第一次作业 (A PROOF OF THE JORDAN CURVE THEOREM)

请于二**月二十八日周五(校历第二周)** 当堂上交本次作业。请独立完成。如有参与讨论者,请引用或致谢他们。

- 1. Let Γ be a Jordan curve in the plane, i.e. the image of the unit circle $C = \{(x,y) : x^2 + y^2 = 1\}$ under an injective continuous mapping γ into \mathbb{R}^2 .
 - (A) A Jordan curve is said to be a Jordan polygon if C can be covered by finitely many arcs on each of which γ has the form: $\gamma(\cos t, \sin t) = (\lambda t + \mu, \rho t + \sigma)$ with constants $\lambda, \mu, \rho, \sigma$. Prove that for any Jordan polygon Γ , $\mathbb{R}^2 \setminus \Gamma$ consists of two connected components. Here we use the original definition that two points are in the same connected component if and only if they can be joined by a continuous path (image of [0,1]).
 - (B) Every Jordan curve Γ can be approximated arbitrarily well by a Jordan polygon Γ' .
 - (C) Let Γ be a Jordan polygon. Denote by B the connected component of $\mathbb{R}^2 \setminus \Gamma$ which is bounded in \mathbb{R}^2 . Then B contains a disc D such that the boundary of D contains two points $\gamma(a)$ and $\gamma(b)$ such that $|a-b| \geq \sqrt{3}$.
 - (D) Consider a Jordan polygon Γ and two points a,b, belonging to the same component, X, of $\mathbb{R}^2 \backslash \Gamma$. For every line segment S, contained in X except for its endpoints, $X \backslash S$ consists of two components, as is immediate from (A). Let the distance between Γ and $\{a,b\}$ be at least 1 and assume that for every S of length less than 2, a and b are in the same component of $X \backslash S$. Then there is a continuous path Π from a to b such that $\operatorname{dist}(\Pi,\Gamma) \geq 1$.
 - (E) Prove that for any Jordan curve Γ in the plane, $\mathbb{R}^2 \backslash \Gamma$ consists of two connected components and Γ is their common boundary. Here for any open subset $B \subset \mathbb{R}^2$, the boundary of B is defined to be $\overline{B} \backslash B$.