UNSW AUSTRALIA. SCHOOL OF MATHEMATICS AND STATISTICS MATH5645 TOPICS IN NUMBER THEORY

3. ARITHMETIC FUNCTIONS AND DIRICHLET MULTIPLICATION:

- **a.** Show that $\prod d = n^{\frac{\tau(n)}{2}}$.
 - **b.** Use the AM/GM inequality to show that $\frac{\sigma(n)}{\tau(n)} \ge \prod_{J \mid n} d^{\frac{1}{\tau(n)}}$.
 - c. Deduce that $\frac{\sigma(n)}{\tau(n)} \ge n^{\frac{1}{2}}$.
- Show that for n > 1, $\tau(n) \le 2\sqrt{n}$.
- **3** a. Prove that $S = \sum_{n=1}^{\infty} \frac{1}{d} = \frac{\sigma(n)}{n}$ and find the value of S in the case when n is a perfect number.
 - **b.** Hence show that if m|n, $\frac{\sigma(n)}{n} \geq \frac{\sigma(m)}{m}$.
 - **c.** Deduce that no proper factor of a perfect number can be perfect.
- **a.** Let n be of the form 12k+2. Suppose that 6k+1 and 4k+1 are both prime. Prove that $\tau(n)=\tau(n+1)$. (It is an unsolved problem to show there are infinitely many n such that $\tau(n) = \tau(n+1)$.)
 - **b.** Prove that $\tau(n)$ is odd, if and only if n is a square.
- Let $\sigma^k(n)$ denote the sum of the kth powers of the divisors of n. Find the formula for $\sigma^k(n)$ in terms of the prime decomposition of n.
- Use the Möbius Inversion Formula to show that for n > 1,

$$\mathbf{a.} \quad \sum_{d|n} \mu(d) \tau(\frac{n}{d}) = 1$$

b.
$$\sum_{d|n} \mu(d)\sigma(\frac{n}{d}) = r$$

$$\mathbf{a.} \quad \sum_{d|n} \mu(d) \tau(\frac{n}{d}) = 1 \qquad \quad \mathbf{b.} \quad \sum_{d|n} \mu(d) \sigma(\frac{n}{d}) = n \qquad \quad \mathbf{c.} \quad \sum_{d|n} \mu(d) \log(d) = -\Lambda(n).$$

a.
$$\sum_{d|n} \sigma(d) = \sum_{d|n} \frac{n}{d} \tau(d)$$

For any positive integer
$$n$$
, show that
a. $\sum_{d|n} \sigma(d) = \sum_{d|n} \frac{n}{d} \tau(d)$ **b.** $\sum_{d|n} \frac{n}{d} \sigma(d) = \sum_{d|n} d\tau(d)$

- For any positive integer n, show that $\sum_{d|n} (\tau(d))^3 = \left(\sum_{d|n} (\tau(d))^2\right)^2$.
- Suppose p is a fixed prime and n a positive integer. It is known from Algebra, that there is an irreducible polynomial in $\mathbb{Z}_p[x]$ of degree n. Also, the product of all monic irreducible polynomials in $\mathbb{Z}_p[x]$ of degree d, for each divisor d of n, is given by $x^{p^n} - x$. Let N_d be the number of such irreducible polynomials of degree
 - **a.** Explain by $p^n = \sum_{i} dN_d$.
 - **b.** Hence find a formula for N_n .
- 10
 - **a.** If f, g, h are arithmetic functions, show that f * g = g * f and (f * g) * h = f * (g * h), where * denotes the Dirichlet product.

 ${f b.}$ Suppose further that f,g are multiplicative functions, and define

$$F(n) = \sum_{d|n} f(d)g(\frac{n}{d}).$$

Prove that F is multiplicative.

