

Pruebas de hipótesis Multivariadas

Cristian Guarnizo-Lemus cristianguarnizo@itm.edu.co

Maestria en Automatización y Control Industrial

Problema

- Una variable aleatoria modelada por una normal p-variada, tiene p medias, p varianzas, y $\binom{p}{2}$ covarianzas.
- El numero total de parámetros es

$$p+p+\binom{p}{2}=\frac{1}{2}p(p+3)$$

Por qué es necesario

Multivariado

Preserva el nivel α.

Univariado

- Realizar p tests univariados infla el error tipo I, α .
- Pro ejemplo, para p = 10 test univariados separados a un nivel 0.05, la probabilidad que al menos se rechace uno es mayor que 0.05.
- Si las pruebas son independientes, se tiene para H_0 :

$$P(\text{al menos un rechazo}) = 1 - P(\text{todas las pruebas aceptan } H_0)$$

= 1 - (0.95)¹⁰ = 0.40

La tasa de error de 0.40 es inaceptable.

Contenido

- 1 Problema
- 2 Test Multivariado para la media
 - Test para la media con covarianza conocida
 - Test para la media con covarianza desconocida
- 3 Comparando dos medias
 - Prueba T² de dos muestras multivariadas

Institución Universitaria

Test para H_0 : $\mu = \mu_0 \operatorname{con} \Sigma \operatorname{conocida}$

En el caso multivariado se tienen varias variables medidas en cada unidad de muestreo, y queremos asumir la hipótesis que las medias, $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$

$$H_0: \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_p \end{bmatrix} = \begin{bmatrix} \mu_{01} \\ \mu_{02} \\ \vdots \\ \mu_{0p} \end{bmatrix}, \quad H_1: \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_p \end{bmatrix} \neq \begin{bmatrix} \mu_{01} \\ \mu_{02} \\ \vdots \\ \mu_{0p} \end{bmatrix}$$

donde cada μ_{0i} son especificados a partir de una experiencia previa o es un valor objetivo.

Test para $H_0: \mu = \mu_0 \operatorname{con} \Sigma \operatorname{conocida}$

Para la prueba de H_0 , usamos una muestra aleatoria de n observaciones $\mathbf{y}_1, \dots, \mathbf{y}_n$ de $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, con $\boldsymbol{\Sigma}$ conocido, y calcular $\bar{\mathbf{y}} = \sum_{i=1}^n \mathbf{y}_i/n$. El estadístico se define

$$Z^2 = n(\bar{\mathbf{y}} - \boldsymbol{\mu}_0)^{\top} \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{y}} - \boldsymbol{\mu}_0)$$

Si H_0 es verdadera, Z^2 esta distribuido como χ^2_p . Y rechazamos H_0 si $Z^2 > \chi^2_{\alpha,p}$. Si Σ es desconocido, podemos usar $\mathbf S$ en su lugar, y Z^2 debería tener una distribución χ^2 aproximada.

Institución Universitaria

Test para $H_0: \mu = \mu_0 \operatorname{con} \Sigma \operatorname{conocida}$

Ejemplo: Se tienen los siguientes pesos y alturas.

Person	Height	Weight	Person	Height	Weight
1	69	153	11	72	140
2	74	175	12	79	265
3	68	155	13	74	185
4	70	135	14	67	112
5	72	172	15	66	140
6	67	150	16	71	150
7	66	115	17	74	165
8	70	137	18	75	185
9	76	200	19	75	210
10	68	130	20	76	220

Tabla 3.1 [Rencher, p. 45]

Test para H_0 : $\mu = \mu_0 \operatorname{con} \Sigma \operatorname{conocida}$

Asumamos que la muestra de la normal bivariada $\mathcal{N}_2(\pmb{\mu},\pmb{\Sigma}),$ donde

$$\mathbf{\Sigma} = \begin{pmatrix} 20 & 100 \\ 100 & 1000 \end{pmatrix}.$$

Suponga que el prueba H_0 : $\boldsymbol{\mu} = [70, 170]^{\top}$. Para la tabla anterior $\bar{y}_1 = 71.45$ y $\bar{y}_2 = 164.7$.

