"信息论与编码"课程上机实验_六_报告

学院 数学学院 专业 数学与应用数学 序号 6 姓名 潘林越 鲍书恒 日期 2022/11/1

实验名称 一般线性码的编码和译码

【一、实验目的】写清楚本次上机实验要达到什么目的?

- (1) 学习求校验矩阵、标准阵列的算法;
- (2) 验证例题;
- (3) 习题编程、调试、实验报告;

【二、实验内容】要求写出具体的实验题目是什么?

(1) 根据例 1 的要求,用其他生成矩阵构造不同的线性码。

例 1 利用函数 encode 及生成矩阵
$$G = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$
 构造一个线性码,

要求分别用二进与十进制表示码字。

- (2) 用程序验证例题 2 的结果满足 $G_iH_i^T = 0$, i = 1,2,3,4,这里的 0 是 Galois 域上的零矩阵。
- (3) 求生成矩阵 G 生成的码字对应的标准阵列与伴随式译码表,要求用二进制表示,并验证准确性。 其中, (1000010)

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

【三、运行结果及其分析】

ans = GF(2) array.

练习	1			练习3
>> g:	zxxm1z1			>> stdbsslz2
0	0000	000000	0	SA =
1	0001	100011	49	8×144 char 数组
2	0010	010010	18	0000000 0100001 0101110 0001111 1011100
3	0011	110001	35	1111101 1110010 1010011 0000011 0100010
4	0100	001000	4	0101101 0001100 1011111 1111110 1110001
5	0101	101011	53	1010000 '
6	0110	011010	22	0000001 0100000 0101111 0001110 1011101
7	0111	111001	39	1111100 1110011 1010010 0000010 0100011
8	1000	000101	40	0101100 0001101 1011110 1111111 1110000
9	1001	100110	25	1010001 '
10	1010	010111	58	0000100 0100101 0101010 0001011 1011000
11	1011	110100	11	1111001 1110110 1010111 0000111 0100110
12	1100	001101	44	0101001 0001000 1011011 1111010 1110101
13	1101	101110	29	1010100 '
14	1110	011111	62	0010000 0110001 0111110 0011111 1001100
15	1111	111100	15	1101101 1100010 1000011 0010011 0110010
wt =				0111101 0011100 1001111 1101110 1100001
2				1000000 '
/+	_			0000101 0100100 0101011 0001010 1011001
练习	2			1111000 1110111 1010110 0000110 0100111

1010101

0101000 0001001 1011010 1111011 1110100

```
'0010001 0110000 0111111 0011110 1001101
Array elements =
  ()
     0
         ()
                                              1101100 1100011 1000010 0010010 0110011
     0 0
                                              0111100 0011101 1001110 1101111 1100000
  0
             0
ans = GF(2) array.
                                              1000001
                                                  0010100 0110101 0111010 0011011 1001000
Array elements =
  0
     0
         0
                                              1101001 1100110 1000111 0010111 0110110
                                              0111001 0011000 1001011 1101010 1100101
  0
      0
         0
             \cap
  0
     0
         0
             0
                                              1000100
                                                  0010101 0110100 0111011 0011010 1001001
ans = GF(2) array.
Array elements =
                                              1101000 1100111 1000110 0010110 0110111
  0
     0
                                              0111000 0011001 1001010 1101011 1100100
  0
     0
         0
                                              1000101
         0
  0
     0
                                              Single-error patterns loaded in decoding table. 4
ans = GF(2) array.
                                              rows remaining.
Array elements =
                                              2-error patterns loaded. 1 rows remaining.
  0
      0
         0
                                              3-error patterns loaded. 0 rows remaining.
      0
          0
             0
  0
  0
      0
          0
             0
                                                8×5 char 数组
                                                  '00000'
分析: 从计算结果可以看出均为零矩阵
                                                  '00001'
                                                  '10000'
                                                  '10001'
                                                  '00100'
                                                  '00101'
                                                  '10100'
                                                  '10101'
                                              分析:结果准确。
【四、实验中遇到的问题】
无
【附录: 主程序及其说明】
练习1
```

```
G=[100011;
010010;
001000;
000101];
其余代码与例1中gzxxmlz1.m相同
```

练习2

```
gf(G1)*gf(H1'),gf(G2)*gf(H2'),gf(G3)*gf(H3'),gf(G4)*gf(H4')
说明:将G1,H1,G2,H2,G3,H3,G4,H4都转换成Galois域中元素后再进行计算
```

练习3