

(Chapter-13) PROBABILITY

Yanmei Zheng

Outline

Probability

- ✓ Random Variables
- ✓ Joint and Marginal Distributions
- ✓ Conditional Distribution
- ✓ Product Rule, Chain Rule, Bayes' Rule
- ✓ Inference
- ✓ Independence

@You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

Random Variables

- - \checkmark R = Is it raining?
 - \checkmark T = Is it hot or cold?
 - ✓ D = How long will it take to drive to work?
 - ✓ L = Where is the ghost?
- We denote random variables with capital letters
- QLike variables in a CSP, random variables have domains
 - ✓ R in {true, false} (often write as {+r, -r})
 - ✓ T in {hot, cold}
 - \checkmark D in $[0, \infty)$
 - ✓ L in possible locations, maybe $\{(0,0), (0,1), ...\}$

Probability Distributions

Associate a probability with each value

✓ Temperature:

P(T)

T	P
hot	0.5
cold	0.5

Weather:

W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

• Unobserved random variables have

distributions

Т	P
hot	0.5
cold	0.5

P(W)

W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Shorthand notation:

OK if all domain entries are unique

$$P(hot) = P(T = hot),$$

$$P(cold) = P(T = cold),$$

$$P(cold) = P(T = cold),$$

 $P(rain) = P(W = rain)$

- probabilities of values
- A probability (lower case value) is a single number P(W = rain) = 0.1

@Must have:
$$\forall x \ P(X=x) \ge 0$$
 and $\sum_{x} P(X=x) = 1$

Joint Distributions

QA *joint distribution* over a set of random variables: $X_1, X_2, ... X_n$

specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

✓ Must obey:
$$P(x_1, x_2, ... x_n) \ge 0$$

$$\sum_{(x_1, x_2, ... x_n)} P(x_1, x_2, ... x_n) = 1$$

- Size of distribution if n variables with domain sizes d?
 - ✓ For all but the smallest distributions, impractical to write out!

D_{i}	(T	Ţ	XZ`	١
1	(τ	, <i>r</i>	V .	1

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Probabilistic Models

over a set of random variables

Probabilistic models:

- ✓ (Random) variables with domains
- Assignments are called *outcomes*
- Joint distributions: say whether assignments (outcomes) are likely
- ✓ Normalized: sum to 1.0
- ✓ Ideally: only certain variables directly interact Constraint over T,W

@Constraint satisfaction problems:

- ✓ Variables with domains
- **Constraints: state whether assignments are** possible
- Ideally: only certain variables directly interact

Distribution over T,W

T	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	W	P
hot	sun	۲
hot	rain	F
cold	sun	F
cold	rain	T

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- @From a joint distribution, we can calculate the probability of any event
 - ✓ Probability that it's hot AND sunny?
 - ✓ Probability that it's hot?
 - ✓ Probability that it's hot OR sunny?
- ©Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

T	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

P(X,Y)

X	Y	P
+x	+y	0.2
+x	- y	0.3
- x	+y	0.4
- X	- y	0.1

Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by

adding

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{s} P(t, s)$$

$$P(s) = \sum_{t} P(t, s)$$

W	P
sun	0.6
rain	0.4

Quiz: Marginal Distributions

X	Y	P
+x	+y	0.2
+x	-y	0.3
- x	+y	0.4
- X	-y	0.1

$$P(x) = \sum_{y} P(x, y)$$

$$P(y) = \sum_{x} P(x, y)$$

P(X)

X	P
+x	
- X	

Y	P
+y	
-y	

Conditional Probabilities

✓ In fact, this is taken as the definition of a conditional.

probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

P(a,b)

P(a)

Quiz: Conditional Probabilities

X	Y	P
+x	+y	0.2
+x	-y	0.3
- x	+y	0.4
- X	-у	0.1

Conditional Distributions

©Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Joint Distribution

P(T,W)

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

$$P(W|T=c)$$

W	P
sun	0.4
rain	0.6

$$P(W = s | T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

P(T,W)

Т	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities

evidence

NORMALIZE the selection matching the P(c,W) (make it sum to one) P(W|T=c)

