Marketing Segmentation

Cluster analysis

U.S. Cities

Segmentation

Group U.S. cities into groups that are similar on demographics attributes such as

- percentage of Asians
- percentage of Blacks
- percentage of Hispanics
- Median age
- Unemployment rate
- Median income level

						Per capita
City	%age Black	%age Hispanic		Median Age	Unemployment rate	income(000's)
Albuquerque	3			32		
Atlanta	67			31		
Austin	12			29		
Baltimore	59			33		
Boston	26			30		
Charlotte	32			32		
Chicago	39		4	31		
Cincinnati	38			31		
Cleveland	47	5	1	32		
Columbus	23			29		
Dallas	30			30		
Denver	13			34		
Detroit	76			31		21
El Paso	3			29		
Fort Worth	22		2	30) 9	20
Fresno	9			28		
Honolulu	1	5	71	37	7 5	24
Houston	28	28	4	30	7	22
Indianapolis	22	. 1	1	32	2 5	21
Jacksonville	25	3	2	32	2 7	19
Kansas City	30	4	1	33	3 6	21
Las Vegas	11	13	4	33	3 5	20
Long Beach	14	24	14	30) 8	21
Los Angeles	14	40	10	31	11	21
Memphis	55	1	1	32	2 9	20
Miami	27	63	1	36	5 12	17
Milwaukee	31	6	2	30) 5	22
Minneapolis	13	2	4	32	2 5	23
Nashville	23	1	1	33	3	24
New Orleans	62	. 4	2	32	2 7	18
NY	29	24	7	34	11	27
Oakland	44	. 14	15	33	10	24
Oklahoma City	16	5	2	32	2	17
Omaha	13	3	1	32	2 5	20
Philadelphia	40	6	3	33	3 9	23
Phoenix	5	20	2	31	4	19
Pittsburgh	26	1	2	35	5 7	21
Portland	8	3	5	35	5 7	20
Sacramento	15	16	15	32	2 8	20
St. Louis	48	1	1	33	8	23
San Antonio	7	56	1	30	5	17
San Diego	9	21	12	31	8	20
San Francisco	11	14	29	36	6	31
San Jose	5	27	20	30	8	26
Seattle	10			35		
Toledo	20			32	2 6	19
Tucson	4			31	3	19
Tulsa	14	3	1	33	3 4	20
Virginia Beach	14	. 3	4	29	6	18

- ► STANDARDIZE 函數(STANDARDIZE)
 - STANDARDIZE(x, mean, standard_dev)
 - ▶ X 必要。 這是要標準化的值。
 - ▶ Mean 必要。這是分配的算術平均值。(MEAN)
 - ▶ Standard_dev 必要。這是分配的標準差。(STDDRV)

z Hispanic z Asian z Unemp 1.238954 -1.17872 -0.36257 0.061342 -0.75146 2.355188 -0.76443-0.4523 -0.43962 -0.75146 0.324386 -0.27285 -0.57533 -0.68177 0.510449 -1.44154 -1.49534 1.91345 -0.82514 -0.4523 0.562301 1.480155 0.324386 0.091278 -0.21806 -0.09339 -0.94058 -0.75146 0.924195 0.422582 -0.82514 -0.36257 0.061342 -1.49534 -0.27542 0.809103 0.328323 -0.18312 -0.43962 0.736282 0.924195 0.753886 -0.82514 -0.4523 -0.43962 0.364346 0.024482 1.250842 -0.58231 -0.4523 0.061342 2.224028 0.324386 -2.37475 -0.07437 -0.82514 -0.36257 -1.49534 -1.44154 0.312147 0.389031 -0.36257 -0.94058 0.736282 0.324386 -0.62655 0.510449 -0.36257 1.063261 -0.00759 0.624291 2.852145 -0.70373 -0.4523 -0.43962 0.736282 0.024482 -1.17872 3.30305 -0.4523 -2.37475 -1.44154 1.480155 -0.12959 -0.36257 -0.27542 0.328323 -0.94058 0.736282 -0.84742 -1.47504 0.93541 0.624433 -1.94252.224028 -1.28916 -0.58231 5.828653 2.566139 -0.75146 0.924195 0.201712 0.813993 -0.18312 -0.94058 -0.00759 -0.12959 -0.82514 -0.4523 0.061342 -0.75146 0.024482 0.03606 -0.70373 -0.36257 0.061342 -0.00759 0 312147 -0 64302 -n 4523 0.562301 -0.379530.562301 -0.75146 -0.94058 0.364346 14161 0.355249 -0.43962 1.480155 -0.5/133 1.54249/ 1.69258 -0.82514 -0.4523 0.061342 0.736282 0.146495 2.938798 -0.4523 2.06518 1.852091 -1.17514 0.367364 -0.5216 -0.36257 -0.94058 -0.75146 0.324386 -0.62655 -0.76443 -0.18312 0.061342 -0.75146 0.624291 -0.07437 -0.82514 -0.4523 0.562301 -1.49534 0.924195 2.079102 -0.64302 -0.36257 0.061342 -0.00759 -0.87523 0.25693 0.571158 0.086066 1.063261 1.480155 1.823908 1.08519 -0.03593 0.803889 0.562301 1.108219 0.924195 -0.4609 -0.58231 -0.36257 0.061342 -0.37953 -1.17514 -0.62655 -0.70373-0.4523 0.061342 -0.75146 0.86432 -0.5216 -0.27285 0.562301 0.736282 0.624291 -1.1234 -1.06829 0.328323 -0.36257 -0.43962 -0.57533 0.091278 -0.82514 -0.36257 1.56422 -0.00759 0.024482 -0.90263 -0.70373 -0.09339 1.56422 -0.00759 -0.27542 -0.51611 0.085488 0.803889 0.061342 0.364346 -0.27542 1.306059 -0.82514 -0.4523 0.562301 0.364346 0.624291 -0.95785 2.513837 -0.4523 -0.94058 -0.75146 -1.17514 -0.84742 0.389031 0.534705 -0.43962 0.364346 -0.27542 -0.73698 -0.03593 2.06008 -0.37953 3.023526 2.06518 -1.06829 0.753284 1.252529 -0.94058 0.364346 1.524004 -0.7922 -0.64302 0.534705 1.56422 -0.75146 2.123813 -0.24003 -0.64302 -0.4523 0.061342 -0.37953-0.57533 0.874701 -0.36257 -0.57533 -1.1235 -0.43962 -1.49534 -0.57133 -0.70373-0.4523 0.562301 -1.1234 -0.27542 -0.57133 -0.70373 -0.18312 -1.44154 -0.37953 -0.87523 SUMXMY2(array_x, array_y)

