Last time we constructed a homomorphism $\phi: Z(\mathfrak{g}) \to \mathsf{Sym}(\mathfrak{t})$ fitting into the following diagram

$$(0.1) Z(\mathfrak{g}) \xrightarrow{\phi} \operatorname{Sym}(\mathfrak{t})$$

$$\downarrow^{\operatorname{ev}_{\lambda}}$$

$$k_{\lambda}.$$

where for any $\lambda \in \mathfrak{t}^*$, $\chi_{\lambda} = \xi_{-,\lambda}$ is the central character of the Verma module M_{λ} . We stated the following result, which will be proved today.

Theorem 1 (Harish-Chandra). The homomorphism ϕ induces an isomorphism

$$\phi_{\mathsf{HC}}: Z(\mathfrak{g}) \xrightarrow{\sim} \mathsf{Sym}(\mathfrak{t})^{W_{\bullet}}$$

from $Z(\mathfrak{g})$ to the invariance of $Sym(\mathfrak{t})$ with respect to the dot W-action.

1. Step 1: Image is W_{\bullet} -invariant

Let us first prove the image of ϕ is indeed contained in $\mathsf{Sym}(\mathfrak{t})^{W_{\bullet}}$. Since W is generated by simple reflections s_{α} , $\alpha \in \Delta$, we only need to show $\phi(z) = s_{\alpha} \cdot \phi(z)$ for any $z \in Z(\mathfrak{g})$. In other words, we need to show

(1.1)
$$\operatorname{ev}_{\lambda}(\phi(z)) = \operatorname{ev}_{\lambda}(s_{\alpha} \cdot \phi(z))$$

for any $\lambda \in \mathfrak{t}^*$. In fact, we only need to prove this for a Zariski dense subset of \mathfrak{t}^* . Let us first give this dense subset. The following result is obvious after drawing a picture.

Lemma 2. Let $\alpha \in \Delta$ be a simple root. The subset $\{\lambda \in \mathfrak{t}^* \mid \langle \lambda + \rho, \check{\alpha} \rangle \in \mathbb{Z}^{\geq 0} \}$ is a Zariski dense subset of \mathfrak{t}^* .

Example 3. For $\mathfrak{g} = \mathfrak{sl}_2$, this subset is $\mathbb{Z}^{\geq -1} \subset \mathbb{A}^1$. In fact, in [Exam. 15, Lect. 4], we have used this subset to show the image of $\phi: Z(\mathfrak{sl}_2) \to k[h]$ is invariant under $h \mapsto -h-2$. The argument below is an immediate generalization.

Lemma 4. Let $\alpha \in \Delta$ be a simple root and $\lambda \in \mathfrak{t}^*$. Suppose $(\lambda + \rho, \check{\alpha}) \in \mathbb{Z}^{\geq 0}$. Then M_{λ} contains $M_{s_{\alpha} \cdot \lambda}$ as a submodule.

Corollary 5. The image of $\phi: Z(\mathfrak{g}) \to \operatorname{Sym}(\mathfrak{t})$ is indeed contained in $\operatorname{Sym}(\mathfrak{t})^{W_{\bullet}}$.

Proof. By previous discussion, we only need to prove (1.1) for α and λ satisfying the assumption of Lemma 4. By (0.1), the LHS and RHS of (1.1) are exactly the central character of M_{λ} and $M_{s_{\alpha} \cdot \lambda}$. Now Lemma 4 implies they are equal because the central character of a module is equal to the central character of any nonzero submodule of it.

Date: Mar 25, 2024.

Proof of Lemma 4. Recall

$$s_{\alpha}(\lambda) = \lambda - 2 \frac{(\lambda, \alpha)}{(\alpha, \alpha)} \alpha = \lambda - \langle \lambda, \check{\alpha} \rangle \alpha.$$

It follows that

$$s_{\alpha} \cdot \lambda = \lambda - \langle \lambda + \rho, \check{\alpha} \rangle \alpha = \lambda - m\alpha$$

for $m \in \mathbb{Z}^{\geq 0}$. The lemma is obvious for m = 0. We assume m > 0. Then we have $\langle \lambda, \check{\alpha} \rangle = m - 1$ because $\langle \rho, \check{\alpha} \rangle = 1$ (see [H1, Cor. to Lem. 10.2(B)]).

