David Croft

GUIs

Hello World!

Layout

Containers

Events

Event argument

Recap

GUIS

David Croft

Coventry University

david.croft@coventry.ac.uk

January 18, 2016

David Croft

GUIs

Hello World

Layout

Container

Events

Event argument

Recap

Overview

- 1 GUIs
 - Hello World!
- 2 Layout
 - Containers
- 3 Events
 - Event arguments
 - Loops
- 4 Recap

Hello World

Layout

Events

Event argument

Recap

You're programs so far have followed a procedural pattern.

- Program is a series of steps.
- Moves through those steps in a predetermined pattern.
- Expects user input in a very specific order.

Hello Worl

Layout

Events

Event argument

Recap

Going to look at event driven programming.

- Program reacts to events.
- Events have actions associated with them.
- Order and frequency of events is unpredictable.
- Does not have a predefined sequence of actions to perform.
- Does not have a predefined end.

Benefits

GUIs

Hello World!

Layout

Container

Events

Event argument

Recap

What sort of applications would benefit from an event driven paradigm?

Hello World

Layout

Containe

Events

Event argument

Recap

What sort of applications would benefit from an event driven paradigm?

- GUIs
- Control systems
- Embedded systems

Events examples

GUIs

Hello World

Layout

Events

Event argument

- Button presses
- Text entry
- Keyboard events
 - Pressing a key
 - Releasing a key
- Mouse events
 - Pressing a button
 - Releasing a button
 - Moving
 - Scrolling

Hello World!

Layout

Events

Event argument

Recap

How to create a GUI.

- Wide range of different libraries available.
 - Depends on language and platform.
- Tkinter is the built-in Python default.

Terminology

GUIs

Hello World!

Layout

Container

Events

Event argument

- Window
- Component/widget/element

Hello World!

GUIs

Hello World!

Layout

Containe

Events

Event argumen

Recap

```
import sys
from tkinter import *
def main():
    root = Tk()
    label = Label(root, text='Hello World!')
    label.pack()
    root.mainloop()
if __name__ == '__main__':
    sys.exit(main())
```

lec_getting_started.py

Hello World!

GUIs

Hello World!

Layout

Containe

Events

Event argument

Recap

```
import sys
from tkinter import *
def main():
    root = Tk()
    label = Label(root, text='Hello World!')
    label.pack()
    root.mainloop()
if __name__ == '__main__':
    sys.exit(main())
```

lec_getting_started.py

Hello World!

Layout

Events

Event argumen

Recap

GUI code should be structured as a class.

Become clear later.

```
class Gui:
    def __init__(self, root):
        self.root = root
        self.label = Label(self.root, \
                        text='Hello World!')
        self.label.pack()
def main():
    root = Tk()
    gui = Gui(root)
    root.mainloop()
```


lec_classes.py

Hello World

Layout

Container

Events

Event argumen

Recap

So far we have seen how elements are added to window.

```
class Gui:
    def __init__(self, root):
        self.root = root

    for i in range(1,10):
        button = Button(self.root, text=i)
        button.pack()
```

lec_layout.py

Hello World

Layout

Container

Events

Event argument

Recap

So far we have seen how elements are added to window.

```
class Gui:
    def __init__(self, root):
        self.root = root

    for i in range(1,10):
        button = Button(self.root, text=i)
        button.pack()
```

lec_layout.py

6

8

Layout II

GUIs

Hello World

Layout

Container

Events

Event argument

Recap

Can use the side parameter for .pack().

- TOP (default).
- Also LEFT, RIGHT and BOTTOM.

```
class Gui:
    def __init__(self, root):
        self.root = root

    for i in range(1,10):
        button = Button(self.root, text=i)
        button.pack(side=LEFT)
```

lec_layout2.py

Layout

Container

Events

Event argument

Recap

Use side to control layout?

```
class Gui:
 def __init__(self, root):
   self.root = root
   Button(self.root, text=1).pack(side=TOP)
   Button(self.root, text=2).pack(side=LEFT)
   Button(self.root, text=3).pack(side=LEFT)
   Button(self.root, text=4).pack(side=TOP)
   Button(self.root, text=5).pack(side=LEFT)
   Button(self.root, text=6).pack(side=LEFT)
   Button(self.root, text=7).pack(side=TOP)
   Button(self.root, text=8).pack(side=LEFT)
   Button(self.root, text=9).pack(side=LEFT)
```

