R	EPORT DOC		OMB No. 0704-0188					
data needed, and completing a	and reviewing this collection of	nformation. Send comments rega	arding this burden estimate or any o	other aspect of this co	ching existing data sources, gathering and maintaining the ollection of information, including suggestions for reducing			
4302. Respondents should be	aware that notwithstanding an		n shall be subject to any penalty for		erson Davis Highway, Suite 1204, Arlington, VA 22202- h a collection of information if it does not display a currently			
1. REPORT DATE (DD 08-022012	D-MM-YYYY)	2. REPORT TYPE Proceedings			DATES COVERED (From - To) 8-2011 to 04-08-2011			
4. TITLE AND SUBTIT		Toceedings			CONTRACT NUMBER			
Proceedings of	the 2011 AFMS	Medical Resear	ch Symposium. V	olume				
3. Force Health			, ,	5b.	5b. GRANT NUMBER			
				5c.	PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d	PROJECT NUMBER			
• •	erts. Ph.D. (Edi	or and Coordina	ting Editor)	- Can				
Tronord O. Hob	51.5, 1 11.5. (Ear	or and occionia	ung Lanon)	5e.	TASK NUMBER			
				5f. '	WORK UNIT NUMBER			
7. PERFORMING ORG	ANIZATION NAME(S)	AND ADDRESS(ES)			PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING / MO US Air Force	NITORING AGENCY	NAME(S) AND ADDRES	S(ES)	10.	SPONSOR/MONITOR'S ACRONYM(S)			
Office of the Surgeon	General							
AF/SG9 5201 Leesburg Pike					SPONSOR/MONITOR'S REPORT			
Falls Church, VA 220	41				NUMBER(S)			
12. DISTRIBUTION / A	VAILABILITY STATE	MENT						
Approved for Pu	ublic Release; d	istribution is unlir	mited					
13. SUPPLEMENTARY	V NOTES							
13. SUPPLEMENTAR	INOIES							
14. ABSTRACT								
					al Research Symposium ment Division (AFMSA/SGRS).			
					vention Center, National			
		•	•		nd a half days of scientific			
					: Operational Medicine			
(In-Garrison Car	e), Enroute Care	and Expeditional	ry Medicine, Force	Health Pro	tection, Traumatic Brain Injury			
` ,	•		•	•	s are organized into six volumes			
			-	•	abstracts; the other five each			
address a specif Track.	ic track. Volume	3 contains abstra	icts and presentation	on slides to	or the Force Health Protection			
15. SUBJECT TERMS		Convice M	adical Bassa	arob Ea	aroo Hoolth Drotootion			
	•	Service, M			rce Health Protection			
16. SECURITY CLASS	IFICATION OF:			18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Nereyda Sevilla			
a. REPORT	b. ABSTRACT	c. THIS PAGE	SAR	160	19b. TELEPHONE NUMBER (include area			
U	U	U			code) 703-681-6383			

Form Approved

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3. Force Health Protection Track Abstracts and Presentations

AIR FORCE MEDICAL SERVICE

2011 AFMS MEDICAL RESEARCH SYMPOSIUM

2-4 AUGUST 2011

GAYLORD NATIONAL 201 Waterfront Street

NATIONAL HARBOR, MD 20745 (1-877-677-9352)

BECOME A FAN OF THE AIR FORCE MEDICAL SERVICE FACEBOOK PAGE: WWW.FACEBOOK.COM/AIRFORCEMEDICALSERVICE

TRUSTED CARE...ANYWHERE

Proceedings of the 2011 AFMS Medical Research Symposium

Volume 3. Force Health Protection Track Abstracts and Presentations

Edited by: Dr. Welford C. Roberts

Held
2-4 August 2011
at the
Gaylord National Resort Hotel and Convention Center
201 Waterfront Street
National Harbor, MD 20745

Table of Contents

Subject Page Number
Introduction
Air Emissions Characterization and Geospatial Exposure Modeling from Open Burning of Representative Military Deployed Waste
Inhalation Exposure to JP-8 Jet Fuel Enhances Susceptibility to Noise Induced Hearing Loss in Rats 16
Assessing Operationally Relevant Aspects of Nanoparticle Exposure Health Risks
Transport of Silver Nanoparticles in Saturated Porous Media: Experimental Results and Model Simulations
Evaluation of Gold Nanomaterial Toxicity Based on Physical and Chemical Properties
Nanomaterial Hazard Identification: The Zebrafish Model for Rapid Material Testing
USAF Efficient Running: An Integrated Program To Reduce Running Injury and Improve Individual Performance in USAF Fitness Assessment
Comparison of the 1.5 Mile Run Times at 7,200 Feet and Simulated 850 Feet in a Hyperoxic Room 65
Can a 10-minute Warm-up Reduce Musculoskeletal Injury in Air Force Academy Cadets?73
Anti-retinal Antibodies as Biomarkers for Laser Induced Retinal Injuries in Rabbits
Detection of Retinal Proteins in Saliva and Serum in Laser Induced Retinal Injuries in Rabbits93
Serum Biomarker Responses in a Non-Human Primate Model of Acute Retinal Laser Injury
Sensors for Monitoring Laser Radiation Exposure
Gene Expression Profile of Jurkat Cells Exposed to High-Power Terahertz Radiation
Department of Defense Biological Threat Responses to the 2009-2010 H1N1 Influenza Outbreak 122
Expanding Surge Capacity in Airborne Isolation & Worker Protection During Bioterrorism & Epidemic Response
Update on Lab validation of new bioagent ID system: FilmArray
Next-Generation Sequencing Technology for Disease Detection 148

Proceedings of the 2011 AFMS Medical Research Symposium Introduction

The U.S. Air Force Medical Service presented the sixth annual Air Force Medical Research Symposium coordinated by the Air Force Medical Support Agency's Research and Development Division (AFMSA/SGRS). The symposium was held on 2-4 August 2011 in the Washington DC area at the Gaylord National Resort Hotel and Convention Center in National Harbor, MD. The symposium featured two half-days of plenary sessions, one and a half days of scientific presentations, and a poster session.

The symposium was organized into several tracks to include Enroute Care, Force Health Protection, Healthcare Informatics, Operational Medicine (In-Garrison Care), and Psychological Health/Traumatic Brain Injury, as follows:

- The Enroute Care Track addressed science and technology targeted at the continuum of care during transport from point of injury to definitive care including, but not limited to: Casevac, Medivac; Aeromedical Evacuation; Critical Care Air Transport; and Patient Staging. Further areas addressed included: patient stabilization; patient preparation for movement; impact of in-transit environment on patient and AE crew physiology; human factors concerns for AE crew or patient population; AE/medical personnel training; infectious disease/control; burn management; pain management; resuscitation; lifesaving interventions; and nutrition research in the enroute care environment.
- The Force Health Protection Track focused on prevention of injury and illness and the early recognition or detection of emerging threats for in-garrison or deployed operations. Topics of interest include research in bio-surveillance, infectious disease, emerging threats (pandemic response), protective countermeasures, disaster response/consequence management, toxicology/health risks (e.g., particulates nanomaterials, radiation, etc.), monitoring disease trends, other areas of preventive medicine, public and environmental health relevant to the military workforce.
- The Healthcare Informatics Track focused on the use of innovative information management & technology solutions that enhance healthcare delivery at any point of the full spectrum of patient care to include medical simulation and training.
- The Operational Medicine (In-Garrison Care) Track focused on care delivered in the outpatient or inpatient ingarrison setting and on enhancing the performance of airman in challenging operational and expeditionary environments.
- The Psychological Health/Traumatic Brain Injury Track addressed topics pertaining to screening, diagnosis, and treatment of TBI and/or Psychological Health in the military community. Specific focus areas within Psychological Health included depression, substance use disorders, family functioning, and suicide prevention. Topics of special interest included field-deployable diagnostic tests for mild TBI (concussion), blast modeling, large epidemiologic studies of Psychological Health and TBI, and strategies for translating research into practice.

These proceedings are organized into five volumes, as follows:

- Volume 1. This volume is a general overview of the entire 2011 Air Force Medical Research Symposium and includes abstracts of all the oral presentations and posters. First presented is the symposium's opening plenary session, followed by the abstracts from the four technical tracks, and then the closing plenary session. The abstracts associated with the poster session are in the last section of these proceedings. The agenda for the overall symposium is in Appendix A, attendees are listed in Appendix B, and continuing education information is in Appendix C of this volume. Appendices D-J are copies of presentation slides from the plenary sessions.
- Volume 2. This volume contains abstracts and presentation slides for the Enroute Care Track.
- Volume 3. This volume contains abstracts and presentation slides for the Force Health Protection Track.
- Volume 4. This volume contains abstracts and presentation slides for the Healthcare Informatics Track.
- Volume 5. This volume contains abstracts and presentation slides for the Operational Medicine (In-Garrison Care) Track.
- Volume 6. This volume contains abstracts and presentation slides for the Psychological Health/Traumatic Brain Injury Track

1

Air Emissions Characterization and Geospatial Exposure Modeling from Open Burning of Representative Military Deployed Waste

AF Institute of Technology

Lt Col Dirk Yamamoto

Open burning of US military waste while deployed has attracted considerable attention over recent years due to reported health problems among returning military members. In conjunction with the rest of DoD, the US Air Force has conducted considerable sampling and risk assessment at deployed sites. At the Air Force Institute of Technology (Wright-Patterson AFB, OH), recent research has focused on building a retrospective plume dispersion modeling tool for particulate matter exposures, to better characterize the risk profile for deployed members. This approach may provide more realistic exposure estimates, versus assigning a single exposure value for an entire population. Ongoing research, sponsored by AF Surgeon General and performed in conjunction with the US Environmental Protection Agency, will first determine emission factors and likely concentrations of key contaminants by performing small-scale laboratory burns, with subsequent large-scale outdoor burns to evaluate the effectiveness of air curtain burners as an alternative to open/surface burns. A primary objective of the research is to address the question on whether segregation of plastics makes a significant difference in emissions from open- and air curtain burning. A secondary objective is to further develop the software plume dispersion modeling tool to better predict downwind risk to personnel near burn sites. This presentation provides a status update of the ongoing research at the Air Force Institute of Technology.

- · With meteorological data known
- · Reality: select analytes, certain sites, certain days Daily (PM10 levels in ug/m3)

SITE ID	22-Apr-03	24-Apr-03	28-Apr-03	29-Apr-03	31-Mar-04	1-Apr-04	2-Apr-04
Α	12-12-12		71.81	73.89			
В						248.42	264.46
C						12.00	
D							
E							
F							
Ğ	73.16	248.25					
1.	11111				83.01	131.49	329.77
J						HTT FY	
K			3.500		4	4-	7

- US Government Accountability Office (GAO), 'Afghanistan and Iraq: DoD Should Improve Adherence to Its Guidance on Open Pit Burning and Solid Waste Management', GAO-11-63, October 2010.

 Air Force Institute for Operational Health (now USAFSAM), 'Screening Health Risk Assessment Burn Pit Exposures, Balad Air Base, Iraq, and Addendum Report', IOH-RS-BR-TR-2008-0001, May 2008.
- National Defense Authorization Act (NDAA) for Fiscal Year 2010, Section 317 (prohibition of disposal of certain wastes), October 2009.
- Department of Defense Directive-Type Memorandum (DTM) 09-032 (in response to NDAA Section 317; prohibition of disposal of certain wastes), March 2010.

Inhalation Exposure to JP-8 Jet Fuel Enhances Susceptibility to Noise Induced Hearing Loss in Rats

711 HPW/RHPBA

Dr. David Mattie

Studies identified organic solvents as potential ototoxicants promoting noise-induced hearing loss (NIHL). The ability of JP-8 to enhance susceptibility to noise exposure on auditory function was studied in rats. An initial study exposed rats to 0, 75, 85 or 95 dB octave band noise for 6 hours per day, 5 days per week over 4 weeks. Hearing loss was assessed using distortion product otoacoustic emission (DPOAE) to evaluate outer hair cell function and compound action potential (CAP) to determine hearing threshold. Histopathology of cochleas was conducted to determine percentage of hair cell loss. Noise exposure of 85 dB was identified as the LOAEL and was used in the second study to investigate combined effects of JP-8 and noise on hearing by exposing rats to 85 dB and either 0, 200, 750 or 1500 mg/m3 JP-8 for 6 h per day, 5 days per week over 4 weeks. DPOAE, CAP and histopathology of the cochlea for rats exposed to noise and JP-8 showed a dose response increase in hearing loss greater than seen with just 85 dB alone. A third study with just JP-8 alone resulted in no hearing loss indicating JP-8 only potentiates NIHL. A fourth 28-day study consisted of exposures at 102 dB for 15 min per hr for 6 hrs per day, 1000 mg/m3 JP-8 for 6 hr/day, combined exposure to both noise and JP-8, and no experimental treatment. Auditory testing again showed JP-8 by itself didn't produce hearing impairment but male rats were affected more than females.

Outline

Inhalation Exposure to JP-8 Jet Fuel Enhances Susceptibility to Noise Induced Hearing Loss in Rats

2 Aug 2011

AFRL

DAVID R. MATTIE, PhD, DABT Senior Research Toxicologist 711 HPW/RHPB Air Force Research Laboratory

- Goal and Objectives
- Background
- Methods
 - Basic Design
- Study 1
- Results
- Study 2
- Results
- Study 3
- Results
- Study 4
 - Results

Future

Project Goal and Objectives

Background

- · Goal
- To show if there is an association between jet fuel exposure and noise-induced hearing loss.
 - · The hypothesis is that JP-8 jet fuel contributes to hearing loss when combined with high noise exposure that is still below the exposure limit for noise.

- Design noise generation system for Navy Chambers
- Conduct 4 28-day animal studies
- Compare jet fuel exposures and kinetics
- Publication showing relationship between noise and jet fuel exposure

AFRL

- Dr Fechter exposed rats to 1000 mg/m³ JP-8 for 4 hours followed by either noise (105 dB) for 4 hours for one day noise (97 dB) for 4 hours; repeated for 5 days noise (102 dB) for 1 hour; repeated for 5 days
- Did not examine multiple dose levels of jet fuel
- Noise level was equivalent to the PEL for noise
 90 dB using the Aweighting scale for an 8 h TWA
- · JP-8 alone did not cause any disruption of auditory function
- Although effects were not consistent combined JP-8 + noise produced greater impairment than noise alone
- JP-8 also caused significant depletion of GSH indicating oxidative stress as a possible mechanism of action for the promotion of hearing loss initial data supporting an interaction between JP-8 and noise exposure on
- Fechter, L.D. Gearhart, C., Futton, S., Campbell, J. Fisher, J., Na, K., Cocker, D., Nelson Miller, A., Moon, P., and B. Pouyalos, (2007). JP-8. Jet Fuel can Promote Auditory Impairment Resulting from Subsequent Notes Exposure in Rats Tox. Sci., 98, 610-525

Distribution A. Agrardived for public veloase: distribution untimited.

AFRL

Method - Study 1

AFRL

Methods - All 4 Studies

- Exposure to noise only
 Determined level of noise to use in combined noise and JP-8
 - Noise exposures in Bldg 837
 - Screen rats for normal hearing (DPOAE testing here) 6 h/day with weekends off for 28 days (20 exp tot)

 - Transport rats to Loma Linda for auditory assessment
 - Study Summary

Group	Exposure Level (dB)	Number	Number of Animals		
		Males	Females		
Control	0	5	.5		
Low	75	5	5		
Intermediate	85	5	5		
High	95	5	5		
Total		20	20		

- Hearing loss tested by Distortion product otoacoustic emission (DPOAE) test

 * Test added as screen for normal hearing prior to each 28-day study
 - · Assesses hair cell function
 - · While rats were lightly anaesthetized with ketamine (44 mg/kg) and xylazine (7 mg/kg)

 • Both transient and permanent impairments as well as recovery rate

 - intact cochlea is able to generate sound energy when stimulated with two simultaneous tones known as "primary tones" and designated as frequencies "f1" and "f2"
 - · Sound energy generated by cochlea consists of different frequencies than
 - the "primary tones" so they are "distortion products"

 * Possible to detect impairment of hair cells drop in DPOAE amplitude as a function of length along basilar membrane
 •f1 and f2 primaries presented through two separate realistic dual radial

 - horn tweeters (Radio Shack, Tandy Corp., Ft Worth, TX)

 * Tones delivered to outer-ear canal through probe, where they acoustically mixed to avoid artifactual distortion
 - · Ear-canal sound pressure levels were measured by an emissions microphone assembly (Etymotic Research, ER-10Bb, Elk Grove Village, IL) embedded in the probe Distribution A Approved for public releases, distribution unlinted a.