Let $f_{\alpha} \in \mathfrak{n}^-$ be a nonzero vector of weight $-\alpha$. Consider the vector $f_{\alpha}^m \cdot v_{\lambda}$, which is of weight $\lambda - m\alpha = s_{\alpha} \cdot \lambda$. We only need to show

$$\mathfrak{n}\cdot (f_{\alpha}^m\cdot v_{\lambda})=0.$$

Indeed, if this is true, the map $k_{s_{\alpha} \cdot \lambda} \to M_{\lambda}$, $c \mapsto c(f_{\alpha}^{m} \cdot v_{\lambda})$ is \mathfrak{b} -linear, and thereby induces a \mathfrak{g} -linear map $M_{s_{\alpha} \cdot \lambda} \to M_{\lambda}$. This map is injective because as a morphism between $U(\mathfrak{n}^{-})$ -modules, it is given by $-\cdot f_{\alpha}^{m}: U(\mathfrak{n}^{-}) \to U(\mathfrak{n}^{-})$, which is injective by the PBW theorem.

It remains to show $\mathfrak n$ annihilates $f_{\alpha}^m \cdot v_{\lambda}$. For each simple root $\beta \in \Delta$, let $e_{\beta} \in \mathfrak n$ be a nonzero vector of weight β . Note that the vectors $(e_{\beta})_{\beta \in \Delta}$ generate $\mathfrak n$ under Lie brackets¹. Hence we only need to show $e_{\beta} \cdot f_{\alpha}^m \cdot v_{\lambda} = 0$. There are two cases:

• If $\alpha \neq \beta$, then $[e_{\beta}, f_{\alpha}] = 0^2$ and

$$e_{\beta} \cdot f_{\alpha}^{m} \cdot v_{\lambda} = f_{\alpha}^{m} \cdot e_{\beta} \cdot v_{\lambda} = 0$$

because $\mathbf{n} \cdot v_{\lambda} = 0$.

• If $\alpha = \beta$, $[e_{\alpha}, f_{\alpha}] \in \mathfrak{t}$ is proportionate to $\check{\alpha}$ (see [H1, Prop. 8.3(d)]). Rescale e_{α} , we may assume $[e_{\alpha}, f_{\alpha}] = \check{\alpha}$. Then $[\check{\alpha}, f_{\alpha}] = \langle -\alpha, \check{\alpha} \rangle f_{\alpha} = -2f_{\alpha}$. Now the following calculation is essentially that in [Exe. 24, Lect. 2]. We have

$$e_\alpha \cdot f_\alpha^m \cdot v_\lambda = \sum_{1 \leq i \leq m} f_\alpha^{m-i} \cdot \left[e_\alpha, f_\alpha \right] \cdot f_\alpha^{i-1} \cdot v_\lambda + f_\alpha^m \cdot e_\alpha \cdot v_\lambda.$$

Recall we have $e_{\alpha} \cdot v_{\lambda} = 0$. Also,

$$\check{\alpha} \cdot f_{\alpha}^j = \sum_{1 \leq i \leq j} f_{\alpha}^{j-i} \cdot \left[\check{\alpha}, f_{\alpha}\right] \cdot f_{\alpha}^{i-1} + f_{\alpha}^j \cdot \check{\alpha} = -2jf_{\alpha}^j + f_{\alpha}^j \cdot \check{\alpha}.$$

Hence

$$e_{\alpha} \cdot f_{\alpha}^{m} \cdot v_{\lambda} = \sum_{1 \leq i \leq m} \left(-2(i-1)f_{\alpha}^{m-1} + f_{\alpha}^{m-1} \cdot \check{\alpha} \right) v_{\lambda} = \left(-m(m-1) + m(\lambda, \check{\alpha}) \right) v_{\lambda} = 0$$

as desired.

