Written Examination on 2017-12-20

Examination

Mathematical Foundations for Software Engineering

Course code DIT022

Date: 2017-12-20
Time: 14:00-18:00
Place: Lindholmen
Teacher: Christian Berger
Michel Chaudron

Michel Chaudron Richard Torkar

Visit to exam hall: 14:30, 16:30

Questions: 6

Results: Will be posted by 2018-01-15.

Grade Limits: Pass (G) 50%, Pass with honors (VG) 90%
Allowed aids: Calculators: Casio FX-82..., Texas TI-30... and

Sharp EL-W531...

Attached appendix with formulas and tables.

Please observe the following:

- <u>DO NOT</u> write your name on any answer sheet or exam sheet write the anonymized code instead.
- Write in legible English (unreadable responses mean no points!).
- Motivate your answers and clearly state any assumptions made.
- Start each task on a new sheet!
- Write only on one side of the paper!
- Only answers written on the answer sheets will be graded, do not write on the exam sheets!
- Before handing in your exam, number and sort the sheets in task order!

NOTE:

Not following these instructions may result in the deduction of points!

Written Examination on 2017-12-20

Question 1
$$(1 + 1 + 1 + 1 + 2 + 4 = 10 \text{ pt})$$
 "Languages"

1.1 What language is generated by the given grammar G1? (1pt)

Note that we are not asking for partially correct solution(s) but for the fully correct one(s). Also, choosing multiple solutions, when only one is correct will not be assessed as correct. Mark clearly the correct solution.

G1 = (V, T, S, P) and V = {S, a, b, λ }, where S is the start variable, T = {a, b, λ } set of terminals and rules:

 $S \rightarrow \lambda \mid aSbb \mid aSbbb$

- a) $\mathcal{L} = \{a^n b^m, where \ 2n \le m \le 3m\}$
- b) $\mathcal{L} = \{a^n b^m, where \ n, m \ge 0\}$
- c) $\mathcal{L} = \{a^{2n}b^m, where n, m \ge 0\}$
- d) $\mathcal{L} = \{a^{2m}b^n, where 3n \leq m \leq 2m\}$
- e) $\mathcal{L} = \{a^{2n}b^m, where 3n \le m \le 2m\}$
- 1.2 What language is generated by the given grammar G2? (1pt)

Note that we are not asking for partially correct solution(s) but for the fully correct one(s). Also, choosing multiple solutions, when only one is correct will not be assessed as correct. Mark clearly the correct solution.

G2 = (V, T, S, P) and $V = \{S, A, B, C, U, 0, 1\}$, where S is the start variable, $T = \{0, 1\}$ set of terminals and rules:

 $S \rightarrow ABS \mid C \mid U$ $C \rightarrow AC \mid A$ $U \rightarrow BU \mid B$ $AB \rightarrow BA$ $BA \rightarrow AB$ $A \rightarrow 0$ $B \rightarrow 1$

- a) The language defines the set of all strings containing a more 0s than 1s.
- b) The language defines the set of all strings containing an equal number of 0s and 1s.
- c) The language defines the set of all strings containing an unequal number of 0s and 1s.
- d) The language defines the set of all strings containing an even number of 0s and no 1s.
- e) The language defines the set of all strings containing ten or more 0s and one 1.

Written Examination on 2017-12-20

1.3 What language is generated by the given grammar G3? (1pt)

Note that we are not asking for partially correct solution(s) but for the fully correct one(s). Also, choosing multiple solutions, when only one is correct will not be assessed as correct. Mark clearly the correct solution.

G3 = (V, T, S, P) and $V = \{S, C, D, c, d\}$, where S is the start variable, $T = \{c, d\}$ set of terminals and rules:

$$S \rightarrow Dc$$

 $D \rightarrow Dd \mid Cd$
 $C \rightarrow Cc \mid c$

- a) $\mathcal{L} = \{c^m d^n c^n \mid \text{where } n, m \ge 0\}$
- b) $\mathcal{L} = \{c^m d^n c \mid \text{where } n, m \ge 1\}$
- c) $\mathcal{L} = \{c^{m+n}d^nc^m \mid \text{where } n, m \ge 0\}$
- d) $\mathcal{L} = \{c^m d^n c^{m+n} \mid \text{where } n, m \ge 1\}$
- e) $\mathcal{L} = \{c^n d^n c^n \mid \text{where } n \ge 0\}$

1.4 What language is generated by the given grammar G4? (1pt)

Note that we are not asking for partially correct solution(s) but for the fully correct one(s). Also, choosing multiple solutions, when only one is correct will not be assessed as correct. Mark clearly the correct solution.

G4 = (V, T, S, P) and V = {a, b, ..., z, λ , S}, where S is the start variable, T = {a, b, ..., z, λ } set of terminals and rules P:

$$S \rightarrow aSa \mid bSb \mid cSc \mid ... \mid zSz$$

 $S \rightarrow \lambda \mid a \mid b \mid c \mid ... \mid z$

- a) The language defines words of odd length.
- b) The language defines all words in the English language.
- c) The language defines all words containing an arbitrary number of identical characters.
- d) The language defines all words in the English language of even length.
- e) The language defines all palindromes¹ over the English alphabet.

¹ A palindrome is any string which reads the same backwards and forwards.

Written Examination on 2017-12-20

1.5 Provide two different non-empty words that are generated by the given grammar G5. (2pt)

Note that you should assume that number is any positive integer, Type is either int or char and name is any non-space separated sequence of characters (excluding special characters such as !?<>; etc.)

G5 is given in the Backus-Naur form as:

1.6 Consider the description of a grammar, which generates expressions in a very small programming language.

An expression is composed of keywords if, then, else and where. It can contain nested expressions, atomic expressions and declarations, as shown in G6. The non-terminals var, Number, and Bool generate variables, number expressions, and Boolean expressions, respectively. An atomic expression can be a variable, a number, a Boolean expression or it can represent a nested expression enclosed by brackets '(' and ')'. Declarations are assignments of an expression to a variable. If there is more than one, the declarations are separated by a semicolon ';'. For instance, the following two 'programs' are sentences of this language:

```
if true then funny else false where funny = 7
if true then 15 else 1 where unused1 = 9 ; unused2 = 7
```

Which production rules are missing in G6, so that it generates the desired programming language? (4pt)

Note that **you can assume** that Number is any positive integer, Var is any non-space separated sequence of characters (excluding special characters such as !?<>; etc.), and Bool is either "true" or "false".

G6:

```
Expr \rightarrow if Expr then Expr else Expr Expr \rightarrow Expr where Decls Expr \rightarrow AppExpr AppExpr Atomic | Atomic
```

Written Examination on 2017-12-20

Question 2
$$(1 + 1 + 6 + 4 + 13 = 25 pt)$$
 "Automata"

2.1 What does the deterministic finite automaton A1 do? (1pt)

Note that we are not asking for partially correct solution(s) but for the fully correct one(s). Also, choosing multiple solutions, when only one is correct will not be assessed as correct. Mark clearly the correct solution.

Figure 1: A1

- a) It accepts any string with 'aababb' as a substring.
- b) It accepts any string that starts with an 'a'.
- c) It accepts any string of odd length containing 'a's and 'b's.
- d) It accepts any string that contains an even number of 'a's.
- e) It recognizes the strings which contain at least one 'a', followed by an odd number of characters.

2.2 Which statement(s) are FALSE about the protocol presented with finite deterministic automaton A2? (1pt)

Note that we are not asking for partially correct solution(s) but for the fully correct one(s). Also, choosing multiple solutions, when only one is correct will not be assessed as correct. Mark clearly the correct solution.

- Figure 2: A2
- a) New, active, or suspended accounts could be cancelled at any time by client's request.
- b) User account might be suspended for security reasons, manually or automatically. For example, website intrusion detection system locks user account for predefined period of time, if there were several unsuccessful login attempts using incorrect account password. After account lock times out, account is activated back automatically.
- c) Once the account is suspended it can only become active again after the account lock has timed out.
- d) Some user accounts could be inactive for a long period of time. Company policy or business rules could require moving such dormant accounts that are inactive for a year or two to the suspended state.
- e) Company policy or business rules could require the closure of active accounts.

2.3 Repair A3 so that it only accepts strings with an odd number of 1s and odd number of 0s (6pt)

Note that we are not asking for partially correct solution(s) but for the fully correct one(s). Unreadable drawings will be awarded with 0 points.

