

SMMS Series Ultra-high current SMT power inductors

◆特征:

- 低直流电阻和超大电流的薄型设计
- 磁屏蔽型抗电磁干扰强适用于高密度安装
- 高可靠性、通过采用一体成型结构享有卓越 的抗震动性
- 由于复合结构, 超低蜂鸣噪声
- 低损耗合金粉末压铸低阻抗, 小寄生电容
- 能效高,可减少绕线的低直流电阻与磁芯的 涡流损耗
- 频率高达 3MHz
- 绝缘最大电压 30VDC
- 符合 RollS 无卤和 REACH

◆用途:

- PDA,笔记本,台式机,服务器应用程序
- 大电流 POL 转换器
- 电池供电设备
- 分布式电源系统中的 DC/DC 转换器

◆环境:

工作温度: -40℃ 至+125℃
 (包括线圈自身温升)

◆试验设备:

- 电感值: WK3260B 或同等仪器
- 申流: WK3260B+WK3265B
- 直流电阻: Chroma 16502 或同等仪器

◆产品型号:

①	
1	51
	类型 Type
III	成型贴片功率电感
SMMS	Molding SMT Power Inductor

Features:

- Low RDC and ultra-high current thin design
- Magnetic shielding type, strong anti- electromagnetic
 Interference, suitable for high- density installation
- High-reliability, High vibration resistance as result of newly developed integral construction
- Ultra Low buzz noise due to composite construction
- Die-casting by low loss alloy powder low impedance,
 Small parasitic capacitance
- High efficiency Low DC resistance of winding and low eddy-current loss of the core
- Frequency up to 3MHz
- Absolute maximum voltage 30VDC
- RoHS, Halogen Free and REACH Compliance

Applications:

- PDA, notebook, desktop, server applications
- High current POL converters
- Battery powered devices
- DC/DC converters in distributed power systems

Environmental Data:

Operating Temperature: -40°C to +125°C
 (Including coils self-temperature rise)

Test Equipment:

- L: WK3260B LCR meter or equivalent
- Isat & Irms: WK3260B+WK3265B
- DCR:Chroma 16502 or equivalent

Product Identification:

	2 5	
	外形尺寸(L:	×W×H) (mm)
	External Dimer	nsions (L×W×H)
	(m	nm)
1	0420	4.6×4.2×2.0
		~

100

Inductance
10 uH

4

公差 Inductance Tolerance

J:±5%,K: ±10%, L: ±15% M: ±20%,P: ±25%, N: ±30%

(5
	包装 Packing	
В	散装Bulk Package	
TF	编带Tape & Reel	

◆外观尺寸:

Shape and Dimensions (dimensions are in mm):

Land Pattern

Part No				ITEM	.1			
I all typ	А	В	С	D	E	F	G	Н
SMMS0420	4.60±0.30	4.20±0.20	2.00Max	1.50Typ	0.80 Typ	2.20	5.20	2.50
SMMS0520	5.50±0.30	5.20±0.20	2.00Max	2.30 Typ	1.20 Typ	3.00	7.00	2.50
SMMS0530	5.50±0.30	5.20±0.20	3.00Max	2.30 Typ	1.20 Typ	3.00	7.00	2.50
SMMS0624	7.10±0.30	6.60±0.20	2.40Max	3.00 Typ	1.60 Typ	3.70	8.40	3.50
SMMS0630	7.10±0.30	6.60±0.20	3.00Max	3.00 Typ	1.60 Typ	3.70	8.40	3.50
SMMS0650	7.10±0.30	6.60±0.20	5.00Max	3.00 Typ	1.60 Typ	3.70	8.40	3.50
SMMS1040	11.50 Max	10.00±0.30	4.00Max	3.00 Typ	2.00 Typ	4.10	13.60	5.40
SMMS1050	11.50 Max	10.00±0.30	5.00Max	3.00 Typ	2.00 Typ	5.40	13.60	4.10
SMMS1350	13.80±0.50	12.60±0.20	5.50Max	3.70 Typ	2.50 Typ	8.00	14.60	5.00
SMMS1360	13.80±0.50	12.60±0.20	6.50Max	3.70 Typ	2.50 Typ	8.00	14.60	5.00
	SXN-IIII	NP.	Š				SKN-II	
X	9			,		X,	7	

◆规格特性:

Specifications:

• SMMS0420 Series Electrical Characteristics (Electrical specifications at 25℃)

