

Régularisation physique pour la mesure des champs de vitesse des fluides

F. Champagnat¹, R. Yegavian², B. Leclaire², O. Marquet², S. Beneddine², D. Sipp²

¹ONERA/DTIM ²ONERA/DAFE

Séminaire IIP

Paris, 6 octobre 2016

retour sur innovation

Une physique complexe

Jet rond, nombre de Reynolds (Re) 10000 [van Dyke1982]

Une modélisation très compacte

□ Equations de Navier-Stokes incompressible

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\mathbf{grad}\,p + \nu\Delta\boldsymbol{u}$$

$$\nabla \cdot \boldsymbol{u} = 0$$

□ Une représentation très compacte

- Des questions théoriques ouvertes [Fefferman2000]
- Complexité liée au terme $(\boldsymbol{u} \cdot \nabla)\boldsymbol{u}$
 - impact quantifié par Re
- En apparence : 2 quantités physiques *u* et *p*
 - p peut être éliminée des équations
 - u est la grandeur centrale en mécanique des fluides expérimentale

Simulation numérique de N-S: les grandes familles

- □ 3 grandes familles basées sur corpus de résolution des EDP
 - Eléments finis, différences finies...
 - EDP + Conditions initiales et aux limites $\rightarrow \underline{\boldsymbol{u}}(\boldsymbol{x},t)$ et $p(\boldsymbol{x},t)$
- □ Direct Numerical Simulation (DNS)
 - Objectif : prendre en compte toutes les échelles significatives
 - Finesse de la maille liée à Re
 - Coût polynomial en Re
- □ Reynolds Average Navier-Stokes (RANS)
 - Décomposition champ moyen stationnaire + perturbation instationnaire
 - Equation du champ moyen
 - forçage par termes de corrélation de la perturbation: « tenseurs de Reynolds »
 - Tenseurs spécifiés en pratique par des modèles de turbulence
 - Très utile pour quantités moyennes d'intérêt (portance, trainée)
- □ Large Eddy Simulation (LES)
 - Décomposition avec champ filtré + perturbation
 - Une partie des échelles significatives sont modélisées

Liens simulation/expérience

- □ DNS est un outil cher, rarement accessible
 - Disponibilité de supercalculateurs
- □ RANS (et dans une moindre mesure LES) accessibles
 - Reposent sur des modèles et leurs paramètres
 - Expérience peut être utilisée pour estimer ces paramètres
- □ Plus généralement : en cas de forte sensibilité au conditions initiales ou aux limites
 - « Mesurer » ces conditions

Vélocimétrie par imagerie de particule (PIV)

□ Principe

- Un fluide ensemencé
 - Ajout de particules entraînées par le fluide
 - Typiquement : gouttelettes d'huile
- Une nappe laser
 - deux pulses séparés de qq 100 ns First light pulse at t Second light pulse at t
- Caméra double frame
- Un algo d'appariement dense

Au total : une imagerie haut de gamme

Evolutions

- 3D : PIV tomographique (« tomoPIV »)
- PIV haute cadence
 - vers une PIV « résolue en temps » (i.e. à Shannon par rapport au temps)
 - Avec approches tracking, Particle Tracking Velocimetry (PTV)

Exemple de PIV haute cadence sur jet « rond »

Résultat d'un algo PIV standard

□ Norme du champ de vitesse

□ Limitations

- Résolution :
 - Densité d'ensemencement
 - Régularisation spatiale (échelle des fenêtres de corrélation)
- Bruit
 - RMS (puissance laser, temps d'exposition, taille pixel)
 - Biais (taille pixel / f#)→ Peak-locking

Comment utiliser les corrélations temporelles bien visibles ?

Plan

- □ Nécessité d'une régularisation temporelle
- □ Régularisation générique
- □ Régularisation physique
 - Imposer Navier-Stokes?
- □ Alternatives à Navier-Stokes ?

Plan

- □ Nécessité d'une régularisation temporelle
- □ Régularisation générique
- □ Régularisation physique
 - Imposer Navier-Stokes ?
- □ Alternatives à Navier-Stokes ?

