Versuch 101

Das Trägheitsmoment

 $\label{tabea} Tabea\ Hacheney \\ tabea.hacheney @tu-dortmund.de$

Bastian Schuchardt bastian.schuchardt@tu-dortmund.de

Durchführung: 16.11.2021 Abgabe: 23.11.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	The	rie :	3
	1.1	Das Trägheitsmoment und Drehmoment	3
		1.1.1 Das Trägheitsmoment	3
		1.1.2 Das Drehmoment	3
	1.2	Weitere nützliche Formeln	4
		1.2.1 Trägheitsmoment Zylinder	4
		1.2.2 Trägheitsmoment Kugel	5
			5
2	Dur	hführung	6
3	Aus	vertung	7
	3.1	Winkelrichtgröße	7
	3.2	Eigenträgheitsmoment	7
	3.3	Trägheitsmoment des Zylinders	9
		3.3.1 Theoretische Werte	9
		3.3.2 Experimentelle Werte	9
	3.4	Trägheitsmoment der Kugel	0
		3.4.1 Theoretische Werte	0
		3.4.2 Experimentelle Werte	0
	3.5	Maße des Körpers	1
	3.6	Trägheitsmoment der Puppe in Körperhaltung 1	2
		3.6.1 Theoretische Werte	2
		3.6.2 Experimentelle Werte	2
	3.7	Trägheitsmoment der Puppe in Körperhaltung 2	3
		3.7.1 Theoretische Werte	3
		3.7.2 Experimentelle Werte	3
4	Disk	ussion 1	3

1 Theorie

1.1 Das Trägheitsmoment und Drehmoment

Bei einer geradlinigen Bewegung wird eine Änderung der Bahn durch die Kraft $\vec{F} = m \cdot \vec{a}$ bewirkt. Diese Kraft hängt von der Masse m ab. Diese Masse ist die Trägheit eines starren Körpers gegenüber der Änderung der Geschwindigkeit.

Analog dazu gibt es bei der Rotation das Drehmoment und das Trägheitsmoment. Das Trägheitsmoment gibt also (wie die Masse bei der geradlinigen Bewegung) an, wie träge ein Körper gegenüber einer Änderung der Winkelgeschwindigkeit ist. Im Folgenden werden wir das Formelzeichen I für das Trägheitsmoment, und M für das Drehmoment verwenden.

1.1.1 Das Trägheitsmoment

Allgemein wird das Gesamtträgheitsmoment eines ausgedehnten Körpers folgendermaßen bestimmt:

$$I = \sum_{i}^{n} r_i^2 \cdot m_i \tag{1}$$

 \boldsymbol{r}_i ist hierbei der Abstand der Massenelemente m_i von der Drehachse. Für infinitisimale Massen integrieren wir:

$$I = \int r^2 \mathrm{d}m \tag{2}$$

Aus den Formeln folgt bereits, dass das Trägheitsmoment I im Gegensatz zu der Masse m nicht in kg angegeben wird, sondern in kg·m².

Das Trägheitsmoment wird immer bezüglich einer Drehachse angegeben. Falls diese Achse nicht durch den Schwerpunkt des Körpers verläuft, sondern parallel mit einem Abstand a, so kann man mithilfe des Steinerschen Satzes das Trägheitsmoment bezüglich der verschobenen Achse berechnen:

$$I = I_S + m \cdot a^2 \tag{3}$$

 I_S ist das Trägheitsmoment durch den Schwerpunkt des Körpers, m die Masse des Körpers und a, wie oben erwähnt, ist der Abstand der beiden Achsen.

1.1.2 Das Drehmoment

Das Drehmoment ist das Analogon zu der Kraft bei einer geradlinigen Bewegung und wird so bestimmt:

$$\vec{M} = \vec{F} \times \vec{r} \text{ bzw. } M = F \cdot r \cdot \sin(\varphi)$$
 (4)

Wenn der Körper durch das Drehmoment aus seiner Ruhelage ausgelenkt wird, führt das bei schwingungsfähigen Systemen dazu, dass ein rücktreibendes Drehmoment (z.B. durch eine Feder) bewirkt wird und der Körper anfängt harmonisch zu schwingen. Die Schwingungdsdauer ist gegeben durch:

$$T = 2\pi \sqrt{\frac{I}{D}} \tag{5}$$

Dabei ist D die Winkelrichtgröße und I das Gesamtträgheitsmoment. Mit der Winkelrichtgröße lässt sich auch das Drehmoment beschreiben: $M = D \cdot \varphi$.

