Autómatas y Lenguajes Formales Tarea 5

Alumnos:

Torres Partida Karen Larissa Altamirano Niño Luis Enrique

1 de mayo de 2020

1. Proporcione gramáticas regulares que correspondan a los autómatas:

La gramática regular correspondiente es:

•
$$V = \{1, 2, 3, 4, 5\}$$

•
$$T = \{a, b\}$$

•
$$S = \{1\}$$

•
$$P = \begin{cases} 1 & \to & a2|b3 \\ 2 & \to & a3|b5 \\ 3 & \to & a4|b3 \\ 4 & \to & a3|b5 \\ 5 & \to & a2|b5|\varepsilon \end{cases}$$

(b) La gramática regular correspondiente es:

•
$$V = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

$$\bullet \ T = \{a, b\}$$

•
$$S = \{q_0\}$$

$$\bullet \ P = \begin{cases} q_0 & \to & aq_1|bq_2 \\ q_1 & \to & aq_3|bq_4|\varepsilon \\ q_2 & \to & aq_4|bq_3|\varepsilon \\ q_3 & \to & aq_5|bq_5 \\ q_4 & \to & aq_5|bq_5|\varepsilon \\ q_5 & \to & aq_5|bq_5|\varepsilon \end{cases}$$

2. Construya un autómata finito que reconozca el lenguaje generado por cada una de las gramáticas regulares G_1 y G_2 cuyas producciones aparecen abajo.

$$\begin{array}{cccc} G_1: & & & & \\ S & \rightarrow & aA|bC \\ A & \rightarrow & aD|bB \\ B & \rightarrow & aB|bB \\ C & \rightarrow & aB|bB|\varepsilon \\ D & \rightarrow & aA|bE \\ E & \rightarrow & aA|bC \end{array}$$

El autómata resultante es:

$$\begin{array}{ccc} G_2: \\ S & \rightarrow & aA|bC \\ A & \rightarrow & aS|bB \\ B & \rightarrow & aC|bA \\ C & \rightarrow & aB|bS|\varepsilon \end{array}$$

El autómata resultante es:

3. Obtenga la Forma Normal de Chomsky de las siguientes gramáticas

 G_3 :

 $S \rightarrow ASB|ab$

 $A \rightarrow aAS|a|\varepsilon$

 $B \rightarrow SbS|A|bb$

Paso 1 Eliminar de la gramática anterior de producciones- ε , producciones unitarias y variables inútiles.

(a) Eliminaremos las producciones- ε

Primero identificaremos las variables anulables.

Base Etiquetamos A como anulable

Inducción Las variables que resultan anulables ejecutando los pasos de inducción son: $\{A, B\}$ **Término** Ya no hay más variables anulables, éstas son: $\{A, B\}$.

2

Ahora podemos eliminar las producciones- ε , lo que resulta en:

$$S \rightarrow ASB|AS|SB|S|ab$$

$$A \rightarrow aAS|aS|a$$

$$B \rightarrow SbS|A|bb$$

(b) Eliminaremos las producciones unitarias.

Dado que la producciones- ε ya están eliminadas, podemos ver que:

$$unitaria_S = \{S\}$$

 $unitaria_A = \{A\}$
 $unitaria_B = \{B, A\}$

Siguiendo el algoritmo llegamos a:

$$S \rightarrow ASB|AS|SB|ab$$

$$A \rightarrow aAS|aS|a$$

$$B \rightarrow SbS|bb|aAS|aS|a$$

(c) Eliminaremos las variables inútiles.

 ${f Paso}\ {f 1}$ Comenzaremos eleminando las variables no generadoras.

Base Las variables etiquetadas son $\{A, B, S\}$.

Inducción Los pasos de la inducción no generaron un cambio.

Término Por lo tanto, ninguna variable se puede eliminar.

Paso 2 Continuaremos eliminando las variables no alcanzables.

Base Etiquetamos S como alcanzable.

Inducción Los pasos de inducción etiquetan las siguientes variables: $\{S, A, B\}$

Término Por lo tanto, ninguna variable se puede eliminar.

Paso 2 Eliminar el lado derecho mixto.

