# Давление излучения

#### Аннотация

Известно, что для того, чтобы разогнать что—то, надо придать ему импульс. И неважно, как: можно отбрасывать от себя некоторую массу в виде газа, тем самым придавая себе импульс подобно ракете, а можно толкать чем—нибудь извне. Конечно, пушкой, как это описывал Жюль Верн в своей книге, много чего не сделаешь — однако нам это и не нужно. Ведь же у нас есть источник, который может толкать постоянно, сколь угодно долго (если, конечно, не нужно будет для чего—то разгоняться миллиарды лет). И этот источник — наше Солнце: оно излучает свет, а фотоны, как известно, обладают импульсом. Поэтому солнечный свет может передавать импульс, а значит, и оказывать давление.

Собственно, хорошо бы узнать давление, действующее на солнечный парус. Эта задача с грамотно использующимся приближением совсем не сложная и даётся, например, 11–классникам на заключительном этапе всероссийской олимпиады (пример: 4 задача ВсОШ 2017 года). И обычно выходит выражение для светового давления  $P=2\mathcal{F}/c$ , где  $\mathcal{F}-$  освещённость Солнцем (при условии полного отражения). Однако, используя уравнение состояния для фотонного газа выходит, что  $P=4\mathcal{F}/3c$ , что довольно сильно отличается от того, что используется в задаче. Возникает закономерный вопрос: а почему так вышло? В этой статье мы попробуем с этим разобраться.

## 1 Введение

Прежде, чем вычислять давление, плотность и прочие характеристики фотонного газа (не обязательно равновесного), нужно определится с различными величинами. Представим себе такую ситуацию: у нас есть площадка площадью dS и она излучает свет под углом  $\theta$  к нормали. Выясним, от чего зависит энергия, которую излучает эта площадка.

Очевидно, что она пропорциональна времени, в течении которого фотоны поступали на эту площадку. Также она пропорциональна некоторой эффективной площади площадки, которая равна  $dS \cos \theta$  (см. рис. 1)

и телесному углу  $d\omega$ , из которого эта энергия поступает. В итоге можно записать  $\delta E \propto dt dS \cos\theta d\omega$ . У этой зависимости есть некоторый коэффициент пропорциональности, который зависит от частоты  $\nu$ , на которой эта энергия проходит. С учётом этого можно окончательно записать  $\delta E(I_{\nu}) = I_{\nu} d\nu dt dS d\omega \cos\theta$ ,  $I_{\nu}$  — это спектральная плотность яркости



Рис. 1: Наглядное представление  $I_{\nu}$ 

Аналогично можно ввести спектральную плотность освещённости  $\mathcal{F}_{\nu}$  — это энергия на частоте  $\nu$ , которую излучила данная площадка во всех направлениях, делённая на время dt, в течении которого эта площадка излучала, и на её площадь dS, иными словами в этом случае

$$\delta E(\mathcal{F}_{\nu}) = \mathcal{F}_{\nu} \, d\nu dt dS = \int_{\Phi} \delta E(I_{\nu}) d\omega$$

Отсюда

$$\mathcal{F}_{\nu} = \int_{\Phi} I_{\nu} \cos \theta d\omega$$

где  $\Phi$  — область интегрирования. Однако выражение "во всех направлениях" весьма двусмысленно. В самом деле: если представить, что

площадка излучает фотонный газ, находящийся в равновесии, то в одну полусферу она в абсолютном значении излучает столько же, сколько и в другую. Однако это излучение будет направлено противоположно излучению в первой полусфере, поэтому, если интегрировать по всей сфере, то  $\mathcal{F}_{\nu}=0$ . Можно дать и более формальный вывод: в первой полусфере угол к нормали  $\theta$  лежит в пределах  $[0;\pi/2)$ , а во второй — в  $(\pi/2;\pi]$ . Функция  $\cos\theta$  центрально–симметрична относительно  $\theta=\pi/2$ , а для равновесного фотонного газа  $I_{\nu}(\theta,\varphi)=\mathrm{const}$ , поэтому  $\mathcal{F}_{\nu}=0$  (здесь и далее  $\varphi$  — аналог долготы в сферической системе координат). В любом случае получается, что площадка ничего не излучает, что, очевидно, не так. Поэтому область интегрирования  $\Phi$  — это полусфера, ограниченная плоскостью площадки.

