butter} THEN {Milch}

IF {Rosen, Wein, Goldbären} THEN {Kondome}

Bemerkungen

- Warenkorbdaten haben binäre Attribute.
- 2. Assoziationsregeln formulieren multiple Abhängigkeiten.

Gute und schlechte Regeln

Abdeckungs- und Geltungsgrad einer Regel · Signifikanz ihrer Prämisse

Definition

Es sei $\omega \subset \mathbf{\Omega}$ ein Datensatz, $A, B \in \mathbf{\Omega}$ zwei Stücklisten und IF A THEN B (kürzer: $A \rightarrow B$) eine Assoziationsregel. Die Größe

$$\operatorname{supp}(A \to B) \stackrel{\mathsf{def}}{=} \operatorname{supp}(A \cup B) \ , \qquad \operatorname{supp}(A) \stackrel{\mathsf{def}}{=} \frac{|\{x \in \omega \mid x \supseteq A\}|}{|\omega|}$$

heißt Support,

$$\rightsquigarrow \hat{P}(A \cup B)$$

$$conf(A \to B) \stackrel{\text{def}}{=} \frac{supp(A \cup B)}{supp(A)}$$

heißt Konfidenz und

$$\leadsto \hat{P}(B|A)$$

$$\mathsf{lift}(A \to B) \stackrel{\mathsf{def}}{=} \frac{\mathsf{supp}(A \cup B)}{\mathsf{supp}(A) \cdot \mathsf{supp}(B)}$$

heißt **Relevanz** der Assoziation $A \rightarrow B$.

$$\rightsquigarrow \frac{\hat{P}(B|A)}{\hat{P}(B)}$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Apriori-Basisalgorithmus

Schichtenweise Stücklisten- und Regelgenerierung

GEGEBEN

Warenkorbdaten ω , Stückzahlgrenze N^* , Schwellen θ_s , θ_c , θ_r .

INITIALISIERUNG

$$\mathcal{M}_1 \leftarrow \{\{i\} \mid \mathsf{supp}(\{i\}) \geq \theta_s\} , \qquad \mathcal{R} = \varnothing$$

2 SCHICHTEXPANSION $(n = 2, ..., N^*)$ Erzeuge alle

$$A = B \cup \{i\}$$
 mit $B \in \mathcal{M}_{n-1}$, $\{i\} \in \mathcal{M}_1$ und $i \notin B$.

Bringe A nach \mathcal{M}_n falls supp $(A) > \theta_s$.

REGELERZEUGUNG

Für alle
$$C \in \mathcal{M} = \bigcup_{n=1}^{N^*} \mathcal{M}_n$$
:

Für alle Artikel $i \in C$ teste

$$conf(C \setminus \{j\} \to \{j\}) \ge \theta_c \land lift(C \setminus \{j\} \to \{j\}) \ge \theta_r$$

und verbringe die Regel im Erfolgsfall nach \mathcal{R} .

Extraktion nützlicher Assoziationsregeln

Eine Frage des Aufwandes

Aufgabenstellung

Gesucht ist — bei gegebenen Warenkorbdaten — die Teilmenge solcher Regeln $A \rightarrow B$

- mit signifikantem Abdeckungsgrad
- $supp(A \rightarrow B) > \theta_{\epsilon}$

• und hohem **Geltungsgrad**

 $conf(A \rightarrow B) > \theta_c$

• und erheblicher Aussagekraft.

 $lift(A \rightarrow B) > \theta_r$

Problem

Es gibt 2^N kombinatorisch mögliche Stücklisten und es gibt 3^N mögliche Assoziationsregeln $(N = |\mathfrak{A}|).$

Lösungsansatz

Es gilt die Antitonie

$$A \supseteq B \Rightarrow supp(A) \le supp(B)$$

und es gibt nur N einelementige Stücklisten.

Regelformat und Artikelbeschreibung

Assoziationsregeln mit multipler Conclusio

Statt einfacher Regeln $C \setminus \{j\} \rightarrow \{j\}$ produziere

$$A \rightarrow B$$
 mit $A \cap B = \emptyset$ und $A \cup B = C$.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Stufenweise Erzeugung ("bottom-up") unter Verwendung der Monotonie:

$$B_1 \subseteq B_2$$
 \Leftrightarrow
$$\begin{cases} \operatorname{supp}(A_1 \to B_1) = \operatorname{supp}(A_2 \to B_2) \\ \operatorname{conf}(A_1 \to B_1) \geq \operatorname{conf}(A_2 \to B_2) \\ \operatorname{lift}(A_1 \to B_1) \geq \operatorname{lift}(A_2 \to B_2) \end{cases}$$

Aufwandsreduktion durch onthologische Gliederung

Artikeleinträge werden durch ihre Verallgemeinerungen aufgestockt.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Assoziationsanalyse für (mehrwertige) Nominalskalen

Verallgemeinerte Stücklisten

Listen von kontradiktionsfreien Attribut-Wert-Paaren:

(windy = false, play = no, outlook = sunny, humidity = high)

Es gibt $\prod_{n} (L_n + 1)$ Stücklisten und $\prod_{n} (2 \cdot L_n + 1)$ Assoziationsregeln.

Beispielregeln

Klassisch:

- IF {Spaghetti} THEN {Rotwein, Tomaten, Basilikum}
- IF {Waits, Dylan, Bush} THEN {Spektor}

Mehrwertig:

• IF {humidity = high, windy = false} THEN {outlook = sunny}

Zweiwertig:

- IF {Pommes, ¬ Ketchup} THEN {Mayonnaise}
- IF {E.Jelinek, Ch.Roche} THEN {¬U.Danella}

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Bedingte statistische Unabhängigkeit

Beispiel — Tennisdaten mit WEKA

5 Attribute · 14 Objekte · Apriori mit $\theta_s = 15\%$, $\theta_c = 90\%$

Stücklistenaufstellung (..itemsets")

12 Einermengen · 47 Paare · 39 Tripel · 6 Quadrupel

Beste Assoziationsregeln ($\theta_c \equiv 100\%$)

- IF {humidity = normal, windy = false} THEN {play = yes} IF {temperature = cool} THEN {humidity = normal}

 - IF {outlook = overcast} THEN {play = yes}
- 3 IF {temperature = cool, play = yes} THEN {humidity = normal}
 - IF $\{outlook = rainy, windy = false\}$ THEN $\{play = yes\}$
 - IF $\{outlook = rainy, play = yes\}$ THEN $\{windy = false\}$
 - IF $\{outlook = sunny, humidity = high\}$ THEN $\{play = no\}$
 - IF $\{outlook = sunny, play = no\}\ THEN\ \{humidity = high\}$
- 2 IF $\{temp = cool, windy = false\}$ THEN $\{humidity = normal, play = yes\}$ IF $\{temp = cool, humidity = normal, windy = false\}$ THEN $\{play = ves\}$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Graphische Wahrscheinlichkeitsmodelle

Regen ← Jahreszeit X_1 X_1 X_1 X_1 $X_2 = 0$ 0.2 0.3 0.1 0.7 $X_2 = 1 \mid 0.8 \quad 0.7 \quad 0.9 \quad 0.3$

(1) **JAHRESZEIT** (3) (2) RASEN-REGEN **SPRENGER** (4) FEUCHT (5)GLATT

Wozu Graphische Modelle?

- Visualisierung quantitativer Zusammenhänge
- Inferenz von Abhängigkeitsbeziehungen
- Berechnung kausaler Effekte
- Effiziente Auswertung multivariater Modelle

Jahreszeit ← $\mathbb{X}_1 = w$ 0.25 $X_1 = f$ 0.25 $X_1 = s \quad 0.25$ $\mathbb{X}_1 = h \mid 0.25$

Glatt ← Feucht $X_5 = 0$ 0.3 0.9 $X_5 = 1 \mid 0.7 \quad 0.1$

Wahrscheinlichkeit und Graphstruktur

Datensatz

Wahrscheinlichkeits(dichte)werte

$$\mathrm{P}:\Omega=\mathcal{X}_1\times\ldots\times\mathcal{X}_N\ \to\ \mathrm{I\!R}_0^+$$

durch **Statistiken** des Datensatzes $\omega \subset \Omega$ repräsentiert.

Modellformel

Saturiertes Modell
$$\prod_{n} L_{n} - 1 = 63$$
Naives Modell
$$\sum_{n} L_{n} - N = 7$$
Faktorisierung
$$3 + 4 + 4 + 4 + 2 = 17$$

$P(x) = P(x_1) \cdot P(x_2|x_1) \cdot P(x_3|x_1) \cdot P(x_4|x_2,x_3) \cdot P(x_5|x_4)$

Dependenzmodell

Menge aller **bedingten** Unabhängigkeiten zwischen **Mengen von** Zufallsvariablen

$$\Im(\mathbb{X}_2\mid\mathbb{X}_1\mid\mathbb{X}_3)$$

("Regen" unabhängig von "Rasensprenger", wenn "Jahreszeit" gegeben)

Graphisches Modell

- Markovnetz ungerichteter Graph "partielle Unabhängigkeit" X_i ↔ X_j
- Bayesnetz gerichteter azyklischer Graph "kausale Abhängigkeit" $\mathbb{X}_i \to \mathbb{X}_j$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Simpsons Paradoxon #2

Eine farbenfrohe Mordstatistik für den Bundesstaat Florida

Zweiwegetabelle: Hautfarbe & Strafmaß

Farbe _{Mörder}	#Todesurteil	#Haftstrafe	% T.U.
schwarz	17	149	11.4
weiß	19	141	12.5

kein Rassismus: ähnliche Todesurteilquote für Schwarz und Weiß

Zusatzvariable: Hautfarbe des Opfers

$Farbe_{Opfer}$	Farbe _{Mörder}	#Tod	#Haft	% T.U.
schwarz	schwarz	6	97	5.8
schwarz	weiß	0	9	0.0
weiß	schwarz	11	52	17.5
weiß	weiß	19	132	12.6

Der Mord an einem weißen Mitbürger kommt teurer zu stehen!

marginal unabhängig"

,bedingt unabhängig

Simpsons Paradoxon #1

Geschlechtsspezifische Diskriminierung an der Universität

Zweiwegetabelle: Geschlecht & Zulassungsquote

Geschlecht	#Bewerbung	#Zulassung	%
M	600	350	58.3
F	600	250	41.6

Frauen haben die geringeren Zulassungschancen!

Zusatzvariable: Fakultätszugehörigkeit

Fakultät	Geschlecht	#Bewerbung	#Zulassung	%
TECH	М	100	25	25
TECH	F	300	<i>75</i>	25
PHIL	M	200	100	<i>50</i>
PHIL	F	200	100	<i>50</i>
THEO	M	300	225	<i>75</i>
THEO	F	100	75	75
	TECH TECH PHIL PHIL THEO	TECH M TECH F PHIL M PHIL F THEO M	TECH M 100 TECH F 300 PHIL M 200 PHIL F 200 THEO M 300	TECH M 100 25 TECH F 300 75 PHIL M 200 100 PHIL F 200 100 THEO M 300 225

Männer tendieren zu Fakultäten mit hoher Zulassungsquote!

Simpsons Paradoxon #3

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Das Maradonna-Syndrom: Fußballspielen ist ungesund!

Drei Attribute $X = {}_{M}FuBballaktivität"$ $Y = {}_{M}Lebenserwartung"}$ $Z = {}_{M}Lebenserwartung"}$

"bedingt abhängig"

Bedingte Abhängigkeit

Weibliche wie männliche Regressionsgeraden

$$\mathbb{Y} = f(\mathbb{X}|0)$$
 bzw. $\mathbb{Y} = f(\mathbb{X}|0)$

besitzen positive Steigung.

Marginale Abhängigkeit

Geschlechtsneutrale Regressionsgerade

$$\mathbb{Y} = f(\mathbb{X})$$

besitzt **negative** Steigung.

Grund:

Frauen sind tendenziell langlebig und stehen eher auf Volleyball+Ayurveda.

orrelation Assoziation **Dependenz** Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ Korrelation Assoziation **Dependenz** Markovnetze Bayesnetze Infer

Bedingte statistische Unabhängigkeit

von Mengen von Zufallsvariablen

Definition

Es seien A, B, Z drei paarweise disjunkte Teilmengen der Zufallsvariablen $\{\mathbb{X}_1, \dots, \mathbb{X}_N\}$. Dann heißt A bedingt statistisch unabhängig von B bezogen auf Z genau dann, wenn gilt

$$P(A \mid B, Z) = P(A \mid Z)$$

und wir schreiben

$$\Im(A \mid Z \mid B)$$
.

Ferner heißen A und B bedingt faktorisierbar bezogen auf Z, falls es zwei geeignete Funktionen (sic!) f und g gibt mit

$$P(A, B, Z) = f(A, Z) \cdot g(B, Z) .$$

Marginale statistische Unabhängigkeit

Der Spezialfall "gewöhnlicher" statistischer Unabhängigkeit ergibt sich für UA-Postulate der Form $\Im(A\mid Z\mid B)$ mit $Z=\varnothing$.

Beweis.

 $\bullet \quad (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$

$$P(b \mid a, z) = \frac{P(a, b \mid z)}{P(a|z)} = \frac{P(a \mid b, z) \cdot P(b|z)}{P(a|z)}$$
$$= \frac{P(a|z) \cdot P(b|z)}{P(a|z)} = P(b|z)$$

 $\bullet (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$

$$P(a,b,z) = P(a,z) \cdot P(b \mid a,z) = P(a,z) \cdot P(b|z) =: f(a,z) \cdot g(b,z)$$

• $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$

$$P(a \mid b, z) = \frac{P(a, b, z)}{P(b, z)} = \frac{P(a, b, z)}{\sum_{a} P(a, b, z)}$$
$$= \frac{f(a, z) \cdot g(b, z)}{\sum_{a} f(a, z) \cdot g(b, z)} = \frac{f(a, z)}{\sum_{a} f(a, z)}$$

Der letzte Ausdruck ist offenbar unabhängig von b.

Rechenregeln für bedingte Unabhängigkeiten

Lemma

Die folgenden Allaussagen über die Werte a, b und z dreier Zufallsvariablen X_a, X_b, X_z sind äquivalent:

1.
$$P(a \mid b, z) = P(a|z)$$

(a ∕ b wenn z bekannt)

2.
$$P(b \mid a, z) = P(b|z)$$

$$(b \not\sim a \text{ wenn } z \text{ bekannt})$$

3.
$$P(a,b,z) = f(a,z) \cdot g(b,z)$$

(Faktorisierbarkeit)

Diese Äquivalenz gilt entsprechend für **Mengen** von Zufallsvariablen.

Weitere äquivalente Formulierungen

für die bedingte statistische Unabhängigkeit zwischen drei Zufallsvariablen:

1.
$$P(a, b, z) = \frac{P(a,z) \cdot P(b,z)}{P(z)}$$

2.
$$P(a, b \mid z) = P(a|z) \cdot P(b|z)$$

3.
$$P(a, b, z) = P(a|z) \cdot P(b, z)$$

Diskrete 7V

 $P(Y = y \mid I = i)$ ist konstant bzgl. i.

Stetige ZV

Lineare Regression $\mathbb{Y}|x \sim \mathcal{N}(a + bx, \sigma^2)$ mit b = 0.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Beispiel — Numerische Klassifikation

Normale und naive Bayesregel

Datenerzeugungsmodell

für Merkmale $x_1, \ldots, x_N \in \mathbb{R}$ und Klassenvariable $y \in \{\Omega_1, \ldots, \Omega_K\}$:

$$f(\mathbf{x}, \Omega_{\kappa}) = P(\Omega_{\kappa}) \cdot f(\mathbf{x}|\Omega_{\kappa})$$

- Multivariate Normalverteilungsdichte (saturiertes Modell): $x_i \leftarrow \{x_i \mid j \neq i\}$ für alle i
- Klassenbedingte Unabhängigkeit (ausgedünntes Modell): $f(\mathbf{x}|\Omega_{\kappa}) = \prod_{i} \mathcal{N}(x_{i} \mid \mu_{i}, \sigma_{i}^{2})$ ergibt $x_{i} \leftarrow \emptyset$ für alle i

Korrelation Assoziation **Dependenz** Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Beispiel — N-Gramm-Grammatiken

Datenerzeugungsmodell

für eine Symbolfolge (Wortfolge) $\mathbf{w} = w_1 \dots w_M$ ist die **Kettenregel**

$$P(w) = \prod_{m=1}^{M} P(w_{m} | w_{1}, ..., w_{m-1}) \simeq \prod_{m=1}^{M} P(w_{m} | w_{m-2}, w_{m-1})$$
$$\simeq \prod_{m=1}^{M} P(w_{m} | w_{m-1})$$

mit den statistischen Abhängigkeiten $\begin{cases} w_m \leftarrow w_{m-1} \text{ (Bigramme)} \\ w_m \leftarrow \{w_{m-2}, w_{m-1}\} \text{ (Trigramme)} \end{cases}$.

Unabhängigkeitspostulate der Bigramm-Grammatik

$$\Im(\{w_m\} \mid \{w_{m-1}\} \mid \{w_1, \dots, w_{m-2}\})$$
 für alle $m = 2, \dots, M$.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Beispiel — (Semi-)kontinuierliches HMM

mit eindimensionalen Ausgabewerten

Datenerzeugungsmodell

Beobachtbare Wertefolge $\mathbf{x} = x_1, \dots, x_T$ mit $x_t \in \mathbb{R}$ Verborgene Komponentenfolge $\mathbf{k} = k_1 \dots k_T$ mit $k_t \in \mathcal{K}$ Verborgene Zustandsfolge $\mathbf{q} = q_1 \dots q_T$ mit $q_t \in \mathcal{Q}$

$$P(\mathbf{X}) = P(\mathbf{X}|\lambda) = \sum_{\mathbf{q} \in \mathcal{Q}^T} \sum_{\mathbf{k} \in \mathcal{K}^T} P(\mathbf{X}, \mathbf{k}, \mathbf{q} \mid \lambda)$$

mit statistischen Abhängigkeiten $q_t \leftarrow q_{t-1}$, $k_t \leftarrow q_t$ und $x_t \leftarrow k_t$.

Beispiel — Hidden Markov Modelle

Datenerzeugungsmodell

Beobachtbare Zeichenfolge $o = o_1 \dots o_T$ mit $o_t \in \mathcal{O}$ Verborgene Zustandsfolge $q = q_1 \dots q_T$ mit $q_t \in \mathcal{Q}$

$$P(\boldsymbol{o}) = P(\boldsymbol{o}|\lambda) = \sum_{\boldsymbol{q} \in \mathcal{Q}^{\mathcal{T}}} P(\boldsymbol{o}, \boldsymbol{q} \mid \lambda) = \sum_{\boldsymbol{q} \in \mathcal{Q}^{\mathcal{T}}} \prod_{t=1}^{\mathcal{T}} P(q_t|q_{t-1}) \cdot P(o_t|q_t)$$

mit statistischen Abhängigkeiten $q_t \leftarrow q_{t-1}$ und $o_t \leftarrow q_t$.

Unabhängigkeitspostulate des HMM

$$\Im(\{q_{t+1}\} \mid \{q_t\} \mid \{q_1, \dots, q_{t-1}; o_1, \dots, o_t\})$$
 und $\Im(\{o_{t+1}\} \mid \{q_{t+1}\} \mid \{q_1, \dots, q_t; o_1, \dots, o_t\})$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Beispiel — 2D Markov Random Field

Texturmodelle in der Grauwertbildanalyse

Datenerzeugungsmodell

Beobachtbare Zufallsvariablen $x_{i,j}$ auf dem **Ortsgitter** $i=1,\ldots,I$ und $j=1,\ldots,J$ mit statistischen Abhängigkeiten $x_{i,j} \leftarrow \{x_{i-1,j-1},x_{i,j-1},x_{i-1,j}\}$.

Unabhängigkeitspostulate des MRF

Für alle Gitterpunkte $(n, m) \in \mathbb{Z} \times \mathbb{Z}$ ist gefordert: $\Im(\{\mathbb{X}_{n,m}\} \mid \{\mathbb{X}_{n,m-1}, \mathbb{X}_{n-1,m}, \mathbb{X}_{n-1,m-1}\} \mid \{\mathbb{X}_{i,i} \mid i < n, j < m\})$

Dependenzmodelle

Algebraische Charakterisierung von Abhängigkeitsstrukturen

Definition

Sei $V = \{X_1, \dots, X_N\}$ eine Menge von Zufallsvariablen und $P(\cdot)$ eine Verteilung über V. Die Relation $\Im = \Im_P$ mit

$$\Im: \mathfrak{P}X \times \mathfrak{P}X \times \mathfrak{P}X \rightarrow \{0,1\}$$

heißt **Dependenzmodell von** $P(\cdot)$, wenn für alle (disjunkten) Variablenmengen $A, B, Z \subset V$ gilt:

$$\Im(A \mid Z \mid B) \Leftrightarrow P(A \mid B, Z) = P(A \mid Z)$$

Bemerkungen

- 1. Es gibt 4^N viele Variablenkombinationen A, B, Z. Es gibt 2^{4^N} viele dreistellige Mengenrelationen \Im über V. Wieviele \Im davon sind ein valides Dependenzmodell \Im_P ?
- 2. Simpsons Paradoxa: $\Im(A|Z|B) \Rightarrow \Im(A|\varnothing|B)$ und $\Im(A|Z|B) \notin \Im(A|\varnothing|B)$

Beweis.

SYM Symmetrie

$$\Im(A|Z|B) \Rightarrow P(A,Z,B) = \underbrace{f(A,Z) \cdot g(B,Z)}_{P(B,Z,A)} \Rightarrow \Im(B|Z|A)$$

DEC Dekomposition

$$P(A,Z,B) = \sum_{C} P(A,Z,B,C) = \sum_{C} f(A,Z) \cdot g(B,C,Z) = f(A,Z) \cdot \underbrace{\sum_{C} g(B,C,Z)}_{C}$$

beweist $\Im(A|Z|B)$; analoge Herleitung von $\Im(A|Z|C)$.

