## Funktionentheone Tutorium 14

- - (ii) Die Kreise  $k_1$  und  $k_2$  lassen sich durch eine Möbiustransformation in zwei (im euklidischen Sinne) konzentrische Kreise überführen.

Hinweis: Verwenden Sie (i) und bewegen Sie p und q geeignet.

(iii) Sind  $D,D'\subset\mathbb{C}$  offene Scheiben, so daß  $\overline{D}'\subset D$ , so ist das Gebiet  $D-\overline{D}'$  biholomorph zu einem Ringgebiet.



hyperbolische Kreistaschel durch pl q elliptische Kreistaschel nu p & q



C\ (h, i b2) = C\ (p(h,) U p(h2)) Homomophimus Zusaumedonjshouponeden -> Zusaumahaysh. einfach Homelyd - einfact Homelyd DID - Ruggeliet = 1. (i) Die holomorphe 1-Form dz auf  $\mathbb C$  hat in  $\infty$  einen zweifachen Pol. (ii) Für meromorphe 1-Formen auf  $\overline{\mathbb{C}}$  übertrifft die Anzahl der Polstellen die Anzahl

der Nullstellen, jeweils mit Vielfachheit gezählt, um 2. (i) · €rinnering: G ⊆ C Gebriet,

M(G) = & meromophe G = C } Polstellemenge E⊆G obeg<sup>in G</sup> Z diohert f:GIE -> C

· F = Riemanusche Hache, a.h. F = UU. Meromorphe Differentialform  $\omega$  and F  $= \omega = \{ \omega, \}, \qquad \omega : \mathcal{U}.$ wj: Uj → C

meromorph ( Werdedery (U,) believing)

nerousple  $(dh. \ \omega_{1} \ e^{-1} \ \in \mathcal{U}(e_{1}(u_{1})))$   $\omega_{1} \cdot q_{1}^{-1} = (\omega_{1} \circ q_{1}^{-1}) \cdot \frac{d}{dt} (q_{1} \circ q_{1}^{-1}(t))$   $u_{2} \cdot q_{1}^{-1} = (u_{1} \circ q_{1}^{-1}) \cdot \frac{d}{dt} (q_{1} \circ q_{1}^{-1}(t))$ f meromorph and F ( $f \in \mathcal{M}(F)$ )

(:(=)  $f|_{\mathcal{U}_{j}}$  meromorph)  $df := \sqrt[q]{\frac{d}{dt}} \left( f \cdot \varphi^{-1} \right) \cdot \varphi$ fall vg° G-1 einer Pol/NSI.

L(F)

= 1/1 w = {w, }, lat even Pol/ Hillstelle n∈U, E(F):= Veltorraum des mesomophem 1-Formen (ELF) it l(F)-eindineusio-el) (Eigntlich sehen alle WE E(F) and wie h(F) [Lanothe, Remanusche Flächer, pp. 134] Be we  $F = P^1 = \overline{C}$ e. : C\quiz → C (z:1) -> 2 x, · €\{0} → 0, (1:2)かと

als vurovuophe Flot and 
$$\overline{C}$$

$$= -\frac{1}{2}z$$
leat even Pol ter o
$$4c_{1}(\infty)$$

$$= d(\frac{1}{z}) = -\frac{1}{z^{2}}dz$$

$$= d(\frac{1}{z}) = -\frac{1}{z^{2}}dz$$

$$= \frac{1}{z^{2}}dz$$
(ii) Meromorphe 1-Formen
$$fdz, f\in \mathcal{M}(\overline{C})$$
aus des Ublewy:
$$f \text{ ist valual}, f = \overline{Q}, P, Q \text{ Polynome}$$

$$ord(f; \infty) = -dagP + degQ = :-degf$$
(6.13)

