Liviu Ornea Adriana Turtoi

O INTRODUCERE ÎN GEOMETRIE

Theta București 2000 Lect. Dr. Liviu Ornea Conf. Dr. Adriana Turtoi

Catedra de Geometrie Complexă, Topologie și Algebră Computațională Facultatea de Matematică Universitatea din București Str. Academiei 14 70109 București

Referent științific C.P. I Dr. Barbu Berceanu

Liviu Ornea, Adriana Turtoi O INTRODUCERE ÎN GEOMETRIE

©2000 Fundația Theta

Fundația Theta

Calea Griviței 21 78101 București E-mail: jot@theta.ro http://www.theta.ro/

Cules în \LaTeX Ze de către autori Tehnoredactat la Fundația Theta

Nici o parte din acest volum nu poate fi copiată sau transmisă prin nici un mijloc, electronic sau mecanic, inclusiv fotocopiere, înregistrare audio sau prin orice alt sistem de stocare și redare a informației, fără permisiunea scrisă din partea Fundației Theta.

Descrierea CIP a Bibliotecii Naționale ORNEA, LIVIU

O introducere în geometrie / Liviu Ornea, Adriana Turtoi:

- Bucureşti: Fundaţia Theta, 2000 xvi+224 p.; 24 cm. - (Cursuri Universitare) Bibliogr. Index. ISBN 973-99097-4-4

I, Turtoi, Adriana

CIP 514(075.8)

ISBN 973-99097-4-4

Tipărit la ROMCARTEXIM, București, România

Prefată

Cartea aceasta este o versiune dezvoltată a cursului ținut de autori la anul I al Facultății de Matematică a Universității din București. Totuși, în fața unor studenți ideali, aproape întreg materialul se poate acoperi în două semestre cu câte șase ore pe săptămână.

Textul respectă programa analitică în vigoare la facultatea în care activăm. Nu mai puţin, sperăm că am scris o lucrare cu şanse de viaţă mai lungă decât programa care ne-a ghidat. Pe de altă parte, conţinutul primelor două capitole se pliază bine pe programa cursului de algebră liniară şi geometrie de la facultăţile tehnice.

Capitolul 1 expune noțiunile necesare de algebră liniară. Nu este un mini curs de algebră liniară, ne-am restrâns la algebra liniară finit dimensională, nu am discutat forma canonică Jordan a endomorfismelor etc. Asta deoarece, cu excepții neglijabile, tot materialul prezentat aici

este folosit în capitolele ulterioare.

Capitolul al 2-lea introduce geometria afină via algebra liniară (adică nu sintetic). O atenție deosebită am dat reluării unor rezultate clasice (teoremele lui Thales, Ceva, Menelaus etc.) și, mai ales, teoriei hipercuadricelor în spații afine și euclidiene. Am detaliat, cu exemple numerice complet lucrate, descrierea conicelor și cuadricelor euclidiene.

Capitolul al 3-lea este dedicat geometriei proiective. Aici, metoda utilizată este cea axiomatică sintetică. După ce construim corpul coordonatelor asociat unui spațiu proiectiv sau plan

proiectiv desarguesian, trecem, în cazul unui corp comutativ, la dezvoltarea geometriei analitice (în coordonate) proiective. Un spațiu amplu ocupă hipercuadricele proiective și noțiunile geometrice legate de acestea: polaritate, dualitate, biraport. De asemenea, teoremele Pascal, Brianchon, Steiner. Odată recuperată geometria afină pe complementara unui hiperplan al spațiului proiectiv, am indicat cum se face trecerea de la proprietăți afine la proprietăți proiective și reciproc. Capitolul se încheie, pour la bonne bouche, cu o — vai!, prea — succintă introducere, în teoria curbelor algebrice.

În capitolul al 4-lea am explicat, pe scurt și informal, ideile accesibile la acest nivel din Programul de la Erlangen. Sperăm

să motivăm astfel, *post festum*, maniera pentru care am optat în prezentarea geometriei.

Cartea se încheie cu două anexe cuprinzând fapte elementare de algebră: regula lui Laplace și faptul că luarea determinantului comută cu înmulțirea matricelor pătrate.

Cele 298 de exerciții, cu grade diferite de dificultate, sunt răspândite în text (cele care ilustrează nemijlocit noțiunile teoretice expuse sau la care facem referiri

ulterioare) sau grupate la sfârșit de capitol. Unele dintre ele au indicații de rezolvare.

Din raţiuni didactice şi cu gândul la alte cursuri pe care cel de geometrie trebuie să le ajute, am renunţat uneori la rigoarea şi coerenţa expunerii. Aşa se face că am tratat separat, cu detalii, chestiuni de geometrie afină (de exemplu, teoria hipercuadricelor afine şi euclidiene) deşi ele s-ar fi putut deduce din noţiunile proiective corespunzătoare.

Gândită inițial ca un curs, cu un sumar limitat, cartea aceasta a luat proporții pe nesimțite, aproape fără știrea autorilor. Din motive de spațiu și de supunere la obiect (un curs de două semestre, în definitiv), am renunțat la unele capitole importante: convexitate în spații afine reale (prezentată doar succint, sub formă de exerciții, la finalul capitolului al doilea), geometrie hiperbolică, etc. Există, din fericire, nu puține cărți care o suplinesc pe a noastră.

Sperăm să fi scris un text independent de context care se adresează studenților facultăților de matematică, fizică, tehnice, dar şi profesorilor de matematică şi, în general, oricui e interesat de geometrie.

* * *

Primul autor a beneficiat de sprijinul material al programului Tempus în mai şi iunie 1997 când a făcut o parte din documentare la Departamentul de Matematică al Universității din Dortmund. Mii de mulţumiri colegului Tudor Zamfirescu (coordonatorul programului Tempus la Dortmund) pentru ospitalitate şi pentru excelentele condiții de lucru de acolo.

Ambii autori au avut numai de câștigat de pe urma numeroaselor discuții matematice purtate cu colegii Lucian Bădescu

şi Barbu Berceanu; acesta din urmă a avut chiar răbdarea să citească atent manuscrisul şi să facă observații care au contribuit efectiv la îmbunătățirea textului. Autorii le sunt recunoscători amândurora.

Se cuvin, de asemenea, mulțumiri lui Radu Slobodeanu pentru realizarea figurilor.

Autorii mulţumesc fundaţiei Theta pentru că a acceptat publicarea cărţii şi, mai ales, Cristinei şi lui Aurelian Gheondea pentru ajutorul dat la tehnoredactare.

Noiembrie, 2000.

* * *

În prezenta ediție, a doua, am corectat câteva greșeli care se strecuraseră în prima (mulțumim celor care ni le-au semnalat pe unele dintre ele) și am adăugat un număr de exerciții.

Multumim fundației Theta pentru că a acceptat distribuirea gratuită, on-line a cărții.

August, 2003.

Cuprins

Prefață	
Capitolul 1. Elemente de algebră liniară 1. Spații vectoriale. Definiții. Exemple 2. Combinații liniare. Baze. Coordonate 3. Subspații vectoriale. Definiții. Exemple 4. Aplicații liniare 5. Structura endomorfismelor liniare 6. Forme biliniare și forme pătratice 7. Spații vectoriale euclidiene 8. Aplicații ortogonale 9. Endomorfisme simetrice 10. Exerciții și probleme suplimentare	1 1 3 10 15 22 27 31 36 41 45
Capitolul 2. Geometrie afină și euclidiană 1. Spații afine. Definiții. Exemple 2. Combinații afine. Repere afine și carteziene 3. Subspații afine. Definiții echivalente. Exemple	53 53 55 58
 Operații cu subspații afine Paralelism afin Ecuațiile varietăților liniare Raportul a trei puncte coliniare. Câteva rezultate clasice 	61 63 64 67
 8. Aplicații afine 9. Grupul afin 10. Spații afine euclidiene 11. Varietăți liniare perpendiculare 	71 79 84 86
 12. Izometrii 13. Hipercuadrice în Kⁿ 14. Clasificarea afină a hipercuadricelor 15. Clasificarea metrică a hipercuadricelor 	89 92 97 102
 16. Conice în planul euclidian R² 17. Cuadrice în spațiul euclidian R³ 18. Exerciții şi probleme suplimentare 	103 106 115
Capitolul 3. Geometrie proiectivă 1. Spații proiective 2. Subspații proiective 3. Morfisme proiective 4. Axioma lui Desargues	123 123 127 136 138
 Axiolia iui Desargues Construcția corpului Independența corpului coordonatelor de hiperplan Comutativitatea corpului şi axioma lui Pappus-Pascal Recuperarea geometriei afine 	130 142 147 150 152

<i>r</i> iii	Cuprins

9. (Coordonate omogene. Ecuațiile subspațiilor proiective	15
10.	Teorema fundamentală a geometriei proiective	16
11.	Hipercuadrice în spațiul proiectiv P^nK	16
12.	Clasificarea proiectivă a hipercuadricelor	16
13.	Intersecția unei hipercuadrice cu o varietate liniară.	16
14.	Polaritate în raport cu o hipercuadrică	17
15.	Puncte conjugate armonic. Biraport	173
16.	Teoremele lui Pascal și Brianchon	183
17.	Recuperarea hipercuadricelor afine	18
18.	Curbe algebrice plane	188
19.	Exerciții și probleme suplimentare	198
Capitol	ul 4. Programul de la Erlangen	20
Câteva	fapte elementare de algebră	20°
Α.	Polinoame omogene. Rezultanta a două polinoame	20'
В.	Produsul determinanților. Regula lui Laplace	210
_	rafie	213

Elemente de algebră liniară

1. Spații vectoriale. Definiții. Exemple

...spațiul este o regiune cu trei dimensiuni în cantități liniare (înțelesul acestei afirmații va fi suficient de clar fără alte explicații). Toate faptele intuitive izolate pe care le-am mentionat sunt doar forme deghizate ale acestui adevăr. Acum, dacă pe de o parte e foarte satisfăcător să fii în stare să dai o bază comună în teoria cunoașterii pentru multele feluri de afirmații despre spațiu, configurații spațiale și relații spațiale care, luate laolaltă, constituie geometria, pe de altă parte trebuie accentuat că asta demonstrează cu claritate cu câtă puțină îndreptățire pretinde matematica să expună natura intuitivă a spațiului. Geometria nu conține nici urmă din ceea ce face din spațiul intuitiv ceea ce este în virtutea propriilor calități distinctive... E lăsat metafizicii să facă acest lucru "comprehensibil" sau să arate de ce și în ce sens e incomprehensibil. Noi, ca matematicieni, avem motive să fim mândri de minunata adâncime la care am ajuns în cunoașterea spațiului, dar, în același timp, trebuie să recunoaștem cu umilință că teoriile noastre conceptuale ne permit să înțelegem doar un aspect al naturii spațiului, acela care, în plus, e mai formal și superficial.

H. Weyl, Spaţiu-Timp-Materie

Fie K un corp comutativ cu element unitate notat 1 și element nul notat 0 și V o mulțime nevidă, fixată.

Definiția 1.1. V este un *spațiu vectorial* peste corpul K dacă există operația internă $+: V \times V \to V$ (numită adunare) și operația externă $\cdot: K \times V \to V$ (numită $\hat{i}nmulțire~cu~scalari$) cu următoarele proprietăți:

- 1) (V, +) este grup abelian;
- 2) $1 \cdot x = x$ pentru orice $x \in V$;
- 3) $a \cdot (b \cdot x) = (ab) \cdot x$ pentru orice $x \in V$ şi $a, b \in K$;
- 4) $(a + b) \cdot x = a \cdot x + b \cdot x$ pentru orice $x \in V$ şi $a, b \in K$;
- 5) $a \cdot (x + y) = a \cdot x + a \cdot y$ pentru orice $x, y \in V$ și $a \in K$.

Elementul nul al grupului (V,+) va fi notat 0 (la fel ca elementul nul al corpului K). Opusul lui x va fi notat -x. De obicei, înmulțirea externă a lui V va fi notată prin simplă juxtapunere, ca și cea a lui K. Cititorul va evita confuziile examinând cu atenție contextul. Vom numi vectori elementele lui V și le vom nota, în general, cu minuscule de la sfârșitul alfabetului latin. Minusculele de la începutul alfabetului latin și cele din alfabetul grec vor nota elementele lui K (numite scalari).

Atunci când vrem să precizăm corpul peste care e considerat un spațiu vectorial scriem V_K . În cazul $K = \mathbb{R}$ (respectiv \mathbb{C}) vom vorbi despre un spațiu vectorial real (respectiv complex).

Următoarele afirmații sunt consecințe directe ale axiomelor din definiție:

- a) -x = (-1)x;
- b) 0x = 0.

Observația 1.1. A doua axiomă, 1x = x, e esențială: ea asigură o înmulțire cu scalari nebanală. În absența ei ar fi posibil ax = 0 pentru orice $a \in K$ (relație necontradictorie cu celelalte axiome): un caz complet neinteresant.

Dăm în continuare o serie de exemple la care ne vom raporta mereu pe parcursul lucrării. Cititorul este invitat să testeze fiecare noțiune nou introdusă pe unele dintre acestea. La fiecare exemplu lăsăm verificarea axiomelor pe seama cititorului.

EXEMPLUL 1.1. Orice corp K e spațiu vectorial peste el însuși. Înmulțirea de inel a lui K funcționează ca înmulțire externă. Mai general, dacă $H \subseteq K$ este un subcorp, atunci K_H are structură naturală de spațiu vectorial. În consecință, putem considera spațiile vectoriale $\mathbb{C}_{\mathbb{C}}$, $\mathbb{C}_{\mathbb{R}}$, $\mathbb{C}_{\mathbb{O}}$, $\mathbb{R}_{\mathbb{R}}$, $\mathbb{R}_{\mathbb{O}}$ etc.

Exemplul 1.2. Dacă V_1 , V_2 sunt două spații vectoriale peste același corp K, atunci produsul lor direct $V_1 \times V_2$ poate fi înzestrat canonic cu o structură de spațiu vectorial peste K definind

$$(v_1, v_2) + (w_1, w_2) \stackrel{\text{def}}{=} (v_1 + w_1, v_2 + w_2);$$

 $a(v_1, v_2) \stackrel{\text{def}}{=} (av_1, av_2).$

pentru orice (v_1, v_2) , $(w_1, w_2) \in V_1 \times V_2$, $a \in K$. În mod clar construcția se poate extinde la produsul direct al unei familii numărabile de spații vectoriale peste același corp. În particular, obținem astfel un exemplu fundamental, spațiul vectorial K^n , $n \in \mathbb{N}$. Să observăm că în acest caz e dificil de imaginat o înmulțire internă naturală cu proprietăți bune.

EXEMPLUL 1.3. Fie $\mathcal{M}(m,n;K)$ mulţimea matricelor cu m linii, n coloane şi elemente din K. Cu adunarea (uzuală) a matricelor şi înmulţirea cu scalari $\alpha(a_{ij}) = (\alpha a_{ij})$, $\mathcal{M}(m,n;K)$ devine spaţiu vectorial peste K. Atunci când m=n vom scrie simplu $\mathcal{M}(m;K)$. Spaţiul K^n din exemplul anterior poate fi obţinut şi ca un caz particular al celui de faţă: $K^n = \mathcal{M}(1,n;K)$.

Exemplul 1.4. Fie V_K un spațiu vectorial și E o mulțime oarecare, amorfă (în sensul că eventuala ei structură algebrică, topologică etc. nu intră încă în discuție). Atunci $V^E:=\{f:E\to V\}$ dotată cu operațiile $(f,g)\in V^E\times V^E\mapsto f+g\in V^E$ și $(\alpha,f)\in K\times V^E\mapsto \alpha f\in V^E$ definite prin:

$$(f+g)(x)\stackrel{\text{def}}{=} f(x)+g(x), \quad (\alpha f)(x)\stackrel{\text{def}}{=} \alpha f(x), \quad \forall x \in E, \alpha \in K.$$

este un spațiu vectorial. Dacă punem $E=\{1,2,\ldots,m\}\times\{1,2,\ldots,n\}$, avînd în vedere exemplul anterior, regăsim $\mathcal{M}(m,n;K)=K^E$. De asemenea, mulțimea șirurilor numerice infinite se identifică cu $K^\mathbb{N}$. În particular, mulțimea K[X] a polinoamelor într-o nedeterminată, cu coeficienți din K, este un spațiu vectorial peste K. De asemenea, cu operațiile uzuale, inelul polinoamelor în n nedeterminate $K[X_1,\ldots,X_n]$ și inelul seriilor formale în n nedeterminate $K[X_1,\ldots,X_n]$, devin spații vectoriale.

EXEMPLUL 1.5. Fie acum $A \in \mathcal{M}(m,n;K)$. Submulţimea lui $K^n \mathcal{S}(A) = \{X \in K^n; AX = 0\}$ (mulţimea soluţiilor unui sistem omogen) este un spaţiu vectorial peste K. Adunarea şi înmulţirea cu scalari sunt cele din K^n . Stabilitatea lui $\mathcal{S}(A)$ faţă de ele e evidentă. Acesta este primul exemplu de spaţiu vectorial care

apare ca o parte stabilă a unui alt spațiu vectorial. Este un fapt nebanal care va conduce mai departe la noțiunea de *subspațiu vectorial*.

Exemplul 1.6. Fie Ω spaţiul geometric 3-dimensional. Presupunem fixat un sistem de axiome (de incidenţă, ordonare, separare, distanţă etc.; de exemplu cel construit în manualul de clasa a X-a), astfel încât să putem vorbi despre paralelism, mijloace de segmente etc. Pe produsul cartezian $\Omega \times \Omega$, ale cărui elemente se numesc bipuncte, se defineşte relaţia de echivalenţă $(A,B) \sim (A',B')$ dacă:

- 1) Atunci când $A \neq B$, $A' \neq B'$, $A \neq B'$, $B \neq A'$, mijlocul segmentului [AB'] coincide cu mijlocul segmentului [A'B].
- 2) Atunci când A=B (respectiv A'=B'), are loc și A'=B' (respectiv A=B).

Două bipuncte echivalente se numesc echipolente. O clasă de echivalență se numește vector liber (alunecător). Notația clasică pentru clasa bipunctului (A,B) este \overrightarrow{AB} . E ușor de văzut că mulțimea $\mathcal{V} = \Omega \times \Omega / \sim$ a vectorilor liberi coincide cu mulțimea vectorilor definiți de fizicieni prin direcție, sens, modul și punct de aplicație. Următoarele proprietăți sunt imediate:

- a) $\overrightarrow{AB} = \overrightarrow{CD} \Leftrightarrow \overrightarrow{AC} = \overrightarrow{BD}$;
- b) Pentru orice $A, B, O \in \Omega$ există un unic punct $X \in \Omega$ astfel încât $\overrightarrow{AB} = \overrightarrow{OX}$;
- c) $\overrightarrow{AB} = \overrightarrow{A'B'}$, $\overrightarrow{BC} = \overrightarrow{B'C'}$ $\Rightarrow \overrightarrow{AC} = \overrightarrow{A'C'}$.

Fie acum $u, v \in \mathcal{V}$. Pentru a defini u + v, fixăm $O \in \Omega$, alegem $A, B \in \Omega$ astfel încât $(O, A) \in u$, $(A, B) \in v$ si punem

$$u + v = \overrightarrow{OA} + \overrightarrow{AB} \stackrel{\text{def}}{=} \overrightarrow{OB}.$$

Proprietățile b), c) ne asigură că definiția e corectă. Verificări imediate arată că $(\mathcal{V},+)$ e un grup comutativ (cu element nul 0=A). Înmulțirea cu scalari reali se definește după cum urmează: $0\cdot u=0$; dacă a>0, alegem un reprezentant (O,A) pentru u, determinăm pe semidreapta $[OA\rangle$ unicul punct B astfel încât lungimea segmentului [OB] să fie de a ori lungimea segmentului [OA] și punem $a\cdot u=OB$. Dacă a<0, alegem B pe semidreapta opusă semidreptei $[OA\rangle$, astfel încât lungimea segmentului [OB] să fie de |a| ori lungimea segmentului [OA] și punem $a\cdot u=OB$. Ca și în cazul adunării se constată ușor că definiția înmulțirii nu depinde decât de a și u. Cu aceste operații $\mathcal V$ devine un spațiu vectorial real. Este cel mai simplu exemplu de structură algebrică definită pe un spațiu geometric.

Observația 1.2. Se poate defini o noțiune de spațiu vectorial și peste un corp F necomutativ. Dar atunci vom distinge între un spațiu vectorial la stânga și un spațiu vectorial la dreapta. Modul cum sunt scrise axiomele în definiția noastră corespunde primei situații. În al doilea caz vom avea x1 = 1, (x + y)a = xa + ya etc. Dacă notăm F^* dualul corpului F (adică acel corp în care produsul * al elementelor a,b se definește prin a*b=ba, juxtapunerea notând înmulțirea din F), vedem că orice spațiu vectorial la stânga peste F poate fi considerat spațiu vectorial la dreapta peste F^* și reciproc. Astfel că e suficient să se discute spațiile vectoriale la stânga. Evident, dacă F e comutativ, cele două noțiuni coincid. Vom întâlni un exemplu de spațiu vectorial la stânga în capitolul de spații proiective.

2. Combinații liniare. Baze. Coordonate

2.1. Sisteme de generatori. Fie acum v_1, \ldots, v_n vectori arbitrari în spațiul vectorial V. Înmulțind, respectiv, fiecare dintre ei cu un scalar oarecare a_i și

sumând (singurele operații permise într-un spațiu vectorial) se obține un nou vector de forma

$$v = a_1 v_1 + a_2 v_2 + \dots + a_n v_n.$$

Un asemenea vector este o combinație liniară a vectorilor v_i cu scalarii a_i .

O combinație liniară egală cu 0 se numește nulă.

O combinație liniară cu toți coeficienții nuli se numește trivială.

N.B. Nu vom folosi decât combinații liniare finite.

EXEMPLUL 1.7. Orice vector $v = (x_1, ..., x_n) \in \mathbb{R}^n$ se poate scrie ca o combinație liniară a vectorilor $e_i = (0, ..., 1, ..., 0)$, (1 apare pe poziția i). Într-adevăr,

$$v = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$
.

Definiția 1.2. Dat un sistem (eventual infinit) S de vectori din V, mulțimea tuturor combinațiilor liniare finite de vectori din S se numește acoperirea (închiderea) liniară a lui S și se notează L(S) sau $\langle S \rangle$.

Formal:

$$L(S) = \{ x \in V \mid x = \sum_{i=1}^{k} a_i x_i, \ x_i \in S, \ a_i \in K, \ k \in \mathbb{N} \}.$$

Observația 1.3. $S \subseteq L(S)$.

Exemplul 1.8. 1) Fie $x_1=(1,0,0),\ x_2=(1,1,1)\in\mathbb{R}^3$. Atunci $L(S)=\{(a+b,b,b)\ ;\ a,b\in\mathbb{R}\}$. Să observăm că în acest caz L(S) e strict inclusă în \mathbb{R}^3 .

2) Fie $S = \{1, X, X^2, ..., X^n, ...\} \subset K[X], S_1 = \{1, X - 1, (X - 1)^2, ..., (X - 1)^n, ...\}.$ Atunci $L(S) = L(S_1) = K[X]$ (verificați!). Dacă, în schimb, $S' = \{1, X, X^2, ..., X^k\}$, vom avea $L(S') = \{f \in K[X] \mid \operatorname{grad}(f) \leq k\}.$

Definiția 1.3. Fie $U\subseteq V$ o submulțime a unui spațiu vectorial. O mulțime $S\subseteq V$ cu proprietatea că L(S)=U se numește sistem de generatori al lui U. Dacă U=V, S se numește, simplu, sistem de generatori. Un spațiu vectorial care admite un sistem finit de generatori se numește finit generat.

Deoarece pentru orice spațiu vectorial, S=V este un sistem de generatori (trivial, cel mai mare posibil), e clar că există întotdeauna sisteme de generatori (infinite, în general). Unele spații vectoriale admit și sisteme de generatori finite; e cazul lui \mathbb{R}^n cu $S=\{e_1,\ldots,e_n\}$. Altele nu: încercați să generați orice polinom cu numai un număr finit de polinoame!

Observația 1.4. Fie S un sistem de generatori, $x\not\in S.$ Atunci $S\cup\{x\}$ e tot un sistem de generatori.

Fie acum $X\subset V$ şi $x\in X$ cu proprietatea că $x\in L(X-\{x\})$, adică există $x_1,\ldots,x_k\in X$, toți diferiți de x, şi scalarii a_1,\ldots,a_k astfel încât $x=\sum_k a_ix_i$. Echivalent, putem scrie

$$1x - a_1x_1 - \dots - a_kx_k = 0.$$

Am scris 1x şi nu simplu x pentru a marca în combinația liniară anterioară măcar un coeficient cu siguranță nenul. O submulțime cu proprietatea aceasta se zice liniar dependentă. Mai precis, avem următoarea:

Definiția 1.4. O submulțime U cu proprietatea că există măcar o combinație liniară nulă a unor elemente ale ei, cu cel puțin un coeficient nenul, se numește $liniar\ dependent$ ă.

O submulțime U cu proprietatea că orice combinație liniară nulă a unor elemente ale ei e trivială se numește $liniar\ independent$ ă.

Un vector $x \in V$ se zice liniar independent (respectiv liniar dependent) de mulțimea $S \subset V$, dacă $x \notin L(S)$ (respectiv $x \in L(S)$).

Exemplul 1.9. Sistemul $\{e_i = (0, 0, \dots, 1, \dots, 0)\}$, (1 pe poziția i, 0 pe toate celelalte poziții), $i = 1, \dots, n$, e liniar independent în \mathbb{R}^n . Într-adevăr, dacă

$$a_1e_1 + \dots + a_ne_n = 0,$$

atunci, ținând cont de expresia lui e_i , deducem că vectorul (a_1, \ldots, a_n) e nul, adică toți $a_i = 0$.

Următoarele proprietăți sunt imediate; lăsăm demonstrația lor în seama cititorului:

- Dacă $x \neq 0$, atunci $\{x\}$ e liniar independent.
- Orice submulţime nevidă a unui sistem liniar independent e liniar independentă.

In plus, avem:

Observația 1.5. Un sistem ordonat de vectori e liniar independent dacă și numai dacă fiecare vector e independent de predecesorii săi (a trebuit să considerăm sistemul ordonat tocmai pentru ca noțiunea de predecesor să aibă sens).

Observația 1.6. Dacă din sistemul de vectori S se îndepărtează vectorul x care e liniar dependent de $S - \{x\}$, atunci $L(S) = L(S - \{x\})$.

Exemplul 1.9 sugerează introducerea următoarei noțiuni:

Definiția 1.5. Se numește $baz\check{a}$ a unui spațiu vectorial o submulțime liniar independentă care e și sistem de generatori. O bază ordonată se numește reper.

Exemplul 1.10. Baza $\{e_i=(0,\dots,1,\dots,0)\},\,i=1,\dots,n$ a lui \mathbb{R}^n se va numi $canonic\check{a}$.

Matricele E_{ij} care au toate elementele nule, afară de cel de pe poziția (ij) care este 1, formează o bază în spațiul vectorial al matricelor dreptunghiulare de tip fixat.

Polinoamele $1, X, X^2, \ldots, X^n, \ldots$ formează o bază în K[X]. De asemenea, o altă bază a acestui spațiu este $\{1, X-1, (X-1)^2, \ldots, (X-1)^n, \ldots\}$ și $\{1,i\}, \{1-i,1+i\}$ sunt două baze ale lui $\mathbb{C}_{\mathbb{R}}$.

Am văzut că un spațiu vectorial poate avea mai multe baze. În exemplele prezentate, bazele aceluiași spațiu au același cardinal. Este, în fapt, adevărat enunțul general:

TEOREMA 1.1. Orice spațiu vectorial are (mai multe) baze. Orice două baze ale unui spațiu vectorial finit generat au același cardinal.

Existența bazelor pentru spații vectoriale infinit generate se face folosind Lema lui Zorn. Noi vom prezenta aici doar demonstrația cazului finit generat. Avem nevoie de

Propoziția 1.1. Orice sistem finit S de vectori cu măcar un vector nenul are un subsistem liniar independent cu aceeași acoperire liniară ca și S.

Demonstrație. Fie $S = \{x_1, \ldots, x_m\}$ o submulțime a lui V, cu măcar un element nenul. Nu avem decât să parcurgem mulțimea și să eliminăm pe rând fiecare vector care e 0 sau dependent de predecesori. Existența măcar a unui element nenul ne asigură că ceva rămâne, iar observațiile 1.5, 1.6, că în final obținem un subsistem liniar independent. Dacă vă plac demonstrațiile formale, considerați toate submulțimile independente ale lui S (există și sunt în număr finit). Alegeți una cu cel mai mare cardinal și arătați că orice alt element din S e dependent de ea, altfel adăugându-i-l, ați obține o submulțime liniar independentă cu cardinal strict superior.

Acum, dacă V e finit generat, nu avem decât să aplicăm rezultatul anterior unui sistem de generatori oarecare și obținem o bază.

Propoziția de mai sus se mai poate exprima astfel: Din orice sistem de generatori se poate extrage o bază.

Trecem acum la demonstrarea faptului că orice două baze au același cardinal. Să arătăm întâi:

Propoziția 1.2. (a schimbului; Steinitz¹) Fie $\{x_1, \ldots, x_m\}$ un sistem de generatori al lui V și $\{y_1, \ldots, y_m\}$ liniar independenți. Atunci $\{y_1, \ldots, y_m\}$ generează, de asemenea, V.

De aici rezultă:

COROLARUL 1.1. Orice sistem de generatori al unui spațiu finit generat are cardinalul cel puțin egal cu cel al oricărui sistem liniar independent.

Demonstrație. Fie m cardinalul unui sistem de generatori și fie $\{y_1, \ldots, y_{m+1}\}$ în V. Dacă primii m dintre ei sunt dependenți, cu atât mai mult tot sistemul va fi dependent. Dacă primii m sunt independenți, atunci ei generează V, conform propoziției 1.2. În consecință, y_{m+1} depinde de predecesori și sistemul este dependent.

Demonstrația faptului că orice două baze ale unui spațiu finit generat au același cardinal este acum aproape evidentă: considerând \mathcal{B}_1 sistem de generatori și \mathcal{B}_2 sistem independent avem $\sharp \mathcal{B}_1 \geq \sharp \mathcal{B}_2$; inversam rolurile pentru a obține și inegalitatea inversă. Dăm, în fine, acum:

Demonstrație. (a propoziției 1.2) Ideea e ca, în pași succesivi, să înlocuim fiecare x_i cu un y_i fără să modificăm acoperirea lor liniară.

Deoarece $\{x_i\}$ generează V putem scrie $y_1 = a_1x_1 + \cdots + a_mx_m$. Aici unii coeficienți pot fi nuli, dar nu toți pentru că 0 nu poate sta într-un sistem independent. Putem presupune $a_1 \neq 0$, altfel renumerotăm. Atunci x_1 se exprimă în funcție de y_1, x_2, \ldots, x_m :

$$x_1 = \frac{1}{a_1}y_1 - \frac{a_2}{a_1}x_2 - \dots - \frac{a_m}{a_1}x_m.$$

Deci $L(\{y_1,x_2,\ldots,x_m\})=L(\{x_1,x_2,\ldots,x_m\})=V$. Repetăm procedeul pentru y_2 : el se exprimă ca $y_2=b_1y_1+b_2x_2+\cdots+b_mx_m$. Dintre b_2,\ldots,b_m , unul măcar e nenul, altfel y_2 ar depinde de y_1 , contradicție cu liniar independența y-cilor. Presupunem $b_2\neq 0$. Rezultă că x_2 se exprimă în funcție de y_1,y_2,x_3,\ldots,x_m . Astfel, $L(\{y_1,y_2,\ldots,x_m\})=L(\{y_1,x_2,\ldots,x_m\})=V$. Repetăm raționamentul pentru y_3 și după un număr finit de pași, ajungem la $L(\{y_1,y_2,\ldots,y_m\})=L(\{x_1,x_2,\ldots,x_m\})=V$. Observați că, esențial în demonstrație este ca cele două sisteme de vectori să aibă același cardinal.

¹Steinitz, 1871-1928, matematician german.

În lipsa altei precizări, spațiile vectoriale abstracte cu care vom lucra sunt finit generate.

Definiția 1.6. Cardinalul comun al bazelor unui spațiu vectorial se numește dimensiune. Notăm dim V sau, când trebuie precizat corpul, $\dim_K V$.

Vom vedea în capitolul consacrat aplicațiilor liniare că toate spațiile vectoriale de aceeași dimensiune (finită) peste un corp K se identifică, necanonic, cu K^n .

EXERCIȚIUL 1.1. $\dim_K K=1$, $\dim_K K^n=n$, $\dim_K \{f\in K[X]\mid \operatorname{grad} f\leq m\}=m+1$, $\dim_K \mathcal{M}(m,n;K)=mn$.

EXERCIȚIUL 1.2. Vectorii (0, 1, 1), (1, 0, 1), (1, 1, 0) formează o bază în \mathbb{R}^3 .

Exercițiul 1.3. Construiți o bază a lui \mathbb{R}^3 care să conțină vectorul (1,1,1).

EXERCIȚIUL 1.4. Să se arate că dacă $\{f_1, \ldots, f_n\}$ e o bază oarecare a lui \mathbb{R}^n peste \mathbb{R} , atunci $\{f_1, if_1, f_2, if_2, \ldots, f_n, if_n\}$ formează o bază a lui \mathbb{C}^n peste \mathbb{R} . Deci dim \mathbb{R} $\mathbb{C}^n = 2n$.

Observația 1.7. Spațiul vectorial cu un singur element, 0, e o excepție: nu conține nici un sistem liniar independent. De aceea, prin convenție, vom pune $\dim\{0\}=0$.

Iată și câteva consecințe simple ale propoziției 1.2. Direct din corolarul 1.1 obținem:

COROLARUL 1.2. Fie dim V = n. Atunci:

- (i) Orice sistem de generatori are cel putin n vectori;
- (ii) Orice sistem independent are cel mult n vectori.

Cu alte cuvinte: dimensiune = număr maxim de vectori liniar independenți = număr minim de generatori.

COROLARUL 1.3. Într-un spațiu n-dimensional, orice sistem independent cu n vectori e sistem de generatori; și orice sistem de generatori cu n vectori e liniar independent. În ambele cazuri avem de-a face cu o bază.

Demonstrație. Fie $S=\{v_1,\ldots,v_n\}$ independent, $v\in V$ arbitrar. Că S e sistem de generatori rezultă direct din propoziția 1.2.

Fie acum $G = \{u_1, \ldots, u_n\}$ sistem de generatori. Din el se poate extrage o submulțime care e bază. Această submulțime nu poate fi proprie pentru că toate bazele au același cardinal. Deci G e bază, în particular liniar independent. \square

Pandantul propozitiei 1.1 este:

COROLARUL 1.4. Orice sistem liniar independent se poate completa la o bază.

Demonstrație. Fie $S = \{v_1, \ldots, v_k\}$. Presupunem $k < n = \dim V$, altfel S ar fi deja o bază și nu ar fi nimic de demonstrat. Cum S nu e sistem de generatori, există $v_{k+1} \not\in L(S)$. Rezultă imediat că $\{v_1, \ldots, v_k, v_{k+1}\}$ e liniar independent. Dacă nici acest sistem nu generează V, repetăm raționamentul și găsim un vector v_{k+2} astfel încât $\{v_1, \ldots, v_k, v_{k+1}, v_{k+2}\}$ e liniar independent. După un număr finit de aplicări ale acestui raționament obținem un sistem independent de n vectori care, conform corolarului 1.3, e o bază.

EXERCIȚIUL 1.5. Să se includă vectorii (1,0,1), (1,1,1) într-o bază a lui \mathbb{R}^3 .

Fie acum $\mathcal{B} = \{e_1, \dots, e_n\}$ o bază a lui V. Deoarece \mathcal{B} e sistem de generatori, orice vector $x \in V$ se descompune

$$(1.1) x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n.$$

Dacă ar exista şi o a doua descompunere, $x = \sum x_i' e_i$, atunci am avea $\sum (x_i - x_i') e_i = 0$. Cum \mathcal{B} e liniar independent, egalitatea anterioară atrage după sine anularea tuturor coeficienților, adică $x_i' = x_i$ oricare ar fi i = 1, ..., n. Am demonstrat:

Propoziția 1.3. Într-o bază fixată, fiecare vector al spațiului se descompune unic dupa formula (1.1). Dacă baza e ordonată (adică este un reper), scalarii (x_1, \ldots, x_n) se numesc coordonatele lui x în reperul \mathcal{B} .

Este adevărată și proprietatea reciprocă (pe care cititorul o va demonstra singur): Dacă, într-un sistem de generatori fixat, orice vector are descompunere unică, sistemul e liniar independent, adică e o bază.

Astfel, componentele x_1, \ldots, x_n ale unui vector oarecare (x_1, \ldots, x_n) din \mathbb{R}^n sunt coordonatele sale în reperul canonic.

Deoarece un spațiu vectorial are mai multe baze, e important să ştim cum depind coordonatele unui vector într-un reper de coordonatele aceluiași vector în alt reper. Fie $\mathcal{B}, \mathcal{B}'$ două repere ale lui $V, (x_i)$, respectiv (x_i') coordonatele unui $x \in V$ arbitrar. Putem descompune fiecare element $e_i' \in \mathcal{B}'$ în funcție de reperul \mathcal{B} . Avem

$$e_i' = \sum_j a_{ji} e_j.$$

Matricea $A = (a_{ij})$ care apare se numeşte a schimbării de reper sau de trecere de la \mathcal{B} la \mathcal{B}' . Dacă A' e matricea care face trecerea de la reperul \mathcal{B}' la reperul \mathcal{B} , atunci

$$e_i = \sum_j a'_{ji} e'_j = \sum_j a'_{ji} \sum_k a_{kj} e_k$$

deci

$$\sum_{i} a_{kj} a'_{ji} = \delta_{ij}.$$

Rezultă că o matrice de trecere e inversabilă și că trecerea de la un reper la altul și reciproc se face cu matrice inverse una alteia. Scriem acum:

$$x = \sum_{i} x'_{i} e'_{i} = \sum_{i} x'_{i} \sum_{j} a_{ji} e_{j} = \sum_{j} \left(\sum_{i} a_{ji} x'_{i} \right) e_{j},$$

de unde obținem, având în vedere unicitatea coordonatelor:

$$(1.2) x_j = \sum_i a_{ji} x_i'.$$

În notație matriceală, $X = {}^{\mathsf{t}}(x_1, \ldots, x_n)$, putem scrie

$$\mathcal{B}' = {}^{\mathrm{t}}A\mathcal{B} \Rightarrow X = AX'.$$

EXERCIȚIUL 1.6. Să se arate că dacă A, respectiv A' este matricea de trecere de la reperul \mathcal{B} la reperul \mathcal{B}' , respectiv de la \mathcal{B}' la \mathcal{B}'' , atunci AA' face trecerea de la \mathcal{B} la \mathcal{B}'' .

EXERCIȚIUL 1.7. Fie $x_0 \in K^n$ fixat, având coordonatele (x_1, \ldots, x_n) într-un reper fixat \mathcal{B} . Să se construiască un reper \mathcal{B}' în care coordonatele lui x_0 să fie $(1, 0, \ldots, 0)$.

Observația 1.8. Matricea de trecere de la reperul canonic la un alt reper $\{e_1, \ldots, e_n\}$ al lui K^n se găsește foarte ușor: coloana sa de indice i este formată din coordonatele vectorului e_i în reperul canonic. În consecință, matricea de trecere între două repere se poate găsi simplu folosind această observație și exercițiul precedent: calculele de făcut sunt inversarea unei matrice și înmulțirea ei cu o alta.

2.2. Orientarea spațiilor vectoriale reale. Fie acum V un spațiu vectorial real. Atunci, matricea de trecere între două repere este o matrice nedegenerată cu elemente reale. Deoarece determinantul ei e un număr real nenul, are sens următoarea:

Definiția 1.7. Două repere ale unui spațiu vectorial real sunt orientate la fel (respectiv au orientare opusă) dacă matricea de trecere dintre ele are determinantul pozitiv (respectiv negativ).

Folosind proprietățile determinanților, cititorul va demonstra:

EXERCIȚIUL 1.8. Relația "a fi la fel orientate" este una de echivalență pe mulțimea reperelor unui spațiu vectorial real.

Față de această relație de echivalență mulțimea reperelor unui spațiu vectorial real V se împarte în două clase de echivalență. A da o orientare pe V (sau a orienta V) înseamnă a alege una dintre cele două clase și a o decreta orientarea pozitivă. Odată făcută o asemenea alegere, cealaltă clasă de echivalență se va numi orientarea negativă. Insistăm asupra faptului că alegerea uneia dintre clase ca pozitivă este pur arbitrară.

Exemplul 1.11. În spațiul vectorial \mathbb{R}^n , prin convenție, clasa reperului canonic dă orientarea pozitivă.

Vom reveni asupra acestei noțiuni în contextul spațiilor vectoriale euclidiene.

2.3. Un criteriu de dependență liniară a unui sistem finit de vectori. Să presupunem acum că avem dat un sistem de k vectori $S = \{x_1, \ldots, x_k\}$ într-un spațiu vectorial n-dimensional V în care am fixat o bază \mathcal{B} . Vrem să-i stabilim independența sau dependența liniară. Dacă n < k sistemul e, sigur, dependent. Vom considera, deci, $k \le n$. Dependența liniară a sistemului nostru e echivalentă cu existența unor scalari, nu toți nuli, a_1, \ldots, a_k astfel încât $\sum a_i x_i = 0$. Descompunând fiecare x_i în baza \mathcal{B} ca $x_i = \sum x_{ij}e_j$, relația dinainte e echivalentă cu $\sum_i a_i (\sum_j x_{ij}e_j) = 0$. Sau, încă: $\sum_j (\sum_i a_i x_{ij})e_j = 0$. Cum e_i compun o bază, sunt liniar independenți, astfel că egalitatea de mai sus implică anularea fiecărui coeficient: $\sum_i a_i x_{ij} = 0$ sau, desfășurat:

$$\begin{array}{rcl} x_{11}a_1 + x_{21}a_2 + \dots + x_{k1}a_k & = & 0 \\ x_{12}a_1 + x_{22}a_2 + \dots + x_{k2}a_k & = & 0 \\ \dots & \dots & \dots & \dots \\ x_{1n}a_1 + x_{2n}a_2 + \dots + x_{kn}a_k & = & 0 \end{array}$$

Acesta este un sistem omogen, deci compatibil. Pentru a găsi o soluție (a_1,\ldots,a_k) netrivială, conform regulii lui Rouché, trebuie ca rangul p al matricei $X=(x_{ij})$ a sistemului să fie strict mai mic decât k (pentru a putea trece în membrul drept necunoscutele secundare și a obține un sistem cu p < k necunoscute și p ecuații, compatibil neomogen). Reciproc, dacă matricea sistemului de mai sus nu are rang maxim k, sistemul admite o soluție netrivială, aceasta furnizează o combinație liniară netrivială a vectorilor lui S care se dovedește liniar dependent.

Vedem deci că pentru a studia liniar (in)dependența lui S trebuie să studiem rangul matricei componentelor vectorilor lui S într-o bază \mathcal{B} . Pe de altă parte, independența liniară a unui sistem de vectori e o noțiune intrinsecă, nu depinde de reperul în care o testăm. Deci, dacă rangul matricei componentelor vectorilor din sistem este maxim într-un reper, la fel va fi în orice alt reper. Ținând seama de regula de schimbare a matricei componentelor vectorilor, dacă $X' = (x'_{ij})$ este matricea asociată lui S într-o altă bază, \mathcal{B}' , atunci X = AX' cu A matrice de trecere de la \mathcal{B} la \mathcal{B}' , deci nedegenerată. Obținem, în particular: rang $(X) = \operatorname{rang}(AX)$ de îndată ce A este nedegenerată. Rezumând, am demonstrat următorul criteriu:

Propoziția 1.4. Un sistem de $k \leq \dim V$ vectori din V e liniar independent dacă și numai dacă rangul matricei componentelor vectorilor într-o bază fixată (și, deci, în orice bază) e maxim, adică este k.

3. Subspații vectoriale. Definiții. Exemple

Definiția 1.8. O submulțime nevidă U a unui spațiu vectorial V se numește subspațiu vectorial (pe scurt, subspațiu) dacă e închisă (stabilă) la adunarea vectorilor și la înmulțirea cu scalari.

În particular, orice subspațiu e subgrup față de structura de grup comutativ a spațiului ambiant. E imediat faptul că un subspațiu este o submulțime care devine, la rândul ei, un spațiu vectorial cu structura indusă. Trebuie doar să verificați că $0 \ \mathrm{din} \ U$ coincide cu cel din V.

Prin abuz de limbaj, subspaţiile 1-dimensionale se mai numesc drepte vectoriale, cele 2-dimensionale plane vectoriale. Subspaţiile (n-1)-dimensionale $(\dim V = n)$ se numesc hiperplane. Acestea sunt elemente maximale în mulţimea subspaţiilor faţă de relaţia de incluziune.

Exemplul 1.12. 1) $\{0\}$ și V sunt subspații triviale ale oricărui spațiu vectorial. 2) K^m poate fi văzut ca subspațiu al lui K^n , $n \ge m$, identificând un element din K^m cu unul din K^n cu ultimile n-m componente nule.

- 3) Polinoamele de grad cel mult n formează un subspațiu al lui K[X].
- 4) Mulţimea funcţiilor continue reale cu valori reale formează un subspaţiu al lui $\mathbb{R}^{\mathbb{R}}$ (vezi exemplul 1.4). Aceeaşi mulţime e subspaţiu al spaţiului funcţiilor integrabile Riemann².
- 5) Dacă H este un subcorp al lui K, atunci H_H nu este subspațiu al lui K_K , deoarece corpurile scalarilor sunt diferite. În schimb, H_H este subcorp al lui K_H .
- 6) Mulţimea matricelor simetrice (respectiv antisimetrice) de tip (m,m) formează subspaţiu al lui $\mathcal{M}(m;K)$. De asemenea, mulţimea matricelor de urmă nulă (urma unei matrice este scalarul $\operatorname{tr}(A) = \sum_{i=1}^m a_{ii}$) ca şi mulţimea matricelor diagonale.
 7) Reluând exemplul 1.5 constatăm că structura de spaţiu vectorial pe care am
- 7) Reluand exemplul 1.5 constatam ca structura de spațiu vectorial pe care am descris-o pe mulțimea soluțiilor unui sistem liniar omogen atașat unei matrice $A \in \mathcal{M}(m,n;K)$ e, de fapt, un subspațiu al lui K^n . În consecință, dreptele care trec prin originea lui \mathbb{R}^2 sunt subspații. Vom vedea mai încolo că, odată fixată o bază într-un spațiu vectorial, orice subspațiu este de tipul acesta.
- 8) Există submulțimi care nu sunt subspații: submulțimea vectorilor din \mathbb{R}^3 cu 1 pe ultima componentă nu formează subspațiu.
- 9) $\operatorname{GL}(n,\mathbb{R}) \stackrel{\operatorname{not}}{=} \{A \in \mathcal{M}(n,\mathbb{R} \mid \det A \neq 0)\}$ e grup față de înmulțirea matricelor, dar nu e subspațiu vectorial al lui $\mathcal{M}(n,\mathbb{R})$.

 $^{^2{\}rm Bernhard}$ Riemann, 1826-1866, matematician german cu contribuții excepționale în geometrie, analiză, teoria numerelor.

Exercițiul 1.9. Dacă U e subspațiu al lui V și V e subspațiu al lui W, atunci U e subspațiu al lui W.

EXERCIȚIUL 1.10. O condiție necesară și suficientă ca o submulțime U a unui spațiu vectorial V_K să fie subspațiu vectorial este ca pentru orice $x,y\in U$ și orice $\alpha,\beta\in K$, combinația liniară $\alpha x+\beta y$ să aparțină lui U.

Următorul rezultat este esențial:

Propoziția 1.5. Dimensiunea spațiului soluțiilor unui sistem liniar omogen de matrice $A \in \mathcal{M}(m, n; K)$ este egală cu corangul matricei sistemului (n - rg(A)).

Demonstrație. Fie sistemul liniar omogen de matrice $A = (a_{ij})$:

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

Fie $r=\operatorname{rg}(A),\ p=n-r.$ După o eventuală renumerotare a necunoscutelor şi schimbarea ordinii ecuațiilor sistemului, putem admite că minorul de la intersecția primelor r linii şi r coloane e nenul. Obținem sistemul de tip Cramer:

$$\begin{array}{rcl} a_{11}x_1 + \dots + a_{1r}x_r & = & -a_{1r+1}\lambda_1 - \dots - a_{1r+p}\lambda_p \\ & & & \\ a_{r1}x_1 + \dots + a_{rr}x_r & = & -a_{rr+1}\lambda_1 - \dots - a_{rr+p}\lambda_p \end{array}$$

unde am notat $\lambda_1,\dots,\lambda_p$ necunoscutele secundare care parametrizează soluția generală a sistemului. Rezolvând sistemul cu regula lui Cramer, soluția generală se poate scrie

$$X = \left(\frac{\Delta_1}{\Delta}, \dots, \frac{\Delta_r}{\Delta}, \lambda_1, \dots, \lambda_p\right),$$

unde Δ e determinantul minorului principal, iar Δ_i sunt determinanții obținuți din acesta prin înlocuirea coloanei i cu cea a termenilor liberi. Dezvoltând determinanții Δ_i după coloana i observăm că ei se pot scrie sub forma:

$$\Delta_i = \lambda_1 \Delta_{i1} + \dots + \lambda_p \Delta_{ip}.$$

Cum $\lambda_1, \ldots, \lambda_p$ pot lua toate valorile reale, dăm pe rând fiecărui parametru valoarea 1 anulându-i pe ceilalți. Vom obține astfel soluțiile:

$$X_1 = (\frac{\Delta_{11}}{\Delta}, \dots, \frac{\Delta_{r1}}{\Delta}, 1, 0, \dots, 0)$$

$$X_p = (\frac{\Delta_{1p}}{\Delta}, \dots, \frac{\Delta_{rp}}{\Delta}, 0, 0, \dots, 1)$$

Se vede imediat că vectorii X_1,\ldots,X_p sunt independenți în K^n . Pe de altă parte, e evident că ei generează întreg spațiul soluțiilor, deoarece $X=\lambda_1X_1+\cdots+\lambda_pX_p$. Rezultă că aceste soluții formează o bază a spațiului soluțiilor și demonstrația e completă.

Demonstrăm acum că orice subspațiu, în orice spațiu vectorial, e de acest tip:

Teorema 1.2. O submulțime U a unui spațiu vectorial V e subspațiu vectorial dacă și numai dacă, în orice reper al lui V, coordonatele punctelor din U sunt soluțiile unui sistem liniar omogen.

 $\begin{array}{l} \textit{Demonstrație. Fie $\mathcal{B}_U = \{u_1, \dots, u_p\}$ un reper al lui U. Îl completăm la un reper $\mathcal{B}' = \{u_1, \dots, u_p, u_{p+1}, \dots, u_n\}$ al lui V. Fie $x \in V$ cu coordonate (x_1', \dots, x_n') în reperul \mathcal{B}': $x = \sum_{i=1}^n x_i' u_i$. Atunci $x \in U$ dacă şi numai dacă } \end{array}$

$$(1.3) x'_{p+1} = \dots = x'_n = 0.$$

Deci $x \in U$ dacă și numai dacă coordonatele lui x în reperul particular \mathcal{B}' satisfac sistemul liniar omogen (1.3). Fie acum \mathcal{B} un reper arbitrar al lui V și fie $A=(a_{ij})$ matricea de trecere de la \mathcal{B}' la \mathcal{B} . Coordonatele (x_1,\ldots,x_n) ale unui punct față de reperul \mathcal{B} sunt legate de coordonatele (x_1',\ldots,x_n') prin relația $x_i'=\sum_{j=1}^n a_{ij}x_j$. Conform celor de mai sus, deducem că $x \in U$ dacă și numai dacă coordonatele sale în reperul arbitrar \mathcal{B} satisfac sistemul

(1.4)
$$\sum_{j=1}^{n} a_{ij} x_j = 0, \quad i = p+1, \dots, n,$$

ceea ce încheie demonstrația.

Să observăm că, deoarece dim U=p, sistemul (1.4) are rangul p. Atunci el poate fi rezolvat în funcție de n-p parametri t_{p+1},\ldots,t_n . Soluția generală poate fi pusă sub forma:

(1.5)
$$x_i = \sum_{j=1}^p b_{ij} t_j, \qquad i = 1, \dots, p \\ x_i = t_i, \qquad i = p+1, \dots, n.$$

Putem da acum:

Definiția 1.9. Ecuațiile (1.4) se numesc ecuațiile subspațiului U în reperul \mathcal{B} . Ecuațiile (1.5) se numesc ecuațiile parametrice ale subspațiului U în reperul \mathcal{B} .

În particular, dacă H e un hiperplan în V, avem p=n-1 și sistemul (1.4) se reduce la o singură ecuație. Deci:

COROLARUL 1.5. Un subspațiu este hiperplan dacă și numai dacă, în orice reper al spațiului ambiant, coordonatele oricărui punct al său verifică o ecuație liniară omogenă ai cărei coeficienți nu sunt toți nuli.

Acum, reinterpretând sistemul (1.4), obţinem şi:

COROLARUL 1.6. O submulțime a unui spațiu vectorial este subspațiu de dimensiune p dacă și numai dacă e intersecția a n-p hiperplane.

Dăm acum o caracterizare simplă a subspațiilor:

Propoziția 1.6. O submultime U a unui spațiu vectorial V este subspațiu vectorial dacă și numai dacă este egală cu acoperirea sa liniară: U = L(U).

 $\begin{array}{ll} \textit{Demonstrație.} \ \, \mathrm{Cum} \ L(U) \ \mathrm{e, prin \ definiție, subspațiu, rămâne să probăm necesitatea.} \ \, \mathrm{Fie} \ U \ \mathrm{subspațiu.} \ \, \mathrm{Incluziunea} \ U \subset L(U) \ \mathrm{e \ trivială.} \ \, \mathrm{Reciproc, \ dacă} \ x \in L(U), \\ \mathrm{atunci, prin \ definiție,} \ x = \sum_{i} a_i x_i \ \mathrm{cu} \ a_i \in K \ \mathrm{şi} \ x_i \in U. \ \, \mathrm{Cum \ adunarea} \ \mathrm{şi} \ \mathrm{\hat{n}nmulțirea} \\ \mathrm{cu \ scalari \ ne \ păstrează \ \hat{n}} \ U, \ x \in U. \end{array}$

Avînd în vedere că pentru orice submulțime M, L(L(M)) = L(M), propoziția anterioară motivează următoarea construcție a subspațiilor:

Definiția 1.10. Pentru o mulțime arbitrară $M \subset V$ a unui spațiu vectorial, L(M) se numește subspațiul generat de M.

3.1. Operații cu subspații. O verificare imediată arată că o intersecție arbitrară (nu neapărat numărabilă) de subspații e încă subspațiu. Astfel că putem caracteriza subspațiul generat de o mulțime prin:

Propoziția 1.7. L(M) este cel mai mic subspațiu (în sensul incluziunii) care contine M:

$$L(M) = \bigcap_{M \subseteq U} U$$
, U subspaţiu.

Demonstrație. Vom proba egalitatea prin dublă incluziune. Să notăm deocamdată L'(M) intersecția din membrul drept al egalității de demonstrat. Conform celor de mai sus L'(M) e un subspațiu (cel mai mic) care conține M. Cum, evident, și L(M) e un subspațiu care conține M, avem incluziunea $L'(M) \subseteq L(M)$. Reciproc, fie acum $x \in L(M)$ și U un subspațiu arbitrar care conține M. Prin definiție x este o combinație liniară finită de elemente din M, deci din U. Tot prin definiție U e închis la combinații liniare, ceea ce arată că $x \in U$, adică $L(M) \subseteq L'(M)$. \square

Pe de altă parte, cum reuniunea subgrupurilor (chiar finită) nu e un subgrup, nici reuniunea de subspații nu este un subspațiu. E ușor să vă convingeți, de exemplu, că reuniunea a două drepte prin originea planului nu mai e un subspațiu. Totuși, construcția anterioară ne permite să introducem:

Definiția 1.11. Pentru două subspații U_1, U_2 , se numește suma lor și se notează $U_1 + U_2$ subspațiul generat de reuniunea lor: $L(U_1 \cup U_2)$. Participanții la sumă se numesc sumanzi.

Bineînțeles, cele de mai sus se generalizează pentru o familie arbitrară de subspații.

Observația 1.9. Cu operațiile \cap și + mulțimea subspațiilor unui spațiu vectorial devine o latice completă.

O caracterizare a lui $U_1 + U_2$ (justificare a denumirii şi notației) avem în:

Propoziția 1.8.
$$U_1 + U_2 = \{u_1 + u_2 ; u_1 \in U_1, u_2 \in U_2\}.$$

Demonstrație. Că membrul drept al egalității de demonstrat este inclus în cel stâng e evident. Fie acum $u \in U_1 + U_2$. Atunci $u = a_1x_1 + \cdots + a_rx_r$ cu $a_i \in K$ și $x_i \in U_1 \cup U_2$. După o eventuală renumerotare, putem presupune că $x_1, \ldots, x_s \in U_1$ și $x_{s+1}, \ldots, x_r \in U_2$, convenind să considerăm numai în U_1 elementele din intersecția $U_1 \cap U_2$. Rezultă scrierea dorită cu $u_1 = a_1x_1 + \cdots + a_sx_s$ și $u_2 = a_{s+1}x_{s+1} + \cdots + a_rx_r$.

Si acest rezultat se extinde la o sumă cu un număr finit de sumanzi.

Din demonstrație, ca și din examinarea exemplului $\mathbb{R}^3 = \{(x,y,0)\} + \{(x,0,z)\}$ (observați că (1,1,1) = (1,1,0) + (0,0,1) = (0,1,0) + (1,0,1) etc.) se vede că descompunerea de mai sus nu e, în general, unică. Ceea ce strică unicitatea e existența unei intersecții netriviale a celor doi sumanzi (în exemplul propus, $\{(x,y,0)\} \cap \{(x,0,z)\} = \{(x,0,0)\}$, 1-dimensional). Pentru a separa cele două situații diferite calitativ, introducem:

Definiția 1.12. Suma $U_1 + U_2$ se numește directă și se notează $U_1 \oplus U_2$ dacă $U_1 \cap U_2 = \{0\}$. Sumanzii direcți se numesc, fiecare, complement al celuilalt.

Putem acum da:

Propoziția 1.9. O sumă e directă dacă și numai dacă descompunerea furnizată de propoziția 1.8 e unică.

Demonstrație. Necesitatea: fie $u = u_1 + u_2 = v_1 + v_2$. Atunci $u_1 - v_1 = v_2 - u_2$. Cum $u_i - v_i \in U_i$, i = 1, 2 și $U_1 \cap U_2 = \{0\}$, rezultă $u_1 = v_1$, $u_2 = v_2$. Suficiența: Prin absurd, fie $0 \neq u \in U_1 \cap U_2$. Atunci 0 are două descompuneri distincte: 0 = 0 + 0 = u + (-u), contradicție. De fapt, de îndată ce există un element nenul u în intersecție, orice element al sumei are două descompuneri: u = $u_1 + u_2 = (u_1 + u) + (u_2 - u).$

EXERCIȚIUL 1.11. Decideți (motivând de fiecare dată) care dintre următoarele sume e directă:

- 1) $\mathcal{M}(m;K) = \{A \mid {}^{t}A = A\} + \{A \mid {}^{t}A = -A\};$
- 2) $\mathcal{M}(m; K) = \{A \mid \operatorname{tr}(A) = 0\} + \{A = aI_m \mid a \in K\};$
- 3) $\mathbb{R}^4 = \{(0,0,z,t)\} + \{(x,y,0,0)\};$
- 4) $\mathbb{R}^4 = \{(x, 0, z, t)\} + \{(x, y, 0, t)\}.$

Ne interesează acum să determinăm dimensiunea sumei a două subspații în funcție de dimensiunile subspațiilor respective. Să examinăm întâi două exemple. Fie $U_1 = \{(x, y, 0) ; x, y \in \mathbb{R}\}$ şi $U_2 = \{(t, 0, t) ; t \in \mathbb{R}\}$. Atunci $U_1 + U_2 = \{(t, 0, t) ; t \in \mathbb{R}\}$. $\{(ax + bt, ay, bt)\} = \mathbb{R}^3$. Deci dim $(U_1 + U_2) = 3 = \dim U_1 + \dim U_2$. Fie acum $\widetilde{U}_3 = \{(u,0,v)^{\prime}; u,v \in \mathbb{R}\}.$ Avem $U_1 + U_3 = \mathbb{R}^3$, astfel că dim $(U_1 + U_3) = \mathbb{R}^3$ $3=\dim U_1+\dim U_3-1$. Diferența dintre cele două exemple e că, dacă în primul $U_1\cap U_2=\{0\}$, în al doilea $U_1\cap U_3=\{(t,0,0)\}$, un subspațiu 1-dimensional. De fapt este adevărat următorul rezultat general:

Teorema 1.3. A dimensiunii sumei de subspații vectoriale (H.G. Grassmann³)

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2).$$

Demonstrație. Ideea este simplă, dar foarte utilă, vom mai întâlni această schemă de demonstrație. Fie $p = \dim U_1 \cap U_2$, $q = \dim U_1$, $r = \dim U_2$ și $\{e_1, \dots, e_p\}$ o bază în $U_1 \cap U_2$. Aceasta este, în particular, un sistem independent în U_1 , deci poate fi completată la o bază $\{e_1,\ldots,e_p,f_{p+1},\ldots,f_q\}$ a lui U_1 . La fel, ea poate fi completată la o bază $\{e_1,\ldots,e_p,h_{p+1},\ldots,h_r\}$ a lui U_2 . Vom arăta acum că $\mathcal{B}=$ $\{e_1,\ldots,e_p,f_{p+1},\ldots,f_q,h_{p+1},\ldots,h_r\}$ este o bază a lui U_1+U_2 . Să considerăm o combinație liniară egală cu zero a acestor vectori:

(1.6)
$$\sum_{i=1}^{p} a_i e_i + \sum_{j=1}^{q-p} b_j f_{p+j} + \sum_{k=1}^{r-p} b_k h_{p+k} = 0.$$

Scriind egalitatea aceasta sub forma

$$\sum_{i=1}^{p} a_i e_i + \sum_{i=1}^{q-p} b_j f_{p+j} = -\sum_{k=1}^{r-p} b_k h_{p+k}.$$

avem egalitatea unui vector din U_1 (în membrul stâng) cu unul din U_2 (membrul drept). Rezultă că amândoi sunt în intersecția $U_1 \cap U_2$. În particular trebuie să existe scalarii c_i astfel încât

$$-\sum_{k=1}^{r-p} b_k h_{p+k} = \sum_{i=1}^{p} c_i e_i$$

³Hermann Günther Grassmann, 1809-1877, matematician german.

sau încă

$$\sum_{i=1}^{p} c_i e_i + \sum_{k=1}^{r-p} b_k h_{p+k} = 0.$$

Cum $\{e_i,h_{p+k}\}$, $i=1,\ldots,p,\ h=1,\ldots,r-p$ formează bază în U_2 , toți coeficienții combinației de mai sus sunt nuli. Deci toți $b_k=0$. Atunci în (1.6) rămânem cu o combinație liniară egală cu zero a vectorilor bazei lui U_1 . Rezultă că și coeficienții acesteia sunt nuli astfel că (1.6) e o combinație trivială. Am demonstrat că $\mathcal B$ e liniar independentă.

Pentru a vedea că \mathcal{B} e sistem de generatori ne aducem aminte că orice $x \in U_1 + U_2$ se scrie ca $x = x_1 + x_2, x_i \in U_i$ (conform propoziției 1.8). Atunci

$$x = x_1 + x_2 = \left(\sum_{i=1}^p a_i e_i + \sum_{j=1}^{q-p} b_j f_{p+j}\right) + \left(\sum_{i=1}^p a_i' e_i + \sum_{k=1}^{r-p} b_k h_{p+k}\right) =$$

$$= \sum_{i=1}^p (a_i + a'i) e_i + \sum_{j=1}^{q-p} b_j f_{p+j} + \sum_{k=1}^{r-p} b_k h_{p+k}$$

ceea ce demonstrează afirmația.

Mai rămâne acum să numărăm elementele lui \mathcal{B} .

COROLARUL 1.7. $\dim(U_1 \oplus U_2) = \dim U_1 + \dim U_2$.

EXERCIȚIUL 1.12. Extindeți teorema dimensiunii lui Grassmann pentru un număr arbitrar, finit, de sumanzi.

EXERCIȚIUL 1.13. Fie u, v, w trei vectori liniari independenți într-un spațiu vectorial de dimensiune cel puțin trei. Fie $U_1 = L(u-v, u+v)$, $U_2 = L(u+v, w)$. Să se găsească câte o bază în $U_1 + U_2$ și în $U_1 \cap U_2$.

Următorul exemplu:

$$\mathbb{R}^3 = \{(x, y, 0)\} \oplus \{(0, 0, t)\} = \{(x, y, 0)\} \oplus \{(t, t, t)\}$$

arată că două subspații distincte pot avea un același complement. În general este adevărată proprietatea:

Exercițiul 1.14. Două subspații admit un complement comun dacă și numai dacă au aceeași dimensiune.

In fine, să amintim că

Propoziția 1.10. Un produs direct de subspații vectoriale este tot un subspațiu vectorial.

Demonstrația o reproduce pe cea a enunțului corespunzător pentru spații vectoriale.

4. Aplicații liniare

4.1. Definiții. Exemple. Prime proprietăți. În oricare teorie matematică, odată definite obiectele și subobiectele specifice (aici spațiile și subspațiile vectoriale), se definesc funcțiile compatibile cu obiectele date. Între spațiile topologice funcțiile considerate bune sunt cele continue, între grupuri sunt morfismele de grupuri și așa mai departe. Aici noțiunea potrivită este cea de aplicație semi-liniară pe care o precizăm în:

Definiția 1.13. Fie V_1 (respectiv V_2) un spațiu vectorial peste corpul comutativ K_1 (respectiv K_2). O funcție $f:V_1\to V_2$ se numește aplicație semiliniară (sau operator semi-liniar sau morfism semi-liniar) dacă există un izomorfism $\theta:K_1\to K_2$ cu următoarele proprietăți:

$$f(x + y) = f(x) + f(y)$$
 (aditivitate)
 $f(ax) = \theta(a)f(x)$ (semi-liniaritate)

O aplicație semi-liniară pentru care $K_1=K_2=K$ și $\theta=1_K$ se numește liniară. O aplicație semi-liniară de la V în V se numește endomorfsm (semi-liniar).

Am notat aici cu acelaşi simbol "+", nefiind pericol de confuzie, operațiile de grup în V_1 şi V_2 , juxtapunerea semnificând înmulțirea cu scalari în ambele spații. La fel, vom nota 0 vectorul nul din ambele spații. Vom subînțelege, de acum înainte, că spațiile între care considerăm aplicații liniare au același corp de scalari.

N.B. Dacă nu precizăm în mod explicit că ne referim la o aplicație semiliniară, noțiunile de morfism, endomorfism, izomorfism se vor aplica aplicațiilor liniare.

Între spațiile vectoriale peste un corp care nu posedă alte automorfisme în afara celui identic, cum este cazul lui \mathbb{R} , nu există decât aplicații liniare. Pe de altă parte, pentru $K = \mathbb{C}$ și $V = \mathbb{C}_{\mathbb{C}}^n$, considerând $\theta(z) = \overline{z}$, avem aplicația semi-liniară

$$(z_1,\ldots,z_n)\mapsto (\overline{z}_1,\ldots,\overline{z}_n)$$

care nu e liniară. Deci aplicațiile liniare sunt un caz particular nebanal al celor semi-liniare.

Totuși, deoarece majoritatea aplicațiilor geometrice ale algebrei liniare utilizează doar aplicațiile liniare, ne vom concentra asupra acestora.

Observația 1.10. 1) O aplicație semi-liniară e, în particular, morfism de grupuri față de structurile de grup aditiv ale lui V_1, V_2 .

- 2) Deşi noi lucrăm cu spații finit dimensionale, definiția dată e bună și pentru cazul infinit dimensional. Parte din proprietățile pe care le vom descrie vor fi, de asemenea, adevărate și în acest caz.
- 3) Pentru orice aplicație semi-liniară $f,\ f(0)=0$: puneți a=0 în a doua condiție din definiție.

Propoziția 1.11. $f:V_1\to V_2$ e aplicație liniară dacă și numai dacă păstrează combinațiile liniare:

$$f(\sum_{i=1}^{r} a_i x_i) = \sum_{i=1}^{r} a_i f(x_i),$$

pentru orice $r \in \mathbb{N}$, orice vectori $x_i \in V_1$ și orice scalari $a_i \in K$.

Demonstrație. Dacă relația din enunț e satisfăcută, atunci pentru r=2, $a_1=a_2=1$ se obține f(x+y)=f(x)+f(y), iar pentru r=1 se regăsește f(ax)=af(x). Reciproc, aplicând repetat cele două condiții din definiție, avem:

$$f(\sum_{i=1}^{r} a_i x_i) = f(\sum_{i=1}^{r-1} a_i x_i) + a_r f(x_r) = \dots = \sum_{i=1}^{r} a_i f(x_i).$$

Lăsăm pe seama cititorului demonstrarea următorului rezultat simplu, dar fundamental:

Propoziția 1.12. O compunere de aplicații semi-liniare e aplicație semi-liniară.

Definiția 1.14. O aplicație semi-liniară bijectivă se numește *izomorfism* semi-liniar. Două spații vectoriale între care există un izomorfism liniar se zic *izomorfe*.

Atunci când V, W sunt izomorfe scriem $V \cong W$.

Cititorul va demonstra singur următoarele proprietăți simple:

Propoziția 1.13. 1) Inversa unui izomorfism semi-liniar e tot o aplicație semi-liniară.

- 2) Mulţimea endomorfismelor bijective ale unui spaţiu vectorial V e un grup faţă de operaţia de compunere a funcțiilor. Acesta se notează GL(V). Pentru $V = K^n$ scriem simplu GL(n, K) (vezi şi exemplul 1.2(9)).
- 3) Relația "a fi izomorf cu" e una de echivalență pe mulțimea tuturor spațiilor vectoriale peste același corp.

De aceea clasificarea spaţiilor vectoriale se face "până la izomorfism liniar". Este, însă, foarte important să ştim dacă două spaţii sunt izomorfe canonic (adică printr-un izomorfism dat de Dumnezeu, independent de vreo alegere a noastră) sau nu. Vom vedea în paragraful următor că orice două spaţii vectoriale finit dimensionale echidimensionale sunt izomorfe; dar izomorfismul nu va fi canonic.

EXEMPLUL 1.13. 1) Identitatea oricărui spațiu vectorial e aplicație liniară. La fel, între orice două spații, aplicația nulă f(x) = 0. Acestea sunt exemplele triviale.

- 2) Proiecțiile produsului direct pe fiecare factor, $\operatorname{pr}_i: K^n \to K$, date prin $\operatorname{pr}_i(x_1,\ldots,x_n)=x_i$.
- 3) Fie $A \in \mathcal{M}(m,n;K)$. Definim $f_A: K^n \to K^m$ prin $f_A(X) = AX$. Avem, pentru orice $X,Y \in K^n$ şi $a \in K$, $f_A(X+Y) = A(X+Y) = AX + AY = f_A(X) + f_A(Y)$, $f_A(aX) = A(aX) = (Aa)X = (aA)X = a(AX) = af_A(X)$ (aici comutativitatea lui K a fost esenţială) deci f_A e liniară. Astfel, există cel puţin tot atâtea aplicaţii liniare câte matrice. Acest exemplu e fundamental, vom vedea că orice aplicaţie liniară e de tipul acesta.
- 4) Aplicația tr : $\mathcal{M}(m;K) \to K$ prin tr $(A) = \sum_{i=1}^{m} a_{ii}$ e liniară; verificările sunt imediate.
- 5) Fie $\lambda \in K$ fixat. Aplicația $v_{\lambda}: K[X] \to K, v_{\lambda}(f) = f(\lambda)$ (evaluarea unui polinom în λ) e liniară.
- 6) Dacă V e o mulțime amorfă, W e un spațiu vectorial și $f: V \to W$ o funcție bijectivă, atunci V poate fi înzestrat cu următoarea structură vectorială (peste același corp ca și W):

$$x + y = f^{-1}(f(x) + f(y)), \quad \lambda x = f^{-1}(\lambda f(x)).$$

Față de această structură vectorială, f devine izomorfism.

8) Funcția det : $\mathcal{M}(m;K) \to K$ nu e liniară pentru că det $(A+B) \neq \det(A) + \det(B)$.

Următorul rezultat este imediat (vezi exemplul 1.4).

Propoziția 1.14. Mulțimea aplicațiilor liniare de la U la V e un subspațiu vectorial, notat L(U,V), al lui V^U (deci e, în particular, spațiu vectorial cu structura indusă). L(U,U) se va nota $\mathrm{End}(U)$, L(U,K) se va nota U^* și se va numi dualul lui U.

Observația 1.11. $\operatorname{End}(V)$ are şi structură de inel (față de adunarea şi compunerea funcțiilor), dar nu aceasta ne va interesa în primul rând în acest text.

Elementele spaţiului dual se numesc funcționale liniare. Dacă fixăm baza $\{e_1, \ldots, e_n\}$ în U, atunci putem construi o bază duală $\{e_1^*, \ldots, e_n^*\}$ în U^* punând

$$e_i^*(e_j) = \delta_{ij}, \quad i, j = 1, \dots, n$$

şi extinzând prin liniaritate, adică: pentru $f = \sum a_j e_j$, definim $e_i^*(f) = \sum a_j e_i^*(e_j)$ = a_i . Cititorul va verifica uşor că $\{e_i^*\}$ reprezintă într-adevăr o bază. A rezultat, în particular:

Propoziția 1.15. dim $U = \dim U^*$.

Exercitiul 1.15. Să se construiască baza duală celei canonice din K^n .

EXERCIȚIUL 1.16. Fie $f \in V^*$ fixată. Să se construiască un reper $\{e_1, \ldots, e_n\}$ în V astfel încât, dacă $x = \sum_i x_i e_i$, atunci $f(x) = x_i$.

Fie acum $f:V_1\to V_2$ o aplicație semi-liniară fixată. Îi vom asocia două mulțimi după cum urmează:

DEFINIȚIA 1.15. $Ker(f) := \{x \in V_1 \mid f(x) = 0\}$, numită *nucleul* (din englezes-cul *kernel*) lui f;

 $\operatorname{Im}(f) := \{ y \in V_2 \mid \text{există } x \in U, f(x) = y \}, \text{ numită } imaginea \text{ lui f.}$

Propoziția 1.16. Ker(f) (respectiv Im(f)) e subspațiu în V_1 (respectiv V_2).

Demonstrație. Fie $x, z \in \text{Ker}(f)$ și $a, b \in K_1$. Atunci f(ax+bz) = f(ax)+f(bz) (aditivitatea lui $f) = \theta(a)f(x)+\theta(b)f(z)$ (semi-liniaritatea lui $f) = \theta(a)\cdot 0 + \theta(b)\cdot 0 = 0$ deci $ax+bz \in \text{Ker}(f)$. Fie acum $y, t \in \text{Im}(f), x, z \in U$ astfel încât f(x) = y, f(z) = t și $a, b \in K_2$. Atunci $ay + bt = f(\theta^{-1}(a)x + \theta^{-1}(b)z)$ de unde $ay + bt \in \text{Im}(f)$. \square

Semnificația acestor subspații în studiul aplicațiilor semi-liniare rezultă și din:

Propoziția 1.17. O aplicație semi-liniară f e injectivă (respectiv surjectivă) dacă și numai dacă $\operatorname{Ker}(f) = \{0\}$ (respectiv $\operatorname{Im}(f) = V_2$).

Demonstrație. Fie f injectivă și $x \in \text{Ker}(f)$. Atunci f(x) = f(0) = 0, deci x = 0. Reciproc, dacă f(x) = f(y), atunci f(x - y) = 0, de unde $x - y \in \text{Ker}(f)$, adică x = y. Demonstrația afirmației referitoare la imagine e imediată. \square

Astfel, pentru a testa injectivitatea unei aplicații semi-liniare e suficient să verificăm echivalența f(x) = 0 dacă și numai dacă x = 0.

Un rezultat important, simplu de demonstrat, asupra căruia vom reveni, leagă dimensiunile imaginii și nucleului de dimensiunea domeniului. Nu avem nevoie decât de cazul liniar. Anume:

Propoziția 1.18. Pentru o aplicație liniară $f: U \to V$ are loc egalitatea:

$$\dim \operatorname{Ker}(f) + \dim \operatorname{Im}(f) = \dim U.$$

Demonstrație. Tehnica de demonstrație e asemănătoare celei din teorema dimensiunii a lui Grassmann. Pornim cu $\{e_1,\ldots,e_p\}$ bază în $\operatorname{Ker}(f)$ și o completăm la o bază $\{e_1,\ldots,e_p,g_{p+1},\ldots,g_n\}$, cu $n=\dim U$, a lui U. E suficient acum să arătăm că $\{f(g_i)\}$ e o bază a lui $\operatorname{Im}(f)$. Arătăm întâi liniar independența: fie $a_{p+1}f(g_{p+1})+\cdots+a_nf(g_n)=0$. Atunci $f(a_{p+1}g_{p+1}+\cdots+a_ng_n)=0$, deci $a_{p+1}g_{p+1}+\cdots+a_ng_n\in\operatorname{Ker}(f)$. Rezultă că există scalarii b_1,\ldots,b_p astfel încât $a_{p+1}g_{p+1}+\cdots+a_ng_n=b_1e_1+\cdots+b_pe_p$, echivalent $a_{p+1}g_{p+1}+\cdots+a_ng_n-b_1e_1-\cdots-b_pe_p=0$. Dar o combinație liniară a elementelor unei baze nu poate fi nulă decât dacă e trivială. În particular, toți scalarii a_i sunt nuli. Pe de altă parte, dacă $y\in\operatorname{Im}(f),\ y=f(x)$ și $x=a_1e_1+\cdots+a_pe_p+a_{p+1}g_{p+1}+\cdots+a_ng_n$. Atunci $y=f(x)=f(a_1e_1+\cdots+a_pe_p+a_{p+1}g_{p+1}+\cdots+a_ng_n)=\sum_{i=1}^p a_i f(e_i)+\sum_{i=p+1}^n a_i f(g_i)=\sum_{i=p+1}^n a_i f(g_i)$, adică $\{f(g_i)\}$ e și sistem de generatori.

Demonstrația aceasta sugerează și un enunț referitor la comportarea combinațiilor liniare față de o aplicație liniară:

Propoziția 1.19. 1) O aplicație liniară transformă orice sistem liniar independent într-un sistem independent dacă și numai dacă e injectivă.

2) O aplicație liniară transformă orice sistem de generatori într-un sistem de generatori dacă și numai dacă e surjectivă.

3) O aplicație liniară transformă orice bază într-o bază dacă și numai dacă e bijectivă (izomorfism liniar). În particular, două spații vectoriale izomorfe au aceeași dimensiune.

Demonstrație. Fie $f: U \to V$ liniară. Va fi suficient să demonstrăm 1) și 2), afirmațiile 3) fiind o consecință directă a acestora.

1) Necesitatea: Fie $x \neq 0$ în U. Atunci $\{x\}$ e liniar independent, deci $\{f(x)\}$ e liniar independent, în consecință $f(x) \neq 0$. Rezultă că nucleul lui f e trivial și f e injectivă.

Sufficiența: Fie $\{x_1,\ldots,x_p\}$ un sistem liniar independent arbitrar în U. Presupunem $a_1f(x_1)+\cdots+a_pf(x_p)=0$. Atunci $f(a_1x_1+\cdots+a_px_p)=0$, de unde $a_1x_1+\cdots+a_px_p=0$ pentru că f e injectivă. Mai departe, $a_i=0$ pentru că $\{x_1,\ldots,x_p\}$ e independent.

2) Necesitatea: fie $\{x_1,\ldots,x_q\}$ un sistem de generatori al lui U şi $y\in V$ arbitrar. Cum $\{f(x_1),\ldots,f(x_q)\}$ e sistem de generatori în V, putem scrie $y=a_1f(x_1)+\cdots+a_qf(x_q)$. Acum definim $x=a_1x_1+\cdots+a_qx_q$ şi avem y=f(x). Suficiența: fie, ca mai sus, $\{x_1,\ldots,x_q\}$ un sistem oarecare de generatori al lui U şi $y\in V$ arbitrar. Avem $y=f(x)=f(\sum a_ix_i)=\sum a_if(x_i)$ deci $\{f(x_1),\ldots,f(x_q)\}$ e sistem de generatori în V.

Putem să demonstrăm acum un rezultat foarte important din punct de vedere teoretic:

Teorema 1.4. Un spațiu vectorial peste corpul K e izomorf cu spațiul vectorial standard K^n dacă și numai dacă e n-dimensional.

În particular, două spații vectoriale finit dimensionale peste același corp sunt izomorfe dacă și numai dacă au aceeași dimensiune.

Demonstrație. Dacă V e un spațiu vectorial izomorf cu K^n , rezultă din propoziția anterioară, punctul 3) că dim $V = \dim K^n = n$.

Reciproc, dacă $\dim_K V = n$, fixăm reperul $\mathcal{B} = \{g_1, \dots, g_n\}$ în V. Fie $\varphi_{\mathcal{B}}: V \to K^n$ aplicația care asociază fiecărui punct al lui V coordonatele sale în reperul canonic al lui K^n . Deoarece fiecare vector se descompune unic în reperul \mathcal{B} , $\varphi_{\mathcal{B}}$ e bijectivă. Pe de altă parte, dacă $x = \sum_{i=1}^n x_i g_i, \ y = \sum_{i=1}^n y_i g_i$ și $a,b \in K$, atunci $ax + by = \sum_{i=1}^n (ax_i + by_i)g_i$, deci $\varphi_{\mathcal{B}}(ax + by) = a\varphi_{\mathcal{B}}(x) + b\varphi_{\mathcal{B}}(y)$, adică $\varphi_{\mathcal{B}}$ e liniară. În concluzie, $\varphi_{\mathcal{B}}$ e izomorfism.

Rămăne să mai arătăm că dacă dim $V = \dim U = n$, atunci $U \cong V$. Conform celor demonstrate până acum, U şi V sunt, fiecare în parte, izomorfe cu K^n . Atunci sunt izomorfe între ele datorită tranzitivității relației de izomorfism.

COROLARUL 1.8. Un spațiu vectorial finit dimensional V este izomorf cu dualul său. Fiecare fixare a unei baze în V produce un astfel de izomorfism.

Observația 1.12. Rezultatul teoremei nu spune cum se poate identifica un spațiu n-dimensional cu K^n : izomorfismul depinde de alegerea unei baze. Nu numai că nu e unic, există o mulțime infinită de astfel de izomorfisme (pentru K infinit).

Exercițiul 1.17. Fie U și V, subspații ale lui W. 1) Să se arate că dacă dim $U=\dim V$, atunci există un automorfism Φ al lui W astfel încât $\Phi(U)=V$. 2) Să se arate că dacă dim $U<\dim V$, există endomorfisme Ψ ale lui W care satisfac $\Psi(U)=V$, dar nici unul nu e automorfism.

4.2. Reprezentarea matricială a aplicațiilor liniare. Fie $f: V \to V'$. Să presupunem dim V = n, dim V' = n'. Fixăm un reper $\mathcal{B} = \{e_1, \dots, e_n\}$ (respectiv $\mathcal{B}' = \{e'_1, \dots, e'_{n'}\}$) în V (respectiv V'). Putem descompune fiecare $f(e_i)$ în reperul \mathcal{B}' după formula:

$$f(e_i) = \sum_{i=1}^{n'} a_{ji} e'_j, \quad i = 1, \dots, n.$$

Astfel, aplicației liniare f i-am asociat matricea $[f]_{\mathcal{B}'}^{\mathcal{B}} := A := (a_{ij})$. Ea se numește $matricea\ lui\ f\ \hat{n}$ reperele considerate. În particular, am definit o aplicație $\Phi_{\mathcal{B},\mathcal{B}'} : L(V,V') \to \mathcal{M}(n',n;K)$ prin $\Phi_{\mathcal{B},\mathcal{B}'}(f) = [f]_{\mathcal{B}'}^{\mathcal{B}}$. E important de subliniat că această aplicație depinde esențial de fixarea reperelor $\mathcal{B}, \mathcal{B}'$.

EXERCIȚIUL 1.18. Să se arate că dacă $f:V\to V',\ g:V'\to V''$ sunt liniare și \mathcal{B} , $\mathcal{B}',$ \mathcal{B}'' sunt, respectiv, repere fixate în V,V',V'', atunci $\Phi_{\mathcal{B},\mathcal{B}''}(g\circ f)=\Phi_{\mathcal{B}',\mathcal{B}''}(g)\Phi_{\mathcal{B},\mathcal{B}'}(f)$. În particular, dacă V=V'=V'' și $\mathcal{B}=\mathcal{B}'=\mathcal{B}''$, atunci $\Phi_{\mathcal{B},\mathcal{B}}$ e un morfism de semigrupuri.

Dacă alegem alte repere, fie ele $\mathcal{B}_1 = \{h_i\}$, $\mathcal{B}'_1 = \{h'_j\}$ în V, respectiv V', cu matricele de trecere C, C' (adică $h_i = \sum_{k=1}^n c_{ki}e_k$, $h'_j = \sum_{l=1}^{n'} c'_{lj}e'_l$), putem scrie:

$$f(h_i) = f(\sum_{k=1}^n c_{ki} e_k) = \sum_{k=1}^n c_{ki} f(e_k) =$$

$$= \sum_{k=1}^n c_{ki} \sum_{j=1}^{n'} a_{jk} e'_j = \sum_{k=1}^n c_{ki} \sum_{j=1}^{n'} a_{jk} \sum_{l=1}^{n'} \tilde{c}'_{lj} h'_l =$$

$$= \sum_{l=1}^{n'} (\sum_{j=1}^{n'} \tilde{c}'_{lj} \sum_{k=1}^n a_{jk} c_{ki}) h'_l,$$

unde (\tilde{c}'_{lj}) notează matricea ${C'}^{-1}$, cea care face trecerea de la \mathcal{B}'_1 la \mathcal{B}' . Concentrat, relația de mai sus devine

(1.7)
$$[f]_{\mathcal{B}'_{i}}^{\mathcal{B}_{1}} = C'^{-1}[f]_{\mathcal{B}'}^{\mathcal{B}}C.$$

Pe de altă parte, dacă $[x]_{\mathcal{B}} = {}^{\mathrm{t}}(x_1, \ldots, x_n)$ (e bine să precizăm acum reperul) sunt coordonatele unui vector arbitrar x în reperul \mathcal{B} , atunci

$$f(x) = f(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i f(e_i) = \sum_{i=1}^{n} x_i \sum_{j=1}^{n'} a_{ji} e'_j = \sum_{j=1}^{n'} (\sum_{i=1}^{n} a_{ji} x_i) e'_j.$$

Altfel spus, coordonatele lui f(x) în reperul \mathcal{B}' sunt date de formula

$$[f(x)]_{\mathcal{B}'} = [f]_{\mathcal{B}'}^{\mathcal{B}}[x]_{\mathcal{B}}.$$

Formulele (1.8) se numesc ecuațiile lui f în raport cu reperele considerate. Vom vedea acum că orice funcție care satisface aceste relații este liniară:

Propoziția 1.20. Pentru ca o aplicație $f: V \to V'$ să fie liniară este necesar și suficient să existe matricea $(a_{ij}) \in \mathcal{M}(n,n';K)$ astfel încât coordonatele x'_i ale lui f(x) în reperul \mathcal{B}' să depindă de coordonatele x_i ale lui x din reperul \mathcal{B} prin relatiile:

(1.9)
$$x'_{i} = \sum_{i=1}^{n} a_{ij} x_{j}, \quad i = 1, \dots, n'.$$

Demonstrație. Necesitatea a fost deja demonstrată, vezi formulele (1.8). Suficiența rezultă în urma unui calcul direct.

Observația 1.13. Cu aceeași metodă se arată că o aplicație $f: V_{1K_1} \to V_{2K_2}$, dim $V_1 = m_1$, dim $V_2 = m_2$, e semi-liniară dacă și numai dacă există un izomorfism de corpuri $\theta: K_1 \to K_2$ astfel încât pentru orice repere fixate $\mathcal{B}_1, \mathcal{B}_2$ în V_1 , respectiv V_2 să existe $A = (a_{ij}) \in \mathcal{M}(m_1, m_2; K_2)$ astfel încât

$$x'_{j} = \sum_{i=1}^{m_1} a_{ij} \theta(x_i), \quad j = 1, \dots, m_2$$

unde (x_1, \ldots, x_{m_1}) (respectiv (x'_1, \ldots, x'_{m_2})) sunt coordonatele lui x (respectiv f(x)) în reperul \mathcal{B}_1 (respectiv \mathcal{B}_2).

EXERCIȚIUL 1.19. Fie sistemele de vectori $\mathcal{B}_1 = \{(1,1,1), (1,0,-1), (0,1,0)\}, \mathcal{B}_2 = \{(1,1,2), (1,2,0), (0,1,2)\}.$ Să se arate că \mathcal{B}_1 și \mathcal{B}_2 sunt baze în \mathbb{R}^3 . Să se arate că $f: \mathbb{R}^3 \to \mathbb{R}^3$ dată prin $f(x_1,x_2,x_3) = (x_1 + x_2, x_1 - x_2, x_3)$ e liniară. și să se scrie matricea ei în reperul canonic și în reperele $\mathcal{B}_1, \mathcal{B}_2$. Care este matricea aplicației identice în reperele $\mathcal{B}_1, \mathcal{B}_2$?

Formula (1.7) e foarte importantă: ea spune că, deși la schimbarea reperelor matricea asociată unei aplicații liniare se modifică, ceva rămâne, totuși, invariant: rangul ei (deoarece matricea C e nedegenerată). Putem, deci, da:

Definiția 1.16. Se numește rang al unei aplicații liniare f (și se notează cu rang(f)) rangul matricei asociate ei în două repere fixate arbitrar (număr bine definit conform relației (1.7)).

EXERCIȚIUL 1.20. Fie $f: V \to W$ liniară. Definim $f^*: W^* \to V^*$ prin $f^*(\varphi) = \varphi \circ f$. f^* se numește transpusa lui f. Să se arate că dacă A e matricea lui f față de două baze fixate în V, respectiv W, atunci tA e matricea lui f^* față de bazele duale corespunzătoare. În particular, rang $f = \operatorname{rang} f^*$.

Să vedem cum se exprimă proprietățile lui f prin intermediul matricei asociate în reperele fixate. Conform formulelor (1.8), nucleul unei aplicații liniare se poate descrie ca:

$$\operatorname{Ker}(f) = \{ x \in V ; [f]_{\mathcal{B}'}^{\mathcal{B}}[x]_{\mathcal{B}} = 0 \}.$$

Cu alte cuvinte, descrierea nucleului revine la rezolvarea unui sistem liniar omogen dat de matricea asociată lui f în reperele considerate. Din propoziția 1.5, rezultă că

$$\dim \operatorname{Ker}(f) = \dim V - \operatorname{rang}(f).$$

Acum, din propoziția 1.18, deducem:

$$\dim \operatorname{Im}(f) = \operatorname{rang}(f)$$

ceea ce constituie, de altfel, o definiție echivalentă a rangului. Cum subspațiul trivial are dimensiune 0 și, pe de altă parte, un subspațiu coincide cu spațiul său ambiant numai dacă are dimensiunea maximă, rezultă imediat enunțul (vezi și propoziția 1.17):

Propoziția 1.21. O aplicație liniară e injectivă dacă și numai dacă rangul său este maxim.

O aplicație liniară e surjectivă dacă și numai dacă rangul său egalează dimensiunea codomeniului.

O aplicație liniară e izomorfism dacă și numai dacă matricea sa în orice două repere e nedegenerată.

În plus, avem:

Propoziția 1.22. Pentru orice spațiu vectorial finit dimensional V, fixarea unui reper în V produce un izomorfism între $\mathrm{GL}(V)$ și grupul $\mathrm{GL}(n,K)$ al matricelor pătrate nedeqenerate cu elemente din K.

Toată discuția de mai sus arată că o aplicație liniară e bine determinată de valorile ei pe o bază fixată. Mai precis:

Propoziția 1.23. Fie $\mathcal{B} = \{e_1, \ldots, e_n\}$ o bază fixată în U și v_1, \ldots, v_n elemente arbitrare în V (nu neapărat diferite). Atunci există $f: U \to V$, aplicație liniară unică cu proprietatea $f(e_i) = v_i$.

Demonstrație. Fie $u \in U$ oarecare. Atunci $u = u_1 e_1 + \cdots + u_n e_n$. Definim

$$f(u) = u_1 v_1 + \dots + u_n v_n.$$

Se verifică imediat că f e bine definită și liniară. Dacă h e o aplicație liniară cu aceeași proprietate $(h(e_i) = v_i)$, atunci $h(u) = h(u_1e_1 + \cdots + u_ne_n) = u_1h(e_1) + \cdots + u_nh(e_n) = u_1v_1 + \cdots + u_nv_n = f(u)$, adică f e unic determinată.

5. Structura endomorfismelor liniare

În cele ce urmează f va fi un endomorfism liniar al unui spațiu vectorial fixat V. Știm, deocamdată, că pentru a-l studia putem fixa un reper și putem citi proprietățile lui f pe cele ale matricei sale asociate. E natural, deci, să căutăm repere în care această matrice să aibă o formă cât mai simplă (triunghiulară, blocuri pe diagonală, diagonală dacă se poate). De exemplu, dacă $V = V_1 \oplus V_2$ cu $f(V_1) \subseteq V_1$, $f(V_2) \subseteq V_2$ (subspațiile cu această proprietate se numesc invariante; un endomorfism se poate restrânge la un subspațiu invariant al său), atunci putem alege un reper adaptat descompunerii $\{e_1, \ldots, e_p, e_{p+1}, \ldots, e_n\}$ (primele p elemente generează V_1) în care matricea lui f va avea forma

$$[f] = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix},$$

unde A_1 (respectiv A_2) e matricea restricției lui f la V_1 (respectiv V_2). Dacă, mai mult, putem găsi un reper în care $f(e_i) = a_i e_i$, atunci $[f] = \operatorname{diag}(a_i)$. Vom vedea că, în general, așa ceva nu există. De găsirea condițiilor necesare și suficiente pentru existența unui reper în care matricea endomorfismului e diagonală ne ocupăm în paginile următoare.

5.1. Vectori şi valori proprii.

Definiția 1.17. Un vector $v \in V - \{0\}$ se numește vector propriu al endomorfismului f dacă există un scalar $\lambda \in K$ astfel încât $f(v) = \lambda v$. În acest caz λ se numește valoare proprie asociată vectorului propriu v, iar v se numește vector propriu corespunzător valorii proprii λ .

Se mai folosesc și denumirile de vector principal, valoare principală.

Evident $f(0) = 0 = \lambda \cdot 0$ pentru orice λ , deci 0 satisface în mod trivial proprietatea din definiția unui vector propriu asociat oricărei valori proprii; aceasta motivează excluderea sa din definiție.

Ne ocupăm în continuare de chestiunea existenței vectorilor și valorilor proprii pentru un endomorfism. Începem cu:

Propoziția 1.24. Mulțimea vectorilor proprii corespunzători valorii proprii λ la care adăugăm vectorul nul, notată V_{λ} , formează un subspațiu vectorial (numit subspațiul propriu corespunzător valorii proprii respective).

Demonstrație. Se vede imediat că, pentru $x, y \in V_{\lambda}$:

$$f(ax+by)=af(x)+bf(y)=a\lambda x+b\lambda y=\lambda(ax+by)$$
deci $ax+by\in V_{\lambda}.$

Observația 1.14. Prin construcție, un subspațiu propriu e invariant pentru $f\cdot$

Căutăm acum o condiție necesară și suficientă pentru ca un scalar λ să fie valoare proprie. Pentru aceasta fixăm un reper $\{e_1,\ldots,e_n\}$ în V. Presupunem că λ e valoare proprie asociată vectorului propriu v. Atunci, descompunând $v=\sum v_ie_i$, ecuația $f(v)=\lambda v$ devine $\sum v_if(e_i)=\lambda \sum v_ie_i$. Notăm $A=(a_{ij})$ matricea lui f în reperul dat $(f(e_i)=\sum_i a_{ji}e_j)$ și obținem succesiv:

$$\sum_{i} v_{i} \left(\sum_{j} a_{ji} e_{j}\right) = \lambda \sum_{j} v_{j} e_{j},$$
$$\sum_{j} \left(\sum_{i} a_{ji} v_{i}\right) e_{j} = \lambda \sum_{j} v_{j} e_{j},$$

ceea ce conduce la sistemul liniar omogen:

(1.10)
$$\sum_{i} (a_{ji} - \lambda \delta_{ji}) v_i = 0, \quad j = 1, \dots, n.$$

Cum suntem interesați doar de soluții nebanale impunem condiția $\det(a_{ji} - \lambda \delta_{ji}) = 0$ sau, echivalent, $\det(A - \lambda I_n) = 0$. Dezvoltând determinantul din membrul stâng al ultimei egalități obținem un polinom de gradul n în λ . Acesta se numește polinomul caracteristic al endomorfismului f și se notează P_f . Articolul hotărât e justificat de

Lema 1.1. Polinomul caracteristic nu depinde de reperul cu ajutorul căruia a fost calculat.

Demonstrație. Într-adevăr, dacă C e matricea de trecere de la reperul inițial la un al doilea, în care matricea lui f este A', avem $A' = C^{-1}AC$, deci:

$$\det(A' - \lambda I_n) = \det(C^{-1}AC - \lambda I_n) = \det(C^{-1}AC - \lambda C^{-1}C) =$$

$$= \det(C^{-1}) \det(A - \lambda I_n) \det(C) = \det(A - \lambda I_n).$$

În concluzie: dat endomorfismul f, valorile sale proprii sunt rădăcinile din K ale polinomului său caracteristic, indiferent de reperul cu care a fost calculat acesta.

Observația 1.15. Conform teoremei fundamentale a algebrei, orice endomorfism al unui spațiu vectorial complex V are valori proprii în număr egal cu dim V.

În general nu putem determina exact aceste rădăcini. Pentru fiecare valoare proprie λ găsită, aflarea vectorilor proprii corespunzători revine la rezolvarea sistemului omogen (1.10). Mai precis, acest sistem furnizează coordonatele vectorilor proprii în reperul considerat, deci reprezintă ecuațiile subspațiului V_{λ} în acel reper. Atunci dim $V_{\lambda} = \text{corang}(A - \lambda I_n)$.

Observația 1.16. Deoarece valorile proprii apar ca rădăcini din K ale polinomului caracteristic, e ușor de găsit exemple de endomorfisme fără nici o valoare proprie. E suficient să luăm $K=\mathbb{R}$ care nu e algebric închis. De exemplu, în \mathbb{R}^2 , endomorfismul $(x,y)\mapsto (-y,x)$ (corespunzător, după identificarea $\mathbb{R}=\mathbb{C}$, înmulțirii cu i) are polinomul caracteristic λ^2+1 , fără rădăcini în \mathbb{R} . Mai general, în orice spațiu vectorial real V de dimensiune pară se poate considera un endomorfism J cu proprietatea că $J^2=-1_V$ (de ce această egalitate forțează paritatea dimensiunii lui V?). Acesta nu are valori proprii. Într-adevăr, dacă λ ar fi valoare proprie, cu v vector propriu corespunzător, atunci $-v=J^2(v)=J(\lambda v)=\lambda^2 v$ deci $\lambda^2+1=0$, contradicție.

Ca rădăcină a polinomului caracteristic fiecare valoare proprie are o multiplicitate, fie aceasta m_{λ} . Rezultatul următor furnizează un minorant pentru m_{λ} :

Propoziția 1.25. Pentru orice $f \in \text{End}(V)$ și orice valoare proprie a sa λ , are loc inegalitatea dim $V_{\lambda} \leq m_{\lambda}$.

Demonstrație. Prin absurd, fie $n_{\lambda} \stackrel{\text{not}}{=} \dim V_{\lambda} > m_{\lambda}$ și fie $\{v_1, \ldots, v_{n_{\lambda}}\}$ un reper în V_{λ} . Îl completăm la un reper $\{v_1, \ldots, v_{n_{\lambda}}, v_{n_{\lambda}+1}, \ldots, v_n\}$ a lui V. Ecuațiile lui f în acest reper vor fi:

$$\begin{cases} f(v_i) = \lambda v_i, & i = 1, \dots, n_{\lambda} \\ f(v_j) = \sum_k a_{kj} v_k, & j = n_{\lambda} + 1, \dots, n, \end{cases}$$

ceea ce conduce la

$$P_f(X) = (X - \lambda)^{n_{\lambda}} Q(X).$$

Rezultă că λ e rădăcină cu multiplicitatea $n_{\lambda} > m_{\lambda}$, contradicție.

Vom vedea imediat ce semnificație are egalitatea în relația din propoziție. Dar, mai întâi, avem nevoie de:

Propoziția 1.26. Fie $f \in \text{End}(V)$. Dacă v_1, \ldots, v_m sunt vectori proprii corespunzători valorilor proprii distincte $\lambda_1, \ldots, \lambda_m$, atunci ei sunt liniar independenți.

Demonstrație. Prin inducție după m. Dacă m=1, enunțul rezultă din chiar definiția vectorilor proprii. Presupunem enunțul adevărat pentru orice m-1 vectori proprii corespunzători unor m-1 valori proprii distincte. Fie, acum, prin absurd, o combinație liniară

$$\sum_{i=1}^{m} a_i v_i = 0$$

cu cel puţin un coeficient nenul, fie acesta a_1 . Aplicăm f şi găsim

$$\sum_{i=1}^{m} a_i \lambda_i v_i = 0.$$

Înmulțim prima relație cu λ_m , o scădem din a doua și obținem:

$$\sum_{i=1}^{m-1} a_i (\lambda_m - \lambda_i) v_i = 0.$$

În această combinație liniară coeficientul $a_1(\lambda_m - \lambda_1)$ e nenul (pentru că valorile proprii considerate sunt distincte). Rezultă vectorii proprii v_1, \ldots, v_{m-1} liniar dependenți, în contradicție cu ipoteza de inducție.

Putem, acum, demonstra rezultatul principal al acestui paragraf:

Teorema 1.5. Pentru un endomorfism al unui spațiu vectorial finit dimensional V_K , există un reper în care matricea sa are forma diagonală dacă și numai dacă toate rădăcinile polinomului său caracteristic sunt în K și multiplicitățile lor sunt egale cu dimensiunile subspațiilor proprii corespunzătoare.

Demonstrație. Fie $f \in \operatorname{End}(V)$. Presupunem că există un reper $\{e_1, \ldots, e_n\}$ în care matricea lui f ia forma diagonală $A = \operatorname{diag}(\mu_1, \ldots, \mu_n)$. În general, μ_j din această scriere nu sunt distincte. Notăm $\lambda_1, \ldots, \lambda_r$ elementele distincte de pe diagonală și cu m_1, \ldots, m_r numărul corespunzător de apariții. Evident trebuie să avem $m_1 + \cdots + m_r = n$. Se vede acum că polinomul caracteristic al lui f are forma

$$P_f = \det(A - XI_n) = (X - \lambda_1)^{m_1} (X - \lambda_2)^{m_2} \cdots (X - \lambda_r)^{m_r},$$

astfel că rădăcinile sunt $\lambda_i \in K$ cu multiplicitățile $m_i, i=1,\ldots,r$. În particular valorile proprii ale lui f sunt λ_i , elemente din K. Din definiția matricei asociate unui endomorfism într-un reper rezultă că $f(e_j) = \lambda_1 e_j$, pentru $j=1,\ldots,m_1$, $f(e_l) = \lambda_2 e_l$, pentru $l=m_1+1,\ldots,m_1+m_2,\ldots,$ $f(e_k) = \lambda_r e_k$ pentru $k=m_1+\cdots+m_{r-1}+1,\ldots,m_r$. Deci V_{λ_1} conține cel puțin vectorii liniar independenți $e_1,\ldots,e_{m_1},$ V_{λ_2} îi conține pe $e_{m_1+1},\ldots,e_{m_1+m_2}$ etc. Astfel că dim $V_{\lambda_i} \geq m_i$. Cum inegalitatea inversă e asigurată de propoziția 1.25, deducem dim $V_{\lambda_i} = m_i$.

