1. Algorithms

Name	Worst	Average	Hidden constants	In place
Insertion sort	$\Theta(n^2)$	$\Theta(n^2)$	small	yes
Merge sort	$\Theta(n*logn)$	$\Theta(n*logn)$	large	no
Heap sort	O(n*logn)	-	small	yes
Quicksort	$\Theta(n^2)$	$\Theta(n*logn)$ expected	small	yes
Counting sort	$\Theta(k+n)$	$\Theta(k+n)$	large	no
Radix sort	$\Theta(d* (k+n))$	$\Theta(d*(k+n))$	large	no
Bucket sort	$\Theta(n^2)$	$\Theta(n)$	large	no

Key: k - constant, d - constant

2. Sum

Name	Formula		
Arithmetic	$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} $		
Arithmetic	\$ \sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \$		
Arithmetic	\$\sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4} \$		
Geometric	\$ \sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1} \$		
Geometric	$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} $, where x < 1		
Harmonic	\$ \sum_{k=1}^{n} 1/k = ln(n) \$		

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}$$
, where $x < 1$

3. Logs

Exp		Equiv
\$ \log(\prod_{k=1}^{n} a_k) \$	=	\$ \sum_{k=1}^{n} log(a_k) \$
\$ \log_b a \$	=	\$ \frac{\log_c a}{\log_c b} \$

4. Finance

Black Scholes

$$egin{split} C(S_t,t) &= N(d_1) * S_t - N(d_2) * Ke^{-r(T-t)} \ d_1 &= rac{1}{\sigma (T-t)^{1/2}} [\ln(rac{S_t}{K}) + (r + rac{\sigma^2}{2} * (T-t))] \ d_2 &= d_1 - \sigma (T-t)^{1/2} \ N(\cdot) &= \end{split}$$

the cumulative distribution function of the standard normal distribution

 S_t

the spot price of the underlying asset

K

the strike price

r

the risk free rate (annual rate, expressed in terms of continuous compounding)

the volatility of returns of the underlying asset

• TBU