Series ONS SET-2

कोड नं. Code No. 65/2/S

रोल नं.				
Roll No.				

परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 12 हैं।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पूर्वाह्न में
 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस
 अविध के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
- Please check that this question paper contains 12 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains **26** questions.
- Please write down the Serial Number of the question before attempting
 it
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

गणित

MATHEMATICS

निर्धारित समय : 3 घण्टे अधिकतम अंक : 100

Time allowed: 3 hours Maximum Marks: 100

सामान्य निर्देश :

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- (iii) खण्ड अ के प्रश्न 1 6 तक अति लघु-उत्तर वाले प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक निर्धारित है।
- (iv) खण्ड ब के प्रश्न 7 19 तक दीर्घ-उत्तर I प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए 4 अंक निर्धारित हैं।
- (v) खण्ड स के प्रश्न 20 26 तक दीर्घ-उत्तर II प्रकार के प्रश्न हैं और प्रत्येक प्रश्न के लिए 6 अंक निर्धारित हैं।
- (vi) उत्तर लिखना प्रारम्भ करने से पहले कृपया प्रश्न का क्रमांक अवश्य लिखिए।

General Instructions:

- (i) All questions are compulsory.
- (ii) Please check that this question paper contains 26 questions.
- (iii) Questions 1 6 in Section A are very short-answer type questions carrying 1 mark each.
- (iv) Questions 7 19 in Section B are long-answer I type questions carrying 4 marks each.
- (v) Questions 20 26 in Section C are long-answer II type questions carrying 6 marks each.

2

(vi) Please write down the serial number of the question before attempting it.

खण्ड - अ

SECTION - A

प्रश्न संख्या 1 से 6 तक प्रत्येक प्रश्न का 1 अंक है। Question numbers 1 to 6 carry 1 mark each.

1. समतलों $\vec{r} \cdot (2\hat{i} - 3\hat{j} + 6\hat{k}) - 4 = 0$ तथा $\vec{r} \cdot (6\hat{i} - 9\hat{j} + 18\hat{k}) + 30 = 0$ के बीच दूरी ज्ञात कीजिए।

Find the distance between the planes $\vec{r} \cdot (2\hat{i} - 3\hat{j} + 6\hat{k}) - 4 = 0$ and $\vec{r} \cdot (6\hat{i} - 9\hat{j} + 18\hat{k}) + 30 = 0$.

2. यदि \overrightarrow{a} तथा \overrightarrow{b} दो मात्रक सदिश हैं तो \overrightarrow{a} तथा \overrightarrow{b} के बीच कोण क्या होगा, यदि $\overrightarrow{a} - \sqrt{2}$ \overrightarrow{b} एक मात्रक सदिश हो ?

If \vec{a} and \vec{b} are unit vectors, then what is the angle between \vec{a} and \vec{b} for $\vec{a} - \sqrt{2} \vec{b}$ to be a unit vector?

3. यदि सदिश \overrightarrow{a} और \overrightarrow{b} इस प्रकार हैं कि $|\overrightarrow{a}| = \frac{1}{2}$, $|\overrightarrow{b}| = \frac{4}{\sqrt{3}}$ और $|\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{\sqrt{3}}$ हैं, तो $|\overrightarrow{a} \cdot \overrightarrow{b}|$ ज्ञात कीजिए।

If vectors \overrightarrow{a} and \overrightarrow{b} are such that $|\overrightarrow{a}| = \frac{1}{2}$, $|\overrightarrow{b}| = \frac{4}{\sqrt{3}}$ and $|\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{\sqrt{3}}$, then find $|\overrightarrow{a} \cdot \overrightarrow{b}|$.

- 4. यदि $A = \begin{pmatrix} 0 & 3 \\ 2 & -5 \end{pmatrix}$ तथा $KA = \begin{pmatrix} 0 & 4a \\ -8 & 5b \end{pmatrix}$ हैं, तो k तथा a के मान ज्ञात कीजिए। If $A = \begin{pmatrix} 0 & 3 \\ 2 & -5 \end{pmatrix}$ and $KA = \begin{pmatrix} 0 & 4a \\ -8 & 5b \end{pmatrix}$ find the values of k and a.
- 5. यदि $A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$ तथा $B = \begin{pmatrix} 1 & -4 \\ 3 & -2 \end{pmatrix}$ हैं, तो |AB| का मान ज्ञात कीजिए। $\text{If } A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & -4 \\ 3 & -2 \end{pmatrix}, \text{ find } |AB|.$
- 6. यदि A एक ऐसा वर्ग आव्यूह है कि |A|=5 है, तो $|AA^T|$ का मान लिखिए। If A is a square matrix such that |A|=5, write the value of $|AA^T|$.

