Homework Signal 2

Week 2

6733172621 Patthadon Phengpinij
Collaborators. ChatGPT (for LATEX styling and grammar checking)

1 Convolution

Problem 1. Evaluate the convolution of the following signals

1.1 rect
$$\left(\frac{t-a}{a}\right) * \delta(t-b)$$

Solution. From the sifting property of the delta function, we have:

$$f(t) * \delta(t - b) = f(t - b)$$

Applying this property to our problem, we get:

$$\operatorname{rect}\left(\frac{t-a}{a}\right) * \delta(t-b) = \operatorname{rect}\left(\frac{(t-b)-a}{a}\right) = \operatorname{rect}\left(\frac{t-(a+b)}{a}\right)$$

Thus, the result of the convolution is:

$$\boxed{ \operatorname{rect}\left(\frac{t - (a + b)}{a}\right)}$$

Using Python to verify this result, we can implement the convolution and plot the results. The plot of the signal is shown below:

1.2 rect $\left(\frac{t}{a}\right) * rect \left(\frac{t}{a}\right)$

Solution. To evaluate the convolution of two rectangular functions, we start with the definition of the rectangular function:

$$\operatorname{rect}\left(\frac{t}{a}\right) = \begin{cases} 1 & \text{if } |t| \le \frac{a}{2} \\ 0 & \text{otherwise} \end{cases}$$

The convolution of two functions f(t) and g(t) is defined as:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$

Applying this to our rectangular functions, we have:

$$(\operatorname{rect}\left(\frac{t}{a}\right) * \operatorname{rect}\left(\frac{t}{a}\right))(t) = \int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{\tau}{a}\right) \operatorname{rect}\left(\frac{t-\tau}{a}\right) d\tau$$

$$= \int_{-\frac{a}{2}}^{\frac{a}{2}} \operatorname{rect}\left(\frac{t-\tau}{a}\right) d\tau$$

$$= \int_{\max(-\frac{a}{2}, t - \frac{a}{2})}^{\min(\frac{a}{2}, t + \frac{a}{2})} 1 d\tau$$

$$(\operatorname{rect}\left(\frac{t}{a}\right) * \operatorname{rect}\left(\frac{t}{a}\right))(t) = \min\left(\frac{a}{2}, t + \frac{a}{2}\right) - \max\left(-\frac{a}{2}, t - \frac{a}{2}\right)$$

Evaluating the limits, we find that the result is a triangular function:

$$\operatorname{rect}\left(\frac{t}{a}\right) * \operatorname{rect}\left(\frac{t}{a}\right) = \begin{cases} 0 & |t| > a \\ t+a & -a \le t < 0 \\ a-t & 0 \le t \le a \end{cases}$$

Using Python to verify this result, we can implement the convolution and plot the results. The plot of the signal is shown below:

1.3
$$t[u(t) - u(t-1)] * u(t)$$

Solution. First, we define the functions involved in the convolution:

$$x(t) = t[u(t) - u(t-1)] = \begin{cases} 0 & t < 0 \\ t & 0 \le t < 1 \\ 0 & t \ge 1 \end{cases}$$

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

The convolution y(t) = x(t) * u(t) is given by:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)u(t-\tau) d\tau$$

Evaluating the convolution integral, we find:

$$y(t) = \int_0^1 \tau \cdot u(t - \tau) d\tau$$
$$y(t) = \int_0^{\min(t, 1)} \tau d\tau$$

Thus,

$$y(t) = \begin{cases} 0 & t < 0\\ \frac{t^2}{2} & 0 \le t < 1\\ \frac{1}{2} & t \ge 1 \end{cases}$$

Using Python to verify this result, we can implement the convolution and plot the results. The plot of the signal is shown below:

Problem 2. Determine the convolution y(t) = h(t) * x(t) using Graphical Interpretation of the pairs of the signals shown

Solution. The convolution y(t) = h(t) * x(t) can be determined graphically by following these steps:

- 1. Flip one of the signals, typically h(t), to get $h(-\tau)$.
- 2. Shift the flipped signal by t to get $h(t-\tau)$.
- 3. For each value of t, calculate the area of overlap between $x(\tau)$ and $h(t-\tau)$.
- 4. The value of the convolution y(t) at each t is the area of overlap calculated in the previous step.

Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step.

The resulting convolution y(t) is shown in the gif files in my GitHub repository for this homework.

TO SUBMIT

2.1 Solution.

Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 2.1 Animation.

The plot of the signal is shown below:

Solution. Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 2.2 Animation.

The plot of the signal is shown below:

TO SUBMIT

2.3 Solution.

Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 2.3 Animation.

The plot of the signal is shown below:

2.4

Solution. Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 2.4 Animation.

The plot of the signal is shown below:

Problem 3. Let f(t) and g(t) be given as follows:

3.1 Sketch the function : x(t) = f(t) * g(t)

Solution. Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 3.1 Animation.

3.2 Show that if a(t) = b(t) * c(t), then (Mb(t)) * c(t) = Ma(t), for any real number M (hint: use the convolution integral formula)

Solution. Given that a(t) = b(t) * c(t), we can express this using the convolution integral:

$$a(t) = \int_{-\infty}^{\infty} b(\tau)c(t-\tau) d\tau$$

Now, we want to show that (Mb(t))*c(t) = Ma(t). We start by writing the convolution of Mb(t) with c(t):

$$(Mb(t)) * c(t) = \int_{-\infty}^{\infty} Mb(\tau)c(t-\tau) d\tau$$

Factoring out the constant M from the integral, we have:

$$(Mb(t))*c(t) = M \int_{-\infty}^{\infty} b(\tau)c(t-\tau) d\tau$$

$$(Mb(t)) * c(t) = Ma(t)$$

Thus, we have shown that:

$$(Mb(t)) * c(t) = Ma(t)$$

Problem 4. Find the convolution y[n] = h[n] * x[n] of the following signals:

TO SUBMIT

$$4.1 \ x[n] = \begin{cases} -1, -5 \le n \le -1 \\ 1, 0 \le n \le 4 \end{cases}, \ h[n] = 2u[n]$$

Solution. Using the property of convolution with unit step function (Running sum):

$$y[n] = x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$$

Consider the value of y[n]:

$$y[n] = x[n] * h[n]$$
$$= x[n] * 2u[n]$$
$$y[n] = 2 \sum_{k=-\infty}^{n} x[k]$$

Calculating the convolution for different ranges of n:

• For $-5 \le n < 0$:

$$y[n] = 2 \sum_{k=-\infty}^{n} x[k]$$

$$= 2 \sum_{k=-5}^{n} (-1)$$

$$= 2 \cdot (-1)(n - (-5) + 1)$$

$$= 2(-n - 6)$$

$$y[n] = -2n - 12$$

• For $0 \le n < 5$:

$$y[n] = 2 \sum_{k=-\infty}^{n} x[k]$$

$$= 2 \left[\sum_{k=-5}^{-1} x[k] + \sum_{k=0}^{n} x[k] \right]$$

$$= 2 \left[\sum_{k=-5}^{-1} (-1) + \sum_{k=0}^{n} (1) \right]$$

$$= 2 (-5 + (n+1))$$

$$= 2 (n-4)$$

$$y[n] = 2n - 8$$

$$y[n] = \begin{cases} -2n - 12 & -5 \le n < 0 \\ 2n - 8 & 0 \le n < 5 \\ 0 & \text{otherwise} \end{cases}$$

$$4.2\ x[n]=u[n],\, h[n]=1\;; 0\leq n\leq 9$$

Solution. Using the property of convolution with unit step function (Running sum):

$$y[n] = x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$$

Consider the value of y[n]:

$$y[n] = x[n] * h[n]$$
$$= u[n] * h[n]$$
$$y[n] = \sum_{k=-\infty}^{n} h[k]$$

Calculating the convolution for different ranges of n:

