Zadanie: ALC Alchemik Bajtazar [B]

Potyczki Algorytmiczne 2024, runda druga. Limity: 1024 MB, 2 s.

12.03.2024

Bajtazar jest znanym alchemikiem, który chwilowo odłożył na bok próby stworzenia kamienia filozoficznego, aby zająć się transmutacją materiałów. Dokładniej, Bajtazar chciałby przeobrazić jedną cząsteczkę w drugą. Cząsteczka, którą posiada Bajtazar, składa się z n atomów bajtonium*, ponumerowanych od 1 do n. Między niektórymi parami atomów mogą istnieć wiązania, przy czym między każdą parą atomów może istnieć co najwyżej jedno wiązanie. Cząsteczka Bajtazara tworzy spójną całość – z każdego atomu można dostać się do każdego innego, przechodząc przez jedno lub więcej wiązań.

Bajtazar posiada opis wiązań dla *n*-atomowej cząsteczki, którą chciałby otrzymać – dla każdej pary atomów wie, czy chciałby, aby były one finalnie połączone wiązaniem, czy nie. Docelowa cząsteczka spełnia te same warunki – tworzy spójną całość i każda para atomów jest połączona co najwyżej jednym wiązaniem. Niestety, cząsteczka Bajtazara może różnić się od docelowej cząsteczki. Aby temu zaradzić, może on skorzystać ze swoich alchemicznych zdolności. W każdej chwili może on wykonać jedną z dwóch możliwych operacji:

- Bajtazar może wybrać dwa różne atomy a oraz b niepołączone wiązaniem i stworzyć między nimi wiązanie. Ze względu na dużą niestabilność bajtonium, może to zrobić tylko wtedy, gdy istnieje atom c (różny od a i b) połączony aktualnie wiązaniami zarówno z a, jak i z b.
- Bajtazar może wybrać dwa różne atomy a oraz b połączone wiązaniem i usunąć wiązanie je łączące. Z podobnych względów, może to zrobić tylko wtedy, gdy istnieje atom c (różny od a i b) połączony aktualnie wiązaniami zarówno z a, jak i z b.

Bajtazar nie chce spędzić za dużo czasu nad przemianą. Napisz program, który pomoże mu dokonać przemiany jego cząsteczki w docelową i zrobi to w co najwyżej 200 000 ruchach.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita $n~(2 \le n \le 30\,000)$, oznaczająca liczbę atomów w cząsteczce posiadanej przez Bajtazara, jak również w tej docelowej.

W drugim wierszu wejścia znajduje się jedna liczba całkowita m_s $(n-1 \le m_s \le 50\,000)$, oznaczająca liczbę wiązań w cząsteczce posiadanej przez Bajtazara.

W kolejnych m_s wierszach wejścia znajdują się po dwie liczby całkowite. Liczby w *i*-tym z tych wierszy, a_i oraz b_i ($1 \le a_i, b_i \le n; a_i \ne b_i$), oznaczają numery atomów połączonych wiązaniem. Gwarantowanym jest, że cząsteczka Bajtazara tworzy spójną całość i każde dwa atomy mogą być połączone co najwyżej jednym wiązaniem.

W następnym wierszu wejścia znajduje się jedna liczba całkowita m_d $(n-1 \le m_d \le 50\,000)$, oznaczająca liczbę wiązań w docelowej cząsteczce.

W kolejnych m_d wierszach znajduje się opis tychże wiązań, w formacie identycznym do formatu dla cząsteczki startowej.

^{*}W Bajtocji bajtonium jest jednym z najpopularniejszych pierwiastków chemicznych, służącym między innymi do produkcji żywności i szkieł kontaktowych.

Wyjście

W pierwszym wierszu wyjścia powinna znaleźć się liczba ruchów r, które chcesz wykonać. Musi zachodzić $0 \le r \le 200\,000$.

W każdym z kolejnych r wierszy powinny znajdować się opisy kolejnych ruchów. Jeśli w i-tym ruchu chcesz połączyć wiązaniem atomy x_i oraz y_i , to i-ty wiersz powinien zaczynać się znakiem '+', a po pojedynczym odstępie powinny znaleźć się w nim liczby x_i oraz y_i , również oddzielone pojedynczym odstępem. Jeśli zamiast tego chcesz usunąć wiązanie łączące atomy x_i oraz y_i , to wiersz ten powinien zaczynać się znakiem '-', a następnie, analogicznie, powinien on zawierać liczby x_i i y_i .

Wypisany przez Ciebie ciąg ruchów musi spełniać założenia podane w treści – w momencie wyboru atomów x_i oraz y_i musi istnieć inny atom połączony z nimi oboma. Po wykonaniu ciągu ruchów, finalna cząsteczka musi być identyczna z docelową: dla każdej pary atomów $i, j \ (1 \le i < j \le n)$, atomy o numerze i oraz j powinny być połączone wiązaniem w finalnej cząsteczce dokładnie wtedy, gdy te atomy są połączone wiązaniem w docelowej cząsteczce.

Zwróć uwagę, że nie musisz minimalizować liczby ruchów – wystarczy, że wykonasz ich co najwyżej 200 000. Można udowodnić, że przemiany zawsze można dokonać, wykonując co najwyżej 200 000 ruchów.

Przykład

Dla danych wejściowych:	poprawnym wynikiem jest:
4	3
3	+ 1 3
1 2	+ 1 4
3 4	- 3 1
3 2	
4	
1 4	
1 2	
2 3	
3 4	

Wyjaśnienie przykładu: Zauważ, że Bajtazar nie mógł od razu połączyć wiązaniem pierwszego atomu z czwartym, gdyż nie istniał wtedy żaden atom połączony z nimi oboma. Tworząc tymczasowe wiązanie między atomem pierwszym i trzecim, sprawił, że owym atomem stał się trzeci atom.