Formal Concept Analysis

- B. Ganter and Rudolf Wille. Formal Concept Analysis. Mathematical Foundations. Springer Verlag, 1999.
- Formalisation mathématique de la notion de concept et de classification conceptuelle
- Se range dans les approches symboliques de l'IA
 - classification, structuration des connaissances
 - apprentissage (règles)
 - extraction de patrons de connaissances

Data

Definition (Formal Context)

A Formal Context is a triple (O, A, R), where O is a finite set of objects, A is a finite set of attributes and $R \subseteq O \times A$ is a binary relation. $(o, a) \in R$ means that object o owns attribute a. This is also denoted by oRa.

Example (Formal Context Animals11)

	flies	nocturnal	feathered	migratory	red-bill	elytra	sea-habitat	wood-habitat	six-legged	eats-fish	water-habitat
ladybird	×					×			×		
bat	×	×									
ostrich			×								
greater-flamingo	×		×	×			×			×	×
silver-gull	×		×		×		×			×	×
little-tern	×		×	×			×			×	×
great-auk	×		×				×			×	×
wood-pecker	×		×					×			
giant-otter										×	×
arctic-tern	×		×	×	×		×			×	×

Applications associées au contexte formel

Definition (Maps of a binary relation $R \subseteq O \times A$)

Let us denote by P(E) the set of subsets of a finite set E.

Map f associates to an object set the attributes they have in common.

$$f: P(O) \rightarrow P(A)$$

$$X \longmapsto f(X) = \{ y \in A \mid \forall x \in X, (x, y) \in R \}$$

Map g associates to an attribute set the objets that sharing these attributes

$$g: P(A) \rightarrow P(O)$$

$$Y \longmapsto g(Y) = \{x \in O \mid \forall y \in Y, (x,y) \in R\}.$$

In Ganter and Wille, f et g are denoted by the polymorphic symbol $^{\prime}$. We will use both notations depending the situations.

Applications associées au contexte formel

	flies	nocturnal	feathered	migratory	red-bill	elytra	sea-habitat	wood-habitat	six-legged	eats-fish	water-habitat
ladybird	×					×			×		
bat	×	×									
ostrich			×								
greater-flamingo	×		×	×			×			×	×
silver-gull	×		×		×		×			×	×
little-tern	×		×	×			×			×	×
great-auk	×		×				×			×	×
wood-pecker	×		×					×			
giant-otter										×	×
arctic-tern	×		×	×	×		×			×	×

 $f(\{\textit{great}-\textit{auk}, \textit{silver}-\textit{gull}\}) = \{\textit{sea}-\textit{habitat}, \textit{eats}-\textit{fish}, \textit{water}-\textit{habitat}, \textit{feathered}, \textit{flies}\}$ $g(\{\textit{sea}-\textit{habitat}, \textit{eats}-\textit{fish}\}) = \{\textit{great}-\textit{auk}, \textit{silver}-\textit{gull}, \textit{greater}-\textit{flamingo}, \textit{little-tern}, \textit{artic-tern}\}$

Clarified Formal Context

Definition (Clarified Formal Context)

A Formal Context (O, A, R) is object-clarified if $\forall o_1, o_2 \in O$, when $f(\{o_1\}) = f(\{o_2\})$, then $o_1 = o_2$.

A Formal Context (O, A, R) is attribute-clarified if $\forall a_1, a_2 \in A$, when $g(\{a_1\}) = g(\{a_2\})$, then $a_1 = a_2$.

Example (Clarified Formal Context Animals11)

	flies	nocturnal	feathered	migratory	red-bill	elytra	sea-habitat	wood-habitat	eats-fish
ladybird	×					×			
bat	×	×							
ostrich			×						
greater-flamingo	×		×	×			×		×
silver-gull	×		×		×		×		×
great-auk	×		×				×		×
wood-pecker	×		×					×	
giant-otter									×
arctic-tern	×		×	×	×		×		×

Removal of : *little-tern* (eq. to *greater-flamingo*); *six-legged* (eq. to *elytra*); *water-habitat* (eq. to *eats-fish*)

Reduced Formal Context

Definition (Reduced Formal Context)

A Formal Context (O, A, R) is object-reduced if it does not contain reducible object (all objects are said irreducible), i.e., $\forall o \in O$, $\not \equiv X \subseteq O$, $o \not \in X$ with $f(\{o\}) = f(X)$.

