MSBD5001 Foundations of Data Analytics

Min-hashing and Locality-sensitive Hashing

Department of Computer Science & Engineering
The Hong Kong University of Science and Technology
Hong Kong SAR, China

SBD5001 1 / 52

Section 1

Finding Similar Documents

Slides for Section 1 to 3 are adopted from: Chapter 3: Finding Similar Items. In "Mining Massive Dataset". Jure Leskovec, Anand Rajaraman, Jeff Ullman. Standford University

D5001 2 / 52

Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
 - Mirror websites, or approximate mirrors
 - ★ Don't want to show both in search results
 - Similar news articles at many news sites
 - ★ Cluster articles by "same story"
- Problems:
 - Many small pieces of one document can appear out of order in another
 - ▶ Too many documents to compare all pairs
 - Documents are so large or so many that they cannot fit in main memory

MSBD5001 3 / 52

Three Essential Steps

- Shingling: Convert documents to sets
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- Ocality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - ► Candidate pairs!

MSBD5001 4 / 52

The Big Picture

MSBD5001 5 / 52

Section 2

Shingling: Convert document to sets

D5001 6 / 52

Documents as High-Dimensional Data

Step 1: Shingling: Convert documents to sets

- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles!

MSBD5001 7 / 52

Define Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the document
 - ▶ Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
 - Example: k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - ★ Option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

8 / 52

Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles
 - ▶ Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
 - Example: k = 2; document $D_1 = abcab$ Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$ Hash the shingles: $h(D_1) = \{1, 5, 7\}$

MSBD5001 9 / 52

Similarity Metric for Shingles

- Document D_1 is a set of its k-shingles $S_1 = S(D_1)$
- ullet Equivalently, each document is a 0/1 vector in the space of k-shingles
 - ► Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity: $sim(D_1, D_2) = |S_1 \cap S_2| / |S_1 \cup S_2|$

MSBD5001 10 / 52

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - k = 10 is better for long documents

MSBD5001 11 / 52

Motivation for Minhashing/Locality-sensitive Hashing

- Suppose we need to find near-duplicate documents among N=1 million documents
- Naively, we would have to compute pairwise jaccard similarities for every pair of documents
 - ► $N(N-1)/2 \approx 5 * 10^{11}$ comparisons
 - ► At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N=10 million, it takes more than a year ...

MSBD5001 12 / 52

Section 3

Min-Hashing

Min-Hashing

• Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

MSBD5001 14 / 52

Encoding Sets as Bit Vectors

- Many similarity problems can be formalized as finding subsets that have significant intersection
- Encode sets using 0/1 (bit, boolean) vectors
 - ▶ One dimension per element in the universal set
 - Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: $S_1 = 10111$; $S_2 = 10011$ Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = 3/4Distance: $d(S_1, S_2) = 1 - (Jaccard similarity) = 1/4$

BD5001 15 / 52

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
- 1 in row e and column s if and only if e is a member of s
- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!
- Each document is a column.
- For example, $sim(S_1, S_2) = ?$
 - Size of intersection = 0; size of union = 7, Jaccard similarity (not distance) = 0/7 = 0, Distance: $d(S_1, S_2) = 1 - (Jaccard similarity) = 1$
- $sim(S_1, S_3) = ?$
 - Size of intersection = 3; size of union = 4, Jaccard similarity = 3/4 = 0.75, Distance: $d(S_1, S_3) = 1/4$

	Documents					
		S ₁	S ₂	S _s	S ₄	
	Α	1	0	1	0	
	В	1	0	0	1	
S	C	0	1	0	1	
Shingles	D	0	1	0	1	
Shi	E	0	1	0	1	
	F	1	0	1	0	
	G	1	0	1	0	

MSBD5001 16 / 52

Outline: Finding Similar Columns

So far:

- Documents → Sets of shingles
- Represent sets as boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
- Similarity of columns == similarity of signatures

