Schweihs_8_r_3 Maggie Schweihs

10/29/2016

3. Sentence Length v. Word Length

Investigate whether sentences with more words tend to contain longer words.

3.a: Load the data set into R and make a scatterplot of mean length of words versus number of words per sentence.

```
pride <- read.csv("~/Documents/Code/DS710/ds710fall2016assignment7/pride.csv", header = TRUE)
attach(pride)
plot(mean_word_length ~ word_count, type = "p", lwd = .4, main = "Scatterplot: Mean Word Length vs. Word</pre>
```

Scatterplot: Mean Word Length vs. Word Count

Linear Regression make sense here?

Looking at the scatterplot of mean length of words versus number of words per sentence, the data appears to have a polynomial relationship, due to one or more noticable humps on the graph. Linear regressions **would not** be appropriate here.

3.b: Trial and Error

For lack of a better method, I tried various combinations of variables and transformations of variables: logarithmic transformation, quadratic functions, cubic functions, and combinations therein. Below is a subset of that trial and error. Along the way I did **Not** wind up with anything appearing to be linear.

```
# For Lack of knowledge of a statistical tool to measure and compare
# relationships between variables, I resorted to good ole trial and error

#Initializing some variables to store the functions and transformations
pride_cubic_length <- (mean_word_length + (mean_word_length)^3 + (mean_word_length)^2)
pride_cubic_count <- (word_count + (word_count)^3 + (word_count)^2)
pride_quad_count <- (word_count + (word_count)^2)
pride_quart_length <- ((mean_word_length)^4 + (mean_word_length)^3 + (mean_word_length)^2 + mean_word_length)
pride_quad_length <- (mean_word_length + (mean_word_length)^2)
log_length <- log(mean_word_length)
log_count <- log(word_count)
#plot some Combinations
plot(mean_word_length^pride_quad_count, main = "Mean Word Length versus Word Count(Quadratic)" )</pre>
```

Mean Word Length versus Word Count(Quadratic)

Mean Word Length (Log) versus Word Count

Neither one of the above transformations yielded a plot appropriate for linear regression

3.c: c. Test whether sentences with more words tend to contain longer words. State your conclusion in context. I'm going to test the relationship between mean_word_length and the quadratic word count function.

```
H_0: Longer sentences do not typically have longer words in Pride and Prejudice. mu = 0
```

H_1: Longer sentences do have longer words in Pride and Prejudice. mu != 0

Test using the significance test for linear regression.

```
pride.lm <- lm(mean_word_length~pride_quad_count)</pre>
pride.lm
##
## lm(formula = mean_word_length ~ pride_quad_count)
##
##
  Coefficients:
##
        (Intercept)
                      pride_quad_count
##
          19.989871
                              0.006961
summary(pride.lm)
##
## lm(formula = mean_word_length ~ pride_quad_count)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
## -21.120 -12.114 -4.204
                              7.773 155.797
```

```
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
  (Intercept)
                    19.989871
                                0.542086
                                           36.876
##
                                                    <2e-16 ***
##
  pride_quad_count
                     0.006961
                                0.019160
                                            0.363
                                                     0.716
##
                        **' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 16.29 on 6199 degrees of freedom
## Multiple R-squared: 2.129e-05, Adjusted R-squared:
## F-statistic: 0.132 on 1 and 6199 DF, p-value: 0.7164
```

The p-value for the test is p=0.7164, so we **cannot** reject the null hypothesis. There is not significant evidence here to suggest a relationship between mean word length and the number of words in a sentence.

3.d: Add a line to my scatterplot representing the regression model.

```
plot(mean_word_length~pride_quad_count, main = "Mean Word Length versus Word Count(Quadratic)" )
abline(lm(mean_word_length~pride_quad_count), col = "red", cex =1)
legend("topright", c("Linear Regression Model"), col = "red", pch = 21)
```

Mean Word Length versus Word Count(Quadratic)

The slope of the linear regression line is roughly 0.007 and is shown to be non-significant. We can see this by observe the graph, as well. The slope of the line is nearly zero, which reaffirms the result of the significance test: we did not show a linear relationship between the variables with this model. Recommendation: ecplore non-linear models.

3.e: Examine the residual diagnostic plots, and explain what they tell us in this case.

```
par( mfrow = c( 2, 2 ) )
plot(pride.lm)
```


By looking at the Residuals versus Fitted plot, we reaffirm the intuition that some affects of the dependent variable are not being taken into account by our model. The Normal Q-Q plot suggests that our data is right-skewed and possibly bi-modal.