

Europäisches Patentamt

European Patent Office

Office européen des brevets



(11) EP 1 013 765 A1

(12)

## **EUROPEAN PATENT APPLICATION**

(43) Date of publication: 28.06.2000 Bulletin 2000/26

(21) Application number: 99125406.1

(22) Date of filing: 20.12.1999

(51) Int. Cl.<sup>7</sup>: **C12N 15/31**, C12N 1/21, C07K 14/245, C12P 13/06, C12P 13/08
// C12R1:19

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 23.12.1998 RU 98123511

(71) Applicant: Ajinomoto Co., Ltd. Tokyo (JP)

(72) Inventors:

 Livshits, Vitaliy Arkadyevich, c/o GNIIGenetika
 Moscow (RU)  Zakataeva, Natalia Pavlovna, c/o GNIIGenetika Moscow (RU)

 Aleshin, Vladimir Veniaminovich, c/o GNIIGenetika Moscow (RU)

 Belareva, Alla Valentinova, c/o GNIIGenetika Moscow (RU)

 Tokhmakova, Irina Lyvovna, c/o GNIIGenetika Moscow (RU)

(74) Representative: Strehl Schübel-Hopf & Partner Maximilianstrasse 54 80538 München (DE)

### (54) Gene and method for producing L-amino acids

(57) A bacterium which has an ability to produce an amino acid and in which *rhtC* gene coding for a protein having an activity of making a bacterium having the protein L-threonine-resistant is enhanced, preferably, in which *rhtB* gene coding for a protein having an activity of making a bacterium having the protein L-homoserine-

resistant is further enhanced, is cultivated in a culture medium to produce and accumulate the amino acid in the medium, and the amino acid is recovered from the medium.

# REST AVAILABLE COPY

| T KD   | Sacti<br>Class | PER CALL             | Sacia<br>Truck           |                        |
|--------|----------------|----------------------|--------------------------|------------------------|
| pldA   | rec0           | String String String |                          |                        |
|        |                |                      | RESISTA                  | CE TO                  |
| •      |                | •                    | HOMOSERINE<br>(10 mg/ml) | THRECHINE<br>(50 mg/m) |
| pRhtB  |                | <del> </del>         | ÷                        | •                      |
| aNPZ44 |                | <del></del>          |                          | ÷                      |
| pRhtBC | <del>~</del>   |                      | <u></u>                  | ÷                      |
| pRhtC  |                |                      | • •                      | ÷                      |

Fig. 1

#### Description

#### Technical field

The present invention relates to biotechnology, and more specifically to a method for producing amino acid, especially for a method for producing L-homoserine, L-threonine, L-valine or L-leucine using a bacterium belonging to the genus *Escherichia*.

#### Background Art.

[0002] The present inventors obtained, with respect to *E. coli* K-12, a mutant having mutation, *thrR* (herein referred to as *rhtA23*) that is concerned in resistance to high concentrations of threonine or homoserine in a minimal medium (Astaurova, O.B. et al., Appl. Bioch. And Microbiol., 21, 611-616 (1985)). The mutation improved the production of L-threonine (SU Patent No. 974817), homoserine and glutamate (Astaurova, O.B. et al., Appl. Bioch. And Microbiol., 27, 556-561, 1991) by the respective *E. coli* producing strains.

[0003] Furthermore, the present inventors has revealed that the *rhtA* gene exists at 18 min on *E. coli* chromosome and that the *rhtA* gene is identical to ORF1 between *pexB* and ompX genes. The unit expressing a protein encoded by the ORF has been designated as *rhtA* (rht: resistance to homosenne and threonine) gene. The *rhtA* gene includes a 5'-noncoding region including SD sequence, ORF1 and a terminator. Also, the present inventors have found that a wild type rhtA gene participates in resistance to threonine and homoserine if cloned in a multicopy state and that the rhtA23 mutation is an A-for-G substitution at position -1 with respect to the ATG start codon (ABSTRACTS of 17<sup>th</sup> International Congress of Biochemistry and Molecular Biology in conjugation with 1997 Annual Meeting of the American Society for Biochemistry and Molecular Biology, San Francisco, California August 24-29, 1997, abstract No. 457).

[0004] It is found that at least two different genes which impart threonine and homoserine resistance in a multicopy state exist in *E. coli* during cloning of the *rhtA* gene. One of the genes is the *rhtA* gene, and the other gene was found to be *rhtB* gene which confers homoserine resistance (Russian Patent Application No. 98118425).

#### Disclosure of the Invention

40

45

50

55

O [0005] An object of the present invention is to provide a a method for producing an amino acid, especially, L-homoserine, L-threonine and branched chain amino acids with a higher yield.

[0006] The inventors have found that a region at 86 min on *E. coli* chromosome, when cloned by a multicopy vector, impart resistance to L-homoserine to cells of *E. coli*. the inventors further found that there exists in the upstream region another gene, rhtC, which involves resistance to threonine, and that when these genes are amplified, the amino acid productivity of *E. coli* can be improved like the *rhtA* gene. On the basis of these findings, the present invention have completed.

[0007] Thus, the present invention provides:

- (1) A bacterium belonging to the genus *Escherihia*, wherein L-threonine resistance of the bacterium is enhanced by enhancing an activity of protein as defined in the following (A) or (B) in a cell of the bacterium:
  - (A) a protein which comprises the amino acid sequence of SEQ ID NO: 4; or
  - (B) a protein which comprises the amino acid sequence including deletion, substitution, insertion or addition of one or several amino acids in the amino acid sequence of SEQ ID NO: 4, and which has an activity of making a bacterium having the protein L-threonine-resistant;
- (2) The bacterium according to (1), wherein L-homoserine resistance of the bacterium is further enhanced by enhancing an activity of protein as defined in the following (C) or (D) in a cell of the bacterium:
  - (C) a protein which comprises the amino acid sequence of SEQ ID NO: 2; or
  - (D) a protein which comprises the amino acid sequence including deletion, substitution, insertion or addition of one or several amino acids in the amino acid sequence of SEQ ID NO: 2, and which has an activity of making a bacterium having the protein L-homoserine-resistant;
- (3) The bacterium according to (1) or (2), wherein the activity of protein as defined in (A) or (B) is enhanced by transformation of the bacterium with DNA coding for the protein as defined in (A) or (B);
- (4) The bacterium according to (2), wherein the activity of protein as defined in (C) or (D) is enhanced by transformation of the bacterium with DNA coding for the protein as defined in (C) or (D);

(5) A method for producing an amino acid, comprising the steps of:

cultivating the bacterium as defined in any one of (1) to (4), which has an ability to produce an amino acid, in a culture medium, to produce and accumulate the amino acid in the medium, and recovering the amino acid from the medium;

- (6) The method according to (5), wherein the amino acid is selected from the group consisting of L-homoserine, L-threonine and branched chain amino acids;
- (7) The method according to (6), the branched chain amino acid is L-valine or L-leucine.
- (8) A DNA which encode a protein defined in the following (A) or (B):
  - (A) a protein which has the amino acid sequence of SEQ ID NO: 4;
  - (B) a protein which has the amino acid sequence of SEQ ID NO: 4 including substitution, deletion, insertion, addition, or inversion of one or several amino acids, and has an activity of making a bacterium having the protein L-threonine-resistant.
- 9. The DNA of (8) which is a DNA defined in the following (a) or (b):

10

20

25

- (a) a DNA which comprises the nucleotide sequence of nucleotide numbers 187 to 804 in SEQ ID NO: 3;
- (b) a DNA which is hybridizable with a nucleotide sequence of nucleotide numbers 187 to 804 in SEQ ID NO: 3 or a probe prepared from the nucleotide sequence under a stringent condition, and encodes a protein having an activity of making a bacterium having the protein L-threonine-resistant; and
- 10. The DNA of (9) wherein the stringent condition is a condition in which washing is performed at 60 °C, and at a salt concentration corresponding to 1 x SSC and 0.1 % SDS.
- [0008] The DNA fragment coding for the protein as defined in the above (A) or (B) may be referred to as "rhtC gene", a protein coded by the rhtC gene may be referred to as "RhtC protein", the DNA coding for the protein as defined in the above (C) or (D) may be referred to as "rhtB gene", a protein coded by the rhtB gene may be referred to as "RhtB protein". An activity of the RhtC protein which participate in resistance to L-threonine of a bacterium (i.e. an activity of marking a bacterium having the RhtC protein L-threonine-resistant) may be referred to as "Rt activity", and an activity of the RhtB protein which participates in resistance to L-homoserine of a bacterium (i.e. an activity of marking a bacterium having the RhtB protein L-homoserine-resistant) may be referred to as "Rh activity". A structural gene encoding the RhtC protein or RhtB protein in the rhtC gene or rhtB gene may be referred to as "rhtC structural gene" or "rhtB structural gene". The term "enhancing the Rt activity or the Rh activity" means imparting resistance to threonine or homoserine to a bacterium or enhance the resistance by means of increasing the number of molecules of the RhtC protein or RhtB protein increasing a specific activity of these proteins, or desensitizing negative regulation against the expression or the activity of these proteins or the like. The terms "DNA coding for a protein" mean a DNA of which one of strands codes for the protein when the DNA is double-stranded. The L-threonine resistance means a property that a bacterium grows on a minimal medium containing L-threonine at a concentration at which a wild-type strain thereof not grow, usually at >30 mg/ml. The L-homoserine resistance means a property that a bacterium grows on a minimal medium containing L-homoserine at a concentration at which a wild-type strain thereof not grow, usually at >5 mg/ml. The ability to produce an amino acid means a property that a bacterium produce and accumulates the amino acid in a medium in a larger amount than a wild type strain thereof.