D. AN.	Inductance 100KHz 1.0V		DCR	(mΩ)	Saturation Current	Temperature Rise Current
Part No	L(μH) '@0A	Tol	Typical 🚽	Max	(A) Typical	(A) Typical
SMMS0420-R10M	0.10	±20%	3.50	4.00	25.00	13.00
SMMS0420-R22M	0.22	±20%	6.00	6.60	13.00	9.50
SMMS0420-R33M	0.33	±20%	8.00	10.00	11.00	7.00
SMMS0420-R47M	0.47	±20%	12.00	14.00	9.50	8.00
SMMS0420-R56M	0.56	±20%	14.00	16.00	9.00	7.00
SMMS0420-R68M	0.68	±20%	18.00	21.00	9.00	7.00
SMMS0420-1R0M	1.00	±20%	24.00	27.00	7.00	6.00
SMMS0420-1R2M	1.20	±20%	25.00	27.00	6.00	5.50
SMMS0420-1R5M	1.50	±20%	40.00	46.00	6.00	5.50
SMMS0420-2R2M	2.20	±20%	52.00	58.00	5.00	4.50
SMMS0420-3R3M	3.30	±20%	70.00	87.00	4.00	3.50
SMMS0420-4R7M	4.70	±20%	105.00	126.00	3.00	2.80
SMMS0420-6R8M	6.80	±20%	120.00	135.00	2.50	2.40
SMMS0420-100M	10.00	±20%	220.00	258.00	2.00	1.60

• Saturation current VS temperature rise current curve

SMMS0420-R10M

SMMS0420-R22M

SMMS0420-R33M

SMMS0420-R47M

SMMS0420-R56M

SMMS0420-R68M

SMMS0420-1R0M

SMMS0420-1R2M

SMMS0420-1R5M

SMMS0420-2R2M

SMMS0420-3R3M

SMMS0420-4R7M

SKN-IIII:Filit

SMMS0420-6R8M

SMMS0420-100M

SKN-IIII Filit

SXV-IIII FAIT THE SWIIIFFIITE

SXN-IIII Filit SXV-IIII 菲斯诺

SKN-IIII: jiji iži

• SMMS0520 Series Electrical Characteristics (Electrical specifications at 25 °C)

Part No	Inductance 100KHz 1.0V		DCR	(mΩ)	Saturation Current	Temperature Rise Current
- untito	L(µH) '@0A	Tol	Typical	Max	(A) Typical	(A) Typical
SMMS0520-R10M	0.10	±20%	2.70	2.90	25.00	21.00
SMMS0520-R22M	0.22	±20%	4.10	4.50	18.50	14.50
SMMS0520-R33M	0.33	±20%	5.50	5.90	17.00	13.00
SMMS0520-R47M	0.47	±20%	7.80	9.00	15.50	11.50
SMMS0520-1R0M	1.00	±20%	16.80	18.00	9.00	8.50
SMMS0520-1R5M	1.50	±20%	30.00	35.00	8.00	7.50
SMMS0520-2R2M	2.20	±20%	34.90	37.70	6.50	5.50
SMMS0520-3R3M	3.30	±20%	58.50	68.00	5.00	4.50
SMMS0520-4R7M	4.70	±20%	75.30	81.30	4.00	3.50
SMMS0520-5R6M	5.60	±20%	85.20	92.00	3.60	3.00
SMMS0520-6R8M	6.80	±20%	114.00	121.00	3.40	2.80
SMMS0520-100M	10.00	±20%	200.00	220.00	3.00	2.50

• Saturation current VS temperature rise current curve

SMMS0520-R10M

SMMS0520-R22M

SMMS0520-R33M

SMMS0520-R47M

SMMS0520-1R0M

SMMS0520-1R5M

SMMS0520-2R2M

SMMS0520-3R3M

SMMS0520-4R7M

SMMS0520-5R6M

SMMS0520-6R8M

SMMS0520-100M

SMMS0530 Series Electrical Characteristics (Electrical specifications at 25℃)

			.)'	`				
	Part No	Inductance 100KHz 1.0V		DCR	DCR (mΩ)		Temperature Rise Current	
		L(µH) '@0A	Tol	Typical	Max	(A) Typical	(A) Typical	
	SMMS0530-R22M	0.22	±20%	3.50	3.90	15.00	14.00	
	SMMS0530-R33M	0.33	±20%	3.70	4.00	14.00	11.00	
_	SMMS0530-R47M	0.47	±20%	7.40	8.50	14.00	11.00	
	SMMS0530-R68M	0.68	±20%	11.00	12.00	12.00	9.00	
	SMMS0530-1R0M	1.00	±20%	12.00	15.00	10.00	9.00	
	SMMS0530-1R2M	1.20	±20%	15.00	16.00	11.00	9.00	
_	SMMS0530-1R5M	1.50	±20%	20.00	25.00	9.00	7.50	
	SMMS0530-2R2M	2.20	±20%	31.00	35.00	7.00	6.50	
	SMMS0530-3R3M	3.30	±20%	35.00	46.00	6.00	5.00	
_	SMMS0530-4R7M	4.70	±20%	50.00	60.00	5.00	4.50	
	SMMS0530-6R8M	6.80	±20%	102.00	110.00	4.00	3.50	
	SMMS0530-100M	10.00	±20%	110.00	125.00	3.50	3.20	
	SMMS0530-150M	15.00	±20%	175.00	215.00	2.50	2.20	
٠_	SMMS0530-220M	22.00	±20%	320.00	394.80	2.00	1.80	

