The interrelation between these stability concepts is given by

If A is a bounded operator, i.e., if D(A) = E, then (iv) <=> (v) and (vi) <=> (vii). If A is unbounded then the stability notions may differ as we will see in the following examples.

Examples 1.2. (a) Let $E = c_0$. Then $A : (x_n)_{n \in \mathbb{N}} \to (-1/n \cdot x_n)_{n \in \mathbb{N}}$ generates the semigroup $T(t)(x_n) = (e^{-t/n}x_n)_{n \in \mathbb{N}}$. It is easy to see that $\|T(t)\| = 1$ and $\|T(t)f\| \to 0$ for every $f \in c_0$. Moreover, A is a bounded operator, hence D(A) = E. This gives an example for a (uniformly) stable but not exponentially stable semigroup. The translation semigroups generated by the first derivative on $C_0(\mathbb{R}_+)$ or $L^p(\mathbb{R}_+)$ for 1 give further examples for (uniformly) stable but not exponentially stable semigroups. Moreover, as seen in <math>A-II, Ex.1.14, the Laplacian A on $C_0(\mathbb{R}^n)$ generates a bounded holomorphic semigroup given by

$$T(t) f(x) = (4\pi t)^{-n/2} \cdot \int_{\mathbb{R}^n} e^{-(x-y)^2/4t} f(y) dy$$

which cannot be exponentially stable because $0 \in \sigma(\Delta)$ (im $\Delta \neq C_O(\mathbb{R}^n)$), see Cor.1.5 below. By a straightforward $(2-\epsilon)$ -argument using $(4\pi t)^{-n/2} \int_{\mathbb{R}^n} \exp(-y^2/4t) \ dy = 1$ one can easily show that $\|T(t)f\| \to 0$ for all $f \in C_O(\mathbb{R}^n)$ (see also B-III,Ex.1.7).

Therefore, the Laplacian on $C_0(\mathbb{R}^n)$ (and also on $L^p(\mathbb{R}^n)$ for 1 , see Ex.1.15 below) generates a (uniformly) stable but not exponentially stable semigroup.

(b) Note that the condition $0 \le \omega(A) = \inf\{\omega : \|T(t)\| \le Me^{\omega t} \text{ for all } t \ge 0\}$ does not exclude that the semigroup $(T(t))_{t\ge 0}$ is exponentially stable. In fact, as shown in A-III,1.3 the translation semigroup $(T(t))_{t\ge 0}$ on $E:=C_o(\mathbb{R}_+)\cap L^1(\mathbb{R}_+,e^Xdx)$ satisfies $\|T(t)\|=1$, hence $\omega(A)=0$, and for every $\lambda\in\mathbb{C}$ with $Re\ \lambda>-1$ the resolvent of the generator is given as $R(\lambda,A)f=\int_0^\infty e^{\lambda t}\ T(t)f\ dt$ for every $f\in E$. From the equation A-I,3.2

$$T(t) f = e^{\lambda t} (f - \int_{0}^{t} e^{-\lambda s} T(s) (\lambda - A) f ds)$$

and the existence of $\lim_{t\to\infty}\int_0^t e^{-\lambda s} T(s)(\lambda - A) f ds$ it follows that $\|T(t)f\| \le M \cdot e^{\lambda t}$ for every $f \in D(A)$ and some constant M depending