Département d'Informatique BUT Informatique 1A 2022/2023 Introduction à l'architecture des ordinateurs

TD1 - Exercices sur les bus de communication

1 Bus DMI 4.0

Remarques (juste pour information; inutiles pour faire l'exercice):

- le bus Direct Media Interface 4.0 (ou bus DMI 16 GT/s) est un bus PCIe ×8 Gen 4.0;
- il est utilisé dans les processeurs Intel Core les plus récents et en particulier dans le processeur Alder Lake-S que l'on considère dans cet exercice. Le processeur étudié a été commercialisé à partir du quatrième trimestre 2021 et il coûte actuellement de l'ordre de 550 €.

1.1 Caractéristiques du Core i7 12700KF - Socket 1700 - Q4'21

- Fréquence d'horloge réelle du processeur ou Base Clock = 100 MHz;
- processeur comportant 12 cœurs physiques = 8P+4E;
 - 8 Performance-cores ou P-cores → exéc. nécessitant de la puissance de calcul;
 - 4 Efficient-cores ou E-cores → exéc. optimisant le compromis perf./conso. en Watts;
- spécification des modes Turbo (coefficients)
 - fréquence Turbo Boost Max Technology 3.0 (TBMT3) = 14
 - fréquence P-core Max Turbo Frequency (TBT2) = 13
 - fréquence E-core Max Turbo Frequency = 11
- bus processeur DMI 4.0 (8 voies sur le proc. considéré);
 - fréquence d'horloge "réelle" du bus = 8 GHz;
 - bus pouvant être vu comme opérant en DDR, comportant 8 voies avec un encodage 128b/130b (pour 128 bits de données à envoyer, ce sont 130 bits qui sont émis);
- coefficient multiplicateur (P-core Base Clock) = 36 (E-core Base Clock = 27);
- largeur du bus d'adresses = 39 bits mémoire physique; 48 bits mémoire virtuelle.

1.2 Calculer

- ① Le nombre de transferts par seconde du bus processeur pour 1 voie;
- 2 le débit unidirectionnel du bus processeur (8 voies) en Mo/s, Mio/s et Go/s;
- 3 les fréquences de fonctionnement du processeur (Base Frequency);
- les fréquences max. grâce aux technologies Max Turbo Frequency (appelée aussi Turbo Boost Technology d'où le terme TBT2) et TBMT3;
- 5 la taille de la mémoire physique adressable.

2 Bus mémoire d'une barrette de type DDR4

2.1 Comment calculer la fréquence réelle du bus

- À partir de la fréquence d'horloge réelle des puces DRAM (F_{DRAM})
 - DDR $\rightarrow F_R = F_{DRAM}$;
 - DDR2 $\rightarrow F_R = 2 \times F_{DRAM}$;
 - DDR3 $\rightarrow F_R = 4 \times F_{DRAM}$;
 - DDR4 $\rightarrow F_R = 8 \times F_{DRAM}$;
 - DDR5 $\rightarrow F_R = 16 \times F_{DRAM}$.
- obtenue à partir de la fréquence d'horloge réelle du processeur. Dans le cas de la DDR4, on a F_{DRAM} qui est généralement un multiple de $\frac{1}{15}$ GHz, soit :

$$F_{DRAM} = \frac{\lambda}{15} \text{ GHz} = \left(\frac{\lambda}{15} \times 10^9\right) \text{ Hz}$$

où $\lambda \geq 1$ définit le débit de la barrette. Un principe similaire est utilisé pour la DDR5.

2.2 Caractéristiques de la barrette étudiée

• Coefficient $\lambda = 3$.

En fait, la norme spécifie le débit d'une barrette mémoire DDR4 en donnant directement la valeur de la fréquence réelle F_R qui va, actuellement, ainsi de $\frac{14}{15}$ à $\frac{40}{15}$ GHz. Dans le cas d'une barrette mémoire mémoire DDR5 la plage actuelle de valeurs de la fréquence réelle F_R va de $\frac{36}{15}$ à $\frac{49.5}{15}$ GHz.

• largeur du bus de données = 64 bits.

2.3 Calculer

- ① Les fréquences d'horloge réelle et effective du bus mémoire;
- 2 le débit de la barrette mémoire en Go/s et Gio/s;
- 3 en déduire la désignation de la barrette.

3 Bus PCIe Gen 2.0

3.1 Caractéristiques du bus série à 1 voie

- Fréquence d'horloge "réelle" du bus = 2,5 GHz;
- bus pouvant être vu comme opérant en DDR;
- pour 8 bits de données, 10 bits sont envoyés.

3.2 Calculer

- ① Le nombre de transferts par seconde;
- 2 le débit du bus;
- 3 la perte de débit due aux bits supplémentaires;
- (4) à titre de comparaison, donner le pourcentage de perte pour l'encodage 128b/130b.

Unités de mesure basées sur l'octet

- Principalement utilisées pour parler du stockage de données.
- Deux types d'unités : en puissances de 2; en puissances de 10.

Puissances de 2			
1 Kibioctet	Kio ou KiB	1024 octets	2^{10}
1 Mébioctet	Mio ou MiB	1024 Kio	2^{20}
1 Gibioctet	Gio ou GiB	1024 Mio	2^{30}
1 Tébioctet	Tio ou TiB	1024 Gio	2^{40}
Puissances de 10			
1 kilooctet	ko ou kB	1000 octets	10^{3}
1 Mégaoctet	Mo ou MB	1000 ko	10^{6}
1 Gigaoctet	Go ou GB	1000 Mo	10^{9}
1 Téraoctet	To ou TB	1000 Go	10^{12}

• 1 Kibioctet = 1 "Kilo binaire octet".