AR: Proving and Reasoning in Isabelle/HOL

Victor Dumitrescu & Jacques Fleuriot 2 February 2016

Learning Outcomes

- Be able to write Natural Deduction proofs in propositional and first-order logic
- · Learn to use an interactive proof assistant
- · Mechanically verify natural deduction proofs
- · Formalise theorems in first-order logic
- Mechanically verify theorems about data-structures

Assignment Overview

- 1. Natural Deduction Proofs
 - · Propositional Logic
 - First-Order Logic
 - · Reasoning with Equality
- 2. Inductive Proofs on Binary Trees

1. P
$$\wedge$$
 Q \longrightarrow Q \wedge P

- 1. $P \wedge Q \longrightarrow Q \wedge P$ apply (rule impI)
- 1. P \wedge Q \Longrightarrow Q \wedge P

- 1. $P \wedge Q \longrightarrow Q \wedge P$ apply (rule impI)
- 1. $P \land Q \Longrightarrow Q \land P$ apply (rule conjE)
- 1. $P \wedge Q \implies ?P2 \wedge ?Q2$
- 2. $\llbracket P \land Q; ?P2; ?Q2 \rrbracket \implies Q \land P$

- 1. $P \wedge Q \longrightarrow Q \wedge P$ apply (rule impI)
- 1. $P \wedge Q \Longrightarrow Q \wedge P$ apply (rule conjE)
- 1. $P \land Q \Longrightarrow ?P2 \land ?Q2$
- 2. $[P \land Q; ?P2; ?Q2] \implies Q \land P$ apply assumption
- 1. $\llbracket P \land Q; P; Q \rrbracket \implies Q \land P$

lemma " $P \land Q \longrightarrow Q \land P$ "

- 1. $P \wedge Q \longrightarrow Q \wedge P$ apply (rule impI)
- 1. $P \wedge Q \Longrightarrow Q \wedge P$ apply (rule conjE)
- 1. $P \wedge Q \implies ?P2 \wedge ?Q2$
- 2. $\llbracket P \land Q; ?P2; ?Q2 \rrbracket \implies Q \land P$ apply assumption
- 1. $\llbracket P \land Q; P; Q \rrbracket \implies Q \land P$ apply (rule conjI)
- 1. $\llbracket P \land Q; P; Q \rrbracket \implies Q$
- 2. $\llbracket P \land Q; P; Q \rrbracket \implies P$

- 1. $\llbracket P \land Q; P; Q \rrbracket \implies Q$
- 2. $\llbracket P \land Q; P; Q \rrbracket \implies P$

- 1. $\llbracket P \land Q; P; Q \rrbracket \implies Q$
- 2. $\llbracket P \land Q; P; Q \rrbracket \implies P$

apply assumption

1.
$$\llbracket P \land Q; P; Q \rrbracket \implies P$$

- 1. $\llbracket P \land Q; P; Q \rrbracket \implies Q$
- 2. $\llbracket P \land Q; P; Q \rrbracket \implies P$

apply assumption

1.
$$[P \land Q; P; Q] \Longrightarrow P$$
apply assumption

No subgoals!

- 1. $\llbracket P \land Q; P; Q \rrbracket \implies Q$
- 2. $\llbracket P \land Q; P; Q \rrbracket \implies P$

apply assumption

1.
$$\llbracket P \land Q; P; Q \rrbracket \implies P$$

apply assumption

No subgoals!

done

lemma "P
$$\wedge$$
 Q \longrightarrow Q \wedge P"

1. P
$$\wedge$$
 Q \longrightarrow Q \wedge P

- 1. P \wedge Q \longrightarrow Q \wedge P
- apply (rule impI)
- 1. $P \wedge Q \Longrightarrow Q \wedge P$

- 1. $P \ \land \ Q \ \longrightarrow \ Q \ \land \ P$
 - apply (rule impI)
- 1. $P \wedge Q \Longrightarrow Q \wedge P$
- apply (erule conjE)
- 1. $\llbracket P; Q \rrbracket \implies Q \wedge P$