Results - Study 1: DPOAE

Methods - All 4 Studies

DPOAE 4 Weeks Post Exposure

Hearing loss tested by Compound action potential (CAP) test for hearing threshold
• Performed 4 weeks following the end of exposures by recording

- compound action potentials (CAPs) from the round window for pure tones between 2 and 40 kHz in approximately $\frac{1}{2}$ octave steps
- Auditory thresholds assessed in a double walled audiometric booth under anaesthetized with xylazine (13 mg/kg, im) and ketamine (87 mg/kg, im) Auditory bulla opened via a ventrolateral approach to allow the placement of a fine (od 0.1 mm) Teflon-coated silver wire electrode (A-M Systems,
- Inc., Carlsborg,WA) onto the round window
 Silver chloride reference electrode was inserted into neck musculature
- Cochlea warmed using a low voltage high-intensity lamp
 CAP signals evoked by pure tones amplified 31000 between 0.1 and 1.0
- kHz with a Grass A.C. preamplifier (Model P15, W. Warwick, RI)
 Identified sound level necessary to generate a visually detectable CAP
- response averaged over four sweeps on a digital oscilloscope (approximate response amplitude of 1 mV measured as the output of the preamplifier)

Results - Study 1: CAP

Methods - All 4 Studies

CAP 4 Weeks Post Exposure

- Hearing loss tested by Microscopic examination of the inner ear (cochlea)

 Percentage of receptor loss (outer hair cells OHCs and inner hair cells IHCs) in the sar
 - · After CAP measurements, cochlege harvested
 - Within 2 min, cochleas were fixed by perllymphatic perfusion with 1 ml of 3% glutaraldehyde, 2% formaldehyde, 1% acrolein and 2.5% dimethyl sulfoxide in phosphate buffered saline (PBS) pH 7.4)
 Following primary 24-h fixation, tissue was washed with 0.1M PBS,
 - Following primary 24-h fixation, tissue was washed with 0.1M PBS, postfixed with 2% OsO₄ in water for 2 h, washed again with 0.1M PBS
 Organ of Corti dissected in 70% ethanol and mounted in glycerin for
 - counting of hair cells

 Cells were counted as present either when stereocilla, cuticular plate or cell nucleus could be visualized.
 - cell nucleus could be visualized

 No attempt to assess degree of possible cellular damage to surviving cells

 Frequency-place map established by Muller (1991) used to superimpose
 frequency coordinates on length coordinates of organ of Corti
 - "map" reflects that cochiea organized tonotopically with high frequency sound producing maximum stimulation of cells in base, and low frequency sound in apex

Methods - All 4 Studies

Results - Study 1: Cochleogram showing percentage of hair cell loss

Hearing loss tested by Microscopic examination of the inner ear (cont.)

- Cochleogram showing percentage of hair cell loss as a function of distance from base of cochlea was plotted for each animal
- Results were averaged across each group of subjects for comparison between groups
- Software used for counting cochlear hair cells developed by R. Lataye and Dr. P. Campo from the "Institut National de Recherche et Se curite" (Nancy, France)

Distribution A Approved for public release, distribution unlimited

AFRL 15

Methods - Study 3

Results - Study 3: DPOAE

Study 3 - Exposure to JP-8 alone

- Provided data for comparing effects of jet fuel ototoxicity to noise-induced hearing loss in the combined study
- · Study design same as Study 2 without noise
 - 5 male rats and 5 female rats per group
 - 0 (control), 200, 750 and 1500 mg/m³ JP-8
 - 6 h/day with weekends off for 28 days (20 exposures total)
 - JP-8 exposures in Bldg 837
 - Transported rats to Loma Linda for auditory assessment
- · JP-8 alone did not appear to affect hearing

Distribution & Approved for authioralises, distribution unlimited.

Methods - Study 4

Results - Study 4: DPOAE

Study 4 - Exposure to a series of intermittent high levels of noise during JP-8 inhalation exposure

- 5 male rats and 5 female rats per chamber
- Design
- Chamber 1 air only (Control group for all both treatments)
- Chamber 2 JP-8 only (1000 mg/m³)
- Chamber 3 noise at 102 dBA for 15 minutes every hour (1.5 h total noise exposure)
- Chamber 4 both JP-8 (same as Chamber 2) and noise (same as Chamber 3)

Whation A Approved for public release, distribution untimited.

Acknowledgements

 (\prod)

- Collaborators

 Dr Jeff Fisher Co-Principal Investigator
 - University of Georgia, Environmental Health Scientific THE UNIVERSITY OF GEORGIA
 - Now at NCTR, FDA, Arkansas
 - . Dr Larry Fechter Co-investigator
 - Loma Linda VA Medical Cente

- · Naval Medical Research Unit-Dayton
- * LT Vish Mokashi, Ph.D. Co-investigator
 - + Naval Health Research Center Detachment/Environmental Health Effects Laboratory
- Now at NRL Detachment RDECOM, Edgewood,MD
- + CDR Gail Chapman, Ph.D. Co-investigator
 - Naval Health Research Center Detachment/Environmental Health Effects Laboratory
 - Now at U.S. Army Medical Research & Materiel Command: Navy Liaison Military Infectious Disease Research Program

QUESTIONS?

Results - Study 2: Tissue Data

Evaluation of Jet Fuel Induced Hearing Loss in Rats

		Dased Animals								
Fat Tissue			10	11	12	8	14	15	16	
Analysis (ng/g)	Heptane	0.00	0.00	0.00	0,05	0.00	000	000	000	
	Methyleyeloheane	0.00	800.	164 12	0.03	0.00	000	000	0,00	
	Toluene	0.00	0.00	0.00	0.05	0.00	000	000	196,00	
	2-Mohylheptane	0.00	0.03	0.03	6.63	0.00	0.00	248,39	0.00	
	Cetarie	0.00	0.00	0.00	0.05	0.00	000	175.68	000	
	Ethylbergene	5292*	20,000	11087	0.03	34.85	23,95	34.62	66.207	
	m-Xylene	16.1.68	163.51	23.126	17030	176.88	246.88	143,46	168.79	
	p-Xylam	67.31*	32211	6361	5623*	9833	0.00	61.2%	68.72	
	o-Xytene	115.46	11426	13194	13668	153.6R	15301	216.49	143.04	
	Norare	0.00	29275	27831	7904	227.98	29943	239.03	198,53	
	Propyloydoneans	92.30	174.10	90.18	103.46	8228	12160	99(22	9660	
	1.3.5 Trimetry benzero	61.71	77.04	42.66	9836	12207	15058	106.27	18.30	
	o-Ethyttoluene	67.19*	109,00	137.24	8851°	86,25	12443	19271	121.52	
	1,2,4 Trimetrysterawn	222.71	197.86	260 15	194.18	255.64	247.74	296.12	273,66	
	Decare	41127	42976	42175	41457	365.02	568.09	447.97	560.68	
	1,2,3 Trimety/bergere	148.46	12120	154.65	10866	13675	161.42	147.20	160,10	
	Bulgeydownam	113.92	11984	139.18	96.71	10223	190,24	134.97	168.52	
	Undersne	600,75	101278	104693	1033.84	83211	1457.71	902.72	1167.6	
	Naphthalane	19644	123.81	24832	6544"	24011	198.72	162.04	170.06	
	Dookeans	1297.86	201491	210668	195092	1816.21	2636.60	2147.55	2116.3	
	Trickdone	24858	1849.96	2068.57	189062	1743.97	2557.96	2070,97	2144.1	
	Tehradedane	1807.81	2066/90	291246	218608	2766.80	2992.48	3604.63	2512.7	
	Perdictions	1898,36	206132	304924	2198.14	3221.06	3078.36	3807.11	2362.2	

- Blood, lung, liver, fat & brain tissues
- ahalyzed Fat tissue showed

AFRL

highest deposition Control samples were all nondetect

enveronments, but that would still be below in con-note.

I moved is to model and a wrildes great booking approach
Description of III the Description of the Properties of th

• To show if there is an association between yet fuel exposure and noise-induced bearing loss.
• Hypothesis: JP-8 jet fuel contributes additively or synergistically to hearing loss, when combined with high noise exposure environments, but that would still be below the exposure limit for noise.

Benefits of Proposed Techniciety

• Nearing IoS: represents a critical occupational concern,

• Nearing IoS: represents a critical occupational concern,

• Nearing IoS: represents a critical local particular of assisted in the concern of the critical particular of the concern of the critical particular of the critica

Mails: Seatu/Milentones:

**Note of pretration system developed by APIT attudent for havy inhibitors chambles:

**Thirstoned DROAD: Planing loss measurement system to Navy in collisions not well by five developed. The collisions not well by five developed.

**Completed the following 22-day studies – any hours pet day, 3 days per week.

Complified the to increase per loaded:

I note-only-75, \$5 or 95 db

I note-only-75, \$5 or 95 db

I note-only-75, \$5 or 95 db

I not have a set of the set

Assessing Operationally Relevant Aspects of Nanoparticle Exposure Health Risks

711 HPW/USAFSAM-PHT

Dr. Clarise Starr

There is little known in the scientific literature regarding the potential dangers and downstream sequelae caused by exposure to nanoparticles. This lack of information has led to conjecture about the potential uses and dangers associated with this new technology, including the possibility that nanoparticles could be used as a weapon to target the warfighter. The purpose of this effort is to answer basic, previously untested parameters regarding nanomaterials to assess the relevance to the potential exposure (from both modified and unmodified nanomaterials) in the field. Three commercial grade nanoparticles--ZnO, TiO2, and CeO2, were studied for personal protective equipment (PPE) efficiency, initial uptake by cell lines, and downstream cytotoxic effects. Preliminary data suggest PPE provided good barriers against nanoparticle exposure. Initial exposure to nanoparticles (2 hr) showed an interaction with the cells, but uptake of the nanoparticles varied depending on cell line. The nanoparticles that were found to be cytotoxic had a longer exposure to the cell lines, indicating that long-term exposure may be key to overall health risks.

Distribution Statement A: Approved for public release; distribution is unlimited. Case Number: 88ABW-2011-2292, 18 Apr 2011.

Early Uptake/Intake Model

- Neuroblastomas, macrophages, Hep-G2, and primary trach/bronchial cells

 - → Grown to 80% confluency before challenged with NP
- ✓ Initial nanoparticle (NP) concentration ranges from 10 mg/mL-0.1 mg/mL (w/v, resuspended in culture media)
 - 10 mg/mL "suffocated" the cells; CPEs visualized after 2 h
 - 0.1 mg/mL working concentration; allowed to incubate at 37
 °C for 2 hs before microscopy performed
- - → STEM (Scanning Transmission Electron Microscopy)
 - v EDX (Energy Dispersive X-ray)

Outritudion Spanners & Approved to public release, distribution a uninitial Case Number, 66/2W-2511-3595-28-3-11

Generation of ROS in lung co-culture model after exposure to various nanoactive nanoparticles. (a) 1 h. All 3 of the NA NPs show generation of significant amounts of ROS. (b) 24 h. Only the NA Zinc NPs showed significant amounts of ROS. This indicated that the cells were able to recover after exposure to the NA Cerium and the NA Titanium Dioxide but not the NA Zinc.

Distribution Statement A: Approved for public misses; distribution is unimited. Case Number 88ASW-2011-3656, 28 Jun 2011

PPE and Aerosolized

Two XRF Instruments Agree Fairly Well (lowa data taken with USAF XRF device)

PPE Studies

10000 8000 y=18.4x+570 0 200 400 Iowa Data, Ti mass, µg Research was performed on the collection efficiency of filters of a new mask. The collection efficiency is high (near 100%) for all particle sizes and types tested.

Distribution Statement A. Approved for public re-lease, distribution is unlimited. Case Number: 88AGW-2011-3656, 28 Jun 201

Conclusions

Conclusions (cont.) Every Airman a Force Multiplies

- cells, the cytotoxicity effects, and the ability to detect NP and protect the warfighter in accidental or intentional exposure.
- ∨ CeO₂ was not readily taken up by neuroblastoma cells, attaching itself to the cell membrane and aggregating in small clumps in the cytoplasm when it did cross over.
- y TiO₂ was readily taken up by neuroblastoma cells and aggregated in very large clumps in the cell, affecting the integrity of the cell membrane.
- ✓ ZnO was readily taken up by the neuroblastoma cells and was extremely dispersed into the cell.
- ✓ ZnO was extremely cytotoxic (dose dependent) in the cell viability models tested, while CeO, and TiO, produced little or no cytotoxicity to the cell.
- v NP generated ROS after 12 h; however, ZnO continued producing ROS after 24 h, while the other NP-exposed cells were able to recover.
- were tested down with good sensitivity.
- Studies of the filters in a new mask showed high collection efficiency against all NP tested.

Way Forward

Acknowledgments

- ∨ Continue work on other cell types to determine if uptake is different for these cell types.
- ∨ Evaluate models for long-term exposure.
- ∨ Evaluate TiO₂ at several time points 2-24 h to determine if clustering of NPs resolves itself in the cell and if the data will match the cytotoxicity data collected to date.
- ∨ Continue to evaluate particle counters and PPE to ensure that they are able to protect against NP exposure.

Distribution Statement A. Aggroved for public release, distribution is unlimited, Case Number, 88ABW-2011-3695, 28 Jun 2011

Dr. David L. Maserang MSgt George Viale Lt Col Darrin Ott Capt Matt Ferreri Dr. James Baldwin

Technical Assistance Linda Armstrong Elia Villazana

UT-San Antonio (Microscopy) Dr. Jose Yacaman

UT-San Antonio (Cell Culture)

Dr. Andrew Tsin Brandi Betts Isidro Daniel Obregon

University of Iowa/RJ Lee Group

Barry Hill Dr. Tom Peters Kristin Bunker Gary Cassucio Bruce Pacolay

AFRL/RHPB Dr. Saber Hussain Nikki Schaueblin

34

Clarise Rivera Starr, Ph.D.
USAFSAM/FHT
Comm: (937) 938-2799
DSN:798-2799
clarise.starr@us.af.mil

Distribution Statement A. Approved for public release, distribution is unlimited. Case Number, 88ASW-2011-0695, 26 Jun 2011

Transport of Silver Nanoparticles in Saturated Porous Media: Experimental Results and Model Simulations

AFIT/ENV

Capt Jason Flory

Nanosilver is the largest and fastest growing category of nanomaterial, with extensive USAF and DoD applications. A growing number of studies show that nanosilver may pose significant adverse human and environmental effects. Given the ubiquity of nanosilver and its potential toxicity, it is incumbent upon us to understand its environmental fate and transport. Due to the importance of groundwater as a pathway from contamination sources to human and environmental receptors, this study examined how nanosilver is transported in saturated porous media. In the study, silver nanoparticles (AgNPs) were synthesized in the laboratory using a sodium borohydride reduction method. The transport of these nanoparticles in a saturated porous media packed column was investigated. Both a conservative tracer and AgNPs were injected into water flowing through the laboratory column (diameter: 2.5 cm, length: 15 cm) packed with water-saturated quartz sand to obtain concentration-versus-time breakthrough curves. The AgNPs were found to break through before the conservative tracer, perhaps due to the facilitated transport of AgNPs (i.e., AgNPs moved through larger pores, and therefore moved faster than the tracer). It was also observed that the total mass of AgNPs leaving the column was smaller than the total input mass, indicating the capture of a fraction of the colloidal AgNPs by the porous media. Filtration theory was used to simulate the transport behavior of the AgNPs in the quartz sand packed column.

Military Applications

Nanosilver In Environment AFIT

Fish toxicity studies suggest hazards unique to nanoscale

- Naturally occurring silver in water is typically colloidal/nanoscale
- As particle size shrinks, there is tendency for toxicity to increase, even if same material is relatively inert in bulk form
 - Ag NPs have demonstrated greater potential to travel through organ systems compared to larger materials
 - May not be detected by phagocytic defenses, allowing them to gain access to blood or cross blood-brain barrier into nervous
- Environmental conditions affect stability/persistence
 - pH
 - · Ionic strength

Purpose Of Study

Column Experiments

Investigate how AgNP is transported in groundwater under environmental conditions

- pH
- · lonic strength
- · Compare/contrast transport of AgNP, Ag+
- Clarify transport process
 - · Understanding of risks from releases
 - · Better decision-making to manage releases

Glass columns, packed with glass beads, fed by peristaltic pump with AgNP suspensions

- · Background solution: 0.01 mM KCl
- · Flow rate: 1 mL/min
- · Vary pH, ionic strength of AgNP solution

Aim High...Fly - Fight + Win

Future Direction

Acknowledgements

- . This study:
 - · Repeat, confirm experimental results
 - Conduct similar experiments, varying ionic strength at constant pH
 - Examine attachment difference between AgNP, Ag*
 - Continue modeling process, finding parameters to account for environmental effects
- · Future studies:
 - Explore other media types: sand, soil
 - Refine model: account for effects of flow rate, media properties

• AFIT

- · Mark N. Goltz, PhD, PE
 - · LeeAnn Racz, Maj, USAF, BSC, PhD, PE
- . Dirk P. Yamamoto, Lt Col, USAF, BSC, PhD, CIH, PE
- · Sushil R. Kanel, PhD
- · Daniel L. Felker, PhD
- Wright State University
 - · Ioana Pavel, PhD
 - · Jessica Dagher
- Funding support from AFMSA/SG9S Intramural Studies Program

Air University. The Intellectual and Leadership Center of the Air Forc Aim Righ...Fly - Fight - Vlin Air University. The Intellectual and Leadership Center of the Air Force

Questions?

