Calculus II Weierstrass substitution theory

Todor Miley

2019

Integrals of the form $\int R(\cos \theta, \sin \theta) d\theta$, R

Let *R* be an arbitrary rational function in two variables (quotient of polynomials in two variables).

Question

Integrals of the form $\int R(\cos\theta, \sin\theta)d\theta$, R

Let *R* be an arbitrary rational function in two variables (quotient of polynomials in two variables).

Question

Can we integrate $\int R(\cos \theta, \sin \theta) d\theta$?

Yes. We will learn how in what follows.

Integrals of the form $\int R(\cos \theta, \sin \theta) d\theta$, R

Let *R* be an arbitrary rational function in two variables (quotient of polynomials in two variables).

Question

- Yes. We will learn how in what follows.
- The algorithm for integration is roughly:

Integrals of the form $\int R(\cos \theta, \sin \theta) d\theta$, R

Let *R* be an arbitrary rational function in two variables (quotient of polynomials in two variables).

Question

- Yes. We will learn how in what follows.
- The algorithm for integration is roughly:
 - Apply the substitution $\theta = 2 \arctan t$ to transform to integral of rational function.

Integrals of the form $\int R(\cos\theta, \sin\theta)d\theta$, R

Let *R* be an arbitrary rational function in two variables (quotient of polynomials in two variables).

Question

- Yes. We will learn how in what follows.
- The algorithm for integration is roughly:
 - Apply the substitution $\theta = 2 \arctan t$ to transform to integral of rational function.
 - Solve as previously studied.

$$\sin(2z) = ?$$
 $\cos(2z)$

$$\sin(2z) = 2\sin z \cos z$$

$$\cos(2z)$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z}{(\cos^2 z + \sin^2 z)}$$

$$\cos(2z)$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}}$$
$$\cos(2z)$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z} .$$

$$\cos(2z)$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z} .$$

$$\cos(2z)$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z} .$$

$$\cos(2z) = ?$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z} .$$

$$\cos(2z) = \cos^2 z - \sin^2 z$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z} .$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z)}{(\cos^2 z + \sin^2 z)}$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z} .$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}}$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

Let R- rational function in two variables. $\int R(\cos \theta, \sin \theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$.

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

Let R- rational function in two variables. $\int R(\cos\theta, \sin\theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$. How does this transform $\sin\theta$, $\cos\theta$?

$$\sin \theta =$$

$$\cos \theta =$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

Let R- rational function in two variables. $\int R(\cos \theta, \sin \theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$. How does this transform $\sin \theta$, $\cos \theta$?

$$\sin \theta = \sin(2 \arctan t)$$
 $\cos \theta =$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

Let R- rational function in two variables. $\int R(\cos \theta, \sin \theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$. How does this transform $\sin \theta$, $\cos \theta$?

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)}$$
 $\cos \theta =$

$$\frac{\sin(2z)}{\sin(2z)} = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

Let R- rational function in two variables. $\int R(\cos \theta, \sin \theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$. How does this transform $\sin \theta$, $\cos \theta$?

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$
 $\cos \theta = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

Let R- rational function in two variables. $\int R(\cos \theta, \sin \theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$. How does this transform $\sin \theta$, $\cos \theta$?

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$
 $\cos \theta = \cos(2 \arctan t)$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

Let R- rational function in two variables. $\int R(\cos \theta, \sin \theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$. How does this transform $\sin \theta$, $\cos \theta$?

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)}$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

Let R- rational function in two variables. $\int R(\cos \theta, \sin \theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$. How does this transform $\sin \theta$, $\cos \theta$?

