∞ Exercice 116.

Dans chacun des cas suivants, vérifier que la fonction f est une solution de l'équation différentielle (E) sur $\mathbb R$:

1.
$$f : x \mapsto 3x^2 - 5x + 9$$
; $(E) : y' = 6x - 5$.

2.
$$f : x \mapsto 1 - e^{-2x+1}; (E) : y' = 2e^{-2x+1}.$$

●∞ Exercice 117.

La fonction g, définie sur \mathbb{R} par $g(x) = \frac{e^x}{e^x + 1}$ est solution de l'équation différentielle y' = f.

- 1. Déterminer la fonction f.
- 2. Écrire toutes les primitives de la fonction f sur \mathbb{R} .
- 3. En déduire la fonction h telle que h' = f et h(0) = 0.

●○○ Exercice 118.

Un mobile subit un mouvement rectiligne uniformément accéléré

d'accélération $a=1,5 \text{ m.s}^{-2}$. La vitesse du mobile au temps $t \ge 0$ (t en secondes), est v(t), en m.s⁻¹, et sa position est donnée par x(t), en mètres, avec x(0)=0.

- 1. Sachant que la vitesse initiale du mobile est 2 m.s^{-1} , exprimer v(t) en fonction de t.
- 2. En déduire x(t) en fonction de t.

∞ Exercice 119.

Dans chacun des cas suivants, déterminer une primitive de la fonction f sur $\mathbb R$:

1.
$$f(x) = x^2 - 3x + 7$$

2.
$$f(x) = x^6 + 3x^5 - x^4$$

3.
$$f(x) = 0.1x^4 + \frac{x^2}{10} - \frac{x}{100}$$

• co Exercice 120.

Dans chacun des cas suivants, déterminer une primitive de la fonction f sur $]0; +\infty[$:

1.
$$f(x) = \frac{1}{x} + \frac{1}{x^3}$$

2.
$$f(x) = \frac{1}{2x} + \frac{x}{2}$$

3.
$$f(x) = \frac{5}{x^4} - \frac{3x^2}{2} + \frac{1}{7}$$

• ∞ Exercice 121.

On considère les fonctions f et F définies sur $\mathbb R$ par :

$$f(x) = (-x^2 + 2x + 1)e^{-x}$$
 et $F(x) = (x^2 - 1)e^{-x}$.

- 1. Vérifier que F est une primitive de f sur \mathbb{R} .
- 2. En déduire la primitive G de f telle que G(0) = 5.

••o Exercice 122.

Soit la fonction f définie sur \mathbb{R} par $f(x) = xe^x$.

1. Déterminer les valeurs de a et b pour que la fonction F définie sur \mathbb{R} par $F(x) = (ax + b)e^x$ soit une primitive de f sur \mathbb{R} .

2. En déduire l'expression de la primitive de f s'annulant en 1.

• co Exercice 123.

Résoudre sur $\mathbb R$ les équations différentielles suivantes :

- 1. y' = 3y
- 2. y' + 2y = 0
- 3. 2y' = y
- 4. $\frac{y}{5} = y'$

●○○ Exercice 124.

1. Résoudre sur \mathbb{R} l'équation différentielle (E) :

$$y' = 2023y$$
.

2. Déterminer la solution de f de l'équation (E) telle que f(0) = 2024.

$\bullet \circ \circ$ Exercice 125.

On considère l'équation différentielle :

(E):
$$y' = -\frac{1}{2}y + 3$$
.

- 1. Donner la seule solution constante sur \mathbb{R} de (E).
- 2. En déduire toutes les solutions de (E) sur ${\mathbb R}$

$\bullet \circ \circ$ Exercice 126.

Résoudre sur $\mathbb R$ les équations différentielles suivantes :

1.
$$y' = -2y + 5$$

2.
$$y' = y - 3$$

3.
$$2y' + 7y = 6$$

4.
$$3y' - 6y = 1$$

●○○ Exercice 127.

