

[JO2122] 컴퓨터구조

2022년 1학기

상명대학교 소프트웨어학과 박희민

- 5.1 래치
- 5.2 플립플롭
- 5.3 레지스터와 카운터
- 5.4 요약

2022-03-30

CHAP05 순차논리소자

5. 순차 논리소자

- 학습 목표
 - 데이터를 저장하는 기억소자의 기능을 설명할 수 있다.
 - 레지스터, 시프트 레지스터, 카운터의 기능을 설명할 수 있다.
- 내용
- 5.1 래치
- 5.2 플립플롭
- 5.3 레지스터와 카운터
- 5.4 요약

5.1 래치

- 래치(걸쇠, latch)
 - 제어 입력에 따라 0 또는 1 상태를 유지하는 기억 소자
- 내용
 - 5.1.1 NOR 래치
 - 5.1.2 NAND 래치
 - 5.1.3 클럭 제어 래치

5.1.1 NOR 래치

S	R	Q	동작 설명
0	0		
0	1		
1	0		
1	1		

NOR 래치 동작 예

S	R	Q	동작 설명
0	0	Q_0	유지
0	1	0	리셋
1	0	1	셋
1	1	NA	사용 불허

5.1.2 NAND 래치

/S	/R	Q	동작 설명
1	1		
1	0		
0	1		
0	0		

NAND 래치 동작 예

/S	/R	Q	동작 설명
1	1	Q_0	유지
1	0	0	리셋
0	1	1	셋
0	0	NA	사용 불허

5.1.3 클럭 제어 래치

(a) 클럭 제어 NOR 래치

(b) 클럭 제어 NAND 래치

СР	S	R	/S1	/R1	Q
0	Х	Х			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

클럭제어 SR latch의 동작

СР	S	R	Q
0	Х	х	Q_0
1	0	0	Q_0
1	0	1	0
1	1	0	1
1	1	1	사용 불허

5.1 래치 요약

- 래치
 - 한 비트 데이터를 저장하는 기억 소자
 - NOR 래치
 - NAND 래치
- 클럭 제어 래치
 - 클럭 펄스가 1일 때만 래치로 동작

5.2 플립플롭

- 래치와 플립플롭
 - 래치: 클럭의 높은 레벨에서 출력 변경
 - 플립플롭: 클럭 에지에서 출력 변경
- 학습 목표
 - 플립플롭의 동작 원리를 설명할 수 있다.
 - 클럭 펄스와 비동기 리셋 신호에 따른 플립플롭의 출력을 해석할 수 있다.
- 내용
 - 5.2.1 클럭 펄스
 - 5.2.2 플립플롭
 - 5.2.3 플립플롭 종류
 - 5.2.4 비동기 리셋 입력

5.2.1 클럭 펄스

- 발진기 (oscillator)
 - 디지털 시스템에 클럭 펄스를 공급하는 소자
- 클럭 펄스
 - 0과 1을 무한 반복하는 신호
 - 주기(period): 한 개의 구간. 단위는 시간, 초(second)
 - 주파수(frequency) = 1/주기 Hz

5.2.2 플립플롭

플립플롭의 일반 형태와 클럭 펄스(CP) 클럭 펄스의 한 주기

- 플립플롭(flip-flop)
 - 한 비트의 값을 저장하는 기억 소자
 - 0 ↔ 1로 값이 변하는 모습
 - 출력 2개: Q, Q'. (항상 반대 값)
- 플립플롭의 동작을 결정하는 요인
 - 출력 변경 시간(타이밍): 클럭 펄스에 의해 결정
 - 입력 신호: 종류와 값에 따라 출력 값(다음상태, next state) 결 정

플립플롭 동작

- (a) Latch or Level Trigger (b) Positive Edge Trigger
- (c) Negative Edge Trigger

- 플립플롭의 현재상태(current state)는
 - 클럭이 인가되기 직전 입력 신호의 값에 따라
 - 클럭이 인가된 직후에 다음상태(next state)로 변한다.

5.2.3 플립플롭 종류

- 플립플롭 종류
 - SR-FF, D-FF, JK-FF, T-FF
- 동작 타이밍
 - 상승 에지 플립플롭와 하강 에지 플립플롭이 있을 수 있다.
 - 상승 에지 플립플롭으로 설명한다.