WUN Schwache Vereinigung

$$\Im(A \mid Z \mid B, C) \Rightarrow P(A, Z, B, C) = f(A, Z) \cdot g(B, C, Z)$$
$$= \tilde{f}(A, Z, C) \cdot \tilde{g}(B, Z, C) \Rightarrow \Im(A \mid Z, C \mid B)$$

CON Kontraktion

$$P(A \mid Z, B, C) = \underbrace{P(A \mid Z, B)}_{\Im(A|Z, B|C)} = \underbrace{P(A \mid Z)}_{\Im(A|Z|B)} \Rightarrow \Im(A \mid Z \mid B, C)$$

INT Durchschnitt (Beweis zu äquivalenter Formulierung INT* folgt)

Pearlsche Dependenzaxiome

Axiomatische Charakterisierung aller "erlaubten" \S-Relationen

Satz (Judea Pearl)

Es sei $P(\cdot)$ eine Wahrscheinlichkeitsverteilung über $\mathbb{X}_1, \dots, \mathbb{X}_N$ und $\Im(\cdot|\cdot|\cdot)$ das zugehörige Dependenzmodell.

Dann gelten für alle (paarweise disjunkten) Variablenmengen A, B, C, Z die folgenden vier Aussagen:

SYM Symmetrie $\Im(A \mid Z \mid B) \Leftrightarrow \Im(B \mid Z \mid A)$

DEC **Dekomposition** $\Im(A \mid Z \mid B \cup C) \Rightarrow \Im(A \mid Z \mid B) \land \Im(A \mid Z \mid C)$

WUN Schwache Vereinigung $\Im(A \mid Z \mid B \cup C) \Rightarrow \Im(A \mid Z \cup C \mid B)$

CON Kontraktion $\Im(A \mid Z \mid B) \land \Im(A \mid Z \cup B \mid C) \Rightarrow \Im(A \mid Z \mid B \cup C)$

Falls $P(\cdot)$ zudem streng positiv $(\forall x \in \Omega : P(x) > 0)$ ist, gilt sogar:

INT Durchschnitt

 $\Im(A \mid Z \cup C \mid B) \land \Im(A \mid Z \cup B \mid C) \Rightarrow \Im(A \mid Z \mid B \cup C)$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Pearlsche Dependenzaxiome

Beweis durch angestrengtes Hingucken

Korrelation Assoziation **Dependenz** Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Bemerkungen zu Pearls Axiomen

- 1. Die logische Umkehrung der Implikation CON folgt aus den Axiomen DEC und WUN.
- 2. Die logische Umkehrung von INT folgt mit zweimaliger Anwendung von WUN.
- 3. Die Axiomatisierung kann auf nichtdisjunkte ZV-Mengen ausgedehnt werden. Aus den obengenannten Axiomen sowie der zusätzlichen Forderung $\Im(A\mid Z\mid Z)$ beweist man die Aussage

$$\Im(A \mid Z \mid B) \Leftrightarrow \Im(A, Z \mid Z \mid B, Z)$$

- 4. Die fünf Axiome sind voneinander logisch unabhängig. Beweis durch Gegenbeispiele.
- 5. Das Axiom INT findet sich auch in der folgenden, äquivalenten Fassung INT* (Lauritzen, $Z = \emptyset$) wieder:

$$\Im(A \mid C \mid B) \land \Im(A \mid B \mid C) \Rightarrow \Im(A \mid \varnothing \mid B, C)$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Vollständigkeitsvermutung (Pearl & Paz, 1985)

Trügerische Hoffnung

Wenn \Im die Axiome SYM, DEC, WUN & CON erfüllt, so heißt (V,\Im) Semigraphoid und es gibt eine Wahrscheinlichkeitsverteilung $P(\cdot)$ mit

$$P(A \mid B, Z) = P(A|Z) \Leftrightarrow \Im(A \mid Z \mid B).$$

Wenn zusätzlich das Durchschnittsaxiom (INT) erfüllt ist, so kann für das **Graphoid** (V, \Im) sogar ein streng positives $P(\cdot)$ gefunden werden.

Satz (Studeny, 1992)

Weder für die Relationenmenge

 $\{\Im_P \mid P \text{ Wahrscheinlichkeitsverteilung }\}$

noch für deren Teilmenge

 $\{\Im_P \mid P \text{ streng positive Wahrscheinlichkeitsverteilung }\}$

gibt es ein korrektes und vollständiges endliches Axiomensystem.

Durchschnittsaxiom INT

Garantiert ausschließlich für streng positive Verteilungen! Herleitung für streng positive $P(\cdot)$

Auf Grund der Prämissen von INT* gelten die Faktorisierungen

$$P(a,b,c) = k(a,c) \cdot \ell(b,c) = g(a,b) \cdot h(b,c)$$

und für beliebige Werte c — also zum Beispiel für c_0 beliebig aber fest — gilt

$$g(a,b) = k(a,c_0) \cdot \frac{\ell(b,c_0)}{h(b,c_0)} =: \pi(a) \cdot \rho(b)$$
.

Dann gilt die marginale Unabhängigkeit $\{a\} \not\sim \{b,c\}$ wegen der Faktorisierung

$$P(a,b,c) = \pi(a) \cdot [\rho(b) \cdot h(b,c)] .$$

Gegenbeispiel

Die drei binärwertige Zufallsvariablen mit $\mathbb{X}_1=\mathbb{X}_2=\mathbb{X}_3$ und $\mathrm{P}(\mathbb{X}_i=1)=\frac{1}{2}$ für alle $i\in\{1,2,3\}$ sind nicht streng positiv (z.B. $\mathrm{P}(1,1,0)=0$) und widerlegen INT:

$$\Im(\mathbb{X}_1 \mid \mathbb{X}_2 \mid \mathbb{X}_3)$$
, $\Im(\mathbb{X}_1 \mid \mathbb{X}_3 \mid \mathbb{X}_2)$, $\neg\Im(\mathbb{X}_1 \mid \varnothing \mid \mathbb{X}_2, \mathbb{X}_3)$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Dependenzmodelle und Graphen

- ? Welche Dependenzmodelle sind durch UG charakterisierbar
- ? Welche Dependenzmodelle sind durch DAG charakterisierbar
- ? Welche Dependenzmodelle liegen gleichzeitig in beiden Klassen
- ? Welche Dependenzmodelle sind komplexer als jede Graphstruktur

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Korrelation, Regression und Transinformation

Assoziationsregeln und Netzwerkanalyse

Bedingte statistische Unabhängigkeit

Graphische Modelle: ungerichtete Graphen

Kausale Modelle: gerichtete azyklische Graphen

Berechnen bedingter Wahrscheinlichkeiter

Parameterschätzung in Bayesnetzen und Loglinearmodellen

Aufdeckung der Abhängigkeitsstruktur

Kovarianzselektion

 ${\sf Korrelation} \quad {\sf Assoziation} \quad {\sf Dependenz} \quad {\sf Markovnetze} \quad {\sf Bayesnetze} \quad {\sf Inferenz} \quad {\sf P-Lernen} \quad {\sf S-Lernen} \quad {\sf Gaußnetze} \quad {\sf \Sigma}$

Graphische Verteilungen und Dependenzmodelle

Überrepräsentation & Unterrepräsentation von $\Im(\cdot|\cdot|\cdot)$ durch ${\rm sep}\langle\cdot|\cdot|\cdot\rangle$

Definition

Es sei $P(\cdot)$ eine Wahrscheinlichkeitsverteilung auf V und \Im ihr Dependenzmodell. Der ungerichtete Graph $\mathcal{G} = (V, \mathcal{E})$ heißt

• Abhängigkeitsbild von P gdw.

$$\Im(A \mid Z \mid B) \Rightarrow \operatorname{sep}\langle A \mid Z \mid B\rangle$$

• Unabhängigkeitsbild von P gdw.

$$\Im(A \mid Z \mid B) \Leftarrow \operatorname{sep}\langle A \mid Z \mid B\rangle$$

• perfektes Bild von P gdw.

$$\Im(A \mid Z \mid B) \Leftrightarrow \operatorname{sep}\langle A \mid Z \mid B\rangle$$

Die Verteilung $P(\cdot)$ (und das Modell \Im) heißen **graphisch**, wenn ein ungerichteter Graph existiert, der \Im perfekt abbildet.

Trennungsrelation im ungerichteten Graphen

Attributwerte: $\pm infiziert$

Partnertauschmodell Wegen

 $P(f_2 \mid f_1, m_1, m_2) = P(f_2 \mid m_1, m_2)$ gilt $\Im(\mathbb{F}_1 \mid \mathbb{M}_1, \mathbb{M}_2 \mid \mathbb{F}_2).$

Partnertauschgraph $\operatorname{sep}\langle \mathbb{F}_1 \mid \mathbb{M}_1, \mathbb{M}_2 \mid \mathbb{F}_2 \rangle$ und $\operatorname{sep}\langle \mathbb{M}_1 \mid \mathbb{F}_1, \mathbb{F}_2 \mid \mathbb{M}_2 \rangle$

Definition

Es sei $\mathcal{G}=(V,\mathcal{E})$ ein ungerichteter Graph und $A,B,Z\subset V$ disjunkte Knotenmengen. Die Menge Z trennt A von B genau dann, wenn alle Pfade zwischen Elementen $a\in A$ und $b\in B$ mindestens einen Knoten $z\in Z$ enthalten. Wir schreiben dafür:

$$sep\langle A \mid Z \mid B \rangle$$

,Z blockiert alle Verbindungen zwischen Knoten aus A und B"

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Über A-Bilder, U-Bilder und P-Bilder

Bemerkungen

1. Die Trennungsrelation im UG ist **monoton** in der Barriere *Z*:

$$\operatorname{\mathsf{sep}} \langle A|Z|B \rangle \text{ und } \tilde{Z} \supset Z \quad \Leftrightarrow \quad \operatorname{\mathsf{sep}} \langle A|\tilde{Z}|B \rangle$$

- 2. Es gilt die "marginale Trennung" sep $\langle \{a\}|\varnothing|\{b\}\rangle$ genau dann, wenn $a,b\in V$ zu verschiedenen Zusammenhangskomponenten gehören.
- 3. A-Bild \leadsto für adjazente Knoten gilt keinerlei Unabhängigkeit (der diskrete Graph ist A-Bild jedes P)
- 4. U-Bild \leadsto für nichtadjazente Knoten gilt ≥ 1 Unabhängigkeit (der vollständige Graph ist U-Bild jedes P)
- 5. Nicht alle Dependenzmodelle \Im besitzen ein perfektes Bild. Für das nichtmonotone Modell mit zwei Würfeln \mathbb{W}_1 , \mathbb{W}_2 und die Signalglocke \mathbb{G} für Pasch gilt nämlich

$$\Im(\mathbb{W}_1 \mid \varnothing \mid \mathbb{W}_2)$$
 und nicht $\Im(\mathbb{W}_1 \mid \mathbb{G} \mid \mathbb{W}_2)$.

Die drei Markoveigenschaften

Definition

Es sei $P(\cdot)$ eine Wahrscheinlichkeitsverteilung auf V und \Im ihr Dependenzmodell. Der ungerichtete Graph $\mathcal{G}=(V,\mathcal{E})$ erfüllt die

• paarweise Markoveigenschaft gdw. für alle nichtadjazenten $a,b \in V$ gilt:

$$\Im(a \mid V \setminus \{a,b\} \mid b)$$

• lokale Markoveigenschaft gdw. für alle jede Variable $a \in V$ gilt:

$$\Im(a \mid \mathsf{bd}(a) \mid V \setminus \mathsf{cl}(a))$$

• globale Markoveigenschaft gdw. für alle $A, B, Z \subset V$ mit $sep\langle A|Z|B\rangle$ gilt:

$$\Im(A \mid Z \mid B)$$

Beweis.

• GME ⇒ LME

Es sei $a \in V$.

Offensichtlich werden die beiden Mengen $\{a\}$ und $V \setminus cl(a)$ durch den Rand bd(a) von a separiert.

Damit folgt die Behauptung aus der Anwendung von GME.

LME ⇒ PME
 Zunächst gilt wegen der Voraussetzung LME die Aussage

$$\Im(a \mid \mathsf{bd}(a) \mid V \setminus \mathsf{cl}(a))$$

Wegen der Teilmengenbeziehung

$$V \setminus \{a, b\} = \operatorname{bd}(a) \cup ((V \setminus \operatorname{cl}(a)) \setminus \{b\})$$

kann mittels Axiom WUN

$$\Im(a \mid V \setminus \{a, b\} \mid V \setminus \operatorname{cl}(a))$$

gefolgert werden und mittels Axiom DEC wird verkürzt zu

$$\Im(a \mid V \setminus \{a,b\} \mid b)$$
.

Die Markoveigenschaften für "Semigraphoide"

Markovnetze $\hat{}$ minimale Unabhängigkeitsbilder

Definition

Der Graph $\mathcal G$ heißt **Markovnetz** von $P(\cdot)$, wenn er minimal mit der globalen Markoveigenschaft für $P(\cdot)$ ist.

Das Markovnetz $\mathcal G$ ignoriert keine Abhängigkeiten, höchstens Unabhängigkeiten, aber davon so wenige wie möglich.

Satz

Sei $\mathcal{G} = (V, \mathcal{E})$ und $P(\cdot)$ auf V gegeben. Dann gilt

aber es gilt im allgemeinen weder die Umkehrrichtung

noch die Umkehrrichtung

Beweis.

• LME ⇒ GME (Gegenbeispiel)

$$\mathbb{U} - \mathbb{W} - \mathbb{X} - \mathbb{Y} - \mathbb{Z} \qquad \qquad (\mathbb{U} = \mathbb{W}, \mathbb{Y} = \mathbb{Z}, \mathbb{X} = \mathbb{W} \cdot \mathbb{Y})$$

mit binärwertigen, gleichverteilten Variablen.

Es gilt zwar die lokale ME, aber $\Im(\mathbb{U},\mathbb{W}\mid\mathbb{X}\mid\mathbb{Y},\mathbb{Z})$ scheitert wegen

$$\begin{split} \mathrm{P}(\mathbb{U} = \mathbb{W} = \mathbb{Y} = \mathbb{Z} = 1 \mid \mathbb{X} = 0) &= 0 \\ \mathrm{P}(\mathbb{U} = \mathbb{W} = 1 \mid \mathbb{X} = 0) \cdot \mathrm{P}(\mathbb{Y} = \mathbb{Z} = 1 \mid \mathbb{X} = 0) &\neq 0 \end{split}$$

PME ⇒ LME (Gegenbeispiel)

$$X \quad Y - Z \qquad (X = Y = Z)$$

mit binärwertigen, gleichverteilten Variablen.

Dann sind $\Im(X \mid Z \mid Y)$ und $\Im(X \mid Y \mid Z)$ trivialerweise erfüllt, überflüssigerweise sogar auch $\Im(Y \mid X \mid Z)$. Aber es gilt keineswegs

$$\Im(X \mid \mathrm{bd}(X) \mid V \setminus \mathrm{cl}(X))$$

denn $\operatorname{bd}(X) = \emptyset$ und $V \setminus \operatorname{cl}(X) = \{Y, Z\}$, und es ist \mathbb{X} natürlich nicht marginal unabhängig von $\{\mathbb{Y}, \mathbb{Z}\}$.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Die Markoveigenschaften für "Graphoide"

Äquivalenz für strikt positive Wahrscheinlichkeitsverteilungen

Satz

Sei $\mathcal G$ ein UG. Erfüllt die Dependenzrelation \Im von $\mathrm{P}(\cdot)$ für alle disjunkten Mengen $A,B,C,Z\subset V$ die Eigenschaft

• INT Durchschnitt

$$\Im(A \mid Z \cup C \mid B) \land \Im(A \mid Z \cup B \mid C) \Rightarrow \Im(A \mid Z \mid B \cup C)$$

so gilt

globale ME ⇔ lokale ME ⇔ paarweise ME .

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Markovnetzkonstruktion

(1:1)-Abbildung aller partiellen (Un-)Abhängigkeiten

Lemma

Erfüllt die Dependenzrelation \Im von $P(\cdot)$ die Axiome SYM, DEC und INT, so gibt es ein **eindeutiges Markovnetz** $\mathcal{G} = (V, \mathcal{E})$ zu \Im . Für alle Variablenpaare $a, b \in V$ gilt:

$$\{a,b\} \notin \mathcal{E}$$
 \Leftrightarrow $\Im(a \mid V \setminus \{a,b\} \mid b)$

Satz (Pearl & Paz, 1985)

Die Dependenzrelation \Im ist **graphisch** genau dann, wenn sie die Axiome SYM, DEC, INT, SUN und TRA erfüllt.

• SUN Starke Vereinigung

$$\Im(A \mid Z \mid B) \Rightarrow \Im(A \mid Z \cup C \mid B)$$

TRA Transitivität
 Für alle Variablen x ∈ V gilt:

$$\Im(A \mid Z \mid B) \Rightarrow \Im(A \mid Z \mid \{x\}) \vee \Im(\{x\} \mid Z \mid B)$$

Beweis.

Es ist nur die Implikation PME \Rightarrow GME zu zeigen, die wir durch absteigende Induktion über die Größe n = |Z| beweisen.

• Induktionsanfang:

Für n = N - 2 liefert PME die Behauptung (o.B.d.A. sei |A| = |B| = 1). Induktionsschluß:

Wir unterscheiden die beiden Fälle $A \cup B \cup Z = V$ und $A \cup B \cup Z \neq V$.

• Fall 1: Sei o.B.d.A. |A|>1 und $a\in A$. Dann gelten nach WUN die beiden Trennungsaussagen

$$sep\langle A \setminus \{a\} \mid Z \cup \{a\} \mid B \rangle$$
, $sep\langle \{a\} \mid Z \cup A \setminus \{a\} \mid B \rangle$.

Nach I.V. übersetzen diese in die korrespondierenden Unabhängigkeiten und mit Axiom INT folgt $\Im(A \mid Z \mid B)$.

• Fall 2: Für jedes $a \in V \setminus (A \cup B \cup Z)$ gilt $sep\langle A \mid Z \cup \{a\} \mid B \rangle$ und mindestens eine der beiden Trennungsaussagen

$$sep\langle \{a\} \mid A, Z \mid B \rangle$$
, $sep\langle \{a\} \mid B, Z \mid A \rangle$.

Im ersten Fall folgt das Resultat $\Im(A \mid Z \mid B)$ nach den Axiomen INT, DEC und im zweiten Fall nach den Axiomen SYM, INT, DEC aus den übersetzten Trennungsaussagen (I.V.).

Beispiel — qualitative graphische Inferenz

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

"Vorhersage einer Reiseankunftszeit"

Uhrzeitwertige Zufallsvariable Zwei Passanten — zwei Armbanduhren

 \mathbb{X}_1 Zeit auf Armbanduhr I

X₂ Zeit auf Armbanduhr II

 \mathbb{X}_3 die wahre Uhrzeit

X₄ die Fahrtzeit "Jena–Weimar"

 \mathbb{X}_{5} die Ankunftzeit in Weimar

Markovnetzerzeugung

Kantenlöschverfahren mit den Vorbehalten:

$$\begin{cases}
\neg \Im(\mathbb{X}_1 \mid \mathbb{X}_2, \mathbb{X}_4, \mathbb{X}_5 \mid \mathbb{X}_3) \\
\neg \Im(\mathbb{X}_2 \mid \mathbb{X}_1, \mathbb{X}_4, \mathbb{X}_5 \mid \mathbb{X}_3)
\end{cases}, \qquad
\begin{cases}
\neg \Im(\mathbb{X}_3 \mid \mathbb{X}_1, \mathbb{X}_2, \mathbb{X}_5 \mid \mathbb{X}_4) \\
\neg \Im(\mathbb{X}_3 \mid \mathbb{X}_1, \mathbb{X}_2, \mathbb{X}_4 \mid \mathbb{X}_5) \\
\neg \Im(\mathbb{X}_4 \mid \mathbb{X}_1, \mathbb{X}_2, \mathbb{X}_3 \mid \mathbb{X}_5)
\end{cases}$$

Inferenz durch Ablesen von Trennungseigenschaften

Bedingte, aber nicht partielle Unabhängigkeiten: $\Im(\mathbb{X}_1, \mathbb{X}_2 \mid \mathbb{X}_3 \mid \mathbb{X}_5)$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Beispiel — Würfelpaar und Glocke

Nichtgraphische Verteilungen

Viele interessante Verteilungen liegen außerhalb der Klasse ungerichteter graphischer Modelle.

• Selbst ein streng positives $P(\cdot)$ garantiert lediglich die Axiome SYM, DEC und INT, nicht aber SUN oder TRA.

Würfel-Glocken-Experiment

Es schlägt die starke Vereinigung (SUN) fehl:

$$\Im(\mathbb{W}_1 \mid \varnothing \mid \mathbb{W}_2)$$
 aber $\neg \Im(\mathbb{W}_1 \mid \mathbb{G} \mid \mathbb{W}_2)$

Bei unfairen Würfeln gilt auch keine Transitivität (TRA) mehr:

$$\Im(\mathbb{W}_1 \mid \varnothing \mid \mathbb{W}_2)$$
 aber weder $\Im(\mathbb{W}_1 \mid \varnothing \mid \mathbb{G})$ noch $\Im(\mathbb{G} \mid \varnothing \mid \mathbb{W}_2)$

Bemerkung

Die drei Axiome DEC, INT, SUN liefern eine beachtliche Äquivalenz:

$$\Im(A \mid Z \mid B)$$
 \Leftrightarrow $\forall a \in A, b \in B : \Im(\{a\} \mid Z \mid \{b\})$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Beispiel — pathologische Verteilung ohne Markovnetz

Kantenlöschverfahren

Dependenzstruktur

Gegeben sind bedingte Unabhängigkeiten

$$\Im(1 \mid 2, 3 \mid 4)$$
 $\Im(2 \mid 1, 3 \mid 4)$

zuzüglich aller Symmetrien.

