NVP1204

16-Ch NRT Video Decoder and 4-Ch Voice Decoder with DMA Controller Preliminary Data Sheet.

Confidential

Confidential

Information contained here is subject to change without notice. Make sure to check and use an updated version of the Data sheet.

DIGIWELL

www.nextchip.com

2009.12.09.

Preliminary REV 1.0

16-Ch NRT Video Decoder and 4-Ch Voice Decoder with DMA Controller

: NVP1204 includes 16 Channel NRT Video Decoder, 4 Channel Voice Decoder and Voice/Video DMA Controller. 16 Channel NRT Video Decoder delivers high quality images. It accepts separate 4 CVBS(RT) or 16 CVBS(NRT) inputs from Camera, TV, VCR and the other video signal sources. It digitizes and decodes NTSC/PAL video signal, transfers the converted data to PC via PCI bus. NVP1204 also transfers PCM digital voice signals converted from analog voice input signals. NVP1204 has 4 channel voice ADCs. It supports voice mute detection and volume control. NVP1204 transfers raw data to PC through execution of Voice/Video DMA applied PCI protocol.

Features

Video Decoder

- · Fast switching for non-real time video up to 16 channel
- · Robust Sync detection for weak and non standard signal
- · 16ch NRT or 4ch RT analog CVBS inputs
- -. Four 4:1 Inner Multiplexers
- -. Four 10-bit ADCs and Analog clamping circuits
- -. Fully programmable Static or Automatic gain control
- · Accept NTSC-M/J/4.43 and PAL-B/G/H/I/D/K/L/M/N/Nc/60
- · Accept Analog CVBS up to 16 channel.
- · High-performance 3H/5H 2D adaptive comb filter
- · Programmable peaking filter for Luminance
- · Vertical Peaking filter
- · CTI (Chrominance Transient Improvement)
- · Color compensation for PAL
- · IF compensation filter
- · Robust No-video detection
- · Programmable brightness, contrast, saturation and hue

Video Scaler

- · High quality horizontal & vertical filtered scaling with arbitrary scale down ratio
- · Support various frame resolution
- -. NTSC: 720x240, 704x240, 640x240, 320x240
- -. PAL: 720x288, 704x288, 640x288, 720x240, 704x240, 640x240

Voice Decoder

- · Accept analog voice input up to 4 channel
- · Built in a strong 10bit Pipe-Line ADC for noise
- · Support Linear PCM
- · Support 16bit/8bit, 8k/16k sampling
- · Built in Input Volume Controller
- · Built in Mute Detector

PCI

- · Built in Voice/Video DMA controller
- · Fully PCI Rev.2.2-3.0 compliant
- · Support YUV 4:2:2, 4:1:1, 4:2:0 format
- · Support 33MHz PCI Clock
- · Built in PCI Test pattern generator

MISC.

- · Auxiliary GPIO port to support External Mux control
- · Support two I2C Master
- · Single 27MHz Oscillator for all standards
- · 5V tolerant I/O

Applications

-. PC Based on Video Security System

Ordering Information

Device	Package	Temperature Range
NVP1204	208QFP	-10 ~ 80℃

Confidential DIGIWELL

[[Table of Contents]]

1.	Pin Information	
	1.1 Pin Assignments	
	1.2 Pin Description	······ (
2.	Video Decoder	8
	Video Decoder 2.1 Functional Overview	8
	2.2 Video Input Formats	
	2.3 Analog Front End (CLAMP, AGC, Anti-aliasing Filter)	
	2.4 Genlock (Robust Sync Detection, Robust No-Video Detection)	
	2.5 Y/C separation (3H/5H Adaptive Comb Filter)	-` 10
	2.6 Luma Processing	16
	2.7 Chroma Processing	11
	2.8 White Peak Detector	12
	2.9 Scaler	14
3.	Voice Decoder ·····	17
-	3.1 Description	
	3.2 Mute Detection	
	3.3 Volume Control	
4.	PCI Descriptions	18
5	Register Map ·····	20
٥.	register map	20
_	Register Description ····	20
0.		
	6.1 PCI Configuration space	28
	6.2 PCI Configuration register 6.3 PCI part	29
	6.3 PCI part 6.4 Video Decoder Part	30
	6.4 Video Decoder Part	33
_		
7.	Electrical characteristics	
	7.1 Absolute Maximum Ratings	
	7.2 Recommended Operating Condition	
	7.3 DC Characteristics	
	7.4 AC Characteristics	45
_		
8.	System Application	
	8.1 Recommended NTSC Register	
	8.2 Recommended PAL Register	
	8.3 Circuit Configuration	
	8.4 Package Information	5(
_		_
9.	Revision History ·····	····· 51
10). Contact Information ······	51

1. Pin Information

1.1 Pin Assignments

1.2 Pin Description

Pin name	Number	Type	Description
	Analog Video Interface (1	6 Pins)	
VIN1, VIN2, VIN3, VIN4,	176, 177, 178, 179,		
VIN5, VIN6, VIN7, VIN8,	184, 185, 186, 187,	AI	Analog Video Inputs
VIN9, VIN10, VIN11, VIN12,	190, 191, 192, 193,	AI	Analog video inpuis
VIN13, VIN14, VIN15, VIN16,	198, 199, 200, 201,		
	Analog Voice Interface (4 Pins)	
AIN1, AIN2, AIN3, AIN4	204, 205, 206, 207	/ AI	Analog Voice Inputs
	PCI Interface (50 Pin	ns)	
PCI_CLK	46	I	PCI Clock (33MHz)
PCI_RSTb	43	I	PCI global Reset (Active Low)
INTAb	37	О	PCI Interrupt output (Active Low)
REQb	48	О	PCI Bus request signal (Active Low)
GNTb	47	1	PCI Bus grant signal (Active Low)
IDSEL	60	I	PCI initialization device select signal
AD_31, AD_30, AD_29, AD_28,	49, 50, 51, 52,		
AD_27, AD_26, AD_25, AD_24,	55, 56, 57, 58,		
AD_23, AD_22, AD_21, AD_20,	63, 64, 65, 66,		
AD_19, AD_18, AD_17, AD_16,	67, 68, 73, 74,	I/O	Bi-directional PCI I/O pins transfer both
AD_15, AD_14, AD_13, AD_12,	91, 92, 93, 94,		address and data signals
AD_11, AD_10, AD_09, AD_08,	99, 100, 101, 102,		
AD_07, AD_06, AD_05, AD_04, AD_03, AD_02, AD_01, AD_00,	108, 109, 110, 111, 112, 115, 116, 117		
			Bi-directional PCI I/O pins transfer both
CBEb_03, CBEb_02,	59, 75,	I/O	bus command and byte enable signals
CBEb_01, CBEb_00	90, 107		(Active Low)
FRAMEb	76	I/O	Bi-directional PCI cycle frame signal
	C • 1	20	(Active Low)
IRDYb	1 1 7 9 0 0	1/0	Bi-directional PCI initiator ready signal
			(Active Low) Bi-directional PCI target ready signal
TRDYb	1 1 1 80	1/0	(Active Low)
DEVCET L	01	1/0	Bi-directional PCI device select signal
DEVSELb	81	I/O	(Active Low)
STOPb	82	I/O	Bi-directional PCI stop signal
			(Active Low)
PAR	89	I/O	Bi-directional PCI parity signal
SERRb	84	-o	Report address parity error
PERRb	83	I/O	Report data parity error
	I2C Interface (4 Pin	s)	
SCL_1, SCL_2	151, 147	I/O	Serial Clock 1, Serial Clock 2
SDA_1, SDA_2	150, 146	I/O	Serial Data 1, Serial Data 2
	System Clock (1 Pin	ns)	
SYS_CLK	136	I	System Clock (27MHz)

Pin name	Number	Туре	Description												
	ETC (42		*												
TECTO TECT1 TECT2 TECT2		3 I	Test Dire (Connect to ground)												
TEST0, TEST1, TEST2, TEST3 TEST4, TEST5, TEST6	38, 41, 42	3 I	Test Pins (Connect to ground) Refer to 8.3 Circuit Configuration												
GPIO_24, GPIO_23, GPIO_22, GPIO_21,	159, 160, 161, 16		Refer to 6.5 Circuit Configuration												
GPIO_20, GPIO_19, GPIO_18, GPIO_17,	165, 166, 169, 17	´													
GPIO_16, GPIO_15, GPIO_14, GPIO_13,		1.													
GPIO_12, GPIO_11, GPIO_10, GPIO_09,		0, I/O	General Purpose I/O												
GPIO_08, GPIO_07, GPIO_06, GPIO_05,	31, 32, 118, 11	1	• 1												
GPIO_04, GPIO_03, GPIO_02, GPIO_01	120, 125, 126, 12	7	110												
	128, 131, 132, 13	3,													
N.C.	N.C. 139, 140, 141, 142, - Reserved pin, not connected internally 143, 173, 174														
	143, 173, 174														
	Power(42 Pins) / C	Ground (49 Pins)													
	2, 3, 4, 5	,													
6, 7, 8, 9,															
10, 11, 18, 20, 25, 27, 34, 36,															
	40, 45, 54, 62														
	70, 72, 78, 86	·													
VSS (49 Pins)	88, 96, 98, 104		Ground												
	105, 113, 121, 123	´													
	129, 134, 137, 144														
	148, 155, 157, 163														
	167, 171, 175, 181														
	183, 189, 195, 197	,													
	208 12, 24, 28, 35,														
	44, 53, 69, 77,														
VDD3D (17 Pins)	87, 97, 106, 122,	P	Digital Power (Digital 3.3V)												
(17 1113)	130, 138, 149, 164,		Digital 10,000 (Digital 515 V)												
	172														
	17, 19, 26, 33,		. 1												
	39, 61, 71, 85,	010	110												
VDD1D (17 Pins)	95, 103, 114, 124,	P	Digital Power (Digital 1.8V)												
	135, 145, 156, 158,		CICI												
	168														
VDD3A (6 Pins)	180, 182, 188, 194,	P	Analog Power (Analog 3.3V)												
	196, 202														
VDD1A (2 Pins)	1, 203	P	Analog Power (Analog 1.8V)												
	NVP1204 208	QFP_28x28													
	GIV														

2. Video Decoder

: NVP1204 includes 16 Channel NRT Video Decoder and delivers high quality images. It accepts separate 16 CVBS inputs from Camera, TV or VCR and so on. It digitizes and decodes NTSC/PAL video formats into digital components video.

: NVP1204 includes 4 channel analog processing circuit that comprise anti-aliasing filter, ADC, AGC and CLAMP. It shows the best picture quality adopted by high performance 2D adaptive comb filter and vertical peaking filter. It also supports programmable Saturation, Hue, Brightness and Contrast and several function such as CTI, Programmable peaking filter, PAL compensation, IF compensation filter and White Peak Detect.

2.1 Functional Overview

: The role of video decoder is to separate luminance and chrominance signals from composite video signal.

Figure 2.1 shows the block diagram of decoder part

Figure 2.1. Video Decoder Data Flow of NVP1204

The First step to decode composite video signals is to digitize the entire composite video signal using an A/D converter (ADC). NVP1204 uses the 10-bit ADC whose frequency is 27MHz. Video inputs are usually AC-coupled and have a 75 Ohm AC and DC input impedance. As a result, the video signal must be DC restored every scan line during horizontal sync to position the sync tips at known voltage level using the AGC/CLAMP logic. The video signal also is lowpass filtered to about 9MHz in Anti aliasing Filter to remove any high-frequency components that may result in aliasing.

