1 数项级数

知识点回顾:

- · 级数敛散性概念; Cauchy 收敛准则
- 正项级数的收敛判别法: 比较判别法; 积分判别法; Cauchy 判别法; d'Alembert 判别法; *Rabbe 判别法
- 一般级数的收敛判别法: Lebniz 判别法; Dirichlet/Abel 判别法

问题 1.1. 讨论下列级数的敛散性:

$$(1) \sum_{n=2}^{\infty} \frac{n}{(\log n)^{\log n}};$$

$$(2) \sum_{n=2}^{\infty} \frac{1}{n(\log n)^p} \ (p>0); \qquad \sum_{n=3}^{\infty} \frac{1}{n(\log \log n)^q} (q>0); \qquad \sum_{n=3}^{\infty} \frac{1}{n(\log n)^p (\log \log n)^q} \ (p,q>0);$$

(3)
$$\sum_{n=0}^{\infty} \sin na;$$

(4)
$$\sum_{n=1}^{\infty} \left(1 - \cos\frac{1}{n}\right)^p \ (p > 0);$$

(5)
$$\sum_{n=1}^{\infty} 2^n \sin \frac{\pi}{3^n}$$
; $\sum_{n=1}^{\infty} n \tan \frac{\pi}{2^n}$;

(6)
$$\sum_{n=1}^{\infty} \left(1 - \frac{p \log n}{n} \right)^n \quad (p > 0);$$

(7)
$$\sum_{n=1}^{\infty} \int_0^{1/n} \frac{\sqrt{x}}{1+x^2} \, \mathrm{d}x.$$

Solution. (1) 收敛, 因为 n 充分大时, 有 $a_n < n^{-2}$.

(2) 第一个级数: p > 1 时收敛, $p \le 1$ 时发散; 第二个级数: q > 1 时收敛, $q \le 1$ 时发散; 第三个级数: p > 1 时对任意 q 都收敛, p = 1 时只有 q > 1 才收敛, q < 1 时发散. 利用积分判别法.

2

- (3) $a = k\pi$ 时收敛, 其余发散.
- (4) $p > \frac{1}{2}$ 时收敛; $p \leq \frac{1}{2}$ 时发散. 因为 $a_n = O(n^{-2p})$.
- (5) 两个级数都收敛.
- (6) p > 1 时收敛, $p \le 1$ 时发散; 因为 $a_n = O(n^{-p})$.
- (7) 收敛; 因为 $a_n = O(n^{-3/2})$.

问题 1.2. 讨论下列级数的敛散性 (要讨论条件收敛或绝对收敛):

$$(1) \sum_{n=1}^{\infty} \sin\left(\sqrt{n^2 + 1}\pi\right);$$

(2)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(2n-1)!!}{(2n)!!} = \sum_{n=2}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot \dots \cdot 2n};$$

(3)
$$\sum_{n=1}^{\infty} \frac{\cos n}{n^p} (p > 0); \quad \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n \frac{\cos n}{n^p} (p > 0);$$

(4)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$$

Solution. (1) 条件收敛; 首先 $|a_n| = O(n^{-1})$, 故取绝对值后的级数发散. 注意到如下变形: $\sin\left(\sqrt{n^2+1}\pi\right) = \sin\left(\sqrt{n^2+1}\pi-n\pi+n\pi\right) = (-1)^n\sin\left(\sqrt{n^2+1}\pi-n\pi\right)$, 再用 Lebniz 判别法.

- (2) 条件收敛; 用 Lebniz 判别法可知该级数收敛, 因为 $|a_n| = O(1/\sqrt{n})$, 故取绝对值后的级数发散.
- (3) 第一个级数: p > 1 时绝对收敛, 0 时条件收敛, 此时证明收敛用 Dirichlet 判别法, 在证明取绝对值后级数发散时, 要用到如下估计:

$$\frac{|\sin n|}{n^p} \ge \frac{\sin^2 n}{n^p} = \frac{1 - \cos 2n}{2n^p}.$$

第二个级数同样当 p>1 时绝对收敛, $0< p\leq 1$ 时条件收敛, 此时证明收敛时用 Abelpbf 比较方便.

(4) 发散. 考虑
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n} - \frac{(-1)^n}{\sqrt{n}}$$
.

问题 1.3 (10.2 第 6 题). 设 $\lim_{n\to\infty} nu_n = l$, 其中 $0 < l < \infty$. 证明: 级数 $\sum_{n=1}^{\infty} u_n^2$ 收敛, 但 $\sum_{n=1}^{\infty} u_n$ 发散.

#

Sketch of Proof. 利用 $u_n = O(1/n)$.