Eigenschaften

- 3 erfüllt die Axiome SYM, DEC, WUN, CON.
- \$\preceq\$ widerspricht dem Axiom INT, weil
 \$\preceq\$(1, 2 | 3 | 4) fehlt.
- \Im gehorcht einer Verteilung P, aber P ist wegen $\neg INT$ nicht streng positiv!
- Das Kantenlöschverfahren ergibt kein Unabhängigkeitsbild, weil sep⟨1|3|4⟩ gilt, aber nicht ℑ(1|3|4).
- Es gibt kein eindeutiges Markovnetz!

Beispiel — eine Unverteilung mit Markovnetz

Dependenzstruktur Gegeben sind die bedingten "Unabhängigkeiten"

zuzüglich aller Symmetrien.

Eigenschaften

- 3 erfüllt die Axiome SYM, DEC, WUN und INT.
- \Im widerspricht dem Axiom CON, denn es gelten zwar $\Im(1\mid 2\mid 3)$ und $\Im(1\mid 2,3\mid 4)$, aber keineswegs $\Im(1\mid 2\mid 3,4)$.
- \Im besitzt wegen $\neg CON$ kein Wahrscheinlichkeitsmodell mit $\Im = \Im_P$.
- 3 besitzt aber wegen SYM, DEC, INT ein eindeutiges Markovnetz.

 ${\sf Korrelation \ Assoziation \ Dependenz \ \ Markovnetze \ \ Bayesnetze \ \ Inferenz \ \ P-Lernen \ \ S-Lernen \ \ Gaußnetze \ \ \Sigma}$

Beispiel — Unverteilung mit Monsternetz

Dependenzstruktur Gegeben sind die Postulate

zuzüglich aller Symmetrien.

Eigenschaften

- 3 erfüllt die Axiome SYM, DEC, INT.
- 3 erfüllt nicht das Axiom WUN.
- Wegen SYM, DEC, INT gibt es ein eindeutiges Markovnetz \mathcal{G} .
- Der Graph \mathcal{G} ist offenbar (keine Löschung) vollständig.
- Der Graph G "hilft uns nicht sparen" ...

Faktorisierung von $P(\cdot)$

über den Cliquen eines ungerichteten Graphen

Definition

Die Menge $C \subseteq V$ heißt **Clique** von $\mathcal{G} = (V, \mathcal{E})$, wenn $(C, \mathcal{E}|_C)$ einen maximalen zusammenhängenden Teilgraphen von $\mathcal G$ bildet.

Der diamantene Graph besitzt genau vier Cliquen:

$$C_1 = \{ \mathbb{M}_1, \mathbb{F}_1 \}, \quad C_2 = \{ \mathbb{M}_1, \mathbb{F}_2 \},$$

$$C_3 = \{\mathbb{M}_2, \mathbb{F}_1\}, \quad C_4 = \{\mathbb{M}_2, \mathbb{F}_2\}$$

Gibbs-Verteilung des PT-Modells über dem Diamanten

$$P(m_1, m_2, f_1, f_2) = \frac{1}{z} \cdot \phi_1(m_1, f_1) \cdot \phi_2(m_1, f_2) \cdot \phi_3(m_2, f_1) \cdot \phi_4(m_2, f_2)$$

mit den Kompatibilitäts- oder Kernfunktionen (keine Wahrscheinlichkeiten!)

$$\phi_i(\xi_{i_1}, \xi_{i_2}) = \begin{cases} \alpha_i & \xi_{i_1} = \xi_{i_2} & \text{gleicher Gesundheitszustand} \\ \beta_i & \xi_{i_1} \neq \xi_{i_2} & \text{genau ein Partner infiziert} \end{cases}$$

Korrelation Assoziation Dependenz Markovnetze Bavesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Faktorisierungs- und Markoveigenschaften

Lemma

Für alle ungerichteten Graphen $\mathcal{G} = (V, \mathcal{E})$ und für alle Wahrscheinlichkeitsmodelle $P: \mathcal{X}_V \to \mathbb{R}$ gilt:

Satz (Hammersley & Clifford, 1971)

Für jede streng positive Wahrscheinlichkeitsverteilung $P(\cdot)$ und jeden ungerichteten Graphen G gilt:

Bemerkung

Im Falle numerischer Zufallsvariablen ist als Voraussetzung des HC-Satzes auch die **Existenz und Stetigkeit** der Dichtefunktion $f: \mathcal{X}_V \to \mathbb{R}$ zu fordern.

FAK — die Faktorisierungeigenschaft

Definition

Die Wahrscheinlichkeitsverteilung $P(\cdot)$ zerfällt über dem Graphen $\mathcal{G} = (V, \mathcal{E})$, wenn es für jede vollständige Menge $A \subset V$ eine nichtnegative **Kernfunktion**

$$\phi_A: \bigotimes_{a\in A} \mathcal{X}_a \to \mathbb{R}_0^+$$

über dem kartesischen Produkt aller A-Wertebereiche gibt mit

$$P(\mathbf{x}) = \prod_{A \text{ vollständig}} \phi_A(\mathbf{x}_A)$$

O.B.d.A. können wir diese Faktorisierungseigenschaft (FAK) aber auch unter Beschränkung auf die Menge $\mathcal{C}(\mathcal{G})$ der **Cliquen** von \mathcal{G} definieren:

$$P(\mathbf{x}) = \prod_{A \in \mathcal{C}(\mathcal{G})} \phi_A(\mathbf{x}_A)$$

Beweis.

 $FAK \Rightarrow GME$

Es seien $A, B, Z \subset V$ disjunkt mit $sep\langle A \mid Z \mid B \rangle$. Sei \tilde{A} die Zusammenhangshülle von A in $\mathcal{G}_{V\setminus Z}$ und sei $\tilde{B}=V\setminus (\tilde{A}\cup Z)$.

A, B gehören sicherlich zu verschiedenen Zusammenhangskomponenten im Restgraphen $\mathcal{G}_{V\setminus Z}$, also gilt für jede Clique $C\subset V$ genau eine der beiden Bedingungen

$$C \subseteq \tilde{A} \cup Z$$
 oder $C \subseteq \tilde{B} \cup Z$.

Die (garantierte: FAK) Faktorisierung gewinnt damit das folgendes Aussehen:

$$P(x) = \prod_{C \in \mathcal{C}} \phi_C(x_C) = \prod_{C \in \mathcal{C}_A} \phi_C(x_C) \cdot \prod_{C \in \mathcal{C}_B} \phi_C(x_C) = g(x_{\tilde{A} \cup Z}) \cdot h(x_{\tilde{B} \cup Z})$$

Nach Definition der bedingten Unabhängigkeit folgt daraus $\Im(\tilde{A} \mid Z \mid \tilde{B})$ und nach zweimaliger Anwendung des Axioms DEC auch die GME-Behauptung $\Im(A \mid Z \mid B)$.

Beweis. $GME \Rightarrow FAK$

Aus völlig trivialen Gründen (auch $V\subseteq V$) gibt es eine Mammut-Faktorisierung à la

$$P(x) = \prod_{A \subset V} \phi_A(x_A) .$$

Wegen der Eigenschaft P(x) > 0 strenger Positivität läßt sich diese Darstellung schmerzfrei logarithmieren:

$$\log P(x) = \sum_{A \subset V} \log \phi_A(x_A)$$

Nach einer sogenannten "Möbius-Inversion" (sehr schwierig!) lassen sich in obigem Ausdruck durch Faktorisierung nach partiellen Unabhängigkeiten Zug um Zug alle Nicht-Cliquen-Summanden eliminieren.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Zerlegbare graphische Modelle

Gibbs-Verteilungen

Verteilungen in Cliquenproduktform:

$$P(\mathbf{x}) = P(\mathbf{x}_V) = \prod_{C \in \mathcal{C}} \phi_C(\mathbf{x}_C) / \sum_{\mathbf{x} \in \Omega} \prod_{C \in \mathcal{C}} \phi_C(\mathbf{x}_C)$$

Die Potentialfunktionen $\phi_C(\cdot)$ sind i.a. **keine** (\checkmark) Wahrscheinlichkeiten.

Zerlegbarkeit

Wann zerfällt P(x) in ein Produkt bedingter Randverteilungen ?

- Wenn die Cliquen des Modellgraphen als Baum angeordnet sind!
- Die Baumstruktur regelt die Abhängigkeitsrichtungen.

Es besteht Freiheit in der Wahl, welche **Außencliquen** ein Blatt und welche eine Wurzel werden.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

FAK \Leftrightarrow GME für pathologische $P(\cdot)$

Moussouris (1974)

Gegenbeispiel

Betrachte $V = \{X_1, X_2, X_3, X_4\}$ und die Verteilung

$$P(x) = \begin{cases} 1/8 & x \in \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \\ 0 & sonst$$

Für alle (x_2, x_4) ist entweder $P(X_1 | x_2, x_4)$ oder $P(X_3 | x_2, x_4)$ eine degenerierte Abbildung, also besteht trivialerweise keinerlei Abhängigkeit von X_3 bzw. X_1 . Gleiches gilt auch für alle (x_1, x_3) , also gilt insgesamt

$$\Im(\mathbb{X}_1 \mid \mathbb{X}_2, \mathbb{X}_4 \mid \mathbb{X}_3) \quad \land \quad \Im(\mathbb{X}_2 \mid \mathbb{X}_1, \mathbb{X}_3 \mid \mathbb{X}_4)$$

 \Rightarrow Der **Diamant** besitzt die GME, aber $P(\cdot)$ ist nicht \lozenge -faktorisierbar:

```
\begin{array}{lll} 0 \neq 1/8 = \mathrm{P}(0,0,0,0) = \phi_{1,2}(0,0) \cdot \phi_{2,3}(0,0) \cdot \phi_{3,4}(0,0) \cdot \phi_{4,1}(0,0) \\ 0 & = \mathrm{P}(0,0,1,0) = \phi_{1,2}(0,0) \cdot \phi_{2,3}(0,1) \cdot \phi_{3,4}(1,0) \cdot \phi_{4,1}(0,0) \\ 0 \neq 1/8 = \mathrm{P}(0,0,1,1) = \phi_{1,2}(0,0) \cdot \phi_{2,3}(0,1) \cdot \phi_{3,4}(1,1) \cdot \phi_{4,1}(1,0) \\ 0 \neq 1/8 = \mathrm{P}(1,1,1,0) = \phi_{1,2}(1,1) \cdot \phi_{2,3}(1,1) \cdot \phi_{3,4}(1,0) \cdot \phi_{4,1}(0,1) \end{array}
```

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Beispiel — Markovketten I

Faktorisierung mit unterschiedlicher Variablenordnung

$$\mathbb{X}_1 \longleftrightarrow \mathbb{X}_2 \longleftrightarrow \mathbb{X}_3 \longleftrightarrow \mathbb{X}_4$$

Faktorisierung = Kettenregel + Unabhängigkeiten

$$P(x_1, x_2, x_3, x_4) = P(x_1) \cdot P(x_2|x_1) \cdot \underbrace{P(x_3 \mid x_1, x_2)}_{P(x_3|x_2)} \cdot \underbrace{P(x_4 \mid x_1, x_2, x_3)}_{P(x_4|x_3)}$$

Jede Variable kann als **Baumwurzel** nominiert werden — so auch X_3 :

$$P(x_3, x_2, x_4, x_1) = P(x_3) \cdot P(x_2|x_3) \cdot \underbrace{P(x_4 \mid x_3, x_2)}_{P(x_4|x_3)} \cdot \underbrace{P(x_1 \mid x_3, x_2, x_4)}_{P(x_1|x_2)}$$

Aber nicht jede Variablenfolge ist mit der Baumstruktur verträglich:

$$P(x_1, x_4, x_2, x_3) = P(x_1) \cdot \underbrace{P(x_4|x_1)}_{4} \cdot \underbrace{P(x_2 \mid x_1, x_4)}_{4} \cdot \underbrace{P(x_3 \mid x_1, x_4, x_2)}_{4}$$

Beispiel — Markovketten II

Faktorisierung mit unterschiedlichen Cliquenbäumen

$$(\mathbb{X}_1,\mathbb{X}_2) \longleftrightarrow (\mathbb{X}_2,\mathbb{X}_3) \longleftrightarrow (\mathbb{X}_3,\mathbb{X}_4)$$

Faktorisierung = Cliquen + Baum + Wurzelauswahl

$$P(x_1, x_2, x_3, x_4) = f(x_1, x_2) \cdot g(x_2, x_3) \cdot h(x_3, x_4)$$

$$P(x_1, x_2) \cdot P(x_3 | x_2) \cdot P(x_4 | x_3)$$

$$P(x_1 | x_2) \cdot P(x_2, x_3) \cdot P(x_4 | x_3)$$

$$P(x_1 | x_2) \cdot P(x_2 | x_3) \cdot P(x_3, x_4)$$

Jede Wurzelnominierung definiert eine valide Modellformel.

Korrelation Assoziation Dependenz **Markovnetze** Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Beispiel — Markovbäume II

$$\begin{split} \mathrm{P}(\textbf{\textit{x}}) &= \frac{\mathrm{Cliquenwahrscheinlichkeit}}{\mathrm{Cliquenschnittwahrscheinlichkeit}} \\ &= \frac{\mathrm{P}(A) \cdot \mathrm{P}(B) \cdot \mathrm{P}(C) \cdot \mathrm{P}(D) \cdot \mathrm{P}(E) \cdot \mathrm{P}(F)}{\mathrm{P}(A \cap C) \cdot \mathrm{P}(B \cap C) \cdot \mathrm{P}(C \cap D) \cdot \mathrm{P}(C \cap E) \cdot \mathrm{P}(C \cap F)} \\ &= \frac{\mathrm{P}(1,3) \cdot \mathrm{P}(2,3) \cdot \mathrm{P}(3,4) \cdot \mathrm{P}(4,5) \cdot \mathrm{P}(4,6) \cdot \mathrm{P}(4,7)}{\mathrm{P}(3) \cdot \mathrm{P}(3) \cdot \mathrm{P}(4) \cdot \mathrm{P}(4) \cdot \mathrm{P}(4)} \\ &= \mathrm{P}(3) \cdot \mathrm{P}(1|3) \cdot \mathrm{P}(2|3) \cdot \mathrm{P}(4|3) \cdot \mathrm{P}(5|4) \cdot \mathrm{P}(6|4) \cdot \mathrm{P}(7|4) \end{split}$$

Beispiel — Markovbäume I

Fakt

Ist *G* ein Baum, so sind alle Cliquen zweielementig.

Die N-1 Cliquen bilden selbst wieder einen Baum.

Faktorisierung im Beispiel

Kettenregel & Variablenbaumtraversierung

$$P(x) = P(3) \cdot P(1|3) \cdot P(2|3) \cdot P(4|3) \cdot P(5|4) \cdot P(6|4) \cdot P(7|4)$$

Faktorisierung allgemein

Traversieren → konsistente Variablenordnung → Einfachbedingungen

$$P(\mathbf{x}) = \prod_{n} P(x_n|\cdot) = \prod_{n} P(x_n|x_{\pi(n)})$$

Denn für alle $\mathbb{X}_n \in V$ gilt: $\operatorname{sep}\langle \mathbb{X}_n \mid \mathbb{X}_{\pi(n)} \mid V \setminus \operatorname{off}(\mathbb{X}_n) \rangle$

Drei Cliquen — aber welche Baumstruktur?

Die Cliquen $C_1 = \{a, b, c\}$, $C_2 = \{b, c, d\}$, $C_3 = \{c, e\}$ bilden paarweise einen nichtleeren Schnitt.

c,e

c,e

$$\mathfrak{F}(C_1|C_2|C_3) \ \rightsquigarrow \ C_1 - C_2 - C_3 \text{ ist U-Bild von } \mathrm{P}(\cdot) \\ \mathfrak{F}(C_2|C_1|C_3) \ \rightsquigarrow \ C_2 - C_1 - C_3 \text{ ist U-Bild von } \mathrm{P}(\cdot)$$

 $\Im(\mathcal{C}_1|\mathcal{C}_2|\mathcal{C}_3) \text{ und } \Im(\mathcal{C}_2|\mathcal{C}_1|\mathcal{C}_3) \rightsquigarrow \Im(\mathcal{C}_1,\mathcal{C}_2|\varnothing|\mathcal{C}_3) \text{ (INT) verletzt, also } \geq 2 \text{ minimale U-Bilder}.$

Zerlegung

Beide konsistenten Verbundbäume ergeben nach Traversierung:

$$P(a, b, c, d, e) = P(a) \cdot P(b|a) \cdot P(c|a, b) \cdot P(d|b, c) \cdot P(e|c)$$

rrelation Assoziation Dependenz **Markovnetze** Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ Korrelation Assoziation Dependenz **Markovnetze** Bayesnetze Inferenz P-

Kordalität und Zerlegbarkeit

Äquivalente Eigenschaften ungerichteter Graphen

Definition

Das Mengentripel (A, Z, B) heißt **Zerlegung des ungerichteten Graphen** $\mathcal{G} = (V, \mathcal{E})$, falls gilt:

Partition	Trennung	Vollständigkeit
$A \uplus Z \uplus B = V$	$sep\langle A \mid Z \mid B \rangle$	\mathcal{G}_{Z} ist vollständig

Der Graph \mathcal{G} selbst heißt **zerlegbar**, wenn er vollständig ist oder aber eine Zerlegung mit zerlegbaren Teilgraphen $\mathcal{G}_{A\cup Z}$ und $\mathcal{G}_{B\cup Z}$ besitzt.

Definition

Ein ungerichteter Graph $\mathcal{G} = (V, \mathcal{E})$ heißt **kordal** oder **trianguliert** genau dann, wenn jeder Zyklus der Länge ≥ 4 mindestens eine **Sehne** besitzt.

Beweis.

Wir zeigen die Implikation " $zerlegbar \Rightarrow kordal$ "

- Induktionsanfang: $|V| \le 3$ impliziert trivialerweise die Kordalität.
- Induktionsschritt: Sei also (A, Z, B) eine Zerlegung von \mathcal{G} . Nach Induktionsvoraussetzung sind dann $\mathcal{G}_{A \cup Z}$ und $\mathcal{G}_{B \cup Z}$ kordal.

Angenommen, $\mathcal G$ besitzt einen Zyklus ≥ 4 ohne Sehne. Dieser muß wegen der I.V. Knoten in A und auch in B haben, passiert also mindestens $2\times$ die Menge Z und teilt deshalb ≥ 2 Knoten mit Z. Diese sind aber wegen der Vollständigkeit von Z verbunden — $\mathscr F$

Moralische Graphen

"Alle Elternpaare sind (miteinander!) verheiratet."

Definition

Ein gerichteter Graph heißt **moralisch**, wenn jedes konvergierende Kantenpaar aus zwei adjazenten Knoten entspringt.

Satz

Für einen ungerichteten Graphen ${\cal G}$ sind die Eigenschaften äquivalent:

- 1. \mathcal{G} ist zerlegbar.
- 2. *G* ist kordal.
- 3. G läßt sich azyklisch und moralisch richten.
- 4. G besitzt die Cliqueneliminationseigenschaft.
- 5. Es gibt einen verträglichen Verbundbaum für G.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Cliqueneliminationseigenschaft

Definition

Der ungerichtete Graph $\mathcal G$ besitzt die **Cliqueneliminationseigenschaft**, wenn alle Knoten aller seiner Cliquen durch wiederholte Anwendung folgender Operationen eliminiert werden können:

- Unikatknoten
 Lösche einen Knoten, der nur in einer einzigen Clique auftaucht.
- Dominierte Mengen
 Lösche eine Clique, die Teilmenge einer anderen Clique ist.

Der Schlüsselgraph besitzt die CEP Schachmatt in sieben Zügen:

$$\{b,c\}$$
 $\{b,c,d\}$ $\{c,e\}$ die 3 Cliquen des Verbundbaumbeispiels $\{b,c\}$ $\{b,c\}$ $\{c\}$ Unikate a , d und e gelöscht zwei dominierte Cliquen gelöscht Unikate b und c gelöscht

Verträgliche Verbundbäume

Definition

Sei $\mathcal{G} = (V, \mathcal{E})$ ein ungerichteter Graph. Der Graph \mathcal{G}^* ist ein **mit** \mathcal{G} **verträglicher Verbundbaum**, falls gilt:

- 1. Die Knoten \mathcal{G}^* sind genau die Cliquen $\mathcal{C}(\mathcal{G})$.
- 2. \mathcal{G}^* ist zusammenhängend und zyklenfrei.
- 3. Für jeden Knoten $a \in V$ gilt:

Je zwei a enthaltende Cliquen besitzen einen Verbindungspfad, der ausschließlich Cliquen C mit $a \in C$ enthält.

Für den Schlüsselgraphen ist VB #3 nicht verträglich Im dritten Verbundbaum

$$\underbrace{\{a,b,c\}}_{C_1} - \underbrace{\{c,e\}}_{C_3} - \underbrace{\{b,c,d\}}_{C_2}$$

gilt $b \in C_1$ und $b \in C_2$, aber es ist $b \notin C_3$, obwohl C_3 auf dem einzigen verfügbaren Pfad von C_1 nach C_2 liegt.

Beweis.

 $\mathsf{GME} \Rightarrow \mathsf{FAK}$

(die Umkehrung gilt ja sowieso)
Induktion über die Zerlegungshierarchie von G:

Sei $sep\langle A|Z|B\rangle$ eine Zerlegung von \mathcal{G} . Dann gilt

$$P(x_V) = P(x_{A\cup Z}) \cdot P(x_B \mid x_{A\cup Z})$$

$$= P(x_{A\cup Z}) \cdot P(x_B \mid x_Z)$$

$$= \frac{P(x_{A\cup Z}) \cdot P(x_{B\cup Z})}{P(x_Z)}$$

wegen $\Im(A|Z|B)$ nach GME.

Der Nenner $P(x_Z)$ ist bereits ein Cliquenfaktor, weil Z vollständig ist.

Die beiden Zählerterme sind nach Induktionsvoraussetzung über $\mathcal{G}_{A\cup Z}$ bzw. $\mathcal{G}_{B\cup Z}$ faktorisierbar, bestehen also ausschließlich aus Cliquentermen.