Figure 3: A3

2.4 Add missing elements (states, transitions, or labels) or remove incorrect elements (states, transitions, or labels) in the deterministic finite-state automaton A4 so that it recognizes the set of all bit strings consisting of a 0 followed by a string with an odd number of 1s. (4pt) *Note that unreadable drawings will be awarded with 0 points.*

Figure 4: A4, given.

2.5 Draw a deterministic finite-state machine that recognizes the set of bit strings containing the set $\{1^n | n = 2, 3, 4, ...\}$ (13 pt)

Note that unreadable drawings will be awarded with 0 points.

Written Examination on 2017-12-20

3.1 Provide the complete truth table for the given compound preposition? (8pt)

$$(m \leftrightarrow n) \land ((\neg n \lor m) \rightarrow (\neg m \rightarrow l))$$

3.2 Express this statement using predicates and quantifiers. (1pt)

Note that we are not asking for partially correct solution(s) but for the fully correct one(s). Also, choosing multiple solutions, when only one is correct will not be assessed as correct. Mark clearly the correct solution.

Let P(x), Q(x), R(x), and S(x) be the statements "x is a baby," "x is logical," "x is able to manage a crocodile," and "x is despised," respectively. Suppose that the domain consists of all people. Select the correctly expressed statements below using quantifiers; logical connectives; and P(x), Q(x), R(x), and S(x).

S1 = "Illogical persons are despised."

S2 = "Babies cannot manage crocodiles."

a)
$$S1 = \forall x (\neg Q(x) \rightarrow S(x)), S2 = \forall x (P(x) \rightarrow \neg R(x))$$

b)
$$S1 = \forall x (\neg Q(x) \land S(x)), S2 = \forall x (R(x) \land \neg P(x))$$

c)
$$S1 = \forall x (S(x) \leftrightarrow \neg Q(x)), S2 = \forall x (\neg R(x) \leftrightarrow P(x))$$

d)
$$S1 = \forall x (S(x) \lor \neg Q(x)), S2 = \forall x (\neg R(x) \lor P(x))$$

e)
$$S1 = \forall y (\neg Q(y) \land S(y)), S2 = \forall y (R(y) \land \neg P(y))$$

Written Examination on 2017-12-20

3.3 Let L(x, y) be the statement "x loves y", where the domain for both x and y consists of all people in the world. Choose the correctly expressed statement below using quantifiers. (1pt)

Note that we are not asking for partially correct solution(s) but for the fully correct one(s). Also, choosing multiple solutions, when only one is correct will not be assessed as correct. Mark clearly the correct solution.

S1 = "There is exactly one person whom everybody loves."

a)
$$S1 = \forall x (\exists y L(y, x) \land \exists z ((\exists w L(w, z)) \leftrightarrow z = x))$$

b)
$$S1 = \forall x (\exists y L(y, x) \rightarrow \exists z ((\exists w L(w, z)) \rightarrow z = x))$$

c)
$$S1 = \exists x (\exists y L(x, y) \land \forall z ((\forall w L(z, w)) \land z \neq x))$$

d)
$$S1 = \exists x (\exists y L(x, y) \rightarrow \forall z ((\forall w L(z, w)) \land z = x))$$

e)
$$S1 = \exists x (\forall y L(y, x) \land \forall z ((\forall w L(w, z)) \rightarrow z = x))$$

3.4 Look at the following compound proposition and answer the questions below. (7pt)

$$(p \to q) \to (\neg q \to \neg p) \land (r \land \neg r)$$

- i) What is a tautology? (1pt)
- ii) Why is the given compound proposition not a contradiction? (5pt)
- iii) Turn the given compound proposition into a tautology by making changes to the compound proposition (for example, changing an Λ to V, but not removing individual propositions p, q and r). (1pt)

Question 4 (4 + 6 = 10 pt)

"Proofs"

- 4.1 Prove that $n^2 1$ is divisible by 8 whenever n is an odd positive integer. (4pt)
- 4.2 For which nonnegative integers n is $2n + 3 \le 2^n$? Prove your answer. (6pt)

Written Examination on 2017-12-20

Question 5(1+1+6+10=18 pt)

"Complexity and Graph Theory"

5.1 What is the complexity of the following code snippet (in terms of Big-O notation)? (1pt)

```
int function(int[] array, int value, int left, int right) {
    if (left > right) {
        return -1;
    }
    int middle = (left + right) / 2;
    if (array[middle] == value) {
        return middle;
    } else if (array[middle] > value) {
        return function(array, value, left, middle - 1);
    } else {
        return function(array, value, middle + 1, right);
    }
}
```

5.2 What is the complexity of the following code snippet (in terms of Big-O notation)? You can assume that list.contains(array) is of O(N) and list.add(array) is of O(1) complexity, where N is the length of the array. (1pt)

5.3 Trace the execution of the **selection sort** algorithm over the array below. Show each pass of the algorithm until the array is sorted. (6pt)

```
int[8] array = {16, 21, 45, 8, 11, 53, 3, 26};
```

5.4 Look at the graphs in Figure 7 and 8 and answer the questions below. (10pt)

Figure 5: A directed graph.

- i) Is there an Euler path? If so, find it and write it in a sequence of vertices. You do not need to list all possible Euler paths if there are many. (1pt)
- ii) Is there an Euler circuit? If so, find it and write down the vertex sequence. You do not need to list all possible Euler circuits if there are many. (1pt)

Figure 6: Two directed graphs.

iii) Find the adjacency matrices for graphs in Figure 8. (8pt)

Question 6
$$(8 + 5 + 7 = 20 \text{ pt})$$
 "Statistics"

6.1 Perform **calculations and find** the linear regression $Y = \alpha + \beta x$ for the following data: (8pt)

Height (m), x _i	1.47	1.50	1.52	1.55	1.57	1.60	1.63	1.65	1.68	1.70	1.73	1.75	1.78	1.80	1.83
Mass (kg), y _i	52.21	53.12	54.48	55.84	57.20	58.57	59.93	61.29	63.11	64.47	66.28	68.10	69.92	72.19	74.46

Written Examination on 2017-12-20

6.2 Joe is a randomly chosen member of a large population in which 3% are heroin users. Joe tests positive for heroin in a drug test that correctly identifies users 95% of the time and correctly identifies non-users 90% of the time, i.e., it does also make mistakes, though, in the form of false positives.

Determine the probability that Joe uses heroin (= H) given the positive test result (= E) by applying Bayes' Theorem (5pt):

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

6.3 Consider the following question: Is there a statistically significant difference between male (x_M) and female (x_F) IQ scores given the following data:

$$n_F = n_M = 18$$

 $N = 36$
 $\bar{x}_F = 102.4$
 $\bar{x}_M = 98.9$
 $\sigma = 12$

Use
$$\alpha = 5\%$$
. (7 points)

- i) State your assumptions. (1pt)
- ii) Is it a 1-tailed or 2-tailed test? (1pt)
- iii) State the null and alternative hypothesis. (1pt)
- iv) Calculate the t-statistic. (1pt)
- v) Find the critical value. (1pt)
- vi) What is the decision rule? (1pt)
- vii) What is your interpretation of the findings? (1pt)

Appendix

One-sample t-test

$$t=rac{\overline{x}-\mu_0}{s/\sqrt{n}}$$

Independent two-sample t-test

$$t=rac{ar{X}_1-ar{X}_2}{s_p\sqrt{2/n}}$$

where

$$s_p = \sqrt{rac{s_{X_1}^2 + s_{X_2}^2}{2}}$$

where, of course, s_p , when appropriate can be exchanged for the standard deviation.

Equal or unequal sample sizes, equal variance

$$t=rac{ar{X}_1-ar{X}_2}{s_p\cdot\sqrt{rac{1}{n_1}+rac{1}{n_2}}}$$

where

$$s_p = \sqrt{rac{(n_1-1)s_{X_1}^2 + (n_2-1)s_{X_2}^2}{n_1+n_2-2}}.$$

where, of course, s_p , when appropriate can be exchanged for the standard deviation.

Page 13 of 15 + appendix (6 pages)

Equal or unequal sample sizes, unequal variance

$$t=rac{\overline{X}_1-\overline{X}_2}{s_{\overline{\Delta}}}$$

where

$$s_{\overline{\Delta}}=\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}.$$

Dependent t-test for paired samples

$$t=rac{\overline{X}_D-\mu_0}{rac{s_D}{\sqrt{n}}}.$$

Hence, the average \bar{X}_D and standard deviation s_D of the differences are used in the equation.

