Deterministic Finite Automaton and Non-deterministic Finite Automaton

DFA and NFA
(Finite State Machines)

Notation and Definitions

- Alphabet
- String
- Language
- Operations on languages

Finite State Machines

- A machine with finite number of states, some states are accepting states, others are rejecting states
- · At any time, it is in one of the states
- It reads an input string, one character at a time

DFA

- After reading each character, it moves to another state depending on what is read and what is the current state
- If reading all characters, the DFA is in an accepting state, the input string is accepted.
- Otherwise, the input string is rejected.

Example of DFA

- The circles indicates the states
- If accepting state is marked with double circle
- The arrows pointing from a state q indicates how to move on reading a character when current state is q

Formal Definition of DFA

- A DFA is a 5-tuple (Q, Σ , δ , q_{start} , F), where
 - Q is a set consisting finite number of states
 - Σ is an alphabet consisting finite number of characters
 - $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
 - q_{start} is the start state
 - F is the set of accepting states
- Note: only 1 start state, and can have many accepting states

Some Terminology

Let M be a DFA

- Among all possible strings, M will accept some of them, and M will reject the remaining
- The set of strings which M accepts is called the language recognized by M
- That is, M recognizes A if
 A = { w | M accepts w }

Designing a DFA (Quick Quiz)

 How to design a DFA that accepts all binary strings representing a multiple of 5? (E.g., 101, 1111, 11001, ...)

DFA for complement of a language

Flip final and non-final states.

- 1.5 Each of the following languages is the complement of a simpler language. In each part, construct a DFA for the simpler language, then use it to give the state diagram of a DFA for the language given. In all parts, Σ = {a, b}.
 - Aa. $\{w \mid w \text{ does not contain the substring ab}\}$
 - Ab. $\{w | w \text{ does not contain the substring baba}\}$

1.5 (a) The left-hand DFA recognizes $\{w | w \text{ contains ab}\}$. The right-hand DFA recognizes its complement, $\{w | w \text{ doesn't contain ab}\}$.

(b) This DFA recognizes $\{w | w \text{ contains baba}\}.$

This DFA recognizes $\{w | w \text{ does not contain baba}\}.$

L(M)

If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write L(M) = A. We say that M recognizes A or that M accepts A.

 Can you find what is the language accepted by M₂

FIGURE 1.8

State diagram of the two-state finite automaton M_2

In the formal description, M_2 is $(\{q_1,q_2\},\{0,1\},\delta,q_1,\{q_2\})$. The transition function δ is

$$egin{array}{c|ccc} 0 & 1 \\ q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2. \\ \end{array}$$

 $L(M_2) = \{w | w \text{ ends in a 1}\}.$

• Can you find $L(M_4)$

FIGURE 1.12 Finite automaton M_4

• $L(M_4) = \{w \in \Sigma^* | w \text{ starts and ends in same symbol} \}$

Formally

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and let $w = w_1 w_2 \cdots w_n$ be a string where each w_i is a member of the alphabet Σ . Then M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:

- 1. $r_0 = q_0$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and
- 3. $r_n \in F$.

Regular language [Ref: Sipser Book]

DEFINITION 1.16

A language is called a *regular language* if some finite automaton recognizes it.

The regular operations

DEFINITION 1.23

Let A and B be languages. We define the regular operations *union*, *concatenation*, and *star* as follows:

- Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy | x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \dots x_k | k \ge 0 \text{ and each } x_i \in A\}.$

- These are similar to arithmetic operations.
- Note, * is a unary operator.

THEOREM 1.25

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

- The proof is by construction.
- We build a DFA for the union from the individual DFAs.

- The idea is simple: While reading the input simultaneously follow both machines.
 - Put a finger on current state. You need two fingers.
 You can move these two fingers as per the respective transition function.

PROOF

Let M_1 recognize A_1 , where $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, and M_2 recognize A_2 , where $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$.

Construct M to recognize $A_1 \cup A_2$, where $M = (Q, \Sigma, \delta, q_0, F)$.

