Mathematics for Signals and Systems Exam of May 2003 SOLUTIONS Question 1 (a) $\alpha = \frac{1}{15}$, $e_2 = \alpha \begin{vmatrix} -1 \\ 2 \\ 0 \end{vmatrix}$, $e_3 = \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix}$. Note that & is uniquely determined, but there are many other choices for e2 and e3. $T^{-1}\begin{bmatrix}1\\0\\0\end{bmatrix} = e_1, \quad T^{-1}\begin{bmatrix}0\\1\\0\end{bmatrix} = e_2.$ Since T' must also be unitary, and since $\{\begin{bmatrix} 1\\0\\0\end{bmatrix},\begin{bmatrix} 0\\1\\0\end{bmatrix},\begin{bmatrix} 0\\1\\1\end{bmatrix}\}$ is an orthonormal basis in \mathbb{C}^3 , $\left\{ T^{1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, T^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, T^{-1} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$ must also be an orthonormal basis in \mathbb{C}^3 . The simplest choice is to take $\mathbb{T}^{-1}\begin{bmatrix}0\\0\\1\end{bmatrix}=e_3$. Thus, $T^{-1} = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} & -1/\sqrt{5} & 0 \\ 1/\sqrt{5} & 2/\sqrt{5} & 0 \\ 0 & 0 & 1 \end{bmatrix},$ $T = \begin{bmatrix} 2/\sqrt{5} & 1/\sqrt{5} & 0 \\ -1/\sqrt{5} & 2/\sqrt{5} & 0 \\ 0 & 0 & 1 \end{bmatrix}.$

FJ .10

IKJ.7

(C) If λ is an eigenvalue of T then for some eigenvector $x \in \mathbb{C}^3$ we have $Tx = \lambda x$. Since T is unitary, we have ||Tx|| = ||x|| (for all $x \in \mathbb{C}^3$). Thus, for the eigenvector we have $||\lambda x|| = ||x||$, so that $|\lambda| = 1$. Hence, no eigenvalue of T is contained in \mathfrak{D} .

(d) A vector $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ belongs to M^{\perp} if and only if $\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

It is easy to see that this is equivalent to $x_1 = x_2 = 0$ (x_3 may be any number).

- (e) The space $M^{\perp\perp}$ consists of all vectors of the form $x = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$, where $x_1, x_2 \in \mathbb{C}$. Hence, $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. (So that Px retains only the first two components of x.)
- (f) $P^2 = P$, rank P = 2, ||P|| = 1.

Question 2 (a) $v \in l^2 \Rightarrow v \in R_0 \Rightarrow v \in l^\infty$. v is not in l^1 , because for all values k such that $\sin(0.01k) \ge 0.5$ (and these k are situated in periodically recurring intervals) we have $v_k \ge \frac{50}{k}$, and $\left(\frac{1}{k}\right)$ is not in l^1 .

(C) Since $v \in l^2$, according to the Paley-Wiener theorem we have $\hat{v} \in H^2(E)$. Every function in $H^2(E)$ has boundary values almost everywhere on the unit circle, and the boundary function is in L^2 , since $\|\hat{v}\|_2^2 = \frac{1}{2\pi} \int_{-2\pi}^{2\pi} |\hat{v}(e^{i\varphi})|^2 d\varphi$.

(We remark that, by the Paley-Wiener theorem, $\|v\|_2 = \|\hat{v}\|_2$.)

(d) The filter is time-invariant (and linear) and its transfer function is

$$F(z) = \frac{3 - 0.5z' - 2z^2}{1 - 0.8z'} = \frac{3z^2 - 0.5z - 2}{z^2 - 0.8z}$$

$$-3-$$

This F is proper (i.e., it has a finite limit as $z \to \infty$) and its poles are $\alpha_1 = 0$, $\alpha_2 = 0.8$.

These poles are in \mathcal{D} , so that F is stable (i.e., $F \in H^{\infty}(\mathcal{E})$).

(e) The first four statements are true. Indeed, we have seen earlier that $v \in l^2$ and F is stable, so that $y \in l^2$. This implies $y \in \mathcal{L}$ and this implies $y \in l^\infty$. By the Paley-Wiener theorem (discrete-time version), $y \in l^2$ implies $\hat{y} \in H^2(\mathcal{E})$.

If we define \hat{y} also in \mathcal{D} via $\hat{y}=F\hat{v}$ (both \hat{v} and F can be defined on \mathcal{D} by analytic continuation, except at a finite number of poles) then \hat{y} will have poles at the poles of F (computed at part (d)), which are in \mathcal{D} . Hence, $\hat{y}\in H^2(\mathcal{D})$ cannot be true.