 $\square[\text{Lemma 4}]$

2. Step 2: Filtrations

By Step 1, we have a homomorphism

$$\phi_{\mathsf{HC}}: Z(\mathfrak{g}) \to \mathsf{Sym}(\mathfrak{t})^{W_{\bullet}}.$$

In this step, we equip both sides with filtrations, and show ϕ_{HC} is compatible with them. The punchline is the following easy fact:

¹Because $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = \mathfrak{g}_{[\alpha,\beta]}$ whenever $\alpha,\beta,\alpha+\beta\in\Phi^+$.

²Otherwise it is a nonzero vector with weight $\beta - \alpha$ but the latter is not a root because $\Phi = \Phi^+ \sqcup \Phi^-$.

LECTURE 5 3

Fact 6. Let V_1 and V_2 be two vector spaces equipped with $\mathbb{Z}^{\geq 0}$ -indexed (exhausted) filtrations. Suppose $\varphi: V_1 \to V_2$ is a k-linear map compatible with the filtrations. Then φ is an isomorphism between filtered vector spaces iff $\operatorname{gr}^{\bullet}\varphi: \operatorname{gr}^{\bullet}V_1 \to \operatorname{gr}^{\bullet}V_2$ is an isomorphism between graded vector spaces.

Construction 7. The PBW filtration on $U(\mathfrak{g})$ induces a filtration on $Z(\mathfrak{g})$ with $\mathsf{F}^{\leq i}Z(\mathfrak{g}) \coloneqq Z(\mathfrak{g}) \cap \mathsf{F}^{\leq i}U(\mathfrak{g})$. Note that $\mathsf{gr}^{\bullet}Z(\mathfrak{g})$ is a subalgebra of $\mathsf{gr}^{\bullet}U(\mathfrak{g}) \simeq \mathsf{Sym}(\mathfrak{g})$.

Construction 8. The PBW filtration on $U(\mathfrak{t}) \simeq \mathsf{Sym}(\mathfrak{t})$ is preserved by the dot W-action. Hence it induces a filtration on $U(\mathfrak{t})^{W_{\bullet}3}$.

Warning 9. The dot W-action on Sym(t) does not preserve the grading. But the usual (linear) W-action does.

Lemma 10. The homomorphism $\phi_{HC}: Z(\mathfrak{g}) \to U(\mathfrak{t})^{W_{\bullet}}$ is compatible with the above filtrations.

Proof. This is obvious from the description of ϕ as

$$Z(\mathfrak{g}) \hookrightarrow U(\mathfrak{g}) \twoheadrightarrow k \underset{U(\mathfrak{n}^-)}{\otimes} U(\mathfrak{g}) \underset{U(\mathfrak{n})}{\otimes} k \simeq U(\mathfrak{t}).$$

3. Step 3: Calculating the graded pieces

Construction 11. Recall Sym(\mathfrak{g}) has a natural \mathfrak{g} -module structure constructed as follows. For any $V \in \mathfrak{g}$, there is a natural \mathfrak{g} -module structure on $V^{\otimes n}$ given by

$$\mathfrak{g} \times V^{\otimes n} \to V^{\otimes n}, \ (x, \underset{i}{\otimes} v_i) \mapsto \sum_i (v_1 \otimes \cdots \otimes v_{i-1} \otimes (x \cdot v_i) \otimes v_{i+1} \cdots \otimes v_n).$$

This action is compatible with the symmetric group Σ_n -action on $V^{\otimes n}$ and thereby induces a \mathfrak{g} -module structure on $\operatorname{Sym}^n(V)$. Taking direct sum, we obtain a \mathfrak{g} -module structure on $\operatorname{Sym}(V)$.

