Forecasting Daily Air Temperature in Doho, Uganda Using Machine Learning and Deep Learning

ACCURATE TEMPERATURE PREDICTIONS FOR AGRICULTURE, ENERGY, AND DISASTER PREPAREDNESS BY GROUP 6

Problem Statement & Justification

Problem:

Predict daily air temperature using historical weather data (2013–2016) in Doho, Uganda.

Accurate forecasts help farmers, energy providers, disaster management authorities, and urban planners.

Justification:

Weather data is sequential → temporal models like LSTM capture trends.

Feature engineering (lags, rolling stats, datebased features) improves model performance.

Supports data-driven decisions in agriculture, energy, and disaster preparedness.

Data & Feature Engineering

Dataset:

Daily observations from multiple stations (Temperature, Humidity, Min/Max Temp, Station ID).

Feature Engineering:

Lag variables: 1,2,3,7,14 days

Rolling statistics: 7-day mean & std

Date features: Month, Day-of-Year, Weekday

One-hot encoded station identifiers

Modeling Approach & Metrics

Models Used:

Random Forest Regressor (RF) – classical ML LSTM – deep learning for sequential data

Temperature: Actual vs Predicted

Evaluation Metrics:

Metric	Purpose	
MSE	Penalizes large errors	
MAE	Average absolute error	
RMSE	Same units as temperature	
R ²	Variance explained	

Key Results & Interpretations

Model Performance:

Model	MSE	MAE	RMSE	R ²
Random Forest	0.176	0.332	0.419	0.872
LSTM	0.139	0.301	0.374	0.898

Observations:

LSTM outperforms RF across all metrics.

Captures temporal dependencies better → smoother, accurate forecasts.

Residuals centered around $0 \rightarrow$ unbiased predictions.

Recommendations & Future Work

Recommendations for Stakeholders:

Farmers: Optimize irrigation, planting, harvesting.

Energy Providers: Plan load demand & infrastructure maintenance.

Disaster Management: Early warnings for heat/cold events.

Urban Planners & Policy Makers: Climate adaptation, urban heat planning.

Future Additions:

Include rainfall, wind speed, and humidity predictions.

Multi-station spatial modeling (Graph Neural Networks).

Ensemble modeling & real-time forecasts with dashboards/APIs.

Climate trend analysis for long-term planning.

PROJECT SUMMARY

The dataset available at https://dataverse.harvard.edu/dataset.xhtml?persistent https://dataverse.harvard.edu/dataset.xhtml <a href="

- 1. Project title
- 2. Problem statement and justification
- 3. Data description and derived features
- 4. Data cleaning
- 5. Data exploration and visualization (statistics, univariate, bivariate and multivariate analysis)
- 6. Modeling and evaluation

- Models used are random forest Regressor and long short term memory and their metrics (LSTM)
- > Feature importance graph for random forest
- > Temperature actual vs predicted graph
- ➤ Prediction error & anomaly detection graph
- ➤ Residual error distribution graph
- ➤ Metrics overview (MSE,MAE,RMSE, R²)
- **≻** Recommendations
- >future work