T	W	P
cold	sun	0.2
cold	rain	0.3

W	P
sun	0.4
rain	0.6

$$P(W = r | T = c) = \frac{P(W = r, T = c)}{P(T = c)}$$

$$= \frac{P(W = r, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.3}{0.2 + 0.3} = 0.6$$

D_{ℓ}	T	W
$I \setminus$	(I,	VV)

Т	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint

probabilities selection probabilities matching the P(c,W) (make it sum to one) P(W|T=c)

evidence

rain

	W	P	_
ld	sun	0.2	

0.3

NORMALIZE the

W	P
sun	0.4
rain	0.6

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

cold

Quiz: Normalization Trick

P(X,Y)

X	Y	P
+x	+y	0.2
+x	-y	0.3
- X	+y	0.4
- X	- y	0.1

SELECT the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

To Normalize

@(Dictionary) To bring or restore to a normal condition

Procedure:

All entries sum to ONE

- ✓ Step 1: Compute Z = sum over all entries
- ✓ Step 2: Divide every entry by Z

@Example 1

W	P	Normalize	W	Р
sun	0.2		sun	0.4
rain	0.3	Z = 0.5	rain	0.6

Example 2

T	W	P		Т	W	P
hot	sun	20		hot	sun	0.4
hot	rain	5	Normalize	hot	rain	0.1
cold	sun	10		cold	sun	0.2
cold	rain	15	Z = 50	cold	rain	0.3

QA trick to get a whole conditional distribution at once:

- ✓ Select the joint probabilities matching the evidence
- ✓ Normalize the selection (make it sum to one)

Why does this work? Sum of selection is P(evidence)! (P(r), here) $P(x_1, x_2) = P(x_1, x_2)$

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - √ P(on time | no reported accidents) = 0.90
 - ✓ These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - ✓ P(on time | no accidents, 5 a.m.) = 0.95
 - ✓ P(on time | no accidents, 5 a.m., raining) = 0.80
 - ✓ Observing new evidence causes beliefs to be updated

@General case:

Fine tables: $E_1 \dots E_k = e_1 \dots e_k$ Very variables: QAll variables $P(Q|e_1 \dots e_k)$

Hidden variables: $H_1 \dots H_r$

We want:* Works fine with

Step 1: Select the entries consistent with the evidence

Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(Q, h_1 \dots h_r, e_1 \dots e_k)$$

$$X_1, X_2, \dots X_n$$

$$Z = \sum_{h_1 \dots h_r} P(Q, e_1 \dots e_k)$$

$$P(Q|e_1 \dots e_k) = \frac{1}{Z} P(Q, e_1 \dots e_k)$$
Dr.Yanmei Zheng

Step 3: **Normalize**

$$\times \frac{1}{Z}$$

$$Z = \sum P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$
 Dr.Yanmei Zheng

• Start with the joint distribution:

	toothache		⊐toothache	
	catch	¬catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

ullet For any proposition $oldsymbol{arphi}$, sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

(catch = dentist's steel probe gets caught in cavity)

•Start with the joint distribution:

	toothache		⊐toothache	
	catch	¬catch	catch	\neg catch
cavity	. 108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition φ , sum the atomic events where it is true

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

•Start with the joint distribution:

	toothache		⊐toothache	
	catch	¬catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• For any proposition φ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P$$
 (cavity \lor toothache) = 0.108 +0.012 +0.072 +0.008 +0.016 +0.064 = 0.28

Start with the joint distribution:

	toothach€		¬toothache	
	catch ¬catch		catch	¬ catch
cavity	. 108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

• Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Normalization

	toot	hache	¬too	othache
	catch	¬catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬cavity	.016	.064	.144	.576

ullet Denominator can be viewed as a normalization constant α

```
\mathbf{P}(Cavity|toothache) = \alpha \mathbf{P}(Cavity,toothache)
= \alpha \left[\mathbf{P}(Cavity,toothache,catch) + \mathbf{P}(Cavity,toothache,\neg catch)\right]
= \alpha \left[\langle 0.108,0.016\rangle + \langle 0.012,0.064\rangle\right]
= \alpha \left\langle 0.12,0.08\rangle = \langle 0.6,0.4\rangle
```

General idea: compute distribution on query variable
 by fixing evidence variables and summing over hidden variables

@P(W)?

