Chapter22. Graph

Graphs

Definition = a set of nodes (vertices) with edges (links) between them.

- G = (V, E) : graph
- V = set of vertices |V| = n
- E = set of edges |E| = m
 - Binary relation on V
 - Subset of V x V = $\{(u,v): u \in V, v \in V\}$

Applications

 Applications that involve not only a set of items, but also the connections between them

Maps

Schedules

Computer networks

Hypertext

Circuits

Terminology

• Directed vs Undirected graphs

Directed graphs (digraphs)

(ordered pairs of vertices)

in-degree of v: # edges enetring v
out-degree of v: # edges leaving v

v is adjacent to u if there is an edge (u,v)

Undirected graphs

(unordered pairs of vertices)

degree of v: # edges incident on v

v is adjacent to u and u is adjacent to v if there is and edge (u,v)

- Complete graph
 - A graph with an edge between each pair of vertices
- Subgraph
 - A graph (V', E') such that $V' \subseteq V$ and $E' \subseteq E$
- Path from v to w
 - A sequence of vertices $\langle v_0, v_1, ..., v_k \rangle$ such that $v_0 = v_0$ and $v_k = w_0$
- Length of a path
 - Number of edges in the path

path from
$$v_1$$
 to v_4 $\langle v_1, v_2, v_4 \rangle$

- w is reachable from v
 - If there is a path from v to w
- Simple path
 - All the vertices in the path are distinct
- Cycles
 - A path $\langle v_0, v_1, ..., v_k \rangle$ forms a cycle if $v_0 = v_k$ and $k \ge 2$
- Acyclic graph
 - A graph without any cycles

Connected and Strongly Connected

directed graphs

strongly connected: every two vertices are reachable from each other

strongly connected components : all possible strongly connected subgraphs

undirected graphs

<u>connected</u>: every pair of vertices is connected by a path

connected components: all possible connected subgraphs

strongly connected components: {a,b,c,d} { e} {f}

connected components: {a,b,c} {d} {e,f}

• A **bipartite graph** is an undirected graph

G = (V, E) in which $V = V_1 + V_2$ and there are edges only between vertices in V_1 and V_2

Graphs

- We will typically express running times in terms of |E| and |V|
 - If $|E| \approx |V|^2$, the graph is *dense*
 - If $|E| \approx |V|$, the graph is *sparse*
- If you know you are dealing with dense or sparse graphs, different data structures may make sense

Graph Representation

- Adjacency list representation of G = (V, E)
 - An array of | V | lists, one for each vertex in V
 - Each list Adj[u] contains all the vertices v that are adjacent to u (i.e., there is an edge from u to v)
 - Can be used for both directed and undirected graphs

Undirected graph

Properties of Adjacency List Representation

- Sum of "lengths" of all adjacency lists
 - Directed graph: |E|
 - edge (u, v) appears only once
 (i.e., in the list of u)
 - Undirected graph: 2 | E |
 - edge (u, v) appears twice
 (i.e., in the lists of both u and v)

Undirected graph

Properties of Adjacency-List Representation

- Memory required
 - $-\Theta(V+E)$
- Preferred when
 - The graph is sparse: $|E| \ll |V|^2$
 - We need to quickly determine the nodes adjacent to a given node.
- Disadvantage
 - No quick way to determine whether there is an edge between node u and v
- Time to determine if $(u, v) \in E$:
 - O(degree(u))
- Time to list all vertices adjacent to u:
 - $-\Theta(degree(u))$

Undirected graph

Directed graph

Graph Representation

- Adjacency matrix representation of G = (V, E)
 - Assume vertices are numbered 1, 2, ... | V |
 - The representation consists of a matrix $A_{|V|_X|V|}$:

$$- a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Undirected graph

_	1	2	3	4	5
	0	1	0	0	1
	1	0	1	1	1
	0	1	0	1	0
	0	1	1	0	1
	1	1	0	1	0

For undirected graphs, matrix A is symmetric:

$$a_{ij} = a_{ji}$$
$$A = A^{T}$$

Properties of Adjacency Matrix Representation

- Memory required
 - $-\Theta(V^2)$, independent on the number of edges in G
- Preferred when
 - The graph is **dense:** |E| is close to $|V|^2$
 - We need to quickly determine if there is an edge between two vertices
- Time to determine if $(u, v) \in E$:
 - $-\Theta(1)$
- Disadvantage
 - No quick way to determine the vertices adjacent to another vertex
- Time to list all vertices adjacent to u:
 - $-\Theta(V)$

