第十單元 指數與對數函數

(甲)指數函數

成長函數的實例

某種細菌適當的條件下,在一段時間 $(2 \, \mathbb{R})$ 內,每隔 $30 \, \mathcal{R}$ 分鐘,細菌的數目增長了 1.2 倍,設一開始有 N_0 個細菌,從開始觀察 x 小時候後細菌有 f(x)個,

- (1)f(0)=?
- (2)f(2)=?
- (3)試找出f(x)與x的關係式。

[解法]:

- (1)顯然 f(0)=N₀。
- (2): 每隔 30 分鐘,細菌的數目增長了 1.2 倍,:2 小時歷經了 4 個 30 分鐘 因此 $N_0 \xrightarrow{30\%} 1.2N_0 \xrightarrow{30\%} (1.2)^2N_0 \xrightarrow{30\%} (1.2)^3N_0 \xrightarrow{30\%} (1.2)^4N_0$ 故 $f(2)=(1.2)^4N_0$
- (3)可以如此想像 x 小時會歷經 $\frac{x}{2}$ 個 30 分鐘,所以 $f(x)=(1.2)^{\frac{x}{2}}N_0$

函數 $f(x)=(1.2)^{\frac{x}{2}}N_0$ 可以視為它是由形如 $f(x)=a^x$ 的函數變化而來的,這就是指數函數。

(1)定義指數函數:

a>0且 a≠1,函數 $f(x)=a^x$ 稱為以 a 為底的**指數函數**。

定義域=R 值 域= $\{y|y>0\}$

兩個例子:

觀察 $f(x)=2^x$ 的圖形:

可得 $y=2^x$ 的圖形,如下圖一所示:

觀察 $y=(\frac{1}{2})^x$ 的圖形:

來,可得 $y=(\frac{1}{2})^x$ 的圖形,如上圖二所示:

[△數學與電腦]:

- (1)利用 GeoGera 繪製下列各函數的圖形:
- $(1^{\circ})f(x)=(1.2)^{x}$ $(2^{\circ})f(x)=(3.5)^{x}$ $(3^{\circ})f(x)=(0.8)^{x}$ $(4^{\circ})f(x)=(0.2)^{x}$
- (2)利用 GeoGebra 來探討 $g(x)=3^x$ 與 $h(x)=(\frac{1}{3})^x$ 兩函數的關係。
- (3)利用數值滑桿,討論當 a 變化時, $y=a^x$ 的圖形變化:
- ② 當 0 < a < b < 1 時,如果 x < 0, $a^x > b^x$;如果 x > 0, $a^x < b^x$ 。
- (2)指數函數圖形的特性:

指數函數 $f(x)=a^x$, a>0, $a\ne 1$ 具有以下的特性:

- (a)恆在x軸的上方(即 $a^x > 0$)且過點(0,1)
- (b)對於任意實數 x_1, x_2 , 恆有 $f(x_1+x_2)=f(x_1)\cdot f(x_2)$ 。
- (c)f(x)為一對一函數。
- (d)當 a>1 時, $f(x)=a^x$ 為嚴格遞增函數 圖形由左向右逐漸升高,愈向右邊升高得愈快,愈向左邊圖形愈接近x 軸。

當 0 < a < 1 時, $f(x) = a^x$ 為嚴格遞減函數

圖形由左向右逐漸降低,愈向右邊降得愈慢,愈向右邊圖形愈接近 x 軸。

注意:

- ① 當 a>1 時, $f(x)=a^x$ 為嚴格遞增函數,即 $x_1>x_2 \Leftrightarrow a^{x_1}>a^{x_2}$
- ② 當 0 < a < 1 時, $f(x) = a^x$ 為嚴格遞減函數,即 $x_1 > x_2 \Leftrightarrow a^{x_1} < a^{x_2}$
- ③若函數 f(x)為嚴格遞增或嚴格遞減的函數,則 f(x)為 1-1 函數。

(3)指數函數圖形的凹凸性:

函數 y=f(x)的圖形凹口向上(下)

 \Leftrightarrow 任取圖形上兩相異點 $A \cdot B \cdot \overline{AB}$ 在 y=f(x)位於 $A \cdot B$ 兩點間圖形的上(下)方

對於任意的正數 a 實數 m, n 而言下列的不等式成立:

$$\frac{1}{2}(a^m+a^n) \ge a^{\frac{m+n}{2}} \quad , 等號成立 \Leftrightarrow m=n \circ$$

[幾何解釋]:

[證明]:

[問題與討論]:

對於一般的函數 y=f(x),底下的結果是否成立?