Critic	cal values of Stu	ıdent's <i>t</i> dis	tribution	with ν deg	rees of fr	eedom
	Probability	less tha	n the cr	itical v	alue (t	$_{1-lpha, u})$
ν	0.90	0.95	0.975	0.99	0.995	0.999
1.	3.078	6.314	12.706	31.821	63.657	318.313
2.	1.886	2.920	4.303	6.965	9.925	
3.	1.638			4.541		
4.	1.533	2.132		3.747		
5.	1.476	2.015		3.365		5.893
6.	1.440		2.447	3.143	3.707	
7.	1.415	1.895	2.365	2.998		
8. 9.	1.397 1.383	1.860 1.833	2.306 2.262	2.896 2.821	3.355 3.250	
10.	1.372		2.228	2.764	3.169	
11.	1.363			2.718		
12.	1.356	1.782	2.179	2.681	3.055	
13.	1.350	1.771	2.160	2.650	3.012	
14.	1.345	1.761	2.145	2.624	2.977	
15.	1.341		2.131	2.602		
16.	1.337	1.746	2.120	2.583	2.921	3.686
17.	1.333	1.740	2.110	2.567	2.898	3.646
18.	1.330	1.734	2.101	2.552	2.878	
19.	1.328			2.539		
20.	1.325		2.086	2.528	2.845	3.552
21.	1.323	1.721	2.080	2.518	2.831	
22.	1.321	1.717	2.074	2.508	2.819	
23.	1.319		2.069			
24. 25.	1.318 1.316	1.711 1.708	2.064 2.060	2.492 2.485	2.797 2.787	3.467 3.450
26.	1.315	1.706				
27.	1.314	1.703	2.052	2.473	2.771	3.421
28.	1.313	1.701	2.048	2.467	2.763	3.408
29.	1.311	1.699	2.045	2.462	2.756	3.396
30.	1.310	1.697	2.042	2.457	2.750	3.385
31.	1.309	1.696	2.040	2.453	2.744	3.375
32.	1.309	1.694	2.037	2.449	2.738	3.365
33.	1.308	1.692	2.035	2.445	2.733	3.356
34.	1.307	1.691	2.032	2.441	2.728	3.348
35.	1.306	1.690	2.030	2.438	2.724	3.340
36.	1.306	1.688	2.028	2.434	2.719	3.333
37.	1.305	1.687	2.026	2.431	2.715	3.326
38.	1.304	1.686	2.024	2.429	2.712	3.319
39.	1.304	1.685	2.023	2.426	2.708	3.313
40.	1.303	1.684	2.021	2.423	2.704	3.307

Refsheet DIT022

Professor Richard Torkar

October 2017

ANOVA

Source	9		MS	F
Between	k-1	$SSB = \sum_{j=1}^{k} n_j (\bar{x}_j - \bar{x}_t)^2$	$MSB = \frac{SSB}{k-1}$	$F = \frac{MSB}{MSW}$
Within	n-k	$SSW = \sum_{j=1}^{k} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2$	$MSW = \frac{SSW}{n-k}$	
Total	n-1	$SST = \sum_{j=1}^{k} \sum_{i=1}^{n} (x_{ij} - \bar{x}_t)^2$		

With k number of groups, \tilde{n} number of samples and df degrees of freedom.

Linear regression

Deduce s from,

$$\sigma^2 = \frac{\sum (x - \mu)^2}{n} \tag{1}$$

in order to calculate s_x and s_y .

$$r = \frac{\sum xy}{\sqrt{\sum x^2 \sum y^2}} \tag{2}$$

$$\beta^* = r \times s_y / s_x \tag{3}$$

$$\alpha^{\star} = \bar{y} - \beta^{\star} \bar{x} \tag{4}$$

$$\epsilon = \sqrt{\frac{\sum (y - \hat{y})^2}{N}} \tag{5}$$

Cumulative normal distribution
Critical values of the *t* distribution
Critical values of the *F* distribution
Critical values of the chi-squared distribution

STATISTICAL TABLES

TABLE A.1

Cumulative Standardized Normal Distribution

4(z) is the distribution of the distribution o
$A(z)$ is the integral of the standardized normal distribution from $-\infty$ to z (in other words, the area under the curve to the left of z). It gives t probability of a normal random variable not being more than z standard deviations above it mean. Values of z of particular importance:
ral of th n - \infty to urve to 1 normal z stand f z of pa
e standa o z (in outhe left the left random ard dev articular
ardized ther wor of z). It variable trainings:
$A(z)$ is the integral of the standardized normal distribution from $-\infty$ to z (in other words, the area under the curve to the left of z). It gives th probability of a normal random variable not being more than z standard deviations above its mean. Values of z of particular importance:

Lower limit of right 0.05% tail	0.9995	3.291
Lower limit of right 0.1% tail	0.9990	3.090
Lower limit of right 0.5% tail	0.9950	2.576
Lower limit of right 1% tail	0.9900	2.326
Lower limit of right 2.5% tail	0.9750	1.960
Lower limit of right 5% tail	0.9500	1.645
	A(z)	ы

3.5 3.6	3.4	3 :3	3.2	3.1	3.0	2.9	2.8	2.7	2.6	2.5	2.4	2.3	2.2	2.1	2.0	1.9	1.8	1.7	1.6	1.5	1.4	1.3	1.2	Ξ	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1	0.0	и
0.9998	0.9997	0.9995	0.9993	0.9990	0.9987	0.9981	0.9974	0.9965	0.9953	0.9938	0.9918	0.9893	0.9861	0.9821	0.9772	0.9713	0.9641	0.9554	0.9452	0.9332	0.9192	0.9032	0.8849	0.8643	0.8413	0.8159	0.7881	0.7580	0.7257	0.6915	0.6554	0.6179	0.5793	0.5398	0.5000	0.00
0.9998	0.9997	0.9995	0.9993	0.9991	0.9987	0.9982	0.9975	0.9966	0.9955	0.9940	0.9920	0.9896	0.9864	0.9826	0.9778	0.9719	0.9649	0.9564	0.9463	0.9345	0.9207	0.9049	0.8869	0.8665	0.8438	0.8186	0.7910	0.7611	0.7291	0.6950	0.6591	0.6217	0.5832	0.5438	0.5040	0.01
0.9998	0.9997	0.9995	0.9994	0.9991	0.9987	0.9982	0.9976	0.9967	0.9956	0.9941	0.9922	0.9898	0.9868	0.9830	0.9783	0.9726	0.9656	0.9573	0.9474	0.9357	0.9222	0.9066	0.8888	0.8686	0.8461	0.8212	0.7939	0.7642	0.7324	0.6985	0.6628	0.6255	0.5871	0.5478	0.5080	0.02
0.9998	0.9997	0.9996	0.9994	0.9991	0.9988	0.9983	0.9977	0.9968	0.9957	0.9943	0.9925	0.9901	0.9871	0.9834	0.9788	0.9732	0.9664	0.9582	0.9484	0.9370	0.9236	0.9082	0.8907	0.8708	0.8485	0.8238	0.7967	0.7673	0.7357	0.7019	0.6664	0.6293	0.5910	0.5517	0.5120	0.03
0.9998	0.9997	0.9996	0.9994	0.9992	0.9988	0.9984	0.9977	0.9969	0.9959	0.9945	0.9927	0.9904	0.9875	0.9838	0.9793	0.9738	0.9671	0.9591	0.9495	0.9382	0.9251	0.9099	0.8925	0.8729	0.8508	0.8264	0.7995	0.7704	0.7389	0.7054	0.6700	0.6331	0.5948	0.5557	0.5160	0.04
0.9998	0.9997	0.9996	0.9994	0.9992	0.9989	0.9984	0.9978	0.9970	0.9960	0.9946	0.9929	0.9906	0.9878	0.9842	0.9798	0.9744	0.9678	0.9599	0.9505	0.9394	0.9265	0.9115	0.8944	0.8749	0.8531	0.8289	0.8023	0.7734	0.7422	0.7088	0.6736	0.6368	0.5987	0.5596	0.5199	0.05
0.9998	0.9997	0.9996	0.9994	0.9992	0.9989	0.9985	0.9979	0.9971	0.9961	0.9948	0.9931	0.9909	0.9881	0.9846	0.9803	0.9750	0.9686	0.9608	0.9515	0.9406	0.9279	0.9131	0.8962	0.8770	0.8554	0.8315	0.8051	0.7764	0.7454	0.7123	0.6772	0.6406	0.6026	0.5636	0.5239	0.06
0.9998	0.9997	0.9996	0.9995	0.9992	0.9989	0.9985	0.9979	0.9972	0.9962	0.9949	0.9932	0.9911	0.9884	0.9850	0.9808	0.9756	0.9693	0.9616	0.9525	0.9418	0.9292	0.9147	0.8980	0.8790	0.8577	0.8340	0.8078	0.7794	0.7486	0.7157	0.6808	0.6443	0.6064	0.5675	0.5279	0.07
0.9998	0.9997	0.9996	0.9995	0.9993	0.9990	0.9986	0.9980	0.9973	0.9963	0.9951	0.9934	0.9913	0.9887	0.9854	0.9812	0.9761	0.9699	0.9625	0.9535	0.9429	0.9306	0.9162	0.8997	0.8810	0.8599	0.8365	0.8106	0.7823	0.7517	0.7190	0.6844	0.6480	0.6103	0.5714	0.5319	0.08
0.9998	0.9998	0.9997	0.9995	0.9993	0.9990	0.9986	0.9981	0.9974	0.9964	0.9952	0.9936	0.9916	0.9890	0.9857	0.9817	0.9767	0.9706	0.9633	0.9545	0.9441	0.9319	0.9177	0.9015	0.8830	0.8621	0.8389	0.8133	0.7852	0.7549	0.7224	0.6879	0.6517	0.6141	0.5753	0.5359	0.09