- **c.** Let I(n) be the arithmetic function which is identically zero for all n except n=1 and define I(1)=1. Suppose we have an arithmetic function f such that $f(1) \neq 0$, show that there is a unique arithmetic function f^{-1} such that $f * f^{-1}$ and $f^{-1} * f = I$. Show that a recursive formula for f^{-1} is given by $f^{-1}(n) = -\frac{1}{f(1)} \sum_{d < n, d \mid n} f(\frac{n}{d}) f^{-1}(d)$..
- **d.** Show that if f is multiplicative, then $f^{-1}(p^2) = (f(p))^2 f(p^2)$, when p is prime.
- **e.** Deduce that the set of all arithmetic functions f, with $f(1) \neq 0$, is an abelian group under the Dirichlet product.
- **11** a. Suppose that f(n) is multiplicative. Show that $\sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 f(p))$.
 - **b.** Deduce that $\sum_{d|n} \mu(d) \frac{n}{d} = n \prod_{p|n} \left(1 \frac{1}{p}\right)$.
 - **c.** Also deduce that $\sum_{d|n} \mu(d)\phi(d) = \prod_{p|n} (2-p)$.
- 12 Suppose p > 2 is a prime. Define $\psi(d)$ to be the number of elements in \mathbb{Z}_p^* with order d.
 - **a.** If d|p-1 explain why $\sum_{c|d} \psi(c) = d$.
 - **b.** Deduce that $\psi(d) = \phi(d)$.
 - **c.** Hence show that there are $\phi(p-1)$ primitive roots modulo p.
- 13 If $F(n) = \sum_{d|n} f(d)$ is multiplicative for some arithmetic function f, show that f is also multiplicative.

(Hint: Use the Möbius inversion formula.)

*14 Give a direct proof of the result: For $n \ge 1$, $\sum_{d|n} \phi(d) = n$.

(Hint: Consider the sets $N_d = \{k : (k, n) = \frac{n}{d}\}$. Show that $|N_d| = \phi(d)$.)

*15

a. Let $\phi_2(n)$ denote the sum of the squares of the numbers $\leq n$ and relatively prime to n. Given

$$\sum_{d|n} \frac{\phi_2(d)}{d^2} = \frac{1^2 + 2^2 + \dots + n^2}{n^2}$$

show that, for n > 1, $\phi_2(n) = \frac{1}{3}n^2\phi(n) + \frac{n}{6}\prod_{n|n}(1-p) = \frac{1}{3}n^2\phi(n) + \frac{n}{6}\phi^{-1}(n)$.

- **b.** ** Generalise to $\phi_3(n)$.
- **16 a.** Show that $u * u = \tau$.
 - **b.** Start with the product rule for Dirichlet derivatives, to deduce that $\tau(n) \log n = 2 \sum_{d|n} \log d$.
- *17 Suppose f and g are arithmetic functions. Prove the following so-called divisor to sum identities:

a.

$$\sum_{n \le x} \sum_{d|n} f(d) = \sum_{n \le x} \sum_{d \le \frac{x}{n}} f(d). \qquad (DSI 1)$$

b.

$$\sum_{n \le x} f(n) \sum_{d \mid n} g(d) = \sum_{d \le x} g(d) \sum_{j \le \frac{x}{2}} f(dj).$$
 (DSI 2)

18 Prove that for $x \ge 1$, $\sum_{n \le x} \mu(n) \lfloor \frac{x}{n} \rfloor = 1$.

(Hint: Write $\lfloor \frac{x}{n} \rfloor$ as $\sum_{i \leq \frac{x}{n}} 1$ and use the DSI 2.)

19 a. Prove that for $x \ge 2$ and $\alpha \ge 0$,

$$\sum_{n \le x} n^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1} + O(x^{\alpha}).$$

b. Let $\sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha}$. Prove that for $x \geq 2, \alpha \geq 2$, we have

$$\sum_{n \le x} \sigma_{\alpha}(n) = \frac{\zeta(\alpha+1)}{\alpha+1} x^{\alpha+1} + O(x^{\alpha}).$$

c. Prove that for $x \geq 2$,

$$\sum_{n \le x} \log^2 n = x \log^2 x - 2x \log x + 2x + O(\log^2 x).$$

- **20** Suppose f is a strictly increasing function from $\mathbb{Z}^+ \to \mathbb{R}$ with $0 < f(1) \le 1$. Let n be a positive integer and set m = |f(n)|.
 - **a.** Prove that

$$\sum_{j=1}^{n} \lfloor f(j) \rfloor + \sum_{j=1}^{m} \lfloor f^{-1}(j) \rfloor = mn + d,$$

where d is the number of lattice points on the graph of f. **b.** Find

$$\sum_{j=1}^{n} \lfloor j^{1/3} \rfloor.$$

*21 a. Let $S_2(n)$ denote the number of ways to write n as a sum of two integer squares. (Here we count order and negatives as different. For example, $(-1)^2 + 2^2$, $2^2 + 1^2$ etc are counted as distinct representations. Thus S(5) = 8.