Régularisation générique

□ Utilisation de principes « universels » sur le mouvement

- Energie finie
- Régularité
- Régularité par morceaux

□ Diverses déclinaisons

- Pénalisation globales
 - [Weickert2001] $E(u,v) = \int \left((I_x u + I_y v + I_t)^2 + \lambda \Psi(||\nabla_3 u||^2 + ||\nabla_3 u||^2) \right) \, dx \, dy \, dt$
- Modèles constants ou affines par fenêtre
 - Constant par fenêtre : le cas le plus courant en PIV 2D2C
 - Affines :
 - marginal en PIV
 - assez courant en analyse des déformations de matériaux
 - Cas Multi-Frame : constant par fenêtre, polynomiales en temps
 - > FTC [Lynch2013], FTEE [Jeon2014], LKFT [Yegavian2016]

Lucas-Kanade Fluid Trajectories: Principe

(Thèse R. Yegavian [Yegavian2016a])

Séquence de (2N+1) images, trajectoire passe au pixel k at t=0

Principe LKFT PIV 2C2D

2 images: Approche directe, Lucas-Kanade (ordre 1)

$$\sum_{\boldsymbol{m}} w(\boldsymbol{m} - \boldsymbol{k}) \left[I_0(\boldsymbol{m}) - I_1(\boldsymbol{m} + \boldsymbol{u}(\boldsymbol{k}, 1)) \right]^2$$

FOLKI-PIV [Champagnat2011]

Principe LKFT Time-Resolved PIV

2N+1 images: Lucas-Kanade Fluid Trajectory (LKFT), ordre P

Même paires d'images que FTC/FTEE

avec
$$u(k,n) = \sum_{p=1}^{P} a_p^{(k)} n^p$$

LKFT: algorithme itératif

□ Fonction Objectif

$$\sum_{\boldsymbol{m}} w(\boldsymbol{m} - \boldsymbol{k}) \left\{ \sum_{n=-N, n \neq 0}^{N} \left[I_0(\boldsymbol{m}) - I_n \left(\boldsymbol{m} + \sum_{p=1}^{P} \boldsymbol{a}_p^{(\boldsymbol{k})} n^p \right) \right]^2 \right\}$$

□ Résolution itérative

- Critère structurellement identique au cas 2-frames (i.e. FOLKI [Champagnat 2011])
- Principe d'implémentation : schéma de descente Gauss-Newton
- Potentiel de parallélisation GPU identique à FOLKI
 - Bench FOLKI: 4K en 20ms sur GPU Titan

Résultats expérimentaux sur un jet plan

Re	1100
U_{ref}	4m/s
L _{ref}	4mm
f	10KHz

LKFT vs FOLKI-SPIV

- Amélioration SNR → dérivées spatiales et temporelles plus précises
- Meilleure régularité des structures et de leur transport

LKFT vs FOLKI-SPIV

- Amélioration SNR → dérivées spatiales et temporelles plus précises
- Meilleure régularité des structures et de leur transport
- SANS PERTE DE DETAILS!

Autres caractéristiques et limitations

□ Amélioration peak-locking

■ Diamètre particule ≈0.6 pixels

□ Régularisation temporelle par fenêtre (FTC, FTEE, LKFT)

- Tirent meilleur parti des données que les méthodes 2-frames
- Accès à l'accélération

□ Limitations :

- Logique de sélection de modèle (ordre des polynômes, horizon temporel)
- Horizon limité à une dizaine d'images

Plan

- □ Nécessité d'une régularisation temporelle
- □ Régularisation générique
- □ Régularisation physique
 - Imposer Navier-Stokes?
- □ Alternatives à Navier-Stokes ?

Régularisation Physique

« Le résultat du traitement PIV devrait satisfaire Navier-Stokes Incompressible! »

Deux objectifs

- Etre proche des mesures PIV
- Satisfaire Navier-Stokes incompressible

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = -\mathbf{grad}\, p + \nu \Delta \boldsymbol{u}$$

$$\nabla \cdot \boldsymbol{u} = 0$$

□ Palier aux limitations des données haute cadence

- Résolution spatiale limitée
 - Fenêtre de corrélation (PIV)
 - Ensemencement (PTV)
- Résolution temporelle limitée
 - Pseudo-résolu en temps : toutes les échelles ne sont pas captées

□ Obtenir des quantités difficilement mesurables

- Pression
- Zones inaccessibles à la mesure

Approche « assimilation » [Yegavian2015]

