

TEST REPORT

For

Radio communication modem

In conformity with

FCC Part22H (01 Oct, 2008)

Model: MDM-GCA1B1

FCC ID: XV7MDM-GCA1-100

Test Item: Radio communication modem (GSM850/GSM1900)

Report No: RY0911P27R2

Issue Date: 27 Nov, 2009

Prepared for

SANDEN CORPORATION

1-31-7, Taito, Taito-ku, Tokyo, 110-8555, Japan

Prepared by

RF Technologies Ltd.

472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan

Telephone: +81+(0)45- 534-0645 FAX: +81+(0)45- 534-0646

This report shall not be reproduced, except in full, without the written permission of RF Technologies Ltd. The test results in this report apply only to the sample(s) tested. RF Technologies Ltd. is managed to ISO17025 and has the necessary knowledge and test facilities for testing according to the referenced standards.

RF Technologies Ltd. Page 1 of 39

Table of Contents

1	Ge	eneral information3	
	1.1	Product description	3
	1.2	Test(s) performed/ Summary of test result	3
	1.3	Test facility	
	1.4	Measurement uncertainty	4
	1.5	Description of essencial requirements and test results	5
	1.5	5.1 Transmitter requirements	5
	1.5	5.2 AC Power Line Parameters	5
	1.5	5.3 Normal test conditions	5
	1.5	5.4 Extreme test conditions	
	1.6		
1.6.1 Test configuration of EUT			
		6.2 Operating condition:	
	1.6	6.3 Setup diagram of tested system:	
	1.7	Equipment modifications	7
	1.8	Deviation from the standard	7
2	Te	est procedure and result8	
	2.1	Transmitter requirements	8
	2.1	1.1 Carrier Output Power (Conducted)	8
	2.1	1.2 Carrier Output Power (Radiated)	10
	2.1	1.3 Frequency Stability (Temperature)	13
	2.1	1.4 Frequency Stability (Voltage)	15
	2.1	1.5 Occupied Bandwidth	
	2.1	1.6 Transmitter Out of Band Spurious Emissions (Conducted)	
	2.1	1.7 Transmitter Out of Band Spurious Emissions (Radiated)	
		1.8 Band Edge Emissions	
		1.9 Transmitter AC Power Line Emission requirement	35
3	Te	est setup photographs37	
4	Li	ist of utilized test equipment/ calibration39	

History

Report No.	Issue Date	Revision Contents	Issued by
RY0911P27R2	27 Nov, 2009	Initial Issue	T.Kato

1 General information

1.1 Product description

Test item

: Radio communication modem

Manufacturer

: SANDEN CORPORATION

Address

: 7. Nakanosawa, Kasukawa-machi, Maebashi-shi, Gunma,

371-0201, Japan

Model

: MDM-GCA1B1

FCC ID

: XV7MDM-GCA1-100

Operating frequency range

: TX 824.2-848.8 MHz (GSM850, GPRS Class12) : RX 869.2-893.8 MHz (GSM850, GPRS Class12)

: GMSK

Type of Modulation Receipt date of EUT

: 04 November, 2009

Nominal power voltages

: DC 5V

Power Class

: 4 (Maximum power +33dBm nominal)

Antenna Type

: Detachable antenna (connected by R-SMA connector)

Serial numbers

: D0901611

1.2 Test(s) performed/ Summary of test result

Applicable Standard(s)

: FCC Part22H (01 Oct, 2008)

Test(s) started

: 04 Nov, 2009

Test(s) completed

: 12 Nov. 2009

Purpose of test(s)

: Certification of FCC

Summary of test result

: Complied

Note: The above judgment is only based on the measurement data and it does not include the measurement uncertainty. Accordingly, the statement below is applied to the test result. The EUT complies with the limit required in the standard in case that the margin is not less than the measurement uncertainty in the Laboratory.

Compliance of the EUT is more probable than non-compliance is case that the margin is less than the measurement uncertainty in the Laboratory.

