Classification Techniques in Machine Learning

Dr. Shailesh Sivan

Support Vector Machine

Support Vector Machine * "Support Vector Machine" (SVM) is a supervised machine learning algorithm which can be used for both classification or regression challenges * perform classification by finding the hyperplane that differentiate the two classes very well

K Nearest Neighbour

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Definition of Nearest Neighbor

K-nearest neighbors of a record \boldsymbol{x} are data points that have the k smallest distance to \boldsymbol{x}

Basic Idea

- k-NN classification rule is to assign to a test sample the majority category label of its k nearest training samples
- \bullet In practice, k is usually chosen to be odd, so as to avoid ties
- The k = 1 rule is generally called the nearest-neighbor classification rule

Distance-weighted k-NN

Replace

$$\hat{f}(q) = \underset{v \in V}{\arg\max} \sum_{i=1}^{k} \delta(v, f(x_i))$$

by:

$$\hat{f}(q) = \underset{v \in V}{\operatorname{arg\,max}} \sum_{i=1}^{k} \frac{1}{d(x_i, x_q)^2} \delta(v, f(x_i))$$

General Kernel functions like Parzen Windows may be considered Instead of inverse distance.

Predicting Continuous Values

Replace

$$\hat{f}(q) = \underset{v \in V}{\arg\max} \sum_{i=1}^{k} w_i \delta(v, f(x_i))$$

by:

$$\hat{f}(q) = \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}$$

• Note: unweighted corresponds to w_i =1 for all i

Value of K

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest-Neighbor Classifiers: Issues

- The value of k, the number of nearest neighbors to retrieve
- Choice of Distance Metric to compute distance between records
- Computational complexity
 - Size of training set
 - Dimension of data

Distance Metrics

Figure 1. Equations of selected distance functions (x and y are vectors of m attribute values).

Naïve Bayes

Naïve Bayes

- Naïve Bayes Algorithm (for discrete input attributes)
 - Learning Phase: Given a training set S,

```
For each target value of c_i (c_i = c_1, \dots, c_L)
\hat{P}(C = c_i) \leftarrow \text{estimate } P(C = c_i) \text{ with examples in } \mathbf{S};
For every attribute value a_{jk} of each attribute x_j (j = 1, \dots, n; k = 1, \dots, N_j)
\hat{P}(X_j = a_{jk} \mid C = c_i) \leftarrow \text{estimate } P(X_j = a_{jk} \mid C = c_i) \text{ with examples in } \mathbf{S};
```

Output: conditional probability tables; for x_j , $N_j \times L$ elements

- Test Phase: Given an unknown instance $\mathbf{X}' = (a_1', \cdots, a_n')$, Look up tables to assign the label c^* to \mathbf{X}' if $[\hat{P}(a_1' \mid c^*) \cdots \hat{P}(a_n' \mid c^*)] \hat{P}(c^*) > [\hat{P}(a_1' \mid c) \cdots \hat{P}(a_n' \mid c)] \hat{P}(c), \quad c \neq c^*, c = c_1, \cdots, c_L$

31

Naïve Bayes

Bayes classification

$$P(C \mid \mathbf{X}) \propto P(\mathbf{X} \mid C)P(C) = P(X_1, \dots, X_n \mid C)P(C)$$

Difficulty: learning the joint probability $P(X_1, \dots, X_n \mid C)$

- Naïve Bayes classification
 - Making the assumption that all input attributes are independent

$$P(X_1, X_2, \dots, X_n \mid C) = \underline{P(X_1 \mid X_2, \dots, X_n; C)} P(X_2, \dots, X_n \mid C)$$

$$= \underline{P(X_1 \mid C)} \underline{P(X_2, \dots, X_n \mid C)}$$

$$= P(X_1 \mid C) \underline{P(X_2, \dots, X_n \mid C)}$$

- MAP classification rule

$$[P(x_1 | c^*) \cdots P(x_n | c^*)]P(c^*) > [P(x_1 | c) \cdots P(x_n | c)]P(c), c \neq c^*, c = c_1, \dots, c_L$$

30

Example

• Example: Play Tennis

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

32

Example

• Learning Phase

Outlook	Play=Yes	Play=No	
Sunny	2/9	3/5	
Overcast	4/9	0/5	
Rain	3/9	2/5	

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=No
High	3/9	4/5
Normal	6/9	1/5

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14

33

Decision Trees

Intro AI Decision Trees 35

Example

- Test Phase
 - Given a new instance,

x'=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Look up tables

P(Outlook=Sunny|Play=Yes) = 2/9 P(Temperature=Cool |Play=Yes) = 3/9 P(Huminity=High | Play=Yes) = 3/9 P(Wind=Strong |Play=Yes) = 3/9 P(Play=Yes) = 9/14
$$\begin{split} & P(Outlook=Sunny | Play=No) = 3/5 \\ & P(Temperature=Cool | Play==No) = 1/5 \\ & P(Huminity=High | Play=No) = 4/5 \\ & P(Wind=Strong | Play=No) = 3/5 \\ & P(Play=No) = 5/14 \end{split}$$

- MAP rule

 $\frac{P(Yes|\mathbf{x}'):[P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)]P(Play=Yes)=0.0053}{P(No|\mathbf{x}'):[P(Sunny|No)P(Cool|No)P(High|No)P(Strong|No)]P(Play=No)=0.0206}$

Given the fact $P(Yes | \mathbf{x}') < P(No | \mathbf{x}')$, we label \mathbf{x}' to be "No".

