Heavy-flavour production in proton-proton collisions at $\sqrt{s} = 7 \text{ TeV}$

Estimation of γ , π^0 and η ratios in the photonic background

Università degli studi di Torino Dipartimento di Fisica

Candidato: Fabrizio Grosa Relatore: Prof.ssa Stefania Beolè

GSI

Summer Student Program at GSI

 The Summer Student program at GSI consists in 15 lectures about different subjects and in a project with a reaserch group

Research areas at GSI:

- Atomic, Plasma physics and applications
- Astrophysics
- Biophysics
- Nuclear Quark Matter
 - ALICE at LHC/CERN
 - CBM at SIS100-300/FAIR
 - HADES and FOPI at SIS18/GSI

GSI

Summer Student Program at GSI

 The Summer Student program at GSI consists in 15 lectures about different subjects and in a project with a reaserch group

Research areas at GSI:

- Atomic, Plasma physics and applications
- Astrophysics
- Biophysics
- Nuclear Quark Matter
 - ALICE at LHC/CERN
 - CBM at SIS100-300/FAIR
 - HADES and FOPI at SIS18/GSI

Quark-gluon plasma in laboratory

 QCD predicts that under extreme conditions of very high temperature or energy densities, hadronic matter transit to a deconfined phase of matter called "quark-qluon plasma" (QGP)

- Collision: large number of hard scatterings between partons.
- Thermalization: the thermal equilibrium is reached.
- QGP: the fireball is created, in which quarks and gluons are free.

- Hadronization: the quarks and the glouns are recombined in hadrons.
- Chemical freeze-out: inelastic scattering cease.
- Kinetic freeze-out : elastic scattering cease.

Heavy-flavour production

Heavy-flavour cocktail background

- There are other sources of leptons which form the background for the heavy-flavour hadron semileptonic decay.
- The inclusive electrons and positrons are all the e^{\pm} measured, which are decay products of both hadrons carrying heavy quarks, and the background sources.
- After the subtraction of the background only the remaining p_T spectrum contains electrons from heavy-flavour hadron decays only.

Main sources of the photonic background

• Photon conversion: $\gamma \rightarrow e^+e^-$

Dalitz decays: $\pi^0 o e^+e^-\gamma \ \eta o e^+e^-\gamma \ \eta' o e^+e^-\gamma \ \omega o e^+e^-\pi^0 \ \phi o e^+e^-\eta$

Main sources of the photonic background

• Photon conversion: $\gamma \rightarrow e^+e^-$

Dalitz decays:

$$\pi^{0} \rightarrow e^{+}e^{-}\gamma$$
 $\eta \rightarrow e^{+}e^{-}\gamma$
 $\eta' \rightarrow e^{+}e^{-}\gamma$
 $\omega \rightarrow e^{+}e^{-}\pi^{0}$
 $\phi \rightarrow e^{+}e^{-}\eta$

The aim of this study is to calculate the ratio between photon conversions and Dalitz decays in the photonic background

The ALICE detector

 ALICE is the experiment at LHC dedicated to heavy-ion collisions

- Inner Tracking System: first sub detector reached by the particles originating in the primary vertex
- Time Projection Chamber: the main tracking detector

Data samples

- Simulated proton-proton collision events at $\sqrt{s} = 7 \, TeV$
 - decayed with Pythia 6
 - propagation through detectors described with *GEometry* ANd Tracking 3
 - tracks reconstructed with AliRoot
- This study is focused on proton-proton collisions because they are the reference system for the Pb-Pb collisions

Tracks selection Fabrizio Grosa 8/18

e^{\pm} identification

Cuts for e[±] tracks

$\chi^2/\text{cluster}$	< 4
in the TPC track fit	
ITS/TPC refit	yes
number of TPC clusters	≥ 120
number of ITS clusters	≥ 4
number of TPC cluster	≥ 80
for PID	'
TPC Ratio found/findable	> 0.6
clusters	
Transverse momentum	$0.1 < p_T < 20$
Pseudorapidity	η < 0.8
Reject Kink daughter	yes
DCA in $ \vec{r} $ -direction [cm]	< 1
DCA in z-direction [cm]	< 2
ITS SPD layer hit	First

