Fondamenti di Internet e Reti – SOLUZIONE!!!

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina Appello completo – 02 Luglio 2019

Cognome e nome:	•	(stampatello)
		(firma leggibile)

Matricola:

Esercizio 1*
(7 punti)

La società *Company* possiede la rete rappresentata nella figura sottostante, costituita da host fissi e mobili, switch, Access Point WiFi e router. Per poter indirizzare tutti gli utenti della rete, la società *Company* si rivolge ad un ISP, che dispone complessivamente dello spazio di indirizzamento CIDR **37.40.0.0/16**. L'ISP fornisce alla società *Company* <u>un blocco di dimensioni minime</u> sufficiente a soddisfarne le esigenze di indirizzamento, <u>a partire dagli indirizzi con numerazione più bassa</u>.

- a) Si indichino graficamente le sottoreti IP evidenziando nella figura sottostante i confini di ciascuna sottorete e si assegni a ciascuna sottorete una etichetta del tipo *NET x* (*x*=*A*, *B*, *C*, ...) seguendo l'ordine alfabetico e partendo dalle sottoreti con maggior numero di indirizzi IP usati (<u>Suggerimento</u>: fare attenzione alla presenza dei collegamenti punto-punto all'interno della rete della società *Company*).
- b) Per ciascuna sottorete si inserisca nella Tabella 1 sottostante il numero di indirizzi IP utilizzati, ivi compresi gli eventuali indirizzi IP speciali necessari nella sottorete (<u>Suggerimento</u>: fare attenzione alla presenza dei router).
- c) Si indichi di seguito il blocco CIDR assegnato alla società Company, usando la notazione decimale puntata.

37.40.0.0	/ 21
37.40.0.0	/ 41

- d) Si effettui il piano di indirizzamento per la società *Company* usando la tecnica VLSM, **assegnando gli indirizzi alle sottoreti a partire da quelli più bassi del blocco ottenuto al punto c**). Per ciascuna sottorete, si inseriscano nella **Tabella 1** l'indirizzo di rete, la *netmask* (notazione /n) e l'indirizzo di *broadcast* diretto.
- e) Assegnare a ogni interfaccia dei router l'indirizzo più grande possibile compatibilmente con i vincoli sugli indirizzi speciali, compilando la **Tabella 2**. Si usi la notazione "*RnX*" (n=1,2,3,4,5; X=A, B, ...) per indicare l'interfaccia del router Rn verso la rete X.
- f) Scrivere nella **Tabella 3** la tabella di inoltro (**diretto e indiretto**) del router R2 <u>nel modo più compatto possibile e che minimizzi il numero di salti per raggiungere la rete di destinazione</u>. Si preveda l'utilizzo di un'opportuna rotta per indirizzare le (sotto)reti al di fuori della società *Company*.

^{*} NOTA BENE: Per TUTTI GLI ESERCIZI si adotta il <u>PUNTO (".") come separatore delle cifre decimali</u>. Non si usa separatore per le migliaia.

Tabella 1 (Usare la notazione decimale puntata)

Rete	Numero di indirizzi IP	Netmask	Indirizzo di rete	Ind. broadcast diretto
[NET x]	(incluso indirizzi speciali)	/n		mar or or dead of the coro
NET A	603 = 600 (host) + 1 (router) + 2 (speciali)	/22	37.40.0.0	37.40.3.255
NET B	275 = 270 (host) + 3 (router) + 2 (speciali)	/23	37.40.4.0	37.40.5.255
NET C	204 = 220 (host) + 2 (router) + 2 (speciali)	/24	37.40.6.0	37.40.6.255
NET D	123 = 120 (host) + 1 (router) + 2 (speciali)	/25	37.40.7.0	37.40.7.127
NET E	64 = 60 (host) + 2 (router) + 2 $(speciali)$	/26	37.40.7.128	37.40.7.191
NET F	16 = 13 (host) + 1 (router) + 2 (speciali)	/28	37.40.7.192	37.40.7.207
NET G	9 = 6 (host) + 1 (router) + 2 (speciali)	/28	37.40.7.208	37.40.7.223
NET H	4 = 2 (router) + 2 (speciali)	/30	37.40.7.224	37.40.7.227
NET I	4 = 2 (router) + 2 (speciali)	/30	37.40.7.228	37.40.7.231

Tabella 2 (Usare la notazione decimale puntata)

Router	Interfaccia [RnX]	Indirizzo IP e maschera /n
	R1B	37.40.5.254/23
R1	R1H	37.40.7.226/30
	R1I	37.40.7.230/30
R2	R2B	37.40.5.253/23
K2	R2E	37.40.7.190/26
	R3B	37.40.5.252/23
R3	R3E	37.40.7.189/26
KS	R3F	37.40.7.206/28
	R3G	37.40.7.222/28
	R4C	37.40.6.254/24
R4	R4D	37.40.7.126/25
	R4H	37.40.7.225/30
	R5A	37.40.3.254/22
R5	R5C	37.40.6.253/24
	R5I	37.40.7.229/30

