Topics in Asset Pricing

Lecture 3: Beliefs

Johan Hombert (HEC Paris)

Master in Economics - Spring 2020

Outline

- 1. Heterogeneous beliefs
 - Trading volume
 - Short-sales constraints & over-valuation
 - Speculative behavior
 - Welfare
- 2. Sources of disagreement
 - Limited attention
 - Model disagreement
- 3. Belief formation
 - Experience
 - Extrapolative expectations
 - Sticky expectations

Heterogeneous beliefs

- Puzzle: large trading volume
- No-trade theorem: asymmetric information does not generate trading in a common value environment (Akerlof 1970, Milgrom-Stokey 1982)
- Difference in beliefs that leads investors to "agree to disagree" generates trading. Can come from:
 - a. Different priors (different models)
 - b. Different information + Overconfidence about precision of own info
- This lecture:
 - 1. Implications of disagreement for markets
 - 2. Sources of disagreement
 - 3. Belief formation

Overconfidence & Trading (Barber and Odean, 2001)

POSITION VALUE, TURNOVER, AND RETURN PERFORMANCE OF COMMON STOCK INVESTMENTS OF FEMALE
AND MALE HOUSEHOLDS: FEBRUARY 1991 TO JANUARY 1997

		All househo	olds	M	Married households			Single households		
	Women	Men	Difference (women-men)	Women	Men	Difference (women-men)	Women	Men	Difference (women-men)	
Number of households	8,005	29,659	NA	4,894	19,741	NA	2,306	6,326	NA	
Panel A: Position	Value and	Turnover								
Mean [median] beginning position value (\$)	18,371 [7,387]	21,975 [8,218]	-3,604*** [-831]***	17,754 [7,410]	22,293 [8,175]	-4,539*** [-765]***	19,654 [7,491]	20,161 [8,097]	-507*** [-606]***	
Mean [median] monthly turnover (%)	4.40 [1.74]	6.41 [2.94]	-2.01*** [-1.20]***	4.41 [1.79]	6.11 [2.81]	-1.70*** [1.02]***	4.22 [1.55]	7.05 [3.32]	-2.83*** [-1.77]***	
Panel B: Perform	ance									
Own-benchmark monthly abnormal gross	-0.041*** (-2.84)	-0.069*** (-3.66)	0.028*** (2.43)	-0.050*** (-2.89)	-0.068*** (-3.67)	0.018	-0.029* (-1.64)	-0.074*** (-3.60)	0.045*** (2.53)	
return (%) Own-benchmark monthly	-0.143***	/		-0.154***	-0.214***		-0.121***	,	0.120***	
abnormal net return (%)	(-9.70)	(-10.83)	(6.35)	(-9.10)	(-10.48)	(3.95)	(-6.68)	(-11.15)	(6.68)	

***, **, * indicate significant at the 1, 5, and 10 percent level, respectively. Tests for differences in medians are based on a Wilcoxon sign-rank test statistic.

Households are classified as female or male based on the gender of the person who opened the account. Beginning position value is the market value of common stocks held in the first month that the household appears during our sample period. Mean monthly turnover is the average of sales and purchase turnover. [Median values are in brackets.]
Own-benchmark abnormal returns are the average household percentage monthly abnormal return calculated as the realized monthly return for a household less the return that would have been earned if the household had held the beginning-of-year portfolio for the entire year (i.e., the twelve months beginning February 1). T-statistics for abnormal returns are in parentheses and are calculated using time-series standard errors across month.

Heterogeneous beliefs

- <u>Idea:</u> Disagreement generates trading
- Risky asset in supply S
- \blacktriangleright Mass 1 of investors with CARA γ
- ▶ t = 2: Payoff $V + \varepsilon$ with $\varepsilon \sim \mathcal{N}(0, 1)$
- ▶ t = 1: Investors agree to disagree: beliefs about V uniformly distributed over [V H, V + H]
- **Equilibrium** with homogeneous beliefs (H = 0):

$$P = V - \gamma S$$
 and $Volume = 0$

Equilibrium with heterogeneous beliefs (H > 0):

$$P = V - \gamma S$$
 and $Volume = \frac{H}{4\gamma}$

Heterogeneous beliefs & Trading volume

Abnormal Turnover Around Earnings Announcements, 1986-2005

Source: The underlying data is from the Center for Research in Security Prices (CRSP) database. Earnings announcement dates are taken from Compustat.

Notes: Analysis is based on the universe of the 1,000 largest stocks on CRSP in each quarter from 1986Q1 to 2005Q4. Abnormal daily turnover for any given stock is actual daily turnover in the stock minus average turnover in the stock for the 250 days preceding the event window (days –266 to –16 relative to the earnings announcement date). Cumulative abnormal turnover is then the cumulative sum of abnormal daily turnover over the event window.

Source: Hong and Stein (2007)

Heterogeneous beliefs & Short-sales constraints

► <u>Idea:</u> Disagreement + Short-selling constraints generate over-valuation because optimistic beliefs are reflected in prices whereas pessimistic beliefs are not (Miller, 1977)

▶ Equilibrium with heterogeneous beliefs (H > 0) & short-sales constraints $(X_i \ge 0)$:

$$P = \begin{cases} V - \gamma S & \text{if } H \le \gamma S \\ V + H - 2\sqrt{\gamma SH} & \text{if } H > \gamma S \end{cases}$$

Heterogeneous beliefs & Overvaluation

Prices and Turnover for Internet and Non-Internet Stocks, 1997-2002

Sources: The underlying data is from the Center for Research in Security Prices (CRSP) database. We use the same sample of Internet stocks as Ofek and Richardson (2003). Their sample is obtained from lists of "pure" Internet companies published by Morgan Stanley, available on Eli Ofek's home page at (http://pages.stern.nyu.edu/~eofek/).

