

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Finite State Machines - 2

Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Finite State Machines - 2

Reetinder Sidhu

Department of Computer Science and Engineering

FINITE STATE MACHINES - 2

Course Outline

- Digital Design
 - Combinational logic design
 - Sequential logic design
 - ★ Finite State Machines 2
- Computer Organization
 - Architecture (microprocessor instruction set)
 - Microarchitecure (microprocessor operation)

Concepts covered

Finite State Machine Design Example

FINITE STATE MACHINES - 2

How to Design Synchronous Sequential Logic Circuits? (Moore FSM)

PES UNIVERSITY ONLINE

- Determine inputs and outputs
- State transition diagram
- Encoding tables
 - State
 - Output
- State transition table
- Output table
- Logic minimization
 - State transition table yields Boolean formulas for next state logic
 - Output table yields Boolean formulas for output logic
- Logic circuit construction

Source: platformliftco

 Problem is to design the control logic for a lift in a building of two floors: ground and first

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

 Control logic should output signals to control the motor that takes the lift up and down

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Control logic should output signals to control the motor that takes the lift up and down
 - Signal lift_up is 1 when the lift should move up and 0 otherwise
 - Signal lift_down is 1 when the lift should move down and 0 otherwise

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Control logic should output signals to control the motor that takes the lift up and down
 - Signal lift_up is 1 when the lift should move up and 0 otherwise
 - Signal lift_down is 1 when the lift should move down and 0 otherwise
- Control logic should also output signals indicating which floor the lift is on

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Control logic should output signals to control the motor that takes the lift up and down
 - Signal lift_up is 1 when the lift should move up and 0 otherwise
 - Signal lift_down is 1 when the lift should move down and 0 otherwise
- Control logic should also output signals indicating which floor the lift is on
 - on_ground is 1 when the lift is on ground floor and 0 otherwise
 - on_first is 1 when lift is on first floor and 0 otherwise

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Control logic should output signals to control the motor that takes the lift up and down
 - Signal lift_up is 1 when the lift should move up and 0 otherwise
 - Signal lift_down is 1 when the lift should move down and 0 otherwise
- Control logic should also output signals indicating which floor the lift is on
 - on_ground is 1 when the lift is on ground floor and 0 otherwise
 - on_first is 1 when lift is on first floor and 0 otherwise
- Elevator initially on ground floor

Source: platformliftco

- Problem is to design the control logic for a lift in a building of two floors: ground and first
- The lift has a switch with two positions, down and up, which respectively indicate that the lift should go down or up
 - The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The lift system has a sensor which indicates when the lift is stationary at one of the floors or is moving between them
 - The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Control logic should output signals to control the motor that takes the lift up and down
 - Signal lift_up is 1 when the lift should move up and 0 otherwise
 - Signal lift_down is 1 when the lift should move down and 0 otherwise
- Control logic should also output signals indicating which floor the lift is on
 - on_ground is 1 when the lift is on ground floor and 0 otherwise
 - on_first is 1 when lift is on first floor and 0 otherwise
- Elevator initially on ground floor

Source: platformliftco

State Transition Diagram

- A visual representation of an FSM
 - States represent by circles (called nodes/vertices)
 - Transitions between states represented by directed line segments (called arcs/edges/arrows
 - Each edge is labeled with labeled with a Boolean formula of inputs corresponding to the transition

- In each clock cycle, only one state is active
- Active state transitions occur at the rising edge of the clock signal
- If a state is active in the current clock cycle, and it has an outgoing transition labeled with a Boolean formula which is 1 in that clock cycle, then the destination state of the transition will be the active state in the next clock cycle

PES UNIVERSITY

- The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

Elevator Example State Transition Diagram

PES UNIVERSITY

- The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

PES UNIVERSITY

- The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

• The switch signal switch_up is 0 when the switch indicates the lift should go down and 1

when switch indicates it should go up

 The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- The switch signal switch_up is 0 when the switch indicates the lift should go down and 1 when switch indicates it should go up
- The sensor signal on_floor is 1 when the lift is at ground or first floor, and 0 when the lift is moving between floors

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

PES UNIVERSITY

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

PES UNIVERSITY

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table State Encoding $(s_1 s_0)$ f0 00 f01 01 f1 11 f10 10