Die behauptete Faktorisierung ergibt sich durch Zusammenfassen und Umgruppieren nach $\mathcal{G}\text{-}\text{Cliquen}.$

Zerlegbarkeit und Faktorisierung

Lemma (Cliquenschnittformel)

Sei ${\mathcal G}$ ein zerlegbarer ungerichteter Graph. Dann gilt für alle $\mathrm{P}(\cdot)$

und diese Faktorisierung besteht aus cliquenbezogenen Randverteilungen:

$$P(\mathbf{x}) = \prod_{C \in \mathcal{C}} \frac{P(\mathbf{x}_C)}{P(\mathbf{x}_{C \cap \pi(C)})}$$

Dabei bezeichnet $\pi(C)$ die eindeutig bestimmte Vorgängerclique von C im (festen, aber beliebigen) verträglichen Verbundbaum.

Die beiden CSF für den Schlüsselgraphen

Die Verbundbäume $\{a,b,c\}$ — $\{b,c,d\}$ — $\{c,e\}$ und $\{b,c,d\}$ — $\{a,b,c\}$ — $\{c,e\}$ liefern die äquivalenten Faktorisierungen

$$\mathrm{P}(\cdot) \ = \ \frac{\mathrm{P}(\mathsf{a},\mathsf{b},\mathsf{c}) \cdot \mathrm{P}(\mathsf{b},\mathsf{c},\mathsf{d}) \cdot \mathrm{P}(\mathsf{c},\mathsf{e})}{\mathrm{P}(\mathsf{b},\mathsf{c}) \cdot \mathrm{P}(\mathsf{c})} \quad \text{ und } \quad \mathrm{P}(\cdot) \ = \ \frac{\mathrm{P}(\mathsf{b},\mathsf{c},\mathsf{d}) \cdot \mathrm{P}(\mathsf{a},\mathsf{b},\mathsf{c}) \cdot \mathrm{P}(\mathsf{c},\mathsf{e})}{\mathrm{P}(\mathsf{b},\mathsf{c}) \cdot \mathrm{P}(\mathsf{c})} \ .$$

Beweis.

Cliquenschnittformel

Es sei C_1, \ldots, C_M eine mit der Nachfolgerrelation eines Cliquenverbundbaums von $\mathcal G$ verträgliche Cliquenordnung.

Für jede Clique C_i bezeichne $C_{\pi(i)}$ die eindeutig bestimmte Elterclique $(\pi(i) < i)$. Dann gilt (für alle i) die Trennungsrelation

$$sep\langle C_i \mid C_{\pi(i)} \mid C_1, \ldots, C_{i-1} \rangle$$

und wegen GME auch die entsprechende bedingte Unabhängigkeit.

$$P(x) = P(x_1, ..., x_N) = \prod_{i=1}^{M} P(x_{C_i} \mid x_{C_1}, ..., x_{C_{i-1}})$$

$$= \prod_{i=1}^{M} P(x_{C_i} \mid x_{C_{\pi(i)}})$$

$$= \prod_{i=1}^{M} P(x_{C_i} \mid x_{C_{\pi(i)}})$$

$$= \prod_{i=1}^{M} P(x_{C_i} \mid x_{C_{\pi(i)}})$$

$$= \prod_{i=1}^{M} \frac{P(x_{C_i})}{P(x_{C_i} \cap C_{\pi(i)})}$$

Graphtriangulierung & Verbundbaumkonstruktion

KNOTENORDNUNG Ordne Knoten nach maximalem Rang; setze sukzessiv:

$$v_{i+1} \stackrel{\mathsf{def}}{=} \underset{v \notin V(i)}{\mathsf{argmax}} |\{v' \in V \mid (v, v') \in \mathcal{E}, \ v' \in V(i)\}|$$

2 KANTENERZEUGUNG Für i = N, ..., 1

$$\mathcal{E} \leftarrow \mathcal{E} \cup \left\{v', v''\right\}$$

$$\text{falls } v',v'' \in \textit{V(i-1)} \text{ und falls } \{\textit{v}_i,v'\}, \{\textit{v}_i,v''\} \in \mathcal{E}.$$

- 3 CLIQUENORDNUNG Fixiere Reihenfolge C_1, \ldots, C_M nach dem maximalen Knotenrang.
- 4 KANTENERZEUGUNG Für $i=2,\ldots,M$ erzeuge neue Kante $C_{\pi(i)} o C_i$ mit

$$\pi(i) < i \text{ und } |C_{\pi(i)} \cap C_i| \text{ ist maximal.}$$

Beispiel

Knotenfolge: $a^0b^1c^2d^2e^1$

Neue Kanten: (keine)

Cliquenfolge: $C_1 : abc^{012}$ $C_2 : bcd^{122}$ $C_3 : ce^{21}$ (beliebig)

VB-Kanten: $1 \rightarrow 2$, $1 \rightarrow 3$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Korrelation, Regression und Transinformation

Assoziationsregeln und Netzwerkanalyse

Bedingte statistische Unabhängigkeit

Graphische Modelle: ungerichtete Grapher

Kausale Modelle: gerichtete azyklische Graphen

Berechnen bedingter Wahrscheinlichkeiter

Parameterschätzung in Bayesnetzen und Loglinearmodeller

Aufdeckung der Abhängigkeitsstruktur

Coverienzcolektion

Zwischenbilanz

für ungerichtete graphische Modelle

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

- 1. Nicht jede Verteilung ist graphisch.
- 2. Streng positive Verteilungen erlauben aber, mit dem Kantenlöschverfahren ein Markovnetz (minimales U-Bild) zu erzeugen.
- 3. Markovnetze faktorisieren gemäß ihrer Cliquenstruktur, aber nicht zwingend in Wahrscheinlichkeiten.
- 4. Durch Triangulieren des Markovnetzes werden einige Unabhängigkeiten außer Gefecht gesetzt, aber dafür gewinnen wir eine Kettenregel (CSF).

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Ursache und Wirkung

Gerichtete azyklische Graphen

Kausalrichtung

Drei Attribute · zwei Interaktionen · drei Wirkkonfugurationen:

kaskadierend "Wetter" \rightarrow "Ernte" \rightarrow "Preis" $\Im(\mathbb{X}_1|\mathbb{X}_2|\mathbb{X}_3)$ divergierend "Größe" \leftarrow "Alter" \rightarrow "Lesefähigkeit" $\Im(\mathbb{X}_1|\mathbb{X}_2|\mathbb{X}_3)$

konvergierend "Würfel $_1$ " o "Glocke" \leftarrow "Würfel $_2$ " o o o $(\mathbb{X}_1|\mathbb{X}_2|\mathbb{X}_3)$

Modelle kausaler Beziehungen: { erklärende vermittelnde diagnostische } Variablen.

Lemma (Erinnerung)

Ein gerichteter Graph $\mathcal{G}=(V,\mathcal{E}),~\mathcal{E}\subseteq V\times V$, ist **azyklisch** genau dann, wenn es eine **kantenverträgliche Knotenordnung** $V=\{v_1,\ldots,v_N\}$ gibt:

 $(v_i, v_i) \in \mathcal{E} \quad \Rightarrow \quad i < j \quad \text{für alle } i, j \in \{1, \dots, N\}$

M.a.W.: Ein DAG ("directed acyclic graph") besitzt keine gerichteten Zyklen (**Pfade**); ungerichtete Zyklen (**Ketten**) sind hingegen erlaubt.

δ -Trennungsrelation

für gerichtete azyklische Graphen

Definition

Es sei $\mathcal{G} = (V, \mathcal{E})$ ein gerichteter azyklischer Graph und $A, B, Z \subset V$ disjunkte Knotenmengen. Eine Kette zwischen den Knoten a und b heißt blockiert von Z

- wenn sie einen nichtkonvergierenden Knoten $c \in Z$ enthält
- oder wenn sie einen konvergierenden Knoten $c \notin Z$ enthält, der auch keinen Nachfolger in Z besitzt.

Die Menge Z trennt A von B genau dann, wenn alle Ketten zwischen Elementen $a \in A$ und $b \in B$ von Elementen aus Z blockiert werden. Wir schreiben dafür:

$$sep_{\delta} \langle A \mid Z \mid B \rangle$$

Beispiel

Es gilt $sep_{\delta} \langle 2 \mid 1 \mid 3 \rangle$, denn:

Die Kette $2 \leftarrow 1 \rightarrow 3$ ist von X1 blockiert wegen $1 \in Z = \{1\}$

Die Kette $2 \rightarrow 4 \leftarrow 3$ ist von X₄ blockiert wg. $4, 5 \notin Z = \{1\}$

Gilt $sep_s \langle a \mid \{x, y\} \mid b \rangle$?

moralische Graph $(\mathcal{G}_W)^{\mathfrak{m}}$ von \mathcal{G}_W .

Na klar: $sep\langle a \mid \{x,y\} \mid b\rangle$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Kausale Verteilungen und Dependenzmodelle

Überrepräsentation & Unterrepräsentation von $\Im(\cdot|\cdot|\cdot)$ durch $\operatorname{sep}_{\delta}\langle\cdot|\cdot|\cdot\rangle$

Definition

Es sei $P(\cdot)$ eine Wahrscheinlichkeitsverteilung auf V und \Im ihr Dependenzmodell. Der gerichtete azyklische Graph $\mathcal{G} = (V, \mathcal{E})$ heißt

• Abhängigkeitsbild von P gdw.

$$\Im(A \mid Z \mid B) \Rightarrow \operatorname{sep}_{\delta} \langle A \mid Z \mid B \rangle$$

• Unabhängigkeitsbild von P gdw.

$$\Im(A \mid Z \mid B) \Leftarrow \operatorname{sep}_{\delta} \langle A \mid Z \mid B \rangle$$

• perfektes Bild von P gdw.

$$\Im(A \mid Z \mid B) \Leftrightarrow \operatorname{sep}_{\delta} \langle A \mid Z \mid B \rangle$$

Die Verteilung $P(\cdot)$ (und das Modell \Im) heißen **kausal**, wenn ein gerichteter azyklischer Graph existiert, der 3 perfekt abbildet.

Rekursive Faktorisierung

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Ein Trennungskriterium

In einem DAG $G = (V, \mathcal{E})$ gilt für alle disjunkten Mengen $A, B, Z \subset V$:

 $sep_{\delta} \langle A \mid Z \mid B \rangle_{C} \Leftrightarrow sep \langle A \mid Z \mid B \rangle_{C^*}$

Dabei bezeichne W die Vorgängerhülle von $A \cup Z \cup B$ und G^* sei der

• **obere Kette**: *y* blockiert, aber *x* blockiert nicht!

• untere Kette: x blockiert und c blockiert.

Definition

Satz

Beispiel

Die Wahrscheinlichkeitsverteilung P(·) zerfällt rekursiv über dem gerichteten azyklischen Graphen $\mathcal{G} = (V, \mathcal{E})$, wenn es für jede Variable $a \in V$ eine nichtnegative **Kernfunktion**

$$\phi_{\mathbf{a}}: \mathcal{X}_{\mathbf{a}} \times \bigotimes_{\mathbf{v} \in \mathsf{pa}(\mathbf{a})} \mathcal{X}_{\mathbf{v}} \rightarrow \mathbb{R}_{0}^{+}$$

gibt mit

$$P(\mathbf{x}) = \prod_{a \in V} \phi_a(x_a, \mathbf{x}_{pa(a)})$$

Es bezeichnet pa(a) die **Eltermenge** $\{v \mid (v, a) \in \mathcal{E}\}$ von a.

Beispiel

Im Rasensprengergraphen zerfällt die Verteilung, falls es Potentialfunktionen gibt mit:

$$P(\mathbf{x}) = \phi_1(x_1) \cdot \phi_2(x_1, x_2) \cdot \phi_3(x_1, x_3) \cdot \phi_4(x_2, x_3, x_4) \cdot \phi_5(x_4, x_5)$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Die reduzierte Kettenregel

Lemma

Wenn $P(\cdot)$ über G rekursiv zerfällt, können die Kernfunktionen ϕ_a o.B.d.A. gemäß

$$\phi_a(x_a, \boldsymbol{x}_{pa(a)}) = P_{a|pa(a)}(x_a \mid \boldsymbol{x}_{pa(a)})$$

als bedingte Einzelwertwahrscheinlichkeiten gestaltet werden und es gilt — bei kantenverträglicher Variablenordnung — die **reduzierte Kettenregel**:

$$P(\mathbf{x}) = \prod_{i=1}^{N} P(x_i \mid \mathbf{x}_{pa(\mathbb{X}_i)})$$

Beispiel

Im Rasensprengergraphen kann die Faktorisierung wie folgt gewählt werden:

$$P(x) = P(x_1) \cdot P(x_2|x_1) \cdot P(x_3|x_1) \cdot P(x_4|x_2,x_3) \cdot P(x_5|x_4)$$

 ${\sf Korrelation \ Assoziation \ Dependenz \ Markovnetze \ \textbf{Bayesnetze} \ Inferenz \ P-Lernen \ S-Lernen \ Gaußnetze \ \Sigma}$

Faktorisierung und Markoveigenschaft

Satz

Wenn die Verteilung $P(\cdot)$ über dem DAG \mathcal{G} rekursiv zerfällt, dann zerfällt $P(\cdot)$ auch über dem moralischen Graphen $(\mathcal{G})^{\mathfrak{m}}$ von \mathcal{G} .

 \mathcal{G} ist dann sicherlich ein Unabhängigkeitsbild von $P(\cdot)$, d.h. es gilt:

Beweisidee

Moralgrapherzeugung

Knoten mit allen Eltern in ${\cal G}$

"just married" (Clique in $(\mathcal{G})^{\mathfrak{m}}$)

Beweis.

Wir vereinbaren eine verträgliche Ordnung $V = \{\mathbb{X}_1, \dots, \mathbb{X}_N\}$ und wir wissen, daß nun die Kausalitätsbeziehung gilt:

$$\mathbb{X}_j \in \mathsf{pa}(\mathbb{X}_i) \ \Rightarrow \ j < i$$

Wir berechnen nun die Randverteilung der ersten n Variablen:

$$P(\mathbf{x}_{1..n}) = \sum_{\mathbf{x}_{n+1}} \dots \sum_{\mathbf{x}_{N}} P(\mathbf{x}) = \sum_{\mathbf{x}_{n+1}} \dots \sum_{\mathbf{x}_{N}} \prod_{i=1}^{N} \phi_{i}(\mathbf{x}_{i}, \mathbf{x}_{\mathsf{pa}(\mathbb{X}_{i})})$$

$$= \prod_{i=1}^{n} \phi_{i}(\mathbf{x}_{i}, \mathbf{x}_{\mathsf{pa}(\mathbb{X}_{i})}) \cdot \prod_{i=n+1}^{N} \underbrace{\left(\sum_{\mathbf{x}_{i} \in \mathcal{X}_{i}} \phi_{i}(\mathbf{x}_{i}, \mathbf{x}_{\mathsf{pa}(\mathbb{X}_{i})})\right)}_{\sigma_{i}}$$

Daraus folgt für die bedingte Wahrscheinlichkeit $P(x_n \mid x_{1..n-1})$:

$$\dots = \frac{P(\mathbf{x}_{1..n})}{P(\mathbf{x}_{1..n-1})} = \frac{\prod_{i=1}^{n} \phi_i(\mathbf{x}_i, \mathbf{x}_{\mathsf{pa}(\mathbb{X}_i)}) \cdot \prod_{i=n+1}^{N} \sigma_i}{\prod_{i=1}^{n-1} \phi_i(\mathbf{x}_i, \mathbf{x}_{\mathsf{pa}(\mathbb{X}_i)}) \cdot \prod_{i=n}^{N} \sigma_i} = \frac{\phi_n(\mathbf{x}_n, \mathbf{x}_{\mathsf{pa}(\mathbb{X}_n)})}{\sigma_n}$$

Wenn wir also normierte Faktoren verwenden ($\sigma_n \equiv 1$), entsprechen die ϕ_n gerade den klassischen Kettenregelgliedern $P(x_n|\cdot)$. Daß diese tatsächlich nur von \mathbb{X}_n und deren Eltervariablen abhängen, ergibt sich aus der Argumentstruktur von ϕ_n .

Beweis.

 FME* ⇒ FME (moralische Faktorisierung)

Für jede Variable $a \in V$ ist die Menge $\{a\} \cup pa(a)$ im moralischen Graphen $(\mathcal{G})^m$ von \mathcal{G} vollständig, denn a ist mit jedem Elter adjazent und alle Eltern wurden miteinander verheiratet.

Damit bilden die Potentialfunktionen ϕ_a auch eine Cliquenfaktorisierung auf $(\mathcal{G})^{\mathfrak{m}}$.

- FME \Rightarrow GME (für $(\mathcal{G})^m$; gilt immer)
- GME ⇒ GME*

Gilt nun $\operatorname{sep}_{\delta} \langle A \mid Z \mid B \rangle$ in \mathcal{G} , so ist auch $\operatorname{sep} \langle A \mid Z \mid B \rangle$ in $(\mathcal{G})^{\mathfrak{m}}$. Es besitzt $(\mathcal{G})^{\mathfrak{m}}$ die globale ME für $\operatorname{P}(\cdot)$, also ist auch $\Im(A \mid Z \mid B)$.

Die drei Markoveigenschaften

Definition

Es sei $P(\cdot)$ eine Wahrscheinlichkeitsverteilung auf V und \Im ihr Dependenzmodell. Der gerichtete azyklische Graph $\mathcal{G}=(V,\mathcal{E})$ erfüllt die

• paarweise Markoveigenschaft gdw. für alle nichtadjazenten $a, b \in V$ gilt:

$$\Im(a \mid V \setminus \mathsf{off}(a) \setminus \{b\} \mid b)$$

• lokale Markoveigenschaft gdw. für jede Variable $a \in V$ gilt:

$$\Im(a \mid pa(a) \mid V \setminus off(a))$$

• globale Markoveigenschaft gdw. für alle $A, B, Z \subset V$ mit $sep_{\delta} \langle A|Z|B \rangle$ gilt:

$$\Im(A \mid Z \mid B)$$

Beweis.

PME* ⇒ LME*

(alle anderen Richtungen nur im alten Vorlesungsskriptum)

Als Gegenbeispiel betrachte die vier binärwertigen, uniform verteilten Zufallsvariablen $\mathbb{X}=\mathbb{Y}=\mathbb{Z}$ und \mathbb{W} und den DAG mit den Kanten

$$\mathbb{Z} \to \mathbb{W} \to \mathbb{X}$$
 und $\mathbb{Z} \to \mathbb{Y} \to \mathbb{W}$.

Der Graph besitzt die paarweise ME, denn von den insgesamt vier nichtadjazenten Variablenpaaren erfüllen nur (\mathbb{X},\mathbb{Y}) und (\mathbb{X},\mathbb{Z}) die Nachkommenbedingung. Damit sind

$$\Im(\mathbb{X}\mid\mathbb{W},\mathbb{Z}\mid\mathbb{Y})$$
 und $\Im(\mathbb{X}\mid\mathbb{W},\mathbb{Y}\mid\mathbb{Z})$

zu überprüfen — die Faktorzerlegung ergibt sich aber wie folgt:

$$P(x, y \mid z, w) = \begin{cases} 1 & x = y = z \\ 0 & sonst \end{cases} = \delta_{xz} \cdot \delta_{yz}$$

Ganz analog ergibt sich auch $P(x, z \mid y, w) = \delta_{xy} \cdot \delta_{zy}$. Der Graph besitzt aber nicht die lokale ME, denn die Unabhängigkeit

$$\Im(\mathbb{X} \mid \underbrace{\mathsf{pa}(\mathbb{X})}_{\mathbb{W}} \mid \underbrace{V \setminus \mathsf{off}(\mathbb{X})}_{\{\mathbb{W}, \mathbb{Y}, \mathbb{Z}\}})$$

bedingt nach Axiom DEC auch $\Im(\mathbb{X}\mid\mathbb{W}\mid\mathbb{Y},\mathbb{Z})$, was die Verteilung $P(\cdot)$ offensichtlich nicht hergibt.

Die Markoveigenschaften für Semi-/Graphoide

Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze S

Bayesnetze $\hat{}$ minimale Unabhängigkeitsbilder

Definition

Der Graph $\mathcal G$ heißt **Bayesnetz** von $P(\cdot)$, wenn er minimal mit der globalen Markoveigenschaft für $P(\cdot)$ ist.

Das Bayesnetz $\mathcal G$ ignoriert keine Abhängigkeiten, höchstens Unabhängigkeiten, aber davon so wenige wie möglich.

Satz

Sei $\mathcal{G} = (V, \mathcal{E})$ und $P(\cdot)$ auf V gegeben. Dann gilt

aber es gilt im allgemeinen nicht die Umkehrrichtung

Für streng positive Verteilungen $P(\cdot)$ gilt sogar die Äquivalenz

Axiomatisierung kausaler Dependenzmodelle?

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Satz

Ist das Dependenzmodell \$\mathbb{G}\$ kausal, so gelten die folgenden sieben unabhängigen Axiome:

SYM Symmetrie
$$\Im(A \mid Z \mid B) \Leftrightarrow \Im(B \mid Z \mid A)$$

C/D Komposition/Dekomposition

$$\Im(A \mid Z \mid B \cup C) \Leftrightarrow \Im(A \mid Z \mid B) \land \Im(A \mid Z \mid C)$$

INT Durchschnitt

$$\Im(A \mid Z \cup C \mid B) \land \Im(A \mid Z \cup B \mid C) \Rightarrow \Im(A \mid Z \mid B \cup C)$$

WUN Schwache Vereinigung
$$\Im(A \mid Z \mid B \cup C) \Rightarrow \Im(A \mid Z \cup C \mid B)$$

CON Kontraktion
$$\Im(A \mid Z \mid B) \land \Im(A \mid Z \cup B \mid C) \Rightarrow \Im(A \mid Z \mid B \cup C)$$

WTR Schwache Transitivität

$$\Im(A\mid Z\mid B) \land \Im(A\mid Z\cup\{x\}\mid B) \Rightarrow \Im(A\mid Z\mid\{x\}) \lor \Im(\{x\}\mid Z\mid B)$$

CHO Kordalität

$$\Im(a \mid c, d \mid b) \land \Im(c \mid a, b \mid d) \Rightarrow \Im(a \mid c \mid b) \lor \Im(a \mid d \mid b)$$

Markovdecken und Markovgrenzen

Definition

Sei \Im ein Dependenzmodell auf V und $V = \{X_1, \dots, X_N\}$ eine **Variablenordnung**.

