Part 1: Machine learning theory

- 1. Learning framework:
 - 1. ERM algorithm.
 - 2. PAC Learning model.
 - 3. SLPOA: General Learning model
- 2. Uniform convergence
- 3. Learnability of infinite size hypotheses classes
- 4. Tradeoff Bias/Variance
- 5. Non-Uniform learning.

Supervised Learning Passive Offline Algorithm (SLPOA)

1.Learning framework

Example: Predict the taste (non-delicious, delicious) of tomatoes found in the market.

The features of tomatoes $x_i = (Color, Hardness)$:

- Color: {green, yellow, orange, red, dark red}.

- Hardness: {hard, soft}.

1.Learning framework

Objective of learning:

Given S, find the hypothesis $h^* = arg \min_{h} L_S(h)$ having the smaller error.

Inputs of the learning algorithm:

- Training set: $S = \{(x_1, y_1), ..., (x_m, y_m)\} \in (X \times Y)^m$, such that the points x_i are sampled (i.i.d.) by a probability distribution \mathcal{D} on X and labeled by a target function $f: X \to Y$.
- Features set: $X = [0,1]^2$
- Labels set: $Y = \{Delicious, non Delicious\} = \{0,1\}$

Outputs of the learning algorithm:

- Optimal hypothesis: $A_{\alpha}(S) = h_{S}$ such that: $A_{\alpha}: \bigcup_{m=1}^{\infty} (X \times \{0,1\})^{m} \longrightarrow \{h, h: X \longrightarrow \{0,1\}\}$
- Error measure: (general error)

$$L_{\mathcal{D},f}(h) \stackrel{\text{def}}{=} \Pr_{x \sim \mathcal{D}}[h_s(x) \neq f(x)] \stackrel{\text{def}}{=} \mathcal{D}(\{x : h_s(x) \neq f(x)\})$$

1.Learning framework: Interpretation

- Training step
 - $A_{\alpha}: \bigcup_{m=1}^{\infty} (X \times \{0,1\})^m \to \{h, h: X \to \{0,1\}\}$
 - $S \in \bigcup_{m=1}^{\infty} (X \times \{0,1\})^m \to A_{\alpha}(S) = h_S \in \{h, h: X \to \{0,1\}\}$
 - If |S| = m then $S \in (X \times \{0,1\})^m$
 - $\{h, h: X \to \{0,1\}\} \to h(x) = y \in \{0,1\}$
 - $A_{\alpha}(S) = h_S = \underset{h}{\operatorname{argmin}} L_S(h) \to L_S(h_S) \in [0,1]$ if $L_S(h_S) \approx 0$ then we have a good approximation
- Testing step

$$L_{\mathcal{D},f}(h_S) \stackrel{\text{def}}{=} \Pr_{x \sim \mathcal{D}}[x \in X: h_S(x) \neq f(x)] \stackrel{\text{def}}{=} \mathcal{D}(\{x: h_S(x) \neq f(x)\}) \in [0,1]$$

 $L_{\mathcal{D},f}(h_s) \approx 0$ then we have a good generalization : there is a learning

The learning algorithm ERM (Empirical Risk Minimization) aims to select h_S :

$$ERM(S) = h_S \in \underset{h}{\operatorname{argmin}} \{L_S(h)\}$$

Such that:

$$L_S(h) \stackrel{\text{def}}{=} \frac{|\{i \in I : h(x_i) \neq y_i\}|}{|S|} \qquad I = \{1, 2, ..., m\}$$

Notice:

Given the following hypothesis:

$$\overline{h}_{S}(x) = \begin{cases} y_{i} & \text{if } \exists i \in I, x_{i} = x, & \text{(if } x \in S) \\ 0 & \text{otherwise } (\text{if } x \notin S \text{ then } x \in S_{test}) \end{cases}$$

we have: $L_s(\overline{h}_S) = \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{[h(x_i) \neq y_i]} = 0$.

