TUGAS MODUL PRAKTIKUM 3

Disusun oleh:

Anne Audistya Fernanda

140810180059

Kelas A

PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN

2020

Latihan Analisa

Minggu ini kegiatan praktikum difokuskan pada latihan menganalisa, sebagian besar tidak perlu menggunakan komputer dan mengkoding program, gunakan pensil dan kertas untuk menjawab persoalan berikut!

1. Untuk $T(n)=2+4+8+16+\cdots+n^2$, tentukan nilai C, $f(n),n_0$, dan notasi Big-O sedemikian sehingga $T(n)=O\bigl(f(n)\bigr)$ jika $T(n)\leq C$ untuk semua $n\geq n_0$ Jawab :

T(n) = 2 + 4 + 8 + 16 + ... + 2ⁿ

$$\frac{2(2^{n}-1)}{2^{-1}} = 2(2^{n}-1) = 2^{n+1} - 2$$

$$T(n) = 2^{n+1} - 2 = O(2^{n})$$

$$T(n) \neq C = f(n)$$

$$2^{n+1} - 2 \neq C = 2^{n}$$

$$2 - 2^{n} - 2 \neq C = 2^{n} \dots \text{ divagi } 2^{n}$$

$$2 - \frac{2}{2^{n}} \neq C \dots \text{ no } = 1$$

$$2 - \frac{2}{2} \neq C$$

$$C \geq 1$$

2. Buktikan bahwa untuk konstanta-konstanta positif p, q, dan r: $T(n)=pn^2+qn+r$ adalah $O(n^2),\Omega(n^2),\Theta(n^2)$ Jawab :

[2]
$$T(n) = Pn^2 + qn + r$$

• $O(n^2) \implies PigO$
 $T(n) \le C \cdot f(n)$

• $Pn^3 + qn + r \le C \cdot n^2 \cdot ... \cdot dibagi n^2$

• $P + \frac{q}{n} + \frac{r}{n^2} \le C \cdot ... \cdot n_o = 1$

• $P + q + r \le C$

• $C \ge P + q + r$

• $P(n) \ge C \cdot f(n)$

• $Pn^2 + qn + r \ge C \cdot ... \cdot dibagi n^2$

• $P + \frac{q}{n} + \frac{r}{n^2} \ge C \cdot ... \cdot n_o = 1$

• $P + q + r \ge C$

• $C \le P + q + r$

• Karena $PigO = PigO = n^2$

maka $PigO = n^2$

3. Tentukan waktu kompleksitas asimptotik (Big-O, Big- Ω , dan Big- Θ) dari kode program berikut:

```
 for k ← 1 to n do 
 for i ← 1 to n do 
 for j ← to n do 
 <math>w_{ij} ← w_{ij} or w_{ik} and w_{kj} endfor 
 endfor 
endfor 
Jawab:
```

```
5 for k ← 1 to n do
   for i - I to n do
    for j - to n do
      Wij - Wij or Wix or Way =>n.n.n
     endfor T(n) = n^3
     endfor
   endfor
     n³ ≤ C·n³ ... dibagi n³
      1 4 6
       C ≥ 1
    r Big s
      n3 > C n3 ... dibagi n3
     1 2 C
      C = 1
    ► B19 8
      Karena BigO = Bigs = n3,
      maka Big 0 = B (n3)
```

4. Tulislah algoritma untuk menjumlahkan dua buah matriks yang masing-masing berukuran n x n. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big- Ω , dan Big- Θ ? Jawab :

```
Algoritma penjumlahan matriks n \times m

for i \leftarrow i to n 40

for j \leftarrow i to n 40

mis \leftarrow a_{ij} + b_{ij} \Rightarrow n \cdot n

endfor

end for

Pag O

n^2 \leq C \cdot n^2 \dots dibagin^2

C \geq 1

Pag D

n^2 \geq C \cdot n^2 \dots dibagin^2

C \leq 1

Pag D

Karena Big O = Big D = n^2,

maka big \theta = \theta \cdot (n^2)
```

5. Tulislah algoritma untuk menyalin (copy) isi sebuah larik ke larik lain. Ukuran elemen larik adalah n elemen. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big- Ω , dan Big- Θ ?