若 y=f(x)的圖形凹口向上,則 $\frac{1}{2}[f(m)+f(n)] \geq \frac{f(m)+f(n)}{2}$ 。

若 y=f(x) 的圖形凹口向下,則 $\frac{1}{2}[f(m)+f(n)] \leq \frac{f(m)+f(n)}{2}$ 。

[例題1] 請做下列各函數的圖形:

[問題與討論]:

如何由 y=f(x)的圖形來畫出 y=f(|x|)的圖形。

[例題2] 函數圖形與方程式的根

試問方程式 $x^2=2^{-|x|}$ 有幾個實數解?

[答案]::2個

[解法]:

方程式 $x^2=2^{-|x|}$ 實根的個數

=函數 $y=x^2$ 與 $y=2^{-|x|}$ 兩圖形的交點個數。

如圖,可知 $y=x^2$ 與 $y=2^{-|x|}$ 兩圖形有 2 個交點。

所以方程式 $x^2=2^{-|x|}$ 有 2 個實數解。

「例題31 指數函數圖形的應用

已知 a>0, $a\ne 1$,若指數函數 $f(x)=a^x$ 在區間 [1,3] 中的最大值與最小值之差為 $\frac{16}{15}a^2$,試求 a 之值。Ans: $a=\frac{5}{3}$ 或 $a=\frac{3}{5}$ 。

[例題4] 指數函數圖形的應用

(1)下列那一個數值最小?

(A)
$$(0.9)^{-3.5}$$
 (B) $(0.9)^{-2.5}$ (C) $(0.9)^{-1.5}$ (D) $(0.9)^{-\sqrt{3}}$ (E) $(0.9)^{-\sqrt{5}}$ Ans: (C)

(2)設
$$a=5^{\frac{1}{2}}$$
, $b=4^{\frac{2}{3}}$, $c=3^{\frac{3}{4}}$,則 a,b,c 的大小順序為何? Ans: $b>c>a$

(練習1) 利用 $y=2^x$ 與 $y=(\frac{1}{2})^x$ 之圖形求作(1) $y=-2^{-|x|}$ (2) $y=2^{|x|}+1$ 的圖形。

- (練習2) (1) 方程式 $2^x+x=0$ 有多少個實根。Ans:1 個 (2)方程式 $x^2=(\frac{1}{2})^x$ 有幾個實根。 Ans:3 個
- (練習3) 方程式 $x^2 + 2^x = 2$, (1)共有幾個實根? (2)若 p 為其實根,且 $n \le p < n+1$,求 n 之值。 Ans:(1)2 (2)0 或-2
- (練習4) 右圖中是四個指數函數 $y = a^x$ 、 $y = b^x$ 、 $y = c^x$ 、 $y = d^x$ 的圖形, 試比較它們的底數 a、b、c、d 與 1 的大小。
 [答案]: b < a < 1 < d < c

(練習5) 設 $a=\sqrt{\frac{1}{2}}$, $b=\sqrt[3]{\frac{1}{3}}$, $c=\sqrt[5]{\frac{1}{5}}$, 則 a,b,c 的大小順序為何?Ans:c>a>b

(乙)對數函數

(1)定義對數函數

設 a>0, $a\neq 1$,x>0, $f(x)=\log_a x$ 稱為一個以 a 為底數的對數函數。

定義域={x|x>0} 值 域=R

描點畫圖:

[△數學與電腦]:

- (1)利用 GeoGebra 畫出下列函數的圖形:
- $(1^{\circ})f(x) = \log_3 x$ $(2^{\circ})f(x) = \log_{1.5} x$ $(3^{\circ})f(x) = \log_{0.4} x$ $(4^{\circ})f(x)\log_{0.8} x$
- (2)利用 GeoGebra 探討 $g(x)=\log_3 x$ 與 $h(x)=\log_{\frac{1}{3}} x$ 兩函數圖形的關係。
- (3)利用 GeoGebra 探討 當 a 變化時, $f(x)=\log_a x$ 的圖形變化:

根據圖形可以歸結出以下的結論:

- $(a)y=\log_a x$ 的圖形都在y 軸的右方。
- (b) $y=\log_a x$ 的圖形與 x 軸交於點(1,0)。
- (c)平行 x 軸的直線都恰與 $y=\log_{a}x$ 的圖形交於一點。
- $(d)y=\log_a x$ 與 $y=\log_{\frac{1}{a}}x$ 的圖形對稱於 x 軸。
- (e)y=logax 的遞增與遞減
- ① 當 a>1 時,
- f(x)=log_ax 的圖形向右上升
- $\Leftrightarrow f(x) = \log_a x$ 為嚴格遞增函數
- $\Leftrightarrow x_1 > x_2 \Leftrightarrow \log_a x_1 > \log_a x_2$
- ② 當 0<a<1 時,
- $f(x)=\log_a x$ 的圖形向右下降
- $\Leftrightarrow f(x) = \log_a x$ 為嚴格遞減函數
- $\Leftrightarrow x_1 > x_2 \Leftrightarrow \log_a x_1 < \log_a x_2$

