Audition MCF 141

Alexandre Vigny

https://alexandre-vigny.github.io/mcf141.pdf

May 22, 2023

- \rightarrow 31 years old, born in 1992.
- → PhD defense September 2018 (5 years ago).
- → Living in Bremen, Germany.
- → Master in University Paris Diderot, 2015. Logique Mathématique et Fondement de l'Informatique (LMFI).
- → PhD in University Paris Diderot. (3 years) With Arnaud Durand & Luc Segoufin
- → Post-doc in Warsaw. (1 year) With Szymon Toruńczyk & Mikołaj Bojańczyk
- → Post-doc in Bremen. (3 years) With Sebastian Siebertz

Summary

Area of Research

- → Graph theory
- \rightarrow Logic
- → Distributed computing

Highlights

- → Publication in J.ACM
- → 2 Upcoming journal papers
- → 9 Conference papers
- → Co-organizer of a workshop

PODC-DARe: Distributed Algorithms on

REalistic network models

Area of Research

- → Graph theory
- → Logic

Presentation

→ Distributed computing

Summary

Highlights

- → Publication in LACM
- → 2 Upcoming journal papers
- → 9 Conference papers
- → Co-organizer of a workshop

PODC-DARe: Distributed Algorithms on

RFalistic network models

Teaching

- \rightarrow In Paris (3 years) $\sim 180 h$
- \rightarrow In Bremen (3 years) $\sim 270h$

Highlights

- → Creation of syllabuses
- → Responsible for two courses
- → All level bachelor to master
- → Both in French and English

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

 \rightarrow Is G planar?

0000

Algorithmic graph theory

Given a graph G and a property P: "Does G satisfy P?"

- \rightarrow Is G planar?
- \rightarrow Does G have a k-dominating set?

Given a graph G and a property P: "Does G satisfy P?"

- \rightarrow Is G planar?
- \rightarrow Does G have a k-dominating set?
- \rightarrow Is G connected?

Goal: Efficient algorithms ...

... at least for restricted graph classes and/or simple properties.

Logic

First-order (FO) logic

- \rightarrow Can express k-independent set: There are k vertices, that are not adjacent $\exists x_1 \dots \exists x_k \ \land (\neg E(x_i, x_j) \land x_i \neq x_j)$
- → Cannot express : connectivity, planarity, 2-colorability, ...

Logic

First-order (FO) logic

- \rightarrow Can express k-independent set: There are k vertices, that are not adjacent $\exists x_1 \dots \exists x_k \ \land (\neg E(x_i, x_i) \land x_i \neq x_i)$
- → Cannot express: connectivity, planarity, 2-colorability, ...

Monadic second-order (MSO) logic

- \rightarrow More general than FO
- → Can express : 3-colorability: $\exists X_1 \exists \overset{\cdot}{X_2} \exists X_3 \ (\forall x \bigvee_{i < 3} x \in X_i) \land (\forall x \forall y \ E(x, y) \rightarrow \bigwedge_{i < 3} (x \notin X_i \lor y \notin X_i))$

Distributed computing

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

Distributed computing

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

Distributed computing

Distributed Computing: Local model

→ Different notion of efficient

0000

→ Time needed VS Information needed

Distributed Computing: Local model

- → Different notion of efficient
- → Time needed VS Information needed

→ Can you decide locally?

Problems can be expressed in logic. (FO, MSO,...)

The \mathcal{L} , \mathcal{C} model-checking problem:

Given $\varphi \in \mathcal{L}$ and $G \in \mathcal{C}$, does $G \models \varphi$?

Goal: fixed parameter tractable algorithms $O(f(\varphi) \cdot |G|^c)$

Logic & Meta theorems

Problems can be expressed in logic. (FO, MSO,...)

The \mathcal{L} , \mathcal{C} model-checking problem: Given $\varphi \in \mathcal{L}$ and $G \in \mathcal{C}$, does $G \models \varphi$?

Goal: fixed parameter tractable algorithms $O(f(\varphi) \cdot |G|^c)$

Courcelle's Theorem (1990):

for $\varphi \in MSO$ and treewidth $(G) \leq k$, in time $O(f(\varphi, k) \cdot |G|)$

→ Generalize many known results, ex: Arnborg, Proskurowski 1989: independent sets, dominating sets, graph coloring, Hamiltonian, ... are linear on partial k-tree.

Result overview

Result overview

· ENUMERATION FO QUERIES

-> PODS 2018 SACH 2022

· ENUMERATION FO QUERIES

-> PODS 2018 SACH 2022

• DISTRIBUTED DOMINATION ON SPARSE GRAPH CLASSES

-> Sirocco zozz/zozz

-> EUR. J. COMB.

Result overview

· ENUMERATION FO QUERIES

-> (POQS 2018 SACH 2022

. DISTRIBUTED DOMINATION ON SPARSE GRAPH CLASSES

-> SIROCCO EOZI/ZOZZ

-> EUR. J. COMB. (TO APPEAR)

. PARAMOTORIZED DISTRIBUTED COMPLEXITY THEORY : A LOGICAL APPROACH

-> ARXIV

Future and integration •0000

Teaching

Research project

Research project

First (short term) goal: new logics

Recently definition of a new logic: FO + conn

- → Pilipczuk, Schirrmacher, Siebertz, Torunczyk, Vigny. ICALP'22
- \rightarrow more expressive than FO,
- \rightarrow less than MSO.