Tranverse momentum:

$$p_T = \sqrt{p_x^2 + p_y^2}$$

Pseudorapidity:

$$\eta = -ln \left[tan \left(\frac{\theta}{2} \right) \right] = \frac{1}{2} ln \left(\frac{|\vec{p}| + p_L}{|\vec{p}| - p_L} \right)$$

 Distance of Closest Approach (DCA)

Finally, using the MC truth information, only the tracks that really belong to e^{\pm} are selected

9/18

Using the MC truth it is possible to know the mother particle of every e^+e^- pair \longrightarrow for each sources the correlation between the p_T of the inclusive electron and the $m_{\rm ee}$ of the e^+e^- can be obtained

Invariant mass distributions from MC truth

Knowing the mother particle of every e^+e^- pair from MC truth, it is possible to obtain the invariant mass distribution for each source

Distribution for photons

• For the photon conversion ——— exponentially modified Gaussian distribution:

$$\frac{dN}{dm_{\rm ee}} = N_{\gamma} \cdot e^{-\frac{(m_{\rm ee}-M_{\gamma})^2}{2\sigma^2}} + \Theta(m_{\rm ee}-M_{\gamma}) e^{\frac{m_{\rm ee}-M_{\gamma}}{\tau}}$$

Free parameters:

- $N_{\gamma} \rightarrow$ normalisation factor
- $lacktriangledown_{\gamma}
 ightarrow$ "pseudomass" of the photon
- \bullet $\sigma \rightarrow$ resolution of the detector
- $\bullet \quad \tau \to \text{slope of the esponential}$

Kroll-Wada distribution

$$\frac{dN}{dm_{\rm ee}} = N_X \cdot \frac{2}{m_{\rm ee}} \left\{ (1 + (m_{\rm ee}/M_X)^2)^2 - 4(m_{\rm ee}/M_X)^2 \right\}^{3/2} \sqrt{1 - \frac{4(m_{\rm e}/M_X)^2}{(m_{\rm ee}/M_X)^2}} \cdot \left\{ 1 + \frac{2(m_{\rm e}/M_X)^2}{(m_{\rm ee}/M_X)^2} \right\} \cdot F_X(m_{\rm ee}^2)$$

where $\begin{cases} F_{\pi^0}(m_{\theta\theta}^2) = \frac{1}{(1-5.5 \cdot m_{\theta\theta}^2)^2} \\ F_{\eta}(m_{\theta\theta}^2) = \frac{1}{(1-19 \cdot m_{\theta\theta}^2)^2} \end{cases}$

Free parameters:

- $N_X \rightarrow$ normalisation factor
- $M_X \rightarrow$ mass of the meson

12/18

Fit template

- Select e^+e^- pair with same γ , π^0 or η mother particle from MC truth
- Calculate their invariant mass and obtain the relative distribution
- Fit with the function which is the sum of the three contributions

From MC truth

number of γ	418300 ± 600
number of π^0	362000 ± 600
number of η	42100 ± 200
n_{γ}/n_{π^0}	1.156 ± 0.003
n_{γ}/n_{η}	9.94 ± 0.05
$n_{\gamma}/(n_{\pi^0} + n_{\eta})$	1.035 ± 0.002

From the Fit

M _γ	$0.01107 \pm 0.00018 \; GeV/c^2$
M_{π^0}	$0.1611 \pm 0.0003 \; GeV/c^2$
Mη	0.558 ± 0.004 GeV/c ²
Integral of γ	418300 ± 1100
Integral of π^0	355000 ± 2000
Integral of η	49200 ± 600
I_{γ}/I_{π^0}	1.179 ± 0.007
I_{γ}/I_{η}	8.50 ± 0.11
$I_{\gamma}/(I_{\pi^0} + I_{\eta})$	1.035 ± 0.006

