Hausaufgabe 7

Aufgabe 1

a)

Die Folge der Partialsummen lässt sich wie folgt darstellen:

$$(s_n)_{n\in\mathbb{N}} := \sum_{k=1}^n a_k$$

b)

Wir zeigen, dass die Folge s_n der Partialsummen monoton steigt. Man betrachte $s_{n+1}-s_n$:

$$s_{n+1} - s_n = \left(\sum_{k=1}^{n+1} a_k\right) - \left(\sum_{k=1}^{n} a_k\right) = a_{k+1} + \left(\sum_{k=1}^{n} a_k\right) - \left(\sum_{k=1}^{n} a_k\right) = a_{k+1}$$

Wir wissen weiterhin, dass $a_k \geq 0$ für alle $k \in \mathbb{N}$. Beweis (Induktion):

(IA) k = 1. Es gilt

$$\frac{3^1}{5^1+1} = \frac{3}{5} \ge 0$$

Also gilt die Aussage für k = 1.

(IS) Die Behauptung gelte für ein $k \in \mathbb{N}$. $k \mapsto k+1$:

$$\frac{3^{k+1}}{5^{k+1}+1} = \frac{3^k \cdot 3}{5^k \cdot 5 + 1} = \frac{3}{5} \cdot \frac{3^k}{5^k + \frac{1}{5}} \ge \frac{3}{5} \cdot \frac{3^k}{5^k + 1}$$

Wir wissen, dass $\frac{3^k}{5^k+1} \ge 0$, also folgt auch $\frac{3}{5} \cdot \frac{3^k}{5^k+1} \ge 0$. Insgesamt gilt also die Behauptung auch für k+1.

Damit ist a_k stets größer 0 und es folgt $s_{n+1}-s_n=a_{k+1}\geq 0$. Also ist s_n monoton wachsend.

c)

Es gilt:

$$\forall k \in \mathbb{N} : a_k = \frac{3^k}{5^k + 1} \le \frac{3^k}{5^k} \le \frac{1}{5^k} = \left(\frac{1}{5}\right)^k$$

 \mathbf{d}

Da $\frac{1}{5} \neq 1$ lässt sich die geometrische Summenformel (II Satz 3.5) wie folgt einsetzen:

$$\forall n \in \mathbb{N} : s_n = \sum_{k=1}^n a_k \le \sum_{k=1}^n \left(\frac{1}{5}\right)^k = \frac{1 - \left(\frac{1}{5}\right)^{n+1}}{1 - \frac{1}{5}}$$

Sei also $(c_n)_{n\in\mathbb{N}}:=\sum_{k=1}^n\left(\frac{1}{5}\right)^k$. Durch $\forall k\in\mathbb{N}\colon a_k\geq 0$ folgt $|a_k|=a_k$. Weiterhin gilt $\forall k\in\mathbb{N}\colon a_k=|a_k|\leq c_k$. Da c_k nach Satz 3.5 (Geometrische Reihe) konvergiert, folgt nach dem Minorantenkriterium (3.17), dass auch a_k konvergiert.

Wir wenden Partialbruchzerlegung auf den gegebenen Bruch an:

$$\frac{1}{(2k+1)(2k+5)} = \frac{a}{(2k+1)} + \frac{b}{(2k+5)} \iff 1 = a(2k+5) + b(2k+1)$$

Nun stellen wir nach k um:

$$1 = a(2k+5) + b(2k+1) = 2ak + 5a + 2bk + b = k(2a+2b) + (5a+b)$$

Somit haben wir nach Koeffizientenvergleich zwei Gleichungen: $\mathbb{I} := (2a + 2b = 0)$ und $\mathbb{I} := (5a + b = 1)$. Wir lösen dies durch addieren der Gleichungen:

$$\mathbb{I} + \mathbb{II} \cdot (-2) \implies 2a - 10a + 2b - 2b = 0 - 2 \iff -8a = -2 \iff a = \frac{1}{4}$$

Nun lässt sich $a = \frac{1}{4}$ in die andere Gleichung einsetzen:

$$5 \cdot \frac{1}{4} + b = 1 \iff b = -\frac{1}{4}$$

Also gilt nach Prinzip der Partialbruchzerlegung nun

$$\frac{1}{(2k+1)(2k+5)} = \frac{1}{4(2k+1)} - \frac{1}{4(2k+5)}$$

Ebenso gilt also

$$\sum_{k=2}^{\infty} \frac{1}{(2k+1)(2k+5)} = \sum_{k=2}^{\infty} \frac{1}{4(2k+1)} - \frac{1}{4(2k+5)} = \sum_{k=2}^{\infty} \frac{1}{4(2k+1)} - \sum_{k=2}^{\infty} \frac{1}{4(2k+5)}$$

Durch Indizienverschiebung erhalten wir

$$\sum_{k=2}^{\infty} \frac{1}{4(2k+1)} - \sum_{k=2}^{\infty} \frac{1}{4(2k+5)} = \sum_{k=0}^{\infty} \frac{1}{4(2k+5)} - \sum_{k=2}^{\infty} \frac{1}{4(2k+5)}$$

Dies entspricht einer teleskopischen Summe, also folgt:

$$\sum_{k=0}^{\infty} \frac{1}{4(2k+5)} - \sum_{k=2}^{\infty} \frac{1}{4(2k+5)} = \sum_{k=0}^{1} \frac{1}{4(2k+5)} + \sum_{k=2}^{\infty} \frac{1}{4(2k+5)} - \sum_{k=2}^{\infty} \frac{1}{4(2k+5)}$$
$$= \sum_{k=0}^{1} \frac{1}{4(2k+5)} = \frac{1}{4 \cdot 5} + \frac{1}{4 \cdot 7} = \frac{1}{9} + \frac{1}{28} = \frac{3}{35}$$

Insgesamt folgt also

$$\sum_{k=2}^{\infty} \frac{1}{(2k+1)(2k+5)} = \frac{3}{35}$$

Also konvergiert die Reihe

$$(s_n)_{n\geq 2} := \sum_{k=2}^{\infty} \frac{1}{(2k+1)(2k+5)}$$
 mit $\lim_{n\to\infty} s_n = \frac{3}{35}$