HOJA DE TRABAJO No.3

Flujo Eléctrico y Ley de Gauss

1.

Una línea de carga uniforme e infinita tiene una densidad de 6.00 nC/m y está distribuida a lo largo del eje "x".

a) Considere una superficie esférica de radio 4.00 cm centrada en el origen. ¿Cuál es el flujo eléctrico (en Nm²/C) a través de esta superficie esférica?

Respuesta: $54.2 \text{ tolerancia} = \pm 0.5$ (4 puntos)

b) Utilizando la Ley de Gauss calcular el valor del campo eléctrico (en kN/C), producido por la línea de carga infinita de densidad 6.00 nC/m en un punto localizado a una distancia y= 5.00 cm, perpendicular al eje "x"

Respuesta: 2.16 tolerancia = ± 0.1 (4 puntos)

2.

La figura que se muestra es una superficie cerrada y se encuentra en una región un campo eléctrico uniforme $\vec{E}=2.5$ x 10 3 N/C (+k)

a) Calcular el flujo eléctrico (en unidades SI) a través de la superficie befc

-225

b) Calcular el flujo eléctrico (en unidades SI) a través de la superficie aefd

225

3. Una superficie esférica de 2cm de radio, tiene una densidad uniforme de (4 nC/m²). ¿cuál es el flujo eléctrico (en $\frac{N}{c}m^2$) a través de una superficie esférica concéntrica con un radio de 4cm?

a) 2.8 b) 1.7 c) 2.3 d) 4 e) 9.1

4. El flujo eléctrico en cierta región en el espacio está dado por $\vec{E} = (8\hat{\imath} + 2y\hat{\jmath})N/C$, donde y está expresada en metros. ¿Cuál es la magnitud del flujo eléctrico (en $\frac{N}{c}m^2$) a través de la cara superior del cubo que se muestra en la figura?

	L L			
a) 90	b) 6	c) 54	d) 12	e) 126

5. Un cascarón esférico aislante tiene una densidad volumétrica de carga de $\rho=5nC/m^3$ distribuida uniformemente. El cascarón tiene radios $R_1=6cm$ y $R_2=10cm$. Utilice la Ley de Gauss para calcular el campo eléctrico en r=8cm y r=15cm (8.71 $\frac{N}{c}\hat{r}$, 6.56 $\frac{N}{c}\hat{r}$)

6. Un cilindro aislante de 12cm de radio tiene una densidad uniforme de 5nC/m³.

Determine utilizando la Ley de Gauss, la magnitud del campo eléctrico (en N/C) a 5 cm del eje del cilindro.

		•	<u> </u>	
a) 25	b) 20	c) 14	d) 31	e) 34

7. Un cilindro aislante de 12cm de radio tiene una densidad uniforme de 5nC/m³. Determine utilizando la Ley de Gauss, la magnitud del campo eléctrico (en N/C) a 15 cm del eje del cilindro.

-		, ,	,		
	a) 20	b) 27	c) 16	d) 12	e) 54

8. Un trozo de styrofoam de 10g tiene una carga neta de -0.700mC y flota por encima de una gran lámina horizontal de plástico que tiene una densidad de carga uniforme en su superficie. ¿Cuál es la carga por unidad de superficie (en nC/m²) presente en la lámina de plástico?

a) +1.24	b) -2.48	c) +2.48	d)-1.24	e) NEC
			1	, , , , , , , , , , , , , , , , , , ,

9. Una carga puntual de 6 nC se coloca en el centro de un cascarón esférico conductor (radio interior 1cm; radio exterior 2 cm) el cual tiene una carga neta negativa de - 4 nC. Determine la densidad de carga resultante (en $\mu C/m^2$) en la superficie interna del cascarón conductor una vez se alcanza el equilibrio.

a) +4.8	b) -4.8	c) -9.5	d) +9.5	e) -8

- 10. La figura muestra una carga $q=+4\mu C$ dispuesta uniformemente en una esfera \underline{no} $\underline{conductora}$ de radio a=5cm y situada en el centro de una esfera hueca $\underline{conductora}$ de radio interior b=8cm y radio exterior c=10cm. La esfera hueca exterior contiene una \underline{carga} de q=-6 μC . Utilizando la ley de Gauss, encuentre la magnitud del campo eléctrico E(r)=? en las siguientes ubicaciones
- a. Dentro de la esfera E(r = 3cm) = $(8.6 \times 10^6 \frac{N}{c} \hat{r})$
- b. Dentro de la esfera hueca E(r = 9cm) = (0 N/C)
- c. Afuera de la esfera hueca $E(r = 12 \text{ cm}) = (-1.248 \times 10^6 \text{ N/C} \hat{r})$
- d. d. ¿Cuáles cargas aparecen en las superficies internas y externas de la esfera hueca?

interior =0 exterior=-6 micro total = 11.

Dos láminas de carga infinitas están separadas por una distancia de 10.0 cm, como lo muestra la figura. La lámina 1 tiene una distribución de carga superficial σ_1 = 3.00 μ C/m² y la lámina 1 tiene una distribución de carga superficial σ_2 = -5.00 μ C/m².

a) Calcular la magnitud del campo eléctrico resultante (en kN/C) en el punto "p", situado a 6.00 cm a la derecha de la lámina 1.

Respuesta: $452 \text{ tolerancia} = \pm 5 (5 \text{ puntos})$

b) Calcular la magnitud del campo eléctrico resultante (en kN/C) en el punto "po", situado a 6.00 cm a la izquierda de la lámina 1.

Respuesta: 113 tolerancia = ± 5 (5 puntos)

12.

En una condición inicial, la carga contenida en un cascarón esférico conductor de radio interno R_1 =10.0 cm y radio exterior R_2 =20.0 cm con su cavidad vacía genera un campo eléctrico de 750 N/C hacia afuera del cascarón a una distancia de 30.0 cm del centro de la esfera. Posteriormente se coloca una carga puntual de +2.00 nC en el centro de la cavidad. Determine:

- a) La carga neta del cascaron conductor en las condiciones iniciales (en nC). Respuesta: 7.50 tolerancia = ± 0.05
- b) La carga en nC en la superficie exterior del cascarón cuando se ha introducido la carga puntual en la cavidad.

 Respuesta: 9.50 tolerancia = ± 0.05
- c) El flujo eléctrico (en $\frac{N}{c}$ m^2) que atraviesa una superficie esférica de 5.00 cm de radio concéntrica con el cascarón cuando ya contiene la carga puntual en la cavidad.

Respuesta: 226 tolerancia = ± 5