Problem Definition

Problem Name: Closest Pair of Points

Problem Statement:

Given n distinct points $P_1, P_2, ..., P_n$ in a 2D plane, find the pair of points (P_i, P_j) with the minimum Euclidean distance between them.

Input:

A set of n points where each point $P_i=(x_i,y_i)$ with integer coordinates.

Output:

Indices i,j such that distance between P_i and P_j is minimized.

Real-world Applications:

- Pattern recognition
- Geographic information systems (GIS)
- Robotics and navigation
- Clustering and data mining

Algorithms & Running Time Analysis

Algorithm 1: Brute-Force (ALG1)

```
BruteForceClosestPoints(P) 

// P is a list of n points, n \ge 2, P1 = (x1, y1),..., Pn = (xn, yn) 

// Returns the index1 and index2 of the closest pair of points 

dmin = \infty 

for i = 1 to n - 1 

for j = i + 1 to n 

d = \operatorname{sqrt}((xi - xj)^2 + (yi - yj)^2) 

if d < dmin 

dmin = d 

index1 = i 

index2 = j 

return index1, index2
```

Time Complexity:

- The outer loop runs n-1 times
- The inner loop runs from i+1 to n, giving roughly n(n-1)/2 iterations

Worst-case runtime: $\Theta(n^2)$

Best-case runtime: Also $\Theta(n^2)$ - always checks all pairs

Algorithm 2: Divide-and-Conquer (ALG2)

```
DivideAndConquerClosestPoints(P)
// Input: P is a list of n points in 2D
// Returns the closest pair of points
1. Sort the points P by x-coordinate \rightarrow Px
2. Sort the points P by y-coordinate \rightarrow Py
3. return ClosestPair(Px, Py)
Function ClosestPair(Px, Py)
  if |Px| \le 3 then
     return BruteForceClosestPoints(Px)
  Let Qx and Rx be the left and right halves of Px
  Let midpoint = Px[n/2].x
  Let Qy = points in Py with x \le midpoint
  Let Ry = points in Py with x > midpoint
  (p1, q1) = ClosestPair(Qx, Qy)
  (p2, q2) = ClosestPair(Rx, Ry)
  \delta = \min(\text{distance}(p1, q1), \text{distance}(p2, q2))
```

```
(p3, q3) = ClosestSplitPair(Px, Py, \delta)
return the pair among (p1,q1), (p2,q2), (p3,q3) with the smallest distance
```

Function ClosestSplitPair(Px, Py, δ)

Let Sy = points within δ of the midpoint line (sorted by y)

for i = 1 to length(Sy)

for j = i+1 to i+7if $j \leq \text{length}(Sy)$ compute distance and update minimum if needed return closest split pair

Time Complexity:

Let T(n) be the time to compute the closest pair for n points.

- Dividing the points into two halves: O(n)
- Two recursive calls: 2T(n/2)
- Merging and split pair check: O(n)

Worst-case runtime: Θ(nlogn)

Best-case runtime: Still $\Theta(nlogn)$ - since it always recurses

Experimental Results

Table ALG1 – Computing constant c1 for Brute Force

n	TheoreticalRT	EmpiricalRT	Ratio	Predicted
	n ²	(msec)		RT
1×10 ⁴	1×10 ⁸	63.52	63.52×10 ⁻⁸	63.52
2×10 ⁴	4×10 ⁸	227.12	56.78×10 ⁻⁸	254.08
3×10 ⁴	9×10 ⁸	500.08	55.56×10 ⁻⁸	571.69
4×10 ⁴	16×10 ⁸	900.15	56.26×10 ⁻⁸	1016.33
5×10 ⁴	25×10 ⁸	1380.44	55.22×10 ⁻⁸	1588.02
6×10 ⁴	36×10 ⁸	2012.45	55.90×10 ⁻⁸	2286.75
7×10 ⁴	49×10 ⁸	2731.82	55.75×10 ⁻⁸	3112.52
8×10 ⁴	64×10 ⁸	3579.47	55.93×10 ⁻⁸	4065.33
9×10 ⁴	81×10 ⁸	4566.79	56.38×10 ⁻⁸	5145.19
10×10 ⁴	100×10 ⁸	5670.44	56.70×10 ⁻⁸	6352.08

Table ALG2 - Computing constant c2 for Divide and Conquer

n	TheoreticalRT	EmpiricalRT	Ratio	Predicted
	n·log2(n)	(msec)		RT
1×10 ⁴	132877	8.31	6.25×10 ⁻⁵	8.31
2×10 ⁴	285754	9.60	3.36×10 ⁻⁵	17.87
3×10 ⁴	446180	14.53	3.26×10 ⁻⁵	27.90
4×10 ⁴	611508	19.15	3.13×10 ⁻⁵	38.24
5×10 ⁴	780482	25.48	3.26×10 ⁻⁵	48.80
6×10 ⁴	952360	30.04	3.15×10 ⁻⁵	59.55
7×10 ⁴	1126655	35.96	3.19×10 ⁻⁵	70.45
8×10 ⁴	1303017	42.91	3.29×10 ⁻⁵	81.48
9×10 ⁴	1481187	50.07	3.38×10 ⁻⁵	92.62
10×10 ⁴	1660964	55.23	3.33×10 ⁻⁵	103.86

Graph 3: Divide-and-Conquer - Empirical vs Predictec

Conclusions

The experimental results strongly support the theoretical analysis of the two algorithms:

ALG1 – Brute-Force Approach $(\Theta(n^2))$:

- This algorithm performs an exhaustive pairwise comparison of all points, resulting in a quadratic growth in runtime.
- The empirical results confirmed this: as n doubled, the runtime roughly quadrupled.
- It becomes inefficient for larger inputs (e.g., n > 30,000), where runtimes exceeded several seconds.
- This aligns precisely with the expected theoretical performance of $\Theta(n^2)$.

ALG2 – Divide-and-Conquer Approach (Θ(n log n)):

- This algorithm leverages recursive spatial partitioning and only compares relevant candidate pairs near the partition boundary.
- Empirical results show a much more scalable growth pattern, consistent with the logarithmic multiplier.
- ALG2 significantly outperforms ALG1 for all values of n, particularly when n exceeds 20,000.
- The predicted runtime curve based on theoretical complexity closely follows the actual measurements, confirming its asymptotic efficiency.

Constants and Variability:

- Hidden constants c₁ and c₂ were extracted from the ratio of empirical to theoretical runtime.
- Minor fluctuations were observed due to system noise and Java execution overhead, but the trends were stable.
- Graphs show a consistent and expected gap between the performance of ALG1 and ALG2.

Final Verdict:

- For small n, both algorithms are feasible, though ALG1 is simpler to implement.
- For moderate to large n, ALG2 is clearly preferable due to its significantly faster execution time and better scalability.
- This experiment validates both theoretical complexity analysis and practical performance expectations.

References

- 1. Kleinberg, J., & Tardos, É. (2006). Algorithm Design. Pearson.
- 2. Course Notes & Lectures COT 6405: Analysis of Algorithms.
- 3. ProgrammingProject.pdf and ProgrammingProject_Additional_Explanations.pdf.
- 4. Java Platform Standard Edition Documentation. Oracle Inc.