SONY. CXK58257AP/ASP/AM -70L/10L/12L *

32768-word × 8-bit High Speed CMOS Static RAM

Description

CXK58257AP/ASP/AM is 262,144 bits high speed CMOS static RAM organized as 32,768 words by 8 bits and operates from a single 5V supply. This device is suitable for use in high speed and low power applications in which battery back up for nonvolatility is required.

* 300mil DIP covers only L-version.

Features

- Fast access time: (Access time)
 CXK58257AP/ASP/AM-70L, 70LL 70ns(Max.)
 CXK58257AP/ASP/AM-10L, 10LL 100ns(Max.)
 CXK58257AP/ASP/AM-12L, 12LL 120ns(Max.)
- Low power operation:

CXK58257AP/AM-70LL, 10LL, 12LL;

Standby : 1 μ W (Typ.) Operation : 15mW (Typ.)

CXK58257AP/ASP/AM-70L, 10L, 12L;

Standby : 2.5 µW (Typ.)
Operation : 15mW (Typ.)

- Single + 5V supply: + 5V ± 10 %
- Fully static memory...No clock or timing

strobe required

- Equal access and cycle time
- Common data input and output:

three state output

• Directly TTL compatible:

All inputs and outputs

- Low voltage data retention: 2.0V (Min.)
- Available in 28 pin 600mil DIP, 300mil DIP and 450mil SOP

Function

32768-word × 8-bit static RAM

Structure

Silicon gate CMOS IC

Block Diagram

Pin Description

Symbol	Description							
A0 to A14	Address input							
I/01 to I/08	Data input/output							
CE	Chip enable input							
WE	Write enable input							
ŌĒ	Output enable input							
Vcc	+5V power supply							
GND	Ground							

E90447B46 - ST

Absolute Maximum Ratings

(Ta = 25 ℃, GND = 0V)

Item	Symbol		Rating	Unit								
Supply voltage	Vcc		Vcc		Vcc		Vcc		Vcc		-0.5 to +7.0	V
Input voltage	Vin		Vin		$-0.5*$ to $V_{CC} + 0.5$	٧						
Input and output voltage	Vı⁄o		-0.5* to $Vcc + 0.5$	V								
A11 11 12 12 12 12 12 12 12 12 12 12 12 1		CXK58257AP/ASP	1.0	147								
Allowable power dissipation	Po	CXK58257AM	0.7	W								
Operating temperature	Тор	r	0 to +70	ొ								
Storage temperature	Tstg		-55 to +150	င								
Soldering temperature	Tsolder		260 • 10	℃ • sec								

^{*} VIN, $V_{1/0} = -3.0V$ Min. for pulse width less than 50ns.

Truth Table

CE	ŌĒ	WE	Mode	I/01 to I/08	Vcc Current
Н	×	×	Not selected	High Z	ISB1, ISB2
L.	Н	Н	Output disable	High Z	lcc1, lcc2
L	L	Н	Read	Data out	lcc1, lcc2
L	×	L	Write	Data in	lcc1, lcc2

×: "H" or "L"

DC Recommended Operating Conditions (Ta = 0 to + 70 °C, GND = 0V)

Item	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	٧
Input high voltage	ViH	2.2		V _{CC} + 0.3	V
Input low voltage	VIL	- 0.3*		0.8	V

^{*} $V_{IL} = -3.0V$ Min. for pulse width less than 50ns.

SONY

CXK58257AP/ASP/AM

Electrical Characteristics

• DC and operating characteristics ($Vcc = 5V \pm 10\%$, GND = 0V, Ta = 0 to +70%)

Itom	Item Symbol Test conditions		- 70	DL/10L/	′12L	- 70LL/10LL/12LL			Unit	
rtem				Min.	Тур.*	Max.	Min.	Тур.*	Max.	Unit
Input leakage current	lu	$V_{IN} = GND$ to V_{C}	x	- 0.5		0.5	- 0.5		0.5	μΑ
Output leakage current	ILO	$\overline{CE} = V_{1H}$ or $\overline{OE} = V_{1/O} = GND$ to $V_{1/O} = GND$		- 0.5		0.5	- 0.5		0.5	μΑ
Operating		$\overline{CE} = V_{IL}, V_{IN} = V_{IOUT} = 0 \text{mA}$	н or V _{IL} ,		3	10		3	10	
power supply current	lcc1	$\overline{CE} \le 0.2V$ $V_{IN} \le 0.2V$ or $\ge V_{CC} - 0.2V$			1	5		1	5	mA
Average	lcc2	Cycle = Min, Duty = 100 %, lout = 0mA	70L/70LL		30	50		30	50	mA
operating			10L/10LL		23	50		23	50	
current			12L/12LL		20	50		20	50	1
			0 to 70℃			25			5	
Standby	Is _B 1	<u>CE</u> ≧ V _∞ – 0.2V	0 to 40℃			5			1	μΑ
current			25℃		0.5	2		0.2	0.5	
	ISB2	CE = V _{IH}			0.4	2		0.4	2	mA
Output high voltage	Vон	I _{OH} = - 1.0mA		2.4			2.4			٧
Output low voltage	VoL	I _{OL} = 2.1 mA			·	0.4			0.4	٧

^{*} Vcc = 5V, Ta = 25 ℃

I/O capacitance

 $(Ta = 25 \,^{\circ}C, f = 1 \,^{\circ}MHz)$

·			•	, .	
Item	Symbol	Test conditions	Min.	Max.	Unit
Input capacitance C _{IN}		V _{IN} = 0V		6	pF
I/O capacitance	Cı/o	V _I ∕0 = 0V		8	рF

Note) This parameter is sampled and is not 100% tested.