Vertical sync and horizontal sync information are recovered in Genlock block. When composite video signal is decoded, the luminance and chrominance are separated by Adaptive Comb Filter. The quality of decoded image is strongly dependent on the signal quality of separated Y and C. To achieve best quality of image, 2D Adaptive Comb Filter is used.

The chrominance demodulator in color processing block accepts modulated chrominance data from Adaptive Comb Filter which generates Cb/Cr color difference data. During active video period, the chrominance data is demodulated using sine and cosine subcarrier data.

2.2 Video Input Formats

: NVP1204 supports all NTSC/PAL Video Standard. Table 2.1 shows NTSC/PAL Video Standards and Register Setting Value (VIDEO FORMAT, 0x520/530/540/550[28:24]) to support them.

VIDEO_FORMAT	FORMAT	LINE	HZ	Fsc(MHz)									
0x00	NTSC-M,J	525	60	3.579545									
0x11	NTSC-4.43	525	60	4.43361875									
0x1D	PAL-B,D,G,H,I	625	50	4,43361875									
0x16	PAL-M	525	60	3.57561149									
0x1F	PAL-Nc	625	50	3.58205625									
0x15	PAL-60	525	60	4.433619									
% Don't use auto-detect mode in case of NRT (Non Real Time) operation Table 2.1 NVP1204 Input Video Image Formats													

DIGINAL

2.3 Analog Front End (CLAMP, AGC, Anti-aliasing Filter)

: NVP1204 includes 4 channel analog processing circuit that comprise anti-aliasing filter, ADC, AGC and CLAMP. Because its design is dedicated to video application, Analog Processing circuit does not require external reference circuit. External coupling capacitance only is needed for NVP1204. Fig 2.2 demonstrates the bode plot of Anti-aliasing Filter. Anti-aliasing Filter is controlled by a Register (FLT_BYPS, 0x5D4[7:4]).

Figure 2.2 Anti-aliasing Filter characteristic

9/51

2.4 Genlock (Robust Sync Detection, Robust No-Video Detection)

: NVP1204 provides a fully digital GenLocking circuitry. The digital Genlocking Circuitry uses the locking method of the timing control signals such as horizontal sync, vertical sync, and the color subcarrier. NVP1204 uses the proprietary Genlocking mechanism for video application system. It supports very Robust Sync Detection & Robust No-Video Detection, and it is also showed reliable operation in Non-standard signal and Weak-signal.

2.5 Y/C separation (3H/5H Adaptive Comb Filter)

: An adaptive comb filter is used to separate Y and C signal from NTSC/PAL standard video signal. Therefore, The output image is sharper and clearer compared to other video decoder. To achieve this, BSF(Band Split Filter) is used. Figure 2.3. shows the Chroma BSF which is controlled by Register (BSF_MODE, 0x520/530/540/550[31:30]).

NVP1204 can also separate Y signal from C signal out of input CVBS using the Notch Filter. And according to internal criteria in the NVP1204, the Notch and Comb filters can be mixed for use. In special case, use the Notch filter to separate Y signal from C signal to have a good-quality image.

2.6 Luma Processing

: The high-frequency range of Y/C separated data has a relatively smaller magnitude than the low-frequency range. The high-frequency range makes the image more distinct and remarkable, but may induce worse coding efficiencies when video signal is compressed.

NVP1204 provides the peaking filter and Gain control for emphasizing or depressing the high-frequency area to avoid this problem. The luma filter is applied to this purpose and its characteristics can be controlled by register. (Y_FIR_MODE, 0x528/538/548/558[27:24])

Figure 2.4 Peaking Filter Characteristic

2.7 Chroma Processing

: Chroma processing mainly consists of 3 parts: demodulation, filtering, and ACC(Automatic Chroma-gain Control). The chroma demodulator receives modulated chroma from Y/C separator, and generates demodulated color difference data. Demodulated data must be low-pass filtered to reduce anti-aliasing artifacts.

Figure 2.5. shows chroma demodulation and filtering process. Chroma LPF frequency characteristics is demonstrated in Figure 2.6.

Figure 2.5 Chroma Process

Figure 2.6 Chroma Low Pass filter Characteristic

2.8 White Peak Detector

: Out of the signals inputted from the Video Decoder, there are some signals whose ratio of the Sync Tip to the Video Ratio is not proportional due to the external factors such as Long Cable, Distributor...etc. as shown in Figure 2.7. In order to respond to such entry, NVP1204 supports White Peak Detect function that refers to the white peak information along with the Amplitude information of Sync Tip for the implementation of AGC to reach the Target Gain level. The "White Peak Detect function" can be set as follows depending on what the user needs as shown in Table 2.2.

In order to operate the White Peak Detector, the out of as seen in Figure 2.8 can be generated with the input like the one in Figure 2.7.

Figure 2.7 Input when the ratio of Sync Tip vs. Video Ratio is not proportional

Address	White Peak ''On''	White Peak 'Off''
0x58C max white value [15:8]	0xB8	0xB8
0x58C max white value num [7:0]	0x01	0x01
0x590 white peak detection AGC error #1 [31:24]	0x06	0x06
0x590 white peak detection AGC error #2 [23:16]	0x06	0x06
0x590 white peak on/off [15]	1	0

Table 2.2 White Peak Detector-Driven Register Setting Value

Confidential DIGIWELL

2.9 Scaler

: NVP1204 has 4 scalers. A Scaler plays a role to reduce input image size to the size user wants. Please refer to the figure as below.

Figure 2.9 Function of Scaler

NVP1204 assigns each decoder to such channel. A User uses this scaler to control the size of input image by 1/32 for horizontal and vertical direction. H-direction's size can be controlled by the H_DTOx[20:0](0x620~0x62C) register and V-direction's one by V_DTOx[20:0](0x630~0x63C) register. The values of H_DTOx and V_DTOx is determined by following formula.

$$\begin{split} NTSC \ : \ H_DTOx[20:0] \ = \ & (HP_scaled/720) \times \ (2^20) \\ V_DTOx[20:0] \ = \ & (VP_scaled/240) \times \ (2^20) \\ PAL \ : \ & H_DTOx[20:0] \ = \ & (HP_scaled/720) \times \ (2^20) \\ V_DTOx[20:0] \ = \ & (VP_scaled/288) \times \ (2^20) \end{split}$$

Where, HP_scaled indicates horizontal pixel number or the size of the image which a user wants to get. VP_scaled does the same role as HP_scaled but for vertical direction.

For example of using this register, if you need 360x240 scaled image in NTSC, H_DTOx[20:0] shall have the value of $(360/720) \times 2^20$. Simply, H_DTOx[20:0] = 2^19 . And V_DTOx[20:0] becomes $(120/240) \times 2^20$. Again, V_DTOx = 2^19

The table as below is register values for common scale sizes.

Register	704x240 (720x240)	640x240	360x240	352x240	320x240
H_DTO1[20:0] (0x620)	0x100000	0x0E8BA3	0x082900	0x080000	0x0745D2
V_DTO1[20:0] (0x630)	0x100000	0x100000	0x100000	0x100000	0x100000

Table 2.3. Register Value for Scale used frequently

NVP1204's scaler has two types of output as you can see in figure 2.9.

In mode1, the area which is not scaled is treated as blank. Therefore it can be longer than existing horizontal blank section. In this case, you should regard that in order to reduce the vertical size, it extend the horizontal blank section instead of using vertical blank. Hence, vertical blank section is able to have over 1 line range only for horizontal blank section under the standard status. (See the left side of Figure 2.10). Mode2 is output-way that let horizontal and vertical blank signals follow the standard and the section which is supposed to be blanked is changed to the value users define. Please refer to Figure 2.10(right side). The blue section displays the result that users define as blue.

Figure 2.10 Function of Scaler

Figure 2.11 describes more detailed horizontal blank signal of Model. This is how scaled signal works in CCIR656 format. SAV packet(0xFF,0x00,0x00,SAV)is fixed, compared with input signal, and EAV packet takes a moving way.

Figure 2.12 describes more detailed horizontal blank signal of Mode2. You might see in the figure that scaled signal is almost matched with horizontal blank signal's standard. But the rest section of the image that scaled signal is displayed is filled with the defined color(Blue) that users choose.

Preliminary Data sheet 2009.12.09 (REV 1.0)

15/51

Figure 2.12 Scaled Horizontal Blank Signal of Mode 2

This scaler has a function to increase the 704 active pixel input to 720 size for horizontal direction. for using this function, there is the register to control start position in 16pixel range. That is H_DEL(0x62x[27:24]) (Figure 2.13)

Figure 2.13 720 Extension function

Confidential DIGIWELL

3. Voice Decoder

3.1 Description

: NVP1204 outputs PCM digital voice signals converted from analog voice input signals and transfers voice data to PC via PCI bus. NVP1204 has 4 channel ADCs and each ADC generate 16K / 8K sampled 16bit / 8bit Voice data. In addition, NVP1204 supports voice mute detection and input volume control.

3.2 Mute Detection

: NVP1204 has an voice mute detection block for individual 4 channels. The mute detection scheme uses absolute/differential amplitude detection method. The detection method and accumulated period are defined by the ADET_MODE (0x6A8[15]) and ADET_FILT (0x6A8[18:16]) register, and the detecting threshold values are defined by ADET_TH register (0x6AC).

3.3 Volume Control

: NVP1204 can voice input volume control. Voice input volume control register is AIGAINx(0x6B4).

Figure 3.1 Audio Decoder Data Flow of NVP1204

DIGIWELL

4. PCI Descriptions

PIN Name	PIN #	I/O Type	Signal	Description
			PCI In	terface (50 Pins)
PCI_CLK	46	ľ	PCI- Clock	PCI Clock provides timing for all PCI transactions. All PCI signals except PCI_RSTb, INTAb are sampled on the rising edge of PCI_CLK and all other timing parameters are defined with respect to this edge. NVP1204 operates 33MHz.
PCI_RSTb	43	I	PCI Reset	PCI Reset is used to bring PCI-specific registers, sequencers, and signals to a consistent state. PCI_RSTb may be asynchronous to PCI_CLK when asserted or deasserted.
INTAb	-37	0	Interrupt pin	Interrupts on PCI are optional and defined as "level sensitive," asserted low(low active), using open drain output drivers. Interrupt A is used to request an interrupt.
REQb	48	O	Request	Request indicates to the arbiter that this agent desires use of the bus. This is a point to point signal. Every master has its own REQb which must be tri-stated while PCI_RSTb is asserted.
GNTb	47	I	Grant	Grant indicates to the agent that access to the bus has been granted. This is a point to point signal. Every master has its own GNTb which must be ignored while PCI_RSTb is asserted.
	_		Initialization	Initialization Device Select is used as a chip select during configuration
IDSEL	60	I	Device Select	read and write transactions.
AD[31:0]	49, 50, 51, 52, 55, 56, 57, 58, 63, 64, 65, 66, 67, 68, 73, 74, 91, 92, 93, 94, 99, 100, 101, 102, 108, 109, 110, 111, 112, 115, 116, 117	I/O	Address/Data	Address and Data are multiplexed on the same PCI pins. A bus transaction consists of an address phase followed by one or more data phase. PCI supports both read and write bursts. The address phase is the frist clock cycle in the FRAMEb is asserted. During the address phase, AD[31:0] contain a physical address(32bit). For I/O, this is a byte address; for configuration and memory, it is a DWORD address. During data phases, AD[7:0] contain the least significant byte(LSB) and AD[32:24] contain the most significant byte (MSB). Write data is stable and valid when IRDYb is asserted; read data is stable and valid when TRDYb is asserted. Data is transferred during those clocks where both IRDYb and TRDYb are asserted.
CBEb[3:0]	59, 75, 90, 107	I/O	Bus Command/ Byte Enables	Bus Command and Byte Enables are multiplexed on the same PCI pins. During the address phase of a transaction, CBEb[3:0] define th bus command. During the data phase, CBEb[3:0] are used as Byte Enables. The Bye Enables are valid for the entire data phase and determine which byte lanes carry meaningful data.
FRAMEb	76	I/O	Cycle Frame	Cycle Frame is driven by the current master to indicate the beginning and duration of an access. FRAMEb is asserted to indicate a bus transaction is beginning. While FRAMEb is deasserted, the transaction is in the final data phase or has completed.
IRDYb	79	I/O	Initiator Ready	Initiator Ready indicates the initiating agent's ability to complete the current data phase of the transaction. IRDYb is usede in conjunction with TRDYb. A data phase is completed on any clock both IRDYb and TRDYb are asserted. During a write, IRDYb indicates that valid data is present on AD[31:0]. During a read, it indicates the master is prepared to accept data. Wait cycles are inserted until both IRDYb and TRDYb are asserted together.