Cost-function

$$\mathcal{J}(\mathbf{q}_0, \mathbf{q}_c) = \sum_{k=0}^{N} \int_{\Omega_m} (\mathcal{M}(\mathbf{q}_k) - \mathbf{Y}^k)^2 d\mathbf{x}$$
 (1)

$$\mathbf{Y}^{i}$$
 $\mathbf{q} = [u, v, p]$
 \mathcal{M}

PIV measurements vector grid $\mathbf{q} = [u, v, p]$ | Supersampled reconstructed flow Observation operator

Constraint

$$\partial_t \mathbf{q} = \mathcal{N}(\mathbf{q}) , \quad \mathbf{q}(\mathbf{x}, t_0) = \mathbf{q}_0(\mathbf{x}) , \quad \mathbf{q}(\mathbf{x}_c, t) = \mathbf{q}_c(\mathbf{x}_c, t)$$
 (2)

 \mathcal{N} | Incompressible Navier-Stokes operator

Un précurseur : [Gronskis2013]

Assimilation : Modélisation en espace

$$\mathbf{Y}^{i}$$
 $\mathbf{q}(\mathbf{x},t) = [u, v, p]$
 $\mathbf{q}_{0}(\mathbf{x})$
 $\mathbf{q}_{c}(\mathbf{x}_{c},t)$

Grille des mesures de vitesse Champ de vitesse reconstruit Conditions initiales (CI) Conditions aux limites (CL)

Assimilation : Modélisation en temps

N+1 Number of measurements Δt_m Time between measurements

Assimilation: Méthodologie de Résolution [Yegavian2015]

□ Minimisation par rapport aux conditions au limites et initiales

$$\mathcal{J}(\mathbf{q}_0,\mathbf{q}_c) = \sum_{k=0}^N \int_{\Omega_m} (\mathcal{M}(\mathbf{q}_k) - \mathbf{Y}^k)^2 d\mathbf{x}$$

Sous contrainte

$$\partial_t \mathbf{q} = \mathcal{N}(\mathbf{q}) \;,\;\; \mathbf{q}(\mathbf{x},t_0) = \mathbf{q}_0(\mathbf{x}) \;,\;\; \mathbf{q}(\mathbf{x}_c,t) = \mathbf{q}_c(\mathbf{x}_c,t)$$

$$\mathcal{N} \; | \; \text{Incompressible Navier-Stokes operator}$$

- Descente de gradient pseudo Newton (LBFGS)
 - Etape calculatoire clé : calcul du gradient de $\mathcal{J}(\mathbf{q}_0, \mathbf{q}_c)$
 - Approche DNS avec schéma splitting semi-implicite
 - Méthode de l'adjoint discret

Validation sur cas de simulation

□ Ecoulement derrière une marche descendante

Numerical simulation, flow past a backward facing step

$$egin{array}{c|c} Re & 800 \\ U_{ref} & 1 \\ L_{ref} & 1 \\ \end{array}$$

Validation sur cas de simulation

□ 2 snapshots issus de l'assimilation d'une PIV

- Partielle en espace
- Sous-résolue en temps d'un facteur 3

Vitesse transverse adimensionnée

Retour sur jet plan

Re	1100
U_{ref}	4m/s
L_{ref}	4mm
f	10KHz

Echantillonnage temporel

□ Données d'entrées sous-échantillonnées en temps

Restitution temporelle

Restitution d'échelles temporelles absentes des données :
 « superrésolution temporelle »

Restitution spatiale

□ Comparaison

- Assimilation sur données non résolues en temps
- LKFT sur données résolues en temps

$$t = 2.0$$

Bilan des approches assimilation basées DNS

d'introduire des modèles de turbulence)

□ Technicité élevée

- DNS avec schémas robustes
- Développement code adjoint
- Cout numérique important

Investissement non négligeable

□ Formalisme très général

- Complétude : toutes les contraintes physiques sont prises en comptes
- Principes et outils généraux
 - passage au 3D
 - Approches très utilisées en sciences de la terre, météorologie

□ Des résultats intéressants

- Gains en résolution temporelle
- Capacités d'extrapolation hors du domaine de mesure

Plan

- □ Nécessité d'une régularisation temporelle
- □ Régularisation générique
- □ Régularisation physique
 - Imposer Navier-Stokes ?
- □ Alternatives à Navier-Stokes ?