So, with a high probability, this hypothesis can be chosen by the algorithm *ERM*.

$$L_{D,f}(h_S) pprox L_{test}(h_S) = rac{\sum_{i=m+1}^{M} \mathbb{I}_{[y_i \neq h_S(x_i)]}}{M-m} = 1 \gg L_s(\overline{h}_S) = 0$$

Then we have an overfitting, bad generalization

The learning algorithm ERM_H aims to apply ERM to a set of limited hypothesis search, called set of hypotheses H, such that:

$$H \subseteq \{h: X \to Y\}$$
 $ERM_H(S) = h_S \in \underset{h \in H}{\operatorname{argmin}} \{L_S(h)\}$

The choice of H: H must be chosen based on prior knowledge, before ERM_H sees the data.

Preliminary knowledge: there is a hypothesis in the form of a rectangle, such that inside the rectangle the tomatoes are delicious and outside they are not delicious.

 $H = \{w = (l, L): l, L \in [0, 1]^2\} \rightarrow |H| \approx \infty$: collection of rectangles.

Course of ML by Pr. Abdellatif El Afia

Definition: realizability hypothsesis

There exist a hypothesis $h^* \in H$ such that $L_{\mathcal{D},f}(h^*) = 0$

Lemma:

If realizability hypothesis is respected Then:

• with probability 1 we have :

$$\forall S \subset X \quad L_S(h^*) = 0$$

• If we use ERM_H to look for the best hypothesis h_S , then with probability 1 we have:

$$L_S(h_S)=0$$

Theorem: Generalization bound of learning

- Let
 - X be the set of inputs, $Y = \{0,1\}$ set of labels, and H: finite hypothesis set.
 - $S = \{(x_i, y_i), i \in I\}, S_x = \{x_i, i \in I\} \text{ and } I = \{1, ..., m\}$
- Assume that
 - S is generated (i. i. d.) by an unknown probability distribution \mathcal{D} on X ($S_x \sim \mathcal{D}^m$) and labeled by an unknown target $f: X \to Y$ such that $f(x_i) = y_i \ \forall i \in I$, where the realizability hypothesis is respected.

So, $\forall \varepsilon, \exists \delta$ such that ERM_H is able to generate a hypothesis $h_S \in \underset{h \in H}{\operatorname{argmin}}\{L_S(h)\}$ having small generalization error $L_{\mathcal{D},f}(h_S)$, with a condition that S is **big enough**. That mean the probability to select a bad sample at most equal δ

$$\mathcal{D}^{m}(\{S_{\chi}: L_{\mathcal{D},f}(h_{S}) > \varepsilon\}) = P_{S \sim \mathcal{D}^{m}}[\chi, L_{\mathcal{D},f}(h_{S}) > \varepsilon] \leq \delta: (PAC - Learning)$$

1.1. ERM_H algorithm: Generalization bound of learning

•
$$P_{S \sim \mathcal{D}^m}[x, L_{\mathcal{D},f}(h_S) > \varepsilon] \leq \delta \iff P_{S \sim \mathcal{D}^m}[x, L_{\mathcal{D},f}(h_S) \leq \varepsilon] \geq 1 - \delta$$

•
$$[x, L_{\mathcal{D},f}(h_S) \leq \varepsilon] \cap [x, L_{\mathcal{D},f}(h_S) > \varepsilon] = \emptyset$$

•
$$\rightarrow P([x, L_{\mathcal{D},f}(h_S) \leq \varepsilon] \cap [x, L_{\mathcal{D},f}(h_S) > \varepsilon]) = P(\emptyset) = 0$$

•
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Then we have:

•
$$P([x L_{\mathcal{D},f}(h_S) \leq \varepsilon] \cup [x, L_{\mathcal{D},f}(h_S) > \varepsilon]) = P[x, L_{\mathcal{D},f}(h_S) \leq \varepsilon] + P[x, L_{\mathcal{D},f}(h_S) > \varepsilon] = 1$$

• If
$$P_{S \sim \mathcal{D}^m}[x, L_{\mathcal{D},f}(h_S) > \varepsilon] \leq \delta$$
 then $P\left[x, L_{\mathcal{D},f}(h_S) \leq \varepsilon\right] = 1 - P\left[x, L_{\mathcal{D},f}(h_S) > \varepsilon\right] \geq 1 - \delta$

Proof

Let

- $S = \{(x_i, y_i), i \in I\}$ and $S_x = \{x_i, i \in I\}$, where $I = \{1, ..., m\}$
- ε be a parameter that describes the prediction quality.

