ARHITECTURA SISTEMELOR DE CALCUL

UB, FMI, CTI, ANUL III, 2022-2023

Magistrale USB (continuare)

PREZENTAREA GENERALĂ A ARHITECTURII USB

Un sistem USB constă dintr-o **gazdă** și un număr de **dispozitive** care funcționează toate împreună pe aceeași bază de timp și interconectare logică.

Sistemul USB poate fi descris prin trei zone definitorii:

- Interconectare USB
- Dispozitive USB
- Gazdă USB
- Interconectarea USB este modul în care dispozitivele USB sunt conectate și comunică cu gazda.
 - Zona de interconectare include următoarele:
 - Topologia
 - Modele de flux de date
 - Planificarea USB

Exemple de topologie USB

Alimentarea dispozitivelor USB

Dispozitive alimentate prin magistrala:

1. de putere redusă

- Consum mai mic de 100 mA
- Compatibile cu alimentarea prin magistrala

2. de putere ridicată

- Între 100 mA și 500 mA
 - Porturile cu alimentare completă pot alimenta aceste dispozitive (Full-powered ports)
- Pot fi proiectate pentru a avea propria lor sursa de putere
- Opereaza în trei moduri:
 - Configurat (500 mA)
 - Neconfigurat (100 mA)
 - Suspendat (about 2.5 mA)

Alimentarea dispozitivelor USB

Huburi USB

Alimentate de magistrala

- Nu este necesară o sursă de alimentare suplimentară
- Trebuie conectat în amonte la un port care poate oferi 500 mA
- Porturile din aval pot furniza doar 100 mA
 - Numărul de porturi este limitat la patru
 - Suportă numai dispozitive cu consum redus de energie

Auto-alimentate

- Suportă 4 dispozitive de putere ridicata
- Suportă 4 hub-uri USB alimentate prin magistrală
- Majoritatea hub-urilor cu 4 porturi sunt alimentate dual

Topologia USB

Huburile pot fi folosite pentru extinderea magistralei

Endpoints

- Cea mai simplă formă de comunicare USB este prin intermediul unui punct de capat (endpoint)
 - Este unidirecționala: se transportă date într-o singură direcție
 - De la gazdă la dispozitiv (punctul final OUT)
 - De la dispozitiv la gazdă (punct final IN)

Endpoints

În USB, informațiile circulă între gazdă și dispozitiv. Punctele de capat (*Endpoints*) sunt sursa sau "aspiratorul" informațiilor într-un canal de comunicare. (canal logic)

Pe un periferic sunt atasate Endpoint-uri in perechi (*in* + *out*). Cele două *Endpoints* din pereche au același număr (index), dar direcții diferite.

La conectarea dispozitivului numai *Endpoint-ul* implicit **0** este accesibil. Acest *Endpoint* primește cerere de control și de stare de la gazdă în timpul procesului de enumerare.

Celelalte *Endpoints* sunt declarate conform cerințelor după configurarea dispozitivului.

Endpoint este unitatea fundamentală de comunicare în USB.

Toate datele sunt transferate prin conducte virtuale între gazdă și aceste endpoints. Toată comunicarea dintre o gazdă USB și un dispozitiv USB este adresată unui endpoint specific de pe dispozitiv. Fiecare endpoint al dispozitivului este un receptor sau un emițător de date unidirecțional; fiecare este specificat ca expeditor sau receptor de date de la gazdă.

O conductă (pipe) reprezintă o cale de date între gazdă și dispozitiv. O conductă poate fi unidirecțională (constând dintr-un singur punct final) sau bidirecțională (constând din două puncte finale în direcții opuse).

O conductă specială este conducta de control implicită. Acesta constă atât din endpoint-ul 0 de intrare, cât și endpoint-ul 0 de ieșire. Este obligatorie pentru toate dispozitivele și trebuie să fie disponibila imediat după ce dispozitivul este alimentat. Gazda folosește această conductă pentru a identifica dispozitivul și punctele sale finale și pentru a configura dispozitivul.

Endpoints nu sunt toate la fel. Endpoints specifică cerințele lor de lățime de bandă și modul în care transferă date.

Exista 4 tipuri de puncte de capat

- de CONTROL
- de INTRERUPERE
- pentru transfer de BLOCURI (BULK)
- pentru transfer IZOCRON

CONTROL

- Sunt folosite pentru configurarea dispozitivului, recuperarea informațiilor și transmiterea stării dispozitivului sau trimiterea comenzilor către dispozitiv
- Fiecare dispozitiv are un punct final de control numit punct final 0
 - Este folosit de nucleul USB pentru a configura dispozitivul la momentul inserării
 - Transferurile sunt garantate cu lățime de bandă rezervată

INTERRUPT

- Transfera cantități mici de date la o rată fixă
- Este utilizat pentru tastatura si mouse USB
- De asemenea, este utilizat pentru a controla dispozitivul
- Nu este folosit pentru transferuri mari
- Lățime de bandă rezervată garantată

BULK

- Transfer de cantități mari de date
- Fără pierderi de date
- Nu este garantat timpul
- Un pachet BULK ar putea fi împărțit pe mai multe transferuri
- Folosit pentru imprimante, stocare și dispozitive de rețea

IZOCRON

- Transfera o cantitate mare de date
- Pentru cantitati de date în timp real, dispozitive A/V
- Spre deosebire de punctele finale BULK, nu există garanții (pierderi potențiale de date)

- Punctele finale CONTROL și BULK sunt utilizate pentru transferuri de date asincrone
- Punctele finale INTRERUPT și ISOCHRON sunt pentru transferuri periodice (repetate) cu lățime de bandă rezervată

INTERFETE

- Punctele finale USB sunt grupate în interfețe
 - O interfață gestionează un singur tip de conexiune logică (E.g., un mouse)
 - Unele dispozitive au mai multe interfețe
 - E.g., un speaker
 - O interfață pentru butoane și una pentru fluxul audio
- Interfața USB poate avea setări alternative
 - E.g., setări diferite pentru a rezerva diferite lățimi de bandă pentru dispozitiv

CONFIGURATII

- Interfețele USB sunt grupate în configurații
- Un dispozitiv USB poate avea mai multe configurații
 - Doar una poate fi activa la un moment dat
 - Poate comuta între ele

EXEMPLU DE DISPOZITIV WEBCAM USB

Clasa dispozitivului

Fiecare dispozitiv USB se incadreaza intr-o clasă de dispozitive care definește funcționalitatea și scopul dispozitivului respectiv.

Gazda încarcă driverul potrivit în funcție de clasa dispozitivului. Cele mai frecvente clase de dispozitive sunt:

Common USB Device Classes			
Class	Usage	Description	Examples
01h	Interface	Audio	Speaker, microphone, sound card
03h	Interface	Human Interface Device	Keyboard, mouse, joystick
07h	Interface	Printer	Laser printer, inkjet printer, CNC machine
08h	Interface	Mass storage	USB flash drive, memory card reader, digital audio player, digital camera, external
09h	Device	USB hub	Full bandwidth hub
0Bh	Interface	Smart Card	USB smart card reader
0Dh	Interface	Content Security	Finger Print Reader
0Eh	Interface	Video	Webcam