A Formal Context (O, A, R) is attribute—reduced if it does not contain reducible attributes (all attributes are said *irreducible*), i.e., $\forall a \in A, \ \exists Y \subseteq A, a \not\in Y$ with $g(\{a\}) = g(Y)$.

Example (Reduced and clarified Formal Context Animals11)

	flies	nocturnal	feathered	migratory	red-bill	elytra	wood-habitat	eats-fish
ladybird	×					×		
bat	×	×						
ostrich			×					
greater-flamingo	×		×	×				×
silver-gull	×		×		×			×
wood-pecker	×		×				×	
giant-otter								×
arctic-tern	×		×	×	×			×

Removal of:

 $\textit{great--auk} \ \ \textit{row} = \textit{greater-flamingo} \ \ \textit{row} \ \cap \ \textit{silver-gull} \ \ \textit{row}.$

sea-habitat column = eats-fish column \cap feathered column \cap flies column.

Formal Concept

Definition (Formal Concept)

A Formal Concept C of a formal context (O, A, R) is a pair C = (E, I) such that f(E) = I (or equivalently E = g(I)). E is the concept *extent*; I is the concept *intent*.

	flies	nocturnal	feathered	migratory	red-bill	elytra	sea-habitat	wood-habitat	six-legged	eats-fish	water-habitat
ladybird	×					×			×		
bat	×	×									
ostrich			×								
greater-flamingo	×		×	×			×			×	×
silver-gull	×		×		×		×			×	×
little-tern	×		×	×			×			×	×
great-auk	×		×				×			×	×
wood-pecker	×		×					×			
giant-otter										×	×
arctic-tern	×		×	×	×		×			×	×

Example (Example)

The following set pairs is a formal concept $C_{great-auk}$:

 $X_3 = \{great-auk, silver-gull, greater-flamingo, little-tern, arctic-tern\}$

 $Y_3 = \{sea-habitat, eats-fish, water-habitat, feathered, flies\}$

This concept groups flying birds (feathered, flies) which leave close to the sea, and eat fishes.

Formal Concept

Definition (Formal Concept)

A Formal Concept C of a formal context (O, A, R) is a pair C = (E, I) such that f(E) = I (or equivalently E = g(I)). E is the concept *extent*; I is the concept *intent*.

	flies	nocturnal	feathered	migratory	red-bill	elytra	sea-habitat	wood-habitat	six-legged	eats-fish	water-habitat
ladybird	×					×			×		
bat	×	×									
ostrich			×								
greater-flamingo	×		×	×			×			×	×
silver-gull	×		×		×		×			×	×
little-tern	×		×	×			×			×	×
great-auk	×		×				×			×	×
wood-pecker	×		×					×			
giant-otter										×	×
arctic-tern	×		×	×	×		×			×	×

Example (Counter-example of animal concepts)

The following set pairs does not form a formal concept :

 $X_1 = \{great-auk, silver-gull\}$

 $Y_1 = \{sea-habitat, eats-fish, water-habitat, feathered, flies\}$

because other objects have the l_1 attributes (the object set if not maximal):

greater-flamingo, little-tern, arctic-tern

Formal Concept

Definition (Formal Concept)

A Formal Concept C of a formal context (O, A, R) is a pair C = (E, I) such that f(E) = I (or equivalently E = g(I)). E is the concept *extent*; I is the concept *intent*.

	flies	nocturnal	feathered	migratory	red-bill	elytra	sea-habitat	wood-habitat	six-legged	eats-fish	water-habitat
ladybird	×					×			×		
bat	×	×									
ostrich			×								
greater-flamingo	×		×	×			×			×	×
silver-gull	×		×		×		×			×	×
little-tern	×		×	×			×			×	×
great-auk	×		×				×			×	×
wood-pecker	×		×					×			
giant-otter										×	×
arctic-tern	×		×	×	×		×			×	×

Example (Counter-example of animal concepts)

The following set pairs does not form a formal concept :