Test engineer

T. Kato (Engineer, EMC testing department)

Reviewer

K.Ohnishi (Manager, EMC testing department)

1.3 Test facility

The Federal Communications Commission has reviewed the technical characteristics of the test facilities at RF Technologies Ltd., located in 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948, per 01 October, 2008.

The description of the test facilities has been filed under registration number 319924 at the Office of the Federal Communications Commission. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The list of all public test facilities is available on the Internet at http://www.fcc.gov.

Registered by Voluntary Control Council for Interference by Information Technology Equipment (VCCI).

Each registered facility number is as follows;

Test site (Semi-anechoic chamber 3m) R-2393

Test site (Shielded room) C-2617

Registered by Industry Canada (IC). The registered facility number is as follows;

Test site No.1(Semi-anechoic chamber 3m): 6974A-1

Accredited by **National Voluntary Laboratory Accreditation Program** (NVLAP) for the emission tests stated in the scope of the certificate under Certificate Number 200780-0

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB CODE 200780-0

1.4 Measurement uncertainty

The treatment of uncertainty is based on the general matters on the definition of uncertainty in "Guide to the expression of uncertainty in measurement (GUM)" published by ISO. The Lab's uncertainty is determined by referring UKAS Publication LAB34: 2002 "The Expression of Uncertainty in EMC Testing" and CISPR16-4-2: 2003 "Uncertainty in EMC Measurements".

The uncertainty of the measurement result in the level of confidence of approximately 95% (k=2) is as follows;

RF frequency: ± 1 x 10⁻⁷ RF power conducted: ± 1.0 dB AC Power line emission: ± 1.9 dB

Radiated emission (30MHz - 1000MHz): \pm 5.7 dB Radiated emission (1GHz - 20GHz): \pm 5.8 dB

Temperature: ± 1 degree

Humidity: ± 5 %

RF Technologies Ltd. Page 4 of 39

1.5 Description of essencial requirements and test results

An overview of radio requirements, as laid out in FCC Part22 are given below.

1.5.1 Transmitter requirements

Test Description	Section in this report	Applicable	Result
Carrier Output Power (Conducted)	2.1.1	Yes	Passed
Carrier Output Power (Radiated)	2.1.2	Yes	Passed
Frequency Stability (Temperature Variation)	2.1.3	Yes	Passed
Frequency Stability (Voltage Variation)	2.1.4	Yes	Passed
Occupied Bandwidth	2.1.5	Yes	Passed
Out of Band Emissions (Conducted)	2.1.6	Yes	Passed
Out of Band Emissions (Radiated)	2.1.7	Yes	Passed
Band Edge Emissions	2.1.8	Yes	Passed

1.5.2 AC Power Line Parameters

Test Description	Section	Applicable	Result
	in this report		
AC power line Spurious Emissions (Traffic mode)	2.1.9	Yes	Passed

1.5.3 Normal test conditions

Temperature(*) : $+15 \deg C$ to $+35 \deg C$

Relative humidity(*) : 20 % to 75 % Supply voltage : DC 5.0V

Measurement Frequency : 824.2 MHz(128ch), 836.4 MHz(189ch), 848.8 MHz(251ch)

1.5.4 Extreme test conditions

Temperature : $-20 \, ^{\circ}\text{C} \, (\text{min}) \text{ to } +50 \, ^{\circ}\text{C} \, (\text{max})$

(Minimum operating temperature of EUT is -20°C)

Supply voltage : DC 4.75 V (min) to 5.25 V (max)

(Manufacture declaration)

RF Technologies Ltd. Page 5 of 39

^{*} When it is impracticable to carry out tests under these conditions, a note to this effect, stating the ambient temperature and relative humidity during the tests, must be stated separately.

