Rank-21 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 = 0$$

General information

Number of lines	7
Number of points	7
Number of singular points	3
Number of Eckardt points	7
Number of double points	0
Number of single points	0
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{7}
Type of lines on points	3^{7}

Singular Points

The surface has 3 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

$$1: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

$$2: P_{12} = \mathbf{P}(0,0,1,1) = \mathbf{P}(0,0,1,1)$$

The 7 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \mathbf{Pl}(0, 0, 1, 0, 0, 1)_{22}$$

$$\ell_{1} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{34} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_{1}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{25} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{25} = \mathbf{Pl}(0, 1, 1, 0, 0, 1)_{24}$$

$$\ell_{3} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{13} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{13} = \mathbf{Pl}(0, 0, 0, 1, 1, 0)_{15}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0, 0, 1, 1, 1, 1)_{32}$$

$$\ell_{5} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{27} = \mathbf{Pl}(0, 1, 0, 1, 1, 0)_{17}$$

$$\ell_{6} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{26} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{26} = \mathbf{Pl}(0, 1, 1, 1, 1, 1)_{34}$$

Rank of lines: (11, 34, 25, 13, 12, 27, 26)

Rank of points on Klein quadric: (22, 1, 24, 15, 32, 17, 34)

Eckardt Points

The surface has 7 Eckardt points:

 $0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0), T = -1$

 $1: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1), T = -1$

 $2: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1), T = 13$

 $3: P_5 = \mathbf{P}(1, 1, 0, 0) = \mathbf{P}(1, 1, 0, 0), T = 13$

 $4: P_8 = \mathbf{P}(1, 1, 1, 0) = \mathbf{P}(1, 1, 1, 0), T = 13$

 $5: P_{11} = \mathbf{P}(1, 1, 0, 1) = \mathbf{P}(1, 1, 0, 1), T = 13$

 $6: P_{12} = \mathbf{P}(0, 0, 1, 1) = \mathbf{P}(0, 0, 1, 1). T = -1$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 0 single points:

The single points on the surface are:

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

	0123456
$\overline{0}$	0111111
1	1011111
2	1101111
3	1110111
4	1111011
5	1111101
6	$\begin{array}{c} 3 & 3 & 3 & 3 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_2	P_2	P_5	P_5	P_8	P_8

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_2	P_2	P_3	P_{12}	P_3	P_{12}

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3	ℓ_4	ℓ_5	ℓ_6
in point	P_2	P_2	P_{11}	P_4	P_4	P_{11}

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_6
in point	P_5	P_3	P_{11}	P_5	P_3	P_{11}

Line 4 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_5	P_{12}	P_4	P_5	P_4	P_{12}

Line 5 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_6
in point	P_8	P_3	P_4	P_3	P_4	P_8

Line 6 intersects

Line	ℓ_0	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5
in point	P_8	P_{12}	P_{11}	P_{11}	P_{12}	P_8

3

The surface has 7 points:

The points on the surface are:

 $\begin{array}{l} 0: \ P_2 = (0,0,1,0) \\ 1: \ P_3 = (0,0,0,1) \\ 2: \ P_4 = (1,1,1,1) \end{array}$

 $3: P_5 = (1, 1, 0, 0)$ $4: P_8 = (1, 1, 1, 0)$ $5: P_{11} = (1, 1, 0, 1)$

 $6: P_{12} = (0, 0, 1, 1)$