```
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.utils import to_categorical
feature_vector_length = 784
num_classes = 10
(X_train, Y_train), (X_test, Y_test) = mnist.load_data()
input_shape = (feature_vector_length)
print(f'Feature shape: {input_shape}')
X_train = X_train.reshape(X_train.shape[0], feature_vector_length)
X_test = X_test.reshape(X_test.shape[0], feature_vector_length)
X_train = X_train.astype('float32') / 255
X_test = X_test.astype('float32') / 255
Y_train = to_categorical(Y_train, num_classes)
Y_test = to_categorical(Y_test, num_classes)
model = Sequential()
model.add(Dense(350, input_shape=input_shape, activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X_train, Y_train, epochs=10, batch_size=250, verbose=1, validation_split=0.2)
```

```
test_results = model.evaluate(X_test, Y_test, verbose=1)
print(f'Test results - Loss: {test_results[0]} - Accuracy: {test_results[1]}')

predictions = model.predict(X_test[:5])
predicted_classes = np.argmax(predictions, axis=1)

true_classes = np.argmax(Y_test[:5], axis=1)

for i in range(5):
    plt.imshow(X_test[i].reshape(28, 28), cmap='gray')
    plt.title(f"Sample {i+1} - Predicted: {predicted_classes[i]}, Actual: {true_classes[i]}")
    plt.axis('off')
    plt.show()
```