SNIP: Single-Shot Network Pruning Based on Connection Sensitivity CS-439 Optimization for Machine Learning – Class Project

Aoyu Gong, Sijia Du, Qiyuan Dong School of Computer and Communication Sciences, EPFL, Switzerland

1	hstract-	_TRA
\mathcal{A}	DSLIGGE-	— I DA

I. INTRODUCTION

TBA [1]

II. NEURAL NETWORK PRUNING

TBA

III. EXPERIMENTS

TBA

A. Comparisons under Varied Sparsity

TBA

B. Comparisons with Various Architectures

TBA

C. Understanding Which Connections Are Being Pruned

TBA

D. Effects of Data and Weight Initialization

TBA

E. Fitting Random Labels

TBA

IV. CONCLUSION

TBA

ACKNOWLEDGEMENTS

The authors thank the TML and MLO groups for their careful guidance.

REFERENCES

 N. Lee, T. Ajanthan, and P. H. S. Torr, "SNIP: Single-shot network pruning based on connection sensitivity," in *Proc.* ICLR, 2019.

Architecture	Model	Sparsity (%)	# Parameters	Error (%)	Δ
Convolutional	AlexNet-s	90.0	$5.07 \times 10^6 \rightarrow 5.07 \times 10^5$	tba	tba
	AlexNet-b	90.0	$8.49 \times 10^6 \rightarrow 8.49 \times 10^5$	tba	tba
	VGG-C	95.0	$1.05 \times 10^7 \to 5.26 \times 10^5$	tba	tba
	VGG-D	95.0	$1.52 \times 10^7 \rightarrow 7.62 \times 10^5$	tba	tba
	VGG-like	97.0	$1.50 \times 10^7 \rightarrow 4.49 \times 10^5$	tba	tba
Residual	ResNet-18	95.0	$1.10 \times 10^7 \rightarrow 5.50 \times 10^5$	$8.32 \rightarrow 8.47$	+0.15
Residual	ResNet-34	95.0	$2.11 \times 10^7 \rightarrow 1.06 \times 10^6$	tba	tba
Squeeze	SqueezeNet-vanilla	95.0	$7.41 \times 10^5 \rightarrow 3.70 \times 10^4$	tba	tba
Squeeze	SqueezeNet-bypass	95.0	$7.41 \times 10^5 \rightarrow 3.70 \times 10^4$	tba	tba
Inception	GoogLeNet	95.0	$2.75 \times 10^6 \rightarrow 1.38 \times 10^5$	tba	tba
	DenseNet-121	95.0	$4.40 \times 10^6 \rightarrow 2.20 \times 10^5$	tba	tba
Dense	DenseNet-169	95.0	$7.84 \times 10^6 \rightarrow 3.92 \times 10^5$	tba	tba
Delise	DenseNet-201	95.0	$1.11 \times 10^7 \to 5.55 \times 10^5$	tba	tba
	DenseNet-264	95.0	$1.87 \times 10^7 \rightarrow 9.33 \times 10^5$	tba	tba

Table I: Pruning results of the introduced approach on various modern architectures (before \rightarrow after).