Overview Papers

Loubna FARES

Supervisors: Abdelmalik Taleb Ahmed (IEMN DOAE) and Salim Taleb (CERAMATHS)

Polytechnic University of Hauts-de-France

March 23, 2022

- RNN
- LSTM
- Attention Mechanism
- Transfomers
- Bibliography

- RNN
- 2 LSTM
- Attention Mechanism
- 4 Transfomers
- Bibliography

Neuron

Figure: Classical neuron

Recurrent neuron

Figure: Classical neuron

$$y_{(t)} = \sigma(W_x^T \cdot X_{(t)} + w_y \cdot y_{(t-1)} + b)$$
(1)

Recurrent Layer

$$Y_{(t)} = \phi(W_x^T . X_{(t)} + W_y^T . Y_{(t-1)} + b)$$
 (2)

Simple RNN limitations

- Slow convergence
- Short memory.
- Vanishing/exploding gradient.

- 1 RNN
- 2 LSTM
- Attention Mechanism
- 4 Transfomers
- Bibliography

Long-Short-Term-Memory

LSTM Cell is composed of three big operations :

- Forget Gate
- Input Gate
- Output Gate

Long-Short-Term-Memory

Forget Gate

$$f_t = \sigma(W_f.[h_{t-1}, x_t] + b_b)$$
 (3)

Input Gate

$$i_t = \sigma(W_i.[h_{t-1}, x_t] + b_i)$$
 (4)

$$g_{(t)} = tanh(W_C.[h_{t-1}, x_t] + b_C)$$
(5)

Output Gate

$$o_t = \sigma(W_o.[h_{t-1}, x_t] + b_o)$$
 (6)

$$h_{(t)} = o_t * tanh(C_t) \tag{7}$$

Encoder-Decoder Architecture

- 1 RNN
- 2 LSTM
- Attention Mechanism
- Transfomers
- Bibliography

Attention is All we need

• it was firstly introduced in 2017

Attention Is All You Need

Ashish Vaswani* Google Brain awaswani@google.com	Noam Shazeer* Niki Parmar* Google Brain Google Research noam@google.com nikip@google.com		Research	Jakob Uszkoreit* Google Research uszűgoogle.com
Llion Jones* Google Research	Aidan N. Gomez* † University of Toronto		Łukasz Kaiser* Google Brain	
llion@google.com	aidan@cs.toronto.edu		lukaszkaiser@google.com	
	Illia Polosu illia.polosukhi		com	

Abstract

The dominant sequence transduction models are based on complex recurrence or convolutional security or reviews that include an escolar and a secolar. The best convolutional security or reviews that include an escolar and a secolar. The New Secolar Secola

Encoder-Decoder With Attention

Scaled Dot-Product Attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- 1 RNN
- 2 LSTM
- Attention Mechanism
- 4 Transfomers
- Bibliography

Transfomers and the mechanism of Attention

History of Transformers:

- it was firstly introduced in 2017
- in 2020 they fully replaced Convolutional architecture in image processing
- in 2021 Transformer for video understanding
- Now we are in computer Vision Revolution

Why replacing CNN with Transformers in computer vision?

- CNN are localised
- Lack of spatial information
- NLP

Computer Vision

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Swin Transformer

Attention

Self-Attention

Transfomers

- 1 RNN
- 2 LSTM
- Attention Mechanism
- Transfomers
- Bibliography

References

```
https://www.youtube.com/watch?v=64Y13K-4FzM&t=1295s&ab_channel=CNRS-FormationFIDLE
https://www.youtube.com/watch?v=LALTmQhVkfU&t=1557s&ab_channel=ThibaultNeveu
https:
//www.youtube.com/channel/UCUzGQrN-lyyc0BWTYoJM_Sq
```