1. $Q = \{(r_1, r_2) | r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$. This set is the *Cartesian product* of sets Q_1 and Q_2 and is written $Q_1 \times Q_2$. It is the set of all pairs of states, the first from Q_1 and the second from Q_2 .

2. Σ, the alphabet, is the same as in M₁ and M₂. In this theorem and in all subsequent similar theorems, we assume for simplicity that both M₁ and M₂ have the same input alphabet Σ. The theorem remains true if they have different alphabets, Σ₁ and Σ₂. We would then modify the proof to let Σ = Σ₁ ∪ Σ₂.

3. δ , the transition function, is defined as follows. For each $(r_1, r_2) \in Q$ and each $a \in \Sigma$, let

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)).$$

Hence δ gets a state of M (which actually is a pair of states from M_1 and M_2), together with an input symbol, and returns M's next state.

4. q_0 is the pair (q_1, q_2) .

5. F is the set of pairs in which either member is an accept state of M_1 or M_2 . We can write it as

$$F = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}.$$

This expression is the same as $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$. (Note that it is *not* the same as $F = F_1 \times F_2$. What would that give us instead?³)

Union Example

What about intersection?

- Intersection of two regular languages is also regular.
- Proof: by construction. Similar. Only final states will change.

Intersection

What else we can do with product principle?

- Set difference.
 - How?

- 1.4 Each of the following languages is the intersection of two simpler languages. In each part, construct DFAs for the simpler languages, then combine them using the construction discussed in footnote 3 (page 46) to give the state diagram of a DFA for the language given. In all parts, Σ = {a, b}.
 - a. $\{w \mid w \text{ has at least three a's and at least two b's}\}$
 - Ab. $\{w \mid w \text{ has exactly two a's and at least two b's}\}$
 - c. $\{w \mid w \text{ has an even number of a's and one or two b's}\}$
 - ^Ad. $\{w \mid w \text{ has an even number of a's and each a is followed by at least one b}\}$
 - e. $\{w | w \text{ starts with an } \mathbf{a} \text{ and has at most one } \mathbf{b}\}$
 - f. $\{w \mid w \text{ has an odd number of a's and ends with a b}\}$
 - g. $\{w \mid w \text{ has even length and an odd number of } a's\}$

1.4 (b) The following are DFAs for the two languages $\{w | w \text{ has exactly two a's} \}$ and $\{w | w \text{ has at least two b's} \}$.

Now find product machine.

Combining them using the intersection construction gives the following DFA.

• This can be minimized. {Some states are redundant}.

NONDETERMINISM

- Useful concept, has great impact on ToC.
- DFA is deterministic: every step of a computation follows in a unique way from the preceding step.
 - When the machine is in a given state, and upon reading the next input symbol, we know deterministically what would be the next state.
 - Only one next state.
 - No choice !!

NONDETERMINISM

- In a nondeterministic machine, several choices may exist for the next state at any point.
- Nondeterminism is a generalization of determinism.

FIGURE 1.27 The nondeterministic finite automaton N_1

FIGURE 1.27 The nondeterministic finite automaton N_1

- More than one arrow from from q_1 on symbol 1.
- No arrow at all from q_3 on 0.
- There is & over an arrow!

How does an NFA compute?

PIGURE 1.28

Deterministic and nondeterministic computations with an accepting branch

FIGURE **1.27**

The nondeterministic finite automaton N_1

FIGURE 1.29 The computation of N_1 on input 010110

FIGURE 1.27 The nondeterministic finite automaton N_1

What is the language accepted by this NFA?

FIGURE 1.27 The nondeterministic finite automaton N_1

 It accepts all strings that contain either 101 or 11 as a substring.

- Constructing NFAs is sometimes easier than constructing DFAs.
 - Later we see that every NFA can be converted into an equivalent DFA.

Let A be the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not). The following four-state NFA N_2 recognizes A.

- Building DFA for this is possible, but difficult.
- Try this.

But NFA is easy to build.

EXAMPLE 1.30

Let A be the language consisting of all strings over $\{0,1\}$ containing a 1 in the third position from the end (e.g., 000100 is in A but 0011 is not). The following four-state NFA N_2 recognizes A.