Tabella 3 (Usare la notazione decimale puntata)

Tabella di Routing di R2

Reti [NET x, NET y, NET z]	Indirizzo IP del blocco CIDR	Indirizzo IP del next-hop
NET B	37.40.4.0/23	direct
NET E	37.40.7.128/26	direct
NET F, G	37.40.7.192/27	37.40.7.189 (R3E)
default	0.0.0.0/0	37.40.5.254 (R1B)

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina Appello completo – 02 Luglio 2019

Cognome e nome: (stampatello) (firma leggibile)

Matricola:

SOLUZIONE

37.40.00000xxx.xxxxxxxx/21

Esercizio 2

(7 punti)

Una connessione TCP tra il client C e il server S è caratterizzata dai seguenti parametri: lunghezze di header e ack trascurabili, link bidirezionali, RCWND = 16 MSS, SSTHRESH = 8MSS, MSS = 10 kbit; il client C scarica un file di dimensione D = 100 kByte dal server S. Il ritardo di propagazione su ciascuno dei tre link sia uguale a τ =3,2 [ms] e il valore del time out iniziale sia Time-Out = 3[s] (si assuma che il time-out per un dato pacchetto venga avviato all'inizio della trasmissione del pacchetto stesso).

- a) Stabilire se la trasmissione su uno dei tre link diventa mai continua e, in caso affermativo, indicare il tempo oltre cui diventa continua (dall'inizio apertura della connessione TCP).
- b) Trovare il tempo di trasferimento del file (dall'inizio apertura della connessione TCP fino alla ricezione dell'ultimo riscontro in S).
- c) Ripetere il punto b) nel caso in cui il quinto segmento in trasmissione sia perso, **supponendo che il TCP scarti i segmenti ricevuti fuori sequenza**; dire <u>quanti e quali segmenti</u> vengono ricevuti fuori sequenza.

SOLUZIONE

Il numero totale di MSS da trasferire è 80, tutti di dimensione pari a MSS.

$$RTT = T_1 + T_2 + T_3 + 6\tau = 1 \text{ [ms]} + 1 \text{ [ms]} + 2.5 \text{ [ms]} + 19.2 \text{ [ms]} = 23.7 \text{ [ms]}$$

La trasmissione diventa continua sul link 3 se $W_cT_3 > RTT$, da cui $W_c > RTT/T_3 = 9.48$ MSS

Facendo riferimento alla figura qui sotto, si ha:

$$T_c = T_{setup} + 5RTT = 6\tau + 118.5 \text{ [ms]} = 137.7 \text{ [ms]}$$

$$T_{tot} = T_c + 55T_3 + RTT = 137.7 \text{ [ms]} + 137.5 \text{ [ms]} + 23.7 \text{ [ms]} = 298.9 \text{ [ms]}$$

Nel caso il quinto segmento vada perso, l'evoluzione temporale è riportata nella figura seguente. Si noti che allo scadere del time out, SSTHRESH diventa uguale a 2MSS.

$$T_{tot} = T_{setup} + 2RTT + T_3 + Tout + 9RTT + 30 T_3 + RTT = 19.2 [ms] + 47.4 [ms] + 2.5 [ms] + 3 [s] + 213.3 [ms] + 75 [ms] + 23.7 [ms] = 3.3811 [s]$$

I segmenti 6,7,8,9 sono ricevuti fuori sequenza.

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

Appello completo – 02 Luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina Appello completo – 02 Luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Esercizio 3

(5 punti)

Si consideri la configurazione di reti LAN mostrata in figura che comprende 6 LAN (A, B, C, D, E, F), **4** bridge (B₁, B₂, B₃, B₄), un hub (H₅) e 11 host, i cui MAC address sono indicati in figura (P, Q, R, S, T, U, V, W, X, Y, Z). Lo spanning tree è evidenziato in figura con i collegamenti a tratto continuo; i collegamenti tratteggiati indicano le porte bloccate dei bridge in seguito all'esecuzione da parte dei Bridge dello Spanning Tree Protocol.

- a) Si vuole individuare lo stato della tabella di inoltro di tutti i dispositivi di interconnessione dotati di tabella di inoltro (omettendo il campo età), ipotizzando che tutte le tabelle di inoltro siano inizialmente vuote e che siano state trasmesse con successo **nell'ordine** solo 7 trame con le seguenti coppie MAC sorgente MAC destinazione (SA-DA): P-U, R-S, U-S, S-U, V-Z, W-U, T-V. Per ogni riga dove è specificata la coppia SA-DA trasmessa, riportare nella **Tabella 1** il contenuto delle voci delle tabelle di inoltro che vengono a riempirsi.
- b) Si consideri uno stato di rete in cui i terminali S, T, W siano stati spostati connettendoli alle reti A, F, e C, rispettivamente. Determinare il nuovo stato delle tabelle di inoltro ipotizzando che siano state trasmesse nell'ordine le altre 4 trame Z-W, X-S, S-Z, T-W. Per ognuna di queste trame, utilizzando la **Tabella 2**, si riempiano le voci delle tabelle di inoltro **indicando esplicitamente con un asterisco** (*) **quali delle voci già presenti sono state variate in seguito allo scambio delle nuove trame**.
- Si specifichino quali delle trame di cui al punto b) vengono eventualmente perse per mancato aggiornamento delle tabelle di inoltro.