खण्ड - ब SECTION - B

प्रश्न संख्या 7 से 19 तक प्रत्येक प्रश्न के 4 अंक हैं। Question numbers 7 to 19 carry 4 marks each.

7. सिद्ध कीजिए कि
$$2\sin^{-1}\left(\frac{3}{5}\right) - \tan^{-1}\left(\frac{17}{31}\right) = \frac{\pi}{4}$$

अथवा

समीकरण को x के लिए हल कीजिए : $\cos(\tan^{-1}x) = \sin\left(\cot^{-1}\frac{3}{4}\right)$

Prove that
$$2\sin^{-1}\left(\frac{3}{5}\right) - \tan^{-1}\left(\frac{17}{31}\right) = \frac{\pi}{4}$$

OR

Solve the equation for $x : \cos(\tan^{-1}x) = \sin(\cot^{-1}\frac{3}{4})$

8. मान ज्ञात कीजिए : $\int_{0}^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} \, \mathrm{d}x$

अथवा

मान ज्ञात कोजिए :
$$\int\limits_0^1\cot^{-1}\left(1-x+x^2\right)\mathrm{d}x$$

Evaluate:
$$\int_{0}^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} \, \mathrm{d}x$$

OR

Evaluate :
$$\int_{0}^{1} \cot^{-1} \left(1 - x + x^{2}\right) dx$$

9. ज्ञात कोजिए : $\int [\log(\log x) + \frac{1}{(\log x)^2}] dx$

Find:
$$\int [\log(\log x) + \frac{1}{(\log x)^2}] dx$$

10. ज्ञात कोजिए :
$$\int \frac{1-\sin x}{\sin x (1+\sin x)} dx$$

Find:
$$\int \frac{1-\sin x}{\sin x (1+\sin x)} \, \mathrm{d}x$$

11. वक्र $ay^2 = x^3$ के उस बिंदु जिसका x निर्देशांक am^2 है, पर अभिलंब का समीकरण ज्ञात कीजिए।

Find equation of normal to the curve $ay^2 = x^3$ at the point whose x coordinate is am^2 .

12. यदि फलन $f(x) = \begin{cases} k \sin \frac{\pi}{2}(x+1), & x \le 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0 \end{cases}$ x = 0 पर संतत है, तो k का मान ज्ञात कीजिए।

Find k, if
$$f(x) = \begin{cases} k \sin \frac{\pi}{2}(x+1), & x \le 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0 \end{cases}$$
 is continuous at $x = 0$.

13. $(\sin 2x)^x + \sin^{-1}\sqrt{3x}$ का x के सापेक्ष अवकलन कीजिए।

अथवा

$$an^{-1}\left(rac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}
ight)$$
का $\cos^{-1}x^2$ के सापेक्ष अवकलन कीजिए।

Differentiate $(\sin 2x)^x + \sin^{-1}\sqrt{3x}$ with respect to x.

OR

Differentiate
$$\tan^{-1}\left(\frac{\sqrt{1+x^2}-\sqrt{1-x^2}}{\sqrt{1+x^2}+\sqrt{1-x^2}}\right)$$
 with respect to $\cos^{-1}x^2$.

14. बिंदुओं A(3,2,1), B(4,2,-2) तथा C(6,5,-1) से होकर जाने वाले समतल का समीकरण ज्ञात कीजिए। अतः λ का मान ज्ञात कीजिए जिसके लिए A(3,2,1), B(4,2,-2), C(6,5,-1) तथा $D(\lambda,5,5)$ समतलीय हों।

अथवा

उस बिंदु के निर्देशांक ज्ञात कीजिए जहाँ रेखा $\overrightarrow{r}=(-\hat{i}-2\hat{j}-3\hat{k})+\lambda(3\hat{i}+4\hat{j}+3\hat{k})$ उस समतल को मिलती है जो सदिश $\overrightarrow{n}=\hat{i}+\hat{j}+3\hat{k}$ पर लबंवत है तथा मूल बिंदु से $\frac{4}{\sqrt{11}}$ की दूरी पर है।

Find the equation of plane passing through the points A (3, 2, 1), B (4, 2, -2) and C (6, 5, -1) and hence find the value of λ for which A (3, 2, 1), B (4, 2, -2), C (6, 5, -1) and D $(\lambda, 5, 5)$ are coplanar.

OR

Find the co-ordinates of the point where the line $\vec{r} = (-\hat{i} - 2\hat{j} - 3\hat{k}) + \lambda(3\hat{i} + 4\hat{j} + 3\hat{k})$ meets the plane which is perpendicular to the vector $\vec{n} = \hat{i} + \hat{j} + 3\hat{k}$ and at a distance of $\frac{4}{\sqrt{11}}$ from origin.