Saturation current VS temperature rise current curve

SMMS0530-R33M

SMMS0530-R47M

SMMS0530-R68M

SMMS0530-1R0M

SMMS0530-1R2M

SMMS0530-1R5M

SMMS0530-2R2M

SMMS0530-3R3M

SMMS0530-4R7M

SMMS0530-6R8M

SMMS0530-100M

• SMMS0624 Series Electrical Characteristics (Electrical specifications at 25 °C)

	Induct 100KH	,	DCR	(mΩ)	Saturation Current	Temperature Rise Current
Part No	L(μH) '@0A	Tol	Typical	Max	(A) Typical	(A) Typical
SMMS0624-R22M	0.22	±20%	2.90	3.20	34.00	21.00
SMMS0624-R33M	0.33	±20%	3.70	4.10	22.00	18.00
SMMS0624-R47M	0.47	±20%	6.00	6.50	21.00	13.50
SMMS0624-R68M	0.68	±20%	8.70	9.40	18.00	11.00
SMMS0624-R82M	0.82	±20%	10.60	11.80	17.00	10.00
SMMS0624-1R0M	1.00	±20%	13.00	14.20	16.00	9.00
SMMS0624-1R5M	1.50	±20%	18.50	21.20	15.00	7.50
SMMS0624-2R2M	2.20	±20%	28.00	34.00	14.00	6.50
SMMS0624-3R3M	3.30	±20%	36.50	51.60	13.00	5.00
SMMS0624-4R7M	4.70	±20%	45.00	63.00	9.00	4.50
SMMS0624-5R6M	5.60	±20%	66.00	73.00	8.00	4.00
SMMS0624-6R8M	6.80	±20%	72.50	95.00	7.00	3.60
SMMS0624-8R2M	8.20	±20%	84.00	106.00	6.50	3.00
SMMS0624-100M	10.00	±20%	116.00	129.00	6.00	2.50

Saturation current VS temperature rise current curve

SMMS0624-R22M

SMMS0624-R33M

SMMS0624-R47M

SMMS0624-R68M

SMMS0624-R82M

SMMS0624-1R0M

SMMS0624-1R5M

SMMS0624-2R2M

SMMS0624-3R3M

SMMS0624-4R7M

SMMS0624-5R6M

SMMS0624-6R8M

SMMS0624-8R2M

SMIIIFAITE

SMMS0624-100M

00 0.0 1.8 2.6 3.9 5.2 6.5 Idc(A)

SKN-IIII jiji ili

SXV-IIII Filliff

SXM-IIII Filit

SXM-IIII.Fillit

SXN-IIIIIIIIIIIII

• SMMS0630 Series Electrical Characteristics (Electrical specifications at 25 °C)

Part No	Inductance 100KHz 1.0V		DCR (mΩ)		Saturation Current	Temperature Rise Current	
r ait ivo	L(μH) '@0A	Tol	Typical	Max	(A) Typical	(A) Typical	
SMMS0630-R10M	0.10	±20%	1.40	2.20	60.00	32.00	
SMMS0630-R15M	0.15	±20%	1.55	2.30	41.00	30.00	
SMMS0630-R22M	0.22	±20%	1.60	2.50	35.00	25.00	
SMMS0630-R47M	0.47	±20%	4.00	4.50	20.00	18.00	
SMMS0630-R68M	0.68	±20%	4.75	5.30	19.00	16.00	
SMMS0630-1R0M	1.00	±20%	6.60	7.25	16.00	13.00	
SMMS0630-1R5M	1.50	±20%	13.20	16.00	14.00	12.50	
SMMS0630-2R2M	2.20	±20%	16.50	20.00	11.50	8.50	
SMMS0630-3R3M	3,30	±20%	24.50	35.00	9.50	7.00	
SMMS0630-4R7M	4.70	±20%	35.00	40.00	6.55	6.00	
SMMS0630-5R6M	5.60	±20%	36.00	42.00	6.35	5.70	
SMMS0630-6R8M	6.80	±20%	44.30	48.00	6.00	5.10	
SMMS0630-8R2M	8.20	±20%	60.00	64.90	6.00	5.00	
SMMS0630-100M	10.00	±20%	64.50	68.00	5.50	4.50	
SMMS0630-150M	15.00	±20%	103.00	115.00	4.50	3.10	
SMMS0630-220M	22.00	±20%	126.00	135.00	3.50	2.60	
SMMS0630-330M	33.00	±20%	250.00	270.00	2.50	2.00	
SMMS0630-470M	47.00	±20%	310.00	385.00	2.00	1.50	

• Saturation current VS temperature rise current curve

SMMS0630-R10M

SMMS0630-R15M

SMMS0630-R68M

SMMS0630-R22M

SMMS0630-1R0M

SMMS0630-1R5M

SMMS0630-2R2M

SMMS0630-3R3M

SMMS0630-4R7M

SMMS0630-5R6M

SMMS0630-6R8M

SMMS0630-8R2M

SMMS0630-100M

SMMS0630-150M

SMMS0630-220M

SMMS0630-330M

SMMS0630-470M

• SMMS0650 Series Electrical Characteristics (Electrical specifications at 25 °C)

