1 Lecture 18-19

1.1 Topics

- lim sup and lim inf (Two equivalent characterizations)
- Theorem: $\liminf a_n \leq \limsup a_n$.
- Theorem: $\lim_{n\to\infty} a_n$ exists in $\overline{\mathbb{R}}$ if and only if $\liminf a_n = \limsup a_n \in \overline{\mathbb{R}}$.
- Theorem: $\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$ provided that the right-hand side is not $\infty \infty$.
- Some special sequences

1.2 First Characterization of Limsup and Liminf

Let (x_n) be a sequence of real numbers. Let

$$S = \{x \in \mathbb{R} : \text{there exists a subsequence } (x_{n_k}) \text{ of } (x_n) \text{ such that } x_{n_k} \to x\}.$$

We define,

$$\limsup x_n = \sup S$$
$$\liminf x_n = \inf S.$$

1.3 Second Characterization of Limsup and Liminf

Let (x_n) be a sequence of real numbers. For each $n \in \mathbb{N}$, let $F_n = \{x_k : k \ge n\}$. Clearly, we have

$$F_1 \supseteq F_2 \supseteq F_3 \supseteq \dots$$
.

So,

$$\sup F_1 \ge \sup F_2 \ge \sup F_3 \cdots$$
 (A decreasing sequence in $\overline{\mathbb{R}}$)

and similarly, we have

$$\inf F_1 \leq \inf F_2 \leq \inf F_3 \leq \dots$$
 (An increasing sequence in $\overline{\mathbb{R}}$)

By the Monotone Convergence Theorem (in $\overline{\mathbb{R}}$), we know that $\lim_{n\to\infty} \sup F_n$ and $\lim_{n\to\infty} \inf F_n$ exists in $\overline{\mathbb{R}}$. We define

$$\limsup x_n = \lim_{n \to \infty} \sup F_n$$
$$\liminf x_n = \lim_{n \to \infty} \inf F_n.$$

That is, we have

$$\limsup x_n = \lim_{n \to \infty} \sup \{x_k : k \ge n\} = \inf_n (\sup F_n)$$
$$\liminf x_n = \lim_{n \to \infty} \inf \{x_k : k \ge n\} = \sup_n (\inf F_n).$$

Take note of the following notation:

$$\limsup x_n = \lim_{n \to \infty} \sup x_n = \overline{\lim} x_n$$
$$\liminf x_n = \lim_{n \to \infty} \inf x_n = \underline{\lim} x_n.$$

Example. (i)
$$x_n = (-1)^n$$

Notice that

$$\limsup x_n = \lim_{n \to \infty} \sup \{x_k : k \ge n\} = \lim_{n \to \infty} \sup \{x_n, x_{n+1}, \dots\} = \lim_{n \to \infty} \sup \{-1, 1\} = \lim_{n \to \infty} 1 = 1$$
$$\lim \inf x_n = \lim_{n \to \infty} \inf \{x_k : k \ge n\} = \lim_{n \to \infty} \inf \{x_n, x_{n+1}, \dots\} = \lim_{n \to \infty} \inf \{-1, 1\} = \lim_{n \to \infty} -1 = -1.$$

(ii) Consider $(a_n) = (-1, 2, 3, -1, 2, 3, -1, 2, 3, \dots)$

Then we have

$$\limsup a_n = \lim_{n \to \infty} \sup \{a_k : k \ge n\} = \lim_{n \to \infty} \sup \{a_n, a_{n+1}, \dots\} = \lim_{n \to \infty} \{-1, 2, 3\} = \lim_{n \to \infty} 3 = 3$$
$$\liminf a_n = \lim_{n \to \infty} \inf \{a_k : k \ge n\} = \lim_{n \to \infty} \inf \{a_n, a_{n+1}, \dots\} = \lim_{n \to \infty} \inf \{-1, 2, 3\} = \lim_{n \to \infty} -1 = -1.$$

