

一对多通信实现及说明

V1.00_beta

文件修订历史

版本	日期	作者	变更描述
1.00	2020-07-13	成锋	初始版本

目录

一,	背景介绍	4
二,	术语说明	4
三、	协议结构	4
3. 1	交互通信流程	4
3. 2	串口帧格式	5
3. 3	协议结构及定义	5
3.4	协议结构	5
	3.4.1 控制码及数据定义	5
	3.4.1.1 写 ID (Cmd=0x00)	5
	3.4.1.2 读 ID (Cmd=0x01)	6
	3.4.1.3 擦除 ID (Cmd=0x02)	7
	3.4.1.4 写配置 (Cmd=0x03)	7
	3.4.1.5 读配置 (Cmd=0x04)	8
	3.4.1.6 抄表 (Cmd=0x05)	8
四、	工作原理及实现	9
	4.1 工作原理	9
4.2	工作流程图	. 10
	图 4.1-4 接收端通信流程图	10
	图 4.1-4 发射端通信流程图	11
五、	工程文件及移植说明	.12
六、	操作演示	. 12
6. 1	配置节点 ID	. 12
6.2	抄表	. 14
6.3	抄表成功率统计	.14

一、背景介绍

功耗协助客户端进行一对多通信应用,同时满足小数据包唤醒方式,可以实现异频通信;

二、术语说明

类型	定义
Α	字母,向左靠,右部多余部分填空格;
AN	字母和/或数字,左靠,右部多余部分填空格
ANS	字母、数字和/或特殊符号,左靠,右部多余部分填空格
AS	字母和/或特殊符号,左靠,右部多余部分填空格
ASCII-H	ASCII 码的十六进制数,即数字 0-F,其中 A-F 为大写字母
UTF8-H	UTF8 码的十六进制数,即数字 0-F,其中 A-F 为大写字母
GBK-H	GB2312 国标码的十六进制数,即数字 0-F,其中 A-F 为大写字母
BCD	将数字 (N) 压缩为 BCD, 以 Byte 存储
S	特殊符号
YYYY	年
ММ	月
DD	日
нн	时
ММ	分
SS	秒
N	数值,右靠,首位有效数字前充零
В	字节 Byte
V	变长数据

三、协议结构

3.1 交互通信流程

主机:测试上位机软件;

从机:集中器端;

测试交互通讯流程如下图所示,所有测试项的进行遵循主机发起&从机返回的单次握手形式。

3.2 串口帧格式

波特率: 115200 数据位: 8 检验位: 无 停止位: 1

3.3 协议结构及定义

3.4 协议结构

域名	字段名称	字节长度	数据格式	说明
帧头	帧头	B1	HEX	Head=0xAA
	Head			
控制域	RF 类型	B1	HEX	[3:0]低四位表示 RF 种类
	Туре			0x1 LoRa
				0x2 FSK
				高四位默认为 0
	功能码	B1	HEX	0: 主发
	Cmd			1: 从发
				[6:0] 功能码
长度域	数据域长度	B1	HEX	数据域长度,等于零表示无数据域
	Length			
数据域	用户数据	自定义	HEX	多字节传输,高字节优先
	Data			
校验域	和校验码	B1	HEX	校验域: [控制域, 数据域]
	Cs			
帧尾	帧尾	B1	HEX	Taii=0x55
	Tail			

3.4.1 控制码及数据定义

3.4.1.1 写 ID (Cmd=0x00)

主发:

	Cmd Length		数据域
			目标 ID
字节长度	1	1	4
值	0x00	4	Dstld

示例: AA 01 00 04 00 00 00 01 06 55

从回:

	Cmd	Length	数据域	
			目标 ID	结果
字节长度	1	1	4	2
值	0x80	6	ID	0x4F4B: 合格
				0x4552:不合格

示例: AA 01 80 06 00 00 00 01 4F 4B 22 55

3.4.1.2 读 ID (Cmd=0x01)

主发:

	Cmd	Length	数据域
			无
字节长度	1	1	0
值	0x01	0	无

示例: AA 01 01 00 02 55

从回:

	Cmd	Length	数据域
			目标 ID
字节长度	1	1	4
值	0x81	4	ID

示例: AA 01 81 04 00 00 00 01 87 55

3.4.1.3 擦除 ID (Cmd=0x02)

主发:

	Cmd	Length	数据域
			无
字节长度	1	1	0
值	0x02	0	无

示例: AA 01 02 00 03 55

从回:

