Respuestas al Trabajo Práctico 3

- **1.** a) (0, 9); (9,0)
- d) A los 2 segundos; nunca

e)
$$y = -x + 9$$
, $0 \le x \le 9$

2. 1) $\frac{x^2}{4} + \frac{y^2}{9} = 1$, $y \ge 0$ 2) y = x, $x \ge 0$ 3) i. $x^2 + y^2 = 9$ ii. $x^2 + y^2 = 9$, $0 \le x \le 3$ 4) $y = -x^2 + 1$, x > 0 5) $y = (x + 1)^2 + 2$, $x \ge -1$

8)

- **3.** La función 2) se corresponde con γ_2 ; la curva γ_1 con la función 4); la función 5) se corresponde con γ_3
- **4.** a. $\bar{f}(t) = \begin{cases} (t, 2t) & 0 \le t \le 1 \\ (t, 2) & 1 < t \le 3 \end{cases}$ b. $\bar{f}: \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] \to R^2/\bar{f}(t) = (2\cos t; 2\sin t)$

c.
$$f:[0;\pi] \to R^2/f(t) = (-3\cos t; 3\sin t)$$

- **5.** a. $x(t) = \cos(2t)$, $y(t) = \sin(2t) \cos \frac{\pi}{4} \le t \le \frac{9\pi}{4}$
 - b. $x(t) = \cos t$, $y(t) = \sin t \cos 0 \le t \le \frac{\pi}{2}$
- **6.** a. $\bar{f}(t) = (t; t^2 3t)$ $t \in R$ b. $\bar{f}: \left[\frac{\pi}{2}; \frac{3\pi}{2}\right] \to R^2/\bar{f}(t) = (5\cos t; 5\sin t)$ c. $\bar{f}(t) = \left(\frac{1}{3}\cos t; \sin t\right)$ $t \in R$

d.
$$\bar{f}$$
: $[-1; 1] \to R^2/\bar{f}(t) = (t^2; t)$

e. $f:[0;2\pi] \to R^2/f(t) = (\cos(t) - 1; sen(t))$ f. $f:[\pi;\frac{3\pi}{2}] \to R^2/f(t) = (\sqrt{2}\cos(t);\sqrt{3}sen(t))$

g.
$$f: (-\sqrt{5}; \sqrt{5}) \to R^2/f(t) = (t; 2t)$$

7. $a. f: R \to R^3 / f(t) = (\cos t; sent; 5)$ $b. f: R \to R^3 / f(t) = (3\sqrt{2}\cos t; 3\sqrt{2}sent; 3\sqrt{2})$

c.
$$f: R \to R^3/f(t) = (t; 0; 1-t)$$
 d. $f: R \to R^3/f(t) = (t; 4-t; 4-t^2)$

$$e.f:[0;2] \to R^3/f(t) = (t;4-t;4-t^2)$$

Respuestas al Trabajo Práctico 3

Análisis Matemático II

а

- **8.** a. v(1) = (2; 1), a(1) = (2; 0), b. v(3) = (2; -1), a(3) = (0; 0), c. v(4) = (0; -32; 24), a(4) = (0; -8; 6)
- **9.** No se encuentran en ningún instante t.
- **10.** Se encuentran en el instante t = 1

11.

a.
$$(x; y) = (1; 1) + \lambda(1; 2)$$
, $\lambda \in \mathbb{R}$ b. $(x; y) = (\sqrt{2}; \sqrt{2}) + \lambda(-\sqrt{2}; \sqrt{2})$, $\lambda \in \mathbb{R}$ c. $(x; y; z) = (r; 4; 0) + \lambda(0; 0; r)$, $\lambda \in \mathbb{R}$ d.. $(x; y; z) = (\sqrt{2}; \sqrt{2}; 1) + \lambda(-\sqrt{2}; \sqrt{2}; 0)$, $\lambda \in \mathbb{R}$

12. $g: R \to R^2/g(t) = (-1 + 2\cos t, 3 + 2\sin t), (x, y) = (1, 3) + \alpha(0, 2), \alpha \in R$

$$\bar{f}(t) = \left(-\frac{1}{t} + 4; -\frac{\cos(2t-2) + 1}{2}\right), \quad \bar{f}(t) = \left(\frac{1}{2t^4} + \frac{1}{2}; \frac{3}{8}\sqrt[3]{(t^2+7)^4} + 1; t \ln t - t + 1\right)$$
a.

- **14.** Área = 3.76 a proxima damente
- **15.** Área = 36.59