lec_layout3.py

Layout III

GUIs

Hello World

Layout

Container

Events

Event argument

Recap

Use side to control layout?

```
class Gui:
 def __init__(self, root):
   self.root = root
   Button(self.root, text=1).pack(side=TOP)
   Button(self.root, text=2).pack(side=LEFT)
   Button(self.root, text=3).pack(side=LEFT)
   Button(self.root, text=4).pack(side=TOP)
   Button(self.root, text=5).pack(side=LEFT)
   Button(self.root, text=6).pack(side=LEFT)
   Button(self.root, text=7).pack(side=TOP)
   Button(self.root, text=8).pack(side=LEFT)
   Button(self.root, text=9).pack(side=LEFT)
```

```
2 3 5 6 8 9
```


lec_layout3.py

Containers

GUIs

Hello World

Layout

Containers

Events

Event argument

Recap

Need to learn about containers.

- Windows are containers.
 - Elements are 'contained' inside.
- Tkinter also has frames.
 - Special type of element.
 - Contains other elements.
- Group elements together using frames.
 - Can be visible/invisible.


```
GUIs
```

Hello World

Layout

Containers

Events

Event argument Loops

```
class Gui:
    def __init__(self, root):
        self.root = root

    self.frame1 = Frame(self.root)
        self.frame1.pack()

    self.frame2 = Frame(self.root)
        self.frame2.pack()
```

```
Button(self.frame1, text=1).pack(side=LEFT)
Button(self.frame1, text=2).pack(side=LEFT)
Button(self.frame1, text=3).pack(side=LEFT)
```

```
Coventry
University
```

```
Button(self.frame3, text=7).pack(side=LEFT)
Button(self.frame3, text=8).pack(side=LEFT)
Button(self.frame3, text=9).pack(side=LEFT)
```

Frames

GUIs

Hello World

Layout

Containers

Events

Event argumer

```
class Gui:
    def __init__(self, root):
        self.root = root

    self.frame1 = Frame(self.root)
        self.frame1.pack()

    self.frame2 = Frame(self.root)
        self.frame2.pack()
```

```
1 2 3
4 5 6
7 8 9
```

```
Button(self.frame1, text=1).pack(side=LEFT)
Button(self.frame1, text=2).pack(side=LEFT)
Button(self.frame1, text=3).pack(side=LEFT)
```

```
Coventry
University
```

```
Button(self.frame3, text=7).pack(side=LEFT)
Button(self.frame3, text=8).pack(side=LEFT)
Button(self.frame3, text=9).pack(side=LEFT)
```

Nesting

GUIs

Hello World

Layout

Containers

Events

Event argument

Recap

So what's happening?

- Elements are nested in containers.
- Containers are nested in other containers.

root frame1 3 2 frame2 5 6 frame3 8

Hierarchical structure

GUIs

Hello World

Layout

Containers

Events

Event argument

Loops

Hello World

Layout

Container

Events

Event argument Loops

Recap

How do we get our code to actually DO stuff?

- Using Python/Tkinter.
- Other languages/frameworks == different syntax.
 - Same concepts.
- Event handling.
 - Bind events to elements.

Events II C

GUIs

Hello World

Layout

Container

Events

Event argument Loops

Recap

```
class Gui:
  def __init__(self, root):
    self.root = root
    self.label = Label(self.root, text='Hello World!')
    self.label.pack()
    self.button = Button(self.root, text='Press me')
    self.button.bind('<Button-1>', self.say_bye)
    self.button.pack()
  def say_bye(self, event):
    self.label.config(text='Bye!')
```


lec_events.py

Events II

GUIs

Hello World

Layout

Container

Events

Event argument Loops

```
class Gui:
  def __init__(self, root):
    self.root = root
    self.label = Label(self.root, text='Hello World!')
    self.label.pack()
    self.button = Button(self.root, text='Press me')
    self.button.bind('<Button-1>', self.say_bye)
    self.button.pack()
  def say_bye(self, event):
    self.label.config(text='Bye!')
lec_events.py
```

```
Hello World!
Press me
```


Hello World

Layout

Events

Event argument

Recap

Callbacks are how we respond to events.

Functions that are passed to another function as an argument.

```
class Gui:
    def __init__(self, root):
        self.root = root
        self.label = Label(self.root, text='Hello World!')
        self.label.pack()
        self.button = Button(self.root, text='Press me')
        self.button.bind('<Button-1>', self.say_bye)
        self.button.pack()
    def say_bye(self, event):
        self.label.config(text='Bye!')
```

lec_events.py

User → Event → Listener → Callback

Standard behaviour

GUIs

Layout

Events

Event argument Loops

Recap

User actions can trigger multiple events.

