



#### Semester 4 Project Defense

**Module : Collective Intelligence** 

**Branch : Artificial Intelligence** 

#### **Training Neural Networks with Firefly Optimization Algorithm**

Defended by:

EZZALI Mustapha

SEDJARI Yassine

Supervisor:

Pr. YASSER EL

MADANI EL ALAMI

## **O**utline

- Collective Intelligence
- Swarm intelligence optimization
- Firefly algorithm
- Neural Network
- FireFly in Neural Network
- Experimental Results
- Conclusion & Perspectives

## Collective Intelligence





- Collective intelligence is the <u>collaboration</u> of a group to gather and utilize the <u>knowledge</u>, skills, and contributions of its members to <u>solve problems</u> and make decisions.
- It recognizes that the collective wisdom of a group can surpass the abilities of any individual.
- Examples include crowdsourcing, collaborative decision-making, and open-source projects.
- Waze rely on crowdsourcing where drivers <u>self-report accidents</u> and other <u>incidents</u>, providing real-time information to app users.

- Collective Intelligence
- Swarm intelligence optimization
- Firefly algorithm
- Neural Network
- FireFly in Neural Network
- Experimental Results
- Conclusion & Perspectives

# **Swarm Intelligence Optimization**





- Swarm intelligence optimization is a branch of <u>artificial intelligence</u> that focuses on <u>developing</u> <u>algorithms</u> inspired from the <u>cooperative behavior</u> of insects, birds, and other social animals
- Population examples: ants, birds, bees, fireflies etc...
- While <u>collective intelligence</u> encompasses a broader range of human endeavors, <u>swarm intelligence</u> specifically develops algorithms that mimic the behavior of social creatures for optimization purposes.

- Collective Intelligence
- Swarm intelligence optimization
- Firefly algorithm
- Neural Network
- FireFly in Neural Network
- Experimental Results
- Conclusion & Perspectives





- The Firefly Algorithm is a metaheuristic optimization algorithm that takes inspiration from the flashing behavior of <u>fireflies</u> to solve optimization problems.
- It leverages the <u>attractiveness</u> between fireflies to guide their movement in the search space and converge towards the optimal solutions.
- The attractiveness between fireflies is determined by factors such as their <u>brightness</u> and <u>distance</u>.

#### 1. Attractiveness (brightness) expression:

$$attractiveness = \frac{\exp(-\alpha \times distance(i,j))}{(1 + beta \times distance(i,j))}$$

- alpha: light absorption coefficient
- **beta:** randomization parameter

#### 2. Movement update expression:

$$newP = currentP(i) + attractiveness \times (currentP(j) - currentP(i)) + rand(-1, 1)$$

```
[H] Firefly Algorithm
 1: Input: Population size, maximum number of iterations, alpha (light absorption coefficient),
   beta (randomization parameter)
 2: Output: The best solution found among the fireflies
 3: Initialization:
 4: Initialize firefly population randomly within the search space
 5: Calculate the fitness (objective function value) for each firefly in the population
 6: Repeat for a specified number of iterations:
 7: for each firefly (i) do
      for each other firefly (j) do
        if the fitness of firefly j is greater than the fitness of firefly i then
 9:
           Calculate the attractiveness (brightness) between fireflies i and j using the formula:
10:
           attractiveness = \exp(-\alpha \times \text{distance}(i, j))/(1 + \beta \times \text{distance}(i, j))
11:
           Move firefly i towards firefly j with a step size determined by attractiveness and
12:
           randomization:
           newPosition = currentPosition(i) + attractiveness \times (currentPosition(j) - currentPosition(i)) +
13:
          rand(-1, 1)
           if The fitness of the new position is better than the fitness of firefly i then
14:
             Update firefly i's position to the new position
15:
16:
           end if
        end if
17:
        Calculate the fitness of the updated firefly i
18:
      end for
19:
20: end for
```

21: Output: The best solution found among the fireflies

- Collective Intelligence
- Swarm intelligence optimization
- Firefly algorithm
- Neural Network
- FireFly in Neural Network
- Experimental Results
- Conclusion & Perspectives

#### **Deep Neural Networks**



- Collective Intelligence
- Swarm intelligence optimization
- Firefly algorithm
- Neural Network
- FireFly in Neural Network
- Experimental Results
- Conclusion & Perspectives

