Математика для Data Science. Теория вероятностей. Условия задач

Содержание

Определённый интеграл	
Задача 1	
Задача 1	
Неопределённый интеграл	
Дополнительная задача	
Задача 1	
Задача 2	
Задача 3	
Задача 4	
Задача 5	
Задача 4	
Непрерывные вероятностные пространства	
Задача 1	
Задача 2	
Плотность вероятности	
Задача 1	
Залача 3	

Замечание. Вот этим цветом отмечены ссылки на страницы внутри этого файла.

Определённый интеграл

Задача 1

Дана постоянная функция f(x)=3, определённая на отрезке [0,100]. Найдите $\int\limits_0^{100}f(x)\,dx.$

Задача 2

Дана функция f(x)=x, определённая на отрезке [0,1]. Построим последовательность разбиений. Разбиение номер k будет состоять из точек $0<\frac{1}{k}<\frac{2}{k}<\dots<\frac{k-1}{k}<1$. В качестве c_i на каждом из отрезков мы выбираем самую правую точку отрезка.

- 1. Докажите, что ранг этих разбиений стремится к нулю.
- 2. Найдите предел соответствующих интегральных сумм.

Заметьте, что мы нашли предел только одной последовательности разбиений. Чтобы доказать, что найденное число действительно является интегралом функции f(x) = x на отрезке [0,1], нам бы пришлось рассмотреть всевозможные другие последовательности разбиений.

Неопределённый интеграл

Дополнительная задача

Задача. Формализуйте доказательство с предыдущего шага.

Вам понадобятся определения непрерывности из курса матана, вот они.

Определение [по Коши]. Функция f называется непрерывной в точке x_0 , если

- $x_0 \in D$ (где D это область определения f),
- для любого $\varepsilon > 0$ найдётся $\delta > 0$, такое что выполнено неравенство $|f(x) f(x_0)| < \varepsilon$ для всех $x \in D$, удовлетворяющих $|x x_0| < \delta$.

Определение [по Гейне]. Функция f называется непрерывной в точке x_0 , если

- $x_0 \in D$,
- предел $\lim_{x \to x_0} f(x)$ существует и равен $f(x_0)$.

Определения непрерывности в точке по Коши и по Гейне эквивалентны.

Определение. Функция f называется непрерывной если она непрерывна в каждой точке D.

Задача 1

- 1. Найдите неопределённый интеграл функции x^n .
- 2. Найдите определённый интеграл $\int\limits_a^b x^n\,dx.$

Каждый раз, когда мы пишем "найдите неопределённый интеграл" мы имеем в виду "найдите какой-нибудь неопределённый интеграл".

Задача 2

- 1. Найдите неопределённый интеграл функции $\cos(x)$.
- 2. Найдите определённый интеграл $\int\limits_a^b\cos(x)\,dx.$

Задача 3

Пусть f и g – непрерывные функции на отрезке [a,b].

- 1. Докажите, что $\int\limits_a^b cf(x)\,dx=c\int\limits_a^b f(x)\,dx$ для любого $c\in\mathbb{R}.$
- 2. Докажите, что $\int\limits_a^b f(x)\,dx+\int\limits_a^b g(x)\,dx=\int\limits_a^b f(x)+g(x)\,dx.$

Тем самым операция взятия определённого интеграла линейна на множестве всех непрерывных функций.

Задача 4

Найдите несобственный интеграл $\int\limits_0^{+\infty} x\,dx$ или докажите, что он расходится

Задача 5

Найдите несобственный интеграл $\int\limits_{1}^{+\infty} \frac{1}{x^3} \, dx$ или докажите, что он расходится

Задача 4

Найдите несобственный интеграл $\int\limits_{-\infty}^{+\infty} \sin x\, dx$ или докажите, что он расходится

Непрерывные вероятностные пространства

Задача 1

Докажите, что вероятность прихода Светы в течение вечеринки действительно равна 1. То есть, что $P([0,3]) = \int\limits_0^3 g(t)\,dt = 1.$

Можете строго найти интеграл, используя первообразную. А можете считать, что мы уже убедились, что интеграл это площадь, и просто найти площадь нужных частей подграфика (используя формулы площади прямоугольника и площади прямоугольного треугольника).

Задача 2

Оказывается, что и Костя, и Лена приходят на вечеринку ровно на час. То есть каждый из них приходит на вечеринку, проводит на ней час времени и уходит. Если вечеринка закончилась раньше, чем пройдёт этот час, то человек просто уходит вместе с остальными гостями в конце вечеринки. Найдите вероятность того, что вы сможете представить друг другу Костю и Лену.

Другими словами, найдите вероятность того, что в какой-то момент на вечеринке одновременно будут и Костя, и Лена.

Плотность вероятности

Задача 1

Чему будет равняться сумма площадей всех столбиков псевдо-гистограммы для экспоненциального распределения с параметром $\lambda=1$?

Задача 3

Нарисуйте график плотности вероятности для равномерного распределения

- 1. на отрезке [0,1]
- 2. на отрезке [3, 5]
- 3. на отрезке [1, x], где x > 1