			\sim 1	•	•		
	Part No	Inductance 100KHz 1.0V		DCF	DCR (mΩ)		Temperature Rise Current
	1 411 110	L(μH) '@0A	Tol	Typical	Max	(A) Typical	(A) Typical
	SMMS0650-R22M	0.22	±20%	1.10	1.30	40.00	30.00
	SMMS0650-R47M	0.47	±20%	3.20	3.80	24.00	20.00
	SMMS0650-R56M	0.56	±20%	3.40	3.90	20.00	20.00
	SMMS0650-R68M	0.68	±20%	3.90	4.20	17.00	17.50
	SMMS0650-R82M	0.82	±20%	4.60	4.90	17.00	17.00
	SMMS0650-1R0M	1.00	±20%	6.50	8.50	16.50	13.00
2	SMMS0650-1R5M	1.50	±20%	7.00	8.50	12.70	12.00
	SMMS0650-2R2M	2.20	±20%	11.20	12.50	12.50	11.00
	SMMS0650-3R3M	3.30	±20%	20.00	22.00	9.00	8.50
	SMMS0650-4R7M	4.70	±20%	26.00	30.00	8.00	6.70
	SMMS0650-5R6M	5.60	±20%	31.00	36.00	7.60	5.80
	SMMS0650-6R8M	6.80	±20%	36.50	41.00	7.30	5.50
	SMMS0650-100M	10.00	±20%	48.00	55.00	5.50	4.70
	SMMS0650-150M	15.00	±20%	77.00	85.00	5.00	4.00
	SMMS0650-220M	22.00	±20%	125.00	140.00	4.00	3.20
<u></u>	SMMS0650-330M	33.00	±20%	150.00	200.00	3.30	2.80
	SMMS0650-470M	47.00	±20%	260.00	300.00	2.80	2.20

• Saturation current VS temperature rise current curve

SMMS0650-R22M

SMMS0650-R47M

SMMS0650-R56M

SMMS0650-R68M

SMMS0650-R82M

SMMS0650-1R0M

SMMS0650-1R5M

SMMS0650-2R2M

SMMS0650-3R3M

SMMS0650-4R7M

SMMS0650-5R6M

SMMS0650-6R8M

SMMS0650-100M

SMMS0650-150M

SMMS0650-220M

SXN-IIII Filit

SMMS0650-330M

SMMS0650-470M

• SMMS1040 Series Electrical Characteristics (Electrical specifications at 25 °C)

	5	Inductance 100KHz 1.0V		DCR	(mΩ)	Saturation Current	Temperature Rise Current	
	Part No	L(μH) '@0A	Tol	Typical	Max	(A) Typical	(A) Typical	
	SMMS1040-R22M	0.22	±20%	1.20	1.50	60.00	35.00	
	SMMS1040-R36M	0.36	±20%	1.70	1.90	50.00	30.00	
	SMMS1040-R47M	0.47	±20%	1.90	2.20	40.00	30.00	
	SMMS1040-R56M	0.56	±20%	2.10	2.40	33.00	25.00	
_	SMMS1040-R68M	0.68	±20%	2.30	3.00	30.00	23.00	
	SMMS1040-1R0M	1.00	±20%	3.00	4.00	28.00	18.00	
	SMMS1040-1R5M	1.50	±20%	4.80	5.40	23.00	16.00	
>	SMMS1040-2R2M	2.20	±20%	7.20	9.00	18.00	12.00	
	SMMS1040-3R3M	3.30	±20%	10.80	11.80	16.00	10.00	
	SMMS1040-4R7M	4.70	±20%	17.00	20.00	15.00	8.50	
	SMMS1040-6R8M	6.80	±20%	22.50	25.00	12.00	7.00	
	SMMS1040-100M	10.00	±20%	34.00	37.00	8.50	5.50	
	SMMS1040-150M	15.00	±20%	50.00	55.00	7.00	5.00	
	SMMS1040-220M	22.00	±20%	60.00	66.00	6.00	4.00	
	SMMS1040-330M	33.00	±20%	85.00	92.00	5.00	3.50	
	SMMS1040-470M	47.00	±20%	141.00	155.00	4.50	3.00	
	SMMS1040-680M	68.00	±20%	200.00	220.00	3.80	2.30 x	
().	SMMS1040-101M	100.00	±20%	237.00	290.00	3.00	2.00	

Saturation current VS temperature rise current curve

SMMS1040-R22M

SMMS1040-R36M

SMMS1040-R47M

SMMS1040-R56M

SMMS1040-R68M

SMMS1040-1R0M

SMMS1040-1R5M

SMMS1040-2R2M

SMMS1040-3R3M

SMMS1040-4R7M

SMMS1040-6R8M

SMMS1040-100M

SMMS1040-150M

SMMS1040-220M

SMMS1040-330M

SMMS1040-470M

SMMS1040-680M

SMMS1040-101M

• SMMS1050 Series Electrical Characteristics (Electrical specifications at 25 °C)