Lemmas:

- Boole inequality Let A and B be any events and \mathcal{D} any distribution: $\mathcal{D}(A \cup B) = \mathcal{D}(A) + \mathcal{D}(B) \mathcal{D}(A \cap B) \leq \mathcal{D}(A) + \mathcal{D}(B)$
- **Independance** If *A* and *B* are two independent events, then:

$$\mathcal{D}(A \cap B) = \mathcal{D}(A).\mathcal{D}(B)$$

Note:

- $L_{\mathcal{D},f}(h_S) > \varepsilon \implies h_S$ is a bad hypothesis.
- $L_{\mathcal{D},f}(h_S) \leq \varepsilon \Longrightarrow h_S$ is a good hypothesis.

Objective: Find an upper bound that limits the probability of having a bad sample (non representative):

$$\mathcal{D}^{m}(\{S_{x}: L_{\mathcal{D},f}(h_{S}) > \varepsilon\})$$

Consider:

• The set of bad samples enabling to select the bad hypothesis h_S :

$$S_B = \{S_X: L_{D,f}(h_S) > \varepsilon\}$$

• The probability to select a bad sample:

$$\mathcal{D}^{m}(\{S_{x}: L_{\mathcal{D},f}(h_{S}) > \varepsilon\})$$

• H_B the set of bad hypotheses:

$$H_B = \left\{ h \in H : L_{\mathcal{D},f}(h) > \varepsilon \right\}$$

• *M* the set of misleading samples:

$$M = \{S_x : \exists h \in H_B, L_S(h) = 0\}$$

Let's prove that:

$$S_B \subseteq M$$

Let's fix any sample $S \in S_B$, this implies that $L_{\mathcal{D},f}(h_S) > \varepsilon$ and since the realizability assumption is respected, we will have $L_S(h_S) = 0$ with probability 1.

Then $\exists h \in H_B$, and $L_S(h) = 0$, This implies that $S \in M$

Hereby:

$$S_B = \{S_X: L_{\mathcal{D},f}(h_S) > \varepsilon\} \subseteq M$$

This implies that:

$$\mathcal{D}^{m}(S_{B}) = \mathcal{D}^{m}(\{S_{X}: L_{\mathcal{D}, f}(h_{S}) > \varepsilon\}) \leq \mathcal{D}^{m}(M)$$

Notice that *M* can be represented by:

$$M = \bigcup_{h \in H_B} \{S_X \colon L_S(h) = 0\}$$

According to Boole Inequality, we obtain that:

$$\mathcal{D}^m\left(\left\{S_X:L_{\mathcal{D},f}(h_S)>\varepsilon\right\}\right)\leq \mathcal{D}^m\left(\bigcup_{h\in H_B}\left\{S_X:L_S(h)=0\right\}\right)\leq \sum_{h\in H_B}\mathcal{D}^m\left(\left\{S_X:L_S(h)=0\right\}\right)$$

Let's fix a hypothesis $h \in H_B$ and limits by an upper bound the following expression:

$$\mathcal{D}^m(\{S_X: L_S(h) = 0\})$$

The event " $L_S(h) = 0$ " is equivalent to $\forall i \in I, h(x_i) = f(x_i)$.

