GENERAL ELECTRIC CO SYRACUSE N Y HEAVY MILITARY ELEC--ETC F/G 17/1 SONAR SIMULATION COMPUTER PROGRAMS. VOLUME 2. FLOW CHARTS.(U) AD-A068 881 NOV 68 N00140-68-C-0372 UNCLASSIFIED NL 1 of 2 AD A068881

MDA068881

FILE COPY

LEVEL OOVI LIBRARY COPY

SONAR SIMULATION COMPUTER PROGRAMS Volume 2. Flow Chart

155100

VOLUME 2 B021 097L

FLOW CHARTS

Contract N#6149-68-C-93721

(13) 137p.

Prepared for

United States Navy Underwater Sound Laboratory
Fort Trumbull, Connecticut

By

General Electric Company
Heavy Military Electronics Systems
Syracuse, New York

DISTRIBUTION STATEME

Approved for public role Distribution Unlimited

149 510

Gp 6

```
******
        THIS IS MAIN CONTROL PROGRAM FOR SIMULATION
        COMMON /TWOB2/ B25.82E
        COMMON /LABEL/ RI, RCJ, SS1, SE1, HS1, HE1, PXS(128), PXE(128), PYS(128), P*
       1YE(128), PZS(128), PZE(128), VXS(128), VYS(128), VXE(128), VYE(128), NSI, *
       2NEI,N,PETAS,BETAE,DELTAS,DELTAE,32,PDS(5),PDE(3),PKILL(128),PPATH(* 3128),PEVADE(128),DIFTI,RANGE(128),STATD,STATE,PGS(5),PKDS(5),POS(5*4),PIS(5),PGE(3),POE(3),PIE(3),CLPH,EVPH,WRANGE,BPS,BPE,PHIE,PHIS,A*
       SLSUBE. ALSUPS. AAAAAA, BBBBBB, MECO, NPCO, BSP, BEP, NR, K, EDEPTH, SDEPTH, RC.
                , FRWS , FRLOSE,
       6, FOS
       A PTS(128), FXS(128), PNS(128), FNS(128),
               , FRWE , FRLOEV. FZE
       B FOE
       7.F25.PTE(128),FXE(128),PNE(128),FNE(128),XE,XS,SUMKIL,SUMEVA,PRE,P+
       BRK, PE (3), AL PXN, ALPYN, NGMAX, NEMAX
        COMMON / ANGRAD / ANGBER(2)
        COMMON / INTSPO / VXEINT, VYEINT
        COMMON
       C / ARRAYC /
                     NARRAY(2)
       C
                     ARRYH1.
                     ARRYH2,
       cc
                     ARRYW1 .
       C
                     ARRYW2,
                     DELF
       000
                     FRES1 .
                     FRES2 .
       C
                     GTRANT,
                     QTRANZ,
       NDUMZ
        COMMON
        / ARRAYP /
       CC
                     DGANGS,
                     DGANGE.
                     ARRAYD(3,2)
       D
                     COSPHI(2)
       D
                     COSRAD(2)
      DC
                     MSHIPS,
                     SINPHI(2)
       D
                     SINRAD(2)
       D
                     TARRIV(3,2)
                     TMATSE(3,3)
TMATEV(3,3)
       D
                     TVECTR(3.2)
       DDUMMYS
        COMMON
         / BEAMCR /
                     EUL ANG (3,4)
                     BEMCOR (3,4)
        COMMON
        / CALPHA /
       C
                     ALPHAE,
       C
       C
                     ALPHAS,
                     FALPHE,
       CCC
                     FALPHS,
       CCC
                     ONMIAE,
                     ONMIAS,
       CCC
                     STNPEV.
                     STNPSE,
       C
                     TWOALE,
       CC
                     TWOALS,
                     NTIMEM
```

```
COMMON
  / CONSTN /
C
               DEPSER,
               NCONSK,
C
               SPAISE.
CC
               DEPEVA.
               NCONSL.
C
C
               SPATEV
 COMMON
  / FREQUN /
               DELRCZ.
D
D
               DYHITH(2)
               ARAREA(2)
               CIMOPI.
C
D
               SQAREA(2)
D
               FRGSIG(128,2)
D
               FR31 CN(128.2)
               FR01D8(128,2)
0
               ANGDEP(2)
D
               FRQTRN(128,2)
               FRQASD(128.2)
D
               FRONCN(128,2)
               FRONDS(128,2)
D
               NUMFRG(2)
DDUM8
 COMMON
C / INDEXS /
               ANDISO(16,2)
                      (50.16)
(50.16)
D
               DII
               012
00
               DLDIAN(16.2)
C
               101
               102
C
CDUMMYA
 COMMON
C / LCONST /
               NULAPO.
               DEPROT,
D
               CONSG0(128)
               CONSG2 (128)
00
              CONSVO(128)
DELTAZ(128)
DEPKYD(128)
D
DD
               SLOPEJ(128)
SPDKYD(128)
00
 COMMON
  / PTHLNG /
C
               A1
CI
0000000
               CDSORO,
               CV
D1
               DZ1
000000000
               BI
SM
               H
X
Y1
Y2
               DXDC
               TIMCON
```

```
COMMON
     RANGES /
               NUANMO,
               ANGMAX,
cc
               DEL ANG.
               DELHAD.
D
               ANGINT (200)
COMMON
               RNGMON(6,200)
  / RAYPAR /
               RANGEH.
               BOTANG(6)
               DRDXDC(6)
n
               PATHLN(6)
D
D
               RANGEC(6)
               SP1
SPT
                       (6)
D
D
                       (6)
               TIR
                       (6)
(6)
D
D
 COMMON
C
  / RAYTRA /
               NCONCI.
               INITLK.
C
               ZSTART,
C
               22
CCC
               SPVRSQ,
               ANGSTR.
               ANGARR,
C
               ANGRIM,
C
               ANGSUR,
CC
               SPDVER.
C
               RANGET
 COMMON
  / RCONST /
               ZONACZ.
               AML SRD.
C
               ZONRCZ,
000
               HC1
HZSD
CCC
               NCONSD.
               RCZ1
CC
               RCZ2
               SDCON .
               TCZAV1,
C
               TCZAV2.
C
               ZW
NDU43
 COMMON / SIGNAL /
C
               PRYSEV(128)
D
               PRYSSE (128)
D
               PRNOEV(128)
D
               PROEVA(128)
D
D
               PROSER(128)
D
               VAREVA(128)
VARSER(128)
D
D
                GMUEVA(128)
D
               GMUSER(128)
D
               DEVAEV(128)
DEVASE(128)
DEMUEV(128)
D
               DEMUSE (128)
 D
000
                THREVA.
               THRSER,
               NTIMEN
```

```
COMMON
C / STATIC /
              NOSTAT,
              NESTAT.
C
D
              PEDETN(128)
              PERANG.
C
C
              PPATHM.
D
              PRANGE (128)
n
              PRANGS(128)
D
              PRP1EV(128)
              PRP 1 SF (128)
DC
              PSDETN(128)
              PSRANG.
              SMPEDT.
0000
              SMPSDI,
              SMITTINE .
              SMICNS.
              TCONEN(128)
D
D
              TCONSN(128)
COMMYB
C / STORAG /
              ADII
                    (16)
0
              ADIZ
                    (16)
CC
                                        , ARZY , ARZY
              ARIX
                     . ARTY
                              . A ?1 Z
                                                         . ARZZ .
              ARRAY1.
              ARRAY2.
0000000
              E11
              E12
              E13
              E21
              ESS
              E23
C
              FIE
              FIS
CSDUMMY
 COMMON
C / SURDUC /
              BLA1
CC
              BLA2
              BLA3
C
              DIRAD
CCC
                     (128)
D
              BF1
              BF2 (128)
DELHAF(128.2)
                     (128)
D
D
              FLN1(128)
D
D
              FLN2(128)
              CONLR2(40.50)
0
              CONLR1 (40.50)
D
DDUMP
 COMMON
 / SURFAC /
              46
              CONST2.
C
C
CC
              CZANGL.
              CZANDL .
              CZRANG.
0000000
              GISD .
              G250
              NCZRAS,
              NZONE .
              RSD
              RSD1
CC
              SCSD
              SORTZL.
CC
              SS
              ZL
COUMMYZ
```

```
DIMENSION
                   ANCZAV(2)
      D
      n
                   ARHITH(2)
                   ARQIRN(2)
                   ARWID (2)
                   BAFFUN(128,2)
      D
                   CDYOVV(2)
      D
                   DIRANG(16.2)
                   DIRGON(50.16.2)
      D
                   FLONOS(128,2)
                   FROLOW(2)
      D
                   FRORES(2)
                   NUDIAN(2)
                   SIGPLS(128.2)
                   SPOTER(2)
                   TMATRX(3.3.2)
      D
      DADUMMY(1)
DIMENSION
                   AINPUT(3,2)
                   EANGLE (3.2)
      n
      DDUMMYA(1)
       EQUIVALENCE
      Q ( ANCZAV, TCZAV1 ).
      Q ( DIRANG, ADII ),
        ( ANGDGA, DGANGS ).
        ( ARHITH, ARRYH1 ).
        ( ARQTRN, QIRAN1 ).
      0
      Q ( AINPUT, ARIX ).
        ( ARWIDT, ARRYWI ).
      0
      0
        ( BAFFUN, BF1 ).
        ( DIRSON, DII ).
      0
          EANGLE, F11 ).
        ( FLONDS, FLN1 ).
          FRORES, FREST ),
      0
        (
          NUDIAN, 101
      Q ( THATRX, THAISE ).
      Q ( NCONSR. NR )
       INPUTS TO PROGRAM
       ACZ
                   - CONVERGENT ZONE CONSTANT
•3•
       ADI1
             ( )
                   = ANGLES OF DIFFERENT DIRECTIVITIES FOR SEARCHER
                   CHANGED FROM DEGREES TO RADIANS FOR INTERNAL USE
•5•
       ADIZ
                   * ANGLES OF DIFFERENT DIRECTIVITIES FOR EVADER
                   CHANGED FROM DEGREES TO RADIANS FOR INTERNAL USE
                   . SMOOTHING PARAMETER FOR EVADER
       ALPHAE
                                                                      (DIMENS.
...
       AL PHAS
                     SMOOTHING PARAMETER FOR SEARCHER
                                                                      (DIMENS+
*:*
                   - MAXIMUM ANGLE BEING CONSIDERED FOR RAYS
       ANGMAX
       ARIX
                     ONE OF THE ARRAY DIMENSIONS FOR SEARCHER
*3*
       AR1Y
                    ONE OF THE ARRAY DIMENSIONS FOR SEARCHER
                                                       SEARCHER
       ARIZ
                     ONE OF
                            THE ARRAY DIMENSIONS FOR
...
       AR2X
                   = ONE OF THE ARRAY DIMENSIONS FOR EVADER
...
       ARZY
                   . ONE OF THE ARRAY DIMENSIONS FOR EVADER
       ARZZ
                     ONE OF THE ARRAY DIMENSIONS FOR EVADER
       ARRAY1
                   = TYPE OF ARRAY CONTROL CONSTANT FOR SEARCHER
                                                                      (DIMENS.
                   = TYPE OF ARRAY CONTROL CONSTANT FOR EVADER
       ARRAY2
                                                                      (DIMENS.
                     INTEGRATION BANDWIDTH OF POST-DETECTION OF EVADER
...
       325
       925
...
       BCZ
                   - CONVERGENT ZONE CONSTANT
                                                                      (DIMENS.
                   = BAFFLING CORRECTION FACTOR FOR SEARCHER
AS A FUNCTION OF ANGLE
***
       3F1
                                                                      (DIMENS.
                   . BAFFLING CORRECTION FACTOR FOR EVADER
       9F2
                                                                      (DIMENS.
.:
                   AS A FUNCTION OF ANGLE
       CONLRIC .
                  ) = RADIATED POWER SPECTRUM FROM SEARCHER
       CONLR2( . ) = RADIATED POWER SPECTRUM FROM EVADER
```

```
DELANG
                      = DIFFERENCE IN ANGLES FOR RAYS
...
***
        DELF
                      . FREQUENCY INCREMENT
                      = CHANGE IN HEADING OF EVADER
= CHANGE IN RANGE OF CLOSEST APPROACH
        DELHED
        DELRNG
         DEPKYD( )
                     = DEPIH TO TOP OF LAYER
...
        DI1 ( . ) = DIRECTIVITY INDEX FOR SONAR ON SEARCHER
                ( , )= DIRECTIVITY INDEX FOR SONAR ON EVADER
= TIME BETWEEN POINTS ON A BRANCH
*:
        012
        DIFTI
•3•
         DPFTFV
                      =
                                   DEPTH
                         FVADER
        DPFTSE
                      . SEARCHER DEPTH
        DIRAD
                      = ANGLE INCREMENT FOR RADIATED SIGNAL
                      = EULER ANGLE INPUT FOR SEARCHER
= EULER ANGLE INPUT FOR SEARCHER
        £11
...
        E12
                      = EULER ANGLE INPUT FOR SEARCHER
                      * EULER ANGLE INPUT FOR EVADER * FULER ANGLE INPUT FOR EVADER
...
        F21
...
        E25
                      = FULER ANGLE INPUT FOR EVADER
...
        E23
        FOE
                      = PRE-DETECTION FILTER CENTER FREQUENCY FOR EVADER
...
        FOS
                      = PRE-DETECTION FILTER CENTER FREQUENCY FOR SEARCHER
...
        FIE
                      = LOWER FREQUENCY LIMIT OF EVADER EQUIPMENT
                      . LOWER FREQUENCY LIMIT OF SEARCHER EQUIPMENT
        FIS
...
                      = UPPER FREQUENCY LIMIT OF EVADER EQUIPMENT = UPPER FREQUENCY LIMIT OF SEARCHER EQUIPMENT
        FZE
...
        F 25
...
...
                      = PRE-DETECTION FILTER BANDWIDTH OF EVADER
        FRWE
        FRWS
                      = PRE-DETECTION FILTER BANDWIDTH OF SEARCHER
                     . FLOW NOISE OF SEARCHER
        FL N1
...
               ( )
        FL NZ
                      = FLOW NOISE OF EVADER
= ORDERED FREQUENCY POINTS FOR NOISE AROUND EVADER
****
        FNE
                      SAME AS FXE
        FNS
                      = ORDERED FREQUENCY POINTS FOR NOISE AROUND SEARCHER
                      SAME AS FXS
        FRES1
                      = TRANSDUCER RESONANT FREQUENCY ON SEARCHER
                      = TRANSDUCER RESONANT FREQUENCY ON EVADER
= OPDERED FREQUENCY POINTS FOR SIGNAL RECIEVED BY EVADE
        FRES2
.
        FXE
                      SAME AS FNE
.:
                      . ORDERED FREQUENCY POINTS FOR SIGNAL RECIEVED BY SEARC.
                      SAME AS FNS
...
        HDINEV
                      = INITIAL HEADING OF EVADER
                      = MAXIMUM HEADING OF EVADER
...
        HEDMAX
...
                      . HEADING OF SEARCHER
         HS1
...
                      = NUMBER OF DIRECTIVITY ANGLES FOR SEARCH
         101
                                                                                 (DIMENS.
...
                      . NUMBER OF DIRECTIVITY ANGLES FOR EVADER
         102
                                                                                 (DIMENS*
                      = MAXIMUM LAYERS TO BE USED TO FIT PROFILE
= MAXIMUM NUMBER OF POINTS ON A BRANCH
...
         MAXLAY
                                                                                 (DIMENS+
                                                                                 (DIMENS.
        MAXTIM
...
                      . CONTROL PARAMETER FOR EVASION COURSE OPTIONS
        MECO
                                                                                 (DIMENS.
.:
                      1 = INVERSE BEARING RIDER OPTION
                      2 = NORMAL TO SEARCH EVASION
3 = CONTINUE INITIAL COURSE
= MAXIMUM POINT A ONG BRANCH TO START EVASION
        VEMAX
                                                                                 (DIMENS.
                      = CONTROL CONSTANT FOR INITIALIZATION
         VEWLAY
                                                                                  (DIMENS.
                      NEGATIVE = NEW PROFILE
                      ZERO = OLD PROFILE -- NEW SHIP DEPTHS OR DELTA ANGLE POSITIVE = OLD PROFILE -- OLD SHIP DEPTHS AND ANGLES
                      = CONTROL PARAMETER FOR PURSUIT COURSE OPTIONS (DIMENS.
...
        NPCO
                        = BEARING RIDER CLOSING TACTICS
                      2 = COLLISION COURSE CLOSING TACTICS
3 = CONTINUE INITIAL COURSE
•0
...
        NPRINT
                      = CONTROL PARAMETER FOR AMOUNT OF PRINTOUT
                                                                                 (DIMENS.
                      = MAXIMUM POINT A_ONG BRANCH TO START CLOSING
                                                                                 (DIMENS*
...
        NSMAX
                      . NUMBER OF LAYERS PLUS ONE
...
         NULAPO
                                                                                  (DIMENS*
...
        PDEMIN
                      * MINIMUM DETECTION PROBABILITY ALLOWED
                                                                                  (DIMENS+
                      AFTER SHIPS START SEPARATING AS SEEN BY EVADER = MINIMUM DETECTION PROBABILITY ALLOWED
...
        PDSMIN
                                                                                 (DIMENS+
.:
                      AFTER SHIPS START SEPARATING AS SEEN BY SEARCHER
                      = DEPRESSION ANGLE FOR EVADER STEERING
= DEPRESSION ANGLE FOR SEARCHER STEERING
...
        PHIE
        PHIS
...
        POR
                      = POROSITY OF BOTTOM
                                                                                 (DIMENS*
                      . MINIMUM PATH PROBABILITY TO BE CONSIDERED
                                                                                 (DIMENS*
...
         PPAMIN
        PRE
                      = A-PRIORI PROBABILITY OF EVASION
...
        PRK
                      = A-PRIORI PROBABILITY OF A KILL
                                                                                  (DIMENS*
```

```
...
       QTRAN1
                   = TRANSDUCER FIGURE OF MERIT ON SEARCHER
                                                                       (DIMENS.
                   = TRANSDUCER FIGURE OF MERIT ON EVADER
= INITIAL RANGE OF CLOSE
                                                                       (DIMENS.
       GTRAN2
...
...
       RGINEV
       RI
                   = INITIAL RANGE BETWEEN SHIPS AT START OF BRANCH
...
                   = MAXIMUM CLOSES! APPROACH DISTANCE
       RNGMAX
       SPDEVA
                   = SPEED OF EVADER
       SPOKYD( ) = PHOPAGATION SPEED AT TOP OF LAYER
                  = SPEED OF SEARCHER
...
       SPOSER
                   = SEA STATE INPUT
...
       55
                                                                       (DIMENS.
                  = DETECTION THRESHOLD FOR THE EVADER
       THREVA
...
                                                                       (DIMENS.
       THRSER
                   # DETECTION THRESHOLD FOR THE SEARCHER
                                                                       (DIMENS.
                  = WEAPON RANGE
       WRANGE
.:
       CONSTANTS IN PROGRAM
                   = COMPUTATIONAL VARIABLE
       A 6
                   COMPUTATIONAL VARIABLE
       ....
                   NOT USED OR REQUIRED
       AINPUT( , )= ARRAY PARAMETERS INPUT TO PROGRAM
       ALPXN . VALUE GEN. IN SUB. UPDATE
.:
       ALPYN . VALUE GEN. IN SUB. UPDATE
                   = -SEE ALPHAE-
       AL SUBE
                   NOT USED OR REQUIRED
       AL SUBS
                   = -SEF ALPHAS-
                   NOT USED OR REQUIRED
                   = CONSTANT REDOUTRED FOR AMOS CALCULATIONS
       AMLSRD
       ANCZAV( ) = AVERAGE OF CONVERGENT ZONE ANGLES
       ANDISO( , ) = ANGLES OF DIFFERENT DIRECTIVITIES FOR SHIPS
                   = ARRIVAL ANGLE OF RAY AT Z2
       ANGARR
       ANGBIM
                   * BOTTOM BOUNCE ANGLE OF RAY PORTION
.:
                                                                             ( .
       ANGDEP! )
                 = STEFRING DEPRESSION ANGLES
                  = A71MUTHAL MAIN REAM STEERING ANGLE
       ANGDGA( )
                                                                             ( .
                  = INITIAL ANGLE OF RAY AT SEARCHER
       ANGINT( )
                                                                             ( .
                   # STARTING ANGLE OF RAY AT ZSTART
       ANGSTR
                   = SURFACE BOUNCE ANGLE OF RAY PORTION
       ANGSUR
       ARAREA( ) = ARRAY AREA CONSTANT
                                                                   ((YD-SEC/K+
0000000
                   NOT USED OR REQUIRED
                   = ARRAY HEIGTH
       ARHITH( )
                   NOT USED OR REQUIRED
       AROTRN( )
                  = Q-FACTOR FOR ARRAY TRANSDUCERS
                                                                       (DIMENS .
       ARRAYD( , ) = MODIFIED ARRAY DIMENSIONS FOR SHIPS
                                                                    ((YD.SEC/K+
       ARWIDT( )
                  = ARRAY WIDTH CONSTANT
                   NOT USED OR REQUIRED
       AVBRKL
                   * AVERAGE PROBABILITY OF KILL ALONG A BRANCH
                                                                       (DIMENS*
                  = AVERAGE PROBABILITY OF EVASION ALONG A BRANCH (DIMENS.)
= OVERALL AVERAGE PROBABILITY OF EVADE (DIMENS.)
       AVBREV
       AVEEVA
                   = OVERALL AVERAGE PROBABILITY OF KILL
       AVEKIL
                                                                       (DIMENS.
                   = AVERAGE PROBABILITY OF CONTINUING
       AVEPTH
                                                                       (DIMENS.
       32
                   NOT USED OR REQUIRED
       BAFFUN( , ) = BAFFLING VALUES FOR SHIPS
       383888
       NOT USED OR REQUIRED

BEMCOR( , )= FREQUENCY INDEPENDENT BEAM-CORRECTION FACTOR (DIMENS*
       BFP
                   = ATIMUTHAL ANGLE OF EVADER MEASURED FROM SEARCHER
       91
                   = COMPUTATIONAL VARIABLE
       BL A1
                   . BOTTOM LOSS CONSTANT
.:
       BLA2
                   . BOTIOM LOSS CONSTANT
                   . BOTTOM LOSS CONSTANT
       BL A3
                  - BOTTOM BOUNCE ANGLE FOR RAY TYPE
       BOTANG( )
       SPE
                   NOT USED OR REQUIRED
       BPS
                   NOT USED OR REQUIRED
```

```
BRNEVA
                    = BRANCH SUMMATION OF EVASION PROBABILITY
        BRNKIL
                    . BRANCH SUMMATION OF KILL PROBABILITY
                    = AZIMUTHAL ANGLE OF SEARCHER MEASURED FROM EVADER
        352
***
        COSCAD
                    = COMPUTATIONAL VARIABLE
                    * COMPUTATIONAL VARIABLE
                    = CONTROL CONSTANT FOR CLOSE PHASE
        CLPH
                                                                             (DIMENS.
                     0 = NOT IN CLOSE PHASE
                    1 = IN CLOSE PHASE
                     = CONSTANT USED FOR NORMALIZING
        CONNOR
                    = GO CONSTANT AS COMPUTED BY LAYERS ROUTINE
= GI CONSTANT AS COMPUTED BY LAYERS ROUTINE
        CONSGO( )
                                                                           (SEC .. 2/.
                                                                           (SEC .. 2/.
        CONSGIT )
                     = GP CONSTANT AS COMPUTED BY LAYERS ROUTINE
        CONSG2( )
        CONSTR
                    COMPUTATIONAL VARIABLE
        CONST4
                    COMPUTATIONAL VARIABLE = VO CONSTANT AS COMPUTED BY LAYERS ROUTINE
        CONSVO( )
                                                                            ((SEC/K.
        COSAVE( )
                    = COSINE OF AVERAGE OF CONVERGENT ZONE ANGLES
                                                                            (DIMENS*
                    = COSINE OF STEERING DEPRESSION ANGLE FOR SHIPS (DIMENS.
        COSPHI( )
        COSRAD( )
                    = COSINE OF AZIMUTHAL SIGNAL ARRIVAL ANGLE
                                                                             (DIMENS.
                    = CONSTANT EQUAL TO THE TIMES PI
        CIMOPI
                                                                             (DIMENS.
                    = COMPUTATIONAL VARIABLE
= DELIA ANGLE FOR CONVERGENT ZONE SEARCH
        CZANDL
                    = SMALLER CONVERGENT ZONE ANGLE (IN RADIANS) FOR EVADER.
        CZANEO
        CZANET
        CZANGL
                    = ANGLE BEING USED FOR CONVERGENT SONE RANGE SEARCH
                    = SMALLER CONVERGENT ZONE ANGLE (IN RADIANS) FOR SEARCH+
        CZANSO
        CZANST
        CZRANG
                    = RANGE FOR CONVERGENT ZONE RAY
        DELBAF( , )= DIFFERENCE IN BAFFLING VALUES
        DELRCZ
                    . DIFFERENCE IN ANGLES FOR RAYS
                    = WIDIH OF CONVERGENT ZONE
        DELTAZ( )
                   = THICKNESS OF LAYER
        DEMUEVE )
                    . MODIFIED MU FOR EVADER
                                                                             (DIMENS*
        DEMUSE( ) = MODIFIED MU FOR SEARCHER
                                                                             (DIMENS+
        DEPBOT
                    . DEPIH OF BOTTOM
        DEPEVA
                    . DEPTH OF EVADER
                    = DEPTH OF SEARCHER
        DEPSER
        DEVAEVE ) = MODIFIED VARIANCE FOR EVADER
                                                                             (DIMENS.
        DEVASE( ) = MODIFIED VARIANCE FOR SEARCHER
                                                                            (DIMENS.
                    = AZIMUTHAL MAIN-BEAM STEERING ANGLE FOR SEARCHER
= AZIMUTHAL MAIN-BEAM STEERING ANGLE FOR SEARCHER
        DGANGS
        DGANGE
                     = COMPUTATIONAL VARIABLE
        DIRANG( . ) = ANGLES USED WITH DIFFERENT DIRECTIVITY CURVES
        DIRSON(..) = DIRECTIVITY INDEX FOR SONAR
DIDIAN( . ) = DIFFERENCES IN ANGLES OF DIRECTIVITIES
                    # DERIVATIVE (DXD:) FOR RAY TYPE
                                                                             ((SEC/K+
        DRDMSC( )
        DUMMY1
                     = DUMMY VARIABLE
        DYDC DYHITH( )
                    # RANGE DERIVATIVE
                                                                               (YD-Sa
                     NOT USED OR REQUIRED
                     = DEPTH (IN K-YD) FROM TOP OF LAYER TO STARTING POINT (.
        EANGLE( . ) = FULER ANGLES INPUT TO PROGRAM
        EDEPTH
                    # SEE -DEPEVA-
        EULANG( . ) = EULERIAN ANGLE AND THEIR'SINE AND COSINE
                                                                             (DIMENS .
                    = CONTROL CONSTANT FOR EVADE PHASE
                                                                             (DIMENS*
        EVPH
                     0 = NOT IN EVADE SHASE
                    1 = IN EVADE PHASE
       FACTOR
FALPHE
                     - MODIFICATION FACTOR FOR PATH PROBABILITIES
                                                                             (DIMENS .
                    = FRACTION (ONMIAE ** 2/(1-ONMIAE ** 2))
= FRACTION (ONMIAS ** 2/(1-ONMIAS ** 2))
= FUNCTION FOR FI_TER RESPONSE OF SEARCHER
= FUNCTION FOR FI_TER RESPONSE OF EVADER
                                                                            (DIMENS .
        FALPHS
                                                                             (DIMENS.
        FILSER
        FILEVA
FLONOS
                 , )= FLOW AND SELF NOISE FOR SHIPS
                    = LOWER INTEGRATION FREQUENCY FOR EVADER
        FRLOEV
                     - LOWER INTEGRATION FREQUENCY FOR SEARCHER
```

```
FROASD( , )= INTER-RANGE CONSTANT TIME SORT( FREQUENCY/LAYER DEPTH-
        FROIDB( , )= TEN.LOG( FREQUENCY ) AS A FUNCTION OF SHIP FROLCH( , )= LAYER CONSTANT AS A FUNCTION OF FREQUENCY AND SHIP
**********
        FROLOW( )
                    = LOWER FREQUENCY OF INTEGRATION
        FRONCH . ) = NOISE SPECTRA UNALTERED BY SONAR DIRECTIVITY
        FRONOS( . ) = FREQUENCY POINTS OF NOISE AS FUNCTION OF SHIP
                   . TRANSDUCER RESONANT FREQUENCY FOR SHIPS
        FRORES( )
        FROSIGE . ) = FREQUENCY POINTS USED FOR SIGNAL COMPUTATIONS
        FROTRN( . ) = FREQUENCY RESPONSE OF TRANSDUCER ELEMENTS
FITOKY = FUNCTION TO CHANGE FEET TO KILO-YARDS
                                                                            (DIMENS.
        GISD
                    COMPUTATIONAL VARIABLE
*0000
        GSSD
                    COMPUTATIONAL VARIABLE
        GMUSER( )
                    = MEAN OF SMOOTHED SEARCHER SIN
**********
        GMUEVA( )
                    = MEAN OF SMOOTHED EVADER SIN
                    = COMPUTATIONAL VARIABLE
        HCI
                     - COMPUTATIONAL VARIABLE
                      HEADING OF EVADER
        HE1
                    = SURFACE DUCT CONSTANT
        HZSD
                     = COMPUTATIONAL VARIABLE
                    = LAYER NUMBER IN WHICH RAY PORTION STARTS
        INITLK
                                                                            (DIMENS+
.0000
                    = COMPUTATIONAL VARIABLE = CONTROL PARAMETER FOR RECALCULATING A LAYER CONSTANT .
        JUMPIF
                     = INITIALLY THE LAYER IN WHICH THE STARTING POINT IS FO.
                    LAYER IN WHICH CALCULATIONS ARE BEING MADE
.......
                     = INDEX VARIABLE USED IN INTEGRATION ROUTINE
                                                                            (DIMENS.
                    = LAYER IN WHICH FIVAL POINT (Z2) IS LOCATED
        LAYERL
                    = LAYER IN WHICH A LOWER VERTEX IS FOUND
                                                                            (DIMENS.
                    = LAYER IN WHICH VELOCITY PROFILE HAS A ZERO
        LAYERM
                                                                            (DIMENS.
        LAYERS
                    = LAYER WHICH CONTAINS SHALLOWER SHIP
                    = MAXIMUM NUMBER OF LAYERS ALLOWED INCLUDING ADDED POINS OF CONTROL NUMBER OF SHIP (DIMENS)
        MAXLAY
        MSHIPS
                    1 = SEARCHER
0000000000000
                    2 = EVADER
                     = POINT ON BRANCH
                                                                            (DIMENS.
        NARRAY( )
                    . CONTROL PARAMETER FOR TYPE OF ARRAY
                                                                            (DIMENS.
                    NOT USED OR REQUIRED
        NCONCI
                     = CONTROL PARAMETER FOR DIFFERENT SUBROUTINES TO BE CAL.
        NCONSD
                    = AMOS CONSTANT SD
        VCONSK
                  . = NUMBER OF LAYER CONTAINING SEARCHER
                                                                            IDIMENS.
                    - NUMBER OF LAYER CONTAINING EVADER
        NCONSL
                                                                            (DIMENS*
        VCZRAS
                    COMPUTATIONAL VARIABLE
                    = INTEGER VALUE OF THE D-STATE
= POINT ALONG BRANCH WHEN EVADER STARTS EVADING (DIMENS*
******
        NDSTAT
        VE !
                     = INTEGER VALUE OF THE E-STATE
        VESTAT
                    . DEBUG PARAMETER TO SHOW PROGRAM FLOW
        UNFLAG
        VR
                     = CONTROL CONSTANT FOR POSITION IN BRANCHES
                                                                            (DIMENS*
                    = POINT ALONG BRAYCH WHEN SEARCHER START CLOSING(DIMENS+
        VS1
                    = CONTROL PARAMETER FOR START OF LOOP
        NSTART
*3
        NTIMEM
                     = NTIMEN MINUS ONE
                                                                            (DIMENS.
                    = POSITION ALONG PROBABILITY TREE BRANCH
                                                                            (DIMENS*
        NTIMEN
                     = NUMBER OF ANGLES FOR RAYS MINUS ONE
        NUANMO
                                                                            (DIMENS.
                    = NUMBER OF DIRECTIVITY ANGLES FOR SHIPS
= NUMBER OF ANGLE BEING CONSIDERED FOR RAYS
******
        NUDIAN( )
                                                                            (DIMENS+
        NUMANG
                                                                            (DIMENS*
        VUMFRQ( )
                    = NUMBER OF FREQUENCY POINTS FOR INTEGRATION
                                                                            (DIMENS*
        NUMHED
                    = NUMBER OF HEADINGS TO BE CONSIDERED
        NUMLAY
                     = NUMBER OF LAYERS
                    = NUMBER OF RANGES FOR CLOSEST APPROACH BEING CONSIDERE.
        NUMRNG
                    . LAYER NUMBER BELOW LOWER VERTEX LAYER
                                                                            (DIMENS.
        NYTXLO
                    . LAYER NUMBER IN WHICH RAY VERTEXES
        NVTXUP
.:
                                                                            (DIMENS.
        NZONE
```

```
. .
                     COMPUTATIONAL VARIABLE
        ONMIAE
                     = ONE MINUS ALPHA
                                                                              (DIMENS.
                     = ONE MINUS ALPHAS
        SAIPMC
                                                                              (DIMENS.
                     . DUMMY VARIABLE FOR COMPUTING PATHLENGTHS
        PATHLN( )
                     = PATH LENGTH OF RAY TYPE
        Phi
        PUS
                    * PROBABILITY OF DETECTION BY SEARCHER
                                                                              (DIMENS.
                     = PROBABILITY OF EVASION AS A FUNCTION OF STATE (DIMENS.
               ( )
                     = INITIAL PROBABLITY OF EVADER DETECTION
        PEDETN( )
                                                                              (DIMENS.
                     = RANGE OF DETECTION BY EVADER
        PERANG
        PEVADE( ) = PROHABILITY OF EVASION AT EACH BRANCH POINT
                                                                              (DIMENS.
        PGE
              ( )
                     = PROBABILITY OF SEARCHER EVENT OTHER THAN KILL
                                                                              (DIMENS.
                    = PROBABILITY OF EVADER EVENT OTHER THAN EVADE
        PGS
                                                                              (DIMENS .
        1115
                     = ANGLE RAY MAKES WITH SHIP AXIS
        215
                    = SFE -PRYSEV-
                                                                              (DIMENS*
                     A-PRIORI PROBABILITY OF DETECTION BY EVADER
                     NOT USED OR REQUIRED
        215
                     = SEE -PRYSSE-
                                                                              (DIMENS.
                     A-PRIORI PROBABILITY OF DETECTION BY SEARCHER
                     NOT USED OR REQUIRED
                     = PROBABILITY OF KILL GIVEN DETECTION BY SEARCHE (DIMENS.
        PKDS
              ( )
        PKILL ( )
                     = PROBABILITY OF KILL AT EACH POINT ON BRANCH
        0
                     = PATH LENGTH OF RAY
        PNE
                     . NOISE POWER SPECTRUM AS SEEN BY EVADER
        PNS
                     . NOISE POWER SPECIALM AS SEEN BY SEARCHER
               ( )
        POE
                     = SFE -PRNOEV-
               ( )
                                                                              (DIMENS»
                     A-PRIORI PROBABILITY THAT NO DETECTION BY EVADER
                     NOT USED OR REQUIRED
        POS
               ( ) = SEE -PRNOSE-
                     A-PRIORI PROBABILITY OF NO DETECTION BY SEARCHER
                     NOT USED OR REQUIRED
        POWRCD
                     - COMPUTATIONAL VARIABLE
                     = PROBABILITY THAT POINT ON BRANCH IS PASSED
        PPATH ( )
                                                                              (DIMENS.
                     = PROBABILITY OF REACHING THE PRESENT POINT
                                                                              (DIMENS.
                     1. F. P-OF-PATH FOR N-MINUS-ONE
       PRANGE( ) = RANGE OF FIRST DETECTION BY EVADER PRANGS( ) = RANGE OF FIRST DETECTION BY SEARCHER
                        PROBABILITY OF DETECTION BY EVADER
                                                                              (DIMENS.
        PROEVAL )
                     . PROBABILITY OF DETECTION BY SEARCHER
        PROSER( )
                                                                              (DIMENS.
        PRIOEV( ) = FVADER DECISION PROBABILITY OF NO-DETECTION (DIMENSO PRIOSE( ) = SEARCHER DECISION PROBABILITY OF NO-DETECTION (DIMENSO
                     = PROBABILITY OF NOT BEING DETECTED BY EVADER (DIMENS.
        PRNTEV
       PROTSE = PROBABILITY OF NOT BEING DETECTED BY SEARCHER (DIMENS.)
PROTEY() = PROBABILITY OF PATH OF DETECTIONS FOR EVADER(DIMENS.)
PROTSE() = PROBABILITY OF PATH OF DETECTIONS FOR SEARCHE(DIMENS.)
                                                OF DETECTIONS FOR SEARCHE (DIMENS.
        PRYSEV( ) = EVADER DECISION PROBABILITY OF
                                                                  DETECTION (DIMENS+
        PRYSSE( ) = SEARCHER DECISION PROBABILITY OF
                                                                  DETECTION (DIMENS.
                    = INITIAL PROBABILITY OF SEARCHER DETECTION
= RANGE OF DETECTION BY SEARCHER
        PSDETN( )
        PSRANG
        PTE
                    = SIGNAL POWER SPECTRUM AS SEEN BY EVADER
                    = SIGNAL POWER SPECTRUM AS SEEN BY SEARCHER
        PIS
                     = FVADER X-POSITION AT POINT ON BRANCH
        PXE
        PXS
                     = SEARCHER X-POSITION AT POINT ON BRANCH
               ( )
        DYE
                     = EVADER Y-PUSITION AT POINT ON BRANCH
               ( )
                     = SEARCHER Y-POSITION AT POINT ON BRANCH
        PYS
        PZE
                       EVADER Z-POSITION AT POINT ON BRANCH
                     = SEARCHER Z-POSITION AT POINT ON BRANCH
        275
        01
                       DUMMY VARIABLE
                     - DUMMY VARIABLE
        RANGE ( ) = COMPUTATIONAL VARIABLE
        RANGE ( ) = HORIZONTAL RANGE BETWEEN SHIPS AT POINT ON BRANCH
RANGEC( ) = COMPUTED RANGE FOR RAY TYPE
                     . HORIZONTAL RANGE BETWEEN SHIPS
        RANGEH
.000
                     = HORIZONTAL TRAVEL OF RAY PORTION
        RANGET
        30
        RCJ
                     = RANGE OF CLOSE
        RCZ1
                     = CONVERGENT ZONE RANGE
        RCZZ = CONVERGENT ZONE RANGE
RNGMOD( , )= HORIZONTAL RANGE OF RAY FOR EACH MODE OF PROPAGATION
RNGMOD( , )= HORIZONTAL RANGE OF RAY FOR EACH MODE OF PROPAGATION
RNGMOD( , )= HORIZONTAL RANGE OF RAY FOR EACH MODE OF PROPAGATION
                     = CONVERGENT ZONE RANGE
        RNGSTR
                     - RANGE OF CLOSING TO INITIALIZE RNGCLS PROPERLY
        RSD
```

```
COMPUTATIONAL VARIABLE
00000000
        RSD1
                     COMPUTATIONAL VARIABLE
        SCSD
                     COMPUTATIONAL VARIABLE
                     = WAVE HEIGTH PARAMETER
        SDCON
        SDCON
                     = SURFACE DUCT CONSTANT
                     = SFE -DEPSER-
        SDEPTH
        SE1
                     = CONSTANT SPEED OF EVADER
        SIGPLS
                                                                             (DIMENS.
                       SIGNAL TO NOISE RATIO PLUS ONE FOR SHIPS
000000000000000000000
                    = SINE OF STEERING DEPRESSION ANGLES FOR SHIPS
        SINPHI( )
                                                                            (DIMENS.
        SINRAD( )
                    = SINE OF AZIMUTHAL SIGNAL ARRIVAL ANGLE
                                                                             (DIMENS.
        SLOPFJ( )
                    = SLOPE IN LAYER
                                                                            (SEC++2/+
                     = SUMMATION VARIABLE
        SM
                     = SUMMATION FOR COMPUTING AVERAGE EVADED DETECTIONENS+
        SMPEDT
                    SMPSDT
        SMTCNE
        SMICHS
                     . FUNCTION TO COMPUTE THE SPA REQUIRED
        SPAFUN
        SPATEV
                     = PROPAGATION SPEED AT EVADER
        SPATSE
                     = PROPAGATION SPEED AT SEARCHER
        SPOTER( )
                     = SPEED OF PROPAGATION AT SHIPS
                     = PROPAGATION SPEED AT VERTEX OF RAY
        SPOVER
                                                                                   (K.
        SPI( )
                     = SPREADING LOSS CONSTANT
                                                                             (DIMENS#
        SPT( )
                     = SPREADING LOSS CONSTANT
                                                                             (DIMENS#
• 3
                     = VERIEX VELOCITY OF RAY SQUARED
        SPVRSQ
                                                                             ((K-YD2+
*****
        SQARFA( )
                     = ARRAY CONSTANT
                                                                               (YD-S.
        SORTZL
                     EJEALAN JANOITAIUAMO
                     = CONSTANT SPEED OF SEARCHER
        551
                                                                                   (K.
        STATD
                     = SEE -NDSTAT-
        STATE
                     = SEE -NESTAT-
                     = SIGNAL TO NOISE RATIO PLUS ONE FOR EVADER
= SIGNAL TO NOISE RATIO PLUS ONE FOR SEARCHER
0000000000
        STNPEV
                                                                             (DIMENS.
        STNPSE
                                                                             (DIMENS*
        SUMEVA
                     = ACCUMLATIVE PROBABILITY OF EVASION
                                                                             (DIMENS.
                     = ACCUMLATIVE PROBABILITY OF EVASION
        SUMKIL
                                                                             (DIMENS+
                     . SUMMATION OF PATH PROBABILITIES AT BRANCH ENDSCOIMENS.
        SUMPTH
                    = A SUMMATION OF ALL POSSIBILE PROBABILITIES
= SURFACE ANGLE FOR THE RAY TYPE
        SUMTOT
                                                                             (DIMENS .
        SURANG( )
                     NOT USED OR REQUIRED
00000
        TARRIV( . ) = TRANSFORMED ARRIVAL ANGLE VECTOR
                                                                             (DIMENS+
                    = TIME EVADER IS IN CONTACT AT BRANCH POINT
= TIME SEARCHER IS IN CONTACT AT BRANCH POINT
        TCONEN( )
        TCONSN( )
                                   AVERAGE OF CONVERGENT ZONE ANGLES
        TCZAV1
..
        TCZAV2
                                   AVERAGE OF CONVERGENT ZONE ANGLES
                     = STARTING ANGLE (IN DEGREES) OF RAY FROM SEARCHER
= TIME INCREMENT FOR RAY TO GO X K-YD
* * * * * *
        TI
        TIMCON
                     = PROPAGATION TIME OF RAY
        TIR ( ) = INITIAL ANGLE OF RAY WITH RANGEH TMATEV( , )= TRANSFORMATION MATRIX FOR EVADER
                                                                             (DIMENS+
        TMATRX(,,) = TRANSFORMATION MATRIX
                                                                             (DIMENS*
        TMATSE( . ) = TRANSFORMATION MATRIX FOR EVADER
                                                                             (DIMENS*
        TSTOKY
                     = FUNCTION TO CHANGE KNOTS TO KILO-YARDS/SECOND
000
             ( ) = ARRIVAL ANGLE OF RAY TYPE
        TTR
        TVECTR( . ) = TRANSFORMED BEAM-STEERING-DIRECTION VECTOR
                                                                             (DIMENS.
        TWOALE
                     =
                      TWO TIMES ALPHA = # 2
                                                                             (DIMENS+
        TWOALS
                     = THO TIMES ALPHASON2
                                                                             (DIMENS.
                     = VFLOCITY OF PROPAGATION (IN K-YD/SEC) AT POINT IN LAY&
                       PROPAGATION SPEED AT END POINT OF RAY
        VAREVA( )
                     = VARIANCE OF SMOOTHED SIN FOR EVADER
        VARSER( )
                   . VARIANCE OF SMOOTHED SIN FOR SEARCHER
0000000000
                    = X-COMPONENT OF EVADER VELOCITY AT POINT ON BRANCH
        VXF
              ()
                                                                                  4Ke
                     = INITIAL EVADER SPEED IN X-DIRECTION (Ke = X-COMPONENT OF SEARCHER VELOCITY AT POINT ON BRANCH(Ke = Y-COMPONENT OF EVADER VELOCITY AT POINT ON BRANCH (Ke
        VXEINT
        VXS
        VYE
               ( )
                      INITIAL EVADER SPEED IN Y-DIRECTION
Y-COMPONENT OF SEARCHER VELOCITY AT POINT ON BRANCHIK.
        VYEINT
                     =
                     = RANGE (IN K-YD) OF HORIZONTAL TRAVEL OF RAY WITHIN LA.
                       FRACTIONAL PART OF LAYER
        X
                     =
                       SIGNAL TO NOISE RATIO AT EVADER
                                                                             (DIMENS.
        XF
                     = SIGNAL TO NOISE RATIO AT SEARCHER
                                                                             (DIMENS.
```

```
.:
               42
               21
                                       = STARTING DEPTH (IN 4-YD) OF RAY
.0
               219
                                           STARTING DEPTH (IN 4-YD) OF CONVERGENT ZONE RAY
               218
                                       = DEPTH (IN K-YD) OF EVADER
                                       = ENDING DEPTH (IN <-YD) OF RAY
               72
               723
                                       = ENDING DEPTH (IN 4-YD) OF CONVERGENT ZONE RAY
               123
                                       = DEPTH OF EVADER
                                      = DEPTH (IN K-YD) OF POINT WITHIN LAYER TO WHICH RAY IS*
= DEPTH OF MAX OR MIN POINT IN VELOCITY PROFILE *
               28
000
               21
               ZONACZ
                                       = MODIFIED VALUE OF ACZ FOR SIMPLIFICATION
                                                                                                                                                (DIMENS*
• 5
               ZONBCZ
                                      = MODIFIED VALUE OF BOZ FOR SIMPLIFICATION
               ZSTART
                                       = STARTING DEPTH OF RAY PORTION
                                      = DEPTH (IN K-YD) OF VERIFX POINT OF CONVERGENT RAY
               ZVLO
. .
                                       = DEPTH OF UPPER VERTEX POINT FOR RAY
               ZVUP
. 3
. 3
              NAMEL IST
             N / AVERAG /
            N SUMTOT, SUMKIL, SUMEVA, SUMPTH, N TRENOR, TREKIL, TREEVA, TREPTH.
            N CONNOR, AVEKIL, AVEEVA, AVESTH,
N SMPEDT, SMPSDI, SMTCNS, SMTCNE, PERANG, PSRANG
             N TIR, TIR, RANGEC, PATHLN, DRDXDC, BOTANG, SPI, SPT, RANGEH
             N / BRANCH /
             N NEI, NSI, NR, SUMKIL, BRNKI, SJMEVA, BRNEVA, AVBREV, AVBRKL
             N / CHECKS /
             N RCJ. HE1
             N / CZONEN /
             N AMLSRD, Hol, HZSD, SDCON, NOONSD.
             N RCZ1, RCZ2, TCZAV1, TCZAV2
               NAMEL IST
             N / DATAIN /
             N ACZ , ADI1 , ADI2
                                                                , ALPHAE, ALPHAS, ANGMAX, ARIX , ARIY
            N ARTZ , ARZY , ARZZ , ARRAYI, ARRAYZ, ARRYHI, ARRYHZ, N ARRYHI, ARRYHZ, BZE , BZS , BCZ , BETAE , BETAS , BF1 ,
                             . ARRYW2, B2E , B2S , BCZ , BETAE , BETAS , BF1 , CONER1. CONER2, DELANG, DELF , DELHED, DELRAG, DELTAE,
             N RF2
                                                                                                                    , DIFTI , DTRAD ,
             N DELTAS, DEPEVA, DEPKYD, DEPSER, DII
                                                                                                 . D12
                              F1S , F2E , F2S , F8WE , F8WS , FLN1 , FLN2 , F0S , FRES1 , FRES2 , FXE , FXS , HDINEY , F0S , F
             N DPFTEV, DPFTSE,
             N F11
                            , E12
             N FIE
                                                                                                                     . HDINEV, HEDMAX.
             NENE
             N HS1
                                                                                                                    , NEMAX , NPCO .
             N NEWLAY,
             N NPRINT,
             N NSMAX , NULAPO, PDEMIN, PDSMIN, PHIE , PHIS , POR
             N PRE , PRK , GIRANI, OTRANZ, RGINEV, RI
                                                                                                                   , RNGMAX, SPDEVA,
             N SPOKYD, SPOSER, THREVA, THRSER, WRANGE, ZW
               NAMEL IST
             N / DATADU /
             N ADI1. ADI2, DI1, DI2, 101, 102,
             N BF1, RF2, CONIR1, CONLR2, DEPKYD, FLN1, FLN2, FNE, FNS, FXE, FXS,
             N ARRAYD,
             N FULANG.
             N SPOKYD, DUMMY1
             N , FVALUE
             N COSAVE, DELRCZ, DYHITH, ARAREA, CTWOPI, SQAREA, ANGDEP, ARWIDT, N FROLCN, FROIDB, FROTRN, FROASD, FRONCN, NUMFRO
               NAMELIST
             N / INPUTS /
             N ACZ. ACZ.
             N ALPHAE, ALPHAS, ANGMAX, ARRAYI, ARRAYZ, ARRYHI, ARRYHZ, ARRYWI,
             N ARIX, ARIY, ARIZ, ARRX, ARRY, ARRZ,
             N ARRYWZ, BZE , BZS , BETAE , BETAS , DELANG, DELF , DELHED,
             N DPFTEV. DPFTSE.
             N DELRNG, DELTAE, DELTAS, DEPEVA, DEPSER, DIFTI, DTRAD, FOE, N FOS, FIE, FIS, FZE, FZS, FBWE, FBWS, FRESI, N FRESZ, HDINEV, HS1, MAXIAY, MAXIIM, MECO, NEMAX, NPCO,
```

```
N NPRINT.
        N NEWLAY.
        N NSMAX , NULAPO, PHIE , PHIS , POR , PRE , PRK , QTRAN1, N PPAMIN, PDEMIN, PDEMIN, N QTRAN2, RGINEV, RI , RNGMAX, SPDEVA, SPDSER, WRANGE, ZH N,THREVA, THRSER
          NAMELIST
         N / NOISES /
        N XE, XS
N / POWERS /
N PTE, PTS, PNF, PNS
N / TABLES /
N PDS, PGS, PGF
          TSTOKY( DUMMY1 ) = DUMMY1 = 5.5266567E-4
FITOKY( DUMMY1 ) = DUMMY1/3000.0
          NEHLAY = -1

DGPRRD = 57.2957/95

CONSPI = 3.14159265

CTHOPI = 2.0 CONSPI
. 10 CONTINUE
          READ( 5, DATAIN )
WRITE ( 6, 1000 )
WRITE( 6, INPUTS )
          SET UP LAYER CONSTANSIS AND DIFFERENT TYPES OF RAYS
          DELRAD = DELANG/DGPRRD
          SF1 = TSTORY( SPDEVA )
SS1 = TSTORY( SPDSER )
      IF( NPCO .NE. 2 )
• IF( MECO .NE. 2 )
• 60 TO 260
      WRITE ( 6, 10000 )
      GO TO 10
```