MSBD5001 17 / 52

Outline: Finding Similar Columns

- Next Goal: Find similar columns, Small signatures
- Naive approach:
 - Signatures of columns: small summaries of columns
 - Examine pairs of signatures to find similar columns
 - ★ Essential: Similarities of signatures and columns are related
 - Optional: Check that columns with similar signatures are really similar
- Warnings:
 - Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
 - * False negatives: Similar items deemed as non-similar
 - * False positives: Non-similar items deemed as similar

BD5001 18 / 52

Hashing Columns (Signatures)

- Key idea: "hash" each column S to a small signature sig(S), such that:

 - ② $sim(S_1, S_2)$ is almost the same as the "similarity" of signatures $sig(S_1)$ and $sig(S_2)$
- Goal: Find a hash function $h(\cdot)$ such that:
 - ▶ If $sim(S_1, S_2)$ is high, then with high probability $sig(S_1) = sig(S_2)$
 - ▶ If $sim(S_1, S_2)$ is low, then with high probability $sig(S_1) \neq sig(S_2)$
- Hash documents into buckets. Expect that "most" pairs of near duplicate documents hash into the same bucket!

MSBD5001 19 / 52

Min-Hashing

- Goal: Find a hash function $h(\cdot)$ such that:
 - ▶ If $sim(S_1, S_2)$ is high, then with high probability $sig(S_1) = sig(S_2)$
 - ▶ If $sim(S_1, S_2)$ is low, then with high probability $sig(S_1) \neq sig(S_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing.

SBD5001 20 / 52

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
 - $\pi(C)$ represents the set of indexes where the rows in column C under permutation π has a value 1.
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi}\pi(C)$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

MSBD5001 21 / 52

Input matrix

Permutation π₁

Rearrange the rows according to the permutation

		Documents						
Ind	ex		S ₁	S ₂	S ₃	S ₄		
	1	E	0	1	0	1		
	2	Α	1	0	1	0		
gles	3	В	1	0	0	1		
Shingles	4	G	1	0	1	0		
,,	5	F	1	0	1	0		
	6	D	0	1	0	1		
	7	C	0	1	0	1		

the row index of the first 1 of each column

	S ₁	S ₂	S ₃	S ₄
π_1	2	1	2	1

MSBD5001 22 / 52

Input matrix

Permutation π₂

Rearrange the rows according to the permutation

		Documents						
Ind	ex		S ₁	S ₂	S ₃	S ₄		
	1	C	0	1	0	1		
	2	В	1	0	0	1		
gles	3	D	0	1	0	1		
Shingles	4	Α	1	0	1	0		
0)	5	G	1	0	1	0		
	6	E	0	1	0	1		
	7	F	1	0	1	0		

the row index of the first 1 of each column

	S ₁	S ₂	S ₃	S ₄
π_2	2	1	4	1

MSBD5001 23 / 52

Input matrix

			Docur	nents	
		S ₁	S ₂	S ₃	S ₄
	Α	1	0	1	0
	В	1	0	0	1
,	C	0	1	0	1
	D	0	1	0	1
	E	0	1	0	1
	F	1	0	1	0
	G	1	0	1	0

Permutation π₃

Rearrange the rows according to the permutation

				Jocui	Herita	
Inc	lex		S ₁	S ₂	S ₃	S ₄
	1	F	1	0	1	0
	2	D	0	1	0	1
gles	3	Α	1	0	1	0
Shingles	4	В	1	0	0	1
U)	5	G	1	0	1	0

Documente

1

the row index of the first 1 of each column

	S ₁	S ₂	S _s	S ₄
π_3	1	2	1	2

MSBD5001 24 / 52

Input matrix

n-	٠			١.
חנו	CII	m	₽n'	rs

		-	Joou	Herita	•
		S ₁	S ₂	S ₃	S ₄
	Α	1	0	1	0
	В	1	0	0	1
	C	0	1	0	1
)	D	0	1	0	1
	E	0	1	0	1
	F	1	0	1	0
	G	1	0	1	0

