JUN 0 6 700 JUN 0 10 JUN 0 JUN 0 10 JUN 0 10

SEQUENCE LISTING

RECEIVED

JUN 0 8 2001 #7

TECH CENTER 1600/2900 --

```
Yamagata, Kazuya
      Oda, Naohisha
      Kaisaki, Pamela J.
      Furuta, Hiroto
      Horikawa, Yukio
      Menzel, Stephan
<120> MUTATIONS IN THE DIABETES SUSCEPTIBILITY GENES
      HEPATOCYTE NUCLEAR FACTOR (HNF) 1 ALPHA, HNG-1BETA AND
      HNF-4ALPHA
<130> ARCD:272USC1
<140> 09/754,106
<141> 2001-03-01
<150> 08/927,219
<151> 1997-09-09
<150> 60/029,679
<151> 1996-10-30
<150> 60/028,056
<151> 1996-10-02
<150> 60/025,719
<151> 1996-09-10
<160> 147
<170> PatentIn Ver. 2.1
<210> 1
<211> 3238
<212> DNA
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Primer
<220>
<221> CDS
<222> (24)..(986)
<220>
<221> CDS
<222> (990)..(1916)
<220>
<221> modified_base
<222> (988)
```

<223> N = A, C, G, or T

<400> 1 CGTGGCCCTG TGGCAGCCGA GCC ATG GTT TCT AAA CTG AGC CAG CTG CAG												50		
001000												n Le		
ACG GAG Thr Glu 10														98
CTG ATC Leu Ile														146
GGC CCC Gly Pro														194
GCT GAG Ala Glu														242
ACG GAC Thr Asp 75	Asp													290
GAG AAC Glu Asn 90														338
ACC CTT Thr Leu														386
TAC CTG Tyr Leu														434
GGC CTC Gly Leu														482
ATG AAG Met Lys 155	Thr													530
CAG CGA Gln Arg 170														578
ATT GAA Ile Glu														626
AAC CGT Asn Arg														674

TAT Tyr	GAG Glu	AGG Arg 220	CAG Gln	AAG Lys	AAC Asn	CCT Pro	AGC Ser 225	AAG Lys	GAG Glu	GAG Glu	CGA Arg	GAG Glu 230	ACG Thr	CTA Leu	GTG Val	722
GAG Glu	GAG Glu 235	TGC Cys	AAT Asn	AGG Arg	GCG Ala	GAA Glu 240	TGC Cys	ATC Ile	CAG Gln	AGA Arg	GGG Gly 245	GTG Val	TCC Ser	CCA Pro	TCA Ser	770
CAG Gln 250	GCA Ala	CAG Gln	GGG Gly	CTG Leu	GGC Gly 255	TCC Ser	AAC Asn	CTC Leu	GTC Val	ACG Thr 260	GAG Glu	GTG Val	CGT Arg	GTC Val	TAC Tyr 265	818
					CGG Arg											866
GCC Ala	ATG Met	GAC Asp	ACG Thr 285	TAC Tyr	AGC Ser	GGG Gly	CCC Pro	CCC Pro 290	CCA Pro	GGG Gly	CCA Pro	GGC Gly	CCG Pro 295	GGA Gly	CCT Pro	914
					AGC Ser											962
					GGT Gly							GCG Ala 325				1010
ACT Thr	GCA Ala 330	GAA Glu	GTA Val	CCC Pro	TCA Ser	AGC Ser 335	AGC Ser	GGC Gly	GGT Gly	CCC Pro	TTA Leu 340	GTG Val	ACA Thr	GTG Val	TCT Ser	1058
	Pro				GTG Val 350											1106
					GCC Ala											1154
				Thr	CTG Leu				His							1202
CCA Pro	GGC Gly	CTC Leu 395	Asn	CAG Gln	CAG Gln	CCC Pro	CAG Gln 400	Asn	CTC Leu	ATC Ile	ATG Met	GCC Ala 405	Ser	CTT Leu	CCT Pro	1250
GGG Gly	GTC Val 410	Met	ACC	ATC : Ile	GGG Gly	CCT Pro 415	Gly	GAG Glu	CCT Pro	GCC	TCC Ser 420	Leu	GGT Gly	CCT Pro	ACG Thr	1298
	Thr					Ser					Gly				ACG Thr 440	1346

Gln Ala Gln Ser	GTG CCG GTC Val Pro Val 445	ATC AAC AGC ATG Ile Asn Ser Met 450	GGC AGC AGC CTG ACC Gly Ser Ser Leu Thr 455	1394
ACC CTG CAG CCC Thr Leu Gln Pro 460	GTC CAG TTC Val Gln Phe	TCC CAG CCG CTG Ser Gln Pro Leu 465	CAC CCC TCC TAC CAG His Pro Ser Tyr Gln 470	1442
CAG CCG CTC ATG Gln Pro Leu Met 475	CCA CCT GTG Pro Pro Val	CAG AGC CAT GTG Gln Ser His Val 480	ACC CAG AGC CCC TTC Thr Gln Ser Pro Phe 485	1490
			GCC CTC TAC AGC CAC Ala Leu Tyr Ser His 500	1538
Lys Pro Glu Val 505	Ala Gln Tyr 510	Thr His Thr Gly 515	CTG CTC CCG CAG ACT Leu Leu Pro Gln Thr 520	1586
			CTG GCC AGC CTC ACG Leu Ala Ser Leu Thr 535	1634
			GCC TCC AGT GAG TCC Ala Ser Ser Glu Ser 550	1682
			CTC CAC GTC CCC AGC Leu His Val Pro Ser 565	1730
			GCC CAC CGG CTC AGC Ala His Arg Leu Ser 580	1778
Ala Ser Pro Thr 585	Val Ser Ser 590	Ser Ser Leu Val 595	CTG TAC CAG AGC TCA Leu Tyr Gln Ser Ser 600	1826
GAC TCC AGC AAT Asp Ser Ser Asn	GGC CAG AGC Gly Gln Ser 605	CAC CTG CTG CCA His Leu Leu Pro 610	TCC AAC CAC AGC GTC Ser Asn His Ser Val 615	1874
Ile Glu Thr Phe 620	Ile Ser Thr	CAG ATG GCC TCT Gln Met Ala Ser 625	Ser Ser Gln 630	1916
			TGGGGGTGA TGAGGGCAGC	1976
			GTGGCCCTTC CTGGACAGCT AGGGCTCTGA GGCGCCCCAA	2036 2096
			AGAGCTAGGA GCAAAGCCTG	2156
TTCATGGCAG ATGT	AGGAGG GACTG	TCGCT GCTTCGTGGG	ATACAGTCTT CTTACTTGGA	2216

ACTGAAGGGG	GCGGCCTATG	ACTTGGGCAC	CCCCAGCCTG	GGCCTATGGA	GAGCCCTGGG	2276
ACCGCTACAC	CACTCTGGCA	GCCACACTTC	TCAGGACACA	GGCCTGTGTA	GCTGTGACCT	2336
GCTGAGCTCT	GAGAGGCCCT	GGATCAGCGT	GGCCTTGTTC	TGTCACCAAT	GTACCCACCG	2396
GGCCACTCCT	TCCTGCCCCA	ACTCCTTCCA	GCTAGTGACC	CACATGCCAT	TTGTACTGAC	2456
CCCATCACCT	ACTCACACAG	GCATTTCCTG	GGTGGCTACT	CTGTGCCAGA	GCCTGGGGCT	2516
CTAACTGCCT	GAGCCCAGGG	AGGCCGAAGC	TAACAGGGAA	GGCAGGCAGG	GCTCTCCTGG	2576
TCTTCCCATC	CCCAGCGATT	CCCTCTCCCA	GGCCCCATGA	CCTCCAGCTT	TCCTGTATTT	2636
CTTCCCAAGA	GCATGATGCC	TCTGAGGCCA	GCCTGGCCTC	CTGCCTCTAC	TGGGAAGGCT	2696
ACTTCGGGGC	TGGGAAGTCG	TCCTTACTCC	TGTGGGAGCC	TCGCAACCCG	TGCCAAGTCC	2756
AGGTCCTGGT	GGGGCAGCTC	CTCTGTCTCG	AGCGCCCTGC	AGACCCTGCC	CTTGTTTGGG	2816
GCAGGAGTAG	CTGAGCTCAC	AAGGCAGCAA	GGCCCGAGCA	GCTGAGCAGG	GCCGGGGAAC	2876
rggccaagct	GAGGTGCCCA	GGAGAAGAAA	GAGGTGACCC	CAGGGCACAG	GAGCTACCTG	2936
IGTGGACAGG	ACTAACACTC	AGAAGCCTGG	GTGCCTGGCT	GGCTGAGGGC	AGTTCGCAGC	2996
CACCCTGAGG	AGTCTGAGGT	CCTGAGCACT	GCCAGGAGGG	ACAAAGGAGC	CTGTGAACCC	3056
AGGACAAGCA	TGGTCCCACA	TCCCTGGGCC	TGCTGCTGAG	AACCTGGCCT	TCAGTGTACC	3116
GCGTCTACCC	TGGGATTCAG	GAAAAGGCCT	GGGGTGACCC	GGCACCCCCT	GCAGCTTGTA	3176
GCCAGCCGGG	GCGAGTGGCA	CGTTTATTTA	ACTTTTAGTA	AAGTCAAGGA	GAAATGCGGT	3236
GG						3238

<210> 2

<211> 630

<212> PRT

<213> Artificial Sequence

<200>

<223> Description of Artificial Sequence: Synthetic Peptide

<400> 2

Met Val Ser Lys Leu Ser Gln Leu Gln Thr Glu Leu Leu Ala Ala Leu $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Glu Ser Gly Leu Ser Lys Glu Ala Leu Ile Gln Ala Leu Gly Glu
20 25 30

Pro Gly Pro Tyr Leu Leu Ala Gly Glu Gly Pro Leu Asp Lys Gly Glu 35 40 45

Ser	Cys 50	GIĀ	GTÀ	GIÀ	Arg	G1y 55	GLu	Leu	Ala	GLu	Leu 60	Pro	Asn	GΤΆ	Leu
Gly 65	Glu	Thr	Arg	Gly	Ser 70	Glu	Asp	Glu	Thr	Asp 75	Asp	Asp	Gly	Glu	Asp 80
Phe	Thr	Pro	Pro	Ile 85	Leu	Lys	Glu	Leu	Glu 90	Asn	Leu	Ser	Pro	Glu 95	Glu
Ala	Ala	His	Gln 100	Lys	Ala	Val	Val	Glu 105	Thr	Leu	Leu	Gln	Glu 110	Asp	Pro
Trp	Arg	Val 115	Ala	Lys	Met	Val	Lys 120	Ser	Tyr	Leu	Gln	Gln 125	His	Asn	Ile
Pro	Gln 130	Arg	Glu	Val	Val	Asp 135	Thr	Thr	Gly	Leu	Asn 140	Gln	Ser	His	Leu
Ser 145	Gln	His	Leu	Asn	Lys 150	Gly	Thr	Pro	Met	Lys 155	Thr	Gln	Lys	Arg	Ala 160
Ala	Leu	Tyr	Thr	Trp 165	Tyr	Val	Arg	Lys	Gln 170	Arg	Glu	Val	Ala	Gln 175	Gln
Phe	Thr	His	Ala 180	Gly	Gln	Gly	Gly	Leu 185	Ile	Glu	Glu	Pro	Thr 190	Gly	Asp
Glu	Leu	Pro 195	Thr	Lys	Lys	Gly	Arg 200	Arg	Asn	Arg	Phe	Lys 205	Trp	Gly	Pro
Ala	Ser 210	Gln	Gln	Ile	Leu	Phe 215	Gln	Ala	Tyr	Glu	Arg 220	Gln	Lys	Asn	Pro
Ser 225	Lys	Glu	Glu	Arg	Glu 230	Thr	Leu	Val	Glu	Glu 235	Cys	Asn	Arg	Ala	Glu 240
Cys	Ile	Gln	Arg	Gly 245	Val	Ser	Pro	Ser	Gln 250	Ala	Gln	Gly	Leu	Gly 255	Ser
Asn	Leu	Val	Thr 2.60	Glu	Val	Arg	Val	Tyr 265	Asn	Trp	Phe	Ala	Asn 270	Arg	Arg
Lys	Glu	Glu 275	Ala	Phe	Arg	His	Lys 280	Leu	Ala	Met	Asp	Thr 285	Tyr	Ser	Gly
Pro	Pro 290	Pro	Gly	Pro	Gly	Pro 295	Gly	Pro	Ala	Leu	Pro 300	Ala	His	Ser	Ser
Pro 305	Gly	Leu	Pro	Pro	Pro 310	Ala	Leu	Ser	Pro	Ser 315	Lys	Val	His	Gly	Val 320
Arg	Gly	Gln	Pro	Ala 325	Thr	Ser	Glu	Thr	Ala 330	Glu	Val	Pro	Ser	Ser 335	Ser
Gly	Gly	Pro	Leu 340	Val	Thr	Val	Ser	Thr 345	Pro	Leu	His	Gln	Val 350	Ser	Pro

Thr Gly Leu Glu Pro Ser His Ser Leu Leu Ser Thr Glu Ala Lys Leu 355 360 365

Val Ser Ala Ala Gly Gly Pro Leu Pro Pro Val Ser Thr Leu Thr Ala 370 375 380

Leu His Ser Leu Glu Gln Thr Ser Pro Gly Leu Asn Gln Gln Pro Gln 385 390 395 400

Asn Leu Ile Met Ala Ser Leu Pro Gly Val Met Thr Ile Gly Pro Gly 405 410 415

Glu Pro Ala Ser Leu Gly Pro Thr Phe Thr Asn Thr Gly Ala Ser Thr
420 425 430

Leu Val Ile Gly Leu Ala Ser Thr Gln Ala Gln Ser Val Pro Val Ile 435 440 445

Asn Ser Met Gly Ser Ser Leu Thr Thr Leu Gln Pro Val Gln Phe Ser 450 455 460

Gln Pro Leu His Pro Ser Tyr Gln Gln Pro Leu Met Pro Pro Val Gln 465 470 475 480

Ser His Val Thr Gln Ser Pro Phe Met Ala Thr Met Ala Gln Leu Gln 485 490 495

Ser Pro His Ala Leu Tyr Ser His Lys Pro Glu Val Ala Gln Tyr Thr 500 505 510

His Thr Gly Leu Leu Pro Gln Thr Met Leu Ile Thr Asp Thr Thr Asn 515 520 525

Leu Ser Ala Leu Ala Ser Leu Thr Pro Thr Lys Gln Val Phe Thr Ser 530 540

Asp Thr Glu Ala Ser Ser Glu Ser Gly Leu His Thr Pro Ala Ser Gln 545 550 555 560

Ala Thr Thr Leu His Val Pro Ser Gln Asp Pro Ala Gly Ile Gln His 565 570 575

Leu Gln Pro Ala His Arg Leu Ser Ala Ser Pro Thr Val Ser Ser Ser 580 585 590

Ser Leu Val Leu Tyr Gln Ser Ser Asp Ser Ser Asn Gly Gln Ser His 595 600 605

Leu Leu Pro Ser Asn His Ser Val Ile Glu Thr Phe Ile Ser Thr Gln 610 620

Met Ala Ser Ser Ser Gln 625 630

<210> 3 <211> 3238 <212> DNA

	2213> Artificial Sequence 2200>															
<223	> De	scri imer		n of	Art	ific	ial	Sequ	ence	: S	ynth	etic				
<220 <221 <222	> CD		(986)												
<220 <221 <222	> CD	s 90).	. (19	16)												
<222	.> mo	difi 88) = A,			rТ											
<400 CGTG		TG T	'GGCA	.GCCG	a GC		G GI et Va 1									50
		CTC Leu														98
CTG Leu	ATC Ile	CAG Gln	GCA Ala	CTG Leu 30	GGT Gly	GAG Glu	CCG Pro	GGG Gly	CCC Pro 35	TAC Tyr	CTC Leu	CTG Leu	GCT Ala	GGA Gly 40	GAA Glu	146
		CTG Leu														194
GCT Ala	GAG Glu	CTG Leu 60	CCC Pro	AAT Asn	GGG Gly	CTG Leu	GGG Gly 65	GAG Glu	ACT Thr	CGG Arg	GGC Gly	TCC Ser 70	GAG Glu	GAC Asp	GAG Glu	242
		GAC Asp														290
		CTC Leu														338
		CTG Leu														386
		CAG Gln														434
GGC	CTC	AAC	CAG	TCC	CAC	CTG	TCC	CAA	CAC	СТС	AAC	AAG	GGC	ACT	CCC	482

Gly	Leu	Asn 140	Gln	Ser	His	Leu	Ser 145	Gln	His	Leu	Asn	Lys 150	Gly	Thr	Pro	
ATG Met	AAG Lys 155	ACG Thr	CAG Gln	AAG Lys	CGG Arg	GCC Ala 160	GCC Ala	CTG Leu	TAC Tyr	ACC Thr	TGG Trp 165	TAC Tyr	GTC Val	CGC Arg	AAG Lys	530
CAG Gln 170	CGA Arg	GAG Glu	GTG Val	GCG Ala	CAG Gln 175	CAG Gln	TTC Phe	ACC Thr	CAT His	GCA Ala 180	GGG Gly	CAG Gln	GGA Gly	GGG Gly	CTG Leu 185	578
ATT Ile	GAA Glu	GAG Glu	CCC Pro	ACA Thr 190	GGT Gly	GAT Asp	GAG Glu	CTA Leu	CCA Pro 195	ACC Thr	AAG Lys	AAG Lys	GGG Gly	CGG Arg 200	AGG Arg	626
AAC Asn	CGT Arg	TTC Phe	AAG Lys 205	TGG Trp	GGC Gly	CCA Pro	GCA Ala	TCC Ser 210	CAG Gln	CAG Gln	ATC Ile	CTG Leu	TTC Phe 215	CAG Gln	GCC Ala	674
												GAG Glu 230				722
												GTG Val				770
CAG Gln 250	GCA Ala	CAG Gln	GGG Gly	CTG Leu	GGC Gly 255	TCC Ser	AAC Asn	CTC Leu	GTC Val	ACG Thr 260	GAG Glu	GTG Val	CGT Arg	GTC Val	TAC Tyr 265	818
AAC Asn	TGG Trp	TTT Phe	GCC Ala	AAC Asn 270	CGG Arg	CGC Arg	AAA Lys	GAA Glu	GAA Glu 275	GCC Ala	TTC Phe	CGG Arg	CAC His	AAG Lys 280	Leu	866
GCC Ala	ATG Met	GAC Asp	ACG Thr 285	Tyr	AGC Ser	GGG Gly	CCC Pro	CCC Pro 290	Pro	GGG Gly	CCA Pro	GGC Gly	CCG Pro 295	GGA Gly	CCT Pro	914
GCG Ala	CTG Leu	CCC Pro 300	Ala	CAC His	AGC Ser	TCC Ser	CCT Pro 305	Gly	CTG Leu	CCT Pro	CCA Pro	CCT Pro 310	Ala	CTC Leu	TCC Ser	962
		Lys			GGT Gly		Arg								GAG Glu	1010
		Glu					Ser					Val			TCT	1058
ACA Thr 345	Pro	CTC Leu	CAC His	CAA Gln	GTG Val	Ser	CCC	ACG Thr	GGC Gly	CTG Leu 355	Glu	CCC Pro	AGC Ser	CAC His	AGC Ser 360	1106
CTG Leu	CTG	AGT Ser	' ACA	GAA	GCC Ala	AAG Lys	CTG Leu	GTC Val	TCA Ser	GCA Ala	GCT Ala	GGG	GGC Gly	CCC Pro	CTC Leu	1154

365	370	375
Thr Leu Thr Ala	CTG CAC AGC TTG GA Leu His Ser Leu Gl 385	
	AAC CTC ATC ATG GC Asn Leu Ile Met Al 40	a Ser Leu Pro
	GAG CCT GCC TCC CT Glu Pro Ala Ser Le 420	
	CTG GTC ATC GGC CT Leu Val Ile Gly Le 435	
	AAC AGC ATG GGC AG Asn Ser Met Gly Se 450	
Val Gln Phe Ser	CAG CCG CTG CAC CC Gln Pro Leu His Pr 465	
	AGC CAT GTG ACC CA Ser His Val Thr Gl 48	n Ser Pro Phe
	AGC CCC CAC GCC CT Ser Pro His Ala Le 500	
	CAC ACG GGC CTG CT His Thr Gly Leu Le 515	
	CTG AGC GCC CTG GC Leu Ser Ala Leu Al 530	
	GAC ACT GAG GCC TO Asp Thr Glu Ala Se 545	
	GCC ACC ACC CTC CA Ala Thr Thr Leu Hi 56	s Val Pro Ser
	CTG CAG CCG GCC CA Leu Gln Pro Ala Hi 580	
	AGC CTG GTG CTG TA Ser Leu Val Leu Ty 595	

GAC TCC AGC AAT GGC CAG AGC CAC CTG CTG CCA TCC AAC CAC AGC GTC Asp Ser Ser Asn Gly Gln Ser His Leu Leu Pro Ser Asn His Ser Val 605 615	1874
ATC GAG ACC TTC ATC TCC ACC CAG ATG GCC TCT TCC TCC CAG Ile Glu Thr Phe Ile Ser Thr Gln Met Ala Ser Ser Ser Gln 620 625 630	1916
TAACCACGGC ACCTGGGCCCC TGGGGCCTGT ACTGCCTGCT TGGGGGGTGA TGAGGGCAGC	1976
AGCCAGCCCT GCCTGGAGGA CCTGAGCCTG CCGAGCAACC GTGGCCCTTC CTGGACAGCT	2036
GTGCCTCGCT CCCCACTCTG CTCTGATGCA TCAGAAAGGG AGGGCTCTGA GGCGCCCCAA	2096
CCCGTGGAGG CTGCTCGGGG TGCACAGGAG GGGGTCGTGG AGAGCTAGGA GCAAAGCCTG	2156
TTCATGGCAG ATGTAGGAGG GACTGTCGCT GCTTCGTGGG ATACAGTCTT CTTACTTGGA	2216
ACTGAAGGGG GCGGCCTATG ACTTGGGCAC CCCCAGCCTG GGCCTATGGA GAGCCCTGGG	2276
ACCGCTACAC CACTCTGGCA GCCACACTTC TCAGGACACA GGCCTGTGTA GCTGTGACCT	2336
GCTGAGCTCT GAGAGGCCCT GGATCAGCGT GGCCTTGTTC TGTCACCAAT GTACCCACCG	2396
GGCCACTCCT TCCTGCCCCA ACTCCTTCCA GCTAGTGACC CACATGCCAT TTGTACTGAC	2456
CCCATCACCT ACTCACACAG GCATTTCCTG GGTGGCTACT CTGTGCCAGA GCCTGGGGCT	2516
CTAACTGCCT GAGCCCAGGG AGGCCGAAGC TAACAGGGAA GGCAGGCAGG GCTCTCCTGG	2576
TCTTCCCATC CCCAGCGATT CCCTCTCCCA GGCCCCATGA CCTCCAGCTT TCCTGTATTT	2636
CTTCCCAAGA GCATGATGCC TCTGAGGCCA GCCTGGCCTC CTGCCTCTAC TGGGAAGGCT	2696
ACTTCGGGGC TGGGAAGTCG TCCTTACTCC TGTGGGAGCC TCGCAACCCG TGCCAAGTCC	2756
AGGTCCTGGT GGGGCAGCTC CTCTGTCTCG AGCGCCCTGC AGACCCTGCC CTTGTTTGGG	2816
GCAGGAGTAG CTGAGCTCAC AAGGCAGCAA GGCCCGAGCA GCTGAGCAGG GCCGGGGAAC	2876
TGGCCAAGCT GAGGTGCCCA GGAGAAGAAA GAGGTGACCC CAGGGCACAG GAGCTACCTG	2936
TGTGGACAGG ACTAACACTC AGAAGCCTGG GTGCCTGGCT GGCTGAGGGC AGTTCGCAGC	2996
CACCCTGAGG AGTCTGAGGT CCTGAGCACT GCCAGGAGGG ACAAAGGAGC CTGTGAACCC	3056
AGGACAAGCA TGGTCCCACA TCCCTGGGCC TGCTGCTGAG AACCTGGCCT TCAGTGTACC	3116
GCGTCTACCC TGGGATTCAG GAAAAGGCCT GGGGTGACCC GGCACCCCCT GCAGCTTGTA	3176
GCCAGCCGGG GCGAGTGGCA CGTTTATTTA ACTTTTAGTA AAGTCAAGGA GAAATGCGGT	3236
GG	3238

<210> 4 <211> 630

- <212> PRT
- <213> Artificial Sequence
- <200>
- <223> Description of Artificial Sequence: Synthetic
 Peptide
- <400> 4
- Met Val Ser Lys Leu Ser Gln Leu Gln Thr Glu Leu Leu Ala Ala Leu
 1 5 10 15
- Leu Glu Ser Gly Leu Ser Lys Glu Ala Leu Ile Gln Ala Leu Gly Glu 20 25 30
- Pro Gly Pro Tyr Leu Leu Ala Gly Glu Gly Pro Leu Asp Lys Gly Glu 35 40 45
- Ser Cys Gly Gly Gly Arg Gly Glu Leu Ala Glu Leu Pro Asn Gly Leu 50 55 60
- Gly Glu Thr Arg Gly Ser Glu Asp Glu Thr Asp Asp Asp Gly Glu Asp
 65 70 75 80
- Phe Thr Pro Pro Ile Leu Lys Glu Leu Glu Asn Leu Ser Pro Glu Glu 85 90 95
- Ala Ala His Gln Lys Ala Val Val Glu Thr Leu Leu Gln Glu Asp Pro 100 105 110
- Trp Arg Val Ala Lys Met Val Lys Ser Tyr Leu Gln Gln His Asn Ile 115 120 125
- Pro Gln Gln Glu Val Val Asp Thr Thr Gly Leu Asn Gln Ser His Leu 130 135 140
- Ser Gln His Leu Asn Lys Gly Thr Pro Met Lys Thr Gln Lys Arg Ala 145 150 155 160
- Ala Leu Tyr Thr Trp Tyr Val Arg Lys Gln Arg Glu Val Ala Gln Gln 165 170 175
- Phe Thr His Ala Gly Gln Gly Gly Leu Ile Glu Glu Pro Thr Gly Asp 180 185 190
- Glu Leu Pro Thr Lys Lys Gly Arg Arg Asn Arg Phe Lys Trp Gly Pro 195 200 205
- Ala Ser Gln Gln Ile Leu Phe Gln Ala Tyr Glu Arg Gln Lys Asn Pro 210 215 220
- Ser Lys Glu Glu Arg Glu Thr Leu Val Glu Glu Cys Asn Arg Ala Glu 225 230 235 240
- Cys Ile Gln Arg Gly Val Ser Pro Ser Gln Ala Gln Gly Leu Gly Ser 245 250 255
- Asn Leu Val Thr Glu Val Arg Val Tyr Asn Trp Phe Ala Asn Arg Arg 260 . 265 . 270