Reciproc, să presupunem că rădăcinile polinomului caracteristic sunt toate în K, au multiplicitățile m_i și dim $V_{\lambda_i}=m_i$. Fie reperele: $\mathcal{B}_1=\{e_1,\ldots,e_{m_1}\}$ în $V_{\lambda_1},\,\mathcal{B}_2=\{e_{m_1+1},\ldots,e_{m_1+m_2}\}$ în $V_{\lambda_2},\ldots,\,\mathcal{B}_r=\{e_{m_1+\cdots+m_{r-1}+1},\ldots,e_{m_{r-1}+m_r}\}$ în V_{λ_m} . Vom arăta că

$$\{e_1,\ldots,e_{m_1},e_{m_1+1},\ldots,e_{m_1+m_2},\ldots,e_{m_1+\cdots+m_{r-1}+1},\ldots,e_n\}$$

e un reper al lui V. Fiind în număr de n, e suficient să probăm independența liniară a vectorilor e_j . Fie combinația liniară nulă

(1.11)
$$\sum_{i=1}^{m_1} a_i e_i + \sum_{i=m_1+1}^{m_2} a_i e_i + \dots + \sum_{i=m_{r-1}+1}^{m_r} a_i e_i = 0.$$

Să observăm că dacă notăm f_1, \ldots, f_r sumele parțiale din (1.11), obținem $f_i \in V_{\lambda_i}$. Atunci, conform propoziției 1.26, f_i , dacă sunt nenuli, sunt independenți. Pe de altă parte, (1.11) e o combinație liniară a lor cu toți coeficienții egali cu 1. Ieşim din contradicție doar presupunând toți $f_i = 0$. Dar fiecare asemenea egalitate reprezintă o combinație liniară nulă a vectorilor din baza \mathcal{B}_i ; ea trebuie, deci, să fie trivială. În concluzie toți scalarii a_i sunt nuli și sistemul considerat este un reper al lui V. E clar că în acest reper matricea lui f are forma diagonală, ceea ce încheie demonstrația.

Despre un endomorfism care satisface ipotezele teoremei anterioare se spune că este diagonalizabil. Dacă A e matricea unui endomorfism diagonalizabil întrun reper oarecare şi C e matricea de trecere de la acest reper la unul în care endomorfismul are matricea diagonală, atunci avem diag $(\lambda_1, \ldots, \lambda_n) = {}^{t}CAC$.

Observația 1.17. Dacă un endomorfism e diagonalizabil, atunci restricția sa la orice subspațiu invariant e încă diagonalizabilă.

Observația 1.18. Atunci când corpul peste care lucrăm nu e algebric închis, cum e cazul lui \mathbb{R} , sunt puține șanse să putem diagonaliza un endomorfism. Funcționează, însă, un alt tip de "formă canonică", valabilă peste orice corp, anume forma Jordan. Dar aceasta nu face obiectul cursului nostru ci al celui de algebră. Pentru nevoile geometriei afine, euclidiene și proiective, teorema anterioară e suficientă.

Exercițiul 1.21. Să se găsească vectorii și valorile proprii ale următoarelor endomorfisme ale lui \mathbb{R}^3 :

```
1) f(x, y, z) = (x + y + 3z, x + 5y + z, 3x + y + z);
```

2)
$$f(x, y, z) = (x + y + 2z, x + y + 2z, 2x + 2y + 4z);$$

3) f(x, y, z) = (3x + 8z, 3x - y + 6z, -2x - 5z).

Pentru fiecare să se precizeze dacă endomorfismul este diagonalizabil și, în caz afirmativ, să se găsească o bază de vectori proprii.

Încheiem paragraful cu un rezultat important care, sub diverse alte formulări, va mai apărea în cursurile de geometrie din anii următori:

Propoziția 1.27. Fie f și h endomorfisme diagonalizabile. Condiția necesară și suficientă ca să existe un reper în care f și h să se diagonalizeze simultan este fh = hf.

Demonstrație. Observăm că proprietatea de comutare a lui f cu h revine la comutarea matricelor lor asociate într-un același reper. Cum orice două matrice diagonale comută, necesitatea condiției e clară.

5.2. Exemple: proiecții și simetrii.

Definiția 1.18. Se numește proiecție (pe V_1 de-a lungul lui V_2) un endomorfism p cu proprietatea că există o descompunere în sumă directă $V=V_1\oplus V_2$ astfel încât $p(v)=v_1$, pentru orice $v\in V$, $v=v_1+v_2$, $v_1\in V_1$, $v_2\in V_2$.

Observăm că, pentru o proiecție, $p^2(v) = p(v_1) = v_1 = p(v)$ (deoarece p(v) = v dacă și numai dacă $v \in V_1$), adică $p^2 = p$.

Reciproc, fie $p \in \operatorname{End}(V)$ cu proprietatea $p^2 = p$ (un element idempotent al inelului $\operatorname{End}(V)$). În general, pentru orice endomorfism, dim $V = \dim \operatorname{Ker} f + \dim \operatorname{Im} f$; aici avem chiar mai mult: $V = \operatorname{Ker} p \oplus \operatorname{Im} p$. Într-adevăr, orice $v \in V$ se scrie v = (v - p(v)) + p(v). Cum $p(v - p(v)) = p(v) - p^2(v) = p(v) - p(v) = 0$, avem

 $v - p(v) \in \operatorname{Ker} p$. Cum evident $p(v) \in \operatorname{Im} p$, am demonstrat că $V = \operatorname{Ker} p + \operatorname{Im} p$. Fie acum $v \in \operatorname{Ker} p \cap \operatorname{Im} p$. Atunci există $w \in V$ astfel încât v = p(w) pe de o parte și $0 = p(v) = p^2(w) = p(w) = v$ pe de alta, deci suma e directă. Am demonstrat:

Propoziția 1.28. $p \in \text{End}(V)$ e proiecție dacă și numai dacă $p^2 = p$.

Pentru o proiecție p putem considera un reper $\{e_1,\ldots,e_n\}$ adaptat astfel încât primii k vectori să genereze Im p și ultimii vectori să genereze Ker p. În aceast reper, matricea proiecției este $\begin{pmatrix} I_k & 0 \\ 0 & 0 \end{pmatrix}$. Deci proiecțiile sunt exemple de endomorfisme care satisfac condițiile teoremei 1.5.

Definiția 1.19. Se numește *simetrie* sau *involuție* un endomorfism s cu proprietatea că $s^2 = 1_V$ (element de ordin 2 al inelului endomorfismelor).

Evident s e izomorfism. Legătura dintre proiecții și simetrii se vede din:

Propoziția 1.29. Fie $\operatorname{car} K \neq 2$. Atunci $p \in \operatorname{End}(V)$ e proiecție dacă și numai dacă $s = 2p - 1_V$ e simetrie.

Demonstrație. Avem $(2p-1_V)^2=4p^2-4p+1_V$ deci $s^2=1_V$ dacă și numai dacă $p^2=p.$

Pentru o simetrie, definim axa (respectiv direcția) ca fiind imaginea (respectiv nucleul) proiecției asociate. E clar că $s_{|\mathrm{Ker}\,p} = -1_{\mathrm{Ker}\,p}$ și $s_{|\mathrm{Im}\,p} = 1_{\mathrm{Im}\,p}$ ceea ce justifică denumirile anterioare. Considerând din nou reperul de mai sus, adaptat proiecției asociate, găsim matricea simetriei sub forma $\begin{pmatrix} I_k & 0 \\ 0 & -I_{n-k} \end{pmatrix}$.

6. Forme biliniare și forme pătratice

Definiția 1.20. Se numește formă biliniară pe spațiul vectorial V_K o aplicație $g: V \times V \to K$ liniară în raport cu fiecare argument, adică:

$$\begin{array}{l} g(ax+by,z)=ag(x,z)+bg(y,z),\\ g(x,ay+bz)=ag(x,y)+bg(x,z) \text{ pentru orice } x,y,z\in V,\,a,b\in K. \end{array}$$

Definiția 1.21. O formă biliniară se numește simetrică (respectiv antisimetrică) dacă pentru orice $x,y,z\in V,\,g(x,y)=g(y,x)$ (respectiv g(x,y)=-g(y,x)).

EXERCIȚIUL 1.22. Să se arate că dacă $g:V\times V\to K$ e liniară în raport cu unul dintre argumente și $g(x,y)=\pm g(y,x)$, atunci e liniară și în raport cu celălalt argument.

Exercițiul 1.23. Mulțimea formelor biliniare pe V poate fi dotată cu structură de spațiu vectorial. Mulțimea formelor biliniare simetrice (respectiv antisimetrice) formează un subspațiu vectorial.

EXEMPLUL 1.14. Pe \mathbb{R}^n forma biliniară $g(x,y) = \sum_{i=1}^n x_i y_i$ este simetrică. În schimb forma biliniară pe \mathbb{R}^{2n} $g(x,y) = (x_1y_2 - x_2y_1) + (x_3y_4 - x_4y_3) + \cdots + (x_{2n-1}y_{2n} - x_{2n}y_{2n-1})$ e antisimetrică.

Fixăm acum un reper $\mathcal{B} = \{e_1, \dots, e_n\}$ al lui V. Ca şi în cazul aplicațiilor liniare, vom asocia unei forme biliniare o matrice care depinde de reper. Apoi vom caracteriza forma biliniară cu ajutorul acestei matrice.

Fie $g_{ij} = g(e_i, e_j)$ şi $G = (g_{ij})_{i,j=\overline{1,n}}$. G se numeşte matricea asociată formei biliniare în reperul considerat. Atunci, dacă $x = \sum x_i e_i$, $y = \sum y_i e_i$, avem

$$g(x,y) = \sum_{i,j=1}^{n} g_{ij} x_i y_j = {}^{\operatorname{t}} X G Y$$

unde, ca de obicei, $X = {}^{\mathrm{t}}(x_1, \ldots, x_n)$. Fie acum A matricea de trecere de la reperul \mathcal{B} la reperul \mathcal{B}' . Dacă G şi G' sunt matricele asociate lui g în cele două repere, vedem fără dificultate că are loc relația $G' = {}^{\mathrm{t}}AGA$. Rezultă imediat:

Lema 1.2. Forma biliniară g este simetrică (respectiv antisimetrică) dacă şi numai dacă matricea sa într-un reper arbitrar este simetrică (respectiv antisimetrică).

Pe de altă parte, relația $G' = {}^{t}AGA$ spune și că rangul matricei asociate e independent de reper. Astfel că putem da:

Definiția 1.22. Se numește rang al unei forme biliniare rangul matricei sale asociate într-un reper arbitrar.

EXERCIȚIUL 1.24. Scrieți matricele asociate formelor biliniare din exemplul 1.14 și calculați rangul acestora.

Pentru formele biliniare simetrice sau antisimetrice se poate defini, de asemenea, nucleul. Anume, pentru a fixa ideile, fie g formă biliniară simetrică. Atunci:

$$Ker g = \{x \in V \mid g(x, y) = 0, \forall y \in V\}.$$

Definiția e bună pentru că dacă g(x,y)=0 şi g(y,x)=0. La fel pentru formele biliniare antisimetrice. În cazul unei forme biliniare arbitrare, se pot defini un nucleu la stânga şi unul la dreapta, în general diferite. Nu insistăm pentru că aplicațiile geometrice pe care le avem în vedere utilizează doar formele biliniare simetrice. Forma biliniară simetrică sau antisimetrică se zice nedegenerată dacă nucleul său se reduce la elementul nul. Avem imediat:

Lema 1.3. O formă biliniară simetrică sau antisimetrică e nedegenerată dacă și numai dacă matricea asociată ei într-un reper arbitrar e nedegenerată.

6.1. Forme pătratice. În acest paragraf vom presupune $car K \neq 2$. Dăm acum:

Definiția 1.23. Se numește formă pătratică pe V o aplicație $q:V\to K$ cu proprietatea că există o formă biliniară simetrică g astfel încât $q(x)=g(x,x);\ g$ se numește forma polară a formei pătratice.

Să observăm că

$$g(x,y) = \frac{1}{2}(q(x+y) - q(x) - q(y)),$$
 identitatea de polarizare

deci în acest caz există o corespondență bijectivă între forme biliniare simetrice și forme pătratice.

Când forma pătratică q provine din forma biliniară g, odată fixat un reper ca mai sus, avem

$$q(x) = g(x, x) = \sum g_{ij} x_i x_j = {}^{\operatorname{t}} X G X.$$

Prin definiție, G e matricea asociată lui q în reperul considerat. În plus, rangul (respectiv nucleul) lui q este, prin definiție, rangul (respectiv nucleul) lui g. Reamintim că problema pe care am studiat-o în legătură cu aplicațiile liniare a fost găsirea unui reper în care matricea asociată unui endomorfism să fie diagonală. Exact aceeași problemă se pune pentru forme pătratice. Într-un astfel de reper, în care matricea formei pătrice e diagonală, expresia formei pătratice va fi

$$q(x) = a_1 x_1^2 + \dots + a_r x_r^2$$

unde $r = \operatorname{rang} q$ și $a_i \in K$. O astfel de formă se numește $\operatorname{canonic}\check{a}$. Din fericire, aici un asemenea reper există întotdeauna (se va numi $\operatorname{reper\ canonic}$):

Teorema 1.6. (Gauss⁴) Pentru orice formă pătratică există un reper în care aceasta are o formă canonică.

Demonstrație. Dacă q=0, atunci q are forma canonică în orice reper. Considerăm, deci, $q\neq 0$. Fixăm un reper. Vom face inducție după numărul m al coordonatelor de care depinde expresia lui q în acest reper.

Pentru m = 1 avem $q(x) = g_{11}x_1^2$ care e o formă canonică.

Presupunem acum enunțul adevărat pentru forme pătratice a căror expresie depinde de m-1 coordonate. Fie $q(x)=\sum_{i,j=1}^m g_{ij}x_ix_j$. Să observăm că putem presupune existența unui coeficient g_{ii} nenul. Într-adevăr, dacă în acest reper toți $g_{ii}=0$, există măcar un $g_{ik}\neq 0$, $i\neq k$ și facem schimbarea de coordonate

$$y_i = x_i + x_k$$
, $y_k = x_i - x_k$, $y_j = x_j$, $j \neq i, k$

care conduce, în noile coordonate, la un coeficient nenul pentru y_i^2 . Mai mult, după o eventuală renumerotarea a elementelor reperului (ceea ce revine la o schimbare de reper), putem presupune $g_{11} \neq 0$. Rescriem expresia lui q grupând toți termenii care conțin coordonata x_1 :

$$q(x) = g_{11}x_1^2 + 2g_{12}x_1x_2 + \dots + 2g_{1m}x_1x_m + q'(x)$$

unde q' e o formă pătratică a cărei expresie depinde doar de m-1 coordonate: x_2, \ldots, x_m . Avem, mai departe:

$$q(x) = \frac{1}{g_{11}}(g_{11}x_1 + g_{12}x_2 + \dots + g_{1m}x_m)^2 - \sum_{i=2}^m \frac{g_{1i}^2}{g_{11}}x_i^2 + q'(x) =$$

$$= \frac{1}{g_{11}}(g_{11}x_1 + g_{12}x_2 + \dots + g_{1m}x_m)^2 + q''(x),$$

unde q'' e o formă pătratică a cărei expresie depinde doar de m-1 coordonate. Acum facem schimbarea de coordonate

$$\begin{cases} y_1 = g_{11}x_1 + g_{12}x_2 + \dots + g_{1m}x_m \\ y_i = x_i, \quad i = 1, \dots, n. \end{cases}$$

Obtinem

$$q(x) = \frac{1}{g_{11}} y_1^2 + q''(x),$$

unde q'' depinde doar de y_2,\ldots,y_m . Aplicăm ipoteza de inducție pentru q'' și o aducem la forma canonică $q''(x) = \sum_{i=2}^m a_i z_i^2$ printr-o schimbare de coordonate de forma $z_i = y_i$ pentru i = 1 și $i = m+1,\ldots,n,$ $z_i = \sum_{j=1}^m a_{ij}y_j$ pentru $i = 2,\ldots,m$. În acest reper q are forma canonică.

Observația 1.19. Am folosit repetat formularea "o formă canonică" pentru a pune în evidență faptul că aceasta nu e unică. De altfel, din chiar demonstrația anterioară se vede cum forma canonică găsită depinde de o mulțime de alegeri (a unui coeficient nenul pe diagonală etc.). De asemenea, am folosit termenul "schimbare de coordonate"; cititorului îi este, desigur, clară echivalența cu schimbarea de reper.

În cazul în care $K = \mathbb{R}$, teorema anterioară se poate completa cu:

 $^{^4}$ Karl Friedrich Gauss, 1777-1855, matematician, fizician și astronom german; a lăsat o operă de o profunzime și noutate a ideilor neegalată încă.

Teorema 1.7. Pentru orice formă pătratică pe un spațiu vectorial real (pe scurt, formă pătratică reală) există un reper în care aceasta are forma canonică normală:

$$q(x) = y_1^2 + \dots + y_n^2 - y_{n+1}^2 - \dots - y_r^2$$

 $unde\ r = rang\ q.$

Demonstrație. Din teorema dinainte, există un reper în care $q(x) = \sum_{i=1}^r a_i x_i^2$. Cum $a_i \in \mathbb{R}$, putem presupune (după ce, eventual, renumerotăm elementele reperului, ceea ce revine la o schimbare de coordonate) că $a_1, \ldots, a_p > 0$, în timp ce $a_{p+1}, \ldots, a_r < 0$. Facem acum schimbarea de coordonate:

$$\begin{cases} y_i = \sqrt{a_i} x_i, & i = 1, \dots, p \\ y_j = \sqrt{-a_j} x_j, & j = p + 1, \dots, r \\ y_k = x_k, & k = r + 1, \dots, n \end{cases}$$

și demonstrația e completă

Un reper în care o formă pătratică ia o formă canonică se numește reper canonic. Pentru formele pătratice reale, în afara rangului, există încă un invariant numeric important: numărul termenilor pozitivi dintr-o formă normală (cum rangul formei pătratice nu depinde de reper, și numărul termenilor negativi este invariant). Este vorba de:

Teorema 1.8. (Legea de inerție a lui Sylvester⁵) Numărul termenilor pozitivi dintr-o formă normală a unei forme pătratice reale nu depinde de reperul canonic ales.

Demonstrație. Fie $\mathcal{B}=\{e_1,\ldots,e_n\},\ \mathcal{B}'=\{e_1',\ldots,e_n'\}$ două repere canonice. Să presupunem că în primul dintre ele expresia lui q conține p termeni pozitivi, iar în al doilea p' termeni pozitivi. Fie p'< p. Definim subspațiile $U=L(\{e_1,\ldots,e_p,e_{r+1},\ldots,e_n\})$ și $U'=L(\{e_{p'+1}',\ldots,e_r'\})$. E clar că $q(x)\geq 0$ pentru $x\in U$ și q(x)<0 pentru $x\in U$ și q(x)<0 pentru $x\in U'-\{0\}$. Pe de altă parte, dim $U+\dim U'=(p+n-r)+(r-p')=n+p-p'>n$. Conform teoremei lui Grassmann, rezultă că $U\cap U'$ conține cel puțin un vector nenul, fie el y. Dar atunci q(y) ar trebui să fie simultan pozitiv și negativ, contradicție. Deci p' nu poate fi strict inferior lui p. Schimbând acum rolurile lui p și p' rezultă că nici inegalitatea contrară nu poate avea loc. Deci p=p'.

Numărul de termeni negativi dintr-o formă canonică a unei forme pătratice reale se numește *indexul* formei pătratice. Diferența dintre numărul termenilor pozitivi și numărul termenilor negativi din forma canonică a unei forme pătratice reale se numește *signatură*. Este, ca și indexul, un invariant.

Definiția 1.24. O formă pătratică reală q se zice pozitiv definită dacă q(x) > 0 pentru orice $x \in V - \{0\}$. O formă biliniară, simetrică, reală e pozitiv definită dacă forma sa pătratică e pozitiv definită.

E clar că o formă pătratică e pozitiv definită dacă și numai dacă în forma sa normală nu apar termeni negativi, altfel spus, dacă și numai dacă signatura sa egalează dimensiunea spațiului vectorial. Deci verificarea definirii pozitive a unei forme pătratice se poate face aducând-o efectiv la o formă normală. Există însă și alte criterii. Dăm, spre exemplificare, unul dintre ele fără demonstrație:

Propoziția 1.30. O formă pătratică reală e pozitiv definită dacă și numai dacă toți minorii nenuli de pe diagonala matricei formei într-un reper arbitrar sunt pozitivi.

⁵James Joseph Sylvester, 1814-1897, matematician englez.

Definirea pozitivă a unei forme biliniare simetrice e o condiție tare. Astfel, dacă g e o formă biliniară simetrică pozitiv definită și $x \in \operatorname{Ker} g$, atunci g(x,y) = 0 pentru orice $y \in V$, deci și g(x,x) = 0. Rezultă q(x) = 0, deci x = 0, adică $\operatorname{Ker} g = \{0\}$. Am demonstrat:

Lema 1.4. O formă biliniară reală, simetrică și pozitiv definită e nedegenerată.

7. Spații vectoriale euclidiene

7.1. Produse scalare. Ortogonalitate. Noțiunea pe care o introducem aici e fundamentală pentru construcția geometriei euclidiene.

Definiția 1.25. O formă biliniară simetrică, pozitiv definită pe un spațiu vectorial real se numește $produs\ scalar.$

Conform lemei 1.4, orice produs scalar e nedegenerat. Vom nota, de obicei, produsul scalar cu \langle , \rangle sau cu (,). Un spațiu vectorial real E dotat cu un produs scalar se numește *spațiu vectorial euclidian*, iar produsul scalar se mai numește *structură euclidiană*. Când vrem să precizăm structura euclidiană a lui E scriem (E, \langle , \rangle) .

EXEMPLUL 1.15. 1) Pe \mathbb{R}^n , în reperul canonic, fie $g(x,y) = \sum x_i y_i$. Atunci matricea lui g este I_n , deci g este un produs scalar. Îl numim canonic.

2) Pe spațiul vectorial al vectorilor liberi (construit în exemplul 1.6) se poate da un produs scalar prin formula

$$\langle \overrightarrow{AB}, \overrightarrow{CD} \rangle = AB \cdot CD \cos(\overrightarrow{AB}, \overrightarrow{CD}),$$

unde AB desemnează lungimea segmentului [AB] (așa cum este ea definită în spațiul geometric studiat în liceu), iar unghiul, vectorilor \overrightarrow{AB} , \overrightarrow{CD} este cel al semidreptelor $[AB\rangle$, $[CD\rangle$ măsurat în sens trigonometric.

Rădăcina pătrată a formei pătratice asociate unui produs scalar, notată $||x|| = \sqrt{\langle x, x \rangle}$, este o normă pe E. Acest lucru rezultă din:

Teorema 1.9. (Inegalitatea Schwartz-Cauchy⁶-Buniakovski) În orice spațiu vectorial euclidian (E, \langle, \rangle) are loc inegalitatea:

$$(1.12) |\langle x, y \rangle| \le ||x|| \cdot ||y||, \quad \forall x, y \in E$$

cu egalitate dacă și numai dacă x și y sunt liniar dependenți.

Demonstrație. Dacă x=0 sau y=0, (1.12) are loc cu egalitate. Pe de altă parte, vectorul nul e dependent de orice alt vector, astfel că în acest caz teorema e demonstrată.

Fie acum $x\neq 0, y\neq 0$ și $\lambda\in\mathbb{R}$ oarecare. Cum produsul scalar e pozitiv definit, rezultă că

$$(1.13) \langle x + \lambda y, x + \lambda y \rangle \ge 0,$$

de unde, folosind biliniaritatea produsului scalar:

$$||x||^2 + 2\lambda \langle x, y \rangle + \lambda^2 ||y||^2 \ge 0$$
, oricare ar fi $\lambda \in \mathbb{R}$.

Deducem că discriminantul trinomului de gradul al II-lea în λ trebuie să fie negativ, adică

$$(1.14) \langle x, y \rangle^2 - ||x||^2 ||y||^2 \le 0.$$

 $^{^6{\}rm Augustin}$ Louis Cauchy, 1789-1857, matematician francez cu, de asemenea, numeroase contribuții în fizica matematică și mecanica cerească.

De aici, prin extragerea rădăcinii pătrate, ținând seama de definirea pozitivă a produsului scalar, se obține inegalitatea din enunț. Presupunând acum că x, y sunt liniar dependenți, există $\alpha \in \mathbb{R}$ astfel încât $y = \alpha x$. Rezultă imediat că ambii membri ai inegalității (1.12) sunt egali cu $|\alpha| \cdot ||x||^2$. Reciproc, dacă în (1.12) avem egalitate, avem egalitate și în (1.14), deci există $\lambda_0 \in \mathbb{R}$ care asigură egalitatea în (1.13): $\langle x + \lambda_0 y, x + \lambda_0 y \rangle = 0$. Folosind acum nedegenerarea produsului scalar rezultă $x + \lambda_0 y = 0$ deci x, y liniar dependenți.

EXERCIȚIUL 1.25. Să se arate că norma indusă de produsul scalar definit în exemplul 1.15 pe spațiul vectorial al vectorilor liberi e chiar lungimea: $\|\overrightarrow{AB}\| = AB$.

Un vector de normă 1 se va numi unitar. Se poate acum defini unghiul a doi vectori prin formula

$$cos(x,y) = \frac{\langle x,y \rangle}{\|x\| \cdot \|y\|},$$

deci produsul scalar a doi vectori unitari măsoară exact cosinusul unghiului lor. De aceea spunem că doi vectori sunt perpendiculari sau ortogonali și scriem $x \perp y$, dacă $\langle x,y \rangle = 0$. Avem:

 ${\it Lema 1.5. Orice \ sistem \ de \ vectori \ nenuli \ mutual \ ortogonali \ e \ liniar \ independent.}$

 $\begin{array}{lll} \textit{Demonstrație}. & \text{Fie } \{x_1,\dots,x_k\} \text{ ortogonali doi câte doi. Dacă } \sum_{i=1}^k a_i x_i = 0, \\ \text{atunci, făcând produsul scalar cu } x_j, \ j \text{ oarecare între 1 şi } k, \sum_{i=1}^k a_i \langle x_i, x_j \rangle = 0; \\ \text{rămâne } a_j \|x_j\|^2 = 0 \text{ şi, din nedegenerarea produsului scalar, rezultă } a_j = 0. \end{array}$

Definiția 1.26. O bază $\mathcal{B} = \{e_1, \dots, e_n\}$ a unui spațiu vectorial euclidian cu proprietatea că orice doi vectori ai săi sunt ortogonali se numește ortogonală. Dacă elementele unei baze ortogonale sunt vectori unitari, atunci baza se numește ortonormată.

Deci, pentru o bază ortonormată $\{e_1,\ldots,e_n\}$, avem $\langle e_i,e_j\rangle=\delta_{ij}$ pentru orice $i,j=\overline{1,n}$. Să observăm că orice bază ortogonală se poate transforma într-una ortonormată punând, pentru orice $i=\overline{1,n},\ e_i'=e_i/\|e_i\|$.

Exemplul 1.16. Față de produsul scalar canonic al lui \mathbb{R}^n baza canonică e ortonormată.

Observația 1.20. Un mod de a defini un produs scalar este de a decreta că o anume bază e ortonormată. Acest procedeu se bazează pe faptul că un produs scalar, ca formă biliniară, se poate defini doar prin acțiunea sa asupra unei baze.

EXEMPLUL 1.17. Dacă E e dotat cu un produs scalar \langle, \rangle , atunci E^* poate fi înzestrat la rândul său cu un produs scalar, notat la fel, în modul următor. Alegem o bază ortonormată $\{e_i\}$, asociem baza duală și o declarăm ortonormată. Adică punem $\langle e_i^*, e_j^* \rangle = \delta_{ij}, i, j = \overline{1, n}$.

Existența bazelor ortogonale este asigurată de următorul rezultat care furnizează și un procedeu efectiv de construcție a lor pornind de la baze oarecare.

TEOREMA 1.10. (Procedeul de ortogonalizare Gram-Schmidt⁷.) Pentru orice bază $\{f_1, \ldots, f_n\}$ a spațiului vectorial euclidian E există o bază ortogonală $\{e_1, \ldots, e_n\}$ cu proprietatea:

$$L(\lbrace e_1,\ldots,e_i\rbrace)=L(\lbrace f_1,\ldots,f_i\rbrace)$$
 pentru orice $i=1,\ldots,n$.

 $^{^7{\}rm Erhard}$ Schmidt, 1876-1959, matematician german; s-a ocupat în special de teoria spațiilor Hilbert.

Demonstrație. Construcția este inductivă. Punem $e_1=f_1$. Presupunând construiți vectorii e_2,\ldots,e_p cu proprietatea din enunț, definim e_{p+1} ca o combinație liniară (ai cărei coeficienți se vor determina) a e_i -urilor antedefiniți și a lui f_{p+1} : $e_{p+1}=f_{p+1}+\sum_{i=1}^p a_ie_i$. Determinăm a_i impunând condițiile de ortogonalitate $\langle e_{p+1},e_i\rangle=0$ pentru $i=1,\ldots,p$. Rezultă $a_i=-\frac{\langle f_{p+1},e_i\rangle}{\langle e_i,e_i\rangle}$ adică, în final:

(1.15)
$$e_{i} = f_{i},$$

$$e_{i} = f_{i} - \sum_{i=1}^{i-1} \frac{\langle e_{j}, f_{i} \rangle}{\|e_{j}\|^{2}} e_{j}, \ i = 2, \dots, n.$$

Conform lemei anterioare, vectorii construiți sunt independenți și, fiind în număr de n, formează o bază. Pe de altă parte, deoarece primii p vectori dintre cei nou construiți generează același subspațiu ca și primii p dintre cei vechi (conform ipotezei de inducție), observăm că

$$L(\{e_1, \dots, e_{p+1}\}) = L(\{e_1, \dots, e_p\}) + L(\{e_{p+1}\}) =$$

= $L(\{f_1, \dots, f_p\}) + L(\{f_{p+1}\}) = L(\{f_1, \dots, f_{p+1}\}),$

ceea ce încheie demonstrația.

COROLARUL 1.9. Fie \mathcal{R}' reperul obținut prin procedeul de ortogonalizare al lui Gram-Schmidt din reperul \mathcal{R} . Atunci \mathcal{R} și \mathcal{R}' au aceeași orientare.

Demonstrație. Fie $\mathcal{R} = \{f_1, \dots, f_n\}, \mathcal{R}' = \{e_1, \dots, e_n\}$. Formulele (1.15) ne spun că matricea A de trecere de la \mathcal{R} la \mathcal{R}' e triunghiulară, cu 1 pe diagonală. Atunci determinantul său este 1, pozitiv.

Observația 1.21. Trecerea de la un reper ortogonal $\{e_1,\ldots,e_n\}$ la cel ortonormat corespunzător $\{\frac{e_1}{\|e_1\|},\ldots,\frac{e_n}{\|e_n\|}\}$ se face cu următoarea matrice diagonală cu determinant pozitiv: $B=\operatorname{diag}(\frac{1}{\|e_1\|},\ldots,\frac{1}{\|e_n\|})$. Atunci, dacă \mathcal{R}'' e reperul ortonormat obținut prin normarea elementelor reperului \mathcal{R}' , trecerea de la \mathcal{R} la \mathcal{R}'' se face cu matricea AB. Cum $\det(AB)>0$, rezultă că \mathcal{R} și \mathcal{R}'' au aceeași orientare.

Matricea de trecere între două repere ortonormate are proprietăți speciale. Fie $\mathcal{B} = \{e_1, \dots, e_n\}, \ \mathcal{B}' = \{e'_1, \dots, e'_n\}$ două astfel de repere şi $A = (a_{ij})$ matricea de trecere de la \mathcal{B} la \mathcal{B}' . Avem:

$$\delta_{ij} = \langle e'_i, e'_j \rangle = \langle \sum_{k=1}^n a_{ki} e_k, \sum_{l=1}^n a_{lj} e_l \rangle = \sum_{k,l=1}^n a_{ki} a_{lj} \langle e_k, e_l \rangle$$
$$= \sum_{k,l=1}^n a_{ki} a_{lj} \delta_{kl} = \sum_{k=1}^n a_{ki} a_{kj}.$$

În scriere invariantă, proprietatea pe care tocmai am demonstrat-o devine:

$${}^{\mathrm{t}}\!AA = I_n,$$

unde ${}^{t}A$ notează transpusa matricei A. Matricele cu această proprietate se numesc ortogonale. Mulțimea lor se notează O(n). Se demonstrează fără dificultate:

EXERCIȚIUL 1.26. O(n) este un grup (numit grupul ortogonal) față de înmulțirea matricelor. Determinantul oricărei matrice ortogonale este ± 1 . Matricele ortogonale de determinant pozitiv formează un subgrup (notat SO(n) și numit grupul special ortogonal).

EXERCIȚIUL 1.27. Pentru orice element a_{ik} al unei matrice ortogonale A, complementul său algebric este a_{ik} det A.

Pentru un vector $x \in E$, definim subspațiul ortogonal lui x prin $x^{\perp} = \{y \in E : y \perp x\}$. Mai general, pentru orice subspațiu U definim $U^{\perp} = \{y \in E : y \perp x, \forall x \in U\}$. Acesta se numește complementul ortogonal al lui U. Că U^{\perp} , în particular x^{\perp} sunt, într-adevăr subspații vectoriale rezultă din biliniaritatea produsului scalar. E clar că, dacă dim U = 1, atunci $U^{\perp} = x^{\perp}$ pentru orice $x \neq 0$ din U. Să observăm că un vector e ortogonal pe un subspațiu dacă și numai dacă e ortogonal pe toți vectorii unei baze a subspațiului. Cititorul va demonstra singur următoarele proprietăți:

Exercițiul 1.28. 1) $u \perp u$ dacă și numai dacă u = 0.

- 2) $(U^{\perp})^{\perp} = U$.
- 3) Dacă $U \subseteq W$, atunci $W^{\perp} \subseteq U^{\perp}$.

Putem acum demonstra:

Lema 1.6. Pentru orice subspațiu U al spațiului vectorial euclidian E are loc egalitatea: $E=U\oplus U^{\perp}$.

Demonstrație. Fie $u \in U \cap U^{\perp}$. Fiind în U^{\perp} , $u \perp U$, în particular $u \perp u$ deci u=0, adică $U \cap U^{\perp}=\{0\}$. Pentru a arăta că $E=U+U^{\perp}$, fixăm o bază ortonormată $\{e_1,\ldots,e_k\}$ a lui U. Fie $v \in E$ arbitrar. Atunci se vede imediat că $v'=v-\sum_{i=1}^k \langle v,e_i\rangle e_i$ satisface $v'\perp U$, astfel că $v=v'+\sum_{i=1}^k \langle v,e_i\rangle e_i$ e descompunerea căutată.

Pentru a încheia această discuție, mai trebuie să demonstrăm că U^{\perp} există și e unic, proprietate anticipată deja de articolul hotărât din denumire:

Propoziția 1.31. Pentru orice subspatiu, ortogonalul său există și e unic.

Demonstrație. Fie dat subspațiul U și $\{e_1,\ldots,e_k\}$ o bază ortonormată a sa (există, conform teoremei 1.10). O completăm la o bază $\mathcal{B}=\{e_1,\ldots,e_k,f_{k+1},\ldots,f_n\}$ a lui E pe care o ortonormăm cu procedeul Gram-Schmidt. Din însăși metoda de construcție a bazei ortogonale, rezultă că această procedură nu afectează primii p vectori, cei deja ortonormați. Obținem acum o bază ortonormată $\{e_1,\ldots,e_n\}$ a lui E. E clar că $U'=L(\{e_{k+1},\ldots,e_n\}\perp U$ și $E=U\oplus U'$. Pentru a demonstra unicitatea, fie U'' un subspațiu cu proprietatea că orice element al său e ortogonal pe U. Atunci, conform lemei anterioare, $E=U\oplus U'=U\oplus U''$. Fie acum $u'\in U'$ arbitrar și $u_1\in U$. Vectorul $v=u_1+u'$ se descompune unic sub forma $v=u_2+u''$, cu $u_2\in U$ și $u''\in U''$. Rezultă $u'-u''\in U$. Dar $u'-u''\perp U$, deci u'-u'''=0, adică $u'\in U''$, ceea ce demonstrează că $U'\subseteq U''$. Analog se arată incluziunea inversă. În consecință, $U^\perp=U'$.

EXERCIȚIUL 1.29. În spațiul vectorial euclidian \mathbb{R}^4 , să se descompună vectorul x ca sumă dintre un vector situat în $L(\{u_i\})$ și unul din $L(\{u_i\})^{\perp}$ în fiecare dintre cazurile:

- 1) $x = (5, 2, -2, 2), u_1 = (2, 1, 1, -1), u_2 = (1, 1, 3, 0);$
- 2) $x = (-3, 5, 9, 3), u_1 = (1, 1, 1, 1), u_2 = (2, -1, 1, 1), u_3 = (2, -7, -1, -1).$

7.2. Produs vectorial în \mathbb{R}^3 . Vom formaliza acum o operație binecunoscută din matematica și fizica de liceu. Cadrul va fi spațiul vectorial euclidian \mathbb{R}^3 , dar cititorul poate ușor extinde totul la un spațiu vectorial real de dimensiune 3 oarecare și, cu puțină atenție, chiar la cazul n-dimensional.

Fie \langle , \rangle produsul scalar canonic şi $\{e_1, e_2, e_3\}$ baza canonică a lui \mathbb{R}^3 . Reamintim că, prin convenție, aceasta e considerată orientată pozitiv. Convenim, de asemenea, să notăm prin $\det(x, y, z)$ determinantul ale cărui coloane sunt coordonatele lui x, y, z în baza canonică.

Observația 1.22. Proprietățile cunoscute ale determinanților demonstrează că $\det(x,y,z) = -\det(y,x,z)$ etc.

Definiția 1.27. Produsul vectorial al vectorilor $x, y \in \mathbb{R}^3$ este unicul vector, notat $x \times y$, caracterizat de relația $\langle x \times y, z \rangle = \det(x, y, z)$ pentru orice $z \in \mathbb{R}^3$.

Punând succesiv $z=e_1,e_2,e_3,$ rezultă imediat descompunerea produsului vectorial în baza canonică:

(1.16)
$$x \times y = \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix} e_1 - \begin{vmatrix} x_1 & y_1 \\ x_3 & y_3 \end{vmatrix} e_2 + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} e_3.$$

Exercițiul 1.30. Produsul vectorial are următoarele proprietăți:

- 1) $x \times y = -y \times x$ (anticomutativitate).
- 2) Privit ca aplicație $\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$, e biliniar. Adică, pentru orice $a, b \in \mathbb{R}$, avem $(ax + by) \times z = a(x \times z) + b(y \times z)$ și $x \times (ay + bz) = a(x \times y) + b(x \times z)$.
 - 3) $x \times y = 0$ dacă și numai dacă x și y sunt liniar dependenți.
 - 4) $\langle x \times y, x \rangle = 0$, $\langle x \times y, y \rangle = 0$.

Din ultima proprietate rezultă că dacă produsul vectorial al vectorilor x și y e nenul, atunci el e perpendicular pe planul determinat de x și y. În consecință $\{x,y,x\times y\}$ formează un reper în \mathbb{R}^3 . Deoarece $\det(x,y,x\times y)=\langle x\times y,x\times y\rangle=\|x\times y\|^2\rangle 0$, acest reper e la fel orientat cu cel canonic. E formularea matematică a faimoasei "reguli a burghiului".

Vom calcula acum norma produsului vectorial. Avem nevoie de

Lema 1.7. Pentru orice $x, y, u, v \in V$ are loc:

$$\langle u \times v, x \times y \rangle = \begin{vmatrix} \langle u, x \rangle & \langle v, x \rangle \\ \langle u, y \rangle & \langle v, y \rangle \end{vmatrix}.$$

Demonstrație. Observăm întâi că ambii membri ai egalității de demonstrat sunt liniari în fiecare argument. Atunci e suficient să probăm egalitatea pe elementele unei baze, în particular pe ale celei canonice. E suficient, adică, să vedem că

$$\langle e_i \times e_j, e_k \times e_l \rangle = \begin{vmatrix} \langle e_i, e_k \rangle & \langle e_j, e_k \rangle \\ \langle e_i, e_l \rangle & \langle e_j, e_l \rangle \end{vmatrix}$$

pentru i, j, k, l = 1, 2, 3 ceea ce e uşor de verificat ţinând seama că baza canonică e ortonormată şi, conform definiției, $e_i \times e_j = e_k$.

Dacă în egalitatea de mai sus luăm u = x, v = y obținem

$$||x \times y||^2 = ||x||^2 ||y||^2 - \langle x, y \rangle^2 = ||x||^2 ||y||^2 (1 - \cos^2 \theta)$$

unde θ e unghiul vectorilor x,y. Regăsim astfel ceea ce știam de la fizică: în spațiul geometric, lungimea produsului vectorial a doi vectori este egală cu aria paralelogramului construit pe cei doi vectori.

Observația 1.23. Produsul vectorial nu e o operație asociativă. Totuși, verifică o proprietate "de asociativitate" foarte utilă:

$$(1.17) (x \times y) \times z = \langle x, z \rangle y - \langle y, z \rangle x.$$

Din nou, demonstrația se face observând că ambii membri sunt liniari în fiecare argument și verificând apoi pe elementele bazei canonice.

EXERCIȚIUL 1.31. Se dau vectorii $y \neq 0$ și z în \mathbb{R}^3 . Să se arate că există un vector x astfel încât $x \times y = z$ dacă și numai dacă $y \perp z$. Este x unic determinat? Dacă nu, care e forma lui cea mai generală?

8. Aplicații ortogonale

Aplicațiile liniare respectă structura vectorială a spațiilor între care acționează. Când lucrăm cu spații vectoriale euclidiene, e natural să cerem aplicațiilor liniare să respecte și structura euclidiană. Numai în felul acesta vom putea studia echivalența spațiilor vectoriale euclidiene. Suntem conduși la:

Definiția 1.28. Fie (E_1,\langle,\rangle_1) , (E_2,\langle,\rangle_2) două spații vectoriale euclidiene și $f:E_1\to E_2$ o aplicație liniară; f se numește aplicație ortogonală dacă

$$\langle f(x), f(y) \rangle_2 = \langle x, y \rangle_1.$$

Lema 1.8. Orice aplicație ortogonală păstrează normele. În particular, o aplicație ortogonală e injectivă.

Demonstrație. În adevăr, avem

$$||x||_1 = \sqrt{\langle x, x \rangle_1} = \sqrt{\langle f(x), f(x) \rangle_2} = ||f(x)||_2.$$

De aici rezultă că dacă f(x) = 0, atunci şi x = 0, deci f e injectivă.

Când cele două spații euclidiene coincid, vorbim despre o transformare ortogonală. Lema de mai sus ne asigură că transformările ortogonale sunt izomorfisme. Este ușor de demonstrat:

Lema 1.9. O compunere de aplicații ortogonale e tot aplicație ortogonală. Înversa unei transformări ortogonale e transformare ortogonală. În particular, mulțimea transformărilor ortogonale ale unui spațiu vectorial euclidian (E, \langle, \rangle) formează un grup notat $O(E, \langle, \rangle)$.

Fie $\mathcal{B}_1=\{e_1,\ldots,e_n\},\,\mathcal{B}_2=\{f_1,\ldots,f_m\}$, repere ortonormate în E_1,E_2 și fie $f:V_1\to V_2$ o aplicație ortogonală. Dacă A este matricea asociată lui f în aceste repere, avem imediat:

$$\delta_{ij} = \langle e_i, e_j \rangle_1 = \langle f(e_i), f(e_j) \rangle_2 = \langle \sum_{r=1}^m a_{ri} f_r, \sum_{s=1}^m a_{sj} f_s \rangle_2$$

$$= \sum_{r,s=1}^m a_{ri} a_{sj} \delta_{rs} = \sum_{r=1}^m a_{ri} a_{rj}, \quad \text{pentru orice } i, j = 1, \dots, n, \text{ deci:}$$

(1.18)
$$\sum_{r=1}^{m} a_{ri} a_{rj} = \delta_{ij}, \quad \text{pentru orice } i, j = 1, \dots, n.$$

Să observăm că dacă m=n, aceste relații definesc o matrice ortogonală. Cititorul va demonstra fără dificultate, acum, următoarea caracterizare:

Propoziția 1.32. O aplicație liniară între două spații vectoriale euclidiene e ortogonală dacă și numai dacă matricea sa asociată în două repere ortonormate satisface relațiile (1.18). În particular, un endomorfism este transformare ortogonală dacă și numai dacă matricea sa asociată în două repere ortonormate e ortogonală; în consecință, pentru orice fixare a unei baze ortonormate în spațiul vectorial euclidian (E, \langle, \rangle) , există un izomorfism între $O(E, \langle, \rangle)$ și O(n).

Exemplul 1.18. Fie s o simetrie a unui spațiu vectorial euclidian. Dacă subspațiile proprii E_1, E_2 , corespunzătoare valorilor proprii 1 și -1 sunt ortogonale, atunci vorbim despre o simetrie ortogonală. Cum orice $x \in E$ se scrie unic $x = x_1 + x_2$ cu $x_1 \perp x_2$, avem

$$\langle s(x), s(y) \rangle = \langle x_1 - x_2, y_1 - y_2 \rangle = \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x, y \rangle,$$

deci simetriile ortogonale sunt transformări ortogonale. Proiecția p asociată unei simetrii ortogonale se numește proiecție ortogonală, deoarece $\operatorname{Ker} p \perp \operatorname{Im} p$, dar nu este aplicație ortogonală: nu e injectivă.

EXERCIȚIUL 1.32. Suma directă $E_1 \oplus E_2 = E$ e ortogonală dacă și numai dacă există proiecțiile ortogonale p_1 și p_2 cu proprietățile: Im $p_i = E_i$, $p_1p_2 = p_2p_1 = 0$ și $p_1 + p_2 = 1_E$.

8.1. Clasificarea transformărilor ortogonale. Având în vedere propoziția 1.32, a determina structura transformărilor ortogonale revine, modulo fixarea unui reper ortonormat, la determinarea unei forme cât mai simple pentru matricele ortogonale. În analiza care urmează vom folosi esențial ceea ce știm despre vectori și valori proprii.

Polinomul caracteristic al unei transformări ortogonale are coeficienți reali. Rădăcinile lui sunt numere complexe (cele care sunt pur reale, sunt valori proprii). Putem demonstra:

Lema 1.10. Rădăcinile polinomului caracteristic al unei transformări ortogonale au modulul 1.

Demonstrație. Fie $a+\sqrt{-1}b$ o rădăcină a polinomului caracteristic al transformării ortogonale f. Aceasta nu are semnificația de valoare proprie. Fie $A=(a_{ij})$ matricea lui f în reperul ortonormat cu ajutorul căruia e calculat polinomul caracteristic și fie $x+\sqrt{-1}y$ o soluție nebanală a sistemului omogen $\sum_i [a_{ji}-(a+\sqrt{-1}b)\delta_{ji}]v_i=0$. Dacă X,Y reprezintă coordonatele vectorilor x,y, avem, în scriere invariantă, $A(X+\sqrt{-1}Y)=(a+\sqrt{-1}b)$ $(X+\sqrt{-1}Y)$. Deci, deoarece A are elemente reale:

(1.19)
$$f(x) = ax - by \text{ si } f(y) = bx + ay.$$

Pe de altă parte,

(1.20)
$$||x||^2 = ||f(x)||^2 = ||ax - by||^2 = a^2 ||x||^2 + b^2 ||y||^2 - 2ab\langle x, y \rangle,$$

$$||y||^2 = ||f(y)||^2 = ||bx + ay||^2 = b^2 ||x||^2 + a^2 ||y||^2 + 2ab\langle x, y \rangle.$$

Adunăm aceste relații și, deoarece $||x||^2 + ||y||^2 \neq 0$, obținem $a^2 + b^2 = 1$.

COROLARUL 1.10. O transformare ortogonală nu poate avea decât valorile proprii 1 i i i i.

Relația (1.19) demonstrează și următorul rezultat extrem de important:

Propoziția 1.33. Orice transformare ortogonală invariază cel puțin un subspațiu 1-dimensional sau unul 2-dimensional.

Demonstrație. Dacă transformarea ortogonală f are o valoare proprie, acesteia îi corespunde un subspațiu 1-dimensional invariant. Să presupunem că nu are nici o valoare proprie. Atunci toate rădăcinile polinomului său caracteristic sunt complexe nereale. Fie $x+\sqrt{-1}y$ ca în demonstrația lemei, corespunzător lui $a+\sqrt{-1}b$, $b\neq 0$. În consecință, scăzând relațiile (1.20) și folosind $a^2+b^2=1$, obținem, pentru $b\neq 0$:

$$(1.21) b(||x||^2 - ||y||^2) + 2a\langle x, y \rangle = 0.$$

Pe de altă parte

$$\langle x, y \rangle = \langle f(x), f(y) \rangle = (a^2 - b^2) \langle x, y \rangle + ab(||x||^2 - ||y||^2).$$

De aici rezultă

$$a(\|x\|^2 - \|y\|^2) - 2b\langle x, y \rangle = 0.$$

Relațiile (1.21) și (1.22) formează un sistem omogen în necunoscutele $||x||^2 - ||y||^2$ și $\langle x, y \rangle$. Cum determinantul lui este -2, el nu are decât soluția banală:

$$\langle x, y \rangle = ||x||^2 - ||y||^2 = 0.$$

În concluzie, vectorii x,y sunt ortogonali, în particular independenți. Relațiile (1.19) demonstrează că subspațiul $L(\{x,y\})$ e invariant și, din cele de mai sus, are dimensiunea 2.

EXERCIȚIUL 1.33. Arătați că, de fapt, rezultatul de mai sus este adevărat pentru orice endomorfism al unui spațiu vectorial real sau complex.

Un alt rezultat util pentru ceea ce urmează, dar important și în sine este:

Lema 1.11. Dacă o transformare ortogonală f invariază un subspațiu U, invariază și ortogonalul acestuia. Restricția lui f la U, respectiv U^{\perp} , e o transformare ortogonală.

Demonstrație. Fie subspațiul $U \subset E$ și f o transformare ortogonală cu proprietatea $f(U) \subseteq U$. Avem, de fapt, f(U) = U pentru că, f fiind bijecție, și $f_{|U}: U \to U$ e bijecție. Pentru a arăta că $f(U^{\perp}) \subseteq U^{\perp}$, considerăm un $x \in U^{\perp}$ arbitrar și arătăm că f(x) este ortogonal pe orice $y \in U$. Dar, conform observației de mai sus, $y = f(z), z \in U$. Atunci, $\langle f(x), y \rangle = \langle f(x), f(z) \rangle = \langle x, z \rangle = 0$. Ultima afirmație e evidentă.

Putem acum trece la clasificarea propriu-zisă.

Dimensiunea 1. Dacă dim E=1, atunci, fixând o bază ortonormată (adică alegând un vector unitar e), avem f(e)=ae, deci e e vector propriu. Conform corolarului 1.10, $a=\pm 1$. Rezultă că singurele transformări ortogonale în dimensiune 1 sunt $\pm 1_E$.

Dimensiunea 2. Fixăm o orientare a lui E şi un reper ortonormat pozitiv orientat. Fie $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ matricea transformării ortogonale f în acest reper. Relația de ortogonalitate ${}^t\!AA = I_2$ dă $a^2 + b^2 = 1$, $c^2 + d^2 = 1$, ac + bd = 0. Nu e greu de văzut că singurele soluții posibile sunt: 1) $a = d = \cos\theta$ şi $b = -c = -\sin\theta$; 2) $a = -d = \cos\theta$ şi $b = c = \sin\theta$, $\theta \in [0, 2\pi)$. Le corespund matricele ortogonale:

$$(2I) \qquad \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}, \quad \text{cu determinant 1}$$

$$(2II) \qquad \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}, \quad \text{cu determinant } -1.$$

Transformările ortogonale cu determinant pozitiv⁸ se numesc *rotații*. Ele, am văzut deja în cazul general, formează un subgrup, aici comutativ (verificați!). Unghiul θ care apare în matricea de mai sus motivează denumirea (e vorba de rotații cu unghi θ în sens trigonometric).

Pe de altă parte, e uşor de verificat că pătratul unei matrice din al doilea tip este I_2 . Altfel spus, transformările ortogonale cu determinant negativ sunt simetrii (ortogonale), deci pentru o astfel de transformare ortogonală există un reper în care matricea ei este diag(1, -1).

EXERCIȚIUL 1.34. Verificați că axa unei simetrii cu matrice de tip (II) în reperul $\{e_1, e_2\}$ are în acest reper direcția $\cos \frac{\theta}{2} e_1 + \sin \frac{\theta}{2} e_2$.

Legătura dintre rotații și simetrii este dată în:

Propoziția 1.34. O transformare ortogonală a unui spațiu vectorial euclidian 2-dimensional se descompune în produs⁹ de cel mult două simetrii ortogonale.

Demonstrație. Dacă $\det f = -1$, f e o simetrie și nu mai e nimic de demonstrat. Dacă $\det f = 1$, fie s o simetrie ortogonală oarecare. $\det sf = \det s \det f = -1$, deci sf e o simetrie s'. Atunci f = ss' este descompunerea căutată. Să observăm că descompunerea nu este unică. Ea depinde de alegerea simetriei s.

Dimensiunea 3. Deoarece dim E=3, gradul polinomului caracteristic al lui f este 3, deci acesta are cel puțin o rădăcină reală, valoare proprie a lui f. Ca mai sus, vom fixa o orientare a lui E și vom lucra doar cu repere pozitiv orientate. Vom considera separat cele două posibilități pentru semnul determinantului lui f.

1) det f=1. Să presupunem că f admite valoarea proprie 1. Fie e_1 un vector propriu unitar corespunzător lui 1. Fie $\{e_2,e_3\}$ reper ortonormat în e_1^{\perp} , ales în așa fel ca $\{e_1,e_2,e_3\}$ să fie pozitiv orientat. Restricția $f_{e_1^{\perp}}$ are determinant 1, deci matricea sa este de tipul (2I). Astfel că, în reperul ortonormat $\{e_1,e_2,e_3\}$, matricea lui f este $\begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}$, cu A de tipul (2I).

Dacă f admite valoarea proprie -1, luăm din nou f_1 unitar, $f(f_1) = -f_1$; restricția lui f la f_1^{\perp} va avea determinant -1. Atunci există un reper ortonormat $\{f_2, f_3\}$ în care matricea restricției este $B = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. În reperul $\{f_1, f_2, f_3\}$ matricea lui f este $\begin{pmatrix} -1 & 0 \\ 0 & B \end{pmatrix}$. În consecință, în reperul $\{f_3, f_1, f_2\}$ (la fel orientat), matricea lui f va fi $\begin{pmatrix} 1 & 0 \\ 0 & -I_2 \end{pmatrix}$. Observați că $-I_2$ e tot o matrice de tipul (2I), anume pentru $\theta = \pi$.

2) det f=-1. Ca și în cazul anterior, presupunem întâi că f are valoarea proprie -1 și fixăm e_1 vector propriu unitar corespunzător. Acum restricția lui f la e_1^{\perp} va avea determinant 1, deci, într-un reper ortonormat convenabil $\{e_2,e_3\}$, matricea acestei restricții va fi de tipul (2I). Atunci în reperul $\{e_1,e_2,e_3\}$ matricea lui f va fi $\begin{pmatrix} -1 & 0 \\ 0 & A \end{pmatrix}$, cu A de tip (2I).

În fine, dacă f are valoarea proprie 1, determinantul restricției este -1. Ca şi în cazul 1), obținem şi aici că, într-un reper ortonormat convenabil, matricea lui f este $\begin{pmatrix} -1 & 0 \\ 0 & I_2 \end{pmatrix}$. Putem acum formula:

 $^{^8}$ La o schimbare de reper cu matrice de trecere C, matricea unui endomorfism se schimbă după formula $A' = C^{-1}AC$, deci det $A' = \det A$. Astfel că putem vorbi depre determinantul transformării considerate.

⁹Aici și mai departe, "produs de aplicații" înseamnă *compunere*.

Propoziția 1.35. Fie f o transformare ortogonală a unui spațiu vectorial euclidian 3-dimensional. Atunci există un reper ortonormat al spațiului în care matricea lui f ia una dintre formele:

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{pmatrix}$$

$$(3II) \quad \begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$$

după cum determinantul său e pozitiv sau negativ.

Matricele de primul tip reprezintă rotații de unghi θ în planul $L(\{e_2, e_3\})$, în jurul axei $\langle e_1 \rangle$. Cele de al doilea tip reprezintă compunerea dintre o rotație de unghi θ în planul $L(\{e_2, e_3\})$, în jurul axei $\langle e_1 \rangle$, și o simetrie de axă $L(\{e_2, e_3\})$ și direcție $\langle e_1 \rangle$.

Putem trata acum

Dimensiunea n. Procedăm inductiv, aplicând repetat propoziția 1.33 și clasificarea în dimensiune 2.

Conform propoziției 1.33, din aproape în aproape, deducem că f are, să spunem, k subspații invariante 1-dimensionale (acestea corespund valorilor proprii ± 1 , adică rădăcinilor reale ale polinomului caracteristic) și p subspații invariante 2-dimensionale, k+2p=n (care corespund rădăcinilor complexe nereale ale polinomului caracteristic). Putem alege un reper ortonormat astfel încât primii s vectori să corespundă valorii proprii 1, următorii k-s, valorii proprii -1, $\{e_{k+1},e_{k+2}\}$ să genereze un 2-plan invariant și așa mai departe. Deducem forma matricei transformării ortogonale în acest reper:

$$diag(1, ..., 1, -1, ..., -1, A_1, ..., A_p)$$

unde A_i sunt matrice de tipul (2I).

8.2. Descompunerea unei transformări ortogonale în produs de simetrii ortogonale față de hiperplane. În paragraful anterior am văzut că orice transformare ortogonală în două dimensiuni se descompune în produs de cel mult două simetrii ortogonale (față de drepte vectoriale). Generalizăm acest rezultat la cazul dimensiunii n arbitrare. Descompunerea se va face acum în simetrii ortogonale față de hiperplane (i.e. subspațiul propriu corespunzător valorii proprii 1 este hiperplan).

Propoziția 1.36. (Cartan¹⁰) Orice transformare ortogonală, diferită de identitate, a unui spațiu vectorial euclidian n-dimensional, se descompune în produs de cel mult n simetrii ortogonale față de hiperplane.

Demonstrație. Vom face inducție după $n = \dim E$. Pentru n = 1, singura transformare ortogonală diferită de 1_E este -1_E care e o simetrie ortogonală față de hiperplanul $\{0\}$.

Presupunem rezultatul adevărat în dimensiune n-1. Fie $f \in O(E, \langle , \rangle)$, dim E=n. Cum $f \neq 1_E$, există $x \in E$ cu $f(x)=y \neq x$. Ştim că ||x||=||y||. Simetria s față de hiperplanul $(x-y)^{\perp}$ are proprietatea că s(y)=x. Atunci

 $^{^{10}\}rm{Elie}$ Cartan, 1869-1951, matematician francez cu contribuții excepționale în geometria diferențială, teoria grupurilor Lie etc.

sf e o transformare ortogonală care invariază x (sf(x)=x) şi hiperplanul $H=x^{\perp}$ (vezi lema 1.11), iar $(sf)_{|H}$ e o transformare ortogonală a lui H. Conform ipotezei de inducție, există descompunerea $(sf)_{|H}=s'_1\cdots s'_r,\ r\leq n-1,$ unde s'_i sunt simetrii ortogonale în H, față de hiperplane H'_i ale lui H. Urmează acum să ridicăm aceste s'_i -uri la niște simetrii ortogonale față de hiperplane ale lui E. Iată cum: fie $\langle z_i \rangle$ complementul ortogonal al lui H'_i în H. Atunci $E=H'_i\oplus \langle z_i\rangle \oplus \langle x\rangle$. Pentru un $v\in E,\ v=u+az_i+bx,\ a\in H'_i$, punem $s_i(v)=u-az_i+bx$. Atunci s_i e simetrie ortogonală față de hiperplanul $H_i=H'_i\oplus \langle x\rangle$ şi $s_{i|H}=s'_i$. Fie acum $f'=sfs_r\cdots s_1$. Deoarece $f'_{|H}=s'_1\cdots s'_rs'_r\cdots s'_1=1_H$ şi f'(x)=sf(x)=x, rezultă $f'=1_E$. Deducem că $f=ss_1\cdots s_r$.

9. Endomorfisme simetrice

Acestea sunt exemple de endomorfisme diagonalizabile ale unui spațiu vectorial euclidian, intim legate de formele pătratice. Importanța lor va fi evidentă și în cursurile din anii următori.

Definiția 1.29. Un endomorfism f al unui spațiu vectorial euclidian (E, \langle, \rangle) se numește simetric dacă satisface condiția

$$(1.23) \langle f(x), y \rangle = \langle x, f(y) \rangle, \text{pentru orice } x, y \in V.$$

Un endomorfism care satisface condiția $\langle f(x),y\rangle=-\langle x,f(y)\rangle$ se va numi antisimetric. Deși nu vom avea încă aplicații geometrice ale acestora, pentru coerența expunerii vom prezenta și câteva proprietăți ale lor. În termeni de matrice asociate, avem caracterizarea:

Propoziția 1.37. Un endomorfism este simetric (respectiv antisimetric) dacă și numai dacă matricea sa asociată în orice reper ortonormat este simetrică (respectiv antisimetrică).

Demonstrație. Discutăm doar cazul endomorfismelor simetrice, celălalt caz se tratează similar. Datorită liniarității lui f și a produsului scalar, f e simetric dacă și numai dacă (1.23) are loc pentru orice elemente ale unei baze oarecare. Fie acum $\{e_1, \ldots, e_n\}$ un reper ortonormat arbitrar și f un endomorfism al lui E. Avem:

$$\langle f(e_i), e_j \rangle = \langle \sum_{k=1}^n a_{ki} e_k, e_j \rangle = \sum_{k=1}^n a_{ki} \delta_{kj} = a_{ji},$$
$$\langle e_i, f(e_j) \rangle = \langle e_i, \sum_{k=1}^n a_{kj} e_k \rangle = \sum_{k=1}^n a_{kj} \delta_{ik} = a_{ij}.$$

Deci f e simetric dacă şi numai dacă $a_{ij} = a_{ji}$.

Exemplul 1.19. O proiecție p se numește ortogonală dacă Ker $p \perp \operatorname{Im} p$. Am văzut în exemplul 1.18 că o proiecție e ortogonală dacă și numai dacă simetria asociată ei e ortogonală. Într-o bază ortonormată adaptată descompunerii ortogonale Ker $p \oplus \operatorname{Im} p$ matricea proiecției ortogonale este diag $(0,\ldots,1,\ldots,1)$ deci simetrică. Astfel că orice proiecție ortogonală e un endomorfism simetric.

Să demonstrăm acum:

Propoziția 1.38. Polinomul caracteristic al unui endomorfism simetric are numai rădăcini reale.

Demonstrație. Fie $P_f(X) = \det(A - XI_n)$ polinomul caracteristic al lui f calculat cu ajutorul unei baze ortonormate. În particular, A e matrice simetrică, la fel $A - XI_n$. Pentru o rădăcină λ a lui P_f , fie (x_1, \ldots, x_n) , $x_i \in \mathbb{C}$, o soluție netrivială a sistemului omogen $(A - \lambda I_n)Y = 0$. Înmulțim matricea sistemului la stânga cu matricea diag $(\overline{x}_1, \ldots, \overline{x}_n)$; apoi adunăm toate cele n ecuații ale noului sistem și obținem: $\sum_{i,j=1}^n a_{ij}x_i\overline{x}_j = \lambda \sum_{i=1}^n x_i\overline{x}_i$. În membrul drept, coeficientul lui λ e real nenul deoarece $(x_1, \ldots, x_n) \neq (0, \ldots, 0)$; membrul stâng al egalității e, de asemenea, real datorită simetriei lui A. În consecință, $\lambda \in \mathbb{R}$.

Cu aceeași metodă se demonstrează

Propoziția 1.39. Polinomul caracteristic asociat unui endomorfism antisimetric are numai rădăcini pur imaginare.

Se știe că, în general, vectorii proprii corespunzători unor valori proprii distincte sunt independenți. Pentru endomorfisme simetrice lucrurile se pot încă preciza:

Propoziția 1.40. Vectorii proprii corespunzători la valori proprii distincte ale unui endomorfism simetric sunt ortogonali.

Demonstrație. Fie $\lambda \neq \mu$ valori proprii distincte ale lui f. Fie x, y astfel încât $f(x) = \lambda x, f(y) = \mu y$. Atunci

$$\langle f(x), y \rangle = \lambda \langle x, y \rangle$$
 si $\langle x, f(y) \rangle = \mu \langle x, y \rangle$.

Cum $\langle f(x), y \rangle = \langle x, f(y) \rangle$ deducem $(\lambda - \mu)\langle x, y \rangle = 0$, de unde rezultă $\langle x, y \rangle = 0$, deoarece $\lambda \neq \mu$.

Un ultim fapt preliminar: ca și pentru transformări ortogonale, avem

Lema 1.12. Dacă U e un subspațiu invariant al endomorfismului simetric f, U^{\perp} e, de asemenea, subspațiu invariant al lui f.

Demonstrație. Fie
$$x \in U^{\perp}$$
, $y \in U$, arbitrari. Atunci, deoarece $f(y) \in U$, $\langle f(x), y \rangle = \langle x, f(y) \rangle = 0$, adică $f(x) \in U^{\perp}$.

Pe de altă parte, e evident că restricția oricărui endomorfism simetric la un subspațiu invariant al său e, încă, endomorfism simetric. Cu acestea putem demonstra acum proprietatea de diagonalizare a endomorfismelor simetrice:

Teorema 1.11. Pentru orice endomorfism simetric există un reper ortonormat format din vectori proprii. În acest reper matricea endomorfismului este diagonală.

Demonstrație. Fie e_1 un vector propriu unitar al lui f. Acesta există: nu avem decât să alegem, arbitrar, un vector propriu corespunzător unei valori proprii oarecare, existența ei fiind asigurată de propoziția 1.38. Conform lemei 1.12, putem considera $f_{|E_1}$, $E_1 = e_1^{\perp}$. Acesta e un endomorfism simetric și are, la rândul său, valori proprii. Fie e_2 un vector propriu unitar al lui $f_{|E_1}$. Evident $e_1 \perp e_2$. Acum considerăm restricția $f_{|E_2}$, $E_2 = L(\{e_1, e_2\})^{\perp}$. Alegem aici un vector propriu unitar, etc. Cum dim $V_i = n - i$, după n pași obținem un sistem de n vectori proprii unitari, mutual ortogonali, deci independenți. În consecință ei formează o bază ortonormată.

Ținând seama de teorema 1.5, putem formula:

COROLARUL 1.11. Dimensiunea subspațiului propriu al unui endomorfism simetric, corespunzător valorii proprii λ , este egală cu multiplicitatea lui λ ca rădăcină a polinomului caracteristic.

Teorema de mai sus permite adâncirea studiului formelor pătratice. Fie q o formă pătratică pe un spațiu vectorial euclidian. Fie $A = (a_{ij})$ matricea sa într-un reper ortonormat $\{e_1,\ldots,e_n\}$. Cum A e simetrică, ea poate fi asimilată cu matricea unui endomorfism simetric f_q ($f_q(e_i) = \sum_j a_{ji}e_j$). Pentru f_q , teorema 1.11 asigură existența unui reper ortonormat de vectori proprii. În acest reper, matricea sa, deci matricea formei pătratice, e diagonală. Cu alte cuvinte, q are o formă canonică în acest reper. În plus, trecerea de la primul reper ortonormat la cel de vectori proprii se face cu o matrice ortogonală. Am demonstrat:

Teorema 1.12. O formă pătratică pe un spațiu vectorial euclidian poate fi adusă la forma canonică prin transformări ortogonale de reper.

Observația 1.24. Endomorfismul simetric f_q de mai sus e caracterizat de relația $\langle f_q(x), y \rangle = g(x, y)$ unde g e forma biliniară simetrică din care provine q, deoarece f_q și g au aceeași matrice în reperul ortonormat fixat $\{e_1, \ldots, e_n\}$.

Exemplul 1.20. Considerăm, pe \mathbb{R}^4 cu produsul scalar canonic, forma pătratică

$$q(x) = 2x_1x_2 + 2x_1x_3 - 2x_1x_4 - 2x_2x_3 + 2x_2x_4 + 2x_3x_4.$$

Să o aducem întâi la o formă canonică prin metoda lui Gauss. Deoarece nu avem nici un termen de tip x_i^2 , facem schimbarea de coordonate:

$$x_1 = y_1 + y_2, \ x_2 = y_1 - y_2, \ x_3 = y_3, \ x_4 = y_4.$$

Obtinem

$$q(x) = 2y_1^2 - 2y_2^2 + 4y_2y_3 - 4y_2y_4 + 2y_3y_4.$$

 $q(x)=2y_1^2-2y_2^2+4y_2y_3-4y_2y_4+2y_3y_4.$ Cum avem un singur termen care conține y_1 , grupăm termenii care-l conțin pe y_2 și formăm cu ei un pătrat perfect:

$$q(x) = 2y_1^2 - 2(y_2^2 - 2y_2y_3 + 2y_2y_4) + 2y_3y_4 =$$

= $2y_1^2 - 2(y_2 - y_3 + y_4)^2 - y_2^2 + 2y_3^2 + 2y_4^2 - 2y_3y_4$.

Facem schimbarea de coordonate

$$z_2 = y_2 - y_3 - y_4, \ z_i = y_i, \quad i = 1, 3, 4$$

și reluăm procedeul, grupând termenii în z_3 :

$$\begin{split} q(x) &= 2z_1^2 - 2z_2^2 + 2(z_3^2 - z_3 z_4) + 2z_4^2 = \\ &= 2z_1^2 - 2z_2^2 + 2(z_3 - \frac{1}{2}z_4)^2 + \frac{1}{4}z_4^2. \end{split}$$

În fine, facem schimbarea de coordonate

$$u_3 = z_3 - \frac{1}{2}z_4 \ u_i = z_i, \quad i = 1, 2, 4$$

si găsim forma canonică:

$$q(x) = 2u_1^2 - 2u_2^2 + 2u_3^2 + \frac{3}{2}u_4^2.$$

Aducem acum forma pătratică q la forma canonică prin transformări ortogonale. Lucrăm în reperul canonic al lui \mathbb{R}^4 . Polinomul caracteristic se calculează uşor; este $(X-1)^3(X+3)$. Sistemul omogen care dă ca soluții coordonatele vectorilor proprii corespunzători valorii proprii 1 se reduce la $-x_1 + x_2 + x_3 + x_4 = 0$; soluția generală este $\{(a,b,c,a-b-c) ; a,b,c \in \mathbb{R}\}$. Alegem vectorii proprii liniar independenți: $x_1 = (1, 1, 0, 0), x_2 = (1, 0, 1, 0), x_3 = (-1, 0, 0, 1).$ Îi ortogonalizăm cu procedeul Gram-Schmidt și îi normăm. Obținem $e_1=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0,0),\ e_2=(\frac{\sqrt{6}}{6},-\frac{\sqrt{6}}{6},\frac{\sqrt{3}}{3},0),\ e_3=(-\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{2}).$ Pentru valoarea proprie $\lambda=-3$ luăm vectorul propriu unitar $e_4=(\frac{1}{2},-\frac{1}{2},-\frac{1}{2},\frac{1}{2}).$ Atunci în reperul $\{e_1,e_2,e_3,e_4\},\ q$ are forma canonică

$$q(x) = y_1^2 + y_2^2 + y_3^2 - y_4^2.$$

Prin cele două metode am obținut forme canonice diferite, dar teorema lui Sylvester s-a verificat: indexul este același. Accentuăm încă o dată diferența dintre cele două metode: spre deosebire de a doua metodă, procedeul lui Gauss îngăduie orice fel de schimbări de reper și, în particular, nu păstrează ortonormalitatea reperelor. Acest lucru va deveni mai clar când vom vorbi despre clasificarea hipercuadricelor.

Legătura pe care am pus-o în evidență între forme pătratice și endomorfisme simetrice mai poate fi încă speculată. Via endomorfismul simetric asociat, putem asocia unei forme pătratice polinomul său caracteristic. În general, la o schimbare de reper cu matricea C, matricea formei pătratice devine ${}^{\rm t}CAC$. Ținând seama că schimbările de reper ortonormat se fac cu matrice ortogonale, deducem că polinomul caracteristic e invariant la schimbări ortogonale de reper:

$$\det({}^{t}CAC - XI_{n}) = \det({}^{t}CAC - X{}^{t}CC) = \det({}^{t}C) \det(A - XI_{n}) \det C =$$

$$= \det({}^{t}CC) \det(A - XI_{n}) = \det I_{n} \det(A - XI_{n}) =$$

$$= \det(A - XI_{n}).$$

Atunci și coeficienții polinomului caracteristic sunt invarianți la transformări ortogonale.

Pe de altă parte, tot identificarea de mai sus ne permite să definim:

Definiția 1.30. Un endomorfism f al unui spațiu vectorial euclidian se zice pozitiv definit dacă forma pătratică echivalentă cu el via produsul scalar e pozitiv definită, i.e. dacă $\langle f(x), x \rangle > 0$ pentru orice x nenul.

Lema 1.13. Orice endomorfism simetric pozitiv definit f are o unică "rădăcină pătrată". Adică există un unic endomorfism simetric, pozitiv definit, h astfel încât $h^2 = f$.

Demonstrație. Fixăm un reper ortonormat de vectori proprii pentru f. Matricea sa este aici $\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$. Cum f e pozitiv definit, toate valorile sale proprii sunt pozitive, deci putem considera endomorfismul h care în acest reper are matricea $\operatorname{diag}(\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n})$. Evident $h^2=f$. Unicitatea va rezulta din

Lema 1.14. Pentru orice endomorfism simetric pozitiv definit h, orice vector propriu al lui h^2 corespunzător valorii proprii λ , e un vector propriu al lui h corespunzător valorii proprii $\sqrt{\lambda}$.

Demonstrație. Într-adevăr, din $h^2x = \lambda x$ rezultă

$$(h + \sqrt{\lambda} 1_V)(h - \sqrt{\lambda} 1_V)(x) = 0,$$

de unde $y := (h - \sqrt{\lambda} 1_V)(x) = 0$, altfel y e vector propriu al lui h, corespunzător valorii proprii $-\sqrt{\lambda}$, contradicție cu definirea pozitivă a lui h care nu-i permite valori proprii negative sau nule.

Acum e clar că relația $h^2 = f$ determină în mod unic h, deoarece toți vectorii proprii și toate valorile proprii ale lui h sunt determinate unic de vectorii proprii și valorile proprii ale lui f.

Următorul rezultat arată că, pe un spațiu vectorial euclidian, grupul izomorfismelor are o structură destul de simplă:

TEOREMA 1.13. (de descompunere polară a lui Cauchy) Orice izomorfism f al unui spațiu vectorial euclidian se descompune unic sub forma f = ht, cu t transformare ortogonală și h endomorfism simetric pozitiv definit.

Observația 1.25. Odată fixată o bază ortonormată, enunțul anterior devine echivalent cu: orice matrice nedegenerată se poate scrie unic sub forma produsului dintre una simetrică pozitiv definită și una ortogonală.

Demonstrație. Fixăm un reper ortonormat $\{e_1, \ldots, e_n\}$ în care matricea lui f este A. Fie f' endomorfismul care are în reperul fixat matricea $A' = A^{t}A$. Deoarece f e izomorfism, f' e simetrică şi pozitiv definită: într-adevăr, simetria e evidentă, iar pentru definirea pozitivă calculăm

$$\langle f'(e_i), e_i \rangle = \langle \sum_{i=1}^n a'_{ji} e_j, e_i \rangle = a'_{ii} = \sum_{k=1}^n a_{ki}^2 > 0.$$

Fie acum h rădăcina pătrată a lui f'. Punem $t = h^{-1}f$. Atunci, în reperul ortonormat considerat, matricea lui t este $[h]^{-1}A$, deci, cum [h] e matrice simetrică:

$$[t]^{\mathsf{t}}[t] = [h]^{-1}A^{\mathsf{t}}A[h]^{-1} = [h]^{-1}A'[h]^{-1} = [h]^{-1}[h]^{2}[h]^{-1} = I_{n}$$

adică t e transformare ortogonală. Rămâne să verificăm unicitatea descompunerii. Dar din relația f = ht ca mai sus, rezultă $h^2 = f'$ și se aplică din nou lema 1.14. \square

10. Exerciții și probleme suplimentare

EXERCIȚIUL 1.35. Fie x_1, \ldots, x_p vectori liniar independenți în spațiul vectorial V. Să se studieze liniar independența vectorilor

$$y_i = \sum_{j \in \{1, 2, ..., p\} - \{i\}} x_j, \quad i = 1, ..., p.$$

EXERCIȚIUL 1.36. În \mathbb{R}^4 , fie U subspațiul generat de vectorii (0,1,1,1), (1,1,1,1) și (-1,2,2,1) și fie $U'=\{(x,y,z,t)\mid x+y+4t=0,2x-y+z+3t=0\}$. Arătați că $\mathbb{R}^4=U\oplus U'$ și descompuneți vectorul (1,2,3,4) după cei doi sumanzi direcți.

EXERCIȚIUL 1.37. Fie $K_5[X]$ spațiul vectorial al polinoamelor de grad cel mult 5 peste un corp comutativ K. Definim submulțimile $V_i \subset K_5[X]$, $i=1,\ldots,4$ prin condițiile: 1) $f(0)=0,\ 2)\ f(1)=0,\ 3)\ f(a)=0,\ a\in K$ fixat, 4) f(0)=f(1)=0. Să se arate că V_i sunt subspații și să li se determine dimensiunea.

EXERCIȚIUL 1.38. În spațiul vectorial $K_n[X]$, determinați matricea de trecere între reperele $\{1, X, ..., X^n\}$ și $\{1, X - 1, ..., (X - 1)^n\}$.

Exercițiul 1.39. Fie, în K^n submulțimile:

$$U_1 = \{(x_1, \dots, x_n) \mid x_1 + \dots + x_n = 0\}, \quad U_2 = \{(x_1, \dots, x_n) \mid x_1 = \dots = x_n = 0\}.$$

Verificați că ambele sunt subspații și că suma lor directă este K^n . Determinați proiecțiile vectorilor din baza canonică pe U_1 (respectiv U_2) paralele cu U_2 (respectiv U_1).

EXERCIȚIUL 1.40. Matricele $P_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $P_2 = \begin{pmatrix} 0 & -\mathrm{i} \\ \mathrm{i} & 0 \end{pmatrix}$, $P_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ din $\mathcal{M}(2,\mathbb{C})$, unde $\mathrm{i} = \sqrt{-1}$ se numesc $matricele\ lui\ Pauli^{11}$. Să se arate că:

- 1. $P_a^2 = I_2$ pentru orice a = 1, 2, 3.
- 2. $P_a P_b = i\varepsilon_{abc} P_c$, unde (a, b, c) este o permutare a lui (1, 2, 3), de signatură ε_{abc} .
- 3. Mulţimea $\{I_2, P_1, P_2, P_3\}$ formează un reper al lui $\mathcal{M}(2, \mathbb{C})$. Să se calculeze coordonatele în acest reper ale matricelor: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

EXERCIȚIUL 1.41. Fie V,W spații vectoriale peste același corp K. Arătați că o aplicație $f:V\to W$ e liniară dacă și numai dacă graficul său e subspațiu vectorial al lui $V\times W$.

EXERCIȚIUL 1.42. Fie p_1, p_2, p_3 proiecții ale lui V cu proprietatea $p_1 + p_2 + p_3 = 0$. Să se arate că $p_1p_2 = p_1p_3 = p_2p_3 = 0$. Generalizare.

EXERCIȚIUL 1.43. (Spațiul vectorial factor) Fie U un subspațiu al unui spațiu vectorial V_K . Privim V ca grup aditiv, U ca subgrup (normal pentru că adunarea e comutativă) și notăm V/U grupul factor. Notăm [x] clasa lui $x \mod U$. Pe V/U introducem înmulțirea cu scalari din K: a[x] = [ax]. Arătați că înmulțirea cu scalari e bine definită, că astfel V/U devine un spațiu vectorial peste K și că surjecția canonică $p: V \to V/U$ e aplicație liniară.

Exercițiul 1.44. Fie W un subspațiu vectorial al lui V cu proprietatea că, pentru orice subspațiu U de dimensiune p, $\dim(W\cap U)\geq 1$. Să se arate că W are codimensiunea $\leq p-1$.

EXERCIȚIUL 1.45. (Teorema fundamentală de izomorfism) Dacă $f:V\to W$ e o aplicație liniară, atunci ${\rm Im} f\cong V/{\rm Ker} f$.

EXERCIȚIUL 1.46. (Prima teoremă de izomorfism a lui Emmy Noether¹²) Dacă U, W sunt subspații ale lui V și $W \subseteq U$, atunci $V/U \cong (V/W)/(U/W)$.

EXERCIȚIUL 1.47. (A doua teoremă de izomorfism a lui Emmy Noether) Pentru orice subspații U, W ale lui V are loc: $(U+W)/W \cong U/(U\cap W)$.

Exercițiul 1.48. Fie $f \in \text{End}(V)$ și $\mathcal{B} = \{e_1, \dots, e_n\}$ o bază fixată în V. Să se arate că sunt echivalente afirmațiile:

- 1. $[f]_{\mathcal{B}}$ e superior triunghiulară.
- 2. $e_j \in L(\{e_1, \ldots, e_j\})$ pentru orice $j = 1, \ldots, n$.
- 3. $L(\{e_1,\ldots,e_j\})$ e subspațiu invariant al lui f pentru orice $j=1,\ldots,n$.

EXERCIȚIUL 1.49. Fie $f \in \text{End}(V)$. Atunci f e injectiv dacă și numai dacă e surjectiv, dacă și numai dacă e izomorfism.

EXERCIȚIUL 1.50. Fie K un corp comutativ şi f_1, \ldots, f_n polinoame din K[X] astfel încât $\operatorname{grad} f_i \neq \operatorname{grad} f_j$ pentru $i \neq j$. Să se arate că $\{f_1, \ldots, f_n\}$ e un sistem liniar independent în K[X].

EXERCIȚIUL 1.51. Fie $f_0 \in \mathbb{C}[X]$, grad f = 2, fixat și $\varphi : \mathbb{C}_4[X] \to \mathbb{C}_6[X]$, $\varphi(f) = f_0 \cdot \varphi$. Să se arate că φ e aplicație liniară.

Exercițiul 1.52. Să se arate că $(V \oplus W)^* \cong V^* \oplus W^*$.

¹¹Wolgang Pauli, 1900-1958, fizician eleveţian.

 $^{^{12}\}mathrm{Amalie}$ Emmy Noether, 1882-1935, matematiciană germană, cu contribuții deosebite în algebra modernă.

EXERCIȚIUL 1.53. Fie M o submulțime oarecare a unui spațiu vectorial n-dimensional V. Mulțimea $M^0 := \{ \varphi \in V^* \mid \varphi_{|M} = 0 \}$ se numește anulatorul lui M. Să se arate că:

- 1. M^0 e subspațiu în V^* .
- 2. Dacă $M \subseteq N$, atunci $N^0 \subseteq M^0$.

Dacă X, Y sunt subspații în V, atunci:

- 3. $(X+Y)^0 = X^0 \cap Y^0$ și $(X \cap Y)^0 = X^0 + Y^0$.
- 4. $\dim X + \dim X^0 = \dim V$.

EXERCIȚIUL 1.54. Dacă f este un automorfism al spațiului vectorial V, care este relația dintre polinoamele caracteristice ale lui f și f^{-1} ? Dacă f e diagonalizabil, este și f^{-1} diagonalizabil?

EXERCIȚIUL 1.55. Fie $f \in \text{End}(\mathbb{R}^2)$ dat prin $f(x_1, x_2) = (3x_1 + x_2, -x_1 + x_2)$. Să se arate că nu există un reper de vectori proprii pentru f, dar există un reper în care f are forma superior triunghiulară.

Exercițiul 1.56. Fie f un endomorfism al lui V de pătrat nul: $f^2=0$. Arătați că 1_V+f e inversabil.

EXERCIȚIUL 1.57. Să se găsească polinomul caracteristic al unui endomorfism nilpotent $(f^k = 0)$ al unui spațiu vectorial complex.

EXERCIȚIUL 1.58. Observând că matricea $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ se poate asocia unui endomorfism diagonalizabil, calculați A^p , $p \in \mathbb{N}$.

EXERCIȚIUL 1.59. Pentru orice endomorfism f al lui V există un polinom $F \in K[X]$ astfel încât F(f) = 0; cu alte cuvinte, f satisface o ecuație de forma:

$$f^{m} + a_{m-1}f^{m-1} + \dots + a_{1}f + a_{0}1_{V} = 0, \quad a_{i} \in K.$$

Polinomul F monic, de grad minim, cu proprietatea de mai sus se numește polinomul minimal al endomorfismului f. Arătați că polinomul minimal al lui f divide orice polinom F cu proprietatea că F(f)=0. Datorită corespondenței biunivoce dintre matrice pătrate și endomorfisme modulo fixarea unui reper, se poate vorbi de polinomul minimal al unei matrice.

EXERCIȚIUL 1.60. Fie A o matrice din $SL(3,\mathbb{Z})$ (cu elemente întregi și determinant 1). Dacă polinomul caracteristic al lui A are o rădăcină reală supraunitară a și două rădăcini complexe conjugate (nereale), atunci a e irațional.

EXERCIȚIUL 1.61. Fie $f: \mathcal{M}(n;K) \to \mathcal{M}(n;K)$, $f(X) = (\operatorname{tr} X)I_n$. Arătați că f e liniară și găsiți vectorii și valorile ei proprii. Aceleași cerințe pentru $f(X) = {}^{\operatorname{t}} X$ și pentru $f(X) = aX + b{}^{\operatorname{t}} X$, unde $a, b \in K$.

Exercițiul 1.62. (Teorema Hamilton 13 -Cayley 14) Orice endomorfism este rădăcină a polinomului său minimal. În particular, polinomul minimal al unui endomorfism divide polinomul caracteristic al acestuia.

Exercițiul 1.63. Pentru $f \in \text{End}(V)$ următoarele afirmații sunt echivalente:

- 1. Endomorfismul f e diagonalizabil;
- 2. Există un alt endomorfism h, cu valori proprii distincte, astfel încât $f \circ h = h \circ f$;
- 3. Polinomul minimal al lui f e de forma $\Pi_{i=1}^r(X-\lambda_i), r \leq n, \lambda_i \in K, \lambda_i \neq \lambda_j$ pentru $i \neq j$.

 $^{^{13} \}mbox{William}$ Rowan Hamilton, 1805-1865, matematician și mecanician englez, a introdus corpul quaternionilor.

¹⁴Arthur Cayley, 1821-1895, matematician și astronom englez.

EXERCIȚIUL 1.64. Fie A,A' matrice pătrate cu elemente din K. Fie F,F' polinoamele lor minimale. Atunci polinomul minimal al matricei $\begin{pmatrix} A & 0 \\ 0 & A' \end{pmatrix}$ este cel mai mic multiplu comun al lui F,F'.

EXERCIȚIUL 1.65. Pentru orice $f, h \in \text{End}(V)$, polinoamele caracteristice ale lui $f \circ h$ și $h \circ f$ coincid.

EXERCIȚIUL 1.66. Fie (E, \langle, \rangle) un spațiu vectorial euclidian și $f: E \to E$ o aplicație. Dacă f păstrează produsul scalar $(\langle f(x), f(y) \rangle = \langle x, y \rangle)$, atunci e liniară.

EXERCIȚIUL 1.67. Pentru un endomorfism f al unui spațiu vectorial euclidian definim urma sa trf ca fiind urma matricei asociate lui f într-un reper ortonormat. Arătați că definiția e corectă (nu depinde de reperul ortonormat ales) și, studiați proprietățile aplicației $tr: \operatorname{End}(V) \to K$. Arătați că dacă tr(fh) = 0 pentru orice $h \in \operatorname{End}(E)$, atunci f = 0.

EXERCIȚIUL 1.68. Urma oricărui endomorfism nilpotent al unui spațiu vectorial euclidian e nulă.

EXERCIȚIUL 1.69. Fie V un spațiu vectorial complex și f, h endomorfisme ale lui V care comută. Să se arate că f și h au o valoare proprie comună.

EXERCIȚIUL 1.70. Fie $G \subset \mathrm{GL}(n,\mathbb{R})$ un subgrup finit, diferit de $\{I_n\}$. Dacă există un hiperplan H al lui \mathbb{R}^n format din puncte fixe ale automorfismelor din G, atunci G conține doar două elemente: identitatea și o simetrie față de H.

EXERCIȚIUL 1.71. Fie $V_{\mathbb{C}}$ un spațiu vectorial complex. Atunci V poate fi considerat și ca spațiu vectorial real (vezi exemplul 1.1); în această accepție îl vom nota $V^{\mathbb{R}}$. Să se arate că că dacă $\mathcal{B} = \{e_1, \dots, e_n\}$ e o bază a lui V peste \mathbb{C} , atunci $\mathcal{B}^{\mathbb{R}} = \{e_1, \dots, e_n, \sqrt{-1}e_1, \dots, \sqrt{-1}e_n\}$ e o bază peste \mathbb{R} . În particular, $\dim_{\mathbb{R}} V^{\mathbb{R}} = 2\dim_{\mathbb{C}} V$. Spațiul vectorial real $V^{\mathbb{R}}$ obținut din cel complex se numește decomplexificatul lui V.

EXERCIȚIUL 1.72. Fie V, W spații vectoriale complexe și $f: V \to W$ o aplicație liniară. Aceeași $f: V^{\mathbb{R}} \to W^{\mathbb{R}}$ e tot liniară. Dacă $A + \sqrt{-1}B$ e matricea lui f față de reperele \mathcal{B} din V, \mathcal{B}_1 din W, atunci $\left(\begin{smallmatrix} A & -B \\ B & A \end{smallmatrix}\right)$ e matricea lui f în reperele $\mathcal{B}^{\mathbb{R}}, \mathcal{B}_1^{\mathbb{R}}$.

EXERCIȚIUL 1.73. Fie J un endomorfism al unui spațiu vectorial real V cu proprietatea $J^2=-1_V$ (un asemenea endomorfism se numește antiinvoluție sau structură complexă pe V). Să se arate că:

- 1. $\dim_{\mathbb{R}} V = 2k$. (Indicație: prin inducție, dacă $\{e_1, \dots, e_s\}$ sunt independenți, atunci și $\{e_1, \dots, e_s, J(e_1), \dots, J(e_s)\}$ sunt independenți.)
- 2. Cu înmulțirea externă $\mathbb{C} \times V \to V$, $(a + \sqrt{-1}b)x = ax + bJ(x)$, V devine spațiu vectorial complex, notat $V_{\mathbb{C}}$.
 - 3. Decomplexificatul lui $V_{\mathbb{C}}$ este V, în consecință dim $_{\mathbb{C}} V_{\mathbb{C}} = k$.

Un alt mod de a obține spații vectoriale complexe din spații vectoriale reale, complexificarea, (inspirat evident de construcția numerelor complexe pornind de la cele reale) este prezentat în:

EXERCIȚIUL 1.74. Fie V un spațiu vectorial real. Fie $V^{\mathbb{C}} = \{x + \sqrt{-1}y \; ; \; x, y \in V\}$. Definim pe $V^{\mathbb{C}}$:

- adunarea: $(x + \sqrt{-1}y) + (x' + \sqrt{-1}y') = (x + x') + \sqrt{-1}(y + y')$;
- înmulțirea cu scalari complecși: $(a+\sqrt{-1}b)(x+\sqrt{-1}y)=(ax-by)+\sqrt{-1}(bx+ay)$.

Să se arate că $V^{\mathbb{C}}$ cu operațiile descrise este spațiu vectorial complex (numit complexificatul lui V) și că $\dim_{\mathbb{C}} V^{\mathbb{C}} = \dim_{\mathbb{R}} V$.

Exercițiul 1.75. Pe complexificatul unui spațiu vectorial real aplicația z = x + $\sqrt{-1}y \mapsto \overline{z} = x - \sqrt{-1}y$ (se numește conjugarea complexă), nu este un endomorfism; ea este omogenă numai față de scalarii reali.

Exercițiul 1.76. Să se arate că dacă J e o structură complexă pe spațiul vectorial real V, atunci ea se extinde la o aplicație liniară (față de scalarii complecși) pe $V^{\mathbb{C}}$ prin $J^{\mathbb{C}}(x+\sqrt{-1}y)=J(x)+\sqrt{-1}J(y)$. Să arate că valorile proprii ale lui $J^{\mathbb{C}}$ sunt $\pm\sqrt{-1}$. Notăm subspațiile proprii corespunzătoare cu $V^{1,0},\,V^{0,1},\,$ adică $V^{1,0}=\{x\in V^{\mathbb{C}}\,\,;\,\,J(x)=1\}$ $\begin{array}{l} \sqrt{-1}x\}, \ V^{0,1} = \{x \in V^{\mathbb{C}} \ ; \ J(x) = -\sqrt{-1}x\}. \ \text{Să se arate că:} \\ 1. \ V^{1,0} = \{x - \sqrt{-1}J(x) \ ; \ x \in V\}, \ V^{0,1} = \{x + \sqrt{-1}J(x) \ ; \ x \in V\}. \\ 2. \ V^{\mathbb{C}} = V^{1,0} \oplus V^{0,1}. \end{array}$

- 3. Conjugarea complexă induce un izomorfism real între $V^{1,0}$ și $V^{0,1}$

EXERCIȚIUL 1.77. Să se arate că există un izomorfism (real) între $(V^{\mathbb{C}})^{\mathbb{R}}$ și $V \oplus V$. Reciproc, dacă W este un spațiu vectorial complex, există un izomorfism complex între $(W^{\mathbb{R}})^{\mathbb{C}}$ și $W \oplus \overline{W}$ (aici \overline{W} coincide ca grup aditiv cu W, dar înmulțirea cu scalari complecți este dată prin $(a + \sqrt{-1}b) \star z = (a - \sqrt{-1}b)z$

Exercițiul 1.78. Orice formă biliniară de rang 1 pe K^n se poate descompune ca produsul a două forme liniare: B(x,y) = f(x)g(y) cu $f,g \in (K^n)^*$.

EXERCIȚIUL 1.79. Fie g o formă biliniară pe V. Dacă g(x,y)=0 implică g(y,x)=0, atunci g e simetrică sau antisimetrică.

Exercițiul 1.80. (Diagonalizarea simultană a două forme pătratice.) Fie q_1, q_2 forme pătratice definite pe spațiul vectorial real V. Presupunem q_1 pozitiv definită. Atunci există o bază a lui V în care q_1 și q_2 au forma canonică. (Indicație: Fie g forma biliniară polară a lui q_1 . Cum q_1 e pozitiv definită, g e produs scalar. Orice bază g-ortonormată în care se diagonalizează q_2 (acestea există, conform teoremei 1.12) satisface condițiile enunțului. Pentru găsirea efectivă a coeficienților canonici, vezi [20] §10.3))

EXERCIȚIUL 1.81. Fie $f_1, f_2, \ldots, f_p, f_{p+1}, \ldots, f_{p+q}$ forme pătratice pe \mathbb{R}^n . Considerăm forma pătratică

$$g = f_1^2 + \dots + f_p^2 - f_{p+1}^2 - f_{p+2}^2 - \dots - f_{p+q}^2$$

Să se arate că numărul de termeni pozitivi dintr-o formă canonică a lui g este mai mic sau egal cu p (și numărul de termeni negativi (indexul lui g) este mai mic sau egal cu q).

EXERCIȚIUL 1.82. Fie $\text{Tr}_+(n,\mathbb{R})$ spațiul vectorial al matricelor pătrate superior triunghiulare. Folosind procedeul de diagonalizare Gram-Schmidt, arătați că $GL(n, \mathbb{R})$ $O(n) \times Tr_{+}(n, \mathbb{R})$

EXERCIȚIUL 1.83. Arătați că nu există izomorfisme antisimetrice pe un spațiu vectorial euclidian de dimensiune impară.

Găsiți forma canonică a unui endomorfism antisimetric (inducție după dimensiunea spaţiului).

Fie f un endomorfism antisimetric al unui spațiu euclidian 2n dimensional. Arătați că valorile proprii proprii ale lui $f \circ f$ sunt de forma $\{\lambda_1, \lambda_1, \lambda_2, \lambda_2, \dots, \lambda_n, \lambda_n\}$.

Exercițiul 1.84. Fie V un spațiu vectorial real finit dimensional și B o formă biliniară, nedegenerată, antisimetrică pe V (forma B se numește simplectică, iar perechea (V, B) se numeste spațiu vectorial simplectic).

- 1. Să se arate că dimensiunea lui V e pară.
- 2. Să se arate că există o bază $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ cu proprietățile:

$$B(e_i, e_j) = 0$$
, $B(e_i, f_j) = \delta_{ij}$, $B(f_i, f_j) = 0$ pentru $1 \le i, j \le n$.

Exercițiul 1.85. Completați teorema 1.13 de descompunere polară a lui Cauchy în felul următor. Dacă (E, \langle, \rangle) e un spațiu vectorial euclidian înzestrat cu o formă simplectică B, fie f endomorfismul definit prin $\langle fx, y \rangle = B(x, y)$. Atunci f e antisimetric, aplicația ortogonală t satisface $t^2 = -1_E$ (adică e o structură complexă), gt = tg și B(tx, ty) = B(x, y).

Exercițiul 1.86. Pentru orice două subspații ale unui spațiu vectorial euclidian au loc egalitățile: $(U+V)^{\perp} = U^{\perp} \cap V^{\perp}, \ U^{\perp} + V^{\perp} = (U \cap V)^{\perp}.$

Exercițiul 1.87. Fie x, y, z vectori din \mathbb{R}^3 . Să se arate că:

- 1. Dacă x, y, z sunt liniar independenți si $x \times y = y \times z = z \times x$, atunci x + y + z = 0.
- 2. (Identitatea lui Jacobi) $(x \times y) \times z + (z \times x) \times y + (y \times z) \times x = 0$.
- 3. Dacă $x \times y + y \times z + z \times x = 0$, atunci x, y, z sunt liniar dependenți.
- 4. Dacă $x \times y$, $y \times z$, $z \times x$ sunt liniar dependenți, atunci sunt coliniari.

EXERCIȚIUL 1.88. (Determinantul Gram.) Fie (E, \langle, \rangle) un spațiu vectorial euclidian n-dimensional și x_1, \ldots, x_k vectori fixați. Determinantul

$$G(x_1,\ldots,x_k) = egin{array}{cccc} \langle x_1,x_1
angle & \langle x_1,x_2
angle & \ldots & \langle x_1,x_k
angle \ \langle x_2,x_1
angle & \langle x_2,x_2
angle & \ldots & \langle x_2,x_k
angle \ \ldots & \ldots & \ldots & \ldots \ \langle x_k,x_1
angle & \langle x_k,x_2
angle & \ldots & \langle x_k,x_k
angle \ \end{pmatrix}$$

se numește determinant Gram al vectorilor dați. Să se arate că

$$0 \le G(x_1, \ldots, x_k) \le ||x_1||^2 ||x_2||^2 \cdots ||x_k||^2$$

cu egalitate în stânga dacă și numai dacă vectorii sunt liniar dependenți și în dreapta dacă și numai dacă vectorii sunt mutual ortogonali.

EXERCIŢIUL 1.89. (Volumul paralelipipedului k-dimensional) Fie x_1, \ldots, x_k vectori fixaţi în spaţiul vectorial euclidian (E, \langle, \rangle) n-dimensional. Fie $U_j = L(\{x_1, \ldots, x_j\}), x'_{j+1}$ proiecţia lui x_{j+1} pe U_j şi $h_j = \|x_{j+1} - x'_{j+1}\|$ (distanţa de la x_{j+1} la U_j), $j = 1, 2, \ldots, k-1$. Fig.

$$V(x_1,\ldots,x_k)=\|x_1\|\cdot h_1\cdot\cdot\cdot h_k.$$

Să se arate că

$$V(x_1,\ldots,x_k)^2=G(x_1,\ldots,x_k).$$

Fie f un endomorfism al lui E. Atunci raportul

$$k(f) = \frac{V(f(x_1), f(x_2), \dots, f(x_n))}{V(x_1, x_2, \dots, x_n)}$$

este constant (se numește coeficient de deformare).

Particularizați ultimele două exerciții la cazul lui \mathbb{R}^3 și faceți legătura cu produsul vectorial.

EXERCIȚIUL 1.90. Orice endomorfism liniar f al lui \mathbb{R}^n , $n \geq 3$, care conservă aria oricărui paralelogram (V(f(x), f(y)) = V(x, y)), este izometrie.

EXERCIȚIUL 1.91. Fie E un spațiu vectorial euclidian de dimensiune 4. Fie $\mathcal B$ o bază ortonormată fixată. Fie U subspațiul vectorial care are în $\mathcal B$ ecuațiile: $x_1=x_4,$ $x_2+x_3-2x_4=0$.

- 1. Să se determine o bază ortonormată \mathcal{B}' a lui Eai cărei primi doi vectori să fie din U.
- 2. Să se găsească matricele în baza \mathcal{B}' ale tuturor endomorfismelor simetrice f care satisfac: $f(U) \subseteq U^{\perp}$, $f(U^{\perp}) \subseteq U$.

EXERCIȚIUL 1.92. Fie (E, \langle , \rangle) un spațiu vectorial euclidian 2-dimensional și f un endomorfism simetric al său. Fie Q_1, Q_2, Q_3 formele pătratice definite prin: $Q_1(x) = \langle x, x \rangle$, $Q_2(x) = \langle f(x), x \rangle$, $Q_3(x) = \langle f(x), f(x) \rangle$. Să se arate că are loc relația: $Q_3 - \operatorname{tr}(f)Q_2 + \det(f)Q_1 = 0$. (Acest rezultat furnizează, în geometria diferențială a suprafețelor, legătura dintre primele trei forme fundamentale ale unei suprafețe).

EXERCIȚIUL 1.93. Fie (E, \langle, \rangle) un spațiu vectorial euclidian și f un endomorfism al său. Se numește adjunctul lui f endomorfismul f^{\wedge} cu proprietatea $\langle f(x), y \rangle = \langle x, f^{\wedge}(y) \rangle$ pentru orice $x, y \in E$.

Să se arate că pentru orice f există și este unic un endomorfism adjunct. Dacă în baza ortonormată \mathcal{B} , f are matricea A, atunci, în aceeași bază, f^{\wedge} are matricea ^{t}A .

Complementele ortogonale ale nucleului, respectiv imaginii lui f sunt imaginea, respectiv nucleul lui f^{\wedge} .

Exercițiul 1.94. Mai general, fie V_K un spațiu vectorial și g o formă biliniară simetrică, nedegenerată. Fie $f \in \operatorname{End}(V)$ și f^g endomorfismul definit prin relația $g(f^g(x),y) = g(x,f(y))$ pentru orice $x,y \in V$. Endomorfismul f^g se numește adjunctul sau transpusul lui f $\hat{i}n$ raport cu g. Să se arate că f^g există și e unic. Dacă A (respectiv G) este matricea lui f (respectiv g) într-un reper fixat, să se arate că matricea lui f^g este $^tGAG^{-1}$ (aceasta se mai numește și transpusa generalizată a lui A $\hat{i}n$ raport cu G).

EXERCIȚIUL 1.95. Fie (E, \langle , \rangle) un spațiu vectorial euclidian. Să se arate că aplicația $f: E \to E^*$, dată prin $f(v) = \omega_v$, unde $\omega_v(w) = \langle v, w \rangle$ este un izomorfism între E și dualul său E^* . În plus, dacă $v = \sum v_i e_i$ într-un reper ortonormat, atunci $\omega_v = \sum v_i e_i^*$ în reperul dual corespunzător.

Exercițiul 1.96. Se fixează, arbitrar, vectorul $u_0 \neq 0$ din spațiul vectorial euclidian \mathbb{R}^3 .

- a) Fie f endomorfismul liniar definit prin $f(x) = x \times u_0$. Să se găsească endomorfismul adjunct al lui f și să se scrie matricea acestuia în reperul canonic al lui \mathbb{R}^3 .
- b) Fie h endomorfismul liniar definit prin $h(x) = 2x + x \times u_0$. Să se determine o bază ortonormală a lui \mathbb{R}^3 pe care h să o transforme în una ortogonală.

EXERCIȚIUL 1.97. Demonstrați următoarea generalizare a lemei 1.13: Fie f un endomorfism simetric, pozitiv definit al unui spațiu vectorial euclidian E. Pentru orice $k \in \mathbb{Z}_+$, există un unic endomorfism h simetric, pozitiv definit al lui E astfel încât $h^k = f$.

Exercițiul 1.98. Demonstrați următoarea reciprocă a teoremei 1.11: Dacă $f \in End(V)$ este diagonalizabil, atunci există pe V un produs scalar față de care f este un endomorfism simetric. Determinați explicit acest produs scalar pentru $V=\mathbb{R}^3$ și f care are în reperul canonic matricea $\begin{pmatrix} 2 & 5 & -2 \\ 2 & 5 & -4 \\ 2 & 2 & -1 \end{pmatrix}$.