Hereby:

$$\mathcal{D}^{m}(\{S_{X}: L_{S}(h) = 0\}) = \mathcal{D}^{m}(\{S_{X}: \forall i \in I, h(x_{i}) = f(x_{i})\})$$
$$= \mathcal{D}^{m}(\{S_{X}: (h(x_{1}) = f(x_{1})) \cap \cdots \cap (h(x_{m}) = f(x_{m}))\})$$

Since x_i are sampled (i.i.d.), so:

$$\mathcal{D}^m(\{S_X: L_S(h) = 0\}) = \prod_{i=1}^m \mathcal{D}(\{x_i: h(x_i) = f(x_i)\})$$

For each element in the training set, we have:

$$\mathcal{D}(\{x_i : h(x_i) = f(x_i)\}) = 1 - L_{\mathcal{D},f}(h) \le 1 - \varepsilon$$

Because, $S_x \in M \Longrightarrow \exists h \in H_B \Longrightarrow L_{\mathcal{D},f}(h) > \varepsilon$.

So:

$$\prod_{i=1}^{m} \mathcal{D}(\{x_i: h(x_i) = f(x_i)\}) \le (1 - \varepsilon)^m$$

Then:

$$\mathcal{D}^m(\{S_X: L_S(h) = 0\}) \le (1 - \varepsilon)^m$$

We know that: $1 - \varepsilon \le e^{-\varepsilon}$.

So, for a fixed hypothesis $h \in H_B$:

$$\mathcal{D}^m(\{S_X: L_S(h) = 0\}) \le e^{-\varepsilon m}$$

For all $h \in H_B$, we have:

$$\sum_{h\in H_B} \mathcal{D}^m(\{S_X\colon L_S(h)=0\}) \leq \sum_{h\in H_B} e^{-\varepsilon m} = |H_B|e^{-\varepsilon m}$$

So:

$$\mathcal{D}^m(S_B) = \mathcal{D}^m(\left\{S_X: L_{\mathcal{D},f}(h_S) > \epsilon\right\}) \leq \sum_{h \in H_B} \mathcal{D}^m(\left\{S_X: L_S(h) = 0\right\}) \leq |H_B|e^{-\varepsilon m} \leq |H|e^{-\varepsilon}$$

For S big enough $\exists \delta > 0$ small such that :

$$\mathcal{D}^{m}(\{S_X: L_{\mathcal{D},f}(h_S) > \epsilon\}) \leq |H|e^{-\epsilon m} \leq \delta$$

Each point of this circle presents a sample S of size m.

The set of bad samples S_{B_1} that generates the bad hypothesis h_1 such that $L_S(h_1) = 0$.

The set of bad samples S_{B_2} that generates the bad hypothesis h_2 such that $L_S(h_2) = 0$.

The set of bad samples S_{B_3} that generates the bad hypothesis h_3 such that $L_S(h_3) = 0$.

The set of bad samples S_{B_4} that generates the bad hypothesis h_4 such that $L_S(h_4) = 0$.

:

Hence, we have the set of bad hypotheses:

$$H_B = \{h_1, h_2, h_3, h_4, \dots\}$$

And the set of misleading samples:

$$M = \bigcup_{h \in H_B} \{ S_X : L_S(h) = 0 \} = \bigcup_{k \ge 1} S_{B_k}$$

We had demonstrated that:

$$\mathcal{D}^m(S_B) \le \mathcal{D}^m(M) \le \sum_{k \ge 1} \mathcal{D}^m(S_{B_k}) \le |H_B| e^{-\varepsilon} \le |H| e^{-\varepsilon m}$$

Such that $S_B \in \{S_{B_1}, S_{B_2}, S_{B_3}, S_{B_4}, \dots\}$

This means that the union of the colored ovals areas is at most equal to their sum. Which is bounded by $|H_B|$ times the maximum size of a colored oval.

If $m \to +\infty$ we have that:

$$\sum_{k\geq 1} \mathcal{D}^m(S_{B_k}) \to 0$$

It means that the size of the colored areas becomes small.

This implies that the probability of selecting a bad sample $(S \in S_B) \to 0_{S_{B_4}}$

Therefore, we should collect the maximum number of training points.