Notes: For each month, we divide the set of all common stocks listed on CRSP into "Internet" and "all other" portfolios, and calculate average monthly turnover and price indices for these two categories. Our turnover and price-level indices are equal-weighted, but the results are qualitatively similar using market-capitalization weights.

Evidence

- ► Empirical challenge: proxy for *H*?
 - Analyst forecasts (Diether, Malloy and Scherbina, 2002)
 - Investor holdings (Chen, Hong and Stein, 2002)
 - Content of traditional/social media (Cookson and Niessner, 2020)

Diether, Malloy and Sherbina (2002)

Table II

Mean Portfolio Returns by Size and Dispersion in Analysts' Forecasts

Each month stocks are sorted in five groups based on the level of market capitalization as of the third Thursday of the previous month. Stocks in each size group are then sorted into five additional groups based on dispersion in analyst earnings forecasts for the previous month. Dispersion is defined as the ratio of the standard deviation of analysts' current-fiscal-year annual earnings per share forecasts to the absolute value of the mean forecast, as reported in the I/B/E/S Summary History file. Stocks with a mean forecast of zero are assigned to the highest dispersion groups, and stocks with a price less than five dollars are excluded from the sample. Stocks are held for one month, and portfolio returns are equal-weighted. The time period considered is February 1983 through December 2000. The table reports average monthly portfolio returns; t-statistics in parentheses are adjusted for autocorrelation.

		M	Iean Returns			
			Size Quintiles			
Dispersion	Small				Large	All
Quintiles	S1	S2	S3	S4	S5	Stocks
D1 (low)	1.52	1.45	1.50	1.51	1.48	1.48
D2	1.12	1.40	1.41	1.18	1.35	1.36
D3	0.99	1.20	1.32	1.11	1.36	1.23
D4	0.76	1.07	1.18	1.33	1.33	1.12
D5 (high)	0.14	0.56	0.83	1.03	1.20	0.69
D1– $D5$	1.37^{a}	0.89ª	$0.67^{\rm b}$	0.48	0.29	0.79ª
t-statistic	(5.98)	(3.12)	(2.41)	(1.55)	(0.94)	(2.88)

Evidence (cont'd)

► Additional prediction of theory: effect of disagreement on over-valuation is stronger when short-sales constraints are tighter

- Proxy for short-sales constraints?
 - High lending fees (Jones and Lamont 2002) but...
 - Low short interest (Asquith Pathak Ritter 2005) but...
 - Low institutional ownership (Nagel 2005)

Nagel (2005)

Table 2

		Residual institutional ownership								
		(Low)				(High)				
		RI1	RI2	RI3	RI4	RI5	RI5 - RI1	(t-statistic)		
Panel A: firm	characteristics by re	sidual ins	titutional e	ownership	quintile					
Mean size (m	illions of dollars)	920	2243	2889	1843	706				
Median size (millions of dollars)	224	351	366	272	189				
Mean institut	ional ownership	0.13	0.29	0.39	0.46	0.53				
Median instit	utional ownership	0.10	0.29	0.41	0.47	0.54				
Panel C: inte	rsection with sort on	analyst f	orecast dis	persion (A	(DISP)					
P1	(Low)	1.40	1.55	1.51	1.37	1.47	0.07	(0.36)		
P2		1.15	1.29	1.31	1.29	1.35	0.21	(1.00)		
P3		1.07	1.14	1.18	1.04	1.32	0.25	(1.54)		
P4		0.87	0.93	1.08	1.05	1.19	0.31	(2.04)		
P5	(High)	0.43	0.73	0.86	0.90	0.97	0.54	(2.47)		
P1–P5	Raw	0.97	0.83	0.66	0.48	0.49	0.48	(1.63)		
(t-statistic)		(1.87)	(1.97)	(1.77)	(1.42)	(1.55)				
P1-P5	CAPM α	1.43	1.19	0.93	0.74	0.74	0.69	(1.92)		
(t-statistic)		(2.38)	(2.34)	(2.00)	(1.76)	(1.89)				
P1-P5	FF3F α	0.74	0.56	0.33	0.23	0.24	0.50	(1.57)		
(t-statistic)		(1.73)	(1.54)	(1.02)	(0.73)	(0.80)				

Heterogeneous beliefs & Speculative behavior

▶ <u>Idea</u>: Anticipation of future optimism leads to speculation

```
seminal paper: Harrison and Kreps (1978)
full-fledged dynamic model: Scheinkman and Xiong (2003)
today: simple model
```

- 2 groups of risk-neutral investors A and B
- ▶ t = 3: Payoff $V_1 + V_2 + \varepsilon$
- ▶ t = 1, 2: Investors learn about V_t and disagree: V_t^A and V_t^B i.i.d. with mean zero
- Short-sales constraints
- Equilibrium:

$$P_1 > \max\{V_1^A, V_1^B\}$$

⇒ "speculative behavior"

Heterogeneous beliefs & Welfare

Example

Pillow made of cotton or polyester

Joe believes cotton with 90%, Bob believes polyester with 90%

They bet \$100, cut pillow open, winner replaces pillow at \$50 cost

Each one wants to bet despite pure transfer + pillow destroyed

- ightharpoonup Libertarian/beliefs as preferences (Savage 1954) ightarrow welfare efficient
- ▶ Paternalism → welfare inefficient
- "Belief-neutral" welfare criterion (Brunnermeier-Simsek-Xiong 2014)

An allocation is belief-neutral efficient if there is no other allocation that achieves higher welfare under any convex combination of agents' beliefs (where welfare criterion can be utilitarian, Pareto, etc.)