[©] C. Dougherty 2001, 2002 (c.dougherty@ise.ac.uk). These tables have been computed to accompany the text C. Dougherty *Introduction to Econometrics* (second edition 2002, Oxford University Press, Oxford). They may be reproduced freely provided that this attribution is retained.

TABLE A.2 t Distribution: Critical Values of t

	I
One-sailed test:	:
5% 6.314 2.920 2.353 2.132 2.015 1.943 1.860 1.813 1.813 1.812 1.776 1.776 1.771 1.771 1.771 1.771 1.771 1.771 1.771 1.771 1.771 1.778 1.687 1.688 1.688 1.687 1.687 1.667	
2.5% 112,706 12,706 2.277 2.345 2.306 2.236 2.228 2.228 2.228 2.221 2.115 2.116 2.101	!
11% 31,821 4,541 3,347 3,347 3,347 3,347 3,347 3,347 3,347 3,347 3,347 3,347 3,347 3,347 3,347 2,604 2,602 2	Significa
0.5% 6.3.657 9.925 5.841 4.604 4.032 3.707 3.499 3.106 3.109	Significance level
0.1% 318.309 328.309 328.309 328.309 328.309 5.208 4.788 4.788 4.788 4.788 4.788 3.686 3.6	1
0.05% 636.619 31.999 12.924 8.610 6.869 5.969 5.968 5.941 4.437 4.437 4.437 4.437 4.437 4.140 4.073 3.883 3.883 3.883 3.782 3.782 3.783 3.666 3.583 3.666 3.583 3.586 3.	

12

TABLE A.3

ω

F Distribution: Critical Values of F (5% significance level)

16 18

20

600 750 1000	200 250 300 400 500	80 90 120 150	35 40 50 70	26 27 28 29 30	21 22 23 24 25	16 17 18 20	11 12 13 15	6 8 10	543212
3.86 3.85 3.85	3.89 3.88 3.87 3.86	3.96 3.95 3.94 3.92 3.90	4.12 4.08 4.03 4.00 3.98	4.22 4.21 4.20 4.18 4.17	4.32 4.30 4.28 4.26 4.24	4.49 4.45 4.41 4.38 4.35	4.84 4.75 4.67 4.60 4.54	5.99 5.59 5.32 5.12 4.96	161.45 18.51 10.13 7.71 6.61
3.01 3.01 3.00	3.04 3.03 3.03 3.02 3.01	3.11 3.10 3.09 3.07 3.06	3.27 3.23 3.18 3.15 3.13	3.37 3.35 3.34 3.33 3.33	3.47 3.44 3.42 3.40 3.39	3.63 3.59 3.55 3.52 3.49	3.98 3.89 3.81 3.74 3.68	5.14 4.74 4.46 4.26 4.10	199.50 19.00 9.55 6.94 5.79
2.62 2.62 2.61	2.65 2.64 2.63 2.63 2.62	2.72 2.71 2.70 2.68 2.66	2.87 2.84 2.79 2.76 2.74	2.98 2.96 2.95 2.93 2.93	3.07 3.05 3.03 3.01 2.99	3.24 3.20 3.16 3.13 3.13	3.59 3.49 3.41 3.34 3.29	4.76 4.35 4.07 3.86 3.71	
2.39 2.38 2.38	2.42 2.41 2.40 2.39 2.39	2.49 2.47 2.46 2.45 2.43	2.64 2.61 2.56 2.53 2.50	2.74 2.73 2.71 2.70 2.69	2.84 2.82 2.80 2.78 2.76	3.01 2.96 2.93 2.90 2.87	3.36 3.26 3.18 3.11 3.06	4.53 4.12 3.84 3.63 3.48	224.58 19.25 9.12 6.39 5.19
2.23 2.23 2.22	2.26 2.25 2.24 2.24 2.23	2.33 2.32 2.31 2.29 2.27	2.49 2.45 2.40 2.37 2.35	2.59 2.57 2.56 2.55 2.53	2.68 2.66 2.64 2.62 2.60	2.85 2.81 2.77 2.74 2.71	3.20 3.11 3.03 2.96 2.90	4.39 3.97 3.69 3.48 3.33	230.16 : 19.30 9.01 6.26 5.05
2.11 2.11 2.11	2.14 2.13 2.13 2.12 2.12	2.21 2.20 2.19 2.18 2.16	2.37 2.34 2.29 2.25 2.23	2.47 2.46 2.45 2.43 2.43	2.57 2.55 2.53 2.51 2.49	2.74 2.70 2.66 2.63 2.63	3.09 3.00 2.92 2.85 2.79	4.28 3.87 3.58 3.37 3.22	233.99 19.33 8.94 6.16 4.95
2.02 2.02 2.02	2.06 2.05 2.04 2.03 2.03	2.13 2.11 2.10 2.09 2.07	2.29 2.25 2.20 2.17 2.14	2.39 2.37 2.36 2.35 2.33	2.49 2.46 2.44 2.42 2.40	2.66 2.61 2.58 2.54 2.51	3.01 2.91 2.83 2.76 2.71	4.21 3.79 3.50 3.29 3.14	236.77 19.35 8.89 6.09 4.88
1.95 1.95 1.95	1.98 1.98 1.97 1.96	2.06 2.04 2.03 2.02 2.00	2.22 2.18 2.13 2.10 2.07	2.32 2.31 2.29 2.28 2.27	2.42 2.40 2.37 2.36 2.34	2.59 2.55 2.51 2.48 2.45	2.95 2.85 2.77 2.70 2.64	4.15 3.73 3.44 3.23 3.07	238.88 : 19.37 8.85 6.04 4.82
1.90 1.89 1.89	1.93 1.92 1.91 1.90	2.00 1.99 1.97 1.96 1.94	2.16 2.12 2.07 2.04 2.02	2.27 2.25 2.24 2.22 2.21	2.37 2.34 2.32 2.30 2.28	2.54 2.49 2.46 2.42 2.39	2.90 2.80 2.71 2.65 2.59	4.10 3.68 3.39 3.18 3.02	240.54 : 19.38 8.81 6.00 4.77
1.85 1.84 1.84	1.88 1.87 1.86 1.85 1.85	1.95 1.94 1.93 1.91 1.89	2.11 2.08 2.03 1.99 1.97	2.22 2.20 2.19 2.18 2.16	2.32 2.30 2.27 2.25 2.24	2.49 2.45 2.41 2.38 2.35	2.85 2.75 2.67 2.60 2.54	4.06 3.64 3.35 3.14 2.98	241.88 2 19.40 8.79 5.96 4.74
1.77 1.77 1.76	1.80 1.79 1.78 1.78 1.77	1.88 1.86 1.85 1.83	2.04 2.00 1.95 1.92 1.89	2.15 2.13 2.12 2.10 2.09	2.25 2.23 2.20 2.18 2.16	2.42 2.38 2.34 2.31 2.28	2.79 2.69 2.60 2.53 2.48	4.00 3.57 3.28 3.07 2.91	243.91 19.41 8.74 5.91 4.68
1.71 1.70 1.70	1.74 1.73 1.72 1.72 1.71	1.82 1.80 1.79 1.78 1.76	1.99 1.95 1.89 1.86	2.09 2.08 2.06 2.05 2.04	2.20 2.17 2.15 2.13 2.11	2.37 2.33 2.29 2.26 2.22	2.74 2.64 2.55 2.48 2.42	3.96 3.53 3.24 3.03 2.86	245.36 19.42 8.71 5.87 4.64
1.66 1.66 1.65	1.69 1.68 1.68 1.67	1.77 1.76 1.75 1.73 1.71	1.94 1.90 1.85 1.82 1.79	2.05 2.04 2.02 2.01 1.99	2.16 2.13 2.11 2.09 2.07	2.33 2.29 2.25 2.21 2.18	2.70 2.60 2.51 2.44 2.38	3.92 3.49 3.20 2.99 2.83	246.46 2 19.43 8.69 5.84 4.60
1.62 1.62 1.61	1.65 1.65 1.63 1.63	1.73 1.72 1.71 1.69 1.67	1.91 1.87 1.81 1.78 1.75	2.02 2.00 1.99 1.97	2.12 2.10 2.08 2.05 2.04	2.30 2.26 2.22 2.18 2.15	2.67 2.57 2.48 2.41 2.35	3.90 3.47 3.17 2.96 2.80	247.32 : 19.44 8.67 5.82 4.58
1.59 1.58 1.58	1.62 1.61 1.61 1.60 1.59	1.70 1.69 1.68 1.66 1.64	1.88 1.84 1.78 1.75 1.72	1.99 1.97 1.96 1.94 1.93	2.10 2.07 2.05 2.03 2.01	2.28 2.23 2.19 2.16 2.12	2.65 2.54 2.46 2.39 2.33	3.87 3.44 3.15 2.94 2.77	248.01 19.45 8.66 5.80 4.56