References

and the second

- Background
- · Purpose of study
- · Materials and methods
- · Results and discussion
- · Conclusions and future direction

The AFIT of Today is the Air Force of Tomo.

609, T. P., Shak, R. O., Schederik, R. D., Studian, M. T. & Tolaymat, T. M. (2010). Impact of one (c.f.), birt. offength, and electrolyte type on the software taking and appropriation of shere alone. Emergine Science & Tachnology, 44(4), 1250-1256. doi:10.1021/sst002246. https://doi.org/10.1021/sst002246. https://doi.org/10.1021/sst002246.

THE THE OWNER HAVE BEEN AS A SECOND OF THE PROPERTY OF THE PRO

Hught, K.-B., & Chen, K. L. (2011) Aggregation linetics of offerte and polyverly-profetore coded silver inacqueric reconsists in 8 and silver executively activities. Extremenents Secretal 2-reference, 2015 (2016).
 Moreati, B. (2010) Hannasiver reveiled depending and societies. EUROPOPI, 1054-1056. Refleved from http://www.secretaria.com/orienters/5806/07/1054-hogs.

 Nowack, B., Knig, H.F., & Beight, M. (2011) 120 years of nanouser history. Implications for policy makers. Environmental Science & Technology, Am. Retrieved from Interview of policy 10, 120 (2010) 1033164.
 Schmidt, A. M., Halmart, M. P., Hossain, S. M., Schlager, J. J., Smith, D. A., & Synd, A. P. (2010). Metal based

 Staw, B. J., & Handy, R. D. (2011) Physiological effects of nanoparticles on thir A comparison of nanometats versus mote lons. Environment Infrastructural of to 10 1016/j. novit 2011 0.3 0.09.
 Song, J. E., Phantat, T., Marianto, S., Xillo, Y., Lu, J. Weistrer, M. R., et al. (2011) hydrophobic initiations impraess attachment of own action, and PM coulded an improactives to hort technique surfaces. Environmental Science of Technology.

Tan, Y., Cao, B., Savora-Batida, C., & Zingley, Y. J. (2010). Transported engineered nanopartics in satistation for revening a furnal of interpretation fresoment. Inf. 227:1–228 of 10:10 10:70 nt 195-100. doi:10.77 without a fundamental control of the control of

Air University: The Intellectual and Leadership Center of the Air Force

Air University: The Intersectual and Ceadership Center of the Air Force
Aim High...Fly - Fight - Win

Evaluation of Gold Nanomaterial Toxicity Based on Physical and Chemical Properties

711HPW/RHPBA

Dr. Saber Hussain

Gold nanomaterials (Au NMs) have distinctive electronic and optical properties, making them ideal candidates for biological, medical and defense applications. Therefore, it is important to evaluate the potential biological impact of Au NMs before employing them in any application. In the present study, we investigated whether the size, charge and shape of the Au NMs plays a role in mediating a biological response in an in vitro model of human skin cells. The results demonstrated that smaller 0.8nm and 1.5nm Au NP's were toxic in a concentration dependent manner, regardless of charge. However, gene expression studies showed that the 1.5nm Au NPs induced DNA damage and down-regulated the DNA repair mechanism with these genes varying based on charge. Further, the results have illustrated that the gold nanorods (17nm AuNR-PEG (AR=2.1)) were cytotoxic to the skin cells, while the gold nanospheres (20nm AuNS-MPS) were not toxic even at the highest dose of $100~\mu g/ml$. Additionally, exposure to the 17nm AuNR-PEG (AR=2.1) caused the formation of significant amounts of ROS, and the up-regulation of several genes involved in cellular stress and toxicity. In summary, these results indicated that size, surface charge, and shape play a key role in mediating the cellular response to Au NMs.

Nanomaterial Hazard Identification: The Zebrafish Model for Rapid Material Testing

349th Medical Squadron (349 MDS)

Maj Joseph Fisher

Force Health Protection is facing a new challenge both in-garrison and in deployed operations as the nanotechnology revolution begins. The National Science Foundation predicts the period from 2011-2020 will result in fundamentally new products based on nanomaterials. These chemical biophysical nanometer scale (i.e., 1 x 10-9 meters) materials may bring new or increased hazard to humans and the environment, and the uncertainty surrounding their risk to biological and environmental health needs to be investigated. Health risk can be defined as a function of hazard and exposure, and an understanding of the hazard and exposure of these materials is important in order to minimize health risk. Products utilizing nanoscale materials will become ubiquitous throughout commerce in the coming years and regulatory oversight and reporting in the EU and the US is moving forward. The development of the zebrafish (Danio rerio) model for rapid material testing bridges a gap in toxicology testing between in vitro cell culture models and in vivo mammalian models. The anatomy, physiology, and genomics of the zebrafish are highly homologous to humans, and these similarities are just beginning to be exploited by research communities. Being a whole animal vertebrate organism, zebrafish allow for great flexibility in conducting experimental assays to identify nanomaterial exposure effects in morphology, physiology, behavior, and distribution. This research presents an overview of the issues surrounding nanomaterial health risk and provides testing results in order to demonstrate the utility of the zebrafish model in answering nanomaterial bio-compatibility research questions.

August 2011 AFMS Research Symposium

Nanomaterial Hazard Identification: The Zebrafish Model for Rapid Material Testing

Joseph A Fisher, Maj, USAFR, BSC Robert L Tanguay, PhD Oregon State University

Integrity - Service - Excellence

DISTRIBUTION STATEMENT A: Accorded for sub-lic veloce: distribution is unlimited.

- Introduction
- Nanomaterials
- Zebrafish (Danio rerio)
- Hazard Identification
- Automation
- Testing Results
- Conclusions
- Acknowledgment

DISTRIBUTION STATEMENT A: Approved for public velence; distribution is unfinited.

Introduction
Nanomerical theoretical descriptions

Testing Platforms
In silico (virtual screening, models)
In vitro (primary/finite and continuous cell cultures)
In vivo (whole animals study):
Mouse / rat
Fish / amphibian
Fily / worm - invertebrate
Clinical trials
Epidemiology

Hazard Identification

Strengths

- Higher throughput and more information at a lower cost
 Fast translucent ex utero embryo development
- Homologous to vertebrates and humans and a sequenced genome

- Methods, assays, and tests in development
- Not a mammal, little in vivo nanomaterial data to compare to

Opportunities

- Guide development of nanoscience
- Develop rapid relevant platforms to collect "response" data
 Identify physiochemical properties that drive biological response
- Investigate development, disease, regeneration, and human science

Hazard Identification

- Accessing Physiochemical Biological Response
 - In Vivo Testing whole organism
 - Tier 1: Toxicity Screening
 - Morphology, physiology, behavior assays
 - Tier 2: Cellular Targets and Distribution
 - Cell death assay
 - Distribution assay
 - Tier 3: Molecular Expression
 - Gene expression assay

Hazard Identification

■ Tier 1 Testing - Morphology, physiology, behavior

Hazard Identification

Tier 1 Effect Assessment – between 24 and 120 hpf

somite, fin (pectoral, caudal), axis, trunk

■ Morphology snout, jaw, brain, eye, otic, edema, notochord,

- Physiology
- heart rate, circulation
- Behavior

spontaneous movement - onset / frequency touch response - head / tail swimming response - light / dark / tap

Conclusions Nanomaterial Hazard Identification

Zebrafish (Danio rerio)

- Robust in vivo model organism platform to evaluate nanomaterial biological interactions
- Vertebrate animal homologous to humans, sequenced genome, sensitive at multiple levels
- Compatible with high throughput screening, automation, pathway, and mechanistic studies
- The NANO revolution has begun get ready

0

Acknowledgment

Joseph A Fisher, Maj, USAFR, BSC 349th Medical Squadron, Travis AFB, CA Joseph.Fisher@us.af.mil

Robert L Tanguay, PhD
Department of Environmental and Molecular Toxicology
Robert.Tanguay@oregonstate.edu

Sinnhuber Aquatic Research Laboratory Oregon State University, Corvallis, OR

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unforted.

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unbristed.

55

USAF Efficient Running: An Integrated Program To Reduce Running Injury and Improve Individual Performance in USAF Fitness Assessment

AFMSA/SG6

Lt Col Antonio Eppolito (presented by Lt Col (ret) Dan Kulund)

Running is an essential duty in the USAF "Fit to Fight" culture. Its importance is more critical now as the USAF Fitness Assessment (FA) will have more emphasis on the aerobic component, now 60% of the score, and more frequent testing. Because of this mandate (ref. AFI 36-2905), running has risen to the #2 cause of recreational injuries in the USAF (ref. Descriptive Epidemiology USAF Lost Workday Injuries 2008 report). The annual FA failure rate has doubled from 10% to 20% with the new PFT standards. (As high as 28% at some bases) And yet, the USAF lacks an evidence and experience based program specifically for running which is clear, simple, and understandable and can be incorporated into standardized training for all troops. There are huge direct costs to the military for running injuries and poor FA performances: (1) Medical and Physical Therapy treatment of injuries (clinic visits, MRI's, x-rays, therapy, etc) with a resultant backlog of sports medicine orthopedic referrals of up to 6 months at many MTFs (2) Cost of compensation to AD, ANG and USAFR members who are "injured" while running during duty time and cannot perform their job (3) Costs of command directed programs for retraining annual FA failures and wasted administrative time for retesting, profiles, and waivers (4) Missed work time due to injuries and appointments (5) Needless generation of preventable MEBs. There are also indirect costs which may be even greater: (1) Early separation due to low FA performance scores and failures (2) Decreased productivity due to lack of fitness and overall good health (concept of presenteeism) (3) Deteriorating morale (4) Permanent disability. Injury-free daily aerobic activity supports optimal physical wellness, mental clarity, weight management, and reduces health care utilization. Evidence-based training tools are applied to almost all skills of such importance and most athletic activities except for running. Furthermore, where they are applied most methods are traditional, inefficient, and not standardized. The 2008 USAF Lost Workdays Report highlights the emergence of running injuries and recommends immediate implementation of preventive strategies to address all aspects of running including; injury prevention countermeasures, volume of training, focused lower extremity strengthening and flexibility, proper gait technique and proper footwear. "Efficient Running" is in direct alignment with all the corrective strategies outlined in the critical report and provides the countermeasures. Efficient Running then is our proposed solution. It is based on the biomechanical principles of the most revolutionary concept in the arena of sports medicine in 40 years. It addresses injury prevention and performance improvement and is grounded in scientific principle and extensive real world experience of over 15 years. Efficient Running is a set of training tools to prevent injury and improve efficiency/performance. Our approach involves teaching and tailoring aerobic principles, putting the body in proper alignment, improving running gait biomechanics, and supplementing with essential core strength, balance and dynamic stability exercises.

USAF Efficient Running

U.S. AIR FORCE

Lt Col Antonio Eppolito, USAF, MC Lt Col (Dr.) Mark Cucuzzella, AFRC Lt Col (ret) Dan Kulund,

3 Aug 11

Running Injuries

NNING INJURIES SECOND ONLY TO BASKETBALL

Natural Running

Preparatory Phase

- Chi Running survey
- New Trends in Running Injury Prevention
 - Natural Running website
- Efficient Running Working Group
- Eight form workshops
- Medical Corps Examiner articles
- Building training modules

BUILD SCIENTIFIC PLATFORM FOR EFFICIENT RUNNING Integrity - Service - Excellence

Runner Maintenance Clinic

The Injured Runner

Trochanteric knot

The Injured Runner

UNFORTUNATE ANATOMY

5 1 5 5

STEPWISE RETURN-TO-RUNNING
Integrity - Service - Excellence

Interval Training

Week	Speed	Recovery	Monday	Wednesday	Friday
1	Fast 30 seconds	Slow 30 seconds	6 repeats	15-20 minute easy run	8
2	Fast 30 seconds	Slow 30 seconds	6	same	10
3	Fast 45 seconds	Slow 45 seconds	6	same	8
4	Fast 45 seconds	Slow 45 seconds	6	same	10
5	Fast 60 seconds	Slow 60 seconds	6	same	8
6	Fast 60 seconds	Slow 60 seconds	6	s am e	10

STRATEGY TO REDUCE RUNNING TIME

W

Operational Phase

- D.S. AIR FORCE
- Deploy strategies from Phase I
- Air Force Telehealth generates modules
- Briefings and workshops at annual provider meetings
- Educate professional staffs
- 76 HAWCs lead

OPERATIONALIZE EFFICIENT RUNNING

Beyond Running

Beyond Running

MILITARY PHYSICAL TRAINING SINGULARITY
Integrity - Service - Excellence

Summary

Integrity - Service - Excellence

Comparison of the 1.5 Mile Run Times at 7,200 Feet and Simulated 850 Feet in a Hyperoxic Room

HQ USAFA/ADPH

Lt Col Michael Zupan

The 1.5-mile run test was developed by Dr. Ken Cooper as an easy, inexpensive, and relatively accurate way to estimate VO2 max, or aerobic fitness levels, in large groups of AF personnel. In 2004 the AF fitness program began using the 1.5-mile run to estimate an airman's aerobic capacity. An altitude adjustment was implemented in 2005 for airmen stationed above 5,000 ft. In 2010, a new AF fitness test program was implemented; however, the 1.5-mile altitude adjustment for moderate altitude AF bases was removed. This study was conducted to investigate if a significant difference in aerobic performance exists between moderate altitude and sea level and, if it does exist, to what extent. The study was reviewed and approved by the USAFA IRB with all subjects signing an ICD. Fifty-five, 38 male and 17 female, subjects participated in the study. Subjects completed a VO2max test followed by two 1.5-mile runs, one at 7,200 ft, and one at simulated 850ft (~26% O2). During the runs, subjects only were aware of their test distance and could adjust the treadmill speed based on how they were feeling. Treadmill speed, elapsed test time, heart rate, and testing environment were unknown during all runs. Results were analyzed using an ANOVA. The average max VO2 was 48.6 mL.kg.-1min-1. A 30.6 seconds, or 4.2%, significant difference (p<.001) was observed between the two runs. These differences were mainly due to a decreased hemoglobin oxygen saturation (p<.001). Our recommendation is that an altitude adjustment for the AFT be reinstated.

HQ U.S. Air Force Academy

Integrity - Service - Excellence

Comparison of the 1.5 Mile Run Times at 7,200 Feet and Simulated 850 Feet in a Hyperoxic Room

Lt Col Michael Zupan, Ph.D. Director, USAFA Human Performance Lab

Study Objective

This study investigated if there are differences in aerobic performance between altitude and simulated sea level environments and if differences are evident between conditions, to what extent?

Background Information

- 1968 Dr. Ken Cooper develops the 12 minute run fitness test as an easy, inexpensive and relatively accurate way to estimate VO, max, or aerobic fitness, in large groups of Air Force personnel. (R = .897)
 - Based on results of 115 airmen
 - o Better indicator of cardiovascular fitness than the 600 yard run.
- · Later Dr. Cooper developed the 1.5 mile test
- 1992 Cycle ergometry test was implemented to "predict" VO2 max.

Background Information (cont)

- 2004 New Air Force fitness program was implemented that once again used the 1.5 mile test.
- 2005 An altitude adjustment was implemented for airmen stationed above 5,000 ft. (1.75 pts)
- 2010 New Air Force fitness test program was implemented, which still used the 1.5 mile run to test aerobic fitness, but the altitude adjustment for the Air Force Bases located at moderate altitude is removed.

Integrity - Service - Excellence

Integrity - Service - Excellence

Background Information (cont)

individuals are already given a temporary exemption of six weeks to adapt to the altitude differences between locations' and 'With six weeks to acclimatize and continue

with six weeks to accumulze and commute training at altitude, members' 1.5 mile run performance should not be appreciably degraded' and "Exercise research indicates that a score

adjustment for people taking the revised Air Force Physical Fitness Test at higher altitudes is not needed. The $\rm VO_2\,max$ or aerobic fitness, the factor we are measuring with the 1.5 mile run, is not measurably altered in a non-acclimated member testing from sea level up to 7,000 feet."