15. दिया है कि तीन सदिश \overrightarrow{a} , \overrightarrow{b} तथा \overrightarrow{c} इस प्रकार एक त्रिभुज बनाते हैं कि $\overrightarrow{a} = \overrightarrow{b} + \overrightarrow{c}$ । ऐसे \mathbf{p} , \mathbf{q} , \mathbf{r} , \mathbf{s} ज्ञात कीजिए कि त्रिभुज का क्षेत्रफल $5\sqrt{6}$ है जहाँ $\overrightarrow{a} = \mathbf{p}\hat{i} + \mathbf{q}\hat{j} + \mathbf{r}\hat{k}$, $\overrightarrow{b} = \mathbf{s}\hat{i} + 3\hat{j} + 4\hat{k}$ तथा $\overrightarrow{c} = 3\hat{i} + \hat{j} - 2\hat{k}$ हैं।

Given that vectors \vec{a} , \vec{b} , \vec{c} form a triangle such that $\vec{a} = \vec{b} + \vec{c}$. Find p, q, r, s such that area of triangle is $5\sqrt{6}$ where $\vec{a} = p\hat{i} + q\hat{j} + r\hat{k}$, $\vec{b} = s\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} - 2\hat{k}$.

- 16. दो थैले A और B हैं। थैले A में 3 सफेद और 4 लाल गेंदे हैं तथा B थैले में 4 सफेद और 3 लाल गेंदे हैं। तीन गेंदे यादृच्छया किसी एक थैले में से (प्रतिस्थापना बिना) निकाली गयी और पायीं गयीं कि वह दो सफेद तथा एक लाल हैं प्रायिकता ज्ञात कीजिए कि वह थैले B में से निकाली गई थी।
 - There are two bags A and B. Bag A contains 3 white and 4 red balls whereas bag B contains 4 white and 3 red balls. Three balls are drawn at random (without replacement) from one of the bags and are found to be two white and one red. Find the probability that these were drawn from bag B.
- 17. ईशान अपने गाँव में एक आयताकार भूखण्ड, विद्यालय के लिए दान देना चाहता है। जब उससे भूखण्ड की विमाएँ पूछी गईं तो उसने बताया कि यदि इसकी लंबाई 50 मी. कम तथा चौड़ाई 50 मी. बढ़ा दी जाए, तो इसका क्षेत्रफल समान रहेगा परन्तु यदि इसकी लंबाई 10 मी. कम कर दी जाए तथा चौड़ाई 20 मी. कम कर दी जाए तो इसका क्षेत्रफल 5300 मी² कम हो जाएगा। आव्यूहों के प्रयोग से इस प्लाट की विमाएँ ज्ञात कीजिए। कारण भी दीजिए कि वह प्लाट क्यों दान देना चाहता है?

Ishan wants to donate a rectangular plot of land for a school in his village. When he was asked to give dimensions of the plot, he told that if its length is decreased by 50 m and breadth is increased by 50 m, then its area will remain same, but if length is decreased by 10 m and breadth is decreased by 20 m, then its area will decrease by 5300 m². Using matrices, find the dimensions of the plot. Also give reason why he wants to donate the plot for a school.

18. अवकल समीकरण को हल कीजिए :
$$2y e^{x/y} dx + \left(y - 2x e^{x/y}\right) dy = 0$$

Solve the differential equation :
$$2y e^{x/y} dx + \left(y - 2x e^{x/y}\right) dy = 0$$

19. अवकल समीकरण को हल कीजिए :
$$(x+1) \frac{dy}{dx} - y = e^{3x} (x+1)^3$$

Solve the differential equation :
$$(x + 1) \frac{dy}{dx} - y = e^{3x} (x + 1)^3$$

खण्ड - स

SECTION - C

प्रश्न संख्या 20 से 26 तक प्रत्येक प्रश्न के 6 अंक हैं। Question numbers 20 to 26 carry 6 marks each.

20. समाकलनों का प्रयोग करके क्षेत्र $\{(x, y): y^2 \le 6ax$ तथा $x^2 + y^2 \le 16a^2\}$ का क्षेत्रफल ज्ञात कीजिए।

Using integration find the area of the region $\{(x, y) : y^2 \le 6ax \text{ and } x^2 + y^2 \le 16a^2\}$

21. अंतराल ज्ञात कीजिए जहाँ पर फलन $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ निरंतर वर्धमान अथवा निरंतर ह्यासमान है।

अथवा

फलन $f(x) = \sec x + \log \cos^2 x$, $0 < x < 2\pi$ के अधिकतम तथा न्यूनतम मान ज्ञात कीजिए।

Determine the intervals in which the function $f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$ is strictly increasing or strictly decreasing.