Lys	Glu	Glu 275	Ala	Phe	Arg	His	Lys 280	Leu	Ala	Met	Asp	Thr 285	Tyr	Ser	Gly
Pro	Pro 290	Pro	Gly	Pro	Gly	Pro 295	Gly	Pro	Ala	Leu	Pro 300	Ala	His	Ser	Ser
Pro 305	Gly	Leu	Pro	Pro	Pro 310	Ala	Leu	Ser	Pro	Ser 315	Lys	Val	His	Gly	Val 320
Arg	Gly	Gln	Pro	Ala 325	Thr	Ser	Glu	Thr	Ala 330	Glu	Val	Pro	Ser	Ser 335	Ser
Gly	Gly	Pro	Leu 340	Val	Thr	Val	Ser	Thr 345	Pro	Leu	His	Gln	Val 350	Ser	Pro
Thr	Gly	Leu 355	Glu	Pro	Ser	His	Ser 360	Leu	Leu	Ser	Thr	Glu 365	Ala	Lys	Leu
Val	Ser 370	Ala	Ala	Gly	Gly	Pro 375	Leu	Pro	Pro	Val	Ser 380	Thr	Leu	Thr	Ala
Leu 385	His	Ser	Leu	Glu	Gln 390	Thr	Ser	Pro	Gly	Leu 395	Asn	Gln	Gln	Pro	Gln 400
Asn	Leu	Ile	Met	Ala 405	Ser	Leu	Pro	Gly	Val 410	Met	Thr	Ile	Gly	Pro 415	Gly
Glu	Pro	Ala	Ser 420	Leu	Gly	Pro	Thr	Phe 425	Thr	Asn	Thr	Gly	Ala 430	Ser	Thr
Leu	Val	Ile 435	Gly	Leu	Ala	Ser	Thr 440	Gln	Ala	Gln	Ser	Val 445	Pro	Val	Ile
Asn	Ser 450	Met	Gly	Ser	Ser	Leu 455		Thr	Leu	Gln	Pro 460	Val	Gln	Phe	Ser
Gln 465	Pro	Leu	His	Pro	Ser 470	Tyr	Gln	Gln	Pro	Leu 475	Met	Pro	Pro	Val	Gln 480
Ser	His	Val	Thr	Gln 485		Pro	Phe	Met	Ala 490		Met	Ala	Gln	Leu 495	Gln
Ser	Pro	His	Ala 500		Tyr	Ser	His	Lys 505		Glu	Val	Ala	Gln 510	Tyr	Thr
His	Thr	Gly 515		Leu	Pro	Gln	Thr 520		Leu	Ile	Thr	Asp 525		Thr	Asn
Leu	Ser 530		Leu	Ala	Ser	Leu 535		Pro	Thr	Lys	Gln 540		Phe	Thr	Ser
Asp 545		Glu	Ala	Ser	Ser 550		Ser	Gly	Leu	His 555		Pro	Ala	Ser	Gln 560
Ala	Thr	Thr	Leu	His 565		Pro	Ser	Gln	Asp 570		Ala	Gly	Ile	Gln 575	His

Leu Gln Pro Ala His Arg Leu Ser Ala Ser Pro Thr Val Ser Ser Ser 585 580 Ser Leu Val Leu Tyr Gln Ser Ser Asp Ser Ser Asn Gly Gln Ser His 600 Leu Leu Pro Ser Asn His Ser Val Ile Glu Thr Phe Ile Ser Thr Gln 615 610 Met Ala Ser Ser Ser Gln 625 <210> 5 <211> 3239 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic Primer <220> <221> CDS <222> (24)..(965) <220> <221> modified base <222> (989) <223> N = A, C, G, or T<400>550 CGTGGCCCTG TGGCAGCCGA GCC ATG GTT TCT AAA CTG AGC CAG CTG CAG Met Val Ser Lys Leu Ser Gln Leu Gln ACG GAG CTC CTG GCG GCC CTG CTC GAG TCA GGG CTG AGC AAA GAG GCA 98 Thr Glu Leu Leu Ala Ala Leu Leu Glu Ser Gly Leu Ser Lys Glu Ala 10 15 20 CTG ATC CAG GCA CTG GGT GAG CCG GGG CCC TAC CTC CTG GCT GGA GAA 146 Leu Ile Gln Ala Leu Gly Glu Pro Gly Pro Tyr Leu Leu Ala Gly Glu 35 30 GGC CCC CTG GAC AAG GGG GAG TCC TGC GGC GGC GGT CGA GGG GAG CTG 194 Gly Pro Leu Asp Lys Gly Glu Ser Cys Gly Gly Gly Arg Gly Glu Leu 45 50 GCT GAG CTG CCC AAT GGG CTG GGG GAG ACT CGG GGC TCC GAG GAC GAG 242 Ala Glu Leu Pro Asn Gly Leu Gly Glu Thr Arg Gly Ser Glu Asp Glu 60 65 ACG GAC GAT GGG GAA GAC TTC ACG CCA CCC ATC CTC AAA GAG CTG 290 Thr Asp Asp Asp Gly Glu Asp Phe Thr Pro Pro Ile Leu Lys Glu Leu 75 80 GAG AAC CTC AGC CCT GAG GAG GCG GCC CAC CAG AAA GCC GTG GTG GAG 338

Glu 90	Asn	Leu	Ser	Pro	Glu 95	Glu	Ala	Ala	His	Gln 100	Lys	Ala	Val	Val	Glu 105		
ACC Thr	CTT Leu	CTG Leu	CAG Gln	GAG Glu 110	GAC Asp	CCG Pro	TGG Trp	CGT Arg	GTG Val 115	GCG Ala	AAG Lys	ATG Met	GTC Val	AAG Lys 120	TCC Ser	386	;
TAC Tyr	CTG Leu	CAG Gln	CAG Gln 125	CAC His	AAC Asn	ATC Ile	CCA Pro	CAG Gln 130	CGG Arg	GAG Glu	GTG Val	GTC Val	GAT Asp 135	ACC Thr	ACT Thr	434	ı
GGC Gly	CTC Leu	AAC Asn 140	CAG Gln	TCC Ser	CAC His	CTG Leu	TCC Ser 145	CAA Gln	CAC His	CTC Leu	AAC Asn	AAG Lys 150	GGC Gly	ACT Thr	CCC Pro	482	2
ATG Met	AAG Lys 155	ACG Thr	CAG Gln	AAG Lys	CGG Arg	GCC Ala 160	GCC Ala	CTG Leu	TAC Tyr	ACC Thr	TGG Trp 165	TAC Tyr	GTC Val	CGC Arg	AAG Lys	530)
CAG Gln 170	CGA Arg	GAG Glu	GTG Val	GCG Ala	CAG Gln 175	CAG Gln	TTC Phe	ACC Thr	CAT His	GCA Ala 180	GGG Gly	CAG Gln	GGA Gly	GGG Gly	CTG Leu 185	578	3
ATT Ile	GAA Glu	GAG Glu	CCC Pro	ACA Thr 190	GGT Gly	GAT Asp	GAG Glu	CTA Leu	CCA Pro 195	ACC Thr	AAG Lys	AAG Lys	GGG Gly	CGG Arg 200	AGG Arg	626	6
AAC Asn	CGT Arg	TTC Phe	AAG Lys 205	TGG Trp	GGC Gly	CCA Pro	GCA Ala	TCC Ser 210	CAG Gln	CAG Gln	ATC Ile	CTG Leu	TTC Phe 215	CAG Gln	GCC Ala	674	4
TAT Tyr	GAG Glu	AGG Arg 220	Gln	AAG Lys	AAC Asn	CCT Pro	AGC Ser 225	Lys	GAG Glu	GAG Glu	CGA Arg	GAG Glu 230	Thr	CTA Leu	GTG Val	72:	2
GAG Glu	GAG Glu 235	Cys	AAT Asn	AGG Arg	GCG Ala	GAA Glu 240	Cys	ATC Ile	CAG Gln	AGA Arg	GGG Gly 245	Val	TCC Ser	CCA Pro	TCA	77	0
CAG Gln 250	Ala	CAG Gln	GGG Gly	CTG Leu	GGC Gly 255	Ser	AAC Asn	CTC Leu	GTC Val	ACG Thr 260	Glu	GTG Val	CGT Arg	GTC Val	TAC Tyr 265	81	8
AAC Asn	TGG Trp	TTT Phe	GCC Ala	AAC Asn 270	Arg	CGC	AAA Lys	GAA Glu	GAA Glu 275	Ala	TTC Phe	CGG Arg	CAC His	AAG Lys 280	CTG Leu	86	6
GCC Ala	ATG Met	GAC Asp	ACG Thr 285	Tyr	AGC Ser	GGG Gly	CCC Pro	CCC Pro 290	Pro	AGG Arg	GCC Ala	AGG Arg	CCC Pro 295	Gly	ACC Thr	91	4
TGC Cys	GCT Ala	GCC Ala	Arg	TCA Ser	CAG Gln	CTC	CCC Pro	Tr	CCT Pro	GCC Ala	TC0	C ACC Thr 310	: Cys	CCI Pro	CTC Leu	96	2
CCC Pro		TAAC	GTC	CAC	GTGT	GC (CTNT	rgga(CA GC	CTGC	CGAC	C AGI	GAGA	ACTG		101	.5

CAGAAGTACC	CTCAAGCAGC	GGCGGTCCCT	TAGTGACAGT	GTCTACACCC	CTCCACCAAG	1075
TGTCCCCCAC	GGGCCTGGAG	CCCAGCCACA	GCCTGCTGAG	TACAGAAGCC	AAGCTGGTCT	1135
CAGCAGCTGG	GGGCCCCCTC	CCCCTGTCA	GCACCCTGAC	AGCACTGCAC	AGCTTGGAGC	1195
AGACATCCCC	AGGCCTCAAC	CAGCAGCCCC	AGAACCTCAT	CATGGCCTCA	CTTCCTGGGG	1255
TCATGACCAT	CGGGCCTGGT	GAGCCTGCCT	CCCTGGGTCC	TACGTTCACC	AACACAGGTG	1315
CCTCCACCCT	GGTCATCGGC	CTGGCCTCCA	CGCAGGCACA	GAGTGTGCCG	GTCATCAACA	1375
GCATGGGCAG	CAGCCTGACC	ACCCTGCAGC	CCGTCCAGTT	CTCCCAGCCG	CTGCACCCCT	1435
CCTACCAGCA	GCCGCTCATG	CCACCTGTGC	AGAGCCATGT	GACCCAGAGC	CCCTTCATGG	1495
CCACCATGGC	TCAGCTGCAG	AGCCCCCACG	CCCTCTACAG	CCACAAGCCC	GAGGTGGCCC	1555
AGTACACCCA	CACGGGCCTG	CTCCCGCAGA	CTATGCTCAT	CACCGACACC	ACCAACCTGA	1615
GCGCCCTGGC	CAGCCTCACG	CCCACCAAGC	AGGTCTTCAC	CTCAGACACT	GAGGCCTCCA	1675
GTGAGTCCGG	GCTTCACACG	CCGGCATCTC	AGGCCACCAC	CCTCCACGTC	CCCAGCCAGG	1735
ACCCTGCCGG	CATCCAGCAC	CTGCAGCCGG	CCCACCGGCT	CAGCGCCAGC	CCCACAGTGT	1795
CCTCCAGCAG	CCTGGTGCTG	TACCAGAGCT	CAGACTCCAG	CAATGGCCAG	AGCCACCTGC	1855
TGCCATCCAA	CCACAGCGTC	ATCGAGACCT	TCATCTCCAC	CCAGATGGCC	TCTTCCTCCC	1915
AGTAACCACG	GCACCTGGGC	CCTGGGGCCT	GTACTGCCTG	CTTGGGGGGT	GATGAGGGCA	1975
GCAGCCAGCC	CTGCCTGGAG	GACCTGAGCC	TGCCGAGCAA	CCGTGGCCCT	TCCTGGACAG	2035
CTGTGCCTCG	CTCCCCACTC	TGCTCTGATG	CATCAGAAAG	GGAGGGCTCT	GAGGCGCCCC	2095
AACCCGTGGA	GGCTGCTCGG	GGTGCACAGG	AGGGGGTCGT	GGAGAGCTAG	GAGCAAAGCC	2155
TGTTCATGGC	AGATGTAGGA	GGGACTGTCG	CTGCTTCGTG	GGATACAGTC	TTCTTACTTG	2215
GAACTGAAGG	GGGCGGCCTA	TGACTTGGGC	ACCCCCAGCC	TGGGCCTATG	GAGAGCCCTG	2275
GGACCGCTAC	ACCACTCTGG	CAGCCACACT	TCTCAGGACA	CAGGCCTGTG	TAGCTGTGAC	2335
CTGCTGAGCT	CTGAGAGGCC	CTGGATCAGC	GTGGCCTTGT	TCTGTCACCA	ATGTACCCAC	2395
CGGGCCACTC	CTTCCTGCCC	CAACTCCTTC	CAGCTAGTGA	CCCACATGCC	ATTTGTACTG	2455
ACCCCATCAC	CTACTCACAC	AGGCATTTCC	TGGGTGGCTA	CTCTGTGCCA	GAGCCTGGGG	2515
CTCTAACTGC	CTGAGCCCAG	GGAGGCCGAA	GCTAACAGGG	AAGGCAGGCA	GGGCTCTCCT	2575
GGTCTTCCCA	TCCCCAGCGA	TTCCCTCTCC	CAGGCCCCAT	GACCTCCAGC	TTTCCTGTAT	2635
TTCTTCCCAA	GAGCATGATG	CCTCTGAGGC	CAGCCTGGCC	TCCTGCCTCT	ACTGGGAAGG	2695

CTACTTCGGG	GCTGGGAAGT	CGTCCTTACT	CCTGTGGGAG	CCTCGCAACC	CGTGCCAAGT	2755
CCAGGTCCTG	GTGGGGCAGC	TCCTCTGTCT	CGAGCGCCCT	GCAGACCCTG	CCCTTGTTTG	2815
GGGCAGGAGT	AGCTGAGCTC	ACAAGGCAGC	AAGGCCCGAG	CAGCTGAGCA	GGGCCGGGGA	2875
ACTGGCCAAG	CTGAGGTGCC	CAGGAGAAGA	AAGAGGTGAC	CCCAGGGCAC	AGGAGCTACC	2935
TGTGTGGACA	GGACTAACAC	TCAGAAGCCT	GGGTGCCTGG	CTGGCTGAGG	GCAGTTCGCA	2995
GCCACCCTGA	GGAGTCTGAG	GTCCTGAGCA	CTGCCAGGAG	GGACAAAGGA	GCCTGTGAAC	3055
CCAGGACAAG	CATGGTCCCA	CATCCCTGGG	CCTGCTGCTG	AGAACCTGGC	CTTCAGTGTA	3115
CCGCGTCTAC	CCTGGGATTC	AGGAAAAGGC	CTGGGGTGAC	CCGGCACCCC	CTGCAGCTTG	3175
TAGCCAGCCG	GGGCGAGTGG	CACGTTTATT	TAACTTTTAG	TAAAGTCAAG	GAGAAATGCG	3235
GTGA						3239

<210> 6

<211> 314

<212> PRT

<213> Artificial Sequence

<200>

<223> Description of Artificial Sequence: Synthetic
 Peptide

<400> 6

Met Val Ser Lys Leu Ser Gln Leu Gln Thr Glu Leu Leu Ala Ala Leu 1 5 10 15

Leu Glu Ser Gly Leu Ser Lys Glu Ala Leu Ile Gln Ala Leu Gly Glu 20 25 30

Pro Gly Pro Tyr Leu Leu Ala Gly Glu Gly Pro Leu Asp Lys Gly Glu 35 40 45

Ser Cys Gly Gly Gly Arg Gly Glu Leu Ala Glu Leu Pro Asn Gly Leu 50 55 60

Gly Glu Thr Arg Gly Ser Glu Asp Glu Thr Asp Asp Asp Gly Glu Asp
65 70 75 80

Phe Thr Pro Pro Ile Leu Lys Glu Leu Glu Asn Leu Ser Pro Glu Glu 85 90 95

Ala Ala His Gl
n Lys Ala Val Val Glu Thr Leu Leu Gl
n Glu Asp Pro $100 \\ 105 \\ 110$

Trp Arg Val Ala Lys Met Val Lys Ser Tyr Leu Gln Gln His Asn Ile 115 120 125

Pro Gln Arg Glu Val Val Asp Thr Thr Gly Leu Asn Gln Ser His Leu 130 135 140

```
Ser Gln His Leu Asn Lys Gly Thr Pro Met Lys Thr Gln Lys Arg Ala
Ala Leu Tyr Thr Trp Tyr Val Arg Lys Gln Arg Glu Val Ala Gln Gln
                                    170
Phe Thr His Ala Gly Gln Gly Gly Leu Ile Glu Glu Pro Thr Gly Asp
                                185
Glu Leu Pro Thr Lys Lys Gly Arg Arg Asn Arg Phe Lys Trp Gly Pro
                            200
Ala Ser Gln Gln Ile Leu Phe Gln Ala Tyr Glu Arg Gln Lys Asn Pro
                        215
    210
Ser Lys Glu Glu Arg Glu Thr Leu Val Glu Glu Cys Asn Arg Ala Glu
Cys Ile Gln Arg Gly Val Ser Pro Ser Gln Ala Gln Gly Leu Gly Ser
Asn Leu Val Thr Glu Val Arg Val Tyr Asn Trp Phe Ala Asn Arg Arg
                                265
            260
Lys Glu Glu Ala Phe Arg His Lys Leu Ala Met Asp Thr Tyr Ser Gly
                            280
Pro Pro Pro Arg Ala Arg Pro Gly Thr Cys Ala Ala Arg Ser Gln Leu
    290
                        295
Pro Trp Pro Ala Ser Thr Cys Pro Leu Pro
                   310
305
<210> 7
<211> 3236
<212> DNA
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Primer
<220>
<221> CDS
<222> (24)..(986)
<220>
<221> CDS
<222> (990)..(1271)
<220>
<221> modified_base
<222> (988)
<223> N = A, C, G, or T
```

<400> 7

CGTGGCCCTG TGGCAGCCGA GCC ATG GTT TCT AAA CTG AGC CAG CTG CAG Met Val Ser Lys Leu Ser Gln Leu Gln 1 5	50
ACG GAG CTC CTG GCG GCC CTG CTC GAG TCA GGG CTG AGC AAA GAG GCA Thr Glu Leu Leu Ala Ala Leu Leu Glu Ser Gly Leu Ser Lys Glu Ala 10 20 25	98
CTG ATC CAG GCA CTG GGT GAG CCG GGG CCC TAC CTC CTG GCT GGA GAA Leu Ile Gln Ala Leu Gly Glu Pro Gly Pro Tyr Leu Leu Ala Gly Glu 30 35 40	146
GGC CCC CTG GAC AAG GGG GAG TCC TGC GGC GGC GGT CGA GGG GAG CTG Gly Pro Leu Asp Lys Gly Glu Ser Cys Gly Gly Gly Arg Gly Glu Leu 45 50 55	194
GCT GAG CTG CCC AAT GGG CTG GGG GAG ACT CGG GGC TCC GAG GAC GAG Ala Glu Leu Pro Asn Gly Leu Gly Glu Thr Arg Gly Ser Glu Asp Glu 60 65 70	242
ACG GAC GAC GAT GGG GAA GAC TTC ACG CCA CCC ATC CTC AAA GAG CTG Thr Asp Asp Asp Gly Glu Asp Phe Thr Pro Pro Ile Leu Lys Glu Leu 75 80 85	290
GAG AAC CTC AGC CCT GAG GAG GCG GCC CAC CAG AAA GCC GTG GAG Glu Asn Leu Ser Pro Glu Glu Ala Ala His Gln Lys Ala Val Val Glu 90 95 100 105	338
ACC CTT CTG CAG GAG GAC CCG TGG CGT GTG GCG AAG ATG GTC AAG TCC Thr Leu Leu Gln Glu Asp Pro Trp Arg Val Ala Lys Met Val Lys Ser 110 115 120	386
TAC CTG CAG CAG CAC AAC ATC CCA CAG CGG GAG GTG GTC GAT ACC ACT Tyr Leu Gln Gln His Asn Ile Pro Gln Arg Glu Val Val Asp Thr Thr 125 130 135	434
GGC CTC AAC CAG TCC CAC CTG TCC CAA CAC CTC AAC AAG GGC ACT CCC Gly Leu Asn Gln Ser His Leu Ser Gln His Leu Asn Lys Gly Thr Pro 140 145 150	482
ATG AAG ACG CAG AAG CGG GCC GCC CTG TAC ACC TGG TAC GTC CGC AAG Met Lys Thr Gln Lys Arg Ala Ala Leu Tyr Thr Trp Tyr Val Arg Lys 155 160 165	530
CAG CGA GAG GTG GCG CAG CAG TTC ACC CAT GCA GGG CAG GGA GGG CTG Gln Arg Glu Val Ala Gln Gln Phe Thr His Ala Gly Gln Gly Leu 170 175 180 185	578
ATT GAA GAG CCC ACA GGT GAT GAG CTA CCA ACC AAG AAG GGG CGG AGG Ile Glu Glu Pro Thr Gly Asp Glu Leu Pro Thr Lys Lys Gly Arg 190 195 200	626
AAC CGT TTC AAG TGG GGC CCA GCA TCC CAG CAG ATC CTG TTC CAG GCC Asn Arg Phe Lys Trp Gly Pro Ala Ser Gln Gln Ile Leu Phe Gln Ala 205 210 215	674
TAT GAG AGG CAG AAG AAC CCT AGC AAG GAG GAG CGA GAG ACG CTA GTG	722

,	Tyr	Glu	Arg 220	Gln	Lys	Asn	Pro	Ser 225	Lys	Glu	Glu	Arg	Glu 230	Thr	Leu	Val	
						GCG Ala											770
-						GGC Gly 255											818
						CGG Arg											866
						AGC Ser											914
		_	-			AGC Ser											962
						GGT Gly											1010
						TCA Ser											1058
						GTG Val 350											1106
						GCC Ala											1154
						GAC Asp											1202
						GCC Ala											1250
						GCC Ala		TGA	GCCT(GCC '	rccc'	I'GGG'	rc c'	racg'	rtca(С	1301
	CAA	CACA	GGT (GCCT	CCAC	CC TO	GGTC	ATCG	G CC	rggc	CTCC	ACG	CAGG	CAC I	AGAG'	TGTGC	C 1361
	GGT	CATC	AAC Z	AGCA'	rggg	CA GO	CAGC	CTGA	C CA	CCCT	GCAG	CCC	GTCC	AGT '	rctc(CCAGC	C 1421
	GCT	GCAC	ccc :	rcct/	ACCA(GC A	GCCG	CTCA'	r gc	CACC'	rgtg	CAG	AGCC	ATG '	rgac	CCAGA	G 1481

CCCCTTCATG	GCCACCATGG	CTCAGCTGCA	GAGCCCCCAC	GCCCTCTACA	GCCACAAGCC	1541
CGAGGTGGCC	CAGTACACCC	ACACGGGCCT	GCTCCCGCAG	ACTATGCTCA	TCACCGACAC	1601
CACCAACCTG	AGCGCCCTGG	CCAGCCTCAC	GCCCACCAAG	CAGGTCTTCA	CCTCAGACAC	1661
TGAGGCCTCC	AGTGAGTCCG	GGCTTCACAC	GCCGGCATCT	CAGGCCACCA	CCCTCCACGT	1721
CCCCAGCCAG	GACCCTGCCG	GCATCCAGCA	CCTGCAGCCG	GCCCACCGGC	TCAGCGCCAG	1781
CCCCACAGTG	TCCTCCAGCA	GCCTGGTGCT	GTACCAGAGC	TCAGACTCCA	GCAATGGCCA	1841
GAGCCACCTG	CTGCCATCCA	ACCACAGCGT	CATCGAGACC	TTCATCTCCA	CCCAGATGGC	1901
CTCTTCCTCC	CAGTAACCAC	GGCACCTGGG	CCCTGGGGCC	TGTACTGCCT	GCTTGGGGGG	1961
TGATGAGGGC	AGCAGCCAGC	CCTGCCTGGA	GGACCTGAGC	CTGCCGAGCA	ACCGTGGCCC	2021
TTCCTGGACA	GCTGTGCCTC	GCTCCCCACT	CTGCTCTGAT	GCATCAGAAA	GGGAGGGCTC	2081
TGAGGCGCCC	CAACCCGTGG	AGGCTGCTCG	GGGTGCACAG	GAGGGGGTCG	TGGAGAGCTA	2141
GGAGCAAAGC	CTGTTCATGG	CAGATGTAGG	AGGGACTGTC	GCTGCTTCGT	GGGATACAGT	2201
CTTCTTACTT	GGAACTGAAG	GGGGCGGCCT	ATGACTTGGG	CACCCCCAGC	CTGGGCCTAT	2261
GGAGAGCCCT	GGGACCGCTA	CACCACTCTG	GCAGCCACAC	TTCTCAGGAC	ACAGGCCTGT	2321
GTAGCTGTGA	CCTGCTGAGC	TCTGAGAGGC	CCTGGATCAG	CGTGGCCTTG	TTCTGTCACC	2381
AATGTACCCA	CCGGGCCACT	CCTTCCTGCC	CCAACTCCTT	CCAGCTAGTG	ACCCACATGC	2441
CATTTGTACT	GACCCCATCA	CCTACTCACA	CAGGCATTTC	CTGGGTGGCT	ACTCTGTGCC	2501
AGAGCCTGGG	GCTCTAACTG	CCTGAGCCCA	GGGAGGCCGA	AGCTAACAGG	GAAGGCAGGC	2561
AGGGCTCTCC	TGGTCTTCCC	ATCCCCAGCG	ATTCCCTCTC	CCAGGCCCCA	TGACCTCCAG	2621
CTTTCCTGTA	TTTCTTCCCA	AGAGCATGAT	GCCTCTGAGG	CCAGCCTGGC	CTCCTGCCTC	2681
TACTGGGAAG	GCTACTTCGG	GGCTGGGAAG	TCGTCCTTAC	TCCTGTGGGA	GCCTCGCAAC	2741
CCGTGCCAAG	TCCAGGTCCT	GGTGGGGCAG	CTCCTCTGTC	TCGAGCGCCC	TGCAGACCCT	2801
GCCCTTGTTT	GGGGCAGGAG	TAGCTGAGCT	CACAAGGCAG	CAAGGCCCGA	GCAGCTGAGC	2861
AGGGCCGGGG	AACTGGCCAA	GCTGAGGTGC	CCAGGAGAAG	AAAGAGGTGA	CCCCAGGGCA	2921
CAGGAGCTAC	CTGTGTGGAC	AGGACTAACA	CTCAGAAGCC	TGGGTGCCTG	GCTGGCTGAG	2981
GGCAGTTCGC	AGCCACCCTG	AGGAGTCTGA	GGTCCTGAGC	ACTGCCAGGA	GGGACAAAGG	3041
AGCCTGTGAA	CCCAGGACAA	GCATGGTCCC	ACATCCCTGG	GCCTGCTGCT	GAGAACCTGG	3101
CCTTCAGTGT	ACCGCGTCTA	CCCTGGGATT	CAGGAAAAGG	CCTGGGGTGA	CCCGGCACCC	3161
CCTGCAGCTT	GTAGCCAGCC	GGGGCGAGTG	GCACGTTTAT	TTAACTTTTA	GTAAAGTCAA	3221

