Thema: Cauchy'scher Integralsatz, Stammfunktion

Abgabe: Donnerstag, 21. November 2019

Besprechung: Dienstag, 26. November 2019

Aufgabe 1. Für welche der folgenden Funktionen existiert eine Stammfunktion auf dem gesamten angegebenen Definitionsbereich? Geben Sie entweder eine an, oder begründen Sie, warum keine solche existiert.

(a)
$$f: \mathbb{C}\backslash\{\pm i\}\to\mathbb{C}\;,\quad z\mapsto\frac{1}{z^2+1},$$

(b)
$$f:\{z\in\mathbb{C}\mid\Re(z)>0\}\to\mathbb{C}\;,\quad z\mapsto\frac{1}{z^2+1},$$

(c)
$$g:\mathbb{C}\backslash\{0\}\to\mathbb{C}\;,\quad z\mapsto\frac{1}{z^2}-\frac{1}{z^3}.$$

Aufgabe 2. Sei $C = \partial B_1(0) \subset \mathbb{C}$ der Einheitskreis, $U \subset \mathbb{C}$ offen, mit $\overline{B_1(0)} \subset U$, und $f: U \to \mathbb{C}$ eine holomorphe Funktion.

(a) Man drücke folgendes Integral in Abhängigkeit von Werten von f und f' aus:

$$\int_{C} \left(2 + z + \frac{1}{z} \right) \frac{f(z)}{z} dz.$$

(b) Damit leite man den Wert von

$$\int_0^{2\pi} f(e^{it})\cos^2(\frac{t}{2})dt$$

ab (in Abhängigkeit von f(0) und f'(0)).

Aufgabe 3. Man berechne die Integrale

(a)
$$\int_{|z|=1} \frac{1}{z(z+2)} dz,$$

(b)
$$\int_{|z|=3} \frac{1}{z(z+2)} dz,$$

(c)
$$\int_{|z-2|=1} \frac{1}{z(z+2)} dz.$$

Aufgabe 4. Man berechne das Integral

$$\int_{\gamma} \overline{z} dz,$$

wobei γ der Pfad (in \mathbb{R}^2) vom Punkt (1, 1) zum Punkt (2, 4) entlang der Parabel $y=x^2$ ist.