Kai Gao

\$\mathbb{\capacita}\ 732-215-2539 | \mathbb{\sigma} kg627@scarletmail.rutgers.edu | \$\mathbb{\sigma}\$ gaokai15.github.io

EDUCATION

Rutgers, the State University of New Jersey

Robotics PhD advised by Dr. Jingjin Yu

Aug. 2019 – Present Piscataway, USA

- IROS 2023 Finalist of Best RoboCup Paper Award.
- · Related courses: Computer Vision, Machine Learning

University of Science and Technology of China(USTC)

Aug. 2015 – Jun. 2019

Hefei, China

Bachelor in Mathematics

- Outstanding Graduates(2019)
- Outstanding Student Scholarship (2015-2016) (2017-2018)
- Gold Award of China Undergraduate Mathematical Contest in Modeling in Anhui Province(2017)(1/65 in USTC)
- Related courses: Computer Graphics

WORK EXPERIENCE

Advanced Robotics Intern

May. 2022 - Sep. 2022

Berkeley, USA

- Siemens Corporation
 - Conducted extensive literature research on object packing problems.
 - Developed model-free approaches for efficiently packing irregularly-shaped objects.
 - Created a prototype pick-and-pack system with a UR5 robot, integrating the proposed packing strategy and Siemens' advanced grasping technology.
 - Created demonstration videos and experimental results of the packing strategy for potential customers to showcase its effectiveness and efficiency.

RESEARCH EXPERIENCE

Task and Motion Planning

Mar. 2020 - Present

Research Assistant

Algorithmic Robotics and Control Lab(ARCL), Rutgers University, USA

- Implemented various complete perception-planning-control pipelines utilizing different robotic arms.
- Developed efficient algorithms and analyzed structural characteristics with mathematical proofs for various manipulation scenarios.
- Applied deep learning models for perception and stability prediction of object placement.
- Performed extensive experimentation and demonstration utilizing various simulation platforms, including PyBullet, Issac Gym, Drake, and ROS+Gazebo.

Multi-Robot Path Planning

Jul. 2018 - Sep. 2018

Research Intern

Algorithmic Robotics and Control Lab(ARCL), Rutgers University, USA

- Designed fast algorithms to solve multi-robot path planning problems with different objectives.
- · Designed an efficient algorithm to solve the perimeter guarding problem.
- Proved some lemmas and theorems on the efficiency of the algorithms.

Image Registration

Sep. 2017 - Jun. 2019

Research Assistant

Graphics&Geometric Computing Laboratory(GCL), USTC, China

- Developed a highly efficient non-rigid image registration algorithm that is able to handle noise and outliers effectively.
- Implemented the algorithm with C++ and employed OpenGL for visualization.

SELECTED CERTIFICATES & AWARDS

IROS 2023 Finalist of Best RoboCup Paper Award.

RoboCup Federation

Oct 2023 Detroit, MI

2017

Gold Award of China Undergrad. Math. Contest in Modeling in Anhui Province (1/65 in USTC)

China Society for Industrial and Applied Mathematics

Hefei, China

Reinforcement Learning Specialization. July 2023

University of Alberta, Alberta Machine Intelligence Institute

Coursera

Outstanding Graduates(2019)

Jun. 2019

University of Science and Technology of China

Hefei, China

Outstanding Student Scholarship (2015-2016) (2017-2018)

University of Science and Technology of China

2016, 2018 Hefei, China

SKILLS

Programming Languages: Python, Matlab, C++

Tools: Git, ROS, PyBullet, Gazebo, OpenCV, PyTorch, Gurobi, Drake, Isaac Gym

INVITED TALKS

Fast High-Quality Tabletop Rearrangement in Bounded Workspace.

TRIPODS/DATA-INSPIRE Graduate Student Workshop

March 2022

Virtual

On Minimizing the Number of Running Buffers for Tabletop Rearrangement

TRIPODS (Transdisciplinary Research in Principles of Data Science) Seminar

May 2021

Virtual

PUBLICATIONS

- K. Gao, J. Yu, T. S. Punjabi, and J. Yu. "Effectively Rearranging Heterogeneous Objects on Cluttered Tabletops." 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023).
- Andy Xu*, K. Gao*, S. W. Feng*, and J. Yu. "Optimal and Stable Multi-Layer Object Rearrangement on a Tabletop." 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023).
- K. Gao, S. W. Feng, B. Huang, and J Yu. "Minimizing Running Buffers for Tabletop Object Rearrangement: Complexity, Fast Algorithms, and Applications." The International Journal of Robotics Research (IJRR).
- K. Gao, and J. Yu. "On the Utility of Buffers in Pick-n-Swap Based Lattice Rearrangement." 2023 IEEE International Conference on Robotics and Automation (ICRA 2023).
- K. Gao and J. Yu. "Toward Efficient Task Planning for Dual-Arm Tabletop Object Rearrangement." 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022).
- K. Gao, D. Lau, B. Huang, K. E. Bekris and J. Yu. "Fast High-Quality Tabletop Rearrangement in Bounded Workspace." 2022 IEEE International Conference on Robotics and Automation (ICRA 2022).
- E. R. Vieira, D. Nakhimovich, K. Gao, R. Wang, J. Yu and K. E. Bekris. "Persistent Homology for Effective Non-Prehensile Manipulation" 2022 IEEE International Conference on Robotics and Automation (ICRA 2022).
- R. Wang, K. Gao, J. Yu and K. E. Bekris. "Lazy Rearrangement Planning in Confined Spaces." the 32nd International Conference on Automated Planning and Scheduling (ICAPS 2022).

- K. Gao and J. Yu. "Capacitated Vehicle Routing with Target Geometric Constraints." 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021).
- K. Gao, S. W. Feng, and J Yu. "On Minimizing the Number of Running Buffers for Tabletop Rearrangement." 2021 Robotics: Science and Systems (RSS 2021).
- R. Wang*, **K. Gao***, D. Nakhimovich*, J. Yu, and K. E. Bekris. "Uniform Object Rearrangement: From Complete Monotone Primitives to Efficient Non-Monotone Informed Search." 2021 IEEE International Conference on Robotics and Automation (ICRA 2021).
- S. W. Feng, **K. Gao**, J. Gong, and J. Yu. "Sensor Placement for Globally Optimal Coverage of 3D-Embedded Surfaces." 2021 IEEE International Conference on Robotics and Automation (ICRA 2021).
- S. W. Feng, S. D. Han, **K. Gao**, and J. Yu. "Efficient Algorithms for Optimal Perimeter Guarding." 2019 Robotics: Science and Systems (RSS 2019).