EXERCIȚIUL 1.99. Fie (E, \langle , \rangle) un spațiu vectorial euclidian. Fie g o formă biliniară anti-simetrică, nedegenerată pe E. Să se arate că există descompunerea $E = E_1 \oplus E_2$ cu proprietatea $g(x, y) = \langle x_1, y_2 \rangle - \langle x_2, y_1 \rangle$ (unde $x = x_1 + x_2, y = y_1 + y_2, x_i, y_i \in E_i$).

Exercițiul 1.100. Fie $Z(n) = \{A \in SO(2n) \mid A + {}^{t}A = 0\}$ mulțimea matricelor special ortogonale antisimetrice. Să se arate că pentru oricare $A, B \in Z(n)$, există $C \in SO(2n)$ astfel încât $A = C^{-1}BC$ (adică SO(2n) acționează tranzitiv prin conjugare pe Z(n)).

EXERCIȚIUL 1.101. Folosind clasificarea aplicațiilor ortogonale, determinați clasele de conjugare din O(n).

EXERCIȚIUL 1.102. Arătați că O(n) poate fi văzut ca o submulțime a lui \mathbb{R}^{n^2} . Cu topologia indusă, O(n) devine spațiu topologic compact, cu două componente conexe (*Indicație*: Pentru conexiune, folosiți funcția determinant).

Exercițiul 1.103. Fie $A \in O(n)$ cu det A = -1. Să se arate că:

$$O(n) - SO(n) = \{BA \mid B \in SO(n)\}.$$

Exercițiul 1.104. Fie (E, \langle, \rangle) un spațiu vectorial euclidian n-dimensional. Un endomorfism f al lui E se numește $aplicație conformă dacă există <math>c \in \mathbb{R}_+$ astfel încât $\langle f(x), f(y) \rangle = c \langle x, y \rangle$ pentru orice $x, y \in E$. Să se arate că:

- $1.\ f$ e transformare conformă dacă și numai dacă păstrează unghiul oricăror doi vectori.
- 2. Mulțimea transformărilor conforme formează un grup care, modulo fixarea unei baze ortonormate în E, e izomorf cu $CO(n) = O(n) \times \mathbb{R}_+$ (numit grupul conform).

Geometrie afină și euclidiană

Te implor în numele Domnului, băiatul meu, mai lasă paralelele în pace! Ele trebuie evitate, ca societatea proastă şi ca duelurile, trebuie să fugi de ele ca de femeile stricate!

Farkas Bolyai

1. Spații afine. Definiții. Exemple

După cum am văzut în capitolul anterior, spațiului geometric studiat în anii de liceu i-am putut atașa un spațiu vectorial, al vectorilor liberi. Vom generaliza acum această construcție introducând o clasă de spații pe care se verifică proprietățile generale ale spațiului geometric (incidență, paralelism etc.) Structura acestor spații, numite afine, permite construcția întregii geometrii cunoscute din școală.

Definiția 2.1. Fie \mathcal{A} o mulțime amorfă, nevidă ale cărei elemente se numesc puncte, V un spațiu vectorial peste corpul comutativ K și $\varphi: \mathcal{A} \times \mathcal{A} \to V$, o aplicație cu proprietățile:

1) $\varphi(A, B) + \varphi(B, C) = \varphi(A, C)$, pentru orice $A, B, C \in A$.

2) Există un punct $O \in \mathcal{A}$ astfel încât aplicația $\varphi_O : \mathcal{A} \to V$, dată prin $\varphi_O(A) = \varphi(O, A)$ este bijecție.

Tripletul (A, V, φ) se numeşte spațiu afin (asociat spațiului vectorial V), iar aplicația φ se numește structură afină pe A. V se numește spațiul (vectorial) director sau asociat spațiului afin.

Atunci când $K=\mathbb{R}$ vorbim despre un spațiu afin real. Se vede acum imediat că spațiile geometrice cu două și trei dimensiuni studiate în liceu sunt spații afine reale asociate spațiului vectorial al vectorilor liberi, cu structura afină

$$\varphi(A,B) = \overrightarrow{AB}.$$

Observația 2.1. 1) Vom nota, de obicei, $\overrightarrow{AB} \stackrel{\text{not}}{=} \varphi(A, B)$. Evident, notația este sugerată de exemplul spațiului vectorilor liberi, dar cititorul nu se va lăsa păcălit: e doar

o notație! Cu aceasta, proprietatea 1) din definiție devine:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}.$$

Devine acum clar că această proprietate generalizează regula triunghiului de adunare a vectorilor liberi. O vom numi, de altfel, regula triunghiului.

2) Se demonstrează imediat: $\overrightarrow{AB} = -\overrightarrow{BA}$, $\overrightarrow{AA} = 0$ pentru orice $A, B \in \mathcal{A}$.

Exemplul 2.1. 1) Orice spațiu vectorial este spațiu afin asociat sieși, cu structura afină $\varphi(x,y) = y - x$. În particular, K^n este spațiu afin cu

structura afină descrisă aici. O vom numi structura afină canonică a lui K^n . 2) Fie $A \in \mathcal{M}(m, n; K)$, $B \in K^n$. Submulțimea $\{X \in K^n; AX = B\}$ (mulțimea soluțiilor unui sistem neomogen) este un spațiu afin asociat spațiului vectorial

reprezentat de mulțimea soluțiilor sistemului omogen AX=0 (vezi exemplul 1.5). Structura afină este aici $\varphi(X,Y)=Y-X$. Verificările sunt imediate.

3) Planul și spațiul geometric sunt spații afine peste spațiile vectoriale ale vectorilor liberi asociate (vezi exemplul 1.6). Pentru amândouă, structura afină asociază unei bipunct (A,B) clasa

lui de echipolență.

Proprietatea 2) din definiție pare a favoriza un anumit punct, acolo notat O din spațiul afin. Că nu așa stau lucrurile arată:

Propoziția 2.1. Dacă (A, V, φ) e un spațiu afin, atunci pentru orice $A \in \mathcal{A}$ aplicația $\varphi_A : A \to V$, $\varphi_A(B) = \varphi(A, B)$, e bijectivă.

Demonstrație. Fie $x \in V$ arbitrar. Căutăm un punct B cu proprietatea $\overrightarrow{AB} = x$. Deci ar trebui ca $\overrightarrow{AO} + \overrightarrow{OB} = x$, adică $\overrightarrow{OB} = x - \overrightarrow{AO}$. Cum proprietatea 2) din definiție asigură existența unui unic B cu această proprietate, bijectivitatea lui φ_A e demonstrată.

COROLARUL 2.1. Pentru orice $A \in \mathcal{A}$ și $x \in V$, există și este unic un punct B cu proprietatea că $\overrightarrow{AB} = x$.

Cititorul va observa în cele ce urmează că o constantă a stilului enunțurilor şi demonstrațiilor afine va fi construirea unui anumit obiect cu ajutorul privilegierii aparente a unui punct O, urmată imediat de demonstrarea faptului că definiția nu depinde de acel punct.

Pe de altă parte, ținând seama de exemplul 1.13, 7), din propoziția 2.1 rezultă:

Corolarul 2.2. Pentru fiecare $A \in \mathcal{A}$ există o structură de spațiu vectorial pe \mathcal{A} , cu punctul A pe post de element nul. Cu această

structură, \mathcal{A} este izomorf cu V prin φ_A .

Demonstrație. Tot ce mai rămâne de demonstrat este afirmația referitoare la elementul nul. Știm că orice izomorfism face să corespundă zerourile celor două spații izomorfe; atunci, cum $\varphi_A(A) = \overrightarrow{AA} = 0$, deducem că A este vectorul nul al spațiului vectorial A.

Insistăm: acest rezultat asigură existența atâtor structuri vectoriale pe $\mathcal A$ câte puncte există în $\mathcal A$. Toate sunt izomorfe cu cea a lui V, deci izomorfe între ele. Dar nu se poate alege una dintre ele drept canonică. Într-un limbaj mai mult decât informal, putem spune că un spațiu afin e un spațiu vectorial în care originea nu mai e fixă. Acest lucru va putea fi precizat mai departe,

cu ajutorul notiunii de translatie.

Vom încerca să dezvoltăm teoria din acest capitol, atât cât va fi posibil, paralel cu cea din capitolul precedent. Astfel, vom da un analog al combinațiilor liniare, vom vorbi apoi despre subspații afine, despre aplicații afine și vom folosi toate acestea pentru a generaliza geometria cunoscută din liceu la cazul unui spațiu afin oarecare.

2. Combinații afine. Repere afine și carteziene

Introducem acum o noțiune centrală geometriei afine: combinația

afină. Ceea ce vrem este să definim un analog al combinației liniare specifice spațiilor vectoriale. Iată cum: fixând arbitrar un punct O, considerăm structura vectorială a lui \mathcal{A} cu O drept vector nul. Atunci, date punctele P_1, \ldots, P_n și scalarii a_1, \ldots, a_n

putem pune $P = \sum a_i P_i$ dacă $\overrightarrow{OP} = \sum a_i \overrightarrow{OP_i}$. Dar punctul P nu ar trebui să depindă de fixarea lui O care trebuie să aibă doar un caracter ajutător. Astfel, dacă $O' \neq O$, definim $P' = \sum a_i P_i$ (adică $\overrightarrow{O'P'} = \sum a_i \overrightarrow{O'P_i}$). Atunci avem P = P' dacă și numai dacă $\sum a_i \overrightarrow{O'P_i} = \overrightarrow{O'P_i}$. Dar

$$\overrightarrow{O'P} = \overrightarrow{O'O} + \overrightarrow{OP} = \overrightarrow{O'O} + \sum a_i \overrightarrow{OP_i}$$

deciP=P'dacă și numai dacă $(1-\sum a_i)\overrightarrow{OO'}=0$ și, cum $O\neq O',$ condiția este $\sum a_i=1.$

Această discuție dovedește că într-un spațiu afin nu sunt admise orice fel de combinații liniare, ci numai cele cu suma

scalarilor 1, numite combinații afine.

Putem da acum:

Definiția 2.2. Fie P_1,\ldots,P_n puncte din spațiul afin $\mathcal A$ și scalarii a_1,\ldots,a_n satisfăcând $\sum_{i=1}^n a_i=1$. Punctul

$$(2.1) P = a_1 P_1 + \dots + a_n P_n$$

se numește centrul de greutate sau baricentrul punctelor P_i cu ponderile a_i .

Conform celor dinainte, punctul P e, astfel, bine definit deoarece vectorul

$$(2.2) \qquad \overrightarrow{OP} = a_1 \overrightarrow{OP_1} + \dots + a_n \overrightarrow{OP_n}$$

nu depinde de alegerea punctului O. Trecerea de la ecuația (2.1) la ecuația (2.2) se numește vectorializare în O. Denumirile introduse sunt sugerate de fenomenele mecanice și geometrice elementare pe care geometria afină le modelează. De exemplu, în planul geometric studiat în liceu, centrul de greutate al unui triunghi este baricentrul cu ponderi egale, 1/3, al vârfurilor triunghiului. În același spațiu, mijlocul unui segment este baricentrul cu ponderi egale al capetelor segmentului (observați că folosim aici noțiunile de "segment", "triunghi" etc. în accepțiunea din liceu, nu le-am redefinit încă într-un spațiu afin oarecare). Cu ajutorul noțiunii de combinație afină dăm acum un corespondent al acoperirii liniare din spațiile vectoriale:

Definiția 2.3. Pentru o submulțime M a unui spațiu afin, se numește acoperirea sau $\hat{inchiderea}$ afină a lui M și se notează Af(M) mulțimea tuturor baricentrelor, cu orice ponderi, care se pot forma cu submulțimi finite ale lui M:

$$Af(M) = \{ \sum_{i=1}^{m} a_i P_i \mid P_i \in M, a_i \in K, \sum_{i=1}^{m} a_i = 1, m \in \mathbb{N} \}$$

Exercițiul 2.1. 1) Dacă $M_1 \subset M_2$, atunci $Af(M_1) \subseteq Af(M_2)$.

- 2) $M \subset Af(M)$.
- 3) Af(Af(M)) = Af(M).

Prezentăm în continuare analoagele proprietătilor de independență și dependență liniară:

Definiția 2.4. 1) Un sistem de puncte $\{P_1,\ldots,P_n\}$ se numește afin dependent dacă există un $i\in\{1,\ldots,n\}$ astfel încât P_i să fie baricentrul cu anumite ponderi ale celorlalte puncte din sistem.

2) Un sistem finit de puncte care conține un singur punct sau nu e afin dependent se zice afin independent.

Observația 2.2. Orice sistem afin dependent conține cel puțin 3 puncte. Orice două puncte afin independente sunt distincte.

Propoziția 2.2. Sistemul $\{P_1, \ldots, P_n\}$ e afin dependent (respectiv independent) dacă și numai dacă sistemul de vectori $\{\overrightarrow{P_1P_2},\ldots,\overrightarrow{P_1P_n}\}$ e liniar dependent (respectiv independent). În acest caz sistemul $\{\overrightarrow{P_iP_1},\ldots,\overrightarrow{P_iP_{i-1}},\overrightarrow{P_iP_{i-1}},\ldots,\overrightarrow{P_iP_{i+1}},\ldots,\overrightarrow{P_iP_n}\}$ e liniar dependent (respectiv independent) pentru orice $i = 1, \ldots, n$.

Demonstrație. Fie $\{P_1,\ldots,P_n\}$ afin dependent. Atunci, renumerotând eventual, putem presupune că

$$P_1 = a_2 P_2 + \dots + a_n P_n, \quad \sum_{i=2}^n a_i = 1.$$

Rezultă

$$0 = \overrightarrow{P_1P_1} = a_2\overrightarrow{P_1P_2} + \dots + a_n\overrightarrow{P_1P_n}$$

deci, deoarece scalarii a_j nu pot fi toţi nuli pentru că suma lor e 1, sistemul $\{\overline{P_1P_2},$ $\ldots, \overline{P_1P_n}$ e liniar dependent. Reciproc, dacă respectivul sistem de vectori e liniar dependent, există o combinație liniară nulă netrivială $b_2\overrightarrow{P_1P_2}+\cdots+b_n\overrightarrow{P_1P_n}=0$ (nu toți b_j sunt nuli). Putem deci scrie (atenție, e un procedeu pe care o să-l mai folosim!)

$$\sum_{i=2}^{n} b_{j} \overrightarrow{P_{1}P_{j}} = (\sum_{i=2}^{n} b_{i}) \overrightarrow{P_{1}P_{1}}$$

sau încă

$$\sum_{j=2}^{n} \frac{b_{j}}{\sum_{j=2}^{n} b_{j}} \overline{P_{1}} \overrightarrow{P_{j}} = \overline{P_{1}} \overrightarrow{P_{1}}$$

de unde rezultă $P_1 = \sum_{j=2}^n (b_j/(\sum_{j=2}^n b_j)P_j$. Pe de altă parte, dacă $\{\overrightarrow{P_1P_2},\dots,\overrightarrow{P_1P_n}\}$ e liniar dependent, atunci putem scrie

$$0 = \sum_{j=2}^n b_j \overrightarrow{P_1P_j} = \sum_{j=2}^n b_j (\overrightarrow{P_1P_i} + \overrightarrow{P_iP_j}) = (\sum_{j=2}^n b_j) \overrightarrow{P_1P_i} + \sum_{j=2}^n b_j \overrightarrow{P_iP_j}$$

deci şi sistemul $\{\overrightarrow{P_iP_1},\ldots,\overrightarrow{P_iP_{i-1}},\overrightarrow{P_iP_{i+1}},\ldots,\overrightarrow{P_iP_n}\}$ e liniar dependent pentru ori-

Demonstrația curge asemănător în cazul independenței afine.

Propunem cititorului să demonstreze singur și următoarea caracterizare:

Propoziția 2.3. Sistemul de puncte $M = \{P_1, \dots, P_n\}$ e afin dependent dacă și numai dacă există P_j astfel încât $\mathrm{Af}(M) = \mathrm{Af}(M - \{P_j\})$.

EXERCIȚIUL 2.2. Fie $M_1 \subseteq M_2$ două submulțimi finite ale spațiului afin \mathcal{A} . Dacă M_2 e afin independentă (respectiv M_1 e afin dependentă), atunci și M_1 e afin independentă (respectiv M_2 e afin dependentă).

EXERCIȚIUL 2.3. În planul (respectiv spațiul) geometric, trei (respectiv 4) puncte sunt afin independente dacă și numai dacă nu sunt coliniare (respectiv coplanare).

Introducem acum

Definiția 2.5. Se numește dimensiune a unui spațiu afin, dimensiunea spațiului vectorial asociat.

EXEMPLUL 2.2. Planul (respectiv spațiul) geometric este un spațiu afin de dimensiune 2 (respectiv 3).

În fine, cu ajutorul noțiunii de reper din spațiul vectorial dăm

Definiția 2.6. Se numește reper cartezian al spațiului afin \mathcal{A} o mulțime de forma $\mathcal{R} = \{O; e_1, \ldots, e_n\}$ unde $O \in \mathcal{A}$ și $\{e_1, \ldots, e_n\}$ e un reper al spațiului vectorial asociat. Punctul O se numește originea reperului.

Odată fixat un reper cartezian ca mai sus, vectorul \overrightarrow{OP} se numește vector de poziție al punctului P. El se descompune unic sub forma $\overrightarrow{OP} = \sum_{i=1}^n a_i e_i, \ a_i \in K$. Prin definiție, scalarii a_i se numesc coordonatele carteziene ale lui P. Deci, odată cu fixarea unui reper \mathcal{R} , e definită și o aplicație $\psi_{\mathcal{R}}: \mathcal{A} \to K^n$, numită sistem de coordonate, care asociază fiecărui punct coordonatele sale carteziene în reperul dat.

EXERCIȚIUL 2.4. Fie (a_1, \ldots, a_n) , (b_1, \ldots, b_n) coordonatele carteziene ale punctelor A, B într-un reper fixat $\{O; e_1, \ldots, e_n\}$. Atunci coordonatele vectorului \overrightarrow{AB} în reperul vectorial $\{e_1, \ldots, e_n\}$ sunt $(b_1 - a_1, \ldots, b_n - a_n)$.

Legătura dintre noțiunea de reper cartezian şi cea de sistem afin independent discutată anterior se face, conform propoziției 2.2, în felul următor:

Propoziția 2.4. $\mathcal{R} = \{O; e_1, \ldots, e_n\}$ e reper cartezian dacă și numai dacă sistemul $\{O, P_1, \ldots, P_n\}$, cu P_i definite (unic) prin $\overrightarrow{OP_i} = e_i$, este afin independent.

Deci a da un reper cartezian într-un spațiu afin n-dimensional revine la a da n+1 puncte afin independente. Sistemul $\{O, P_1, \ldots, P_n\}$ derivat dintr-un reper cartezian se numește reper afin.

Propoziția 2.5. Fie $\{O, P_1, \dots, P_n\}$ un reper afin. Atunci oricărui punct P i se asociază unic scalarii a_0, a_1, \dots, a_n cu $\sum_{i=0}^n a_i = 1$.

Scalarii a_0, \ldots, a_n care se asociază unic unui punct via un reper afin se numesc coordonate baricentrice ale punctului. Trecerea de la un reper afin la cel cartezian se face întotdeauna luând primul punct al reperului afin drept origine a celui cartezian. De aceea putem vorbi fără pericol de confuzie și de coordonate carteziene într-un reper afin.

Ca și în cazul spațiilor vectoriale, suntem acum interesați de felul cum se schimbă coordonatele carteziene și baricentrice ale unui punct la schimbarea reperului (cartezian sau afin). Fie $\mathcal{R} = \{O, P_1, \dots, P_n\}, \mathcal{R}' = \{O', P'_1, \dots, P'_n\}$ două reper afine. Fie (x_1, \dots, x_n) , (respectiv (x'_1, \dots, x'_n)) coordonatele carteziene ale unui punct fixat P în reperul \mathcal{R} (respectiv \mathcal{R}'). Fie (a_{kj}) matricea de trecere de la reperul $\{\overrightarrow{OP_i}\}$ la reperul $\{\overrightarrow{OP_i}\}$, $i=1,\dots,n$: $\overrightarrow{O'P_j}=\sum_{k=1}^n a_{kj}\overrightarrow{OP_k}$. Fie, de asemenea,

 $\{x_{0i}\}$ coordonatele carteziene ale lui O' în reperul \mathcal{R} . Cum $\overrightarrow{OP} = \overrightarrow{OO'} + \overrightarrow{O'P}$, putem scrie:

$$\sum_{i=1}^{n} x_{i} \overrightarrow{OP_{i}} = \sum_{i=1}^{n} x_{0i} \overrightarrow{OP_{i}} + \sum_{j=1}^{n} x'_{j} \overrightarrow{O'P_{j}'} =$$

$$= \sum_{i=1}^{n} x_{0i} \overrightarrow{OP_{i}} + \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ij} x'_{j}) \overrightarrow{OP_{i}}$$

de unde deducem relațiile:

(2.3)
$$x_i = \sum_{j=1}^n a_{ij} x'_j + x_{0i}, \quad i = 1, \dots, n.$$

Formulele (2.3) sunt inversabile deoarece matricea (a_{ij}) , fiind matrice de trecere între două repere vectoriale, e inversabilă. Formulele reciproce exprimă x'_i ca funcții liniare (neomogene) de x_1, \ldots, x_n .

Dacă O=O', schimbarea de reper se numește centroafină. În acest caz, în (2.3) avem $x_{0i}=0$ și formulele de schimbare de coordonate iau forma celor din spațiile vectoriale. Nu e

nimic neașteptat aici: spuneam mai sus că ceea ce deosebește spațiul afin de cel vectorial este neprivilegierea unui punct drept

"origine" (vector nul). Pe de altă parte, dacă \mathcal{R}' diferă de \mathcal{R} doar prin originea sa $(i.e. \overrightarrow{OP_i} = \overrightarrow{O'P_i'})$, atunci $a_{ij} = \delta_{ij}$ şi (2.3) devin $x_i = x_i' + x_{0i}$. O asemenea schimbare de reper se numește translație. Ea nu este permisă într-un spațiu vectorial ci e specifică spațiului afin.

3. Subspații afine. Definiții echivalente. Exemple

Definiția 2.7. Submulțimea \mathcal{A}' a spațiului afin $(\mathcal{A}, V, \varphi)$ e subspațiu afin sau varietate liniară dacă există un subspațiu vectorial V' al lui V astfel încât $\operatorname{Im}(\varphi' = \varphi_{|\mathcal{A}' \times \mathcal{A}'}) \subseteq V'$ și tripletul $(\mathcal{A}', V', \varphi')$ e un spațiu afin sau dacă $\mathcal{A}' = \emptyset$.

Deliberat vom folosi, alternativ, ambele denumiri (subspațiu afin, varietate liniară) pentru a obișnui cititorul cu amândouă.

Următoarea definiție echivalentă explicitează subspațiul V':

Propoziția 2.6. Submulțimea \mathcal{A}' a spațiului afin (\mathcal{A},V,φ) e subspațiu afin dacă și numai dacă există un punct $O\in\mathcal{A}'$ astfel încât mulțimea $\{\overrightarrow{OP'}:P'\in\mathcal{A}'\}$ să fie un subspațiu vectorial al lui V sau dacă $\mathcal{A}'=\emptyset$.

 $\overrightarrow{OP'}$; $P' \in \mathcal{A}'$ }. Să presupunem întâi că \mathcal{A}' e subspațiu afin și fie $O \in \mathcal{A}'$ arbitrar. Pentru orice $v \in V'$, există un unic $P' \in \mathcal{A}'$ astfel încât $v = \overrightarrow{OP'}$. Deci $V' \subseteq W$. Invers, orice element al lui W se scrie $\overrightarrow{OP'} = \varphi(O, P') = \varphi'(O, P') \in V'$, adică și $W \subseteq V'$.

Reciproc, dacă există $O \in \mathcal{A}'$ astfel încât W să fie subspațiu vectorial, luăm V' = W și mai trebuie doar să verificăm că

Im
$$\varphi' \subset W$$
. Dar, pentru $P', Q' \in \mathcal{A}'$, avem $\varphi'(P', Q') = \overrightarrow{P'Q'} = \overrightarrow{P'O} + \overrightarrow{OQ'} \in W$.

Vom avea nevoie de următoarea proprietate amuzantă:

Lema 2.1. Fie \mathcal{A} un spațiu afin peste un corp de caracteristică 2 și A, B, C, D vârfurile unui paralelogram (vezi exercițiul 2.8). Atunci fiecare dintre cele 4 puncte e echibaricentrul celorlalte.

 $\overrightarrow{DA} = \overrightarrow{AD} \ (1 = -1 \ \text{în caracteristică 2}), \ \text{obţinem } \overrightarrow{AB} = \overrightarrow{DA} + \overrightarrow{AC} \ \text{şi din faptul că}$ $0 = \overrightarrow{AA} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}, \ \text{adică } A = B + C + D \ (\text{în caracteristică 2}, 1 + 1 + 1 = 1).$ Tot relația $\overrightarrow{AB} = \overrightarrow{DC}$ implică $\overrightarrow{DC} = \overrightarrow{AD} + \overrightarrow{DB}$. La fel ca mai sus, din $\overrightarrow{BD} = \overrightarrow{DB}$ rezultă $\overrightarrow{DC} = \overrightarrow{AD} + \overrightarrow{BD}$, care atrage după sine $\overrightarrow{DC} + \overrightarrow{DA} + \overrightarrow{DB} = \overrightarrow{DD}$. De aici rezultă $\overrightarrow{DC} = \overrightarrow{AD} + B$.

Lăsăm verificarea egalităților C=A+B+D și B=A+D+C pe seama cititorului. \Box

Următoarea caracterizare leagă noțiunea de varietate liniară de cea de baricentru:

Teorema 2.1. Pentru ca submulțimea nevidă \mathcal{A}' să fie subspațiu afin e necesar și suficient ca:

- (i) $dac \ aca \ K \neq 2$, pentru orice $P,Q \in \mathcal{A}'$ și $a \in K$, punctul aP + (1-a)Q să fie $\hat{n} \mathcal{A}'$.
- (ii) $dac \check{a} \operatorname{car} K = 2$, echibaricentrul oricăror trei puncte din \mathcal{A}' să fie în \mathcal{A}' .

Demonstrație. (i) Dacă \mathcal{A}' e varietate liniară cu subspațiu director V', fixăm un punct $O \in \mathcal{A}'$. Atunci, dacă R = aP + (1-a)Q, vectorializând în O avem $\overrightarrow{OP} \in V'$, $\overrightarrow{OQ} \in V'$ și $\overrightarrow{OR} = a\overrightarrow{OP} + (1-a)\overrightarrow{OQ} \in V'$; deci $R \in \mathcal{A}'$.

Reciproc, fie $O \in \mathcal{A}'$ şi fie $V' = \{\overrightarrow{OP} \mid P \in \mathcal{A}'\}$. Arătăm că V' e subspațiu vectorial al lui V. Pentru aceasta arătăm întâi că e închis la înmulțirea cu scalari: fie $v \in V'$, $a \in K$. Vectorul v se scrie unic sub forma $v = \overrightarrow{OP}$, $P \in \mathcal{A}'$. Cum $av \in V$, există un unic $Q \in \mathcal{A}$ astfel încât $av = \overrightarrow{OQ}$. Trebuie arătat că $Q \in \mathcal{A}'$. Or, $\overrightarrow{OQ} = a\overrightarrow{OP'} + (1-a)\overrightarrow{OO}$ de unde Q = aP' + (1-a)O și e conținut în \mathcal{A}' conform ipotezei.

Probăm în continuare închiderea lui V' la suma vectorială. Fie $v, w \in V'$. Trucul e să folosim ceea ce am demonstrat deja, anume

închiderea lui V' la înmulțirea cu scalari: scriem $v+w=2\left(\frac{1}{2}v+\frac{1}{2}w\right)$ și avem $v=\overrightarrow{OP'},\ w=\overrightarrow{OQ'}$ cu $P',\ Q'\in\mathcal{A}'$ astfel că, prin ipoteză, $R'=\frac{1}{2}P'+\frac{1}{2}Q'\in\mathcal{A}';$ rezultă $\overrightarrow{OR'}\in V'$. Dar $\overrightarrow{OR'}=\frac{1}{2}v+\frac{1}{2}w$. Atunci, conform celor demonstrate anterior, $2\overrightarrow{OR'}\in V'$, ceea ce trebuia demonstrat.

(ii) Necesitatea e evidentă. Pentru suficiență, avem de arătat că V' e subspațiu vectorial. Închiderea la înmulțirea cu scalari se demonstrează ca la (i). Pentru închiderea la suma vectorială, dacă $u = \overrightarrow{AB}, v = \overrightarrow{AC}$, atunci D definit de $\overrightarrow{AD} = u + v$ e echibaricentrul punctelor A, B, C conform lemei 2.1, deci $D \in \mathcal{A}'$, de unde $\overrightarrow{AD} \in V'$.

COROLARUL 2.3. Submulţimea \mathcal{A}' e subspaţiu afin dacă şi numai dacă îşi conţine toate baricentrele, cu orice ponderi. Altfel spus, dacă şi numai dacă $\mathcal{A}' = \mathrm{Af}(\mathcal{A}')$.

¹echibaricentru=baricentru cu ponderi egale

Demonstrație. Acest enunț este pandantul propoziției 1.6 de caracterizare a subspațiilor vectoriale. Știm deja că $\mathcal{A}' \subseteq \mathrm{Af}(\mathcal{A}')$. Ceea ce mai trebuie, de fapt, demonstrat e că, dacă \mathcal{A}' conține toate baricentrele tuturor perechilor sale de puncte, atunci conține orice baricentru al unei submulțimi finite ale sale. Probăm acest lucru

prin inducție. Proprietatea este adevărată pentru submulțimi cu 1, 2 puncte. O presupunem adevărată pentru submulțimi cu n-1 puncte. Fie acum $a_i \in K$, $i=1,\ldots,n$ și $\sum_{i=1}^n a_i=1$. Fie $P_i \in \mathcal{A}'$. Fie 1 , arbitrar. Observăm că putem scrie:

$$\sum_{i=1}^{n} a_i P_i = \left(\sum_{j=1}^{p} a_j\right) \sum_{i=1}^{p} \frac{a_i}{\sum_{j=1}^{p} a_j} P_i + \left(\sum_{j=p+1}^{n} a_j\right) \sum_{i=p+1}^{n} \frac{a_i}{\sum_{j=p+1}^{n} a_j} P_i.$$

Acum notăm

$$b_1 = \sum_{j=1}^{p} a_j, \quad b_2 = \sum_{j=p+1}^{n} a_j,$$

$$Q_1 = \sum_{i=1}^{p} \frac{a_i}{\sum_{j=1}^{p} a_j} P_i, \quad Q_2 = \sum_{i=p+1}^{n} \frac{a_i}{\sum_{j=p+1}^{n} a_j} P_i, \quad 1 \le p \le n-1$$

și am găsit că $\sum_{i=1}^n a_i P_i = b_1 Q_1 + b_2 Q_2$. Astfel, am scris baricentrul sistemului de n puncte ca baricentrul perechii de puncte Q_1, Q_2 cu ponderi b_1, b_2 . Dar $Q_1, Q_2 \in \mathcal{A}'$ conform ipotezei de inducție (deoarece $p, n-p \leq n-1$), ceea ce încheie demonstrația.

Observația 2.3. În demonstrația anterioară, scrierea baricentrului a n puncte ca baricentru a două puncte nu e unică: există $\binom{p-1}{n}$ posibilități. Acest lucru corespunde unui principiu de mecanică: centrul de masă al unui sistem de puncte grele nu depinde de ordinea în care sunt considerate punctele, nici de eventuale asocieri ale acestora.

Exemplul 2.3. 1) \emptyset și spațiul total sunt exemple triviale de subspații afine. Orice submulțime cu un singur punct este varietate liniară cu spațiu director $\{0\}$ și are dimensiunea 0.

2) Conform corolarului anterior, orice submulţime M dă naştere unui subspaţiu, Af(M), numit — cum altfel? — subspaţiul generat de M. subspaţiul generat de două puncte distincte P,Q, se va numi dreapta (afină) care trece prin cele două puncte şi se va nota $\langle PQ \rangle$. Cum P,Q sunt distincte, ele sunt afin independente; cum, pe de altă parte, orice punct de pe $\langle PQ \rangle$ e, prin definiţie, baricentru al lor, adică dependent de ele, $\{P,Q\}$ formează un reper afin pe $\langle PQ \rangle$. Astfel orice dreaptă afină are dimensiunea 1. Pentru conformitate, subspaţiile 2-dimensionale se vor numi plane (afine). Un subspaţiu de dimensiune p se numeşte p-plan, iar unul de dimensiune dim A-1 se numeşte p-plan p-pla

În particular, în planul geometric, punctele și dreptele sunt varietăți liniare. La fel, în spațiul geometric, punctele, dreptele și planele.

- 3) Mulţimea soluţiilor unui sistem liniar neomogen, despre care am văzut că este un spaţiu afin, este, de fapt, un subspaţiu afin al lui K^n (vezi exemplul 2.1 punctul 2).
- 4) Fie V un spațiu vectorial văzut ca spațiu afin cu structura afină $(v, w) \mapsto w v$. Orice submulțime de forma $U + x := \{u + x; u \in U\}$, cu U subspațiu vectorial și $x \in V$ arbitrar este un subspațiu afin (verificați!).

EXERCIȚIUL 2.5. Demonstrați că în spațiul afin V, canonic asociat unui spațiu vectorial V, orice subspațiu afin e de forma descrisă în exemplul anterior, la punctul 4).

Exercițiul 2.6. Fie A_1, A_2 două subspații afine. Este mulțimea

$$A_k = \{kA_1 + (1-k)A_2 ; A_i \in A_i, i = 1, 2, k \in K \text{ fixat } \}$$

un subspațiu afin? Interpretați rezultatul în planul și spațiul geometric.

4. Operații cu subspații afine

E imediat rezultatul:

Propoziția 2.7. O intersecție arbitrară de subspații afine e subspațiu afin. Dacă e nevidă, atunci subspațiul său director e intersecția subspațiilor directoare corespunzătoare subspațiilor afine considerate.

Ca și la spații vectoriale, avem probleme cu reuniunea de subspații afine care nu mai este subspațiu afin. De aceea punem

Definiția 2.8. Suma a două subspații afine $\mathcal{A}_1, \mathcal{A}_2$ este subspațiul afin generat de reuniunea lor. O notăm $\mathcal{A}_1 + \mathcal{A}_2$.

Deci avem relația

$$A_1 + A_2 = Af(A_1 \cup A_2).$$

Pentru a putea caracteriza și altfel suma a două subspații, avem nevoie de un rezultat întru totul asemănător celui care explicitează subspațiul vectorial generat de o mulțime:

Lema 2.2. Pentru orice submulțime M,

$$Af(M) = \bigcap_{M \subset L} L$$
, Lsubspaţiu afin.

Demonstrație. Să notăm deocamdată cu [M] membrul drept al egalității de demonstrat. Cum $M \subset [M]$ și [M] e subspațiu, avem $\mathrm{Af}(M) \subseteq \mathrm{Af}([M]) = [M]$. Pe de altă parte, $\mathrm{Af}(M)$ e, la rândul său, un subspațiu care conține M. Astfel că $\mathrm{Af}(M)$ e unul dintre participanții la intersecția din membrul drept. În consecință $[M] \subseteq \mathrm{Af}(M)$ și demonstrația e încheiată. \square

Rezultă, în particular, că $\mathcal{A}_1 + \mathcal{A}_2$ e cel mai mic subspațiu afin (în sensul incluziunii) care conține reuniunea $\mathcal{A}_1 \cup \mathcal{A}_2$.

Exercițiul 2.7. Să se arate că mulțimea varietăților liniare ale unui spațiu afin este o latice completă cu operațiile + și \cap .

În ce priveşte spațiul director al sumei avem următorul rezultat:

Propoziția 2.8. Fie V_i subspațiul director al lui A_i , i=1,2 și V_{12} subspațiul director al lui $A_1 + A_2$. Atunci

$$V_{12} = \begin{cases} V_1 + V_2 & \operatorname{dac\check{a}} \mathcal{A}_1 \cap \mathcal{A}_2 \neq \emptyset, \\ V_1 + V_2 + \langle \overrightarrow{O_1 O_2} \rangle & \operatorname{dac\check{a}} \mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset, \end{cases}$$

unde $O_1 \in \mathcal{A}_1$, $O_2 \in \mathcal{A}_2$ arbitrar aleşi.

Demonstrație. Deoarece $\mathcal{A}_i\subset\mathcal{A}_1+\mathcal{A}_2,$ rezultă că $V_i\subset V_{12},$ pentru i=1,2, deci

$$(2.5) V_1 + V_2 \subseteq V_{12}.$$

Să presupunem acum $\mathcal{A}_1 \cap \mathcal{A}_2 \neq \emptyset$. Fie $O \in \mathcal{A}_1 \cap \mathcal{A}_2$ şi $v \in V_{12}$. Există un unic punct $P \in \mathcal{A}_1 + \mathcal{A}_2$ astfel încât $v = \overrightarrow{OP} \cdot P$ trebuie să fie baricentrul unor puncte din $\mathcal{A}_1 \cup \mathcal{A}_2$:

$$P = \sum_{i=1}^{r} a_i P_i + \sum_{j=1}^{s} b_j Q_j, \ \sum_{i=1}^{r} a_i + \sum_{j=1}^{s} b_j = 1$$

cu $P_i \in \mathcal{A}_1$ și $Q_j \in \mathcal{A}_2$ (scrierea aceasta nu e unică, dar unicitatea nu e necesară în demonstrația noastră). Atunci $\overrightarrow{OP_i} \in V_1$, $\overrightarrow{OQ_j} \in V_2$ și

$$v = \overrightarrow{OP} = \sum_{i=1}^{r} a_i \overrightarrow{OP_i} + \sum_{j=1}^{s} b_j \overrightarrow{OQ_j} \in V_1 + V_2,$$

adică $V_{12} \subseteq V_1 + V_2$ ceea ce, împreună cu (2.5), demonstrează că $V_{12} = V_1 + V_2$ în acest caz.

Dacă $A_1 \cap A_2 = \emptyset$, alegem arbitrar $O_1 \in A_1$, $O_2 \in A_2$. Atunci $\overrightarrow{O_1O_2} \in V_{12}$ şi, din (2.5), rezultă $V_1 + V_2 + \langle \overrightarrow{O_1O_2} \rangle \subseteq V_{12}$. Pentru a demonstra incluziunea inversă, fie $v \in V_{12}$ oarecare. La fel ca mai sus, există $P \in A_1 + A_2$ astfel încât v poate fi scris sub forma

$$v = \overrightarrow{O_1P} = \sum_{i=1}^r a_i \overrightarrow{O_1P_i} + \sum_{j=1}^s b_j \overrightarrow{O_1Q_j}, \ \sum_{i=1}^r a_i + \sum_{j=1}^s b_j = 1$$

cu $P_i \in \mathcal{A}_1$ şi $Q_j \in \mathcal{A}_2$. Descompunând cu regula triunghiului $\overrightarrow{O_1Q_j} = \overrightarrow{O_1O_2} + \overrightarrow{O_2Q_j}$ obținem

$$v = \sum_{i=1}^{r} a_i \overrightarrow{O_1 P_i} + (\sum_{j=1}^{s} b_j) \overrightarrow{O_1 O_2} + \sum_{j=1}^{s} b_j \overrightarrow{O_2 Q_j} \in V_1 + V_2 + \langle \overrightarrow{O_1 O_2} \rangle,$$

deci
$$V_1 + V_2 + \langle \overrightarrow{O_1 O_2} \rangle = V_{12}$$
 şi în acest caz.

O consecință a propoziției anterioare este că pentru dimensiunea sumei a două subspații nu mai avem un rezultat atât de simplu ca cel din cadrul vectorial. Anume:

TEOREMA 2.2. Fie A_1, A_2 subspații afine cu spații directoare V_1, V_2 . Are loc relatia:

$$(2.6) \quad \dim(\mathcal{A}_1 + \mathcal{A}_2) = \left\{ \begin{array}{ll} \dim \mathcal{A}_1 + \dim \mathcal{A}_2 - \dim(\mathcal{A}_1 \cap \mathcal{A}_2), & \mathcal{A}_1 \cap \mathcal{A}_2 \neq \emptyset, \\ \dim \mathcal{A}_1 + \dim \mathcal{A}_2 - \dim(V_1 \cap V_2) + 1, & \mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset. \end{array} \right.$$

Demonstrație. Ținem seama că dimensiunea unui spațiu afin este, prin definiție, dimensiunea spațiului său director. Atunci, în cazul $A_1 \cap A_2 \neq \emptyset$, direct din propoziția 2.8 și din teorema lui Grassmann rezultă dim $(A_1 + A_2) = \dim V_{12} = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2) = \dim A_1 + \dim A_2 - \dim(A_1 \cap A_2)$. În cazul $A_1 \cap A_2 = \emptyset$, aplicând aceleași rezultate găsim dim $(A_1 + A_2) = \dim V_{12} = \dim(V_1 + V_2) + \dim(\overline{O_1 O_2}) - \dim((V_1 + V_2) \cap \langle \overline{O_1 O_2}))$. Demonstrația va fi încheiată dacă demonstrăm că $(V_1 + V_2) \cap \langle \overline{O_1 O_2} \rangle = \{0\}$. Or, dacă $\overline{O_1 O_2} \in V_1 + V_2$, atunci $\overline{O_1 O_2} = v_1 + v_2$, cu $v_i \in V_i$. Dar $v_i = \overline{O_i P_i}$, $P_i \in V_i$ și, de aici, $\overline{O_1 P_1} + \overline{O_2 P_2} = \overline{O_1 P_2}$

5 Paralelism afin 63

 $\overrightarrow{O_1O_2} = \overrightarrow{O_1P_1} + \overrightarrow{P_1O_2}$ de unde $\overrightarrow{O_2P_2} = \overrightarrow{P_1O_2}$. Rezultă $\overrightarrow{O_2P_1} \in V_2$, deci $P_1 \in \mathcal{A}_2$, contradicție cu $\mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset$.

EXEMPLUL 2.4. Dacă dim $A_1 = k$ şi A_2 e un punct nesituat pe A_1 , atunci $A_1 \cap A_2 = \emptyset$, $V_1 \cap V_2 = \{0\}$, deci dim $(A_1 + A_2) = k + 0 - 0 + 1 = k + 1$. În particular, varietatea liniară generată de o dreaptă şi de un punct exterior ei este un plan.

COROLARUL 2.4. Dacă dim $A_i = k_i$, i = 1, 2 şi $A_1 \cap A_2 = \emptyset$, atunci dim $(A_1 + A_2) > \max\{k_1, k_2\}$.

5. Paralelism afin

Cu noțiunile introduse până acum suntem pregătiți să definim paralelismul subspațiilor, generalizare a paralelismului cunoscut din spațiile geometrice cu două și trei dimensiuni.

Definiția 2.9. Varietățile liniare A_1, A_2 se zic paralele dacă $V_1 \subseteq V_2$ sau $V_2 \subseteq V_1$. În acest caz scriem $A_1 \| A_2$.

În particular, două subspații afine cu același subspațiu director sunt paralele.

Observația 2.4. Se observă ușor că relația de paralelism nu este tranzitivă decât pe mulțimea subspațiilor de o dimensiune fixată. În acest caz ea devine relație de echivalență.

Următorul rezultat, deși foarte simplu, este esențial:

Lema 2.3. Fie $O \in \mathcal{A}$ fixat și V' un subspațiu vectorial al lui V. Atunci există un unic subspațiu afin \mathcal{A}' care trece prin O și are subspațiul director V'.

Demonstrație. Nu avem decât să punem $\mathcal{A}' = \{P \in \mathcal{A} \; ; \; \overrightarrow{OP} \in V'\}.$

Reformulăm enunțul sub forma:

COROLARUL 2.5. Dată o varietate liniară \mathcal{A}' , prin orice punct din spațiu trece o singură varietate liniară paralelă cu \mathcal{A}' și cu aceeași dimensiune cu ea.

În particular se obține că într-un spațiu afin e adevărat Postulatul 5 al lui Euclid.

În ce privește pozițiile relative a două subspații paralele avem:

Propoziția 2.9. Dacă $\mathcal{A}_1 \| \mathcal{A}_2$, atunci $\mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset$, sau $\mathcal{A}_1 \subseteq \mathcal{A}_2$ sau $\mathcal{A}_2 \subseteq \mathcal{A}_1$.

Demonstrație. Într-adevăr, să presupunem, pentru a fixa ideile, că $V_1 \subseteq V_2$. Dacă există $O \in \mathcal{A}_1 \cap \mathcal{A}_2$, atunci $V_1 = \{\overrightarrow{OA_1} \mid A_1 \in \mathcal{A}_1\} \subseteq V_2 = \{\overrightarrow{OA_2} \mid A_2 \in \mathcal{A}_2\}$. Deci pentru orice $A_1 \in \mathcal{A}_1$ există $A_2 \in \mathcal{A}_2$ astfel încât $\overrightarrow{OA_1} = \overrightarrow{OA_2}$, de unde $A_1 = A_2$, adică $\mathcal{A}_1 \subseteq \mathcal{A}_2$. Cazul $V_2 \subseteq V_1$ se tratează analog.

Dar nu este adevărat că două subspații care nu se taie sunt paralele decât în cazuri particulare:

Propoziția 2.10. Un subspațiu afin și un hiperplan care nu se intersectează sunt paralele.

Demonstrație. Fie \mathcal{A}_1 un subspațiu afin de dimensiune $k \leq n$ și \mathcal{A}_2 un hiperplan. Dacă $\mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset$, din corolarul 2.4 deducem $\dim(\mathcal{A}_1 + \mathcal{A}_2) = n$. Dar, din teorema dimensiunii sumei, $\dim(\mathcal{A}_1 + \mathcal{A}_2) = k + n - 1 + 1 - \dim(V_1 \cap V_2)$. Deci $\dim(V_1 \cap V_2) = k$. Rezultă că $V_1 \cap V_2 = V_1$, adică $V_1 \subseteq V_2$ ceea ce arată că $\mathcal{A}_1 \| \mathcal{A}_2$.

COROLARUL 2.6. În spațiile geometrice cu 2, respectiv 3 dimensiuni, paralelismul (definit aici) al dreptelor, respectiv al dreptelor coplanare, al planelor și al dreptelor cu plane se reduce la paralelismul definit prin neintersecție, coincidență sau incluziune.

EXERCIȚIUL 2.8. Folosind regula triunghiului, să se arate că pentru orice puncte A,B,C,D au loc echivalențele $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC} \Leftrightarrow \frac{1}{2}A + \frac{1}{2}C = \frac{1}{2}B + \frac{1}{2}D$, dacă car $K \neq 2$. Numim paralelogram mulțimea ordonată $\{A,B,C,D\}$ ale cărei elemente satisfac una dintre relatiile de mai sus.

6. Ecuațiile varietăților liniare

Conform lemei 2.3, prin orice punct P_0 trece o unică varietate liniară \mathcal{A}_1 cu subspaţiul director fixat V_1 . Presupunem că dim $V_1 = p$, adică \mathcal{A}_1 e un p-plan. În cele ce urmează vom găsi relaţiile dintre coordonatele unui punct P din \mathcal{A}_1 într-un reper al spaţiului ambiant \mathcal{A} şi coordonatele aceluiaşi punct într-un reper din \mathcal{A}_1 .

Fie $\mathcal{R} = \{O; e_1, \dots, e_n\}$ un reper cartezian în \mathcal{A} şi fie $\mathcal{R}_1 = \{P_0; u_1, \dots, u_p\}$ un reper din \mathcal{A}_1 , cu originea în P_0 . Fie (t_1, \dots, t_p) coordonatele carteziene ale lui P în reperul $\mathcal{R}_1, (x_1, \dots, x_n)$ coordonatele sale în reperul \mathcal{R} şi (x_1^0, \dots, x_n^0) coordonatele lui P_0 în reperul \mathcal{R} :

$$\overrightarrow{P_0P} = t_1u_1 + \dots + t_pu_p,$$

$$\overrightarrow{OP} = x_1e_1 + \dots + x_ne_n,$$

$$\overrightarrow{OP_0} = x_{01}e_1 + \dots + x_{0n}e_n.$$

Vectorii u_i se descompun unic în reperul $\{e_1, \ldots, e_n\}$ sub forma: $u_j = \sum_{i=1}^n u_{ij} e_i$, cu $j = 1, \ldots, p$. În fine, cu regula triunghiului, $\overrightarrow{OP} = \overrightarrow{OP_0} + \overrightarrow{P_0P}$. Ținând cont de relațiile anterioare, obținem:

$$\sum_{i=1}^{n} x_i e_i = \sum_{i=1}^{n} x_{0i} e_i + \sum_{i=1}^{p} t_j (\sum_{i=1}^{n} u_{ij} e_i)$$

de unde rezultă

(2.7)
$$x_i = \sum_{j=1}^p u_{ij} t_j + x_{0i}, \quad i = 1, \dots, n.$$

Deoarece scalarii t_j reprezintă parametri în aceste formule, relațiile (2.7) se numesc ecuațiile parametrice ale varietății liniare.

Dacă din relațiile (2.7) eliminăm cei p parametri, obținem un sistem de ecuații liniare (în general neomogene) de n-p ecuații, satisfăcut de coordonatele punctelor p-planului în reperul \mathcal{R} . Am demonstrat astfel un rezultat analog teoremei 1.2:

TEOREMA 2.3. O submulțime $\mathcal{A}' \neq \emptyset$ a unui spațiu afin $(\mathcal{A}, V, \varphi)$ este un p-plan dacă și numai dacă coordonatele punctelor lui \mathcal{A}' într-un reper cartezian fixat (și, deci, în orice reper cartezian) satisfac un sistem de ecuații liniare (neomogene) AX + B = 0. În acest caz subspațiul director al lui \mathcal{A}' este descris de mulțimea vectorilor ale căror coordonate satisfac, în reperul lui V dat, sistemul liniar omogen AX = 0.

Ultima afirmație rezultă din exemplul 2.1, punctul 2).

Pe de altă parte, un alt mod de a descrie un p-plan este indicarea a p+1 puncte afin independente ale sale, cu alte cuvinte precizarea unui reper afin. Fie acesta $\{P_0, P_1, \dots, P_p\}$; p-planul \mathcal{A}_1 generat de ele are subspațiul director generat de vectorii independenți $\{\overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}, \dots, \overrightarrow{P_0P_p}\}$. Atunci, ca mai sus, fie (t_1, \dots, t_p) coordonatele unui punct $P \in \mathcal{A}_1$ în reperul cartezian $\{P_0; \overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}, \dots, \overrightarrow{P_0P_p}\}$. Raportându-ne din nou la reperul \mathcal{R} avem:

$$\overrightarrow{OP} = \overrightarrow{OP_0} + \overrightarrow{P_0P} = \overrightarrow{OP_0} + \sum_{j=1}^p t_j (\overrightarrow{P_0O} + \overrightarrow{OP_j}) =$$

$$= (1 - \sum_{j=1}^p t_j) \overrightarrow{OP_0} + \sum_{j=1}^p t_j \overrightarrow{OP_j}.$$

Descompunând şi aici vectorii $\overrightarrow{OP_j}$ după reperul $\{e_i\}$ sub forma $\overrightarrow{OP_j} = \sum_{i=1}^n x_{ij}e_i$, $j = 0, \ldots, p$, obținem în final:

$$x_i = (1 - \sum_{j=1}^p t_j)x_{0i} + \sum_{j=1}^p x_{ij}t_j, \quad i = 1, \dots, n$$

sau, altfel:

$$(2.8) x_i = x_{0i} + t_1(x_{i1} - x_{0i}) + t_2(x_{i2} - x_{0i}) + \dots + t_p(x_{ip} - x_{0i}), \quad i = 1, \dots, n.$$

Acestea sunt ecuațiile parametrice ale p-planului care trece prin p+1 puncte afin independente.

6.1. Cazuri particulare. Pentru p=1 avem ecuațiile parametrice ale unei drepte sub forma:

$$(2.9) x_i = u_i t + x_{0i}, i = 1, \dots, n.$$

Eliminând parametrul găsim sistemul de n-1 ecuații:

$$\frac{x_1 - x_{01}}{u_1} = \frac{x_2 - x_{02}}{u_2} = \dots = \frac{x_n - x_{0n}}{u_n}.$$

Să observăm că parametrii u_j nu pot fi toți nuli deoarece dreapta nu se reduce la un punct. Cunoașterea parametrilor u_j echivalează cu cunoașterea subspațiului director al dreptei. Într-adevăr, în acest caz dim $V_1=1$, un reper în V_1 se reduce la un vector nenul u, iar acesta se descompune în reperul $\{e_1,\ldots,e_n\}$ ca $u=u_1e_1+\cdots+u_ne_n$. De aceea parametrii u_j se numesc parametri directori ai dreptei. Cum orice alt vector nenul din V_1 poate fi luat pe post de reper în V_1 , parametrii directori sunt definiți numai până la multiplicare cu un scalar nenul. În cazul n=2, notația tradițională este

$$\frac{x-x_0}{l} = \frac{y-y_0}{m},$$

ecuații binecunoscute din matematica de liceu, iar în cazul n=3:

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}.$$

Pe de altă parte, pentru p=1 ecuațiile (2.8) devin

(2.10)
$$\frac{x_1 - x_{01}}{x_{11} - x_{01}} = \frac{x_2 - x_{02}}{x_{12} - x_{02}} = \dots = \frac{x_n - x_{0n}}{x_{1n} - x_{0n}},$$

unde $(x_{0i}), (x_{1i})$ sunt coordonatele a două puncte fixate pe dreaptă.

Celălalt caz extrem este p=n-1, un hiperplan. Aici, având n-1 parametri, după eliminare vom obține o singură ecuație. Iată cum se poate face eliminarea: putem considera (2.7) ca un sistem liniar în necunoscutele t_1, \ldots, t_{n-1} . Pentru a avea soluție trebuie ca rangul matricei extinse să-l egaleze pe cel al matricei sistemului. Rezultă ecuația:

$$\begin{vmatrix} x_1 - x_{01} & u_{11} & u_{12} & \dots & u_{1n-1} \\ x_2 - x_{02} & u_{21} & u_{22} & \dots & u_{2n-1} \\ \dots & \dots & \dots & \dots & \dots \\ x_n - x_{0n} & u_{n1} & u_{n2} & \dots & u_{nn-1} \end{vmatrix} = 0.$$

Acum dezvoltăm determinantul după prima coloană și găsim ecuația generală implicită unui hiperplan:

$$(2.11) a_1x_1 + a_2x_2 + \dots + a_nx_n + a_0 = 0, \operatorname{rang}(a_1, \dots, a_n) \neq 0.$$

Împreună cu (2.7), aceasta implică

COROLARUL 2.7. Orice p-plan este intersecția a n-p hiperplane.

Într-un spațiu 2 dimensional, hiperplanele sunt drepte. Regăsim ecuația generală a dreptei

$$ax + by + c = 0$$
, rang $(a, b) \neq 0$.

Într-un spațiu 3-dimensional, hiperplanele sunt plane, descrise de ecuația

$$ax + by + cz + d = 0$$
, rang $(a, b, c) \neq 0$.

Acestea sunt ecuațiile generale ale dreptei, respectiv ale planului, în spațiul geometric 2-dimensional, respectiv 3-dimensional. Trebuie remarcat că în cazul 2-dimensional s-au regăsit ecuațiile care au fost deduse cu ajutorul unui reper ortogonal; nu am folosit această noțiune, deci ea nu era de fapt necesară.

Exercițiul 2.9. În spațiul afin \mathbb{C}^3 raportat la reperul canonic, să se găsească ecuațiile parametrice ale dreptei de ecuații implicite:

$$x_1 - ix_2 = 0$$
, $2x_2 + x_3 + 1 = 0$.

Exemplul 2.5. Mulțimea tuturor hiperplanelor dintr-un spațiu afin n-dimensional care trec printr-un subspațiu afin (n-2)-dimensional L se numește fascicol de hiperplane de axă (suport) L.

Pentru n=2 se obţine un fascicol de drepte; suportul este un punct. Dacă punctul suport are coordonatele (x_0, y_0) într-un reper fixat, atunci ecuația fasci-colului este $x - x_0 + \lambda(y - y_0) = 0$ cu $\lambda \in \mathbb{R}$.

Pentru n=3 avem noțiunea de fascicol de plane; axa este o dreaptă. Dacă ax+by+cz+d=0, $a_1x+b_1y+c_1z+d_1=0$ sunt ecuațiile dreptei suport, atunci ecuația fascicolului este $ax+by+cz+d+\lambda(a_1x+b_1y+c_1z+d_1)=0$.

EXERCIȚIUL 2.10. Să se decidă dacă următoarele trei plane din spațiul afin \mathbb{R}^3 (raportat la reperul canonic) aparțin unui aceluiași fascicol: $x_1 - x_2 + x_3 + 5 = 0$, $2x_1 - 2x_2 + 2x_3 + 77 = 0$, $-x_1 + x_2 - x_3 = 0$.

Să vedem în continuare cum se exprimă condiția de paralelism între drepte, drepte și hiperplane sau între hiperplane în limbajul ecuațiilor.

Fie $\mathcal{D}_1, \mathcal{D}_2$ drepte într-un spațiu afin n-dimensional. Dacă $\mathcal{D}_1 \| \mathcal{D}_2$, atunci subspațiile lor directoare coincid și reciproc. Rezultă că, $\mathcal{D}_1 \| \mathcal{D}_2$ dacă și numai dacă, raportate la un același reper, cele două drepte au aceiași parametri directori (mai precis: parametrii lor directori trebuie să fie respectiv proporționali).

Considerăm acum o dreaptă d de ecuație (2.9) și un hiperplan \mathcal{H} de ecuație (2.11) (într-un același reper). $\mathcal{D}\|\mathcal{H}$ dacă și numai dacă subspațiul director al lui \mathcal{D} e conținut în cel al lui \mathcal{H} ; echivalent, dacă și numai dacă n-uplul de parametri directori ai lui \mathcal{D} verifică (vezi teorema 2.3) sistemul liniar omogen (redus aici la o singură ecuație) $a_1x_1 + \cdots + a_nx_n = 0$. Astfel, condiția de paralelism devine:

$$a_1u_1 + a_2u_2 + \dots + a_nu_n = 0.$$

În fine, două hiperplane de ecuații $\sum_{i=1}^n a_i x_i + a_0 = 0$ și $\sum_{i=1}^n b_i x_i + b_0 = 0$ respectiv, sunt paralele dacă și numai dacă sistemele omogene $\sum_{i=1}^n a_i x_i = 0$ și $\sum_{i=1}^n b_i x_i = 0$ sunt echivalente, adică dacă și numai dacă n-uplele (a_1,\ldots,a_n) și (b_1,\ldots,b_n) diferă printr-un factor nenul.

7. Raportul a trei puncte coliniare. Câteva rezultate clasice

Vom folosi cele demonstrate până acum pentru a prezenta, în cadrul general al geometriei afine, câteva teoreme binecunoscute din geometria elementară: ale lui Thales², Ceva³, Menelaus⁴, Pappus⁵, Desargues⁶. Le prezentăm atât pentru importanța și frumusețea lor, cât și pentru a exemplifica metoda "analitică" de demonstratie.

Fie (A, V, φ) un spațiu afin peste un corp comutativ K. Să considerăm o dreaptă $\langle AB \rangle$ raportată la reperul afin $\{A, B\}$. Fiecare punct C de pe $\langle AB \rangle$ e definit de o pereche de coordonate baricentrice (1-a,a). Vectorializând într-un punct arbitrar O al spațiului avem:

$$(2.12) \qquad \overrightarrow{OC} = (1-a)\overrightarrow{OA} + a\overrightarrow{OB}.$$

Rezultă relațiile:

$$\overrightarrow{AC} = a\overrightarrow{AB}, \quad (1-a)\overrightarrow{CA} + a\overrightarrow{CB} = 0.$$

Dacă $a \neq 1$, atunci putem pune $r = \frac{a}{a-1}$ și, din formulele anterioare deducem

$$\overrightarrow{CA} = r\overrightarrow{CB}$$
.

Cu aceasta, (2.12) devine:

(2.13)
$$\overrightarrow{OC} = \frac{1}{1-r}\overrightarrow{OA} - \frac{r}{1-r}\overrightarrow{OB}.$$

Toată discuția de până acum arată că pentru fiecare punct $C \in \langle AB \rangle$, $C \neq B$ există un unic $r \neq 1$ astfel încât $\overrightarrow{CA} = r\overrightarrow{CB}$; reciproc, fiecărui $r \neq 1$ îi corespunde un unic punct al dreptei care verifică relația aceasta.

DEFINIȚIA 2.10. Scalarul r definit mai sus se numește raportul celor trei puncte A, B, C și se notează r(A, B, C), (atenție!, ordinea punctelor e esențială).

Pentru $K = \mathbb{R}$ putem defini segmentele după cum urmează:

²Thales din Milet, 625-547 î.C., filozof grec.

 $^{^3}$ Giovanni Ceva, 1647-1734, matematician italian; rezultatele cele mai importante sunt cuprinse în lucrarea $De\ lineis\ retis.$

⁴Menelaus din Alexandria, matematician grec, activ pe la anul 100. S-a ocupat mai ales de trigonometrie, geometrie și astronomie.

⁵Pappus din Alexandria, 300-350, matematician, astronom și geograf grec.

 $^{^6}$ Gérard Desargues, matematician francez, 1591-1661. A fost primul care a conceput întâlnirea dreptelor paralele într-un punct de la infinit.

Definiția 2.11. Se numește segment de capete A, B mulțimea

$$[AB] \stackrel{\text{def}}{=} \{aA + (1-a)B \mid a \in [0,1]\}.$$

În acest caz, punctul C corespunzător lui r=-1 se numește mijlocul segmentului [AB].

Observăm că pentru a defini segmentele e necesar să lucrăm peste un corp ordonat pentru a putea considera scalarul a din definiție în interiorul unui interval al corpului. De aici, pentru simplitate, restricția la spații afine reale.

TEOREMA 2.4. Fie $\mathcal{H}_1, \mathcal{H}_1, \mathcal{H}_3$ hiperplane paralele în spațiul afin n-dimensional \mathcal{A} . Fie \mathcal{D} o dreaptă arbitrară care intersectează hiperplanul \mathcal{H}_j în punctul A_j , j=1,2,3. Atunci raportul $r=r(A_1,A_2,A_3)$ depinde doar de cele trei hiperplane, nu și de dreapta \mathcal{D} .

Demonstrație. Vom folosi aici ecuațiile hiperplanelor și ale dreptelor pe care le-am determinat mai sus. Fixăm un reper în \mathcal{A} . În el, ecuațiile lui \mathcal{D} se scriu $x_i = x_{0i} + u_i t$, cu (x_{0i}) coordonatele unui punct fixat pe \mathcal{D} . Ecuațiile celor trei hiperplane paralele sunt: $\sum_{i=1}^n a_i x_i + b_j = 0$, j = 1, 2, 3. Determinăm coordonatele punctelor A_j : introducem coordonatele unui punct generic de pe \mathcal{D} în ecuația fiecărui hiperplan și găsim astfel valoarea parametrului $t(A_j)$ corespunzătoare punctului A_j :

$$\sum_{i=1}^{n} a_i x_{0i} + t(A_j) \sum_{i=1}^{n} a_i u_i + b_j = 0,$$

de unde

$$t(A_j) = -\frac{\sum_{i=1}^n a_i x_{0i} + b_j}{\sum_{i=1}^n a_i u_i}.$$

Pe de altă parte, $\overrightarrow{A_1A_3} = r\overrightarrow{A_2A_3}$, iar coordonatele lui $\overrightarrow{A_kA_l}$ sunt $x_i(A_l) - x_i(A_k) = u_i(t(A_l) - t(A_k))$. Rezultă $u_i(t(A_3) - t(A_1)) = ru_i(t(A_3) - t(A_2))$, de unde $t(A_3) - t(A_1) = r(t(A_3) - t(A_2))$. Înlocuind aici valorile lui $t(A_j)$ obținem

$$r = \frac{b_3 - b_1}{b_3 - b_2}$$

ceea ce încheie demonstrația.

Să numim triunghi o mulțime ordonată de trei puncte (numite vârfuri) afin independente. În cazul $K = \mathbb{R}$, segmentele determinate de vârfuri se numesc laturi (de fiecare dată când vom vorbi despre laturile unui triunghi, vom subînțelege că spatiul afin peste care lucrăm este real). Cu acestea putem formula:

COROLARUL 2.8. (Teorema lui Thales) Fie $\{A,B,C\}$ un triunghi și $P \in \langle AB \rangle$, $Q \in \langle AC \rangle$, P și Q diferite de vârfuri. Dacă $\langle PQ \rangle ||\langle BC \rangle$, atunci r(A,B,P) = r(A,C,Q).

Demonstrație. Ne restrângem la 2-planul generat de vârfurile triunghiului. Toate dreptele considerate stau în acest plan și reprezintă hiperplane în el. Fie \mathcal{D}_1 dreapta (unică) paralelă cu $\mathcal{D}_2 = \langle BC \rangle$ care trece prin A. Acum notăm $\mathcal{D}_3 = \langle PQ \rangle$ și aplicăm teorema: punctele în care două drepte (în particular $\langle AB \rangle$, $\langle AC \rangle$) taie cele trei hiperplane determină același raport.

Exercițiul 2.11. Formulați și demonstrați reciproca teoremei lui Thales.

O altă aplicație utilă a teoremei 2.4 este:

COROLARUL 2.9. Fie \mathcal{H} un hiperplan de ecuație h(x) = 0, cu $h(x) = \sum_{i=1}^{n} a_i x_i + a_0$ într-un reper fixat și fie \mathcal{D} o dreaptă care taie hiperplanul în M. Atunci, pentru orice $A \in \mathcal{D}$, $B \in \mathcal{D} - \{M\}$ avem

$$r(A, B, M) = \frac{h(A)}{h(B)}.$$

Demonstrația constă în aplicarea teoremei pentru hiperplanele paralele de ecuații respectiv h(x) = 0, h(x) - h(A) = 0, h(x) - h(B) = 0. Acum putem demonstra:

Propoziția 2.11. (Teorema lui Ceva) Fie $\{A, B, C\}$ un triunghi și punctele $A' \in \langle BC \rangle$, $B' \in \langle AC \rangle$, $C' \in \langle AB \rangle$ distincte de vârfuri. Notăm $r_1 = r(B, C, A')$, $r_2 = r(C, A, B')$, $r_3 = r(A, B, C')$. Atunci, dacă dreptele $\langle AA' \rangle$, $\langle BB' \rangle$, $\langle CC' \rangle$ sunt paralele sau concurente, are loc relația $r_1r_2r_3 = -1$.

Demonstrație. Deși enunțul se referă la un spațiu afin arbitrar, deoarece toate punctele care intervin în configurația propusă aparțin planului generat de vârfurile triunghiului $\{A, B, C\}$, putem să considerăm că spațiul ambiant e chiar acest plan. În el fixăm un reper. Fie a(x) = 0, respectiv b(x) = 0, c(x) = 0 ecuația dreptei $\langle AA' \rangle$, respectiv $\langle BB' \rangle$, $\langle CC' \rangle$ în acest reper. Aplicând corolarul anterior deducem:

$$r_1 r_2 r_3 = \frac{a(B)}{a(C)} \frac{b(C)}{b(A)} \frac{c(A)}{c(B)}.$$

Pe de altă parte, dacă cele trei drepte în cauză sunt paralele, atunci cele trei ecuații diferă doar prin termenii liberi. Rezultă existența unei relații de dependență liniară între cele trei ecuații. De exemplu, dacă $a(x) = h(x) + a_0$, $b(x) = h(x) + b_0$, $c(x) = h(x) + c_0$ și $b_0 \neq c_0$ (nu se poate să avem $a_0 = b_0 = c_0$ pentru că dreptele în cauză sunt diferite), avem

$$c(x) = ma(x) + nb(x).$$

cu $m=\frac{c_0-a_0}{c_0-b_0}$, $n=\frac{b_0-a_0}{c_0-b_0}$. Aceeaşi relație, se verifică ușor, are loc și dacă cele trei drepte sunt concurente. Rezultă că ma(C)+nb(C)-c(C)=0 și de aici:

$$r_1r_2r_3 = \frac{a(B)}{a(C)} \cdot \frac{b(C)}{b(A)} \cdot \frac{ma(A) + nb(A)}{ma(B) + nb(B)} = \frac{a(B)b(C)}{a(C)b(A)} \cdot \frac{nb(A)}{ma(B)} = \frac{nb(C)}{ma(C)} = -1.$$

Exercițiul 2.12. Formulați și demonstrați reciproca teoremei lui Ceva.

EXERCIȚIUL 2.13. (Teorema lui Menelaus) Fie $\{A,B,C\}$ un triunghi și punctele $C' \in \langle AB \rangle, \ A' \in \langle BC \rangle, \ B' \in \langle CA \rangle$. Atunci r(B,C,A')r(C,A,B')r(A,B,C')=1 dacă și numai dacă A',B',C' sunt coliniare.

Dacă se lucrează în caracteristică diferită de 2, se pot defini medianele unui triunghi ca fiind segmentele care unesc vârfurile cu mijloacele laturilor opuse. Propunem cititorului să (re)demonstreze

Exercițiul 2.14. Dacă carK=3, atunci medianele unui triunghi sunt paralele. Dacă car $K\neq 2,3$, atunci medianele unui triunghi sunt concurente în baricentrul cu ponderi egale al vârfurilor triunghiului.

Demonstrație. Fie O un punct arbitrar. Condiția de concurență în Satrage după sine existența scalarilor a_1,a_2,a_3 astfel încât

(2.14)
$$\overrightarrow{OS} = a_1 \overrightarrow{OA_1} + (1 - a_1) \overrightarrow{OB_1} = a_2 \overrightarrow{OA_2} + (1 - a_2) \overrightarrow{OB_2}$$
$$= a_3 \overrightarrow{OA_3} + (1 - a_3) \overrightarrow{OB_3}.$$

Din reciproca teoremei lui Thales deducem $a_i \neq a_j$ pentru $i \neq j$. Astfel că putem transforma prima dintre egalitățile anterioare în:

$$\frac{a_1}{a_1 - a_2}\overrightarrow{OA_1} - \frac{a_2}{a_1 - a_2}\overrightarrow{OA_2} = \frac{a_1 - 1}{a_1 - a_2}\overrightarrow{OB_1} - \frac{a_2 - 1}{a_1 - a_2}\overrightarrow{OB_2} = v.$$

Dar există un unic punct P cu proprietatea $v = \overrightarrow{OP}$. Se vede că acesta e baricentru cu ponderi $(\frac{a_1}{a_1-a_2}, -\frac{a_2}{a_1-a_2})$ al perechii (A_1, A_2) , și cu ponderi $(\frac{a_1-1}{a_1-a_2}, -\frac{a_2-1}{a_1-a_2})$ al perechii (B_1, B_2) . Deci $P \in \langle A_1 A_2 \rangle \cap \langle B_1 B_2 \rangle$ ceea ce implică $P = P_3$. Procedând analog cu celelate două egalități din șirul (2.14) obținem relațiile:

$$(a_1 - a_2)\overrightarrow{OP_3} = a_1\overrightarrow{OA_1} - a_2\overrightarrow{OA_2},$$

$$(a_2 - a_3)\overrightarrow{OP_1} = a_2\overrightarrow{OA_2} - a_3\overrightarrow{OA_3},$$

$$(a_3 - a_1)\overrightarrow{OP_2} = a_3\overrightarrow{OA_3} - a_1\overrightarrow{OA_1}.$$

Rezultă, prin adunare:

$$(a_2 - a_3)\overrightarrow{OP_1} + (a_3 - a_1)\overrightarrow{OP_2} + (a_1 - a_2)\overrightarrow{OP_3} = 0,$$

adică P_1, P_2, P_3 sunt afin dependente.

EXERCIȚIUL 2.15. Modificând parțial ipotezele teoremei lui Desargues se obțin următoarele variante pe care le propunem spre demonstrare:

- 1) Ipoteza $\mathcal{D}_3 \cap \mathcal{D}_3' = \{P_3\}$ se înlocuiește cu $\mathcal{D}_3 \| \mathcal{D}_3'$, iar concluzia devine $P_1 P_2 \| \mathcal{D}_3$.
- 2) Ipoteza devine $\mathcal{D}_1 \| \mathcal{D}_1', \mathcal{D}_2 \| \mathcal{D}_2'$, iar concluzia: $\mathcal{D}_3 \| \mathcal{D}_3'$.

În fine, încheiem acest paragraf cu o teoremă foarte spectaculoasă, datorită simplității ipotezelor, cu care ne vom mai întîlni:

Propoziția 2.13. (Pappus) Se consideră dreptele $\mathcal{D}, \mathcal{D}'$ concurente în O întrun plan afin peste un corp comutativ. Fie A,B,C puncte distincte și diferite de O pe \mathcal{D}, A', B', C' pe \mathcal{D}' . Dacă există punctele $\{P\} = \langle AB' \rangle \cap \langle A'B \rangle$, $\{Q\} = \langle AC' \rangle \cap \langle A'C \rangle$, $\{R\} = \langle BC' \rangle \cap \langle B'C \rangle$, atunci punctele P,Q,R sunt afin dependente (coliniare).

Demonstrație. Alegem reperul afin $\{O,A,A'\}$ și scriem coordonatele punctelor situate pe \mathcal{D},\mathcal{D}' în acest reper: $A(1,0),\,B(b,0),\,C(c,0),\,A'(0,1),\,B'(0,b'),\,C'(0,c')$. Cum, în general, ecuația (în plan) unei drepte care trece prin două puncte date este (vezi formula (2.10)):

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0},$$

8 Aplicații afine 71

deducem următoarele ecuatii:

$$\begin{array}{lll} \langle AB' \rangle : & b'(x-1)+y=0, & \langle A'B \rangle : & x+b(y-1)=0, \\ \langle AC' \rangle : & c'(x-1)+y=0, & \langle A'C \rangle : & x+c(y-1)=0, \\ \langle BC' \rangle : & c'(x-b)+by=0, & \langle B'C \rangle : & b'x+c(y-b')=0. \end{array}$$

Rezultă coordonatele punctelor P, Q, R:

$$P(\frac{b(1-b')}{1-bb'},\,\frac{b'(1-b)}{1-bb'}),\quad Q(\frac{c(1-c')}{1-cc'},\,\frac{c'(1-c)}{1-cc'}),\quad R(\frac{bc(b'-c')}{bb'-cc'},\,\frac{b'c'(b-c)}{bb'-cc'}).$$

Acum, un calcul simplu arată că

$$\frac{\frac{b(1-b')}{1-bb'} - \frac{c(1-c')}{1-cc'}}{\frac{bc(b'-c')}{bb'-cc'} - \frac{c(1-c')}{1-cc'}} = \frac{\frac{b'(1-b)}{1-bb'} - \frac{c'(1-c)}{1-cc'}}{\frac{b'c'(b-c)}{bb'-cc'} - \frac{c'(1-c)}{1-cc'}},$$

ceea ce încheie demonstrația.

Exercițiul 2.16. Demonstrați următoarele versiuni ale teoremei lui Pappus:

1) În aceleași ipoteze, dacă $\langle AB' \rangle \| \langle A'B \rangle$ și $\langle BC' \rangle \| \langle B'C \rangle$, atunci și $\langle AC' \rangle \| \langle A'C \rangle$.

2) Dreptele \mathcal{D} și \mathcal{D}' sunt paralele. Restul ipotezelor și concluzia se păstrează.

Observația 2.5. Precizăm, dacă mai e cazul, că demonstrațiile prezentate în acest paragraf, utilizând "metoda analitică" au scopul de a familiariza cititorul cu lucrul cu ecuații scrise în repere afine arbitrare. Sunt posibile și alte demonstrații care folosesc calculul vectorial sau coordonatele baricentrice, după cum cititorul se poate, ușor, convinge singur.

Asupra teoremelor lui Desargues și Pappus vom reveni în cadrul geometriei proiective.

8. Aplicații afine

Fie (A_1, V_1, φ_1) , (A_2, V_2, φ_2) spații afine peste corpurile (comutative) K_1, K_2 .

Definiția 2.12. O aplicație $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ se numește semi-afină dacă există un punct $O \in \mathcal{A}_1$ astfel încât aplicația $T: V_1 \to V_2$, dată prin $T(\overrightarrow{OA_1}) = \overrightarrow{\tau(O)\tau(A_1)}$, pentru orice $A_1 \in \mathcal{A}_1$ și numită urma lui τ să fie semi-liniară. Dacă urma T e liniară, atunci τ se numește afină.

Aplicațiile semi-afine se mai numesc morfisme semi-afine. Dacă $A_1 = A_2$ vorbim despre un endomorfism semi-afin. O aplicație afină bijectivă se numește izomorfism afin. Două spații afine se zic izomorfe dacă între ele există un izomorfism afin.

Punctul O de a cărui existență depinde definiția nu e, de fapt, privilegiat:

Propoziția 2.14. Dacă $\tau: A_1 \to A_2$ e semi-afină, atunci are loc relația: $T(\overrightarrow{AB}) = \overrightarrow{\tau(A)\tau(B)}$, pentru orice $A, B \in A_1$.

Demonstrație. Nu avem decât să aplicăm regula triunghiului:

$$T(\overrightarrow{AB}) = T(\overrightarrow{AO} + \overrightarrow{OB}) = T(\overrightarrow{OB} - \overrightarrow{OA}) = T(\overrightarrow{OB}) - T(\overrightarrow{OA}) =$$

$$= \overrightarrow{\tau(O)\tau(B)} - \overrightarrow{\tau(O)\tau(A)} = \overrightarrow{\tau(A)\tau(O)} + \overrightarrow{\tau(O)\tau(B)} = \overrightarrow{\tau(A)\tau(B)}.$$

Nu există o corespondență biunivocă între aplicații semi-afine și aplicații semi-liniare. Mai precis:

Propoziția 2.15. O aplicație semi-afină e unic determinată de urma sa și de o pereche de puncte corespondente $(O, \tau(O))$.

Iată acum câteva exemple de aplicații afine:

Exemplul 2.6. 1) Pe spațiul afin $(\mathbb{C}^n, \mathbb{C}^n, \varphi)$, $\varphi(z, z') = z' - z$, aplicația $\tau(z) = \overline{z}$ e semi-afină.

- 2) Pentru orice spațiu afin \mathcal{A} , $1_{\mathcal{A}}$ e aplicație afină, cu urma 1_{V} .
- 3) Pe spaţiul K^n cu structura afină canonică, aplicaţia descrisă prin (x_1, \ldots, x_n) $\mapsto (x'_1, \ldots, x'_n), x'_i = \sum_{j=1}^n a_{ij}x_j + a_i, a_{ij}, a_i \in K$, este afină, având drept urmă aplicaţia liniară care are matricea (a_{ij}) în reperul canonic.

Deoarece majoritatea aplicațiilor geometrice pe care le avem în vedere utilizează doar aplicațiile afine (cu urma liniară), asupra acestora ne vom concentra în cele ce urmează. Totuși, acolo unde e posibil, vom formula enunțurile în toată generalitatea lor.

Vom avea nevoie de:

Propoziția 2.16. O compunere de aplicații semi-afine e semi-afină. Urma compunerii e compunerea urmelor.

Demonstrație. Fie τ_1, τ_2 aplicații semi-afine cu urmele T_1, T_2 . Din egalitățile:

$$(T_2 \circ T_1)(\overrightarrow{AB}) = T_2(T_1(\overrightarrow{AB})) = T_2(\overline{\tau_1(A)\tau_1(B)}) = \overline{\tau_2(\tau_1(A))\tau_2(\tau_1(B))}$$

deducem că urma lui $\tau_2 \circ \tau_1$ este $T_2 \circ T_1$. Cum o compunere de aplicații semi-liniare e semi-liniară, enunțul este demonstrat.

Un rezultat care exprimă mai bine legătura dintre o aplicație semi-afină și urma sa este:

Propoziția 2.17. O aplicație semi-afină e injectivă (respectiv surjectivă, respectiv bijectivă) dacă și numai dacă urma sa e injectivă (respectiv surjectivă, respectiv bijectivă).

Demonstrație. Reamintim că o aplicație semi-liniară e injectivă dacă și numai dacă nucleul său e redus la vectorul nul. Fie acum τ injectivă și T(v)=0. Fie $A,B\in\mathcal{A}_1$ astfel încât $v=\overrightarrow{AB}$ (scrierea nu e unică, dar nu asta ne interesează aici). Atunci $0=T(v)=\overline{\tau(A)\tau(B)}$ de unde $\tau(A)=\tau(B)$, deci A=B. Conchidem că v=0 și T e injectivă. Reciproc, dacă T e injectivă și $\tau(A)=\tau(B)$, atunci $0=\overline{\tau(A)\tau(B)}=T(\overrightarrow{AB})$, de unde $\overrightarrow{AB}=0$ adică A=B și τ e injectivă.

Să presupunem τ surjectivă. Fie $w = \overrightarrow{CD} \in V_2$. Există $A, B \in \mathcal{A}_1$ astfel încât $C = \tau(A), \ D = \tau(B)$. Rezultă $w = \overrightarrow{CD} = \overline{\tau(A)\tau(B)} = T(\overrightarrow{AB})$, adică T e surjectivă. Invers, fie $C \in \mathcal{A}_2$ fixat. Căutăm $A \in \mathcal{A}_1$ cu $\tau(A) = C$. Fixăm arbitrar un punct $O \in \mathcal{A}_1$ și fie $w = \overline{\tau(O)C}$. Există $v \in V_1, \ w = T(v)$. Dar v se poate scrie unic $v = \overrightarrow{OA}$. Deducem $\overline{\tau(O)C} = w = T(v) = T(\overrightarrow{OA}) = \overline{\tau(O)\tau(A)}$, ceea ce implică $C = \tau(A)$. Surjectivitatea lui τ e demonstrată.

Afirmația referitoare la bijectivitate e o consecință a celor dinainte.

COROLARUL 2.10. Un spațiu afin (A, V, φ) e izomorf cu spațiul afin standard K^n dacă și numai dacă are dimensiunea n. În particular, două spații afine peste același corp sunt izomorfe dacă și numai dacă au aceeași dimensiune.

8 Aplicații afine 73

Demonstrație. Necesitatea e imediată. Pentru suficiență, fixăm reperele carteziene $\{P_0; f_1, \ldots, f_n\}$ în \mathcal{A} și $\{O; e_1, \ldots, e_n\}$ în K^n (unde, de exemplu $O=(0,\ldots,0)$ și $e_i=(0,\ldots,0,1,0,\ldots,0)$). Fie $T:V\to K^n$ unicul izomorfism liniar cu proprietatea $T(f_j)=e_j,\ j=1,\ldots,n$. Atunci, conform propoziției 2.14, e bine definită aplicația afină $\tau:\mathcal{A}\to K^n$ cu urma T și $\tau(P_0)=O$. Mai mult, cum urma T e bijecție, τ e, de asemenea, bijecție, adică izomorfism afin.

Observația 2.6. Ca și în cazul spațiilor vectoriale, izomorfismul furnizat de corolarul de mai sus e necanonic: fiecare fixare a câte unui reper afin în cele două spații produce un asemenea izomorfism.

Foarte importantă e următoarea caracterizare geometrică a aplicațiilor afine $(nu\ si\ a\ celor\ semi-afine!)$:

TEOREMA 2.5. Fie A_1, A_2 spații afine peste același corp K. O condiție necesară și suficientă ca aplicația $\tau: A_1 \to A_2$ să fie afină este:

- (i) $Dac\Breve{a} \operatorname{car} K \neq 2$, $\tau(aA + (1-a)B) = a\tau(A) + (1-a)\tau(B)$ pentru orice $A, B \in \mathcal{A}_1$, $a \in K$.
- (ii) $Dac\Breve{a} \operatorname{car} K = 2$, $atunci\ \tau(A+B+C) = \tau(A) + \tau(B) + \tau(C)$.

 $\begin{array}{ll} \textit{Demonstrație.} & \text{(i) Fie τ afină și fie \overrightarrow{OR} } = a\overrightarrow{OA} + (1-a)\overrightarrow{OB}. \text{ Deoarece urma } T \\ \text{e liniară avem: } T(\overrightarrow{OR}) = aT(\overrightarrow{OA}) + (1-a)T(\overrightarrow{OB}) = a\overline{\tau(O)\tau(A)} + (1-a)\overline{\tau(O)\tau(B)}, \\ \text{de unde rezultă că $\tau(R)$ } = a\tau(A) + (1-a)\tau(B). \end{array}$

Reciproc, arătăm că dacă τ duce baricentrele cu diverse ponderi ale perechilor de puncte în baricentre cu acelea si ponderi ale imaginilor lor, urma sa e liniară. Folosim aceași idee din demonstrația teoremei 2.1. Fie $O \in \mathcal{A}_1$ fixat, $v = \overrightarrow{OA} \in V_1$ și $a \in K$ arbitrari. Fie $R \in \mathcal{A}_1$ astfel încât $\overrightarrow{OR} = a\overrightarrow{OA}$. Putem scrie R = aA + (1-a)O, astfel că $T(av) = T(a\overrightarrow{OA}) = T(a\overrightarrow{OA} + (1-a)\overrightarrow{OO}) = T(\overrightarrow{OR}) = \overrightarrow{\tau(O)\tau(R)} = a\overrightarrow{\tau(O)\tau(A)} + (1-a)\overrightarrow{\tau(O)\tau(O)} = a\overrightarrow{\tau(O)\tau(A)} = aT(v)$. Acum folosim omogenitatea deja probată pentru a dovedi aditivitatea lui T.

Acum folosim omogenitatea deja probată pentru a dovedi aditivitatea lui T. Fie $v = \overrightarrow{OA}$, $w = \overrightarrow{OB} \in V_1$ și $x = \frac{1}{2}v + \frac{1}{2}w = \overrightarrow{OR}$ unde $R = \frac{1}{2}A + \frac{1}{2}B$. Rezultă $\tau(R) = \frac{1}{2}\tau(A) + \frac{1}{2}\tau(B)$ și, de aici: $\tau(O)\tau(R) = \frac{1}{2}\tau(O)\tau(A) + \frac{1}{2}\tau(O)\tau(B)$. Deducem $T(\overrightarrow{OR}) = \frac{1}{2}T(\overrightarrow{OA}) + \frac{1}{2}T(\overrightarrow{OB})$. În fine, $T(v + w) = T(2x) = 2T(x) = 2T(\overrightarrow{OR}) = T(\overrightarrow{OA}) + T(\overrightarrow{OB}) = T(v) + T(w)$.

(ii) Dacă τ e afină, atunci fie D=A+B+C. Ştim din lema 2.1 că $\overrightarrow{AD}=\overrightarrow{AC}+\overrightarrow{AC}$. Apoi, fie \overrightarrow{R} echibaricentrul punctelor $\tau(A)$, $\tau(B)$, $\tau(C)$. Din aceeași lemă avem $\overrightarrow{\tau(A)R}=\overrightarrow{\tau(A)\tau(B)}+\overrightarrow{\tau(A)\tau(C)}=T(\overrightarrow{AB})+T(\overrightarrow{AC})=T(\overrightarrow{AB}+\overrightarrow{AC})=T(\overrightarrow{AD})=\overrightarrow{\tau(A)\tau(D)}$, de unde $\tau(D)=R$.

Reciproc, condiția din enunț fiind satisfăcută, arătăm că urma lui τ e liniară. Comportarea bună față de înmulțirea cu scalari rezultă ca la (i). Iar pentru aditivitate, dacă $u = \overrightarrow{AB}, \ v = \overrightarrow{AC}$ și $\overrightarrow{AD} = u + v$, atunci D e echibaricentrul lui A, B, C. Rezultă că $\tau(D)$ e echibaricentrul imaginilor $\tau(A), \tau(B), \tau(C)$, astfel că: $T(u+v) = T(\overrightarrow{AB} + \overrightarrow{AC}) = T(\overrightarrow{AD}) = \overline{\tau(A)\tau(D)} = \overline{\tau(A)\tau(B)} + \overline{\tau(A)\tau(C)} = T(u) + T(v)$.

COROLARUL 2.11. O aplicație afină păstrează raportul a trei puncte coliniare.

COROLARUL 2.12. τ e afină dacă și numai dacă $\tau(\sum_{i=1}^k a_i A_i) = \sum_{i=1}^k a_i \tau(A_i)$ pentru orice $A_i \in \mathcal{A}_1$, $a_i \in K$, $\sum_{i=1}^k a_i = 1$.

COROLARUL 2.13. Dacă \mathcal{A}' e varietate liniară nevidă a lui \mathcal{A}_1 , cu subspațiu director V', atunci $\tau(\mathcal{A}')$ e varietate liniară a lui \mathcal{A}_2 cu subspațiu director T(V').

Demonstrație. Fie $W = \{ \overrightarrow{\tau(O)C} : C \in \tau(\mathcal{A}') \}$ cu $O \in \mathcal{A}'$ fixat. Rezultă W = T(V') și, cum T e liniară, W e subspațiu vectorial, deci $\tau(\mathcal{A}')$ e varietate liniară cu subspațiul director T(V').

Deducem următoarea consecință geometrică:

COROLARUL 2.14. Orice aplicație afină transformă varietăți liniare paralele în varietăți liniare paralele.

Proprietatea de a transforma drepte în drepte și de a păstra paralelismul dreptelor nu ajunge pentru a caracteriza aplicațiile afine. Totuși, în cazul aplicațiilor injective avem:

TEOREMA 2.6. Fie \mathcal{A} , \mathcal{A}' spații afine peste corpurile (comutative) K, K'. Fie $\dim \mathcal{A} \geq 2$. Fie $\tau: \mathcal{A} \to \mathcal{A}'$ o funcție injectivă. Atunci τ e semi-afină dacă și numai dacă verifică următoarele condiții:

(i) Imaginea prin τ a oricărei drepte din A e o dreaptă din A'.

(ii) τ păstrează paralelismul dreptelor.

Demonstrație. Necesitatea e imediată. Probăm suficiența. Arătăm întâi că τ nu confundă dreptele: dacă $\mathcal{D}_1 \neq \mathcal{D}_2'$ în \mathcal{A} , atunci $\tau(\mathcal{D}_1) \neq \tau(\mathcal{D}_2)$ în \mathcal{A}' . Într-adevăr, dacă, prin absurd, $\tau(\mathcal{D}_1) = \tau(\mathcal{D}_2) = \mathcal{D}'$, fie A, B puncte distincte pe \mathcal{D}' . Preimaginile lor vor aparține simultan lui \mathcal{D}_1 și lui \mathcal{D}_2 și vor fi distincte pentru că τ e injectivă. Cum două puncte distincte generează o unică dreaptă afină, rezultă $\mathcal{D}_1 = \mathcal{D}_2$, contradictie.

dreaptă afină, rezultă $\mathcal{D}_1 = \mathcal{D}_2$, contradicție.

Construim acum urma lui τ . Pentru aceasta, să fixăm un punct $A \in \mathcal{A}$ și să definim $T_A: V \to V'$ prin $T_A(v) = \overline{\tau(A)\tau(B)}$ unde B e definit prin $\overrightarrow{AB} = v$. Trebuie să arătăm că definiția lui T_A nu depinde de alegerea lui A. Fie, pentru aceasta, un punct $C \in \mathcal{A}$, $C \neq A$. Fie D astfel încât $\overrightarrow{BD} = v$. Figura (ABDC) e un paralelogram. Dacă dreptele AB și DC nu coincid, atunci paralelogramul e nedegenerat și, din ipoteză, $(\tau(A)\tau(B)\tau(D)\tau(C))$ e tot un paralelogram nedegenerat. Deci $\overrightarrow{\tau(A)\tau(C)} = \overrightarrow{\tau(C)\tau(D)}$ adică $T_A(v) = T_C(v)$. Dacă punctele A, B, C, D sunt coliniare pe \mathcal{D} , cum dim $A \geq 2$, există $P, Q \notin \mathcal{D}$ astfel încât $\overrightarrow{PQ} = v$. Obținem, ca mai sus, $\overrightarrow{\tau(A)\tau(C)} = \overrightarrow{\tau(P)\tau(Q)} = \overrightarrow{\tau(C)\tau(D)}$ de unde $T_A = T_C$. În concluzie, urma e bine definită și va fi notată de acum cu T.

Observăm că din injectivitatea lui τ rezultă că T e injectivă.

Pe de altă parte, fixati $u = \overrightarrow{AB}$, $v = \overrightarrow{BC}$ în V, avem

$$T(u+v) = T(\overrightarrow{AB} + \overrightarrow{BC}) = T(\overrightarrow{AC}) = \overrightarrow{\tau(A)\tau(C)} =$$
$$= \overrightarrow{\tau(A)\tau(B)} + \overrightarrow{\tau(B)\tau(C)} = T(u) + T(v)$$

adică T e aditivă.

Demonstrăm acum că T e semi-liniară. Trebuie să construim un izomorfism de corpuri $\rho: K \to K'$ cu proprietatea $T(au) = \rho(a)T(u)$ pentru orice $a \in K$, $u \in V$. Va fi suficient să definim ρ pentru $u \neq 0$. Fixăm $a \in K$, $u \in V$ și alegem $A, B, C \in \mathcal{A}$ astfel încât $\overrightarrow{AB} = u$, $\overrightarrow{AC} = au$. Deoarece punctele $\tau(A)$, $\tau(B)$, $\tau(C)$ sunt coliniare, vectorii $\overrightarrow{\tau(A)\tau(C)} = T(au)$ și $\overrightarrow{\tau(A)\tau(B)} = T(u)$ sunt dependenți. Rezultă existența unui scalar care, a priori, depinde de a și de u, fie el $\rho(a,u)$, cu proprietatea $T(au) = \rho(a,u)T(u)$. De fapt ρ nu depinde decât de a: pentru $u \neq v$

nenuli, $\rho(a,u)=\rho(a,v)$. Verificăm afirmația întâi pentru u,v liniar independenți. Atunci $T(u),\,T(v)$ sunt, de asemenea, independenți, altfel imaginile prin τ a două drepte distincte, concurente, de direcție u, respectiv v ar fi confundate. Pe de altă parte, aditivitatea lui T implică

$$T(a(u+v)) = T(au) + T(av) = \rho(a,u)T(u) + \rho(a,v)T(v) =$$

= \rho(a, u + v)T(u + v) = \rho(a, u + v)(T(u) + T(v)).

Liniar independența lui $\{T(u), T(v)\}$ atrage după sine egalitatea

$$\rho(a, u) = \rho(a, u + v) = \rho(a, v).$$

Acum, dacă $u\neq 0,\,v\neq 0$ sunt dependenți, cum dim $V\geq 2$, există $w\neq 0$ independent de ei. Aplicăm raționamentul anterior pentru u și w, respectiv v și w. Obținem

$$\rho(a, u) = \rho(a, w) = \rho(a, v)$$

deci într-adevăr ρ nu depinde de u.

Tot ce mai rămâne de demonstrat este faptul că ρ e izomorfism de corpuri. Pentru un $u \in V - \{0\}$ avem relațiile:

$$T((a+b)u) = T(au) + T(bu),$$

$$T(abu) = \rho(ab)T(u) = \rho(a)T(bu) = \rho(a)\rho(b)T(u)$$

care, deoarece $T(u) \neq 0$, implică

$$\rho(a+b) = \rho(a) + \rho(b)$$
 si $\rho(ab) = \rho(a)\rho(b)$,

adică ρ e morfism de corpuri.

 ρ e injectivă: dacă $\rho(a)=0$, alegem $u\neq 0$; rezu126ltă $T(u)\neq 0$ și $\rho(a)T(u)=0$, deci T(au)=0. Cum T e injectivă, avem au=0, de unde a=0.

 ρ e surjectivă: fie $b \in K'$, $u \in V - \{0\}$. Fie \mathcal{D} o dreaptă de direcție u și $A \in \mathcal{D}$. Atunci $\mathcal{D}' = \tau(D)$ e dreapta de direcție T(u) prin $A' = \tau(A)$. Deoarece există un unic punct $B' \in \mathcal{D}'$ astfel încât $\overrightarrow{A'B'} = bT(u)$ și restricția lui τ la orice dreaptă e bijectivă, există un unic $B \in \mathcal{D}$ astfel încât $B' = \tau(B)$. Cum \overrightarrow{AB} e coliniar cu u, există $a \in K$ cu proprietatea $\overrightarrow{AB} = au$. Acum putem scrie

$$\overrightarrow{A'B'} = \overrightarrow{\tau(A)\tau(B)} = T(\overrightarrow{AB}) = T(au) = \rho(a)T(u)$$

de unde deducem $\rho(a) = b$ și demonstrația e completă.

EXERCIȚIUL 2.17. Verificați că dacă dim $\mathcal{A} = \dim \mathcal{A}' = 2$, atunci condiția 2) din enunț decurge din prima și din injectivitatea lui τ .

Se poate demonstra și un rezultat mai general, cunoscut ca *Teorema fundamentală a qeometriei afine*. Ne vom mărgini să-l enunțăm și să schițăm demonstrația.

TEOREMA 2.7. Fie A, A' spații afine peste corpurile comutative K, K' diferite de \mathbb{Z}_2 . Dacă funcția $f: A \to A'$ satisface condițiile:

- (i) Pentru orice dreaptă \mathcal{D} din \mathcal{A} , $f(\mathcal{D})$ e o dreaptă sau un punct din \mathcal{A}' ;
- (ii) dim Af(Im(f)) ≥ 2 .

Atunci f e semi-afină.

Demonstrație. Enumerăm în continuare pașii demonstrației. Cititorul interesat va suplini detaliile.

Pasul 1. f aplică varietăți liniare în varietăți liniare.

 $Pasul\ 2.\ f$ întoarce varietăți liniare în varietăți liniare.

Pasul 3. f comută cu operatorul de închidere afină: pentru orice submulțime $\mathcal{X} \neq \emptyset$ a lui \mathcal{A} , are loc Af $(f(\mathcal{X})) = f(Af(\mathcal{X}))$.

Pasul 4. Fie $\mathcal{D}_1 \| \mathcal{D}_2$ în \mathcal{A} . Atunci $f(\mathcal{D}_1) \| f(\mathcal{D}_2)$ sau ambele se reduc la câte un punct.

Pasul 5. Dacă $A', B' \in \mathcal{A}'$ astfel încât $f^{-1}(A') \neq \emptyset$, $f^{-1}(B') \neq \emptyset$, atunci $f^{-1}(A')$ și $f^{-1}(B')$ sunt varietăți liniare paralele în \mathcal{A} .

Pasul 6. Fie U direcția comună a varietăților liniare nevide de forma $f^{-1}(A') \neq \emptyset$, $A' \in \mathcal{A}'$. Fie A/U mulțimea factor definită de relația de echivalență: $A \sim B$ dacă și numai dacă $\overline{AB} \in U$. Atunci A/U are o unică structură afină pentru care proiecția canonică $p: \mathcal{A} \to \mathcal{A}/U$ e aplicație afină.

Pasul 7. Există o aplicație bijectivă semi-afină $g: \mathcal{A}/U \to \mathcal{A}'$ prin care f se factorizează: f = gp. De aici rezultă că f e semi-afină.

Exercițiul 2.18. Studiind aplicația

$$f: \mathbb{R}^{2n} \to \mathbb{C}^n, (x_1, \dots, x_n, y_1, \dots, y_n) \mapsto (x_1 + iy_1, \dots, x_n + iy_n),$$

bijecție a \mathbb{R} -spațiului vectorial \mathbb{R}^{2n} pe \mathbb{C} -spațiul vectorial \mathbb{C}^n , dovediți că ipoteza din teoremă f duce drepte în drepte nu se poate înlocui cu f păstrează coliniaritatea.

Observația 2.7. Dacă P e un punct din imaginea unei aplicații afine τ , atunci $\tau^{-1}(P)$ e o varietate liniară (numită $fibra \ lui \ \tau \ peste \ P$) cu subspațiul director $\ker T$. Într-adevăr, dacă Q e astfel încât $\tau(Q) = P$, avem $\tau^{-1}(P) = \{R \ ; \ \tau(R) = P\} = \{R \ ; \ T(\overrightarrow{QR}) = \overrightarrow{PP}\} = \ker T$. Rezultă:

COROLARUL 2.15. Pentru orice $P, P' \in \text{Im}\tau$, $\tau^{-1}(P) \parallel \tau^{-1}(P')$.

Totul este pregătit pentru ca cititorul să demonstreze singur:

PROPOZIŢIA 2.18. Fie $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o aplicaţie afină, $P \in \text{Im}\tau$. Atunci $\dim \mathcal{A}_1 = \dim(\text{Im}\tau) + \dim(\tau^{-1}(P))$.

8.1. Reprezentarea matricială a aplicațiilor afine. Fie $\tau: \mathcal{A} \to \mathcal{A}'$ aplicație afină cu urma $T: V \to V'$. Presupunem dim $\mathcal{A} = m$, dim $\mathcal{A}' = n$. Fixăm arbitrar reperele carteziene $\mathcal{R} = \{O; e_1, \ldots, e_m\}$ în \mathcal{A} , $\mathcal{R}' = \{O'; f_1, \ldots, f_n\}$ în \mathcal{A}' . Fie $X = (x_1, \ldots, x_m)$ coordonatele unui punct oarecare $A \in \mathcal{A}$ în reperul \mathcal{R} , $X' = (x'_1, \ldots, x'_n)$ (respectiv $^tB = (b_1, \ldots, b_n)$) coordonatele lui $\tau(A)$ (respectiv $\tau(O)$) în reperul \mathcal{R}' . Au loc relațiile:

$$\overrightarrow{OA} = \sum_{i=1}^{m} x_i e_i, \ \overrightarrow{O'\tau(A)} = \sum_{i=1}^{n} x_i' f_i, \ \overrightarrow{O'\tau(O)} = \sum_{i=1}^{n} b_i f_i.$$

Fie (a_{ij}) matricea urmei T față de reperele $\{e_1,\ldots,e_m\}$, $\{f_1,\ldots,f_n\}$, *i.e.* $T(e_i)=\sum_{j=1}^n a_{ji}f_j$. Putem scrie:

$$\overrightarrow{\tau(O)\tau(A)} = T(\overrightarrow{OA}) = \sum_{i=1}^{m} x_i T(e_i) = \sum_{i=1}^{m} x_i \sum_{j=1}^{n} a_{ji} f_j = \sum_{j=1}^{n} (\sum_{i=1}^{m} a_{ji} x_i) f_j.$$

8 Aplicații afine 77

Cum, pe de altă parte, $\overrightarrow{O'\tau(A)} = \overrightarrow{O'\tau(O)} + \overrightarrow{\tau(O)\tau(A)} = \overrightarrow{O'\tau(O)} + T(\overrightarrow{OA})$, deducem imediat

(2.15)
$$x'_{j} = \sum_{i=1}^{m} a_{ji} x_{i} + b_{j}, \quad j = 1, \dots, n.$$

Relațiile (2.15) se scriu, invariant X' = AX + B. Ținând seama de forma schimbărilor de reper cartezian (2.3), deducem că ecuațiile (2.15) sunt invariante (ca formă) la schimbări afine de reper.

Reciproc, fie $\tau: \mathcal{A} \to \mathcal{A}'$ o aplicație care are, în reperele $\mathcal{R}, \mathcal{R}'$ de mai sus ecuații de forma (2.15). Să arătăm că τ e afină. Nu avem decât să verificăm că urma sa e liniară. Într-adevăr, dacă punem $e_i = \overrightarrow{OA_i}$, coordonatele lui $\tau(A_i)$ vor fi $x_j' = \sum_{k=1}^m a_{jk} \delta_{ik} + b_j = a_{ji} + b_j$ și:

$$T(e_i) = T(\overrightarrow{OA_i}) = \overrightarrow{\tau(O)\tau(A_i)} = -\overrightarrow{O'\tau(O)} + \overrightarrow{O'\tau(A_i)} =$$

$$= -\sum_{j=1}^{n} b_j f_j + \sum_{j=1}^{n} (a_{ji} + b_j) f_j = \sum_{j=1}^{n} a_{ji} f_j, \quad i = 1, \dots, m$$

ceea ce demonstrează că T e liniară. Formulăm concluzia în:

TEOREMA 2.8. O condiție necesară și suficientă ca aplicația $\tau: \mathcal{A} \to \mathcal{A}'$ să fie afină este să existe reperele $\mathcal{R} = \{O; e_1, \ldots, e_m\}$ în \mathcal{A} , $\mathcal{R}' = \{O'; f_1, \ldots, f_n\}$ în \mathcal{A}' astfel încât să fie satisfăcute ecuațiile (2.15), unde (x_1, \ldots, x_m) sunt coordonatele unui punct oarecare $A \in \mathcal{A}$ în reperul \mathcal{R} , (x'_1, \ldots, x'_n) (respectiv (b_1, \ldots, b_n)) sunt coordonatele lui $\tau(A)$ (respectiv $\tau(O)$) în reperul \mathcal{R}' iar (a_{ij}) sunt coordonatele vectorului $T(e_j)$ în reperul $\{f_1, \ldots, f_n\}$.