(iii) Consider $a_n = n$

$$\limsup a_n = \lim_{n \to \infty} \sup \{a_k : k \ge n\} = \lim_{n \to \infty} \sup \{a_n, a_{n+1}, \dots\} = \lim_{n \to \infty} \sup \{n, n+1, n+2, \dots\}$$
$$= \lim_{n \to \infty} n = \infty.$$

and similarly, we have

$$\liminf a_n = \lim_{n \to \infty} \inf \{ a_k : k \ge n \} = \lim_{n \to \infty} \inf \{ a_n, a_{n+1}, \dots \} = \lim_{n \to \infty} \inf \{ n, n+1, n+2, \dots \}$$
$$= \lim_{n \to \infty} n = \infty.$$

Remark. (i) $\liminf x_n = \sup_n \inf \{x_k : k \ge n\}$

(ii) $\limsup x_n = \inf_n \sup \{x_k : k \ge n\}$

Theorem. Let (a_n) be a sequence of real numbers. Then

 $\lim \inf a_n \leq \lim \sup a_n$.

Proof. Notice that for all $n \in \mathbb{N}$

$$\inf\{a_k : k \ge n\} \le \sup\{a_k : k \ge n\}.$$

Since we already proved that the limits of both sides exists (in $\overline{\mathbb{R}}$), it follows from the order limit theorem (in $\overline{\mathbb{R}}$) that

$$\lim_{n \to \infty} \inf \{ a_k : k \ge n \} \le \lim_{n \to \infty} \sup \{ a_k : k \ge n \}.$$

That is, we have

 $\lim \inf a_n \leq \lim \sup a_n$.

Theorem. Let (a_n) be a sequence of real numbers. Then

 $\lim_{n\to\infty} a_n \text{ exists in } \overline{\mathbb{R}} \text{ if and only if } \limsup a_n = \liminf a_n.$

Moreover, in this case, $\lim a_n = \lim \sup a_n = \lim \inf a_n$.

Proof. (\iff) Let $A = \limsup a_n = \liminf a_n$ with $A \in \overline{\mathbb{R}}$. In what follows, we will show that $\lim a_n = A$. We may consider three cases; that is,

- (1) $A \in \mathbb{R}$
- (2) $A = \infty$
- (3) $A = -\infty$

For (1), note that for all $n \in \mathbb{N}$

$$\inf\{a_k : k \ge n\} \le a_n \le \sup\{a_k : k \ge n\}.$$

Since $\lim_{n\to\infty} \sup\{a_k : k\geq n\} = \lim_{n\to\infty} \inf\{a_k : k\geq n\} = A$, it follows from the squeeze theorem that

 $\lim_{n\to\infty} a_n = A.$

For (2) $(A = \infty)$, we have for all $n \in \mathbb{N}$ that $\inf\{a_k : k \ge n\} \le a_n$ and $\lim_{n \to \infty} \inf\{a_k : k \ge n\} = \infty$ implies $\lim_{n \to \infty} a_n = \infty$ by the Order Limit Theorem in $\overline{\mathbb{R}}$.

For (3) $(A = -\infty)$, we know that for all $n \in \mathbb{N}$ that $a_n \leq \sup\{a_k : k \geq n\}$ and $\lim_{n \to \infty} \sup\{a_k : k \geq n\} = -\infty$ implies that $\lim_{n \to \infty} a_n = -\infty$ by the Order Limit Theorem in $\overline{\mathbb{R}}$.

 (\Longrightarrow) Let $A = \lim_{n \to \infty} a_n$ with $A \in \overline{\mathbb{R}}$. In what follows, we will show that $\limsup a_n = A$ and $\liminf a_n = A$. We may consider three cases:

- $(1) \ A \in \mathbb{R}$
- (2) $A=\infty$
- (3) $A = -\infty$

For (1), suppose that $A \in \mathbb{R}$. Our goal is to show that

$$A \leq \liminf a_n \text{ and } \limsup a_n \leq A,$$

and so

$$A \leq \liminf a_n \leq \limsup a_n \leq A$$
.

