# THE FRAUD DETECTION OF CREDIT CARD TRANSACTION

Team 3: Shanjiao Jiang, Yunze Li, Yishi Lu,

Shihao Ma, Xin Xia, Yeyang Tang

**Date:** March 28, 2019

# **Contents**

| 1. | Exc | ecutive Summary                        | . 2 |
|----|-----|----------------------------------------|-----|
| 2. | Da  | ta Description                         | . 3 |
|    | 2.1 | Numerical Field Table                  | . 3 |
|    | 2.2 | Categorical Field Table                | . 3 |
|    | 2.3 | A Brief Introduction of the Ten Fields | . 3 |
| 3. | Da  | ta Cleaning                            | . 8 |
| 4. | Va  | riable Creation                        | . 9 |
|    | 4.1 | The Logics Behind Variable Creation:   | . 9 |
|    | 4.2 | The Detailed List of All Variables     | 10  |
| 5. | Fea | ature Selection Process                | 11  |
| 6. | Ma  | achine Learning Algorithms             | 14  |
|    | 6.1 | Logistic Regression                    | 14  |
|    | 6.2 | Neural Networks                        | 15  |
|    | 6.3 | Boosted Trees                          | 16  |
|    | 6.4 | Random Forest                          | 16  |
|    | 6.5 | Support Vector Machine                 | 18  |
|    | 6.7 | Results                                | 19  |
| 7. | Co  | nclusion2                              | 24  |
| 8. | Ap  | pendix2                                | 26  |
|    | 8.1 | The Detailed List of All Variables     | 26  |
|    | 8.2 | Data Quality Report (DQR)              | 43  |

# 1. Executive Summary

This report provides an analysis of the 2010 Government Organization Credit Card Transaction Data, which contains 96,753 credit card transactions that occurred from January 1, 2010 to December 31, 2010. A total of 10 fields (variables) are provided by the original dataset to describe each transaction further. The goal of the analysis is to train and evaluate several supervised machine learning algorithms that are able to effectively predict and detect credit card fraud.

This report provides a detailed explanation of the steps that we went through to generate the six supervised machine learning algorithms. The summary of the seven steps is as follow:

- 1. Data cleaning, which fills in the necessary missing fields with reasonable numbers.
- 2. Variable creation and Z-scaling. 371 new variables are created and Z-scaled.
- 3. Training/testing/OOT. The entire dataset is split into training, testing and out-of-time (OOT) set.
- 4. Univariate Kolmogorov-Smirnov score (KS) and Fraud Detection Rates (FDR) calculation. For the 371 new variables, the univariate KS and univariate FDR at 3% are calculated. The 371 new variables are then sorted based on their KS and FDR at 3%.
- 5. Feature selection. The 186 new variables that have the high KS and FDR are first selected. A forward selection is then performed on the 186 variables to come up with 20 variables.
- 6. Machine learning algorithms. Six machine learning algorithms are trained by using the selected variables. The six machine learning algorithms are Logistic Regression, Neural Network, Random Forest, Boosted Trees, Support Vector Machine (SVM), and K-Nearest Neighbors (K-NN).
- 7. Machine learning algorithms evaluation. For each of the six machine learning algorithms, the effectiveness of catching credit card fraud is measured through the calculation of the FDR at 3%.

The evaluation of the six machine learning algorithms reveals that the random forest algorithm with 400 trees and 8 variables sampled for splitting is the most effective fraud detection algorithm. On the other hand, K-Nearest Neighbors seems not to be a suitable fraud detection algorithm for this fraud detection project.

# 2. Data Description

The original dataset used for analysis is the 2010 Government Organization Credit Card Transaction Data. It contains 96,753 credit card transactions that occurred from January 1, 2010 to December 31, 2010. A total of 10 fields (variables) are included in the dataset to provide further information and description of the credit card transactions.

The dataset was created in February 2011, but not published for confidentiality reasons. The data was collected, recorded, and managed by various government departments, including the Department of Credit Risk.

All 10 fields of the original dataset could be further divided into eight categorical fields and two numerical fields. The two tables in this section of the report will summarize the information provided through the 10 fields.

#### 2.1 Numerical Field Table

|   | Field<br>Name | Field Type  | # of Records<br>w/ Value | %<br>Populated | # Unique<br>Values | # Records<br>w/ Zero | Mean     | STD        | Min      | Max      |
|---|---------------|-------------|--------------------------|----------------|--------------------|----------------------|----------|------------|----------|----------|
| 1 | Amount        | Numerical   | 96753                    | 100.00%        | 34909              | 0                    | 4.28E+02 | 10006.1403 | 1.00E-02 | 3.10E+06 |
| 2 | Date          | Categorical | 96753                    | 100.00%        | 365                | 0                    | 2/28/10  | -          | -        | 12/31/10 |

Table 1.

# 2.2 Categorical Field Table

|   | Field Name        | Field Type  | # of Records<br>w/ Value | % Populated | # Unique Values | # Records w/<br>Zero | Most Common<br>Field Name |
|---|-------------------|-------------|--------------------------|-------------|-----------------|----------------------|---------------------------|
| 1 | Recnum            | Categorical | 96753                    | 100.00%     | 96753           | 0                    | All Different             |
| 2 | Cardnum           | Categorical | 96753                    | 100.00%     | 1645            | 0                    | 5142148452                |
| 3 | Merchnum          | Categorical | 93378                    | 96.51%      | 13092           | 0                    | 930090121224              |
| 4 | Merch description | Categorical | 96753                    | 100.00%     | 13126           | 0                    | GSA-FSS-ADV               |
| 5 | Merch state       | Categorical | 95558                    | 98.76%      | 228             | 0                    | TN                        |
| 6 | Merch zip         | Categorical | 92097                    | 95.19%      | 4568            | 0                    | 38118                     |
| 7 | Date              | Categorical | 96753                    | 100.00%     | 365             | 0                    | 2/28/10                   |
| 8 | Fraud             | Categorical | 96753                    | 100.00%     | 2               | 95694                | 0                         |

Table 2.

#### 2.3 A Brief Introduction of the Ten Fields

In this section of the report, we will demonstrate the graphs of some of the important variables from the original dataset. A more detailed introduction of the 10 variables will be provided in the Appendix 1, where a data quality report (DQR) is attached.

#### Field 2

Field Name: CardnumField Type: Categorical

# • Description: Credit card number



Figure 1.

## Field 3

Field Name: DateField Type: Numerical

• Description: The date that transaction occurs



Figure 2.

#### Field 4

Field Name: MerchnumField Type: Categorical

• Description: Merchant number



Figure 3.

#### Field 9

Field Name: AmountField Type: Numerical

• Description: Credit card transaction dollar amount



Figure 4.

# Field 10

• Field Name: Fraud

• Field Type: Categorical

• Description: Whether this is a fraudulent transaction



Figure 5.

A more detailed introduction of the 10 fields will be provide in the data quality report (DQR) attached in Appendix.

The 371 new variables are created based on the original 10 fields in the dataset. Section 4 of this report will provide a breakdown of the new variables and how they are created.

# 3. Data Cleaning

In this section of the report, the methods used to fill in the missing values associated with the 10 fields and 96,753 records in the original dataset will be introduced.

The data cleaning methods can be summarized as a three-step process: (1) removing outliers, (2) filtering data records, and (3) filling missing value. After the three steps, we kept 10 fields and 96,397 records in the "cleaned" dataset

#### • <u>Step1: Remove outliers</u>

A credit card transaction that had a \$3,102,045.53 transaction amount was removed as an outlier. Plus, the transaction was occurred in Mexico, instead of the United States.

#### • Step2: Filter records

Only the records with transtype "P" are kept. Transtype "P" stands for purchase.

#### • Step3: Fill missing value

The missing values for the three fields were filled. The three fields are Merch state, Merch zip, and Merchnum.

Here are how the missing values of the three fields are filled.

#### • Merch state

Group by Zip and fill by mode of state in each group of Zip. If still missing, fill NA with the most frequent state "TN".

#### Merch zip

Group by Cardnum and fill by mode of zip in each group of Cardnum. If still missing, group by Merch state and fill by mode of zip in each group of Merch state.

#### Merchnum

Group by Cardnum and fill by mode of Merchnum in each group of Cardnum. If still missing, group by Merch state and fill by mode of Merchnum in each group of Merch state.

#### 4. Variable Creation

In this section of the report, the creation of the 371 variables and the reasons why the 371 variables are needed to detect fraudulent credit card transactions will be explained.

#### **4.1** The Logics Behind Variable Creation:

Generally speaking, the detection of fraudulent credit card transactions equates the detection of anomalous credit card transaction records. The most effective way to measure a transaction's abnormality is through its various "dimensionalities", which refers to the different features of the transaction record.

However, we do not know what kind of variables should be focused on or demonstrate the most related information, so the best strategy is to create as many variables (that may relate) as we can, and select the most suitable variables (see Section 5).

Before building the new variables, a quick review of the information (data) in the original dataset seem to be very helpful. The 10 fields, 96,753 credit card transaction data can be divided into:

- Statistical data: including average number, maximum number, median number and total (sum) number. Besides, the differences between actual data (the number of a specific transaction itself) and these four number (average, maximum, median and total) can also be great variables, here we choose the quotient of actual data and these four variables to show the difference.
- **Group data:** group data means the data that we use to group and calculate statistical data. Basically, considering the original fields, we have five groups: card, merchant, card at this merchant, card in this zip code and card in this state.
- **Time data:** when we identify transaction fraud, we are using historical data to measure its reliability. Therefore, time is an important factor to consider. In total, we have one year of credit card transaction records, so we choose 0, 1, 3, 7, 14, 30 days as intervals to create variables.

Based on the logic stated above, we have the following four parts of candidate variables:

#### 1. Amount Variables:

| Average        |                     |                       |          |         |
|----------------|---------------------|-----------------------|----------|---------|
| Maximum        | amout<br>by/at this | card                  |          | 0 days  |
| Median         |                     | merchant              | over     | 1 day   |
| Total          |                     | card at this merchant |          | 3 days  |
| Actual/average |                     | card in this zip code | the past | 7 days  |
| Actual/maximum |                     | card in this state    |          | 14 days |
| Actual/median  |                     |                       |          | 30 days |
| Actual/total   |                     |                       |          |         |

Table 3.

# 2. Frequency Variables:

|              | card                  |                  | 0 days  |
|--------------|-----------------------|------------------|---------|
| Number of    | merchant              |                  | 1 day   |
| transactions | card at this merchant | over<br>the past | 3 days  |
| with this    | card in this zip code |                  | 7 days  |
| WILII LIIIS  | card in this state    |                  | 14 days |
|              |                       |                  | 30 days |

Table 4.

# 3. Days since Variables:

|                            | card                  |
|----------------------------|-----------------------|
| Current date minus date of | merchant              |
| most recent transaction    | card at this merchant |
| with same                  | card in this zip code |
|                            | card in this state    |

Table 5.

# 4. Velocity change Variables:

| Number           | Number of transactions Amount with same |                 | card         | over the past | 0 days  |  |  |  |
|------------------|-----------------------------------------|-----------------|--------------|---------------|---------|--|--|--|
| Amount           |                                         |                 | ame merchant |               | 1 day   |  |  |  |
|                  | Divided by                              |                 |              |               |         |  |  |  |
| Avorago          | number                                  | of transactions | card         |               | 7 days  |  |  |  |
| Average<br>daily | amount                                  |                 | merchant     | over the past | 14 days |  |  |  |
| ually            |                                         | with same       |              |               | 30 days |  |  |  |

Table 6.