Like-sign and Unlike-sign distributions

- Unlike-sign distribution
 - photonic signal + combinatorial background

Like-sign distribution

combinatorial background

Fit of the photonic background

The like-sign distribution is subtracted to the unlike-sign distribution

The resulting photonic signal is fitted with the template obtained from the MC truth

ſ	Integral of γ	423000 ± 6000
ſ	Integral of π^0	354000 ± 4000
	Integral of η	42000 ± 3000
	I_{γ}/I_{π^0}	1.19 ± 0.02
ſ	I_{γ}/I_{η}	10.0 ± 0.8
ſ	$I_{\nu}/(I_{\pi^0} + I_{\rm n})$	1.07 ± 0.02

Results Fabrizio Grosa 16/18

Results

RESULT: the amount of the three sources obtained with the fit of the photonic signal is consistent within the statistical error with the numbers known from MC

Particle	Number from MC truth	Relative statistical error	Integral from photonic signal fit	Relative statistical error
γ	418300 ± 600	0.14%	423000 \pm 6000	1.4%
π^0	362000 ± 600	0.17%	354000 ± 4000	1.1%
η	42100 ± 200	0.48%	42000 ± 3000	7.1%

Ratios	MC truth	Photonic signal fit	Gaussian test (num of σ)
γ/π^0	1.156 ± 0.003	1.19 \pm 0.02	1.68
γ/η	9.94 \pm 0.05	10.0 \pm 0.8	0.07
$\gamma/(\pi^0 + \eta)$	1.035 ± 0.002	1.07 ± 0.02	1.73

Results Fabrizio Grosa 16/18

Results

RESULT: the amount of the three sources obtained with the fit of the photonic signal is consistent within the statistical error with the numbers known from MC

Particle	Number from MC truth	Relative statistical error	Integral from photonic signal fit	Relative statistical error
γ	418300 ± 600	0.14%	423000 ± 6000	1.4%
π^0	362000 ± 600	0.17%	354000 ± 4000	1.1%
η	42100 ± 200	0.48%	42000 ± 3000	7.1%

Ratios	MC truth	Photonic signal fit	Gaussian test (num of σ)
γ/π^0	1.156 ± 0.003	1.19 \pm 0.02	1.68
γ/η	9.94 \pm 0.05	10.0 \pm 0.8	0.07
$\gamma/(\pi^0+\eta)$	1.035 ± 0.002	1.07 \pm 0.02	1.73

Outlook Fabrizio Grosa 17/18

Proton-proton and Pb-Pb data

- Look into proton-proton real data and verify that the same ratios are found
- Pb-Pb events: What would be different?

Outlook Fabrizio Grosa 17/18

Proton-proton and Pb-Pb data

- Look into proton-proton real data and verify that the same ratios are found
- Pb-Pb events : What would be different?

An excess of γ , due to the thermal photons generated by the fireball, is expected

the ratio between gamma conversion and Dalitz decavs should be larger

Acknowledgements

I would like to express my deep gratitude to all the ALICE group at GSI, and in particular a special thank to:

- my tutor, Prof. Ralf Averbeck
- Prof. Silvia Masciocchi
- Dr. Jochen Thäder
- Dr. Jan Wagner

Thank you for your attention!!

BACKUP |

Acknowledgements

e^{\pm} identification 2

Inclusive $e^{\pm} \longrightarrow$ stringent cuts are Associated e[±] required

relaxed cuts are required: tracks resolution is lost, but efficiency is maximised

Finally, using the MC truth information, only the tracks that really belong to e^{\pm} are selected

Fabrizio Grosa

Invariant mass analysis

According to Special Relativity the four-momentum $p = (E, \vec{p})$ of a physics system is always conserved, and the mass of a particle is equal to:

$$m_i^2 = E_i^2 - \vec{p_i}^2 \equiv p_i^2$$

we can calculate the invariant mass of a particle from its decay products

$$m_{ee} = \sqrt{(p_1 + p_2)^2} = \sqrt{(E_1 + E_2)^2 - (\vec{p_1} + \vec{p_2})^2}$$

