DS-GA 3001.008 Modelling time series data L8. RNNs - continued

Instructor: Cristina Savin

NYU, CNS & CDS

The alternative: just build a recognition model from the get go

Neural networks: flexible input-out map

Backpropagation: how to train such models

A cascade of linear-nonlinear steps-> a differentiable map

Vanilla RNNs math

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

У

RNN

X

$$egin{aligned} h_t &= anh(W_{hh}h_{t-1} + W_{xh}x_t) \ \ y_t &= W_{hu}h_t \end{aligned}$$

RNN architectures for time series

Truncated backprop through time

Life is harder in the RNN world

Backpropagation from h_t to h_{t-1} multiplies by W (actually W_{hh}^{T})

$$h_{t} = \tanh(W_{hh}h_{t-1} + W_{xh}x_{t})$$

$$= \tanh\left(\left(W_{hh} \quad W_{hx}\right) \begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

$$= \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_{t} \end{pmatrix}\right)$$

K steps back: W^k

Exponential decay or explosion of gradients

If gradients are exploding: clip to a max value

Fancy regularization: unitary matrices

Smarter architectures!

Vanilla RNN

$$h_t = \tanh\left(W\begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}\right)$$

LSTM

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Hochschreiter & Schmidhuber, 1997

LSTM details

$$c_t = f \odot c_{t-1} + i \odot g$$
$$h_t = o \odot \tanh(c_t)$$

Gradient for c multiplied (element wise) with f, which varies over time and bounded so much more numerically stable

Other architectures

GRU (Cho et al, 2013)

$$r_{t} = \sigma(W_{xr}x_{t} + W_{hr}h_{t-1} + b_{r})$$

$$z_{t} = \sigma(W_{xz}x_{t} + W_{hz}h_{t-1} + b_{z})$$

$$\tilde{h}_{t} = \tanh(W_{xh}x_{t} + W_{hh}(r_{t} \odot h_{t-1}) + b_{h})$$

$$h_{t} = z_{t} \odot h_{t-1} + (1 - z_{t}) \odot \tilde{h}_{t}$$

Other architectures

MUT1:

$$z = \operatorname{sigm}(W_{xz}x_t + b_z)$$

 $r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$
 $h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + \operatorname{tanh}(x_t) + b_h) \odot z$
 $+ h_t \odot (1 - z)$

MUT2:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz}h_t + b_z)$$

$$r = \operatorname{sigm}(x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT3:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz} \tanh(h_t) + b_z)$$

 $r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$
 $h_{t+1} = \tanh(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$
 $+ h_t \odot (1 - z)$

(Jozefowicz et al., 2015)

Link to other approaches

Deep Kalman Filter (Krishnan et al, 2016)

Transition distribution

$$z_t | z_{t-1} \sim \mathcal{N}(F_{\theta}^{\mu}(z_{t-1}), F_{\theta}^{\Sigma}(z_{t-1}))$$

Emission distribution

$$x_t | z_t \sim \mathcal{N}(G_{\theta}^{\mu}(z_t), G_{\theta}^{\Sigma}(z_t))$$

Feedforward neural networks

Bidirectional recurrent networks

Approximate posterior distribution

$$z_t|x_{1:T} \sim \mathcal{N}(R_{\theta}^{\mu}(x_{1:T}), R_{\theta}^{\Sigma}(x_{1:T}))$$

$$\mathcal{F}(q,\theta) = \int q_{\theta}(z) \log p_{\theta}(x|z) dz + \int q_{\theta}(z) \log \frac{p_{\theta}(z)}{q_{\theta}(z)} dz$$

Directly maximize the free energy using GD and backpropagation

Summary

RNNs provide a flexible way for modeling temporal dependencies at scale.

Neural networks (deep learning) enable us to handle

- High-dimensional observations (often 100s-1000s)
- High-dimensional latent variables (often 100s-1000s)
- Large-scale data (often millions or more)
- Neural networks (deep learning) enable us to capture
 - Nonlinear dynamics
 - Long-term dependencies
- Neural networks (deep learning) enable us to work with
 - Intractable probabilistic models
- Neural networks enable us to transfer knowledge across problems
 - Parameter sharing across multiple datasets
 - One neural network with a task indicator input

Summary

Data hungry, and not necessarily easy to train

LSTMs and GRUs used in practice

Good at capturing long-term dependencies but not high frequency structure

Ongoing research: better architectures, theoretical understanding.

Greff et al. LSTM: A Search Space Odyssey, 2015.

Goodfellow, Courville, Bengio. Deep Learning, 2016.

Goldberg. Neural Network Methods for Natural Language Processing, 2017.

K Cho lecture notes: https://github.com/nyu-dl/NLP_DL_Lecture_Note