- (2)對數函數圖形的凹凸性:
- (a)當 a>1 時, $f(x)=\log_a x$ 的圖形為凹向下,即圖形上任兩點 A,B 的連線在 A,B 兩點間的圖形下方。

因此 $\frac{1}{2}(\log_a x_1 + \log_a x_2) \le \log_a \frac{x_1 + x_2}{2}$, x_1, x_2 為任意的正實數。

[證明]:

 $y = \log_2 x$

(1,0)

(b)當 0 < a < 1 時, $f(x) = \log_a x$ 的圖形為凹向上,即圖形上任兩點 A,B 的連線在 A,B 兩點間的圖形上方。

因此 $\frac{1}{2}(\log_a x_1 + \log_a x_2) \ge \log_a \frac{x_1 + x_2}{2}$, x_1, x_2 為任意的正實數。

試利用對稱的性質作下列各圖形。

 $(1)y = \log_2(-x)$

 $(2)y = -\log_2 x$ $(3)y = -\log_2(-x)$

[問題與討論]:

- (1)y=f(x)的圖形與 y=f(-x)的圖形對稱於哪一條直線?
- (2)y=f(x)的圖形與 y=-f(x)的圖形對稱於哪一條直線?
- (3) $y=\log_a x$ 與 $y=\log_{\frac{1}{a}} x$ 的圖形對稱於哪一條直線?

[**例題6**] 利用 $y=\log_2 x$ 的圖形作下列各函數的圖形: $(1)f_1(x)=|\log_2 x|$ $(2)f_2(x)=\log_2 |x|$

[問題與討論]:

(1) 如何由 y=f(x)的圖形來畫出 y=|f(x)|的圖形。(2)請畫出 $y=f(x)=|x^2-4|$ 的圖形。

[**例題7**] 試畫出 $(1)f(x)=2\log_2 x$ (2) $g(x)=\log_2 x^2$ 的圖形。

(練習6) 設 a>1,則下列那一個選項,表示函數 $y=\log_a x$ 與 $y=a^{-x}$ 的圖形?

Ans:(A)

(練習7) 下圖中, $y = \log_a x$ 與 $y = \log_d x$ 兩圖形對稱於 x 軸,

 $y = \log_b x$ 與 $y = \log_c x$ 兩圖形對稱於 y 軸,

則下列何者為真?

(B)
$$b > a > c > d$$

(C)
$$b > a > d > c$$

(D) ad = 1

(E) abcd = 1 °

Ans : (C)(D)(E)

(練習8) 下列何者與y=x恰交於一點?

(A) $y=2^{|x|}$ (B) $y=(\frac{1}{2})^{|x|}$ (C) $y=\log|x|$ (D) $y=|\log x|$ · Ans : (B)(C)(D)(E)

- (練習9) 方程式 $\log_{\frac{1}{2}} x = x^2$ 之實數解的個數為?Ans:1
- (練習10) 方程式 x-1=|log₂x|有______個實根。 Ans: 2
- (練習11) 方程式 $|\log_2 x| = (\frac{1}{2})^{|x|}$ 之實數解有多少個? Ans:2
- (練習12) 設 $a=\log_{0.2}0.2, b=\log_{0.3}0.2, c=\log_20.2, d=\log_32$ 。請比較 a,b,c,d 的大小。

- (練習13) 下列何者之值大於 1?(A) $\log_{\frac{1}{3}}\frac{1}{4}$ (B) $\log_{1.4}1.7$ (C) $\log_{0.3}0.8$ (D) $\log_{0.7}0.3$ Ans: (A)(B)(D)
- (練習14) 設 $a=\frac{3}{2}$, $b=\log_4 9$, $c=\log_9 25$, 試比較 a,b,c 的大小。 Ans: b>a>c

[例題8] 解下列不等式:

$$(1)\log_{0.5}(2x-3)>0 \quad (2)(5^{-x})(\log_{\frac{1}{3}}x)>0$$

$$(3)\log_{2}(\log_{\frac{1}{3}}x)<1 \quad (4)\log(6x-x^{2})<1+\log(5-x)$$

$$Ans : (1)\frac{3}{2}< x<2 \quad (2)0<<1 \quad (3)\frac{1}{9}< x<1 \quad (4)0< x<8-\sqrt{14}$$

[例題9] 解 $\log_3(3^x+8) < \frac{x}{2} + 1 + \log_3 2$ 。 Ans: $\log_3 4 < x < \log_3 16$

(練習15) 解下列不等式:

$$(1)\log(x^2-4x+3) \ge \log(2x-1)^2 + \log 3 \qquad (2) \quad \log_{\frac{1}{2}}\log_2\log_{\frac{1}{3}}x > 1$$