 $X_2 = \{great-auk, silver-gull, greater-flamingo, little-tern, arctic-tern\}$

 $Y_2 = \{sea-habitat, eats-fish\}$

because other attributes are common to the E_2 objects (the attribute set if not maximal): water—habitat, feathered, flies

Concept ordering

Definition (Concept ordering)

```
Concepts can be ordered through the following partial order \leq_s: (E_1, I_1) \leq_s (E_2, I_2) \Leftrightarrow E_1 \subseteq E_2 (or equivalently I_2 \subseteq I_1) (E_1, I_1) is called a sub-concept of (E_2, I_2), (E_2, I_2) is called a super-concept of (E_1, I_1).
```

Example (Example of concept ordering)

```
C_{great-auk}: X_3 = \{great-auk, silver-gull, greater-flamingo, little-tern, arctic-tern\} Y_3 = \{sea-habitat, eats-fish, water-habitat, feathered, flies\}
```

$C_{silver-gull}$:

 $X_4 = \{silver-gull, arctic-tern\}$ $Y_4 = \{sea-habitat, eats-fish, water-habitat, feathered, flies, red-bill\}$

 $C_{silver-gull} \leq_s C_{great-auk}$, as $X_4 \subseteq X_3$ and $Y_3 \subseteq Y_4$.

Concept lattice

Definition (Concept lattice)

The set \mathcal{C}_K of all concepts of a formal context K = (O, A, R), provided with the partial order \leq_s is called the concept lattice associated with K. It is denoted by $\mathcal{L}_K = (\mathcal{C}_K, \leq_s)$.

Concept lattice

Property of the lattice structure

The partial order of the left-hand-side is not a lattice: Concept_3 and Concept_4 have two more specific superconcepts (Concept_1 and Concept_2); Concept_1 and Concept 2 have two more general subconcepts (Concept_3 and Concept_4).

The partial order of the right-hand-side is a lattice: Concept_3 and Concept_4 have a unique most specific superconcept (upper bound Concept 5); Concept 1 and Concept_2 have a unique most general subconcept (lower bound Concept_5). This is denoted in literature : Concept $5 = Concept 3 \lor Concept 4$ and Concept $5 = Concept \ 1 \land Concept \ 2$. 4 D > 4 B > 4 B > 4 B >

Iceberg lattice for minimal support *n*

Definition (Iceberg lattice for minimal support n)

For a formal context K=(O,A,R), let us consider the set \mathcal{C}_{M_K} , composed of the bottom concept of \mathcal{L}_K and all the concepts C=(E,I) of K, such that $|E|\geq \frac{n\times |O|}{100}$. $(\mathcal{C}_{M_K},\leq_s)$ is called the lceberg lattice associated with K, for minimal support n. It is denoted by $\mathcal{I}CEBERG_{K_n}=(\mathcal{C}_{M_K},\leq_s)$.

Each concept has at least 5 objects in its extent (except the bottom)

AOC-poset

Definition (AOC-poset)

The set \mathcal{C}_{I_K} of all introducer concepts (concepts that introduce an object, or an attribute, or both) of a formal context K = (O, A, R), provided with the partial order \leq_s is called the AOC-poset (Attribute-Object-Concept partially ordered set) associated with K. It is denoted by $\mathcal{AOC}_K = (\mathcal{C}_{I_K}, \leq_s)$.

AOC-poset

Size of the conceptual structures

For a formal context K = (O, A, R),

- The concept lattice may have up to $2^{\min(|A|,|O|)}$ concepts. This extreme situation is reached with the lattice of all subsets of E, where E is either O if $|O| = \min(|A|, |O|)$, or A if $|A| = \min(|A|, |O|)$.
- The AOC-poset may have up to |A| + |O| concepts, since a concept introduces either an object or an attribute. This bound is reached for example when |A| = |O| and every attribute is shared by several distinct objects (with a bipartite crown graph for example).
- Despite this difference, there are formal contexts where the concept lattice and the AOC-poset are identical, when every concept of the lattice is an introducer.

Reducible / Irreducible elements

Definition (Irreducible/Reducible concept)

Let us consider a conceptual structure.