		1	i	;	
**************************************	>>>		1		
1 0	(
- 260 CONTINUE			1		
		1	1		
• 1F(SS1 ,GT, SE1) • GO TO 270)		
		i	1		
# WRITE (6.11000)			! !		
		1 1 1			
		. !			
* 60 TO 10)			
		. !	1		
42					
C					
• 270 CONTINUE					
		1			
F(NEWLAY) e 290, 280, 380					}
• 290 CONTINUE • CALL					
CALL LAYERS S (MAXLAY)					
* IF (NULAPO , GE , MAXLAY) * GO TO 20					0
	l Df,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				i

U

280 CONTINUE DEPENA * FITURY(DPFIFY) DEPSER * FITURY(DPFIFE) CALL SCALL RAYCTL MSTRAY • IF (NPRINT ,LT, 1) • GO TO 380 . WRITE(6, C/ONEN) • IF(NPRINT .LT. 3)
• GO TO 340 20 CONTINUE NUMLAY = NULAPO - 1 WRITE (6. 2000) . 00 100 • 1 | 1 * 1.NUMLAY VELMID = FVELOC(DFLTAZ(1)/2.0, 1) HRITE (6, 7000) HRITE (6. 7000)

I. M. DEPKYD(1).

H. DELTAZ(1).

H. SPDKYD(1).

H. CONSGO(1).

H. CONSGO(1). 1

```
J = 1.20
                                               D = D • X

UC • FVELOC( p. 1 )

DELTAV = VELOC1 - UC

VELOC1 = UC

SLOPEN = DELTAV/X
                                                  WRITE ( 6, 3000 )
                                             W UC
                                            W . DELTAV. SLOPEN
.... 100 CONTINUE
                                           WRITE( 6. 7000 )
N NULAPO,
N DEPKYD(NULAPO).
N DELTAZ(NULAPO).
N SPOKYD(NULAPO).
                                             W CONSVOINUL APOT.
                                           W CONSVOINULAPO:

W CONSO(NULAPO)

IF ( NULAPO .GE . MAXLAY ) CA_L DUMP

NI = NUANMO + 1

WRITE ( 6, 4000 )

WRITE ( 6, 5000 )

W ( ANGINT(J), ( RNGMOD(1,J), l = 1.6 ), J = 1,N1 )
                            380 CONTINUE
                                            SET UP CONSTANTS USED IN PROGRAM

NEMAX = MAXTIM

ZONACZ = 60.0 - ACZ
ZONBCZ = BCZ - ACZ
AMAXNN = MAXTIM

9LA1 = POR/0.24

3LA2 = ( 1.0 - BLA1 )/3.125/ZONSPI/CONSPI

3LA3 = 6.0 + 22.0 * ( POR = 0.27 )

DE-RCZ = RCZZ - RCZ1

EDEPTH = DEPEVA

HC1 = 30.0 + HC1 + HZSD

RNGSTR = RGINEV - DELRNG

SDEPTH = DEPEVA

ALVECN = 1.0.35*INLG10( ZW ) - 44.0

ONMIAE = 1.0 - ALPHAE

A1 = ONMIAE*ONMIAE

FALPHE = A1/( 1.0 - A1 )

THOALE = 2.0*ALPHAE*ALPHAE

THREVA = AMINI( THREVA, 1.4142*TWOALE*FALPHE/A1 * 1.0 )

ONMIAS = 1.0 - ALPHAS

A1 = ONMIAS*ONMIAS

FALPHS = A1/( 1.0 - A1 )

THOALE = 2.0*ALPHAE*ALPHAE

THRSER = AMINI( THREVA, 1.4142*TWOALE*FALPHE/A1 * 1.0 )

ANGDEP(1) = PHIS

FALPHS = A1/( 1.0 - A1 )

THOALS = 2.0*ALPHAS*ALPHAS

THRSER = AMINI( THRSER, 1.4142*TWOALS*FALPHS/A1 * 1.0 )

ANGDEP(1) = PHIS

FROLON(1) = FIS

FROLON(2) = FIF

NARRAY(1) = ARRAY1

NARRAY(2) = ARRAY2

NUMFRO(1) = ( F2S - F1S )/DE-F * 1.0

SPDTER(1) = SPATSE

SPDTER(2) = SPATEV
                                                  SET UP CONSTANTS USED IN PROGRAM
```

```
00 400
H = 1.2
                                 COSAVE(M) = COS( ANCZAV(M) )
COSPHI(M) = COS( ANGDEP(M) )
SINPHI(M) = SIN( ANGDEP(M) )
                                         SET UP TRANSFORMATION MATRICES
                                         MS . M . 2
                                      00 200
                                      ARRAYD(1, M) = CONSPI+( AINPUT(1, M)/3.0 )/SPDTER(M)
                                         A1 = EANGLE(1.M)/DGPRRD
                                         EULANG(1.MS) = SIN( A1 )
EULANG(1.M) = COS( A1 )
..... 200 CONTINUE
                                       A1 = EULANG(3,M) = EULANG(1,M)

A2 = EULANG(3,M) = EULANG(1,MS)

A3 = EULANG(3,MS) = EULANG(1,MS)

A4 = EULANG(3,MS) = EULANG(1,M)

TMATRX(1,1,M) = A1 - A2 = EULANG(2,M)

TMATRX(1,2,M) = A3 + A4 = EULANG(2,M)

TMATRX(2,1,M) = FULANG(2,MS) = EULANG(3,MS)

TMATRX(2,1,M) = A3 = EULANG(2,M) - A4

TMATRX(2,2,M) = A1 = EULANG(2,M) - A2

TMATRX(2,3,M) = EULANG(2,MS) = EULANG(3,M)

TMATRX(3,1,M) = EULANG(2,MS) = EULANG(1,MS)

TMATRX(3,1,M) = EULANG(2,MS) = EULANG(1,MS)

TMATRX(3,3,M) = FULANG(2,MS) = EULANG(1,MS)

TMATRX(3,3,MS) = FULANG(1,MS) = EULANG(1,MS)
                                          N2 . NUDIAN(M)
                                      00 300
                               I = 11 - 1
ANDISO(11, M) = DIRANG(11, M) / DGPRRD
DLDIAN(1, M) = ANDISO(11, M) - ANDISO(1, M)
```

300 CONTINUE
SET UP THE DIFFERENT FREQUENCY CONSTANTS
• F * FROLOW(M)
• FROLOW(M) = FROLOW(M) - DELF • N1 = NUMFRO(M) + 1
30.000000000000000000000000000000000000
 00 400
• 1 J = 1,N1 •
i
• FROSIG(J,M) = F
 FRQNOS(J,M) = F A2 = SQRT(F)
• FRGASD(J,M) = SDCON•A2
 FROLCN(J,M) = (40.0/(4100.0 + A1) + 2.75E-4)+A1
 A1 = F/FRQRES(M) A2 = 1.0/(1.0 + (ARQTRN(M)+(A1 - 1.0/A1)) **2)
• FROTRN(J,M) = A2 • A3 = TNLG1n(F)
FRONCN(J,M)=(ALOGIN(WAVECN-1.667*A3)/2.0*ALOGIN(FLONOS(J,M)))*A2
 FROIDB(J,M) = A3 + BLA3 DELBAF(J,M) = BAFFUN(J+1,M) - BAFFUN(J,M)
• F = F • DELF
i
 400 CONTINUE .
[
• ARRAYD(1,1) = ARRAYD(1,1)/ARRAY1
 ARRAYD(1,2) = ARRAYD(1,2)/ARRAY2 N1 = MAXO(NUMFRO(1), NUMFRO(2)) + 2
SPECKSOND CONTRACTIVE MODIFICATIVE A C
 00 500 J = 1,N1
FNF(1) = FRONCS(1.2)
<pre>FNE(J) = FRQNOS(J,2) FNS(J) = FRQNOS(J,1) FXE(J) = FRQSIG(J,2)</pre>

B

Later Land

```
.... 500 CONTINUE
                 SET UP CONSTANTS USED IN D- AND E- STATE TABLES
                PF(1)=PRF
                PGE(1)=1.
                PGS(1)=1
                PKDS(1)=PRK
                PDE(2)=1
                PE(2)=PRE
PG(2)=PRE
PGS(2)=1.
PKOS(2)=0.
PRNOEV(2) = 0.0
PRYSEV(2) = 1.0
                PDE(3)=0.
                PDS(3)=1.

P(3)=0.

PK(3)=0.

PK(3)=0.

PRNOEV(3) = 1.0

PRNOEE(3) = 0.0

PRYSEV(3) = 0.0
                PRYSSE(3) = 1.0
                PDS(4)=1.
                PKDS(4)=0.
                PRNOSE(4) = 0.0
                PRYSSE(4) = 1.0
                PDS(51=0.
                PKDS(5)=0.
                PRNOSE(5) = 1.0
                PRYSSE(5) = 0.0
                INITIALIZE SUMMATION CONSTANTS TO ZERO
                BRNEVA = 0.0
BRNKIL = 0.0
PERANG = 0.0
                PSRANG = 0.0
                SMPEDT = 0.0
SMPSDT = 0.0
SMRANG = 0.0
                 SMTCNE = 0.0
                SMTCNS = 0.0
SUMEVA = 0.0
SUMPTH = 0.0
                SUMKIL = 0.0
                START LOOPS THROUGH HEADINGS AND RANGES
                HE1 . HDINEV
                NUMBED = ( HEDMAX - HDINEY )/DELHED + 1.0
NUMBER = ( REGMAX - RGINEY )/DELENG + 1.0
                FRLOEV = F1E - DELF
FRLOSE = F1S - DELF
               DO 110
                                 K1 = 1, NUMHED
                                                             1
```

	1		1	
	• RCJ • ANGSTR	••	!	

			!	
			!	
****************	• 00 900 • 1 J1 = 1. NUMHNG	:	1	
	***************************************	••	i	
			1	
	i i i i i i i i i i i i i i i i i i i		i	
	* RCJ * RCJ * DELRNG	' :		
	. HRITE (6, 1000)		i	
	• WRITE(6. CHECKS) • NR • 1	:	!	
	• Net • 1	•	i	
	· Ns1 • 1	:	1	
	· NSTART : 1	•	i	
	• PPATHM : 1.0	:	1	
	1 INITIALIZE SEARCH PHASE AND POSITIONS	•	i	
	CALL INIT	:		
	• S INIT	•	1	
		•	1	
	0((,
	• 30 CONTINUE	•		
	*3 COMPUTE HEARING ANGLES (IN RADIANS)	:		
	•3	•	1	
	• CALL • S RELIAR	:		
	. PANGEH . RANGE(N)		1	
	CALL STEFRA			
	•3		1	
	COMPUTE RAY TYPES AVAILABLE	:		
	• CALL	•		
	S RAYNON	:		
	O COMPUTE RECIEVED SIGNAL AND VOISE	•	1	
	CALL			
	S RECIEV	•	!!!	
	. COMPUTE SIGNAL TO NOISE RATIO OF RECIEVED POWER FOR BOTH SHIPS			
	•3	•	!!!	
	• CALL • S PSIGP			
	COMPUTE SIGNAL PLUS, NOISE OVER NOISE RATIO	•	!!!	
			i	
	• SIGPLS(N,1) = • E XS	:	!	
	· SIGPLS(N,2) =		i	
	• E XE	:		
		Car.	i	
			!!!	
	***************************************	•	i	
	• IF(NPRINT .LT. 5) • 60 TO 370	•••••	1	0
	***************************************	•		i
	i		!!	!
	• WRITE(6. NOISES)	•		1
	***************************************	•	i	i
	i i		!!!	!
	IF(NPRINT ,LE, 7)	•		
	• • GO TO 370	•		!
	***************************************	•		1

1		1 1	
· NRITE(6, ROTION)	•••••	1	!
		i i	i
ò(1	0
***************************************		1 1	1
. 370 CONTINUE . STUPSE = SIGPLS(N.1)		1 1	1
STUPEN & STOPLS(N.2)	•	i i	į
	:	1 1	1
.C COMPUTE MEAN AND VARIANCE OF POWER VALUES	:	1 1	1
· CALL · S MUEVAN	•	1 !	į
	•	i i	i
		1 1	1
• CALL • S PRODE!	:	1 1	!
!	•••••	1 1	1
		!!	į
or		i j .	· · · · · · j · · · · · ·
1	•••••	1 1	1
. 40 CONTINUE		1 1	1
COMPUTE THE D- AND E- STATES	•	!!	!
• CALL		i !	i
S STAT	:	1 1	1
SET UP REQUIRED PARTS OF D- AND E- STATE TABLES	:	1 1	1
• CALL • S TABLE		1 1	1
		i i	į
.COMPUTE THE PROBABILITIES OF EVADE. KILL, AND PATH		1 1	i
• CALL • S PROBL		1 1	f 1
+3 MODIFY THE MEAN AND VARIANCES OF THE POWERS		!!!	!
· CALL	•	1 1	į
S DEMOVA		i	i
S (NDSTAT, NESTAT)	:	1 1	1
• COMPUTE PROBABILITIES MODIFIED BY PATH PROBABILITY		1 1	1
***************************************	•••••	1 1	1
		i i	i
	•••••		i
• IF(N .EQ. 1) • GO TO 50	*******	1 1 1	1
1	•••••	1 1 1	!
		1 1 1	į
	•••••	iii	i
· CALL · S PROBAL			i i
1	•••••	1 1 1	1
öt		10	!
		!!	i
• 50 CONTINUE • 0 • 1 • 2 • ACCUMULATE THE PROBABILITIES		1	1
ACCUMULATE THE PROBABILITIES	:		1
· CALL . ACCSTA		1 1	1
• 3		!!!	į
S DETERMINE IF BRANCH SHOULD BE TERMINATED		i i	i
			1

	1		1 1 1
FILE NTIMEN .GE. MAXTIM)	***************************************	•	10
• 60 10 76	***************************************	.:	
" IF ((PPATH(N) ,LT, PPAHIN) ,T	R. (((N .GT. 1) .AND. (RANGE(N) .LT R(N) .LT. PDSMIN) .AND. (PROEVA(N)	**	1
LT. PDEMIN))))	R(N) .[T. PDSHIN) .AND. (PROEVA(N)	:	
60 10 70	***************************************	.:	
		:	
UPDATE QUANTITIES FOR NEXT PO	INT ON BRANCH	:	
PATHM = PPATH(N)		:	
***************************************	1	••	1 1 1
. IFT INPCO-MECO .FQ. 9) .AND.	(NR .GT. 1))	•	
• • 60 10 370			
.2		*:	i i i
.2 UPDATE SHIP HOTION AND POST	1104	:	
. S UPDATE		:	1 1 1
S UPPNS		:	
***************************************	!	••	
• go to so		•	1
		••	i i
			i (
			! !
•0		••	1 1
	ò		10
• 70 CONTINUE		••	i
	1		i
			1
• IF(NPRINT ,LT, 4)	***************************************	•••	i 1.,0
• • 60 10 360			
- BRNKIL - SUMKIL - BRNKIL	1		
BRNEVA - SUMEVA - BRNEVA		:	
AVAREV . BRNEVA/AMAXNN		:	
* WRITE(6. BRANCH) • SRNKIL * SUMKIL • SRNEVA * SUMFVA		:	i i
	1	••	1 1
			1 1
• IF (NPRINT ,LT. 6) • GO TO 360	***************************************	•)v
		.:	
			i
• WRITE (6. 8000 F	1	••	

20 400
 0n 600 . 1 . NSTART,N . 1

1
1
POTE (A 2000)
• WRITE (6, 700n)
. Rexs (1).
. w PYS (1).
• W RANGE (1).
• N PXE (1). • 1
• # PKILL (1).
· » PEVADE(1).
• H PPATH (1)

 500 CONTINUE
1
• IF(NPRINT .LT. 7) •
• • 60 10 360

. WRITE (6, 6000)

<pre><pre></pre></pre>
 00 700
• 1 1 = NSTART.N • 1
i i
• WRITE (6, 7000)
· W PROSER(I),
• W GMUSER(1). • 1
• W VARSER(1),
• W DEMUSE(1).
• W DEVASE(1).
• W PROEVA(1), • 1
• W VAREVAC().
• W DEMUEV(1).
• M DEVAEV(1)
W DEVAEV(1)
W DEVAEV(1)
• M DEVAEV(1)
700 CONTINUE
700 CONTINUE
700 CONTINUE

	1		1 1
	• 48176; 6. 9000 1		
	1	***************************************	. ! !
* * * * * * * * * * * * *	. 00 800 . 1 1 = NSTART.N		: ! !
	!	***************************************	
	• HRITE (6. 700m)		
	PRANCE(1).		:
	• M PSDETN(1). • 100NSN(1).		:
	. W SIGPLS(1.1).		:
	. H PRANGE(1).		
	* # 100NEN(1). * # 510PLS(1.2)		
	1		
	1	***************************************	.
	. Agn CONTINUE	************************************	:
	1		1

	. 360 CONTINUE . SUMPTH . PPATH(N)		
	DETERMINE NEXT BRANCH TO FOLL	H 1.E. SET NEL AND NST	•
	•:	***************************************	•
	. 16 (NR ,FQ, 3)	***************************************	• 1
	• • GO TO AO		:
			i i
	. IF(NR .FQ. 2)	***************************************	:
	• IF(NR .FQ. 2) • CALL THO • IF(NR .EQ. 1)		:
	· · CALL PIREE		:
		******************************	:
	. GO TO 90		•
			iii
	•:		· i i i
		· · · · · · · · · · · · · · · · · · ·	•
		?	1
	. BO CONTINUE	······································	• 1
	· CALL THREF		:
)(
	. 90 CONTINUE		:
	***************************************	· · · · · · · · · · · · · · · · · · ·	•
			1
	a 1F(NR .EQ. 4)		•0
	· • 60 TO 900		• 1 1

(manual)

[]

B

I

0

B

OF RESET CLOSE AND EVADE PHASES CALL S RESET N = MAXO(MSI, NEI) - 1 N = MAXO(NSJ, NEI) - 1
NSTART = N
Fic N .GT, NSI)
CLPH = 1.0
IF(N .GT, NFI)
EVPH = 1.0
PPATHM = PPATH(N-1)
IF(N .EO. 1) PPATHM = 1.0
NTIMEN = N 9 GO TO 40 ... 900 CONTINUE HE1 = HE1 + DELHED • IF(NPRINT ,LE. B)
• GO TO 350 WRITE(6, TABLES) - 350 CONTINUE .* 110 CONTINUE •0 NORMALIZE AND PRINT OUTPUT

