April 28, 2024

1 a) Manual Calculation

p1: (0,0),

p2: (1,2),

p3: [2,0),

p4: [8,8),

p5: [9,9),

p6: [10,8)

choose two initial centroid $\mu_1:(1,1)$ and $\mu_2:(9,9)$

1.1 Iteration 1

computer the distance of points to the centroid

	C_1	C_2	k
p1	$\sqrt{(0-1)^2 + (0-1)^2} =$	$\sqrt{(0-9)^2 + (0-9)^2} =$	C_1
	1.41	12.7	
p2	$\sqrt{(1-1)^2 + (2-1)^2} =$	$\sqrt{(1-9)^2 + (2-9)^2} =$	C_1
	1.00	10.6	
p3	$\sqrt{(2-1)^2 + (0-1)^2} =$	$\sqrt{(2-9)^2 + (0-9)^2} =$	C_1
	1.41	11.4	
p4	$\sqrt{(8-1)^2 + (8-1)^2} =$	$\sqrt{(8-9)^2 + (8-9)^2} =$	C_2
	9.90	1.41	
p5	$\sqrt{(9-1)^2 + (9-1)^2} =$	$\sqrt{(9-9)^2 + (9-9)^2} =$	C_2
	11.3	0.00	
p6	$\sqrt{(10-1)^2 + (8-1)^2} =$	$=\sqrt{(10-9)^2+(8-9)^2}=$	$=C_2$
	11.4	1.41	

optimization of centroids

$$\mu_1 = \frac{\sum_n r_{n1} x_n}{\sum_n r_{n1}}$$

$$=\frac{1\cdot[0,0]+1\cdot[1,2]+1\cdot[2,0]+0\cdot[8,8]+0\cdot[9,9]+0\cdot[10,8]}{1+1+1+0+0+0}$$

$$[1,\frac{2}{3}]$$

$$\mu_2=\frac{\sum_n r_{n2}x_n}{\sum_n r_{n2}}$$

$$=\frac{0\cdot[0,0]+0\cdot[1,2]+0\cdot[2,0]+1\cdot[8,8]+1\cdot[9,9]+1\cdot[10,8]}{0+0+0+1+1+1}$$

$$[9,\frac{25}{3}]$$

1.2 Iteration 2

computer the distance of poinst to the centrol

	C_1	C_2	k
p1	$\sqrt{(0-1)^2 + (0-\frac{2}{3})^2} = 1.20$	$\sqrt{(0-9)^2 + (0-\frac{25}{3})^2} = 12.3$	$=C_1$
p2	$\sqrt{(1-1)^2 + (2-\frac{2}{3})^2} = 1.33$	$\sqrt{(1-9)^2 + (2-\frac{25}{3})^2} = 10.2$	$=C_1$
p3	$\sqrt{(2-1)^2 + (0-\frac{2}{3})^2} = 1.20$	$\sqrt{(2-9)^2 + (0 - \frac{25}{3})^2} = 10.9$	$=C_1$
p4		$\sqrt{(8-9)^2 + (8-\frac{25}{3})^2} = 1.05$	$=C_2$
p5	10.1	$\sqrt{(9-9)^2 + (9-\frac{25}{3})^2} = 0.67$	$=C_2$
p6		$= \sqrt{\frac{(10-9)^2 + (8-\frac{25}{3})^2}{1.05}}$	$=C_2$

optimization of centroids

$$\begin{split} \mu_1 &= \frac{\sum_n r_{n1} x_n}{\sum_n r_{n1}} \\ &= \frac{1 \cdot [0,0] + 1 \cdot [1,2] + 1 \cdot [2,0] + 0 \cdot [8,8] + 0 \cdot [9,9] + 0 \cdot [10,8]}{1 + 1 + 1 + 0 + 0 + 0} \\ &\qquad \qquad [1,\frac{2}{3}] \\ \mu_2 &= \frac{\sum_n r_{n2} x_n}{\sum_n r_{n2}} \end{split}$$

$$=\frac{0\cdot [0,0]+0\cdot [1,2]+0\cdot [2,0]+1\cdot [8,8]+1\cdot [9,9]+1\cdot [10,8]}{0+0+0+1+1+1}\\ [9,\frac{25}{3}]$$

The centroid has converge

2 b) Python