1.6 Setup of equipment under test (EUT)

1.6.1 Test configuration of EUT

Equipment(s) under test:

	Item	Manufacturer	Model No.	Serial No.	FCC ID
A	Modem	SANDEN CORPORATION	MDM-GCA1B1	D0901611	XV7MDM-GCA1-100
В	Antenna	SMARTEQ	1140.26RPSMA(m)	None	N/A
C	AC adaptor	SINPRO	IPU16A-102	None	N/A
D	RS232C cable	-	-	None	N/A

Connected cable(s):

No.	Item	Identification (Manu.e.t.c)	Shielded YES / NO	Ferrite Core YES / NO	Connector Type Shielded YES / NO	Length (m)
1	Antenna cable	-	Yes	No	Yes	2.6
2	DC cable	-	No	No	No	1.2
3	RS-232C cable	-	No	No	No	1.5

1.6.2 Operating condition:

Traffic mode : EUT is connected with RF tester in Max power level. (Normal and GPRS mode)

Idle mode : EUT is under idle mode, no output power is transmitted.

RF Technologies Ltd. Page 6 of 39

1.6.3 Setup diagram of tested system:

Note: DC 5V is supplied from AC adaptor instead of frequency stability test(voltage).

1.7 Equipment modifications

No modifications have been made to the equipment in order to achieve compliance with the applicable standards described in clause 1.2.

1.8 Deviation from the standard

No deviations from the standards described in clause 1.2.

RF Technologies Ltd. Page 7 of 39

2 Test procedure and result

2.1 Transmitter requirements

2.1.1 Carrier Output Power (Conducted)

Reference Standard

Part22.913, 2.1046

Test Conditions

Date: 06 Nov, 2009 Ambient Temperature: 22 degC Relative humidity: 43 % Test Voltage: DC 5V

Test Method

- a) EUT is connected to RF tester with pseudo random data modulation and set to maximum output power level.
- b) The output power is measured with RF tester.

Test Setup

RF Technologies Ltd. Page 8 of 39

Test Results

Channel	Frequency	Output Pov	ver (dBm)	Limit	Result
Chamiei	(MHz)	Normal	GPRS	(dBm)	Kesuit
Bottom (128ch)	824.2	32.2	26.7	38.4	Pass
Middle (189ch)	836.4	32.5	26.9	38.4	Pass
Top (251ch)	848.8	32.8	27.2	38.4	Pass

Test Equipment Used

Equipment name	RFT ID No.
RF tester	RC03
RF cable	CL27

Final Result

The EUT met the requirements of the standard for this test.

2.1.2 Carrier Output Power (Radiated)

Reference Standard

Part22.913, 2.1046

Test Conditions

Date: 11 Nov, 2009 Ambient Temperature: 23 degC Relative humidity: 60 % Test Voltage: DC 5 V

Test Method

Substitution method is used for this test.

- a) EUT is set on non-conducting table and the output power is set to the maximum level.
- b) As a receive antenna, horn antenna is used.
- c) Maximum power is measured by a spectrum analyzer (SA) in below conditions.

Turntable is rotated 360 degrees.

The height of receive antenna is changed from 1m to 4m.

Receive antenna polarization is set to vertical and horizontal.

This maximum power is recorded.

During this measurement, receive antenna is adjusted the direction to keep the EUT within the beamwidth of receive antenna.

- d) Reference antenna is replaced with EUT, and connected with signal generator (SG). SG output power is adjusted to get same level as the recorded maximum radiated EUT power by SA.
- e) Radiated output power (Pout) is calculated with adjusted SG output (Psg) [dBm], reference antenna gain (Gref) [dBd] and cable loss between SG and reference antenna (Lcab) [dB].

