□mg/ipn4.png

Teoría de perturbaciones para existencia de ciclos límites

Eduardo Ortiz Romero

Comité Tutorial, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional.

Posgrado. Maestrá en Ciencias Físico Matemáticas

Cursos aprobados.		
Unidad de aprendizaje	Periodo	Calificación
Análisis de series de tiempo	Agosto-Diciembre 2022	8
Seminario departamental I	Agosto-Diciembre 2022	8
Trabajo de tesis	Enero-Junio 2023	8
Seminario departamental II	Enero-Junio 2023	10
Ecuaciones diferenciales parciales	Enero-Junio 2023	8
Solución numérica de ecuaciones diferenciales parciales	Enero-Junio 2023	8

Cursos que estoy cursando.	
Unidad de aprendizaje	
Trabajo de tesis	
Ecuaciones diferenciales ordinarias	
Temas selectos de ecuaciones diferenciales ordinarias	
Seminario departamental II	

Problema 16° de Hilbert.

Estructura coherente electrón-solitón:

FIGURE: Transferencia electrónica desde un Donador (D) a un receptor (A) a lo largo de una cadena cristalina 1D. Los resortes imitan interacciones electrón-fonón.

Hamiltoniano (aproximación de Holstein) $H = H_e + H_{ph} + H_{e-ph}$:

$$H_e = \sum_{n=-\infty}^{\infty} \varepsilon_0 \psi_n^* \psi_n - J \left(\psi_n^* \psi_{n+1} + \psi_{n+1}^* \psi_n \right),$$

 ε_0 : Energía del electrón, J: Término de transferencia para movimiento entre sitios.

$$H_{ph} = \sum_{n=-\infty}^{\infty} \frac{1}{2M} p_n^2 + \frac{W}{2} (u_{n+1} - u_n)^2 + V(u_n),$$

 u_n : Desplazamiento. p_n : Momento. Fonón longitudinal (Fonones dispersivos de Debye o acústicos).

$$H_{e-ph} = \sum_{n=-\infty}^{\infty} -\chi |\psi_n|^2 u_n.$$

 χ : constante de acoplo electrón-fonón.

Ecuaciones de movimiento:

$$i\hbar \frac{d\psi_n}{dt} = -J(\psi_{n-1} + \psi_{n+1}) - \chi u_n \psi_n,$$

 $M \frac{d^2 u_n}{dt^2} = W(u_{n-1} - 2u_n + u_{n+1}) - V'(u_n) + \chi |\psi_n|^2.$

MorsePot-eps-converted-to.pdf

FIGURE: Potenciales $V(r) = D(e^{-\alpha r} - 1)^2$ y $V_{ap} = D\alpha^2 r^2 (1 - \alpha r)$

Conclusiones

Propagación