가 .

가

시스템	정의	EF ₃ [kg N ₂ O-N (kg 질소배설) ⁻¹]	EF ₃ 의 불확도 범위	출처
덮개없는 혐기성 lagoon	혐기성 늪은 폐기물을 안정화하고 저장하기 위한 조합된 목적으로 설계된다. 늪은 보통 관련된 제한된 시설에서 늪으로 분뇨를 제 거하기 위해서 사용된다. 혐기성 늪은 기후 에 따라 휘발성 고체 부하율과 다른 운영적 인 계수다양한 길이로 설계 된다 (1년~그 이 상). 슾지로부터의 물은 화장실용, 관개, 분 뇨용으로 재활용된다.	0	저요.	다음의 연구들과 협력한 IPCC 전문가 그룹의 견해: Harper et al.(2000), Lague et al.(2004), Monteny et al.(2001), Wagner-Riddle and Marinier (2003). 배출은 시스템 안에서 일어나는 질화 과정과 탈질화 과정의 낮은 가능성과 함께 이 시스템으로 들어가는 질소의 산화된 형태가 없는 것에 기초하여 무시할 만하다고 여겨진다.
분뇨 pit	분뇨의 수집과 저장은 보통 적은 물 또는 물이 없이 일반적으로 축사의 지하에서 이 루어진다.	0.002	2배	다음의 연구들과 협력한 IPCC 전 문가 그룹의 견해: Amon et al. (2001), Kulling (2003), 그리고 Sneath et al. (1997)

Table 17. 분뇨 처리로부터 직접적인 N₂O 배출계수 기본(계속)

1 00 010 1	Table 17. 문표 시디모두다 즉입적인 N2O 메		11 12 / 11 1	7150	11 17
시스템	정의		EF ₃ [kg N ₂ O-N (kg 질소배설)-1]	EF ₃ 의 불확도 범위	출처
혐기성 소화조	협기성 소화조는 유기물을 미생 며 CH₄과 CO₂를 배출하며 이를 의 안정화를 이룬다. 이러한 발 ⁴ 수되어 불태우거나 연료로 사용 ⁴	냉 기체는 회	U	적용 불 가능	다음의 연구들과 협력한 IPCC 전문가 그룹 견해: Harper et al.(2000), Lague et al. (2004), Monteny et al.(2001), Wagner-Riddle and Marinier (2003). 배출은 시스템 안에서 일어나는 질화과정과 탈질화 과정의 낮은 가능성과 함께 시스템으로 들어가는 질소의 산화된 형태가 없는 것에 기초하여 무시할 만하다고 여겨진다.
연료로써 또는 폐기물로써 소각	대변은 들판에 배설되며 건조· 사용한다.	시켜 연료로			l료 연소' 하에서, 대변이 에너지
	소변 N은 목장에 퇴적된다.		농업용 토양과 목장, 방목구역, 작은 방목장에 퇴적되는 소변에 관련된 직접적이고 간접적인 N_2O 배출은 관리된 토양으로부터의 N_2O 배출로 다루어진다.		
소와 돼지의 깊은 깔짚	분뇨가 축적됨에 따라 바닥 깔 짚은 가축 생산과정 동안 연속 적으로 습기를 흡수하며 새로운 깔짚이 추가된다. 6-12개월간 가능하다. 분뇨 처리 시스템은 건조 부지 또는 목장과 조합될 수 있다.	혼합 없음	0.01	2배	Sommer and Moller (2000), Sommer et al.(2000), Amon et al. (1998), Nicks et al. (2003)에 기초 한 평균값
		활발한 혼합	0.07	2배	Nicks et al.(2003), 그리고 Moller et al.(2000)에 기초한 평균값. 어떤 문헌들은 잘 유지되고(maintained), 활발한 혼합이 일어나는 것을 위해 20% 높은 값을 인용한다. 그러나 그런 시스템들은 정형적이지 않은 암모니아 처리를 포함.
용기내 퇴비화	강제적 공기 주입과 계속적인 어지는 enclosed channel에서 전화	0.006	2배	IPCC 전문가 그룹 견해. 고정된 더미와 비슷할 것으로 기대.	
정치식 퇴비화	강제적 공기 주입을 하고 혼합 파일에서의 퇴비화	0.006	2배	Hao et al.(2001)	