Entonces agregamos $V_a \to a$ y $V_b \to b$ y las reemplazamos en las producciones de la gramática.

$$S \rightarrow ASB|AS|SB|V_aV_b$$

$$A \rightarrow V_aAS|V_aS|a$$

$$B \rightarrow SV_bS|V_bV_b|V_aAS|V_aS|a$$

$$V_a \rightarrow a$$

$$V_b \rightarrow b$$

Paso 3 Factorizar las producciones largas

$$S \rightarrow AX|AS|SB|V_aV_b$$

$$A \rightarrow V_aY|V_aS|a$$

$$B \rightarrow SZ|V_bV_b|V_aY|V_aS|a$$

$$X \rightarrow SB$$

$$Y \rightarrow AS$$

$$Z \rightarrow V_bS$$

$$V_a \rightarrow a$$

$$V_b \rightarrow b$$

Con esto terminamos de obtiener la Forma Normal de Chomsky.

 G_4 :

$$S \rightarrow AS|a$$

$$A \rightarrow SA|b$$

Paso 1 Eliminar de la gramática anterior de producciones- ε , producciones unitarias y variables inútiles.

(a) Eliminaremos las producciones- ε

Primero identificaremos las variables anulables.

Base Ninguna variable se puede etiquetar como anulable.

Inducción Los pasos de la inducción no pueden generar un conjunto.

Término Por lo tanto, ninguna variable es anulable.

Por lo tanto el conjunto de producciones se mantiene:

$$S \to AS|a$$

$$A \to SA|b$$

(b) Eliminaremos las producciones unitarias.

Dado que la producciones- ε ya están eliminadas, podemos ver que:

$$unitaria_S = \{S\}$$

$$unitaria_A = \{A\}$$

Siguiendo el algoritmo no se genera un cambio, por lo que aún tenemos:

$$S \to AS|a$$

$$A \to SA|b$$

(c) Eliminaremos las variables inútiles.

Paso 1 Comenzaremos eleminando las variables no generadoras.

Base Las variables etiquetadas son $\{A, S\}$.

Inducción Los pasos de de la inducción no generaron un cambio.

Término Por lo tanto, ninguna variable se puede eliminar.

Paso 2 Continuaremos eliminando las variables no alcanzables.

Base Etiquetamos S como alcanzable.

Inducción Los pasos de inducción etiquetan las siguientes variables: $\{S, A\}$

Término Por lo tanto, ninguna variable se puede eliminar.

Paso 2 Eliminar el lado derecho mixto.

Podemos observar que la gramática no necesita nuevas producciones, por lo que no es necesario agregarlas.

$$S \to AS|a$$

$$A \to SA|b$$

Paso 3 Factorizar las producciones largas

$$S \to AS|a$$

$$A \to SA|b$$

Ninguna producción se pudo factorizar.

Con esto terminamos de obtiener la Forma Normal de Chomsky.

4. Ejecute el algoritmo CKY y determine si las cadenas $w_1 = bba$ y $w_2 = abaab$ pueden ser generadas por la gramática con producciones:

$$\begin{split} S &\to AB|SS|a \\ A &\to BS|CD|b \\ B &\to DD|b \\ C &\to DE|a|b \\ D &\to a \\ E &\to SS \end{split}$$

(a) $w_1 = bba$

La cadena se puede separar tal que: $\begin{array}{c|c} |b|b|a| \\ 0 & 1 & 2 & 3 \end{array}$

Entonces se genera la siguiente tabla:

Como $S \in T_{0,3}$ entonces w_1 puede ser generada por la gramática.

(b) $w_2 = abaab$

La cadena se puede separar tal que: $\begin{array}{c|c} |a|b|a|a|b| \\ 0 & 1 & 2 & 3 & 4 & 5 \end{array}$

Entonces se genera la siguiente tabla:

0					
S,C,D	1				
Ø	A,B,C	2			
Ø	A	S,C,D	3		
S,E	S,A	S,E,A,B	S,C,D	4	
S,E	A,S	S	Ø	A,B,C	5

Como $S \in T_{0,5}$ entonces w_2 puede ser generada por la gramática.