Carrera de Ingeniería en Sistemas / Carrera de Computación

Carrera Computación

TALLER Nro. 1

A. DATOS INFORMATIVOS				
Asignatura:	Ciclo / Semestre:	Paralelo:		
Diseño de Circuitos	2do	A		
Docente:	Período Académico:			
Luis Darío Sinche Cueva	Abril – septiembre 2024			
Integrantes: Wagner Balcazar				

B. INFORMACIÓN GENERAL			
Unidad: 1. ANÁLISIS LÓGICA COMBINACIONAL			
Tema: Simulación de un generador de funciones en el se	oftware Proteus y Multisin.		
echa: 17 de abril 2024 Nro. horas: 2			
Objetivos:			

- Navegar sobre las herramientas de Proteus para generar y medir señales.
 - Navegar sobre las herramientas de Multisin para generar y medir señales.
 - Realizar ejemplos con herramientas de generación y medición.

Recursos y/o materiales:

- Computador.
- Material bibliográfico o recurso indicado en el EVA.

C. DESARROLLO

Instrucciones:

- El trabajo debe ser su autoría, si se detecta plagio la nota asignada será de 0/10
- Explore el software Proteus y encuentre el generador de funciones y osciloscopio en Proteus.
- Explore el software Multisin y encuentre el generador de funciones y osciloscopio en Multisin
- Conecte el generador de funciones al osciloscopio tanto en Proteus como en Multisin.
- En el generador de funciones realiza el cambio del tipo de señal: sinusoidal, cuadrada, triangular y diente de sierra. (Adjunte capturas del generador de funciones y osciloscopio).
- Variar los parámetros de amplitud en el generador de funciones y visualice los cambios en el osciloscopio. (adjunte capturas).
- Variar los parámetros de frecuencia en el generador de funciones y visualice los cambios en el osciloscopio (adjunte capturas).

× Function generator-XFG1 Waveforms ~ ~~ Signal options Frequency: Hz % Duty cycle: 50 Vp Amplitude: Offset: 0 ٧ Set rise/Fall tin Channel_A -783.691 mV -140.552 mV 643.139 mV Time 4.132 ks 4.132 ks 12.311 ms Reverse Save Ext. trigger T2-T1 Timebase Channel A Channel B Trigger Scale: 2 V/Div Scale: 50 ms/Div Scale: 50 V/Div Edge: FlaB Ext X pos.(Div): 0 Y pos.(Div): 0 Y pos.(Div): 0 Level: 0 Y/T Add B/A A/B AC 0 DC Single Normal Auto None AC 0 DC -Design1 * New Project - Proteus 8 Professional - Schematic Tran: 4.132 ks ^ **□** @ Ø a buscar. Oscilloscope-XSC1 Function generator-XFG1 × ~~ ~~ ~~ Signal options Hz Frequency: 50 % Duty cycle: 50 Amplitude: Vр Offset: 0 ٧ Set rise/Fall time Channel_A Channel B T1 ← → Reverse Common 4.074 ks 4.074 ks 2.000 V T2 ← → 2,000 V 12.311 ms 0.000 V Save T2-T1 Ext. trigger Channel A Channel B Trigger Scale: 50 ms/Div Scale: 2 V/Div Scale: 50 V/Div Edge: **F L** A B Ext Y pos.(Div): 0 Y pos.(Div): 0 X pos.(Div): 0 Level: 0 AC 0 DC Y/T Add B/A A/B AC 0 DC -Single Normal Auto None Design1 * Design1: Simulatin ra buscar.

TRABAJO EN CLASE

6		TRICIA	000	Tol	LER	#1		
Nombre: Wo		Balcazar						
1. Generador		nes						
	ador de		nes	es un	con	ponente	que	gene
		donde		vede	regi	clar 1	la for	e cuencia
	1/4	corrien	, ,					
voltaje y								
							1	
2. Oscilas copio					ispná	Live ole	digo 6	AUR AV
Un oscilose	1	endrica	sienda		,		dande	oode
paro pader	reples			graf				
7	namera	la tro		la s	97 (Foreing	30000	UOX 30
Sinusaldal, C	uadrada	9 -	Harou	37.				103.11
3. Tipos de								
·los tipo		Señales	25	10 mg	hez0	en la	9 up 5	e repre
una seña								
	nusoidal							
	enal go		Presen	to de	mo	nero de	e curve	alte
domente	es de	cir de	10	signier	ite	mane	2	
	VV	la se			porte		or indica	
Señal (vadratic						1 garive	
. Esta Ser	ial se o	ráfico	en w	tone rd	de		1	
arriba y	holato -	abajo.		U	九	Thogs	000 a	ternada

En base a los puntos anteriores determine lo siguiente:

1. Si tuviera que usar uno de los dos softwares para realizar la medición de señales, ¿Cuál usaría? Explique por qué. Yo escogería el software de proteus ya que me ofrece muchos componentes, como por ejemplo comparando al multisin en esta práctica no encontré la señal dientes de sierra por lo cual creo que proteus es más eficiente.

Equipo de trabajo de máximo de 1 personas

Conclusi	Conclusiones:			
Una vez •	erminado este taller he llegado a las siguientes conclusiones: Dentro del desarrollo de este taller ha sido practico para poder vez con los softwares de multisin como es multisin y proteus, como también los conceptos de amplitud y frecuencia, y comprender mediante la simulación. También es interesante y comprender todos los componentes que utilizamos para realizar dichas simulaciones tanto como es el generador de funciones y el osciloscopio ya que son componentes esenciales para poder representar el comportamiento de una señal.			

D. RÚBRICA DE EVALUACIÓN				
Informe de trabajo:				
Conclusiones: Redacción Originalidad y creatividad: conclusiones inéditas en base a su experiencia y objetivos planteados.				
TOTAL	2,5 ptos			

E. FIRMAS DE RESPONSABILIDAD DE LO ACTUADO		
Estudiante(s):	Firma	
Wagner Balcazar	fratty	