Dord No.	Inductance 100KHz 1.0V		DCR	(mΩ)	Saturation Current	Temperature Rise Current	
Part No	L(μH) '@0A	Tol	Typical	Max	(A) Typical	(A) Typical	
SMMS1050-R82M	0.82	±20%	2.50	3.20	39.00	22.00	
SMMS1050-1R0M	1.00	±20%	2.80	3.50	28.00	18.00	
SMMS1050-1R2M	1.20	±20%	2.80	3.50	28.00	18.00	
SMMS1050-1R5M	1.50	±20%	3.90	4.80	25.00	16.00	
SMMS1050-2R2M	2.20	±20%	6.50	8.20	20.00	13.00	
SMMS1050-3R3M	3.30	±20%	9.20	12.00	18.00	10.00	
SMMS1050-4R7M	4.70	±20%	12.40	18.00	14.00	9.50	
SMMS1050-5R6M	5.60	±20%	18.90	25.00	13.00	8.50	
SMMS1050-6R8M	6.80	±20%	20.60	28.00	12.00	8.00	
SMMS1050-8R2M	8.20	±20%	27.40	35.00	10.00	7.00	
SMMS1050-100M	10.00	±20%	30.20	40.00	8.50	5.50	
SMMS1050-150M	15.00	±20%	48.00	55.00	7.00	4.50	
SMMS1050-220M	22.00	±20%	60.00	72.00	5.50	4.00	
SMMS1050-330M	33.00	±20%	89.00	105.00	5.50	3.50	
SMMS1050-470M	47.00	±20%	110.00	130.00	4.50	3.00	
SMMS1050-680M	68.00	±20%	190.00	210.00	3.00	2.00	

Saturation current VS temperature rise current curve

SMMS1050-R82M

SMMS1050-1R0M

SMMS1050-1R2M

SMMS1050-1R5M

SMMS1050-2R2M

SMMS1050-3R3M

SMMS1050-4R7M

SMMS1050-5R6M

SMMS1050-6R8M

SMMS1050-8R2M

SMMS1050-100M

SMMS1050-150M

SMMS1050-220M

SMMS1050-330M

SMMS1050-470M

SKN-IIII Filiti

SMMS1050-680M

SYN_IIII Filit

• SMMS1350 Series Electrical Characteristics (Electrical specifications at 25 °C)

Dovi No	Inductance 100KHz 1.0V		DCR (mΩ)		Saturation Current	Temperature Rise Current
Part No	L(μH) '@0A	Tol	Typical	Max	(A) Typical	(A) Typical
SMMS1350-R36M	0.36	±20%	0.85	1.10	60.00	41.00
SMMS1350-R47M	0.47	±20%	1.10	1.30	52.00	39.00
SMMS1350-R68M	0.68	±20%	1.20	1.50	40.00	32.00
SMMS1350-R82M	0.82	±20%	1.50	1.70	42.00	30.00
SMMS1350-1R0M	1.00	±20%	1.90	2.20	35.00	26.00
SMMS1350-1R5M	1.50	±20%	2.70	3.20	30.00	23.00
SMMS1350-2R2M	2.20	±20%	4.00	5.00	26.00	20.00
SMMS1350-3R3M	3.30	±20%	7.00	9.00	22.00	15.00
SMMS1350-4R7M	4.70	±20%	9.00	11.00	17.00	12.00
SMMS1350-6R8M	6.80	±20%	15.00	18.00	14.00	11.00
SMMS1350-100M	10.00	±20%	20.00	23.00	12.00	8.00
SMMS1350-150M	15.00	±20%	28.00	32.00	10.00	6.00
SMMS1350-220M	22.00	±20%	45.00	52.00	7.00	4.50
SMMS1350-330M	33.00	±20%	66.00	75.00	4.00	4.00
SMMS1350-470M	47.00	±20%	100.00	120.00	5.00	3.00
SMMS1350-680M	68.00	±20%	115.00	135.00	4.50	2.50

• Saturation current VS temperature rise current curve

SMMS1350-R36M

SMMS1350-R47M

SMMS1350-R68M

SMMS1350-R82M

SMMS1350-1R0M

SMMS1350-1R5M

SMMS1350-2R2M

SMMS1350-3R3M

SMMS1350-4R7M

SMMS1350-6R8M

SMMS1350-100M

SMMS1350-150M

SMMS1350-220M

SMMS1350-330M

SM-IIII

SMMS1350-470M

SKN-IIII Filiti

SMMS1350-680M

SWIIIFAII

• SMMS1360 Series Electrical Characteristics (Electrical specifications at 25 °C)