• For $0 \le n < 9$:

$$y[n] = \sum_{k=-\infty}^{n} h[k]$$
$$= \sum_{k=0}^{n} 1$$
$$y[n] = n + 1$$

• For $n \geq 9$:

$$y[n] = \sum_{k=-\infty}^{n} h[k]$$
$$= \sum_{k=0}^{9} 1$$
$$y[n] = 10$$

$$y[n] = \begin{cases} n+1 & 0 \le n < 9\\ 10 & n \ge 9\\ 0 & \text{otherwise} \end{cases}$$

TO SUBMIT

4.3
$$x[n] = \left(\frac{1}{2}\right)^n u[n], h[n] = \delta[n] + \delta[n-1] + \left(\frac{1}{3}\right)^n u[n]$$

Solution. Using the property of convolution with unit step function (Running sum):

$$y[n] = x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$$

and the shifting property of convolution:

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

Consider the value of y[n]:

$$y[n] = x[n] * h[n]$$

$$= x[n] * \left[\delta[n] + \delta[n-1] + \left(\frac{1}{3}\right)^n u[n]\right]$$

$$= (x[n] * \delta[n]) + (x[n] * \delta[n-1]) + \left(x[n] * \left(\frac{1}{3}\right)^n u[n]\right)$$

$$y[n] = \left(\frac{1}{2}\right)^n u[n] + \left(\frac{1}{2}\right)^{n-1} u[n-1] + \sum_{k=-\infty}^n \left(\frac{1}{2}\right)^k u[k] \left(\frac{1}{3}\right)^{n-k} u[n-k]$$

Calculating the convolution for different ranges of n:

• For n=0:

$$y[n] = \left(\frac{1}{2}\right)^{0} u[0] + \left(\frac{1}{2}\right)^{0-1} u[0-1] + \sum_{k=-\infty}^{0} \left(\frac{1}{2}\right)^{k} u[k] \left(\frac{1}{3}\right)^{0-k} u[0-k]$$

$$= 1 + 0 + \left(\frac{1}{2}\right)^{0} u[0] \left(\frac{1}{3}\right)^{0} u[0]$$

$$= 1 + 0 + 1$$

$$y[n] = 2$$

• For $n \ge 1$:

$$y[n] = \left(\frac{1}{2}\right)^n u[n] + \left(\frac{1}{2}\right)^{n-1} u[n-1] + \sum_{k=-\infty}^n \left(\frac{1}{2}\right)^k u[k] \left(\frac{1}{3}\right)^{n-k} u[n-k]$$

$$= \left(\frac{1}{2}\right)^n + \left(\frac{1}{2}\right)^{n-1} + \sum_{k=0}^n \left(\frac{1}{2}\right)^k \left(\frac{1}{3}\right)^{n-k}$$

$$= 3\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n \left[\sum_{k=0}^n \left(\frac{3}{2}\right)^k\right]$$

$$= 3\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n \cdot (-2) \left(1 - \left(\frac{3}{2}\right)^{n+1}\right)$$

$$y[n] = 6\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{3}\right)^n$$

$$y[n] = \begin{cases} 2 & n = 0\\ 6\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{3}\right)^n & n \ge 1\\ 0 & \text{otherwise} \end{cases}$$

4.4
$$x[n] = \left(\frac{1}{3}\right)^n u[n], h[n] = \delta[n] + \left(\frac{1}{2}\right)^n u[n]$$

