Analiza sygnałów biomedycznych - laboratorium

dr inż. Krzysztof Duda

Kraków 2009

Wstęp

Niniejszy skrypt został napisany dla specjalności *Pomiary technologiczne i biomedyczne* studiów II stopnia na kierunku *Elektrotechnika*. Laboratorium z przedmiotu *Analiza sygnałów biomedycznych* trwa jeden semestr. Zajęcia odbywają się w laboratorium komputerowym i polegają na samodzielnym programowaniu algorytmów analizy i przetwarzania sygnałów w środowisku Matlab. W trakcie zajęć, pisane przez studentów programy są na bieżąco sprawdzane i konsultowane przez prowadzącego.

Głównym celem laboratorium jest praktyczna ilustracja zagadnień teoretycznych omawianych na wykładzie z tego przedmiotu. Studenci zdobywają także umiejętność programowania typowych algorytmów analizy i przetwarzania sygnałów.

Rozwiązywanie zawartych w niniejszym skrypcie zadań wymaga znajomości podstaw teoretycznych omówionych w skrypcie do wykładu *Analiza sygnałów biomedycznych*.

W przypadku niektórych zadań umieszczono rozwiązania w postaci programów bądź funkcji Matlaba. Podane programy i funkcje należy traktować jako standardy programowania i w miarę możliwości modyfikować je do rozwiązywania zbliżonych problemów.

Tematy ćwiczeń laboratoryjnych

1. Generowanie sygnałów dyskretnych	5
2. Splot dyskretny i widmo sygnału dyskretnego	8
3. Projektowanie filtrów analogowych	10
4. Projektowanie rekursywnych filtrów cyfrowych IIR	11
5. Projektowanie nierekursywnych filtrów cyfrowych FIR	12
6. Metody obliczania DFT	14
7. Filtracja sygnałów cyfrowych	17
8. Analiza częstotliwościowa z wykorzystaniem DFT	19
9. Zmiana częstotliwości próbkowania. Sygnał analityczny	25
10. Filtry adaptacyjne	26
11. Transformacja falkowa	28
12. Kompresja sygnałów	31
13. Filtracja obrazów	32
14. DFT i DWT obrazów	34
15. Transformacia Radona	38

1. Generowanie sygnałów dyskretnych

Generowanie sygnałów cyfrowych opisanych analitycznie za pomocą funkcji np. $x[n]=A\sin(\omega n+\varphi)$ polega na wyliczeniu wartości tych funkcji dla zadanych argumentów.

Zadanie 1.1

Wygenerować sygnał $x[n]=A\sin(\omega n+\varphi)$ o długości N=32 próbki. Narysować ten sygnał, opisać osie OX i OY na wykresie. Zaobserwować przebiegi sygnału dla zmian ω z zakresu od 0 do 2π .

Rozwiązanie

Program 1.1 generuje ciąg sinusoidalny. Pierwsze trzy linie kodu służą inicjalizacji środowiska. W liniach 5-8 zebrane są występujące w programie parametry. Następnie w programie występuje blok obliczeń i blok prezentacji wyników. W miarę możliwości należy zawsze stosować powyższą strukturę programu tj.: parametry, obliczenia i wizualizacja.

Program 1.1

```
1 close all
2 clear all
                  %zamknięcie okien graficznych
                 %usunięcie zmiennych z pomięci
                  %wyczyszczenie okna konsoli
3 clc
4 %% parametry
5 Nx=32; %długość sygnału x (liczba próbek)
6 w=pi/4; %częstotliwość sygnału [rad]
6 w=pi/4;
7 x=2:
7 A=2;
                 %amplituda sygnału
8 fi=pi/11; %faza sygnału
9 %% obliczenia
10 n=0:Nx-1;
                        %wektor argumentów funkcji sin
11 x=A*sin(w*n+fi);
                      %wektor sygnału
12 %% wizualizacja
13 figure
14 plot(n,x,'.-')
15
     xlabel('n')
     ylabel('x[n]')
16
17
     title(['\omega=' num2str(w,'%2.2f') ' [rad]'])
18
     axis tight
```

Przebiegi sygnału x[n] dla zmian ω z zakresu od 0 do 2π można zaobserwować uruchamiając program 1.1 z różnymi wartościami ω . Można też zastosować prostą animację polegającą na tym, że w pętli, na wykresie rysowane są kolejne przebiegi, tak jak zaimplementowano to w programie 1.2.