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

$$\sin(2z) = 2\sin z \cos z = \frac{2\sin z \cos z \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{2\tan z}{1 + \tan^2 z}.$$

$$\cos(2z) = \cos^2 z - \sin^2 z = \frac{(\cos^2 z - \sin^2 z) \frac{1}{\cos^2 z}}{(\cos^2 z + \sin^2 z) \frac{1}{\cos^2 z}} = \frac{1 - \tan^2 z}{1 + \tan^2 z}.$$

$$\frac{\sin \theta}{\theta} = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

$$d\theta$$

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

$$d\theta = 2d (\arctan t)$$

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

$$d\theta = 2d (\arctan t) = ?$$

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

$$d\theta = 2d(\arctan t) = \frac{2}{1 + t^2}dt$$

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

$$d\theta = 2d(\arctan t) = \frac{2}{1 + t^2}dt$$

$$t = ?$$

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

$$d\theta = 2d(\arctan t) = \frac{2}{1 + t^2}dt$$

$$t = \tan\left(\frac{\theta}{2}\right)$$

Let R- rational function in two variables. $\int R(\cos \theta, \sin \theta) d\theta$ can be integrated via the substitution $\theta = 2 \arctan t$. How does this transform $\sin \theta$, $\cos \theta$? How does this transform $d\theta$? How is t expressed via θ ?

$$\sin \theta = \sin(2 \arctan t) = \frac{2 \tan(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{2t}{1 + t^2}$$

$$\cos \theta = \cos(2 \arctan t) = \frac{1 - \tan^2(\arctan t)}{1 + \tan^2(\arctan t)} = \frac{1 - t^2}{1 + t^2}$$

$$d\theta = 2d(\arctan t) = \frac{2}{1 + t^2}dt$$

$$t = \tan\left(\frac{\theta}{2}\right)$$

Theorem

The substitution given above transforms $\int R(\cos \theta, \sin \theta) d\theta$ to an integral of a rational function of t.

The integral $\int \sec \theta d\theta$ appears often in practice. A quicker solution will be shown later, but first we show the standard method.

Example

 $\int \sec \theta d\theta$

The integral $\int \sec \theta d\theta$ appears often in practice. A quicker solution will be shown later, but first we show the standard method.

Example

$$\int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta$$

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$,
$$\int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta = \int \frac{1}{\left(\frac{1 - t^2}{1 + t^2}\right)} \frac{2}{(1 + t^2)} dt$$

$$\operatorname{Set} \theta = \operatorname{2\arctan} t, \cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}, d\theta = 2\frac{1}{1 + t^2} dt.$$

$$\int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta = \int \frac{1}{\left(\frac{1 - t^2}{1 + t^2}\right)} \frac{2}{(1 + t^2)} dt$$

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.
$$\int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta = \int \frac{1}{\left(\frac{1 - t^2}{1 + t^2}\right)} \frac{2}{\left(1 + t^2\right)} dt$$

$$= \int \frac{2}{1 - t^2} dt$$

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.
$$\int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta = \int \frac{1}{\left(\frac{1 - t^2}{1 + t^2}\right)} \frac{2}{\left(1 + t^2\right)} dt$$

$$= \int \frac{2}{1 - t^2} dt = \int \left(\frac{1}{1 - t} + \frac{1}{1 + t}\right) dt \quad \text{part. fractions}$$

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.

$$\int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta = \int \frac{1}{\left(\frac{1 - t^2}{1 + t^2}\right)} \frac{2}{(1 + t^2)} dt$$

$$= \int \frac{2}{1 - t^2} dt = \int \left(\frac{1}{1 - t} + \frac{1}{1 + t}\right) dt \quad | \text{ part. fractions}$$

$$= -\ln|1 - t| + \ln|1 + t| + C$$

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.

$$\int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta = \int \frac{1}{\left(\frac{1 - t^2}{1 + t^2}\right)} \frac{2}{\left(1 + t^2\right)} dt$$

$$= \int \frac{2}{1 - t^2} dt = \int \left(\frac{1}{1 - t} + \frac{1}{1 + t}\right) dt \quad | \text{ part. fractions}$$

$$= -\ln|1 - t| + \ln|1 + t| + C$$

$$= \ln\left|\frac{1 + t}{1 - t}\right| + C$$

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.

