Lecture Summary: Jan. 11, 2023

• Simple linear regression model: $Y = \beta_0 + \beta_1 x + \epsilon$, where y is the response (also called dependent variable), x is a predictor (also called independent variable), β_0 and β_1 are unknown constants called intercept and slope, respectively, and ϵ is a random error.

The data are collected in pairs: $(x_1, Y_1), \ldots, (x_n, Y_n)$, where n is the sample size. All pairs of data satisfy the simple linear regression model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, n.$$

- Assumptions:
- (i) $\epsilon_1, \ldots, \epsilon_n$ are independent;
- (ii) $E(\epsilon_i) = 0$, $var(\epsilon_i) = \sigma^2$, where σ^2 is an unknown constant;
- (iii) (normality assumption): normality is often (but not always) assumed when making inference, that is, ϵ_i is normally distributed.

Under Assumptions (i)–(iii), Y_i is normally distributed with mean $\beta_0 + \beta_1 x_i$ and variance σ^2 . A plot of the distributions of Y_i , for different x_i , is presented on page 11 of the text book (Figure 1.6).

• Least squares (LS) estimates: The intercept and slope of the simple linear regression are estimated by minimizing

$$\sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 x_i)^2$$

(to find the optimal β_0, β_1).

- Geometric interpretation of least squares: Projection.
- Formulae for LS estimates:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}},$$

$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{x},$$

where $\bar{x} = n^{-1} \sum_{i=1}^{n} x_i$ (sample mean of the x_i 's) and $\bar{Y} = n^{-1} \sum_{i=1}^{n} Y_i$ (sample mean of the Y_i 's).

- Computing the LS estimates
- Regression line: $y = \hat{\beta}_0 + \hat{\beta}_1 x$. It is the line that is closest to the scatter points in an overall sense.
- Residuals: $\hat{\epsilon}_i = Y_i \hat{Y}_i$, i = 1, ..., n. The residual $\hat{\epsilon}_i$ may be viewed as an estimate of the regression error ϵ_i .