Sources of disagreement

Difference in beliefs (=disagreement) can come from:

a. Different priors

e.g., different "models of the world"

b. Different information + overconfidence about precision of own info

e.g., limited attention + non-Bayesian updating, leading to gradual information diffusion

Slow information diffusion: Cohen and Frazzini (2008)

Figure 1. Coastcast Corporation and Callaway Golf Corporation. This figure plots the stock prices of Coastcast Corporation (ticker = PAR) and Callaway Golf Corporation (ticker = ELY) between May and August 2001. Prices are normalized (05/01/2001 = 1).

Panel A: Value Weights	Q1(Low)	Q2	Q3	Q4	Q5(High)	L/S
Excess returns	-0.596	-0.157	0.125	0.313	0.982*	1.578
	[-1.42]	[-0.41]	[0.32]	[0.79]	[2.14]	[3.79]
Three-factor alpha	-1.062*	-0.796*	-0.541^{*}	-0.227	0.493*	1.555
	[-3.78]	[-3.61]	[-2.15]	[-0.87]	[1.98]	[3.60]
Four-factor alpha	-0.821*	-0.741*	-0.488	-0.193	0.556*	1.376
	[-2.93]	[-3.28]	[-1.89]	[-0.72]	[1.99]	[3.13]
Five-factor alpha	-0.797*	-0.737*	-0.493	-0.019	0.440	1.237
	[-2.87]	[-3.04]	[-1.94]	[-0.07]	[1.60]	[2.99]

→ CAR -- CAR of customer portfolio

At Least 20 Mutual Funds Holding the Stock

All Stocks

	$\mathbf{E}\mathbf{W}$	VW
Low COMOWN	1.653*	2.301*
Lower percentage of common ownership	[5.46]	[5.24]
High COMOWN	0.750*	1.098*
Higher percentage of common ownership	[1.97]	[2.17]
High-low	-0.903*	-1.203*
	[-2.08]	[-1.99]

Figure 3. Customer momentum, event-time CAR, and mutual fund's net purchases. This figure shows the average cumulative return and mutual funds net purchases in quarter #4 no a long-short portfolio formed on the firm's customer return in quarter #. At the beginning of every quarter, stokes are ranked in ascending order based on the return of a portfolio fir me major customers at the end of the previous quarter. Stokes are assigned to one of five quintile portfolios. The figure shows average cumulative returns (in %) over time of a zero-cost portfolio in the holds the top 20% high customer returns stokes, and the average are purchases by common and noncommon funds. For a given stoke NSTBUT COMMON is defined as ACS/SEROUTe,..., where ACS, is the change in total number of shares of the companies of the stoke of the s

Model disagreement: Cookson and Niessner (2020)

F	Panel	Α.	Charact	eristics	of Messages	and Heers

	Mean	SD	Min	p25	p50	p75	Max
Number of messages per stock	14,420	32,493	616	1,589	5,296	14,686	275,969
Number of messages per user	119	391	1	5	19	80	11,759
Number of messages per stock per day	43	134	1	3	10	31	4,690
Sentiment stock/day	0.439	0.518	$^{-1}$	0.167	0.5	1	1
Number of followers user has	212	2,126	0	2	6	21	96,433
Number of people user follows	45	197	0	5	15	45	9,990
Total Days Active	457	411	1	131	343	679	1,908

Panel B: Frequencies of User Profile Characteristics

Investment	Number of	Percent	Number of	Percent
Philosophy	Users	Users	Messages	Messages
Fundamental	1,505	12.51%	203,383	14.10%
Technical	4,610	38.32%	538,425	37.02%
Momentum	2,395	19.91%	368,939	26.12%
Global Macro	269	2.24%	12,974	0.90%
Growth	2,158	17.94%	217,504	15.08%
Value	1,092	9.08%	100,826	6.99 %
Total	12,029	100%	1,442,051	100%
Experience	Number of	Percent	Number of	Percent
	Users	Users	Messages	Messages
Novice	3,392	28.20%	228,041	15.81%
Intermediate	6,272	52.14%	803,198	55.70%
Professional	2,365	19.66%	410,812	28.49%
Total	12,029	100%	1,442,051	100%

	Panel A: Most Salient Words Used by Approach
Approach	Most Common Unique Words
Fundamental	eps, sales, growth, sentiment, read, revenue, earnings, million, quarter, consensus, billion, share, cash, results, analysts
Technical	chart, support, nice, break, looking, looks, gap, move, day, stop, calls, daily, close, resistance, bounce
Momentum	play, calls, time, via, week, day, news, squeeze, hod (high of day), hit, shares, cover, highs, run, money
Value	view, attempts, bulls, rising, aboard, stair, intraday, correction overextended, breakdown, fresh, mayb, steak, moved, rollout
Growth	news, er (earnings report), hope, green, shares, plug, money, article, time,

bears, waitings, ve, wait, board, share, future

	Number	of Messages
Sentiment	Original Sample	M
Bearish	86,615	
Bullish	385,753	
Unclassified	969,683	
	Panel B: Sentiment Summary Stati	stics