(Air Force Fitness Program Web Site FAQ)

Integrity - Service - Excellence

Background Information (cont)

Atmospheric

111111

1

- As altitude is increased, barometric pressure
- Results in less oxygen per given volume of air than at sea level
- Known as hypobaric hypoxia
- Current research shows that total acclimatization can take up to 4-6+ months (Brothers, 2008, Brothers, 2007)
- · Aerobic endurance still is impaired even with total acclimatization (Brothers, 2008; Brothers, 2007)
- Training intensities are reduced at altitude which results in deconditioning of the body (TB 505, 2010)
- To date, it is unknown the exact amount of decrement associated with various levels of the hypobaric hypoxic environments.

Integrity - Service - Excellence

Time requirement for each subject was ~2 hours

- 30 min-ICD and VO_{2max} introduction
 30 min-VO_{2max} and DXA scan
 30 min- 1.5 mile run in first condition

 - 30 min- 1.5 mile run in opposite condition
- · All 1.5 mile runs were performed in the Colorado Altitude Tent (CAT) in normal moderate altitude environment (~7,200 ft) or normobaric hyperoxic environment (oxygen content increased while barometric pressure stayed the same) to simulate ~850 ft.
- Order of running conditions were randomized.
- . Only 24 to 72 hours between 1.5 mile runs
- · Distance was the only factor known by the subjects during the 1.5 mile runs

Protocol

Integrity - Service - Excellence

of 160 mmHg

7,200 FT

of 120 mmHg

Creating a Hyperoxic **Environment**

CAT .265 * 570 mmHg = PO₂ of 152 mmHg

Integrity - Service - Excellence

Dual Energy X-Ray Absorptiometry (DXA) Scanner for Body Composition

- "Gold Standard" for body composition
- Assessments provide :
 - o % fat mass
 - ∘ % lean body mass
 - o Bone density

Distribution A. Approv

Integrity - Service - Excellence

VO₂ Max test

- All VO₂ max tests were performed at altitude
- Subjects were asked to continue running until they reached volitional fatigue
- Protocol

Test Time (min)	Stage Time (min)	Speed (mph)	Grade (%)	Position
0-1	1:00	0	-0	Standing
2-3	2:00	2.0	0	Walking
4-5	2:00	7.0 m, 6.0 f	-0	Running
б	1:00	7.0 m, 6.0 f	2.	Running
7	1:00	7.0 m, 6.0 f	4	Running
8	1:00	7.0 m, 6.0 f	6	Running
9	1:00	7.0 m, 6.0 f	8	Running
10	1:00	7.0 m, 6.0 f	10	Running
11	1:00	7.0 m, 6.0 f	11	Running
12	1:00	7.0 m, 6.0 f	12	Running
13	1:00	7.0 m, 6.0 f	13	Running
14	1:00	7.0 m, 6.0 f	14	Running
End of Test	Until HR <120	2.0	0	Active Recovery

for public release

Integrity - Service - Excellence

Max VO₂

Distribution A. Approv

Integrity - Service - Excellence

Study Participants

- Fifty-five, non smoking, male and female subjects signed informed consent documents (ICD) and completed DXA and VO_{2max} tests
- •All subjects had to be living continuously in Colorado Springs for at least 6 weeks.
- •Three subjects did not complete the 1.5 miles run tests due to AF commitments and non-study related injuries
- Subjects demographics:

	n	DXA (%BF)	Age (yrs)	Weight (lbs)	Height (in)
Males	38	16.4 ± 7.6	32.3 ± 6.5	173 ± 24	71.7 ± 3.1
Females	17	24.9 ± 4.7	33.6 ± 6.9	132 ± 18	64.7 ± 2.2
Total	55	19.0 ± 7.9	32.7 ± 6.6	160 ± 29	69.5 ± 4.4

Distribution A. Appro

Integrity - Service - Excellence

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Conclusions

- A 30.6 seconds, or 4.2% decrease in 1.5 mile running times was measured when running at ~850 ft compared to 7,200 ft.
- These differences were mainly due to a decreased hemoglobin oxygen saturation associated with running at altitude with lower O₂ partial pressures.
- HR and RPE were not significantly different between runs
- Our recommendation is that an altitude adjustment for the Air Force fitness test be reinstated for airmen testing at moderate altitude bases.

Integrity - Service - Excellence

Acknowledgments

I wish to acknowledge the help of the following individuals in data collection early analysis of the results.

Dustin R. Bakkie - Western State College Jennifer A. Malagon - Colorado State University Jessica A. Malagon - Colorado State University Kristin Perdue - University of Northern Colorado

■ This work was supported by Air Force Medical Support Agency(AFMSA/SG9)

Distribution A. Approv for public release Integrity - Service - Excellence

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Can a 10-minute Warm-up Reduce Musculoskeletal Injury in Air Force Academy Cadets?

Uniformed Services University, Injury Prevention Research Lab

Dr. Sarah De La Motte

Musculoskeletal injury (MSK-I) is the leading cause of lost duty time and morbidity in the military. The short and long-term consequences from MSK-I can be career-threatening, if not career-ending, and decrease force readiness. New data show major risk factors for MSK-I in athletic populations can be easily identified and are readily modifiable through prevention programs targeting poor movement patterns. However, maximal MSK-I prevention program design & effectiveness in military environments have not been determined. We are working with the US Air Force Academy (USAFA) Department of Physical Education (DPE) to study the effects of a 10-minute neuromuscular warm-up program performed in required physical training sessions. Sections of a required freshman P.E. class will be randomized to perform a neuromuscular warm-up developed to address previously identified MSK-I risk factors, or a traditional warm-up program. Neuromuscular warmup sessions will be professionally supervised, with cadets receiving real-time feedback on program performance, including technique & correction cues. Rates of lower extremity injury and biomechanical changes in movement pattern will be compared between groups. Post-training jump-landing assessment data will be compared with pre-training data to determine the neuromuscular warm-up program's effect on "highrisk" movement patterns and coupled with MSK-I incidence to determine program effectiveness. Pre and postdata will also be compared with subsequent testing sessions in a subsample of cadets to determine washout of training effect and optimum periodicity of warm-up training. This research will provide feasibility and injury incidence data for a larger definitive trial of MSK-I focused prevention programs in the Air Force.

Can a 10-minute Warm-up Reduce MSK-Injury in USAFA Cadets?

What We Know So Far

Sarah J. de la Motte, PhD, ATC Anthony I. Beutler, LTC, MC, USAF Injury Prevention Research Laboratory Uniformed Services University

- Why MSK-injuries are a big deal
- What is JUMP-ACL?
- What's going on now at USAFA
- The way forward

- Non-combat Musculoskeletal (MSK) Injuries in the Military:
 - 1.6 million medical encounters/yr
 - -#1 cause of lost duty days
 - Biggest health problem of the military services

Jones BH, et al: Medical Surveillance of Injuries in the U.S. Military: Descriptive Epidemiology and Recommendations for Improvement. American Journal of Preventive Medicine 2010;38(1S):S42-S60.

- 34% of deploying troops sustained a non-combat MSK injury
- The most common reasons for medical air evacuation:
- Non-combat MSK injuries (24%)
- Combat injuries (14%)

Cohen SP et al: Diagnoses and factors associated with medical evacuation and return to duty for service members participating in Operation Iraqi Freedom or Operation Enduring Freedom: a prospective cohort study. Lancet 2010;375:301-309.

Consequences of MSK Injury during Deployment

Consequences

- Force Depletion
- Decreased Readiness

Long-Term Consequences

- Loss of Camaraderie
- Loss of Unit Cohesion
- Mission Compromise

Consequences of MSK Injury during Training

"Good" Surgery: >80% OA Risk in 15 ys

Knapik, Med Sci Sports Ex, 2001

Previous Injury Prevention Efforts

- Limited Success:
 - Cost
 - Modifiable vs. Non-Modifiable Risk Factors

Not-Readily Modifiable:

- o Female Gender
- o BMI
- o Fitness Level
- Smoking

Previous Injury Pr

Limited Success

Jadily Modifiable:

- Strength
- Equipment
- o Training Schedule
- √ Movement Patterns

Objectives

- Why MSK-injuries are a big deal
- What is JUMP-ACL?
- What's going on now at USAFA
- The way forward

Collaborators

- · Anthony Beutler, MD, MC, USAF
 - Uniformed Services University
- Stephen W. Marshall, PhD
 - University of North Carolina, Chapel Hill
- Darin Padua, PhD, ATC
 - University of North Carolina, Chapel Hill
- · William E. Garrett, MD, PhD
 - Duke University

JUMP GACL

Human Movement Risk Factors for Subsequent ACL Injury: "Lab" Findings

- Knee in Valgus at Initial Ground Contact
 —RR 2.0 for non-contact ACL
- Rapid Hip Internal Rotation on Contact
 RR 6.8 for non-contact ACL

Requirements for a Crystal Ball "Trelawney's Tests" Sensitive Specific

- · Identify Modifiable Risk Factors
- · Doesn't have to be Perfect
- · Does have to be Practical

Predictive Validity

- Preliminary data suggests LESS may be a valid clinical assessment of ACL injury risk
 - \uparrow LESS scores in ACL-injured youth soccer players
 - Sensitivity = 83%
 - Specificity = 67%
- Similar to laboratory external knee valgus
 - Sensitivity = 78%
 - Specificity = 67%

■What to do with all of this info?!?!

Existing Injury Prevention Programs DIME stacks up pretty well!

- PEP Mandelbaum:
 - prevents 70% non-cont ACL in female soccer
 - 30 minutes, 3-5 times/week
- Cincinnati Sports Hewett:
 - Lower incidence of knee injuries
 - 60-90 minutes, 4-5 times/week
- Handball/Floorball Olsen & Pasanen
 - 50-65% reduction in ALL lower extremity injuries
 - 20-30 minutes, 3-4 times/week

Objectives

- Why MSK-injuries are a big deal
- What is JUMP-ACL?
- What's going on now at USAFA
- The way forward

Next Step: NOW at USAFA

JUMP-ACL2

•Implement Proven Injury Prevention Program

- Use DIME to determine its effectiveness in Academy
- · Pre & Post intervention assessment
- Approximately 50% of cadets get DIME in freshmen PE
 Other half continue with standard USAFA warm-up
- Tie movement pattern changes to MSK-I outcomes

Initial Screen

 ALL incoming cadets in 2011 screened using the LESS (N~1200)

Exercise Intervention - DIME

- Exercises incorporated into required freshman
 PE class as a regular warm-up
 - 50% of cadets randomized to receive usual warm-up
 - 50% of cadets receive DIME program under professional supervision by trained movement specialist
 - Changes in movement pattern require coaching, reinforcement & active feedback
 - Thank you, DSOC!

Post-Assessment

- Injury Risk Screen repeated after completion of PE class
 - How did movement patterns/LESS score improve?
- Sub-sample screened at regular intervals to assess decay
 - How long do these changes last?
- ACL & lower extremity injury data obtained for next 12 mo
 - USAFA Cadet Injury Tracking System coming online Fall 2011
 - The Holy Grail!

Objectives

- Why MSK-injuries are a big deal
- What is JUMP-ACL?
- What's going on now at USAFA
- The way forward

JUMP-ACL2

USAFA vs. USMA

10 Min Injury Prevention, Movement Re-Training Program

 Changes in movement pattern require coaching, reinforcement, and active feedback

Summer Basic Cadet Training Versus Freshman PE Class

USAFA – Freshman PE; USMA – Summer BCT

Capture Movement Pattern Chances & Injury Outcomes

- Preliminary Results
 - Movement Pattern Changes Hard to Capture
 - 5X ♥ LE injuries in Intense Supervised Program

Goals for the Future

- Prevent Anterior Cruciate Ligament (ACL) & lower-extremity injuries in Academy cadets
- Determine proper supervision method for exercise instruction (professional vs cadet led)
- Evaluate for decay of movement pattern change and training effect
- Using this knowledge, create a proven, portable, user-friendly program to translate into Big Military

Objectives - Recap

- Why MSK-injuries are a big deal
- What is JUMP-ACL?
- What's going on now at USAFA
- The way forward

Acknowledgements

- LTC Anthony Beutler
- USAFA Department of Physical Education
- Defense Safety Oversight Council

Questions?

Sarah de la Motte, PhD, ATC Injury Prevention Research Lab, USUHS sarah.delamotte@usuhs.mil 301-295-9460

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Anti-retinal Antibodies as Biomarkers for Laser Induced Retinal Injuries in Rabbits

Summa Health System

Dr. Rachida Bouhenni

PURPOSE: Retinal injuries affecting the photoreceptors and/or the retinal pigment epithelium (RPE) may result in leakage of retinal-specific proteins into the systemic circulation. These proteins could be detected in body fluids following the injury and vary with the severity of the injury and during the subsequent recovery period.

METHODS: Using a continuous 532 nm laser, 50 spots of mild (MVL), moderate (GII), or severe (GIII) laser lesions were created in retinas of Dutch Belted rabbits (n=12/grade). Serum and saliva were collected from treated and control animals at 1hrs, 4hrs and 24hrs following laser treatment. Retinal-specific proteins were detected using Liquid Chromatography/Tandem Mass spectrometry. Statistical analyses were performed using One way ANOVA. P<0.05 was considered significant.

RESULTS: Retinal-specific proteins were detected in both saliva and serum samples at all time points after laser injury. Most proteins were detected in the samples treated with MVL at 4hrs, followed by GII and GIII laser lesions. Some of the proteins were common to more that one laser grade. Although, more proteins were detected following treatment with mild lesions, and at 4 hrs after treatment, the differences between groups were not significant. CONCLUSION: Retinal-specific proteins were detected in both saliva and serum of rabbits following laser treatment. The numbers of proteins detected did not vary with severity and time following injury. The biomarker response appears transient, peaks at 4 hours after laser treatment and is reduced at 24hrs. These proteins could be used as biomarkers for laser induced retinal injuries in military operations.

Anti-retinal Antibodies as Biomarkers for Laser Induced Retinal Injuries in Rabbits

Rachida Bouhenni, PhD Summa Health System, Akron, OH

Background & Significance

- · Laser sources can cause ocular trauma/retinal damage
 - Laser weapons
 - Laser sights
 - Some remote sensing instruments
 - Handheld laser pointers
- · War fighters and other operators are at increased risk
- Some lesions are asymptomatic and almost impossible to detect in routine examinations
- Non-invasive diagnostic tests to detect molecular signatures of retinal injuries are needed.

Hypothesis

- Laser causes photoreceptor and RPE cell death and violates the Blood Retina Barrier
- Disruption of the Blood Retinal Barrier following laser exposure leads to the release of retinal proteins into the blood circulation.
- These proteins may initiate an immune response, resulting in auto-antibodies that are detectable in the serum 12 weeks later.
- These auto-antibodies could serve as molecular biomarkers for retinal injuries caused by laser.