SR-플립플롭

SR-FF 특성표

СР	S	R	다음상태 Q	설명
↑	0	0		
↑	0	1		
↑	1	0		
\uparrow	1	1		

D-플립플롭

D-FF 특성표

СР	D	다음상태 Q	설명
↑	0		
1	1		

JK-플립플롭

[그림 5-17] JK-플립플롭

JK-FF 특성표

СР	J	K	다음상태 Q	설명
↑	0	0		
\uparrow	0	1		
\uparrow	1	0		
\uparrow	1	1		

T-플립플롭

[**그림 5-19**] T-플립플롭

T-FF 특성표

СР	Т	다음상태 Q	설명
↑	0		
\uparrow	1		

5.2.4 비동기 리셋 입력

- 플립플롭 제어 신호
 - 동기(synchronous): 클럭 신호에 맞춰 동작
 - 비동기(asynchronous): 클럭과 관계없이 동작

/R	СР	D	Q	설명
0	X	X	0	비동기 리셋
1		0	0	클리어
1	↑	1	1	세트

[그림 5-21] 리셋 기능이 있는 D-플립플롭

[예제 5-2] 래치와 플립플롭 출력 비교

5.2 플립플롭 요약

- 플립플롭
 - 클럭 펄스의 에지에서 출력이 변하는 기억소자
 - 출력:
 - 클럭펄스가 인가되는 직전 입력 신호의 값에 따라
 - 클럭펄스가 인가된 직후에 출력이 변경된다.
- 입력 신호에 따른 플립플롭 종류
 - SR-FF:세트, 리셋
 - D-FF: 지연(delay)
 - JK-FF: 세트, 리셋, 토글
 - T-FF: 토글
- 비동기 리셋 입력
 - 클럭 펄스와 관계없이 플립플롭의 출력을 0으로 만든다.

5.3 레지스터와 카운터

- 레지스터
 - 여러 비트를 저장하는 기억 소자
- 학습 목표
 - 여러 가지 레지스터의 동작 원리를 이해한다.
 - 입력 신호에 대한 레지스터의 출력 신호를 해석할 수 있다.
- 내용
 - 5.3.1 레지스터
 - 5.3.2 시프트 레지스터
 - 5.3.3 카운터

5.3.1 레지스터

- 레지스터(register)
 - 여러 비트의 이진 정보를 저장하는 소자
 - 클럭을 공유하여 동시에 동작

레지스터 동작 예

/Reset	Enable	Clock	Q	기능
0	Χ	Χ	0	비동기 리셋
1	0	Χ	Q_0	현재상태 유지
1	1	1	D	동기 적재

[그림 5-24] 비동기 리셋과 동기 적재 기능이 있는 4비트 레지스터

[그림 5-25] 4비트 레지스터의 동작

컴퓨터구조 (2022-1)

5.3.2 시프트 레지스터

- 시프트 레지스터(shift register)
 - 연결 방법에 따라 데이터를 왼쪽 또는 오른쪽으로 자리이동하는 레지스터

[그림 5-27] 시프트 레지스터의 동작

양방향 시프트 레지스터

/Reset	clk	S ₁ S ₀	Q_3	Q_2	Q_1	Q_0	기능
0	Χ	ХХ	0	0	0	0	비동기 리셋
1	1	0 0	Q_3	Q_2	Q_1	Q_0	현재상태 유지
1	1	0 1	D _{SR}	Q_3	Q_2	Q_1	오른쪽 시프트
1	1	1 0	Q ₂	Q_1	Q_0	D_SL	왼쪽 시프트
1	1	1 1	D_3	D_2	D_1	D_0	병렬 적재

[그림 5-28] 4비트 양방향 시프트 레지스터

- [예제 5-3] 입력 조건에 따른 양뱡향 시프트 레지스터의 다음상태는?
- 1) R = 1, $S_1S_0 = 00$, $D_{SR}D_3D_2D_1D_0D_{SL} = 1_0110_1$, Q = 1001 $Q = ______$
- 2) R = 1, $S_1S_0 = 01$, $D_{SR}D_3D_2D_1D_0D_{SL} = 1_0110_1$, Q = 1001 $Q = ______$
- 3) R = 1, $S_1S_0 = 10$, $D_{SR}D_3D_2D_1D_0D_{SL} = 1_0110_1$, Q = 1001 $Q = ______$
- 4) R = 1, $S_1S_0 = 11$, $D_{SR}D_3D_2D_1D_0D_{SL} = 1_0110_1$, Q = 1001 $Q = ______$

