Chapitre IV

Algèbre linéaire Partie 1

L'algèbre linéaire est la branche des mathématiques qui s'intéresse aux espaces vectoriels et aux transformations linéaires

Un **espace vectoriel** est un ensemble d'objets, appelés **vecteurs**, que l'on peut **additionner entre eux**, et que l'on peut **multiplier par un scalaire**

Soit K un corps commutatif (ensemble muni de 2 opérations binaires rendant possible l'addition, la soustraction, la multiplication et la division).

Un espace vectoriel sur K est un ensemble E, dont les éléments appelés vecteurs, muni de deux lois:

- Une loi de composition interne « + »: E² → E appelée addition ou somme vectorielle
- Une loi de composition externe « . »: K × E → E, appelée multiplication par un scalaire

- La loi « + » est commutative: u + v = v + u
- La loi « + » est associative: (u + v) + w = u + (v + w)
- La loi « + » admet un élément neutre: $O_E + v = v$
- Tout vecteur v a un opposé, noté -v: $v + (-v) = 0^E$
- La loi « . » est distributive
 - $\lambda . (u + v) = \lambda . u + \lambda . v$
 - $(\lambda + \mu) . u = \lambda . u + \mu . u$
- La loi « . » vérifie une associativité mixte: $(\lambda.\mu)$. $u = \lambda.(\mu.u)$
- La loi « . » admet un neutre: 1.u = u

Exemples:

- Espace vectoriel trivial ou nul: {0}
- $\mathbb R$: l'addition vectorielle est l'addition dans $\mathbb R$ et la multiplication par un scalaire est la multiplication dans $\mathbb R$

Vecteurs et Matrices

Nous allons limiter notre étude des espaces vectoriels aux **vecteurs** et **matrices**

$$V = \begin{bmatrix} v_1 \\ \vdots \\ v_p \end{bmatrix}$$

$$M = \begin{bmatrix} m_{11} & \cdots & m_{1q} \\ \vdots & \ddots & \vdots \\ m_{p1} & \cdots & m_{pq} \end{bmatrix}$$

Introduction

La poste offre différents tarifs selon le poids de l'envoi et la « vitesse » de traitement des lettres et courriers:

Lettre service rapide			
Jusqu'à	Tarif		
20g	0,46 €		
50g	0,69€		
100g	1,02 €		

Lettre recommandée					
Jusqu'à	Tarif 1	Tarif 2	Tarif 3		
20g	2,82 €	3,35 €	4,12 €		
50g	3,05 €	3,58€	4,34 €		
100g	3,38 €	3,92 €	4,68 €		

Introduction

Le tarif pourrait être regroupé dans un seul tableau comme suit

Lettre : Tarif						
Jusqu'à	Normal	Tarif 1	Tarif 2	Tarif 3		
20g	0,46 €	2,82 €	3,35 €	4,12 €		
50g	0,69€	3,05 €	3,58€	4,34 €		
100g	1,02 €	3,38 €	3,92 €	4,68 €		

Ce tableau de 3 lignes et 4 colonnes est une **matrice** de 3 lignes et 4 colonnes

Introduction

Nous notons la matrice sous la forme suivante:

$$T = \begin{pmatrix} 0,46 & 2,82 & 3,35 & 4,12 \\ 0,69 & 3,05 & 3,58 & 4,34 \\ 1,02 & 3,38 & 3,92 & 4,68 \end{pmatrix}$$

Définition

Soient $n, p \in \mathbb{N}^*$, une matrice de type (n, p) à coefficients dans \mathbb{R} est un tableau de nombre réels à n lignes et p colonnes.