Ans:
$$(1)0 \le x \le \frac{8}{11}$$
, $x \ne \frac{1}{2}$ (2) $(\frac{1}{3})^{\sqrt{2}} < x < \frac{1}{3}$

(練習16) 不等式
$$\log_{0.5}(x-2) > \log_{0.25}(4x^2-17x+4)$$
 的解為 (A)4< x (B)2< x <4 (C)4< x < $\frac{13}{3}$ (D) $\frac{13}{3}$ < x (E)以上皆非 Ans:(D)

(練習17) 解
$$\log_2(2^x+16) < \frac{x}{2} + 1 + \log_2 5$$
。 Ans: $2 < x < 6$

(丙)指數與對數函數間的關係

(1)考慮 $f(x)=\log_2 x$ 與 $g(x)=2^x$ 這兩個函數,

f(x)的定義域= $\{x|x>0\}$, 值域=R; g(x)的定義域=R, 值域= $\{y|y>0\}$

由上表可以觀察出 f(x)與 g(x)的自變量與應變量的對應關係剛好相反, $x \xrightarrow{f} \log_2 x \xrightarrow{g} 2^{\log_2 x} = x$ 目 $x \xrightarrow{g} 2^x \xrightarrow{f} \log_2 2^x = x$ 。

上面的結果可以表示為 f(g(x))=x 且 g(f(x))=x ,

數學上我們稱具有這種特殊對應關係的兩個函數互為反函數。

(2)反函數的定義:

函數 $f(x) \cdot g(y)$, 設 x,y 分別是 $f(x) \cdot g(y)$ 定義域內任意元素, 如果 g(f(x))=x 且 f(g(y))=y

則稱 f(x)與 g(y)互為**反函數**, f(x)的反函數記為 $f^{-1}(x)$,即 $g(x)=f^{-1}(x)$ 。此時 f(x)、g(x)

的定義域與值域互換,即 f(x)的定義域為 $f^{-1}(x)$ 的值域,f(x)的值域為 $f^{-1}(x)$ 的定義域。 設 a>0,且 $a\ne 1$,令 $f(x)=\log_a x$, $g(x)=a^x$, 兩個函數會滿足 f(g(x))=x 且 g(f(x))=x, 因此 同底的指數函數與對數函數互為反函數,即 $g(x)=f^{-1}(x)$ 與 $f(x)=g^{-1}(x)$ 。

(4)y=f(x)與 $y=f^{-1}(x)$ 圖形間的關係:

如果考慮兩個反函數的圖形,根據反函數的意義:

點 (x_0,y_0) 在y=f(x)的圖形上

 $\Leftrightarrow y_0 = f(x_0)$ $\Leftrightarrow x_0 = f^{-1}(y_0)$ $\Leftrightarrow (y_0, x_0)$ 在 $y = f^{-1}(x)$ 的圖形上

而點 (x_0, y_0) 與 (y_0, x_0) 對稱於直線 x=y,

因此y=f(x)與 $y=f^{-1}(x)$ 圖形對稱於直線x=y。

[附註]:

設平面上兩個圖形 Γ 與 Γ' ,直線 L 是同一平面上的一直線,

若圖形 Γ 上的每一點 P,關於直線 L 的對稱點 P'都在圖形 Γ' 上且圖形 Γ' 上的每一點 Q,關於直線 L 的對稱點 Q'都在圖形 Γ 上則稱圖形 Γ 與 Γ' 對稱於直線 L。

(5)同底指數函數與對數函數的圖形:

點 (x_0, y_0) 在 $y=\log_a x$ 的圖形上 \Leftrightarrow 點 (y_0, x_0) 在 $y=a^x$ 的圖形上

而點 (x_0, y_0) 與 (y_0, x_0) 對稱於直線 x=y,

因此 $y=\log_a x$ 的圖形與 $y=a^x$ 的圖形對稱於直線 x=y。

如下兩圖所示:

- (1)y=f(x)與 $y=f^{-1}(x)$ 的值域與定義域互換。
- (2) y=f(x)與 $y=f^{-1}(x)$ 圖形對稱於直線 x=y。
- (3) y=log_ax 與 y=a^x 互為反函數。
- (4) $y=\log_a x$ 與 $y=a^x$ 兩圖形對稱於直線 x-y=0

[問題與討論]:

設 $y=f(x)=x^2$,請問

f(x)可以定義反函數嗎? 定義反函數要注意什麼呢?

[△數學與電腦]:

利用 GeoGebra 去觀察當 a 改變時, $y=f(x)=\log_a x$ 與 $y=g(x)=a^x$ 的圖形的交點個數?