Pout [dBm e.r.p] = Psg + Gref + Lcab

RF Technologies Ltd. Page 10 of 39

Test Setup

[Measurement]

[Substitution]

Test Results

Channel	Frequency	Output Po	wer (dBm)	Limit	Result
Chamiei	(MHz)	Normal	GPRS	(dBm e.r.p)	Resuit
Bottom (128ch)	824.2	27.3	21.6	38.4	Pass
Middle (189ch)	836.4	29.5	23.5	38.4	Pass
Top (251ch)	848.8	25.6	21.6	38.4	Pass

RF Technologies Ltd. Page 11 of 39

Test Equipment Used

Equipment name	RFT ID No.
Spectrum Analyzer	TR06
Receive Antenna	DH02
Reference Antenna	LA02
Signal Generator	SG05
Power Meter	PM03
RF tester	RC03
RF cable	CL24
Reference Antenna Signal Generator Power Meter RF tester	LA02 SG05 PM03 RC03

Final Result

The EUT met the requirements of the standard for this test.

2.1.3 Frequency Stability (Temperature)

Reference Standard

Part22.355, 2.1055

Test Conditions

Date: 04 Nov, 2009 Ambient Temperature: 18 degC Relative humidity: 40 % Test Voltage: DC 5 V

Test Method

To measure the carrier frequency, "Frequency error measurement" function of RF tester is used.

- a) EUT is hold about 30 minutes under measurement temperature condition.
- b) EUT is powered on with nominal voltage.
- c) EUT is connected to RF tester with Max transmit power level.
- d) Frequency error is measured by RF tester.

 Process b) to d) must be finished within 2 minutes to prevent EUT warming.
- e) Process a) to d) is repeated at 10deg increments from -30 to +50degC.

Test Setup

RF Technologies Ltd. Page 13 of 39

Test Results

Middle Channel (189ch, Nominal Freq.:836.4MHz)

Whate Chamie (107ch, Nohmai 11cq.:050.4WHz)					
Temperature	Frequency Error	Frequency Error	Limit (ppm)	Result	
(degC)	(Hz)	(ppm)			
-30	Note	Note	± 2.5	Passed	
-20	-23	-0.03	± 2.5	Passed	
-10	-19	-0.02	± 2.5	Passed	
0	-16	-0.02	± 2.5	Passed	
10	-15	-0.02	± 2.5	Passed	
20	-17	-0.02	± 2.5	Passed	
30	-17	-0.02	± 2.5	Passed	
40	-18	-0.02	± 2.5	Passed	
50	-19	-0.02	± 2.5	Passed	

Note:

Measurement in -30degC is omitted because minimum operating temperature of EUT is -20degC.

Test Equipment Used

Equipment name	RFT ID No.			
RF tester	RC03			
Temp Chamber	TC01			

Final Result

The EUT met the requirements of the standard for this test

2.1.4 Frequency Stability (Voltage)

Reference Standard

Part22.355, 2.1055

Test Conditions

Date: 04 Nov, 2009 Ambient Temperature: 18 degC Relative humidity: 40 %

Test Voltage: DC 4.75 V to 5.25 V

Test Method

To measure the carrier frequency, "Frequency error measurement" function of RF tester is used.

- a) EUT is powered on with nominal voltage. Temperature is 20degC.
- b) EUT is connected to RF tester with Max transmitter power level.
- c) Frequency error is measured by RF tester.
- d) Process a) to c) is repeated at minimum and maximum voltage condition.

Test Setup

RF Technologies Ltd. Page 15 of 39

Test Results

Middle Channel (189ch, Nominal Freq.:836.4MHz)

Voltage	Frequency Error	Frequency Error	Limit (ppm)	Result			
(V)	(Hz)	(ppm)					
DC 4.75V	-18	-0.02	± 2.5	Passed			
DC 5.00V	-17	-0.02	± 2.5	Passed			
DC 5.25V	-20	-0.02	± 2.5	Passed			

Test Equipment Used

Equipment name	RFT ID No.	
RF tester	RC03	
Temp chamber	TC01	

Final Result

The EUT met the requirements of the standard for this test

2.1.5 Occupied Bandwidth

Reference Standard

Part2.1049, 22.917

Test Conditions

Date: 06 Nov, 2009 Ambient Temperature: 22 degC Relative humidity: 43 % Test Voltage: DC 5 V

Test Method

- a) EUT is connected to RF tester with Max transmitter power level.
- b) 26dB bandwidth is measured by Spectrum Analyzer.
- c) 99% occupied bandwidth of transmitter spectrum is measured by Spectrum Analyzer.