1.1. ERM_H algorithm: S is big enough

Corollary:

let:

- *H* is a finite hypotheses set,
- $\delta \in [0,1]$ probability of selecting a bad sample and $\varepsilon > 0$ accuracy parameter
- m the size of S such that: $m \ge \frac{\ln(|H|/\delta)}{\varepsilon}$

So, $\forall (f, \mathcal{D})$ for which the **realizability assumption holds**.

With a probability at least equal to $(1 - \delta)$ over the choice of an (i.i.d.) sample S of size m, we have that for every hypothesis h_S selected by ERM_H it holds that :

$$P_{S \sim \mathcal{D}^m}(S_X, L_{\mathcal{D},f}(h_S) \leq \varepsilon) = \mathcal{D}^m(\{S_X: L_{\mathcal{D},f}(h_S) \leq \varepsilon\}) \geq 1 - \delta$$

 \Leftrightarrow

$$P_{S \sim \mathcal{D}^m}(S_X, L_{\mathcal{D},f}(h_S) > \varepsilon) = \mathcal{D}^m(\{S_X: L_{\mathcal{D},f}(h_S) > \varepsilon\}) \leq \delta$$

Proof:

We have:

$$\mathcal{D}^{m}(\{S_X: L_{\mathcal{D},f}(h_S) > \epsilon\}) \le |H|e^{-\varepsilon m}$$

We know that δ is a probability to select a bad sample.

We want this inequality to be less than δ :

$$|H|e^{-\varepsilon m} \le \delta$$

So:

$$m \ge \frac{ln(|H|/\delta)}{\varepsilon}$$

- If we have ε , m we can calculate δ
- If we have ε , δ we can calculate m
- The best of ε and δ when ε , $\delta \in V(0)$

Supervised Learning Passive Offline Algorithm (SLPOA)

1.2. PAC learning model

Definition:

H is **Probably Approximately Correct**, if there exist:

 m_H : $(0,1)^2 \to \mathbb{N}$ and A_α having the following property:

• $\forall \varepsilon, \delta \in (0,1), \forall (\mathcal{D}, f)$ and if the **realizability hypothesis is respected related** to H,\mathcal{D} and $(f \in H)$.

So, if we run A_{α} (learnable model) on $m \ge m_H(\varepsilon, \delta)$ (big enough) generated (i.i.d.), such that S is selected by a probability at least equal to $(1 - \delta)$, A_{α} will generate a hypothesis h_S such that:

$$L_{\mathcal{D},f}(h_{\mathcal{S}}) \leq \varepsilon$$

In other words: for all $m \ge m_H(\varepsilon, \delta)$

$$P_{S \sim (\mathcal{D}^m, f)} \big[x \colon L_{\mathcal{D}, f}(h_S) > \varepsilon \big] \leq \delta \Longleftrightarrow P_{S \sim (\mathcal{D}^m, f)} \big[x \colon L_{\mathcal{D}, f}(h_S) \leq \varepsilon \big] \geq 1 - \delta.$$

 $m_H(\varepsilon, \delta)$ minimum size of sample

1.2. PAC learning model

Definition:

The function $m_H: (0,1)^2 \to \mathbb{N}$ enables to determine the minimal number of data in S so that H follows a PAC learning, with accuracy ε and confidence δ .

The PAC definition owns two parameters:

- Accuracy parameter ε : It determines the distance between h and f. (Approximately correct).
- Confidence parameter δ : It determines the failure probability of the algorithm. (Probably).

