Métodos de la Física matemática

Métodos prácticos para calcular el radio de convergencia R

Para la serie $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ se tiene

(i)
$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$

(ii)
$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$

Demostración

Para demotrar los radios de convergencia es necesrio mostrar que

$$R = \sup \left\{ r \ge 0 \quad / \quad \sum_{n=0}^{\infty} |a_n| r^n < \infty \right\}.$$

(i) Consideremos

$$|f_{n-1}| \le \sum_{k=0}^{n-1} |a_k| r^k$$
 , $|f_n| \le \sum_{k=0}^n |a_k| r^k$ y $|f_{n+1}| \le \sum_{k=0}^{n+1} |a_k| r^k$

por tanto, del criterio de convergencia (uniforme) de Cauchy sabemos que

$$\lim_{n \to \infty} \left| |f_{n+1}| - |f_n| \right| < \lim_{n \to \infty} \left| |f_n| - |f_{n-1}| \right|$$

entonces

$$\lim_{n \to \infty} \frac{\left| |f_{n+1}| - |f_n| \right|}{\left| |f_n| - |f_{n-1}| \right|} < 1$$

por otro lado

$$\left| |f_{n+1}| - |f_n| \right| \le \left| \sum_{k=0}^{n+1} |a_k| r^k - \sum_{k=0}^n |a_k| r^k \right| = |a_{n+1}| r^{n+1}$$

$$\left| |f_n| - |f_{n-1}| \right| \le \left| \sum_{k=0}^n |a_k| r^k - \sum_{k=0}^{n-1} |a_k| r^k \right| = |a_n| r^n$$

luego la serie converge si la condición

$$\lim_{n \to \infty} \frac{|a_{n+1}r^{n+1}|}{|a_nr^n|} < 1$$

se satisface.

Por otro lado el radio de convergencia se estima así:

$$\lim_{n \to \infty} \frac{|a_{n+1}| r^{n+1}}{|a_n| r^n} = \lim_{n \to \infty} \frac{|a_{n+1}| r}{|a_n|} < 1 \Rightarrow r < \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$

$$\Rightarrow R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$$

(ii) Consideremos la serie geométrica $\frac{1}{1-|q|} = \sum_{k=0}^{\infty} |q|^k$ cuando |q| < 1.

Además consideremos un número entero M lo suficientemente grande, tal que para $n \geq M$ entonces $|f_n - f_{n-1}| < \varepsilon$, donde $\varepsilon > 0$.

Nótese que

$$\left| |f_n| - |f_{n-1}| \right| \le \left| \sum_{k=0}^n |a_k| r^k - \sum_{k=0}^{n-1} |a_k| r^k \right| = |a_n| r^n$$

Si

$$\lim_{n \to \infty} \sum_{k=M}^{n} |a_k| r^k < \sum_{k=M}^{\infty} |q|^k \quad \text{con} \quad |q| < 1,$$

entonces

$$\lim_{n \to \infty} \left| \sum_{k=0}^{n} |a_k| r^k - \sum_{k=0}^{n-1} |a_k| r^k \right| = \lim_{n \to \infty} |a_n| r^n < \lim_{n \to \infty} |q|^n.$$

Por tanto la serie converge si

$$\lim_{n \to \infty} \sqrt[n]{|a_n r^n|} < 1.$$

Lo anterior implica que

$$r < \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}},$$

luego el radio de convergencia es

$$\Rightarrow R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}.$$

Teorema

Una serie de potencias representa una función continua en todo punto en el interior del radio de convergencia R.

Teorema: Serie de Laurent

Consideremos la región $D: z \in C$ / $r_1 < |z - z_0| < r_2$ (ver figura abajo). r_1 puede tomar el valor de cero y r_2 puede ser infinito. Sea f analítica en la región D. Entonces la serie de Laurent alrededor de z_0 se escribe como

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n},$$

donde ambas series convergen absolutamente en D y uniformemente $\rho_1 < |z - z_0| < \rho_2$ con $r_1 < \rho_1$ y $\rho_2 < r_2$. Si γ es un círculo alrededor z_0 con radio r, donde $r_1 < r < r_2$, entonces los coeficientes estan dados por las expresiones:

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \quad n = 0, 1, 2, 3, \dots$$

 \mathbf{Z}

$$b_n = \frac{1}{2\pi i} \int_{\gamma} f(\zeta)(\zeta - z)^{n-1} d\zeta \quad n = 1, 2, 3, \dots$$

Haciendo $b_n = a_{-n}$ entonces la primera fórmula cubre ambos casos.