Observația 2.8. Atunci când $A_1 = A_2$ și τ e bijectivă, matricea (a_{ij}) e nedegenerată și ecuațiile (2.15) au exact forma (2.3). Deci un endomorfism afin bijectiv poate fi privit ca o schimbare de reper afin și reciproc.

În particular obținem:

COROLARUL 2.16. Pentru $\mathcal{R}_1 = \{P_1, P_2, \dots, P_n\}, \ \mathcal{R}_2 = \{Q_1, Q_2, \dots, Q_n\},$ repere afine în \mathcal{A} , există o unică aplicație afină $\tau : \mathcal{A} \to \mathcal{A}$ cu proprietatea $\tau(P_i) = Q_i, i = 1, \dots, n$. În plus, τ e bijectivă.

Demonstrație. Punem $e_i = \overrightarrow{P_1P_i}$, $f_i = \overrightarrow{Q_1Q_i}$ și ne raportăm la reperele carteziene $\{P_1; e_i\}$, $\{Q_1; f_i\}$, $i = 1, \ldots, n$. Considerăm τ unica aplicație afină (conform propoziției 2.15) care duce P_1 în Q_1 și are urma definită de $T(e_i) = f_i$. Rezultă imediat că $\tau(P_i) = Q_i$. Cum matricea lui T în reperele vectoriale considerate este I_n , T e bijectivă, în consecință și τ e bijectivă.

8.2. Puncte fixe. Pentru un endomorfism semi-afin τ al unui spațiu afin \mathcal{A} , un punct O cu proprietatea $\tau(O) = O$ se numește punct fix, sau centru. Avem:

Propoziția 2.19. Fie $I(\tau)$ mulțimea punctelor fixe ale unui endomorfism semi-afin τ cu urma T. Sunt adevărate afirmațiile:

- (i) $Dac\ \ I(\tau) \neq \emptyset$, atunci $I(\tau)$ e o varietate liniar\ \ cu subspaţiul director $I(T) = \mathrm{Ker}(T-1_V)$.
- (ii) Dacă T nu are alte puncte fixe în afara lui 0, τ admite un unic punct fix.

 $\overrightarrow{OM} \in \operatorname{Ker}(T-1_V)$, relaţia de mai sus spune că $M \in I(\tau)$ dacă şi numai dacă $\overrightarrow{OM} \in \operatorname{Ker}(T-1_V)$, ceea ce demonstrează 1).

Dacă T nu are puncte fixe netriviale, atunci $\operatorname{Ker}(T-1_V)=\{0\}$, deci $T-1_V$ e injectivă, în consecință bijectivă, astfel că există un unic punct $M\in\mathcal{A}$ astfel încât $T(\overrightarrow{OM})-\overrightarrow{OM}=\overrightarrow{\tau(O)O}$ ceea ce încheie demonstrația.

Exercițiul 2.19. Fie τ endomorfismul afin al lui \mathbb{R}^2 care în reperul canonic are ecuațiile: $x_1 = -x_1 - x_2$, $x_2' = x_2$. Să se găsească varietatea liniară $I(\tau)$.

8.3. Exemplu: proiecţii.

Definiția 2.13. Un endomorfism afin π idempotent, i.e. $\pi^2=\pi,$ se numește proiecție (afină).

Proiecțiile sunt caracterizate de:

Propoziția 2.20. Punctele imaginii $Im\pi$ sunt fixe pentru o proiecție π . Urma p a unei proiecții afine e o proiecție a spațiului vectorial V. Reciproc: un endomorfism afin cu cel puțin un punct fix și a cărui urmă e o proiecție vectorială este o proiecție afină.

Demonstrație. Fie π o proiecție și $B \in \text{Im}\pi$. Atunci $B = \pi(A), \pi(B) = \pi^2(A) = \pi(A) = B$, adică $B \in I(\pi)$. Cât privește urma p a lui π , să ne raportăm la un punct fix $B \in \text{Im}(\pi)$. Orice $v \in V$ se scrie unic sub forma $v = \overrightarrow{BC}$. Putem scrie: $p^2(v) = p^2(\overrightarrow{BC}) = p(\overrightarrow{B\pi(C)}) = \overrightarrow{B\pi^2(C)} = \overrightarrow{B\pi(C)} = \pi(B)\pi(\overrightarrow{C}) = p(\overrightarrow{BC}) = p(v)$ ceea ce arată că p e o proiecție vectorială.

Reciproc, fie π un endomorfism afin a cărui urmă satisface $p^2 = p$ și cu punctul O fix: $\pi(O) = O$. Conform propoziției 2.16, urma lui π^2 este p^2 . Deci urma lui π^2 este p. Pe de altă parte, π^2 și π au același efect asupra lui O (îl fixează). Cum o aplicație afină e univoc determinată de urma sa și de o pereche de puncte corespondente, rezultă că $\pi^2 = \pi$.

Nucleul U al urmei se numește direcția proiecției afine π . Se mai spune că π e proiecție pe $\mathcal{A}_1 = \operatorname{Im} \pi$, paralelă cu U. Cele de mai sus se pot reformula geometric în

Observația 2.9. Un endomorfism π e o proiecție dacă și numai dacă există un subspațiu U al lui V și o varietate liniară \mathcal{A}_1 cu subspațiul director complementar lui U, astfel încât pentru orice punct $A \in \mathcal{A}$, $\pi(A)$ e punctul de intersecție al lui \mathcal{A}_1 cu varietatea liniară de subspațiul director U care trece prin A.

Putem da acum o interpretare a toremei lui Thales în limbaj de transformări afine. Fie U un subspațiu vectorial fixat în V şi V_1, V_2 doi sumanzi direcți ai săi în V. Considerăm $\mathcal{A}_1, \mathcal{A}_2$, varietăți liniare arbitrare cu subspațiile directoare V_1 , respectiv V_2 . În orice caz, \mathcal{A}_1 nu e paralelă cu \mathcal{A}_2 . Fie π_1 (respectiv π_2) restricția la \mathcal{A}_2 (respectiv \mathcal{A}_1) a proiecției lui \mathcal{A} pe \mathcal{A}_1 (respectiv \mathcal{A}_2) paralelă cu U. Se verifică uşor că $\pi_1: \mathcal{A}_2 \to \mathcal{A}_1$ şi $\pi_2: \mathcal{A}_1 \to \mathcal{A}_2$ sunt bijecții inverse una alteia. De exemplu, $\mathcal{A}_2 = \pi_2(\mathcal{A}_1), a_1 \in \mathcal{A}_1$ e determinat de condițiile $\mathcal{A}_2 \in \mathcal{A}_2$ și $\overline{\mathcal{A}_1\mathcal{A}_2} \in U$. Teorema lui Thales exprimă faptul că acestă corespondență e afină. Mai precis, dacă U e hiperplan, afinitatea acestei corespondențe implică teorema 2.4.

9 Grupul afin 79

Fie în continuare π o proiecție fixată, cu urma p. Căutăm un reper în care π să aibă ecuații cât mai simple. Cum urma p e proiecție vectorială, există descompunerea în sumă dirctă $V=V_1\oplus V_2$ cu $p|_{V_1}=1_{V_1}$ și $p|_{V_2}=0$. Alegem un reper vectorial $\{e_1,\ldots,e_n\}$ adaptat descompunerii: e_1,\ldots,e_m generează V_1 , ceilalți constituie reper în V_2 . Alegem acum un punct $O\in \operatorname{Im}\pi$, deci fix pentru π . Din (2.3) deducem ecuațiile proiecției π în reperul \mathcal{R} :

$$x'_1 = x_1, \dots, x'_m = x_m, x'_{m+1} = \dots = x'_n = 0.$$

9. Grupul afin

Vom studia în cele ce urmează endomorfismele semi-afine bijective ale unui spațiu afin n-dimensional $(\mathcal{A}, V, \varphi)$. Acestea se numesc izomorfisme semi-afine sau $transformări\ semi$ -afine. Din propoziția 2.16 deducem

Corolarul 2.17. Fie τ o transformare semi-afină cu urma T. Urma lui τ^{-1} e T^{-1} .

Aşa cum era de aşteptat avem imediat

Propoziția 2.21. Mulțimea tuturor transformărilor semi-afine ale unui spațiu afin formează grup față de operația de compunere, numit grupul semi-afin al lui $\mathcal A$ și notat $\mathrm{SAGL}(\mathcal A,V,\varphi)$ sau, dacă nu e pericol de confuzie, $\mathrm{SAGL}(\mathcal A)$. Endomorfismele afine formează un subgrup al acestuia, numit grupul afin și notat $\mathrm{AGL}(\mathcal A,V,\varphi)$ sau, pe scurt $\mathrm{AGL}(\mathcal A)$.

Elementele grupului afin se mai numesc afinități. Dacă notăm $\Theta: AGL(\mathcal{A}) \to GL(V)$ aplicația care, unei transformări afine, îi asociază urma, $\Theta(\tau) = T$, atunci propoziția 2.16 ne spune că Θ e un morfism de grupuri.

Datorită reprezentării matriciale descrise în teorema 2.8, fiecare fixare a unui reper în \mathcal{A} produce un izomorfism între grupul afin al spațiului afin abstract $(\mathcal{A}, V, \varphi)$ și produsul direct $GL(n, K) \times K^n$ organizat ca grup în felul următor:

- înmulțirea: $((A,B),(A',B')) \mapsto (A'A,A'B+B')$;
- element neutru: $(I_n, 0)$;
- element simetric: $(A, B)^{-1} = (A^{-1}, -B)$.

O aplicație afină cu cel puțin un punct fix se numește *centro-afină*. O afinitate cu punct fix se numește *centro-afinitate* sau transformare centro-afină. E clar că dacă două aplicații afine au un același punct fix, acesta e fix și pentru compunerea lor. Obținem:

Propoziția 2.22. Multimea transformărilor centro-afine cu centrul fixat formează un subgrup al grupului afin.

Notăm $\mathrm{AGL}(\mathcal{A},O)$ subgrupul transformărilor centro-afine de centru O. Față de orice reper cu originea în O, ecuațiile unei asemenea transformări sunt de forma (vezi (2.15)) $x_i' = \sum_{j=1}^n a_{ij}x_j$, $i=1,\ldots,n$ cu (a_{ij}) nedegenerată. Deducem că $\mathrm{AGL}(\mathcal{A},O)$ și $\mathrm{GL}(n,K)$ sunt izomomorfe.

9.1. Exemple: translații, omotetii, simetrii. Continuăm să studiem grupul afin detaliind proprietățile câtorva clase remarcabile de izomorfisme afine.

Translaţii.

Definiția 2.14. Un endomorfism afin a cărui urmă este identitatea lui V se numește translație.

Deoarece translațiile au urma bijectivă, ele sunt transformări afine.

EXERCIȚIUL 2.20. Folosind propoziția 2.19, arătați că o translație care are puncte fixe este aplicația identică.

Notăm $\mathcal{T}(\mathcal{A})$ mulțimea translațiilor. Avem $\mathcal{T}(\mathcal{A})=\Theta^{-1}(\{1_V\})=\mathrm{Ker}\Theta$ și, cum Θ e morfism, deducem

Propoziția 2.23. Translațiile formează un subgrup normal al lui AGL(A).

Translațiile sunt caracterizate de proprietatea:

Propoziția 2.24. $\tau \in \mathcal{T}(\mathcal{A})$ dacă și numai dacă $\overrightarrow{A\tau(A)} = \overrightarrow{B\tau(B)}$ pentru orice $A, B \in \mathcal{A}$.

Semnificația acestui rezultat este că fiecărei translații i se asociază un vector constant pe care o să-l notăm t. Mai mult, corespondența stabilită e biunivocă, pentru că dat t și $O \in \mathcal{A}$, e unic determinată imaginea $\tau(O)$; cum și urma e cunoscută, τ e bine definită. Dacă $\tau_1, \tau_2 \in \mathcal{T}(\mathcal{A})$ și corespund respectiv vectorilor t_1, t_2 , atunci compunerii lor îi corespunde vectorul $t_1 + t_2$. Într-adevăr:

$$\overrightarrow{A\tau_2(\tau_1(A))} = \overrightarrow{A\tau_1(A)} + \overrightarrow{\tau_1(A)\tau_2(\tau_1(A))} = t_1 + t_2.$$

Am demonstrat

Propoziția 2.25. Grupurile $(\mathcal{T}(\mathcal{A}), \circ)$ și (V, +) sunt izomorfe. În particular, grupul translațiilor e comutativ.

EXERCIȚIUL 2.21. Fie \mathcal{R} un reper al lui \mathcal{A} . Ecuațiile (2.15) devin, pentru o translație

$$x_i' = x_i + b_i, \quad i = 1, \ldots, n$$

unde (b_1, \ldots, b_n) sunt coordonatele în reperul \mathcal{R} ale vectorului asociat translației.

Observația 2.10. O translație e echivalentă cu o schimbare afină de reper în care se modifică doar originea reperului.

Încheiem discuția despre translații cu o teoremă de descompunere

PROPOZIȚIA 2.26. Fie $O \in \mathcal{A}$. Orice afinitate σ se descompune unic sub forma $\tau \circ \theta$ cu τ translație și θ centro-afinitate de centru O.

 $\begin{array}{ll} \textit{Demonstrație}. \ \ \text{Fie} \ t = \overrightarrow{O\sigma(O)} \ \text{și} \ \tau \ \text{translația} \ \text{de vector} \ t. \ \ \text{Să punem} \ \theta = \tau^{-1}\sigma. \\ \text{Atunci} \ \ \overrightarrow{O\sigma(O)} = t = \ \overrightarrow{\theta(O)\tau(\theta(O))} = \ \overrightarrow{\theta(O)\sigma(O)}, \ \ \text{de unde} \ \theta(O) = O \ \ \text{adică} \ \theta \in \ \text{AGL}(\mathcal{A},O). \end{array}$

Dacă există şi descompunerea $\sigma = \tau' \circ \theta'$, cu τ translaţie şi $\theta \in AGL(\mathcal{A}, O)$, avem: $\tau'\tau^{-1} = \sigma\sigma'^{-1}$, deci $\tau'\tau^{-1} \in AGL(\mathcal{A}, O)$. Dar o translaţie cu punct fix este aplicația identică, astfel că $\tau = \tau'$ și, de aici, $\theta = \theta'$.

9 Grupul afin 81

Omotetii.

DEFINIȚIA 2.15. Se numește omotetie (afină) o afinitate pentru care există un scalar nenul k și un punct fixat O astfel încât, dacă $P \mapsto P'$, are loc $\overrightarrow{OP'} = k\overrightarrow{OP}$.

Vom nota o asemenea aplicație cu ${\cal H}_O^k$ și o vom numi omotetie de centru O și putere k.

Observația 2.11. 1) Pentru $k \neq 1$, H_O^k are un unic punct fix, anume O. H_O^1 este aplicația identică a lui $\mathcal A$ indiferent de O.

Intr-adevăr, că O e punct fix rezultă din definiție. Iar dacă O' e alt punct fix, din $\overrightarrow{OO'} = k\overrightarrow{OO'}$ și $k \neq 1$ rezultă O = O'.

- 2) Urma h^k a omotetiei afine H_O^k e o omotetie vectorială. Reamintim că o omotetie vectorială e o un izomorfism h al lui V cu proprietatea că există un scalar $k \in K \{0\}$ astfel încât h(v) = kv (în particular o omotetie afină e o afinitate).
 - 3) Din cele de mai sus rezultă $\overrightarrow{OH_{\mathcal{O}}^k(P)} = k\overrightarrow{OP} + (1-k)\overrightarrow{OO}$ sau, baricentric:

(2.16)
$$H_{\mathcal{O}}^{k}(P) = kP + (1-k)O$$

deci $H_{\mathcal{O}}^k(P)$ e baricentrul cu ponderi (k, 1-k) al sistemului de puncte $\{P, O\}$.

Studiem în continuare mulțimea omotetiilor. Avem întâi:

Propoziția 2.27. Mulțimea H(A, O) a omotetiilor de centru O e subgrup comutativ, izomorf cu K^* , al grupului centro-afin AGL(A, O).

Demonstrație. Fie $H_O^k, H_O^r \in H(\mathcal{A}, O)$. Relația (2.16) implică:

$$H_{\mathcal{O}}^{r}(H_{\mathcal{O}}^{k}(P)) = H_{\mathcal{O}}^{r}(kP + (1-k)O) = r(kP + (1-k)O) + (1-r)O =$$

= $krP + (1-kr)O$

ceea ce arată că $H_O^k \circ H_O^r = H_O^{kr} \in H(\mathcal{A}, O)$. Evident elementul neutru al lui $AGL(\mathcal{A}, O)$, aplicația identică, este în $H(\mathcal{A}, O)$. Inversa omotetiei H_O^k este $H_O^{k^{-1}}$. În fine, se vede imediat că aplicația $f: H(\mathcal{A}, O) \to K^*$, $f(H_O^k) = k$ e un izomorfim de grupuri.

Dacă, însă, două omotetii nu au același centru, compunerea lor nu mai e neapărat o omotetie. Să notăm, pentru simplitate, $H_1 = H_{O_1}^{k_1}$, $H_2 = H_{O_2}^{k_2}$, $O_1 \neq O_2$. Folosind din nou (2.16) avem:

$$H_2 \circ H_1(P) = k_1 k_2 P + k_2 (1 - k_1) O_1 + (1 - k_2) O_2.$$

Pentru ca formula anterioară să fie de tipul (2.16), ar trebui ca $k_2(1-k_1)O_1+(1-k_2)O_2$ să se poată scrie sub forma $(1-k_1k_2)O$, pentru un anume punct O. E clar că acest lucru e posibil dacă și numai dacă $k_1k_2 \neq 1$, în acest caz punctul căutat fiind:

(2.17)
$$O = \frac{k_2(1-k_1)}{1-k_1k_2}O_1 + \frac{1-k_2}{1-k_1k_2}O_2.$$

Dacă, în schimb, $k_1k_2 = 1$, atunci $H_2H_1(P) = P + (k_2 - 1)O_1 + (1 - k_2)O_2$ astfel că $\overrightarrow{PH_2(H_1(P))} = (1 - k_2)\overrightarrow{O_1O_2}$, un vector constant. Am demonstrat:

Propoziția 2.28. Fie $H_{O_1}^{k_1}$, $H_{O_2}^{k_2}$ omotetii de centre diferite. Atunci compunerea $H_{O_2}^{k_2} \circ H_{O_1}^{k_1}$ este:

(i) omotetia $H_O^{k_1k_2}$, cu O definit de (2.17), pentru $k_1k_2 \neq 1$;

(ii) translația de vector $(1-k_2)\overrightarrow{O_1O_2}$, pentru $k_1k_2=1$.

Rezultatul tocmai demonstrat arată că mulțimea tuturor omotetiilor nu formează un subgrup al grupului afin şi, în general, două omotetii nu comută. În schimb, omotetiile şi translațiile, la un loc, formează un subgrup, numit grupul dilatărilor şi notat Dil(A). Dacă notăm cu H(V) subrupul lui GL(V) format de omotetiile vectoriale, constatăm ușor că H(V) e un subgrup normal. Avem, imediat:

Propoziția 2.29. Dil(\mathcal{A}) coincide cu $\Theta^{-1}(\mathcal{H}(V))$, deci este un subgrup normal al lui $AGL(\mathcal{A})$. Subgrupul $\mathcal{H}(\mathcal{A},O)$ al omotetiilor afine de centru fixat O coincide cu $\Theta^{-1}_{|AGL(\mathcal{A},O)}(\mathcal{H}(V))$.

Exercițiul 2.22. O omotetie de centru ${\cal O}$ comută cu orice centro-afinitate cu același centru.

Exercițiul 2.23. Dilatările păstrează paralelismul varietăților liniare.

O caracterizare geometrică a dilatărilor avem în

Exercițiul 2.24. Fie $\tau \in AGL(A)$. Următoarele proprietăți sunt echivalente:

- 1) $\tau \in \text{Dil}(\mathcal{A})$.
- 2) Pentru orice hiperplan $\mathcal{H} \subset \mathcal{A}$, $\tau(\mathcal{H}) \| \mathcal{H}$.

Un rezultat asemănător este:

Exercițiul 2.25. Fie $f:\mathcal{A}\to\mathcal{A}$ o aplicație injectivă care transformă orice dreaptă în una paralelă cu ea. Atunci:

- 1) Dacă, pentru $A \neq B$, dreptele Af(A) și Bf(B) sunt concurente în I, punctul I e fix pentru f.
 - 2) Dacă f are un punct fix I, atunci e omotetie de centru I.
 - 3) Dacă f nu are puncte fixe, atunci e translație.

Rezultatele de mai sus pot fi demonstrate și "analitic", observând că în orice reper, ecuațiile unei omotetii $H^k_{\cal O}$ sunt

$$x_i' = kx_i + (1-k)b_i$$

cu (b_i) coordonatele centrului O în reperul considerat. Sigur că, dacă reperul are originea în centrul omotetiei, ecuațiile se reduc la cele, liniare, ale unei omotetii vectoriale.

EXERCIȚIUL 2.26. Fie H_P^p , H_Q^q , H_R^r trei omotetii care satisfac una dintre relațiile: $H_P^p \circ H_Q^q \circ H_R^r = H_R^r \circ H_Q^p \circ H_Q^q \circ H_R^r = H_R^r \circ H_Q^q \circ H_Q^p \circ H_Q$

Simetrii.

Definiția 2.16. Un endomorfism afin σ cu proprietatea $\sigma^2 = 1_A$ se numește simetrie.

Vom presupune în restul acestui paragraf $\operatorname{car} K \neq 2$ (se va vedea imediat de ce). Simetriile sunt afinități deoarece coincid cu inversele lor. Avem caracterizarea:

Propoziția 2.30. Fie \mathcal{A} un spațiu afin. Atunci $\sigma: \mathcal{A} \to \mathcal{A}$ e simetrie dacă și numai dacă are cel puțin un punct fix și urma sa e o simetrie vectorială.

9 Grupul afin 83

Demonstrație. Fie σ o simetrie cu urma s. Propoziția 2.16 ne spune că s e simetrie vectorială. Fie, apoi, $A \in \mathcal{A}$ arbitrar. Dacă $\sigma(A) \neq A$, fie B mijlocul segmentului $[A\sigma(A)], B = \frac{1}{2}A + \frac{1}{2}\sigma(A)$. Avem $\sigma(B) = \frac{1}{2}\sigma(A) + \frac{1}{2}\sigma^2(A) = \frac{1}{2}\sigma(A) + \frac{1}{2}A = B$, deci B e punct fix.

Reciproc, având drept urmă o simetrie vectorială, σ e o afinitate. Urma lui σ^2 este $s^2 = 1_V$. Cum σ are un punct fix, σ^2 are un punct fix. Rezultă că σ^2 coincide cu identitatea lui \mathcal{A} .

Legătura dintre proiecții și simetrii afine este aceeași cu cea dintre proiecții și simetrii vectoriale. Mai precis, cititorul va demonstra fără dificultate:

Propoziția 2.31. Pentru orice simetrie σ , aplicația $\pi=\frac{1}{2}1_{\mathcal{A}}+\frac{1}{2}\sigma$ e o proiecție. Reciproc, dată proiecția π , aplicația $\sigma=2\pi-1_{\mathcal{A}}$ e o simetrie.

În consecință putem vorbi de direcția unei simetrii (este direcția proiecției asociate). Imaginea proiecției, care coincide cu mulțimea punctelor fixe ale simetriei, se numește axa simetriei. La fel ca pentru proiecții, avem și următoarea descriere geometrică a simetriilor:

Propoziția 2.32. Un endomorfism σ al lui \mathcal{A} e o simetrie afină dacă și numai dacă există un subspațiu vectorial U al lui V și o varietate liniară \mathcal{A}_1 cu subspațiu director un complement al lui U în V astfel încât să fie satisfăcute condițiile:

- (i) $A\sigma(\overrightarrow{A}) \in U$.
- (ii) Mijlocul segmentului $[A\sigma(A)]$ aparține lui A_1 pentru orice $A \in A$.

FIGURA 2.1 Proiecție și simetrie paralele cu direcția V_1 . Planul π are direcția V_2

Tot legătura cu proiecțiile ne spune cum putem găsi un reper convenabil, în care ecuațiile unei simetrii să aibă o formă simplă (canonică). Anume, dată simetria σ , îi asociem proiecția $\pi=\frac{1}{2}1_{\mathcal{A}}+\frac{1}{2}\sigma$ și alegem reperul $\{O;e_1,\ldots,e_m,e_{m+1},\ldots,e_n\}$ cu $O\in\operatorname{Im}\pi$ (deci $\sigma(O)=O)$, $\{e_1,\ldots,e_m\}$ reper în imaginea lui π (care e axa lui σ) și cu $\{e_{m+1},\ldots,e_n\}$ reper în direcția lui π , aceeași cu a lui σ . Atunci $s(e_i)=e_i$ pentru $i=1,\ldots,m$ și $s(e_i)=-e_i$ pentru $i=m+1,\ldots,n$. Ecuațiile lui σ în acest reper sunt:

$$x'_1 = x_1, \dots, x'_m = x_m, x'_{m+1} = -x_{m+1}, \dots, x'_n = -x_n.$$

Simetriile nu formează subgrup al grupului afin. Într-adevăr:

Propoziția 2.33. Orice translație se poate scrie ca produs de două simetrii dintre care una poate fi aleasă arbitrar printre cele ale căror direcții conțin vectorul translației.

Demonstrație. Vom folosi metoda "analitică". Fie τ o translație de vector t și σ o simetrie a cărei direcție conține t. Să considerăm un reper $\{O; e_1, \ldots, e_m, e_{m+1}, \ldots, e_n\}$ ca mai sus. Putem presupune că $t = e_n$. În consecință, coordonatele lui

 $t=\overrightarrow{O\tau(O)}$ sunt $(0,\dots,0,1),$ deci ecuațiile lui τ față de acest reper sunt $x_i'=x_i,$ $i\leq n-1,$ $x_n'=x_n+1.$ Atunci $\zeta=\sigma\circ\tau$ are ecuațiile:

$$x_i' = x_i, i \le m, x_j' = -x_j, j = m+1, \ldots, n-1, x_n' = -x_n - 1.$$

Rezultă $\zeta^2 = 1_A$, adică ζ e simetrie și $\tau = \sigma \circ \zeta$.

Cu metode similare cititorul poate demonstra o reciprocă parțială:

EXERCIȚIUL 2.27. Produsul a două simetrii care au aceeași direcție și axe paralele este o translație.

10. Spaţii afine euclidiene

Teoria pe care o prezentăm acum pune la dispoziție cadrul în care se formalizează geometria euclidiană (metrică). Până acum, într-un spațiu afin arbitrar, am putut discuta doar proprietăți de incidență (intersecție, paralelism). Acum vom lucra cu un spațiu afin real al cărui spațiu director va fi dotat cu un produs scalar. Cu ajutorul lui vom defini și o distanță pe spațiul afin. Astfel, spațiul afin devine un spațiu metric care verifică toate proprietățile cunoscute din matematica de liceu.

Vom folosi aici noțiunile introduse în paragraful dedicat spațiilor vectoriale euclidiene, în special reperele ortonormate, complementul ortogonal al unui subspațiu, transformările ortogonale etc.

În acest paragraf $(\mathcal{E},E,arphi)$ este un spațiu afin real.

10.1. Definiții și proprietăți generale.

Definiția 2.17. Se numește *spațiu afin euclidian* un spațiu afin $(\mathcal{E}, E, \varphi)$ asociat unui spațiu vectorial euclidian (E, \langle , \rangle) .

Reamintim că spațiul vectorial al vectorilor liberi este un spațiu euclidian (vezi exemplul 1.15). În consecință, spațiile geometrice cu două și trei dimensiuni studiate în școală, despre care am văzut că sunt spații afine asociate spațiului vectorial al vectorilor liberi, sunt spații afine euclidiene.

Cu ajutorul normei $||x|| = \sqrt{\langle x, x \rangle}$ induse de produsul scalar pe E se definește distanța $d: \mathcal{E} \times \mathcal{E} \to \mathbb{R}_+$, $d(A, B) = ||\overrightarrow{AB}||$. Se demonstrează imediat că inegalitatea triunghiului pentru normă, urmare a inegalității Schwartz-Cauchy-Buniakovski, implică inegalitatea triunghiului pentru distanță:

$$d(A,C) < d(A,B) + d(B,C)$$

cu egalitate dacă și numai dacă A,B,C sunt coliniare. Într-adevăr, d(A,C)=d(A,B)+d(B,C) e echivalentă (deoarece norma e pozitivă) cu

$$\|\overrightarrow{AC}\|^2 = (\|\overrightarrow{AB}\| + \|\overrightarrow{BC}\|)^2 = \|\overrightarrow{AB}\|^2 + \|\overrightarrow{BC}\|^2 + 2\|\overrightarrow{AB}\| \cdot \|\overrightarrow{BC}\|.$$

Cum $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$, aplicând norma și ridicând la pătrat obținem

$$\|\overrightarrow{AC}\|^2 = \|\overrightarrow{AB}\|^2 + \|\overrightarrow{BC}\|^2 + 2\langle \overrightarrow{AB}, \overrightarrow{BC}\rangle.$$

Deducem $\|\overrightarrow{AB}\| \cdot \|\overrightarrow{BC}\| = \langle \overrightarrow{AB}, \overrightarrow{BC} \rangle$ care, conform inegalității SCB e echivalentă cu dependența liniară a vectorilor $\overrightarrow{AB}, \overrightarrow{BC}, i.e.$ cu coliniaritatea punctelor A, B, C. Atunci când d(A, C) = d(A, B) + d(B, C), vom spune că B e între A și C.

Lema 2.4. $Dac\Breve{a}\ C = aA + bB$ $cu\ a + b = 1$, $atunci\ C$ este între A și B sau B este între A și C după $cum\ 0 < b < 1$ sau b > 1.

Demonstrație. Unul dintre a, b trebuie să fie pozitiv. De aceea enunțul se referă, pentru a face o alegere, la cazul b > 0. Pentru cazul a > 0 se poate obține un enunț similar.

Din b > 0 avem $\overrightarrow{AC} = b\overrightarrow{AB}$ şi $\|\overrightarrow{AC}\| = b\|\overrightarrow{AB}\|$, adică $d_1(A, C) = bd_1(A, B)$.

Dacă 0 < b < 1, atunci a > 0 și avem $\overrightarrow{BC} = a\overrightarrow{BA} = (1-b)\overrightarrow{BA}$. De aici d(B,C) = (1-b)d(A,B). În acest caz d(A,B) = d(A,C) + d(B,C), deci C se află între A și B.

Dacă b>1, atunci $0<\frac{1}{b}<1$ şi $0<1-\frac{1}{b}=-\frac{a}{b}$. Relaţia C=aA+bB implică $-a\overrightarrow{CA}=b\overrightarrow{CB}$ şi de aici $\overrightarrow{CB}=-\frac{a}{b}\overrightarrow{CA}$, ceea ce conduce la $d(C,B)=-\frac{a}{b}d(C,A)$ şi, în fine, la d(A,B)+d(B,C)=d(A,C), adică B este între A şi C.

Lema 2.5. (\mathcal{E},d) e un spațiu metric.

În spațiile geometrice cu două și trei dimensiuni, distanța astfel introdusă coincide cu distanța definită axiomatic.

Într-un spațiu afin euclidian considerăm o clasă particulară de repere; anume:

Definiția 2.18. Un reper cartezian $\{O; e_1, \ldots, e_n\}$ se numește *ortonormat* dacă reperul $\{e_1, \ldots, e_n\}$ e ortonormat în E.

Observația 2.12. Între repere ortonormate vom folosi schimbări de reper ortonormate. Acestea sunt, în particular, schimbări afine de reper, deci de forma $x'_i = \sum_{j=1}^n a_{ij} x_j + b_i$, dar cu matricea (a_{ij}) ortogonală.

Proprietatea următoare arată că spațiile afine euclidiene generalizează spațiile euclidiene studiate în școală.

Propoziția 2.34. Fie (x_1,\ldots,x_n) , (y_1,\ldots,y_n) coordonatele punctelor A, B față de un reper ortonormat $\{O;e_1,\ldots,e_n\}$ al lui \mathcal{E} . Atunci

$$d(A, B) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}.$$

 $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$, determinăm coordonatele acestui vector: $\overrightarrow{AB} = \sum_{i=1}^{n} (y_i - x_i)e_i$. Avem apoi, folosind liniaritatea produsului scalar și relațiile de ortonormalitate $\langle e_i, e_j \rangle = \delta_{ij}$:

$$d(A,B) = \|\overrightarrow{AB}\|^2 = \langle \sum_{i=1}^n (y_i - x_i)e_i, \sum_{j=1}^n (y_j - x_j)e_j \rangle =$$

$$= \sum_{i,j=1}^n (y_i - x_i)(y_j - x_j)\langle e_i, e_j \rangle =$$

$$= \sum_{i,j=1}^n (y_i - x_i)(y_j - x_j)\delta_{ij} = \sum_{i=1}^n (y_i - x_i)^2.$$

EXERCIȚIUL 2.28. (Teorema lui Pitagora⁷) Pentru trei puncte A, B, C ale unui spațiu afin euclidian, $\overrightarrow{AB} \perp \overrightarrow{AC}$ dacă și numai dacă $d(A,B)^2 + d(A,C)^2 = d(B,C)^2$.

 $^{^7\}mathrm{Pitagora}$ din Samos, 560-480 î.C., filozof grec. S-a ocupat și de geometrie, teorie muzicală și astronomie.

EXERCIȚIUL 2.29. Într-un spațiu afin euclidian, $\{A, B, C, D\}$ e un paralelogram dacă şi numai dacă d(A, B) = d(D, C) şi d(A, D) = d(B, C).

În privința varietăților liniare ale spațiilor afine euclidiene, ele sunt varietăți liniare ale spațiului afin dat. Structura euclidiană a spațiului vectorial E se induce pe fiecare subspațiu al lui E, astfel că spațiile directoare ale varietăților liniare sunt, la rândul lor, spații euclidiene. În concluzie, orice varietate liniară a unui spațiu afin euclidian este un spațiu afin euclidian. Tot ceea ce știm deja despre varietățile liniare ale unui spațiu afin rămâne valabil. Vom vedea acum ce proprietăți specifice apar.

11. Varietăți liniare perpendiculare

DEFINIȚIA 2.19. Fie $\mathcal{E}_1, \mathcal{E}_2$ varietăți liniare cu subspațiile directoare E_1, E_2 . $\mathcal{E}_1, \mathcal{E}_2$ se zic perpendiculare dacă $E_1 \perp E_2$, adică pentru orice $v_1 \in E_1, v_2 \in E_2$ are loc $\langle v_1, v_2 \rangle = 0$. Dacă $E_1^{\perp} = E_2$ (echivalent, dim \mathcal{E}_1 + dim \mathcal{E}_2 = dim \mathcal{E}), varietățile liniare se numesc normale. Dacă $\mathcal{E}_1, \mathcal{E}_2$ sunt normale, spunem că \mathcal{E}_1 (respectiv \mathcal{E}_2) are direcția normală E_2 (respectiv E_1).

Simetria relației de perpendicularitate este imediată: $\mathcal{E}_1 \perp \mathcal{E}_2$ dacă și numai dacă $\mathcal{E}_2 \perp \mathcal{E}_1$.

Folosind lema 2.3 obtinem:

Propoziția 2.35. Pentru un punct fixat $A \in \mathcal{E}$ și o varietate liniară \mathcal{E}_1 , există o unică varietate liniară \mathcal{E}_2 care trece prin A și e normală la \mathcal{E}_1 .

Intersecția dintre două varietăți liniare perpendiculare poate fi foarte mare sau vidă: două plane perpendiculare în spațiul geometric cu 3 dimensiuni se taie după o dreaptă, două drepte perpendiculare în același spațiu pot fi necoplanare. În schimb:

Propozitia 2.36. Intersecția a două varietăți liniare normale este un punct.

Demonstrație. Arătăm întâi că intersecția a două varietăți normale nu poate fi vidă. Fie $\mathcal{E}_1, \mathcal{E}_2$ varietăți liniare normale. Avem $E = E_1 \oplus E_2$ și $E_1 \perp E_2$, astfel că orice vector din E se descompune unic ca suma a doi vectori perpendiculari, din E_1 , respectiv E_2 . În particular, pentru $A_1 \in \mathcal{E}_1$, $A_2 \in \mathcal{E}_2$, $A_1A_2 = x_1 + x_2$, $x_1 \in E_1$, $x_2 \in E_2$. Pentru vectorul x_1 , există un unic punct $B_1 \in \mathcal{E}_1$ astfel încât $x_1 = \overline{A_1B_1}$. Acum putem scrie: $A_2B_1 = \overline{A_1B_1} - \overline{A_1A_2} = -x_2 \in E_2$, deci $B_1 \in \mathcal{E}_2$. Rezultă $B_1 \in \mathcal{E}_1 \cap \mathcal{E}_2$.

Pentru a vedea că intersecția se reduce la un singur punct, observăm că, deoarece $\mathcal{E}_1 \cap \mathcal{E}_2 \neq \emptyset$, avem $\dim(\mathcal{E}_1 \cap \mathcal{E}_2) = \dim(E_1 \cap E_2) = \dim\{0\} = 0$. Cum numai varietățile liniare formate dintr-un singur punct au dimensiune zero, demonstrația e încheiată.

În particular, o dreaptă perpendiculară pe un hiperplan se va numi normală la hiperplan. Folosind și teorema lui Pitagora avem:

COROLARUL 2.18. Fie \mathcal{H} un hiperplan şi A un punct nesituat în \mathcal{H} . Fie B punctul în care normala la \mathcal{H} prin A intersectează \mathcal{H} (piciorul perpendicularei din A pe \mathcal{H}). Atunci $d(A,B)=\min\{d(A,C)\;;\;C\in\mathcal{H}\}$ şi reciproc.

Distanța d(A,B) se numește distanța de la A la hiperplanul \mathcal{H} și se notează $d(A,\mathcal{H})$. Afirmația reciprocă a corolarului poate fi interpretată astfel: pentru orice punct nesituat pe un hiperplan, există un unic punct din hiperplan în care se atinge minimul (care a priori e un infimum) mulțimii $\{d(A,C) \mid C \in \mathcal{H}\}$.

11.1. Geometrie analitică euclidiană. Demonstrăm întâi:

Propoziția 2.37. Fie $O \in \mathcal{E}$ fixat, E_2 un subspațiu al lui E și $\{v_1, \ldots, v_{n-p}\}$ o bază a lui E_2 . Fie $A_0 \in \mathcal{E}$ și $r_0 = \overrightarrow{OA_0}$. O condiție necesară și suficientă ca un punct $A \in \mathcal{E}$ să aparțină varietății liniare \mathcal{E}_1 care trece prin A_0 și are direcția normală E_2 este ca vectorul $r = \overrightarrow{OA}$ să satisfacă ecuațiile:

$$\langle v_1, r - r_0 \rangle = \langle v_2, r - r_0 \rangle = \dots = \langle v_{n-p}, r - r_0 \rangle = 0.$$

Demonstrație. Fie E_1 subspațiul director al lui \mathcal{E}_1 ($E_1 = E_2^{\perp}$). Atunci $A \in \mathcal{E}_1$ dacă și numai dacă $\overrightarrow{A_0A} \perp E_2$. Dar ortogonalitatea unui vector pe un subspațiu vectorial este echivalentă cu ortogonalitatea acelui vector pe toți vectorii unei baze oarecare (și deci pe vectorii oricărei baze) a subspațiului. Rezultă condițiile echivalente $\langle \overrightarrow{A_0A}, v_i \rangle = 0$. Mai rămâne să observăm că $\overrightarrow{A_0A} = \overrightarrow{OA} - \overrightarrow{OA_0} = r - r_0$.

Dacă în \mathcal{E} fixăm un reper ortonormat $\mathcal{R} = \{O; e_1, \dots, e_n\}$, putem exprima vectorii v_i din baza lui E_2 sub forma: $v_j = \sum_{i=1}^n v_{ji}e_i, j = 1, \dots, n-p$. Presupunând ca A are coordonatele (x_1, \dots, x_n) şi A_0 are coordonatele (x_1^0, \dots, x_n^0) în acest reper, ecuațiile găsite anterior devin:

$$\langle \sum_{i=1}^{n} v_{ki} e_i, \sum_{j=1}^{n} (x_j - x_j^0) e_j \rangle = 0, \quad k = 1, \dots, n-p$$

sau, în virtutea biliniarității produsului scalar și a ortonormalității reperului $\{e_i\}$:

(2.18)
$$\sum_{i=1}^{n} v_{ki}(x_i - x_i^0) = 0, \quad k = 1, \dots, n - p.$$

În cazul p=n-1 regăsim ecuația unui hiperplan sub forma

$$(2.19) a_1 x_1 + a_2 x_2 + \dots + a_n x_n + b = 0$$

unde am notat $v_{1i} = a_i$, i = 1, ..., n și $\sum_{i=1}^n v_{1i} x_i^0 = b$. Ceea ce ne dă în plus această ecuație, acum, este interpretarea coeficienților a_i din ecuația unui hiperplan: ei sunt parametrii directori ai oricărei normale la plan. Altfel spus, normala la hiperplanul de ecuație (2.19), dusă prin punctul de coordonate $(x_{01}, ..., x_{0n})$, are ecuațiile

(2.20)
$$\frac{x_1 - x_{01}}{a_1} = \frac{x_2 - x_{02}}{a_2} = \dots = \frac{x_n - x_{0n}}{a_n}.$$

În particular, două hiperplane sunt paralele dacă și numai dacă orice două normale ale lor sunt paralele. Definim acum unghiul a două drepte dintr-un spațiu afin euclidian ca fiind acel număr $\theta \in [0, \frac{\pi}{2}]$ dat de relația

$$\cos \theta = \frac{|\langle u_1, u_2 \rangle|}{\|u_1\| \cdot \|u_2\|},$$

 u_1, u_2 fiind, respectiv vectori nenuli din subspațiile directoare ale celor două drepte. E clar că definiția nu depinde de alegerea lui u_1, u_2 .

Să calculăm acum unghiul θ_i dintre o dreaptă \mathcal{D} , de ecuație (2.20) și dreapta de direcție e_i care trece prin originea O a reperului la care ne raportăm (numită

axa de coordonate Ox_i a reperului). Știm că un vector nenul care dă direcția lui \mathcal{D} este chiar $u = a_1e_1 + \cdots + a_ne_n$, deci:

$$\cos \theta_i = \frac{|\langle e_i, u \rangle|}{\|e_i\| \sqrt{\sum_{j=1}^n a_j^2}} = \frac{a_i}{\sqrt{\sum_{j=1}^n a_j^2}}.$$

Pe de altă parte, ne amintim că parametrii directori ai unei drepte sunt definiți până la multiplicarea cu o constantă. Astfel, ei pot fi totdeauna aleşi în așa fel ca suma pătratelor lor să fie 1 (operația aceasta revenind la a considera pe direcția lui \mathcal{D} un vector u unitar); ecuația (2.20) cu $\sum_{j=1}^n a_j^2 = 1$ se zice $\hat{i}n$ forma normală. Obținem: $a_i = \cos \theta_i$, adică $\hat{i}n$ forma normală, parametrii directori ai unei drepte reprezintă cosinusurile unghiurilor făcute de dreaptă cu axele de coordonate respective. De aceea acești parametri directori se mai numesc cosinusuri directoare.

11.2. Distanța de la un punct la o varietate liniară.

DEFINIȚIA 2.20. Fie \mathcal{E}_1 o varietate liniară a spațiului afin euclidian \mathcal{E} și A un punct din \mathcal{E} . Se numește distanța de la A la \mathcal{E}_1 numărul real pozitiv $d(A,\mathcal{E}_1) = \min\{d(A,B) \; ; \; B \in \mathcal{E}_1\}.$

Am văzut deja (corolarul 2.18) că acest număr e bine definit dacă \mathcal{E}_1 e hiperplan. Pentru a vedea că el e bine definit și în cazul în care dim $\mathcal{E}_1 = p < n-1$, observăm că \mathcal{E}_1 e un hiperplan al lui $\{A\} + \mathcal{E}_1$, dacă $A \notin \mathcal{E}_1$.

Propoziția 2.38. Fie \mathcal{H} un hiperplan de ecuație (2.19) într-un reper ortonormat și A un punct cu coordonatele $(\alpha_1, \ldots, \alpha_n)$ în același reper. Atunci

$$d(A, \mathcal{H}) = \frac{|a_1\alpha_1 + \dots + a_n\alpha_n + b|}{\sqrt{a_1^2 + \dots + a_n^2}}.$$

Demonstrație. Pasul 1. Calculăm distanța $d(O, \mathcal{H})$ de la originea reperului la hiperplan. Ecuația normalei la hiperplan prin O este

$$\frac{x_1}{a_1} = \dots = \frac{x_n}{a_n} = t.$$

Pentru a determina coordonatele lui B, intersecția acestei normale cu \mathcal{H} , găsim întâi parametrul t corespunzător: $t=-\frac{b}{\sum_{i=1}^n a_i^2}$. Rezultă coordonatele lui B: $(-a_1 \frac{b}{\sum_{i=1}^n a_i^2}, \dots, -a_n \frac{b}{\sum_{i=1}^n a_i^2})$. Atunci

$$d(O, \mathcal{H}) = d(A, B) = \frac{|b|}{\sqrt{\sum_{i=1}^{n} a_i^2}}.$$

Pasul 2. Trecem de la reperul $\{O; e_1, \ldots, e_n\}$ la reperul $\{A; e_1, \ldots, e_n\}$ cu schimbarea de reper $x_i = y_i + \alpha_i, i = 1, \ldots, n$. Trebuie remarcat că prin această schimbare de coordonate noul reper este la rândul său ortonormat, deci distanța se calculează cu aceeași formulă. În noile coordonate, ecuația hiperplanului devine

$$\alpha_1 x_1 + \dots + \alpha_n x_n + \sum_{i=1}^n a_i \alpha_i + b = 0,$$

iar coordonatele lui A sunt $(0,\ldots,0)$. Acum putem aplica pasul 1 și demonstrația este încheiată.

12 Izometrii 89

Fie, acum, $\mathcal{E}_1, \mathcal{E}_2$, două varietăți liniare. Vrem să definim distanța dintre ele. Ca mai înainte, vom considera mulțimea $\Delta = \{d(A_1, A_2) \mid A_1 \in \mathcal{E}_1, A_2 \in \mathcal{E}_2\}$. E normal să punem $d(\mathcal{E}_1, \mathcal{E}_2) = \min \Delta$. Dar, pentru aceasta avem nevoie de:

Lema 2.6. Multimea Δ are un minim.

Demonstrație. Δ conține doar numere pozitive. Dacă $\mathcal{E}_1 \cap \mathcal{E}_2 \neq \emptyset$, atunci e clar că minimul este 0.

Presupunem acum $\mathcal{E}_1 \cap \mathcal{E}_2 = \emptyset$. Fixăm $O_1 \in \mathcal{E}_1$, $O_2 \in \mathcal{E}_2$. Deoarece $\overrightarrow{A_1A_2} = \overrightarrow{A_1O_1} + \overrightarrow{O_1O_2} + \overrightarrow{O_2A_2}$ și $d(A_1A_2) = \|\overrightarrow{A_1A_2}\|$, putem rescrie Δ sub forma $\Delta = \{\|\overrightarrow{O_1O_2} + u_1 + u_2\| \mid u_1 \in E_1, u_2 \in E_2\} = \{\|\overrightarrow{O_1O_2} + u\| \mid u \in E_1 + E_2\}$. Fie \mathcal{E}_3 varietatea liniară care trece prin O_2 și are subspațiul director $E_1 + E_2$. Atunci orice $u \in E_1 + E_2$ e de forma $u = \overrightarrow{O_2A_3}$, cu $A_3 \in \mathcal{E}_3$. Acum Δ devine $\Delta = \{\|\overrightarrow{O_1A_3}\| \mid A_3 \in \mathcal{E}_3\}$ și rezultă că min $\Delta = d(O_1, \mathcal{E}_3)$ ceea ce încheie demonstrația.

EXERCIȚIUL 2.30. Într-un spațiu afin euclidian 3-dimensional, să se găsească perpendiculara comună a două drepte şi să se calculeze distanța dintre aceste drepte.

EXERCIȚIUL 2.31. În spațiul afin euclidian \mathbb{R}^3 se consideră dreapta δ de ecuații: $x=y,\,z=1$. Să se determine toate dreptele care au direcția (1,0,-1) și distanța 1 față de δ .

EXERCIȚIUL 2.32. Formulați și demonstrați teorema celor trei perpendiculare într-un spațiu afin euclidian 3-dimensional.

12. Izometrii

Acest paragraf e dedicat morfismelor de spații afine euclidiene. Fie $\mathcal{E}_1, \mathcal{E}_2$ două astfel de spații. Notăm $\langle, \rangle_i, \|\cdot\|_i, d_i, i=1,2$ cele două produse scalare (respectiv norme, distanțe). Avem la dispoziție două tipuri de aplicații:

- (1) aplicații afine cu urma aplicație ortogonală (reamintim că o aplicație liniară e ortogonală dacă păstrează produsele scalare sau, echivalent, dacă păstrează normele);
- (2) privind \mathcal{E}_1 , \mathcal{E}_2 ca spații metrice, putem considera izometrii între ele, adică aplicații care păstrează distanțele dintre puncte.

Să precizăm lucrurile:

Definiția 2.21. O aplicație $\tau:\mathcal{E}_1\to\mathcal{E}_2$ se numește *izometrie* dacă $d_1(A,B)=d_2(\tau(A),\tau(B))$ pentru orice $A,B\in\mathcal{E}_1.$

EXERCIȚIUL 2.33. Să se arate că translațiile și simetriile ortogonale (anume cele cu proprietatea că direcția e normală pe axă; altfel spus, simetriile afine a căror urmă e o simetrie ortogonală vectorială) sunt izometrii. Se pot folosi ecuațiile acestor transformări în repere ortonormate și formula distanței în coordonate.

Observăm că, *a priori*, o izometrie nu e aplicație afină. Totuși, motivați de exemplele anterioare, vom arăta, că, de fapt, orice izometrie e aplicație afină cu urma ortogonală. Mai întâi, câteva rezultate preliminare.

Dată o aplicație arbitrară (nu neapărat afină) $\tau: \mathcal{E}_1 \to \mathcal{E}_2$, pentru orice $O \in \mathcal{E}_1$ fixat, este definită aplicația $T: E_1 \to E_2$ prin $T(v) = \overrightarrow{\tau(O)\tau(A)}, \ v = \overrightarrow{OA}$. Se vede ușor că ea nu depinde de alegerea lui O. Aceasta este urma lui τ . Avem:

Lema 2.7. Urma unei izometrii păstrează normele.

Într-adevăr, dacă τ e izometrie, fixând $O \in \mathcal{E}_1$, orice $u \in E_1$ se scrie $u = \overrightarrow{OA}$ şi $\|u\|_1 = \|\overrightarrow{OA}\|_1 = d_1(O, A) = d_2(\tau(O), \tau(A)) = \|\overrightarrow{\tau(O)\tau(A)}\|_2 = \|T(u)\|_2$.

Lema 2.8. O izometrie e injectivă.

Pentru că din $\tau(A)=\tau(B)$ rezultă $d_2(\tau(A),\tau(B))=0$ și de aici $d_1(A,B)=0,$ de unde A=B.

Direct din definiția relației "între" rezultă:

Lema 2.9. O izometrie păstrează relația "a fi între": dacă C e între A și B, atunci $\tau(C)$ e între $\tau(A)$ și $\tau(B)$.

Lema 2.10. O aplicație afină cu urma ortogonală e injectivă.

Asta pentru că o aplicație afină e injectivă numai odată cu urma sa, iar aplicațiile ortogonale sunt injective.

Lema 2.11. O aplicație afină cu urma ortogonală e izometrie.

Rezultă din șirul de egalități

$$d_2(\tau(A), \tau(B)) = \|\overrightarrow{\tau(A)\tau(B)}\| = \|T(\overrightarrow{AB})\| = \|\overrightarrow{AB}\| = d_1(A, B).$$

Acum suntem pregătiți pentru

Teorema 2.9. O izometrie este aplicație afină cu urma ortogonală și reciproc.

Demonstrație. Datorită lemei 2.11, mai trebuie demonstrat doar că o izometrie $\tau: \mathcal{E}_1 \to \mathcal{E}_2$ e afină, cu urma T ortogonală. Pentru a arăta că τ e afină aplicăm teorema de caracterizare 2.5.

Fie $A, B \in \mathcal{E}_1$, C = aA + bB, a + b = 1. Cum unul dintre a, b este sigur pozitiv, noi vom presupune b > 0. Pentru a face o alegere, presupunem, în plus, b > 1 (Cazul 0 < b < 1 se tratează similar). Din lema 2.4 rezultă că B se află între A și C. În particular, notând $A' = \tau(A)$, $B' = \tau(B)$, $C' = \tau(C)$, din lema 2.9 rezultă că vectorii $\overrightarrow{A'B'}$ și $\overrightarrow{B'C'}$ sunt liniar dependenți. Ținând seama și de relația care există între normele lor, $\|\overrightarrow{B'C'}\| = |\frac{a}{b}| \cdot \|\overrightarrow{B'A'}\|$, rezultă C' = aA' + bB', deci τ e afină.

Rămâne de văzut că urma T e ortogonală. Știm că T e liniară și păstrează normele (lema 2.7). Rezultă din identitatea de polarizare, $2\langle x,y\rangle = \|x+y\|^2 - \|x\|^2 - \|y\|^2$, că T păstrează produsul scalar. Acum demonstrația e completă. \square

COROLARUL 2.19. O izometrie aplică varietăți liniare în varietăți liniare de aceeași dimensiune.

Demonstrație. Privim izometria au ca aplicație afină cu urma ortogonală. Atunci corolarul 2.13 ne spune că, pentru orice subspațiu afin \mathcal{E}' cu subspațiu director E', $\operatorname{Im}_{\mathcal{T}|\mathcal{E}'}$ e subspațiu afin cu direcția T(E'). Cum T e injectivă, relația $\dim \operatorname{Ker} T_{|E'|} + \dim \operatorname{Im} T_{|E'|} = \dim E'$ arată că $\dim \operatorname{Im} T_{|E'|} = \dim E'$. \square

COROLARUL 2.20. O izometrie între două spații afine euclidiene de aceeași dimensiune este izomorfism.

E clar că o compunere de două izometrii este tot o izometrie şi că a aplicația identică a oricărui spațiu afin euclidian e izometrie. În consecință putem vorbi despre grupul $O(\mathcal{E})$ al izometriilor unui spațiu afin euclidian (numit şi grupul deplasărilor lui \mathcal{E}), subgrup al lui $AGL(\mathcal{E})$. Există izometrii cu puncte fixe, de exemplu simetriile cu axa redusă la un punct (numite simetrii centrale). Deci are sens să vorbim despre subgrupul $O(\mathcal{E},I) \subset AGL(\mathcal{E},I)$ al izometriilor care fixează punctul I. Reamintim că am notat cu Θ aplicația care asociază unei aplicații afine urma ei. E imediat faptul că $\Theta_{|O(\mathcal{E},I)}: O(\mathcal{E},I) \to O(E)$ e izomorfism. Deci:

Propoziția 2.39. Grupurile $O(\mathcal{E}, I)$ și O(E) sunt izomorfe.

12 Izometrii 91

Este un fapt important care ne permite să cunoaștem structura izometriilor cu punct fix cunoscând-o pe cea a transformărilor ortogonale (vezi paragraful 8.1 din capitolul 1).

Pe de altă parte, direct din propoziția 2.26 rezultă:

Propoziția 2.40. Pentru fiecare $I \in \mathcal{E}$, o izometrie se descompune unic în produsul dintre o izometrie cu punct fix I și o translație.

EXERCIȚIUL 2.34. Folosiți clasificarea transformărilor ortogonale pe dreaptă și în spații 2 și 3-dimensionale, precum și propoziția 2.40 pentru a descrie structura grupului deplasărilor pentru spațiile afine euclidiene 1, 2 și 3-dimensionale.

Continuăm cu o teoremă de descompunere, consecință a teoremei 1.36:

TEOREMA 2.10. Orice izometrie a unui spațiu afin euclidian \mathcal{E} n-dimensional se poate descompune în produs de cel mult n+1 simetrii ortogonale față de hiperplane.

Demonstrație. Pasul 1. Presupunem întâi $\tau \in \mathcal{O}(\mathcal{E},I)$. Atunci urma sa T este în $\mathcal{O}(E)$ și $T \neq 1_E$ pentru că translațiile nu au puncte fixe. Conform teoremei 1.36, T se descompune în produs de cel mult n simetrii vectoriale ortogonale față de hiperplane ale lui E: $T = s_1 \circ \cdots \circ s_r, r \leq n$. Cum $\Theta_{|\mathcal{O}(\mathcal{E},I)}$ e izomorfism pe imagine, punem $\sigma_i = \Theta_{|\mathcal{O}(\mathcal{E},I)}^{-1}(s_i), i = 1, \ldots, n$. Rezultă imediat $\sigma_i^2 = \Theta_{|\mathcal{O}(\mathcal{E},I)}^{-1}(s_i) \circ \Theta_{|\mathcal{O}(\mathcal{E},I)}^{-1}(s_i) = \Theta_{|\mathcal{O}(\mathcal{E},I)}^{-1}(s_i^2) = \Theta_{|\mathcal{O}(\mathcal{E},I)}^{-1}(1_E) = 1_{\mathcal{E}}$, deci σ_i sunt simetrii ortogonale față de hiperplane. Aplicând acum $\Theta_{|\mathcal{O}(\mathcal{E},I)}^{-1}$ descompunerii lui T se obține $\tau = \sigma_1 \circ \cdots \circ \sigma_r$.

Pasul 2. Presupunem în continuare că τ nu are nici un punct fix. Fie $O \in \mathcal{E}$ arbitrar și \mathcal{H} hiperplanul mediator al segmentului $[O\tau(O)]$ (perpendicular pe segment în mijlocul acestuia). Fie $\sigma_{\mathcal{H}}$ simetria ortogonală față de \mathcal{H} . Atunci O e punct fix pentru $\eta = \sigma_{\mathcal{H}} \circ \tau$: $\eta(O) = \sigma_{\mathcal{H}}(\tau(O)) = O$. Aplicăm pasul 1 pentru η și avem $\eta = \sigma_1 \circ \cdots \circ \sigma_r$, $r \leq n$. Rezultă $\tau = \sigma_{\mathcal{H}} \circ \sigma_1 \circ \cdots \circ \sigma_r$ și demonstrația e completă. \square

EXERCIȚIUL 2.35. În legătură cu propoziția 2.33, decideți dacă orice translație se poate descompune în produs de două simetrii ortogonale față de hiperplane.

Revenind la izometriile între spații afine euclidiene oarecare, să dăm și o caracterizare în termeni de repere ortonormate. Anume, combinând teorema 2.8 cu propoziția 1.32 obținem:

TEOREMA 2.11. O condiție necesară și suficientă pentru ca aplicația $\tau: \mathcal{E}_1 \to \mathcal{E}_2$ să fie o izometrie este existența reperelor ortonormate $\mathcal{R}_1 = \{O_1; e_1, \ldots, e_m\}$ în $\mathcal{E}_1, \mathcal{R}_2 = \{O_2; f_1, \ldots, f_n\}$ în \mathcal{E}_2 astfel încât pentru un punct P cu coordonatele (x_1, \ldots, x_m) în reperul \mathcal{R}_1 , coordonatele (x_1', \ldots, x_n') ale lui $\tau(P)$ în reperul \mathcal{R}_2 să fie de forma:

$$x_i' = \sum_{j=1}^n a_{ij}x_j + b_i, \quad i = 1, \ldots, m \quad si \quad \sum_{i=1}^m a_{ij}a_{ik} = \delta_{jk} \quad j, k = 1, \ldots, n.$$

Observația 2.13. În particular, dacă $\mathcal{E}_1 = \mathcal{E}_2$, vedem că o izometrie poate fi privită ca o schimbare între repere ortonormate. Acest lucru ne va fi util la clasificarea metrică a hipercuadricelor.

13. Hipercuadrice în K^n

În acest paragraf K va fi un corp *comutativ* arbitrar şi K^n va fi considerat cu structura sa canonică de spațiu afin peste K. Totuşi, în toate exemplele pe care le vom da, K va fi \mathbb{R} sau \mathbb{C} .

Până acum am studiat doar submulțimi ale spațiului afin care se pot caracteriza ca soluții ale unor sisteme de ecuații liniare, anume varietățile liniare. Hipercuadricele vor fi caracterizate de ecuații pătratice. Mai precis:

DEFINIȚIA 2.22. Se numește hipercuadrică o submulțime γ a lui K^n ale cărei puncte (x_1, \ldots, x_n) satisfac condiția:

(2.21)
$$\sum_{i,j=1}^{n} a_{ij} x_i x_j + 2 \sum_{i=1}^{n} b_i x_i + c = 0$$

unde $a_{ij}, b_i, c \in K$, $a_{ij} = a_{ji}, i, j = 1, ..., n$ și cel puțin un coeficient a_{ij} e nenul. Pentru n = 2 (respectiv n = 3) hipercuadrica se numește conică (respectiv cuadrică).

Reamintim că pentru orice $x=(x_1,\ldots,x_n)$, scalarii x_1,\ldots,x_n reprezintă coordonatele lui x în reperul canonic $\mathcal{R}=\{O;e_1,\ldots,e_n\},\ O=(0,\ldots,0),\ e_i=(0,\ldots,1,0,\ldots,0),\ i=1,\ldots,n$ al lui K^n . Astfel că putem numi (2.21) ecuația hipercuadricei γ în reperul \mathcal{R} .

Dacă notăm $X = {}^{\mathrm{t}}(x_1, \ldots, x_n)$, $a = (a_{ij})$ (deci a e o matrice $n \times n$ simetrică, de rang cel puţin 1, $b = (b_1, \ldots, b_n)$, putem scrie ecuaţia (2.21) sub formă matricială

$$(2.22) {}^{t}XaX + 2bX + c = 0.$$

Să introducem, de asemenea, matricea

$$A = \begin{pmatrix} a & {}^{t}b \\ b & c \end{pmatrix}.$$

Atunci, punând $\overline{X}={}^{\mathrm{t}}(x_1,\ldots,x_n,1),$ ecuația hipercuadricei devine

$${}^{\mathrm{t}}\overline{X}A\overline{X} = 0.$$

Vom spune că a este matricea hipercuadricei, iar A matricea sa extinsă.

Fie Γ mulțimea hipercuadricelor din K^n . Introducem pe Γ următoarea relație de echivalență:

Definiția 2.23. Hipercuadricele γ și γ' sunt *echivalente* dacă există un automorfism afin τ al lui K^n astfel încât $\tau(\gamma)=\gamma'$. Notăm $\gamma\sim\gamma'$ echivalența hipercuadricelor.

Când $K = \mathbb{R}$ şi pe \mathbb{R}^n se consideră structura de spaţiu afin euclidian, cerem ca τ să fie, în plus, izometrie şi scriem $\gamma \cong \gamma'$. În acest caz, \cong se numeşte congruență.

Proprietățile afine (respectiv metrice) ale hipercuadricelor sunt aceleași în interiorul fiecărei clase de echivalență (respectiv congruență). De aceea, pasul esențial în studiul hipercuadricelor este împărțirea lor în clase de echivalență și găsirea invarianților afini sau metrici care determină apartenența hipercuadricei la o clasă sau alta. E clar că toți invarianții metrici sunt și afini, dar nu invers. Acest proces se numește clasificare afină (respectiv metrică) a hipercuadricelor. Vom face întâi clasificare afină, pe care, apoi, în cazul spațiului afin euclidian \mathbb{R}^n , o vom rafina pentru a obține clasificarea metrică față de relația de congruență. Propoziția care urmează ne spune că rangurile matricelor a, A sunt invarianți afini.

Propoziția 2.41. Fie $\gamma_1, \gamma_2 \in \Gamma$ de ecuații, respectiv ${}^{\mathrm{t}}\overline{X}A_1\overline{X} = 0$, ${}^{\mathrm{t}}\overline{X}A_2\overline{X} = 0$. Dacă $\gamma_1 \sim \gamma_2$, atunci $\mathrm{rang}\,(a_1) = \mathrm{rang}\,(a_2)$ și $\mathrm{rang}\,(A_1) = \mathrm{rang}\,(A_2)$.

 $\begin{array}{lll} \textit{Demonstrație}. & \text{Fie } \tau \text{ un automorfism afin al lui } K^n \text{ care transformă } \gamma_2 \text{ în } \gamma_1. \\ \text{Dacă notăm cu } (x_1', \dots, x_n') \text{ coordonatele lui } \tau(x), \text{ atunci există matricea } C \in \operatorname{GL}(n,K) \text{ și vectorul coloană } d \text{ astfel încât are loc relația} \end{array}$

$$X = CX' + d.$$

Cum $\tau(\gamma_2)=\gamma_1$, punând CX'+d în ecuația lui γ_1 trebuie să obținem ecuația lui γ_2 . După un calcul simplu, folosind ${}^{\rm t}(UV)={}^{\rm t}V{}^{\rm t}U$, rezultă

(2.24)
$${}^{t}Ca_{1}C = a_{2}$$

de unde $rang(a_1) = rang(a_2)$ pentru că C e nedegenerată.

Fie acum $\overline{C} = \begin{pmatrix} C & d \\ 0 & 1 \end{pmatrix}$. Observăm că $\det(\overline{C}) = \det(C) \neq 0$, deci $\overline{C} \in \mathrm{GL}(n+1,K)$. Vom arăta că

$${}^{\mathrm{t}}\overline{C}A_{1}\overline{C} = A_{2},$$

astfel că și $\operatorname{rang}(A_1) = \operatorname{rang}(A_2)$.

Pentru aceasta vom face un mic artificiu care își va găsi justificarea deplină abia în capitolul de geometrie proiectivă. Să observăm că fiecărui punct $(x_1, \ldots, x_n) \in K^n$ îi putem atașa punctul $(z_0, \ldots, z_n, z_0) \in K^{n+1}$ cu $z_0 \neq 0$ astfel încât $x_i = \frac{z_i}{z_0}$ pentru orice $i = 1, \ldots, n$. De exemplu, putem pune $z_0 = 1$ și $z_i = x_i$ în rest. Deci pentru (x_1, \ldots, x_n) dat, (n+1)-tuplul (z_1, \ldots, z_n, z_0) nu e unic determinat, dar pentru noi, aici, e important doar că el există. Putem acum scrie ecuația hipercuadricei în coordonatele z_i sub forma:

(2.26)
$$\sum_{\alpha,\beta=0}^{n} a_{\alpha\beta} z_{\alpha} z_{\beta} = 0$$

unde am pus $a_{00}=c,\ a_{\alpha 0}=a_{0\alpha}=b_{\alpha}$ pentru $\alpha=1,\ldots,n$. În aceleași coordonate z_{α} , automorfismul afin τ se scrie:

$$(2.27) z_{\alpha} = \sum_{\beta=0}^{n} c_{\alpha\beta} z_{\beta}'$$

unde $c_{00} = 1$, $c_{0\beta} = 0$, $c_{\beta 0} = d_{\beta}$ pentru $\beta = 1, \ldots, n$ (şi, ca mai sus, $x'_i = \frac{z'_i}{z_0}$). Am găsit astfel matricea \overline{C} . Acum substituim coordonatele z_{α} date de (2.27) în (2.26) şi găsim relația (2.25).

Observația 2.14. Notând $r = \operatorname{rang} a, \ r' = \operatorname{rang} A, \ \operatorname{rezultă}$ relația $r \leq r' \leq r+2.$

Determinanții matricelor a,A vor avea și ei un rol în ceea ce urmează. Să notăm $\delta=\det(a)$ și $\Delta=\det(A)$, numiți respectiv "determinantul mic" și "determinantul mare" al hipercuadricei. Relațiile (2.24) și (2.25) ne spun că δ și Δ nu sunt invarianți afini. În schimb, observând că $\det(\overline{C})=\det(C)$, rezultă imediat

Propoziția 2.42. Dacă $\delta \neq 0$, atunci raportul $\frac{\Delta}{\delta}$ e invariant afin.

Pe de altă parte, din aceleași relații (2.24) și (2.25) se vede că dacă δ sau Δ este nul (respectiv nenul) pentru o hipercuadrică, atunci el este nul (respectiv nenul) pentru toate hipercuadricele echivalente cu ea.

Definiția 2.24. Hipercuadricele pentru care $\Delta \neq 0$ se numesc nedegenerate. Cele pentru care $\Delta = 0$ se numesc degenerate.

Rolul lui δ în studiul hipercuadricelor va rezulta din discuția care urmează.

Centre. Din punct de vedere geometric, sunt mai uşor de studiat figurile care au simetrii (faţă de un punct, faţă de o axă, faţă de un plan etc.). De aceea ne vor interesa în primul rând hipercuadricele care au centre. Definiţia precisă este:

Definiția 2.25. Se numește centru al hipercuadricei nevide γ un punct $P_0 \in K^n$ cu proprietatea că simetria de centru P_0 invariază γ , adică: $\sigma_{P_0}(P) \in \gamma$ pentru orice $P \in \gamma$.

Observația 2.15. Dacă P_0 e centru al hipercuadricei nevide γ , are loc relația $P_0 = \frac{1}{2}P + \frac{1}{2}\sigma_{P_0}(P)$ pentru orice $P \in \gamma$. Atunci, dacă τ e o transformare afină avem

$$\tau(P_0) = \frac{1}{2}\tau(P) + \frac{1}{2}\tau(\sigma_{P_0}(P))$$

(conform teoremei 2.5). Pe de altă parte, prin calcul direct, utilizând ecuațiile lui τ , σ_{P_0} și $\sigma_{\tau(P_0)}$, deducem că $\tau \circ \sigma_{P_0} = \sigma_{\tau(P_0)} \circ \tau$. Deci P_0 e centru al hipercuadricei γ dacă și numai dacă $\tau(P_0)$ e centru al hipercuadricei transformate $\tau(\gamma)$ pentru orice transformare afină τ . Cu alte cuvinte, toate hipercuadricele unei clase de echivalență au simultan centre (în același număr) sau nu au deloc.

Să presupunem în continuare că γ are un centru P_0 . Ar fi mai simplu din punct de vedere al calculelor dacă centrul ar fi chiar originea reperului standard. Conform observației de mai sus, putem căuta în clasa de echivalență a lui γ o hipercuadrică cu centrul în $O=(0,\ldots,0)$. O găsim foarte simplu: facem translația $\tau:y_i=x_i-x_{i0}$, cu x_{i0} coordonatele lui P_0 și $i=1,\ldots,n$; hipercuadrica echivalentă $\tau(\gamma)$ are centrul în $O=\tau(P_0)$. Dacă (2.21) este ecuația lui γ , atunci $\tau(\gamma)$ va avea ecuația:

(2.28)
$$\sum_{i,j=1}^{n} a_{ij} y_i y_j + 2 \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ij} x_{j0} + b_i) y_i + f(x_{10}, \dots, x_{n0}) = 0$$

unde am considerat $f: K^n \to K$ dată prin

$$f(x_1, \dots, x_n) = \sum_{i,j=1}^n a_{ij} x_i x_j + 2 \sum_{i=1}^n b_i x_i + c.$$

Cum ecuațiile simetriei față de O sunt $y_i = -x_i$, rezultă că (y_1, \ldots, y_n) verifică ecuația (2.28) dacă și numai dacă $(-y_1, \ldots, -y_n)$ o verifică. Astfel că (y_1, \ldots, y_n) trebuie să satisfacă simultan (2.28) și:

(2.29)
$$\sum_{i,j=1}^{n} a_{ij} y_i y_j - 2 \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ij} x_{j0} + b_i) y_i + f(x_{10}, \dots, x_{n0}) = 0.$$

Scăzând membru cu membru ecuațiile (2.28) și (2.29) obținem

(2.30)
$$\sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ij} x_{j0} + b_i) y_i = 0.$$

Dacă ar exista un indice i pentru care $\sum_{j=1}^{n} a_{ij}x_{j0} + b_i \neq 0$, ar rezulta că (2.30) e ecuația unui hiperplan H și $\tau(\gamma) \subseteq H$, în contradicție cu definiția hipercuadricei. Deci, în mod necesar avem

(2.31)
$$\sum_{j=1}^{n} a_{ij} x_{j0} + b_i = 0, \quad i = 1, \dots, n.$$

Am obtinut astfel următoarea

Propoziția 2.43. Mulțimea centrelor unei hipercuadrice este un subspațiu afin. Dacă în reperul canonic al lui K^n hipercuadrica are ecuația (2.21), în același reper subspațiul afin al centrelor are ecuațiile (2.31).

Un caz aparte îl reprezintă hipercuadricele cu centru unic, cele pentru care sistemul de ecuații (2.31) are soluție unică. Găsim astfel interpretarea geometrică a determinantului δ :

Corolarul 2.21. O hipercuadrică are centru unic dacă și numai dacă determinantul său "mic" δ este nenul. În acest caz, soluția unică sistemului (2.31) reprezintă coordonatele centrului în reperul canonic al lui K^n .

Matriceal, sistemul (2.31) se scrie

$$aX + b = 0$$
.

Observația 2.16. Dacă notăm cu f_k derivata parțială a funcției f în raport cu variabila x_k , sistemul (2.31) este echivalent cu

$$f_k = 0, \quad k = 1, \dots, n.$$

Exercițiul 2.36. Determinați condiția necesară și suficientă ca un centru să se afle pe hipercuadrică.

Axe. În clasificare metrică a hipercuadricelor cu centru, un rol important îl vor juca eventualele simetrii ortogonale față de drepte care trec prin centru; acestea se vor numi axe. Dar noțiunea de axă are sens și în context afin:

DEFINIȚIA 2.26. Fie γ o hipercuadrică de ecuație (2.21) cu centru unic. Se numește $ax\check{a}$ orice dreaptă afină care trece prin centru și a cărei direcție este dată de un vector propriu al matricei a.

O hipercuadrică cu centru unic are întotdeauna n axe distincte, pentru că matricea a, fiind simetrică, admite o bază de vectori proprii. Dar alegerea axelor poate să nu fie unică: dacă o valoare proprie a matricei a are multiplicitate p, acesteia îi corespunde un subspațiu propriu de dimensiune p în care se pot alege arbitrar p vectori liniar independenți care vor da direcțiile a p axe. Alegerea este unică în cazul în care a are n valori proprii distincte pentru matricea a, i.e. polinomul caracteristic $\det(a - \lambda I_n)$ are n rădăcini distincte.

Exercițiul 2.37. Pentru o hipercuadrică în \mathbb{R}^n cu centru unic, arătați că axele sunt chiar axe de simetrie, adică simetria ortogonală față de o axă invariază hipercuadrica. Mai general, dacă U este un p-plan trecând prin originea reperului canonic, de direcție un subspațiu propriu corespunzător unei valori proprii a matricei a de multiplicitate p, atunci simetria ortogonală față de U invariază hipercuadrica.

Tratăm în continuare câteva chestiuni de tangență.

Definiția 2.27. O dreaptă de ecuație

$$(2.32) x_i = x_{0i} + tl_i, i = 1, \dots, n; t \in K$$

se numește direcție asimptotică pentru hipercuadrica de ecuație (2.21) dacă

(2.33)
$$\sum_{i,j=1}^{n} a_{ij} l_i l_j = 0.$$

Observația 2.17. Peste \mathbb{R} , numai hipercuadricele cu matrice (a_{ij}) nepozitiv definită admit direcții asimptotice.

Definiția 2.28. Se numește tangentă în punctul P_0 al unei hipercuadrice o dreaptă care nu are direcție asimptotică și intersectează hipercuadrica numai în punctul P_0 sau care este inclusă în hipercuadrică.

Existența dreptelor tangente la o hipercuadrică este legată și de anume calități ale punctelor. Avem nevoie de următoarea:

DEFINIȚIA 2.29. Fie P_0 un punct de coordonate (x_1^0, \ldots, x_n^0) pe hipercuadrica γ de ecuație (2.21). P_0 se numește punct regulat dacă există $i \in \{1, \ldots, n\}$ astfel încât $f_{x_i}(x_1^0, \ldots, x_n^0) = 2(\sum_{j=1}^n a_{ij}x_j^0 + b_i) \neq 0$. Un punct care nu e regulat se numește singular.

E uşor de văzut că, în general, într-un punct al unei hipercuadrice există mai multe tangente. Studiem acum locul geometric al punctelor care stau pe tangentele într-un punct P_0 fixat pe o hipercuadrică γ de ecuație (2.21). Ținând seama şi de ecuația (2.32), obținem ecuația în t:

(2.34)
$$t^2 \sum_{i,j=1}^n a_{ij} l_i l_j + 2t \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} x_j^0 + b_i \right) l_i + 2 \sum_{j=1}^n b_j x_j^0 + c = 0.$$

Aceasta admite soluția $t_1=0$ corespunzătoare lui $P_0\in\gamma\cap d$. Cum d nu are direcție asimptotică, avem $\sum_{i,j=1}^n a_{ij}l_il_j\neq 0$ și ecuația de mai sus e de gradul al doilea. Atunci, deoarece $d\cap\gamma=\{P_0\}$, (2.34) trebuie să aibă soluție dublă $t_1=t_2=0$, ceea ce conduce la anularea coeficientului lui t în (2.34). Ținând cont că $P_0\in\gamma$ și că n-uplul (l_1,\ldots,l_n) este proporțional cu $(x_1-x_1^0,\ldots,x_n-x_n^0)$, ajungem la:

(2.35)
$$\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} x_{j}^{0} + b_{i}\right) x_{i} + \sum_{j=1}^{n} b_{j} x_{j}^{0} + c = 0.$$

Observând că ecuația de mai sus reprezintă un hiperplan dacă și numai dacă P_0 este punct regulat, putem da:

DEFINIȚIA 2.30. Fie P_0 punct regulat al unei hipercuadrice de ecuație (2.21). Hiperplanul de ecuație (2.35) se numește hiperplan tangent la hipercuadrică în punctul P_0 .

Observația 2.18. Să numim *generatoare* a unei hipercuadrice o dreaptă inclusă în hipercuadrică. Vedem atunci că orice generatoare a unei hipercuadrice are direcție asimptotică, după cum se vede ușor pe ecuația (2.34). În plus, generatoarele hipercuadricei printr-un punct regulat, dacă există, sunt cuprinse în hiperplanul tangent.

Ecuația hiperplanului tangent se poate obține prin dedublarea ecuației hipercuadricei: în ecuația (2.21) se înlocuiesc produsele x_ix_j cu expresiile $\frac{1}{2}(x_j^0x_i+x_{0i}x_j)$. Aceasta e doar o regulă mnemotehnică, a fost deja întâlnită în liceu, la scrierea ecuației tangentei la o conică.

14. Clasificarea afină a hipercuadricelor

Teorema de clasificare afină a hipercuadricelor din K^n . Orice hipercuadrică de ecuație (2.21) este afin echivalentă cu una și numai una dintre hipercuadricele de ecuații:

$$\lambda_1 y_1^2 + \dots + \lambda_r y_r^2 = 0, \quad r \le n.$$

(2.37)
$$\lambda_1 y_1^2 + \dots + \lambda_r y_r^2 - 1 = 0, \quad r \le n.$$

(2.38)
$$\lambda_1 y_1^2 + \dots + \lambda_r y_r^2 - y_{r+1} = 0, \quad r \le n - 1.$$

Demonstrație. Căutăm un automorfism afin care să transforme o hipercuadrică fixată de ecuație (2.21) într-o hipercuadrică având una dintre ecuațiile din enunț. Pentru aceasta, fie $Q: K^n \to K$ forma pătratică de matrice a:

$$Q(x) = \sum_{i,j=1}^{n} a_{ij} x_i x_j, \quad x = (x_1, \dots, x_n) \in K^n.$$

Conform teoremei lui Gauss 1.6, Q poate fi adusă la forma canonică cu ajutorul unui izomorfism vectorial $T \in GL(n, K)$, adică, dacă $T(x) = (y_1, \ldots, y_n)$, avem:

$$Q(T(x)) = \lambda_1 y_1^2 + \dots + \lambda_r y_r^2$$

unde $r=\operatorname{rang} a$ și coeficienții $\lambda_1,\ldots,\lambda_r\in K-\{0\}$. Există o unică aplicație afină (de fapt centro-afină) τ de urmă T și care verifică $\tau(O)=O$ (vezi propoziția 2.15), unde $O=(0,\ldots,0)$ este originea reperului canonic la lui K^n . În plus, cum o aplicație afină este bijectivă dacă și numai dacă urma sa este bijectivă, τ este un automorfism afin al lui K^n . Atunci $\tau(\gamma)$ are ecuația:

(2.39)
$$\lambda_1 y_1^2 + \dots + \lambda_r y_r^2 + 2b_1' y_1 + \dots + 2b_n' y_n + c = 0$$

deoarece transformarea făcută, fiind de fapt omogenă, nu influențează termenul liber al ecuației (2.21).

Rămâne acum să reducem termenii de gradul 1 din ecuația obținută. Acest lucru se realizează prin translația t (care nu afectează termenii de gradul 2):

(2.40)
$$\begin{cases} y_i = z_i - \frac{b_i'}{\lambda_i}, & i = 1, \dots, r \\ y_j = z_j. \end{cases}$$

Hipercuadrica transformată $(t \circ \tau)(\gamma)$ are ecuația:

(2.41)
$$\lambda_1 z_1^2 + \dots + \lambda_r z_r^2 + 2b'_{r+1} z_{r+1} + \dots + 2b'_n z_n + c' = 0.$$

Dar, conform observației 2.14, $r' \leq r + 2$.

Dacă r' < r+2, rezultă $b'_{r+1} = \cdots = b'_n = 0$ și ecuația lui $(t \circ \tau)(\gamma)$ este de forma (2.36) dacă r=r' (în acest caz transformarea afină căutată este $t \circ \tau$) sau

$$\lambda_1 z_1^2 + \dots + \lambda_r z_r^2 + c' = 0, \quad c' \neq 0$$

dacă r' = r + 1. După simplificarea ecuației rezultate cu c' (operație posibilă pentru că funcțiile $f(x_1, \ldots, x_n)$ și $c' f(x_1, \ldots, x_n)$ au aceași mulțime de zerouri), vedem că $(t \circ \tau)(\gamma)$ are forma (2.37).

Dacă r' = r + 2, există $i \in \{r + 1, ..., n\}$ astfel încât $b'_i \neq 0$. După o eventuală renumerotare a indicilor (care revine la un automorfism afin α care schimbă între ele

coordonatele), putem presupune $b'_{r+1} \neq 0$. Aplicăm acum hipercuadricei $(\alpha \circ t \circ \tau)(\gamma)$ automorfismul afin β definit prin:

$$\begin{cases} u_i = z_i, & i = 1, \dots, r, r+2, \dots, n \\ u_{r+1} = -(2b'_{r+1}z_{r+1} + \dots + 2b'_nz_n + c'). \end{cases}$$

E clar că ecuația hipercuadricei $(\beta \circ \alpha \circ t \circ \tau)(\gamma)$ e de forma (2.38).

In concluzie, am demonstrat că, din punct de vedere afin, există trei clase disjuncte de hipercuadrice echivalente, fiecare clasă putând fi caracterizată de una dintre ecuațiile (2.36), (2.37), (2.38). Dacă $K = \mathbb{C}$, fiecare clasă e caracterizată de una dintre condițiile rang $A = \operatorname{rang} a$, respectiv rang $A = \operatorname{rang} a + 1$, respectiv rang A = rang a + 2. Mai precis, avem:

Teorema de clasificare afină a hipercuadricelor din \mathbb{C}^n . Două hipercuadrice din \mathbb{C}^n sunt echivalente dacă și numai dacă au aceiași r și r'.

Demonstrație. Fie $\gamma \sim \gamma_1$. Conform propoziției 2.41, $r=r_1$ și $r'=r'_1$. Reciproc, să presupunem că pentru hipercuadricele γ și γ_1 , $r=r_1$ și $r'=r'_1$. Trei situații sunt posibile: r'=r, r'=r+1 sau r'=r+2. Dacă r'=r, atunci există $\lambda_1,\ldots,\lambda_r\in K-\{0\}$ (respectiv $\lambda'_1,\ldots,\lambda'_r\in K-\{0\}$)

astfel încât γ (respectiv γ_1) e reprezentată de ecuația

$$\lambda_1 y_1^2 + \dots + \lambda_r y_r^2 = 0$$

(respectiv

$$\lambda_1' y_1^2 + \dots + \lambda_r' y_r^2 = 0$$
.

Definim transformarea afină τ prin:

$$\begin{cases} y_i' &= \sqrt{\frac{\lambda_i}{\lambda_i'}} y_i, & i = 1, \dots, r \\ y_i' &= y_i, & i = r + 1, \dots, n. \end{cases}$$

E clar că prin această transformare prima ecuați de mai sus trece în a doua, deci $\tau(\gamma) = \gamma_1$. Rezultăcă $\gamma \sim \gamma_1$. Celelalte două situații se tratează analog.

COROLARUL 2.22. Orice hipercuadrică în \mathbb{C}^n este echivalentă afin cu una dintre hipercuadricele:

$$(2.42) y_1^2 + \dots + y_r^2 = 0, \quad r < n.$$

$$(2.43) y_1^2 + \dots + y_r^2 - 1 = 0, \quad r \le n.$$

$$(2.44) y_1^2 + \dots + y_r^2 - y_{r+1} = 0, \quad r < n-1.$$

Ecuațiile (2.42), (2.43), (2.44) se numesc ecuațiile canonice ale hipercuadricelor din \mathbb{C}^n .

Particularizăm acum teorema de clasificare afină a hipercuadricelor din K^n pentru $K = \mathbb{R}$. În acest caz, forma pătratică Q, considerată la începutul demonstrației, poate fi adusă la o formă normală printr-un izomorfism vectorial al lui \mathbb{R}^n (conform teoremei 1.7). Astfel, putem considera $\lambda_1 = \cdots = \lambda_p = 1$ şi $\lambda_{p+1} = \cdots = \lambda_r = -1$ (cu $p \leq \left\lceil \frac{r}{2} \right\rceil$ pentru a face o alegere); p se numea indexul formei pătratice și, prin extensie, îl numim indexul hipercuadricei. Atunci ecuațiile (2.36), (2.37), (2.38) devin, respectiv:

$$(2.45) y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2 = 0, \quad r \le n.$$

$$(2.46) y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2 - 1 = 0, \quad r \le n$$

(2.46)
$$y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2 - 1 = 0, \quad r \le n.$$

$$(2.47) \qquad y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2 - y_{r+1} = 0, \quad r \le n-1.$$

Putem enunța:

Teorema de clasificare afină a hipercuadricelor din \mathbb{R}^n . Două hipercuadrice din spațiul afin real \mathbb{R}^n sunt echivalente dacă și numai dacă au aceiași r,

Demonstrație. Suficiența a fost observată înaintea enunțului. Pentru necesitate, dacă $\gamma \sim \gamma_1$, $r = r_1$, $r' = r_1'$ ca mai sus. În plus, p este un invariant al formei pătratice (conform teoremei de inerție a lui Sylvester), deci este invariant al matricei hipercuadricei. Astfel avem și p = p'.

Corolarul 2.23. Orice hipercuadrică reală este afin echivalentă cu una și numai una dintre ecuațiile (2.45), (2.46), (2.47).

Să particularizăm acum teorema anterioară la cazul \mathbb{R}^2 . Obținem clasificarea afină a conicelor reale, prezentată sintetic în Tabelul 1.

Tabelul 1. Clasificarea afină a conicelor reale

r'	r	Forma canonică afină	Denumirea conicei
3	2	$x_1^2 + x_2^2 - 1 = 0$	elipsă
		$x_1^2 + x_2^2 - 1 = 0$ $x_1^2 - x_2^2 - 1 = 0$ $x_1^2 + x_2^2 + 1 = 0$	hiperbolă
		$x_1^2 + x_2^2 + 1 = 0$	elipsă vidă
3	1	$x_1^2 - 2x_2 = 0$	parabolă
2	2	$x_1^2 + x_2^2 = 0$ $x_1^2 - x_2^2 = 0$	punct dublu
		$x_1^2 - x_2^2 = 0$	pereche de drepte secante
2	1	$x_1^2 - 1 = 0$ $x_1^2 + 1 = 0$	pereche de drepte paralele
		$x_1^2 + 1 = 0$	pereche de drepte vidă
1	1	$x_1^2 = 0$	dreaptă dublă

Particularizând aceeași teoremă în cazul n=3 obținem clasificarea afină a cuadricelor reale (vezi Tabelul al 2-lea).

Observația 2.19. Cuadricele nevide, nedegenerate (cele cu $\Delta \neq 0$) sunt: elipsoidul, hiperboloidul cu o pânză, hiperboloidul cu două pânze, paraboloidul eliptic și paraboloidul hiperbolic. Cuadricele nevide degenerate ($\Delta = 0$) sunt conul, cilindrul eliptic, cilindrul hiperbolic, cilindrul parabolic și perechile de plane.

Observația 2.20. Cuadricele nevide cu centru unic $(\delta \neq 0)$ sunt: elipsoidul, hiperboloidul cu o pânză, hiperboloidul cu două pânze, conul, punctul dublu. Dintre acestea, numai conul își conține centrul.

Pe de altă parte, din tabel se vede că singurele cuadrice fără centru unic care nu au deloc centre sunt paraboloidul eliptic, paraboloidul hiperbolic şi cilindrul parabolic. Celelalte cuadrice, adică: cilindrul eliptic, cilindrul hiperbolic, perechile de plane, planul dublu, dreapta dublă, posedă câte o infinitate de centre.

Observația 2.21. Putem scufunda K^n ca un hiperplan în K^{n+1} punând

$$K^n = \{(x_1, \dots, x_n, 1)\} \subset K^{n+1}.$$

Acum ecuația unei hipercuadrice γ din K^n se poate scrie sub forma

$$({}^{\mathrm{t}}X,1)A\begin{pmatrix}X\\1\end{pmatrix}=0$$

în timp ce ecuația

$$({}^{\mathbf{t}}X,x_{n+1})A\begin{pmatrix}X\\x_{n+1}\end{pmatrix}=0$$

reprezintă o hipercuadrică γ_1 din K^{n+1} care intersectează hiperplanul $x_{n+1}=1$ după hipercuadrica γ . E clar că avem $r'=r_1$ (matricea "mare" a lui γ este matricea "mică" a lui γ_1).

Aplicăm observația de mai sus pentru n=2 și $K=\mathbb{R}$. Cum ecuația lui γ_1 e omogenă, din tabelul 2 găsim pentru γ_1 posibilitățile: punct dublu, con, dreaptă dublă, pereche de plane secante sau plan dublu. Astfel, orice conică din \mathbb{R}^2 poate fi privită ca intersecția dintre un plan cu una dintre cuadricele de mai sus. Cum determinantul "mic" al lui γ_1 coincide cu determinantul "mare" al lui γ , dacă γ e nedegenerată, γ_1 are centru unic. Rezumând, obținem următorul rezultat care justifică denumirea hipercuadricelor lui \mathbb{R}^2 :

Teorema 2.12. (Dandelin⁸) Orice conică nedegenerată, nevidă e intersecția unui con cu un plan care nu trece prin vârful conului.

 $^{^8\}mathrm{Pierre}$ Germinal Dandelin, 1794-1847, matematician și inginer de geniu belgian.

Tabelul 2. Clasificarea afină a cuadricelor reale

r'	r	Forma canonică afină	Denumirea cuadricei
4	3	$x_1^2 + x_2^2 + x_3^2 - 1 = 0$	elipsoid
		$x_1^2 + x_2^2 - x_3^2 - 1 = 0$	hiperboloid cu o pânză
		$x_1^2 - x_2^2 - x_3^2 - 1 = 0$	hiperboloid cu două pânze
		$-x_1^2 - x_2^2 - x_3^2 - 1 = 0$	elipsoid vid
4	2	$x_1^2 + x_2^2 - x_3 = 0$	paraboloid eliptic
		$x_1^2 - x_2^2 - x_3 = 0$	paraboloid hiperbolic
3	3	$x_1^2 + x_2^2 + x_3^2 = 0$	punct dublu
		$x_1^2 + x_2^2 - x_3^2 = 0$	con
3	2	$x_1^2 + x_2^2 - 1 = 0$	cilindru eliptic
		$x_1^2 - x_2^2 - 1 = 0$	cilindru hiperbolic
		$-x_1^2 - x_2^2 - 1 = 0$	cilindru vid
3	1	$x_1^2 - 2x_2 = 0$	cilindru parabolic
2	2	$x_1^2 + x_2^2 = 0$	dreaptă dublă
		$x_1^2 - x_2^2 = 0$	pereche de plane secante
2	1	$x_1^2 - 1 = 0$	pereche de plane paralele
		$-x_1^2 - 1 = 0$	pereche de plane vidă
1	1	$x_1^2 = 0$	plan dublu

FIGURA 2.2 Obținerea conicelor nedegenerate ca intersecție dintre un con și un plan

Faptul acesta fusese observat de către Menechmos (300 î.C.) care este considerat descoperitorul conicelor. Se pare că și Euclid s-a ocupat de conice, dar lucrările lui nu au putut fi găsite. După el, Apollonius din Perga (170 î.C.) a scris un tratat cuprinzător despre conice, a doua operă matematică importantă a antichității după *Elementele* lui Euclid.

Cititorul poate demonstra singur următoarele proprietăți: dacă intersecția dintre un con și un plan e o parabolă, planul e paralel cu un plan tangent la con. Dacă intersecția este hiperbolă, planul de secțiune nu e paralel cu nici un plan tangent și taie ambele pânze ale conului (dacă lucrăm în context metric, putem considera un con de rotație și atunci vedem că planul trebuie să fie paralel cu înălțimea conului). Dacă planul de secțiune taie o singură pânză a conului și nu e paralel cu nici o generatoare, intersecția este o elipsă. Evident, și reciprocele acestor afirmații sunt adevărate.

EXERCIȚIUL 2.38. Toate punctele elipsoidului sunt regulate. La fel pentru hiperboloizi și paraboloizi.

EXERCIȚIUL 2.39. Planul tangent într-un punct la hiperboloidul cu o pânză (respectiv la paraboloidul hiperbolic) conține cele două generatoare prin acel punct.

15. Clasificarea metrică a hipercuadricelor

Considerăm acum hipercuadrice în spațiul afin euclidian \mathbb{R}^n și le clasificăm față de relația de congruență \cong , adică față de acțiunea grupului izometriilor lui \mathbb{R}^n .

Observăm întâi că două hipercuadrice reale congruente au aceiași invarianți afini r, r', p; asta pentru că două hipercuadrice metric echivalente sunt, în particular, afin echivalente. Dar există hipercuadrice cu aceiași invarianți r, r', p care nu sunt congruente. De exemplu hiperbolele

$$\frac{x_1^2}{9} - \frac{x_2^2}{4} - 1 = 0, \quad \frac{x_1^2}{4} - \frac{x_2^2}{16} - 1 = 0$$

care au, ambele, r=r'=2, p=1. Ceea ce înseamnă că invarianții r,r',p nu sunt suficienți pentru clasificarea metrică. Avem însă:

TEOREMA DE CLASIFICARE METRICĂ A HIPERCUADRICELOR ÎN \mathbb{R}^n . O hipercuadrică din spațiul afin euclidian \mathbb{R}^n este congruentă cu una şi numai una dintre hipercuadricele de ecuații (2.36), (2.37), (2.38).

Demonstrație. Folosim aceeași metodă ca pentru clasificarea afină a hipercuadricelor, dar ne prevalăm, acum, de posibilitatea aducerii la formă canonică a formelor pătratice prin transformări ortogonale. Fie γ o hipercuadrică de ecuație (2.21) și fie $Q(x) = \sum_{i,j=1}^n a_{ij} x_i x_j$ forma pătratică asociată ei. Putem aduce Q la o formă canonică printr-o transformare ortogonală $T \in O(n)$. Fie τ izometria lui \mathbb{R}^n care are urma T și fixează originea: $\tau(O) = O$. Hipercuadrica $\tau(\gamma)$ va avea ecuția (2.39), cu $r = \operatorname{rang} a$ și $\lambda_1, \ldots, \lambda_r \in \mathbb{R}^*$ valori proprii ale matricei a. Ca in demonstrația teoremei de clasificare afină, aplicăm acum translația (care e izometrie!) de ecuații (2.40) și obținem hipercuadrica echivalentă $(t \circ \tau)(\gamma)$ de ecuație (2.41).

Dacă r' < r+2, atunci $b'_{r+1} = \cdots = b'_n = 0$, deci $(t \circ \tau)(\gamma)$ are ecuația de forma (2.36) sau (2.37) după cum r' = r sau r' = r+1. Dacă r' = r+2, există $i \in \{r+1,\ldots,n\}$ astfel încât $b'_i \neq 0$. După o eventuală renumerotare a indicilor

(ceea ce revine la o permutare a elementelor bazei canonice, adică la o izometrie), putem considera $b'_{r+1} \neq 0$.

De aici încolo nu mai putem aplica schema de la clasificarea afină: transformările utilizate acolo nu sunt izometrii. Vom folosi acum rotații în planele care conțin direcția Oz_{r+1} . Fie $\beta_1 \in O(n)$ dată prin ecuațiile

$$\begin{cases} u_{i} = z_{i}, & i \neq r+1, r+2 \\ u_{r+1} = \frac{b'_{r+1}}{\sqrt{b'^{2}_{r+1} + b'^{2}_{r+2}}} z_{r+1} + \frac{b'_{r+2}}{\sqrt{b'^{2}_{r+1} + b'^{2}_{r+2}}} z_{r+2} \\ u_{r+2} = -\frac{b'_{r+2}}{\sqrt{b'^{2}_{r+1} + b'^{2}_{r+2}}} z_{r+1} + \frac{b'_{r+1}}{\sqrt{b'^{2}_{r+1} + b'^{2}_{r+2}}} z_{r+2} \end{cases}$$

Hipercuadrica $(\beta_1 \circ t \circ \tau)(\gamma)$ are ecuatian

$$\lambda_1 u_1^2 + \dots + \lambda_r u_r^2 + 2\sqrt{b'_{r+1}^2 + b'_{r+2}^2} u_{r+1} + 2b'_{r+3} u_{r+3} + \dots + 2b'_n u_n + c' = 0.$$

Ca urmare, după aplicarea unui număr finit de rotații de tipul acesta și a unei translații pe direcția Oz_{r+1} (care elimină termenul liber), obținem o hipercuadrică de ecuație (2.38) și demonstrația e completă.

Observația 2.22. E important de notat că înțelesul acestei teoreme nu e că există doar trei clase de congruență de hipercuadrice reale. Există doar trei tipuri, reprezentate de cele trei ecuații, dar în interiorul unui aceluiași tip, hipercuadricele de ecuații cu coeficienți diferiți nu sunt congruente. Dimpotrivă, din punct de vedere afin, toate hipercuadricele de un același tip sunt echivalente.

16. Conice în planul euclidian \mathbb{R}^2

Detaliem acum teoria conicelor euclidiene. Vom relua în acest caz particular unele dintre rezultatele generale demonstrate anterior.

Notăm (x,y) coordonatele unui punct în reperul canonic din planul euclidian. Ecuația unei conice se scrie:

$$(2.48) a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2a_{13}x + 2a_{23}y + a_{33} = 0,$$

unde $a_{11}^2 + a_{22}^2 + a_{12}^2 \neq 0$ și notăm

$$a = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}, \quad A = \begin{pmatrix} a & b \\ {}^t b & a_{33} \end{pmatrix}, \quad {}^t b = (a_{13}, a_{23}).$$

Ca și până acum, $\delta = \det(a)$, $\Delta = \det(A)$. Dacă $\delta \neq 0$, conica are centru unic, iar dacă $\Delta \neq 0$ ea e nedegenerată. Uitându-ne la formele canonice posibile ale conicelor, vedem că $\delta < 0$ corespunde hiperbolei, $\delta > 0$ corespunde elipsei și $\delta = 0$ caracterizează parabola. Pentru conicele nedegenerate funcționează și următoarea caracterizare:

Propoziția 2.44. Fie d o dreaptă și F un punct nesituat pe ea. Locul geometric al punctelor din \mathbb{R}^2 pentru care raportul distanțelor la dreapta d (numită directoare) și la punctul F (numit focar) este o constantă $e \in (0, \infty)$ (numită excentricitate) este o conică nedegenerată: hiperbolă pentru $e \in (0,1)$, parabolă pentru e = 1, elipsă pentru $e \in (1,\infty)$.

Demonstrație. Fie întâi d paralelă cu axa Oy și fie F originea reperului canonic: F=(0,0) și ecuația lui d este $x-c=0,\,c$ o constantă fixată. Atunci ecuația locului geometric din enunț este

$$|x - c| = e\sqrt{x^2 + y^2},$$

ceea ce conduce la ecuația

$$(1 - e^2)x^2 - e^2y^2 - 2cx + c^2 = 0$$

care reprezintă o conică γ cu $\Delta=e^4\neq 0$, deci nedegenerată. Avem $\delta=e^2(e^2-1)$ ceea ce termină demonstrația în acest caz.

În cazul general, fie τ izometria lui \mathbb{R}^2 cu proprietățile $\tau(d) || Oy, \tau(F) = (0,0)$ (demonstrați existența lui $\tau!$) τ păstrează distanțele, deci și raportul e al distanțelor din enunț. Atunci locul geometric căutat este $\tau^{-1}(\gamma)$.

Observăm că, în cazul elipsei şi al hiperbolei, simetricul focarului F față de originea reperului are aceeaşi proprietate. Deci elipsa şi hiperbola au două focare (față de acestea se pot da definițiile geometrice cu care aceste conice au fost introduse în liceu). E firească întrebarea: unde se află (dacă există) al doilea focar al parabolei? Răspunsul este: "la infinit" şi explicația va veni abia în capitolul de geometrie proiectivă.

Exercițiul 2.40. Găsiți ecuația directoarei pentru elipsa și hiperbola scrise în forma canonică.

Aplicăm acum teoria generală de aducere la formă canonică a hipercuadricelor reale la cazul conicelor. Sigur, nu vom spune nimic nou, dar găsim utilă explicitarea teoriei în acest caz particular.

Dacă $\delta \neq 0$, atunci conica are un centru unic C de coordonate (x_0,y_0) soluții ale sistemului:

$$\begin{cases} a_{11}x + a_{12}y + a_{13} = 0\\ a_{12}x + a_{22}y + a_{23} = 0 \end{cases}$$

Facem translația τ de ecuații

$$\begin{cases} x' = x - x_0 \\ y' = y - y_0 \end{cases}$$

și obținem conica congruentă $\tau(\gamma)$ cu centrul în originea reperului canonic, de ecuație:

$$a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + f(x_0, y_0) = 0,$$

unde f(x,y) notează polinomul de gradul al II-lea din membrul stâng al ecuației (2.48).

Exercițiul 2.41. Să se arate că
$$f(x_0,y_0)=rac{\Delta}{\delta}.$$

Alegem acum două axe ortogonale ale conicei. Direcțiile lor sunt date de doi vectori proprii ortogonali ai matricei a. Pentru a-i găsi, aflăm întâi valorile proprii ale lui a; acestea sunt rădăcinile polinomului caracteristic

$$p(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{12} & a_{22} - \lambda \end{vmatrix}.$$

În teoria clasică a conicelor, ecuația $p(\lambda) = 0$ se numește seculară (pentru că, tradițional, variabila era s) și se scrie desfășurat

$$\lambda^2 - I\lambda + \delta = 0$$

cu $I = a_{11} + a_{22} = \operatorname{tr}(a)$. Fie λ_1, λ_2 cele două valori proprii și $f_i = (l_i, m_i), i = 1, 2,$ doi vectori proprii unitari ortogonali corespunzători. Schimbarea de reper de la cel canonic la $\{O; f_1, f_2\}$ se face cu transformarea ortogonală θ care fixează originea și are urma

$$\begin{cases} x' = l_1 x + m_1 y \\ y' = l_2 x + m_2 y \end{cases}$$

Prin această transformare, dreptele de direcție (l_1, m_1) sunt duse peste drepte de direcție (1,0), iar cele de direcție (l_2,m_2) peste drepte de direcție (0,1). Deci, deoarece θ fixează originea, axele conicei sunt aplicate pe axele reperului. În consecință, valorile proprii ale matricei a' a conicei transformate vor fi λ_1, λ_2 , iar vectorii proprii asociați sunt (1,0), (0,1). Rezultă că $\theta(\tau(\gamma))$ este o conică congruentă cu γ , de ecuație

$$\lambda_1 x^2 + \lambda_2 y^2 + \frac{\Delta}{\delta} = 0.$$

Cum $\delta=\lambda_1\lambda_2\neq 0$, putem lista conicele cu centru unic după cum urmează:

- elipsă, dacă $\Delta \neq 0$ și $\delta > 0$,
- hiperbolă, dacă $\Delta \neq 0$ și $\delta < 0$, punct dublu, dacă $\Delta = 0$ și $\delta > 0$,
- două drepte concurente, dacă $\Delta \neq 0$ și $\delta < 0$.