	Cmd	Length
字节长度	1	1
值	0x82	0

示例: AA 01 82 00 83 55

3.4.1.4 写配置 (Cmd=0x03)

主发:

预留

从回:

预留

3.4.1.5 读配置 (Cmd=0x04)

主发:

预留

从回:

预留

3.4.1.6 抄表 (Cmd=0x05)

主发:

	Cmd	Length	数据域
			目标 ID
字节长度	1	1	4
值	0x05	4	ID

示例: AA 01 05 04 00 00 00 01 0B 55

从回:

	Cmd	Length	数据域		
			目标 ID	温度	结果
字节长度	1	1	4	2	2
值	0x85	7	ID	Temp Value	0x4F4B: 合格
					0x4552:不合格

示例: AA 01 85 07 00 00 00 01 AA AA 4F 4B 75 55

四、工作原理及实现

4.1 工作原理

节点端进行 WOR 方式工作,每个节点设置唯一的 ID 号;集中器端抄表时,采用发射一定数量的带 ID 的小数据包方式进行唤醒对应节点,唤醒包发射完成后立马切成接收信道并进入接收模式,节点被唤醒且对比 ID 成功后,切换到发射信道并进入待机模式,并进行超时一段时间后将传感器数据发送给集中器端;

图 4.1-1 工作方式模型

图 4.1-2 接收端做 WOR 过

图 4.1-3 唤醒过程

从上图可以看出,若要可靠唤醒 WOR,发送包总时间(所有小数据包时间总和)必须大于 Sleep+2*CAD 时间才能可靠唤醒。其中负载部分可以定义为被唤醒的节 点的 ID 等,可由客户自定义。需要注意的是,发射唤醒包时,小包之间和间隔周期应该近可能小,这样才能保证在 CAD 执行区间一定会有 LoRa 信号发射,才能成功唤醒,所以发射端将芯片发射成功后自动返回模式(SetRxTxFallbackMode)设置为 STDBY XOSC 或者 FS。

4.2 工作流程图

图 4.1-4 接收端通信流程图

图 4.1-4 发射端通信流程图

五、工程文件及移植说明

关于工程文件移植说明可以参考《LoRa 模块(SX126X)示例代码说明手册》;

六、操作演示

6.1 配置节点 ID

将 TX、RX 代码分别烧录至集中器及节点设备中; 节点设备代码烧录完成后, 默认 ID 为 0.255.255.255.255(四字节 ID, 液晶显示的为十进制数, 对应 HEX 码为 0x00, 0xFF, 0XFF);

图 6.1-1 节点端烧录后默认界面

 S_{ID} : 0. 255. 255. 255 代表的是节点的默认 ID, CAD_RX: 470800000 代表的是 CAD 工作 频率, "RX:" 计数的是表示成功唤醒(ID 对比一致)的次数, "0K:"计数表示成功唤醒(ID 对比一致)后,发送传感器数据包的次数;

图 6.1-2 发射端烧录后默认界面

M_ID: 0.255.255.255 代表的是集中器的默认 ID, CAD_TX:470800000 代表的是唤醒包的工作频率, "TX:"计数的是表示唤醒发射的次数, "R:"计数的是表示抄表成功次数, "TRI:"计数的是表示唤醒包中包含的小数据包个数;

通过串口指令,将节点 ID 配置成我们希望的 ID 号,指令实现方式如下:

图 6.1-3 节点 ID 配置

配置完成后,将节点进行一次复位,最终液晶会显示出正确的 ID 号;依次完成所有节点 ID 配置;

图 6.1-4 节点 ID 配置成功

6.2 抄表

将配置好 ID 的节点打开,集中器端通过串口指令进行抄对应 ID 号的节点数据,成功抄到数据后,会通过串口返回数据;注意抄表指令不可连续发送,必须等有数据返回或者间隔周期大于 30s 后再进行重发;

图 6.2-1 节抄表指令及数据返回

图 6.2-2 节抄实物图

6.3 抄表成功率统计

集中器端,对 5 个节点进行循环抄表,抄表间隔 40S,参数配置 SF=7、BW=125, CR=4/6, CadSymbol=2Symbol 统计唤醒次数及抄表成功率如下:

测试次数	抄表总次数	抄表成功数	抄表成功率
1	4003	3782	94.48%
2	5578	5433	97.40%
3	843	825	97.86%

表 6.3-1 成功率统