PIN Name	PIN #	I/O Type	Signal	Description
TRDYb	80	I/O	Target Ready	Target Ready indicates the target agent's ability to complete the current data phase of the transaction. TRDYb is used in conjunction with IRDYb. A data phase is completed on any clock both TRDYb and IRDYb are asserted. During a read, TRDYb indicates that valid data is present on AD[31:0]. During a write, it indicates the target is prepared to accept data. Wait cycles are inserted until both IRDYb and TRDYb are asserted together.
DEVSELb	81/	I/O	Device Select	Device Select, When actively driven, indicates the driving device has decoded its address as the target of the current access. As an input, DEVSELb indicates whether any device on the bus has been selected.
STOPb	82	I/O	Stop	Stop indicates the current target is requesting the master to stop the current transaction.
PAR	89	I/O	Parity	Parity is even parity across AD[31:0] and CBEb[3:0]. Parity generation is required by all PCI agents. PAR is stable and valid one clock after each address phase. For data phases, PAR is stable and valid one clock after either IRDYb is asserted on a write transaction or TRDYb is asserted on a read transaction Once PAR is valid, it remains valid until one clock after the completion of the current data phase. The master drivers PAR for address and write data phases; the target dves PAR for read data phase.
SERRb	84	0	System Error	System Error is for reporting address parity errors, data parity errors on the Special Cycle command, or any other system error where the result will be catastrophic. IF an agent does not want a non-maskable interrupt to be generated, a different reporting mechanism is required. SERRb is pure open drain and is actively driven for a single PCI clock by the agent reporting the error.
PERRb	83	I/O	Parity Error	Parity Error is only for the reporting data parity errors during all PCI transactions except a Special Cycle. The PERRb pin is sustained tri-state and must be driven active by the agent receiving data two clocks following the data when a data parity error is detected. The minimum duration of PERRb is one clock for each data phase that a data parity error is detected.

DIGIWELL

5. Register Map

4.11	F243	F207	[20]	F201	[25]	[26]	[05]	F2.41	F21		[22]	211 520	-	101	F103	£1#3	110		(F) (1)	43 5	101	[10]	F4.43	[10]	F03	-	2	-	10	C # 3	F43	F23	[2]	F43	F03
Addr	[31]	[30]	[29]	[28]	[27]	[26]	[25]	[24]	[23	5]	[22]	[21] [20	l [1	19]	[18]	[17]	[16]	[1		4] [13]	[12]	[11]	[10]	[9]	[8] ['	7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x100 0x104																	/ID_DMA D_DMA_																		
0x104 0x108																	D_DMA_																		
0x108																	/ID_DMA_																		
0x120																	D_DMA_																		
0x124																	D_DMA_																		
0x140																	/ID_DMA																		
0x144																	D_DMA_																		
0x148																	D_DMA_																		
0x160																	/ID_DMA																		
0x164											4						D_DMA_						_			4									
0x168														_			D_DMA_	_				_													
0x190				0x0	0										\top		H_:	SIZE1		1			T	1					0:	x0			PLANI	ER_MODE	
0x194				0x0	0						- ,						H_3	SIZE2		_												0x00			
0x198				0x0	0												H_:	SIZE3		1						,,,,						0x00			
0x19C				0x0	0												H_:	SIZE4											0x00						
0x1A0	0	0	ODD	EVEN			0x0						0x00									(0x80									0x00			
0x1A4				0x0	0								0x20									(0x80)xAD			
0x1A8				0x0	0								0x00									(0x00									0x00			
0x1AC				0x0	0								0x00										0x00									0x00			
0x1B0				0x0	0								0x00										0x00									0x00			
0x1B4				0x0									0x00					7.0				~ -	0x00									0x00			
0x1B8				0x0									0x00			-	_	А		-		_	0x00	_								0x00			
0x1BC				0x0	0						-		0x00		_	-	$\overline{}$		\ /_	_		(0x00	_								0x00			
0x1C0											-	/	-		_	_	VID_DMA			_		1	_	/		/									
0x1C4										- 1							VID_DMA			_															
0x1C8																	VID_DMA																		
0x1CC																	VID_DMA	_SIZE	E4_REG													_	_	_	
0x1D0				0x0)								0x00					1					0x00						0	0x0		DMA4	DMA:	B DMA	2 DMA1
0x1D4																	VID_IRQ																		
0x1D8																	VID_IR(-																	
0x1F4																	VID_O																		
0x1F8																	VID_DM	A_STS	s_REG																

Addr	[31]	[30]	[29]	[28]	[27]	[26]	[25]	[24]	[23]	[22]	[21]	[20]	[19]	[18]	[17]	[16]	[15]	[14]	[13]	[12]	[11]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x200																AUD_DM.	A_BA_A			•			•				•					
0x204																AUD_DM.	A_BA_B															
0x210																AUD_DM	A_SIZE															
0x218				0x0	0							0x	20							0x0	0							0:	x00			
0x220				0x0	0							0x	00							0x0	0					0)x0		0	0 /	AUD_DM.	A_CTRL
0x224				0x0	0							0x	00											AUD_INT	MASK							
0x228				0x0	0				0x00									0x00								0)x0		AUD_INT_S			
0x240				0x0	0							0x	00				0	0	I2C_P2_ DIR_SD		I2C_P2_ GET_SD		1		0	0	1			I2C_P1_ I GET SC S		
																	A L A L A C							CL			A	L	A	L	A	L
0x264				0x0	0					7		0x	00	_	•	1		•		0x0	0		1		0	0	0	0	0	0	0	IRQ_MA SK
0x270	GPIO_ DIR24	GPIO_ DIR23	GPIO_ DIR22	GPIO_ DIR21	GPIO_ DIR20	GPIO_ DIR19	GPIO_ DIR18	GPIO_ DIR17	GPIO_ DIR16	GPIO_ DIR15	GPIO_ DIR14	GPIO_ DIR13	GPIO_ DIR12	GPIO_ DIR11	GPIO_ DIR10	GPIO_ DIR9	GPIO_ DIR8	GPIO_ DIR7	GPIO_ DIR6	GPIO_ DIR5	GPIO_ DIR4	GPIO_ DIR3	GPIO_ DIR2	GPIO_ DIR1				Res	erved		•	
0x274	GPIO_ OUT24	GPIO_ OUT23	GPIO_ OUT22	GPIO_ OUT21	GPIO_ OUT20	GPIO_ OUT19	GPIO_ OUT18		GPIO_ OUT16	GPIO_ OUT15	GPIO_ OUT14	GPIO_ OUT13		GPIO_ OUT11	GPIO_ OUT10	GPIO_ OUT9	GPIO_ OUT8	GPIO_ OUT7	GPIO_ OUT6	GPIO_ OUT5	GPIO_ OUT4	GPIO_ OUT3	GPIO_ OUT2	GPIO_ OUT1				Res	Reserved			
0x278	GPIO_ IN24	GPIO_ IN23	GPIO_ IN22	GPIO_ IN21	GPIO_ IN20	GPIO_ IN19	GPIO_ IN18	GPIO_ IN17	GPIO_ IN16	GPIO_ IN15	GPIO_ IN14	GPIO_ IN13	GPIO_ IN12	GPIO_ IN11	GPIO_ IN10	GPIO_ IN9	GPIO_ IN8	GPIO_ IN7	GPIO_ IN6	GPIO_ IN5	GPIO_ IN4	GPIO_ IN3	GPIO_ IN2	GPIO_ IN1	Reserved							

DIGIWELL

Addr	[31]	[30]	[29]	[28]	[27]	[26]	[25]	[24]	[23]	[22]	[21]	[20]	[19]	[18]	[17]	[16]	[15]	[14]	[13]	[12]	[1	.1] [10]] [9)]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]	
0x500	NOVID4	NOVID3	NOVID2	NOVID1		Res	erved					Res	erved				BW4	BW3	BW2	BW1		LOC FSCL				AGCST	AGCST	AGCST	AGCST	CMPST	CMPST	CMPST		
	LINENU	LINENU	LINENU	LINENII																	ŀ	K4 K3	K	2	K1	A4	A3	A2	A1	A4	A3	A2	A1	
0x504	M4	M3	M2	M1	FLD4	FLD3	FLD2	FLD1				Re	erved							Re	eserved						Res	erved		ADET4	ADET3	ADET2	ADET1	
0x508				Rese	rved		•					Re	erved							Re	eserved								Res	erved				
0x50C				Rese	rved							Re	erved							Re	eserved								Res	erved				
0x518				Rese	rved							Re	erved							Re	eserved								DE	V_ID				
0x51C		Rese	erved			RE	V_ID					Re	erved							Re	eserved								Res	served				
0x520	BSF_N	IODE1	0		VID	EO_FORM	MAT1					BRIGI	ITNESS1							CON	TRAS	Γ1							Н	UE1				
0x524				SATURA	ATION1								GAIN1		•	-				V_0	GAIN1						U_OF	FSET1			V_OF	FSET1		
0x528	PED_O N1					Y_FIR	_MODE1	_INV1 _INV1 V1												V_D	ELAYI													
0x52C				HBLK_	_END1							VBLI	C_END1							(0x00			1					0	0x00				
0x530	BSF_N	IODE2	0		VID	EO_FORM	МАТ2		BRIGHTNESS2 CONTRAST2 CONTRAST2											T				Н	JE2									
0x534				SATURA	ATION2				U_GAIN2 V_GAIN2											U_OF	FSET2		V_OFFSET2											
0x538	PED_O N2					Y_FIR	_MODE2		HSYNC _INV2	VSYNC _INV2	FLD_IN V2			Y_DELA	Y2					H_D	DELAY	2							V_D	ELAY2				
0x53C				HBLK	_END2							VBLI	LEND2							(0x00								0	ĸ00				
0x540	BSF_N	IODE3	0		VID	EO_FORM	МАТ3			_		BRIGH	ITNESS3	~	_	_	CONTRAST3												Н	UE3				
0x544				SATURA	ATION3							U_C	GAIN3	-			A .	/	-	V_0	GAIN3						U_OF	FSET3			V_OF	FSET3		
0x548	PED O								HSYNC VSYNC FLD_IN Y_DELAY3 H_DELAY3												V_D	V_DELAY3												
0x54C	54C HBLK_END3								VBLK_END3 0x00													0	x00											
0x550	0x550 BSF_MODE4 0 VIDEO_FORMAT4									BRIGHTNESS4								CONTRAST4											Н	IUE4				
0x554				SATURA	ATION4							U_C	GAIN4							V_0	GAIN4						U_OF	FSET4			V_OF	FSET4		
0x558	PED_O N4					Y_FIR	_MODE4		HSYNC _INV4	VSYNC _INV4	FLD_IN V4			Y_DELA	Y4			H_DELAY4											V_D	ELAY4				
0x55C				HBLK	END4							VBLI	C_END4							(0x00								0	x00				

