Chapitre 10 : Le principe fondamental de la dynamique dans un référentiel non galiléen

I Cas général

A) Enoncé

On considère un référentiel R galiléen, absolu et un référentiel R' non galiléen, relatif.

Dans
$$R$$
 galiléen : on a $[m\vec{a}_a] = [\vec{F}_{\text{ext}}]$
Et $[m\vec{a}_a] = [m\vec{a}_r] + [m\vec{a}_e] + [m\vec{a}_c]$
Donc $[m\vec{a}_r] = [m\vec{a}_a] - [m\vec{a}_e] - [m\vec{a}_c] = [\vec{F}_{\text{ext}}] + \underbrace{[-m\vec{a}_e]}_{[\vec{F}_{i,e}]} + \underbrace{[-m\vec{a}_c]}_{[\vec{F}_{i,e}]}$
Soit $[m\vec{a}_r] = [\vec{F}_{\text{ext}}] + [\vec{F}_{i,e}] + [\vec{F}_{i,c}]$.

B) Expression des forces d'inertie

1) D'entraînement

$$\vec{F}_{i,e} = -m\vec{a}_e(M) = -m\vec{a}_c(M).$$

2) De Coriolis

$$\vec{F}_{i,c} = -m\vec{a}_c = -2m\vec{\Omega}_e \wedge \vec{v}_r$$

C) Aspect énergétique

Force d'inertie de Coriolis : $\delta W_{\bar{F}_{i,c}} \equiv 0$ (ne dérive pas d'une énergie potentielle) Force d'inertie d'entraînement : en général, $\delta W_{\bar{F}_{i,c}} \not\equiv 0$. (parfois...)

II Cas particuliers

A) R' en translation par rapport à R.

1) Forces d'inertie d'entraînement

$$\begin{split} & [\vec{F}_{i,e}] = [-m\vec{a}_e].\\ & \vec{a}_e \text{ est uniforme : on a } \vec{a}_e = \vec{a}_a(O') \text{, donc } \vec{a}_e(\vec{f},t) \text{.} \end{split}$$

$$\begin{pmatrix}
\times & G_{\times} & \times & \longrightarrow & -m\vec{a}_{e} \\
\times & & -M\vec{a}_{e}
\end{pmatrix}$$

(La force d'inertie est proportionnelle aux masses)

2) Forces d'inerties de Coriolis

$$\vec{F}_{i,c} = \vec{0} \, (\text{car } \Omega_e = \vec{0})$$

3) Application : pendule pesant dans un référentiel accéléré

$$\overrightarrow{a_e = \text{cte}} \qquad \qquad \overrightarrow{u_x} \overset{\longleftarrow}{\longleftarrow} \overrightarrow{u_y}$$

 $\vec{a}_e = a_e \vec{u}_x$

Dans le référentiel R', le système {pendule} est soumis aux actions : $[\vec{P}]$, $[\vec{R}]$, $[\vec{F}_{i,e}]$.

- Principe fondamental de la dynamique :
- Théorème du moment cinétique par rapport à Oy, fixe dans R':

 $J_{\Lambda}\ddot{\theta} = -mgl\sin\theta + ma_{\alpha}l\cos\theta$.

- Peut-on appliquer le théorème de conservation de l'énergie mécanique ?
- $[\vec{P}]$ dérive d'une énergie potentielle

 $[\vec{R}]$ ne travaille pas dans R'.

$$[\vec{F}_{i,c}] = -ma_e \vec{u}_x = -\vec{\nabla}(ma_e x_G) \cdot (x_G = -l\sin\theta)$$

Donc
$$\frac{1}{2}J_{\Delta}\dot{\theta}^{2} - mgl\cos\theta - ma_{e}l\sin\theta = \text{cte}$$

Et en dérivant $J_{\Lambda}\ddot{\theta} + mgl\sin\theta - ma_{e}l\cos\theta = 0$.