<210> 8

<211> 415

<212> PRT

<213> Artificial Sequence

<200>

<223> Description of Artificial Sequence: Synthetic
 Peptide

<400> 8

Met Val Ser Lys Leu Ser Gln Leu Gln Thr Glu Leu Leu Ala Ala Leu 1 5 10 15

Leu Glu Ser Gly Leu Ser Lys Glu Ala Leu Ile Gln Ala Leu Gly Glu 20 25 30

Pro Gly Pro Tyr Leu Leu Ala Gly Glu Gly Pro Leu Asp Lys Gly Glu
35 40 45

Ser Cys Gly Gly Gly Arg Gly Glu Leu Ala Glu Leu Pro Asn Gly Leu 50 55 60

Gly Glu Thr Arg Gly Ser Glu Asp Glu Thr Asp Asp Asp Gly Glu Asp 65 70 75 80

Phe Thr Pro Pro Ile Leu Lys Glu Leu Glu Asn Leu Ser Pro Glu Glu 85 90 95

Ala Ala His Gln Lys Ala Val Val Glu Thr Leu Leu Gln Glu Asp Pro 100 105 110

Trp Arg Val Ala Lys Met Val Lys Ser Tyr Leu Gln Gln His Asn Ile 115 120 125

Pro Gln Arg Glu Val Val Asp Thr Thr Gly Leu Asn Gln Ser His Leu 130 135 140

Ser Gln His Leu Asn Lys Gly Thr Pro Met Lys Thr Gln Lys Arg Ala 145 150 155 160

Ala Leu Tyr Thr Trp Tyr Val Arg Lys Gln Arg Glu Val Ala Gln Gln
165 170 175

Phe Thr His Ala Gly Gln Gly Gly Leu Ile Glu Glu Pro Thr Gly Asp 180 185 190

Glu Leu Pro Thr Lys Lys Gly Arg Arg Asn Arg Phe Lys Trp Gly Pro 195 200 205

Ala Ser Gln Gln Ile Leu Phe Gln Ala Tyr Glu Arg Gln Lys Asn Pro 210 215 220

Ser Lys Glu Glu Arg Glu Thr Leu Val Glu Glu Cys Asn Arg Ala Glu 225 230 235 240

```
Cys Ile Gln Arg Gly Val Ser Pro Ser Gln Ala Gln Gly Leu Gly Ser
                                    250
                245
Asn Leu Val Thr Glu Val Arg Val Tyr Asn Trp Phe Ala Asn Arg Arg
                                265
Lys Glu Glu Ala Phe Arg His Lys Leu Ala Met Asp Thr Tyr Ser Gly
        275
Pro Pro Pro Gly Pro Gly Pro Ala Leu Pro Ala His Ser Ser
                        295
Pro Gly Leu Pro Pro Pro Ala Leu Ser Pro Ser Lys Val His Gly Val
                                         315
                    310
Arg Gly Gln Pro Ala Thr Ser Glu Thr Ala Glu Val Pro Ser Ser Ser
                                     330
                325
Gly Gly Pro Leu Val Thr Val Ser Thr Pro Leu His Gln Val Ser Pro
                                 345
Thr Gly Leu Glu Pro Ser His Ser Leu Leu Ser Thr Glu Ala Lys Leu
                             360
Val Ser Ala Ala Gly Gly Pro Leu Pro Arg Gln His Pro Asp Ser Thr
                         375
Ala Gln Leu Gly Ala Asp Ile Pro Arg Pro Gln Pro Ala Ala Pro Glu
                                                              400
                                         395
                     390
Pro His His Gly Leu Thr Ser Trp Gly His Asp His Arg Ala Trp
                                                         415
                                     410
                 405
<210> 9
<211> 13
 <212> DNA
 <213> Artificial Sequence
 <200>
 <223> Description of Artificial Sequence: Synthetic
      Primer
 <221> modified base
 <222> (7)
 <223> N = A, C, G, or T
 <400> 9
                                                                         13
 GTTAATNATT ACC
 <210> 10
 <211> 23
 <212> DNA
 <213> Artificial Sequence
```

<223> Description of Artificial Sequence: Synthetic

Primer

<400> 10 TACACCACTC TGGCAGCCAC ACT	23
<210> 11 <211> 24 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<400> 11 CGGTGGGTAC ATTGGTGACA GAAC	24
<210> 12 <211> 21 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<400> 12 GGCAGGCAAA CGCAACCCAC G	21
<210> 13 <211> 21 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<400> 13 GAAGGGGGC TCGTTAGGAG C	21
<210> 14 <211> 21 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<400> 14 CATGCACAGT CCCCACCCTC A	21
<210> 15 <211> 21 <212> DNA <213> Artificial Sequence <200>	
<pre><223> Description of Artificial Sequence: Synthetic Primer</pre>	

<400> CTTCCA	15 GCCC CCACCTATGA G	21
<210>		
<211>		
<212>		
	Artificial Sequence	
<200> <223>	Description of Artificial Sequence: Synthetic Primer	
<400> GGGCAA	16 AGGTC AGGGGAATGG A	21
<210>	17	
<211>	21	
<212>		
<213>	Artificial Sequence	
<200>	o de la companya de l	
<223>	Description of Artificial Sequence: Synthetic Primer	
<400>	17	
	CAGAC CAAACCAGCA C	21
<210>		
<211>		
<212>		
	Artificial Sequence	
<200>	Description of Artificial Sequence: Synthetic	
<223>	Primer	
<400>	18	
CAGAA	CCCTC CCCTTCATGC C	21
<210>		
<211>	21	
<212>		
	Artificial Sequence	
<200>	Description of Artificial Sequence: Synthetic	
<223>	Primer	
<400>	19	0.5
GGTGA	CTGCT GTCAATGGGA C	23
<210>		
<211>		
<212>		
	Artificial Sequence	
<200> <223>	Description of Artificial Sequence: Synthetic Primer	

<400> 20 GGCAGACAGG CAGATGGCCT A	2	1
<210> 21 <211> 21 <212> DNA <213> Artificial Sequence		
<pre><200> <223> Description of Artificial Sequence: Primer</pre>	Synthetic	
<400> 21 GCCTCCCTAG GGACTGCTCC A	2	1
<210> 22 <211> 21 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence:	Synthetic	
Primer Primer	Synchecic	
<400> 22 TGGAGCAGTC CCTAGGGAGG C	2	1
<210> 23 <211> 21 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Primer	Synthetic	
<400> 23 GTTGCCCCAT GAGCCTCCCA C	2	1
<210> 24 <211> 21 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence:	Synthetic	
<400> 24 GGTCTTGGGC AGGGGTGGGA T	2	1
<210> 25 <211> 21 <212> DNA <213> Artificial Sequence <200>		
2223 Description of Artificial Compande.	Completia	

Primer

<400> 25 CTGCAATGCC TGCCAGGCAC C	21
<210> 26 <211> 21 <212> DNA <213> Artificial Sequence <200>	
<pre><220> <223> Description of Artificial Sequence:</pre>	Synthetic
<400> 26 CCCCTGCATC CATTGACAGC C	21
<210> 27 <211> 21 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence:	Synthetic
Primer	Synchecic
<400> 27 GAGGCCTGGG ACTAGGGCTG T	21
<210> 28 <211> 21 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Primer	Synthetic
<400> 28 CTCTGTCACA GGCCGAGGGA G	21
<210> 29 <211> 21 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence:	Synthetic
Primer <400> 29 CCTGTGACAG AGCCCCTCAC C	21
<210> 30 <211> 21 <212> DNA <213> Artificial Sequence <200>	
<pre><223> Description of Artificial Sequence:</pre>	Synthetic

Primer

<400> 30 CGGACAGCAA CAGAA	GGGGT G				21
<210> 31 <211> 21 <212> DNA <213> Artificial	Sequence				
<200> <223> Descriptio Primer	n of Artificial	Sequence:	Synthetic		
<400> 31 CAGAGCCCCT CACCC	CCACA T				21
<210> 32 <211> 21 <212> DNA <213> Artificial <200>					
<223> Description Primer	n of Artificial	Sequence:	Synthetic		
<400> 32 GTACCCCTAG GGACA	AGGCAG G				21
<210> 33 <211> 21 <212> DNA <213> Artificial <200> <223> Description Primer		Sequence:	Synthetic		
<400> 33 ACCCCCCAAG CAGGO	CAGTAC A				21
<210> 34 <211> 671 <212> DNA <213> Artificial <200> <223> Description Primer	Sequence on of Artificial	Sequence:	Synthetic		
<220> <221> CDS <222> (104)(23)	L7)				
<400> 34 GCAGAGAGGG CACTO	GGGAGG AGGCAGTGG	G AGGGCGGAG	G GCGGGGGCC	I TCGGGGTGGG	60
CGCCCAGGGT AGGGG	CAGGTG GCCGCGGCG	T GGAGGCAGG		GA CTC TCC rg Leu Ser	115

AAA ACC CTC GTC GAC ATG GAC ATG GCC GAC TAC AGT GCT GCA CTG GAC Lys Thr Leu Val Asp Met Asp Met Ala Asp Tyr Ser Ala Ala Leu Asp 5 10 15 20	163
CCA GCC TAC ACC ACC CTG GAA TTT GAG AAT GTG CAG GTG TTG ACG ATG Pro Ala Tyr Thr Thr Leu Glu Phe Glu Asn Val Gln Val Leu Thr Met 25 30 35	211
GGC AAT GGTAGGTGGG GGCAGATGTG CCCAGGTGTG CCAGTGGGGG CAGGTGTGCC Gly Asn	267
TGGGTCCAGG AGCAGATCTT TGGCACTCAA CTTTGGGGTG GGAGGAGAAT GATACAAAAT	327
GGTAGGTTGG TCCTACAGGC CAGCACAGGT GTTGCCAAGT GAAGCCCATG TGCCCAGGCA	387
CAGTGATCAC AGGCATTCTG GGTGAAGGGA GGCCTGCAAG GGCCAATTTC CAGCAAAAGT	447
CGATCCCGGC TATTCCTCCC AGGCCCTTCC AGTCCTCACT GCCTCACAGT GGCTCTGCTT	507
GGCGCTTGGC ACAGTGACAT GATGGTGAGC TCCCCCTTGG TGCCCAGCTC CAGCGATTCA	567
GCCCAGCACG GCCCCTTCGT GAACCCCTTG GGCCTAGGTT CAGAGAGACG GCAAGGGATG	627
TTGTATCCCT GGAGATGGTG GTTGGAGACA TAACCGCATT TCTC	671
<210> 35 <211> 38 <212> PRT <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Peptide	
<pre><400> 35 Met Arg Leu Ser Lys Thr Leu Val Asp Met Asp Met Ala Asp Tyr Ser</pre>	
Ala Ala Leu Asp Pro Ala Tyr Thr Thr Leu Glu Phe Glu Asn Val Gln 20 25 30	
Val Leu Thr Met Gly Asn 35	
<210> 36 <211> 796 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<220> <221> CDS	

<220> <221> CDS <222> (316)(375)	
<400> 36 TGGATGTTTG TACATGTGTG CTGTGTGTGC GGGTCATAGA GCACATGTGT TTGTGCATGC	60
GGACCTGTTG GAGTGCCCTG TTCTTCCTGC ATCTTTATCC TGTATGGGCG TTTTGTCGTG	120
TGCCCATATT TGTACCTGCT GTGTATATAT GCAGTTCCCT GTGCTGCGGG CGGGGGTCAG	180
CGGTCTCTGG TGTGCACGAC TGCACAGACC CAAATGCAGG ACTCTGTTGT TGCCACTCAC	240
CAAGTGAGAT TCATATCAGC AACATGTCCG TTTGTCTCTG AGCAG ATT TGT TGC Ile Cys Cys 1	294
CGC TGC GTC TCG CCA GAT TGA GGC ATC CCC TCC GAC ATC ACT GGA GCA Arg Cys Val Ser Pro Asp Gly Ile Pro Ser Asp Ile Thr Gly Ala 5 10 15	342
TAT CTG GAG GGG TGG ACA GTT CTC CAC AGG GAG GTAGGGGAAA AGAGGAGGCC Tyr Leu Glu Gly Trp Thr Val Leu His Arg Glu 20 25	395
CGGAAACCCC TCCTGGAGGG AAGAGCCCCA TCGGTCCCAG GCCAGCCTCA GAGGAGAGGG	455
GGCAGGCAGC TGGCTGAGGT CAGCCTGCCA CCCTGCTTCC TTCTGTGTCT TGGAGCCACT	515
CAGCCAGTAT GAGGCTGCAG CTCCAGCTGA GGTCTGGAAT CTTGTGGTCA GCTCAGCTAG	575
GGTGAGGAGG CAGCTGCTGG GCACTGCTTG TTGTCAGCTC AGCAGGTGCT CACCTGCCCC	635
TGCCGTCCAG TCACGTGTGA CCTTGGGCAT GTCACCTCCC CTATCCTGGC TTCTGTATCT	695
TCTACAAAAC AGGCTTCATT CCCCCAGGCC TGCTGGCTGG ACGGCTTTTA GGCCTGTCTG	755
AGGACCACGC CAGGAGCGCA AGGCAAAAAC ACACCAGAGA T	796
<210> 37 <211> 29 <212> PRT <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Peptide	
<400> 37 Ile Cys Cys Arg Cys Val Ser Pro Asp Gly Ile Pro Ser Asp Ile Thr 1 5 10 15	
Gly Ala Tyr Leu Glu Gly Trp Thr Val Leu His Arg Glu 20 25	

<222> (286)..(312)

<210> 38 <211> 634 <212> DNA <213> Artificial Sequence <200>	
<pre><223> Description of Artificial Sequence: Synthetic Primer</pre>	
<220> <221> CDS <222> (326)(499)	
<400> 38 CCCCTTGCGA GTTAGGAGGC CGGCTCCCAC CCCAGAAGGT GGCCAGGTTT TCATGCCTTC	60
CTAGAGAAAG CTGGGGCTGG TGGCCTCCAC CACAGGGAGA CGCAGACCCT CAGAAACAAG	120
TCTGTGAAGT CACAACCAGC CCCAGTTTAC AGATGTGAAA CTGAAGCTCC AAAAAGTCAG	180
GAGGTCACTG AGTGGGGAGG TGATGGAGTG GAACAGCCCC CAGATCTGGC TGAGGCCGAA	240
GCCCTGGAGA GATCCCCGCA AGGCTCCCTT AGATGCCTGA CATTCTGTTC TTCCTGAAGC	300
CTCACTCCCT TCTCTCCTGG CGCAG ACA CGT CCC CAT CAG AAG GCA CCA ACC Thr Arg Pro His Gln Lys Ala Pro Thr 1 5	352
TCA ACG CGC CCA ACA GCC TGG GTG TCA GCG CCC TGT GTG CCA TCT GCG Ser Thr Arg Pro Thr Ala Trp Val Ser Ala Pro Cys Val Pro Ser Ala 10 20 25	400
GGG ACC GGG CCA CGG GCA AAC ACT ACG GTG CCT CGA GCT GTG ACG GCT Gly Thr Gly Pro Arg Ala Asn Thr Thr Val Pro Arg Ala Val Thr Ala 30 35 40	448
GCA AGG GCT TCT TCC GGA GGA GCG TGC GGA AGA ACC ACA TGT ACT CCT Ala Arg Ala Ser Ser Gly Gly Ala Cys Gly Arg Thr Thr Cys Thr Pro 45 50 55	496
GCA GGTGAGGAGC CTCAATTTCT TCAGCTGGGA AATGGGCACA CTTGGGCTCA Ala	549
TGGCCCCAAG GTCTGTCTTC TCCCTGAGTG GGTAGGTCCC AGAGACAGCT GCCCTTCAGG	609
GCCTTCAAGG CTCTTCTGGT TTTGT	634
<210> 39 <211> 58 <212> PRT <213> Artificial Sequence <200>	
<223> Description of Artificial Sequence: Synthetic Peptide	

<400> 39	
Thr Arg Pro His Gln Lys Ala Pro Thr Ser Thr Arg Pro Thr Ala Trp 1 5 10 15	
Val Ser Ala Pro Cys Val Pro Ser Ala Gly Thr Gly Pro Arg Ala Asn 20 25 30	
Thr Thr Val Pro Arg Ala Val Thr Ala Ala Arg Ala Ser Ser Gly Gly 35 40 45	
Ala Cys Gly Arg Thr Thr Cys Thr Pro Ala 50 55	
<210> 40 <211> 458 <212> DNA . <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<220> <221> CDS <222> (171)(173)	
<220> <221> CDS <222> (177)(265)	
<400> 40 AGAGAGTTCA TAGCACCTTT CCAGCTCCTG GTGGGTTCAA GAGAGAACTC CCGGGATGAA	60
GAGATGAGAG CACTGAGGTT GGGGGGTCAA CTGGATAGCC AGGGCCCTAG TTCTGTCCTA	120
AGAGGAGGAA GTTGTGTCTT CTCCATCCAA CCATCCAAAG CCCTCCCCAG ATT Ile 1	173
TAG CCG GCA GTG CGT GGA CAA AGA CAA GAG GAA CCA GTG CCG CTA Pro Ala Val Arg Gly Gly Gln Arg Gln Glu Glu Pro Val Pro Leu 5 10 15	221
CTG CAG GCT CAA GAA ATG CTT CCG GGC TGG CAT GAA GAA GGA Leu Gln Ala Gln Glu Met Leu Pro Gly Trp His Glu Glu Gly 20 25 30	263
AGGTGAGCCT CGGCCCTCCC CGCCCCACCA CCACTGCCCC ACCTGCACCC ACAGCTCCCC	323
GACAGTCATT TACAACTGTA GCCACACTTT ATGACTCAGT GGCAGGCCCC AGGGTGACTG	383
GCTAATGGCT GAGAAGAGGG AGGGCCTGGA AATCTGACCA TAGGGAGCGG CTGGGCTTGG	443
TCTTGAGAAA GATTC	458

<211> 30 <212> PRT <213> Artificial Sequence	
<200> <223> Description of Artificial Sequence: Synthetic Peptide	
<400> 41 Ile Pro Ala Val Arg Gly Gly Gln Arg Gln Glu Glu Pro Val Pro Leu 1 5 10 15	
Leu Gln Ala Gln Glu Met Leu Pro Gly Trp His Glu Glu Gly 20 25 30	
<210> 42 <211> 662 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<220> <221> CDS <222> (84)(188)	
<400> 42 TCCCACTCCT CATCAGTCAC AGACACCCCC ACCCCCTACT CCATCCCTGT TCTCCCTCCT	60
CACCTCTCTG TGCCTCCTCA CAG CCG TCC AGA ATG AGC GGG ACC GGA TCA Pro Ser Arg Met Ser Gly Thr Gly Ser 1 5	110
GCA CTC GAA GGT CAA GCT ATG AGG ACA GCA GCC TGC CCT CCA TCA ATG Ala Leu Glu Gly Gln Ala Met Arg Thr Ala Ala Cys Pro Pro Ser Met 10 15 20 25	158
CGC TCC TGC AGG CGG AGG TCC TGT CCC GAC AGGTACCGGG GTGATCCTGC Arg Ser Cys Arg Arg Ser Cys Pro Asp 30 35	208
CACCCACCCA GGGGATCCCC CACACTACAG AGGAGCTCAC CTCCTCCACC TCCATTCTCC	268
CCAGCCAGGC CCTGGAGCAG CTGACGGGAG GGGCCTCAGA TATTACAGAA GGGACACTGA	328
GTGCGGTTTC ACATGGCCCA GTTTGCAGCA AGGGCAGGAA TCGAACCTGG CGCCCTGGGG	388
CACTTTCTAA TTCATCCTAC TGCCTGCATC CCACAGGCCA AGCAGAGTCT TCACCTTCAC	448
TGAGGGCCTG CGATCAGCTC AGCTCCGAGA GAACAGAGCA GTGGCTCAGT GGAGAGAGGT	508
GGCAAAGTGG GGCCCAGCCC TTCCCTTGCT GAGTGACCTT GGGCAAGTCA CAGCACCTCT	568
CTGAGCCATG GTTGCCTCAT TGTCAGAAAA GGATGATGAT TTTTTGCCCT GCTTCTCCTC	628
TAAGGCTGAC AGACTCCTTG GGGCTCTAAA GCTG	662

<210> 43 <211> 35 <212> PRT <213> Artificial Sequence	
<200> <223> Description of Artificial Sequence: Synthetic Peptide	
<400> 43 Pro Ser Arg Met Ser Gly Thr Gly Ser Ala Leu Glu Gly Gln Ala Met 1 5 10 15	
Arg Thr Ala Ala Cys Pro Pro Ser Met Arg Ser Cys Arg Arg Arg Ser 20 25 30	
Cys Pro Asp 35	
<210> 44 <211> 647 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<220> <221> CDS <222> (185)(340)	
<400> 44 TTCTCCCTCA TCCCTGCCTC CTCCCTCCCT CCGTTTTTAC CCTGAGCTTC CTTCAGAGCT	60
GGAGGGCACC CACTATCCAG CCCCCTCCCC ACATCTGATT CCAGGGAGGG GGCTCTGTGC	120
AGGGGACAGA GAATGCGGGA GGGCCCGGAC ATCTCCAGCA TTTTCTTCCC TGTATCTCTC	180
GAAG ATC ACC TCC CCC GTC TCC GGG ATC AAC GGC GAC ATT CGG GCG AAG Ile Thr Ser Pro Val Ser Gly Ile Asn Gly Asp Ile Arg Ala Lys 1 5 10 15	229
AAG ATT GCC AGC ATC GCA GAT GTG TGT GAG TCC ATG AAG GAG CAG CTG Lys Ile Ala Ser Ile Ala Asp Val Cys Glu Ser Met Lys Glu Gln Leu 20 25 30	277
CTG GTT CTC GTT GAG TGG GCC AAG TAC ATC CCA GCT TTC TGC GAG CTC Leu Val Leu Val Glu Trp Ala Lys Tyr Ile Pro Ala Phe Cys Glu Leu 35 40 45	325
CCC CTG GAC GAC CAG GTGAGGATGG GCGTGGATGG TGGGCAGTAG TGGGCAGTGG Pro Leu Asp Asp Gln 50	380
GCGGGGCAGC CAGGGGGCTG CTGGCCCACC TGGGATATAG CCGTGGACTG GCTTGATTTT	440

ATTTTATTTA ACAAAATATG TAGTGCACAC ACGTGTCTGA AACTTTAAAT CACCTTACAA	500
ATATTAACTC AGTTAGCTCC TCCAACAACT CTATGAGGTA GGTACTAAGG TACTATTATT	560
ACTGCCATCT CATAGGTGAG AGATTGGGGC ACAGAGAGGT TAAGTAACCT GCTCAAGGTC	620
ACATAGCTAC TATCCAGCAT AGCTGGG	647
<210> 45 <211> 52 <212> PRT <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Peptide	
<400> 45 Ile Thr Ser Pro Val Ser Gly Ile Asn Gly Asp Ile Arg Ala Lys Lys 1 5 10 15	
Ile Ala Ser Ile Ala Asp Val Cys Glu Ser Met Lys Glu Gln Leu Leu 20 25 30	
Val Leu Val Glu Trp Ala Lys Tyr Ile Pro Ala Phe Cys Glu Leu Pro 35 40 45	
Leu Asp Asp Gln 50	
<210> 46 <211> 844 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<220> <221> CDS <222> (429)(515)	
<400> 46 ATTTTTACAA AGCACCCTTC ATAATTCTCC ATAGCTGGTC CATGGGTGGG AATTTGGGAC	60
CCACAGTTTT GGAACTTTTT GGGATCATAG ACCTTTTTGA GAATCTCAAA AAAGAAAAAA	120
AAGCACACAG AATGTTGCTT ACAGTTTCAT CAGGCACACA GAAGAGGCCC AGCACGAAGC	180
AGTTTCTTGC CCAAGGACAC AGCAGTTCAA GGACAGAGTC AGCGCGAGGT CTCTCAGCTC	240
TGAGCACATG TTCTTTCCCC TTCCAGGTTT CTAGTTTTAT GGGTAGTAGT TTTATGATGC	300
CCATTTCACA GTTCAGGCAG GTAGAGGCAG AGGGGAGCAT TAAGCTGACT TGCCCAGCGT	360
CACTGAGTTG GCTACGGGCA GCCTTCCCAA GGGTACAGAT GGCAAACACT GTTCCTTATC	420

TCTTTCAG GTG GCC CTG CTC AGA GCC CAT GCT GGC GAG CAC CTG CTC Val Ala Leu Leu Arg Ala His Ala Gly Glu His Leu Leu 1 5 10	470
GGA GCC ACC AAG AGA TCC ATG GTG TTC AAG GAC GTG CTG CTC CTA Gly Ala Thr Lys Arg Ser Met Val Phe Lys Asp Val Leu Leu Leu 15 20 25	515
GGTGAGGCGG CTGCCTGCCC TGGCCAGGGC TCCAGGGAGG GTATGCCTAG CATGGCACTC	575
ACCCAGGCAA GGAGATTCAC ATGGTGGCAT GCAAGGGTGA GGGAGACTAG TCAGGAGTGG	635
CCCTGTCCTC AGGCTTGCAT TGGAGGGCTC CAGGACTCAG TTTTCAACTG GGTACCCCAC	695
TCAGATGCAA GGAAATGTGG ATGCAAGTCA CCAAATTCCC AGCATTGAAG TCAGAGCACG	755
ATCAGGGTTA TCCCTGGAAT TACCTGTGCA TCCTTTTTTC TTTTGACAGA GTCTTGCTCT	815
GTCACTCAGG CTGGAGTGCA ATGATGTGA	844
<210> 47 <211> 29 <212> PRT <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Peptide	
<400> 47 Val Ala Leu Leu Arg Ala His Ala Gly Glu His Leu Leu Gly Ala 1 5 10 15	
Thr Lys Arg Ser Met Val Phe Lys Asp Val Leu Leu 20 25	
<210> 48 <211> 937 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<220> <221> CDS <222> (485)(529)	
<220> <221> CDS <222> (533)(640)	
<400> 48 GCAACACTAG TATTTTAATA TAACAATGCT ATGAGGGAGC TCGATTATTT ATCCTCATCT	60
TATACATAAC AAAACTGACC CACAGAGAGC TTAAGTAACT TATCCAACTA TAACCAGCTA	120