Test Setup

Test Results

Channel	Frequency	26dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Bottom (128ch)	824.2	325	247
Middle (189ch)	836.4	317	244
Top (251ch)	848.8	317	245

RF Technologies Ltd. Page 17 of 39

Graphical Data

128ch Occupied Bandwidth

189ch Occupied Bandwidth

Telephone: +81+(0)45-534-0645, FAX: +81+(0)45-534-0646, Web: http://www.rft.jp

251ch Occupied Bandwidth

128ch 26dB Bandwidth

189ch 26dB Bandwidth

251ch 26dB Bandwidth

Test Equipment Used

Equipment name	RFT ID No.
Spectrum Analyzer	TR06
RF tester	RC03
RF cable	CL27
Directional coupler	DC01

2.1.6 Transmitter Out of Band Spurious Emissions (Conducted)

Reference Standard

Part22.917

Test Conditions

Date: 06 Nov, 2009 Ambient Temperature: 22 degC Relative humidity: 43 % Test Voltage: DC 5 V

Test Method

- a) EUT is connected to RF tester with Max transmitter power level.
- b) Out of band Spurious is measured by Spectrum Analyzer.
- c) Resolution band width of spectrum analyzer is set to 1MHz (above 1GHz) or 100kHz (below 1GHz).

Test Setup

30MHz to 1500MHz

above 1500MHz

RF Technologies Ltd. Page 22 of 39

Test Results

Bottom Channel (128ch, Nominal Freq.:824.2MHz)

Bottom Chamier (120ch; Nommar Freq.:024.2MHz)						
Measurement	Measurement	Emission	Limit	Result		
Frequency	Bandwidth	Level	(dBm)	Pass/Fail		
(MHz)	(MHz)	(dBm)				
1648.4	1	-41.2	-13.0	Pass		
2472.6	1	-40.8	-13.0	Pass		
3296.8	1	< -50.0	-13.0	Pass		
4121.0	1	< -50.0	-13.0	Pass		
4945.2	1	< -50.0	-13.0	Pass		
5769.4	1	< -50.0	-13.0	Pass		
6593.6	1	< -50.0	-13.0	Pass		
7417.8	1	< -50.0	-13.0	Pass		
8242.0	1	< -50.0	-13.0	Pass		
others		-	-13.0	Pass		

Middle Channel (189ch, Nominal Freq.:836.4MHz)

Measurement	Measurement	Emission	Limit	Result
Frequency	Bandwidth	Level	(dBm)	Pass/Fail
(MHz)	(MHz)	(dBm)		
1672.8	1	-42.2	-13.0	Pass
2509.2	1	-41.7	-13.0	Pass
3345.6	1	< -50.0	-13.0	Pass
4182.0	1	< -50.0	-13.0	Pass
5018.4	1	< -50.0	-13.0	Pass
5854.8	1	< -50.0	-13.0	Pass
6691.2	1	< -50.0	-13.0	Pass
7527.6	1	< -50.0	-13.0	Pass
8364.0	1	< -50.0	-13.0	Pass
others		-	-13.0	Pass

Top Channel (251ch, Nominal Freq.:848.8MHz)

Measurement	Measurement	Emission	Limit	Result
Frequency	Bandwidth	Level	(dBm)	Pass/Fail
(MHz)	(MHz)	(dBm)		
1697.6	1	-42.7	-13.0	Pass
2546.4	1	-43.0	-13.0	Pass
3395.2	1	< -50.0	-13.0	Pass
4244.0	1	< -50.0	-13.0	Pass
5092.8	1	< -50.0	-13.0	Pass
5941.6	1	< -50.0	-13.0	Pass
6790.4	1	-48.8	-13.0	Pass
7639.2	1	< -60.0	-13.0	Pass
8488.0	1	< -60.0	-13.0	Pass
others		-	-13.0	Pass

Graphical Data (189ch, Pre-scan)

Test Equipment Used

Equipment name	RFT ID No.
Spectrum Analyzer	TR06
RF tester	RC03
RF cable	CL27
Directional coupler	DC01
High pass filter	HPF2

Final Result

The EUT met the requirements of the standard for this test.

