Information Theory Notes

Charles Zheng and Yuval Benjamini

November 18, 2015

These are preliminary notes.

1 AEP for gaussian

Consider an infinite sequence of paired random vectors X^n, Y^n for $n = 1, 2, \ldots$, where for each $n, (X^n, Y^n)$ is jointly multivariate gaussian with mean zero and covariance

$$\operatorname{Cov}\begin{pmatrix} X^n \\ Y^n \end{pmatrix} = \Sigma^n = \begin{pmatrix} \Sigma_X^n & \Sigma_{XY}^n \\ \Sigma_{YX}^n & \Sigma_Y^n \end{pmatrix}.$$

Recall the following formulas for entropy (in bits):

$$\begin{split} H(X^n) &= \frac{1}{2} \log_2(2\pi |e\Sigma_X^n|) \\ H(Y^n) &= \frac{1}{2} \log_2(2\pi |e\Sigma_X^n|) \\ H(X^n, Y^n) &= \frac{1}{2} \log_2(2\pi |e\Sigma^n|) \end{split}$$

and for the log-2 densities:

$$\begin{split} \log p(x^n) &= -\frac{1}{2} \log_2(2\pi |\Sigma_X^n|) - \frac{\log_2 e}{2} (x^n)^T (\Sigma_X^n)^{-1} (x^n) \\ &\log p(y^n) = -\frac{1}{2} \log_2(2\pi |\Sigma_Y^n|) - \frac{\log_2 e}{2} (y^n)^T (\Sigma_Y^n)^{-1} (y^n) \\ &\log p(x^n, y^n) = -\frac{1}{2} \log_2(2\pi |\Sigma^n|) - \frac{\log_2 e}{2} (x^n, y^n)^T (\Sigma^n)^{-1} (x^n, y^n) \end{split}$$

For given n, define the set of jointly typical values $A_{\epsilon}^{(n)}$ as the set of pairs (x^n, y^n) such that

$$|-\log p(x^n) - H(X^n)| < \epsilon$$

$$|-\log p(y^n) - H(Y^n)| < \epsilon$$

$$|-\log p(x^n, y^n) - H(X^n, Y^n)| < \epsilon.$$

The standard joint AEP theorem for continuous random variables (Cover and Thomas 2006) yields the following result as a special case: **Corollary.** Suppose

$$\Sigma_X^n = \begin{pmatrix} \Sigma_X^1 & 0 & \dots & 0 \\ 0 & \Sigma_X^1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \Sigma_X^1 \end{pmatrix}$$

$$\Sigma_Y^n = \begin{pmatrix} \Sigma_Y^1 & 0 & \dots & 0 \\ 0 & \Sigma_Y^1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \Sigma_Y^1 \end{pmatrix}$$

and

$$\Sigma_{XY}^{n} = \begin{pmatrix} \Sigma_{XY}^{1} & 0 & \dots & 0 \\ 0 & \Sigma_{XY}^{1} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \Sigma_{XY}^{1} \end{pmatrix}.$$

Then:

- $\Pr[(X^n, Y^n) \in A_{\epsilon}^{(n)}] \to 1 \text{ as } n \to \infty.$
- $Vol(A_{\epsilon}^{(n)}) \leq 2^{nH(X^1,Y^1)+\epsilon}$ for all n.
- If $(\tilde{X}^n, \tilde{Y}^n)$ are multivariate normal with covariance $\begin{pmatrix} \Sigma_X & 0 \\ 0 & \Sigma_Y \end{pmatrix}$ then

$$\Pr[(\tilde{X}^n, \tilde{Y}^n) \in A^{(n)}] < 2^{-n(I(X^1;Y^1)-3\epsilon)}$$

Also, for sufficiently large n,

$$\Pr[(\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}] \ge (1 - \epsilon)2^{-n(I(X;Y) + 3\epsilon)}$$

We are interested generalizing the above Corollary to a broader class of sequences $\Sigma^1, \Sigma^2, \dots$

It is sufficient if

$$x^{T} \Sigma_{X}^{-1} x \to \mathbf{E}[x^{T} \Sigma_{X}^{-1} x]$$
$$y^{T} \Sigma_{Y}^{-1} y \to \mathbf{E}[y^{T} \Sigma_{Y}^{-1} y]$$
$$(x, y)^{T} \Sigma^{-1} (x, y) \to \mathbf{E}[(x, y)^{T} \Sigma^{-1} (x, y)]$$

2 Classification capacity

Suppose we draw $\mu_1, \ldots, \mu_K \sim N(0, I)$, and then for $i^* \sim Unif\{1, \ldots, K\}$ we draw $y^* \sim N(\mu_{i^*}, \Omega)$. We predict \hat{i} using the Bayes' rule. Let $p = \Pr[\hat{i} \neq i]$, and let $\Sigma = \Omega^{-1}$.

2.1 Fano's inequality

In finite samples,

$$\ln K \le \frac{H(p) + \frac{1}{2} \log |I + (1 + \varepsilon)\Sigma|}{1 - n}.$$

where

$$H(p) = -p \ln p - (1-p) \ln(1-p) \le -\ln 2,$$

and

$$1 + \varepsilon = \frac{\sum_{i=1}^{K} ||\mu_i||^2}{kn}$$

Note that $\frac{1}{2} \ln |I + \Sigma| = I(\mu; Y)$ for $\mu \sim N(0, I)$ and $Y \sim N(\mu, \Omega)$. In particular, for p = 1/2,

$$\ln K \le -2\ln 2 + \ln |I + (1+\varepsilon)\Sigma|$$

2.2 Fixed K formula

We make use of the error rate formula for the orthogonal constellation (Wozen-craft and Jacobs, 1965.)

Lemma. (Error rate for orthogonal constellation.) Suppose μ_1, \ldots, μ_K satisfy $\mu_i^T \mu_j = c \delta_{ij}$. Drawing $i^* \sim Unif\{1, \ldots, K\}$, let $y^* \sim N(\mu_{i^*}, \Omega)$. We predict \hat{i} using the Bayes' rule. Then

$$\Pr[\hat{i} \neq i] = g_O(c, K) = 1 - \int_{\mathbb{R}} \Phi(\sqrt{c} - z)^{K-1} d\Phi(z).$$

where Φ is the standard normal cdf.

Hence, for all sequences of covariance matrices Σ_d such that

$$\lim_{d\to\infty} \operatorname{tr}(\Sigma_d) = c$$

and also

$$\lim_{d \to \infty} \operatorname{tr}(\Sigma_d^2) = 0,$$

we have

$$\lim_{d\to\infty} \Pr[\hat{i}\neq i] = g_0(c,K)$$

due to the error rate lemma and concentration of measure.