[0009] According to the present invention, resistance to threonine, or threonine and homoserine of a high concentration can be imparted to a bacterium belonging to the genus *Escherichia*. A bacterium belonging to the genus *Escherichia*, which has increasing resistance to threonine, or threonine and homoserine and an ability to accumulate an amino acid, especially, L-homoserine, L-threonine, or branched chain amino acids such as L-valin and L-leucine in a medium with a high yield.

[0010] The present invention will be explained in detail below.

o (1)DNA used for the present invention

[0011] The first DNA fragment used for the present invention (*rhtC* gene) coding for a protein having the Rt activity and having the amino acid sequence of SEQ ID NO: 4. Specifically, the DNA may be exemplified by a DNA comprising a nucleotide sequence of the nucleotide numbers 187 to 804 of a nucleotide sequence of SEQ ID NO: 3.

[0012] The second DNA fragment used for the present invention (*rhtB* gene) coding for a protein having the Rh activity an having the amino acid sequence of SEQ ID NO: 2. Specifically, the DNA may be exemplified by a DNA comprising a nucleotide sequence of the nucleotide numbers 557 to 1171 of a nucleotide sequence of SEQ ID NO: 1.

[0013] The rhtB gene having the nucleotide sequence of SEQ ID NO: 1 corresponds to a part of sequence comple-

ment to the sequence of GenBank accession number M87049, and includes f138 (nucleotide numbers 61959-61543 of M87049) which is a known but function-unknown ORF (open reading frame) present at 86 min on *E. coli* chromosome, and 5'-and 3'- flanking regions thereof. The f138, which had only 160 nucleotides in the 5'-flanking region, could not impart the resistance to homoserine. No termination codon is present between the 62160 and 61959 nucleotides of M87049 (upstream the ORF f138). Moreover, one of the ATG codons of this sequence is preceded by a ribosome-binding site (62171-62166 in M87049). Hence, the coding region is 201 bp longer. The larger ORF (nucleotide numbers 62160 to 61546 of M87049) is designated as *rhtB* gene.

[0014] The *rhtB* gene may be obtained, for example, by infecting Mucts lysogenic strain of *E. coli* using a lysate of a lysogenic strain of *E. coli* such as K12 or W3110 according to the method in which mini-Mu d5005 phagemid is used (Groisman, E.A., et al., J. Bacteriol., 168, 357-364 (1986)), and isolating phagemid DNAs from colonies growing on a minimal medium containing kanamycin (40 μg/ml) and L-homoserine (10 mg/ml). As illustrated in the Example described below, the *rhtB* gene was mapped at 86 min on the chromosome of *E. coli*. Therefore, the DNA fragment including the *rhtB* gene may be obtained from the chromosome of *E. coli* by colony hybridization or PCR (polymerase chain reaction, refer to White, T.J. et al, Trends Genet. 5, 185 (1989)) using oligonucleotide(s) which has a sequence corresponding to the region near the portion of 86 min on the chromosome *E. coli*.

[0015] Alternatively, the oligonucleotide may be designed according to the nucleotide sequence of SEQ ID NO: 1. By using oligonucleotides having nucleotide sequences corresponding to an upstream region from the nucleotide number 557 and a downstream region from the nucleotide number 1171 in SEQ ID NO: 1 as the primers for PCR, the entire coding region can be amplified.

[0016] Synthesis of the oligonucleotides can be performed by an ordinary method such as a phosphoamidite method (see *Tetrahedron Letters*, 22, 1859 (1981)) by using a commercially available DNA synthesizer (for example, DNA Synthesizer Model 380B produced by Applied Biosystems). Further, the PCR can be performed by using a commercially available PCR apparatus (for example, DNA Thermal Cycler Model PJ2000 produced by Takara Shuzo Co., Ltd.) using *Taq* DNA polymerase (supplied by Takara Shuzo Co., Ltd.) in accordance with a method designate by the supplier.

[0017] The *rhtC* gene was obtained in the DNA fragment including *rhtB* gene by chance when *rhtB* was cloned as described later in the embodiments. The *rhtC* gene corresponds to a corrected, as described below, sequence of 0128 (nucleotide numbers 60860-61480 of GeneBank accession number M87049) which is a known but function-unknown ORF. The *rhtC* gene may be obtained by PCR or hybridization using oligonucleotides designed according to the nucleotide sequence of SEQ ID NO: 3. By using olidonucleotides having nucleotide sequence corresponding to a upstream region from nucleotide number 187 and a downstream region from the nucleotide number 804 in SEQ ID NO: 3 as the primers for PCR, the entire coding region can be amplified.

[0018] In the present invention, the DNA coding for the RhtB protein of the present invention may code for RhtB protein including deletion, substitution, insertion, or addition of one or several amino acids at one or a plurality of positions, provided that the Rh activity of RhtB protein encoded thereby is not deteriorated. Similarly, the DNA coding for the RhtC protein of the present invention may code for RhtC protein including deletion, substitution, insertion, or addition of one or several amino acids at one or a plurality of positions, provided that the Rt activity of RhtC protein encoded thereby is not deteriorated.

[0019] The DNA, which codes for the substantially same protein as the RhtB protein or RhtC protein as described above, may be obtained, for example, by modifying the nucleotide sequence, for example, by means of the site-directed mutagenesis method so that one or more amino acid residues at a specified site involve deletion, substitution, insertion, or addition. DNA modified as described above may be obtained by the conventionally known mutation treatment. The mutation treatment includes a method for treating a DNA coding for the RhtB protein or RhtC protein *in vitro*, for example, with hydroxylamine, and a method for treating a microorganism, for example, a bacterium, belonging to the genus *Escherichia* harboring a DNA coding for the RhtB protein with ultraviolet irradiation or a mutating agent such as N-methyl-N'-nitro-N-nitrosoquanidine (NTG) and nitrous acid usually used for the mutation treatment.

[0020] The DNA, which codes for substantially the same protein as the RhtB protein or RhtC protein, can by obtained by expressing a DNA subjected to *in vitro* mutation treatment as described above in multicopy in an appropriate cell, investigating the resistance to homoserine or threonine, and selecting the DNA which increase the resistance.

[0021] It is generally known that an amino acid sequence of a protein and a nucleotide sequence coding for it may be slightly different between species, strains, mutants or variants.

[0022] Therefore the DNA, which codes for substantially the same protein as the RhtC protein, can be obtained by isolating a DNA which hybridizes with DNA having, for example, a nucleotide sequence of the nucleotide numbers 187 to 804 of the nucleotide sequence of SEQ ID NO: 3 or a probe obtainable therefrom under stringent conditions, and which codes for a protein having the Rt activity from a bacterium belonging to the genus *Escherihia* which is subjected to mutation treatment, or a spontaneous mutant or a variant of a bacterium belonging to the genus *Escherihia*.

[0023] Also, the DNA, which codes for substantially the same protein as the RhtB protein, can be obtained by isolating a DNA which hybridizes with DNA having, for example, a nucleotide sequence of the nucleotide numbers 557 to

1171 of the nucleotide sequence of SEQ ID NO: 1 or a probe obtainable therefrom under stringent conditions, and which codes for a protein having the Rh activity, from a bacterium belonging to the genus *Escherichia* which is subjected to mutation treatment, or a spontaneous mutant or a variant of a bacterium belonging to the genus *Escherichia*.

[0024] The term "stringent conditions" referred to herein is a condition under which so-called specific hybrid is formed, and non-specific hybrid is not formed. It is difficult to clearly express this condition by using any numerical value. However, for example, the stringent conditions include a condition under which DNAs having high homology, for example, DNAs having homology of not less than 70% with each other are hybridized, and DNAs having homology lower than the above with each other are not hybridized. Alternatively, the stringent condition is exemplified by a condition under which DNA's are hybridized with each other at a salt concentration corresponding to an ordinary condition of washing in Southern hybridization, i.e., 60 °C, 1 x SSC, 0.1 % SDS, preferably 0.1 x SSC, 0.1 % SDS.

