

Introducción a la Simulación a Partir de Modelos Basados en Agentes

Día 1

Daniel Ciganda Marzo 2020

Modelaje y Simulación

Modelo: Representación de un sistema o un proceso a través de sus características principales con el fin de manipularlo.

Simulación: Imitación del funcionamiento del sistema o proceso representado.

- Control de las condiciones experimentales en un ambiente de bajo riesgo.
- Construcción de escenarios contrafácticos.
- Observar el comportamiento del sistema en un período de tiempo extenso en un tiempo real acotado.

Tipos de Modelos

Modelos Físicos

Modelos Conceptuales

Modelos Matemáticos

1

Modelos Computacionales

Function

Read Input Data

Initialization:

Define Initial Population Size; Define Attributes

Start Simulation:

```
while time < end time do
```

```
Choose Next Event \rightarrow nEvent Update Clock, Ages and Waiting Times
```

```
if nEvent = Complete Education then

│ Update Attributes and Waiting Times

end
```

```
if nEvent = Death then
Update Attributes and Waiting Times
```

if End of Current Year then
Compute and Store Aggregate Indicators
end

end

Result:

Collect Output in List for Analysis

end

Algoritmos

Definición: Conjunto de instrucciones no-ambiguas, ordenadas y finitas que permiten, solucionar un problema, realizar un cómputo o llevar a cabo alguna otra actividad.

Chazelle: "algorithms as modelling devices".

Al igual que el hardware, los algoritmos son tecnología.

Lenguajes de Programación

El cojunto de instrucciones contenido en el algoritmo se expresa en un determinado lenguaje de programación. La elección del lenguaje debería tener en cuenta:

- · Flexibilidad, eficiencia.
- Velocidad
- Acceso a infraestructuras.
- Trabajo en equipo, comunicación dentro de la comunidad de referencia.
- Inversión

Ejemplos: Fortran, C++, Python, Julia, R, NetLogo, etc.

R: Historia

R es una implementación (dialecto) de S, creado por Ross Ihaka y Robert Gentleman en 1992 cuando trabajaban como estadísticos en la Universidad de Auckland.

De **CRAN**: "R is a language and environment for statistical computing and graphics."

- Un lenguaje de programación comprensivo, simple y efectivo que incluye condicionales, loops y funciones recursivas definidas por los usuarios
- Un espacio para alamcenar y manejar datos eficientemente
- Un extenso, coherente e integrado conjunto de herramientas intermedias para el análisis de datos
- Herramientas gráficas para el análisis de datos

Paquetes: tidyr, ggplots2, etc.

RStudio es el editor más popular (IDE - Integrated Development Environment).

Popularidad de Lenguajes para "Ciencia de Datos"

SPSS Statistics SAS Stata GraphPad Prism MATLAB Python Apache Hadoop TensorFlow Minitab Statistica SQL Scikit Learn JMP Systat Keras C. C++, or C# Caffe FORTRAN Apache Spark PyTorch Statgraphics Mathematica IBM Watson Weka Theano 20,000 40 000 Number of Scholarly Articles in 2018

Figure 1: Trabajos ofrecidos 2018

Figure 2: Artículos Científicos

Fuente: Robert A. Muenchen, *The Popularity of Data Science Software*. http://r4stats.com/articles/popularity/

Popularidad de Lenguajes para "Ciencia de Datos"

Number of Google Scholar Hits Year

Figure 3: Artículos Científicos

Figure 4: Arts. Científicos (sin SPSS)

Fuente: Robert A. Muenchen, *The Popularity of Data Science Software*. http://r4stats.com/articles/popularity/

R: Comunidad

Figure 5: Crecimiento Paquetes

Figure 6: stackoverflow.com

Fuente:https://blog.revolutionanalytics.com/

R: Ventajas y Desventajas

Ventajas

- Combina funcionalidad para el análisis de datos con un lenguaje de programación completo.
- · Comunidad activa y en crecimiento
- · Hegemónico en varias disciplinas scientíficas
- · Gratuito y abierto

Desventajas

- · Dificultad para manejar grandes bases de datos
- Velocidad

Laboratorio

- · Explorar RStudio.
- Comenzar el aprendizaje de R en R con swirl

Modelos Probabilísticos

Modelo Probabilístico: El resultado no está completamente determinado por las condiciones iniciales, los parámetros y las especificación del modelo.

Variable aleatoria: Su valor es el resultado de un evento aleatorio. No conocemos el valor exacto que va a tomar en cada realización, pero podemos conocer la probabilidad de cada uno de los posibles valores. Pueden ser continuas of discretas.

Distribución de probabilidad: Probabilidad de ocurrencia de cada valor de una variable aleatoria.

Distribuciones

Laboratorio

 Ejercicios con distribuciones en R: generación de números aleatorios, muestreo.