In the case $V = \mathfrak{g}$, to distinguish with the multiplication structure on $\mathsf{Sym}(\mathfrak{g})$, we denote this action by

$$\mathfrak{g} \times \mathsf{Sym}(\mathfrak{g}) \to \mathsf{Sym}(\mathfrak{g}), (x, u) \mapsto \mathsf{ad}_x(u),$$

and call it the adjoint action.

Note that by definition, for $x \in \mathfrak{g}$ and $u, v \in Sym(\mathfrak{g})$, we have

$$\mathsf{ad}_x(u \cdot v) = \mathsf{ad}_x(u) \cdot v + u \cdot \mathsf{ad}_x(v).$$

In particular, the g-invariance

$$\operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}} := \{ u \in \operatorname{Sym}(\mathfrak{g}) \mid \operatorname{ad}_x(u) = 0 \text{ for } any \ x \in \mathfrak{g} \}$$

is a subalgebra of $Sym(\mathfrak{g})$.

Lemma 12. There is a unique dotted graded isomorphism making the following diagram commute

$$\operatorname{gr}^{\bullet}Z(\mathfrak{g}) \xrightarrow{\simeq} \operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}}$$

$$\downarrow^{\subset} \qquad \qquad \downarrow^{\subset}$$

$$\operatorname{gr}^{\bullet}U(\mathfrak{g}) \xrightarrow{\simeq} \operatorname{Sym}(\mathfrak{g}),$$

where the bottom isomorphism is given by the PBW theorem.

To prove this lemma, we use the following exercise:

³Note that $g^{\bullet}U(\mathfrak{t})$ is also isomorphic to $\mathsf{Sym}(\mathfrak{t})$. To distinguish them, we always use $U(\mathfrak{t})$ to denote the filtered commutative ring while use $\mathsf{Sym}(\mathfrak{t})$ to denote the graded commutative ring.

Exercise 13. This is Homework 2, Problem 4. Prove: the adjoint \mathfrak{g} -action on $U(\mathfrak{g})$, i.e.,

$$\mathfrak{g} \times U(\mathfrak{g}) \to U(\mathfrak{g}), (x, u) \mapsto \mathsf{ad}_x(u) = [x, u],$$

preserves each $\mathsf{F}^{\leq n}U(\mathfrak{g})$, and the induced \mathfrak{g} -action on $\mathsf{gr}^{\bullet}(U(\mathfrak{g})) \simeq \mathsf{Sym}(\mathfrak{g})$ is the adjoint action in Construction 11.

Proof of Lemma 12. By the above exercise, we have a short exact sequence of *finite-dimensional* g-modules:

$$0 \to \mathsf{F}^{\leq n-1}U(\mathfrak{g}) \to \mathsf{F}^{\leq n}U(\mathfrak{g}) \to \mathsf{Sym}^n(\mathfrak{g}) \to 0.$$

Since $\mathfrak{g}\text{-mod}_{\mathsf{fd}}$ is semisimple, this short exact sequence splits. Hence taking $\mathfrak{g}\text{-invariance}$, we obtain⁴

$$0 \to \mathsf{F}^{\leq n-1} Z(\mathfrak{g}) \to \mathsf{F}^{\leq n} Z(\mathfrak{g}) \to \mathsf{Sym}^n(\mathfrak{g})^{\mathfrak{g}} \to 0$$

This gives the desired isomorphism $\operatorname{gr}^n Z(\mathfrak{g}) \simeq \operatorname{Sym}^n(\mathfrak{g})^{\mathfrak{g}}$.

 \square [Lemma 12]

A similar proof⁵ gives:

Lemma 14. There is a unique dotted graded isomorphism making the following diagram commute

$$\operatorname{gr}^{\bullet}(U(\mathfrak{t})^{W_{\bullet}}) \xrightarrow{\simeq} \operatorname{Sym}(\mathfrak{t})^{W}$$

$$\downarrow^{c} \qquad \qquad \downarrow^{c}$$

$$\operatorname{gr}^{\bullet}U(\mathfrak{t}) \xrightarrow{\simeq} \operatorname{Sym}(\mathfrak{t}),$$

where the right-top corner is the invariance for the linear W-action on $Sym(\mathfrak{t})$.