D. AN	Induct 100KHz		DCR (mΩ)		Saturation Current	Temperature Rise Current
Part No	L(μH) '@0A	Tol	Typical	Max	(A) Typical	(A) Typical
SMMS1360-R68M	0.68	±20%	1.20	1.40	55.00	33.00
SMMS1360-1R0M	1.00	±20%	1.50	1.70	35.00	30.00
SMMS1360-2R2M	2.20	±20%	2.60	3.00	25.00	20.00
SMMS1360-3R3M	3.20	±20%	5.50	6.00	22.00	16.00
SMMS1360-4R7M	4.70	±20%	6.80	8.00	18.00	13.00
SMMS1360-6R8M	6.80	±20%	10.00	14.00	15.00	12.00
SMMS1360-8R2M	6.80	±20%	13.50	16.00	14.00	11.00
SMMS1360-100M	10.00	±20%	18.00	21.00	12.50	10.00
SMMS1360-220M	22.00	±20%	34.00	38.00	8.00	5.00
SMMS1360-270M	27.00	±20%	36.00	42.00	7.00	4.50
SMMS1360-330M	33.00	±20%	47.00	56.00	7.00	4.50
SMMS1360-470M	47.00	±20%	58.00	70.00	6.00	4.00
SMMS1360-680M	68.00	±20%	105.00	125.00	5.00	3.50
SMMS1360-820M	82.00	±20%	115.00	140.00	4.00	3.00
SMMS1360-101M	100.00	±20%	130.00	200.00	3.00	2.50

- Saturation Current: DC current at which inductance drops 30% from its value without current.
- Temperature Rise Current: the actual value of DC current when the temperature rise is ΔT 40 °C (Ta=25 °C).
- Rated DC Current: The less value which is Isat or Irms.
- Special remind: Circuit design, component, PCB trace size and thickness, airflow and other cooling provisions all affect the part temperature. Part temperature should be verified in the end application.

Saturation current VS temperature rise current curve

SMMS1360-R68M

SMMS1360-1R0M

SMMS1360-2R2M

SMMS1360-3R3M

SMMS1360-4R7M

SMMS1360-6R8M

SMMS1360-8R2M

SMMS1360-100M

SMMS1360-220M

SMMS1360-270M

SMMS1360-330M

SMMS1360-470M

SMMS1360-680M

SMMS1360-820M

SMMS1360-101M

◆产品包装: Packaging:

• Tape and Reel Specifications: (Dimensions are in mm)

• Reel dimensions (mm)

●Tape Dimension (mm)

SXN-IIII Filiti

• Cover tape peel off condition

- a) Cover tape peel force shall be 10 to 120g
- b) Noodle strip peeling angle165° to 180°

Packing quantity

	5 (1)	Тар	e Dimen	sion		Reel Dim	nensions	A 1	REEL	Inside	Outside
	Part No.	W	P	W1	Α	В	С		(PCS)	Box(PCS)	Carton(PCS)
	SMMS0420	12.0	8.0	5.5	24.4	60	13	330	3000	12,000	36,000
	SMMS0520	12.0	8.0	5.5	24.4	60	13	330	2000	6000 5	18,000
	SMMS0530	12.0	8.0	5.5	24.4	60	13	330	2000	6000	18,000
	SMMS0624	16.0	12.0	7.5	24.4	60	13	330	1000	3000	12,000
	SMMS0630	16.0	12.0	7.5	24.4	60	13	330	1000	3000	12,000
	SMMS0650	16.0	12.0	7.5	24.4	60	13	330	1000	3000	12,000
	SMMS1040	24.0	16.0	11.5	24.4	60	13	330	1000	2000	6000
1	SMMS1050	24.0	16.0	11.5	24.4	60	13	330	500	1000	3000
	SMMS1350	24.0	16.0	11.5	24.4	60	13	330	500	1000	3000
	SMMS1360	24.0	16.0	11.5	24.4	60	13	330	400	800	2400
X.	SXN-IIII Fill	JE .			SMI				SKN		

◆可靠性测试: Reliability Testing:

◆ ባ 靠 性 测 试:		Reliability Testing:		
Items	Requirements	Test Methods and Remarks		
Terminal Strength	Pulling test: Define. A: sectional area of terminal A ≤ 8mm2 force ≥ 5N time:30sec	Solder the inductor to the testing jig using leadfree solder. Then apply a force in the Keep time: 10±1s Speed: 1.0mm/s.		
Reference docu ments: GB/T	8mm2 <a 10n="" 10sec<br="" 20mm2="" force="" time:="" ≤="" ≥="">20mm2<a 10sec<="" 20n="" force="" td="" time:="" ≥=""><td></td>			
2423.60-2008 端子強度(SMT)	Solder paste thickness:0.12mm Meet the above requirements without any	制港		
CX1/1/1/2,	loose terminal	M-The		
2,	1.Terminal diameter(d) mm 0.35 <d≤ 0.50Applied force:5N Duration:</d≤ 	Pull Force:the force shall be applied gradually to the terminal and thenmaintained for 10 seconds.		
erminal Strength Reference docu	10sec2.Terminal diameter(d) mm0.50 < d ≤ 0.80Applied force:10N Duration:	are terminal and thermaintained for 10 seconds.		
ments: GB/T (2423.60-2008	10sec3.Terminal diameter(d) mm0.80 < d < 1.25Applied force:20N Duration: 10sec4.Terminal diameter(d) mmD>	Pulling test		
端子強度(DIP)	1.25Applied force:40N Duration.			
	10sec5.Meet the above requirements without any loose terminal.			
21	1.No visible mechanical damage.	1.Solder the inductor to the test jig (glass epoxy		
		board 2.shown in Using a leadfree solder. Then apply a force in the direction shown		
Resistance to Flexure	TH-III)	3.Flexure: 2mm.		
JIS C 5321:1997 抗弯曲性试验	D'	4.Pressurizing Speed: 0.5mm/sec. 5.Keep time: 30 sec.		
		R230 10		
SI	SI	45[1.772] 45[1.772] 45		
Dropping	1.No case deformation or change	1.Drop the packaged products from 1m high in 1		
Reference documents:	inappearance. 2.No short and no open.	angle, 3 ridges and 6surfaces, twice in each		
GB/T 2423.7-2018 落下試驗	51	direction.		
Solderability	1.No visible mechanical damage.	1.Solder temperture:240 ± 2 ℃		
Reference documents:	2.Wetting shall exceed 75% coverage for	2.Duration: 3 sec.		
GB/T 2423.28-2005	3.Terminals must have 95% minimum solder coverage	3. Solder: Sn/3.0Ag/0.5Cu. 4.Flux: 25% Resin and 75% ethanol in weight		
可焊性试验				