A concept is *sup-reducible* if it is the upper bound of several other concepts. The bottom is *sup-reducible*, as it is considered the upper bound of \emptyset .

A concept is *inf-reducible* if it is the lower bound of several other concepts. The top is *inf-reducible*, as it is considered the lower bound of \emptyset .

Concept_10 is sup-reducible, because it is the upper bound of Concept_8 and Concept_6.

Concept_10 is inf-reducible, because it is the lower bound of Concept_4 and Concept_12.

Concept_1 is sup-reducible, because it is the upper bound of Concept_4, Concept_2 and Concept_9, but it is inf-irreducible, because it is not a lower bound of several other concepts.

AOC-poset and irreducible elements

For a reduced formal context K = (O, A, R), the AOC-poset is the set of irreducible concepts of the lattice,

Formal Context and propositional logic

Definition (Implication)

An implication of a formal context K = (O, A, R) with associated maps f, g, denoted by $Prem \implies Conc$, is a pair of attribute sets (Prem, Conc), with Prem, $Conc \subseteq A$ where all the objects that own the attributes of Prem (premise) also own the ones of B (conclusion) : $g(Prem) \subseteq g(Conc)$, or equivalently $\{o|\forall a_{prem} \in Prem, (o, a_{prem}) \in R\} \subseteq \{o|\forall a_{conc} \in Conc, (o, a_{conc}) \in R\}.$

Binary implications of a formal context

Minimal non-redundant set of binary implications for animals :

- migratory \implies sea-habitat, from Concept_1 \leq_s Concept_3
- red-bill \implies sea-habitat, from Concept_2 \leq_s Concept_3
- sea-habitat \implies eats-fish, from Concept_3 \leq_s Concept_8
- sea-habitat \implies feathered, from Concept_3 \leq_s Concept_7
- sea-habitat \implies flies, from Concept_3 \leq_s Concept_9
- wood-habitat \implies flies, from Concept_4 \leq_s Concept_9
- elytra \implies flies, from Concept_5 \leq_s Concept_9
- nocturnal \implies flies, from Concept_6 \leq_s Concept_9

Duquenne-Guigues Basis of Implications (DGBI)

Cardinality minimal set of non redundant implications

- <0> flies, feathered, sea-habitat, wood-habitat, eats-fish, water-habitat => nocturnal, migratory, red-bill, elytra, six-legged
 <0> flies, feathered, elytra, six-legged => nocturnal, migratory, red-bill, sea-habitat, wood-habitat, eats-fish, water-habitat
 <0> flies, nexturnal elytra, six-legged => feathered migratory red-bill, sea-habitat, wood-habitat, eats-fish, water-habitat
- $<\!\!0\!\!> \textit{flies,nocturnal,elytra,six-legged} = \!\!> \textit{feathered,migratory,red-bill,sea-habitat,wood-habitat,eats-fish,water-habitat}$
- $<\!0\!> flies, nocturnal, feathered => migratory, red-bill, elytra, sea-habitat, wood-habitat, six-legged, eats-fish, water-habitat$
- <1> six-legged => flies,elytra
- <1> wood-habitat => flies, feathered
- <1> elytra => flies,six-legged
- <1> nocturnal => flies
- <2> red-bill => flies, feathered, sea-habitat, eats-fish, water-habitat
- <3> migratory => flies, feathered, sea-habitat, eats-fish, water-habitat
- <5> sea-habitat => flies, feathered, eats-fish, water-habitat
- <5> feathered,eats-fish,water-habitat => flies,sea-habitat
- <5> flies, eats-fish, water-habitat => feathered, sea-habitat
- <6> water-habitat => eats-fish
- <6> eats-fish => water-habitat

FCA in Artificial Intelligence

- Unsupervised/Supervised versions
- Robustness
- Symbolic machine learning
- Hierarchical classification (multiple)
- Knowledge Navigation
- Explanation
- Generality

Application

- Construire les structures du cours avec FCA4J https://www.lirmm.fr/fca4j/
- Se familiariser avec RCAviz https://info-demo.lirmm.fr/rcaviz/
- Fichiers et liens disponibles sur Moodle https://moodle.umontpellier.fr/course/view.php?id=22617