Addr	[31]	[30]	[29]	[28]	[27]	[26]	[25]	[24]	[23]	[22]	[21]	[20]	[19]	[18] [1'	ו ני	[16]	[15]	[14]	[13]	[12]	[1]	.] [10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x560	A_CMP_		0	0		0	x0					0x								(0x40								0x7C			
0x564	D_CM P_FZ	0	0	1	1	1	D_CMP	_SPD				0x	00				D_AGC _FZ	0	1	0			0x0						0x40			
0x568			•	0	x80	•	•					SLICE_	VALUE				•	DFE_CO	RE_LVL	•			0x8						0x0F			
0x56C				0:	k0C							0x	01							()x15								0x0A			
0x570				0	x80					U_OF	FSET2			V_OFFSET:						()x88								0x04			
0x574				0:	c2A					FSC_LOC	K_MODE			FSC_LOCK_S	PD				_	(0xF0				ACC_OF		ACC_C	ORE_LV	L	ACC_G	AIN_SPD	
0x578				0	x57				FLD_DE	Γ_MODE	0	0		NOVID_DET	В		0	0			N	OVID_SPD				H_SHA	RPNESS			V_SHA	RPNESS	
0x57C	PAL_C M_OFF	I	IF_FIR_SE	L	0	0	CLPF_	SEL	CTI_0	CORE	CTI_	GAIN		0x3		4		•		(0x01	•		1	0x00							
0x580				0	x80							_0x	00	+- 4					1	4)x00	4			0x8 DATA_OUT_MODE				ś			
0x584				0	x00							0x	00)x00								0x00			
0x58C				0	x00							SLICI	E_MD							0	xB8								0x01			
0x590				0	x06							0x	06			9	WPD_ ON	0	0	1	~	_ '	0x1						0xB9			
0x594				0:	kB2							0x	05							(0x00								0x28			
0x598				V_LC	C_SPD							0x	00					CKI	ILL4			•	CKILL3			CK	ILL2			CK	ILL1	
0x5A0				0	x00							0x	00							(00x0								0x00			
0x5A4					x76							0x)x32								0x10			
0x5A8					кFE					_		0x1			_		_				xBA	_							0x98			
0x5AC					x76							0x	_							_)x32								0x10			
0x5B0					кFE					_		0xl		_		\perp	\	-4	_	_	xBA	_			1				0x98			
0x5B4					x00					_	_	0x	_	$\overline{}$		N /	1/			_	0x00	-							0x00			
0x5B8				0	x00					_	_/_	0x	00			V	V.			- 0	0x00	/			0x00							
0x5BC	Reserved (READ ONLY) Reserved (READ ONLY)																															
0x5C0																																
0x5C4															Rese	erved (R	EAD ON	_Y)														

Preliminary Data sheet 2009.12.09 (REV 1.0)

Addr	[31]	[30]	[29]	[28]	[27]	[26]	[25]	[24]	[23]	[22]	[21]	[20]	[19]	[18]	[17]	[16]	[15]	[14]	[13]	[12]	[11]	[10]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x5D0		•		0x	05		•	•		•		0:	x33							0x	:00			•			•	0x	00			
0x5D4				0x	FF							0:	x55				PD1	PD2	PD3	PD4		0:	¢0					0x	00			
0x5D8				G_S	EL1							G_5	SEL2							G_S	EL3							G_S	EL4			
0x5DC				0x	FF							0x	AA							0x	AA							0x	55			
0x5E0								A_CMP	_MODE2											0x	:00							0x	00			
0x5E4				0x	0F							0:	k0F							0x	.0F							0x	0F			
0x5E8				0x	00							0:	x00					0:	x0		0	0	A_ADC _CLK_ SEL	0	0	0	0	V_ADC _CLK_ SEL		0x	0	

Confidential DIGIWELL

A 3.3	F213	[20]	[20]	[20]	[27]	[26]	[25]	[24]	[22]	[22]	[21]	[20]	[10]	[10]	F177	1 [1/	a	[1.5]	F1 41	[12]	[12]	I r	(1) F:	101	ron.	F01	[7]	[6]	[5]	E41	[2]	[2]	F13	F01
Addr	[31]	[30]	[29]	[28]	[27]	[26]	[25]	[24]	[23]	[22]	[21]	[20]	[19]	[18]	[17]			[15]	[14]	[13]	[12]	Į Į.	[1]	[0]	[9]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x610 0x614																	LK_PI LK_PI																	
0x618																	LK_PF																	
0x61C																	LK_PF																	
0x620			0x0			НΕ	DEL_1		0	0	0												нр	TO_1										
0x624			0x0				DEL_2		0	0	0													TO_2										
0x628			0x0			H_E	DEL_3		0	0	0												H_D	TO_3										
0x62C			0x0			H_E	DEL_4		0	0	0												H_D	TO_4										
0x630			0x0		0	0	0	BLK_ OPER1	0	0	0												V_D	TO_1										
0x634			0x0		0	0	0	BLK_ OPER2	0	0	0						1	1				1	v _D	TO_2		1								
0x638			0x0		0	0	0	BLK_ OPER3	0	0	0				71					1	7	1	V_D	то_3	7	Т								
0x63C			0x0		0	0	0	BLK_ OPER4	0	0	0			Ţ		/					I	l	V_D	то_4	I	I								
0x640	UP_4	UP_3	UP_2	UP_1		C)x0			0:	x0		1	1	E SCAI		- 1	- 1	_	I -	H_BYP ASS_1	1 -	BYP V_ SS_4 AS		V_BYP ASS_2	V_BYP ASS_1				0	x00			
0x644				0x	FF							02	:FF								0:	xFF								0:	xBF			
0x64C				02	c00							0:	:00								0:	x33								0	x33			
0x650				02	c88							0:	88								0:	x00								0	x09			
0x654					c80							0:										x80									x80			
0x658					(49							0:	_								-	x49									x49			
0x65C					c37					-	_	_	:37		-	_	//	\ /				x37									x37			
0x660					7B					-	_	_	:7B	-	-	_	\mathcal{A}	1/	_		_	х7В									x7B			
0x664					c58					_		_	258 208		-		₩		_	-		x58 x08									x58 x08			
0x668 0x66C					(00								:55				-	_				x08									x08 x00			
0x670					(00							0:					-					x00									xF0			
0x674					(00							0:					+					x00									x00			
0x678				02								0:					\neg					x11									x11			
0x67C					(00							0:										x00									x00			

Preliminary Data sheet 2009.12.09 (REV 1.0)

26/51

Addr	[31]	[30]	[29]	[28]	[27]	[26]	[25]	[24]	[23]	[22]	[21]	[20]	[19]	[18]	[17]	[16]	[15]	[14]	[13]	[12]] [1	.1] [1	0] [9] [8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]	[0]
0x680				0	x00							0:	:00						•		0x00								0)x00			
0x684				0	x00							0:	:00								0x00								0	0x00			
0x688				0	x80							0:	:00								0x00								C)x00			
0x68C				0	x13							0:	:13								0x13								C)x13			
0x690				0	x03							0:	:03								0x03								0	0x03			
0x694				C	x22							0:	:22								0x22								C)x22			
0x698				0	x00							0:	:00								0x00								C)x00			
0x69C				0	x51							0:	B5								0x51								0	xB5			
0x6A0				0	x51							0:	B5								0x51								0	xB5			
0x6A4								SMP_DT0	_VALUE												0x03								0	0x03			
0x6A8				O	00x00					0:	ι0		0	7	ADET_FILT		ADET_ MODE	EN_ RESET	0	1			0x0	-1		ADET_1 AI	DET_2	ADET_3	ADET_4	·	0	хF	
0x6AC		ADET	_TH1			ADE'	Г_ТН2			ADET	_TH3	1		ADET	Г_ТН4						0x 0 0	1							0)x00			
0x6B0				0	x02					_		0:	:00								0x02								C	00x			
0x6B4		AIG	AIN1			AIG	AIN2			AIG	AIN3				AIN4						0x00								C	0x00			
0x6C0				0	x00							0:	:00								0x00								C	0x00			
0x6C4				0	x00							0:	:00								0x00								C	0x00			
0x6C8				0	x00							0:	:00								0x00								C	0x00			
0x6CC				0	x00							0:	:00								0x00								C)x00			
0x6D0				C	x00							0:	:00								0x00								0	0x00			
0x6D4				0	x00								:00								0x00								C)x00			
0x6D8				C	x00							0:	:00								0x00								C	0x00			
0x6DC				0	x00							_	00	-			Λ			-	0x00								0	00x00			
0x6E0					x00							_	00						=		0x00									0x00			
0x6E4				0	x00							0:	00			_\/		1	,	_	0x00			,					0)x00			
																- 7	- 7																

6. Register Description

6.1 PCI Configuration space

Figure 6.1 PCI Type 0 Configuration Space Header

6.2 PCI Configuration register

ADDRESS	NAME	BIT	TYPE	DESCRIPTION	VALUE
0x00	Device ID	[31:16]	R	Identifies the particular device of the device.	0x12041B07
UAUU	Vendor ID	[15:0]	R	Identifies manufacturer of device, assigned by the PCI SIG.	0X12041B07
	Detected Parity Error	[31]	R/W	Set by a device whenever it detects a parity error, even if parity error handling is disabled.	
	Signaled System Error	[30]	R/W	Set by a device that asserts SERR#	
	Received Master Abort	[29]	R/W	Set by a master when it terminates a transaction with Master Abort.	
	Received Target Abort	[28]	R/W	Set by a master when its transaction is terminated by Target Abort.	
	Signaled Target Abort	[27]	R/W	Set by a target when it terminates a transaction with Target Abort. This occurs when detecting an address parity error.	
	Address Decoder Time	[26:25]	R	DEVSEL# Timing 00 = Fast, 01 = medium, 10 = slow, 11 = reserved.	
	Data Parity Reported	[24]	R/W	Only implemented by masters.	
	FB2B Capable	[23]	R	1 = target device supports fasts back to back transactions to different targets.	
0x04	Reserved	[22]	R	1 = device supports "user definable features".	0x04000000
UAUT	66MHz Capable	[21]	R	1 = device is capable of 66MHz operation.	
	Reserved FB2B Enable	[20:10]	R/W R/W	Reserved registers When 1, allows a master to execute fast back to back transactions to	
	SERR# enable		R/W	different targets.	
	Wait cycle Control	[8] [7]	R/W	When 1, allows the device to assert SETT#. Controls whether a device does address/data stepping.	
				When 1, the device responds to a detected parity error by asserting	
	Parity Error Response	[6]	R/W	PERR#.	
	VGA Palette snoop	[5]	R/W	Controls how VGA devices handle access to VGA palette registers. When 1, a master is allowed to use the Memory Write and Invalidate	
	Memory Write and Invalidate Enable	[4]	R/W	command if so capable. When 0, the master must use Memury Write	
		[2]	D /W/	When I allows a davice to monitor Special Cycle progetions	
	Special Cycles Bus Master	[3] [2]	R/W R/W	When 1, allows a device to monitor Special Cycle operations. When 1, enables the device to act as a bus master.	
	MemorySpace	[1]	R/W	When 1, allows the device to act as a bus master. When 1, allows the device to respond to PCI memory space access	
	IO Space	[0]	R/W	When 1, allows the device to respond to PCI I/O space accesses.	
	Class Code	[31:8]	R	NVP1204 is a multimedia video device.	
0x08	Revision ID	[7:0]	R	This register identifies the device revision.	0x04000000
	BIST	[31:24]	R	Built In Self-Test Register	
	Header Type	[23:16]	R	Type 00h = Configuration Space Header, 01h = PCI to PCI bridges	0x00001000
0x0C				The number of PCI bus clocks for the latency timer used by th bus	
	Latency Timer	[15:8]	R/W	master. Once the latency expires, the master must initiate transaction	
	Base Address 0			termination as soon as GNT# is removed.	assigned by
0x10	Register	[31:0]	R/W	Determine the location of the registers in the 32-bit addressable memory space	cpu
0.20	Subsystem ID	[31:16]	R	Vendor specific	0.0000000
0x2C	Subsystem Vendor ID	[15:0]	R	Identify the vendor of the add-on board or subsystem, assigned by PCI SIG.	0x00000000
	Max_Lat	[31:24]	R	It is used for specifying how often the device needs to gain access the PCI bus. in units of 250ns(8clocks)	0x28
0-20	Min_Gnt	[23:16]	R	It is used for specifying how long a burst period the device needs assuming a clock rate of 33MHz. in units of 250ns (8 clocks)	0x10
0x3C	Interrupt Pin	[15:8]	R	NVP1204 interrupt pin is connected to INTA#, the only one usable by a single function device.	0x01
	Interrupt Line	[7:0]	R/W	Post software will write the routing information into this register as it initializes and configures the system	assigned by cpu
					£' ''

