Adaptive Information Processing **Exercises**

for Model complexity and the MDL principle

Bert de Vries and Tjalling Tjalkens Signal Processing Group

February 22, 2008

Abstract

The exercises are intended to illustrate the results and deepen your understanding. Their level is sometimes higher than expected for the exam. The mark [Hard:] indicates an exercise above the exam level.

Tjalling Tjalkens, 3 March, 2006.

Bayes and the Laplace method

1. The two envelope paradox.

See http://www.anc.ed.ac.uk/~amos/doubleswap.html for a nice paradox that can be solved using the Bayes approach. The answer is also given on the web site.

2. Consider the following integral (similar to the Beta integral)

$$F(\mu_1, \mu_2) = \int_{-\infty}^{\infty} \left(\frac{1}{1 + e^{-a}}\right)^{\mu_1} \left(\frac{e^{-a}}{1 + e^{-a}}\right)^{\mu_2} da.$$

- (a) Use Laplace's method to approximate this integral.
- (b) Use the Beta integral

$$B(\mu_1, \mu_2) = \int_0^1 p^{\mu_1 - 1} (1 - p)^{\mu_2 - 1} dp = \frac{\Gamma(\mu_1) \Gamma(\mu_2)}{\Gamma(\mu_1 + \mu_2)}$$

with

$$\Gamma(x+1) = x\Gamma(x)$$
$$\Gamma(1) = 1$$
$$\Gamma(0.5) = \sqrt{\pi}$$

and compare your approximation with the actual values in the cases where $\mu_1 = \mu_2 = 0.5$ resp. $\mu_1 = \mu_2 = 1$.

Kolmogorov complexity

1. $f(x^n)$ is a Boolean function of n variables, so all x_i are binary, $x_i \in \{0, 1\}$ for i = 1, 2, ..., n, and also $f(x^n) \in \{0, 1\}$.

Give an upper bound to the $conditional\ Kolmogorov\ complexity$ of a Boolean function.

2. n_1 and n_2 are positive integers. Argue that

$$K(n_1 + n_2) \le K(n_1) + K(n_2) + c$$

Universal data compression

1. The Shannon-Fano code and Huffman code.

Consider a binary i.i.d. souce that generates $X_1, X_2, ..., X_n$ with the parameter $\theta = \Pr\{X = 1\} = 0.1$.

Compute, for n = 1, 2, 3, the expected code wordlength for the Shannon-Fano code, with lengths

$$l_C^*(x^n) = \lceil -\log_2 p(x^n) \rceil.$$

Likewise for the Huffman procedure, see lecture notes Information Theory (5K020/5JJ40).

Give your comments on this result, (and consider here the source entropy).

2. [Hard: See sheets 97-92] Show that

$$\bar{p}(x^n) < \sqrt{\frac{\pi}{2n}} e^{\frac{1}{3n}} \left(\frac{k}{n}\right)^k \left(\frac{n-k}{n}\right)^{n-k},$$

where

$$\bar{p}(x^n) = \int_0^1 (1 - \theta)^{N(0|x^n)} \theta^{N(1|x^n)} d\theta.$$

ML and MDL

1. Assume x^n are i.i.d. observations from $\mathcal{N}(\theta, 1)$, so the x_i 's are independent Gaussians with unit variance but unknown mean $\theta \in \mathbb{R}$. We test two hypothesis, $H_0: \theta = 0$ versus $H_1: \theta \neq 0$. Otherwise said, we want to choose between the models

$$\mathcal{M}_0 = {\mathcal{N}(0,1)}$$
 and $\mathcal{M}_1 = {\mathcal{N}(\theta,1)|\theta \neq 0}$

Derive that if we compute the ML probabilities for each model and then choose for the model with the largest ML probability we will never choose for \mathcal{M}_0 even if x^n was actually generated by \mathcal{M}_0 .

2. Consider this following 1th-order binary Markov source. Next to the arrow from state a to state b is written x; $\Pr\{X_i = x, S_i = b | S_{i-1} = a\}$.

- (a) Determine the probability $\Pr\{X_i = 1\}$. Hint: Compute the stationary state distribution and then marginalize $\Pr\{X_i = 1, S_{i-1} = s\}$ to obtain $\Pr\{X_i = 1\}$.
- (b) Consider an "ideal" universal data compression algorithm and we observe a sequence x^n that is typical for the source. How large must i be approximately to select the first order Markov model in stead of the memoryless model.

Hard: can you determine the number of suffix trees with maximal depth not more than D for $D=0,1,2,\ldots,10$?

Appendices (optional)

1. Using the idea of Elias show that we can find code words for the positive integers with lengths upper bounded as

$$l(n) \le \log_2 n + 2\log_2 \log_2 n + c.$$

2. Consider an alphabet \mathcal{X} and sequences of length n = 50 of symbols from this alphabet. Let $\mathcal{X} = \{0, 1, 2\}$ and let for the sequence x^n hold:

$$N(0|x^n) = 20;$$
 $N(1|x^n) = 14;$ $N(0|x^n) = 16.$

- (a) Compute the size of the type-class $T(\frac{20}{50}, \frac{14}{50}, \frac{16}{50})$.
- (b) Also compute the upper and lower bound according to theorem 6.
- 3. Prove Lemma 2 for m is even.
 - (a) Consider the requirement $\theta_i t_{i-1} = t_i \theta_i$. This condition ensures that the quadratic upperbound to the divergence is the same for both interval endpoints of $[t_{i-1}, t_i]$.

From this conclude that

$$t_i = 2\sum_{j=1}^{i} (-1)^{i-j} \theta_j$$

(b) Now take into account the boundary conditions

$$t_0 = 0; \quad t_{\frac{m}{2}} = \frac{1}{2}$$

and the requirement that θ_i increases quadratically, or

$$\theta_i = \alpha i^2$$
, for some constant α

Prove that

$$\sum_{j=1}^{i} (-1)^{i-j} j^2 = \frac{1}{2} i(i+1)$$

and use this with the conditions above to derive that

$$\alpha = \frac{2}{m(m+2)}$$

(c) Now finally derive Lemma 2 for m is even.