	<u>S</u>	<u> </u>
Items	Requirements	Test Methods and Remarks
	1.No visible mechanical damage.	1.Solder the inductor to the testing jig (glass epoxy
	2. Inductance change: Within ±10%.	boardshown in) using leadfree solder.
	3 Q factor change: Within ±20%.	2.The inductor shall be subjected to a simple
	Cu pad Solder mask	harmonic motion having total amplitude of 1.5mm,
A 3 7 6	_1	the frequency being varieduniformly between the
		approximate limits of 10 and 55 Hz.
Vibration		3.The frequency range from 10 to 55 Hz and
Reference documents:		return to 10 Hz shallbe traversed in approximately
GB/T 2423.10-2019	Glass Epoxy Board	1 minute. This motion shall be applied for a period
振動試验	A TIPE	of 2 hours in each 3mutually perpendicular
		directions(total of 6 hours).
	19-1112	Freq
	St. St.	55Hz
X.	38	
		10Hz V V V Time
Willy.	W. J. S.	0 1Min Time
CHI!	1.No visible mechanical damage.	1.Start at (85~125 ℃) for T time, rush to
21	2. Inductance change: Within ±10%.(Mn-Z	n: (-55~40℃) for T time as one cycle, go through100
	Within ≦30%)	cycles.
Thermal Shock	3.Q factor change: Within ±20%.	2.Transforming interval: Max. 20 sec.
Reference documents:		3. Tested cycle: 100 cycles.
GB/T 2423.22-2012	the chi	4. The chip shall be stabilized at normal condition
Method Na		for 1~2 hours
冷热冲击试验		125°C/85°C 30 min. 30 min.
		Ambient
CAN-IIII Fina	A Maria	Temperature 30 min.
SK,	Sh	20sec. (max.)
	- AZ-	<i>K</i> .
	1.No visible mechanical damage.	1.Temperature:M(-55~-40±2℃)
	2. Inductance change: Within ±10%.(Mn-Zn:	2 Duration: 96±2 hours
Low temperature Storage	Within ≦30%)	3. The chip shall be stabilized at normal condition for
Reference documents:	3.Q factor change: Within ±20%.	1~2 hoursbefore measuring.
GB/T 2423.1-2008		Room
Method Ab	CXN-IIII FAIT	Temp 0 96H Test
低温储存试验	1/11/12	97H 98H Time
SKI	The state of the s	M°C CLow temperature
	. J	Temp
b		