# **4.2** The Detailed List of All Variables

Considering the length of the detailed list of all variables (18 pages), we attached it at the end of the report (Appendix).

## 5. Feature Selection Process

In this section of the report, the methods we used for feature selection will be explained.

Generally speaking, there are three ways to categorize feature selection. The three ways are (1) Filter, (2) Wrapper, and (3) Embedded. To complete feature selection, we used both Filter and Wrapper methods.

To select the variables used to build the machine learning algorithm, we first calculated the univariate Kolmogorov-Smirnov (KS) and univariate Fraud Detection Rate (FDR) at 3% for each one of the 371 new variables. The 371 new variables are then sorted based on their KS and FDR at 3%. The 186 variables that have the high KS and FDR are selected. A forward selection is then performed on the 186 variables to reduce the number of candidate variables for our machine learning algorithm to 20.

In machine learning, univariate KS and univariate FDR are examples of Filter methods. Forward selection and other stepwise selection are examples of Wrapper methods.

A more detailed explanation of univariate KS and univariate FDR are provided next.

Filter is a method that is independent of any modeling. It includes univariate model performance measure of every single variable. KS is a robust measure of how well the distributions of goods and bads are separated and is the maximum of the difference of the cumulative goods and bads. The formulas of KS are shown as below:

$$KS = \max_{x} \int_{x_{min}}^{x} [P_{good} - P_{bad}] dx$$

$$KS = \max_{x} \sum_{x}^{x} [P_{good} - P_{bad}]$$

Specifically, in our dataset, fraud label of 0 represents good and fraud label of 1 represents bad. For each variable, we calculated the probability distribution function (PDF) as well as cumulative distribution function (CDF) for both goods as bads to get the maximum difference between cumulative goods and bads. Figure 6 is a visual illustration describing how KS is calculated, and the dashed lines are plotted based on cumulative goods and bads.



Figure 6: Cumulative Percentage of Goods and Bads in KS

FDR measures what percentage of all the frauds are caught at a particular examination cutoff location. It is the number of fraud caught divided by total number of fraud for each subpopulation. Specifically, for each variable, we first ranked our data based on its value in both descending and ascending order, and then calculated the percentage of fraud caught at the cutoff point we set, which is the top 3% of records. Therefore, for each variable, we got two FDRs. We chose the greater of the two FDR's to be the FDR of each variable.

After calculating KS and FDR for each variable, we ranked variables in descending order and took the average of these two rank orders (KS and FDR) in order to select the first half of variables out of the 371 variables. On top of univariate measures, we also applied wrapper method, which indicates that a model "wrapped" around the process, to measure how well several variables work together. Therefore, after we reduced the dimensionality in the previous step, we used stepwise logistic regression and forward selection to select 20 variables from the 186 variables.

Forward selection is a bottom up method. It builds one-dimensional models for all variables and adds one variable each time.

| tot_cs_3      | Total amount by/at this card in this state over the past 3 days           |
|---------------|---------------------------------------------------------------------------|
| tot_card_0    | Total amount by/at this card over the past 0 days                         |
| tot_merch_1   | Total amount by/at this merchant over the past 1 days                     |
| max_merch_1   | Maximum amount by/at this merchant over the past 1 days                   |
| tot_cm_30     | Total amount by/at this card at this merchant over the past 30 days       |
| vcv_ac1_nc14  | Amount of transactions with same card over the past 1 days divided by     |
| vcv_ac1_11c14 | average daily number of transactions with same card over the past 14 days |
| qat_cs_3      | Actual/total amount by/at this card in this state over the past 3 days    |
| qamed_card_30 | Actual/median amount by/at this card over the past 30 days                |
| max_card_30   | Maximum amount by/at this card over the past 30 days                      |
| max_card_0    | Maximum amount by/at this card over the past 0 days                       |
| tot_card_14   | Total amount by/at this card over the past 14 days                        |

| tot_cs_30    | Total amount by/at this card in this state over the past 30 days          |
|--------------|---------------------------------------------------------------------------|
| tot_card_1   | Total amount by/at this card over the past 1 days                         |
| qat_cm_3     | Actual/total amount by/at this card at this merchant over the past 3 days |
| avg_cs_0     | Average amount by/at this card in this state over the past 0 days         |
| tot_card_30  | Total amount by/at this card over the past 30 days                        |
| med_cs_14    | Median amount by/at this card in this state over the past 14 days         |
| med_cm_7     | Median amount by/at this card at this merchant over the past 7 days       |
| max_merch_14 | Maximum amount by/at this merchant over the past 14 days                  |
| max_merch_7  | Maximum amount by/at this merchant over the past 7 days                   |

Table 7.

# 6. Machine Learning Algorithms

We built our machine learning models for the transactions happened before November 1, 2010 considering a historical data window, and we then wanted to test the model consistency against the transactions happened after November 1, 2010 as our out-of-time validation. Thus, we split our datasets into three parts before building our models, which were training and testing sets based on transactions before November 1, 2010, and out-of-time set (OOT). We prepared our training and testing sets followed a 70/30 split rule. We measured the goodness for fraud using FDR at 3%, which was obtained by finding out the number of true frauds (using the actual fraud label) in the top 3% records after sorting the data based on predicted probability. For each model we built, we sampled 10 times randomly to get different training and testing sets and averaged the FDRs.

## 6.1 Logistic Regression

Logistic regression is a form of binomial regression. Mathematically, a binary logistic model has a dependent variable with two possible values, such as good and bad. In our case, the output should be the indicator variable telling whether the record is a fraud or not. In the logistic model, the log-odds (the logarithm of the odds) for the value labeled "1" is a linear combination of one or more independent variables; Each independent variable can be a binary variable or a continuous variable.

When using Logistic regression model, it is necessary to consider "collinearity" which stands for the problem whether variables are correlated to each other. Before fitting the logistic regression model, we checked "collinearity" for all 20 variables after feature selection. We deleted 3 variables which were highly correlated to other variables and 2 variables which were not statistically significant in the model. With 15 variables left, we built our final full model of regression.

We selected several subsets of all 15 variables to build our logistic regression model through forward selection to get our best logistic regression model with all 15 or a subset of 15 variables. We applied Fraud Detection Rate on the top 3% of overall dataset as a benchmark to see how well a model is. For each selection, we ran the model for ten times to collect for ten times and summarized the model performance in terms of the average value of FDRs over these ten times modeling. The results of all logistic regression models we fitted and corresponding FDR is shown as following and we got the optimal FDR with 15 variables in the fitted logistic regression model:

|                               | Logistic Regression: FDR @ 3% |        |        |  |  |  |  |  |
|-------------------------------|-------------------------------|--------|--------|--|--|--|--|--|
|                               | TRAIN TEST OOT                |        |        |  |  |  |  |  |
| 3V                            | 64.11%                        | 61.71% | 30.39% |  |  |  |  |  |
| 6V                            | 66.57%                        | 65.97% | 30.17% |  |  |  |  |  |
| 9V                            | 67.47%                        | 68.24% | 32.74% |  |  |  |  |  |
| 12V                           | 68.14%                        | 68.18% | 36.37% |  |  |  |  |  |
| <b>15V</b> 68.84% 68.98% 36.9 |                               |        |        |  |  |  |  |  |

Table 8: FDR at 3% from 6 Logistic Regression Models

#### **6.2** Neural Networks

Neural network is an architecture that builds an approximate mathematical function by fitting data points, and it mimics the way that human brain operates. A neural network contains layers of interconnected nodes, including an input layer, an output layer, and one or several hidden layers as shown in Figure 7. Each node takes an input, applies a function (often nonlinear) to it and then passes the output on to the next layer. Generally, the networks are defined to be feedforward: a node feeds its output to all the nodes on the next layer, but there is no feedback to the previous layer. Weightings are applied to the signals passing from one node to another. Below is an illustration of how Neural Networks works:



Figure 7: Neural Network Algorithm

We chose one hidden layer, which is sufficient for the large majority of problems, and set the solver for weight optimization as 'adam' for it works pretty well on relatively large datasets in terms of both training time and validation score. We tuned the number of nodes (range from 1 to 20) with the rectified linear unit function as activation function for the hidden layer. The following table shows the FDR at 3% calculated for training, testing and OOT datasets for each model.

| Neural Networks: FDR @ 3% |                      |        |        |  |  |  |
|---------------------------|----------------------|--------|--------|--|--|--|
| Nodes                     | Nodes TRAIN TEST OOT |        |        |  |  |  |
| 4                         | 74.56%               | 71.14% | 34.52% |  |  |  |
| 8                         | 80.36%               | 76.24% | 40.11% |  |  |  |
| 12                        | 82.49%               | 76.94% | 39.66% |  |  |  |
| 16                        | 85.40%               | 77.61% | 43.63% |  |  |  |
| 20                        | 85.26%               | 77.41% | 40.95% |  |  |  |

Table 9: FDR at 3% from 5 Neural Networks Models

#### **6.3** Boosted Trees

Tree boosting is an ensemble method that seeks to create a strong classifier based on "weak" classifiers. In this context, weak and strong refer to a measure of the correlation between the learners and the actual target variable. By adding models on top of each other iteratively, the errors of the previous model are corrected by the next predictor, until the training data is accurately predicted or reproduced by the model. Gradient Boosting also comprises an ensemble method that sequentially adds predictors and corrects previous models. However, instead of assigning different weights to the classifiers after every iteration, this method fits the new model to new residuals of the previous prediction and then minimizes the loss when adding the latest prediction. In the end, the model is updated using gradient descent. XGBoost implements this algorithm with an additional custom regularization term in the objective function to control overfitting.

