Step	Algorithm:		
1a			
4			
	where		
2			
3	while do		
2,3		٨	
5a			
	where		
6			
8			
5b			
7			
2			
	endwhile		
2,3		^ ¬()
1b			

Step	Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$
1a	$C=\widehat{C}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{TL} is 0×0 , B_T has 0 rows, C_T has 0 rows
2	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right)$
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \wedge m(A_{TL}) < m(A)$
5a	$ \left(\frac{A_{TL} A_{TR}}{A_{BL} A_{BR}}\right) \to \left(\frac{A_{00} a_{01} A_{02}}{0 \alpha_{11} a_{12}^T}\right), \left(\frac{B_T}{B_B}\right) \to \left(\frac{B_0}{b_1^T}\right), \left(\frac{C_T}{C_B}\right) \to \left(\frac{C_0}{c_1^T}\right) $
6	where α_{11} is 1×1 , b_1 has 1 row, c_1 has 1 row $ \left(\frac{C_0}{c_1^T}\right) = \left(\frac{A_{00}B_0 + a_{01}b_1^T + A_{02}B_2 + \widehat{C}_0}{\widehat{C}_1^T}\right) = \left(\frac{\widehat{C}_1^T}{\widehat{C}_2}\right) $
8	$c_1^T := a_{01}^T B_0 + \alpha_{11} b_1^T + a_{12}^T B_2 + c_1^T$
5b	$ \left(\frac{A_{TL}}{A_{BL}} \begin{vmatrix} A_{TR} \\ A_{BR} \end{vmatrix}\right) \leftarrow \left(\frac{A_{00}}{0} \begin{vmatrix} a_{01} & A_{02} \\ 0 & \alpha_{11} & a_{12}^T \\ 0 & 0 & A_{22} \end{vmatrix}\right), \left(\frac{B_T}{B_B}\right) \leftarrow \left(\frac{B_0}{b_1^T} \\ B_2\right), \left(\frac{C_T}{C_B}\right) \leftarrow \left(\frac{C_0}{c_1^T} \\ C_2\right) $
7	$ \left(\frac{C_0}{\frac{c_1^T}{C_2}}\right) = \left(\frac{A_{00}B_0 + a_{01}b_1^T + A_{02}B_2 + \widehat{C}_0}{\frac{a_{01}^T B_0 + \alpha_{11}b_1^T + a_{12}^T B_2 + \widehat{c}_1^T}{\widehat{C}_2}}\right) $
2	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right)$
	endwhile
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \land \neg (m(A_{TL}) < m(A))$
1b	$[C] = \operatorname{symm_lu}(A, B, \widehat{C})$

Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$

$$A \to \left(\frac{A_{TL}}{A_{BL}} A_{TR}\right), B \to \left(\frac{B_T}{B_B}\right), C \to \left(\frac{C_T}{C_B}\right)$$

where A_{TL} is 0×0 , B_T has 0 rows, C_T has 0 rows

while $m(A_{TL}) < m(A)$ do

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \to \left(\begin{array}{c|c}
A_{00} & a_{01} & A_{02} \\
\hline
0 & \alpha_{11} & a_{12}^T \\
\hline
0 & 0 & A_{22}
\end{array}\right), \left(\begin{array}{c}
B_T \\
\hline
B_B
\end{array}\right) \to \left(\begin{array}{c}
B_0 \\
\hline
b_1^T \\
B_2
\end{array}\right), \left(\begin{array}{c}
C_T \\
C_B
\end{array}\right) \to \left(\begin{array}{c}
C_0 \\
\hline
c_1^T \\
C_2
\end{array}\right)$$

where α_{11} is 1×1 , b_1 has 1 row, c_1 has 1 row

$$c_1^T := a_{01}^T B_0 + \alpha_{11} b_1^T + a_{12}^T B_2 + c_1^T$$

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \leftarrow \left(\begin{array}{c|c}
A_{00} & a_{01} & A_{02} \\
\hline
0 & \alpha_{11} & a_{12}^T \\
\hline
0 & 0 & A_{22}
\end{array}\right), \left(\begin{array}{c}
B_T \\
\hline
B_B
\end{array}\right) \leftarrow \left(\begin{array}{c}
B_0 \\
\hline
b_1^T \\
B_2
\end{array}\right), \left(\begin{array}{c}
C_T \\
C_B
\end{array}\right) \leftarrow \left(\begin{array}{c}
C_0 \\
\hline
c_1^T \\
C_2
\end{array}\right)$$

