Computer Networks COL 334/672

Data Plane

Slides adapted from KR

Sem 1, 2025-26

Today's Class: Data Plane Functions

- IP lookup
- Switching
- Queuing
- Scheduling

 Challenge: micro/nanosecond timescales

 Learning goal: Understand the problem statement, challenges, and a sample solution

IP LOOKUP aus 00000000 1 16 11. 11. 10/24

00000000 2 11. 11. 1/24 00000011 2

Problem statement: Finding the output port for a packet with destination IP, **D**

DST PREFIX	PORT	1
192.11/16	1	
11.1/24	2	
HIL. 11. 2/24	2	1
12.12.1/22	3	
11.11.3. \$24	2-	
(11.11.0/24)	1	1
1		

(1)-	Prefixes of	arbetrary lengte	3
	/ (Classless	Inter-domain	'outry - CIDR)

2). A prefix can be a subset of another prefix (aggregation / supernetting)

Longest prefix match)

19211/16	1
12-12.1/22	1 2
E11-11.0/22	

Longest prefix matching

longest prefix match

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

	Destination /	Link interface			
	11001000	00010111	00010***	*****	0
-	11001000	00010111	00011000	*****	1 🗻
·9	11001000	00010111	00011***	*****	2
	otherwise				3

examples:

11001000 00010111 00010110 10100001 which interface? 11001000 00010111 00011000 10101010 which interface? 11001000 00010111

LPM Techniques

> 0(m)

- Brute force: Search through all forwarding table entries iteratively
 - Too slow!
- Can we do a faster lookup?
- Solution: Use Trie or Prefix tree

0F 00

Example: Unibit Tries

How many memory lookups in the worst case?

Can we think of faster techniques?

Data Plane Functions

- Prefix lookup
- Switching
- Queuing
- Scheduling

Switching

Switcher

 Transfer packets from input port to appropriate output port

 Switching rate: rate at which packets can be transfer from inputs to outputs

Often measured as multiple of input/output line rate

• What is the desired switching rate in this case?

Switching rate depends on switching
 fabric and switching algorithm at the router

Switchie rate > Eoutput rate
of all luther
> NKR

(Don't want sixtching) to be the bottlenecks

Switching via memory ASIC

App & specific I estegration

designed for routing theodie

first generation routers:

Il lookup in the processor/CPU

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings)
- What is the switching rate if the bus rate is B?

I then faculted the packet to output pour

surlche = B (Need to send packet twice)

Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access routers

Switching via interconnection network

- Grid of N inputs, N outputs
- How it works:
 - Each input can connect to one output at a time
 - Multiple input-output pairs can be active at the same time
- How to decide which input-output should be connected at each timeslot
 - Need to develop efficient switching algorithms

