

Grundlagen der Informatik

Prof. Dr. J. Schmidt Fakultät für Informatik

GDI – WS 2020/21
Information und Quellencodierung
Arithmetische Codierung

Verfahren zur Datenkompression (1)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

- Mittlerweile:
 Vielzahl von Verfahren zur Datenkomprimierung
- Aufteilung in zwei Gruppen
 - Verlustfreie Datenkompression
 - Verlustbehaftete Datenkompression

Verfahren zur Datenkompression (2)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Verlustfreie Datenkompression

- Ziel der Codierung
 - Redundanz-Reduktion möglichst auf Null (Übertragungszeit und Speicherplatz ↓)
- Wesentliche Forderung
 - Die in den Daten enthaltene Information bleibt ohne Änderung erhalten
 - D.h. decodierte Daten unterscheiden sich nicht von den Originaldaten
- Zum Beispiel
 - Codierung von Texten und Tabellen

Verfahren zur Datenkompression (3)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Verlustbehaftete Datenkompression

- Ziel der Codierung
 - Über verlustfreie Datenkompression hinausgehende Verringerung der Datenmenge
- Information bleibt im Wesentlichen erhalten, aber gewisser Informationsverlust akzeptiert
 - D.h. Teil der Information geht verloren
 - somit unterscheiden sich die decodierten Daten von den Originaldaten
- (wesentlich) höhere Kompressionsraten lassen sich erzielen
- Zum Beispiel
 - Standbilder, Audio- oder Videodateien (wahrnehmungspsychologische Eigenschaften der Augen/Ohren werden berücksichtigt)

Verfahren zur Datenkompression (4)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Bereits bekanntes Kompressionsverfahren

- Huffman-Codierung
 - Durch den Huffman-Algorithmus wird ein Code-Baum iterativ von unten nach oben aufgebaut
 - Ergebnis: Code mit variabler Wortlänge
- Datenkompression im Vergleich zu Block-Codes aufgrund der Redundanzminimierung
 - Maß für die Datenkompression: Vergleich der mittleren Wortlänge des Huffman-Codes mit der konstanten Wortlänge des Block-Codes
 - berücksichtigt nur einzelne Zeichen, aber z.B. keine Wiederholungen innerhalb eines Wortes

Verfahren zur Datenkompression (4)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Alternative Verfahren

- Arithmetische Codierung
- Lauflängen-Codierung
- LZW-Algorithmus

Arithmetische Codierung (1)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

- Prinzip
 - Dem gesamten Quelltext wird eine Gleitpunktzahl x im Intervall 0 ≤ x < 1 zugeordnet
- Informationsgehalt
 - Einzelzeichen können implizit auch einen nichtganzzahligen Informationsgehalt tragen
 - Bei Huffman-Code erhält jedes Zeichen des Quelltextes ein Code-Wort mit ganzzahliger Länge
 - Arithmetische Codierung kann Redundanz meist noch etwas weiter verringern

Arithmetische Codierung (2)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

- Prinzip
 - Dem gesamten Quelltext wird eine Gleitpunktzahl x im Intervall 0 ≤ x < 1 zugeordnet
- Beispiel

Quelltext		Codierung	
ESSEN	→	0.24704	

Codierung		Decodierung
0.24704	→	ESSEN

Arithmetische Codierung (3)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Vorgehen

- Vor der eigentlichen Codierung eines Quelltexts mit n Zeichen wird erst die Häufigkeitsverteilung der n Zeichen ermittelt
- Ausgehend vom Intervall [0,1[wird dieses in naneinander anschließende Intervalle aufgeteilt
- Jedem Intervall wird ein Zeichen zugeordnet
- Die Länge der Intervalle entspricht den Auftrittswahrscheinlichkeiten der Zeichen

Arithmetische Codierung (4)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Beispiel

- Quelltext ESSEN ist arithmetisch zu codieren
- Notwendige Vorbereitungsschritte
 - Ermittlung der Auftrittswahrscheinlichkeiten p_i der einzelnen Zeichen
 - Zuordnung eines Intervalls [u, o[zu jedem Zeichen, wobei die Länge zu den jeweiligen Auftrittswahrscheinlichkeiten proportional ist

Zeichen	Auftrittswahrsch.	Intervall
\mathcal{C}	p_{i}	[u(c), o(c)[
Е	² / ₅	[0.0, 0.4[
S	$^{2}/_{5}$	[0.4, 0.8[
N	¹ / ₅	[0.8, 1.0[