endwhile

Step	Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$
1a	$C = \widehat{C}$
4	where
2	
3	while do
2,3	\wedge
5a	where
6	
8	
5b	
7	
2	
	endwhile
2,3	$\wedge \neg ($
1b	$[C] = \operatorname{symm_lu}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$
1a	$C = \widehat{C}$
4	
	where
2	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right)$
3	while do
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \land$
5a	
	where
6	
8	
5b	
7	
2	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right)$
	endwhile
2	$ \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \land \neg () $
1b	$[C] = \operatorname{symm_lu}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$
1a	$C = \widehat{C}$
4	
2	where $ \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) $
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \wedge m(A_{TL}) < m(A)$
5a	where
	where
6	
8	
5b	
7	
2	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right)$
	endwhile
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \land \neg (m(A_{TL}) < m(A))$
1b	$[C] = \operatorname{symm_lu}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$
1a	$C = \widehat{C}$
4	$A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \rightarrow \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \rightarrow \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{TL} is 0×0 , B_T has 0 rows, C_T has 0 rows
2	where A_{TL} is 0×0 , B_T has 0 rows, C_T has 0 rows $ \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) $
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \wedge m(A_{TL}) < m(A)$
5a	
	where
6	
8	
5b	
7	
2	$ \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) $
	endwhile
2,3	$ \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \land \neg (m(A_{TL}) < m(A)) $
1b	$[C] = \operatorname{symm_lu}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$
1a	$C = \widehat{C}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{TL} is 0×0 , B_T has 0 rows, C_T has 0 rows
2	$ \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) $
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \wedge m(A_{TL}) < m(A)$
5a	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline 0 & \alpha_{11} & a_{12}^T \\ \hline 0 & 0 & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \rightarrow \left(\begin{array}{c} C_0 \\ \hline c_1^T \\ C_2 \end{array}\right) $ where α_{11} is 1×1 , b_1 has 1 row, c_1 has 1 row
6	
8	
5b	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline 0 & \alpha_{11} & a_{12}^T \\ \hline 0 & 0 & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ \hline C_B \end{array}\right) \leftarrow \left(\begin{array}{c} C_0 \\ \hline c_1^T \\ \hline C_2 \end{array}\right) $
7	
2	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right)$
	endwhile
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \land \neg (m(A_{TL}) < m(A))$
1b	$[C] = \operatorname{symm} \operatorname{lu}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$
1a	$C = \widehat{C}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{TL} is 0×0 , B_T has 0 rows, C_T has 0 rows
2	$ \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) $
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \wedge m(A_{TL}) < m(A)$
5a	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline 0 & \alpha_{11} & a_{12}^T \\ \hline 0 & 0 & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \rightarrow \left(\begin{array}{c} C_0 \\ \hline c_1^T \\ C_2 \end{array}\right) $ where α_{11} is 1×1 , b_1 has 1 row, c_1 has 1 row
6	$ \left(\frac{C_0}{c_1^T}\right) = \left(\frac{A_{00}B_0 + a_{01}b_1^T + A_{02}B_2 + \widehat{C}_0}{\widehat{C}_1^T}\right) $
8	
5b	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline 0 & \alpha_{11} & a_{12}^T \\ \hline 0 & 0 & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \leftarrow \left(\begin{array}{c} C_0 \\ \hline c_1^T \\ C_2 \end{array}\right) $
7	
2	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right)$
	endwhile
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \land \neg (m(A_{TL}) < m(A))$
1b	$[C] = \operatorname{symm} \operatorname{lu}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$
1a	$C = \widehat{C}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{TL} is 0×0 , B_T has 0 rows, C_T has 0 rows
2	$ \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) $
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \wedge m(A_{TL}) < m(A)$
5a	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline 0 & \alpha_{11} & a_{12}^T \\ \hline 0 & 0 & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \rightarrow \left(\begin{array}{c} C_0 \\ \hline c_1^T \\ C_2 \end{array}\right) $ where α_{11} is 1×1 , b_1 has 1 row, c_1 has 1 row
6	$ \left(\frac{C_0}{c_1^T}\right) = \left(\frac{A_{00}B_0 + a_{01}b_1^T + A_{02}B_2 + \hat{C}_0}{\hat{C}_1^T}\right) \\ \frac{\hat{C}_1^T}{\hat{C}_2} $
8	
5b	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline 0 & \alpha_{11} & a_{12}^T \\ \hline 0 & 0 & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \leftarrow \left(\begin{array}{c} C_0 \\ \hline c_1^T \\ C_2 \end{array}\right) $
7	$ \left(\frac{C_0}{c_1^T}\right) = \left(\frac{A_{00}B_0 + a_{01}b_1^T + A_{02}B_2 + \widehat{C}_0}{a_{01}^TB_0 + \alpha_{11}b_1^T + a_{12}^TB_2 + \widehat{c}_1^T} \widehat{C}_2\right) $
2	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right)$
	endwhile
2	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \land \neg (m(A_{TL}) < m(A))$
1b	$[C] = \operatorname{symm_lu}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$
1a	$C = \widehat{C}$
4	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{TL} is 0×0 , B_T has 0 rows, C_T has 0 rows
2	$ \left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) $
3	while $m(A_{TL}) < m(A)$ do
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \wedge m(A_{TL}) < m(A)$
5a	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline 0 & \alpha_{11} & a_{12}^T \\ \hline 0 & 0 & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \rightarrow \left(\begin{array}{c} C_0 \\ \hline c_1^T \\ C_2 \end{array}\right) $ where α_{11} is 1×1 , b_1 has 1 row, c_1 has 1 row
6	$ \left(\frac{C_0}{c_1^T}\right) = \left(\frac{A_{00}B_0 + a_{01}b_1^T + A_{02}B_2 + \hat{C}_0}{\hat{C}_1^T}\right) \\ \frac{\hat{C}_1^T}{\hat{C}_2} $
8	$c_1^T := a_{01}^T B_0 + \alpha_{11} b_1^T + a_{12}^T B_2 + c_1^T$
5b	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline 0 & \alpha_{11} & a_{12}^T \\ \hline 0 & 0 & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \leftarrow \left(\begin{array}{c} C_0 \\ \hline c_1^T \\ C_2 \end{array}\right) $
7	$ \left(\frac{C_0}{c_1^T}\right) = \left(\frac{A_{00}B_0 + a_{01}b_1^T + A_{02}B_2 + \widehat{C}_0}{a_{01}^TB_0 + \alpha_{11}b_1^T + a_{12}^TB_2 + \widehat{c}_1^T}\right) $ $ \widehat{C}_2 $
2	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right)$
	endwhile
2,3	$\left(\frac{C_T}{C_B}\right) = \left(\frac{\widehat{C}_T}{\widehat{C}_B}\right) \land \neg (m(A_{TL}) < m(A))$
1b	$[C] = \operatorname{symm_lu}(A, B, \widehat{C})$