CONNOR = MAXTIM=NEMAX=NSMAX=NUMHED=NUMRNG
AVEEVA = SUMEVA/CONNOR
AVEKIL = SUMEVI/CONNOR
AVEFIH = SUMEVI/CONNOR
AVEFIH = SUMEVI/CONNOR
SWEDT = SUMEVI/CONNOR=AMAXNN
TRENOR = NUMBNG=NUMHED
SWRANG = SHRANG/TRENOR
SMPEDT = SMPEDT/TRENOR
SMPEDT = SMPEDT/TRENOR
SMTCNE = SMTCNF/TRENOR
SMTCNS = SMTCNS/TRENOR
TREKIL = SUMEVI/TRENOR
TREEVA = SUMEVI/TRENOR
TREEVA = SUMETH/TRENOR
TREEVA = SUMETH/TRENOR
TREPTH = SUMETH/TRENOR
TREYD = TREEVA + TREKIL + TREPTH
PSRANG = PSRANG/TRENOR
WRITE (6,12000) NORMALIZE AND PRINT OUTPUT

```
TREFVA.
         SMPSDT
         WRITE ( 6.13000 )
       W PERANG.
       W PSRANG.
       W SMTCHE.
         SMTCNS.
       W TRENOR.
       W SUMTOT
        WRITE ( 6, 1000 )
                                          1
      IF ( NPRINT .LE. 0 )
      . GO TO 40
•3
        PRINT OUT DETAILED LIST OF INPUTS
         WRITE ( 6.21000 )
       W ACZ
       W ALPHAE.
       W ALPHAS.
       W ARIX
      W AR17
W AR17
       W ARZX
       W ARZY
       W ARZZ
         WRITE ( 6,22000 )
      M BSE
M BSS
        DELANG.
       W DELF
      W DELMED.
W DELRNG.
W DIFTI
         WRITE ( 6,23000 )
      W DPFTEV.
         DTRAD .
      W F11
W E12
         E13
      W F21
       M E 23
         WRITE ( 6,24000 )
      W FOE
      W F1E
W F1S
W F2E
W F2S
       W FBWE
       W FBWS
         WRITE ( 6,25000 )
       W FRES1 .
       W FRESE .
       W HDINEV,
      W HEDMAX,
         101
```

```
W MAXLAY.
       MITXAM
        WRITE ( 6,26000 )
      W MECO .
        NEMAX
      W NEWLAY.
        NPCO
       NPRINT,
      W NSMAX ,
      W NULAPO.
      W POEMIN,
      W POSMIN
        WRITE ( 6.27000 )
      W POR
      W PPAMIN.
      W PRE
      W PRK
      W QTRAN1.
      W QTRANZ,
      W RGINEV.
      W RI
      W RNGMAX
        WRITE ( 6.28000 )
      W SPDEVA.
        SPDSER,
        SS
       THREVA,
       THRSER,
      W WRANGE
+21000 FORMAT(
     F / F15.6. 99H = ACZ
                              = FIRST CONVERGENCE ZONE CONSTANT
     F / F15.6. 99H = ALPHAE = SMOOTHING PARAMETER FOR EVADER
     F / F15.6, 99H = ALPHAS = SMOOTHING PARAMETER FOR SEARCHER
     F / F15.6, 99H = AR1X
                              * X-PRIME ARRAY DIMENSION FOR SEARCHER
     F / F15.6. 99H = AR1Y
                              . Y-PRIME ARRAY DIMENSION FOR SEARCHER
      F / F15.6. 99H = AR1Z
                              * Z-PRIME ARRAY DIMENSION FOR SEARCHER
     F / F15.6, 99H = AR2X
                              * X-PRIME ARRAY DIMENSION FOR EVADER
      F / F15.6. 99H = AR2Y
                              = Y-PRIME ARRAY DIMENSION FOR EVADER
     F / F15,6, 99H = AR2Z
                              = Z-PRIME ARRAY DIMENSION FOR EVADER
     F )
*22000 FORMAT!
     F / F15.6. 99H = B2E
                              = INTEGRATION BANDWIDTH OF POST-DETECTION O.
     FF EVADER
                99H = B2S
                              . INTEGRATION BANDWIDTH OF POST-DETECTION O.
     FF SEARCHER
      F / F15.6, 99H = BCZ
                              * SECOND CONVERGENCE ZONE CONSTANT
       / F15.6, 99H = DELANG = ANGLE STER SIZE FOR RAY PRE-TRACE TABLE
      F / F15.6. 99H = DELF
                              . FREQUENCY INCREMENT
      F / F15.6. 99H = DELHED = CHANGE IN HEADING OF EVADER
      F / F15.6, 99H = DELRNG = CHANGE IN RANGE OF CLOSEST APPROACH
     F / F15.6. 99H = DIFTI . TIME BETWEEN POINTS ON A BRANCH
     F)
```

```
+23000 FORMATE
     F / F15.6. 99H = DPFTEV = EVADER DEPTH
       / F15.6. 99H = DPFTSE * SEARCHER DEPTH
      F / F15.6. 99H = DTRAD = ANGLE INCREMENT FOR RADIATED SIGNAL
                              * FIRST EULER ANGLE FOR SEARCHER (Z AXIS R.
      F / F15.6. 99H = F11
      FOTATION)
      F / F15.6. 99H = 112
                              * SECOND EULER ANGLE FOR SEARCHER (LINE OF
     FNODES ROTATION)
                              = THIRD EULER ANGLE FOR SEARCHER (Z-PRIME
     F / F15.6, 99H = F13
     FAXIS ROTATION)
     F / F15.6. 99H = E21 FOTATION)
                              # FIRST EULER ANGLE FOR EVADER (Z AXIS R.
     F / F15.6. 99H = E22
                              # SECOND EULER ANGLE FOR
                                                        EVADER (LINE OF
      FNODES ROTATION)
     F / F15.6. 99H = F23
                              # THIRD EULER ANGLE FOR
                                                        EVADER
                                                                (Z-PRIME
     FAXIS ROTATION)
TAMPOT COCAS.
     F / F15.6, 99H = F0E
                              = PRE-DETECTION FILTER CENTER FREQUENCY FOR+
     FEVADER
       / F15.6, 99H = F0S
                              = PRE-DETECTION FILTER CENTER FREQUENCY FOR .
     F SEARCHER
      F / F15.6. 99H = F1F
                              . LOWER FREQUENCY LIMIT OF EVADER EQUIPMENT.
        / F15.6. 99H = F1S
                              = LOWER FREQUENCY LIMIT OF SEARCHER EQUIPME .
      F / F15.6, 99H = F2F
                              . UPPER FREQUENCY LIMIT OF EVADER EQUIPMENT.
      F / F15.6. 99H = F2S
                              = UPPER FREQUENCY LIMIT OF SEARCHER EQUIPME*
       / F15.6, 99H = FBWE
                              = PRE-DETECTION FILTER BANDWIDTH OF EVADER .
       / F15.6. 99H = FBWS
                              * PRE-DETECTION FILTER BANDWIDTH OF SEARCHE*
     FR
     F)
-25000 FORMAT!
     F / F15.6. 99H = FRES1
                             * TRANSDUCER RESONANT FREQUENCY ON SEARCHER+
      F / F15.6. 99H = FRES2 = TRANSDUCER RESONANT FREQUENCY ON FVADER
      F / F15.6. 99H = HDINEV = INITIAL HEADING OF EVADER
       / F15.6. 99H = HEDMAX = MAXIMUM HEADING OF EVADER
      F / F15.6. 99H = HS1
                              * HEADING OF SEARCHER
                              = NUMBER OF DIRECTIVITY ANGLES FOR SEARCHER+
      F / 115.
                 99H = 101
                              * NUMBER OF DIRECTIVITY ANGLES FOR EVADER
                 99H = 102
      F / 115.
                 99H = MAXLAY = MAXIMUM NUMBER OF LAYERS TO BE USED TO FI.
      F / 115.
      FT PROFILE
                 99H = MAXTIM = MAXIMUM NUMBER OF POINTS ON A BRANCH
      F / 115,
26000 FORMAT!
                              . CONTROL PARAMETER FOR EVASION COURSE OPTI.
      F / 115.
                 99H = MECO
      FONS
                 99H = NEMAX = MAXIMUM POINT ALONG BRANCH TO START EVASI+
     F / 115.
     FON
       / 115,
                 99H = NEWLAY = CONTROL CONSTANT FOR INITIALIZATION
      F / 115.
                 99H = NPCO
                              . CONTROL PARAMETER FOR PURSUIT COURSE OPTI.
     FON
                 99H = NPRINT = CONTROL PARAMETER FOR AMOUNT OF PRINTOUT
       / 115.
     F / 115.
                 99H = NSMAX = MAXIMUM POINT ALONG BRANCH TO START CLOSI+
      FNG
       / 115,
                 99H = NULAPO = NUMBER OF LAYERS PLUS ONE
```

```
F / F15.6. 99H = PDEMIN = MINIMUM DETECTION PROBABILITY ALLOWED AFT.
      FER SHIPS START SEPARATING AS SEEN BY EVADER
F / F15.6. 99H = PDSMIN = MINIMUM DETECTION PROBABILITY ALLOWED AFT.
      FER SHIPS START SEPARATING AS SEEN BY SEARCHER
.27000 FORMATC
     F / F15.6, 99H = POR
                              = POROSITY OF BOTTOM
      F / F15.6, 99H = PPAMIN = MINIMUM PATH PROBABILITY TO BE CONSIDERED.
      F / F15.6, 99H = PRE
                               = A-PRIDRI PROBABILITY OF EVASION
      F / F15.6, 99H = PRK
                               = A-PRIORI PROBABILITY OF A KILL
      F / F15.6, 99H = GTRAN1 = TRANSDUCER FIGURE OF MERIT ON SEARCHER
      F / F15.6, 99H = GTRAN2 = TRANSDUCER FIGURE OF MERIT ON EVADER
      F / F15.6. 99H = RGINEV = INITIAL RANGE OF CLOSE
      F / F15.6. 99H = RI
                               . INITIAL RANGE BETEEN SHIPS AT START OF BR.
      FANCH
      F / F15.6. 99H = RNGMAX = MAXIMUM CLOSEST APPROACH DISTANCE
+28000 FORMAT(
      F / F15.6. 99H = SPDEVA = SPEED OF EVADER
      F / F15.6. 99H = SPDSER = SPEED OF SEARCHER
      F / F15.6. 99H = SS
                               . SEA STATE
      F / F15.6. 99H = THREVA = DETECTION THRESHOLD FOR THE EVADER
      F / F15.6. 99H = THRSER = DETECTION THRESHOLD FOR THE SEARCHER
      F / F15.6. 99H = WRANGE = WEAPON RANGE
      W )
      IF ( NPRINT .LE. 9 )
      . GO TO 340
       WRITE( 6. POWERS )
       WRITE( 6, FVALUE )
       WRITE( 6. DATAOU )
       CALL POUMP
 340 CONTINUE
       NEWLAY = 1
       GO TO 10
```

```
00
. 1000 FORMATO
     F 1H1 )
2000 FORMATI
                               -DELTA-Z -VELOCITY
          58H1LAYER -DEPTH
                                                           -40
                                                                      -G0 ·
                                    - 32
          59H
                         -G1
                                            -SLOPE -MIDSPEED
 3000 FORMATE
     F 6E20.10 )
 4000 FORMATE
     F 52H1RADIAN ANGLE
                              RANGES FOR DIFFERENT BOUNCE MODES
      F 24X, 90H DIRECT
                             ONE-SURFACE
                                             ONE-BOTTOM SURFACE-BOTTOM
                             TWO-SURFACE )
     F BOTTOM-SURFACE
. 5000 FORMATE
     F 7517.7 )
 6000 FORMATE
        1/59H N PR-SEARCHER
                                   MU-S
                                           SIGMA-S
                                                       DEL-MU
                                                               DEL-SIGMA
                                           SIGMA-F
                  PR-EVADER
          59H
                                   MU-F
                                                       DEL-MU
                                                               DEL-SIGMA)
 7000 FORMATE
     F 13, 1P5E11.3, 5x, 5E11.3 )
 8000 FORMAT!
     F / 58H N
                 SEARCHER-X
                                             RANGE
                                                     EVADER-X
          59H PROPARII .- KILL
                                 -EVADE
                                             -PATH
. 9000 FORMATE
     F / 58H N
                                                        -TIME
                                                                   -S/N+1 #
                      S-PATH
                                 -RANGE -DETECTION
                      E-PATH
         59H
                                 -RANGE -DETECTION
                                                        -TIME
                                                                   -S/N+1) a
$10000 FORMATC
     F 51H COLLISION PURSUIT AND NORMAL ESCAPE NOT COMPATIBLE )
*11000 FORMAT(
     F 60H COLLISION COURSE PURSUIT WILL NOT WORK WITH SLOWER SEARCHER ).
*12000 FORMAT!
     F 1H1
     F / F15.6, 94H
                       = AVERAGE PROBABILITY OF SEARCHER NEUTRALIZING EVA-
     FDER
     F / F15.6. 94H
                       = AVERAGE PROBABILITY OF EVADER ESCAPING FROM SEAR+
     FCHER
     F / F15.6, 94H
                       = AVERAGE PROBABILITY OF FIRST DETECTION FOR EVADE.
     FR
     F / F15.6, 94H
                       = AVERAGE PROBABILITY OF FIRST DETECTION FOR SEARC+
     FHER
*13000 FORMAT!
     F / F15.6. 94H
                       = AVERAGE RANGE OF FIRST DETECTION FOR EVADER (KYD+
     FI
      F / F15.6. 94H
                       = AVERAGE RANGE OF FIRST DETECTION FOR SEARCHER IK+
      FYD)
      F / F15.6. 94H
                       = AVERAGE LENGTH OF TIME DURING WHICH EVADER IS DE.
     FIECTING SEARCHER PER TIME INTERVAL (SEC)
                       = AVERAGE LENGTH OF TIME DURING WHICH SEARCHER IS .
      F / F15.6, 94H
      FRETECTING EVARER PER TIME INTERVAL (SEC)
       / F15.6. 94H
                      = NUMBER OF COMBINATIONS OF INITIAL HEADINGS AND C.
      FLOSEST APPROACH DISTANCES
     F / F15.6, 94H
                      = SUM OF KIL., EVADE AND RESIDUE PATH PROBABILITIE*
     FS
.
     F 141 )
      END
```

ACCUMULATIVE STATISTICS . CACCV ACCUM. STATISTICS SUBROUTINE ACCSTA COMMON /LAREL/ RI, RCJ, SS1, SE1, HS1, HE1, PXS(128), PXE(128), PYS(128), P. 14E(128).PZS(128).PZE(128).VXS(128).VYS(128).VXE(128).VYE(128).NS1.* 2NEI, N. RETAS, BETAE, DELTAS, DELTAE, 32, PDS (5), PDE (3), PKILL (128), PPATH (* 3128), PEVADE (128), DIFTI, RANGE (128), STATD, STATE, PGS (5), PKDS (5), POS (5. 4), PIS(5), PGE(3), POE(3), PIE(3), CLPH, EVPH, WRANGE, BPS, BPE, PHIE, PHIS, A. SLSUBE. ALSURS. STNPSE, STNPEV. M=CO. NPCO. BSP. BEP. NR. K. EDEPTH. SDEPTH. RC. 5.F0S.FRWS.F1S.PTS(128).FXS(128).PNS(128).FNS(128).FNS(128).FOE.F8SE.F1E.F2E+ 7.F2S.PTE(128).FXE(128).PNE(128).FNE(128).XE.XS.SUMKIL.SUMEVA.PRE:P+ 8RK,PE(3).ALPXN,ALPYN,NSMAX,NSMAX COMMON C / STATIC / NOSTAT, NESTAT. D PEDETN(128) PERANG. C C PPATHM. 0 PRANGE (128) D PRANGS(128) PRPTEV(128) D PRPTSE (128) 0 PSDETN(128) CCC PSRANG. SMPEDT, C SMPSDT, SMTCNE. C SMICNS. D TCONEN(128) D TCONSN(128) CDUMMYB PERANG = PERANG + PRANGE(N) PSRANG = PSRANG + PRANGS(N) SMPSDT = SMPSDT + PSDETN(N) SMPEDT = SMPEDT + PEDETN(N) SMTCNE = SMTCNE + TCONEN(N) SMTCHS = SMTCHS + TCONSN(N) SUMEVA = SUMEVA + PEVADE(N) SUMKIL = SUMKIL + PKILL (N) RETURN END

(ENTRANCE)

		(E)	NIR	ANCE			
			1				
*****		*************	•••		••••••	**********	
•3A_03	1 400	FUNCTION ALOGIN	N	-	VALUE		
	FUNCTION	ALOGINE DEVALU)		11.0 40300016	*****		
:							
	•					•	
•0	THIS IS IN	VERSE-LOG ROUTINE	w1	TH LIMITS OF .	OR - 3500B		
• • • • • • • • • • • • • • • • • • • •							
******			1		•••••	••••••	
			!				
	IF C DOVALU	,GE. (+350,0))					0
	GO TO 10					• • • • • • • • • • •	
			!				!
			i				i
*****		**************	•••	************	•••••		! .
:	· 60 10 20	.LE. (-350.0))					
*****	• • • • • • • • • • • • • • • • • • • •		•••	*************	•••••	•••••	. ! !
			1				i i
							. ! !
	ALOGIN = 1	0.0 DBVALU/10.			•••••		
*****					•••••	•••••	. ! !
			i				ii
			1				. ! !
******	RETURN	***************************************	•••	••••••••••••	•••••	•••••	: 1 1
*****			•••	*************	*********	••••••	• ! !
							1 1
							. 1 1
•3			•••	•••••••••			·
	**********	******			•••••	••••••	•
				· · · · · · · · · · · · · · · · · · ·			i
			1				
. 10	CONTINUE		•••				
•	ALOGIN . 1	,0E+35					:
*****	••••••		1				• 1
			!				
			i				1
	RETURN						• !
•••••	•••••		•••	*************	••••••	••••••	•
							į

•0							
*****			••••	************	••••••	•••••	•
			0				

. 20	CONTINUE						•
	ALOGIN = 1	.06-35				*********	
			!				
			1				
*****	**********	••••••	••••		**********	•••••	•
	RETURN						
*****	*********	••••••	••••		••••••	*********	
•0	**********					********	
			1				
*****			••••	• • • • • • • • • • • • • • • • • • • •	••••••	**********	
	END						

CENT	RANCE		
OZANGV TO COMPUTE VECT. ANG.			
.2 . COMPUTING AND OF VECT.V=VXI+V	YJ WITH RESPECT TO XY AXIS		
•: •			
SUBROUTINE ANGVE (VX.VY.ANGLE)		
	4 4 2 2 2 4 4 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
	i		
>>> : : : : : : : : : : : : : : : : : :	1		
. IF(VX.LT.0.) On 10 300		0	
	1		
		!	
		· i	
• IF(VY,LT.0.)G0 TO 310)
	I.	i	
• Q=1.	a 2 a a a a a a a a a a a a a a a a a a	. !	
200000000000000000000000000000000000000	***************************************	i	
226086000026608000000000000000000000000	1	1	
· GO TO 320			(
	06	ò	
020000000000000000000000000000000000000	1		
• 300 IF(VY.LT.O.) 60 TO 330	050358374844444444	0	
	1	i i i	
- Q=2.		i i	
3 2 5 3 0 5 3 8 6 3 6 3 3 6 3 6 0 0 0 0 0 0 0 0 0 0 0 0	*******************		
	1	1 1	
	1	i	
• GO TO 320		*	
****************	*************************	• ! !	
		i i	
	οι:	0	
	1		
· 330 0=3.			
	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1
	i de la companya de	i	i
	1		
- 30 TO 320		•)
	0 () !
. 310 0=4.	***************************************		
	!		!

• 60 10 320	•	
***************************************	1	i i
	0(
. 320 ANGLE . ATANZ(ABS(VY), ABS(VX)		
5 2 6 1 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	· · · · · · · · · · · · · · · · · · ·	
. IF (Q.EQ.1.) GO TO 340		0
230423400000000000000000000000000000000		<u> </u>
380000000000000000000000000000000000000		i
· 1F (0.F0.2.) GO 10 350		1 0
		1
	 	i i
• 1F (0.F0.3.) GO 10 360	_	i i
		1 1 1
	1	1 1 1
		1 ! !
	[
• RETURN		i i i
3343933333344343535553333343333333443		i i i
		1 1 1
		1 1 1
	0(1 ! !
		0
30039138300003835000033330030303030] > > > > = = = = = = = = = = = = = = = =	i i
. 340 ANGLES-ANGLE		i
		1 1
		ļ ļ
228022222222222222222222222222222222222		
a RETURN		i i
200000000000000000000000000000000000000		1 1
		1 1
	0(
****************	! ************************************	
. 350 ANGLE 3.1415927 - ANGLE	•	i
*******************		1
		1
		!
***************	[
• RETURN		i
**********************		i
		l
	0(
	1	
. JAD ANGLE #3.1415927-ANGLE		
000000000000000000000000000000000000000		
	[
A DE TUDN		
3367335888888888888888888888888888888888		
• END		

		(EN	(RANCE)
			1
		***********	*********************
. CARCO	0500 F	UNCTION ARCCOS	
*CFARO	.000 F	UNCTION FOR ARC-	OSINE
	FUNCTION A	RCCOS(DUMMY1)	
*0		-Cooci pointi	
	**********	**********	
			_
- 3	Tute te Tur	ADD COPINE FUNCT	
**************************************		ARC COSINE FUNCT	UV
*3		IS IN RADIANS	7500 0 01.10
• 5	THE ANSWER A	CMATS LIES BEIME	N ZERO AND PLUS PI/2
* 0			
4.2	0 . 0 0 0 0 0 0 0 0 0 0	0000000000000000	
• 3			
	DUMMY1 =	THE ARGUMENT OF	THE FUNCTION HOPEFULLY LESS THAN ONE
• 3			
	ARCCOS = ATA	NI SORTI 1.0/DUM	4Y1/DUMMY1 - 1.0))
	*****	***********	
			1

	RETURN		
000000	000000000000	***********	
	**********	5555555555555555	
+0			
	**********)
****		***********	
5	END		
***	00000000000000		

		(EN	TRANCE)	
			I	
			I	
0000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		****
* CASNXO	0 X 0 0	FUNCTION ASNXOX		•
• 0		FOR DETERMINING S	IN(X)/X	
•	FUNCTION	ASNXOX (DUMMY1)		
45				*
* C	00000000000	000000 000000000000000	******************	****
* C	0			**
• 0	FOR DETERM!	INING THE VALUE OF	SINE(X) OVER X	
a C	•			**
» C	0000000000000		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	*****
a C				
٥	ASVXOX = 1.	• 0		
•	IF (DUMMY1	.Eq. 0.0)		
	RETURN			
•	ASNXOX = (DUMMY1/SINC DUMMY	1))**2	3
		00000000000000000		*****
			I	
			1	
			Ī	
0000000			p 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	****
•	RETURN			
0 > 4 0 0 0 0		00000000000000000	***************	****
	*****	9998899 99999	000000000000000000000000000000000000000	***
• 0				
		000000000000000000		****
			1	
			1	
			1	
		0000000000000000		*****
	END			
		0650000000000000	500000000000000000000000000000000000000	***

The state of the s

applicated to

-

-

		(ENTRANCE)	
		<u> </u>	
.CBAFF		FUNCTION BAFFLE	
•3	2200	INTERPOLATES THE PAFFLE AND RADIATED	CHOVES
	FUNCTION	BAFFLE(N. DUMMY1, X1)	CORVES
	COMMON	Daniel 4, Domine, 42	
	C / SURDUC	,	
•	C	BLA1 ,	
	c	BLA2 ,	
•	C	BLA3 ,	
•	C	DTRAD .	
•	C	J ,	
•	C	м .	
•	D	BAFFUN(128.2) ,	•
•	D	DELBAF (128,2),	
•	D	FLN1(128)	•
•	D	FLN2(128)	•
•	D	RADSPC(40.50.2) ,	
•	C	NTIMEN	
• 2	vu.o.	(DIMMY	
•		(DUMMY1, DTRAD)/DTRAD	
•		L/DTRAD + 1.0	
•	ENINY BAF	ON(N, X1)	
		SAFFUN(N,M) + X1+DE_BAF(N,M)	
22000	*********	1	*************
		******************	************
	RETURN		
	*******		*************
	*******		*************
*****	3 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		***********
40000	3 8 4 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		
206000			
30000			
308000	ENTRY SPE	TRM(N, DUMMY1, X1)	
304000	X1 & AMOD	DUMMY1, DTRAD)/DTRAD	
304040	X1 & AMOD N = DUMMY	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0	
300000	X1 & AMOD N = DUMMY ENTRY OSP	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	
304000 304000	X1 & AMOD N = DUMMY ENTRY OSP	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0	- RADSPC(N,J,M))
3 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X1 & AMOD N = DUMMY ENTRY OSP	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	RADSPC(N,J,M))
	X1 & AMOD N = DUMMY ENTRY OSP	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	RADSPC(N, J, M))
	X1 & AMOD N = DUMMY ENTRY OSP	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	RADSPC(N,J,M))
308030 308030 308030	X1 & AMOD N = DUMMY ENTRY OSP	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	RADSPC(N, J, M)
	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = I	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	RADSPC(N, J, M))
	X1 & AMOD N = DUMMY ENTRY OSP	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	RADSPC(N, J, M))
	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = I	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	RADSPC(N, J, M))
	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = I	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	RADSPC(N, J, M))
	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = I	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	- RADSPC(N, J, M))
	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = 1	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1)	
	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = 1	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1) RADSPC(N,J,M) + X14(RADSPC(N+1,J,M) - I I I I I I I I I I I I I I I I I I I	
3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = 1	(DUMMY1, DTRAD)/DTRAD L/DTRAD + 1.0 ECT(N, X1) RADSPC(N,J,M) + X14(RADSPC(N+1,J,M) - I I I I I I I I I I I I I I I I I I I	
3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = 1	(DUMMY1, DTRAD)/DTRAD	
3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = 1	(DUMMY1, DTRAD)/DTRAD	
3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = 1	(DUMMY1, DTRAD)/DTRAD	
3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = 1	(DUMMY1, DTRAD)/DTRAD	
3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = 1	(DUMMY1, DTRAD)/DTRAD	
3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = 1	(DUMMY1, DTRAD)/DTRAD	
3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	X1 & AMOD N = DUMMY ENTRY OSP BAFFLE = 1	(DUMMY1, DTRAD)/DTRAD	

(ENTRANCE) RELATIVE BEARING ANGLES AND RANGE 00 . 3 COMPUTING REL. BEARING ANGLES AND RANGE . 3 SUBROUTINE RELAR COMMON /LAREL/ RI,RCJ,SS1,SE1,HS1,HE1,PXS(128),PXE(128),PYS(128),P* 14E(128),PZS(128),PZE(128),VXS(128),VYS(128),VXE(128),VYE(128),NSI,* 2 NEI. N. RETAS, BETAF, DELTAS, DELTA=, 32, PDS(5), PDE(3), PKILL(128), PPATH(* 3128), PEVADE(128), DIF 11, RANGE(128), STATE, PGS(5), PKDS(5), POS(5* 4),PIS(5),PGE(3),POE(3),PIE(3),CLPH,EVPH,WRANGE,BPS,BPE,PHIE,PHIS,A* 5LSUBE, ALSURS, STNPSE, STNPEV, MECO, NPCO, BSP, BEP, NR, K, EDEPTH, SDEPTH, RC* 6,FgS,F8WS,F1S,PTS(128),FXS(128),PNS(128),FNS(128),FgE,F8SE,F1E,F2E* 7,F2S,PTE(128),FXE(128),PNE(128),FNE(128),XE,XS,SUMKIL,SUMEVA,PRE,P+ 8RK, PE (3), AL PXN, AL PYN, NSMAX, N=MAX PX=PXE(N)-PXS(N) PY=PYE(N)-PYS(N) PROD2=PX**2+PY**2 RANGE(N) = SORT(PROD2) CBPE = (-VXE(N)*PX-VYE(N)*PY)/(SE1*RANGE(N)) CBPS = (VXs(N) *PX+VYs(N) *PY)/(SS1 *RANGE(N)) BSP=ACOS(CRPS) 3FP=ACOS(CRPF) ******************** RETURN

	(ENTRANCE)
****	************************************
*CBRID B	EARING RIDER
eC 000000000	3 C G C C C C C C C C C C C C C C C C C
•C •	
*C *BEARING	RINER
90 9 90 909999999	*
	INE BRIDER
	/LAREL/ RI, RCJ, SS1, SE1, HS1, HE1, PXS(128), PXE(128), PYS(128), P.
* 1YF(128)	PZS(128), PZE(128), VXS(128), VYS(128), VXE(128), VYE(128), NS1,*
* 2NE 1, N, B	PZS(128), PZE(128), VXS(128), VYS(128), VXE(128), VYE(128), NS1, * ETAS, BETAE, DELTAS, DELTAE, 32, PDS(5), PDE(3), PKILL(128), PPATH(*
* 3128),PE	/ADF(128),DIFTI,RANGE(128),STATD,STATE,PGS(5),PKDS(5),POS(5*
	,PGE(3),POE(3),PIE(3),CLPH,EVPH,WRANGE,BPS,BPE,PHIE,PHIS,A*
SLSUBE. A	SURS, STNPSE, STNPEV, MECO, NPCO, BSP, BEP, NR, K, EDEPTH, SDEPTH, RC*
# 0,FUS,FH	WS,F1S,PTS(128),FXS(128),PNS(128),FNS(128),F0E,FBSE,F1E,F2E* E(128),FXE(128),PNE(128),FNE(128),XE,XS,SUMK[L,SUMEVA,PRE*P*
a BRK.Pr/3), AI PXN, AL PYN, NSMAX, N=MAX
)=SS1*ALPXN *
WYS(N-1	=SS1*ALPYN *
*****	, , , , , , , , , , , , , , , , , , , ,
	I
* RETURN	\$ C S \$ C \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
* * * * * * * * * * * * * * * * * * * *	**************************************
*****	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* END	
200200228800000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

																								(F	N	1 6	21	11	10	E)																										
																											1	I																														
																											1	I																														
	*		40				4	4	4	4		42	42	0 4	. 0	*	*			p ;	, ,			*	b	47	8 4	19 1	1 41		v.	*	4		4	*	41						4 6		•	4	# 4			*	#	0 4		#			*	٠
400	COL		I					C	01	L	. 1	S	1	10	1																																											
00	+		0 1					4	*						: «	*	4			*		4	4	*	4	47	* 1	: :	> 4		4			: 40	43		*				*				*	4									4	9 6		4
00		,																																																								
\$ 3			*	CO	L	LI	S	1	01	N																																																•
00		,																																																								*
. 5	4	, 0		* *	45	*	* 43	41	44	* *			4:			0	4			42	,			*	4	#		\$\$ (: 0	+ 45	*	4	4	3 4						+ 4		*					4						+ a		•	0 4		*
				SII	3	R	011	T	11	NE		C	0	1	1	S																																										
			(cŏ	M	ME	N		11	. 4	1	3	1.	1	R	1	,	R	C.	J	, 5	S	1	,	S	Ε	1	, ;	45	51		H	E	١,	P	X	S	(12	8	1)		P	(E	1	1	28	3)	,	P	Y	S	1	2	8) ,	P	
			1	YE	(12	8)	. F	P 7	15	(1	28	4)		P	Z	E	()	12	8)		٧	X	5	()	12	9)	,	٧V	15	; (1	2	8) ,	٧	X	E	(1	2	8)	. 1	14	E	(1:	2 8	3)	,	N	5 1		4
0			2	VE	I	. 1	١,	R		T	19		B		TA	1	,	D	F	L	T	15	,	1)	F	L	1	A :	= ,	8	5		P) \$	6	5)	. 1	2	E	(3) ,	P	K	1	LI	. (1	2	8) .	P	P	A	T	1 (4
*				12																																																						
			4	١,	P	15	5 (5)	. F	0	F	(3) ,	P	0	E	(3),	P	1	F	(3)	. 1	CL	, 2	H	,	E١	1 F	+	١,	W	R	1 1	1 G	E		BF	95		B	PE	٠,	P	H	1	E ,	P	H	1	S,	A	4
4				_S																																																						
			6	F	0	S	F	8	W	S	, F	1	S	. 1	7	S	(1	2	8)	F	X	S	(1	?	8	١,	, >	N	S	(12	2 8	,)	,	F	VS	5 (1	2	8	,	F	0	E	, F	8	S	E	, f	1	E		F	?E	4
				. F																																																						
			8	RK		PE	- (3)	, 1	11	P	×	N.	, A	L	P	Y	N	. !	15	3	A	¥	,	N	= 1	M	Ay																	•												
				VS									^											^	•				•	•																												
4				AL	1	=	A	1	P	X	1	V	X	F	1	IS	U	R	1) .	+ /	14	P	Y	N	4	V	Y :	= (1	IS	U	B	1)	1																							•
			-	AL	=	S	R	T	(AL	. 1	4	43	2.	+ 5	S	1	*		2.	- 9	SE	1	*	4	2)	- /	A L	. 1																												
4			1	VX	S	(1	VS	U	8:	1 2) =	٧	X	-	()	15	U	B	1) .	+ 1	IL		A	L	P	X	N																														•
45				VY																																																						4
			4		4		. 4	*	4	a 4		42	ø	0	; :	3	5			9	5 4			4	#	44	3	4			4	n		. 4						4	4	4	6 4		*	#	# 4							*	٥.	p 4	43	4
																												i																														
																												I																														
																												I																														
					4					4 4		#	6	45 4	# C	48	4	4	4	#	# 4		4	ü	#	4	4	4		+ 4	*	*					4			ł ś		•		+ 4						4	#	# 4				4	+ 41	4
			1	RE	T	UF	SN	1																																																		•
			45	0 0	4	4			4	# 4		0	43				*		*	4			4	4	45	4	4	44	# 6	* 41		4	*	,	+ 4					. 4		•	6 4	9 4	4	4	# (. 4		#		+ 4	4
994		9 43	40	# #	*		9 45	-	#	*			45	*	1 41	4	*		4	4			45	*	47	4;	4	Ø :	*	* 4	*	4	4			4			4 (+ 0	-		*			4	4			4		# 1	+ 4		4	0 (
			1	EN	0																																																					*
554	* ** *	\$ 45	*	# #	*	4 4	* 4		4	4	3 43	- 13	45	\$ 4	9 43	-	#		4	*	4	+ 41	4	*	4	4	4	4 4			47	4	4	5 4	4	4	4		4		*	*	0 4				4		-	#		# 1	. 4	*	*			

```
(ENTRANCE)
*CCORRECGO SUBROUTINE CORREC
                       COMPUTE NON-FREQUENCY DEPENDENT CORRECTIONS
. 3
                      CORREC ( DUMMY1, K , M )
         CORRECTION FACTORS FOR RAY TYPES
         COMMON / ANGRAD / ANGHER(2)
         COMMON
        C
                       NARRAY(2)
                       ARRYH1.
                       ARRYW1.
                        ARRYWZ,
                       DELF
                       FREST .
                       FRES2 .
                       QTRANS.
                       QTRANZ,
        NDUM2
COMMON
       COMMON
C / BEAMCR /
BFMCOR(3,8)
       COMMON
C / ARRAYP /
        D
                      ANGDGA(2)
                       ARRAYD(3.2)
                       COSPHI(2)
                       COSRAD(2)
        DCD
                       MSHIPS.
                       SINPHI(2)
                       SINRAD(2)
                       TSAR1 (3)
TSAR2 (3)
TMATRX(3,3,2)
                       TVECTR(3.2)
       DDU48
         DIMENSION
                       ANGS16(3,2)
                       SAR1 (3)
SAR2 (3)
        D
        D
                       TARRIV(3,2)
       EQUIVALENCE
Q ( TARRIV, TSAR1 ),
Q ( ANGSIG, SAR1 ),
Q ( ANGSIG(1,2),SAR2 )
        C1 = COS( DUMMY1 )
ANGSIG(3,M) = SIN( DUMMY1 )
      IF( NARRAY(M) .EQ. 2 )
• GO TO 10

    ANGSIG(2,M) = C1-SINRAD(M)
    ANGSIG(1,M) = C1-COSRAD(M)
```

	300000300000000000000000000000000000000		
1	00 200		
1	• 1 1 = 1.3		
	200000000000000000000000000000000000000		
1			
i		1	
1			
	TARRIV(1,M) = 0.0	O	
	308030000000000000000000000000000000000	1	
i		İ	
I		1	
1 .			
1 1	. 00 100 J = 1,3		
1 1	226733333393939393339239339393		
1 1		1	
1 1			
!!	224052220553453222002207230206666666666666666666666666		
1 1	TARRIV(I,M) = TMATRX(I,J,M)*A		
ii	· E · TARRIV(1,M)		
1 1			•
1 1			
i i			
1	. 100 CONTINUE		
1	200000000000000000000000000000000000000	0 0 0 3 4 0 0 4 8 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	•
i		i	
1	*************		
1	BEMCOR(I,K) = ARRAYD(I,M)+(I		
1	000000000000000000000000000000000000000	1	
;		;	
i			
1		İ	
1		I and the second second second second second second second second second second second second second second se	
	. • 200 CONTINUE		
	300000000000000000000000000000000000000		
		1	
	RETURN		

	•0		
		• • • • • • • • • • • • • • • • • • •	
		I O(
		1	

	10 CONTINUE		
	BEMCOR(1,K) = ARRAYD(1,M)+C1+	COS(C2)	
	 BEMCOR(2,K) = ARRAYD(2,M)*C1* 	SIN(C2) .	
	. BEMCOR(3,K) = ARRAYD(3,M)+ANG	SIG(3, M) .	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		i	
	• RETURN		1000
		•	