Dacă $\delta = 0$, conica este de tip parabolă. Cum a are rang cel puțin 1 și $\det(a) =$ $\delta=0$, numai una dintre valorile proprii ale lui a este nulă; putem presupune că $\lambda_2 = 0$ şi $\lambda_1 \neq 0$. În acest caz, aplicăm întâi izometria θ de mai sus şi obținem conica congruentă $\theta(\gamma)$ de ecuație

$$\lambda_1 x^2 + 2a'_{13}x + 2a'_{23}y + a_{33} = 0.$$

Observăm că $\Delta={a'_{23}}^2\lambda_1$, deci $\Delta=0$ dacă și numai dacă $a'_{23}=0$. Acum facem translația τ' de ecuații:

$$\begin{cases} x' = x + \frac{a'_{13}}{\lambda_1} \\ y' = y \end{cases}$$

Conica $\tau'(\theta(\gamma))$ are ecuația

$$\lambda_1 x^2 + 2a'_{23}y + c = 0, \quad c = a_{33} - \frac{{a'_{13}}^2}{\lambda_1}.$$

Dacă $\Delta=0,$ această ecuație reprezintă \emptyset sau o pereche de drepte paralele. Dacă $\Delta\neq0,$ facem translația τ''

$$\begin{cases} x' = x \\ y' = y + \frac{c}{2a'_{23}} \end{cases}$$

și se obține conica $\tau''(\tau'(\theta(\gamma)))$ de ecuație

$$\lambda_1 x^2 + 2a_{23}'y = 0, \quad a_{23}' \neq 0$$

care este o parabolă (observați că, pentru usurarea notațiilor, am păstrat tot timpul variabilele x, y).

Ca urmare, în cazul $\delta = 0$, γ e congruentă cu una şi numai una dintre conicele:

- parabolă, dacă $\Delta \neq 0$,
- două drepte paralele, dacă $\Delta = 0$.

17. Cuadrice în spațiul euclidian \mathbb{R}^3

Aplicăma cum clasificarea metrică a hipercuadricelor la cazul n=3. Vom considera reperul canonic al lui \mathbb{R}^3 , cu axele de direcții e_1, e_2, e_3 și cu coordonatele (x, y, z). Fie cuadrica de ecuație

$$(2.49) a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{14}x + 2a_{24}y + 2a_{34}z + a_{44} = 0,$$

cu $a=(a_{ij})_{i,j=\overline{1,3}}$, rang $(a)\leq 1$, $A=(a_{ij})_{i,j=\overline{1,4}}$ și $a_{ij}=a_{ji}$. De asemenea, fie $\delta=\det(a), \ \Delta=\det(A)$.

Dacă $\delta \neq 0$, cuadrica γ are centru unic C de coordonate (x_0,y_0,z_0) , soluție unică a sistemului

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z + a_{14} = 0 \\ a_{12}x + a_{22}y + a_{23}z + a_{24} = 0 \\ a_{13}x + a_{23}y + a_{33}z + a_{34} = 0 \end{cases}$$

Făcând translația τ de ecuații

$$\begin{cases} x' = x - x_0 \\ y' = y - y_0 \\ z' = z - z_0 \end{cases}$$

se obține cuadrica $\tau(\gamma)$, congruentă cu γ , de ecuație

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + f(x_0, y_0, z_0) = 0$$

unde, ca și în paragraful anterior, f(x,y,z) notează membrul stâng al ecuației (2.49). Centrul cuadricei $\tau(\gamma)$ este originea reperului.

Exercițiul 2.42. Ca și la conice, arătați că $f(x_0, y_0, z_0) = \frac{\Delta}{\delta}$.

Alegem acum trei axe mutual ortogonale pentru $\tau(\gamma)$, corespunzătoare valorilor proprii $\lambda_1, \lambda_2, \lambda_3$ ale matricei a, deci soluții ale ecuației seculare $p(\lambda) = 0$ cu

$$p(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{12} & a_{22} - \lambda & a_{23} \\ a_{13} & a_{23} & a_{33} - \lambda \end{vmatrix}$$

care se mai poate scrie

$$\lambda^3 - I\lambda^2 + J\lambda - \delta = 0$$

cu $I = a_{11} + a_{22} + a_{33} = \operatorname{tr}(a), J = A_{11} + A_{22} + A_{33}, A_{ii}$ fiind complementul algebric al elementului a_{ii} din matricea a. Fie $f_i = (l_i, m_i, n_i)$ vectori proprii unitari ortogonali doi câte doi, corespunzători valorilor proprii λ_i , i = 1, 2, 3.

Observația 2.23. Cele trei valori proprii nu sunt neapărat distincte. Dacă, de exemplu, $\lambda_1 = \lambda_2$, subspațiul propriu corespunzător are dimensiune 2. Se alege o bază a sa oarecare; aceasta se ortogonalizează cu procedeul Gram-Schmidt, apoi se normează.

Trecerea de la reperul canonic la reperul $\{f_1, f_2, f_3\}$ se face cu ajutorul izometriei θ care fixează originea și are urma

$$\begin{cases} x' = l_1 x + m_1 y + n_1 z \\ y' = l_2 x + m_2 y + n_2 z \\ z' = l_3 x + m_3 y + n_3 z \end{cases}$$

Deoarece prin θ , dreptele de direcții (l_i, m_i, n_i) sunt aplicate, respectiv, peste dreptele de direcții e_i , se obține cuadrica $\theta(\tau(\gamma))$ de ecuație

$$\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 + \frac{\Delta}{\delta} = 0$$

care poate reprezenta un elipsoid, un hiperboloid cu una sau două pânze (dacă $\Delta \neq 0$) sau con, punct dublu (când $\Delta = 0$).

Dacă $\delta = 0$, atunci una sau două (în nici un caz toate trei) rădăcini ale polinomului caracteristic $p(\lambda)$ sunt nule.

Presupunem $\lambda_1 = 0$. Atunci $\theta(\gamma)$ are ecuația

$$\lambda_2 y^2 + \lambda_3 z^2 + 2a'_{14}x + 2a'_{24}y + 2a'_{34}z + a_{44} = 0.$$

Cum Δ este invariant metric, el este acelaşi pentru γ şi $\theta(\gamma)$. Deci $\Delta = -(a'_{14})^2 \lambda_2 \lambda_3$. Avem următoarele cazuri posibile:

- $\begin{array}{l} (1) \ \, \gamma \ \, {\rm e} \ \, {\rm nedegenerat} \mbox{\check{a}: } \Delta \neq 0 \ \, (a'_{14} \neq 0, \ \, \lambda_2 \neq 0, \ \, \lambda_3 \neq 0). \\ (2) \ \, \gamma \ \, {\rm e} \ \, {\rm degenerat} \mbox{\check{a}: } \Delta = 0, \ \, {\rm adic} \mbox{\check{a}: } \\ (a) \ \, \lambda_2 \neq 0, \ \, \lambda_3 \neq 0 \ \, {\rm si} \ \, a'_{14} = 0. \\ (b) \ \, \lambda_2 = 0, \ \, \lambda_3 \neq 0 \ \, {\rm si} \ \, a'_{14} \neq 0. \\ (c) \ \, \lambda_2 = 0, \ \, \lambda_3 \neq 0 \ \, {\rm si} \ \, a'_{14} = 0. \end{array}$

În cazul 1, γ e nedegenerată. Ecuația ei poate fi pusă sub forma

$$\lambda_2 \left(y + \frac{a'_{24}}{\lambda_2} \right)^2 + \lambda_3 \left(z + \frac{a'_{34}}{\lambda_3} \right)^2 + 2a'_{14} \left(x + \frac{a_{44}}{2a'_{14}} - \frac{{a'_{24}}^2}{2\lambda_2 a'_{14}} - \frac{{a'_{34}}^2}{2\lambda_3 a'_{14}} \right) = 0$$

care sugerează efectuarea translației τ' de ecuații

$$\begin{cases} x' = x + \frac{a_{44}}{2a'_{14}} - \frac{{a'_{24}}^2}{2\lambda_2 a'_{14}} - \frac{{a'_{34}}^2}{2\lambda_3 a'_{14}} \\ y' = y + \frac{a'_{24}}{\lambda_2} \\ z' = z + \frac{a'_{34}}{\lambda_3} \end{cases}$$

Cuadrica $\tau'(\theta(\gamma))$ are ecuația

$$\lambda_2 y^2 + \lambda_3 z^2 + 2a'_{14} x = 0$$

și reprezintă un paraboloid eliptic sau hiperbolic.

În cazul 2(a), se consideră translația

$$\begin{cases} x' = x \\ y' = y + \frac{a'_{24}}{\lambda_2} \\ z' = z + \frac{a'_{34}}{\lambda_3} \end{cases}$$

Cuadrica $\tau'(\theta(\gamma))$ are ecuația

$$\lambda_2 y^2 + \lambda_3 z^2 + p = 0$$

și reprezintă \emptyset , un cilindru eliptic sau unul hiperbolic, o dreaptă dublă sau două plane secante.

Asemănător, în cazul 2(b) translația

$$\begin{cases} x' = x + \frac{a_{44}}{a'_{14}} \\ y' = y \\ z' = z + \frac{a'_{34}}{\lambda_3} \end{cases}$$

produce cuadrica $\tau'(\theta(\gamma))$ de ecuație

$$\lambda_3 z^2 + 2a'_{14}x + 2a'_{24}y = 0.$$

Acesteia îi aplicăm rotația θ' de axă Oz, având ecuațiile

$$\begin{cases} x' = \frac{a'_{14}}{\sqrt{{a'_{14}}^2 + {a'_{24}}^2}} x + \frac{a'_{24}}{\sqrt{{a'_{14}}^2 + {a'_{24}}^2}} y \\ y' = \frac{a'_{14}}{\sqrt{{a'_{14}}^2 + {a'_{24}}^2}} x - \frac{a'_{24}}{\sqrt{{a'_{14}}^2 + {a'_{24}}^2}} y \\ z' = z \end{cases}$$

Rezultă cuadrica $\theta'(\tau'(\theta(\gamma)))$ de ecuație

$$\lambda_3 z^2 + 2px = 0$$

care reprezintă un cilindru parabolic.

În fine, în cazul 2(c), dacă $a'_{24} \neq 0$, facem translația τ' de ecuații

$$\begin{cases} x' = x \\ y' = y - \frac{{a'_{34}}^2}{2\lambda_2 a'_{24}} \\ z' = z + \frac{a'_{34}}{\lambda_3} \end{cases}$$

și obținem cuadrica $\tau'(\theta(\gamma))$ de ecuație

$$\lambda_3 z^2 + 2a'_{24} y = 0$$

reprezentând un cilindru parabolic. Dacă $a'_{24}=0,\;\theta(\gamma)$ reprezintă două plane paralele distincte sau un plan dublu.

Exemplul 2.7. Fie cuadrica

$$x^{2} + 5y^{2} + z^{2} + 2xy + 6xz + 2yz - 2x + 6y + 2z = 0.$$

Avem

$$a = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}, \quad A = \begin{pmatrix} 1 & 1 & 3 & -1 \\ 1 & 5 & 1 & 3 \\ 3 & 1 & 1 & 1 \\ -1 & 3 & 1 & 0 \end{pmatrix},$$

deci $\delta=-36,~\Delta=36.$ Cuadrica este nedegenerată, cu centru unic $(-\frac{1}{3},-\frac{2}{3},\frac{2}{3}).$ Translația

$$\begin{cases} x' = x + \frac{1}{3} \\ y' = y + \frac{2}{3} \\ z' = z - \frac{2}{3} \end{cases}$$

produce cuadrica congruentă

$$x'^{2} + 5y'^{2} + z'^{2} + 2x'y' + 6x'z' + 2y'z' - 1 = 0.$$

Ecuația seculară este

$$\lambda^3 - 7\lambda^2 + 36 = 0$$

cu rădăcinile $\lambda_1=3,~\lambda_2=6,~\lambda_3=-2.$ Vectorii proprii corespunzători lui λ_1 au coordonatele soluții ale sistemului

$$\begin{cases}
-2x_1 + x_2 + 3x_3 = 0 \\
x_1 + 2x_2 + x_3 = 0 \\
3x_1 + x_2 - 2x_3 = 0
\end{cases}$$

Soluția generală a sistemului este (a,-a,a). Luăm $f_1=(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$. Vectorii proprii corespunzători lui λ_2 au forma generală (a,2a,a); alegem $f_2=(\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}})$. Pentru λ_3 găsim vectorii proprii sub forma (a,0,-a); putem lua $f_3=(\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})$. Efectuăm deci rotația

$$\begin{cases} x'' = \frac{1}{\sqrt{3}}(x' - y' + z') \\ y' = \frac{1}{\sqrt{6}}(x' + 2y' + z') \\ z' = \frac{1}{\sqrt{2}}(x' - z') \end{cases}$$

în urma căreia cuadrica transformată are ecuația

$$3x''^2 + 6y''^2 - 2z''^2 - 1 = 0$$

și reprezintă un hiperboloid cu o pânză.

Exemplul 2.8. Fie cuadrica

$$5x^2 - y^2 + z^2 + 4xy + 6xz + 2x + 4y + 6z - 8 = 0.$$

Aici $\delta=0$ (nu există un centru unic), $\Delta=16,\,I=5,\,J=-14$ și ecuația seculară este

$$\lambda^3 - 5\lambda^2 - 14\lambda = 0$$

cu rădăcinile $\lambda_1=0,\ \lambda_2=7,\ \lambda_3=-2.$ Ca și în exemplul anterior, alegem vectorii proprii unitari ortogonali $f_1=(\frac{1}{\sqrt{14}},\frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}})$ (corespunzător lui λ_1), $f_2=(\frac{4}{\sqrt{21}},\frac{1}{\sqrt{21}},\frac{2}{\sqrt{21}})$ (pentru λ_2), $f_1=(-\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}},\frac{1}{\sqrt{6}})$ (pentru λ_3). Rotația care trebuie efectuată este:

$$\begin{cases} x' = \frac{1}{\sqrt{14}}(x + 2y - 3z) \\ y' = \frac{1}{\sqrt{21}}(4x + y + 2z) \\ z' = \frac{1}{\sqrt{6}}(-x + 2y + z) \end{cases}$$

Cuadrica transformată are ecuația

$$7y'^{2} - 2z'^{2} - \frac{8}{\sqrt{14}}x' + \frac{24}{\sqrt{21}}y' + \frac{12}{\sqrt{6}}z' - 8 = 0$$

care se poate pune sub forma

$$7\left(y' + \frac{12}{7\sqrt{21}}\right)^2 - 2\left(z' - \frac{3}{\sqrt{6}}\right)^2 - \frac{8}{\sqrt{14}}\left(x' + \frac{293\sqrt{14}}{392}\right) = 0.$$

După translația

$$\begin{cases} x'' = x' + \frac{293\sqrt{14}}{392} \\ y'' = y' + \frac{12}{7\sqrt{21}} \\ z'' = z' - \frac{3}{\sqrt{6}} \end{cases}$$

cuadrica transformată are ecuația

$$7y''^2 - 2z''^2 - \frac{8}{\sqrt{14}}x'' = 0$$

și reprezintă un paraboloid hiperbolic.

Exemplul 2.9. Pentru cuadrica

$$x^{2} + y^{2} + 4z^{2} + 2xy + 4xz + 4yz - 6z + 1 = 0$$

avem $\delta = 0$, $\Delta = 0$, I = 6, J = 0, deci ecuația seculară este

$$\lambda^3 - 6\lambda^2 = 0$$

cu soluțiile $\lambda_1=\lambda_2=0,\ \lambda_3=6$. Sistemul care furnizează coordonatele vectorilor din subspațiul propriu corespunzător valorii proprii 0 se reduce la $x_1+x_2+2x_3=0$. Alegem soluțiile independente $v_1=(2,0,-1)$ și $v_2=(1,-1,0)$ din care, prin procedeul Gram-Schmidt, construim o bază ortonormată a subspațiului: $f_1=\frac{v_1}{\|v_1\|}=(\frac{2}{\sqrt{5}},0,-\frac{2}{\sqrt{5}}),\ f_2=\frac{f_2'}{\|f_2'\|}$ unde $f_2'=v_2+af_1$, cu $a=-\langle v_2,f_1\rangle$. Rezultă $f_2=(\frac{1}{\sqrt{30}},-\frac{5}{\sqrt{30}},\frac{2}{\sqrt{30}})$. Alegem un vector propriu unitar corespunzător valorii

proprii 6: $f_3 = (\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}})$. După efectuarea izometriei

$$\begin{cases} x' = \frac{2}{\sqrt{5}}x - \frac{1}{\sqrt{5}}z \\ y' = \frac{1}{\sqrt{30}}x - \frac{5}{\sqrt{30}}y + \frac{2}{\sqrt{30}}z \\ z' = \frac{1}{\sqrt{6}}x + \frac{1}{\sqrt{5}}y + \frac{2}{\sqrt{6}}z \end{cases}$$

obținem cuadrica transformată:

$$z'^2 - \sqrt{6}x' + \sqrt{6}y' + 2\sqrt{6}z' + 1 = 0$$

care se mai poate pune sub forma

$$(z' + \sqrt{6})^2 - \sqrt{6}x' + \sqrt{6}y' - 5 = 0.$$

Suntem, deci, conduși să facem izometria

$$\begin{cases} x'' = \frac{1}{\sqrt{2}}(x' - y') \\ y'' = \frac{1}{\sqrt{2}}(x' + y') \\ z'' = z' + \sqrt{6} \end{cases}$$

în urma căreia cuadrica transformată devine

$$x''^2 - 2\sqrt{3}x'' - 5 = 0.$$

Facem, în fine, translația

$$\begin{cases} x''' = x'' + \frac{5}{2\sqrt{3}} \\ y''' = y'' \\ z''' = z'' \end{cases}$$

Cuadrica transformată are acum ecuația

$$z'''^2 - 2\sqrt{3}x''' = 0$$

și reprezintă un cilindru parabolic.

Descriem în continuare câteva proprietăți geometrice afine, respectiv metrice (prin definiție invariante la afinități, respectiv izometrii) ale cuadricelor. Conform teoremelor de clasificare, e suficient să le studiem pe cuadricele scrise în forma canonică.

Elipsoizii. Ecuațiile

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1, \quad a, b, c \in \mathbb{R}_+ - \{0\}$$

reprezintă elipsoizi echivalenți afin, dar neechivalenți din punct de vedere metric. Intersecțiile axelor de coordonate cu elipsoidul se numesc $v\hat{arfuri}$. Acestea au coordonatele $(\pm a,0,0)$, $(0,\pm b,0)$, $(0,0,\pm c)$. Segmentele determinate de centrul reperului și vârfuri se numesc semiaxe. Denumirea de "elipsoid" e justificată de următoarea proprietate pe care cititorul o va demonstra singur:

Propoziția 2.45. Intersecția dintre un elipsoid și un plan paralel cu un plan de coordonate este o elipsă, un punct sau mulțimea vidă.

Dacă două dintre semiaxe sunt egale, de exemplu dacă a=b, secțiunile făcute în elipsoid cu plane paralele cu planul de coordonate x_1Ox_2 , dacă există, sunt cercuri sau se reduc la un punct. În acest caz, elipsoidul este un corp de rotație (vezi și exercițiul 2.37): se poate obține prin rotirea unei elipse de centru O și semiaxe de lungime a (pe Ox_1), c, situată în planul x_1Ox_3 , în jurul axei verticale Ox_3 . Când toate trei semiaxele sunt egale, a=b=c se obține sfera de centru O și rază a. Ea este locul geometric al punctelor din spațiul afin euclidian \mathbb{R}^3 aflate la distanță a de un punct fix (centrul). Aplicând o izometrie oarecare unei sfere de rază r centrate în originea reperului, vedem că ecuația generală a unei sfere de rază r și centru (m,n,p) este

$$(x_1 - m)^2 + (x_2 - n)^2 + (x_3 - p)^2 - r^2 = 0.$$

Hiperboloizii cu o pânză. Şi acestea sunt cuadrice cu centru unic. Ecuațiile canonice care descriu clasele neechivalente metric sunt:

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} - \frac{x_3^2}{c^2} = 1, \quad a, b, c \in \mathbb{R}_+ - \{0\}.$$

Ca și la elipsoid, intersecțiile axelor cu cuadrica se numesc vârfuri și au coordonatele $(\pm a,0,0)$, $(0,\pm b,0)$. Aici avem doar patru vârfuri, axa Ox_3 este interioară cuadricei. Cititorul va demonstra:

Propoziția 2.46. Intersecțiile hiperboloidului cu o pânză cu plane paralele cu cele de coordonate sunt elipse sau hiperbole. Atunci când a = b, secțiunile orizontale în hiperboloid sunt cercuri.

Dacă punem ecuația de mai sus sub forma echivalentă:

$$(\frac{x_1}{a} - \frac{x_3}{c})(\frac{x_1}{a} + \frac{x_3}{c}) = (1 - \frac{x_2}{b})(1 + \frac{x_2}{b}),$$

observăm că dreptele familiei indexate după parametrul $\lambda \in \mathbb{R} \cup \{\infty\}$:

$$d_{\lambda} \begin{cases} \frac{x_1}{a} - \frac{x_3}{c} = \lambda (1 - \frac{x_2}{b}) \\ \frac{x_1}{a} + \frac{x_3}{c} = \frac{1}{\lambda} (1 + \frac{x_2}{b}) \end{cases}$$

sunt, toate, incluse în hiperboloid. Spunem că fiecare dreaptă d_{λ} e o generatoare sau o riglă a hiperboloidului. La fel, se constată ușor că și dreptele familiei

$$d_{\mu} \begin{cases} \frac{x_1}{a} - \frac{x_3}{c} = \mu(1 + \frac{x_2}{b}) \\ \frac{x_1}{a} + \frac{x_3}{c} = \frac{1}{\mu}(1 - \frac{x_2}{b}) \end{cases}$$

sunt generatoare. Deci hiperboloidul cu o pânză are două familii distincte de generatoare. Se mai spune că este o cuadrică dublu riglată.

 ${\tt FIGURA~2.4~Hiperboloidul~cu~o~pânză~și~cele~două~familii~de~generatoare~ale~sale}$

EXERCIȚIUL 2.43. Prin fiecare punct al hiperboloidului cu o pânză trece una și numai o generatoare din fiecare familie. Două generatoare sunt coplanare dacă și numai dacă fac parte din familii diferite. Dacă o dreaptă este conținută în hiperboloidul cu o pânză, atunci ea aparține uneia dintre familiile de generatoare.

Hiperboloizii cu două pânze. Ecuațiile diferitelor lor clase de echivalență metrică sunt:

$$\frac{x_1^2}{a^2} - \frac{x_2^2}{b^2} - \frac{x_3^2}{c^2} = 1, \quad a, b, c \in \mathbb{R}_+ - \{0\}.$$

Se observă că, în mod necesar, $|x_1| \ge a$, deci hiperboloidul cu două pânze este o cuadrică neconexă (are două componente conexe). Are două vârfuri, anume $(\pm a,0,0,)$, Intersecțiile hiperboloidului cu două pânze cu plane paralele cu cele de coordonate sunt elipse, hiperbole sau \emptyset .

Exercițiul 2.44. Hiperboloidul cu două pânze nu conține drepte, în particular nu conține generatoare.

FIGURA 2.5 Hiperboloidul cu două pânze. Pentru comoditatea desenului, am schimbat poziția tradițională axelor de coordonate

Paraboloizii eliptici. Clasele de echivalență metrică sunt descrise de ecuații de forma:

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} - 2x_3 = 0, \quad a, b \in \mathbb{R}_+ - \{0\}.$$

Sunt cuadrice conexe, fără centru unic. Secțiunile lor prin plane paralele cu cele de coordonate sunt elipse sau parabole (de aici denumirea).

FIGURA 2.6 Paraboloidul eliptic

Paraboloizii hiperbolici. Aceștia sunt descriși de ecuațiile:

$$\frac{x_1^2}{a^2} - \frac{x_2^2}{b^2} - 2x_3 = 0, \quad a, b \in \mathbb{R}_+ - \{0\}.$$

Intersecțiile lor cu plane paralele cu cele de coordonate, când nu sunt vide, sunt hiperbole sau parabole, justificând denumirea. În vecinătatea originii reperului, cuadrica are forma unei șei.

FIGURA 2.7 Paraboloidul hiperbolic cu cele două familii de generatoare

 \S i parabolo
izii hiperbolici sunt cuadrice dublu riglate. Cele două familii de generato
are sunt

$$d_{\lambda} \begin{cases} \frac{x_1}{a} + \frac{x_2}{b} = 2\lambda \\ \frac{x_1}{a} - \frac{x_2}{b} = \frac{1}{\lambda}x_3 \end{cases} \qquad d_{\mu} \begin{cases} \frac{x_1}{a} + \frac{x_2}{b} = \frac{1}{\mu}x_3 \\ \frac{x_1}{a} - \frac{x_2}{b} = 2\mu \end{cases}$$

Generatoarele au aceleași proprietăți ca și cele descrise în exercițiul 2.43 pentru hiperboloidul cu o pânză.

Cilindrii. Ecuațiile lor conțin numai două dintre variabile, ceea ce înseamnă că a treia ia toate valorile reale. Deci cilindrii sunt cuadrice ale căror intersecții nevide cu plane paralele cu cele de coordonate sunt drepte sau conice plane congruente (dacă apar doar x_1, x_2 , intersecțiile cu $x_3 = const$. sunt conice). Astfel distingem

cilindrii parabolici, eliptici, hiperbolici. De exemplu, ecuația cilindrului eliptic este: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$, cu a, b > 0. Evident, cilindrii sunt cuadrice riglate.

Figura 2.8 Cilindru eliptic (stânga) și cilindru parabolic (dreapta)

Conurile sunt cuadrice ale căror intersecții nevide cu plane paralele cu cele de coordonate sunt drepte sau conice plane omotetice. Originea reperului este vârf pentru orice con (pe ecuația canonică). Conurile sunt caracterizate de ecuații omogene și sunt cuadrice riglate.

18. Exerciții și probleme suplimentare

În exercițiile care urmează, \mathbb{R}^n este înzestrat cu structura afină canonică.

EXERCIȚIUL 2.45. Care este numărul minim de puncte ale unui plan afin? Câte drepte conține un plan afin cu număr minim de puncte?

EXERCIȚIUL 2.46. Fie V un spațiu vectorial înzestrat cu structura afină canonică. Fie H un hiperplan afin al său. Să se arate că există o unică formă liniară $h \in V^*$ astfel încât $H = h^{-1}(1)$.

EXERCIȚIUL 2.47. (Prima funcție a lui Leibniz) Fie punctele A_1,\ldots,A_n într-un spațiu afin (\mathcal{A},V,φ) și $\lambda_1,\ldots,\lambda_n$ scalari nu toți nuli, dar cu suma nulă: $\sum_{i=1}^n \lambda_i = 0$. Să se arate că că funcția lui Leibniz $L_1:\mathcal{A}\to V,\ L_1(M)=\sum_{i=1}^n \lambda_i\overline{MA_i}$ e constantă. Să se construiască un exemplu pentru n=3 și să se observe că funcția lui Leibniz e nulă dacă și numai dacă cele trei puncte sunt coliniare. Generalizare: punctele A_1,\ldots,A_{n+1} aparțin aceluiași subspațiu afin de dimensiune $\leq n-1$ dacă și numai dacă există scalarii $\lambda_1,\ldots,\lambda_{n+1},$ nu toți nuli, astfel încât funcția lui Leibniz asociată să fie identic nulă.

EXERCIȚIUL 2.48. (A doua funcție a lui Leibniz) Fie $(\mathcal{E}, E, \varphi)$ un spațiu afin euclidian, A_1, \ldots, A_n puncte fixate și $\lambda_1, \ldots, \lambda_n$ scalari reali fixați. Definim $L_2 : \mathcal{E} \to \mathbb{R}, \ L_2(M) = \sum_{i=1}^n \lambda_i \|\overrightarrow{MA_i}\|^2$.

Să se arate că dacă $\sum_{i=1}^{n} \lambda_i \neq 0$ și dacă G e baricentrul sistemului de puncte A_i cu ponderile λ_i , atunci $L_2(M) = (\sum_{i=1}^{n}) \|\overrightarrow{MG}\|^2 + L_2(G)$.

Dacă $\sum_{i=1}^{n} \lambda_i = 0$, $L_2 = const.$ Să se studieze cazul în care L_2 e identic nulă.

EXERCIȚIUL 2.49. (Relația lui Stewart) Fie A,B,C puncte coliniare fixate într-un spațiu afin euclidian. Pentru orice punct M are loc relația

$$\|\overrightarrow{MA}\|^2\overrightarrow{BC} + \|\overrightarrow{MB}\|^2\overrightarrow{CA} + \|\overrightarrow{MC}\|^2\overrightarrow{AB} = 0.$$

EXERCIȚIUL 2.50. Orice hiperplan al spațiului afin \mathbb{R}^n separă spațiul (complementara hiperplanului conține exact două componente conexe). Proprietatea nu are loc și în spațiul afin \mathbb{C}^n .

EXERCIȚIUL 2.51. Fie \mathcal{A}_1 , \mathcal{A}_2 subspații afine nevide, distincte și paralele ale spațiului afin \mathcal{A} . Fie $\mathcal{A}' = \{\frac{1}{2}M_1 + \frac{1}{2}M_2 \mid M_1 \in \mathcal{A}_1, M_2 \in \mathcal{A}_2\}$. Atunci:

1. \mathcal{A}' e subspaţiu afin paralel cu \mathcal{A}_1 şi \mathcal{A}_2 .

2. $\dim \mathcal{A}' = \max(\dim \mathcal{A}_1, \dim \mathcal{A}_2)$.

EXERCIȚIUL 2.52. În spațiul afin \mathbb{R}^4 considerăm mulțimile:

$$\mathcal{A}_1 = \{(x_1, \dots, x_4) \mid \frac{x_1 - 1}{2} = \frac{x_2}{0} = \frac{x_3 - 1}{2} = \frac{x_4 + 1}{-1}\},$$

$$\mathcal{A}_2 = \{(x_1, \dots, x_4) \mid \frac{x_1 - 2}{2} = \frac{x_2}{0} = \frac{x_3}{2} = \frac{x_4}{-1}\}.$$

Demonstrați că \mathcal{A}_1 și \mathcal{A}_2 sunt subspații afine paralele. Scrieți ecuațiile sumei $\mathcal{A}_1 + \mathcal{A}_2$ în reperul canonic al lui \mathbb{R}^4 .

EXERCIȚIUL 2.53. Un plan arbitrar taie laturile AB, BC, CD, DA ale unui patrulater strâmb (adică neplanar) din spațiul afin \mathbb{R}^3 în punctele M, N, P, Q. Să se arate că:

$$r(A, B, M) \cdot r(B, C, N) \cdot r(C, D, P) \cdot r(D, A, Q) = 1.$$

EXERCIȚIUL 2.54. Fie H_1, H_2 omotetii pe \mathcal{A} și $A \in \mathcal{A}$ fixat. Dacă $H_1 \circ H_2(A) = H_2 \circ H_1(A)$, atunci $H_1 = H_2$.

EXERCIȚIUL 2.55. Fie 6 puncte oarecare în spațiul afin \mathbb{R}^3 . Să se arate că:

- 1. Dreptele care unesc centrul de greutate al unui sistem de 3 din cele 6 puncte cu centrul de greutate al sistemului de 3 puncte complementar trec toate prin G, echibaricentrul celor 6 puncte.
- 2. Dreptele care unesc mijlocul segmentului format de oricare două puncte cu centrul de greutate cu ponderi egale al sistemului de puncte complementar trec toate prin G.

EXERCIȚIUL 2.56. Se consideră un tetraedru în \mathbb{R}^3 . Arătați că segmentele care unesc centrele de greutate cu ponderi egale ale fețelor opuse sunt concurente în același punct în care se întâlnesc medianele lui și segmentele care unesc mijloacele laturilor opuse .

EXERCIȚIUL 2.57. Într-un patrulater din \mathbb{R}^2 segmentele care unesc mijloacele laturilor opuse și respectiv mijloacele diagonalelor sunt concurente.

Rezultatele anterioare se generalizează în felul următor:

EXERCIȚIUL 2.58. Fie dat un sistem arbitrar de n puncte într-un spațiu afin oarecare. Să se arate că segmentul care unește echibaricentrul oricărui subsistem de p < n puncte cu echibaricentrul celorlalte n - p puncte trece prin echibaricentrul sistemului considerat.

EXERCIȚIUL 2.59. Fie $M = \{A_1, A_2, \dots, A_n\}$ o mulțime arbitrară de puncte dintr-un spațiu afin și $O \notin M$. Fie G_{ij} echibaricentrul subsistemului $M - \{A_i, A_j\}$. Fie d_{ij} paralela dusă prin mijlocul segmentului $[A_i A_j]$ la dreapta OG_{ij} . Să se arate că d_{ij} sunt concurente.

EXERCIȚIUL 2.60. Fie (ABC) un triunghi într-un spațiu afin peste un corp de caracteristică diferită de 2. Fie $E \in \langle AB \rangle$, $F \in \langle AC \rangle$ astfel încât dreptele $\langle BF \rangle$ și $\langle CE \rangle$ se taie în D. Atunci mijloacele segmentelor [BC], [AD] și [EF] sunt coliniare (pe dreapta Newton-Gauss a patrulaterului complet ABDCEF).

EXERCIȚIUL 2.61. Fie (ABC) un triunghi într-un spațiu afin peste un corp de caracteristică diferită de 2. Fie P un punct din planul triunghiului şi A' (respectiv B', C') intersecția lui $\langle AP \rangle$ (respectiv, $\langle BP \rangle$, $\langle CP \rangle$) cu $\langle BC \rangle$ (respectiv $\langle AC \rangle$, $\langle AB \rangle$). Să se arate că dreptele determinate de mijloacele segmentelor [AB] şi [A'B'], respectiv [AC] şi [A'C'], respectiv [BC] şi [B'C'] sunt concurente într-un punct Q. Să se arate că P, Q şi echibaricentrul triunghiului sunt coliniare.

EXERCIȚIUL 2.62. Fie (ABC) un triunghi dintr-un spațiu afin, G centrul său de greutate și M un punct arbitrar. Să se arate că $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$. Generalizare.

EXERCIȚIUL 2.63. Să se arate că într-un spațiu afin de dimensiune cel puțin 3, orice piramidă patrulateră poate fi secționată după un paralelogram.

EXERCIȚIUL 2.64. Ne situăm într-un plan afin peste un corp de caracteristică diferită de trei.

- 1. Dacă punctele A_1, B_1, C_1 împart segmentele [AB], [BC], [CA] într-un același raport, atunci triunghiurile ABC și $A_1B_1C_1$ au același echibaricentru.
- 2. Fie ABC, A'B'C' două triunghiuri cu echibaricentrele G, G'. Fie A_1 , B_1 , C_1 puncte care divid segmantele [AA'], [BB'], [CC'] într-un acelaşi raport k. Atunci echibaricentrul triunghiului $A_1B_1C_1$ divide segmentul GG' în raportul k.

EXERCIȚIUL 2.65. Fie paralelogramele (ABCD), (A'B'C'D') dintr-un spațiu afin peste un corp de caracteristică diferită de doi. Atunci mijloacele segmentelor [AA'], [BB'], [CC'], [DD'] formează un nou paralelogram.

EXERCIȚIUL 2.66. Punctele $M_1(-2,1)$, $M_2(2,3)$, $M_3(-4,-1)$ sunt mihloacele laturilor unui triunghi din planul afin \mathbb{R}^2 . Să se găsească coordonatele vârfurilor.

EXERCIȚIUL 2.67. Un pătrat din \mathbb{R}^2 are două vârfuri consecutive în (2,3) și (6,6). Să se găsească coordonatele celorlalte două vârfuri.

EXERCIȚIUL 2.68. Două submulțimi se numesc omotetice dacă există o omotetic care aplică una pe cealaltă. Să se arate că dacă trei submulțimi ale unui aceluiași plan afin, având fiecare cel puțin câte trei puncte necoliniare sunt omotetice două câte două, centrele celor trei omotetii sunt coliniare. (Indicație: e suficient să ne uităm la segmente determinate de punctele submulțimilor considerate).

EXERCIȚIUL 2.69. Dacă, într-un spațiu afin 3-dimensional, patru figuri (care au fiecare cel puţin câte trei puncte necoliniare) sunt omotetice două câte două, atunci cele şase centre de omotetie sunt situate într-un același plan, în vârfurile unui patrulater complet.

Exercițiul 2.70. Să se găsească, dacă există, dreptele spațiului afin \mathbb{R}^3 care taie simultan dreptele de ecuații:

$$\begin{cases} x = 3z \\ y = -\frac{3}{2} \end{cases}, \begin{cases} x + z = 0 \\ y = \frac{3}{2} \end{cases}, \begin{cases} x - z = 3 \\ y = z \end{cases}, \begin{cases} x - z = 0 \\ y = z \end{cases}.$$

EXERCIȚIUL 2.71. În spațiul afin \mathbb{C}^3 raportat la reperul canonic, fie planul π de ecuație $2x_1 + x_2 - 1 = 0$. Fie $p_u : \mathbb{C}^3 \to \pi$ proiecția pe π paralelă cu direcția lui $u \in \mathbb{C}^3$. Să se calculeze $p_u(A)$ pentru A = (1, 1, 1) și fiecare dintre următoarele valori ale lui u: (1, 0, 0), (i, 0, 0), (2i, i, i), (0, i, 2).

EXERCIȚIUL 2.72. În spațiul afin \mathbb{R}^3 raportat la reperul cartezian canonic, să se găsească toate reperele \mathcal{R}' care satisfac condițiile:

- (i) planul de coordonate y' = 0 este planul x z = 0;
- (ii) punctul de coordonate (0, 1, 1) în reperul canonic are coordonatele (1, 1, 0) în \mathcal{R}' ;
- (iii) axa y' este dreapta de ecuații parametrice x = 1 + t, y = 2, z = 1 t.

EXERCIȚIUL 2.73. (Convexitate în spații afine reale) Fie V un spațiu afin real. O submulțime M a lui V se numește convexă dacă odată cu două puncte A,B conține întreg segmentul [AB].

- 1. Să se arate că dacă M e convexă și $A_1,\ldots,A_p\in M$, atunci $\sum a_iA_i\in M$ pentru orice $a_i\geq 0$ cu $\sum a_i=1$.
 - 2. Dacă M e convexă şi $f \in \text{End}(V)$, atunci f(M) şi $f^{-1}(M)$ sunt convexe.

- 3. O intersecție arbitrară de mulțimi convexe e convexă. În particular, mulțimile plane delimitate de drepte (poligoanele convexe), cele din \mathbb{R}^3 delimitate de plane (poliedrele convexe) etc. sunt multimi convexe.
- 4. Pentru o submulțime arbitrară N, numim acoperire convexă intersecția tuturor mulțimilor convexe care conțin N. Notăm această mulțime cu conv(N). Să se arate că

$$conv(N) = \{ \sum_{i=1}^{k} a_i A_i \mid k \in \mathbb{N}, A_i \in N, a_i \ge 0, \sum a_i = 1 \}.$$

- 5. (Teorema lui Radon) Fie N o mulțime finită cu m elemente într-un spațiu afin real de dimensiune $n \leq m-2$. Atunci există o partiție $N=N_1\cup N_2,\ N_1\cap N_2=\emptyset,\ a$ lui N astfel încât $\mathrm{conv}(N_1)\cap\mathrm{conv}(N_2)\neq\emptyset$. (Indicație: Fie $N=\{A_1,\ldots,A_m\}$. Punctele A_i sunt afin dependente, deci există scalarii reali a_i astfel încât $\sum a_iA_i=0$ și $\sum a_i=0$. Presupunem primii p dintre ei pozitivi, ceilalți m-p negativi. Punem $N_1=\{A_1,\ldots,A_p\},\ N_2=\{A_{p+1},\ldots,A_m\}$.)
- 6. (Teorema lui Helly) Fie M_1,\ldots,M_r submulțimi convexe ale lui \mathbb{R}^n , $r\geq n+1$. Dacă intersecția a oricare n+1 dintre ele este nevidă, atunci intersecția tuturor este nevidă. (Indicație: dacă r=n+1 nu e nimic de demonstrat. dacă $r\geq n+2$, presupunem adevărat enunțul pentru orice r-1 mulțimi care-i satisfac ipotezele. Atunci mulțimile $B_i=\cap_{j\neq i}M_j$ sunt nevide. Fie $x_i\in B_i$ și $M=\{x_1,\ldots,x_r\}$. Cum $r\geq n+2$, conform teoremei lui Radon, există p astfel încât $\mathrm{conv}(\{x_1,\ldots,x_p\})\cap\mathrm{conv}(\{x_{p+1},\ldots,x_r\})$ conține cel puțin un element x. Dar $\mathrm{conv}(\{x_1,\ldots,x_p\})\subset M_{p+1}\cap\cdots\cap M_r$, iar $\mathrm{conv}(\{x_{p+1},\ldots,x_r\})\subset M_1\cap\cdots\cap M_p$. Atunci $x\in \cap_i M_i$.)

EXERCIȚIUL 2.74. În spațiul afin euclidian \mathbb{R}^3 raportat la reperul cartezian canonic se consideră planul π de ecuație 2x+2y+z=2 și dreapta δ având ecuațiile: $x=1,\ y=2z$. Fie δ' proiecția ortogonală a dreptei δ pe planul π și $\{P\}=\delta\cap\delta'$. Se rotește δ' în π în jurul punctului P cu unghiul $\pi \setminus 2$. Notăm α dreapta astfel obținută. Se translatează acum α astfel încât să se obțină două drepte, β și β' situate la aceeași distanță, 2, de dreapta δ . Să se scrie ecuațiile carteziene ale dreptelor $\delta', \alpha, \beta, \beta'$.

EXERCIȚIUL 2.75. (Puterea punctului față de sferă) Fie S(C, r) sfera din \mathbb{R}^3 de centru $C(x_0, y_0, z_0)$ și rază r. Ecuația sa este

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 - r^2 = 0.$$

Notăm f(x, y, z) membrul stâng al acestei ecuații. Fie $Q \in \mathbb{R}^3$. Considerăm o dreaptă arbitrară prin Q care taie sfera în două puncte (eventual confundate) Q_1, Q_2 . Definim numărul real

$$P_C^r(Q) = \begin{cases} d(Q,Q_1)d(Q,Q_2) & \text{dacă } Q \notin [Q_1Q_2] \\ 0 & \text{dacă } Q \in S(C,r) \\ -d(Q,Q_1)d(Q,Q_2) & \text{dacă } Q \in [Q_1Q_2] \end{cases}$$

Arătați că $P_C^r(Q) = f(x_Q, y_Q, z_Q)$, unde (x_Q, y_Q, z_Q) sunt coordonatele lui Q, adică P_C^r nu depinde de alegerea dreptei QQ_1 , definind astfel o funcție $P_C^r: \mathbb{R}^3 \to \mathbb{R}$. Demonstrați că Q se află în exteriorul sferei (respectiv în interiorul sferei, respectiv pe sferă) dacă și numai dacă $P_C^r(Q) > 0$ (respectiv < 0, respectiv = 0).

Arătați că:

- a) Locul geometric al punctelor cu puteri egale față de două sfere neconcentrice este un plan perpendicular pe linia centrelor (planul radical al celor două sfere).
- b) Locul geometric al punctelor cu puteri egale față de trei sfere cu centre necoliniare este o dreaptă (axa radicală) perpendiculară pe planul determinat de centrele sferelor.
- c) Studiați existența centrului radical a patru sfere: locul punctelor cu puteri egale față de cele patru sfere.

Definiți în mod analog puterea punctului față de un cerc. Formulați și demonstrați probleme asemănătoare celor de mai sus.

EXERCIȚIUL 2.76. (Inversiunile planului euclidian real) Fie $O \in \mathbb{R}^2$ fixat și $k \in \mathbb{R} - \{0\}$. Se numește inversiune de pol O și putere k (sau inversiune față de cercul de centru O și rază k atunci când k > 0) transformarea $I_O^k : \mathbb{R}^2 \to \mathbb{R}^2$ dată prin:

$$I_O^k(M) = \left\{ \begin{array}{ll} M' \in OM & \text{astfel încât} & \langle \overrightarrow{OM}, \overrightarrow{OM'} \rangle = k, & \operatorname{dacă} M \neq O, \\ O & \operatorname{dacă} M = O. \end{array} \right.$$

Să se arate că $I_O^k \circ I_O^k = 1_{\mathbb{R}^2}$, adică inversiunea e o involuție. Găsiți exprimarea analitică a inversiunilor (într-un reper ortonormat al planului) și demonstrați (analitic sau sintetic) următoarele proprietăți geometrice ale lor:

- a) Dreptele prin pol sunt invariante. Cercurile care nu trec prin pol sunt transformate în cercuri care nu trec prin pol. Cercurile care trec prin pol sunt transformate în drepte care nu trec prin pol. Dreptele care nu trec prin pol se transformă în cercuri care trec prin pol.
- b) Dacă k>0, atunci I_O^k invariază punct cu punct cercul de centru O și rază \sqrt{k} (numit cerc de inversiune), transformă interiorul acestuia în exteriorul lui și reciproc. Mai general, un cerc este invariant la I_O^k dacă și numai dacă este cercul de inversiune sau dacă îl intersectează ortogonal pe acesta.
- c) Inversiunile păstrează unghiul a două drepte (în consecință, unghiul a două curbe plane secante), dar nu lungimea segmentelor.

EXERCIȚIUL 2.77. Verificați următoarele trei construcții ale inversului unui punct A față de un cerc Γ de centru O și rază k:

- a) Se construiește un cerc arbitrar prin A care intersectează Γ în P și Q. Fie R, S punctele în care AP și AQ întâlnesc din nou Γ . Intersecția dintre PS și RQ este inversul lui A.
- b) (Numai cu compasul, în ipoteza d(O,A) > k/2.) Se trasează un cerc arbitrar cu centrul în O și care trece prin A. Fie P, Q intersecțiile lui cu Γ . Apoi se trasează cercurile cu centrele în P și Q prin O. A doua lor intersecție este inversul lui A.
- c) (Numai cu rigla.) Se trasează diametrul OA al lui Γ ; fie R, S capetele sale. Fie l o dreaptă arbitrară prin A care taie Γ în P și Q. Fie $\{T\} = RP \cap SQ$, $\{U\} = RQ \cap PS$. Inversul lui A este intersecția dintre TU și OA. În plus, arătați că TU e perpendiculară pe OA.

EXERCIȚIUL 2.78. Mulțimea omotetiilor și a inversiunilor planului cu același centru (pol) formează un grup.

Exercițiul 2.79. Folosiți inversiunea pentru a demonstra următoarele teoreme ale lui Ptolemeu 9 (a, b) și Pappus (c):

- a) Într-un patrulater convex inscriptibil, produsul lungimilor diagonalelor este egal cu suma produselor lungimilor laturilor opuse.
- b) Intr-un patrulater convex inscriptibil, raportul lungimilor diagonalelor este egal cu raportul sumelor de produse ale lungimilor laturilor care pleacă din aceleași extremități ale diagonalelor respective.
- c) Fie A,B,C trei pucte coliniare, C între A și B. Fie C,C',C'' cercurile de diametru [AB],[BC],[AC]. Construim următorul șir de cercuri: C_1 este tangent lui C,C'' și $C';C_2$ este tangent lui C,C'' și C_1 etc. Notăm r_n raza lui C_n și d_n distanța de la centrul lui C_n la dreapta AB. Să se arate că $d_n = 2nr_n$.

 $^{^9\}mathrm{Claudios}$ Ptolomaios, 85-168 d.C., astronom și geograf grec din Alexandria.

EXERCIȚIUL 2.80. Să se arate că cercul celor nouă puncte (al lui Euler) al unui triunghi (ABC) este inversul cercului circumscris triunghiului printr-o inversiune cu polul în ortocentrul triunghiului și de putere $-4R^2\cos A\cos B\cos C$, R fiind raza cercului circumscris. În consecință, toate triunghiurile înscrise în același cerc și având același ortocentru au același cerc al lui Euler.

Exercițiul 2.81. Demonstrați următoarele proprietăți ale hiperbolei:

- 1. Toate hiperbolele echilatere circumscrise unui triunghi trec prin ortocentrul triunghiului. Centrele acestor hiperbole se află pe cercul lui Euler al triunghiului.
- 2. O secantă arbitrară determină segmente egale între hiperbolă și asimptote. Mijlocul segmentului determinat de intersecțiile unei tangente cu asimptotele este chiar punctul de contact.
- $3.\ {\rm Aria}$ triunghiului format de asimptotele hiperbolei și de o tangentă mobilă este constantă.
- Produsul distanțelor unui punct mobil pe hiperbolă la cele două asimptote e constant.
- 5. Dreptele care unesc un punct al unei hiperbole cu capetele unui diametru sunt egal înclinate pe asimptote.

Exercițiul 2.82. Demonstrați următoarele proprietăți ale parabolei:

- 1. Locul geometric al simetricelor focarului unei parabole fixe față de tangentele la parabolă este directoarea parabolei.
- 2. Locul geometric al proiecțiilor focarului pe tangentele la parabolă este tangenta în vârf.
- 3. Directoarea unei parabole înscrise într-un triunghi trece prin ortocentrul triunghiului.
- 4. Tangenta într-un punct M al parabolei este bisectoarea unghiului format de paralela la axă prin M și de dreapta care unește focarul cu M.
- 5. Directoarea este locul geometric al punctelor din care se pot duce tangente perpendiculare la parabolă.
 - 6. Există o unică parabolă tangentă la patru drepte date.

Exercițiul 2.83. Fie O (respectiv H) centrul cercului circumscris (respectiv ortocentrul) unui triunghi. Să se demonstreze relația vectorială $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$.

EXERCIŢIUL 2.84. Definiţi inversiunile lui \mathbb{R}^n şi studiaţi-le proprietăţile. Pentru k>0 veţi găsi o hipersferă invariantă, etc.

EXERCIȚIUL 2.85. Să se arate că pentru orice trei sfere date din \mathbb{R}^3 există o inversiune care le transformă în trei sfere cu centrele coliniare.

Exercițiul 2.86. Două cercuri din \mathbb{R}^3 care se corespund printr-o inversiune stau pe o aceeași sferă.

EXERCIȚIUL 2.87. Fie γ o elipsă sau hiperbolă în spațiul afin \mathbb{R}^2 . Se numește diametru orice dreaptă care trece prin centrul lui γ . Mai general, orice segment cu extremitățile pe γ se numește coardă. Să se arate că locul geometric al mijloacelor coardelor lui γ paralele cu o direcție dată este un diametru al lui γ . Să se studieze cazul în care diametrul rezultat este, la rândul său, paralel cu direcția dată.

EXERCIȚIUL 2.88. O elipsă și o hiperbolă cu focare comune se taie sub unghiuri drepte.

EXERCIȚIUL 2.89. Să se arate că toate conicele din familia

$$\frac{x^2}{a^2 + k} + \frac{y^2}{k} - 1 = 0, \quad k \in \mathbb{R}^*$$

au aceleași focare. Prin orice punct al planului trec două conice din familie, anume o elipsă și o hiperbolă mutual ortogonale.

EXERCIȚIUL 2.90. Să se aducă la forma canonică, prin izometrii, următoarele cuadrice din spațiul euclidian \mathbb{R}^3 : $z^2+4xy-1=0$, $5x^2+8y^2+5z^2+4xy-8xz+4yz-27=0$, $6x^2-2y^2+6z^2+4xz+8x-4y-8z+1=0$.

EXERCIȚIUL 2.91. Determinați planele care intersectează hiperboloidul cu o pânză

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

după cercuri.

EXERCIȚIUL 2.92. Decideți dacă există o sferă pe care să se afle cercurile: Γ_1 de centru (1,-2,-2) și rază 2, din planul de ecuație x+y+z+3=0 și Γ_2 de centru (1,0,0) și rază 2 din planul de ecuație x-y-z-1=0. În caz afirmativ, scrieți ecuația sferei.

Exercițiul 2.93. Se consideră hiperboloidul cu o pânză

$$\frac{x^2}{4} - \frac{y^2}{9} + z^2 = 1.$$

Să se scrie ecuația generatoarei sale care trece prin punctul (2, 3, -1). Există puncte în care cele două generatoare să fie perpendiculare?

EXERCIȚIUL 2.94. Să se scrie ecuația sferei care conține cercul de ecuații $x^2 + (y-1)^2 + (z+1)^2 = 5$, x+y+z=1 și e tangentă în punctul (0,0,1) la planul de ecuație z=1.

EXERCIȚIUL 2.95. Să se scrie ecuația cuadricei care conține cercurile C_1, C_2, C_3 de ecuații $3y^2+3z^2-19=0, x=2$, respectiv $3y^2+3z^2-4=0, x+1=0$, respectiv $3y^2+3z^2-7=0, x+4=0$.

EXERCIȚIUL 2.96. Să se scrie ecuația conului cu vârful în punctul (0,0,1), peste elipsa de ecuații $\frac{x^2}{25} + \frac{y^2}{9} = 1$, z = 3.

Exercițiul 2.97. Să se găsească direcția axei conului $x^2 = yz$.

EXERCIȚIUL 2.98. Să se scrie ecuația suprafeței obținute prin rotația dreptei de ecuații $z=0,\ x+2y=4$ în jurul axei Ox.

EXERCIȚIUL 2.99. Fie d_1 , d_2 două drepte necoplanare în \mathbb{R}^3 . Să se arate că perpendicularele coborâte de pe d_1 pe d_2 descriu un paraboloid echilater care conțne cele două drepte.

EXERCIȚIUL 2.100. Arătați că orice conică (respectiv cuadrică) conexă din \mathbb{R}^2 (respectiv \mathbb{R}^3) separă planul (respectiv spațiul) în două submulțimi disjuncte, nevide cu proprietatea că două puncte sunt în clase diferite dacă și numai dacă segmentul determinat de ele e intersectat de conică (respectiv cuadrică) în interior.

Exercițiul 2.101. Demonstrați, cu metode de geometrie analitică, următoarele proprietăți ale tetraedrului din spațiul afin euclidian \mathbb{R}^3 :

- a) Planele perpendiculare pe muchii și trecând prin mijloacele muchiilor opuse sunt concurente.
- b) Dacă două perechi de muchii opuse sunt perpendiculare, atunci și a treia pereche de muchii opuse e e formată din drepte perpendiculare. (Indicație: Fie $A_i(x_i, y_i, z_i)$, $i=1,\ldots,4$ vârfurile tetraedrului. Condiția de perpendicularitate dintre A_1A_2 și A_3A_4 este $f_{(12)(34)}:=(x_1-x_2)(x_3-x_4)+(y_1-y_2)(y_3-y_4)+(z_1-z_2)(z_3-z_4)=0$. Analog se scriu celelalte condiții de perpendicularitate și se observă că $f_{(12)(34)}+f_{(13)(24)}+f_{(14)(23)}=0$.)

c) Dacă două dintre înălțimi se taie, atunci și celelalte două înălțimi se taie și două muchii opuse sunt perpendiculare. Dacă muchiile opuse sunt ortogonale, cele patru înălțimi sunt concurente. (Indicație: Putem considera că vârfurile tetraedrului sunt de forma $A_1(0,0,0), A_2(x_2,0,z_2), A_3(x_3,y_3,z_3), A_4(0,0,z_4)$.)

Geometrie proiectivă

De atâtea ori, pe parcursul vieții mele, realitatea m-a dezamăgit pentru că, în momentul când o percepeam, imaginația mea, singurul meu organ cu ajutorul căruia mă puteam bucura de frumusețe, nu putea să i se aplice datorită legii inevitabile care face să nu ne putem imagina decât ceea ce este absent.

Marcel Proust, Timpul regăsit

Dacă, în capitolul anterior, am formalizat, utilizând algebra liniară, geometria cunoscută din școală, acest capitol este dedicat unei geometrii despre care în școală nu se vorbește aproape deloc. Vom studia spații cu proprietăți foarte simple, de exemplu într-un plan proiectiv nu vor exista drepte paralele. Dar principala noutate a acestui capitol este modul de construcție a geometriei pe care o prezentăm. În loc să pornim de la o structură algebrică ale cărei proprietăți geometrice să le degajăm treptat, aici vom porni de la câteva axiome elementare cu ajutorul cărora vom construi geometria proiectivă. Pâna aici nimic nou, ceva asemănător s-a făcut în liceu. Partea nouă și spectaculoasă este construcția unei structuri algebrice, în speță a unui corp și a unui spațiu vectorial, atașate spațiului proiectiv. De asemenea, vom vedea că unele submulțimi ale unui spațiu proiectiv (definit axiomatic) au structură de spațiu afin atașat acelui spațiu vectorial. Cercul se va închide astfel, dovedind, odată în plus, că distincția algebră versus geometrie e, cel mult, de natură didactică.

1. Spaţii proiective

- 1.1. Definiții. Proprietăți generale. Exemple. Fie M o mulțime nevidă ale cărei elemente se vor numi puncte și $\mathcal D$ o familie de submulțimi ale cărei elemente se numesc drepte. Chiar dacă vom dezvolta o teorie axiomatică, nu vom adopta limbajul ultra-riguros al teoriei mulțimilor și al logicii matematice, preferând să cedăm în favoarea intuiției. Astfel, vom spune că un punct se află pe o dreaptă sau că o dreaptă trece printr-un punct, că două drepte se taie într-un punct etc. Uneori vom folosi relația de incidență: dreapta d e incidentă cu punctul P înseamnă că $P \in d$, două drepte sunt incidente dacă au un punct comun etc. Vom considera următoarele axiome:
- P1 Prin două puncte distincte trece o dreaptă și numai una. Dreapta determinată de punctele A, B se va nota AB.
- P2 Orice dreaptă are cel puțin trei puncte distincte. Pentru orice dreaptă există cel puțin un punct care nu-i aparține.
- **P3** (Axioma lui Veblen¹) Fie d_1, d_2 drepte distincte, concurente în punctul O. Fie A_1, B_1 , respectiv A_2, B_2 puncte distincte între ele și distincte de O ale dreptei d_1 , respectiv d_2 . Atunci dreptele A_1A_2 și B_1B_2 se intersectează.

P4 Există două drepte disjuncte.

Vom nota cu non P negația propoziției P.

 $^{^{1}\}mathrm{Oswald}$ Veblen, 1880-1960, matematician american. Lucrări de geometrie și topologie.

Definiția 3.1. O pereche $(M,\{M\})$ se numește dreaptă proiectivă dacă M are cel puțin trei puncte distincte.

O pereche (M, \mathcal{D}) care satisface axiomele P1, P2, non P4 se numeşte $plan\ pro-iectiv$.

O pereche (M, \mathcal{D}) care satisface axiomele P1-P4 se numește spațiu proiectiv.

După cum vom vedea mai departe, distincția dintre plane proiective și spații proiective va fi esențială. Pe de altă parte, geometria unei drepte proiective este foarte săracă, așa că nu vom insista asupra ei.

Exemplul 3.1. Fie $\mathcal A$ un spațiu afin 3-dimensional. Fie Δ mulțimea dreptelor (varietăților liniare 1-dimensionale) din $\mathcal A$. După cum știm, relația de paralelism e una de echivalență pe Δ . Fie $\delta_\infty = \{\delta' \in \Delta : \delta' || \delta\}$ clasa de echivalență a dreptei δ modulo relația de paralelism. Notăm la fel imaginea lui δ_∞ în mulțimea factor $\Delta/||$. Vom spune că δ_∞ (privit ca element al mulțimii factor) e punctul de la infinit al lui δ . Notăm cu $\overline{\delta} = \delta \cup \delta_\infty$ și punem $\overline{\Delta} = \{\overline{\delta} \mid \delta \in \Delta\}$. Fie $I = \{\delta_\infty \mid \delta \in \Delta\}$ mulțimea punctelor de la infinit. Fie $M = \mathcal A \cup I$. Punctele lui $\mathcal A$ se vor numi puncte proprii ale lui M, cele din I vor fi numite puncte improprii sau de la infinit.

Să definim acum dreptele lui M. Fie π un plan al lui \mathcal{A} și π_{∞} , numită dreapta improprie sau de la infinit a planului π , mulțimea punctelor de la infinit ale dreptelor incluse în π . Acum punem $\mathcal{D} = \overline{\Delta} \cup \{\pi_{\infty} \mid \pi \subset \mathcal{A}, \dim \pi = 2\}$. Elementele lui $\overline{\Delta}$ se numesc drepte proprii, iar cele de tipul π_{∞} , drepte improprii sau de la infinit.

EXERCIȚIUL 3.1. Să se arate că o dreaptă proprie are un punct impropriu şi numai unul singur, în timp ce orice dreaptă improprie conține numai puncte improprii. Două plane afine sunt paralele dacă și numai dacă au aceeași dreaptă improprie.

Trecem acum la verificarea axiomelor pentru perechea (M, \mathcal{D}) .

Axioma P1. Fie A, B puncte distincte ale lui M. Avem de analizat mai multe situatii:

- 1. $A, B \in \mathcal{A}$ (puncte proprii). Atunci există o unică dreaptă (afină) $\delta \subset \mathcal{A}$ care conține A, B. În consecință $\overline{\delta}$ este o dreaptă a lui M care conține A, B. Conform exercițiului anterior, nu poate exista o dreaptă improprie care să treacă prin A, B. Dacă $\overline{\delta'}$ trece prin A, B, atunci $\delta = \delta'$, deci $\overline{\delta} = \overline{\delta'}$, ceea ce încheie demonstrația unicității în acest caz.
- 2. $A \in \mathcal{A}, B \in I$. Acum $B = \delta_{\infty}$ pentru o dreaptă afină $\delta \in \Delta$. Fie δ' unica dreaptă afină prin A, paralelă cu δ (vezi corolarul 2.5). Atunci $\delta_{\infty} = \delta'_{\infty} = B$, adică $B \in \overline{\delta'}$. Unicitatea rezultă din nou din corolarul citat.
- 3. $A,B\in I$. Deoarece fiecare dreaptă proprie are doar un punct impropriu, trebuie să căutăm o dreaptă improprie care să conțină A,B. Alegem $\delta,\,\delta'\in\Delta$ astfel încât $\delta_\infty=A,\,\delta'_\infty=B$. Cum $A\neq B$, avem $\delta\not\parallel\delta'$, astfel că putem totdeauna alege δ,δ' în așa fel ca $\delta\cap\delta'\neq\emptyset$. Cu o asemenea alegere, δ și δ' generează un unic plan afin π . Se vede imediat că A și B se află pe dreapta improprie π_∞ . Cum două plane paralele au aceeași dreaptă improprie, unicitatea rezultă.

Axioma P2. Fie $\overline{\delta} = \delta \cup \delta_{\infty}$ o dreaptă proprie. Cum dreapta afină δ conține cel puțin două puncte distincte, $\overline{\delta}$ conține cel puțin trei puncte distincte. Cum dim $\mathcal{A} = 3$, e clar că există un punct $A \in \mathcal{A}$ care nu e pe δ , în particular, ca punct propriu al lui M, $A \notin \overline{\delta}$.

Considerând acum o dreaptă improprie, de tipul π_{∞} , a găsi trei puncte distincte ale ei revine la a găsi trei drepte afine în π neparalele două câte două, iar acest lucru e echivalent cu existența a trei puncte afin independente în π , proprietate asigurată de dim $\pi = 2$. Pe de altă parte, orice punct propriu e neincident cu π_{∞} .

Axioma P3. Fie d_1, d_2 drepte concurente în O. Avem, şi aici, mai multe cazuri de considerat:

1) d_1, d_2 sunt proprii și O e propriu. Atunci, dacă A_1, A_2, B_1, B_2 sunt proprii, dreptele afine $\delta = \langle A_1 A_2 \rangle$, $\delta' = \langle B_1 B_2 \rangle$, coplanare, sunt paralele sau concurente. În ambele cazuri dreptele proiective $\overline{\delta}$, $\overline{\delta'}$ sunt concurente (la infinit, în primul caz sau într-un punct propriu în al doilea).

Dacă, însă, A_1 e propriu şi B_1 impropriu, în timp ce A_2 , B_2 sunt proprii, atunci $B_1 = d_{1\infty}$. Paralela prin B_2 la dreapta afină din care provine d_1 (anume $\langle OA_1 \rangle$) şi dreapta afină $\langle A_1 A_2 \rangle$ sunt concurente, deci $A_1 A_2 \cap B_1 B_2 \neq \emptyset$.

Dacă A_1, A_2 sunt proprii iar B_1, B_2 sunt improprii, atunci B_1B_2 este dreapta de la infinit a planului afin determinat de punctele O, A_1, A_2 . În consecință dreapta proiectivă A_1A_2 taie B_1B_2 în punctul său de la infinit.

2) d_1, d_2 sunt proprii și O e impropriu. Atunci A_1, A_2, B_1, B_2 sunt proprii și se raționează la fel ca în primul caz de mai sus.

3) d_1 proprie, d_2 improprie: $d_2 = \pi_{\infty}$. Rezultă O impropriu, A_1 , B_1 proprii şi A_2 , B_2 improprii (vezi exercițiul 3.1). Acum $A_1A_2 = \overline{\delta}$, (respectiv $B_1B_2 = \overline{\delta'}$) unde δ (respectiv δ') e o dreaptă afină care trece prin A_1 (respectiv B_1) şi $\delta_{\infty} = A_2$ (respectiv $\delta'_{\infty} = B_2$). În particular, δ şi δ' nu sunt paralele pentru că punctele lor de la infinit, A_2 , B_2 sunt distincte. Dar δ şi δ' sunt coplanare (stau în palnul π în care este inclusă şi $\langle a_1b_1\rangle$), deci concurente într-un punct propriu în care se intersectează şi d_1 , d_2 .

4) d_1 , d_2 improprii. Acum $d_1 = \pi_{1\infty}$, $d_2 = \pi_{2\infty}$ cu $\pi_1 \cap \pi_2 = \delta$, punctul de la infinit al lui δ fiind tocmai punctul O de intersecție al lui d_1 cu d_2 . Punctele A_1 , B_1 de pe d_1 sunt punctele de la infinit ale unor drepte δ_1 , δ'_1 din π_1 , neparalele între ele (pentru că au puncte de la infinit distincte) și ambele neparalele cu δ (pentru că punctele lor de la infinit sunt distincte de O). Fie $\{P\} = \delta_1 \cap \delta'_1$. La fel obținem în π_2 dreptele δ_2 , δ'_2 care se taie în Q. Fie α planul generat de δ_1 și de paralela prin P la δ_2 . Fie β planul generat de δ'_1 și de paralela prin P la δ'_2 . Atunci $A_1A_2 = \alpha_\infty$ și $B_1B_2 = \beta_\infty$. Deoarece α și β au în comun punctul P, ele au în comun o dreaptă δ'' . Rezultă $A_1A_2 \cap B_1B_2 = \delta''_\infty$.

Axioma P4. Este evidentă, pentru că în \mathcal{A} există 4 puncte afin independente A_1, \ldots, A_4 . Rezultă că dreptele afine $\langle A_1 A_2 \rangle$, $\langle A_3 A_4 \rangle$ nu se taie, şi sunt neparalele, deci dreptele proiective $A_1 A_2$, $A_3 A_4$ nu se taie.

Exemplul 3.2. Vom face o construcție asemănătoare celei dinainte, dar pornind de la un spațiu afin \mathcal{A} , 2-dimensional. Ceea ce vom obține va fi un plan proiectiv. Ca mai sus, Δ e mulțimea dreptelor afine din \mathcal{A} , \parallel relația de paralelism, δ_{∞} clasa de echivalență a unei drepte (punctul ei de la infinit), $I = \{\delta_{\infty}\}$, $\overline{\delta} = \delta \cup \delta_{\infty}$, $\mathcal{D} = \{\overline{\delta} \mid \delta \subset \mathcal{A}\} \cup \{I\}$, $M = \mathcal{A} \cup I$. Aici numim I dreapta de la infinit. Cu aceleași denumiri de mai sus, aici nu există decât o singură dreaptă improprie, cea de la infinit și fiecare dreaptă proprie are un singur punct impropriu. Verificarea axiomelor de plan proiective aici mult mai ușoară. De exemplu, non P4: fie $d_1 = \overline{\delta_1}$, $d_2 = \overline{\delta_2}$ două drepte proiective. Dacă $\delta_1 \| \delta_2$ atunci $\delta_{1\infty} = \delta_{2\infty}$; dacă δ_1 nu e paralelă cu δ_2 în \mathcal{A} , atunci se taie (într-un plan afin paralelismul dreptelor se reduce la nonintersecție) în \mathcal{A} . Dacă $d_1 = \overline{\delta_1}$ și $d_2 = I$, rezultă $d_1 \cap d_2 = \{\delta_{1\infty}\}$. În ambele situații dreptele d_1, d_2 se intersectează. Lăsăm cititorului verificarea primelor două axiome.

Toate construcțiile care vor urma vor demonstra până la urmă că orice spațiu proiectiv (respectiv plan proiectiv care satisface o anume axiomă suplimentară, a lui Desargues) e de acest tip.

Se spune că spațiul (respectiv planul) proiectiv construit în exemplele anterioare e obținut prin completarea spațiului (respectiv planului) afin cu punctele sale de la infinit. Procedeul a fost sugerat de practica pictorilor renascentiști ai veacului al 15-lea (printre primii numărându-se Filippo Brunelleschi care, cel dintâi, a realizat experimental perspectiva proiectând imaginea Baptisteriului din Florența pe o oglindă plană, Piero della Francesca, Leone Battista și, puțin mai târziu, Albrecht Dürer) care, pentru a reda spațialitatea pe suprafața bidimensională a pânzei, au construit și studiat o teorie a perspectivei. Problema majoră era că dreptele care sunt paralele în realitate par că se întâlnesc atunci când sunt proiectate pe suprafața plană. Punctul de concurență (de fugă), aflat undeva în afara tabloului, corespunde unui punct imaginar care s-ar situa pe linia orizontului privirii.

EXERCIȚIUL 3.2. În același spirit, considerați dreapta reală compactificată cu un punct (compactificare Alexandrov). Se obține o dreaptă proiectivă.

Exemplul 3.3. (Proiectivizatul unui spațiu vectorial) Fie V un spațiu vectorial de dimensiune cel puțin 2 peste un corp K arbitrar. Notăm \sim următoarea relație pe $V-\{0\}$: $x\sim y$ dacă și numai dacă există $\lambda\in K^*$ astfel încât $x=\lambda y$ (am admis tacit că, în cazul în care K nu e comutativ, V e spațiu vectorial la stânga). Se verifică ușor că \sim e o relație de echivalență. Ea identifică vectorii nenuli coliniari. Vom nota [x] clasa de echivalență a lui x și P(V) mulțimea factor $V-\{0\}/\sim$ pe care o vom numi proiectivizatul lui V. Fie, de asemenea, $\pi:V-\{0\}\to P(V)$ surjecția canonică, $\pi(x)=[x]$. E esențial de observat că \sim nu e compatibilă cu structura vectorială a lui V care, deci, nu se induce pe P(V). Dacă dim V=2, atunci P(V) este un exemplu de dreaptă proiectivă.

Presupunem acum dim $V \geq 3$. Definim dreptele lui P(V) ca fiind imagini prin π ale subspaţiilor 2-dimensionale ale lui V, din care s-a scos originea: $\mathcal{D} = \{\pi(U - \{0\}); U \subset V, \dim U = 2\}$. Perechea $(P(V), \mathcal{D})$ e un plan proiectiv dacă dim V = 3 şi un spaţiu proiectiv dacă dim $V \geq 4$. Verificarea axiomelor se reduce la simple exerciţii de algebră liniară.

Proiectivizatul lui $V = K^{n+1}$ se notează P^nK . Pentru simplitate, clasa vectorului $(x_0, \ldots, x_n) \in K^{n+1}$ va fi notată $[x_0, \ldots, x_n]$. P^nK este un obiect fundamental pentru geometrie, de aceea vom testa pe el proprietățile pe care le vom introduce.

EXERCIȚIUL 3.3. Considerați pe $\mathbb{R}^{n+1} - \{0\}$ topologia canonică indusă de pe \mathbb{R}^{n+1} și puneți pe $P^n\mathbb{R}$ topologia factor (cea mai fină care face proiecția canonică să fie continuă). Acum demonstrați că, în această topologie, $P^n\mathbb{R}$ e compact, conex, conex prin arce.

EXERCIȚIUL 3.4. Arătați că dreapta proiectivă reală este homeomorfă cu cercul unitate S^1 . Legați această proprietate de observația privitoare la compactificarea Alexandrov. Analog, arătați că $P^1\mathbb{C}$ este homeomorfă cu sfera unitate S^2 .

EXERCIȚIUL 3.5. Priviți \mathbb{Z}_2^3 ca spațiu vectorial peste \mathbb{Z}_2 . Arătați că $P(\mathbb{Z}_2^3)$ e un plan proiectiv cu 7 puncte și 7 drepte.

Proprietatea anterioară nu e întâmplătoare. Avem:

EXERCIȚIUL 3.6. Într-un plan proiectiv (M, \mathcal{D}) , toate dreptele au același cardinal. (*Indicație*: luați d_1, d_2 drepte distincte, arătați că există un punct O nesituat pe nici una dintre ele, construiți $f: d_1 \to d_2$ prin $f(A_1) = OA_1 \cap d_2$ și arătați că e bijecție). Dacă $\sharp M < \infty$, atunci $\sharp M = \sharp \mathcal{D}$.

Exemplul 3.4. Un alt exemplu de plan proiectiv finit, tot cu 7 puncte, se poate obține astfel: fie G un grup cu 8 elemente, fiecare element având ordinul 2 (în particular G e comutativ). Notăm e elementul neutru și punem

$$M = G - \{e\}, \mathcal{D} = \{H - \{e\}; H \text{ subgrup cu 4 elemente}\}.$$

Rezultă 7 drepte și axiomele de plan proiectiv se verifică ușor.

Aceste exemple motivează următorul enunț general:

Propoziția 3.1. Numărul minim de puncte și drepte pe care le poate avea un plan proiectiv este 7.

Demonstrație. Cum \mathcal{D} nu e vidă, există măcar o dreaptă $d_1 \in \mathcal{D}$. Conform axiomei P2 avem cel puţin 3 puncte A_1, A_2, A_3 pe d_1 şi un punct $A_4 \notin d_1$. Axioma P1 produce acum dreptele $d_2 = A_1A_4, d_3 = A_2A_4, d_4 = A_3A_4$. Fiecare dintre acestea are cel puţin 3 puncte distincte (conform axiomei P2), deci există $A_5 \in d_2$, $A_5 \neq A_1, A_4$; $A_6 \in d_3, A_6 \neq A_2, A_4$; $A_7 \in d_4, A_7 \neq A_3, A_4$. În plus, e clar că $A_5 \neq A_6 \neq A_7 \neq A_5$. Am obţinut deja 7 puncte. Dacă vrem să avem un plan cu doar aceste puncte, ştim că trebuie să avem doar 7 drepte. Atunci $A_7 \in d_5 = A_1A_6$, $A_5 \in d_6 = A_3A_6$ şi A_5, A_2, A_7 sunt coliniare, determinând d_7 .

Planul proiectiv corespunzător configurației obținute, numit $planul lui Fano^2$, se poate reprezenta astfel:

FIGURA 3.1 Planul lui Fano Atenție, dreptele, deși trasate în desen, au numai câte trei puncte!

2. Subspații proiective

2.1. Definiții. Prime proprietăți.

DEFINIȚIA 3.2. O submulțime a unui plan sau spațiu proiectiv se numește varietate liniară sau subspațiu proiectiv dacă este vidă, dacă se reduce la un punct sau dacă, odată cu două puncte ale ei, conține întreaga dreaptă determinată de ele.

În particular, \emptyset , punctele, dreptele şi spațiul total însuși sunt subspații proiective.

Ca și în cazul celorlalte structuri studiate, structura spațiului ambiant e moștenită de un subspațiu:

Propoziția 3.2. Dacă M' e subspațiu proiectiv diferit de \emptyset , neredus la un singur punct și dacă notăm $\mathcal{D}' = \{d \in \mathcal{D} \; ; \; d \subseteq M'\}$, atunci (M', \mathcal{D}') e un spațiu sau un plan proiectiv.

EXEMPLUL 3.5. Considerând un plan afin al unui spațiu afin 3-dimensional și completându-le cu punctele lor de la infinit obținem un exemplu de plan proiectiv care e subspațiu al unui spațiu proiectiv.

De asemenea, e imediată:

Propoziția 3.3. O intersecție de subspații proiective e subspațiu proiectiv.

Acum putem da, ca şi în cazul structurii liniare sau afine:

 $^{^2{\}rm Gino}$ Fano, 1871-1952, matematician italian; contribuții în geometria algebrică și proiectivă.

DEFINIȚIA 3.3. Pentru o submulțime S a spațiului sau a planului proiectiv (M,\mathcal{D}) , se numește $\hat{i}nchiderea$ proiectivă a lui S sau subspațiul proiectiv generat de S și se notează \overline{S} intersecția tuturor subspațiilor proiective care conțin S.

Exemplul 3.6. Dacă $A \neq B$, atunci $\overline{\{A\}} = \{A\}$; $\overline{\{A,B\}} = AB$.

EXERCIȚIUL 3.7. 1) Dacă $S_1 \subseteq S_2$, atunci $\overline{S_1} \subseteq \overline{S_2}$. Dați exemple de $S_1 \subset S_2$ strict și $\overline{S_1} = \overline{S_2}$.

2) Dacă L e subspațiu proiectiv, atunci $\overline{L} = L$.

Următoarea construcție este specifică geometriei proiective și e esențială pentru tot ce va urma.

TEOREMA 3.1. Fie L un subspațiu proiectiv nevid al spațiului sau planului proiectiv (M, \mathcal{D}) și fie $O \in M$ arbitrar. Următoarele afirmații sunt adevărate:

1) Mulțimea $OL = \{OA ; A \in L\}$, numită proiecția din O pe L, e subspațiu proiectiv.

2) $Dac\check{a} \{O,Q\} \subset OL - L \ sau \{O,Q\} \subset L, \ atunci \ OL = QL.$

3) OL e închiderea proiectivă a lui $L \cup \{O\}$.

Demonstrație. Observăm, în primul rând, că dacă $O \in L$, atunci OL = L și cele trei enunțuri devin triviale. Vom presupune, în consecință, $O \notin L$.

Fie X,Y puncte distincte din OL. Trebuie arătat că întreaga dreaptă XY e conținută în OL. Adică, pentru orice punct $Z \in XY$, trebuie găsit un punct $C \in L$ astfel încât $Z \in OC$.

Dacă X=O sau Y=O, proprietatea e evidentă (datorită chiar definiției lui OL). Fie, deci, $X\neq O, Y\neq O$. Deoarece $L\subseteq OL$, cazul $X,Y\in L$ e trivial. Astfel, vom presupune că X sau $Y\not\in L$. Conform definiției şi presupunerilor făcute avem $X\in OA, Y\in OB$ cu $A,B\in L, A\neq O, B\neq O, A\neq X$ sau $B\neq Y$. Dacă A=B, X,Y,O sunt coliniare şi nu mai e nimic de demonstrat. Fie $A\neq B$. Dacă A=X putem aplica axioma P3 dreptelor OB şi XY, distincte şi concurente în Y. Rezultă că pentru orice $Z\in XY$, diferit de X,Y, există $\{C\}=OZ\cap AB$. Cum $AB\subseteq L$, deducem $C\in L$, adică $Z\in OL$.

La fel se raționează în cazul B = Y.

Dacă $X \neq A$, $Y \neq B$, atunci, aplicând axioma P3 dreptelor OA și OB, deducem $XY \cap AB = \{D\} \subset L$. Aceeași axiomă P3 aplicată dreptelor DX și OB care se taie în Y, conduce la $OZ \cap AB = \{C\} \subset L$, deci $Z \in OC \subset OL$ ceea ce încheie demonstrația punctului 1).

Pentru 2), fie $Q \in OL - L$. Există $A \in L$ cu $Q \in OA$. Cum O, Q, A sunt coliniare, la fel de bine putem scrie $O \in QA$, deci O şi Q au un rol simetric. Astfel, va fi suficient să demonstrăm incluziunea $QL \subseteq OL$, cea inversă rezultând prin schimbarea rolurilor lui O şi Q. Fie $R \in QL$ şi $B \in L$ astfel încât $R \in QB$. Aplicăm axioma P3 dreptelor OA şi QB care se taie în Q: rezultă $OR \cap AB = \{C\} \subset L$. Deci $R \in OC$ ceea ce demonstrează incluziunea anunțată.

În fine, pentru a demonstra 3), să observăm întâi că $L \subset OL$, $\{O\} \subset OL$ implică $L \cup \{O\} \subset OL$. Conform exercițiului 3.7, luând închiderea proiectivă în ambii membri ai incluziunii, avem $\overline{L \cup \{O\}} \subseteq OL$. Reciproc, pentru $R \in OL$ arbitrar, fie $A \in L$ cu $R \in OA$. Cum O, A aparțin subspațiului proiectiv $\overline{L \cup \{O\}}$, dreapta OA e inclusă în acest subspațiu. Deci $R \in \overline{L \cup \{O\}}$ și teorema e complet demonstrată.

Aplicând repetat teorema anterioară vom demonstra că închiderea proiectivă a unei mulțimi finite se poate face prin proiecții succesive:

Propoziția 3.4. Fie A_0, \ldots, A_n puncte distincte în M. Atunci

$$\overline{\{A_0,\ldots,A_n\}} = A_0\overline{\{A_1,\ldots,A_n\}}.$$

 $\begin{array}{ll} \textit{Demonstrație}. \ \ \text{Luăm} \ O = A_0, \ L = \overline{\{A_1, \dots, A_n\}} \ \text{ în punctul 3}) \ \text{al teoremei anterioare și avem} \ A_0 \overline{\{A_1, \dots, A_n\}} = \overline{\{A_0\} \cup \overline{\{A_1, \dots, A_n\}}}. \ \text{Exercițiul 3.7 asigură că} \\ \overline{\{A_1, \dots, A_n\}} \subseteq \overline{\{A_0, \dots, A_n\}}; \ \text{cum și } A_0 \in \overline{\{A_0, \dots, A_n\}}, \ \text{deducem} \ \overline{\{A_0\} \cup \overline{\{A_1, \dots, A_n\}}} \\ \subseteq \overline{\{A_0, \dots, A_n\}}. \ \text{Reciproc: toate punctele} \ A_0, \dots, A_n \ \text{aparțin subspațiului proiectiv} \\ A_0 \overline{\{A_1, \dots, A_n\}}, \ \text{deci} \ \overline{\{A_0, \dots, A_n\}} \subseteq A_0 \overline{\{A_1, \dots, A_n\}}. \end{array}$

Acum putem demonstra:

Propoziția 3.5. Fie A, B, C trei puncte distincte necoliniare ale unui plan sau spațiu proiectiv (M, \mathcal{D}) .

- 1) $Dac\check{a}(M, \mathcal{D})$ e plan proiectiv, atunci $\overline{\{A, B, C\}} = M$.
- 2) $Dacă\ (M,\mathcal{D})$ e spațiu proiectiv, atunci $\overline{\{A,B,C\}}$ e un plan proiectiv care se va nota ABC.

Demonstrație. 1) Trebuie arătat că $M \subseteq \overline{\{A,B,C\}}$. Or, scriind $\overline{\{A,B,C\}} = A\overline{\{B,C\}}$, e suficient de văzut că pentru orice $X \in M$, AX intersectează BC, proprietate evidentă într-un plan proiectiv (în care orice două drepte se taie).

2) Conform propoziției 3.2, e suficient de arătat că orice două drepte din $P = A\overline{\{B,C\}}$ sunt concurente, adică non P4.

Pasul 1. Observăm că orice dreaptă d din P care trece prin A taie BC: asta pentru că orice punct $X \in d$, fiind în P, stă pe o dreaptă de forma AD cu $D \in BC$.

Pasul 2. Orice dreaptă din P taie BC: într-adevăr, fie $d \subset P$ arbitrară, $X \neq Y$ pe d. Fie $X' \in BC$, $\{X'\} = XA \cap BC$, $Y' \in BC$, $\{Y'\} = YA \cap BC$. Axioma P3 aplicată dreptelor XX', YY' concurente în A asigură $XY \cap X'Y' \neq \emptyset$.

 $Pasul\ 3$. Demonstrăm acum că o dreaptă din P care trece prin A taie orice altă dreaptă din P. Fie d o dreaptă arbitrară din P, $d\cap BC=\{D\}$ (conform pasului 2) şi d' una care trece prin A, $d'\cap BC=\{D'\}$ (vezi pasul 1). Luăm X,Y distincte pe d, X',Y' ca mai sus; aplicăm axioma P3 pentru dreptele DD' şi AX concurente în X'. Rezultă $AD'\cap XD=\{Z\}$, adică $d\cap d'=\{Z\}$.

Pasul 4. În fine, fie d, d' în P care nu trec prin A (altfel se aplică pasul 3). Fie $\{D\} = d \cap BC$, $\{D'\} = d' \cap BC$, puncte a căror existență e asigurată de pasul 2. Dacă D = D' nu mai este nimic de demonstrat. Fie $D \neq D'$. Conform pasului 3, DA (respectiv D'A) intersectează d' (respectiv d) în X' (respectiv X). Prin ipoteză, X, X' diferă de A. Aplicăm din nou axioma P3 pentru dreptele XD' și X'D concurente în A și găsim $XD \cap X'D' \neq \emptyset$.

Deoarece se vede imediat că reuniunea a două subspații proiective nu mai e un subspațiu proiectiv, introducem

Definiția 3.4. Pentru două subspații proiective L_1, L_2 , se nume<u>ște suma</u> sau uniunea lor subspațiul proiectiv generat de reuniunea lor: $L_1 + L_2 = \overline{L_1 \cup L_2}$.

Generalizarea proiecției dintr-un punct pe un subspațiu proiectiv furnizează următoarea interpretare geometrică a sumei de subspații a cărei demonstrație o lăsăm pe seama cititorului:

Propoziția 3.6. Uniunea a două subspații proiective coincide cu mulțimea dreptelor care se sprijină pe cele două subspații: $L_1 + L_2 = \{A_1A_2 ; A_1 \in L_1, A_2 \in L_2\}.$

2.2. Baze. Dimensiune.

Definiția 3.5. Fie (M,\mathcal{D}) un plan sau un spațiu proiectiv, $S\subseteq M$ o submulțime arbitrară. Un element $x\in M$ cu proprietatea $x\in \overline{S}$ se numește proiectiv dependent de S.

Cu ajutorul acestei noțiuni dăm:

Definiția 3.6. Fie (M, \mathcal{D}) un plan sau un spațiu proiectiv și fie $S \subseteq M$. O submulțime se numește liberă sau proiectiv independentă dacă nici un $x \in S$ nu e proiectiv dependent de $S - \{x\}$: $x \notin \overline{S - \{x\}}$. O submulțime care nu e liberă se numește proiectiv dependentă.

O submulţime G cu proprietatea $\overline{G}=L$ se numeşte sistem de generatori al lui L. Dacă L admite un sistem de generatori finit, spunem că L este finit generat.

Exercițiul 3.8. 1) \emptyset , mulțimile formate dintr-un singur punct, cele formate cu două puncte distincte, cele formate de trei puncte necoliniare sunt libere.

2) Orice submulțime a unei submulțimi libere e liberă. Dacă S conține o submulțime proiectiv dependentă, atunci S e proiectiv dependentă.

Vom merge în continuare pe calea urmată în capitolul de algebră liniară pentru introducerea noțiunii de dimensiune. Ca acolo, vom avea nevoie de o teoremă a schimbului etc. Vom lăsa pe seama cititorului acele demonstrații care sunt calchiate după cele vectoriale.

N.B. Toate spațiile proiective cu care lucrăm sunt presupuse finit generate.

Lema 3.1. Dacă x e proiectiv dependent de G, atunci $\overline{G \cup \{x\}} = \overline{G}$. În particular, dacă G generează L și $x \in L$, atunci $G \cup \{x\}$ generează L.

Lema 3.2. Dacă x e proiectiv dependent de $G - \{x\}$, atunci $\overline{G} = \overline{G - \{x\}}$. În particular, dacă dintr-un sistem de generatori al unui subspațiu se elimină un punct proiectiv dependent de complementara sa, se obține tot un sistem de generatori.

Lema 3.3. Fie $S = \{A_1, \ldots, A_n\} \subset M$ un sistem ordinat de puncte cu proprietatea că $A_i \notin \overline{\{A_1, \ldots, A_{i-1}\}}$ pentru orice $i = 1, \ldots, n$. Atunci S e proiectiv independent.

Demonstrație. Arătăm că pentru orice $i, A_i \notin \overline{S - \{A_i\}}$. Din ipoteză $A_n \notin \overline{S - \{A_n\}}$.

Presupunem, prin absurd, că există $k \leq n-1$ astfel încât $A_k \in \overline{S-\{A_k\}}$. Scriem $\overline{S-\{A_k\}} = A_n\{A_{n-1}\{\dots\{A_{k+1}\overline{\{A_{k-1},\dots,A_1\}}\dots\}$. Rezultă că $A_k \in A_nR_n$ cu $R_n \in A_{n-1}\{\dots\{A_{k+1}\overline{\{A_{k-1},\dots,A_1\}}\dots\}$. Evident $A_k \neq A_n$ deoarece, prin ipoteză, $A_n \not\in \overline{S-\{A_n\}}$. Din același motiv $A_n \neq R_n$. Pe de altă parte, $A_k = R_n$, altfel din $A_k \in A_nR_n$ rezultă $A_n \in A_kR_n$ adică $A_n \in \overline{S-\{A_n\}}$, contradicție. Acum putem scrie $A_k \in A_{n-1}\{\dots\{A_{k+1}\overline{\{A_{k-1},\dots,A_1\}}\dots\}$, și deducem existența unui punct $R_{n-1} \in A_{n-2}\{\dots\{A_{k+1}\overline{\{A_{k-1},\dots,A_1\}}\dots\}$ astfel încât $A_k \in A_{n-1}R_{n-1}$. Ca mai sus se vede că $R_{n-1} = A_k$ etc. După un număr finit de pași obținem $A_k \in A_{k+1}\overline{\{A_{k-1},\dots,A_1\}}$, astfel că există $R \in \overline{\{A_{k-1},\dots,A_1\}}$ cu $A_k \in A_{k+1}R$. Cu același raționament deja folosit demonstrăm că $R = A_k$, egalitate care contrazice ipoteza $A_k \not\in \overline{\{A_{k-1},\dots,A_1\}}$.

Totul este acum pregătit pentru

Teorema 3.2. (a schimbului) Fie $A = \{X_1, \ldots, X_r\}$ o submulțime liberă a subspațiului proiectiv L și $B = \{Y_1, \ldots, Y_s\}$ un sistem de generatori pentru L. Atunci $r \leq s$ și există $C \subseteq B$ astfel încât $A \cup C$ să fie un sistem de generatori proiectiv independent al lui L.

Demonstrație. Fie, pentru început, $B_1 = B \cup \{X_1\}$. Conform lemei 3.1, $\overline{B_1} = L$. Cum $X_1 \in L = \overline{B} = \overline{B_1} - \{X_1\}$, B_1 e proiectiv dependentă deci, conform lemei 3.3, în mulțimea ordonată lexicografic $B_1 = \{X_1, Y_1, \ldots, Y_s\}$ există un prim element (altul decât X_1) generat de predecesorii săi. Fie acesta Y_{i_1} . Conform lemei 3.2, $B_{i_1} = B_1 - \{Y_{i_1}\}$ generează L. Acum iterăm procedeul: adăugăm la B_{i_1} pe X_2 , extragem din noul sistem primul element dependent de predecesori (în mod necesar unul dintre i-greci) etc. Dacă, prin absurd, r > s, atunci după s paşi obținem $B_{i_s} = \{X_1, \ldots, X_s\}$ sistem de generatori al lui L, în particular $X_{s+1} \in \overline{B_{i_s}}$ în contradicție cu independența proiectivă a lui A. Deci $r \le s$ și, după r pași, găsim $B_{i_r} = A \cup B - \{Y_{i_1}, \ldots, Y_{i_r}\}$, sistem de generatori al lui L. Dacă B_{i_r} e liber, demonstrația e încheiată. Dacă nu, ordonăm lexicografic B_{i_r} și extragem, pe rând, elementele dependente de predecesori. Trebuie observat că, datorită ordinii lexicografice, nici un X_j nu va fi eliminat. După un număr finit de pași obținem un sistem liber care e încă sistem de generatori, conform lemei 3.2. □

Un sistem de generatori proiectiv independent al unui subspațiu L se numește $baz\,\check{a}$ a lui L.

COROLARUL 3.1. Orice sistem de puncte proiectiv independent dintr-un subspațiu proiectiv L care are un sistem finit de generatori, se poate completa la o bază a lui L.

EXERCIȚIUL 3.9. Fie G_1, G_2 două baze ale subspațiului L. Dacă una dintre ele are cardinal finit, atunci și cealaltă are cardinal finit și $\sharp G_1 = \sharp G_2$.

În sfârșit putem da:

Definiția 3.7. Fie L un subspațiu proiectiv care admite o bază de cardinal n. Numărul n-1 se numește dimensiunea lui L. Mulțimea vidă are, prin convenție, dimensiunea -1.

Observația 3.1. Din definiția noastră pare că nu există decât spații proiective de dimensiune finită. Nu este adevărat, se poate formula o definiție mai generală a dimensiunii care să includă și cazul infinit (vezi, de exemplu [14], [2]). Dar cum noi ne vom ocupa doar de spații proiective de dimensiune finită am preferat varianta simplificată.

Exercițiul 3.10. Să se arate că:

- 1) Un subspațiu proiectiv are dimensiunea 0 dacă și numai dacă e un punct.
- 2) Un subspațiu proiectiv are dimensiunea 1 dacă și numai dacă e o dreaptă.
- 3) Un subspațiu proiectiv are dimensiunea 2 dacă și numai dacă e un plan proiectiv.

EXERCIȚIUL 3.11. Fie L un subspațiu proiectiv al unui plan sau spațiu proiectiv (M, \mathcal{D}) . Atunci $\dim L \leq \dim M$ cu egalitate dacă și numai dacă L = M.

Exercițiul 3.12. Dacă $O \notin L$, atunci dim $OL = \dim L + 1$.

Definiția 3.8. Un subspațiu de dimensiune dim M-1 se numește hiperplan.

Existența hiperplanelor rezultă ușor. Pentru un plan proiectiv dreptele sunt hiperplane, pentru un spațiu proiectiv de dimensiune arbitrară n, alegem o bază $\{X_0, \ldots, X_n\}$. Atunci $\{X_0, \ldots, X_{n-1}\}$ generează un hiperplan.

În cazul spațiilor proiective avem o teoremă despre dimensiunea sumei a două subspații la fel de simplă ca în cazul vectorial:

Teorema 3.3. (a dimensiunii) $Pentru\ orice\ două\ subspații\ proiective\ L_1, L_2$ are loc formula:

$$\dim(L_1 + L_2) = \dim L_1 + \dim L_2 - \dim(L_1 \cap L_2).$$

Demonstrație. Vom folosi aceeași metodă ca în demonstrația teoremei dimensiunii din cazul vectorial.

Dacă $L_1 \cap L_2 \neq \emptyset$, fie dim $L_1 = p + q$, dim $L_2 = p + r$ şi $\mathcal{B}_0 = \{X_0, \dots, X_p\}$ o bază a lui $L_1 \cap L_2$. Aceasta poate fi completată la o bază $\mathcal{B}_1 = \{X_0, \dots, X_p, Y_1, \dots, Y_q\}$ a lui L_1 şi la o bază $\mathcal{B}_2 = \{X_0, \dots, X_p, Z_1, \dots, Z_r\}$ a lui L_2 . Vom arăta că $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ e o bază a lui $L_1 + L_2$.

Pentru a proba independența proiectivă, considerăm \mathcal{B} ordonat lexicografic și aplicăm lema 3.3. Cum \mathcal{B}_1 e liber, nici un element al său nu e dependent de predecesori. Presupunem că există $1 \leq k \leq r$ astfel încât Z_k e dependent de predecesori:

$$Z_k \in \overline{\{X_0, \dots, X_p, Y_1, \dots, Y_q, Z_1, \dots, Z_{k-1}\}} =$$

$$= Z_{k-1} \overline{\{X_0, \dots, X_p, Y_1, \dots, Y_q, Z_1, \dots, Z_{k-2}\}}.$$

Atunci există $U_{k-1} \in \overline{\{X_0,\dots,X_p,Y_1,\dots,Y_q,Z_1,\dots,Z_{k-2}\}}$ pentru care Z_k aparține dreptei $Z_{k-1}U_{k-1}$. Mai mult, $U_{k-1} \in L_2$ deoarece punctele Z_{k-1}, Z_k fiind distincte în L_2 , toată dreapta generată de ele e în L_2 . Reluăm raționamentul cu U_{k-1} pe postul lui Z_k și găsim un $U_{k-2} \in L_2$ astfel încât $U_{k-1} \in Z_{k-2}U_{k-2}$. După un număr finit de pași găsim că pentru punctul $U_2 \in L_2$, există un punct $U_1 \in \overline{\{X_0,\dots,X_p,Y_1,\dots,Y_q\}} = L_1$ cu $U_2 \in U_1Z_1$. Cum U_2 și Z_1 sunt din L_2 , rezultă că și $U_1 \in L_2$. Deci $U_1 \in L_1 \cap L_2$. Atunci $U_2 \in Z_1U_1$ și se poate scrie $U_2 \in Z_1(L_1 \cap L_2)$. Ca urmare, $Z_k \in Z_{k-1}\{Z_{k-2}\dots\{Z_1(L_1 \cap L_2)\}\dots\}$, deci $Z_k \in \overline{\{X_0,\dots,X_p,Z_1,\dots,Z_{k-1}\}}$, contradicție cu independența proiectivă a lui \mathcal{B}_2 . Deducem că \mathcal{B} e liber.

Rămâne să verificăm faptul că \mathcal{B} generează L_1+L_2 . Cum $\mathcal{B}\subset L_1\cup L_2$, avem $\overline{\mathcal{B}}\subseteq \overline{L_1\cup L_2}=L_1+L_2$. Reciproc, $\mathcal{B}_i\subset \mathcal{B}$ implică $L_i\subseteq \overline{\mathcal{B}},\ i=1,2$ și, de aici, $L_1+L_2\subset \overline{\mathcal{B}}$. Un calcul simplu demonstrează acum enunțul.

Dacă $L_1 \cap L_2 = \emptyset$, fie dim $L_1 = q$, dim $L_2 = r$; pornim cu bazele $\mathcal{B}_1 = \{Y_0, \dots, Y_q\}$ în $L_1, \mathcal{B}_2 = \{Z_0, \dots, Z_r\}$ în L_2 şi dovedim, ca mai sus, că $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ e o bază a lui $L_1 + L_2$. Cum dim $(L_1 + L_2) = \sharp \mathcal{B} - 1 = r + q + 1$ şi dim $(L_1 \cap L_2) = -1$, enunțul e complet demonstrat.

COROLARUL 3.2. Într-un spațiu proiectiv de dimensiune 3 orice două plane proiective se taie și orice dreaptă taie orice plan.

COROLARUL 3.3. Un subspațiu al unui spațiu proiectiv e hiperplan dacă și numai dacă e intersectat de orice dreaptă.

EXERCIȚIUL 3.13. Într-un spațiu proiectiv de dimensiune n, intersecția a două hiperplane distincte e un subspațiu proiectiv de dimensiune n-2.

Definiția 3.9. Fie un subspațiu proiectiv n-2-dimensional L. Se numește fascicol de hiperplane de axă L mulțimea hiperplanelor care conțin subspațiul L.

În cazul planului proiectiv regăsim noțiunea familiară de fascicol de drepte (aici axa se reduce la un punct numit *centrul fascicolului*), în cazul spațiului proiectiv 3-dimensional, pe cea de fascicol de plane.

EXERCIȚIUL 3.14. Fie, într-un plan proiectiv Π , F_P , F_Q fascicole de drepte de centre P, respectiv Q. Să se descrie explicit o aplicație bijectivă $f: F_P \to F_Q$ care invariază dreapta comună PQ. (Indicație: Fie d o dreaptă arbitrară care nu trece nici prin P nici prin Q. Pentru o dreaptă arbitrară $l \in F_P$, fie $R = l \cap d$. Punem f(l) = QR. Evident $f(l) \in F_Q$.)

- 2.3. Dualul unui spaţiu sau plan proiectiv. Vom face acum o altă construcție specifică doar geometriei proiective. Cu ajutorul noțiunii de fascicol de hiperplane putem asocia fiecărui spaţiu sau plan proiectiv un alt spaţiu sau plan proiectiv, numit dualul său. Pentru început, să reformulăm axiomele planului proiectiv folosind noțiunea de incidență:
 - P1 Orice două puncte distincte sunt incidente cu o singură dreaptă.
- P2 Orice dreaptă e incidentă cu cel puțin trei puncte distincte. Pentru orice dreaptă există cel puțin un punct care nu e incident cu ea.

non P4 Orice două drepte distincte sunt incidente cu un singur punct.

E adevărat că în reformularea lui non \$P4\$ am adăugat "un singur punct", deşi faptul că dacă două drepte se taie, intersecția se produce într-un singur punct rezultă din prima axiomă. Totuși, această prezentare pune în evidență un fapt surprinzător: dacă, în cele trei axiome de mai sus, se schimbă între ele cuvintele "punct" și "dreaptă", atunci \$P1\$ devine \$n0.\$P4\$, \$n0.\$P4\$ devine \$P1\$ și \$P2\$ nu se schimbă. Morala este că orice enunț demonstrabil doar pe baza acestor axiome (care nu depinde de validitatea axiomei lui Desargues, de exemplu) într-un plan proiectiv, rămâne adevărat dacă se interschimbă cuvintele "punct", "dreaptă" (și noțiunile "coliniaritate", "concurență" dacă nu se reformulează totul în limbaj de incidență). Acesta este principiul dualității în plan. El permite generarea de noi teoreme prin dualizare. Există configurații care nu se schimbă prin dualizare. Acestea se numesc autoduale. De exemplu, cititorul se va putea lesne convinge de autodualitatea configurației lui Desargues în plan (vezi teorema 3.4). Astfel, se poate demonstra ușor că dacă într-un plan proiectiv e adevărată teorema lui Desargues, atunci e adevărată și reciproca ei.

În dimensiuni superioare, dualitatea are o expresie mai complicată, dar construcția e motivată de fenomenul din plan. Pornim cu un spațiu proiectiv (M, \mathcal{D}) n-dimensional. Fie M^* mulțimea hiperplanelor lui M și \mathcal{D}^* mulțimea fascicolelor de hiperplane din M. Putem demonstra:

Propoziția 3.7. Fie (M, \mathcal{D}) un plan, respectiv un spațiu proiectiv. Atunci (M^*, \mathcal{D}^*) este un plan, respectiv un spațiu proiectiv numit dualul lui (M, \mathcal{D}) .

Demonstrație. Cum mulțimea fascicolelor de hiperplane este în bijecție cu mulțimea axelor lor, în plan, fiecare fascicol de drepte e perfect determinat de punctul comun dreptelor din fascicol, astfel că demonstrația propoziției pentru cazul planului proiectiv a fost deja dată.

Fie (M, \mathcal{D}) un spațiu proiectiv de dimensiune n. Axiomele de spațiu proiectiv pentru (M^*, \mathcal{D}^*) trebuie să fie teoreme în (M, \mathcal{D}) , demonstrarea lor constituie demonstrația propoziției. Ele au următoarele formulări:

- P1* Orice două hiperplane distincte determină un unic fascicol de hiperplane. Într-adevăr, dacă H_1, H_2 sunt hiperplane distincte, atunci $\dim(H_1 \cap H_2) = n 2$ conform teoremei dimensiunii. Astfel că ele determină fascicolul de axă $L = H_1 \cap H_2$. Unicitatea e evidentă.
- $\mathbf{P2}^*$ Orice fascicol de hiperplane conține cel puțin trei hiperplane distincte. Pentru orice fascicol de hiperplane, există un hiperplan care nu face parte din fascicol. Fie un fascicol de axă L. Alegem o bază $\mathcal{B} = \{X_1, \ldots, X_{n-1}\}$ în L şi o completăm cu X_n, X_{n+1} la una a lui M. Fie $X \in X_n X_{n+1}$ distinct de X_n, X_{n+1} .

Atunci X_nL , $X_{n+1}L$, XL sunt hiperplane distincte din fascicol. Demonstrarea ultimei afirmații revine la a arăta că pentru fiecare subspațiu (n-2) dimensional există un hiperplan care nu-l conține. În notațiile anterioare, $\overline{\{X_2,\ldots,X_{n+1}\}}$ e un hiperplan care nu trece prin L.