• Eine Menge $B \subset V$ heißt **Markovdecke** von $c \in V$ bezüglich $A \subset V$ genau dann, wenn gilt:

$$B \subseteq A \land \Im(\{c\} \mid B \mid A \setminus B)$$

- Ist *B* minimal mit dieser Eigenschaft, so heißt *B* eine Markovgrenze.
- Die Folge B_1, \ldots, B_N heißt **Grenzensystem** von \Im bezüglich Variablenordnung $\mathbb{X}_1, \ldots, \mathbb{X}_N$ genau dann, wenn jede Menge B_n eine Markovgrenze von \mathbb{X}_n bezüglich $V_n = \{\mathbb{X}_1, \ldots, \mathbb{X}_{n-1}\}$ ist.
- Ein gerichteter azyklischer Graph \mathcal{G} , dessen Eltermengen pa (\mathbb{X}_n) ein Grenzensystem von \mathfrak{F} bilden, heißt **Grenzengraph** von \mathfrak{F} .

Markovdecken einer Markovkette: $\Im(\mathbb{X}_n \mid \{\mathbb{X}_{n-1}, \mathbb{X}_{n+1}\} \mid V \setminus \{\mathbb{X}_{n-1}, \mathbb{X}_n, \mathbb{X}_{n+1}\})$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Markovdecken gegen den Rest der Welt

Fragestellung

In ungerichteten Graphen fallen die beiden folgenden Fragestellungen zusammen:

LME Lokale Markoveigenschaft: Gegen welche Variablen wird $a \in V$ durch seine unmittelbaren Nachbarn bd(a) abgeschirmt?

AME Allgemeine Markoveigenschaft: Durch welche Menge wird $a \in V$ gegen den "Rest der Welt" abgeschirmt?

\$\(1 \ | 2,3 \ | ,Rest"\)
\$\(2 \ | 1,3,4 \ | ,Rest"\)
\$\(3 \ | 1,2,4 \ | ,Rest"\)
\$\(3 \ | 2,3,5 \ | ,Rest"\)
\$\(5 \ | 4 \ | ,Rest"\)
\$\(5 \ | 4 \ | ,Rest"\)
\$\(5 \ | 2,3,6 \ | ,Rest"\)
\$\(2 \ | 1,3,4,6 \ | ,Rest"\)
\$\(3 \ | 1,2,4 \ | ,Rest"\)
\$\(3 \ | 2,3,5 \ | ,Rest"\)
\$\(4 \ | 2,3,5 \ | ,Rest"\)

ℑ(5 | 4 | "Rest")

 $\Im(6 \mid 1, 2 \mid ",Rest")$

Bayesnetzkonstruktion

Lemma (Verma 1986)

Ist \Im ein Semigraphoid, so ist jeder Grenzengraph von \Im ein Bayesnetz von \Im .

Ist \Im ein Graphoid, so ist der Grenzengraph von \Im bei gegebener Variablenordnung eindeutig.

 \mathcal{G} ist ein Bayesnetz für die Verteilung $P(\cdot)$ genau dann, wenn er die LME* für $\Im = \Im_P$ besitzt und die Eltermengen pa (\mathbb{X}_n) minimal mit dieser Eigenschaft sind (Markovgrenzen von \mathbb{X}_n bzgl. $V \setminus off(\mathbb{X}_n)$).

- Wähle eine Variablenordnung $V = \{X_1, \dots, X_N\}$ aus.
- 2 Wähle X_1 als Wurzel und ordne die Randverteilung $P_1(x_1)$ zu.
- \odot Für alle $i \geq 2$ berechne ein minimales B_i mit

$$B_i \subseteq \{X_1, \dots, X_{i-1}\}$$
 und $P(x_i \mid x_1, \dots, x_{i-1}) = P(x_i \mid \mathbf{x}_{B_i})$

und kreiere Knoten X_i mit der Vorgängermenge pa $(X_i) = B_i$ und der lokalen Verteilung $P_i(x_i|\mathbf{x}_{B_i})$.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Allgemeine Markoveigenschaft

Lemma (AME*)

Es sei \mathcal{G} ein Bayesnetz für \Im . Für jedes $a \in V$ bildet die Vereinigung der folgenden Variablenmengen eine Markovdecke bzgl. V:

- 1. die Menge pa(a) der direkten Vorfahren von a,
- 2. die Menge ch(a) der direkten Nachkommen von a,
- 3. die Menge der direkten Vorfahren der direkten Nachkommen von a.

Mit anderen Worten:

$$\Im(a \mid pa(a) \cup ch(a) \cup pa(ch(a)) \setminus \{a\} \mid "Rest")$$

Beweis.

- \mathcal{G} ist ein Bayesnetz von \Im , also insbesondere ein Unabhängigkeitsbild; folglich gilt die GME*.
- Wir haben also nur die Trennungseigenschaft

$${\sf sep}_{\delta} \left< a \mid B_{a} \mid {\sf "Rest"} \right>_{\mathcal{G}}, \qquad B_{a} \stackrel{\sf def}{=} {\sf pa}(a) \cup {\sf ch}(a) \cup {\sf pa}({\sf ch}(a)) \setminus \{a\}$$

zu zeigen.

• Die Trennungseigenschaft beweisen wir im Moralgraphen $(\mathcal{G})^{\mathfrak{m}}$.

Dort hat Knoten $a \in V$ als Nachbarn genau alle ehemaligen Eltern und Kinder des DAG sowie zusätzlich all jene Knoten, zu denen gemeinsame Kinder in \mathcal{G} existieren, mit anderen Worten gilt:

$$\mathsf{bd}_{(\mathcal{G})^{\mathfrak{m}}}(a) = B_{\mathsf{a}}$$

• Selbstverständlich wird a im Moralgraphen $(\mathcal{G})^{\mathfrak{m}}$ — wie in jedem UG wegen der LME — durch seinen Rand $\mathrm{bd}_{(\mathcal{G})^{\mathfrak{m}}}(a)$ von allen Restknoten getrennt:

$$\operatorname{sep}_{\delta} \langle a \mid B_a \mid ,, \operatorname{Rest}'' \rangle_{(\mathcal{G})^{\mathfrak{m}}}$$

Damit ist die Behauptung gezeigt.

Beweis.

- 1. Jedes P mit dem Diamant-UG $f_1 \diamondsuit f_2 \Leftrightarrow f_2$ als perfektem Bild.
- 2. Jedes P mit dem Konvergenz-DAG $w_1 \rightarrow g \leftarrow w_2$ als perfektem Bild.
- 3. Jede nichtkausale loglineare Verteilung mit der Modellformel

$$P(a,b,c) = \phi_1(b,c) \cdot \phi_2(a,c) \cdot \phi_3(a,b)$$

denn der **vollständige UG** ist das eindeutige Markovnetz zu P, enthält aber die $\{b,c\},\{a,c\},\{a,b\}$ nicht als Cliquen.

- 4. Wegen des Spezialfalls partieller Unabhängigkeiten besitzen \mathcal{G}_{UG} und $(\mathcal{G}_{DAG})^{\mathfrak{m}}$ identische Kanten, das Markovnetz ist also der Moralgraph des Bayesnetzes.
 - \mathcal{G}_{UG} muß dann aber auch kordal sein, denn jeder Kreis \geq 4 muß im (azyklischen) Bayesnetz einen konvergierenden Knoten besitzen, folglich (aus Gründen der Moral) auch eine Sehne.
- 5. Im Falle der Unmoral gäbe es $a \to z \leftarrow b$, aber weder $a \to b$ noch $a \leftarrow b$. Für die "historischen Abschlüsse" Z von $\{z\}$ und W von $\{a,b\}$ gilt dann aber

$$\operatorname{\mathsf{sep}}\langle\{a\}\mid W\backslash\{a,b\}\mid\{b\}\rangle_{(\mathcal{G}_{W})^{\mathfrak{m}}}$$
 ,

aber nicht

$$sep({a} | Z \setminus {a, b} | {b})_{(G_{\mathbf{Z}})^{\mathfrak{m}}}$$
,

ein eklatanter \ref{p} zum SUN-Axiom (P graphisch!), da $W \setminus \{a,b\} \subset Z \setminus \{a,b\}$ gilt.

Graphische versus kausale Verteilungen

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Lemma

 \Box

- 1. Es gibt graphische Verteilungen, die nicht kausal sind.
- 2. Es gibt kausale Verteilungen, die nicht graphisch sind.
- 3. Es gibt Verteilungen, die weder graphisch noch kausal sind.
- 4. Ist $P: \mathcal{X} \to \mathbb{R}$ sowohl graphisch als auch kausal, so ist jedes Markovnetz von \Im_P kordal/trianguliert.
- 5. Ist $P: \mathcal{X} \to \mathbb{R}$ sowohl graphisch als auch kausal, so ist jedes Bayesnetz von \Im_P moralisch.

Beweisidee
$$\Im(\{a\} \mid {}_{,Rest}" \mid \{b\})_{P(\cdot)}$$

$$\sec \langle A|Z|B\rangle_{\mathcal{G}_{UG}} \iff \Im(A|Z|B)_{P(\cdot)} \iff \sec_{\delta} \langle A|Z|B\rangle_{\mathcal{G}_{DAG}}$$

$$\sec \langle A|Z|B\rangle_{\mathcal{G}_{DAG}}$$

$$\sec \langle A|Z|B\rangle_{\mathcal{G}_{DAG}}$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Beispiele

Markovnetze mit 3, 4, 5 oder 6 Variablen

• • •
$$P(x) \cdot P(y) \cdot P(z)$$
 3-diskret \oplus
• • • $P(x,y) \cdot P(z)$ 2+1-diskret \oplus
• • • $P(x,y) \cdot P(y,z) / P(y)$ kaskadiert \oplus

$$\triangle P(x,y,z) \qquad \text{saturiert} \qquad \oplus$$

$$\triangle \phi(x,y) \cdot \phi(y,z) \cdot \phi(z,w) \cdot \phi(w,x) \qquad \text{Diamant} \qquad \ominus$$

$$\triangle P(x,y,z) \cdot P(y,z,w) / P(y,z) \qquad 3/3\text{-Cliquen} \qquad \oplus$$

$$\triangle P(x,y,z) \cdot P(y,x,z) / P(z) \qquad 3/3\text{-Cliquen} \qquad \oplus$$

$$\triangle \triangle \triangle \phi(x_1,x_2,x_3) \cdot \phi(y_1,y_2,y_3) \cdot \phi(x_1,y_1) \cdot \phi(x_2,y_2) \cdot \phi(x_3,y_3) \qquad \text{Toblerone} \qquad \ominus$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Beispiele

Bayesnetze mit 3 oder 4 Variablen

• • •	$P(x) \cdot P(y) \cdot P(z)$	3-diskret	\oplus
ullet	$P(x) \cdot P(y x) \cdot P(z)$	2+1-diskret	\oplus
$\bullet{\to}\bullet{\to}\bullet$	$P(x) \cdot P(y x) \cdot P(z y)$	kaskadiert	\oplus
$\bullet {\leftarrow} \bullet {\rightarrow} \bullet$	$P(x y) \cdot P(y) \cdot P(z y)$	divergent	\oplus
$\bullet{\to}\bullet{\leftarrow}\bullet$	$P(x) \cdot P(y x,z) \cdot P(z)$	konvergent	\ominus
\triangle	$P(x) \cdot P(y x) \cdot P(z x,y)$	saturiert	\oplus
$\triangleleft \triangleright$	$P(x) \cdot P(y x) \cdot P(z x,y) \cdot P(w y,z)$	3-3-Cliquen	\oplus
$\triangleleft \triangleright$	$P(x) \cdot P(y x) \cdot P(w y) \cdot P(z x, y, w)$	unmoralisch!	\ominus

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Berechnung bedingter Wahrscheinlichkeiten

Verbundverteilung

Gemeinsame Verteilung $P(x_1, ..., x_n)$ aller Variablen in **Produktform**.

Randverteilungen

Gemeinsame Verteilung für eine Teilmenge $A \subset V$:

$$P(V \setminus \{x_i\}) = \sum_{x_i} P(x_1, \dots, x_n)$$

$$P(V \setminus \{x_i, x_j\}) = \sum_{x_i} \sum_{x_j} P(x_1, \dots, x_n)$$

$$P(V \setminus \{x_{i_1}, \dots, x_{i_m}\}) = \sum_{x_{i_m}} \dots \sum_{x_{i_m}} P(x_1, \dots, x_n)$$

Bedingte Verteilungen

Einfluß einer Zufallsvariablen X_i auf eine andere X_i :

$$P(x_i|x_j) = \frac{P(x_i,x_j)}{P(x_j)} = \frac{\sum \cdots \sum P(x_1,\ldots,x_n)}{\sum \sum \cdots \sum P(x_1,\ldots,x_n)}$$

Korrelation, Regression und Transinformation

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Assoziationsregeln und Netzwerkanalyse

Bedingte statistische Unabhängigkeit

Graphische Modelle: ungerichtete Graphen

Kausale Modelle: gerichtete azyklische Graphen

Berechnen bedingter Wahrscheinlichkeiten

Parameterschätzung in Bayesnetzen und Loglinearmodellen

Aufdeckung der Abhängigkeitsstruktur

Kovarianzselektion

 ${\sf Korrelation} \quad {\sf Assoziation} \quad {\sf Dependenz} \quad {\sf Markovnetze} \quad {\sf Bayesnetze} \quad {\sf Inferenz} \quad {\sf P-Lernen} \quad {\sf S-Lernen} \quad {\sf Gaußnetze} \quad {\sf \Sigma}$

Warum Bayesnetze?

Weil sie in Wahrscheinlichkeiten faktorisieren!

Was ist Inferenz?

Logik Axiome, Schlußregeln → neue Sätze

Arithmetik Parameterwerte, Operationen 🗢 Funktionswerte

Stochastik Observablen, W-Modell <code-block> bedingte W'keiten</code>

A posteriori Verteilungen

Evidenz $E = \{e_1, \dots, e_m\}$ (" instanziierte" Variablen)

$$P(x_i|E) = P(x_i = \xi \mid e_1 = \eta_1, \dots, e_m = \eta_m)$$

Rand- und Rückschlußverteilungen sind aufwendig zu berechnen!

- Eliminiere Variablen in ökonomischer Reihenfolge gemäß Dependenzstruktur bzw. Modellformel.
- Propagationsalgorithmen, Marker-Passing, Sampling ...

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Notation der Rechengrößen

für baumförmige Bayesnetze

Wahrscheinlichkeitsparametermatrix

Jeder Knoten y im DAG hat **genau einen** Elterknoten x.

$$\mathbf{M}_{y|x} = P(y|x) = [P(y = \eta_j \mid x = \xi_i)]_{ij}$$

$$= \begin{cases} P(y = \eta_1 \mid x = \xi_1) & \cdots & P(y = \eta_k \mid x = \xi_1) \\ \vdots & & \vdots \\ P(y = \eta_1 \mid x = \xi_m) & \cdots & P(y = \eta_k \mid x = \xi_m) \end{cases}$$

Evidenz

Instanziierte Variablen $e \in V$ bzw. $E \subseteq V$.

Belief-Funktion

Subjektive Einschätzung von x auf Grundlage von E (Wahr'keitsfeld):

$$bel(x) \stackrel{\text{def}}{=} P(x|E)$$

$$bel(x) = P(x | z = \zeta) = (P(x = \xi_1 | z = \zeta), \dots, P(x = \xi_\ell | z = \zeta))^\top$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Unidirektionale Fortpflanzung in Ketten

Drei Variablen

Beispiel: $x \to y \to z$, Evidenz $\{z = \zeta\}$

Nach der Bayesformel gilt wiederum:

$$bel(x) = P(x \mid z = \zeta) = \frac{P(x) \cdot P(z = \zeta \mid x)}{P(z = \zeta)} \propto P(x) \cdot \lambda(x)$$

Der diagnostische Vektor lautet nunmehr

$$\lambda(x) = P(z = \zeta \mid x) = \sum_{y} P(z = \zeta, y \mid x)$$
$$= \sum_{y} P(z = \zeta \mid y) \cdot P(y \mid x)$$
$$= M_{y \mid x} \bullet \lambda(y)$$

 $M_{v|x} \bullet \lambda(y)$ bezeichnet das Vektor-Matrix-Produkt über die Variable y.

Unidirektionale Fortpflanzung in Ketten

Zwei Variablen

Beispiel: $x \to y$, Evidenz $\{y = \eta\}$ Nach der Bayesformel gilt:

$$bel(x) = P(x \mid y = \eta) = \frac{P(x) \cdot P(y = \eta \mid x)}{P(y = \eta)} \propto P(x) \cdot \lambda(x)$$

mit der a priori Wahrsch'keit P(x) und dem diagnostischen Vektor

$$\lambda(x) = P(y = \eta \mid x)$$
 (η -te Spalte der Matrix $M_{y|x}$).

 $P(x) \cdot \lambda(x)$ bezeichnet das komponentenweise Produkt.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Unidirektionale Fortpflanzung in Ketten

Mehr als drei Variablen

Beispiel: $x_1 \rightarrow x_2 \rightarrow ... \rightarrow x_n$, Evidenz $\{x_n = \xi\}$ Nach der Bayesformel gilt wiederum:

bel(x₁) = P(x₁ | x_n = \xi) =
$$\frac{P(x_1) \cdot P(x_n = \xi | x_1)}{P(x_n = \xi)} \propto P(x_1) \cdot \lambda(x_1)$$

Der diagnostische Vektor gehorcht der Rekursion:

$$\lambda(x_{1}) = M_{x_{2}|x_{1}} \bullet \lambda(x_{2})
= M_{x_{2}|x_{1}} \bullet M_{x_{3}|x_{2}} \bullet \lambda(x_{3})
= M_{x_{2}|x_{1}} \bullet M_{x_{3}|x_{2}} \bullet M_{x_{4}|x_{3}} \bullet \lambda(x_{4})
= M_{x_{2}|x_{1}} \bullet M_{x_{3}|x_{2}} \bullet \dots \bullet M_{x_{n-1}|x_{n-2}} \bullet \underbrace{P(x_{n} = \xi \mid x_{n-1})}_{M_{\xi|x_{n-1}}}$$

Bidirektionale Fortpflanzung in Ketten

Beispiel: $e^+ \rightarrow v \rightarrow w \rightarrow x \rightarrow y \rightarrow z \rightarrow e^-$

A posteriori Wahrscheinlichkeiten nach Bayesformel:

$$bel(x) = P(x \mid e^+, e^-) \propto P(e^- \mid x, e^+) \cdot P(x \mid e^+)$$
$$= P(e^- \mid x) \cdot P(x \mid e^+) = \lambda(x) \cdot \pi(x)$$

Diagnostische Evidenz Kausale Evidenz

$$\lambda(x) = P(e^-|x|)$$

 $\pi(x) = P(x|e^+)$

Fortpflanzung rückwärts

Fortpflanzung vorwärts

$$\pi(x) = P(x|e^{+}) \qquad \lambda(x) = P(e^{-}|x)$$

$$= \sum_{w} P(x \mid w, e^{+}) \cdot P(w|e^{+}) \qquad = \sum_{y} P(e^{-}, y \mid x)$$

$$= \sum_{w} P(x|w) \cdot P(w|e^{+}) \qquad = \sum_{y} P(e^{-}|y) \cdot P(y|x)$$

$$= \pi(w) \cdot M_{x|w} \qquad = M_{y|x} \cdot \lambda(y)$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Bidirektionale Fortpflanzung in Bäumen

Zerlegung der Evidenz

Vertikale Zerlegung kausal/diagnostisch:

$$E_x = E_x^+ \uplus E_x^-$$

Horizontale Zerlegung des diagnostischen Teils

$$E_x^- = \biguplus_{y_\ell \in \mathsf{ch}(x)} E_{y_\ell}^-$$

Horizontale Zerlegung des kausalen Teils

$$E_{y_{\ell}}^{+} = E_{x}^{+} \uplus \biguplus_{k \neq \ell} E_{y_{k}}^{-}$$

Bidirektionale Fortpflanzung in Bäumen

Zerlegung der Belief-Funktion

Zerlegung der Evidenz

Für $x \in V$ unterscheiden wir zwei Quellgebiete:

$$E = E_x^+ \uplus E_x^- \quad \text{mit} \quad \begin{cases} E_x^- \subset \text{ch}(x) & \text{,,flußabwärts''} \\ E_x^+ \subset V \backslash \text{ch}(x) & \text{,,flußaufwärts''} \end{cases}$$

Belief-Funktion

Nach Kettenregel und sep_{δ} $\langle E_x^- \mid \{x\} \mid E_x^+ \rangle$ folgt:

$$bel(x) = P(x \mid E_x^+, E_x^-)$$

$$\propto P(E_x^-, x \mid E_x^+)$$

$$= P(E_x^- \mid x, E_x^+) \cdot P(x \mid E_x^+) = \lambda(x) \cdot \pi(x)$$

 $\pi(x) =$ kausale Unterstützung von x durch die Vorgänger $\lambda(x) =$ diagnostische Unterstützung von x durch die Nachfolger

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Bidirektionale Fortpflanzung in Bäumen

Diagnostische und prädiktive Wahrscheinlichkeiten

Diagnostische Komponente

Seien u_1, \ldots, u_r die Nachfolger von x:

$$\lambda(x) = P(E_x^-|x) = P(E_{u_1}^-, \dots, E_{u_r}^-|x) = \prod_{s=1}^r \underbrace{P(E_{u_s}^-|x)}_{\lambda_{u_s}(x)}$$

Falls $\{x = \xi\}$ selbst instanziiert, so erzeuge Dummyknoten d mit $\lambda_d(x) = \mathbf{I}_{x=\xi}$.