Program 1.2

```
1 close all, clear all, clc
2 %% parametry
3 Nx = 32;
4 w=0:pi/600:2*pi; %wektor pulsacji
5 A=2;
6 fi=0;
7 %% obliczenia
8 n=0:Nx-1;
9 for k=1:length(w)
10 %obliczenia
11 x=A*sin(w(k)*n+fi); %wektor sygnału
12
    %wizualizacja
13 plot(n,x,'.-')
14
    xlabel('n')
```

```
15    ylabel('x[n]')
16    title(['\omega=' num2str(w(k),'%2.2f') ' [rad]'])
17    axis([0 Nx-1 -A A])
18    drawnow
19 end
```

Zadanie 1.2

Wygenerować sygnał $x[n]=A\sin(2\pi ft+\varphi)$ o długości N=32 próbki. Częstotliwość sygnału wynosi f=10 Hz, częstotliwość próbkowania wynosi $F_s=100$ Hz. Narysować ten sygnał, opisać oś OX w sekundach. Zaobserwować przebiegi sygnału dla zmian f z zakresu od 0 do $2F_s$.

Jaka jest maksymalna częstotliwość sygnału f dla ustalonej częstotliwości próbkowania F_s ?

Zadanie 1.3

Wygenerować zespolony ciąg eksponencjalny $x[n]=Ae^{i\omega n}$. Narysować na jednym wykresie część rzeczywistą, część urojoną i moduł tego ciągu. Opisać wykresy za pomocą funkcji legend.

Jednostka urojona jest oznaczana w Matlabie jako j, a funkcja eksponencjalna exp.

Zadanie 1.4

Addytywne zakłócenie szumem przebiegu sinusoidalnego. Do sygnału z zadania 1.1 dodać liczby pseudolosowe. Do generowania liczb pseudolosowych należy wykorzystać funkcje Matlaba rand lub randn.

Zadanie 1.5

Napisać funkcję liczącą histogram. Przyjąć nazwę funkcji $hist_lab$. Argumentami funkcji są sygnał x, dla którego liczymy histogram oraz liczba przedziałów Np, w których zliczamy wartości. Funkcja zwraca liczbę wartości L i środki przedziałów w.

Przetestować działanie napisanej funkcji hist_lab dla sygnałów pseudolosowych o rozkładzie normalnym i równomiernym. Porównać wyniki z funkcja Matlaba hist.

Rozwiązanie

Program 1.3

```
1 function [L,w]=hist lab(x,Np);
2 %Funkcja do liczenia histogramu
3 %x - sygnał
4 %Np - liczba przedziałów
5 %L - liczba wartości w przedziale
6 %w - wartości
8 %% Przeskalowanie wartości x do przedziału (0,1) i (0,Np-1)
9 x min=min(x(:)); x=x(:)-x min;
10 x max=max(x); x=x/max(x);
11 x=round((Np-1)*x);
12 %% Liczenie histogramu
13 L=zeros(1,Np);
14 for k=1:length(x)
15
    L(x(k)+1)=L(x(k)+1)+1;
16 end
17 w = (0:Np-1)/Np;
18 w=w*x max;
19 w=w+x \min;
```

Zadanie 1.6

Wygenerować sygnał sinusoidalny zmodulowany amplitudowo sygnałem sinusoidalnym: $x[n] = (1 + k m[n]) \cos(\omega_0 n)$, $0 < k \le 1$, gdzie k- jest głębokością modulacji, a m[n] przebiegiem sinusoidalnym $m[n] = \cos(\omega_m)$, $\omega_m << \omega_0$.

Zaobserwować przebiegi sygnału dla różnych wartości parametrów.

Zadanie 1.7

Wygenerować sygnał sinusoidalny zmodulowany w częstotliwości sygnałem sinusoidalnym: $x[n] = \cos(\omega_0 n + k \cos(\omega_m n)/\omega_m)$. Częstotliwość chwilowa (pochodna argumentu funkcji sinus) wynosi $m[n] = \omega_0 - k \sin(\omega_m n)$, czyli oscyluje wokół ω_0 . W celu zachowania dodatniej częstotliwości sygnału nośnego musi być spełnione $\omega_0 \ge k \sin(\omega_m n)$.

Zaobserwować przebiegi sygnału dla różnych wartości parametrów.

2. Splot dyskretny i widmo sygnału dyskretnego

Zadanie 2.1

Napisać funkcję do obliczania splotu liniowego dwóch wektorów o skończonych długościach wg wzoru:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n].$$
(2.1)

Przyjąć nazwę funkcji splot. Porównać wyniki działania napisanej funkcji z funkcją Matlaba conv.

Rozwiazanie

Program 2.1 przedstawia implementację splotu liniowego bezpośrednio na podstawie wzoru definicyjnego. Dla wektorów o długościach N_x i N_h wynik splotu ma długość N_x+N_h-1 . Pętla zewnętrzna po n wyznacza kolejne elementy wektora y[n]. W pętli wewnętrznej po k są sumowane iloczyny dla ustalonego n. Warunek if ogranicza indeksy do zakresu wektorów, pozostałe iloczyny są równe zero.