Undirected graph

Directed graph

Graphs: Adjacency Matrix

- How much storage does the adjacency matrix require?
- Ans: $O(V^2)$
- What is the minimum amount of storage needed by an adjacency matrix representation of an undirected graph with 4 vertices?
- Ans: 6 bits
 - Undirected graph → matrix is symmetric
 - No self-loops → don't need diagonal

Weighted Graphs

• Graphs for which each edge has an associated weight w(u, v)

w: $E \rightarrow R$, weight function

- Storing the weights of a graph
 - Adjacency list:
 - Store w(u,v) along with vertex v in u's adjacency list
 - Adjacency matrix:
 - Store w(u, v) at location (u, v) in the matrix

Weighted Graphs

Graph traversals

- Graph traversal algorithm: visit some or all of the nodes in a graph, labeling them with useful information
 - breadth-first: useful for undirected, yields connectivity and shortest-paths information
 - depth-first: useful for directed, yields numbering used for
 - topological sort
 - strongly-connected component decomposition

Breadth First Search(BFS)

- Given
 - a graph G=(V,E) : set of vertices and edges
 - a distinguished source vertex s
- Breadth first search systematically explores the edges of G to discover every vertex that is reachable from s.
- It also produces a 'breadth first tree' with root s that contains all the vertices reachable from s.
- For any vertex v reachable from s, the path in the breadth first tree corresponds to the shortest path in graph G from s to v.
- It works on both directed and undirected graphs. However, we will explore only directed graphs.

BFS

• It is so named because it discovers all vertices at distance k from s before discovering vertices at distance k+1.

• http://en.wikipedia.org/wiki/Image:Animated_BFS.gif

Breadth-first search starts with given node

Task: Conduct a breadth-first search of the graph starting with node D

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., alphabetical)

Like ripples in a pond

Nodes visited: D

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., alphabetical)

Like ripples in a pond

Nodes visited: D, C

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., alphabetical)

Like ripples in a pond

Nodes visited: D, C, E

Breadth-first search starts with given node

Then visits nodes adjacent in some specified order (e.g., alphabetical)

Like ripples in a pond

Nodes visited: D, C, E, F

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G, H

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G, H, A

When all nodes in ripple are visited, visit nodes in next ripples

Nodes visited: D, C, E, F, G, H, A, B

BFS

```
BFS(G, s)
                                        // G is the graph and s is the starting node
1 for each vertex u \in V[G] - \{s\}
      do color[u] \leftarrow WHITE // color of vertex u
3
     d[u] \leftarrow \infty
                        // distance from source s to vertex u
     \pi[u] \leftarrow \text{NIL}
                                        // predecessor of u
5 \operatorname{color}[s] \leftarrow \operatorname{GRAY}
6 d[s] \leftarrow 0
7 \pi[s] \leftarrow NIL
8 Q \leftarrow \emptyset
                                        // Q is a FIFO - queue
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset
                                        // iterates as long as there are gray vertices. Lines 10-18
      do u \leftarrow DEQUEUE(Q)
11
        for each v \in Adj[u]
12
           do if color[v] = WHITE // discover the undiscovered adjacent vertices
13
                then color[v] \leftarrow GRAY
                                                     // enqueued whenever painted gray
14
                   d[v] \leftarrow d[u] + 1
15
                   \pi[v] \leftarrow u
16
                   ENQUEUE(Q, v)
17
18
        color[u] ← BLACK // painted black whenever dequeued
```

BFS Example

BFS Analysis

- Enqueue and Dequeue happen only once for each node. : O(V).
- Sum of the lengths of adjacency lists: Θ(E) (for a directed graph)
- Initialization overhead O(V)

Total runtime O(V+E)