TCAGGGGCAG AGCCATTTAA GCAGGGCAGT GCAGTTCCAG AATCTGGTCC TTTAACCTTG	180
ATGCTTTGGT GCCTATCAGG TGACCTTTGA ATGTCATCGA TCTTGTGAGT CATGTTGGTA	240
AATGGAGCTT GGGTCATGTG AAAGAGGTCC TAGAAAGCCA AGTTCCAAGC TCAGCCGGAT	300
GACTCAAGGC AGCTTATCTT CTGAATCTGG GCCTCAGCTT CCTTACCTGT GAAATGGGAG	360
TCACCATCCC TGCAGGTCCT CCTCCCACAG GCACCAGCTA TCTTGCCAAC TTAAAAGCCA	420
AAACTAGAGG AGAGGGGTCA ACCCAAAGTG ACTTCCCATC CTCCCTCCCT CCCAACCCTT	480
CCAG GCA ATG ACT ACA TTG TCC CTC GGC ACT GCC CGG AGC TGG CGG AGA Ala Met Thr Thr Leu Ser Leu Gly Thr Ala Arg Ser Trp Arg Arg 1 5 10 15	529
TGA GCC GGG TGT CCA TAC GCA TCC TTG ACG AGC TGG TGC TGC CCT TCC Ala Gly Cys Pro Tyr Ala Ser Leu Thr Ser Trp Cys Cys Pro Ser 20 25 30	577
AGG AGC TGC AGA TCG ATG ACA ATG AGT ATG CCT ACC TCA AAG CCA TCA Arg Ser Cys Arg Ser Met Thr Met Ser Met Pro Thr Ser Lys Pro Ser 35 40 45	625
TCT TCT TTG ACC CAG GTACAGTGCA CACCTCCTAA GCCATCCCTG ACTCTCTCTC Ser Ser Leu Thr Gln 50	680
CAGAACGCTC TGCCAGACTT CTCCTATTGG GTTCTGTACA CTGAGTTCAC AGCCTCATCT	740
CATGTTAACG ACAGCCAGGA GAGGCCGTTT TCATTTAACA GATGAGGCAA GTCAAGATTT	800
GAAGAGACAA TATGGCCGGG CGCAGTGGCT CACACCTGTA ATCCCATCAC TTTGGGAGGC	860
TGAGGCGGGC GGATCACCTG AGGTCAGGGG TCAAGATGAG CCTGGCTAAC ATGGAGAAAC	920
CCCATCTCTA CTTAAAA	937
<210> 49 <211> 51 <212> PRT <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Peptide	
<400> 49	
Ala Met Thr Thr Leu Ser Leu Gly Thr Ala Arg Ser Trp Arg Ala 1 5 10 15	
Gly Cys Pro Tyr Ala Ser Leu Thr Ser Trp Cys Cys Pro Ser Arg Ser 20 25 30	,
Cys Arg Ser Met Thr Met Ser Met Pro Thr Ser Lys Pro Ser Ser Ser 35 40 45	

```
Leu Thr Gln
     50
<210> 50
<211> 978
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      Primer
<220>
<221> CDS
<222> (376) .. (387)
<220>
<221> CDS
<222> (391) .. (432)
<220>
<221> CDS
<222> (436)..(534)
<220>
<221> CDS
<222> (538)..(610)
<400> 50
GTGGCTCTGC CAACAACTGG CTGTGCGACC CAGGACAAGT CCTATCTTTG CACTGTGTCT
                                                                       60
GGGTTTCCCC GTGTGTAAGA TGAGGCGGTT GCTAGGTGCT TATTGGATGC ATTCCTCAAG
                                                                      120
TCCCGCCTC CATCTCCTAT TCCCCTCTCT TCTGGTTTAG TGCTTTAGGA AATGTGGCAG
                                                                      180
AAATCTTTTT CTGCCTGTGT CTAGGAAATC ATAATTCATG CTGGCGTACC CTGGTTGTTG
                                                                      240
AGGTCCCTGA ATCCTTGTGC CCACACTGCT GAAGACTCCT TGTGTGACAC AAGTCAGGGG
                                                                       300
ACATCTGGGT CTTGACTCCC CAGATGCTCC AGGTGGACCC TGCTGCCCTC CCTTGCCCAC
                                                                       360
CCTCTTCCAT TGTAG ATG CCA AGG GGC TGA GCG ATC CAG GGA AGA TCA AGC
                                                                       411
                 Met Pro Arg Gly
                                     Ala Ile Gln Gly Arg Ser Ser
GGC TGC GTT CCC AGG TGC AGG TGA GCT TGG AGG ACT ACA TCA ACG ACC
                                                                       459
Gly Cys Val Pro Arg Cys Arg Ala Trp Arg Thr Thr Ser Thr Thr
             15
                                     20
GCC AGT ATG ACT CGC GTG GCC GCT TTG GAG AGC TGC TGC TGC TGC
                                                                       507
Ala Ser Met Thr Arg Val Ala Ala Leu Glu Ser Cys Cys Cys Cys
             30
CCA CCT TGC AGA GCA TCA CGT GGC AGA TGA TCG AGC AGA TCC AGT TCA
                                                                       555
Pro Pro Cys Arg Ala Ser Arg Gly Arg Ser Ser Ser Ser Ser
                                                     55
         45
                             50
```

TCA AGC TCT TCG GCA TGG CCA AGA TTG ACA ACC TGT TGG AGG AGA TGC Ser Ser Ser Ser Ala Trp Pro Arg Leu Thr Thr Cys Trp Arg Arg Cys 60 65 70	603
TGC TGG GAGGTCCGTG CCAAGCCCAG GAGGGGCGGG GTTGGATTGG GGACTCCCCA Cys Trp 75	659
GGAGACAGGC CTCACACAGT GAGCTCACCC CTCAGCTCCT TGGCTTCCCC ACTGTGCCGC	719
TTTGGGCAAG TTGCTTAACC TGTCTGTGCC TCAGTTTCCT CACCAGAAAA ATGGGAACAA	779
GGCAATGGTC TATTTGTTCA GGCACCGAGA ACCTAGCACG TGCCAGTCAC TGTTCTAAGT	839
GCTGGCAATT CAGCAAAGAA CAAGATCTTT GCCCTCGGGG AGGCTGTGTG TGTGTGATAT	899
GTATGGATGC GTGGATATCT GTGTATATGC CCGTATGTGC GTGCATGTGT ATATAAAGCC	959
TCACATTTTA TGATTTTGA	978
<210> 51 <211> 75 <212> PRT <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Peptide	
<400> 51 Met Pro Arg Gly Ala Ile Gln Gly Arg Ser Ser Gly Cys Val Pro Arg	
1 5 10 15	
Cys Arg Ala Trp Arg Thr Thr Ser Thr Thr Ala Ser Met Thr Arg Val 20 25 30	
Ala Ala Leu Glu Ser Cys Cys Cys Cys Cys Pro Pro Cys Arg Ala Ser 35 40 45	
Arg Gly Arg Ser Ser Arg Ser Ser Ser Ser Ser Ser Ala Trp Pro 50 55 60	
Arg Leu Thr Thr Cys Trp Arg Arg Cys Cys Trp 65 70 75	
<210> 52 <211> 984 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<220> <221> CDS <222> (443)(490)	
< <i>C</i>	

<220> <221> CDS <222> (494)(595)	
<400> 52 GGGACACATA GATGCTATAA GTAGGTCAGT TGGCTGCAGC AGAGATGTGG GGGATGAGGC	60
TGAAAGGTGA GGCGGGACCA AATGGTTGAA GGACTTGCAC TCCAAGGAGC TTTGAGAGCC	120
ATTGATTACA TCCATTATGT TACTATGTGA CCAATACATT ACTCATTAGA ACATTTACGT	180
GATCTCAGAG CTTCCTTATA TGCACCTTGT TCCTTTCAAC TCACTTTTGT TCTCTTGGTT	240
TTTTGGGGTC CTCTTAACAC CCTCATGAAG TCTATAGATG GGAATGGTAC ACCCTAGTTT	300
ACTAACCCAG GAATAGGTAC CCAACAGGCA CTGCCAATAT TGGATGGGCT GGTTGATTGG	360
CCACGCCTGA GGAAGATGGC GTCCCAAGGC CTGAGGTCTG CATCCCAGAC TCTCCATCCT	420
GATCGACCTT CTCTACCTGC AG GGT CCC CCA GCG ATG CAC CCC ATG CCC ACC Gly Pro Pro Ala Met His Pro Met Pro Thr 1 5 10	472
ACC CCC TGC ACC CTC ACC TGA TGC AGG AAC ATA TGG GAA CCA ACG TCA Thr Pro Cys Thr Leu Thr Cys Arg Asn Ile Trp Glu Pro Thr Ser 15 20 25	520
TCG TTG CCA ACA CAA TGC CCA CTC ACC TCA GCA ACG GAC AGA TGT GTG Ser Leu Pro Thr Gln Cys Pro Leu Thr Ser Ala Thr Asp Arg Cys Val 30 35 40	568
AGT GGC CCC GAC CCA GGG GAC AGG CAG GTGGGCAAAC TCTGGGATTT Ser Gly Pro Asp Pro Gly Asp Arg Gln 45 50	615
TACCTTGCAA AGGGTGAGGA TGGGGCTTAA GACAGGAGGC AGGAGAAAGT GGAGTCTAGA	675
AGGTAGAACC AGGATGCAAC AGTTTTCTGG GTTCCAGGGT AGGGAATAAA GGGCAAGATT	735
GTCCATTTGT TGAGGCTGTT TATTCAGTAA GGTGACTGAC AGCCTTTACT GAATGAAGCC	795
ATTGTTGGGA TGAGGCAATC CACTGGATGA GGTAACCCAT TGGGTGAAGA TGTCTTGGGT	855
GAGAATTCCA TTAGTTGACA TTGTCCATTA AGTAAAAGTG GTCATTGAAG TAAGGCTGCA	915
CAGTTGGGTA AGGCTATCCA TTAGACATTA GATGAGACTA CCCATTGGGT CAGGATGTCT	975
GCTGGGCTA	984
<210> 53 <211> 50 <212> PRT <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Peptide	

```
<400> 53
Gly Pro Pro Ala Met His Pro Met Pro Thr Thr Pro Cys Thr Leu Thr
Cys Arg Asn Ile Trp Glu Pro Thr Ser Ser Leu Pro Thr Gln Cys Pro
Leu Thr Ser Ala Thr Asp Arg Cys Val Ser Gly Pro Asp Pro Gly Asp
                              40
Arg Gln
    50
<210> 54
<211> 1103
<212> DNA
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Primer
<220>
<221> CDS
<222> (289) .. (429)
<220>
<221> CDS
<222> (433) .. (477)
<220>
<221> CDS
<222> (481)..(492)
<220>
<221> CDS
<222> (496)..(603)
<220>
<221> CDS
<222> (607)..(630)
<220>
<221> CDS
<222> (634)..(750)
<220>
<221> CDS
<222> (754) .. (810)
<220>
<221> CDS
<222> (814)..(843)
<220>
```

<221> CDS <222> (847)(1023)	
<220> <221> CDS <222> (1027)(1071)	
<220> <221> CDS <222> (1075)(1103)	
<400> 54 TTTGGGAGAA GCAGTCCAAG TCTGCATATC AAATAAATGA TGGAGGAGAT GGGTGGTAGG	60
ACCTTCCAGA CCTCATAAAA CTTAGGCTTT ATGATCTGGG ACTCACAGAA GGTTGAGCAA	120
TAAAAGACCT TAGGGATTAT CTGGCTTAAT TAATTCTCTC ATTTTATAGA GGAAGAAATT	180
AAGTCAAGGT GGGGCAGGGT GGGAGGGGAG AACTTTCCCG GGGCTCTTCA TTTACTCCCA	240
CAAAGGCTGG AATTTTGAGC AGCCCCTGTC TGTCTGTTTG TCCTTCCA GCC ACC CCT Ala Thr Pro 1	297
GAG ACC CCA CAG CCC TCA CCG CCA GGT GGC TCA GGG TCT GAG CCC TAT Glu Thr Pro Gln Pro Ser Pro Pro Gly Gly Ser Gly Ser Glu Pro Tyr 5 10 15	345
AAG CTC CTG CCG GGA GCC GTC GCC ACA ATC GTC AAG CCC CTC TCT GCC Lys Leu Leu Pro Gly Ala Val Ala Thr Ile Val Lys Pro Leu Ser Ala 20 25 30 35	393
ATC CCC CAG CCG ACC ATC ACC AAG CAG GAA GTT ATC TAG CAA GCC GCT Ile Pro Gln Pro Thr Ile Thr Lys Gln Glu Val Ile Gln Ala Ala 40 45 50	441
GGG GCT TGG GGG CTC CAC TGG CTC CCC CCA GCC CCC TAA GAG AGC ACC Gly Ala Trp Gly Leu His Trp Leu Pro Pro Ala Pro Glu Ser Thr 55 60 65	489
TGG TGA TCA CGT GGT CAC GGC AAA GGA AGA CGT GAT GCC AGG ACC AGT Trp Ser Arg Gly His Gly Lys Gly Arg Arg Asp Ala Arg Thr Ser 70 75 80	537
CCC AGA GCA GGA ATG GGA AGG ATG AAG GGC CCG AGA ACA TGG CCT AAG Pro Arg Ala Gly Met Gly Arg Met Lys Gly Pro Arg Thr Trp Pro Lys 85 90 95	585
GCA CAT CCC ACT GCA CCC TGA CGC CCT GCT CTG ATA ACA AGA CTT Ala His Pro Thr Ala Pro Arg Pro Ala Leu Ile Thr Arg Leu 100 105 110	630
TGA CTT GGG GAG ACC CTC TAC TGC CTT GGA CAA CTT TCT CAT GTT GAA Leu Gly Glu Thr Leu Tyr Cys Leu Gly Gln Leu Ser His Val Glu 115 120 125	678

GCC ACT GCC Ala Thr Ala											726
TCC CAA AGG Ser Gln Arg				Leu 150							774
GCT CCC TTC Ala Pro Phe				u Leu					CGG Arg 170		822
TGG TGT CCA Trp Cys Pro											870
GGG CAC CTT Gly His Leu				a Ala							918
CTC TGC TGT Leu Cys Cys 205											966
TAC AGA GGC Tyr Arg Gly 220					Ser						1014
AAC ATG TTG Asn Met Leu 235					His						1062
AGG CTG TGG Arg Leu Trp 250					Ser			AC			1103
<210> 55 <211> 261 <212> PRT <213> Artif: <200> <223> Descr: Peptic	iption of	_	cial Se	equence	e: S	ynth	etic	:			
<400> 55 Ala Thr Pro 1	Glu Thr 5	Pro Gln	Pro Se	er Pro 10	Pro	Gly	Gly	Ser	Gly 15	Ser	
Glu Pro Tyr	Lys Leu 20	Leu Pro		la Val 25	Ala	Thr	Ile	Val 30	Lys	Pro	
Leu Ser Ala 35	Ile Pro	Gln Pro	Thr II	le Thr	Lys	Gln	Glu 45	Val	Ile	Gln	
Ala Ala Gly 50	Ala Trp	Gly Leu 55		rp Leu	Pro	Pro 60	Ala	Pro	Glu	Ser	

Thr Trp Ser Arg Gly His Gly Lys Gly Arg Arg Asp Ala Arg Thr Ser Pro Arg Ala Gly Met Gly Arg Met Lys Gly Pro Arg Thr Trp Pro Lys 90 Ala His Pro Thr Ala Pro Arg Pro Ala Leu Ile Thr Arg Leu Leu Gly 100 105 Glu Thr Leu Tyr Cys Leu Gly Gln Leu Ser His Val Glu Ala Thr Ala 120 Phe Thr Phe Thr Phe Ile His Val Gln Pro Pro Thr Ser Ser Gln Arg 130 135 Thr Ala Ala Trp Arg Leu Glu Pro Tyr Leu Asn Pro Ala Pro Phe Phe 150 Pro Ser Leu Val Leu Leu Ser Pro Arg Ser Trp Cys Pro Asp Arg 165 170 Ala Leu Gly Trp Val Gln Leu Trp His Leu Gly His Leu Ala Pro Pro 180 185 Ser Ala Ala Pro Thr Ser Ala Ala Ser Leu Cys Cys His Leu Ala 200 Gln Pro Ser Arg Leu Leu Gln His His Leu Tyr Arg Gly Gln Gly Gly 210 Leu Gly Asn Asp Ser Pro Ser His Ser Gly Asn Met Leu Ala Leu Thr 230 235 Gly Thr Arg His Gln Ala Gly Ser Arg Arg Leu Trp Gly Lys Thr Pro 250 Phe Ser Ser Asn Pro 260

<210> 56

<211> 20

<212> DNA

<213> Artificial Sequence

<200>

<223> Description of Artificial Sequence: Synthetic
 Primer

<400> 56

GGGCACTGGG AGGAGGCAGT

<210> 57

<211> 20

<212> DNA

<213> Artificial Sequence

<200>

20

<223	Description of Artificial Primer	Sequence:	Synthetic	
<400 GCCT	> 57 GTAGGA CCAACCTACC		2	20
<210 <211				
	> Artificial Sequence			
	<pre>> Description of Artificial Primer</pre>	Sequence:	Synthetic	
<400 TCTG	> 58 GTGTGC ACGACTGCAC		2	20
<210 <211				
<212	> DNA			
<213 <200	> Artificial Sequence			
	Description of Artificial Primer	Sequence:	Synthetic	
	> 59 AGCTGC AGCCTCATAC		2	20
	> 60			
	> 20 > DNA			
	> Artificial Sequence			
<200	> > Description of Artificial	Segnence.	Synthetic	
\22 3	Primer	bequence.	Synthetic	
<400 AAGG	> 60 CTCCCT TAGATGCCTG		2	20
	> 61			
	> 23 > DNA			
	> Artificial Sequence			
<200	> > Description of Artificial	Semience	Synthetic	
\42 3	Primer	bequence.	Synthetic	
	> 61 TCAGGG AGAAGACAGA CCT		2	23
	> 62			
	> 20 > DNA			
<213	> Artificial Sequence			
<200	>			

<223>	Description of Artificial Primer	Sequence:	Synthetic	
<400> CCTAG	62 FTCTG TCCTAAGAGG		:	20
<210><211><211>	20			
<213>	Artificial Sequence			
	Description of Artificial Primer	Sequence:	Synthetic	
<400> GTCAT	63 AAAGT GTGGCTACAG			20
<210>				
<211><212>				
	Artificial Sequence			
<200>	Description of Artificial	Camianca.	Symthetic	
<223 >	Primer	sequence:	Synthetic	
<400> CCACC	64 CCCTA CTCCATCCCT GT			22
<210>				
<211><212>				
	Artificial Sequence			
<200>	December of Dubisies	G	Court has been	
<223>	Description of Artificial Primer	sequence:	Synthetic	
<400>				
CCCTC	CCGTC AGCTGCTCCA		:	20
<210>				
<211><212>				
	Artificial Sequence			
<200>				
<223>	Description of Artificial Primer	sequence:	Synthetic	
<400> GTGCA	66 GGGGA CAGAGAATGC			20
<210>				
<211>				
<212> <213>	DNA Artificial Sequence			
<200>	——————————————————————————————————————			

<223>	Description of Artificial Primer	Sequence:	Synthetic	
<400> AATCA	67 AGCCA GTCCACGGCT AT			22
<210><211><211><212><213>	23			
<200> <223>	Description of Artificial Primer	Sequence:	Synthetic	
<400> GCCCA	68 GCGTC ACTGAGTTGG CTA			23
<200>	20	Company	Symthetic .	
	Primer	sequence:	Synchecic	
<400> TTGCC	69 IGGGT GAGTGCCATG			20
<200>	20	Sequence:	Synthetic	
<400> GCACC	70 AGCTA TCTTGCCAAC			20
<200>	20	Sequence:	Synthetic	
<400> AGGAG	71 AAGTC TGGCAGAGCG			20
<210><211><212><213><200>	20		•	

	Description of Artificial Sequence: Primer	Synthetic	
<400> CTCCTT	72 GTGT GACACAAGTC		20
	20		
	Description of Artificial Sequence: Primer	Synthetic	
<400> CTCACT	73 GTGT GAGGCCTGTC		20
<200>	20	Synthetic	
<400>	Primer		20
<210><211><211><212><213><200>	75 20	Synthetic	
<210><211><211><212><213><200>	GGTTC TACCTTCTAG 76 20	Synthetic	20
<210><211><212>	76 ACTCC CACAAAGGCT 77 20 DNA Artificial Sequence		20

<223> Description of Artificial Sequence: Synthetic Primer	
<400> 77 GACCACGTGA TCACCAGGTG	20
<210> 78 <211> 1441 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	
<220> <221> CDS <222> (20)(1414)	
<pre><400> 78 CTCCAAAACC CTCGTCGAC ATG GAC ATG GCC GAC TAC AGT GCT GCA CTG GAC</pre>	52
CCA GCC TAC ACC ACC CTG GAA TTT GAG AAT GTG CAG GTG TTG ACG ATG Pro Ala Tyr Thr Thr Leu Glu Phe Glu Asn Val Gln Val Leu Thr Met 15 20 25	100
GGC AAT GAC ACG TCC CCA TCA GAA GGC ACC AAC CTC AAC GCG CCC AAC Gly Asn Asp Thr Ser Pro Ser Glu Gly Thr Asn Leu Asn Ala Pro Asn 30 35 40	148
AGC CTG GGT GTC AGC GCC CTG TGT GCC ATC TGC GGG GAC CGG GCC ACG Ser Leu Gly Val Ser Ala Leu Cys Ala Ile Cys Gly Asp Arg Ala Thr 45 50 55	196
GGC AAA CAC TAC GGT GCC TCG AGC TGT GAC GGC TGC AAG GGC TTC TTC Gly Lys His Tyr Gly Ala Ser Ser Cys Asp Gly Cys Lys Gly Phe Phe 60 65 70 75	244
CGG AGG AGC GTG CGG AAG AAC CAC ATG TAC TCC TGC AGA TTT AGC CGG Arg Arg Ser Val Arg Lys Asn His Met Tyr Ser Cys Arg Phe Ser Arg 80 85 90	292
CAG TGC GTG GAC AAA GAC AAG AGG AAC CAG TGC CGC TAC TGC AGG Gln Cys Val Val Asp Lys Asp Lys Arg Asn Gln Cys Arg Tyr Cys Arg 95 100 105	340
CTC AAG AAA TGC TTC CGG GCT GGC ATG AAG AAG GAA GCC GTC CAG AAT Leu Lys Lys Cys Phe Arg Ala Gly Met Lys Lys Glu Ala Val Gln Asn 110 115 120	388
GAG CGG GAC CGG ATC AGC ACT CGA AGG TCA AGC TAT GAG GAC AGC AGC Glu Arg Asp Arg Ile Ser Thr Arg Arg Ser Ser Tyr Glu Asp Ser Ser 125	436
CTG CCC TCC ATC AAT GCG CTC CTG CAG GCG GAG GTC CTG TCC CGA CAG	484

Le 14	u Pro O	Ser	Ile	Asn	Ala 145	Leu	Leu	Gln	Ala	Glu 150	Val	Leu	Ser	Arg	Gln 155	
	C ACC e Thr															532
	T GCC e Ala															580
	r CTC l Leu															628
	G GAC u Asp 205															676
	G CTC u Leu 0															724
	A GGC u Gly															772
	G AGC t Ser															820
	G GAG n Glu															868
_	C TTC e Phe 285															916
	G CGG s Arg 0															964
	c cgc p Arg															1012
	G CCC u Pro															1060
	C ATC e Ile															1108
	G CTG t Leu															1156

365		370			375			
CTG CAC CCT Leu His Pro 380	His Leu N							1204
GCC AAC ACA Ala Asn Thr							ı Trp	1252
CCC CGA CCC Pro Arg Pro								1300
CCG CCA GGT Pro Pro Gly 430	Ala Ser (Gly Ser G						1348
GTC GCC ACA Val Ala Thr 445								1396
ACC AAG CAG Thr Lys Gln 460	Glu Val 1		AAGCCG (CTGGGGCTT	rg ggggc	rc		1441
<210> 79 <211> 465 <212> PRT <213> Artif <200> <223> Descr Pepti	iption of		ial Sequ	ence: S	ynthetic	:		
<211> 465 <212> PRT <213> Artif <200> <223> Descr	iption of de	Artifici					_	
<211> 465 <212> PRT <213> Artif <200> <223> Descr Pepti <400> 79 Met Asp Met	iption of de Ala Asp 5 Glu Asn V	Artifici Tyr Ser <i>F</i>	Ala Ala Val Leu	Leu Asp	Pro Ala	Tyr Th	5	
<211> 465 <212> PRT <213> Artif <200> <223> Descr Pepti <400> 79 Met Asp Met 1	iption of de Ala Asp 5 5 Glu Asn 1 20 Gly Thr 8	Artifici Tyr Ser A	Ala Ala Val Leu 25	Leu Asp 10 Thr Met	Pro Ala	Tyr Th.	5 r Ser	
<211> 465 <212> PRT <213> Artif <200> <223> Descr Pepti <400> 79 Met Asp Met 1 Leu Glu Phe Pro Ser Glu	iption of de Ala Asp 5 5 Glu Asn 1 20 Gly Thr 2	Artifici Tyr Ser A Val Gln V Asn Leu A	Ala Ala Val Leu 25 Asn Ala	Leu Asp 10 Thr Met Pro Asn	Pro Ala Gly Asn Ser Leu 45	Tyr Th. 1. Asp Th. 30 Gly Va.	r Ser l Ser	
<211> 465 <212> PRT <213> Artif <200> <223> Descr Pepti <400> 79 Met Asp Met 1 Leu Glu Phe Pro Ser Glu 35 Ala Leu Cys	iption of de Ala Asp 5 Glu Asn N 20 Gly Thr A	Artifici Tyr Ser A Val Gln V Asn Leu A Cys Gly A 55	Ala Ala Val Leu 25 Asn Ala 40 Asp Arg	Leu Asp 10 Thr Met Pro Asn Ala Thr	Pro Ala Gly Asn Ser Leu 45 Gly Lys 60	Tyr Th. 1. Asp Th. 30 Gly Va. His Ty	r Ser l Ser r Gly	
<211> 465 <212> PRT <213> Artif <200> <223> Descr Pepti <400> 79 Met Asp Met 1 Leu Glu Phe Pro Ser Glu 35 Ala Leu Cys 50 Ala Ser Ser	iption of de Ala Asp 7 5 Glu Asn 7 20 Gly Thr A Ala Ile 6	Artifici Tyr Ser A Val Gln V Asn Leu A Cys Gly A 55 Gly Cys I 70	Ala Ala Val Leu 25 Asn Ala 40 Asp Arg	Leu Asp 10 Thr Met Pro Asn Ala Thr Phe Phe 75	Pro Ala Gly Asn Ser Leu 45 Gly Lys 60 Arg Arg	Tyr Th. 1. Asp Th. 30 Gly Va. His Ty	r Ser I Ser r Gly l Arg 80 l Asp	

Lys Asp Lys Arg Asn Gln Cys Arg Tyr Cys Arg Leu Lys Lys Cys Phe 100 105 110

Arg Ala Gly Met Lys Lys Glu Ala Val Gln Asn Glu Arg Asp Arg Ile 115 Ser Thr Arg Arg Ser Ser Tyr Glu Asp Ser Ser Leu Pro Ser Ile Asn 135 Ala Leu Leu Gln Ala Glu Val Leu Ser Arg Gln Ile Thr Ser Pro Val 155 Ser Gly Ile Asn Gly Asp Ile Arg Ala Lys Lys Ile Ala Ser Ile Ala 165 Asp Val Cys Glu Ser Met Lys Glu Gln Leu Val Leu Val Glu Trp 185 Ala Lys Tyr Ile Pro Ala Phe Cys Glu Leu Pro Leu Asp Asp Gln Val 205 200 Ala Leu Leu Arg Ala His Ala Gly Glu His Leu Leu Gly Ala Thr 215 Lys Arg Ser Met Val Phe Lys Asp Val Leu Leu Gly Asn Asp Tyr 235 230 Ile Val Pro Arg His Cys Pro Glu Leu Ala Glu Met Ser Arg Val Ser 250 Ile Arg Ile Leu Asp Glu Leu Val Leu Pro Phe Gln Glu Leu Gln Ile Asp Asp Asn Glu Tyr Ala Tyr Leu Lys Ala Ile Ile Phe Phe Asp Pro Asp Ala Lys Gly Leu Ser Asp Pro Gly Lys Ile Lys Arg Leu Arg Ser 295 Gln Val Gln Val Ser Leu Glu Asp Tyr Ile Asn Asp Arg Gln Tyr Asp 315 310 Ser Arg Gly Arg Phe Gly Glu Leu Leu Leu Leu Pro Thr Leu Gln 330 Ser Ile Thr Trp Gln Met Ile Glu Gln Ile Gln Phe Ile Lys Leu Phe 345 Gly Met Ala Lys Ile Asp Asn Leu Leu Gln Glu Met Leu Leu Gly Gly 355 Ser Pro Ser Asp Ala Pro His Ala His His Pro Leu His Pro His Leu 375 Met Gln Glu His Met Gly Thr Asn Val Ile Val Ala Asn Thr Met Pro 395 390 Thr His Leu Ser Asn Gly Gln Met Cys Glu Trp Pro Arg Pro Arg Gly