L'ensemble de ces matrices se note $M_{n,p}(\mathbb{R})$

Exemple:

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 1 & 4 \end{pmatrix} \in M_{2,3}(\mathbb{R}) \qquad J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in M_3(\mathbb{R}) \qquad K = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \in M_{3,1}(\mathbb{R})$$

Notation

On notera

$$A = (a_{i,j})_{0 < i \le n, 0 < j \le p}$$

ou

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix} \in M_{n,p}(\mathbb{R})$$

Notation

Colonne j
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & a_{ij} & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix} \in M_{n,p}(\mathbb{R})$$

Une matrice à n lignes et p colonnes est dite d'ordre (n,p) ou de dimension $n \times p$

Si n=p, on parle de matrice carrée et l'on note $M_n(\mathbb{R})$ leur ensemble.

 $(a_{ii})_{0 < i \le n}$ forme la diagonale de la matrice

$$J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in M_3(\mathbb{R})$$

Une matrice carrée est dite diagonale si $a_{ij} = 0, \forall i \neq j$

$$J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R})$$

Attention, la diagonale n'est que dans un seul sens. La matrice suivante n'est pas diagonale

$$J = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 3 & 0 \\ 2 & 0 & 0 \end{pmatrix} \in M_3(\mathbb{R})$$

Une matrice carrée est dite triangulaire supérieure si $a_{ij}=0, \forall i>j$

$$J = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix}$$

Une matrice carrée est dite triangulaire inférieure si $a_{ij} = 0$, $\forall i < j$

$$J = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 5 & 1 \end{pmatrix}$$

Une matrice carrée est dite identité si $a_{ij}=0$, $\forall i\neq j$ et $a_{ii}=1$

$$J = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R})$$

Deux matrices $A = (a_{ij})$ et $B = (b_{ij})$ sont égales si $a_{ij} = b_{ij}$, $\forall i, j$

La matrice nulle est la matrice dont tous les coefficients sont nuls

Exemples

Donner un exemple

- Une matrice carrée d'ordre 5
- Une matrice d'ordre (3,4)
- Une matrice diagonale d'ordre 4 avec une diagonale formée de '2'
- Une matrice triangulaire supérieure d'ordre 4

Addition et multiplication par un réel

Soient
$$\lambda \in \mathbb{R}$$
 , $A = \left(a_{ij}\right)$ et $B = \left(b_{ij}\right) \in M_{n,p}(\mathbb{R})$

$$\bullet A + B = (a_{ij} + b_{ij}) \in M_{n,p}(\mathbb{R})$$

•
$$\lambda A = (\lambda a_{ij}) \in M_{n,p}(\mathbb{R})$$

Propriétés

L'addition et la multiplication par un réel héritent automatiquement des propriétés définies sur les espaces vectoriels:

- L'existence d'un neutre pour l'addition (Matrice nulle) et la multiplication (1)
- Commutativité de l'addition
- Associativité de l'addition
- Distributivité de la multiplication
- •

Exemples

Soient
$$A = \begin{pmatrix} 1 & 3 \\ 5 & 2 \\ 0 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ 1 & 3 \end{pmatrix}$,

- A + B =
- 5A =
- 2(A+B)=

Exemples

•
$$A + B = \begin{pmatrix} 1+0 & 3+1 \\ 5+0 & 2+2 \\ 0+1 & 4+3 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 5 & 4 \\ 1 & 7 \end{pmatrix}$$

•
$$5A = \begin{pmatrix} 5.1 & 5.3 \\ 5.5 & 5.2 \\ 5.0 & 5.4 \end{pmatrix} = \begin{pmatrix} 5 & 15 \\ 25 & 10 \\ 0 & 20 \end{pmatrix}$$

•
$$2(A + B) = 2\begin{pmatrix} 1+0 & 3+1 \\ 5+0 & 2+2 \\ 0+1 & 4+3 \end{pmatrix} = 2\begin{pmatrix} 1 & 4 \\ 5 & 4 \\ 1 & 7 \end{pmatrix} = \begin{pmatrix} 2.1 & 2.4 \\ 2.5 & 2.4 \\ 2.1 & 2.7 \end{pmatrix} = \begin{pmatrix} 2 & 8 \\ 10 & 8 \\ 2 & 14 \end{pmatrix}$$