GATE ALL BRANCHES CRASH COURSE 2025

ENGINEERING MATHEMATICS Differential Equation

DPP

- Q1 The equation $y(x) = c_1 \cos 2x + c_2 \sin 2x$ is solution of-
 - (A) y'' + 2y = 0
 - (B) y'' + 4y = 0
 - (C) y'' + 6y = 0
 - (D) y'' + 8y = 0
- **Q2** Solution of the equation $\frac{dy}{dx} = \frac{x^2+2}{y}$ is-
 - (A) $y^2 = \frac{2}{3}x^3 + 4x + c$
 - (B) $y^2=rac{ec{2}}{3}x^3-4x+c$
 - (C) $y^2 = \frac{-2}{3}x^3 + 4x + c$
 - (D) $y^2 = \frac{2}{3}x^2 + 4x + c$
- **Q3** The solution of the equation $rac{dx}{dt} = x^2 2x + 2$ is-
 - (A) $x = 1 \tan(t+c)$
 - (B) $x = 1 + \tan(t+c)$
 - (C) $x = -1 + \tan(t+c)$
 - (D) $x = -1 \tan(t+c)$
- **Q4** The solution of the equation $y' = \frac{2xy}{x^2 y^2}$ is-
 - (A) $x^2 + y^2 = cy$
 - (B) $x^2 + v^2 = cx^3$
 - (C) $x^2 + y^2 = cx$
 - (D) $x^2 + y^2 = cy^3$
- **Q5** The integrating factor of the differential equation, $y^2dx + xydy = 0$ is-
 - $(A)_V$

- (B) y
- (C) $\frac{-1}{u}$
- (D) $\frac{1}{u}$
- **Q6** The solution of the equation

$$z' - xz = -x$$
 when $z(0) = -4$ is-

- $^{ extsf{(A)}}z\left(x
 ight) =1-5.e^{rac{x^{2}}{2}}$
- $^{ extsf{(B)}}z\left(x
 ight) =1-5.e^{rac{-x^{2}}{2}}$
- $^{ extsf{(C)}}z\left(x
 ight) =1+3e^{rac{x^{2}}{2}}$
- $^{ extsf{(D)}}z\left(x
 ight) =2-6\cdot e^{rac{-x^{2}}{2}}$

Q7

A bacteria culture is known to grow at a rate proportional of the amount present. After one hour, 1000 strands of bacteria are observed. And after 4 hours, 3000 stands are observed. The approximate strands of bacteria originally in the culture is_____. (Enter in integer).

- $\begin{array}{ll} \textbf{Q8} & \text{If } \frac{\mathrm{dQ}}{dt} + \frac{2}{10 + 2t} \mathrm{Q} = 4; \; \mathrm{Q}\left(2\right) = 100, \; \text{then} \\ & \text{(A)} \; \mathrm{Q}\left(t\right) = \frac{4t^2 + 40t + 1304}{2t + 10} \\ & \text{(B)} \; \mathrm{Q}\left(t\right) = \frac{4t^2 + 40t 1304}{2t 10} \\ & \text{(C)} \; \mathrm{Q}\left(t\right) = \frac{4t^2 40t + 1304}{2t + 10} \\ & \text{(D)} \; \mathrm{Q}\left(t\right) = \frac{4t^2 40t + 1304}{2t 10} \end{array}$
- **Q9** The solution of $y^1 + y = \sin x \text{ is } y = \mathbf{c} \cdot \mathbf{e}^{-x} + \frac{\sin x \cos x}{\alpha}.$ The value of 'a' is______.
- Q10 The steady-state value of the current given by the governing $\frac{dI}{dt}+50I=5$ when I = 0 at t = 0 is ____units.
- Q11 The solution of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 0$ is. (A) $y = c_1 e^{-x} \cdot \sin 2x + c_2 \cos 2x \cdot e^{-x}$ (B) $y = c_1 e^x \cos x - c_2 c e^x \cdot \sin x$ (C) $y = c_1 \cdot e^{-2x} \sin x + c_2 \cdot e^{-2x} \cdot \cos x$ (D) $y = c_1 e^{2x} \sin x - c_2 e^{2x} \cos x$
- $\begin{array}{ll} \textbf{Q12} & \text{The solution of } \frac{d^4y}{dx^4} 9\frac{d^2y}{dx^2} + 20y = 0 \text{ is.} \\ & (\textbf{A})\, \textbf{y} = \textbf{c}_1\cosh 2x + c_2\sinh 2x \\ & + c_3\cosh\sqrt{5x} + c_4\sin\sqrt{5x} \,. \\ & (\textbf{B})\, \textbf{y} = \textbf{c}_1\cos 2x + c_2\sin 2x + c_3\cos\sqrt{5x} \\ & + c_4\sin\sqrt{5x} \,. \\ & (\textbf{C})\, \textbf{y} = \textbf{c}_1\cosh 2x + c_2\sinh 2x \\ & + c_3\cos\left(\sqrt{5x}\right) + c_4\sin\left(\sqrt{5x}\right). \\ & (\textbf{D})\, \textbf{y} = \textbf{c}_1\cos 2x + c_2\sin 2x + c_3\cos\left(\sqrt{5x}\right) \\ & + c_4\sin\left(\sqrt{5x}\right). \end{array}$
- Q13 The particular Integral of the DE $y'' y' 2y = 4x^2$ is-

GATE

(A)
$$2x^2 - 2x + 3$$

(B)
$$-2x^2 - 2x + 3$$

(C)
$$-2x^2 + 2x - 3$$

(D)
$$2x^2 - 2x - 3$$

Q14 For the DE
$$\frac{d^2y}{dx^2}+4y=\tan 2x$$
, The value of Wronskian is_____. (Enter in integer).

Q15 The solution of

$$x^2 \cdot rac{d^2y}{dx^2} - x \cdot rac{dy}{dx} + y = \log_e x$$
 is-

(A)
$$\mathrm{y} = (c_1 + c_2 \log_e x) + \log_e x + 2$$

(B)
$$ext{y} = (c_1 + c_2 \cdot x \cdot \log_e x) + \log_e x + 2$$

(C)
$$\mathrm{y} = \left(c_1 + c_2 \cdot x^2 \cdot \log_e x\right) + x \cdot \log_e x$$

(D)
$$y = (c_1 + c_2 \log_e x) \mathbf{x} + \log_e x + 2$$

Answer Key

Q1	(B)	Q9	2~2
Q2	(A)	Q10	0.1~0.1
Q3	(B)	Q11	(C)
Q4	(A, C)	Q12	(A)
Q5	(D)	Q13	(C)
Q6	(A)	Q14	2~2
Q7	680~710	Q15	(D)
Q8	(A)		