OR

Find the maximum and minimum values of $f(x) = \sec x + \log \cos^2 x$, $0 < x < 2\pi$.

22. सारणिकों के गुणधर्मों का प्रयोग कर सिद्ध कीजिए कि :

$$\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)$$

अथवा

प्रारंभिक पंक्ति संक्रियाओं का प्रयोग करके निम्न आव्यूह का व्युत्क्रम ज्ञात कीजिए :

$$A = \begin{pmatrix} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{pmatrix}$$

Using properties of determinants, prove that:

$$\begin{vmatrix} (b+c)^2 & a^2 & bc \\ (c+a)^2 & b^2 & ca \\ (a+b)^2 & c^2 & ab \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)$$

Using elementary row operations, find the inverse of the following matrix:

$$\mathbf{A} = \left(\begin{array}{rrr} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{array} \right)$$

23. प्रथम छ: धन पूर्णांकों में से तीन संख्याएं यादृच्छया (बिना प्रतिस्थापना) चुनी गईं। मान लें X तीनों संख्याओं में से सबसे छोटी संख्या को व्यक्त करता है, तो X का प्रायिकता बंटन ज्ञात कीजिए। बंटन का माध्य तथा प्रसरण भी ज्ञात कीजिए।

Three numbers are selected at random (without replacement) from first six positive integers. If X denotes the smallest of the three numbers obtained, find the probability distribution of X. Also find the mean and variance of the distribution.

24. एक संतुलित आहार में कम से कम 80 मात्रक विटामिन A और 100 मात्रक खिनज होना चाहिए। दो खाद्य पदार्थ F_1 और F_2 उपलब्ध हैं जिनकी लागत क्रमश: ₹ 5 प्रित मात्रक और ₹ 6 प्रित मात्रक है। भोज्य पदार्थ F_1 की एक इकाई में विटामिन A के 4 मात्रक और खिनज पदार्थ के 3 मात्रक सिम्मिलित हैं, जबिक भोज्य पदार्थ F_2 की एक इकाई में विटामिन A के 3 मात्रक और खिनज पदार्थ के 6 मात्रक सिम्मिलित हैं। इसे रैखिक प्रोग्रामन संख्या के रूप में निरूपित कीजिए। संतुलित आहार की न्यूनतम लागत ज्ञात कीजिए जो कि इन दोनों खाद्य पदार्थों का मिश्रण हो और न्यूनतम पोषण की आवश्यकता को पूरी करता हो।

A diet is to contain at least 80 units of Vitamin A and 100 units of minerals. Two foods F_1 and F_2 are available costing \mathbb{Z} 5 per unit and \mathbb{Z} 6 per unit respectively. One unit of food F_1 contains 4 units of vitamin A and 3 units of minerals whereas one unit of food F_2 contains 3 units of vitamin A and 6 units of minerals. Formulate this as a linear programming problem. Find the minimum cost of diet that consists of mixture of these two foods and also meets minimum nutritional requirement.

25. दो समांतर रेखाओं $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}$ तथा $\frac{x}{4} = \frac{y-2}{-2} = \frac{z+1}{6}$ को अंतर्विष्ट करने वाले समतल का समीकरण ज्ञात कीजिए। अतः दर्शाइए कि क्या प्राप्त समतल, रेखा $\frac{x-2}{3} = \frac{y-1}{1} = \frac{z-2}{5}$ को अंतर्विष्ट करता है अथवा नहीं?

Find the equation of the plane containing two parallel lines $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}$ and $\frac{x}{4} = \frac{y-2}{-2} = \frac{z+1}{6}$. Also, find if the plane thus obtained contains the line $\frac{x-2}{3} = \frac{y-1}{1} = \frac{z-2}{5}$ or not.

26. माना कि $f: \mathbb{N} \to \mathbb{N}$ एक फलन $f(x) = 4x^2 + 12x + 15$ द्वारा परिभाषित है। दर्शाइए कि $f: \mathbb{N} \to \mathbb{S}$ व्युत्क्रमणीय है (जबिक \mathbb{S} , f का परिसर है)। f का प्रतिलोम ज्ञात कीजिए। अत: $f^{-1}(31)$ तथा $f^{-1}(87)$ ज्ञात कीजिए।

Let $f: \mathbb{N} \to \mathbb{N}$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: \mathbb{N} \to \mathbb{S}$ is invertible (where S is range of f). Find the inverse of f and hence find $f^{-1}(31)$ and $f^{-1}(87)$.