PES UNIVERSITY

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table

State	Encoding $(s_1 s_0)$
f0	00
f01	01
f1	11
f10	10

Elevator Output Encoding Tables

PES UNIVERSITY

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table

State	Encoding $(s_1 s_0)$
f0	00
f01	01
f1	11
f10	10

Elevator Output Encoding Tables

on_ground

Meaning	Encoding
Lift on ground floor	1
Lift anywhere else	0

FINITE STATE MACHINES - 2 State and Output Encoding Tables

PES UNIVERSITY

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table

State	Encoding $(s_1 s_0)$
f0	00
f01	01
f1	11
f10	10

Elevator Output Encoding Tables

on_ground

Meaning Encoding

Lift on ground floor

Lift anywhere else 0

on_first	
Meaning	Encoding
Lift on first floor	1
Lift anywhere else	0

FINITE STATE MACHINES - 2 State and Output Encoding Tables

PES UNIVERSITY

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table

State Encodi	$ng(s_1 s_0)$
	00
	01
	11
	10

Elevator Output Encoding Tables

•	on_ground		•	on_first	
	Meaning	Encoding		Meaning	Encoding
	Lift on ground floor	1		Lift on first floor	1
	Lift anywhere else	0		Lift anywhere else	0

lift_up

Meaning	Encoding
Lift going from ground to first floor	1
Lift anywhere else	0

FINITE STATE MACHINES - 2 State and Output Encoding Tables

- Signal lift_up is 1 when the lift should move up and 0 otherwise
- Signal lift_down is 1 when the lift should move down and 0 otherwise
- on_ground is 1 when the lift is on ground floor and 0 otherwise
- on_first is 1 when lift is on first floor and 0 otherwise

Elevator State Encoding Table

State	Encoding $(s_1 s_0)$
f0	00
f01	01
f1	11
f10	10

Elevator Output Encoding Tables

on_ground	(•	on_first	
Meaning	Encoding		Meaning	Encoding
Lift on ground floor	1		Lift on first floor	1
Lift anywhere else	0		Lift anywhere else	0

lift_up

Meaning	Encoding
Lift going from ground to first floor	1
Lift anywhere else	0

Iift_down

Meaning	Encoding
Lift going from first to ground floor	1
Lift anywhere else	0

State Transition Table

State Transition Table

f10

			_			
Elevator Example State Tansition Table						
Cur	rent State	Inputs		Next Sate		
s ₁	s 0	switch_up	on_floor	s_1'	s_0'	
0	0	0	0	0	0	
0	0	0	1	0	0	
0	0	1	0			
0	0	1	1			
0	1	0	0			
0	1	0	1			
0	1	1	0			
0	1	1	1			
1	0	0	0			
1	0	0	1			
1	0	1	0			
1	0	1	1			
1	1	0	0			
1	1	0	1			
1	1	1	0			

State Transition Table

Cur	rent State		Inputs		t Sate
s ₁	s ₀	switch_up	on_floor	s_1'	s_0'
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

State Transition Table

Curi	rent State	Inpu	uts	Nex	t Sate
s_1	s ₀	switch_up	on_floor	s_1'	s_0'
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1		
0	1	1	0	0	1
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

State Transition Table

Cur	rent State	Inpu	ıts	Nex	t Sate
s ₁	s ₀	switch_up	on_floor	s_1'	s ' ₀
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

State Transition Table

zierator znampro otato ramoteon rabio								
Cur	rent State	Inpu	uts	Nex	ct Sate			
s ₁	s ₀	switch_up	on_floor	s_1'	s_0'			
0	0	0	0	0	0			
0	0	0	1	0	0			
0	0	1	0	0	1			
0	0	1	1	0	1			
0	1	0	0	0	1			
0	1	0	1	1	1			
0	1	1	0	0	1			
0	1	1	1	1	1			
1	0	0	0					
1	0	0	1					
1	0	1	0					
1	0	1	1					
1	1	0	0					
1	1	0	1					
1	1	1	0	1	1			
1	1	1	1	1	1			

State Transition Table

Cur	Current State Inputs				t Sate
s ₁	s ₀	switch_up	on_floor	s_1'	s_0'
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	1	1
1	1	1	1	1	1

State Transition Table

Cur	rent State	Inpu	ıts	Nex	t Sate
<i>s</i> ₁	s ₀	switch_up	on_floor	s_1'	s_0'
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	0	1		
1	0	1	0	1	0
1	0	1	1		
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	1	1
1	1	1	1	1	1

State Transition Table

Cur	rent State	nt State Inputs			
s ₁	s ₀	switch_up	on_floor	s_1'	s '_0
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	1	1
1	1	1	1	1	1

Sta	ate	Outputs				
s_1	<i>s</i> ₀	on_ground	on_first	lift_up	lift_down	
0	0					
0	1					
1	0					
1	1					

Sta	ate	Outputs				
s_1	<i>s</i> ₀	on_ground	on_first	lift_up	lift_down	
0	0	1				
0	1					
1	0					
1	1					

State		Outputs				
s_1	<i>s</i> ₀	on_ground	on_first	lift_up	lift_down	
0	0	1				
0	1	0				
1	0	0				
1	1	0				

State		Outputs				
s_1	<i>s</i> ₀	on_ground	on_first	lift_up	lift_down	
0	0	1				
0	1	0		1		
1	0	0				
1	1	0				

Sta	ate	Outputs				
s_1	<i>s</i> ₀	on_ground	on_first	lift_up	lift_down	
0	0	1		0		
0	1	0		1		
1	0	0		0		
1	1	0		0		