Prädiktive Komponente

Sei $u \in V$ der Vater (die Mutter) von x:

$$\pi(x) = P(x|E_x^+) = \sum_{u} P(x, u \mid E_x^+)$$
$$= \sum_{u} P(x|u) \cdot P(u|E_x^+) =: \mathbf{M}_{x|u} \bullet \pi_x(u)$$

Bidirektionale Fortpflanzung in Bäumen

Variablenversetzte diagnostische und prädiktive Komponenten

Berechnung von $\lambda_{\times}(u)$

für
$$u \rightarrow x$$

$$\lambda_{x}(u) = \sum_{x} P(E_{x}^{-} | u, x) \cdot P(x|u)$$

$$= \sum_{x} P(E_{x}^{-} | x) \cdot P(x|u)$$

$$= \sum_{x} \lambda(x) \cdot P(x|u)$$

$$= M_{x|u} \cdot \lambda(x)$$

Berechnung von $\pi_y(x)$

für
$$u \rightarrow x$$
 und $y \leftarrow x \rightarrow z$

$$\pi_{y}(x) = P(x|E_{y}^{+})$$

$$= P(x | E_{x}^{+}, E_{z}^{-})$$

$$\propto P(E_{z}^{-} | x, E_{x}^{+}) \cdot P(x|E_{x}^{+})$$

$$= \lambda_{z}(x) \cdot \pi(x)$$

$$= \lambda_{z}(x) \cdot M_{x|u} \bullet \pi_{x}(u)$$

Spezialfall: $x = \xi$ evident

$$\lambda_x(u) = P(x = \xi \mid u)$$

(ξ -te Spalte von Matrix $M_{x|u}$)

Allgemeinfall: \geq 3 Kinder

$$\pi_y(x) = \pi(x) \cdot \sum_{z \neq y} \lambda_z(x)$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Inferenz in moralischen Bayesnetzen

Vorwärts-Rückwärts-Algorithmus über Variablenkomplexen

- ENTFERNE ALLE KANTENRICHTUNGEN
 → äquivalentes kordales Markovnetz
- 2 BILDE VETRÄGLICHEN VERBUNDBAUM mit Cliquensequenz $C = \{C_1, \dots, C_K\}$
- 3 KONSTRUIERE VARIABLENKOMPLEXE $\mathbb{Y}_k := \bigotimes_{\mathbb{X}_i \in B_k} \mathbb{X}_j \text{ mit } B_k := C_k \setminus C_{k-1}$
- 4 EXPANDIERE VERTEILUNGSPARAMETER $\mathbf{M}_{k|\ell} = (P(\mathbb{Y}_k = \boldsymbol{\eta} | \mathbb{Y}_\ell = \boldsymbol{\zeta}) \mid \boldsymbol{\eta} \in \mathcal{Y}_k, \boldsymbol{\zeta} \in \mathcal{Y}_\ell)$
- EXEKUTIERE VR-ALGORITHMUS AUF VB

Moralische Bayesnetze

Verbundbaum: spezielle x/y-Kombinationen

Markovnetz: nur Imputation!

Unmoralische Bayesnetze

Schummeln:Verheiraten aller
Elternpaare

Monte Carlo: Iteratives Auswürfeln und Neuschätzen

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Vorwärts-Rückwärts-Algorithmus

in baumförmigen Bayesnetzen

$egin{aligned} &\operatorname{\sf Start} \ \pi(x_0) = M_{x_0}|. & (\operatorname{\sf Wurzel}) \ \lambda(x_\ell) = 1 & (\operatorname{\sf Blatt}) \ \lambda(x_{f e}) = {f e}^{(\zeta)} & (\operatorname{\sf Evidenz}) \end{aligned}$

Bottom-up

$$\lambda(y_k)$$
 (I.V.)
 $\lambda_{y_k}(x) = M_{y_k|x} \bullet \lambda(y_k)$
 $\lambda(x) = \prod_k \lambda_{y_k}(x)$

Top-down

$$\pi(x)$$
 (I.V.)
 $\pi_{y_k}(x) \propto \pi(x) \cdot \prod_{\ell \neq k} \lambda_{y_\ell}(x)$
 $\pi(y_k) = M_{y_k|x} \bullet \pi_{y_k}(x)$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Spezialfall Imputation

Vorhersage eines Attributwertes aus allen anderen

Belief-Funktion

mit Zielvariable x_k und Evidenzvariablen $E = V \setminus \{x_k\}$:

$$bel(x_k)_{\xi} = P(x_k = \xi \mid \boldsymbol{x}_E) = \frac{P(x_k = \xi, \boldsymbol{x}_E)}{P(\boldsymbol{x}_E)} = \frac{P(\boldsymbol{x}_{\mid x_k = \xi})}{P(\boldsymbol{x}_E)}$$

X_k ist diskretes Attribut

1. Für alle $\xi_\ell \in \mathcal{X}_k$ berechne $q_\ell = \mathrm{P}(\pmb{x}_{|\pmb{x_k} = \xi_\ell})$ mit

$$\mathbf{x}_{|\mathbf{x}_k=\xi_\ell|} = (\mathbf{x}_1,\ldots,\mathbf{x}_{k-1},\mathbf{x}_k=\xi_\ell,\mathbf{x}_{k+1},\ldots,\mathbf{x}_n)^\top \in \mathbb{R}^n$$
.

2. Setze bel $(x_k)_{\ell} = q_{\ell} / \sum_{i} q_{i}$.

X_k ist stetiges Attribut

Effiziente Lösungsmöglichkeit trotz $|\mathcal{X}_k| = \infty$?

Korrelation Assoziation Dependenz Markovnetze Bayesnetze **Inferenz** P-Lernen S-Lernen Gaußnetze Σ

Spezialfall Imputation

Vorhersage eines normalverteilten Attributwertes

Die Geheimfunktion

Es ist $P(x_k = \xi \mid \mathbf{x}_E) = \mathcal{N}(\xi \mid \mu, \sigma^2)$, also erhalten wir Resultate der Form

$$P(\mathbf{x}_{|\mathbf{x}_{k}=\xi}) = P(\mathbf{x}_{E}) \cdot P(\xi | \mathbf{x}_{E}) = \underbrace{c \cdot \mathcal{N}(\xi | \mu, \sigma^{2})}_{\mathbf{g}_{\mathbf{c},\mu,\sigma}(\xi)}$$

durch Auswertung des Bayesnetzes an der Stelle $\xi \in {\rm I\!R}.$

Lemma

Die unbekannten Parameter c>0, $\mu\in{\rm I\!R}$ und $\sigma>0$ der skalierten univariaten Gaußdichte

$$g_{c,\mu,\sigma}(\xi) \stackrel{\text{def}}{=} c \cdot \mathcal{N}(\xi \mid \mu, \sigma^2)$$

können aus den Funktionswerten von $g(\cdot)$ an vier reellen Stützstellen bestimmt werden.

Diese Entschlüsselungstechnik läßt sich auf multivariate Gaußdichten verallgemeinern.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Imputation in (nichtkordalen) Markovnetzen

Effiziente Berechnung als $bd(x_k)$ -ausgedünntes Cliquenprodukt

Bedingte Wahrscheinlichkeit nach Faktorisierung

$$P(\mathbb{X}_k = x_k \mid \mathbb{X}_{V \setminus k} = x') = \frac{P(x_k, x')}{P(x')} = \frac{\prod_{C \in \mathcal{C}} \phi_C(x_k, x')}{\sum_{E \in \mathcal{X}_k} \prod_{C \in \mathcal{C}} \phi_C(x_k, x')}$$

Ausklammern & Kürzen aller Gibbspotenziale ϕ_C mit $x_k \notin C$

Reduzierte Faktorisierung über $C_{(k)} := \{C \mid x_k \in C\} = \{C \mid C \subseteq cl(x_k)\}$ (wegen $\Im(x_k \mid bd(x_k) \mid Rest')$ nicht ganz unerwartet!)

Binäres Zielattribut
$$|\mathcal{X}_k|=2$$

$$\log \operatorname{odds}(\mathbf{x}') = \log \frac{\operatorname{P}(1|\mathbf{x}')}{\operatorname{P}(0|\mathbf{x}')} = \sum_{C \in \mathcal{C}_{(k)}} \log \frac{\phi_C(\mathbf{x}_{C \setminus k}, 1)}{\phi_C(\mathbf{x}_{C \setminus k}, 0)}$$

Beweis.

Wir definieren die *lograt*-Funktion $\ell(x,y) = -2 \cdot \log(g(x)/g(y))$ und folgern die Identität

$$\ell(x,y) = \frac{1}{\sigma^2} \cdot (x^2 - y^2 - 2\mu \cdot (x - y))$$
.

Wir definieren nun die Differentiale

$$\ell_h^-(x) \stackrel{\text{def}}{=} \ell(x, x - h) = \frac{1}{2} \cdot (+2hx - h^2 - 2h\mu)$$

$$\ell_h^+(x) \stackrel{\text{def}}{=} \ell(x, x + h) = \frac{1}{2} \cdot (-2hx - h^2 + 2h\mu)$$

für h>0 und finden nach deren Addition einen Lösungsausdruck

$$\hat{\sigma}^2 = -2 \cdot \frac{h^2}{\ell_h^+(x) + \ell_h^-(x)}$$

für die gesuchte Varianz. Anschließend können wir aus jeder der Differentialformeln den Erwartungswert berechnen, z.B.:

$$\hat{\mu} = \frac{\hat{\sigma}^2 \cdot \ell_h^+(x) + 2hx + h^2}{2h} = \frac{\hat{\sigma}^2}{2h} \cdot \ell_h^+(x) + x + \frac{h}{2}$$

Schließlich bestimmen wir noch den Skalierungsfaktor c; die numerisch stabilste Methode besteht in einer weiteren Auswertung der Geheimfunktion $g(\cdot)$, und zwar am Dichtegipfel:

$$\hat{c} = \frac{g(x)}{\mathcal{N}(x \mid \hat{\mu}, \hat{\sigma}^2)} = \frac{g(\hat{\mu})}{\mathcal{N}(\hat{\mu} \mid \hat{\mu}, \hat{\sigma}^2)} = \frac{g(\hat{\mu})}{\mathcal{N}(0 \mid 0, \hat{\sigma}^2)} = \sqrt{2\pi} \cdot \hat{\sigma} \cdot g(\hat{\mu})$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz **P-Lernen** S-Lernen Gaußnetze Σ

Korrelation, Regression und Transinformatio

Assoziationsregeln und Netzwerkanalyse

Bedingte statistische Unabhängigkeit

Graphische Modelle: ungerichtete Graphen

Kausale Modelle: gerichtete azyklische Graphen

Berechnen bedingter Wahrscheinlichkeiten

Parameterschätzung in Bayesnetzen und Loglinearmodellen

Aufdeckung der Abhängigkeitsstruktu

Kovarianzcoloktion

Diskrete loglineare Modelle

Spezialfall: drei Variablen (N = 3)

Dreiwegetabellen

Drei diskrete Zufallsvariablen $V = \{X_1, X_2, X_3\} = \{a, b, c\}$

- Endliche Wertebereiche $\mathcal{X}_a, \mathcal{X}_b, \mathcal{X}_c$
- Endlich viele Zellen $(j, k, l) \in \mathcal{X}_a \times \mathcal{X}_b \times \mathcal{X}_c$
- ullet Würfel $\{p_{jkl}\}$ von Wahrscheinlichkeiten

$$\sum_{j}\sum_{k}\sum_{l}p_{jkl}=1$$

• Würfel $\{n_{jkl}\}$ von (absoluten) Häufigkeiten

$$\sum_{j}\sum_{k}\sum_{l}n_{jkl}=T$$

Loglineares Verteilungsmodell

Produktform

$$p_{jkl} = \prod_{A \in \Delta} \underbrace{\phi_A(\mathbf{x}_A)}_{\mathbf{z}_{ikl}^A}$$

Summenform

$$\log p_{jkl} = \sum_{A \in \Delta} \underbrace{\log \phi_A(\mathbf{x}_A)}_{u_{kl}^A}$$

$\Delta \subset \mathfrak{P}V$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Schätzung der kanonischen Modellparameter

Normierungseigenschaft

$$1 \stackrel{!}{=} \sum_{jkl} p_{jkl} = \sum_{jkl} \exp \left\{ \sum_{A \in \Delta} u_{jkl}^A \right\} = e^u \cdot \sum_{jkl} \exp \left\{ \sum_{A \neq \varnothing} u_{jkl}^A \right\}$$

Multinomial gezogene Stichprobe

$$P(n|p) = P(\{n_{jkl}\} | \{p_{jkl}\}) = \frac{T!}{\prod_{j,k,l} n_{jkl}!} \cdot \prod_{j,k,l} p_{jkl}^{n_{jkl}}$$

Logarithmierte Likelihood-Funktion

$$\ell_{\mathrm{ML}}(\boldsymbol{n}|\boldsymbol{p}) = \log \frac{T!}{\prod_{i,k,l} n_{jkl}!} + \sum_{j,k,l} n_{jkl} \log p_{jkl}$$

Maximum-Likelihood-Schätzwerte

Kanonische Verteilungsparameter für das saturierte Modell

$$\hat{p} = \underset{p}{\operatorname{argmax}} \ell_{\mathrm{ML}}(n|p) \Rightarrow \hat{p}_{jkl} = \frac{n_{jkl}}{T}$$

Beispiele — Dreiwegemodelle

Menge der (maximalen) Interaktionsterme · "Generatoren"

Unabhängiges Modell

a, b, c

$$\log p_{jkl} = u + u_j^a + u_k^b + u_l^c$$

$$p_{jkl} = P(a = \alpha_j) \cdot P(b = \beta_k) \cdot P(c = \chi_l) = p_{j...} \cdot p_{.k.} \cdot p_{..l}$$

Kettenförmiges Modell

ab, ac

$$\log p_{jkl} = u + u_j^{a} + u_k^{b} + u_l^{c} + u_{jk}^{ab} + u_{jl}^{ac}$$

$$p_{jkl} = \frac{p_{jk.} \cdot p_{j.l}}{p_{j..}} \text{ bzw. } \frac{p_{jkl}}{p_{j..}} = \frac{p_{jk.}}{p_{j..}} \cdot \frac{p_{j.l}}{p_{j..}}$$

Saturiertes Modell

abc

$$\log p_{jkl} = u + u_i^a + u_k^b + u_l^c + u_{jk}^{ab} + u_{jl}^{ac} + u_{kl}^{bc} + u_{jkl}^{abc}$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Diskrete Loglinearmodelle

Definition

Die Familie diskreter Wahrscheinlichkeitsfunktionen $\{p_x\}_{x\in\Omega}$ der Gestalt

$$\log p_{\mathbf{x}} = \sum_{A \in \Lambda} u_{\mathbf{x}}^{A}, \quad \mathbf{x} \in \mathbf{\Omega}, \quad \Delta \subseteq \mathfrak{P}V$$

heißt Loglinearmodell mit der Menge Δ von Interaktionstermen.

1. Das Loglinearmodell heißt hierarchisch, falls gilt:

$$A \subseteq B$$
 und $B \in \Delta$ \Rightarrow $A \in \Delta$

2. Das Loglinearmodell heißt **graphisch**, wenn gilt:

$$C \in \Delta$$
 \Leftrightarrow $\forall a, b \in C : \{a, b\} \in \Delta$

3. Ein graphisches LLM heißt zerlegbar, wenn sein Graph kordal ist.

Die maximalen Interaktionsterme eines hierarchischen Loglinearmodells heißen Generatoren. Die Generatorenmenge wird auch als Modellformel bezeichnet.

Beispiele — Loglinearmodelle I

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Elementare und marginale Ereignisse

Häufigkeit und charakteristische Funktion

Definition

Es sei $\{n_x\}_{x\in\Omega}$ die Tafel elementarer Ereignishäufigkeiten über V. Das Zahlenfeld $\{n_{x_A}\}_{x_A\in\Omega_A}$ für eine Variablenmenge $A\subseteq V$ mit Einträgen

$$n_{\mathbf{x}_{\mathbf{A}}} \stackrel{\mathrm{def}}{=} \sum_{\mathbf{x}_{\mathbf{A}'} \in \Omega_{\mathbf{A}'}} n_{\mathbf{x}} , \qquad A' = V \setminus A$$

heißt marginale Tafel oder Tabelle für A.

Definition

Sei $V=\{\mathbb{X}_1,\ldots,\mathbb{X}_N\}$, $A\subseteq V$ und $\mathbf{x}_A\in\mathbf{\Omega}_A$ ein marginales Ereignis. Die zweiwertige Abbildung

$$\varphi_{\mathbf{x_A}}: \left\{ \begin{array}{ccc} \mathbf{\Omega} & \rightarrow & \{1,0\} \\ \boldsymbol{\xi} & \mapsto & \left\{ \begin{array}{ccc} 1 & \xi_j = x_j & \text{für alle } j \in A \\ 0 & \text{sonst} \end{array} \right. \end{array} \right.$$

heißt charakteristische Funktion von x_A .

Beispiele — Loglinearmodelle II

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Maximum-Entropie-Prinzip

Edwin Thompson Jaynes, 1957

Satz (ML ME)

Es sei ein hierarchisches loglineares Modell

$$\log p_{\mathbf{x}} = \sum_{A \in \Delta} u_{\mathbf{x}}^{A}$$

gegeben sowie die Häufigkeitstafel $\{n_x\}_{x\in\Omega}$ der Daten $\omega\subset\Omega$.

1. Die **Maximum-Likelihood**-Parameter $\{u_x^A\}_{x_A}$ des Modells erfüllen die Bedingungsgleichungen (*)

$$\mathcal{E}[\varphi_{\mathbf{x}_{\mathbf{A}}}(\mathbb{X}) \mid \mathbf{u}] = \frac{n_{\mathbf{x}_{\mathbf{A}}}}{T} , \qquad A \in \Delta, \ \mathbf{x} \in \Omega .$$

2. Unter allem Wahrscheinlichkeitsverteilungen, die das Gleichungssystem (*) erfüllen, hat obiges loglineare Modell mit Parametern $\{u_{\mathbf{A}}^{\mathbf{A}}\}_{\mathbf{X}^{\mathbf{A}}}$ die **maximale Entropie**.

"Unter allen Zuständen eines physikalischen Systems, die kompatibel mit dem vorhandenen Wissen sind, ist der zu wählen, welcher die Entropie maximiert."

Lernen der Loglinearparameter

GIS-Algorithmus — Generalized Iterative Scaling

Satz (Deming & Stephan, 1940)

Mit der abkürzenden Schreibweise $z_x^A = \exp(u_x^A)$ gilt: Das Iterationsverfahren

$$z_{\mathbf{x}}^{A} \leftarrow z_{\mathbf{x}}^{A} \cdot \left(\frac{n_{\mathbf{x}_{\mathbf{A}}}/T}{\mathcal{E}[\varphi_{\mathbf{x}_{\mathbf{A}}}(\mathbb{X})]}\right)^{1/|\Delta|} = z_{\mathbf{x}}^{A} \cdot \left(\frac{\sum_{\mathbf{y} \in \Omega} \varphi_{\mathbf{x}_{\mathbf{A}}}(\mathbf{y}) \cdot \frac{n_{\mathbf{y}}}{T}}{\sum_{\mathbf{y} \in \Omega} \varphi_{\mathbf{x}_{\mathbf{A}}}(\mathbf{y}) \cdot \prod_{B \in \Delta} z_{\mathbf{y}}^{B}}\right)^{1/|\Delta|}$$

mit den Startwerten $z_x^A \equiv 1$ konvergiert gegen die Maximum-Likelihood-Schätzwerte des loglinearen Modells.

