

Chapter 6: Network Layer

Introduction to Networks

Cisco Networking Academy® Mind Wide Open®

IP Components

IP Packets flow through the internetwork.

- Connectionless No connection is established before sending data packets.
- Best Effort (unreliable) No overhead is used to guarantee packet delivery.
- Media Independent Operates independently of the medium carrying the data.

Characteristics of the IP protocol

IP - Connectionless

Characteristics of the IP protocol

Best Effort Delivery

As an unreliable network layer protocol, IP does not guarantee that all sent packets will be received. Other protocols manage the process of tracking packets and ensuring their delivery.

Characteristics of the IP protocol

IP – Media Independent

IP packets can travel over different media.

Encapsulating IP

Transport Layer Encapsulation

Network Layer Encapsulation

IP Header Transport Layer PDU

Network Layer PDU

IP Packet

The network layer adds a header so packets can be routed through complex networks and reach their destination. In TCP/IP based networks, the network layer PDU is the IP packet.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

IPv4 Packet Header

Contents of the IPv4 packet header

IPv4 Packet

IPv4 Header Fields

Contents of the IPv4 header fields

IPv4 Packet

Sample IPv4 Headers

- IP Address depletion
- Internet routing table expansion
- Lack of end-to-end connectivity

Network Layer in Communication

Introducing IPv6

- Increased address space
- Improved packet handling
- Eliminates the need for NAT
- Integrated security
- 4 billion IPv4 addresses 4,000,000,000

resentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Encapsulating IPv6

IPv6 Packet Header

IPv6 Packet

Sample IPv6 Header

6.2 Routing

Cisco Networking Academy® Mind Wide Open®

Host Routing Tables

Host Packet Forwarding Decision

Router Routing Tables

Router Packet Forwarding Decision

Router Routing Tables

IPv4 Router Routing Table


```
R1#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        10.1.1.0/24 [90/2170112] via 209.165.200.226, 00:00:05, Serial0/0/0
D
D
        10.1.2.0/24 [90/2170112] via 209.165.200.226, 00:00:05, Serial0/0/0
     192.168.10.0/24 is variably subnetted, 2 subnets, 3 masks
        192.168.10.0/24 is directly connected, GigabitEthernet0/0
С
        192.168.10.1/32 is directly connected, GigabitEthernet0/0
L
     192.168.11.0/24 is variably subnetted, 2 subnets, 3 masks
        192.168.11.0/24 is directly connected, GigabitEthernet0/1
        192.168.11.1/32 is directly connected, GigabitEthernet0/1
L
     209.165.200.0/24 is variably subnetted, 2 subnets, 3 masks
        209.165.200.224/30 is directly connected, Serial0/0/0
С
        209.165.200.225/32 is directly connected, Serial0/0/0
R1#
```


A Router is a Computer

Router CPU and OS

Anatomy of a Router Router Memory

Memory	Volatile / Non-Volatile	Stores		
RAM	Volatile	 Running IOS Running configuration file IP routing and ARP tables Packet buffer 		
ROM	Non-Volatile	Bootup instructionsBasic diagnostic softwareLimited IOS		
NVRAM	Non-Volatile	Startup configuration file		
Flash	Non-Volatile	IOSOther system files		

Router Backplane

Connecting to a Router

LAN and WAN Interfaces

Serial Interfaces

Router Boot-up Cisco IOS

The Cisco IOS operational details vary on different internetworking devices, depending on the device's purpose and feature set. However, Cisco IOS for routers provides the following:

- Addressing
- Interfaces
- Routing
- Security
- QoS
- Resources Management

Bootset Files

Router Boot-up

Router Bootup Process

How a Router Boots Up

6.4 Configuring a Cisco Router

Cisco Networking Academy® Mind Wide Open®

Configure Initial Settings

Router Configuration Steps


```
Router> enable
Router# configure terminal
Enter configuration commands, one per line.
End with CNTL/Z.
Router(config)# hostname R1
R1(config)#
```

Router> en
Router# conf t
Enter configuration commands, one per line.
End with CNTL/Z.
Router(config) # ho R1
R2(config)#

```
R1(config) # enable secret class
R1(config) #
R1(config) # line console 0
R1(config-line) # password cisco
R1(config-line) # login
R1(config-line) # exit
R1(config) #
R1(config) # line vty 0 4
R1(config-line) # password cisco
R1(config-line) # login
R1(config-line) # login
R1(config-line) # exit
R1(config) #
R1(config) #
R1(config) #
R1(config) #
R1(config) # service password-encryption
R1(config) #
```

```
R1# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
R1#
```

Configure Interfaces

Configure LAN Interfaces


```
R1# conf t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#
R1(config) # interface gigabitethernet 0/0
R1(config-if) # ip address 192.168.10.1 255.255.255.0
R1(config-if) # description Link to LAN-10
R1(config-if) # no shutdown
%LINK-5-CHANGED: Interface GigabitEthernet0/0, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/0,
changed state to up
R1(config-if)# exit
R1(config)#
R1(config) # int g0/1
R1(config-if) # ip add 192.168.11.1 255.255.255.0
R1(config-if) # des Link to LAN-11
R1(config-if) # no shut
%LINK-5-CHANGED: Interface GigabitEthernet0/1, changed state to up
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1,
changed state to up
R1(config-if)# exit
R1(config)#
```

Configure Interfaces

Verify Interface Configuration

R1# show ip interface brief Interface IP-Address OK? Method Status Protocol								
1110011400	11 11441655	010.	iic ciio a		11000001			
	192.168.10.1	_	manual	up	up			
GigabitEthernet0/1	192.168.11.1	YES	manual	up	up			
Serial0/0/0	209.165.200.225	YES	manual	up	up			
Serial0/0/1	unassigned	YES	NVRAM	administratively dow	n down			
Vlan1	unassigned	YES	NVRAM	administratively dow	n down			
R1#								
R1# ping 209.165.200.226								
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 209.165.200.226, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/9 ms								
R1#								
.								

esentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

Configuring the Default Gateway

Default Gateway on a Host

Default Gateway not needed

Default Gateway needed

Configuring the Default Gateway

Default Gateway on a Switch

```
S1# show running-config
                              Building configuration ...
                              <output omitted>
                              service password-encryption
                              hostname S1
                              Interface Vlan1
                              ip address 192.168.10.50
                              ip default-gateway 192.168.10.1
                              <output omitted>
.10
               192.168.10.0/24
                                 192.168.11.0/24
                                 G0/1
               .50
```

If the default gateway was not configured on S1, response packets from S1 would not be able to reach the administrator at 192.168.11.10. The administrator would not be able to manage the device remotely.

Cisco | Networking Academy[®] | Mind Wide Open™