Combining the above two lemmas, we obtain:

Corollary 15. There is a unique dotted graded homomorphism making the following diagram commute

$$\operatorname{gr}^{\bullet}Z(\mathfrak{g}) \xrightarrow{\simeq} \operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}}$$

$$\downarrow \operatorname{gr}^{\bullet}\phi_{\operatorname{HC}} \qquad \qquad \downarrow \phi_{\operatorname{cl}}$$

$$\operatorname{gr}^{\bullet}(U(\mathfrak{t})^{W_{\bullet}}) \xrightarrow{\simeq} \operatorname{Sym}(\mathfrak{t})^{W}.$$

4. Step 4: Chevalley isomorphism

It remains to show

$$\phi_{\mathsf{cl}} : \mathsf{Sym}(\mathfrak{g})^{\mathfrak{g}} \to \mathsf{Sym}(\mathfrak{t})^W$$

is an isomorphism. Let us first give an explicit construction of this homomorphism. We need the following characterization of ϕ .

Construction 16. Consider the composition

$$Z(\mathfrak{g}) \hookrightarrow U(\mathfrak{g}) \twoheadrightarrow U(\mathfrak{g}) \underset{U(\mathfrak{g})}{\otimes} k.$$

With respect to the adjoint \mathfrak{t} -action, the source has weight 0. Hence the composition factors through the 0-weight subspace of the target, which is exactly $U(\mathfrak{b}) \otimes_{U(\mathfrak{n})} k \simeq U(\mathfrak{t})$. By definition, the obtained map

$$Z(\mathfrak{g}) \to U(\mathfrak{t})$$

⁴ Warning: in general, taking invariance is only *left exact*. (Memory method: it is given by $\mathsf{Hom}_{\mathfrak{g}}(k, -)$.) Hence we need the existence of a splitting.

⁵Note that $Rep(W)_{fd}$ is also semisimple

LECTURE 5 5

is just ϕ .

Construction 17. It follows ϕ_{cl} can be constructed as follows. Consider the composition

$$(4.1) Sym(\mathfrak{g})^{\mathfrak{g}} \to Sym(\mathfrak{g}) \twoheadrightarrow Sym(\mathfrak{g}/\mathfrak{n}).$$

It factors through $Sym(\mathfrak{b}/\mathfrak{n}) \simeq Sym(\mathfrak{t})$. The obtained map

$$\operatorname{Sym}(\mathfrak{g})^{\mathfrak{g}} \to \operatorname{Sym}(\mathfrak{t})$$

can be identified with $\operatorname{gr}^{\bullet}\phi$. Since ϕ factors through $U(\mathfrak{t})^{W_{\bullet}}$, the map $\operatorname{gr}^{\bullet}\phi$ factors through $\operatorname{gr}^{\bullet}(U(\mathfrak{t})^{W_{\bullet}}) \cong \operatorname{Sym}(\mathfrak{t})^{W}$. The obtained map

$$\operatorname{\mathsf{Sym}}(\mathfrak{g})^{\mathfrak{g}} \to \operatorname{\mathsf{Sym}}(\mathfrak{t})^W$$

is just ϕ_{cl} .

Remark 18. The geometric meaning of the above construction is as follows.

Note that $Sym(\mathfrak{g})^{\mathfrak{g}} = Sym(\mathfrak{g})^G$ because G-invariance is equal to \mathfrak{g} -invariance⁶. Hence (4.1) corresponds to the morphisms

$$(\mathfrak{g}/\mathfrak{n})^* \to \mathfrak{g}^* \to \mathfrak{g}^* /\!\!/ G.$$

Since $\operatorname{\sf gr}^{\bullet}\phi$ factors through $\operatorname{\sf gr}^{\bullet}(U(\mathfrak{t})^{W_{\bullet}}) \simeq \operatorname{\sf Sym}(\mathfrak{t})^{W}$. The above composition factors through $(\mathfrak{g}/\mathfrak{n})^* \to (\mathfrak{b}/\mathfrak{n})^* \simeq \mathfrak{t}^* \to \mathfrak{t}^*/\!\!/W$. In other words, we have

$$(\mathfrak{g}/\mathfrak{n})^* \longrightarrow \mathfrak{g}^* /\!\!/ G$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathfrak{t}^* \longrightarrow \mathfrak{t}^* /\!\!/ W$$

such that the dotted arrow is given by $Spec(\phi_{cl})$.