6.3 PCI part

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
0x100	VID_DMA_BA1_A_REG	[31:0]	R/W	Assigns channel 1 y base address to main memory space.	by cpu
0x104	VID_DMA_BA1_A_REG_U	[31:0]	R/W	Assigns channel 1 cb base address to main memory space.	by cpu
0x108	VID_DMA_BA1_A_REG_V	[31:0]	R/W	Assigns channel 1 cr base address to main memory space.	by cpu
0x120	VID_DMA_BA2_A_REG	[31:0]	R/W	Assigns channel 2 y base address to main memory space.	by cpu
0x124	VID_DMA_BA2_A_REG_U	[31:0]	R/W	Assigns channel 2 cb base address to main memory space.	by cpu
0x128	VID_DMA_BA2_A_REG_V	[31:0]	R/W	Assigns channel 2 cr base address to main memory space.	by cpu
0x140	VID_DMA_BA3_A_REG	[31:0]	R/W	Assigns channel 3 y base address to main memory space.	by cpu
0x144	VID_DMA_BA3_A_REG_U	[31:0]	R/W	Assigns channel 3 cb base address to main memory space.	by cpu
0x148	VID_DMA_BA3_A_REG_V	[31:0]	R/W	Assigns channel 3 cr base address to main memory space.	by cpu
0x160	VID_DMA_BA4_A_REG	[31:0]	R/W	Assigns channel 4 y base address to main memory space.	by cpu
0x164	VID_DMA_BA4_A_REG_U	[31:0]	R/W	Assigns channel 4 cb base address to main memory space.	by cpu
0x168	VID_DMA_BA4_A_REG_V	[31:0]	R/W	Assigns channel 4 cr base address to main memory space.	by cpu
0x190	H_SIZE1 PLANER_MODE	[23:8]	R/W R/W	Set by a software that determines H size of channel 1 window. Selection of DMA transaction type. 0x1 = 4:2:2 YCbCr Packet mode, 0x2 = 4:1:1 YCbCr Planer mode, 0x4 = 4:2:0 YCbCr Planer mode.	0x00002C01
0x194	H_SIZE2	[23:8]	R/W	Set by a software that determines H size of channel 2 window.	0x00002C00
0x195	H_SIZE3	[23:8]	R/W	Set by a software that determines H size of channel 3 window.	0x00002C00
0x19C	H_SIZE4	[23:8]	R/W	Set by a software that determines H size of channel 4 window.	0x00002C00
0x1A0	ODD	[29]	R/W	Control odd field data of video DMA processing. 0 = enable, 1 = disable.	0x00000000
JAITIU	EVEN	[28]	R/W	Control even field data of video DMA processing. 0 = enable, 1 = disable.	5A000000

Confidential DIGIWELL

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
0x1C0	VID_DMA_SIZE1_REG	[31:0]	R/W	Determines video dma size to occur interrupt signal in ch1. ex) 704x240(window size)/4(32bit transaction size)x2(Luma&Croma) DMA size = 0x14A00	0x00014A00/ 0x00018C00
0x1C4	VID_DMA_SIZE2_REG	[31:0]	R/W	Determines video dma size to occur interrupt signal in ch2. ex) 704x240(window size)/4(32bit transaction size)x2(Luma&Croma) DMA size = 0x14A00	0x00014A00/ 0x00018C00
0x1C8	VID_DMA_SIZE3_REG	[31:0]	R/W	Determines video dma size to occur interrupt signal in ch3. ex) 704x240(window size)/4(32bit transaction size)x2(Luma&Croma) DMA size = 0x14A00	0x00014A00/ 0x00018C00
0x1CC	VID_DMA_SIZE4_REG	[31:0]	R/W	Determines video dma size to occur interrupt signal in ch4. ex) 704x240(window size)/4(32bit transaction size)x2(Luma&Croma) DMA size = 0x14A00	0x00014A00/ 0x00018C00
	DMA4	[3]	R/W	Enable video DMA processing in ch4. 1 = enable, 0 = disable.	
0x1D0	DMA3	[2]	R/W	Enable video DMA processing in ch3. 1 = enable, 0 = disable.	0x0000000F
UXIDU	DMA2	[1]	R/W	Enable video DMA processing in ch2. 1 = enable, 0 = disable.	UXUUUUUUT
	DMA1	[0]	R/W	Enable video DMA processing in ch1. 1 = enable, 0 = disable.	
		[6]	R/W	a video interrupt mask in ch4.	
0x1D4	VID_IRQ_MASK_REG	[4]	R/W	a video interrupt mask in ch3.	0x00000055
0.222	- <	[2]	R/W	a video interrupt mask in ch2.	_
		[0]	R/W	a video interrupt mask in ch1.	
		[6]	R	a video interrupt status in ch4.	
0x1D8	VID_IRQ_STS_REG	[4]	R	a video interrupt status in ch3.	Read only
		[2]	R R	a video interrupt status in ch2. a video interrupt status in ch1.	1
		լսյ	K	Enable data order to change CbYCrY~ or YCbYCr~	
0x1F4	VID_CFG_REG	[0]	R/W	0 = CbYCrY, first Croma second Luma.	0x00000001
UAIIT	VID_CI G_REG	[0]	10 11	1 = YCbYCr, first Luma second Croma.	0.00000001
		[6]	R	a video DMA status in ch4.	
0.150	VIII DAN GEG DES	[4]	R	a video DMA status in ch3.	.
0x1F8	VID_DMA_STS_REG	[2]	R	a video DMA status in ch2.	Read only
		[0]	R	a video DMA status in ch1.	

DIGIWELL

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
0x200	AUD_DMA_REG_A	[31:0]	R/W	assigns Voice base address a to main memory space.	by cpu
0x204	AUD_DMA_REG_B	[31:0]	R/W	assigns Voice base address b to main memory space.	by cpu
0x210	AUD_DMA_SIZE	[31:0]	R/W	Determines Voice DMA size to occur interrupt signal.	0x00003E80
0x220	AUD_DMA_CTRL	[0]	R/W	Enable Voice DMA processing. 1 = enable, 0 = disable.	0x00000001
0x224	AUD_INT_MASK	[0]	R/W R/W	a Voice interrupt mask_a a Voice interrupt mask_b	0x00000003
0x228	AUD_INT_STAT	[0]	R R	a Voice interrupt_a status a Voice interrupt_b status	Read only
	I2C_P2_DIR_SDA	[13]	R/W	Determines direction of SDA_2(I2C Data2) Pin.	
	I2C_P2_DIR_SCL	[12]	R/W	Determines direction of SCL_2(I2C_Clock2) Pin	
	I2C_P2_GET_SDA	[11]	R/W	Input from SDA_2(I2C Data2) Pin	
	I2C_P2_GET_SCL	[9]	R/W	Input from SCL_2(I2C_Clock2) Pin	
	I2C_P2_SET_SDA	[8]	R/W	Output from SDA_2(I2C Data2) Pin	
0x240	I2C_P2_SET_SCL	[7]	R/W	Output from SCL_2(I2C_Clock2) Pin	0x00000000
UA24U	I2C_P1_DIR_SDA	[5]	R/W	Determines direction of SDA_1(I2C Data1) Pin.	UXUUUUUUU
	I2C_P1_DIR_SCL	[4]	R/W	Determines direction of SCL_1(I2C_Clock1) Pin	
	I2C_P1_GET_SDA	[3]	R/W	Input_from SDA_1(I2C Data1) Pin	
	I2C_P1_GET_SCL	[2]	R/W	Input from SCL_1(I2C_Clock1) Pin	
	I2C_P1_SET_SDA	[1]	R/W	Output from SDA_1(I2C Data1) Pin	
	I2C_P1_SET_SCL	[0]	R/W	Output from SCL_1(I2C_Clock1) Pin	
0x264	IRQ_MASK	[0]	R/W	a total interrupt mask.	0x00000001
0x270	GPIO_DIRx	[31:8]	R/W	Determines a direction of GPIO1 ~ GPIO24(General Purpose I/O) pin. 1 = Input direction, 0 = Output direction	by cpu
		[7:0]	R/W	Reserved	0x00
		[31:8]	R/W	GPIO1 ~ GPIO24 output	
0x274	GPIO_OUTx	[7:0]	R/W	Internal Mux Switching Register Visit Decoder & Scalar Visit Decoder & Scalar	b у сри
0x278	GPIO_INx	[31:0] [7:0]	R/W	GPIO1 ~ GPIO24 input Reserved	by cpu 0x00

T nextchip

6.4 Video Decoder Part

♦ Show Status of NVP1204 (Read Only)

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
	NOVID4	[31]	R		
	NOVID3	[30]	R	Each Channel No Video Status.	Read Only
	NOVID2	[29]	R	(0: On Video, 1: No Video)	Read Only
	NOVID1	[28]	R	10011101	
	BW4	[15]	R		
	BW3	[14]	R	Each Channel B/W Status.	Read Only
	BW2	[13]	R	(0: Color, 1: B/W)	Read Only
	BW1	[12]	R		
	FSCLOCK4	[11]	R		
0x500	FSCLOCK3	[10]	R	Each Channel FSC Lock Status.	Read Only
UASUU	FSCLOCK2	[9]	R	(0 : FSC Unlocked , 1 : FSC Locked)	read Only
	FSCLOCK1	[8]	R		
	AGCSTA4	[7]	R		
	AGCSTA3	[6]		Each Channel AGC Status.	Read Only
	AGCSTA2	[5]	R	(0 : AGC Unstable , 1 : AGC Stable)	read Only
	AGCSTA1	[4]	R		
	CMPSTA4	[3]	R		
	CMPSTA3	[2]	R	Each Channel CLAMP Status.	Read Only
	CMPSTA2	[1]	R	(0: Clamp Unstable, 1: Clamp Stable)	Icau Omy
	CMPSTA1	[0]	R		

♦ Show Status of NVP1204 (Read Only)