	State		Outputs				
S	1	<i>s</i> ₀	on_ground	on_first	lift_up	lift_down	
C)	0	1		0		
C)	1	0		1		
1	1	0	0		0		
1	1	1	0	1	0		

State		Outputs				
s_1	<i>s</i> ₀	on_ground	on_first	lift_up	lift_down	
0	0	1	0	0		
0	1	0	0	1		
1	0	0	0	0		
1	1	0	1	0		

Sta	ate	Outputs				
s_1	<i>s</i> ₀	on_ground	on_first	lift_up	lift_down	
0	0	1	0	0		
0	1	0	0	1		
1	0	0	0	0	1	
1	1	0	1	0		

State		Outputs				
s_1	<i>s</i> ₀	on_ground	on_first	lift_up	lift_down	
0	0	1	0	0	0	
0	1	0	0	1	0	
1	0	0	0	0	1	
1	1	0	1	0	0	

PES UNIVERSITY

State transition table:

State transition table.									
Cur	rent State	Inpu	Next Sate						
s 1	s 0	switch_up	on_floor	s_1'	s_0'				
0	0	0	0	0	0				
0	0	0	1	0	0				
0	0	1	0	0	1				
0	0	1	1	0	1				
0	1	0	0	0	1				
0	1	0	1	1	1				
0	1	1	0	0	1				
0	1	1	1	1	1				
1	0	0	0	1	0				
1	0	0	1	0	0				
1	0	1	0	1	0				
1	0	1	1	0	0				
1	1	0	0	1	0				
1	1	0	1	1	0				
1	1	1	0	1	1				
1	1	1	1	1	1				

State transition table:

Ì		rent State	Inputs		Next Sate	
	s 1	s 0	switch_up	on_floor	s_1'	s_0'
ĺ	0	0	0	0	0	0
	0	0	0	1	0	0
	0	0	1	0	0	1
	0	0	1	1	0	1
	0	1	0	0	0	1
	0	1	0	1	1	1
	0	1	1	0	0	1
	0	1	1	1	1	1
	1	0	0	0	1	0
	1	0	0	1	0	0
	1	0	1	0	1	0
	1	0	1	1	0	0
	1	1	0	0	1	0
	1	1	0	1	1	0
	1	1	1	0	1	1
	1	1	1	1	1	1

Minimized Boolean Formula • K-map for s_1' : switch_up on_floor 00 01 11 10 **S**1 **S**0 00 01 11 10

State transition table:

	rent State	Inputs		Next Sate	
s ₁	s 0	switch_up	on_floor	s_1'	s_0'
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	1	1
1	1	1	1	1	1

Minimized Boolean Formula

• K-map for s_1' :

State transition table:

Cur	rent State	Inpu	ıts	Next Sate	
s 1	S 0	switch_up	on_floor	s_1'	s_0'
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	1	1
1	1	1	1	1	1

State transition table:

Cur	rent State	Inputs		Next Sate	
s 1	S 0	switch_up	on_floor	s_1'	s_0'
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	1	1
1	1	1	1	1	1

Minimized Boolean Formula

• K-map for s_0' :

State transition table:

Cur	rent State	Inputs		Next Sate	
s ₁	s 0	switch_up	on_floor	s_1'	s_0'
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	1	1
1	1	1	1	1	1

Minimized Boolean Formula

• K-map for s_0' :

State transition table:

Current State		Inputs		Next Sate	
s ₁	s 0	switch_up	on_floor	s_1'	s_0'
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	0	1
0	1	0	1	1	1
0	1	1	0	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	0	1	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	1	0	0	1	0
1	1	0	1	1	0
1	1	1	0	1	1
1	1	1	1	1	1

Minimized Boolean Formula

• K-map for s_0' :

Minimized formula:

$$s_0' = \overline{s_1} \, s_0 + \overline{s_1} \, switch_up + s_0 \, switch_up$$

Logic Diagram

- $s_1' = s_1 s_0 + s_1 \overline{on_floor} + s_0 on_floor$ $s_0' = \overline{s_1} s_0 + \overline{s_1} switch up + s_0 switch up$

Output formulas:

- ightharpoonup on $ground = \overline{s_1} \overline{s_0}$
- ightharpoonup on_first = $s_1 s_0$
- lift $up = \overline{s_1}s_0$
- ▶ lift $down = s_1 \overline{s_0}$

Logic Diagram

- $s_1' = s_1 s_0 + s_1 \overline{on_floor} + s_0 on_floor$ $s_0' = \overline{s_1} s_0 + \overline{s_1}$ switch $up + s_0$ switch up

Output formulas:

- ightharpoonup on ground $= \overline{s_1} \, \overline{s_0}$
- ightharpoonup on first = $s_1 s_0$
- lift $up = \overline{s_1}s_0$
- ▶ lift $down = s_1 \overline{s_0}$

Elevator Example Logic Diagram

Think About It

Design of a Moore FSM for traffic light controller (section 3.4.1 of your textbook)