Corollary: sample complexity $m_{\rm H}(\varepsilon, \delta)$

Any set of finite hypotheses H following PAC learning owns a sample complexity $m_{\rm H}(\varepsilon, \delta)$ such that:

$$m_{\mathrm{H}}(\varepsilon, \delta) = \left[\frac{\ln\left(\frac{|\mathrm{H}|}{\delta}\right)}{\varepsilon}\right]$$

1.3. SLPOA: General learning model

Generalization consists in relaxing two hypotheses:

- The existence of f: we will consider that f is not deterministic then the **Realizability** hypothesis isn't respected
 - $\min_{h\in H} L_{\mathcal{D}}(h) \neq 0$
 - $f \notin H$ with probability p ou $f \in H$ with probability 1-p
- The membership of f to H: we will remove the condition that $f \in H$.

So:

- D becomes a probability of joint distribution on $X \times Y$:
- \mathcal{D}_{x} : marginal probability distribution.
- $\mathcal{D}((x,y)/x)$: conditional probability distribution.

1.3. General learning model: SLPOA

1.3. General learning model

General error:

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{P}_{(x,y) \sim \mathcal{D}}[h(x) \neq y] \stackrel{\text{def}}{=} \mathcal{D}(\{(x,y): h(x) \neq y\})$$

Empirical error:

$$L_{S}(h) \stackrel{\text{def}}{=} \frac{|\{i \in I : h(x_{i}) \neq y_{i}\}|}{|S|}$$

Definition: Optimal hypothesis

Let the probability distribution
$$\mathcal{D}$$
 on $X \times \{0,1\}$, the best hypothesis $h^*: X \to \{0,1\}$ is:
$$h^*(x) = \begin{cases} 1 & \text{if } \mathcal{D}((x,1)|x) \geq \frac{1}{2} \\ 0 & \text{otherwise } \mathcal{D}((x,1)|x) < \frac{1}{2} \end{cases} \Leftrightarrow h^*(x) = \begin{cases} 0 & \text{if } \mathcal{D}((x,0)|x) \geq \frac{1}{2} \\ 1 & \text{otherwise } \mathcal{D}((x,0)|x) < \frac{1}{2} \end{cases}$$

Notice:

This hypothesis is not accessible to the learning model A_{α} , because it requires the knowledge of \mathcal{D} .

1.3. General learning model

Definition: Agnostic PAC learning model

H follows agnostic PAC learning, if there exist $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and A_{α} having the following property:

$$\forall \varepsilon, \delta \in (0,1), \forall \mathcal{D} \text{ on } X \times Y, \exists m_{\mathcal{H}}(\varepsilon, \delta) \text{ such that }$$

We run A_{α} on $m \ge m_{\mathcal{H}}(\varepsilon, \delta)$ generated (*i. i. d.*) such that S is selected with a probability at least $(1 - \delta)$, A_{α} will generate the hypothesis h_{S} such that:

$$P_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(h_S) \leq \min_{h \in H} L_{\mathcal{D}}(h) + \varepsilon \right] \geq 1 - \delta \text{ for all } m \geq m_H(\varepsilon, \delta).$$

In other words:

$$P_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(h_S) > \min_{\boldsymbol{h} \in H} L_{\mathcal{D}}(\boldsymbol{h}) + \varepsilon \right] \leq \delta \text{ for all } m \geq m_H(\varepsilon, \delta)$$

1.3. General learning model

The general form of error:

Let l be a cost function, such that:

$$l: H \times Z \longrightarrow \mathbb{R}^+$$
 and $Z = X \times Y$

The general error of *h*:

$$L_{\mathcal{D}}(h) = \mathop{\mathbf{E}}_{\mathbf{z} \sim \mathcal{D}}[l(h, \mathbf{z})]$$

The empirical error of
$$h$$
: $L_S(h) = \frac{1}{m} \sum_{i=1}^m l(h, z_i)$

Classificatio	n		Regression
$l(h,z) = \begin{cases} 1 & \text{si } h(x) \\ 0 & \text{si } h(x) \end{cases}$ with:	$(x) \neq y$ (x) = y		$l(h,z) = (h(x) - y)^2$
$z = (x, y) \in Z = X$	× {0,1}	with:	$z = (x, y) \in Z = X \times \mathbb{R}^+$
This function is also valid for the			
multinomial classification.			