- **[例題10]** 設 a 為大於 1 的實數,考慮函數 $f(x)=a^x$ 與 $g(x)=\log_a x$,試問下列那些選項是正確的?
 - (1)若 f(3)=6,則 g(36)=6

$$(2) \frac{f(238)}{f(219)} = \frac{f(38)}{f(19)}$$

- (3)g(238)-g(219)=g(38)-g(19)
- (4)若 $P \cdot Q$ 為 y=g(x)的圖形上兩相異點,則直線 PQ 之斜率必為正數
- (5)若直線 y=5x 與 y=f(x)的圖形有兩個交點,則直線 $y=\frac{1}{5}x$ 與 y=g(x)的圖形也有兩個交點。 (2007 學科能力測驗)

[例題11] 求下列各函數的反函數:

$$(1)y=f(x)=3x+5$$
 $(2)y=f(x)=\log_2(x-2)$ $(3)y=3^{x+2}-5$

Ans:
$$(1)f^{-1}(x) = \frac{x-5}{3}$$
 $(2)f^{-1}(x) = 2^x + 2$ $(3)f^{-1}(x) = \log_3(x+5) - 2$

綜合練習

- (1) 實驗室內培養一種細菌,已測定其增長情形為 1 日後增為原數的 k 倍,根據記錄,已知其細菌數 2 日後約為 2000 個,3.5 日後約為 16000 個,試求 k 值,並寫出 x 日後之細菌數為 y 的細菌生長公式 y=f(x)。
- (2) 下列那一個選項的圖形與直線 x+y=0 恰有一個交點? (A) $y=2^x$ (B) $y=2^{-x}$ (C) $y=2^{|x|}$ (D) $y=-2^{-x}$ (E) $y=x^2$ 。
- (3) 觀察相關的圖形,判斷下列選項何者為真?
 (A) $10^x = x$ 有實數解。 (B) $10^x = x^2$ 有實數解。 (C)x 為實數解時, $10^x > x$ 恆成立。 (D)x > 0 時, $10^x > x$ 恆成立。 (E) $10^x = -x$ 有實數解。 (91 學科能力測驗)
- (4) $y=x^2$ 與 $y=2^x$ 有幾個交點?
- (5) 試問下列各函數的圖形與 $y=3^x$ 之圖形有何關係? (a) $y=3^{x-2}$ (b) $y=9\cdot3^x+3$ (c) $y=1-3^x$
- (6) 右圖為函數 $y = \log_b ax$ 的部分圖形, 其中 a, b 皆為常數且 a > 0, b > 0, 則下列何者為真? (A)a > 1, b > 1(B)0 < a < 1, b > 1(C)a = 1, b > 1(D)a > 1, 0 < b < 1(E)0 < a < 1, 0 < b < 1

(7) 設 $y=3^x$, $y=3^{-x}$, $y=\log_2 x$, $y=\log_2 (-x)$, $y=-\log_2 x$ 的圖形皆在右圖中 , A , B , C , D , E 何者是 $y=-\log_2 x$ 的圖形 ? (A)A (B)B (C)C (D)D (E)E。

- (8) 假設世界人口自 1980 年起,50 年內每年增長率均固定。已知 1987 年世界人口 達 50 億,1999 年第 60 億人誕生在賽拉佛耶。根據這些資料推測 2023 年世界人口數最接近下列哪一個數?
 - (A) 75 億(B) 80 億(C) 86 億(D) 92 億(E) 100 億 (89 學科)
- (9) 試比較下列各數之大小順序:

(a)
$$a = (0.6)^{\sqrt{2}}$$
, $b = (0.6)^{\sqrt{3}}$, $c = (0.6)^{-\sqrt{2}}$, $d = (0.6)^{-\sqrt{3}}$, $e = (0.6)^{1.4}$
(b) $\sqrt{3}$, $\sqrt[3]{5}$, $\sqrt[4]{10}$, $\sqrt[6]{30}$

- (10) 解 $3^{2x}+3^{x-2}>3^{x+2}+1$ 。
- (11) x 為實數,若 $(0.25)^{3x^2}$ < $(0.5)^{10x+4}$,則 x 的範圍為何?
- (12) 已知 $2x-y+1=0 \cdot x^2+ay+b=0$ 與 $3^y-28\times 3^x+9=0$ 三方程式之圖形都經過 $P \cdot Q$ 兩點,試求數對(a,b)。

- (13) 請求下列各方程式實數解的個數? (a) $|x|=2^{-|x|}$ (b) $x^2+\log|x|=0$ (c) $2^x=\log_{0.5}|x|$
- (14) 下列各值最小的是

(A)
$$\log_{\frac{1}{3}} 3$$
 (B) $\log_{\frac{1}{3}} 5$ (C) $\log_{\frac{1}{3}} \frac{1}{5}$ (D) $\log_{\frac{1}{3}} \frac{1}{3}$ (E) $\log_{\frac{1}{3}} 1 \circ$

