U F <u>m</u> G

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Física Prof. Nelson Yokomizo

Relatividade Geral

Data de entrega: **02/10/2020** Enviar para: **trg.ufmg@gmail.com**

Avaliação 2

Exercício 1. [15pt] Considere a seguinte curva no espaço Euclidiano \mathbb{R}^2 :

$$\alpha(\lambda) = (e^{\lambda} \cos \lambda, e^{\lambda} \sin \lambda).$$

Tomando $\lambda = 0$, vemos que a curva passa pelo ponto p = (1,0). Seja $f : \mathbb{R}^2 \to \mathbb{R}$ a função definida por $f(x,y) = \sqrt{x^2 + y^2}$.

- a) Obtenha o vetor tangente à curva em função do parâmetro λ . Calcule os seus componentes no ponto p. Esboce a curva e represente sua tangente no ponto p.
 - b) Determine o diferencial df da função f.
- c) Calcule a derivada direcional da função f no ponto p na direção do vetor tangente à curva α .

Exercício 2. [15pt] A métrica de \mathbb{R}^2 em coordenadas polares é dada por:

$$ds^2 = dr^2 + r^2 d\theta^2,$$

onde

$$x = r \cos \theta$$
, $y = r \sin \theta$,

e x,y são coordenadas canônicas nas quais $ds^2 = dx^2 + dy^2$. Denote $z^1 = r$ e $z^2 = \theta$. Os vetores coordenados associados ao sistema de coordenadas polares são descritos na base de vetores coordenados canônicos através de:

$$e_1 \equiv \partial_r = (\cos \theta, \sin \theta), \qquad e_2 \equiv \partial_\theta = (-r \sin \theta, r \cos \theta).$$

Definindo os símbolos $\tilde{\Gamma}^i_{jk}$ através de:

$$\frac{\partial e_i}{\partial z^j} = \tilde{\Gamma}_{ij}^k e_k \,,$$

determine todos os coeficientes $\tilde{\Gamma}^k_{ij}$, i,j,k=1,2. Como esses símbolos se comparam aos símbolos de Christoffel Γ^i_{jk} da conexão associada à métrica? (Não é preciso calculá-los.)

Exercício 3. [30pt] A métrica do espaço de de Sitter bidimensional é dada por:

$$ds^2 = -dt^2 + e^{2Ht}dx^2.$$

onde H > 0 é uma constante.

a) Mostre que os símbolos de Christoffel não nulos da conexão associada a essa métrica são dados por:

$$\Gamma_{11}^0 = He^{2Ht}, \qquad \Gamma_{01}^1 = \Gamma_{10}^1 = H.$$

.

- b) Determine todos os componentes não nulos do tensor de curvatura de Riemann $R_{\rho\sigma\mu\nu}$. Use as simetrias do tensor de curvatura para justificar quais são os componentes não nulos e determinar as relações entre eles.
 - c) Calcule o tensor de Ricci e o escalar de curvatura.
 - d) Construa a equação geodésica. Verifique que a seguinte curva é uma geodésica:

$$t(\lambda) = \frac{1}{H} \ln \lambda$$
, $x(\lambda) = -\frac{1}{H\lambda}$, $\lambda > 0$.

Exercício 4. [20pt] O tensor energia-momento de um fluido perfeito é definido em um espaço qualquer como

$$T^{\mu\nu} = (\rho + p)U^{\mu}U^{\nu} + pg^{\mu\nu},$$

onde ρ é a densidade de energia e p a pressão do fluido. A condição de conservação de energia é expressa por

$$\nabla_{\mu}T^{\mu\nu} = 0.$$

Considere o espaço de de Sitter bidimensional descrito no exercício anterior e um fluido com quadrivelocidade $U^{\mu} = (1,0)$. O tensor de energia-momento assume então a forma:

$$T^{\mu\nu} = \begin{pmatrix} \rho & 0\\ 0 & e^{-2Ht} p \end{pmatrix} \,,$$

onde o índice μ indica a linha e o índice ν indica a coluna do componente $T^{\mu\nu}$ na matriz. Além disso, considere que o fluido satisfaz a equação de estado $p=w\rho$, onde w é uma constante. (Os símbolos de Christoffel descritos no exercício 3 podem ser usados para a resolução deste exercício.)

a) Impondo a condição de conservação de energia, mostre que

$$\partial_t \rho + H \rho (1+w) = 0, \qquad \partial_x \rho = 0.$$

b) Determine a evolução temporal da densidade de energia $\rho(t)$ para os casos w = -1 e w = 1/3. Tome como condição inicial: $\rho(0) = \rho_0$.

Exercício 5. [20pt] Considere um espaço-tempo tridimensional com métrica

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}d\theta^{2}.$$

Com a identificação $x^0=t, \ x^1=r, \ x^2=\theta,$ os símbolos de Christoffel não nulos são dados por:

$$\begin{split} \Gamma^0_{01} &= \Gamma^0_{10} = \frac{GM}{r(r-2GM)}\,, \\ \Gamma^1_{00} &= GM\frac{(r-2GM)}{r^3}\,, \quad \Gamma^1_{11} = -GM\frac{1}{r(r-2GM)}\,, \quad \Gamma^1_{22} = -(r-2GM)\,, \\ \Gamma^2_{12} &= \Gamma^2_{21} = \frac{1}{r}\,. \end{split}$$

- a) Construa os três componentes da equação geodésica.
- b) Considere uma curva restrita a um raio r constante. Escreva os componentes da equação geodésica sob a condição de raio constante. Mostre que

$$t' = \frac{dt}{d\lambda} \ e \ \theta' = \frac{d\theta}{d\lambda}$$

são constantes.

c) Considere o caso de uma geodésica circular tipo luz. Mostre que nesse caso r=3GM.

Data de entrega: 02/10/2020

Enviar para: trg.ufmg@gmail.com