In our variable domain, we only had 20 variables after feature selection. We used these 20 variables or subset of these variables to develop boosted tree models. We applied FDR as a benchmark to see how well a model is. For each selection, we ran the model for ten times to collect for ten times and then summarized the model's performance in terms of the average value of Fraud Detection Rates over these ten times modeling. The results all boosted tree models we fitted and corresponding Fraud Detection Rate is shown as following and we got the optimal FDR for OOT when we have 20 variables, 400 trees and 10 splits:

| Boosted Tree: FDR @ 3% |        |        |        |  |  |  |
|------------------------|--------|--------|--------|--|--|--|
| TRAIN TEST OOT         |        |        |        |  |  |  |
| 20V, 10, 300           | 89.13% | 82.99% | 51.40% |  |  |  |
| 20V, 10, 400           | 89.44% | 83.26% | 52.96% |  |  |  |
| 20V, 10, 500           | 89.42% | 84.13% | 50.45% |  |  |  |
| 20V, 20, 400           | 97.06% | 91.91% | 51.17% |  |  |  |
| 17V, 10, 400           | 89.08% | 84.34% | 51.17% |  |  |  |
| 15V, 10, 400           | 89.03% | 83.18% | 52.18% |  |  |  |

Table 10: FDR at 3% from 6 Boosted Tree Models

#### **6.4** Random Forest

Similar to Boosted Trees, random forest is an ensemble learning method and predict regression or classification by combining the outputs from individual trees. However, the order and the way results combined are different from Boosted Trees. It trains each tree independently, using a random sample of the data, which makes the model more robust than a single decision tree and less likely to overfit on the training data. Overall, it builds multiple decision trees and amalgamate them together to get a more accurate and stable prediction. Some primary parameters in Random Forest include number of trees, number of predictors sampled for splitting at each node, minimum node size and maximum tree depth. Figure 8 is an illustration of how Random Forest works:



Figure 8: Random Forest Algorithm

When using Random Forest for prediction, collinearity is not an issue since the model is able to learn when some features are highly correlated, thus we started building our models with 20 variables. We set minimum node size at 1 and unlimited tree depth, and tuned number of trees and number of predictors sampled to build 13 models. The following table shows the FDR at 3% calculated for training, testing and OOT datasets for each model. We get the optimal FDR for OOT of 54.02% when we have 20 variables, 400 trees and 8 variables sampled for splitting.

| Rand        | Random Forest: FDR @ 3% |        |        |  |  |  |  |  |
|-------------|-------------------------|--------|--------|--|--|--|--|--|
|             | TRAIN                   | TEST   | ООТ    |  |  |  |  |  |
| 20V 500, 14 | 93.34%                  | 93.46% | 51.34% |  |  |  |  |  |
| 20V 400, 14 | 93.38%                  | 93.68% | 51.90% |  |  |  |  |  |
| 20V 400, 12 | 93.21%                  | 94.23% | 52.57% |  |  |  |  |  |
| 20V 400, 10 | 93.43%                  | 94.17% | 52.57% |  |  |  |  |  |
| 20V 400, 8  | 93.58%                  | 93.34% | 54.02% |  |  |  |  |  |
| 20V 400, 6  | 93.53%                  | 93.52% | 53.52% |  |  |  |  |  |
| 20V 300, 8  | 93.36%                  | 92.81% | 53.51% |  |  |  |  |  |
| 17V 500, 8  | 92.81%                  | 92.81% | 51.23% |  |  |  |  |  |
| 17V 500, 6  | 93.13%                  | 93.13% | 51.51% |  |  |  |  |  |
| 17V 400, 8  | 92.76%                  | 93.92% | 51.17% |  |  |  |  |  |
| 15V 500, 8  | 93.30%                  | 92.64% | 50.17% |  |  |  |  |  |
| 15V 500, 6  | 92.89%                  | 92.73% | 52.12% |  |  |  |  |  |
| 15V 300, 6  | 92.84%                  | 92.68% | 50.89% |  |  |  |  |  |

Table 11: FDR at 3% from 13 Random Forest Models with Highlighted Row as the Optimal Model

## **6.5** Support Vector Machine

A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. It tries to project observations to higher dimension to find a split boundary. SVM works by mapping data to a high-dimensional feature space so that data points can be categorized, even when the data are not otherwise linearly separable. A separator between the categories is found, then the data are transformed in such a way that the separator could be drawn as a hyperplane. Following this, characteristics of new data can be used to predict the group to which a new record should belong. For instance, in two-dimensional space a hyperplane is a line dividing a plane in two parts where in each class lay in either side.

For SVM model, we tried different combination of kernel types and penalty parameter C of the error term. The following table shows the FDR at 3% calculated for training, testing and OOT datasets for each model.

| SVM: FDR @ 3% |                          |        |        |  |  |  |  |  |  |
|---------------|--------------------------|--------|--------|--|--|--|--|--|--|
| Kernel, C     | Kernel, C TRAIN TEST OOT |        |        |  |  |  |  |  |  |
| poly, 1       | 78.93%                   | 71.70% | 45.47% |  |  |  |  |  |  |
| sigmoid, 1    | 11.28%                   | 10.94% | 14.08% |  |  |  |  |  |  |
| rbf, 1        | 81.04%                   | 77.87% | 45.75% |  |  |  |  |  |  |
| rbf, 5        | 84.33%                   | 79.76% | 36.20% |  |  |  |  |  |  |
| rbf, 10       | 85.13%                   | 80.79% | 34.53% |  |  |  |  |  |  |

Table 12: FDR at 3% from 5 SVM Models

# 6.6 K-Nearest Neighbors

Nearest neighbor is another popular machine learning algorithm. The most commonly seen nearest neighbor algorithm is the K-Nearest Neighbors (K-NN) algorithm. To run the K-NN algorithm, we first need to determine the value of K. Given the predetermined K and an observation x in the training data, the K-NN algorithm identifies the K points that are close to x. The algorithm then calculates the conditional probability for each class as the fraction of the K points.

When training the K-NN algorithm, we tried different values of K. Table 13 below summarizes the training, testing, and OOT FDR at 3%. It seems that K-NN algorithm is not a good choice to detect fraudulent credit card transaction because of its overfitting issue.

|                  | K-NN: FDR @ 3% |       |       |  |  |  |  |  |
|------------------|----------------|-------|-------|--|--|--|--|--|
| K TRAIN TEST OOT |                |       |       |  |  |  |  |  |
| 4                | 100%           | 3.10% | 0.56% |  |  |  |  |  |
| 6                | 100%           | 3.22% | 0.56% |  |  |  |  |  |
| 8                | 96.19%         | 2.89% | 0.56% |  |  |  |  |  |
| <b>10</b> 96.47% |                | 2.93% | 0.56% |  |  |  |  |  |
| 100              | 81.82%         | 2.91% | 0.56% |  |  |  |  |  |

Table 13: FDR at 3% from 5 K-NN Algorithms

#### 6.7 Results

The six candidate models we used in this project cover the linear and non-linear models with top popularity and accuracy. And the results in detecting top 3% fraud scores are listed in the below table.

| Model                  | FDR @ 3% |        |        |  |  |  |  |
|------------------------|----------|--------|--------|--|--|--|--|
| Model                  | Train    | Test   | ООТ    |  |  |  |  |
| Logistic Regression    | 64.84%   | 68.98% | 36.98% |  |  |  |  |
| Neural Networks        | 85.40%   | 77.61% | 43.63% |  |  |  |  |
| <b>Boosted Trees</b>   | 89.13%   | 83.26% | 52.96% |  |  |  |  |
| Random Forests         | 93.58%   | 93.34% | 54.02% |  |  |  |  |
| Support Vector Machine | 81.04%   | 77.87% | 45.75% |  |  |  |  |
| K-Nearest Neighbors    | 100%     | 3.22%  | 0.56%  |  |  |  |  |

Table 14.

Random Forest gives the most outstanding general performance and produces the highest Fraud Detection Rate on both train and test set, so we choose Random Forest with 400 trees and 8 variables sampled for splitting as our best model.

Important Features selected by Random Forest are the following:



Figure 9.

Then we applied this model to see how it performs in Fraud Detection in the first 1%~20% of dataset we put on prediction. The following three tables are results of the chosen random forest model performs in Fraud Detection based on training and testing sets that we sampled only once, and out-of-time set (OOT) prediction. The column of KS is the difference between the detection rate of "bads" and "goods", indicating how well the scores of these two groups are differentiated. False positive ratio (FPR) is the number of goods caught divided by the number of "bads" caught. For each set, a plot comes with the corresponding table to show how much our selected fraud algorithm help in saving money in estimation:

| Training   | # Red          | cords   | # G    | ioods                                   | # 1                                     | Bads    | Frauc      | l Rate     |                                         |        |        |       |
|------------|----------------|---------|--------|-----------------------------------------|-----------------------------------------|---------|------------|------------|-----------------------------------------|--------|--------|-------|
|            | 587            | 779     | 58     | 3153                                    | 6                                       | 526     | 0.0106     | 50062      |                                         |        |        |       |
|            | Bin Statistics |         |        |                                         |                                         |         |            | Cumulativ  | e Statistics                            |        |        |       |
| Population | #              | # Goods | # Bads | % Goods                                 | % Bads                                  | Total # | Cumulative | Cumulative | % Goods                                 | % Bads | KS     | FPR   |
| Bin %      | Records        |         |        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Records | Goods      | Bads       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (FDR)  |        |       |
| 1          | 588            | 92      | 496    | 15.65%                                  | 84.35%                                  | 588     | 92         | 496        | 15.65%                                  | 79.23% | 63.59% | 0.19  |
| 2          | 588            | 520     | 68     | 88.44%                                  | 11.56%                                  | 1176    | 612        | 564        | 52.04%                                  | 90.10% | 38.06% | 1.09  |
| 3          | 587            | 570     | 17     | 97.10%                                  | 2.90%                                   | 1763    | 1182       | 581        | 67.04%                                  | 92.81% | 25.77% | 2.03  |
| 4          | 588            | 585     | 3      | 99.49%                                  | 0.51%                                   | 2351    | 1767       | 584        | 75.16%                                  | 93.29% | 18.13% | 3.03  |
| 5          | 588            | 585     | 3      | 99.49%                                  | 0.51%                                   | 2939    | 2352       | 587        | 80.03%                                  | 93.77% | 13.74% | 4.01  |
| 6          | 588            | 584     | 4      | 99.32%                                  | 0.68%                                   | 3527    | 2936       | 591        | 83.24%                                  | 94.41% | 11.17% | 4.97  |
| 7          | 588            | 587     | 1      | 99.83%                                  | 0.17%                                   | 4115    | 3523       | 592        | 85.61%                                  | 94.57% | 8.96%  | 5.95  |
| 8          | 587            | 584     | 3      | 99.49%                                  | 0.51%                                   | 4702    | 4107       | 595        | 87.35%                                  | 95.05% | 7.70%  | 6.90  |
| 9          | 588            | 585     | 3      | 99.49%                                  | 0.51%                                   | 5290    | 4692       | 598        | 88.70%                                  | 95.53% | 6.83%  | 7.85  |
| 10         | 588            | 587     | 1      | 99.83%                                  | 0.17%                                   | 5878    | 5279       | 599        | 89.81%                                  | 95.69% | 5.88%  | 8.81  |
| 11         | 588            | 587     | 1      | 99.83%                                  | 0.17%                                   | 6466    | 5866       | 600        | 90.72%                                  | 95.85% | 5.13%  | 9.78  |
| 12         | 587            | 586     | 1      | 99.83%                                  | 0.17%                                   | 7053    | 6452       | 601        | 91.48%                                  | 96.01% | 4.53%  | 10.74 |
| 13         | 588            | 588     | 0      | 100.00%                                 | 0.00%                                   | 7641    | 7040       | 601        | 92.13%                                  | 96.01% | 3.87%  | 11.71 |
| 14         | 588            | 587     | 1      | 99.83%                                  | 0.17%                                   | 8229    | 7627       | 602        | 92.68%                                  | 96.17% | 3.48%  | 12.67 |

| 15 | 588 | 587 | 1 | 99.83%  | 0.17% | 8817  | 8214  | 603 | 93.16% | 96.33% | 3.16% | 13.62 |
|----|-----|-----|---|---------|-------|-------|-------|-----|--------|--------|-------|-------|
| 16 | 588 | 586 | 2 | 99.66%  | 0.34% | 9405  | 8800  | 605 | 93.57% | 96.65% | 3.08% | 14.55 |
| 17 | 587 | 587 | 0 | 100.00% | 0.00% | 9992  | 9387  | 605 | 93.95% | 96.65% | 2.70% | 15.52 |
| 18 | 588 | 588 | 0 | 100.00% | 0.00% | 10580 | 9975  | 605 | 94.28% | 96.65% | 2.36% | 16.49 |
| 19 | 588 | 588 | 0 | 100.00% | 0.00% | 11168 | 10563 | 605 | 94.58% | 96.65% | 2.06% | 17.46 |
| 20 | 588 | 588 | 0 | 100.00% | 0.00% | 11756 | 11151 | 605 | 94.85% | 96.65% | 1.79% | 18.43 |

Table 15.