Program 2.1

```
1 function y=splot(x,h);
3 Nx = length(x);
4 Nh=length(h);
5 Ny=Nx+Nh-1;
6 y = zeros(1,Ny);
7 for n=1:Ny
     for k=1:Nx;
9
            if n-k \ge 0 && n-k < Nh
10
                   y(n) = y(n) + x(k) *h(n-k+1);
11
            end
12
      end
13 end
```

Program 2.2 wykorzystuje fakt, że w trakcie liczenia splotu odwrócona w czasie odpowiedź impulsowa filtra jest przesuwana wzdłuż sygnału. Przed obliczeniami sygnały x i h są uzupełniane zerami. Wewnętrzna pętla po k jest zrealizowana w linii 13 w postaci iloczynu skalarnego, następnie w linii 14 współczynniki filtra są przesuwane o jedną pozycję.

Program 2.2

```
1 function y=splot(x,h);
2 %x,h - wektory poziome
3
4 Nx=length(x);
5 Nh=length(h);
6 Ny=Nx+Nh-1;
7 h = fliplr(h(:).'); %odwrócenie w czasie współczynników filtra
8 xz=zeros(1,Ny); xz(Nh:end)=x;
9 hz=zeros(1,Ny); hz(1:Nh) =h;
10 y =zeros(1,Ny);
11 hz=hz(:); %zamiana na wektor pionowy
12 for n=1:Ny;
13 y(n)=xz*hz; %iloczyn wektorowy
14 hz = [0; hz(1:Ny-1)];
```

Zadanie 2.2

Napisać funkcję do obliczania widma sygnału dyskretnego wg wzoru:

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} . {2.2}$$

Przyjąć następującą deklarację funkcji:

```
1 function [Xw, w]=fourier_ciagly(x,dw,wz);
2
3 %ciagla transformacja Fouriera sygnałów dyskretnych
4 %dw - krok częstotliwości [rad]
5 %wz=[w1 w2]- zakres częstotliwości [rad]
6 %x - sygnał
7 %Xw - widmo sygnału x
8 %w - pulsacje, dla których wyznaczono widmo Xw
9 %
10 %przykładowe wywołanie
11 %[Xw, w]=fourier ciagly(x,0.01,[-pi pi]);
```

Zadanie 2.3

Wygenerować sinusoidalny sygnał testowy (patrz zadanie 1.1) i obliczyć widmo tego sygnału za pomocą funkcji fourier_ciagly w przedziale częstotliwości ω od $-\pi$ do π . Narysować przebieg czasowy sygnału testowego i jego charakterystykę amplitudową. Obliczyć widmo i narysować charakterystyki amplitudowe dla: sygnału stałego, sygnału zespolonego eksponencjalnego, sygnału pseudolosowego (funkcje rand, randn) i fali prostokątnej (funkcja square).

Zadanie 2.4

Napisać funkcję realizującą filtrację cyfrową wg wzoru:

$$y[n] = \sum_{m=0}^{M} \frac{b[m]}{a[0]} x[n-m] - \sum_{k=1}^{N} \frac{a[k]}{a[0]} y[n-k].$$
 (2.3)

Przyjąć następującą deklarację funkcji:

```
1 function y=filter_lab(b,a,x);
2 %b - współczynniki licznika transmitancji
3 %a - współczynniki mianownika transmitancji
```

Porównać wyniki działania funkcji filter lab z funkcją Matlaba filter.

3. Projektowanie filtrów analogowych

Zadanie 3.1

Analogowy filtr dolnoprzepustowy powinien spełniać następujące wymagania: krawędź pasma przenoszenia f_{pass} =1 kHz, dopuszczalna nieliniowość wzmocnienia w paśmie przepustowym r_p =1 dB, krawędź pasma zaporowego f_{stop} =1.5 kHz, minimalne tłumienie w paśmie zaporowym r_s =30 dB. Wyznaczyć transmitancję H(s) filtrów: Butterwortha, Czebyszewa typu I, Czebyszewa typu II i eliptycznego spełniających powyższe wymagania.

Podać rzędy tych filtrów. Narysować zera i bieguny transmitancji tych filtrów.

Na jednym wykresie narysować (porównać) charakterystyki amplitudowe tych filtrów.

Na jednym wykresie narysować (porównać) charakterystyki fazowe tych filtrów.

Dla filtra Butterwortha obliczyć rząd filtra:

$$N = \frac{1}{2} \log_{10} \left(\frac{10^{r_p/10} - 1}{10^{r_s/10} - 1} \right) / \log_{10} \left(\frac{\Omega_{pass}}{\Omega_{stop}} \right), \tag{3.1}$$

pulsację 3 dB:

$$\Omega_c = \frac{\Omega_{pass}}{(10^{r_p/10} - 1)^{\frac{1}{2N}}}$$
 (3.2)

i bieguny transmitancji:

$$s_k = j^{2N} - 1\Omega_c = \Omega_c e^{j(\pi/2N)(2k+N-1)}, \quad k = 0, 1, \dots 2N - 1.$$
 (3.3)

Przejść z postaci iloczynowej transmitancji do postaci wielomianowej funkcją zp2tf charakterystyki częstotliwościowe obliczyć funkcją freqs.