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE
ADDRESS	IVAIVILE	DII	11112	DESCRIPTION	(NTSC/PAL)
	LINE_NUM4	[31]	R		
	LINE_NUM3	[30]	R	Each Channel Line Number Status.	Read Only
	LINE_NUM2	[29]	R	(0: 525 Line, 1: 625 Line)	Read Only
	LINE_NUM1	[28]	R		
	FLD4	[27]	R		
0x504	FLD3	[26]	R	Each Channel Field Status.	Read Only
03304	FLD2	[25]	R	(0 : ODD Field , 1 : EVEN Field)	Read Only
	FLD1	[24]	R		
	ADET4	[3]	R		
	ADET3	[2]	R	Each Channel Voice Detect Status.	Read Only
	ADET2	[1]	R	(0 : No Voice , 1 : On Voice)	ixeau Olliy
	ADET1	[0]	R		

◆ Show Status of NVP1204 (Read Only)

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
0x518	DEV_ID	[7:0]	R	Device ID (0x74)	Read Only

♦ Show Status of NVP1204 (Read Only)

ADDRESS	NAME	ВІТ	TYPE	DESCRIPTION	VALUE (NTSC/PAL)
0x51C	REV_ID	[27:24]	R	Revision ID(0x0)	Read Only

◆ Registers to Control Comb Filter, Video Format and Luminance

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/DAL)
	BSF_MODE	[31:30]	R/W	Selects the filter to make primary separation of the brightness and color signals. 00: Mode0 (1.3MHz Cut-off)	(NTSC/PAL)
	VIDEO_FORMAT	[28:24]	R/W	00000 : NTSC-M,J 10001 : NTSC-4.43 11101 : PAL-B,D,G,H,I 10110 : PAL-M 11111 : PAL-Nc 10101 : PAL-60 Others : None	
	BRIGHTNESS	[23:16]	R/W	Brightness control, DC level of the Luma signal is adjustable up to -128 ~ +127. BRIGHTNESS consists of 2's Complements. 00000001 : +1 011111111 : +127 10000000 : -128 11111111 : -1	
0x520				Contrast control, Gain level of the Luma signal is adjustable up to x2. MSB represents an integral number while the rest the decimal fraction.	0x4000AB02
0x530 0x540				000000000 = x1 $011111111 = x2$ $100000000 = x0$ $110000000 = x0.5$	/ 0xBD00BE00
0x550)1	11	contrast A 2 2 1 2 1	
	CONTRAST	[15:8]	R/W	х1	
	D			x0 0x80 0xFF 0x00 0x7F Register	
	HUE	[7:0]	R/W	Color HUE Control (360°/256) 00000000 : 0°	

◆ Registers to Control Chrominance

ADDRESS	NAME	ВІТ	ТҮРЕ	DESCRIPTION	VALUE
ADDRESS	IVAIVILE	DII	TIFE	DESCRII HON	(NTSC/PAL)
				Color Gain Control (Adjustable up to x2)	
	SATURATION	[31:24]	R/W	00000000 = x0 $10000000 = x1$	
				110000000 = x1.5 111111111 = x2	
0x524				U Gain Control (Adjustable up to x2)	
oacz:	U_GAIN	[23:16]	R/W	00000000 = x1 $011111111 = x2$	0x90000000
0x534				10000000 = x0 $11000000 = x0.5$,
				V Gain Control (Adjustable up to x2)	0.55000000
0x544	V_GAIN	[15:8]	R/W	00000000 = x1 $01111111 = x2$	0x7E000000
0.554				100000000 = x0 $110000000 = x0.5$	
0x554	U OFFSET	[7:4]	7:4] R/W	U/V OFFSET Control. (Adjustable up to ±7) U/V OFFSET consists of	
	U_OFFSE1	[7:4]		2's Complements.	
	V OFFSET	[3:0]	01 R/W	0001 : +1 0111 : +7	
	V_OITSE1	[5.0]	IX/ VV	1000 : -8 1111 : -1	

◆ Registers to Control Luminance and Video Timing

_					
ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE
					(NTSC/PAL)
	DED ON	[31]	1 R/W	Pedestal On/Off	
	PED_ON		K/ VV	0 : Off 1 : On	
				[27:26] : Peaking Filter control, Luma 3.5MHz frequency bandwidth	
				amplification	
	Y_FIR_MODE			00 : Bypass 01 : 2dB	
			R/W	10 : 3.5dB	
		[27:24]			
0x528				[25:24] : Low Pass Filter control	0x0A13A800
011020				00 : Bypass 01 : 4.2MHz	,
0x538				10 : 5.6MHz	/
0540	HSYNC_INV	[23]	R/W	Horizontal Sync Signal Control, To inverse a phase of hsync.	0x0B13C300
0x548		[]		7 2 7	
0x558	VSYNC_INV	[22]	R/W	Vertical Sync Signal Control, To inverse a phase of vsync.	
UASSO	ELD DIV	[21]	D/XX	First Circuit Control To income a character of First circuit	
	FLD_INV	[21]	R/W	Field Signal Control, To inverse a phase of field signal.	
	Y_DELAY	[20:16]	R/W	Y_DELAY Control, Controllable between 0 ~ 32.	
		/ 1	4	Register to determine the Horizontal start position of output image to	
	H_DELAY		R/W	Hsync extracted in analog input signal.	
				Register to determine the Vertical start position of output image to	
	V_DELAY [7]		R/W	Vsync extracted in analog input signal.	

DIGIWELL

◆ Registers to Control Video Timing

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
0x52C 0x53C	HBLK_END	[31:24]	R/W	Register to control Width of Horizontal Blanking, If user increments or decrements the value of this register, then the Active region is changed.	0x000A0000
0x54C 0x55C	VBLK_END	[23:16]	R/W	Register to control Width of Vertical Blanking, If user increments or decrements the value of this register, then the Active region is changed	0x000F0000
Commentation					

Confidential DIGIWELL

◆ Registers to Control Analog Clamp

ADDRESS	NAME	ВІТ	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
0x560	A_CMP_MODE1	[31:30]	R/W	Operation Mode1 of Analog Clamp 00 : Analog Clamp Off(NRT) 01 : Analog Clamp Test Mode 10 : Analog Clamp Test Mode 11 : Analog Clamp On(RT)	0xF080407C / 0xF080407C

◆ Registers to Control a Digital Front End

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
	D_CMP_FZ	R/W	1311	Digital Clamp On/Off Control 0 : Digital Clamp On	0x9F002040
0x564	D_DMP_SPD	R/W		Digital Clamp Speed Selection 00 : Fastest	0x9F002040
	D_AGC_FZ	R/W	[15]	Digital AGC On/Off Control 0 : Digital AGC On 1 : Digital AGC Off	

◆ Registers to Control a Digital Front End

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
	SLICE_VALUE	[23:16]	R/W	Sync generation level Control	0x8050380F
0x568	DFE_CORE_LVL	[15:12]	R/W	When the error value of the Digital AGC is smaller than DFE_CORE_LVL value, error value is transferred as "0". When it is larger than DFE_CORE_LVL value, the value deducting DFE_CORE_LVL from the error value is delivered	0x8050080F

◆ Registers to Control Chrominance

ADDRESS	DRESS NAME BIT TYPE D	DESCRIPTION	VALUE		
ADDRESS	NAME	DII	IIIE	DESCRIPTION	(NTSC/PAL)
	U_OFFSET2	[23:20]	R/W	U/V OFFSET2 Value is adjustable up to ±7. U/V OFFSET2 consists	0x80238804
0x570	V_OFFSET2	[19:16]		of 2's Complements	0x89238804

T nextchip

◆ Registers to Control Chrominance

ADDRESS	NAME	BIT	TYPE	DESCRIPTION	VALUE
ADDICESS	1(11)	DII		DESCRIPTION	(NTSC/PAL)
	FSC_LOCK_MODE	[23:20]	R/W	FSC error Tracing Mode 0xC : Normal (RT)	
0.554	FSC_LOCK_SPD	[19:16]	R/W	FSC Locking Speed Control 0x5 : Fast(NRT)	0x2ACCF02F
0x574	ACC_OFF	[7]	R/W	Continue to a constant gain value for chroma signal 0: On	0x2ACCF02F
	ACC_CORE_LVL	[5:4]	R/W	Adjust a coring level for ACC error 00:0 01:4	
	ACC_GAIN_SPD	[3:0]	R/W	10 : 8	_

◆ Registers	♦ Registers to Control No-video Detection and H/V Sharpness								
ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE				
	FLD_DET_MODE	[23:22]	R/W	Select the method to create the field information that will be external output 00: Middle 01: Slow 10: Fast 11: Fastest	(NTSC/PAL)				
	NOVID_DET_B	[19:16]	R/W	Select Condition for No video detection, High Active [19]: wpd_novideo [18]: If Vertical sync don't exist, turn on the NOVID signal [17]: If Width of detected sync is narrower than video standard, turn on the NOVID signal [16]: If the input video is not detected sync, turn on the NOVID					
0x578	NOVID_SPD	[15:8]	R/W	signal Novideo Sensitivity Control 0x00 → 0x3F : more insensitive 0x40 → 0xFF : Reserved	0x57431088 / 0x57431088				
	H_SHARPNESS	[7:4]	R/W	Select the H_SHARPNESS Value to calculate the Luma information. It consists of four bits in total. MSB represents an integral number while the rest the decimal fraction. 0000: 0 0100: x0.5 1111: x2					
	V_SHARPNESS	[3:0]	Ř/W	Select the V_SHARPNESS Value to calculate the Luma information. It consists of four bits in total. MSB represents an integral number while the rest the decimal fraction. 0000: 0					

◆ Registers to Control Chrominance

ADDRESS	NAME	ВІТ	TYPE	DESCRIPTION	VALUE (NTSC/PAL)
	PAL_CM_OFF	[31]	R/W	PAL Compensation On/Off 0 : PAL Compensation applied 1 : PAL Compensation no applied	
0x57C	IF_FIR_SEL	[30:28]	f R/W	IF Filter drive mode selected 000 : Bypass	0x82630100 / 0x01630100
	CLPF_SEL	[25:24]	R/W	Color low pass filter Selection for Demodulation 00: Bypass 01: 0.6MHz Cut Off 10: 1.0MHz Cut Off 11: 1.2MHz Cut Off	
	CTI_CORE	[23:22]	R/W	Adjust coring level for error element of CTI 00:0 01:3 10:6 11:9	
	CTI_GAIN	[21:20]	R/W	Adjust gain level for CTI 00 → 11 : more Larger gain	

◆ Registers to Control Output Data Range

ADDRESS	NAME	ВІТ	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
0x580	DATA_OUT_MODE	[3:0]	R/W	It limits a level of output data, can change signals of Cb and Cr 0000 : Y(16-235), Cb(16-240), Cr(16-240) 0001 : Y(1-254), Cb(1-254), Cr(1-254) 0010 : Y(0-255), Cb(0-255), Cr(0-255) 0011 : Cb/Cr Change, Y(16-235), Cb(16-240), Cr(16-240) 0100 : Cb/Cr Change, Y(1-254), Cb(1-254), Cr(1-254) 0101 : Cb/Cr Kill, Y(16-235) 0110 : Cb/Cr Kill, Y(1-254) 0101 : Cb/Cr Kill,	0x80000081 / 0x80000081

◆ Registers to Control Digital Front-End and White Peak Detection

ADDRESS	NAME	BIT	TYPE	DESCRIPTION	VALUE (NTSC/PAL)
0x58C	SLICE_MD	[23:16]		Slice Mode Selection 0x30 : Normal Mode(RT)	0x0030B801 / 0x0030D801

◆ Registers to Control White Peak Detection

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
0x590	WPD_ON	[15]	R/W	White Peak Detection Operation ON/OFF 0 : OFF	0x060611B9 / 0x060611B9