2.1.7 Transmitter Out of Band Spurious Emissions (Radiated)

Reference Standard

Part22.917

Test Conditions

Date: 11 Nov, 2009 (Above 1GHz), 12 Nov, 2009 (Below 1GHz)

Ambient Temperature: 23 degC (11 Nov), 22 degC (12 Nov)

Relative humidity: 60 % (11 Nov), 56% (12 Nov)

Test Voltage: DC 5 V

Test Method

Substitution method is used for this test.

- a) EUT is set on non-conducting turntable and the output power is set to the maximum level.
- b) As a receive antenna, Horn antenna is used for high frequency range (above 1GHz), and Bilogical antenna is used for low frequency range (30MHz to 1GHz).
- c) The maximum level of each spurious emission is measured by a spectrum analyzer (SA) in below conditions.

Turntable is rotated 360 degrees.

The height of receive antenna is changed from 1m to 4m.

Receive antenna polarization is set to vertical and horizontal.

EUT was placed at three different orientations (X, Y and Z axis) in order to find the worst orientation. This emission level is recorded.

During this measurement, receive antenna is adjusted the direction to keep the EUT within the beamwidth of receive antenna.

- d) Reference antenna is replaced with EUT, and connected with signal generator (SG). SG output power is adjusted to get same level as the recorded maximum radiated EUT power by SA.
- e) Radiated output power (Pout) is calculated with adjusted SG output (Psg) [dBm], reference antenna gain (Gref) [dBd] and cable loss between SG and reference antenna (Lcab) [dB].

Pout [dBm e.r.p] = Psg + Gref + Lcab

RF Technologies Ltd. Page 28 of 39

Test Setup

[Measurement]

[Substitution]

Test Results

Bottom Channel (128ch, Nominal Freq.:824.2MHz)

Dottom Chamier (120cm, 100mmar 11cq.:024.21viiiz)					
Measurement	Measurement	Emission		Limit	Result
Frequency	Bandwidth	Level ((dBm)	(dBm)	Pass/Fail
(MHz)	(MHz)	Vertical	Horizontal		
1648.4	1	-48.8	-45.5	-13.0	Pass
2472.6	1	-45.6	-44.5	-13.0	Pass
3296.8	1	< -53.4	< -53.4	-13.0	Pass
4121.0	1	< -53.5	< -53.5	-13.0	Pass
4945.2	1	< -52.5	< -52.5	-13.0	Pass
5769.4	1	< -50.3	< -50.3	-13.0	Pass
6593.6	1	< -48.9	< -48.9	-13.0	Pass
7417.8	1	< -46.8	< -46.8	-13.0	Pass
8242.0	1	< -46.1	< -46.1	-13.0	Pass
others		-	-	-13.0	Pass

Middle Channel (189ch, Nominal Freq.:836.4MHz)

Measurement	Measurement	Emi	ssion	Limit	Result
Frequency	Bandwidth	Level	(dBm)	(dBm)	Pass/Fail
(MHz)	(MHz)	Vertical	Horizontal		
1672.8	1	-47.9	-48.5	-13.0	Pass
2509.2	1	-44.6	-44.1	-13.0	Pass
3345.6	1	< -53.9	< -53.9	-13.0	Pass
4182.0	1	< -53.3	< -53.3	-13.0	Pass
5018.4	1	< -51.8	< -51.8	-13.0	Pass
5854.8	1	< -48.7	< -48.7	-13.0	Pass
6691.2	1	< -48.7	< -48.7	-13.0	Pass
7527.6	1	< -46.2	< -46.2	-13.0	Pass
8364.0	1	< -44.6	< -44.6	-13.0	Pass
others		-	-	-13.0	Pass

