

微电子器件实验

彭守仲

北京航空航天大学 集成电路学院

第一馆203办公室 shouzhong.peng@buaa.edu.cn

课程考核形式

- 平时成绩 10%
 - □ 课程签到、随堂测验等。
- 课堂实验 45%
 - 口 课堂实验完成情况。
- 实验报告 45%
 - □ 实验报告撰写情况。
 - □ 完成实验后的第一个星期一将实验报告交给教辅。
 - □ 教辅:博士研究生芦家琪(15932269091)、李伟祥(18801163376)。

实验内容

序号	实验内容
实验1	二极管直流特性和双极型晶体管输入特性测量
实验2	双极型晶体管的输出特性测量
实验3	双极型晶体管的放大特性和频率特性测量
实验4	MOS管的转移特性和输出特性测量
实验5	MOS管的跨导和频率特性测量
实验6	双极型晶体管和MOS管的模型参数测量

实验内容

序号	实验内容
实验7	射随器和共基放大电路测量
实验8	源随器和共栅放大电路测量
实验9	比例运算、加减法运算和积分运算电路测量
实验10	积分运算、差分放大、指数和对数运算电路测量
实验11	电压比较器、正弦波振荡器和波形发生器测量
实验12	LabVIEW入门实验

教学目标

- □ 为什么要上微电子器件实验课?
- □ 为什么微电子器件实验课被列为核心 专业课?
- □ 为了:
 - ▶ 1. 深入理解器件机理
 - ▶ 2. 掌握通用仪表使用方法
 - > 3. 提高动手能力和工程实践能力
 - ▶ 4. 提高理论结合实践能力
 - > 5. 发现科学探索的乐趣……

字符串函数 String Functions

字符串作为文件 地址和文件名:

Concatenate Strings

String Length

将数据转换为字符串 Converting Numerics to Strings

Number To Fractional String

程序框图:

前面板

F-format string 3.141590

文件输入/输出 File Input and Output

文件操作常用流程及常用函数:

文件输入/输出 File Input and Output

Connectivity Control & Simula Express

Addons Select a VI...

WWrite Text File

Read Meas

Scan From File

865

Read Binary

File VIs

Read Text File

写文件例子 Write to File Example

- 利用Open/Create/Replace File函数来创建或者打开file path下的一个文件(.txt或.dat) 并生成参考号(refnum),用参考号来进行文件读写及其他操作
- 利用Write to Text File函数将数据写入到文件中
- 利用Close File函数来关闭文件
- 注意:如果要将数据写入.txt文件中,需要先利用Number To Fractional String函数将数据转换成字符串(String)

回顾: LabVIEW入门实验

■ 单个阻值测量

搭建发光二极管直流特性测量电路(将电压源电压近似为二极管两端电压),编写LabVIEW程序,实现如下功能:

向程序输入一个正电压,测量电流并显示

电流和电阻阻值

LabVIEW入门实验(续)

■ 直流特性测量及画图显示

搭建发光二极管直流特性测量电路 (将电压源电压近似为二极管两端 电压),编写LabVIEW程序,实现 如下功能:

向程序输入最大最小电压及步长, 测量多个电压下的电流,画图显示 发光二极管的直流特性测量结果

课后思考

■ 课后思考

1. 简要叙述实验过程中遇到的问题及解决办法。

回顾: 双极型晶体管的直流特性测量与分析

C9018

- 输出特性曲线
- 1.调节*E_B*使

 $I_B = 20/40/60/80/100 \mu A$

2.调节*E*c使

E_C=0.1-1V以及1-10V

 $3.测量 V_{CE} 和 I_C 并画图$

电压源 产生电压*E_B和E_C*

手持式万用表1 测量电压 V_{CE}

手持式万用表2 测量电流 I_c

台式万用表测量电流/。

大作业(选做,1月8日14:00检查)

■ 三极管输出特性测量

搭建三极管输出特性测量电路(将电压源电压 E_C 近似为集电极电压),编写LabVIEW程序,实现如下功能:

大作业(选做,1月8日14:00检查)

■ 三极管输出特性测量

前面板示范: 存储数据示范:

1-data.txt
2-data.txt
3-data.txt
4-data.txt

文件(F) 编辑(E) 格式(O) 查看(V)
Voltage(V) Current(A)
0.006844 -0.000000
0.100874 0.000310
0.200772 0.001753
0.301106 0.002063

在旅客的大大學 東京旅客的大大學 東京旅客的大大學 東京旅客的大大學 東京旅客的大大學