Table A.3 (continued)

F Distribution: Critical Values of F (5% significance level)

200 250 300 400 500 600 750	80 90 120 150	70 60 50 70 60 60	26 27 28 30	21 22 23 24 25	16 18 20	52555	=		
					NNNNN		12 12 12 12 12 12 12 12 12 12 12 12 12 1	1 249.26 2 19.46 3 8.63 4 5.77 5 4.52	ν ₁ 2
55 55 55 55 55 55 55 55 55 55 55 55 55	1.63	.73	.89 .89	2.05 2.02 2.00 1.97 1.96	23 118 114 111	2.60 2.50 2.41 2.34 2.28	.83 .40 .11 .89	_ 25	Οì
11.52 11.50 11.49 11.48 11.48 11.47 11.47	1.60 1.59 1.57 1.55 1.55	1.79 1.74 1.69 1.65 1.62	1.90 1.88 1.87 1.85 1.84	2.01 1.98 1.96 1.94 1.92	2.19 2.15 2.11 2.07 2.04	2.57 2.47 2.38 2.31 2.25	3.81 3.38 3.08 2.86 2.70	0.10 9.46 8.62 5.75 4.50	30
1.48 1.47 1.46 1.45 1.45 1.44 1.44 1.44	1.57 1.55 1.54 1.52 1.50	1.76 1.72 1.66 1.62 1.59	1.87 1.86 1.84 1.83 1.81	1.98 1.96 1.93 1.91 1.89	2.17 2.12 2.08 2.05 2.01	2.55 2.44 2.36 2.28 2.22	3.79 3.36 3.06 2.84 2.68	250.69 : 19.47 8.60 5.73 4.48	35
1.46 1.44 1.43 1.42 1.42 1.41 1.41 1.41	1.54 1.53 1.52 1.50 1.48	1.74 1.69 1.63 1.59 1.57	1.85 1.84 1.82 1.81 1.79	1.96 1.94 1.91 1.89 1.87	2.15 2.10 2.06 2.03 1.99	2.53 2.43 2.34 2.27 2.20	3.77 3.34 3.04 2.83 2.66	251.14 19.47 8.59 5.72 4.46	40
1.41 1.40 1.39 1.38 1.38 1.37 1.37	1.51 1.49 1.48 1.46	1.70 1.66 1.60 1.56 1.53	1.82 1.81 1.79 1.77 1.76	1.94 1.91 1.88 1.84	2.12 2.08 2.04 2.00 1.97	2.51 2.40 2.31 2.24 2.18	3.75 3.32 3.02 2.80 2.64	251.77 19.48 8.58 5.70 4.44	50
1.39 1.37 1.36 1.35 1.35 1.34 1.34 1.34	1.48 1.46 1.45 1.43 1.41	1.68 1.64 1.58 1.53 1.50	1.80 1.79 1.77 1.75 1.74	1.92 1.89 1.86 1.84 1.82	2.11 2.06 2.02 1.98 1.95	2.49 2.38 2.30 2.22 2.16	3.74 3.30 3.01 2.79 2.62	252.20 19.48 8.57 5.69 4.43	69
1.35 1.34 1.33 1.32 1.31 1.31 1.30	1.45 1.44 1.42 1.40 1.38	1.66 1.61 1.55 1.51 1.48	1.78 1.76 1.75 1.73 1.72	1.90 1.87 1.84 1.82 1.80	2.09 2.04 2.00 1.96 1.93	2.47 2.37 2.28 2.21 2.14	3.73 3.29 2.99 2.77 2.77	252.62 19.48 8.56 5.68 4.42	75
1.32 1.31 1.30 1.28 1.28 1.27 1.26	1.43 1.41 1.39 1.37 1.34	1.63 1.59 1.52 1.48 1.45	1.76 1.74 1.73 1.71 1.70	1.88 1.85 1.82 1.80 1.78	2.07 2.02 1.98 1.94 1.91	2.46 2.35 2.26 2.19 2.12	3.71 3.27 2.97 2.76 2.59	253.04 19.49 8.55 5.66 4.41	100
1.28 1.27 1.26 1.24 1.23 1.23 1.22 1.22	1.39 1.38 1.36 1.33 1.31	1.61 1.56 1.50 1.45 1.42	1.74 1.72 1.70 1.69 1.67	1.86 1.83 1.80 1.78 1.76	2.05 2.00 1.96 1.92 1.89	2.44 2.33 2.24 2.17 2.10	3.70 3.26 2.96 2.74 2.57	253.46 19.49 8.54 5.65 4.39	150
1.26 1.25 1.23 1.22 1.21 1.20 1.20 1.20 1.19	1.38 1.36 1.34 1.32 1.29	1.60 1.55 1.48 1.44 1.40	1.73 1.71 1.69 1.67 1.66	1.84 1.82 1.79 1.77 1.75	2.04 1.99 1.95 1.91 1.88	2.43 2.32 2.23 2.16 2.10	3.69 3.25 2.95 2.73 2.56	253.68 19.49 8.54 5.65 4.39	200

STATISTICAL TABLES

5

TABLE A.3 (continued)

F Distribution: Critical Values of F (1% significance level)