Figure 10.

| Test                | # Red        | cords   | # G          | oods    | # E          | Bads               | Fraud               | l Rate             |               |                 |        |       |
|---------------------|--------------|---------|--------------|---------|--------------|--------------------|---------------------|--------------------|---------------|-----------------|--------|-------|
|                     | 25:          | 191     | 24           | 937     | 254 0.010082 |                    | 82966               |                    |               |                 |        |       |
|                     |              | В       | in Statistic | s       |              |                    |                     | Cumulativ          | ve Statistics |                 |        |       |
| Population<br>Bin % | #<br>Records | # Goods | # Bads       | % Goods | % Bads       | Total #<br>Records | Cumulative<br>Goods | Cumulative<br>Bads | % Goods       | % Bads<br>(FDR) | KS     | FPR   |
| 1                   | 252          | 43      | 209          | 17.06%  | 82.94%       | 252                | 43                  | 209                | 17.06%        | 82.28%          | 65.22% | 0.21  |
| 2                   | 252          | 224     | 28           | 88.89%  | 11.11%       | 504                | 267                 | 237                | 52.98%        | 93.31%          | 40.33% | 1.13  |
| 3                   | 252          | 247     | 5            | 98.02%  | 1.98%        | 756                | 514                 | 242                | 67.99%        | 95.28%          | 27.29% | 2.12  |
| 4                   | 252          | 247     | 5            | 98.02%  | 1.98%        | 1008               | 761                 | 247                | 75.50%        | 97.24%          | 21.75% | 3.08  |
| 5                   | 252          | 251     | 1            | 99.60%  | 0.40%        | 1260               | 1012                | 248                | 80.32%        | 97.64%          | 17.32% | 4.08  |
| 6                   | 251          | 251     | 0            | 100.00% | 0.00%        | 1511               | 1263                | 248                | 83.59%        | 97.64%          | 14.05% | 5.09  |
| 7                   | 252          | 252     | 0            | 100.00% | 0.00%        | 1763               | 1515                | 248                | 85.93%        | 97.64%          | 11.70% | 6.11  |
| 8                   | 252          | 251     | 1            | 99.60%  | 0.40%        | 2015               | 1766                | 249                | 87.64%        | 98.03%          | 10.39% | 7.09  |
| 9                   | 252          | 252     | 0            | 100.00% | 0.00%        | 2267               | 2018                | 249                | 89.02%        | 98.03%          | 9.02%  | 8.10  |
| 10                  | 252          | 251     | 1            | 99.60%  | 0.40%        | 2519               | 2269                | 250                | 90.08%        | 98.43%          | 8.35%  | 9.08  |
| 11                  | 252          | 252     | 0            | 100.00% | 0.00%        | 2771               | 2521                | 250                | 90.98%        | 98.43%          | 7.45%  | 10.08 |
| 12                  | 252          | 252     | 0            | 100.00% | 0.00%        | 3023               | 2773                | 250                | 91.73%        | 98.43%          | 6.70%  | 11.09 |
| 13                  | 252          | 252     | 0            | 100.00% | 0.00%        | 3275               | 3025                | 250                | 92.37%        | 98.43%          | 6.06%  | 12.10 |
| 14                  | 252          | 252     | 0            | 100.00% | 0.00%        | 3527               | 3277                | 250                | 92.91%        | 98.43%          | 5.51%  | 13.11 |
| 15                  | 252          | 251     | 1            | 99.60%  | 0.40%        | 3779               | 3528                | 251                | 93.36%        | 98.82%          | 5.46%  | 14.06 |
| 16                  | 252          | 252     | 0            | 100.00% | 0.00%        | 4031               | 3780                | 251                | 93.77%        | 98.82%          | 5.05%  | 15.06 |
| 17                  | 251          | 251     | 0            | 100.00% | 0.00%        | 4282               | 4031                | 251                | 94.14%        | 98.82%          | 4.68%  | 16.06 |
| 18                  | 252          | 252     | 0            | 100.00% | 0.00%        | 4534               | 4283                | 251                | 94.46%        | 98.82%          | 4.35%  | 17.06 |
| 19                  | 252          | 252     | 0            | 100.00% | 0.00%        | 4786               | 4535                | 251                | 94.76%        | 98.82%          | 4.06%  | 18.07 |
| 20                  | 252          | 252     | 0            | 100.00% | 0.00%        | 5038               | 4787                | 251                | 95.02%        | 98.82%          | 3.80%  | 19.07 |

Table 16.





Figure 11.

| Out of Time         | # Red          | cords   | # G    | ioods   | # E                   | Bads               | Frauc               | l Rate             |         |                 |        |       |
|---------------------|----------------|---------|--------|---------|-----------------------|--------------------|---------------------|--------------------|---------|-----------------|--------|-------|
|                     | 124            | 127     | 12     | 248     | 1                     | 79                 | 0.014               | 40412              |         |                 |        |       |
|                     | Bin Statistics |         |        |         | Cumulative Statistics |                    |                     |                    |         |                 |        |       |
| Population<br>Bin % | #<br>Records   | # Goods | # Bads | % Goods | % Bads                | Total #<br>Records | Cumulative<br>Goods | Cumulative<br>Bads | % Goods | % Bads<br>(FDR) | KS     | FPR   |
| 1                   | 124            | 70      | 54     | 56.45%  | 43.55%                | 124                | 70                  | 54                 | 56.45%  | 30.17%          | 26.28% | 1.30  |
| 2                   | 125            | 93      | 32     | 74.40%  | 25.60%                | 249                | 163                 | 86                 | 65.46%  | 48.04%          | 17.42% | 1.90  |
| 3                   | 124            | 114     | 10     | 91.94%  | 8.06%                 | 373                | 277                 | 96                 | 74.26%  | 53.63%          | 20.63% | 2.89  |
| 4                   | 124            | 114     | 10     | 91.94%  | 8.06%                 | 497                | 391                 | 106                | 78.67%  | 59.22%          | 19.45% | 3.69  |
| 5                   | 124            | 119     | 5      | 95.97%  | 4.03%                 | 621                | 510                 | 111                | 82.13%  | 62.01%          | 20.11% | 4.59  |
| 6                   | 125            | 120     | 5      | 96.00%  | 4.00%                 | 746                | 630                 | 116                | 84.45%  | 64.80%          | 19.65% | 5.43  |
| 7                   | 124            | 123     | 1      | 99.19%  | 0.81%                 | 870                | 753                 | 117                | 86.55%  | 65.36%          | 21.19% | 6.44  |
| 8                   | 124            | 122     | 2      | 98.39%  | 1.61%                 | 994                | 875                 | 119                | 88.03%  | 66.48%          | 21.55% | 7.35  |
| 9                   | 124            | 122     | 2      | 98.39%  | 1.61%                 | 1118               | 997                 | 121                | 89.18%  | 67.60%          | 21.58% | 8.24  |
| 10                  | 125            | 122     | 3      | 97.60%  | 2.40%                 | 1243               | 1119                | 124                | 90.02%  | 69.27%          | 20.75% | 9.02  |
| 11                  | 124            | 114     | 10     | 91.94%  | 8.06%                 | 1367               | 1233                | 134                | 90.20%  | 74.86%          | 15.34% | 9.20  |
| 12                  | 124            | 119     | 5      | 95.97%  | 4.03%                 | 1491               | 1352                | 139                | 90.68%  | 77.65%          | 13.02% | 9.73  |
| 13                  | 125            | 124     | 1      | 99.20%  | 0.80%                 | 1616               | 1476                | 140                | 91.34%  | 78.21%          | 13.12% | 10.54 |
| 14                  | 124            | 123     | 1      | 99.19%  | 0.81%                 | 1740               | 1599                | 141                | 91.90%  | 78.77%          | 13.13% | 11.34 |
| 15                  | 124            | 120     | 4      | 96.77%  | 3.23%                 | 1864               | 1719                | 145                | 92.22%  | 81.01%          | 11.22% | 11.86 |
| 16                  | 124            | 123     | 1      | 99.19%  | 0.81%                 | 1988               | 1842                | 146                | 92.66%  | 81.56%          | 11.09% | 12.62 |
| 17                  | 125            | 125     | 0      | 100.00% | 0.00%                 | 2113               | 1967                | 146                | 93.09%  | 81.56%          | 11.53% | 13.47 |
| 18                  | 124            | 124     | 0      | 100.00% | 0.00%                 | 2237               | 2091                | 146                | 93.47%  | 81.56%          | 11.91% | 14.32 |
| 19                  | 124            | 123     | 1      | 99.19%  | 0.81%                 | 2361               | 2214                | 147                | 93.77%  | 82.12%          | 11.65% | 15.06 |
| 20                  | 124            | 124     | 0      | 100.00% | 0.00%                 | 2485               | 2338                | 147                | 94.08%  | 82.12%          | 11.96% | 15.90 |

Table 17.



Figure 12.

# 7. Conclusion

The 2010 Government Organization Credit Card Transaction Data provides the information of 96,753 credit card transactions that occurred from January 1, 2010 to December 31, 2010. This report provides a thorough analysis of the 96,753 credit card transactions. The goal of the analysis was to train and evaluate six machine learning algorithms that can help us effectively detect credit card transaction fraud.

To train the excellent machine learning algorithms, a total of 371 new variables were built and Z-scaled. The entire dataset was split into training, testing, and out-of-time (OOT) subset. Both Filter and Wrapper methods were performed on the new variables to select the 20 variables that were ready to be used to build the machine learning models.

The six machine learning algorithms that we built were (1) Logistic Regression, (2) Neural Network, (3) Random Forest, (4) Boosted Trees, (5) Support Vector Machine (SVM), and (6) K-Nearest Neighbors (K-NN). For each one of the six models, the effectiveness of catching credit card fraud was measured through the calculation of the FDR at 3%.

Our Random Forest algorithm with 400 trees and 8 variables sampled for splitting appears to be the most effective fraud detection algorithm. The K-Nearest Neighbors model, however, seems not to be a smart choice for this fraud detection project.

If we could have more time to work on this project, we probably would do the following to further improve the six machine learning algorithms.

As mentioned above, before building the six machine models, we split the 96,753 credit card transactions into training, testing, and out-of-time (OOT) subset. Any transactions that occurred on and after 11/1/2010 were included in the OOT set. The transactions before 11/1/2010 were included in the training and testing sets.

When we built the six models, for each model, we tried different combinations of parameters. For example, for the Random Forest model, we tried 300, 400, and 500 trees, together with various number of variables sampled for splitting. For each combination of the parameters, we reshuffled the training and testing sets 10 times to build 10 slightly different models.

Now, thinking back, we believe that using the 10-fold cross-validation to train and test 10 slightly different models for each combination of the parameters is a better way than simply doing the reshuffle. The rationale behind this claim is that using the 10-fold cross-validation can make sure that each transaction record of the dataset would be used to train and test the models. Reshuffling, on the other hand, might use most, but not all records (because we just set the 70% to 30% ratio and let the computer randomly select the records to form the training and testing subsets).

When building the 371 new variables, we used six different time windows. However, if we could have more time, we would like to try more time windows. For example, we can use week and month. We can also use other time windows such as 5 days, 10 days, 15 days, etc.

