Segmentation d'images

Te Sun Ge Jin Superviseur : Stéphanie Allassonnière 19/03/2019

Code: https://github.com/sun-te/MAP512_Segmentation/

Plan de la présentation

- Méthodes de Segmentation Random Walker AtlasNet
- 2 Expériences et résultats Nos Données Détails d'implémentation Résultats
- 3 Conclusion

Segmentation d'images Te SUN, Ge JIN 19/03/2019 2/

Section 1

Méthodes de Segmentation

Random Walker: Construction du Graphe

• Une image peut être représentée par un graphe connecté

- Normaliser l'image pour que $g_i \in [0,1]$
- g_i : **l'intensité** sur le sommet V_i
- ullet 4-voisins modèle vs 8-voisins modèle
- pour chaque arête, donner un poids défini par :

$$w_{i,j} = \exp(-\beta(g_i - g_j)^2)$$

où β est un paramètre à choisir.

ullet Le degré du sommet V_i est défini par : $d_i = \sum_{i \in \mathit{V}, i
eq i} w_{i,j}$

Random Walker: Construction du Graphe

• Une image peut être représentée par un graphe connecté

- Normaliser l'image pour que $g_i \in [0,1]$
- g_i : **l'intensité** sur le sommet V_i
- ullet 4-voisins modèle vs 8-voisins modèle
- pour chaque arête, donner un poids défini par :

$$w_{i,j} = \exp(-\beta(g_i - g_j)^2)$$

où β est un paramètre à choisir.

ullet Le degré du sommet V_i est défini par : $d_i = \sum_{j \in \mathit{V}, j
eq i} w_{i,j}$

Random Walker: Construction du Graphe

• Une image peut être représentée par un graphe connecté

- Normaliser l'image pour que $g_i \in [0,1]$
- g_i : **l'intensité** sur le sommet V_i
- ullet 4-voisins modèle vs 8-voisins modèle
- pour chaque arête, donner un poids défini par :

$$w_{i,j} = \exp(-\beta(g_i - g_j)^2)$$

où β est un paramètre à choisir.

ullet Le degré du sommet V_i est défini par : $d_i = \sum_{j \in \mathit{V}, j
eq i} w_{i,j}$

Random Walker: Intégrale Dirichlet

Pour un milieu continu, la segmentation est d'identifier de différentes parties qui minimisent **l'intégrale Dirichlet** :

$$D[u] = \frac{1}{2} \int_{\Omega} |\nabla u|^2 d\omega$$

Dans un milieu discret, on peut avoir une équivalence par une définition de **la matrice Laplacienne** :

$$L_{i,j} = \begin{cases} d_i & \text{Si } i = j, \\ w_{i,j} & \text{Si } V_i, \ V_j \, \text{sont voisins} \\ 0 & \text{autres cas} \end{cases}$$

et l'intégrale Dirichelet s'exprime par :

$$D[X] = \frac{1}{2}X^T.L.X$$

Random Walker : Minimisation de $\frac{1}{2}X^T.L.X$

- $\{V_m\}_{m\in\{1,\cdots M\}}$: Les sommets avec labels;
- $\{V_n\}_{n\in\{1,\cdots N\}}$: Les sommets non-masqués

$$\begin{split} D[X] &= \frac{1}{2} [X_m^T, X_n^T]. \begin{bmatrix} L_m & B \\ B^T & L_n \end{bmatrix} . \begin{bmatrix} X_m \\ X_n \end{bmatrix} \\ &= \frac{1}{2} (X_n^T.L_n.X_n + X_m^T.L_m.X_m + 2X_m^T.B.X_n) \end{split}$$

La minimisation de ${\it D}[{\it X}]$ est de résoudre le système linéaire :

$$L_n X_n = -B^T X_m$$

Seamentation d'images Te SUN, Ge JIN 19/03/2019 8/3

Random Walker : Solution du système Ax = b

Dilemme de grande dimension :

• Méthode itérative VS. Méthode décomposition LU

- Choisir
$$X^0$$
 un vecteur initial et on pose $r^0=-B^TX_m-L_nX^0$ et $p^0=r^0$ - Itérer pour $n{\geq}0$:
$$X^{n+1}=X^n+\alpha^np^n \text{ avec }\alpha^n=\frac{< r^n,r^n>}{< L_np^n,p^n>} \\ r^{n+1}=r^n-\alpha^nL_np^n, \\ p^{n+1}=r^{n+1}+\beta^np^n \text{ avec }\beta^n=\frac{< r^{n+1},r^{n+1}>}{< r^n,r^n>}$$

