Аффинное пространство

Аффинное пространство (Affine Space) — это математическая структура , которая состоит из некоторого множества точек A, и ассоциированного с ним векторного пространства U, называемого пространством направлений (direction space).

Аффинное пространство определяется как пара (A,U) с заданной операцией + , где

- 1. A непустое множество точек,
- 2. U векторное пространство над некоторым полем (например, $\mathbb R$, или $\mathbb C$),
- 3. + бинарный оператор $A \times U \to A$, удовлетворяющий свойствам:
 - для любой пары точек $P,Q\in A$ существует единственный вектор $\mathbf{u}\in U$, такой что $Q=P+\mathbf{u}$.
 - для любой точки $P \in A$ и любой пары векторов $\mathbf{u}, \mathbf{w} \in U$ выполняется свойство ассоциативности:

$$(P + \mathbf{v}) + \mathbf{w} = P + (\mathbf{v} + \mathbf{w})$$

Из аксиоматики следует существование нейтрального элемента ${f 0}$ – нулевой вектор в U, такай, что для любой точки $P\in A$ выполняется

$$P + \mathbf{0} = P$$

□ Detail >

В общем случае аффинное пространство не является векторным пространством, так как в A не определены операции сложения элементов и умножение на число, соответствующее аксиоматике векторных пространств. Для того, чтобы A стало векторным пространством, необходимо определить эти операции. Это можно сделать только в том случае, если некоторый элемент Q из A будет взят за нулевой элемент множества, т.е. необходимо фиксировать начало координат. Далее операции сложения и умножения на число можно определить через элемент Q и векторы из U. В результате получится векторное пространство, изоморфно пространству U. Однако при этом в качестве нулевого элемента может быть выбран произвольный элемент, не совпадающий с нулем в U.

Таким образом, можно считать, что если взять векторное пространство и лишить его выделенного начала координат, то в результате получим аффинное пространство. При необходимости, можно фиксировать нулевой элемент, взяв интересующий нас элемент.

Отличительной чертой аффинного пространства от векторного является то, что если в векторном пространстве точки и векторы по сути одно и то же, то в аффинном пространстве есть как точки из множества A, так и векторы из пространства U, которые можно рассматривать как направленные отрезки, соединяющие пары точек из A.

Аффинное пространство обычно определяется как аффинное подпространство некоторого векторного пространства.

Аффинное подпространство или линейное многообразие

Пусть V — векторное пространство. Тогда подмножество $L\subseteq V$ является аффинным подпространством (affine subspace) или линейным многообразием (linear manifold) пространства V, если существуют вектор $\mathbf{x}_0 \in V$ и подпространство $U \subseteq V$, такие что

$$L = \mathbf{x}_0 + U = \{\mathbf{x}_0 + \mathbf{u} \mid \mathbf{u} \in U\}$$

Подпространство U является направляющим подпространством (direction subspace) аффинного подпространства L, а вектор \mathbf{x}_0 — точкой опоры (support point).

Аффинное подпространство представляет собой сдвиг векторного подпространства U на некоторый вектор \mathbf{v}_0 . Всякое подпространство U векторного пространства V содержит нулевой элемент пространства V. Аффинное подпространство может не содержать нулевой элемент пространства V (если $\mathbf{x}_0 \not\in U$), поэтому оно не является в общем случае векторным подпространством V.

Аффинные подпространства часто описываются параметрически. Пусть имеется k-мерное аффинное пространство $L=\mathbf{x}_0+U$ пространства V. Если векторы $(\mathbf{b}_1,\dots,\mathbf{b}_k)$ из V образуют упорядоченный базис пространства U, тогда каждый элемент $\mathbf{x}\in L$ может быть однозначно представлен как

$$\mathbf{x} = \mathbf{x}_0 + \lambda_1 \mathbf{b}_1 + \ldots + \lambda_k \mathbf{b}_k$$

где $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$. Такое представление называется **параметрическим** уравнением аффинного пространства L с направляющими векторами $\mathbf{b}_1, \ldots, \mathbf{b}_k$ и параметрами $\lambda_1, \ldots, \lambda_k$.