34

Outline

- Decision Tree Representations
 - ID3 and C4.5 learning algorithms (Quinlan 1986)
 - CART learning algorithm (Breiman et al. 1985)
- Entropy, Information Gain
- Overfitting

Intro AI Decision Trees 36

Training Data Example:

Goal is to Predict When This Player Will Play Tennis? PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Decision Trees Intro AI

37

38

Decision Tree Hypothesis Space

- ullet Internal nodes test the value of particular features x_j and branch according to the results of the test.
- Leaf nodes specify the class h(x).

Suppose the features are Outlook (x_1) , Temperature (x_2) , Humidity (x_3) , and Wind (x_4) . Then the feature vector $\mathbf{x} = (Sunny, Hot, High, Strong)$ will be classified as \mathbf{No} . The Temperature feature is irrelevant.

Decision Trees Intro AI

Decision Trees Can Represent Any Boolean Function

The tree will in the worst case require exponentially many nodes, however.

Intro AI Decision Trees

Choosing the Best Attribute

A1 and A2 are "attributes" (i.e. features or inputs).

Which attribute is best?

- Many different frameworks for choosing BEST have been proposed!
- We will look at Entropy Gain.

Intro AI Decision Trees 43

Learning Algorithm for Decision Trees

$$S = \{ (\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N) \}$$

$$\mathbf{x} = (x_1, ..., x_d)$$

$$x_i, y \in \{0, 1\}$$

GROWTREE(S)

if $(y = 0 \text{ for all } \langle \mathbf{x}, y \rangle \in S)$ return new leaf(0)

else if $(y=1 \text{ for all } \langle \mathbf{x},y \rangle \in S)$ return new leaf(1)

else

choose best attribute x_i

 $S_0 = \text{all } \langle \mathbf{x}, y \rangle \in S \text{ with } x_j = 0;$

 $S_1 = \text{all } \langle \mathbf{x}, y \rangle \in S \text{ with } x_i = 1;$

return new node(x_j , GROWTREE(S_0), GROWTREE(S_1))

What happens if features are not binary? What about regression?

Entropy

41

- ullet p_{\oplus} is the proportion of positive examples in S
- ullet p_{\ominus} is the proportion of negative examples in S
- \bullet Entropy measures the impurity of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Intro AI Decision Trees 44

Entropy

45

 \bullet S is a sample of training examples

Entropy is like a measure of impurity...

Intro AI Decision Trees

Entropy

- Entropy measures the randomness/uncertainty in the data
- Let's consider a set S of examples with C many classes. Entropy of this set:

$$H(S) = -\sum_{c \in C} p_c \log_2 p_c$$

- p_c is the probability that an element of S belongs to class c
 - ullet ... basically, the fraction of elements of S belonging to class c
- Intuition: Entropy is a measure of the "degree of surprise"
 - Some dominant classes ⇒ small entropy (less uncertainty)
 - ullet Equiprobable classes \Longrightarrow high entropy (more uncertainty)
- ullet Entropy denotes the average number of bits needed to encode S

Intro AI Decision Trees 47

Entropy

Entropy(S) = expected number of bits needed to encode class $(\oplus \text{ or } \ominus)$ of randomly drawn member of S (under the optimal, shortest-length code)

Why?

Information theory: optimal length code assigns $-\log_2 p$ bits to message having probability p.

So, expected number of bits to encode \oplus or \ominus of random member of S:

$$\begin{split} p_{\oplus}(-\log_2 p_{\oplus}) + p_{\ominus}(-\log_2 p_{\ominus}) \\ Entropy(S) &\equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus} \end{split}$$

Intro AI Decision Trees 46

Information Gain

 $Gain(S,A) = {\it expected reduction in entropy due to sorting on } A$

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Intro AI Decision Trees 48

Information Gain

- ullet Let's assume each element of S consists of a set of features
- Information Gain (IG) on a feature F

$$IG(S,F) = H(S) - \sum_{f \in F} \frac{|S_f|}{|S|} H(S_f)$$

- ullet S_f number of elements of S with feature F having value f
- \bullet IG(S,F) measures the increase in our certainty about S once we know the value of F
- IG(S,F) denotes the number of bits saved while encoding S once we know the value of the feature F

Intro AI

Choosing the most informative feature

- At the root node, the information gains are:
 - IG(S, wind) = 0.048 (we already saw)
 - IG(S, outlook) = 0.246
 - *IG*(*S*, humidity) = 0.151
 - IG(S, temperature) = 0.029
- ullet "outlook" has the maximum $IG\Longrightarrow$ chosen as the root node
- Growing the tree:

Intro AI

• Iteratively select the feature with the highest information gain for each child of the previous node

51

52

Computing Information Gain

- Let's begin with the root node of the $\overline{\text{DT}}$ and compute IG of each feature
- Consider feature "wind" \in {weak,strong} and its IG w.r.t. the root node

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

49

50

- Root node: S = [9+, 5-] (all training data: 9 play, 5 no-play)
- Entropy: $H(S) = -(9/14)\log_2(9/14) (5/14)\log_2(5/14) = 0.94$
- $S_{weak} = [6+, 2-] \Longrightarrow H(S_{weak}) = 0.811$
- $S_{strong} = [3+, 3-] \Longrightarrow H(S_{strong}) = 1$

IG(S, wind)	=	$H(S) - \frac{ S_{weak} }{ S }H(S_{weak}) - \frac{ S_{strong} }{ S }H(S_{strong})$
	=	0.94 - 8/14 * 0.811 - 6/14 * 1
	_	0.048

Intro AI = 0.048

Training Example

PlauTennis: training examples

Puly tennis: training examples						
Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

Decision Trees

