Week 2 Review

Q1

How can you implement a NOT gate from a 2-input NAND gate?

How can you implement a NOT gate from a 2input NAND gate?

What about NOT from NOR?

Boolean Algebra

Use algebraic identities to reduce circuits

$$\overline{\underline{x} \cdot \underline{y}} = \overline{x + \underline{y}}$$

$$x + \underline{y} = x \cdot \underline{y}$$

$$x \cdot (\underline{y} + \underline{z}) = x \cdot \underline{y} + x \cdot \underline{z}$$

$$x \cdot (\underline{x} + \underline{y}) \cdot (\underline{x} + \underline{z}) = x$$

$$x \cdot y + \overline{x} \cdot z + y \cdot z = x \cdot y + \overline{x} \cdot z$$

 $X + (X \cdot X)$

x+y

 $x \cdot (x+y)$

Х. Х

Reducing Boolean expressions

A	₩	C	ч
0	0	0	0
0	0	Н	0
0	Н	0	0
0	Н	Н	₽
1	0	0	₽
1	0	Н	0
1	Н	0	₽
1	Н	Н	⊢

Using SOM:

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C} + A \cdot B \cdot C$$

$$A \cdot B \cdot C + A \cdot B \cdot C$$

Now start combining terms,

$$Y = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot \overline{C}$$
+ $A \cdot B$

Question 2

- Implement a two-input XOR gate using only NAND and NOT gates
- Draw the circuit using only these two logic gates.

A	В	А
0	0	0
0	Н	Н
Ъ	0	Н
1	1	0

- Remember De Morgan's!
- (W + Z) = (W Z)

Karnaugh map review

	ÇI BI	G Bl	B.C	GI B
≱I	0	0	H	0
A	Н	0	H	户

K-maps provide an illustration of a circuit's minterms (or maxterms), and a guide to how neighbouring terms may be combined.

$$Y = \overline{A \cdot B \cdot C} + \overline{A \cdot B \cdot C} + \overline{A \cdot B \cdot C} + \overline{A \cdot B \cdot C}$$

$$= B \cdot C + A \cdot \overline{C}$$

Karnaugh map example

- Create a circuit with four inputs (A, B, C, D), and two outputs (X, Y):
- The output X is high whenever two or more of the inputs are high.
- The output Y is high when three or more of the inputs are high.

A	В	C	D	×
0	0	0	0	
0	0	0	₽	
0	0	Ъ	0	
0	0	Н	Н	
0	Н	0	0	
0	Н	0	Н	
0	Н	Н	0	
0	Н	Н	Н	
Н	0	0	0	
Н	0	0	⊢	
Н	0	Н	0	
Н	0	Н	⊢	
Н	Н	0	0	
Н	₽	0	₽	
Н	Н	Н	0	
1	1	1	1	

Karnaugh map example

× ≱I B ≱I BI ≱ ·B A·B OI ÖI Ш 0 0 0 ن ان 0 G • \vdash ი ij 0 \vdash

$$X = A \cdot B + C \cdot D + B \cdot D + B \cdot C + A \cdot D + A \cdot C$$

Alternative for X: Maxterms

 \times

	Ā·B	Ā·B	A·B	A·B
GI GI	0	0	Н	0
G.D	0	Н	Н	₽
C.D	⊢	Н	Н	⊣
G. Đ	0	⊢	Н	Ь

Alternative for X Maxterms

X A+B Ā+B Ā+B A+B C+D 0 0 \vdash C+D 0 \vdash \vdash \vdash 다. 다. Н \vdash \vdash \vdash 다 다 만 0 \vdash \vdash \vdash

 \bowtie $(A+C+D) \cdot (B+C+D) \cdot (A+B+C) \cdot (A+B+D)$

Karnaugh map example

₽·B ≱I ·B ≱I BI **A**·B ပါ ပါ 0 0 0 0 ပ (၁) 0 \vdash 0 0 G G \vdash 0 က ဗ်I 0 0 0 \vdash

 \bowtie $A \cdot B \cdot D$ $\mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D}$ $A \cdot B \cdot C$ A·C·D

Question 3

What is the most reduced sum of products form of the function from the truth table on the right?

$$Y = m_0 + m_1 + m_2 + m_5$$

$$+ m_7 + m_8 + m_9$$

$$+ m_{10} + m_{13} + m_{15}$$

1	ь	1	Н	ь	ь	1	1	0	0	0	0	0	0	0	0	A
1	Н	Н	Н	0	0	0	0	Н	1	Н	Н	0	0	0	0	В
1	Ц	0	0	Н	1	0	0	Н	1	0	0	ь	1	0	0	С
1	0	ъ	0	ь	0	ь	0	ь	0	ь	0	н	0	ь	0	D
1	0	н	0	0	ц	ц	ц	ъ	0	ь	0	0	ц	ъ	ц	Х

Question 3 (cont'd)

m_{13}	m_9	m_7	m_2	m_0	Κ
+	+	+	+	+	"
m_{15}	m_{10}	m_8	m_5	m_1	
	+	+	+	+	

\mathbf{m}_{10}	\mathbf{m}_{11}	\mathbf{m}_{9}	m ₈	A·B
m_{14}	m ₁₅	\mathbf{m}_{13}	\mathbf{m}_{12}	A·B
\mathbf{m}_{ϵ}	\mathbf{m}_{7}	m ₂	$\mathbf{m}_{_{4}}$	Ā·B
\mathbf{m}_2	m ₃	m ₁	° m	Ā·B
G. Đ	C.D	GI OI	OI Ü	

Question 3 (cont'd)

$$Y = m_0 + m_1 + m_2 + m_5 + m_7 + m_8 + m_{10} + m_{13} + m_{15}$$

žI dl	, Öl	, GI	G . Đ	Ω
	0 H	H H	н (
A·B	0	1	Н	
Α·B	1	1	0	

Question 3 (cont'd)

$$x = m_0 + m_1 + m_2 + m_5 + m_7 + m_8 + m_{13} + m_{15}$$

A·B	A·B	Ā·B	Ā·B	
1	0	0	1	OI Ü
1	Р	1	Н	ΩI Đ
0	1	н	0	C.D
1	0	0	1	G :D

$$Y = \overline{C} \cdot D + B \cdot D + \overline{B} \cdot \overline{D}$$

Question 3 (alternative)

An alternative grouping:

$$Y = \overline{B} \cdot \overline{C} + B \cdot D + \overline{B} \cdot \overline{D}$$