$$Z^{2} = n(\overline{\mathbf{y}} - \boldsymbol{\mu}_{0})^{\top} \boldsymbol{\Sigma}^{-1} (\overline{\mathbf{y}} - \boldsymbol{\mu}_{0})$$

$$= (20) \begin{bmatrix} 71.45 - 70 \\ 164.7 - 170 \end{bmatrix}^{\top} \begin{bmatrix} 20 & 100 \\ 100 & 1000 \end{bmatrix}^{-1} \begin{bmatrix} 71.45 - 70 \\ 164.7 - 170 \end{bmatrix}$$

$$= (20)[1.45, -5.3] \begin{bmatrix} .1 & -.01 \\ -.01 & .002 \end{bmatrix} \begin{bmatrix} 1.45 \\ -5.3 \end{bmatrix} = 8.4026$$

Test para H_0 : $\mu = \mu_0$ con Σ conocida

```
Usando \alpha = 0.05, \chi^2_{0.05,2} = 5.99, y entonces rechazamos H_0: \boldsymbol{\mu} = [70, 170]^{\top} porque
Z^2 = 8.4026 > 5.99. Se puede verificar usando la función chi2 de Scipy:
```

from scipy.stats import chi2

```
prob = 0.95
dof = 2
critical = chi2.ppf(prob, dof)
72 = 8.4026
if abs(Z2) >= critical:
  print('Rechazar HO')
else:
  print('Aceptar HO')
```


Institución Universitaria

Test para H_0 : $\mu = \mu_0 \operatorname{con} \Sigma \operatorname{conocida}$

Para el caso univariado, analizando cada variable de manera separada. Tenemos que $z_{\alpha/2} = 1.96$ para $\alpha = 0.05$, entonces

$$z_1 = \frac{\bar{y}_1 - \mu_{01}}{\sigma_1/\sqrt{n}} = 1.450 < 1.96,$$

$$z_2 = \frac{\bar{y}_2 - \mu_{02}}{\sigma_2/\sqrt{n}} = -.7495 > -1.96,$$

aceptamos ambas pruebas de hipótesis. Ninguno de las medias estimadas esta lo suficientemente lejos del valor hipotético para generar el rechazo.

Test para $H_0: \mu = \mu_0 \operatorname{con} \Sigma \operatorname{conocida}$

Contenido

- 1 Problema
- 2 Test Multivariado para la media
 - Test para la media con covarianza conocida
 - Test para la media con covarianza desconocida
- 3 Comparando dos medias
 - Prueba T² de dos muestras multivariadas

Asumimos una muestra aleatoria de p variables con n observaciones $\mathbf{y}_1,\ldots,\mathbf{y}_n$ de $\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$, donde \mathbf{y}_i contiene las p medidas de la i-ésima muestra. Estimamos μ con $\bar{\mathbf{y}}$ y $\boldsymbol{\Sigma}$ con \mathbf{S} . El test se realiza con el estadístico

$$T^2 = n(\bar{\mathbf{y}} - \boldsymbol{\mu}_0)^{\top} \mathbf{S}^{-1} (\bar{\mathbf{y}} - \boldsymbol{\mu}_0)$$

Rechazamos H_0 si $T^2 > T_{\alpha,p,n-1}^2$

Ejemplo Tabla 3.3 [Rencher] y_1 (calcio disponible), y_2 (calcio intercambiable), y_3 (calcio verde).

