Automatic analysis and comparison of musical performances

Johanna Devaney

Assistant Professor of Music Theory and Cognition

School of Music

The Ohio State University

Introduction

Motivations and challenges.

1

Extracting Performance Data

MIDI-audio alignment for automatic analysis of recorded performances.

2

Experiments

Studies of intonation in the singing voice.

3

Conclusions

4

Introduction

Why study musical performance?

- Performances convey musicians' interpretations
- Performances are what listeners actually hear
- Studying performance can help us gain insight into
 - how an individual's performance practice evolves as they gain more experience
 - how performance practices evolve over time
- Observing how performance practices relate to musical materials can help us develop models of "expressive" performance

Introduction

What do I mean by studying performance?

- Using (live) recorded performances
- Measuring performance parameters
 - timing
 - dynamics
 - tuning
 - timbre
- Assessing relationship between performance of various parameters and musical materials

Motivations and challenges.

Extracting Performance Data

MIDI-audio alignment for automatic analysis of recorded performances.

2

Experiments

Studies of intonation in the singing voice.

3

Conclusions

4

AMPACT

Automatic Music Performance and Comparison Toolkit

www.ampact.org

Monophonic audio

Identifying onsets and offsets

- Multi-pass dynamic time warping (DTW)/hidden
 Markov model (HMM) algorithm
- ▶ HMM Observations: Periodicity, Power, and F₀

Improved median alignment error from 52 ms to 26 ms

Polyphonic audio

Identifying asynchronies between voices

- Multi-pass DTW/HMM algorithm
- HMM Observations: power measurements from a constant-Q filter bank decomposition of the signal

Polyphonic audio

Identifying asynchronies between voices

Improved median alignment from 118 ms to 77 ms for onsets and from 75 ms to 69 ms

Characterizing F₀ Trajectories

Modelling slope and curvature of the evolution of a note's fundamental frequencies with the first two coefficients of the Discrete Cosine
 Transform

Motivations and challenges.

Extracting Performance Data

MIDI-audio alignment for automatic analysis of recorded performances.

2

Experiments

Studies of intonation in the singing voice.

3

Conclusions

4

Experiments with Performers

Overview

- Intonation in trained singers in the Western Art Music tradition
- Solo and small ensemble (2-4 voices)

Experiments with Performers

Research questions

Intonation data analyzed in regards to

- Tuning systems
- Direction (ascending versus descending)
- Musical context
- Effect of training

Solo Singing

Overview

- Schubert's "Ave Maria"
 - 3x a cappella & 3x accompanied
- ▶ 12 solo singers
 - 6 non-professional singers: undergraduate vocal majors
 - 6 professional singers: possess at least one graduatelevel degree in voice performance
- Melodic semitones and whole tones

Solo Singing

Significant trends

TUNING SYSTEMS

 No strict adherence, on average smaller than equal temperament (more so for semitones than whole tones)

DIRECTION

 Ascending semitones were 7–8 cents larger on average than descending semitones

MUSICAL CONTEXT

Non-pros tended to compress leading tones

EFFECT OF TRAINING

- Pros were more consistent with one another
- Pros' semitones were 6 cents larger on average
- Non-pros' accompanied semitones were 3 cents larger than a cappella semitones

Three-Part Singing

Overview

- Chord progression by Giambattista Benedetti
- 4 ensembles
- Melodic whole tones

Three-Part Singing

Significant trends

- TUNING SYSTEMS: No strict adherence, generally closer to equal temperament
- ▶ DIRECTION: no significant difference
- MUSICAL CONTEXT: melodic whole tones sung over a P5 were 15 cents larger on average than those sung over a M3

Four-Part Singing

Overview

- Praetorius' "Es ist ein Ros entsprungen"
- 3 ensembles
- Melodic semitone and whole tone intervals
- Vertical intervals in cadential contexts

Four-Part Singing

Significant trends

TUNING SYSTEMS

 No strict adherence, on average smaller than equal temperament (more so for semitones than whole tones)

DIRECTION

- Semitones only one ensemble showed a significant difference (ascending 8 cents larger)
- Whole tones ascending 4 cents smaller

MUSICAL CONTEXT

- Melodic intervals no effect of leading tone function
- Vertical intervals in cadential contexts were significantly closer to Just Intonation than those in non-cadential contexts

Two-Part Singing

Overview

 Semitone pattern sung against a recorded version of the lower-line that was tuned in three different systems at two pitch heights