Un schéma itérative (Gradient Conjugué) pour résoudre le sytème

Remarque

Si nous avons S différents labels, nous devons résoudre S fois le système mais avec la même matrice Laplacienne

Segmentation d'images Te SUN, Ge JIN 19/03/2019 9/2

AtlasNet: architecture

AtlasNet

images \longrightarrow Transformations non-linéaires inversibles \longrightarrow **SegNet** \longrightarrow Transformations inversées \longrightarrow vote \longrightarrow Segmentation d'images

Figure 1 – Représentation de l'architecture de AtlasNet

Segmentation d'images Te SUN, Ge JIN 19/03/2019 10/

AtlasNet: SegNet

Figure 2 – Représentation de l'architecture de SegNet

Pooling & Upsampling: Concervation des pooling indices pour upsampling

X Seamentation of

AtlasNet: Synthèse

Pour chaque image tranformée, on applique SegNet afin d'obtenir une segmentation.

Loss function :weighted cross entropy

$$\sum_{i,j} -y_{i,j} \log(p_{i,j}) \times w_y - (1 - y_{i,j}) \log(1 - p_{i,j})$$

où $y_{i,j}$ est le vrai label du pixel qui se situe à [i,j] sur l'image, et $p_{i,j}$ est la prédiction par le modèle.

 w_y est le poids pondéré sur une certaine classe y. Si $w_y > 1$, on pénalise la proportion **false négative**.

Section 2

Expériences et résultats

Données : une description de dataset (1/2)

Training set: 210 images comme ci-dessous

Annotation train: 210 images image sans bruits en 2 classes (noir

et blanche)

Validation & Test set: 10 images avec leurs labels.

Figure 3 – Ellipse déformée – les données pour l'entraînement

Seamentation d'images Te SUN, Ge JIN 19/03/2019 14.

Données : une description de dataset (2/2)

Figure 4 – Ellipse déformée - les données pour l'entraînement

- Training set (toutes les variables présentes sont indépendantes):
 - 210 images d'ellipses déformées
 - Images: 128×128 pixels
 - Ellipse: $a, b \sim \mathcal{U}(0.1, 1) \times 64$ pixels
 - Bruit sur pixel : $b \sim \mathcal{N}(0, e^2)$, où $e \sim \mathcal{U}(0, 0.3)$
 - Nombre de "Cornes" : $N \sim \mathcal{U}(0, 50)$

Données: Comment on les a crées

- ① Centrer les points : Pour le point $M_{i,j}$, posons $(x,y)=(i-\lfloor\frac{N+1}{2}\rfloor,=j-\lfloor\frac{N+1}{2}\rfloor)$
- Rotation :

$$[x', y']^T = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

3 Colorisation: On colore tout pixel qui vérifie:

$$\left(\frac{x'-a\times\cos(n\phi)}{a}\right)^2 + \left(\frac{y'-b\times\sin(n\phi)}{b}\right)^2 \le 1$$

avec avec n: le nombre de "cornes" autour de l'ellipse et $cos(\phi) = x/\sqrt{x^2+y^2}$

4 "Polluer" l'image : Soit M la matrice de l'image :

$$M' = \max(1, M + \mathcal{G})$$

Où ${\cal G}$ est une matrice dont les composante sont *i.i.d* et gaussienne avec une variance aléatoire.

Détails d'implémentation : Random walker

Random walker:

- 1 Donner les "Seeds" et les "labels"
- Oréer les sommets et les arêtes non orienté à partir de l'image
- 3 Attribuer un poids pour chaque arêtes
- 4 Reformuler la matrice Laplacienne ordonnée
- S Pour chaque label, résoudre un système linéaire pour obtenir un vecteur de probabilité
 - Gradient Conjugé : Condition d'arrêt : le nombre de pas limité par 10^6 avec une tolérance : 10^{-6} . (script <code>Dirichelet.py</code>).

Figure 5 – L'"erreur" : $||x_{n+1} - x_n||$ - Nombre de pas

Détails d'implémentation : SegNet (1/2)

Figure 6 – Représentation de l'architecture de tranfer learning

Seamentation d'images Te SUN. Ge JIN 19/03/2019 18/2

Détails d'implémentation : SegNet (2/2)

- Architecture: Trois couches Conv2D supplémentaires avant la couche SoftMax
- Training:
 - Oconserver la partie Encoder-décoder pré-entraîner et optimiser les couches ajoutées.
 - 2 à partir de 200 épochs, libérer la partie décoder.

