3-5: Decomposition of Algebras

#MathematicalPhysics

我们现在要将代数分成更小的代数,现在我们来研究可分解的条件。在本小节中,我们认为所有的代数都是可交换的。

我们定义一个元素 $a \in A$ 是幂零的,如果对于某些整数 k 有 $a^k = 0$,其中最小的整数 称为 a 的指数。A 的子代数 B 被称为是幂零的,如果 B 的所有元素都是幂零的。如果 $B^v = \{0\}$,但是 $B^{v-1} \neq 0$,那么我们称 B 的指数是 v。 $P \in A$ 被称为幂等的,如果 $P^2 = P$ 。

一个例子是: $n \times n$ 的严格上三角矩阵是 n 阶的幂零代数。

Note

一个幂零代数的理想也是幂零的。

一个代数的左、右、双侧幂零理想包含在某一个幂零理想中。接下来我们解释这一点。

Note

设 \mathcal{L} 和 \mathcal{M} 是 \mathcal{A} 的两个左(右)幂零理想,指数分别为 λ,μ ,则 $\mathcal{L}+\mathcal{M}$ 也是 \mathcal{A} 的左(右)幂零理想,其指数至多为 $\lambda+\mu-1$ 。

显然 $A(\mathcal{L} + \mathcal{M}) \subseteq \mathcal{L} + \mathcal{M}$,因此 $\mathcal{L} + \mathcal{M}$ 是 \mathcal{A} 的左理想。 $(\mathcal{L} + \mathcal{M})^k$ 中的元素都可以被写成 $a_1a_2\cdots a_k$ 的形式, a_i 是 \mathcal{L} 或 \mathcal{M} 中的元素。不妨设其中有 l 项在 \mathcal{L} 中,有 m 项在 \mathcal{M} 中,设 j 是最大的整数,使得 $a_j \in \mathcal{L}$,从 a_j 开始往左看,直到碰到另一个 \mathcal{L} 中的元素 a_r ,由于 \mathcal{L} 是 \mathcal{A} 的左理想,那么我们立刻知道:

$$a_{r+1}\cdots a_j=a_j'\in \mathcal{L}$$

从而:

$$a_1a_2\cdots a_k=b_1b_2\cdots b_lc=c_1c_2\cdots c_mb$$

由于 k=l+m,如果 $k=\mu+\lambda-1$,那么 $(\mu-m)+(\lambda-l)=1$ 。这说明如果 $m<\mu$,那么 $l\geq \lambda$;如果 $l<\lambda$,那么 $m\geq \mu$,那么立刻得到 $a_1\cdots a_k=0$ 。

Note

设 \mathcal{L} 是 \mathcal{A} 的一个幂零左理想,那么 $\mathcal{J} = \mathcal{L} + \mathcal{L}\mathcal{A}$ 是 \mathcal{A} 的双侧幂零理想。

注意到:

$$\mathcal{A}\mathcal{J} = \mathcal{A}\mathcal{L} + \mathcal{A}\mathcal{L}\mathcal{A} \subseteq \mathcal{L} + \mathcal{L}\mathcal{A} = \mathcal{J}$$
 $\mathcal{J}\mathcal{A} = \mathcal{L}\mathcal{A} + \mathcal{L}\mathcal{A}\mathcal{A} \subseteq \mathcal{L}\mathcal{A} + \mathcal{L}\mathcal{A} \subset \mathcal{J}$

因此 \mathcal{J} 是 A 的双侧理想。

现在考虑 $\mathcal{L}A$ 中 k 个元素的乘积: $l_1a_1l_2a_2\cdots l_ka_k=l_1'l_2'l_k'a_k$,因此如果 k 高于 \mathcal{L} 的次数,则上面的乘积是零,因此 $\mathcal{L}A$ 是幂零的。由于 \mathcal{L} 也是幂零的,利用上面的引理得证。

Note

代数 A 存在一个唯一幂零理想,包含了 A 的每个左、右、双侧幂零理想。

设 \mathcal{N} 是维度最高的幂零理想, \mathcal{M} 是任意的幂零理想,根据引理, $\mathcal{N}+\mathcal{M}$ 是一个幂零理想。由于 $\mathcal{N}+\mathcal{M}\subset\mathcal{N}$,那么 $\mathcal{M}\subset\mathcal{N}$,显然 \mathcal{N} 包含了所有幂零理想。如果我们有另一个极大幂零理想 \mathcal{N}' ,那么 $\mathcal{N}'\subseteq\mathcal{N}, \mathcal{N}\subseteq\mathcal{N}'$,这意味着 $\mathcal{N}'=\mathcal{N}$,那么 \mathcal{N} 是唯一的极大幂零理想。如果 \mathcal{L} 只是左侧幂零理想,那么 $\mathcal{L}\subset\mathcal{J}=\mathcal{L}+\mathcal{L}\mathcal{A}\subset\mathcal{N}$ 。对于右侧幂零理想是同理的。因此 \mathcal{N} 包含了所有左侧、右侧、双侧幂零理想。

我们现在定义:代数 A 的极大幂零理想被称为 A 的根,使用 Rad(A) 表示。

Note

设 \mathcal{A} 中有一个元素满足 $\mathcal{A}a^k=\mathcal{A}a^{k-1}$ 对于某个正整数 k 成立,那么 \mathcal{A} 包含一个幂等元素。

令 $\mathcal{B} = \mathcal{A}a^{k-1}$, 那么 $\mathcal{B} \neq \mathcal{A}$ 的右理想($\mathcal{B}a = \mathcal{B}$)。两侧同乘以 a,得到: $\mathcal{B}a^2 = \mathcal{B}a^3 = \mathcal{B}$,从而 $\mathcal{B}a^k = \mathcal{B}$ 。而 $a^k \in \mathcal{B}$,现在,令 $b = a^k$,我们得到 $\mathcal{B}b = \mathcal{B}$,也

就是说我们能找到 b 中一个元素 P,使得 Pb=b,也就是 $P^2=P$,从而 A 中包含幂等元素 P。

Note

一个代数是幂零的, 当且仅当它不含幂等元素。

依照定义,幂零代数一定不能含有幂等元素。接下来证明另一侧。首先我们有 $Aa \subseteq A$,那么就有 $Aa^k \subseteq Aa^{k-1}$ 。由上面的引理知道,如果A中无幂等元素:

$$\mathcal{A}\supset\mathcal{A}a\cdots\supset\mathcal{A}a^k\supset\cdots$$

由于 A 是有限维的,那么必然有 $Aa^r = \{0\}$,也就是 $a^{r+1} = 0$ 。得证。