SAP for Classification of ARDS Data

Robert Edwards

I. Population

• Patients with Acute Respiratory Disease Syndrome.

II. Primary Objective

• Can ECMO treatment survival be accurate; predicted by PreECMO biomedical markers?

III. Secondary Objective

- What is the future expected performance of predictions?
- Which biomedical markers are needed for accurate prediction and which can be dropped?

IV. Data Collection

V. Variables Under Consideration

- ECMO_Sruvival (Categorical) a survival indicator
 - Y = survival
 - N = non-survivor
- Gender (Categorical) Patient gender
 - m = male
 - f = female
- Indication (Categorical) A disease indicator
 - ALF = acute lung failure
 - -1 = viral pneumonia
 - -2 = bacterial pneumonia
 - -3 = aspiration pneumonia

- -4 = ARDS Trauma
- -5 = ARDS surgery
- -6 = Chemo
- -7 = other
- Age (years) Age of patient
- Pre ECMO biomarkers before ECMO treatment
 - RR (Continuous) Respiratory Rate
 - Vt (Continuous) Tidal volume
 - Fi02 (Continuous) Inspire fraction of oxygen
 - Ppeak (Continuous) Peak airway pressure
 - Pmean (Continuous) Mean airway pressure
 - PEEP (Continuous) Positive end expiratory pressure
 - PF (Continuous) Arterial partial pressure of oxygen/inspired fraction of oxygen ratio
 - Sp02 (Continuous) Periperal oxygen saturation
 - PaCO2 (Continuous) Arterial pressure of carbon dioxide
 - pH (Continuous) Arterial pH
 - BE (Continuous) Arterial base excess
 - Lactate (Continuous) Arterial lactate
 - NAdose (Continuous) Noradrenaline dose
 - MAP (Continuous) Mean arterial pressure
 - Creatinine (Continuous) Serum Creatinine is an important indicator of renal health because it is an easily measured byproduct of muscle metabolism that is excreted unchanged by the kidneys.
 - Urea (Continuous) Also known as carbamide Urea serves an important role in the metabolism of nitrogen-containing compounds by animals and is the main nitrogen-containing substance in the urine of mammals. High concentrations in the blood can be damaging.
 - CK (Continuous) Creatine Kinase is assayed in blood tests as a marker of damage of CK-rich tissue such as in myocardial infarction (heart attack), rhabdomyolysis (severe muscle breakdown), muscular dystrophy, autoimmune myositides, and acute kidney injury.
 - Bilirubin (Continuous) Bilirubin is excreted in bile and urine, and elevated levels may indicate certain diseases.
 - Albumin (Continuous) Albumin Serum albumin is the main protein of human blood plasma. It binds water, cations (such as Ca^{2+} , Na^+ and K^+), fatty acids, hormones, bilirubin, thyroxine (T4) and pharmaceuticals (including barbiturates): its main function is to regulate the oncotic pressure of blood.
 - CRP (Continuous) C reative protein
 - Fibrinogen (Continuous) -
 - Ddimer (Continuous) -
 - ATIII (Continuous) Anti-thrombin III
 - HB (Continuous) Haemaglobin
 - Leukocytes (Continuous) -
 - Platelets (Continuous) -
 - TNFa (Continuous) -
 - IL6 (Continuous) Interleukin 6 is an interleukin that acts as both a pro-inflammatory cytokine and an anti-inflammatory myokine.
 - IL8 (Continuous) Interleukin 8 is an important mediator of the immune reaction in the innate immune system response.
 - siL2 (Continuous) -

More information about protein pathways can be found here: www.uniprot.com

VI. Missing Data Procedures

- Cases without ECMO_Survival, Gender, or Indication are to be removed from the analysis
- Cases with less than 50% of other covariates missing to have missing data imputation performed Vocables

Imputation Method

Research into how the data are missing will need to be conducted to determine the most appropriate imputation method:

- Mean Imputation -
- Median Imputation for skewed data
- KNN Imputation MICE Inputation

VII. Summaries to be Presented:

Missing Data

- Counts of number of missing observations to be given for each variable (or a table)
- If any patterns to the missing data are found an appropriate table will be included

Categorical Data

- Frequency table and relative frequency (proportions) for:
 - ECMO_Survival
 - Gender
 - Indication

X2 test

Mann-Whitney U test

Continuous Variables

• Boxplots, mean, standard deviation, median, IQR

t-test/CI For each vareble (J.P. m meas)

VIII. Models to be Fitted

Models

- Logistic Regression (main dissertation)
- · LDA/QDA
- · CVA (for visua (traston)
- · Random Forrests

Variable Selection

• Lasso Regression will be used for variable selection

IX. Advanced Models to be Fitted

Models

- Support Vector Machine
- Decision Tree
- Random Forest
- K-Nearest Neighbors
- Neural Net

Other Analyses

• Bayesian models (logistic regression, knn)

X. Model Performance

Model performance will be evaluated on:

False Discovery Rate - conceptations Type I errors in Null hypothesis testy when conducting multiple comparisons

FOR = False Discoveres

Takke Discoveres

Obscoveres (rejections of Null hypothus) Accuracy • Precision

- Sensitivity
- Specificity
- F1 Score (?)

In addition the following tables/plots will be reported:

• ROC curve

• Confusion matrix