$$\int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta = \int \frac{1}{\left(\frac{1 - t^2}{1 + t^2}\right)} \frac{2}{\left(1 + t^2\right)} dt$$

$$= \int \frac{2}{1 - t^2} dt = \int \left(\frac{1}{1 - t} + \frac{1}{1 + t}\right) dt \quad | \text{ part. fractions}$$

$$= -\ln|1 - t| + \ln|1 + t| + C$$

$$= \ln\left|\frac{1 + t}{1 - t}\right| + C$$

$$= \ln\left|\frac{1 + \tan(\frac{\theta}{2})}{1 - \tan(\frac{\theta}{2})}\right| + C$$

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.

$$\int \sec \theta d\theta = \int \frac{1}{\cos \theta} d\theta = \int \frac{1}{\left(\frac{1 - t^2}{1 + t^2}\right)} \frac{2}{\left(1 + t^2\right)} dt$$

$$= \int \frac{2}{1 - t^2} dt = \int \left(\frac{1}{1 - t} + \frac{1}{1 + t}\right) dt \quad | \text{ part. fractions}$$

$$= -\ln|1 - t| + \ln|1 + t| + C$$

$$= \ln\left|\frac{1 + t}{1 - t}\right| + C$$

$$= \ln\left|\frac{1 + \tan(\frac{\theta}{2})}{1 - \tan(\frac{\theta}{2})}\right| + C$$

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.
$$\int \sec \theta d\theta = \ln \left| \frac{1 + \tan(\frac{\theta}{2})}{1 - \tan(\frac{\theta}{2})} \right| + C$$

Example

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.

$$\int \sec \theta d\theta = \ln \left| \frac{1 + \tan \left(\frac{\theta}{2} \right)}{1 - \tan \left(\frac{\theta}{2} \right)} \right| + C$$

$$\tan \theta + \sec \theta =$$

Example

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.

$$\int \sec\theta d\theta = \ln\left|\frac{1+\tan\left(\frac{\theta}{2}\right)}{1-\tan\left(\frac{\theta}{2}\right)}\right| + C$$

$$\tan \theta + \sec \theta = \frac{\sin \theta + 1}{\cos \theta}$$

Example

Set
$$\theta=2\arctan t$$
, $\cos\theta=\frac{1-\tan^2(\frac{\theta}{2})}{1+\tan^2(\frac{\theta}{2})}=\frac{1-t^2}{1+t^2}$, $\mathrm{d}\theta=2\frac{1}{1+t^2}\mathrm{d}t$.
$$\int\sec\theta\mathrm{d}\theta = \ln\left|\frac{1+\tan(\frac{\theta}{2})}{1-\tan(\frac{\theta}{2})}\right|+C$$

$$\tan \theta + \sec \theta = \frac{\sin \theta + 1}{\cos \theta} = \frac{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) + \sin^2 \left(\frac{\theta}{2}\right) + \cos^2 \left(\frac{\theta}{2}\right)}{\cos^2 \left(\frac{\theta}{2}\right) - \sin^2 \left(\frac{\theta}{2}\right)}$$

Example

Set
$$\theta=2\arctan t$$
, $\cos\theta=\frac{1-\tan^2(\frac{\theta}{2})}{1+\tan^2(\frac{\theta}{2})}=\frac{1-t^2}{1+t^2}$, $\mathrm{d}\theta=2\frac{1}{1+t^2}\mathrm{d}t$.
$$\int\sec\theta\mathrm{d}\theta = \ln\left|\frac{1+\tan(\frac{\theta}{2})}{1-\tan(\frac{\theta}{2})}\right|+C$$

$$\tan \theta + \sec \theta = \frac{\sin \theta + 1}{\cos \theta} = \frac{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) + \sin^2 \left(\frac{\theta}{2}\right) + \cos^2 \left(\frac{\theta}{2}\right)}{\cos^2 \left(\frac{\theta}{2}\right) - \sin^2 \left(\frac{\theta}{2}\right)}$$