Thus, it suffices to show that for all $\varepsilon > 0$

$$A - \varepsilon \leq \liminf a_n$$
 and $\limsup a_n \leq A + \varepsilon$.

To this end, let $\varepsilon > 0$ be given. Since $a_n \to A$, there exists an $N \in \mathbb{N}$ such that

$$\forall n > N \ |a_n - A| < \varepsilon;$$

that is,

$$\forall n > N \ A - \varepsilon < a_n < A + \varepsilon.$$

Now, observe that

$$\forall n > N \ a_n < A + \varepsilon \Longrightarrow A + \varepsilon \text{ is an upper bound of } \{a_k : k \ge n\}$$

$$\Longrightarrow \forall n > N \ \sup\{a_k : k \ge n\} \le A + \varepsilon$$

$$\Longrightarrow \lim_{n \to \infty} \sup\{a_k : k \ge n\} \le \lim_{n \to \infty} (A + \varepsilon)$$

$$\Longrightarrow \limsup a_n \le A + \varepsilon$$
(Order Limit Theorem)

and similarly, we have

$$\forall n > N \ A - \varepsilon < a_n \Longrightarrow A - \varepsilon \text{ is a lower bound of} \{a_k : k \ge n\}$$

$$\Longrightarrow \forall n > N \ \inf\{a_k : k \ge n\} \ge A - \varepsilon$$

$$\Longrightarrow \lim_{n \to \infty} \inf\{a_k : k \ge n\} \ge \lim_{n \to \infty} A - \varepsilon$$

$$\Longrightarrow \liminf a_n \ge A - \varepsilon.$$

Now, suppose (2). Our goal is to show that $\liminf a_n = \infty$ so that $\liminf a_n \leq \limsup a_n$ will imply that $\limsup a_n = \infty$. In order to show that $\liminf a_n = \infty$, it suffices to show that

$$\forall M > 0 \ M \le \liminf a_n.$$

To this end, let M>0 be given. Since $a_n\to\infty$, there exists $N\in\mathbb{N}$ such that

$$\forall n > N \ a_n > M \Longrightarrow \forall n > N \ \inf\{a_k : k \ge n\} \ge M$$

$$\Longrightarrow \lim_{n \to \infty} \inf\{a_k : k \ge n\} \ge \lim_{n \to \infty} M$$

$$\Longrightarrow \liminf a_n \ge M.$$

Note that an analogous process to the above is used to prove (3).

Theorem. Let (a_n) and (b_n) be the two sequences of real numbers. Then

$$\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n$$

provided that the right-hand side is not of the form $\infty - \infty$ or $-\infty + \infty$.

Proof. First note that, by our assumption, $\limsup a_n + \liminf a_n$ is not of the form $\infty - \infty$ or $(-\infty + \infty)$, there exists n_0 such that

$$\forall n \geq n_0 \quad \sup\{a_k : k \geq n\} + \sup\{b_k : k \geq n\} \text{ is not of the form } \infty - \infty \text{ or } -\infty + \infty$$

For each $n \geq n_0$, we have

$$\forall k \ge n \ a_k \le \sup\{a_\ell : \ell \ge n\}$$

$$\forall k \ge n \ b_k \le \sup\{b_m : m \ge n\}.$$

Thus, we have

$$\forall k \ge n \ a_k + b_k \le \sup\{a_\ell : \ell \ge n\} + \sup\{b_m : m \ge n\}.$$

Therefore,

$$\forall n \ge n_0 \quad \sup\{a_k + b_k : k \ge n\} \le \sup\{a_\ell : \ell \ge n\} + \sup\{b_m : m \ge n\}.$$

