Lecture 3 IL2218 Analog electronics, advanced course

- Chapter 3 Cascode amplifiers
- Chapter 4 Differential amplifiers
- Examples

2013-01-16

Cascode amplifier

Small signal model

Differential amplifier Why differential?

Single ended output

Noisy V_{DD}

Mar V_{DD} ≥ R_D V_{out} ✓

Noise reduction

What is wrong in this picture?

Basic differential pair

Contstant tail current I_{SS} We can increase the current at one side if it is decreased at the other side $I_{D1} = -I_{D2}$

What will happen if $V_{in1} = V_{in2}$ and the input voltage is increasing?

Input-output characteristics of a differential pair

Common mode response

Tail current source with finite output resistance

Common mode, output sving

Differential gain

Differential gain

$$A_{v} = \frac{V_{out1} - V_{out2}}{V_{in1} - V_{in2}} = g_{m}R_{L}$$

Single ended output

$$A_{v} = \frac{g_{m}}{2} R_{L}$$

Differential mode gain

 $A_{v} = -\frac{g_{m} \kappa_{D}}{1 + \rho R_{a}}$

Single ended output

$$=-\frac{g_m}{2}R_D$$

 V_{DD} R_{D1} $X \longrightarrow V_{X}$ $V_{in1} \longrightarrow V_{X}$ R_{S}

Differential gain

$$A_{v} = g_{m}R_{D}$$

Common mode gain

MOS loads

$$A_{v} = -g_{mN}(r_{oN} // r_{oP})$$

Variable gain

Gain varied by control voltage $V_{\rm cont}$

$$\frac{V_{out1}}{V_{in}} = -g_m R_D$$

$$\frac{V_{out2}}{V_{in}} = +g_m R_D$$

Gilbert cell

Widely used in radio circuits as mixer and phase detector