Prove that
$$\sum_{n=0}^{N} S_2(n) = N\pi + O(\sqrt{N}).$$

Note that the error term has been improved to $O(N^{\frac{27}{82}})$. The true order is not known, but it is known that the exponent cannot be replaced by $\frac{1}{4}$.

(Hint: Look at the lattice points in the circle of radius \sqrt{N} . Under and over approximate using unit squares.)

b. Let $S_3(n)$ denote the number of representations of n as a sum of three squares.

Prove that
$$\sum_{n=0}^{N} S_3(n) = \frac{4}{3}\pi N^{\frac{3}{2}} + O(N).$$

22 (A slightly different derivation of the order of $\sum_{i} \phi(n)$.)

a. Prove that for
$$x \ge 2$$
, $\sum_{n \le x} \phi(n) = \frac{1}{2} \sum_{n \le x} \mu(n) \lfloor \frac{x}{n} \rfloor^2 + \frac{1}{2}$.

(Hint: Write $\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$ and apply the DSI 2.)

- **b.** Prove that $\sum_{n \le x} \mu(n) \lfloor \frac{x}{n} \rfloor^2 = \frac{x^2}{\zeta(2)} + O(x \log x)$.
- **c.** Deduce that $\sum_{n \le x} \phi(n) = \frac{1}{2} \frac{x^2}{\zeta(2)} + O(x \log x).$

- **23** a. Prove that for $x \ge 2$, $\sum_{n \le x} \frac{\phi(n)}{n} = \sum_{n \le x} \frac{\mu(n)}{n} \lfloor \frac{x}{n} \rfloor$.
 - **b.** Prove that $\sum_{n \le x} \frac{\mu(n)}{n} \lfloor \frac{x}{n} \rfloor = \frac{x}{\zeta(2)} + O(\log x)$.
 - **c.** Deduce that $\sum_{n \le x} \frac{\phi(n)}{n} = \frac{x}{\zeta(2)} + O(\log x)$.

BRIEF SOLUTIONS

- 1 **a.** Let $P = \prod_{d|n} d = \prod_{d|n} \frac{n}{d}$. Thus $P^2 = \prod_{d|n} n = n^{\tau(n)}$. **b.** Follows immediately from AM/GM inequality.
- If $n = k\ell$ then $k \leq \sqrt{n}$ or $\ell \leq \sqrt{n}$. Suppose the divisors of n are $a_1, a_2, \dots, a_{\tau(n)}$, in increasing order, then at least half of these are less than or equal to \sqrt{n} (factors and co-factors), hence $\frac{\tau(n)}{2} \le a_{\lceil \frac{\tau(n)}{2} \rceil} \le \sqrt{n}$.
- **3 a.** $S = \sum_{d|n} \frac{1}{d} = \sum_{d|n} \frac{d}{n} = \frac{1}{n} \sum_{d|n} d = \frac{\sigma(n)}{n} = 2$ if *n* is perfect. **b.** Easy given (a).
- 5 $\prod_{i=1}^{r} \frac{(p_i^k)^{\alpha_i+1}-1}{p_i^k-1}$. Both very easy.
- Since multiplicative, show true for prime powers. A lot of algebra involved hand written solutions in folder.
- Same method as for previous question.
- a. Consider the degree of the product of all the monic irreducible polys. b. By Möbius inversion, $N_n =$
- 10 a. $(f*g)(n) = \sum_{k=0}^{n} f(k)g(\frac{n}{d}) = \sum_{k=0}^{n} g(k)f(\frac{n}{k}) = (g*f)(n)$, where we put kd = n and ((f*g)*h)(n) = (g*f)(n)

