## Semilar W/9-914 (onics

$$+2a_{on}y+q_{on}=0$$

$$|y| = \frac{1}{a^2} - \frac{y^2}{b^2} = 1$$

$$|x| = \frac{1}{a^2} - \frac{y^2}{b^2} = 1$$

Ty  $(x_0, y_0)$ :  $\frac{x_0}{a^2} - \frac{y_0}{5^2} = 1$ oblical
asymptotus:  $y = \pm \frac{5}{4}$ 

y: \frac{1}{a} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = the 54 d Parusola: P: y= 2p4 - slows of points eguidistant to a point P (called the fours) and a line of (alled the direction) director by F( \( \) \( \) \( \)

Gives to the edipse

Lines to the ellipse

Lines to the ellipse

Which are orthogonal to the line

Lize 2x - 2y - 13 = 0

Proof: Lot d be a trapet line that satisfies

the condition

 $m_{e} = 1 = y \qquad j = -1 = y \qquad j = -x_{t} < j = -x_{t} <$ 

7.8. Find the equation of the tangent line to the parabola 
$$F: y^2 = 8 + 1 = 0$$
, that is parable to  $J: 24+2y-3=0$ .

We write the tampet to I in the point

$$T_{5}(x_{9}y_{0}): yy_{0} = 4(x+x_{0})$$
 $T_{5}(x_{9}y_{0}): yy_{0} = 4(x+x_{0})$ 
 $m_{7} = \frac{4}{y_{0}} T_{5}(x_{0},y_{0}) II d$ 
 $m_{7} = -4$ 
 $m_{7} = -4$ 

Be conse  $(x_0, y_0) \in P$ ;  $y_0^2 = 8 \times 0$   $= 2 \times 16 = 8 \times 0 = 2$   $= 2 \times 16 = 8 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 = 2 \times 0 = 2$   $= 2 \times 16 \times 0 = 2$ 



9.12. Show that a ray of light through a fours of an ellipse reflects to a vay that passes through the other lows ( The other low) F(-c, o) F'(o, o) What we need to show is that for every  $M(\chi_0, \gamma_0) \in \mathcal{C}$ : Me (AD, MA) is the bisector of the angle FMF

$$\frac{N_{\ell}(x_0,y_0)}{(x_0,y_0)} = \frac{y_0-y_0}{(y_0,y_0)}$$

$$V_{\xi}(y_0,y_0): \begin{cases} H = H_0 + \lambda \cdot \frac{2H_0}{a^2} \\ Y = y_0 + \lambda \cdot \frac{2y_0}{\zeta^2} \end{cases}$$

$$\forall \ \forall \in \mathbb{N}$$

$$M(x_{\rho},y_{\bullet}), \mathcal{H}(-C,0)$$

$$MF: \frac{+C}{y_0} = \frac{y}{y_0} = \frac{1}{y_0}$$

$$( + ) + y_0 - y(x_0 + c) + cy_0 = 0$$

$$= \frac{|2\lambda|}{a^{2}} - \frac{|4090}{a^{2}} - \frac{690}{5^{2}}$$

$$= \frac{|2\lambda|}{|4090} + \frac{|4090}{|4090} - \frac{690}{5^{2}}$$

$$= \frac{|2\lambda|}{|4090} + \frac{|4090}{|4090} - \frac{690}{5^{2}}$$

$$= \frac{|2\lambda|}{|4090} + \frac{|4090}{|4090} - \frac{90}{5^{2}}$$

$$= \frac{|4090}{|4090} + \frac{|4090}{|4090} - \frac{90}{5^{2}}$$

$$= \frac{|4090}{|4090} + \frac{90}{5^{2}}$$

We still med to prove.

yothatus yothocs

we will use:

$$\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} = 1$$
 and  $C = \sqrt{3}$