- I.e. clicking on button.
 - 1 Press LMB whilst pointer over button.
 - Release LMB whilst pointer over button.
- Standard interaction code included in Tkinter.
 - Use command parameter.

Event arguments

GUIs

Hello World

Layout

Container

Events

Event arguments


```
class Gui:
   def __init__(self, root):
```


Event arguments II

GUIs

Hello World

Layout

Events

Event arguments

Recap

Much better to have one function.

- Function takes argument.
- Reuse of each button.

lec_event_args2.py

Event arguments II

Pressed 2

GUIs

Hello World

Layout

Container

Events

Event arguments

Recap

Much better to have one function.

- Function takes argument.
- Reuse of each button.
- Doesn't work.
 - Calls function immediately.
- DEMO

```
class Gui:
    def __init__(self, root):

    Button(self.root, text='1', \
        command=self.pressed_button(1)).pack(side=LEFT)
    Button(self.root, text='2', \
        command=self.pressed_button(2)).pack(side=LEFT)

def pressed_button(self, number):
    self.label.config(text='Pressed %d' % number)
```


Event arguments III

GUIs

Layout

Events

Event arguments

Recap

lambda functions.

Only calls function when button is pressed.

lec_event_args3.py

Hello World!

Layout

Container

Events

Event argument

Recap

Already seen we can use create elements in loops.

- Create lots of elements easily.
- How can we combine this with callback arguments?

Loop arguments

GUIs

Hello World!

Layout

Container

Events

Event argument Loops

Recap

lambda function in loop.

What happens when any button is pressed?


```
class Gui:
    def __init__(self, root):

    for i in range(1,10):
        b = Button(self.root, text=i, \
              command=lambda: self.pressed_button(i))
        b.pack(side=LEFT)

def pressed_button(self, number):
    self.label.config(text='Pressed %d' % number)
```


Loop arguments

GUIs

Hello World!

Layout

Container

Events

Event argument Loops

Recap

lambda function in loop.

- What happens when any button is pressed?
 - DEMO.


```
class Gui:
    def __init__(self, root):

    for i in range(1,10):
        b = Button(self.root, text=i, \
              command=lambda: self.pressed_button(i))
        b.pack(side=LEFT)

def pressed_button(self, number):
    self.label.config(text='Pressed %d' % number)
```


Loop arguments II

GUIs

Hello World

Layout

Container

Events

Event argument Loops

Recap

```
for i in range(1,10):
    b = Button(self.root, text=i, \
        command=lambda: self.pressed_button(i))
    b.pack(side=LEFT)
```

lec_loop_args.py

- Each button will call a lamda function when pressed.
- The lambda function will call self.pressed_button(i).
- pressed_button() will change the label using the value of i.

Loop arguments II

GUIs

Hello World

Layout

Container

Events

Event argumen Loops

Recap

```
for i in range(1,10):
    b = Button(self.root, text=i, \
        command=lambda: self.pressed_button(i))
    b.pack(side=LEFT)
```

lec_loop_args.py

- Each button will call a lamda function when pressed.
- The lambda function will call self.pressed_button(i).
- pressed_button() will change the label using the value of i.
 - What is the value of i?

Loop arguments II

GUIs

Hello World

Layout

Container

Events

Event argument

Recap

```
for i in range(1,10):
    b = Button(self.root, text=i, \
        command=lambda: self.pressed_button(i))
    b.pack(side=LEFT)
```

lec_loop_args.py

- Each button will call a lamda function when pressed.
- The lambda function will call self.pressed_button(i).
- pressed_button() will change the label using the value of i.
 - What is the value of i?
- It's whatever it was at the end of the loop, i.e. 9.
 - No matter what button we press, i is always 9.

Loop arguments III

GUIs

Hello World

Layout

Containe

Events

Event argument

Recap

lamda arguments.

- The lambda function for each button copies the value of i right then.
- Uses that value when it runs in the future.

```
class Gui:
    def __init__(self, root):

    for i in range(1,10):
        b = Button(self.root, text=i, \
              command=lambda n=i: self.pressed_button(n))
        b.pack(side=LEFT)

    def pressed_button(self, number):
        self.label.config(text='Pressed %d' % number)
```

lec_loop_args2.py

David Croft

GUIs

Hello World!

Layout

Containers

Events

Event arguments

David Croft

Recap

GUIs

Hello World

Layout

Events

Event argument

- GUIs are an example of event driven programming.
- GUI elements are arranged in containers.
- Containers can hold other containers.
- User actions generate events.
- Callbacks are functions that are run in response to events.

David Croft

GUIs

Hello World!

Layout

Containers

Events

Event arguments

Recap

The End