Dla filtrów Czebyszewa typu I, Czebyszewa typu II i eliptycznego zastosować funkcje Matlaba cheby1, cheby2 i ellip do wyznaczenia ich transmitancji (funkcje te należy wywołać z parametrem s).

Zadanie 3.2

Napisać program do transformacji częstotliwości unormowanego prototypu filtra analogowego z charakterystyki dolnoprzepustowej na pasmowoprzepustową, a następnie przetransformować analogowy, dolnoprzepustowy prototypu filtra Butterwortha 3-go rzędu na filtr pasmowoprzepustowy o częstotliwościach 3dB równych 5 Hz i 7Hz. Narysować charakterystyki amplitudowe obu filtrów.

Zadanie 3.3

Napisać funkcję do wyznaczania charakterystyk częstotliwościowych transmitancji analogowej H(s). W obliczeniach zastosować podstawienie:

$$s=j\Omega$$
. (3.4)

Wartości licznika $B(j\Omega)$ i mianownika $A(j\Omega)$ obliczyć funkcją Matlaba polyval. Przyjąć następującą składnię funkcji:

- 1 function H=freqs_lab(B,A,w);
- 2 %Charakterystyka częstotliwościowa transmitancji H(s)=B(s)/A(s)
- 3 %w pulsacje [rad/s], dla których wyliczona jest charakterystyka

4. Projektowanie rekursywnych filtrów cyfrowych IIR

Zadanie 4.1

Cyfrowy filtr dolnoprzepustowy powinien spełniać następujące wymagania: krawędź pasma przenoszenia f_{pass} =0.8 kHz, dopuszczalna nieliniowość wzmocnienia w paśmie przepustowym r_p =1 dB, krawędź pasma zaporowego f_{stop} =1.2 kHz, minimalne tłumienie w paśmie zaporowym r_s =30 dB. Częstotliwość próbkowania F_s =4 kHz. Wyznaczyć transmitancję H(z) filtrów: Butterwortha, Czebyszewa typu I, Czebyszewa typu II i eliptycznego spełniających powyższe wymagania.

Podać rzędy tych filtrów. Narysować zera i bieguny transmitancji tych filtrów.

Na jednym wykresie narysować (porównać) charakterystyki amplitudowe tych filtrów.

Na jednym wykresie narysować (porównać) charakterystyki fazowe tych filtrów.

Transmitancję filtrów wyznaczyć funkcjami Matlaba: butter, chebyl, chebyl i ellip.

Zadanie 4.2

Napisać program implementujący transformację biliniową a następnie zastosować ten program do dyskretyzacji analogowej transmitancji H(s) dolnoprzepustowego prototypu filtra Butterwortha 3-go rzędu. Porównać wyniki z funkcją bilinear.

Zadanie 4.3

Napisać funkcję do wyznaczania charakterystyk częstotliwościowych transmitancji dyskretnej H(z). W obliczeniach zastosować podstawienie:

$$z=e^{j\omega}$$
. (4.1)

Wartości licznika $B(e^{j\omega})$ i mianownika $A(e^{j\omega})$ obliczyć funkcją Matlaba polyval. Przyjąć następującą składnię funkcji:

```
1 function H=freqz_lab(B,A,w);
2 %Charakterystyka częstotliwościowa transmitancji H(z)=B(z)/A(z)
3 %w - pulsacje [rad], dla których wyliczona jest charakterystyka
```

Zadanie 4.4

Obliczyć odpowiedzi impulsowe i skokowe filtrów z zadania 4.1. Narysować je funkcją Matlaba stem. Do obliczenia odpowiedzi impulsowej i skokowej wykorzystać impuls jednostkowy i impuls skokowy oraz funkcję Matlaba filter.

5. Projektowanie nierekursywnych filtrów cyfrowych FIR

Zadanie 5.1

- 1. Zaprojektować metodą okien filtr dolnoprzepustowy typu FIR, który dla częstotliwości próbkowania F_s =4 kHz ma krawędź pasma przenoszenia f_{pass} =1 kHz.
- 2. Zaobserwować zmiany charakterystyki amplitudowej filtra dla różnych długości wybranego okna.
- 3. Zaobserwować zmiany charakterystyk amplitudowych filtra dla różnych rodzajów okien o stałej długości (np. dla okna prostokątnego i Hamminga). Narysować na jednym wykresie charakterystyki amplitudowe filtra o ustalonej długości dla wybranych okien.

