Applied Machine Learning Lecture 8-1: Convolutional neural networks

Selpi (selpi@chalmers.se)

The slides are further development of Richard Johansson's slides

February 14, 2020

CNNs: motivation

the introduction of convolutional neural network (CNN) models has led to dramatic improvements in image processing

source

- they are the default solution today
- plan for this lecture: introduce the typical building blocks and show how they can be used in Keras

reducing the amount of feature engineering

- neural networks (NNs) are systems that learn to form useful abstractions automatically
 - learn to form larger units from small pieces

source

appealing because of reduction in feature engineering effort

representing image data

source

representing image data (2)

What We See

What Computers See

source

representing image data (3)

[source]

example: displaying an image stored as a NumPy matrix

plt.imshow(some_matrix)

Drawback of using feedforward network for image processing (1)

Drawback of using feedforward network for image processing (2)

convolutions (or convolutional filters)

[source]

example of a convolution (1)

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Visualization of a curve detector filter

example of a convolution (2)

Visualization of the filter on the image

example of a convolution (3)

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

example of a convolution (4)

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

example: detecting horizontal and vertical edges

Figure 4: The Lenna image and the effect of different convolution kernels.

[source]

number of dimensions in the convolution

- the convolutions we have seen are called two-dimensional convolutions
- alternatives:
 - ▶ 1D convolutions over a sequence (e.g. a speech signal)
 - ▶ 3D convolutions over a volume (e.g. a brain scan)

convolutional neural networks

- ➤ a convolutional neural network consists of convolutional filters applied sequentially
- after each convolutional layer, an activation is applied (typically ReLU)
- ▶ top layers are normal feedforward layers

applying several filters

source

pooling or subsampling

max pooling

example: LeNet

► LeCun et al. (1998) Gradient-Based Learning Applied to Document Recognition

CNNs in Keras

interpreting CNNs: drawing the filters

► see Visualizing what ConvNets learn

interpreting CNNs (2): occluding

► see Visualizing what ConvNets learn

applications of CNNs in medicine (small sample)

- finding skin tumors by classifying images [Esteva et al., 2017]
- ▶ finding brain tumors by classifying brain scans [Yi et al., 2016]
- detecting the locations of organs in the body [Larsson et al., 2016]

CNNs for categorizing texts

► Kim (2014) Convolutional Neural Networks for Sentence Classification

Other applications

- ► Traffic sign recognitions (see implications on euroNCAP)
- ► Face recognitions, emotion recognitions

Review for CNN

- ► What are the building blocks of CNN and how do we arrange these to make a convolutional neural network?
- What are the drawbacks of feed forward NN compared to CNN for image classification tasks?
- What are the purposes of doing pooling in CNN?
- Describe the hyperparameters of CNN (e.g., kernel size, stride, number of filters, number of layers, pooling size, type of pooling)

next lecture

- dimensionality reduction
- word embeddings
- recommender systems

references L

- Esteva, A., Kuprel, B., and et al., R. N. (2017). Dermatologist-level classification of skin cancer with deep neural networks. *Nature*.
- ► Kim, Y. (2014). CNNs for sentence classification. In *Proc. EMNLP*.
- Larsson, M., Zhang, Y., and Kahl, F. (2016). Deepseg: Abdominal organ segmentation using deep convolutional neural networks. In SSBA.
- ▶ Yi, D., Zhou, M., Chen, Z., and Gevaert, O. (2016). 3-d convolutional neural networks for glioblastoma segmentation. In *Arxiv*.