600 750	200 250 300 400 500	80 90 100 150	7 6 5 4 5 3 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	26 27 28 29 30	21 22 23 24 25	16 17 18 19 20	13 13 15	10 8 7 6		5 ₁
6.68 6.67 6.66	6.76 6.74 6.72 6.70 6.69	6.96 6.93 6.85 6.81	7.42 7.31 7.17 7.08 7.01	7.72 7.68 7.64 7.60 7.56	8.02 7.95 7.88 7.82 7.77	8.53 8.40 8.29 8.18 8.10	9.65 9.33 9.07 8.86 8.68	13.75 12.25 11.26 10.56 10.04	4052.18 98.50 34.12 21.20 16.26	-
4.64 4.63 4.63	4.71 4.69 4.68 4.66 4.65	4.88 4.85 4.82 4.79 4.75	5.27 5.18 5.06 4.98 4.92	5.53 5.49 5.45 5.42 5.39	5.78 5.72 5.66 5.61 5.57	6.23 6.11 6.01 5.93 5.85	7.21 6.93 6.70 6.51 6.36	10.92 9.55 8.65 8.02 7.56	4999.50 540 99.00 9 30.82 2 18.00 1 13.27 1	2
3.81 3.81 3.80	3.88 3.86 3.85 3.83	4.04 4.01 3.98 3.95 3.91	4.40 4.31 4.20 4.13 4.07	4.64 4.60 4.57 4.54 4.51	4.87 4.82 4.76 4.72 4.68	5.29 5.18 5.09 5.01 4.94	6.22 5.95 5.74 5.56 5.42	9.78 8.45 7.59 6.99 6.55	9.17 9.17 9.46 6.69 2.06	3
3.35 3.34 3.34	3.41 3.40 3.38 3.37 3.36	3.56 3.53 3.51 3.48 3.45	3.91 3.83 3.72 3.65 3.60	4.14 4.11 4.07 4.04 4.02	4.37 4.31 4.26 4.22 4.18	4.77 4.67 4.58 4.50 4.43	5.67 5.41 5.21 5.04 4.89	9.15 7.85 7.01 6.42 5.99	5624.58 99.25 28.71 15.98 11.39	4
3.05 3.04 3.04	3.11 3.09 3.08 3.06 3.05	3.26 3.23 3.21 3.17 3.14	3.59 3.51 3.41 3.34 3.29	3.82 3.78 3.75 3.73 3.70	4.04 3.99 3.94 3.90 3.85	4.44 4.34 4.25 4.17 4.10	5.32 5.06 4.86 4.69 4.56	8.75 7.46 6.63 6.06 5.64	5763.65 99.30 28.24 15.52 10.97	Ŋ
2.83 2.83 2.82	2.89 2.87 2.86 2.85 2.84	3.04 3.01 2.99 2.96 2.92	3.37 3.29 3.19 3.12 3.07	3.59 3.56 3.53 3.50 3.47	3.81 3.76 3.71 3.67 3.63	4.20 4.10 4.01 3.94 3.87	5.07 4.82 4.62 4.46 4.32	8.47 7.19 6.37 5.80 5.39	5858.99 99.33 27.91 15.21 10.67	6
2.67 2.66 2.66	2.73 2.71 2.70 2.68 2.68	2.87 2.84 2.82 2.79 2.76	3.20 3.12 3.02 2.95 2.91	3.42 3.39 3.36 3.33 3.33	3.59 3.59 3.54 3.50 3.46	4.03 3.93 3.84 3.77 3.70	4.89 4.64 4.44 4.28 4.14	8.26 6.99 6.18 5.61 5.20	5928.36 59 99.36 27.67 14.98 10.46	7
2.54 2.53 2.53	2.60 2.58 2.57 2.56 2.56 2.55	2.74 2.72 2.69 2.66 2.63	3.07 2.99 2.89 2.82 2.78	3.29 3.26 3.23 3.20 3.17	3.51 3.45 3.41 3.36 3.32	3.89 3.79 3.71 3.63 3.56	4.74 4.50 4.30 4.14 4.00	8.10 6.84 6.03 5.47	981.07 99.37 27.49 14.80 10.29	œ
2.44 2.43 2.43	2.50 2.48 2.47 2.45 2.45	2.64 2.61 2.59 2.56 2.56 2.53	2.96 2.89 2.78 2.72 2.72	3.18 3.15 3.12 3.09 3.07	3.40 3.35 3.30 3.26 3.22	3.78 3.68 3.60 3.52 3.46	4.63 4.39 4.19 4.03 3.89	7.98 6.72 5.91 5.35 4.94	22.47 39.39 27.35 14.66 10.16	9
2.35 2.34 2.34	2.41 2.39 2.38 2.37 2.36	2.55 2.52 2.50 2.47 2.44	2.88 2.80 2.70 2.63 2.59	3.09 3.06 3.03 3.00 2.98	3.31 3.26 3.21 3.17 3.13	3.69 3.59 3.51 3.43 3.37	4.54 4.30 4.10 3.94 3.80	7.87 6.62 5.81 5.26 4.85	9.40 9.40 7.23 4.55	0
2.21 2.21 2.20	2.27 2.26 2.24 2.23 2.23	2.42 2.39 2.37 2.34 2.34 2.31	2.74 2.66 2.56 2.50 2.45	2.96 2.93 2.90 2.87 2.84	3.17 3.12 3.07 3.03 2.99	3.55 3.46 3.37 3.30 3.23	4.40 4.16 3.96 3.80 3.67	7.72 6.47 5.67 5.11 4.71	9.42 9.42 4.37 9.89	12
2.11 2.11 2.10	217 215 214 213 213 212	2.31 2.29 2.27 2.23 2.23	2.64 2.56 2.46 2.39 2.35	2.86 2.82 2.79 2.77 2.77	3.07 3.02 2.97 2.93 2.89	3.45 3.35 3.27 3.19 3.13	4.29 4.05 3.86 3.70 3.56	7.60 6.36 5.56 5.01 4.60	9.43 9.43 6.92 4.25 9.77	14
2.03 2.02 2.02	2.09 2.07 2.06 2.05 2.04	2.23 2.21 2.19 2.15 2.12	2.56 2.48 2.38 2.31 2.27	2.78 2.75 2.72 2.69 2.66	2.99 2.94 2.89 2.85 2.81	3.37 3.27 3.19 3.12 3.05	3.97 3.78 3.62 3.49	7.52 6.28 5.48 4.92 4.52	9.44 6.83 4.15	16
1.96 1.96 1.95	2.03 2.01 1.99 1.98 1.97	2.17 2.14 2.12 2.09 2.06	2.50 2.42 2.32 2.25 2.25	2.72 2.68 2.63 2.63 2.60	2.93 2.88 2.83 2.79 2.75	3.31 3.21 3.13 3.05 2.99	4.15 3.91 3.72 3.56 3.42	7.45 6.21 5.41 4.86 4.46	6191.53 624 1 99.44 9 1 26.75 2 1 14.08 1 9.61	18
1.91 1.90 1.90	1.97 1.95 1.94 1.92	2.12 2.09 2.07 2.03 2.00	2.44 2.37 2.27 2.20 2.15	2.66 2.63 2.60 2.57 2.55	2.88 2.83 2.78 2.74 2.70	3.26 3.16 3.08 3.00 2.94	4.10 3.86 3.66 3.51 3.37	7.40 6.16 5.36 4.81 4.41	6208.73 99.45 26.69 14.02 9.55	20

Table A.3 (continued)

F Distribution: Critical Values of F (1% significance level)