 $SUMXMY2 = \sum (x - y)^2$

Distance^2 to 1	Distance^2 to 2	Distance^2 to 3	Distance^2 to 4	Min Distance
7.016897	4.44672	15.08608	27.04372	4.44672
19.60865	9.505167	3.266853	30.102	3.266853
11.68898	4.411405	14.78223	32.23795	4.411405
13.52578	12.05718	1.212861	26.96212	1.212861
9.780438	3.32289	7.717853	18.93672	3.32289
16.3033	1.676812	6.601068	23.98015	1.676812
5.032486	7.102106	3.873518	19.48122	3.873518
9.259088	3.506272	1.360387	24.97923	1.360387
9.381499	12.75265	2.827259	28.64125	2.827259
21.98167	7.546867	14.77613	49.61466	7.546867
3.520536	5.660316	4.751479	24.71547	3.520536
6.415243	3.848943	9.536884	13.07848	3.848943
17.97118	14.65559	1.700234	36.15315	1.700234
10.88078	28.0051	32.50553	62.55287	10.88078
3.078873	4.537368	5.662687	27.53352	3.078873
5.577794	18.2029	18.37833	46.09383	5.577794
49.81239	47.61727	58.32659	19.60205	19.60205
3.972443	4.978902	6.898872	23.09371	3.972443
11.68407	0.35165	5.623641	20.45181	0.35165
8.753829	1.09039	3.410142	24.01824	1.09039
10.6714	1.364073	3.524699	19.0342	1.364073
9.07795	0.704171	8.970302	18.31566	0.704171
2.568309	5.327826	9.667705	20.78967	2.568309
0	11.02173	12.2774	24.15201	0
12.2774	7.606484	0	28.98115	0
10.96849	25.46892	22.62751	38.55048	10.96849
10.97794	2.392694	5.433386	23.78297	2.392694
11.20567		8.477371	15.48488	
17.1717			15.28483	
15.59036			33.52214	
7.198553			11.15449	
7.38843			13.77755	
10.19072			27.88813	
11.02173			21.80697	
8.633051			17.50259	
9.374723			25.89079	
12.78879			16.56169	
11.67525			16.38318	
3.913136			17.09331	
12.39109			19.67726	
8.415201			39.66382	
2.773884			20.22997	
24.15201			0	
5.419489			13.22124	
18.26013			3.897153	
9.607522			23.89469	
10.47943			27.31868	
13.56994			20.4805	
10.6071	2.832259	9.075938	33.00269	2.832259

MIN

▶ 會傳回一組數值中的最小值。

Distance^	Distance^	Distance^	Distance^	Min
2 to 1	2 to 2	2 to 3	2 to 4	Distance
7.016897	4.44672	15.08608	27.04372	4.44672
19.60865	9.505167	3.266853	30.102	3.266853
11.68898	4.411405	14.78223	32.23795	4.411405
13.52578	12.05718	1.212861	26.96212	1.212861
9.780438	3.32289	7.717853	18.93672	3.32289
16.3033	1.676812	6.601068	23.98015	1.676812
5.032486	7.102106	3.873518	19.48122	3.873518
9.259088	3.506272	1.360387	24.97923	1.360387

▶ 找出與四個候選城市距離最小(最相似)的城市

Assume cluster =4

City	Cluster
Los Angeles	24
Omaha	34
Memphis	25
San Francisco	43

Objective Function(S8)

Sum Dis^2	165.3482

=SUM(S10:S58)

Distance^2 to 1	Distance^2 to 2	Distance^2 to 3	Distance^2 to 4	Min Distance	Assigned to	City
7.016897	4.44672	15.08608	27.04372	4.44672	2	Albuquerque
19.60865	9.505167	3.266853	30.102	3.266853	3	Atlanta
11.68898	4.411405	14.78223	32.23795	4.411405	2	Austin
13.52578	12.05718	1.212861	26.96212	1.212861	3	Baltimore
9.780438	3.32289	7.717853	18.93672	3.32289	2	Boston
16.3033	1.676812	6.601068	23.98015	1.676812	2	Charlotte

MATCH 函數會搜尋儲存格範圍中的指定項目,並傳回該項目於該範圍中的相對位置。 =MATCH(\$10,010:R10,0) 找出距離最近的城市為<u>第二個</u>城市