410

405

Gln Ala Ala Thr Pro Glu Thr Pro Gln Pro Ser Pro Pro Gly Ala Ser 420 425 430

Gly Ser Glu Pro Tyr Lys Leu Leu Pro Gly Ala Val Ala Thr Ile Val 435 440 445

Lys Pro Leu Ser Ala Ile Pro Gln Pro Thr Ile Thr Lys Gln Glu Val 450 455 460

Ile 465

<210> 80

<211> 2329 <212> DNA

<213> Artificial Sequence

<200>

<400> 80 GGGGCCCTGA TTCACGGGCC GCTGGGGCAG GGTTGGGGGT TGGGGGTGCC CACAGGGTTG 60 GCTAGTGGGG TTTTGGGGGG GCAGTGGGTG CAAGGAGTTT GGTTTGTGTC TGCCGGCCGG 120 CAGGCAAACG CAACCACGCG GTGGGGGGAGG CGGCTAGCGT GGTGGACGGC CCGCGTGGCC 180 CTGTGGCAGC CGAGCCATGG TTTCTAAACT GAGCCAGCTG CAGACGGAGC TCCTGGCGGC 240 300 CCTGCTCGAG TCAGGGCTGA GCAAAGAGGC ACTGATCCAG GCACTGGGTG AGCCGGGGCC CTACCTCCTG GCTGGAGAAG GCCCCCTGGA CAAGGGGGAG TCCTGCGGCG GCGGTCGAGG 360 GGAGCTGGCT GAGCTGCCCA ATGGGCTGGG GGAGACTCGG GGCTCCGAGG ACGAGACGGA 420 CGACGATGGG GAAGACTTCA CGCCACCCAT CCTCAAAGAG CTGGAGAACC TCAGCCCTGA 480 GGAGGCGGCC CACCAGAAAG CCGTGGTGGA GACCCTTCTG CAGGAGGACC CGTGGCGTGT 540 GGCGAAGATG GTCAAGTCCT ACCTGCAGCA GCACAACATC CCACAGCGGG AGGTGGTCGA 600 TACCACTGGC CTCAACCAGT CCCACCTGTC CCAACACCTC AACAAGGGCA CTCCCATGAA 660 GACGCAGAAG CGGGCCGCCC TGTACACCTG GTACGTCCGC AAGCAGCGAG AGGTGGCGCA 720 780 GCAGTTCACC CATGCAGGGC AGGGAGGGCT GATTGAAGAG CCCACAGGTG ATGAGCTACC AACCAAGAAG GGGCGGAGGA ACCGTTTCAA GTGGGGCCCA GCATCCCAGC AGATCCTGTT 840 CCAGGCCTAT GAGAGGCAGA AGAACCCTAG CAAGGAGGAG CGAGAGACGC TAGTGGAGGA 900 GTGCAATAGG GCGGAATGCA TCCAGAGAGG GGTGTCCCCA TCACAGGCAC AGGGGCTGGG 960 CTCCAACCTC GTCACGGAGG TGCGTGTCTA CAACTGGTTT GCCAACCGGC GCAAAGAAGA 1020 AGCCTTCCGG CACAAGCTGG CCATGGACAC GTACAGCGGG CCCCCCCAG GGCCAGGCCC 1080

GGGACCTGCG	CTGCCCGCTC	ACAGCTCCCC	TGGCCTGCCT	CCACCTGCCC	TCTCCCCAG	1140
TAAGGTCCAC	GGTGTGCGCT	ATGGACAGCC	TGCGACCAGT	GAGACTGCAG	AAGTACCCTC	1200
AAGCAGCGGC	GGTCCCTTAG	TGACAGTGTC	TACACCCCTC	CACCAAGTGT	CCCCCACGGG	1260
CCTGGAGCCC	AGCCACAGCC	TGCTGAGTAC	AGAAGCCAAG	CTGGTCTCAG	CAGCTGGGGG	1320
CCCCTCCCC	CCTGTCAGCA	CCCTGACAGC	ACTGCACAGC	TTGGAGCAGA	CATCCCCAGG	1380
CCTCAACCAG	CAGCCCCAGA	ACCTCATCAT	GGCCTCACTT	CCTGGGGTCA	TGACCATCGG	1440
GCCTGGTGAG	CCTGCCTCCC	TGGGTCCTAC	GTTCACCAAC	ACAGGTGCCT	CCACCCTGGT	1500
CATCGGCCTG	GCCTCCACGC	AGGCACAGAG	TGTGCCGGTC	ATCAACAGCA	TGGGCAGCAG	1560
CCTGACCACC	CTGCAGCCCG	TCCAGTTCTC	CCAGCCGCTG	CACCCCTCCT	ACCAGCAGCC	1620
GCTCATGCCA	CCTGTGCAGA	GCCATGTGAC	CCAGAGCCCC	TTCATGGCCA	CCATGGCTCA	1680
GCTGCAGAGC	CCCCACGGTG	AGCACCCTGT	GCCCCACACA	GCAGGAGATG	ATGATAGAGG	1740
TTGGCTGTCA	ATGGATGCAG	GGGAAAGGGG	TGCCTGGCAG	GCATTGCAGT	CTGCATGTGT	1800
CTCTGGGACA	AGTGTTTTTC	CGTGATTGAG	GGTGTCTGCA	GGCCAGTGTG	TTCCCATGTG	1860
AATGCACGTA	TCTGTGTGTG	TGCACGACTG	CTTGTGTGAG	CAGATCCCTA	GTCGTGTCTG	1920
GGTGTGTATC	GGTTGTGCAT	GCATTTGTGT	GCATCCTGTG	TTTCTCTGAA	ACTCTTAGGG	1980
CCATATGAAT	TTCTAAAATC	TATTCAGATT	TTAGAAAGGT	AATCTGGGGC	CAGGCGTGGT	2040
GGCTCATGCC	TGTAATCCCA	GCACTTTGGA	AGGCCGAGGT	GGGCAGATCA	CTTGAGGTCA	2100
GGAGTTCAAG	ACCAGCCTGG	CCAACACGGT	GAAACCCCGT	CTCTACTAAA	AGTACAAAAA	2160
TTAGCCAGGC	GTGGAGCACG	TGCCTGTAGT	CCCAGCTACT	TGGGAGGCTG	AGGCAGAATC	2220
GCTTGAACCT	GGGAGGCGGA	GGTTGCAGTG	AGCTGAGATT	TGGCCACTGC	ACTGCACTCC	2280
AGCCTGGGCA	ACAGAGTGAG	TACTCTGCCA	ААААААААА	АААААААА		2329

<210> 81

<211> 20

<212> DNA

<213> Artificial Sequence

<200>

<223> Description of Artificial Sequence: Synthetic Primer

<400> 81

CACCTGGTGA TCACGTGGTC

20

<210> 82

<211> 20

```
<212> DNA
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Primer
<400> 82
                                                                         20
GTAAGGCTCA AGTCATCTCC
<210> 83
<211> 5
<212> PRT
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 83
Glu Gly Cys Lys Gly
<210> 84
<211> 5
<212> PRT
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 84
Glu Gly Cys Lys Ala
<210> 85
<211> 5
<212> PRT
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 85
Asp Gly Cys Lys Gly
<210> 86
<211> 36
<212> DNA
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Primer
<220>
<221> CDS
```

```
<222> (1) .. (36)
<400> 86
GAC ACG TAC AGC GGC CCC CCC CCA GGG CCA GGC CCG
                                                                        36
Asp Thr Tyr Ser Gly Pro Pro Pro Gly Pro Gly Pro
<210> 87
<211> 12
<212> PRT
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 87
Asp Thr Tyr Ser Gly Pro Pro Pro Gly Pro Gly Pro
<210> 88
<211> 36
<212> DNA
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Primer
<220>
<221> CDS
<222> (1)..(36)
<400> 88
GAC ACG TAC AGC GGC CCC CCC AGG GCC AGG CCC
                                                                         36
Asp Thr Tyr Ser Gly Pro Pro Pro Arg Ala Arg Pro
<210> 89
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 89
Asp Thr Tyr Ser Gly Pro Pro Pro Arg Ala Arg Pro
<210> 90
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
```

Primer

<400> CATGA	90 ACCCC GAAGAGTGGT G		2	21
<210><211><212>	20			
	Artificial Sequence			
	Description of Artificial Primer	Sequence:	Synthetic	
<400> GCCTC	91 CAGAC ACCTGTTACT		2	20
<210>				
<212>	DNA			
<213><200>	Artificial Sequence			
	Description of Artificial Primer	Sequence:	Synthetic	
<400>	92			
GGCGA	CCATG GCAAGTTAGA AG		2	22
<210>				
<211>				
<212><213>	Artificial Sequence			
<200>				
<223>	Description of Artificial Primer	Sequence:	Synthetic	
<400>				
TTGGT	GAGAG TATGGAAGAC C		2	21
<210>				
<211><212>				
	Artificial Sequence			
<200>				
<223>	Description of Artificial Primer	Sequence:	Synthetic	
<400>				
GGGGTT	TTGCT TGTGAAACTC C		2	21
<210>				
<211>				
<212>	Artificial Sequence			
<200>	crrictar bequence			
<223>	Description of Artificial Primer	Sequence:	Synthetic	

<400> TTGGT	95 GGGAA ACGGGCTTGG		2	0
<200>	20 DNA Artificial Sequence Description of Artificial	Sequence:	Synthetic	
<400>	Primer 96			
CTCCCA	ACTAG TACCCTAACC		2	0
<200>	22	Sequence:	Synthetic	
<400>	97			
GAGAG	GGCAA AGGTCACTTC AG		2:	2
<210><211><212><213><200>	22			
<223>	Description of Artificial Primer	Sequence:	Synthetic	
<400> AGTGA	98 AGGCT ACAGACCCTA TC		2.	2
<200>	21 DNA Artificial Sequence Description of Artificial	Sequence:	Synthetic	
<400>	Primer 99			
TTCCT	GGGTC TGTGTACTTG C		2	1
<210><211><211><212><213><200>	21			
<223>	Description of Artificial Primer	Sequence:	Synthetic	

<400> 100 TGTGTTTTGG GCCAAGCA	ACC A			21
<210> 101 <211> 20 <212> DNA <213> Artificial Se <200>	equence			
<223> Description of Primer	of Artificial	Sequence:	Synthetic	
<400> 101 AACCAGATAA GATCCGT	GGC			20
<210> 102 <211> 22 <212> DNA <213> Artificial S <200> <223> Description Primer		Sequence:	Synthetic	
<400> 102 AACCAGACTC ACAGCCT	GAA CC			22
<210> 103 <211> 20 <212> DNA <213> Artificial S <200> <223> Description Primer		Sequence:	Synthetic	
<400> 103 TCACAGGGCA ATGGCTG	SAAC			20
<210> 104 <211> 20 <212> DNA <213> Artificial S <200> <223> Description Primer		Sequence:	Synthetic	
<400> 104 TGCCGAGTCA TTGTTCC	CAGG			20
<210> 105 <211> 22 <212> DNA <213> Artificial S	Gequence			
<2200> <223> Description	of Artificial	Sequence:	Synthetic	

<400> 105 CCTCTTATCT TATCAGCTCC AG	22	2
<210> 106 <211> 22 <212> DNA		
<213> Artificial Sequence		
<pre><200> <223> Description of Artificial Sequence: Primer</pre>	Synthetic	
<400> 106 CTGCTCTTTG TGGTCCAAGT CC	22	2
<210> 107		
<211> 21 <212> DNA		
<213> Artificial Sequence		
<200>		
<pre><223> Description of Artificial Sequence: Primer</pre>	Synthetic	
<400> 107 GAGTTTGAAG GAGACCTACA G	· · · · · · · · · · · · · · · · · · ·	1
<210> 108		
<211> 21		
<212> DNA		•
<213> Artificial Sequence <200>		
<pre><223> Description of Artificial Sequence:</pre>	Synthetic	
<400> 108		
ATCCACCTCT CCTTATCCCA G	2	1
<210> 109		
<211> 21		
<212> DNA		
<213> Artificial Sequence <200>		
<pre><223> Description of Artificial Sequence:</pre>	Synthetic	
<400> 109		
ACTTCCGAGA AAGTTCAGAC C	2	1
<210> 110		
<211> 21		
<212> DNA		
<213> Artificial Sequence <200>		
<pre><223> Description of Artificial Sequence: Primer</pre>	Synthetic	

<400> 110 TTTGCCTGTG TATGCACCTT G	21
<210> 111 <211> 20 <212> DNA <213> Artificial Sequence	
<200> <223> Description of Artificial Sequence: Primer	Synthetic
<400> 111 GCCGAGTCCA TGCTTGCCAC	20
<210> 112 <211> 20 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence:	Synthetic
Primer <400> 112	
CTTTGCTGGT TGAGTTGGGC	20
<210> 113 <211> 21 <212> DNA <213> Artificial Sequence	
<200> <223> Description of Artificial Sequence: Primer	Synthetic
<400> 113 TTCCATGACA GCTGCCCAGA G	21
<210> 114 <211> 20 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Primer	Synthetic
<400> 114 TAAAGGTTGG AGCCCCTCTG	20
<210> 115 <211> 20 <212> DNA <213> Artificial Sequence <200>	
<pre><223> Description of Artificial Sequence: Primer</pre>	Synthetic

<400>	115		
	AGGTG ACCCCATCAG		20
<210>	116		
<211>	20		
<212>	DNA		
<213>	Artificial Sequence		
<200>			
<223>	Description of Artificial S	Sequence:	Synthetic
	Primer		
<400>			20
TIGGIC	SATGT CCAGAAGTCC		20
<210>	117		
<211>			
<212>			
-	Artificial Sequence		
<200>	•		
<223>	Description of Artificial S	Sequence:	Synthetic
	Primer		
<400>			
CAGAA	GTGT CAGAGTTCGC		20
<210>	110		
<211>			
<211>			
	Artificial Sequence		
<200>	merical bequest		
	Description of Artificial S	Sequence:	Synthetic
	Primer	-	-
<400>			
CTCCC	CCTG TTCTTAAGTG		20
010	110		
<210>			
<211>			
<212>	Artificial Sequence		
<200>	Attitital bequence		
	Description of Artificial	Seauence:	Synthetic
	Primer	•	•
<400>			
CTGGA	CTCCC AGTTCAGTCA		20
-010:	120		
<210><211>			
<211>			
	Artificial Sequence		
<200>			
	Description of Artificial	Sequence:	Synthetic
	Primer	-	-

<400> CAAGGA	120 ATCCA GAAGATTGGC		20)
<210> <211>	20			
	Artificial Sequence			
<200> <223>	Description of Artificial Primer	Sequence:	Synthetic	
<400> CGTCCT	121 CCTGG GAAGATCTGC		. 20)
<210> <211>	24	4		
	DNA Artificial Sequence			
<200> <223>	Description of Artificial Primer	Sequence:	Synthetic	
<400> GCAACA	122 AGAGC AAGACTCCAT CTCA		24	4
<210> <211>				
<212>	DNA			
<213> <200>	Artificial Sequence			
<223>	Description of Artificial Primer	Sequence:	Synthetic	
<400> GAGTTT	123 PAATG GAAGAACTAA CC		22	2
<210>				
<211><212>				
	Artificial Sequence			
<200> <223>	Description of Artificial Primer	Sequence:	Synthetic	
<400> CCTCAT	124 FGGAG AAACATCCTA AGT		23	3
<210>				
<211><212>	_ -			
	Artificial Sequence			
	Description of Artificial Primer	Sequence:	Synthetic	

<400> 125 24 AGGGAGTGCA CGGCTGAGCT CCTG <210> 126 <211> 6254 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer <220> <221> modified base <222> (1287)..(4273) <223> N = A, C, G, or T<400> 126 AGCCAGCACT GTTCTTGGCA CATGGTAATC TTAACATATT TTTTCCTACA GGGAGGCCTG 60 GTGTCAGGCC GGGAGTGGGG TGGAAGGGTC CCAAAATGGA TGGAAGGGCC CCAAAATGGC 120 CGTGAGCATC CTCTGCCCTT GAGAAGAGCT AGCCCAGCTG TCTAGAGCTC CCTGCTGCTG CCGCTCTCGT AAGCAGCAAG CATTTTTGGC TCTCCTGTCT CAGCATGATG CCCCTACAAG 240 GTTCTTTCGG GGGTGGGACC CAACGCTGCT CTCCTGATGG CCTCCCTGGC TCCCAGCACC 300 TTCCATCCCA GCTGCTCAGG GCCCCTCACC TGCGCCTCCC CCACCCTCCC CTCTGCCCAC 360 TCCCATCGCA GGCCATAGCT CCCTGTCCCT CTCCGCTGCC ATGAGGCCTG CACTTTGCAG 420 GGCTGAAGTC CAAAGTTCAG TCCCTTCGCT AAGCACACGG ATAAATATGA ACCTTGGAGA 480 ATTTCCCCAG CTCCAATGTA AACAGAACAG GCAGGGGCCC TGATTCACGG GCCGCTGGGG 540 CCAGGGTTGG GGGTTGGGGG TGCCCACAGG GCTTGGCTAG TGGGGTTTTG GGGGGGCAGT 600 GGGTGCAAGG AGTTTGGTTT GTGTCTGCCG GCCGGCAGGC AAACGCAACC CACGCGGTGG 660 GGGAGGCGC TAGCGTGGTG GACCCGGGCC GCGTGGCCCT GTGGCAGCCG AGCCATGGTT 720 TCTAAACTGA GCCAGCTGCA GACGGAGCTC CTGGCGGCCC TGCTCGAGTC AGGGCTGAGC 780 AAAGAGGCAC TGATCCAGGC ACTGGGTGAG CCGGGGCCCT ACCTCCTGGC TGGAGAAGGC 840 CCCCTGGACA AGGGGGAGTC CTGCGGCGGC GGTCGAGGGG AGCTGGCTGA GCTGCCCAAT 900 GGGCTGGGGG AGACTCGGGG CTCCGAGGAC GAGACGGACG ACGATGGGGA AGACTTCACG 960 CCACCCATCC TCAAAGAGCT GGAGAACCTC AGCCCTGAGG AGGCGGCCCA CCAGAAAGCC 1020 GTGGTGGAGA CCCTTCTGCA GTAAGGAGCC CTGCCCCGTC CCCGCTCCCA GGAGAGCCTA 1080 GAGGGGCCCC CCTCAGCTCC TAACGAGCCC CCCTTCTGAG TTGAGTCCCC ATGACCTTCA 1140 GCCTTTAGCC TAGTTGCTGG GAAGGGGGAC AGGGCCCATG AGAGCCCAGG GGTCCTTGCT 1200

TGGAGGTTTG AGCCTCCAGC CCCTGAACTG CTCCTCTGCA GAGTCCCAAA TCCCATGAGC	1260
CCAGGCCTTT AGCCCAGTCC TTGGGCNAGG GGGACATTTC CCAGGGGGTC CAAGATGGGA	1320
GAAAAAGCAG TGAATTCACA ACTCAAATGC CCACCCACCC ATCCATCCAT CCGTCCATCC	1380
ACCCATTCAT CCATTCATCC ATTCACCCAT CCATCCAT	1440
TGTGTCTGTG TATCCATGTT TCTAAACCTT TATCTGTTCC AGTGTCTGTA TCCATAGGCC	1500
TGTGTCCACG TTTGTCATGT GTGTGCGTCN ACAAGTCTCT GTCCTCATGA CCATGTGTCT	1560
GTGTCCCTGT GTCCTGGCAT AAATGACCAT ACCTCACCGT CCCTGAGTCT ATGTGTAGGC	1620
CCCTGGGCTC CATAACTGCT TTCATGCACA GTCCCCACCC TCAGAGTTGA CAAGGTTCCA	1680
GCACCCAGGA CCGCAGCCCC ACCTATGGGG AGAGACAGCC CTTGCTGAGC AGATCCCGTC	1740
CTTGCCCTCT CCCAGGGAGG ACCCGTGGCG TGTGGCGAAG ATGGTCAAGT CCTACCTGCA	1800
GCAGCACAAC ATCCCACAGC GGGAGGTGGT CGATACCACT GGCCTCAACC AGTCCCACCT	1860
GTCCCAACAC CTCAACAAGG GCACTCCCAT GAAGACGCAG AAGCGGGCCG CCCTGTACAC	1920
CTGGTACGTC CGCAAGCAGC GAGAGGTGGC GCAGCGTAAG TAATGACCCT ACCCCGCATC	1980
TTCCCTGGGA GGGCCCAGGA CTCTCCCCTA ACTCATAGGT GGGGGCTGGA AGCTTCACCA	2040
TCCCCATTAC ACAGACAGGT AGATGGAAAG GAAGTCAGTG GGATTCAACC TGCATTTATT	2100
ACCTATTCTG CGCCAGGCAC TCTGTGGGAC GGGAGTANAC TTGGTCCTGA ACATCCAAAG	2160
ATGAATGAAA TGGGTCCCTG CTTTCTTTTT CTTTTTTTAG ATACGTGACT CTGGAAAAAT	2220
ATGTAAGCTC TCTGAGCCTC AGCTTCTTCA TCTGTACAAT GGGGATAGTA AATGTGCCAA	2280
ATCAGAACAA ATGCTAATGC TTACCTGCAG TCTTGTACTG AGAAGGATGG TGAGATCATA	2340
TCTTGGGTTG GTAGGAAAGC ATTCAGGGAT TGATTAGTGA TGTTTGCCTT GAACACAGGT	2400
TAAGAAAGTG ATGGCATGTG TGCTGTGTT TTGTCATCAG TAGATTAGAT	2460
TTCTAGCTGT AAGCTCCTCT GGTTCAGCGC CATGGCAATG AGAAAGAATC AAGGGCAAGG	2520
TCAGGGGAAT GGACGAGGGA AGGTGAGAGT GGCCAGTACC CCACTCACGG CTTTCTGTGC	2580
CTGCAGAGTT CACCCATGCA GGGCAGGGAG GGCTGATTGA AGAGCCCACA GGTGATGAGC	2640
TACCAACCAA GAAGGGGCGG AGGAACCGTT TCAAGTGGGG CCCAGCATCC CAGCAGATCC	2700
TGTTCCAGGC CTATGAGAGG CAGAAGAACC CTAGCAAGGA GGAGCGAGAG GTACAACGGC	2760
GGGCGGGAAA CAGTGCTGGT TTGGTCTGGG CTGCGGCAAG GCCAGGGGAA GGGGAAGGTG	2820
ACTCTAGGTC CTGTAAAAGG CTGTCCAGTT GCCGAGAACT CCTGATATTG GCTTAGCCTG	2880

GCCCAGAAAA	TTGAGAATAC	TTGAACCTAA	GCCCATTCCT	CGCAGCCCCC	CTGCACCNTG		2940
GACACCAAGC	AACCCCTTCC	ATGGATGCTC	ACCCAATTCG	ATTCTCTCTA	CAATCCTATG		3000
GCTCTTTTGC	TCACTTTATG	AATGGAGAGA	CTGAGGTCAG	ACAGACTGTC	AATTGCCCAA		3060
GGTCACACAG	CAGACCTGGC	ATTGGAACCC	AGATCTGCCA	GCCTCAAACC	CTCCGGCAGA		3120
GNTCAGCTTC	TCAGAACCCT	CCCCTTCATG	CCCAGGACAG	GGTTCCTCTG	AGCCTGGCCT		3180
GGAGGCTCAT	GGGTGGCTAT	TTCTGCAGGG	CGGAATGCAT	CCAGAGAGGG	GTGTCCCCAT		3240
CACAGGCACA	GGGGCTGGGC	TCCAACCTCG	TCACGGAGGT	GCGTGTCTAC	AACTGGTTTG		3300
CCAACCGGCG	CAAAGAAGAA	GCCTTCCGGC	ACAAGCTGGC	CATGGACACG	TACAGCGGGC		3360
CCCCCCAGG	GCCAGGCCCG	GGACCTGCGC	TGCCCGCTCA	CAGCTCCCCT	GGCCTGCCTC		3420
CACCTGCCCT	CTCCCCCAGT	AAGGTCCACG	GTAAGTGGTA	TGTGGGGACA	AGGGACACGT		3480
GGGAAGGTGG	GAGGGTTGGG	GAGGACTGTC	CCATTGACAG	CAGTCACCTA	AACCTCTTTG	,	3540
CACGTCAGTT	TGGTTCCATT	CGCAGCTGAC	CCAGGGATTG	GCAAAAGGTA	GAAACAAAGG		3600
CAGATTTGCT	GGCTGCATAA	AGGCAGACAG	GCAGATGGCC	TAAGCAAACC	AATGGAGTTT		3660
GAAGTGCTGA	GGGCTGTGGA	GGCAGGGGAG	GGCAGGGAAG	TGGGGTGCTG	AGGCAGGACA		3720
CTGCTTCCCT	CTCCAGGTGT	GCGCTATGGA	CAGCCTGCGA	CCAGTGAGAC	TGCAGAAGTA		3780
CCCTCAAGCA	GCGGCGGTCC	CTTAGTGACA	GTGTCTACAC	CCCTCCACCA	AGTGTCCCCC		3840
ACGGGCCTGG	AGCCCAGCCA	CAGCCTGCTG	AGTACAGAAG	CCAAGCTGGT	GAGTGTCCTT		3900
GCTTGTAAGG	AAAACCCAAC	CTCATCTTTC	CTTGGCAGGG	AGATTCTGGA	GCAGTCCCTA	,	3960.
GGGAGGCCCT	GTGGGGACCC	ceeccccce	GACACAGCTT	GGCTTCCCCT	CGTAGGTCTC		4020
AGCAGCTGGG	GGCCCCCTCC	CCCCTGTCAG	CACCCTGACA	GCACTGCACA	GCTTGGAGCA		4080
GACATCCCCA	GGCCTCAACC	AGCAGCCCCA	GAACCTCATC	ATGGCCTCAC	TTCCTGGGGT		4140
CATGACCATC	GGGCCTGGTG	AGCCTGCCTC	CCTGGGTCCT	ACGTTCACCA	ACACAGGTGC		4200
CTCCACCCTG	GTCATCGGTA	AGCTGGTGGG	GATGGGTGGG	CACCTGGGTG	GGAGGCTCAT		4260
GGGGCAACCG	CANAATCCAG	GAGCTGGAAA	AGCCACTGGG	ACTCATTCAT	TCATTCATTC		4320
ATTCATACAA	CATGTTAGGA	GAGGGGAGCA	GAGAACTGAC	CCCATGGCCT	TTGCACTGCT		4380
GTGGTACCCC	AGGGCTCCAG	GGAACCGCAG	TTTGACAACT	TTTGAACAAG	TCACCGCTTG		4440
CTTTTCCCAT	TAGCTTAGAC	AAAGAGCTAA	AGGCTCAGAG	AGGGGGAATG	ACTTGCCAGA		4500
GCCACTTAAA	TTAGTGGCAG	GTCCCAGTGG	AGGGCTGTTT	CCTGACCACC	TTGCCCCTTC		4560
TTCCAAACCA	CGGGCTCTGG	GAAGGAGAGG	TGGTGCCCTT	GGGAGGTCTT	GGGCAGGGGT		4620

