### **Digital Image Processing**

Lecture #7
Ming-Sui (Amy) Lee

### Announcement

- Class Information
  - The following schedule

| 03/23 | Lecture 5 | 05/11 | proposal          |
|-------|-----------|-------|-------------------|
| 03/30 | Lecture 6 | 05/18 | Lecture 9         |
| 04/06 | Lecture 7 | 05/25 | Lecture 10        |
| 04/13 | RealSense | 06/01 | Lecture 11        |
| 04/20 | midterm   | 06/08 | Demo              |
| 04/27 | RealSense | 06/15 | Demo              |
| 05/04 | Lecture 8 | 06/22 | Final Package Due |

### Announcement

- Please form a team with 2 to 3 students
- Email TA the member list by Apr. 5, 2016
- The team will work together on RealSense homework assignment and term project

- OCR Optical Character Recognition
  - Extract features from characters (A~Z) and numerals (0~9) and other special symbols (\*&^%\$#)





- Topological Attributes
  - May design your own attributes
  - Properties are invariant under the rubber-sheet transformation



- Topological Attributes
  - C: number of connected object components
  - H: number of holes
  - E: Euler number E=C-H





- Convex Set
  - An object C is convex if

$$\forall a, b \in C$$

$$\Rightarrow ta + (1 - t)b \in C, \quad 0 \le t \le 1$$





- Convex Hull & Convex Deficiency
  - Convex Hull
    - The convex hull of a set is the smallest convex set that contains the set
  - Convex Deficiency
    - The set of points within the convex hull but not in the object form the convex deficiency
    - Divide subsets of convex deficiency into two types
      - Lake and Bay
      - L: number of lakes
      - B: number of bays



Examples

c=2 h=0

E=2-0=2

C: number of connected object components

H: number of holes

E: Euler number E=C-H

**Convex Hull? Convex Deficiency: Lake? Bay?** 

Hi? Q@a

BmaDHae

Bay=4

#### **Geometrical Properties**

p-norm

- Distance
  - **Euclidean** distance
  - **Magnitude** distance
  - **Maximum** value distance

$$d_E = \left[ (j_1 - j_2)^2 + (k_1 - k_2)^2 \right]^{/2}$$
 2-norm

$$d_M = |j_1 - j_2| + |k_1 - k_2|$$
 1-norm

$$\begin{aligned} d_M &= \left|j_1 - j_2\right| + \left|k_1 - k_2\right| \quad \text{1-norm} \\ d_X &= MAX \left\{ \left|j_1 - j_2\right|, \left|k_1 - k_2\right| \right\} \quad \text{infinity norm} \end{aligned}$$

- Perimeter
  - The number of "sides" which separate pixels with different values
- Area
  - **Total number of pixels** with F(j,k)=1
  - The "enclosed area" is the total number of pixels with F(j,k)=0 or 1 within the outer perimeter of an object

#### Examples

- Area? [Total number of pixels with F(j,k)=1]
- Perimeter? [The number of "sides" which separate pixels with different values]
- Enclosed Area? [the total number of pixels with F(j,k)=0 or 1 within the outer perimeter of an object]

- Geometrical Properties
  - Relative measure
    - Scaling-invariant
    - Normalized area/perimeter
    - Normalized w.r.t. the bounding box w.r.t == with respect to
  - Computation of several attributes with local patterns
    - Bit Quads
      - Let n{Q} represent the count of the number of matches
         between image pixels and pattern Q

$$Q = 1 \Rightarrow n\{Q\} = Area$$

$$Q = \begin{bmatrix} 0 & 1 \end{bmatrix} or \begin{bmatrix} 1 \\ 0 \end{bmatrix} or \begin{bmatrix} 0 \\ 1 \end{bmatrix} \Rightarrow n\{0 & 1\} + n\{1 & 0\} + n\{1 \\ 0 \end{bmatrix} + n\{0 \\ 1 \end{bmatrix} = \underbrace{Perimeter}_{12}$$

- Geometrical Properties
  - Bit Quads (Gray's algorithm)
    - A systematic way to compute geometric attributes based on local pattern matching