1.2 Weitere nützliche Formeln

Formel 5 ist Teil der Lösung der DGL 2-ter Ordnung (von der Bewegungsgleichung eines harmonischen Oszillators) und gilt nur für kleine Winkel, da zur Lösung die Kleinwinkelnäherung verwendet wurde. Die Formel lässt sich zudem umstellen zum Trägheitsmoment:

$$\Leftrightarrow T^2 = 4\pi^2 \cdot \frac{I}{D}$$

$$\Leftrightarrow I = \frac{T^2 \cdot D}{4\pi^2} \tag{6}$$

1.2.1 Trägheitsmoment Zylinder

Das Trägheitsmoment eines Zylinders mit Radius r, Höhe h und dessen Drehachse durch den Schwerpunkt und senkrecht zur Bodenfläche steht (stehend), lässt sich folgendermaßen mithilfe Formel 2 berechnen:

$$I_{Z,z} = \int r^2 dm = \iiint_V r_\perp^2 \rho(r) dV = \frac{M}{V} \int_{\frac{-h}{2}}^{\frac{h}{2}} \int_0^R \int_0^{2\pi} r^3 d\varphi dr dz$$

$$\Leftrightarrow I_{Z,z} = \frac{MR^2}{2}$$
(7)

Das Trägheitsmoment eines Zylinders mit Radius R, Höhe h und dessen Drehachse durch den Schwerpunkt und parallel zur Bodenfläche steht (liegend), lässt sich folgendermaßen: Zunächst benutzen wir die Relationen $I_{Z,x} = I_{Z,y}$ und $I_{Z,x} = \frac{1}{2} \cdot (I_{Z,x} + I_{Z,y})$. Daraus folgt:

$$\begin{split} I_{Z,x} &= \frac{1}{2} \cdot \left(\int_M (y^2 + z^2) \mathrm{d}m + \int_M (x^2 + z^2) \mathrm{d}m \right) = \frac{1}{2} \int_M (x^2 + y^2) \mathrm{d}m + \int_M z^2 \mathrm{d}m \\ \Leftrightarrow I_{Z,x} &= \frac{1}{2} I_Z, z + \int_M z^2 \mathrm{d}m \underset{(7)}{=} \frac{MR^2}{4} + \frac{M}{V} \int_{\frac{-h}{2}}^{\frac{h}{2}} \int_0^R \int_0^{2\pi} z^2 \cdot r \mathrm{d}\varphi \mathrm{d}r \mathrm{d}z \end{split}$$

$$\Leftrightarrow I_{Z,x} = \frac{MR^2}{4} + \frac{M}{R^2 \cdot \pi \cdot h} \frac{1}{2} \cdot 2\pi \cdot R^2 \cdot \frac{1}{3} \cdot \left(\frac{h^3}{2} - \frac{-h^3}{2}\right) = \frac{MR^2}{4} + \frac{M}{h} \cdot \frac{1}{3} \cdot \left(\frac{h^3}{8} + \frac{h^3}{8}\right)$$

$$\Leftrightarrow I_{Z,x} = \frac{MR^2}{4} + \frac{Mh^2}{12}$$
(8)