Bemerkung

Die Gleichung für $\varnothing \in \Delta$ garantiert $\sum p_x = 1$. Das Bedingungssystem ist konsistent: alle $C_y = \sum \varphi_{x_A}(y)$ sind gleich $|\Delta|$. Beweis \leadsto Skriptum "Stochastische Grammatikmodelle"

 ${\sf Korrelation \ Assoziation \ Dependenz \ Markovnetze \ Bayesnetze \ Inferenz \ {\sf P-Lernen \ S-Lernen \ Gaußnetze \ \Sigma}}$

Beispiel — Tafelobst im Tetrapack

Daten = 100 Obstkörbe

	0:4	1:3	2:2	3:1	4:0	
n ₀₀	60	2	1	0	0	63
n ₀₀ n ₀₁	0	1	2	1	0	4
n_{10}	0	1	2	1	0	4
n_{11}	0	0	1	2	26	29
	60	4	6	4	26	100

Iterationsanfang

$$z_{00}=z_{01}=z_{11}=1$$

Iterationsschritt

$$z_{\xi\eta} \leftarrow z_{\xi\eta} \cdot \left(\frac{n_{\xi\eta}/100}{\mathcal{E}[\varphi_{\xi\eta}(\mathbb{X})]}\right)^{1/5}$$

Generalized Iterative Scaling

	Loglinearparameter				Wahrscheinlichkeiten in Promille				
i	z ₀₀	^z 01	^Z 11	1/z	$ \left(\begin{array}{c} 00 \\ 00 \end{array}\right) $	$\begin{pmatrix} 10\\00 \end{pmatrix}$	$\begin{pmatrix} 11\\00 \end{pmatrix}$	$\begin{pmatrix} 11\\10 \end{pmatrix}$	$\begin{pmatrix} 11\\11 \end{pmatrix}$
0	1	1	1	16	62.5	62.5	62.5	62.5	62.5
1	1.2	0.693	1.03	10.9	192	63.9	54.7	46.8	103
2	1.33	0.509	1.06	9.05	351	51.1	40.5	32.2	139
3	1.4	0.402	1.1	8.39	460	37.8	29.5	23.1	172
4	1.43	0.339	1.13	8.15	517	28.9	22.8	18	201
6	1.46	0.279	1.17	8.03	561	20.6	16.6	13.4	235
9	1.47	0.252	1.19	8.01	579	17.1	13.9	11.3	251
12	1.47	0.245	1.19	8	584	16.3	13.2	10.7	255
16	1.47	0.244	1.2	8	585	16	13	10.6	256
20	1.47	0.243	1.2	8	585	16	13	10.6	256
saturiertes Modell:				600	10	10	10	260	

Beispiel — Tafelobst im Tetrapack

Diamantenes Verteilungsmodell für die vier frischen/faulen Äpfel:

Datensammlung und Statistiken

Absolute Häufigkeiten

$$\{n_{\alpha\beta\zeta\delta} \mid \alpha, \beta, \zeta, \delta \in \{0, 1\}\}$$

Minimale suffiziente Statistiken, z.B. für $ab \in \Delta$:

$$n_{\alpha\beta}^{ab} = \sum_{a,b,c,d} \delta_{a=\alpha} \cdot \delta_{b=\beta} \cdot n_{abcd}$$

Symmetrie I

$$n_{\xi\eta}^{ab} = n_{\xi\eta}^{bc} = n_{\xi\eta}^{cd} = n_{\xi\eta}^{da} = n_{\xi\eta}$$

Symmetrie II

$$n_{01} = n_{10}$$

MIC A L.: E : III C I :

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Happy End — für alle kausalen Verteilungen

Zerlegbare Loglinearmodelle

Cliquen $C = \{C_1, \ldots, C_M\}$

$$P(\mathbf{x}) = \prod_{C \in \mathcal{C}} z_{\mathbf{x}}^{C}$$
$$= \prod_{C \in \mathcal{C}} \frac{P(\mathbf{x}_{C})}{P(\mathbf{x}_{C \cap \pi(C)})}$$

Bayesnetze

Ordnung $V = \{V_1, \dots, V_N\}$

$$P(\mathbf{x}) = \prod_{n=1}^{N} P(x_n \mid \mathbf{x}_{pa(n)})$$
$$= \prod_{n=1}^{N} \mathbf{M}_{x_n \mid pa(n)}(\mathbf{x})$$

Maximum-Likelihood

$$\hat{z}_{\mathbf{x}}^{C} = \frac{n_{\mathbf{x}_{C}}}{n_{\mathbf{x}_{C} \cap \pi(C)}}$$

Maximum-Likelihood

$$\hat{M}_{x_n|pa(n)}(x) = \frac{n_{x_{\{x_n\} \cup pa(n)}}}{n_{x_{pa(n)}}}$$

Aufdeckung der Abhängigkeitsstruktur

Korrelation Assoziation Dependenz Markovnetze Bavesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Gütemaße für Modellstrukturen

Definition

Mit den Maximum-Likelihood-Parametern

$$\hat{\theta}_{\Delta}(\omega) \ = \ \underset{\theta}{\operatorname{argmax}} \, \ell_{\omega}(\Delta, \theta) \ = \ \underset{\theta}{\operatorname{argmax}} \, \sum_{\boldsymbol{x} \in \omega} \log \mathrm{P}(\boldsymbol{x} \mid \Delta, \theta)$$

und der ML-bezogenen Bewertung $\hat{\ell}_{\omega}(\Delta) = \ell_{\omega}(\Delta, \hat{\theta}_{\Delta}(\omega))$ heißt

$$\operatorname{\mathsf{dev}}(\Delta) \stackrel{\mathsf{def}}{=} 2 \cdot \left(\hat{\ell}(\mathfrak{P}V) - \hat{\ell}(\Delta)\right)\,, \qquad \mathfrak{P}V = \{V\} = \mathsf{saturiertes} \; \mathsf{Modell}$$

die **Devianz** der Modellstruktur Δ für die Daten ω .

Lemma

Das Devianzmaß besitzt die folgenden Eigenschaften:

- 1. Gilt $\omega \sim P(\cdot | \Delta)$, so ist die Devianz asymptotisch χ^2_d -verteilt, wobei d die Differenz der Freiheitsgrade von \(\Delta \) und saturiertem Modell bezeichne.
- 2. Es gilt $dev(\mathfrak{V}V) = 0$ und $\mathcal{E}[dev(\Delta)] = d$.

Welches ist die beste Modellstruktur?

Wahrscheinlichste Kombination aus Struktur und Parametern

Gegeben

Datenprobe ω aus der Objektmenge Ω über den Variablen V

$$\mathbf{\Omega} = \bigotimes_{a \in V} \mathcal{X}_a$$

Gesucht

Das bestpassende graphische/kausale/kordale/loglineare Modell

$$\hat{\Delta} = \underset{\Delta \subset \mathfrak{P}V}{\operatorname{argmax}} \mathsf{J}_{\omega}(\Delta) = \underset{\Delta \subset \mathfrak{P}V}{\operatorname{argmax}} \frac{f_{\mathsf{prior}}(\Delta) \cdot \mathsf{P}(\omega|\Delta)}{\mathsf{P}(\omega)}$$
$$\mathsf{P}(\omega|\Delta) = \sum_{\theta \in \mathcal{M}(\Delta)} f_{\mathsf{prior}}(\theta|\Delta) \cdot \mathsf{P}(\omega \mid \Delta, \theta)$$

Markovnetze

 $\binom{N}{2}$ Kanten & insgesamt 2^N ungerichtete Graphen Bayesnetze

N! Ordnungen & jeweils 2^N zyklenfreie Graphen Loglinear

2^N Terme 2² Modelle

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Einige regularisierte Gütemaße

Kreuzvalidierung

Datenpartition $\omega = \omega_a \uplus \omega_b$

$$\mathsf{J}(\Delta) \; = \; \ell_{\omega_{\boldsymbol{b}}}(\Delta, \hat{\theta}_{\Delta}(\omega_{\boldsymbol{a}}))$$

Rotationsvalidierung (L^1O) ..leave-one-out" $\omega^{(\mathbf{x})} = \omega \setminus \{\mathbf{x}\}$

$$\mathsf{J}(\Delta) \ = \ \sum_{\mathsf{x} \in \mathcal{X}} \ell_{\{\mathsf{x}\}}(\Delta, \hat{\theta}_{\Delta}(\omega^{(\mathsf{x})}))$$

ML-Bewertung + Strafterm

 $\mathsf{J}(\Delta) = \hat{\ell}_{\omega}(\Delta) - \psi(\mathsf{N}) \cdot |\theta_{\Delta}|$

$$\mathsf{AIC} \; \Rightarrow \; \psi(\mathsf{N}) \equiv 1$$

..Akaike Information Criterion"

BIC
$$\Rightarrow \psi(N) = \frac{1}{2} \log N$$

"Bayesian Information Criterion"

Entropie

Bedingte Entropien
$$\mathcal{H}(\mathbb{X}_n|x) = -\sum_{\xi \in \mathcal{X}_n} P(\xi|x) \cdot \log P(\xi|x)$$

$$\mathsf{J}(\Delta) \ = \ \mathcal{H}(\Delta) \ = \ \sum_{n=1}^{N} \sum_{x \in \mathcal{X}_{\mathsf{pa}(n)}} \mathsf{P}(x) \cdot \mathcal{H}(\mathbb{X}_n \mid \mathbb{X}_{\mathsf{pa}(n)} = x)$$

Die K2-Metrik für Bayesnetze

Cooper & Herskovitz, 1991

Fakt

Eine perfekte Gütefunktion wäre die a posteriori Wahrscheinlichkeit $P(\Delta|\omega)$ der Modellstruktur auf Basis der Datenprobe.

Gleich- und Dirichletverteilungsannahme

für Bayesnetzstruktur Δ und -parameter $\boldsymbol{M}_{n|\mathsf{pa}(n)}$:

$$P(\Delta|\omega) \propto P(\omega|\Delta) = \int \underbrace{\mathcal{D}(\theta|\Psi) \cdot P(\omega \mid \theta, \Delta)}_{P(\omega^{(\Psi)}|\theta, \Delta)} d\theta$$

K2-Metrik

Geschlossene Darstellung der a posteriori Wahrscheinlichkeit:

$$\mathsf{J}(\Delta) \ = \ \prod_{n=1}^{N} \prod_{\mathbf{x} \in \mathcal{X}_{\mathsf{pa}(n)}} \frac{(L_n-1)!}{(n_{\mathbf{x}}^{\mathsf{pa}(n)} + L_n - 1)!} \cdot \prod_{\xi \in \mathcal{X}_n} n_{\mathbf{x},\xi}^{\mathsf{pa}(n),\{n\}}$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

SFS — Sequential Forward Selection

Gierige bottom-up Suche (Whitney 1971 · Buntine 1991)

INITIALISIERUNG

$$\mathcal{G} = (V, \emptyset)$$

2 AUSWAHL einer nützlichsten neuen Kante

$$\mathfrak{e}^* = \operatorname{argmax} \{ \mathsf{J}(E, \mathfrak{e}) \mid \mathfrak{e} \in \mathfrak{E}_V \backslash E \}$$

3 TERMINIERUNG Wenn $J(E, e^*) \le J(E)$ dann \leadsto ENDE sonst $E \leftarrow E \cup \{e^*\}$ und \leadsto 2.

Bemerkung
SFS trifft voreilige
Entscheidungen
(Horizont=1) und
verfehlt i.a. die
Optimallösung.

$$\textit{E}^{(1)} \subset \textit{E}^{(2)} \subset \textit{E}^{(3)} \subset \dots$$

Suchverfahren

Wer findet die Stecknadel im Heuhaufen vor Anbruch des jüngsten Tages ?

Ungerichtete Graphen — Markovnetze

Gesucht ist eine J-optimale Teilmenge von

$$\mathfrak{E}_V = \{\{a,b\} \mid a,b \in V, a \neq b\}$$

 \Rightarrow Jedes $\mathcal{E} \subseteq \mathfrak{E}_V$ ist "erlaubt"!

Kombinatorische Merkmalauswahl

Alle "wrapper"-Verfahren sind sinngemäß anwendbar:

- $\bullet\,$ pulsierende Suche \cdot geordnete Suche \cdot evolutionäre Suche

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

SBE — Sequential Backward Elimination

Gierige top-down Suche (Marill & Green 1963 · Edwards/MIM 1995)

INITIALISIERUNG

$$\mathcal{G} = (V, \mathfrak{E}_V)$$

2 AUSWAHL einer nutzlosesten alten Kante

$$\mathfrak{e}^* = \operatorname{argmax} \{ \mathsf{J}(E \backslash \mathfrak{e}) \mid \mathfrak{e} \in E \}$$

3 TERMINIERUNG Wenn $J(E \setminus e^*) \le J(E)$ dann \leadsto ENDE sonst $E \leftarrow E \setminus \{e^*\}$ und \leadsto 2.

Bemerkung
SBE aufwändiger als
SFS:
Start mit
umfangreicheren E
Längerer Weg zum
Ziel

FBS — Forward/Backward Selection

Gierige bidirektionale Suche (Wahba 1988)

1 INITIALISIERUNG $\mathcal{G} = (V, \varnothing)$

KANTENAUSWAHL

$$\mathfrak{e}^F = \operatorname{argmax} \{ J(E, \mathfrak{e}) \mid \mathfrak{e} \in \mathfrak{E}_V \setminus E \}$$
 $\mathfrak{e}^B = \operatorname{argmax} \{ J(E \setminus \mathfrak{e}) \mid \mathfrak{e} \in E \}$

- WENN MÖGLICH LÖSCHEN Wenn $J(E \setminus e^B) > J(E)$ dann $E \leftarrow E \setminus \{e^B\}$ und \leadsto 2.
- TERMINIERUNG
 Wenn $J(E, e^F) > J(E)$ dann $E \leftarrow E \cup \{e^F\}$ und \rightsquigarrow 2.
 Sonst \rightsquigarrow ENDE.

Redundant

gewordene

jetzt wieder eliminiert werden. Bewertungsgesteuert oder immer löschen. Extrem riskantes "Hillclimbing"

Merkmale können

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Geordnete Suche

Branch & Bound (Narendra/Fukunaga 1977)

Suchraum

Zustände Startzustand Übergänge Kosten Kantenmengen $E\subset \mathfrak{E}_V$ $E=\varnothing$ Zusatzkante $\{a,b\}$ Devianzabbau $\frac{\partial}{\partial a} \mathrm{dev}(E)$

Geordnete Suche

dev(E) monoton \Rightarrow Kosten ≥ 0

Branch&Bound-Algorithmus

A* mit trivialer Restschätzung

$$f(E) = \underbrace{g(E)}_{\text{dev}(E)} + \underbrace{h(E)}_{\equiv 0}$$

SFFS — Sequential Forward Floating Search

Pulsierende Suche mit $q = \binom{N}{2}$ Schubladen (Pudil 1994)

INITIALISIERUNG

$$\mathcal{G} = (V, \varnothing), \quad n = 0, \quad \iota_0 = J(\varnothing)$$

Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

VORWÄRTSAUSWAHL

$$\mathfrak{e}^* = \operatorname{argmax} \{ \mathsf{J}(E, \mathfrak{e}) \mid \mathfrak{e} \in \mathfrak{E}_V \backslash E \}$$

Setze
$$E \leftarrow E \cup \{e^*\}$$
, $n \leftarrow n + 1$ und $\iota_n = J(E)$ und $\rightsquigarrow \bigcirc$.

RÜCKWÄRTSAUSWAHL

$$\mathfrak{e}^* = \operatorname{argmax} \{ \mathsf{J}(E \backslash \mathfrak{e}) \mid \mathfrak{e} \in \mathfrak{E}_V \backslash E \}$$

Wenn $J(E \setminus e^*) \le \iota_{n-1}$ dann \leadsto 2. Sonst setze $E \leftarrow E \setminus \{e^*\}$, $n \leftarrow n-1$ und $\iota_n = J(E)$ und \leadsto 3.

TERMINIERUNG

Wenn Zielkardinalität $n = n_0$ erreicht dann \rightsquigarrow ENDE.

Beispiel — Koronare Herzschwäche

P. Stuyvesant (1978)

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Sechs binäre Attribute

\mathbb{X}_1	Versuchsperson ist Raucher?
\mathbb{X}_2	Streß durch geistige Arbeit
\mathbb{X}_3	Streß durch körperliche Arbeit
\mathbb{X}_4	systolischer Blutdruck ≤ 140 mm
\mathbb{X}_{5}	Lipoproteinquotient $\beta/\alpha \leq 3$
\mathbb{X}_{6}	famil. Befund koronarer Schwäche

Datenerhebung

- Befundung bei T = 1841Automobilarbeitern in Detroit
- Statistik mit 2⁶ = 64 Zellen
- Inkrem. Löschen partieller Abhängigkeiten
- χ^2 -Kriterium: Abweichung vom saturierten Modell
- Kordale Graphen (zerlegbare Modelle!)

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen **S-Lernen** Gaußnetze Σ

Beispiel — Chromosomensequenzierung

Wir sortieren das Erbgut von "barley powdery mildew fungus"

Haploide Vererbung (Meiose)

Erhebung

70 Geschwisterindividuen 6 binäre phänotypische Attribute $X_i \stackrel{\text{1.1}}{=} \text{unbekannter}$ Genlocus

nach der Verschmelzung Crossover-Operation nach der Zellteilung

Hypothese über Genloci $\mathbb{X}_1, \dots, \mathbb{X}_6$

- unterschiedliche Chromosomen → unabhängig
- gleiches Chromosom → distanzabhängig korelliert
- Sequenz von Genen $g_1, g_2, g_3 \Rightarrow \Im(g_1 \mid g_2 \mid g_3)$

Resultat

$$d \longleftrightarrow a \longleftrightarrow b \longleftrightarrow e \longleftrightarrow c \longleftrightarrow f$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

K2-Algorithmus

Elternsuchverfahren (Cooper & Hershkovits, 1992)

INITIALISIERUNG Eine Variablenordnung ist a priori vorzugeben:

$$V = \{x_1, \dots, x_N\}, \quad n = 2$$

ELTERNAUSWAHL Triff eine Vorwärtsauswahl (SFS) bezüglich K2-Bewertung:

$$pa(x_n) = argmax \{J(A) \mid A \subseteq \{x_1, \dots, x_{n-1}\}\}$$

3 TERMINIERUNG Wenn n < N dann $n \leftarrow n + 1$ und \rightsquigarrow 2 sonst \rightsquigarrow ENDE.

Suchverfahren

Die Stecknadel piekst jetzt nur noch auf einer Seite!

Gerichtete azyklische Graphen — Bayesnetze

Optimale Teilmenge von $\mathfrak{E}_{\{x_i\}} = \{(a,b) \mid a \neq b\}$

- UG-Kantenselektion Test auf Kordalität
- DAG-Kantenselektion Test auf Zyklen
 DAG-Kantenselektion Test auf Zyklen und Moralität

Optimale Teilmengen von $\mathfrak{E}_{(x_i)} = \{(x_i, x_j) \mid 1 \le i < j \le N\}$

• Lineare Variablenordnung $V = \{\mathbb{X}_1, \dots, \mathbb{X}_n\}$ vorlegen Optimale Eltermenge $B_n \subseteq V_n$ für jedes \mathbb{X}_n berechnen (zulässiges Verfahren sofern J (\cdot) in "Familienterme" zerfällt)

Exakte Suche für eingeschränkte Netzstrukturen

Bäume & Fallschirme
 Minimaler Spannbaum (Cormen, Leiserson, Rivest 1990)

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Tetrad III Algorithmus

UG-Kantenselektion (Scheines 1996)

KORRELATIONSTEST
 Lösche Verbindungskanten für marginal unabhängige ZV

$$\Im(\mathbb{X}_i \mid \varnothing \mid \mathbb{X}_j)$$

PARTIELLE UNABHÄNGIGKEIT Lösche Verbindungskanten für bedingt unabhängige ZV

$$\Im(\mathbb{X}_i \mid \mathsf{bd}(\mathbb{X}_i) \cup \mathsf{bd}(\mathbb{X}_i) \mid \mathbb{X}_i)$$

- \odot Teste *m*-elementige Teilmengen von $C_{ij} = bd(X_i) \cup bd(X_j)$.
- ORIENTIERUNGSPHASE
 - 1. Wähle eine Variablenordnung $V = \{X_1, \dots, X_N\}$.
 - 2. Orientiere alle Kanten gemäß Ordnungsindex.
 - 3. Ergänze Kanten für "unshielded collider" und orientiere sie.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen **S-Lernen** Gauβnetze Σ

Bayesian Network SFFS

Pulsierende DAG-Kantenselektion für Bayesnetze (Blanco & Inza, 2002)

INITIALISIERUNG

$$\mathcal{G} = (V, \varnothing) , \qquad n = 0 , \qquad \iota_0 = \mathsf{J}(\varnothing)$$

VORWÄRTSAUSWAHL

$$\mathfrak{e}^* = \operatorname{argmax} \left\{ \mathsf{J}(E, \mathfrak{e}) \mid \mathfrak{e} \in \mathfrak{E}_{\{x_i\}} \setminus E \wedge \operatorname{DAG}(E, \mathfrak{e}) \right\}$$

Setze $E \leftarrow E \cup \{\mathfrak{e}^*\}$, $n \leftarrow |n| + 1$ und $\iota_n = \mathsf{J}(E)$ und dann $\rightsquigarrow 2$.

RÜCKWÄRTSAUSWAHL

$$\mathfrak{e}^* = \operatorname{argmax} \left\{ \mathsf{J}(E \backslash \mathfrak{e}) \mid \mathfrak{e} \in \mathfrak{E}_{\{x_i\}} \setminus E \right\}$$

Wenn $J(E \setminus \mathfrak{e}^*) \leq \iota_{n-1} \operatorname{dann} \rightsquigarrow 2$.

Sonst setze $E \leftarrow E \setminus \{e^*\}$, $n \leftarrow n-1$ und $\iota_n = J(E)$ und \rightsquigarrow 3.

4 TERMINIERUNG Wenn Zielkardinalität $n = n_0$ erreicht dann \rightsquigarrow ENDE.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

TBN — Baumförmige Bayesnetze

Modellformel für ein TBN mit Wurzel X_{i0}

$$V = \{x_1, \dots, x_N\}$$
 und $\pi : V \setminus \{i_0\} \to V$ mit $\mathsf{pa}(x_j) = \{x_{\pi_j}\}$ für $j \neq i_0$:

$$P(\mathbf{x}) = P(x_{i_0}) \cdot \prod_{j \neq i_0} P(x_j | x_{\pi_j}) = \prod_{i=1}^n P(x_i) \cdot \prod_{j \neq i_0} \frac{P(x_j, x_{\pi_j})}{\underbrace{P(x_j) \cdot P(x_{\pi_j})}_{\exp(\Im(x_j; x_{\pi_j}))}}$$

Nur die punktweisen Transinformationen sind abhängig von der Baumstruktur!