 $A = \frac{1}{4} \left[ n \{ Q_1 \} + 2n \{ Q_2 \} + 3n \{ Q_3 \} + 4n \{ Q_4 \} + 2n \{ Q_D \} \right]$ 

 $P = n\{O_1\} + n\{O_2\} + n\{O_2\} + 2n\{O_2\}$ 

Example

| 0 | 0 | 0 | 0 |
|---|---|---|---|
| 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 |

$$A = \frac{1}{4} \left[ n \{ Q_1 \} + 2n \{ Q_2 \} + 3n \{ Q_3 \} + 4n \{ Q_4 \} + 2n \{ Q_D \} \right]^{A=4}$$

$$P = n \{ Q_1 \} + n \{ Q_2 \} + n \{ Q_3 \} + 2n \{ Q_D \}^{D=8}$$

- $Q_0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- $Q_4$   $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

- $Q_3$   $egin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ \hline 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline \end{pmatrix}$

- Geometrical Properties
  - Bit Quads (Duda's algorithm)
    - More accurate to represent the area of a continuous object that has been coarsely discretized than Gray's
    - 2x2 patterns

$$A = \frac{1}{4}n\{Q_1\} + \frac{1}{2}n\{Q_2\} + \frac{7}{8}n\{Q_3\} + n\{Q_4\} + \frac{3}{4}n\{Q_D\}$$

$$P = n\{Q_2\} + \frac{1}{\sqrt{2}}[n\{Q_1\} + n\{Q_3\} + 2n\{Q_D\}]$$

- Geometrical Properties
  - Bit Quads
    - Easy to determine the "Euler number" of an image
  - Euler Number (Gray's)
    - Four-connectivity

$$E = \frac{1}{4} \left[ n \{ Q_1 \} - n \{ Q_3 \} + 2n \{ Q_D \} \right]$$

Eight-connectivity

$$E = \frac{1}{4} \left[ n \{ Q_1 \} - n \{ Q_3 \} - 2n \{ Q_D \} \right]$$

Note// We are not able to compute the number of connected components C and the number of holes H (E=C-H) separately by local neighborhood computation

**Examples** 



$$Q_2$$
  $egin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ \end{bmatrix}$ 

$$Q_D \begin{vmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{vmatrix}$$

| o               | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
|-----------------|---|---|---|---|---|---|---|---|
| $\mathcal{L}_3$ | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
|                 |   |   |   |   |   |   |   |   |

| 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 |

**Four-connectivity** 

$$E = \frac{1}{4} \left[ n \{ Q_1 \} - n \{ Q_3 \} + 2n \{ Q_D \} \right] \qquad E = \frac{1}{4} \left[ n \{ Q_1 \} - n \{ Q_3 \} - 2n \{ Q_D \} \right]^{17}$$

**Eight-connectivity** 

$$E = \frac{1}{4} \left[ n \{ Q_1 \} - n \{ Q_3 \} \right] - 2n \{ Q_D \} \right]^{17}$$

- Other Attributes and Properties
  - Symmetry property
    - Horizontally symmetric / vertically symmetric
  - Circularity (thinness ratio)

$$C_0 = \frac{4\pi A_0}{(P_0)^2}$$

$$A_0 = \pi r^2; \quad P_0 = 2\pi r \Rightarrow C_0 = \frac{4\pi \pi r^2}{(2\pi r)^2} = \frac{4\pi^2 r^2}{4\pi^2 r^2} = 1$$

$$A_0 = a^2; \quad P_0 = 4a \Rightarrow C_0 = \frac{4\pi a^2}{(4a)^2} = \frac{\pi}{4} \approx 0.8$$

$$b >> a$$
  $A_0 = ab; P_0 = 2(a+b) \Rightarrow C_0 = \frac{4\pi ab}{(2(a+b))^2} = \frac{\pi ab}{a^2 + b^2 + 2ab} \approx \frac{\pi a}{b}$ 

- Other attributes and properties
  - Width and height
    - **Bounding box**







- Width ratio: b/(a+b)- Height ratio: a/(a+b)
- An image with many components but fewer holes
  - **Euler number may be an approximation of # of components**
  - O Average area:  $A_A = \frac{A_0}{E}$
  - O Average perimeter:  $P_A = \frac{P_0}{E}$
- Thin objects (typewritten or script characters)

