

Class Test I, April-2023 (2021 - BATCH)

Program: B. Tech. Branch: CM

Semester: Spring Subject: Functional Analysis (MA2212) Year: II

Date: 12/04/2023

Max. Marks: 10 Time Duration: 55 mins

Instructions:

1. All questions are compulsory.

Q 1:

 (4×0.5) marks

Start Time: 4:30 PM

Answer by True or False the following questions:

- (a) In l^{∞} , let $Y = c_{00}$ be the subset of all sequences with only finitely many nonzero terms. Then Y is a closed subspace of l^{∞} .
- (b) The sequence $\{\frac{1}{n^{1/3}}\}$, $n \in \mathbb{N}$, is an element of l^4 space but not in l^1 space.
- (c) If $||\cdot||$ and $||\cdot||_0$ are equivalent norms on a vector space X, then the Cauchy sequences in $(X, ||\cdot||)$ and $(X, ||\cdot||_0)$ are the same.
- (d) Every infinite dimensional subspace Y of a normed space X is closed in X.

Q 2:

3 marks

Let $\{x,y\}$ be a linearly independent set of vectors in the normed space \mathbb{R}^2 . Then there is a number c > 0 such that for every choice of scalars α_1 , α_2 , we have

$$||\alpha_1 x + \alpha_2 y||_1 \ge c(|\alpha_1| + |\alpha_2|),$$
 (1)

where for $x = (x_1, x_2) \in \mathbb{R}^2$, $||x||_1 = |x_1| + |x_2|$.

- (a) What is the largest possible c in inequality (1) if x = (1,3), y = (3,1)?
- (b) Is it possible to apply inequality (1) if x = (1, 2), y = (1/2, 1)? Explain.

2 marks

Q 3: Q, e, "

Show that $e_n = (\delta_{nj})$, is a Schauder basis for l^p , where $1 \leq p < +\infty$.

Q 4:

3 marks

(a) In a normed linear space X, show that $x_n \to x$ and $y_n \to y$ implies $x_n + y_n \to x + y$. Show that $\alpha_n \to \alpha$ and $x_n \to x$ implies $\alpha_n x_n \to \alpha x$.

\mathbf{OR}

(a) Show that l^1 (as a vector space) is a subspace of l^2 . Is this subspace closed in l^2 with $l^2 - norm$?