- (15) 若 $a=\log_2 3, b=\log_4 3, c=3^{\log_3 \sqrt{5}}, d=\log_{0.5} 3$,則四數的大小為何?
- (16) 若 α , β 為方程式 $a^{2|x|} + 5x^2 = 1$ 之二根,a > 0 且 $\alpha \beta = \frac{2}{3}$,求 a 之值。
- (17) 設 $f(x) = \log_3(\log_{0.3}(\log_{9}x))$,試求 $(a)f(3^{0.054}) = ?$ (b)x的範圍。
- (18) 解下列不等式:
 - (a) $\log_{x}(x-1) > 0$ (b) $\log_{a}(x-7) + \log_{a}(x+3) < \log_{a}(2x-5)$
 - $(c)\log_{\frac{1}{3}}(\log_4 x) \ge -1$ (d)x 為不等於 1 的正數,解 $\log_3 x + \log_x 3 < \frac{10}{3}$
 - (e) $2\log_{\frac{1}{2}}(3-x) \ge \log_{\frac{1}{2}}(x-2)-1$
- (19) 求解 $\log_{1.5}(x+1) > \log_{2.25}(x^2-x-1)$
- (20) (a) 設 $y=f(x)=\frac{x}{10^x-1}$ $-1+\frac{x}{2}$, x 為不等於 0 的實數,試證明:f(x)=f(-x)。 (b)設 $y=f(x)=x\cdot\log_{10}(x+\sqrt{x^2+1})$, x 為實數, 試證明: f(x)=f(-x)。
- (21) 求 $f(x)=x^{1-\log x}$, $1 \le x \le 100$,之最大值與最小值。
- (22) 設直線 x=3 與 x=6 分別交曲線 $y=\log_2 x$ 於 $A \cdot B$,求線段 \overline{AB} 之長。

進階問題

- (23) 下列哪一個函數,滿足 $f(\frac{x_1+x_2}{2}) < \frac{1}{2}[f(x_1)+f(x_2)], x_1 \neq x_2$ (A) $f(x)=2^{x}$ (B) $f(x)=(\frac{1}{2})^{x}$ (C) $f(x)=2^{x}+2^{-x}$
- (24) 已知 $f(x) = \frac{a^x a^{-x}}{a^x + a^{-x}}$, 其中 a > 0 , $a \ne 1$, x 為實數 , 若 $f(\alpha) = \frac{1}{3}$, $f(\beta) = \frac{2}{5}$, 則 (a)試以 f(x)表示 a^{2x} ; (b)求 $f(2\alpha)$ 之值; (c)求 $f(\alpha+\beta)$ 之值。
- (25) 求解下列不等式:

(a)
$$\frac{1}{2} \log_{\sqrt{10}}(x+1) + 2 \log_{100}(x-2) \ge 1$$
 · (b) $\log_{\frac{1}{2}}(3-x) \ge \log_{\frac{1}{4}}|x-2|-1$ ·

- (26) 若方程式 $x^4+2\sqrt{3} (\log_2 k)x^2+1-(\log_2 k)^2=0$ 有兩相異實根及兩共軛虛根,則實數 k 的範圍為何?
- (27) 設 x>0, y>0 若 x+2y=12, 則 log₂x+log₂y 之最大值為____。
- (28) 求滿足 $n^4 < 10^6 < (n+1)^4$ 的正整數 n。
- (29) 對任意實數 x, $\log(x^2+2x+a)>0$ 恆成立,求 a 的範圍。

綜合練習解答

- (1) k = 4; $f(x) = 125 \times 4^x$
- (2) (A)(D)
- (3) (B)(C)(D)(E)

[解法]:若 f(x)=g(x)有實數解 \Leftrightarrow $\begin{cases} y=f(x) \\ y=g(x) \end{cases}$ 兩圖形有交點

畫出 $y=10^x$, y=x, $y=x^2$, y=-x 之圖形如右

可知: $(A)10^x = x$ 沒有實數解

- (B)10x=x2恰有一負實數解
- $(C)10^x > x$, $\forall x \in R$ 均成立
- (D)10^x>x², x>0 均成立
- (E)10^x= -x 有實數解
- (4) 3個(提示: $x \ge 4$, $2^x \ge x^2$) 如右圖所示

- (5) (a) $y=3^{x-2}$ 的圖形是由 $y=3^x$ 之圖形向右平行移動 2 單位得到的。(b) $y=9\cdot3^x+3$ 的圖形是由 $y=3^x$ 之圖形向左平行移動 2 單位之後,再向上移動 3 單位得到的。。(c) $y=1-3^x$ 的圖形是由 $y=3^x$ 之圖形先對 x 軸取對稱,再向上平行移動 1 單位得到的。
- (6) (A)
- $(7) \quad (A)$
- $(8) \quad (C)$
- (9) (a) b < a < e < c < d (b) $\sqrt[3]{5} < \sqrt{3} < \sqrt[6]{30} < \sqrt[4]{10}$
- (10) x>2
- (11) $x>2 \stackrel{-1}{\otimes} x<\frac{-1}{3}$
- (12) $(a,b)=(\frac{-1}{2}, \frac{-3}{2})$
- (13) (a)2 (b)2 (c)2
- (14) (B)
- (15) *d*<*b*<*a*<*c*
- (16) $\frac{8}{27}$