Vision for Clinical Application

Approach

Experimental Design Overview

- Experiment 1 (n=72 rabbits):
 - Variable: Laser injury grades
 - · Different laser grades (MVL, GII, GIII)
 - Fixed lesion number (50 lesions, 1 eye)
- Experiment 2 (n=72 rabbits)
 - Variable: Exposure levels
 - · Different injury profiles (5, 10, 50 lesions)
 - Fixed laser grade (MVL)
- * Experiment 3 (n= 46 rabbits)
 - Variable: # of laser exposures
 - 2 or 3 MVL laser treatments, 50 lesions per treatment
 - · 1 month between treatments

Blood collected at 12 weeks after exposure
ul protocol was approved by USAF animal research program and the LACUC committee at NEOMU
UNIVERSITY OF UNIVERSIT

2D Western Blot

UIC AT DECASO

Spot Analysis and Selection

Only spots present in 2 or more laser and none of the controls are selected UIC UNIVERSITY OF ILLINOIS

Spot Excision

Experiment 1 Results

# animals	Protein description	Laser Grade
2 of 2	Fructose hisphosphate aldolase C	MVL
4 of 4	Dihydropyrimidinase related protein 2	GII
3 of 4	Triosephosphate isomerase	GII
2 of 4	Fructose bisphosphate aldolase C	GII
2 of 4	Transketolase	GII
2 of 4	Transitional endoplasmic reticulum ATPase	GII
2 of 4	Serotransferrin	GII
2 of 4	Cofilin-1	GII
2 of 4	Alpha enolase	GII
2 of 4	T-complex protein 1 subunit zeta	GII
2 of 4	Pyruvate kinase isozymes M1/M2	GII
2 of 4	Elongation factor 1-alpha 1	GII
3 of 3	Probable ATP-dependent RNA helicase DDX17	GIII

Auto-antigens are confirmed by size and IP

Experiment 2 Design Details

- 4 Groups (n=72)
 - All MVL Injuries
 - Group 1 = 5 lesions (n=18)
 - Group 2 = 10 lesions (n=18)
 - Group 3 = 50 lesions (n=18)
 - Group 4 = Mock Control (n=18)

Experiment 2 results

- No auto-antibodies were detected in the 5 or 10 lesions treated animals
- The 50 lesions treated animal's samples in process
- Repeated to reproduce results

UIC UNIVERSITY OF ILLINOIS

Experiment 3 Design Details

- 5 Groups (n=46)
 - All MVL lesions, 1 month intervals
 - Group 1 & 3 =1 laser exposure, 50 lesions
 - Group 2 & 4 = 2 laser exposures, 100 total lesions
 - Group5 = 3 laser exposures, 150 total lesions

Experiment 3 results

# animals	Protein description	/# of laser treatment
3 of 3	Glutamine synthetase	1
3 of 3	Pyruvate kinase isozymes M1/M2	1
2 of 3	Ubiquilin-1	1
2 of 3	T-complex protein 1 subunit zeta	1
2 of 3	Dihydropyrimidinase related protein 2	1
2 of 3	Tubulin beta-2 chain	1
2 of 3	Bifunctional purine biosynthesis protein	2
2 of 3	Aspartate aminotransferase	2
2 of 2	Heme-binding protein 2	3
2 of 2	Beta enolase/Alpha enolase	3
2 of 2	Tubulin sipha-1 chain/Tubulin beta-2 chain	3

UIC UNIVERSITY OF ALLINOIS

Top Candidate auto-antibodies

UniProt Accession	Protein description	MVL	GII	GIII
O02675	Dihydropyrimidinase-related protein 2	2/8	4/4	0/3
Q9GKW3	Fructose-bisphosphate aldolase C	5/8	2/4	0/3
O77622	T-complex protein 1 subunit zeta	2/8	2/4	0/3
P11974	Pyruvate kinase isozymes M1/M2	6/8	2/4	0/3

Other candidates

UniProt Accession	Protein description	MVL	GII	GIII
P00939	Triosephosphate isomerase	1/8	3/4	0/3
Q6B855	Transketolase	0/8	2/4	0/3
P03974	Transitional endoplasmic reticulum ATPase	0/8	2/4	0/3
P19134	Serotransferrin	0/8	2/4	0/3
Q5E9F7	Cofilin-1	0/8	2/4	0/3
Q9XSJ4	Alpha-enolase	0/8	2/4	0/3
P68105	Plongation factor 1-alpha 1	0/8	2/4	0/3
P15103	Glutamane synthetase	3/8	0/4	0/3
Q9UMX0	Ubiquim-1	2/8	0/4	0/2
P69895	Tubuim bets-2 chain	2/8	0/4	0/3

90

Conclusions

- Most auto-antibodies were detected in response to treatment with GII laser followed by MVL
- # of laser treatments resulted in different auto-antibodies.
- GIII laser may have caused protein degradation at the site of injury
- Most auto-antibodies were raised against proteins that have a function in glucose metabolism and protein binding (unregulated following treatment or abundant)
- that this approach may permit future development of new diagnostic methods for retinal injuries.
- ❖ A panel of 4 biomarkers may be used for detection of retinal laser injury: DRP2, TPI, PKM and AldC
- This approach may permit future development of new rapid diagnostic methods for retinal injuries

Acknowledgments

This project is being developed under Contract Number FA7014-07-C-0047, with the U.S. Air Force Surgeon General's Office (AF/SG) and administered by the Air Force District of Washington (AFDW). The Air Force has not yet accepted the products depicted and issuance of a contract does not constitute a Federal endorsement of the University of Illinois at Chicago.

UIC UNIVERSITY OF ILLINOIS

Questions?

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Detection of Retinal Proteins in Saliva and Serum in Laser Induced Retinal Injuries in Rabbits

Summa Health System

Dr. Rachida Bouhenni

PURPOSE: Retinal injuries that affect the photoreceptors and/or the retinal pigment epithelium (RPE) may result in the leakage of retinal-specific proteins into the systemic circulation. This study was designed to determine whether an immune response is elicited after an acute retinal injury resulting in circulating anti-retinal antibodies in the serum.

METHODS: Fifty laser burns of different grades (minimally visible lesion (MVL), grade II (GII), or grade III (GIII) lesions) were created in the retinas of Dutch Belted rabbits. The degree of laser burns was confirmed by fundus imaging and histology. Serum samples were collected from the animals three months after the retinal injury. Candidate autoantigens were identified by two-dimensional western blots of rabbit retinal lysate probed with sera from either control or laser-treated animals. Candidate autoantigens were further characterized by immunohistochemistry to confirm their retinal localization. RESULTS: Seven and eleven protein spots were selected from the MVL and grade II laser-treated samples, respectively, for autoantigen identification. No protein spots were detected in the grade III laser-treated samples. Four candidate autoantigens were common to both MVL and GII lesions: Dihydropyrimidinase-related protein-2, fructose-bisphosphate aldolase C, chaperonin-containing T-complex polypeptide 1 subunit zeta, and pyruvate kinase isozyme. CONCLUSION: Induced retinal laser injuries resulted in circulating anti-retinal antibodies that were detectable three months after the injury. The response appeared to vary with the severity of the laser retinal damage. The identification of the candidate antigens in this study suggest that this approach may permit future development of new diagnostic methods for acute retinal injuries.

Detection of Retinal Proteins in Saliva and Serum Following Laser Induced Retinal Injuries in Rabbits

> Rachida Bouhenni, PhD Summa Health System, Akron, OH

Background & Significance

- · Laser sources can cause ocular trauma/retinal damage
 - Laser weapons
 - Laser sights
 - Some remote sensing instruments
 - Handheld laser pointers
- · War fighters and other operators are at increased risk
- Some lesions are asymptomatic and almost impossible to detect in routine examinations
- Non-invasive diagnostic techniques to detect molecular signatures of retinal injuries are needed.

Hypothesis

- Laser causes photoreceptor and RPE cell death and violates the Blood Retina Barrier
- Protein from damaged cells can leak through the damaged blood retina barrier into the systemic circulation
- These proteins can be detected by proteomics in body fluids such as serum and saliva
- These proteins can be used as biomarkers for detection of laser induced retinal injuries.

UIC UNIVERSITY OF ILLINOIS

Approach

Vision for Clinical Application

Experimental Design Overview

- Experiment 1 (n=72 rabbits):
 - Variable: Laser injury grades
 - Different laser grades (MVL, GII, GIII)
 - Fixed lesion number (50 lesions, 1 eye)
- Experiment 2 (n=72 rabbits)
 - Variable: Exposure levels
 - Different injury profiles (5, 10, 50 lesions)
 - · Fixed laser grade (MVL)
- Experiment 3 (n= 46 rabbits)
 - Variable: Time between exposures
 - 2 or 3 MVL laser injuries, 50 lesions per interval
 - · 1 month between exposures

Saliva and serum samples were collected at 1hr, 4hrs and 24hrs.

Laser Treatment Overview

- Frequency-doubled Nd:YAG laser (532 nm) mounted on a slit lamp.
 - MVL (Minimally Visible Lesion): 100 mw, 100 ms, 500 μm lesion
 - GII (Grade 2): 150 mw, 200 ms, 500 μm lesion
 - GIII (Grade 3): 300 mw, 200 ms, 500 μm lesion
- Mock control rabbits received anesthesia and pupil dilation but not laser.

Confirmation of Laser Burns

LC-MS/MS

- Serum samples were fractionated by isoelectric focusing from pH 3-10 using a microrotofor (BioRad). Ten fractions were collected.
- 100 μl of either saliva or fractionated serum was polymerized into 15% acrylamide gel pieces.
- Gel pieces were incubated overnight in trypsin solution and digested proteins were extracted twice and allowed to dry.
- Dried samples were resuspended, sonicated, and extracted using a C18 ZipTip column (Millipore).
- Automated nano-flow HPLC-tandem mass spectrometry (LC-MS/MS) was performed.
- · Eluted ions were electrosprayed at 1.75 kV.
- Data collected was blasted against the Uniprot mammalian database.

 UIC UNIVERSITY OF ILLINOIS
 AT CHICAGO

 AT CHICAGO

 THE COLLEGE AT CHICAGO

 AT CHICAGO

 THE COLLEGE AT

Experiment 1 Design Details

- 4 Groups (n=72)
 - MVL (n=18)
 - GII (n=18)
 - GIII (n=18)
 - Mock Control (n=18)

Experiment 1 Results

Proteins detected in saliva	Frequency/total	Laser grade	Time point
CACNAIF	4/12	MVL(2), GII (1), GIII (1)	1hr, 4hrs, 24 hrs
CNG3 (CNGA3/CNGB3)	2/12	MVL, GII,	4hrs, 24hrs
PDE6 (A,B)	2/12	MVL, GII	1hr, 4hrs
CaBP1	1/12	MVL	4hrs

Proteins detected in serum	Frequency/total	Laser grade	Time point
CNG3(CNGA3/CNGB3)	3	MVL (1), GIII (2)	4hrs, 24hrs
PDE6 (B,C)	2	MVL (1), GII (1)	4hrs, 24hrs
Retinal oxidase	2	MVL(1), GIII (1)	24hrs
ABC4A	1.1	MVL	4hrs
RGS9	1	MVL	24hrs
Phosducin	1	GIII	4hrs

Experiment 2 Design Details

- 4 Groups (n=72)
 - All MVL Injuries
 - Group 1 = 5 lesions (n=18)
 - * Group 2 = 10 lesions (n=18)
 - Group 3 = 50 lesions (n=18)
 - Group 4 = Mock Control (n=18)

Experiment 2 Results

Proteins detected in serum	positive /10 pools*	Time point	#laser spots
Zinc finger protein	1	24hrs	5
Pleckstrin homology domain- containing family B member 1 (Pleckstrin homology	1	24hrs	50

- No proteins were detected in saliva in Exp 2
 No definitive conclusions were made from this experiment
- The spot # does not affect the biomarker response
 Experiment was repeated, analysis in process

Experiment 3 Design Details

- 5 Groups (n=46)
 - All MVL lesions
 - Group 1 & 3 =1 laser exposure, 50 lesions
 - Group 2 & 4 = 2 laser exposures, 100 total lesions
 - Group 5 = 3 laser exposures, 150 total lesions

Experiment 3 Results

Proteins detected in serum	Frequency/total	Time point	# of laser treatments
CNGB3	1	24hrs	1
RPE65	1	24hrs	2
ABC4A	1	24hrs	2
Opsin 5	1	24hrs	1
Neural retina leucine	1	24hrs	1

- No Proteins were detected in saliva
 No proteins were detected in the 3 laser treatment
 CNGB3 and PDE6 was detected again.

Candidate Biomarkers Detected in Serum

Retinal protein	MVL	GII	GIII
CNG3(CNGA3/CNGB3)	1 (4hrs)	-	2 (4hrs, 24hrs)
PDE6 (B,C)	1 (4hrs)	1(24hrs)	-
ABC4A	1 (4hrs)	-	-
RGS9	1(24hrs)	-	-
Phosducin	-	-	1(4hrs)
Retinal oxidase	1 (24hrs)	-	1 (24hrs)

Candidate Biomarkers Detected in Saliva

GIII (3 MVL (3 Retinal protein GII (3 animals) animals) animals) CACNA1F 2 (1hr, 4hrs) 1 (4hrs) 1(24hrs) CNG3 (CNGA3/CNGB3) 1(4hrs) 1(24hrs) Ò PDE6 (A,B) 1 (1hr) C CaBP1 1(4hrs) Ó

Biomarker Detection Over Time

Conclusion

- Most biomarkers are detected in MVL at 1hr and 4hrs time point (transient).
- GIII results in a poor response, most likely because cells are dead and proteins are degraded.
- Number of laser lesions did not effect the biomarker response (experiment repeated).
- Intermittent laser treatments resulted in a different biomarker response
- A panel of 5 proteins can be used for detection of retinal laser injuries by LC/MS-MS (CNGA3, CNGB3, PDE6A, PDE6B, PDE6C)
- This approach may permit future development of new diagnostic methods for retinal injuries

Future plans

 Validation of the candidate biomarkers using Western blot, ELISA or MRM.

Acknowledgments

Question?

This project is being developed under Contract Number FA7014-07-C-0047, with the U.S. Air Force Surgeon General's Office (AF/SG) and administered by the Air Force District of Washington (AFDW). The Air Force has not yet accepted the products depicted and issuance of a contract does not constitute a Federal endorsement of the University of Illinois at Chicago.

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Serum Biomarker Responses in a Non-Human Primate Model of Acute Retinal Laser Injury
Summa Health System
Mr. Jeffrey Dunmire

PURPOSE: To identify unique proteomic signatures in sera indicative of retinal injury. METHODS: We used laser photocoagulation as a model of retinal injury in Rhesus macaques. Serum was collected from each animal at 4h, 1d, 3d, and 1w following a mock procedure and again following retinal laser treatment that produced either Grade 2 (moderately severe; GII, n=6) or minimally visible lesions (mild; MVL, n=6). Samples were analyzed by mass spectrometry and relative protein abundances were determined by spectral counting. Stringent filtering criteria and analysis by G-test, followed by Holm-Sidak correction for multiple comparisons, were used to determine statistical significance. Proteins with p<0.05 were considered significant. RESULTS: A total of 19 and 17 proteins were identified as significantly more abundant in sera following MVL and GII injury respectively. None of these proteins were common to both MVL and GII. However, among the 36 proteins, irrespective of injury severity, most were ontologically similar. Although most differences were unique to one time point, 4 proteins (CK18, PGK1, FUT3, and EPHA2) from MVL and 1 protein (DDX17) from GII showed differences at multiple time points after injury. For these proteins, maximal protein elevation between 4h and 3d was followed by a decrease to basal levels within 1w.

CONCLUSIONS: A serum biomarker response to both GII and MVL retinal injury was demonstrated. The proteomic signature was unique for each grade of injury and appeared transiently between 1-3d. Increased abundance of these proteins in serum may be useful markers for detection of acute retinal injury.

Serum Biomarker Responses in a Non-Human Primate Model of Acute Retinal Laser Injury

Jeffrey Dunmire Ophthalmology Research Summa Health System, Akron, OH

SUMMA Finish System

Background & Significance

- · Laser sources can cause ocular trauma/retinal damage
 - Laser weapons
 - Laser sights
 - Some remote sensing instruments
 - Handheld laser pointers
- · War fighters and other operators are at increased risk
- Some lesions are asymptomatic and almost impossible to detect in routine examinations
- Rapid, non-invasive diagnostic techniques to detect molecular signatures of retinal injuries are needed.

SOME A

Hypothesis

- Laser injury causes photoreceptor and RPE cell death and violates the Blood Retina Barrier
- Protein from damaged cells can leak through the damaged blood retina barrier into the systemic circulation
- These proteins can be detected by proteomics in body fluids such as serum and saliva
- These proteins can be used as biomarkers for detection of laser induced retinal injuries.

STIRMA /

Approach to Laser Injury Biomarker Discovery

Stratica Built System

Experimental Design

- Animal use protocol approved by USAF Animal Research Programs; proposal #AFOSR-2007-2003A
- · 2 Groups, Paired-Control Study
 - Minimal Visible Lesion (MVL), mild; n-6
 - Grade II Lesion (GII), moderate; n-6

STATICA

Sample Processing

- Serum samples were fractionated by isoelectric focusing from pH 3-10.
- Fractionated serum was polymerized into 15% acrylamide gel pieces.
- Gel pieces were digested with trypsin and peptides were extracted.
- Dried samples were resuspended and desalted using a C18 ZipTip column (Millipore).
- Automated nano-flow HPLC-tandem mass spectrometry (LC-MS/MS) was performed.
- Data was blasted against the Uniprot macaque database.