- 1. $P \wedge Q \longrightarrow Q \wedge P$ apply (rule impI)
- 1. $P \wedge Q \Longrightarrow Q \wedge P$ apply (erule conjE)
- 1. $\llbracket P; Q \rrbracket \implies Q \wedge P$ apply (rule conjI)
- 1. $\llbracket P; Q \rrbracket \implies Q$
- 2. $\llbracket P; Q \rrbracket \implies P$

lemma "
$$P \land Q \longrightarrow Q \land P$$
"

- 1. $P \wedge Q \longrightarrow Q \wedge P$ apply (rule impI)
- 1. $P \wedge Q \Longrightarrow Q \wedge P$ apply (erule conjE)
- 1. $\llbracket P; Q \rrbracket \implies Q \land P$ apply (rule conjI)
- 1. $\llbracket P; Q \rrbracket \implies Q$
- 2. $\llbracket P; Q \rrbracket \implies P$

apply assumption+

lemma "
$$P \ \land \ Q \ \longrightarrow \ Q \ \land \ P$$
"

- 1. $P \wedge Q \longrightarrow Q \wedge P$ apply (rule impI)
- 1. $P \wedge Q \Longrightarrow Q \wedge P$ apply (erule conjE)
- 1. $\llbracket P; Q \rrbracket \implies Q \land P$ apply (rule conjI)
- 1. $\llbracket P; Q \rrbracket \implies Q$
- $2. \ \llbracket P; \ Q \rrbracket \implies P$

apply assumption+

No subgoals!

- 1. $P \wedge Q \longrightarrow Q \wedge P$ apply (rule impI)
- 1. $P \wedge Q \Longrightarrow Q \wedge P$ apply (erule conjE)
- 1. $\llbracket P; Q \rrbracket \implies Q \wedge P$ by (rule conjI)

$$\mathsf{lemma} \ "(P \ \longrightarrow \ Q) \ \longrightarrow \ \neg Q \ \longrightarrow \ \neg P"$$

1.
$$(P \longrightarrow Q) \longrightarrow \neg Q \longrightarrow \neg P$$

$$\mathsf{lemma} \ "(P \ \longrightarrow \ Q) \ \longrightarrow \ \neg Q \ \longrightarrow \ \neg P"$$

- 1. $(P \longrightarrow Q) \longrightarrow \neg Q \longrightarrow \neg P$ apply (rule impI)+
- 1. $\llbracket P \longrightarrow Q; \neg Q \rrbracket \implies \neg P$

$$\mathsf{lemma} \ "(P \ \longrightarrow \ Q) \ \longrightarrow \ \neg Q \ \longrightarrow \ \neg P"$$

- 1. $(P \longrightarrow Q) \longrightarrow \neg Q \longrightarrow \neg P$ apply (rule impI)+
- 1. $\llbracket P \longrightarrow Q; \neg Q \rrbracket \Longrightarrow \neg P$ apply (rule notI)
- 1. $\llbracket P \longrightarrow Q; \neg Q; P \rrbracket \Longrightarrow False$

$$\mathsf{lemma} \ "(P \ \longrightarrow \ Q) \ \longrightarrow \ \neg Q \ \longrightarrow \ \neg P"$$

- 1. $(P \longrightarrow Q) \longrightarrow \neg Q \longrightarrow \neg P$ apply (rule impI)+
- 1. $\llbracket P \longrightarrow Q; \neg Q \rrbracket \Longrightarrow \neg P$ apply (rule notI)
- 1. $\llbracket P \longrightarrow Q; \neg Q; P \rrbracket \Longrightarrow False$ apply (erule notE)
- 1. $\llbracket P \longrightarrow Q; P \rrbracket \implies Q$

$$\mathsf{lemma} \ "(P \ \longrightarrow \ Q) \ \longrightarrow \ \neg Q \ \longrightarrow \ \neg P"$$

