

Program	B.Tech. (H) (All SoCS Batches)	Semester	III
Course	Discrete Mathematical Structures	Course Code	CSEG 2006

- 1. Draw the Hasse diagram representing the partial ordering $\{(a,b) | a \text{ divides } b\}$ on $\{1, 2, 3, 4, 6, 8, 12\}$.
- 2. Draw the Hasse diagram for the partial ordering $\{(A, B) \mid A \subseteq B\}$ on the power set P(S) where $S = \{a, b, c\}$.
- 3. Which elements of the poset ({2, 4, 5, 10, 12, 20, 25}, |) are maximal, and which are minimal?
- 4. Is there a greatest element and a least element in the poset (Z+, |)?
- 5. Find the lower and upper bounds of the subsets $\{a, b, c\}$, $\{j, h\}$, and $\{a, c, d, f\}$ in the poset with the Hasse diagram shown in Figure 7.
- 6. Find the greatest lower bound and the least upper bound of $\{b, d, g\}$, if they exist, in the poset shown in Figure 7.

Figure 7

7. Determine whether the posets represented by each of the Hasse diagrams in Figure 8 are lattices.

Figure 8

Program	B.Tech. (H) (All SoCS Batches)	Semester	III
Course	Discrete Mathematical Structures	Course Code	CSEG 2006

- 8. Find the greatest lower bound and the least upper bound of the sets {3, 9, 12} and {1, 2, 4, 5, 10}, if they exist, in the poset (**Z**⁺, |).
- 9. Is the poset $(\mathbf{Z}^+, |)$ a lattice?
- **10.** Determine whether the posets $(\{1, 2, 3, 4, 5\}, |)$ and $(\{1, 2, 4, 8, 16\}, |)$ are lattices.
- 11. Determine whether $(P(S), \subseteq)$ is a lattice where S is a set.
- 12. Draw the Hasse diagram for the "greater than or equal to" relation on {0, 1, 2, 3, 4, 5}.
- 13. Draw the Hasse diagram for the "less than or equal to" relation on {0, 2, 5, 10, 11, 15}.
- 14. Draw the Hasse diagram for divisibility on the set
 - a) {1, 2, 3, 4, 5, 6}.
- **b**) {3, 5, 7, 11, 13, 16, 17}.
- c) {2, 3, 5, 10, 11, 15, 25}. d) {1, 3, 9, 27, 81, 243}.
- 15. Draw the Hasse diagram for divisibility on the set
 - a) {1, 2, 3, 4, 5, 6, 7, 8}.
- **b**) {1, 2, 3, 5, 7, 11, 13}.
- c) {1, 2, 3, 6, 12, 24, 36, 48}.
- d) {1, 2, 4, 8, 16, 32, 64}.
- 16. Which of these relations on {0, 1, 2, 3} are partial orderings? Determine the properties of a partial ordering that the others lack.
 - a) $\{(0,0),(1,1),(2,2),(3,3)\}$
 - b) $\{(0,0),(1,1),(2,0),(2,2),(2,3),(3,2),(3,3)\}$
 - c) $\{(0,0), (1,1), (1,2), (2,2), (3,3)\}$
 - **d**) $\{(0,0),(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
 - e) {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3)}

Program	B.Tech. (H) (All SoCS Batches)	Semester	III
Course	Discrete Mathematical Structures	Course Code	CSEG 2006

- 17. Which of these relations on {0, 1, 2, 3} are partial orderings? Determine the properties of a partial ordering that the others lack.
 - a) $\{(0,0),(2,2),(3,3)\}$
 - **b**) $\{(0,0),(1,1),(2,0),(2,2),(2,3),(3,3)\}$
 - c) $\{(0,0),(1,1),(1,2),(2,2),(3,1),(3,3)\}$
 - **d**) {(0,0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (2, 3), (3, 0), (3, 3)}
 - e) {(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,3)}

18.

Find the in-degree and out-degree of each vertex in the graph G with directed edges shown in Figure 2.

FIGURE 2 The Directed Graph G.

19. Are the graphs G and H displayed in Figure 8 bipartite?

FIGURE 8 The Undirected Graphs G and H.

Program	B.Tech. (H) (All SoCS Batches)	Semester	III
Course	Discrete Mathematical Structures	Course Code	CSEG 2006

- **20.** For what value of *n* complete graph and Cycles are regular?
- 21. How many vertices does a regular graph of degree four with 10 edges have?
- 22. Represent the graph shown in Figure with an incidence matrix.

23. Show that the graphs displayed below are isomorphic.

24. Draw the graph corresponding to given adjacency matrices:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & 0 \\ 0 & 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & 2 & 3 & 0 \\ 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

25.

Program	B.Tech. (H) (All SoCS Batches)	Semester	III
Course	Discrete Mathematical Structures	Course Code	CSEG 2006

Does each of these lists of vertices form a path in the following graph? Which paths are simple? Which are circuits? What are the lengths of those that are paths?

a) a, e, b, c, b

- b) a, e, a, d, b, c, a
- c) e, b, a, d, b, e
- \mathbf{d}) c, b, d, a, e, c

- **26.** Show that every connected graph with n has at least (n-1) edges.
- 27. Which of the simple graphs in Figure have a Hamilton circuit or, if not, a Hamilton path?

28. Determine whether the given graph has an Euler circuit.

29.

A graph is called *planar* if it can be drawn in the plane without any edges crossing (where a crossing of edges is the intersection of the lines or arcs representing them at a point other than their common endpoint). Such a drawing is called a *planar representation* of the graph.

Check whether the graphs are Planner.

Program	B.Tech. (H) (All SoCS Batches)	Semester	III
Course	Discrete Mathematical Structures	Course Code	CSEG 2006

30. Find the chromatic number of given graph G.

Program	B.Tech. (H) (All SoCS Batches)	Semester	III
Course	Discrete Mathematical Structures	Course Code	CSEG 2006