Рассмотрим ламбертово тело, у которого  $I_{\nu}(\theta,\varphi) = \text{const}$ , другими словами — изотропное излучение. Тогда

$$\mathcal{F}_{\nu} = \int_{\Phi} I_{\nu} \cos \theta d\omega = \iint_{\Phi} I_{\nu} \cos \theta \sin \theta d\theta d\varphi =$$
$$= I_{\nu} \cdot \frac{1}{2} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} \sin 2\theta d\theta = I_{\nu} \cdot \frac{1}{2} \cdot 2\pi = \pi I_{\nu}$$

Это важный частный случай.

Освещённость  $\mathcal{F}$  — это поток, который площадка излучает во всех направлениях по всем частотам. Исходя из этого

$$\delta E(\mathcal{F}) = \mathcal{F} dt dS = \int_{0}^{\infty} \delta E(\mathcal{F}_{\nu}) d\nu \Rightarrow \mathcal{F} = \int_{0}^{\infty} \mathcal{F}_{\nu} d\nu$$

Важный частный случай — это излучение равновесного фотонного газа, который описывается формулой Планка:  $I_{\nu}=\frac{2h\nu^3/c^2}{\exp{(h\nu/kT)}-1}$ . Тогда  $\mathcal{F}=\sigma T^4$ , где  $\sigma$  — постоянная Стефана–Больцмана, равная  $\frac{2\pi^5k^4}{15h^3c^2}$ . Наконец, светимость тела определяется довольно просто: L=dE/dt

Наконец, светимость тела определяется довольно просто: L = dE/dt и, по аналогии с предыдущими рассуждениями,

$$L = \int_{\Omega} \mathcal{F}(S) \ dS$$

где  $\Omega$  — поверхность излучающего тела. Очевидно, что если освещённость тела одинакова в любой точке его поверхности, то  $L=\mathcal{F}\,S$ . В частности, у сферы радиуса R выходит  $L=4\pi R^2\,\mathcal{F}$ 

### 2 Плотность фотонного газа

Разумеется, у фотонов нет массы. Тем не менее, они обладают энергией, то есть можно ввести такое понятие, как плотность энергии u=dE/dV. Также введём по аналогии со спектральной плотностью яркости спектральную плотность плотности энергии  $u_{\nu}=du/d\nu$ 

Всё также представим площадку, излучающую свет под углом  $\theta$  к нормали за время dt. Тогда за это время площадка в этом направлении излучит энергию  $\delta E = I_{\nu} dt dS d\nu d\omega \cos \theta$ , которая поступит из объёма  $dV = dS \cdot cdt \cos \theta$  (см. рис. 2). Тогда плотность в этом направлении

$$\delta u_{\nu} = \frac{\delta E}{dV d\nu} = \frac{I_{\nu} dt dS d\nu d\omega \cos \theta}{c dS dt \cos \theta d\nu} = \frac{I_{\nu}}{c} d\omega$$



Рис. 2: Вся энергия, содержащаяся в этом цилиндре, равна  $\delta E$ 

Соответственно, чтобы узнать суммарную плотность по частоте  $\nu$ , нужно проинтегрировать по всем направлениям. Здесь уже можно смело

интегрировать во всей сфере  $\Phi_0$ . Отметим, что в случае изотропного излучения

$$u_{\nu} = \int\limits_{\Phi_0} \delta u_{\nu} = \frac{I_{\nu}}{c} \int\limits_{\Phi_0} d\omega = \frac{I_{\nu}}{c} \int\limits_0^{2\pi} d\varphi \int\limits_0^{\pi} \sin\theta d\theta = \frac{I_{\nu}}{c} \int\limits_0^{2\pi} 2d\varphi = \frac{4\pi I_{\nu}}{c}$$