Odpowiedź impulsowa idealnego filtra dolnoprzepustowego typu FIR dana jest wzorem:

$$h_{FDP}[n] = \frac{\sin(\omega_c n)}{\pi n} = \begin{cases} \sin(\omega_c n)/(\pi n), & n \neq 0 \\ \omega_c/\pi, & n = 0 \end{cases},$$
(5.1)

gdzie ω_c - krawędź pasma przenoszenia w [rad].

Rozwiązanie (punkty 1 i 2)

Program 5.1 wykorzystuje prostą animację umożliwiającą obserwację wpływu długości odpowiedzi impulsowej filtra na szerokość listka głównego i położenie listków bocznych dla okna prostokątnego i okna Hamminga.

Odpowiedź impulsowa filtra jest liczona w linii 8 dla n>0 i n=0, fragment h[n] dla n<0 jest symetryczny (parzysty względem osi OY) do h[n] dla n>0.

Usunięcie znaku % w linii 9 powoduje zastosowanie okna Hamminga zamiast okna prostokatnego.

Usunięcie znaku % w liniach 22 i 28 powoduje zmianę wyskalowania osi na charakterystykach amplitudowych.

Program 5.1

```
1 close all, clear all, clc
2 M=1:100;
3 \text{ Fs}=4e3;
               %Hz
4 fpass=1e3;
5 wc=pi*fpass/(Fs/2); %[rad]
6 f=-Fs/2:1:Fs/2;
7 for k=1:length(M)
     n=1:M(k); h=sin(wc*n)./(pi*n); h=[fliplr(h) wc/pi h];
9
     %h = h(:).*hamming(length(h));
10
     Hw = freqz(h, 1, f, Fs);
     figure(1)
11
12
           subplot(3,1,1)
13
                  stem(h)
14
                  xlabel('n')
15
                  ylabel('h[n]')
16
                  axis tight, box on
17
            subplot(3,1,2)
18
                  plot(f,abs(Hw))
19
                  xlabel('f [Hz]')
                  ylabel('|H(e^j^\omega)|')
20
21
                  axis([min(f) max(f) 0 1.2]), box on
22
                  axis([0 1.2*fpass 0 1.2]), box on
23
           subplot(3,1,3)
                  plot(f,20*log10(abs(Hw)))
24
```

```
25 xlabel('f [Hz]')
26 ylabel('|H(e^j^\omega)| [dB]')
27 axis([min(f) max(f) -70 5]), box on
28 %axis([0 1.2*fpass -70 5]), box on
29 drawnow
30 end
```

Zadanie 5.2

Zaprojektować metodą okien filtr pasmowozaporowy typu FIR, który dla częstotliwości próbkowania F_s =4 kHz ma krawędzie pasma przenoszenia f_{pass1} =0.8 kHz i f_{pass2} =1.2 kHz.

Zadanie 5.3

Zaprojektować metodą okien filtr dolnoprzepustowy typu FIR, który ma krawędź pasma przenoszenia $\omega_p=\pi/4$ rad. Wykorzystując twierdzenie o modulacji przesunąć charakterystykę częstotliwościową tego filtra o $\pi/2$ i π .

Zadanie 5.4

Cyfrowy filtr dolnoprzepustowy typu FIR powinien spełniać następujące wymagania: krawędź pasma przenoszenia f_{pass} =0.8 kHz, dopuszczalna nieliniowość wzmocnienia w paśmie przepustowym r_p =1 dB, krawędź pasma zaporowego f_{stop} =1.2 kHz, minimalne tłumienie w paśmie zaporowym r_s =60 dB. Częstotliwość próbkowania F_s =4 kHz. Zaprojektować ten filtr:

- 1) metodą okien, poprzez dobór odpowiedniego okna Kaisera, funkcje Matlaba kaiserord i fir1.
- 2) metoda Parksa-McClellana, funkcja Matlaba firpm.

Porównać na wykresach odpowiedzi impulsowe i charakterystyki amplitudowe tych filtrów.

6. Metody obliczania DFT

Zadanie 6.1

Napisać program liczenia prostej i odwrotnej DFT wg wzorów (6.1) i (6.2):. DFT - analiza:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j(2\pi/N)kn} , \quad 0 \le n \le N-1, \quad 0 \le k \le N-1$$
 (6.1)

IDFT - synteza:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j(2\pi/N)kn}, \quad 0 \le n \le N-1, \quad 0 \le k \le N-1.$$
 (6.2)