Beyond FO + conn

- → What can be added?
- → What do we want to express?
- → Example: a path of even length, using only blue nodes, ...

Keeping in mind algorithmic applications

DENSITY

Directed graphs

Direction on edges

- → More general
- → Problems are harder E.g. Directed Dominating Set is NP-complet on DAGs
- → Some problems do not care about orientation

Reconfiguration problems

- → No need to find a set
- → Here, the orientation matters!

Local computing

- → Other notion of efficient.
- → Still looking for meta theorems

Complexity classes

- → Hard problems may not be equally hard
- → Define complexity classes through logic

Compact certification

- → Feuilloley, Bousquet, Pierron What Can Be Certified Compactly? Compact local certification of MSO properties in tree-like graphs. In PODC'22
- → Fraigniaud, Montealegre, Rapaport, Todinca A Meta-Theorem for Distributed Certification. In SIROCCO'22

Integration

LINKS (Linking Dynamic Data)

- → S. Salvati, C. Paperman, I. Boneva, F. Capelli, M. Monet
- → Tree-like structures & MSO (S. Salvati)
- → Connections computation-logic (S. Salvati and C. Paperman)
- → Graph databases (I. Boneva)
- → Knowledge compilation & tree-like structures (F. Capelli, M. Monet)
- → Distributed computing is new
- → Adding a solid background on graph theory

Past teaching in Paris

Around 180h

- → Mainly Bachelor level
- → Similar to topics in Faculté des Sciences et Technologies

Subject	Years	Level	Activity
Initiation à la Programmation	2015-2016	L1	TP
Langages et Automates	2015-2016	L2	TD
Éléments d'Algorithmique	2016-2017	L2	TD
Base de données	2016-2017 2017-2018	L3 M1	TP & TD
Concepts Informatique	2017-2018	L1	TD

Past teaching in Bremen

Around 250h

- → Master level
- → Creation of syllabuses
- → Fully in charge of a lecture

Subject	Years	Level	Activity
Finite Model Theory	2019-2020	Master	TD
Sparsity	2019-2020	Master	TD
Parametrized Complexity	2019-2020	Master	TD
Set and Model Theory	2020-2021	Master	TD
Databases, Graphs, Algorithms	2020-2021 2021-2022	Master	Cours & TD
Set and Model Theory	2021-2022	Master	Cours & TD

Highlight

Various settings

- → In French, in English
- → All levels
- → Physical and remote

Various responsibilities

- → Creation of the content
- → Fully in charge of a lecture

Takeaway

- \rightarrow Polls
- → Online white boards

Future 1

L1:

- → Outils pour l'informaticien·ne
- Initiation à la programmation
- → Algorithmes et programmation

L2:

- → Algorithmique et les structures de données
- → Programmation orientée objet
- → Programmation en C

L3:

- → Programmation objet
- → Bases de données
- → Algorithmique et structures de données

Future 2

Master

- → Parcours Machine Learning
 - Algorithmique avancée
 - Bases de données avancées

Responsibilities

- → Responsable d'année
- → Stages

Algorithmes & Graphes I, Introduction

- → Notions Élémentaires
 - Modélisation par graphes
 - Définitions
 - Dirigés / non-dirigés
 - Connexité / composante connexes
 - Arbres et acyclicité
- → Représentation et implémentation
 - listes d'adjacence
 - matrice d'adjacence

Algorithmes & Graphes II, Dans le vif du sujet

- → Parcours de graphes
 - Profondeur (Depth-First Search)
 - Largeur (Breadth-First Search)
 - Plus court chemin
- → Arbres couvrants
 - Algorithme de Jarník-Prim-Dijsktra
 - Algorithme de Kruskal
- → Flow
 - Directed graphs
 - Flow and Cut
 - Ford-Fulkerson (max-flow min-cut))

Algorithmes & Graphes III, Ouverture

- → Graphes particuliers : Graphes planaires
 - Notion de mineur
 - Formule d'Euler
- → Problèmes difficiles
 - 3-coloriage
 - Ensemble dominant
 - Notion de reduction
 - NP-completude

Algorithmes & Graphes IV, Conclusion

- → Niveau : L2 / L3
- → Prérequis : Algorithmes et programmation
 - Boucle
 - Recursion
 - Liste
 - Tableau
- → Conflit avec Algorithmique et structure de données ?
 - Champ d'application de ces structures
 - Introduction de notions de complexité
 - $O(\log(n)), O(n), O(n^2)$
 - Polynomial vs NP-complet

Thank you!

- → 2019-2023: Postdoc, University of Bremen. With Sebastian Siebertz
- → 2018-2019: Postdoc, University of Warsaw. With Szymon Toruńczyk & Mikołaj Bojańczyk
- → 2015-2018: Thesis, University Paris Diderot. With Arnaud Durand & Luc Segoufin

Info:

- → 1 Journal: J.ACM (TOCL & Eur. J. Comb. to appear)
- → 9 Conferences: ICDT, PODS, MFCSx2, SIROCCOx2, ISSAC, CSL, ICALP.
- → 1 Workshop (co-organizer): https://podc-dare.github.io/.
- → 1 Popularization: La gazette du GDR-IM.

tinyurl.com/short-polls

√ back