PRINCIPIOS FISICOS DE LA INFORMÁTICA GRADO DE INGENIERÍA EN INFORMÁTICA TEMA 4. Simplificación de circuitos.

1.- Calcular las intensidades en el siguiente circuito utilizando el teorema de superposición de fuentes:

Sol: 1 A, 1.5 A, 2.5 A

2.- Determinar los equivalentes Thevenin y Norton del siguiente circuito:

Sol: V_{TH} =8 V, R_{TH} =9 Ω , I_{NO} =8/9 A.

3.- Determinar el equivalente Thevenin, visto desde los puntos A y B del circuito de la siguiente figura:

Sol: V_{TH} =12.5 \dot{V} , R_{TH} =3.75 Ω

4.- Obtener el equivalente Thevenin del circuito de la siguiente figura:

Sol: V_{TH} = 0 V, R_{TH} = 55.5 Ω

- 5.- En la figura, el cuadrado representa una combinación cualquiera de fuentes de tensión e intensidad y resistencias. Se conocen los siguientes datos:
- Si la resistencia R es de 0,5 Ω la intensidad i es de 5A.
- Si la resistencia R es de 2,5 Ω la intensidad i es de 3A.

Se pide calcular el valor de la intensidad i si la resistencia R es de 5 Ω .

Sol: 2 A.

6.- Calcular el equivalente Norton del circuito de la figura entre los terminales A y B:

Sol: I_N =20 mA, R_{NO} =2.2 k Ω .

7.- En el circuito de la figura, determinar el equivalente Thevenin desde los puntos A y B:

Sol: V_{TH}=7 V, R_{TH}=2000 Ω

8.- Calcular el circuito equivalente Norton del circuito de la figura entre los terminales A y B.

Sol: R_{No}=7.5 Ω , I_{NO}= 1.6 A R_{TH}=7.5 Ω , V_{TH}= 12 V