Solution. Using the property of convolution with unit step function (Running sum):

$$y[n] = x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$$

the shifting property of convolution:

$$x[n] * \delta[n - n_0] = x[n - n_0]$$

Consider the value of y[n]:

$$\begin{split} y[n] &= x[n] * h[n] \\ &= x[n] * \left[\delta[n] + \left(\frac{1}{2}\right)^n u[n] \right] \\ &= \left(\left(\frac{1}{3}\right)^n u[n] * \delta[n] \right) + \left(\left(\frac{1}{3}\right)^n u[n] * \left(\frac{1}{2}\right)^n u[n] \right) \\ y[n] &= \left(\frac{1}{3}\right)^n u[n] + \sum_{k=-\infty}^{\infty} \left(\frac{1}{3}\right)^k u[k] \left(\frac{1}{2}\right)^{n-k} u[n-k] \\ y[n] &= \left(\frac{1}{3}\right)^n u[n] + \sum_{k=0}^n \left(\frac{1}{3}\right)^k \left(\frac{1}{2}\right)^{n-k} \\ y[n] &= \left(\frac{1}{3}\right)^n u[n] + \sum_{k=0}^n \left(\frac{1}{3}\right)^k \left(\frac{1}{2}\right)^{n-k} \end{split}$$

Calculating the convolution for different ranges of n:

• For $n \geq 0$:

$$y[n] = \left(\frac{1}{3}\right)^n u[n] + \sum_{k=-\infty}^{\infty} \left(\frac{1}{3}\right)^k u[k] \left(\frac{1}{2}\right)^{n-k} u[n-k]$$

$$= \left(\frac{1}{3}\right)^n + \left(\frac{1}{2}\right)^n \left[\sum_{k=0}^n \left(\frac{2}{3}\right)^k\right]$$

$$= \left(\frac{1}{3}\right)^n + \left(\frac{1}{2}\right)^n \cot(3) \left(1 - \left(\frac{2}{3}\right)^{n+1}\right)$$

$$y[n] = 3\left(\frac{1}{2}\right)^n - \left(\frac{1}{3}\right)^n$$

$$y[n] = \begin{cases} 3\left(\frac{1}{2}\right)^n - \left(\frac{1}{3}\right)^n & n \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Problem 5. Find the convolution y[n] = h[n] * x[n] of the following signals

5.1
$$x[n] = \left\{1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \frac{1}{16}\right\}, h[n] = \left\{1, -1, 1, -1\right\}$$

Solution. Using the tabular method to compute the convolution y[n] = h[n] * x[n]:

n	-3	-2	-1	0	1	2	3	4	5	6	7	y[n]
x[n]				1	$-\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{8}$	$\frac{1}{16}$	 			
h[n]				1	-1	1	-1		l I			
h[0-n]	-1	1	-1	1					l I			1.0000
h[1-n]		-1	1	-1	1				l I			-1.5000
h[2-n]			-1	1 1	-1	1			l I			1.7500
h[3-n]				-1	1	-1	1		l I			-1.8750
h[4-n]				l I	-1	1	-1	1	l I			0.9375
h[5-n]						-1	1	-1	1			-0.4375
h[6-n]							-1	1	-1	1		0.1875
h[7-n]				! 				-1	1	-1	1	-0.0625

Thus, the final result of the convolution is:

$$y[n] = \{1, -1.5, 1.75, -1.875, 0.9375, -0.4375, 0.1875, -0.0625\}$$

5.2
$$x[n] = \{1, 2, 3, 0, -1\}, h[n] = \{2, -1, 3, 1, -2\}$$

Solution. Using the tabular method to compute the convolution y[n] = h[n] * x[n]:

n	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	y[n]
x[n]					1	2	3	0	-1					
h[n]					2	-1	3	1	-2					
h[0-n]	-2	1	3	-1	2									2
h[1-n]		-2	1	3	-1	2				 				3
h[2-n]			-2	1	3	-1	2			 				7
h[3-n]				-2	1 1	3	-1	2] 				4
h[4-n]					-2	1	3	-1	2	 				7
h[5-n]					l I	-2	1	3	-1	2				0
h[6-n]							-2	1	3	-1	2			-9
h[7-n]								-2	1	3	-1	2		-1
h[8-n]					l I				-2	1	3	-1	2	2

$$y[n] = \{2, 3, 7, 4, 7, 0, -9, -1, 2\}$$

5.3
$$x[n] = \left\{3, \frac{1}{2}, -\frac{1}{4}, 1, 4\right\}, h[n] = \left\{2, -1, \frac{1}{2}, -\frac{1}{2}\right\}$$