# Wullsteller - # Potsteller wor 
$$f|_{\mathcal{C}} =$$

$$= \deg P - \deg Q = \deg f$$

$$K_{1}^{*} (f d_{2}) = f(\frac{1}{2}) d(\frac{1}{2})$$

$$= -\frac{1}{2^{2}} f(\frac{1}{2})$$
ord =  $2$  ord =  $-\deg f$ 

(i) Zwei Ringgebiete  $A_{r_1,R_1}(z_1)$  und  $A_{r_2,R_2}(z_2)$  mit Radien  $0 < r_j < R_j < +\infty$  sind genau dann biholomorph, wenn ihre Radienverhältnisse gleich sind,  $R_1/r_1 = R_2/r_2$ . (ii) Jede biholomorphe Abbildung dieser Ringgebiete ist durch eine Möbiustransfor-

mation gegeben.  $R_1/r_1 = R_1/r_1$ 

r, < 12-2,1 < R, =)



$$f(z) = \frac{R_2}{R_1}(z - z_1) + z_2$$

$$z = \frac{R_2}{R_1} (z - z_1) + z_2$$

(f(2)-z2) < R2

 $\widetilde{\mathcal{J}}$ :  $A_{1,R_{1}}$  (0)  $\xrightarrow{\Xi}$   $A_{1,R_{1}}$  (2<sub>1</sub>)  $\xrightarrow{\$}$   $A_{1,R_{2}}$  (2)  $\xrightarrow{\Xi}$   $A_{1,R_{2}}$  (0) R= { ZEC / 121=13  $\tilde{g}^{-1}(\mathcal{K}) \in A_{1,\tilde{R}_{1}}(0)$  ist kompalit stelige Put  $S := dist \left( \tilde{g}^{-1}(K), C \setminus A_{1,R_1} \sim (0) \right) > 0$ \*hought algorithms  $\Rightarrow A_{1,178}(0) \subseteq A_{1,R_{1}}(0) \setminus \widehat{g}^{-1}(k)$ g(A<sub>1,1+8</sub>(0)) ⊆ A<sub>1, R2</sub>(0) \ L Tould. A1, (0) 11 Av, R2 (0)  $\widetilde{g}(A_{1,1+8}(0)) \subseteq A_{r,\widetilde{R_{2}}}(0)$ ~) entre g durch z p R2/2(2)

The series 
$$G(A_{1,1+\delta}(0)) \subseteq A_{1,1}(0)$$
.

The series  $G(A_{1,1+\delta}(0)) \subseteq A_{1,1+\delta}(0)$ .

The series  $G(A_{1,1+\delta}(0)) \subseteq G(A_{1,1+\delta}(0)$ .

The series  $G(A_{1,1+\delta}(0)) \subseteq G(A_{1,1+\delta}(0))$ .

The series  $G(A_{1,1+$ 

Li: 
$$Z \mapsto log | \widetilde{g}(\widetilde{z})| - \frac{log \widetilde{R}_2}{log \widetilde{R}_1^2} | log | \widetilde{z}|$$

Ideal Re (You ( $\widetilde{g}(\widetilde{z})$ ))

Loop Ley

It hamoiste and  $A_1 \widetilde{R}_1(0)$ ,

 $d_1(z) = 0$  and  $dA_1 \widetilde{R}_1(0)$ ,

 $d_1(z) = 0$  and  $dA_1 \widetilde{R}_1(0)$ .

Distributed the first translation of  $d$  and  $d$ 

$$\Rightarrow \quad \tilde{g}(z) = C z^{\alpha} \quad C \in \mathbb{C}^{\times}$$

$$\implies \alpha = 1 \qquad \implies \widehat{R_2} = \widehat{R_3} .$$
 § injectiv

g injeturo  
(soust setze 
$$\ddot{g} = Mobiustromat.$$
  
 $V-te Wurzelle ein) => g Mobiustro.
(=) (ii)$ 

- Bestimmen Sie die Laurent-Entwicklungen der folgenden Funktionen auf den angegebenen Ringgebieten:
  - (a)  $f(z) = \frac{1}{(z-c)^n}$  für  $n \in \mathbb{N}$  und  $c \in \mathbb{C}^*$  auf  $A_{0,|c|}(0)$  und  $A_{|c|,+\infty}(0)$

