TCP, בקרת גודש, פרוטוקולי דבק

2025 יוני הרצאה 12

Some Slides Credits: Steve Zdancewic (UPenn)

נושאים להיום

- TCP •
- לחיצת יד ויסודות
 - בקרת גודש –
 - פרוטוקולי דבק
 - ICMP -

Transmission Control Protocol (TCP)

• הפרוטוקול בקרת שידור

- הפרוטוקול הנפוץ ביותר לשליחת זרימת נתונים בצורה אמינה
 - אמינה, מספקת שליחת זרימת בתים בסדר
 - דו-כיווני (Full Duplex): זוג זרמים, אחד לכל כיוון
 - מנגנונים לבקרת הזרימה ולבקרת הגודש
 - (ports), עובד עם פורטים ,UDP כמו

- TCP/IP בלבד, לכן נקרא IP בנוי על גבי
 - 1980 תקן יצא בשנת •

מודל TCP מקצה לקצה

- השימוש במחסניות מתקנת שגיאות אך עלולה לגרום לעיכובים
 - מקטע ולא מנה Segment •

תבנית המקטע

15 ס דגלים 15

SYN -

FIN -

RESET -

PUSH -

URG -

ACK -

Source Port פורט מקור			Destination Port פורט יעד					
		Sequence N	שטפר רץ Tumber					
Acknowledgement אישור קבלה								
HL	0	Flags דגלים	Advertised Window חלון המפורסם					
Checksum			Urgent Pointer מצביע דחוף					
Options (variable) תוספות								
ta נתונים								

לחיצת יד תלת-שלבית

מכונת המצבים של TCP

מכונת המצבים של TCP

מכונת המצבים של TCP

שני דגלים

URG 🛕

• לשולח יש נתונים דחופים

SYN	FIN	RST	PSH	URG	ACK	
-	-	-	-	1	-	

Urgent Pointer = 100

Byte #	0	100	101	500	
	Urç	gent	נתונים		
	Data		אחרים		

ה-TCP של המקבל יעביר את הנתונים לאפליקציה בעדיפות גבוה

- פיסת נתונים קריטית לשולח
- השולח מגדיר סיבית PUSH במקטע

:התוצאה

PUSH

- ה-TCP של השולח ישלח את הנתונים מייד (לא תשמור במחסנית עד שהוא קרוב ל-MTU)
- ה-TCP של המקבל ישלח את הנתונים לאפליקציה מייד, ללא שמירה במחסנית

שולח ומקבל TCP

מקבל TCP

מחזיק מחסנית שליחה •

שולח TCP

- מחזיק מחסנית קלט עבור היישום
- היישום רואה רק בתים נכונים בסדר
- aw = (bsize filled) מפרסם כחלון מפורסם עבור חלון מפורסם
 - עוקב אחרי הבתים שהגיעו בסדר (ackBytes)
 - מגיב עם ackBytes ו-ack
 - אם aw=0, אין מקום במחסנית הקבלה
 - נשלח בדרך כלל עם גורם מכפיל

- היישום השולח חסום עד שיש מקום במחסנית לקלוט את הבתים
- חלון ההזזה מאחסן את
 הנתונים עד שהם יאושרו על ידי
 המקבל
 - חלון ההזזה גדל וקטן בצורהדינמית
 - משפיע על הגודל aw •

אינטראקציה פשוטה של חלון מפורסם

Illustration of Window Advertisement

עד כה

- TCP •
- לחיצת יד ויסודות
 - בקרת גודש –
 - פרוטוקולי דבק
 - ICMP -

בקרת הזרימה ובקרת הגודש ב-TCP

- בקרת הזרימה לעומת בקרת הגודש
- (aw) בקרת הזרימה מגינה על המקבל מפני הצפה
 - בקרת הגודש מגינה על הרשת מפני הצפה.