One more thought about our analysis is that when we did the data cleaning, we tossed away the transaction that took place in Mexico. We treated it as an outlier. This is fine, if we wanted to only focus on the credit card transactions that occurred in the US, or in other words, to train the machine learning algorithms that only detect credit card fraud in the US. However, due to the globalization, international transactions become more and more common. Research also has revealed that international transactions that occurred in different time zone and used in different currency is a huge source of credit card fraud. Therefore, if we could have more time, we would like to closely examine the transaction that we tossed away as an outlier.

# 8. Appendix

# 8.1 The Detailed List of All Variables

Following is the list of all variables:

| No. | Variables     | Description (0 day here means 'today')                      |
|-----|---------------|-------------------------------------------------------------|
| 1   | amount        | The amount of transaction                                   |
| 2   | avg_card_0    | Average amount by/at this card over the past 0 days         |
| 3   | avg_card_1    | Average amount by/at this card over the past 1 days         |
| 4   | avg_card_3    | Average amount by/at this card over the past 3 days         |
| 5   | avg_card_7    | Average amount by/at this card over the past 7 days         |
| 6   | avg_card_14   | Average amount by/at this card over the past 14 days        |
| 7   | avg_card_30   | Average amount by/at this card over the past 30 days        |
| 8   | max_card_0    | Maximum amount by/at this card over the past 0 days         |
| 9   | max_card_1    | Maximum amount by/at this card over the past 1 days         |
| 10  | max_card_3    | Maximum amount by/at this card over the past 3 days         |
| 11  | max_card_7    | Maximum amount by/at this card over the past 7 days         |
| 12  | max_card_14   | Maximum amount by/at this card over the past 14 days        |
| 13  | max_card_30   | Maximum amount by/at this card over the past 30 days        |
| 14  | med_card_0    | Median amount by/at this card over the past 0 days          |
| 15  | med_card_1    | Median amount by/at this card over the past 1 days          |
| 16  | med_card_3    | Median amount by/at this card over the past 3 days          |
| 17  | med_card_7    | Median amount by/at this card over the past 7 days          |
| 18  | med_card_14   | Median amount by/at this card over the past 14 days         |
| 19  | med_card_30   | Median amount by/at this card over the past 30 days         |
| 20  | tot_card_0    | Total amount by/at this card over the past 0 days           |
| 21  | tot_card_1    | Total amount by/at this card over the past 1 days           |
| 22  | tot_card_3    | Total amount by/at this card over the past 3 days           |
| 23  | tot_card_7    | Total amount by/at this card over the past 7 days           |
| 24  | tot_card_14   | Total amount by/at this card over the past 14 days          |
| 25  | tot_card_30   | Total amount by/at this card over the past 30 days          |
| 26  | qaa_card_0    | Actual/average amount by/at this card over the past 0 days  |
| 27  | qaa_card_1    | Actual/average amount by/at this card over the past 1 days  |
| 28  | qaa_card_3    | Actual/average amount by/at this card over the past 3 days  |
| 29  | qaa_card_7    | Actual/average amount by/at this card over the past 7 days  |
| 30  | qaa_card_14   | Actual/average amount by/at this card over the past 14 days |
| 31  | qaa_card_30   | Actual/average amount by/at this card over the past 30 days |
| 32  | qamax_card_0  | Actual/maximum amount by/at this card over the past 0 days  |
| 33  | qamax_card_1  | Actual/maximum amount by/at this card over the past 1 days  |
| 34  | qamax_card_3  | Actual/maximum amount by/at this card over the past 3 days  |
| 35  | qamax_card_7  | Actual/maximum amount by/at this card over the past 7 days  |
| 36  | qamax_card_14 | Actual/maximum amount by/at this card over the past 14 days |

| 37 | qamax_card_30   | Actual/maximum amount by/at this card over the past 30 days  |
|----|-----------------|--------------------------------------------------------------|
| 38 | qamed_card_0    | Actual/median amount by/at this card over the past 0 days    |
| 39 | qamed_card_1    | Actual/median amount by/at this card over the past 1 days    |
| 40 | qamed_card_3    | Actual/median amount by/at this card over the past 3 days    |
| 41 | qamed_card_7    | Actual/median amount by/at this card over the past 7 days    |
| 42 | qamed_card_14   | Actual/median amount by/at this card over the past 14 days   |
| 43 | qamed_card_30   | Actual/median amount by/at this card over the past 30 days   |
| 44 | qat_card_0      | Actual/total amount by/at this card over the past 0 days     |
| 45 | qat_card_1      | Actual/total amount by/at this card over the past 1 days     |
| 46 | qat_card_3      | Actual/total amount by/at this card over the past 3 days     |
| 47 | qat_card_7      | Actual/total amount by/at this card over the past 7 days     |
| 48 | qat_card_14     | Actual/total amount by/at this card over the past 14 days    |
| 49 | qat_card_30     | Actual/total amount by/at this card over the past 30 days    |
| 50 | freq_card_0     | Number of transactions with this card over the past 0 days   |
| 51 | freq_card_1     | Number of transactions with this card over the past 1 days   |
| 52 | freq_card_3     | Number of transactions with this card over the past 3 days   |
| 53 | freq_card_7     | Number of transactions with this card over the past 7 days   |
| 54 | freq_card_14    | Number of transactions with this card over the past 14 days  |
| 55 | freq_card_30    | Number of transactions with this card over the past 30 days  |
| 56 | days_since_card | Current date minus date of most recent transaction with same |
|    |                 | card                                                         |
| 57 | avg_merch_0     | Average amount by/at this merchant over the past 0 days      |
| 58 | avg_merch_1     | Average amount by/at this merchant over the past 1 days      |
| 59 | avg_merch_3     | Average amount by/at this merchant over the past 3 days      |
| 60 | avg_merch_7     | Average amount by/at this merchant over the past 7 days      |
| 61 | avg_merch_14    | Average amount by/at this merchant over the past 14 days     |
| 62 | avg_merch_30    | Average amount by/at this merchant over the past 30 days     |
| 63 | max_merch_0     | Maximum amount by/at this merchant over the past 0 days      |
| 64 | max_merch_1     | Maximum amount by/at this merchant over the past 1 days      |
| 65 | max_merch_3     | Maximum amount by/at this merchant over the past 3 days      |
| 66 | max_merch_7     | Maximum amount by/at this merchant over the past 7 days      |
| 67 | max_merch_14    | Maximum amount by/at this merchant over the past 14 days     |
| 68 | max_merch_30    | Maximum amount by/at this merchant over the past 30 days     |
| 69 | med_merch_0     | Median amount by/at this merchant over the past 0 days       |
| 70 | med_merch_1     | Median amount by/at this merchant over the past 1 days       |
| 71 | med_merch_3     | Median amount by/at this merchant over the past 3 days       |
| 72 | med_merch_7     | Median amount by/at this merchant over the past 7 days       |
| 73 | med_merch_14    | Median amount by/at this merchant over the past 14 days      |
| 74 | med_merch_30    | Median amount by/at this merchant over the past 30 days      |
| 75 | tot_merch_0     | Total amount by/at this merchant over the past 0 days        |
| 76 | tot_merch_1     | Total amount by/at this merchant over the past 1 days        |
| 77 | tot_merch_3     | Total amount by/at this merchant over the past 3 days        |
| 78 | tot_merch_7     | Total amount by/at this merchant over the past 7 days        |

| 79         | tot_merch_14     | Total amount by/at this merchant over the past 14 days                |
|------------|------------------|-----------------------------------------------------------------------|
| 80         | tot_merch_30     | Total amount by/at this merchant over the past 30 days                |
| 81         | qaa_merch_0      | Actual/average amount by/at this merchant over the past 0 days        |
| 82         | qaa_merch_1      | Actual/average amount by/at this merchant over the past 1 days        |
| 83         | qaa_merch_3      | Actual/average amount by/at this merchant over the past 3 days        |
| 84         | qaa_merch_7      | Actual/average amount by/at this merchant over the past 7 days        |
| O.F.       | aran manaka 1.4  | Actual/average amount by/at this merchant over the past 14            |
| 85         | qaa_merch_14     | days                                                                  |
| 0.0        |                  | Actual/average amount by/at this merchant over the past 30            |
| 86         | qaa_merch_30     | days                                                                  |
| 0.7        |                  | Actual/maximum amount by/at this merchant over the past 0             |
| 87         | qam_merch_0      | days                                                                  |
| 00         | siana manah 1    | Actual/maximum amount by/at this merchant over the past 1             |
| 88         | qam_merch_1      | days                                                                  |
| 90         | gam march 2      | Actual/maximum amount by/at this merchant over the past 3             |
| 89         | qam_merch_3      | days                                                                  |
| 90         | qam_merch_7      | Actual/maximum amount by/at this merchant over the past 7             |
| 90         | qam_mercn_/      | days                                                                  |
| 91         | qam_merch_14     | Actual/maximum amount by/at this merchant over the past 14            |
| 91         | qam_mercn_14     | days                                                                  |
| 92         | qam_merch_30     | Actual/maximum amount by/at this merchant over the past 30            |
| <i>J</i> 2 | qani_mercn_50    | days                                                                  |
| 93         | qamed_merch_0    | Actual/median amount by/at this merchant over the past 0 days         |
| 94         | qamed_merch_1    | Actual/median amount by/at this merchant over the past 1 days         |
| 95         | qamed_merch_3    | Actual/median amount by/at this merchant over the past 3 days         |
| 96         | qamed_merch_7    | Actual/median amount by/at this merchant over the past 7 days         |
| 97         | qamed_merch_14   | Actual/median amount by/at this merchant over the past 14 days        |
| 98         | qamed_merch_30   | Actual/median amount by/at this merchant over the past 30 days        |
| 99         | qat_merch_0      | Actual/total amount by/at this merchant over the past 0 days          |
| 100        | qat_merch_1      | Actual/total amount by/at this merchant over the past 1 days          |
| 101        | qat_merch_3      | Actual/total amount by/at this merchant over the past 3 days          |
| 102        | qat_merch_7      | Actual/total amount by/at this merchant over the past 7 days          |
| 103        | qat_merch_14     | Actual/total amount by/at this merchant over the past 14 days         |
| 104        | qat_merch_30     | Actual/total amount by/at this merchant over the past 30 days         |
| 105        | fre_merch_0      | Number of transactions with this merchant over the past 0 days        |
| 106        | fre_merch_1      | Number of transactions with this merchant over the past 1 days        |
| 107        | fre_merch_3      | Number of transactions with this merchant over the past 3 days        |
| 108        | fre_merch_7      | Number of transactions with this merchant over the past 7 days        |
| 109        | fre_merch_14     | Number of transactions with this merchant over the past 14 days       |
| 110        | fre_merch_30     | Number of transactions with this merchant over the past 30 days       |
| 111        | days_since_merch | Current date minus date of most recent transaction with same merchant |