It is convenient to get rid of the dual spaces using the Killing form. Namely, Kil induces an isomorphism $\mathfrak{g} \simeq \mathfrak{g}^*$ compatible with the G-actions, while $Kil|_{\mathfrak{t}}$ induces an isomorphism $\mathfrak{t} \simeq \mathfrak{t}^*$ compatible with the W-actions⁷. Via the first isomorphism, the subspaces $\mathfrak{n} \subset \mathfrak{b} \subset \mathfrak{g}$ corresponds to $(\mathfrak{g}/\mathfrak{b})^* \subset (\mathfrak{g}/\mathfrak{n})^* \subset \mathfrak{g}$. Then the above commutative diagram is identified with

$$\begin{array}{ccc}
\mathfrak{b} & \longrightarrow \mathfrak{g}/\!\!/G \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\mathfrak{t} & \longrightarrow \mathfrak{t}/\!\!/W.
\end{array}$$

We abuse notations and also view the dotted arrow as $Spec(\phi_{cl})$.

Remark 19. Since the projection $\mathfrak{b} \to \mathfrak{t}$ has a splitting $\mathfrak{t} \to \mathfrak{b}$. The above claim implies $\mathsf{Spec}(\phi_{\mathsf{cl}})$ can be characterized as the following dotted arrow

We can also prove the existence of this map using group-theoretic method. Namely, consider the normalizer $N_G(T)$ of T insider G. Recall we have $W \simeq N_G(T)/T$ such that the linear W-action

⁶Because $Rep(G) \to \mathfrak{g}$ -mod is fully faithful when G is connected.

⁷Both claims follow from the fact that Kil is invariant with respect to the adjoint \mathfrak{g} -action and thereby to the adjoint G-action. Here we use $W \simeq N_G(T)/T$.

on \mathfrak{t} can be identified with the adjoint action of $N_G(T)/T$. Then the morphism $\mathfrak{t} \to \mathfrak{g} \to \mathfrak{g}/\!\!/ G$ factors through $\mathfrak{t}/\!\!/ W$ because $N_G(T)$ is a subgroup of G.

Warning 20. I do not know any group-theoretic proof of (4.2). This is because not $\mathfrak{b} \to \mathfrak{g}/G$ (the quotient stack) does not factor through \mathfrak{t} : two elements in \mathfrak{b} that have the same image in \mathfrak{t} are not necessarily conjugate to each other. In fact, the 0-fiber of the map $\mathfrak{g} \to \mathfrak{g}/\!/G$ contains exactly the nilpotent elements in \mathfrak{g} .

Theorem 21 (Chevalley). The homomorphism

$$\phi_{\mathsf{cl}} : \mathsf{Sym}(\mathfrak{g})^{\mathfrak{g}} \to \mathsf{Sym}(\mathfrak{t})^W$$

is an isomorphism. In other words, the natural morphism $\mathfrak{t}/\!/W \to \mathfrak{g}/\!/G$ is an isomorphism.

Proof. As in Remark 18, we can identify ϕ_{cl} with the restriction map $\operatorname{Fun}(\mathfrak{g})^G \to \operatorname{Fun}(\mathfrak{t})^W$, which is also $\operatorname{Sym}(\mathfrak{g}^*)^G \to \operatorname{Sym}(\mathfrak{t}^*)^W$.