(2) Bacterium belonging to the genus Escherichia of the present invention

[0025] The bacterium belonging the genus *Escherichia* of the present invention is a bacterium belonging to the genus *Escherichia* of which the Rt activity is enhanced. Preferred embodiment of the bacterium of the present invention is a bacterium which is further enhanced the Rh activity. A bacterium belonging to the genus *Escherichia* is exemplified by *Escherichia coli*. The Rt activity can be enhanced by, for example, amplification of the copy number of the *rhtC* structural gene in a cell, or transformation of a bacterium belonging to the genus *Escherihia* with a recombinant DNA in which a DNA fragment including the *rhtC* structural gene encoding the RhtC protein is ligated with a promoter sequence which functions efficiently in a bacterium belonging to the genus *Escherihia*. The Rt activity can be also enhanced by substitution of the promoter sequence of the *rhtC* gene on a chromosome with a promoter sequence which functions efficiently in a bacterium belonging to the genus *Escherichia*.

[0026] Besides, the Rh actibity can be enchanced by, for example, amplification of the copy number of the *rhtB* structural gene in a cell, or transformation of a bacterium belonging to the genus *Escherichia* with recombinant DNA in which a DNA fragment including the *rhtB* structural gene encoding RhtB protein is ligated with a promoter sequence which functions efficiently in a bacterium belonging to the genus *Escherichia*. The Rh activity can be also enhanced by substitution of the promoter sequence of the *rhtB* gene on a chromosome with a promoter sequence which functions efficiently in a bacterium belonging to the genus *Escherichia*.

[0027] The amplification of the copy number of the *rhtC* structural gene or *rhtB* structural gene in a cell can be performed by introduction of a multicopy vector which carries the *rhtC* structural gene or *rhtB* structural gene into a cell of a bacterium belonging to the genus *Escherihia*. Specifically, the copy number can be increased by introduction of a plasmid, a phage or a transposon (Berg, D.E. and Berg, C.M., Bio/Tecnol., 1, 417 (1983)) which carries the *rhtC* structural gene or *rhtB* structural gene into a cell of a bacterium belonging to the genus *Escherichia*.

[0028] The multicopy vector is exemplified by plasmid vectors such as pBR322, pMW118, pUC19 or the like, and phage vectors such as λ1059, λBF101, M13mp9 or the like. The transposon is exemplified by Mu, Tn10, Tn5 or the like. [0029] The introduction of a DNA into a bacterium belonging to the genus *Escherichia* can be performed, for example, by a method of D.A M.Morrison (Methods in Enzymology, 68, 326 (1979)) or a method in which recipient bacterial cell are treated with calcium chloride to increase permeability of DNA (Mandel, M. And Higa, A., J. Mol. Biol., 53, 159, (1970)) and the like.

[0030] If the Rt activity, or the Rt activity and the Rh activity is enhanced in an amino acid-producing bacterium belonging to the genus *Escherichia* as described above, a produced amount of the amino acid can be increased. As the bacterium belonging to the genus *Escherichia* which is to be the Rt activity, or the Rt activity and the Rh activity is enhanced, strains which have abilities to produce desired amino acids are used. Besides, an ability to produce an amino acid may be imparted to a bacterium in which the Rt activity, of the Rt activity and Rh activity is enhanced.

[0031] On the basis of the rhtC DNA fragment amplification the new strains *E. coli* MG442/pRhtC producing homoserine; *E. coli* MG442/pVIC40,pRhtC producing threonine; *E. coli* NZ10/pRhtBC and *E. coli* NZ10/pRhtB, pRhtC producing homoserine, valine and leucine were obtained which accumulate the amino acids in a higher amount than those containing no amplified rhtC DNA fragment.

[0032] The new strains have been deposited (according to international deposition based on Budapest Treaty) in the All-Russian Collection for Industrial Microorganisms (VKPM). The strain *E. coli* MG442/pRhtC has been deposited as an accession number of VKPM B-7700; the strain *E. coli* MG442/pVIC40,pRhtC has been deposited as an accession number of VKPM B-7680; the strain *E. coli* NZ10/pRhtB, pRhtC has been deposited as an accession number of VKPM B-7681, and the strain *E. coli* NZ10/pRhtBC has been deposited as an accession number of VKPM B-7682.

[0033] The strain E. coli MG442/pRhtC (VKPM B-7700) exhibits the following cultural-morphological and biochemical features.

#### Cytomorphology

[0034] Gram-negative weakly-motile rods having rounded ends. Longitudinal size, 1.5 to 2 µm.

5 <u>Cultural features</u>

Beef-extract agar:

[0035] After 24 hours of growth at 37° C. produces round whitish semitransparent colonies 1.0 to 3 mm in diameter, featuring a smooth surface, regular or slightly wavy edges, the centre is slightly raised, homogeneous structure, pastelike consistency, readily emulsifiable.

Luria's agar:

5 [0036] After a 24-hour growth at 37° C. develops whitish semitranslucent colonies 1.5 to 2.5 mm in diameter having a smooth surface, homogeneous structure, pastelike consistency, readily emulsifiable.

Minimal agar-doped medium M9:

20 [0037] After 40 to 48 hours of growth at 37°C forms colonies 0.5 to 1.5 mm in diameter, which are coloured greyish-white, semitransparent, slightly convex, with a lustrous surface.

Growth in a beaf-extract broth:

5 [0038] After a 24-hour growth at 37° C exhibits strong uniform cloudiness, has a characteristic odour.

Physiological and biochemical features.

Grows upon thrust inoculation in a beef-extract agar:

[0039] Exhibits good growth throughout the inoculated area. The microorganism proves to be a facultative anaerobe.

It does not liquefy gelatin.

Features a good growth on milk, accompanied by milk coagulation.

35 Does not produce indole.

30

Temperature conditions: Grows on beaf-extract broth at 20-42°C, an optimum temperature lying within 33-37 °C. pH value of culture medium: Grows on liquid media having the pH value from 6 to 8, an optimum value being 7.2. Carbon sources: Exhibits good growth on glucose, fructose, lactose, mannose, galactose, xylose, glycerol, mannitol to

produce an acid and gas.

40 Nitrogen sources: Assimilates nitrogen in the form of ammonium, nitric acid salts, as well as from some organic compounds.

Resistant to ampicillin.

L-isoleucine is used as a growth factor. However, the strain can grow slowly without isoleucine. Content of plasmids: The cells contain multicopy hybrid plasmid pRhtC ensuring resistance to ampicillin (100 mg/l) and carrying the rhtC gene responsible for the increased resistance to threonine (50 mg/ml).

[0040] The strain *E. coli* MG442/pVIC40, pRhtc (VKPM B-7680) has the same cultural-morphological and biochemical features as the strain VKPM B-7700 except for in addition to pRhtC, it contains a multicopy hybrid plasmid pVIC40 ensuring resistance to streptomycin (100 mg/l) and carrying the genes of the threonine operon.

[0041] The strain E. coli strain E. coli NZ10/pRhtB, pRhtC (VKPM B-7681) has the same cultural-morphological and biochemical features as the strain VKPM B-7700 except for L-threonine (0.1 - 5 mg/ml) is used as a growth factor instead of L-isoleucine. Besides, it contains a multicopy hybride plasmid pRhtB ensuring resistance to kanamycin (50 mg/l) and carrying the rhtB gene which confers resistance to homoserine (10 mg/ml)

[0042] The strain *E. coli* strain *E. coli* NZ10/pRhtBC, (VKPM B-7682) has the same cultural-morphological and biochemical features as the strain VKPM B-7681 except for it contains a multicopy hybride plasmid pRhtBC ensuring resistance to ampicillin (100 mg/l) and carrying both the rhtB and rhtC genes which confer resistance to L-homoserine (10 mg/ml) and L-threonine (50mg/ml).

#### (3) Method for producing an amino acid

[0043] An amino acid can be efficiently produced by cultivating the bacterium in which the Rt activity, or the Rt activity and Rh activity is enhanced by amplifying a copy number of the *rhtC* gene, or *rhtC* gene and *rhtB* gene as describe above, and which has an ability to produce the amino acid, in a culture medium, producing and accumulating the amino acid in the medium, and recovering the amino acid from the medium. The amino acid is exemplified preferably by L-homoserine, L-threonine and branched chain amino acids. The branched chain amino acids may be exemplified by L-valine, L-leucine and L-isoleucine, and preferably exemplified by L-valine, L-leucine.

