Cryptologie — 4TCY802U

Devoir Surveillé — lundi 4 mars 2024

Documents non autorisés

1 Soit la matrice

$$A = \begin{pmatrix} 2 & 1 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & 1 \end{pmatrix}.$$

On définit un système de chiffrement pour lequel $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{1, 2, 3\}$ et où on associe à la clef i et au message clair j le message chiffré $a_{i,j}$. Pour tout i, on pose $p_i := P(M = i)$ et on suppose que $p_1 = 1/4$, $p_2 = 1/2$, $p_3 = 1/4$. On suppose que les choix de clefs sont équiprobables et on suppose que ce choix est indépendant de celui du message.

- (a) Montrer que le système de chiffrement n'est pas parfaitement sûr.
- (b) Changer le contenu d'une seule entrée de la matrice de manière à rendre le système parfaitement sûr. Bien redémontrer que le système obtenu est parfaitement sûr.
- $\boxed{2}$ On considère la suite $z=(z_t)_{t\geqslant 0}$ dont les vingt premiers bits sont :

$$1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1$$

On sait que cette suite provient d'un LFSR et que sa complexité linéaire est ≤ 6 .

- (a) Déterminer un polynôme de rétroaction possible. Quelle est la valeur du 21^e bit de la suite?
- (b) Quel est la complexité linéaire de la suite? Quelle est sa période?
- 3 On note E(k,m) = c un chiffrement par bloc prenant en entrée un clair m de n bits et une clef k de ℓ bits et produisant un chiffré c de n bits. Montrer que les trois fonctions de compression f_1, f_2 et f_3 suivantes ne sont pas à sens-unique :
- (a) f_1 qui a une chaîne de bits $x \in \{0,1\}^{\ell}$ et une chaîne de bits $y \in \{0,1\}^n$ associe $f_1(x||y) = E(x,y)$;

- (b) f_2 qui a une chaîne de bits $x \in \{0,1\}^n$ et une chaîne de bits $y \in \{0,1\}^n$ associe $f_2(x||y) = E(y,x) \oplus y$, en supposant $n = \ell$;
- (c) f_3 qui a une chaîne de bits $x \in \{0,1\}^n$ et une chaîne de bits $y \in \{0,1\}^n$ associe $f_3(x||y) = E(y,y) \oplus x$, en supposant $n = \ell$.
- 4 On pose p = 67. On note g = 2 dans $(\mathbf{Z}/p\mathbf{Z})^*$.
- (a) Montrer que g est une racine primitive modulo p.
- (b) Alice et Bob décident d'utiliser le protocole de Diffie-Hellman dans le groupe engendré par g. Alice choisit l'exposant secret a=5 et Bob l'exposant secret b=11. Que s'échangent-ils sur le canal et quel est leur secret partagé à l'issue du protocole? Calculer les valeurs.
- (c) Soit A la quantité envoyée par Alice à Bob et B la quantité envoyée par Bob à Alice. Soit q=(p-1)/3=22. Une observatrice malintentionnée, Ève, intercepte A, l'élève à la puissance q, et remplace le message à destination de Bob par A^q . De même elle remplace le message B à destination d'Alice par B^q . Montrer que, quelles que soient les valeurs secrètes a et b choisies par Alice et Bob, le « secret » partagé ainsi arrangé par Ève ne peut prendre que trois valeurs : lesquelles?

5 On rappelle que le mode OFB d'un système de chiffrement par bloc consiste à fixer une valeur arbitraire $z_0 = IV$, et à fabriquer la suite définie par la récurrence $z_{i+1} = E(k, z_i)$ pour $i \ge 0$, puis à chiffrer une suite de blocs $m_1, m_2 \ldots$ par $c_1, c_2 \ldots$ tels que $c_i = m_i \oplus z_i$ pour tout i. Supposons que la fonction de chiffrement E soit l'AES.

Que pouvez-vous dire de la période typique de la suite (z_i) ? Vous faites une attaque à chiffrés choisis : vous pouvez obtenir le déchiffrement m_i de certains blocs c_i (mais pas tous!). Combien de blocs de clair vous faut-il connaître pour déchiffrer la communication toute entière?