Résultats: (description globale)

Modèles utilisés

- SegNet: Après entraînement sur 20 images.
- Random walker : Deux "seeds" : le centre et le point (127,127). Résolution avec $\beta=150$.

Précision & Loss function

	Test accuracy	Test loss
SegNet	95.03	0.1837
Random Walker	98.70	0.1793

Table 1 – Précision et perte moyennes

Remarque:

- On peut booster la performance de SegNet avec plus de données. On a obtenu une précision de 97.20 avec 210 images comme données d'entrée.
- Bien que la précision de Random Walker est plus haute dans notre expérience, la performance dépend fortement de β

Segmentation d'images Te SUN, Ge JIN 19/03/2019 20/

Résultats : (Test sur un exemple)

Figure 7 — Gauche : l'image originale avec bruit Gaussian et la déformation contour ; Milieu : Random walker détection avec $\beta=90$; Droite : segmentation avec SegNet

Accuracy	Accuracy		
SegNet	96.31		
RandomWalker	99.79		

Table 2 – Précision de Figure 7

- Random Walker : Détection du contour
- SegNet : Peu influencé par le bruit sur pixel

Segmentation d'images Te SUN, Ge JIN 19/03/2019

Résultats : étude sur la sensibilité de Random Walker à β

x: Le valeur de l'écart type du bruit pixel, de 0 à 0.3

y : β de 5 à 205

z : Fonction perte & Précision

[Source Image]:Loss; Precision

Figure 8 – Loss and accuracy as a function of β and Standard Deviation

• Une concexivité en β observée, l'optimisation possible

Seamentation d'images Te SUN, Ge JIN 19/03/2019 22/3

Section 3 Conclusion

Conclusion

Random Walker:

- **Avantage:** Son robustesse vient de non-apprentissage. Nous pouvons l'appliquer dans plusieurs domaines.
- Inconvénient: il faut manuellement spécifier les différents zones (e.x. un organe sur une imagerie de X-ray), ce qui demande souvent l'expertise en anatomie.

SegNet:

- **1 Annotation automatique** :si le modèle a été entraîné, on n'a plus besoin de l'annotation par des médecins.
- 2 Inconvénient : le modèle demande des données pour reprendre sa performance

Perspective

- Optimisation de Random Walker à posteriori: supposons le bruit sur chaque pixel est i.i.d et indépendant du contexte de l'image. On pourra simuler la loi du bruit et prendre le meilleur beta qui maximise la précision.
- Automatisation de la transformation non-linéaire dans l'architecture AtlasNet: on pourra la remplacer par SSTN(symetrical spatial transformer network) qui cherche à optimiser la transformation de type (par apprentissage):

$$\begin{bmatrix} x^a,y^a \end{bmatrix}^T = \begin{bmatrix} \theta_{1,x} & \theta_{1,y} & \theta_{1,1} \\ \theta_{2,x} & \theta_{2,y} & \theta_{2,1} \end{bmatrix} \begin{bmatrix} x^b \\ y^b \\ 1 \end{bmatrix}$$

Segmentation d'images Te SUN, Ge JIN 19/03/2019 25

Doit-on faire la concession des connaissances et des expériences devant cette boîte noire?

Référence

- Leo Grady. Random walks for image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(11):1768–1783, Nov. 2006.
- [2] Maria Vakalopoulou, Guillaume Chassagnon, Norbert Bus, Rafael Marini Silva, Evangelia I. Zacharaki, Marie-Pierre Revel, and Nikos Paragios. AtlasNet: Multi-atlas Non-linear Deep Networks for Medical Image Segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Granada. Spain. September 2018.
- [3] J. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Available online ¹. Carnegie Mellon University, 1994.
- [4] Alex Kendall, Vijay Badrinarayanan, , and Roberto Cipolla. Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680, 2015.
- Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
- [6] Enzo Ferrante, Puneet K. Dokania, Rafael Marini, and Nikos Paragios. Deformable registration through learning of context-specific metric aggregation. CoRR, abs/1707.06263, 2017.
- [7] Haoshu Fang, Shuqin Xie, and Cewu Lu. RMPE: regional multi-person pose estimation. CoRR, abs/1612.00137, 2016.
- [8] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer networks. CoRR, abs/1506.02025, 2015.

Compostation d'impres

Merci pour votre attention!