[0044] In the method of present invention, the cultivation of the bacterium belonging to the genus *Escherichia*, the collection and purification of amino acids from the liquid medium may be performed in a manner similar to those of the conventional method for producing an amino acid by fermentation using a bacterium. A medium used in cultivation may be either a synthetic medium or a natural medium, so long as the medium includes a carbon and a nitrogen source and minerals and, if necessary, nutrients which the bacterium used requires for growth in appropriate amount. The carbon source may include various carbohydrates such as glucose and sucrose, and various organic acids. Depending on assimilatory ability of the used bacterium. Alcohol including ethanol and glycerol may be used. As the nitrogen source, ammonia, various ammonium salts as ammonium sulfate, other nitrogen compounds such as amines, a natural nitrogen source such as peptone, soybean hydrolyzate and digested fermentative microbe are used. As minerals, monopotassium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, calcium carbonate are used.

20 [0045] The cultivation is preferably culture under an aerobic condition such as a shaking, and an aeration and stirring culture. The temperature of culture is usually 20 to 40°C, preferably 30 to 38°C. The pH of the culture is usually between 5 and 9, preferably between 6.5 and 7.2. the pH of the culture can be adjusted with ammonia, calcium carbonate, various acids, various bases, and buffers. Usually, a 1 to 3-day cultivation leads to the accumulation of the target amino acid in the medium.

[0046] Recovering the amino acid can be performed by removing solids such as cells from the medium by centrifugation or membrane filtration after cultivation, and then collecting and purifying the target amino acid by ion exchange, concentration and crystalline fraction methods and the like.

#### **Brief Explanation of Drawings**

[0047]

30

35

Fig. 1 shows cloning and identification of rhtB and rhtC genes,

Fig. 2 shows structure of the plasmid pRhtB harboring rhtB gene,

Fig. 3 shows structure of the plasmid pRhtC harboring rhtC gene, and

Fig. 4 shows structure of the plasmid pRhtBC harboring rhtB gene and rhtC gene.

#### Best Mode for Carrying Out the Invention

[0048] The present invention will be more concretely explained below with reference to Examples. In the Examples, an amino acid is of L-configuration unless otherwise noted.

#### Example 1: Obtaining of the rhtB and rhtC DNA fragments

45 Step 1.Cloning of genes involving resistance homoserine and threonine into mini-Mu phagemid

[0049] The genes involving resistance homoserine and threonine were cloned *in vivo* using mini-Mu d5005 phagemid (Groisman, E.A., et al., J. Bacteriol., 168, 357-364 (1986)). MuCts62 lysogen of the strain MG442 (Guayatiner et al., Genetika (in Russian), 14, 947-956 (1978))was used as a donor. Freshly prepared lysated were used to infect a Mucts lysogenic derivative of a strain VKPM B-513 (Hfr K10 metB). The cells were plated on M9 glucose minimal medium with methionine (50 μg/ml), kanamycin (40 μg/ml) and homoserine (10 μg/ml). Colonies which appeared after 48 hr were picked and isolated. Plasmid DNA was isolated and used to transform the strain VKPM B-513 by standard techniques. Transformants were selected on L-broth agar plates with kanamycun as above. Plasmid DNA was isolated from those which were resistance to homoserine, and analyzed by restriction mapping of the structure of the inserted fragments. It appeared that two types of inserts belonging to different chromosome regions had been cloned from the donor. Thus, at least two different genes that in multicopy impart resistance to homoserine exist in *E. coli*. One of the two types of inserts is the *rhtA* gene which has already reported (ABSTRACT of 17th International Congress of Biochemistry and Molecular Biology in conjugation with 1997 Annual Meeting af the American Society for Biochemistry

and Molecular Biology, San Francisco, California August 24-29, 1997). Among the other of the two types of inserts, a Mlul-Mlul fragment of 0.8 kb imparts only the resistance to homoserine (Fig. 1).

#### Step 2: Identification of rhtB gene and rhtC gene

[0050] The insert fragment was sequenced by the dideoxy chain termination method of Sanger. Both DNA strands were sequenced in their entirety and all junctions were overlapped. The sequencing showed that the insert fragment included f138 (nucleotide numbers 61543 to 61959 of GenBank accession number M87049) which was a known but function-unknown ORF (open reading frame) present at 86 min of *E. coli* chlomosome and about 350 bp of an upstream region thereof (downstream region in the sequence of M87049). The f138 which had only 160 nucleotides in the 5'-flanking region could not impart the resistance to homoserine. No termination codon is present upstream the ORF f138 between 62160 and 61950 nucleotides of M87049. Furthermore, one ATG following a sequence predicted as a ribosome binding site is present in the sequence. The larger ORF (nucleotide numbers 62160 to 61546) is designated as *rhtB* gene. The RhtB protein deduced from the gene has a region which is highly hydrophobic and contais possible transmembrane segments.

[0051] As described below, the plasmid containing this gene conferred upon cells only the resistance to high concentrations of homoserine. Since the initial SacII-SacII DNA fragment contained the second unidentified ORF, 0128, the gene was subcloned and tested for its ability to confer resistance to homoserine and threonine. It proved that the plasmid containing o128 (ClaI-Eco47III fragment) conferred resistance to 50 mg/ml threonine (Fig. 1). The subcloned fragment was sequenced and found to contain additional nucleotide (G) in the position between 61213 and 61214 nucleotides of M87049. The nucleotide addition to the sequence eliminated a frame shift and enlarged the ORF into 5'-flanking region up to 60860 nucleotide. This new gene was designated as rhtC. Both genes, rhtB and rhtC, were found to be homologous to transporter involved in lysine export of Corynebacterium glutamicum.

Example 2: The effect of rhtB and rhtC genes amplification on homoserine production.

(1) Construction of the L-homoserine-producing strain E. coli NZ10/pAL4, pRhtB and homoserine production

[0052] The *rhtB* gene was inserted to a plasmid pUK21 (Vieira, J. And Messing, J., Gene, 100, 189-194 (1991)), to obtain pRhtB (Fig. 2).

[0053] Strain NZ10 of *E. coli* was transformed by a plasmid pAL4 which was a pBR322 vector into which the *thrA* gene coding for aspartoknase-homoseine dehydrogenase I was inserted, to obtain the strains NZ10/pAL4. The strain NZ10 is a *leuB*<sup>+</sup>-reverted mutant *thrB* obtained from the *E. coli* strain C600 (*thrB*, *leuB*) (Appleyard R.K., Genetics, 39, 440-452 1954)

75 [0054] The strain NZ10/pAL4 was transformed with pUK21 or pRhtB to obtain strains NZ10/pAL4,pUK21 and NZ10/pAL4, pRhtB.

[0055] The thus obtained transformants were each cultivated at 37°C for 18 hours in a nutrient broth with 50 mg/l kanamycin and 100 mg/l ampicilin, and 0.3 ml of the obtained culture was inoculate into 3 ml of a fermentation medium having the following composition and containing 50 mg/l kanamycin and 100 mg/l ampicilin, in a 20 x 200 mm test tube,

and cultivated at 37°C for 48 hours with a rotary shaker. After the cultivation, an accumulated amount of homoserine in the medium and an absorbance at 560 nm of the medium were determined by known methods.

[Fermentation medium composition (g/L)]

45 **[0056]** 

| Glucose                                         | 80   |
|-------------------------------------------------|------|
| (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | 22   |
| K <sub>2</sub> HPO₄                             | 2    |
| NaCl                                            | 0.8  |
| MgSO <sub>4</sub> • 7H <sub>2</sub> O           | 0.8  |
| FeSO <sub>4</sub> • 7H <sub>2</sub> O           | 0.02 |
| MnSO <sub>4</sub> • 5H <sub>2</sub> 0           | 0.02 |

#### (continued)

| Thiamine hydrochloride               | 0.2        |
|--------------------------------------|------------|
| Yeast Extract                        | 1.0        |
| CaCO <sub>3</sub>                    | 30         |
| (CaCO <sub>3</sub> was separately st | terilized) |

5

15

20

35

40

[0057] The results are shown in Table 1. As shown in Table 1, the strain NZ10/pAL4,pRhtB accumulated homoserine in a larger amount than the strain NZ10/pAL4,pUK21 in which the rhtB gene was not enhanced.

Table 1

| Strain          | OD <sub>560</sub> | Accumulated amount of homoserine(g/L) |
|-----------------|-------------------|---------------------------------------|
| NZ10/pAL4,pUK21 | 14.3              | 3.3                                   |
| NZ10/pAL4,pRhtB | 15.6              | 6.4                                   |

(2) Construction of the homoserine-producing strain E. coli MG442/pRhtC and homoserine production

[0058] The rhtC gene was inserted to pUC21 vector (Vieira, J. And Messing, J., Gene, 100, 189-194 (1991)), to obtain pRhtC (Fig. 3).

25 [0059] The known *E. coli* strain MG442 which can produce threonine in an amount of not less than 3 g/L (Gusyatiner, *et al.*, 1978, Genetika (in Russian), 14:947-956) was transformed by introducing pUC21 or pRhtC to obtain the strains MG442/pUC21 and MG442/pRhtC.