		•	
		I	
		i	
		1	
	• END		

Table 1

(ENTRANCE)

```
SUBROUTINE DEMUVA
* CDEMUVADO
· CDEMJVOOO
                          SUBROUTINE FOR COMPUTING THE MODIFIED PARAMETERS
         SUBROUTINE
                         DEMUVA
        S ( NDSTAT, NESTAT )
         COMMON
        C / SIGNAL /
                         PRYSEV(128)
        D
                         PRYSSE(128)
        D
                         PRNOEV(128)
                         PRNOSE (128)
                         PROEVA(128)
        0
                         PROSER(128)
        D
                         VARE VA(128)
                         VARSER(128)
        D
                         GMUEVA(128)
                         GMUSER(128)
        D
                         DE VAEV(128)
        D
        D
                         DEVASE (128)
                         DEMUEV(128)
                         DEMUSE(128)
        C
                         THREVA.
                         THRSER,
                         NTIMEN
         EQUIVALENCE.
        Q ( CTWOP1, Z1 )
                        = MEAN OF SMOOTHED EVADER S/N
         GMUEVA( )
                        = MEAN OF SMOOTHED EVADER S/N
= MEAN OF SMOOTHED SEARCHER S/N
= INTEGER VALUE OF THE D-STATE
= INTEGER VALUE OF THE E-STATE
= VARIANCE OF SMOOTHED S/N FOR EVADER
= VARIANCE OF SMOOTHED S/N FOR SEARCHER
= PROBABILITY OF DETECTION BY THE SEARCHER
= PROBABILITY OF DETECTION BY THE EVADER
         GMUSER( )
          NDSTAT
          NESTAT
          VAREVA( )
          VARSER( )
          PROSER( )
          PROEVA( )
          THRSER
                         - DETECTION THRESHOLD FOR THE SEARCHER
          THREVA
                         . DETECTION THRESHOLD FOR THE EVADER
                         * PROBABILITY THAT DECISION IS NO DETECTION BY SEARCHER. PROBABILITY THAT DECISION IS NO DETECTION BY EVADER.
          PRNOSE( )
          PRYOFY( )
         PRYSSE( )
                         * PROBABILITY THAT DECISION IS A DETECTION BY SEARCHER * PROBABILITY THAT DECISION IS A DETECTION BY EVADER
          PRYSEV( )
          DEMUSE( )
                         . MODIFIED MEAN OF SIN FOR THE SEARCHER
                         . MODIFIED MEAN OF SIN FOR THE EVADER
          DEMUEV( )
                         # MODIFIED VARIANCE OF S/N FOR THE SEARCHER # MODIFIED VARIANCE OF S/N FOR THE SEARCHER
          DEVASE( )
          DEVAEV( )
          21 . 6.2831853
          DEMUEV(NTIMEN) = GMUEVA(NTIMEN)
          Z3 = ( THREVA - GMUEVA(NTIMEN)) **2/2.0/VAREVA(NTIMEN)
```

	1	
a IF(Z3 ,GT, 88.0)		*
GO TO 10		• I
0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		, ,
		1
	i	i
000000000000000000000000000000000000000		. 1
Z4 = PROFVA(NTIMEN)		• !
 Z5 = 0.0 1F(Z4 ,NE, 0.0) Z5 = PRYSEV 	(NESTATI/74	. !
. IF (24 .NE. 1.0) Z5 = Z5 -		• 1
DEMUEV(NTIMEN) = DEMUEV(NTIMEN)	+SORT(VAREVA(NTIMEN)/Z1)+Z5/ExP(Z3)	• 1
3 0 0 3 3 3 9 0 0 0 0 0 0 0 0 0 0 0 0 0	, , , , , , , , , , , , , , , , , , ,	, ,
	0(0
	1	
 10 CONTINUE DEMUSE(NTIMEN) = GMUSER(NTIMEN) 	(N)	:
* Z2 = (THRSER - GMUSER(NTIMEN		
>>+>+>+>+		

. IF (Z2 .GT. 88.0)		•0
• • GO TO 20		* !
226000000000000000000000000000000000000		
	i	i
	1	1
e Z4 = PROSER(NTIMEN)		
25 = 0.0		. 1
. IF(24 .NE. 0.0) 25 = PRYSS	(NDSTAT)/24	• i
• IF(24 .NE. 1.0) 25 = 75 -		• I
 DEMUSE (NTIMEN) = DEMUSE (NTIMEN) 	+SORT(VARSER(NTIMEN)/Z1)+Z5/ExP(Z2)	• !
	1	• 1
	0(
	1	
 20 CONTINUE 		•
	N) + (THRSER - DEMUSE(NTIMEN,).	
. E (DEMUSE(NTIMEN) - GMUSER(NT	TIMEN))	•
	N) + (THREVA - DEMUEV(NTIMEN))+	•
E (DEMUEV(NTIMEN) - GMUEVA(NT	[[MEN]]	•
	1	
	i	
		•
* RETURN		•
	> + + + + + + + + + + + + + + + + + + +	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
95#5959 696699		
	1	
	!	
	1	
304043304000000000000000000000000000000	***************************************	

			(ENTRANCE)	
	****			**********
. SEXCHN	GOO	SURROUTINE E	EXCHNS	
. SEXCH		SUBROUTINE FO	OR EXCHANGING TWO VALUE	
•		UTINE		
• S		EXCHNG		
• S	(FI	RSTO, SECOND)		
•0				
*C			*************	
*C *C				
*0	THIS	EXCHANGES THE VALUE	S OF THE INPUTS	
*C				
» C			***************	***********
• 0				
		1 = FIRSTO		
•		O = SECOND		
•	SECON	ID = DUMMY1		
	00000	*****		************
			1	
*****	****			**********
•	RETUR	N .		
*****		***********		
	***	******	**************	**********
•0				
	***		******	***********
0000000	***	***********	************	****
•	END			
	***	***********	, a a a a a a a a a a a a a a a a a a a	***********

(ENTRANCE)	
************************************	*****
*CFILT PRE-DETECT. FILTER RESPONSE	

 a 2 a a a a a a a a a a a a a a a a a a	
*3 * SUB. FOR COMPUTING PRE-DETECT. FILTER RESPONS	F .
aC a	
* SUBROUTINE FILTER (FO, FBW, F, Y)	
* Y=1./(1.*((F-F0)/FBW)**?)	
884989988888888888888888888888888888888	************

RETURN	8

338383333888888888888888333338888888888	******

FUNCTION FYELDC *CF VELOCOO *SEVE_CODO FUNCTION FOR COMPUTING THE VELOCITY AT ANY DEPTH FVELOC (DELTAD, LAYERY) *0 .0 THIS COMPUTES THE VELOCITY (IN K_YD/SEC) AT ANY POINT IN THE LAYER. COMMON C / LCONST / NULAPO, C C DEPROT. D CONSGO(128) D CONSG1(128) D CONSG2(128) CONSV0(128) D DEL TAZ (128) D DEPKYD(128) D D SLOPEJ(128) SPDKYD(128) DELTAD = DEPTH FROM TOP OF LAYER TO POINT OF INTEREST (IN K-YD+ LAYERN = NUMBER OF LAYER IN WHICH VELOCITY IS SOUGHT (DIMENSI* FVELOC = 1.0/SQRT(CONSVO(LAYERN) + DELTAD*(CONSGO(LAYERN) + E DELTAD*CONSG1(LAYERN))/(1.0 + CONSG2(LAYERN)*DELTAD)**2)

(ENTRANCE)

	(1)	NTRANCE)	
		1	
+31VII	INITIAL VALUES		
: :	10 INITIALIZE VALUES		
.: .			
	SUBROUTINE INTI		
:	1YE (128) . PZS(128) . PZE(128) . V	E1, 481, 461, PXS(128), PXE(128), PYS(128), P. XS(128), VYS(128), VXE(128), VYE(128), NSI. •	
	3128) . PEVADE (128) . DIFTI . RANG	L1AE,32.PnS(5),PDE(3),PKILL(128),PPATH(* E(128),STATD,STATE,PGS(5),PKDS(5),POS(5*	
		3),CLPH,EVPH,WRANGE,BPS,BPE,PHIE,PHIS;A. MECO,VPCO,BSP.BEP,NR.K.EDEPTH.SDEPTH.RC.	
:		128), PNS(128), FNS(128), F0E, FBSE, F1E, F2E. 128), FNE(128), XE, XS, SUMK L, SUMEVA, PRE, P.	
:	BRK.PE(3).ALPXN.ALPYN.NSMAX. COMMON / INTSPD / VXFINT. V	N _S MAX •	
•:		SPEED IN X-DIRECTION (K.	
• :		SPEED IN Y-DIRECTION (K.	
	GAMEHE1-HS1		
;	SG=SIN(GAM) CG=COS(GAM)		
000000		1	
200000	IF (HE1, NE, HS1) GO TO 10		
	17 (42).42.4517 30 10 10		
		1	
	PxE(1) = 0. PyE (1) = P!		
		1	

	GO TO 20	000000000000000000000000000000000000000	
		0(
		1	
. 10	SS*SE1*SS1 SSS*SS*SG		
:	SSC=SS+CG AS=ARS(SSS)		
	SQ = SQRT(R1 - + 2 - RCJ - + 2)		
:	SE5=2215		
:		SE1 • C3 • (SS2 - SSC) - (AS • SQ) • (SE1 • CG - SS1) •	
:	AX = (SE1.SG).(RCJ.(SS2-SSC PYE(1).AY/AK)-AS•SQ)	
•	PXE(1) #AX/AK	•	
		1 01	
		1	
. 2	0 VXE(1)=gE1+gG	***************************************	
:	VyE(1)=\$F1+CG VXS(1)=0.		
:	VYS(1)=SS1 PZE(1)=EDEPTH		
:	PZS(1) = SPEPTH PYS(1).0.		
•	PXS(1)=0. VXEINT = VXE(1)		
:	VYEINT = VYE(1)		
:	CLPH = 0.0		
	EVPH = 0.0	•	
		i	
	RETURN	•	
	*******************************	***************************************	
:	END	•	

```
SIGNA/NOISE RATIO
 .INTEGRATION FOR COMPUTING THE SIGNAL TO NOISE RATIO
     SUBROUTINE PSIGP
     COMMON /LAREL/ RI, RCJ, SS1, SE1, HS1, HE1, PXS(128), PXE(128), PYS(128); P.
    14E(128),PZS(128),PZE(128),VXS(128),VYS(128),VXE(128),VYE(128),NS1..
    2Ne [.N. RE TAS, RETAF, DELTAS, DELTAS, 32, PDS(5), PDE(3), PKILL (128), PPATH(* 3128), PFVADE(128), DIFTI, RANGE(128), STATD, STATE, PGS(5), PKDS(5), POS(5*
    4), PIS(5), PGE(3), POE(3), PIE(3), CLPH, EVPH, WRANGE, BPS, BPE, PHIE, PHIS, A+
    SLSUBE. ALSURS. STNPSE, STNPEV. MECO. VPCO. BSP. BEP. NR. K. EDEPTH. SDEPTH. RC.
    6,FOS,FRWS,F15,PTS(128),FXS(128),PNS(128),FNS(128),FOE,FBWE,F1E,F2E.
    7.F25.PTF(128),FXE(128),PNE(128),FNE(128),XE,XS,SUMKIL,SUMEVA,PRE,P.
    BRK, PE (3) . AI PXN, AL PYN, NSMAX, N=MAX
     COMMON /THOB2/ B25.B2E
       FOS = CENTER FREQ. OF SEARCHER PREDETECT FILTER
F1S = LOWER LIMIT OF INTEG. FORSEARCHER
F2S = UPPER LIMIT OF INTEG. FORSEARCHER
                   = FUNCTION FOR FILTER RESPONSE OF EVADER
= FUNCTION FOR FILTER RESPONSE OF SEARCHER
     FILSER
     PIS(K) = SIG. SPECTRUM SEARCHER SEES
     FXS(K) = TAPLE ORDERED FROM ON TO HIGH FREQ.
     PNS(K) =NOISE SPECTRUM SEARCHERSEES
     FNS(K) = TARLE ORDERED FROM LOW TOHIGH FREQ.
 . FRWS . BANDWIDTH OF SEARCHER PRE-DETECT. FILTER
     FOE =CENTER FREQ. OF EVADER PRE-DETECT. FILTER
     FIE =LOWER LIMIT OF INTEG. FOR EVADER
     PTE(K) =SIG. SPECTRUM EVADER SEES
FXE(K)=TABLE ORDERED FROM LOW TO HIGH FREQ.
     PNE(K) =NOISE SPECTRUM EVADER SEES
     FNE(K): TARLE ORDERED FROM LOW TO HIGH FREQ.
     NAMELIST / RATIOS / AINPXS.AINPXE.AINPNS.AINPNE.XS.XE
     FILEVA( DUMMY1 ) = 1.0/( 1.0 + ( ( DUMMY1 - FOE )/FBWE )**2 )
FILSER( DUMMY1 ) = 1.0/( 1.0 + ( ( DUMMY1 - FOS )/FBWS )**2 )
     AINPXS=0.
     K=1
     FXAS=F1S
15 AFXS=FXS(K)
  IF (AFXS.GT.F1S) GO TO 10
  K=K+1
```

	!	1
026200200000000000000000000000000000000		1
• GO TO 15	•,.)A	1
000000000000000000000000000000000000000		1
	0(.0
03499309034930934400035036309303	1	
. 10 IF (AFXS.G1.F2S) GO TO 20	*	.0
35636365666666666666666666666666666666		1
	i	i
	1	1
. CALL FILTER (FOS, FBWS, AFXS, Y)		i
 ARGPXS =PTS(K) »YXS AINPXS=AINPXS+ARGPXS*(AFXS-F) 	• 1	1
* FXAS=AFXS	, i	í
* <=<+1		I
4965692599666666666666666666666666666666	1	1
	i i	1
334043086656003604060600033340;		1
a GO TO 15	*ò	i
30000333556033303566303665696363636363636363636363636363636363	3 3 3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1
*	0(. 0
224222222222222222222222222222222222222	1	
. 20 AINPNS =0.	•	
* K=1		
FNAS =F1S		
	!	
	I 0 (
	I 0(0 I I	
* 25 AFVS=FNS(K)		
. 25 AFVS=FNS(K)		
. 25 AFVS=FNS(K)		
* 25 AFVS=FNS(K)	# · I 1	
* 25 AFVS=FNS(K)		.0
* 25 AFNS=FNS(K)	# · I 1	,0
* 25 AFNS=FNS(K)	- I	.0
* 25 AFNS=FNS(K)	- I	.0
* 25 AFNS=FNS(K) ***********************************		.0
* 25 AFNS=FNS(K) ***********************************		,0
* 25 AFNS=FNS(K) ***********************************		0.0
* 25 AFNS=FNS(K) IF(AFNS,GT,F1S) GO TO 30 K=K+1		0,0
* 25 AFNS=FNS(K) IF(AFNS,GT,F1S) G0 T0 30 K=K+1		.00
* 25 AFNS=FNS(K) IF(AFNS,GT,F1S) GO TO 30 K=K+1		0,0
* 25 AFNS=FNS(K) IF(AFNS,GT,F1S) G0 T0 30 K=K+1		0,0
# 25 AFNS=FNS(K) IF(AFNS,GT,F1S) GO TO 30 K=K+1 GO TO 25		0.0
# 25 AFNS=FNS(K) # IF(AFNS,GT,F1S) GO TO 30 # K=<+1 # GO TO 25 # 30 IF(AFNS GT F2S) GO TO 35		0.0
# 25 AFNS=FNS(K) IF(AFNS,GT,F1S) GO TO 30 K=K+1 GO TO 25		0.0
# 25 AFNS=FNS(K) # IF(AFNS,GT,F1S) GO TO 30 # K=<+1 # GO TO 25 # 30 IF(AFNS GT F2S) GO TO 35		0.0

-

200000000000000000000000000000000000000	*************************	1 1
. CALL FILTER (FOS. FBWS.		• 1 1
ARGPNS = (PNS(K) + YNS) +		• 1 1
. AINPNS = AINPNS+ARGPN	S. (AFNS-FVAS)	• 1 1
. FNAS=AFNS		• 1
• <:<+1		• 1
	******************************	eee I I
		1
		I I
32472328304030030333333300000		
• GO TC 25	*****************************	••••
• 30 10 25		•0

	0(,
	1	
. 35 CONTINUE		
. XS . 1.0 . AINPXS/SQR	T(0.002@AINPNS@R2S)	
. 37 AINPXE=0.		
• K=1		
. FXAE=F1E		
220202020000000000000000000000000000000	**************************	
	0(
a 40 AFXE=FXE(K)		
* 40 ALVE-LVE (U.)		
	1	
		i
	***********************	•••• i
. IF (AFXE, GT, F1E) GO TO	45	•0
220202020000000000000000000000000000000	*************************	1 1
		1 1
		1 1
		I I
	************************************	•••
• K=K+1		
*********************		•••
		···· i
• GO TO 'u		•)A I
******************	*******************************	1
		1 1
	0(0
	*****************************	*** 1
. 45 IF (AFXE.GT.F2E) GO TO	70	•
> 0 4 3 6 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
. ALVEYE - ALNEYE . DTE	(K)-FILEVA(AFXE)-(AFXE - FXAE)	
. FXAE SAFXE	furnite to the man to the angle and the angle of the control of th	. i i
· <=<+1		• i i
	*******************************	1
		1 1
	1	1 1
		1 1
****************	•••••••••••••••	••• 1 1
• GO TO 40		•0
33636368666666668686866666	***************************************	
	01	1
	0(

. 50 AINPNE = 0.		
		•
• K=1 • FNAE=F1F		
• K=1	••••••	

		1	0
		1	1
	04666596655655666666666	000000000000000000000000000000000000000	• 1
• 55	AFNE=FNE(K)		e I
390000	350000000000000000000000000000000000000	1	i
		1	I
			. 1
	IF (AFNE.GT.F1E) GO TO 60		· I 0
	000000000000000000000000000000000000000		• ! !
		i	i i
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 1 !
220222	K=K+1		
		1	i
		1	
2002025		1	. i i
•	GO TO 55	•	o)A 1
000000	. 2098989999999999999999999	3 3 3 3 3 3 5 3 5 3 5 4 5 5 5 5 5 5 5 5	ø I I
		0(
		1	Į.
4 60	IF (AFNE.G1.F2E) GO TO 65	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	• I
2000000	669888888888888888888888888888888888888	000000000000000000000000000000000000000	* I I
		1	i i
		1	1 1
		. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 1 1
6	CALL FILTER (FOE, FBWF, AFNE, YN	E)	. ! !
	ARGPNE#(PNF(K) +YNE) ++2 AT NPNE#AINPNE+ARGPNE+(AFNE+FV	A=)	. 1 1
•	FNAE=AFNF		• 1 1
*****	K=K+1	5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	• 1 1
		I	i i
			i i
		1	. 1 1
•	30 10 55		*0
000000		0 5 5 5 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	• 1
		0(
		1	
350000	: 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		•
	XE = 1.0 + AINPXE/SQRT(0.002	*AINPNE*BZE)	•
300000	000000000000000000000000000000000000000		6
		1 •	
		İ	
	RETURN		
340000	, a a e e e e e e e e e e e e e e e e e e e	****************	•
300000	50000000000000000000000000000000000000	9 2 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	•

CARC.

Tank.

1

																									(E	1	IT	R	A	N	C	E)																															
																													1																																				
																													I																																				
20 10			> 0	4) (*		0		* *		4	42	4	*	43	0 1		*	* *			4	4	4	4	4	*	1 12	C	**	*	*	11	4	4	**	#	t:	0	0			9 4	• •	4				4		0	•		*		*			•		*		4	U	4:
#3	111	/3	_			_		-							BI			₹]	1	16	ì	R	1 1	D	1	R	,																																						*
					R																					_				4.9								_								_		_			-	_					_			_					4
					11																																																												
			IY	E	1	S	8) ('		; (1	5	H)	• •	,	? E		1	. 2	, 6	, ,	•	٧	/ X	(5	(1	5	9)	•	V	Y	5	(1	2	8)	• \	'	()	(1	5	8	,		٧	Y	t	(1	2	8)	:	N	S	I	•	•
0			N																																																														
			51																																																														
0			4)						2/ 15									- 0											15.50					1.7					17						- 2				-	-			10.70												
a			51																																																														
0			5.																																																														
4			1 .																														N	-	(1	5	Ö)	•	X	11	•)	(5	,	S	U	M	K	I	L	•	S	U	M	E	٧	۸	•	P	K	t	•	P	•
45		- 1	3R																1	١,	, 1	13	, [1 A	X		h	1	P	1 4	X																																		٥
4			-		(•	190																																																					4
4					(74			755																													_						- 22				-		_						1/44					**	47
0.0		0 0	0 0	0 (* *	4	4	*	, (• •	1 4	43	43	0	()	42	13 4		*				1	. 4	41	* 41	•	11	42		4	43	17	٥	4)	42	4)	41	t.	1)	0	4	p (, (. 4	42	0	0	4	0	٥	•	4	•	4		4	•	0	*	0		•	t)	42
																													1																																				
																													1																																				
													25	,,		25			. ,		٠,							. ,,					25			,,															25													41	
					r u				,	'	•	"		**	**		. ,			•	•	•	.,					"			**		**	*	*	**	**	•	"	"								*	**	*		-	_	-	,.	•	**		•	•	_	-		•	
					U							. ,,			,,					. ,			. ,	. ,																																									,
				0 '	. *		•			•		***	**	**		10	w			• •					ï				**			•		**	*	11	*	•	w	*	*	w				•		•	10	*	-	_	•	-	**	•	w	•		-	-	•	*	W	•
		0 0										. 0	42	c		0	0										, ,				4			*	0	41				0									0	4					0									12	
				NI	-																																-																												
0 0									,				43	49	42										. 4			1 3	4:		4	11	;	41	4	**	#			*								4	*																41

(ENTRANCE)

00000000000000000000000000000000000000		•					
 DELTAZ(1) = DEPKYD(2) - DEPKYD SLOPEJ(1) = (CONSVO(2) - CONS 							
. NUMLAY = NULAPO - 1		•					
· !: 1							
		•					
0	(0				
1 20 0 0 2 3 0 3 3 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0	233300000000000000000000000000000000000		1				
. 10 CONTINUE			1				
J = 1Z1 = SLOPEJ(J) «SLOPEJ(J)			1				
. 1:11			i				
DETERMINE IF THIS IS NORMAL RU	N OR END POINTS						
220022222222222222222222222222222222222	***************************		i				
i							
1			!				
. IF(I - NULAPO)					,		
• • 20, 120, 240						3	
1							
			1			!	

DELTAZ(I) = DEPKYD(II) - DEPKY	0(1)						
SI SPEJ(1) = (CONSVO(11) - CONS						1	
DUMMY1 = SLOPEJ(1) - SLOPEJ(J) FIND OUT IF THIS IS MAXIMUM OR	WINIM BOINS						
. IF(DUMMY1 .GT. 0.0)							
CONSGO(1) = SIGN((SURT(DUMM	Y1)). (SLOPEJ([)))						
1							
i de la companya de l							
,							
• IF(1 .NE. 2) • 60 10 30							0
**************	************************						1
				1	4		1
i i de la companya de la companya de la companya de la companya de la companya de la companya de la companya d							i
COMPUTE INITIAL LOCAL SLOPE		. !		1			1
. CONSGO(1) = 1.34.5LOPEJ(1)							1
00000000000000000000000000000000000000	> e > > o + > • • • • • • • • • • • • • • • • • •	. !					1
							i
	200130:0000368000000000000000000000000000000						1
• 1F(CONSGO(2) .EQ. 0.0)		i					,) v
• 00 07 CD	209248384844444			1			1
1		i		1			i
		1					1
30000000000000000000000000000000000000	**************************	i		1			i
 IF(CONSGO(2) .EQ. SLOPEJ(1)) GO TO 110 			0				1
4 4 6 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6		i	i	1			i
i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		i	1	1			1
1		1	1	1	1		1
- RAD = REDUCE(Z1, CONSGO(2), C	DNSG0(1))	1	1	1			1
**********************	*****************************	i	i	1	i		i
1		1	1	1			1
į		i	į	1			1
1	(I	!	!			0
30 CONTINUE		i	i	1	1		1
	•	1	i	1			1
		i	i	I	i		i
		1	1	1			1
• IF(I .NE, NUMLAY)	******************************	i	1	, !	. !		ı
GO TO 120		1	!	,			1
***************************************		1	1	1			1
							1

											200			• • •			••••			•••	••••			i		1	1		,	1		i	
• 3						1 =					1)											:		1		1	1		1	1		1	
530	0000	0000		200	048	4400	244			,	1			200	•••	•••	••••	••••		••••	••••	•		1		1	1					1	
											1													1		1	1		1			1	
	0000	150	CON	560	(1)	.E0	. (0.0)	***	000				•••	•••				••••		•		.1	!	! !)	1 V		1	1		1	
		60				2000																•		1			1		1	1		1	
									7.2.2		1				-									i			Î		i	!		i	
											i													1			i					i	
						,EQ	. 5	SL OF	PEJ	(1))			• • • •	•••	•••		••••		•••	•••	:		. 1			i	. 0	1			i	
		60	10	170		3 3 5 2							a 10 46 f				••••			•••		:		1			!	1	1			1	
											1													1	1		1	1	1			1	
						2002					1										•••			1			1	1	1	1		I	
		RAD	* R	EDU	CE	SLO	PE.	J(1)		ONS				NSG	0 (1	1))				•		i			!	i	i			I	
22.					9 4 4	0 4 1 4	•••				1			•••	•••	•••	••••	••••		••••	•••	•		1	1		i	1	i	1		i	
											1		• • • •	•••	• • •	• • •	• • • •			• • • •	• • • •		• • •	. 1	• • •		1	1	!		. 0	1	
	40	CON	INU	E		5000	2		000	***				• • • •	•••	•••	••••	••••	••••	••••	••••	:		1		1	1	1	1		!	1	
		SOR	. 5	GRI		())		SOR	1/	CONS	GOC	1)										:		1			1	!	1		1	1	
		9986			903	****				3003			3 9 4 1				• • • •	• • • •		• • •	• • • •	•		1		l	1	1	i		1	i	
											!													1		i	i	1	1	1	i	i	
	4 6 3 0					0 0 2 0																		1	1		1	1	1		1	i	
		IF (.0)																•	• • •	.!	• • •		1	. 1 .	!		1.	!	٠.
a # •	0000	0000			000	0 0 0 0				***	0 = 0 :				•••	•••	••••			•••		•		1	1	1	1	1	1		1	1	
											1													1	1		1	1	1		1	1	
											ò												٠.,	. į	.0		!	i	į		i	į	
						0001					9225				•••	•••				•••				1	1 1		1	1	1		i	i	
		CONS	621	1)	= (x1	- 1	1.0	11	UFL	AZC.	١)										:		1	1 1		1	1	1		1	1	
		COVS	G1 (J)	= (SLO	PE	1(1)) » X	1 . X !		2019	3G0	(1)	1/	DEL	TAZ	(1)						1	1 1		1	1	1		1	1	
											1													1	1 1		1	1	1		1	1	
											i													i	i		1	1	1		i	1	
	2020				(1)	. FQ	. (0.0)		220				•••	•••	••••					•) À	i		i	i	i		i	i	
		GO	10	10							000			•••						•••	••••	:		1	1		i	1	i		İ	i	
											1													1	1 1		1	1	1		1	i	
						,,,,		•••			1			•••						•••				1	1 1		1	1	I		1	1	
:		IF (חוט) .6	0.	0.0	0)	. AND	. (CONS	5G1	(1)	.€	0.	0.0))				• • •	• • •) A	1 1		1	1	1		1	1	
		••••	•••		•••		•••	•••	•••	••••					•••	•••	••••	••••	••••	•••	••••	•		i	i		1	i	i		i	1	
											i													i	i		1	i	1		1	i	
									•••		500			• • • •	•••		••••		••••	•••	•••				1		i	1	1		i	i	
•:		FINE	PA	INT	OF	(J)	IEC	CTIC	ON	AND	MAK:	= 00	PADE	EB I	AD.I	UST	MENT	15				:		1	1 1		1	1	1		1	1	
	E	(2	.0.	CON	5G1	(1)	- (CONS	SGO	(1)0	CON	2051	(1))							••••	:			1 1		1	1	1		1	1	
											1														1	1		1	1		1	1	
		-																							1	1	1	1	i		1	1	
		IF ((42		F.	0.0)	.(DR.	(A	5 .3	E. 1	DELI	TAZ	(1)	, ,	•••			• • • • •) A	1 1	l	i	i	i		i	i	
		60	10	10																	••••	:		1	1 1	1	1	1	1		1	1	
											1													1	1 1	1	1	1	1		1	1	
											1						•••							1	1 1	1	1	1	1		1	1	
:		WRIT	E	6.	900								-13/19/1									:		1	1	1	!	1	i		1	1	
:	W	DEF	KYD	(1)							00.											:		1	1 1	1	!	1	1		i	i	
•		45 1		SLO	PEJ	(7)		50R		****				• • •	•••	•••	••••		••••	•••	••••			1	1	ı	i	1	1		i	i	
											1													1	1 1		1	1	1		1	1	

	camaaaaaaaaaaaaaaaaaaaaa	1		1 1 1		1 1	1 1	1 1
	• IF(A2 .FQ. X1) • GO TO 60			1.1.		11	1 1	1 1
	< 4 4 4 4 4 3 7 4 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1		1 1	1 1		1 1	1 1
								!!
		i		1 1	1 1			1 1
	X1 = A2				1 1	i i		1 1
		1		i	1 1	1 1	i	1 1
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[1 1	1 1	1 1	1 1	1 1
	• IF (X1 .GT. 0.0) • GO TO 50			1 1	1 1	i i	1 1	1 1
	594742505040404040400400400	1		1 1	1 1	1 1		1 1
		0 (, , , , , , , , , , , , , , , , , ,			1 1			1 1
	• 60 CONTINUE				1 1			1 1
					1 1		i	ii
		 		1 1		1 1 1	1 1	1 1
	• IF(NULAPO .GE. MAXLAY) • GO TO 240		•	1.1.	1 1		V I I I	1 1
	200230000000000000000000000000000000000			1 1	1 1			1 1
		1						! !
	DELTAZ(J) = DELTAZ(J)/2.0 DELTAZ(I) = DELTAZ(J)		•		1 1			i
	* Y1 = (DEPKYD(1) + DEPKYD(J) * U1 = (CONSVO(1) + CONSVO(J)		•	i	1 1			ii
		1		1 1	1 1	1 1 1	1 1	1 1
		0 (1 1	1 1	1.1	111	1 1
	• 70 CONTINUE			1 1	1 1	1 1	1 1 1	1 1
	THIS SECTION ADDS A NEW POINT HRITE (6, 6000)		•	I I I I I I	1 1	1 1 1		1 1
	 M DEPKYD(1) NUMLAY = NULAPO 				1 1	1 1 1		1 1
	NULAPO = NULAPO + 1			1 1	1 1	1 1	1 1 1	1 1
				1 1	1 1	1 1 1	1 1 1	1 1
		1 1		1 1	1 1		1 1 1	1 1
ļ	00 300		•	1 1	1 1	i i	1 1 1	!!!
	• [L = 1,K			1 I 1 I 1 I	1 1			1 1
i		i I		ii	1 1	11	i i i	i i
1		1		1 1	1 1	11	1 1 1	1 1
	JI = NULAPO - L		•	1 1	1 1	1 1	1 1 1	1 1
	 DEPKYD(J2) = DEPKYD(J1) CONSVO(J2) = CONSVO(J1) 		•	1 1	1 1	11		; ;
	• SPDKYD(J2) = SPDKYD(J1)				1 1	11 1		ii
i		I I		i i '	1 1	111	1 1 1	1 1
	***************************************	Ī		1 1	1 1	11	1 1 1	1 1
	. • 300 CONTINUE			1 1	i i	11	1 1 1	1 1
				1 1	1 1	i i i	1 1 1	1 1
	. DEPKYD(1) = Y1	I		1 1	1 1	11	1 1 1	1 1
	. CONSVO(1) = U1 . SPOKYD(1) = 1.0/SQRT(U1)				1 1	1 1 1		1 1
		· · · · · · · · · · · · · · · · · · ·		i i i	1 1	1 1 1		ii
					1 1	1 1 1		1 1
	• IF(J .EO. I)	•••••		1.1.	1 1 .	1.11		1 0.1.
	• GÒ TO 250				1 1	1 1 1		1 1 1
					1 1	11 1		111
	SLOPEJ(I) * SLOPEJ(J)				1 1	111		1 1 1
	A1 = CONSGO(1)				1 1	11 1		111

					! !	1				1 !		1 1 1	
	• IF(A1 .E0. 0.0) • G0 T0 270		•		1 1	.1.	0		1	1 1	1		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1 1		1		!	1 !	-		
	• RAD = REDUCE(21, A1, CONSGO(•		1 1	1	1	1	1	1 1	1	111	
	1	· · · · · · · · · · · · · · · · · · ·				.1.	0		1	i i	1		
					1 1	1		1	!	!!	1		
	• 270 CONTINUE		••		1 1	1		1 1	i	1 1	1	1 1 1	
					1 1	1		1 1	1	1 1	1	1 1 1	
	• IF(CONSGO(J) .E0, 0.0) • GO TO 40			• • • •	1.1	. 1		1.1.	1	1.1	1	1 1 1	
					1 1	1		1 1	1	! ! ! !		1 1 1	
	RAD = REDUCE(71, CONSGO(J), C	ONSGn(1)			1 1	1 1		1 1	1	1 1	1	1 1 1	
					1 1	1 1		1 1	1	1 1 1 1 1 1		1 1 1 1 1 1 1 1 1	
	• GO TO 40	· · · · · · · · · · · · · · · · · · ·	• • • •		1.1	1.1		1.1.	1	1.1) A	1 1 1 1 1 1 1 1 1	
		?(. 1	. 0	1 1	1	1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1	
	80 CONTINUE CALL TRACER(8)		:			1	1	1 1	1	1 1	1	1 1 1	
	• A1 = SLOPEJ(J)/CONSGO(1)		••		1 1	1	1	1 1	1	1 1		1 1 1	
	2.000.000.000.000.000.000.000.000.000.0	 			1 1	1	1	1 1	1	1 1	1	1 1 1	
	• IF(A1 ,GT, 1,0) • X GO TO 180		.:		1	1	1		1 1	1 1	1 1	1 1 1 1 1 1 1 1 1 1	
					1 1	1	1	1 1	1 1	1 1	1	1 1 1	
	. A2 = SLOPEJ(J)/CONSGO(J)		::							1 1	1	1 1 1	
					1	1	1		1 1	1 1		1 1 1	
	• IF(ABS(1.0 - A2) .GT, 1.0E- • GO TO 210	-7)	•		1	. i	. į . Į	i.i.	i.i.	1.1	.1.0		
					1 1	1	1	1 1	1 1	1 1	1 1	1 1 1	
		i !	•••		1 1	1	1	1 1		1 1	1 1	1 1 1	
TOO MANY EXITS IN G	TO STATEMENT .EQ. 1.0)		•		1.1	. 1	.1.	1.1.	1.1.	1.1	. 1) v	111	
	• 65 10 220		•••		1	1	1	1 1	1 1	1 1	1 1	111	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[••		1 1		1			i i	!!	111	
	• IF(A2 .E0, 1.0) • • G0 70 60				1 1	1	1	1	1 1		!!		
					1	1	1	1 1	1 1		11	111	
	- CONSGO(1) = CONSGO(J)	· · · · · · · · · · · · · · · · · · ·	:				1	1 1		1 1	11	111	
					٠.								