1.2.2 Trägheitsmoment Kugel

Das Trägheitsmoment einer Kugel mit Radius R und Höhe h lässt sich wie folgt mit Formel 2 berechnen:

$$I_{K,x=y=z} = \int r^2 \mathrm{d}m \underset{I_{K,z}}{=} \iiint_V (x^2 + y^2) \rho(r) \mathrm{d}V$$

$$\Leftrightarrow I_K = \frac{M}{V} \int_0^{2\pi} \int_0^R \int_{-1}^1 r^4 \underbrace{\sin^2(\theta)}_{1-\cos^2(\theta)} \mathrm{d}(\cos(\theta)) \mathrm{d}r \mathrm{d}\varphi = \frac{M}{\frac{3}{4}\pi R^3} \cdot 2\pi \cdot \left(\frac{1}{5}R^5\right) \cdot \frac{3}{4}$$

$$\Leftrightarrow I_K = \frac{2MR^2}{5} \tag{9}$$

1.2.3 Trägheitsmoment langer Stab

Das Trägheitsmoment eines Stabes der Masse M und der Länge a lässt sich wie folgt mit Formel 2 berechnen:

$$\begin{split} I_{St,z} &= \int x^2 \mathrm{d}m = \int_{\frac{-a}{2}}^{\frac{a}{2}} x^2 \rho(x) \mathrm{d}x = \frac{M}{a} \cdot \frac{1}{3} \left(\left(\frac{a}{2} \right)^3 - \left(\frac{-a}{2} \right)^3 \right) \\ &\Leftrightarrow I_{St,z} = \frac{M}{3a} \cdot \frac{a^3}{4} \\ &\Leftrightarrow I_{St,z} = \frac{M \cdot a^2}{12} \end{split} \tag{10}$$

2 Durchführung

Auf einer zweifach mit einem Rahmen verbundenen Drillachse werden unterschiedliche Körper befestigt. Die Drillachse ist durch eine Feder mit dem Rahmen verbunden. Um später Trägheitsmomente zu bestimmen, muss die Federkonstante und das Eigenträgheitsmoment der Drillachse bestimmt werden.

Die Federkonstante D wird durch Ansetzen einer Federwage an einem Stab, der als masselos angenommen werden kann, in einem Abstand r zur Drillachse bestimmt. Für Zehn Auslenkungen ϕ der Stange wird eine Kraft gemessen.

Das Eigenträgheitsmoment I_D wird durch Anbringen von zwei Zylindern im gleichen Abstand von der Drillachse an der Stange gemessen. Dabei wird die Stange durch Auslenkung in Schwingung gebracht und mit einer Stoppuhr die Schwingungsdauer gemessen. Im Anschluss wird das Trägheitsmoment eines Zylinders und einer Kugel bestimmt. Dies geschieht wieder durch Auslenkung der Drillachse, so dass eine Schwingungsdauer gemessen werden kann.

Nach dem gleichen Prinzip wird das Trägheitsmoment einer Holzfigur in zwei Positionen bestimmt. In der ersten Position sind die Beine der Figur ausgestreckt und in der zweiten Position sind die Arme ausgestreckt.

3 Auswertung

3.1 Winkelrichtgröße

Die Winkelrichtgröße wird durch die Formel

$$D = \frac{F \cdot r}{\phi} \tag{11}$$

bestimmt. Die verwendeten Werte sind in Tabelle 1 angegeben.

Tabelle 1: Messdaten zur Bestimmung der Winkelrichtgröße D

F/N	$\phi/^{\circ}$	r/m	D/Nm
0,1	30	0,1	0,000333
$0,\!26$	60	0,1	0,000433
0,41	90	0,1	0,000456
$0,\!56$	120	0,1	0,000467
0,72	150	0,1	0,000480
0,85	180	0,1	0,000472
$0,\!48$	180	0,2	0,000533
$0,\!55$	240	0,2	0,000458
0,63	270	0,2	0,000467
0,69	300	0,2	0,000460

Sowohl der Mittelwert, als auch die Standardabweichung wurden mit Python bestimmt. Daraus ergibt sich der gemittelte Wert

$$D = (0.000456 \pm 0.000048) \,\mathrm{Nm}.$$

3.2 Eigenträgheitsmoment

Um das Eigenträgheitsmoment der Konstruktion zu bestimmen, messen wir die Schwingunngsdauern unter verschiedenen Abstände a zur Drehachse der beiden identischen Masse m_G unter dem selben Auslenkungswinkel φ . Die beiden Gewichte besitzen die Masse $m_G=0,2611$ kg, die Höhe h=0,0203 m und den Radius r=0,0225 m, mit den Messunsicherheiten $\Delta m=0,0001$ kg und $\Delta r({\rm bzw.h})=0,0001$ m.