- Equilibre :
- Condition nécessaire : $\ddot{\theta} = 0$, soit $\tan \theta = \frac{a_e}{g}$.
- Ou $\frac{dE_p}{d\theta} = mgl\sin\theta ma_el\cos\theta = 0$ (d'où la même relation)
- Stabilité :

$$\theta = \theta_{e} + \alpha$$

On a $J_{\Delta}\ddot{\alpha} + mgl\sin\theta_e + mgl\alpha\cos\theta_e - ma_el\cos\theta_e + ma_el\sin\theta_e = 0$

Soit
$$J_{\Delta}\ddot{\alpha} + mgl\alpha\cos\theta_e (1 + \frac{a_e}{\underbrace{g}_{\tan\theta_e}}\tan\theta_e) = 0$$

Donc
$$J_{\Delta}\ddot{\alpha} + \frac{mgl}{\cos\theta_e}\alpha = 0$$
.

Si $\cos \theta_e > 0$, la position est stable, sinon elle est instable.

B) R' en rotation autour de $^{\Delta}$ fixe dans R.

1) Forces d'inertie

• $\vec{F}_{i,e}$:

$$\vec{F}_{i,e} = -m\vec{a}_e = -m(-r\dot{\psi}^2\vec{u}_r + r\ddot{\psi}.\vec{u}_\theta)$$
 ($mr\dot{\psi}^2\vec{u}_r$: force centrifuge)

•
$$\vec{F}_{i,c} = -2m\vec{\Omega}_e \wedge \vec{v}_r = -2m(\dot{\psi}.\vec{u}_z) \wedge (\dot{r}.\vec{u}_r + r\dot{\theta}.\vec{u}_\theta + \dot{z}.\vec{u}_z) = -2m\dot{r}\dot{\psi}.\vec{u}_\theta + 2m\dot{r}\dot{\psi}\dot{\theta}.\vec{u}_r$$

2) Exemples

On cherche ω_l , vitesse angulaire à partir de laquelle le bonhomme reste collé à la paroi si on retire le plancher.

- Etude dimensionnelle:

$$\omega_l(R, f, m, g)$$
; $[R] = [L], [f] = 1, [m] = [M], [g] = [L][T]^{-2}$.

On peut donc prévoir une relation de la forme $\omega_l = \alpha(f) \sqrt{\frac{g}{R}}$, où α est une

fonction décroissante de f.

- Dans *R* terrestre :

Théorème de la résultante dynamique :

$$m\vec{a}(G) = \vec{P} + \vec{R}$$
, soit $-m\omega^2 R.\vec{u}_r = \vec{P} + \vec{R}$

$$\begin{cases} -m\omega^2 R = -N \\ 0 = -mg + \overline{T} \end{cases} \text{ Donc } \begin{cases} N = m\omega^2 R \\ \overline{T} = mg \end{cases}.$$

La condition s'écrit donc $\overline{T} < fN$, soit $mg < mf\omega^2 R$.

Ainsi,
$$\omega > \omega_l = \sqrt{\frac{g}{Rf}}$$
.

- Dans R' lié au cylindre :

Le théorème de la résultant dynamique s'écrit ici :

 $m\vec{a}(G)=\vec{P}+\vec{F}_{i,e}+\vec{R}$ soit $\vec{0}=m\vec{g}+m\omega^2R.\vec{u}_r+\vec{T}+\vec{N}$, et on retrouve ensuite la même relation.

- Ordre de grandeur : pour $R \sim 2$ m, $g \sim 10$ m.s⁻¹ et $f \sim 0.3$, on a :

 $\omega_l = 4 \text{rad.s}^{-1}$, et $v_l = \omega_l \times R = 8 \text{m.s}^{-1}$ (vitesse linéaire du bonhomme)

- Ultra centrifugation:
- Sédimentation :

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Principe fondamental de la dynamique :

$$m\vec{a} = \vec{P} + \vec{A} - f\vec{v} = (m - m_0)\vec{g} - 6\pi\eta r\vec{v}$$

Soit $m \frac{d\vec{v}}{dt} = (m - m_0)\vec{g} - 6\pi\eta r\vec{v}$, donc les particules atteignent une vitesse

maximale
$$\vec{v}_l = \frac{(m - m_0)\vec{g}}{6\pi\eta r} = \frac{\frac{4}{3}\pi r^3(\rho - \rho_0)}{6\pi\eta r}\vec{g} = \frac{2}{9}\frac{r^2(\rho - \rho_0)}{\eta}\vec{g}$$

Pour $r \sim 1 \mu \text{m}$, $\rho \sim 2.10^3 \text{kg.m}^{-3}$, $\rho_0 \sim 1.10^3 \text{kg.m}^{-3}$, $\eta \sim 10^{-3} \text{Poiseuille (SI)}$,

on a
$$v_l \sim \frac{2}{9} \frac{10^{-12}.10^3.10}{10^{-3}} \sim 2.10^{-6} \, \text{m.s}^{-1}$$
.