- 1. $(P \longrightarrow Q) \longrightarrow \neg Q \longrightarrow \neg P$ apply (rule impI)+
- 1. $\llbracket P \longrightarrow Q; \neg Q \rrbracket \Longrightarrow \neg P$ apply (rule notI)
- 1. $\llbracket P \longrightarrow Q; \neg Q; P \rrbracket \Longrightarrow False$ apply (erule notE)
- 1. $\llbracket P \longrightarrow Q; P \rrbracket \implies Q$ by (erule mp)

lemma "
$$(\forall x. \ P \ x \lor Q \ x) \land (\exists x. \ \neg Q \ x) \longrightarrow (\exists x. \ P \ x)$$
"

1. $(\forall x. \ P \ x \lor Q \ x) \land (\exists x. \ \neg \ Q \ x) \longrightarrow (\exists x. \ P \ x)$

lemma " $(\forall x. P x \lor Q x) \land (\exists x. \neg Q x) \longrightarrow (\exists x. P x)$ "

- 1. $(\forall x. \ P \ x \lor Q \ x) \land (\exists x. \ \neg \ Q \ x) \longrightarrow (\exists x. \ P \ x)$ apply (rule impl)
- 1. $(\forall x. P x \lor Q x) \land (\exists x. \neg Q x) \Longrightarrow \exists x. P x$

lemma " $(\forall x. P x \lor Q x) \land (\exists x. \neg Q x) \longrightarrow (\exists x. P x)$ "

- 1. $(\forall x. \ P \ x \ \lor \ Q \ x) \ \land \ (\exists x. \ \neg \ Q \ x) \ \longrightarrow \ (\exists x. \ P \ x)$ apply (rule imp1)
- 1. $(\forall x. \ P \ x \ \lor \ Q \ x) \ \land \ (\exists x. \ \neg \ Q \ x) \Longrightarrow \exists x. \ P \ x$ apply (erule conjE)
- 1. $\llbracket \forall x. \ P \ x \lor Q \ x; \ \exists x. \ \neg \ Q \ x \rrbracket \implies \exists x. \ P \ x$

lemma "($\forall x. P x \lor Q x$) \land ($\exists x. \neg Q x$) \longrightarrow ($\exists x. P x$)"

- 1. $(\forall x. \ P \ x \ \lor \ Q \ x) \ \land \ (\exists x. \ \neg \ Q \ x) \ \longrightarrow \ (\exists x. \ P \ x)$ apply (rule impl)
- 1. $(\forall x. \ P \ x \lor Q \ x) \land (\exists x. \ \neg \ Q \ x) \Longrightarrow \exists x. \ P \ x$ apply (erule conjE)
- 1. $\llbracket \forall x. \ P \ x \lor Q \ x; \ \exists x. \ \neg \ Q \ x \rrbracket \implies \exists x. \ P \ x$ apply (erule exE)
- 1. $\bigwedge x$. $\llbracket \forall x$. $P x \lor Q x$; $\neg Q x \rrbracket \implies \exists x$. P x

1.
$$\bigwedge x$$
. $\llbracket \forall x$. $P x \lor Q x$; $\neg Q x \rrbracket \implies \exists x$. $P x$

- 1. $\bigwedge x$. $\llbracket \forall x$. $P \ x \ \lor \ Q \ x; \ \neg \ Q \ x \rrbracket \implies \exists x$. $P \ x$ apply (drule spec)
- 1. $\bigwedge x$. $\llbracket \neg Q x; P (?x6 x) \lor Q (?x6 x) \rrbracket \implies \exists x. P x$

- 1. $\bigwedge x$. $\llbracket \forall x$. $P \ x \ \lor \ Q \ x; \ \neg \ Q \ x \rrbracket \implies \exists x$. $P \ x$ apply (drule spec)
- 1. $\bigwedge x$. $\llbracket \neg Q \ x; \ P \ (?x6 \ x) \lor Q \ (?x6 \ x) \rrbracket \implies \exists \ x. \ P \ x$ apply (erule disjE)
- 1. $\bigwedge x$. $\llbracket \neg Q x; P (?x6 x) \rrbracket \implies \exists x. P x$
- 2. $\bigwedge x$. $\llbracket \neg Q x; Q (?x6 x) \rrbracket \implies \exists x. P x$