GGGATATAAC	TGGGGGGCCC	AGCTGATTCC	CTCCCCTTCC	ACTCCAGGCC	TGGCCTCCAC	4680
GCAGGCACAG	AGTGTGCCGG	TCATCAACAG	CATGGGCAGC	AGCCTGACCA	CCCTGCAGCC	4740
CGTCCAGTTC	TCCCAGCCGC	TGCACCCCTC	CTACCAGCAG	CCGCTCATGC	CACCTGTGCA	4800
GAGCCATGTG	ACCCAGAACC	CCTTCATGGC	CACCATGGCT	CAGCTGCAGA	GCCCCCACGG	4860
TGAGCACCCT	GTGCCCCACA	CAGCAGGAGA	TGATGATAGA	GGTTGGCTGT	CAATGGATGC	4920
AGGGGAAAGG	GGTGCCTGGC	AGGCATTGCA	GTCTGCATGT	GTCTCTGGGA	CAAGTGTGTT	4980
TCCGTGATTG	AGGGTGTCTG	CAGGCCAGTG	TGTTCCCATG	TGAATGCACG	TATCTGTGTG	5040
TGTGCACGAC	TGCTTGTGTG	AGCAGATCCC	TAGTGCGTGT	CTGGGTGTGT	ATCGGTTGTG	5100
CATGCATTTG	TGTGCATGCC	TGTGTTTCTC	TGAAACTCTT	AGGGCCATAT	GAATTTCTAA	5160
AATCTATTCA	GACCAGTTTT	GAAAATCAGC	CTTGGATCTC	CAACTGCTGC	CCAGTCTGGC	5220
TGTTCAGCAG	GCCCCATGCC	CCCCTTTCCC	CAGTCTTGAG	GCCTGGGACT	AGGGCTGTCA	5280
GGCACGTTTG	CCACGTCTGC	CCCTCTCTCC	CCTGCGGCCA	GCCCTCTACA	GCCACAAGCC	5340
CGAGGTGGCC	CAGTACACCC	ACACGGGCCT	GCTCCCGCAG	ACTATGCTCA	TCACCGACAC	5400
CACCAACCTG	AGCGCCCTGG	CCAGCCTCAC	GCCCACCAAG	CAGGTAAGGT	CCAGGCCTGC	5460
TGGCCCTCCC	TCGGCCTGTG	ACAGAGCCCC	TCACCCCCAC	ATCCCCCGGG	CTCAGGAGGC	5520
TGCTCTGCTC	CCCCAGGTCT	TCACCTCAGA	CACTGAGGCC	TCCAGTGAGT	CCGGGCTTCA	5580
CACGCCGGCA	TCTCAGGCCA	CCACCCTCCA	CGTCCCCAGC	CAGGACCCTG	CCGGCATCCA	5640
GCACCTGCAG	CCGGCCCACC	GGCTCAGCGC	CAGCCCCACA	GGTGAGAGGC	CCTGGCTCCA	5700
CCCCCTCCCT	TACTGTCCCT	GCCCCCTTCC	ATGTTGGTCC	CACCCCTTCT	GTTGCTGTCC	5760
GTCACTGTGG	GGCTGTGCAT	GCAGCAGGCC	TAGGGCTGCT	GTGAGGAAGC	ACTGGCAGGC	5820
GTGGAAGGGT	GGGGTGGCTT	CCATGAATCC	AGTGTTCACA	GTAAGATGTA	CTCAGGCCAG	5880
TCCATGGGCG	GCCGTGGACC	CTGGCTGGGA	GGCTCCCTTT	GTTAAGAACC	GAGGGTAGAG	5940
GTGTGACTTT	GGGGTTCCTG	TTATGTGCTG	TGATCCAGGA	GGTGTGGCCC	TGCCTCCCCA	6000
TCCTGAGTAC	CCCTAGGGAC	AGGCAGGTGG	GGTGGGTGTG	GGTGCCTGGT	GGGTGGCTAG	6060
CAGCCTTGTT	TGCCTCTGCA	GTGTCCTCCA	GCAGCCTGGT	GCTGTACCAG	AGCTCAGACT	6120
CCAGCAATGG	CCAGAGCCAC	CTGCTGCCAT	CCAACCACAG	CGTCATCGAG	ACCTTCATCT	6180
CCACCCAGAT	GGCCTCTTCC	TCCCAGTAAC	CACGGCACCT	GGGCCCTGGG	GCCTGTACTG	6240
CCTGCTTGGG	GGGT					6254

- <210> 127
- <211> 631
- <212> PRT
- <213> Artificial Sequence
- <200:
- <223> Description of Artificial Sequence: Synthetic
 Peptide

<400> 127

- Met Val Ser Lys Leu Ser Gln Leu Gln Thr Glu Leu Leu Ala Ala Leu 1 5 10 15
- Leu Glu Ser Gly Leu Ser Lys Glu Ala Leu Ile Gln Ala Leu Gly Glu 20 25 30
- Pro Gly Pro Tyr Leu Leu Ala Gly Glu Gly Pro Leu Asp Lys Gly Glu 35 40 45
- Ser Cys Gly Gly Gly Arg Gly Glu Leu Ala Glu Leu Pro Asn Gly Leu 50 55 60
- Gly Glu Thr Arg Gly Ser Glu Asp Glu Thr Asp Asp Asp Gly Glu Asp 65 70 75 80
- Phe Thr Pro Pro Ile Leu Lys Glu Leu Glu Asn Leu Ser Pro Glu Glu 85 90 95
- Ala Ala His Gln Lys Ala Val Val Glu Thr Leu Leu Gln Glu Asp Pro 100 105 110
- Trp Arg Val Ala Lys Met Val Lys Ser Tyr Leu Gln Gln His Asn Ile 115 120 125
- Pro Gln Arg Glu Val Val Asp Thr Thr Gly Leu Asn Gln Ser His Leu 130 135 140
- Ser Gln His Leu Asn Lys Gly Thr Pro Met Lys Thr Gln Lys Arg Ala 145 150 155 160
- Ala Leu Tyr Thr Trp Tyr Val Arg Lys Gln Arg Glu Val Ala Gln Gln 165 170 175
- Phe Thr His Ala Gly Gln Gly Gly Leu Ile Glu Glu Pro Thr Gly Asp 180 185 190
- Glu Leu Pro Thr Lys Lys Gly Arg Arg Asn Arg Phe Lys Trp Gly Pro 195 200 205
- Ala Ser Gln Gln Ile Leu Phe Gln Ala Tyr Glu Arg Gln Lys Asn Pro 210 215 220
- Ser Lys Glu Glu Arg Glu Thr Leu Val Glu Glu Cys Asn Arg Ala Glu 225 230 235 240
- Cys Ile Gln Arg Gly Val Ser Pro Ser Gln Ala Gln Gly Leu Gly Ser

245 250 255

Asn Leu Val Thr Glu Val Arg Val Tyr Asn Trp Phe Ala Asn Arg Arg 265 Lys Glu Glu Ala Phe Arg His Lys Leu Ala Met Asp Thr Tyr Ser Gly Pro Pro Pro Gly Pro Gly Pro Ala Leu Pro Ala His Ser Ser Pro Gly Leu Pro Pro Pro Ala Leu Ser Pro Ser Lys Val His Gly Val 310 315 Arg Tyr Gly Gln Pro Ala Thr Ser Glu Thr Ala Glu Val Pro Ser Ser 330 Ser Gly Gly Pro Leu Val Thr Val Ser Thr Pro Leu His Gln Val Ser 345 Pro Thr Gly Leu Glu Pro Ser His Ser Leu Leu Ser Thr Glu Ala Lys 360 Leu Val Ser Ala Ala Gly Gly Pro Leu Pro Pro Val Ser Thr Leu Thr 375 Ala Leu His Ser Leu Glu Gln Thr Ser Pro Gly Leu Asn Gln Gln Pro 385 390 395 Gln Asn Leu Ile Met Ala Ser Leu Pro Gly Val Met Thr Ile Gly Pro Gly Glu Pro Ala Ser Leu Gly Pro Thr Phe Thr Asn Thr Gly Ala Ser 425 430 Thr Leu Val Ile Gly Leu Ala Ser Thr Gln Ala Gln Ser Val Pro Val Ile Asn Ser Met Gly Ser Ser Leu Thr Thr Leu Gln Pro Val Gln Phe 455 Ser Gln Pro Leu His Pro Ser Tyr Gln Gln Pro Leu Met Pro Pro Val 465 Gln Ser His Val Thr Gln Asn Pro Phe Met Ala Thr Met Ala Gln Leu 485 490 Gln Ser Pro His Ala Leu Tyr Ser His Lys Pro Glu Val Ala Gln Tyr 500 Thr His Thr Gly Leu Leu Pro Gln Thr Met Leu Ile Thr Asp Thr Thr 520 Asn Leu Ser Ala Leu Ala Ser Leu Thr Pro Thr Lys Gln Val Phe Thr 530 535

Ser Asp Thr Glu Ala Ser Ser Glu Ser Gly Leu His Thr Pro Ala Ser

545		550	555		560	
Gln Ala T	Thr Thr Leu 565	His Val Pro	Ser Gln Asp 570	Pro Ala Gly	Ile Gln 575	
His Leu G	Gln Pro Ala 580	His Arg Leu	Ser Ala Ser 585	Pro Thr Val 590	Ser Ser	
•	Leu Val Leu 595	Tyr Gln Ser 600	Ser Asp Ser	Ser Asn Gly 605	Gln Ser	
His Leu I 610	Leu Pro Ser	Asn His Ser 615	Val Ile Glu	Thr Phe Ile 620	Ser Thr	
Gln Met <i>F</i> 625	Ala Ser Ser	Ser Gln 630				
<210> 128 <211> 6433 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer						
<400> 128 CATGAACCCC GAAGAGTAGT GTCTTCTCTC TGGACTAAAG CGGAACTGAG AACCGGTGGA						
AAAGCCCCGC GCC	CTAGGCTG CAA	AGGCACTG GCT	TAACAAG TCCA	AAGGTT AGGTG	AAGTT	

60 CATGA AAAG 120 TGGCTGATAA GCAGAACCAG TAAAAGAAGG TCTCTAGCCC CCCAGCGTGA GTACAATGGA 180 CCCTGGCAAA GCCCCGCTCC CGGCCCAGGT CTTCTGCTCT CCAGGTCTGC CCCTCCGGCT 240 CTCCCTCTCT CCGGGTTTCC CCCTCCCCAC CATCATTTGC ATCCAGCCGA AAGCTGGGCC 300 CTTCCCACTA ATTTGCATAT CTTATATGGC CTAATGGTGG CGATCATGGC AAGTTAGAAG 360 TTTTCTGACT CCTTTCGGAG GAGCCTCCGG GACCCCGGGG AGTAACAGGT GTCTGGAGGC 420 TGAAGGGTGG AGGGGTTCCT GGATTTGGGG TTTGCTTGTG AAACTCCCCT CCACCCTCCT 480 CTCTCGCACC CACCCACCCC CTCACCCCCT TCTTTTTCCG TCCTTGGAAA ATGGTGTCCA 540 AGCTCACGTC GCTCCAGCAA GAACTCCTGA GCGCCCTGCT GAGCTCCGGG GTCACCAAGG 600 AGGTGCTGGT TCAGGCCTTG GAGGAGTTGC TGCCATCCCC GAACTTCGGG GTGAAGCTGG 660 AGACGCTGCC CCTGTCCCCT GGCAGCGGGG CCGAGCCCGA CACCAAGCCG GTCTTCCATA 720 CTCTCACCAA CGGCCACGCC AAGGGCCGCT TGTCCGGCGA CGAGGGCTCC GAGGACGGCG 780 ACGACTATGA CACACCTCCC ATCCTCAAGG AGCTGCAGGC GCTCAACACC GAGGAGGCGG 840 CGGAGCAGCG GGCGGAGGTG GACCGGATGC TCAGGTAGGC GCAGAGCCAG GTGGAGGGGA 900

CCCACCCGAA	CCCCTGGAGC	cccgccccg	GGCCTGAGTG	ACACTGCGCC	CGACCACACT	960
CGCCAAGCCC	GTTTCCCACC	AAAAATTCC	cccgggggc	GCTCTGCTTC	TCTCCCAACA	1020
CCCGGACCCT	TCCCAATCCC	TTAGCGGGAC	AACCCTGCGG	CCCACCGGGC	TTCTTCTCCC	1080
CAGGCCCAGG	CCATCGTCCT	CAGAAGAAAG	GGATGAGGTG	TACCGTACAG	GGGCAGTCAC	1140
CTTCTCCTCT	GTTTAGCTTC	CATTTTGGCC	TCATGTCTAC	CCCAAAGTTG	TAGCTTAGAT	1200
GGGGGAAAA	TTCAGAATTT	TGCATAGACC	ATAGGTAGCA	CCCCTAGAA	AAAGAATGTT	1260
TCTCCCCAGA	TGTCTCCCAC	TAGTACCCTA	ACCATCTGCT	TGTCTGTCTA	GTGAGGACCC	1320
TTGGAGGGCT	GCTAAAATGA	TCAAGGGTTA	CATGCAGCAA	CACAACATCC	CCCAGAGGGA	1380
GGTGGTCGAT	GTCACCGGCC	TGAACCAGTC	GCACCTCTCC	CAGCATCTCA	ACAAGGGCAC	1440
CCCTATGAAG	ACCCAGAAGC	GTGCCGCTCT	GTACACCTGG	TACGTCAGAA	AGCAACGAGA	1500
GATCCTCCGA	CGTAAGTGTT	TTCATCCTGC	CTCTGCCTCA	ACCTGAAGTG	ACCTTTGCCC	1560
TCTCACCCCA	TTGGCTGCCT	CAGTTTCCCT	TTCATCGACA	AGGCCTTGTG	AGCACTTGGC	1620
AGATATGAGG	AAGGTGGCAA	GTAGATTTGG	CCTTGGTGGT	TGCTGTACAA	TGGATTGGCT	1680
TCTGTCATGT	TCTTCAGTCA	CAGCCCCCTT	GCTACCCAGC	CAGTTGCTCT	GAGGAGCCTG	1740
TCAGTGTGAT	TGAGCTCACC	CACTTGACAT	CAAATACAGG	AGTTCAGGAT	GCAGAGTGTT	1800
GCTTCATCTC	TGAAGGCCAG	TGAGCCAAAG	GGGAAAAAAT	AATAATTTTC	TTAAAACTAT	1860
AGCTGGCTAT	GTTTGAGCTC	CTTCAAAGAA	AGGAAAAGGG	TGGCTTTGCT	GGAGCAACTG	1920
AGGTGGGCAG	TAAGGGCCTG	TGCTGAGGGC	TCCCCATCTC	CAGCTCCACA	TGCAGŤGAGA	1980
GAAGGTTGCA	AAGCTTAGTT	AGACGAGGGG	AATAAACCTG	TCTTCGTCCG	TTGTCTGTCT	2040
GTCTGTCTGT	CTGTCTGCTG	AGTGAAGGCT	ACAGACCCTA	TCAAATCTAC	TCCTTTCTCT	2100
TTTCAGAATT	CAACCAGACA	GTCCAGAGTT	CTGGAAATAT	GACAGACAAA	AGCAGTCAGG	2160
ATCAGCTGCT	GTTTCTCTTT	CCAGAGTTCA	GTCAACAGAG	CCATGGGCCT	GGGCAGTCCG	2220
ATGATGCCTG	CTCTGAGCCC	ACCAACAAGA	AGATGCGCCG	CAACCGGTTC	AAATGGGGGC	2280
CCGCGTCCCA	GCAAATCTTG	TACCAGGCCT	ACGATCGGCA	AAAGAACCCC	AGCAAGGAAG	2340
AGAGAGAGGC	CTTAGTGGAG	GAATGCAACA	GGTAACACCA	CCAGAAGCTC	AGGTGGGCAG	2400
GTGGGCAAGT	ACACAGACCC	AGGAACCCTC	CCCTCGGTCC	TGGGATATTG	AGACACTAGT	2460
TATACAGATA	AGTGTGGCTA	AATCAGAGCT	TCTCAAAGTA	TGTTCCACAG	TGATTGTGTG	2520
TTTTGGGCCA	AGCACCAACA	AGTCCCCCG	CCCCCTTCA	CTCACCATCT	CCCCTCCATC	. 2580
CATTCCCAGG	GCAGAATGTT	TGCAGCGAGG	GGTGTCCCCC	TCCAAAGCCC	ACGGCCTGGG	2640

CTCCAACTTG	GTCACTGAGG	TCCGTGTCTA	CAACTGGTTT	GCAAACCGCA	GGAAGGAGGA	2700
GGCATTCCGG	CAAAAGCTGG	CCATGGACGC	CTATAGCTCC	AACCAGACTC	ACAGCCTGAA	2760
CCCTCTGCTC	TCCCACGGCT	CCCCCCACCA	CCAGCCCAGC	TCCTCTCCTC	CAAACAAGCT	2820
GTCAGGTAAG	CAAAGGTTGG	GCCTCACTGC	CTCGGCAACC	CAACCATCCT	GGTTCTTGCC	2880
ACGGATCTTA	TCTGGTTTAA	GGGTTTTCAG	AGGAGCAAAC	GCTTTTGAGA	TGATCCTAGG	2940
GCCGCTCTCT	CATTGCCAGA	ATATACTCCC	CTGGAAATAA	TGTGTGGCTC	TGATCAGTTC	3000
CAAGGCACTG	GGGATACATC	AGTGAACAAA	ACAAACGAGA	TAAAAATTTC	CTGCCCTCGT	3060
GGCGCTTACA	TTCTAGAATT	AAATAGAGAA	CATGCCATAT	TTACCCTGGA	GAAAAGCAGC	3120
CGATATTTCT	TGTGGGTGGA	CAGGGGAGGA	GAAAGCAACT	TTATTTTCTT	ATTACCCACC	3180
CTTGAAAACA	AGAGGTGCCG	AGTCATTGTT	CCAGGACCCT	GGTGGCACTA	ATGTTCCCTA	3240
CTGGGTTTGT	GTTGTTTTGC	AGGAGTGCGC	TACAGCCAGC	AGGGAAACAA	TGAGATCACT	3300
TCCTCCTCAA	CAATCAGTCA	CCATGGCAAC	AGCGCCATGG	TGACCAGCCA	GTCGGTTTTA	3360
CAGCAAGTCT	CCCCAGCCAG	CCTGGACCCA	GGCCACAATC	TCCTCTCACC	TGATGGTAAA	3420
ATGGTGAGTA	CACCTGGGCC	ATTGTCGCTC	TGGAGCTGAT	AAGATAAGAG	GCAAAACAAA	3480
CACAACTTCT	CACAAGGCCT	GCCTCAAACA	ATGAACCATT	GTAGCCCCAT	AGGGGAAAAT	3540
GAGGGCTGTC	CAGAGTCGGA	AAGGAGAGGT	AGTGCTGGTG	ACCCACCCTT	TGGCGGGTAG	3600
ААААСССААА	GTGATGGGAT	TACAGGGGTG	AAGCACCATG	CCCAGCCAAT	AATTGTTATT	3660
GAGTGAATGA	AGGAATGAAT	TTGAGAACTA	GTCATGCCAA	GGAATCGCTA	AGTCACATCG	3720
TGTTGGAAAC	TGCTCTTTGT	GGTCCAAGTC	CACCCATGTT	TCTCTTGTTT	TTTTCTCTCC	3780
ATCAGATCTC	AGTCTCAGGA	GGAGGTTTGC	CCCCAGTCAG	CACCTTGACG	AATATCCACA	3840
GCCTCTCCCA	CCATAATCCC	CAGCAATCTC	AAAACCTCAT	CATGACACCC	CTCTCTGGAG	3900
TCATGGCAAT	TGCACAAAGT	AAGTTCTATT	CTTGGTTGGA	AAACCTGGGG	GCAGGGAGAA	3960
GAAGAATGGG	AAGCAAATTA	ATGTGGTGAA	AAATAACTGT	AGGTCTCCTT	CAAACTCACC	4020
CACAACTAGT	AAATTTGGTT	TAACTTCTTT	AGTTTCTCAT	CTGTCTCCTT	AAATCCAATA	4080
TTTGGATTGT	TTAGCCTAAA	ACAAGAAAAA	ATTGTGGAAT	GGATTTGGAT	CCTGGTCACA	4140
GTTTAGCAGC	TGTGCATCCT	GGGTCAAATC	ATTGAACCTA	TGACTCTGGG	AGACTCTCAG	4200
GCTTTAATCA	GATCTGTTTA	ATGCCCATCT	CCAACCCACA	ACTCATTGTG	GAACTTGAGC	4260
AAGTAAATTA	ATATCTCCAA	GTCTCCGTTT	CTTTACACTT	GCCTCCCATG	GAATCTCCTA	4320

TGTAACAGGC	TCAGCCCGGT	GACTGGGACA	TTGAGCGGGG	GCTCAAATGA	TGGCATCCAT	4380
CCACCTCTCC	TTATCCCAGG	AGCTGTCTGT	GTCTTTTCCT	CTTGCTCCCA	CAGGCCTCAA	4440
CACCTCCCAA	GCACAGAGTG	TCCCTGTCAT	CAACAGTGTG	GCCGGCAGCC	TGGCAGCCCT	4500
GCAGCCCGTC	CAGTTCTCCC	AGCAGCTGCA	CAGCCCTCAC	CAGCAGCCCC	TCATGCAGCA	4560
GAGCCCAGGC	AGCCACATGG	CCCAGCAGCC	CTTCATGGCA	GCTGTGACTC	AGCTGCAGAA	4620
CTCACACAGT	AAGGACACGG	GCATGTGGAG	GGAGGGAGCA	CTCAGGACCC	TCAGTGGCCA	4680
ACCACTTTCC	CTCTCTGGGT	CTGAACTTTC	TCGGAAGTTT	ATTGGCTTGG	TCACTTTTCC	4740
CTGCCTATGA	TCAACCGACT	AAGACAATTT	CTCAAGCATA	ACTCTTGAGT	GTTGCTGTAC	4800
CTTTTCTAGT	CCTCTTCTCT	ACCCCTGAGA	TTCCCAGGGA	AGGGTTTGAA	TGACCTTTGC	4860
TCCCGTTCCG	TACCGGAGGC	CTCCCTGGTA	GGAAATGTGT	TCTGAGAGCA	GGTGGTTTCT	4920
CCCTCACAGC	CAAGCATCCA	CATGCTTTCG	GGAGTTGGTT	ATGTGACTTG	GAATTTACAT	4980
GAATCTTATG	GATAACTAAT	ATGAGAAATC	CCCACTATAA	CCACCAGCCC	TTTTATCTAC	5040
CTGAGGAGAT	GGGAGCTATG	GTGTGGGATG	GGGGCTCTGT	ACCTGTGTCT	TTGCCTGTGT	5100
ATGCACCTTG	ATTCTGTCTT	CACTCTGTCT	CTCCAGTGTA	CGCACACAAG	CAGGAACCCC	5160
CCCAGTATTC	CCACACCTCC	CGGTTTCCAT	CTGCAATGGT	GGTCACAGAT	ACCAGCAGCA	5220
TCAGTACACT	CACCAACATG	TCTTCAAGTA	AACAGGTAAT	GCCAGCAGGA	TATGCGGGGG	5280
TTGGGGTGTG	GGCAGGGTGT	GATAAGGCCA	TGGATGTGCA	AAGGTTGTGG	CAAGCATGGA	5340
CTCGGCCAGA	AATTATATCC	TCTTTGCTGG	TTGAGTTGGG	CATCATCTCC	CTTAGAGAAG	5400
CCAAACTAAT	GGCCCATGAC	CCTGCCAAAT	GACACAGCTG	AGCACCCTCT	CTCCTCTCTC	5460
TCTGCAGTGT	CCTCTACAAG	CCTGGTGATG	CCCACACACC	ACTTACTTCG	TGCGCAACAA	5520
CAAGGACCCT	GTTTTCCACA	CCATCACCCT	CTGGGCAGCT	GTCATGGAAA	AGCCCAGTGA	5580
CCTGACCAGC	ACCTGCGAGA	GGTCCCTGCT	ACCTGACGGA	CGTCCTGCTG	GCACCTCAGA	5640
CAATCCACTC	TCAGGAGGCG	CAGCCCGAAG	CCCAGTTTCC	CTTCTATGCA	GTATTGCCAC	5700
AATGCCTCTC	CCACGATGTC	AAGGACTCCT	GTCTGTCCTG	GAGGTGGGAG	ACAAGGAACC	5760
ACCGAAGAGG	AAGCAAGAAA	GCCGTACTGT	CTATGTTGTG	ATCCTTCATC	GAACAAACTG	5820
ATGCGAAAAC	TTGAATCTGT	TACTGAAATG	AGGAGAGAAG	GACATGTGCT	ATTGAACTGA	5880
GCCAAACACA	CTGTAAATAT	CCACAGACTC	CCTCCCCTGC	CCCCATCCCA	CATGATCTTG	5940
AGATTTCTTT	TAAAGAAGTA	AATTTGTCCA	ATGGCTGTAA	ACTATAAACT	ACTGTAATTA	6000
AGTGCAATTT	CCCCTCTGTG	TCCTCTCCCC	TCTGCCCTGT	ATATAATACT	AAAGTGTCTA	6060

TTAGTTTTCT	TTGTAAAGGT	CAGAGTCAAA	ATTTCAAAAG	TGATCTGTCC	CCTCTCCCCT	6120
CATGGAGAAA	CATCCTAAGT	GGGAAGTGAA	GCCCCTTGTC	CTCTCCCGCG	GGCCTGGACA	6180
CTTATGGGGA	CAGCATACCT	TGGACTGACT	ACCAGCTAAC	TCCAGTCTCC	TGACATTAAG	6240
ACACACCTCT	GGATCCCTGG	AGGGGCTGAA	TGTAGTGTGT	CAGAGTAACA	TGCCAGCTTC	6300
CTGTGGGCCA	GGAGCTCAGC	CTGCACTCCC	TAAGAAACCC	CAGGGCAGGG	AAACTGGCTG	6360
TTTGATAGCA	GAAGAAAAAG	TTGCAGTCTC	AAAAGCCTTC	CATTAAAACA	ATTTATTTTA	6420
TCACTAAAAA	AAA					6433