Comment accélérer le processus ?

Déjà, pour des particules données, tout est fixé sauf \vec{g} .

- Centrifugation:

$$\stackrel{\smile \omega}{\sim \sim \sim} \rightarrow_{\vec{u}_r}$$

Principe fondamental de la dynamique :

$$m\vec{a} = \vec{P} + \vec{A} + \vec{F}_{ie} - f\vec{v} + \vec{F}_{ic}$$

$$m\frac{d\vec{v}}{dt} = (m - m_0)\vec{g} + (m - m_0)\omega^2 R\vec{u}_r - 2m\omega \cdot \vec{u}_z \wedge \vec{v} - 6\pi \cdot \eta \cdot r \cdot \vec{v}$$

En régime permanent :

$$\vec{0} = (m - m_0)\vec{g} + (m - m_0)\omega^2 R\vec{u}_r - 2m\omega\vec{u}_z \wedge \vec{v} - 6\pi\eta .r.\vec{v}$$

Donc
$$\vec{v} \approx \frac{(m - m_0)\omega^2 R}{6\pi \eta . r} \vec{u}_r$$

(On néglige les composantes selon les autres axes)

Ainsi, le *g* du point précédent est remplacé par $\omega^2 R$. Actuellement, on peut obtenir une rotation de 10^3 tours par minute; ainsi, $\omega \sim 10^4 \, \text{rad.s}^{-1}$; pour $R \sim 10 \, \text{cm}$, on a $\omega^2 R \sim 10^7 \, \text{SI} \sim 10^6 \, \text{g}$.

III Compléments

A) Pendule conique

On suppose l'articulation sans frottements, permettant un mouvement dans un plan qui tourne à la vitesse angulaire ω (imposée).

1) Analyse

• On n'a qu'un seul degré de liberté (la rotation de l'axe est imposée)

- Système : {Tige}
- Référentiel : R lié à la tige verticale (en rotation)
- Actions exercées sur la barre : $[\vec{P}]$, $[\vec{R}]$, $[\vec{F}_{ie}]$, $[\vec{F}_{ic}]$.

2) Etude dynamique

• Equation du mouvement :

Théorème du moment cinétique par rapport à $\Delta = (Oz)$:

$$J_{\Delta}\ddot{\theta} = M_{\Delta}$$
, et $J_{\Delta} = m\frac{l^2}{12} + m\frac{l^2}{4} = m\frac{l^2}{3}$

Donc
$$m \frac{l^2}{3} \ddot{\theta} = M_{\Delta}$$
.

-
$$M_{\Delta}(\vec{P}) = -mg\frac{l}{2}\sin\theta$$

- $M_{\Delta}(\vec{R}) = 0$ (on suppose qu'il n'y a pas de frottements)
- $M_{\Delta}(\vec{F}_{i,e})$:

$$\vec{F}_{i,e} = m\omega^2 \frac{1}{2}\sin\theta$$

Attention : le champ est bien proportionnel aux masses, mais \vec{a}_e n'est pas uniforme, on ne peut donc pas le réduire à un glisseur en G (mais sûrement un peu plus bas) :

$$\frac{dm}{dr} = \frac{m}{l} dr$$

l'élément dm de masse est soumis à la force d'inertie $d\vec{F}_{i,e} = dm\omega^2 x.\vec{u}_x$.

