Lab 3: Counters

Objective

- ✓ Review synchronous sequential circuits.
- ✓ Review counter logics.

Prerequisite

- ✓ Fundamentals of logic gates.
- ✓ Clocking concepts
- ✓ Logic modeling in Verilog HDL.

Pre-labs

- 1 Consider a 4-bit synchronous binary up counter.
 - 1.1 Draw the logic diagram
 - 1.2 Construct Verilog RTL representation for the logics with verification.

Experiments

- Frequency Divider: Construct a 27-bit synchronous binary counter. Use the MSB of the counter, we can get a frequency divider which provides a $1/2^{xy}$ frequency output (f_{out}) of the original clock ($f_{crystall}$, 100MHz). Construct a frequency divider of this kind.
 - 1.1 Write the specification of the frequency divider.
 - 1.2 Draw the block diagram of the frequency divider.
 - 1.3 Implement the frequency divider with the following parameters.

I/O	f _{crystal}	f_{out}
Site	W5	U16

- 2 Frequency Divider: Use a count-for-50M counter and some glue logics to construct a 1 Hz clock frequency. Construct a frequency divider of this kind.
 - 2.1 Write the specification of the frequency divider.
 - 2.2 Draw the block diagram of the frequency divider.
 - 2.3 Implement the frequency divider with the following parameters.

I/O	$f_{\scriptscriptstyle crystal}$	$f_{\scriptscriptstyle out}$
Site	W5	U16

Construct a 4-bit synchronous binary up counter $(b_3b_2b_1b_0)$ with the 1-Hz clock frequency from exp2 and use 4 LEDs for display.

I/O	$f_{ extit{crystal}}$	b_{3}	b_{2}	$b_{\scriptscriptstyle 1}$	b _o
Site	W5	V19	U19	E19	U16

4 Construct a single digit BCD up counter with the divided clock as the clock frequency and display on the seven-segment display.

- 4.1 Construct a BCD up counter.
- 4.2 Construct a BCD-to-seven-segment display decoder.
- 4.3 Combine the above two together.
- 5 (Bonus) Construct a 30 seconds count down timer (stop at 00).

TA: _____