Number	<i>y</i> ₁	y ₂	<i>y</i> ₃
/ 1	35	35	280
2	35	49	270
3	40	300	321
4	10	28	273
5	6	27	281
6	20	28	288
7	35	46	290
7 8	35	109	328
9	35	160	320
10	30	16	13

En la tabla anterior tenemos n=10 observaciones de p=3 variables. Los valores deseables de y_1 y y_2 son 15.0 y 6.0, y el nivel esperado de y_3 es 2.85. Podemos hacer la prueba de hipótesis

$$H_0: \mu = \begin{bmatrix} 15.0 \\ 6.0 \\ 2.85 \end{bmatrix}$$

donde

$$\overline{\mathbf{y}} = \begin{bmatrix} 28.1 \\ 7.18 \\ 3.09 \end{bmatrix}, \quad \mathbf{S} = \begin{bmatrix} 140.54 & 49.68 & 1.94 \\ 49.68 & 72.25 & 3.68 \\ 1.94 & 3.68 & .25 \end{bmatrix}$$

Para probar H_0 , empleamos

$$T^{2} = n(\overline{\mathbf{y}} - \boldsymbol{\mu}_{0})^{\top} \mathbf{S}^{-1} (\overline{\mathbf{y}} - \boldsymbol{\mu}_{0})$$

$$= 10 \begin{bmatrix} 28.1 & - & 15.0 \\ 7.18 & - & 6.0 \\ 3.09 & - & 2.85 \end{bmatrix}^{\top} \begin{bmatrix} 140.54 & 49.68 & 1.94 \\ 49.68 & 72.25 & 3.68 \\ 1.94 & 3.68 & .25 \end{bmatrix}^{-1} \begin{bmatrix} 28.1 & - & 15.0 \\ 7.18 & - & 6.0 \\ 3.09 & - & 2.85 \end{bmatrix}$$

$$= 24.559$$

Test para H_0 : $\mu = \mu_0$ con Σ desconocida

```
Usando \alpha=0.05,\ T_{0.05,3,9}^2=16.766,\ y entonces rechazamos H_0 ya que T^2=24.559>16.766. Se puede verificar usando la función f de Scipy:
```

```
from scipy.stats import f
```

```
prob = 0.95
p = 3
n = 10
v = n-1
critical = f.ppf(prob, p.v-p+1)*(v*p)/(v-p+1) #ver eq. 5.7 Rencher
T2 = 24.559
if abs(T2) >= critical:
   print('Rechazar HO')
else:
   print('Aceptar HO')
```


Contenido

- 1 Problema
- 2 Test Multivariado para la media
 - Test para la media con covarianza conocida
 - Test para la media con covarianza desconocida
- 3 Comparando dos medias
 - Prueba T² de dos muestras multivariadas

Institución Universitario

Prueba T^2 de dos muestras multivariadas

Consideramos el caso donde p variables son medidas en cada muestra unitaria en 2 muestras. Deseamos probar

$$H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2$$
 vs. $H_1: \boldsymbol{\mu}_1 \neq \boldsymbol{\mu}_2$

Obtenemos un muestra aleatoria $\mathbf{y}_{11}, \mathbf{y}_{12}, \dots, \mathbf{y}_{1n_1}$ de $\mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ y una segunda muestra aleatoria $\mathbf{y}_{21}, \mathbf{y}_{22}, \dots, \mathbf{y}_{2n_2}$ de $\mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$. Se asumen que las dos muestras son independientes y que $\boldsymbol{\Sigma}_1 = \boldsymbol{\Sigma}_2 = \boldsymbol{\Sigma}$, con $\boldsymbol{\Sigma}$ desconocido. El estadístico se define

$$T^{2} = \frac{n_{1}n_{2}}{n_{1} + n_{2}} (\overline{\mathbf{y}}_{1} - \overline{\mathbf{y}}_{2})^{\top} \mathbf{S}_{pl}^{-1} (\overline{\mathbf{y}}_{1} - \overline{\mathbf{y}}_{2})$$
(1)

La cual esta distribuida como $T_{p,n_1+n_2-2}^2$ cuando $H_0: \mu_1 = \mu_2$ es verdadero.

