Tilastollinen päättely, syksy 2013 – kevät 2014

2. kurssikokeen uusinta 20. 3. 2014

Huom. Kokeessa saa käyttää laskinta mutta ei omia taulukoita!

- 1. Havaintoja vastaavat satunnaismuuttujat ovat $Y_1, \ldots, Y_n \sim P(\mu) \perp \!\!\! \perp$. Etsi parametrille μ yksiulotteinen tyhjentävä tunnusluku.
- 2. Tilastollinen malli on $f_Y(y;\theta)$, ja nollahypoteesin H_0 : $\theta = \theta_0$ testaamiseen käytetään testisuuretta t = t(y), jonka suurten arvojen tiedetään olevan kriittisiä H_0 :lle. Määrittele huolellisesti tähän liittyvä p-arvo eli havaittu merkitsevyystaso. Oletetaan, että on tehtävä päätös H_0 :n hyväksymisestä tai hylkäämisestä. Miten tällöin menetellään? Millaiset virhemahdollisuudet tässä päätöksenteossa on?
- 3. Diskreetin satunnaismuuttujan Y arvojoukko on $\{0,1,2,3,4\}$ ja sen jakauma riippuu parametrista θ , jolla on kolme mahdollista arvoa: 1, 2 ja 3. Vastaavat pistetodennäköisyydet on lueteltu alla.

y	0	1	2	3	4
$f_Y(y;1)$.03	.02	.05	.80	.10
$f_Y(y;2)$.05	.05	.80	.10	.00
$f_Y(y;3)$.60	.38	.02	.00	.00

Halutaan testata hypoteesia H_0 : $\theta = 1$ vastaan H_1 : $\theta = 3$ merkitsevyystasolla 0.05. Ilmoita voimakkaimman testin kriittinen alue. Muodosta myös sen voimafunktio.

- 4. Toistokokeessa (onnistumistodennäköisyys θ) suoritetaan n toistoa ja havainnot ovat $Y_1, \ldots, Y_n \sim B(\theta) \perp$. Parametrin θ suurimman uskottavuuden estimaattori on $\hat{\theta}$.
 - a) Mitä normaalijakaumaa $\hat{\theta}$ approksimatiivisesti noudattaa, kun n on suuri?
 - b) Toistojen lukumäärä on n=100 ja onnistumisten lukumäärä $y_1+\cdots+y_n=28$. Muodosta Waldin testiin (eli yo. normaaliapproksimaatioon) perustuva approksimatiivinen 95 %:n luottamusväli parametrille θ .

Muistin tueksi:

Jakauman $P(\mu)$ pistetodennäköisyydet ovat $f(y;\mu)=e^{-\mu}\mu^y/y!$, kun y=0,1,2,..., ja odotusarvo sekä varianssi kumpikin μ .

Jos $Z \sim N(0,1)$, niin $P(Z \ge 1.96) \approx 0.025$.