Obliczyć DFT sygnału sinusoidalnego, wynik porównać z funkcją Matlaba fft. Narysować błąd rekonstrukcji

$$\varepsilon = x[n] - IDFT\{DFT\{x[n]\}\}. \tag{6.3}$$

Zadanie 6.2

Wygenerować macierz przekształcenia DFT:

$$W_N^{kn} = e^{-j\frac{2\pi}{N}kn}. (6.4)$$

Obliczyć DFT sygnału sinusoidalnego x w formie macierzowej:

$$\mathbf{X} = \mathbf{W}\mathbf{x} \ . \tag{6.5}$$

Zaobserwować, że macierz odwrotna funkcji bazowych jest równa przeskalowanej macierzy sprzężonej:

$$\mathbf{W}^{-1} = \frac{1}{N} \mathbf{W}^*. \tag{6.6}$$

Dokonać syntezy sygnału w postaci macierzowej:

$$\mathbf{x} = \frac{1}{N} \mathbf{W}^* \mathbf{X} . \tag{6.7}$$

Zadanie 6.3

Zaimplementować algorytm FFT z podziałem w czasie. Przyjąć następującą deklarację funkcji:

```
1 function Xw=fft_lab(xt);
2 %FFT z podziałem czasowym
```

Porównać wyniki obliczeń funkcji fft_lab i funkcji Matlaba fft.

Rozwiązanie

Program 6.1

```
1 function Xw=fft_lab(xt);
2 %FFT z podziałem czasowym
```

```
3
4 N=length(xt);
5 %% uzupełnienie zerami do długości 2^v
6 v=ceil(log2(N)); %liczba bitów
7 xt=[xt zeros(1,2^v-N)];
8 N=length(xt);
9 %% odwrócenie kolejności bitów, indeksowanie od 0
10 xo= zeros(size(xt)); %inicjalizacja zmiennej
11 b = 2.^(v-1:-1:0); %wagi binarne
12 for k=0:N-1;
13
     ind=k;
14
     ko=zeros(1,v);
15
     for k1=0:v-1
16
            if ind-b(k1+1) >= 0
17
                  ko(k1+1)=1; ind=ind-b(k1+1);
18
            end
19
     end
20
      ind o=sum(fliplr(ko).*b);
21
      xo(ind o+1)=xt(k+1);
22 end
23 %% algorytm FFT
24 X=zeros(2,N); %pamięć dla danych i wyników
25 X(1,:)=xo;
                  %dane
26 WN=exp(-j*2*pi/N);
27 for k=0:v-1 %petla po etapach
    M=2^k;
28
                  %liczba motylków w bloku
29
     for k1=0:N/2/M-1; %petla po blokach
30
          for k2=0:M-1;
                              %pętla wewnątrz bloku
31
                  %ustalenie indeksów
32
                  p=k1*N/2^{(v-k-1)}+k2;
33
                  q=p+M;
34
                  r=2^{(v-k-1)*k2};
35
                  %obliczenia motylkowe
36
                  X(2,p+1)=X(1,p+1)+WN^r*X(1,q+1);
37
                  X(2,q+1) = X(1,p+1) - WN^r \times X(1,q+1);
38
            end
39
     end
40
      X(1,:)=X(2,:); %obliczenia z podstawianiem
41 end
42 Xw=X(1,:);
```

Zadanie 6.4

Zaimplementować algorytm IFFT z podziałem w czasie. Przyjąć następującą deklarację funkcji:

```
1 function Xw=ifft_lab(xt);
2 %IFFT z podziałem czasowym
```

Obliczyć błąd rekonstrukcji dla funkcji fft lab i ifft lab.

Zadanie 6.5

Zaimplementować algorytmy FFT i IFFT z podziałem w częstotliwości. Przyjąć następujące deklaracje funkcji:

```
1 function Xw=fft_dif(xt);
2 %FFT z podziałem w częstotliwości
1 function Xw=ifft dif(xt);
```

Zadanie 6.6

Obliczyć widma dwóch sygnałów o długości N i wartościach rzeczywistych jednym N-punktowym FFT.

Zadanie 6.7

Obliczyć widmo sygnału o długości 2N i wartościach rzeczywistych jednym N- punktowym FFT.

Zadanie 6.8

Zaimplementować algorytm Goertzla obliczania DFT z odwróconą kolejnością próbek na wejściu.

Rozwiązanie

Program 6.2

```
1 close all, clear all, clc
2 N=16;
3 x=randn(1,N); %sygnal testowy
4 %% Algorytm Goertzla - odwrócona kolejność próbek na wejściu
5 xf=fliplr(x);
6 for k=1:N
7 WN k=\exp(-j*(2*pi/N)*(k-1));
       for n=1:N
              if n-1==0
10
                      y(n) = xf(n);
11
               else
12
                      y(n) = xf(n) + y(n-1) *WN k;
13
               end
14
       end
     Yw(k) = y(n);
15
16 end
17 % sprawdzenie
18 Yfft=fft(x);
19 figure,
20 subplot(2,1,1), plot(real(Yw)-real(Yfft), '.-'), xlabel('n'),
ylabel('blad R E'),
21 \operatorname{subplot}(2,1,2), \operatorname{plot}(\operatorname{imag}(\operatorname{Yw})-\operatorname{imag}(\operatorname{Yfft}), '.-'), \operatorname{xlabel}(\operatorname{'n'}),
ylabel('blad I M'),
```

Zadanie 6.9

Zaimplementować algorytm Goertzla obliczania DFT z naturalną kolejnością próbek na wejściu.

