Absolute value (modulus)

Theorem (Properties of the absolute value)

For any $w, z \in \mathbb{C}$ there holds:

1)a)
$$z \ge 0$$
 1)b) $|z| = 0 \Leftrightarrow z = 0$

2)
$$|z + w| \le |z| + |w|$$
 (triangle inequality)

3)
$$|z \cdot w| = |z||w|$$
 (multiplicativity)

Remark: A field, for whose elements a mapping with the properties of an absolute value exists, is called a **valued field**.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

We extend the exponential function into the complex plane.

Definition (Complex exponential function)

For $z \in \mathbb{C}$ we define

$$\exp(z) := \sum_{k=0}^{\infty} \frac{1}{k!} z^k = 1 + z + \frac{z^2}{2} + \frac{z^3}{6} + \dots$$

Properties:

- \bigcirc exp $(z) \neq 0$ for any $z \in \mathbb{C}$
- \bigcirc exp(z) is continuous
- Let z = x + yi, then $|\exp(z)| = |\exp(x)|$.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Trigonometric functions

Definition (Cosine and sine)

For $x \in \mathbb{R}$ we define:

$$\cos(x) := \operatorname{Re}\left(e^{ix}\right)$$

$$sin(x) := Im(e^{ix})$$

We see that the Euler formula holds:

$$\exp(ix) = \cos(x) + i\sin(x), \quad x \in \mathbb{R}$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Geometric interpretation of the Euler formula

S.-J. Kimmerle

Analysis 1

The range of values is the unit circle:

$$|\exp(ix)| = \left(\exp(ix)\overline{\exp(ix)}\right)^{1/2}$$
$$= \left(\exp(ix)\exp(-ix)\right)^{1/2} = \left(\exp(0)\right)^{1/2} = 1, \quad x \in \mathbb{R}$$

sin(x) and cos(x) are the projections on the real and imaginary axis, resp.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review

sin and cos are extended on complex arguments by $\exp(iz)$, $z \in \mathbb{C}$. For real arguments sin and cos coincide with the known functions.

Geometric interpretation of multiplication in C

We consider the polar complex plane.

We have

$$z = r \exp(i\phi) \in \mathbb{C}$$

with $r = |z| \in \mathbb{R}_0^+$ and $\phi \in (-\pi, \pi]$.

Thus for the multiplication of $z_1 = r_1 \exp(i\phi_1)$, $z_2 = r_2 \exp(i\phi_2) \in \mathbb{C}$ there holds

$$z_1z_2 = r_1r_2 \exp(i(\phi_1 + \phi_2)).$$

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Theorem (Properties of cosine and sine)

For all $x \in \mathbb{R}$ there holds:

•
$$cos(x) = \frac{1}{2} (e^{ix} + e^{-ix}), \quad sin(x) = \frac{1}{2i} (e^{ix} - e^{-ix})$$

- \circ $\cos(-x) = \cos(x), \quad \sin(-x) = \sin(x)$
- $\cos^2(x) + \sin^2(x) = 1$
- \bullet cos : $\mathbb{R} \to \mathbb{R}$ and sin : $\mathbb{R} \to \mathbb{R}$ are continuous on \mathbb{R} .

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Trigonometric addition theorems

Theorem (Addition theorems of cosine and sine)

For all $x, y \in \mathbb{R}$ there holds:

$$\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y),$$

$$\sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y).$$

Theorem (Duplication formulas of cosine and sine)

For all $x \in \mathbb{R}$ there holds:

$$\cos(2x) = \cos^2(x) - \sin^2(x),$$

$$\sin(2x) = 2\sin(x)\cos(x).$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Series representation of (co)sine

Theorem (Sine and cosine as series)

For $x \in \mathbb{R}$ we define

$$\cos(x) := \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k)!} x^{2k} = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots$$

$$\sin(x) := \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!} x^{2k+1} = x - \frac{x^3}{6} + \frac{x^5}{120} + \dots$$

Both series converge absolutely.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Proof.

The exponential series is absolutely convergent. We consider:

Series representation of (co)sine - proof

$$\exp(ix) = \sum_{k=0}^{\infty} \frac{(ix)^k}{k!}$$

Note that: $i^0 = 1$, $i^1 = i$, $i^2 = -1$, $i^3 = -i$, $i^4 = 1$

In a cyclic manner: $i^{4k} = 1$, $i^{4k+1} = i$, $i^{4k+2} = -1$,...

