ECON 4002.01 Problem Set 4 Hui-Jun Chen

Question 1

Consider a model that is **similar to** (not exactly the same!) Lecture 17 RBC model but with several differences:

1. Now consumer values leisure in date 1. The lifetime utility function is given by

$$U(C, N, C', N') = \ln C + \ln(1 - N) + \ln C' + \ln(1 - N').$$

First, we start by defining the competitive equilibrium:

(1) Given the exogenous quantities __A__

(A)
$$\{G, G', z, z', K\}$$

(B)
$$\{G, G', z, z'\}$$

(C)
$$\{G, G'\}$$

(D)
$$\{z, z', K\}$$

a competitive equilibrium is a set of

(2) consumer choices <u>C</u>

(A)
$$\{C, C', N_S, S\}$$

(B)
$$\{N_S, N'_S, l, l', S\}$$

(C)
$$\{C, C', N_S, N'_S, l, l', S\}$$

(D)
$$\{C, C', S\}$$

(3) firm choices B

(A)
$$\{Y, Y', N_D, N'_D, I, K'\}$$

(B)
$$\{Y, Y', \pi, \pi', N_D, N'_D, I, K'\}$$

(C)
$$\{Y, Y', \pi, \pi', I, K'\}$$

(D)
$$\{\pi, \pi', N_D, N'_D, I, K'\}$$

(4) government choices ________

(A) $\{G, G', T, T', B\}$

(B) $\{G, G', B\}$

(C) $\{G, G', T, T'\}$

(D) $\{T, T', B\}$

- (5) and prices B
 - (A) $\{w, w', q\}$

(B) $\{w, w', r\}$

(C) $\{q, q', r\}$

(D) $\{r, r', q\}$

such that

1.

- 6 Taken A
 - (A) $\{w, w', r, \pi, \pi'\}$

(B) $\{w, w', r\}$

(C) $\{w, w', \pi, \pi'\}$

(D) $\{r, \pi, \pi'\}$

as given,

- (7) consumer chooses __D__
 - (A) $\{r', N_S, N_S'\}$

(B) $\{C', K, K'\}$

(C) $\{r', K, K'\}$

(D) $\{C', N_S, N_S'\}$

to solve

$$\max_{C',N_S,N_S'} \ln \left(wN_S + \pi - T + \frac{w'N_S' + \pi' - T' - C'}{1+r} \right)$$

$$+ \ln C' + \ln(1 - N_S) + \ln(1 - N_S')$$

where we can back out $\{C, S, l, l'\}$.

2.

- 8 Taken B as given,
 - (A) $\{w, w', q\}$

(B) $\{w, w', r\}$

(C) $\{q, q', r\}$

(D) $\{r, r', q\}$

firm chooses C

(A)
$$\{H_D, H'_D, K'\}$$

(B)
$$\{N_D, N'_D, C'\}$$

(C)
$$\{N_D, N'_D, K'\}$$

(D)
$$\{\pi, \pi', K'\}$$

to solve

$$\max_{N_D, N'_D, K'} z K^{\alpha} N_D^{1-\alpha} - w N_D - [K' - (1-\delta)K] + \frac{z'(K')^{\alpha} (N'_D)^{1-\alpha} - w' N'_D + (1-\delta)K'}{1+r}.$$

where we can back out $\{Y, Y', \pi, \pi', I\}$.

3.

(10)Taxes and deficit satisfy B

(A)
$$T + \frac{T'}{1+q} = G + \frac{G'}{1+q}$$
 (B) $T + \frac{T'}{1+r} = G + \frac{G'}{1+r}$ (C) $T + \frac{T'}{1+w} = G + \frac{G'}{1+w}$ (D) $\pi + \frac{\pi'}{1+r} = G + \frac{G'}{1+r}$

(B)
$$T + \frac{T'}{1+r} = G + \frac{G'}{1+r}$$

(C)
$$T + \frac{T'}{1+w} = G + \frac{G'}{1+w}$$

(D)
$$\pi + \frac{\pi'}{1+r} = G + \frac{G'}{1+r}$$

and G - T = B.

4. All markets clear: (i) labor, $N_S = N_D$ & $N_S' = N_D'$; (ii) goods, Y = C + G & Y' = C' + G'; (iii) bonds at date 0, S = B.

After defining the competitive equilibrium, now we are going to solve this model.

Step 1: Labor market

From the lecture, we know that the current marginal product of labor (MPN)(11) will equal to current wage. MPN = D

(A)
$$z'(1-\alpha)\left(\frac{K}{N_D}\right)^{\alpha}$$

(B)
$$z(1-\alpha)\left(\frac{K'}{N_D}\right)^{\alpha}$$

(C)
$$z'(1-\alpha)\left(\frac{K'}{N_D'}\right)^{\alpha}$$

(D)
$$z(1-\alpha)\left(\frac{K}{N_D}\right)^{\alpha}$$

and thus the current labor demand N_D given the wage w is ______ (12)

(A)
$$N_D = \left(\frac{z'(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$$

(B)
$$N_D = \left(\frac{z(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K$$

(C)
$$N_D = \left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$$

(D)
$$N_D = \left(\frac{z'(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K'$$

From the lecture, we know that the future marginal product of labor (MPN') will equal to future wage. MPN' =_____