0.172

0.341

0.249

0.171

0.124

Fundamental

Technical

Growth

Value

Momentum

All investors			0.342				0.492
Fundamental			0.146				0.494
Technical			0.264				0.535
Momentum	0.237						
Growth			0.252				0.489
Value	0.118						0.457
Panel C	Disagree	ment with	in and a	cross Appr	oaches		
	Mean	SD	Min	p25	p50	p75	Max
All investors	0.467	0.446	0	0	0.628	0.932	1
Cross-group disagreement	0.382	0.262	0	0.151	0.435	0.545	1.117
Within-group disagreement	0.245	0.299	0	0	0	0.480	0.994

0.354

0.434

0.401

0.346

0.313

Mean

0

0

0

0

0

0

0

Panel A: Sentiment Classification

MaxEnt Classification 452,258 989,793

SD

1

Average Sentiment

0

0.531

0.866

0.699

0.000

0.000

Panel	A: Disagre	eement and	Trading Vo	olume		
		A	bnormal L	og Volume ((t)	
Disagreement measure	(1)	(2)	(3)	(4)	(5)	(6)
Disagreement (t)	0.099***	+1 s.d> v	rolume +10%	ó		
Disagreement (BMO, t)		0.053*** (0.006)		> volume +3	80%	
Cross-Group Disagreement (t)			0.030*** (0.008)			
Cross-Group Disagreement (BMO, t)				0.033*** (0.005) +	1 s.d> vo	lume +18%
Within-Group Disagreement (t)					0.175*** (0.011)	
Within-Group Disagreement (BMO, t)						0.085***
AbLogVol $(t-1)$	0.719*** (0.015)	0.723*** (0.015)	0.727*** (0.015)	0.725*** (0.015)	0.705*** (0.017)	0.717*** (0.016)
Media (t)	0.069***	0.071***	0.080***	0.077***	0.045***	0.057***
Volatility $(t-5 \text{ to } t-1)$	0.259 (0.229)	0.364 (0.237)	0.398*	0.391*	0.164 (0.238)	0.331 (0.243)
AbRet $(t-5)$ to $t-1$)	0.178***	0.174***	0.173***	0.172***	0.172***	0.167***
AbRet $(t - 30 \text{ to } t - 6)$	0.113***	0.119*** (0.024)	0.117***	0.118***	0.108***	0.117***
Observations \mathbb{R}^2	42,041 0.637	42,041 0.633	42,041 0.632	42,041 0.632	42,041 0.649	42,041 0.636

Disagreement measure	Sentiment Sophisticated (AMO) (1)	Sentiment Unsophisticated (AMO) (2)
Sentiment Sophisticated (BMO)	0.065*** (0.014)	0.025*** (0.005)

Panel B: Lead-Lag of Sophisticated versus Unsophisticated Sentiment

Sentiment Unsophisticated (BMO) 0.007 0.454*** (0.008)(0.012)

AbLogVol (t-1)0.017*** 0.014*** (0.003)(0.004)Media 0.016*** 0.023***

(0.004)(0.005)Volatility (t - 5 to t - 1)-0.0190.077

(0.034)(0.063)AbRet (t-5 to t-1)0.032*** 0.038**

(0.011)(0.015)

0.007 0.017** AbRet (t - 30 to t - 6)

 \mathbb{R}^2

(0.005)(0.007)

Observations 42.053 42.053

0.394

0.573

Learning from experience: Malmendier and Nagel (2011)

	$10^{\mathrm{th}}\ \mathrm{pct}$	Median	$90^{\rm th}~{ m pct}$	Mean	Std. dev.	#Obs.
	Panel A: A	ll househo	lds			
Liquid assets	0	6,382	144,639	80,248	652,585	51,204
Income	11,883	43,419	105,339	60,511	178,088	51,204
Experienced real stock return ($\lambda = 1.50$)	0.062	0.092	0.119	0.091	0.022	51,204
Experienced real bond return ($\lambda = 1.50$)	-0.002	0.006	0.051	0.018	0.022	51,204
Stock market participation	0	0	1	0.342	0.474	51,204
Bond market participation	0	0	1	0.376	0.484	49,866
Elicited risk tolerance (1983–2007)	1	2	3	1.826	0.841	28,732
	Panel B: S	tock mark	et particip	ants		
Liquid assets	4,974	51,567	409,723	210,070	1,108,027	22,541
Income	28,339	67,799	164,596	99,759	297,869	22,541
Bond market participation	0	1	1	0.681	0.466	22,293
Fraction of liquid assets in stocks	0.071	0.451	0.900	0.466	0.295	21,669
Elicited risk tolerance (1983–2007)	1	2	3	2.103	0.801	17,049
	Panel C: B	ond mark	et particip	ants		
Liquid assets	2,332	31,842	322,119	169,981	1,027,384	22,553
Income	26,113	61,926	143,552	89,119	275,068	22,553
Stock market participation	0	1	1	0.628	0.483	22,553
Fraction of liquid assets in stocks	0	0.157	0.740	0.266	0.294	21,556
Elicited risk tolerance (1983–2007)	1	2	3	2.010	0.804	15,954

$$\textit{Experience}_{it} = \sum_{k=1}^{\textit{Age}_{it}-1} w_k R_{t-k} \qquad w_k = \frac{(\textit{Age}_{it}-k)^{\lambda}}{\sum_{\ell=1}^{\textit{Age}_{it}-1} (\textit{Age}_{it}-\ell)^{\lambda}}$$