100 MAN	ENLYS IN GO TO STATEMENT
	06
	• RAD • 71 - CONSGO(J) • CONSGO(I) •
	65 70 40
	11111111111
	• GALL TRACER(4) • CALL DUMP • 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	- br
	• 110 CONTINUE • CONSGO(1) = CONSGO(2)
	• GO TO 30 •
	•2 •
	1 111 111
	• RAD = REDUCE(71, CONSGO(1), CONSGO(3))
	0(
	• 1°0 CONTINUE • 11 = 1 • 1 = 1 • 1 = 1 • 1 = 1 1 1 1 1 1 1 1 1
	• Z1 = SLOPEJ(J) + SLOPEJ(J) • 1 1 1 1 1 1 1 1 1 1
	0(
	- 120 CONTINUE - RAD = 71 - CONSGO(J) • CONSGO(!) - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	• 1F(RAD .LT. 0.0) • GO TO 80 • 1 1 11 11 1 1 1 1 1 1 1 1 1
	0(01111111
	• 130 CONTINUE • 11 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1
	1
	• • GO TO 40
	• 140 CONTINUE • WRITE (6, 10000) • W DEPKYN(1)
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Q = 4 Q Q Q 1 B A = 8 B = 0 B = C = 0 B D D D D D D D D D D D D D D D D D D		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
* A1 * 1.0 - 0.25/(A2 - 0.5)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.0 I I I I I I I I I I I I I I I I I I I		
IF((A1 .LE. 0.0) .OR. (A1 .3 .6 .60 TO 150	1 ! ! 5*D=LTAZ(J) NEW								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	I I I I	 I I I I I I I I I I I I I I I I I I I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!.!		I I I I I I I I I I I I I I I I I I I	1 1
* 250 CONTINUE SLOPEJ(I) = (CONSVO(II) - CO I = II II = I + 1 CONSGO(I) = 0.8 DELTAZ(I) = DEPKYD(II) - DEPC *** 150 CONTINUE XI = CONSGO(J)/2.0/SLOPEJ(J) CONSGI(J) = (SLOPEJ(J) *XI *XI CONSGI(J) = (XI - 1.0)/DELT A2 = CONSGO(J) *CONSGO(J)	YD(1) YD(1) 1 0(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1		
	CONSG1(J) + A3) I	1 1	i	1	1 1 1 1 1	1	1 1		1

######################################			1 1	1	1	1	1	1 1
1F((A2 .LF, 0.0) .OR, (A2		•••••		1	1 1			1 1
	I I I		i i i i i i	i	1 1		!	i i ! ! ! !
CALL TRACER(2) CALL DUMP		:	1 1 1 1 1 1	ı			1	1 1 1 1 1 1 1 1 1 1 1
	0(·• · · · · · · · ·	1.1.	! ! !			1	1.1.
16) CONTINUE X1 = (SLOPEJ(J) - SQR)/CONS	G0(1)	•	I I I I	i	1 1		1	I I I I I I
• C				! !			I I I	
IF(XI ,GT, 0,0) • GD TO 50		• • • • • • • • • • • • • • • • • • • •	i i i.o I	1	1 1		I I	I I I I I I
• • • • • • • • • • • • • • • • • • • •	I 1	•	I I	1			I I	I I I I I I
CALL TRACER(1) CALL DUMP		:]]]]	i	1 1 1 1 1 1		I I I	! ! ! ! ! ! ! !
	t ot		i 1	1	1 1		1	I I I I I I
170 CONTINUE CONSGO(1+1) = CONSGO(1) RAD = 0.0				I I I	I I I		1	I I I I I I I I I I I I I I I I I I I
	! ! !		I I I	i	1		l I	1 1
60 70 130		•	1		0		1 1 1	1 1 1 1 1 1
6 002080 00038660 0000000000000000000000000000000			I I I	I I			! ! !	I I I I I I
6	1 0(I I I	I I I			! !	1 1 1 1 1 1 1 1
210 CONTINUE	1	•	i !	1			! !	1
RAD = REDUCE(71, CONSGO(J),	CONSGO(1))	:	I I 1	I I 1			! ! !	1
60 TO 90	1	:	I I I	1 1 1			I I	1
		•	1	I I			1	I I
			•					
••••••••••••••••••••••••••••••••••••••		•	1	1			I I	1 1
**************************************		:	I I I I I	1				I 1 I 1 1 1 1

		1	1		1 1 1
• GO TO 190			!	 	1 1 1
2.6.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.			1		
3 3 6 3 9 3 3 3 4 6 4 4 6 5 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		į	1		
•3		1	1		! !
	1 0(I		0		
= 230 CONTINUE = CONSGL(J) = 0.0 = CONSG2(J) = 0.0	> > 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
***************************************	1 1 1				
• GO TO 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
3.6.3.3.0.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.					i i ! !
47					
386663665866666666666666666666666666666					1 1
	0 (• • • •	 	10
260 CONTINUE I1 = I - NULAPO + MAXLAY - 1t NULAPO = MAXLAY WRITE (6, 7000) H I1	0.20.2.2.0.2.0.0.0.0.0.0.0.0.0.0.0.0.0.				I I I I
	I O (i 0
240 CONTINUE WRITE (6, 8000) W DEPBOT					
- RFTURN					
334304304304404000000000000000000000000		•			
•3	****************				
. 6000 FORMATE F/46H A NEW POINT IS BEING ADD	ED BETWEEN THE DEPTHS 2615.6)				
. 7000 FORMAT(F 22M NEW POINT NEEDED AT 1 B000 FORMAT(4)				
F/46H THE CONSTANT MAXIMUM OCS	AN DEPTH IS AT (K-YD) E15.6)				
. F/46H AN INFLECTION POINT WAS		:			
F/46H A MAXIMUM OR MINIMUM POI					
	I I				
• END	I				

```
SUBROUTINE LENGTH
FOR COMPUTING PATHLENGTHS, TIME AND DERIVATIVES
.CLENSTHOO
          SUBROUTINE
                           LENGTH
         S ( N, M, DIMMY1, DUMMY2 )
*****
         COMMON C / CONSTN /
                           DEPSER.
                            NCONSK,
SPATSL,
DEPEVA,
                            NCONSL.
       COMMON
C / LCA
                            SPATEV
            / LCONST /
                            NULAPO.
DEPROT.
         000
                            CONSGU(128)
CONSGI(128)
CONSGI(128)
CONSGI(128)
CONSYU(128)
DEL TAZ(128)
                            DEPKYD(128)
SLOPEJ(128)
SPDKYD(128)
           COMMON
         C / PTHLNG /
                            A1
B1
                            CDSORD.
                            DI DXDC
                            DZ1
                            DZM
         000
                            ¥1
                            TIMCON
          COMMON
         C / RANGES /
                            NUMANG,
                            ANGMAX,
         0000
                            DELANG.
DELRAD.
                            ANGINT(200)
RNGMOU(6,200)
         COMMON
C / RAYPAR /
                            RANGEH,
                            BOTLOS(6)
                            DRDXDC(6)
                            PATHLN(6)
RANGEC(6)
          0
                            RANGEC(6)
SPI(6)
SPI(6)
TIR(6)
TIR (6)
          D
         DCOMMON
          C / RAYTRA
          00000000000
                            NCONCI,
                            INITLK,
                            12
                            SPVRSQ.
                            ANGARR,
                            ANGRIM,
                             ANGSUR.
                             SPOVER,
                             RANGET
```

```
COMMON
       C / SURDUC /
C BLA1 .
C BLA2 ,
                      DTRAD .
                      MSHIP .
BF1 (128)
BF2 (128)
       n
                      DELBAF(128,2).
FLN1(128)
       D
                      FLN2(128)
CONLR2(40.50)
CONLR1(40.50)
       D
       D
        VDU41
       SPI() = SPREADING LOSS CONSTANT
SPI() = SPREADING LOSS CONSTANT
                                                                                    (DIMENS.
                                                                                    (DIMENS.
        SPAFUNC DUMMY2 ) = ALOGIOC COSC DUMMY2 ) ... 2/A1 )
        INITLK = M
        Z1 = DUMMY1
Z2 = DUMMY2
CALL
                     RATRAC
RANGEC(N) = RANGEC(N) + RANGET
ANGSTR = -ANGARR
• IF( Z2 .NE. DEPBOT )
• GO TO 10
BOTLOS(N) = TANH( BLA1-ANGARR) + BLA2-ANGARR-ANGARR
  10 CONTINUE
IF ( ZZ .NE. DEPEVA )
       PRETURN
.:
        DRDXDC(N) = DXDC
        PATHLN(N) = PL
A1 = APS( RANGEH+SIN( TIR(N) )+SIN( ANGARR )+SPDVER+DRDXDC(N) )
SPI(N) = 10.0+SPAFUN( TIR(N) )
SPI(N) = 10.0+SPAFUN( ANGARR )
TIR(N) = ANGARR
END
```

		CENT	RANCE)	
		**************	***************************************	••••
		FUNCTION MORPHT	IN INCREASING TABLE	
	. FUNCTION	MORPHIC DUMMY1. TA	RLES, NUMBER)	
	***			•
	•:			•••
	. FINDS THE F	PLACE IN AN INCREAS	ING TABLE THAT BRACKETS THE DUMMY	VAL.
	+3 IF DUMMY VA	D INPLIES DUMMY IS	LESS THAN FIRST VALUE IN TABLE	
	+3 MORPHT .G1	T. NUMBER IMPLIES !	HAT DUMMY IS GREATER THAN MAXIMUM	TAB.
	THE ANSWER	IS THE FIRST VALUE	GREATER THAN DUMMY	.:
	***			•
	. DIMENSION	TABLES (NUMBER)		:
	•3			•
	OUMMY1	* VALUE TO BE BRAD		
	TABLES!	= ARRAY OF VALUES	TO BE SEARCHED	•
	. MORPHT = 0			•
		IT. TABLESCEE 1		
	. RETURN			•
	38646434444444		I	••••
			1	
	220222200000000000		[
1	. 00 100	I - 2 NUMBER		•
	22022222222222	I = 2.NUMBER	*************************	
i			t .	
			1	
i		**************	> > > > > > > > > > > > > > > > > > > >	
	• 60 TO 100	GE. TABLES(1)		•
i				••••
i			i	
	. YORPNT = 1	000000000000000000	1 1 2 2 2 2 1 4 2 4 2 2 2 4 2 4 2 4 2 5 5 5 5 5 5 5 5	••••
i			*******************************	••••
i			I	
	. RETURN		447 * 0 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	• • • • • • • • • • • • • • • • • • • •
	**************		***********************	••••
i				
			0(
i	***************************************	••••••••••••	*************************	••••
	. 100 CONTINUE		***************************************	••••
			!	
			i I	
	*************	************	******************************	••••
	MORPHT = NE	MAPH + 1	,	
			!	
	*************	************	************************	••••
	• RETURN			••••
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************	••••
	•5			
			!	
	***************		*************************	****
	• END			:

```
CONSTRATOD SUBBOUTINE MSTRAY
COMPRESSED MASTER RAY-TRACING PROGRAM
COSMISTRODO SUBBOUTINE FOR SETTING UP RANGE TABLE FOR RAYS
SUBROUTINE
SUBROUTINE
SUBROUTINE
                                                  THIS IS MASTER RAY TRACING PROGRAM
                                                COMMON
                                       COMMON C / CONSIN / DEPSER. C NEONSIN C SPAISE. C DEPF VA. NEONSI. C SPAISE.
                                                                                                                            SPATEV
                                          COMMON
C / LCONST /
                                                                                                                         NULAPO.
DEPROT.
CONSGR(128)
                                                                                                                        CONSG0(128)
CONSG1(128)
CONSG2(128)
CONSV0(128)
DELTAZ(128)
DEPKY0(128)
SLOPEJ(128)
SPDKYD(128)
                                          COMMON
C / RANGES /
                                                                                                                           NUANHO.
                                                                                                                           ANGMAX.
DELANG.
                                                                                                                           DELRAD,
ANGINI (200)
                                                                                                                            RNGMOD (6.200)
                                                  COMMON
                                                                                                                           INITLK,
21
22
SPVRSD,
                                           CC
                                                                                                                            ANGSTR.
                                                                                                                            ANGRIM.
                                                                                                                            ANGSUR,
SPDVER,
                                                                                                                    = ANGLE (IN RADIANS) AT ARRIVAL POINT (Z2)

= ANGLE (IN RADIANS) OF BOTTOM BOUNCE OF RAY

= MAKIMUM ANGLE BEING CONSIDERED FOR RAYS

= ANGLE (IN RADIANS) OF START OF RAY (Z1)

= ANGLE (IN RADIANS) OF START OF RAY (Z1)

= ANGLE (IN RADIANS) OF SURFACE BOUNCE OF RAY

= GO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= G1 CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= G2 CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUT-

= TO CONSTANT AS COMPUTED BY CONTINUOUS DER
      .....
                                                  ANGARR
                                                  ANGBTH
ANGBTH
ANGSTR
ANGSTR
CONSGO
CONSGO
CONSGO
      .....
                                                  CONSG2(
CONSVO)
DELSER
DEPKYD(
DGPRRD
DZVX
1NITLK
                                                                                                                   DEGREES PER RADIAN

DEGREES

INITIAL VALUE OF < 1.E. THE INITIAL STARTING LAYER

LAYER NUMBER OF LAYER IN WHICH STARTING LAYER

LAYER NUMBER OF LAYER IN WHICH STARTING IS FOUND

NUMBER OF ANGLES FOR RAYS MINUS ONE

NUMBER OF DIFFERENT ANGLES BEING CONSIDERED FOR RAYS

NUMBER OF LAYERS PLUS ONE

LAYER NUMBER BE.OW LOWER VERTEX LAYER

LAYER NUMBER BE.OW LOWER VERTEX LAYER

SUMMATION OF THE DIFFERENT LAYER RANGES

SUMMATION OF THE DIFFERENT LAYER RANGES

RANGE (IN K-YD) FOR THE DIFFERENT MODES OF PROPAGATION FIRST SUBSCRIPT IS MODE TYPE

SECOND SUBSCRIPT IS MODE TYPE

SECOND SUBSCRIPT IS MODE TYPE

SECOND SUBSCRIPT IS RELATED TO DEPARTURE ANGLE

SPEED OF SOUND PROPAGATION (IN K-YD/SEC)

PROPAGATION VELOCITY (IN K-YD/SEC) IN LAYER FOR SEARCH

DEPTH (IN K-YD) OF VERTEXING POINT

DEPTH OF UPPER VERTEX POINT FOR RAY
                                                   NCONSK
NCONSL
NUANMO
NUMANG
NULAPO
NVTXLO
  0000000000000
                                                      NYTXUP
                                                    RANGET
                                                SPDKYD( )
SPLASE
TI
ZVLO
ZVUP
                                                DGPRRD = 57.2957795
Z2 = DEPEVA
T1 = ANGMAX/DGPRRD + DELRAD
                                                    NUMANG = 2.0.ANGMAX/DELANG + 1.0
```

		1	
	00 200 J = 1,NU	1ANG	
		!	***********
		1	
1	00 100	9995098101090000000000000000000000000000	:
i	3345eessas489999998839599		
1			
!	0.0 = 0.0 = (L.!) GMOD(P		•••••••••••
	000000000000000000000000000000000000000	1	•••••••••
1			
i	4 *****************		•••••
	inn continue	•••••••	• • • • • • • • • • • • • • • • • • • •
	21 = DEPSER		•••••
	TI = TI - DELRAD ANGINT(J) = TI		
	ANGSTR = TI SPOVER = SPATSF/COS	(ANGSIR)	
	•		• • • • • • • • • • • • • • • • • • • •
		0(
	• 10 CONTINUE	******************	•••••
	000000000000000000000000000000000000000		
			1
	• IF (SPDVFR , LF. SPD)	YD(1))	•
	• • 60 to 50		
	• [* [- 1		• !
	a 0 6 a c 3 p a c 3 a 6 a 8 a 8 a 9 a 6 a 6 a 6 a 6 a 6 a 6 a 6 a 6 a 6 a	[. [
	3583333050660606060606060	1 1	i
	• IF(I .NE. 0) • • GO TO 10		•
		I	•••••
		0(1	•••••••••••••
	20 CONTINUE NVTXUP = 1		:
	NVTXUP = 1	**********	•
		0(
	• 30 CONTINUE	[
	000000000000000000000000000000000000000	I	
			İ
		! !	
	• IF(SPDVER ,LE. SPDW • GO TO 40	YD(1))	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	
	* * + 1	*************************	
	7 7 4 2 3 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	!	!
		1	
	• IF(1 .LE. NULAPO) • GO TO 30		

			1		
• 1 = 0	• • • • • • • • • • • • • • • • • • • •	:	1		
	**************************************	•	1		
	0 (•			
• 40 CONTINUE • NYTALO = 1		:			
• IF((NYTYUP .EQ. 0) .AND. (NV • GO TO BO	TNL3 .EQ. 01)	·			
. WRITE (6. 1000)	• * * * * * * * * * * * * * * * * * * *				
• 15; T1 ,60, 0,0)				,	
		:			
• [FC NVTXUP+NVTXLO .NE. 0]	1	. ;			
. 60 TO 200		:		I	
		1	i	1	
2 VLO ≈ DEPROT 2 VUP ≈ 0.0			i	i	
 IF(NVTXUP, NE. 0) CALL S VERTEX S (NVTXUP, 1.0/SPDVER/SPDVER. 	2v ip 21-DEDKYD/NVTYIID) 1)	: !	1	1	
• IF(NVTXLO ,GE. 2) CALL • S VERTEX		. !	1	1	
S (NYTYLO-1, 1.0/SPDVER/SPDVE	R, ZVLO, Z1-DEPKYD(NVTXLO-1), -1)	:	1	1	
	i I	1	1	!	
• IF(Z1 .FQ. Z2) • GO TO 120					0
	! !		1	1	1 1
• 1F((Z1-ZVUP) • (ZVUP-Z2).GT.0.0 • • G0 TO 200	.09, (Z1-ZVLO)*(ZVLO-Z2).GT.0.0)				
236222323866666666786678	0(i
80 CONTINUE INITLK = NCONSK		:			1
	1 1	•			
• IF(T1 .LT. 0.0)	1	•	,		i
• GO TO 130	a > o o o a o a o o o o o o o o o o o o	•			
	1				
* IF(Z2 .LE. Z1) * G0 T0 90		• • • • • • • • • • • • • • • • • • • •	1		1
					1
***************************************	1	•			
RATRAC RNGMOD(1, J) = RANGET ANGSTR = ANGARR				1	
0 3 4 5 5 6 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6		•	1 1	l I	

-	
	90 CONTINUE

	* IF(NYTXLO .NF. 0) * GO TO 200
•	
T	
	71 = 29
_	INITLE NONSL
	S RATRAC
	RNGHOD(3,J) = RANGET + RNGHOD(1,J)
10	
:	
	If (NYXUP, NF. 0)
	• • GO TO 200
i.	
i	
n	• ANGSIR = -ANGSIR
	• CALL
-	RATRAC RNGMOD(5,J) = RANGET + RNGMOD(3,J)
!	
7	
	340363686200000000000000000000000000000000
	• GO TO 200
	1
Market State of the State of th	
i	1000250033000000000000000000000000000000
	5
	!
i	0(1
	• 110 CONTINUE
i i	• ZVUP = Z1 • ZVLO = Z1
	2/10 = 21
	i i i i i i i i i i i i i i i i i i i
i	GO TO 200
į	
7	0.0000
of the second	***
i	i
7	• 120 CONTINUE
	22424262444644646646665344446665334553333333333

	• 60 00 00 00 00 00 00 00 00 00 00 00 00
-	•3

	i i
	130 CONTINUE

	• 1F(22 .GE, 21) • # GO TO 150 • 1

		1			
	1	1			
· CALL		: !		1	
RATRAC RNSMOD(1,J) = RANGET		: 1		1	
	1	• !			
	1	į		i	
* IF(NYTXUP', NE, 0)		· i		i	
• 60 10 160				i	
204300000000000000000000000000000000000	[. ;	i	1	
	I Company	1	1	1	
ANGSTR = ANGARR			!	1	
 Z1 = DFPEVA INITLK = NCONSI 		: !	!	!	
3 3 4 0 3 3 5 3 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1	. !	1	i	
	0(i			
***************************************	1	. !		1	
- 140 CONTINUE - CALL		: ;	;	i	1
RATRAC RNGMOD(2,J) = RANGET + RNGMOD	(1,J)		1	i	1
39.000000000000000000000000000000000000	1	. !	!	1	1
	1	!	1	1	į
F (NVTXLO , NE, O)		· i	i	i	i
• GO TO 200			!	1	1
	1	. !	1	1	1
	1	1	1	1	1
ANGSTR = ANGARR		:	1	1	1
INITLE NCONS		. !	1	!	į
CALL RATRAC		i	i	į	i
. RNGMOD(4,J) = RANGET + RNGMOD	(5.1)	. ;	i	i	1
ANGSTR = -ANGSTR CALL		. !	1	1	1
RATRAC RNGMOD(6,J) = RANGET + RNGMOD	(4, J)		1	1	- 1
300000000000000000000000000000000000000	1	' !	1	1	1
		1	1	1	!
	•	į	i	i	į
		. ;	i	, i	i
GO TO 200				/	
		1	1	1	1
	***************************************	. !	1	1	1
•3	c3 4 5 C 6 0 7 6 7 8 7 8 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	: !	1	i i	1
	1	1	1	1	1
	1		i	i	i
. 150 CONTINUE	<i>azeaeae</i>		i	i	i
	1		;	1	1
			;	1	1
• IF(NVTXUP .EQ. 0)				1	1
- GO TO 140					
	1		i	i	
	0 (1	
· 160 CONTINUE				1	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1	
				1	
• G0 T0 200				1	
******************				!	

1		
I		
I		
1		
1		
П		
П		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	İ	200 CONTINUE
		NIJAMO = NIJAMO - 1 CONCI = 2
		*3
		1000 FORMAT(F/36M THERE IS A VERTEX POINT FOR THE RAY //) 1
		! • END
Π		

```
SUBROUTINE MUEVAR SUBROUTINE FOR COMPUTING MU- AND VARIANCE FOR SHIPS
BORAVACA
# CMUEVADOO
        SUBROUTINE
                       MUEVAR
.
40
4 3
43
        COMMON
       C / CALPHA /
                       ALPHAE,
                       ALPHAS.
                       FALPHE.
       C
                       FALPHS.
       C
                       ONMIAE.
       C
                       ONMIAS,
                       STNPEV,
                       STNPSE .
       C
                       TWOALE.
       C
                       TWOALS,
                       NTIMEM
        COMMON
       C / SIGNAL /
                      PRYSEV(128)
                       PRYSSE(128)
                       PRNOEV(128)
       D
       0
                       PRNOSE (128)
                       PROEVA(128)
                       PROSER(128)
       D
                       VARFVA(128)
                       VARSER(128)
                       GMUEVA(128)
       D
                       GMUSER(128)
                       DEVAEV(128)
DEVASE(128)
                       DEMUEV(128)
       0
                       DEMUSE(128)
       D
                       THREVA,
                       THRSER.
       C
                       NTIMEN
*C
        DEMUEV( )
                      # MODIFIED MEAN OF S/N FOR THE EVADER # MODIFIED MEAN OF S/N FOR THE SEARCHER
         DEMUSE( )
                      = MODIFIED VARIANCE OF S/N FOR THE SEARCHER

= MODIFIED VARIANCE OF S/N FOR THE SEARCHER

= FRACTION (ONMIAE++2/(1-ONMIAE++2))
         DEVAEV( )
*3
        DEVASE( )
                                                                                    (DIMENS .
                         FRACTION
         FALPHS
                                     (ONMIAS##2/(1-ONMIAS##2))
                                                                                    (DIMENS.
                       = MEAN OF SMOOTHED EVADER S/N
         GMUEVA( )
                      = MEAN OF SMOOTHED SEARCHER SIN
         GMUSER( )
                       = NTIMEN MINUS ONE
                                                                                    (DIMENS.
         NTIMEM
                                                  SQUARED
         OMASQE
                       . ONE MINUS ALPHA-E
                                                                                    (DIMENS+
         OMASQS
                       = ONE MINUS ALPHA-S
                                                  SOUARED
                                                                                    (DIMENS*
                                                                                    (DIMENS.
        ONMIAE
                      = ONE MINUS ALPHAS
                      # ONE MINUS ALPHAS
# SIGNAL TO NOISE RATIO PLUS ONE FOR THE SEARCHER
# SIGNAL TO NOISE RATIO PLUS ONE FOR THE EVADER
        ONMIAS
                                                                                    (DIMENS.
#C
         STYPSE
         STYPEV
         THOALE
                       = TWO TIMES ALPHA =
                                                                                    (DIMENS+
..
                      = TWO TIMES ALPHAS
                                                                                    (DIMENS+
         TWOALS
                      * VARIANCE OF SMOOTHED SIN FOR EVADER
         VAREVA( )
                      = VARIANCE OF SMOOTHED SIN FOR SEARCHER
```

I

	15				*				0	4	3										*	0 0		3 (0 0					9 (• •	• •			• •	•	• •		•		•	• •			•			
	a G			300			N	•	= (١.		L	,																																			• •	• •	•
										0 0	4														a 4								• •							• *			*							
																					I																													
																					1																													
									_				_								1										_	_									_			_						
	NT	11										. 0		• •	• •	• •		,	•		0	0 6		2 4	a a		*		•	• (•	•	• •	• •	• •			•	••	• •	•	• •	• •	• •	* *		•			
	OM													14	S																																-			
	OM																																																	
	GM																																																	
	GM																																																	
	VA																																																	
	VA																															Q	t •	·U	t V	A	٤١	/(N	1	MI	= M)							
			•	•			• ,		•					•	•				•		1			- '	w w		•		• *	•			••		•		• •	•	•		•				•		•			
																					i																													
																					I																													
****						0	0 (4	3 2		3 43		* :							#	0 4	8 8		9 4	3	*				D 3		٠.	• •	* 4				• •		•	• •				4 4				
	RE	.575																																																
****	4 6 4		• •				0 1	3 4	4 4	0 0	4	. 4		• •				*	4	a	3	4 :	4	* 1	0 0	**					9 4		• •	* *	*				* *		•			• •		0 4	*			
						0					23	, 1									*		* *	*	3 4	. 3							• •						• •		•									
3																																																		
	240			* 1			4 4		3 (0 0	3	3 4			4		• •	*		* *		4		8 (4 4	4			4				• •		* 4		* 4	*	* •		•	* *		• •						
																					1																													
																					i	(.	٠.	•	• •	•	•	• •	•	• •	• •	•	• •	•	• •	•		•	• •	•	•	٠.	• •	• •	• •	٠.	•	• •	•	•
		4		4 4		٤,	9 0	4	0 (, ,		: 0									n		, ,	0 1				, a											• •											
10	CO				3070																																													
	GM																																														*			
	GM																										-		0																					
	VA																																																	
	***														_	1														4		4																		
																					I																							-			_			
																					I																													
																					1																													
	000					8	# 4		4 4	3 4	4	3 4			*					4	4	13 6	1 0	2 4	4 4	12							• •		4		4	•	• •	•	•	* *	• •	• •		4 4				
	RE	11	14	N .																																											•			
	w w w		•				.,		. ,				•	-	-	* '	• •		•	- w	*				w w	**	*		*	•	•	-			w 0				•••		-	•	**		••		•			
	000			4		4		* *	4	4	0	3 4			*					* #	4	4	* 4	0 (0 0												• •			•	•				* *	. 3				
C •••••						,			,.		,,																																							
****			. 4	# 1	. 4		* *	. 4	*	. 0	14	. 12		• •		**		•	•	- 11	1	9 6	. 4	4	4 4	**	4	-	. 0	91			4 6		- 0			•	••		•	•	••	••	-					
																					i																													
																					i																													
																					I																													

Section 1

(ENTRANCE) + CNTSE NORMAL TO SEARCH EVASION *** *NORMAL TO SEARCH EVASION . 0 40 SUBROUTINE NTSF COMMON /LAREL/ RI, RCJ, SS1, SE1, HS1, HE1, PXS(128), PXE(128), PYS(128), P* 1YE(128), PZS(128), PZE(128), VXS(128), VYS(128), VXE(128), VYE(128), NSI, * 2NgI,N,RgTAS,BgTAg,DgLTAS,DgLTAg,32,PDS(5),PDg(3),PKILL(128),PPATH(* 3128), PEVADF (12H), DIFTI, RANGE (12B), STATD, STATE, PGS (5), PKDS (5), POS (50 4),PIS(5),PGE(3),POE(3),PIE(3),CLPH,EVPH,WRANGE,BPS,BPE,PHIE,PHIS;A* 5LSUBE,ALSURS,STNPSE,STNPEV,MECO,NPCO,BSP,BEP,NR,K,EDEPTH,SDEPTH,RC* 6,FOS,FBWS,F1S,PTS(128),FXS(128),PNS(128),FNS(128),FOE,FBSE,F1E,F2E* 7,F2S,PTE(128),FXE(128),PNE(128),FNE(128),XE,XS,SUMKIL,SUMEVA,PRE,P* BRK, PE(3), ALPXN, ALPYN, NSMAX, NEMAX N1 = N - 1 A1 = VXS(N1)/VYS(N1) $VECTXN = (PXE(N_1) + A_1*PYE(N_1)) / (1.0 + A_1*A_1)$ VECTYN = -A1 *VECTXN SOSV = SORT (VECTXN++2+VECTYV++2) DX V=VECTXN/SQSV DYN=VECTYN/SQSV VX=(N-1)=SF1*DXN VYE(N-1)=St1+DYN *************** I

END

		(EN	TRANCE)
000000	*******		, « « » « » « « » « » « » « » « » « » «
* CPAPER	00	FUNCTION PAPERF	
PAPER		PAPOULIS ERROR FU	ACTION ROUTINE
3	FUNCTION	PAPERF (DUMMY1)	
* C			
# C	000000000	5 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6	, , , , , , , , , , , , , , , , , , ,
*3			•
*3	THIS IS THE	PAPULLIS ERROR F	JNCTION WHICH HAS RESULTS BETWEEN O A
*0	•		•
» C	****	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
43			
# C		= X OF EQUATION	
*C			S THE INTEGRAL FROM ZERO TO X OF
# C		EXP(-Y**2/2) W	
*C		SEE PAGE 64 OF -P	APOULIS-
40			
•		.5*(1.0 + ERF(0.	
200000	*****	************	*******************
2000000	35566666666	**********	
•	RETURN		
0000000	0000000000	************	
****	****	***********	
*C			
3343633	*******	****	
0000000		*************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
•	END		
3 5 6 5 5 3 3	****	************	, a c a a a a a a a a a a a a a a a a a

Constitution of the last

C. Transaction of the Control of the

A Company of the Party of the P

(ENTRANCE)

```
* CPRBJ
            UPDATING PROBABILITY
***
    42
       UPDATING PROBABILITIES
000
           SUBROUTINE PROBAL
        COMMON /LAREL/ RI, RCJ, SS1, SE1, HS1, HE1, PXS(128), PXE(128), PYS(128), P.
      1YE(128), PZS(128), PZE(128), VXS(128), VYS(128), VXE(128), VYE(128), NSI, *
      2NEI, N. BETAS, BETAE, DEL TAS, DEL TAE, 32, PDS(5), PDE(3), PKILL(128), PPATH(* 3128), PFVADF(128), DIFTI, RANGE(128), STATD, STATE, PGS(5), PKDS(5), POS(5* 4), PIS(5), PGE(3), PDE(3), PIE(3), CLPH, EVPH, WRANGE, BPS, BPE, PHIE, PHIS, A*
      5LSUBF, ALSURS, STNPSE, STNPEV, MECO, NPCO, BSP, BEP, NR, K, EDEPTH, SDEPTH, RC+
       6,FOS,FRWS,F1S,PTS(128),FXS(128),PNS(128),FNS(128),FOE,FBSF,F1E,F2E*
       7,F2S,PTE(128),FXF(128),PNE(128),FNE(128),XE,XS,SUMK[L,SUMEVA,PRE,P*
      87K, PF (3), AL PXN, AL PYN, NSMAX, N=MAX
       COMMON
      C / STATIC /
                    NDSTAT,
                    NESTAT,
                    PEDETN(128)
      C
                    PERANG.
                    PPATHM.
      C
                    PRANGE (128)
      D
                    PRANGS (128)
      D
                    PRPTEV(128)
      מ
                    PRPTSE (128)
                    PSDETN(128)
      D
      C
                    PSRANG.
                    SMPEDT,
      C
                    SMPSDT,
      C
                    SMICNE,
                    SMICNS,
      D
                    TCONEN(128)
                    TCONSN(128)
      CDUMMYB
       NTIMEM = N - 1
       PKILL(N) = PKILL(N) +PPATHM
       PPATH(N) = PPATH(N) *PPATHM
       PEVADE(N) = PEVADE(N) *PPATHM
       PEDETN(N) = PEDEIN(N) *PRPTEV(NTIMEM)
       PRANGE(N) = PRANGE(N) *PRPTEV(NTIMEM)
       PRPTEV(N) = PRPTEV(N) *PRPTEV(NTIMEM)
       TCONEN(N) = TCONEN(N) *PRPTEV(NTIMEM)
       PRANGS(N) = PRANGS(N) *PRPTSE(NTIMEM)
       PRPTSE(N) = PRPTSE(N) +PRPTSE(NTIMEM)
       PSDETN(N) = PSDEIN(N)*PRPTSE(NTIMEM)
        TCONSN(N) = TCONSN(N) *PRPTSE(NTIMEM)
       RETURN
       END
```

		(EN	TRANCE)
			i
	_	CUDDOUTINE DDODET	
* CPROD		SUBROUTINE PRODET	MPUTING THE DETECTION PROBABILITIES .
*	SUBROUTINE		
•	S	PRODE!	
40			
40	0:00000000	000000000000000000	
*3			
*C	55555555555		505000000000000000000000000000000000000
•3			
	COMMON		
	C / SIGNAL	/	•
•	D	PRYSEV(128)	
•	D	PRYSSE (128)	
•	D	PRNOEV (128)	
	D	PROSE (128) PROEVA (128)	
	D	PROSER(128)	
	D	VAREVA (128)	
9	D	VARSER(128)	
•	D	GMUFVA(128)	
	D	GMUSER(128)	
	D	DEVAEV(128)	
•	D	DEVASE(128)	
•	D	DEMUE V (128)	
5	D	DEMUSE(128) THREVA,	
	C	THRSER.	
	c	NTIMEN	
.0			
40	GMUEVA()	= MEAN OF SMOOTHE	
40	SMUSER()	= MEAN OF SMOOTHE	
* C			OTHED SIN FOR EVADER
*3	VARSER() PROSER()		DETECTION BY THE SEARCHER **
*0	PROEVAL)		DETECTION BY THE EVADER
43		- FROM BIETT	DE LOTTON DE ME EVADEN
	PROSERINTI	MEN) =	
•	E PAPERF((GMUSER(NTIMEN) -	THRSER)/SORT(VARSER(NTIMEN)) .
	PROEVACNTI	MEN) =	
	E PAPERF((GMUEVA (NTIMEN) -	THREVA)/SORT(VAREVA(NTIMEN))) *
000000		e a e a a a a a a a a a a a a a a a a	
			•
			i
		000000000000000000000000000000000000000	200000000000000000000000000000000000000
	RETURN		•
****	00000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
*5	*********		4 2022222222222222222222222222222222222

