Laboration 4: The Poisson equation and the time-independent Shrodinger equation in 2D

Jesper Vesterberg (jumziey@gmail.com) February 14, 2015

1 Problem 1

1.1 Poisson

For the poisson equation problem we have

$$-\nabla(a(x,y)\nabla u) = f, \quad x \in \Omega \tag{1}$$

$$u = 0, \quad x \in \delta\Omega.$$
 (2)

In order to rewrite this equation on weak, or variational, form we start with multiplying the integral of f with a test function v where $v \in V_0$ where $V_0 = \{||v||_{L^2}^2 + ||\nabla v||^2 < \infty, v|_{\nabla\Omega} = 0\}$. This results in

$$\int_{\Omega} f v ds = -\int_{\Omega} \nabla (a \nabla u) v ds \tag{3}$$

$$= \int_{\Omega} a \nabla u \nabla v ds - \int_{\delta \Omega} v \nabla u d\bar{l}$$
 (4)

$$= \int_{\Omega} a \nabla u \nabla v ds \tag{5}$$

where we used greens identity in the first step and the fact that the test function is zero at the boundary in the second step.

1.2 Shroedinger

When we look at the time dependent solution we have a significantly different problem.

$$\nabla^2 u + a(x, y)u = f, \quad x \in \Omega \tag{6}$$

$$u = 0, \quad x \in \delta\Omega$$
 (7)

We continue and do the same thing as we did for the poisson problem. Starting with multiplying the integral of f with a test function $v \in V_0$.

$$\int_{\Omega} fv ds = -\int_{\Omega} \nabla^2 uv ds + \int_{\Omega} auv ds \tag{8}$$

$$= \int_{\Omega} \nabla u \nabla v ds - \int_{\delta \Omega} v \nabla u d\bar{l} + \int_{\Omega} auv ds \tag{9}$$

$$= \int_{\Omega} \nabla u \nabla v ds + \int_{\Omega} auv ds \tag{10}$$

here the exact same steps as for the poisson derivation was made. The difference of course is the extra term $\int_{\Omega} auvds$ which is not within the derivate sign in the initial problem setup.

2 Problem 2