@P(W | winter)?

@P(W | winter, hot)?

S	T	W	P
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dn) to store the joint distribution

The Product Rule

$$P(y)P(x|y) = P(x,y) \qquad \Longrightarrow \qquad P(x|y) = \frac{P(x,y)}{P(y)}$$

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

@Example:

P(W)	
R	P
sun	0.8
rain	0.2

_	P(D,W)		
	D	W	P
	wet	sun	
}	dry	sun	
	wet	rain	
	dry	rain	

D/D III

The Chain Rule

More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

Why is this always true?

Independence

Independence

@Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- ✓ This says that their joint distribution factors into a product two simpler distributions
- ✓ Another form:

$$\forall x, y : P(x|y) = P(x)$$

✓ We write: $X \perp\!\!\!\perp Y$

@Independence is a simplifying modeling assumption

- ✓ Empirical joint distributions: at best "close" to independent
- ✓ What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

 $P_1(T,W)$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)T Phot 0.5cold 0.5

P(W)W P
sun 0.6
rain 0.4

 $P_2(T,W)$

T	W	P
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

Example: Independence

N fair, independent coin flips:

$P(X_2)$		
Н	0.5	
Т	0.5	

- @P(Toothache, Cavity, Catch)
- @If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - √ P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- @The same independence holds if I don't have a cavity:
 - √ P(+catch | +toothache, -cavity) = P(+catch | -cavity)
- ©Catch is conditionally independent of Toothache given Cavity:
 - ✓ P(Catch | Toothache, Cavity) = P(Catch | Cavity)
 - Equivalent statements:
 - P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

- @Unconditional (absolute) independence very rare (why?)
- ©Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- **QX** is conditionally independent of Y given Z $X \perp \!\!\! \perp Y | Z$

if and only if:
$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

What about this domain:

- **✓** Traffic
- ✓ Umbrella
- ✓ Raining

P(Umbrella | Traffic, Rain)=P(Umbrella | Rain)

Conditional Independence and the Chain Rule

@Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$

@Trivial decomposition:

$$P(\text{Traffic}, \text{Rain}, \text{Umbrella}) = P(\text{Rain})P(\text{Traffic}|\text{Rain})P(\text{Umbrella}|\text{Rain}, \text{Traffic})$$

With assumption of conditional independence:

P(Traffic, Rain, Umbrella) = P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

@Bayes nets / graphical models help us express conditional independence assumptions

Bayes Rule

Bayes' Rule

@Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

@Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- @Why is this at all helpful?
 - ✓ Lets us build one conditional from its reverse
 - ✓ Often one conditional is tricky but the other one is simple.
 - √ Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Inference with Bayes' Rule

©Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

@Example:

✓ M: meningitis, S: stiff neck

$$P(+m) = 0.0001$$

$$P(+s|+m) = 0.8$$

$$P(+s|-m) = 0.01$$
 Example givens

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

- ✓ Note: posterior probability of meningitis still very small
- ✓ Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

@Given:

P(W)

R	P	
sun	0.8	
rain	0.2	

@What is P(W | dry) ?

P(D|W)

D	W	P	
wet	sun	0.1	
dry	sun	0.9	
wet	rain	0.7	
dry	rain	0.3	

Quiz: Bayes' Rule

@Given:

P(W)

R	P	
sun	8.0	
rain	0.2	

P(D	W)
`			,

	1 (,,)			_	\A/	
	R	Р		D	W	P
		_		wet	sun	0.1
	sun					
	rain			dry	sun	0.9
	14111 0.2		wet	rain	0.7	
@	What is	P(W	d	rydrÿ	rain	0.3