  - O Average length  $\approx L_A = \frac{P_A}{2}$ O Average width  $\approx W_A = \frac{2A_A}{P}$

#### Examples









| Attribute         | spade | heart | diamond | club |
|-------------------|-------|-------|---------|------|
| Outer perimeter   | 652   | 512   | 548     | 668  |
| Enclosed area     | 8421  | 8681  | 8562    | 8820 |
| Average area      | 8421  | 8681  | 8562    | 8820 |
| Average perimeter | 652   | 512   | 548     | 668  |
| Average length    | 326   | 256   | 274     | 334  |
| Average width     | 25.8  | 33.9  | 31.3    | 26.4 |
| Circularity       | 0.25  | 0.42  | 0.36    | 0.25 |

#### Other attributes and properties

- Spatial moments
  - Treat the object shape as a pdf, p(x, y)
  - For a joint pdf, p(x,y), its  $(m,n)^{th}$  moment is defined as

$$M(m,n) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^m y^n p(x,y) dx dy$$

$$M(0,0) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} p(x,y) dx dy = A;$$

$$M(1,0) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xp(x,y) dx dy = \eta_x; \ M(0,1) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yp(x,y) dx dy = \eta_y$$



- Other attributes and properties
  - Spatial moments
    - Usually, the central moments are more interesting since they are invariant under translation (shift-invariant)



$$U(m,n) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} (x + \eta_x)^m (y + \eta_y)^n p(x,y) dx dy$$

where  $\eta_x$  and  $\eta_y$  are marginal means of p(x, y)

- Other attributes and properties
  - Discrete Image Spatial Moments
    - The  $(m,n)^{th}$  spatial geometric moment is defined as

$$M(m,n) = \frac{1}{J^m K^n} \sum_{j=1}^{J} \sum_{k=1}^{K} (x_j)^m (y_k)^n F(j,k)$$



$$M(0,0) = \sum_{j=1}^{J} \sum_{k=1}^{K} F(j,k)$$
 < Image surface >

$$M(1,0) = \frac{1}{J} \sum_{j=1}^{J} \sum_{k=1}^{K} x_j F(j,k); \quad M(0,1) = \frac{1}{K} \sum_{j=1}^{J} \sum_{k=1}^{K} y_k F(j,k)$$

- Other attributes and properties
  - Spatial moments
    - Examples
    - Table 18.3-1 ( O&S p. 635 )

| Image           | M(0,0)    | <i>M</i> (1,0) | M(0,1)    | M(2,0)   | <i>M</i> (1,1) | M(0,2)   | M(3,0)   | M(2,1)   | <i>M</i> (1,2) | <i>M</i> (0,3) |
|-----------------|-----------|----------------|-----------|----------|----------------|----------|----------|----------|----------------|----------------|
| Spade           | 8,219.98  | 4,013.75       | 4,281.28  | 1,976.12 | 2,089.86       | 2,263.11 | 980.81   | 1,028.31 | 1,104.36       | 1,213.73       |
| Rotated spade   | 8,215.99  | 4,186.39       | 3,968.30  | 2,149.35 | 2,021.65       | 1,949.89 | 1,111.69 | 1,038.04 | 993.20         | 973.53         |
| Heart           | 8,616.79  | 4,283.65       | 4,341.36  | 2,145.90 | 2,158.40       | 2,223.79 | 1,083.06 | 1,081.72 | 1,105.73       | 1,156.35       |
| Rotated heart   | 8,613.79  | 4,276.28       | 4,337.90  | 2,149.18 | 2,143.52       | 2,211.15 | 1,092.92 | 1,071.95 | 1,008.05       | 1,140.43       |
| Magnified heart | 34,523.13 | 17,130.64      | 17,442.91 | 8,762.68 | 8,658.34       | 9,402.25 | 4,608.05 | 4,442.37 | 4,669.42       | 5,318.58       |
| Minified heart  | 2,104.97  | 1,047.38       | 1,059.44  | 522.14   | 527.16         | 535.38   | 260.78   | 262.82   | 266.41         | 271.61         |
| Diamond         | 8,561.82  | 4,349.00       | 4,704.71  | 2,222.43 | 2,390.10       | 2,627.42 | 1,142.44 | 1,221.53 | 1,334.97       | 1,490.26       |
| Rotated diamond | 8,562.82  | 4,294.89       | 4,324.09  | 2,196.40 | 2,168.00       | 2,196.97 | 1,143.83 | 1,108.30 | 1,101.11       | 1,122.93       |
| Club            | 8,781.71  | 4,323.54       | 4,500.10  | 2,150.47 | 2,215.32       | 2,344.02 | 1,080.29 | 1,101.21 | 1,153.76       | 1,241.04       |
| Rotated club    | 8,787.71  | 4,363.23       | 4,220.96  | 2,196.08 | 2,103.88       | 2,057.66 | 1,120.12 | 1,062.39 | 1,028.90       | 1,017.60       |
| Ellipse         | 8,721.74  | 4,326.93       | 4,377.78  | 2,175.86 | 2,189.76       | 2,226.61 | 1,108.47 | 1,109.92 | 1,122.62       | 1,146.97       |