Data Analysis

- Spectral counting was used to determine relative protein abundances.
- · Stringent data filtering and statistical analysis
 - Normalized p-value using G-test
 - p-value adjusted by Holm-Sidak method
 - Proteins retained if:
 - Adjusted p-value < 0.05
 - Scan count ratio > 2.0
 - · Occur in at least 50% of laser treated samples
- Minimized rate of false identification and increased confidence in biomarker candidates

102

Results: MVL Serum							
ime Post	Maraca	Human			amples w/ Delection	Normalized Scan	Helm-Sida
Treatment Uniprofit General		Protein Description	Centrel (n=6)	Treated (n=6)	(Treated/Control)	Adjusted p-Value	
	Q620AL5	721	Comptement factor (C4)	- 6	6	2.1795	0.01963T
4 Hous	OFTUCS	1138	NicoSnic receptor alpha 5 dubunit (CHRNAS)	0	8		0.003949
4 mus	028864	7035	Tissue factor pathway inhibitor (TFPI)	0	4		0.029670
	901082	3106	MHG class Fartigen (HLA-8)	0	3		0.001778
	B1NL87	64816	Gylochrome P450, 3A43 (GYP3A43)	- 2	6	6.2458	0.013228
	ABXENG.	146	Alpha-1D adrenoceptor (ADRA1D)	4	5	6.0684	0.00E+00
	PA7890	152.	Beta 1 advanagis receptor (ADPB1)			4,8632	0.000087
100	G61981	15514	Protein prospriation 1. regulatory seburistic (CTP14810)	(4.)	.0.	4.3246	ARTERIA
3.919	marries.	85811	Yuth risks responses to (Yu.P. tt)	1.0	9	A2290	0.00E-00
	CBH/91	4300	C-C-motormentate 6 (CC+5)		CF.	100	0.000000
	Q2YW12	-81182	Common (CKRK)	a.	1.80		0.056833
	CH63/2	793	2 Anthonics mission 1 (CALMS)	ò	1.		Ø.0141927
	GROKVIT.	29425	Teach one per type ? (TMS/RD)	4	8	4 (04)	0.022844
5 Days	605490	148	April-1A vanero audior (ADRAIA)	15	é	5.3097	6.011880
	089943	7297	Total de Phase 2 (FTC)		1.8	2.2087	-0,027486
	028500	3104	Protein Cirrings (BERPNAS)	7-3-	0	19.4142	9,008141
	P16002	920	Y-cell lastere psycoprotein (CD4)	0		9.5051	3.869(1)
1 What	Q89198	9402	a memografica.co	100	76	-1.2901	0.000000
	MISSIN	3126	MHC care & arrigin (HLADRIN)	3.1	(8)	2 Harr	0.000048
	0810011	3618	Kristrimen unograbule biss receptor (KIR2(8.9)	a	4	-	0.0000146
	DEVAIT.	8777	Mullion PDZ domain poten (MPDZ)	6	- 7	7	0.021246

Time Post Treatment	Macaca mulata UniprotID	Human Homolog Gene ID	Protein Description	Number Samples wi Positive Detection		Normalized Scan Count Ratio	Holm-Sidak Adjusted
				Control (n=6)	Treated (n=6)	(Treated/Control)	p-Value
4 Hours	Q3SPT9	3878	Keretin 18 (CK18)	1	-6	16.3935	0.000783
	Q3YAQ9	5230	Phosphoglycerate kinase 1 (PGK1)	8	6	5.0837	0.000309
	Q8WNP0	2828	Lewis alpha-3-focosyltransferase (FUT3)	6	6	2.2793	0.002356
	53118(24	1909	Ephrin receptor AE (EPHNE)	5.	6	2.2169	0.063633
1 day	0379409	5286	Prosphoglycerate xinese (PGK3)	2.		24.6994	2.628-43
	085719	3878	Karatri 15 (GNID)	2	6	22.7121	342545
	q598690	2825	I ware apta-3-focos/banchrase (FUD)	8	0	19 3307	0.0011400
	Q116/36	1989	Epfiningsophy/CE(Entro)		- 6	2.7974	630007

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

SOMMA

Conclusions

Next Steps

- Model of laser injury for GII and MVL was established in non-human primates.
- Panels of candidate protein biomarkers in response to retinal injury were identified.
- · This work was recently published:
 - Novel serum proteomic signatures in a non-human primate model of retinal injury. Dunmire JJ, Bouhenni R, Hart ML, Wakim BT, Chomyk AM, Scott SE, Nakamura H, Edward DP. Mol Vis. 2011 Mar 23;17:779-91. PMID: 21527995
- · Investigate individual proteins
- · Identify "best" diagnostic panel of biomarkers
- · Develop immunoassays

SONEMA

Acknowledgments

This project is being developed under Contract Number FA7014-07-C-A012, with the U.S. Air Force Surgeon General's Office (AF/SG) and administered by the Air Force District of Washington (AFDW). The Air Force has not yet accepted the products depicted and issuance of a contract does not constitute a Federal endorsement of the University of Illinois at Chicago.

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Sensors for Monitoring Laser Radiation Exposure

Sensing Strategies, Inc

Dr. Richard Preston

In response to the growing use of lasers in military applications, AF/SGR has developed novel laser sensors to detect and characterize laser radiation exposures. The sensors can be used for occupational health purposes in domestic testing or for force protection in tactical applications. Two types of laser sensors have been fabricated and tested. The first is called the Personnel Protection Sensor (PPS) which is designed to detect pulsed lasers in the 400-1100 nm spectral range. The sensor provides live feedback regarding the exposure levels and indicates if protective eye wear will be effective in preventing injury. The PPS is battery operated and can be run for up to seven hours to log exposures during domestic testing or in ground or flight operations in tactical engagements. The second type of sensor is called the Geolocation Sensor and it characterizes both pulsed and CW lasers. This sensor provides more detailed data on the laser radiation and explicitly measures wavelength and angle of arrival. The Geolocation Sensor is larger in size than the PPS and requires external power to operate. This talk will describe the sensors and present sample test data. AF/SGR welcomes organizations interested in borrowing the hardware for new test applications. AF/SGR will provide test planning consultation with potential users and provide subject matter experts to assist in data analysis if needed.

AF/SGR Research: Sensors for Monitoring **Laser Radiation Exposure**

Presented by Dr. Richard Preston, SSI President 91 Route 31 North, Pennington, NJ 08534

Support provided under AF/SGR program under subcontract to University Of Illinois, Chicago

Forensic Data

- Provide evidence for trials
- Understand trends
- Identify new threats
- Produce a quantitative data base
- Impact projections

Situational Awareness

- Hazard or annoyance
- Guide interception of perpetrator
- Utility of protection

· At or near the target

- In-cockpit
- On-person
- · Integrated into vehicle/aircraft
- · Away from the target
 - Ground or tower-based
 - Neighboring vehicle/aircraft
- · Additional factors:
 - Fixed location vs. portable
 - "Tethered" to power/network vs. stand-alone
 - User-operated vs. autonomous
 - Warning vs. recording (or both)

Options for Laser Warning

Sensor Deployment

Different Laser Technologies Pose Different Threats!

- ANSI Standard MPE calculation dependencies
 - Wavelength
 - Pulsewidth · PRF
 - · Exposure duration
- - · Damage is much easier to achieve with pulsed lasers
 - · Visible lasers are a more serious threat than near-IR

Commercially Available Lasers and Typical Exposures

- Wicked Lasers, Inc. (~\$3K)
 - 300 mW, 0.5 mrad, 532 nm
- 1.5×10-5 W/cm² at 3 km
- Well below eye hazard level but very high psychological impact
- Higher power lasers (10W) available commercially as well
- Quantel Brilliant B (~\$35K)
 - -1J/pulse, 7 ns, 0.3 mrad div
 - 28 km nominal ocular hazard distance

How Should Laser Warning Effectiveness be Evaluated?

- · Provide technical parameters that are relevant to the requirement
 - For example, to be useful for medical purposes, sensors must report wavelength, amplitude, pulse characteristics
 - Many existing LWR receivers do not detect CW radiation or characterize source as needed for medical and protection purposes
- · Some current laser sensors only detect at hazardous levels
 - Field tests show operators want detection thresholds <0.0001× MPE
 - . Don't be fooled by argument that below hazardous exposures should be
- · Worthy questions that a LWR should help to answer:
 - · What are the levels of current exposures?
 - · Are the exposures and techniques changing over time?
 - Is there anything not visible but potentially hazardous buried in exposures?
 - . Do I have the right evewear if needed?

How is Data from Laser Warning Systems Utilized?

- · Provides immediate warning to aircrew upon hazard condition
- · Provides specific instruction on corrective action (e.g., deploy eyewear, and what type)
- data for later analyses

Personnel Protection Sensor

Description

- Designed to warn users about potentially hazardous short-pulse lasers
- level of exposure, and indicates effectiveness of laser eyewear

Technical Specifications

- Spectral range = 400-1100 nm Field of view = 110°

- Rechargeable battery; >7 hours operation

Data Products

- Warning messages: "Vulnerable", "Danger", and "Use Countermeasure" (real time display)
- Retrieved file contains GPS time and position where events occurred, and event characterization
 - In-band or out-of band
 - Laser PRF and brightness

SSi

Performance Characterization

- Colored regions indicate wide dynamic range of sensor operation
- Performance measured using a wavelength-tunable short-pulse laser (OPO) over a wide range
- Green line is MPE
- Report lasers before they reach a hazard level (indicates "vulnerable" rather than "hazard")
- Low level indication also reported (cyan region) to support situational awareness

PPS Lab Demo: In-Band and **Out-of-Band Threats**

Two PPS sensors loaned to Moody AFB personnel (Captain Lammens)

- Obtain operator feedback on functional and performance characteristics
- · Flight sorties carried out but no laser
 - detections occurred (as expected) · Some false positives on runway near
 - SSI working to design package mods to reduce susceptibility
- SSI suggested use of PPS to measure potential eye hazards near laser designator boresight target

PPS Sensor use in Range Safety Application

- PPS sensor installed on and near target board to test for hazardous levels
- In-beam signals confirmed eye hazardous

Target splash test - 26 May '11

- PPS sensors positioned to detect reflections from designator target board
- Sensor readings indicate LEP should be used in target vicinity
- Additional concern for specular reflections
- Sensors also deployed to look for "overshoots"; none seen on 5/28

Moody Deployment Summary

- Useful experience gained in sensor operation by flight crews · Expect debrief of Moody personnel in August/September time
- · Useful data collected on target splash in active area of
- · Will write data summary report to explain utility of activity

- Designed to provide broad coverage of multiple types of lasers
- Detect, characterize, and record CW and pulsed lasers at tactically relevant ranges
- For use in ground-based or airborne platforms

Multi-threat Laser Warning Sensor

Technical Specifications

Data Products

- Spectral range = 400-1700 nm
- Field of view = 120°
- Pulsed and CW lasers
- Multiple lasers simultaneously (laser
- Can cue countermeasures or high resolution imager
- Calibrated amplitude (power/energy density), wavelength, angle of arrival, temporal properties (short pulse indication, PRF) All data stamped with GPS time and position

- User operated or stand-alone
- Option for networkability

Can independently characterize simultaneous events

SENSING STRATEGIES, INC. SS/ SINSING STRATEGIES, INC.

M2A Outdoor Operation

Objective of Test/Demonstration

- Collect laser data and send live over radio link into CoT system
- Data goes to operators on Falcon View and to medical personnel at MOCC
- Data linked to other users from MOCC

Cursor on Target Demo: Teaming with AF-A3

Technical Approach

- Define data fields for dissemination and produce CoT compatible format
- Modify Geolocation sensor prototype
- Contract with naval Post Graduate School (NPS)
- NPS-owned CoT surrogate network

Task	Feb	Mar	Apr	May	June	July	Aug	Sep
Kickoff	•		7.11	100			11.	1
Data def.	- 1			Z		453		
Sensormods	11.0	130				1	111	
Test planning								
Lab demo	300			214				
Field test	100		11	777				12.7
Report	121	1111	9111	25				

CoT Data Products

- Pulsed Lasers
 - Exposure relative to MPE
 PRF
 - Eye safe RF
 - CW Lasers
 - Wavelength
 - Amplitude
- Time of eventLocation of sensor

CoT Demonstration Impact

- . CoT may be the best way to move data quickly in-theater
- Good demonstration could lead to incorporation of CoT in other SGR delivered hardware
- There will be a need to coordinate with operators and data users for more complete CoT laser threat definition
 - Participate in CoT working group to establish standards

Off-Axis Detection Investigation

- Off-axis scatter mechanisms can be used to detect lasers when someone else is the target
- Signals many orders of magnitude weaker
- Sensor design is different (larger optics and narrower FOVs)
- Demonstrations carried out under SSI SBIR Phase II contract
 - · Pulsed designators
 - High power CW

- Range Safety (LOHAZ)
 - Alert range safety officer if beam leaves safe corridor
 - Provide total energy budget management to prove tests were conducted safely
- Force Protection (Laser Sentry)
 - Detect lasers being used to target friendly forces
 - Forward deployed airbases, convoys

AF/SGR Off-Axis Detection Opportunity

- AF/SGR providing \$40K for Eglin AFB to run one week test for on and offaxis laser detection
- Eglin AFB will provide test range with forward airbase mock-up
- AATC will provide one Special Ops Forces Laser Aided Marker
- Test Objectives
 - Simulate force protection mission on test area
 - "Optical fence" monitoring of pulsed laser testing
- Expected outcome
 - Demonstration of sensor concept for improving safe range operations and extended area laser threat monitoring
 - SBIR Phase 3 a contractual option if building a deployable prototype for field demonstration (CENTCOM) is desired

Summary

- SGR has successfully developed sensors suitable for characterizing laser radiation sources
- SGR continues to coordinate with operators to get prototype hardware fielded for user-feedback and lessons learned
 - Range safety
 - Battlefield
- Data management and dissemination remains key topic of interest so data ends up in the right hands/organizations
- SGR will continue applying sensors to occupational health and forceprotection missions

Contact Information

Major Colby Adams colby.adams@pentagon.af.mil 703-681-6103

Richard Preston rpreston@sensingstrategies.com 609-818-9801 x101

(THIS PAGE INTENTIONALLY LEFT BLANK)

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Gene Expression Profile of Jurkat Cells Exposed to High-Power Terahertz Radiation

711 HPW/RHDR

1Lt Jessica Grundt

Terahertz (THz) radiation sources are now being used in a various military, defense, and medical applications. Widespread employment of these new applications has prompted concerns regarding the potential health effects associated with THz radiation. A source for these concerns stems from results of recent studies which provide evidence that THz radiation can couple directly to biological macromolecules (lipids, DNA, proteins) causing localized effects affecting gene transcriptional processes. In this work, we hypothesized that if THz radiation does cause direct damage to biological macromolecules, then THz-exposed cells may express a specific gene expression profile indicative of this unique damage. To test this hypothesis, Jurkat cells were irradiated with a molecular gas THz laser (2.52 THz, 636 mWcm-2, durations: 5, 10, 20, 30, 40, or 50 min). Cellular viability was assessed 24 h post-exposure using conventional MTT assays, and gene expression profiles were evaluated 4 h post-exposure using mRNA microarrays gene chips. Comparable analyses were also performed for hyperthermic (bulk heated) positive controls (44°C for 40 min). We found that many of the genes that were upregulated in the THz-exposed samples were also expressed in the thermal controls; however, several genes were only expressed in the THz exposure group. Interestingly, these target genes are known to function in the regulation of cellular proliferation, membrane repair, and transcriptional processes. These results suggest that THz radiation may couple to biological macromolecules resulting in direct effects, which do not appear to be fully attributable the temperature rise generated during exposures (i.e. conventional thermal effects).

Talk Outline

- Terahertz Introduction
- · Motivation for THz Bioeffects Research
- · Recent Experiment
- Results
- · Summary and Impact
- · Acknowledgements/Questions

THz Applications that Exploit These **Unique Properties**

Medicine: Cancer & Burn Diagnosis

Taylor et al. Opt Letters (2008)

Summary and future directions

Acknowledgements

Summary

- In general, human Jurkat cells launch similar transcriptional gene expression profiles when exposed to THz radiation or bulk heat
- However, several biomarkers appear to be only expressed in THzexposed samples
 - Interestingly, these genes encode for cytokines and proteins responsible for maintenance of plasma membrane properties

Future directions

- Investigate varying:
 - Cell lines
 - Frequencies
 - Pulsed vs CW

Distribution & Approved for public ramass

19

Distribution A. Approved for public releases.

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Department of Defense Biological Threat Responses to the 2009-2010 H1N1 Influenza Outbreak

AF/A5XP

Ms. Calli Levin

Beginning in April 2009 with the outbreak and rapid spread of the H1N1 "swine flu," the world witnessed the potential effects of a bioterrorist attack. While the 2009-2010 H1N1 pandemic was a naturally-occurring disease outbreak and not a deliberate attack, the symptoms, infection rates and response mechanisms associated with the virus could be similar to the impacts of a deliberate biological agent attack. Unlike nuclear or chemical weapons that have clearly identifiable signatures, biological agents may be disseminated covertly, and therefore they may not be identified immediately. The first indication of a biological event could be more numerous-thanexpected hospital visits in a particular location (e.g. a military installation), or in a group of people who were in the same location at the same time (e.g. basic combat training). Force health protection planners will be better positioned to respond to future biological events using experience gained during the H1N1 pandemic. It provided the Department of Defense an opportunity to exercise disease containment planning measures and address biological warfare response mechanisms. Seventy-five percent of H1N1 infections worldwide involved those under 30 years of age—a significant statistic for the DoD as more than 66 percent of active duty military personnel are within that age bracket. The H1N1 outbreak prompted the DoD to implement a range of force health protection measures, focusing on social distancing efforts called for in USNORTHCOM CONPLAN 3551, and on vaccination campaigns. This presentation will address the protective measures implemented by the DoD and will present key lessons learned.