D	W	P
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

$$P(sun | dry) = \frac{P(dry | sun)P(sun)}{P(dry)} = \frac{0.9*0.8}{0.78}$$

$$P(dry) = \frac{P(dry, sun) + P(dry, rain)}{0.08 + 0.72 + 0.14 + 0.06}$$

$$= \frac{P(dry | sun)P(sun) + P(dry | rain)P(rain)}{0.08 + 0.72 + 0.14 + 0.06}$$

$$= \frac{0.9*0.8 + 0.3*0.2}{0.78} = 0.78$$

$$P(rain \mid dry) = \frac{P(dry \mid rain)P(rain)}{P(dry)} = \frac{0.3*0.2}{0.78}$$

$$P(dry) = \frac{P(dry, sun) + P(dry, rain)}{0.08 + 0.72 + 0.14 + 0.06}$$

$$= \frac{P(dry \mid sun)P(sun) + P(dry \mid rain)P(rain)}{0.08 + 0.72 + 0.14 + 0.06}$$

$$= \frac{0.9*0.8 + 0.3*0.2}{1} = 0.78$$
Dr.Yanmei Zheng

Wampus World

Wumpus World

- $\bullet P_{ij} = true \text{ iff } [i,j] \text{ contains a pit }$
- B_{ij} =true iff [i,j] is breezy Include only $B_{1,1}$, $B_{1,2}$, $B_{2,1}$ in the probability model

Specifying the Probability Model

- The full joint distribution is $P(P_{1,1},...,P_{4,4},B_{1,1},B_{1,2},B_{2,1})$
- Apply product rule: $P(B_{1,1}, B_{1,2}, B_{2,1} | P_{1,1}, ..., P_{4,4}) P(P_{1,1}, ..., P_{4,4})$

This gives us: P (Ef ect | Cause)

- First term: 1 if pits are adjacent to breezes, 0 otherwise
- Second term: pits are placed randomly, probability 0.2 per square:

$$P(P_{1,1},...,P_{4,4}) = \prod_{i,j=1,1}^{4,4} P(P_{i,j}) = 0.2^n \times 0.8^{16-n}$$

for *n* pits.

Observations and Query

•We know the following facts:

$$b = \neg b_{1,1} \land b_{1,2} \land b_{2,1} known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$$

- Query is $P(P_{1,3} | known, b)$
- Define $U nknown = P_{ij}s$ other than $P_{1,3}$ and Known
- For inference by enumeration, we have

$$\mathbf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b)$$

• Grows exponentially with number of squares!

Using Conditional Independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

- Define $Unknown = Fringe \cup Other$ P(b|P_{1,3}, Known, Unknown) = P(b|P_{1,3}, Known, Fringe)
- Manipulate query into a form where we can use this!

Using Conditional Independence

$$\begin{split} & \mathbf{P}(P_{1,3}|known,b) = \alpha \sum_{unknown} \mathbf{P}(P_{1,3},unknown,known,b) \\ & = \alpha \sum_{unknown} \mathbf{P}(b|P_{1,3},known,unknown) \mathbf{P}(P_{1,3},known,unknown) \mathbf{I} \\ & = \alpha \sum_{fringe\ other} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe,other) \mathbf{P}(P_{1,3},known,fringe,other) \mathbf{I} \\ & = \alpha \sum_{fringe} \sum_{other} \mathbf{P}(b|known,P_{1,3},fringe) \mathbf{P}(P_{1,3},known,fringe,other) \mathbf{I} \\ & = \alpha \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3},known,fringe,other) \mathbf{I} \\ & = \alpha \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe) \sum_{other} \mathbf{P}(P_{1,3})P(known)P(fringe)P(other) \mathbf{I} \\ & = \alpha P(known) \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe)P(fringe) \sum_{other} P(other) \mathbf{I} \\ & = \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe)P(fringe) \\ & = \alpha' \mathbf{P}(P_{1,3}) \sum_{fringe} \mathbf{P}(b|known,P_{1,3},fringe)P(fringe) \end{aligned}$$

Using Conditional Independence

$$P(P_{1,3}|known,b) = a'(0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16))$$
 \approx (0.31,0.69)

$$P(P_{2,2}|known, b) \approx (0.86, 0.14)$$

Thank you

End of Chapter 13