 - $\sum_{n=q_1q_2} (f*g)(q_1)h(q_2) = \sum_{n=q_1q_2} \sum_{q_1=r_1r_2} f(r_1)g(r_2)h(q_2) = \sum_{n=r_1r_2q_2} f(r_1)g(r_2)h(q_2) = \sum_{n=r_1r_2q_2} f(q_1)g(r_2)h(q_2) = \sum_{n=r_1r_2q_1} f(q_1)g(r_1)h(r_2) = \sum_{n=r_1r_2q_1} f(q_1)\sum_{q_2=r_1r_2} g(r_1)h(r_2) = (f*(g*h))(n). \text{ b. } F(mn) = \sum_{d|mn} f(d)g(\frac{mn}{d}) = \sum_{d_1|m} f(d_1d_2)g(\frac{mn}{d_1d_2}) = \sum_{d_1|m} f(d_1d_2)g(\frac{mn}{d_1d_2$
 - $\sum_{d_1|m} f(d_1)g(\frac{m}{d_1}) \sum_{d_2|n} f(d_2)g(\frac{n}{d_2}) = F(m)F(n). \text{ c. Since } f(1) \neq 0, \text{ define } f^{-1}(1) = \frac{1}{f(1)}. \text{ Suppose that } f^{-1}(k)$
 - has been defined for all k < n. Then we require $\sum_{d \mid n} f(\frac{n}{d}) f^{-1}(d) = I(n) = 0$ so write $\sum_{d < n \atop d \mid n} f(\frac{n}{d}) f^{-1}(d) + 1$
 - $f(1)f^{-1}(n) = 0$ whence $f^{-1}(n) = -\frac{1}{f(1)} \sum_{d < n} f(\frac{n}{d})f^{-1}(d)$ which is defined by assumption. The result follows
 - by induction.d. Easy e. Follows by (a) and (c).
- a. Since F is multiplicative, we can evaluate F at each of the prime powers. See Andrewes, p. 244. b. easy 11
- **a.** If d|p-1 then $x^d \equiv 1 \mod p$ has exactly d solutions. Also, if c|d, then $x^c \equiv 1 \mod p \Rightarrow x^c \equiv 1 \mod p$. The result follows. **b.** By Mobius inversion $\psi(d) = \sum_{c|d} \mu(c) \frac{d}{c} = \phi(d)$. **c.** Put d = p-1 and the result
- Use the Möbius inversion formula to obtain $f(n) = \sum_{n} F(d)\mu(\frac{n}{d})$. Now F and μ are multiplicative and **13** hence so is $F * \mu$.
- Let $N = \{0, 1, 2, \dots, n-1\}$. If d|n then let $N_d = \{k : (k, n) = \frac{n}{d}\}$. Thus N_d consists of all numbers of the form $e\left(\frac{n}{d}\right)$, with (d, e) = 1. Then $|N_d| = \phi(d)$ and $N_d \neq N_{d'}$ if $d \neq d'$. Thus as d varies across the divisors of n the (disjoint) sets N_d have N as their union, so $\sum \phi(d) = n$.
- **a.** Using the well-known formula for the sums of squares and MIF, $\phi_2(n) = n^2 \sum_{n=0}^{\infty} \left(\frac{2d^2 + 3d + 1}{6d} \right) \mu(\frac{n}{d}) = 0$ 15
 - $n^2\left(\frac{1}{3}\sum_{d|n}d\mu(\frac{n}{d}) + \frac{1}{2}\sum_{d|n}\mu(\frac{n}{d}) + \frac{1}{6}\sum_{d|n}\frac{\mu(\frac{n}{d})}{d}\right) = \frac{1}{3}n^2\phi(n) + \frac{n^2}{6}\sum_{d'|n}\mu(d)\frac{d'}{n} = \frac{1}{3}n^2\phi(n) + \frac{n}{6}\phi^{-1}(n).$ Similar argument results in $\phi_3(n) = \frac{n^3}{4}\phi(n) + \frac{n^2}{4}\phi^{-1}(n)$.
- **16** a. $u * u(n) = \sum_{d|n} 1 = \tau(n)$, b. Take Dirichlet derivative and re-arrange.

17 **a.** $\sum_{n \leq x} \sum_{d \mid n} f(d) = f(1) + (f(1) + f(2)) + (f(1) + f(3)) + \dots = f(1)x + f(2) \lfloor \frac{x}{2} \rfloor + f(3) \lfloor \frac{x}{3} \rfloor + \dots$ In the sum $\sum_{n \leq x} \sum_{d \leq \frac{x}{n}} f(d), f(1) \text{ occurs } x \text{ times, } f(2) \text{ occurs } \lfloor \frac{x}{2} \rfloor \text{ times, } f(3) \text{ occurs } \lfloor \frac{x}{3} \rfloor \text{ times and so on. Hence the sums}$

are equal. **b.** Expanding out the LHS we have $f(1)g(1) + f(2)(g(1) + g(2)) + f(3)(g(1) + g(3)) + \dots$ Now collect terms involving g(1), g(2), etc giving $g(1)(f(1) + f(2) + \dots) + g(2)(f(2) + f(4) + \dots) + g(3)(f(3) + \dots)$