Учитывая выражение для спектральной плотности освещённости можно сказать  $u_{\nu}=4\,\mathcal{F}_{\nu}\,/c.$  Отсюда можно получить выражение для полной плотности энергии:

$$u = \int_{0}^{\infty} u_{\nu} d\nu = \frac{4}{c} \int_{0}^{\infty} \mathcal{F}_{\nu} d\nu = \frac{4 \mathcal{F}}{c}$$

Заметим, что данная формула требует только изотропности излучения во всех направлениях и совершенно не привязана к равновесию фотонного газа. Поэтому, например, к излучению Солнца (если пренебречь эффектом потемнения к краю) её можно спокойно применять: отклонение спектра такого излучения от чернотельного роли не играет. Однако есть ньюанс...

## 3 Давление

Собственно, мы подошли к полному ответу на вопрос. В самом деле: если смотреть на уравнение состояния равновесного фотонного газа, то его давление  $P=u/3=4\,\mathcal{F}/3c$ . В то же время в задачах используется  $P=\mathcal{F}/c$  или  $P=2\,\mathcal{F}/c$  в зависимости от отражательной способности. В чём же лело?

Нужно вспомнить, что излучение Солнца очень неоднородно. Поэтому, если в равновесном фотонном газе на площадку довольно много фотонов падают некоторым углом к нормали, то есть не полностью передают свой импульс, то в фотонном газе, который излучается Солнцем, можно сделать так, чтобы практически все фотоны падали перпендикулярно площадке (разумеется, это будет на довольно большом расстоянии от Солнца). То есть, иными словами, коэффициент перед  $\mathcal{F}/c$  должен увеличиваться по мере расстояния.

Докажем наши утверждения математически. В равновесном фотонном газе фотоны отражаются площадкой, то есть их импульс изменяется на 2 проекции импульса на нормаль к этой площадке (см. рис. 3). Также

известно, что энергия и импульс фотона связаны между собой следующий образом: E=pc.



Рис. 3: 
$$|\Delta p| = 2|p_1|\cos\theta$$

Исходя из всего этого, под углом  $\theta$  к нормали из телесного угла  $d\omega$  передаётся импульс  $\delta p(I_{\nu}) = 2\delta E(I_{\nu})\cos\theta/c$ , а давление будет равно

$$\delta P_{\nu} = \frac{\delta p(I_{\nu})\cos\theta}{cdtdSd\nu} = \frac{2I_{\nu}}{c}\cos^{2}\theta d\omega$$

Разумеется, в равновесном фотонном газе давление с одной полусферы площадки будет уравновешиваться давлением с другой полусферы. Поэтому, чтобы узнать суммарный переданный импульс на частоте  $\nu$ , надо интегрировать по полусфере  $\Phi$ . Так как излучение изотропно, то получаем

$$P_{\nu} = \int_{\Phi} \delta P = \frac{2I_{\nu}}{c} \iint_{\Phi} \cos^2 \theta \sin \theta d\theta d\varphi d\nu =$$

$$= \frac{2I_{\nu}}{c} \int_{0}^{2\pi} d\varphi \int_{0}^{1} \cos^2 \theta d(\cos \theta) = \frac{2I_{\nu}}{c} \cdot 2\pi \cdot \frac{1}{3} = \frac{4\pi I_{\nu}}{3c} = \frac{u_{\nu}}{3} = \frac{4\mathcal{F}_{\nu}}{3c}$$

В этом случае очевидно, что интегрирование по всем частотам даст выражение P=u/3.