由於 f(x) = f(-x), 可知 y = f(x)的 圖形對稱於 y 軸,因此

若 α 為方程式 $a^{2|x|}+5x^2=1$ 之根,則 $-\alpha$ 亦為此方程式之根。

 $\Rightarrow \alpha$, β 為方程式 $a^{2|x|} + 5x^2 = 1$ 之二根 $\Rightarrow \beta = -\alpha$,

又
$$\alpha - \beta = \frac{2}{3}$$
 \Rightarrow $\alpha = \frac{1}{3}$ · 故 $a^{\frac{2}{3}} + \frac{5}{9} = 1$ · $a^{\frac{2}{3}} = \frac{4}{9} = (\frac{2}{3})^2$ \Rightarrow a 之值為 $\frac{8}{27}$ °

- (17) (a)1 (b)1 $\leq x \leq 9$
- (18) (a)x > 2 (b)a > 1 時,7 < x < 8 ; 0 < a < 1 時,x > 8 (c) $1 < x \le 64$ (d)0 < x < 1 或 $\sqrt[3]{3} < x < 27$ (e) $\frac{7}{3} \le x < 3$

(19)
$$-\frac{2}{3} < x < \frac{1-\sqrt{5}}{2} \implies x > \frac{1+\sqrt{5}}{2}$$

- (20) 略
- (21) $\sqrt[4]{10}$, $\frac{1}{100}$ [提示: $\log f(x) = (1 \log x) \cdot \log x$ = $-(\log x)^2 + \log x = -(\log x - \frac{1}{2})^2 + \frac{1}{4}$,因為 $1 \le x \le 100$,所以 $0 \le \log x \le 2$,所以 $\log f(x)$ 的最大值為 $\frac{1}{4}$,最小值為-2。]
- (22) $\sqrt{10}$
- (23) (A)(B)(C)
- (24) (a) $a^{2x} = \frac{1+f(x)}{1-f(x)}$ (b) $\frac{3}{5}$ (c) $\frac{11}{17}$

[解法]:

(a)
$$f(x) = \frac{a^{x} - a^{-x}}{a^{x} + a^{-x}} = \frac{a^{2x} - 1}{a^{2x} + 1} \Rightarrow \frac{f(x)}{1} = \frac{a^{2x} - 1}{a^{2x} + 1}$$

$$\Rightarrow \frac{1 + f(x)}{1 - f(x)} = \frac{(a^{2x} + 1) + (a^{2x} - 1)}{(a^{2x} + 1) - (a^{2x} - 1)} \Rightarrow a^{2x} = \frac{1 + f(x)}{1 - f(x)} \circ$$
(b) \cancel{x} (1) $\cdot a^{2\alpha} = \frac{1 + f(\alpha)}{1 - f(\alpha)} = \frac{3 + 3f(\alpha)}{3 - 3f(\alpha)} = \frac{3 + 1}{3 - 1} = 2 \Rightarrow a^{4\alpha} = 4 ,$

$$\therefore f(2\alpha) = \frac{a^{4\alpha} - 1}{a^{4\alpha} + 1} , \therefore f(2\alpha) = \frac{4 - 1}{4 + 1} = \frac{3}{5} \circ$$
(c) \cancel{x} (2) $\cdot a^{2\alpha} = 2 , \overrightarrow{x} = 1 + f(\beta) = \frac{5 + 5f(\beta)}{5 - 5f(\beta)} = \frac{5 + 2}{5 - 2} = \frac{7}{3} ,$

$$\Rightarrow a^{2(\alpha + \beta)} = a^{2\alpha} \cdot a^{2\beta} = 2 \times \frac{7}{3} = \frac{14}{3} ,$$

$$\therefore f(\alpha + \beta) = \frac{a^{2(\alpha + \beta)} - 1}{a^{2(\alpha + \beta)} + 1} = \frac{3a^{2(\alpha + \beta)} - 3}{3a^{2(\alpha + \beta)} + 3} = \frac{14 - 3}{14 + 3} = \frac{11}{17} \circ$$

- (25) (a) $x \ge 4$ (b) x = 1 或 $5 2\sqrt{2} \le x < 3$
- (26) $0 < k < \frac{1}{2}$ 或 k > 2(令 $t = x^2$,方程式 $x^4 + 2\sqrt{3}$ $(\log_2 k)x^2 + 1 (\log_2 k)^2 = 0$ 有兩相 異實根及兩共軛虚根 $\Leftrightarrow t^2 + 2\sqrt{3}$ $(\log_2 k)t + 1 - (\log_2 k)^2 = 0$ 一正根一負根)
- (27) 1+log₂9 (Hint:利用算術平均數大於幾何平均數)
- (28) 31
- (29) a > 2