- דCP-בקרת הגודש ב
- עלייה תוספתית / ירידה כפולה
 - התחלה איטית
- שידור חוזר מהיר והתאוששות מהירה

שליחה ב-TCP לעומת שליחה ב-UDP

TCP-התחלה איטית ב

- אם נאתחל את cw לגודל החלון המרבי של השולח ונתחיל בשליחת כל החלון בבת אחת, אנחנו עלולים לגרום לעומס על הרשת
 - במקום, נתחיל "לאט" על ידי הגדרת cw=2 מקטעים (מינימום 576 בתים)
 - כאשר מגיע האישור ACK, נגדיל לפי
 כשר החבילות שאושרו (למעשה cw)
 מכפיל כל RTT)
 - א מגיעים או ACKs- המשך כך עד ש עד שבקרת הזרימה שולטת.
 - SWS=min(cw,aw) •

התחלה איטית בתמונה

Fig. 2. Exponential growth of congestion window during slow start phase (Wang et al., 2014).

אלגוריתמי בקרת הגודש ב-TCP

(ישן יותר) Tahoe

שונה מאוד, שעון - Vegas מעורר לכל מנה

שקפים הבאים - Reno •

שונה מאוד, SACK - שונה מאוד, משתמש באישורי קבלה נקודתיות

- קצת שונה - New Reno

מה הגיע - טווחים של ACKs לא רציפים

כיצד להתמודד עם נפילות מרובות והגעה לא לפיהסדר

Reno AIMD

- חלון הגודש CongestionWindow (cw)
- משתנה שעוזר לשלוט על מספר המקטעים שנשלחו שעוד לא אושרו (עובד יחד עם הaw)
- עד RTT גדל באופן ליניארי בכל w שמתחילים לא לקבל אישורי קבלה שמתחילים
- כאשר לא קבלנו ACK עד לפני זמן פג $cw = cw \times 0.5$ יורד בחצי ($cw = cw \times 0.5$) כדי להוריד את הלחץ על הרשת.
 - נקרא ייעלייה תוספתית / ירידה בכפליי.
 - Additive Increase / Multiplicative Decrease

דפוס מסור TCP

TCP CUBIC

$$W(t) = C(t - K)^3 + W_{max}$$
(1)

where C is a CUBIC parameter, t is the elapsed time from the last window reduction, and K is the time period that the above function takes to increase W to W_{max} when there is no further loss event and is calculated by using the following equation:

$$K = \sqrt[3]{\frac{W_{max}\beta}{C}} \tag{2}$$

י מיועד לחיבורי רשת עם RTT ארוך והרבה רוחב פס

תחשבו על ענן –

- במקום AIMD שיורד ב-50%, יורדים ב-20%
 - : גידול החלון מבוסס על

$$\beta = 0.2, C = 0.4$$
 -

Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-friendly high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42, 5 (July 2008), 64–74. https://doi.org/10.1145/1400097.1400105

TCP CUBIC הגרף של

https://www.noction.com/blog/tcp-transmission-control-protocol-congestion-control

אלגוריתמים לבקרת הגודש

מערכת הפעלה/מערכת	אלגוריתם ברירת מחדל לבקרת גודש TCP					
MacOS	TCP CUBIC					
Microsoft Windows	TCP Compound					
Linux	TCP CUBIC					
Sun Solaris	TCP Fusion					
YouTube (Google)	TCP BBR					
Android	TCP CUBIC					
iOS	TCP CUBIC					
Amazon CloudFront	TCP BBR					
Facebook	COPA (?) over QUIC					

בינה מלאכותית לבקרת הגודש?

Figure 4: Results for each of the schemes over a 15 Mbps dumbbell topology with n=8 senders, each alternating between flows of exponentially-distributed byte length (mean 100 kilobytes) and exponentially-distributed off time (mean 0.5 s). Medians and $1-\sigma$ ellipses are shown. The blue line represents the efficient frontier, which here is defined entirely by the RemyCCs.

https://web.mit.edu/remy/TCPexMachina.pdf

TCP ex Machina: Computer-Generated Congestion Control

by Keith Winstein and Hari Balakrishnan
MIT Computer Science and Artificial Intelligence Laboratory
(SIGCOMM 2013)

An Experimental Study of

the Learnability of Congestion Control

by Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakrishnan

MIT Computer Science and Artificial Intelligence Laboratory

(SIGCOMM 2014)

Remy is a computer program that figures out how computers can best cooperate to share a network.

Remy creates end-to-end congestion-control algorithms that plug into the Transmission Control Protocol (TCP). These computer-generated algorithms can achieve **higher performance** and **greater fairness** than the most sophisticated human-designed schemes.