Now, label $R_n = \sup\{a_k + b_k : k \ge n\}$, $L_n = \sup\{a_\ell : \ell \ge n\}$ and $S_n = \sup\{b_m : m \ge n\}$. From the above, we can see that $\lim_{n \to \infty} R_n$, $\lim_{n \to \infty} L_n$, and $\lim_{n \to \infty} S_n$ all exists in $\overline{\mathbb{R}}$. Since $\lim_{n \to \infty} L_n + \lim_{n \to \infty} S_n$ is not of the form $\infty - \infty$, it follows form the Algebraic Limit Theorem that $\lim_{n \to \infty} (L_n + S_n)$ exists and is equal to that of $\lim_{n \to \infty} L_n + \lim_{n \to \infty} S_n$. By the Order Limit Theorem, we see that

$$\limsup (a_n + b_n) \le \limsup a_n + \limsup b_n.$$

Theorem ((e)). If |x| < 1, then $\lim_{n \to \infty} x^n = 0$.

Proof. Clearly, if x = 0, then the claim holds. So, let's assume $x \in (-1,1)$ and $x \neq 0$. Our goal is to show that

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } \forall n > N \ |x^n - 0| < \varepsilon.$$

That is, we need to show, given the setup above, that $|x^n| < \varepsilon$. Since 0 < |x| < 1, there exists y > 0 such that $|x| = \frac{1}{1+y}$. Note that

$$|x|^n < \varepsilon \Longleftrightarrow \frac{1}{(1+y)^n} < \varepsilon.$$

Using the Binomial Theorem $((1+y)^n \ge 1 + ny)$, we can see that

$$\frac{1}{(1+y)^n} \le \frac{1}{1+ny} < \frac{1}{ny}.$$

Therefore, in order to ensure that $|x|^n < \varepsilon$, we just need to choose n large enough so that $\frac{1}{ny} < \varepsilon$. To this end, it suffices to choose n larger than $\frac{1}{\varepsilon y}$; that is, we can take $N = \frac{1}{\varepsilon y}$ and the result follows.

Theorem ((b)). If p > 0, then $\lim_{n \to \infty} \sqrt[n]{p} = 1$.

Proof. If p=1, the claim obviously holds. If $p \neq 1$, we may consider two cases.

For the first case, assume that p > 1. Then let $x_n = \sqrt[n]{p} - 1$. It suffices to show that $\lim_{n \to \infty} x_n = 0$. Note that since p > 1, $x_n \ge 0$. Also, we have

$$\sqrt[n]{p} = 1 + x_n \Longrightarrow p = (1 + x_n)^n \ge 1 + nx_n$$
$$\Longrightarrow x_n \le \frac{p - 1}{n}.$$

Thus, we have

$$0 \le x_n \le \frac{p-1}{n}.$$

It follows from the squeeze theorem that $\lim_{n\to\infty} x_n = 0$.

Now, suppose that $0 . Since <math>0 , we have <math>1 < \frac{1}{p}$. So, by the previous case, we have

$$\lim_{n\to\infty}\sqrt[n]{\frac{1}{p}}=1\Longleftrightarrow\lim_{n\to\infty}\frac{1}{\sqrt[n]{p}}=1.$$

Theorem ((c)). $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Proof. Let $x_n = \sqrt[n]{n} - 1$. Observe that, by the binomial formula, we have for all $n \ge 2$,

$$\sqrt[n]{n} = 1 + x_n \Longrightarrow n = (1 + x_n)^n \ge \binom{n}{2} x_n^2 = \frac{n(n-1)}{2} x_n^2$$

$$\Longrightarrow \frac{2n}{n(n-1)} \ge x_n^2$$

$$\Longrightarrow x_n \le \sqrt{\frac{2}{n-1}}.$$

Thus, we have

$$0 \le x_n \le \sqrt{\frac{2}{n-1}}.$$

It follows from the squeeze theorem that $x_n \to 0$ and so $\sqrt[n]{n} \to 1$.