(a) 
$$f(z) = \frac{1}{(z-c)^n}$$
 für  $n \in \mathbb{N}$  und  $c \in \mathbb{C}^*$  auf  $A_{0,|c|}(0)$  und  $A_{|c|,+\infty}(0)$   
(b)  $f(z) = \frac{1}{z(z-1)(z-2)}$  auf  $A_{0,1}(0)$ ,  $A_{1,2}(0)$  und  $A_{2,+\infty}(0)$   
(c)  $f(z) = \frac{4z-z^2}{(z^2-4)(z+1)}$  auf  $A_{1,2}(0)$ ,  $A_{2,+\infty}(0)$  und  $A_{0,1}(-1)$ 

(c) Partial bruch terleguy:  

$$f(2) = \frac{4z - z^2}{(z^2 - 4)(z + 1)} = \frac{A}{z - 2} + \frac{B}{z + 2} + \frac{C}{z + 1}$$

$$A = \frac{1}{3}, \quad B = -3, \quad C = \frac{5}{3}.$$

$$\frac{1}{(2)^{2}} = \frac{1}{(2^{2} - 4)(1 + 1)} = \frac{1}{2 - 2} + \frac{1}{2 + 1}$$

$$A = \frac{1}{3}, \quad B = -3, \quad C = \frac{5}{3}.$$

$$Auf \quad A_{1,2}(0), \quad \frac{1}{2 + 2} = \frac{\pm 1}{2} \frac{1}{1 - (\frac{2}{1 + 2})} = \frac{\pm 1}{2} \frac{1}{1 - (\frac{2}{1 + 2})}$$

$$= \frac{\pm 1}{2} \sum_{k=0}^{\infty} (\frac{1}{1 - 2})^{k} = \pm \sum_{k=0$$

$$= \pm \frac{1}{2} \sum_{k=0}^{\infty} (-\frac{1}{2})^{k} + 2^{k} = \pm \sum_{k=0}^{\infty} (-1)^{k} + 2^{k}$$

$$= \pm \frac{1}{2} \sum_{k=0}^{\infty} (-2)^{k} = \pm \sum_{k=-\infty}^{\infty} (-1)^{k+1} + 2^{k}$$

$$= \pm \frac{1}{2} \sum_{k=0}^{\infty} (-2)^{k} = \pm \sum_{k=-\infty}^{\infty} (-1)^{k+1} + 2^{k}$$

 $\int_{-\infty}^{\infty} \frac{dx}{(a+bx^2)^n} dx,$ 

a,670, n31

(b)

 $f(z) = \frac{1}{3} \left( -\sum_{k=0}^{\infty} 2^{k-1} z^{k} \right) - 3\sum_{k=0}^{\infty} (-1)^{k} 2^{k-1} z^{k}$   $+ 5 \sum_{k=-\infty}^{\infty} (-1)^{k+1} z^{k}$ 

(c) (i) 
$$\int_{0}^{\infty} \frac{\log x}{(x^{2}+1)\sqrt{x}} dx$$
(ii) 
$$\int_{0}^{\infty} \frac{\log (x^{2}+1)}{x^{2}+1} dx$$
Hinneis: Fair den Hempthing Log &  $x \in \mathbb{R}_{20}$ 
gilt:  $\operatorname{Log}(1+x) + \operatorname{Log}(i-x) =$ 

$$= \log (x^{2}+1) + i\pi$$
(d) 
$$\int_{0}^{\infty} e^{-x^{2}} dx$$

$$\lim_{x \to \infty} \frac{e^{-x^{2}}}{x^{2}} dx$$

$$\lim_{x \to \infty} \frac{e^{-x^{2}}}{x^{2}} dx$$

$$\lim_{x \to \infty} \frac{e^{-x^{2}}}{x^{2}} dx$$
extern folgoder Varion:  $y = y_{1} \times y_{2} \times y_{3} \times y_{4}$ 

$$\lim_{x \to \infty} \frac{y_{2}}{x^{2}} dx$$

$$\lim_{x \to \infty} \frac{e^{-x^{2}}}{x^{2}} dx$$

2 nutre Renoditatet von g.