Relevanter Anteil der logarithmierten Likelihood-Zielgröße

für Lerndatenprobe ω und Baumkantenmenge $E = \{\{j, \pi_j\} \mid j \neq i_0\}$:

$$\ell_{\mathsf{ML}}(\omega|E) = \sum_{(i,j)\in E} \underbrace{\left\{\mathcal{H}(\omega, \mathbf{P}_{\mathbb{X}_{i}}) + \mathcal{H}(\omega, \mathbf{P}_{\mathbb{X}_{j}}) - \mathcal{H}(\omega, \mathbf{P}_{\mathbb{X}_{i}\mathbb{X}_{j}})\right\}}_{\otimes_{\omega}(\mathbb{X}_{i};\mathbb{X}_{j})}$$

Berechnung aller empirischen Transinformationen

Beispiel — Alarmkette

37 Attribute \cdot 46 \rightarrow 45 Kanten \cdot 370 Lernbeispiele

Kausalpfadanalyse mit baumförmigen Bayesnetzen

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Suche nach dem minimalen Spannbaum (Chow & Liu 1968)

INITIALISIERUNG

Berechne alle Transinformationswerte (i, j = 1, ..., N):

$$\mathsf{TI}(\mathbb{X}_i, \mathbb{X}_j) \stackrel{\mathsf{def}}{=} \sum_{x_i \in \mathcal{X}_i} \sum_{x_j \in \mathcal{X}_i} \mathrm{P}(x_i, x_j) \cdot \log \frac{\mathrm{P}(x_i, x_j)}{\mathrm{P}(x_i) \cdot \mathrm{P}(x_j)}$$

2 BEWERTETER GRAPH Erzeuge $\tilde{\mathcal{G}} = (V, V^2, \beta)$ mit der Kantengewichtung

$$\beta: \left\{ \begin{array}{ccc} V^2 & \to & \mathbb{R} \\ \{x_i, x_i\} & \mapsto & -\mathsf{TI}(\mathbb{X}_i, \mathbb{X}_i) \end{array} \right.$$

- 3 SPANNBAUM $(O(N^2 \log N))$ SLAC "single-linkage agglomerative clustering" Konstruiere den minimalen spannenden Baum $\mathcal{G} \subset \tilde{\mathcal{G}}$.
- ORIENTIERUNG VON G
 Wähle eine beliebige Wurzelvariable v₀ ∈ V.
 Alle Kanten von G werden "wurzelauswärts" gerichtet.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen **S-Lernen** Gaußnetze **Σ**

Klassifizieren mit Bayesnetzen

$$\mathbb{X}_1, \dots, \mathbb{X}_N$$
 \Rightarrow $\mathbb{Y} \in \{1, 2, \dots, K\}$

Tree Augmented Bayesnet

$$P(x_1|y) \cdot \prod_{n=2}^{N} P(x_n \mid y, x_{pa(n)})$$

$$X_6 \quad X_9 \quad X_{10} \quad X_{10$$

TABN (Friedman, Geiger, Goldszmidt 1998)

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Beispiel — Statlog Herzdatensammlung

13 Attribute · 270 Objekte · Klassifikation: "disease"

Beispiel — Fishers Irisdatensatz

5 Attribute ($\mathbb{R}^4 \times \{1,2,3\}$) · 150 Objekte (50 je Spezies)

Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Transinformationsmatrix

Bayesbaum 🏠 für alle fünf Attribute

Bayeswaldein Baum je Spezies

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Korrelation, Regression und Transinformation

Assoziationsregeln und Netzwerkanalyse

Bedingte statistische Unabhängigkeit

Graphische Modelle: ungerichtete Graphen

Kausale Modelle: gerichtete azyklische Grapher

Berechnen bedingter Wahrscheinlichkeiter

Parameterschätzung in Bayesnetzen und Loglinearmodellen

Aufdeckung der Abhängigkeitsstruktur

Kovarianzselektion

Stetige Loglinearmodelle

Motivation: multivariate Normalverteilungsdichte

Definition

Es sei die N-dimensionale multivariate Normalverteilungsdichte

$$\mathcal{N}(\pmb{x} \mid \pmb{\mu}, \pmb{S}) = |2\pi \pmb{S}|^{-1/2} \cdot \exp\left(-\frac{1}{2}(\pmb{x} - \pmb{\mu})^{\top} \pmb{S}^{-1}(\pmb{x} - \pmb{\mu})\right)$$

mit dem Mittelwertvektor μ und der Kovarianzmatrix \mathbf{S} gegeben. Die Werte α , β_i , κ_{ij} der Darstellung

$$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{S}) = \exp \left(\alpha + \sum_{i} \beta_{i} \cdot \mathbf{x}_{i} + \sum_{i,j} \kappa_{ij} \cdot \mathbf{x}_{i} \mathbf{x}_{j} \right)$$

heißen kanonische Parameter der exponentiellen Familie; die Matrix $K = [\kappa_{ij}]$ heißt Konzentrationsmatrix oder Präzisionsmatrix.

Kanonische Parameter & Standardparameter $\alpha = -\frac{1}{2} \cdot (\log |2\pi \mathbf{S}| + \boldsymbol{\mu}^{\top} \mathbf{S}^{-1} \boldsymbol{\mu}), \quad \boldsymbol{\beta} = \mathbf{S}^{-1} \boldsymbol{\mu}, \quad \boldsymbol{K} = \mathbf{S}^{-1}.$

Loglinearmodelle

Die Kovarianzterme in Δ sind die nichtnegativen Koeffizienten der Summationsterme

$$u^{(i_1,\ldots,i_N)} \cdot x_1^{i_1} x_2^{i_2} x_3^{i_3} \ldots x_n^{i_n} \ldots x_{N-1}^{i_{N-1}} x_N^{i_N}$$

des Dichtefunktionsexponenten. Insbesondere fällt dem Term

$$u^{(0,...,0)} \cdot x_1^0 x_2^0 \dots x_N^0 = u^{(0,...,0)} \cdot 1 = u^{(0,...,0)}$$

wieder die Rolle des Normierungsfaktors zu.

Die Vektoren i können wir auch als Multimengen von Zufallsvariablen auffassen.

Gaußsche graphische Modelle

Hier werden ausschließlich Kovarianzterme $\emph{\textbf{i}} \in \Delta$ zugelsaaen mit

$$\sum_{n=1}^{N} i_n = i_1 + i_2 + i_3 + \ldots + i_N \leq 2.$$

Beweis.

Das Modell ist auch graphisch, denn es gibt grundsätzlich keinerlei Interaktion zwischen mehr als zwei Variablen. Es gilt $\Im(A\mid Z\mid B)$ genau dann, wenn Δ ausschließlich $A\cup Z$ -Terme und $B\cup Z$ -Terme enthält, also wenn es keine $\{a,b\}$ -Terme mit $a\in A$ und $b\in B$ gibt.

Stetige Loglinearmodelle

Definition

Sei $\Delta\subset\mathbb{N}^N$ eine (endliche) Menge von Exponenten-N-Tupeln. Die Familie stetiger Wahrscheinlichkeitsdichtefunktionen der Gestalt

$$\log f_{\Delta}(\mathbf{x}) = \sum_{i \in \Delta} u^{i} \cdot \prod_{n=1}^{N} x_{n}^{i_{n}}, \quad \mathbf{x} \in \mathbb{R}^{N}$$

heißt stetiges Loglinearmodell über V mit der Menge Δ von Kovarianztermen.

Lemma

Für Loglinearmodelle Δ , die Normalverteilungen sind, gilt:

 Δ hierarchisch \Rightarrow Δ graphisch

Wir nennen diese Familien **Gaußsche Graphische Modelle** oder **Kovarianzselektionsmodelle**.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gauβnetze Σ

Wissenswertes über multivariate Normalverteilungsdichten

Lemma

Für normalverteilte Zufallsvariablen $V = \{X_1, \dots, X_N\}$ gelten die folgenden Aussagen:

1. Summenbildung:
$$\mathbb{X} = \mathbb{X}' + \mathbb{X}'' \sim \mathcal{N}(\mu' + \mu'', \mathbf{S}' + \mathbf{S}'')$$

2. Affine Abbildung:
$$\mathbf{A}\mathbb{X} + \mathbf{b} \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\mathbf{S}\mathbf{A}^{\top})$$

3. Marginalisierung:
$$\mathbb{X}_{\mathcal{C}} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathcal{C}}, \boldsymbol{S}_{\mathcal{CC}})$$

4. Konditionierung:
$$\mathbb{X}_{A|x_B} \sim \mathcal{N}(\mu_{A|x_B}, \mathbf{S}_{A|x_B})$$

Dabei gelte $A \uplus B = V$ und es sind definiert:

$$egin{array}{lll} oldsymbol{\mu}_{A|\mathbf{x}_{B}} &=& oldsymbol{\mu}_{A} + oldsymbol{S}_{AB} \cdot oldsymbol{S}_{BB}^{-1} \cdot (oldsymbol{x}_{B} - oldsymbol{\mu}_{B}) & oldsymbol{\mu} &=& (oldsymbol{\mu}_{A}^{ op}, oldsymbol{\mu}_{B}^{ op})^{ op} \ oldsymbol{S}_{A|\mathbf{x}_{B}} &=& oldsymbol{S}_{AA} - oldsymbol{S}_{AB} \cdot oldsymbol{S}_{BB} \cdot oldsymbol{S}_{BA} & oldsymbol{S}_{BA} & oldsymbol{S}_{BA} & oldsymbol{S}_{BB} \ oldsymbol{S}_{AB} oldsymbol{S}_{BB} \ oldsymbol{S}_{BA} oldsymbol{S}_{BB} \ oldsymbol{S}_{BA} oldsymbol{S}_{BB} \ oldsymbol{S}_{BA} oldsymbol{S}_{BB} \ oldsymbol{S}_{BB} \ oldsymbol{S}_{BA} oldsymbol{S}_{BB} \ ol$$

5. Für die bedingte Kreuzkovarianzmatrix gilt der Zusammenhang:

$$\left(\mathbf{S}_{A|\mathbf{x}_{B}}\right)^{-1} = \mathbf{K}_{AA} = \left(\mathbf{S}^{-1}\right)_{AA}$$

Marginalisierung

Ähnlich wie schon zuvor für Vektoren definieren wir Matrixausschnitte durch

$$M_{A,B} \stackrel{\mathsf{def}}{=} (M_{\mathsf{a}\mathsf{b}} \mid \mathsf{a} \in \mathsf{A}, \mathsf{b} \in \mathsf{B})$$
.

Die Matrix S_{CC} insbesondere enthält also alle Varianzen von und Kovarianzen zwischen Variablen aus C.

Die Matrix S_{AB} heißt übrigens auch "Kreuzkovarianzmatrix" der Variablenmengen A und B.

Konditionierung

Bei geeigneter Variablennummerierung gilt in der Situation $A \uplus B = V$:

$$S = \begin{pmatrix} S_{AA} & S_{AB} \\ S_{BA} & S_{BB} \end{pmatrix} = \begin{pmatrix} S_{AA} & S_{AB} \\ S_{AB}^{\top} & S_{BB} \end{pmatrix}, \quad K = \begin{pmatrix} K_{AA} & K_{AB} \\ K_{BA} & K_{BB} \end{pmatrix}$$

Die Matrixgleichung ergibt sich aus der (unschönen!) Formel zur Blockmatrixinvertierung.

Beweis.

Die partielle Unabhängigkeit, d.h. die Frage nach einer Kante oder keiner Kante zwischen zwei Variablen im Markovnetz, läßt sich ganz einfach aus der inversen Kovarianzmatrix K ablesen.

• Beweisidee 1:

Betrachte die bedingte Verteilung mit $A = \{a, b\}$ und $B = V \setminus \{a, b\}$.

Das Variablenpaar (X_a, X_b) ist, bei gegebenem x_B , mit der Kovarianzmatrix S_{ab} . normalverteilt.

 $\mathbb{X}_a, \mathbb{X}_b$ sind unabhängig genau dann, wenn $\boldsymbol{S}_{ab|}$ eine Diagonalmatrix ist; dies aber ist genau dann der Fall, wenn ihre Inverse, also $K_{\{a,b\}}$ diagonal ist, also falls $\kappa_{ab} = \kappa_{ba} = 0$ ist.

• Beweisidee 2:

Die Normalverteilungsdichte ist faktorisierbar in Gibbs-Komponenten mit maximal zwei Variablen.

Sie läßt sich also in zwei Faktoren $g_{V\setminus\{a\}}$ und $h_{V\setminus\{b\}}$ genau dann zerlegen, wenn mindestens die Gibbs-Komponente für $\{a, b\}$ fehlt. Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Kovarianz und Konzentration

Nulleinträge

marginale & partielle Unabhängigkeiten

Lemma (Wermuth 1976)

Für normalverteilte Variablen $a, b \in V \sim \mathcal{N}(\mu, S)$ mit $a \neq b$ gilt:

Marginale Unabhängigkeit:

$$\Im(a \mid \varnothing \mid b) \iff s_{ab} = 0$$

• Partielle Unabhängigkeit:

$$\Im(a \mid Rest \mid b) \iff \kappa_{ab} = 0$$

Gaußscher Diamant

$$\begin{pmatrix} \kappa_{11} & \kappa_{12} & 0 & \kappa_{14} \\ \kappa_{21} & \kappa_{22} & \kappa_{23} & 0 \\ 0 & \kappa_{32} & \kappa_{33} & \kappa_{34} \\ \kappa_{41} & 0 & \kappa_{43} & \kappa_{44} \end{pmatrix}$$

Gaußscher Schlüssel

$$\begin{pmatrix} \kappa_{11} & \kappa_{12} & 0 & \kappa_{14} \\ \kappa_{21} & \kappa_{22} & \kappa_{23} & 0 \\ 0 & \kappa_{32} & \kappa_{33} & \kappa_{34} \\ \kappa_{41} & 0 & \kappa_{43} & \kappa_{44} \end{pmatrix} \qquad \begin{pmatrix} \kappa_{11} & \kappa_{12} & 0 & 0 & 0 \\ \kappa_{21} & \kappa_{22} & \kappa_{23} & \kappa_{23} & 0 \\ 0 & \kappa_{32} & \kappa_{33} & \kappa_{34} & \kappa_{35} \\ 0 & \kappa_{42} & \kappa_{43} & \kappa_{44} & \kappa_{45} \\ 0 & 0 & \kappa_{53} & \kappa_{54} & \kappa_{55} \end{pmatrix}$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Charakterisierung bedingter Unabhängigkeiten

Lemma

Für Variablenmengen A, B, Z mit $V = A \uplus B \uplus Z$ und die bedingte Kreuzkovarianzmatrix

$$\mathbf{S}_{AB|Z} = [s_{ab}]_{a \in A}^{b \in B}, \quad s_{ab} \stackrel{\text{def}}{=} \operatorname{Cov}[\mathbb{X}_a, \mathbb{X}_b \mid \mathbb{X}_Z = \mathbf{x}_Z]$$

gilt die Beziehung:

$$oldsymbol{S}_{AB|Z} = oldsymbol{S}_{AB} - oldsymbol{S}_{AZ} \cdot (oldsymbol{S}_{ZZ})^{-1} \cdot oldsymbol{S}_{ZB}$$

Satz (Speed & Kiiveri 1986)

Für normalverteilte Variablen $V = A \uplus B \uplus Z$ mit Kovarianzmatrix **S** sind äguivalent:

1.
$$\boldsymbol{S}_{AB} = \boldsymbol{S}_{AZ} \cdot (\boldsymbol{S}_{ZZ})^{-1} \cdot \boldsymbol{S}_{ZB}$$

2.
$$(\mathbf{S}^{-1})_{AB} = \mathbf{0}$$
 beziehungsweise $\mathbf{K}_{AB} = \mathbf{0}$

3.
$$\Im(A \mid Z \mid B)$$

Maximum-Likelihood-Schätzung

für Gaußsche Graphische Modelle

Satz (Dempster 1972)

Es sei $\mathcal{G}=(V,\mathcal{E})$ ein Gaußsches Graphisches Modell mit der Generatorenmenge $\mathcal{C}\subset\mathfrak{P}V$ und sei $\omega\subset\mathbb{R}^N$ ein Datensatz mit den Statistiken \mathbf{m} und $\mathbf{\Sigma}$. Dann bilden \mathbf{m} und $\{\mathbf{\Sigma}_{CC}\mid C\in\mathcal{C}\}$ eine minimale suffiziente Statistik des Modells für ω .

Die Maximum-Likelihood-Parameter μ und ${\bf S}$ bzw. ${\bf K}$ gehorchen den Bedingungen

$$\mu = \mathbf{m}$$
 $s_{ab} = \sigma_{ab}$
 $\kappa_{ab} = 0$
 $\{a, b\} \notin \mathcal{E} \lor a = b$
 $\{a, b\} \notin \mathcal{E} \land a \neq b$

Bemerkung

Da $\mathcal{N}(\mu, \Sigma)$ das saturierte Modell ist, beträgt die **Devianz**:

$$\mathsf{dev}(\mathcal{C}) \ = \ 2 \cdot (\ell(\boldsymbol{\mu}, \boldsymbol{\Sigma}) - \ell(\boldsymbol{\mu}, \boldsymbol{S})) \ = \ T \cdot \log \left(\det \boldsymbol{S} / \det \boldsymbol{\Sigma} \right)$$

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Beispiel — Digoxin-Abbau

Datensammlung

$$\omega \subset {\rm I\!R}^3$$
 $|\omega| = 35$ Patienten

X = Abbau von Kreatinin

 $\mathbb{Y} = \mathsf{Abbau} \ \mathsf{von} \ \mathsf{Digoxin}$

 $\mathbb{Z} = \mathsf{Harnflußrate}$

$$\chi^2$$
-Test \Leftrightarrow $\{\mathbb{X}, \mathbb{Z}\} \notin \mathcal{E}$

Maximum-Likelihood-Schätzung

Existenz & Eindeutigkeit

Datenkovarianzmatrix

$$\mathbf{\Sigma} = \begin{pmatrix} 3.023 & 1.258 & 1.004 \\ 1.258 & 1.709 & 0.842 \\ 1.004 & 0.842 & 1.116 \end{pmatrix}$$

ML-Kovarianzmatrix

$$\mathbf{S} = \begin{pmatrix} 3.023 & 1.258 & 0.620 \\ 1.258 & 1.709 & 0.842 \\ 0.620 & 0.842 & 1.116 \end{pmatrix}$$

ML-Konzentrationsmatrix

$$\mathbf{K} = \begin{pmatrix} 0.477 & -0.351 & 0.000 \\ -0.351 & 1.190 & -0.703 \\ 0.000 & -0.703 & 1.426 \end{pmatrix}$$

Satz (Dempster 1972)

Es seien **A**, **B** zwei symmetrische, positiv-definite $(N \times N)$ -Matrizen. Ferner sei $\mathcal{E} \subseteq \{1,\ldots,N\} \times \{1,\ldots,N\}$ symmetrisch mit $(i,i) \in \mathcal{E}$ für alle i. Dann gibt es eine symmetrische, positiv-definite Matrix **S** mit

$$egin{array}{lcl} s_{ij} &=& a_{ij} & & orall (i,j) \in \mathcal{E} \ (\mathbf{S}^{-1})_{ij} &=& b_{ij} & & orall (i,j)
otin \mathcal{E} \end{array}$$

und **S** ist eindeutig mit diesen Eigenschaften.

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze

Beispiel — Furcht versus Ärger

Datensammlung

 $\omega \subset {\rm I\!R}^4 \ |\omega| =$ 684 Versuchspersonen

Augenblickszustand:

X = Furcht

 $\mathbb{W} \, = \ddot{\mathsf{A}}\mathsf{rger}$

mentale Prägung:

 $\mathbb{Z} = \mathsf{Furcht}$

 $\mathbb{Y} = \ddot{\mathsf{A}}\mathsf{rger}$

 χ^2 -Test ergibt:

 $\Im(\mathbb{X}\mid\mathbb{W},\mathbb{Z}\mid\mathbb{Y})$

 $\Im(\mathbb{W} \mid \mathbb{X}, \mathbb{Y} \mid \mathbb{Z})$

Beispiel — Punktezahl in Übungsserien

Datensammlung $\omega \subset \{0, 1, 2, \dots, 100\}^5$ $|\omega| = 88$ Studierende

- 5 Übungsgruppen in 5 Fächern
- je 100 Punkte erzielbar

Inferenz

 $\Im(\mathsf{Stat}\mid\mathsf{Alg},\mathsf{Analysis}\mid\cdot)$

 $\Im(\mathsf{Mech}\mid\mathsf{Alg},\mathsf{Vektor}\mid\cdot)$

Zentrale Befähigung: Algebra

 $\hbox{Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen $$ \textbf{Gau}$ \textbf{Rentze} $$ \Sigma$ }$

Beispiel — Sprachsignalparameter

12 MFCC-Parameter · drei Zeitpunkte

Dünne Abhängigkeitsstruktur

Die Vergangenheit wird durch unmittelbare Vorgänger "maskiert".

Beispiel — Schriftzeichenklassifikation

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Korrelation, Regression und Transinformation

Assoziationsregeln und Netzwerkanalyse

Bedingte statistische Unabhängigkeit

Graphische Modelle: ungerichtete Graphen

Kausale Modelle: gerichtete azyklische Graphen

Berechnen bedingter Wahrscheinlichkeiter

Parameterschätzung in Bayesnetzen und Loglinearmodeller

Aufdeckung der Abhängigkeitsstruktur

Kovarianzcoloktion

Korrelation Assoziation Dependenz Markovnetze Bayesnetze Inferenz P-Lernen S-Lernen Gaußnetze Σ

Zusammenfassung (6)

- 1. **Kovarianz** und **Korrelation** sind **quantitative** Charakterisierungen der **linearen** Aspekte ("*Regression*") statistischer Abhängigkeit.
- 2. Die **Transinformation** quantifiziert statistische Abhängigkeit in allgemeiner Form, setzt aber die Kenntnis der **wahren Verteilung** voraus.
- 3. Die Warenkorbanalyse sucht Assoziationsregeln mit gleichermaßen hohen Werten für Support, Konfidenz und Relevanz (z.B. Apriori-Algorithmus).
- 4. Das **Dependenzmodell** charakterisiert die **bedingten Unabhängigkeiten** $\Im(A \mid Z \mid B)$ je dreier Attributmengen einer Verteilung.
- 5. Verteilungen heißen graphisch (kausal), wenn ihr DM durch die $(\delta$ -)Separation eines UG (DAG) gegeben ist.
- 6. Kausale Modelle faktorisieren **attributweise** in **bedingte Wahrsch'keiten**, graphische Modelle faktorisieren **cliquenweise** in **Gibbspotenziale**.
- 7. **Kordale Modelle** besitzen einen **triangulierten** UG, einen **moralischen** DAG und eine **Cliquenschnitt**faktorisierung.
- 8. Statistische Inferenz ist nur für Ketten und (Verbund-)Bäume effizient.
- 9. Die ML-Schätzung der Modellparameter aus Daten beruht auf relativen Häufigkeiten (DAG) oder dem Maximum-Entropie-Prinzip (UG).
- 10. Die Aufdeckung der **Modellstruktur** basiert auf **Unabhängigkeitstests** (Kantenelimination/Grenzengraph) oder **gieriger Suche** mit **Strafterm**.