Практическо упражнение No 2

БРОЙНИ СИСТЕМИ

1. Цел на упражнението:

Целта на упражнението е студентите да задълбочат познанията си по използваните в компютърната техника бройни системи и да усвоят правилата на двоичната аритметика.

2. Теоретична част:

2.1. Бройни системи - класификация.

2.1.1. Определение.

Бройна система това е съвкупност от ограничен брой цифри, букви и правила, с помощта на които може да се запише и да се даде име на всяко число.

Бройните системи трябва да позволяват:

- кратко и леко записване на всякакви числа;
- леко и бързо изпълнение на аритметичните операции.

2.1.2. Класификация.

Класификацията на бройните системи е показана на фиг.1.

Фиг.1. Класификация на бройните системи

а. Непозиционни системи - това са системи, при които значението на дадена цифра се определя само от нейния вид и не зависи от позицията, която тя заема в кода на числото. Числата се формират чрез събиране и изваждане на съседни цифри - при адитивните системи или чрез умножение на съседни цифри - при мултипликативните системи. Няма цифра "0".

Пример: Римската бройна система.

Римска бройна с-ма	I	V	Х	L	С	D	M
Десетична бройна с-ма	1	5	10	50	100	500	1000

1998 - M CM XC VIII

б. Позиционни системи - това са системи, при които значението на дадена цифра се определя не само от нейния вид, но и от позицията, която тя заема в кода на числото. Има цифра "0". Едно число записано в позиционна система има следния общ вид:

$$A = a_n a_{n-1} \dots a_2 a_1, a_{-1} a_{-2} \dots a_{-k},$$

където: a_i са цели положителни числа; $a_i = 0 \div (p_i - 1)$

 p_i е цяло положително число > 1 - основа на i-тия разряд на бройната система.

В зависимост от изменението на основата р_і при преход от разряд към разряд в кода на дадено число позиционните системи се делят на

- еднородни (основите на отделните разряди са еднакви) и
- нееднородни (основите на отделните разряди са различни).

Еднородни системи - едно число може да бъде записано в еднородна система с основа р по следния начин:

$$A_p = a_n \, p^{n-1} + a_{n-1} p^{n-2} + ... + a_2 \, p + a_1 + a_{-1} \, p^{-1} + a_{-2} \, p^{-2} + ... + a_{-k} \, p^{-k} \, ,$$
 където: $a_i = 0 \div (p-1)$ са разрядни коефициенти; p е основата на системата; p^i е теглото на единиците в (i+1)-вия разряд.

Пример: Десетичната бройна система.

$$A_{10}$$
= a_n 10^{n-1} + a_{n-1} 10^{n-2} + ...+ a_2 10 + a_1 + a_{-1} 10^{-1} + a_{-2} 10^{-2} +...+ a_{-k} 10^{-k} .
 $1998 = 1.10^3 + 9.10^2 + 9.10 + 8$

Нееднородни системи - едно число може да бъде записано в нееднородна система по следния начин:

$$A = a_n \, p_{n\text{-}1} \, p_{n\text{-}2}... \, p_2 \, p_1 + a_{n\text{-}1} p_{n\text{-}2} \, p_{n\text{-}3}... \, p_2 \, p_1 + ... + a_2 \, p_1 + a_1$$
 където: $a_n = 0 \div (p_i - 1);$ p_i е основата на i-тия разряд на системата;
$$\prod_{i=1}^m p_i \, \text{ е теглото на единиците в (m+1)-вия разряд.}$$

Пример: Системата за измерване на времето.

В разряда на	секундите	p = 60
	минутите	p = 60
	часовете	p = 24
	дните	p = 7
	седмиците	p = 4
	месеците	p = 12

В зависимост от изменението на теглото на единиците в даден разряд при преход от код на едно число към код на друго число еднородните системи се делят на

- системи с постоянни тегла на едноименните разряди и
- системи с непостоянни тегла на едноименните разряди (символически).