레지스터 전송

- 병렬 전송: 한 클럭에 데이터 전송
- 직렬 전송: 한 클럭에 한 비트씩 전송

[그림 5-29] 레지스터 전송

5.3.3 카운터

- 카운터(counter)
 - 일정한 순서로 상태를 반복하는 레지스터
 - 2진 카운터: 2진수 순서로 증가
 - N진 카운터(modulo-N counter): 0~N-1까지 세는 카운터

JK-FF 이진 카운터

[그림 5-31] JK-플립플롭으로 만든 4비트 2진 카운터

- 상향 카운터(up counter): 이전 단의 값이 모두 1일 때, 출력 토글
- 하향 카운터(down counter): 이전 단의 값이 모두 0일 때, 출력 토글
- 상하향 카운터(up-down counter): 제어선으로 상향/하향 선택

병렬 적재 4 비트 카운터

/Reset	Enable	/Load	Clock	기능	
0	X	Χ	Χ	비동기 리셋	
1	0	Х	Х	현재상태 유지	
1	1	0	1	동기 병렬 적재	
1	1	1	1	카운트	

(a) 입출력 신호 및 기능

(b) 카운터 비트 확장

[그림 5-32] 병렬 적재 가능한 4비트 카운터

병렬적재 4 비트 카운터

/Reset	Enable	/Load	Clock	기능
0	Χ	X	X	비동기 리셋
1	0	X	X	현재상태 유지
1	1	0	1	동기 병렬 적재
1	1	1	1	카운트

- [예제 5-4] 병렬 적재 4비트 카운터의 다음상태는?
- 1) /R = 0, Enable= x, /Load = x, $D_3D_2D_1D_0 = 1100$, $Q_3Q_2Q_1Q_0 = 0101$, CO = 0
- 2) /R = 1, Enable= 0, /Load = x, $D_3D_2D_1D_0 = 1100$, $Q_3Q_2Q_1Q_0 = 0101$, CO = 0
- 3) /R = 1, Enable= 1, /Load = 0, $D_3D_2D_1D_0 = 1100$, $Q_3Q_2Q_1Q_0 = 0101$, CO = 0
- 4) /R = 1, Enable= 1, /Load = 1, $D_3D_2D_1D_0 = 1100$, $Q_3Q_2Q_1Q_0 = 0101$, CO = 0
- 5) /R = 1, Enable= 1, /Load = 1, $D_3D_2D_1D_0 = 1100$, $Q_3Q_2Q_1Q_0 = 1110$, CO = 0

카운터 활용

- 카운터(counter)
 - 이벤트 발생 횟수 카운트: 펄스를 센다.
- 타이머(timer)
 - 시간 측정: 주기가 일정한 펄스를 센다.
- PWM(Pulse Width Modulation): 펄스의 듀티비 조정

5.3 레지스터 요약

- 레지스터
 - 플립플롭 여러 개를 연결한 논리소자.
 - 2진 데이터 저장
- 시프트 레지스터
 - 데이터를 왼쪽 또는 오른쪽으로 자리이동하는 레지스터
 - 데이터 직렬, 병렬 변환
- 카운터
 - 2진수 순서대로 상태를 변환하는 레지스터
 - 외부에서 발생한 이벤트의 발생 수를 카운트하거나, 시간을 측정한다.

5.4 요약

- 5.1 래치
 - NOR Latch, NAND latch
 - Gated SR Latch
- 5.2 플립플롭
 - 클록 직전 입력 값에 따라 클록 직후 출력 변화
 - SR-FF, D-FF, JK-FF, T-FF
 - 비동기 리셋: 출력 초기화
- 5.3 레지스터
 - 레지스터: n비트 데이터 저장 소자
 - 시프트 레지스터: 직렬 병렬 변환
 - 카운터: 펄스 카운트. 시간 측정
- 제6장 순차 논리회로
 - 순차 논리회로의 동작 표현 방법과 디지털 시스템의 동작