Informal Seminar on Stanley-Reisner Theory, UMN, Fall 2002 12 December 2002

Shellable complexes are Cohen-Macaulay

Speaker: Jeremy Martin

I'm going to prove the following (Theorem 5.1.13 in Bruns and Herzog):

Theorem: Let Δ be a shellable simplicial complex. Then the Stanley-Reisner ring $\mathbf{k}[\Delta]$ is Cohen-Macaulay (for all fields \mathbf{k}).

We need the following preliminary results. Let R be a \mathbb{N}^n -graded ring and I, J graded ideals of R. (We may as well take $R = \mathbf{k}[x_1, \dots, x_n]$ and I, J monomial ideals.)

Lemma 1: We have an exact sequence

$$0 \to R/(I \cap J) \xrightarrow{\alpha} R/I \oplus R/J \xrightarrow{\beta} R/(I+J) \to 0.$$

where

$$\alpha(a + (I + J)) = (a + I, a - J),$$

 $\beta(a + I, b + J) = (a + b) + (I + J).$

Proof: α obviously has zero kernel, and β is surjective by the Chinese Remainder Theorem. Finally,

$$\operatorname{im} \alpha = I/(I \cap J) \oplus J/(I \cap J)$$
 and $\ker \beta = (I+J)/I \oplus (I+J)/J$

which are equal by basic group theory.

Lemma 2: If R/I and R/J are Cohen-Macaulay of dimension d and R/(I+J) is Cohen-Macaulay of dimension d-1, then $R/(I\cap J)$ is Cohen-Macaulay of dimension d.

Proof: It is easy to check that $R/I \oplus R/J$ is Cohen-Macaulay of dimension d. Recall that $H^i(M)$ is nonzero iff depth $M \leq i \leq \dim M$ (with equality if M is Cohen-Macaulay). So we want to show that

(1)
$$H^{i}(R/(I \cap J) \neq 0 \iff i = d.$$

Apply the long exact sequence of local cohomology to the short exact sequence of Lemma 1, obtaining (2)

$$\overset{\smile}{\dots} \rightarrow H^{i-1}(R/I \oplus R/J) \rightarrow H^{i-1}(R/(I+J)) \rightarrow H^{i}(R/(I \cap J)) \rightarrow H^{i}(R/I \oplus R/J) \rightarrow H^{i}(R/(I+J)) \rightarrow \dots$$

If $i \neq d$, then the second and fourth terms in (2) are zero, so $H^i(R/(I \cap J) = 0$. If i = d, then the first and fifth terms are zero and the second and fourth terms are nonzero, so $H^i(R/(I \cap J) \neq 0$, giving (1).

Proof of the theorem: Let Δ be shellable of dimension d-1 on vertices $\{v_1,\ldots,v_n\}$, with F_1,\ldots,F_m a shelling order on the facets. That is, for all $1 \leq j \leq m+1$, the complex $\langle F_{j+1} \rangle \cap \Delta_j$ is generated by some nonempty set of maximal proper faces of F_{j+1} , where $\Delta_j = \langle F_1,\ldots,F_j \rangle$. For each facet F_j , define an ideal

$$P_i = (x_i : v_i \notin F_i);$$

it is easy to verify that P_j is prime and that

$$I_{\Delta} = \bigcap_{j=1}^{m} P_j.$$

We will show by induction that for every j, the ring $\mathbf{k}[\Delta_j]$ is Cohen-Macaulay. If j=1 then $\Delta_j=\langle F_1\rangle$ is a simplex, so $\mathbf{k}[\Delta_j]$ is the polynomial ring on the variables $\{x_i:v_i\in F_1\}$.

For j > 1, let $I = I_{\Delta_{j-1}}$ and $J = P_j$. Then by Lemma 1 we have a short exact sequence

$$(3) 0 \to \mathbf{k}[\Delta_j] \to \mathbf{k}[\Delta_{j-1}] \oplus \mathbf{k}[\langle F_j \rangle] \to \mathbf{k}[\langle F_j \rangle \cap \Delta_{j-1}] \to 0.$$

By the definition of shellability,
$$\langle F_j \rangle \cap \Delta_{j-1} = \langle G_1, \dots, G_l \rangle$$
, where $G_k = F_j \setminus \{x_{h_k}\}$ for $1 \le k \le l$. Therefore $\mathbf{k}[\langle F_j \rangle \cap \Delta_{j-1}] = \mathbf{k}[x_i : v_i \in F_j] / \prod_{k=1}^l x_{h_k}$,

which is Cohen-Macaulay of dimension d-1. Moreover, $\mathbf{k}[\Delta_{j-1}]$ and $\mathbf{k}[\langle F_j \rangle]$ are Cohen-Macaulay of dimension d (the former by induction, the latter because it is a polynomial ring). So $\mathbf{k}[\Delta_j]$ is Cohen-Macaulay by Lemma 2.