Definição 1. Ponto interior Dado um conjunto $X \subset \mathbb{R}$, um ponto $x \in X$ chama-se ponto interior de X quando existe um intervalo aberto (a,b) tal que $x \in (a,b) \subset X$

Definição 2. Conjunto aberto Diz-se que X é um conjunto aberto, se intX=X

Teorema 1. 1. Se $A_1 \subset \mathbb{R}$ e $A_2 \subset \mathbb{R}$ são abertos, então $A_1 \cup A_2$ é aberto.

2. Seja $(A_{\lambda})_{\lambda \in L}$ uma família arbitrária de conjuntos abertos $A_{\lambda} \subset \mathbb{R}$. A reunião $A = \bigcup_{\lambda \in L} A_{\lambda}$

Corolário 1. A interseção finita de conjuntos abertos é um conjunto aberto.

Teorema 2 (Estrutura dos abertos da reta). Todo subconjunto aberto $A \subset \mathbb{R}$ se exprime, de modo único, como uma reunião enumerável de intervalos abertos, dois a dois disjuntos.

Lema 1. Seja $(I_{\lambda})_{\lambda \in L}$ uma família de intervalos abertos, todos contendo o ponto $p \in \mathbb{R}$. Então $I = \bigcup_{\lambda \in L} I_{\lambda}$ é um intervalo aberto.

Corolário 2. Seja I um intervalo aberto. $I = A \cup B$, onde $A \in B$ são conjuntos abertos disjuntos, então um desses conjuntos é igual a $I \in A \cup B$ outro é vazio.

Definição 3. Ponto aderente Diz-se que um ponto a é aderente a $X \subset \mathbb{R}$ quando a for limite de uma sequência $x_n \in X$.

Nota. Todo ponto de X é aderente a X.

Teorema 3. Um ponto $a \in \mathbb{R}$ é aderente a um conjunto $X \subset \mathbb{R}$ se, e somente se, para todo $\epsilon > 0$ tem-se $X \cap (a - \epsilon, a + \epsilon) \neq \emptyset$.

Corolário 3. Sejam $X \in \mathbb{R}$ limitado inferiormente e $Y \in \mathbb{R}$ limitado superiormente. Então $a = \inf X$ é aderente a X e $b = \sup Y$ é aderente a Y.

Definição 4. Fecho Chamaremos de fecho do conjunto X ao conjunto XXX formado pelos pontos aderentes a X.

Definição 5. Conjunto fechado É quando o conjunto é igual ao seu fecho.

Teorema 4. Um conjunto $F \in \mathbb{R}$ é fechado se, e somente se, seu complementar R - F é aberto.

Corolário 4. • \mathbb{R} é o conjunto vazio são fechados.

- Se F_1, F_2, \ldots, F_n são fechados, então $F_1 \cup F_2 \cup \cdots \cup F_n$ é fechado.
- Se $(F_{\lambda})_{\lambda \in L}$ é uma família quaquer de conjuntos fechados então a interseção $F = \bigcap_{\lambda \in L} F_{\lambda}$ é um conjunto fechado.

Teorema 5. O fecho de todo conjunto $X \in \mathbb{R}$ é um conjunto fechado, isto é, pg 172.

Corolário 5.

Teorema 6.

Definição 6.