Um nun das Eigenträgheitsmoment zu errechnen wird die Tatsache verwendet, dass das Trägheitsmoment der Gewichte bestimmt und das Gesamtträgheitsmoment (I_G und I_D) gemessen werden kann. Es gilt $I_{Ges} = I_D + I_G$. Mithilfe von Formel 1 und 8 ergibt sich Folgendes:

$$I_{Ges} = I_D + 2 \cdot \left(\frac{m_G R_G^2}{4} + \frac{m_G h_G^2}{12} \right) + 2 \cdot m_G \cdot a^2 \tag{12}$$

Die Formel 12 wird nun in Formel 6 eingesetzt:

Tabelle 2: Messdaten zur Bestimmung des Eigenträgheitsmoment ${\cal I}_D$

a/m	T/s^{-1}	a^2/m^2	T^2/s^{-2}
0,050	2,92	0,003	8,53
0,075	3,19	0,006	10,18
0,100	3,92	0,010	$15,\!37$
$0,\!125$	$4,\!32$	0,016	18,66
$0,\!150$	$4,\!88$	0,023	$23,\!81$
$0,\!175$	$5,\!58$	0,031	$31,\!14$
0,200	$5,\!86$	0,040	$34,\!34$
$0,\!225$	$6,\!65$	0,051	$44,\!22$
$0,\!250$	$7{,}14$	0,063	50,98
0,275	7,74	0,076	59,91

$$T^{2} = 4\pi^{2} \cdot \frac{I_{D} + 2 \cdot \left(\frac{m_{G}R_{G}^{2}}{4} + \frac{m_{G}h_{G}^{2}}{12}\right) + 2 \cdot m_{G} \cdot a^{2}}{D}$$

$$\Leftrightarrow T^{2} = \frac{8\pi^{2} \cdot m_{G}}{D} \cdot a^{2} + \frac{4\pi^{2} \cdot I_{D}}{D} + \frac{8\pi^{2} \cdot \left(\frac{m_{G}R_{G}^{2}}{4} + \frac{m_{G}h_{G}^{2}}{12}\right)}{D}$$
(13)

Formel 13 besitzt die Form y = mx + b. Wobei

$$y = T^2, m = \frac{8\pi^2 \cdot m_G}{D}, x = a^2 \text{ und } b = \frac{4\pi^2 \cdot I_D}{D} + \frac{8\pi^2 \cdot \left(\frac{m_G R_G^2}{4} + \frac{m_G h_G^2}{12}\right)}{D}$$

ist. Es wird nun T^2 gegen a^2 aufgetragen (Abbildung 1) und per linearer Regression m und b bestimmt.

Die lineare Regression wurde mit Python durchgeführt und ergibt für die Gerade y=mx+b die Werte

$$m = (701,1 \pm 15,8) \frac{1}{\text{s}^2\text{m}^2}$$

 $b = (7,6 \pm 0,6) \frac{1}{\text{s}^2}.$

Dies wird nun nach I_D umgestellt:

$$b = \frac{4\pi^2 \cdot I_D}{D} + \frac{8\pi^2 \cdot \left(\frac{m_G R_G^2}{4} + \frac{m_G h_G^2}{12}\right)}{D}$$

$$\Leftrightarrow I_D = \frac{D \cdot b - 8\pi^2 \cdot \left(\frac{m_G R_G^2}{4} + \frac{m_G h_G^2}{12}\right)}{4\pi^2}$$

$$\Leftrightarrow I_D = \frac{D \cdot b}{4\pi^2} - 2 \cdot \left(\frac{m_G R_G^2}{4} + \frac{m_G h_G^2}{12}\right)$$
(14)

Abbildung 1: Messung des Eigenträgheitsmoments

3.3 Trägheitsmoment des Zylinders

3.3.1 Theoretische Werte

Der Zylinder hat einen Radius von $r_{Zyl}=0.0494\,\mathrm{m}$ und eine Höhe von $h_{Zyl}=0.10\,\mathrm{m}$ und eine Masse von $m_{Zyl}=0.3678\,\mathrm{kg}$. Die Messunsicherheiten der Waage beträgt $\Delta m=0.0001\,\mathrm{kg}$ und die des Nonius' $\Delta r=0.0001\,\mathrm{m}$.