Headquarters U.S. Air Force

Integrity - Service - Excellence

DoD Responses to the 2009-2010 H1N1 Influenza Outbreak

Ms. Calli Levin AF/A5XP 3 Aug 2011

Agenda

- The Biological Threat Environment
- Why Pandemic Influenza Matters to DoD
- DoD Responses to H1N1
- Lessons Learned/Best Practices

Integrity - Service - Excellence

The Biological Threat

WORLD

RISK

"One of our Greatest Concerns continues to be that a terrorist group or other dangerous group might acquire and employ biological agents...to create casualties greater than September 11."

Integrity - Service - Excellence

Why PI Matters to DoD (1/2)

- Services are required to respond to and mitigate bio events of operational significance whether naturally occurring or deliberate
 - A5XP is OPR for AF Disease Containment Planning
 - AF Medical career fields will implement plans
- Many bio threat responses—especially medical responses—will be similar in natural and deliberate outbreaks
 - Unlike chemical or nuclear threats, no clear bio signature
 - Outbreak will have same or greater effect on employee absenteeism, school and work closures, distribution of medical/nonmedical countermeasures, mortality rates
 - Bio event may have major effect on mission continuation

H1N1 provided DoD opportunity to exercise bio-threat responses

Why PI Matters to DoD (2/2)

Spanish Flu Deaths by 20

(2008)								
Service	18.21	22-30	21.49	41.60	A1-818	Average Age		
Army	12.2%	43%	25.5%	7.9%	0.7%	29		
Navy	12.5%	48%	75.2%	£ 2%	23%	29		
Marine Corps	26.9%	-92%	38%	21%	02%	-26		
Air Force	14.4%	48%	263%	10%	0.64	50-		
Coast Guard	12.2%	48%	27%	12%	1%	30		
Total :	15.05	17%	72.00	200	TARK.	24		

Average Age by Service

The 1918 Spanish Flu:

- Killed between 20-50 million people
- Killed more US Servicemen than WWI
- Infected 25 percent of the US population

Integrity - Service - Excellence

H1N1 2009 Timeline

April 26: First cases reported in Mexico, US April 27: 73 cases in four countries

April 29: World Health Organization (WHO) declares Phase 5 Outbreak (human-to-human spread within one region)

June 11: 17,400 cases in 62 countries; WHO declares Phase 6 Global Outbreak

Integrity - Service - Excellence

Non-Medical Response Measures

- Social distancing
- Travel restrictions
- AF public affairs health campaigns
 - Stay at home when sick
 - Cover mouth when coughing
 - Wash hands regularly
- Alternate work schedules/telework
- C-BW exercises
- Updating disease containment plans
- Operational risk management

Integrity - Service - Excellence

Medical Response Measures

- Anti-viral drug stockpile and usage
 - Relenza, Tamiflu stockpiled at medical treatment facilities
- Vaccine procurement and distribution
 - Research and development
 - Prioritization
 - Immunization Campaign
- H1N1 Reporting
 - USNORTHCOM CONPLAN 3551
 - Phases 0/1 Monthly reporting
 - Includes impact on medical facilities, services, resources

H1N1 Lessons Learned

J.S. AIR FORCE

- PI policy guidance during outbreak confusing, not aligned
 - USNORTHCOM, DoD, World Health Organization all different
 - No cutoff mechanism for CONPLAN 3551 reporting
 - No Disease Containment Plan for Headquarters AF
- Anti-viral stockpile difficulties
 - Lack of Memorandum of Understanding with state
 - Unaware of how to request Tamiflu if not part of formulary
- Travel restrictions not standardized across AF or DoD
- Personnel accountability systems not equipped for lengthy event— current systems require one report/event; cannot update
- Employees unable to telework as planned-lack of policies, equipment, and software knowledge hampered employee access

Integrity - Service - Excellence

H1N1 Best Practices

- Early detection/surveillance
- Vaccination program
- Public Affairs health campaign
- Prior disease containment planning

Immunization Coverage (Mar 10)

(Active Component)	DoD-All*	ARMY	MARINES*	NAVY*	COAST GUARD	AIR FORCE
Seasonal Vaccine	93%	95%	86%	86%	97%	97%
Pandemic Vaccine	84%	88%	77%	76%	92%	90%

Integrity - Service - Excellence

Additional Observations

- DoD responses to H1N1 were successful
 - Limited operational impact
 - Few military deaths relative to civilian population
 - Pl guidance practiced/validated
- Hundreds of lessons learned input into DoD sites—major items being addressed through working groups, task forces
 - Pl policy guidance
 - Stockpile issues
 - Telework limitations

What did YOU experience during H1N1?

QUESTIONS?

Ms. Calli Levin AF/A5XP Calli.Levin@pentagon.af.mil 703-695-3029

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Expanding Surge Capacity in Airborne Isolation & Worker Protection During Bioterrorism & Epidemic Response

U.S. Public Health Service

CDC - NIOSH

CAPT Kenneth Mead

Shortages in airborne infection isolation capacity are well documented within the U.S. healthcare system. During an airborne infectious epidemic, non-traditional healthcare environments such as field medical shelters, social service facilities, nursing homes, and quarantine stations, could also require emergency airborne isolation capacity. An affordable method for expedient airborne infection isolation is required to meet emergency surge requirements. The research discussed in this presentation began as an investigation of expedient methods to establish airborne infection isolation within conventional, non-isolation hospital rooms using portable filtration units and common hardware supplies. The research focused enhanced scrutiny on concentration reduction and worker protection, rather than focusing solely upon containment strategies. For the field studies, two airborne isolation configurations were evaluated within each of four Midwestern hospitals. Results revealed the expedient airborne isolation configurations were successful at airborne containment while also providing significant reductions in potential worker exposures. Concentration reduction ratios were 98-99 percent or greater, resulting in workplace protection factors several times greater than that assigned for N95 respirators. Subsequent research has expanded the concepts to medical shelters and other alternative-care environments and has begun to investigate adaptations for ambulance interiors. One application even operates off-the-grid in austere environments. The ability to keep response workers healthy should be a paramount consideration when managing an emergency response operation. When combined with the requirement for isolating infectious patients to avoid further disease propagation, the findings of this research effort could have important implications upon U.S. healthcare emergency planning policies.

Expanding Surge Capacity in Airborne Isolation & Worker Protection During Bioterrorism & Epidemic Response

CAPT Kenneth R. Mead, Ph.D., P.E.
Centers for Disease Control and Prevention
National Institute for Occupational Safety & Health
Cincinnati, OH

Expedient Airborne Isolation for Healthcare Facilities During Emergency Epidemic Response

<u>Purpose</u>: To ID & evaluate effective parameters for patient isolation and healthcare worker protection to meet airborne isolation surge requirements during bioterrorism or epidemic emergency events:

Basically looking for a cheap, easy, yet effective method for reducing potential exposures to healthcare workers.

Disclaimers

- "The findings and conclusions in this presentation are those of the author and do not necessarily represent the views of the Centers for Disease Control and Prevention or the National Institute for Occupational Safety and Health"
- "Mention of company names or products does not constitute endorsement by NIOSH"

Recent Events & Concerns

- · Multidrug-resistant tuberculosis (MDR-TB)
- · Bioterrorism (Smallpox, Plague...)
- · SARS
- Extensively drug resistant TB (XDR-TB)
- Monkeypox
- H5N1
- H1N1
- Extremely Drug Resistant TB (XXDR-TB)
- MRSA, C. Dif., ...
- ???

Engineered Airborne Infection Isolation (AII) Design Summary*

- · Dedicated single-patient room
- At least 12 air changes per hour (ACH) of total ventilation (new construction), including a minimum 2 ACH outside air
- Maintained at negative pressure relative to adjacent areas (minimum delta P of 0.01 inches water gauge or 2.5 Pa) with seams & penetrations sealed
- All air exhausted to outdoors, unless HEPA-filtered and returned to dedicated HVAC system
- * Design Guide Sources: CDC, ASHRAE, FGI

The Problem

- Almost 40% of U.S. hospitals lack an engineered AII room. (AHA, 2006)
- Large hospitals typically have a few AIIR's and small hospitals may have 1,
- Essentially NO engineered surge capacity in case of epidemic (natural or intentional)
- Non-hospital medical, social service facilities, and health departments generally lack isolation capabilities
- · Cost ~ \$30K-\$40K per room to construct

Example: Limited Surge Capacity

- Nevada Hospital Association
 - State Survey (2006)
 - -216 AII beds plus 91 bed surge capacity
 - 307 "available" AII beds to serve roughly 2.5 million residents plus an average of over 4 million visitors/month

Response Options:

Aren't Always Worker-Friendly

- · Patient transfer
- Big-area iso (hot) zones with patient cohorting
- Respirators and surgical masks and traditional patient rooms
- Traditional patient room + Portable HEPA units to get 6-12 ACH of dilution filtration

Limitations of Dilution

- Poor room air mixing adversely impacts removal efficiency
- The airborne pathogen circulates throughout the room
 - All occupants exposed to "same" concentration
 - Increased distribution of surface contamination
 - Increased risk of contaminant migration out of the room
- Shouldn't be used when worker BZ is close to source
- · Portable filtration little guidance on how to deploy

Dilution Wait Times for Desired Removal Efficiency

ACH	Minutes Required for the Desired Removal Efficiency						
	90%	99%	99.9%				
2	69	138	207				
6	23	46	69				
12	12	-23	35				

Assuming the aerosol source is stopped and a good dilution ventilation design (K=3), it will take 69 minutes (3 x 23) to achieve a 90% dilution of airborne aerosol (90% reduction = protection factor of 10) or 138 min for the "standard" 99% reduction.

three can be assumed for a recur with 12 ACH and good air mevement). $c_2 = c_1 e^{\frac{|\Delta t|}{V}} \qquad \Delta t = -\frac{V}{Q} \ln(C_2/C_1)$

Hierarchy of Controls

ranks actions by their likely effectiveness

Listed in order of preference:

- . Elimination eliminates the source of the exposure
- Engineering Controls uses engineering approaches to contain source and reduce exposures below harmful levels
- <u>Administrative Controls</u> Uses administrative directives regarding work practice, shift rotations and prophylaxis to limit opportunities for possible harmful exposures
- <u>Personal Protective Equipment</u> Wearing gloves, gowns, masks, respirators and other PPE appropriate for the hazard

Comment: When it comes to hands-on health care and an airborne infectious disease for which there is not a vaccine, the traditional approach has been to switch immediately to PPE Controls.

- Use local control techniques (a.k.a. Ventilated Headboard w/Canopy)
 - Captures and removes contaminant before it has a chance to disperse.
 - Reduces the required time for the overall room to achieve a desired removal efficiency.

Qualitative Smoke Tests

- "Scientific" handheld smoke generator
- · Educational "toy"

Source (Aerosol) Generation

- Medical Nebulizer
- R.O. H₂O w/ 3 drops ~1.6 um polymer microspheres

Field Methodology

- The research was performed in multiple healthcare settings not currently engineered for airborne infectious isolation,
- Selected locations were two urban hospitals and two smaller, rural hospitals all within the states of Oklahoma and Kansas.
- Each facility received repetitive evaluations of the two expedient isolation design variations previously identified in the feasibility study.

Integris Baptist Medical Center Zone-within-Zone OKC, OK

Rm 955, 2-Bed: Integris-Baptist OKC

Sample positions

Dosing positions

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Ventilated Headboard (1-Bed) INTEGRIS Baptist Medical Center (IBMC), OKC, OK B 1.0/1.0 99/.99 117/ cfm (blocked to 0) Sample positions Dosing positions Exposure Reduction Ratios: -A Ratio of .99 = 99% Capture 1.0 = Zero' Exposure -Two test conditions evaluated, results for both (C1/C2) reported

GMRR Summary (lower limits, simultaneously–corrected for α = 0.10, in parentheses), <u>Zone-Within-Zone</u> (2-Bed) configuration, Gray columns = corner-to-corner dilution flow, White Columns=side-to-side source control flow

	(Bold R	Red font	= GMF	R <909	%)			
Hospital		MC		MC		MH	IBMC	
Sample Pos.	2:1	3:1	2:1	3:1	2:1	3:1	2:1	3:3
HCW-Upstream	0.134	0.163	0.998	0.993	0.241	0.544	0.998	0.998
	(-4.10	-5.65)	(0.993	0.971)	(-0.536	0.076)	(0.986	0.989
HCW-Downstream	-0.767	-0.800	0.928	0.993	0.204	0.641	0.996	0.999
	(r	na)	(na)		(na)		(na)	
Patient chest	ж	na	0.761	1.00	0.171	0.791	0.998	0.99
	(na)		(na)		(na)		(na)	
Patient feet	na		na		0.247	0.911	0.999	0.99
	(r	na)	(n	a)	(-0.525	0.821)	(0.994	0.991
Outside Gap 1	0.998	0.999	0.998	0.993	0.984	0.991	0.998	0.99
	(0.991	0.989)	(0.994	0.983)	(0.968	0.982)	(0.987	0.991
Center Room	0.999	0.999	0.999	0.998	0.996	0.996	0.995	0.99
	(0.994	0.991)	(0.996	0.996)	(0.992	0.992)	(0.970	0.979
Outside Gap 2	0.993	0.997	0.999	0.999	0.988	0.997	0.998	0.99
-	(0.958	0.979)	(0.996	0.998)	(0.965	0.989)	(0.987	0.981
Bed 2	0.987	0.997	0.999	0.996	0.987	0.991	0.998	0.99
	(0.942	0.989)	(0.996	0.991)	(0.971	0.982)	(0.990	0.979

GMRR Summary (lower limits simultaneously–corrected for α = 0.10 in parentheses), Ventilated Headboard (1-Bed) configuration

(Bold Red font = GMRR <90%)

	VAMC		CKMC		SJMH		IBMC	
Hospital Sample Pos.	2:1	3:1	2:1	3:1	2:1	3:1	2:1	3:1
HCW-RHS	0.987 (0.947	0.996 0.979)	0.999 (0.996	0.997 0.991).	0.998	0.997 0.995)	0.998	0.998
HCW-LHS	0.997 (0.986	0.996 0.980)	0.998 (0.995	0.998 0.993)	0.998	0.998 0.997)	0.999	0.998
Patient chest	1.00	1.00 0.998)	0.967 (0.898	0.920 0.724)	0,998 (0.997	0.997 0.995)	1.00 (1.00	1.00
Patient feet	0.995	0.997 0.984)	0.996 (0.989	0.993 0.977)	0.996 (0.993	0.997 0.995)	0.998 (0.990	0.998
Center Room	0.997	0.996	0.997	0.996	0.997	0.998	0.999	0.997

NEW TERM: Expedient Isolation Protection Factor (EIPF)

- A surrogate measure of the workplace protection
- Analogous to Simulated Workplace
 Protection Factor (SWPF)used by NIOSH in respirator testing.
- · EIPF can be calculated by:

$$EIPF = (1 - GMRR)^{-1.0}$$

28

Expedient Isolation Protection Factors (EIPF)

Zone-within-Zone Configuration

Inner Zone:

Corner-to-Corner: EIPFs negligible or neg.

Side-to-Side:

Upstream: Mean EIPF = 308 (143-1000) DnStream: Mean EIPF = 48 (14 - 1000)

Outer Zone: Mean EIPF = 222 (63-1000)

Expedient Isolation Protection Factors (EIPF)

Ventilated Headboard Configuration

- GMRRs = 1.0 must be carried out to true value (<1) for EIPF formula to apply
- Across four study sites, Center Room and worker positions:

Mean EIPF = 338* (77-1000)

*>30 times OSHA's N95 PF of 10

30

Why Is Healthcare Worker (HCW) Protection Important?

- Polling: As few as 24 percent (worse case comb. of willingness and ability) of greater New York HCW's willing to report to work for an infectious airborne epidemic such as SARS¹.
 - Fear regarding personal and family safety were the primary factors.
- Results consistent with Israeli study².

Polling Data vs. Real Events

- Polling data may be optimistic
- 2003 Monkeypox experience
 - Symptoms: Initially present as smallpox

Politic Index Dio 2, postage 1993-9 Usperight C 2000 by Legacoust Williams & Wilkins, Inc.