- which equals the RHS. $\sum_{n \le x} \mu(n) \lfloor \frac{x}{n} \rfloor = \sum_{n \le x} \mu(n) \sum_{j \le \frac{x}{n}} 1 = \sum_{n \le x} \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 1 since the inner sum is zero for } 1 = \sum_{n \le x} \mu(n) \sum_{j \le \frac{x}{n}} 1 = \sum_{n \le x} \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 1 since the inner sum is zero for } 1 = \sum_{n \le x} \mu(n) \sum_{j \le \frac{x}{n}} 1 = \sum_{n \le x} \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 1 since the inner sum is zero for } 1 = \sum_{n \le x} \mu(n) \sum_{j \le \frac{x}{n}} 1 = \sum_{n \le x} \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 1 since the inner sum is zero for } 1 = \sum_{n \le x} \mu(n) \sum_{j \le \frac{x}{n}} 1 = \sum_{n \le x} \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 1 since the inner sum is zero for } 1 = \sum_{n \le x} \mu(n) \sum_{j \le \frac{x}{n}} 1 = \sum_{n \le x} \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 1 since the inner sum is zero for } 1 = \sum_{n \le x} \mu(n) \sum_{j \le \frac{x}{n}} 1 = \sum_{n \le x} \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 1 since the inner sum is zero for } 1 = \sum_{n \le x} \mu(n) \sum_{j \le \frac{x}{n}} 1 = \sum_{n \le x} \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 1 since the inner sum is zero for } 1 = \sum_{n \le x} \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 2} 1 = \sum_{n \le x} \mu(n) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 2} 1 = \sum_{n \le x} \mu(n) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 2} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 2} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 2} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 3} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 3} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 3} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 3} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 3} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 3} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 3} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 4} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 4} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid n} \mu(d) \text{ by DSI. But this sum is 4} 1 = \sum_{d \mid n} \mu(d) \sum_{d \mid$
- 19 **a.** $\sum_{n \le x} n^{\alpha} = \int_{1}^{x} t^{\alpha} dt + k(\alpha) + O(x^{\alpha})$ using Theorem 3.11. The result follows. **b.** $\sum_{n \le x} \sigma_{\alpha}(n) = \sum_{n \le x} \sum_{d|n} d^{\alpha} = \sum_{d|n} \sum_{d|n} \sum_{d|n} d^{\alpha} = \sum_{d|n} \sum_{d|n} \sum_{d|n} d^{\alpha} = \sum_{d|n} \sum_{$

 $\sum_{n \le x} \sum_{d \le \frac{x}{n}} d^{\alpha} \text{ using DSI. This last sum is equal to } \sum_{n \le x} \frac{\left(\frac{x}{n}\right)^{\alpha+1}}{\alpha+1} + O\left(\frac{x^{\alpha}}{n^{\alpha}}\right) \text{ (by (a)), and by Lemma 1a, this is }$

equal to
$$\frac{x^{\alpha+1}}{\alpha+1} \sum_{n \leq x} \frac{1}{n^{\alpha+1}} + O\left(x^{\alpha} \sum_{n \leq x} \frac{1}{n^{\alpha}}\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{-\alpha}}{-\alpha} + \zeta(\alpha+1) + O(x^{-\alpha})\right) + O\left(x^{\alpha} \left(\frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right) + O\left(x^{\alpha} \left(\frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right) + O\left(x^{\alpha} \left(\frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right) + O\left(x^{\alpha} \left(\frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right) + O\left(x^{\alpha} \left(\frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right) + O\left(x^{\alpha} \left(\frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right) + O\left(x^{\alpha} \left(\frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right) + O\left(x^{\alpha} \left(\frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right) + O\left(x^{\alpha} \left(\frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right) + O\left(x^{\alpha} \left(\frac{x^{1-\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)\right) = \frac{x^{\alpha+1}}{\alpha+1} \left(\frac{x^{\alpha}}{1-\alpha} + \zeta(\alpha) + O(x^{\alpha})\right)$$

 $\frac{\zeta(\alpha+1)}{\alpha+1}x^{\alpha+1} + O(x^{\alpha})$. c. Straighforward application of Theorem 3:11. Use integration by parts.