Solution. Using the tabular method to compute the convolution y[n] = h[n] * x[n]:

	n	-3	-2	-1	0	1	2	3	4	5	6	7	y[n]
-	x[n]				3	$\frac{1}{2}$	$-\frac{1}{4}$	1	4	! !			
	h[n]				2	-1	$\frac{1}{2}$	$-\frac{1}{2}$		l I			
-	h[0-n]	$-\frac{1}{2}$	$\frac{1}{2}$	-1	2					l I			6.000
	h[1-n]		$-\frac{1}{2}$	$\frac{1}{2}$	-1	2				l I			-2.000
	h[2-n]			$-\frac{1}{2}$	$\frac{1}{2}$	-1	2			 			0.500
	h[3-n]				$-\frac{1}{2}$	$\frac{1}{2}$	-1	2		l I			1.000
	h[4-n]			1	 	$-\frac{1}{2}$	$\frac{1}{2}$	-1	2	l I			6.625
	h[5-n]			1	l I		$-\frac{1}{2}$	$\frac{1}{2}$	-1	2			-3.375
	h[6-n]							$-\frac{1}{2}$	$\frac{1}{2}$	-1	2		1.500
	h[7-n]								$-\frac{1}{2}$	$\frac{1}{2}$	-1	2	-2.000

Thus, the final result of the convolution is:

$$y[n] = \{6, -2, 0.5, 1, 6.625, -3.375, 1.5, -2\}$$

5.4
$$x[n] = \left\{-1, \frac{1}{2}, \frac{3}{4}, -\frac{1}{5}, 1\right\}, h[n] = \{1, 1, 1, 1, 1\}$$

Solution. Using the tabular method to compute the convolution y[n] = h[n] * x[n]:

n	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	y[n]
x[n]					-1	$\frac{1}{2}$	$\frac{3}{4}$	$-\frac{1}{5}$	1					
h[n]					1	1	1	1	1	 				
h[0-n]	1	1	1	1	1									-1.00
h[1-n]		1	1	1	1 1	1				 				0.50
h[2-n]			1	1	$^{\mid}_{\mid}$ 1	1	1			 				0.25
h[3-n]				1	1	1	1	1		 				0.05
h[4-n]					1	1	1	1	1	 				1.05
h[5-n]					l I	1	1	1	1	1				2.05
h[6-n]					 		1	1	1	1	1			1.55
h[7-n]								1	1	1	1	1		0.80
h[8-n]					! 				1	1	1	1	1	1.00

Thus, the final result of the convolution is:

$$y[n] = \{-1, -0.5, 0.25, 0.05, 1.05, 2.05, 1.55, 0.8, 1\}$$

Note that all of the convolutions in Problem 5 are also available in the gif files in this repository.

Problem 6.

6.1 Convolution 1-D:

The following code creates a gaussian pulse and its self convolutions. Study and apply the convolution between signal e and another signal e with noise (e_noise) and write the report to analyze the results.

```
from scipy import signal
  t = np.linspace(-1, 1, 2 * 100, endpoint=False)
  i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=
      True)
plt.plot(t, e, "--",label = "original signal")
  plt.legend(loc="upper right")
  plt.show()
g conv_e = np.convolve(e,e,"same")
plt.plot(t, e, "--", label = "original signal")
plt.plot(t, conv_e, "--", label = "self conv signal")
plt.legend(loc="upper right")
plt.show()
e_noise = e + np.random.randn(len(e))*2.5
conv_e_noise = np.convolve(e, e_noise, "same")
# TODO: Apply the convolution between signal e and another
       signal e with noise (e_noise) and check the results
```

Results:

1. Original Signal e:

2. Convolution between signal e and signal e:

Solution. To apply the convolution between the signal e and the noisy signal e_noise , we can use the following code snippet:

```
conv_e_noise = np.convolve(e, e_noise, "same")
plt.plot(t, e, "--", label="original signal")
plt.plot(t, conv_e_noise, "--", label="conv with noise signal")
plt.legend(loc="upper right")
plt.show()
```

The result of the convolution between the original signal e and the noisy signal e_noise is shown below:

6.2 From the self convolution below, when increasing the number of self convolution (now is 8), what is noticeable from the final shape resulted from the convolution?