TABLE II ELICITED RISK TOLERANCE

	(i)	(ii)
Experienced stock return coefficient β	4.533	6.692
	(1.106)	(1.180)
Weighting parameter λ	1.834	1.433
	(0.452)	(0.280)
Income controls	Yes	Yes
Liquid assets controls	_	Yes
Household characteristics	Yes	Yes
Age dummies	Yes	Yes
Year dummies	Yes	Yes
Average of fitted prob. at 90th pct. minus fitted prob. at 10th pct. of experienced stock return		
Risk tolerance = 1 (low)	-0.088	-0.103
[unconditional freq. = 0.413]	(0.020)	(0.016)
Risk tolerance = 2	0.025	0.029
[unconditional freq. $= 0.391$]	(0.001)	(0.003)
Risk tolerance = 3	0.040	0.047
[unconditional freq. = 0.153]	(0.011)	(0.010)
Risk tolerance = 4 (high)	0.023	0.027
[unconditional freq. $= 0.043$]	(0.009)	(0.009)
#Obs.	28,571	28,571
Pseudo R^2	0.09	0.10

TABLE III STOCK AND BOND MARKET PARTICIPATION

Stoc	K AND BOND MARKET	PARTICIPATION			
		stock returns and et participation	Experienced bond returns and bond market participation		
	(i)	(ii)	(iii)	(iv)	
Experienced return coefficient β	6.963 (1.149)	10.627 (1.403)	10.809 (1.446)	8.433 (1.680)	
Weighting parameter λ	1.924 (0.267)	1.325 (0.209)	1.176 (0.218)	1.282 (0.367)	
Income controls	Yes	Yes	Yes	Yes	
Liquid assets controls	-	Yes	_	Yes	
Household characteristics	Yes	Yes	Yes	Yes	
Age dummies	Yes	Yes	Yes	Yes	
Year dummies	Yes	Yes	Yes	Yes	
Average of fitted prob. at 90th pctile. minus	0.092	0.102	0.161	0.114	
fitted prob. at 10th pct. of experienced return	(0.019)	(0.017)	(0.022)	(0.023)	
#Obs.	51,013	51,013	49,678	49,678	
Pseudo R^2	0.40	0.49	0.27	0.33	

TABLE V
USING STOCK AND BOND RETURNS JOINTLY

Dependent variable	Elicited risk tolerance	Stock market participation	Bond market participation	Fraction of liquid assets in stocks	Fraction of liquid assets in bonds
Sample	Full	Full	Full	Stock market participants	Bond market participants
	(i)	(ii)	(iii)	(iv)	(v)
Experienced stock return coeff. β_{stock}	4.670	10.564	-1.149	1.765	-1.381
	(2.042)	(1.405)	(1.244)	(0.410)	(0.361)
Weighting parameter for stocks λ_{stock}	1.433	1.325	1.325	1.166	1.166
	[fixed]	[fixed]	[fixed]	[fixed]	[fixed]
Average of fitted values at 90 th pct. minus fitted values at 10 th pct. of					
experienced stock return	0.072	0.101	-0.015	0.103	-0.085
	(0.029)	(0.016)	(0.016)	(0.024)	(0.022)
where fitted value refers to	probability of	probability of	probability of	fraction of	fraction of
	not being in lowest risk	stock market	bond market	liquid assets	liquid assets
	tolerance category	participation	participation	in stocks	in bonds
Experienced bond return coeff. β _{bond}	5.413	0.944	8.562	-0.748	0.970
	(4.420)	(1.904)	(1.579)	(0.572)	(0.487)
Weighting parameter for bonds λ_{bond}	1.282	1.282	1.282	1.282	1.282
	[fixed]	[fixed]	[fixed]	[fixed]	[fixed]
Average of fitted values at 90th pctile. minus fitted values at 10th pctile. of					
experienced bond return	0.101	0.009	0.115	-0.036	0.046
	(0.079)	(0.018)	(0.021)	(0.028)	(0.023)
where fitted value refers to	probability of	probability of	probability of	fraction of	fraction of
	not being in lowest risk	stock market	bond market	liquid assets	liquid assets
	tolerance category	participation	participation	in stocks	in bonds

Learning from experience

- ▶ Malmendier and Nagel (2016): inflation expectations
- ► Chernenko, Hanson and Sunderam (2016): asset managers
- ▶ Bailey, Cao, Kuchler and Stroebel (2018): housing prices using geographical variation

Extrapolative expectations: Greenwood and Shleifer (2014)

Table 2 Correlations between different measures of investor expectations

	Gallup (N = 135)	Graham- Harvey (N = 42)	American Association (N = 294)	Investor Intelligence (N = 588)	Shiller (N = 132)	Michigan (N = 22)	Index (N = 294)
Graham-Harvey	0.77 [0.000]						
American Association	0.64 [0.000]	0.56 [0.000]					
Investor Intelligence	0.60 [0.000]	0.64 [0.000]	0.55 [0.000]				
Shiller	0.39	0.66	0.51 [0.000]	0.43 [0.000]			
Michigan	0.61 [0.003]	-0.12 [0.922]	0.60 [0.003]	0.19 [0.395]	-0.55 [0.020]		
Expectations Index	0.87 [0.000]	0.58 [0.000]	0.87 [0.000]	0.81 [0.000]	0.52 [0.000]	0.55 [0.008]	
Fund flow	0.69 [0.000]	0.71 [0.000]	0.42 [0.000]	0.20 [0.002]	0.51 [0.001]	0.40 [0.068]	0.45 [0.000]

This table shows partial correlation coefficients; that is, it uses the full sample of overlapping data for each series. The Expectations Index combines data in the Gallup, American Association, and Investor Intelligence series. Numbers in brackets denote p-values on the hypothesis that the correlation between the two series is zero.

