### Announcements for Wednesday, 13NOV2024

- Week 10 Homework Assignments available on eLearning
  - Graded and Timed Quiz 10 "Reactions in aqueous solution" due tonight at
     6:00 PM (EST)
- Exam 2 is now available for reviewing through *Gradescope*
- Requests for Exam Question Regrades Now Open
  - Wednesday, 13NOV2024, 12:01 AM (EST) Friday, 15NOV2024, 11:59 PM (EST)
  - MUST be submitted through Gradescope (do not email instructors)
  - see Canvas announcement from Nov 12 for regrading policies and procedure
  - after the deadline, Exam 2 grades will not be changed

ANY GENERAL QUESTIONS? Feel free to see me after class!



q vs.  $\Delta T$ 

same masses of matter different amounts of heat added different  $\Delta T$ 



# mass vs. $\Delta T$

different masses of matter same amount of heat added different  $\Delta T$ 



# composition vs. $\Delta T$

different matter

same masses same amounts of heat added

different ∆T

# **Heat Capacity (C)**

 in general, the amount of heat needed to change the temperature of a substance by a specified amount

$$C = \frac{q(J)}{\Delta T (^{\circ}C)}$$
units:  $\frac{J}{^{\circ}C}$ 
or
$$q = C \times \Delta T$$

- substances with high heat capacities generally require more heat to bring about a temperature change than substances with low heat capacities
  - consider heating an empty aluminum pot on the stove vs. the pot filled with water

# Specific Heat Capacity (C<sub>s</sub>)

 specific heat capacity (C<sub>s</sub>) = the amount of heat required to change the temperature of 1 gram of a substance by 1 °C

heat (J)
+ (absorbed)
- (released)

$$q = m \times C_s \times \Delta T$$

specific heat  $(\frac{J}{g \cdot c})$ 
- (heat absorbed)
- (heat lost)

always +

- molar heat capacity = the amount of heat required to change the temperature of 1 mole of a substance by 1 °C
- different substances have different specific heat capacities
- How much heat must 55.0 g gold lose to lower its temperature by 80.0 °C?

$$q = m \times C_s \times \Delta T = (55.0 g)(0.128 J/g \cdot {^{\circ}C})(-80.0 {^{\circ}C})$$
  
 $q = -563 J \text{ or "563 J of heat lost"}$ 

#### TABLE 9.2 Specific Heat Capacities of Some Common Substances

| Substance | Specific Heat Capacity, $C_{\rm s}({ m J/g\cdot ^{\circ}C})^*$ |  |
|-----------|----------------------------------------------------------------|--|
| Elements  |                                                                |  |
| Lead      | 0.128                                                          |  |
| Gold      | 0.128                                                          |  |
| Silver    | 0.235                                                          |  |
| Copper    | 0.385                                                          |  |
| Iron      | 0.449                                                          |  |
| Aluminum  | 0.903                                                          |  |
| Compounds |                                                                |  |
| Ethanol   | 2.42                                                           |  |
| Water     | 4.18                                                           |  |

## Quantifying Heat Transfers between System and Surroundings

Consider the following scenario:

25 g aluminum metal at 95.0 °C is immersed in 200. g water at 25.0 °C. The specific heats of Al and H<sub>2</sub>O are 0.903 J/g·°C and 4.18 J/g·°C, respectively.

#### **Upon immersion**

- What happens to the temperature of the water? It increases.
- Why? The water absorbed heat from the metal.
- What happens to the temperature of the aluminum? It decreases.
- Why? The metal released heat into the water.
- When will the aluminum stop releasing heat and when will the water stop absorbing heat? When the temperatures become equal...the Al reaches **thermal equilibrium** with H<sub>2</sub>O.
- How does the amount of heat gained by the water relate to the amount of heat lost by the Al? They have the same magnitude.
- What is the mathematical relationship between the heat gained by the water and the heat lost by the metal?  $q_{\text{metal}} = -q_{\text{water}}$
- How can we determine the final temperature of both the Al and H<sub>2</sub>O at thermal equilibrium?



© 2018 Pearson Education, Inc

# Quantifying Heat Transfers between System and Surroundings

How can we determine the final temperature of both the Al and H<sub>2</sub>O at thermal equilibrium?

