

INTRODUCTION TO

COMPUTATIONAL TOPOLOGY

HSIEN-CHIH CHANG LECTURE 4, SEPTEMBER 23, 2021

ACKNOWLEDGEMENT

- Most of the figures today comes from
 - Jeff Erickson, One-Dimensional Computational Topology
 - Robert Ghrist, *Elementary Applied Topology*
 - Keenan Crane, Discrete differential geometry: An applied introduction

RECAP: POLYGONAL SCHEMA IS ROTATION SYSTEM

EULER'S FORMULA

LET'S FOCUS ON PLANE GRAPHS

SPANNING TREE TERMINOLOGY

-Loop

Bridge

SPANNING TREE TERMINOLOGY

Delete

Deleting an edge between differently oriented faces.

Contract

Contracting an edge between differently oriented vertices.

THE SPANNING TREE ALGORITHM

THE SPANNING TREE ALGORITHM

Computing a spanning tree of a graph.

THE SPANNING TREE ALGORITHM

```
WHATEVERFIRSTSEARCH(s):

put (\emptyset, s) in bag

while the bag is not empty

take (p, v) from the bag

if v is unmarked

mark v

parent(v) \leftarrow p

for each edge vw

put (v, w) into the bag

(**)
```


WHAT HAPPENED IN THE DUAL?

SPANNING TRZZ (G) for any edge e n.G:

if e is a loop:

delete e.

if e is a bridge:

contract e

o.w. l'élète or contracte return all contracted edges T SPANNING TRZZ (G)

TREE-COTREE DECOMPOSITION

- Plane graph G decomposes into
 - Primal spanning tree T
 - Dual spanning cotree C

EULER'S FORMULA

[Euler 1750] [Legendre 1794] [Cayley-Listing 1861]

For any plane graph G,

$$\mathbf{V}_{\mathbf{G}} - \mathbf{E}_{\mathbf{G}} + \mathbf{F}_{\mathbf{G}} = 2$$

WHAT ABOUT SURFACE GRAPH?

SPANNING TREE

SPANNING TRZZ (G) for any edge e n G:

if e is a loop:

delete e.

if e is a bridge:

contract e

o.w.

SYSTEM OF LOOPS

HOW MANY LEFTOVER EDGES?

EULER'S FORMULA [Euler 1750] [Legendre 1794] [Cayley-Listing 1861]

For any graph G embedded on surface $\Sigma(g,r,b)$,

$$V_G - E_G + F_G = 2 - 2g - r - b$$

EULER CHARACTERISTIC IS A "COMPLETE" INVAR. OF SURFACES

PONDER.

Torus and Möbius band have the same χ ?

INTERMISSION

EULER CHARACTERISTIC IS ADDITIVE!

- $-\chi(A \cup B) = \chi(A) + \chi(B) \chi(A \cap B)$
- Watch out for open/closed

HEDGEHOG THEOREM [Poincaré 1885] [Brouwer 1912]

There is no non-vanishing continuous vector field on closed surfaces of non-zero Euler characteristics.

EULER CALCULUS PROOF

CURVATURE

CURVATURE

GAUSS-BONNET THEOREM [Gauß 1827] [Bonnet 1848]

For any surface Σ with Euler characteristic χ ,

$$\int_{\Sigma} d\kappa = 2\pi \chi$$

CURVATURE

- Curvature κ(x)

DISCRETE GAUSS-BONNET THEOREM

For any discrete surface Σ with Euler characteristic χ ,

$$\sum_{x} \kappa(x) = 2\pi \chi$$

CURVATURES CAN BE MOVED AROUND, BUT NOT REMOVED

To THINK ABOUT LATER.
Can you prove Hedgehog
Theorem using Gauss-Bonnet?

CONFIGURATION SPACE AND COMPLEX

EXAMPLE: ROBOT ARMS

EXAMPLE: ROBOT ARMS

EXAMPLE: 4-BAR LINKAGE

EXAMPLE: 4-BAR LINKAGE

EXAMPLE: SPACE OF VERTEX PAIRS

EXAMPLE: SPACE OF VERTEX PAIRS

COMPLEXES

•Gluing a bunch of simplexes together

EXTRA FEATURES

VIETORIS-RIPS COMPLEX

- Connect any two points of distance at most r
- Add all simplexes inside a clique

CLOSING Q. HOW DO WE TELL APART COMPLEXES?

CHOOSE YOUR OWN ADVENTURE:

- (A) applications of curves and surfaces: Linkage and Folding, or
- (B) behavior of closed curves dictates the shape of space