<210> 129

<211> 609

<212> PRT

<213> Artificial Sequence

<200>

<223> Description of Artificial Sequence: Synthetic
 Peptide

<400> 129

Met Val Ser Lys Leu Thr Ser Leu Gln Gln Glu Leu Leu Ser Ala Leu 1 5 10 15

Leu Ser Ser Gly Val Thr Lys Glu Val Leu Val Gln Ala Leu Glu Glu 20 25 30

Leu Leu Pro Ser Pro Asn Phe Gly Val Lys Leu Glu Thr Leu Pro Leu 35 40 45

Ser Pro Gly Ser Gly Ala Glu Pro Asp Thr Lys Pro Val Phe His Thr 50 55 60

Leu Thr Asn Gly His Ala Lys Gly Arg Leu Ser Gly Asp Glu Gly Ser 65 70 75 80

Glu Asp Gly Asp Asp Tyr Asp Thr Pro Pro Ile Leu Lys Glu Leu Gln 85 90 95

Ala Leu Asn Thr Glu Glu Ala Ala Glu Gln Arg Ala Glu Val Asp Arg 100 105 110

Met Leu Ser Glu Asp Pro Trp Arg Ala Ala Lys Met Ile Lys Gly Tyr 115 120 125

Met Gln Gln His Asn Ile Pro Gln Arg Glu Val Val Asp Val Thr Gly 130 135 140

Leu Asn Gln Ser His Leu Ser Gln His Leu Asn Lys Gly Thr Pro Met 145 150 155 160

Lys Thr Gln Lys Arg Ala Ala Leu Tyr Thr Trp Tyr Val Arg Lys Gln

165 170 175

Arg Glu Ile Leu Arg Gln Phe Asn Gln Thr Val Gln Ser Ser Gly Asn 180 185 190

Met Thr Asp Lys Ser Ser Gln Asp Gln Leu Leu Phe Leu Phe Pro Glu
195 200 205

Phe Ser Gln Gln Ser His Gly Pro Gly Gln Ser Asp Asp Ala Cys Ser 210 215 220

Glu Pro Thr Asn Lys Lys Met Arg Arg Asn Arg Phe Lys Trp Gly Pro 225 230 235 240

Ala Ser Gln Gln Ile Leu Tyr Gln Ala Tyr Asp Arg Gln Lys Asn Pro 245 250 255

Ser Lys Glu Glu Arg Glu Ala Leu Val Glu Glu Cys Asn Arg Ala Glu 265 270

Cys Leu Gln Arg Gly Val Ser Pro Ser Lys Ala His Gly Leu Gly Ser 275 280 285

Asn Leu Val Thr Glu Val Arg Val Tyr Asn Trp Phe Ala Asn Arg Arg 290 295 300

Lys Glu Glu Ala Phe Arg Gln Lys Leu Ala Met Asp Ala Tyr Ser Ser 305 310 315 320

Asn Gln Thr His Ser Leu Asn Pro Leu Leu Ser His Gly Ser Pro His 325 330 335

His Gln Pro Ser Ser Ser Pro Pro Asn Lys Leu Ser Gly Gly Lys Gln 340 345 350

Arg Leu Gly Leu Thr Ala Ser Ala Thr Gln Pro Ser Trp Phe Leu Pro 355 360 365

Arg Ile Leu Ser Gly Leu Arg Val Phe Arg Gly Ala Asn Ala Phe Glu 370 375 380

Met Ile Leu Gly Pro Leu Ser His Cys Gln Asn Ile Leu Pro Trp Lys 385 390 395 400

Gly Val Arg Tyr Ser Gln Gln Gly Asn Asn Glu Ile Thr Ser Ser Ser 405 410 415

Thr Ile Ser His His Gly Asn Ser Ala Met Val Thr Ser Gln Ser Val 420 425 430

Leu Gln Gln Val Ser Pro Ala Ser Leu Asp Pro Gly His Asn Leu Leu 435 440 445

Ser Pro Asp Gly Lys Met Ile Ser Val Ser Gly Gly Leu Pro Pro 450 455 460

Val Ser Thr Leu Thr Asn Ile His Ser Leu Ser His His Asn Pro Gln

465	470	475	480
Gln Ser Gln Asn Leu	Ile Met Thr Pro		Ala Ile
485		490	495
Ala Gln Ser Leu Asn 500	Thr Ser Gln Ala 505	Gin ser val Pro va. 51	
Ser Val Ala Gly Ser 515	Leu Ala Ala Leu 520	Gln Pro Val Gln Ph 525	e Ser Gln
Gln Leu His Ser Pro 530	His Gln Gln Pro 535	Leu Met Gln Gln Se 540	r Pro Gly
Ser His Met Ala Glr 545	Gln Pro Phe Met 550	Ala Ala Val Thr Gl 555	n Leu Gln 560
Asn Ser His Met Tyr 565		Glu Pro Pro Gln Ty 570	r Ser His 575
Thr Ser Arg Phe Pro	Ser Ala Met Val 585	Val Thr Asp Thr Se	r Ser Ile O
Ser Thr Leu Thr Ass 595	n Met Ser Ser Ser 600	Lys Gln Cys Pro Le 605	u Gln Ala
Trp 609			
<210> 130 <211> 10014 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Primer		: Synthetic	
<400> 130		nac concercent com	AGGAGAC 60
TGGGTTGCCT GTGACTGCAC T			
GGGTGGAGAG AAACAGGGGG A			
AAGAGGATGG ACGTCTACCA G			
CTCAAACCAC CCTTTGAAGT T			
AGGAGAATCA TTTACCCAAG G			
GGTCTCTGCC TGCTCCGGGA G			
ATCCGAGATG GAGCCAGCCT G			
AGGGTGGGAT CACAGGGAGC A			
TCCAGTCCAT TCTGCTCCCA G	GGGAACCGG GAAACTG	CGG GGGAACTGGA AGG	SAGCICC 340

CAGAACAAGG	ATCCAGAAGA	TTGGCATCTG	GGGCCTGGGA	TTTAGGTTTC	TAAATCGTGG	600
GCCATGGGGC	AGCCTTATCT	CTGCAAAAGC	ATTGAGGGTA	GAAGTCAATG	ATTTGGGAAG	660
TTATTGAATT	AGGGGATCTC	GGAGGTAGGC	TGTCAGTGCC	TGATAGTATC	AGTTAGAATG	720
CCTGACTTGG	GGTGACAATG	GCTTGGAGGG	GTGGGTGAGT	CAAGGGTCAA	ATGAGTGCCC	780
GTGAGTCATG	ATGCCTGCCT	TGTACAATTG	ATAACTGAAC	ATCGGTGAGT	TAGGGCCCCA	840
GCAGTTGTAA	TTAGCACCCC	GGGTGTCAGC	CAGAAACCAA	CAAACAGCCA	AATCCCTGCA	900
GCCCGCCCA	GCCTATCCAC	CGGCGGGGA	CCGATTAACC	ATTAACCCCC	ACCCCTCCCC	960
GGCAGAGCCT	CCACCCCTTC	ACAGAGGCTA	GGCCAAGACT	CCCAGCAGAT	CTTCCCAGAG	1020
GACGGTTTGA	AAGGAAGGCA	GAGAGGGCAC	TGGGAGGAGG	CAGTGGGAGG	GCGGAGGGCG	1080
GGGGCCTTCG	GGGTGGGCGC	CCAGGGTAGG	GCAGGTGGCC	GCGGCGTGGA	GGCAGGGAGA	1140
ATGCGACTCT	CCAAAACCCT	CGTCGACATG	GACATGGCCG	ACTACAGTGC	TGCACTGGAC	1200
CCAGCCTACA	CCACCCTGGA	ATTTGAGAAT	GTGCAGGTGT	TGACGATGGG	CAATGGTAGG	1260
TGGGGGCAGA	TGTGCCCAGG	TGTGCCAGTG	GGGGCAGGTG	TGCCTGGGTC	CAGGAGCAGA	1320
TCTTTGGCAC	TCAACTTTGG	GGTGGGAGGA	GAATGATACA	AAATGGTAGG	TTGGTCCTAC	1380
AGGCCAGCAC	AGGTGTTGCC	AAGTGAAGCC	CATGTGCCCA	GGCACAGTGA	TCACAGGCAT	1440
TCTGGGTGAA	GGGAGGCCTG	CAAGGGCCAA	TTTCCAGCAA	AAGTCGATCC	CGGCTATTCC	1500
TCCCAGGCCC	TTCCAGTCCT	CACTGCCTCA	CAGTGGCTCT	GCTTGGCGCT	TGGCACAGTG	1560
ACATGATGGT	GAGCTCCCCC	TTGGTGCCCA	GCTCCAGCGA	TTCAGCCCAG	CACGGCCCCT	1620
TCGTGAACCC	CTTGGGCCTA	GGTTCAGAGA	GACGGCAAGG	GATGTTGTAT	CCCTGGAGAT	1680
GGTGGTTGGA	GACATAACCG	CATTTCTCGG	TGTCTTTGGG	ACTTTCCTAG	GGAAATGAAA	1740
TTGGCACTTA	GGGAAAATGG	AGCTCTCAGG	GAAGTTTTGC	TAACTACGAA	GCCAACTCAG	1800
CACTGTGTGT	GTTGTGTGTG	CGTTCGTGTG	TGATAGTGAG	TTTCCATGTA	GGTTGTATGG	1860
GTGGGGTGAT	GCCTTCAGGA	ACCCATTTGC	: ATATGTGTGT	TCATTTGTCT	CTGTGTGTGA	1920
GTTCTGGGTC	: TATTTTCCTT	' TGTATTCATI	GAGTGGGTCT	GTGTTTGTGT	CTTAGGAGTT	1980
GCCCGTGTTG	ATCTTGCTTA	TGTATGTAAG	TGTGTATGT	TGTGTACTT	TGTCTGTGGA	2040
TGTTTGTACA	TGTGTGCTGT	GTGTGCGGG	CATAGAGCAG	ATGCGTTTGT	GCATGCGGAC	2100
CTGTTGGAGT	GCCCTGTTCT	TCCTGCATC	TTATCCTGTA	A TGGGCGTTTI	GTCGTGTGCC	2160
CATATTTGTA	A CCTGCTGTGT	ATATATGCA	TTCCCTGTG	TGCGGGCGG	GGTCAGCGGT	2220
CTCTGGTGT	CACGACTGC	A CAGACCCAA	A TGCAGGACTO	TGTTGTTGC	CACTCACCAAG	2280

TGAGATTCAT	ATCAGCAACA	TGTCCGTTTG	TCTCTGAGCA	GATTTTGTTG	CCGCTGCGTC	2340
TCGCCAGATT	GAGGCATCCC	CTCCGACATC	ACTGGAGCAT	ATCTGGAGGG	GTGGACAGTT	2400
CTCCACAGGG	AGGTAGGGGA	AAAGAGGAGG	CCCGGAAACC	CCTCCTGGAG	GGAAGAGCCC	2460
CATCGGTCCC	AGGCCAGCCT	CAGAGGAGAG	GGGGCAGGCA	GCTGGCTGAG	GTCAGCCTGC	2520
CACCCTGCTT	CCTTCTGTGT	CTTGGAGCCA	CTCAGCCAGT	ATGAGGCTGC	AGCTCCAGCT	2580
GAGGTCTGGA	ATCTTGTGGT	CAGCTCAGCT	AGGGTGAGGA	GGCAGCTGCT	GGGCACTGCT	2640
TGTTGTCAGC	TCAGCAGGTG	CTCACCTGCC	CCTGCCGTCC	AGTCACGTGT	GACCTTGGGC	2700
ATGTCACCTC	CCCTATCCTG	GCTTCTGTAT	CTTCTACAAA	ACAGGCTTCA	TTCCCCCAGG	2760
CCTGCTGGCT	GGACGGCTTT	TAGGCCTGTC	TGAGGACCAC	GCCAGGAGCG	CAAGGCAAAA	2820
ACACACCAGA	GATCCCCTTG	CGAGTTAGGA	GGCCGGCTCC	CACCCCAGAA	GGTGGCCAGG	2880
TTTTCATGCC	TTCCTAGAGA	AAGCTGGGGC	TGGTGGCCTC	CACCACAGGG	AGACGCAGAC	2940
CCTCAGAAAC	AAGTCTGTGA	AGTCACAACC	AGCCCCAGTT	TACAGATGTG	AAACTGAAGC	3000
TCCAAAAAGT	CAGGAGGTCA	CTGAGTGGGG	AGGTGATGGA	GTGGGAACAG	CCCCCAGATC	3060
TGGCTGAGGC	CGAAGCCCTG	GAGAGATCCC	CGCAAGGCTC	CCTTAGATGC	CTGACATTCT	3120
GCTCTTCCTG	AAGCCTCACT	сссттстстс	CTGGCGCAGA	CACGTCCCCA	TCAGAAGGCA	3180
CCAACCTCAA	CGCGCCCAAC	AGCCTGGGTG	TCAGCGCCCT	GTGTGCCATC	TGCGGGGACC	3240
GGGCCACGGG	CAAACACTAC	GGTGCCTCGA	GCTGTGACGG	CTGCAAGGGC	TTCTTCCGGA	3300
GGAGCGTGCG	GAAGAACCAC	ATGTACTCCT	GCAGGTGAGG	AGCCTCAATT	TCTTCAGCTG	3360
GGAAATGGGC	ACACTTGGGC	TCATGGCCCC	AAGGTCTGTC	TTCTCCCTGA	GTGGGTAGGT	3420
CCCAGAGACA	GCTGCCCTTC	AGGGCCTTCA	AGGCTCTTCT	GGTTTTGTAA	AAGACTTTGT	3480
GAATCCAAGA	AGAGCATCTA	TTCTAGGAAC	CACATTTACT	GATCATCAAG	CTACTGGCTG	3540
CCGTTTATT	AGCTCTTATC	ATATGCCAGG	CACAATACTA	AGTCTTTGTG	TGTATTTACG	3600
TACTCCAGAG	GTCAAGGTTC	CCAACTCAGC	TCTAACACCA	ACCAGCAGAG	CGACCCAGGA	3660
CCACATGTT	G CCTCTCTGAG	CCTCAGTTTT	CCCATGTTTA	GCAGGACAGG	ACTGGGCTCT	3720
TAGAGAGTTO	C ATAGCACCTI	TCCAGCTCCT	GGTGGGTTCA	AGAGAGAACT	CCCGGGATGA	3780
AGAGATGAGA	A GCACTGAGGI	TGGGGGGTC	ACTGGATAGC	CAGGGCCCTA	GTTCTGTCCT	3840
AAGAGGAGGA	A AGTTGTGTCT	TCTCCATCCA	A ACCATCCAAA	GCCCTCCCCA	GATTTAGCCG	3900
GCAGTGCGT	G GTGGACAAA	G ACAAGAGGA	CCAGTGCCGC	TACTGCAGG	TCAAGAAATG	3960

CTTCCGGGCT	GGCATGAAGA	AGGAAGGTGA	GCCTCGGCCC	TCCCCGCCCC	ACCACCACTG	4020
CCCCACCTGC	ACCCACAGCT	CCCCGACAGT	CATTTACAAC	TGTAGCCACA	CTTTATGACT	4080
CAGTGGCAGG	CCCCAGGGTG	ACTGGCTAAT	GGCTGAGAAG	AGGGAGGCC	TGGAAATCTG	4140
ACCATAGGGA	GCGGCTGGGC	TTGGTCTTGA	GAAAGATTCT	CCCACTCCTC	ATCAGTCACA	4200
GACACCCCCA	CCCCCTACTC	CATCCCTGTT	стссстсстс	ACCTCTCTGT	GCCTCCTCAC	4260
CCGTCCAGAA	TGAGCGGGAC	CGGATCAGCA	CTCGAAGGTC	AAGCTATGAG	GACAGCAGCC	4320
TGCCCTCCAT	CAATGCGCTC	CTGCAGGCGG	AGGTCCTGTC	CCGACAGGTA	CCGGGGTGAT	4380
CCTGCCACCC	ACCCAGGGAT	CCCCCACACT	ACAGAGGAGC	TCACCTCCTC	CACCTCCATT	4440
CTCCCCAGCC	AGGCCCTGGA	GCAGCTGACG	GGAGGGGCCT	CAGATATTAC	AGAAGGGACA	4500
CTGAGTGCGG	TTTCACATGG	CCCAGTTTGC	AGCAAGGGCA	GGAATCGAAC	CTGGCGCCCT	4560
GGGGCACTTT	CTAATTCATC	CTACTGCCTG	CATCCCACAG	GCCAAGCAGA	GTCTTCACCT	4620
TCACTGAGGG	CCTGCGATCA	GCTCAGCTCC	GAGAGAACAG	AGCAGTGGCT	CAGTGGAGAG	4680
AGGTGGCAAA	GTGGGGCCCA	GCCCTTCCCT	TGCTGAGTGA	CCTTGGGCAA	GTCACAGCAC	4740
CTCTCTGAGC	CATGGTTGCC	TCATTGTCAG	AAAAGGATGA	TGATTTTTTG	CCCTGCTTCT	4800
CCTCTAAGGC	TGACAGACTC	CTTGGGGCTC	TAAAGCTGTT	CTCCCTCATC	CCTGCCTCCT	4860
ссстссстсс	GTTTTTACCC	TGAGCTTCCT	TCAGAGCTGG	AGGGCACCCA	CTATCCAGCC	4920
CCCTCCCCAC	ATCTGATTCC	AGGGAGGGG	CTCTGTGCAG	GGGACAGAGA	ATGCGGGAGG	4980
GCCCGGACAT	CTCCAGCATT	TTCTTCCCTG	TATCTCTCGA	AGATCACCTC	CCCCGTCTCC	5040
GGGATCAACG	GCGACATTCG	GGCGAAGAAG	ATTGCCAGCA	TCGCAGATGT	GTGTGAGTCC	5100
ATGAAGGAGC	AGCTGCTGGT	TCTCGTTGAG	TGGGCCAAGT	ACATCCCAGC	TTTCTGCGAG	5160
CTCCCCCTGG	ACGACCAGGT	GAGGATGGGC	GTGGATGGTG	GGCAGTAGTG	GGCAGTGGGC	5220
GGGGCAGCCA	GGGGGCTGCT	GGCCCACCTG	GGATATAGCC	GTGGACTGGC	TTGATTTTAT	5280
TTTATTTAAC	AAAATATGTA	GTGCACACAC	GTGTCTGAAA	CTTTAAATCA	CCTTACAAAT	5340
ATTAACTCAG	TTAGCTCCTC	CAACAACTCT	ATGAGGTAGG	TACTAAGGTA	CTATTATTAC	5400
TGCCATCTCA	TAGGTGAGGA	GATTGGGGCA	CAGAGAGGTT	' AAGTAACCTG	CTCAAGGTCA	5460
CATAGCTACT	ATCCAGCATA	GCTGGGATTT	' TTACAAAGCA	CCCTTCATAA	TTCTCCATAG	5520
CTGGTCCATG	GGTGGGAATT	TGGGACCCAC	AGTTTTGGAA	CTTTTTGGGA	TCATAGACCT	5580
TTTTGAGAAT	CTCAAAAAA	; AAAAAAAAA	CACACAGAAT	GTTGCTTACA	A GTTTCATCAG	5640
GCACACAGAA	GAGGCCCAGC	CACGAAGCAGT	TTCTTGCCCA	AGGACACAGO	CAGTTCAAGGA	5700

CAGAGTCAGC	GCGAGGTCTC	TCAGCTCTGA	GCACATGTTC	TTTCCCCTTC	CAGGTTTCTA	5760
GTTTTATGGG	TAGTAGTTTT	ATGATGCCCA	TTTCACAGTT	CAGGCAGGTA	GAGGCAGAGG	5820
GGAGCATTAA	GCTGACTTGC	CCAGCGTCAC	TGAGTTGGCT	ACGGGCAGCC	TTCCCAAGGG	5880
TACAGATGGC	AAACACTGTT	CCTTCTCTCT	TTCAGGTGGC	CCTGCTCAGA	GCCCATGCTG	5940
GCGAGCACCT	GCTGCTCGGA	GCCACCAAGA	GATCCATGGT	GTTCAAGGAC	GTGCTGCTCC	6000
TAGGTGAGGC	GGCTGCCTGC	CCTGGCCAGG	GCTCCAGGGA	GGGTATGCCT	AGCATGGCAC	6060
TCACCCAGGC	AAGGAGATTC	ACATGGTGGC	ATGCAAGGGT	GAGGGAGACT	AGTCAGGAGT	6120
GGCCCTGTCC	TCAGGCTTGC	ATTGGAGGGC	TCCAGGACTC	AGTTTTCAAC	TGGGTACCCC	6180
ACTCAGATGC	AAGGAAATGT	GGATGCAAGT	CACCAAATTC	CCAGCATTGA	AGTCAGAGCA	6240
CGATCAGGGT	TATCCCTGGA	ATTACCTGTG	CATCCTTTTT	TCTTTTGACA	GAGTCTTGCT	6300
CTGTCACTCA	GGCTGGAGTG	CAATGATGTG	AGCAAACACT	ACCTATTTTA	ATATAACAAT	6360
GCTATGAGGG	AGCTCGATTA	TTTATCCTCA	TCTTATAGAT	AAGAAAACTG	AGGCACAGAG	6420
AGGTTAAGTA	ACTTATCCAA	CTATAACCAG	CTATCAGGGG	CAGAGCCATT	TAAGCAGGGC	6480
AGTGCAGTTC	CAGAATCTGG	TCCTTTAACC	TTGATGCTTT	GGTGCCTATC	AGGTGACCTT	6540
TGAATGTCAT	CGATCTTGTG	AGTCATGTTG	GTAAATGGAG	CTTGGGTCAT	GTGAAAGAGG	6600
TCCTAGAAAG	CCAAGTTCCA	AGCTCAGCCG	GATGACTCAA	GGCAGCTTAT	CTTCTGAATC	6660
TGGGCCTCAG	CTTCCTTACC	TGTGAAATGG	GAGTCACCAT	CCCTGCAGGT	CCTCCTCCCA	6720
CAGGCACCAG	CTATCTTGCC	AACTTAAAAG	CCAAAACTAG	AGGAGAGGGG	TCAACCCAAG	6780
GTGACTTCCC	ATCCTCCCTC	CCTCCCAACC	CTTCCAGGCA	ATGACTACAT	TGTCCCTCGG	6840
CACTGCCCGG	AGCTGGCGGA	GATGAGCCGG	GTGTCCATAC	GCATCCTTGA	CGAGCTGGTG	6900
CTGCCCTTCC	AGGAGCTGCA	GATCGATGAC	AATGAGTATG	CCTACCTCAA	AGCCATCATC	6960
TTCTTTGACC	CAGGTACAGT	GCACACCTCC	TAAGCCATCC	CTGACTCTCT	CTCCAGAACG	7020
CTCTGCCAGA	CTTCTCCTAT	TGGGTTCTGT	ACACTGAGTT	CACAGCCTCA	TCTCATGTTA	7080
ACGACAGCCA	GGAGAGGCCG	TTTTCATTTA	ACAGATGAGG	CAAGTCAAGA	TTTGAAGAGA	7140
CAATATGGCC	GGGCGCAGTG	GCTCACACCT	GTAATCCCAT	CACTTTGGGA	GGCTGAGGCG	7200
GGCGGATCAC	CTGAGGTCAG	GGGTCAAGAT	GAGCCTGGCT	AACATGGAGA	AACCCCATCT	7260
CTACTTAAAA	GTGGCTCTGC	CAACAACTGG	CTGTGCGACC	CAGGACAAGT	CCTATCTTTG	7320
CACTGTGTCT	GGGTTTCCCC	GTGTGTAAGA	TGAGGCGGTT	GCTAGGTGCT	TATTGGATGC	7380

ATTCCTCAAG	TCCCGCCCTC	CATCTCCTAT	TCCCCTCTCT	TCTGGTTTAG	TGCTTTAGGA	7440
AATGTGGCAG	AAATCTTTTT	CTGCCTGTGT	CTAGGAAATC	ATAATTCATG	CTGGCGTACC	7500
CTGGTTGTTG	AGGTCCCTGA	ATCCTTGTGC	CCACACTGCT	GAAGACTCCT	TGTGTGACAC	7560
AAGTCAGGGG	ACATCTGGGT	CTTGACTCCC	CAGATGCTCC	AGCTGGACCC	TGCTGCCCTC	7620
CCTTGCCCAC	CCTCTTCCAT	TGTAGATGCC	AAGGGGCTGA	GCGATCCAGG	GAAGATCAAG	7680
CGGCTGCGTT	CCCAGGTGCA	GGTGAGCTTG	GAGGACTACA	TCAACGACCG	CCAGTATGAC	7740
TCGCGTGGCC	GCTTTGGAGA	GCTGCTGCTG	CTGCTGCCCA	CCTTGCAGAG	CATCACCTGG	7800
CAGATGATCG	AGCAGATCCA	GTTCATCAAG	CTCTTCGGCA	TGGCCAAGAT	TGACAACCTG	7860
TTGCAGGAGA	TGCTGCTGGG	AGGTCCGTGC	CAAGCCCAGG	AGGGGCGGG	TTGGAGTGGG	7920
GACTCCCCAG	GAGACAGGCC	TCACACAGTG	AGCTCACCCC	TCAGCTCCTT	GGCTTCCCCA	7980
CTGTGCCGCT	TTGGGCAAGT	TGCTTAACCT	GTCTGTGCCT	CAGTTTCCTC	ACCAGAAAAA	8040
TGGGAACAAG	GCAATGGTCT	ATTTGTTCAG	GCACCGAGAA	CCTAGCACGT	GCCAGTCACT	8100
GTTCTAAGTG	CTGGCAATTC	AGCAAAGAAC	AAGATCTTTG	CCCTCGGGGA	GGCTGTGTGT	8160
GTGTGAGTAT	GTATGGATGC	GTGGATATCT	GTGTATATGC	CCGTATGTGC	GTGCATGTGT	8220
ATATAAAGCC	TCACATTTTA	TGATTTTGAA	ATAAACAGGT	AATATGAGGG	ACACATAGAT	8280
GCTATAAGTA	GGTCAGTTGG	CTGCAGCAGA	GATGTGGGGG	ATGAGGCTGA	AAGGTGAGGC	8340
GGGACCAAAT	GGTTGAAGGA	CTTGCACTCC	AAGGAGCTTT	GAGAGCCATT	GATTACATCC	8400
ATTATGTTAC	TATGTGACCA	ATACATTACT	CATTAGAACA	TTTACGTGAT	CTCAGAGCTT	8460
CCTTATATGC	ACCTTGTTCC	TTTCAACTCA	CTTTTGTTCT	CTTGGTTTTT	TGGGGTCCTC	8520
TTAACACCCT	CATGAAGTCT	ATAGATGGGA	ATGGTACACC	CTAGTTTACT	AACCCAGGAA	8580
TAGGTACCCA	ACAGGCACTG	CCAATATTGG	ATGGGCTGGT	TGATTGGCCA	CGCCTGAGGA	8640
AGATGGCGTC	CCAAGGCCTG	AGGTCTGCAT	CCCAGACTCT	CCATCCTGAT	CGACCTTCTC	8700
TACCTGCAGG	GTCCCCCAGC	GATGCACCCC	ATGCCCACCA	CCCCCTGCAC	CCTCACCTGA	8760
TGCAGGAACA	TATGGGAACC	AACGTCA T CG	TTGCCAACAC	AATGCCCACT	CACCTCAGCA	8820
ACGGACAGAT	GTGTGAGTGG	CCCCGACCCA	GGGGACAGGC	AGGTGGGCAA	ACTCTGGGAT	8880
TTTACCTTGC	AAAGGGTGAG	GATGGGGCTT	AAGACAGGAG	GCAGGAGAAA	GTGGAGTCTA	8940
GAAGGTAGAA	CCAGGATGCA	ACAGTTTTCT	GGGTTCCAGG	GTAGGGAATA	AAGGGCAAGA	9000
TTGTCCATTT	GTTGAGGCTG	TTTATTCAGT	AAGGTGACTG	ACAGCCTTTA	CTGAATGAAG	9060
CCATTGTTGG	GATGAGGCAA	TCCACTGGAT	GAGGTAACCC	ATTGGGTGAA	GATGTCTTGG	9120

