

Introduction to ML strategy

Why ML Strategy?

Motivating example

90%

Ideas:

- Collect more data
- Collect more diverse training set
- Train algorithm longer with gradient descent
- Try Adam instead of gradient descent
- Try bigger network
- Try smaller network

- Try dropout
- Add L_2 regularization
- Network architecture
 - Activation functions
 - # hidden units
 - •

Introduction to ML strategy

Orthogonalization

TV tuning example

Orthogonlization

Chain of assumptions in ML

> Fit training set well on cost function & bigger nother Adams

> Fit dev set well on cost function & Regularization & Regula >> Fit test set well on cost function /> Digger den set > Performs well in real world of the devict or (Hoppy and pie of wers.)

Setting up your goal

Single number evaluation metric

Using a single number evaluation metric

Another example

	2	L	V	4	
Algorithm	US	China	India	Other	Average
A	3%	7%	5%	9%	6%
В	5%	6%	5%	10%	6.5%
C	2%	3%	4%	5%	3.5%
D	5%	8%	7%	2%	5.25%
E	4%	5%	2%	4%	3.75%
F	7%	11%	8%	12%	9.5%

Setting up your goal

Satisficing and optimizing metrics

Another cat classification example

optimizing		Sorti	Sostisficing		
Classifier	Accuracy	Running time			
A	90%	80ms			
В	92%	95 ms	=		
\mathbf{C}	95%	1,500ms			
Cost = accur Maximize	acc word				
Suggeor to	running Times				
N metrico:	N-1 Sortisfic	_			

Wakewords Trigger words Hara, Ok Googh. Hey Siri, nihoobaidu 你好百度 accuray. # False positive

Setting up your goal

Train/dev/test distributions

Cat classification dev/test sets

dovelopment sort, hold out cross voludorien com

Regions:

- US
- UK
- Other Europe
- South America
- India
- China
- Other Asia
- Australia

dev set + Metric

Code

True story (details changed)

Optimizing on dev set on loan approvals for medium income zip codes

A y (repay loan?)

Tested on low income zip codes

Guideline

Same distribution

Choose a dev set and test set to reflect data you

expect to get in the future and consider important

to do well on.

Setting up your goal

Size of dev and test sets

Old way of splitting data

Size of dev set

A B

Set your dev set to be big enough to detect differences in algorithm/models you're trying out.

Size of test set

→ Set your test set to be big enough to give high confidence in the overall performance of your system.

Setting up your goal

When to change dev/test sets and metrics

Cat dataset examples

Motore + Der: Prefer A. Youlusons: Prefer B.

→ Metric: classification error

Algorithm A: 3% error

borrodobyic

/ Algorithm B: 5% error

Orthogonalization for cat pictures: anti-porn

→ 1. So far we've only discussed how to define a metric to evaluate classifiers. - Place togt to

→ 2. Worry separately about how to do well on this metric.

Another example

Algorithm A: 3% error

✓ Algorithm B: 5% error <u></u>

→ User images

If doing well on your metric + dev/test set does not correspond to doing well on your application, change your metric and/or dev/test set.

Comparing to human-level performance

Why human-level performance?

Comparing to human-level performance

Why compare to human-level performance

Humans are quite good at a lot of tasks. So long as ML is worse than humans, you can:

- \rightarrow Get labeled data from humans. (x, y)
- Gain insight from manual error analysis: Why did a person get this right?
- Better analysis of bias/variance.

Comparing to human-level performance

Avoidable bias

Bias and Variance

Bias and Variance

Cat classification

Training set error:

Dev set error:

high vorione high bies high bies low bies high vorione low vorione

Cat classification example

Comparing to human-level performance

Understanding human-level performance

Human-level error as a proxy for Bayes error

Medical image classification example:

Suppose:

(c) Experienced doctor 0.7 % error

(d) Team of experienced doctors .. 0.5 % error (

What is "human-level" error?

12 age error 5 0.50/s

Error analysis example

Training error

Dev error

Summary of bias/variance with human-level performance

Human-level error

Training error

Dev error

Comparing to human-level performance

Surpassing humanlevel performance

Surpassing human-level performance

Team of humans

O.5 %

One human

0-1

Training error

6.6%

Dev error

5.80/0

What is avoidable bios?

Problems where ML significantly surpasses human-level performance

- -> Online advertising
- -> Product recommendations
- -> Logistics (predicting transit time)
- → Loan approvals

```
Structul dorta
Not Notenh perception
Lote of dorta
```

```
- Speech recognition
- Some in oge recognition
- Medul
- ECG, Skin cener,...
```


Comparing to human-level performance

Improving your model performance

The two fundamental assumptions of supervised learning

1. You can fit the training set pretty well.

n Aroidable bios

2. The training set performance generalizes pretty well to the dev/test set.

Reducing (avoidable) bias and variance