Figure 4
Comparing the Gallup survey with flows into equity mutual funds
The solid line denotes the percentage of investors who are bullish in the Gallup survey (left axis). The dashed

The solid line denotes the percentage of investors who are bullish in the Gallup survey (left axis). The dashed line (right axis) is flows into mutual funds as a percentage of equity market capitalization, as reported by the Investment Company Institute.

Table 3 Determinants of investor expectations

	(1) Gallup	(2) GH	(3) AA	(4) II	(5) Shiller	(6) Michigan	(7) Index	(8) Gallup	(9) GH	(10) AA	(11) II	(12) Shiller	(13) Michigan
Panel A: Past retu	rns and price	levels											
R_{t-12}	91.227	3.133	32.479	50.771	1.626	3.897	3.092	89.155	3.354	36.173	53.454	3.368	6.868
	[8 811]	[2.515]	[4 046]	[6.012]	[0.182]	[1.680]	[5.516]	[13.052]	[2.460]	[5 839]	[7.031]	[0.691]	[5.050]

R_{t-12}	91.227	3.133	32.479	50.771	1.626	3.897	3.092	89.155	3.354	36.173	53.454	3.368	6.868	3.347
	[8.811]	[2.515]	[4.046]	[6.012]	[0.182]	[1.680]	[5.516]	[13.052]	[2.460]	[5.839]	[7.031]	[0.691]	[5.050]	[7.600]
Log(P/D)								25.995	3.404	15.721	11.465	17.801	5.389	1.087
								[4.107]	[3.264]	[4.234]	[3.131]	[4.808]	[6.359]	[5.785]
Constant	14 881	5 789	5.018	6.915	81.965	9 614	-0.337	-92.859	-7 979	-56 461	-34 654	9.893	-13 535	-4 587

(14)Index

Log(P/D)							•	25.995	3.404	15.721	11.465	17.801	5.389	1.087
								[4.107]	[3.264]	[4.234]	[3.131]	[4.808]	[6.359]	[5.785]
Constant	14.881	5.789	5.018	6.915	81.965	9.614	-0.337	-92.859	-7.979	-56.461	-34.654	9.893	-13.535	-4.587
	[5.307]	[12.030]	[2.320]	[3.084]	[43.492]	[12.910]	[2.312]	[-3.523]	[-1.902]	[-3.847]	[-2.491]	[0.668]	[-3.858]	[-6.079]
N	135	42	294	588	132	22	294	135	42	294	588	132	22	294
R^2	0.611	0.133	0.135	0.188	0.002	0.191	0.300	0.689	0.348	0.259	0.243	0.317	0.827	0.443

$$\textit{Expectations}_t = \textit{a} + \textit{b} \sum_{j=0}^k \frac{\lambda^j}{\sum_{i=0}^k \lambda^i} \textit{R}_{t-j} + \epsilon_t$$

Table 4 Determinants of investor expectations

	(1) Gallup	(2) GH	(3) AA	(4) II	(5) Shiller	(6) Michigan	(7) Index
λ	0.770	0.457	0.392	0.493	0.334	0.918	0.542
l	[19.946]	[2.617]	[3.968]	[4.950]	[0.384]	[42.126]	[2.274]
а	11.725	5.781	5.206	6.530	81.912	8.693	-0.359
	[4.464]	[2.425]	[2.256]	[2.780]	[43.906]	[25.511]	[5.119]
b	502.643	14.690	133.816	227.675	12.270	65.140	14.142
	[8.563]	[23.839]	[2.349]	[5.819]	[0.234]	[5.542]	[5.107]
N	135	42	294	588	132	22	294
R^2	0.675	0.252	0.219	0.281	0.015	0.768	0.415

Table 6 Continued Panel B: Forecasting thirty-six-month returns

We estimate time-series regressions of the form:

$$R_{t+k}^{x} = a + bX_t + u_{t+k},$$

where Rx denotes the k-month excess return on the stock market, and X is a predictor variable. The independent variables include measures of expectations and measures of expected returns, including cay, the log dividend price ratio, and surplus consumption. Selected investor expectations variables are starred to indicate that we use the rescaled versions. The rescaled versions can be interpreted in units of nominal stock returns. Panel A shows results for twelve-month returns; Panel B shows thirty-six-month returns. Newey-West-based t-statistics are in brackets, Note that Michigan is excluded from Panel B because it does not have enough observations needed to compute the standard errors. In Columns (1)-(7) of Panel A, for each measure of survey expectations, we show the p-value on the test that b=1.

Example of deviation from RE

Denote

$$x_{t+1}$$
: variable being forecast

 $F_t x_{t+1}$: forecast at t

 $E_t x_{t+1}$: RE forecast at t

Assume

$$F_t x_{t+1} = (1 - \lambda) E_t x_{t+1} + \lambda F_{t-1} x_{t+1}$$

 $\lambda = 0$: rational expectations

 $\lambda > 0$: under-reaction (sticky expectations)

 $\lambda < 0$: over-reaction (extrapolative expectations)

► Coibion and Gorodnichenko (2015)

$$\Leftrightarrow E_t x_{t+1} - F_t x_{t+1} = \frac{\lambda}{1 - \lambda} [F_t x_{t+1} - F_{t-1} x_{t+1}]$$

Forecast revision predicts forecast error ightarrow can be estimated by OLS

Muth (1961)

RATIONAL EXPECTATIONS

Deviations from Rationality. Certain imperfections and biases in the expectations may also be analyzed with the methods of this paper. Allowing for cross-sectional differences in expectations is a simple matter, because their aggregate effect is negligible as long as the deviation from the rational forecast for an individual firm is not strongly correlated with those of the others. Modifications are necessary only if the correlation of the errors is large and depends systematically on other explanatory variables. We shall examine the effect of over-discounting current information and of differences in the information possessed by various firms in the industry. Whether such biases in expectations are empirically important remains to be seen. I wish only to emphasize that the methods are flexible enough to handle them.