Das Trägheitsmoment wird durch Formel 7 bestimmt und der Fehler wird mit Gaußscher-Fehlerfortpflanzung bestimmt. Daraus ergibt sich

$$I_{Th,Zyl} = 4.5 \cdot 10^{-4} \,\mathrm{kg \cdot m^2}$$
 (15)

3.3.2 Experimentelle Werte

Der Zylinder wird auf der Drillachse um den Winkel $\phi_{Zyl}=90^\circ$ ausgelenkt und die Zeit nach fünf Schwingungen gestoppt. Durch teilen der Zeitmessungen Z_{Zyl} durch fünf ergeben sich die Schwingungsdauern T_{Zyl} . Diese sind in Tabelle 3 zu finden.

Der Mittelwert und die Abweichung wurden wieder mit Python berechnet. Aus den Daten ergibt sich

$$T_{Zyl} = (0.82 \pm 0.12) \,\mathrm{s}.$$

Tabelle 3: Messdaten der Schwingungsdauer des Zylinders

Z_{Zyl}/s	T_{Zyl}/s
3,94	0,79
3,75	0,75
$4,\!16$	0,83
5,78	1,16
3,69	0,74
3,97	0,79
$3,\!85$	0,77
3,84	0,77
$4,\!12$	0,82
3,88	0,78

Gaußsche-Fehlerforpflanzung ergibt in Formel 6

$$\Delta I_K = \sqrt{\left(\frac{TD}{4\pi^2}\right)^2 \Delta T^2}$$

$$\Delta I_K = \left(\frac{TD}{4\pi^2}\right) \cdot \Delta T. \tag{16}$$

Aus Formel 6 und Formel 16 erhält man

$$I_{Zul} = (7.77 \pm 1.14) \cdot 10^{-6} \,\mathrm{mkg}^2.$$

3.4 Trägheitsmoment der Kugel

3.4.1 Theoretische Werte

Die Kugel hat einen Radius von $r_{Kugel}=0.0726\,\mathrm{m}$ und eine Masse $m_{Kugel}=1.1727\,\mathrm{kg}$. Die Messunsicherheiten der Waage beträgt $\Delta m=0.0001\,\mathrm{kg}$ und die des Nonius' $\Delta r=0.0001\,\mathrm{m}$. Aus Formel 9 und der Gaußschen-Fehlerfortpflanzung ergibt sich

$$I_{Th,K} = 24.7 \cdot 10^{-4} \, \mathrm{kg} \cdot \mathrm{m}^2.$$

3.4.2 Experimentelle Werte

Die Kugel wird auf der Drillachse um $\phi=90^\circ$ ausgelenkt und die Zeit nach drei Schwingungen gestoppt. Die Schwingungsdauern T_{Kugel} erhält man durch teilen der Zeitmessungen Z_{Kugel} durch drei. Die Zeitmessungen und berechneten Schwingungsdauern sind in Tabelle 4 zu finden.

Der Mittelwert und die Abweichug wurden mit Hilfe von Python bestimmt. Aus den Werten erhält man

$$T_{Kugel} = (1.88 \pm 0.05) \,\mathrm{s.}$$
 (17)

Tabelle 4: Messdaten der Schwingungsdauer der Kugel

Z_{Kugel}/s	T_{Kugel}/s
5,94	1,98
5,71	1,90
5,62	1,87
5,47	1,82
$5,\!63$	1,88
$5,\!47$	1,82
5,75	1,92
$5,\!47$	1,82
5,66	1,89
5,57	1,86

Aus Formel 6 und Formel 16 erhält man

$$I_{Zyl} = (4.08 \pm 0.11) \cdot 10^{-6} \, \mathrm{mkg}^2.$$

3.5 Maße des Körpers

Der Körper wird durch sechs Zylinder angenähert. Er besteht aus einem Oberkörper, einem Kopf und jeweils zwei Armen und Beinen. Die Abmessungen lassen sich in Tabelle 5 finden. Außerdem hat der Körper eine Masse von $m_{Puppe}=0.1683\,\mathrm{kg}$ Die Standardabweichung