Signature matrix

	S ₁	S ₂	S ₃	S ₄
π_1	2	1	2	1
π_2	2	1	4	1
π_3	1	2	1	2

ISBD5001 25 / 52

The Min-Hash Property

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(S_1) = h_{\pi}(S_2)] = sim(S_1, S_2)$
- Whv?
 - Let X be a document (set of shingles), $y \in X$ is a shingle
 - ▶ Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the min element
 - ▶ Let y be s.t. $\pi(y) = min(\pi(S_1 \cup S_2))$
 - ▶ Then either:

$$\pi(y) = min(\pi(S_1))$$
 if $y \in S_1$, or $\pi(y) = min(\pi(S_2))$ if $y \in S_2$ (one of the two columns had to have 1 at position y)

▶ So the probability that both are true is the probability $y \in S_1 \cap S_2$

$$ightharpoonup Pr[min(\pi(S_1)) = min(\pi(S_2))] = |S_1 \cap S_2| / |S_1 \cup S_2| = sim(S_1, S_2)$$

26 / 52

Four Types of Rows

• Given cols S_1 and S_2 , rows may be classified as:

$$\begin{array}{ccccc} & S_1 & S_2 \\ A & 1 & 1 \\ B & 1 & 0 \\ C & 0 & 1 \\ D & 0 & 0 \end{array}$$

- *a* = number of rows of type A, etc.
- Note: $sim(S_1, S_2) = a/(a+b+c)$
- Then: $Pr[h(S_1) = h(S_2)] = Sim(S_1, S_2)$
- Look down the cols S_1 and S_2 until we see a 1
- If it's a type-A row, then $h(S_1) = h(S_2)$ if a type-B or type-C row, then not

MSBD5001 27 / 52

Similarity of Signatures

- We know: $Pr[h_{\pi}(S_1) = h_{\pi}(S_2)] = sim(S_1, S_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

3D5001 28 / 52

Similarity of Signature: Min-Hashing Example

Input matrix

			Docui	ments	;
		S ₁	S ₂	S ₃	S ₄
	Α	1	0	1	0
	В	1	0	0	1
Ś	C	0	1	0	1
Shingles	D	0	1	0	1
Shi	E	0	1	0	1
	F	1	0	1	0
	G	1	0	1	0

	Actual (Input Matrix)	Signature Matrix
(S_1,S_2)	0	0
(S_1, S_3)	3/4	2/3
(S_1,S_4)	1/7	0
(S_2, S_3)	0	0
(S_2, S_4)	3/4	1
(S_3, S_4)	0	0

MSBD5001 29 / 52

Min-Hashing Signatures

- Pick K = 100 random permutations of the rows
- Think of sig(S) as a column vector
- sig(i, S) = according to the i-th permutation, the index of the first row that has a 1 in column S $sig(i, S) = min(\pi(S))$
- Note: The sketch (signature) of document S is small ~ 100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

ISBD5001 30 / 52

Feasibility

- Assume a billion rows
- Hard to pick a random permutation of 1 billion
- Even representing a random permutation requires 1 billion entries!!!
- How about accessing rows in permutated order?
- i.e. It is not feasible!

MSBD5001 31 / 52

Implementation Trick

- Approximating row permutation
 - ▶ Row hashing!
 - ★ Pick K = 100 hash functions h_i
 - ★ Ordering under h_i gives a random row permutation!

BD5001 32 / 52

One-pass implementation

- Pick k hash functions $h_1, h_2, ..., h_k$
- Let $Sig(i, S_j)$ be the element of the signature matrix for the i-th hash function and document S_j .
- Initialize the signature matrix by setting all $Sig(i, S_i) = \infty$

```
• For each row r
Compute h_1(r), h_2(r), ..., h_k(r)
For each column S_j
If it has 1 in row r
For each hash function h_i
If h_i(r) is smaller than Sig(i, S_j) then Sig(i, S_i) = h_i(r)
```

- Note: How to pick a random hash function h(x)?
 - Assume there are N rows
 - $h_{a,b}(x) = ((a * x + b) \bmod p) \bmod N$
 - ▶ where a, b are random integers,
 - ▶ and p is a prime number (p > N)

MSBD5001 33 / 52

Section 4

Locality-Sensitive Hashing

D5001 34 / 52

Locality-Sensitive Hashing

- Problem: Find all pairs of documents with similarity at least t, e.g. t = 0.8
- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- Solution: Focus on the pairs of signatures that are likely to be from similar documents

