Learning to Play Games with Deep Reinforcement Learning

Stefan Knerr
Nantes Machine Learning MeetUp
7 September 2020

Games

Atari console games

Complicated long-term strategies.

Realistic Worlds

Advantages of Games for Al Research

Infinite supply of *fully* labeled data

Controllable and replicable

Low cost per sample

Faster than real-time

Less safety and ethical concerns

Complicated dynamics with simple rules.

Short history of Game Al

- Chess, Checkers, ...: efforts since the 50ies
- Backgammon: NeuroGammon (Gerald Tesauro, IBM), advanced level, 1989/1995
- Chess: DeepBlue (IBM) wins against Garry Kasparov (world champion), 1997
- Jeopardy: Watson (IBM) wins against human champions, 2011
- Atari: (Deep Mind), 2014
- Go: AlphaGo (Deep Mind) wins against Lee Sedol (world champion), 2016
- ... Starcraft, Dota
- Game AI is one of the highlights of Deep Learning.

Rémi Coulom, creator of *Crazy Stone* Go program presented twice at our MeetUp.

Crazy Stone was one of the worldwide best Go programs prior to Deep Mind's AlphaGo.

We will focus here on Go, which is:

- Competitive: you want to win
- Deterministic: no randomness, no dices
- 2-player
- Turn-taking
- Zero-sum: what one player wins, the other player looses
- Perfect information: both players have all information on status of game

Other such games: chess, go, checkers, shogi, backgammon, ...

Adversarial Search

- Search in game tree
- Find most probable path to goal state starting from initial state
- Exhaustive search: Minimax
- alpha-beta pruning

Go search tree:

breadth^{depth} $\approx 200^{150}$ possible sequences of moves! Exhaustive search is infeasible.

Lufei Ruan vs. Yifan Hou (2010)

Current game situation

Deep Reinforcement Learning and Games

- Idea: explore interesting branches in game tree → use future situations in game tree which are easier to evaluate (e.g. game won/lost).
- Model problem as Markov Decision Process
- Actor: policy for action a given state s: $\pi(a,s) = P(a \mid s)$
- Critic: value = discounted reward r expectation: $V_{\pi}(s) = E[\sum_{t=0}^{T} \gamma_t r_t \mid s_0 = s]$
- Often $r_t = 0$ except for $r_T = \pm 1$ depending on win or loss.

AlphaGo (Deep Mind, 2016)

- Step 1: Supervised learning of 2 policy networks (SL policy, rollout)
 - Deep Convolutional Network (13 layers)
 - Data Set: 30 M positions of human games from KGS (6 Dan or better)
 - Input = actual board position (features), Output = next move $\rightarrow P(a \mid s)$ distribution
 - SGD on Maximum Likelihood

- Step 2: Reinforcement Learning of policy network with self-play
 - Initialize network with SL policy weights
 - Play games between network and randomly selected previous networks
 - Policy gradient. Reward $r_T = \pm 1$.

- Step 3: Reinforcement Learning of value network with self-play
 - Ideally we want $V_{\pi}(s)$ for the optimal policy π . In practice we estimate $V_{\pi}(s)$ for the best policy network we have.
 - Similar network structure as policy network, single output.
 - Regression with SGD on MSE.
 - Avoid overfitting by sampling positions from many different games.

Monte Carlo Tree Search (MCTS)

- Simulate games using policy net $P(a \mid s)$. Explore mostly high P branches (\neq random).
- Each node in tree stores Q(s, a) value and visit count N(s, a).
- Start at root node. Each node selects action $a_t = argmax(Q(s_t, a) + \frac{P(s, a)}{1 + N(s, a)})$, balancing exploitation versus exploration during learning.
- At leaf node expand and evaluate: $Q(s_t, a) = \text{value net} + \text{random MC}$ with rollout net.
- Update all visited nodes.

Monte Carlo Tree Search (simplified)

AlphaZero

- Like AlphaGo, MCTS intelligently guided by NN (policy + value)
- No initial supervised learning ("zero"), only self-play
- No handcrafted features, only stone positions for last 8 half-moves of both players
- Single 2-headed NN for policy and value (Multi-task Learning)
- ~ 40 layer ResNet with Conv blocks + 2/3 layers for policy/value head

MCTS in AlphaZero

- Very clever!
- MC during learning, not play
- Teach NN to approximate policy and value of MC
- Moves are selected by max Q value as in AlphaGo

Elo Rating of AlphaGo

200 point gap = 75% probability of winning

MuZero

• Real world: dynamics of environment is often complex and unknown. Perfect simulator not available.

value/policy

model learning

planning

model

acting

experience

- Games: rules not supplied
- Only self-play with model based planning and RL / MC
- Model only learns what is necessary for planning: a_t , v_t , r_t
- 3 components:
 - Representation function h: board → latent state representation
 - Dynamics function g: state s_t and candidate action $a_t \rightarrow state s_{t+1}$ and reward r_t
 - Prediction function f: policy π_t (next move) and value v_t (who wins)
- → SOTA on 57 Atari games
- > matched AlphaZero for Go, Chess, Shogi

Dota 2

OpenAl Five

- multiplayer online battle arena (MOBA) video game (Valve)
- Proximal Policy Learning (RL); self-play
- continuous observation & action spaces; partially observable state space; long run (20K)
- separate LSTM networks to learn each hero
- 256 GPUs and 128,000 CPU cores trained for months, accumulating 180 years of game experience each day
- beats 2018 *Dota 2* champion team in a 2019 series of games

Conclusions

- Very impressive super-human performance for games like Chess, Go, checkers, Atari, ...
- Ideal application for Deep Learning as training data can often be easily generated in self-play
- Deep Learning is a data inefficient approach. Humans learn very differently (concept learning)
- Black boxes, difficult to interpret. Different from divide & conquer problem solving.
- Community moves to more complex games: Poker, Minecraft, Starcraft, car racing,
 Dota 2, ...

References

- Yuandong Tian, Facebook, ACMMM17.tutorial
- Bruno Bouzy et al., Computer Go: an Al Oriented Survey, 2001
- Volodymyr Mnih et al., Playing Atari with Deep Reinforcement Learning, NIPS, 2014
- David Silver et al., Mastering the Game of Go with deep neural networks and tree search, Nature, 2016
- David Silver et al., Mastering the Game of Go without Human Knowledge, 2017
- Julian Schrittwieser et al., Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model, arXiv, Nov 2019

Back-up slides

Reinforcement Learning

Reinforcement Learning

- Difficult or impossible to evaluate present situations \rightarrow use future situations in game tree which are easier to evaluate (e.g. game won/lost).
- Model-free RL methods:
 - sample actions from policy + policy gradient,
 - state-value function (Q-Learning),
 - combination of both: Actor-Critic
 - Games ok, real world (needs massive amounts of data)
- Model-based RL: MDP with 2 components:
 - state transition model, predicting the next state,
 - reward model, predicting the expected reward during that transition.
- On-policy, off-policy
- Multi-agent
- Experience Replay (paper with Bengio 2020)

AlphaGo

- Deep Mind (Google, London) develops Go software based on NN, RL, and MC.
- 2015 AlphaGo trained by Fan Hui (European Go champion)
- 2016: AlphaGo beats Go legend Lee Sedol 4 − 1
- 2017: AlphaGo Zero, only self-play, beats AlphaGo Master 89 - 11
- One of the highlights of modern Al.

AlphaGo Feature Description of Board

Extended Data Table 2 | Input features for neural networks

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0
Player color	1	Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).

How good is AlphaGo?

MuZero