			1

0	END		

	······································		,			
* 10 CONTINUE * IF((K .GI. NULAPO) .OR. (K .L * DZ1 = Z1 - DEPKYD(K) * Z8 = DEPKYD(K+1)	E. 0))CALL DUMP					
03420234000445402440000446644000044						
• IF(T1 .F0. 0.n) • GO TO 80		o		0		
@ @ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				1 1 1 1 1		
• If (K , EQ. L) • GQ TO 160		•		. [0
				1		! ! !
• 1f (T1 .GT, 0.0) • GO TO 30		•	.,.,.			I I 0 I I
	0(0	1 1		i i i i i i i i i i i i i i i i i i i
20 CONTINUE ZB = DEPKYN(K)	22 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 1	1	1 1		1 1 1 1 1 1
	l)() 		I	i ! I		i !0 !
30 CONTINUE DUMMY1 = ZR - 71		•	1 1	I I I		1 1 1 1 1 1
			1	1 1		1 1 1 1 1 1
F(T1 .E0. D.O) a. GO TO 370		•	!.		0 1	
		1	I I	1 1	I I I	
A1 = CONSVO(K) - SPVRSQ A6 = A1 * CONSG2(K) B1 = A6 + CONSG0(K)/2.0		• I	1 1 1	I I I	I I I	
 CI = A6°CONSG2(K) + CONSG1(K) A1 = ZR - DEPKYD(K) DZM = 0.5°(D71 + A1) Y1 = A1 + 2.0°R1°DZ1 + C1°DZ1° 	1071	• I	! ! !	I I I	1 1	1 1 1 1 1 1
3 8 4 7 5 0 7 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 8		6 I	1 1	1 1	I I	
IF(Y1 .GE. 0.0)		s	[I	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 3 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• !	1 1 1	1 1	I I I I	
40 4 42300 00000000 00000000000000000000000000		. I	I I I	1 1	I	
* Y1 = 0.0 • CALL TRACER(1)		• I	! ! !	t 1 1	! ! !	
* 280 CONTINUE * Y1 = SQRT(Y1) * Y2 = A1 + 2.008[*A1 + C]*A1*A1			1	1	1 1	
c > # 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		• !	1	1	1 1	

		r		1	ſ	ı	ſ	1	1	ı
	* IF(Y2 .GE. 0.0) • GO TO 290	***************************************	······	·	I I I	I I I	! !	I I 0 I I) 1	
	20.000000000000000000000000000000000000	I	••	I I	I I		! [1	
	Y2 = 0.0 CALL TRACER(2)	·	:	1						
	***************************************	! 0(••	i !					i	
		I	••	1				! !	i	
	290 CONTINUE Y2 = SGRT(Y2) D1 = DUMMY1/(Y1 + Y2) A7 = D1+D1 CDSGRD = C1+A7			I I I I					1 1	
		f ! !	•	1 1					1	
	• IF(ABS(CNSORN) .GE. 0.5) • GO TO 170	•••••••••••••••••••••••••••••••••••••••	······	I I !				0	1 1	
		1 1 1		I I					1	
	SM m ATHIRD POWRCD = SM	••••••••••••••••••••••••••••••••••••	:	I I					1 1 1	
		I I	•							
		! !	••	I I					I	
I	. DO 200 . [! = 2,50			1					I	
İ		1 1 1		I I					1 1 1	
I I I	A5 = 20I - 1 POWRCD = POWRCD=CDSQRD+A5/(A SM = POWRCD + SM	5 + 2,0)		1					1 1	
į		1 1 1		! !				1	1	
	• IF(ABS(POWRCD) LT. 1.0E-4 • GO TO 40)	<u>:</u>			• • •	•••		!	0
				1 1					I	i i I
1	• 200 CONTINUE	*************************	:	1					1 1	1
		1 0(i 				i i	i i	0
		1		I					!	
	• 40 CONTINUE • SM = SM-A7	9		!					1	
		1 0(1		i 	i !		٠.،			0
	* 50 CONTINUE * x = DI/SPDVER*(2,0 + CONSG2(* E (CONSG1(K) * 2.0 - CONSG(K) * * RANGET = ABS(X) + RANGET IF(NCONCI ,NE. 1) CALL * S RAYPTH	K)=(DZ1 + A1) + CONSG2(K))=SM)		I I I I I I						1 1 1 1 1
		1 1							1	1
	* 1FC 28 ,EQ. 22) * 50 TO 230		•	1 . 0 . 1 . 1 . 1 . 1 . 1	1 1					

- IF(DUMMY1, LF. 0.0) - GO TO 240	*>>>=>>>= 	••••	.1.	1.1.1.1.1.1	! ! !	1	0 1 1 1 1 1 1 1	1 1 1 1 1 1	i I I I	
	 	:	1 1 1 1	I I I I		1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 1	I I I I	I I I I I I I I I I I I I I I I I I I
• IF(K .NE. NULAPO) • GO TO 10	 	•••••	1 1)A 1	1 1 1 1 1	! ! !		I ! I ! I ! I !	I I I I	1 1 1 1	
angerm = -ABS(ACOS(SPIKYD(V	 		1 1 1 1	i ! ! !	[[]	1 1 1	I I I I I I I I I I I I I I I I I I I	1 1 1 1 1 1 1	1 1 1 1 1	
6 II = ANGHIM 20600000000000000000000000000000000000	oonaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	•••	1.1.	1	! ! !	1 1 1. 1	1.1	 I I I . 0	! ! !	I I I I I I I I I I I I I I I I I I I
20000379708000000000000000000000000000000	3323432490 336636668686868686 3	:	1 1 1 1	I I I I I	† ! !	I I	1 ! 1 ! 1 I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	
99000000000000000000000000000000000000	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		I I A	1		1 1	1 1	I I I I I I I I	1 1 1	
			1	i	I	1	1 1	I I	! !	i i i i
	3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	*	1	1	1	1	1 1	1 1	I	1 1
		0.6	1 1 1 1 1	I I I I I I		I I I I I I I I I I I I I I I I I I I	1 1	1 1		
-C	1	06 00 00 00 00 00 00 00 00 00 00 00 00 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
-C	I I I O(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	06				I				
BO CONTINUE DVZ = DZ1=CONSG2(K) O1 = 1.0 + DVZ Q2 = DZ1=CONSG1(K) DVZ = ((CONSG0(K) + O2)=(:	1,0 - 2:0*pvz/Q1) + Q2)/Q1/Q1	06 0 0 0 0 0 0 0 0 0 0 0								1 1
BO CONTINUE DVZ = DZ1=CONSG2(K) O1 = 1.0 + DVZ Q2 = DZ1=CONSG1(K) DVZ = ((CONSG0(K) + O2)=(:	1.0 - 2:0*pvz/Q1) + Q2)/Q1/Q1	06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								
BO CONTINUE DVZ = DZ1=CONSG2(K) O1 = 1.0 + DVZ O2 = DZ1=CONSG1(K) DVZ = ((CONSG0(K) + O2)=(:	1,0 - 2:0*pvz/Q1) + Q2)/Q1/Q1	0 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9								

Commercial Commercial

Constitution

	1		111	11 111 111
			111	11 111 111
90 CONTINUE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 1 1	
	1		111	11 111 111
	1		111	
800100200000000000000000000000000000000			iii	11 111 111
* IF(DVZ) * 110. 130. 150		•	1.1.1.0	111 111 110.
000000000000000000000000000000000000000		•	1111	
			1 1 1 1	
	i		1111	111 111 111
• 110 CONTINUE			1 1 1 1	
03032339999999999999999999	**************************		1111	
			1 1 1 1	
	1		1111	111 111 111
• IF(Z2 .LE. /1)		*	1.1.1.1	
• • GÒ TO 30		•	1111	111 111 111
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	•	1111	
	1		1 1 1 1	
	1		1.1.1.1	.1.1.1.0 1 1 1 1 1 1
	1		1111	
. 120 CONTINUE			1111	
• ZA = Z?		•	1 1 1 !	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3704444	1	•	1111	
	!		!!!!	111111 111
*****************			1111	
• G0 TO 30		•	1.1.1.1	1 1 A(
3163638		•	iiii	iiiiiiii iii
			!!!!	
			iiiii	iiiiiiii iii
•3		•	1 1 1 1	
	I		iiii	1111111 111
	0(1.1.1.1	111 1111110.
3103333566F66663436646666666666666666666666	************************		1111	111111 111
• 130 CONTINUE • 1F(Z2 .EQ. Z1) RANGET = 1	.056			
	1		1111	111111 111
	o(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1		1 1 1 1	
. 140 CONTINUE			1111	iiiiii i i
ANGSUR = 0.0 ANGSUR = 0.0		_	1 1 1 1	
. ANGRTH = 0.0			1111	ililili i i
******************************	I			
	!		iiii	
***************************************			1 1 1 1	
• RETURN			1111	!!!!!!!!!!!!
			1 1 1 1	
			1 1 1 1	
			1 1 1 1	111111 1 1
•3		•	1 1 1 1	
			1111	ititi i i
	0(1.1.1.0	
			1111	111111 1 1
• 150 CONTINUE			1 1 1 1	
	!		1111	
			1111	
	1		1111	
• IF(Z2 .GE. Z1) • G0 T0 20		•	1.1.0 1	
• • 60 10 50				
***************************************			1 1 1	iiiiii i i
	1	•		

		. 1	1	1 1	111	
• GO TO 120		•	. i	i i	. 1)A	11111
************************		" 1	1	1 1	11	
		1	1	1 1	1 1 1	
		. 1	i	i	iii	
•3			1	1 1	1 1	
		į	i	1 1	111	11111
	(1		1 1	
* 160 CONTINUE			1	1 1	1 1	11 1 1
	***********************	. 1	1	1 1	11	11 1 1
		1	1	1 1	1 1	
		. !	1	1 1	11	11 1 1
. IF (RANGET .GT. 0.0)		· i	.i	ii	. i)A	iiii
• • GÓ TO 120		. 1	1	1 1	1 1	
		1	1	1 1	1 1	1 1 1 1
		i	i	i i	ii	11 11
• 1F(T1 ,LE, 0,0)		•1	.1	0 1	1 1	1 1 1 1
• • GO TO 150		. !	1	1	11	11 1 1
	[·	i	i	1 1	iiii
			1	1		
***************************************		•• 1	1	!	1 1	!!!!!
• 1F(72 .GT. Z1) • 60 TO 120		• 1	1		1	iiiii
			1	1		
		i	i	1	1	!!!!!
] 	. 1	i	1		
• GO TO 30		• }	.1	!	.1	A
			i	I		1111
		1	I	1	1	1 1 1 1
		1	1	1	!	!!!!!!
********************************		. i	i	i	1	ii i i
**	*******	. 1	i	1	1	11 1 1
	1 0(1	1	1		1 1 1 1
	1		i	1		1 1 1
. 170 CONTINUE		. 1	1	1		1 1 1
. A2 & SQRT(ABS(C1)) . A3 & A2.01		: 1	1	I	1	1 1 1
***************************************	***********************	•• !	i	i	1	1 1 1
		i	i	i	1	1 1 1
	[. 1	1	1	1	1 1 1
• 1F(C1 .LE. 0.0)		•	. j	0	1	1 1 1
• • GO TO 190	***********************	• 1	i		1	1 1 1
			1	1 1	1	1 1 1
		1	1	1 1	1	i i i
 H = ALOG(ABS((1.0 + A3)/(1.0 - A3))		1	1 1	1	1 1 1
******************************			1	1 1		1 1 1
	0(1 1	.1	1 . 1	.10	0 1 1 1
***************************************	} 		I	1 1		
* 180 CONTINUE * SH = (H/AP+0.5/D] - 1.0)/C]			1	1 1		
. A . H\V5		* !	1	1 1	1 1	11 1 1
***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1		1 1	1 1 1
		!	1	1 1		
*************************	! *******************************	· i	i	11	1 1	1 1 1
• GO TO 50		• • • • • • • • • • • • • • • • • • • •		!.!		1.1
		1	i	1 1	1 1	
			1	1 1	1 1	1 1
42		. !	1	1 1		
************************		. 1	1	1 1	1 1	
				1 1	1	

	1		11 1	1 11
• 190 CONTINUE • H = 2,0 ATAN(A3)		:		
5 5 6 7 6 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	I I			
236022264808888800000000000000000000000000	1	••		
e GO TO 180	••••••••••••••••••••••••••••••••••••••		1.1	1 1
0.7400000# ***************				
	I 0(·•	I I I I I I I I I I I I I I I I I I I	! ! ! !
	A1, K)/SPDVER), DUMMY1)	•		
3000333399999933999999999999999	• > • • • • • • • • • • • • • • • • • •	. •		! ! ! !
20092222200000000000000000000000000000	I	•		
5 5 5 15 5 15 5 6 5 8 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7				! ! ! !
	••••••••••••••••••••••••••••••••••••••	*		
2399002444444444444	0(I		i	! ! ! !
e 240 CONTINUE	**************************	8 .		!!!
	[[]		! ! !	! ! ! !
F(K.NE. 1) GO TO 70	,	•	i ! !	1)A
334388944 4888 48444883	! ! !		! !	! ! ! !
ANGSUR = ARS(ACOS(SPDKY))(1) T[= ANGSUR	/SPOVER))	•	I I	i i i i
			I I I	
• GO TO 10	i ••••••••••••••••••••••••••••••••••••	•,)	i I A	
			i i i	
	· · · · · · · · · · · · · · · · · · ·	•		
	(,,,,,,,,,,,,,	• • • • • • • • •	i.,(1
• 570 CONTINUE • TI = 1.0	······	:		!
3 00 3000 000000000 3000000000000000000				i !
• IF(DUMMY1) • 10, 70, 3A0		••••••		

		t	
. 18	O CONTINUE		
>>00			
00000	6.03		

```
•CRAYCTLOO SUBROUTINE RAYCTL
•CSRAYC SUBROUTINE FOR SETTING UP PROPER RAY TABLES
• SUBROUTINE
                                                                                                 RAYCTL
                                      THIS SETS UP THE REQUIRED RAY TRACE TABLES PLUS CONVERGENT ZONE VAN
                                      COMMON
                                 C / CONSTN / DEPSER,
                                                                                                    NCONSK,
SPATSE,
DEPEVA,
NCONSL,
                                 00000
                                                                                                     SPATEV
                                      COMMON
                                 C / LCONST /
C NULAPO,
C DEPBOT,
D CONSGO(128)
                                                                                                   CONSGO (128)
CONSGI (128)
CONSGI (128)
CONSGO (128)
DELTAZ (128)
DEPKYD (128)
SLOPEJ (128)
SPDKYD (128)
                                 D
                                 DD
                                 D
                                 D
                                 COMMON
                              NCONCI.
                                                                                                     INITLK,
Z1
Z2
SPVRSQ,
                                                                                                     ANGSTR,
ANGARR,
ANGBTM,
                                                                                                       ANGSUR.
                                                                                                     SPDVER,
RANGET
                                 COMMON
C / RCONST /
                                                                                                   ACZ

AMLSRD,

BCZ

HCI

HZSD,

NCONSD,

RCZ1

RCZ2,

SDCON,

TCZAV1,

TCZAV2,

ZH
                             COMMON
C / SURFAC /
                                                                                                   A6
CONST2,
CONST4,
CZANGL,
CZANDL,
CZRANG,
G1SD,
G2SD,
NCZRAS,
                                 00000000
                                                                                                     NZONE ,
RSD ,
RSD1 ,
                                 000000
                                                                                                     SCSD
                                                                                                     SORTZL,
                                 CDUMMYZ
........
                                     AMLSRD = CONSTANT REQQUIRED FOR AMOS CALCULATIONS

ANGARR = ANGLE (IN RADIANS) OF ARRIVAL AT ZZ = ANGBTH = ANGLE (IN RADIANS) OF BOTTOM BOUNCE OF RAY

ANGSTR = ANGLE (IN RADIANS) OF SOTTOM BOUNCE OF RAY

CONSGO( ) = GO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSGO( ) = GO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSGO( ) = GO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSGO( ) = CO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTO( ) = VO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

COSSOO ) = VO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

COSSOO ) = VO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

COSSOO ) = VO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

COSSOO ) = VO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

COSSOO ) = VO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

COSSOO ) = VO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

COSSOO ) = VO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

COSSOO ) = VO CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTE

CONSTANT AS 
00000000000000
                                      CUBCAL
CUBCAL
CZANEO
CZANET
CZANSO
                                                                                                  SMALLER CONVERGENT ZONE ANGLE (IN RADIANS) FOR EVADER-
LARGER CONVERGENT ZONE ANGLE (IN RADIANS) FOR EVADER-
SMALLER CONVERGENT ZONE ANGLE (IN RADIANS) FOR SEARCH-
LARGER CONVERGENT ZONE ANGLE (IN RADIANS) FOR SEARCH-
DEPTH (IN K-YD) TO TOP OF LAYER FROM OCEAN SURFACE

DEPTH (IN K-YD) FROM TOP OF LAYER TO Z1

DEPTH BELOW LAYER (IN K-YD) OF POINT OF VERTEX
                                      CZANST
DEPKYD( )
DPTOZ1
                                        DZVX
```

```
IVMAX
KR
LAYERL
LAYERM
LAYERS
                                                           LAYER HHICH CONTAINS ZIB

LAYER IN WHICH A LOWER VERTEX IS FOUND (DIMENS)

LAYER IN WHICH A LOWER VERTEX IS FOUND (DIMENS)

LAYER NUMBER OF HIGHER DEPTH OF SHIP (DIMENS)

CONTROL PARAMETER FOR DIFFERENT SUBROUTINES TO BE CAL

AMOS CONSTANT SD

LAYER NUMBER WHICH CONTAINS ZI

NUMBER OF LAYERS PLUS ONE

TOTAL RANGE (IN K-YD) AS COMPUTED BY RAY-TRACING SUBRO
................
                       LAYERS
VCONCI
VCONSD
VCONST
VULAPO
RANGET
RCZI
SDCON
SPATEV
SPATSE
SPATSE
                                                            # WAVE HEIGTH PARAMETER ...
# PROPAGATION SPEED AT EVADER ...
# PROPAGATION SPEED AT SEARCHER ...
# PROPAGATION SPEED (IN K-YD/SEC) AT POINT STARTING POINT
                                                          E PRÔPAGATION SPEED (IN K-YD/SEC) AT POINT STARTING POI-

SPEED OF SOUND PROPAGATION (IN K-YD/SEC)

FUNCTION TO COMPUTE THE SOUARE ROOT OF K-YD IN FEET

AVERAGE OF CONVERGENT ZONE ANGLES

AVERAGE OF CONVERGENT ZONE ANGLES

FUNCTION TO CONVERT DIMENSIONLESS QUANTITY TO DB

SEE -AMLSRO-
STARTING DEPTH (IN K-YD) OF RAY

ENDING DEPTH (IN K-YD) OF RAY

ENDING DEPTH (IN K-YD) OF CONVERGENT ZONE RAY

ENDING DEPTH (IN K-YD) OF CONVERGENT ZONE RAY

ENDING DEPTH (IN K-YD) OF CONVERGENT ZONE RAY

ENDEPTH OF MAX OR MIN POINT IN VELOCITY PROFILE

DEPTH (IN K-YD) OF VERTEX POINT OF CONVERGENT RAY
                        SPOKYDO
TCZAV1
                       TNLG10
xSD
Z1
Z2
                      228
21
270
                        NAMELIST / SEARCH / CZANGL, CZRANG, Z1
  •:
                       SQRTFT( DUMMY1 ) . SQRT( 3000.0+DUMMY1 )
RCZ1 = 0.0

NCONCI = 1

SDCON = 4.5

IF(ZM ,GI, 4,0) SDCON = 2.0 * SDCON

NCONSK = MORPNT( DEPSER, DEPKYD, NULAPO) - 1

SPATSE = FVELOC( DEPSER - DEPKYD(NCONSK), NCONSK)

NCONSL = MORPNT( DEPEVA, DEPKYD, NULAPO) - 1

SPATEV = FVELOC( DEPEVA - DEPKYD(NCONSL), NCONSL)

72 = AMAXI ( DEPSER, DEPEVA)

ZI = AMINI ( DEPSER, DEPEVA)

SPATZI = SPATSE

LAYERS = N<sub>C</sub>ONSK
                        RCZ1 . 0.0
• IF( DEPEVA .GE. DEPSER )
• • GO TO 10
SPATZ1 = SPATEV
LAYERS = NCONSL
• 10 CONTINUE
• COSZIB = SPATZ1/SPDKYD(NULAPO)
• IF( COSZ1B ,GE. 1,0 )
• GO TO 90
                     Z19 = Z1
Z29 = Z2
SPDVER = SPDKYD(NULAPO)
CZANST = ACDS( COSZIR )
ANGSTR = C7ANST
INITUK = LAYERS
Z2 = DEPKYD(NULAPO)
                      CALL RATRAC
                 CALL
S
RATRAC
RCZ2 = RANGET
ANGSTR = -ANGARR
Z1 = Z2
INITUK = NULAPO
Z2 = Z28
CALL
S
RATRAC
RCZ2 = RANGET + RCZ2
CZANET = ARS( ANGARR )
NUMLAY = NULAPO - 1
```

The state of the s

	1		1		
1	• 00 100		1		
1	•] 1 = 2,N(IMLAY		1		
			1		
			1		
	• IF((CONSGO(1) .EQ. 0.0) .ANO. • GO TO 20	(CONSVO(1) .LT. CONSVO(1)))	1	0	
	200000000000000000000000000000000000000	***************************************	1		
			1	1	
	• tan continue	***************************************	1	- 1	
	2 9 0 2 9 9 2 9 9 9 9 9 9 9 9 9 9 9 9 9		1	1	
	1		1	1	
	> RCZ2 = 0.0		1	1	
	• CZANSO = 100.0 • CZANST = 100.0		1	1	
	• CZANEO = 100.0 • CZANET = 100.0		i	1	
	- 1 = NULAPO		1	1	
	1		!	0	
	1	222222222222222222222222222222222222222	1		
	. 20 CONTINUE LAYERM = 1		!		
	ZL = DEPKYD(1) A1 = SQRTFT(DEPSER)		i		
	AZ = SORTET(DEPENA) AJ = SORTET(ZL)		i		
	SDCON = SDCON/A3		į		
	a A5 = A2/A3 HZSD = 0.40(10.00*ABS(A4 - A5) - 10.044 - 10.045)	į		
	300000000000000000000000000000000000000		į		
	į		•		
	i.		į		
	1F(1 .EQ. NULAPO)		į	0	
	• GO TO 150	:			
			į	1	
	1		į	į	
	VCONSD = 5		i	i	
	1		į	į	
	i		į	i	
	• IF(Z1R .GF. 7L) • G0 T0 30	•	j		
	53960504040606406065040666666666		į	i	
	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		į	1	
	SPOVER = SPDKYN(1)		į	!	
	CZANSO = ARCCOS(SPATZ1/SPDVER ANGSTR = CZANSO	•	i	1	
	. Z1 = Z18 . INITLK = LAYERS		į	1	
	• Z2 # ZL		į	1	
	RATRAC RCZ1 = RANGET		į	1	
	000000000000000000000000000000000000000		i	1	
			·····i··		
	a 30 CONTINUE		i	1	
	SPOVER = SPATZ1/COS(ANGSTR)		i	1	
			i	1	
		************************	i	1	
	DO 300 J = 1, NULAPO		i	1	
			į	- [
i			į	1	
1	* IF(SPOVER ,LT. SPOKYD(J))				
	GO TO 40		1	1	

Constant

-

Contractor Contractor Contractor

!		1			1	
i		1			1	
i	• 300 CONTINUE			1 1	1	
		1	•		1	
		1			1	
	G0 T0 90	393328888888888888888888888888888888888	•)	v i	i	
					1	
	2 B • 3 2 3 3 B 5 3 B 5 4 5 4 5 4 5 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	g 3 g 3 g p p g g g g g g g g g g g g g		1 1	!	
			•	1 !	1	
		000000000000000000000000000000000000000				
	• 40 CONTINUE	1	•			
	• LAYERL = J - 1 • CALL		:			
	VERTEX	ZVLO. Z1 - DEPKYD(LAYERL)1)	:	1 1		
	* Z2 = ZVLO * ANGSTR = 0.005		:	1		
		I	••			
		t I		1		
	• IF(NCONSD .EQ. 0)		•			
	• e GO TO 120			1 1	i	
		1		i i	1	
	• Z1 = ZL		•	1 1	1	
	INITLK = LAYERM CALL		:	1 1	1	
	RCZ1 = RANGET + RCZ1		:	1 1		
	• ANGSTR = 0.0 • Z1 = ZVLO			1	i	
	· [N[TLK = LAYER!	***************************************			i	
				1 1	1	
	• IF(Z2R .GF, ZL)		•	1 !		0
	• • GO TO 50		•	1 1	1	
		I I		1 1	1	1
		1			i	1
		1	••		i	į
	* RCZ1 = RANGET + RCZ1 * ANGSTR = -0.005 * Z1 = ZL					1
	INITEK = LAYERM		:	1		1
		1 0(
		1	5 .			
	• 50 CONTINUE • Z2 = Z28			1		i
	• CALL • S RATRAC • RCZ1 = RANGET • RCZ1			;	i i	i
	CZANEO = ARS(ANGARR)		:	1	1 1	1
	DO SEARCH TO FIND HAXIMUM AND	MINIMUM RANGES	:	1 1		1
	NCZRAS = 100		:			
	CZANDL = (CZANST - CZANSO), CZANGL = CZANSO	FLOAT (NCZRAS)				1
	NCZRAS = NCZRAS - 1		.:			i
	***************************************	1		i	i	i
		,				1
1			:	!	!!!	1

	1	!
SPOVER = SPATZ1/COS(CZANGL SPOVER = 1.0/SPOVER/SPOVER	,	: !
FIND LAYER IN WHICH RAY VERT		:
SECTION CALL IN MAICH MAY AND	-X=S	: !
		1
		.
 . 00 800 J = LAYERS, NULAPO		• !
0.0000000000000000000000000000000000000		i
		1
000000000000000000000000000000000000000	1	. !
• GO TO 390		•
	1	. !!
		1 1
Ann Continue		· i i
 33636556556665665595655666666666	0:00:00:00:00:00:00:00:00:00:00:00:00:0	. !!
		1 1
200200000000000000000000000000000000000		. !!
CALL TRACER(39)	***********************	: !!
	1	1 1
3363273323663600000000000000000000000000	1	. !
. 390 CONTINUE		· i
FIND DEPTH AT WHICH RAY VERTE	xes	:
. CALL		: !
S (J-1, SPVRSQ. ZZ, Z1R -	DE PKYD(J-1), -1) .	: :
+3 COMPUTE HORIZONTAL TRAVEL OF	RAY	: !
· 72 * 72 - 1.0E-6		:
ANGSTR = CZANGL		: 1
• CALL • S RATRAC		
CZRANG = RANGET ANGSTR = -ANGARR		
• Z1 = Z2 • Z2 = Z28		:
• CALL		: :
* CZRANG = CZRANG * RANGET		:
CHECK TO SEE IF THIS NEW RANG	E IS A MAX OR MIN	:
		: !
		1
200000000000000000000000000000000000000	1	.
• IF(CZRANG .GE, RCZ1) • GO TO 380		·····i0
3963332333346666667536686666		. !!
		; ;
		1 1
]	. !!
RCZ1 = CZRANG	000000000000000000000000000000000000000	: !!
	I ot	i i
	I	
* 380 CONTINUE		
	!	
		-
• IF(CZRANG .LE. RCZ2)	*******************************	i
• 1F(CZRANG , LE. RCZ2) • GO TO 370		1 1

Particular Comment

1		1	1111	!
	PCZ2 = CZRANG		: ! ! ! !	1
		1	"	i
		0 (i
	- 370 CONTINUE - CZANGL = CZANGL + CZANDL	c 2 c 3 c c 8 c 8 c 6 c 6 c 6 c 6 c 6 c 6 c 6 c		i !
				1
1	· POG CONTINUE		• 1 1 1	1
			.	1
	F (ZIR .EO, DEPSER)	1	••	1
	• • GO TO 70			i
				1
	DUMMY1 = CZANSO CZANSO = CZANEO			i
	CZANEO = DUMMY1			i
	• CZANST = CZANET • CZANET = DUMMY1			1
		1 !		1
		0(1
	* 70 COVTINUE		• 1 1 1	1
		•	1 1 1	1
		1	1 1 1	1
	• IF (NCONSD , EQ, 0) • GO TO 110	***************************************	•	I
	25646330000000000000000000000000000000000			I
		1	1 1 1	1
	Z1 = DEPSER Z2 = DEPEVA	•••••••••••	• I I I I	1
		! ! !		1
	• IF(DEPSER ,GT, ZL) • GO TO 130		•	1
	***************************************	1		1
	• IF(DEPEVA .GT. ZL) • 60 TO 140		:	1 1
		I 0(1
		1	1 1 1 1 1	1
	• 150 CONTINUE • NCONSD = 1 • RSD1 = 0.25 • (2.0 - A4 - A5)			1
	* AMLSRD = A3 - 0.25*(A1 + A2			1
		[O(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1
	. BO CONTINUE . HCI - THEGIO AMESED) . 30.0		: !!!!!!	1
	. TCZAV1 = (CZANST + CZANSO)/	2.0	: !!!!!!	1
	• SGRTZL = SGRTFT(ZL) • SCSD = 4.5/SGRTZI	2.0 BS(A4 - A5))+23.0)/25.0++(1.0/3.0)		1
		**************************************		1

Country of

11 CONTINUE 12 CONTINUE 12 CONTINUE 13 CONTINUE 14 CONTINUE 15 CONTINUE 16 CONTINUE 17 CONTINUE 18 CONTINUE 19 CONTINUE 19 CONTINUE 10 CONTINUE 11 CONTINUE 11 CONTINUE 12 CONTINUE 13 CONTINUE 14 CONTINUE 15 CONTINUE 16 CONTINUE 17 CONTINUE 18 CO		
# 10	SCSD	1
10	SC SC SC SC SC SC SC SC	1
11 SS 3.5 S.D) 11 SS 3.5 S.D) 12 CONTINUE CONSTRUCT (ANSE DESENA ZL.))-SORTET(ABSIDEPSER-ZL)) 14 SORTZ: (SSD * 0.5 SCD) 15 SCD) 16 SCD (SSD * 0.5 SCD) 17 SCD) 18 SCD (SSD * 0.5 SCD) 19 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 11 SCD (SSD * 0.5 SCD) 12 SCD (SSD * 0.5 SCD) 12 SCD (SSD * 0.5 SCD) 13 SCD (SSD * 0.5 SCD) 14 SCD (SSD * 0.5 SCD) 15 SCD (SSD * 0.5 SCD) 16 SCD (SSD * 0.5 SCD) 17 SCD (SSD * 0.5 SCD) 18 SCD (SSD * 0.5 SCD) 19 SCD (SSD * 0.5 SCD) 19 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 11 SCD (SSD * 0.5 SCD) 12 SCD (SSD * 0.5 SCD) 12 SCD (SSD * 0.5 SCD) 13 SCD (SSD * 0.5 SCD) 14 SCD (SSD * 0.5 SCD) 15 SCD (SSD * 0.5 SCD) 16 SCD (SSD * 0.5 SCD) 17 SCD (SSD * 0.5 SCD) 18 SCD (SSD * 0.5 SCD) 19 SCD (SSD * 0.5 SCD) 19 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 11 SCD (SSD * 0.5 SCD) 12 SCD (SSD * 0.5 SCD) 13 SCD (SSD * 0.5 SCD) 14 SCD (SSD * 0.5 SCD) 15 SCD (SSD * 0.5 SCD) 16 SCD (SSD * 0.5 SCD) 17 SCD (SSD * 0.5 SCD) 18 SCD (SSD * 0.5 SCD) 19 SCD (SSD * 0.5 SCD) 19 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SCD (SSD * 0.5 SCD) 10 SC	SCOUNT S	1
SCSD * 2.0-SCSD SCSD * 2.0-SCSD Of. 273 SONTHWE CONST2 * 28.0-SONTETTANS(DEPENA - 21.))-SORTETANS(DEPSER-21.)) An * NOLGRE AN SCSD-AA SCTUDN STUDN Of. OO CONTINUE ROZI * 0.0	TELL S. 1. A. 0	1
11 SS 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Set Set	1
SCSD * 2.0-SCSD SCSD * 2.0-SCSD OC 210 CONTINUE CO SCRIZICE MSDI * 0.5 A. SCRIZICE	Set Set	1
SCSD * 2,0-SCSD OC 210 CONTINUE CONST2 = 27,0-SDHFF(ANSC DEPENA - 2L 3)-SQRFF(ABSCDEPSER-2L)) A _A = SGRT2 + c + SQL	SCSD	1
SCSD = 2,0-SCED O(Second S	
11	11	
SSSD * 2,0*SCSD SSSD * 2,0*SCSD O(210 CONTINUE CONST2 = 2%,0*SCMITTIANS(DESUA - 2.))-SORTFI(ABSIDEPSER-2.)) A	11	
SETURN S	15 (\$5 (1)	
## 100 TO VINNE ## 100 TO VINE ## 100 TO VINNE ## 100 TO VINNE ## 100 TO VINNE ## 100 TO VINNE ## 100 TO VINNE ## 100 TO VINNE ## 100 TO VINNE ## 100	SCSD = 2.0-SCSD	
1: (SS _ L1 _ N _ D)	It (SS (L)	
1:(SS_1.1.3.0) **60 T0 2:0 SCSD = 2.0*SCSD 2:0 CANTINUE CANST2 = 25, 0.*SCBTET(ABSC DESEVA - 2L))-SCRTFT(ABSC DEPSER-2L) A _A = SCRT2**(SSD) = 0.5 1 A _A = SCRT2**(SSD) = 0.5 1 A _A = STAGE (AA) - SCSD = AA RETURN 90 DON'TINIE RCZ = 0.0 RC	11 (SS (1 , A, 0)	
1:(SS_11.3.0) = 00 TO 210 SCSD = 2.0-SCSD O(2:0 CONTINUE CONST2 = 25.0-SCHFT(AHS(DF)EVA - ZL))-SCRTFT(ABS(DF)SER-ZL)) A	It (SS (L1 , N))	
15 (\$5 .11 . 3.0) = 60 70 210 SCSD * 2.0=SCSD 0(1:(SS_LII, N,0) = 00 TO 210 SCSD = 2,0=SCSD O(
IF (SS . LT . 3,0)	15 (SS . LT . N.D) = 60 TO 210 SCSD = 2.0=SCSD OC. 210 CONTINUE CONST2 = 25.0 = SQMIFT(ABS(DEPENA - ZL)) - SQRTFT(ABS(DEPSER-ZL)) As = SCRTZ1 = (MSN1 - 0.5) As = THIGHOLAS) - SCSD=AS 90 ZONTINUE RCT1 = 0.0 RCZ2 = 0.0 ZOANSO = 100.0 ZOANSO = 100.0 ZOANSO = 100.0 ZOANSO = 100.0 ZOANSO = 100.0 ZOANST = 100.0 ZOANSO = 100.0 ZOANSO = 100.0 ZOANSO = 100.0 ZOANST = 100.0 ZOANSO = 100.0 ZOANSO = 100.0 ZOANSO = 100.0 ZOANST = 100.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IF (SS.L., J.D.) = GO TO 210 SCSD = 2.0 SCSD O(IF (SS. L. 3.0) = 60 T0 210 SCSD = 2.0=SCSD OL 210 CONTINUE CONST2 = 25, 0.SQMIFT(ABS(DEPEVA - ZL))-SQRIFT(ABS(DEPSER-ZL)) A6 = SQRIZ! = (RSD) + 0.5) A6 = TNLGIN(AA) - SQSD-A6 PSTURN GCTURN	1 1 1 1 1 1
1F(SS L1. 3.0) = 60 T0 210 SCSD * 2.0*SCSD O(210 CONTINUE CONTINUE CONTINUE CONTINUE An = SORT(**(MSD) + 0.5) An = TNG(10(An) - SCSD*46 SETURN PETURN 90 CONTINUE RC1 = 0.0 RC2 = 0.0 CANSO = 100.0 CANSO = 100.0 CANSO = 100.0 CANSO = 100.0 CANSO = 100.0 CANSO = 100.0 CANSO = 100.0 CANSO = 100.0	1F(SS_LL_S_D) = 60 10 210 SCSD = 2.0*SCSD O(1 1 1
1F(SS .1. 3.0) GO 10 210 SUSD = 2.0*SUSD O(210 CONTINUE CONST2 = 25.0.SQMTFT(ANS(DFSEVA - 2L)) - SQMTFT(ABS(DEPSER-2L)) An = SGMTZ = (RSM1 + 0.5) An = INLG10(An) - SCSMAA STURN GO CONTINUE GO	IF (SS . LT. S.D.) GO TO 210 SCSD * 2.0*SCSD O(1
1F(SS .L. J. J. D) = 60 TO 210 SCSD = 2.0-SCSD 10(1F(SS _LT _ S)	1
1F(SS .L1 . A.D)	1F(SS .L1 . 3.0)	1
SCSD = 2.0 SCSD	IF (SS . LT . 3.D) GD 10 210 SCSD = 2.0 - SCSD O(210 CONTINUE CONST2 = 25.0 - SQRIFT(ABS(DEDEVA - ZL)) - SQRIFT(ABS(DEPSER-ZL)) A6 = SQRIZ(-C RSU1 + 0.5) A6 = TNLG10(A6) - SCSD=A6 RETURN RETURN	1
1F (SS LT 3.0) = GO TO 210 SCSD * 2.0 - SCSD O(1F(SS. L.T. 3.0) = GO TO 210 SCSD * 2.0*SCSD O(210 CONTINUE CONSTZ = 25.0*SCHTFT(ABS(DEPEVA - ZL))-SCHTFT(ABS(DEPSER-ZL)) A6 = SCHTZ(=(RSD1 + 0.5) A6 = This Glocian - SCSD+A6	1
1F (SS LT . 3.0) = GO TO 210 SCSD * 2.0 * SCSD O(1F(SS LY, N.D) = GO TO 210 SCSD = 2.0=SCSD O(I I
1F (SS LT) 3, D) = GO TO 210 SCSD = 2.0 SCSD O(210 CONTINUE CONST2 = 25.0 SCRIFT(ABS(DEPENA - ZL)) SCRIFT(ABS(DEPSER-ZL)) A6 = SCRIZ(**(RSU1 + 0.5) A6 = TNLGD(A6) - SCSD-A6	1F(SS , LT , J, D) = GO TO 210 SCSD = 2.0 SCSD O(1
1F (SS , LT , 3, D) = 60 T0 210 SCSD = 2.0 SCSh O(1F(SS , LT , N, D) = GO TO 210 SCSD = 2,0eSCSD O(I
1F (SS LT . 3.0) • GO TO 210 SCSD # 2.0-SCSD O(1F(SS .LT. 3.D) • GO TO 210 SCSD = 2.0-SCSD Ot. 210 CONTINUE CONST2 = 25.0-SCRTFT(ABS(DEPEVA - ZL))-SCRTFT(ABS(DEPSER-ZL)) A6 = SCRTZ(**(RSD1 + 0.5) A6 = TMIGNO(AA) - SCSD-A6	1
1F (SS LT 3.D) = G0 T0 210 SCSD = 2.0 SCSD O(1F(SS , LT , J, D) = GO TO 210 SCSD = 2.0 SCSD 210 CONTINUE CONST2 = 25.0 SCRTFT(ABS(DE>EVA - ZL))-SORTFT(ABS(DEPSER-ZL)) A6 = SCRTZL*(RSin + 0.5) A6 = INLGIn(A6) - SCSD+A6	1
1F (SS LT 3.D) = G0 T0 210 SCSD = 2.0 SCSD O(1F(SS , LT , J, D) = GO TO 210 SCSD = 2.0 SCSD 210 CONTINUE CONST2 = 25.0 SCRTFT(ABS(DE>EVA - ZL))-SORTFT(ABS(DEPSER-ZL)) A6 = SCRTZL*(RSin + 0.5) A6 = INLGIn(A6) - SCSD+A6	1
1F (SS LT 3.0) = G0 T0 210 SCSD = 2.0 SCSD O(1F(SS , LT , N, D) = 60 TO 210 SCSD * 2,0 *SCSD O(1
1F (SS LT	1F(SS , LT , 3,0) = 60 TO 210 SCSD = 2.0 SCSD	1
1F(SS , L1 , J, D) = GO TO 210 ***********************************	1F(SS , LT , J, D) = GO TO 210	1
1F (SS . L)	1F(SS , LT , 3,0) = 60 TO 210	1
1F(SS , 1,	1F(SS .LT. 3.0) • GO TO 210	1
1F(SS .L1, 3,0) 6 07 10 210	1F(SS , LT , 3,0) • 60 TO 210	1
1F(SS .LT. J.n) = 60 TO 210	1F(SS , LT , 3,0) • 60 TO 210	I
900000000000000000000000000000000000000		!