Step	Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$
	$A \to \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}, B \to \begin{pmatrix} B_T \\ B_B \end{pmatrix}, C \to \begin{pmatrix} C_T \\ C_B \end{pmatrix}$ where A_{TL} is 0×0 , B_T has 0 rows, C_T has 0 rows
	while $m(A_{TL}) < m(A)$ do
	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \rightarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline 0 & \alpha_{11} & a_{12}^T \\ \hline 0 & 0 & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ B_B \end{array}\right) \rightarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ C_B \end{array}\right) \rightarrow \left(\begin{array}{c} C_0 \\ \hline c_1^T \\ C_2 \end{array}\right) $ where α_{11} is 1×1 , b_1 has 1 row, c_1 has 1 row
	$c_1^T := a_{01}^T B_0 + \alpha_{11} b_1^T + a_{12}^T B_2 + c_1^T$
	$ \left(\begin{array}{c c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c c} A_{00} & a_{01} & A_{02} \\ \hline 0 & \alpha_{11} & a_{12}^T \\ \hline 0 & 0 & A_{22} \end{array}\right), \left(\begin{array}{c} B_T \\ \hline B_B \end{array}\right) \leftarrow \left(\begin{array}{c} B_0 \\ \hline b_1^T \\ \hline B_2 \end{array}\right), \left(\begin{array}{c} C_T \\ \hline C_B \end{array}\right) \leftarrow \left(\begin{array}{c} C_0 \\ \hline c_1^T \\ \hline C_2 \end{array}\right) $
	endwhile

Algorithm: $[C] := \text{SYMM_LU_UNB_VAR3}(A, B, C)$

$$A \to \left(\frac{A_{TL}}{A_{BL}} A_{TR}\right), B \to \left(\frac{B_T}{B_B}\right), C \to \left(\frac{C_T}{C_B}\right)$$

where A_{TL} is 0×0 , B_T has 0 rows, C_T has 0 rows

while $m(A_{TL}) < m(A)$ do

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \to \left(\begin{array}{c|c}
A_{00} & a_{01} & A_{02} \\
\hline
0 & \alpha_{11} & a_{12}^T \\
\hline
0 & 0 & A_{22}
\end{array}\right), \left(\begin{array}{c}
B_T \\
\hline
B_B
\end{array}\right) \to \left(\begin{array}{c}
B_0 \\
\hline
b_1^T \\
B_2
\end{array}\right), \left(\begin{array}{c}
C_T \\
C_B
\end{array}\right) \to \left(\begin{array}{c}
C_0 \\
\hline
c_1^T \\
C_2
\end{array}\right)$$

where α_{11} is 1×1 , b_1 has 1 row, c_1 has 1 row

$$c_1^T := a_{01}^T B_0 + \alpha_{11} b_1^T + a_{12}^T B_2 + c_1^T$$

$$\left(\begin{array}{c|c}
A_{TL} & A_{TR} \\
\hline
A_{BL} & A_{BR}
\end{array}\right) \leftarrow \left(\begin{array}{c|c}
A_{00} & a_{01} & A_{02} \\
\hline
0 & \alpha_{11} & a_{12}^T \\
\hline
0 & 0 & A_{22}
\end{array}\right), \left(\begin{array}{c}
B_T \\
\hline
B_B
\end{array}\right) \leftarrow \left(\begin{array}{c}
B_0 \\
\hline
b_1^T \\
B_2
\end{array}\right), \left(\begin{array}{c}
C_T \\
C_B
\end{array}\right) \leftarrow \left(\begin{array}{c}
C_0 \\
\hline
c_1^T \\
C_2
\end{array}\right)$$

endwhile