[0060] The thus obtained transformants were each cultivated at 37°C for 18 hours in a nutrient broth with 100 mg/ml ampicilin, and 0.3 ml of the obtained culture was inoculate into 3 ml of a fermentation medium describe above and containing 100 mg/ml ampicilin, in a 20 x 200 mm test tube, and cultivated at 37°C for 48 hours with a rotary shaker. After the cultivation, an accumulated amount of homoserine in the medium and an absorbance at 560 nm of the medium were determined by known methods. The results are shown in Table 2.

Table 2

| Strain      | OD <sub>560</sub> | Accumulated amount of homoserine (g/L) |
|-------------|-------------------|----------------------------------------|
| MG442/pUC21 | 9.7               | <0.1                                   |
| MG442/pRhtC | 15.2              | 9.5                                    |

Example 3: The effect of rhtB and rhtC genes amplification on threonine production.

(1) Construction of the threonine -producing strain E. coli VG442/pVIC40, pRhtB (VKPM B-7660) and threonine production

[0061] The strain MG442 was transformed by introducing a known plasmid pVIC40 (U.S. Patent No. 5,175,107 (1992)) by an ordinary transformation method. Transformants were selected on LB agar plates containing 0.1 mg/ml streptomycin. Thus a novel strain MG442/pVIC40 was obtained.

[0062] The strain MG442/pVIC40 was transformed with pUK21 or pRhtB to obtain strain MG442/pVIC40,pUK21 and MG442/pVIC40,pRhtB.

[0063] The thus obtained transformants were each cultivated at 37°C for 18 hours in a nutrient broth with 50 mg/l kanamycin and 100 mg/l streptomycin, and 0.3 ml of the obtained culture was inoculate into 3 ml of a fermentation medium describe in Example 2 and containing 50 mg/l kanamycin and 100 mg/l streptomycin, in a 20 x 200 mm test tube, and cultivated at 37°C for 68 hours with a rotary shaker. After the cultivation, an accumulated amount of threonine in the medium and an absorbance at 560 nm of the medium were determined by known methods.

[0064] The results are shown in Table 3. As shown in Table 3, the strain MG442/pVIC40,pRhtB accumulated thre-

onine in a larger amount than the strain MG442/pVIC40,pUK21 in which the rhtB gene was not enhanced...

Table 3

 Strain
 OD<sub>560</sub>
 Accumulated amount of threonine (g/L)

 MG442/pVIC40,pUK21
 16.3
 12.9

 MG442/pVIC40,pRhtB
 15.2
 16.3

10

5

(2)Construction of the threonine-producing strain E. coli VG442/pVIC40, pRhtC (VKPM B-7680) and threonine production

[0065] The strain MG442/pVIC40 was transformed with pRhtC and pUC21. Thus the transformants MG442/pVIC40,pRhtC and MG442/pVIC40, pUC21 were obtained. In the sane manner as describe above, MG442/pVIC40,pUC21 and MG442/pVIC40,pRhtC were each cultivated at 37°C for 18 hours in a nutrient broth with 100 mg/l ampicilin and 100 mg/l streptomycin and 0.3 ml of the obtained culture was inoculate into 3 ml of a fermentation medium describe above and containing 100 mg/l ampicilin and 100 mg/l streptomycin, in a 20 x 200 mm test tube, and cultivated at 37°C for 46 hours with a rotary shaker. After the cultivation, an accumulated amount of threonine in the medium and an absorbance at 560 nm of the medium were determined by known methods.

[0066] The results are shown in Table 4. As shown in Table 4, the strain MG442/pVIC40,pRhtC accumulated threonine in a larger amount than the strain MG442/pVIC40,pUC21 in which the *rhtC* gene was not enhanced.

25

Table 4

| Strain              | OD <sub>560</sub> | Accumulated amount of threonine (g/L) |
|---------------------|-------------------|---------------------------------------|
| MG442/pVIC40, pUC21 | 17.4              | 4.9                                   |
| MG442/pVIC40,pRhtC  | 15.1              | 10.2                                  |

30

35

#### Example 4: Concerted effect of thtB gene and thtC gene on amino acid production

[0067] The SacII-SacII DNA fragment containing both rhtB and rhtC genes was inserted to the pUC21. Thus the plasmid pRhtBC was obtained which harbors the rhtB gene and rhtC gene (Fig. 4).

[0068] Then, the strain NZ10 was transformed with pUC21, pRhtB, pRhtC or pRhtBC, and the transformants NZ10/pUC21 (VKPM B-7685), NZ10/pRhtB (VKPM B-7683), NZ10/pRhtC (VKPM B-7684), NZ10/pRhtB, pRhtC (VKPM B-7681) and NZ10/pRhtBC (VXPM B-7682) were thus obtained.

[0069] The transformants obtained above were cultivated as the same manner as describe above and accumulated amounts of various amino acids in the medium and an absorbance at 540 nm of the medium were determined by known methods.

[0070] The result were shown in Table 5. It follows from the Table 5 that concerted effect of the pRhtB and pRhtC on production of homoserine, valine and leucine. These results indicate that the *rhtB* and *rhtC* gene products may interact in cells.

Table 5

50

| Strain           | OD <sub>560</sub> | Homoserine (g/L) | Valine (g/L) | Leucine (g/L) |
|------------------|-------------------|------------------|--------------|---------------|
| NZ10/pUC21       | 18.7              | 0.6              | 0.22         | 0.16          |
| NZ10/pRhtB       | 19.6              | 2.3              | 0.21.        | 0.14          |
| NZ10/pRhtC       | 20.1              | 0.7              | 0.2          | 0.15          |
| NZ10/pRhtBC      | 21.8.             | 4.2              | 0.34         | 0.44          |
| NZ10/pRhtB,pRhtC | 19.2              | 4.4              | 0.35         | 0.45          |

#### Example 5: Effect of rhtB gene and rhtC gene on resistance to amino acids

20

25

30

35

50

55

[0071] As describe above, the plasmids harboring the *rhtB* and *rhtC* have positive effect on some amino acid accumulation in culture broth by different strains. It proved that the pattern of accumulated amino acid was dependent on the strain genotype. The homology of the *rhtB* and *rhtC* genes products with the lysine transporter LysE of *Corynebacte-rium glutamicum* (Vrljic, M., Sahm, H. and Eggeling, L. (1996) *Mol. Microbiol.* 22, 815-826.) indicates the analogues function for these proteins.

[0072] Therefore, the effect of the pRhtB and pRhtC plasmids on susceptibility of the strain N99 which is a streptomycin-resistant (Str<sup>R</sup>) mutant of the known strain W3350 (VKPM B-1557) to some amino acids and amino acid analogues was tested. Overnight broth cultures (10<sup>9</sup> cfu/ml) of the strains N99/pUC21, N99pUK21, N99/pRhtB and N99/pRhtC were diluted 1:100 in M9 minimal medium and grown for 5 h in the same medium. Then the log phase cultures thus obtained were diluted and about 10<sup>4</sup> viable cells were applied to well-dried test plates with M9 agar (2%) containing doubling increments of amino acids or analogues. Thus the minimum inhibitory concentration (MIC) of these compounds were examined.

[0073] The result are shown in Table 6. It follows from the Table 6 that multiple copies of htB besides homoserine conferred increased resistance to  $\alpha$ -amino- $\beta$ -hydroxyvaleric-acid (AHVA) and S-(2-aminoethyl)-L-cysteine (AEC), and 4-aza-DL-leucine; and multiple copies of htC gene besides threonine increased resistance to valine, histidine, and AHVA. This results indicates that every of the presumed transporters, RhtB and RhtC, have specificity to several substrates (amino acids), or may shown non-specific effects as a result of amplification.

Table 6

MIC (µg/ml) Substrate N99/pUC21 N99/pRhtB N99/pRhtC 1000 1000 20000 L-homoserine 30000 40000 80000 L-threonine 2.0 L-valine 0.5 0.5 L-histidine 5000 5000 40000 AHVA 2000 15000 100 AEC 5 5 20 4-aza-DL-leucine 50 100 50 20 O-methyl-L-threonine 20 20

<sup>\*:</sup> The same data were obtain with N99/pUK21.

