Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Tröltzsch

WS 05/06 10. April 2006

April – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorname:					
MatrNr.:	Studi	engang	:		••••	
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmitte
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	sung lö	sbar se	ein. Gel	0
Die Bearbeitungszeit beträgt eine Stu	ınde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 1				*	v	
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe 8 Punkte

Skizzieren Sie folgende Mengen und entscheiden Sie mit Begründung, ob sie offen, abgeschlossen und/oder kompakt sind.

a)
$$A = \{(x, y) \in \mathbb{R}^2 \mid x > 0, \ x^2 + y^2 \le 4\},\$$

b)
$$B = \{(x, y) \in \mathbb{R}^2 \mid |y| \ge x^2 + 1\}.$$

2. Aufgabe 9 Punkte

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit $f(x,y) = \begin{pmatrix} e^x - e^{y^2} \\ e^y - e^{x^2} \end{pmatrix}$. Berechnen Sie die Ableitung der Komposition $(f \circ f)(x,y) = f(f(x,y))$ an der Stelle (0,0).

3. Aufgabe 7 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = x^3 e^{\cos(y+z)} e^{\sin(y+z)}$, das Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$, $\vec{v} = \operatorname{grad}(f)$ sowie die Kurve $\vec{\gamma}: [0,\pi] \to \mathbb{R}^3$, $\vec{\gamma}(t) = \begin{pmatrix} t \\ t^2 + t \\ -t^2 \end{pmatrix}$.

Berechnen Sie

$$\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds}.$$

4. Aufgabe 8 Punkte

Seien
$$B = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 > 1\}, \ \vec{v} : \mathbb{R}^3 \supset B \to \mathbb{R}^3, \ \vec{v}(x, y, z) = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}.$$

- a) Ist B konvex?
- b) Besitzt das Vektorfeld $\vec{v}: \mathbb{R}^3 \supset B \to \mathbb{R}^3$ ein Potential?

5. Aufgabe 8 Punkte

Die Fläche ${\cal F}$ sei gegeben durch die Parametrisierung

$$\vec{x}(r,\varphi) = \begin{pmatrix} r\cos(\varphi) \\ r\sin(\varphi) \\ e^r \end{pmatrix} \text{ mit } 0 \le r \le 2 \text{ und } 0 \le \varphi \le 2\pi.$$

- a) Skizzieren Sie die Fläche F.
- b) Steht der Vektor $(-e,0,1)^T$ senkrecht auf der Tangentialebene von F im Punkt $\vec{x}(1,0)$?