Top Channel (251ch, Nominal Freq.:848.8MHz)

Measurement Frequency	Measurement Bandwidth	Emission Level(dBm)		Limit (dBm)	Result Pass/Fail
(MHz)	(MHz)	Vertical	Horizontal	(02111)	1 455/1 411
1697.6	1	-49.9	-48.8	-13.0	Pass
2546.4	1	-44.0	-42.3	-13.0	Pass
3395.2	1	< -54.1	< -54.1	-13.0	Pass
4244.0	1	< -52.9	< -52.9	-13.0	Pass
5092.8	1	< -51.1	< -51.1	-13.0	Pass
5941.6	1	< -45.5	< -45.5	-13.0	Pass
6790.4	1	< -48.2	< -48.2	-13.0	Pass
7639.2	1	< -46.0	< -46.0	-13.0	Pass
8488.0	1	< -43.6	< -43.6	-13.0	Pass
others		-	-	-13.0	Pass

Test Equipment Used

rest Equipment escu	
Equipment name	RFT ID No.
Spectrum Analyzer	TR06
Receive Antenna	DH02, BA04
Reference Antenna	DH01
Pre-AMP	PR12, PR03
Signal Generator	SG05
Power Meter	PM03
RF tester	RC03
RF cable	CL11, CL23, CL24, CL27
Filter	BRF4, HPF2

Final Result

The EUT met the requirements of the standard for this test.

2.1.8 Band Edge Emissions

Reference Standard

Part22.917

Test Conditions

Date: 06 Nov, 2009 Ambient Temperature: 22 degC Relative humidity: 43 % Test Voltage: DC 5 V

Test Method

- a) EUT is connected to RF tester with Max transmitter power level.
- b) Lower band edge level is measured in bottom channel transmission.
- c) Higher band edge level is measured in top channel transmission.
- d) 1% of band width is used for resolution band width for spectrum analyzer.

Test Setup

Test Results

Bottom Band Edge

Measured Frequency (MHz)	Peak Level (dBm)	Limit (dBm)	Result
824.0	-13.6	-13.0	Passed

Top Band Edge

Measured Frequency	Peak Level	Limit	Result
(MHz)	(dBm)	(dBm)	
849.0	-13.8	-13.0	Passed

RF Technologies Ltd. Page 32 of 39

Graphical Data

Bottom band edge

Top band edge

Test Equipment Used

Equipment name	RFT ID No.
Spectrum Analyzer	TR06
RF tester	RC03
RF cable	CL27
Directional coupler	DC01

Final Result

The EUT met the requirements of the standard for this test.

2.1.9 Transmitter AC Power Line Emission requirement

Reference Standard

Part15.207

Test Conditions

Date: 11 Nov, 2009 Ambient Temperature: 23 degC Relative humidity: 60 % Test Voltage: DC 5 V

Test Method

- a) EUT is connected to RF tester with Max transmitter power level.
- b) AC power is supplied to AC charger through LISN.
- c) AC charger is connected to EUT.
- d) AC Line conducted emission is measured by EMI receiver. Both Va/Vb line are measured emission level.

Test Setup

Limit

Frequency	Limit QP	Limit AV
(MHz)	(dBuV)	(dBuV)
0.15 - 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

RF Technologies Ltd. Page 35 of 39

Test Results

Frequency	Line	QP	AVE	Factor	QP	AVE	QP	AVE	Result
(MHz)	(Va/Vb)	Reading	Reading	[dB]	Result	Result	Limit	Limit	
		[dBµV]	[dBµV]		[dBµV]	[dBµV]	$(dB\mu V)$	(dBµV)	
0.193	Va	47.4	25.2	0.2	47.6	25.4	63.9	53.9	Passed
0.289	Va	36.4	16.2	0.2	36.6	16.4	60.6	50.6	Passed
4.169	Va	20.9	8.8	0.6	21.5	9.4	56.0	46.0	Passed
0.195	Vb	44.8	24.3	0.2	45.0	24.5	63.8	53.8	Passed
0.289	Vb	34.8	14.6	0.2	35.0	14.8	60.6	50.6	Passed
4.113	Vb	22.0	9.0	0.6	22.6	9.6	56.0	46.0	Passed

