Contents

1	Wor	king with Unlabeled Data – Clustering Analysis	1		
	1.1	Grouping objects by similarity using k-means	1		
		1.1.1 k-means clustering using scikit-learn	1		
	1.2	Organizing clusters as a hierarchical tree	2		
		1.2.1 Grouping clusters in a bottom-up fashion	2		
	1.3	Locating regions of high density via DBSCAN	2		

ii CONTENTS

Chapter 1

1.1

1.1.1 Estimating class probabilities in multiclass classification via the softmax function

The softmax function is a soft form of the argmax function; instead of giving a single class index, it provides the probability of each class. Therefore, it allows us to compute meaningful class probabilities in multiclass settings (multinomial logistic regression).

In softmax, the probability of a particular sample with net input z belonging to the ith class can be computed with a normalization term in the denominator, that is, the sum of the exponentially weighted linear functions:

$$p(z) = \sigma(z) = \frac{e^{z_i}}{\sum_{i=1}^{M} e^{z_i}}$$
(1.1)

1.1.2 Broadening the output spectrum using a hyperbolic tangent

Another sigmoidal function that is often used in the hidden layers of artificial NNs is the hyperbolic tangent (commonly known as tanh), which can be interpreted as a rescaled version of the logistic function:

$$\sigma_{logistic}(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma_{tanh}(z) = 2 \times \sigma_{logistic}(2z) - 1 = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$
(1.2)

The advantage of the hyperbolic tangent over the logistic function is that it has a broader output spectrum ranging in the open interval (-1,1), which can improve the convergence of the backpropagation algorithm.

Note that using torch.sigmoid(x) produces results that are equivalent to torch. nn.Sigmoid()(x). torch.nn.Sigmoid is a class to which you can pass in parameters to construct an object in order to control the behavior. In contrast, torch.sigmoid is a function.

2 CHAPTER 1.

Activation fu	nction Equatio	n	Example	1D graph
Linear	σ(z) =	z	Adaline, linear regression	
Unit step (Heaviside function)	$\sigma(z) = \begin{cases} 0 \\ 0.5 \\ 1 \end{cases}$	z < 0 z = 0 z > 0	Perceptron variant	
Sign (signum)	$\sigma(z) = \begin{cases} -1 \\ 0 \\ 1 \end{cases}$		Perceptron variant	
Piece-wise linear	$\sigma(z) = \begin{cases} 0 \\ z + \frac{1}{2} \\ 1 \end{cases}$	$z \le -\frac{1}{2}$ $-\frac{1}{2} \le z \le \frac{1}{2}$ $z \ge \frac{1}{2}$	Support vector machine	
Logistic (sigmoid)	$\sigma(z) = \frac{1}{1}$	1 + e ^{-z}	Logistic regression, multilayer NN	
Hyperbolic tangent (tanh)	$\sigma(z) = \frac{e^z}{e^z}$	- e ^{-z} + e ^{-z}	Multilayer NN, RNNs	
ReLU	$\sigma(z) = \begin{cases} 0 \\ z \end{cases}$	z < 0 z > 0	Multilayer NN, CNNs	

Figure 1.1: The activation functions covered