- **a.** Draw a rectangle bounded by the lines x = 1/2, x = n; y = f(1/2), y = f(n) and count lattice points. The sum $\sum_{j=1}^{n} \lfloor f(j) \rfloor$ counts the number of lattice points on and below the graph of f in the rectangle and the second sum counts those on and above. Hence their sum is mn + d, since there are d lattice points on f and they are counted twice. b. Let $m = \lfloor n^{1/3} \rfloor (=d)$ then the sum is $m(n+1) - \frac{1}{4}m^2(m+1)^2$.
- **a.** The desired sum gives the number of lattice points inside and on a circle of radius \sqrt{N} . Associate with each lattice point L in the circle a unit square which has L as its north west corner. We obtain an estimate of the total area of the squares by noting that each point outside the circle lies no more than $\sqrt{2}$ units away from the boundary of the circle and each point inside the circle lies no more than $\sqrt{2}$ units from the boundary

of the circle so $\pi(\sqrt{N}-\sqrt{2})^2 < \sum_{n=0}^{N} S_2(n) < \pi(\sqrt{N}+\sqrt{2})^2$. Thus $-2\sqrt{2N}\pi < \sum_{n=0}^{N} S_2(n) - (N+2)\pi < 2\sqrt{2N}\pi$

and so $\sum_{n=0}^{N} S_2(n) - N\pi - 4\pi = O(\sqrt{N})$ and the result follows. The term $O(N^{\frac{1}{2}})$ has been replaced with

 $O(N^{\frac{23}{73}})$ (Huxley 1997). It is known that the power cannot be replaced with $\frac{1}{4}$. **b.** Is done similarly, but we

look at a sphere and replace the unit squares with unit cubes. **a.** From $\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$ we have $\sum_{n \le x} \phi(n) = \sum_{n \le x} \sum_{d|n} \mu(d) \frac{n}{d} = \sum_{d \le x} \mu(d) \sum_{q \le \frac{x}{d}} q$ (using DSI 2),

 $\sum_{l \in \mathbb{Z}} \mu(d) \frac{1}{2} \left(\lfloor \frac{x}{d} \rfloor^2 + \lfloor \frac{x}{d} \rfloor \right) = \frac{1}{2} \sum_{l \in \mathbb{Z}} \mu(d) \lfloor \frac{x}{d} \rfloor^2 + \frac{1}{2} \sum_{l \in \mathbb{Z}} \mu(d) \lfloor \frac{x}{d} \rfloor = \frac{1}{2} \sum_{l \in \mathbb{Z}} \mu(d) \lfloor \frac{x}{d} \rfloor + \frac{1}{2} \text{ (from Question 16)}.$

b.
$$\sum_{n \le x} \mu(n) \lfloor \frac{x}{n} \rfloor^2 = \sum_{n \le x} \mu(n) \left(\frac{x}{n} + O(1) \right)^2 = \sum_{n \le x} \mu(n) \frac{x^2}{n^2} + O\left(\sum_{n \le x} \frac{x}{n} \right) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{n^2} + O(x \sum_{n \le x} \frac{1}{n}) = x^2 \sum_{n \le x} \frac{\mu(n)}{$$

 $x^2 \frac{1}{\zeta(2)} + O(x \log x)$. c. This now follows immediately.

a. From $\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$ we have $\sum_{n \le x} \frac{\phi(n)}{n} = \sum_{n \le x} \sum_{d|n} \frac{\mu(d)}{d} = \sum_{d \le x} \frac{\mu(d)}{d} \sum_{q \le \frac{x}{d}} 1$ (using DSI 2), $= \sum_{n \le x} \frac{\mu(n)}{n} \lfloor \frac{x}{n} \rfloor$

6

b. $\sum_{n \le x} \frac{\mu(n)}{n} \lfloor \frac{x}{n} \rfloor = \sum_{n \le x} \frac{\mu(n)}{n} \left(\frac{x}{n} + O(1) \right) = x \sum_{n \le x} \frac{\mu(n)}{n^2} + O\left(\sum_{n \le x} \frac{\mu(n)}{n} \right) = \frac{x}{\zeta(2)} + O(\log x).$ This now follows immediately.