(A)
$$z'(1-\alpha)\left(\frac{K}{N_D}\right)^{\alpha}$$

(B)
$$z(1-\alpha)\left(\frac{K'}{N_D}\right)^{\alpha}$$

(C)
$$z'(1-\alpha) \left(\frac{K'}{N'_D}\right)^{\alpha}$$

(D)
$$z(1-\alpha)\left(\frac{K}{N_D}\right)^{\alpha}$$

(14) and thus the future labor demand N'_D given the future wage w' is ______

(A)
$$N'_D = \left(\frac{z'(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$$

(B)
$$N'_D = \left(\frac{z(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K$$

(C)
$$N'_D = \left(\frac{z(1-\alpha)}{w}\right)^{\frac{1}{\alpha}} K$$

(D)
$$N'_D = \left(\frac{z'(1-\alpha)}{w'}\right)^{\frac{1}{\alpha}} K'$$

In the labor supply part, we know that the marginal rate of substitution between leisure and consumption $MRS_{l,C}$ equals to the wage.

(15) $MRS_{l,C} = \underline{\mathbf{A}}$

(A)
$$\frac{C}{1-N_S}$$

(B)
$$\frac{1-N_S}{C}$$

(C)
$$\frac{N_S}{1-C}$$

(D)
$$\frac{N_S'}{1-N_S}$$

In the saving part, we know that the marginal rate of substitution between current and future consumption $MRS_{C,C'}$ equals to the real interest rate (1+r)

 $(16) MRS_{C,C'} = \mathbf{C}$

(A)
$$\frac{N_S'}{N_S}$$

(B)
$$\frac{C}{C'}$$

(C)
$$\frac{C'}{C}$$

(D)
$$\frac{N_S}{N_S'}$$

(17) Solve for C', we get $\underline{\mathbf{B}}$

(A)
$$C' = (1+r)N_S$$

(B)
$$C' = (1+r)C$$

(C)
$$C' = (1+r)C'$$

(D)
$$C' = (1+r)N_S'$$

Start from now we denote the income that is not directly affected by consumer choice as x and x', similar to Lecture 17.

Substitute C' using your answer in 17 into the budget constraint and solve for C, (18) we get A

(A)
$$C = \frac{1}{2} \left(w N_S + x + \frac{x'}{1+r} \right)$$

(A)
$$C = \frac{1}{2} \left(w N_S + x + \frac{x'}{1+r} \right)$$
 (B) $C = \frac{1}{1+\beta} \left(w N_S + x + \frac{x'}{1+r} \right)$

(C)
$$C = \frac{1}{1+\beta} \left(wN_S + C' + \frac{C'}{1+r} \right)$$

(C)
$$C = \frac{1}{1+\beta} \left(wN_S + C' + \frac{C'}{1+r} \right)$$
 (D) $C = \frac{1}{2} \left(wN_S + N'_S + \frac{N'_S}{1+r} \right)$

(19) Substitute your answer of 18 into your answer in 15, we can solve the labor

(A)
$$\frac{1}{3} - \frac{2}{3w} \left(x + \frac{x'}{1+r} \right)$$

(B)
$$\frac{2}{3} - \frac{w}{3} \left(x + \frac{x'}{1+r} \right)$$

(C)
$$\frac{2}{5} - \frac{5}{3w} \left(x + \frac{x'}{1+r} \right)$$

(D)
$$\frac{2}{3} - \frac{1}{3w} \left(x + \frac{x'}{1+r} \right)$$

(20) From 12 we solve for labor demand N_D . From 19 we solve for labor supply N_S . If for this question we let $\alpha = 1$, then we can solve the wage w as a function of real interest rate r as C

(A)
$$w^*(r) = x + \frac{x'}{1+r}$$

(B)
$$w^*(r) = \frac{1}{3} \left(x + \frac{x'}{1+r} \right)$$

(C)
$$w^*(r) = \frac{1}{2} \left(x + \frac{x'}{1+r} \right)$$

(D)
$$w^*(r) = zK \left(x + \frac{x'}{1+r} \right)$$

For the output demand curve, we know that the optimal investment schedule is given by $MPK' - \delta = r$.

We know that the MPK' is **B**

(A)
$$\alpha z K^{\alpha-1} N^{1-\alpha}$$

(B)
$$\alpha z' K'^{\alpha-1} N'^{1-\alpha}$$

(C)
$$(1-\alpha)z'K'^{\alpha}N'^{-\alpha}$$

(D)
$$\alpha z K^{\alpha} N^{-\alpha}$$

- We can solve the optimal investment schedule and get K' =______
 - (A) $\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}}N'$

(B) $\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}}N$

(C) $\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}}N'$

- (D) $\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}}N$
- and the investment I_D is determined by capital accumulation process K'-(1- δ) K and is **D**
 - (A) $\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}}N' (1-\delta)K$ (B) $\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}}N (1-\delta)K$
 - (C) $\left(\frac{z'\alpha}{q+\delta}\right)^{\frac{1}{1-\alpha}}N (1-\delta)K$ (D) $\left(\frac{z'\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}}N' (1-\delta)K$
- Based on your answer in 23, the investment demand I_D is __A_ in future labor N'.
 - increasing (A)
- no related (B)
- decreasing (**C**)