LAB 4a

Consider the initial value problem

$$y' = -100y + 100t + 101,$$

 $y(0) = y_0.$

Given y_0 , h, and N, where the input y_0 specifies the initial value, h is the size of the uniform time stepping and N is the number of time steps for which the approximate solutions are to be computed, use the following Run ge-Kutta methods

- 1. Heun's method
- 2. Modified Euler method
- 3. Heun's 3-stage method
- 4. Runge-Kutta-Simpson 4-stage method

to solve this IVP to obtain approximations y_n^1 , y_n^2 , y_n^3 and y_n^4 respectively for y at uniform time steps $t_n = nh$, $n = 0, 1, \dots, N$. The first line of your Matlab implementation should read

function $[y,y1,y2,y3,y4] = lab5_ex(y0,h,N)$