

- 🚺 Le cardinal d'une réunion disjointe d'ensembles finis est égal à la somme des cardinaux de ces ensembles. Cela permet de:
 - ✓ calculer le cardinal d'ensembles complexes ;
 - ✓ déterminer le nombre d'éléments d'un ensemble en le découpant en ensembles disjoints.
- Le cardinal d'un produit cartésien d'ensembles finis est égal au produit des cardinaux de ces ensembles. Cela permet de:
 - ✓ déterminer le nombre de possibilités dans une situation qui comporte plusieurs étapes successives.
- $oxline{3}$ Soient n et k deux entiers naturels tels que k \leqslant n. Un arrangement de k éléments d'un ensemble fini à n éléments est un k-uplet d'éléments distincts de cet ensemble. Il en existe $\frac{n!}{(n-k)!}$. Cela permet de :
 - \checkmark connaître le nombre d'issues d'un tirage avec ordre et sans remise dans un ensemble à n éléments ;
 - ✓ dénombrer les situations où les répétitions ne sont pas permises et où l'ordre a une importance.
- $m{Q}$ Soient n et k deux entiers naturels tels que $k \leqslant n$. Une combinaison de k éléments d'un ensemble fini à néléments est un sous-ensemble à k éléments de cet ensemble. Il en existe $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Cela permet de :
 - \checkmark connaître le nombre d'issues d'un tirage simultané de k éléments dans un ensemble à n éléments ;
 - ✓ dénombrer les situations où les répétitions ne sont pas permises et où l'ordre n'a pas d'importance.

Téléchargez cette fiche de révision au format PDF sur [LLS.fr/MTfiche1]