Cálculo y Geometría Diferencial Prof. Zoraida Sivoli Barrios.

Taller Final

- 1. Suponga que F(x) es una antiderivada de f(x); Qué propiedad debe tener la función f(x), para garantizar que $\int_a^b f(x)dx = F(b) F(a)$?.
- 2. Considere la función:

$$f(x) = \begin{cases} \sin^5(x)\cos^4(x) & si \ x \le 0 \\ \sqrt{x}\ln(x) & si \ x > 0 \end{cases}$$

y sea

$$F(x) = \int_{-\pi}^{x} f(x)dx$$

Resuelva las siguientes cuestiones:

- Determine $F(-\frac{\pi}{6})$
- Encuentre los puntos críticos de F(x) en el intervalo $[-\pi,\pi]$
- Intervalos de crecimiento y decrecimiento
- 3. Una hormiga se mueve en una montaña descrita por la ecuación

$$z = 20 - \sqrt{(x-1)^2 + (y+2)^2}, z \ge 0$$

Encuentre:

- \blacksquare La región $D\subseteq\mathbb{R}^2$ tal que $z=f(x,y)\geq 0, \forall (x,y)\in D$
- La dirección de mayor inclinación en la que la hormiga debe caminar si se encuentra en el punto $p(4, -2 + 2\sqrt{10}, 13)$ y desea llegar a la cima de la montaña.
- \blacksquare La derivada direccional en la dirección del vector $\vec{v} = <1, -1>$
- El plano tangente a la montaña en el punto $p(4, -2 + 2\sqrt{10}, 13)$
- La recta normal a la superficie en el punto $p(4, -2 + 2\sqrt{10}, 13)$
- 4. Encuentre el valor de

$$\int \int \int_{D} x dv$$

Donde D es la porción superior de la esfera $x^2+y^2+z^2=16$, entre los planos $y=0,\,z=0$ y $y-\sqrt{3}x=0$

5. Sea E, el sólido limitado por arriba por la semiesfera $x^2 + y^2 + z^2 = 16$, $z \ge 0$. Por abajo por el cono $z = \sqrt{3x^2 + 3y^2}$

Encuentre el volumen de E.

- 6. Integre el campo vectorial $F(x,y,z)=\langle xy,yz,xz\rangle$, a lo largo de $C:r(u)=\langle u,u^2,u^3\rangle$ desde $P_1(-1,1,-1)aP_2(1,1,1)$
- 7. Calcule la masa del alambre que tiene la forma del resorte

$$\begin{cases} x = 1 + \cos(t) \\ y = \sin(t) \\ z = t \end{cases} \quad t \in [0, \pi]$$

Si sabemos que la densidad de la masa en un punto es directamente proporcional al cuadrado de la distancia al origen

- 8. Encuentre el volumen del sólido acotado por el paraboloide $z=x^2+y^2$ lateralmente por el cilindro $x^2+y^2=9$ e inferiormente por el plano z=0
- 9. Evalúe la integral

$$\int\int\int_{D}ydv$$

Donde D es el sólido en el semiespacio $y \geq 0$, encerrado por los planos y=0, x=4, y el paraboloide $x=y^2+z^2$

10. Encuentre el valor de

$$\int \int \int_D dv$$

donde D es la región comprendida por la parte de la esfera $x^2+y^2+z^2=2$ que queda dentro del cono $z=\sqrt{x^2+y^2}$