Example

Set
$$\theta=2\arctan t$$
, $\cos\theta=\frac{1-\tan^2(\frac{\theta}{2})}{1+\tan^2(\frac{\theta}{2})}=\frac{1-t^2}{1+t^2}$, $\mathrm{d}\theta=2\frac{1}{1+t^2}\mathrm{d}t$.
$$\int\sec\theta\mathrm{d}\theta = \ln\left|\frac{1+\tan(\frac{\theta}{2})}{1-\tan(\frac{\theta}{2})}\right|+C$$

$$\tan \theta + \sec \theta = \frac{\sin \theta + 1}{\cos \theta} = \frac{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) + \sin^2 \left(\frac{\theta}{2}\right) + \cos^2 \left(\frac{\theta}{2}\right)}{\cos^2 \left(\frac{\theta}{2}\right) - \sin^2 \left(\frac{\theta}{2}\right)}$$

Example

$$\begin{array}{ll} \mathrm{Set}\ \theta = 2\arctan t,\ \cos\theta = \frac{1-\tan^2(\frac{\theta}{2})}{1+\tan^2(\frac{\theta}{2})} = \frac{1-t^2}{1+t^2},\ \mathrm{d}\theta = 2\frac{1}{1+t^2}\mathrm{d}t. \\ \int \sec\theta \mathrm{d}\theta &= \ln\left|\frac{1+\tan(\frac{\theta}{2})}{1-\tan(\frac{\theta}{2})}\right| + C \end{array}$$

$$\tan \theta + \sec \theta = \frac{\sin \theta + 1}{\cos \theta} = \frac{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) + \sin^2 \left(\frac{\theta}{2}\right) + \cos^2 \left(\frac{\theta}{2}\right)}{\cos^2 \left(\frac{\theta}{2}\right) - \sin^2 \left(\frac{\theta}{2}\right)}$$
$$= \frac{\left(\sin \left(\frac{\theta}{2}\right) + \cos \left(\frac{\theta}{2}\right)\right)^2}{\left(\cos \left(\frac{\theta}{2}\right) - \sin \left(\frac{\theta}{2}\right)\right) \left(\cos \left(\frac{\theta}{2}\right) + \sin \left(\frac{\theta}{2}\right)\right)}$$

Example

$$\begin{array}{ll} \mathrm{Set}\ \theta = 2\arctan t,\ \cos\theta = \frac{1-\tan^2(\frac{\theta}{2})}{1+\tan^2(\frac{\theta}{2})} = \frac{1-t^2}{1+t^2},\ \mathrm{d}\theta = 2\frac{1}{1+t^2}\mathrm{d}t. \\ \int \sec\theta \mathrm{d}\theta &= \ln\left|\frac{1+\tan(\frac{\theta}{2})}{1-\tan(\frac{\theta}{2})}\right| + C \end{array}$$

$$\tan \theta + \sec \theta = \frac{\sin \theta + 1}{\cos \theta} = \frac{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) + \sin^2 \left(\frac{\theta}{2}\right) + \cos^2 \left(\frac{\theta}{2}\right)}{\cos^2 \left(\frac{\theta}{2}\right) - \sin^2 \left(\frac{\theta}{2}\right)}$$
$$= \frac{\left(\sin \left(\frac{\theta}{2}\right) + \cos \left(\frac{\theta}{2}\right)\right)^2}{\left(\cos \left(\frac{\theta}{2}\right) - \sin \left(\frac{\theta}{2}\right)\right) \left(\cos \left(\frac{\theta}{2}\right) + \sin \left(\frac{\theta}{2}\right)\right)}$$

Example

$$\begin{array}{ll} \mathrm{Set}\ \theta = 2\arctan t,\ \cos\theta = \frac{1-\tan^2(\frac{\theta}{2})}{1+\tan^2(\frac{\theta}{2})} = \frac{1-t^2}{1+t^2},\ \mathrm{d}\theta = 2\frac{1}{1+t^2}\mathrm{d}t. \\ \int \sec\theta \mathrm{d}\theta &= \ln\left|\frac{1+\tan(\frac{\theta}{2})}{1-\tan(\frac{\theta}{2})}\right| + C \end{array}$$

$$\tan \theta + \sec \theta = \frac{\sin \theta + 1}{\cos \theta} = \frac{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right) + \sin^2 \left(\frac{\theta}{2}\right) + \cos^2 \left(\frac{\theta}{2}\right)}{\cos^2 \left(\frac{\theta}{2}\right) - \sin^2 \left(\frac{\theta}{2}\right)}$$