Graphical Data

Test Equipment Used

Equipment name	RFT ID No.
EMI Receiver	TR06
LISN	LN06
RF tester	RC03
RF cable	CL11

Final Result

The EUT met the requirements of the standard for this test

4 List of utilized test equipment/ calibration

RFT ID No.	Kind of Equipment and Precision	Manufacturer	Model No.	Serial Number	Calibration Date	Calibrated until
AC01(EM)	Anechoic Chamber (1st test room)	JSE	203397C	-	2009/4/9	2010/4/30
AC01(EG)	Anechoic Chamber (1st test room)	JSE	203397C	-	2009/3/25	2010/3/31
BA04	Bilogical Antenna	SCHAFFNER	CA2855	CA2855 2903		2010/1/31
BRF4	Band Reject Filter (WCDMA850)	M-City	BRF0835-01	RF0004	2009/4/8	2010/4/30
BRF6	Band Reject Filter (GSM1900)	M-City	BRF1880-02	RF0006-02	2009/9/18	2010/9/30
CL11	Antenna Cable for RE	RFT	-	-	2009/4/13	2010/4/30
CL23	RF Cable 0.5m	SUCOFLEX	SF104PE	48773/4PE	2009/6/25	2010/6/30
CL24	RF Cable 5.0m	SUCOFLEX	SF104PE	48775/4PE	2009/6/25	2010/6/30
CL27	RF Cable 0.5m	SUCOFLEX	SF104	230286/4	2009/6/29	2010/6/30
DC01	Directional Coupler	KRYTAR	1850	77202	2009/5/18	2010/5/31
HPF1	High Pass Filter (3500MHz)	TOKIMEC	TF323DCA	603	2009/6/25	2010/6/30
HPF2	High Pass Filter (1500MHz)	M-City	HPF0900-01	RF0003-01	2009/6/25	2010/6/30
LA02	Logperiodic Antenna	SCHWARZBECK	USLP 9143	339	2009/7/22	2010/7/31
LN06	LISN	Kyoritsu	KNW-407	8-1773-3	2009/5/26	2010/5/31
PM03	Power Meter	Anritsu	ML2438A	99070001	2009/7/21	2010/7/31
PR03	Pre. Amplifier	Anritsu	MH648A	M41984	2009/5/26	2010/5/31
PR12	Pre. Amplifier (1-26G)	Agilent Technologies	8449B	3008A02513	2009/1/13	2010/1/31
PU03	Power Sensor	Anritsu	MA2472A	990103	2009/7/21	2010/7/31
SH01	Standard Horn Antenna (18-26G)	A.H. Systems	SAS-572	208	2008/7/23	2010/7/31
SH02	Standard Horn Antenna (18-26G)	A.H. Systems	SAS-572	209	2008/7/23	2010/7/31
TR06	Test Receiver (F/W: 3.93 SP2)	Rohde & Schwarz	ESU26	ESU26 100002		2010/9/30
DH01	DRG Horn Antenna	A.H. Systems	SAS-571 785		2008/1/31	2010/1/31
DH02	DRG Horn Antenna	A.H. Systems	SAS-200/571	SAS-200/571 239		2011/4/30
RC03	Radio communication tester (F/W: 10.20 #005)	Anritsu	MT8820B	6200636657	2009/6/26	2010/6/30
SG05	Signal Generator	Rohde & Schwarz	SMR20	100905	2009/6/18	2010/6/30
TC01	Temperature Chamber	ESPEC	SH-641	92000964	2008/11/17	2009/11/30

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Telephone: +81+(0)45- 534-0645, FAX: +81+(0)45- 534-0646, Web: http://www.rft.jp