SONY

CXK58257AP/ASP/AM

AC characteristics ● AC test conditions

 $(Vcc = 5V \pm 10\%, Ta = 0 \text{ to } +70\%)$

	Item	Conditions			
Input pulse	high level	V _{IH} = 2.2V			
Input pulse	low level	V _{IL} = 0.8V			
Input rise tir	me	tr = 5ns			
Input fall tir	ne	tf = 5ns			
Input and or reference lev	•	1.5V			
Output load conditions	10L/10LL/12L/ 12LL	C _L *= 100pF, 1TTL			
conditions	70L/70LL	C _L *= 30pF, 1TTL			

* CL includes scope and jig capacitances.

• Read cycle

Item	Symbol	-70L/70LL		-10L/10LL		-12L/12LL		I to the
item	Syllibol	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read cycle time	trc	70	_	100		120		ns
Address access time	taa		70		100		120	ns
Chip enable access time	tco		70		100		120	ns
Output enable to output valid	toE		35		50		60	ns
Output hold from address change	toH	20		20		20		ns
Chip enable to output in low Z (CE)	tiz	10		10		10		ns
Output enable to output in low Z (OE)	toLZ	5		5		5		ns
Chip disable to output in high Z (CE)	tHZ*	0	30	0	30	0	30	ns
Chip disable to output in high Z (OE)	toHz*	0	30	0	30	0	30	ns

^{*} thz and tohz are defined as the time required for outputs to turn to high impedance state and are not referred to as output voltage levels.

• Write cycle

Item S		-70L/70LL		-10L/10LL		-12L/12LL		11!1
item	Symbol	Min.	Max.	Min.	Мах.	Min.	Max.	Unit
Write cycle time	twc	70		100		120		ns
Address valid to end of write	taw	65		80		100		ns
Chip enable to end of write	tcw	65		80		100		ns
Data to write time overlap	tow	30		35		40		ns
Data hold from write time	ton	0		0		0		ns
Write pulse width	twp	50		60		70		ns
Address setup time	tas	0		0		0		ns
Write recovery time (WE)	twn ·	0		0		0		ns
Write recovery time (CE)	twn1	0		0		0		ns
Output active from end of write	tow	10		10		10		ns
Write to output in high Z	twHz*	0	25	0	25	0	25	ns

^{*} twnz is defined as the time required for outputs to turn to high impedance state and is not referred to as output voltage level.

SONY CXK58257AP/ASP/AM

Timing Waveform

• Read cycle (1) : $\overline{CE} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$

Read cycle (2): WE = V_{IH}

• Write cycle (1): WE control

46

SONY

CXK58257AP/ASP/AM

• Write cycle (2) : CE control

During I/O pins are in the output state, the data input signals of opposite phase to the output must not be applied.

Data Retention Characteristics

 $(Ta = 0 to 70^{\circ}C)$

								,. <u>~</u>	0 10	,
Item	Symbol	Test conditions		-70L/10L/12L			- 70	Unit		
Item	Symbol	l est C	Onditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Onit
Data retention voltage	VDR	CE ≥ Vcc - 0.2V		2.0		5.5	2.0		5.5	V
	Iccor1		Ta = 0 to 70°C			10			3	
Data retention		<u>Vc</u> c = 3.0V <u>CE</u> ≧ 2.8V	Ta = 0 to 40℃			2			0.6	μΑ
current			25℃		0.25	1		0.1	0.3	
	ICCDR2	Vcc = 2.0 to 5.5V CE ≥ Vcc - 0.2V			0.5	25		0.2	5	μА
Data retention setup time	tcdrs	Chip disable to data retention mode		0			0			ns
Recovery time	tR			tRC*			trc*			ns

^{*} tRc: Read cycle time

Data retention waveform

Example of Representative Characteristics

Supply current vs. Frequency

Access time vs. Supply voltage

Supply current vs. Ambient temperature

Access time vs. Load capacitance

Access time vs. Ambient temperature

Ta - Ambient temperature (℃)

Standby current vs. Supply voltage

Input voltage level vs. Supply voltage

Output high current vs. Output high voltage

Standby current vs. Ambient temperature

Ta - Ambient temperature (℃)

Standby current vs. Ambient temperature

Ta - Ambient temperature (℃)

Output low current vs. Output low voltage

Package Outline ... Unit : mm

⊕ ±0,12 ⊗