Системи (кодове) с постоянни тегла на разрядите:

Примери: Код 8421 и код 2421.

	код 8421	код 2421
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	1011
6	0110	1100
7	0111	1101
8	1000	1110
9	1001	1111

Определения:

- Един код е **адитивен**, ако сумата от кодовете на кои да са две цифри е равна на кода на тяхната сума.
- Един код е **самодопълващ се**, ако за всеки две десетични цифри A и B, сумата на които е 9, е изпълнено условието {A} + {B} = 1111.

Кодът 8421 е адитивен, но не е самодопълващ се, а кодът 2421 е самодопълващ се, но не е адитивен.

Адитивните кодове са удобни за извършване на операцията "събиране", а самодопълващите се - за операцията "изваждане".

Системи (кодове) с непостоянни тегла на разрядите:

Примери: Код с излишък 3 (8421+3) и код на Грей.

	код с излишък 3	код на Грей
0	0011	0000
1	0100	0001
2	0101	0011
3	0110	0010
4	0111	0110
5	1000	0111
6	1001	0101
7	1010	0100
8	1011	1100
9	1100	1101

Кодът с излишък 3 е самодопълващ се, но не е адитивен.

Кодът на Грей се използва при построяване на преобразуватели "ъгъл - код", тъй като това води до минимална грешка при заставане на преобразувателя в междинно положение.

Системите с постоянни тегла на разрядите биват с

- естествен порядък на теглата и с
- изкуствен порядък на теглата.

Системи с естествен порядък на теглата:

Такива са системите, за които е в сила следното:

Теглото на единиците в младшия разряд на цялата част на числото е 1, а теглото на единиците във всеки друг разряд на цялата част е равно на произведението на броя цифри допустими във всеки от разрядите на цялата част в дясно от този разряд.

Теглото на единиците във всеки разряд на дробната част е равно на реципрочната стойност на произведението на броя цифри допустими в този разряд и във всеки от разрядите на дробната част в ляво от него.

Пример: Код 8421.

Системи с изкуствен порядък на теглата:

Такива са системите, при които теглата на единиците в отделните разряди се получават по правила, различни от горното.

Пример: Код 2421.

Основен недостатък на позиционните системи е междуразрядният пренос, който се получава при извършване на операцията "аритметическо събиране" и води до съществено увеличаване на времето за изпълнение на тази операция. А в компютрите всички аритметични операции с числа се свеждат до поредица от аритметични събирания на техните кодове. Този недостатък липсва при някои непозиционни системи.

2.1.3. Избор на бройна система за използуване в компютрите.

В компютрите се използуват предимно позиционни еднородни бройни системи (най-често с постоянни тегла на разрядите и с естествен порядък на теглата). Този избор съществено облекчава конструирането на основните възли на компютъра, тъй като при $p_i = p = const$ всички разряди на отделните възли (регистри, броячи, суматори и др.) се получават еднакви.

Основата р на бройната система се избира от съображения за:

- облекчаване общуването на човека с машината 10-ична;
- опростяване на техническата реализация на необходимите запомнящи елементи 2-ична;
- осигуряване на максимално възможната шумоустойчивост 2-ична;
- използване на формален математически апарат за синтез и анализ на изчислителни устройства 2-ична;
- опростяване и ускоряване извършването на различни аритметични действия 2-ична;
- минимизиране стойността на компютъра 3-ична, (2, 4), 5, 6, 7, 8, 9, 10,

Забележка: Горното подреждане на изискванията към величината на основата р е условно. То е различно във всеки конкретен случай.

Тъй като системата с p=2 по икономичност отстъпва незначително на системата с p=3, а по болшинството останали показатели е на първо място, то тя се използва като **основна** в преобладаващата част от създадените до настоящия момент компютри.

Недостатък на двоичната система е необходимостта от преобразуване на входните данни от десетичната система в двоичната, а на резултатите от двоичната система в десетичната, която се използва като вспомагателна при обмена на информация между човека и машината. Като вспомагателни се използват също така осмичната и шестнадесетичната системи, преводът от които в двоичната и обратно става сравнително лесно и бързо.