Jawab:

```
E Algoritma menyalin larik

for i ← i to n do

ai ← bi = b n = T(n)

end for

b Big O

n ≤ Cn ... dibagin

C≥ 1

b Big A

n≥ Cn ... dibagin

C≤ 1

b Big B

Karena Big O = Big A = n

maka Big B = B(n)
```

6. Diberikan algoritma Bubble Sort sebagai berikut:

```
procedure BubbleSort(input/output a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n.1</sub> integer)

( Mengurut tabel integer TabInt[1..n] dengan metode pengugutan bubble-
sort

Masukan: a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>

Keluaran: a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>

Keluaran: a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>

(terurut menaik)

Deklarasi

k: integer ( indeks untuk traversal tabel )

pass: integer ( tahapan pengurutan )

temp: integer ( peubah bantu untuk pertukaran elemen tabel )

Algoritma

for pass ← 1 to n - 1 do

for k ← n downto pass + 1 do

if a<sub>k</sub> < a<sub>k-1</sub> then

( pertukarkan a<sub>k</sub> dengan a<sub>k-1</sub> )

temp ← a<sub>k</sub>

a<sub>k</sub> ← a<sub>k-1</sub>

a<sub>k-1</sub>←temp

endif
endfor
endfor
```

- a. Hitung berapa jumlah operasi perbandingan elemen-elemen tabel!
- b. Berapa kali maksimum pertukaran elemen-elemen tabel dilakukan?
- c. Hitung kompleksitas waktu asimptotik (Big-O, Big- Ω , dan Big- Θ) dari algoritma Bubble Sort tersebut!

Jawab:

(a) jumlah operaci perbandingan

1 + 2 + 3 + 4 + ... + (n-1)

=
$$\frac{h(n-1)}{2}$$
 kali

b) berapa kali maksimum pertukaran
elemen - elemen + abel dilakukan?

= $\frac{n(n-1)}{2}$ kali

c) Hitung kompleksitas

• Best Case (semua terurut)

 $\frac{(n-1)n}{2}$ kali, $\frac{n(n-1)}{2}$

= $\frac{n^2}{2}$

• worse (ase (semua tertukar)

Perbandingan $\rightarrow \frac{n(n-1)}{2}$

Memasukan $\rightarrow \frac{3n(n-1)}{2}$

Tmax (n) = $\frac{4n(n-1)}{2}$ = $2n^2-2n$

8 ig fl
2 n² - 2n ≤ C n² ... dibogi n²
$$\frac{n^2 - n}{2} \ge C \cdot n^2 \cdot ...$$
 dibogi n²
2 - $\frac{2}{n} \le C \cdot ...$ n₀= 1
2 - 2 ≤ C $\frac{1}{2} - \frac{1}{2} \ge C$ $\frac{1}{2} - \frac{1}{2} \ge C$
C ≥ O $C \le O$

- 7. Untuk menyelesaikan problem X dengan ukuran N tersedia 3 macam algoritma:
 - a. Algoritma A mempunyai kompleksitas waktu O(log N)
 - b. Algoritma B mempunyai kompleksitas waktu O(N log N)
 - c. Algoritma C mempunyai kompleksitas waktu O(N)

Untuk problem X dengan ukuran N=8, algoritma manakah yang paling cepat? Secara asimptotik, algoritma manakah yang paling cepat?

Jawab:

```
(F) a) Algoritma A → O (log H)

b) Algoritma B → O (Mlog N)

c) Algoritma C → O (M²)

Jilica N = 8, mana Algoritma yang

paling efektif?

a) O (log 8) = O(3 log 2)

b) O (8 log 8) • O (²²² log 2)

c) O (8²) = O(64)

yang paling efektif adalah algoritma

A, Karena semakin kecil O() semakin

efektif.
```

8. Algoritma mengevaluasi polinom yang lebih baik dapat dibuat dengan metode Horner berikut:

```
p(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + ... + x(a_{n-1} + a_n x)))...))
```

```
\begin{array}{l} \underline{\text{function}} \ p2(\underline{\text{input}} \ x : \underline{\text{real}}) \to \underline{\text{real}} \\ \hline \textit{{$($Mengembalikan nilai } p(x)$ } dengan \ \text{metode Horner}) \\ \\ \underline{\text{Deklarasi}} \\ k : \underline{\text{integer}} \\ b_1, \ b_2, \ \dots, \ b_n : \underline{\text{real}} \\ \\ \underline{\text{Algoritma}} \\ b_n \leftarrow a_n \\ \underline{\text{for}} \ k \leftarrow n-1 \ \underline{\text{downto}} \ 0 \ \underline{\text{do}} \\ b_k \leftarrow a_k + b_{k+1} + x \\ \underline{\text{endfor}} \\ \underline{\text{return}} \ b_0 \\ \end{array}
```

Hitunglah berapa operasi perkalian dan penjumlahan yang dilakukan oleh algoritma diatas, Jumlahkan kedua hitungan tersebut, lalu tentukan kompleksitas waktu asimptotik (Big-O)nya. Manakah yang terbaik, algoritma p atau p2?

Jawab:

