Algebra und Dynamik von Quantensystemen Blatt Nr. 1

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 24, 2025)

Problem 1 (CCRs vs. Boundedness). Consider two bounded operators A and B on a Hilbert space \mathcal{H}_t i.e.

$$\exists a \in \mathbb{R} : \forall \psi \in \mathcal{H} : ||A\psi|| \le a||\psi||, \tag{1a}$$

$$\exists b \in \mathbb{R} : \forall \psi \in \mathcal{H} : ||B\psi|| \le b||\psi||. \tag{1b}$$

Show that the canonical commutation relations

$$[A,B] = AB - BA = i \tag{2}$$

are inconsistent with the assumption of boundedness for the operators A and B.

NB: It is not necessary to find an original proof. It suffices to find, understand and present a proof from the literature.

Proof. The proof comes from rudin: Let A be a normed algebra, and $x,y \in A$. We assume that

$$xy - yx = 1$$

The first step is to prove that $xy^n - y^nx = ny^{n-1}$ for all $n \in \mathbb{N}$. This is true for n = 1. Then, by induction, if

$$xy^n - y^n x = ny^{n-1},$$

it follows that

$$xy^{n+1} - y^{n+1}x = (xy^n - y^n x)y + y^n(xy - yx)$$
$$= ny^n + y^n$$
$$= (n+1)y^n$$

 $^{^{}st}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Additionally, we note that $y^n \neq 0$ for all n. Otherwise, we would choose the minimum n, and get

$$0 = xy^n - y^n x = ny^{n-1},$$

a contradiction to the minimality of n. Now, we have

$$||y^{n-1}|| = ||xy^n - y^n x|| \le 2||x|| ||y|| ||y||^{n-1}$$

and

$$2\|x\|\|y\| \ge n,$$

a contradiction.

Problem 2 (Classical Dynamics on the 2-Torus). Consider a classical dynamical system with the 2-Torus $T^2 = S^1 \times S^1$ as phase space Γ (this is not a cotangent bundle, but it has the technical advantage of being compact).

Using standard coordinates $(\theta_1, \theta_2) \in [0, 2\pi)^2$, a consistent Poisson bracket is given by

$$\{f,g\} = \frac{\partial f}{\partial \theta_1} \frac{\partial g}{\partial \theta_2} - \frac{\partial f}{\partial \theta_2} \frac{\partial g}{\partial \theta_1}.$$
 (3)

Assume that the Hamiltonian is

$$H: \Gamma \to \mathbb{R}$$

$$(\theta_1, \theta_2) \mapsto H(\theta_1, \theta_2) = c \cos \theta_1. \tag{4}$$

In order to be well defined globally, the Hamiltonian must be periodic in θ_1 and θ_2 . This is the simplest choice.

- 1. Derive the equations of motion.
- 2. Determine the flow Φ of a phase space point $(\theta_1, \theta_2) \in \Gamma$.
- 3. Determine the time evolution of the state ω , where

$$\omega(f) = \int_{\Gamma} d^2\theta f(\theta) \,\omega(\theta) \tag{5}$$

with

$$\omega: \Gamma \to \mathbb{R}$$

$$(\theta_1, \theta_2) \mapsto \omega(\theta_1, \theta_2) = \frac{1}{\pi^2} \sin^2 \theta_1 \sin^2 \theta_2.$$
(6)

HAMILTONIAN DYNAMICS

The Hamiltonian is a function on the phase space

$$H = H(q_1, ..., q_n, p_1, ..., p_n).$$

The flow solves the canonical equations of motion

$$\frac{\mathrm{d}q_i}{\mathrm{d}t} = \frac{\partial H}{\partial p_i}$$
$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = -\frac{\partial H}{\partial q_i}$$

We can also define the Poisson bracket

$$\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right)$$

It is immediately clear that the Poisson bracket is antisymmetric; additionally, we have the canonical commutation relations

$${q,p} = 1, {q,q} = {p,p} = 0$$

Clearly, because $\frac{\partial q}{\partial p} = \frac{\partial p}{\partial q} = 0$, we can rewrite the canonical commutation relations as

$$\frac{\mathrm{d}q_i}{\mathrm{d}t} = \{q_i, H\}$$
$$\frac{\mathrm{d}p_i}{\mathrm{d}t} = \{p_i, H\}$$

STATES AS FUNCTIONALS

Proof. 1. The equations of motion are

$$\frac{\mathrm{d}\theta_1}{\mathrm{d}t} = \frac{\partial H}{\partial \theta_2} = 0$$

and

$$\frac{\mathrm{d}\theta_2}{\mathrm{d}t} = -\frac{\partial H}{\partial \theta_1} = c\sin\theta_1$$

2. Clearly, the first equation tells us that θ_1 is a constant; since the right hand side of

equation 2 is now a constant, θ_2 varies linearly with time.

$$\Phi^t \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix} = \begin{pmatrix} \theta_1 \\ \theta_2 + ct \cos \theta_1 \end{pmatrix}$$

3. The flow is defined by

$$\omega_t(f) = \omega(\Phi_t(f)) = \omega(f \circ \Phi_t).$$

On the right hand side, we desire

$$\omega_t(f) = \frac{1}{\pi^2} \int_{\Gamma} d^2\theta f(\theta_1, \theta_2 + ct \cos \theta_1) \omega(\theta_1, \theta_2)$$
$$= \frac{1}{\pi^2} \int_{\Gamma} d^2\theta f(\theta_1, \theta_2) \omega(\theta_1, \theta_2 - ct \cos \theta_1). \qquad \Box$$

Problem 3 (Classical Dynamics on the 2-Sphere). Consider a classical dynamical system with the 2-Sphere S^2 as phase space Γ (this is again not a cotangent bundle, but the technical advantage of being compact and is highly symmetric).

Using standard spherical coordinates $(\theta, \phi) \in [0, \pi] \times [0, 2\pi)$, a consistent Poisson bracket is given by

$$\{f,g\} = \frac{1}{\sin\theta} \left(\frac{\partial f}{\partial\theta} \frac{\partial g}{\partial\phi} - \frac{\partial f}{\partial\phi} \frac{\partial g}{\partial\theta} \right). \tag{7}$$

Assume that the Hamiltonian is

$$H: \Gamma \to \mathbb{R}$$

$$(\phi, \theta) \mapsto H(\phi, \theta) = c \cos \theta.$$
 (8)

In order to be well defined globally, the Hamiltonian must be periodic in θ and ϕ . This is one of the simplest choices.

- 1. Show that the Poisson bracket satisfies all requirements.
- 2. Determine the flow Φ of a phase space point $(\theta, \phi) \in \Gamma$.
- 3. Determine the time evolution of the state ω , where

$$\omega(f) = \int_{\Gamma} \sin\theta \, d\theta \, d\phi \, f(\theta, \phi) \, \omega(\theta, \phi) \tag{9}$$

with

$$\omega: \Gamma \to \mathbb{R}$$

$$(\theta, \phi) \mapsto \omega(\theta, \phi) = \frac{2}{\pi^2} \sin \theta \cos^2 \phi.$$
 (10)

Proof. 1. It is clearly antisymmetric

2. We have the equations of motion

$$\frac{d\theta}{dt} = \{\theta, H\} = 0$$

$$\frac{d\phi}{dt} = \{\phi, H\} = -\frac{1}{\sin \theta}(-c \sin \theta) = c$$

and solutions

$$\theta(t) = \theta(0)$$

$$\phi(t) = \phi(0) + ct$$

3. Again

$$\omega_t(f) = \omega(f \circ \Phi_t)$$

$$= \frac{2}{\pi^2} \int_{\Gamma} \sin \theta \, d\theta \, d\phi \, f(\theta, \phi + ct) \, \omega(\theta, \phi)$$

$$= \frac{2}{\pi^2} \int_{\Gamma} \sin \theta \, d\theta \, d\phi \, f(\theta, \phi) \, \omega(\theta, \phi - ct)$$