Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

▲ Álgebra de matrizes

- **1.** Consider as seguintes matrizes: $A = \begin{pmatrix} 1 & 0 \\ 2 & 7 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 5 \\ 3 & -2 \end{pmatrix}$, $C = \begin{pmatrix} -2 & 3 & -7 \\ 7 & -3 & -2 \end{pmatrix}$, $D = \begin{pmatrix} -3 & 2 & 0 \\ 1 & 1 & 4 \\ -2 & 0 & 2 \end{pmatrix}, E = \begin{pmatrix} 2 & 4 & -3 \\ -1 & 0 & -4 \\ -6 & 0 & -1 \end{pmatrix}, F = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}.$ Calcule as expressões matriciais
 - (a) A + 2B
- (d) $2D^t 3E^t$
- (g) E AC

- (b) AB BA
- (e) $D^2 + DE$
- (h) $F^t E$

(c) 2C - D

- (i) BCF
- 2. Seja C = AB uma matriz obtida pelo produto das matrizes $A \in B$, respectivamente. Encontre a ordem $m \times n$ de C nos casos em que o produto existe e verifique se o produto BA está definido.
 - (a) $A_{2\times 3}B_{3\times 4}$
- (c) $A_{1\times 2}B_{3\times 1}$ (e) $A_{4\times 4}B_{3\times 3}$
- (g) $A_{2\times 1}B_{1\times 3}$

- (b) $A_{4\times 1}B_{1\times 2}$

- (d) $A_{5\times 2}B_{2\times 3}$ (f) $A_{4\times 2}B_{2\times 4}$ (h) $A_{2\times 2}B_{2\times 2}$

↑ Leis de formação de matrizes e elementos

- 3. Determine as matrizes a partir de suas leis de formação.
 - (a) $A = (a_{ij})_{2\times 3}$, onde $a_{ij} = 3i 2j$
 - (b) $B = (b_{ij})_{3\times 3}$, onde $b_{ij} = \begin{cases} 3i+j, \text{ se } i=j\\ i^2-j, \text{ se } i\neq j \end{cases}$
 - (c) $C = (c_{ij})_{1\times 4}$, onde $c_{ij} = j^i$
 - (d) $D = (d_{ij})_{4\times 4}$, onde $d_{ij} = \begin{cases} i^2 + j^2, \text{ se } i = j \\ 2ij, \text{ se } i \neq j \end{cases}$
- **4.** Dadas as matrizes $A = \begin{pmatrix} 1 & 2 & 1 \\ -2 & -3 & 2 \\ 1 & 4 & 5 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 0 & 3 \\ 2 & -1 & 4 \\ -3 & -1 & -7 \end{pmatrix}$, use *apenas* as linhas e colunas indicadas para encontrar:
 - (a) $[BA]_{23}$

(e) $\operatorname{tr}(B^t) = [B^t]_{11} + [B^t]_{22} + [B^t]_{33}$

(b) $[AB]_{23}$

(c) $[B^2]_{31}$

 $= [A - B]_{11} + [A - B]_{22} + [A - B]_{33}$

- (d) $\operatorname{tr}(A) = a_{11} + a_{22} + a_{33}$
- (g) $tr(AB) = [AB]_{11} + [AB]_{22} + [AB]_{33}$

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 26/03/2025 até 14:00 horas

Ciência da Computação

Prof. Tiago J. Arruda

<u>∧</u> Equações matriciais

- **5.** Sendo $A = \begin{pmatrix} -1 & 7 \\ 2 & 6 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}$ e $C = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$, determine X e Y em cada uma das expressões matriciais abaixo:
 - (a) 2X + A = 3B + C

(c)
$$3X + A = B - X$$

(b)
$$Y + A = \frac{1}{2}(B - C)^t$$

(d)
$$\begin{cases} X + Y = 3A \\ X - Y = 2B + C \end{cases}$$

- **6.** Mostre que as matrizes da forma $A = \begin{pmatrix} 1 & \frac{1}{x} \\ x & 1 \end{pmatrix}$, em que x é um número real não nulo, satisfazem a equação $A^2 = 2A$ e obtenha uma expressão para A^n , com $n = 1, 2, 3 \dots$
- 7. Sejam X = AB e Y = AC matrizes definidas a partir dos produtos AB e AC, respectivamente. Calcule as expressões abaixo em função X e Y.
 - (a) A(B+C)
- (b) $B^t A^t$
- (c) $C^t A^t$
- (d) (ABA)C

- 8. Resolva os exercícios a seguir.
 - (a) Suponha que $A=\begin{pmatrix} 4 & x+2 \\ 2x-3 & x+1 \end{pmatrix}$ seja uma matriz simétrica, isto é, $A^t=A$. Determine $x\in A$.
 - (b) Determine $x, y \in z$ de modo que a matriz $B = \begin{pmatrix} 0 & -4 & 2 \\ x & 0 & 1-z \\ y & 2z & 0 \end{pmatrix}$ seja antissimétrica, isto é, $B^t = -B$.
- 9. Encontre x, y, z e t que satisfazem a equação matricial:

$$3\begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} x & 6 \\ -1 & 2t \end{pmatrix} + \begin{pmatrix} 4 & x+y \\ z+t & 3 \end{pmatrix}.$$

- 10. Uma matriz A de ordem $n \times n$ é chamada de matriz ortogonal se $AA^t = A^tA = I_n$, onde $I_n = (\delta_{ij})_{n \times n}$ é a matriz identidade de ordem n.
 - (a) Mostre que a matriz $R(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$ é ortogonal.
 - (b) Encontre os valores de x, y e z para os quais a matriz $A = \begin{pmatrix} 1 & 0 & x \\ 0 & \frac{1}{\sqrt{2}} & y \\ 0 & \frac{1}{\sqrt{2}} & z \end{pmatrix}$ é ortogonal.