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

Appello completo – 02 Luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

a) Tabella 1

ID	В	B ₁		B_2		\mathbf{B}_3		B_4		
P-U	P	1	P	1	P	2	P	2		
R-S	R	1	R	2	R	1	R	1		
U-S	U	1	U	2	U	2	U	1		
S-U	S	1	1	_	S	1	S	1		
V-Z	V	3	V	2	V	1	V	1		
W-U	1	-	W	1	W	2	W	2		
T-V	T	1	-	-	T	2	T	1		

b) Tabella 2

ID	\mathbf{B}_1		В	2	E	3	E	3 ₄	
Z-W	-	-	Z	2	-	-	Z	2	
X-S	X	1	X	1	X	2	X	2	
S-Z	-	-	S	1	-	-	S(*)	1 → 2	
T-W	-	-	T	2	-	-	T(*)	1 → 2	

(*) voci delle tabelle di inoltro modificate rispetto al contenuto precedente

cì	Trame Perse (SA-DA)	Z-W; T-W

Esercizio 4 - Domande

(8 punti)

- a) Si consideri la trasmissione di un *datagram* IP avente campo dati (payload) di P = 9000 byte, che deve essere frammentato per essere trasferito attraverso una rete Ethernet con MTU = 1500 byte. Assumendo che tutti i frammenti in questione siano datagrammi IP in cui l'header abbia lunghezza minima (senza campi opzionali),
 - si indichi il numero N di datagram IP risultanti in seguito alla necessaria operazione di frammentazione;
 - si indichi per ciascun frammento il valore dei campi *Total length* (TL_i), *More-fragment-flag* (MF_i), essendo i=1, ..., N il pedice utilizzato per riferirsi al frammento i-esimo;
 - si esprima in forma parametrica, in funzione dell'indice *i* e degli altri parametri del problema, il valore del campo *Fragment offset* (OFF_i) del generico frammento *i*-esimo e si calcoli il valore numerico di OFF_i per tutti i frammenti *i*=1, ..., N.

(3 punti)

SOLUZIONE

• MTU = 1500 byte, header-IP = 20 byte \rightarrow ciascun datagram può contenere al massimo p = 1500-20 = 1480 byte

Numero di frammenti:
$$N = \left\lceil \frac{p}{p} \right\rceil = \left\lceil \frac{9000}{1480} \right\rceil = 7$$

• Campi TL e MF:

Frammenti i=1, 2, ..., 6: $TL_i = 1500$; $MF_i = 1$;

Frammento i=7: $TL_7 = 9000 - 6*1480 + 20 = 140$; $MF_7 = 0$;

Campi OFF:

 $OFF_i = 0$ (per i=1);

 $OFF_i = OFF_{(i-1)} + (TL_{(i-1)} - H)/8$ (per i=2, ..., N), essendo H=20 la lunghezza dell'header

$$\rightarrow$$
 OFF₂ = 185; OFF₃ = 370; OFF₄ = 555; OFF₅ = 740; OFF₆ = 925; OFF₇ = 1110

- b) Indicare se le seguenti osservazioni sono <u>vere</u> o <u>false</u> motivando la risposta. RISPOSTE NON MOTIVATE SARANNO CONSIDERATE ERRATE.
 - 1 Il protocollo SLOTTED ALOHA è sempre meno efficiente del protocollo CSMA
 - 2 Il protocollo SMTP può essere usato per scaricare messaggi di posta elettronica su un terminale d'utente
 - 3 In assenza di errori, il protocollo Stop and Wait è sempre meno efficiente del protocollo Go-Back-N

(3 punti)

SOLUZIONE

1-FALSO. Dipende da T, \tau

2-FALSO. Si usa POP3 o IMAP

3-FALSO. L'efficienza è la stessa se N=1

c) Quale è la capacità effettiva di trasferimento per un flusso http tra C e S sapendo che esistono due flussi interferenti tra A e B? Quale capacità è disponibile per ciascuno dei flussi A-B? Quale collegamento determina il collo di bottiglia per la connessione tra C e S? E quale per le connessioni tra A e B?

(2 punti)

SOLUZIONE

C-S: C_{eq}=4Mb/s; A-B: C_{eq}=2.5Mb/s per flusso; Collo di bottiglia per A-B: A-R1; collo di bottiglia per C-S: R2-S