

ARQUITECTURA Y CONECTIVIDAD

Profesor: Jorge Morales

Alumno: Fernando Gimenez Coria

Módulo II: Arquitectura en Redes IoT

Informe trabajo práctico #5

Actividades:

Apartado 7) TP#5:

¿Qué es un protocolo PROFIBUS-DP/PA?, ¿Para qué se usa? Ejemplifique.

¿Qué es el protocolo PROFIBUS-DP/PA?

PROFIBUS (Process Field Bus) es un estándar de comunicación industrial desarrollado en Alemania a finales de los años 80 por la asociación PROFIBUS Nutzerorganisation (PNO). Se diseñó para permitir una comunicación digital eficiente entre controladores (como PLCs) y dispositivos de campo (como sensores y actuadores).

Dentro de PROFIBUS existen varias variantes, entre ellas las más relevantes son:

- PROFIBUS-DP (Decentralized Peripherals): orientado a la automatización de fábricas, conecta dispositivos periféricos distribuidos de forma eficiente y rápida a sistemas de control centralizados. Prioriza la velocidad de transmisión.
- PROFIBUS-PA (Process Automation): desarrollado específicamente para aplicaciones de automatización de procesos industriales, donde se requiere comunicación confiable a largas distancias, seguridad intrínseca y alimentación de dispositivos a través del mismo cable de comunicación.

Diferencias clave:

Característica	PROFIBUS-DP	PROFIBUS-PA
Aplicación	Automatización de fábricas	Automatización de procesos
Velocidad	Hasta 12 Mbps	31.25 kbps
Cableado	RS-485 (cable estándar)	MBP (Manchester Bus Powered)
Alimentación	Separada	Integrada en el mismo bus
Seguridad intrínseca	No necesaria	Frecuentemente requerida

¿Para qué se usa PROFIBUS-DP/PA?

PROFIBUS-DP se utiliza principalmente para la **automatización de fábricas**, donde la velocidad y la cantidad de datos transmitidos son factores críticos. Ejemplos comunes incluyen líneas de ensamblaje de automóviles, fábricas de alimentos y manufactura de bienes electrónicos.

PROFIBUS-PA, en cambio, se aplica en **entornos de procesos** como plantas químicas, farmacéuticas, refinerías de petróleo y tratamiento de agua, donde la confiabilidad de la comunicación y la seguridad son esenciales. Su baja velocidad permite que la comunicación sea más robusta frente a interferencias y permite el uso de zonas peligrosas (atmósferas explosivas).

Aplicaciones prácticas

PROFIBUS-DP en una planta automotriz

En una línea de ensamblaje de automóviles, múltiples robots de soldadura, transportadores, estaciones de prueba y controladores lógicos programables (PLC) necesitan comunicarse en tiempo real. PROFIBUS-DP conecta todos estos dispositivos, permitiendo el envío de comandos de control y la recolección de datos de operación en fracciones de segundo. Esto maximiza la eficiencia de producción y reduce el cableado al usar buses en lugar de conexiones punto a punto.

PROFIBUS-PA en una refinería de petróleo

En una refinería, se requieren mediciones precisas de temperatura, presión, flujo y nivel en áreas clasificadas como peligrosas debido a la presencia de gases inflamables. PROFIBUS-PA permite la conexión de instrumentos de campo con **alimentación a través del mismo bus** y, gracias a sus características de seguridad intrínseca, garantiza que las señales no representen un riesgo de ignición. Además, permite la configuración remota de instrumentos y la detección temprana de fallas.

Arquitectura

PROFIBUS sigue una arquitectura simplificada basada en el modelo OSI de 7 capas, pero implementa solo 3 capas principales:

Capa Física

Define los aspectos eléctricos y mecánicos del bus, como el tipo de cableado, conectores, niveles de voltaje, y métodos de modulación de señal.

- PROFIBUS-DP utiliza principalmente cables de par trenzado bajo la norma RS-485.
- PROFIBUS-PA usa MBP (Manchester Bus Powered), que permite comunicación y alimentación a través del mismo cable.

Capa de Enlace de Datos (DLL)

Controla el acceso al medio de comunicación y la detección de errores. Utiliza el protocolo **token passing** para la comunicación entre maestros y un esquema de **polling** para la comunicación maestro-esclavo.

Funciones principales:

- Manejo de la transmisión de datos confiable.
- Control de acceso al bus.
- Detección y corrección de errores de transmisión.

Capa de Aplicación

Define los servicios de comunicación específicos que permiten la configuración, monitoreo y control de dispositivos.

Dentro de esta capa se encuentran los perfiles de dispositivos, que aseguran que dispositivos de diferentes fabricantes puedan comunicarse siguiendo normas comunes.

Consideraciones prácticas para la implementación

Topologías de Red

PROFIBUS soporta diferentes topologías:

- Línea (bus).
- Estrella (mediante repetidores).
- Árbol (combinaciones de líneas y estrellas).

Tipos de Cables

- **PROFIBUS-DP**: par trenzado con resistencia característica de 150 Ohm.
- **PROFIBUS-PA**: cable específico para MBP con requisitos de seguridad intrínseca.

Conectores

• Conectores estándar DB9 o conectores específicos M12 para entornos industriales.

Configuración de Dispositivos

- Maestro Clase 1: Dispositivo que controla el bus (por ejemplo, un PLC).
- **Maestro Clase 2**: Dispositivo de programación y diagnóstico (por ejemplo, una laptop con software de configuración).
- **Esclavo**: Dispositivo de campo que responde a las solicitudes del maestro.

Cada dispositivo debe configurarse con una dirección única en el bus.

Diagnóstico y Mantenimiento

PROFIBUS permite la detección automática de fallas como:

- Pérdida de comunicación.
- Fallas de dispositivos.
- Errores de configuración.

Esto facilita el mantenimiento predictivo y la reducción de tiempos de parada.

Conclusión

PROFIBUS-DP/PA representa una solución robusta, eficiente y confiable para la comunicación en entornos industriales. Permite integrar dispositivos de múltiples fabricantes bajo un mismo estándar, facilita la automatización de procesos complejos y ofrece capacidades avanzadas de diagnóstico y mantenimiento. Entender su arquitectura, aplicaciones y aspectos de implementación es esencial para aprovechar todo su potencial en proyectos de automatización modernos.