Представим, что теперь площадка находится не в равновесном фотонном газе, а далеко от Солнца и она ориентирована перпендикулярно солнечным лучам (но, как и раньше, отражает весь падающий свет). Тогда Солнце излучает только из одной точки, поэтому величина  $I_{\nu}$  здесь

не имеет смысла. Тогда можно пользоваться определением для  $\delta E(\mathcal{F}_{\nu})$  и в таком случае

$$P_{\nu} = \frac{2\delta E(\mathcal{F}_{\nu})}{cd\nu dt dS} = \frac{2\,\mathcal{F}_{\nu}}{c}$$

Отсюда интегрирование по всем частотам приведёт к результату  $P=2\,\mathcal{F}/c$ , что соответствует, в частности, выражению давления, которое используется в задачах. Однако мы сделали очень важное допущение, а именно то, Солнце является точечным источником. Хотя это близко к действительности, но насколько это приближение адекватно?

#### 4 Солнечный фотонный газ

Для начала докажем теорему о том, что интенсивности света  $I_{\nu}$  одинаковы как с точки зрения излучающей площадки площадью  $dS_1$ , так и с точки зрения принимающей площадки площадью  $dS_2$ :



Рис. 4: Иллюстрация теоремы

Очевидно, что излучающая энергия  $\delta E_{12} = I_{\nu}^{12} dt d\nu d\omega_2 dS_1 \cos\theta_1$  равна принимающей  $\delta E_{21} = I_{\nu}^{21} dt d\nu d\omega_1 dS_2 \cos\theta_2$ , где  $d\omega_2$  — телесный угол, под которым видна площадка с площадью  $dS_2$  с площадки площадью  $dS_1$ , а  $d\omega_1$  — наоборот.

Тогда, если расстояние между ними равно r, то  $d\omega_2=dS_2\cos\theta_2/r^2$ , а  $d\omega_1=dS_1\cos\theta_1/r^2$ . В итоге

$$\frac{I_{\nu}^{12}dtd\nu dS_2\cos\theta_2 dS_1\cos\theta_1}{r^2} = \frac{I_{\nu}^{21}dtd\nu dS_1\cos\theta_1 dS_2\cos\theta_2}{r^2}$$

Отсюда очевидно, что  $I_{\nu}^{12}=I_{\nu}^{21}$ 

Теперь представим, что теперь площадка ориентирована так, что Солнце находится в зените (см. рис. 5). Теперь пусть Солнце имеет угловой радиус  $\chi$ , эффектом потемнения к краю пренебрежём. Тогда  $I_{\nu}(\theta,\varphi)=$  const для всего участка неба, который занимает Солнце. Выясним, чему равна освещённость такой площадки:



Рис. 5: Как выяснено ранее, яркость падающего на площадку света равна яркости Солнца

$$\mathcal{F}_{\nu} = \int_{Sun} I_{\nu} \cos \theta d\omega = I_{\nu} \int_{0}^{2\pi} d\varphi \int_{0}^{\chi} \cos \theta \sin \theta d\theta = I_{\nu} \cdot 2\pi \cdot \frac{1 - \cos^{2} \chi}{2}$$

Учитывая то, что  $\mathcal{F}_{\nu}^{\odot}=\pi I_{\nu}$ , где  $\mathcal{F}_{\nu}^{\odot}$ — спектральная плотность освещённости поверхности Солнца, получаем  $\mathcal{F}_{\nu}=\mathcal{F}_{\nu}^{\odot}\sin^2\chi$ . Проинтегрируем полученное выражение по всем частотам:  $\mathcal{F}=\mathcal{F}_{\odot}\sin^2\chi$ .

Заметим, что  $\mathcal{F}_{\odot} = L_{\odot}/4\pi R_{\odot}^2$ , а также  $\sin\chi = R_{\odot}/r$ , где r — расстояние до центра Солнца. Подставляя всё это в получишееся выражение, получаем хорошо знакомую формулу:  $\mathcal{F} = L_{\odot}/4\pi r^2$ .

