Next: About this document ...

E84 Home Work 7

1. Find the current $i_1(t)$ through resistor R_1 after the switch is closed at t=0, assuming the input is a DC voltage and the circuit is already in steady state before t=0. (Hint: current through an inductor cannot change instantaneously.)

Solution:

First, as current through L does not change when the switch is closed at t=0, the current through R_1 is zero $i_1(0_+)=0$. Second, when the circuit reaches steady state after the switch is closed at t=0, the inductor is short-circuit, i.e., no current goes through R_1 . Therefore, $v_1(t)=0$.

2. In the circuit below, $V_s = 6V$, $R_1 = 6\Omega$, $R_2 = 3\Omega$, L = 0.5H, $I_s = 2A$. Assume before the switch is closed at t = 0, the system is already stablized. Find current $i_L(t)$ through L and voltage v_{R_1} across R_1 .

Solution:

 $i(0) = V_s/R_1 = 6/6 = 1A$, $i(\infty) = V_s/R_1 + I_s = 1 + 2 = 3A$ Find equivalent resistance (when both energy sources are turned off

 $R = R_1 || R_2 = 3 \times 6/(3+6) = 2$, $\tau = L/R = 0.5/2 = 0.25$ sec. Final solution: $\overline{i_L(t)} = 3 + (1-3)e^{-t/0.25} = 3 - 2e^{-4t}$ (A) Find v_{R_1} : apply KVL to the loop of V_s , R_1 and L, get

$$L\frac{di_L}{dt} + v_{R_1} = V_s$$

$$v_{R_1} = V_s - Ldi_L/dt = 6 - 0.5 \frac{d(3 - 2e^{-4t})}{dt} = 6 - 4e^{-4t}$$

3. In the circuit below, $V_s = 12V$, $R_1 = 5\Omega$, $R_2 = 20\Omega$, $R_3 = 6\Omega$, $C_1 = 10\mu F$, $C_2 = 30\mu F$. Assume before the switch is closed at t = 0, the system is already stablized. Find voltages $v_1(t)$ and $v_2(t)$ across capacitors C_1 and C_2 , respectively. (Hint, C_1 and C_2 are two capacitors in series with an equivalent capacitance is $C = C_1 C_2/(C_1 + C_2)$. C_1 and C_2 have share the same time constant $\tau = RC$.)

Solution:

$$v_1(0) = v_2(0) = 0$$

$$v_1(\infty) + v_2(\infty) = V_s \frac{R_2}{R_1 + R_2} = 12 \frac{20}{5 + 20} = 9.6V$$

As voltage across capacitor is inversely proportional to C, we have

$$\frac{v_1(\infty)}{v_2(\infty)} = \frac{C_2}{C_1} = 3$$

i.e., $v_1(\infty) = 3v_2(\infty)$, and we get $v_1(\infty) = 7.2V$, $v_2(\infty) = 2.4V$. Find equivalent resistance:

$$R = R_3 + \frac{R_1 R_2}{R_1 + R_2} = 6 + \frac{5 \times 20}{5 + 20} = 10\Omega$$

Find equivalent capacitance: $C_1C_2/(C_1+C_2)=30\times 10/(30+10)=7.5$. Find time constant: $\tau=RC=\overline{10\times 7.5\times 10^{-6}=7.5\times 10^{-5}}$. Find $v_1(t)$ and $v_2(t)$: $v_1(t)=7.2(1-e^{-t/(7.5\times 10^{-5})})$ $v_2(t)=2.4(1-e^{-t/(7.5\times 10^{-5})})$

- 4. In the circuit below, $R_1 = 100\Omega$, $R_1 = 150\Omega$, $R_3 = 100\Omega$, H = 0.1H, $C = 20\mu F$, V = 60V. The circuit is in steady state initially when the switch is at position 2 (not connected). Find $v_C(t)$ and $i_L(t)$ for the following two independent cases:
 - after the switch is changed to position 1 at t = 0;
 - after the switch is changed to position 3 at t = 0;

Solution

Find initial values:

$$v_C(0) = \frac{100}{150 + 100} \times 60 = 24V, \qquad i_L(0) = \frac{6}{150 + 100} = 0.24A$$

 \circ after the switch is put on position 1 at t = 0,

$$v_C(\infty) = 60V, \quad i_L(\infty) = 60/100 = 0.6A$$

Find the time constants:

$$\tau_1 = R_1 C = 2 \times 10^{-3} s, \quad \tau_2 = L/R_2 = 10^{-3} s$$

The complete responses:

$$v_C(t) = v_C(\infty) + [v_C(0) - v_C(\infty)]e^{-t/\tau_1} = 60 - 36e^{-500t}, \quad i_L(t) = i_L(\infty) + [i_L(0) - i_L(\infty)]e^{-t/\tau_2} = 0.6 - 0.36e^{-1000t}$$

• after the switch is put on position 3 at t = 0,

$$v_C(\infty) = 0, \qquad i_L(\infty) = 0$$

The time constants are the same as above. The complete responses:

$$v_C(t) = v_C(\infty) + [v_C(0) - v_C(\infty)]e^{-t/\tau_1} = 24e^{-500t}, \quad i_L(t) = i_L(\infty) + [i_L(0) - i_L(\infty)]e^{-t/\tau_2} = 0.24e^{-1000t}$$

• About this document ...

Next: About this document ...

Ruye Wang 2008-03-05