Zadanie 6.10

Zaimplementować algorytm transformacji Chirp-Z.

7. Filtracja sygnałów cyfrowych

Zadanie 7.1

- 1. Wygenerować sygnał testowy x[n] o długości N_x =256 próbek złożony z sumy dwóch przebiegów sinusoidalnych o częstotliwościach f_1 =50 Hz i f_2 =150 Hz. Częstotliwość próbkowania wynosi F_s =1000 Hz.
- 2. Zaprojektować cyfrowy filtr dolnoprzepustowy typu FIR (np. funkcja fir1, *N*=21) i typu IIR (np. funkcja cheby1, *N*=5) o krawędzi pasma przepuszczania 100 Hz. Narysować charakterystyki amplitudowe tych filtrów.
- 3. Przefiltrować sygnał testowy filtrem FIR i filtrem IIR za pomocą funkcji Matlaba filter.
- 4. Zaobserwować przebiegi czasowe i widma sygnałów przed i po filtracji.

Zadanie 7.2

Obliczyć splot sygnału testowego z zadania 7.1 z filtrem FIR przez FFT.

Zadanie 7.3

Obliczyć splotu sygnału testowego z zadania 7.1 z filtrem FIR stosując podział na sekcje metoda *overlap-add*. Sploty poszczególnych sekcji obliczyć poprzez FFT.

Rozwiązanie

Program 7.1 implementuje metodę sekcjonowanych splotów liniowych *overlap-add*. Implementacja algorytmu zaczyna się w linii 15, gdzie wybierana jest długość sekcji, która powinna być nie mniejsza niż długość filtra. Następnie odpowiedź impulsowa filtra jest uzupełniana zerami w linii 20 i wyznaczane jest widmo filtra. W pętli wybierane są kolejne, niezachodzące na siebie fragmenty sygnału wejściowego i liczone są sploty liniowe przez FFT. Zachodzące na siebie fragmenty splotów liniowych sa dodawane w linii 31.

Poprawność implementacji sprawdzana jest w linii 34 przez porównanie wyniku z funkcją Matlaba conv.

Program 7.1

```
1 close all, clear all, clc
2 % Splot sekcjonowany metoda overlap-add
3 Nx = 256;
4 f1=50; A1=1; fi1=pi/7;
5 f2=150; A2=2; fi2=0;
6 Fs=1000;
7 t = (0:Nx-1)/Fs;
8 x1=A1*sin(2*pi*f1*t+fi1);
9 x2=A2*sin(2*pi*f2*t+fi2);
10 x=x1+x2;
                              %sygnal testowy
11 h=fir1(21,100/(Fs/2));
                              %filtr FDP
12 Nh=length(h);
13 y1=conv(h,x);
                              %poprawny wynik
14 %% obliczenia
15 L=32;
                              %długość sekcji >= Nh
16 L=max([L,Nh]);
17 nL=ceil(Nx/L);
                              %liczba sekcji
18 x = [x zeros(1, nL*L-length(x))];
19 Ny=Nh+L-1;
20 hz=zeros(1,Ny);
21 hz (1:Nh) = h;
22 Hw=fft(hz); %widmo h[n] jest liczone tylko raz!!!
23 y=zeros(1,Nh+length(x)-1);
```

```
24 for k=1:nL
    xz=zeros(1,Ny);
26
    ind=1+(k-1)*L;
27
    xz(1:L)=x(ind:ind+L-1);
28
    Xw=fft(xz);
     ys=ifft(Xw.*Hw); %wynik splotu liniowego dla sekcji
29
30
    ind=1+(k-1)*L;
    y(ind:ind+Ny-1)=y(ind:ind+Ny-1)+ys;
31
32 end
33 y=y(1:Nx+Nh-1);
34 blad=sum(abs(y1-y)) %sprawdzenie przez porównanie z funkcją Matlaba conv
35 figure
     subplot(3,1,1), hold on
36
           plot(x1,'r')
37
           plot(x2, 'k')
38
           legend('x 1','x 2')
39
40
           axis tight
41
    subplot(3,1,2)
42
           plot(x, 'b')
           legend('x 1+x 2')
43
44
           axis tight
    subplot(3,1,3), hold on
45
46
           plot(x1, 'r')
47
           plot(y,'b')
           legend('x_1','y')
48
49
           axis tight
```

Zadanie 7.4

Obliczyć splotu sygnału testowego z zadania 7.1 z filtrem FIR stosując podział na sekcje metodą *overlap-save*. Sploty poszczególnych sekcji obliczyć poprzez FFT.