 $\mathbf{P3}^*$ Fie L_1, L_2 subspaţii proiective (n-2)-dimensionale conţinute într-un acelaşi hiperplan H. Fie H_1, K_1 , hiperplane distincte de H din fascicolul de axă L_1 şi H_2, K_2 hiperplane distincte de H din fascicolul de axă L_2 . Atunci fascicolele determinate de H_1, H_2 , respectiv K_1, K_2 au un hiperplan comun. Fie H_{12} , respectiv K_{12} axa fascicolului determinat de H_1, H_2 , respectiv K_1, K_2 . Hiperplanul căutat va fi $H_{12} + K_{12}$. Rămâne să ne convingem că dim $(H_{12} + K_{12}) = n - 1$. Cu teorema dimensiunii, aceasta revine la: dim $(H_{12} \cap K_{12}) = n - 3$. Dar

$$H_{12} \cap K_{12} = (H_1 \cap H_2) \cap (K_1 \cap K_2) = (H_1 \cap K_1) \cap (H_2 \cap K_2) = L_1 \cap L_2.$$

Deci trebuie să arătăm că $\dim(L_1 \cap L_2) = n - 3$. Aici intervine ipoteza că L_1 şi L_2 sunt conținute în același hiperplan H care implică $L_1 + L_2 = H$. Teorema dimensiunii aplicată pentru $L_1 + L_2$ încheie demonstrația.

P4* Există două fascicole de hiperplane care nu au în comun nici un hiperplan. Fie $\{X_0, \ldots, X_n\}$ o bază a lui M. Fie $L = \overline{\{X_0, \ldots, X_{n-2}\}}$, $L' = \overline{\{X_2, \ldots, X_n\}}$. Acestea sunt două subspații de dimensiune n-2. Se vede că L+L'=M, deci ele nu sunt incluse într-un același hiperplan.

Vom vedea în corolarul 3.11 că există o strânsă legătură între noțiunea de dualitate introdusă aici și cea de spațiu vectorial dual. Mai precis, vom stabili o echivalență între $P(V)^*$ și $P(V^*)$.

- **2.4. Exemplu:** subspațiile proiective ale lui P(V). Folosim definițiile şi notațiile din exemplul 3.3. Fie V un spațiu vectorial de dimensiune 2. Atunci $\dim P(V)=1$ şi singurele sale subspații sunt \emptyset , punctele [x] şi P(V) însuşi. Dacă $\dim V=3$, atunci P(V) e un plan proiectiv. Subspațiile sale sunt \emptyset , punctele [x], dreptele $\pi(U-\{0\})$ cu $\dim U=2$ şi P(V). Fie, acum, $\dim V \geq 4$. Facem întâi următoarele observații imediate:
- 1) Punctele $[\overline{x}],[y]$ sunt distincte dacă şi numai dacă $\{x,y\}$ e sistem liniar independent.
- 2) Dreapta determinată de punctele distincte [x], [y] este $[x][y] = \pi(L(\{x,y\}) \{0\})$.

În general avem:

Propoziția 3.8. Fie x_1, \ldots, x_p vectori nenuli distincți. Atunci

$$\overline{\{[x_1],[x_2],\ldots,[x_p]\}} = \pi(L(\{x_1,\ldots,x_p\}) - \{0\}).$$

 $\begin{array}{ll} \textit{Demonstrație.} \ \text{Notăm} \ L = \pi(L(\{x_1,\ldots,x_p\}) - \{0\}) \ \text{și arătăm întâi că} \ L \ \text{subspațiu proiectiv. Fie} \ [x], [y] \ \text{puncte distincte din} \ L. \ \text{Atunci} \ x,y \ \text{sunt vectoriindependenți din} \ L(\{x_1,\ldots,x_p\}) - \{0\}. \ \hat{\text{In consecință ei generează un subspațiu vectorial 2-dimensional}} \ U \subseteq L(\{x_1,\ldots,x_p\}) \ \text{și} \ \pi(U - \{0\}) \subseteq L, \ \text{adică} \ L \ \text{e subspațiu proiectiv.} \ \hat{\text{In plus, cum}} \ [x_i] \in L, \ \text{rezultă} \ \overline{\{[x_1],\ldots,[x_p]\}} \subset L. \end{array}$

Demonstrăm acum, prin inducție după numărul p de puncte, incluziunea inversă. Pentru p=1 proprietatea e verificată. O presupunem adevărată pentru orice p-1 puncte și scriem

$$\overline{\{[x_1],\ldots,[x_p]\}} = [x_p]\overline{\{[x_1],\ldots,[x_{p-1}]\}} = [x_p]\pi(L(\{x_1,\ldots,x_{p-1}\}) - \{0\})$$

conform ipotezei de inducție și a primei părți a demonstrației. Fie $[y] \in L$ arbitrar. Rezultă $y \neq 0$ și există scalarii a_1, \ldots, a_p depinzând de y astfel încât $y = \sum_{i=1}^p a_i x_i$. două situații sunt posibile:

1) $a_p = 0$. Atunci

$$[y] \in \pi(L(\{x_1,\ldots,x_{p-1}\}) - \{0\}) = \overline{\{[x_1],\ldots,[x_{p-1}]\}} \subset \overline{\{[x_1],\ldots,[x_p]\}}.$$

2)
$$a_p \neq 0$$
. Punem $x = \sum_{i=1}^{p-1} a_i x_i$ şi avem $y = x + a_p x_p$, deci $[y] \in [x][x_p]$ cu $x \in L(\{x_1, \dots, x_{p-1}\})$. Ca urmare $[y] \in [x_p]\overline{\{[x_1], \dots, [x_{p-1}]\}} = \overline{\{[x_1], \dots, [x_p]\}}$.

Folosim acest rezultat pentru a arăta:

Propoziția 3.9. $S = \{x_1, \ldots, x_p\} \subset V$ e liniar independent dacă și numai dacă $\pi(S) \stackrel{\text{not}}{=} \{[x_1], \ldots, [x_p]\}$ e proiectiv independent.

Demonstrație. Fie S liniar independent și, prin absurd, $\pi(S)$ e proiectiv dependent. Atunci există un punct din $\pi(S)$ care depinde proiectiv de celelalte. Renumerotând, eventual, vectorii, putem presupune $[x_1] \in \overline{\{[x_2], \ldots, [x_p]\}}$. Conform propoziției 3.8, rezultă

$$[x_1] \in \pi(L(\{x_2,\ldots,x_p\}) - \{0\}), \text{ deci } x_1 \in L(\{x_2,\ldots,x_p\})$$

ceea ce contrazice independența lui S.

Reciproc, dacă $\pi(S)$ e proiectiv independent și S e, prin absurd, dependent liniar, putem presupune, ca mai sus că $x_1 = \sum_{i=2}^p a_i x_i$. Atunci $x_1 \in L(\{x_2, \dots, x_p\})$ ceea ce atrage după sine, conform aceleiași propoziții $3.8, [x_1] \in \overline{\{[x_2], \dots, [x_p]\}}$, contradicție cu independența proiectivă a lui $\pi(S)$.

Putem acum caracteriza subspațiile proiective ale lui P(V):

Propoziția 3.10. $L \subset P(V)$ e subspațiu proiectiv p-dimensional dacă și numai dacă există un subspațiu vectorial $U \subset V$ de dimensiune p+1 astfel încât $\pi(U-\{0\}) = L$. În plus, dacă există, U e unic determinat de L.

Demonstrație. Fie L un subspațiu proiectiv p-dimensional și $\{[x_0], \ldots, [x_p]\}$ o bază a sa. Conform propoziției $3.9, S = \{x_0, \ldots, x_p\}$ e liniar independent în V. Fie U = L(S) subspațiul vectorial generat de S (care devine bază a lui U). Evident dim U = p + 1 și, prin construcție, $L = \pi(U - \{0\})$. Dacă U, U' au proprietatea că se proiectează peste același L, atunci ele au o bază comună: preimaginea unei baze a lui L, deci U = U'.

Reciproc, plecăm cu un subspațiu U al lui V, dim U=p+1. Alegem $\mathcal{B}=\{x_0,\ldots,x_p\}$ o bază a sa. Datorită propoziției 3.8 avem

$$\pi(U - \{0\}) = \pi(L(\mathcal{B}) - \{0\}) = \overline{\{[x_0], \dots, [x_p]\}}.$$

În plus, propoziția 3.9 spune că $\{[x_0], \ldots, [x_p]\}$ e proiectiv independent, deci $L = \overline{\{[x_0], \ldots, [x_p]\}}$ e un subspațiu proiectiv de dimensiune p.

COROLARUL 3.4. Fie $\mathcal{L}(V)$ (respectiv $\mathcal{L}(P(V))$) laticea subspațiilor lui V (respectiv P(V)). Atunci $\Pi: \mathcal{L}(V) \to \mathcal{L}(P(V))$ prin $\Pi(U) = \pi(U - \{0\}), \ U \in \mathcal{L}(V)$ e un izomorfism laticial.

Demonstrație. Că Π e bijecție tocmai am demonstrat. A fi izomorfism laticial înseamnă, ținând cont de operațiile respective în cele două latice: $\Pi(U_1 + U_2) = \Pi(U_1) + \Pi(U_2)$ și $\Pi(U_1 \cap U_2) = \Pi(U_1) \cap \Pi(U_2)$. Or, prima proprietate rezultă din propoziția 3.8, iar a doua din faptul că Π e bijecție.

3. Morfisme projective

Definiția 3.10. Fie (M, \mathcal{D}) , (M', \mathcal{D}') două drepte, plane sau spații proiective. O aplicație $f: M \to M'$ se numește morfism proiectiv dacă aplică drepte în drepte: $f(d) \in \mathcal{D}'$ pentru orice $d \in \mathcal{D}$.

Observația 3.2. Un morfism proiectiv păstrează coliniaritatea, dar reciproca nu este adevărată.

EXEMPLUL 3.7. Fie V un spaţiu vectorial peste un corp comutativ şi $f:V \to V'$ o aplicaţie semi-liniară (adică $f(ax) = \theta(a)f(x)$ pentru un $\theta \in \operatorname{Aut}(K)$) injectivă. Definim $\overline{f}: P(V) \to P(V')$ prin $\overline{f}([x]) = [f(x)]$, cu alte cuvinte \overline{f} face diagrama următoare comutativă:

$$V - \{0\} \xrightarrow{f} V' - \{0\}$$

$$\pi \downarrow \qquad \qquad \downarrow \pi'$$

$$P(V) \xrightarrow{\overline{f}} P(V')$$

Injectivitatea lui f ne spune că $f(V-\{0\})\subset V'-\{0\}$, iar semi-liniaritatea lui f asigură că definiția e bună, adică nu depinde de reprezentantul ales în clasa [x]: dacă x=ay, atunci $[\overline{f}(x)]=[\theta(a)f(y)]=[f(y)]$ pentru că $a\neq 0$ implică $\theta(a)\neq 0$. Dacă d e o dreaptă în P(V), atunci $d=\pi(U-\{0\})$ cu U subspațiu 2-dimensional în V. Cum f e injectivă, f(U) e subspațiu 2-dimensional al lui V' și $\pi'(f(U)-\{0\})=\overline{f}(d)$, deci \overline{f} e morfism proiectiv. Se verifică, de asemenea, ușor, că dacă $h:V'\to V''$ e semi-liniară, injectivă, atunci $\overline{h\circ f}=\overline{h}\circ\overline{f}$.

Definiția 3.11. Un morfism proiectiv bijectiv se numește izomorfism proiectiv. Un izomorfism proiectiv de la (M, \mathcal{D}) în (M, \mathcal{D}) se numește automorfism proiectiv.

Se poate da și următoarea caracterizare:

Propoziția 3.11. $f: M \to M'$ este izomorfism proiectiv dacă și numai dacă e o surjecție care păstrează coliniaritatea și necoliniaritatea.

Demonstrație. Dacă f e izomorfism proiectiv, e bijectiv și duce drepte în drepte, în particular păstrează coliniaritatea. Mai rămâne de demonstrat că păstrează necoliniaritatea. Fie, prin absurd, A,B,C trei puncte necoliniare în M ale căror imagini prin f în M',A',B',C', sunt coliniare. Atunci $C' \in A'B' = f(A)f(B) = f(AB)$. Deci există $C_1 \in AB$ astfel încât $f(C_1) = C'$. Cum $C \notin AB$, rezultă $C_1 \neq C$, contradicție cu injectivitatea lui f.

Reciproc, să arătăm întâi că f e injectivă. Fie $A \neq B$ cu f(A) = f(B). Există $C \notin AB$. Atunci f(A) şi f(C) determină o dreaptă pe care se află şi f(B), contradicție cu păstrarea necoliniarității. Să vedem acum că f aplică drepte în drepte. Fie d = AB. Pentru orice $C \in d$, avem $f(C) \in f(A)f(B)$, deci $f(d) \subseteq f(A)f(B)$. Pentru a proba incluziunea inversă este esențială surjectivitatea lui f: pornim cu $D' \in f(A)f(B)$. Lui îi corespunde $D \in M$ astfel încât f(D) = D'. Dacă A, B, D ar fi necoliniare, imaginile lor ar trebui să fie necoliniare. Cum ele sunt coliniare, rezultă $D \in d$, adică $f(A)f(B) \subseteq f(d)$.

Observația 3.3. Rezultă, în particular, că orice aplicație surjectivă între două drepte proiective este izomorfism proiectiv.

Exercițiul 3.15. 1) Inversul unui izomorfism proiectiv e tot un izomorfism proiectiv.
2) O compunere de două morfisme proiective e tot un morfism proiectiv.

Propoziția 3.12. Un izomorfism proiectiv aplică subspații proiective în subspații proiective de aceeași dimensiune.

Demonstrație. Fie f un izomorfism proiectiv între (M,\mathcal{D}) și (M',\mathcal{D}') . Fie L un subspațiu proiectiv al lui M și L'=f(L). Fie $A',B'\in L'$. Atunci există $A,B\in L$ astfel încât $A'=f(A),\,B'=f(B)$. Cum $A'B'=f(AB)\subset L'$, rezultă că L' conține dreapta determinată de orice două puncte ale sale, deci e subspațiu proiectiv.

Demonstrăm acum că f păstrează dimensiunea p a subspațiilor proiective prin inducție după p. Validitatea proprietății pentru p=1 (drepte) e cuprinsă în definiția morfismului proiectiv. Presupunem proprietatea adevărată pentru subspații de dimensiune p-1. Fie L un subspațiu de dimensiune p și L_1 un hiperplan al său, astfel că putem scrie $L=AL_1$, $A\in L-L_1$. Din ipoteza de inducție $L'_1=f(L_1)$ e un subspațiu proiectiv de dimensiune p-1. Cum, prin definiție, $L=AL_1=\{AB\; ; \; B\in L_1\}$ și f păstrează dreptele, avem $L'=\{f(A)f(B)\; ; \; B\in L_1\}=f(A)L'_1$. Cum f e injectivă, $f(A)\notin L'_1$. Deducem dim L'=p.

COROLARUL 3.5. Un izomorfism proiectiv duce un plan proiectiv într-un plan proiectiv şi un spațiu proiectiv de dimensiune n într-un spațiu proiectiv de dimensiune n.

Putem acum demonstra că exemplele de plane proiective cu 7 puncte pe care le-am dat sunt, de fapt, echivalente: propoziția 3.1 se poate reformula astfel:

Propoziția 3.13. Orice plan proiectiv în care fiecare dreaptă are numai 3 puncte e izomorf cu planul lui Fano. În particular, două plane proiective în care fiecare dreaptă are 3 puncte sunt izomorfe.

Cum aplicația identică a oricărui spațiu sau plan proiectiv este automorfism proiectiv, în particular, putem vorbi de grupul automorfismelor proiective ale unui plan sau spațiu proiectiv: $\operatorname{Aut}(M,\mathcal{D})$ sau $\operatorname{Aut}(M)$ când nu e pericol de confuzie.

EXERCIȚIUL 3.16. Dacă V este spațiu vectorial peste un corp comutativ și $f \in GL(V)$, atunci $\overline{f} \in Aut(P(V))$.

Cum $\overline{1_V} = 1_{P(V)}$, putem vorbi despre grupul $\operatorname{PGL}(V)$ al automorfismelor proiective de tipul \overline{f} cu $f \in \operatorname{GL}(V)$. Acesta se numește grupul proiectiv liniar. Elementele sale se mai numesc proiectivități sau omografii. Pentru $V = K^{n+1}$ vom nota $\operatorname{PGL}(n,K)$ pentru $\operatorname{PGL}(K^{n+1})$.

Propoziția 3.14. Pentru orice spațiu vectorial V peste un corp comutativ, $\operatorname{PGL}(V) \subset \operatorname{Aut}(P(V))$ și incluziunea e, în general, strictă. Există un izomorfism de grupuri $\operatorname{PGL}(V) \simeq \operatorname{GL}(V)/\langle K^* \rangle$.

Trebuie să arătăm că incluziunea e strictă. Or, dacă lucrăm peste un corp care are și automorfisme diferite de 1_K , nu avem decât să considerăm \overline{f} cu f izomorfism semi-liniar; acesta nu e un element al lui $\operatorname{PGL}(V)$. Demonstrația ultimei afirmații este un exercițiu simplu pentru cititor.

Exemplul 3.8. Omografiile dreptei proiective complexe $P^1\mathbb{C}$.

Privim $P^1\mathbb{C}$ ca fiind completata dreptei afine \mathbb{C} : $P^1\mathbb{C} = \mathbb{C} \cup \{\infty\}$. În plus, identificăm \mathbb{C} cu planul (euclidian) \mathbb{R}^2 . Omografiile lui $P^1\mathbb{C}$ provin din izomorfisme ale lui \mathbb{C}^2 , adică din aplicații de forma $(z, w) \mapsto (az + bw, cz + dw)$ cu $ad - bc \neq 0$. Deci, în $P^1\mathbb{C}$ avem $f([z, w]) \mapsto [az + bw, cz + dw]$. Dacă $w \neq 0$ (la fel se procedează

dacă presupunem $z \neq 0$), putem lu
aw=1;atunci, cu identificarea făcută, putem scrie

$$f(z) = \begin{cases} \frac{az+b}{cz+d} & \text{dacă } z \neq -\frac{d}{c} \text{ și } ad-bc \neq 0 \\ \frac{a}{c} & \text{dacă } z = \infty \\ \infty & \text{dacă } z = -\frac{d}{c} \end{cases}$$

Obținem astfel aplicațiile $\varphi: \mathbb{C} \to \mathbb{C}$, $\varphi(z) = \frac{az+b}{cz+d}$, cu $ad-bc \neq 0$ (de fapt ele nu sunt definite în punctul $-\frac{d}{c}$ și nu sunt adevărate funcții). Acestea se numesc omografii ale planului euclidian real (sau ale dreptei afine complexe). Observăm că ele sunt transformări afine dacă și numai dacă c=0, cu alte cuvinte dacă provin din omografii ale dreptei proiective complexe care păstrează punctul de la infinit, în acord cu propoziția anterioară. Se verifică ușor că omografiile planului euclidian real formează un grup necomutativ față de compunerea funcțiilor.

EXERCIȚIUL 3.17. Folosind relațiile de mai sus, arătați că grupul PGL $(1, \mathbb{C})$ e generat de două tipuri de transformări: $z \mapsto 1/z$ și $z \mapsto az + b$ cu $a, b \in \mathbb{C}$, $a \neq 0$.

EXERCIȚIUL 3.18. Să se arate că omografiile planului euclidian real transformă cercuri sau drepte în cercuri sau drepte. În plus, ele sunt transformări conforme, adică păstrează unghiul dreptelor, dar nu lungimea segmentelor. Observați că inversiunile (vezi exercițiul 2.76) sunt omografii ale planului euclidian.

Observația 3.4. Se poate arăta că există automorfisme ale lui P(V) care nu sunt de forma \overline{f} cu f semi-liniară. Într-adevăr, dacă $\theta \in \operatorname{Aut}(K)$, atunci putem defini $f^{\theta}: P^nK \to P^nK$ prin $f^{\theta}([x_0,\ldots,x_n]) = [\theta(x_0),\ldots,\theta(x_n)]$. Se verifică imediat că $f^{\theta} \in \operatorname{Aut}(P^nK)$ și, în general, $f^{\theta} \notin \operatorname{PGL}(n,K)$. În plus, automorfismele de acest tip formează, la rândul lor, un subgrup al lui $\operatorname{Aut}(P^nK)$ notat $\operatorname{PAut}(n,K)$. Un subgrup important al lui $\operatorname{PAut}(n,K)$ este $\operatorname{PInt}(n,K)$ al automorfismelor de tip f^{θ} cu θ automorfism interior al lui K. Se pot demonstra următoarele afirmații: (a) $\operatorname{PGL}(n,K) \cap \operatorname{PAut}(n,K) = \operatorname{PInt}(n,K)$; (b) orice $f \in \operatorname{Aut}(P^nK)$ se descompune sub forma $f = g \circ h$ cu $g \in \operatorname{PGL}(n,K)$ și $h \in \operatorname{PAut}(n,K)$; (c) $\operatorname{PGL}(n,K)$ este subgrup normal în $\operatorname{PAut}(n,K)$. Vom reveni în paragraful 10.

Exercițiul 3.19. Fie $\overline{f} \in \operatorname{PGL}(V)$. Atunci $\pi(x)$ e punct fix al lui \overline{f} dacă și numai dacă x e dreaptă proprie a lui f. În particular, orice omografie peste $\mathbb C$ admite un punct fix.

Problema existenței automorfismelor proiective ale unui plan sau spațiu proiectiv arbitrar e foarte complicată. Vom vedea, a posteriori, că un spațiu proiectiv are întotdeauna suficient de multe automorfisme, în timp ce pentru unele plane proiective nimic nu asigură existența lor. Totul este legat de Axioma lui Desargues pe care o vom discuta în continuare.

4. Axioma lui Desargues

Enunţul care urmează reprezintă cheia întregii geometrii proiective. El are un statut special: este adevărat în spaţiile proiective, dar neadevărat, în general, în plane proiective abstracte, neconţinute în spaţii proiective, marcând diferenţa calitativă dintre dimensiunea proiectivă 2 şi dimensiunile superioare. De aceea am preferat denumirea de "axiomă", cu toate că, în dimensiune mai mare decât 3 devine teoremă.

Axioma lui Desargues. Fie (M,\mathcal{D}) un plan sau spațiu proiectiv. Fie d_1,d_2,d_3 drepte distincte două câte două și concurente în O. Fie punctele $A_i,B_i\in d_i,i=1,2,3,$ toate distincte de O. Fie $\{C_i\}=A_jA_k\cap B_jB_k,\,(i,j,k)=(1,2,3)$ și permutări circulare. Atunci $C_1,\,C_2,\,C_3$ sunt coliniare.

Vom nota uneori, prescurtat, **PD** axioma lui Desargues. Triunghiurile $A_1A_2A_3$ şi $B_1B_2B_3$ care apar în enunt se numesc *omoloage*.

Pentru a da o interpretare acestei axiome, să introducem următoarea noțiune: date într-un plan sau spațiu proiectiv un punct O și două drepte l,l' situate într-un același plan care conține și O, dacă $O \notin l \cup l'$, atunci numim proiecție din O a lui l pe l' aplicația $p_O: l \to l'$ care lui $Q \in l$ îi asociază $OQ \cap l'$. E clar că orice proiecție transformă drepte în drepte. Axioma lui Desargues spune, de fapt, că aplicând repetat proiecții din puncte distincte nu putem obține ceva foarte diferit de configurația de plecare. Astfel (vezi figura): segmentul A_1B_1 este proiectat din C_3 pe A_2B_2 ; A_2B_2 este proiectat mai departe, din C_1 pe A_3B_3 . Compunerea acestor două proiecții este proiecția din C_2 , un punct care se află pe C_1C_3 . Deci axioma lui Desargues ne spune în ce condiții o compunere de proiecții de tipul descris este tot o proiecție.

Teorema 3.4. (a lui Desargues) Orice spațiu proiectiv satisface axioma lui Desargues.

Demonstrație. Fie (M, \mathcal{D}) un spațiu proiectiv. Vom considera de fiecare dată că i, j, k iau, separat, valorile 1, 2, 3, iar când apar toți trei indicii e vorba de o permutare circulară a lui (1, 2, 3).

Observăm că singurul caz nebanal este $A_i \neq B_i$, când, aplicând axioma P3, avem $A_i A_j \cap B_i B_j \neq \emptyset$. Pe de altă parte, dacă A_1, A_2, A_3 sunt coliniare, enunțul e evident.

Fie acum L subspațiul proiectiv generat de O,A_1,A_2,A_3 . Cum $O,A_i\in L$, dreptele d_i sunt în L, deci $B_i\in L$. În consecință, întreaga figură e inclusă în L. Sunt posibile două situații:

- 1) dim L=3. Atunci punctele B_i sunt necoliniare, în caz contrar dim L=2. Rezultă că planele $A_1A_2A_3$ și $B_1B_2B_3$ sunt distincte și intersecția lor e o dreaptă care conține punctele C_i .
- 2) dim L=2. Deoarece dim $M\geq 3$, există un punct $Q\not\in L$. Fie $R\in OQ$, $R\neq O$ (existența lui R e asigurată de P2). Datorită axiomei P3 există punctele $\{H_i\}=QA_i\cap RB_i$. Acestea sunt necoliniare, altfel, împreună cu Q ele ar determina un plan căruia i-ar aparține și A_i , rezultând $Q\in L$, contradicție. Fie L'=QL. Avem dim L'=3 și suntem în condițiile aplicării primului caz al demonstrației

pentru configurația Q, H_i, A_i . Obținem punctele $\{C_i'\} = H_j H_k \cap A_i A_k$, coliniare pe dreapta de intersecție a planelor $H_1 H_2 H_3$ și $A_1 A_2 A_3 = L$.

Acelaşi raţionament, aplicat lui R, H_i, B_i , produce punctele $\{C_i^{"}\} = H_j H_k \cap B_j B_k$, coliniare pe dreapta de intersecție a planelor $H_1 H_2 H_3$ și $B_1 B_2 B_3 = L$.

Observăm că, L fiind un plan al lui L', este intersectat de orice dreaptă în exact un punct. Or, $\{C_i', C_i''\} \subseteq H_j H_k \cap L$, de unde rezultă $C_i' = C_i''$ și, de fapt, $C_i = C_i'' = C_i''$, deci punctele C_i sunt coliniare.

Din demonstrația teoremei rezultă

COROLARUL 3.6. Orice plan proiectiv scufundat într-un spațiu proiectiv satisface axioma **PD**. În particular, P^2K satisface axioma **PD**.

Tot ce mai trebuie văzut este cum se scufundă P^2K . Nu avem decât să privim K^3 în K^4 prin $f:(x_0,x_1,x_2) \hookrightarrow (x_0,x_1,x_2,0)$. Apoi proiectivizăm şi obţinem scufundarea $\overline{f}:[x_0,x_1,x_2] \hookrightarrow [x_0,x_1,x_2,0]$ care e evident un morfism proiectiv injectiv, astfel că $\overline{f}(P^2K)$ e un subspaţiu proiectiv 2-dimensional al lui P^3K .

Exercițiul 3,20. Enunțați și demonstrați reciproca teoremei lui Desargues într-un spațiu proiectiv.

Exercițiul 3.21. Planul lui Fano satisface PD.

Deci există plane proiective nescufundate care verifică **PD**. Un asemenea plan proiectiv se numește desarguesian. Pentru a da consistență noțiunii, reproducem aici, după [10], un exemplu de plan nedesarguesian. Pentru început, câteva preliminarii:

Definiția 3.12. Se numește configurație o mulțime amorfă P ale cărei elemente se numesc Puncte împreună cu o familie de submulțimi numite Drepte, supuse axiomei:

C Două Puncte distincte aparțin cel mult unei Drepte.

E clar că un plan sau spațiu proiectiv e un caz particular de configurație. Dar noi suntem interesați de configurații care nu sunt submulțimi ale unui plan sau spațiu proiectiv, de aceea am scris, cu majusculă, Dreaptă și Plan, pentru a marca diferența. Într-un plan sau spațiu proiectiv, o submulțime poate fi o configurație, dar Dreptele nu vor fi neapărat drepte.

Observația 3.5. Intr-o configurație, două Drepte au cel mult un Punct în comun.

Vom indica acum un procedeu prin care, pornind de la o configurație dată, construim, prin completare, un plan proiectiv.

Fie π_0 o configurație fixată. Definim configurația π_1 prin condițiile:

- Punctele lui π_1 sunt cele ale lui π_0 ;
- Dreptele sunt cele din π_0 la care adăugăm, pentru orice pereche (P_1, P_2) care nu e pe o Dreaptă în π_0 , Dreapta $\{P_1, P_2\}$.

Noua configurație are proprietatea

(a) orice două Puncte distincte stau pe o Dreaptă.

Continuăm definind configurația π_2 prin condițiile:

- Punctele lui π_2 sunt cele ale lui π_1 la care se adaugă, pentru orice pereche de Drepte d_1, d_2 care nu se taie în π_1 , un nou Punct, notat d_1d_2 .
- Dreptele sunt cele din π_1 extinse cu noile Puncte.

Configurația π_2 are proprietatea:

(b) orice două Drepte distincte se intersectează,

dar nu are proprietatea (a). Continuăm, construind π_n pentru fiecare $n \in \mathbb{N}$. Pentru n par, π_{n+1} se construiește prin adăugarea de Drepte; pentru n impar, obținem π_{n+1} adiționând Puncte și extinzând corespunzător Dreptele. Fie $\pi = \bigcup_{n>0} \pi_n$.

Definiția 3.13. O submulțime $d \subset \pi$ se numește dreaptă dacă există $n_0 \in \mathbb{N}$ astfel încât $d \cap \pi_n$ e o Dreaptă a lui π_n pentru orice $n \geq n_0$.

Fie Δ multimea dreptelor astfel definite. Avem imediat:

Propoziția 3.15. Dacă π_0 conține 4 Puncte oricare trei nesituate pe aceeași Dreaptă, atunci (π, Δ) e un plan proiectiv.

Demonstrație. Deoarece π_n are proprietatea (a) pentru n impar și are proprietatea (b) când n e par, rezultă că axiomele **P1** și **non P4** sunt verificate.

Pentru a verifica $\mathbf{P2}$ fie d o dreaptă din π şi fie n_0 de la care încolo $D_n = d \cap \pi_n$ este o Dreaptă. Atunci D_{n_0} are cel puţin două Puncte. Din construcţia lui π rezultă că D_n intersectează toate Dreptele existente în configurațiile $\pi_1, \pi_2, \ldots, \pi_{n-1}$. Fie, atunci, A, B, C, D cele patru Puncte din π_0 , oricare trei necoliniare. Dreptele determinate de ele sunt distincte şi există începând cu π_1 . Din condiția de necoliniaritate a oricare trei dintre aceste patru Puncte deducem că există cel puţin două dintre ele care nu stau pe D_n . Fie acestea A, B. Atunci Dreptele $\{A, C\}$, $\{A, D\}$ şi $\{A, B\}$ intersectează D_n în C', respectiv D', B'. Evident B', C', D' sunt distincte, pentru că dacă, de exemplu, B' = C', ar rezulta A, B, C coliniare, contradicție. Am demonstrat astfel că D_n , deci și d are cel puţin trei Puncte.

Că în afara oricărei drepte mai există Puncte e clar din construcția lui π . \Box

Avem nevoie și de

Definiția 3.14. O configurație se numește $m \check{a} r ginit \check{a}$ dacă orice Punct se află pe cel puțin 3 Drepte și orice Dreaptă are cel puțin 3 Puncte.

De exemplu, configurația lui Desargues e mărginită în sensul acestei definiții. Pasul esențial în construcția exemplului de plan nedesarguesian este:

Propoziția 3.16. Fie π planul proiectiv obținut prin completarea unei configurații π_0 . Atunci orice configurație finită și mărginită din π e conținută în π_0 .

Demonstrație. Pentru un Punct $P \in \pi$, fie $l(P) = \min\{n \geq 0 \mid P \in \pi_n\}$, nivelul său, iar pentru o dreaptă punem $l(d) = \min\{n \geq 0 \mid d \cap \pi_n \text{ e Dreaptă}\}$. Fie Σ o configurație finită și mărginită. Fie $n = \max\{l(P), l(d) \mid P \in \Sigma, d \in \Delta \cap \Sigma\}$. Să presupunem că nivelul maxim n se atinge pentru o dreaptă: $n = l(d_0)$ (la fel se raționează pentru $n = l(P_0)$). Rezultă că $d \cap \pi_n$ e Dreaptă și $d \cap \pi_{n-1}$ nu e Dreaptă. Dacă n = 0, nu mai e nimic de demonstrat. Dacă $n \geq 1$, atunci d e de tipul $\{A, B\}$ cu $A, B \in \pi_{n-1}$. Dar toate Punctele lui Σ au nivel inferior lui n, deci stau în π_n , astfel că d conține cel mult două dintre ele. Am ajuns la o contradicție care demonstrează enunțul.

În fine, exemplul promis:

Exemplul 3.9. Fie π_0 o configurație formată din 4 Puncte, oricare 3 necoliniare, și nici o Dreaptă. Generăm planul proiectiv π ca mai sus. Considerăm configurația Σ a lui Desargues în π . Aceasta e finită (are 10 Puncte) și e mărginită. Deci, conform propoziției anterioare $\Sigma \subset \pi_0$, contradicție cu faptul că în π_0 nu se află nici o dreaptă.

5. Construcția corpului

În acest paragraf (M, \mathcal{D}) va fi un spațiu proiectiv sau un plan proiectiv desarguesian. Vom arăta cum, în aceste condiții, se poate construi un corp, în general necomutativ, și un spațiu afin scufundat în M. Ceea ce urmează este un fel de construcție reciprocă a exemplului 3.1.

Fie H un hiperplan fixat al lui M. Vom numi punctele lui H improprii sau de la infinit, iar pe cele ale lui A = M - H, proprii. H va fi numit hiperplan de la infinit. Împărțim dreptele din M în două submulțimi disjuncte: cele incluse în H, numite drepte improprii și cele neconținute în H, numite drepte proprii. Remarcăm că dreptele improprii nu au nici un punct propriu, în timp ce fiecare dreaptă proprie are un singur punct impropriu (cel în care dreapta taie hiperplanul, conform corolarului 3.3).

 ${\tt Definiţia}$ 3.15. Două drepte proprii se numescparalele dacă au același punct impropriu.

Deci d||d'| dacă și numai dacă $d \cap H = d' \cap H$.

Observația 3.6. Prin orice punct propriu A exterior unei drepte proprii d trece o dreaptă proprie unică paralelă cu d. E vorba de dreapta proiectivă unic determinată de A și punctul impropriu al lui d.

Cu ajutorul noțiunii de paralelism, după fixarea unui hiperplan drept impropriu, se pot reformula unele enunțuri. Exemplificăm cu teorema lui Desargues care produce următoarele "versiuni afine" (comparați cu enunțurile corespunzătoare din cadrul afin):

Propoziția 3.17. Fie d_1, d_2, d_3 drepte proprii care se intersectează în punctul O (propriu sau impropriu). Fie $A_i, B_i \in d_i$ puncte proprii distincte și diferite de O, i = 1, 2, 3. Atunci, dacă $A_1A_2 \| B_1B_2$ și $A_2A_3 \| B_2B_3$, avem și $A_1A_3 \| B_1B_3$.

Într-adevăr, conform ipotezei, $C_1, C_3 \in H$ (vezi notațiile din enunțul Axiomei lui Desargues). Cum H e subspațiu proiectiv, avem $C_1C_3 \subset H$. Acum Teorema lui Desargues implică $C_2 \in C_1C_3$, deci $A_1A_3 \| B_1B_3$.

O alta versiune, pe care cititorul o va demonstra singur, este:

Propoziția 3.18. Fie d_1, d_2, d_3 drepte proprii care se intersectează în punctul O (propriu sau impropriu). Fie $A_i, B_i \in d_i$ puncte proprii distincte și diferite de O, i = 1, 2, 3. Dacă $A_1A_2 || B_1B_2$, atunci $C_1C_2 || A_1A_2$.

Desigur, și reciprocele acestor enunțuri sunt adevărate.

Definiția 3.16. Numim bipunctal lui $\mathcal A$ orice element al produsului cartezian $\mathcal A\times\mathcal A.$

După modelul spațiului geometric, introducem acum relația de echipolență, notată \sim , pe mulțimea bipunctelor prin axiomele:

- 1. Dacă $A \neq B$, $A' \neq B'$, $A \neq A'$, $B \neq B'$ și $AB \neq A'B'$, atunci $(A, B) \sim (A', B')$ dacă și numai dacă $AB \|A'B'$ și $AA' \|BB'$.
- 2. Dacă $A \neq B$, $A' \neq B'$ și A = A' sau B = B', atunci $A = A' \in A'$ sau $A = A' \in A'$ si numai dacă A = A' și A = A' si A = A' sau A = A' si A = A' si A = A' sau A = A
- 3. Dacă $A \neq B$, $A' \neq B'$ şi AB coincide cu A'B', atunci $(A, B) \sim (A', B')$ dacă şi numai dacă există (A'', B'') cu proprietatea: $(A, B) \sim (A'', B'')$ şi $(A', B') \sim (A'', B'')$ ca în cazurile precedente.
 - 4. Dacă A = B, atunci $(A, B) \sim (A', B')$ dacă și numai dacă A' = B'.

Lăsăm pe seama cititorului verificarea — ușoară! — a faptului că \sim e relație de echivalență.

O clasă de bipuncte echipolente se va numi vector liber. Vom nota \overrightarrow{AB} clasa de echivalență a bipunctului (A, B) și $V = \mathcal{A} \times \mathcal{A} / \sim$. Se demonstrează fără dificultate:

Propoziția 3.19. Fie v un vector liber arbitrar și $O \in \mathcal{A}$ un punct propriu. Atunci există un unic punct propriu P astfel încât $\overrightarrow{OP} = v$.

Putem acum defini

Adunarea vectorilor liberi. Fie v, w vectori liberi arbitrari. Fie $O \in \mathcal{A}$ un punct propriu arbitrar. Conform rezultatului anterior, există punctele proprii unice R şi S astfel încât $v = \overrightarrow{OR}, w = \overrightarrow{RS}$. Punem (deoarece vrem să construim în final un spațiu afin care trebuie să verifice regula triunghiului) $v + w \stackrel{\text{def}}{=} \overrightarrow{OS}$.

Exercițiul 3.22. Adunarea vectorilor liberi nu depinde de alegerea punctului O. (Indicație: se folosește propoziția 3.17).

Propoziția 3.20. (V, +) este grup comutativ.

 $\begin{array}{ll} \textit{Demonstrație. Asociativitatea.} \ \text{Fie dați vectorii liberi } u,v,w \in V. \ \ \overrightarrow{\text{Fixăm}} \ \ \overrightarrow{O} \in \mathcal{A}. \ \ \text{Există, unice, punctele proprii } R,S,T \ \text{astfel încât } u = \overrightarrow{OR},\ v = \overrightarrow{RS},\ w = \overrightarrow{ST}. \ \ \text{Atunci} \end{array}$

$$(u+v)+w=(\overrightarrow{OR}+\overrightarrow{RS})+\overrightarrow{ST}=\overrightarrow{OS}+\overrightarrow{ST}=\overrightarrow{OT},$$

$$u + (v + w) = \overrightarrow{OR} + (\overrightarrow{RS} + \overrightarrow{ST}) = \overrightarrow{OR} + \overrightarrow{RT} = \overrightarrow{OT}.$$

adică adunarea e asociativă.

Elementul neutru al adunării este vectorul liber notat 0 şi definit prin $0 = \overrightarrow{AA}$ pentru orice $A \in \mathcal{A}$ (nu e greu de văzut că, într-adevăr, $\overrightarrow{AA} = \overrightarrow{BB}$ pentru orice $A, B \in \mathcal{A}$).

Opusul vectorului liber \overrightarrow{AB} este \overrightarrow{BA} .

Comutativitatea. Fie $v, w \in V$. Fixăm $A \in \mathcal{A}$. Există, unice, punctele $B, C \in \mathcal{A}$ astfel încât $v = \overrightarrow{AB}, \ w = \overrightarrow{BC}$. Atunci $v + w = \overrightarrow{AC}$. Pe de altă parte, există un unic punct D astfel încât $\overrightarrow{AD} = w$. Din $\overrightarrow{AD} = \overrightarrow{BC}$, rezultă $\overrightarrow{DC} = \overrightarrow{AB} = v$. În consecință $w + v = \overrightarrow{AC} = v + w$.

Continuăm cu definirea scalarilor viitorului corp peste care V va deveni spațiu vectorial (la stânga). Aceștia vor fi tot niște clase de echivalență. Dăm întâi:

Definiția 3.17. Se numește $tern \breve{a}$ orice triplet ordonat (O,P,Q) de puncte proprii cu $O \neq Q$ și $P \in OQ$.

Definim acum asemănarea ternelor prin:

Definiția 3.18. Ternele (O,P,Q) și (O',P',Q') se numesc asemenea (scriem $(O,P,Q) \sim (O',P',Q')$) dacă:

1) $\overrightarrow{OQ} \not \models \overrightarrow{O'Q'}$ şi, pentru un punct $S \in \mathcal{A}$, punctele M, M', N, N' sunt astfel încât $\overrightarrow{OP} = \overrightarrow{SM}$, $\overrightarrow{O'P'} = \overrightarrow{SM'}$, $\overrightarrow{OQ} = \overrightarrow{SN}$, $\overrightarrow{O'Q'} = \overrightarrow{SN'}$, atunci MM' || NN' sau M = M' = S;

2) $OQ \parallel OQ'$ și există o ternă (O'', P'', Q'') cu proprietățile: $O''Q'' \not\parallel OQ$, $(O'', P'', Q'') \sim (O, P, Q)$ și $(O'', P'', Q'') \sim (O', P', Q')$ ca în cazul 1).

FIGURA 3.3 Asemănarea ternelor: Cazul generic

Exercițiul 3.23. Asemănarea e o relație de echivalență pe mulțimea ternelor.

Vom nota $\frac{\overrightarrow{OP}}{\overrightarrow{OQ}}$ sau [(O, P, Q)] clasa de asemănare a ternei (O, P, Q). O clasă de asemănare de terne se numește raport.

Notăm K mulțimea rapoartelor. Vom defini adunarea și înmulțirea rapoartelor în așa fel încât K să devină corp, nu neapărat comutativ.

Elementul 0 şi unitatea lui K sunt definite de:

Lema 3.4. Fie $O \neq Q$, $O' \neq Q'$. Atunci $(O, O, Q) \sim (O', O', Q')$ şi $(O, Q, Q) \sim (O', Q', Q')$.

Demonstrația e imediată. Notăm $0 \stackrel{\text{def}}{=} \frac{\overrightarrow{OO}}{\overrightarrow{OQ}}$ și $1 \stackrel{\text{def}}{=} \frac{\overrightarrow{OQ}}{\overrightarrow{OQ}}$.

Pentru a mima experiența noastră de calcul cu numere raționale, pentru a aduna două rapoarte vom avea nevoie să le "aducem la un același numitor". Acest lucru este asigurat de:

Propoziția 3.21. Fie (O, P, Q) o ternă oarecare și fie O', Q' puncte proprii. Atunci există un unic punct propriu P' astfel încât $(O, P, Q) \sim (O', P', Q')$.

Demonstrație. Presupunem întâi că dreptele OQ și O'Q' sunt neparalele și $O \neq P$ (adică $[(O,P,Q)] \neq 0$). În punctul O' considerăm bipunctele (O',P'') și (O',Q'') echipolente, respectiv, cu (O,P) și (O,Q). Prin P'' ducem unica paralelă d la Q'Q'' (vezi observația 3.6). Evident d nu e paralelă cu O'Q', altfel prin Q' ar exista două paralele distincte la d. Deci există $\{P'\} = d \cap O'Q'$, $P' \in M - H$. Rezultă $(O,P,Q) \sim (O',P',Q')$. Unicitatea e o consecință a definiției echivalenței ternelor și a observației 3.6.

Dacă O = P, atunci punem P' = O'.

Dacă dreptele OQ și O'Q' sunt paralele, considerăm d o dreaptă prin O, diferită de OQ. Fie $P'', Q'' \in d$ astfel încât $(O, P'', Q'') \sim (O, P, Q)$. Pe de altă parte, fie d' paralela la d prin O'. Luăm pe d' punctele P''', Q''' astfel încât $\overrightarrow{OP''} = \overrightarrow{O'P''}$ și $\overrightarrow{OQ''} = \overrightarrow{O'Q'''}$. Paralela prin P''' la Q'Q''' taie dreapta O'Q' în punctul P'. Acesta e punctul căutat.

COROLARUL 3.7. Fie $r = \frac{u}{v}$ un raport. Atunci, pentru orice vector liber v', există un unic vector liber u' astfel încât $r = \frac{u}{v} = \frac{u'}{v'}$.

Adunarea rapoartelor. Fie $r_i=\frac{u_i}{v_i}\in K,\ i=1,2$. Alegem $v\in V$ nenul (acesta va fi numitorul comun). Conform corolarului anterior, există, unici, vectorii liberi u_i' , astfel încât $r_i=\frac{u_i'}{v}$. Acum punem $r_1+r_2\stackrel{\mathrm{def}}{=}\frac{u_1'+u_2'}{v}$, unde, la numărător, am folosit suma vectorilor liberi deja definită. Ca întotdeauna când lucrăm cu clase de echivalență și definim ceva cu ajutorul unor reprezentanți, urmează să arătăm că

definiția dată e independentă de alegerea reprezentanților: lăsăm această verificare pe seama cititorului. Noi demonstrăm că:

Propoziția 3.22. Suma rapoartelor nu depinde de alegerea numitorului comun ales.

FIGURA 3.4 Suma rapoartelor nu depinde de numitorul comun ales

 $\begin{array}{ll} \textit{Demonstrație.} \ \ \text{Fie} \ v \neq w \ \text{și să presupunem că} \ r_i = \frac{u_i'}{v} = \frac{u_i''}{w}, \ (i=1,2 \ \text{aici și} \\ \text{pe tot parcursul demonstrației}). \ \ \text{Vom arăta că} \ \frac{u_1' + u_2'}{v} = \frac{u_1'' + u_2''}{w}. \ \ \text{Pentru aceasta, fie} \\ S \in \mathcal{A} \ \text{arbitrar} \ \ (\text{vezi figura alăturată}). \ \ \text{Fie} \ \ U_i', U_i'', U', U'', V, W \ \ \text{astfel încât:} \end{array}$

E clar că $U_1', U_2', U', V,$ respectiv $U_1'', U_2'', U'', W,$ sunt coliniare.

1) Dacă $SV \not\parallel SW$ (caz descris în figură), trebuie să arătăm că $U'U'' \parallel VW$. Pentru aceasta avem nevoie de două triunghiuri cu două perechi de laturi paralele cărora să le aplicăm teorema lui Desargues în versiunea 3.17. Deocamdată știm că:

$$\begin{split} VW\|U_1'U_1'' & \text{deoarece} & \frac{u_1'}{v} = \frac{u_1''}{w}, \\ VW\|U_2'U_2'' & \text{deoarece} & \frac{u_2'}{v} = \frac{u_2''}{w}. \end{split}$$

Atunci va fi suficient să demonstrăm că $U'U''\|U_2'U_2''$. Facem următoarea construcție: ducem prin U_1' paralela la SW și prin U_1'' paralela la SV. Acestea se taie în punctul propriu X. Analog construim punctul propriu Y cu proprietatea că $U_2'Y\|SW,U_2''Y\|SV$. Teorema lui Desargues 3.17 aplicată triunghiurilor $(U_1'U_1''X)$ și $(U_2'U_2''Y)$ arată că punctele X,Y,S sunt coliniare. Aceasta sugerează ca unul dintre triunghiurile de care avem nevoie să fie (XU'U'').

Avem, în continuare, nevoie de un punct $T \in SX$ astfel încât $U_2'T \| U'X$ şi $U_2''T \| U''X$. Îl determinăm aplicând reciproca teoremei lui Desargues triunghiurilor $(SU_2'U_2'')$ şi $(XU_1'U_1'')$. Rezultă concurența dreptelor SX, $U_1'U_2''$ şi $U_1'U_2''$ într-un punct T.

Acum arătăm că $U_2'T \| U'X$ şi $U_2''T \| U''X$. Într-adevăr, $\overrightarrow{SU'} = u_1' + u_2'$ implică $\overrightarrow{U_2'U'} = u_1' = \overrightarrow{U_1''X}$, deci $U'X \| U_2'U_1''$. La fel, $U''X \| U_1'U_2''$. În fine, teorema lui Desargues aplicată triunghiurilor omoloage (XU'U'') şi $(TU_2'U_2'')$ termină demonstrația.

2) Dacă $SV \parallel SW$, atunci, din însăși definiția relației de asemănare, $(S, U_1', V) \sim (S, U_1'', W)$ implică existența unui punct S' cu ajutorul căruia ne putem reduce la primul caz.

Propoziția 3.23. (K, +) e grup comutativ.

Demonstrație. Asociativitatea (respectiv comutativitatea) adunării rapoartelor derivă din asociativitatea (respectiv asociativitatea) adunării vectorilor liberi. Elementul nul este 0 = [(O, O, Q)], iar opusul lui $r = \frac{u}{v}$ este $-r = \frac{-u}{v}$, unde -u este opusul lui u în (V, +).

Trecem acum să definim Înmulțirea rapoartelor. Fie $r_i=\frac{u_i}{v_i},~i=1,2$. Dacă $r_2\neq 0$, există un unic $w\in V$ astfel încât $r_1=\frac{w}{u_2}$. Punem

$$r_1 r_2 \stackrel{\mathrm{def}}{=} \left\{ egin{array}{ll} 0 & \mathrm{dac} \ ar{a} & r_2 = 0, \\ rac{w}{v_2} & \mathrm{dac} \ ar{a} & r_2
eq 0. \end{array}
ight.$$

Observați că, din construcție, produsul nu este comutativ. Ca și pentru sumă, cititorul va demonstra:

Propoziția 3.24. Produsul rapoartelor nu depinde de alegerea reprezentanților.

În sfârşit, avem:

Propoziția 3.25. $(K - \{0\}, \cdot)$ e grup (în general, necomutativ).

Demonstrație. Asociativitatea înmulțirii este imediată.

Unitatea este $1 = [(O, Q, Q)] = \frac{u}{u}$ pentru orice $u \in V - \{0\}$. Evident $1 \neq 0$. Inversul lui $r = \frac{u}{v} \neq 0$ este $r^{-1} = \frac{v}{u}$.

Cu toate aceste pregătiri, suntem în măsură să demonstrăm:

TEOREMA 3.5. $(K, +, \cdot)$ este un corp (necomutativ).

Demonstrație. Ținând seamă de propozițiile 3.23 și 3.25, mai avem de probat distributivitatea înmulțirii față de adunare. Datorită necomutativității înmulțirii, trebuie să tratăm separat distributivitatea la stânga de cea la dreapta.

Distributivitatea la dreapta: $(r_1+r_2)r=r_1r+r_2r$ rezultă direct din definiția operațiilor, luând $r_i=\frac{u_i}{u},\ i=1,2,\ r=\frac{u}{v},\ \mathrm{dacă}\ r\neq 0.$ Cazul r=0 este banal. Distributivitatea la stânga nu mai e evidentă. Vrem să arătăm că $r(r_1+r_2)=$

Distributivitatea la stânga nu mai e evidentă. Vrem să arătăm că $r(r_1+r_2)=rr_1+rr_2$. Dacă unul dintre r_1,r_2 , este nul, sau dacă $r_1+r_2=0$, proprietatea este evidentă. Presupunem $r_i\neq 0$ și $r_1+r_2\neq 0$. Fie

$$r_1 = \frac{u_1}{w}, \quad r_2 = \frac{u_2}{w}, \quad r = \frac{a_1}{u_1} = \frac{a_2}{u_2} = \frac{a}{u_1 + u_2}.$$

Cu aceste alegeri, (motivate a posteriori), relația de probat devine: $a=a_1+a_2$. Punem

$$\frac{a_1}{u_1} = [(S, A_1, U_1)], \quad \frac{a_2}{u_2} = [(S, A_2, U_2)]$$

şi putem presupune $SA_1 \neq SA_2$. Construim U astfel încât $\overrightarrow{SU} = \overrightarrow{SU_1} + \overrightarrow{SU_2}$ (avem deci $SU_1 || U_2 U$ şi $SU_2 || U_1 U$). La fel construim punctul A astfel încât $\overrightarrow{SA} = \overrightarrow{SA_1} + \overrightarrow{SA_2}$. Deoarece $A_1 A || UU_1$, $A_2 A || UU_2$, $A_1 A_2 || U_1 U_2$, reciproca teoremei lui Desargues implică coliniaritatea punctelor S, A, U. Atunci $\overrightarrow{SA} = \overrightarrow{SU_1}$, de unde $a_1 + a_2 = a_1 \over u_1 + u_2 = a_1 \over u_1$. Pe de altă parte, $a_1 = a_1 \over u_1 + u_2$. De aici rezultă $a_1 + a_2 = a$.

Corpul K construit mai sus se numește corpul rapoartelor sau corpul coordonatelor. Denumirea din urmă va fi justificată de introducerea, mai departe, a coordonatelor omogene într-un spațiu proiectiv desarguesian.

Propoziția 3.26. Mulțimea vectorilor liberi V are structură naturală de spațiu vectorial peste corpul K (la stânga, dacă K e necomutativ).

Demonstrație. Deoarece (V,+) este grup comutativ, mai trebuie să definim înmulțirea externă cu scalari din K. Fie $r \in K$ și $v \in V$ arbitrari. Punem

$$rv \stackrel{\text{def}}{=} \begin{cases} 0 & \text{dacă} \quad v = 0, \\ u & \text{dacă} \quad v \neq 0, \quad \text{unde} \quad r = \frac{u}{v}. \end{cases}$$

Rămâne cititorului să demonstreze că $(V, +, \cdot)$ satisface axiomele de spațiu vectorial.

6. Independența corpului coordonatelor de hiperplan

Conform construcției anterioare, ar trebui să scriem K(H) pentru a pune în evidență dependența lui K de hiperplanul fixat inițial drept hiperplan de la infinit. În cele ce urmează demonstrăm că, de fapt, corpurile corespunzătoare unor hiperplane diferite sunt izomorfe.

Lema 3.5. Fie (M, \mathcal{D}) , (M', \mathcal{D}') două spații sau plane proiective desarguesiene și $f: M \to M'$ un izomorfism proiectiv. Fie H un hiperplan al lui M și K corpul coordonatelor corespunzător. Atunci corpul K' asociat hiperplanului H' = f(H) al lui M' este izomorf cu K.

Demonstrație. Să observăm întâi că, datorită propoziției 3.12, f(H) e hiperplan, deci enunțul e corect. În plus, f duce puncte proprii în puncte proprii ale lui M' deoarece f(M-H)=M'-H'. Cum f e morfism proiectiv, el va aplica drepte în drepte, în particular drepte proprii în drepte proprii. Pe de altă parte, se verifică uşor că f duce drepte paralele din M în drepte paralele din M' (aici e esențial faptul că H'=f(H)). Rezultă că f induce o aplicație $F:V\to V'$. De asemenea, f induce o aplicație între terne care, cum f păstrează paralelismul, duce terne asemenea în terne asemenea. Deci f induce și o aplicație $\varphi:K\to K'$. Repetăm raționamentul pentru f^{-1} care va induce o aplicație $\varphi':K'\to K$. E ușor de văzut că aceasta e inversa lui φ . Că φ e morfism de corpuri se verifică imediat.

Acum putem formula rezultatul cel mai important al secțiunii:

TEOREMA 3.6. Fie H, H' două hiperplane ale spațiului sau planului proiectiv desarguesian (M, \mathcal{D}) . Atunci corpurile K și K' asociate lor sunt izomorfe (necanonic).

Demonstrație. Este suficient să avem un automorfism al lui M care să aplice H în H', apoi putem aplica lema anterioară. Existența unui asemenea automorfism va rezulta imediat după introducerea coordonatelor omogene³. Tot acolo se va vedea că un asemenea automorfism nu e, în general, unic; de aici caracterul necanonic al izomorfismului dintre cele două corpuri.

Exemplul 3.10. Corpul coordonatelor asociat planului lui Fano (care, reamintim, satisface axioma lui Desargues) este \mathbb{Z}_2 . Într-adevăr, fie A_1, \ldots, A_7 punctele planului lui Fano. Alegem dreapta A_5A_3 ($A_6 \in A_5A_3$, vezi Figura 3.1) ca dreapta de la infinit. Rămân punctele proprii A_1, A_2, A_4, A_7 care determină doar două clase de echivalență de terne: prima conține ternele asemenea (A_1, A_1, A_2) , (A_1, A_1, A_4) , (A_1, A_1, A_7) , (A_2, A_2, A_7) , (A_2, A_2, A_4) , (A_2, A_2, A_1) , (A_4, A_4, A_7) ,

 $^{^3}$ Este prima și ultima oară când facem trimitere la un rezultat care se va demonstra ulterior.

 $(A_4,A_4,A_2), (A_4,A_4,A_1), (A_7,A_7,A_1), (A_7,A_7,A_2), (A_7,A_7,A_4);$ a doua conține ternele: $(A_1,A_2,A_2) \sim (A_1,A_4,A_4) \sim \cdots$. Notăm prima clasă cu 0, a doua cu 1 și obținem \mathbb{Z}_2 .

Exemplul 3.11. Fie F un corp comutativ. Corpul coordonatelor asociat lui P^nF este izomorf cu F.

Vom urmări pas cu pas construcția corpului asociat lui P^nF . Fie H hiperplanul $\{[0,x_1,\ldots,x_n]\}$ (vezi notațiile de la sfârșitul exemplului 3.3). Este imaginea prin proiecția canonică a hiperplanului $\{x_0=0\}$ din F^{n+1} . Atunci punctele proprii sunt caracterizate de neanularea coordonatei x_0 . Datorită relației de echivalență cu care a fost definit P^nF , vedem că punctele proprii sunt de forma $\mathcal{A}=\{[1,x_1,\ldots,x_n]\}$.

 $\alpha + \beta = \alpha' + \beta' = 0$, $\alpha a_i + \beta b_i = k(\alpha' a_i' + \beta' b_i')$, $k \neq 0$, $i = 1, \ldots, n$. de unde obtinem:

$$\alpha(a_1 - b_i) = k\alpha'(a_i' - b_i'), \quad i = 1, \dots, n, \quad \alpha, \alpha' \in F - \{0\}.$$

Deci, dacă notăm $\lambda = k \frac{\alpha'}{\alpha}$, putem scrie condiția de paralelism sub forma:

(3.1)
$$\frac{a_1 - b_1}{a_1' - b_1'} = \frac{a_2 - b_2}{a_2' - b_2'} = \dots = \frac{a_n - b_n}{a_n' - b_n'} = \lambda.$$

Analog, $AA' \parallel BB'$ este echivalent cu:

$$\frac{a_1 - a_1'}{b_1 - b_1'} = \frac{a_2 - a_2'}{b_2 - b_2'} = \dots = \frac{a_n - a_n'}{b_n - b_n'} = \mu.$$

Din cele două seturi de condiții eliminăm a_i și obținem:

$$(\lambda - 1)a'_i + (\mu - \lambda)b'_i + (1 - \mu)b_i = 0, \quad i = 1, \dots, n.$$

Dacă $\lambda-1\neq 0$ sau $\mu-\lambda\neq 0$ sau $1-\mu\neq 0$, având în vedere că $(\lambda-1)+(\mu-\lambda)+(1-\mu)=0$, ar rezulta A',B',B coliniare, contradicție. Deci $\lambda=\mu=1$. Finalmente, condiția de echipolență este:

$$(3.2) a_1 - b_1 = a'_1 - b'_1, \cdots, a_n - b_n = a'_n - b'_n.$$

Celelalte cazuri de echipolență, corespunzătoare lui A=B, A=A' sau A,B,A',B' coliniare conduc la aceleași ecuații 3.2. Ca urmare, putem defini $f:V\to F^n$ prin $f(\overrightarrow{AB})=(b_1-a_1,\ldots,b_n-a_n)\in F^n$. Pe de altă parte, dați $u,v\in V$ putem alege reprezentanți de forma $u=\overrightarrow{AB}, v=\overrightarrow{BC}$ ceea ce conduce la $u+v=\overrightarrow{AC}$ căruia i se asociază punctul (c_1-a_1,\ldots,c_n-a_n) . În consecință, f e un izomorfism al lui (V,+) pe $(F^n,+)$.

 $\begin{array}{c} (V,+) \text{ pe } (F^n,+). \\ \text{ Fie acum } \mathcal{T} \text{ mulţimea ternelor lui } P^nF. \quad \text{Căutăm expresia în coordonate a condiţiei de asemănare. Fie ternele asemenea } (O,P,Q), \ (O',P',Q'). \quad \text{Presupunem } OQ \not\parallel O'Q' \text{ şi alegem punctele proprii } S,P_1,Q_1,Q_1' \text{ astfel încât } \overrightarrow{SP_1} = \overrightarrow{OP}, \ \overrightarrow{SP_1'} = \overrightarrow{OP}, \ \overrightarrow{SQ_1'} = \overrightarrow{OQ}, \ \overrightarrow{SQ_1'} = \overrightarrow{O'Q'}. \quad \text{Dacă avem } S = [1,s_1,\ldots,s_n], \ O = [1,o_1,\ldots,o_n], \ O' = [1,o_1',\ldots,o_n'], \ P = [1,p_1,\ldots,p_n], \ P' = [1,p_1',\ldots,p_n'], \ Q = [1,q_1,\ldots,q_n], \end{array}$

 $Q'=[1,q_1',\ldots,q_n'],$ atunci, din $\overrightarrow{SP_1}=\overrightarrow{OP}$ și din construcția anterioară deducem $f(\overrightarrow{OP})=(p_1-o_1,\ldots,p_n-o_n).$ Atunci $P_1=[1,p_1-o_1+s_1,\ldots,p_n-o_n+s_n],$ $P_1'=[1,p_1'-o_1'+s_1,\ldots,p_n'-o_n'+s_n],$ $Q_1=[1,q_1-o_1+s_1,\ldots,q_n-o_n+s_n],$ $Q_1'=[1,q_1'-o_1'+s_1,\ldots,q_n'-o_n'+s_n].$ Condiția de asemănare este $P_1P_1'\|Q_1Q_1'$. Ținând seama de (3.1), rezultă:

$$\frac{p_i - o_i + s_i) - (p'_i - o'_i + s_i)}{(q_i - o_i + s_i) - (q'_i - o'_i + s_i)} = \lambda, \quad i = 1, \dots, n$$

sau, echivalent:

$$(3.3) p_i - o_i - p_i' + o_i' = \lambda (q_i - o_i - q_i' + o_i'), i = 1, \dots, n.$$

Coliniaritatea punctelor O, P, Q, respectiv O', P', Q' implică existența scalarilor $\alpha, \alpha', \beta, \beta'$ astfel încât

$$\alpha + \beta = 1, \quad p_i = \alpha o_i + \beta q_i,$$

 $\alpha' + \beta' = 1, \quad p'_i = \alpha' o'_i + \beta' q'_i, \quad i = 1, \dots, n.$

În aceste relații se elimină β , respectiv β' și se obțin:

$$(3.4) p_i = \alpha o_i + (1 - \alpha) q_i, p_i' = \alpha' o_i' + (1 - \alpha') q_i'.$$

Înlocuim în (3.3) și găsim:

$$(\alpha - 1 + \lambda)(o_i - q_i) = (\alpha' - 1 + \lambda)(o_i' - q_i'), \quad i = 1, \dots, n.$$

Pe de altă parte, condiția $OQ \not\parallel O'Q'$ conduce la:

$$\alpha - 1 + \lambda = \alpha' - 1 + \lambda = 0$$

de unde $\alpha = \alpha'$. Cu acestea, (3.4) se pot scrie:

(3.5)
$$\frac{p_i - o_i}{q_i - o_i} = \frac{p_i' - o_i'}{q_i' - o_i'} = 1 - \alpha, \quad i = 1, \dots n.$$

Aceasta e condiția de asemănare a ternelor pentru cazul $OP \not\parallel OQ$. Celălalt caz, $OP \parallel OQ$, conduce la aceeași condiție.

Fie K corpul coordonatelor lui P^nF asociat hiperplanului fixat H. Definim $\varphi:K\to F$ prin

$$K \ni r = \frac{\overrightarrow{OP}}{\overrightarrow{OO}} \mapsto \varphi(r) = 1 - \alpha \in F,$$

cu α dat de formulele (3.5).

a) φ e bijecție. Fie $a\in F$. Fixăm arbitrar $O\neq Q$ în \mathcal{A} . Atunci există un unic punct propriu $P\in OQ$ astfel încât $\varphi(\frac{\overrightarrow{OP}}{\overrightarrow{OQ}})=a$. Într-adevăr, cu notațiile anterioare, nu avem decât să punem $P=[1,p_1,\ldots,p_n]$ cu $p_i=(1-a)o_i+aq_i$, $i=1,\ldots,n$. Pentru altă alegere $O'\neq Q'$, va rezulta punctul $P'=[1,(1-a)o_1'+aq_1',\ldots,(1-a)o_n'+aq_n']$. Atunci, din $\varphi(\frac{\overrightarrow{O'P'}}{\overrightarrow{O'Q'}})=a$ și din (3.5) rezultă $\frac{\overrightarrow{O'P'}}{\overrightarrow{O'Q'}}=\frac{\overrightarrow{OP}}{\overrightarrow{OQ}}$.

b) φ e morfism de corpuri. Să vedem că φ e aditivă: fie $r, r' \in K$. Putem presupune $r = \frac{\overrightarrow{OP}}{\overrightarrow{OQ}}, \ r' = \frac{\overrightarrow{OP}}{\overrightarrow{OQ}}$. Atunci $r + r' = \frac{\overrightarrow{OP} + \overrightarrow{O'P'}}{\overrightarrow{OQ}}$. Trebuie să punem acest raport sub forma $\frac{\overrightarrow{OR}}{\overrightarrow{OQ}}$ pentru a putea determina a corespunzător. Fie, deci, $R[1, r_1, \ldots, r_n]$, cu $\overrightarrow{OP} + \overrightarrow{O'P'} = \overrightarrow{OR}$. Rezultă $R = [1, p'_1 + p_1 - o'_1, \ldots, p'_n + p_n - o'_n]$. Atunci

 $\varphi(r+r') = \varphi(\frac{\overrightarrow{OR}}{\overrightarrow{OQ}}) = \frac{r_1 - o_1}{q_1 - o_1} = \frac{p'_1 + p_1 - o_1 - o'_1}{q_1 - o_1}. \text{ Pe de altă parte, } \varphi(r) = \frac{p_1 - o_1}{q_1 - o_1},$ $\varphi(r') = \frac{p'_1 - o'_1}{q_1 - o_1}, \text{ deci } \varphi(r+r') = \varphi(r) + \varphi(r').$

Demonstrăm acum că $\varphi(rr') = \varphi(r)\varphi(r')$. Dacă r' = 0, scriem $r' = \frac{\overrightarrow{PP}}{\overrightarrow{PQ}}$ și rezultă $\varphi(0) = 0 \in F$. Cum $r \cdot 0 = 0$, deducem $\varphi(r \cdot 0) = \varphi(r)\varphi(0)$. Dacă $r' \neq 0$, fie $r' = \frac{\overrightarrow{O'P'}}{\overrightarrow{O'Q'}}$ cu $O' \neq P'$ și $r = \frac{\overrightarrow{O'P'}}{\overrightarrow{O'P'}}$. Atunci $rr' = \frac{\overrightarrow{O'P'}}{\overrightarrow{O'Q'}}$ și $\varphi(rr') = \frac{p_1 - o_1'}{q_1' - o_1'}$, $\varphi(r) = \frac{p_1 - o_1'}{p_1' - o_1'}$, ceea ce, ținând seama că F e comutativ, încheie demonstrația.

Observația 3.7. În general, pentru un spațiu vectorial W oarecare peste corpul comutativ F, corpul asociat lui P(W) este izomorf cu F și spațiul vectorial al vectorilor liberi e izomorf cu W.

7. Comutativitatea corpului și axioma lui Pappus-Pascal

Vom vedea acum ce condiții geometrice asigură comutativitatea corpului asociat unui spațiu sau plan proiectiv desarguesian. Introducem întâi:

Axioma lui Pappus-Pascal. Fie (M,\mathcal{D}) un spațiu sau plan proiectiv și d,d' două drepte ale sale concurente în punctul O. Fie $A_i \in d$, $A'_i \in d'$, i=1,2,3, puncte distincte între ele și distincte de O. Fie $\{P\} = A_1A'_2 \cap A_2A'_1$, $\{Q\} = A_1A'_3 \cap A_3A'_1$, $\{R\} = A_2A'_3 \cap A_3A'_2$. Atunci punctele P,Q,R sunt coliniare.

FIGURA 3.5 Configurația din axioma lui Pappus-Pascal

Un plan care verifică axioma Pappus-Pascal⁴ se numește pappian.

Teorema 3.7. (Hessenberg.) Un plan proiectiv care satisface axioma lui Pappus-Pascal, satisface și axioma lui Desargues.

Demonstrație. Fie (π, \mathcal{D}) un plan proiectiv pappian. Fie $d \in \mathcal{D}$ o dreaptă fixată în π pe care o vom considera dreapta de la infinit (deci are sens să vorbim despre puncte proprii, paralelism etc.). Demonstrăm întâi un caz particular al teoremei lui Desargues, versiunea afină 3.17. Fie ABC și A'B'C' două triunghiuri omoloage: $A \neq A'$, $B \neq B'$, $C \neq C'$ și $AA' \cap BB' \cap CC' = \{O\}$, dreptele AA', BB', CC' fiind distincte două câte două. Presupunem că $A'B' \|AB$ și $A'C' \|AC$ și arătăm că $BC \|B'C'$. Ducem, pentru început paralela δ la AC prin O. Notăm $\{D\} = \delta \cap AB$. Cum B'D intersectează δ (vezi figura),

⁴Blaise Pascal, 1632-1662, filosof și matematician francez.

FIGURA 3.6 Demonstrația teoremei lui Hessenberg

rezultă că B'D taie A'C' într-un punct propriu E. Aplicăm axioma Pappus-Pascal tripletelor (D, E, B'), (A', O, A): cum DO || EA' și DA || A'B' (adică punctele respective de intersecție se află pe dreapta d de la infinit), deducem că și punctul de intersecție al dreptelor EA și OB' se află pe d, adică EA || OB'. Ca urmare, EA taie OC într-un punct propriu F și FA || OB.

Acum aplicăm aceeași axiomă tripletelor (O,C,F) și (A,D,B): din OD||CA,OB||FA rezultă CB||FD.

În sfârşit, axioma lui Pappus-Pascal aplicată tripletelor (O, C', F), (E, D, B') unde OD||C'E, OB'||EF, asigură C'B'||FD. În consecință BC||B'C' și am demonstrat teorema lui Desargues în versiunea 3.17.

În cazul general, fie $\{P\} = AB \cap A'B'$, $\{Q\} = AC \cap A'C'$, $\{R\} = BC \cap B'C'$. Alegem d = PQ şi reducem problema la cazul particular deja demonstrat.

Dăm acum rezultatul anunțat:

Teorema 3.8. Un spațiu sau plan proiectiv satisface axioma lui Pappus-Pascal dacă și numai dacă corpul său de coordonate e comutativ.

 $\begin{array}{l} \textit{Demonstrație.} \ \ \text{Să presupunem că} \ (M,\mathcal{D}) \ \text{satisface axioma lui Pappus-Pascal.} \\ \text{Fixăm un hiperplan H în M cu ajutorul căruia construim corpul coordonatelor K.} \\ \text{Fie $r_1,r_2\in K$.} \ \ \text{Fie O un punct propriu și d o dreaptă prin O pe care considerăm punctele proprii distincte A_1,A_2,A_3 astfel încât $r_1=\frac{\overrightarrow{OA_1}}{\overrightarrow{OA_3}}$, $r_2=\frac{\overrightarrow{OA_2}}{\overrightarrow{OA_1}}$.} \\ \text{Fie, de asemenea $d'\neq d$ altă dreaptă prin O, tot proprie, pe care alegem punctele proprii distincte A'_1,A'_2,A'_3 astfel încât să obținem următorii reprezentanți pentru r_1,r_2: $r_1=\frac{\overrightarrow{OA_3}}{\overrightarrow{OA_1}}$, $r_2=\frac{\overrightarrow{OA_1}}{\overrightarrow{OA_2}}$.} \\ \text{Rezultă ternele asemenea:} \\ \end{array}$

$$(O, A_1, A_3) \sim (O, A_3', A_1'), \quad (O, A_2, A_1) \sim (O, A_1', A_2').$$

Deci avem perechile de drepte paralele: $A_1A_3'\|A_3A_1'$ şi $A_2A_1'\|A_1A_2'$. Astfel, dacă $\{P\}=A_1A_2'\cap A_1'A_2$ şi $\{Q\}=A_1A_3'\cap A_3A_1'$, deducem $P\in H,\ Q\in H$. Cum un hiperplan conţine dreapta determinată de două puncte ale sale, avem $PQ\subset H$.

Pe de altă parte, din definiția înmulțirii rapoartelor,

$$r_2 r_1 = \overrightarrow{\overrightarrow{OA_2}} \cdot \overrightarrow{\overrightarrow{OA_1}} \cdot \overrightarrow{\overrightarrow{OA_3}} = \overrightarrow{\overrightarrow{OA_2}} \quad \text{si} \quad r_1 r_2 = \overrightarrow{\overrightarrow{OA_3}} \cdot \overrightarrow{\overrightarrow{OA_1'}} \cdot \overrightarrow{\overrightarrow{OA_1'}} = \overrightarrow{\overrightarrow{OA_3'}} \cdot \overrightarrow{\overrightarrow{OA_2'}}$$

Astfel, pentru a proba comutativitatea corpului, e suficient să arătăm că ternele (O,A_2,A_3) și (O,A_3',A_2') sunt asemenea; ceea ce revine la a demonstra că $A_2A_3'\|A_2'A_3$. Echivalent, notând $\{R\}=A_2A_3'\cap A_2'A_3$, trebuie văzut că $R\in H$. Or, axioma Pappus-Pascal aplicată tripletelor (A_1,A_2,A_3) , (A_1',A_2',A_3') implică $R\in PQ$ și, cum $PQ\subset H$, avem $R\in H$, ceea ce trebuia demonstrat.

Demonstrăm acum suficiența condiției. Reamintim că pentru orice două hiperplane în M, corpurile asociate sunt izomorfe. Deci sunt toate comutative sau toate necomutative. Considerăm acum configurația din enunțul axiomei lui Pappus-Pascal. Alegem un hiperplan H care să conțină dreapta PR (orice dreaptă poate fi inclusă într-un hiperplan). Atunci au loc asemănările $(O, A_2, A_3) \sim (O, A_3', A_2')$ și $(O, A_1, A_2) \sim (O, A_2', A_1')$, astfel că putem considera rapoartele

$$r_1 = \frac{\overrightarrow{OA_1'}}{\overrightarrow{OA_2'}} = \frac{\overrightarrow{OA_2'}}{\overrightarrow{OA_1'}}, \quad r_2 = \frac{\overrightarrow{OA_2'}}{\overrightarrow{OA_3'}} = \frac{\overrightarrow{OA_3'}}{\overrightarrow{OA_2'}}.$$

Cum corpul rapoartelor e comutativ, avem $r_1r_2 = r_2r_1$ ceea ce implică $(O, A_1, A_3) \sim (O, A_3', A_1')$. Atunci $A_1A_3' \| A_3A_1'$, cu alte cuvinte $Q \in H$. Dar cum toată configurația e conținută într-un plan, cel generat de dreptele concurente d, d' ale cărui puncte de la infinit stau, toate, pe o dreaptă, dreapta improprie a planului care în notațiile noastre este exact PR, rezultă $Q \in PR$.

8. Recuperarea geometriei afine

În cele ce urmează vom presupune că (M, \mathcal{D}) este un spațiu sau plan proiectiv care satisface axioma lui Pappus-Pascal. În particular, el satisface axioma lui Desargues și corpul coordonatelor asociat oricărui hiperplan al lui M este comutativ.

Fie, deci, H un hiperplan fixat în M şi K corpul coordonatelor construit cu ajutorul său. Reamintim că mulțimea vectorilor liberi V este un spațiu vectorial peste K. În consecință putem introduce în mod natural o structură de spațiu afin pe A = M - H cu ajutorul aplicației $\varphi : A \times A \to V$, $\varphi(A, B) = \overline{AB}$. Proprietățile din definiția 2.1 se verifică uşor (că φ_O e bijecție pentru orice O rezultă din propoziția 3.19, iar relația $\varphi(A, B) + \varphi(B, C) = \varphi(A, C)$ e consecință directă a definiției adunării vectorilor liberi), astfel că putem enunța:

Propoziția 3.27. Pentru orice fixare a unui hiperplan H al unui spațiu sau plan proiectiv (M, \mathcal{D}) care satisface axioma lui Pappus-Pascal, $(\mathcal{A}, V, \varphi)$ este un spațiu afin peste corpul comutativ K.

Extinzând convențiile folosite până acum, vom spune că un subspațiu proiectiv e propriu dacă nu e inclus în H și că e impropriu în caz contrar.

OBSERVAŢIA 3.8. Variind hiperplanul H, putem acoperi M cu spaţii afine (le putem considera toate peste acelaşi corp, anume K). De fapt, dacă dim $M=n<\infty$, M se poate acoperi cu n+1 spaţii afine. Acest lucru este foarte clar în cazul lui P^nK : punem $H_i=\{[x_0,\ldots,x_n]\mid x_i\neq 0\},\ i=0,\ldots,n$ şi $\mathcal{A}_i=P^nK-H_i$. Atunci $P^nK=\cup_i\mathcal{A}_i$. Mai mult, se poate verifica uşor că $f_i:\mathcal{A}_i\to K^n,\ f_i([x_0,\ldots,x_n])=(\frac{x_0}{x_i},\ldots,\frac{x_{i+1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_n}{x_i})$ sunt bijecţii.

Studiem în continuare legătura dintre varietățile liniare ale lui \mathcal{A} și subspațiile proiective ale lui M. Avem întâi:

Propoziția 3.28. Fie $d \in \mathcal{D}$ o dreaptă proprie și d_{∞} punctul său impropriu. Atunci $\delta = d - \{d_{\infty}\}$ e o dreaptă afină.⁵

 $^{^5}$ Vom păstra această convenție: varietățile liniare afine ale lui ${\mathcal A}$ vor fi notate cu caractere caligrafice sau grecești, în timp ce subspațiile proiective, cu caractere romane.

Demonstrație. Fie $O \in \delta$ fixat și fie $V_{\delta} = \{\overrightarrow{OA} \mid A \in \delta\}$. Conform propoziției 2.6, δ e subspațiu afin dacă și numai dacă V_{δ} e subspațiu vectorial al lui V. Apoi, pentru a vedea că δ e dreaptă mai trebuie verificat că dim $V_{\delta} = 1$. Alegem $U \neq O$ în δ ; pentru orice $A \in \delta$ putem considera raportul $r = \overrightarrow{OA}$. Atunci $\overrightarrow{OA} = r\overrightarrow{OU}$ (vezi definiția înmulțirii cu scalari din V). Reciproc, dat $r \in K$, punctul A definit de egalitatea $\overrightarrow{OA} = r\overrightarrow{OU}$ e coliniar cu O și U, astfel că $A \in \delta$, deci $\overrightarrow{OA} \in V_{\delta}$. În concluzie, $V_{\delta} = \{r\overrightarrow{OU} \mid r \in K\}$, adică V_{δ} e subspațiu vectorial 1-dimensional al

Construcția inversă e, de asemenea, posibilă:

Propoziția 3.29. Fie δ o dreaptă afină a lui A. Există o unică dreaptă proprie $d \in \mathcal{D}$ astfel incât $\delta = d - \{d_{\infty}\}$, unde $\{d_{\infty}\} = d \cap H$.

Demonstrație. Fie A, B puncte distincte ale lui δ . Considerăm dreapta proiectivă d=AB. Fie $\{d_{\infty}\}=d\cap H$. Să arătăm că $\delta=d-\{d_{\infty}\}$. Notând, ca mai sus, V_{δ} subspațiul director al lui δ , știm că $\{\overrightarrow{AB}\}$ e o bază a sa. Atunci, pentru orice $S \in \delta$, există $r \in K$ astfel încât $\overrightarrow{AS} = r\overrightarrow{AB}$. Înseamnă că r se poate reprezenta prin $r = \frac{\overrightarrow{AS}}{\overrightarrow{AB}}$. Deducem că S e punct propriu coliniar cu A, B. Altfel spus, $S \in AB - \{d_{\infty}\}$. Reciproc, fie S un punct propriu al dreptei proiective AB. Definim raportul $r \in K$ prin $r = \frac{\overrightarrow{AS}}{\overrightarrow{AB}}$. Rezultă $\overrightarrow{AS} \in V_{\delta}$, adică $S \in \delta$. Unicitatea lui d derivă din axioma $\mathbf{P1}$.

COROLARUL 3.8. Există o bijecție între dreptele proprii ale lui (M, \mathcal{D}) și dreptele (afine) ale lui A. Unei drepte proiective proprii îi corespunde dreapta afină rezultată prin eliminarea punctului impropriu al dreptei proiective.

Generalizăm acum acest enunț pentru subspații de dimensiune arbitrară.

Propoziția 3.30. Necesar și suficient ca o submulțime \mathcal{L} a lui \mathcal{A} să fie varietate liniară e să existe un subspațiu proiectiv propriu L al lui M astfel încât $\mathcal{L} = L - H$.

Demonstrație. Dacă $\mathcal{L} = \emptyset$ sau \mathcal{L} este un punct, proprietatea este evidentă. Fie, deci, $\mathcal{L} \neq \emptyset$ o varietate liniară afină neredusă la un punct. Orice două puncte distincte A,B din $\mathcal L$ determină o unică dreaptă afină δ și o unică dreaptă proiectivă proprie d (deoarece \mathcal{L} e proprie). Această dreaptă proprie taie H într-un punct. Definim $L_{\infty} = \{d_{\infty} \mid \{d_{\infty}\} = d \cap H, d = AB, \text{ cu } A, B \in \mathcal{L}\}$. Fie $L = \mathcal{L} \cup L_{\infty}$ Evident avem $\mathcal{L} = L - H$. Să arătăm că L e subspaţiu proiectiv. Conform definiţiei, trebuie să vedem că L conține dreapta proiectivă determinată de oricare două puncte distincte ale sale. Avem mai multe cazuri posibile:

- a) $A, B \in \mathcal{L}$. Ele generează o singură dreaptă afină δ care, potrivit corolarului anterior, determină dreapta proiectivă $AB = \delta \cup \{d_{\infty}\}$, unde $\{d_{\infty}\} = AB \cap H$. Rezultă $AB \subset L$.
- b) $A \in \mathcal{L}$ și $B \in L_{\infty}$. Dreapta proiectivă AB conține cel puțin încă un punct C diferit de A si B (conform **P2**). Acesta e sigur propriu. Deoarece AB = AC, putem aplica a) pentru punctele A, C.
- c) $A,B\in L_{\infty}.$ Aceste puncte sunt intersecții ale unor drepte proiective generate de puncte din \mathcal{L} cu H. Fie, deci, $A_1, A_2 \in \mathcal{L}$ astfel încât $A_1A_2 \cap H = \{A\}$. Fie

 $^{^6}$ Atenție! Imaginea geometrică vă păcălește aici: nu e deloc evident că mulțimile d și δ diferă doar prin punctul d_{∞} pentru că noțiunile afină și proiectivă de "dreaptă" sunt, a priori, diferite.

 $C \in AB$, distinct de A, B (există, conform axiomei $\mathbf{P2}$). Axioma $\mathbf{P3}$ (respectiv **non P4** dacă (M, \mathcal{D}) e un plan proiectiv), aplicată dreptelor A_1A_2 , BC care se taie în A, furnizează punctul $\{E\} = BA_1 \cap A_2C$; acesta e propriu, altfel $EC \subset H$, deci $A_2 \in H$, contradicție. Dreptei BA_1 i se poate aplica punctul b) al acestei demonstrații: obținem $BA_1 \subset L$. Rezultă $E \in L$. Acum aplicăm punctul a) dreptei EA_2 și găsim, în final, $C \in L$.

Reciproc, fie L subspațiu proiectiv propriu al lui M și $\mathcal{L}=L-H$. Pentru a vedea că \mathcal{L} e varietate liniară, fie $A\neq B\in \mathcal{L}$. Trebuie arătat că dreapta afină δ generată de A,B e conținută în \mathcal{L} . Or, din corolarul anterior știm că $\delta=AB-H$ și, cum $AB\subset L$, $\delta\subset \mathcal{L}$.

Exercițiul 3.24. Fie $S \subset \mathcal{A}$. Atunci $Af(S) = \overline{S} - H$.

Observația 3.9. S-a obținut o bijecție între subspațiile proprii ale lui M și varietățile liniare ale lui \mathcal{A} , bijecție care o extinde pe cea găsită în corolarul 3.8.

Deoarece dreptelor proiective proprii le corespund bijectiv drepte afine, e natural ca prin bijecția de mai sus dimensiunea subspațiilor să se păstreze. Într-adevăr:

Propoziția 3.31. Fie L un subspațiu proiectiv propriu al lui M și \mathcal{L} varietatea liniară corespunzătoare din \mathcal{A} . Dacă L e nevidă, atunci $\dim \mathcal{L} = \dim L$.

Demonstrație. Fie dim $\mathcal{L}=r$ și $S=\{P_0,\ldots,P_r\}$ un reper afin al lui \mathcal{L} . Arătăm că S e bază pentru L. Că e sistem de generatori rezultă din exercițiul 3.24. Pentru a vedea că S e sistem proiectiv independent, presupunem, prin absurd, că există $k \in \{0,1,\ldots,r\}$ astfel încât $P_k \in \overline{S-\{P_k\}}$. Atunci $P_k \in \overline{S-\{P_k\}}-H$, deci $P_k \in Af(S-\{P_k\})$, contradicție cu afin independența lui S. Deci dim L=r. \square

În particular, avem următorul rezultat important:

COROLARUL 3.9. $\dim A = \dim V = \dim M$.

Să definim acum paralelismul subspațiilor proprii:

Definiția 3.19. Două subspații proprii L_1,L_2 se numesc $paralele^7$ dacă $L_1\cap H\subseteq L_2\cap H$ sau $L_2\cap H\subseteq L_1\cap H$.

Legătura dintre paralelismul afin și cel proiectiv este explicitată în:

Propoziția 3.32. $L_1\|L_2$ dacă și numai dacă $\mathcal{L}_1\|\mathcal{L}_2$, unde $\mathcal{L}_i=L_i-H_i$, i=1,2.

Demonstrație. Fie $L_1 \| L_2$ și, pentru a face o alegere, să presupunem $L_1 \cap H \subseteq L_2 \cap H$. Vom demonstra că $V_{\mathcal{L}_1} \subseteq V_{\mathcal{L}_2}$. Fixăm $O_1 \in \mathcal{L}_1$ și $\overrightarrow{O_1 A_1} \in V_{\mathcal{L}_1} - \{0\}$, arbitrar. Cum punctele O_1 și A_1 sunt distincte, ele generează o dreaptă proiectivă $d_1 = O_1 A_1$ care e cuprinsă, în întregime, în L_1 . Fie $\{d_{1\infty}\} = d_1 \cap H$ punctul ei de la infinit. Din ipoteză, $d_{1\infty} \in L_2 \cap H$. Atunci există o dreaptă proiectivă proprie $d_2 \subseteq L_2$ astfel încât $d_{1\infty} = d_{2\infty}$. Rezultă $d_1 \| d_2$ (paralelism proiectiv). Atunci putem găsi pe d_2 reprezentanți pentru vectorul $\overrightarrow{O_1 A_1}$: fixăm arbitrar $O_2 \in d_2 - d_{2\infty}$ și există un unic $A_2 \in d_2$ propriu astfel încât $\overrightarrow{O_1 A_1} = \overrightarrow{O_2 A_2}$. Dar $\overrightarrow{O_2 A_2} \in V_{\mathcal{L}_2}$, ceea ce trebuia demonstrat.

Reciproc, presupunem $\mathcal{L}_1 \parallel \mathcal{L}_2$. Ca mai sus, alegem $V_{\mathcal{L}_1} \subseteq V_{\mathcal{L}_2}$. Arătăm că $L_1 \cap H \subseteq L_2 \cap H$. Fie $R \in L_1 \cap H$. Există o dreaptă proprie $d_1 \subseteq L_1$ astfel încât $d_{1\infty} = R$. Atunci, pentru orice două puncte proprii distincte $A_1, B_1 \in d_1$, vectorul $A_1B_1 \in V_{\mathcal{L}_1}$, deci $A_1B_1 \in V_{\mathcal{L}_2}$. Ca urmare, există, pentru fiecare $A_2 \in \mathcal{L}_2$, un unic

⁷Scriem $L_1||L_2$ și deducem din context dacă || se referă la paralelismul poiectiv sau afin.

 $B_2 \in \mathcal{L}_2$ astfel încât $\overrightarrow{A_2B_2} = \overrightarrow{A_1B_1}$. Acum dreptele proiective A_1B_1 şi A_2B_2 sunt paralele ca urmare a definiției relației de echipolență. Deducem $R \in A_2B_2$, adică $R \in L_2 \cap H$.

9. Coordonate omogene. Ecuațiile subspațiilor proiective

9.1. Introducerea coordonatelor omogene. Ca și în paragraful anterior, (M,\mathcal{D}) va fi un spațiu sau plan proiectiv care verifică axioma Pappus-Pascal (în particular, conform teoremei lui Hessenberg, el satisface și axioma lui Desargues). Fie $n=\dim M$. Fixând un hiperplan H în M, corpul K construit în paragrafele anterioare este comutativ. Notăm $\mathcal{A}=M-H$ spațiul afin al cărui hiperplan de la infinit este H.

După modelul coordonatelor afine, vrem să asociem fiecărui punct al lui M niște scalari din K (încă nu știm câți vor fi necesari) care să identifice punctul. Pentru aceasta, să fixăm un reper cartezian (vezi definiția 2.6) $\mathcal{R}=\{O;e_1,e_2,\ldots,e_n\}$ în spațiul afin \mathcal{A} ; aici $O\in\mathcal{A}$ și $\{e_1,e_2,\ldots,e_n\}$ e o bază a spațiului vectorial al vectorilor liberi V.

Observația 3.10. Conform exemplului 3.11, spațiul vectorilor liberi asociat lui P^nK este izomorf cu K^n . De aceea, convenim ca, atunci când lucrăm în P^nK , reperul vectorial $\{e_1, \ldots, e_n\}$ să fie, în lipsa altei mențiuni, cel canonic din K^n .

Oricărui punct propriu $R \in \mathcal{A}$ al lui M i se pot atașa coordonatele sale carteziene, în număr de n, în reperul \mathcal{R} . Dacă, însă, R e un punct impropriu, adică $R \in H$, vectorul \overrightarrow{OR} nu există și R nu poate primi coordonate carteziene. Privim atunci R ca punct de intersecție al unei familii de drepte paralele din \mathcal{A} și îi asociem parametrii directori ai direcției lor comune. Mai precis, fie d, d' drepte proprii ale lui M cu $d \cap H = d' \cap H = \{R\}$. Dreptele afine δ , δ' corespunzătoare lor sunt paralele și au același subspațiu director V_1 . Fie $\{e\}$ o bază a lui V_1 . Considerăm descompunerea $e = \sum_{i=1}^n x_i e_i$. Deoarece orice altă bază a lui V_1 este de forma $\{\alpha e\}$, $\alpha \in K$, scalarii (x_1, \ldots, x_n) caracterizează, până la un factor de proporționalitate nenul, toate bazele lui V_1 . Putem atunci să-i asociem lui R coordonatele $(\alpha x_1, \ldots, \alpha x_n)$, $\alpha \in K - \{0\}$. Deci coordonatele unui punct impropriu nu sunt unic determinate. Trebuie, totuși, să mai facem un pas pentru a elimina deosebirea care a apărut între coordonatele punctelor proprii și ale celor improprii. Soluția va fi introducerea unei coordonatel în plus în așa fel încât (n+1)-uplul rezultat și orice multiplu al său să caracterizeze același punct.

Fie (x_1,\ldots,x_n) coordonatele carteziene ale unui punct propriu R. Fie acum $(\xi_0,\xi_1,\ldots,\xi_n)\in K^{n+1}$ cu $\xi_0\neq 0$ şi $x_i=\frac{\xi_i}{\xi_0},\,i=1,\ldots,n$. De exemplu, putem lua $\xi_0=1$ şi $\xi_i=x_i$, dar există infinite alegeri. Observăm că pentru orice $\alpha\in K-\{0\}$, (n+1)-uplul $(\alpha\xi_0,\alpha\xi_1,\ldots,\alpha\xi_n)$ are aceeași proprietate. Cei n+1 scalari astfel definiți se numesc coordonate omogene ale lui R. Le notăm $[\xi_0:\xi_1:\ldots:\xi_n]$ (paranteza dreaptă sugerează clasa de echivalență). Deci $[\xi_0:\xi_1:\ldots:\xi_n]=[\alpha\xi_0:\alpha\xi_1:\ldots:\alpha\xi_n]$.

Unui punct impropriu R îi vom ataşa coordonatele omogene $[0:\xi_1:\ldots:\xi_n]$ cu (ξ_1,\ldots,ξ_n) reprezentând parametrii directori ai direcţiei dreptelor afine care provin din dreptele proiective proprii ce se întâlnesc în R. Din discuţia anterioară e clar că şi (n+1)-uplul $(0,\xi_1,\ldots,\xi_n)$ e determinat doar până la un factor multiplicativ nenul.

În concluzie: odată fixat un hiperplan H și un reper cartezian (sau afin, știm că orice reper cartezian produce unul afin și reciproc) \mathcal{R} , oricărui punct din M i se asociază unic coordonatele sale omogene $[\xi_0:\xi_1:\ldots:\xi_n]$ față de reperul \mathcal{R} . Punctele proprii sunt caracterizate de $\xi_0 \neq 0$. Punctele lui H sunt caracterizate

de $\xi_0 = 0$. În plus, orice punct din M are măcar una dintre coordonatele omogene neulă.

EXEMPLUL 3.12. Am văzut că pentru orice spațiu vectorial peste un corp comutativ F, corpul asociat hiperplanului $\{[0,x_1,\ldots,x_n]\}$ din P^nF este izomorf cu F. Notasem cu $[x_0,\ldots,x_n]$ clasa vectorului (x_0,\ldots,x_n) . Atunci coordonatele omogene ale acestui punct sunt $[0:x_1:\ldots:x_n]$ sau $[1:\frac{x_1}{x_0}:\ldots:\frac{x_n}{x_0}]$ după cum el aparține sau nu hiperplanului de la infinit.

9.2. Ecuațiile subspațiilor proiective. Odată introduse coordonatele omogene față un reper cartezian $\mathcal{R} = \{O; e_1, \dots, e_n\}$ din $\mathcal{A} = M - H$ putem trece la scrierea ecuațiilor subspațiilor proiective. Fie L un subspațiu proiectiv propriu al lui M, dim L = p. Atunci $\mathcal{L} = L - H$ este un subspațiu afin al lui \mathcal{A} cu dim $\mathcal{L} = p$. Conform teoremei 2.3, ecuațiile lui \mathcal{L} în reperul \mathcal{R} sunt de forma

(3.6)
$$\sum_{j=1}^{n} a_{ij} x_j + a_{i0} = 0, \quad i = 1, \dots, n-p, \, \operatorname{rang}(a_{ij}) = n-p.$$

Reamintim că, în reperul $\mathcal{B}=\{e_1,\ldots,e_n\}$, ecuațiile subspațiului director $\overrightarrow{\mathcal{L}}$ al lui \mathcal{L} sunt $\sum_{j=1}^n a_{ij}x_j=0$.

Cum \mathcal{L} coincide cu mulțimea punctelor proprii din L, ecuațiile (3.6) sunt verificate de toate punctele proprii din L. Astfel, coordonatele omogene $[1:x_1:\ldots:x_n]$ ale acestor puncte verifică ecuația (3.6).

Fie acum $R \in L_{\infty}$ un punct impropriu al lui L. Rezultă că există punctele distincte A, B din \mathcal{L} , de coordonate (a_1,\ldots,a_n) , respectiv (b_1,\ldots,b_n) în reperul \mathcal{R} astfel încât $AB \cap H = \{R\}$. Atunci $\overrightarrow{AB} \in \mathcal{L}$ și coordonatele lui \overrightarrow{AB} în reperul \mathcal{B} sunt $(b_1 - a_1,\ldots,b_n - a_n)$. În consecință, avem

$$\sum_{j=1}^{n} a_{ij}(b_j - a_j) = 0, \quad i = 1, \dots, n - p.$$

Cum coordonatele omogene ale lui R sunt $[0:a_1-b_1:\ldots:a_n-b_n]$, suntem conduși la enunțul:

Teorema 3.9. Fie H hiperplanul de la infinit al spațiului sau planului proiectiv pappian (M,\mathcal{D}) . O submulțime $L\subset M$ este subspațiu proiectiv propriu dacă și numai dacă există un reper cartezian în M-H față de care hiperplanul de la infinit e caracterizat de ecuația $\xi_0=0$ și coordonatele omogene ale punctelor din L satisfac un sistem omogen de forma

(3.7)
$$\sum_{j=0}^{n} a_{ij} \xi_j = 0, \quad i = 0, \dots, n - p, \operatorname{rang}(a_{ij})_{i,j=1,\dots,n} = n - p.$$

Demonstrație. Necesitatea a fost deja demonstrată. Rămâne să probăm suficiența. Presupunem existența unui reper cartezian cu proprietatea din enunț. Atunci coordonatele punctelor lui $\mathcal{L} = L - H$ față de reperul \mathcal{R} satisfac sistemul (3.6). Conform teoremei 2.3, \mathcal{L} e un subspațiu afin al lui M - H. Aplicăm acum propoziția 3.30 și demonstrația e completă.

Observația 3.11. Trecerea de la sistemul (3.6) la sistemul (3.7) se face prin omogenizare. Trecerea inversă se numește dezomogenizare. Acestea sunt procedee algebrice pe care cititorul le-a întâlnit deja (de exemplu în tratarea unor inegalități polinomiale sau în demonstrația propoziției 2.41), dar abia acum apare

clară semnificația lor geometrică: prin omogenizare scufundăm o mulțime afină (reprezentată de zerourile unei funcții polinomiale) în completatul proiectiv al respectivului spațiu afin. Prin dezomogenizare determinăm urma lăsată de o submulțime proiectivă (punctele ei sunt zerourile unei funcții polinomiale omogene) pe un spațiu afin al cărui completat este cel proiectiv.

 ${\tt Exemplul}$ 3.13. Ecuația, în coordonate omogene, a unui hiperplan distinct de cel de la infinit este

$$a_0\xi_0 + a_1\xi_1 + \dots + a_n\xi_n = 0$$
, rang $(a_1, \dots, a_n) = 1$.

EXEMPLUL 3.14. Fie $\mathcal{R}=\{A_0,A_1,\ldots,A_n\}$ un reper afin al lui $\mathcal{A}=M-H$ și $H_i^0=\overline{\{A_0,A_1,\ldots,A_n\}-\{A_i\}},\ i=0,1,\ldots,n.$ Aceste hiperplane se numesc hiperplane de coordonate. Ecuația lui H_i^0 este $\xi_i=0$.

EXEMPLUL 3.15. Ecuațiile parametrice ale unei drepte proprii d care trece prin punctele proprii de coordonate omogene $[\zeta_0:\zeta_1:\ldots:\zeta_n]$ și $[\eta_0:\eta_1:\ldots:\eta_n]$ sunt:

$$\xi_i = \alpha \zeta_i + \beta \eta_i, \quad i = 0, \dots, n, \quad (\alpha, \beta) \in K^2 - \{(0, 0)\}.$$

EXERCIȚIUL 3.25. Să se determine punctele improprii ale dreptelor din \mathbb{R}^2 :
a) $3x_1 + x_2 + 1 = 0$, b) $x_1 - 2x_2 - 1 = 0$, c) $x_1 + 1 = 0$. (Indicație: Omogenizând, găsim ecuația primei drepte sub forma: $\xi_0 + 3\xi_1 + \xi_2 = 0$. Intersectăm cu hiperplanul de la infinit de ecuație $\xi_0 = 0$, rezolvăm sistemul astfel format și obținem punctul de coordonate omogene [0:1:-3]. La fel se procedează și în celelalte situații).

Exercițiul 3.26. Fie, în spațiul afin \mathbb{R}^5 raportat la reperul cartezian standard, subspațiul afin \mathcal{L} având ecuațiile

$$\begin{cases} y_1 - 2y_2 = 0 \\ y_3 - y_4 = 1 \\ y_5 + 2 = 0 \end{cases}$$

Să se scrie ecuațiile închiderii proiective L a lui \mathcal{L} . Să se găsească punctele improprii ale lui L. (Indicație: Omogenizând, găsim pentru L ecuațiile:

$$\begin{cases} \xi_1 - 2\xi_2 = 0 \\ -\xi_0 + \xi_3 - \xi_4 = 0 \\ 2x_0 + x_5 = 0 \end{cases}$$

Punctele improprii ale lui L sunt la intersecția lui L cu hiperplanul $\xi_0=0$. Rezolvând sistemul obținut găsim soluțiile $\{[0:2a:a:b:b:0]\}$ cu $(a,b)\neq(0,0)$ care formează o dreaptă proiectivă).

Caracterizăm acum subspațiile improprii ale lui M. Fie $L' \subseteq H$ un astfel de subspațiu. Cum dim $H = \dim M - 1$, există un punct propriu $O \not\in H$. Atunci subspațiul L = OL' este propriu și, fixând un reper afin $\mathcal R$ în M-H, putem scrie ecuațiile sale în coordonate omogene față de $\mathcal R$. Fie acestea (3.7). Atunci, din teorema anterioară rezultă ecuațiile lui L':

$$\begin{cases} \sum_{j=0}^{n} a_{ij} \xi_j = 0, & i = 0, \dots, n-p, \operatorname{rang}(a_{ij})_{i,j=1,\dots,p} = n-p, \\ \xi_0 = 0. \end{cases}$$

sau, echivalent

(3.8)
$$\begin{cases} \sum_{j=1}^{n} a_{ij} \xi_j = 0, & i = 0, \dots, n-p, \operatorname{rang}(a_{ij})_{i,j=1,\dots,p} = n-p, \\ \xi_0 = 0. \end{cases}$$

Lăsăm pe seama cititorului completarea demonstrației pentru

TEOREMA 3.10. Fie H hiperplanul de la infinit al spațiului sau planului proiectiv pappian (M, \mathcal{D}) . O submulțime $L \subset M$ este subspațiu proiectiv impropriu dacă și numai dacă există un reper cartezian în M-H față de care hiperplanul de la infinit e caracterizat de ecuația $\xi_0=0$ și coordonatele omogene ale punctelor din L satisfac un sistem omogen de forma (3.8).

EXEMPLUL 3.16. În spațiul proiectiv real $P^3\mathbb{R}$ cu hiperplanul de la infinit $H = \{\xi_0 = 0\}$, să se scrie ecuațiile dreptei d din H care trece prin punctele de coordonate omogene [0:1:1:1] și [0:0:0:1].

Considerăm punctul propriu O = [1:1:0:0]. Fie δ_1, δ_2 dreapta afină care trece prin punctul de coordonate (carteziene) (1,0,0) și are parametrii directori (1,1,1), respectiv (0,0,1). Acestea sunt date de ecuațiile:

$$\delta_1: \frac{x_1 - 1}{1} = \frac{x_2}{1} = \frac{x_3}{1}$$
$$\delta_2: \frac{x_1 - 1}{0} = \frac{x_2}{0} = \frac{x_3}{1}$$

 δ_1 și δ_2 generează planul afin $\mathcal L$ de ecuație

$$\begin{vmatrix} x_1 - 1 & x_2 & x_3 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 0$$

sau, echivalent, $x_1-x_2-1=0$. Omogenizând găsim ecuația în coordonate omogene a planului proiectiv L corespunzător, $\xi_1-\xi_2-\xi_0=0$. Atunci dreapta improprie d are ecuațiile $\xi_1-\xi_2-\xi_0=0$, $\xi_0=0$, adică

$$\xi_1 - \xi_2 = 0, \, \xi_0 = 0.$$

9.3. Izomorfismul dintre un spațiu proiectiv pappian n-dimensional și P^nK . Odată introduse coordonatele omogene și găsite ecuațiile subspațiilor proiective — de fapt, ceea ce ne trebuie sunt ecuațiile dreptelor — putem pune în evidență un fapt fundamental:

TEOREMA 3.11. Fie (M, \mathcal{D}) un spațiu sau plan proiectiv pappian de dimensiune n. Fie K corpul coordonatelor sale. Atunci M e izomorf cu P^nK .

Demonstrația este aproape evidentă. Se fixează un hiperplan H cu ajutorul căruia se construiește K. Se fixează un reper afin față de care se consideră coordonate omogene. Apoi se asociază fiecărui punct $P \in M$, punctul $[\xi_0, \ldots, \xi_n] \in P^n K$, ξ_i fiind coordonatele omogene ale lui P. E clar că s-a definit o bijecție. Că ea păstrează dreptele rezultă scriind ecuațiile acestora în M (vezi mai sus) și în $P^n K$ unde acestea sunt echivalente cu ecuații de subspații vectoriale 2-dimensionale în K^{n+1} .