Vol. 19, No. 12. Printer in U.S.A.

A case of severe monkeypox virus disease in an American child: emerging infections and changing professional values

MICHAEL G. ANDERSON, JD, MD, LAWRENCE D. FRENKEL, MD, SCOTT HOMANN, MD AND JENNIFER GUPPLY, MF.

Slide Credit: P.K. Carlton

"One unexpected complication of the admission was the difficulty in finding nurses and physicians willing to care for the patient. Many declined with the explanation that they had not received smallpox vaccine, and others declined direct patient contact without explanation."

Ped Infect Did J, 22:1093-1096, 2003

Conclusion

- · Current guidance does not adequately address isolation response needs at the local level.
- Shortages of isolation capacity may impede the medical response to an emergency
- Current trends in surge iso design do not sufficiently address worker protection issues
- Expedient in-room isolation units employing high-flow HEPA filtration offer alternatives to emergency AII that are:
 - Affordable
- Available
- Effective
- Simple

Acknowledgements & Gratitude

David Johnson, Daniel Boatright, Nurtan Esmen, Ramkumar Parthasarathy, Margaret Phillips and Robert

Duane Hammond, Byran Adams, Adam Paberz, Dan Farwick, Stan Shulman, Amy Feng, Mike Gressel, Phil Comp, Beverly Stiles, Tim Cathey, Chris Thomas, Stacey Martin, Nancy Winkelman, Paul Hedrick, Danielle Johnson, John Broaderway, Harry Goett, Barbara Morton, Joe Fernback, Erik Devine, Nick Trifonoff

Central Kansas Medical Center, Great Bend, KS INTEGRIS Baptist Medical Center, OKC, OK St. Joseph Memorial Hospital, Larned, KS VA Medical Center, OKC, OK

136

Current/Future Activities – continued

- . CFD (UC)-AIIR vs traditional patient room
- · Medical Shelters (multi-beds)
- Portable LEV for aerosol-generating procedures
- · Reverse Isolation ("Protective Isolation")
- · Ambulance Ventilation
- · Ambulance UVGI Decon
- · Hospital Room Ventilation

17

-Multi-bed version of expedient iso ventilated headboard sized for FMS cots -Seeking to demonstrate concept with emergency response exercises -Application in both "regular" and medical shelters -Ease of construction can be enhanced with quick-connect ducting

- Another view of multi-bed set-up
- Same cots as in SNS Stockpile
- Note new canopy design

Now available in extruded aluminum construction

40

Reverse Isolation Configuration

- •Recent testing inspired by Fukushima Nuclear plant incident
- •HEPA airflow reversed to provide clean airflow over patient's torso
- •Front curtain creates pos-pressure minienvironment
- Tested using aerosol spectrometers + modified version of respirator fit-testing method

Results: > Iso Class 5

"Protection Factor" > 15,000

Questions?

He who cures a disease may be the skillfullest, but he that prevents it is the safest physician.

~ Thomas Fuller (1608-1661)

British Clergyman and author

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Update on Lab validation of new bioagent ID system: FilmArray

60 MDG

Maj Carlos Maldonado

In accordance with current (SGROCC #10000040) AFMS needs for advanced molecular diagnostic capabilities against infectious disease agents, the Clinical Investigation Facility (CIF) at Travis AFB, is participating in a multi-center, limited labora- tory validation (LLV) to assess both the utility and reliability of a new PCR platform in a variety of military settings. Idaho Technology's FilmArray system is a small (bread box-sized) PCR-based instrument capable of simultaneously detecting multiple biological agents from a single clinical sample. This novel multiplex system also incorporates an initial sample purification step within the instrument eliminating the need for other equipment and a separate facility. The system's sample-to-answer turnaround time is approximately 1.25 hrs, which is a significant improvement over the 3-4 hours it takes for the currently fielded JBAIDS system. This study is sponsored by the AFMSA Research and Development Innovations (AFMSA/SG9) office and Idaho Technology Inc. Learning Objectives:

Objective 1. List the current force health protection requirements of different MAJCOMs.

Objective 2. Discuss how the 43T clinical R&D is working to meet those force health protection requirements.

Objective 3. Discuss the advantages, limitations and mitigation strategies of molecular-based diagnostics.

Overview

- · Current AFMS (infectious disease) Requirement
- · Fielded Platform: M1M and JBAIDS
- · What is Real-Time PCR?
- · New System: FilmArray
- · Multiplexing: Nested PCR
- · New System's Capabilities, Specs, Pros and Cons
- · What's next?

AEF: Operational Tempo

Current Medical Requirement

How do we monitor emerging/endemic infectious diseases and/or other biological agents?

MAJCOMS: ACC, AMC, AFSOC

Joint Medical Connectivity

Pre-symptomatic 'shedding'

Biological Agents (Operational Significance)

Levels of Identification

(Biological agents)

PCR-based assays

Protein (structural & secreted)

· Nucleic Acid (DNA & RNA)

ECL-based assays

New System: 'Nested' PCR

New System: 'Nested' PCR

Schematic of Nested Multiplex PCR

A large volume multiplex PCR (shown here as 4-plex on the left side of figure) is run for a limited number of cycles (20). The reaction is diluted and distributed to individual small real time PCR reactions that contain primers (green) nested inside the primers (blue) of the first PCR reaction. A template amplified in the first reaction (by the #3 primers) is further amplified in only one of the second reactions.

New System: Sample 'Prep'

New System: Workflow

· As tested by LLV instructions

FilmArray® Instrument

FilmArray® Instrument

New System: Results Report

New System: Specs

New System: Targets

New System: Targets

New System: Targets

New System: Expectations

- · Simple: Automated protocol requires only two minutes of hands on
- · Easy: No precise measuring or pipetting required
- · Fast: Turnaround time of one hour
- Comprehensive: 21 target respiratory panel

New System: Challenges

JBAIDS Next Generation (FY17)

- · Simultaneous testing of multiple samples (individuals)
- · Complex clinical matrices: blood, sputum, stool, etc.
- · Complex environmental matrices: soil, fatty food, pigments
- · Real-world 'co-mingled' pathogen populations

Key Performance Parameters

- Simultaneous ID of multiple toxins/pathogens
- In both clinical and environmental matrices Device and assays must be GMP compliant
 - Required FDA approval (clinical diagnostic)
 - Minimal logistics/personnel for operation

- Automated/integrated sample preparation
- Hand-held, ruggedized and of minimal weight
- Onboard software capable of device operation, output analysis, and information transfer

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 Force Health Protection

Next-Generation Sequencing Technology for Disease Detection

711 HPW/USAFSAM-PHT

Dr. James Baldwin

Polymerase chain reaction (PCR) is a highly efficient method of pathogen detection; however, most PCR-based assays are unable to provide deeply multiplexed detections (25 or more). Furthermore, such tests need foreknowledge such as primers/probes in a PCR reaction. As a consequence, PCR tests are limited to a small number of potential known microbial targets and are not suitable for the detection of unexpected or newly emergent pathogens. We have demonstrated that methods such as degenerate PCR may be employed to detect larger selections of organisms, such as newly emergent threats, where exact primers are unknown. However, with increase in scope comes a greatly increased burden on the detection technology in the form of potentially numerous detections (deeply multiplexed) per sample. To meet the larger goal of detecting wide ranges of organisms in a manner suitable for clinical and environmental surveillance against biological threats, future assays will require enhanced equipment and software. The solution is next-generation sequencing technology. These devices can read many thousands to millions of parallel sequences in a single run (sample). Furthermore, they can produce exact sequences that are far more precise for identifying microorganisms than PCR alone. Recent advances could allow such platforms to approach the cost envelope of conventional PCR testing. Assays based on next-generation sequencing can provide the capability to detect rapidly emerging infections in deployed forces. A mature test in such a platform would offer a massive boost to the pathogen identification capabilities commonly available in the Air Force. Distribution Statement A: Approved for public release; distribution is unlimited. Case Number: 8ABW-2011-2230, 14 Apr 2011.

Next-Generation Sequencing Technology for Disease Detection

AFMS Medical Research Symposium August 3, 2011

> James C. Baldwin, Ph.D. USAFSAM/FHT Applied Technology Center 2510 Fifth St., Bldg 840 Wright-Patterson AFB, OH 45433-7913

Disclaimer

The use of trade name(s) in this presentation does not constitute an endorsement or approval of the use of such commercial hardware or software but rather serves to examine the scientific merit and potential uses of the technology. This presentation may not be cited for purposes of advertisement.

Distribution Statement A: Approved for public resease, distribution is unlim

Emerging Infectious Disease

EID Is a Global Problem

Emerging infectious disease (EID) is a disease whose incidence has increased and threatens to increase in the near future.

- ✓ EID may account for at least 12% of all human pathogens.
- Some EIDs include diseases caused by a newly identified microorganism (e.g., SARS).
- Other EIDs can result from a change or evolution of an existing organism (e.g., influenza).
- Known infections that spread to a new area or population (e.g., West Nile virus) are also EIDs.

TREASTIONAL NOCETY
TO INTERPORT DIVISION

TO

or public release, distribution is pullimited. Case Number: 89AB W-2011-3697, 28Van 2011

Proceedings of the 2011 AFMS Medical Research Symposium Volume 3 **Force Health Protection**

Upper Respiratory Viruses Cause Substantial Morbidity and Mortality Every Airman a Force Multiplier

Polymerase Chain Reaction Is a Rapid Way to Detect and Amplify DNA Sequences

- y Over 52 strains of human adenovirus.
- ∨ Over 10 major strains of influenza.
- ∨ 5 strains of noteworthy coronavirus.
- Over 15 major classes of human pathogens in Picornaviridae.
- - Infrequently seen.
 - Cause illness of limited severity.
- ∨ However, several strains are of the highest concern.
 - ∨ These viral serotypes can impact the health and readiness of military personnel.

- ✓ Required specificity (or nonspecificity).
- ∀ Low complexity of sample handling.
- \forall High throughput.

How Do We Get an Identification? ry Airman a Force Multiple

Limitations of PCR Alone

Getting from here.... To there...

Every Airman a Force Multiplier ∨ PCR can easily be used to detect previously known

- ∨ However, EID can be problematic. If the EID is a new strain, PCR will not always produce the expected results.
 - v PCR will either erroneously detect this EID as the old infection, OR
 - V PCR will fail to detect because the primers or probes don't match the EID.
- ∨ PCR alone simply does not give enough information to know if this has occurred.

PCR and Sequencing Offer a Solution

Sequencing Used to be Cost and Labor Intensive

- Sequencing a PCR product to identify it is not new; it is simply becoming very affordable.
- If tests relied on sequencing as a detection method, more general PCR tests could be utilized.
- Sequencing provides the opportunity for more possible detections per test.
- Generating more than 20 or 30 products in a single test is not a problem for many sequencing methods.
- Sequencing is a perfect way to see the similarities between organisms and identify EIDs.

1990s
A T G C

\$0.25/base

\$0.10/base

\$0.02/400 bp
sequence!

10/day

100/day

There Are a Number of **Platform Choices**

Serotyping Detection Assays Suitable for EID

- for this type of product. Most vendors have a range of devices to suit the needs of the customer. Prices range from \$50,000-\$400,000.
- ∨ Expect the cost to go down and the throughput to

→ Bioinformatics analysis is used to determine the best genome sites for placing PCR test.

- ▼ The analysis identified regions of similarity and divergence.
- v Primers (some degenerate) with the best thermodynamic properties in these regions were selected.
- \forall The divergent regions are sequenced.
- ▼ The DNA sequence is usable as a barcode.

Designing the Assays

Proof of Concept: Upper Respiratory Virus Serotype Panel for the Pyrosequencer

- Every Airman a Force Multiplier

 To detect and serotype seven major classes of virus:

 ∨ Coronavirus (including SARS)
 - 50 unique strains in GenBank

 - Human adenovirus (including 3,4,7,11,14,&21)
 52 unique strains in GenBank
 - Influenza A, B, & C virus (including pandemic N1H1) - 1358 unique strains in Gen Bank
 - Metapneumovirus
 - 13 unique strains in GenBank
 - Parainfluenza (including mumps and Sendai)
 - 25 unique strains in GenBank
- Picornaviridae (coxsackievirus, echovirus, enterovirus, poliovirus, rhinovirus
 - 936 unique strains in GenBank
 - Respiratory syncytial virus
 12 unique strains in GenBank
 ved for public release, distribution is unlimited. Core

Proceedings of the 2011 AFMS Medical Research Symposium **Force Health Protection** Volume 3

How the Results Are Determined

Detection of Novel Viruses Can Be Done with Public Tools Every Airman a Force Multiplier

- y Detection is made by simply matching the resulting sequence to a database of possible hits.
- y By crafting the database, we can display as many or as few hits as desired by the end user.

Selected Representative Database:
gil 80:0564 16100-15844 Homes conceverus Melli
gil 80:0564 16100-15844 Homes conceverus Melli
gil 80:05872 16000-15974 Homes conceverus Dele
gil 80:05872 1610-1680 Homes conceverus Melli
gil 80:05872 1610-1680 Homes Conceverus Melli
gil 80:05872 1610-1680 Homes Conceverus
gil 17:05870 16000-15976 Boriza conceverus
gil 17:05870 16000-15976 Portion conceverus
gil 17:05870 16000-15976 Portion prides di distrigil 80:05871 1600-1597 Portion periodicular
gil 80:0500-1597 16000-1597 Boriza
gil 80:0500-1597 16000-1597 Boriza
gil 80:0500-1597 16000-1597 Boriza
gil 180:05007 16000-1697 Portion periodicular
gil 180:05000 Portion periodicular
gil

Detection of Novel Viruses Can Be Done with Public Tools

Typical Limits of Detection

Every Airman a Force Multiplier

- ∨ Most samples are readily detected down to 10-7 or 10-8 dilution from ATCC stocks. This is comparable to or better than PCR alone.
- Sequence information allows for fuzzy matches that can allow the early detection of EIDs.
- ∨ Due to the nature of sequencing, it is very hard (almost impossible) to get a false positive.
- manageable by using controls.

Proof of Concept Assays Show Merit

Future Directions

- Degenerate PCR followed by next-generation sequencing methodology offers several unique directions for future assays.
 - Allows deep multiplexing.
 - v Is amenable to several different instruments.
 - v Can readily detect large subsets of similar organisms.
 - v Can individually identify members of these groups.

Deep multiplexing with next-generation sequencing offers the same diversity of sample types as conventional PCR.

Sequencing assays are more tolerant of multiple detections.

Problems to Overcome

FHT Mission

- ✓ Assay complexity Sequencing is one more step
 than PCP.
- Cost This will be reduced, but right now it is too expensive for routine testing.
- Bioinformatics can readily serotype today.
 However, more tools will be needed to easily identify new EIDs.
- Customer acceptance of slightly more complex results.
- ▼ FDA clearance.

Provide continual and rapid evaluation, validation, and transition assistance of new off-the-shelf technologies and identify emerging technologies ("technology discovery") to fill critical gaps in force protection, rapid diagnostics, epidemiology, and preventive medicine, including CBRNE identification, to meet Air Force global mission requirements.

Acknowledgments Every Airman a Force Multiplier

Disclaimer

Leadership:

✓ David L. Maserang, Ph.D.

Project Management:

- ✓ MSgt George Viale
- √ Elizabeth Escamilla

Technicians:

- v Armando Rodriguez
- Jeffery Smith
- ∨ Roel Escobar
- W Mr. Nicholas Green
- ∨ Ms. Vickie Miller
- ∨ Sonal Naik
- ∨ Raquel Lopez

Unit Support:

- ✓ SSgt Rahdika Brown
- ∨ MSgt Jim Lehman ∨ Michael Nedrick
- ✓ Karen Fillinger-Heavlin

Special Thanks:

- **▼ Linda Armstrong**
- v Ms. Elia Villazana
- ∨ William K . Springer
- ∨ Clarise R. Starr, Ph.D.
- ∨ Ms. Gen Maupin
- Ms. Sandy Kawano

The use of trade name(s) in this presentation does not constitute an endorsement or approval of the use of such commercial hardware or software but rather serves to examine the scientific merit and potential uses of the technology. This presentation may not be cited for purposes of advertisement.

Every Airman a Force Multiplier

Next-Generation Sequencing Technology for Disease Detection

AFMS Medical Research Symposium August 3, 2011

> James C. Baldwin, Ph.D. USAF SAM/FHT Applied Technology Center 2510 Fifth St., Bldg 840 Wright-Patterson AFB, OH 45433-7913

tribution Statement A: Approved for public rélèxie, distribution is unlimited. Case Mumber: 89AD YA-2011-3697, 28Vim 2011

