Семинар 2

- Угловая скорости. Угловое ускорение. Связь между ними и с линейными скоростью и ускорением.
- Угловое ускорение. Угловая и линейная скорости тела, движущегося по окружности с угловым ускорением.
- Движение тела, брошенного под углом к горизонту.

Материальная точка движется по окружности радиуса R = 1 м. Закон ее движения имеет вид $\varphi(t) = At^5$, где A = 1/40 рад/ c^5 . Определить линейное ускорение материальной точки и угол θ между линейным ускорением и радиусом окружности в момент времени t = 2 с.

Материальная точка движется по окружности радиуса $R=2\,$ м. Ее криволинейная координата изменяется c течением времени по закону $\xi(t)=At^3$ - Bt^2 +Ct, где $A=1\,$ м/ c^3 ; $B=6\,$ м/ $c^2\,$ и $C=20\,$ м/c.

Определить линейное ускорение материальной точки в момент времени t, когда ее тангенциальное ускорение a_{τ} обращается в ноль.

Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение движения автомобиля $\xi(t)=A+Bt+Ct^2$, где A=10 м, B=10 м/с, C=-0.5 м/с².

Найти:

- 1) скорость v автомобиля, его тангенциальное a_{τ} , нормальное a_{n} и полное а ускорения в момент времени t=5 c;
- 2) 2) длину пути s и модуль перемещения $|\Delta r|$ автомобиля за интервал времени $\tau = 10$ c, отсчитанный с момента начала движения.

^{*} в заданном уравнении движения ξ означает криволинейную координату, отсчитанную по дуге окружности.

Маховик, вращавшийся с постоянной частотой $n_0 = 10 \ c^{-1}$, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой $n = 6 \ c^{-1}$.

Определить угловое ускорение ε маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N=50 оборотов.

Два тела бросили одновременно из одной точки: одно — вертикально вверх, другое — под углом $\theta = 60^{\circ}$ к горизонту. Начальная скорость каждого тела $v_0 = 25$ м/с. Пренебрегая сопротивлением воздуха, найти расстояние между телами через t = 1,70 с.

Под каким углом к горизонту нужно бросить тело, чтобы высота его подъема была в два раза больше дальности его полета?