♦ Registers to Control Color Killer

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE
ADDRESS	IVAIVIE	DII		DESCRIPTION	(NTSC/PAL)
	V_LOC_SPD	[31:24]	R/W	V Tracing Speed Control 0x50: Normal (RT) 0x51: Fast (NRT)	
	CKILL4	[15:12]	R/W	[3] : Color kill mode 0 : Not Y/C separation 1 : Color kill after Y/C separation	
0x598	CKILL3	[11:8]	R/W	[2:0] : Color kill control 000 : Burst Amplitude 10% Under & FSC Unlock	0x5051B513
	CKILL2	[7:4]	R/W	001 : Burst Amplitude 5% Under & FSC Unlock 010 : Burst Amplitude 10% Under 011 : Burst Amplitude 5% Under	0x5051A813
	CKILL1	[3:0]	R/W	100, 101 : Always color on 110, 111 : Always color off	

◆ Registers to Control Video Analog Front End

ADDRESS	NAME	BIT	TYPE	DESCRIPTION	VALUE
ADDRESS	NAIVIE	DII	TIFE	DESCRIFTION	(NTSC/PAL)
	PD1	[15]	R/W		0xFF550000
0x5D4	PD2	[14]	R/W	Video ADC Power Down Mode	/
UX5D4	PD3	[13]	R/W	0 : Normal Operation 1 : Power Down Mode	/
	PD4	[12]	R/W		0xFF550000

◆ Registers	to Control Video Ana	log Fro	nt End	idential	
ADDRESS	NAME	ВІТ	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
	G_SEL1	[31:24]	R/W	Video PGA Gain Control	0x00000000
0500	G_SEL2	[23:16]	R/W	00111111 : Gain x1 (0dB)	/
0x5D8	G_SEL3	[15:8]	R/W	10101001 : Gain x2 (6dB)	'
	G_SEL4	[7:0]	R/W	11111110 : Gain x4 (12dB)	0x00000000

◆ Registers to Control Analog Clamp

ADDRESS NAME	NAME	ВІТ	TYPE DESCRIPTION		VALUE
ADDRESS	ADDRESS	D11 111	TIFE	DESCRIPTION	(NTSC/PAL)
				Operation Mode2 of Analog Clamp	0x00000000
0x5E0	0x5E0 A_CMP_MODE2	[31:00]		0x00000000 : Analog Clamp On (NRT)	/
				0xFFFFFFF : Analog Clamp Off (RT)	0x00000000

◆ Registers to Control Voice/Video ADC Sampling Clock

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
	A_ADC_CLK_SEL	[9]	R/W	Voice ADC Sampling Clock Inversion 0: 0° Phase 1: 180° Phase	0x00000300
0x5E8	V_ADC_CLK_SEL	[4]	R/W	Video ADC Sampling Clock Inversion 0: 0° Phase 1: 180° Phase	/ 0x00000300

♦ Registers to Control Video Scaler

ADDRESS	NAME	BIT	TYPE	DESCRIPTION	VALUE (NTSC/PAL)
0x610	BLK_PKG1			Data insertion in the section of H or V Blank.	0x80108010
0x614	BLK_PKG2	[31:0]	R/W	[31:24] : Cb [23:16] : Y1	/ / /
0x618	BLK_PKG3	[31.0]	NW	[15:8] : Cr	0x80108010
0x61C	BLK_PKG4			[7:0] : Y2	0x00100010

◆ Registers to Control Video Scaler

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
0x620 0x624	H_DELx	[27:24]	R/W	When input is 704 pixel, decider H start position(0~15)	0x00100000
0x628 0x62C	H_DTO_x	[20:0]	R/W	For Horizontal Direction, decide Ratio of Scale. NTSC/PAL: H scale = (H_DTO_x / 0x00_10_00_00) x 720	0x00100000

◆ Registers to Control Video Scaler

ADDRESS NAME		BIT	TYPE	DESCRIPTION	VALUE
ADDRESS	IVANIE	DII		DESCRIPTION	(NTSC/PAL)
0x630				Change data of the V or H Blank section. Existing 0x80, 0x10, 0x80	
UAUSU	BLK OPERx	[24]	R/W	and 0x10 stream is changed to BLK_PKG register value as below.	
0x634	BER_OI ERA	[24]	.+j K/ W	0 : Existing 0x80, 0x10 data stream	0x00100000
UAUS-T				1 : Change to BLK_PKGx (0x610~0x61C register) value.	1
0x638				For Vertical Direction, decide to V Scaled size.	0x00100000
	V_DTO_x	[20:0]	R/W	NTSC: V Scaled size = (V_DTO / 0x00100000) x 240	0.00100000
0x63C				PAL : V Scaled size = (-V_DTO / 0x00100000) x 288	

◆ Registers to Control Video Scaler

ADDRESS	NAME	BIT	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
	UP_4	[31]			
	UP_3	[30]		According to only 720 pixel input, stretch the display size to 720-size.	
	UP_2	[29]		0 : No Expand 1 : Expand	
	UP_1	[28]			
	IDON_4	[27]			
	IDON_3	[26]	T	Decide if CH ID is inserted or not	
	IDON_2	[25]	<u>,</u> .	0 : No Channel ID Insertion 1 : Channel ID Insertion	
	IDON_1	[24]			
	SYNC_ORG_4	[23]			n
	SYNC_ORG_3	[22]		Decide H blank length between standard and variable one based on scale ratio.	
	SYNC_ORG_2	[21]	7	0 : Changed by a scale ratio. 1 : No changed by a scale ratio	
	SYNC_ORG_1	[20]			
	SCALE_SEL_4	[19]		L V V L / L . / L . /	0x000FFF00
0x640	SCALE_SEL_3	[18]	R/W	Decide output between scale data and non-scale data which is same as bypass	0x000FFF00
0.20.10	SCALE_SEL_2	[17]		0 : bypass an input data. 1 : output a scaled data	
	SCALE_SEL_1	[16]			
	H_BYPS_4	[15]		According to H direction, decide if it is treated as cubic convolution or bypass. 0: Cubic Convolution 1: Bypass	
	H_BYPS_3	[14]			a
	H_BYPS_2	[13]	_		
	H_BYPS_1	[12]	-		
	V_BYPS_4	[11]	_	According to V direction decide if it is treated as public convolution	
	V_BYPS_3	[10]	_	According to V direction, decide if it is treated as cubic convolution or bypass	
	V_BYPS_2	[9]		0 : Cubic Convolution 1 : Bypass	
	V_BYPS_1	[8]			
	SUB_SAM_4	[3]	-	When you scale under 0.5, select between average method and	
	SUB_SAM_3	[2]		sampling one which is extracting one by one. (But when you scale 0.5~1, set it only sampling(1))	
	SUB_SAM_2	[1]	-	(But when you scale 0.5~1, set it only sampling(1)) 0: Average	
	SUB_SAM_1	[0]			

DIGIWELL

◆ Registers to Control Voice Decoder

ADDRESS	NAME	BIT	TYPE	DESCRIPTION	(NTSC/PAL)
0x6A8	ADET_FILT ADET_MODE EN_RESET ADET_1 ADET_2 ADET_3 ADET 4	[18:16] [15] [14] [7] [6] [5] [4]	R/W	Set the time to decide the existence of AIN1-4 voice signals. 0:16 sec. 1:15 sec. 2:9 sec. 3:5 sec. 4:3 sec. 5:1 sec. 6:0.6 sec. 7:0.5 sec. Select the method to decide the existence of AIN1-4 voice signals. 0:Absolute amplitude detection mode 1:Differential amplitude detection mode Initialize to voice processing (High Active) Enable bit voice signal existence checking function for AIN1-4. 0:Don't use this function 1: Use this function	0x000010F0

♦ Registers to Control Voice Decoder									
ADDRESS NAME BIT TYPE		DESCRIPTION	VALUE (NTSC/PAL)						
	ADET_TH_1	[31:28]			,				
064.0	ADET_TH_2	[27:24]	рду.	Set the threshold value for voice signal existence of AIN1-4	0				
0x6AC	ADET_TH_3	[23:20]	R/W		0xAAAA0000				
	ADET_TH_4	[19:16]							

◆ Registers to Control Voice Input Gain

ADDRESS	NAME	ВІТ	ТҮРЕ	DESCRIPTION	VALUE (NTSC/PAL)
	AIGAIN_1	[31:28]		Control the gain of analog voice input AIN1 ~ 8 0: Mute	
0x6B4	AIGAIN_2	[27:24]	14.	2 : 0.31 4 : 0.5 5 : 0.63	0x88880000
	AIGAIN_3	[23:20]			0x88880000
	AIGAIN_4	[19:16]		12 : 2.0	

DIGIWELL

7. Electrical characteristics

7.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit
1.8V Digital Power Supply Voltage	V _{POWER1}	1.65	1.8	1.95	V
1.8V Analog Power Supply Voltage	V _{DDA1}	1.65	1.8	1.95	V
3.3V Digital Power Supply Voltage	V _{POWER2}	3.0	3.3	-3.6-	V
Voltage on Any 1.8V input pins	V _{PIN1}	1.65	1.8	1.95	V
Voltage on Any 3.3V input pins	V_{PIN2}	3.0	3.3	3.6	V
Voltage on Any 5V input pins	V _{PIN5}	4.5	5	5.5	V
Storage Temperature	Vs	-40	-	125	$^{\circ}$
Junction Temperature	V _J	-40		125	T °C
Vapor phase soldering (15 Sec)	V _{VSOL}	-/		220	°

7.2 Recommended Operating Condition

Parameter	Symbol	Min	Тур	Max	Unit
1.8V Digital Power Supply Voltage	V _{POWER1}	1.65	1.8	1.95	V
1.8V Analog Power Supply Voltage	V_{DDA1}	1.65	1.8	1.95	V
3.3V Digital Power Supply Voltage	V _{POWER2}	3.0	3.3	3.6	V
Ambient operating temperature	V _A	-10	-	80	°C

7.3 DC Characteristics 1 f 1 d 1 f 1							
Parameter	Symbol	Min	Тур	Max	Unit		
Input Low Voltage	V _{IL}	VSSI-0.3	-	0.3V _{POWER}	V		
Input High Voltage	V _{IH}	0.7V _{POWER}	-	V _{POWER} +0.3	V		
Input Low Current (V _{IN} = VSS)	I _{IL}			-10	uA		
Input High Current (VIN = V _{POWER})	I _{IH}	-/		10	uA		
Input Capacitance (f = 1Mhz, V_{IN} = 2.4V)	C _{IN}	-		10	pF		
Output Low Voltage ($I_{OL} = 8.0 \text{mA}$)	V _{OL}	-	-	0.4	V		
Output High Voltage (I _{OH} = 11.9mA)	V _{OH}	2.4	-	V _{POWER}	V		
Three-State Output Leakage Current	I _{OZ}	-	-	±10	uA		
Output Capacitance	C _{OUT}	-	-	10	pF		

7.4 AC Characteristics

Parameter	Symbol	Min	Тур	Max	Unit		
Power Supply Current							
1.8V Supply Current	I _{DD1}	-	TBD	-	mA		
3.3V Supply Current	I_{DD2}	1	TBD	T- 1	mA		
	PCI Clock						
PCI_CLK frequency	f _{CLK33}		33.0		MHz		
PCI_CLK duty cycle	f _{DUTY}	45	-	55	%		
PCI_CLK pulse width low	t _{PWL_CLK54}	15.0	-	-	nsec		
PCI_CLK pulse width high	t _{PWH_CLK54}	15.0			nsec		
SYSTEM Clock							
SYS_CLK frequency	f _{CLK27}	V.V	27.0	-,	MHz		
SYS_CLK duty cycle	$\mathbf{f}_{ ext{DUTY}}$	45		55	%		
SYS_CLK pulse width low	t _{PWL_CLK54}	18.0	-	-	nsec		
SYS_CLK pulse width high	t _{PWH_CLK54}	18.0	-	-	nsec		
Host Interface Pins							
P_SCL frequency	f _{SCL}	-	-	6	PCI_CLK		
P_SCL minimum pulse width low	t _{PWL_SCL}	6	-	-	PCI_CLK		
P_SCL minimum pulse width high	t _{PWH_SCL}	4	-	-	PCI_CLK		
P_SCL to P_SDA setup time	t _{IS_SDA}	2	-	-	PCI_CLK		
P_SCL to P_SDA hold time	t _{IH_SDA}	2	-	-	PCI_CLK		
P_SCL to P_SDA delay time	t _{OD_SDA}	1	-	6	PCI_CLK		
P_SCL to P_SDA hold time	t _{OH_SDA}	3	110	1-1	PCI_CLK		
CUII	LI	Ut			aI		