# $T_{final}$ of AI = $T_{final}$ of water

$$q_{AI} = -q_{water}$$

$$q_{AI} = m_{AI} \times Cs_{AI} \times \Delta T_{AI}$$

$$q_{\text{water}} = m_{\text{water}} \times Cs_{\text{water}} \times \Delta T_{\text{water}}$$



© 2018 Pearson Education, Inc

$$m_{Al} \times Cs_{Al} \times (T_{final} - T_{initial}) = -[m_{water} \times Cs_{water} \times (T_{final} - T_{initial})]$$

$$25g \times 0.903 \text{ J/g} \cdot ^{\circ}\text{C} \times (\text{T}_{\text{final}} - 95.0 ^{\circ}\text{C}) = -[200.g \times 4.18 \text{ J/g} \cdot ^{\circ}\text{C} \times (\text{T}_{\text{final}} - 25.0 ^{\circ}\text{C})]$$

$$T_f = 26.8 \, ^{\circ}C$$

## Quantifying Work (w)

P-V work = work due to changes in the volume of a system against a constant external pressure from the surroundings



work 
$$(w) = -P_{ext}\Delta V$$
  
 $P = \text{external pressure in atm}$   
 $\Delta V = \text{change in volume in Liters}$   
 $1 \text{ L*atm} = 101.3 \text{ J}$ 

the volume of a system can expand, contract, or be constant

- when the system expands,  $V_{final} > V_{inital}$ 
  - $\Delta V$  (+), w (–), the **system** does work **ON** the surroundings
- when the system is compressed,  $V_{final} < V_{inital}$ 
  - $\Delta V$  (–), w (+), the **system** has work done on it **BY the surroundings**
- when volume is constant,  $V_{final} = V_{inital}$ ,  $\Delta V = 0$  and w = 0

### Try This On Your Own

• A 1.40-L gaseous system absorbs 75 J of heat and expands its volume to 2.00 L against an external pressure of 1.02 atm. What is the change in internal energy for this process? 1 L·atm = 101.3 J

# A Summary of the Important Sign Conventions

$$\Delta E = q + w = q - P \Delta V$$

| $\Delta E$ | _ | internal energy of the system decreases                               |
|------------|---|-----------------------------------------------------------------------|
|            | + | internal energy of the system increases                               |
| q          | _ | the system <i>releases heat</i> into the surroundings (lowers E)      |
|            | + | the system absorbs heat from the surroundings (raises E)              |
| W          | _ | the system does work on its surroundings (lowers E)                   |
|            | + | the surroundings does work on the system (raises E)                   |
| $\Delta V$ | _ | the system is <i>compressed</i> by the surroundings (w is (+))        |
|            | + | the system <b>expands</b> against the surroundings ( <i>w</i> is (–)) |

### **Constant-Volume Calorimetry**

- an experimental technique that allows the direct measurement of  $\Delta E$  for a chemical reaction ( $\Delta E_{\rm rxn}$ ) by forcing all of  $\Delta E$  to manifest as heat rather than work
- $\Delta E_{rxn}$  is measured by measuring the temperature change of the surroundings
  - the reaction takes place in a container of *constant volume*
  - since  $\Delta V$  is 0,  $\Delta E = q + w \rightarrow \Delta E_{rxn} = q_V$  (heat at constant volume)

### Constant-Volume Calorimetry (continued)

#### use of a bomb calorimeter

- heat transfer between the reaction in the bomb (rxn) and the surrounding calorimeter is measured by the change in temperature ( $\Delta T$ ) of the calorimeter
  - system = the reaction of interest
  - surroundings = the entire calorimeter



© 2018 Pearson Education, Inc.

# Constant-Volume Calorimetry (continued)

system = the reaction of interest surroundings = the entire calorimeter

$$\Delta E_{rxn} = -q_{calorimeter}$$

- if  $\Delta E_{rxn}$  (–),  $q_{cal}$  (+) and temperature of calorimeter increases
- if  $\Delta E_{rxn}$  (+),  $q_{cal}$  (–) and temperature of calorimeter decreases

$$q_{cal} = C_{cal} \times \Delta T$$

- C<sub>cal</sub> is the heat capacity of the *entire calorimeter assembly* (i.e., the water, the walls of the calorimeter, etc.)
- specific amounts of reactants are consumed and the resulting  $\Delta E$  is for those specific amounts
  - to get  $\Delta E$  per mole of reactant,  $\Delta E$  must be divided by the amount of reactant actually reacted



### Try This On Your Own

• When **1.550 g** of liquid hexane ( $C_6H_{14}$ ) undergoes combustion in a bomb calorimeter, the temperature of the calorimeter rises from 25.87 °C to 38.13 °C. Find  $\Delta E_{rxn}$  for the combustion of **1** mole of hexane in kJ. The heat capacity of the bomb calorimeter is 5.73 kJ/°C.