- Other attributes and properties
  - Row moment of inertia

$$\mu'_{20} = \frac{\mu_{20}}{\mu_{00}} = \frac{M_{20}}{M_{00}} - x^{-2}$$

Column moment of inertia

$$\mu'_{02} = \frac{\mu_{02}}{\mu_{00}} = \frac{M_{02}}{M_{00}} - y^{-2}$$

Row-column cross moment of inertia

$$\mu'_{11} = \frac{\mu_{11}}{\mu_{00}} = \frac{M_{20}}{M_{00}} - \overline{xy}$$

- Other attributes and properties
  - Covariance Matrix

$$U=\text{cov}[I(x,y)] = \begin{bmatrix} \mu'_{20} & \mu'_{11} \\ \mu'_{11} & \mu'_{02} \end{bmatrix}$$

Perform SVD of the covariance matrix  $E^TUE = \Lambda$ 

The columns of 
$$E=\left[ egin{array}{cc} e_{11} & e_{12} \\ e_{21} & e_{22} \end{array} \right]$$
 are the eigenvectors

of U and 
$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

#### Other attributes and properties

Eigenvalues can be derived explicitly

$$\lambda_{1} = \frac{1}{2} \left[ \mu'_{20} + \mu'_{02} \right] + \frac{1}{2} \left[ (\mu'_{20})^{2} + (\mu'_{02})^{2} - 2\mu'_{20}\mu'_{02} + 4(\mu'_{11})^{2} \right]^{1/2}$$

$$\lambda_{2} = \frac{1}{2} \left[ \mu'_{20} + \mu'_{02} \right] + \frac{1}{2} \left[ (\mu'_{20})^{2} + (\mu'_{02})^{2} - 2\mu'_{20}\mu'_{02} + 4(\mu'_{11})^{2} \right]^{1/2}$$

- Let  $\lambda_M = MAX\{\lambda_1, \lambda_2\}$  and  $\lambda_N = MIN\{\lambda_1, \lambda_2\}$ The eigenvalue ratio is  $\lambda_N/\lambda_M$
- The orientation is  $\theta = \frac{1}{2} \arctan \left\{ \frac{2\mu_{11}}{\mu_{20} \mu_{02}} \right\}$

- Other attributes and properties
  - The orientation is

$$\theta = \frac{1}{2} \arctan \left\{ \frac{2\mu_{11}}{\mu_{20} - \mu_{02}} \right\}$$

Eclipse defined by 2 eigenvectors and orientation angle  $\vartheta$ 

#### Other attributes and properties

Table 18.3-3

|                 | Largest    | Smallest   | Orientation | Eigenvalue                            |
|-----------------|------------|------------|-------------|---------------------------------------|
| Image           | Eigenvalue | Eigenvalue | (radians)   | Ratio = $\frac{\lambda_N}{\lambda_M}$ |
| Spade           | 33.286     | 16.215     | -0.153      | 0.487                                 |
| Rotated spade   | 33.223     | 16.200     | -1.549      | 0.488                                 |
| Heart           | 36.508     | 16.376     | 1.561       | 0.449                                 |
| Rotated heart   | 36.421     | 16.400     | -0.794      | 0.450                                 |
| Magnified heart | 589.190    | 262.290    | 1.562       | 0.445 rotation invariant              |
| Minified heart  | 2.165      | 0.984      | 1.560       | 0.454                                 |
| Diamond         | 42.189     | 13.334     | 1.560       | 0.316                                 |
| Rotated diamond | 42.223     | 13.341     | -0.030      | 0.316                                 |
| Club            | 37.982     | 21.831     | -1.556      | 0.575                                 |
| Rotated club    | 38.073     | 21.831     | 0.802       | 0.573                                 |
| Ellipse         | 47.149     | 11.324     | 0.785       | 0.240                                 |