Prueba T^2 de dos muestras multivariadas

Donde $S_{\rm pl}$

$$\mathbf{W}_1 = \sum_{i=1}^{n_1} (\mathbf{y}_{1i} - \overline{\mathbf{y}}_1) (\mathbf{y}_{1i} - \overline{\mathbf{y}}_1)^\top = (n_1 - 1) \mathbf{S}_1$$

$$\mathbf{W}_2 = \sum_{i=1}^{n_2} (\mathbf{y}_{2i} - \overline{\mathbf{y}}_2) (\mathbf{y}_{2i} - \overline{\mathbf{y}}_2)^{\top} = (n_2 - 1) \mathbf{S}_2$$

٧

$$\mathbf{S}_{\text{pl}} = \frac{1}{n_1 + n_2 - 2} (\mathbf{W}_1 + \mathbf{W}_2)$$

Prueba T^2 de dos muestras multivariadas

Ejemplo Tabla 5.1 [Rencher, p. 125] Cuatro test psicológicos fueron dados a 32 hombres y 32 mujeres. Se toman 4 variables: inconsistencias pictóricas, tablero de papel, herramienta de reconocimiento, vocabulario.

$$\begin{split} \overline{\mathbf{y}}_1 &= \begin{bmatrix} 15.97 \\ 15.91 \\ 27.19 \\ 22.75 \end{bmatrix}, \quad \overline{\mathbf{y}}_2 = \begin{bmatrix} 12.34 \\ 13.91 \\ 16.66 \\ 21.94 \end{bmatrix} \\ \mathbf{S}_1 &= \begin{bmatrix} 5.192 & 4.545 & 6.522 & 5.250 \\ 4.545 & 13.18 & 6.760 & 6.266 \\ 6.522 & 6.760 & 28.67 & 14.47 \\ 5.250 & 6.266 & 14.47 & 16.65 \end{bmatrix}, \mathbf{S}_2 = \begin{bmatrix} 9.136 & 7.549 & 4.864 & 4.151 \\ 7.549 & 18.60 & 10.22 & 5.446 \\ 4.864 & 10.22 & 30.04 & 13.49 \\ 4.151 & 5.446 & 13.49 & 28.00 \end{bmatrix} \end{split}$$

Institución Universitaria

Prueba T^2 de dos muestras multivariadas

Con los datos anteriores calculamos

$$\mathbf{S}_{\mathrm{pl}} = \frac{1}{32 + 32 - 2} \left[(32 - 1)\mathbf{S}_{1} + (32 - 1)\mathbf{S}_{2} \right] = \left[\begin{array}{cccc} 7.164 & 6.047 & 5.693 & 4.701 \\ 6.047 & 15.89 & 8.492 & 5.856 \\ 5.693 & 8.492 & 29.36 & 13.98 \\ 4.701 & 5.856 & 13.98 & 22.32 \end{array} \right]$$

Obtenemos

$$T^2 = \frac{n_1 n_2}{n_1 + n_2} \left(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2 \right)^{\top} \mathbf{S}_{\mathrm{pl}}^{-1} \left(\overline{\mathbf{y}}_1 - \overline{\mathbf{y}}_2 \right) = 97.6015$$

Prueba T^2 de dos muestras multivariadas

```
Usando \alpha = 0.01, T_{0.01.4.62}^2 = 15.373, y entonces rechazamos H_0 porque
T^2 = 97.6015 > 15.373. Se puede verificar usando la función f de Scipy:
```

```
from scipy.stats import f
```

```
prob = 0.99
p = 4
n1 = 32
n2 = 32
critical = f.ppf(prob, p,n1+n2-p-1)*p*(n1+n2-p)/(n1+n2-p-1) #ver eq 5.11 Rencher
T2 = 97.6015
if abs(T2) >= critical:
   print('Rechazar HO')
else:
   print('Aceptar HO')
```


Lecturas recomendadas

- Capitulo 7 de Härdle and Simar. Hypothesis Testing.
- Capitulo 5.9 de Rencher. Análisis de Perfiles.

Referencias

- Alvin C. Rencher. "Methods of Multivariate Analysis", 2002.
- W. K. Härdle and L. Simar. "Applied Multivariate Statistical Analysis", 2019.