	1	1 1
a 130 CONTINUE		
130 00111105	,	i
	i e	1
* IF(DEPEVA ,GT. /L)		0 1 1
GO TO 180		
20.12.22.22.00.000.000.000.000.000.000.0	1	
		1 1 1
		1 1
	1	!!!!!
• NCONSD = 3	•	i i i
* RSD1 = 0.25*(1.0 - A5) * 0 * AMLSRD = 0.75*A3 - 0.5*A2 *	.2.S2RT(A4.A4 - 1.0)	!!!!!!
0.75.05 - 0.75.05 - 0.75.07	0.542041414 OCH2EM - 7F 1	i i i
	!	!!!!
		i i i
	******************************	!!!!!
• GO TO 80	********************************	1 1
		!!!!
		i i i
		!!!!
	202222222222222222222222222222222222222	i i i
	1	1 ! !
	0(1
234222222222222222222222222222		I !
140 CONTINUE NCONSD = 2		i i
AMUSRD = 0.75-43 - 0.5-41 + 9801 = 0.25-(1.0 - 44) + 0	1.20SQRTFT(DEPEVA - ZL)	1 1
		•
	.2eS3RT(A5+A5 - 1.0)	1
TSD1 = 0.25 (1.0 - A4) + 0	.2053RT(A50A5 - 1.0)	
0 9 8 2 3 2 2 4 4 4 4 6 6 6 7 9 2 0 6 0 7 3 7 7 7 7 8 8 7 9 9 9 9 9 9 9 9	.2=53RT(45=45 - 1.0)	
304333333446666666	2-STRI(45*45 - 1.0)	
0 9 8 2 3 2 2 4 4 4 4 6 6 6 7 9 2 0 6 0 7 3 7 7 7 7 8 8 7 9 9 9 9 9 9 9 9	2-STRI(45*45 - 1.0)	I
304333333446666666	.2-SSRY(45*45 - 1.0)	I
00 TO 80		1
0 0 TO 80	2-SSRY(45+45 - 1.0)	1
00 TO 80	222222222222222222222222222222222222222	1
0 0 TO 80	222222222222222222222222222222222222222	1
CO TO BO	222222222222222222222222222222222222222	1
00 TO 80	32232323232323333333333333333333333333	1
00 TO 80	32222222222222222222222222222222222222	I
00 TO 80	32222222222222222222222222222222222222	I
00 TO 80 180 CONTINUE NCONSD = 4 RSO1 = 0.20(SORT(A4+A4 - 1	32222222222222222222222222222222222222	I
00 TO 80 180 CONTINUE NCONSD = 4 RSO1 = 0.20(SORT(A4+A4 - 1	1 0(I
- CO TO 80	1 0(I
00 TO 80 180 CONTINUE NCONSD = 4 RSO1 = 0.20(SORT(A4+A4 - 1	1 0(I
- CO TO 80	1 0(I
- CO TO 80	1 0(I
00 TO 80 180 CONTINUE NCONSD = 4 RSD1 = 0.2-(SQRI(A4-A4 - 1	1 0(I
- CO TO 80	1 0(I
- GO TO 80 - 180 CONTINUE - NCONSD = 4 - RSD1 = 0.2-(SQRT(A4-A4 - 1	1 0(I
- GO TO 80 - 180 CONTINUE - NCONSD = 4 - RSD1 = 0.2-(SQRT(A4-A4 - 1	1 0(I


```
(ENTRANCE)
THIS FINDS RAYS CLOSE TO RANGE BETWEEN SHIPS
          COMMON
C / CONSTN /
C DEPSEH,
C NCONSK,
C SPATSF,
C DEPEVA,
C NCONSL,
C SPATEV
          COMMON
C / LCONST /
C NULAPU,
C DEPHOI,
C CONSGUI128)
                                 CONSG1(128)
CONSG2(128)
           0000
                                 CONSYO (128)
DEL TAZ (128)
DEPKYD (128)
SLOPEJ (128)
SPOKYD (128)
          NUANHO.
                                 ANGMAX,
DELANG,
DELRAD,
ANGINI(200)
RNGMOD(6,200)
          O RANGEH.

C RAYPAR /
C RANGEH.
D BOTLOSCO
D PATHLNC
D RANGECCO
D SPIC6)
D SPIC6)
                                 RANGEH,
BOTLOS(6)
DRDXDC(6)
PATHLN(6)
RANGEC(6)
SPI(6)
SPI(6)
TIR(6)
           D
COMMON
           COMMON
C / RAYTRA /
C
C
C
C
C
C
C
C
C
C
C
                                 NCONCI,
INITLK,
Z1 .
Z2 ,
SPVRSO,
                                  ANGSTR,
ANGARR,
ANGBTM,
                                 ANGSUR,
SPDVER,
RANGET
 .........
                                 = INCREMENTAL ANGLE
= DEPTH OF BOTTOM
= NUMHER OF ANGLES FOR RAYS MINUS ONE
= INITIAL ANGLE OF RAY WITH RANGEM
= HORIZONTAL RANGE SETWEEN SHIPS
             DELRAD
DEPROT
NUANMO
TIR ( )
RANGEH
                                                                                                                         (DIMENS.
. DO 200 I = 1.6
             I

T[R(f) = 100.0

TTR(f) = 0.0

SPI(1) = 0.0

SPI(1) = 0.0

RANGEC(1) = 0.0

PATHLN(f) = 0.0

BOTLOS(f) = 0.0

BOTLOS(f) = 0.0
```

			•
}	100 100 J = 1.NUANHO		:
	***************************************	· · · · · · · · · · · · · · · · · · ·	
i	• 1F(RNGMOD(1. J) .EQ. Q.Q) • 60 TO 100		0
	***************************************		•
			į
	. J1 • J • 1		:
	H J · J · 1 R1 · RNGMOD(!.J1) - RANGEH R2 · RNGMOD(!.J1 - RANGEH R3 · RNGMOD(!.J1) - RNGMOD(!.		: 1
	Ry = RNGMOD(1.11) - RNGMOD(1.	J)	:
	***************************************	l 	
	. 1F(R3 .LE. 0.0)		•
		1	
		;	. ! !
	• IFC (R2 .LF. 0.0) ,AND. (R1 . • G0 TO 10	GT, 0.0))	0
		***************************************	•
		i I	
	GO 70 100	**************************	:
1 1			•
1 1			
1 1	*3	******************************	
		1	.
1 1		0 (, , , , , , , , , , , , , , , , , ,	
	. 90 CONTINUE		
		1	• ;
		1	.
	* IF((R1 .LF. 0.0) .AND. (R2 60 TO 10	(31, 0.0)	······································
i i	***********	1	•
i ! i !		δε 1	
1	100 CONTINUE	***************************************	:
1		1	•
:		1	
1	- GO TO 200		0
			į
i	•3		
		1	
1		0(}	
1	. 10 CONTINUE TIR(1) = ANGINT(J) - DELRADOA	8S(R2/R3)	
1		1	
		Ò(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0

1		1	
1	. Zon CONTINUE	***************************************	:
		1	•
	a 1F(TIN(1) ,ED, 100,0)	***************************************	
	60 10 30		: 1
		}	1
		i	. 1
	S SIRIRA		:
	. S (1. PEPEVA)		: 1
		1	i
		1	
	. 30 CONTINUE		
		1	
		i	
	. 1F(T1R(2) ,EQ, 100.0) 		0
			. !
			i
	***************************************	······································	: !
	STRIRA		: ;
	. S (2. 0.0)		
	S (2, 1, 0,0, DEPEVA)		
		1	1
			1
		1	
	- 40 CONTINUE		
	P 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	!	
		i	
	• 100 to 50		0
		· · · · · · · · · · · · · · · · · · ·	: !
			i
		······	: !
	S STRINA S (3. DEPROT)		: !
	SALL LENGTH		
	S (3. NULAPO. ZZ. DEPEVA)		
		1	i
		1	•
	• 50 CONTINUE		
		1	
		i	
	- 1FC TIR(4) .FQ. 100.0)		• • • • • • • • • • • • • • • • • • • •
	***************************************	***************************************	•
			1
	· CALL	i	: !
	S S A A B STRIRA		: ;
	CALL LENGTH S (4. 1. 0.0 DEPROT) CALL LENGTH		: 1
	. S. (4. 1. 0.0. NEPROT)		: !
	S (4. NULAPO, 72. DEPEVA)		: 1
	************************		. !
		0.	0

• 60 CONTINUE	• • • • • • • • • • • • • • • • • • • •	
034043004040404000000000000000000000000		
• IF(71R(5) .E0, 100,0)		0
• 60 TO 70	•	
33.0C 323.50		i
• IF(T[R(5) .LT. 0.0)	*	0
• 60 TO 80	• • • • • • • • • • • • • • • • • • • •	
200422000000000000000000000000000000000	 • • • • • • • • • • • • • • • • • • •	
STRIRA		
S (5. DEPBOT)		
• S (5. NULAPO. 72. 0.0)		
		1 1
F (ANGSTR .LT. 0.0)		i 1
• 60 TO 80		1 1
		1 1
	i	
CALL LENGTH		1 1
S (5, 1, 0.0, DEPEVA)		
	i	
• GO TO 70	•	·····›
	٥.	i i
	0(1	
. BO CONTINUE		į
• WRITE (6, 1000) • WITE(5)		
. 1000 FORMATE F 38H WRONG STARTING ANGLE FOR	RAY TYPE 5 # E20.10	i
• F)		
	I	
	1 0(0
a * a * a a a a a a a a a a a a a a a a	1	
70 CONTINUE	*****	
	1	
	İ	
• IF(TIR(6) .EQ. 100.0) • GO TO 900		0

	1	i

Contraction of the last

tanger and

Comment

CALL STRIPA	**********************	*********
S STRINA		
5 (6, 0,0)		
CALL		•
S LENGTH		
5 (6. 1. 0.0. DEPROT)		
CALL		
S LENGTH		
5 (6. NULAPO. 72. 0.0)		
CALL		
S LENGTH		
S (6. 1. 0.0. DEPEVA)		
• • • • • • • • • • • • • • • • • • • •	**********************	*********
	0(
	1	
900 CONTINUE		*********
AGG COALINGE		
**************************		*********
RETURN	*******************	*********
• > • > • > • • • • • • • • • • • • • •		
	*********************	*********

		•
	1	*********
	i	

END		

```
SUBROUTINE RAYPTH
SUBROUTINE CONTROLED BY NOONCE
.353ATH000
              SUBROUTINE RAYPIN
               THIS COMPUTES REQUIRED RAY PARAMETERS SUCH AS TIME AND PATH LENGTH.
               COMMON
            C / LCOMST /
C NULAPO.
DEPHOT.
                                       CONSGR(128)
                                       CONSG2(128)
             0
                                       CONSUM(128)
DEL TAZ(128)
DEPXYD(128)
SLOPE J(128)
SPOKYD(128)
               COMMON
             C / PTHLNG /
                                       COSGRO.
                                       DXDC
                                       DZ1
DZM
                                       TIMOON
               COMMON
                                       NCONCI.
                                       INTTLK.
21
72
                                       SPVRSO.
                                       ANGSTR.
                                       ANGARR.
                                       ANGRIM.
                                       ANGSUR.
                                       RANGET
0000000000000000
                                      * DEPTH FROM END OF RAY PORTION TO TOP OF LAYER ALMAYS POSITIVE OR ZERO

* RANGE DERIVATIVE 
* DEPTH FROM START OF RAY PORTION TO TOP OF LAYER ALMAYS POSITIVE OR ZERO

* PROPAGATION TIME 
* PATH LENGTH (IN K-YD) OF RAY 
* VERTEX VELOCITY (IN K-YD/SEC)
               41
               DXDC
               TIMCON
PL
CV
                                       . TIME INCREMENT FOR RAY TO GO X K-YD
            NAMELIST N / TIMES
N TOMUCH.
NAI,AZ,AJ,ADTERM, AI, BI, CDSORO, CI, DADC, DCDC, DDDC, DHADC, DI,
N DXDC, DXDCI, DYDC, DYZDC, OZI, DZIDC, DZZDC, DZMDC, H, K, P, PL,
N QI, R1, R2, R3, R6, R5, RABC, SM, SHA, SPDVER, SPVRSQ, TI, T[1,
N T[2, T]HCON, TJ, TOMUCH, X, X1, X2, Y1, Y2
.:
               IF ( NCONCT .NE. 2 )
               RETURN

- CONSGI(K) - 0.5-CONSGO(K)-COVSG2(K)

DADC = 2.0/CV-SPVRSO

DCDC = CONSG2(K)--2-DADC

R2 = (1.0 + CONSG2(K)-DZ1)--2

DY1DC = R2-DADC

R3 = (1.0 + CONSG2(K)-A1 )--2

DY2DC = R3-DADC

DZ4DC = 0.0
```

* IF(Y1 .LT. 1.0E-3) * 60 TO 70		•••••	0						
1			1						
* 1F(Y2 ,LT, 1,0E-3) * 00 TO 80					0				
• 000C = - D1/2,0/(Y1 • Y2)•(0410C/v1 + 0450C/45)								
		•••••					1		
• 10 CONTINUE							1		
							1		
• IF (ABS (CNSQRO) .LT. 0.5)							i 		0
***************************************						1			1
- DHADC = ((D!+H=0.5 - SH)/(- E (DCDC/2, 0 + C!/D!*DDDC) - C	1.0 - GDSQRD)• GDC+SH)/Cl								!
	()(,					1
20 CONTINUE DXDCI = X*(DDDC/DI - 1.0/CV)* DXDC = DXDC + X/ABS(X)*DXDCI DXTM = 0.5*(DZI + AI) AZ = 1.0 * CONSGZ(K)*DZM	2.0-D1/CV+(CONSG2(K)+DZHDC+P+DHADC)								1
3 0 0 7 5 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6									1
- IF(ABS(CONSG2(K)+(At - DZt X GO TO 180)) LT. ABS(0.0001+A2))				i ! (,			1
									1
= RARC = CONSGI(K) - CONSGI(K) *C R1 = SGRT(AHS(HAHC)) R4 = CONSGI(K)/2.0 * P*A1 R5 = CONSGI(K)/2.0 * P*DZ1	ONSG2(K)								1
• IF (RARC , LE, 0,0))	
37803300330803000300310300000000000	***************************************			1		1			
• Ti1 = SQRT(R2)+(R4 + R1+Y2 • Ti2 = SQRT(R3)+(R5 + R1+Y1)		1	1	1	1	1		
				1	1	1			
• IF(T12 .E0. 0.0) • GO TO 150									
	· · · · · · · · · · · · · · · · · · ·					1			

Ĺ

Total Control

Contract of

. T1 • ALOG: T11/112 1/R1		. /	1	!	1	!	!	!!!	1 1
******************************					1	1	1		
			1.0	1	1	1	1	1	1
* 30 CONTINUE		•	i i	1	i	1	1	i	1
21.122222222222222222222222222222222222	!	•	1 1		1	1	1		1
			1 1		!	1	!		1
* If (ABS (CDSQRD) .LT. 0.5) • RO TO 160	*****		[. [. [.] .		1.0	1	1		1
					1 1	1	1		1
• 1F(CONSG2(K) ,ED, 0.0) • GO TO 170	***************************************			• • •	 . .	¦	1 .0		!
		•				1	1.1.		.01
• 40 CONTINUE	***************************************				1	1		i i	1 1
. TOMUCH = T1 TJ = (CONSG1(K) = CV = X - 2.0 = 2.0	+ + RARC+T >/CONSG2(K)++2	:			1 1	1 1 1			
	l)(1 1	1			
***************************************	***************************************			1	1 1	D.	!!		1 1
• 50 CONTINUE • II = ARSI CONSVO(K)•CV•X • IJ		•		1	1 1	1	1		1 1
			1	1		1			
)(1		1 1		i	1 1
60 CONTINUE TIMCON = TI + TIMCON PL = (FVELOC(D/2, K) + FVEL 900 CONTINUE	00(A1, K >)/2,0+T1 + PL			1		1 1		i	11
*****************************	***************************************	•	1	1	1	1 1	1		1 1
				1	1	1 1		1	1 1
				1	1	1 1		1	1 1
RETURN		•		1		1 1			
				1		1 1		1	1 1
•2		:		1	11	1 1	1 1		11
***************************************		•			1 1	1 1	1 1	1	
	1		1	1				1	11
• 70 CONTINUE DZIDC = -0.5=R2/C CI=DZI + 81 • 07MDC = DZIDC/2.0			1	1	1 1	1 1	1 1	1 1	1 1 1
• DDDC • DZIDC\A5 - DI\A5\A5-DA	200/2.0	:	1	1		11		1 1	1 1
			1	1	1 1	1 1	1	1 1	1 1
• GO TO 10		•			1.1.	1.15	1	1	11
******			1 1	1	1 1	1 1		1 1	1 1
•:	***************************************	:	1	1	1	1 1	1 1	1	11
***************************************		•	1		1 1	1 1	1		11
			1 1	1	1	1 1	1 1	1	11
* 80 CONTINUE DZ2DC = -0,5-R3/(CI-41 * RI :			1 1	1	1 1			1 1	1 1
DDDC = DZ2DC/Y1 - 0.5/Y1-D1/Y	-DY10C	:	1	1	i	1 2	1 1	1 1	11
			i			ii			ii

	111 111111
	• 60 70 10
	93 CONTINUE
	* ADTERM & SMA
ļ	
1	a
1	A2 = [+2 + 1] 1 1 1 1 1 1 1 1 1
1	
	- 1F(ABS(ADTERM) ,LT, 1.0E-5)0
1	
******	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	* 110 CONTINUE
	- 50 10 20
	•
	* 120 CONTINUE
	• IF(RARC .E0. 0.0) • • • • • • • • • • • • • • • • • • •
	* T11 * Y2*R5 - Y1*R4
	TIT Y2-85 - Y1-84 TIT Y2-85 - Y1-84 TIT RA-R5 - RAHC-Y1-Y2 IF(TIP .ED. 0.0) - GO TO 140
	• 1F(T12 .E0. 0.0) • GO TO 140

		!		1 1 !		1 1
. 11 . ATAN (R1 > 111/112)/R1	***************************************	: 1		1 1 1	1 1	
*************************	****************************		1 1	1 1 1		
			1 1	111		1 1
		1	1 1	1 1 1		1 1
. 60 10 30) A 1	1 1 1		1 1
***************************************		• 1	1 1	1 1 1		: !
		1		1 1		11
			1 1	1 1	1 !	1 !
•3		: i	1 1	111		ii
**********************	***************************************	. !		1 1 1		!!
	()(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 1			i i
		. 1		1 1 1	2 2	1 1
• 130 CONTINUE			ii	iii	1 1	1.1
. 11 . 0.0			1 1	111	1 1	
***************************************	1	1	1 1	ii	1 1	1.1
			1 1		1 1	
		1	1 1	1 1	1 1	1 1
	! • • • • • • • • • • • • • • • • • • •		1 1			
• 60 10 50		•	.174		1 1	
***************************************			1 1			
			1 !		1 1	
	. 1 1					
•0		. 1	1 1		1 1	
	1					
	0(1	.11	.0 1	!!!!	
	 			i		
. 140 CONTINUE						
• 11 = 1.57079633/H1	********************************					1 11
	!				!!!!	1 11
a GO TO 30	**************************		.0			
***************************************		•	1	i	1 1	1 1
				1	1 1 1	1 1 1
•2	******************************					
*******************	**************************	•			1 1	!!!
	1				1.1	1
	1					
. 150 CONTINUE	***************************************				i i i	,
11 = 1.066		:				
***************************************				1	1 1	1
	!					
	i		1	1 1	1 1	1
• GO TO 60	*******************************	•			1.0	
***************************************		•		1 1	1	! !
			1		1	1 1
			!	!!	!	!!
•:		:	1	1 1	!	1
***************************************		•	!	!!	!	!!!
	1			10	1	,
	1		!	1	!	1
• 160 CONTINUE	***************************************		i	1	1	i
. H = 2.0.01.(1.0 . CDSQRD-SM)	:	1	1	1	1
	1		i	!	!	
			1	1	1	,
	i		!	!	!	!!!
	1		1	1	1	1
• GO TO 40		•	1	!	1	1
	*****************************		1	1	1	1

	***************************************	• 1 1 1
************************	1	••••••
	9	
170 CONTINUE 14 = 0.0	***************************************	•
***************************************	· · · · · · · · · · · · · · · · · · ·	••••••
	ľ	
50 10 50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•
	0(
	1	
180 CONTINUE		•
1F(C1 .FQ. 0.0) • 60 TO 190		0
*******************	1	•••••
	1	
A! = CONSVO(K) - SPVRSQ	***************************************	••••••
01 * A1 • C1 - B1 • H1		
x2 = C1+A1 + B1	H*1/(2.3+C1+A2)	
***************************************	***************************************	
	İ	\ \ i i
	0(
210 CONTINUE	***************************************	••••••
TI = ABS(X/CV + A3)	**********	
	1	
. ************************		
60 10 130		•

	1	1
190 CONTINUE A3 = 2,0+(Y1+Y1 + Y1+Y2 +	Y2.Y2 1.D1/3.0/A2	
190 CONTINUE	Y2-Y2)-D1/3,0/A2	••••••
190 CONTINUE A3 = 2,0=(Yi=Y1 + Yi=Y2 +	!	·····::
190 CONTINUE A3 = 2,0 - (Y1 - Y1 - Y1 - Y2 -	! !	•
190 CONTINUE A3 = 2,0 - (Y1 - Y1 - Y1 - Y2 -	!	•
190 CONTINUE A3 = 2,0 - (Y1 - Y1 - Y1 - Y2 -	! !	•
190 CONTINUE A3 = 2,0=(Y1=Y1 + Y1=Y2 +	1	
190 CONTINUE A3 = 2,0=(Y1=Y1 + Y1=Y2 +	1	

```
SENTRANCE
```

```
SURROUTINE RECEIV
THIS COMPUTES SIGNALS RECIEVED AS A FUNCTION OF FREQUEN.
.CRECHIVOO
+213NAL000
                       SUBROUTINE
                                                           RECIEV
                        THIS COMPUTES REQUIRED NOISE AND SIGNAL SPECTRAE
                        COMMON /LAREL/ RI, RCJ, SS1, SE1, HS1, HE1, PxS(128), PxE(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PYS(128), PY
                    7.F2S.PTE(128).FXE(128).PNE(128).FNE(128).XE.XS.SUHKIL.SUMEVA.PRE.P.
8RK.PE(3),ALPXN.ALPXN.NSMAX.NSMAX
COMMON / ANGRAD / ANGBER(2)
                        COMMON
                    C / ARRAYP /
                                                            ANGOGA (2)
                                                             ARRAYD(3.2)
                                                             COSPHICE
                    D
                                                             COSRAD(2)
                                                              MSHIPS.
                                                              SINPHI (2)
                                                              SINRADICEL
                                                              TARRIV(3.2)
                                                              TMATRX (3.3.2)
                                                             1501 (3)
1502 (3)
                    DOUMMYS
                       COMMON
                          / FREQUN /
                                                             COSAVE (2)
                                                             DELRCZ.
                    0
                                                             DYHITH(2)
                                                              ARAREA(2)
                    0
                                                             CTWOPT.
                                                             SOAREA(2)
                    0
                                                             FR0510(128.2)
                    17
                                                             FROI CN(128,2)
                    D
                                                             FR0108(128.2)
                                                              ANGREP(2)
                                                             FROTRN(128,2)
                    D
                                                             FRQASD(128.2)
                    0
                                                             FRONCN(128,2)
                    00
                                                             FRQNOS(128,2)
                                                             NUMFRO(2)
                    D
                    PPUNG
                       COMMON
                    C / ARRAYC /
                                                            NARRAY(2)
                                                              ARRYH1.
                                                             ARRYHZ,
                                                              ARWIDT(2).
                                                             DELF
                                                             FRORES(2)
                    0
                                                             QTRANI.
                                                             GTRANZ.
                    NDU44
                       COMMON
                    C / CONSTN /
                                                             DEPSER,
                                                              NCONSK.
                    C
                                                             SPAISE.
                                                             DEPEVA.
                                                             NCONSL.
                                                             SPATEV
```

```
COMMON
C / RAYPAR /
                RANGEH,
BOTLOS(6)
DRDXDC(6)
0
D
                PATHLN(6)
RANGEC(6)
0
D
                SPRLOS (6.2)
ANGTER (6.2)
D
COMMON
C / INDEXS /
                ANDIS0(16,2)
D
                DIRSON(50.16.2)
DLD[AN(16.2)
0
                NUDIAN(2)
D
COUMMYA
 COMMON
C / RCONST /
                ACZ
AML SRD,
BCZ
0000
                HC I
                HZSD
                NCONSD.
                RCZ1
C
                RCZ2
                 SDCON .
                 ANCZAV(2)
DC
NDU45
COMMON
C / SURDUC /
BLA1
                BLA2
BLA3
coccocc
                 DTRAD
                BAFFUN(128,2)
DELBAF(128,2)
                 FLONOS(128,2)
D
                 RADSPC(40.50,2) .
D
                 NTIMEN
C
 COMMON
C / SURFAC /
0000000
                 CONST2,
                 CONST4.
                 CZANGL,
                 CZANDI .
                 CZRANG,
                 GISD .
                 GZSD .
NCZRAS.
0000
                 NZONE .
                 RSD
                 RSD1
                 SCSD
c
                 SORTZL.
                 SS
                 ZL
CDUMMYZ
  DIMENSION
0
                 CONPHI (6)
                 CONSBF (6)
0
                 NCNABT(6)
                 POWSIG(128,2)
                 POWNOS(128,2)
                 SVECTR(3,2)
SO1 (3)
SO2 (3)
                 TVECTR(3,2)
 DDUMMYS(1)
LOGICAL
L NOCZRA,
L NOSDRA
```

```
EQUIVALENCE
Q ( SVECTR, SO1 ),
Q ( SVECTR(1.2), SO2 ).
Q ( TVECTR. TSO1 )
                  . AZIMUTHAL ANGLE FOR SEARCHER STEERING
 AREAM1
                  * AZIMUTHAL ANGLE FOR EVADER STEERING * CONVERGENT ZONE CONSTANT
 AREAM2
 ACZ
ANCZAVI
 ANCZAV( ) = AVERAGE CONVERGENT ZONE ANGLES
ANDISO( , ) = ANGLES OF DIFFERENT DIRECTIVITIES FOR SHIPS
                 # AZIMUTHAL STEERING ANGLES FOR EACH SHIP
# RELATIVE BEARING ANGLE FOR EACH SHIP
 ANGAZM( )
 ANGBER( )
                  # AZIMUTHAL ANGLE OF SEARCHER MEASURED FROM EVADER
# AZIMUTHAL ANGLE OF EVADER MEASURED FROM SEARCHER
# ARRAY AREA AS A FUNCTION OF SHIP
 AR AD1
 ARADZ
ARAREAL )
                  # TYPE OF ARRAY CONTROL CONSTANT FOR EVADER
# TYPE OF ARRAY CONTROL CONSTANT FOR SEARCHER
 ARRAY2
                                                                                              (DIMENS.
 ARRAY1
                                                                                              (DIMENS.
                 ) = MODIFIED ARRAY DIMENSIONS FOR SHIPS
= ARRAY HEIGTH ON SEARCHER
 ARRAYD( .
 ARRYH1
                   . ARRAY HEIGTH ON EVADER
 ARRYHZ
                   . ARRAY WINTH ON SEARCHER
 ARRAYW1
                  # ARRAY WIDTH ON EVADER
# WIDIH OF ARRAY AS A FUNCTION OF SHIP
 ARRAYME
  ARWIDT( )
 ASVXOX
                   . FUNCTION TO COMPUTE SIN(X)/X
                   . ARSOLUTE VALUE OF ROTTOM ANGLE
  HAVGLE
 302
                   . CONVERGENT ZONE CONSTANT
                   . BAFFLING CORRECTION FACTOR FOR SEARCHER
                   AS A FUNCTION OF ANGLE
                   * BAFFLING CORRECTION FACTOR FOR EVADER
                   AS A FUNCTION OF ANGLE
  BFOFCZ( )
                   . BAFFLING CONSTANT FOR CONVERGENT ZONE
                                                                                              (DIMENS.
  BL A1
                   . BOTTOM LOSS CONSTANT
 BLAZ
                     BOTTOM LOSS CONSTANT
                     BOTIOM LOSS CONSTANT
  BLAS
 CDYOVV( )
                   # FFFFCTIVE ARRAY HEIGTH AND SPEED CONSTANT # FUNCTION TO COMPUTE CONSTANT FOR BC CALCULATIONS
  CONFRC
 COSAVE() = COSINE OF AVERAGE CONVERGENT ZONE ANGLES

DREAM1 = DEPRESSION ANGLE FOR SEARCHER STEERING

DREAM2 = DEPRESSION ANGLE FOR EVADER STEERING

DIRSON(,) = DIRECTIVITY INDEX FOR SONAR

OCCURAN(,) = DIFFERENCES IN ANGLES OF DIRECTIVITIES
                  # DEPRESSION ANGLE OF RAY
# ANGLE INCREMENT FOR RADIATED SIGNAL
  DSIG
 DIRAD
                  # HIIGTH CONSTANT FOR ARRAY SURFACE DUCT
# PLANE WAVE FLOW NOISE FOR SEARCHER
 DYHITH( )
                                                                                             (DIMENSI .
  FLN1 ( )
                 # PLANE WAVE FLOW NOISE FOR EVADER

)= PLANE WAVE FLOW NOISE AS A FUNCTION OF FREQUENCY

= LOWER FREQUENCY LIMIT OF SEARCHER EQUIPMENT
 FL V2
  FLONOS! .
  FRAD11
                  - UPPER FREQUENCY LIMIT OF SEARCHER EQUIPMENT
- LOWER FREQUENCY LIMIT OF EVADER EQUIPMENT
- UPPER FREQUENCY LIMIT OF EVADER EQUIPMENT
 FRAD12
 FRAD21
  FRAD22
                   TRANSDUCER RESONANT FREQUENCY ON SEARCHER
TRANSDUCER RESONANT FREQUENCY ON EVADER
  FRES1
 FRES2
                     SURFACE DUCT CONSTANT
CONTROL PARAMETER DEFINING TYPE OF ARRAY
 HZSD
NARRAY( )
                                                                                              (DIMENS.
                     BAFFLING ANGLE NUMBER AS A FUNCTION OF SHIP
NUMBER OF DIRECTIVITY ANGLES FOR SHIPS
NUMBER OF FREQUENCY POINTS FOR EVADER
                                                                                              (DIMENS.
  NCNACZ( )
                                                                                              (DIMENS.
 NUDIAN( )
  NUFRSE
                   . NUMBER OF FREQUENCY POINTS FOR SEARCHER
                                                                                              (DIMENS.
                     POROSITY OF BOTTOM
  POR
                 ) . NOISE POWER SPECTRUM AS A FUNCTION OF FREQUENCY
  POWNOSE
                 ) SIGNAL POWER SPECTRUM AS A FUNCTION OF FREQUENCY
  POWSIGE
                   TRANSDUCER FIGURE OF MERIT ON SEARCHER
TRANSDUCER FIGURE OF MERIT ON EVADER
WAVE HEIGTH PARAMETER
  QTRAN1
  GTRANZ
  SDCON
  SDCON
                      SURFACE DUCT CONSTANT
  SSD
  TCZAV1
                                     AVERAGE OF CONVERGENT ZONE ANGLES AVERAGE OF CONVERGENT ZONE ANGLES
  TCZAV2
                   * PROPAGATION SPEED AT END POINT OF RAY
  XSD
                   . SEE -AMLSED-
                                                                                                   (SQR.
                   . SURFACE DUCT CONSTANT
  XSD
                   . HEIGTH OF SURFACE WAVES
```

