Санкт-Петербургский Политехнический Университет Петра Великого Институт Компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа 7 Задание 3

Предмет: «Проектирование реконфигурируемых гибридных вычислительных систем» **Тема: «Конвейеризация вычислений»**

Студент: Ерниязов Т.Е. Гр. № 3540901/81502

Преподаватель: Антонов А.П.

Оглавление

1.	Задание	3
2.	Первое решение без конвейеризации	4
2.1.	Исходный код	4
2.2.	Создание решения	4
2.3.	Директивы	5
2.4.	Моделирование	5
2.5.	Синтез	5
2	6. Использование ресурсов	6
2.7.	C/RTL моделирование	7
3.	Второе решение	7
3	1. Директивы	7
3	2. Моделирование	8
3	3. Синтез	8
3	4. C/RTL моделирование	9
4	Третье решение	10
4	1. Директивы	10
4	2. Моделирование	10
4	3. Синтез	10
4	4. С\RTL Моделирование	12
5	Выводы	13

1. Задание

- Создать проект lab7 3
- Микросхема: xa7a12tcsg325-1q
- Создать функцию на основе приведенного ниже слайда.

```
void foo_top (in1, in2, *out1_data...) {
    accum=0;
    ...
    L1:for(i=1;i<N;i++) {
        accum = accum + in1 + in2;
    }
    *out1_data = accum;
}</pre>
```

- Создать тест lab7 3 test.с для проверки функций выше.
 - о осуществить моделирование (с выводом результатов в консоль)
- Сделать свой solution (для варианта без конвейеризации, с конвейеризацией, с конвейеризацией и rewind)
 - о задать: clock period 10; clock_uncertainty 0.1
 - о осуществить синтез
 - привести в отчете:
 - performance estimates=>summary
 - utilization estimates=>summary
 - scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
 - Осуществить C|RTL моделирование (для каждого варианта задания директивы)
 - Привести результаты из консоли
 - Открыть временную диаграмму (все сигналы)
 - Отобразить два цикла обработки на одном экране
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Выводы
 - Привести обобщенную таблицу зависимости utilization и performance от каждого варианта: без конвейеризации, с конвейеризацией, с конвейеризацией и rewind.

Объяснить отличие процедур обращения к элементам массива для каждого случая

2. Первое решение без конвейеризации

2.1. Исходный код

Исходный код функции:

```
#define N 5

void foo7_3(int in1, int in2, int* out)

{
   int i;
   static int acc = 0;
   for (i = 0; i < N; i++) {
       acc = acc + in1 + in2;
   }

*out = acc;
}
</pre>
```

Рис. 2.1.1 source code

Исходный код теста:

Рис. 2.1.2 test code

2.2. Создание решения

Рис. 2.2 Solution

2.3. Директивы

Рис. 2.3 Directives

2.4. Моделирование

По результатам моделирование, приведённым ниже, видно, что устройство проходит тесты.

Рис. 2.4 modeling results

2.5. Синтез

На изображении видно, что полученная задержка укладывается в заданное значение. Оценочное время выполнения одного такта 2.7нс, а latency составляет 6 тактов.

Рис. 2.5 performance estimates

2.6. Использование ресурсов

Оценка использования ресурсов показывает, что будут использованы 123 LUT и 69 триггеров.

Рис. 2.6.1 Utilization estimates

Рис. 2.6.2. Module hierarchy

Рис. 2.6.3 Resource profile

Рис. 2.6.4 Performance profile

Ниже приводится таблица использования ресурсов на каждом шаге выполнения.

Рис. 2.6.5. Operation\Control Step

2.7. C/RTL моделирование

На временной диаграмме видно, что latency занимает 6 тактов, а II-7 тактов.

Рис. 2.7. modeling result

3. Второе решение

3.1. Директивы

Рис.3.1 Directives

3.2. Моделирование

По результатам моделирование, приведённым ниже, видно, что устройство проходит тесты.

Рис.3.2 Modeling result

3.3. Синтез

Ниже приведены оценки производительности. По ним видно, что оценочное время выполнения одного такта 2.7нс, а latency составляет 7 тактов.

Рис. 3.3.1. Performance estimates

Рис. 3.3.2. Utilization estimates

Оценка использования ресурсов показывает, что будут использованы 129 LUT и 70 триггеров.

Рис. 3.3.3. Resource profile

Рис. 3.3.4. Performance profile

Ниже приводится таблица использования ресурсов на каждом шаге выполнения.

Рис. 3.3.4. Operation\Control Step

3.4. C/RTL моделирование

Результат С|RTL моделирования приведён ниже. По нему видно, что latency составляет 7 тактов, а II - 8 тактов.

Рис. 3.4. modeling result

4. Третье решение

4.1. Директивы

Рис. 4.1. Directives

4.2. Моделирование

По результатам моделирование, приведённым ниже, видно, что устройство проходит тесты.

Pис. 4.2. Modeling result

4.3. Синтез

Ниже приведены оценки производительности. По ним видно, что оценочное время выполнения одного такта ~6.1c, а latency составляет 5 тактов.

Рис. 4.3.1. Performance estimates

Оценка использования ресурсов показывает, что будут использованы 139 LUT и 102 триггера.

Рис. 4.3.2. Utilization estimates

Рис. 4.3.3. Resource profile

Рис. 4.3.4. Performance profile

Ниже приводится таблица использования ресурсов на каждом шаге выполнения.

Рис. 4.3.4. Operation\Control step

4.4. С\RTL Моделирование

Результат С|RTL моделирования приведён ниже. По нему видно, что latency составляет 5 тактов, а II-6 тактов.

Рис. 4.4. Modeling result

5. Выводы

Ниже приведена сводная таблица по трем решениям, по которой можно сравнить производительность и использование ресурсов.

erforman	ce Estin	nates								
_ Timing										
Clock			solut	ion1 solu		lut	tion2 so		solution3	
ap_clk	Target		10.00) ns	10	0.00	ns	10.0	0.00 ns	
	Estima	ted	2.702	ns ns	2.702 ns		ns	6.16	6.169 ns	
Latenc	у									
				solution1		1	solution2		solution3	
Latency (cycles)		n	nin	6			7		4	
		n	max 6			7			5	
Latency (absolute) Interval (cycles)			nin	60.000 ns		ıs	70.000 ns		40.000 ns	
			nax	60.000 ns		ıs	70.000 ns		50.000 ns	
			nin	6			7		4	
			тах б				7		5	
tilization	Estimat	es								
	sol	solution1		1 solution		2 solution		3		
BRAM_18	K 0	0		0		0				
DSP48E	0		0		0					
FF	69		70)		102				
LUT 123			12	29	1		139			
URAM	JRAM 0		0			0				