COROLARUL 3.10. Două spații sau plane proiective pappiene sunt izomorfe dacă și numai dacă au aceeași dimensiune și corpurile lor de coordonate sunt izomorfe.

Deși izomorfismul descris nu este canonic (el depinde de fixarea unui hiperplan în M și de alegerea unui reper afin în complementara hiperplanului), el este foarte important din punct de vedere teoretic. De aici încolo ne putem permite să lucrăm în P^nK trăgând concluzii despre orice spațiu proiectiv finit dimensional sau plan proiectiv pappian.

9.4. Aplicații: izomorfismul dintre un spațiu sau plan proiectiv pappian și dualul său. Vom arăta în continuare, folosind rezultatele din paragraful anterior, că un spațiu proiectiv este izomorf cu dualul său (vezi paragraful 2.3).

Propoziția 3.33. Fie (M, \mathcal{D}) un spațiu sau plan proiectiv pappian și fie (M^*, \mathcal{D}^*) dualul său. Atunci M e izomorf cu M^* .

Demonstrație. Fie $n = \dim M$ și K corpul coordonatelor lui (M, \mathcal{D}) . Va fi suficient să construim un izomorfism între M^* și P^nK pe care, apoi, să-l compunem cu cel dintre P^nK și M furnizat de teorema 9.3.

Fie H_0 un hiperplan fixat în M, \mathcal{R} un reper cartezian fixat în $M-H_0$ și ξ_i coordonatele omogene asociate. Un hiperplan H arbitrar al lui M are ecuația

$$\sum_{i=0}^{n} u_i \xi_i = 0, \quad u_i \in K, \quad \text{nu toţi nuli.}$$

Punem $f(H) = [u_0 : \ldots : u_n]$ și obținem o aplicație $f: M^* \to P^n K$. Deoarece ecuația hiperplanului e omogenă, definiția lui f e corectă. În plus, f e bijectivă.

Arătăm că f e morfism proiectiv, adică aplică drepte în drepte. Fie d^* o dreaptă a lui M^* . Ea reprezintă un fascicol de hiperplane în M. Fie H_1, H_2 două hiperplane ale acestui fascicol, de ecuații, respectiv: $\sum_{0}^{n} u_i \xi_i = 0$, $\sum_{0}^{n} v_i \xi_i = 0$. Atunci ecuațiile hiperplanelor fascicolului sunt

$$\sum_{i=0}^{n} (\lambda u_i + \mu v_i) \xi_i = 0, \quad (\lambda, \mu) \neq (0, 0).$$

Pentru un hiperplan oarecare H al fascicolului, avem

$$f(H) = [\lambda u_0 + \mu v_0 : \dots : \lambda u_n + \mu v_n] \in \pi(L(\{u, v\}) - \{0\}),$$

unde $u=(u_0,\ldots,u_n),\ v=(v_0,\ldots,v_n)\in K^{n+1}$. Cum $H_1\neq H_2$, rezultă $\{u,v\}$ liniar independenți în K^{n+1} , deci $\pi(L(\{u,v\})-\{0\})$ e o dreaptă d din P^nK . Astfel am dovedit că $f(d^*)\subseteq d$. Similar se arată incluziunea inversă.

Pentru M = P(V), lucrurile se pot preciza:

Corolarul 3.11. Dualul proiectivizatului unui spațiu vectorial este izomorf cu proiectivizatul dualului spațiului vectorial dat.

Demonstrație. Reamintim că pentru fiecare fixare a unei baze în V se obține un izomorfism liniar între V și V^* (vezi corolarul 1.8). Fie F un astfel de izomorfism. Conform exemplului 3.7, el induce un izomorfism proiectiv $\overline{F}: P(V) \to P(V^*)$. Fie acum h un izomorfism proiectiv între P(V) și $P(V)^*$ ca în propoziție. Atunci $\overline{F}h^{-1}$ este un izomorfism între $P(V)^*$ si $P(V)^*$.

Discuţia de mai sus arată că există izomorfisme ale laticei subspaţiilor lui P(V) care păstrează incluziunea. Asemenea izomorfisme se numesc dualități. Mai clar, o dualitate f are următoarele proprietăți:

• este izomorfism laticeal, adică pentru orice două subspații proiective U, W din P(V), $f(U \cap W) = f(U) + f(W)$, $f(U + W) = f(U) \cap f(W)$.

• $f(U) \subset f(W)$ dacă și numai dacă $U \subset W$.

Rezultă că, în particular, f(punct) = hiperplan, f(hiperplan) = punct, $f(\emptyset) = P(V)$, $f(P(V)) = \emptyset$, trei puncte sunt coliniare dacă și numai dacă imaginile lor formează un fascicol de hiperplane etc. Pentru o propoziție care se referă numai la proprietăți laticeale ale lui P(V) (adică numai la intersecții și incluziuni de subspații), duala ei este propoziția referitoare la transformatele subspațiilor care intervin, printr-o dualitate fixată. De exemplu, în plan, duala unei propoziții se obține prin interschimbarea perechilor de cuvinte (expresii): (punct, dreaptă), (coliniar, concurent), (situat pe, trece prin) (vezi și paragraful 2.3). Într-un spațiu proiectiv 3-dimensional, corespondențele sunt: (punct, plan), (dreaptă, dreaptă), (plan, punct), (inclus în, include), (puncte coliniare, fascicol de plane). E clară acum:

Teorema 3.12. (Principiul dualității) Dacă o propoziție care se referă numai la proprietăți laticeale ale lui $P^n(K)$ este adevărată, atunci și duala sa este adevărată.

EXERCIȚIUL 3.27. Fie K un corp comutativ. Dualizați teorema lui Pappus în P^2K și P^3K .

10. Teorema fundamentală a geometriei proiective

Reluăm în acest paragraf discuția despre morfisme proiective (vezi paragraful 3). Urmărim să le descriem folosind coordonatele omogene. Precizăm că, deși enunțurile care urmează sunt adevărate și pentru un corp al coordonatelor necomutativ, pentru simplitate noi vom presupune K comutativ. Cu notațiile din paragraful anterior demonstrăm întâi:

Propoziția 3.34. Fie $A = (a_{ij})_{i,j=0,...,n}$ o matrice nedegenerată cu elemente din K. Atunci aplicația $\theta : M \to M$, dată în coordonate omogene prin $\theta([\xi_0 : ... : \xi_n]) = [\xi'_0 : ... : \xi'_n]$, unde

(3.9)
$$\xi_i' = a_{i0}\xi_0 + a_{i1}\xi_1 + \dots + a_{in}\xi_n, \quad i = 0, \dots, n$$

este un automorfism al lui M.

Demonstrație. θ e bine definită pentru că ecuațiile sistemului (3.9) sunt omogene.

 θ e injectivă. Într-adevăr, dacă $\theta(Q) = \theta(R)$, cu $Q = [\xi_0 : \ldots : \xi_n]$ şi $R = [\eta_0 : \ldots : \eta_n]$, atunci, din definiția coordonatelor omogene, $\xi_i^l = \alpha \eta_i^l$, $i = 0, \ldots, n$, pentru un $\alpha \in K - \{0\}$. Pe de altă parte, din formulele (3.9) deducem $\sum_{j=0}^n a_{ij}\xi_j = \alpha \sum_{j=0}^n a_{ij}\eta_j$. De aici, ținând seama că matricea A e nedegenerată , rezultă $\xi_i - \alpha \eta_i = 0$ pentru orice $i = 0, \ldots, n$. Deci Q = R.

 θ e surjectivă deoarece, determinantul matricei (a_{ij}) fiind nenul, sistemul (neomogen, pentru că nu toți ξ' , pot fi nuli) (3,9) admite soluție nebanală

mogen, pentru că nu toți ξ_i' pot fi nuli) (3.9) admite soluție nebanală. θ e morfism proiectiv. Trebuie să verificăm că θ aplică drepte în drepte. Fie d o dreaptă proprie a lui M de ecuații parametrice (vezi exemplul 3.15)

$$\xi_i = \alpha \zeta_i + \beta \eta_i, \quad i = 0, \dots, n \text{ cu } (\alpha, \beta) \in K^2 - \{(0, 0)\}.$$

Aici $P = [\zeta_0 : \zeta_1 : \ldots : \zeta_n]$ și $Q = [\eta_0 : \eta_1 : \ldots : \eta_n]$ sunt două puncte fixate, diferite pe d. Cum θ e injectivă, $\theta(P) \neq \theta(Q)$. Arătăm că $\theta(d) = \theta(P)\theta(Q)$. Fie $R \in d$ arbitrar. Fie $\theta(P) = [\zeta_0' : \zeta_1' : \ldots : \zeta_n'], \ \theta(Q) = [\eta_0' : \eta_1' : \ldots : \eta_n']$. Atunci $\theta(R)$ are

coordonatele omogene

$$\xi_{i}' = \sum_{j=0}^{n} a_{ij} \xi_{j} = \sum_{j=0}^{n} a_{ij} (\alpha \zeta_{j} + \beta \eta_{j}) =$$

$$= \alpha \sum_{j=0}^{n} a_{ij} \zeta_{j} + \beta \sum_{j=0}^{n} a_{ij} \eta_{j} = \alpha \zeta_{i}' + \beta \eta_{i}', \quad i = 0, \dots, n,$$

adică $\theta(R) \in \theta(P)\theta(Q)$. În consecință $\theta(d) \subseteq \theta(P)\theta(Q)$. În plus, deoarece matricea A este nedegenerată, orice punct al dreptei $\theta(P)\theta(Q)$ este imaginea prin θ a unui punct de pe d. Rezultă $\theta(d) = \theta(P)\theta(Q)$.

Observația 3.12. Acest rezultat demonstrează, a posteriori, că un spațiu sau plan proiectiv desarguesian are un grup mare de automorfisme. Pentru o tratare din alt punct de vedere a acestei chestiuni, vezi [14], [2].

Observația 3.13. Când K e necomutativ, enunțul trebuie reformulat. Asta pentru că funcția determinant se definește altfel pentru matrice cu elemente dintrun corp necomutativ. Ipoteza "matrice nedegenerată..." trebuie înlocuită cu: fie H_0, H_1, \ldots, H_n hiperplane având, respectiv, ecuațiile:

$$\begin{array}{rcl} a_{00}\xi_0 + a_{01}\xi_1 + \dots + a_{0n}\xi_n & = & 0 \\ a_{10}\xi_0 + a_{11}\xi_1 + \dots + a_{1n}\xi_n & = & 0 \\ \dots & \dots & \dots \\ u_{n0}\xi_0 + a_{n1}\xi_1 + \dots + a_{nn}\xi_n & = & 0 \end{array}$$

cu proprietatea $H_0 \cap H_1 \cap \cdots \cap H_n = \emptyset$.

Se verifică uşor că forma acestor automorfisme e invariantă la schimbări de coordonate omogene. Notăm $\operatorname{PGL}(M)$ mulțimea automorfismelor proiective de tipul celor din propoziție și le numim $\operatorname{automorfisme}$ proiective $\operatorname{liniare}$. Pentru $M=P^nK$ notăm simplu $\operatorname{PGL}(n,K)$. Acum putem demonstra rezultatul pe care l-am invocat deja când am demonstrat că există izomorfism între corpurile coordonatelor asociate diferitelor hiperplane:

Propoziția 3.35. Date două hiperplane H, H' ale planului sau spațiului proiectiv pappian (M, \mathcal{D}) , există $\theta \in PGL(M)$ astfel încât $H' = \theta(H)$.

Demonstrație. Fixăm un reper cartezian în $\mathcal{A}=M-H$ astfel încât H să fie caracterizat de ecuația $\xi_0=0$. Ecuația lui H' va fi $\sum_{i=0}^n a_i \xi_i=0$. Putem presupune $a_0 \neq 0$. Fie $\eta \in \operatorname{PGL}(M)$ dat de matricea (a_{ij}) cu: $a_{0i}=a_i, \ a_{j0}=0$, pentru $i=0,\ldots,n,\ j=1,\ldots,n$ și $a_{ij}=\delta_{ij}$ pentru $i,j=1,\ldots,n$. Atunci

$$\eta([\xi_0:\ldots:\xi_n]) = [\sum_{i=0}^n a_i \xi_i:\xi_1:\ldots:\xi_n],$$

deci $\eta(H') = H$. Punem $\theta = \eta^{-1}$.

Pe de altă parte, folosind coordonatele omogene putem defini și un alt tip de automorfisme: fiecărui $\varphi \in \operatorname{Aut}(K)$ îi putem asocia aplicația f^{φ} dată prin (vezi și paragraful 3)

$$f^{\varphi}([\xi_0:\ldots:\xi_n]) = [\varphi(\xi_0):\ldots:\varphi(\xi_n)].$$

Mulțimea acestor aplicații se notează PAut(M), respectiv PAut(n, K) dacă $M = P^nK$. Cititorul va demonstra singur:

Propoziția 3.36. $\operatorname{PGL}(M)$ și $\operatorname{PAut}(M)$ sunt subgrupuri ale lui $\operatorname{Aut}(M)$. Fiecare izomorfism proiectiv între M și P^nK induce un izomorfism de grupuri între $\operatorname{Aut}(M)$ (respectiv $\operatorname{PGL}(M)$, $\operatorname{PAut}(M)$) și $\operatorname{Aut}(P^nK)$ (respectiv $\operatorname{PGL}(n,K)$, $\operatorname{PAut}(n,K)$).

Următoarele două rezultate ne vor fi utile în demonstrarea teoremei de structură a automorfismelor proiective:

Lema 3.6. Fie (M,\mathcal{D}) , (M',\mathcal{D}') spaţii sau plane proiective pappiene, $f:M\to M'$ un izomorfism proiectiv, H un hiperplan fixat în M, H'=f(H). Fie K (respectiv K') corpul (comutativ) al coordonatelor asociat hiperplanului H (respectiv H'). Atunci f induce un izomorfism de corpuri $\varphi:K\to K'$.

Acest enunţ este doar o specializare la cazul pappian al lemei 3.5.

Lema 3.7. Dacă $f \in Aut(P^nK)$ fixează punctele $O = [1:0:...:0], U_1 = [0:1:...:0],..., U_n = [0:...:0:1]$ și E = [1:1:...:1], atunci $f \in PAut(n,K)$.

Demonstrație. Punctele U_i formează o bază hiperplanului de la infinit H (caracterizat de $x_0=0$). Deoarece f fixează punctele U_i , ea va invaria hiperplanul de la infinit. Atunci izomorfismul de corpuri asociat lui f în lema anterioară este, de fapt, un automorfism al lui K. Fie el φ . Fie $f^{\varphi} \in \operatorname{PAut}(n,K)$ dat prin $f^{\varphi}([x_0:\ldots:x_n])$ = $[\varphi(x_0):\ldots:\varphi(x_n)]$. Vom arăta că $f=f^{\varphi}$. Deoarece $\varphi(1)=1$ şi $\varphi(0)=0$, f^{φ} duce puncte proprii în puncte proprii

Deoarece $\varphi(1)=1$ şi $\varphi(0)=0$, f^{φ} duce puncte proprii în puncte proprii şi puncte improprii în puncte improprii. În plus, prin construcție, f^{φ} păstrează paralelismul afin al dreptelor. Atunci restricția lui f^{φ} la \mathcal{A} este o aplicație semi-afină. Deoarece f fixează punctele U_i , matricea urmei acestei aplicații semi-afine este I_n (vezi observația 1.13). Deci f și f^{φ} coincid pe \mathcal{A} . Pentru un punct impropriu $P=[0:x_1:\ldots:x_n]\in H$, fie $Q=[1:x_1:\ldots:x_n]\in OP$. Deoarece $f(P)=f(OQ)\cap H=f(O)f(Q)\cap H=Of^{\varphi}(Q)\cap H$, avem $f(P)=f^{\varphi}(P)$ și lema e demonstrată.

Exercițiul 3.28. Folosind demonstrația anterioară, arătați că

$$AGL(n, K) = \{ f \in PGL(n, K) \mid f(H) = H \}.$$

Suntem acum gata pentru a demonstra teorema care furnizează structura automorfismelor proiective:

TEOREMA 3.13. (Teorema fundamentală a geometriei proiective) Orice $f \in \operatorname{Aut}(P^nK)$ se descompune sub forma $f = \theta \eta$, cu $\eta \in \operatorname{PAut}(n, K)$ şi $\theta \in \operatorname{PGL}(n, K)$.

Demonstrație. Cu notațiile din lema 3.7, fie $\theta \in \operatorname{PGL}(n,K)$ automorfismul liniar care satisface condițiile: $\theta(O) = f(O), \ \theta(U_i) = f(U_i), \ i = 1, \dots, n, \ \theta(E) = f(E) \ (\theta \text{ se găsește rezolvând } n+1 \text{ sisteme liniare}). Atunci <math>\eta = \theta^{-1}f$ fixează punctele O, U_i, E . Conform lemei anterioare, $\eta \in \operatorname{PAut}(n,K)$.

COROLARUL 3.12. Atunci când corpul coordonatelor nu are alte automorfisme în afara celui identic, de exemplu când $K = \mathbb{R}$ sau \mathbb{Z}_p cu p prim, $\operatorname{Aut}(P^nK) = \operatorname{PGL}(n,K)$.

Ținând seama de izomorfismul care există între un spațiu sau plan proiectiv pappian și P^nK de îndată ce s-a fixat un reper afin, teorema anterioară se generalizează astfel:

COROLARUL 3.13. Fie (M, \mathcal{D}) un spațiu sau plan proiectiv pappian. Atunci, pentru orice hiperplan H și orice reper afin în M-H, orice $f \in \operatorname{Aut}(M)$ se descompune sub forma $f = \alpha \circ \beta$, cu $\beta \in PAut(M)$ și $\alpha \in PGL(M)$. Dacă corpul coordonatelor lui M nu are alte automorfisme în afara celui identic, atunci Aut(M) = PGL(M).

Prezentăm în continuare și o demonstrație de sine stătătoare care nu face apel la Teorema de caracterizare a aplicațiilor semi-liniare, pentru această teoremă (de fapt, chiar pentru corolarul 3.13). Considerăm fixat hiperplanul H în planul sau spaţiul proiectiv pappian (M, \mathcal{D}) şi reperul cartezian $\mathcal{R} = \{O; e_1, \dots, e_n\}$. Avem nevoie de următorul rezultat (important și în sine):

LEMA 3.8. Fie $e_i = \overrightarrow{OA_i}$ și $\eta \in \operatorname{Aut}(M)$ care satisface condițiile: 1) $\eta(A_i) = A_i$, $\eta(O) = O$.

- 2) $\eta(H) = H$.
- 3) η induce identitatea pe K.

Atunci $\eta = 1_M$.

Demonstrație. Ca și în lema 3.5, deoarece η invariază H și e automorfism, va păstra paralelismul afin, echipolența bipunctelor și asemănarea ternelor. Deci va induce o aplicație $\tilde{\eta} \in \text{Aut}(K)$ prin

$$\tilde{\eta}(\overrightarrow{\overline{AB}}) = \frac{\overline{\eta(A)\eta(B)}}{\overline{\eta(A)\eta(C)}}.$$

In cazul nostru, prin ipoteză, $\tilde{\eta} = 1_K$.

Arătăm întâi că η este identitatea pe M-H. E clar că fiecare dreaptă OA_i e invariată. Să vedem că e invariată chiar punct cu punct. Într-adevăr, fie $P \in OA_i$ propriu. Atunci $\eta(P) \in OA_i$. Cum $O \neq A_i$ putem considera raportul $r = \frac{\overrightarrow{OP}}{\overrightarrow{OA_i}}$. Din $\tilde{\eta}(r) = r$ rezultă $\eta(P) = P$. Dacă punem $OA_i = \delta_i \cap \{OA_{i_{\infty}}\}$, am arătat că $\eta_{|\delta_i}=1_{\delta_i}.$ De aici se vede uşor că $\eta|_{OA_i}=1_{OA_i}.$ Fie acum $P \in \mathcal{A} = M - H$ arbitrar. Fie $H_i^0 = \{\xi_i = 0\}$ hiperplanele zise de coordonate (avem $H = H_0^0$) și H_i^P hiperplanul (unic) prin P, paralel cu H_i^0 , $i \geq 1$. Dacă arătăm că

$$\eta(H_i^P) = H_i^P$$

atunci $\{\eta(P)\}=\cap_i\eta(H_i^P)=\cap_iH_i^P=\{P\}$ și rezultă $\eta|_{\mathcal{A}}=1_{\mathcal{A}}$. Pentru a proba (3.10), observăm că $\eta(H_i^0)=H_i^0$: într-adevăr, ambele hiperplane conțin punctele proiectiv independente $\{A_0,\ldots,A_{i-1},A_{i+1},\ldots,A_n\}$ care generează un unic hiperplan. De aici, deoarece η păstrează paralelismul subspațiilor proprii (care e o relație tranzitivă pe mulțimea subspațiilor de aceeași dimensiune), rezultă $\eta(H_i^P) \| H_i^P$. Fie, acum, $\{B_i\} = H_i^P \cap OA_i$. Deci $B_i = \eta(B_i) = \eta(H_i^P) \cap OA_i$, adică hiperplanele paralele H_i^P și $\eta(H_i^P)$ au un punct comun. Deducem că ele coincid.

În fine, fie $R \in \mathcal{H}$. Atunci $\eta(R) \in \mathcal{H}$. Fie AB o dreaptă proprie al cărei punct impropriu este R. Cum $\eta(A) = A$, $\eta(B) = B$, rezultă și $\eta(R) = R$.

Putem să trecem acum la demonstrația teoremei (de fapt, a corolarului) 3.13. 1) Fie $H_i=f(H_i^0)$. Dacă ecuația în coordonate omogene a lui H_i e $\sum_j a_{ij}\xi_j=$ 0, atunci $\theta \in PGL(M)$ descris de matricea nedegenerată (a_{ij}) are proprietatea $\theta(H_i) = H_i^0$. Fie $f_1 = \theta \circ f$. At unci $f_1(H_i^0) = H_i^0$. În particular, $f_1(H) = H$

şi, ca mai sus, f_1 induce automorfismul \tilde{f}_1 al lui K. La rândul său, acesta induce automorfismul $f^{\tilde{f}_1} \in \mathrm{PAut}(M)$.

2) Fie $f_2=(f^{\tilde{f_1}})^{-1}\circ f_1$. Vedem că $f_2\in \operatorname{Aut}(M)$ și deoarece $\tilde{f}_1(0)=0$ în K, $f_2(H_i^0)=H_i^0$. În particular, $f_2(H)=H$, deci și f_2 induce un automorfism \tilde{f}_2 al lui K. Reamintindu-ne că acesta lucrează după formula

$$\widetilde{f}_2(\overrightarrow{\overline{AB}}) = \frac{\overline{f_2(A)f_2(B)}}{\overline{f_2(A)f_2(C)}},$$

deducem uşor că $\tilde{f}_2 = 1_K$. Suntem acum aproape de condițiile din lemă; totuşi f_2 nu fixează punctele A_i ale reperului. În schimb, dacă $\{B_i\} = OA_i \cap H$, avem $f_2(B_i) = B_i$. Într-adevăr, coordonatele omogene ale lui B_i sunt $[0:0:\dots:1:\dots:0]$ (1 pe poziția i), deoarece parametrii directori ai dreptei OA_i sunt coordonatele vectorului $e_i = \overrightarrow{OA_i}$ în reperul $\{e_1,\dots,e_n\}$. Deci $\{B_i\} = \cap_{j\neq i} H_j^0$.

3) Pentru a fabrica un automorfism care să fixeze și A_i , fie $A_i' = f_2(A_i) \in OB_i$. Atunci coordonatele omogene ale lui A_i sunt de forma

$$[\xi_0:\ldots:0:\xi_i:0:\ldots:0] = [1:\ldots:\nu_i = \frac{\xi_i}{\xi_0}:\ldots:0]$$

pentru că $\xi_0 \neq 0$ la punctele proprii. Definim acum $h \in \operatorname{PGL}(M)$ asociat matricei diag $(1, \nu_1^{-1}, \dots, \nu_n^{-1})$. Rezultă $h(A_i') = A_i$, h(O) = O. Fie $f_3 = h \circ f_2$. Automorfismul acesta satisface condițiile lemei: $f_3(O) = O$, $f_3(A_i) = A_i$, $f_3(H_i^0) = H_i^0$, automorfismul de corp \tilde{f}_3 este 1_K . Avem de verificat ultima afirmație. Pentru aceasta, deoarece $\tilde{f}_2 = 1_K$, e suficient să vedem că $\tilde{h} = 1_K$. Fie $r = \frac{\overrightarrow{AB}}{\overrightarrow{AC}}$, unde A (respectiv B, C) are coordonatele omogene $[1:a_1:\dots:a_n]$ (respectiv $[1:b_1:\dots:b_n]$, $[1:c_1:\dots:c_n]$). Atunci $r = \frac{b_i-a_i}{c_i-a_i}$. Cum h(A) (respectiv h(B), h(C)) are coordonatele omogene $[1:a_1\nu_1^{-1}:\dots:a_n\nu_n^{-1}]$ (respectiv $[1:b_1\nu_1^{-1}:\dots:b_n\nu_n^{-1}]$, $[1:c_1\nu_1^{-1}:\dots:c_n\nu_n^{-1}]$), Atunci

$$\tilde{h}(r) = \frac{b_i \nu_i^{-1} - a_i \nu_i^{-1}}{c_i \nu_i^{-1} - a_i \nu_i^{-1}} = r.$$

Conform lemei anterioare, $f_3=1_M$. Rezultă $h\circ (f^{\tilde{f_1}})^{-1}\circ \theta\circ f=1_M$, de unde $f=\theta^{-1}\circ f^{\tilde{f_1}}\circ h^{-1}$. Din păcate, $f^{\tilde{f_1}}\circ h^{-1}\not\in \operatorname{PAut}(M)$, așa că încă nu suntem gata. Dar un calcul simplu arată că $f^{\tilde{f_1}}\circ h^{-1}=h'\circ f^{\tilde{f_1}}$ unde $h'\in\operatorname{PGL}(M)$ este dat de matricea diag $(1,\tilde{f_1}(\nu_1),\ldots,\tilde{f_1}(\nu_n))$. Putem scrie $f=\theta^{-1}\circ h'\circ f^{\tilde{f_1}}$. Punem $\alpha=\theta^{-1}\circ h',\ \beta=f^{\tilde{f_1}}$ și demonstrația e completă.

În concluzie, expresia în coordonate omogene a unui automorfism proiectiv este:

$$f([\xi_0:\ldots:\xi_n]) = [\sum_i a_{0i}\varphi(\xi_i):\ldots:\sum_i a_{ni}\varphi(\xi_i)]$$

 $\operatorname{cu} \varphi \in \operatorname{Aut}(K)$.

EXERCIȚIUL 3.29. Fie, în $P^2\mathbb{R}$, proiectivitatea F de ecuații $[\xi_0:\xi_1:\xi_2]\mapsto [\xi_0-2\xi_2:2\xi_1:-\xi_1+\xi_2]$. Să se verifice că F invariază dreapta proiectivă d de ecuație $\xi_1=0$. Considerând spațiul afin $P^2\mathbb{R}\backslash d$, să se scrie ecuațiile afinității din care, prin proiectivizare, provine F. (Indicație: Pentru orice P de coordonate [a:0:b] rezultă F(P)=[a-2b,0,b] ceea ce arată că d e invariată (dar nu fixată). Cum matricea A a lui F este definită până la

o constantă multiplicativă, putem lua $A=\begin{pmatrix}1/2&0&-1\\0&1&0\\0&-1/2&1/2\end{pmatrix}$. Atunci ecuațiile transformării afine căutate sunt $(x,y)\mapsto (\frac{1}{2}x-y,-\frac{1}{2}+\frac{1}{2}x)$).

EXERCIȚIUL 3.30. În $P^2\mathbb{R}$, se consideră dreptele d_1, d_2, d_3 de ecuații, respectiv:

$$\xi_0 - \xi_1 = 0$$
, $\xi_1 + \xi_2 = 0$, $\xi_0 + 2\xi_2 = 0$.

Să se arate că ele nu formează un fascicol. Să se determine ecuațiile transformării proiective T definite de următoarele condiții:

$$T(d_1) = d_2$$
, $T(d_2) = d_3$, $T(d_3) = d_1$, $T(P) = P$, cu $P = [1:0:1]$.

 $\begin{array}{l} (\mathit{Indicație}: \ \ \mathsf{Cele} \ \ \mathsf{trei} \ \ \mathsf{drepte} \ \ \mathsf{nu} \ \ \mathsf{formează} \ \ \mathsf{fascicol} \ \ \mathsf{pentru} \ \ \mathsf{că} \ \ \mathsf{determinantul} \ \mathsf{coeficienților} \ \ \mathsf{ecuațiilor} \ \mathsf{lor} \ \mathsf{este} \ \mathsf{nenul}. \ \mathsf{Fie} \ \mathsf{punctele} \ P_1, P_2, P_3 \ \mathsf{date} \ \mathsf{prin} \ \{P_1\} = d_2 \cap d_3, \ \{P_2\} = d_1 \cap d_3, \ \{P_3\} = d_1 \cap d_2. \ \mathsf{Din} \ \mathsf{condițiile} \ \mathsf{impuse} \ \mathsf{lui} \ T \ \mathsf{deducem} \ T(P_1) = P_2, T(P_2) = P_3, T(P_3) = P_1. \ \mathsf{Pe} \ \mathsf{de} \ \mathsf{altă} \ \mathsf{parte}, \ P_1 = [1:1:-1], \ P_2 = [2:1:-1], \ P_3 = [2:2:-1]. \ \mathsf{Se} \ \mathsf{verifică} \ \mathsf{ușor} \ \mathsf{că} \ \mathsf{unictele} \ P_1, P_2, P_3, P \ \mathsf{sunt} \ \mathsf{proiectivi} \ \mathsf{independente}, \ \mathsf{deci} \ \mathsf{există}, \ \mathsf{într-adevăr}, \ \mathsf{o} \ \mathsf{unică} \ \mathsf{proiectivitate} \ T \ \mathsf{cu} \ \mathsf{proprietățile} \ \mathsf{cerute}. \ \mathsf{Se} \ \mathsf{găsește} \ \mathsf{matricea} \ \mathsf{lui} \ T \ (\mathsf{până} \ \mathsf{la} \ \mathsf{multiplicare}) : \ \left(\begin{smallmatrix} 8 & -15 & -5 \\ 7 & -15 & -7 \\ 7 & -15 & -7 \\ 1 & -7 & -7 \\ \end{matrix} \right).) \end{array}$

EXERCIȚIUL 3.31. În P^5K se consideră trei drepte necoplanare și două câte două neconcurente. Să se studieze existența și unicitatea unei drepte care le taie pe toate trei.

11. Hipercuadrice în spațiul proiectiv P^nK

În acest paragraf K va fi \mathbb{R} sau \mathbb{C} . Acolo unde va fi posibil, vom formula enunțurile și pentru cazul mai general al unui corp comutativ, de caracteristică diferită de 2.

Vom defini hipercuadricele într-un plan sau spațiu proiectiv P^nK , deci $n \geq 2$. Ca și până acum, $\pi: K^{n+1} - \{0\} \to P^nK$ este proiecția canonică, $[x] \stackrel{\text{not}}{=} \pi(x)$ și $[\xi_0:\ldots:\xi_n]$ notează coordonatele omogene ale punctului $[(\xi_0,\ldots,\xi_n)]$.

Definiția 3.20. Se numește hipercuadrică (proiectivă) o mulțime de puncte $[x] \in P^nK$ ale căror coordonate omogene verifică o ecuație de forma:

(3.11)
$$\sum_{i,j=0}^{n} a_{ij} \xi_i \xi_j = 0$$

cu $(a_{ij}) \in \mathcal{M}(n+1;K)$, simetrică, de rang cel puţin 1.

Dacă n=2 (respectiv n=3), hipercuadrica se numește conică (respectiv cuadrică).

De
oarece orice plan sau spațiu proiectiv finit dimensional este izomorf cu un
 $P^nK,$ putem da și:

Definiția 3.21. O submulțime ω a unui plan sau spațiu proiectiv (M,\mathcal{D}) se numește hipercuadrică a lui M dacă există o hipercuadrică γ a lui P^nK și un izomorfism proiectiv $f:M\to P^nK$ astfel încât $f(\omega)=\gamma$.

Notăm $\Gamma_n(K)$ mulțimea hipercuadricelor proiective din P^nK .

Cum o ecuație poate să nu aibă soluții nebanale, am inclus \emptyset printre hipercuadrice.

Observăm că ecuația (3.11) e compatibilă cu relația de echivalență de pe K^{n+1} – $\{0\}$ cu ajutorul căreia s-a definit P^nK : odată cu (ξ_0,\ldots,ξ_n) orice punct echivalent $(a\xi_0,\ldots,a\xi_n)$ cu $a\in K-\{0\}$ verifică (3.11). Astfel, ecuația dată definește univoc o mulțime de puncte din P^nK .

Deoarece ecuația (3.11), privită în K^{n+1} , reprezintă zerourile unei forme pătratice, teoria hipercuadricelor proiective este strâns legată de cea a formelor pătratice. Mai precis, notând $Q(K^{n+1})$ spațiul vectorial al formelor pătratice definite pe K^{n+1} si $PQ(K^{n+1})$ proiectivizatul său, avem:

Propoziția 3.37. Există o surjecție naturală $\varphi: PQ(K^{n+1}) \to \Gamma_n(K)$, dată $prin \varphi([Q]) = \pi(Q^{-1}(0) - \{0\})$.

Demonstrația revine la a observa că ecuațiile asociate matricelor (a_{ij}) și (ρa_{ij}) , $\rho \neq 0$, respectiv (3.11) și $\sum_{i,j=0}^{n} \rho a_{ij} \xi_i \xi_j = 0$, au aceeași mulțime de soluții.

Aplicația de mai sus nu e, în general, injectivă: aceeași hipercuadrică poate fi reprezentată de matrice neproporționale. De exemplu $x_0^2 + x_1^2 = 0$ și $2x_0^2 + x_1^2 = 0$ reprezintă aceeași hipercuadrică în $P^2\mathbb{R}$, anume $\gamma = \{[0:0:1]\}$.

Totuşi, există cazuri în care aplicația φ e injectivă, punând în corespondență biunivocă hipercuadricele (mulțimi de puncte în P^nK) cu ecuațiile lor (până la proporționalitate). Două vor fi situațiile care ne vor interesa: când K e algebric închis (de exemplu pentru $K=\mathbb{C}$) și când restrângem imaginea lui φ la forme pătratice nedegenerate. Vom da enunțurile precise și demonstrațiile în paragraful 13.

Să notăm ${}^{t}X = (\xi_0, \dots, \xi_n)$; ecuația (3.11) se poate scrie sub forma:

$$(3.12) tXAX = 0.$$

Ca și pentru hipercuadricele afine, pentru a clasifica hipercuadricele proiective avem nevoie de o noțiune convenabilă de echivalență:

Definiția 3.22. Hipercuadricele γ_1, γ_2 din $\Gamma_n(K)$ se numesc (proiectiv) echivalente dacă există o proiectivitate $\overline{f} \in \operatorname{PGL}(n+1,K)$ astfel încât $\overline{f}(\gamma_1) = \gamma_2$. În acest caz se scrie $\gamma_1 \sim \gamma_2$.

Fie $\gamma_1 \sim \gamma_2$ și \overline{f} ca mai sus. În reperul canonic al lui K^{n+1} , f este descris de o matrice pătrată de dimensiune n+1, nedegenerată C (conform paragrafului 3): $\overline{f}([X]) = [CX]$. Atunci, dacă matricea lui γ_1 este A_1 , matricea lui $\overline{f}(\gamma_1)$ este ${}^t\!CA_1C$, astfel că putem reformula definiția anterioară în:

Propoziția 3.38. Hipercuadricele γ_1 , γ_2 sunt echivalente dacă și numai dacă există $C \in GL(n+1,K)$ astfel încât $A_2 = {}^tCA_1C$.

Observația 3.14. Rezultă, implicit, că imaginea unei hipercuadrice printr-o proiectivitate este o hipercuadrică. Nu același lucru se poate spune despre imaginea unei hipercuadrice printr-un automorfism proiectiv oarecare.

Observația 3.15. Putem transfera asupra hipercuadricelor proiective acele proprietăți ale formelor pătratice care se păstrează atunci când forma pătratică e adusă la forma canonică. Astfel, putem defini rangul unei hipercuadrice prin $rang(\gamma) = rang(\varphi^{-1}(\gamma))$, atribuind lui γ rangul unui reprezentant al clasei corespunzătoare de forme pătratice. La fel, atunci când $K = \mathbb{R}$, vom numi signatura (respectiv indexul) unei hipercuadrice tocmai signatura (respectiv indexul) uneia dintre formele pătratice echivalente care reprezintă hipercuadrica.

Prin abuz de limbaj, vom spune că $A=(a_{ij})$ este matricea hipercuadricei şi (3.11) este ecuația hipercuadricei (deși orice altă matrice echivalentă ${}^{t}CAC$ este egal îndreptățită la titlu). De fapt, alegem o formă pătratică reprezentînd hipercuadrica via surjecția φ din propoziția 3.37. A posteriori, se va vedea că asemenea proprietăți nu depind de alegerea unui element din preimaginea lui φ (în cazul general în care φ nu e injectivă).

12. Clasificarea proiectivă a hipercuadricelor

Teorema 3.14. Orice hipercuadrică din P^nK este proiectiv echivalentă cu o hipercuadrică de ecuație

$$\lambda_0 \xi_0^2 + \dots + \lambda_r \xi_r^2 = 0$$

$$cu \ \lambda_0, \ldots, \lambda_r \in K - \{0\}.$$

Demonstrație. Fie γ o hipercuadrică de ecuație (3.12) și Q forma pătratică de matrice A pe K^{n+1} . Fie T izomorfismul vectorial al lui K^{n+1} care aduce Q la forma canonică, adică T(Q) are ecuația:

$$\lambda_0 \xi_0^2 + \dots + \lambda_r \xi_r^2 = 0.$$

Aici, după cum ştim, rangQ = rangA = r + 1 (a se vedea teorema 1.6 a lui Gauss). Atunci $\overline{T} \in \operatorname{PGL}(n+1,K)$, dat prin $\overline{T}([x]) = [T(x)]$ este izomorfismul proiectiv cu proprietatea că $\overline{T}(\gamma)$ are ecuația (3.13).

Observația 3.16. Am adus o hipercuadrică la forma canonică alegând o formă pătratică Q cu ajutorul căreia să scriem ecuația (inițială) a hipercuadricei. În final, am găsit o proiectivitate \overline{T} astfel încât $\overline{T}(\gamma)$ are forma canonică. De fapt, ar fi trebuit să scriem \overline{T}_Q întrucât T depinde de alegerea lui Q. Dacă pornim cu o altă formă pătratică Q' care reprezintă hipercuadrica (aduce-ți-vă aminte că aplicația φ nu e injectivă), găsim o altă proiectivitate $\overline{T}_{Q'}$ cu proprietatea că $\overline{T}_{Q'}(\gamma)$ are forma canonică (alți coeficienți, desigur). Dar atunci $\overline{T}_{Q'}(\gamma)$ și $\overline{T}_Q(\gamma)$ sunt echivalente prin proiectivitatea $\overline{T}_Q \circ \overline{T}_{Q'}^{-1}$. Astfel că alegerea a diferite forme pătratice (recte a diferite ecuații de pornire) care reprezintă hipercuadrica, ne păstrează în clasa de echivalență.

Vom avea nevoie de:

Definiția 3.23. O hipercuadrică de rang n+1 (maxim) se numește nedegenerată. O hipercuadrică de rang strict inferior lui n+1 se numește degenerată.

Observația 3.17. Conform propoziției 3.38, rangul este același pentru toate hipercuadricele echivalente, este un invariant al clasei de echivalență. În particular, toate hipercuadricele unei clase sunt simultan degenerate sau nedegenerate.

Particularizăm acum teorema de clasificare la cazurile $K = \mathbb{R}, \mathbb{C}$.

TEOREMA 3.15. (Clasificarea proiectivă a hipercuadricelor complexe) Orice hipercuadrică din $P^n\mathbb{C}$ este proiectiv echivalentă cu una şi numai una dintre hipercuadricele:

(3.15)
$$\xi_0^2 + \dots + \xi_r^2 = 0, \quad r = 0, \dots, n.$$

Demonstrație. Fie γ o hipercuadrică oarecare. Conform teoremei 3.13, ea e echivalentă cu o hipercuadrică γ' de ecuație (3.13).

Fie acum $\overline{f} \in PGL(n+1,K)$ dat prin

$$\overline{f}([\xi_0:\ldots:\xi_n])=([\sqrt{\lambda_0}\xi_0:\ldots:\sqrt{\lambda_r}\xi_r:\xi_{r+1}:\ldots:\xi_n]).$$

E clar că $\overline{f}(\gamma)$ are forma (3.15) și e echivalentă cu γ .

Pe de altă parte, $r=\mathrm{rang}(\gamma)-1$ și două hipercuadrice de ranguri diferite sunt neechivalente. \Box

COROLARUL 3.14. Multimea factor a lui $\Gamma_n(\mathbb{C})$ modulo relația \sim conține exact n+1 elemente.

Înainte de a discuta cazul $K = \mathbb{R}$, reamintim că o formă pătratică reală e caracterizată de doi invarianți: rangul și signatura (p,q) (p+1 (respectiv q)=numărul termenilor pozitivi (respectiv negativi) din forma normală, conform teoremei 1.8 a lui Sylvester)⁸.

Conventie Deoarece, evident, două forme pătratice de același rang și de signaturi (p,q), (q-1,p+1) sunt echivalente, vom conveni să considerăm totdeauna $q \leq \left[\frac{r+1}{2}\right]$. Acum putem da:

TEOREMA 3.16. (Clasificarea proiectivă a hipercuadricelor reale) Orice hipercuadrică din $P^n\mathbb{R}$ este proiectiv echivalentă cu una și numai una dintre hipercuadricele

(3.16)
$$\xi_0^2 + \dots + \xi_p^2 - \xi_{p+1}^2 - \dots - \xi_{p+q}^2 = 0$$

 $unde\ p+q+1=r+1\ este\ rangul\ hipercuadricei.$

Demonstrație. Fie $\gamma \in \Gamma_n(\mathbb{C})$ de rang r+1 și signatură (p,q). Teorema 3.13 afirmă că γ e proiectiv echivalentă cu una de ecuație (3.14), unde putem presupune că $\lambda_i > 0$ pentru $i = 0, \dots, p, \lambda_j < 0$ pentru $j = p + 1, \dots, p + q$.

Fie acum $\overline{f} \in PGL(n+1,K)$, imagine a izomorfismului liniar dat prin

$$f(\xi_i) = \begin{cases} \sqrt{\lambda_i} \, \xi_i & \text{dacă } i = 0, \dots, p, \\ \sqrt{-\lambda_i} \, \xi_i & \text{dacă } i = p+1, \dots, p+q, \\ \xi_i & \text{dacă } i = p+q+1, \dots, n. \end{cases}$$

Evident, $f(\gamma)$ este de forma (3.15) și e echivalentă cu γ . Mai mult, două hipercuadrice de același rang și aceeași signatură sunt echivalente.

EXERCIȚIUL 3.32. Determinați cardinalul mulțimii $\Gamma_n(\mathbb{R})/\sim$. Câte clase conținând hipercuadrice reale nedegenerate există?

Observația 3.18. Avem o singură conică proiectivă complexă nedegenerată : elipsa complexă de ecuație $\xi_0^2+\xi_1^2+\xi_2^2=0$ și două conice proiective reale nedegenerate: mulțimea vidă, de ecuație $\xi_0^2+\xi_1^2+\xi_2^2=0$ și elipsa reală, de ecuație

 $\xi_0^2 + \xi_1^2 - \xi_2^2 = 0$. Dintre cuadricele proiective complexe, nedegenerată e doar elipsoidulul, de ecuație $\xi_0^2 + \xi_1^2 + \xi_2^2 + \xi_3^2 = 0$. Avem trei cuadrice proiective reale nedegenerate cărora, deoarece nu au nume standard, evităm să le atribuim denumiri ad hoc.

13. Intersecția unei hipercuadrice cu o varietate liniară.

Propoziția 3.39. Intersecția unei hipercuadrice din P^nK cu o varietate liniară de dimensiune $m \geq 2$ este o hipercuadrică (în sensul definiției 3.21).

 $^{^8}$ Atenție! Deoarece acum numerotăm indicii de la 0, signatura (p,q) înseamnă că există p+1coeficienți pozitivi și q coeficienți negativi, astfel ca p+q=r.

Demonstrație. Fie $L=\pi(U-\{0\})$ o varietate liniară de dimensiune m din P^nK , unde U este un subspațiu vectorial m+1-dimensional al lui K^{n+1} . Fie $\gamma=\pi(Q^{-1}(0)-\{0\})$ o hipercuadrică. Atunci $Q_{|U}$ este o formă pătratică pe U și $L\cap\gamma=\pi(Q_{|U}^{-1}(0)-\{0\})$, deci reprezintă o hipercuadrică în L (conform definiției 3.21, e suficient să alegem un izomorfism liniar $f:U\to K^{m+1}$, etc.).

Analog, obtinem:

Propoziția 3.40. Intersecția unei drepte cu o hipercuadrică din P^nK poate fi: mulțimea vidă, o mulțime cu un singur punct, o mulțime cu două puncte sau întreaga dreaptă.

Demonstrație. Fie Q o formă pătratică reprezentând hipercuadrica γ . Fie $\delta = \pi(U - \{0\})$, cu U un subspațiu vectorial 2-dimensional al lui K^{n+1} , o dreaptă din P^nK . Forma pătratică $Q_{|U}$ poate avea rangul 0, 1 sau 2.

În primul caz, $Q_{|U}^{-1}(0) = U$, deci $\gamma \cap \delta = \delta$.

În al doilea caz, $Q_{|U}^{-1}(0)$ este un subspațiu 1-dimensional și $\gamma \cap \delta$ se reduce la un singur punct.

În fine, dacă rang $Q_{|U}=2$, atunci $Q_{|U}^{-1}(0)=\{0\}$ sau $\{0,a,b\}$ cu a,b liniar independenți (cititorul va produce justificările afirmațiilor de mai sus).

Observația 3.19. Dacă numim hipercuadrică a unei drepte proiective o mulțime vidă, sau formată din unul sau două puncte distincte sau din toată dreapta, atunci propozițiile anterioare se enunță scurt: intersecția unei hipercuadrice proiective cu o varietate liniară e o hipercuadrică a varietății liniare.

Acum putem demonstra:

Propoziția 3.41. Fie K un corp comutativ algebric închis. Atunci aplicația $\varphi: PQ(K^{n+1}) \to \Gamma_n(K)$ definită în propoziția 3.37 este injectivă.

Demonstrație. Fie Q,Q' forme pătratice cu $\gamma=\varphi([Q])=\varphi([Q'])=\gamma'$. Vom arăta că Q și Q' sunt proporționale.

Deoarece K e algebric închis, Q e surjectivă: pentru orice $a \in K$ există $u \in K^{n+1}$ astfel încât Q(x) = a. În particular, există $x \in K^{n+1} - \{0\}$ cu $Q(x) \neq 0$. Atunci $Q'(x) \neq 0$. Deoarece φ e definită pe clase de forme pătratice modulo proporționalitate, după multiplicarea convenabilă a lui Q', putem presupune Q(x) = Q'(x). Rămâne acum să dovedim egalitatea Q = Q' (am făcut ca factorul de proporționalitate să fie 1).

Pentru a arăta egalitatea Q=Q' va trebui întâi să verificăm $Q_{|U}=Q'_{|U}$ unde U parcurge toate subspațiile vectoriale 2-dimensionale care conțin x. Altfel spus, verificăm că Q(y)=Q'(y) pentru orice y independent de x. Fixăm un asemenea U și un punct y în el, independent de x. Fie d dreapta proiectivă generată de [x] și [y], deci $d=\pi(U-\{0\})$. Conform ipotezei, avem $d\cap\gamma=d\cap\gamma'$. Atunci rang $Q_{|U}=\mathrm{rang}Q'_{|U}=2$ (deoarece Q,Q' nu se anulează în x,y care sunt liniar independenți). Suntem în cazul al treilea din demonstrația propoziției 3.40. Vedem că forma pătratică $(Q-Q')_{|U}$, care este reprezentată de un polinom omogen în două variabile, are trei rădăcini: x, și cele două care corespund punctelor de intersecție cu d. Acum rezultă ușor (vezi anexa A1) $Q_{|U}=Q'_{|U}$.

În fine, pentru $z = \lambda x$, $\lambda \in K - \{0\}$, $Q'(z) = \lambda^2 Q'(x) = \lambda^2 Q(x) = Q(z)$.

Pentru $K=\mathbb{R}$ (în general, pentru un corp nealgebric închis), aplicația φ nu mai e injectivă (vezi exemplul de după propoziția 3.37). Dar o restricție a ei la o clasă suficient de mare de hipercuadrice este.

Propoziția 3.42. Restricția lui φ la clasele de forme pătratice reale nedegenerate cu imagini nevide este injectivă.

Într-adevăr, examinând demonstrația anterioară, observăm că ipoteza "K algebric închis" a folosit doar la deducerea existenței unui $x \in K^{n+1} - \{0\}$ astfel încât $Q(x) \neq 0$. Acest lucru era asigurat de surjectivitatea lui Q. Atunci va fi suficient să demonstrăm:

Lema 3.9. Fie $Q:\mathbb{R}^{n+1}\to\mathbb{R}$ o formă pătratică nedegenerată cu $\varphi(Q)\neq\emptyset$. Atunci Q e surjectivă.

Demonstrație. Fie $A=\operatorname{diag}(a_0,\ldots,a_n),\ a_i\neq 0,\ \mathrm{matricea\ lui}\ Q\ \mathrm{\hat{n}tr}$ -un reper în care Q are forma canonică. Atunci $Q(x)=\sum_{i=0}^n a_i^2x_i^2$. Fie $a\in\mathbb{R}$. Dacă $a=0,\ Q(0)=0$. Fie a>0. Ipoteza $\varphi(Q)\neq\emptyset$ asigură că nu toți coeficienții a_i au același semn, de exemplu putem presupune $a_0<0,\ a_1>0$. Rezultă că ecuația Q(x)=a are soluția $(0,\sqrt{a}/\sqrt{a_1},0,\ldots,0)$.

La fel, dacă
$$a < 0$$
, ecuația are soluția $(0, \sqrt{-a}/\sqrt{-a_0}, 0, \dots, 0)$.

Dreaptă tangentă. Hiperplan tangent. Generalizăm, în cele ce urmează, noțiunea, cunoscută din liceu, de tangentă la o conică. Dăm întâi:

Definiția 3.24. O dreaptă conținută într-o hipercuadrică se numește $\it generatoare$ a hipercuadricei.

O dreaptă este tangentă unei hipercuadrice dacă este generatoare sau dacă intersectează hipercuadrica într-un singur punct.

Pentru a putea studia mulțimea tuturor dreptelor tangente la o hipercuadrică într-un punct avem nevoie de

Definiția 3.25. Fie hipercuadrica $\gamma = \pi(Q^{-1}(0) - \{0\})$. Un punct $P \in \gamma$ de coordonate omogene $[\xi_0 : \ldots : \xi_n]$ se numește singular dacă $(\xi_0, \ldots, \xi_n) \in \operatorname{Ker}(Q)$. Un punct care nu e singular se numește regulat.

Observația 3.20. Deoarece Ker(Q) este un subspațiu vectorial, definiția de mai sus e consistentă: nu depinde de alegerea unui reprezentant pentru P.

Fie B forma biliniară simetrică polară a lui Q: Q(x) = B(x,x). Se ştie că $x \in \operatorname{Ker}(Q)$ dacă și numai dacă B(x,y) = 0 pentru orice $y \in K^{n+1}$. Deci P e punct singular al hipercuadricei γ de ecuație (3.11) dacă și numai dacă coordonatele sale (ξ_0,\ldots,ξ_n) reprezintă o soluție a sistemului liniar omogen

(3.17)
$$\sum_{j=0}^{n} a_{ij} \xi_j = 0, \quad i = 0, \dots, n.$$

Acest sistem admite soluții nebanale numai dacă $\det(a_{ij})=0$. În caz contrar hipercuadrica e nedegenerată. Putem enunța:

Propoziția 3.43. O hipercuadrică nedegenerată are doar puncte regulate.

Dacă hipercuadrica e degenerată, atunci dim Ker(Q) = n+1-rang(Q). Rezultă:

Propoziția 3.44. Mulțimea punctelor singulare ale unei hipercuadrice degenerate este varietatea liniară $\pi(\text{Ker}(Q) - \{0\})$ de dimensiune n-r.

Exemplul 3.17. Ne situăm în $P^3\mathbb{R}$.

- 1. Cuadrica de ecuație $\xi_0^2+\xi_1^2-\xi_2^2-\xi_3^2=0$ este nedegenerată și are numai puncte regulate.
- 2. Cuadrica $\xi_0^2 + \xi_1^2 \xi_2^2 = 0$ are punctul singular [0:0:0:1].
- 3. Cuadrica $\xi_0^2 \xi_1^2 = 0$ admite o dreaptă de puncte singulare: cea generată de punctele [0:0:1:0] şi [0:0:0:1].
- 4. Cuadrica $\xi_0^2=0$ admite un plan de puncte singulare, anume cel generat de punctele: [0:1:0:0], [0:0:1:0] şi [0:0:0:1].

Cu aceste pregătiri putem demonstra:

Propoziția 3.45. Locul geometric al punctelor care stau pe drepte tangente într-un punct regulat la o hipercuadrică nevidă este un hiperplan care trece prin acel punct.

Demonstrație. Fie γ o hipercuadrică de ecuație (3.11). Fie Q forma pătratică de matrice (a_{ij}) în reperul canonic al lui K^{n+1} și fie B forma ei polară. Fie $P \in \gamma$ un punct regulat de coordonate omogene $[a_0:\ldots:a_n]$; notăm a un reprezentant al lui P din K^{n+1} . O dreaptă oarecare d care trece prin P are ecuațiile

$$\xi_i = \alpha a_i + \beta b_i, \quad i = 0, \dots, n$$

cu $b = (b_0, \ldots, b_n)$ fixat, a, b liniar independenți în K^{n+1} și $(\alpha, \beta) \neq (0, 0)$. Rezolvând sistemul format de ecuația anterioară și (3.11), deducem că d e tangentă hipercuadricei dacă și numai dacă ecuația în β

$$\alpha^2 Q(a) + \beta^2 Q(b) + 2\alpha \beta B(a, b) = 0$$

are doar soluția dublă $\beta=0$ sau e identic satisfăcută. Cum deja Q(a)=0, găsim B(a,b)=0. Deci B(a,x)=0 pentru orice $[x]\in d$. Rezultă

(3.18)
$$\sum_{j=0}^{n} \left(\sum_{i=0}^{n} a_{ij} a_i \right) \xi_j = 0$$

care reprezintă un hiperplan, notat H_P , deoarece P e punct regulat. În plus, ecuația (3.18) ne arată că $P \in H_P$.

DEFINIȚIA 3.26. Pentru un punct regulat P al unei hipercuadrice, hiperplanul H_P de ecuație (3.18) se numește $hiperplan\ tangent$ în P.

Observația 3.21. Hiperplanul tangent într-un punct regulat conține toate generatoarele prin acel punct.

Dacă hipercuadrica γ nu admite generatoare prin P, atunci $H_P \cap \gamma = \{P\}$. Întradevăr, dacă ar exista $P' \in H_P \cap \gamma \neq \{P\}$, $P' \neq P$, ar rezulta că dreapta PP' e inclusă în H_P . Deci PP' ar fi tangentă la γ și ar avea cel puțin două puncte în comun cu γ . Ar fi, deci, o generatoare a lui γ prin P, contradicție.

14. Polaritate în raport cu o hipercuadrică

Fie, pentru început, Q o formă pătratică nedegenerată pe K^{n+1} și B forma ei polară. Notând $(K^{n+1})^*$ dualul de spațiu vectorial al lui K^{n+1} , definim aplicația $\varphi: K^{n+1} \to (K^{n+1})^*$ prin

$$\varphi(x)(y) = B(x, y).$$

Deoarece Q e nedegenerată, se verifică uşor că φ e izomorfism liniar. Dacă, în reperul canonic, Q are matricea (a_{ij}) , atunci

$$\varphi(x)(y) = \sum_{i,j=0}^{n} a_{ij} x_i y_j.$$

Observăm că, datorită nedegenerării lui Q, scalarii $\sum_{i=0}^{n} a_{ij}x_i$ nu se pot anula pentru fiecare $j=0,\ldots,n$. Astfel că, pentru fiecare $x=(x_0,\ldots,x_n)$ fixat în $K^{n+1}-\{0\}$, ecuația

(3.19)
$$\sum_{i=0}^{n} \left(\sum_{i=0}^{n} a_{ij} x_i \right) y_j = 0$$

definește un hiperplan vectorial V_x .

Fie acum $(P^nK)^*$ dualul spațiului proiectiv P^nK . Conform observațiilor de mai sus, izomorfismul liniar φ induce aplicația $\tilde{\varphi}: P^nK \to (P^nK)^*$,

$$\tilde{\varphi}([x]) = H_{[x]} \stackrel{\text{not}}{=} \pi(V_x - \{0\}).$$

Hiperplanul $H_{[x]}$ se numește $hiperplan\ polar\ al\ lui\ [x],$ iar [x] se numește pol al lui $H_{[x]}.$

Teorema 3.17. Aplicația $\tilde{\varphi}$ este izomorfism proiectiv.

Demonstrație. $\tilde{\varphi}$ e bijecție. Fie R un punct din $(P^nK)^*$; R este reprezentat de un hiperplan H al lui P^nK . Acesta este proiecția unui hiperplan vectorial al lui K^{n+1} : $H = \pi(V - \{0\})$. Fie

$$\sum_{i=0}^{n} b_i y_i = 0, \quad \text{rang}(b_0, \dots, b_n) = 1$$

ecuația lui V. Definim $X=(x_0,\ldots,x_n)$ ca soluția (unică, deoarece $\det(a_{ij})\neq 0$) a sistemului

$$\sum_{i=0}^{n} a_{ij} x_i = b_j.$$

Evident $\tilde{\varphi}([X]) = H$.

 $\tilde{\varphi}$ duce drepte în drepte. Deoarece dreptele lui $(P^nK)^*$ sunt fascicole de hiperplane din P^nK , trebuie arătat că $\tilde{\varphi}$ transformă orice dreaptă proiectivă într-un fascicol de hiperplane. Fie, pentru aceasta, $d=\pi(U-\{0\})$ cu $U=L\{a,b\}$ subspațiu 2-dimensional generat în K^{n+1} de vectorii liniar independenți $a=(a_0,\ldots,a_n)$ și $b=(b_0,\ldots,b_n)$. Ecuațiile lui d se scriu:

$$(3.20) x_i = \alpha a_i + \beta b_i, pentru(\alpha, \beta) \neq (0, 0), i = 0, \dots, n.$$

Conform definiției, $\tilde{\varphi}([x]) = H_{[x]}$ cu $H_{[x]}$ de ecuație:

$$\sum_{j=0}^{n} \left(\sum_{i=0}^{n} a_{ij} x_i \right) y_j = 0$$

sau, ţinând seamă de (3.20):

$$\alpha \sum_{j=0}^{n} \left(\sum_{i=0}^{n} a_{ij} a_{i} \right) y_{j} + \beta \sum_{j=0}^{n} \left(\sum_{i=0}^{n} a_{ij} b_{i} \right) y_{j} = 0.$$

Pentru fiecare pereche $(\alpha,\beta) \neq (0,0)$, aceasta este ecuația unui hiperplan care conține intersecția (n-2)-dimensională L a hiperplanelor $\tilde{\varphi}([a])$ și $\tilde{\varphi}([b])$. Deci $H_{[x]}$ aparține fascicolului de hiperplane de axă L.

Reciproc, orice hiperplan din fascicolul descris corespunde, prin $\tilde{\varphi}$ unui punct [x] de pe d.

Interpretarea geometrică a rezultatului de mai sus se face via legătura cunoscută între forme pătratice și hipercuadrice. Să notăm că, deoarece lucrăm cu hipercuadrice nedegenerate, orice două forme pătratice corespunzătoare unei hipercuadrice față de care considerăm polaritatea sunt proporționale: acest lucru rezultă din propoziția 3.41 pentru K algebric închis și din propoziția 3.42 când K nu e algebric închis. Această observație ne permite să vorbim despre polaritate în raport cu o hipercuadrică nedegenerată: într-adevăr, construcțiile algebrice pe care le-am făcut utilizând o formă pătratică nedegenerată sunt invariante la multiplicarea cu o constantă nenulă, deci sunt bine definite pentru o clasă de forme pătratice din $PQ_n(K)$ și, prin φ , pentru hipercuadrica nedegenerată corespunzătoare. Astfel că putem considera hiperplanul polar al unei hipercuadrice nedegenerate.

Morala este că, prin fixarea unei hipercuadrice nedegenerate, se poate construi explicit un izomorfism între P^nK și dualul său. Dacă ecuația hipercuadricei este $\sum a_{ij}\xi_i\xi_j=0$, atunci polului $[x_0:\ldots:x_n]$ îi corespunde hiperplanul polar de ecuație $\sum_j(\sum_i a_{ij}x_i)\xi_j=0$. Reciproc, unui hiperplan de ecuație $\sum b_i\xi_i=0$ îi corespunde polul ale cărui coordonate omogene sunt soluții ale sistemului liniar omogen $\sum_i a_{ij}\xi_i=b_j$.

Comparând ecuațiile (3.18) și (3.19), să mai observăm că:

Propoziția 3.46. Dacă γ este o hipercuadrică nedegenerată descrisă de forma pătratică Q și P este un punct al ei, atunci hiperplanul tangent H_P coincide cu hiperplanul polar al lui P.

Dacă ne situăm într-un plan proiectiv și fixăm o conică nedegenerată, atunci polaritatea în raport cu ea transformă drepte în puncte (poli ai dreptelor) și puncte în drepte (polare ale punctelor). Astfel că un triunghi va fi transformat tot într-un triunghi ale cărui vârfuri sunt intersecțiile polarelor vârfurilor primului. Se poate, deci, vorbi de triunghiuri autopolare.

Exercițiul 3.33. Fie γ o conică nedegenerată în P^2K și $A_1A_2A_3$, $A_4A_5A_6$ două triunghiuri autopolare. Să se arate că punctele A_1, \ldots, A_6 se află pe o conică.

15. Puncte conjugate armonic. Biraport

Paragraful acesta e consacrat unor interpretări și aplicații geometrice ale polarității. Începem cu:

DEFINIȚIA 3.27. Fie A,B puncte distincte din P^nK și $C\in AB, C\neq A, C\neq B$. Spunem că un punct $D\in AB$ este conjugat armonic cu C în raport cu $\{A,B\}$ (sau că C și D sunt conjugate armonic față de $\{A,B\}$) dacă și numai dacă: 1. dacă A și B sunt proprii:

- a) când C e propriu și $r = \frac{\overrightarrow{CA}}{\overrightarrow{CB}} \neq -1$, are loc $\frac{\overrightarrow{DA}}{\overrightarrow{DB}} = -r$, adică $\frac{\overrightarrow{CA}}{\overrightarrow{CB}} = -\frac{\overrightarrow{DA}}{\overrightarrow{DB}}$;
- b) când C e propriu şi $r = \frac{\overrightarrow{CA}}{\overrightarrow{CB}} = -1$, atunci D este punctul de la infinit al dreptei AB;
 - c) când C e punctul de la infinit al dreptei AB, atunci $\frac{\overrightarrow{DA}}{\overrightarrow{DB}} = -1$;
- 2. dacă unul dintre punctele A,B este impropriu, atunci A este conjugat armonic cu B în raport cu $\{C,D\}$ ca la punctul 1.

Dacă C și D sunt conjugate armonic în raport cu $\{A,B\}$, vom mai spune că (A,B,C,D) formează o diviziune armonică.

Observația 3.22. 1. Din definiție se vede imediat că relația de conjugare armonică e simetrică: C și D sunt conjugate armonic în raport cu $\{A, B\}$ dacă și numai dacă A și B sunt conjugate armonic în raport cu $\{C, D\}$.

2. În cazul 1. b), când r = -1, C este echibaricentrul sistemului de puncte $\{A, B\}$.

15.1. Exprimarea analitică a conjugării armonice. Fie A,B de coordonate omogene $[1:a_1:\ldots:a_n]$, respectiv $[1:b_1:\ldots:b_n]$. Un punct propriu $C\in AB$ are coordonatele $[1:c_1:\ldots:c_n]$. Raportul $r=\frac{\overrightarrow{CA}}{\overrightarrow{CB}}$ se exprimă prin:

$$r = \frac{a_1 - c_1}{b_1 - c_1} = \dots = \frac{a_n - c_n}{b_n - c_n},$$

de unde scoatem

$$c_i = a_i - rb_i, \quad i = 0, \dots, n,$$

relație posibilă deoarece $A \neq B$ e echivalent cu $r \neq 1$. Deoarece e vorba de coordonate omogene, putem lua pentru C coordonatele $[1-r:a_1-rb_1:\ldots:a_n-rb_n]$. Deci, în general, are loc:

$$(3.21) c_i = a_i - rb_i, i = 0, \dots, n.$$

Fie acum $r \neq -1$. Atunci, conform condiției 1.a) din definiție, coordonatele omogene ale celui de-al patrulea punct D al diviziunii armonice sunt:

(3.22)
$$d_i = a_i + rb_i, \quad i = 0, \dots, n.$$

Dacă $C = [0: a_1 - b_1: \ldots: a_n - b_n]$ este punctul de la infinit al dreptei AB, atunci, folosind 1.d), deducem $D = [1: d_1: \ldots: d_n]$ cu

$$\frac{a_1 - d_1}{b_1 - d_1} = \dots = \frac{a_n - d_n}{b_n - d_n} = -1,$$

de unde obtinem

$$d_i = \frac{1}{2}a_i + \frac{1}{2}b_i, \quad i = 1, \dots, n,$$

astfel că putem considera pentru D coordonatele omogene $[2:a_1+b_1:\ldots:a_n+b_n]$. În concluzie, formulele (3.21), (3.22) sunt adevărate și în acest caz, cu r=1. Cum aceste formule se pot rezolva în raport cu a_i,b_i , obținându-se relații analoage, putem formula:

Propoziția 3.47. $Dacă\ A=[a_0:\ldots:a_n],\ B=[b_0:\ldots:b_n],\ C=[c_0:\ldots:c_n]$ sunt puncte coliniare distincte din P^nK , cu

$$c_i = a_i + \lambda b_i, \quad i = 0, \dots, n$$

atunci conjugatul armonic D al lui C în raport cu $\{A,B\}$ are coordonatele omogene

$$d_i = a_i - \lambda b_i, \quad i = 0, \dots, n.$$

EXERCIȚIUL 3.34. Automorfismele proiective păstrează conjugarea armonică: dacă (A,B,C,D) e o diviziune armonică și f e un automorfism proiectiv, atunci și (f(A),f(B),f(C),f(D)) e o diviziune armonică.

Reciproc, se poate demonstra:

Propoziția 3.48. (Von Staudt) Fie $h: P^1K \to P^1K$ o bijecție care duce orice patru puncte armonic conjugate în patru puncte armonic conjugate. Atunci $h = \overline{f}$ cu $f: K^2 \to K^2$ izomorfism semi-liniar.

Definiția 3.28. O dreaptă care intersectează o hipercuadrică în două puncte distincte se numește secantă a hipercuadricei.

Putem demonstra acum:

Teorema 3.18. Fie γ o hipercuadrică nedegenerată, $P_0 \in P^nK$ un punct fixat care nu stă pe γ . Fie P_1, P_2 punctele de intersecție cu γ ale unei secante arbitrare $prin P_0$. Atunci locul geometric al punctelor conjugate armonic cu P_0 în raport cu $\{P_1, P_2\}$ este hiperplanul polar H_{P_0} .

Demonstrație. Fie $\sum_{i,j=0}^n a_{ij}\xi_i\xi_j=0$ ecuația lui γ și $[p_0:\ldots:p_n]$ coordonatele omogene ale lui P_0 . Fie $Q_0=[q_0:\ldots:q_n]$ conjugatul armonic al lui P_0 în raport cu $\{P_1,P_2\}$. Coordonatele omogene ale lui P_1,P_2 sunt de forma $p_i+\lambda q_i$, cu λ soluții ale ecuației de gradul 2 (obținute prin intersectarea dreptei P_0Q_0 cu γ):

$$\sum_{i,j=0}^{n} a_{ij} p_i p_j + 2\lambda \sum_{i,j=0}^{n} a_{ij} p_i q_j + \lambda^2 \sum_{i,j=0}^{n} a_{ij} q_i q_j = 0.$$

Ecuația are două soluții reale λ_1, λ_2 (deoarece $P_0 \notin \gamma$ atrage după sine $Q_0 \notin \gamma$). Cum și P_1, P_2 sunt conjugate armonic cu $\{P_0, Q_0\}$, din propoziția 3.47 deducem $\lambda_1 + \lambda_2 = 0$, deci $\sum_{i,j=0}^n a_{ij} p_i q_j = 0$, adică $Q_0 \in H_{P_0}$. Reciproc, se vede uşor, ca mai sus, că orice punct al lui H_{P_0} este conjugat

armonic cu P_0 în raport cu punctele de intersecție cu γ ale dreptei P_0Q_0 .

Un caz particular important al enunțului precedent se obține luând P_0 punct impropriu și γ hipercuadrică proprie. Atunci toate secantele prin P_0 sunt paralele iar conjugatul armonic în raport cu $\{P_1, P_2\}$ va fi mijlocul segmentului P_1P_2 . Ajungem la următorul rezultat:

Corolarul 3.15. Fie γ o hipercuadrică proprie. Locul geometric al mijloacelor coardelor ei paralele cu o direcție fixată este un hiperplan.

EXERCIȚIUL 3.35. Dacă γ are centru unic, atunci hiperplanul de mai sus trece prin centru. În acest caz el se numește hiperplan diametral conjugat cu direcția fixată.

15.2. Construcția geometrică a conjugatului armonic și alte aplicații. Am văzut mai sus cum se pot exprima unitar, cu formulele (3.21), (3.22) coordonatele omogene a două puncte conjugate armonic în raport cu alte două, indiferent dacă cele patru puncte sunt proprii sau unul e impropriu. Aceasta motivează următoarea

Convenție. În cazul în care A și B sunt proprii, iar D e punctul de la infinit al dreptei AB, punem $\frac{\overrightarrow{DA}}{\overrightarrow{DB}}=1$ (raport ce nu se poate obține pentru nici un punct D propriu). Cu această convenție avem: C și D sunt conjugate armonic cu $\{A,B\}$ dacă și numai dacă $\frac{\overline{DA}}{\overline{DB}} = -\frac{\overline{CA}}{\overline{CB}}$. Acum putem enunța:

TEOREMA 3.19. (Menelaus) Fie A, B, C puncte proprii necoliniare și d o dreap $t\check{a}$ care intersectează AB (respectiv AC,BC) în punctul C' (respectiv B',A'). Dacă $\{A, B, C\} \cap \{A', B', C'\} = \emptyset$, atunci

(3.23)
$$\frac{\overrightarrow{C'A}}{\overrightarrow{C'B}} \cdot \frac{\overrightarrow{A'B}}{\overrightarrow{A'C}} \cdot \frac{\overrightarrow{B'C}}{\overrightarrow{B'A}} = 1.$$

Demonstrație. Dacă d este improprie, rezultă A', B', C' improprii și convenția anterioară asigură

$$\frac{\overrightarrow{C'A}}{\overrightarrow{C'B}} = \frac{\overrightarrow{A'B}}{\overrightarrow{A'C}} = \frac{\overrightarrow{B'C}}{\overrightarrow{B'A}} = 1,$$

deci (3.23) e satisfăcută.

Dacă d e proprie și unul dintre puncte, de exemplu A', este impropriu, atunci $\frac{\overrightarrow{A'B}}{\overrightarrow{A'C}} = 1 \text{ și } \frac{\overrightarrow{C'A}}{\overrightarrow{C'B}} = \frac{\overrightarrow{B'A}}{\overrightarrow{B'C}} \text{ conform teoremei lui Thales.}$ Nu e posibil ca două dintre A', B', C' să fie improprii pentru că atunci d ar fi

improprie, contradicție.

Acum, dacă A', B', C' sunt proprii, având în vedere regula de înmulțire a rapoartelor în corpul coordonatelor, construim mai întâi vectorii $\overrightarrow{A'C_1} = \overrightarrow{B'C}$, $\overrightarrow{A'B_1} = \overrightarrow{B'A}$ astfel încât să avem $\frac{\overrightarrow{B'C}}{\overrightarrow{B'A}} = \frac{\overrightarrow{A'C_1}}{\overrightarrow{A'B_1}}$ (vezi figura).

FIGURA 3.7 Teorema lui Menelaus

Fie $X \in A'C_1$ cu proprietatea $\frac{\overrightarrow{A'B}}{\overrightarrow{A'C}} = \frac{\overrightarrow{A'X}}{\overrightarrow{A'C_1}}$ (deci $BX \parallel CC_1$). Avem

$$\frac{\overrightarrow{A'B}}{\overrightarrow{A'C}} \cdot \frac{\overrightarrow{B'C}}{\overrightarrow{B'A}} = \frac{\overrightarrow{A'X}}{\overrightarrow{A'C_1}} \cdot \frac{\overrightarrow{A'C_1}}{\overrightarrow{A'B_1}} = \frac{\overrightarrow{A'X}}{\overrightarrow{A'B_1}} \; .$$

 $\underbrace{\text{Fie, de asemenea}}, \ X_1 \in BX \ \text{cu proprietatea} \ \overrightarrow{C'X_1} = \overrightarrow{A'X} \ \text{și} \ B_2 \in AB_1 \ \text{cu} \ \overrightarrow{A'B_1} = \overrightarrow{A'B_2} = \overrightarrow{A'X}$ $\overline{C'B_2'}$ (deci $B_1B_2||d$). Avem relațiile

$$\frac{\overrightarrow{A'X}}{\overrightarrow{A'B_1}} \cdot \frac{\overrightarrow{C'A}}{\overrightarrow{C'B}} = \frac{\overrightarrow{C'X_1}}{\overrightarrow{C'B_2}} \cdot \frac{\overrightarrow{C'A}}{\overrightarrow{C'B}}$$

În fine, construim prin X_1 paralela la B_2A care intersectează C'A în Y. Rezultă $\frac{\overrightarrow{C'X_1'}}{\overrightarrow{C'B_2'}} = \frac{\overrightarrow{C'Y}}{\overrightarrow{C'A}}$ de unde Y = B. Ca urmare

$$\frac{\overrightarrow{C'X_1}}{\overrightarrow{C'B_2}} \cdot \frac{\overrightarrow{C'A}}{\overrightarrow{C'B}} = \frac{\overrightarrow{C'B}}{\overrightarrow{C'A}} \cdot \frac{\overrightarrow{C'A}}{\overrightarrow{C'B}} = 1. \qquad \Box$$

Demonstrăm în continuare că dacă un fascicol de patru drepte e tăiat de o dreaptă după o diviziune armonică, atunci orice dreaptă îl taie după o diviziune armonică:

Propoziția 3.49. Fie d_1, d_2, d_3, d_4 patru drepte în P^nK , concurente în S. Dacă există o dreaptă care intersectează d_i în A_i (i = 1, 2, 3, 4) cu (A_1, A_2, A_3, A_4) formând o diviziune armonică, atunci orice dreaptă care nu trece prin S și intersectează cele patru drepte determină pe ele o diviziune armonică.

Demonstrație. Dacă S e impropriu, dreptele sunt paralele și proprietatea din enunț se reduce la una (afină) binecunoscută.

Dacă S e propriu, dreptele considerate sunt proprii. Fie B_i punctele în care o altă secantă taie d_i .

Pasul 1. Considerăm întâi cazul particular în care $A_1=B_1$. Aplicăm teorema lui Menelaus triunghiului $A_1A_2B_2$ tăiat de dreptele SA_3B_3 și SA_4B_4 . Rezultă relațiile:

$$\begin{split} \frac{\overrightarrow{A_3A_1}}{\overrightarrow{A_3A_2}} \cdot \frac{\overrightarrow{SA_2}}{\overrightarrow{SB_2}} \cdot \frac{\overrightarrow{B_3B_2}}{\overrightarrow{B_3B_1}} &= 1; \\ \frac{\overrightarrow{A_4A_2}}{\overrightarrow{A_4A_1}} \cdot \frac{\overrightarrow{B_4A_1}}{\overrightarrow{B_4B_2}} \cdot \frac{\overrightarrow{SB_2}}{\overrightarrow{SA_2}} &= 1. \end{split}$$

Cum înmulțirea rapoartelor din K e comutativă, făcând produsul membru cu membru al acestor relații obținem:

$$\frac{\overrightarrow{A_3}\overrightarrow{A_1}}{\overrightarrow{A_3}\overrightarrow{A_2}}\cdot \frac{\overrightarrow{A_4}\overrightarrow{A_2}}{\overrightarrow{A_4}\overrightarrow{A_1}}\cdot \frac{\overrightarrow{B_3}\overrightarrow{B_2}}{\overrightarrow{B_3}\overrightarrow{B_1}}\cdot \frac{\overrightarrow{B_4}\overrightarrow{A_1}}{\overrightarrow{B_4}\overrightarrow{B_2}}=1.$$

Dar $\frac{\overline{A_3}\overline{A_1'}}{\overline{A_3}\overline{A_2'}} = -\frac{\overline{A_4}\overline{A_1'}}{\overline{A_4}\overline{A_2'}}$ pentru că (A_1, A_2, A_3, A_4) e diviziune armonică. Rezultă $\frac{\overline{B_3}\overline{B_1'}}{\overline{B_3}\overline{B_2'}} = -\frac{\overline{B_4}\overline{A_1'}}{\overline{B_4}\overline{B_2'}}$.

 $Pasul\ 2$. Fie, acum, dreapta d' care taie d_i în B_i , $S \notin d'$. Dreapta A_1B_4 taie d_2 în C_2 și d_3 în C_3 . Conform pasului 1, diviziunea (A_1, C_2, C_3, B_4) e armonică ceea ce implică, din nou conform pasului 1, că diviziunea (B_4, B_3, B_2, B_1) e armonică. \square

Putem deci spune că patru drepte coplanare concurente care sunt tăiate după o diviziune armonică formează un fascicol armonic. Dreptele fascicolului se mai numesc raze, iar fascicolul se poate nota $S(d_1, d_2, d_3, d_4)$.

EXERCIȚIUL 3.36. Fie \mathcal{P} un plan afin (considerat scufundat în completatul său proiectiv) cu corpul coordonatelor comutativ, de caracteristică diferită de 2. Fie ABCD un paralelogram, fie O intersecția diagonalelor AC, BD. Fie $d_1 = AC$, $d_2 = BD$, d_3 , d_4 paralele prin O la AB, respectiv BC. Atunci $O(d_1, d_2, d_3, d_4)$ e un fascicol armonic.

Mai general, putem enunța:

Propoziția 3.50. (A patrulaterului complet) Fie π un plan proiectiv pappian cu corpul coordonatelor asociat de caracteristică diferită de 2. Fie A, B, C, D puncte trei câte trei necoliniare. Fie $\{E\} = AB \cap CD$, $\{F\} = AD \cap BC$, $\{G\} = AC \cap BD$. Atunci dreptele GA, GB, GE, GF formează un fascicol armonic.

Nu avem decât să alegem EF drept dreaptă de la infinit. Acum ABCD e paralelogram şi se aplică exercițiul anterior. Acest mod de demonstrație (l-am folosit şi în discuția teoremei lui Pappus), bazat pe expedierea la infinit a unei drepte şi folosirea rezultatelor de geometrie afină, e justificat de izomorfismul existent între corpurile coordonatelor asociate diferitelor hiperplane ale spațiului.

Observația 3.23. Dacă $\operatorname{car} K=2$, atunci orice patru puncte trei câte trei necoliniare formează un paralelogram cu diagonale paralele. Rezultă E,F,G coliniare și se regăsește configurația lui Fano.

Putem acum să indicăm un mod geometric de a construi conjugatul armonic al unui punct în raport cu alte două. Fie $A \neq B$ în P^nK , $E \in AB$, $E \not\in \{A,B\}$. Pentru a construi conjugatul armonic E' al lui E în raport cu $\{A,B\}$, ne orientăm după figură. Alegem C și D astfel încât A,B,C,D să fie trei câte trei necoliniare și $E \in CD$. Notăm $\{F\} = BC \cap AD$, $\{G\} = AC \cap BD$. Atunci (A,B,E,E'), cu $\{E'\} = GF \cap AB$ e o diviziune armonică.

EXERCIȚIUL 3.37. În notațiile de mai sus, fie $\{G'\} = AC \cap EF$. Să se arate că (A,C,G,G') e o diviziune armonică.

Să dăm și o demonstrație sintetică pentru:

Propoziția 3.51. Orice izomorfism proiectiv păstrează diviziunea armonică.

Demonstrație. Ne referim din nou la notațiile de pe figura privind patrulaterul complet. Întreaga configurație e cuprinsă într-un plan. Acesta e transformat de un izomorfism φ tot într-un plan (de asemenea pappian). Deoarece φ duce drepte în drepte și e bijecție, va păstra toate concurențele din figură, deci figura transformată e analoagă celei de plecare. Atunci, conform construcției anterioare, imaginile prin φ ale unei diviziuni armonice formează o diviziune armonică.

15.3. Biraport. Vom generaliza în cele ce urmează noțiunea de diviziune armonică. Avem nevoie întâi de:

Definiția 3.29. Fie V un K-spațiu vectorial de dimensiune n+1. Se numește reper proiectiv în P(V) un sistem de n+2 puncte $\{[e_0], \ldots, [e_{n+1}]\}$ cu proprietățile:

- 1) $\{e_1,\ldots,e_{n+1}\}$ e reper al lui V (deci $\{[e_1],\ldots,[e_{n+1}]\}$ e bază în P(E)).
- 2) $e_0 = e_1 + e_2 + \cdots + e_{n+1}$.

Rolul lui $[e_0]$ este esenţial. Într-adevăr, dacă $\{e'_1,\ldots,e'_{n+1}\}$ este un alt reper din V cu proprietatea ca $[e'_i]=[e_i]$, rezultă că oricare ar fi indicele $i=1,\ldots,n+1$, există $\lambda_i\in K-\{0\}$ astfel încât $e'_i=\lambda_i e_i$. Atunci, oricare ar fi $x\in V$, $x=\sum x_i e_i=\sum x'_i e'_i$ ar rezulta că $x_i=\lambda_i x'_i$. Dacă în mulţimea $\mathcal R$ ce defineşte un reper in P(E) am omite pe $[e_0]$, atunci lui x ar trebui să-i asociem de asemenea coordonatele $[\lambda_1 x_1;\ldots;\lambda_{n+1} x_{n+1}]$ care nu reprezintă coordonate omogene pentru x decât dacă $\lambda_1=\cdots=\lambda_{n+1}=\lambda$. Deci coordonatele omogene nu se pot asocia unei baze (ordonate) din P(V). Aici intervine rolul lui $[e_0]$. Cerând ca $[e'_o]=[e_0]$, obţinem existenţa lui $\lambda\in K-\{0\}$ astfel încât $e'_0=\lambda e_0$, de unde se deduce $\lambda_1=\cdots=\lambda_{n+1}=\lambda$.

O definiție echivalentă a noțiunii de reper avem în:

EXERCIȚIUL 3.38. Fie $\mathcal{R} = \{[m_0], \ldots, [m_{n+1}]\}$ un sistem de puncte din spațiul proiectiv P(V), dim V = n + 1. Atunci \mathcal{R} este un reper al lui P(V), dacă și numai dacă oricare ar fi $i \in \{0, 1, \ldots, n + 1\}$ sistemul de puncte $\mathcal{R} - \{[m_i]\}$ este liber.

Pentru repere proiective avem un rezultat de tipul propoziției 1.23 (de la spații vectoriale) sau al corolarului 2.16 (de la spații afine):

Propoziția 3.52. Fie V, V', spații vectoriale (n+1)-dimensionale peste corpul K și $\mathcal{R} = \{[e_0], \ldots, [e_{n+1}]\}$, $\mathcal{R}' = \{[e'_0], \ldots, [e'_{n+1}]\}$ repere proiective în P(V) și P(V'). Atunci există o unică transformare proiectivă bijectivă $T: P(V) \to P(V')$ astfel încât $T([e_i]) = [e'_i]$, oricare ar fi $i = 0, 1, \ldots, n+1$.

Demonstrație. Cum $\{e_1,\ldots,e_{n+1}\}$, $\{e'_1,\ldots,e'_{n+1}\}$ sunt repere vectoriale din V respectiv V', există un izomorfism liniar $f:V\to V'$ astfel încât $f(e_i)=e'_i$, oricare ar fi $i=1,\ldots,n+1$ (vezi propoziția 1.23); f induce $\overline{f}:P(V)\to P(V')$ prin $\overline{f}([x])=[f(x)]$. Luăm $T=\overline{f}$. Unicitatea rezultă ușor folosind proprietatea lui e_0 , e'_0 din reperele proiective.

Pe de altă parte, fie $A_1, A_2, A_3 \in P^1K$ distincte două câte două. Conform exercițiului 3.38, $\{A_1, A_2, A_3\}$ este un reper al lui P^1K . Fie $\{e_1, e_2\}$ baza canonică a lui K^2 și $e_0 = e_1 + e_2$. Atunci $\{[e_0], [e_1], [e_2]\}$ e un reper al lui P^1K . Conform propoziției anterioare există un unic automorfism proiectiv al lui P^1K cu proprietățile: $T(A_1) = [e_1], T(A_2) = [e_2], T(A_3) = [e_0]$. Reamintim acum că P^1K se identifică cu $K \cup \{\infty\}$ printr-un izomorfism proiectiv α cu proprietatea $[1:v] \mapsto v$ și $[0:v] \mapsto \infty$. Deci $\alpha([e_1]) = \alpha([1:0]) = 0, \alpha([e_2]) = \alpha([0:1]) = \infty, \alpha([e_0]) = \alpha([1:1]) = 1$. Punând $f_{A_1A_2A_3} = \alpha \circ T$, deducem:

Propoziția 3.53. Date $A_1, A_2, A_3 \in P^1K$ distincte două câte două, există un unic izomorfism proiectiv $f_{A_1A_2A_3}: P^1K \to K \cup \{\infty\}$ cu proprietățile:

$$f_{A_1 A_2 A_3}(A_1) = 0$$
, $f_{A_1 A_2 A_3}(A_2) = \infty$, $f_{A_1 A_2 A_3}(A_3) = 1$.

Putem acum da:

Definiția 3.30. Fie A_1, A_2, A_3, A_4 puncte din P^1K , primele trei distincte două câte două. Se numește biraport sau raport $anarmonic^9$ al celor patru puncte scalarul $[A_1, A_2, A_3, A_4] = f_{A_1A_2A_3}(A_4) \in K \cup \{\infty\}$ unde $f_{A_1A_2A_3}$ este izomorfismul proiectiv din propoziția 3.53.

Observația 3.24. $[A_1,A_2,A_3,A_4]=\infty$ dacă și numai dacă $A_4=A_2$; $[A_1,A_2,A_3,A_4]=0$ dacă și numai dacă $A_4=A_1$; $[A_1,A_2,A_3,A_4]=1$ dacă și numai dacă $A_4=A_3$.

Direct din definiție rezultă:

Propoziția 3.54. Biraportul a patru puncte din P^1K , definit mai sus, este invariant proiectiv: dacă f e un automorfism proiectiv al lui P^1K , atunci $[A_1, A_2, A_3, A_4] = [f(A_1), f(A_2), f(A_3), f(A_4)].$

Într-adevăr, dacă $f(A_i) = A_i'$, i = 1, 2, 3 și T' este unicul automorfism proiectiv al lui P^1K cu $T'(A_1) = [e_1]$, $T'(A_2) = [e_2]$, $T'(A_3) = [e_0]$, atunci $T' \circ f$ duce A_1 în $[e_1]$, A_2 în $[e_2]$, A_3 în $[e_0]$, deci coincide cu unicul izomorfism proiectiv T care avea aceste propreități.

Dacă se cunosc coordonatele omogene ale punctelor A_i , atunci se poate găsi explicit valoarea biraportului. Avem întâi nevoie de:

Lema 3.10. Fie $A_1 = [\xi]$, $A_2 = [\eta]$, $A_3 = [\xi + \eta]$ puncte distincte pe P^1K . Atunci $A_4 = [\lambda \xi + \mu \eta]$ dacă şi numai dacă $[A_1, A_2, A_3, A_4] = \alpha([\lambda, \mu])$.

⁹Noțiunea a fost introdusă de Pappus, dar studiată sistematic de Poncelet.

Demonstrație. Din definiția lui α , $\alpha([e_1])=0$, $\alpha([e_2])=\infty$ și $\alpha([e_1+e_2])=1$. Atunci $f_{A_1A_2A_3}=\overline{f}$ unde $f(\xi)=e_1$, $f(\eta)=e_2$. Rezultă

$$f_{A_1 A_2 A_3}(A_4) = f_{A_1 A_2 A_3}([\lambda \xi + \mu \eta]) =$$

= $\alpha \circ \overline{f}([\lambda \xi + \mu \eta]) = \alpha([\lambda e_1 + \mu e_2]) = \alpha([\lambda, \mu]). \quad \Box$

Propoziția 3.55. Fie $A_i = [x_i:y_i], i = 1, 2, 3, 4$ puncte din P^1K , primele trei distincte două câte două. Atunci

$$[A_1, A_2, A_3, A_4] = \frac{\begin{vmatrix} x_1 & x_4 \\ y_1 & y_4 \end{vmatrix}}{\begin{vmatrix} x_1 & x_3 \\ x_1 & x_3 \\ y_1 & y_3 \end{vmatrix}} : \frac{\begin{vmatrix} x_4 & x_2 \\ y_4 & y_2 \end{vmatrix}}{\begin{vmatrix} x_3 & x_2 \\ y_3 & y_2 \end{vmatrix}}.$$

 $\begin{array}{ll} \textit{Demonstrație}. \ \ \text{Fie} \ \ a_i \in K^2 \ \ \text{astfel încât} \ \ [a_i] = A_i. \ \ \text{Cum} \ \ A_1 \ \ \text{e} \ \ \text{distinct} \ \ \text{de} \ \ A_2, \\ a_1, a_2 \ \ \text{sunt} \ \ \text{vectori} \ \ \text{independenți} \ \ \text{și} \ \ \text{există} \ \ \text{scalarii} \ \ \xi, \beta, \gamma, \delta \ \ \text{astfel} \ \ \hat{\text{incât}} \end{array}$

$$a_3 = xia_1 + \beta a_2, \quad a_4 = \gamma a_1 + \delta a_2.$$

Deci $a_4=\frac{\gamma}{\xi}(\xi a_1)+\frac{\delta}{\beta}(\beta a_2)$. Observăm că $A_1=[a_1]=[\xi a_1]$ și $A_2=[a_2]=[\beta a_2]$, deci suntem în condițiile lemei anterioare. Rezultă că $[A_1A_2A_3A_4]=\alpha([\frac{\gamma}{\xi},\frac{\delta}{\beta}])$. Rămâne să calculăm scalarii ξ,β , respectiv γ,δ din sistemele de tip Cramer: $\xi x_1+\beta x_2=x_3,\ \xi y_1+\beta y_2=y_3$, respectiv $\gamma x_1+\delta x_2=x_4,\ \gamma y_1+\delta y_2=y_4$. Obținem

$$\xi = \frac{x_3 y_2 - y_3 x_2}{x_1 y_2 - x_2 y_1}, \ \beta = \frac{x_1 y_3 - y_1 x_3}{x_1 y_2 - x_2 y_1},$$
$$\gamma = \frac{x_4 y_2 - y_4 x_2}{x_1 y_2 - x_2 y_1}, \ \delta = \frac{x_1 y_4 - y_1 x_4}{x_1 y_2 - x_2 y_1}.$$

În final, găsim

$$[A_1 A_2 A_3 A_4] = \frac{\delta}{\beta} : \frac{\gamma}{\xi} = \frac{x_1 y_4 - y_1 x_4}{x_1 y_3 - y_1 x_3} : \frac{x_4 y_2 - y_4 x_2}{x_3 y_2 - y_3 x_2},$$

ceea ce trebuia demonstrat.

Biraportul a patru puncte depinde de ordinea în care se consideră punctele. Dacă notăm $\beta = [A_1, A_2, A_3, A_4]$ și facem toate permutările posibile (considerăm acum toate punctele distincte două câte două), folosind formula (3.24) vom obține valorile:

$$\beta, \frac{1}{\beta}, 1-\beta, \frac{1}{1-\beta}, \frac{\beta-1}{\beta}, \frac{\beta}{\beta-1}$$
.

Atunci putem defini funcția

(3.25)
$$j: K - \{0, 1\} \to K, \quad j(z) = \frac{(z^2 - \beta + 1)^2}{z^2(z - 1)^2}$$

care are proprietatea

$$j(z)=j(z') \text{ dacă și numai dacă } z' \in \left\{z,\frac{1}{z},1-z,\frac{1}{1-z},\frac{z-1}{z},\frac{z}{z-1}\right\}.$$

Definiția 3.31. Date patru puncte distincte două câte două pe P^1K , numărul $j(\beta)$, unde $\beta = [A_1, A_2, A_3, A_4]$, se numește modulul cuaternei respective și se notează $j(A_1, A_2, A_3, A_4)$.

Cititorul va demonstra:

EXERCIȚIUL 3.39. Două cuaterne (neordonate) de pe P^1K au același modul dacă și numai dacă sunt proiectiv echivalente.

Putem acum extinde definiția biraportului pentru puncte de pe o dreaptă proiectivă arbitrară d a unui spațiu sau plan proiectiv M care satisface axioma lui Pappus-Pascal. Dacă corpul coordonatelor asociat lui M este izomorf cu K, considerăm $\varphi: d \to P^1K$ un izomorfism proiectiv. Pentru $A_1, A_2, A_3, A_4 \in d$, primele trei distincte două câte două, definim

$$[A_1, A_2, A_3, A_4] = [\varphi(A_1), \varphi(A_2), \varphi(A_3), \varphi(A_4)].$$

Independența acestei definiții de alegerea lui φ rezultă din propoziția 3.54. Întradevăr, dacă φ' este un alt izomorfism proiectiv între d și P^1K , atunci $\varphi'\varphi^{-1}$ este un automorfism proiectiv. Deci

$$\begin{aligned} [\varphi(A_1), &\varphi(A_2), \varphi(A_3), \varphi(A_4)] = \\ &= [\varphi'\varphi^{-1}(\varphi(A_1)), \varphi'\varphi^{-1}(\varphi(A_2)), \varphi'\varphi^{-1}(\varphi(A_3)), \varphi'\varphi^{-1}(\varphi(A_4))] = \\ &= [\varphi'(A_1), \varphi'(A_2), \varphi'(A_3), \varphi'(A_4)] \end{aligned}$$

ceea ce trebuia demonstrat.

EXERCIȚIUL 3.40. Dacă A_1, A_2, A_3 sunt puncte distincte pe d și $k \in K$, există un unic punct A_4 pe d astfel încât $[A_1, A_2, A_3, A_4] = k$.

Fie acum $A \in P^2K$. Fascicolul de drepte A^* prin A poate fi considerat drept dreaptă a planului proiectiv dual P^2K^* . Dacă d_1, d_2, d_3, d_4 sunt patru drepte ale fascicolului A^* , ele reprezintă patru puncte coliniare pe dreapta A^* din planul dual. Deci, dacă trei dintre ele sunt distincte două câte două, are sens să vorbim despre biraportul acestui fascicol de patru drepte. Biraportul unui fascicol de patru drepte se poate exprima cu ajutorul biraportului punctelor de intersecție dintre o dreaptă arbitrară și dreptele fascicolului:

Propoziția 3.56. Fie $d_1, d_2, d_3, d_4 \in A^*$, primele trei distincte două câte două. Fie d o dreaptă arbitrară care nu trece prin A și care intersectează d_i în A_i . Atunci

$$[d_1, d_2, d_3, d_4] = [A_1, A_2, A_3, A_4].$$

Demonstrație. Fie $\mu:A^*\to d$, $\mu(\delta)=\delta\cap d$. Rezultă ușor că μ este izomorfism proiectiv (\mathcal{A}^* este considerată dreaptă din planul dual). Ca urmare, μ conservă biraportul.

Corolarul 3.16. Fie d_1, d_2, d_3, d_4 drepte prin A, primele trei distincte două câte două. Fie d (respectiv d') o dreaptă arbitrară care nu trece prin A și care intersectează d_i în A_i (respectiv A_i). Atunci

$$[A_1, A_2, A_3, A_4] = [A'_1, A'_2, A'_3, A'_4].$$

Exemplul 3.18. Fie d_1, d_2, d_3, d_4 drepte afine din \mathbb{R}^2 , concurente în O. Fie d o dreaptă arbitrară din plan, paralelă cu d_4 și A_i intersecțiile lui d cu d_i , i=1,2,3. Atunci, din corolarul anterior rezultă $r(A_1, A_2, A_3) = [d_1, d_2, d_3, d_4]$ (ca să vorbim de biraport al fascicolului, considerăm planul afin scufundat în completatul său proiectiv etc.) Cu acest rezultat putem demonstra următorul enunț (de geometrie afină): Fie M un punct în planul triunghiului (ABC). Dreptele $\langle AM \rangle$, $\langle BM \rangle$, $\langle CM \rangle$ taie dreptele $\langle BC \rangle$, $\langle CA \rangle$, $\langle AB \rangle$ în punctele A', B', C' respectiv. Are loc relația lui Van Aubel: r(A, C, B') + r(A, B, C') = r(A, A', M). Pentru demonstrație e suficient să ducem prin B și C paralelele BB_1 , CC_1 $(B_1, C_1 \in AM)$ la laturile opuse ale triunghiului și să ne raportăm la fascicolul BA, BC, BB', BB_1 .

Să observăm că o cuaternă ordonată de pe P^1K cu biraportul -1 (sau în care trei puncte coincid) formează o diviziune armonică. Într-adevăr, punând $A_1 = [x]$, $A_2 = [y]$, $A_3 = [x+y]$, $A_4 = [\lambda x + \mu y]$, atunci $[A_1, A_2, A_3, A_4] = -1$ e echivalent cu $\lambda = -\mu$ conform lemei 3.10. Rezultă $A_4 = [x-y]$, în acord cu propoziția 3.47. Putem da:

Propoziția 3.57. O cuaternă ordonată de pe P^1K formează o diviziune armonică dacă și numai dacă trei dintre puncte coincid sau dacă biraportul ei este -1.

16. Teoremele lui Pascal si Brianchon

În acest paragraf ne situăm în planul proiectiv P^2K (K e comutativ, de caracteristică diferită de 2). Pentru două puncte A,B ale unei conice γ , AB va însemna fie dreapta determinată de A și B, când punctele sunt distincte, fie tangenta în A la γ , când punctele coincid. Notăm $\{e_1,e_2,e_3\}$ reperul canonic al lui K^3 , $e_0=e_1+e_2+e_3$, astfel că $\{[e_0],[e_1],[e_2],[e_3]\}$ e un reper proiectiv în P^2K pe care îl vom numi, de asemenea, canonic.

Enunțurile care urmează pregătesc demonstrația teoremei lui Pascal. Începem cu:

Propoziția 3.58. Există și este unică o conică nedegenerată γ care conține punctele $[e_0]$, $[e_2]$, $[e_3]$ ale reperului canonic și ale cărei tangente în punctele $[e_2]$, $[e_3]$ se întâlnesc în $[e_1]$.

Demonstrație. Fie

$$(3.26) a_{00}\xi_0^2 + a_{11}\xi_1^2 + a_{22}\xi_2^2 + 2a_{12}\xi_1\xi_2 + 2a_{10}\xi_1\xi_0 + 2a_{20}\xi_2\xi_0 = 0$$

ecuația generală a unei conice. Căutăm să determinăm coeficienții a_{ij} astfel încât să fie satisfăcute condițiile din enunț; $[e_2], [e_3] \in \gamma$ conduc la $a_{11} = a_{22} = 0$. Tangenta t în $[e_2]$ la γ are ecuația $a_{01}\xi_0 + a_{12}\xi_2 = 0$ și $[e_1] \in t$ implică $a_{01} = 0$. Analog, cerința ca $[e_1]$ să aparțină tangentei în $[e_3]$ implică $a_{02} = 0$. În fine, $[e_0] \in \gamma$ conduce la $a_{00} = -2a_{12}$. Astfel că ecuația lui γ este:

$$\xi_0^2 - \xi_1 \xi_2 = 0. \quad \Box$$

COROLARUL 3.17. Ecuația oricărei conice nedegenerate se poate pune, modulo un izomorfism proiectiv, sub forma (3.27).

Într-adevăr, e suficient să fixăm trei puncte distincte A_0, A_2, A_3 pe γ și sa notăm A_1 punctul de intersecție al tangentelor în A_2, A_3 . Să observăm apoi că A_0, \ldots, A_3 formează un reper proiectiv și să considerăm izomorfismul proiectiv care aplică acest reper proiectiv peste cel canonic.

Propoziția 3.59. Prin oricare cinci puncte distincte ale lui P^2K , trei câte trei necoliniare, trece o conică nedegenerată unică.

Demonstrație. Fie A_0, A_1, \ldots, A_4 puncte ca în enunț. Cu exercițiul 3.38, oricare patru dintre ele formează un reper proiectiv. Le alegem pe primele patru pentru a forma reperul. Abstracție făcând de un izomorfism proiectiv al lui P^2K , putem presupune că acesta este chiar reperul canonic, i.e. $A_0 = [1:1:1], A_1 = [1:0:0], A_2 = [0:1:0], A_3 = [0:0:1].$

Fie acum γ o conică de ecuație (3.26). Condițiile $A_i \in \gamma$ pentru i = 0, ..., 3 conduc la $a_{00} = a_{11} = a_{22} = 0$ și $a_{12} + a_{10} + a_{20} = 0$. Ecuația (3.26) devine

$$(3.28) -(a_{10} + a_{20})\xi_1\xi_2 + a_{10}\xi_1\xi_0 + a_{20}\xi_2\xi_0 = 0.$$

Acum intră în joc punctul A_4 . Fie [x:y:z] coordonatele sale omogene. Cum $A_4 \in \gamma$, ecuația (3.28) furnizează

$$(3.29) a_{10}y(x-z) + a_{20}z(x-y) = 0.$$

Trebuie văzut că această ecuație, în necunoscutele (a_{10},a_{20}) , are soluție. Or, prin ipoteză, A_4 nu aparține nici uneia dintre dreptele A_iA_j , $i,j\in\{0,1,2,3\}$. Ca urmare, x,y,z sunt nenule și distincte, ceea ce asigură existența soluțiilor.

Pe de altă parte, deoarece căutăm o conică nedegenerată, impunem condiția $\det(a_{ij}) \neq 0$, ceea ce revine la $a_{10} \neq 0$, $a_{20} \neq 0$, $a_{10} + a_{20} \neq 0$. Obținem ecuația lui γ sub forma:

$$(3.30) a_{12}\xi_1\xi_2 + a_{10}\xi_1\xi_0 + a_{20}\xi_2\xi_0 = 0. \quad \Box$$

Fie în continuare γ o conică nedegenerată și A un punct de pe γ . Notăm A^* fascicolul de drepte care trec prin A. Fie $\pi_A:\gamma\to A^*$ aplicația definită prin $\pi_A(B)=AB$. Avem:

Propoziția 3.60. π_A este bijecție. Pentru $A, B \in \gamma$, $\pi_A \circ \pi_B^{-1}$ este izomorfism proiectiv între B^* și A^* privite ca drepte ale spațiului proiectiv dual P^2K^* .

Demonstrație. Bijectivitatea lui π_A este consecință a faptului că orice dreaptă prin A mai taie conica încă într-un punct (eventual confundat cu A). Dacă $B=A, \pi_B\circ\pi_B^{-1}=1_{B^*}$ care e izomorfism proiectiv. Dacă $B\neq A$, atunci, conform corolarului 3.17, putem presupune A=[0:1:0], B=[0:0:1] și ecuația lui γ sub forma (3.27). Atunci A^* este mulțimea dreptelor de ecuații

(3.31)
$$\lambda \xi_0 + \mu \xi_2 = 0, \quad (\lambda, \mu) \neq (0, 0)$$

iar B^* este mulțimea dreptelor de ecuații

$$(3.32) \lambda' \xi_0 + \mu' \xi_1 = 0, \quad (\lambda', \mu') \neq (0, 0).$$

Fie acum $d \in A^*$ şi $d' = \pi_B \circ \pi_A^{-1}(d)$. Dacă $d \cap \gamma = A'$, atunci $d \cap d' = A'$. Deci, dacă (λ, μ) (respectiv (λ', μ') sunt parametrii directori ai lui d (respectiv d'), rezultă, ținând seamă de forma specială a ecuației lui γ , că $\lambda \lambda' = \mu \mu'$. Cum parametrii directori sunt determinați până la proporționalitate, deducem că asocierea dintre d si d' e biunivocă.

