Metody relaksacyjne dla równania Poissona lab. MOFiT 1 2019/2020

Aleksandra Pestka

22.05.2020

1 Cel projektu

Projekt miał na celu wykorzystanie podstawowych metod numerycznych do rozwiązania równania Poissona.

$$\nabla \phi = -\rho \tag{1}$$

dla pudła o dwóch wymiarach $(i, j) \in [-30, -30]$ x[-30, 30]. Na brzegach przyłożono potencjał równy zero. Gęstość ładunku ρ_{ij} wynosiła 1 dla punktów w przedziale $[-10, -10] \times [-10, 10]$, a w pozostałych miejscach 0.

2 Relaksacja punktowa

Pierwszy etap projektu dotyczył relaksacji punktowej. Przepis relaksacyjny wyraża się następująco:

$$\phi_{ij} := (1 - \omega)\phi_{ij} + \omega \frac{\phi_{(i+1)j} + \phi_{(i-1)j} + \phi_{i(j+1)} + \phi_{i(j-1)} + \rho_{ij}dx^2}{4}$$
(2)

Przyjęto parametry dx = dy = 1 oraz $\Delta \omega = 0.01$. Wzór (2) dla odpowiednio $\omega < 1, \omega = 1, \omega > 1$ odpowiada punktowej podrelaksacji, relaksacji i nadrelaksacji.

2.1 Badanie zbieżności

Na początku zbadano zbieżność rozwiązania.

Figure 1: Zbieżność rozwiązania.

Wartość optymalna ω wynosi 1.92. Na wykresie można dostrzec spadek liczby iteracji wraz ze wzrostem ω aż do pewnej wartości, po której następuje wzrost i dla $\omega>2$ liczba iteracji rozbiega do nieskończoności.

2.2 Rozwiązanie równania

Przyjmując $\omega=1.92$ narysowano wykres potencjału.

Figure 2: Wykres potencjału dla $\omega=1.92$

3 Rozkład gęstości ładunku

Następnie, odwrócono równanie Poissona:

$$\rho = -\nabla^2 \phi \tag{3}$$

w celu sprawdzenia poprawności wyniku. Oba rozwiązania przedstawiające rozkład gęstości ładunku wzdłuż osi y pokazuje poniższy rysunek. Rezultaty z poprzedniego podpunktu i bieżącego w dużej mierze pokrywają się ze sobą. W celu otrzymania lepszego pokrycia należałoby zwiększyć precyzję obliczeń ($\Delta\omega < 0.01$).

Figure 3: Rozkład gęstości ładunku wzdłuż osi y

Wyliczona gęstość ładunku wzdłuż osi Y jest liczbą dodatnią dla punktów w przedziale [-10, 10], z kolei w pozostałych miejscach wynosi 0, co co jest zgodne z założeniami.

4 Relaksacja globalna

W ostatniej części projektu badano zbieżność relaksacji globalnej. Zależność wartości ω od liczby iteracji przedstawia poniższy rysunek.

Figure 4: Zbieżność rozwiązania.

Liczba iteracji maleje wraz ze wzrostem ω . Dla $\omega<1$ relaksacja jest zbieżna do optimum, które wynosi $\omega=1$, natomiast dla $\omega>1$ relaksacja rozbiega się do nieskończoności. Przypadek ten nazywa się relaksacją Jacobiego.