(HINT 01: Central limit theorem)

(HINT 02: What is Probability Density Function (PDF) of z if z = x + y?)

Results:

1. Original Uniform PDF:

2. Resulted PDF after 8 times of self convolution:

Solution. Firstly, we create a function to compute the PDF of a uniform distribution after specified number of self-convolutions. The code snippet is as follows:

```
def plot_uniform_convolution(ax, num_convolutions=1):
      x = np.linspace(-15, 15, 10000)
      pdf = uniform.pdf(x)
      conv_pdf = pdf.copy()
      for _ in range(num_convolutions):
          conv_pdf = np.convolve(conv_pdf, pdf, mode="same"
      conv_pdf = conv_pdf / np.max(conv_pdf)
10
      ax.plot(x, conv_pdf, "r-", lw=3, alpha=0.7, label=f"{}
      num_convolutions} convolutions")
      ax.set_title(f"Uniform PDF convolved {
      num_convolutions} times")
      ax.set_xlabel("x")
13
      ax.set_ylabel("Normalized PDF")
14
      ax.legend()
      ax.grid(True)
16
17
      # Automatically adjust x-limits based on significant
18
      values
      threshold = 1e-4
      significant_indices = np.where(conv_pdf > threshold)
      [0]
      ax.set_xlim(x[significant_indices[0]], x[
      significant_indices[-1]])
```

Then, we can visualize the effect of multiple self-convolutions on the uniform PDF.

```
np.random.seed(1) # For reproducibility

Ns = [1, 2, 4, 8, 12, 16]

# Create a 3x2 subplot grid
fig, axes = plt.subplots(3, 2, figsize=(8, 8))
axes = axes.flatten() # Flatten to make indexing easier

for i, N in enumerate(Ns):
    plot_uniform_convolution(axes[i], N)

plt.tight_layout()
plt.savefig("../images/problem_6_2_comparation.png", dpi
    =600, bbox_inches="tight")
plt.show()
```

The final shape resulted from the convolution approaches a Gaussian distribution as the number of self-convolutions increases. This is a direct consequence of the **Central Limit Theorem**, which states that **the sum of a large number of independent random variables**, regardless of their original distribution, will tend to follow a **normal (Gaussian) distribution**.

Problem 7. 2D (image) signal convolution:

The following code show the 2D signal (image f(x,y)) and a kernel (diag_line). Study the convolution of the kernel and the image. Apply with "circuits.png" image and analyze the results.

TODO: Apply diag_line to the "circuits.png" image and analyse the results

```
import cv2
3 image_path = "hamtaro0.jpg"
  diag_line = np.array([[ 2, -1, -1],
                       [-1, 2, -1],
[-1, -1, 2]])
9 ham = cv2.imread(image_path, 0)
plt.figure(figsize=(10, 10))
  plt.imshow(ham, cmap="gray")
  plt.show()
   grad = signal.convolve2d(ham, diag_line, boundary="symm", mode
      ="same")
plt.figure(figsize=(10, 10))
plt.imshow(grad, cmap="gray")
plt.show()
18
  # TODO : Apply diag_line to the "circuits.png" image and
      analyse the results
```

Results:

Solution. To apply the convolution of the kernel diag_line to the image "circuits.png", we can use the following code snippet:

The result of the convolution between the image "circuits.png" and the kernel diag_line is shown below:

Problem 8. Are the following systems linear or time invariant?