GTGAGAATTC	CATTAGTTGA	CATTGTCCAT	TAAGTAAAAG	TGGTCATTGA	AGTAAGGCTG	9180
CACAGTTGGG	TAAGGCTATC	CATTAGACAT	TAGATGAGAC	TACCCATTGG	GTCAGGATGT	9240
CTGCTGGGCT	ATTTGGGAGA	AGCAGTCCAA	GTCTGCATAT	CAAATAAATG	ATGGAGGAGA	9300
TGGGTGGTAG	GACCTTCCAG	ACCTCATAAA	ACTTAGGCTT	TATGATCTGG	GACTCACAGA	9360
AGGTTGAGCA	ATAAAAGACC	TTAGGGATTA	TCTGGCTTAA	TTAATTCTCT	CATTTTATAG	9420
AGGAAGAAAT	TAAGTCAAGG	TGGGGCAGGG	TGGGAGGGGA	GAACTTTCCC	GGGGCTCTTC	9480
ATTTACTCCC	ACAAAGGCTG	GAATTTTGAG	CAGCCCCTGT	CTGTCTGTTT	GTCCTTCCCC	9540
ACCCCTGAGA	CCCCACAGCC	CTCACCGCCA	GGTGGCTCAG	GGTCTGAGCC	CTATAAGCTC	9600
CTGCCGGGAG	CCGTCGCCAC	AATCGTCAAG	CCCCTCTCTG	CCATCCCCCA	GCCGACCATC	9660
ACCAAGCAGG	AAGTTATCTA	GCAAGCCGCT	GGGGCTTGGG	GGCTCCACTG	GCTCCCCCA	9720
GCCCCCTAAG	AGAGCACCTG	GTGATCACGT	GGTCACGGCA	AAGGAAGACG	TGATGCCAGG	9780
ACCAGTCCCA	GAGCAGGAAT	GGGAAGGATG	AAGGGCCCGA	GAACATGGCC	TAAGGCACAT	9840
CCCACTGCAC	CCTGACGCCC	TGCTCTGATA	ACAAGACTTT	GACTTGGGGA	GACCCTCTAC	9900
TGCCTTGGAC	AACTTTCTCA	TGTTGAAGCC	ACTGCCTTCA	CCTTCACCTT	CATCCATGTC	9960
CAACCCCCGA	CTTCATCCCA	AAGGACAGCC	GCCTGGAGAT	GACTTGAGCC	TTAC	10014

<210> 131

<400> 131

Met Arg Leu Ser Lys Thr Leu Val Asp Met Asp Met Ala Asp Tyr Ser $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Ala Leu Asp Pro Ala Tyr Thr Thr Leu Glu Phe Glu Asn Val Gln 20 25 30

Val Leu Thr Met Gly Asn Gly Pro Ser Ser Pro His Cys Leu Thr Val 35 40 45

Ala Leu Leu Gly Ala Trp His Ser Asp Met Met Ile Leu Leu Pro Leu 50 55 60

Arg Leu Ala Arg Leu Arg His Pro Leu Arg His His Trp Ser Ile Ser 65 70 75 80

<211> 567

<212> PRT

<213> Artificial Sequence

<200>

<223> Description of Artificial Sequence: Synthetic
 Peptide

- Gly Gly Val Asp Ser Ser Pro Gln Gly Asp Thr Ser Pro Ser Glu Gly 85 90 95
- Thr Asn Leu Asn Ala Pro Asn Ser Leu Gly Val Ser Ala Leu Cys Ala 100 105 110
- Ile Cys Gly Asp Arg Ala Thr Gly Lys His Tyr Gly Ala Ser Ser Cys
 115 120 125
- Asp Gly Cys Lys Gly Phe Phe Arg Arg Ser Val Arg Lys Asn His Met 130 135 140
- Tyr Ser Cys Arg Phe Ser Arg Gln Cys Val Val Asp Lys Asp Lys Arg 145 150 155 160
- Asn Gln Cys Arg Tyr Cys Arg Leu Lys Lys Cys Phe Arg Ala Gly Met 165 170 175
- Lys Lys Glu Ala Val Gln Asn Glu Arg Asp Arg Ile Ser Thr Arg Arg 180 185 190
- Ser Ser Tyr Glu Asp Ser Ser Leu Phe Ser Ile Asn Ala Leu Leu Gln
 195 200 205
- Ala Glu Val Leu Ser Arg Gln Ile Thr Ser Pro Val Ser Gly Ile Asn 210 215 220
- Gly Asp Ile Arg Ala Lys Lys Ile Ala Ser Ile Ala Asp Val Cys Glu 225 230 235 240
- Ser Met Lys Glu Gln Leu Leu Val Leu Val Glu Trp Ala Lys Tyr Ile 245 250 255
- Pro Ala Phe Cys Glu Leu Pro Leu Asp Asp Gln Val Ala Leu Leu Arg 260 265 270
- Ala His Ala Gly Glu His Leu Leu Cly Ala Thr Lys Arg Ser Met 275 280 285
- Val Phe Lys Asp Val Leu Leu Gly Asn Asp Tyr Ile Val Pro Arg 290 295 300
- His Cys Pro Glu Leu Ala Glu Met Ser Arg Val Ser Ile Arg Ile Leu 305 310 315 320
- Asp Glu Leu Val Leu Pro Phe Gln Glu Leu Gln Ile Asp Asp Asn Glu 325 330 335
- Tyr Ala Tyr Leu Lys Ala Ile Ile Phe Phe Asp Pro Asp Ala Lys Gly 340 345 350
- Leu Ser Asp Pro Gly Lys Ile Lys Arg Leu Arg Ser Gln Val Gln Val
 355 360 365
- Ser Leu Glu Asp Tyr Ile Asn Asp Arg Gln Tyr Asp Ser Arg Gly Arg 370 375 380

	Phe 385	Gly	Glu	Leu	Leu	Leu 390	Leu	Leu	Pro	Thr	Leu 395	Glu	Ser	Ile	Thr	Trp 400	
	Gln	Met	Ile	Glu	Gln 405	Ile	Gln	Phe	Ile	Lys 410	Leu	Phe	Gly	Met	Ala 415	Lys	
	Ile	Asp	Asn	Leu 420	Leu	Gln	Glu	Met	Leu 425	Leu	Gly	Gly	Gly	Pro 430	Cys	Gln	
	Ala	Gln	Glu 435	Gly	Arg	Gly	Trp	Ser 440	Gly	Asp	Ser	Pro	Gly 445	Asp	Arg	Pro	
	His	Thr 450	Val	Ser	Ser	Pro	Leu 455	Ser	Ser	Leu	Ala	Ser 460	Pro	Leu	Cys	Arg	
	Phe 465	Gly	Gln	Val	Ala	Gly 470	Ser	Pro	Ser	Asp	Ala 475	Pro	His	Ala	His	His 480	
	Pro	Leu	His	Pro	His 485	Leu	Met	Gln	Glu	His 490	Met	Gly	Thr	Asn	Val 495	Ile	
	Val	Ala	Asn	Thr 500	Met	Pro	Thr	His	Leu 505	Ser	Asn	Gly	Gln	Met 510	Суѕ	Glu	
	Trp	Pro	Arg 515	Pro	Arg	Gly	Gln	Ala 520	Ala	Thr	Pro	Glu	Thr 525	Pro	Gln	Pro	
	Ser	Pro 530	Pro	Gly	Gly	Ser	Gly 535	Ser	Glu	Pro	Tyr	Lys 540	Leu	Leu	Pro	Gly	
	Ala 545	Val	Ala	Thr	Ile	Val 550	Lys	Pro	Leu	Ser	Ala 555	Ile	Pro	Gln	Pro	Thr 560	
	Ile	Thr	Lys	Gln	Glu 565	Val	Ile										
<210: <211: <212: <213: <200: <223:	> 470 > DNA > Art > Des) A tifi		_			ial s	Seque	ence:	: Sy	ynthe	etic					
<400 AAGT			GTTT'	rtcc <i>i</i>	A CA	CTCA'	TTCT	CCC	AGGT'	TTT	CTTT	GGAT	AG G	CTTA	CTTT	Г	60
CCAT	GCTG	GA G	GAGG	GGCT	A TC	CCTT	CATT	TTG	CCTC'	rcc	CGCT	rccc'	rc c	CTCT	cccc	C	120
TCCC	CCTG	CT T'	TCTC'	rccc	r cr	GCAC'	TTTG	TGA	ACTG	CTG	CTGC	AGTG	CT G	AAGT	CCAA	A	180
GTTC	AGTA	AC T'	TGCT	AAGC	A CA	CAGA'	TAAA	TAT	GAAC	CTT	GGAG	ATT!	ra c	CAAT	GTAA	Ą	240
CAGA?	ragco	CA A	GGGT	CCCT'	r ta:	rcag	CACT	GGC'	TCAG(GAC .	AGTC	GTGG(GG G	GTCT	GAAG'	Г	300
GGCT	CAAT!	T T	GTAT'	rttg:	r tr	TTTT'	TGGG	GGG	GTGT	AAA	GGCG	GGAG	GC T	GCGC'	rgrg(С	360

CCGCTGCTGA CAGTCGGGCG TGTTACCTCG GGAACATGGT GTAGGGAAGC TGGAAGCAGG	420									
ATAACGTGGA ACTCAACCCA AGAAACGCCA GCCTGAAGAC CATGGTCTCG	470									
<210> 133 <211> 467 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer										
<400> 133 TCACAGCTAT TAGCTCATCG CTGCCAAATT GCCCCTTTAC CTAGGCTTGT GTCACTTTCA	60									
CCTTCTCATT CTCTTACTTT TACATTCTTC CTTGATATTT TGCTTTTTCA ACTTTTGGAA	120									
ATTTCTTTCT CTCTTCTACC CCTCCTCATA TTCCTCTGCA CTCCCCCCTC TCTAACTCAT	180									
GCACTTTGTG GGGTCCAAAG TTCAGTAACT TGCAAAGCAC AGGGATAAAG ATGAACCTTG	240									
GAAGATTTAC TCTGCTCTGA TGTAAACAGA GAGTGACAAG GGTCCCTTAT CTATGTCTCA	300									
GAGAAGCCTG TCCGGGGGGT GACCACTTGC TGGTTGTGGC TGCACAGTGT GTTTTTTTGG	360									
GGGGGAGGAG GAAACAGAAG GTGGGTAGAG CATGGACTCC CGCCCGCTGA TCCGTGTTAC	420									
AGCCGCAGAT GGTGAGGCAG TAGAAGGCAA CAGACAGGAT GGCGTCT	467									
<210> 134 <211> 479 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer										
<400> 134 TTTCGGGGGT GGGACCCAAC GCTGCTCTCC TGATGGCCTC CCTGGCTCCC AGCACCTTCC	60									
ATCCCAGCTG CTCAGGGCCC CTCACCTGCG CCTCCCCCAC CCTCCCCTCT GCCCACTCCC	120									
ATCGCAGGCC ATAGCTCCCT GTCCCTCTCC GCTGCCATGA GGCCTGCACT TTGCAGGGCT	180									
GAAGTCCAAA GTTCAGTCCC TTCGCTAAGC ACACGGATAA ATATGAACCT TGGAGAATTT	240									
CCCCAGCTCC AATGTAAACA GAACAGGCAG GGGCCCTGAT TCACGGGCCG CTGGGGCCAG	300									
GGTTGGGGGT TGGGGGTGCC CACAGGGCTT GGCTAGTGGG GTTTTGGGGG GGCAGTGGGT	360									
GCAAGGAGTT TGGTTTGTGT CTGCCGGCCG GCAGGCAAAC GCAACCCACG CGGTGGGGGA	420									
GGCGGCTAGC GTGGTGGACC CGGGCCGCGT GGCCCTGTGG CAGCCGAGCC ATGGTTTCT	479									
	1,5									

<213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer <400> 135 TGGGGCCTGG GATTTAGGTT TCTAAATCGT GGGCCATGGG GCAGCCTTAT CTCTGCAAAA 60 GCATTGAGGG TAGAAGTCAA TGATTTGGGA AGTTATTGAA TTAGGGGATC TCGGAGGTAG 120 GCTGTCAGTG CCTGATAGTA TCAGTTAGAA TGCCTGACTT GGGGTGACAA TGGCTTGGAG 180 GGGTGGGTGA GTCAAGGGTC AAATGAGTGC CCGTGAGTCA TGATGCCTGC CTTGTACAAT 240 TGATAACTGA ACATCGGTGA GTTAGGGCCC CAGCAGTTGT AATTAGCACC CCGGGTGTCA 300 GCCAGAAACC AACAACAGC CAAATCCCTG CAGCCCCGCC CAGCCTATCC ACCGGCGGGG 360 GACCGATTAA CCATTAACCC CCACCCCTCC CCGGCAGAGC CTCCACCCCT TCACAGAGGC 420 TAGGCCAAGA CTCCCAGCAG ATCTTCCCAG AGGACGGTTT GAAAGGAAGG CAGAGAGGGC 480 ACTGGGAGGA GGCAGTGGGA GGGCGGAGGG CGGGGGCCTT CGGGGTGGGC GCCCAGGGTA 540 GGGCAGGTGG CCGCGGCGTG GAGGCAGGGA GAATGCGACT CTCCAAAACC CTCGTCGACG 600 605 ACATG <210> 136 <211> 478 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer <400> 136 TCCTGGAGAG TGGGACCCAG CGCCGCACCC AGAGGCCTCC TGGCTCCTGC TGCCTCTAGC 60 CCTGCGCCCC TGGCCCCTCT CCACCTCCCC CACCCTCCCT TCTGCTCACT CCCAATTGCA 120 GGCCATGACT CCGGTCCGCG TCCCTCTCAC CCCCATGAGG CCTGCACTTG CAAGGCTGAA 180 GTCCAAAGTT CAGTCCCTTC GCTAAGCGCA CGGATAAATA TGAACCTTGG AGAATTTCCC 240 CAGCTCCAAT GTAAACAGAG CAGGCAGGGG CCCTGATTCA CTGGCCGCTG GGGCCAGGGT 300 TGGGGGCTGG GGGTGCCCAC AGAGCTTGAC TAGTGGGATT TGGGGGGGCA GTGGGTGCAG 360 CGAGCCCGGT CCGTTGACTG CCAGCCTGCC GGCAGGTAGA CACCGGCCGT GGGTGGGGGA 420 GGCGGCTAGC TCAGTGGCCT TGGGCCGCGT GGCTGGTGGC AGCGGAGCCA TGGTTTCT 478

<211> 605 <212> DNA

<210> 137

<211> 622 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer										
<400> 137 TGGGCTTGGG TGTTAGGTTT CCAGTTCAAG CGACCCAGGA CAGCTTTATC TCAAATTGAG	60									
GATAGAAGTC AATGATCTGG GACGTGATTG GCTTAGGGCT TCATAGTGGT AGGCTTGCCA	120									
GTGTCTAAAC ATGTCAGCTG GGTTGTCCAC CTTGGTGAGA CTTGGGGGGCT GCTGAGGCAA	180									
GGGGTCCAAC CAATGCCAGT CCTGTTGGGT GCCTGCCTTG GAAGATTGGT AAGTGACTAT	240									
TAATGAGCGG GAGGTGGGGG GGGGGCAACA GTTGTAATTA GCACCCCAGG TGTCAGTCAG	300									
AAACCAACAA ACAGCCAAAT CCTCGTGGCT CCACCCAGCC TACCCAGCAA CGGGGGTGAT	360									
TAACCATTAA CTCCTACCCC TCCCCACAGA GCCTCCACCC TCTGCAGAGG CTAGGCCAGG	420									
ACGCCAGGCT GAGTCTCCCA GAGGACAGTT TGAAAGAGAG GAAGGCAGAG AAGGGACCTG	480									
GGAGGAGGCA GGAGGAGGGC GGGGACGGGG GGGCTTGGGT	540									
GGCATCCTGG GCCGGGCAGG ACAGGGGGCT AAGGCGTGGG TAGGGGAGAA TGCGACTCTC	600									
TAAAACCCTT GCCGGCGATA TG	622									
<210> 138 <211> 470 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic Primer	<211> 470 <212> DNA <213> Artificial Sequence <200> <223> Description of Artificial Sequence: Synthetic									
<400> 138 TCTTGGGCAG TGGGACCAGC GCTGCTCCCA GAGGCCTCCT GGCTCCTGGT GCCTCTCTCC	60									
CTGCGCCCCT GGTTCCCGCT CCACCTCCCC CACCCGCCCT TCTGCTCACT CCCAATTGCA	120									
AGCCATGGCT CCCGGTCCGG TCCCTCTCGC TGCTGTGAGG CCTGCACTTG CAAGGCTGAA	180									
GTCCAAAGTT CAGTCCCTTC GCTAAGCACA CGGATAAATA TGAACCTTGG AGAATTTCCC	240									
CAGCTCCAAT GTAAACAGAG CAGCAGGGGG CCCTGATTCA CTAGCCGCTG GGGCCAGGGT	300									
TGGGGGTTGG GGGTGCCCAC AGGGCTTGAC TAGTGGGATT TGGGGGAGCA GTGGGTGCAG	360									
CGAGCCTGGT CCGTTGACTG CCAGCAGTAG ACACCGGCCG TGTGTGGGGG AGGCGGCTAG	420									
CTCAGTGGCC TTGGGCCGGCG GTAGAGGAGC CATGGTTTCT	470									
<210> 139										

- <211> 557
- <212> PRT
- <213> Artificial Sequence
- -2005
- <400> 139
 - Met Val Ser Lys Leu Thr Ser Leu Gln Gln Glu Leu Leu Ser Ala Leu 1 5 10 15
 - Leu Ser Ser Gly Val Thr Lys Glu Val Leu Val Gln Ala Leu Glu Glu 20 25 30
 - Leu Leu Pro Ser Pro Asn Phe Gly Val Lys Leu Glu Thr Leu Pro Leu 35 40 45
 - Ser Pro Gly Ser Gly Ala Glu Pro Asp Thr Lys Pro Val Phe His Thr 50 55 60
 - Leu Thr Asn Gly His Ala Lys Gly Arg Leu Ser Gly Asp Glu Gly Ser 65 70 75 80
 - Glu Asp Gly Asp Asp Tyr Asp Thr Pro Pro Ile Leu Lys Glu Leu Gln 85 90 95
 - Ala Leu Asn Thr Glu Glu Ala Ala Glu Gln Arg Ala Glu Val Asp Arg 100 105 110
 - Met Leu Ser Glu Asp Pro Trp Arg Ala Ala Lys Met Ile Lys Gly Tyr 115 120 125
 - Met Gln Gln His Asn Ile Pro Gln Arg Glu Val Val Asp Val Thr Gly 130 135 140
 - Leu Asn Gln Ser His Leu Ser Gln His Leu Asn Lys Gly Thr Pro Met 145 150 155 160
 - Lys Thr Gln Lys Arg Ala Ala Leu Tyr Thr Trp Tyr Val Arg Lys Gln 165 170 175
 - Arg Glu Ile Leu Arg Gln Phe Asn Gln Thr Val Gln Ser Ser Gly Asn 180 185 190
 - Met Thr Asp Lys Ser Ser Gln Asp Gln Leu Leu Phe Leu Phe Pro Glu 195 200 205
 - Phe Ser Gln Gln Ser His Gly Pro Gly Gln Ser Asp Asp Ala Cys Ser 210 215 220
 - Glu Pro Thr Asn Lys Lys Met Arg Arg Asn Arg Phe Lys Trp Gly Pro 225 230 235 240
 - Ala Ser Gln Gln Ile Leu Tyr Gln Ala Tyr Asp Arg Gln Lys Asn Pro 245 250 255

- Ser Lys Glu Glu Arg Glu Ala Leu Val Glu Glu Cys Asn Arg Ala Glu 260 270

 Cys Leu Gln Arg Gly Val Ser Pro Ser Lys Ala His Gly Leu Gly Ser 275 280 285
- Asn Leu Val Thr Glu Val Arg Val Tyr Asn Trp Phe Ala Asn Arg Arg 290 295 300
- Lys Glu Glu Ala Phe Arg Gln Lys Leu Ala Met Asp Ala Tyr Ser Ser 305 310 315 320
- Asn Gln Thr His Ser Leu Asn Pro Leu Leu Ser His Gly Ser Pro His 325 330 335
- His Gln Pro Ser Ser Ser Pro Pro Asn Lys Leu Ser Gly Val Arg Tyr 340 345 350
- Ser Gln Gln Gly Asn Asn Glu Ile Thr Ser Ser Ser Thr Ile Ser His 355 360 365
- His Gly Asn Ser Ala Met Val Thr Ser Gln Ser Val Leu Gln Gln Val 370 380
- Ser Pro Ala Ser Leu Asp Pro Gly His Asn Leu Leu Ser Pro Asp Gly 385 390 395 400
- Lys Met Ile Ser Val Ser Gly Gly Gly Leu Pro Pro Val Ser Thr Leu 405 410 415
- Thr Asn Ile His Ser Leu Ser His His Asn Pro Gln Gln Ser Gln Asn 420 425 430
- Leu Ile Met Thr Pro Leu Ser Gly Val Met Ala Ile Ala Gln Ser Leu 435 440 445
- Asn Thr Ser Gln Ala Gln Ser Val Pro Val Ile Asn Ser Val Ala Gly 450 455 460
- Ser Leu Ala Ala Leu Gln Pro Val Gln Phe Ser Gln Gln Leu His Ser 470 475 480
- Pro His Gln Gln Pro Leu Met Gln Gln Ser Pro Gly Ser His Met Ala 485 490 495
- Gln Gln Pro Phe Met Ala Ala Val Thr Gln Leu Gln Asn Ser His Met 500 505 510
- Tyr Ala His Lys Gln Glu Pro Pro Gln Tyr Ser His Thr Ser Arg Phe 515 520 525
- Pro Ser Ala Met Val Val Thr Asp Thr Ser Ser Ile Ser Thr Leu Thr 530 535 540
- Asn Met Ser Ser Ser Lys Gln Cys Pro Leu Gln Ala Trp 545 550 555

```
<210> 140
```

<211> 516

<212> PRT

<213> Artificial Sequence

<200>

<223> Description of Artificial Sequence: Synthetic
 Peptide

<400> 140

Leu Glu Phe Glu Asn Val Gln Val Leu Thr Met Gly Asn Gly Pro Ser 20 25 30

Ser Pro His Cys Leu Thr Val Ala Leu Leu Gly Ala Trp His Ser Asp 35 40 45

Met Met Ile Leu Leu Pro Leu Arg Leu Ala Arg Leu Arg His Pro Leu 50 55 60

Arg His His Trp Ser Ile Ser Gly Gly Val Asp Ser Ser Pro Gln Gly 65 70 75 80

Asp Thr Ser Pro Ser Glu Gly Thr Asn Leu Asn Ala Pro Asn Ser Leu 85 90 95

Gly Val Ser Ala Leu Cys Ala Ile Cys Gly Asp Arg Ala Thr Gly Lys
100 105 110

His Tyr Gly Ala Ser Ser Cys Asp Gly Cys Lys Gly Phe Phe Arg Arg 115 120 125

Ser Val Arg Lys Asn His Met Tyr Ser Cys Arg Phe Ser Arg Gln Cys 130 140

Val Val Asp Lys Asp Lys Arg Asn Gln Cys Arg Tyr Cys Arg Leu Lys 145 150 155 160

Lys Cys Phe Arg Ala Gly Met Lys Lys Glu Ala Val Gln Asn Glu Arg 165 170 175

Asp Arg Ile Ser Thr Arg Arg Ser Ser Tyr Glu Asp Ser Ser Leu Phe 180 185 190

Ser Ile Asn Ala Leu Leu Gln Ala Glu Val Leu Ser Arg Gln Ile Thr 195 200 205

Ser Pro Val Ser Gly Ile Asn Gly Asp Ile Arg Ala Lys Lys Ile Ala 210 215 220

Ser Ile Ala Asp Val Cys Glu Ser Met Lys Glu Gln Leu Leu Val Leu 225 230 235 240 Val Glu Trp Ala Lys Tyr Ile Pro Ala Phe Cys Glu Leu Pro Leu Asp 245 250 255

Asp Gln Val Ala Leu Leu Arg Ala His Ala Gly Glu His Leu Leu Leu 260 265 270

Gly Ala Thr Lys Arg Ser Met Val Phe Lys Asp Val Leu Leu Gly 275 280 285

Asn Asp Tyr Ile Val Pro Arg His Cys Pro Glu Leu Ala Glu Met Ser 290 295 300

Arg Val Ser Ile Arg Ile Leu Asp Glu Leu Val Leu Pro Phe Gln Glu 305 310 315 320

Leu Gln Ile Asp Asp Asn Glu Tyr Ala Tyr Leu Lys Ala Ile Ile Phe 325 330 335

Phe Asp Pro Asp Ala Lys Gly Leu Ser Asp Pro Gly Lys Ile Lys Arg 340 345 350

Leu Arg Ser Gln Val Gln Val Ser Leu Glu Asp Tyr Ile Asn Asp Arg 355 360 365

Gln Tyr Asp Ser Arg Gly Arg Phe Gly Glu Leu Leu Leu Leu Pro 370 375 380

Thr Leu Glu Ser Ile Thr Trp Gln Met Ile Glu Gln Ile Gln Phe Ile 385 390 395 400

Lys Leu Phe Gly Met Ala Lys Ile Asp Asn Leu Leu Gln Glu Met Leu 405 410 415

Leu Gly Gly Ser Pro Ser Asp Ala Pro His Ala His His Pro Leu His 420 425 430

Pro His Leu Met Gln Glu His Met Gly Thr Asn Val Ile Val Ala Asn 435 440 445

Thr Met Pro Thr His Leu Ser Asn Gly Gln Met Cys Glu Trp Pro Arg 450 455 460

Pro Arg Gly Gln Ala Ala Thr Pro Glu Thr Pro Gln Pro Ser Pro Pro 465 470 475 480

Gly Gly Ser Gly Ser Glu Pro Tyr Lys Leu Leu Pro Gly Ala Val Ala 485 490 495

Thr Ile Val Lys Pro Leu Ser Ala Ile Pro Gln Pro Thr Ile Thr Lys 500 505 510

Gln Glu Val Ile 515

<210> 141

<211> 17

<212> DNA

```
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
<400> 141
                                                                         17
GCGGGACCGG ATCAGCA
<210> 142
<211> 5
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 142
    Arg Asp Arg Ile Ser
<210> 143
<211> 17
<212> DNA
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Primer
<400> 143
                                                                         17
GCGGGACTGG ATCAGCA
<210> 144
<211> 7
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      Peptide
<400> 144
     Ala Glu Val Leu Ser Arg Gln
<210> 145
<211> 30
<212> DNA
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Primer
<220>
<221> modified_base
```

<222> (16)

```
<223> N = C or T
<400> 145
                                                                         30
GCGGAGGTCC TGTCCNGACA GGTACCGGGG
<210> 146
<211> 15
<212> DNA
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Primer
<220>
<221> modified_base
<222> (8)
<223> N = C or T
<400> 146
                                                                         15
AAAGCAANGA GAGAT
<210> 147
<211> 4
<212> PRT
<213> Artificial Sequence
<200>
<223> Description of Artificial Sequence: Synthetic
      Peptide
<220>
<221> modified_site
<222> (3)
<223> X = R or any amino acid
<400> 147
     Lys Gln Xaa Glu
```