Understanding Analysis Solutions

Abbott, S. (2015) Understanding Analysis. 2nd edn.

December 27, 2023

Contents

1	The	Real Numbers																	1
	1.2	Some Preliminaries																	1

Chapter 1

The Real Numbers

1.2 Some Preliminaries

Exercise 1.2.1. (a) Prove that $\sqrt{3}$ is irrational. Does the same argument work to show that $\sqrt{6}$ is irrational?

- (b) Where does the proof of Theorem 1.1.1 break down if we try to use it to prove $\sqrt{4}$ is irrational?
- **Solution.** (a) Suppose there was a rational number $p = \frac{m}{n}$, which we may assume is in lowest terms, such that $p^2 = 3$. Then $m^2 = 3n^2$, so that m^2 is divisible by 3. This implies that m is divisible by 3. To see this, observe that for any $k \in \mathbb{Z}$ we have

$$(3k+1)^2 = 3(3k^2+2k)+1$$
 and $(3k+2)^2 = 3(3k^2+4k+1)+1$.

Since m is of the form 3k+1 or 3k+2 for some integer k if m is not divisible by 3, it follows that

if m is not divisible by 3, then m^2 is not divisible by 3;

the contrapositive of this statement is what we wanted to see.

Thus we may write m = 3k for some $k \in \mathbb{Z}$ and substitute this into the equation $m^2 = 3n^2$ to obtain the equation $n^2 = 3k^2$, which implies that n is also divisible by 3. So m and n share the factor 3; this is a contradiction since we assumed that m and n had no common factors. We may conclude that there is no rational number whose square is 3.

1.2. Some Preliminaries 2

The same argument works to show that there is no rational number whose square is 6; the crux of this argument is the implication

if m^2 is divisible by 6, then m is divisible by 6.

This can be seen using what we have already proved. If m^2 is divisible by $6 = 2 \cdot 3$, then m^2 is divisible by 2 and 3. It follows that m is divisible by 2 and 3 and hence that m is divisible by 6.

(b) The argument breaks down when we try to assert that

if m^2 is divisible by 4, then m is divisible by 4.

This implication is false. For example, $2^2 = 4$ is divisible by 4 but 2 is not divisible by 4.

Exercise 1.2.2. Show that there is no rational number r satisfying $2^r = 3$.

Solution. Suppose there was a rational number $r = \frac{m}{n}$, which we may assume is in lowest terms with n > 0, such that $2^r = 3$. This implies that $2^m = 3^n$. Since n > 0 gives $3^n \ge 3$ and $2^m < 2$ for $m \le 0$, it must be the case that m > 0. Then the left-hand side of the equation $2^m = 3^n$ is a positive even integer whereas the right-hand side is a positive odd integer, which is a contradiction. We may conclude that there is no rational number r such that $2^r = 3$.

Exercise 1.2.3. Decide which of the following represent true statements about the nature of sets. For any that are false, provide a specific example where the statement in question does not hold.

- (a) If $A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \cdots$ are all sets containing an infinite number of elements, then the intersection $\bigcap_{n=1}^{\infty} A_n$ is infinite as well.
- (b) If $A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \cdots$ are all finite, nonempty sets of real numbers, then the intersection $\bigcap_{n=1}^{\infty} A_n$ is finite and nonempty.
- (c) $A \cap (B \cup C) = (A \cap B) \cup C$.
- (d) $A \cap (B \cap C) = (A \cap B) \cap C$.
- (e) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Solution. (a) This is false, as Example 1.2.2 shows.

1.2. Some Preliminaries 3

(b) This is true and we can use the following lemma to prove it.

Lemma L.1. If $(a_n)_{n=1}^{\infty}$ is a decreasing sequence of positive integers, i.e., $a_{n+1} \leq a_n$ and $a_n \geq 1$ for all $n \in \mathbb{N}$, then $(a_n)_{n=1}^{\infty}$ must be eventually constant. That is, there exists an $N \in \mathbb{N}$ such that $a_n = a_N$ for all n > N.

Proof. Let A be the set $\{a_n : n \in \mathbb{N}\}$, which is non-empty and bounded below by 1. It follows from the well-ordering principle that A has a least element, say $\min A = a_N$ for some $N \in \mathbb{N}$. Let n > N be given. It cannot be the case that $a_n < a_N$, since this would contradict that a_N is the least element of A, so we must have $a_n \geq a_N$. By assumption $a_n \leq a_N$ and so we may conclude that $a_n = a_N$.

Consider the sequence $(|A_n|)_{n=1}^{\infty}$, where $|A_n|$ is the number of elements contained in A_n . This is a sequence of positive integers, because each A_n is finite and non-empty, and furthermore this sequence is decreasing because the sets $(A_n)_{n=1}^{\infty}$ are nested:

$$A_1 \supset A_2 \supset A_3 \supset A_4 \supset \cdots$$
.

We may now invoke Lemma L.1 to obtain an $N \in \mathbb{N}$ such that $|A_n| = |A_N|$ for all n > N. Combining this equality with the inclusion $A_n \subseteq A_N$ for each n > N, we see that $A_n = A_N$ for all n > N. It follows that $\bigcap_{n=1}^{\infty} A_n = A_N$, which by assumption is finite and non-empty.

(c) This is false. Consider $A = B = \emptyset$ and $C = \{0\}$. Then

$$A \cap (B \cup C) = \emptyset \neq \{0\} = (A \cap B) \cup C.$$

(d) This is true, since

$$x \in A \cap (B \cap C) \iff x \in A \text{ and } x \in (B \cap C) \iff x \in A \text{ and } (x \in B \text{ and } x \in C)$$

 $\iff (x \in A \text{ and } x \in B) \text{ and } x \in C \iff x \in (A \cap B) \text{ and } x \in C \iff x \in (A \cap B) \cap C,$

where we have used that logical conjunction ("and") is associative for the third equivalence. It follows that x belongs to $A \cap (B \cap C)$ if and only if x belongs to $(A \cap B) \cap C$, which is to say that $A \cap (B \cap C) = (A \cap B) \cap C$.

1.2. Some Preliminaries 4

(e) This is true, since

$$x \in A \cap (B \cup C) \iff x \in A \text{ and } x \in (B \cup C) \iff x \in A \text{ and } (x \in B \text{ or } x \in C)$$

 $\iff (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C) \iff x \in (A \cap B) \text{ or } x \in (A \cap C)$
 $\iff x \in (A \cap B) \cup (A \cap C),$

where we have used that logical conjunction ("and") distributes over logical disjunction ("or") for the third equivalence. It follows that x belongs to $A \cap (B \cup C)$ if and only if x belongs to $(A \cap B) \cup (A \cap C)$, which is to say that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.