| 112 | avg_cm_0  | Average amount by/at this card at this merchant over the past 0 days  |
|-----|-----------|-----------------------------------------------------------------------|
| 113 | avg_cm_1  | Average amount by/at this card at this merchant over the past 1 days  |
| 114 | avg_cm_3  | Average amount by/at this card at this merchant over the past 3 days  |
| 115 | avg_cm_7  | Average amount by/at this card at this merchant over the past 7 days  |
| 116 | avg_cm_14 | Average amount by/at this card at this merchant over the past 14 days |
| 117 | avg_cm_30 | Average amount by/at this card at this merchant over the past 30 days |
| 118 | max_cm_0  | Maximum amount by/at this card at this merchant over the past 0 days  |
| 119 | max_cm_1  | Maximum amount by/at this card at this merchant over the past 1 days  |
| 120 | max_cm_3  | Maximum amount by/at this card at this merchant over the past 3 days  |
| 121 | max_cm_7  | Maximum amount by/at this card at this merchant over the past 7 days  |
| 122 | max_cm_14 | Maximum amount by/at this card at this merchant over the past 14 days |
| 123 | max_cm_30 | Maximum amount by/at this card at this merchant over the past 30 days |
| 124 | med_cm_0  | Median amount by/at this card at this merchant over the past 0 days   |
| 125 | med_cm_1  | Median amount by/at this card at this merchant over the past 1 days   |
| 126 | med_cm_3  | Median amount by/at this card at this merchant over the past 3 days   |
| 127 | med_cm_7  | Median amount by/at this card at this merchant over the past 7 days   |
| 128 | med_cm_14 | Median amount by/at this card at this merchant over the past 14 days  |
| 129 | med_cm_30 | Median amount by/at this card at this merchant over the past 30 days  |
| 130 | tot_cm_0  | Total amount by/at this card at this merchant over the past 0 days    |
| 131 | tot_cm_1  | Total amount by/at this card at this merchant over the past 1 days    |
| 132 | tot_cm_3  | Total amount by/at this card at this merchant over the past 3 days    |
| 133 | tot_cm_7  | Total amount by/at this card at this merchant over the past 7 days    |
|     |           |                                                                       |

| 134 | tot_cm_14   | Total amount by/at this card at this merchant over the past 14 days          |
|-----|-------------|------------------------------------------------------------------------------|
| 135 | tot_cm_30   | Total amount by/at this card at this merchant over the past 30 days          |
| 136 | qaa_cm_0    | Actual/average amount by/at this card at this merchant over the past 0 days  |
| 137 | qaa_cm_1    | Actual/average amount by/at this card at this merchant over the past 1 days  |
| 138 | qaa_cm_3    | Actual/average amount by/at this card at this merchant over the past 3 days  |
| 139 | qaa_cm_7    | Actual/average amount by/at this card at this merchant over the past 7 days  |
| 140 | qaa_cm_14   | Actual/average amount by/at this card at this merchant over the past 14 days |
| 141 | qaa_cm_30   | Actual/average amount by/at this card at this merchant over the past 30 days |
| 142 | qamax_cm_0  | Actual/maximum amount by/at this card at this merchant over the past 0 days  |
| 143 | qamax_cm_1  | Actual/maximum amount by/at this card at this merchant over the past 1 days  |
| 144 | qamax_cm_3  | Actual/maximum amount by/at this card at this merchant over the past 3 days  |
| 145 | qamax_cm_7  | Actual/maximum amount by/at this card at this merchant over the past 7 days  |
| 146 | qamax_cm_14 | Actual/maximum amount by/at this card at this merchant over the past 14 days |
| 147 | qamax_cm_30 | Actual/maximum amount by/at this card at this merchant over the past 30 days |
| 148 | qamed_cm_0  | Actual/median amount by/at this card at this merchant over the past 0 days   |
| 149 | qamed_cm_1  | Actual/median amount by/at this card at this merchant over the past 1 days   |
| 150 | qamed_cm_3  | Actual/median amount by/at this card at this merchant over the past 3 days   |
| 151 | qamed_cm_7  | Actual/median amount by/at this card at this merchant over the past 7 days   |
| 152 | qamed_cm_14 | Actual/median amount by/at this card at this merchant over the past 14 days  |
| 153 | qamed_cm_30 | Actual/median amount by/at this card at this merchant over the past 30 days  |
| 154 | qat_cm_0    | Actual/total amount by/at this card at this merchant over the past 0 days    |
| 155 | qat_cm_1    | Actual/total amount by/at this card at this merchant over the past 1 days    |

| 156 | qat_cm_3      | Actual/total amount by/at this card at this merchant over the past 3 days          |
|-----|---------------|------------------------------------------------------------------------------------|
| 157 | qat_cm_7      | Actual/total amount by/at this card at this merchant over the past 7 days          |
| 158 | qat_cm_14     | Actual/total amount by/at this card at this merchant over the past 14 days         |
| 159 | qat_cm_30     | Actual/total amount by/at this card at this merchant over the past 30 days         |
| 160 | freq_cm_0     | Number of transactions with this card at this merchant over the past 0 days        |
| 161 | freq_cm_1     | Number of transactions with this card at this merchant over the past 1 days        |
| 162 | freq_cm_3     | Number of transactions with this card at this merchant over the past 3 days        |
| 163 | freq_cm_7     | Number of transactions with this card at this merchant over the past 7 days        |
| 164 | freq_cm_14    | Number of transactions with this card at this merchant over the past 14 days       |
| 165 | freq_cm_30    | Number of transactions with this card at this merchant over the past 30 days       |
| 166 | days_since_cm | Current date minus date of most recent transaction with same card at this merchant |
| 167 | avg_cz_0      | Average amount by/at this card in this zip code over the past 0 days               |
| 168 | avg_cz_1      | Average amount by/at this card in this zip code over the past 1 days               |
| 169 | avg_cz_3      | Average amount by/at this card in this zip code over the past 3 days               |
| 170 | avg_cz_7      | Average amount by/at this card in this zip code over the past 7 days               |
| 171 | avg_cz_14     | Average amount by/at this card in this zip code over the past 14 days              |
| 172 | avg_cz_30     | Average amount by/at this card in this zip code over the past 30 days              |
| 173 | max_cz_0      | Maximum amount by/at this card in this zip code over the past 0 days               |
| 174 | max_cz_1      | Maximum amount by/at this card in this zip code over the past 1 days ${\sf days}$  |
| 175 | max_cz_3      | Maximum amount by/at this card in this zip code over the past 3 days               |
| 176 | max_cz_7      | Maximum amount by/at this card in this zip code over the past 7 days               |
| 177 | max_cz_14     | Maximum amount by/at this card in this zip code over the past 14 days              |

| 178 | max_cz_30    | Maximum amount by/at this card in this zip code over the past 30 days        |
|-----|--------------|------------------------------------------------------------------------------|
| 179 | med_cz_0     | Median amount by/at this card in this zip code over the past 0 days          |
| 180 | med_cz_1     | Median amount by/at this card in this zip code over the past 1 days          |
| 181 | med_cz_3     | Median amount by/at this card in this zip code over the past 3 days          |
| 182 | med_cz_7     | Median amount by/at this card in this zip code over the past 7 days          |
| 183 | med_cz_14    | Median amount by/at this card in this zip code over the past 14 days         |
| 184 | med_cz_30    | Median amount by/at this card in this zip code over the past 30 days         |
| 185 | tot_cz_0     | Total amount by/at this card in this zip code over the past 0 days           |
| 186 | tot_cz_1     | Total amount by/at this card in this zip code over the past 1 days           |
| 187 | tot_cz_3     | Total amount by/at this card in this zip code over the past 3 days           |
| 188 | <br>tot_cz_7 | Total amount by/at this card in this zip code over the past 7 days           |
| 189 | tot_cz_14    | Total amount by/at this card in this zip code over the past 14 days          |
| 190 | tot_cz_30    | Total amount by/at this card in this zip code over the past 30 days          |
| 191 | qaa_cz_0     | Actual/average amount by/at this card in this zip code over the past 0 days  |
| 192 | qaa_cz_1     | Actual/average amount by/at this card in this zip code over the past 1 days  |
| 193 | qaa_cz_3     | Actual/average amount by/at this card in this zip code over the past 3 days  |
| 194 | qaa_cz_7     | Actual/average amount by/at this card in this zip code over the past 7 days  |
| 195 | qaa_cz_14    | Actual/average amount by/at this card in this zip code over the past 14 days |
| 196 | qaa_cz_30    | Actual/average amount by/at this card in this zip code over the past 30 days |
| 197 | qam_cz_0     | Actual/maximum amount by/at this card in this zip code over the past 0 days  |
| 198 | qam_cz_1     | Actual/maximum amount by/at this card in this zip code over the past 1 days  |
| 199 | qam_cz_3     | Actual/maximum amount by/at this card in this zip code over the past 3 days  |
| 200 | qam_cz_7     | Actual/maximum amount by/at this card in this zip code over the past 7 days  |
| 201 | qam_cz_14    | Actual/maximum amount by/at this card in this zip code over the past 14 days |

| 202 | qam_cz_30     | Actual/maximum amount by/at this card in this zip code over the past 30 days       |
|-----|---------------|------------------------------------------------------------------------------------|
| 203 | qamed_cz_0    | Actual/median amount by/at this card in this zip code over the past 0 days         |
| 204 | qamed_cz_1    | Actual/median amount by/at this card in this zip code over the past 1 days         |
| 205 | qamed_cz_3    | Actual/median amount by/at this card in this zip code over the past 3 days         |
| 206 | qamed_cz_7    | Actual/median amount by/at this card in this zip code over the past 7 days         |
| 207 | qamed_cz_14   | Actual/median amount by/at this card in this zip code over the past 14 days        |
| 208 | qamed_cz_30   | Actual/median amount by/at this card in this zip code over the past 30 days        |
| 209 | qat_cz_0      | Actual/total amount by/at this card in this zip code over the past 0 days          |
| 210 | qat_cz_1      | Actual/total amount by/at this card in this zip code over the past 1 days          |
| 211 | qat_cz_3      | Actual/total amount by/at this card in this zip code over the past 3 days          |
| 212 | qat_cz_7      | Actual/total amount by/at this card in this zip code over the past 7 days          |
| 213 | qat_cz_14     | Actual/total amount by/at this card in this zip code over the past 14 days         |
| 214 | qat_cz_30     | Actual/total amount by/at this card in this zip code over the past 30 days         |
| 215 | fre_cz_0      | Number of transactions with this card in this zip code over the past 0 days        |
| 216 | fre_cz_1      | Number of transactions with this card in this zip code over the past 1 days        |
| 217 | fre_cz_3      | Number of transactions with this card in this zip code over the past 3 days        |
| 218 | fre_cz_7      | Number of transactions with this card in this zip code over the past 7 days        |
| 219 | fre_cz_14     | Number of transactions with this card in this zip code over the past 14 days       |
| 220 | fre_cz_30     | Number of transactions with this card in this zip code over the past 30 days       |
| 221 | days_since_cz | Current date minus date of most recent transaction with same card in this zip code |
| 222 | avg_cs_0      | Average amount by/at this card in this state over the past 0 days                  |
| 223 | avg_cs_1      | Average amount by/at this card in this state over the past 1 days                  |
| 224 | avg_cs_3      | Average amount by/at this card in this state over the past 3 days                  |
| 225 | avg_cs_7      | Average amount by/at this card in this state over the past 7 days                  |
| 1   |               | • • •                                                                              |