- 6 of 12 subjects (analysis of remaining 6 subjects ongoing)
 - 3 non-professionals: amateur singers
 - 3 professionals: possess at least one graduate-level degree in voice performance
- Melodic semitones in vertical m3, TT, P5, m6, and P8 contexts

Two-Part Singing

Exercises

Two-Part Singing

Significant trends

- TUNINGS SYSTEM: No strict adherence, on average smaller than equal temperament
- DIRECTION: Ascending semitones were 21 cents larger on average than descending semitones
- ▶ **EFFECT OF TRAINING:** Non-pros' semitones were 17 cents smaller on average than pros' semitones
- ▶ DETUNING: no significant effect
- VERTICAL INTERVAL CONTEXT: Semitones sung a perfect octave above the lower voice were 7 cents larger on average than those sung above other intervals
 - no significant differences for other intervals

Summary of Results

Solo vs. ensemble singing

- No overall adherence to a tuning system was observed
- A general trend of ascending semitones being larger than descending intervals was found in both solo and ensemble singing
- Results are variable for influence of specific vertical intervals on melodic intonation
 - 3-part experiment melodic intervals sung over a P5 versus M3 showed a significant difference
 - 2-part experiment melodic intervals only showed a significant difference when sung over a P8
 - Detuning of accompaniment did not influence melodic intonation in the short exercises studied

Next Steps

Where to go from here

Perform experiments on larger collections of recordings

- Develop more robust tools for automatic extraction of performance data from recordings
 - making the current tools more reliable and more accessible to other researchers (crowd-sourcing to improve algorithms)
- Develop a representation of symbolic music for making automatic comparisons between different pieces

Motivations and challenges.

Extracting Performance Data

MIDI-audio alignment for automatic analysis of recorded performances.

2

Experiments

Studies of intonation in the singing voice.

3

Conclusions

4

Summary

Where we have been

This talk has

- discussed some of the challenges of automatically extracting performance data from recordings
- summarized some of my recent work on vocal intonation practices in the western art music tradition

Acknowledgements

- School of Music and College of Arts and Sciences (OSU)
- Center for New Music and Audio Technologies (CNMAT)
- Distributed Digital Music Archives and Libraries (DDMAL)
- Centre for Research in Music Media and Technology (CIRMMT)
- Fonds de recherche sur la société et la culture (FQRSC)
- Social Sciences and Humanities Research Council of Canada (SSHRC)
- Advancing Interdisciplinary Research in Singing (AIRS)

Thank you!

References

Devaney, J. 2014. Estimating onset and offset asynchronies in polyphonic score-audio alignment. *Journal of New Music Research.* (In press).

Devaney J., M. Mandel, and D. Ellis. 2009. Improving MIDI-audio alignment with acoustic features. In *Proceedings of WASPAA*. 45–8.

Devaney, J., M. Mandel, D. Ellis, and I. Fujinaga. 2011. Automatically extracting performance data from recordings of trained singers. *Psychomusicology: Music, Mind and Brain* 21 (1–2).

Devaney, J., M. I. Mandel, and I. Fujinaga. 2012. Study of Intonation in Three-Part Singing using the Automatic Music Performance Analysis and Comparison Toolkit (AMPACT). *Proceedings of ISMIR*. 511–6.

Devaney, J., J. Wild, and I. Fujinaga. 2011 Intonation in solo vocal performance: A study of semitone and whole tone tuning in undergraduate and professional sopranos. In *Proceedings of the International Symposium on Performance Science*. 219–24.

Summary of Results

Comparison to earlier work

- Schoen (1922) solo
 - sharper than equal temperament X
 - ascending intervals larger than descending intervals

- deviation from equal temperament
- Jers and Ternstrom (2006) ensemble
 - ascending intervals larger than descending intervals
- Vurma and Ross (2006) solo
 - ascending/descending semitones smaller than EQT
- Howard (2007a, 200b) ensemble
 - tendency towards Just Intonation X
- Vurma (2010) 2-part with synthesized lower voice
 - singers' intonation did not change significantly when the synthesized voice was detuned

Monophonic alignment

DTW prior

A rectangular window with half a Gaussian is placed on on each side over the DTW note position estimates

	5% start	100% start	100% end	5% end
Silence	50% btwn	N-1 Off	N On	50% btwn
(and	N-1 On and			N On and
Breath)	N-1 Off			N Off
Opening Transient	N-1 Off	75% btwn N-1 Off and N On	25% btwn N On and N Off	N Off
Steady State	N-1 Off	N On	N Off	N+1 On
Closing Transient	N On	75% btwn N On and N Off	25% btwn N Off and N+1 On	N+1 On