

Thermal Control Subsystem FAME

PRELIMINARY TEMPERATURE PREDICTIONS

- ASSUMPTIONS
- CASES
- RESULTS
- CONCLUSIONS
- FORWARD WORK

- ALTITUDE = 19323.4 NM
- ENVIRONMENTAL CONSTANTS: SOLAR = 444 W/in² ALBEDO = .28% IR = 70 W/in²
- BLANKET $\alpha/\epsilon = .37/.78$
- SCT $\alpha/\epsilon = .10/.85$
- TRIM TABS:
 - TILTED 45° FROM SPIN AXIS.
 - SCT ON BOTH SIDES NO BLANKETS.
- SHEET METAL SUN SHADE WITH SCT ON EXPOSED SIDES DEPENDING ON CASE.
- SOLAR PANELS:
 - 24.72% SOLAR CELL COVERAGE IN NO PITCH CASE.
 - 34.9% SOLAR CELL COVERAGE IN 10º PITCH CASE.
 - UNPOPULATED/UNBLANKETED AREA IS SCT.

CASES

- PANELS NORMAL TO SPIN AXIS
- PANELS PITCHED 10º TOWARD INSTRUMENT
- PANELS AND SUNSHADE BLANKETED
- PANELS AND SUNSHADE UNBLANKETED

RESULTS

1	1	α f	6)
l	T	OI	\mathbf{O}_{J}

	S/C	S/A		Sun Shield		
CASE STUDY	BUS MLI	Sun Side	Shade Side	Sun Side	Shade Side	Trim Tabs
CASE 1 - NO PITCH w/ MLI						
Solar Cells Cover 24.72% of S/A	-165	-5	-142	-70	-162	n/a
Orbital Min/Max	n/a	n/a	n/a	n/a	n/a	-150 / -78
CASE 2 - NO PITCH w/o MLI						
Solar Cells Cover 24.72% of S/A	-101	-40	-41	-91	-92	n/a
Orbital Min/Max	n/a	n/a	n/a	n/a	n/a	-115 / -85
CASE 3 - 10º PITCH w/ MLI						
Solar Cells Cover 34.9% of S/A	-163	18	-132	-65	-170	n/a
Orbital Min/Max	n/a	19 / 17	n/a	-68 / -62	n/a	-150 / -78
CASE 4 - 10º PITCH w/o MLI						
Solar Cells Cover 34.9% of S/A	-90	-25	-26	-91	-92	n/a
Orbital Min/Max	n/a	-28 / -22	-29 / -23	-97 / -85	-98 / -86	-112 / -83

(2 of 6)

(3 of 6)

$\underset{(4 \text{ of } 6)}{Results}$

(6 of 6)

- Trim Tab temperature swing less severe when panels are blanketed.
 - May have biggest impact on instrument since temperature swing will be apparent over entire mission – view to instrument.
- About 3 hours for the vehicle temperature to return to pre-eclipse state (passively).
 - Vehicle stability an affected yet separate issue.
- Blankets on sun shield and panels cause more severe temperature changes during eclipse for those components.

NO MLI / with MLI

- $100 \text{ vs } 113^{\circ}\text{C} \Delta \text{T}$ for solar panels.
- 90 vs 113° C Δ T for sun shield.
- I have a lot of work to do.....(see next slide).

- Begin running worst hot/cold cases.
 - Worst case environmental constants, blanket emissivities, BOL/EOL material properties, min/max line voltages.
- Size electronics deck radiator.
 - This will determine required Heater circuit dissipations /number of circuits.
 - Thermal time constant Reaction time to regain stability.
 - Box layout on deck.
- Add detail to Instrument.
 - In order to attain Interface Heater/Conductance requirement.
 - Predict star tracker interface/heater requirement.
 - Get fluxes on Instrument apertures.
 - Antenna temperature prediction for required test limits.

- Incorporate realistic solar cell layout.
- Geometry changes
 - Trim Tab/Bus size.
 - Box layout
- Verify all conductors/masses