Donc
$$dM_{\Delta}(\vec{F}_{i,e}) = dm \omega^2 x \times r \cos \theta = \frac{m}{l} \omega^2 r^2 \sin \theta \cos \theta . dr$$

Ainsi,
$$M_{\Delta}(\vec{F}_{i,e}) = \frac{m}{l}\omega^2 \sin\theta \cos\theta \times \frac{l^3}{3} = \frac{1}{3}ml^2\omega^2 \sin\theta \cdot \cos\theta$$

(Remarque : on a $\vec{F}_{i,e} = \frac{m}{l}\omega^2 \sin\theta \int_0^l r dr \cdot \vec{u}_x = \frac{1}{2}ml\omega^2 \sin\theta \cdot \vec{u}_x$, on a donc un glisseur appliqué au point situé aux 2/3 de la barre)

-
$$M_{\Delta}(\vec{F}_{i,c})$$
:

La vitesse relative d'un élément de la barre est dirigé selon \vec{u}_{θ} .

Ainsi, $\vec{\Omega}_e \wedge \vec{v}_r$ est dirigé selon \vec{u}_z .

Donc $M_{\Delta}(\vec{F}_{i,c}) = 0$. La force d'inertie de Coriolis n'a donc aucune influence sur le mouvement (mais elle en a une sur l'usure de l'axe)

Ainsi,
$$J_{\Delta}\ddot{\theta} = \frac{ml^2}{3}\omega^2 \sin\theta \cos\theta - mg\frac{l}{2}\sin\theta$$
, ou $\ddot{\theta} = \sin\theta(\omega^2 \cos\theta - \omega_c^2)$
avec $\omega_c = \sqrt{\frac{3}{2}\frac{g}{l}}$

• Equilibre :

 $\sin\theta(\omega^2\cos\theta-\omega_c^2)=0$

-
$$\sin \theta = 0$$
, et $\theta_e = 0$ ou $\theta_e = \pi$

-
$$\cos \theta = \frac{\omega_c^2}{\omega^2}$$
, possible que si $\omega > \omega_c$, et on a alors $\theta_e = \pm \theta_0$ où $\theta_0 = \operatorname{Arccos} \frac{\omega_c^2}{\omega^2}$

• Stabilité :

$$\alpha = \theta - \theta_{e} \ll 1$$
.

On a $\ddot{\alpha} = (\sin \theta_e + \alpha \cos \theta_e)(\omega^2 \cos \theta_e - \omega^2 \alpha \sin \theta_e - \omega_c^2)$

Soit
$$\ddot{\alpha} = \alpha \underbrace{(\omega^2 (2\cos^2 \theta_e - 1) - \omega_c^2 \cos \theta_e)}_{\text{<0 pour stabilité}}$$

- Si $\omega < \omega_c$: $\theta_e = 0$ est stable, $\theta_e = \pi$ est instable.

- Si $\omega > \omega_c$: $\theta_e = 0$ et $\theta_e = \pi$ sont instables, $\theta_e = \pm \theta_0$ sont stables.

3) Etude énergétique

• Conservation de l'énergie mécanique ?

-
$$[\vec{P}]$$
: $E_{p_1} = -mg \frac{l}{2} \cos \theta + \text{cte}$

-
$$[\vec{F}_{i,e}]$$
: $\delta W_{\vec{F}_{i,e}} = M_{\Delta}(\vec{F}_{i,e})d\theta = J_{\Delta}\omega^2 \sin\theta \cos\theta.d\theta = -d\left(J_{\Delta}\omega^2 \frac{\cos^2\theta}{2}\right)$

Donc
$$E_{p_2} = \frac{1}{2} m \frac{l^2}{3} \omega^2 \cos^2 \theta + \text{cte}$$
.

Les autres forces ne travaillent pas, le système est donc conservatif.

• Positions d'équilibre, stabilité :

B) Tension d'une tige en orbite circulaire

On cherche la tension de la tige en chacun de ses points ; on suppose que la tige reste toujours dans la direction *OG*.