200 250 300 400 500 600 750	80 100 120 150	766 706 706	26 27 28 30	21 22 23 24 25	13 14 15 16 17 17 18	110 110 110	5 4 3 2 1 2 5
1.87 1.85 1.84 1.82 1.81 1.80 1.80 1.79	2.01 1.99 1.97 1.93 1.90	2.35 2.27 2.17 2.10 2.05	2.57 2.54 2.51 2.48 2.45	2.79 2.73 2.69 2.64 2.60	3.76 3.28 3.16 3.16 3.07 2.98 2.91 2.84	7.30 6.06 5.26 4.71 4.31	6239.83 99.46 26.58 13.91 9.45
1.79 1.77 1.76 1.75 1.74 1.73 1.72 1.72	1.94 1.92 1.89 1.86 1.83	2.28 2.20 2.10 2.03 1.98	2.50 2.47 2.44 2.41 2.39	2.72 2.67 2.62 2.58 2.54	3.51 3.35 3.21 3.10 3.10 3.00 2.92 2.84 2.78	7.23 5.99 5.20 4.65 4.25	30 6260.65 99.47 26.50 13.84 9.38
1.74 1.72 1.70 1.69 1.68 1.67 1.66	1.89 1.86 1.84 1.81 1.77	2.23 2.15 2.05 1.98 1.93	2.45 2.42 2.39 2.36 2.34	2.67 2.62 2.57 2.53 2.49	3.46 3.46 3.30 3.17 3.05 2.96 2.87 2.80 2.73	7.18 5.94 5.15 4.60 4.20 3.89	2000
1.69 1.67 1.66 1.64 1.63 1.63 1.62	1.85 1.82 1.80 1.76 1.73	2.19 2.11 2.01 1.94 1.89	2.42 2.38 2.35 2.33 2.30	2.64 2.58 2.54 2.49 2.45	3.43 3.27 3.13 3.13 3.02 2.92 2.92 2.84 2.76 2.69	7.14 5.91 5.12 4.57 4.17	40 6286.78 99.47 26.41 13.75 9.29
1.63 1.61 1.59 1.58 1.57 1.57	1.79 1.76 1.74 1.70 1.66		2.36 2.33 2.30 2.27 2.25	2.58 2.53 2.48 2.44 2.40	3.38 3.22 3.08 3.08 2.97 2.87 2.71 2.71 2.64	7.09 5.86 5.07 4.52 4.12 3.81	50 6302.52 99.48 26.35 13.69 9.24
1.58 1.56 1.55 1.53 1.52 1.51 1.50	1.75 1.72 1.69 1.66 1.62	2.10 2.02 1.91 1.84 1.78	2.33 2.29 2.26 2.23 2.23	2.55 2.50 2.45 2.40 2.36	3.34 3.18 3.05 3.05 2.93 2.83 2.75 2.67	7.06 5.82 5.03 4.48 4.08	60 6313.03 99.48 26.32 13.65 9.20
1.53 1.51 1.50 1.48 1.47 1.46 1.45 1.44	1.70 1.67 1.65 1.61 1.57	2.06 1.98 1.87 1.79 1.74	2.29 2.26 2.23 2.20 2.17	2.51 2.46 2.41 2.37 2.33	3.31 3.15 3.01 2.90 2.80 2.71 2.64 2.57	7.02 5.79 5.00 4.45 4.05	75 6323.56 99.49 26.28 13.61 9.17
1.48 1.46 1.44 1.42 1.41 1.40 1.39	1.65 1.62 1.60 1.56 1.56	2.02 1.94 1.82 1.75 1.70	2.25 2.22 2.19 2.16 2.13	2.48 2.42 2.37 2.33 2.33 2.29	3.47 3.27 3.11 2.98 2.86 2.76 2.68 2.60 2.54	6.99 5.75 4.96 4.41 4.01 3.71	
1.42 1.40 1.38 1.36 1.34 1.33 1.33	1.61 1.57 1.55 1.51 1.46	1.98 1.90 1.78 1.70 1.65	2.21 2.18 2.15 2.12 2.09	2.44 2.38 2.34 2.29 2.25	3.43 3.24 3.08 2.94 2.83 2.73 2.64 2.57	6.95 5.72 4.93 4.38 3.98	150 6344.68 99.49 26.20 13.54 9.09
1.39 1.36 1.35 1.32 1.31 1.30 1.29 1.28	1.58 1.55 1.52 1.48 1.43	1.96 1.87 1.76 1.68 1.62	2.19 2.16 2.13 2.10 2.07	2.42 2.36 2.32 2.27 2.23	3.41 3.22 3.06 2.92 2.81 2.71 2.62 2.55 2.48	6.93 5.70 4.91 4.36 3.96	200 6349.97 99.49 26.18 13.52 9.08

STATISTICAL TABLES

TABLE A.3 (continued)

F Distribution: Critical Values of F (0.1% significance level)

ယ	2	<u>- '</u>	5	<u> </u>
167.03	998.50	4.05e05		_
148.50	999.00	5.00e05		2
141.11	999.17	5.40e05		ယ
137.10	999.25	5.62e05		4
134.58	999.30	5.76e05		υı
132.85	999.33	5.86e05		6
131.58	999.36	5.93e05		7
130.62	999.37	5.98e05		œ
129.86	999.39	6.02e05		9
129.25	999.40	6.06e05		10
128.32	999.42	6.11e05		12
127.64	999.43	6.14e05		14
127.14	999.44	6.17e05		16
3 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86 129.25 128.32 127.64 127.14 126.74 126.43	2 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39 999.40 999.42 999.43 999.44 999.44 999.4-	1 4.05e05 5.00e05 5.40e05 5.62e05 5.76e05 5.86e05 5.93e05 5.98e05 6.02e05 6.06e05 6.11e05 6.14e05 6.17e05 6.19e05 6.21e0		1 8
126.42	999.45	6.21e05		20

150 150 150 150 150 150 150 150 150 150			35 12 40 12 50 12 70 11	26 13 27 13 28 13 29 13 30 13	21 14 22 14 23 14 24 14 25 13	16 16 17 15 18 15 19 15 20 14	11 19 12 18 13 17 14 17 15 16	6 35 7 29 8 25 9 22 10 21	1 4.05e05 2 998.50 3 167.03 4 74.14 5 47.18
	11.15	11.67	12.90	13.74	14.59	16.12 1	19.69 1	35.51 2	4.05e05 5.1
	11.09	11.57	12.61	13.61	14.38	15.72 1	18.64 1	29.25 2	998.50 99
	11.04	11.50	12.22	13.50	14.20	15.38 1	17.82 1	25.41 1	167.03 14
	10.99	11.38	11.97	13.39	14.03	15.08 1	17.14 1	22.86 1	74.14 6
	10.96	11.27	11.80	13.29	13.88	14.82	16.59 1	21.04 1	47.18 3
.00	7.15	7.54	8.47	9.12	9.77	10.97	13.81	27.00	5.00e05 5
	7.10	7.47	8.25	9.02	9.61	10.66	12.97	21.69	999.00 9
	7.07	7.41	7.96	8.93	9.47	10.39	12.31	18.49	148.50 1
	7.03	7.32	7.77	8.85	9.34	10.16	11.78	16.39	61.25
	7.03	7.24	7.64	8.77	9.22	9.95	11.34	14.91	37.12
	5.63	5.97	6.79	7.36	7.94	9.01	11.56	23.70	5.40e05
	5.59	5.91	6.59	7.27	7.80	8.73	10.80	18.77	999.17 9
	5.56	5.86	6.34	7.19	7.67	8.49	10.21	15.83	141.11 1
	5.53	5.78	6.17	7.12	7.55	8.28	9.73	13.90	56.18
	5.53	5.71	6.06	7.05	7.45	8.10	9.34	12.55	33.20
	4.81	5.12	5.88	6.41	6.95	7.94	10.35	21.92	5.62e05
	4.77	5.06	5.70	6.33	6.81	7.68	9.63	17.20	999.25
	4.75	5.02	5.46	6.25	6.70	7.46	9.07	14.39	137.10
	4.71	4.95	5.31	6.19	6.59	7.27	8.62	12.56	53.44
	4.69	4.88	5.20	6.12	6.49	7.10	8.25	11.28	31.09
	429	4.58	5.30	5.80	6.32	7.27	9.58	20.80	5.76e05
	425	4.53	5.13	5.73	6.19	7.02	8.89	16.21	999.30
	422	4.48	4.90	5.66	6.08	6.81	8.35	13.48	134.58
	419	4.42	4.76	5.59	5.98	6.62	7.92	11.71	51.71
	418	4.35	4.66	5.53	5.89	6.46	7.57	10.48	29.75
	3.92	4.20	4.89	5.38	5.88	6.80	9.05	20.03	5.86e05
	3.88	4.15	4.73	5.31	5.76	6.56	8.38	15.52	999.33
	3.86	4.11	4.51	5.24	5.65	6.35	7.86	12.86	132.85
	3.83	4.04	4.37	5.18	5.55	6.18	7.44	11.13	50.53
	3.81	3.98	4.28	5.12	5.46	6.02	7.09	9.93	28.83
	3.65	3.92	4.59	5.07	5.56	6.46	8.66	19.46	5.93e05
	3.61	3.87	4.44	5.00	5.44	6.22	8.00	15.02	999.36
	3.59	3.83	4.22	4.93	5.33	6.02	7.49	12.40	131.58
	3.56	3.77	4.09	4.87	5.23	5.85	7.08	10.70	49.66
	3.54	3.71	3.99	4.82	5.15	5.69	6.74	9.52	28.16
	3.43	3.70	4.36	4.83	5.31	6.19	8.35	19.03	5.98e05
	3.40	3.65	4.21	4.76	5.19	5.96	7.71	14.63	999.37
	3.38	3.61	4.00	4.69	5.09	5.76	7.21	12.05	130.62
	3.35	3.55	3.86	4.64	4.99	5.59	6.80	10.37	49.00
	3.33	3.49	3.77	4.58	4.91	5.44	6.47	9.20	27.65
	3.26	3.53	4.18	4.64	5.11	5.98	8.12	18.69	6.02e05
	3.23	3.48	4.02	4.57	4.99	5.75	7.48	14.33	999.39
	3.21	3.44	3.82	4.50	4.89	5.56	6.98	11.77	129.86
	3.18	3.38	3.69	4.45	4.80	5.39	6.58	10.11	48.47
	3.16	3.32	3.60	4.39	4.71	5.24	6.26	8.96	27.24
	3.12	3.39	4.03	4.48	4.95	5.81	7.92	18.41	6.06e05
	3.09	3.34	3.87	4.41	4.83	5.58	7.29	14.08	999.40
	3.07	3.30	3.67	4.35	4.73	5.39	6.80	11.54	129.25
	3.04	3.24	3.54	4.29	4.64	5.22	6.40	9.89	48.05
	3.02	3.18	3.45	4.24	4.56	5.08	6.08	8.75	26.92
	2.90	3.16	3.79	4.24	4.70	5.55	7.63	17.99	6.11e05
	2.87	3.11	3.64	4.17	4.58	5.32	7.00	13.71	999.42
	2.85	3.07	3.44	4.11	4.48	5.13	6.52	11.19	128.32
	2.82	3.02	3.32	4.05	4.39	4.97	6.13	9.57	47.41
	2.81	2.96	3.23	4.00	4.31	4.82	5.81	8.45	26.42
	2.74	3.00	3.62	4.06	4.51	5.35	7.41	17.68	6.14e05
	2.71	2.95	3.47	3.99	4.40	5.13	6.79	13.43	999.43
	2.69	2.91	3.27	3.93	4.30	4.94	6.31	10.94	127.64
	2.66	2.85	3.15	3.88	4.21	4.78	5.93	9.33	46.95
	2.64	2.80	3.06	3.82	4.13	4.64	5.62	8.22	26.06
1	2.61	2.87	3.48	3.92	4.37	5.20	7.24	17.45	6.17e05
	2.58	2.82	3.34	3.86	4.26	4.99	6.63	13.23	999.44
	2.56	2.78	3.41	3.80	4.16	4.80	6.16	10.75	127.14
	2.53	2.72	3.02	3.74	4.07	4.64	5.78	9.15	46.60
	2.53	2.72	2.93	3.69	3.99	4.49	5.46	8.05	25.78
	2.51	2.76	3.38	3.81	4.26	5.09	7.11	17.27	6.19e05
	2.48	2.71	3.23	3.75	4.15	4.87	6.51	13.06	999.44
	2.46	2.68	3.04	3.69	4.05	4.68	6.03	10.60	126.74
	2.43	2.62	2.91	3.63	3.96	4.52	5.66	9.01	46.32
	2.41	2.56	2.83	3.58	3.88	4.38	5.35	7.91	25.57
2	2.42 2.39 2.37 2.34 2.34 2.33	2.68 2.63 2.59 2.53 2.48	3.29 3.14 2.95 2.83 2.74	3.72 3.66 3.60 3.54 3.49	4.17 4.06 3.96 3.87 3.79	4.99 4.78 4.59 4.43 4.29	7.01 6.40 5.93 5.56 5.25	17.12 12.93 10.48 8.90 7.80	6.21e05 999.45 126.42 46.10 25.39