Question 3 / (a) The period is T=20 msec

(corresponding to $50\,\text{Hz}$). There is a fundamental component of frequency $50\,\text{Hz}$ and amplitude 10, a third harmonic ($150\,\text{Hz}$) of amplitude 2, and a seventh harmonic ($350\,\text{Hz}$) of amplitude 0.1. This seventh harmonic is so small that it can be neglected in the plot. The three components of I are synchronized in the sense that they cross zero simultaneously at $t_0 = -\frac{1}{1000\,\text{TL}}$. Sketching the fundamental component, the third harmonic, and adding them, we obtain approximately:

(b) On $L^{2}[0,T]$ we define the inner product $\langle f,g \rangle = \frac{1}{T} \int_{0}^{T} f(t) g(t) dt$, and we put $\|f\|^{2} = \langle f,f \rangle$. Then $I_{RMS}^{2} = \|I\|^{2}$. Denote

$$e_k(t) = \sin k 100 \pi (t - t_0), \quad t_0 = \frac{-1}{1000 \pi}$$

(k=1,3,7). -5

From the computations done in the theory of Fourier series we know that e_1, e_3, e_7 are orthogonal and $\|e_1\|^2 = \|e_3\|^2 = \|e_7\|^2 = 1/2$. Hence $\|I\|^2 = \|10e_1 + 2e_3 + 0.1e_7\|^2 = 1/2$. $= (10^2 + 2^2 + (0.1)^2) \cdot \frac{1}{2} = 52.005,$

so that $I_{RMS} = \sqrt{52.005} \approx 7.21$ (Amps). (c) $P = \langle U, I \rangle = \langle U, 10e_1 \rangle$ (by ortho-)
gonality)

= $3250 \cdot < \sin 100 \pi t$, $\sin (100 \pi t + 0.1) >$

 $=3250 \cdot \frac{1}{2} \cos 0.1 \approx 1617$ (Watts).

(d) I is band-limited in the sense that its Fourier transform FI vanishes for $\omega > 700\pi$. However, I is not in $L^2(-\infty,\infty)$, hence it is not contained in any of the spaces $BL(\omega_b)$ which appear in the sampling theorem.

(e) Yes, obviously.

(f) If we choose $t_0 = \frac{-1}{1000\pi}$ (see part (a)), then Io is continuous. However, Io cannot be band-limited, because it is not analytic. Indeed, either Io or its derivative is not continuous at to, for any choice of to.

Question 4 (a) $v \in H^2(\mathbb{C}_+)$, the others are not. Indeed, $|\theta(i\omega)| = |q(i\omega)| = 1$ for all $\omega \in \mathbb{R}$, so $\int |\theta(i\omega)|^2 d\omega = \int_{-\infty}^{\infty} |q(i\omega)|^2 d\omega = \infty$. The remaining functions h and ψ have unstable poles. (b) $v \in H^\infty(\mathbb{C}_+)$, $||v||_{\infty} = \frac{1}{2}$ (obtained for $s \to 0$),

 $\theta \in H^{\infty}(\mathbb{C}_{+}), \quad \|\theta\|_{\infty} = 1 \quad \text{(see part (a))},$ $g \in H^{\infty}(\mathbb{C}_{+}), \quad \|g\|_{\infty} = 1 \quad \text{(see part (a))},$ $d \quad \psi \text{ are not in } H^{\infty}(\mathbb{C}_{+}), \quad \text{because of}$

h and Ψ are not in $H^{\infty}(\mathbb{C}_{+})$, because of their unstable poles.

(c) θ and g determine isometric inputoutput operators. Indeed, if $\hat{y}(s) = \theta(s) \hat{u}(s)$ then from $|\theta(i\omega)| = 1$ (for all $\omega \in \mathbb{R}$) it
follows that $\int |\hat{y}(i\omega)|^2 d\omega = \int_{-\infty}^{\infty} |\hat{u}(i\omega)|^2 d\omega$.

By the Paley-Wiener theorem (continuous time version) it follows that $\|y\|_2 = \|u\|_2$. For q, the reasoning is the same.

(d) g,h are analytic on \mathbb{C}_{-} . The others have a pole in \mathbb{C}_{-} .

(e) $\mathcal{L}^{-1}(v)(t) = e^{-2t}$,

-7-

$$\mathcal{L}^{-1}(\theta)(t) = \delta_o(t) - 10 e^{-5t} \qquad \left(\int_0^{\infty} = \text{unit pulse} \right)$$

$$\mathcal{L}^{-1}(q)(t) = \delta_o(t-4) \qquad \text{(this is a delayed unit pulse)}$$

$$\mathcal{L}^{-1}(h)(t) = \sin(t-1) \text{ for } t \ge 1, \text{ 0 else}$$

$$\mathcal{L}^{-1}(\psi)(t) = \frac{1}{2} e^{-2t} + \frac{1}{2} e^{2t} \qquad \text{(this follows from the decomposition below)}$$

$$\left(\begin{cases} \end{cases} \right) \qquad \psi(s) = \frac{s}{s^2 - 4} = \frac{0.5}{s - 2} + \frac{0.5}{s + 2},$$