- 1. $\bigwedge x$. $\llbracket \forall x$. $P \times \vee Q \times ; \neg Q \times \rrbracket \implies \exists x$. $P \times apply (drule spec)$
- 1. $\bigwedge x$. $\llbracket \neg Q \ x; \ P \ (?x6 \ x) \lor Q \ (?x6 \ x) \rrbracket \implies \exists \ x. \ P \ x$ apply (erule disjE)
- 1. $\bigwedge x$. $\llbracket \neg Q x; P (?x6 x) \rrbracket \implies \exists x. P x$
- 2. $\bigwedge x$. $\llbracket \neg Q x; Q (?x6 x) \rrbracket \implies \exists x. P x$ apply (erule exI)
- 1. $\bigwedge x$. $\llbracket \neg Q x; Q (?x6 x) \rrbracket \implies \exists x. P x$

- 1. $\bigwedge x$. $\llbracket \forall x$. $P \ x \ \lor \ Q \ x; \ \neg \ Q \ x \rrbracket \implies \exists x$. $P \ x$ apply (drule spec)
- 1. $\bigwedge x$. $\llbracket \neg Q x; P (?x6 x) \lor Q (?x6 x) \rrbracket \implies \exists x. P x$ apply (erule disjE)
- 1. $\bigwedge x$. $\llbracket \neg Q x; P (?x6 x) \rrbracket \implies \exists x. P x$
- 2. $\bigwedge x$. $\llbracket \neg Q x; Q (?x6 x) \rrbracket \implies \exists x. P x$ apply (erule exI)
- 1. $\bigwedge x$. $\llbracket \neg Q x; Q (?x6 x) \rrbracket \implies \exists x. P x$ by (erule notE)

Substitution

lemma "a =
$$b \longrightarrow b = c \longrightarrow P a \longrightarrow P c$$
"

1.
$$a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$$

Substitution

lemma "a =
$$b \longrightarrow b = c \longrightarrow P a \longrightarrow P c$$
"

1.
$$a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$$
apply (rule impI)+

1.
$$[a = b; b = c; P a] \implies P c$$

Substitution

lemma "a =
$$b \longrightarrow b = c \longrightarrow P a \longrightarrow P c$$
"

1.
$$a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$$
apply (rule impI)+

1.
$$[a = b; b = c; P a] \implies P c$$

apply (drule trans)

1.
$$[b = c; P a] \implies b = ?t6$$

2.
$$[b = c; P a; a = ?t6] \implies P c$$

Substitution

lemma "a =
$$b \longrightarrow b = c \longrightarrow P a \longrightarrow P c$$
"

1.
$$a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$$
 apply (rule impI)+

1.
$$[a = b; b = c; P a] \implies P c$$

apply (drule trans)

1.
$$[b = c; P a] \implies b = ?t6$$

2.
$$[b = c; P a; a = ?t6] \implies P c$$
apply assumption

1.
$$\llbracket b = c; P a; a = c \rrbracket \implies P c$$

Substitution

lemma "a =
$$b \longrightarrow b = c \longrightarrow P a \longrightarrow P c$$
"

1.
$$a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$$
 apply (rule impI)+

1.
$$[a = b; b = c; P a] \implies P c$$

apply (drule trans)

1.
$$[b = c; P a] \implies b = ?t6$$

2.
$$[b = c; P a; a = ?t6] \Longrightarrow P c$$

apply assumption

1.
$$[b = c; P a; a = c] \Longrightarrow P c$$

by (erule_tac s = a in subst)

lemma "a =
$$b \longrightarrow b = c \longrightarrow P a \longrightarrow P c$$
"

1.
$$a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$$

lemma "a =
$$b \longrightarrow b = c \longrightarrow P a \longrightarrow P c$$
"

1.
$$a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$$
 apply (rule impI)+

1.
$$[a = b; b = c; P a] \implies P c$$

lemma "a =
$$b \longrightarrow b = c \longrightarrow P a \longrightarrow P c$$
"

- 1. $a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$ apply (rule impI)+
- 1. $[a = b; b = c; P a] \Longrightarrow P c$ apply (drule trans)
- 1. $[b = c; P a] \implies b = ?t6$
- 2. $[b = c; P a; a = ?t6] \implies P c$

lemma "a =
$$b \longrightarrow b = c \longrightarrow P a \longrightarrow P c$$
"

