1 Билет №17. Характеристика поля

Определение

Пусть K — поле.

ullet Положим $\underline{k}:=\underbrace{1+1+\cdots+1}_k$ для $k\in\mathbb{N}$ и $\underline{k}:=-(\underbrace{1+1+\cdots+1}_{-k})$ для отрицательных $k\in\mathbb{Z}$, а также $\underline{0}=0$.

- ullet Если существует такие $k\in\mathbb{N}$, что $\underline{k}=0$, то характеристика поля $\mathrm{char}(K)$ равна наименьшему из таких чисел.
- Если же таких натуральных чисел нет, то считается, что ${\rm char}(K)=0.$

То есть $k = \underbrace{1 + \ldots + 1}_k = 0$. Характеристики полей $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ равны нулю. Характеристика поля вычетов \mathbb{Z}_p равна p.

- ullet Несложно проверить, что $\underline{a} + \underline{b} = \underline{a+b}$.
- Раскрыв скобки по дистрибутивности, можно убедиться в том, что $a \cdot b = ab$.

Лемма 15

Пусть K — поле и $\mathrm{char}(K)=p \neq 0$. Тогда $p \in \mathbb{P}$.

Доказательство. ullet Пусть p=ab, где 1 < a < p и 1 < b < p.

- \bullet Тогда $\underline{a} \cdot \underline{b} = \underline{ab} = p = 0.$
- Так как K поле, отсюда следует, что хотя бы одно из чисел \underline{a} и \underline{b} равно 0, что противоречит определению характеристики поля.

$$0 = \underbrace{1+\ldots+1}_p = \underbrace{(1+\ldots+1)}_a\underbrace{(1+\ldots+1)}_b.$$
 Так как $a < p$ и $b < p,$ то $a \neq 0$ и $b \neq 0.$

2 Билет №18. Теорема о подполе

Теорема 4

Пусть К — поле.

- 1) Если $\operatorname{char}(K) = p \in \mathbb{P}$, то отображение $\varphi : \mathbb{Z}/p\mathbb{Z} \to K$, заданное формулой $\varphi(\overline{m}) = \underline{m}$ (для $m \in \mathbb{Z}$) мономорфизм полей. В частности, K имеет подполе $\mathbb{Z}/p\mathbb{Z}$.
- 2) Если $\operatorname{char}(K)=0$, то отображение $\varphi:\mathbb{Q}\to K$, заданное формулой $\varphi(\frac{a}{b})=\frac{a}{b}$ (для $a,b\in\mathbb{Z},\ b\neq 0$)— мономорфизм полей. В частности, K имеет подполе \mathbb{Q} .

Доказательство. 1) Отображение $\psi: \mathbb{Z} \to K$, заданное формулой $\psi(m):=\underline{m}$, очевидно, является гомоморфизмом колец.

- ullet ker $(\psi)=\{m\in\mathbb{Z}\ :\ \underline{m}=0\}$ идеал в \mathbb{Z} . НУО, ker $(\psi)=q\mathbb{Z}$.
- ullet Тогда $\underline{m}=0\iff m\ \dot{}\ q$, то есть, $\mathrm{char}(\mathcal{K})=q$. Значит, q=p и $\mathrm{ker}(\psi)=p\mathbb{Z}$.
- ullet По Теореме 2 (о гомоморфизме колец), отображение $\overline{\psi}: \mathbb{Z}/p\mathbb{Z} o K$, заданное формулой $\overline{\psi}(\overline{m}) = \underline{m}$ изоморфизм между $\mathbb{Z}/p\mathbb{Z}$ и $\mathrm{Im}(\psi)$ подполем K.

Вспомним обозначения. Множество всех чисел, сравнимых с a по модулю m, называется классом вычетов a по модулю m, и обычно обозначается \bar{a}_m . Таким образом, сравнение $a\equiv_m b$ равносильно равенству классов вычетов $\bar{a}_m=\bar{b}_m$. Множество всех классов вычетов по модулю m обозначается \mathbb{Z}_m или $\mathbb{Z}/m\mathbb{Z}$ или $\mathbb{Z}/(m)$.

Смысл первого утверждения заключается в том, что если характеристикой поля является простое число, то мы имеем инъекцию в отображении из класса вычетов по модулю p в \underline{m} , (числа, кратные m, в K равны нулю).

Во втором утверждении нам говорят, что если характеристика поля равна нулю, то у нас подполем является \mathbb{Q} . Замечание: любые a и b не равны нулы.

В доказательствах обоих утверждений приходим к выводу, что образ отображения и есть нужное нам подполе.

- 2) В этом случае $\forall m \in \mathbb{N} \ \underline{m} \neq 0$, то есть, $\operatorname{char}(K) = 0$.
- ullet Определим отображение $arphi:\mathbb{Q} o K$ формулой $arphi(rac{a}{b}):=rac{a}{b}$ (при b
 eq 0).
- ullet Проверим корректность. Пусть $rac{a}{b}=rac{c}{d}\iff ad=bc$ (здесь b,d
 eq 0).
- Тогда по дистрибутивности в поле К имеем

$$\underline{a} \cdot \underline{d} = \underline{b} \cdot \underline{c} \iff \frac{\underline{a}}{b} = \frac{\underline{c}}{d}.$$

- \bullet Проверим, что φ гомоморфизм:
 - $\varphi(\frac{a}{b}) \cdot \varphi(\frac{c}{d}) = \frac{\underline{a}}{\underline{b}} \cdot \frac{\underline{c}}{\underline{d}} = \frac{\underline{a} \cdot \underline{c}}{\underline{b} \cdot \underline{d}} = \varphi(\frac{\underline{a}\underline{c}}{\underline{b}\underline{d}}) = \varphi(\frac{\underline{a}}{\underline{b}} \cdot \frac{\underline{c}}{\underline{d}}).$

•
$$\varphi(\frac{a}{b}) + \varphi(\frac{c}{d}) = \frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d} = \varphi(\frac{ad + bc}{bd}) = \varphi(\frac{a}{b} + \frac{c}{d}).$$

- ullet Так как \mathbb{Q} поле и φ принимает не только нулевые значения, $\ker(\varphi)=\{0\}.$
- ullet Значит, $\operatorname{Im}(\varphi)$ подполе K, изоморфное $\mathbb Q$.

Следствие 3

Все поля из $p \in \mathbb{P}$ элементов изоморфны $\mathbb{Z}/p\mathbb{Z}$.