35 / 52

Locality-Sensitive Hashing

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- Locality-Sensitive Hashing (LSH)
 - General idea: Use a function f(x, y) that tells whether x and y is a candidate pair:
 - * a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - ▶ Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

BD5001 36 / 52

Candidates from Min-Hashing

- Pick a similarity threshold t (0 < t < 1)
- Columns x and y of M are a candidate pair if their signatures agree on at least fraction t of their rows: M(i,x) = M(i,y) for at least fraction t values of i
- We expect documents x and y to have the same (Jaccard) similarity as their signatures

BD5001 37 / 52

LSH for Min-Hashing

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

SBD5001 38 / 52

Partition *M* into bands

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
- Make k as large as possible
- ullet Candidate column pairs are those that hash to the same bucket for ≤ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

MSBD5001 39 / 52

Partition *M* into bands

40 / 52

Hashing Bands

/ISBD5001 41 / 52

LSH Analysis

Simplifying Assumption:

- ► There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example

- Assume the following case:
 - ★ Suppose 100,000 columns of M (100k documentss)
 - ★ Signatures of 100 integers (rows)
 - ★ Therefore, signatures take 40Mb
 - ★ Choose b = 20 bands of r = 5 integers/band
- ▶ Goal: Find pairs of documents that are at least t = 0.8 similar

MSBD5001 42 / 52

LSH Analysis - Example

Case 1: Documents S_1 and S_2 are 80% similar

- Find pairs of documents with similarity $\geq t$ where t = 0.8, set b = 20, r = 5
- Assume: $sim(S_1, S_2) = 0.8$
- Since $sim(S_1, S_2) \ge t$, we want S_1 and S_2 to be a candidate pair:
 - We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability that S_1 and S_2 are identical in one particular band: $(0.8)^5 = 0.328$
- Probability that S_1 and S_2 are not similar in all of the 20 bands: $(1-0.328)^{20}=0.00035$
- i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
- We would find 99.965% pairs of truly similar documents

MSBD5001 43 / 52

LSH Analysis - Example

Case 2: Documents S_1 and S_2 are 30% similar

- Find pairs of documents with similarity $\geq t$ where t=0.8, set b=20, r=5
- Assume: $sim(S_1, S_2) = 0.3$
- Since $sim(S_1, S_2) < t$,
 - We want them to hash to NO common bucket (all bands should be different)
- Probability that S_1 and S_2 are identical in one particular band: $(0.3)^5 = 0.00243$
- Probability that S_1 and S_2 are identical in at least 1 of the 20 bands: $1-(1-0.00243)^{20}=0.0474$
- In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
- They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold t

MSBD5001 44 / 52

LSH – a Trade-off

- Pick to balance false positives/negatives:
 - ► The number of Min-Hashes (rows of M)
 - ▶ The number of bands b, and
 - The number of rows r per band
- Example:
 - If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

D5001 45 / 52

LSH Analysis – What we want

Similarity $t = sim(C_1, C_2)$ of two sets —

MSBD5001 46 / 52

1 Band of 1 Row

47 / 52

b bands, r rows per band

- Columns S_1 and S_2 have similarity s
- Pick any band (r rows)
 - Probability that all rows in band equal $= s^r$
 - Probability that some row in band unequal $= 1 s^r$
- Probability that no band identical = $(1 s^r)^b$
- Probability that at least 1 band identical $= 1 (1 s^r)^b$

MSBD5001 48 / 52

b Band of r Rows

MSBD5001 49 / 52

Example: b = 20, r = 5

- Similarity threshold t
- Probability that at least 1 band is identical

t	$1-(1-s^r)^b$
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

SBD5001 50 / 52

Picking r and b: The S-curve

For example: 50 hash-functions (r=5, b=10)

Blue area: False Negative rate Green area: False Positive rate

MSBD5001 51 / 52

References

Chapter 3: Finding Similar Items.
 In "Mining Massive Dataset".
 Jure Leskovec, Anand Rajaraman, Je Ullman.
 Standford University

SBD5001 52 / 52