FIGURE 1.31 The NFA N_2 recognizing A

DFA for A

A DFA recognizing A

See number of states and complexity!

Formal definition of NFA

We use Σ_{ε} to mean $\Sigma \cup \{\varepsilon\}$

DEFINITION 1.37

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

Recall the NFA N_1 :

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},\$$

3.
$$\delta$$
 is given as

	0	1	ε
q_1	$ \begin{cases} q_1 \\ q_3 \\ \emptyset \end{cases} $	$\{q_1,q_2\}$	Ø
q_1 q_2 q_3 q_4	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	Ø,

4. q_1 is the start state, and

5.
$$F = \{q_4\}.$$

The formal definition of computation for an NFA is similar to that for a DFA. Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and w a string over the alphabet Σ . Then we say that N accepts w if we can write w as $w = y_1 y_2 \cdots y_m$, where each y_i is a member of Σ_{ε} and a sequence of states r_0, r_1, \ldots, r_m exists in Q with three conditions:

- 1. $r_0 = q_0$,
- 2. $r_{i+1} \in \delta(r_i, y_{i+1})$, for i = 0, ..., m-1, and
- 3. $r_m \in F$.

Equivalence of NFAs and DFAs

 We say two machines are equivalent if they recognize the same language.

THEOREM 1.39 ------

Every nondeterministic finite automaton has an equivalent deterministic finite automaton.

Proof

- Proof by construction.
 - We build a equal DFA for the given NFA

Let $N = (Q, \Sigma, \delta, q_0, F)$ be the NFA recognizing some language A. We construct a DFA $M = (Q', \Sigma, \delta', q_0', F')$ recognizing A.

• First, for understanding purpose, we assume that there are no edges with £ transitions.

Let $N=(Q,\Sigma,\delta,q_0,F)$ be the NFA recognizing some language A. We construct a DFA $M=(Q',\Sigma,\delta',q_0',F')$ recognizing A.

- 1. $Q' = \mathcal{P}(Q)$. Every state of M is a set of states of N. Recall that $\mathcal{P}(Q)$ is the set of subsets of Q.
- **2.** For $R \in Q'$ and $a \in \Sigma$, let $\delta'(R, a) = \{q \in Q | q \in \delta(r, a) \text{ for some } r \in R\}$.

$$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a).$$

- q₀' = {q₀}.
 M starts in the state corresponding to the collection containing just the start state of N.
- 4. $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$. The machine M accepts if one of the possible states that N could be in at this point is an accept state.

Can you convert the following

What is the language accepted by this?

Now, considering & arrows

 For this purpose, we define E-CLOSURE of a set of states R.

```
Formally, for R \subseteq Q let
```

 $E(R) = \{q | q \text{ can be reached from } R \text{ by traveling along } 0 \text{ or more } \varepsilon \text{ arrows} \}.$

• E(R) is ϵ -CLOSURE of R.

Then the transition is defined as,

$$\delta'(R, a) = \{ q \in Q | q \in E(\delta(r, a)) \text{ for some } r \in R \}.$$

Now the start state of the DFA should be

$$q_0' = E(\{q_0\})$$

Example

FIGURE 1.42 The NFA N_4

All possible states of the DFA. (to be constructed; Final states are shown)

- Now we need to add edges, and
- identify the initial state.

FIGURE 1.43 A DFA D that is equivalent to the NFA N_4

- But, some states are not reachable!
- Simplification can remove this.

FIGURE 1.43 A DFA D that is equivalent to the NFA N_4

FIGURE **1.44**DFA *D* after removing unnecessary states

Exercise

Convert the following NFAs to equivalent DFAs.

(Problem Source: Sipser's book exercise problem 1.16)

Exercise

- 1.7 Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts, the alphabet is {0,1}.
 - ^Aa. The language $\{w | w \text{ ends with 00}\}$ with three states
 - d. The language {0} with two states
 - g. The language $\{\varepsilon\}$ with one state
 - h. The language 0* with one state
- Can you convert each of above NFAs into a corresponding DFA.