## SEQUENCE LISTING

| 5   | <110> Ajinomoto Co., Inc.                                                                                                                   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
|     | <120> NOVEL GENE AND METHOD FOR PRODUCING L-AMINO ACIDS                                                                                     |
| 10  | <130> 0P851                                                                                                                                 |
|     | <141> 1999-12-                                                                                                                              |
|     | <150> RU-98123511                                                                                                                           |
| 15  | <151> 1998-12-23                                                                                                                            |
|     | <160> 4                                                                                                                                     |
| 20  | <170> PatentIn Ver. 2.0                                                                                                                     |
|     | <210> 1                                                                                                                                     |
|     | <211> 1231<br><212> DNA                                                                                                                     |
| 25  | <213> Escherichia coli                                                                                                                      |
|     | <220>                                                                                                                                       |
|     | <221> CDS                                                                                                                                   |
| 30  | <222> (557)(1171)                                                                                                                           |
| •   | <400> 1                                                                                                                                     |
|     | agaaataatg tggagatcgc accgcccatc gaatgtgcca gtatatagcg tttacgccac 60                                                                        |
| 35  | ggaccgggct gaacctcctg ctgccagaat gccgccagat catcaacata atcattaaag 120 cgattaacat gcccgagatg cggatcggct aacaggcgac cggaacgtcc ctgcccgcga 180 |
| 33  | tggtcgatga ttaagacatc aaaccccaaa tggaacaggt cataggccag ttccgcatat 240                                                                       |
|     | tttacgtage teteaatacg ceeegggeag atgactacea eeeggteatg gtgetgtgeg 300                                                                       |
|     | cgaaaacgga caaagcgcac cggaatgtca tccacaccag taaactctgc ttcatcacgc 360                                                                       |
| 40. | tgacgccaga aatcagtcag cggtcccatg gtaaaagcag caaacgcgtt ttctcttgtt 420                                                                       |
|     | teccagtett tttgetgetg aaacateggg taatetgeet ettaaaceae gtaaaategt 480 tttttttage gtgeetgaca caacgetgeg acagtagegt attgtggeae aaaaatagae 540 |
|     | acaccgggag ttcatc atg acc tta gaa tgg tgg ttt gcc tac ctg ctg aca 592                                                                       |
| -   | Met Thr Leu Glu Trp Trp Phe Ala Tyr Leu Leu Thr                                                                                             |
| 45  | 1 5 10                                                                                                                                      |
| · . | teg ate att tta acg etg teg eea gge tet ggt gea ate aac act atg 640                                                                         |
|     | Ser Ile Ile Leu Thr Leu Ser Pro Gly Ser Gly Ala Ile Asn Thr Met 15 20 25                                                                    |
| 50  | ace ace teg etc aac cae ggt tat eeg gee ggt gge gte tat tge tgg 688                                                                         |
|     | Thr Thr Ser Leu Asn His Gly Tyr Pro Ala Gly Gly Val Tyr Cys Trp                                                                             |
|     | 30 35 40                                                                                                                                    |

|           |                                   |       |               |      |           |           |       |             |       |           |           |       | ggt<br>Gly |      |           |               |            | 736  |
|-----------|-----------------------------------|-------|---------------|------|-----------|-----------|-------|-------------|-------|-----------|-----------|-------|------------|------|-----------|---------------|------------|------|
| 5         |                                   | 45    | OC1           | wh   | W P       | 1111      | 50    | nop         | oci   | 131       | 0,3       | 55    | 013        | II P | b         | u,r.y         | 60         |      |
| J         |                                   |       |               |      |           |           |       |             |       |           |           |       | gaa        |      |           |               |            | 784  |
|           |                                   | Gly   | Thr           | Leu  | Phe       | Ser<br>65 | Arg   | Ser         | Val   | He        | Ala<br>70 | Phe   | Glu        | Val  | Leu       | <b>Lys</b> 75 | Trp        | •    |
|           |                                   |       |               |      |           |           |       |             |       |           |           |       | cag        |      |           |               |            | 832  |
| 10        |                                   |       | -             |      | 80        |           |       |             |       | 85        |           |       | Gln        |      | 90        |               |            |      |
|           |                                   |       |               |      |           |           |       |             |       |           |           |       | act        |      |           |               |            | 880  |
| 15        |                                   |       |               | 95   |           | _         |       |             | 100   |           |           |       | Thr        | 105  |           |               | •          |      |
|           |                                   |       | _             |      | _         |           | -     | _           |       |           |           |       | acc        |      |           |               |            | 928  |
|           |                                   |       | 110           |      |           |           |       | 115         |       |           |           |       | Thr<br>120 |      |           |               |            | 050  |
|           |                                   |       |               |      |           |           |       |             |       |           |           |       | atc<br>Ile |      |           |               |            | 976  |
| 20        |                                   | 125   | 101           | I UC | DCu       | A.L.      | 130   | DCu         | i iic | 110       | 0111      | 135   | 110        | 1100 |           | 4111          | 140        |      |
|           | -                                 |       |               |      |           |           |       |             |       |           |           |       | acc        |      |           |               |            | 1024 |
|           |                                   |       |               |      | •         | 145       |       |             |       |           | 150       |       | Thr        |      |           | 155           |            |      |
| 25        |                                   |       |               |      |           |           |       |             |       |           |           |       | gct<br>Ala |      |           |               |            | 1072 |
|           |                                   | -     |               |      | 160       |           |       |             |       | 165       |           |       |            |      | 170       |               |            | 1100 |
| ٨         |                                   |       |               |      |           |           |       |             |       |           |           |       | ctg<br>Leu |      |           |               |            | 1120 |
| 30        |                                   | rea   | пр            | 175  | ъJЗ       | ·uiy      | 110   | <b>5</b> ,5 | 180   | ne c      | u) s      | A14   | DCu        | 185  | u, s      |               |            |      |
| ٠         |                                   |       |               |      |           |           |       |             |       |           |           |       |            |      |           |               | cat        | 1168 |
|           |                                   | Gly   | Ser<br>190    | Leu  | Phe       | Met       | Leu   | Val<br>195  | Gly   | Ala       | Leu       | Leu   | Ala<br>200 | Ser  | Ala       | Arg           | His        |      |
|           |                                   | gcg   |               | aaaa | taa       | tgtc      | ggat  |             | gcgta | aac       | g cc      | ttat  | ccga       | ctt  | actc      | tga           |            | 1221 |
| - 35      |                                   | Ala   |               |      |           |           |       | ,           | -     |           |           |       |            |      | ٠.        | ٠.            |            | •    |
|           | . بالانتيار .<br>الانتيار المالية | 205   |               | +++  |           |           |       |             | •     |           |           |       |            |      |           |               |            | 1231 |
|           | • *                               |       | cgcg          | LCL  |           | -         | 23*   |             |       |           |           |       |            |      |           |               |            | 1601 |
| 40        | 4                                 |       | 0> 2<br>1> 2( | ns · |           |           |       |             |       |           |           |       |            |      |           |               | * .<br>**: | · 7  |
|           | -                                 |       | 2> PI         |      |           |           |       |             |       |           |           | :     |            |      |           |               |            |      |
|           |                                   | _     |               | sche | rich      | ia c      | o I i |             |       |           |           |       |            |      | -         |               |            | v    |
| 45.       |                                   | - 40/ | n. 0          |      |           |           |       |             | بورية |           |           | -     |            |      |           |               | ٠          |      |
| <b>-0</b> |                                   |       | )> 2<br>Thr   | l.eu | Glu       | Trp       | Tro   | Phe         | Ala   | Tvŕ       | i.eu      | Len   | Thr        | Ser  | He        | Tle           | Leu        |      |
| •         |                                   | 1     |               | ~~u  | JIU       | 5         | ٠٠ ٢  |             |       | .,.       | 10        | ~~4   | - 444      |      |           | 15            |            | •    |
|           |                                   | Thr   | Leu           | Ser  |           | Gly       | Ser   | Gly         | Ala   |           | Asn       | Thr   | Met        | Thr  |           |               | Leu        |      |
| 50        |                                   | ٨٠٠   | u: ~          | Clv  | 20<br>Tur | Pro       | Ala   | Clu         | Clu   | 25<br>Val | Tur       | Cerc. | Terr       | Ala  | 30<br>Ser |               | Arg        |      |
|           |                                   | ווכה  | 1112          | 35   | 171       |           | u i q | GIÀ         | 40    | 141       | 171       | c y s | 11 1       | 45   | 001       | ımp           | vr 2       |      |
|           |                                   |       |               |      |           |           |       |             |       |           |           |       |            |      |           |               |            |      |