Let us consider first what happens when expectations consistently overor under-discount the effect of current events. Equation (3.8), which gives the optimal price expectation, will then be replaced by

$$(3.18) p_t^e = f_1 W_1 \varepsilon_{t-1} + \sum_{i=2}^{\infty} W_i \varepsilon_{t-i}.$$

In other words the weight attached to the most recent exogenous disturbance is multiplied by the factor f_{1} , which would be greater than unity if current information is over-discounted and less than unity if it is underdiscounted.

Extrapolative expectations Bordalo, Gennaioli, La Porta and Shleifer (2019)

Figure 2. Evolution of EPS. In December of years (t) 1981, 1984, ... 2011, and 2014, we form decile portfolios based on ranked analysts' expected growth in long-term EPS (LTG). We report the (bootstrapped) mean value of EPS for the highest (HLTG) and lowest (LLTG) LTG deciles for each year between t-3 and t+3. We exclude firms with negative earnings in t-3 and normalize to 1 the value of EPS in t-3. To do so, we restrict the computation to firms that have positive earnings at t-3. The dotted lines indicate 5^{th} and 95^{th} confidence levels determined via nonparametric bootstrapping using 1,000 samples (the results are robust to changing the size of sample draws).

Table II

Coibion-Gorodnichenko Regressions for EPS

Each entry in the table corresponds to the estimated coefficient of regressing the forecast errors $(EPS_{t+n}/EPS_t)^{1/n} - LTG_t$ for n=3,4, and 5 on the variables listed in the first column of the table

	Dependent Variable									
	$(EPS_{t+3}/EPS_t)^{1/3} - LTG_t$	$(EPS_{t+4}/EPS_t)^{1/4} - LTG_t$	$(EPS_{t+5}/EPS_t)^{1/5} - LTG_t$							
$LTG_t - LTG_{t-1}$	-0.0351	-0.1253 ^a	-0.1974 ^a							
	(0.0734)	(0.0642)	(0.0516)							
$LTG_t - LTG_{t-2}$	-0.2335^{a}	-0.2687^{a}	-0.2930^{a}							
	(0.0625)	(0.0602)	(0.0452)							
$LTG_t - LTG_{t-3}$	-0.2897^{a}	-0.2757^{a}	-0.3127^{a}							
	(0.0580)	(0.0565)	(0.0437)							

Figure 5. Twelve-day returns on earnings announcements for LTG portfolios. In December of each year t between 1981 and 2013, we form decile portfolios based on ranked analysts' expected growth in long-term EPS. Next, for each stock, we compute the three-day market-adjusted return centered on earnings announcements in years $t-3,\ldots,t+3$. Next, we compute the annual return that accrues over earnings announcements by compounding all three-day stock returns in each year. We report the equally weighted (bootstrapped) average annual return during earnings announcements for the highest (HLTG) and lowest (LLTG) LTG deciles. Excess returns are defined relative to the equally weighted CRSP market portfolio. The dotted lines indicate 5^{th} and 95^{th} confidence levels determined via bootstrapping.

Sticky expectations Bouchaud, Krueger Landier and Thesmar (2019)

Figure 1. Forecast errors and forecast revisions. This figure shows the forecast errors as a function of forecast revisions. We sort observations into 20 bins of forecast revision $(P_{t-1}\pi_{f,t} - P_{t-2}\pi_{f,t})P_{f,t-2}$ and calculate the average forecast error (defined as $(\pi_{f,t} - P_{t-1}\pi_{f,t})P_{f,t-2})$ and the average forecast error in the average fo

Dependent Variable: $(\pi_{f,t} - F_{t-1}\pi_{f,t})/P_{f,t-2}$							
$(F_{t-1}\pi_{f,t} - F_{t-2}\pi_{f,t})/P_{f,t-2}$ $F_{t-1}\pi_{f,t}/P_{f,t-2}$	0.165*** (10.28)						
$F_{t-2}\pi_{f,t}/P_{f,t-2}$							
$(\pi_{f,t-1} - \pi_{f,t-2})/P_{f,t-2}$							
Observations	54,090						
R^2	0.030						