问题 1.4. 设正项级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛, 求证: (1) $\sum_{n=1}^{\infty} \sqrt{u_n u_{n+1}}$ 收敛; (2) $\sum_{n=1}^{\infty} \frac{u_n}{1-u_n}$ 收敛.

Sketch of Proof. (1) 用均值不等式放缩; (2) 利用 $u_n \to 0$.

问题 1.5. 设级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{x_0}}$ 收敛, 求证: 当 $x > x_0$ 时, $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ 收敛.

问题 1.6. 设 $\{b_n\}$ 是单调递增的正数列, 证明:

(1)
$$\sum_{n=1}^{\infty} \frac{b_{n+1} - b_n}{b_{n+1}^2}$$
 收敛;

(2)
$$\sum_{n=1}^{\infty} \frac{b_{n+1} - b_n}{b_n}$$
 收敛当且仅当 $\{b_n\}$ 有界.

Sketch of Proof. (1) 利用 $0 \le \frac{b_{n+1} - b_n}{b_{n+1}^2} \le \frac{1}{b_n} - \frac{1}{b_{n+1}}$.

(2) 必要性: 注意到
$$0 \le \frac{b_{n+1} - b_n}{b_{n+1}} \le \frac{b_{n+1} - b_n}{b_1}$$
. 充分性: 利用 $\frac{b_{n+1} - b_n}{b_n} \ge \int_{b_n}^{b_{n+1}} \frac{\mathrm{d}x}{x}$.

问题 1.7. 设 $\{a_n\}$ 是单调递减的正数列, 其部分和记为 $S_n = \sum_{k=1}^n a_k$. 若 $\{S_n - na_n\}$ 有界且 $\{a_n\}$ 收敛. 证明: $\sum_{n=1}^\infty a_n$ 收敛.

Sketch of Proof. 固定 n, 对任意 m > n 有

$$0 \le S_n - na_m \le S_m - ma_m \le M.$$

令 $m \to \infty$, 可知 S_n 有界.

问题 1.8. 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 证明: $\lim_{n\to\infty} \frac{1}{n} \left(\sum_{k=1}^{n} k a_k\right) = 0.$

Sketch of Proof. 记部分和 $S_n = \sum_{k=1}^n a_k$ 且 $S_0 = 0$. 利用 Abel 求和公式:

$$\sum_{k=1}^{n} k a_k = \sum_{k=1}^{n} k (S_k - S_{k-1}) = \sum_{k=1}^{n} k S_k - \sum_{k=1}^{n} k S_{k-1}$$
$$= \sum_{k=1}^{n} k S_k - \sum_{k=1}^{n-1} (k+1) S_k = n S_n - \sum_{k=1}^{n} S_k.$$

#

#

问题 1.9. 设正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 且 $\{a_n - a_{n-1}\}$ 单调递减. 证明 a_n 单调递减地趋于 0, 且

$$\lim_{n \to \infty} \left(\frac{1}{a_{n+1}} - \frac{1}{a_n} \right) = +\infty.$$

Sketch of Proof. 易证 $\{a_n\}$ 单调递减地趋于 0. 之后利用如下不等式:

$$0 \le \frac{a_n a_{n+1}}{a_n - a_{n+1}} \le \frac{a_n^2}{a_n - a_{n+1}} = \frac{1}{a_n - a_{n+1}} \sum_{k=n}^{\infty} (a_k^2 - a_{k+1}^2) \le \sum_{k=n}^{\infty} \frac{a_k^2 - a_{k+1}^2}{a_k - a_{k+1}}.$$

#

问题 1.10 (Kummer 判别法*). 设 a_n, b_n 为正数列.

(1) 若存在 $\theta > 0$, 使得 $\frac{b_n}{b_{n+1}} a_n - a_{n+1} \ge \theta$, 则级数 $\sum_{n=1}^{\infty} b_n$ 收敛;

(2) 若
$$\sum_{n=1}^{\infty} \frac{1}{a_n}$$
 发散且 $\frac{b_n}{b_{n+1}} a_n - a_{n+1} \le 0$, 则级数 $\sum_{n=1}^{\infty} b_n$ 发散.

Sketch of Proof. (1) 因 $a_nb_n - a_{n+1}b_{n+1} \ge \theta b_{n+1} > 0$, 故 $\{a_nb_n\}$ 单调减. 又因 $a_nb_n \ge 0$, 故 $\{a_nb_n\}$ 收敛. 从而 $\sum_{n=1}^{\infty} (a_nb_n - a_{n+1}b_{n+1})$ 收敛, 利用比较判别法即可.

(2) 因
$$\frac{a_k}{a_{k+1}} \le \frac{b_{k+1}}{b_k}$$
, 对 $k = 1, \dots, n-1$, 把这些不等式乘起来, 有 $\frac{a_1}{a_n} \le \frac{b_n}{b_1}$.