Putem să definim acum biraportul a patru puncte de pe o conică nedegenerată. Demonstrăm întâi:

Propoziția 3.61. Fie A_1, A_2, A_3, A_4 puncte trei câte trei necoliniare pe conica nedegenerată γ . Fie C, D puncte distincte pe γ Atunci are loc egalitatea de birapoarte de fascicole de drepte (vezi propoziția 3.56):

$$[CA_1, CA_2, CA_3, CA_4] = [DA_1, DA_2, DA_3, DA_4].$$

Demonstrație. Conform propoziției anterioare, $\pi_D \circ \pi_C^{-1}$ e izomorfism proiectiv între C^* și D^* . Conform propoziției 3.54, $\pi_D \circ \pi_C^{-1}$ păstrează biraportul. E suficient acum să observăm că dreptele CA_i și DA_i se corespund prin $\pi_D \circ \pi_C^{-1}$.

Acum putem da:

Definiția 3.32. Fie A_1, A_2, A_3, A_4 puncte trei câte trei necoliniare pe conica nedegenerată γ . Biraportul $[A_1, A_2, A_3, A_4]$ este biraportul fascicolului de patru drepte $[CA_1, CA_2, CA_3, CA_4]$, oricare ar fi $C \in \gamma$.

Ultimul pas pregătitor pentru teorema lui Pascal este:

EXERCIȚIUL 3.41. Fie $[A_1, A_2, A_3, A_4] = [B_1, B_2, A_3, B_4]$. Arătați că dreptele A_1B_1 , A_2B_2 , A_4B_4 sunt concurente. Enunțati și demonstrați duala acestei proprietăți.

În continuare vom numi hexagramă şase puncte ordonate lexicografic dintre care cel mult trei perechi coincid. Indicii i, j vor lua valorile $1, \ldots, 6$ si convenim ca orice indice care depășeste 6 să fie considerat modulo 6. Dacă $A_1A_2\ldots A_6$ este o hexagramă înscrisă sau circumscrisă unei conice, vom spune că, A_iA_{i+1} sunt laturi ale hexagramei. Laturile A_iA_{i+1} şi $A_{i+3}A_{i+4}$ se numesc opuse. Segmentele A_iA_{i+3} se numesc diagonale. Acum putem demonstra teorema centrală a acestui paragraf.

Teorema lui Pascal. Perechile de laturi opuse ale unei hexagrame înscrise într-o conică nedegenerată se întâlnesc în trei puncte coliniare.

Demonstrație. Fie $A_1A_2...A_6$ o hexagramă înscrisă în conica nedegenerată γ , fie $\{B_i\}=A_iA_{i+1}\cap A_{i+3}A_{i+4}\ (i=1,2,3)$ intersecțiile perechilor de laturi opuse. Considerăm și punctele S,T de intersecție ale perechilor de laturi A_5A_6 , A_3A_4 și respectiv A_2A_3 , A_4A_5 . Va fi suficient să demonstrăm că dreptele TA_3 , B_1B_3 , A_5S sunt concurente. Ideea este să aplicăm exercițiul 3.41. Pentru aceasta e suficient să probăm egalitatea birapoartelor $[T,B_1,A_4,A_5]$ și $[A_3,B_3,A_4,S]$. Or aceasta rezultă din șirul de egalități: $[T,B_1,A_4,A_5]=[A_2A_3,A_2A_1,A_2A_4,A_2A_5]=[A_6A_3,A_6A_1,A_6A_4,A_6A_5]=[A_3,B_3,A_4,S]$.

Dreapta pe care se află intersecțiile laturilor opuse ale hexagramei se numește dreapta lui Pascal. Ea e asociată conicei și hexagramei.

Observația 3.25. Dacă hexagrama din teorema lui Pascal se consideră nu pe o conică nedegenerată ci pe o reuniune de două drepte distincte (conică degenerată), enunțul se trivializează, el reducându-se la axioma Pappus-Pascal care e satisfăcută deoarece corpul K e comutativ.

Exercițiul 3.42. Enunțați și demonstrați reciproca teoremei lui Pascal.

Deoarece prin dualitate în raport cu o conică nedegenerată orice punct al conicei se transformă în dreapta tangentă la conică în acel punct, o hexagramă înscrisă se transformă într-o hexagramă circumscrisă conicei. Astfel, dualizând teorema lui Pascal în raport cu conica pe care se află hexagrama obținem:

Teorema lui Brianchon. Diagonalele unei hexagrame circumscrise unei conice nedegenerate sunt concurente.

FIGURA 3.10 Teorema lui Brianchon

Dăm în continuare, sub formă de exerciții, o serie de proprietăți care sunt consecințe ale teoremelor lui Pascal și Brianchon.

EXERCIȚIUL 3.43. Fie P punctul de intersecție al tangentelor în punctele A,B ale conicei nedegenerate γ . Fie $M,N\in\gamma$ distincte de A,B. Fie $\{U\}=BM\cap AN,\ \{V\}=BN\cap AM$. Să se arate că U,V,P sunt coliniare. (Indicație: Se ia $A_1=A_6=B,\ A_2=M,\ A_3=A_4=A,\ A_5=N$ în teorema lui Pascal).

EXERCIȚIUL 3.44. Fie Δ un triunghi circumscris conicei nedegenerate γ . Dreptele care unesc un vârf al lui Δ cu punctul de tangență la γ situat pe latura opusă sunt concurente. (*Indicație:* Caz particular al teoremei lui Brianchon).

EXERCIȚIUL 3.45. Fie 6 puncte pe o conică nedegenerată. Fiecare permutare a lor furnizează o hexagramă. Fiecare hexagramă furnizează o dreaptă a lui Pascal. Să se arate că există cel mult 60 de drepte ale lui Pascal corespunzătoare celor 6 puncte.

EXERCIȚIUL 3.46. Dacă hexagrama conține cel puțin 4 puncte distincte, demonstrați teorema lui Pascal considerând reperul proiectiv format din aceste 4 puncte.

EXERCIȚIUL 3.47. Fie ABCD un patrulater înscris în conica nedegenerată γ . Tangentele în A și C, respectiv B și D la γ se întâlnesc în puncte ce aparțin dreptei determinate de punctele de intersecție ale laturilor opuse ale patrulaterului. (Indicație: Se aplică teorema lui Pascal pentru $A_1 = A_2 = A$, $A_3 = B$, $A_4 = A_5 = C$, $A_6 = D$, respectiv $A_1 = A$, $A_2 = A_3 = B$, $A_4 = C$, $A_5 = A_6 = D$).

EXERCIȚIUL 3.48. Într-un patrulater circumscris unei conice nedegenerate diagonalele și dreptele care unesc punctele de tangență ale laturilor opuse sunt concurente.

EXERCIȚIUL 3.49. Să se arate că dreptele tangente în vârfurile unui triunghi înscris într-o conică nedegenerată intersectează laturile opuse în trei puncte coliniare. Enunțați și demonstrați duala acestei propoziții.

Următorul enunţ este un caz particular al unei teoreme fundamentale de geometrie proiectivă, Marea teoremă a lui Poncelet¹⁰.

EXERCIȚIUL 3.50. Dacă două triunghiuri sunt circumscrise unei conice nedegenerate, atunci există o conică nedegenerată în care ambele triunghiuri sunt înscrise. (Indicație: Fie $A_1A_2A_3$, $B_1B_2B_3$ triunghiuri circumscrise conicei nedegenerate γ . Fie $\{C_i\}=A_jB_j\cap A_kB_k$, (ijk)=(123) și permutări circulare. E suficient să arătăm că C_1 , C_2 , C_3 sunt coliniare, apoi să aplicăm reciproca teoremei lui Pascal. Coliniaritatea cerută rezultă din teorema lui Brianchon aplicată pentru hexagrama $A_1C_3B_1B_3C_1A_3$.)

Enunțul dual celui de mai sus este:

 $^{^{10}{\}rm Jean}$ Victor Poncelet, 1788-1867, matematician francez, unul dintre creatorii geometriei proiective.

EXERCIȚIUL 3.51. Dacă două triunghiuri sunt înscrise într-o conică nedegenerată, există o conică nedegenerată căreia îi sunt circumscrise.

EXERCIȚIUL 3.52. Fie triunghiul ABC, punctul O și dreapta d astfel încât $O \not\in d$. Fie $\{S\} = d \cap AB$, $\{T\} = d \cap BC$, $\{U\} = d \cap AC$. Dreapta OS taie AB și AC în C_b , respectiv B_c . Fie A_c , C_a , respectiv B_a , A_b perechi de puncte analoage. Fie $\{M_1\} = B_cC_a \cap B_aC_b$, $\{M_2\} = A_bB_c \cap C_bA_c$, $\{N_1\} = C_aA_b \cap C_bA_c$, $\{N_2\} = B_cC_a \cap A_cB_a$, $\{P_1\} = A_bB_c \cap A_cB_a$, $\{P_2\} = C_aA_b \cap C_bB_a$. Atunci dreptele AM_i , BN_i , CP_i sunt concurente și punctele M_1 , M_2 , O sunt coliniare.

Încheiem paragraful cu o teoremă reciprocă propoziției 3.60. Pentru a o putea enunța, să observăm că, deoarece orice fascicol de drepte A^* este o dreaptă din planul dual P^2K^* , între orice două fascicole de drepte există izomorfisme proiective. Dacă $f:A^*\to B^*$ este un astfel de izomorfism, atunci dreptele care se corespund prin $f,\ (d,f(d))$ se numesc omoloage. Dacă dreapta AB (care aparține ambelor fascicole) este invariată de f, ea se numește autoomoloagă. În general, de îndată ce s-a fixat un izomorfism proiectiv între două fascicole, spunem că dreptele lor sunt omoloage. Acum putem da:

Teorema lui Steiner. Fie A^*, B^* două fascicole având dreptele omoloage. Dacă AB este autoomoloagă, atunci celelalte perechi de drepte omoloage se întâlnesc în puncte coliniare. Dacă AB nu este autoomoloagă, atunci locul geometric al punctelor de intersecție ale celorlalte perechi de drepte omoloage este o conică nedegenerată.

Demonstrație. Fie $f: A^* \to B^*$ un izomorfism proiectiv care pune în corespondență dreptele omoloage. Fie d_1, d_2, d_3 trei drepte distincte din A^* și distincte de AB (există, conform axiomei $\mathbf{P2}$). Fie $\{P_i\} = d_i \cap f(d_i)$.

Dacă f(AB) = AB, cum f este izomorfism proiectiv iar biraportul este invariant proiectiv, avem

$$[d_1, d_2, AB, d_3] = [f(d_1), f(d_2), AB, f(d_3)].$$

Fie $\{Q\}=P_1P_2\cap AB,\,\{Q_3\}=P_1P_2\cap d_3,\,\{Q_3'\}=P_1P_2\cap f(d_3).$ Rezultă

$$[P_1, P_2, Q, Q_3] = [P_1, P_2, Q, Q_3'].$$

Ca urmare, $Q_3=Q_3'=P_3$ astfel că P_1,P_2,P_3 sunt coliniare. Deci $\{d\cap f(d)\;;\;d\in A^*-\{AB\}\}=P_1P_2$.

Dacă $f(AB) \neq AB$, conform propoziției 3.59 există o unică conică nedegenerată γ care conține punctele A, B, P_1, P_2, P_3 . Vom arăta că pentru orice $d \in A^*, d \cap f(d) \in \gamma$. Fie $d \in \mathcal{A}^* - \{d_1, d_2, d_3\}$. Fie $\{Q\} = d \cap \gamma \ (Q \neq A)$ și $\{Q'\} = f(d) \cap \gamma \ (Q' \neq B)$. Avem

$$[d_1, d_2, d_3, d] = [f(d_1), f(d_2), f(d_3), f(d)]$$

de unde obținem $[P_1, P_2, P_3, Q] = [P_1, P_2, P_3, Q']$, ceea ce implică

$$[AP_1, AP_2, AP_3, AQ] = [AP_1, AP_2, AP_3, AQ'].$$

Rezultă AQ=AQ', deci Q=Q', ambele puncte fiind pe conica γ pe care AQ nu o poate intersecta în mai mult de două puncte. Lăsăm ca exercițiu dovedirea incluziunii inverse.

EXERCIȚIUL 3.53. Fie triunghiul ABC și $O \in (AB \cup AC) - \{A\}$ un punct fix. O dreaptă mobilă prin O intersectează AB în M și AC în N. Locul geometric al intersecției dintre BN și CM este o conică. (Indicație: Aplicația $f:AB \to AC$, f(M) = N, este un izomorfism proiectiv. Ca urmare, BN și CM sunt drepte omoloage în fascicolele B^* , C^* . Se aplică teorema lui Steiner).

17. Recuperarea hipercuadricelor afine

Fie γ o hipercuadrică de ecuație $\sum_{i,j=0}^n a_{ij}\xi_i\xi_j=0$. Ne interesează poziția ei față de hiperplanul de la infinit. Punctele ei improprii satisfac ecuațiile

(3.33)
$$\xi_0 = 0, \quad \sum_{i,j=1}^n a_{ij} \xi_i \xi_j = 0$$

deci avem, identificând hiperplanul $\xi_0=0$ cu $P^{n-1}K$ prin $[0:\xi_1:\ldots:\xi_n]\mapsto [\xi_1:\ldots:\xi_n]$:

Propoziția 3.62. Dacă este nevidă, intersecția dintre o hipercuadrică de ecuație (3.11) și hiperplanul de la infinit este o hipercuadrică γ_{∞} în acest hiperplan.

Vom exclude din discuția care urmează hipercuadricele care cuprind hiperplanul de la infinit. Acestea satisfac $\sum_{i,j=1}^n a_{ij}\xi_i\xi_j=0$ pentru orice $[\xi_1:\ldots:\xi_n]$ adică $a_{ij}=0$ pentru toți $i,j\geq 1$; ecuația unei asemenea hipercuadrice se reduce la $\sum_{i=0}^n a_{i0}\xi_i\xi_0=0$. În continuare vom presupune că această ultimă ecuație nu e satisfăcută sau, echivalent, că cel puțin unul dintre coeficienții a_{ij} este nenul pentru măcar un cuplu de indici $i,j\geq 1$.

În această ipoteză, fiecărei hipercuadrice proiective i se asociază hipercuadrica ei de la infinit de ecuație (3.33).

Pe de altă parte, punctele proprii ale hipercuadrice
i γ sunt caracterizate de ecuațiile

$$\xi_0 \neq 0, \quad \sum_{i,j=0}^n a_{ij} \xi_i \xi_j = 0.$$

Dezomogenizăm (împărțind cu ξ_0), punem $x_i = \xi_i/\xi_0$ și găsim ecuația

(3.34)
$$\sum_{i,j=1}^{n} a_{ij} x_i x_j + 2 \sum_{i=1}^{n} b_i x_i + c = 0$$

cu $b_i = a_{0i} = a_{i0}$ şi $c = a_{00}$, adică ecuația unei hipercuadrice afine pe care o numim hipercuadrica proprie a celei proiective. Dacă privim un spațiu afin dat ca scufundat în completatul său proiectiv, putem observa că orice hipercuadrică afină este hipercuadrica proprie a unei hipercuadrice proiective (obținute prin omogenizarea ecuației celei afine). Toată teoria hipercuadricelor afine se poate reface acum pornind de la cea a hipercuadricelor proiective ținând seama de incluziunea grupului afin în cel proiectiv liniar. De exemplu, cititorul poate demonstra singur:

Propoziția 3.63. Fie γ' , α' două hipercuadrice afine și fie γ , α hipercuadricele proiective corespunzătoare din completatul proiectiv al spațiului afin. Atunci γ' e afin echivalentă cu α' dacă și numai dacă γ și respectiv γ_{∞} sunt proiectiv echivalente cu α , respectiv α_{∞} .

Nu numai clasificarea afină a hipercuadricelor se poate deduce din cea proiectivă, dar, prin procedeul de mai sus, şi alte noțiuni geometrice introduse pentru hipercuadricele proiective au corespondent afin şi reciproc. De exemplu, noțiunea de centru se poate descrie astfel:

Propoziția 3.64. Fie γ' hipercuadrica proprie asociată hipercuadricei proiective γ . Punctul propriu nesingular P este centru al lui γ' dacă și numai dacă hiperplanul său polar față de γ este hiperplanul de la infinit.

Demonstrație. Pentru simplitate, putem presupune, modulo un automorfism proiectiv, că $P=[1:0:\ldots:0]$. Atunci P este centru dacă și numai dacă, odată cu $[1:\xi_1:\ldots:\xi_n]$, γ' conține și punctul $[1:-\xi_1:\ldots:-\xi_n]$. Atunci, în coordonate neomogene, γ' are ecuația $\sum_{i,j=1}^n a_{ij}x_ix_j+c=0$ cu $c\neq 0$ pentru că P e nesingular. Or, omogenizând, aceasta e chiar condiția ca ecuația hiperplanului polar al lui P să fie $\xi_0=0$.

Cititorul poate continua singur să observe corespondența noțiunilor proiective cu cele afine. El va demonstra cu uşurință că hiperplanul tangent la o hipercuadrică proiectivă într-un punct propriu nesingular coincide cu cel definit în capitolul de geometrie afină etc.

Se poate încerca definirea tuturor noțiunilor proiective în spațiul afin, dar calea riguroasă este scufundarea spațiului afin în completatul său proiectiv. Altfel, de exemplu, nu se poate defini punctul conjugat armonic cu mijlocul unui segment față de capetele segmentului. Sau nu se poate defini dreapta duală centrului unei conice față de conica respectivă.

Pe de altă parte, privind unele teoreme proiective generale în planul afin, ținând seama și de structura euclidiană naturală, se pot obține cazuri particulare interesante. Așa, de exemplu, teorema lui Pascal sau Brianchon pe cerc, pe elipsă sau hiperbolă. Se pot da demonstrații ad-hoc pentru fiecare situație în parte, dar ele ascund același fenomen: prin omogenizarea conicelor afine euclidiene (adică prin scufundarea planului afin euclidian în cel proiectiv, uitând metrica), conicele proiective corespunzătoare sunt proiectiv echivalente.

18. Curbe algebrice plane

Prezentăm în acest paragraf, urmând mai ales expunerea din [18], câteva noțiuni introductive, elementare de teoria curbelor algebrice în planul proiectiv (complex). E vorba de pasul următor firesc după studiul dreptelor și conicelor — considerarea unui tip de ecuații mai generale. Cititorul interesat poate consulta monografia [25].

Vom folosi proprietăți elementare ale polinoamelor (omogene) cu coeficienți într-un corp (de obicei algebric închis): factorizare, rădăcini multiple etc. Le vom presupune cunoscute. Prezentăm într-o anexă doar unele noțiuni specifice de polinoame omogene.

Vom presupune corpul K algebric închis. De fapt, cu puţine excepţii, vom da rezultate numai despre curbe complexe.

18.1. Definiții preliminare. Așa cum deja am remarcat, în spațiile proiective are sens doar considerarea mulțimilor de zerouri ale funcțiilor omogene. Astfel că vom da:

Definiția 3.33. O curbă algebrică în P^2K este o clasă de proporționalitate de polinoame omogene neconstante din $K[X_0, X_1, X_2]$.

Pentru orice reprezentant F al unei curbe \mathcal{C} , ecuația F=0 se numește ecuația curbei. Submultimea \mathcal{C}_0 a zerourilor lui F se numește suportul lui \mathcal{C} .

Conicele, așa cum au fost ele definite mai sus, sunt suporturi de curbe algebrice. Dar propoziția 3.41 ne spune că pentru un corp algebric închis există bijecție între conice și clase de proporționalitate de forme pătratice, deci în cazul acesta conicele sunt chiar curbe algebrice în sensul definiției de aici.

Deoarece două polinoame proporționale au același grad, putem defini gradul unei curbe ca fiind gradul oricărui reprezentant al său.

Ca și în cazul hipercuadricelor avem nevoie de o noțiune de echivalență:

Definiția 3.34. Două curbe algebrice sunt *proiectiv echivalente* dacă există o proiectivitate care face să corespundă suporturile lor.

Sigur că proiectivitățile acționează în mod natural și asupra curbelor înseși, nu numai asupra suporturilor. În general, nu vom distinge între aceste acțiuni. Ne vor interesa numai acele proprietăți ale curbelor care sunt invariante la proiectivități, numite proprietăți proiective.

Ca și în cazul hipercuadricelor, dacă suportul unei curbe nu e inclus în hiperplanul de la infinit, dezomogenizând ecuația ei obținem o ecuație afină care reprezintă o curbă algebrică afină. Reciproc, definind curbele algebrice afine ca fiind clase de proporționalitate de polinoame neconstante în două variabile, închiderea proiectivă a unei astfel de curbe este o curbă algebrică proiectivă.

Atunci când $K=\mathbb{C}$, e important să distingem între curbele reale și cele complexe. Mai precis:

Definiția 3.35. O curbă algebrică din $P^2\mathbb{C}$ e reală dacă există un reprezentant al său în $\mathbb{R}[X_0,X_1,X_2]$.

Pentru o curbă algebrică complexă \mathbb{C} , reprezentată de polinomul omogen F, notăm $\overline{\mathcal{C}}$ curba reprezentată de polinomul \overline{F} (coeficienți conjugați). E imediat:

Exercițiul 3.54. \mathcal{C} e reală dacă și numai dacă $\mathcal{C} = \overline{\mathcal{C}}$.

Chiar dacă o curbă nu e reală, ea poate avea puncte reale. Acestea sunt cele cu coordonate reale. Considerând incluziunea canonică $P^2\mathbb{R} \subset P^2\mathbb{C}$, punctele reale ale curbei complexe \mathcal{C} sunt $\mathcal{C}_0 \cap P^2\mathbb{R}$. Cititorul va demonstra singur:

Propoziția 3.65. Fie $f \in PGL(2,\mathbb{C})$. Următoarele condiții sunt echivalente:

- 1) $f(P^2\mathbb{R}) = P^2\mathbb{R}$.
- 2) f poate fi reprezentată de o matrice cu elemente reale.
- 3) f transformă orice curbă reală într-o curbă reală.

EXEMPLUL 3.19. Fie conica $X_0^2 + X_1^2 = 0$ în $P^1\mathbb{C}$. Suportul său este format din reuniunea dreptelor de ecuații $X_0 \pm i X_1 = 0$. Acestea sunt drepte nereale, complex conjugate și au un singur punct real: originea.

Corespunzător noțiunii de polinom reductibil/ireductibil vom da:

Definiția 3.36. O curbă algebrică plană se numește *ireductibilă* (respectiv *reductibilă*) dacă poate fi reprezentată printr-un polinom ireductibil (respectiv reductibil).

Deoarece două polinoame proporționale sunt simultan reductibile sau ireductibile, definiția are sens.

EXERCIȚIUL 3.55. Două curbe algebrice plane proiectiv echivalente sunt simultan reductibile sau ireductibile.

Fie \mathcal{C} o curbă reductibilă şi F un reprezentant al său care se factorizează peste K sub forma $F = F_1^{p_1} F_2^{p_2} \cdots F_k^{p_k}$ cu F_i ireductibile şi $\sum p_i \operatorname{grad}(F_i) = \operatorname{grad}(F)$. Putem considera curbele \mathcal{C}_i de ecuații $F_i = 0, i = 1, \ldots, k$. Între suporturile lor avem relația $\mathcal{C}_0 = \bigcup_{i=1}^k \mathcal{C}_{0i}$. Vom scrie simplu $\mathcal{C} = \sum_{i=1}^k \mathcal{C}_i$ pentru a pune în evidență o asemenea descompunere. Curbele \mathcal{C}_i se numesc componentele ireductibile ale lui \mathcal{C} . Dacă F_i apare la puterea p_i în descompunerea lui F, spunem că \mathcal{C}_i e o componentă de multiplicitate p_i . Dacă toți $p_i = 1$, spunem că \mathcal{C} e o curbă redusă.

EXERCIȚIUL 3.56. O conică e ireductibilă dacă și numai dacă e nedegenerată. Care dintre conicele degenerate au componente ireductibile de multiplicitate 2?

EXERCIȚIUL 3.57. Numărul, gradul și multiplicitatea componentelor ireductibile ale unei curbe algebrice plane sunt proprietăți proiective.

18.2. Intersecții de curbe algebrice plane. În cele ce urmează este esențial să considerăm K algebric închis.

Teorema 3.20. Orice două curbe algebrice plane se intersectează. Dacă intersecția e finită, atunci numărul punctelor de intersecție e cel mult egal cu produsul gradelor curbelor.

Demonstrație. Fie curbele C_i de grade n_i , reprezentate de polinoamele F_i , i=1, 2. Privim $F_i \in K[X_0, X_1][X_2]$ scriindu-le:

$$F_i = A_{i0}X_2^{n_i} + A_{i1}X_2^{n_i-1} + \dots + A_{in_i} \quad i = 1, 2$$

cu $A_{ij} \in K[X_0, X_1]_j$ (vezi notațiile din Anexa 2). Deoarece $\mathcal{C}_1 \cup \mathcal{C}_2 \neq P^2\mathbb{C}$, putem presupune (eventual, după aplicarea unei proiectivități) că $[0:0:1] \notin \mathcal{C}_1 \cup \mathcal{C}_2$, adică $A_{10}A_{20} \neq 0$. Rezultă că polinoamele $F_i(x_0, x_1, X_2)$, din $K[X_2]$, au gradele n_i pentru orice $(x_0, x_1) \in K^2$. Fie acum $R = R(F_1, F_2)$ rezultanta lui F_1, F_2 relativ la X_2 . Din cele de mai sus deducem că $R(x_0, x_1)$ e rezultanta polinoamelor $F_i(x_0, x_1, X_2)$ pentru orice $(x_0, x_1) \in K^2$. Să observăm că orice punct (x_0, x_1) care anulează R corespunde cel puțin unei rădăcini comune x_2 a polinoamelor $F_i(x_0, x_1, X_2)$, iar punctul $[x_0:x_1:x_2]\in\mathcal{C}_1\cap\mathcal{C}_2$. Deci, cum R are cel puțin o rădăcină (K e algebric închis!), obținem $C_1 \cap C_2 \neq \emptyset$.

Presupunem acum $C_1 \cap C_2 = \{A_1, \ldots, A_n\}$, $n < \infty$. Atunci R e neidentic nul, deci e un polinom omogen de două variabile, de grad $n_1 n_2$ și are cel mult $n_1 n_2$ rădăcini distincte. Va fi acum suficient să vedem că fiecărei rădăcini (x_0, x_1) a lui R îi corespunde cel mult un punct $[x_0:x_1:x_2]\in\mathcal{C}_1\cap\mathcal{C}_2$. Dacă, prin absurd, există $x_2\neq x_2'$ astfel încât $[x_0:x_1:x_2], [x_0:x_1:x_2']\in\mathcal{C}_1\cap\mathcal{C}_2$ și $R(x_0,x_1)=0$, atunci dreapta proiectivă determinată de aceste două puncte trece prin [0:0:1]. Dar, pe de altă parte, cum punctele A_i sunt în număr finit, reuniunea dreptelor determinate de ele trebuie să evite măcar un punct din P^2K . Putem considera că proiectivitatea aplicată inițial (care făcea ca $[0:0:1] \notin \mathcal{C}_1 \cup \mathcal{C}_2$) să facă și dreptele A_iA_j să evite acest punct. Ajungem la o contradictie care încheie demonstrația.

COROLARUL 3.18. Intersecția unei curbe de grad n cu o dreaptă are cel mult n puncte.

Exercițiul 3.58. Să se găsească intersecțiile următoarelor curbe:

- 1) $X_0(X_1^2 X_0X_2)^2 X_2^5$ şi $X_1^4 + X_1^3X_2 X_0^2X_2^2$. 2) $X_0^3 X_1^3 2X_0X_1X_3$ şi $2X_0^3 4X_0^2X_1 3X_0X_1^2 X_1^3 2X_0^2X_2$.

Înainte de a merge mai departe, să lămurim ce se întâmplă în cazul unei intersecții infinite. Avem:

Propoziția 3.66. Fie C_1, C_2 curbe algebrice plane, C_2 ireductibilă. Dacă $C_1 \cap C_2$ e infinită, atunci C_2 e o componentă ireductibilă a lui C_1 .

De aici și din teorema 3.20 rezultă:

COROLARUL 3.19. Dacă două curbe de grade n_1, n_2 au în comun $n_1n_2 + 1$ puncte, atunci au o componentă ireductibilă comună.

Demonstrație. Conform teoremei 3.20, cele două curbe au o infinitate de puncte în comun. Cum \mathcal{C}_2 are un număr finit de componente ireductibile, una măcar, fie ea \mathcal{C}_2' , are intersecție infinită cu \mathcal{C}_1 . Conform propoziției anterioare, \mathcal{C}_2' e componentă ireductibilă a lui \mathcal{C}_1 .

Corolarul 3.20. Dacă două curbe de grad n se intersectează $\hat{i}n$ n^2 puncte şi dacă exact mn dintre acestea stau pe o curbă ireductibilă de grad m, atunci celelalte n(n-m) puncte ale intersecției stau pe o curbă de grad n-m.

Demonstrație. Fie $F_1=0$, $F_2=0$ ecuațiile celor două curbe de grad n din enunț și fie G=0 ecuația curbei ireductibile de grad mn dintre punctele de intersecție. Putem găsi constante α , β astfel încât curba de ecuație $\lambda F_1+\beta F_2=0$ să treacă printr-un punct A fixat pe curba G. Atunci curbele G și $\lambda F_1+\beta F_2=0$ au cel puțin mn+1 puncte de intersecție; conform corolarului anterior, ele au o componentă ireductibilă comună. Aceasta trebuie să fie G pentru că G e ireductibilă. Deci avem $\lambda F_1+\beta F_2=GH$. Curba H are grad n-m și trece prin cele n(n-m) puncte prin care nu trece G.

Rezultă de aici:

O demonstrație scurtă a Teoremei lui Pascal. Fie $L_i=0,\,i=1,\ldots,6$ ecuațiile celor șase laturi ale hexagramei. Curbele de gradul trei $L_1L_2L_3=0$ și $L_4L_5L_6=0$ se intersecțează în nouă puncte: cele șase vârfuri ale hexagramei și cele trei puncte de intersecție ale laturilor opuse. Aceste ultime trei sunt coliniare conform corolarului 3.20.

Demonstrăm acum propoziția 3.66. Pasul 1. C_2 e o dreaptă de ecuație implicită

$$(3.35) a_0 X_0 + a_1 X_1 + a_2 X_2 = 0.$$

 $\mathcal{C}_1 \cap \mathcal{C}_2$ e descris de soluțiile comune ale ecuațiilor (2.20) și $F_1 = 0$. Presupunem $a_0 \neq 0$ (măcar un coeficient al ecuației dreptei e nenul). Rezolvăm în raport cu X_0 și înlocuim $X_0 = -\frac{a_1}{a_0}X_1 - \frac{a_2}{a_0}X_2$ în ecuația $F_1 = 0$. Rezultă ecuația omogenă în două variabile $F_1' = 0$, unde $F_1'(X_1, X_2) = F_1(-\frac{a_1}{a_0}X_1 - \frac{a_2}{a_0}X_2, X_1, X_2) = 0$.

Această ecuație are un număr finit de soluții. Cum coordonatele oricărui punct din $\mathcal{C}_1 \cap \mathcal{C}_2$ se obțin astfel, dacă $\mathcal{C}_1 \cap \mathcal{C}_2$ e infinită, atunci F_1' e identic nul.

Pe de altă parte, C_2 e componentă ireductibilă a lui C_1 dacă și numai dacă membrul stâng al lui (2.20) e factor ireductibil al lui F_1 :

$$F_1(X_0, X_1, X_2) = (a_0 X_0 + a_1 X_1 + a_2 X_2) G(X_0, X_1, X_2)$$

pentru un polinom omogen G de grad egal cu grad F_1-1 . Făcând și în această identitate substituția anterioară, găsim $F_1(-\frac{a_1}{a_0}X_1-\frac{a_2}{a_0}X_2,X_1,X_2)=0$. Dar membrul stâng este chiar F_1' a cărui anulare era echivalentă cu $\sharp(\mathcal{C}_1\cap\mathcal{C}_2)=\infty$.

 $Pasul\ 2$. În cazul general, fie $F_1=0$, $F_2=0$ ecuațiile lui $\mathcal{C}_1,\mathcal{C}_2$, cu F_2 ireductibil. Dacă F_1 e constant în raport cu una dintre variabile, atunci \mathcal{C}_1 e formată dintrun număr finit de drepte paralele cu una dintre axele de coordonate. Atunci \mathcal{C}_2 intersectează cel puțin una dintre aceste drepte într-o infinitate de puncte. Conform primului pas, dreapta aceasta e o componentă ireductibilă a lui \mathcal{C}_2 . Cum \mathcal{C}_2 însăși e ireductibilă, dreapta în chestiune coincide cu \mathcal{C}_2 care se vădește componentă ireductibilă a lui \mathcal{C}_1 .

Dacă F_1 depinde de toate cele trei variabile, să considerăm $F_i \in K[X_0, X_1][X_2]$ și fie $K(X_0, X_1)$ corpul de fracții al inelului $K[X_0, X_1]$. Prin absurd, F_2 nu divide F_1 . Neavând factori comuni neconstanți relativ la X_2, F_i sunt relativ primi în $K[X_0, X_1][X_2]$, deci și în $K(X_0, X_1)$. Urmează existența polinoamelor $A_1, A_2 \in K(X_0, X_1)$ cu proprietatea $F_1A_1 + F_2A_2 = 1$. Alegem $A \in K[X_0, X_1]$ astfel încât $AA_1, AA_2 \in K[X_0, X_1]$ (un multiplu comun al numitorilor lui A_1, A_2). Obținem

$$A = F_1(AA_1) + F_2(AA_2),$$

identitate care spune că orice punct din $\mathcal{C}_1 \cap \mathcal{C}_2$ aparține curbei \mathcal{C} de ecuație A=0. Cum $\sharp(\mathcal{C}_1 \cap \mathcal{C}_2) = \infty$, avem și $\sharp(\mathcal{C} \cap \mathcal{C}_2) = \infty$. Dar \mathcal{C} , în a cărei ecuație nu apare X_2 , e reuniune de drepte paralele cu o axă de coordonate. Ca mai sus, rezultă că \mathcal{C}_2 e o dreaptă. Conform primului pas, \mathcal{C}_2 e componentă ireductibilă a lui \mathcal{C}_1 , contradicție.

Revenind acum la cazul unei intersecții finite, să notăm că teorema 3.20 e doar un caz particular al teoremei lui Bézout: două curbe algebrice plane de grade n_1, n_2 care nu au în comun o infinitate de puncte se taie în exact n_1n_2 puncte. Demonstrația e prea complicată pentru a fi prezentată aici. În schimb, vom discuta un caz particular, anume:

Propoziția 3.67. Fie $\mathcal C$ o curbă de grad n. Atunci orice dreaptă care nu e o componentă ireductibilă a lui $\mathcal C$ o taie în exact n puncte, numărate cu multiplicitățile lor.

Înainte de a face demonstrația, să lămurim ce înțelegem prin multiplicitate. Fie $A = [a_0 : a_1 : a_2]$ și $B = [b_0 : b_1 : b_2]$ puncte distincte pe dreapta d. Un punct generic al ei P are coordonatele omogene: $[\lambda a_0 + \mu b_0 : \lambda a_1 + \mu b_1 : \lambda a_2 + \mu b_2]$, cu $(\lambda, \mu) \neq (0, 0)$. Vom scrie simbolic $P = \lambda A + \mu B$. Dacă F = 0 este ecuația lui C, atunci $C \cap d$ este descrisă de zerourile ecuației:

(3.36)
$$F(\lambda a_0 + \mu b_0, \lambda a_1 + \mu b_1, \lambda a_2 + \mu b_2) = 0$$

pe care o scriem simbolic $F(\lambda A + \mu B) = 0$. Să presupunem că d nu e o componentă ireductibilă a lui \mathcal{C} , adică ecuația (3.36) nu e identic satisfăcută. Atunci ea va avea un număr finit de soluții (λ, μ) care, a priori, depind de alegerea punctelor A, B (adică de parametrizarea dreptei d). Dar e ușor de văzut că plecând cu alte puncte A', B' pe d se obține o ecuație echivalentă. Astfel că, pentru un punct $P = \lambda A + \mu B \in \mathcal{C} \cap d$, se poate defini numărul $m_P(\mathcal{C}, d)$ ca fiind multiplicitatea rădăcinii (λ, μ) în ecuația (3.36). Convenim să punem $m_P(\mathcal{C}, d) = 0$ dacă $P \notin d \cap \mathcal{C}$ și $m_P(\mathcal{C}, d) = \infty$ dacă $d \in \mathcal{C}$.

Definirea corectă a multiplicității unui punct din intersecție încheie aproape demonstrația. Mai rămâne de văzut că $\sum_{P \in d \cap \mathcal{C}} m_P(\mathcal{C}, d) = n$. Or, acest lucru rezultă imediat din teorema de factorizare a polinoamelor omogene peste un corp algebric închis aplicată polinomului $F(\lambda A + \mu B)$, omogen de grad n în λ, μ .

Propoziția anterioară furnizează o interpretare geometrică pentru o proprietate algebrică: gradul unei curbe. Exercițiul următor ne spune că $m_P(\mathcal{C}, d)$ are semnificație geometrică:

EXERCIȚIUL 3.59. Pentru orice proiectivitate $f \in PGL(2, K)$, are loc următoarea relație: $m_P(\mathcal{C}, d) = m_{f(P)}(f(\mathcal{C}), f(d))$.

Lăsând dreapta d să varieze în P^2K , putem defini și numărul

$$m_P(\mathcal{C}) = \min\{m_P(\mathcal{C}, d) ; d \ni P\}$$

(aici nu mai presupunem $P \in \mathcal{C}$). Numim acest număr multiplicitatea punctului P în raport cu curba \mathcal{C} , pe scurt multiplicitate, atunci când nu e pericol de confuzie.

Multiplicitatea oricărui punct este mărginită superior de gradul curbei. Se demonstrează imediat:

$$m_P(\mathcal{C}) \in [0, \operatorname{grad}(\mathcal{C})], \quad \operatorname{cu} m_P(\mathcal{C}) = 0 \quad \operatorname{dac\check{a}} \operatorname{si} \operatorname{numai} \operatorname{dac\check{a}} P \notin \mathcal{C}.$$

Definiția 3.37. Un punct pentru care $m_P(\mathcal{C})=1$ se numește simplu sau nesinaular, regulat.

Punctele cu multiplicitate strict mai mare ca 1 (ele sunt pe curbă) se numesc singulare.

Dacă $m_P(\mathcal{C})=k$, punctul se numește dublu, triplu (sau de ordinul 2, 3) etc., după cum $k=2,\ k=3,$ etc.

Curbele fără puncte singulare se numesc curbe nesingulare.

Toate punctele conicelor nedegenerate sunt simple.

Dăm, în continuare, câteva exemple de curbe complexe cu singularități. Precizăm că desenele reprezintă urma afină reală a curbelor, obținută după dezomogenizarea ecuațiilor (am pus $X_0=1$)

18.2.1. Proprietăți locale ale punctelor singulare. Dăm în continuare o caracterizare analitică a punctelor singulare (multiple). Fie F=0 ecuația lui \mathcal{C} , fie $P=[p_0:p_1:p_2]\in\mathcal{C}$ și d o dreaptă prin P de ecuații parametrice $x_0=\lambda p_0+\mu q_0$, $x_1=\lambda p_1+\mu q_1$, $x_2=\lambda p_2+\mu q_2$, unde $Q=[q_0:q_1:q_2]\in d-\{P\}$. Fie $F(\lambda,\mu)=0$ ecuația omogenă în λ , μ ale cărei soluții reprezintă punctele de intersecție dintre \mathcal{C} și d. Dezomogenizând-o și notând $t=\mu/\lambda$, punctul P corespunde rădăcinii t=0 a ecuației polinomiale F(1,t)=0, iar $m_P(\mathcal{C},d)$ e multiplicitatea acestei rădăcini.

Dar t=0 e rădăcină multiplă dacă și numai dacă F(1,0)=F'(1,0)=0 (unde accentul reprezintă derivarea în raport cu t). Omogenizând, condiția F'(1,0)=0 revine la

$$F_0(P)q_0 + F_1(P)q_1 + F_2(P)q_2 = 0$$
 pentru orice $Q \in P^2\mathbb{C}$

unde $F_i(P) = \frac{\partial F}{\partial X_i}(P)$. Deci P e punct singular dacă şi numai dacă $F_0(P) = F_1(P) = F_2(P) = 0$ (observați că aceste condiții, dată fiind omogenitatea lui F, implică şi F(P) = 0: într-adevăr, are loc formula $\operatorname{grad}(F_0X_0 + F_1X_1 + F_2X_2) = \operatorname{grad}(F)$).

 \hat{O} discuţie similară se face pentru studiul punctelor de multiplicitate superioară, folosind dezvoltarea lui F în serie Taylor. Astfel că putem enunța:

Teorema 3.21. Fie $\mathcal C$ o curbă de ecuație F=0. Punctul $P\in\mathcal C$ are multiplicitatea k dacă și numai dacă în P se anulează toate derivatele parțiale de ordin k-1 ale lui F și nu se anulează măcar o derivată parțială de ordin k.

Dacă P e un punct simplu (nesingular) al lui \mathcal{C} , dreapta de ecuație $F_0(P)X_0 + F_1(P)X_1 + F_2(P)X_2 = 0$ conține P. Din cele de mai sus se vede că ea este unica dreaptă pentru care $m_P(\mathcal{C},d) > 1$. O numim tangenta în P la \mathcal{C} . Dacă \mathcal{C} e o conică, regăsim noțiunea de tangentă definită cu ajutorul polarității.

În schimb, pentru un punct nesingular P, orice dreaptă d are proprietatea: $m_P(\mathcal{C},d) \geq m_P(\mathcal{C}) \geq 2$. De aceea vom spune că orice dreaptă prin P e tangentă la \mathcal{C} , dar vom deosebi acele drepte cu proprietatea $m_P(\mathcal{C},d) > m_P(\mathcal{C})$. Acestea se numesc tangente principale.

EXEMPLUL 3.20. În exemplele anterioare, punctul dublu din exemplul al doilea are tangentele principale $X_1 \pm X_2 = 0$, în timp ce în punctul triplu din exemplul al patrulea tangentele principale sunt $X_2 = 1$, $X_2 - \sqrt{3}X_1 = 0$ şi $X_2 + \sqrt{3}X_1 = 0$.

Exercițiul 3.60. Într-un punct singular de multiplicitate k există cel mult k tangente principale distincte.

Punctele singulare nu pot fi prea multe. Mai precis:

Propoziția 3.68. O curbă ireductibilă are cel mult un număr finit de puncte singulare.

Demonstrație. Fie curba $\mathcal C$ dată de ecuația F=0. Coordonatele punctelor singulare sunt rădăcinile comune ale ecuațiilor polinomiale $F_0=0$, $F_1=0$, $F_2=0$, F=0. Cum $\operatorname{grad}(F_i)<\operatorname{grad}(F)$, curba reprezentată de F_i nu poate fi o componentă a lui $\mathcal C$. Deci intersecția dintre ea și $\mathcal C$ e finită.

EXERCIȚIUL 3.61. Pentru orice curbă $\mathcal C$ și orice proiectivitate f au loc proprietățile: 1) $m_P(\mathcal C)=m_{f(P)}(f(\mathcal C))$, oricare ar fi $P\in P^2K$.

- 2) d e tangentă (tangentă principală) la \mathcal{C} în P dacă și numai dacă f(d) e tangentă (tangentă principală) la $f(\mathcal{C})$ în f(P).
- 3) P e punct multiplu pentru \mathcal{C} dacă și numai dacă f(P) e punct multiplu pentru $f(\mathcal{C})$.

Exercițiul 3.62. Pentru orice două curbe C_1, C_2 avem

$$m_P(\mathcal{C}_1) + m_P(\mathcal{C}_2) = m_P(\mathcal{C}_1 + \mathcal{C}_2).$$

DEFINIȚIA 3.38. Un punct simplu (nesingular) al unei curbe se numește punct de inflexiune dacă multiplicitatea $m_P(\mathcal{C}, \tau)$ față de tangenta τ în el este cel puțin 3

Un punct de inflexiune se zice de specia k dacă $m_P(\mathcal{C}, \tau) = k + 2$.

Exemplul 3.21. O dreaptă este o curbă nesingulară care coincide cu tangenta la ea în fiecare punct. Deci orice punct al său este de inflexiune: $m_P(\tau, \tau) = \infty$. Conicele ireductibile nu au puncte de inflexiune.

Conicele ireductibile nu au puncte de inflexiune. Curba $X_0^{k+1}X_2-X_1^{k+2}=0,\ k\geq 1,$ are în origine un punct de inflexiune de specia k.

Dacă notăm $H(F) = \det(F_{ij})$ hessiana lui F (unde F_{ij} sunt derivatele parțiale de ordinul 2 ale lui F) și \mathcal{C}_H curba reprezentată de H(F) = 0, avem imediat:

Propoziția 3.69. Punctele de inflexiune ale unei curbe C coincid cu punctele ei de intersectie cu C_H .

Cu alte cuvinte, coordonatele punctelor de inflexiune se găsesc rezolvând sistemul $F=0,\,H(F)=0.$ Deci:

Corolarul 3.21. O curbă algebrică plană de grad mai mare sau egal cu 3 are o infinitate de puncte de inflexiune sau are cel mult 3n(n-2) puncte de inflexiune. Dacă e nesingulară are cel puțin un punct de inflexiune.

Importanța studiului punctelor de inflexiune ale unei curbe va fi evidentă în paragraful următor.

18.3. Cubice. Dintre curbele algebrice plane am studiat mai în detaliu pe cele de gradul 1 (dreptele) și 2 (conicele). Încheiem acest paragraf cu câteva rezultate despre curbele de gradul 3, numite *cubice*. Proprietățile lor geometrice sunt surprinzătoare și mult diferite de cele ale conicelor.

Ca pentru conice, și pentru cubice există o formă canonică. Anume:

Propoziția 3.70. Orice cubică nesingulară este proiectiv echivalentă cu una de ecuație

$$X_0 X_2^2 = G(X_0, X_1)$$

unde G e un polinom omogen de gradul 3 cu rădăcini distincte.

Observația 3.26. Dezomogenizând, găsim că forma canonică a unei cubice nesingulare se poate scrie sub forma afină

$$X_2^2 = X_1(X_1 - 1)(X_1 - a), \quad a \in \mathbb{C} - \{0, 1\}.$$

Demonstrație. Fie $\mathcal C$ o cubică nesingulară. Conform corolarului 3.21, ea are cel puțin un punct de inflexiune. Modulo o proiectivitate, putem presupune că el este P=[0:0:1] și că tangenta în P este dreapta $X_0=0$. Atunci ecuația afină a curbei devine:

$$(3.37) X_1^3 + \Phi(X_1, X_2) = 0$$

cu Φ de gradul 2. Neapărat Φ conține un termen de forma aX_2^2 cu $a \neq 0$, altfel, [0:0:1] ar fi punct singular. Rezultă că putem rezolva (3.37) în raport cu X_2 și obținem:

$$X_2 = \alpha X_1 + \beta \pm \sqrt{\Psi(X_1)}$$

unde Ψ este un polinom de gradul 3. Aplicăm transformarea $X_1'=X_1,~X_2'=X_2-\alpha X_1-\beta,$ omogenizăm și obținem ecuația din enunț.

Corolarul 3.21 furnizează maximum 9 puncte de inflexiune pentru o cubică. Îl putem întări acum, obținând una dintre cele mai spectaculoase proprietăți ale cubicelor:

Teorema 3.22. O cubică nesingulară are exact 9 puncte de inflexiune. Orice dreaptă care conține două dintre ele mai conține și un al treilea.

 $\hat{I}n$ plus, date punctele de inflexiune A_1,A_2 , există o proiectivitate care invariază cubica, interschimbă A_1 cu A_2 și fixează al treilea punct de inflexiune coliniar cu ele.

Demonstrație. Cum punctele de inflexiune se conservă la aplicarea unei proiectivități, e suficient să demonstrăm rezultatul pentru cubica de ecuație canonică afină

$$X_2^3 - X_1^3 + (a+1)X_1^2 - aX_1 = 0.$$

În aceste coordonate (afine) ecuația hessianei devine:

$$(X_2^2 + aX_1)(3X_1 - (a+1)) - ((a+1)X_1 - a)^2 = 0$$

iar rezultanta celor două polinoame relativ la X_2 (obținută prin eliminarea lui X_2) este:

$$R = 3X_1^4 - 4(a+1)X_1^3 + 6aX_1^2 - a^2.$$

Se vede uşor că R are patru rădăcini distincte (de exemplu, observând că $R'=12(X_1^3-(a+1)X_1^2+aX_1)$ şi rezultanta lui R şi R' este nenulă). În plus, rădăcinile lui R sunt, toate, nenule.

Observăm că F (reprezentantul canonic al cubicei) şi H(F) sunt pare în raport cu X_2 . Deci odată cu rădăcina (x_1, x_2) ele admit şi rădăcina $(x_1, -x_2)$. Astfel că cele patru rădăcini distincte ale lui R produc 8 rădăcini distincte ale lui H(F). Lor li se adaugă [0:0:1], punctul aruncat la infinit.

Date două puncte de inflexiune, modulo o proiectivitate, unul dintre ele poate fi considerat [0:0:1]. Fie al doilea $[1:a_1:a_2]$. Atunci $[1:a_1:-a_2]$ e tot punct de inflexiune (conform discuției anterioare) coliniar cu ele. Cu aceste alegeri, proiectivitatea prescrisă de ultima afirmație a enunțului este $f([x_0:x_1:x_2]) = [x_0:x_1:-x_2]$.

Exercițiul 3.63. Să se arate că:

- 1) O cubică ireductibilă, cu un punct dublu în care există cel puțin două tangente principale distincte, are trei puncte de inflexiune coliniare. Ecuația ei se poate pune sub forma canonică (afină) $X_2^2 = X_1^2(X_1 + 1)$.
- 2) O cubică ireductibilă cu un punct dublu în care tangentele coincid are un singur punct de inflexiune. Ecuația ei se poate pune sub forma canonică (afină) $X_2^2 = X_1^3$.

Exercițiul 3.64. Punctele de inflexiune ale unei cubice nesingulare se pot pune sub forma: $[0:1:-1], [-1:0:1], [1:-1:0], [0:1:\alpha], [\alpha:0:1], [1:\alpha:0], [0:1:\beta], [\beta:0:1], [1:\beta:0]$ unde α, β sunt rădăcinile ecuației $X^2-X+1=0$.

Exercițiul 3.65. Orice cubică care trece prin cele nouă puncte din exercițiul precedent are ecuația $X_0^3 + X_1^3 + X_2^3 + 3mX_0X_1X_2 = 0$. Cubica e nesingulară dacă și numai dacă $m \in \{\infty, -1, \alpha, \beta\}$ și în acest caz degenerează la trei drepte. Dacă e ireductibilă, aceste nouă puncte sunt chiar punctele ei de inflexiune.

Exercițiul 3.66. Dacă F=0 e ecuația unei cubice nesingulare \mathcal{C} , atunci orice cubică de ecuație aF+bH(F)=0, cu patru excepții, e nesingulară și are aceleași puncte de inflexiune cu \mathcal{C} .

Să cităm, fără demonstrație, și teorema de clasificare a cubicelor singulare:

TEOREMA 3.23. 1) Există doar două clase de echivalență proiectivă de cubice ireductibile singulare. Ele sunt reprezentate de ecuațiile afine: $X_2^2 = X_1^2(X_1 - 1)$ și $X_2^2 = X_1^3$.

2) Õrice cubică ireductibilă are cel puțin un punct de inflexiune.

Încheiem acest paragraf cu un foarte frumos rezultat geometric specific cubicelor. Vom avea nevoie de un rezultat preliminar care e important și în sine:

Lema 3.11. Dacă două curbe algebrice plane de același grad n au în comun $N(\leq n^2)$ puncte distincte și dacă mn dintre ele stau pe o curbă ireductibilă de grad m < n, atunci celelalte N-mn puncte aparțin unei curbe de grad n-m.

Demonstrație. Fie \mathcal{C}_i curbele de grad n din enunț, de ecuații $F_i=0,\ i=1,2.$ Fie \mathcal{D} curba ireductibilă care conține mn dintre punctele de intersecție. Fixăm $P\in\mathcal{D}$, diferit de cele mn puncte comune lui $\mathcal{C}_1,\mathcal{C}_2$. Considerăm acum toate curbele de ecuații $\lambda F_1 + \mu F_2 = 0$. E clar că măcar una dintre acestea, fie ea \mathcal{C} , conține P. Cum curba \mathcal{C} conține toate punctele intersecției $\mathcal{C}_1\cap\mathcal{C}_2$, ea are în comun cu \mathcal{D} mn+1 puncte. Dar $\operatorname{grad}(\mathcal{D})=m$, astfel că din corolarul 3.19 rezultă că \mathcal{D} și \mathcal{C} au o componentă ireductibilă comună. Cum \mathcal{D} e ireductibilă, rezultă $\mathcal{C}=\mathcal{D}+\mathcal{D}'$, cu \mathcal{D}' de grad n-m. Dar \mathcal{C} conține cele N puncte ale lui $\mathcal{C}_1\cap\mathcal{C}_2$, iar pe \mathcal{D} stau numai mn dintre acestea. Rămâne că celelalte N-mn sunt pe \mathcal{D}' .

Demonstrație. Acum putem demonstra teorema care încheie acest paragraf.

Teorema 3.24. Odată fixat un punct de inflexiune O al unei cubice nesingulare C, există o structură canonică de grup abelian pe C față de care O este elementul neutru.

Demonstrație. Definim $+: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ în felul următor. Pentru $A, B \in \mathcal{C}$, fie R(A,B) al treilea punct de intersecție al dreptei AB cu \mathcal{C} (dacă A=B, atunci AB e chiar tangenta în A). Datorită propoziției 3.67, R(A,B) e bine definit.

Acum punem

$$A + B \stackrel{\text{def}}{=} R(R(A, B), O).$$

Prin definiție, + e comutativă. De asemenea, se verifică ușor că:

$$R(R(A, O), O) = A, \quad -A = R(A, O).$$

Rămâne de verificat asociativitatea, echivalentă cu R(A, B + C) = R(A + B, C). E suficient să ne convingem că punctele A, B + C şi R(A + B, C) sunt coliniare. Pentru aceasta considerăm cubica C'

$$L(A, B)^3 + L(A + B, C)^3 + L(O, B + C)^3$$

unde L(A,B) notează aici dreapta generată de A și B. Intersecția $\mathcal{C} \cap \mathcal{C}'$ este:

$$C \cap C' = \{O, A, B, C, A + B, B + C, R(A, B), R(A + B, C), R(B, C)\}.$$

Dacă aceste puncte sunt distincte, cum punctele $B,\,C,\,R(B,C)$, de exemplu, sunt coliniare, lema anterioară ne spune că celelalte șase puncte ale lui $\mathcal{C}\cap\mathcal{C}'$ sunt pe o conică . Dintre acestea, $O,\,A+B$ și R(A,B) sunt, la rândul lor, coliniare. Aplicăm din nou lema și obținem că celelalte trei puncte, adică $A,\,B+C$ și R(A+B,C) trebuie să fie coliniare.

Demonstrația curge asemănător dacă cele nouă puncte de intersecție nu sunt toate distincte. $\hfill\Box$

Cititorul va demonstra singur următoarea aplicație:

EXERCIȚIUL 3.67. Trei puncte sunt coliniare pe o cubică nesingulară \mathcal{C} cu punctul de inflexiune O fixat dacă și numai dacă suma lor coincide cu al treilea punct de intersecție al tangentei în O cu \mathcal{C} .

18.4. O altă demonstrație a Teoremei lui Pascal. Încheiem paragraful consacrat curbelor algebrice cu prezentarea unei demonstrații simple a Teoremei lui Pascal în spiritul teoriei expuse. Ideea este de a asocia conicei în care este înscrisă hexagrama o cubică reductibilă în care să fie înscrise hexagrama și punctele B_i care nu pot sta pe conică. Cititorul va observa asemănarea cu demonstrația 18.2. Cea de acum este, însă, mai directă.

Cu notațiile din teorema 16, fie $F_{ij}=0$ ecuația dreptei care trece prin punctele A_iA_j . Pentru fiecare pereche de parametri (α,β) nenuli, ecuația

$$\alpha F_{12} F_{34} F_{56} + \beta F_{23} F_{45} F_{16} = 0$$

reprezintă o cubică $\sigma_{\alpha\beta}$ care conține punctele hexagramei și punctele B_1, B_2, B_3 a căror coliniaritate o demonstrăm. Introducem acum un nou parametru, δ , și punem ecuația cubicei anterioare sub forma:

$$F_{56}(\alpha F_{12}F_{34} + \delta F_{14}F_{23}) + F_{23}(-\delta F_{14}F_{56} + \beta F_{16}F_{45}) = 0.$$

Conica iniţială γ face parte din ambele fascicole de conice $\alpha F_{12}F_{34} + \delta F_{14}F_{23} = 0$ şi $-\delta F_{14}F_{56} + \beta F_{16}F_{45} = 0$, deci există parametrii α_0 , β_0 , δ_0 astfel încât $\alpha_0 F_{12}F_{34} + \delta_0 F_{14}F_{23} = 0$ şi $-\delta_0 F_{14}F_{56} + \beta_0 F_{16}F_{45} = 0$ pe toate punctele lui γ . Atunci cubica σ_0 corespunzătoare acestor parametri este reductibilă: ecuația sa se factorizează în una de gradul al doilea, care reprezintă conica γ şi una de gradul 1 care reprezintă o dreaptă d (cubica e reuniunea dintre γ şi această dreaptă). Deoarece γ e nedegenerată, punctele B_i nu pot sta pe conică. Deci ele aparțin lui d, ceea ce trebuia demonstrat.

19. Exerciții și probleme suplimentare

Exercițiul 3.68. Discutați posibilitatea definirii relației "a fi între" într-un spațiu proiectiv.

EXERCIȚIUL 3.69. Fie, într-un spațiu proiectiv n-dimensional, n hiperplane distincte, disjuncte. Arătați că reuniunea hiperplanelor nu poate egala spațiul total. Dacă există o dreaptă cu un număr infinit de puncte, atunci spațiul nu poate fi reuniunea unui număr finit de hiperplane.

EXERCIȚIUL 3.70. Pentru orice două puncte distincte dintr-un spațiu proiectiv există un hiperplan care nu le conține.

Exercițiul 3.71. Pentru orice subspațiu n-2 dimensional al unui spațiu proiectiv de dimensiune n, există cel puțin trei hiperplane distincte care-l conțin.

EXERCIȚIUL 3.72. Fie K un corp finit cu k elemente. Atunci P^nK are $\frac{k^{n+1}-1}{k-1}$ elemente.

În cele ce urmează V este un spațiu vectorial finit dimensional peste un corp comutativ K de caracteristică diferită de 2.

EXERCIȚIUL 3.73. Pentru orice două drepte necoplanare dintr-un spațiu proiectiv de dimensiune 3 și pentru orice punct nesituat pe nici una dintre ele, există o unică dreaptă care conține punctul și taie ambele drepte. Dualizați această propoziție.

EXERCIȚIUL 3.74. Oricum s-ar da trei drepte dintr-un spațiu proiectiv de dimensiune 4, necuprinse în același hiperplan și oricare două necoplanare, există o unică dreaptă care le taie pe toate trei.

EXERCIȚIUL 3.75. Fie K un corp comutativ. Arătați printr-un exemplu că în $P^3(K)$ există drepte care nu sunt concurente.

EXERCIȚIUL 3.76. (Generalizarea reciprocei teoremei lui Desargues.) Fie dim $M=n+1,\ A_0,\ldots,A_n$, (respectiv A'_0,\ldots,A'_n), n+1 puncte care nu stau în același hiperplan, astfel încât pentru fiecare k $A'_k \neq A_k$ și dreapta $A_k A'_k$ nu conține nici unul dintre celelalte puncte $A_h,\ A'_h,\ h\neq k$. Presupunem că pentru $h\neq k$, dreptele $A_k A_h$ și $A'_k A'_h$ au un punct comun P_{kh} și toate punctele P_{kh} sunt conținute într-un hiperplan H. Să se arate că dreptele $A_k A'_k$ sunt concurente.

EXERCIȚIUL 3.77. Să se dualizeze într-un spațiu proiectiv de dimensiune 3 următoarele propoziții:

- 1. Există un unic plan care conține o dreaptă dată și un punct nesituat pe ea.
- 2. Două drepte concurente sunt coplanare.
- 3. Pentru orice trei puncte proiectiv independente, există trei drepte distincte, fiecare conţinând două dintre puncte.

EXERCIȚIUL 3.78. Fie $\dim V \geq 3$ și $f \in PGL(V) - \{Id\}$ o omografie care fixează punct cu punct un hiperplan H. Atunci:

- a) Orice dreaptă care conține un punct din P(V)-H și imaginea sa e invariată (nu neapărat punct cu punct) de f.
 - b) Fie $A, B \in P(V) H$. Dreptele AB şi f(A)f(B) se taie pe H.
- c) Arătați că se pot alege A, B astfel încât dreptele Af(A) și Bf(B) să fie distincte. În acest caz, punctul lor de intersecție S există și este fix pentru f. Să se arate că orice dreaptă de tipul Mf(M) trece prin S.

Faceți o demonstrație directă și una afină, prin expedierea lui H la infinit.

EXERCIȚIUL 3.79. Fie P(V) un spațiu proiectiv de dimensiune cel puțin 2, O un punct fixat și f o omografie care invariază toate dreptele prin O.

- a) Fie A,B două puncte distincte, necoliniare cu O. Să se arate că punctul de intersecție al dreptelor AB și f(A)f(B) e fix pentru f.
- b) Fie L mulţimea punctelor fixe ale lui f de tipul descris la punctul a). Folosind teorema lui Desargues, arătaţi că L taie orice plan care trece prin O după o dreaptă.

EXERCIȚIUL 3.80. Alegeți convenabil dreapta de la infinit din $P^2\mathbb{R}$ pentru ca din axioma Pappus-Pascal (verificată, deoarece \mathbb{R} e comutativ) să obțineți versiunile afine ale teoremei lui Pappus (vezi propoziția 2.13 și exercițiul 2.16). În particular, demonstrați enunțul: Două drepte paralele duse prin vârfurile B, C ale unui triunghi (ABC) taie o dreaptă d prin A în M, N. Paralelele din M la $\langle AC \rangle$ și din N la $\langle AB \rangle$ se taie într-un punct de pe $\langle BC \rangle$.

Exercițiul 3.81. Identificăm \mathbb{C} cu \mathbb{R}^2 și fie d dreapta de ecuație y=0 (axa reală).

- a) Să se arate că omografiile lui d (văzută ca spațiu afin în identificarea $P^1\mathbb{R}=d\cup\{\infty\}$) se identifică cu omografiile lui \mathbb{C} de forma $z\mapsto \frac{az+b}{cz+d}$ cu $a,b,c,d\in\mathbb{R}$.
- b) Fie φ o asemenea omografie fără puncte fixe reale. Atunci φ admite două puncte fixe imaginare a,b conjugate.

EXERCIȚIUL 3.82. O omografie f a dreptei proiective P^1K , cu proprietatea $f^2 = \text{Id}$ și $f \neq \text{Id}$, se numește involuție.

- 1. Să se arate că dacă o involuție are un punct fix, atunci are două puncte fixe distincte a, b. În acest caz are loc relația [a, b, x, f(x)] = -1 pentru orice punct $x \in P^1K$.
- 2. Orice omografie este produsul a cel mult trei involuții. Dacă $K=\mathbb{C}$, este orice omografie produs de două involuții? Dar pentru $K=\mathbb{R}$?
- 3. O omografie este o involuție dacă și numai dacă există $x \in P^1K$ astfel încât $f^2(x) = x$ și $f(x) \neq x$.
 - 4. O omografie este involuție dacă și numai dacă matricea sa are urmă nulă.

- 5. O involuție este complet determinată de două perechi (x, f(x)), (y, f(y)) cu $x \neq y$.
- 6. Două involuții distincte ale lui $P^1\mathbb{C}$ au în comun o pereche (x, f(x)) și numai una.

Exercițiul 3.83. Fie f o omografie a dreptei proiective complexe $P^1\mathbb{C} = \mathbb{C} \cup \infty$. Fie $(\frac{a}{c}\frac{b}{d})$ matricea sa. Să se arate că f invariază semiplanul superior $\{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\}$ dacă și numai dacă a, b, c, d sunt reale și ad - bc > 0. Să se studieze, în acest caz, punctele fixe ale lui f. Să se arate că dacă f și g sunt omografii care comută și invariază semiplanul superior, ele au aceleași puncte fixe.

EXERCIȚIUL 3.84. Fie A_1, \ldots, A_4 afixele numerelor complexe z_1, \ldots, z_4 . Să se arate că biraportul punctelor $z_1, \ldots, z_4 \in \mathbb{C} \subset P^1\mathbb{C}$ este real dacă şi numai dacă A_1, \ldots, A_4 sunt coliniare sau conciclice.

EXERCIȚIUL 3.85. Fie a_1, \ldots, a_5 puncte distincte dintr-un plan proiectiv. Presupunem că a_1, \ldots, a_4 formează un reper proiectiv. Fie d_{ij} dreapta $a_i a_j$. Să se demonstreze relația:

$$[d_{12},d_{13},d_{14},d_{15}][d_{23},d_{21},d_{24},d_{25}][d_{31},d_{32},d_{34},d_{35}]=1.$$

EXERCIȚIUL 3.86. Fie, în $P^2\mathbb{R}$, conicele \mathcal{C}, \mathcal{D} , de ecuații $x_0^2 + x_1^2 - x_2^2 = 0$, respectiv $x_0^2 - x_1^2 - x_2^2 = 0$. Să se arate că cele două conice sunt proiectiv echivalente determinânduse explicit o proiectivitate care aplică \mathcal{C} în \mathcal{D} . (Indicație: O proiectivitate cu proprietatea cerută are ecuațiile: $[x_0:x_1:x_2] \mapsto [x_1:x_2:x_0]$. Nu e unica; aceeași proprietate o are $[x_0:x_1:x_2] \mapsto [x_2:x_1:x_0]$.

EXERCIȚIUL 3.87. Fie A, B, C trei puncte necoliniare în P^3K și σ o cuadrică ce conține dreptele AB, AC, BC. Să se arate că σ posedă o infinitate de puncte duble.

Exercițiul 3.88. Orice hipercuadrică fără puncte singulare din P^nK este ireductibilă.

EXERCIȚIUL 3.89. Cuadrica lui Klein¹¹. Coordonate plückeriene. ¹² Fie G(2,4) multimea dreptelor proiective din $P^3\mathbb{C}$. Această mulțime e în corespondență biunivocă cu cea a subspațiilor 2-dimensionale din \mathbb{C}^4 (în general, mulțimea p-planelor vectoriale ale lui K^n se notează G(p, n; K) și se numește grassmanniana p-planelor din K^n ; de aici notația). Putem reprezenta G(2,4) ca o cuadrică în $P^5\mathbb{C}$ în felul următor. Asociem mai întâi fiecărei drepte projective din $P^3\mathbb{C}$ un sextet de coordonate omogene: fie $P=[x_0:$ $x_1:x_2:x_3],\;Q=[y_0:y_1:y_2:y_3]$ distincte. Coordonatele lor formează matricea de rang 2, $A = \begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ y_0 & y_1 & y_2 & y_3 \end{pmatrix}$. At unci numerele p_{ij} , cu $0 \le i < j \le 3$, $p_{ij} = x_i y_j - x_j y_i$ (minorii matricei A) nu sunt toate nule, astfel că definesc un punct $[p_{01}:p_{02}:p_{03}:p_{12}:$ $p_{13}:p_{23}]$ din $P^5\mathbb{C}$. Numerele p_{ij} se numesc coordonate plückeriene ale dreptei PQ. Deşi, aparent, coordonatele omogene introduse depind de punctele P, Q, nu numai de dreapta determinată de ele, lucrurile nu stau așa. Într-adevăr, e clar că $[p_{ij}]$ nu se schimbă atunci când coordonatele lui P sau Q se multiplică cu un scalar arbitrar nenul. Apoi, dacă în loc de P luăm un alt punct $P' = [x'_i] \in PQ$, diferit de Q, există scalarii $\lambda \neq 0$ și μ astfel încât $x_i' = \lambda x_i + \mu y_i$, $i = 0, \ldots, 3$. Calculând noii minori ai matricei A găsim $p_{ij}' = \lambda p_{ij}$. La fel dacă înlocuim Q cu alt punct de pe dreapta PQ, diferit de P.

Până acum am dovedit că putem asocia fiecărei drepte proiective din $P^3\mathbb{C}$ un unic punct din $P^5\mathbb{C}$ de coordonate (plückeriene) $[p_{ij}]$. Observăm acum că aceste coordonate satisfac ecuația $p_{01}p_{23} - p_{02}p_{13} + p_{03}p_{12} = 0$. Într-adevăr, ecuația de mai sus e echivalentă

 $^{^{11}\}mathrm{Christian}$ Felix Klein, matematician german, 1849-1925. Autor, între altele, al Programului de la Erlangen

 $^{^{12}\}mathrm{J.}$ Plücker, matematician german, 1801-1868.

cu anularea determinantului

În concluzie, punctul $[p_{01}:p_{02}:p_{03}:p_{12}:p_{13}:p_{23}]$ aparține cuadricei $X_0X_5-X_1X_4+X_2X_3=0$, numită cuadrica lui Klein.

Reciproc, se poate vedea că fiece punct $C = [p_{ij}]$ al cuadricei lui Klein provine dintrounică dreaptă a lui $P^3\mathbb{C}$. Pentru aceasta, presupunem $p_{01} \neq 0$ (nimic restrictiv aici: cel puţin o coordonată e nenulă, iar în celelalte cazuri raţionamentul e similar) şi definim $P = [0:p_{01}:p_{02}:p_{03}], \ Q = [-p_{01}:0:p_{12}:p_{13}].$ Coordonatele plückeriene ale dreptei PQ sunt p_{01}^2 , $p_{01}p_{03}$, $p_{01}p_{12}$, $p_{01}p_{13}$, $p_{01}p_{23}$. Deci, cum $p_{01} \neq 0$, după simplificarea cu p_{01} vedem că punctul C e asociat dreptei PQ. Dacă d e altă dreaptă ale cărei coordonate plückeriene sunt proporţionale cu coordonatele lui C, deducem că d nu e conţinută în planele de ecuaţii $X_0 = 0$ sau $X_1 = 0$, altfel am avea $p_{01} = 0$. Atunci fie $[0:a_1:a_2:a_3]$ şi $[-b_0:0:b_2:b_3]$ punctele ei de intersecţie cu aceste plane. Găsim $[p_{01}:p_{02}:p_{03}:p_{12}:p_{13}:p_{23}] = [a_1b_0:a_2b_0:a_3b_0:a_1b_2:a_1b_3:a_2b_3-a_3b_2]$. Deoarece $a_1b_0 \neq 0$, obţinem $P = [0:a_1:a_2:a_3]$, $Q = [-b_0:0:b_2:b_3]$, adică d = PQ, de unde concluzia.

EXERCIȚIUL 3.90. Să se găsească polarele punctelor [1:0:0], [0:1:0], [0:0:1] față de conica $X_1^2+2X_2^2-4X_0^2=0$ din $P^2\mathbb{C}$.

EXERCIȚIUL 3.91. Pentru orice puncte distincte a_1, a_2, a_3, u, v pe o dreaptă proiectivă are loc relația: $[a_1, a_2, u, v] \cdot [a_2, a_3, u, v] \cdot [a_3, a_1, u, v] = 1$.

EXERCIȚIUL 3.92. (Salmon) Fie $\mathcal C$ o cubică nesingulară și P un punct de inflexiune al său. $\mathcal C$ conține exact patru tangente care trec prin P (inclusiv tangenta în P). Modulul biraportului lor (vezi definiția 3.31 și exercițiul următor) e independent de alegerea lui P, deci se asociază cubicei. Arătați că două cubice nesingulare sunt proiectiv echivalente dacă și numai dacă au același modul.

Spre deosebire de conice, există o infinitate de clase de echivalență de cubice proiective nesingulare.

EXERCIȚIUL 3.93. Folosind ideea din paragraful 18.4, demonstrați următoarele variante afine ale Teoremei lui Pascal:

- 1. Dacă laturile opuse ale unei hexagrame înscrise într-o conică afină nedegenerată sunt respectiv concurente, atunci cele trei puncte obținute sunt coliniare (pe $dreapta\ lui\ Pascal$).
- 2. Dacă două perechi de laturi opuse ale unei hexagrame înscrise intr-o conică afină nedegenerată sunt concurente și a treia pereche de laturi opuse reprezintă drepte paralele, atunci dreapta determinată de punctele de concurență ale primelor două perechi de laturi opuse este paralelă cu dreptele din a treia pereche de laturi opuse.
- 3. Dacă două perechi de laturi opuse ale unei hexagrame înscrise într-o conică afină nedegenerată sunt perechi de drepte respectiv paralele, atunci şi a treia pereche de laturi opuse este formată din drepte paralele.

Indicație: Cum conica γ care conține hexagrama e nedegenerată, orice dreaptă o taie în exact două puncte, eventual confundate. Ca urmare, nu pot exista pe γ trei puncte distincte coliniare, hexagrama considerată are vârfurile trei câte trei necoliniare. Cu notațiile din secțiunea 18.4 (acum $F_{ij}=0$ reprezintă drepte afine etc.), punem ecuația fascicolului de conice prin punctele A_1,A_2,A_3,A_4 , respectiv A_1,A_4,A_5,A_6 sub forma:

$$\alpha F_{12}F_{34} + \beta F_{14}F_{23} = 0,$$

respectiv:

$$\lambda F_{45}F_{16} + \mu F_{56}F_{14} = 0.$$

Conica inițială γ face parte din ambele fascicole. Atunci există $\delta \neq 0$ astfel încât

$$\alpha F_{12}F_{34} + \beta F_{14}F_{23} = \delta(\lambda F_{45}F_{16} + \mu F_{56}F_{14}),$$

ecuație care se mai pune sub forma:

$$\alpha F_{12}F_{34} - \delta \lambda F_{45}F_{16} = F_{14}(\delta \beta F_{56} - \mu F_{23}).$$

Membrul stâng al acestei ecuații reprezintă ecuația unei conice γ' care conține punctele B_1, B_3 . Cum aceeași conică este reprezentată și de membrul drept al egalității de mai sus,

$$(3.39) F_{14}(\delta\beta F_{56} - \mu F_{23}) = 0,$$

deducem că γ' este degenerată, deci este o reuniune de două drepte. Ca urmare, punctele B_1, B_2 aparțin cel puțin uneia dintre dreptele de ecuații: $F_{14}=0, \ \delta\beta F_{56}-\mu F_{23}=0$. Cum punctele hexagramei sunt trei câte trei necoliniare (altfel γ ar fi degenerată), B_1, B_3 stau pe dreapta d de ecuație $\delta\beta F_{56}-\mu F_{23}=0$ pe care se află și B_2 . Primul enunț este demonstrat.

Pentru enunțul al doilea, presupunând A_2A_3 și A_5A_6 paralele, se arată că B_1, B_3 aparțin dreptei d (notațiile anterioare), observând că d face parte din fascicolul de drepte paralele cu A_2A_3 etc.

În ce privește al treilea enunț, dacă $A_1A_2\|A_4A_5$ și $A_3A_4\|A_1A_6$, rezultă că ecuația (3.38) e de gradul 1, deci nu poate reprezenta o conică. Cum ecuația (3.39) are aceeași mulțime de soluții cu (3.38), polinomul $\delta\beta F_{56} - \mu F_{23}$ trebuie să fie de gradul 1. Rezultă că $A_2A_3\|A_5A_6$.

CAPITOLUL 4

Programul de la Erlangen

Sunteţi matematician, domnule Klein, eu sunt pictor. Un prieten german, domnul Karl Ernst Osthaus, mi-a vorbit despre noile Reflecţiuni geometrice prezentate de dumneavoastră la Universitatea din Erlangen şi mi-a trimis un exemplar din Programul dumneavoastră. Vă mărturisesc că am fost imediat frapat de numeroasele apropieri care se pot face între demersul dumneavoastră şi al meu. Se spune că subiectele mele sunt nişte pretexte, că trupurile mele nude sunt grupate neverosimil într-un peisaj inexistent. Într-adevăr, obiectul reprezentat dispare în faţa metodei mele. Nu sunt înzestrat pentru pictură, domnule Klein, sunt stângaci, extraordinar de stângaci, nu am talentul domnului Ingres... Dar să mi se arate şi mie în natură ceva desenat!

Paul Cézanne

Am studiat, în capitolele anterioare, trei tipuri de geometrii: euclidiană (pe un spațiu afin euclidian), afină (fără metrică) și proiectivă. Felul în care le-am prezentat a fost diferit de cel adoptat în manualele de liceu. Încercăm în cele ce urmează să motivăm această abordare.

Fiecăreia dintre geometriile studiate i-a corespuns un grup de automorfisme care invaria "proprietățile geometrice" respective. Dacă vorbim numai despre geometrii reale, acestea erau: grupul izometriilor (izomorf cu O(n)), grupul afinităților (izomorf cu grupul $AGL(n,\mathbb{R})$), respectiv grupul automorfismelor proiective (izomorf cu $PGL(n,\mathbb{R})$).

În virtutea acestor exemple, admitem că o geometrie constă dintr-o mulțime de obiecte și relații între obiecte, supuse anumitor constrângeri (axiome și teoreme). Dintre transformările (funcțiile bijective) ale acestei mulțimi, aparțin geometriei numai cele care invariază respectivele relații. Ele formează un grup, numit al automorfismelor geometriei. Cu ajutorul lor se pot defini clase de echivalență de figuri geometrice (mulțimi de puncte ale geometriei): două figuri sunt echivalente dacă există un automorfism al geometriei care o aplică pe una în cealaltă. De exemplu, în geometria afină reală, toate segmentele sunt echivalente, în timp ce în geometria euclidiană, sunt echivalente doar segmentele de aceeași lungime. Figurile echivalente dintr-o geometrie diferă doar prin poziție.

Odată fixată o geometrie cu grup de automorfisme G, se poate considera subgrupul G' al automorfismelor ei care invariază o anumită figură (nu neapărat punct cu punct), numită $figura \ absolută$. Pentru o figură dată, clasa ei de echivalență modulo G' e conținută (în general, strict) în clasa de echivalență modulo G. Să reluăm, din acest punct de vedere, geometriile studiate.

Grupul cel mai larg de automorfisme care ne-a interesat a fost grupul proiectivităților (reale), izomorf cu $\operatorname{PGL}(n,\mathbb{R})$. Proiectivitățile păstrează coliniaritatea și biraportul a patru puncte. Subgrupul proiectivităților care invariază un hiperplan fixat (zis de la infinit) a fost identificat cu grupul afin $AGL(n, \mathbb{R})$. Afinitățile păstrează paralelismul și raportul punctelor în care o secantă arbitrară taie trei drepte paralele. Dacă în spațiul afin real, considerăm subgrupul afinităților care invariază o hipersferă, fixând în același timp o altă hipersferă a ei (în dimensiune trei, e vorba de fixarea unui cerc pe o sferă absolută), obținem grupul asemănărilor, din care fac parte omotetiile și translațiile. Asemănările păstrează unghiul (în particular, ortogonalitatea), dar nu distanțele dintre puncte. Deci în geometria asemănărilor nu se poate defini coerent lungimea unui segment, deoarece orice două segmente sunt echivalente față de acest grup. Considerând acum subgrupul asemănărilor care aplică o hipersferă fixată \ddot{S} pe una echivalentă cu S printr-o translație, obținem grupul mişcărilor rigide sau al izometriilor, izomorf cu O(n). Izometriile aparțin geometriei euclidiene. Ele conțin un subgrup important, anume cel al izometriilor care păstrează orientarea, izomorf cu SO(n).

În concluzie, vedem că ierarhiei grupurilor îi corespunde o ierarhie a geometriilor. Cu cât se consideră un subgrup mai mic, cu atât se obține o geometrie mai
"mare", mai bogată în proprietăți, în care există mai multe clase de echivalență
de figuri. De exemplu, clasa de echivalență a unui cerc de rază 1 este formată din
toate cercurile de rază 1 în geometria euclidiană, din toate cercurile în geometria
asemănărilor, din toate elipsele în geometria afină și din toate conicele nedegenerate
în geometria proiectivă.

Să notăm, de asemenea, că pe spațiul proiectiv se poate introduce o distanță, făcând astfel clară subsumarea geometriei euclidiene celei proiective (fapt deja știut datorită incluziunii lui $\mathrm{O}(n)$ în $\mathrm{PGL}(n,\mathbb{R})$). Se fixează întâi o conică (ne mărginim la cazul planului) nedegenerată drept figură fundamentală; distanța dintre punctele A și B se definește ca fiind raportul anarmonic al punctelor A,B,C,D, ultimele două fiind punctele de intersecție ale dreptei AB cu conica (construcția îi aparține lui Cayley). Se produce acum și unificarea "sintetică" a geometriilor euclidiană și proiectivă. În plus, apare evidentă semnificația teoretică importantă pe care o are raportul anarmonic.

Importanța punctului de vedere invers, anume construirea unei geometrii corespunzătoare unui grup dat care să devină grupul automorfismelor ei, a fost înteleasă întâi de Felix Klein în articolul Vergleichende Betrachtungen über neuere geometrische Forschungen (Tendințe recente în cercetarea geometrică), publicat la Erlangen în 1872, de aceea cunoscut, mai ales, sub numele de Programul de la Erlangen. Alături de Sophus Lie¹, el a dat un puternic impuls studierii teoriei grupurilor văzute ca grupuri de transformări (de automorfisme) ale unei geometrii. Spune Klein:

Fie dată o varietate² și în ea un grup de transformări; sarcina noastră este să investigăm acele proprietăți ale unei figuri din varietate care nu se schimbă prin transformările grupului.

Deoarece punctele spațiului se identifică prin coordonate, dreptele, cercurile, cuadricele, în general, toate figurile geometrice se definesc prin coordonate care sunt soluții ale unor sisteme de ecuații. De asemenea, transformările geometriei sunt descrise de sisteme de ecuații (așa cum am făcut și noi în capitolele 2, 3). Am

 $^{^{1}{\}rm Sophus}$ Lie, 1842-1899, matematician norvegian. Inițiatorul teoriei grupurilor coontinue de transformări.

 $^{^2}$ adică o mulțime ale cărei elemente se pot descrie prin n-tupluri de coordonate. Spațiile K^n sunt cele mai simple exemple.

văzut că se poate ajunge la coordonate în două feluri: luând ca model un spațiu vectorial (așa cum am făcut în capitolul al 2-lea) sau axiomatic, sintetic, ca în capitolul al 3-lea al cărții. Deci, generalizând un pic (renunțând la coordonate), putem formula astfel principiul lui Klein: Se dă o mulțime M. Se consideră grupul \mathcal{S}_M al permutărilor lui M. Orice subgrup T al său este un grup de transformări ale lui M. Se studiază acele proprietăți ale figurilor care sunt invariate de toate elementele lui T. Astfel, a priori, M nu are proprietăți geometrice, acestea sunt dictate de grupul T. Notăm o geometrie prin perechea (M,T).

Exemple deosebite de cele studiate pană acum de noi sunt geometriile cercurilor, considerate de Möbius, Laguerre și Lie. Toate se ocupă de cercuri din planul euclidian \mathbb{R}^2 , dar pornesc de la elemente fundamentale diferite (adică diferă obiectele de primul ordin). S-a văzut ulterior că ele corespund diferitelor subgrupuri ale grupului proiectiv. Descriem în continuare, foarte pe scurt, geometria cercurilor lui Möbius (vezi, pentru detalii, [3]).

Spațiul geometric este mulțimea tuturor dreptelor și cercurilor din spațiul euclidian \mathbb{R}^2 . Acestea se numesc *cercuri Möbius*. Ecuația unui element al acestui spațiu este, în reperul canonic al lui \mathbb{R}^2 :

(4.1)
$$E(x^2 + y^2) + Ax + By + C = 0.$$

Ea reprezintă un cerc sau o dreaptă după cum $E \neq 0$ sau E = 0. Identificând \mathbb{R}^2 cu \mathbb{C} , punând $z = x + \mathrm{i} y$, ecuația (4.1) se poate scrie sub forma:

(4.2)
$$Ez\overline{z} + A\frac{z+\overline{z}}{2} + B\frac{z-\overline{z}}{2} + C = 0.$$

Dacă privim \mathbb{C} ca fiind completarea dreptei proiective, adică $\mathbb{C} = P^1\mathbb{C} \cup \{\infty\}$, observăm că omografia $z \mapsto 1/\overline{z}$ (o inversiune de pol (0,0) față de cercul unitate) transformă ecuația (4.2) în

$$Cz\overline{z} + A\frac{z+\overline{z}}{2} + B\frac{z-\overline{z}}{2} + E = 0.$$

Deci inversiunile păstrează cercurile lui Möbius. Pe de altă parte, orice rotație $z\mapsto r^2z$ în jurul originii este compunerea inversiunilor $z\mapsto 1/\overline{z},\ z\mapsto r^2/\overline{z};$ deci și rotațiile în jurul originii conservă cercurile Möbius. La fel afinitățile, verificarea e imediată. Cum orice omografie $z\mapsto \frac{az+b}{cz+d}$ se poate scrie ca produs dintre o afinitate $z\mapsto cz+d$, o inversiune compusă o simetrie $z\mapsto 1/z$ și o nouă afinitate $z\mapsto \frac{a}{c}+\frac{bc-ad}{c}z$, vedem că întreg grupul omografiilor dreptei proiective complexe păstrează cercurile lui Möbius. Atunci geometria cercurilor lui Möbius constituie un model pentru geometria dreptei proiective complexe.

Studiul proprietăților astfel definite trebuie să se supună principiului transferului. Presupunem date o geometrie (M,T), și o bijecție $\theta: M \to M'$ pe o altă mulțime M'. Cu ajutorul lui θ putem "transfera" acțiunea lui T asupra lui M' astfel: oricărui automorfism $t \in T$ îi asociem aplicația $t' = \theta t \theta^{-1} : M' \to M'$. Observăm că aplicația $t \mapsto t'$ este un homomorfism al lui T pe $S_{M'}$: într-adevăr, t' e bijecție și

$$(tu)' = \theta t u \theta^{-1} = \theta t \theta^{-1} \theta u \theta^{-1} = t' u'.$$

Fiind imaginea printr-un homomorfism a unui subgrup, mulțimea T' a tuturor transformărilor t' este un subgrup al lui $\mathcal{S}_{M'}$. Obținem astfel geometria (M', T').

 $^{^3{\}rm August}$ Ferdinand Möbius, 1790-1868. Matematician german, cu contribuții în geometrie și topologie.

 $^{^4}$ Edmond Laguerre, 1834-1866. Matematician francez cu lucrări de geometrie, ecuații algebrice și fracții continue.

Pe de altă parte, t'=u' dacă și numai dacă t=u, adică T și T' sunt izomorfe. Spunem că geometriile (M,T) și (M',T') sunt izomorfe. Principiul transferului ne permite să definim geometrii echivalente pe mulțimi

Principiul transferului ne permite să definim geometrii echivalente pe mulțimi de obiecte foarte diferite. Dincolo de aspectul strict matematic, ideea aceasta a avut în epocă o importanță deosebită din punct de vedere filozofic. Să ne reamintim că abia de circa douăzeci de ani apăruseră geometriile neeuclidiene datorate lui Bolyai, Lobacevski, Riemann și dreptul lor de cetate era încă în discuție. Se căutau modele, se făceau comparații ("care geometrie e mai bună?" — întrebare prost pusă, după cum s-a înțeles abia mai târziu), se căutau spații pe care să se aplice o geometrie sau alta. Or, Principiul transferului enunțat de Klein spune foarte clar că natura obiectelor care formează spațiul nu are relevanță; contează doar relațiile dintre ele.

Câteva fapte elementare de algebră

A. Polinoame omogene. Rezultanta a două polinoame

A.1. Polinoame omogene. Fie K un corp comutativ, $K[X_0, \ldots, X_n]$ inelul polinoamelor în n+1 nedeterminate peste K (vezi cursul [11]).

Un polinom $F \in K[X_0, ..., X_n]$ se numește omogen dacă funcția polinomială asociată satisface identitatea:

$$F(tX_0,\ldots,tX_n)=t^dF(X_0,\ldots,X_n)$$
 pentru orice $t\in K$

cu $d=\operatorname{grad}(F)$. Vom nota $K[X_0,\ldots,X_n]_d$ mulţimea polinoamelor omogene de grad d la care adăugăm polinomul nul. Obţinem un spaţiu vectorial peste K. O bază a sa este formată din toate monoamele monice (coeficientul scalar este 1) $X_0^{i_0}\cdots X_n^{i_n}$ cu $\sum_{k=0}^n i_k=d$. Dimensiunea spaţiului vectorial $K[X_0,\ldots,X_n]_d$ se găseşte uşor, făcând un raţionament inductiv. Se obţine:

LEMA A.1. dim
$$K[X_0,\ldots,X_n]_d=\binom{n+d}{d}$$
.

Demonstrăm, în continuare, câteva proprietăți care ne vor fi utile pe parcurs:

Propoziția A.1. 1) Orice divizor al unui polinom omogen e polinom omogen. 2) (Identitatea lui Euler) Fie $F \in K[X_0, \ldots, X_n]_d$. Atunci:

$$\sum_{i=0}^{n} X_i \frac{\partial F}{\partial X_i} = d \cdot F$$

unde $\frac{\partial F}{\partial X_i}$ este derivata formală a lui F în raport cu X_i .

Demonstrație. Fie F=GH. Prin absurd, G nu e omogen. Putem descompune polinoamele G,H în monoame de grade crescătoare:

$$G = G_i + G_{i+1} + \cdots + G_{i+j}$$

$$H = H_k + H_{k+1} + \cdots + H_{k+l}$$

cu $G_i \neq 0, G_{i+j} \neq 0, H_k \neq 0, H_{k+l} \neq 0$ și $j > 0, k \geq 0$. Atunci:

$$F = G_i H_k + (G_{i+1} H_k + G_i H_{k+1}) + \dots + G_{i+j} H_{k+l}.$$

Aici $G_iH_k \neq 0$, $G_{i+j}H_{k+l} \neq 0$, iar $\operatorname{grad}(G_iH_k) = i+k < i+j+k+l = \operatorname{grad}(G_{i+j}H_{k+l})$, în contradicție cu omogenitatea lui F.

Pentru a doua afirmație, derivăm $F(tX_0,\dots,tX_n)$, evaluăm în t=1 și aplicăm definiția polinoamelor omogene. \Box

Vom avea nevoie și de următoarea extensie a teoremei de descompunere în factori ireductibili a unui polinom din $\mathbb{C}[X]$:

Teorema A.1. Fie K un corp algebric închis și $F \in K[X_0, X_1]_d$, d > 0. Atunci există $(a_i, b_i) \in K^2 - \{(0, 0)\}, i = 1, 2, \ldots, d$ astfel încât

$$F = (a_1X_1 - b_1X_0)(a_2X_1 - b_2X_0) \cdots (a_dX_1 - b_dX_0).$$

Perechile (a_i, b_i) sunt unic determinate până la ordine și factori de proporționalitate nenuli cu produsul 1. Ele se numesc rădăcinile lui F.

Demonstrație. Putem scrie $F=X_0^rG,\ r\in[0,d],\ \mathrm{cu}\ G\in K[X_0,X_1]_{d-r}.$ Considerăm polinomul $G_1=G(1,X_1)\in K[X_1].$ Cum $\mathrm{grad}(G_1)=d-r$ și K e algebric închis, există descompunerea

$$G_1 = a(X_1 - b_1) \cdots (X_1 - b_{d-r}), \quad a \neq 0.$$

Omogenizând, obținem

$$G = a(X_1 - b_1 X_0) \cdots (X_1 - b_{d-r} X_0), \quad a \neq 0,$$

ceea ce implică

$$F = aX_0^r(X_1 - b_1X_0) \cdots (X_1 - b_{d-r}X_0).$$

Pentru unicitate se ține seama de factorialitatea inelelor de polinoame peste un corp comutativ, în particular a inelului $K[X_0, X_n]$.

A.2. Rezultanta a două polinoame. Un instrument util în determinarea factorilor comuni a două polinoame este rezultanta lor (pentru detalii, se poate consulta și [17]). Demonstrăm întâi:

Propoziția A.2. Fie $F, G \in K[X]$. Atunci F, G au un factor comun neconstant dacă și numai dacă există $A, B \in K[X]$ cu grad(A) < grad(G), grad(B) < grad(F) și AF = BG.

Demonstrație. Necesitatea: Dacă F=BH și G=AH,atunci FA=GB=ABH. Condiția asupra gradelor e imediată.

Suficiența: Din relația AF = BG urmează că orice factor ireductibil al lui G divide AF. Cum $\operatorname{grad}(B) < \operatorname{grad}(F)$, deducem că cel puțin un factor ireductibil al lui G divide F, deci F, G au un factor comun neconstant.

Fie acum

$$F = a_0 + a_1 X + \dots + a_n X^n, \quad a_n \neq 0,$$

 $G = b_0 + b_1 X + \dots + b_m X^m, \quad b_m \neq 0.$

Definiția A.1. Rezultanta lui F și G este determinantul R(F,G) al matricei pătrate de tip m+n:

$$R = \begin{pmatrix} a_0 & a_1 & \dots & \dots & a_n & 0 & \dots \\ 0 & a_0 & \dots & \dots & a_{n-1} & a_n & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & a_0 & \dots & \dots & a_n \\ b_0 & b_1 & \dots & b_m & 0 & \dots & \dots \\ 0 & b_0 & \dots & \dots & b_m & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots &$$

EXERCIȚIUL A.1. Să se arate că $R(F,G) = (-1)^{\operatorname{grad} F \cdot \operatorname{grad} G} R(G,F)$.

Propoziția A.3. F și G au un factor comun neconstant dacă și numai dacă R(F,G)=0.

Demonstrație. Dacă F și G nu sunt relativ prime, atunci există A,B polinoame neidentic nule, de forma

$$A = -\alpha_1 - \alpha_2 X - \dots - \alpha_n X^{n-1}$$

$$B = \beta_1 + \beta_2 X + \dots + \beta_m X^{m-1}$$

cu proprietatea BF = AG. Rezultă identitățile:

$$a_0\beta_1 = -b_0\alpha_1$$

$$a_1\beta_1 + a_0\beta_2 = -\alpha_1b_1 - \alpha_2b_0$$

$$\vdots$$

$$a_n\beta_m = -\alpha_nb_m$$

Acestea dovedesc existența unei soluții nebanale $(\beta_1, \ldots, \beta_m)$ a sistemului omogen de matrice tR . Atunci $R(F,G) = \det(R) = \det({}^tR) = 0$.

Reciproc, dacă R(F,G)=0, atunci sistemul de mai sus în necunoscutele α_1,\ldots,α_n , β_1,\ldots,β_m are soluție nebanală în K. De unde rezultă că polinoamele F și G satisfac FB=GA pentru A,B definiți mai sus. Acum se aplică propoziția A.2.

Rezultă imediat următoarele consecințe:

Corolarul A.1. Două polinoame din K[X] au o rădăcină comună dacă și numai dacă au rezultanta nulă.

Corolarul A.2. $F \in K[X]$ are o rădăcină multiplă dacă și numai dacă R(F,F')=0.

Trecând acum la polinoame în mai multe nedeterminate, dacă polinoamele F şi G din $K[X_0,\ldots,X_n]$ sunt văzute în $K[X_0,\ldots,X_{n-1}][X_n]$, rezultanta lor ca polinoame în nedeterminata X_n se numește $\mathit{rezultantă}$ $\mathit{relativ}$ la X_n și e un polinom din $K[X_0,\ldots,X_{n-1}]$. Este polinomul obținut după eliminarea lui X_n între expresiile celor două polinoame inițiale (de aceea se mai numește și eliminant). Importantă pentru noi este următoarea:

TEOREMA A.2. Fie

$$F = F_p + F_{p-1}X_n + \dots + F_0X_n^p,$$

$$G = G_q + G_{q-1}X_n + \dots + G_0X_n^q$$

cu $F_j \in K[X_0, \ldots, X_{n-1}]_j$, $G_k \in K[X_0, \ldots, X_{n-1}]_k$ și $F_0G_0 \neq 0$. Atunci rezultanta R(F,G) relativ la X_n e polinom omogen de grad pq în X_0, \ldots, X_{n-1} sau e identic nulă.

Demonstrație. Calculăm $R(tX_0, \ldots, tX_{n-1})$. Obținem determinantul:

$$\begin{vmatrix} t^p F_p & t^{p-1} F_{p-1} & \dots & F_0 & 0 & \dots \\ 0 & t^p F_p & \dots & t^p F_{p-1} & F_0 & 0 & \dots \\ 0 & \dots & 0 & t^p F_p & \dots & F_0 & 0 \\ t^q G_0 & t^{q-1} G_1 \dots & b_m & 0 & \dots & \dots \\ 0 & t^q G_q & \dots & G_0 & 0 & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots$$

Se înmulțește linia $i \leq p$ cu t^{q-i+1} și linia $j \geq p+1$ cu t^{p-j+1} . Se obține

$$t^{s}R(tX_{1},...,tX_{n-1}) = t^{r}R(X_{0},...,X_{n-1})$$

cu

$$s = p + (p - 1) + \dots + 1 + q + (q - 1) + \dots + 1 = \binom{p + 1}{2} + \binom{q + 1}{2},$$

$$r = (p + q) + (p + q - 1) + \dots + 1 = \binom{p + q + 1}{2}$$

Rezultă $R(tX_1,\ldots,tX_{n-1})=t^{r-s}R(X_0,\ldots,X_{n-1}),$ și demonstrația e încheiat<u>ă.</u>

B. Produsul determinanților. Regula lui Laplace

Demonstrăm în acest paragraf un fapt la care am făcut apel în repetate rânduri. Pentru majoritatea absolvenților de liceu (românesc) el face parte din folclor. Cu toate acestea, în manualul de liceu de clasa a XI-a el nu apare. Este vorba despre

Propoziția B.1. Fie A,B matrice pătrate de aceeași dimensiune n. Atunci $\det(AB) = \det(A) \det(B)$.

Demonstrație. Folosim definiția determinantului și proprietățile elementare cunoscute din liceu. Fie $A=(a_{ij}),~B=(b_{ij}),~C=AB=(c_{ij}),~c_{ij}=\sum_k a_{ik}b_{kj}$. Deoarece fiecare coloană a lui C este o sumă de n termeni putem scrie:

$$\det(C) = \sum_{k=1}^{n} \sum_{j_{k}=1}^{n} \det(a_{ij_{k}}) b_{j_{1}1} b_{j_{2}2} \cdots b_{j_{n}n},$$

(am exclus cazul în care unii dintre j_i ar fi egali, determinantul anulându-se în această situație). Astfel că egalitatea anterioară devine:

$$\det(C) = \sum_{j_1,\dots,j_n} \varepsilon \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix} \det(A) b_{j_1 1} b_{j_2 2} \cdots b_{j_n n} =
= \det(A) \left(\sum_{j_1,\dots,j_n} \varepsilon \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix} b_{j_1 1} b_{j_2 2} \cdots b_{j_n n} \right) =
= \det(A) \det(B)$$

ceea ce trebuia demonstrat.

Cu mijloace asemănătoare demonstrăm acum Regula lui Laplace. Este vorba despre generalizarea metodei de calcul a unui determinant dezvoltând după o linie (coloană):

Propoziția B.2. Fie $A=(a_{ij})$ o matrice de tip $n\times n$. Fie $1\leq k\leq n$ și coloanele $c_{j_1},c_{j_2},\ldots,c_{j_k}$ ale matricei fixate. Există $\binom{n}{k}$ minori care se pot forma cu aceste coloane (corespunzător alegerii a k linii). Pentru fiecare minor $A_{i_1...i_k;j_1...j_k}$, fie $A^*_{i_1...i_k;j_1...j_k}$ complementul său algebric. Atunci

$$\det(A) = \sum_{(i_1, \dots, i_k)} A_{i_1 \dots i_k; j_1 \dots j_k} A_{i_1 \dots i_k; j_1 \dots j_k}^*.$$

Demonstrație. Minorii $A_{i_1...i_k;j_1...j_k}$ diferă între ei prin cel puțin o linie. Rezultă că termenii produselor $A_{i_1...i_k;j_1...j_k}A^*_{i_1...i_k;j_1...j_k}$ sunt diferiți între ei. Fiecare produs conține k!(n-k)! termeni din $\det(A)$, iar suma lor are $\binom{n}{k}k!(n-k)!=n!$ termeni din dezvoltarea (după definiție) a lui $\det(A)$, deci coincide cu $\det(A)$.

Obținem, în particular, o proprietate foarte des folosită:

Exercițiul B.1. Dacă

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ 0 & A_{22} \end{array}\right),$$

cu A_{11} , A_{22} matrice pătrate, atunci $\det(A) = \det(A_{11}) \det(A_{22})$.

Exercițiul B.2. Demonstrați egalitatea:

$$\begin{vmatrix} a_{11} & 0 & a_{12} & 0 & \dots & a_{1n} & 0 \\ 0 & b_{11} & 0 & b_{12} & \dots & 0 & b_{1n} \\ a_{21} & 0 & a_{22} & 0 & \dots & a_{2n} & 0 \\ 0 & b_{21} & 0 & b_{22} & \dots & 0 & b_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1} & 0 & a_{n2} & 0 & \dots & a_{nn} & 0 \\ 0 & b_{n1} & 0 & b_{n2} & \dots & 0 & b_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} \cdot \begin{vmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{vmatrix}.$$

Bibliografie

- [1] E. Artin, Geometric Algebra, Interscience, New York 1997.
- [2] L. Bădescu, Lecții de geometrie, Ed. Univ. București, 1999.
- [3] H. Behnke, F. Bachmann, K, Fladt, H. Kunle (editori), Fundamentals of Mathematics vol.II, Geometry, MIT Press, 1986.
- [4] M. Berger, Géométrie, vol. 1-5, CEDIC/Fernand Nathan, 1979.
- [5] M. Craioveanu, I.D. Albu, Geometrie afină şi euclidiană, Ed. Facla, Timişoara, 1982.
- [6] V. Cruceanu, Elemente de algebră lineară și geometrie, Ed. didactică și pedagogică, București 1979.
- [7] J. Dieudonné, La géométrie des groupes classiques, Springer, 1971.
- [8] Gh. Galbură, F. Radó, Geometrie, Ed. didactică și pedagogică, București, 1979.
- [9] P. Halmos, Finite-dimensional vector spaces, D. Van Nostrand Comp., 1960.
- [10] R. Hartshorne, Foundations of projective geometry, W. A. Benjamin, Inc., 1967.
- [11] I.D. Ion, N. Radu, Algebra, Ed. Didactică și pedagogică, 1981.
- [12] S. Lang, Algebra, Adison-Wesley, 1965.
- [13] J. Lelong-Ferrand, Les fondements de la géométrie, Presse Universitaire de France, 1989.
- [14] A. Mihai, Lecții de geometrie, Litografia Univ. București, 1973.
- [15] N.N. Mihăileanu, Elemente de geometrie proiectivă, Ed. Tehnică, București, 1966.
- [16] V. Oproiu, Geometrie, Litografia Univ. "Al. I. Cuza", Iași, 1980.
- [17] L. Panaitopol, I.C. Drăghicescu, Polinoame şi ecuații algebrice, Ed. Albatros, 1980.
- [18] E. Sernesi, Geometria, vol. 1, Bollati Boringheri, 1992.
- [19] N. Soare, Curs de geometrie (I), Ed. Univ. Bucureşti, 1996.
- [20] G.E. Şilov, Analiză matematică. Spații finit dimensionale, Ed. științifică și enciclopedică, 1983.
- [21] A. Turtoi, Geometrie, Ed. Univ. Bucureşti, 1996.
- [22] Gh. Vrănceanu, Geometrie analitică, proiectivă și diferențială, Ed. didactică și pedagogică, București 1968.
- [23] Gh. Vrănceanu, K. Teleman, Geometrie euclidiană, geometrii neeuclidiene şi teoria relativității, Ed. Tehnică, București 1967.

214 Bibliografie

[24] Gh. Vrănceanu, T. Hangan, K. Teleman, Geometrie elementară din punct de vedere modern, Ed. Tehnică, București, 1967.

[25] R.J. Walker, Algebraic curves, Princeton Univ. Press, 1950.