















































### **NEURALPBC Cost Function**

$$J(\theta, x_0) = \int_0^T \ell(\phi, u^{\theta}, \theta) dt$$

 $\ell \triangleq \ell_{\text{set}}(\gamma) + \ell_{\perp}(\gamma, u) \text{ where }$ 

- $\phi$  is the flow of the equation of motion
- $\gamma$  is the closed-loop trajectory starting from  $x_0$
- *T* is the time horizon (hyperparameter)

#### **NEURALPBC Cost Function**

$$\ell \triangleq \ell_{\text{set}}(\gamma) + \ell_{\perp}(\gamma, u)$$

#### Set Distance Loss $\ell_{ m set}$

Penalizes when closed-loop trajectory  $\gamma$  under the current control law is far away from a neighborhood  $\mathcal S$  of  $x^\star$ 



$$\ell_{\text{set }}(x) = \inf_{t} \left\{ \|a - b\| : a \in \gamma(t), b \in \mathcal{S} \right\}$$

- The set S may be chosen as
  - A ball around  $x^*$
  - Estimated region of attraction
- No additional loss if any point in  $\gamma$  is in  $\mathcal S$

### **NEURALPBC Cost Function**

$$\ell \triangleq \ell_{\text{set}}(\gamma) + \ell_{\perp}(\gamma, u)$$

#### Transversal Distance Loss $\ell_{\perp}$

Measures how close  $\gamma$  is to  $\gamma^{\star}$  (expert trajectory) using transverse coordinates  $x_{\perp}$ 



- Coordinate transformation
  - $\tau \in \mathbb{R}$  a surrogate for time
  - $x_{\perp} \in \mathbb{R}^{2n-1}$  quantify how far away the current state is from  $\gamma^{\star}$
- By construction  $x_{\perp} \rightarrow 0 \Leftrightarrow \gamma = \gamma^{\star}$

$$\ell_{\perp} = x_{\perp}^{\top} Q x_{\perp} + u^{\top} R u, \ Q \succcurlyeq 0, \ R \succ 0$$

• No preferred orbit? Q=0

We need  $\partial J/\partial \theta$ , which depends ODE solutions



We need  $\partial J/\partial \theta$ , which depends ODE solutions

**Combining autodiff with numerical ODE solvers** 



We need  $\partial J/\partial \theta$ , which depends ODE solutions

- **Solvers** Combining autodiff with numerical ODE solvers
- **E** Adjoint sensitivity method: solve the adjoint problem backward in time

$$\frac{\mathrm{d}\lambda}{\mathrm{d}t} = -\lambda \frac{\partial f}{\partial x}, \quad \frac{\partial J}{\partial \theta} = \lambda(t_0) \frac{\partial f}{\partial x}$$



We need  $\partial J/\partial \theta$ , which depends ODE solutions

- **Solvers** Combining autodiff with numerical ODE solvers
- Mark Adjoint sensitivity method: solve the adjoint problem backward in time

$$\frac{\mathrm{d}\lambda}{\mathrm{d}t} = -\lambda \frac{\partial f}{\partial x}, \quad \frac{\partial J}{\partial \theta} = \lambda(t_0) \frac{\partial f}{\partial x}$$

Wish Adjoint methods + autodiff implemented in DiffEqFlux.jl

### **Robust Control Under Uncertainties**

#### **Optimal Control under System Parameter Uncertainties**

minimize 
$$J(\theta, x_0) = \int_0^T \ell\left(\phi, u^{\theta}, \theta\right) dt$$
 subject to 
$$\dot{x} = f(x, u^{\theta}; p)$$
 
$$p \sim \mathcal{N}(\hat{p}, \sigma_p)$$



### **Robust Control Under Uncertainties**

#### Optimal Control under System Parameter and Measurement Uncertainties