Tabelle 5: Maße des Körpers

$r_{Ober\"{o}rper}/m$	r_{Beine}/m	r_{Arme}/m	r_{Kopf}/m
0,0203	0,0091	0,0063	0,0109
0,0160	0,0084	0,0071	0,0145
0,0199	0,0084	0,0066	0,0117
0,0104	0,0065	0,0073	0,0110
0,0194			
0,0167			

und die Mittelwerte wurden mit Python berechnet.

$$\begin{split} r_{Ober\"{o}rper} &= (0.0171 \pm 0.0034) \, \mathrm{m} \\ r_{Beine} &= (0.0081 \pm 0.0010) \, \mathrm{m} \\ r_{Arme} &= (0.0068 \pm 0.0004) \, \mathrm{m} \\ r_{Kopf} &= (0.0120 \pm 0.0015) \, \mathrm{m} \end{split}$$

Die gemessen Höhen der Zylinder sind als

$$\begin{split} h_{Ober\"{o}rper} &= 0{,}0991\,\mathrm{m} \\ h_{Beine} &= 0{,}1502\,\mathrm{m} \\ h_{Arme} &= 0{,}1129\,\mathrm{m} \\ h_{Kopf} &= 0{,}0519\,\mathrm{m} \end{split}$$

angegeben.

3.6 Trägheitsmoment der Puppe in Körperhaltung 1

3.6.1 Theoretische Werte

3.6.2 Experimentelle Werte

Die Puppe wird in der ersten Körperhaltung um $\phi=90^\circ$ ausgelenkt und die Zeit Z_{K1} nach drei Schwingungen gemessen. Die Schwingungsdauern T_{K1} erhält man durch teilen der Zeitmessung durch drei. Die Zeitmessungen und Schwingunsdauern sind in Tabelle 6 angegeben.

Tabelle 6: Messdaten der Schwingunsdauer des Körpers in der ersten Position

Z_{K1}/s	T_{K1}/s
2,75	0,92
2,66	0,89
2,66	0,89
2,90	0,97
3,16	1,05
$2,\!56$	0,85
$2,\!47$	0,82
2,75	0,92
2,53	0,84
2,78	0,93

Mit Hilfe von Python lässt sich der Mittelwert und die Abweichung bestimmen. Aus den Messdaten erhält man

$$T_{K1} = (0.91 \pm 0.06) \,\mathrm{s}.$$

Mit Hilfe von Formel 6 und Formel 16 lässt sich das Trägheitsmoment bestimmen als

$$I_{K1} = (9.57 \pm 0.63) \cdot 10^{-6} \, \mathrm{mkg^2}.$$

3.7 Trägheitsmoment der Puppe in Körperhaltung 2

3.7.1 Theoretische Werte

3.7.2 Experimentelle Werte

Die Puppe wurde in der zweiten Körperhaltung um $\phi=90^\circ$ ausgelenkt und die Zeit Z_{K2} wurde nach drei Schwingungen gestoppt. Die Schwingungsdauer T_{K2} wird durch teilen von Z_{K2} durch drei berechnet. Die Zeitmessungen und Schwingungdsdauern sind in Tabelle 7 zu finden.

Tabelle 7: Messdaten der Schwingugnsdauer des Körpers in der zweiten Position

Z_{K2}/s	T_{K2}/s
1,91	0,64
1,75	$0,\!58$
1,75	$0,\!58$
1,84	0,61
1,68	$0,\!56$
1,84	0,61
1,81	0,60
1,66	$0,\!55$
1,84	0,61
1,81	0,60

Sowohl der Mittelwert, als auch die Standarabweichung wurde mit Python bestimmt.

$$T_{K2} = (0.59 \pm 0.03) \,\mathrm{s}.$$

Mit Hilfe von Formel 6 und Formel 16 lässt sich das Trägheitsmoment bestimmen als

$$I_{K2} = (4.02 \pm 0.20) \cdot 10^{-6} \,\mathrm{mkg}^2.$$

4 Diskussion