We order the terms (why is it allowed?) with even (4k, 4k + 2) and odd indices (4k + 1, 4k + 3):

$$\exp(ix) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k)!} x^{2k} + i \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!} x^{2k+1}$$

Together with the Euler formula

$$\exp(ix) = \cos(x) + i\sin(x)$$

the statement is verified.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review

Estimates for the remainder

Since we may evaluate only a finite part of a series, it is important to have estimates for the remainder:

Theorem (Estimates for the remainder for (co)sine)

For all $x \in \mathbb{R}$:

$$\exp(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + r_{n}(x),$$

$$with |r_{n+1}(x)| \le 2 \frac{|x|^{n+1}}{(n+1)!} \quad for |x| \le \frac{n+1}{2}$$

$$\cos(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k}}{(2k)!} + r_{2n+2}(x),$$

$$with |r_{2n+2}(x)| \le \frac{|x|^{2n+2}}{(2n+2)!} \quad for |x| \le 2n+3$$

$$\sin(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + r_{2n+3}(x),$$

$$with |r_{2n+3}(x)| \le \frac{|x|^{2n+3}}{(2n+3)!} \quad for |x| \le 2n+4$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Theorem (Some limits sin and cos)

For any $x \in \mathbb{R}$ we have

1)
$$\lim_{X\to 0, X\neq 0} \frac{\sin(x)}{X} = 1,$$

2)
$$\lim_{X\to\infty}\frac{sin(X)}{X}=0,$$

3)
$$\lim_{x\to 0, x\neq 0} \frac{\cos x - 1}{x^2} = \frac{1}{2}$$

4)
$$\lim_{X\to\infty}\frac{\cos(x)}{X}=0$$

Lemma (2 estimates for sin and cos)

for all
$$x \in (0,2]$$

$$\sin(x) > 0 \qquad \text{for all } x \in (0, 2]$$

$$\cos(2) \le -\frac{1}{3}$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Definition (The number π)

The cosine has exactly one zero p in the interval [0, 2]. We define

$$\pi := 2p$$
.

The real number π is an infinite, non-periodic decimal fraction, i.e. an irrational number,

$$\pi = 3,141592653589...$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Periodicities of sine and cosine I

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

$\cos(x+2\pi)=\cos(x)$
$\sin(x+2\pi)=\sin(x)$
$cos(y + \pi) = cos(y)$

$$cos(x + \pi) = -cos(x)$$
$$sin(x + \pi) = -sin(x)$$

$$\cos(x) = \sin\left(\frac{\pi}{2} - x\right)$$

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review

Periodicities of sine and cosine II

Sine and cosine with half the periodicity

The quotient of sine and cosine has a certain importance. It is called the **tangent**

$$\tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Moreover, we define the **cotangent**

$$\cot(x) = \frac{\cos(x)}{\sin(x)}.$$

Note the singularities at zeros of cos or sin.

Remark: There exist further trigonometric functions that we do not consider here:

$$sec(x) = \frac{1}{\cos(x)}, \quad \csc(x) = \frac{1}{\sin(x)}$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Analysis 1

5	J.	KII	nm	ierie

1 1		1.5	
Intro	α	\cap ti \cap	n
Intro	uu	JIIU	ш

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Summary - outlook and review

Radian	degree	sin	cos	tan
0	0°	0	1	0
$\frac{\pi}{6}$	30°	1/2	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	45°	$\begin{array}{c c} 1\\ \hline 2\\ \hline \sqrt{2}\\ \hline 2\\ \hline \sqrt{3}\\ \hline 2\\ \end{array}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	<u>1</u>	$\sqrt{3}$
$\frac{\pi}{2}$	90°	1	0	∞

Special values of trigonometric functions

Special values of co(sine)

S.-J. Kimmerle

Unit circle with coordinates of important points Source: Wikipedia

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

On the interval $[0, \pi]$ the function cos is strictly monotone decrasing and maps bijectively to [-1, 1].

The inverse function

$$arccos(x): [-1,1] \rightarrow \mathbb{R}$$

exists and it is called arccosine.

Inverse trigonometric functions I

On the interval $[-\pi/2, \pi/2]$ the function sin is strictly monotone incrasing and maps bijectively to [-1, 1]. The inverse function

$$arcsin(x): [-1,1] \rightarrow \mathbb{R}$$

exists and it is called arcsine.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Inverse trigonometric functions II

On the interval $(-\pi/2, \pi/2)$ the function tan is strictly monotone incrasing and maps bijectively to \mathbb{R} . The inverse function

$$arctan(x) : \mathbb{R} \to \mathbb{R}$$

exists and it is called arctangent.

Note that the inverse functions are restricted to a "principal branch".

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

Let $x \in \mathbb{R}$.

We define the **hyperbolic cosine** as

$$\cosh(x) := \frac{1}{2} \left(\exp(x) + \exp(-x) \right),$$

and the hyperbolic sine as

$$\sinh(x) := \frac{1}{2} \left(\exp(x) - \exp(-x) \right).$$

Applications:

- sagging high voltage lines or chains (e.g. of bridges)
 have the shape of a cosh
- magnetism
- cosmology
- ...

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Continuity

Applications for continuous functions

Inverse functions

Exponentiation and logarithm

Complex numbers

Trigonometric functions

Differentiation in 1d

Integration in 1d