This map is injective because if an adjoint-invariant function on $\mathfrak g$ vanishes on $\mathfrak t$, then it vanishes on each semisimple elements. But the latter are Zariski dense in $\mathfrak g$.

To prove the surjectivity, we first find generators of $Sym(\mathfrak{t}^*)^W$ as follows. Recall the subset P^+ of dominant integral weights, i.e.,

$$P^+ \coloneqq \{\lambda \in \mathfrak{t}^* \mid \langle \lambda, \check{\alpha} \rangle \in \mathbb{Z}^{\geq 0} \text{ for all } \alpha \in \Delta \}.$$

Note that P^+ spans \mathfrak{t}^* . In fact, for each $\alpha \in \Delta$, we can find **fundamental dominant weights** ω_{α} such that

$$\langle \omega_{\alpha}, \check{\beta} \rangle = \delta_{\alpha\beta}, \ \alpha, \beta \in \Delta.$$

Then $\{\omega_{\alpha}\}$ is a basis of \mathfrak{t}^* and $P^+ = \mathbb{Z}^{\geq 0}\{\omega_{\alpha}\}$. A direct calculation shows that $\{\lambda^n \mid \lambda \in P^+\}$ span $\mathsf{Sym}^n(\mathfrak{t}^*)$. Hence the sums

$$b_{\lambda,n}\coloneqq \sum_{w\in W} w(\lambda^n),\; \lambda\in P^+, n\ge 0$$

span $\operatorname{Sym}(\mathfrak{t}^*)^W$.

It remains to show each $b_{\lambda,n}$ is contained in the image of ϕ_{cl} . We need the following well-known fact.

Theorem 22 (Weyl). For any $\lambda \in P^+$, there is a unique finite-dimensional irreducible \mathfrak{g} -module L_{λ} with higheset weight λ .

For $\lambda \in P^+$, $n \ge 0$, consider the function $a_{\lambda,n} \in \operatorname{\mathsf{Fun}}(\mathfrak{g})$ defined by

$$a_{\lambda,n}(x) \coloneqq \operatorname{tr}(x^n; L_{\lambda}),$$

i.e., its value at any $x \in \mathfrak{g}$ is the trace of the action of x^n on L_{λ} . It is easy to see $a_{\lambda,n}$ is \mathfrak{g} -invariant⁸ and thereby G-invariant.

Now the following exercise implies each $b_{\lambda,n}$ is contained in the image of ϕ_{cl} . Indeed, this follows from induction on λ with respect to the partial ordering $<^9$.

Exercise 23. This is Homework 2, Problem 5. Let $\lambda \in P^+$ be a dominant integral weight and $n \ge 0$. Prove there exists scalars $c_{\lambda'} \in k$, $\lambda' < \lambda$ such that

$$\phi_{\mathsf{cl}}\big(a_{\lambda,n}\big) = a_{\lambda,n}|_{\mathfrak{t}} = \frac{1}{\#\mathsf{Stab}_{W}(\lambda)}b_{\lambda,n} + \sum_{\lambda' \leqslant \lambda}c_{\lambda'}b_{\lambda',n},$$

where $\mathsf{Stab}_W(\lambda) \subset W$ is the stablizer of the W-action at λ .

⁸Recall L_{λ} is G_{sc} -integrable ([Thm. 47, Lect. 3]). Hence $a_{\lambda,n}$ is G_{sc} -invariant, and thereby \mathfrak{g} -invariant.

⁹Recall $\lambda' \leq \lambda$ iff $\lambda - \lambda' \in \mathbb{Z}^{\geq 0} \Phi^+$. See [Defn. 22, Lect. 2].

LECTURE 5 7

Combining all the previous discussion, we finish the proof of Theorem 1.

References

- [H1] Humphreys, James E. Introduction to Lie algebras and representation theory. Vol. 9. Springer Science & Business Media, 2012.
- [H2] Humphreys, James E. Representations of Semisimple Lie Algebras in the BGG Category \mathcal{O} . Vol. 94. American Mathematical Soc., 2008.