$$= \frac{\left(\sin \left(\frac{\theta}{2}\right) + \cos \left(\frac{\theta}{2}\right)\right)^2}{\left(\cos \left(\frac{\theta}{2}\right) - \sin \left(\frac{\theta}{2}\right)\right) \left(\cos \left(\frac{\theta}{2}\right) + \sin \left(\frac{\theta}{2}\right)\right)}$$

$$= \frac{\sin \left(\frac{\theta}{2}\right) + \cos \left(\frac{\theta}{2}\right)}{\cos \left(\frac{\theta}{2}\right) - \sin \left(\frac{\theta}{2}\right)}$$

Example

$$\begin{split} \text{Set } \theta &= 2 \arctan t, \cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}, \, \mathrm{d}\theta = 2 \frac{1}{1 + t^2} \mathrm{d}t. \\ \int \sec \theta \mathrm{d}\theta &= \ln \left| \frac{1 + \tan(\frac{\theta}{2})}{1 - \tan(\frac{\theta}{2})} \right| + C \end{split}$$

$$\begin{split} \tan\theta + \sec\theta &= \frac{\sin\theta + 1}{\cos\theta} = \frac{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) + \sin^2\left(\frac{\theta}{2}\right) + \cos^2\left(\frac{\theta}{2}\right)}{\cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right)} \\ &= \frac{\left(\sin\left(\frac{\theta}{2}\right) + \cos\left(\frac{\theta}{2}\right)\right)^2}{\left(\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\right)\left(\cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)\right)} \\ &= \frac{\sin\left(\frac{\theta}{2}\right) + \cos\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)} = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} \;. \end{split}$$

Example

$$\begin{array}{ll} \operatorname{Set}\,\theta=2\arctan t,\,\cos\theta=\frac{1-\tan^2(\frac{\theta}{2})}{1+\tan^2(\frac{\theta}{2})}=\frac{1-t^2}{1+t^2},\,\mathrm{d}\theta=2\frac{1}{1+t^2}\mathrm{d}t.\\ \int \sec\theta\mathrm{d}\theta &=& \ln\left|\frac{1+\tan\left(\frac{\theta}{2}\right)}{1-\tan\left(\frac{\theta}{2}\right)}\right|+C \end{array}$$

$$\begin{split} \tan\theta + \sec\theta &= \frac{\sin\theta + 1}{\cos\theta} = \frac{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) + \sin^2\left(\frac{\theta}{2}\right) + \cos^2\left(\frac{\theta}{2}\right)}{\cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right)} \\ &= \frac{\left(\sin\left(\frac{\theta}{2}\right) + \cos\left(\frac{\theta}{2}\right)\right)^2}{\left(\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\right)\left(\cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)\right)} \\ &= \frac{\sin\left(\frac{\theta}{2}\right) + \cos\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)} = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} \;. \end{split}$$

Example

Set
$$\theta = 2 \arctan t$$
, $\cos \theta = \frac{1 - \tan^2(\frac{\theta}{2})}{1 + \tan^2(\frac{\theta}{2})} = \frac{1 - t^2}{1 + t^2}$, $d\theta = 2\frac{1}{1 + t^2}dt$.
$$\int \sec \theta d\theta = \ln|\tan \theta + \sec \theta| + C$$

$$\begin{split} \tan\theta + \sec\theta &= \frac{\sin\theta + 1}{\cos\theta} = \frac{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right) + \sin^2\left(\frac{\theta}{2}\right) + \cos^2\left(\frac{\theta}{2}\right)}{\cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right)} \\ &= \frac{\left(\sin\left(\frac{\theta}{2}\right) + \cos\left(\frac{\theta}{2}\right)\right)^2}{\left(\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)\right)\left(\cos\left(\frac{\theta}{2}\right) + \sin\left(\frac{\theta}{2}\right)\right)} \\ &= \frac{\sin\left(\frac{\theta}{2}\right) + \cos\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right) - \sin\left(\frac{\theta}{2}\right)} = \frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} \;. \end{split}$$