#### FireFly in Neural Networks

- Population: flatten and stack weights and biases in t order W1b1W2b2...Wnbn
- Fitness function: 1-loss = Accuracy
- The FireFly Algorithm will replace replace the BackPropagation Algorithm
- Firefly hyperparameters: (hyper-parameters)
  - 1. selection\_range
  - 2. num\_fireflies
  - 3. num\_iterations
  - 4. alpha
  - 5. **beta**







**Firefly** 

- Collective Intelligence
- Swarm intelligence optimization
- Firefly algorithm
- Neural Network
- FireFly in Neural Network
- Experimental Results
- Conclusion & Perspectives

**IRIS Dataset** 

#### **Attribute Information:**

- 1. sepal length in cm
- 2. sepal width in cm
- 3. petal length in cm
- 4. petal width in cm
- 5. class: Iris Setosa, Iris Versicolour, Iris

Virginica



| Id | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species     |
|----|---------------|--------------|---------------|--------------|-------------|
| 1  | 5.1           | 3.5          | 1.4           | 0.2          | Iris-setosa |
| 2  | 4.9           | 3            | 1.4           | 0.2          | Iris-setosa |
| 3  | 4.7           | 3.2          | 1.3           | 0.2          | Iris-setosa |
| 4  | 4.6           | 3.1          | 1.5           | 0.2          | Iris-setosa |
| 5  | 5             | 3.6          | 1.4           | 0.2          | Iris-setosa |

NN Architecture and Results

FireFly: Influence of each hyperparameter

FireFly: Best
Architecture and Results

Result Comparaison



1. number of fireflies:

**IRIS** Dataset

| num_fireflies | 5      | 20    | 50     |
|---------------|--------|-------|--------|
| Time Expended | 12.1   | 1m15s | 5m11s  |
| Accuracy      | 0.4387 | 0.593 | 0.6458 |

2. number of iterations:

| num_iterations | 100    | 1000   | 10000  |
|----------------|--------|--------|--------|
| Time Expended  | 8.7s   | 1m14s  | 13m4s  |
| Accuracy       | 0.5725 | 0.5908 | 0.6083 |

3. the parameter alpha

| $\alpha$      | 0.01   | 0.2    | 2      |
|---------------|--------|--------|--------|
| Time Expended | 1m13s  | 1m15s  | 1m10s  |
| Accuracy      | 0.6012 | 0.6074 | 0.5608 |

4. the parameter beta

| $\beta$       | 0.01   | 1      | 10     |
|---------------|--------|--------|--------|
| Time Expended | 1m13s  | 1m9s   | 1m13s  |
| Accuracy      | 0.5654 | 0.6220 | 0.5520 |

1. number of fireflies:

| num_fireflies | 5      | 20    | 50     |
|---------------|--------|-------|--------|
| Time Expended | 12.1   | 1m15s | 5m11s  |
| Accuracy      | 0.4387 | 0.593 | 0.6458 |

2. number of iterations:

| num_iterations | 100    | 1000   | 10000  |
|----------------|--------|--------|--------|
| Time Expended  | 8.7s   | 1m14s  | 13m4s  |
| Accuracy       | 0.5725 | 0.5908 | 0.6083 |

3. the parameter alpha

| $\alpha$      | 0.01   | 0.2    | 2      |
|---------------|--------|--------|--------|
| Time Expended | 1m13s  | 1m15s  | 1m10s  |
| Accuracy      | 0.6012 | 0.6074 | 0.5608 |

4. the parameter beta

| $\beta$       | 0.01   | 1      | 10     |
|---------------|--------|--------|--------|
| Time Expended | 1m13s  | 1m9s   | 1m13s  |
| Accuracy      | 0.5654 | 0.6220 | 0.5520 |

- num\_fireflies = 50
- num\_iterations = 10000
- alpha = 0.2
- beta = 1

**IRIS** Dataset

• NN best accuracy: 88 %

• Firefly best accuracy: 64 %

| Algorithm     | Backpropagation | FireFly |
|---------------|-----------------|---------|
| Time expended | 0.2s            | 5m11s   |
| Accuracy      | 88%             | 70%     |

- Collective Intelligence
- Swarm intelligence optimization
- Firefly algorithm
- Neural Network
- FireFly in Neural Network
- Experimental Results
- Conclusion & Perspectives

## **Conclusion & Perspectives**

- Try the firefly on a big dataset where it can outperform GD
- try another form of fitness function
- Explore more the differents parameters (num\_iterations, num\_fireflies)
- hybridization of FOA and GD to train NN

# Thank You