#### Seven invariant moments

$$\begin{aligned} \phi_1 &= \eta_{20} + \eta_{02} \\ \phi_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\ \phi_3 &= (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\ \phi_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\ \phi_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12}) \Big[ (\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2 \Big] \\ &+ (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03}) \Big[ 3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \Big] \\ \phi_6 &= (\eta_{20} - \eta_{02}) \Big[ (\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \Big] \\ &+ 4\eta_{11}^2 (\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\ \phi_7 &= (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12}) \Big[ (\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2 \Big] \\ &+ (3\eta_{12} - \eta_{30})(\eta_{21} + \eta_{03}) \Big[ 3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \Big] \end{aligned}$$



translation, scaling, rotation are all invariant

| Invariant Mo | ment | Φ <sub>1</sub> | Φ <sub>2</sub> | Φ <sub>3</sub> | $\Phi_4$ | Φ <sub>5</sub> | $\Phi_6$ | Φ <sub>7</sub> |
|--------------|------|----------------|----------------|----------------|----------|----------------|----------|----------------|
| Original ima | ge   | 2.8662         | 7.1265         | 10.4109        | 10.3742  | 21.3674        | 13.9417  | -20.7809       |
| Shift        |      | 2.8662         | 7.1265         | 10.4109        | 10.3742  | 21.3674        | 13.9417  | -20.7809       |
| Half size    |      | 2.8664         | 7.1267         | 10.4107        | 10.3719  | 21.3924        | 13.9383  | -20.7724       |
| Mirrow       |      | 2.8662         | 7.1265         | 10.4109        | 10.3742  | 21.3674        | 13.9417  | 20.7809        |
| Rotate       | 45°  | 2.8661         | 7.1266         | 10.4115        | 10.3742  | 21.3663        | 13.9417  | -20.7813<br>31 |
| Rotate       | 90°  | 2.8662         | 7.1265         | 10.4109        | 10.3742  | 21.3674        | 13.9417  | -20.7809       |

- Other attributes and properties
  - Shape Orientation Descriptors
    - Trace the edge points along the contour
    - The direction of connected neighbors (clock-wise or counter-clockwise)
    - Image-oriented bounding box
    - Object-oriented bounding box
      - Height/width/area/ratio/min v.s. max radius/radius angle/radius ratio

32



#### Other attributes and properties

- Fourier Descriptors
  - Polar coordinates: z(s)=x(s)+iy(s)
  - Total length =  $L \rightarrow x(s+L)=x(s)$ ; y(s+L)=y(s)



- Fourier series expansion
- Apply Fourier analysis to x(s) and y(s)

#### Wavelet Descriptors

- Total length =  $L \rightarrow x(s+L)=x(s)$ ; y(s+L)=y(s)
- Time, s → parameter of a parameterized curve
- Apply wavelet transform to x(s) and y(s)



#### Attributes/Features

// Training data //

| symbol | index | E | С | L | ••• | ••• | ••• |
|--------|-------|---|---|---|-----|-----|-----|
| Α      | 1     |   |   |   |     |     |     |
| В      | 2     |   |   |   |     |     |     |
| •••    | •••   |   |   |   |     |     |     |

// Test data //

| input | E | С | L | ••• | ••• | ••• |
|-------|---|---|---|-----|-----|-----|
|       |   |   |   |     |     |     |
|       |   |   |   |     |     |     |
| •••   |   |   |   |     |     |     |

- Identify a set of features
  - Parallel classification
    - **Form a feature vector**
    - Consider them simultaneously
  - Sequential classification
    - Apply one feature at a time



A leaf represents one object