- 1. $a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$ apply (rule impI)+
- 1. $[a = b; b = c; P a] \implies P c$ apply (drule trans)
- 1. $[b = c; P a] \implies b = ?t6$
- 2. $[b = c; P a; a = ?t6] \implies P c$ apply assumption
- 1. $\llbracket b = c; P a; a = c \rrbracket \implies P c$

lemma "a = b
$$\longrightarrow$$
 b = c \longrightarrow P a \longrightarrow P c"

- 1. $a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$ apply (rule impI)+
- 1. $[a = b; b = c; P a] \implies P c$ apply (drule trans)
- 1. $[b = c; P a] \implies b = ?t6$
- 2. $[b = c; P a; a = ?t6] \implies P c$ apply assumption
- 1. $[b = c; P a; a = c] \implies P c$ apply rotate_tac
- 1. $\llbracket P \text{ a; a = c; b = c} \rrbracket \implies P \text{ c}$

lemma "a =
$$b \longrightarrow b = c \longrightarrow P a \longrightarrow P c$$
"

- 1. $a = b \longrightarrow b = c \longrightarrow P \ a \longrightarrow P \ c$ apply (rule impI)+
- 1. $[a = b; b = c; P a] \Longrightarrow P c$ apply (drule trans)
- 1. $[b = c; P a] \implies b = ?t6$
- 2. $[b = c; P a; a = ?t6] \Longrightarrow P c$ apply assumption
- 1. $\llbracket b = c; P a; a = c \rrbracket \implies P c$
 - apply rotate_tac
- 1. $\llbracket P \text{ a; a = c; b = c} \rrbracket \Longrightarrow P \text{ c}$ by (erule subst)

Summary

```
Syntax
                \<longrightarrow>
                            \ \<and>
                             \<or> \
                            \<not> ¬
            \<longleftrightarrow>
                         \<forall> ∀
                         \<exists> ∃
Commands apply, by, done
  Methods rule, erule, drule, frule,
           erule tac s = a in subst, rotate tac,
           assumption, auto, simp, insert,
           simp add: field_eq_simps.
```

Binary Tree Partitioning

Binary trees can describe subsets of a line-segment by recursively dividing them in two.

Inductive Definitions

We can define this data type in terms of its possible *cases*, one of which is *recursive*:

```
datatype partition =
   Empty
| Filled
| Branch partition partition
```

A partition is either:

- Empty
- Filled
- · A Branch of two partitions

Recursive Functions

We define functions on our data-type by specifying *equations* for the possible *cases* of our data. The inductive cases give rise to *recursive* equations:

```
fun invert :: partition \Rightarrow partition where invert (Empty) = Filled 
| invert (Filled) = Empty 
| invert (Branch 1 r) = Branch (invert 1) (invert r)
```

Case-analysis and Inductive Proofs

- case_tac: Generates a subgoal corresponding to the possible cases of a data-type
- induct_tac: Performs structural induction. Generates a subgoal corresponding to the possible cases, with an inductive hypothesis for recursive cases.

Simplification

- The simp command performs equational rewriting in an attempt to normalise terms.
- The simplifier automatically rewrites using equations from function definitions.
- You can provide the simplifier with additional equations from lemmas and theorems using add:
- You can also add [simp] after the name of a theorem in order to make it available to the simplifier everywhere

Strategies and Pitfalls

- Prefer case_tac to induct_tac. But sometimes, you need to use induct_tac.
- Try to use induct_tac before allI.
- When you get stuck, inspect the goal stack to determine appropriate lemmas.

Quick note on Isabelle/jEdit

If you prefer the $[\![A]:B]\!]$ \Longrightarrow C style to the A \Longrightarrow B \Longrightarrow C, which is enabled by default in Isabelle/jEdit 2015, you can easily switch.

Add the brackets option to Print Mode, under Plugins > Plugin Options > Isabelle > General and restart Isabelle.

Information

http://www.inf.ed.ac.uk/teaching/courses/ar/FormalCheatSheet.pdf