M5S2 - Confidence Intervals

for population mean with population standard deviation unknown

Professor Jarad Niemi

STAT 226 - Iowa State University

October 10, 2018

Outline

- Confidence intervals for the population mean when the population standard deviation is unknown
 - t distribution
 - Finding t critical values
 - significance level
 - confidence level
 - margin of error

Confidence intervals when σ is known

Recall that by the CLT

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \stackrel{\cdot}{\sim} N(0, 1)$$

where \overline{X} is the (random) sample mean, μ is the population mean, σ is the population standard deviation, and n is the sample size.

When the population standard deviation σ is known, we used this result to construct a $100(1-\alpha)\%$ confidence interval for the population mean μ using the formula

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where the z critical value is such that $P(Z>z_{\alpha/2})=\alpha/2$ for a given significance level α .

If σ is unknown, then we can't use σ to calculate this interval.

Replace σ with s, the sample standard deviation

If $X_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, we have a similar result when using the sample standard deviation,

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

instead of σ :

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

where t_{n-1} is a Student's t distribution with n-1 degrees of freedom.

For a $100(1-\alpha)\%$ confidence interval, we can find a t critical value $t_{n-1,\alpha/2}$ and construct the confidence interval using the following formula:

$$\overline{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$

for the observed sample mean \overline{x} and sample standard deviation s.

Student's *t*-distribution

Student's t-distribution was derived by William Gosset, a statistician working for the Guiness Brewing Company. A random variable T has a (standard) t-distribution with ν degrees of freedom if it has the pdf

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

where $\Gamma(x) = \int_0^\infty a^{x-1} e^a da$ and

- \bullet E[T]=0 for u>1 and
- $Var[T] = \frac{\nu}{\nu 2}$ for $\nu > 2$.

A (standard) t-distribution converges to a standard normal distribution as $\nu \to \infty$.

Student's t-distribution pdf

Finding t critical values

A t critical value $t_{
u,\alpha/2}$ is the value such that

$$P(T_{\nu} > t_{\nu,\alpha/2}) = \alpha/2$$

where T_{ν} is the t-distribution with ν degrees of freedom.

Moore-212007 pbs November 20, 2007 13:52

TABLE D	t distribution	critical	values

		Upper tail probability p										
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.6
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.21	12.9
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.61
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.86
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.95
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.40
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.04
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.78
10	0.700	0.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.58
11	0.697	0.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.43
12	0.695	0.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3.428	3.930	4.31
13	0.694	0.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.22
14	0.692	0.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3.326	3.787	4.14
15	0.691	0.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4.07
16	0.690	0.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.01
17	0.689	0.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.96
18	0.688	0.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.92
19	0.688	0.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.88
20	0.687	0.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.85
21	0.686	0.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3.81
22	0.686	0.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3.79
23	0.685	0.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.76
24	0.685	0.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.74
25	0.684	0.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3.450	3.72
26	0.684	0.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3.70
27	0.684	0.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3.69
28	0.683	0.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.67
29	0.683	0.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3.396	3.65
30	0.683	0.854	1.055	1.310	1.697	2.042	2.147	2.457	2.750	3.030	3.385	3.64
40	0.681	0.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2.971	3.307	3.55
50	0.679	0.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2.937	3.261	3.49
60	0.679	0.848	1.045	1.296	1.671	2.000	2.099	2.390	2.660	2.915	3.232	3.46
80	0.678	0.846	1.043	1.292	1.664	1.990	2.088	2.374	2.639	2.887	3.195	3.41
100	0.677	0.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.39
000	0.675	0.842	1.037	1.282	1.646	1.962	2.056	2.330	2.581	2.813	3.098	3.30
z* 0.674	0.674	0.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.29
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.91
						Confide	ence level	C				

Confidence Intervals for μ when σ is unknown

Definition

Let μ be the population mean and σ be the unknown population standard deviation for a normal population. Choose a significance level α which you can convert to a confidence level $C=100(1-\alpha)\%$ and a t critical value $t_{n-1,\alpha/2}$ where $P(T_{n-1}>t_{n-1,\alpha/2})=\alpha/2$.

You obtain a random sample of n observations from the population and calculate the sample mean \overline{x} and sample standard deviation s. Then a $C=100(1-\alpha)\%$ confidence interval for μ is

$$\overline{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} = \left(\overline{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}, \overline{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \right)$$

where $t_{n-1,\alpha/2} \cdot s/\sqrt{n}$ is called the margin of error.

Savings account balances

US Bank provides students with savings accounts having no monthly maintenance fee and a low minimum monthly transfer. US Bank is interested in knowing the mean monthly balance of all its student savings accounts. They take a random sample of 23 student savings accounts and record that at the end of the month the sample mean savings was \$105 and the standard deviation was \$20. Assuming savings account balances are normally distributed, construct an 80% confidence interval for the mean monthly balance.

Let X_i be the end of the month balance for student i. Then $E[X_i] = \mu$, the mean monthly balance, is unknown, $SD[X_i] = \sigma$ is unknown. We obtained a sample of size n=23 with a sample mean $\overline{x}=\$105$ and a sample standard deviation of s=\$20. For a confidence level of 80%, we have $\alpha=0.2$, $\alpha/2=0.1$ and $t_{n-1,\alpha/2}\approx 1.319$. Then we calculate

$$\overline{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} = \$105 \pm 1.319 \frac{\$20}{\sqrt{23}} = (\$99.5,\$110.5)$$