

Machine learning operations: Machine learning plus development and operations

Experiment

Data acquisition Business understanding Initial modeling

Develop

Modeling and testing Continuous integration Continuous deployment

Operate

Continuous delivery Data feedback loop System and model monitoring

Scale, Cost, Reliability, HA, DR, Backup, Monitoring

Code Repo, DevOps, Agile

Why do we Need MLOPS

- Streamline process
- IT Friendly
- IT Governance to manage and monitor multiple projects
- Framework for deployment
- Easy to use templates
- Structure to the code for deployment for various environments
- Common pattern across multiple projects

Azure Machine Learning (2 of 4)

Enterprise-grade machine learning service to build and deploy models faster

The ML Lifecycle

Data Storage

What is Azure Machine Learning Service?

Set of Azure Cloud Services

AML Studio or Interface of your choice

(Notebooks, Designer, AutoML, DSVM, VS Code)

That enables you to:

- ✓ Prepare Data
- ✓ Build Models
- ✓ Train Models

- ✓ Manage Models
- ✓ Track Experiments
- ✓ Deploy Models

Azure ML Service can implement the end-to-end ML lifecycle

Workflow Steps

- a) Develop machine learning training scripts in R, Java, Julia or C# using an editor of your choice Designer, Notebooks, VS Code, Jupyter etc.
 - b) Alternatively, use AutoML for no code
 - c) Create and configure a compute target
 - d) Submit the scripts to the compute target to run in that environment. The script runs are saved to an experiment.
 - e) Review experiment for logged metrics from the current and past runs. If the metrics do not indicate a desired outcome, loop back to step a) and iterate on your scripts.
- Once a satisfactory run is found, register the persisted model in the model registry.
- 3. Develop a scoring script.
- 4. Create an Azure ML environment that captures the dependencies to deploy the model.
- Deploy the model using Endpoints
- 6. Monitor the model in production and identify when further improvements / adjustments are needed including model and data drift.

HOW THE ROLES FUNCTION IN CUSTOMER

Matrix

If you take a look at the RACI chart for EDSP you'll notice two things immediately – first, the Account team is involved in every stage in the process, they should never be kept out of the loop. Second, accountability for the process is spread across several different roles, so teamwork and communication is essential. Although there are certain prescribed points information handoff, this process will work best with non-sensitive information being granted as freely as possible to all involved.

R Responsible

A Accountable C Consulted I Informed

	Data Scientist	Business SME	Data Engineer	Business Owner	ML Engineer/CI /CD	IT – Azure/ Security
Data Engineering	C	C	R		0	0
ML Model	R	A	•	A	•	0
Prod Code	•	•	C	0	R	0
MLOps		•	A	•	R	C
Business analyst/ Validate	A	R	A	R	0	0
Prod Deploy	C	0	0	0	R	A

MLOps

MLOps == How to bring ML to production

Bring together people, process, and platform to automate ML-infused software delivery & provide continuous value to our users.

People

Blend together the work of individual engineers in a repository.

Each time you commit, your work is automatically built and tested, and bugs are detected faster.

Code, data, models and training pipelines are shared to accelerate innovation.

Process

Provide templates to bootstrap your infrastructure and model development environment, expressed as code.

Automate the entire process from code commit to production.

Platform

Safely deliver features to your customers as soon as they're ready.

Monitor your pipelines, infrastructure and products in production and know when they aren't behaving as expected.

What does MLOps look like?

Develop & train model

that solves a real business problem

Package model

so you can use it somewhere else

Validate model behavior

functionally, in terms of responsiveness & regulatory compliance

Deploy model

use the model to make predictions

Monitor model

behavior & business value, know when to replace / deprecate a stale model

Components of the MLOps lifecycle

MLOps Benefits

Automation / Observability

Generate and deploy code drives

Pipelines are reproducible and verifiable

You can tag and audit all artifacts.

Validation

SWE Best Practices for Quality Control

Offline comparison of model quality

Minimize bias and provide descriptiveness

Reproducibility/Auditability

Controlled rollout capabilities

Live comparison of predicted and expected performance

Results feedback to monitor drift and improve model

== VELOCITY and SECURITY (For ML)

MLOps Workflow

MLOps Maturity stages

Maturity Level	Training Process	Release Process	Integration into app
Level 1 – No MLOps	Untracked, file is provided for handoff	Manual, hand-off	Manual, heavily DS driven
Level 2- Training Operationalized	Tracked, run results and model artifacts are captured in a repeatable way	Manual release,clean handoff process, managed by SWE team	Manual, heavily DS driven, basic integration tests added
Level 3 – Release Operationalized	Tracked, run results and model artifacts are captured in a repeatable way	Automated, CI/CD pipeline set up, everything is version controlled	Semi-automated, unit and integration tests added, still needs human signoff
Level 4 – Training & Release Operationalized Together	Tracked, run results and model artifacts are captured in a repeatable way, retraining set up based on metrics from app	Automated, CI/CD pipeline set up, everything is version controlled, A/B testing has been added	Semi-automated, unit and integration tests added, may need human signoff

Level 1 – No MLOps

Interactive, exploratory, get to something useful.

Level 2 – Reproducible Model Training

Version code, data, ensure model can be recreated

Level 3 – Managed Model Operationalization

Package, certify, deploy

Level 4 – E2E MLOps

Data Lake

Generalized DS MLOps process

Quota

GitHub Actions Integration

Create AzureML Workspace
Manage Azure Compute
Run Jobs in AzureML
Register Models in AzureML
Deploy Models in AzureML
http://mlops-github.com/actions

Getting started with Github Actions + MLOps

<u>Azure/azureml-template: Official Azure Machine</u> <u>Learning template for GitHub</u>

A light-weight template to use to demonstrate how to automate your ML lifecycle using Git hub actions.

Other examples: <u>GitHub - Azure/azureml-examples: Official community-driven Azure Machine Learning examples, tested with GitHub Actions</u>

Examples of MLOps Deployment Patterns

Common Deployment& Orchestration Patterns

Data Factory | DataLake | DevOps Pipeline

Leveraging MLOps to ship recommender systems.

Azure Arc enabled Kubernetes GitOps Flow