Alternatives à Navier-Stokes

☐ Transport de Vorticité [Ruhnau2007]

- Entrée : images PIV I(t) résolues en temps
- Sortie : champs u et vorticité Ω (2D + temps)
- Alternance de deux étapes
 - estimation de $\mathbf{u}(t)$ sachant $\mathbf{l}(t)$ et $\Omega(t)$
 - Propagation Ω (t) vers t+Δt sachant u(t) et Transport de Vorticité
- Filtrage « causal » : estimation de $\mathbf{u}(t)$ et $\Omega(t)$ basé sur mesures avant t

□ Vorticity in Cell [Schneiders2015]

- Méthodologie similaire à assimilation : on estime CI et CL
- Données éparses en vitesse et accélération issues de PTV 3D
- Simulation par VIC+, plus léger que DNS
- Calcul de gradient par adjoint
- □ Analyse de stabilité champ moyen [Beneddine2016]

Un résultat d'analyse de stabilité champ moyen (Thèse de S. Beneddine [Beneddine2016])

□ Propriété sur TF en temps du champ de vitesse [Beneddine2016]

 $\hat{\pmb{u}}(x,\omega) \approx \Lambda(\underline{\omega) \psi_1(x,\omega)}^{\text{Ne dépend que du champ moyen }\widehat{u}(x,\omega=0)}$ A estimer à partir d'une mesure locale résolue en temps

- $\psi_1(x,\omega)$ est un vecteur propre d'opérateur issu d'une analyse de stabilité en champ moyen
 - Opérateur construit à partir de Navier-Stokes, dépend du champ moyen
 - ψ₁ est associé à la plus grande valeur singulière de cet opérateur
- □ Validité [Beneddine2016]
 - Ecoulements dominés par un mécanisme d'instabilité convective

Comment utiliser ce résultat?

[Yegavian 2016]

Analyse de stabilité champ moyen : Comment ?

□ Deux entrées

- 1. Mesure ponctuelle en un point du champ
- 2. Champ moyen par accumulation de champs PIV classiques

[Yegavian 2016]

Analyse de stabilité champ moyen : Bilan

Analyse de stabilité champ moyen : Résultats

□ Cas d'un jet rond

Dimensionless instantaneous cross-stream velocity fluctuation at time t=0 and t=40.

[Yegavian 2016]

Analyse de stabilité champ moyen : Résultats

 \Box Cas jet rond [Yegavian 2016]: Vitesse transverse (x, t)

Bilan sur les approches de régularisation en PIV

□ Régularisation Génériques

- Gains en SNR
- Gain en régularité des structures

□ Régularisations Physiques

- Gains en résolution temporelle et spatiale
- Capacités d'extrapolation
- Résultats expérimentaux sur TR 2D2C et 3D3C

Domaine actif

- Passer au 3D avec l'approche DNS
- Primitives d'assimilation (trajectoires, vitesses, localisation, densité…)
- Workshop dédié à Lisbonne en juillet 2016 (http://cfdforpiv.org)

Bibliographie

[van Dyke1982] "An album of fluid motion", Parabolic Press, 1982

[Fefferman2000] "Existence and Smoothness of the Navier-Stokes equation" http://www.claymath.org/sites/default/files/navierstokes.pdf

[Wieckert2001] « Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint", *JMIV*

[Lynch2013] "A high-order time-accurate interrogation method for time-resolved PIV", MST [Jeon2014] "Fluid trajectory evaluation based on an ensemble-averaged cross-correlation in time-resolved PIV", EXIF

[Yegavian2016a] « Lucas-Kanade Fluid Trajectories for time-resolved PIV », MST

[Gronskis2013] « Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation », JCP, 2013

[Yegavian2015] "Performance assessment of PIV super-resolution with adjoint-based data assimilation", PIV15

[Ruhnau2007] « Variational estimation of experimental fluid flows with physics-based spatiotemporal regularization », MST

[Schneiders2015] « Pouring time into space », PIV15

[Beneddine2016] « Conditions for validity of mean flow stability analysis » JFM

[Yegavian2016b] « Flow reconstruction from partial PIV data using two different physics-based approaches », présentation au Workshop CFD for PIV, Lisbonne, Juillet 2016

Questions