|           | Thr Gly Asp Ser Tyr Cys Ala Gly Trp Arg Gly Val Gly Thr Leu Phe 50 55 60                                                                                                                                         |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5         | Ser Arg Ser Val Ile Ala Phe Glu Val Leu Lys Trp Ala Gly Ala Ala<br>65 70 75 80                                                                                                                                   |
|           | Tyr Leu Ile Trp Leu Gly Ile Gln Gln Trp Arg Ala Ala Gly Ala Ile<br>85 90 95                                                                                                                                      |
| 10        | Asp Leu Lys Ser Leu Ala Ser Thr Gln Ser Arg Arg His Leu Phe Gln 100 105 110                                                                                                                                      |
|           | Arg Ala Val Phe Val Asn Leu Thr Asn Pro Lys Ser Ile Val Phe Leu 115 120 125                                                                                                                                      |
| 15        | Ala Ala Leu Phe Pro Gln Phe Ile Met Pro Gln Gln Pro Gln Leu Met<br>130 135 140                                                                                                                                   |
|           | Gln Tyr Ile Val Leu Gly Val Thr Thr Ile Val Val Asp Ile Ile Val<br>145 150 155 160                                                                                                                               |
|           | Met Ile Gly Tyr Ala Thr Leu Ala Gln Arg Ile Ala Leu Trp Ile Lys<br>165 170 175                                                                                                                                   |
| 20        | Gly Pro Lys Gln Met Lys Ala Leu Asn Lys Ile Phe Gly Ser Leu Phe<br>180 185 190                                                                                                                                   |
|           | Met Leu Val Gly Ala Leu Leu Ala Ser Ala Arg His Ala<br>195 . 200 205                                                                                                                                             |
| 25        | <210> 3<br><211> 840<br><212> DNA                                                                                                                                                                                |
|           | <213> Escherichia coli                                                                                                                                                                                           |
| 30        | <220> <221> CDS <222> (187)(804)                                                                                                                                                                                 |
| 35        | <400> 3                                                                                                                                                                                                          |
|           | atgccgatca ccgccagcga aatgctcagc gttaacggcg ttgggatgcg caagctggaa 60 cgctttggca aaccgtttat ggcgctgatt cgtgcgcatg ttgatggcga tgacgaagag 120 tagtcagcag cataaaaaag tgccagtatg aagactccgt aaacgtttcc cccgcgagtc 180 |
| 40.       | aaatgt atg ttg atg tta ttt ctc acc gtc gcc atg gtg cac att gtg  Met Leu Met Leu Phe Leu Thr Val Ala Met Val His Ile Val  1 5 10                                                                                  |
|           | gcg ctt atg agc ccc ggt ccc gat ttc ttt ttt gtc tct cag acc gct 276 Ala Leu Met Ser Pro Gly Pro Asp Phe Phe Phe Val Ser Gln Thr Ala 15 20 25 30                                                                  |
| <b>45</b> | gtc agt cgt tcc cgt aaa gaa gcg atg atg ggc gtg ctg ggc att acc 324<br>Val Ser Arg Ser Arg Lys Glu Ala Met Met Gly Val Leu Gly He Thr                                                                            |
| 50        | tgc ggc gta atg gtt tgg gct ggg att gcg ctg ctt ggc ctg cat ttg 372<br>Cys Gly Val Met Val Trp Ala Gly Ile Ala Leu Leu Gly Leu His Leu                                                                           |
|           | 50 55 60 att atc gaa aaa atg gcc tgg ctg cat acg ctg att atg gtg ggc ggt 420                                                                                                                                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | He           | He                              | Glu<br>65 | Lys       | Met      | Ala       | Trp       | Leu<br>70 | His       | Thr       | Leu       | He                | Met<br>75 | Val       | Gly       | Gly       |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------------|-----------|-----------|-----------|-----------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                 |           |           |          |           |           |           |           | _         |           | cta<br>Leu        |           |           |           | -         | 468 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 80                              | -         |           |          |           | 85        |           |           |           |           | 90                |           | _         |           |           |     |
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                 |           |           |          |           |           |           |           |           |           | gtc<br>Val        |           |           |           |           | 516 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | agt          |                                 |           |           |          | ctg       |           |           |           |           | acc       | aat<br>Asn        |           |           |           | ccg       | 564 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                 |           |           | tac      |           |           |           |           | ttc       |           | ttg<br>Leu        |           |           | ggt       |           | 612 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                 |           | act       |          |           |           |           | ggc       |           |           | gcg<br>Ala        |           | atc       |           |           | 660 |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                 | ctg       |           |          |           |           | gtc       |           |           |           | ctg<br>Leu<br>170 | ttt       |           |           |           | 70  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | atg                             |           |           |          |           | caa       |           |           |           |           | tgg<br>Trp        |           |           |           |           | 750 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gcc          |                                 |           |           |          | gcc       |           |           |           |           | cat       | ttg<br>Leu        |           |           |           | cgg       | 804 |
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tgai         | tgcca                           | ıga (     | gcg       |          | ca ga     | igta      | igte      | g gai     |           |           |                   |           |           |           |           | 84  |
| <b>5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <211<br><212 | )> 4<br>l> 2(<br>2> PI<br>3> Es | RT        | richi     | ia co    | ol i      |           |           |           |           |           |                   |           |           |           |           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <400         | )> 4                            |           |           |          |           |           |           |           |           |           |                   |           |           |           |           |     |
| ).<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Met<br>1     | Leu                             | Met<br>•  | Leu       | Phe<br>5 | Leu       | Thr       | Val       | Ala       | Met<br>10 | Val       | His               | Ile       | Val       | Ala<br>15 | Leu       |     |
| A STATE OF THE STA | Met          | Ser                             | Pro       | Gly<br>20 | Pro      | Asp       | Phe       | Phe       | Phe<br>25 | Val       | Ser       | Gln               | Thr       | Ala<br>30 | Val       | Ser       |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arg          | Ser                             | Arg<br>35 | Lys       | Glu      | Ala       | Met       | Met<br>40 | Gly       | Val       | Leu       | Gly               | Ile<br>45 | Thr       | Cys       | Gly       |     |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Val          | Met<br>50                       |           | Trp       | Ala      | Gly       | Ile<br>55 |           | Leu       | Leu       | Gly       | Leu<br>60         | His       | Leu       | He        | He        |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Glu<br>65    | Lys                             | Met       | Ala       | Trp      | Leu<br>70 | His       | Thr       | Leu       | Ile       | Met<br>75 | Val               | Gly       | Gly       | Gly       | Leu<br>80 |     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                 |           |           | 85       |           |           |           |           | 90        | _         | Gly               |           |           | 95        |           |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Glu          | Ala                             | Val       | Ser       | Ala      | Pro       | Ala       | Pro       | Gln       | Val       | Glu       | Leu               | Ala       | Lys       | Ser       | Gly       | -   |

|            |             |            | 100        |            |            |            |            | 105        |            |            |            |            | 110        |            |            |
|------------|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Arg        | Ser         | Phe<br>115 | Leu        | Lys        | Gly        | Leu        | Leu<br>120 | Thr        | Asn        | Leu        | Ala        | Asn<br>125 | Pro        | Lys        | Ala        |
| Ile        | I le<br>130 |            | Phe        | Gly        | Ser        | Val<br>135 | Phe        | Ser        | Leu        | Phe        | Val<br>140 | Gly        | Asp        | Asn        | Val        |
| Gly<br>145 | Thr         | Thr        | Ala        | Arg        | Trp<br>150 | Gly        | Ile        | Phe        | Ala        | Leu<br>155 | Ile        | Ile        | Val        | Glu        | Thr<br>160 |
| Leu        | Ala         | Trp        | Phe        | Thr<br>165 | Val        | Val        | Ala        | Ser        | Leu<br>170 | Phe        | Ala        | Leu        | Pro        | Gln<br>175 | Met        |
| Arg        | Arg         | Gly        | Tyr<br>180 | Gln        | Arg        | Leu        | Ala        | Lys<br>185 | Trp        | Ile        | Asp        | Gly        | Phe<br>190 | Ala        | Gly        |
| Ala        | Leu         | Phe<br>195 | Ala        | Gly        | Phe        | Gly        | Ile<br>200 | His        | Leu        | Ile        | Ile        | Ser<br>205 | Arg        |            |            |

#### .

10

15

20

25

30

40

#### Claims

- A bacterium belonging to the genus Escherichia, wherein L-threonine resistance of said bacterium is enhanced by enhancing the activity of a protein as defined in the following (A) or (B) in the cells of said bacterium:
  - (A) a protein which comprises the amino acid sequence shown in SEQ ID NO: 4 in Sequence Listing; or (B) a protein which comprises the amino acid sequence including deletion, substitution, insertion or addition of one or several amino acids in the amino acid sequence shown in SEQ ID NO: 4 in Sequence Listing, and which has the activity of making a bacterium having the protein L-threonine-resistant.
- 2. The bacterium according to claim 1, wherein the L-homoserine resistance of said bacterium is further enhanced by enhancing the activity of a protein as defined in the following (C) or (D) in the cells of said bacterium:
  - (C) a protein which comprises the amino acid sequence shown in SEQ ID NO: 2 in Sequence Listing; or (D) a protein which comprises the amino acid sequence including deletion, substitution, insertion or addition of one or several amino acids in the amino acid sequence shown in SEQ ID NO: 2 in Sequence Listing, and which has the activity of making a bacterium having the protein L-homoserine-resistant.
  - 3. The bacterium according to claim 1 or 2, wherein said activity of the protein as defined in (A) or (B) is enhanced by transformation of said bacterium with DNA coding for the protein as defined in (A) or (B).
- 4. The bacterium according to claim 2, wherein said activity of the protein as defined in (C) or (D) is enhanced by transformation of said bacterium with DNA coding for the protein as defined in (C) or (D).
  - 5. A method for producing an amino acid, comprising the steps of:
- cultivating the bacterium as defined in any one of claims 1 to 4, which has the ability to produce the amino acid, in a culture medium, to produce and accumulate the amino acid in the medium, and recovering the amino acid from the medium.
- The method according to claim 5, wherein said amino acid is selected from the group consisting of L-homoserine,
   L-threonine and branched chain amino acids.
  - 7. The method according to claim 6, said branched chain amino acids is L-valine or L-leucine.