			Panel	A: Analyst-Lev	el				
Count	Mean	SD 1	Min p5	p10	p25	p50 p75	p90	p95	Ma
6,938	0.16	0.56 –	2.26 -0.78	-0.42	-0.05	0.18 0.40	0.66	0.91	2.
•									
-		Panel A	Dependent V	ariable 1. (A	nalvst Lovol)			
			Dependent v	arrabic κ_a (ri	nary by Lever,	,			
Experience									
		(-3.20)							
Firm experien	ice								
T 1 4			(-4.26)	0.01044					
Industry expe	rience								
0 1: 1				(-4.64)	0.011				
Covered industries									
					(3.44)	0.000444			
Covered firms									
		0.405444	0.105444	0.000	0.440				
Constant									
		(14.43)	(14.24)	(15.02)	(8.85)	(11.67)	(9.34)		
Observations		6,938	7,054	6,890	7,036	7,063	6,716		
	Experience Firm experier Industry expe Covered indus Covered firms	Experience Firm experience Industry experience Covered industries Covered firms Constant	Panel A: Experience -0.005*** (-3.20) Firm experience Industry experience Covered industries Covered firms Constant 0.185*** (14.43)	Count Mean SD Min p5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c } \hline \text{Count} & \text{Mean} & SD & \text{Min} & p5 & p10 & p25 & p50 & p75 & p90 & p95 \\ \hline \hline 6,938 & 0.16 & 0.56 & -2.26 & -0.78 & -0.42 & -0.05 & 0.18 & 0.40 & 0.66 & 0.91 \\ \hline \\ \hline & & & & & & & & & & & & & & & &$

0.003

0.002

0.001

0.007

0.001

0.002

	Panel A: Cash Flows (cf)								
	T1	-0.18	0.03	0.21**	0.26**	0.33**	0.51**		
erciles of stock-level lambda = median lambda of analysts ollowing the stock)	1	(-1.00)	(0.34)	(2.29)	(2.30)	(2.37)	(2.42)		
	T2	0.12	0.16*	0.31***	0.41***	0.59***	0.47**		
		(0.76)	(1.74)	(3.50)	(4.50)	(4.39)	(2.40)		
	тз	-0.58***	-0.18*	0.12	0.20*	0.44***	1.02***		
	1	(-3.56)	(-1.81)	(1.39)	(1.80)	(3.74)	(4.94)		
	T3 - T1	-0.40**	-0.21**	-0.09	-0.06	0.11	0.51***		
	1	(-2.36)	(-2.45)	(-0.99)	(-0.78)	(1.11)	(3.18)		
	Panel C: Momentum (mom)								
	T1	-0.51***	-0.08	0.10	0.32***	0.60**	1.11***		
		(-3.08)	(-0.68)	(1.06)	(3.44)	(2.38)	(3.28)		
	T2	-0.20	-0.01	0.24**	0.39***	0.79***	0.99***		
		(-1.00)	(-0.08)	(2.49)	(4.51)	(3.61)	(2.76)		
	T3	-0.87***	-0.25**	0.05	0.34***	0.65***	1.51***		
		(-4.94)	(-1.97)	(0.41)	(3.41)	(3.56)	(4.79)		
	T3 - T1	-0.36***	-0.17*	-0.05	0.01	0.05	0.41***		

(-1.87)

Q2

(2)

Q3

(3)

(-0.57)

Q4

(4)

(0.12)

Q5 - Q1

(6)

(2.64)

 Q_5

(5)

(0.30)

Q1 (1)

(-3.16)

References

- Akerlof 1970. The market for lemons: Quality uncertainty and the market mechanism.
 Quarterly Journal of Economics
- Asquith, Pathak and Ritter 2005. Short interest, institutional ownership, and stock returns.
 Journal of Financial Economics
- Bailey, Cao, Kuchler and Stroebel 2018. The economic effects of social networks: Evidence from the housing market. Journal of Political Economy
- Barber and Odean 2001. Buys will be boys: Gender, overconfidence, and common stock investment. Quarterly Journal of Economics
- Bordalo, Gennaioli, La Porta and Shleifer 2019. Diagnostic expectations and stock returns.
 Journal of Finance
- Bouchaud, Krueger, Landier and Thesmar 2019. Sticky expectations and the profitability anomaly. Journal of Finance
- Brunnermeier, Simsek and Xiong 2014. A welfare criterion for models with distorted beliefs.
 Quarterly Journal of Economics
- Chen, Hong and Stein 2002. Breadth of ownership and stock returns. Journal of Financial Economics
- Chernenko, Hanson and Sunderam 2016. Who neglects risk? Investor experience and the credit boom. Journal of Financial Economics
- Cohen and Frazzini 2008. Economic links and predictable returns. Journal of Finance
- Coibion and Gorodnichenko 2015. Information rigidity and the expectations formation process: A simple framework and new facts. American Economic Review
- Cookson and Niessner 2020. Why don't we agree? Evidence from a social network of investors. Journal of Finance

- Diether, Malloy and Scherbina 2002. Differences of opinion and the cross section of stock returns. Journal of Finance
- Greenwood and Shleifer 2014. Expectations of returns and expected returns. Review of Financial Studies
- Harrison and Kreps 1978. Speculative investor behavior in a stock market with heterogeneous expectations. Quarterly Journal of Economics
- Hong and Stein 2007. Disagreement and the stock market. Journal of Economic Perspectives
- Jones and Lamont 2002. Short-sale constraints and stock returns. Journal of Financial Economics
- Malmendier and Nagel 2011. Depression babies: Do macroeconomic experiences affect risk taking. Quarterly Journal of Economics
- Malmendier and Nagel 2016. Learning from inflation experiences. Quarterly Journal of Economics
- Milgrom and Stokey 1982. Information, trade and common knowledge. Journal of Economic Theory
- Miller 1977. Risk, uncertainty, and divergence of opinion. Journal of Finance
- Muth 1961. Rational expectations and the theory of price movements. Econometrica

Economy

- Nagel 2005. Short-sales, institutional investors and the cross-section of stock returns.
 Journal of Financial Economics
- Journal of Financial Economics

 Scheinkman and Xiong 2003. Overconfidence and speculative bubbles. Journal of Political