 $\psi_{-} \in H^{2}(\mathbb{C}_{+}) \text{ and } \psi_{+} \in H^{2}(\mathbb{C}_{+}).$

$$(\mathcal{G})_{\mathcal{I}} = \int_{-\infty}^{\infty} \psi(i\omega) \, \overline{\psi(i\omega)} \, d\omega = 2\pi \langle \psi, v \rangle$$

$$= 2\pi \langle \psi_{-}, v \rangle + 2\pi \langle \psi_{+}, v \rangle$$

(we use the inner product of $L^2(iR)$). Since the boundary functions of functions in $H^2(\mathbb{C}_+)$ and $H^2(\mathbb{C}_+)$ are orthogonal, the first term is zero. Thus,

 $J = 2\pi < \psi_+, v > = \pi < v, v > = \pi ||v||^2.$

We have seen in part (e) that $v = \mathcal{L}(a)$, where $a(t) = e^{-2t}$ ($a \in L^2[0,\infty)$). By the Paley-Wiener theorem, $||v|| = ||a|| = \frac{1}{2}$, so that $J = \frac{\pi}{4}$.

-8-

Question 5 (a) Denoting the 2×2 matrix by A, the characteristic polynomial of A is $p(s) = \det(sI - A) = s^2 + \beta^2 s + 90,000.$

A is stable iff the coefficients of A are positive. Thus, the system is stable iff $\beta \neq 0$.

(b) We have $(sI-A)^{-1} = \frac{1}{p(s)} \begin{bmatrix} s+\beta^2 & -300 \\ 300 & s \end{bmatrix}$,

whence $G(s) = [0 - \beta](sI - A)^{-1}\begin{bmatrix}0\\\beta\end{bmatrix} = [0 - \beta]\frac{\beta}{\rho(s)}\begin{bmatrix}-300\\s\end{bmatrix}$

$$= - \frac{\beta^2 5}{\rho(5)} = \frac{-0.015}{5^2 + 0.015 + 90,000}.$$

If we examine $|G(i\omega)|$ for $\omega > 0$ (for $\omega < 0$

it is the same), we see that it tends to zerofor $\omega \to 0$ or $\omega \to \infty$, and it has a peak for $\omega = 300$ (this can be seen also by drawing the Bode amplitude plot of G). To obtain the peak value, we substitute $\omega = 300$, which yields G(300i) = -1. Thus, $\|G\|_{\infty} = 1$ (precisely).

(c) We have Tu = FGFu, $u \in L^2(-\infty, \infty)$, where F is the Fourier transformation. T is time-invar. and causal. Causality means that if $u \in L^2[t_0, \infty)$ for some $t_0 \in \mathbb{R}$, then also $Tu \in L^2[t_0, \infty)$ (i.e., (Tu)(t) = 0 for $t < t_0$). Time-invariance means that for any $t_0 \in \mathbb{R}$, $S_{t_0} = T$, where S_{t_0} is the right shift by t_0 on $L^2(-\infty, \infty)$.

Since S_t is unitary and it maps $L^2[0,\infty)$ onto $L^2[t_0,\infty)$, the formula on the bottom of the previous page implies that the norm of T on any of the spaces $L^2[t_0,\infty)$ is the same. According to the Fourés-Segal theorem, on $L^2[0,\infty)$, the norm of T is $\|G\|_{\infty}$ (which, in our specific case, is 1). Taking limits as $t_0 \to -\infty$, we obtain that $\|T\| = \|G\|_{\infty} = 1$.

- (d) From $Tu = \mathcal{F}^{-1}G\mathcal{F}u$ we see that if $(\mathcal{F}u)(i\omega) = 0$ for $|\omega| > 100$, then also $(\mathcal{F}Tu)(i\omega) = 0$ for $|\omega| > 100$. Moreover, if $u \in L^2(-\infty,\infty)$, then also $Tu \in L^2(-\infty,\infty)$, since G is bounded on the imaginary axis iR.
- (e) For $\omega \in (0,100)$, $|G(i\omega)|$ is an increasing function. Thus, the maximal gain on the relevant frequency range is attained at $\omega = 100$. We have

 $G(100i) = \frac{-i}{-10,000 + i + 90,000}, \text{ so that}$ $|G(100i)| \approx \frac{1}{80,000} = 1.25 \cdot 10^{-5}, \text{ with}$ a precision of $\pm 0.01\%$. Thus, the norm of T restricted to BL(100) is $\approx 1.25 \cdot 10^{-5}$ (much less than its norm on $L^2(-\infty,\infty)$).

-10-