補充教材

(甲)利用對數找兩變量的關係

從一個例子談起:

下表是太陽系九大行星的週期與到太陽的平均距離:

行星	週期(天)	平均距離(百萬英里)
水星	88.0	36
金星	224.7	67.25
地球	365.3	93
火星	687.0	141.75
木星	4331.8	483.80
土星	10760.0	887.97
天王星	30684.0	1764.50
海王星	60188.3	2791.05
冥王星	90466.8	3653.90

我們想建立一個數學模型來描述週期與平均距離間的關係。

用EXCEL可以畫出平均距離對週期的散布圖

現在我們將周期(x)與平均距離(y)取對數,令Y=logy,X=logx,考慮X對Y的散布圖:

經計算上面散布圖的最佳直線可得 Y=0.6659X+0.2619,相關係數=1,故 X 與 Y 的關係有高度的直線相關性,因此 $\log y=0.6659 \cdot \log x+0.2619$ $\Rightarrow y=a\cdot x^{0.6659} \approx a\cdot x^{\frac{2}{3}},$ 這個結果與克卜勒行星運動定律的結果是吻合的。

一般而言,我們若要針對兩組數據去建立一個數學模型,來代表他們之間的關係,建立這類的模型可以將變量先進行適當的變換,使之變成線性趨勢的問題,再利用最小平方法去找最佳直線,進而建立其模型。底下提供幾個模型以供參考:

(1)冪函數趨勢: $y=ax^b$

 $\log y = \log a + b \log x$,

 $\Rightarrow y^* = \log y, x^* = \log x, a^* = \log a, b^* = b$ 可得線性數學模型為 $y^* = a^* + b^* x^*$ 。

 $\log y = \log a + bx \cdot \log 10$ $\Leftrightarrow \log y = \log a + bx$ $\Leftrightarrow y^* = \log y \cdot x^* = x \cdot a^* = \log a \cdot b^* = b$ 可得線性數學模型為 $y^* = a^* + b^* x^*$ 。

這樣的方法也適用於底數為任何正數的情形。

(3)對數函數模型: $y=a+b \cdot \log x$ 令 $y^*=y \cdot x^*=\log x \cdot a^*=a \cdot b^*=b$

可得線性數學模型為 $y^*=a^*+b^*x^*$ 。

(練習1) 1976 年 Marc 和 Helen Bornstein 研究了日常生活的步調,觀察城鎮的規模變大之後,生活節奏是否變快。他們有系統地觀察了城鎮主要街道上徒步者步行 50 英尺所須的平均時間,下表是他們蒐集的數據,V 代表步行 50 英尺的平均速率,P 代表城鎮人口,

地區	步行平均速率 V(英尺/秒)	人□(P)
布爾諾(捷克)	4.81	341948
布拉格(捷克)	5.88	1092759
科特(科西嘉)	3.31	5491
巴士底(法國)	4.90	49375
慕尼黑(德國)	5.62	1340000
塞克農克里特(希臘)	2.76	365
依提雅(希臘)	2.27	2500
伊拉克林(希臘)	3.85	78200
雅典(希臘)	5.21	867023
沙非特(以色列)	3.70	14000
戴姆拉(以色列)	3.27	23700

納塔尼亞(以色列)	4.31	70700
耶路撒冷(以色列)	4.42	304500
新海文(美國)	4.39	138000
布魯克林(美國)	5.05	602000

- (1)請建立一個 logV 對 logP 的數據表。
- (2)利用 Excel 作出(1)中數據表的散布圖。
- (3)若 P 與 V 的關係可以用 $P=CV^{\alpha}$ 來表示,請估計 C 與 α 的值約為多少。

(練習2) 下表的數據反映了在 6 個星期中果蠅群體的增長,根據這些數據檢驗下列模型,並估計模型的參數:

(a) $P = c_1 t + c_2$ (b) $P = a \cdot 10^{bt}$

t(天數)	7	14	21	28	35	42
P(果蠅數目)	8	41	133	250	280	297

(練習3) 哺乳動物的心跳:

某些哺乳動物的體重與每分鐘心跳次數的數據如下表所示:

動物名稱	體重(克)	每分鐘的心跳次數
蝙蝠	4	660
家鼠	25	670
大鼠	200	420
天竺鼠	300	300
兔子	2000	205
小型狗	5000	120
大型狗	30000	85
羊	50000	70
人	70000	72
馬	450000	38
牛	500000	40
大象	3000000	48

利用上表的數據,建立哺乳動物的體重與每分鐘心跳次數的模型。