В долната таблица е показано съответствието между първите няколко числа, респ. цифри на тези четири системи.

"10"	"2"	"8"	"16"
0	0	0	0
1	1	1	1
1 2 3 4 5 6 7	10	1 2 3	1 2 3
3	11	3	3
4	100	4 5 6 7	4
5	101	5	5 6 7
6	110	6	6
7	111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A B C D
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F
16	10000	20	10

От тази таблица се вижда, че

- във всички системи основата се записва като 10;
- колкото по-малка е основата р толкова по-голям е броят разряди на числото.

2.1.4. Двоична бройна система (р=2).

В двоичната система всяко число се представя като последователност от двоични цифри, т.е. във вида:

$$A_2 = a_n \, a_{n\text{-}1} \, \dots \, a_2 \, a_1 \, , \, a_{\text{-}1} \, a_{\text{-}2} \, \dots \, a_{\text{-}k} \ \, ; \ \, a_i = 0 \, \div \, 1 .$$

Използва се и следната форма на представяне (когато трябва да се премине от двоичната към десетичната система):

$$A_2 = a_n 2^{n-1} + a_{n-1} 2^{n-2} + ... + a_2 2 + a_1 + a_{-1} 2^{-1} + a_{-2} 2^{-2} + ... + a_{-k} 2^{-k} 2^{i}$$
 - тегло на единиците в (i+1) -вия разряд. Пример:

$$(\dot{10}11,\dot{01})_2 = 1.2^3 + 0.2^2 + 1.2 + 1 + 0.2^{-1} + 1.2^{-2} = (11,25)_{10}$$

2.1.5. Двоична аритметика.

Аритметичните правила във всички позиционни системи са еднакви. Следователно аритметичните действия с двоични числа се извършват по същия начин както с десетични, но с отчитане на правилата за поразрядно двоично събиране, изваждане, умножение и деление, които са показани по-долу в таблична форма:

Организация на компютъра

Събиране (a+b)

a _i	b _i	Si	пренос
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Изваждане (a - b)

a _i	b _i	R_{i}	заем
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Забележка: Взетата "на заем" от старшия разряд единица е равна на две единици от младшия разряд.

Умножение a.b

a _i	b _i	M_{i}
0	0	0
0	1	0
1	0	0
1	1	1

Деление a/b

a _i	b _i	Di
0	0	?
0	1	0
1	0	?
1	1	1

Забележка: Тези правила се използват само при ръчно извършване на аритметични действия с двоични числа.

Примери:

1101,101	1101,101
+ 110,001	110,001
10011,110	111,100
110,01 x	10000,01101 : 10,10100 = 110,01 1010100
10,101	
	1011110
11001	1010100
11001	
11001	1010100
	1010100
10000,01101	
	0

В компютрите чрез използване на специални кодове аритметичните действия с двоични числа се свеждат към поредица от аритметични събирания на техните кодове. Това се налага, т.к. в АЛУ обикновено има само суматор, който може да извършва само операцията "аритметично събиране".

3. Задачи за изпълнение:

- 3.1. Да се съберат двоичните числа 110111,1 и 10011,01.
- 3.2. Да се извадят двоичните числа 110111,1 и 10011,01.
- 3.3. Да се умножат двоичните числа 1011,1 и 101,01.
- 3.4. Да се разделят двоичните числа 111100,011 и 101,01.

4. Контролни въпроси:

- 4.1. Какъв тип бройни системи се използват в компютрите и какво е характерно за тях?
- 4.2. Какъв е основният недостатък на позиционните бройни системи и до какво води той?
- 4.3. От какви съображения се избира величината на основата на бройната система?
- 4.4. Коя бройна система се използва като основна в компютъра и кои като вспомагателни?
- 4.5. Какви са правилата за ръчно извършване на аритметичните действия с числа и как се извършват тези действия в компютъра?

BACK