DIGIWELL

8. System Application

8.1 Recommended NTSC Register

]	, ppppgg	NTSC		, DDDDEGG	N. T. C.
ADDRESS	NTSC		ADDRESS	RT NRT	i L	ADDRESS	NTSC
0x100	by cpu		0x500	read only	1 L	0x610	0x80108010
0x104	by cpu		0x504	read only		0x614	0x80108010
0x108	by cpu		0x508	read only		0x618	0x80108010
0x120	by cpu		0x50C	read only		0x61C	0x80108010
0x124	by cpu		0x510	read only		0x620	0x00100000
0x128	by cpu		0x514	read only		0x624	0x00100000
0x140	by cpu		0x518	read only	i i	0x628	0x00100000
0x144	by cpu		0x51C	read only	1 [0x62C	0x00100000
0x148	by cpu		0x520	0x4000AB02	i r	0x630	0x00100000
0x160	by cpu		0x524	0x90000000	i i	0x634	0x00100000
0x164	by cpu		0x528	0x0A13A800		0x638	0x00100000
0x168	by cpu		0x52C	0x000A0000		0x63C	0x00100000
0x190	0x0002C001	1	0x52C	0x4000AB02	/ L	0x640	0x000FFF00
0x194	0x0002C000		0x534	0x90000000		0x644	0xFFFFFFB1
0x194	0x0002C000		0x534 0x538	0x0A13A800	1 1 1	0x64C	0x00003333
0x196	0x0002C000		0x536 0x53C	0x000A0000		0x650	0x88880009
0x19C	0x0002C000	-	0x540	0x4000A0000 0x4000AB02	 	0x654	0x80808080
		1	0x540 0x544		 	0x658	0x49494949
0x1A4	0x002080AD 0x00000000	-		0x90000000	 	0x65C	0x49494949 0x37373737
0x1A8		-	0x548	0x0A13A800		0x65C	0x3/3/3/3/ 0x7B7B7B7B
0x1AC	0x00000000		0x54C	0x000A0000	+ +		
0x1B0	0x00000000		0x550	0x4000AB02		0x664	0x58585858
0x1B4	0x00000000		0x554	0x90000000		0x668	0x08080808
0x1B8	0x00000000		0x558	0x0A13A800		0x66C	0x00550000
0x1BC	0x00000000		0x55C	0x000A0000		0x670	0x000000F0
0x1C0	0x00014A00		0x560	0xF080407C 0x0080407C		0x674	0x00000000
0x1C4	0x00014A00		0x564	0x9F002040 0x1C00A040		0x678	0x11111111
0x1C8	0x00014A00		0x568	0x8050380F 0x8042380F]	0x67C	0x00000000
0x1CC	0x00014A00		0x56C	0x0C01150A		0x680	0x00000000
0x1D0	0x0000000F		0x570	0x80238804		0x684	0x00000000
0x1D4	0x00000055		0x574	0x2ACCF02F 0x2AD5F0AF		0x688	0x80000000
0x1D8	read only		0x578	0x57431088 0x57833F80		0x68C	0x13131313
0x1F4	0x00000001	`	0x57C	0x82630100 0x82530100		0x690	0x03030303
0x1F8	read only		0x580	0x80000001		0x694	0x22222222
	NTSC		0x584	0x01000000	. I	0x698	0x00000000
ADDRESS	NISC		0x58C	0x0030B801 0x0032B801		0x69C	0x51B551B5
0.200		-	0x590	0x060611B9	1 1	0x6A0	0x51B551B5
0x200	by cpu	1	0x594	0xB2050028	1 1	0x6A4	0x69780303
0x204	by cpu	1	0x598	0x50003333 51003333	1	0x6A8	0x000010FF
0x210	0x00003E80	1	0x5A0	0x00000000	i i	0x6AC	0xAAAA0000
0x218	0x00200000	1	0x5A4	0x76543210	† F	0x6B0	0x02000200
0x220	0x00000001		0x5A8	0xFEDCBA98		0x6B4	0x88880000
0x224	0x00000003	1 /	0x5AC	0x76543210	/	0x6C0	0x00000000
0x228	read only		0x5AC 0x5B0	0x76343210 0xFEDCBA98		0x6C4	0x00000000
0x240	0x00000000		0x5B0	0x00000000		0x6C8	0x00000000
0x264	0x00000001		0x5B4 0x5B8	0x00000000 0x000000000		0x6CC	0x00000000
0x268	real only		0x5B8 0x5BC	read only	 	0x6D0	0x00000000
0x270	by gpio				 	0x6D0	0x00000000
0x274	by gpio		0x5C0	read only	 		0x00000000
0x278	by gpio	1	0x5C4	read only	ļ -	0x6D8	
	, , ,,		0x5D0	0x05330000		0x6DC	0x00000000
			0x5D4	0xFF550000		0x6E0	0x00000000
			0x5D8	0x45454545	ļ L	0x6E4	0x00000000
			0x5DC	0xFFAAAA55			
			0x5E0	0xFFFF0000 0x00000000			
			0x5E4	0x0F0F0F0F			
			0.500	0v00000200	I		

0x00000300

0x5E8

8.2 Recommended PAL Register

ADDDEGG	DAY	1		D.	A T	Ì	ADDRESS	DAI	1
ADDRESS	PAL		ADDRESS	PAL			0x610	PAL 0x80108010	4
0x100 0x104	by cpu		0x500		RT NRT		0x614	0x80108010	1
0x104 0x108	by cpu		0x504	read only			0x618	0x80108010	1
	by cpu		0x504 0x508	read only read only			0x61C	0x80108010	1
0x120	by cpu		0x50C	read only			0x620	0x00100010	1
0x124	by cpu		0x50C		only		0x624	0x00100000	1
0x128	by cpu		0x510				0x624 0x628	0x00100000	4
0x140	by cpu	'	0x514 0x518	_	only				-
0x144	by cpu		0x518		only		0x62C	0x00100000 0x00100000	-
0x148	by cpu	, (only		0x630		-
0x160	by cpu		0x520		00BE00		0x634	0x00100000	-
0x164	by cpu		0x524		000000		0x638	0x00100000	-
0x168	by cpu		0x528		3C300		0x63C	0x00100000	-
0x190	0x0002C001		0x52C		F0000		0x640	0x000FFF00	-
0x194	0x0002C000		0x530		00BE00		0x644	0xFFFFFB1	4
0x198	0x0002C000		0x534		000000		0x64C	0x00003333	4
0x19C	0x0002C000		0x538		3C300		0x650	0x88880009	4
0x1A0	0x00008000		0x53C		F0000		0x654	0x80808080	-
0x1A4	0x002080AD		0x540		00BE00		0x658	0x49494949	1
0x1A8	0x00000000		0x544		000000		0x65C	0x37373737	1
0x1AC	0x00000000		0x548		3C300		0x660	0x7B7B7B7B	
0x1B0	0x00000000		0x54C	0x000	F0000		0x664	0x46464646	
0x1B4	0x00000000		0x550	0xBD0	00BE00		0x668	0x08080808	
0x1B8	0x00000000		0x554	0x7E0	000000		0x66C	0x00550000	
0x1BC	0x00000000		0x558	0x0B1	3C300		0x670	0x000000F0	
0x1C0	0x00018C00		0x55C	0x000	F0000		0x674	0x00000000	
0x1C4	0x00018C00		0x560	0xF080407C	0x0040807C		0x678	0x11111111	
0x1C8	0x00018C00		0x564	0x9F002040	0x1C00A040		0x67C	0x00000000	
0x1CC	0x00018C00		0x568	0x8050080F	0x8042080F		0x680	0x00000000	
0x1D0	0x0000000F		0x56C	0x0C0	1150A		0x684	0x00000000	
0x1D4	0x00000055		0x570	0x892	38804		0x688	0x80000000	1
0x1D8	read only		0x574	0x2ACCF02F	0x2AD5F0AF		0x68C	0x13131313	1
0x1F4	0x00000001		0x578	0x57431088	0x57833F80		0x690	0x03030303	1
0x1F8	read only		0x57C	0x01630100	0x01530100		0x694	0x22222222	1
ADDDEGG	DAY	1	0x580	0x800	000081		0x698	0x00000000	1
ADDRESS	PAL		0x584	0x010	000000		0x69C	0x51B551B5	1
0x200	by cpu		0x58C	0x0030B801	0x0032B801		0x6A0	0x51B551B5	
0x204	by cpu	` _	0x590	0x060	611B9		0x6A4	0x69780000	1
0x210	0x00003E80		0x594	0xB20	050028		0x6A8	0x000010FF	1
0x218	0x00200000	/	0x598	0x50003333	0x51003333		0x6AC	0xAAAA0000	1
0x220	0x00000001		0x5A0	0x000	000000		0x6B0	0x02000200	-
0x224	0x00000003		0x5A4		43210		0x6B4	0x88880000	1
0x228	read only		0x5A8	0xFED	CBA98		0x6C0	0x00000000	1
0x240	0x00000000		0x5AC		i43210		0x6C4	0x00000000	1
0x264	0x00000001		0x5B0		CBA98		0x6C8	0x00000000	1
0x268	read only		0x5B4		000000		0x6CC	0x00000000	1
0x270	by gpio		0x5B8		000000		0x6D0	0x00000000	1
0x274	by gpio		0x5BC	_	only		0x6D4	0x00000000	1
0x278	by gpio		0x5C0	read			0x6D8	0x00000000	1
			0x5C4		only		0x6DC	0x0000000	1
			0x5D0		30000		0x6E0	0x00000000	1
			0x5D4		550000		0x6E4	0x00000000	1
			0x5D4 0x5D8		54545		UNULT	0.40000000	T
			0x5DC						
			0x5E0	0xFFAAAA55 0xFFFF0000 0x00000000					
			0x5E0	0x0F0F0F0F					
			0x5E4 0x5E8	0x0F0F0F0F 0x00000300					
			UAJEO	UXUUU	00300	l			

48/51

8.3 Circuit Configuration

Preliminary Data sheet 2009.12.09 (REV 1.0)

8.3.1 4channel Real Time / 16channel Non-Real Time Mode

Preliminary Data sheet 2009.12.09 (REV 1.0)

49/51

8.4 Package Information

Dimensions in milimeters

9. Revision History

REV	Date	Description
Preliminary 0.1	2009.09.01.	· Generated
		· Modified 2.9 Scale Ratio numerical formula & Table 2.3
		· Modified and Supplemented Register (Relate to NRT Operation)
Preliminary 1.0	2009.12.09.	5. Register Map ,
		Register Descriptions , Recommended Register Values
	010	t1001110
		Huchtal

10. Contact Information

- -. www.nextchip.com
- -. sales@nextchip.com (82-2-3460-4702), Gideon Park.

Confidential DIGIWELL