10 7 6	54322						_
750 000	200 250 300 400 500	80 100 120 150	50 50 70	26 27 28 29 30	21 22 23 24 25	15 15 16 17 18 18	10 5 4 3 2 1 1 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2.16 2.15 2.14	2.26 2.23 2.21 2.18 2.17	2.52 2.47 2.43 2.37 2.32	3.13 2.98 2.79 2.67 2.58	3.56 3.49 3.43 3.38 3.33	4.00 3.89 3.79 3.71 3.63	6.81 6.22 5.75 5.38 5.07 4.82 4.60 4.42 4.12	6.24e05 999.46 125.84 45.70 25.08 16.85 12.69 10.26 8.69 7.60
2.04 2.03 2.02	2.15 2.12 2.10 2.07 2.05	2.41 2.36 2.32 2.26 2.21	3.02 2.87 2.68 2.55 2.47	3.44 3.38 3.32 3.27 3.22	3.88 3.78 3.68 3.59 3.52	6.68 6.09 5.63 5.25 4.95 4.70 4.48 4.30 4.14	6.26e05 999.47 125.45 45.43 24.87 16.67 112.53 10.11 8.55 7.47
1.96 1.95 1.94	2.07 2.03 2.01 1.98 1.97	2.32 2.27 2.24 2.18 2.12	2.93 2.79 2.60 2.47 2.39	3.36 3.30 3.24 3.18 3.13	3.80 3.70 3.60 3.51 3.43	6.59 6.00 5.54 5.17 4.86 4.61 4.40 4.22 4.06 3.92	6.28e05 999.47 125.17 45.23 24.72 16.54 12.41 10.00 8.46 7.37
1.89 1.88 1.87	2.00 1.97 1.94 1.92 1.90	2.26 2.21 2.17 2.11 2.06	2.87 2.73 2.53 2.41 2.32	3.30 3.23 3.18 3.12 3.07	3.74 3.63 3.53 3.45 3.37	5.52 5.93 5.47 5.10 4.80 4.54 4.33 4.15 3.99	40 6.29e05 999.47 124.96 45.09 24.60 16.44 12.33 9.92 8.37 7.30
1.79 1.78 1.77	1.90 1.87 1.85 1.82	2.16 2.11 2.08 2.02 1.96	2.78 2.64 2.44 2.32 2.23	3.21 3.14 3.09 3.03 2.98	3.54 3.54 3.36 3.36	5.83 5.37 5.30 4.70 4.45 4.24 4.06 3.90 3.77	50 6.30:65 999.48 124.66 44.88 24.44 16.31 12.20 9.80 8.26 7.19
1.72 1.71 1.69	1.83 1.80 1.78 1.75 1.73	2.10 2.05 2.01 1.95 1.89	2.72 2.57 2.38 2.25 2.16	3.15 3.08 3.02 2.97 2.92	3.58 3.48 3.38 3.29 3.22	6.35 5.76 5.30 4.94 4.64 4.39 4.18 4.00 3.84 3.70	60 6.31e05 999.48 124.47 44.75 24.33 116.21 12.12 9.73 8.19 7.12
1.64 1.63 1.62	1.76 1.72 1.70 1.67 1.65	2.03 1.98 1.94 1.88 1.82	2.66 2.51 2.31 2.19 2.10	3.08 3.02 2.96 2.91 2.86	3.52 3.41 3.32 3.23 3.15	6.28 5.70 5.24 4.87 4.57 4.32 4.11 3.93 3.78	75 6.32.605 999.49 124.27 44.61 24.22 16.12 112.04 9.65 8.11 7.05
1.56 1.55 1.53	1.68 1.65 1.62 1.59 1.57	1.96 1.91 1.87 1.81 1.74	2.59 2.44 2.25 2.12 2.03	3.02 2.96 2.90 2.84 2.79	3.46 3.35 3.25 3.17 3.09	6.21 5.63 5.17 4.81 4.51 4.26 4.05 3.87 3.58	6.33e05 999.49 124.07 44.47 24.12 16.03 111.95 9.57 8.04 6.98
1.46 1.45 1.44	1.60 1.56 1.53 1.50 1.48	1.89 1.83 1.79 1.73 1.66	2.52 2.38 2.18 2.05 1.95	2.95 2.89 2.83 2.78 2.78	3.39 3.28 3.19 3.10 3.03	6.14 5.56 5.10 4.74 4.44 4.19 3.98 3.80 3.65	6.35e05 999.49 123.87 44.33 24.01 15.93 111.87 9.49 7.96 6.91
1.41 1.40 1.38	1.55 1.51 1.48 1.45 1.43	1.85 1.79 1.75 1.68 1.62	2.49 2.34 2.14 2.01 1.92	2.92 2.86 2.80 2.74 2.69	3.36 3.25 3.16 3.07 2.99	6.10 5.52 5.07 4.71 4.41 4.16 3.95 3.77 3.61 3.48	6.35e05 999.49 123.77 44.26 23.95 115.89 111.82 9.45 7.93 6.87

9

Table A.4 χ^2 (Chi-Squared) Distribution: Critical Values of χ^2

Degrees of freedom 1	5% 3.841 5.991	Significance level 1% 6.635 9.210	0.1% 10.828 13.816
	3.841	6.635	10.828
2	5.991	9.210	13.816
3	7.815	11.345	16.266
4	9.488	13.277	18.467
Уı	11.070	15.086	20.515
6	12.592	16.812	22.458
7	14.067	18.475	24.322
œ	15.507	20.090	26.124
9	16.919	21.666	27.877
10	18.307	23.209	29.588