Аналогично выведем формулу для плотности энергии:

$$u_{\nu} = \int_{Sun} \delta u_{\nu} = \frac{I_{\nu}}{c} \int_{Sun} d\omega = \frac{I_{\nu}}{c} \int_{0}^{2\pi} d\varphi \int_{0}^{\chi} \sin\theta d\theta = \frac{I_{\nu}}{c} \cdot 2\pi (1 - \cos\chi) =$$

$$= \frac{2 \mathcal{F}_{\nu}^{\odot} (1 - \cos\chi)}{c}$$

$$u = \int_{0}^{\infty} u_{\nu} d\nu = \frac{2(1 - \cos\chi)}{c} \int_{0}^{\infty} \mathcal{F}_{\nu}^{\odot} d\nu = \frac{2 \mathcal{F}_{\odot} (1 - \cos\chi)}{c} =$$

$$= \frac{L_{\odot}}{2\pi R_{\odot}^{2}} \frac{1 - \sqrt{1 - (R_{\odot}/r)^{2}}}{c} = \frac{2 \mathcal{F}}{c} \left(\frac{r}{R_{\odot}}\right)^{2} \left(1 - \sqrt{1 - \left(\frac{R_{\odot}}{r}\right)^{2}}\right)$$

Как видно, при  $r=R_{\odot}$  выходит  $u=2\,\mathcal{F}/c$ , а при  $r=\infty$  получается  $u=\mathcal{F}/c$ . Это и был тот самый ньюанс.

Отметим, что вблизи Солнца  $u=2\,\mathcal{F}/c$  потому, что там по прежнему неравновесный фотонный газ (см. рис. 6), а освещённость и яркость связаны так же, как и в фотонном газе потому, что Солнце занимает полусферу.



Рис. 6: Фотонный газ около поверхности Солнца — неравновесный

Теперь найдём выражение для давления:

$$P_{\nu} = \frac{2I_{\nu}}{c} \iint_{Sun} \cos^2 \theta \sin \theta d\theta d\varphi = \frac{2I_{\nu}}{c} \int_{0}^{2\pi} d\varphi \int_{0}^{\chi} \cos^2 \theta \sin \theta d\theta =$$
$$= \frac{4\pi I_{\nu}}{3c} (1 - \cos^3 \chi)$$

Интегрируя по всем частотам, получаем

$$P = \int_{0}^{\infty} P_{\nu} d\nu = \frac{4 \mathcal{F}_{\odot}}{3c} (1 - (\cos^{2} \chi)^{3/2}) =$$
$$= \frac{4 \mathcal{F}}{3c} \left(\frac{r}{R_{\odot}}\right)^{2} \left(1 - \left(1 - \left(\frac{R_{\odot}}{r}\right)^{2}\right)^{3/2}\right)$$

Отметим, что при  $r=R_{\odot}$  выходит  $P=2\,\mathcal{F}/3c$ , а при стремлении r к бесконечности давление приближается выражением  $P=2\,\mathcal{F}/c$ , что совпадает с предположением о точечности Солнца.

Если же попытаться вывести подобие уравнения состояния, то получится следующее:

$$\frac{P}{u} = \frac{2}{3}(\cos^2 \chi + \cos \chi + 1) = \frac{2}{3}\left(2 - \sin^2 \chi + \sqrt{1 - \sin^2 \chi}\right) =$$

$$= \frac{2}{3}\left(2 - \left(\frac{R_{\odot}}{r}\right)^2 + \sqrt{1 - \left(\frac{R_{\odot}}{r}\right)^2}\right)$$

Соответственно, это отношение P/u можно считать, можно сказать, мерой точечности Солнца: при  $r\to R_\odot$  данное отношение стремится к 2/3, а при  $r\to\infty$  — к 2. Для более наглядного представления приведём график:



Рис. 7: Расстояние по оси абсцисс откладывается в солнечных радиусах

Как видно, при  $r=14,2R_{\odot}$  или  $r=9,88\cdot 10^6$  км данный параметр отличается от 2 меньше, чем на 0,005. Так что можно уверенно говорить о том, что приближение, использующееся в задачах, полностью соответствует действительности.