≔ Example >

Примерами аффинных подпространств могут быть произвольные плоскости, прямые и точки евклидова пространства. При этом они могут не проходить через нулевой элемент **0** пространства.

Аффинное преобразование

Пусть $\Phi: V \to W$ — линейное преобразование из векторного пространства V в векторное пространство W, и вектор $\mathbf a$ принадлежит W. Тогда, преобразование $\phi: V \to W$, при котором точку $\mathbf x \in V$ отображается в точку $\mathbf a + \Phi(\mathbf x)$ из W, называется **аффинным преобразованием** (affine mapping) из V в W. Вектор $\mathbf a$ называется **вектором перемещения** (translation vector) преобразования ϕ .

Detail >

Всякое аффинное преобразование является композицией линейного преобразования и перемещения.

Композиция аффинных преобразований также является аффинным преобразованием.

Аффинное преобразование сохраняет инвариантность геометрической структуры, размерность и параллельность прямых.

Аффинное преобразование может быть представлено в виде матричного оператора (как и линейное преобразование). Для этого можно перейти к однородным координатам.

Переход к однородным координатам

При выполнении аффинных преобразований удобней перейти к однородной системе координат (homogeneous coordinates or projective coordinates). Это позволит избавиться от вектора перемещения и представить аффинное преобразование в виде матричного оператора.

Операция перемещения в d-мерном векторном пространстве V не является линейным преобразованием, и не может быть представлена в виде матричного оператора $d\times d$ (как и аффинное преобразование). Однако, эти преобразования можно произвести в расширенном векторном пространстве \widetilde{V} размерности (d+1), используя матричный оператор с формой $(d+1)\times (d+1)$. Каждой вектор $\mathbf{v}\in V$ представляется как $(\mathbf{v},1)\in\widetilde{V}$. Само пространство V и все d-мерные аффинные подпространства являются гиперплоскостями в \widetilde{V} .

Пусть аффинное преобразование $\phi:V\to V$ состоит из операции линейного преобразования, представленного матрицей M, и сдвига на вектор ${\bf a}$. Тогда выражение для преобразования можно записать как ${\bf x}'=M{\bf x}+{\bf a}$. Если V-d-мерное векторное пространство, то ${\bf x}$ и ${\bf a}$ - векторы размерности d, а M - матрица $d\times d$.

При переходе к однородным координатам, каждой вектор $\mathbf{x} \in V$ представляется как $(\mathbf{x},1) \in \widetilde{V}$. Аффинное преобразование ϕ , действующее на V, записывается в однородных координатах в виде матрицы

$$M^\circ = egin{pmatrix} M & \mathbf{a} \ 0 & 1 \end{pmatrix} = egin{pmatrix} m_{11} & \dots & m_{1d} & a_1 \ dots & & dots & dots \ m_{d1} & \dots & m_{dd} & a_d \ 0 & \dots & 0 & 1 \end{pmatrix}$$

Обозначим через ${f w}$ вектор $({f x},1)=(x_1,\ldots,x_d,1)$. Тогда, в результате умножения матрицы M° на вектор ${f w}\in\widetilde V$ получим вектор ${f w}'\in\widetilde V$

$$\mathbf{w}' = M^{\circ}\mathbf{w}$$

Вектор \mathbf{w}' представляет собой представление вектора \mathbf{x}' , который является результатом аффинного преобразования ϕ , в однородных координатах: $\mathbf{w}'=(x_1',\dots,x_d',1)=(\mathbf{x}',1)$.

Detail

Заметим, что если убрать из матрицы M° последнюю строку, то произведение такой матрицы с размерностью $d \times (d+1)$ и вектора $\mathbf w$ образует вектор, размерности d, и это будет вектор $\mathbf x'$. Последняя строка матрицы M° позволяет нам оставаться в однородных координатах после преобразований, что представить композицию аффинных преобразований как матричные произведения в \widetilde{V} .