Arithmetische Codierung (5)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Kompressions-Algorithmus

Initialisiere untere und obere Grenze

$$\begin{array}{c}
O := 1 \\
U := 0
\end{array}$$

Lies nächstes Eingabezeichen c und berechne

```
l := 0 - U ... aktuelle Länge des Intervalls ... neue Obergrenze, o(c) aus Tabelle ... neue Untergrenze, u(c) aus Tabelle
```

bis Textende erreicht ist

Ergebnis x (codierte Eingabedaten)

$$x := \frac{U+O}{2} \qquad \dots \text{ (oder auch } x = U)$$

Arithmetische Codierung (6)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Beispiel

Kompression des Textes ESSEN

Zeichen c	Auftrittswahrsch. p_i	Intervall $[u(c), o(c)[$
Е	² / ₅	[0.0, 0.4[
S	² / ₅	[0.4, 0.8[
N	¹ / ₅	[0.8, 1.0[

<u>c</u>	l	O	U
	-	1.0	0.0
Ε	1.0	0.4	0.0
S	0.4	0.32	0.16
S	0.16	0.288	0.224
Ε	0.064	0.2496	0.224
Ν	0.0256	0.2496	0.24448

... Initialisierung

$$l := 0 - U$$

$$0 := U + l \cdot o(c)$$

$$U := U + l \cdot u(c)$$

• Das Ergebnis ist
$$x = 0.24704$$

$$x := \frac{U + O}{2}$$

Arithmetische Codierung (7)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Dekompressions-Algorithmus

- Lies Code x
- Solange x > 0 (bzw. nicht alle Zeichen sind dekodiert)

Suche Zeichen c, in dessen Intervall x liegt Gib c aus

$$l = o(c) - u(c)$$

$$\chi := \frac{x - u(c)}{l}$$

... Länge des Intervalls

... Neuer Code

Arithmetische Codierung (8)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Beispiel

 Aus dem codierten Text (Gleitpunktzahl x = 0.24704) kann schrittweise der Ursprungstext wieder gewonnen werden

Zeichen c	Auftrittswahrsch. p_i	Intervall $[u(c), o(c)[$
E	² / ₅	[0.0, 0.4[
S	² / ₅	[0.4, 0.8[
N	¹ / ₅	[0.8, 1.0[

χ	c (Ausgabe)	0	U	<i>l</i>
0.24704	E	0.4	0.0	0.4
0.6176	S	8.0	0.4	0.4
0.544	S	8.0	0.4	0.4
0.36	E	0.4	0.0	0.4
0.9	N	1.0	8.0	0.2

Suche Zeichen c, in dessen Intervall x liegt. Gib c aus l = o(c) - u(c) $x := \frac{x - u(c)}{l}$

Arithmetische Codierung (9)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Aufgabe

- Codieren Sie das Wort IBIS arithmetisch!
- Decodieren Sie das Ergebnis!

Codierung

$$l := 0 - U$$

$$0 := U + l \cdot o(c)$$

$$U := U + l \cdot u(c)$$

$$x := \frac{U+O}{2}$$

Decodierung

Suche Zeichen c, in dessen Intervall x liegt. Gib c aus l = o(c) - u(c) $x := \frac{x - u(c)}{l}$

Arithmetische Codierung (10)

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

Probleme

- Immer kleiner werdende Teilintervalle mit jedem neu zu codierenden Zeichen
 - Abhängig von Wortbreite haben Rechner aber nur eine begrenzte Genauigkeit für Gleitpunktzahlen
 - Ab einer Grenze ist "Codezahl" nicht mehr darstellbar
- Auftrittswahrscheinlichkeit der Zeichen muss vor der Codierung bekannt sein
 - Verwendung der immer gleichen Auftrittswahrscheinlichkeiten
 - Verwendung semi-adaptives/ adaptives Verfahren
- Wesentlich rechenintensiver als Huffman

Arithmetische Kodierung – Verwendung

Kapitel 3: Information und Quellencodierung – Arithmetische Codierung

H.264/MPEG 4 AVC

- (verlustbehaftete) Videocodierung
- z.B. Blu-ray oder DVB-S2
- arithmetische Codierung optional an Stelle von Huffman für Entropiecodierung verwendbar

HEVC

- auch: H.265/MPEG-H Teil 2
- Nachfolgeformat von H.264
- z.B. UHD-Bluy-ray (4k), DVB-T2, Streaming
- arithmetische Codierung obligatorisch, kein Huffman