8.1
$$x(t) \rightarrow \mathbf{System(a)} \rightarrow 7x(t-1)$$

Solution.

1. Check for linearity: Let $x_1(t)$ and $x_2(t)$ be two input signals, consider,

$$S\{ax_1(t) + bx_2(t)\} = 7[ax_1(t-1) + bx_2(t-1)]$$

$$= 7ax_1(t-1) + 7bx_2(t-1)$$

$$= a[7x_1(t-1)] + b[7x_2(t-1)]$$

$$S\{ax_1(t) + bx_2(t)\} = aS\{x_1(t)\} + bS\{x_2(t)\}$$

Since both sides are equal, the system is linear.

2. Check for time invariance: Let x(t) be an input signal and t_0 be a time shift, consider,

$$S\{x(t-t_0)\} = 7x((t-t_0)-1)$$

$$= 7x(t-t_0-1)$$

$$= 7x((t-1)-t_0)$$

$$\implies S\{x(t-t_0)\} = y(t-t_0)$$

Since both sides are equal, the system is time-invariant.

Therefore, the system $S\{x(t)\} = 7x(t-1)$ is both linear and time-invariant

8.2
$$x(t) \rightarrow \mathbf{System}(\mathbf{b}) \rightarrow \cos(2x(t))$$

Solution.

1. Check for linearity: Let $x_1(t)$ and $x_2(t)$ be two input signals, consider,

$$\cos(2[ax_1(t) + bx_2(t)]) \neq a[\cos(2x_1(t))] + b[\cos(2x_2(t))]$$

$$\implies S\{ax_1(t) + bx_2(t)\} = aS\{x_1(t)\} + bS\{x_2(t)\}$$

Since both sides are not equal, the system is non-linear.

2. Check for time invariance: Let x(t) be an input signal and t_0 be a time shift, consider,

$$S\{x(t - t_0)\} = \cos(2[x(t - t_0)])$$

$$= \cos(2x(t - t_0))$$

$$\implies S\{x(t - t_0)\} = y(t - t_0)$$

Since both sides are equal, the system is time-invariant.

Therefore, the system $S\{x(t)\} = \cos(2x(t))$ is non-linear but time-invariant

8.3 $x(t) \rightarrow \mathbf{System(c)} \rightarrow t$

Solution.

1. Check for linearity: Let $x_1(t)$ and $x_2(t)$ be two input signals, consider,

$$t \neq (a+b)t$$

$$= a \cdot t + b \cdot t$$

$$\Longrightarrow S\{ax_1(t) + bx_2(t)\} \neq aS\{x_1(t)\} + bS\{x_2(t)\}$$

Since both sides are not equal, the system is non-linear.

2. Check for time invariance: Let x(t) be an input signal and t_0 be a time shift, consider,

$$t \neq t - t_0$$

$$\implies S\{x(t - t_0)\} \neq y(t - t_0)$$

Since both sides are not equal, the system is time-variant.

Therefore, the system $S\{x(t)\}=t$ is both non-linear and time-variant

8.4
$$x(t) \rightarrow \mathbf{System(d)} \rightarrow x(t) + t$$

Solution.

1. Check for linearity: Let $x_1(t)$ and $x_2(t)$ be two input signals, consider,

$$ax_1(t) + bx_2(t) + t \neq a[x_1(t) + t] + b[x_2(t) + t]$$

$$\implies S\{ax_1(t) + bx_2(t)\} \neq aS\{x_1(t)\} + bS\{x_2(t)\}$$

Since both sides are not equal, the system is non-linear.

2. Check for time invariance: Let x(t) be an input signal and t_0 be a time shift, consider,

$$x(t-t_0) + t \neq x(t-t_0) + t - t_0$$

$$\implies S\{x(t-t_0)\} \neq y(t-t_0)$$

Since both sides are not equal, the system is time-variant.

Therefore, the system $S\{x(t)\} = x(t) + t$ is both non-linear and time-variant