שליחה חוזרת מהירה: TCP

אובדן מנה בודדת יכול להאט את השליחה של מנות אחרות

אוו • הש

צריכים להגיע לפג תוקף של שעון המעורר וסביר להניח שאם מחכים הרבה החיבור יתנתק או נצטרך להתחיל את ה-cw מחדש

שליחה חוזרת מהירה: TCP

אלטרנטיבה: שליחה חוזרת מהירה

- שולח ACK-ים מצטברים כפי שראינו בחלון הזזה
 - אם מגיעים 3 ACK-ים כפולים, שלח את המקטע הבא מחדש
 - א כפול פירושו מנות ללא נתונים ACK •
- aw מאשרים משהו שכבר אושר ועם אותויכול להגדיל את התפוקה ב-20%
 - לא פותר את כל הבעיות (אם SWS קטן או נמצא באמצע התחלה איטית)

עד כה

- TCP •
- לחיצת יד ויסודות
 - בקרת גודש
 - פרוטוקולי דבק
 - ICMP -

צריכים דרך למפות כתובות ברמה אחת לכתובות ברמה אחרת.

• למשל: כתובות פיזית (אתרנט) לכתובת IP צריכים דרך לטפל בשגיאות ברשת

צריכים דרך לספק כתובות שקריאות לבני אדם

• כדי שוכל לכתוב <u>www.telhai.ac.il</u> 104.22.27.116 צריכים דרך לחלק כתובות IP

• מה לגבי מחשבים שנכנסים ויוצאים!

ICMP: Internet Control Message Protocol

- פרוטוקול להודעות בקרה באינטרנט
 - אוסף הודעות שגיאה ובקרה •
- נשלח חזרה למקור כאשר הנתב או המארח אינם יכולים לעבד את המנה כראוי
 - דוגמאות לשגיאות:
 - לא ניתן להגיע למארח היעד •
 - תהליך ההרכבה מחדש נכשל
 - 0-הגיע ל-TTL •
 - לכשל IP-של כותרת ה-Checksum
 - דוגמה לבקרה:
 - הפניה מחדש מודיע למקור על מסלול טוב יותר

וCMP הקלטה לדוגמה של

No.	Time	Source	Destination	Protocol Ler	ngth Info							
15	5 22.572657000	10.0.0.3	64.233.166.160	ICMP	106 Echo (ping)	request	id=0x0001,	seq=44/11264,	ttl=1	(no response	found!)
15	6 22.573156000	10.0.0.138	10.0.0.3	ICMP	134 Time-t	o-live	exceede	d (Time to	live exceeded	in tran	sit)	
15	7 22.627346000	10.0.0.3	64.233.166.160	ICMP	106 Echo (ping)	request	id=0x0001,	seq=45/11520,	ttl=1	(no response	found!)
15	8 22.628191000	10.0.0.138	10.0.0.3	ICMP	134 Time-t	o-live	exceede	d (Time to	live exceeded	in tran	sit)	
15	9 22.628941000	10.0.0.3	64.233.166.160	ICMP	106 Echo (ping)	request	id=0x0001,	seq=46/11776,	ttl=1	(no response	found!)
4							III					
■ Fram	e 155: 106 byte	es on wire (848 bits), 1	LO6 bytes captured	(848 bits)	on interfa	ace 0						
		Dell_e6:7f:66 (44:a8:42										
Inte	rnet Protocol \	Version 4, Src: 10.0.0.	3 (10.0.0.3), Dst:	54.233.166	.160 (64.23	33.166	.160)					
■ Inte	rnet Control Me	essage Protocol										
Тур	pe: 8 (Echo (pi	ng) request)										
Cod	de: 0											
Che	ecksum: 0xf7d2	[correct]										
Ide	entifier (BE):	1 (0x0001)										
Ide	entifier (LE):	256 (0x0100)										
Sec	quence number ((BE): 44 (0x002c)										
Sec	quence number ((LE): 11264 (0x2c00)										
⊕ [No	o response seen	1]										
⊕ Da1	ta (64 bytes)											

סיום

- TCP •
- לחיצת יד ויסודות
 - בקרת גודש –
 - פרוטוקולי דבק
 - ICMP -