8. A DNA which encodes a protein defined in the following (A) or (B):

5

10

20

25

30

35

50

- (A) a protein which has the amino acid sequence of SEQ ID NO: 4;
- (B) a protein which has the amino acid sequence of SEQ ID NO: 4 including substitution, deletion, insertion, addition, or inversion of one or several amino acids, and has the activity of making a bacterium having the protein L-threonine-resistant.
- 9. The DNA of claim 8 which is a DNA defined in the following (a) or (b):
  - (a) a DNA which comprises the nucleotide sequence of nucleotide numbers 187 to 804 in SEQ ID NO: 3;
  - (b) a DNA which is hybridizable with a nucleotide sequence of nucleotide numbers 187 to 804 in SEQ ID NO: 3 or a probe prepared from the nucleotide sequence under a stringent condition, and encodes a protein having the activity of making a bacterium having the protein L-threonine-resistant.
- 15 10. The DNA of claim 9 wherein the stringent condition is a condition in which washing is performed at 60 °C and at a salt concentration corresponding to 1 x SSC and 0.1 % SDS.
  - 11. A protein that is encoded by the DNA according to any of claims 8 to 10.



Fig. 1



Fig. 2



Fig. 3



Fig. 4



## **EUROPEAN SEARCH REPORT**

Application Number

EP 99 12 5406

| Category                                        | Citation of document with in<br>of relevant passa                                                                                                                                             |                                                                       | Relevant<br>to claim                                                                     | CLASSIFICATION OF THE APPLICATION (Int.CI.7) |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------|--|--|
| X , D                                           | ZAKATAEVA ET AL.: pleiotropic mutation Escherichia coli ce concentrations of he threonine" FASEB JOURNAL, vol. 11, no. 9, 31 page a935 XP0021350 * abstract *                                 | 1-11                                                                  | C12N15/31<br>C12N1/21<br>C07K14/245<br>C12P13/06<br>C12P13/08<br>//C12R1:19              |                                              |  |  |
| X                                               | of the region from 8<br>EMBL DATABASE ACC No<br>1 August 1992 (1992                                                                                                                           | 84.5 to 86.5 minutes"                                                 | 8-11                                                                                     |                                              |  |  |
| A                                               | WO 97 23597 A (KERNI<br>JUELICH ;VRLIJC MAR<br>LOTHAR) 3 July 1997<br>* claims 1-46; figur                                                                                                    | INA (DE); EGGELING<br>(1997-07-03)                                    | 1-11                                                                                     | TECHNICAL FIELDS SEARCHED (Int.Ci.7)         |  |  |
| A                                               | PALMIERI ET AL.: "threonine transport ARCHIVES OF MICROBIVO1. 165, no. 1, 19 XP000891665 * page 52, column 2 2,5,6 *                                                                          | OLOGY,<br>96, pages 48-54,                                            | 1-7                                                                                      | C12N<br>C12P<br>C07K                         |  |  |
| Р,Х                                             | ZAKATAEVA ET AL.:<br>transmembrane Esche<br>involved in the ami<br>FEBS LETTERS,<br>vol. 452, 11 June 1<br>XP002135075<br>* the whole documen                                                 | richia coli proteins<br>no acid efflux"<br>999 (1999-06-11),          | 1-11                                                                                     |                                              |  |  |
|                                                 |                                                                                                                                                                                               | -/                                                                    |                                                                                          | . ,                                          |  |  |
|                                                 | The present search report has                                                                                                                                                                 |                                                                       | <u> </u>                                                                                 | ·                                            |  |  |
|                                                 | Place of search THE HAGUE                                                                                                                                                                     | Date of completion of the search 7 April 2000                         | van                                                                                      | Examiner<br>n Klompenburg, W                 |  |  |
| X : par<br>Y : par<br>doc<br>A : tec<br>O : nor | CATEGORY OF CITED DOCUMENTS ticularly relevant if taken alone ticularly relevant if combined with anot umant of the same category noological background —written disclosure kmediate document | T : theory or princip<br>E : earlier patent do<br>after the filing da | le underlying the<br>current, but publi<br>ite<br>in the application<br>or other reasons | invention<br>lished on, or                   |  |  |



## **EUROPEAN SEARCH REPORT**

Application Number

EP 99 12 5406

| ategory              | Citation of document with indicat<br>of relevant passages                                                                                                                                   |                                                         | Relevant<br>to claim                                                                                   | CLASSIFICATION OF THE APPLICATION (Int.CI.7) |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Р,Х                  | ALESHIN V V ET AL: "A amino-acid-efflux prot TIBS TRENDS IN BIOCHEM SCIENCES, EN, ELSEVIER P CAMBRIDGE, vol. 24, no. 4, April pages 133-135, XP00416 ISSN: 0968-0004 * the whole document * | eins"<br>ICAL<br>UBLICATION,<br>1999 (1999-04),<br>2806 | 1-11                                                                                                   |                                              |
|                      | •                                                                                                                                                                                           |                                                         |                                                                                                        | TECHNICAL FIELDS<br>SEARCHED (Int.Cl.7)      |
|                      |                                                                                                                                                                                             |                                                         |                                                                                                        |                                              |
|                      |                                                                                                                                                                                             |                                                         |                                                                                                        |                                              |
|                      |                                                                                                                                                                                             |                                                         |                                                                                                        |                                              |
|                      |                                                                                                                                                                                             |                                                         |                                                                                                        |                                              |
|                      |                                                                                                                                                                                             |                                                         |                                                                                                        | ÷                                            |
|                      | The present search report has been                                                                                                                                                          | drawn up for all claims                                 |                                                                                                        |                                              |
|                      | Place of search                                                                                                                                                                             | Date of completion of the seak                          | ch ·                                                                                                   | Examiner                                     |
|                      | THE HAGUE                                                                                                                                                                                   | 7 April 2000                                            | van                                                                                                    | Klompenburg, W                               |
| X : part<br>Y : part | ATEGORY OF CITED DOCUMENTS incularly relevant if taken alone incularly relevant if combined with another urnent of the same category                                                        | E : earlier pate<br>after the fili<br>D : document (    | rinciple underlying the int document, but publing date cited in the application ited for other reasons |                                              |

#### ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 99 12 5406

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

07-04-2000

| Patent document cited in search report | Publication date                       | P                                      | Publication date                                                                         |                                                                                  |  |
|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| WO 9723597 A                           | 03-07-1997                             | DE<br>AU<br>BR<br>CA<br>CN<br>EP<br>ZA | 19548222 A<br>1921897 A<br>9612666 A<br>2241111 A<br>1209169 A<br>0868527 A<br>9610768 A | 26-06-19<br>17-07-19<br>05-10-19<br>03-07-19<br>24-02-19<br>07-10-19<br>31-07-19 |  |
| •                                      |                                        |                                        |                                                                                          |                                                                                  |  |
|                                        |                                        |                                        |                                                                                          |                                                                                  |  |
|                                        |                                        |                                        | · "                                                                                      |                                                                                  |  |
|                                        |                                        |                                        |                                                                                          | • .                                                                              |  |
|                                        | ·                                      |                                        |                                                                                          |                                                                                  |  |
| to the second second                   |                                        |                                        |                                                                                          | •                                                                                |  |
|                                        |                                        |                                        |                                                                                          |                                                                                  |  |
| •                                      |                                        |                                        |                                                                                          |                                                                                  |  |
| •                                      |                                        |                                        |                                                                                          |                                                                                  |  |
|                                        |                                        |                                        | -                                                                                        |                                                                                  |  |
|                                        |                                        |                                        |                                                                                          |                                                                                  |  |
|                                        |                                        |                                        |                                                                                          |                                                                                  |  |
|                                        |                                        | ٠                                      |                                                                                          |                                                                                  |  |
| ore details about this annex : see C   |                                        |                                        | :                                                                                        |                                                                                  |  |
|                                        | ······································ |                                        |                                                                                          |                                                                                  |  |

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| ☐ BLACK BORDERS                                       |
|-------------------------------------------------------|
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES               |
| ☐ FADED TEXT OR DRAWING                               |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                |
| ☐ SKEWED/SLANTED IMAGES                               |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                |
| GRAY SCALE DOCUMENTS                                  |
| LINES OR MARKS ON ORIGINAL DOCUMENT                   |
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| □ OTHER:                                              |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.