. NAMELIST					
. N MSHIPS N F. SIGRAY. SIGCE. SIGSD. H	··				
. N. SETSUP / N. NOSDRA, NOCZRA, ANGHER, H1. A					
. N / SHIPCO / N NCNASP, NCNACZ, NCNABI.					
. N CONASD. CONACZ. BEOFSD. BEOFC	Z, CONSEF				
N N1. K. M. AFRAC					
ANGBER(1) # HSP					
ANGRER(2) = BEP COSRAD(2) = COS(BEP)					
. At . TNEGIO (RANGEH)					
NOSDRA . FALSE.					
and the second second					
• IF(NCONSD ,EQ. 0) • GO TO 10		(
NOSDRA = , TRUE .					
DETERMINE SURFACE ZONE CONSTAN	NT PARAMETER				
RSD = RANGEH/SORIZL					
4 [F(RSD ,LT, RSD1)					
• • GO TO 280	.,				
> 0 .	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
• IF(RSD ,GF, RSD1 + 0.5) • G0 TO 270					
	· · · · · · · · · · · · · · · · · · ·			1	
				1	
• YZONE • 2				1	
	· · · · · · · · · · · · · · · · · · ·			1	
				1	
• GO 70 290				!	
***************************************					1
				1	1
•3				1	1
			1	1	1
				0	1
- 270 CONTINUE					1
. Y70NF . 3					1
					1
			1		i

			•
			:
	43 a • • • • a u : a • • • • • • • • • • • • • • • • • •		•
		0(0
	280 CONTINUE NZONE = 1		
		1	
		1	
	· 290 CONTINUE	1	•
		0(0
	a 10 CONTINUE		
	SIGCZ • 0.0 NOCZRA = .FALSE.		
	2001	1	
	F ((RANGEH .L.T. RCZ1) .OR.	(RANSEH .GE, RCZ2)	•0
		, , , , , , , , , , , , , , , , , , ,	**
		1	
	HCZA = 2.0-A1 + ACZ - RCZ+(NCZRA = .TRUE. NRITE (6. 1000)	RANGEH - RCZ1 1/DELRCZ 1000.4	
		1	i ,,,,0
		1	••
	. 180 CONTINUE . 41 . 2		
		1	
		1	•:
1 !	. DO 500 M = 1.2		
1 1			
i i	ANGDGA(M) = ANGBER(M)		••
1 1 1	SVECTR(1,M) = COSPHI(M)*COS(SVECTR(2,M) = COSPHI(M)*SIN(SVECTR(3,M) = SINPHI(M)	ANGDGA(M)) ANGDGA(M))	
1	•••••		
i	***************************************	1	•••
[[DO 200 1 1 = 1.3		:
	4.4.400	1	

• TVECTR(1,M) = 0.0	•
9662636466666666666666666666666666666666	
	• • • • • • • • • • • • • • • • • • • •
i i	
[
i	
200 CONTINUE	
Ţ	
i	
#SHIPS = M	*
SINRAD(M) = SIN(ANGBER(M))	
. BEOFCZ = BAFFLE (NCNACZ. ACOS (COSRAD ()	
BFOFSD = BAFFLF(NCNASD, ANGRER(4), CON	VASD)
1	
ļ	
i	
00 600	•
= 1,6	******************
!	
i	
• IF(ANGTER(I,1) .EQ. 100.0)	*
• • GO TO 600	
!	
- CONSBF(1) = BAFFLE(NDUD, ACOS(COSRAD	(M)+COS(ANGTER(I,M))), +
E DUD) + SPRLOS(1,M1)	
• CALL	
• S (ANGTER(I,M), I, M)	
1	***********************
1	
500 CONTINUE	*
500 CONTINUE	
500 CONTINUE	•
500 CONTINUE SECONDARIO DE SECONDARIO D	•
500 CONTINUE I I I I I I SECONDARIO S	•
500 CONTINUE 1 I 1 I 1 I 2 I 3 I 4 S CORREC 5 S (0.0, 7, M) 6 IF(NOCZRA) CALL	•
500 CONTINUE I I I I S CORREC S (0.0, 7, M)	•
	TVECTR(I,M) = 0.0

	no 500 " I J = 1.N1		
	60,000,000,000,000,000,000,000,000,000,		
		•••	
	• F = FRGSIG(J,M) • SIGRAY = 0.0	:	
		• • •	
	£\$\$£££££130\$	•••	
1	00 400	:	
1		•••	
!	j.		
i	######################################	•••	
1	 If (ANGTER(I,1) .NE, 100.0) E SIGRAY = SIGRAY + ALOGIN(DSPECT(NCNABI(I), CONPHI(I)) + 		
1	 E CONSBF(1) - FROLCN(J,H)*PATHLN(1) - FROIDB(J,H)*BOTLOS(1)) E *SINXOX(F, 1) 	:	
!		•••	
i			
i	>>6000000000000000000000000000000000000	• • •	
	400 CONTINUE		
	i		
	HK = RANGEH-FHOLCN(J.M)	•••	
	• C DETERMINE SURFACE DUCT CONSTANT BEING USED	:	
	• IF(NCONSD .EQ. 0)	•	0
	• a GO TO 390	•	1
			i
	i i		i
	• IF(NCONSD ,NE, 4)	• • • • • • • • • • • • • • • • • • • •	1
	• • GÒ TO 330	•	!
			i
			i
	• IF(ANGTER(1,1) + ANGTER(2,1) .NE. 200.0)	***	I V
	• • GO TO 390		1
			i
			i
	0(1
	• 330 CONTINUE	• • •	1
	. HSD1 = 2.0.A1 + HK + 60.0		i
	 FTHIRD = FROS(G(J,M)**0.33333333 G2SD = HZSD/4.0*AMAX1(2.0, FTHIRD) 		i
	HSD2 = HSD1 + AMAX1(0.0, FTHIRD+(CONST2 + 5.0+RANGEH))	• • •	i
			1
	i		1
	* IF(NZONE .EQ. 1) * * 60 70 360	•	i

IF(NZONF .EQ. 2) + 60 TO 340

		_
1	1	3

1 1	• 450 • AMIN1(HSD1, HSD2)	
i i	• 00 TO 380	
1 1	> 1	
1 1		
	45	
1 1	1 1 1	
1 1	274*427552444444444444444444444444444444	
	- 370 CONTINUE - 480 = MSD1	
1 1	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	la continue	
	380 CONTINUE IF(NOSDRA) SIGSD # ALOGIN(DSPECT(NCNASD, CONASD) * BEOFSD	
ii	• F) • F *S[NXOX(F, 7)	
1 1	1	
!!	0(0	
	* 190 CONTINUE * IF(NOCZRA)SIGC/*ALOGIN(OSPECI(NCNACZ, CONACZ) * BFOFCZ - HK)*	
1 1	F *SINXOX(F, M) POHSIG(J.M) = (SIGRAY * SIGND * SIGGZ)*FRQTRN(J.M)	
1 1	***************************************	
	. SOO CONTINUE	
	* * * * * * * * * * * * * * * * * * *	
	• V1• 1 • AFRAC • 0,0	
	H1 = NUMFRO(H)	
ļ	. 00 100	
	• I J = 1,M1	
1		
1	• F = FRONOS(J,M)	
	- PTS(J) = POHS[G(J,M)	
1		
1	• IF(NUDIAN(M) .EQ. 1) •0	
	• • GO TO 90	
i		
!	NIT HORPNY (ANGDOR(M), ANDISC(1, M), NUDIAN(M)) - 1	
i	AFRAC (ANGEGRA(M) - ANDISO(N1, 4))/DLDIAN(N1, M)	
i	ö	
!	90 CONTINUE	
1	 DI = ALOGIN(DIRSON(J,N1,M)+(1,0 - AFRAC)+AFRAC+DIRSON(J,N1+1,M))+ POWNOS(J,M) = FRUNCN(J,M)/DI PNS(J) = POWNOS(J,M) 	
1	1	
1		

	• 100 CONTINUE	
		•••••
	i i	
		••••••
	. M = 2 . N1= 1	
	. AFRAC . O.N	
	M1 NUMFRO(M)	•••••

l	• I J = 1,M1	
i		••••••
:		
!	1	
i	F # FRONOS(J.M)	
!	• PTE(J) = POWS(G(J,M)	*************
i		
İ	5563993998888888889369696969696969699999999	•••••
	• IF(NUDIAN(M) .EQ. 1) • GO TO 80	
!		••••••
•		
!		
i	. V1 = MORPHT (ANGDGA(M), ANDISO(1, M), NUDIAN(M)) - 1
	AFRAC = (ANGOGA(M) - ANDISO(N1, M))/DLDIAN(N1	,M)
i	!	
	0(
!	80 CONTINUE	•••••••
	. DI = ALOGIN(DIRSON(J,N1,M)+(1,0 - AFRAC)+AFR	AC+DIRSON(J,N1+1,M))
	 POWNOS(J,M) = FRONCN(J,M)/DI PNE(J) = POWNOS(J,M) 	
i		••••••
!	1	*************
	. 300 CONTINUE	
	1	••••••
		•••••
	• RETURN	
	00000000000000000000000000000000000000	•••••
	. 1000 FORMAT! F / 42H THE THO SHIPS ARE IN THE CONVERGENT ZON	E)

(FNTRANCE)	
*CREDUCEOO FUNCTION REDUCE *CFREDUCOO FUNCTION FOR FORCING RAD POSITIVE * FUNCTION REDUCE * F (DUMMY1, DUMMY2, DUMMY3) *C	
THIS COMPUTE THE REQUIRED A-CONSTANT SUCH THAT RAD IS POSITIVE CONSTANT SUCH THAT RAD IS POSITIVE CONSTANT SUCH THAT RAD IS POSITIVE CONSTANT SUCH THAT RAD IS POSITIVE	
• DUMMY3 = DUMMY1/DUMMY2	
Ö(0
* 10 CONTINUE REDUCE = DUMMY1 - DUMMY2*DUMMY3 IF (REDUCE .GE. 0.0) RETURN DUMMY4 = DUMMY3 DUMMY3 = DUMMY3*0.9999999 WRITE (6, 1000) REDUCE. W DUMMY4, DUMMY3	
	i i
оврация одовачавача в начина од начина од од од од од од од од од од од од од	•0
2 3 6 3 4 4 5 5 5 6 6 6 6 6 7 6 6 8 6 8 6 6 6 6 6 6 6 6 6	
= 1000 FORMAT(= F/15H BECAUSE RAD = E17.10 = F / 20H A WAS CHANGED FROM F17.10, 4H TO E17.10) = C	

E Constitution de la constitutio

	(ENTRANCE)
	#CSINXOXOD FUNCTION SINXOX #COMPUTES BEAM PATTERN DEGRADATION #FUNCTION SINXOX(F, K) #COMPUTES BEAM PATTERN DEGRADATION #FUNCTION SINXOX(F, K)
	THIS IS THE ROUTINE USING FU_ERIAN ANGLES AND TRANSFORMATION
	COMMON C / BEAMCR / BEMCOR(3,8) SINXOX = 1,0
1	• 00 100 • 1 1 = 1,3
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
į	SINXOX = ASNXOX (BEMCOR(1,K) of) osinxox
1 1 1	1
	• 100 CONTINUE
	I I I
	RETURN
	4] >Dafeccondencesconoconoconoconoconos presentados e e e e e e e e e e e e e e e e e e e
	e END

Accounts a

1

Connection

t (ENT	(ANCE)				

. STATE IDENTIFY DE STATE					
** ************************************	*****************************	•			
IDENTIFY D AND E STATE					
STATE . STATE F					
. STATE . STATE D		•			
. CLPHICLOSE PHASE		•			
. ARANGE . WEAPON RANGE					
•: •					
	******************************	•			
SUBROUTINE STAT	451, HE1, PXS(128), PXE(128), PYS(128), P	:			
	128) . VYS(128) . VXE(128) . VYE(128) . NS1.				
. 2NET.N. BETAS, BETAL . DELTAS. OFLIT	= . 32. PDS(5) . PDE(3) . PKILL(128) . PPATH(•			
	.28).STATD.STATE.PGS(5).PKDS(5).POS(5 CLPH.EVPH.HRANGE.BPS.BPE.PHIE.PHISIA				
	D. NPCO. BSP. BEP. NR. K. EDEPTH. SDEPTH. RC				
. 6.FOS.FRWS.F1S.PTS(128),FXS(126	1). PNS(128). FNS(128). FOE. FBSE, F1E. F2E	•			
) . FN= (128) . XE . XS . SUMKIL . SUMEVA . PRE . P	•			
. BRK. PE (3) . AL PXN. AL PYN. NSMAX . NE	'4X				
. IF(CLPH .EQ.1.) GO TO 300			,		
***************************************	***************************************	•			

. IF (N .EQ. NS1) 60 TO 310		•)	
224022222222222222222222222222222222222	**************************	•			
***************************************	******************************	•	1		
· STATD · 5.		•			
2.0.001.001.000.0000.0001.0001.0000.0000.0000.0000.0000.0000.0000.0000		•			
				10	
• 360 IF (EVPH.EO.1.) GO TO 320	***************************************	•			
196161244000000000000000000000000000000000		•		1 1	
				1 1	
. IF (N.EQ.NET) GO TO 330		•	0	i i i	
***************************************	***************************************	•	!!!	!!!!	
			i	i i i	
			1 1	1 1	
• STATE *3.	• • • • • • • • • • • • • • • • • • • •		,	i i i	
***************************************			1 1	1 1 1	
			!		
			i	i i i	
. RETURN		•	1 1	1 1 1	
***************************************	· · · · · · · · · · · · · · · · · · ·	•	!		
	,,			i i	
	1		i	i i i	
***************************************	******************************	•	1	!!!!	
. 300 IF (RANGE(N), IE. WRANGE) GO	3 340	•			
***************************************			i	i i i	
			1 1	1 1 1	
• STATO *2.				i i i	
***************************************			1 1	1 1 1	
			!		

350 GO TO 360		1 1 1 1
0(. Go TO 350	•
01	******************************	
0(
0(4 40 STATURE	
0(
350 50 TO 360 0(01
310 CLON 1		
310 CLPH 41. If (RANGE(N) LLE, MRANGE) 50 TO 370		
310 CDH M. IF (RANGE(N) LLE, WRANGE) 50 10 370 5120-4. 5120-4. 5120-5. 50 10 360 01 320 STATE *1. 8ETURN PETURN PETURN		0(
1F (RANGE(N) LLE. WRANGE) 50 10 370 0 0 0 1 370 0 0 0 1 370 0 0 0 1 370 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
STATURA		
STATURA		
STATD*4. STATD*4. 30T0 3A0 0'		
STATURA. GOTO 360 GOTO 3		30 13 3700 1 1
STATURA. GOTO 360 GOTO 3		
STATURA. GOTO 360 GOTO 3		
STATURA. GOTO 360 GOTO 3		i
320 STATE =1. 330 STATE =2. EVPH =1.		• - 1
370 STATO 33. 30 TO 360 01. 320 STATE *1. RETURN 01. 330 STATE *2. EVAN *1.	***************************************	
370 STATO 33. 30 TO 360 01. 320 STATE *1. RETURN 01. 330 STATE *2. EVAN *1.		
320 STATE =1. RETURN O(• GOTO 360	*
320 STATE =1. SETURN O(, x • 3 x x 0 • • • • • • • • • • • • • • • • •	1 1
370 STAYDES. 30 TO 360 01 320 STAYE =1. 9ETURN 07 330 STAYE =2. EVPH #1.		
320 STATE =1. RETURN O(
320 STATE =1. RETURN O(1
320 STATE =1. RETURN O(
320 STATE =1. RETURN O(30 70 340	
320 STATE =1.	***************************************	
320 STATE =1. RETURN OC		
RETURN 0(***************************************	
RETURN O(* 320 STATE *1.	
330 STATE =2. EVAN =1.		
0(***************************************	
330 STATE =2. EVAH =1.		***************************************
330 SIATE =2. EVAH =1.		06,0
# EYJH #1.	300242202200000000000000000000000000000	
RETURN	. 330 STATE .2.	
1 RETURN	***************************************	
# RETURN		
**************************************	2263822004000000000000000000000000000000000	

***************************************		*********

-

COMPUTING STEERING ANGLES . 3 . COMPUTING ARRAY STEERING ANGLES . 3 BETAS=BEARING ANG. WRT. BOW FOR SEARCHER BETAE = BEARING ANG. WRT. BOW FOR EVADER DELTAS DEPRESSION ANG. FOR SEARCHER DELTAE DEPRESSION ANG. FOR FVADER SUBROUTINE STEFRA COMMON /LAREL/ RI,RCJ,SS1,SE1,HS1,HE1,PXS(128),PXE(128),PYS(128),P* 1YE(128), PZS(128), PZE(128), VXS(128), VYS(128), VXE(128), VYE(128), NSI, * 2NEI, N, BETAS, BETAE, DEL TAS, DEL TAE, 32, PDS(5), PDE(3), PKILL (128), PPATH(+ 3128), PEVADF (128), DIFT1, RANGE (128), STATD, STATE, PGS (5), PKDS (5), POS (5+ 4), PIS(5), PGE(3), POE(3), PIE(3), CLPH, EVPH, WRANGE, BPS, BPE, PHIE, PHIS, A. SLSUBE, ALSURS, STNPSE, STNPEV, MECO, NPCO, BSP, BEP, NR, K, EDEPTH, SDEPTH, RC+ 6.FOS.FBWS.F1S.PTS(128).FxS(128).PNS(128).FNS(128).FOE,FBSE,F1E,F2E. 7,F2S,PTE(128),FXE(128),PNE(128),FNE(128),XE,XS,SUMKIL,SUMEVA,PRE,P* BRK.PE(3).ALPXN.ALPYN.NSMAX.NEMAX COMMON /ALPHA/ ABEAM1 . ABEAM2 SDS=SIN(DEL TAS) CDS=COS(DEL TAS) CDE=COS(DEL TAF) SDE=SIN(DEL TAF) DIFPY=PYE(N)-PYS(N) DIFPZ=PZE(N)-PZS(N) DIFPX=PXE(N)-PXS(N) CALL ANGVE (VXS(N), VYS(N), THETHS) STBS=SIN(THETHS+BETAS) CTBS=COS(THETHS+BETAS) XPS=DIFPX+CTBS-DIFPY+STBS YPS=DIFPX+CDS+STBS+DIFPY+CDS+CTBS+DIFPZ+SDS CALL ANGVE (XPS, YPS, ALPHAS) CALL ANGVE (VXE(N), VYE(N), THETHE) CTBE=COS(THE THE+BETAE) STBE=SIN(THETHF+BETAE) XPE =- DIFPX . CTRE+DIFPY . STRE YPE =- DIFPX + CDE + STBE + DIFPY + CDE + CTBE - DIFPZ + SDE CALL ANGVE (XPF, YPE, ALPHAE) AREAM1 = ALPHAS ABEAM2 = ALPHAE

(ENTRANCE)

```
SUBROUTINE STRIRA
SUBROUTINE FOR STARTING RAY TRACINGS
*CSTRTRA00
+CSSTRA000
        SUBROUTINE
                      STRTRA
       S
       S ( N. DEPEND )
.
*****
        COMMON
       C / CONSTN /
                      DEPSER,
       C
                      NCONSK,
       C
                      SPATSE,
                      DEPEVA.
       C
                      NCONSL,
       CCC
                      SPATEV
        COMMON
       C / PTHLNG /
       C
                      A 1.
       C
                      BI
                      CDSORD,
       00000000
                      CI
                      DI
                      DXDC
                      DZ1
                      CV
                      K
                      PL.
                      SM
       000000
                      ٧
                                                                                          *
                      X
                      Y1
                      42
                      TIMCON
        COMMON
       C / RANGES /
                      NUMANG,
       C
                      ANGMAX,
       CC
                      DELANG.
                      DELRAD,
       D
                      ANGINT (200)
                      RNGMOD(6,200)
       D
```

(ENTRANCE)

```
COMMON
      C / RAYPAR /
                   RANGEH,
      C
                   BOTANG(6)
      D
      D
                   DRDXDC(6)
      D
                   PATHLN(A)
                   RANGEC (6)
                   SP1(6)
      D
                   SPT(6)
      D
                   TIR(6)
      0
                   TTR (6)
       COMMON
      C / RAYTRA /
                   NCONCI,
      C
                   INITLK.
      C
      C
                   Z1
      CC
                   22
                   SPVRSQ.
                   ANGSTR.
      C
      C
                   ANGARR,
      C
                   ANGRIM.
                   ANGSUR,
4
      C
* * * *
      C
                   SPOVER.
                   RANGET
       ANGSTR = TIR(N)
       SPOVER = SPATSE/COS( ANGSTR )
       SPVRSQ = 1.0/SPDVER/SPDVER
       DXDC = 0.0
       RANGET = 0.0
       TIMCON = 0.0
       CALL
                  LENGTH
      S ( N. NCONSK, DEPSER, DEPEND )
   900 CONTINUE
       END
```

(ENTRANCE) OTABLEOD DE STATE TABLE ***** D STATE -E STATE TABLE SUBROUTINE TABLE

COMMON /LAREL/ RI,RCJ,SS1,SE1,HS1,HE1,PXS(128),PXE(128),PYS(128),PO

1YE(128),PZS(12H),PZE(12B),VXS(12B),VYS(12B),VXE(12B),VXE(12B),VYE(12B),NSI,*

2NE1,N,RETAS,HETAE,DELTAS,DELTAE,B2,PDS(5),PDE(3),PKILL(12B),PPATH(*
3128),PEYADL(12R),DIFTI,RANGE(12B),STATD,STATE,PGS(5),PMDS(5),ABC(5*
4),DEF(5),PGE(3),GHI(3),JKL(3),CLPH,EVPH,HRANGE,BPS,BPE,PHIE,PHIS,A*

5LSUBE,ALSURS,STNPSF,STNPEV,MECO,VPCO,BSP,BEP,NR,K,EDEPTH,SDEPTH,RC*

6,FOS,FRHS,FIS,PTS(12B),FXS(12B),PNS(12B),FNS(12B),FOE,FBHE,F1E,F2E*

7,F2S,PTE(12B),FXS(12B),PNE(12B),FNE(12B),XE,XS,SUMKIL,SUMEVA,PRE,P*

BRK,PE(3),ALPXN,ALPYN,NSMAX,N=MAX

COMMON COMMON C / SIGNAL / PRYSEV(128) n PRYSSF (128) PRNOEV(12A) PRNOSE(12A) D PROFVA(128) PROSER(128) D VARFVA(128) D VARSER(128) GMUFVA(128) D GMUSER(128) D DEVAEV(128) DEVASE (128) DEMUEV(128) D D DEMUSE(128) THREVA, THRSER, CC NTIMEN 10 ONE #1 .- PROSER(N) TWO=1.-PROFVA(N)
THREE=1.-PROSER(N).PRK FOUR PROSER(N) .: PDE(1) = FIVE PDS(1) = FOUR PRYSE(1) = THO
PRNOSE(1) = ONF/THREE
PRYSEV(1) = FIVE
PRYSSE(1) = FOUR*(1.0 - PRK)/THREE •5 PDS(2) = FOUR PGE(2) = FIVF PRNOSE(2) = 1.0 - PROSER(N) PRYSSE(2) = FOUR .. PGE(3) = TWO PGS(3) = FOUR .. PGS(4) = FOUR .. PGS(5) = ONE RETURN END

			(ENTRANCE)		
			1	•••••	
OT VL		FUNCTION TH	NLG10 NY VA_UE TO DB		
• • • • • • • • • • • • • • • • • • • •	FUNCTION	THE GIRE DUMM			
• 5	000000000	00000000000000		******************	
•0	COMPUTES D	P VALUE USING	ALGORITHM OF 10-LOG!	VALUE)	
• 3	•			•	
•0	0000000000	6968968 666 666			
				••••••••	

:	. GO TO 10	.LE. 1.0E-35			1
20000		5000000 0000	1	•••••••	
			1		i
		.GE. 1.0E+35		****************	
	. GO TO 20				1 1
	0 0 0 0 0 0 0 0 0 0 0 0 0	20000000000000	1 1 1	****************	
	TNLG10 = 1	n.0.ALOG10(D		•	
			1	••••••••	
			İ		1 1
	RETURN	0 3 5 3 0 0 5 5 5 5 5 5 5 5			
049001		0000000000000000	• • • • • • • • • • • • • • • • • • • •	****************	
					i
•0	********	3 2 2 3 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		***************************************	
			1	•••••••	
			0(•••••	0
• 1	CONTINUE TNLG10 = -	350.0		••••••••	
		2040444444	1	••••••••	
					i

Contract of the last

Townson of the last

Consorting .

Green Land

e constant

A Commence

t and the second

	I I		
. RETURN		***************************************	
> 9 ± 6 6 6 6 8 6 8 6 8 6 8 6 9 6 9 7 5 6 9 8 6 6 8 8			
*******************************		•	
a > 2 0 4 3 6 4 4 5 6 6 4 5 6 6 6 6 6 6 6 6 6 6 6 6	0 (
2242622224442444444444	1	*******	
• 20 CONTINUE • TNLG10 = +350.0			
6063663666666666] [[
• RETURN		*	
G 0 6 2 G 0 G 0 G 0 G 0 G 0 G 0 G 0 G 0 G 0 G			
	******	***************	
• END		*	
> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*************		

	(ENT	RANCE)	
		1	
204043046666666666		********	*****
	TINE TRACER		•
*CERROROOO DEBUG	PRINTOUT SHO	WING PROGRAM FLOW	
. SUBROUTINE			
. S TRACER			
S (NNFLAG)			
*C			
43 000000000000000	****	******	*****
**			
•0 •			
00 0000000000000000	*********	0 3 6 0 5 0 0 7 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*********
• .			
. WRITE(6, 90000, NNF	LAG		
*****************	04606444444		**********
		1	
		,	
		·	
2383853858888888888888888	********	1 35555442 55566666666666	************
* RETURN			
****************	*****		
£9000000000000000000000000000000000000	**********	***************************************	***********
******************	*********	************ ******	

*90000 FORMAT(BH FLAG =	14///		
-2	14////		
>>**********************	****	« , , , , , , , , , , , , , , , , , , ,	*****
		1	
- C+C	*******		
* END			•
	*****		*****

and the same

troupted.

Lanca Control

Section Co.

CENT	RANCE	
	,	
ACTRES PROBABILITY TREE		
.C .GENERATION OF MS. NE TABLES DEF	PROR TREE	
. SUBROUTINE PTREE		
	, HS1, HE1, PXS(128), PXE(128), PYS(128), P+ (128), VYS(128), VXE(128), VYE(128), NSI, •	
. 2NEI, N. RETAS, HETAE, DELTAS, DELTA	AE, 32, PDS(5), PDE(3), PKILL(128), PPATH(4	
	128),STATD,STATE,PGS(5),PKDS(5),POS(5, ,CLPH,EVPH,WRANGE,BPS,BPE,PH1E,PH1S,A,	
. SLSUBE, ALSURS, STNPSE, STNPEV, ME	CO. NPCO. BSP. BEP. NR. K. EDEPTH. SDEPTH. RC.	
* 7.F2S.PTE(128),FXE(128),PNE(128	8),?NS(128),FNS(128),F0E,FBSE,F1E,F2E« 8),FNE(128),XE,XS,SUMKIL,SUMEVA.PRE:P«	
* BRK, PE (3), AL PXN, ALPYN, NSMAX, NE		
• NFI=1 • NSI=1		
ENTRY TWO NEI=NEI+1		
0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	1 0 (0
		Ī
P 70 IF (NET GT NEMAX) GO TO 40		I
**********************		1 !
	1	!!!
a NR=2		
>>+>+>+	0 2 8 8 7 4 8 7 4 8 8 8 8 8 8 8 8 8 8 8 8 8	!!!
		i i
cas3a33 a3a8888 9999333000 0088898899	1	;
• RETURN		i i
	0(
		1000
. 40 NEI*NSI		
* NSI*NSI+1		
		i
• IF (NS1.GT,NSMAX) GO TO 50		
	, , , , , , , , , , , , , , , , , , ,	1 1
		i i
		1 1
e VR=3		

	t I	1 1
• RETURN		
20 6 7922400000000000000000000000000000000000	0(i
	t	1
• 50 NR = 4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	I I I	
• RETURN		
ENTRY THREF NSI=NSI+1	* 3 * 6 * 6 * 2 * * * * * * * * * * * * * *	
2363933669966993323339996689999	1	
	1	
• IF (NS1.GT.NSMAX) GO TO 60	000000000000000000000000000000000000000	
	I I	
NR = 3		
	I I I	
• RETURN		
	0(
• 60 NEI = NEI + 1 • NSI=NEI		
50656000000000000000000000000000000000	I	i
	I I I	I I
50 70 70		
* END		

Contract of the last

Lacrosia.

- Control of

Constant of the Constant of th

(migrae)

Description of the last

Comments of

	ı	t t
 10 CONTINUE 290 CALL NTSF 	0 > 0 a > 0 a o a x a x a a a a a a a a a a a a a a	
22 5 00000 00000000000000000000000000000	! !	
60 TO 30		
	*******************************	•
	1 0(1	
 20 CONTINUE VXE(NSUR1) = VXEINT VYE(NSUB1) = VYEINT 	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	1
	1 0(
. 30 CONTINUE		
	1 1 1 1	
* IF((CLPH .EO. 0.0) .OR. (NPC)		0
	1 1 1	
• IF(NPCO .FQ. 2) • GO TO 40	*****************************	0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	I	
* 1000 CALL BRIDER	99999999	•
#ETURN	**************************************	
		1 1

		1 1
		i
		1 1
	1	10
		1
020000000000000000000000000000000000000		
. 1020 CALL COLLIS		
* 1020 CALL COLLIS		· i
		1
		. 1
. RETURN	5 t 5 t 5 t 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	• !
000000000000000000000000000000000000000	9 t 3 t 9 t 9 t 9 t 9 t 9 t 9 t 9 t 9 t	
		1
440000000000000000000000000000000000000	3 3 3 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	• !
	1	
	0(	.,,,,,,
4 0 0 1 5 1 9 4 9 5 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		•
VXS(NSUR1) = 0.0		
• VYS(NSUB1) = SS1		
000000000000000000000000000000000000000		
	i	
	<u>!</u>	
************************		•
. RETURN		•
036000000000000000000000000000000000000		
***************************************		
•C	5 C S C C C C C C C C C C C C C C C C C	
	1	
azazazzaz <b>on en en en en</b>		•
• END		•
*************************		•

## *CUPPOS -UPPOS POSITIONS . 3 *UPDATING SHIPS POSITION SUBROUTINE UPPOS COMMON /LAREL/ RI,RCJ,SS1,SE1,HS1,HE1,PXS(128),PXE(128),PYS(128);P+ 17E(128), PZS(128), PZE(128), VXS(128), VYS(128), VXE(128), VYE(128), NS; . . 2NEI, N. RETAS, BETAE, DELTAS, DELTAS, 32, PDS(5), PDE(3), PKILL(128), PPATH(* 3128).PEVADF(128).DIFTI.RANGE(128).STATD.STATE,PGS(5),PKDS(5),POS(5* 4),PIS(5),PGE(3),POE(3),PIE(3),CLPH,EVPH,WRANGE,BPS,BPE,PHIE,PHIS,A+ 5LSUBE, ALSURS, STNPSE, STNPEV, MECO, NPCO, BSP, BEP, NR, K, EDEPTH, SDEPTH, RC+ 6.FOS.FRWS,F15,PTS(128),FXS(128),PNS(128),FNS(128),FOE,FBSE,F1E,F2E+ 7.F25.PTE(128).FXE(128).PNE(128).FNE(128),XE,XS.SUMKIL,SUMEVA.PRE.P. 8RK, PE (3), AL PXN, AL PYN, NSMAX, N=MAX VSUB1=N-1 PXE(N) =PXE(NSUB1)+VXE(NSUB1) =DIFTI PYE(N) = PYE(NSUR1) + VYE(NSUR1) * DIFTI PZE(N)=PZE(NSUH1) PXS(N)=PXS(NSUR1)+VXS(NSUB1) DIFTI PYS(N) = PYS(NSUR1) + VYS(NSUB1) = DIFTI PZS(N)=PZS(NSUH1) VXS(N)=VXS(NSUB1) VYS(N)=VYS(NSUR1) VXE(N)=VXE(NSUR1) VYE(N)=VYE(NSUR1) 25 RETURN END

(ENTRANCE)

```
(ENTRANCE)
SUBROUTINE VERIEX
SUBROUTINE TO FIND LOWER VERIEX POINT
SUBROUTINE
SUBROUTINE
SUBROUTINE
                        S ( 1. CU. 7VLO. DPTOZI, LODKJP )
                            THIS FINDS DEPTH AT WHICH RAY VERTEXES
                       C / LCONST / NUL APO,
                           COMMON
                                                                        DEPROT,
                                                                         CONSG0(128)
                                                                         CONSG1 (128)
                        0
                                                                         CONSG2(128)
                                                                         CONSVO(128)
                                                                         DELTAZI128)
                                                                         DEPKYD(128)
                        D
                                                                         SLOPE 3(128)
                                                                     SPDK YD (128)
                          CONSG1() = G1 CONSTANT AS COMPUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE ROUTED BY CONTINUOUS DERIVATIVE RO
                          CU = DEP<sub>T</sub>H (IN K-YD) TO TOP OF LAYER FROM OCEAN SURFACE I = LAYER IN WHICH RAY VERTEXEXES
SPDKYD() = SPEED OF SOUND PROPAGATION (IN K-YD/SEC)
                       NAMELIST / ERROR / XO1, XO2, XO3, DZVX, DZVX1, DZVX2, CUCAL. N DELDEP, VELOCI, DELTOZ, DPTOZ1, K, J
                             x01 * Cu - CUNSVO(1)
x02 * CONSGO(1) - 2,0*CONSG2(1)*X01
x03 * 2,0*( x01*CONSG2(1)*CONSG2(1) - CONSG1(1) )
        1F( X03 .E0. 0.0 )
                        X01 = SQRT( X02*X02 - 2.0*X01*X03 )
0ZVX1 = ( X02 + X01 )/X03
0ZVX2 = ( X02 - X01 )/X03
 • IF( LOOKUP ,GT, 0 )
• GO TO 10
                            DELDEP = DEPKYD(1+1) - DEPKYD(1)
                      DELDEP * DEPKYD(1+1) ~ DEPKYD(1)

IF ((COZVX1.LT.DPTOZI).OR.(DZVX1.LT.D.D)).OR.(DZVX1.GT,DELDEP))

* DZVX1 = 1000.0

IF ((CDZVX2.LT.DPTOZI).OR.(DZVX2.LT.D.D)).OR.(DZVX2.GT.DELDEP))

* DZVX2 = 1000.0

DZVX = AMIN1( DZVX1, DZVX2 )
```

If ( DZYX , FE, 1000.0 )		l I				
J3 CONTINUE	• IF( DZVX .NE. 1000.0 ) • GO TO 20					2
						0
O(	<pre></pre>					
IF( (DZYXI , GT, DPTOZI) .OR. (DZYXZ .LT. 0.0) ) DZYXI = -1000.0						
# GO TO 30	• IF( (DZVX1 ,GT, DPTOZ1) .OR. • IF( (DZVX2 .GT, DPTOZ1) .OR.	(DZVX1 .LT. 0.0) ) DZVX1 = -1000.0 (DZVX2 .LT. 0.0) ) DZVX2 = -1000.0				
# GO TO 30						
20 CONTINUE  CUCAL = 1.0/FVELOC( DZVX, 1 ) 2  I  I  I  I  IF( ABS( 1.0 - CUCAL/CU ) .GT. 1.0E-5 )  GO TO 30  I  SO CONTINUE  ZVLO = DEPKYD(1) + DZVX		• • • • • • • • • • • • • • • • • • • •	,	! ! · · · · · · · · ·		) A
CUCAL = 1.0/FVELOC( DZVX, I )2	346040340444444444444444444444444444444	1 1 0		. ,	1	
# GO TO 30		••2				i i
# GO TO 30	338399	1 1				] ] ]
1		. 1.06-5 )		.,		
ZVLO = DEPKYD(!) + DZVX     I		[ 0(		! !		
	. ZVLO = DEPKYD(1) + DZVX	90000000000000000000000000000000000000				

Contract of

Section 10

and the same

	Į.		!
PETURN	-1	•••••••••••••••••••••••••••••••••••••••	
9 <b>6</b> 0650 <b>9060000</b> 000000000000000			
	*********	•••••••••••••••••••••••••••••••••••••••	1
5 A 5 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5	I 0(,	······································	0
40 CONTINUE DZVX = X01/X02		:	
GO TO 50 		*****************	
		*	
	I I		
	! ! !		
END	******	*	