| 226 | avg_cs_14  | Average amount by/at this card in this state over the past 14 days        |
|-----|------------|---------------------------------------------------------------------------|
| 227 | avg_cs_30  | Average amount by/at this card in this state over the past 30 days        |
| 228 | max_cs_0   | Maximum amount by/at this card in this state over the past 0 days         |
| 229 | max_cs_1   | Maximum amount by/at this card in this state over the past 1 days         |
| 230 | max_cs_3   | Maximum amount by/at this card in this state over the past 3 days         |
| 231 | max_cs_7   | Maximum amount by/at this card in this state over the past 7 days         |
| 232 | max_cs_14  | Maximum amount by/at this card in this state over the past 14 days        |
| 233 | max_cs_30  | Maximum amount by/at this card in this state over the past 30 days        |
| 234 | med_cs_0   | Median amount by/at this card in this state over the past 0 days          |
| 235 | med_cs_1   | Median amount by/at this card in this state over the past 1 days          |
| 236 | med_cs_3   | Median amount by/at this card in this state over the past 3 days          |
| 237 | med_cs_7   | Median amount by/at this card in this state over the past 7 days          |
| 238 | med_cs_14  | Median amount by/at this card in this state over the past 14 days         |
| 239 | med_cs_30  | Median amount by/at this card in this state over the past 30 days         |
| 240 | tot_cs_0   | Total amount by/at this card in this state over the past 0 days           |
| 241 | tot_cs_1   | Total amount by/at this card in this state over the past 1 days           |
| 242 | tot_cs_3   | Total amount by/at this card in this state over the past 3 days           |
| 243 | tot_cs_7   | Total amount by/at this card in this state over the past 7 days           |
| 244 | tot_cs_14  | Total amount by/at this card in this state over the past 14 days          |
| 245 | tot_cs_30  | Total amount by/at this card in this state over the past 30 days          |
| 246 | qaa_cs_0   | Actual/average amount by/at this card in this state over the past 0 days  |
| 247 | qaa_cs_1   | Actual/average amount by/at this card in this state over the past 1 days  |
| 248 | qaa_cs_3   | Actual/average amount by/at this card in this state over the past 3 days  |
| 249 | qaa_cs_7   | Actual/average amount by/at this card in this state over the past 7 days  |
| 250 | qaa_cs_14  | Actual/average amount by/at this card in this state over the past 14 days |
| 251 | qaa_cs_30  | Actual/average amount by/at this card in this state over the past 30 days |
| 252 | qamax_cs_0 | Actual/maximum amount by/at this card in this state over the past 0 days  |
| 253 | qamax_cs_1 | Actual/maximum amount by/at this card in this state over the past 1 days  |

| 254 | qamax_cs_3  | Actual/maximum amount by/at this card in this state over the past 3 days    |
|-----|-------------|-----------------------------------------------------------------------------|
| 255 | qamax_cs_7  | Actual/maximum amount by/at this card in this state over the past 7 days    |
| 256 | qamax_cs_14 | Actual/maximum amount by/at this card in this state over the past 14 days   |
| 257 | qamax_cs_30 | Actual/maximum amount by/at this card in this state over the past 30 days   |
| 258 | qamed_cs_0  | Actual/median amount by/at this card in this state over the past 0 days     |
| 259 | qamed_cs_1  | Actual/median amount by/at this card in this state over the past 1 days     |
| 260 | qamed_cs_3  | Actual/median amount by/at this card in this state over the past 3 days     |
| 261 | qamed_cs_7  | Actual/median amount by/at this card in this state over the past 7 days     |
| 262 | qamed_cs_14 | Actual/median amount by/at this card in this state over the past 14 days    |
| 263 | qamed_cs_30 | Actual/median amount by/at this card in this state over the past 30 days    |
| 264 | qat_cs_0    | Actual/total amount by/at this card in this state over the past 0 days      |
| 265 | qat_cs_1    | Actual/total amount by/at this card in this state over the past 1 days      |
| 266 | qat_cs_3    | Actual/total amount by/at this card in this state over the past 3 days      |
| 267 | qat_cs_7    | Actual/total amount by/at this card in this state over the past 7 days      |
| 268 | qat_cs_14   | Actual/total amount by/at this card in this state over the past 14 days     |
| 269 | qat_cs_30   | Actual/total amount by/at this card in this state over the past 30 days     |
| 270 | freq_cs_0   | Number of transactions with this card in this state over the past 0 days    |
| 271 | freq_cs_1   | Number of transactions with this card in this state over the past 1 days $$ |
| 272 | freq_cs_3   | Number of transactions with this card in this state over the past 3 days    |
| 273 | freq_cs_7   | Number of transactions with this card in this state over the past 7 days    |
| 274 | freq_cs_14  | Number of transactions with this card in this state over the past 14 days   |
| 275 | freq_cs_30  | Number of transactions with this card in this state over the past 30 days   |

| 276 | days_since_cs | Current date minus date of most recent transaction with same card in this state                                                                     |
|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 277 | vcv_nc0_nc7   | Number of transactions with same card over the past 0 days divided by average daily number of transactions with same card over the past 7 days      |
| 278 | vcv_nc0_nc14  | Number of transactions with same card over the past 0 days divided by average daily number of transactions with same card over the past 14 days     |
| 279 | vcv_nc0_nc30  | Number of transactions with same card over the past 0 days divided by average daily number of transactions with same card over the past 30 days     |
| 280 | vcv_nc0_nm7   | Number of transactions with same card over the past 0 days divided by average daily number of transactions with same merchant over the past 7 days  |
| 281 | vcv_nc0_nm14  | Number of transactions with same card over the past 0 days divided by average daily number of transactions with same merchant over the past 14 days |
| 282 | vcv_nc0_nm30  | Number of transactions with same card over the past 0 days divided by average daily number of transactions with same merchant over the past 30 days |
| 283 | vcv_nc0_ac7   | Number of transactions with same card over the past 0 days divided by average daily amount of transactions with same card over the past 7 days      |
| 284 | vcv_nc0_ac14  | Number of transactions with same card over the past 0 days divided by average daily amount of transactions with same card over the past 14 days     |
| 285 | vcv_nc0_ac30  | Number of transactions with same card over the past 0 days divided by average daily amount of transactions with same card over the past 30 days     |
| 286 | vcv_nc0_am7   | Number of transactions with same card over the past 0 days divided by average daily amount of transactions with same merchant over the past 7 days  |
| 287 | vcv_nc0_am14  | Number of transactions with same card over the past 0 days divided by average daily amount of transactions with same merchant over the past 14 days |
| 288 | vcv_nc0_am30  | Number of transactions with same card over the past 0 days divided by average daily amount of transactions with same merchant over the past 30 days |
| 289 | vcv_nc1_nc7   | Number of transactions with same card over the past 1 days divided by average daily number of transactions with same card over the past 7 days      |
| 290 | vcv_nc1_nc14  | Number of transactions with same card over the past 1 days divided by average daily number of transactions with same card over the past 14 days     |

| 291 | vcv_nc1_nc30 | Number of transactions with same card over the past 1 days divided by average daily number of transactions with same card over the past 30 days        |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 292 | vcv_nc1_nm7  | Number of transactions with same card over the past 1 days divided by average daily number of transactions with same merchant over the past 7 days     |
| 293 | vcv_nc1_nm14 | Number of transactions with same card over the past 1 days divided by average daily number of transactions with same merchant over the past 14 days    |
| 294 | vcv_nc1_nm30 | Number of transactions with same card over the past 1 days divided by average daily number of transactions with same merchant over the past 30 days    |
| 295 | vcv_nc1_ac7  | Number of transactions with same card over the past 1 days divided by average daily amount of transactions with same card over the past 7 days         |
| 296 | vcv_nc1_ac14 | Number of transactions with same card over the past 1 days divided by average daily amount of transactions with same card over the past 14 days        |
| 297 | vcv_nc1_ac30 | Number of transactions with same card over the past 1 days divided by average daily amount of transactions with same card over the past 30 days        |
| 298 | vcv_nc1_am7  | Number of transactions with same card over the past 1 days divided by average daily amount of transactions with same merchant over the past 7 days     |
| 299 | vcv_nc1_am14 | Number of transactions with same card over the past 1 days divided by average daily amount of transactions with same merchant over the past 14 days    |
| 300 | vcv_nc1_am30 | Number of transactions with same card over the past 1 days divided by average daily amount of transactions with same merchant over the past 30 days    |
| 301 | vcv_nm0_nc7  | Number of transactions with same merchant over the past 0 days divided by average daily number of transactions with same card over the past 7 days     |
| 302 | vcv_nm0_nc14 | Number of transactions with same merchant over the past 0 days divided by average daily number of transactions with same card over the past 14 days    |
| 303 | vcv_nm0_nc30 | Number of transactions with same merchant over the past 0 days divided by average daily number of transactions with same card over the past 30 days    |
| 304 | vcv_nm0_nm7  | Number of transactions with same merchant over the past 0 days divided by average daily number of transactions with same merchant over the past 7 days |

| 305 | vcv_nm0_nm14 | Number of transactions with same merchant over the past 0 days divided by average daily number of transactions with same merchant over the past 14 days |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 306 | vcv_nm0_nm30 | Number of transactions with same merchant over the past 0 days divided by average daily number of transactions with same merchant over the past 30 days |
| 307 | vcv_nm0_ac7  | Number of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same card over the past 7 days      |
| 308 | vcv_nm0_ac14 | Number of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same card over the past 14 days     |
| 309 | vcv_nm0_ac30 | Number of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same card over the past 30 days     |
| 310 | vcv_nm0_am7  | Number of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same merchant over the past 7 days  |
| 311 | vcv_nm0_am14 | Number of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same merchant over the past 14 days |
| 312 | vcv_nm0_am30 | Number of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same merchant over the past 30 days |
| 313 | vcv_nm1_nc7  | Number of transactions with same merchant over the past 1 days divided by average daily number of transactions with same card over the past 7 days      |
| 314 | vcv_nm1_nc14 | Number of transactions with same merchant over the past 1 days divided by average daily number of transactions with same card over the past 14 days     |
| 315 | vcv_nm1_nc30 | Number of transactions with same merchant over the past 1 days divided by average daily number of transactions with same card over the past 30 days     |
| 316 | vcv_nm1_nm7  | Number of transactions with same merchant over the past 1 days divided by average daily number of transactions with same merchant over the past 7 days  |
| 317 | vcv_nm1_nm14 | Number of transactions with same merchant over the past 1 days divided by average daily number of transactions with same merchant over the past 14 days |
| 318 | vcv_nm1_nm30 | Number of transactions with same merchant over the past 1 days divided by average daily number of transactions with same merchant over the past 30 days |

| 319 | vcv_nm1_ac7  | Number of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same card over the past 7 days      |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 320 | vcv_nm1_ac14 | Number of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same card over the past 14 days     |
| 321 | vcv_nm1_ac30 | Number of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same card over the past 30 days     |
| 322 | vcv_nm1_am7  | Number of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same merchant over the past 7 days  |
| 323 | vcv_nm1_am14 | Number of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same merchant over the past 14 days |
| 324 | vcv_nm1_am30 | Number of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same merchant over the past 30 days |
| 325 | vcv_ac0_nc7  | Amount of transactions with same card over the past 0 days divided by average daily number of transactions with same card over the past 7 days          |
| 326 | vcv_ac0_nc14 | Amount of transactions with same card over the past 0 days divided by average daily number of transactions with same card over the past 14 days         |
| 327 | vcv_ac0_nc30 | Amount of transactions with same card over the past 0 days divided by average daily number of transactions with same card over the past 30 days         |
| 328 | vcv_ac0_nm7  | Amount of transactions with same card over the past 0 days divided by average daily number of transactions with same merchant over the past 7 days      |
| 329 | vcv_ac0_nm14 | Amount of transactions with same card over the past 0 days divided by average daily number of transactions with same merchant over the past 14 days     |
| 330 | vcv_ac0_nm30 | Amount of transactions with same card over the past 0 days divided by average daily number of transactions with same merchant over the past 30 days     |
| 331 | vcv_ac0_ac7  | Amount of transactions with same card over the past 0 days divided by average daily amount of transactions with same card over the past 7 days          |
| 332 | vcv_ac0_ac14 | Amount of transactions with same card over the past 0 days divided by average daily amount of transactions with same card over the past 14 days         |