- Système : {élément de tige}

$$+G$$
 $\downarrow z$
 $\downarrow z$
 $\downarrow z+dz$

- Référentiel : en rotation uniforme à la vitesse angulaire ω par rapport au référentiel géocentrique.
 - Actions s'exerçant sur l'élément :

$$[\vec{F}_g], [\vec{F}_{i,e}]$$
 pour les champs $(\vec{F}_{i,c} = \vec{0})$

 $[\vec{T}]$ pour les actions de contact.

$$\overrightarrow{T}(z)$$
 $\overrightarrow{T}(z+dz)$

- Théorème de la résultante dynamique :

$$0 = -G\frac{M_T dm}{r^2} + dm.\omega^2 r + T(z + dz) - T(z) \text{ (avec } r = R + z \text{ , où } R = OG)$$

Donc
$$dT = \underbrace{dm}_{=\frac{m}{l}dz} \left(\frac{GM_T}{r^2} - \omega^2 r \right) = \frac{m}{l} \left(\frac{GM_T}{(R+z)^2} - \omega^2 (R+z) \right) dz$$

- Relation entre ω et R : Théorème de la résultante dynamique appliqué à la tige dans le référentiel géocentrique :

$$m\vec{a}(G) = \vec{F}_g$$

Donc
$$-m\omega^2 R.\vec{u}_r = -\frac{GM_T m}{R^2} \vec{u}_r$$
, soit $\omega^2 R = \frac{GM_T}{R^2}$.

Ainsi, si on néglige
$$\frac{z}{R}$$
 dans $dT = \frac{m}{l} \left(\frac{GM_T}{(R+z)^2} - \omega^2 (R+z) \right) dz$, on obtient $dT = 0$.

Mais on peut négliger les termes d'ordre supérieur :

$$dT = \frac{m}{l} \left(\frac{GM_T}{R^2 (1 - 2\frac{z}{R})} - \omega^2 R (1 + \frac{z}{R}) \right) dz$$

$$=-3\frac{m}{l}\omega^2R\times\frac{z}{R}dz=\frac{-3m\omega^2}{l}zdz$$

Donc
$$T(z) = -\frac{3}{2} \frac{m\omega^2}{l} \left(z^2 - \frac{l^2}{4} \right)$$
 (aux extrémités, $T(z) = 0$)

On a ainsi une courbe de la forme :

On a toujours T > 0, la tige a donc toujours tendance à s'allonger.

C) Mouvement d'une bille dans un satellite

On note CP = r = R + z.

1) Mouvement de la bille

- On n'a qu'un degré de liberté z.
- On se place dans le référentiel lié au satellite, non galiléen, en rotation à la vitesse angulaire ω par rapport à la Terre.
- Actions exercées sur la bille : $[\vec{F}_g], [\vec{F}_{ie}], [\vec{F}_{ie}], [\vec{R}]$ (on néglige l'interaction gravitationnelle entre le satellite et la bille)
- Théorème de la résultante dynamique :

	$ec{u}_r$	\vec{u}_{θ}	$ \vec{u}_z $
mā	mż	0	0
\vec{F}_{g}	$-\frac{GMm}{(R+z)^2}$	0	0
$ec{F}_{ie}$	$m\omega^2(R+z)$	0	0
$ec{F}_{ic}$	0	$-2m\omega\dot{z}$	0
\vec{R}	0	R_{θ}	R_z

Donc $R_{\theta} = 0$ (pas de frottement), $R_{\theta} = 2m\omega \dot{z}$.

Et
$$\ddot{z} = -\frac{GM}{(R+z)^2} + \omega^2(R+z)$$

Soit, au premier ordre en z/R:

$$\ddot{z} = -\frac{GM}{R^2} \left(1 - \frac{2z}{R} \right) + \omega^2 R \left(1 + \frac{z}{R} \right)$$
Ou
$$\ddot{z} - \frac{z}{R} \left(2\frac{GM}{R^2} + \omega^2 R \right) = -\frac{GM}{R^2} + \omega^2 R$$

2) Relation entre la vitesse angulaire et R : mouvement du satellite

On a pour le satellite :

 $\vec{F}'_{G} + \vec{F}_{ie} = \vec{0}$ (dans le référentiel du satellite)

Donc
$$-\frac{GMm'}{R^2} + m'\omega^2 R = 0$$

Soit
$$\omega^2 R = \frac{GM}{R^2}$$

Donc en remplaçant dans l'équation précédente, il reste $\ddot{z} - 3\omega^2 z = 0$ Soit $z = z_0 \text{ch}(\sqrt{3}\omega t)$