Dans chacun des cas suivants, déterminer la solution f sur $\mathbb R$ de l'équation différentielle (E) vérifiant la condition initiale donnée :

1.
$$y' = 5y - 2$$
 et $f(0) = -1$.

2.
$$y' = -5y + 4$$
 et $f(1) = 0$.

3.
$$y' = -1$$
 et $f(2) = 1$.

••o Exercice 128.

On considère la fonction f définie sur \mathbb{R} par $f(x) = xe^x$ et l'équation différentielle :

$$(E) : y' = y + e^x.$$

- 1. Vérifier que la fonction f est une solution particulière de (E).
- 2. En déduire la seule solution g de l'équation (E) telle que g(2) = 5.

••• Exercice 129.

On cherche à modéliser l'évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat, en fonction de l'année.

Soit g(x) le nombre, exprimé en millions, de tels foyers l'année x.

On pose x=0 en 2005, g(0)=1 et g est une solution, qui ne s'annule pas sur $[0\ ;\ +\infty[,\ de\ l'équation\ différentielle$

(E) ;
$$y' = \frac{1}{20}y(10 - y)$$
.

- 1. On considère une fonction y qui ne s'annule pas sur $[0 ; +\infty[$ et on pose $z=\frac{1}{y}.$
 - (a) Montrer que y est solution de (E) si et seulement si z est solution de l'équation différentielle :

(E₁) :
$$z' = -\frac{1}{2}z + \frac{1}{20}$$
.

- (b) Résoudre l'équation (E_1) et en déduire les solutions de l'équation (E).
- 2. Montrer que g est définie sur $[0; +\infty[$ par :

$$g(x) = \frac{10}{9e^{-\frac{1}{2}x} + 1}.$$

- 3. Étudier les variations de g sur $[0; +\infty[$.
- 4. Calculer la limite de g en $+\infty$ et interpréter le résultat.
- 5. En quelle année le nombre de foyers possédant un tel équipement dépassera-t-il 5 millions?

••• Exercice 130.

La conservation d'une variété de fruits nécessite de les placer, après la récolte et avant le stockage, dans un tunnel refroidissant à air pulsé.

On s'intéresse à l'évolution de la température du fruit en fonction du temps.

À l'instant t=0, les fruits, dont la température est de 24 °C, sont placés dans le tunnel où l'air pulsé est à 2 °C.

On considère la fonction f définie sur $[0; +\infty[$ qui à tout instant t, exprimé en heures, associe la température d'un fruit, exprimée en °C.

On admet que f est la solution de l'équation différentielle : y' + 0, 61y = 1, 22 avec f(0) = 24.

- 1. Résoudre l'équation différentielle y' + 0,61y = 1,22 où y est une fonction dérivable sur $[0; +\infty[$.
- 2. En déduire que pour tout t de $[0; +\infty[$, $f(t) = 2 + 22e^{-0.61t}$.

La courbe représentative de f, notée \mathcal{C} , est donnée ci-contre.

- 3. Calculer la limite de f(t) quand t tend vers $+\infty$. Interpréter graphiquement ce résultat pour la courbe représentative de f.
- 4. Par expérience, on observe que la température d'un fruit :

- décroît;
- tend à se stabiliser à la température du tunnel où l'air pulsé est à 2 °C.

La fonction f fournit-elle un modèle en accord avec ces observations?

- 5. Déterminer graphiquement en faisant apparaître les traits de construction utiles :
 - (a) la température d'un fruit au bout de 4 heures;
 - (b) au bout de combien de temps la température d'un fruit aura diminué de moitié par rapport à la température initiale.
- 6. On considère que la vitesse de refroidissement est satisfaisante lorsque la température d'un fruit baisse de $\frac{7}{8}$ en moins de 6 heures. Peut-on considérer que la vitesse de refroidissement est satisfaisante?