	Sr.	SK'		
Items	Requirements	Test Methods and Remarks		
	1.No visible mechanical damage.	1.Temperature:N(125~85±2°ℂ).		
High temperature	2. Inductance change: Within ±10%.(Mn-Zn:	2.Duration: 96±2 hours		
Storage	Within ≦30%)	3. The chip shall be stabilized at normal condition		
Reference documents:	3.Q factor change: Within ±20%.	for 1~2 hoursbefore measuring.		
GB/T 2423.2-2008	- **	Temp High temperature		
Method Bb		N.C.		
高温储存试验	Military	Room		
SK	SKI	0 Test 96H 97H 98H Time		
	1.No visible mechanical damage.	1.Temperature: 60±2℃		
Ì	2. Inductance change: Within ±10%.(Mn-Zn:	2.Humidity: 90% to 95% RH.		
Damp Heat	Within ≦30%)	3.Duration: 96±2 hours.		
(Steady States)	3.Q factor change: Within ±20%.	4.The chip shall be stabilized at normal condition		
Reference documents:	5P	for 1~2 hoursbefore measuring		
GB/T 2423.3-2016	30,	Temp		
恒定湿热试验		60 °C Temp & Humidity 93%RH High temperature High humidity		
		Room Conditions		
N/- III	Milli	Test 0 96H 97H 98H Time		
<u> </u>	4 No simplificant defeats in annuary	96H 97H 96H 1IIIIe		
Heat endurance of	1.No significant defects in appearance.	1.Refer to the above reflow curve and go through		
Reflow soldering	2. △ L/L ≦ 10% (Mn-Zn: △ L/L ≦ 30%) 3. △ Q/Q ≦ 30% (SMD series only)	the reflow for twice. 2.The peak temperature : 260+0/-5℃		
Reference documents: GJB 360B-2009	4. Δ DCR/DCR ≦ 10%	2. The peak temperature . 20010/-3 C		
回流焊耐热性试验	11.250.0501(=10%	M-III		
口400年间12公1工 12/2012	No case deformation or change in	To dip parts into IPA solvent for 5±0.5Min,then		
Resistance to solvent	appearance or obliteration of marking	drying them at room temp for 5Min,at last ,to		
test		brushing making 10 times.		
Reference documents:				
IEC 68-2-45:1993	Al-III	-4M-1111		
耐溶剂性试验	51	Sr		
	<u>×</u>	<u> </u>		
Overload test	1.During the test no smoke, no peculiar,			
Reference documents:	smell, no fire	15. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
JIS C5311-6.13	2. The characteristic is normal after test	Apply twice as rated current for 5 minutes.		
过负荷试验	51	Si		
voltage resistance test	1.During the test no breakdown			
- X ((1)	2.The characteristic is normal after test			
MIL-STD-202G Method	19-11/2-	1. For parts with two coils		
301 5	Sh	DC1000V, Current: 1mA, Time: 1Min. Pefer to catalogue of specific products.		
绝缘耐压测试	X.	Refer to catalogue of specific products		
A				

◆推荐回流焊温度曲线

Recommended reflow soldering curve:

The recommended reflow conditions as above graph, is set according to our soldering equipment. DUE to various manufactures may have different reflow soldering equipment, products, process conditions, set methods. And so on, when setting the reflow conditions, Please adjust and confirm according to users' environment/equipment.

SMIIIFAIITE

SXN-IIIIi Filit

使用注意事项

REMINDERS FOR USING THESE PRODUCTS

● 保存时间为12 个月以内,保存条件(温度5~40°C以下、湿度35 ~ 66%RH 以下),需充分注意。若超过保存时间,端子电极的可焊性将可能老化。

The storage period is within 12 months. Be sure to follow the storage conditions (temperature: $5\sim40^{\circ}$ C, humidity: 35 to 65% RH or less). If the storage period elapses, the soldering of the terminal electrodes may deteriorate.

• 请勿在气体腐蚀环境(盐、酸、碱等)下使用和保存。

Do not use or store in locations where there are conditions such as gas corrosion (salt, acid, alkali, etc.).

• 手上的油脂会导致可焊性降低,应避免用手直接接触端子。

Don't touch electrodes directly with bare hands as oil secretions may inhibit soldering Always ensure optimum conditions for soldering.

• 请小心轻拿轻放,避免由于产品的跌落或取出不当而导致的损坏。

Please always handle products carefully to prevent any damage caused bydropping down or inappropriate removing.

• 端子过度弯曲会导致断线,请不要过度弯曲端子。

Don't bend the terminals with excessive stress in case of any wire fracture.

• 不要清洗产品, 如需要清洗时请联系我司。

Don't rinse coils by yourself and please contact SXN if necessary.

• 请勿将本产品靠近磁铁或带有磁力的物体

Don't expose the products to magnets or magnetic fields

- 在实施焊接前,请务必进行预热。预热温度与焊接温度及芯片温度的温度差要在150°C 以内。
 Before soldering, be sure to preheat components. The preheating temperature should be set so that the temperature difference between the solder temperature and chip temperature does not exceed 150°C.
- 安装后的焊接修正应在规格书规定的条件范围内。若加热过度可能导致短路、性能降低、寿命减少。
 Soldering corrections after mounting should be within the range of the conditions determined in the specifications. If overheated, a short circuit, performance deterioration, or lifespan shortening may occur.
- 装置会因通电而自我发热(温度上升),因此在热设计方面需留有充分余地。
 Self heating (temperature increase) occurs when the power is turned ON, so the tolerance should be sufficient for the set thermal design.
- 非磁屏蔽型在基板设计时需注意配置线圈,受到电磁干扰可能会导致误动作。
 Carefully lay out the coil for the circuit board design of the non-magnetic shield type. A malfunction may occur due to magnetic interference.
- 当本公司产品使用在一般电子设备以外的场合,如:车载,医疗设备,军用,航空航天等,请务必联繫本公司营业部门, 如超出本公司产品使用条件而引起的机器故障时,本公司概不负责。
 - If SXN product will be applied in area like automotive product, medical equipment, military and aerospace except generalelectronic device, please keep SXN sales informed in advance. SXN shall not be held liable for any malfunction or breakdowncaused by using product in the condition which is inconsistent with that recommended by SXN.