Математическая модель транспортной задачи:

$$F = \sum \sum c_{ij} x_{ij}, \qquad (1)$$

при условиях:

$$\sum x_{ij} = a_i, \quad i = 1, 2, ..., m,$$
 (2)

$$\sum x_{ij} = b_j, \quad j = 1, 2, ..., n,$$
 (3)

Стоимость доставки единицы груза из каждого пункта отправления в соответствующие пункты назначения задана матрицей тарифов

	1	2	3	4	Запас
					Ы
1	7	4	3	5	10
2	2	5	5	2	12
3	2	6	4	7	17
Потре	9	7	7	16	
бност					
И					

Проверим необходимое и достаточное условие разрешимости задачи.

$$\sum a = 10 + 12 + 17 = 39$$

$$\sum b = 9 + 7 + 7 + 16 = 39$$

Занесем исходные данные в распределительную таблицу.

	1	2	3	4	Запас
					Ы
1	7	4	3	5	10
2	2	5	5	2	12
3	2	6	4	7	17
Потре	9	7	7	16	
бност					
И					

Этап I. Поиск первого опорного плана.

1. Используя метод наименьшей стоимости, построим первый опорный план транспортной задачи.

	1	2	3	4	Запас
					Ы
1	7	4[3]	3[7]	5	10
2	2[9]	5	5	2[3]	12
3	2	6[4]	4	7[13]	17
Потре	9	7	7	16	
бност					
И					

В результате получен первый опорный план, который является допустимым, так как все грузы из баз вывезены, потребность магазинов удовлетворена, а план соответствует системе ограничений транспортной задачи.

2. Подсчитаем число занятых клеток таблицы, их 6, а должно быть m + n - 1 = 6.

Следовательно, опорный план является невырожденным.

Значение целевой функции для этого опорного плана равно:

$$F(x) = 4*3 + 3*7 + 2*9 + 2*3 + 6*4 + 7*13^{-} = 172$$

Этап II. Улучшение опорного плана.

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

		$v_1 = 5$	$v_2 = 4$	$v_3 = 3$	$v_4 = 5$
u_1 =	=0	7	4[3]	3[7]	5

$u_2 = -3$	2[9]	5	5	2[3]
$u_3 = 2$	2	6[4]	4	7[13]

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (3;1): 2

Для этого в перспективную клетку (3;1) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

THEEN SHAKH "", "", "".							
	1	2	3	4	Запас		
					Ы		
1	7	4[3]	3[7]	5	10		
2	2[9][-]	5	5	2[3][+	12		
]			
3	2[+]	6[4]	4	7[13][-	17		
]			
Потре	9	7	7	16			
бност							
И							

Цикл приведен в таблице (3,1; 3,4; 2,4; 2,1;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(2, 1) = 9. Прибавляем 9 к объемам грузов, стоящих в плюсовых клетках и вычитаем 9 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

TIBICITY IIIM HOBBIT OHOPHBIT HELLI.						
	1	2	3	4	Запас	
					Ы	
1	7	4[3]	3[7]	5	10	
2	2	5	5	2[12]	12	
3	2[9]	6[4]	4	7[4]	17	
Потре	9	7	7	16		
бност						
И						

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ij}$, полагая, что $u_1 = 0$.

	$v_1 = 0$	$v_2 = 4$	$v_3 = 3$	$v_4 = 5$		
$u_1 = 0$	7	4[3]	3[7]	5		
$u_2 = -3$	2	5	5	2[12]		
$u_3 = 2$	2[9]	6[4]	4	7[4]		

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ii}$

Выбираем максимальную оценку свободной клетки (3;3): 4

Для этого в перспективную клетку (3;3) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

	1	2	3	4	Запас
					Ы
1	7	4[3][+	3[7][-]	5	10
]			
2	2	5	5	2[12]	12
3	2[9]	6[4][-]	4[+]	7[4]	17
Потре	9	7	7	16	
бност					
И					

Цикл приведен в таблице (3,3; 3,2; 1,2; 1,3;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. y = min(3, 2) = 4. Прибавляем 4 к объемам грузов, стоящих в плюсовых клетках и вычитаем 4 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

	1	2	3	4	Запас
					Ы
1	7	4[7]	3[3]	5	10
2	2	5	5	2[12]	12
3	2[9]	6	4[4]	7[4]	17
Потре	9	7	7	16	
бност					
И					

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ii}$, полагая, что $u_1 = 0$.

	$v_1=1$	$v_2 = 4$	$v_3 = 3$	v ₄ =6
$u_1 = 0$	7	4[7]	3[3]	5
$u_2 = -4$	2	5	5	2[12]
u ₃ =1	2[9]	6	4[4]	7[4]

Опорный план не является оптимальным, так как существуют оценки свободных клеток, для которых $u_i + v_i > c_{ij}$

Выбираем максимальную оценку свободной клетки (1;4): 5

Для этого в перспективную клетку (1;4) поставим знак «+», а в остальных вершинах многоугольника чередующиеся знаки «-», «+», «-».

	1	2	3	4	Запас
					Ы
1	7	4[7]	3[3][-]	5[+]	10
2	2	5	5	2[12]	12
3	2[9]	6	4[4][+	7[4][-]	17
]		
Потре	9	7	7	16	
бност					
И					

Цикл приведен в таблице (1,4; 1,3; 3,3; 3,4;).

Из грузов x_{ij} стоящих в минусовых клетках, выбираем наименьшее, т.е. $y = \min(1, 3) = 3$. Прибавляем 3 к объемам грузов, стоящих в плюсовых клетках и вычитаем 3 из X_{ij} , стоящих в минусовых клетках. В результате получим новый опорный план.

ynbrare nony mw nobbin onopiibin inian.								
	1	2	3	4	Запас			
					Ы			
1	7	4[7]	3	5[3]	10			
2	2	5	5	2[12]	12			
3	2[9]	6	4[7]	7[1]	17			
Потре	9	7	7	16				
бност								
И								

Проверим оптимальность опорного плана. Найдем *предварительные потенциалы* u_i , v_i . по занятым клеткам таблицы, в которых $u_i + v_i = c_{ij}$, полагая, что $u_1 = 0$.

	$v_1 = 0$	$v_2 = 4$	$v_3 = 2$	$v_4 = 5$
$u_1 = 0$	7	4[7]	3	5[3]
$u_2 = -3$	2	5	5	2[12]
$u_3 = 2$	2[9]	6	4[7]	7[1]

Опорный план является оптимальным, так все оценки свободных клеток удовлетворяют

условию $u_i + v_i \le c_{ij}$.

условию
$$u_1 + v_1 <= c_{ij}$$
.
Минимальные затраты составят:
 $F(x) = 4*7 + 5*3 + 2*12 + 2*9 + 4*7 + 7*1 = 120$

Все вычисления и комментарии к полученным результатам доступны в расширенном режиме. Также приведено решение двойственной транспортной задачи.