Complete the statements by writing <, =, or >.

$B \cdot 9 \cdot m \angle 1 \stackrel{?}{\underline{\hspace{1cm}}} m \angle 2$

Write proofs in two-column form.

11. Given:
$$\overline{TU} \cong \overline{US} \cong \overline{SV}$$

Prove: $ST > SV$

C 13. Given: $\overline{PA} \cong \overline{PC} \cong \overline{QC} \cong \overline{QB}$ Prove: $m \angle PCA < m \angle QCB$

10. SR = ST; VX = VT $m \angle RSV \stackrel{?}{=} m \angle TSV$

12. Given: Plane P bisects \overline{XZ} at Y; WZ > WX

Discover and prove something about the figure.

14. Given: $\overline{DE} \perp \text{plane } M$; EK > EJ

Prove: DK > DJ

(*Hint*: On \overline{EK} , take Z so that EZ = EJ.)

- 15. In the three-dimensional figure shown, all the edges except \overline{VC} are congruent. What can you say about the measures of the largest angles of the twelve angles in the figure
 - **a.** if \overline{VC} is longer than the other edges?
 - **b.** if \overline{VC} is shorter than the other edges?

