All handouts for this class: https://tinyurl.com/IST772crowston

Copyright 2019, Jeffrey Stanton

IST772 Associations (Week 7)

Pre-class activity:

- Open the file Week7correlationCalcsInExcel.xlsx from the handouts area.
- Why are r and b the same? When might they be different? Report your answer on the chat.

Copyright 2019, Jeffrey Stanton and Jeffrey Saltz

1

General Exam Feedback

 Grading: No perfect scores; modal scores were 14 and 13 with a long left tail

Copyright 2019, Jeffrey Stanton

Observations

- Overall: Considerable headway concerning the various modes of inferential testing: confidence intervals, frequentist NHST, Bayesian Estimation
- Most common shortcomings
 - Not tackling the contradiction between the frequentist and Bayesian results with some kind of explanation to steer the client towards understanding the findings and its implications
 - Not explaining the tests in plain English (which is admittedly hard to do)
- A few persistent terminology/language problems:
 - · Describing the meaning of an observed p-value
 - Describing the "long run" nature of a confidence interval (if we had 100 CIs they'd all be different)

Copyright 2019, Jeffrey Stanton

3

Week7correlationCalcsInExcel

Try three of the following (or your own experiment):

- 1. Keeping the same set of values, modify the order of observations in the Heat vector to create a (non-zero) positive correlation.
- 2. Keeping the same set of values, modify the order of observations in the Heat vector to create a (non-zero) negative correlation.
- 3. Keeping the same set of values, modify the order of observations in the Heat vector to create a perfect correlation, either plus one or minus one.
- 4. Add a cell that calculates R squared from the displayed r value.

Copyright 2019, Jeffrey Stanton

2. Week7corrExercise.R

Question: Is there a significant correlation between CO_2 concentration and CO_2 uptake by plants?

Evidence:

- 1. NHST: r is transformed into a t distributed variable and used to test the null hypothesis that ρ = 0
- 2. CI for ρ from the t test
- 3. MCMC posterior distribution of ρ
- 4. Bayes Factor for model with $\rho \neq 0$

Copyright 2019, Jeffrey Stanton

5

Breakout 1 – Freq and Bayesian Chi-Square

- Work with the built-in HairEyeColor data set, a 3D contingency table that we will squash down to a 4x4
- Conduct an initial chi-square
- Look at residuals to focus on a 2x2 block
- Conduct Bayesian estimation on the proportions
- Plot difference in proportion between rows
- Share your code on https://codeshare.io/aJDyRX

All handouts for this class: https://tinyurl.com/IST772crowston

Copyright 2019, Jeffrey Stanton

Breakout: Bayesian Modeling of Proportions

Survived No Yes

Sex

Male 1364 367

Female 126 344

Bayes factor analysis
-----[1] Non-indep. (a=1): 4.62125 ±0%

Against denominator:

Null, independence, a = 1
--
Bayes factor type:
BFcontingencyTable, poisson

Women's Survival reportion

Women's Survival Proportion Survival

Women's Survival Vs Men's Survival

Difference in Proportions

2.0

Copyright 2019, Jeffrey Stanton

7

Breakout 1 Results

3.5

Copyright 2019, Jeffrey Stanton

Interpreting a Correlation Matrix

- See the handout: Week7interpretCorrMatrix.pdf
- This is the final example in the handout.
- What happened to the upper triangle?
- What are the dashes?
- What are the asterisks?

Correlations Between the Organizational Committee	,	ged Jo	b in Ger	neral (AJ	IG) Sca	ıle, Withdi	rawal Be	haviors,	and
	М	SD	AJIG	Prep1	Act1	Prep2	Act2	AC	CC

	M	SD	AJIG	Prep1	Act1	Prep2	Act2	AC	CC
AJIG	17.52	6.83							
Preparatory job search									
behavior, Time 1									
(Prep1)	6.99	4.45	-0.21*	_					
Active job search									
behavior, Time 1									
(Act1)	4.25	5.01	-0.19*	0.65**	_				
Preparatory job search									
behavior, Time 2									
(Prep2)	7.34	4.79	-0.16	0.72**	0.55*	*			
Active job search									
behavior, Time 2									
(Act2)	4.17	4.95	-0.18	0.60**	0.82*	* 0.71**	k		
Affective									
commitment									
(AC)	22.71	7.25	0.59*	-0.24**	-0.15	-0.24*	-0.26**	_	
Continuance									
commitment (CC)	19.52	6.44	-0.24**	0.12	0.16	0.09	0.33**	-0.04	_

Paper of the Week – Wetzels & Wagenmakers, 2012

- Explains the use of the Bayes Factor for evaluation correlation coefficients
- Provides a table with the Jeffreys (1961) guidance about the different "strengths" of Bayes Factors
- Discusses choice of priors and contains R code

A default Bayesian hypothesis test for correlations and partial correlations

Ruud Wetzels · Eric-Jan Wagenmakers

Copyright 2019, Jeffrey Stanton

Homework

- The homework for week 7 is based on exercises 3, 4, 8, 9, 10 on pages 155-156 but with changes as noted in the notebook.
- Note that exercises 8, 9, and 10 should be done on the same subset of the admissions data, i.e., UCBAdmissions[,,1]
- This is the only remaining week without a practice exam! Enjoy!

Copyright 2019, Jeffrey Stanton