| 333 | vcv_ac0_ac30 | Amount of transactions with same card over the past 0 days divided by average daily amount of transactions with same card over the past 30 days     |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 334 | vcv_ac0_am7  | Amount of transactions with same card over the past 0 days divided by average daily amount of transactions with same                                |
| 335 | vcv_ac0_am14 | merchant over the past 7 days  Amount of transactions with same card over the past 0 days divided by average daily amount of transactions with same |
|     |              | merchant over the past 14 days                                                                                                                      |
| 336 | vcv_ac0_am30 | Amount of transactions with same card over the past 0 days divided by average daily amount of transactions with same merchant over the past 30 days |
| 337 | vcv_ac1_nc7  | Amount of transactions with same card over the past 1 days divided by average daily number of transactions with same card over the past 7 days      |
| 338 | vcv_ac1_nc14 | Amount of transactions with same card over the past 1 days divided by average daily number of transactions with same card over the past 14 days     |
| 339 | vcv_ac1_nc30 | Amount of transactions with same card over the past 1 days divided by average daily number of transactions with same card over the past 30 days     |
| 340 | vcv_ac1_nm7  | Amount of transactions with same card over the past 1 days divided by average daily number of transactions with same merchant over the past 7 days  |
| 341 | vcv_ac1_nm14 | Amount of transactions with same card over the past 1 days divided by average daily number of transactions with same merchant over the past 14 days |
| 342 | vcv_ac1_nm30 | Amount of transactions with same card over the past 1 days divided by average daily number of transactions with same merchant over the past 30 days |
| 343 | vcv_ac1_ac7  | Amount of transactions with same card over the past 1 days divided by average daily amount of transactions with same card over the past 7 days      |
| 344 | vcv_ac1_ac14 | Amount of transactions with same card over the past 1 days divided by average daily amount of transactions with same card over the past 14 days     |
| 345 | vcv_ac1_ac30 | Amount of transactions with same card over the past 1 days divided by average daily amount of transactions with same card over the past 30 days     |
| 346 | vcv_ac1_am7  | Amount of transactions with same card over the past 1 days divided by average daily amount of transactions with same merchant over the past 7 days  |

| 347 | vcv_ac1_am14 | Amount of transactions with same card over the past 1 days divided by average daily amount of transactions with same                                          |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 348 | vcv_ac1_am30 | merchant over the past 14 days  Amount of transactions with same card over the past 1 days divided by average daily amount of transactions with same          |
| 349 | vcv_am0_nc7  | merchant over the past 30 days  Amount of transactions with same merchant over the past 0 days divided by average daily number of transactions with same card |
| 343 | vcv_anio_nc/ | over the past 7 days                                                                                                                                          |
| 350 | vcv_am0_nc14 | Amount of transactions with same merchant over the past 0 days divided by average daily number of transactions with same card over the past 14 days           |
| 351 | vcv_am0_nc30 | Amount of transactions with same merchant over the past 0 days divided by average daily number of transactions with same card over the past 30 days           |
| 352 | vcv_am0_nm7  | Amount of transactions with same merchant over the past 0 days divided by average daily number of transactions with same merchant over the past 7 days        |
| 353 | vcv_am0_nm14 | Amount of transactions with same merchant over the past 0 days divided by average daily number of transactions with same merchant over the past 14 days       |
| 354 | vcv_am0_nm30 | Amount of transactions with same merchant over the past 0 days divided by average daily number of transactions with same merchant over the past 30 days       |
| 355 | vcv_am0_ac7  | Amount of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same card over the past 7 days            |
| 356 | vcv_am0_ac14 | Amount of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same card over the past 14 days           |
| 357 | vcv_am0_ac30 | Amount of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same card over the past 30 days           |
| 358 | vcv_am0_am7  | Amount of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same merchant over the past 7 days        |
| 359 | vcv_am0_am14 | Amount of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same merchant over the past 14 days       |
| 360 | vcv_am0_am30 | Amount of transactions with same merchant over the past 0 days divided by average daily amount of transactions with same merchant over the past 30 days       |

| 361 | vcv_am1_nc7  | Amount of transactions with same merchant over the past 1 days divided by average daily number of transactions with same card over the past 7 days      |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 362 | vcv_am1_nc14 | Amount of transactions with same merchant over the past 1 days divided by average daily number of transactions with same card over the past 14 days     |
| 363 | vcv_am1_nc30 | Amount of transactions with same merchant over the past 1 days divided by average daily number of transactions with same card over the past 30 days     |
| 364 | vcv_am1_nm7  | Amount of transactions with same merchant over the past 1 days divided by average daily number of transactions with same merchant over the past 7 days  |
| 365 | vcv_am1_nm14 | Amount of transactions with same merchant over the past 1 days divided by average daily number of transactions with same merchant over the past 14 days |
| 366 | vcv_am1_nm30 | Amount of transactions with same merchant over the past 1 days divided by average daily number of transactions with same merchant over the past 30 days |
| 367 | vcv_am1_ac7  | Amount of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same card over the past 7 days      |
| 368 | vcv_am1_ac14 | Amount of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same card over the past 14 days     |
| 369 | vcv_am1_ac30 | Amount of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same card over the past 30 days     |
| 370 | vcv_am1_am7  | Amount of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same merchant over the past 7 days  |
| 371 | vcv_am1_am14 | Amount of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same merchant over the past 14 days |
| 372 | vcv_am1_am30 | Amount of transactions with same merchant over the past 1 days divided by average daily amount of transactions with same merchant over the past 30 days |
|     |              |                                                                                                                                                         |

# 8.2 Data Quality Report (DQR)

#### **DATASET DESCRIPTION**

Name of Dataset: Card Transactions

**Description:** This dataset gives information on real credit card transactions, including card number, merchant information and transaction information consisting of 10 fields and 96,753 records. It is provided by a government organization purchasing cards.

# **SUMMARY OF ALL FIELDS**

# Numerical Fields (2 Fields)

|   | Field<br>Name | Field Type  | # of Records<br>w/ Value | %<br>Populated | # Unique<br>Values | # Records<br>w/ Zero | Mean     | STD        | Min      | Max      |
|---|---------------|-------------|--------------------------|----------------|--------------------|----------------------|----------|------------|----------|----------|
| 1 | Amount        | Numerical   | 96753                    | 100.00%        | 34909              | 0                    | 4.28E+02 | 10006.1403 | 1.00E-02 | 3.10E+06 |
| 2 | Date          | Categorical | 96753                    | 100.00%        | 365                | 0                    | 2/28/10  | -          | -        | 12/31/10 |

# **Categorical Fields (8 Fields)**

|   | Field Name        | Field Type  | # of Records<br>w/ Value | % Populated | # Unique Values | # Records w/<br>Zero | Most Common<br>Field Name |
|---|-------------------|-------------|--------------------------|-------------|-----------------|----------------------|---------------------------|
| 1 | Recnum            | Categorical | 96753                    | 100.00%     | 96753           | 0                    | All Different             |
| 2 | Cardnum           | Categorical | 96753                    | 100.00%     | 1645            | 0                    | 5142148452                |
| 3 | Merchnum          | Categorical | 93378                    | 96.51%      | 13092           | 0                    | 930090121224              |
| 4 | Merch description | Categorical | 96753                    | 100.00%     | 13126           | 0                    | GSA-FSS-ADV               |
| 5 | Merch state       | Categorical | 95558                    | 98.76%      | 228             | 0                    | TN                        |
| 6 | Merch zip         | Categorical | 92097                    | 95.19%      | 4568            | 0                    | 38118                     |
| 7 | Date              | Categorical | 96753                    | 100.00%     | 365             | 0                    | 2/28/10                   |
| 8 | Fraud             | Categorical | 96753                    | 100.00%     | 2               | 95694                | 0                         |

#### FIELD DESCRIPTION

# Field 1 Recnum

**Field Name:** Recnum **Field Type:** Categorical

Description: Track data order

Most Common Values: No missing value and all values are different

#### Field 2 Cardnum

Field Name: Cardnum Field Type: Categorical

Description: Credit card number



#### Field 3 Date

Field Name: Date

**Field Type:** Numerical, continuous **Description:** Date of transaction

**Distribution:** 



# Field 4 Merchnum

**Field Name:** Merchnum **Field Type:** Categorical

**Description:** Merchant number

| 000000101004  | 0.21.0 | Top Common Values in Merchnum |
|---------------|--------|-------------------------------|
| 930090121224  | 9310   | 930090121224 -                |
| 5509006296254 | 2131   | 5509006296254 -               |
| 9900020006406 | 1714   | 9900020006406 -               |
| 602608969534  | 1092   | 602608969534                  |
| 4353000719908 | 1020   | 4353000719908 -               |
| 410000971343  | 982    | 410000971343 -                |
| 9918000409955 | 956    | 9918000409955 -               |
| 5725000466504 | 872    | 5725000466504 -               |
| 9108234610000 | 817    | 9108234610000 -               |
| 602608969138  | 783    | 602608969138 -                |
| 4503082476300 | 746    | 4503082476300 -               |
| 2094206450000 | 590    | 2094206450000                 |
| 4063000739258 | 568    | 2094330000009 -               |
| 2094330000009 | 533    | 6920602000804 -               |
| 6920602000804 | 523    | 0 2000 4000 6000 8000         |

# Field 5 Merch description

Field Name: Merch description

Field Type: Categorical

**Description:** Merchant description

**Most Common Values:** 

| GSA-FSS-ADV              | 1688 |
|--------------------------|------|
| SIGMA-ALDRICH            | 1635 |
| STAPLES #941             | 1174 |
| FISHER SCI ATL           | 1093 |
| MWI*MICRO WAREHOUSE      | 958  |
| CDW*GOVERNMENT INC       | 872  |
| DELL MARKETING L.P.      | 816  |
| FISHER SCI CHI           | 783  |
| AMAZON.COM *SUPERSTOR    | 750  |
| OFFICE DEPOT #1082       | 748  |
| VWR SCIENTIFIC PROD VCTS | 688  |
| PC *PC CONNECTION        | 570  |
| C & C PRODUCT SERVICES   | 558  |
| BUY.COM                  | 481  |
| FISHER SCI HUS           | 442  |



#### Field 6 Merch state

Field Name: Merch state Field Type: Categorical

**Description:** State that merchant is from

Top Common Values in Merch state 12000 TN12035 VA 7872 6817 CA 10000 IL6508 MD 5398 GA 5025 8000 PΑ 4899 NJ 3912 6000 3790 TX3322 NC WA 3300 4000 DC 3208 ОН 3131 2430 2000 NY MO 2420 B ΡA Z  $\succeq$ 

# Field 7 Merch zip

Field Name: Merch zip Field Type: Categorical

**Description:** Zip code of merchant's location

**Most Common Values:** 



### Field 8 Transtype

**Field Name:** Transtype **Field Type:** Categorical

**Description:** Transaction type



#### **Field 9 Amount**

Field Name: Amount

**Field Type:** Numerical, continuous **Description:** Transaction Amount

**Distribution:** 



# Field 10 Fraud

Field Name: Fraud Field Type: Categorical

**Description:** Whether the record is a fraud

