2022-2023 MP2I

DM 15, pour le lundi 24/04/2023

PROBLÈME COMMUTANT DES ENDOMORPHISMES CYCLIQUES

Définitions et notations.

- On notera E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$.
- Un sous-espace vectoriel F de E est stable par $u \in \mathcal{L}(E)$ si et seulement si $u(F) \subset F$.
- Soit $u \in \mathcal{L}(E)$. On appelle commutant de u l'ensemble Z(u) des endomorphismes de E qui commutent avec u:

$$Z(u) = \{ v \in \mathcal{L}(E) / v \circ u = u \circ v \}.$$

• Pour tout endomorphisme $u \in \mathcal{L}(E)$, et pour tout $x \in E$, on note $E_u(x)$ l'espace vectoriel engendré par les vecteurs $x, u(x), u^2(x), \ldots$ Autrement dit :

$$E_u(x) = \text{Vect}(u^k(x), k \in \mathbb{N}).$$

• Un endomorphisme $u \in \mathcal{L}(E)$ est cyclique si et seulement s'il existe un vecteur $x \in E$ tel que :

$$E_u(x) = E$$
.

Le but de ce problème est d'étudier des propriétés du commutant d'un endomorphisme, des endomorphismes cycliques et du commutant des endomorphismes cycliques.

Partie I. Étude du commutant d'un endomorphisme

- 1) Déterminer $Z(\mathrm{Id}_E)$.
- 2)
- a) Montrer que Z(u) est un sous-espace vectoriel de $\mathcal{L}(E)$.
- b) Montrer que Z(u) est stable par la loi de composition « \circ ». En déduire que c'est un sousanneau de l'anneau $(\mathcal{L}(E), +, \circ)$.
- 3) Soit $v \in Z(u)$. Montrer que le noyau et l'image de u sont stables par v.
- 4) Montrer que si $v \in Z(u) \cap GL(E)$, alors $v^{-1} \in Z(u)$.
- 5) Montrer que si $u \in GL(E)$, alors $Z(u) = Z(u^{-1})$.
- 6) Montrer que $\forall u, v \in \mathcal{L}(E), \ Z(u) \cap Z(v) \subset Z(u \circ v) \cap Z(v \circ u).$
- 7) Soit $P \in \mathbb{R}[X]$. On note $P = \sum_{k=0}^{p} a_k X^k$ où $p = \deg(P)$. On définit alors un endomorphisme de

$$E$$
, noté $P(u)$, en posant :
$$P(u) = a_0 \mathrm{Id}_E + a_1 u + \ldots + a_v u^p.$$

On note $\mathcal{P}_u = \{P(u), P \in \mathbb{R}[X]\}.$

a) Montrer que $\mathcal{P}_u \subset Z(u)$.

- b) On suppose que u est un projecteur différent de Id_E et de l'application nulle. Montrer que \mathcal{P}_u est de dimension 2.
- c) A-t-on toujours égalité dans l'inclusion du a)?

Partie II. Étude de $E_u(x)$

Soit $x \in E$ et $u \in \mathcal{L}(E)$.

- 8) Montrer que $E_u(x)$ est le plus petit sous-espace vectoriel stable par u contenant x. « plus petit » signifant ici que si un sous-espace vectoriel F de E contient x et est stable par u, alors $E_u(x) \subset F$.
- 9) Montrer que la famille $(x, u(x), \dots, u^n(x))$ est liée.
- 10) On suppose que $x \neq 0_E$. Montrer qu'il existe un entier k maximal pour lequel la famille $(x, u(x), \dots, u^k(x))$ soit libre.

Dans la suite, on notera p cet entier maximal.

- 11) Montrer que $(x, u(x), \ldots, u^p(x))$ est une base de $E_u(x)$.
- 12) Montrer l'équivalence :

$$\dim(E_u(x)) = 1 \Leftrightarrow x \neq 0_E \text{ et } \exists \lambda \in \mathbb{K} \ / \ u(x) = \lambda x.$$

- 13) Montrer que si u est cyclique alors $rg(u) \ge n 1$.
- 14) La réciproque est-elle vraie?

Partie III. Commutant d'un endomorphisme cyclique

On a montré dans la partie I que pour tout endomorphisme $u, \mathcal{P}_u \subset Z(u)$. Le but de cette partie est de montrer que si u est un endomorphisme cyclique, la réciproque est vraie.

Soit $u \in \mathcal{L}(E)$ un endomorphisme cyclique et $x_0 \in E$ tel que $E_u(x_0) = E$.

- 15) Montrer que $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est une base de E.
- 16) Montrer que ($\mathrm{Id}_E, u, \ldots, u^{n-1}$) est une famille libre de $\mathcal{L}(E)$.
- 17) Soit $(v, w) \in Z(u)^2$. Montrer l'équivalence :

$$v = w \Leftrightarrow v(x_0) = w(x_0).$$

18) En déduire que tout élément de Z(u) est combinaison linéaire de $\mathrm{Id}_E, u, \ldots, u^{n-1}$. Quelle est la dimension de Z(u)?