8. Analiza częstotliwościowa z wykorzystaniem DFT

Zadanie 8.1

- 1. Wygenerować przebieg $x[n]=DC+A\sin(2\pi ft+\varphi)$, gdzie składowa stała DC=1, a częstotliwość f=20 Hz, próbkowany z częstotliwością $F_s=100$ Hz.
- 2. Dla tego sygnału obliczyć dyskretną transformatę Fouriera (funkcją Matlaba fft) na podstawie N=32 i N=64 próbek. Widma amplitudowe dla obu przypadków przedstawić na jednym wykresie z osią częstotliwości wyskalowaną w Hz i osią OY wyskalowaną w wartościach amplitudy.
- 3. Na jednym wykresie przedstawić widmo amplitudowe sygnału o długości *N*=64 próbki i widmo amplitudowe tego samego sygnału uzupełnionego zerami do długości *N*=1024 próbki. Oś częstotliwości wyskalować w Hz, a oś OY w wartościach amplitudy.
- 4. Sygnał o długości *N*=64 próbki przemnożyć (mnożenie indeksowe) przez okno Hamminga (funkcja Matlaba hamming), a następnie uzupełnić zerami do długości *N*=1024 próbki. Narysować widmo amplitudowe tego sygnał. Dla porównania na tym samym wykresie narysować widmo amplitudowe sygnału o długości *N*=64 próbki z oknem prostokątnym po uzupełnieniu zerami do tej samej długości *N*=1024 próbki. Oś częstotliwości wyskalować w Hz.

Zadanie 8.2

Dla sygnału w postaci $x[n]=A\sin(2\pi f_1t+\varphi_1)+A\sin(2\pi f_2t+\varphi_2)$ o długości N=256 próbek, $f_1=20$ Hz i częstotliwości próbkowania $F_s=100$ Hz zaobserwować jego widmo amplitudowe dla f_2 z przedziału od 21 Hz do 40 Hz. Przed liczeniem widma uzupełnić sygnał zerami do długości N=2048 próbek.

Rozwiazanie

Program 8.1 przedstawia animację ilustrującą problem rozdzielczości częstotliwościowej DFT. Należy zwrócić uwagę, że nawet w przypadku, gdy częstotliwości f_1 i f_2 różnią się znacznie maksimum charakterystyki amplitudowej przeważnie nie leży w punkcie (20Hz,1). Zjawisko to jest spowodowane przeciekiem widmowym.

Program 8.1

```
1 close all, clear all, clc
2 % Rozdzielczość częstotliwościowa DFT
3 \text{ Nx} = 256;
4 Nfft = 2048;
5 f1=20; A1=1; fi1=pi/7;
6 f2=21:0.05:40; A2=1; fi2=0;
7 Fs=1000;
8 t = (0:Nx-1)/Fs;
9 f=(0:Nfft-1)*(Fs/Nfft);
10 x1=A1*sin(2*pi*f1*t+fi1);
11 for k=1:length(f2)
12 x2=A2*sin(2*pi*f2(k)*t+fi2);
13
     x=x1+x2;
14 Xw=fft(x,Nfft); Xw=2*Xw/Nx; Xw(1)=Xw(1)/2;
15
     plot(f, abs(Xw), '.-');
           title(['f_2=' num2str(f2(k),'%2.2f') ' Hz'])
16
17
           xlabel('f [Hz]')
           ylabel('|X(e^j^\omega)|')
18
19
           axis([0 50 0 1.5]), grid on
20
           drawnow
```

Zadanie 8.3

Dla sygnału w postaci $x[n]=A_1\sin(2\pi f_1t+\varphi_1)+A_2\sin(2\pi f_2t+\varphi_2)$ o długości N=256 próbek, $f_1=20$ Hz, $f_2=24$ Hz i częstotliwości próbkowania $F_s=100$ Hz zaobserwować jego widmo amplitudowe dla A_2 z przedziału od 0 do A_1 . Przed liczeniem widma uzupełnić sygnał zerami do długości N=2048 próbek.

Rozwiązanie

Program 8.2 przedstawia animację ilustrującą problem rozdzielczości amplitudowej DFT. Należy zwrócić uwagę, że nawet w przypadku, gdy amplituda A_2 jest na tyle duża, że listek główny sygnału o częstotliwości f_2 nie jest maskowany przez listki boczne sygnału o częstotliwości f_1 to listki główne obu tych sygnałów nie mają ekstremów w częstotliwościach f_1 i f_2 , co jest spowodowane przeciekiem widmowym.

Program 8.2

```
1 close all, clear all, clc
2 % Rozdzielczość amplitudowa
3 \text{ Nx} = 256;
4 Nfft = 2048;
5 f1=20; A1=1; fi1=pi/7;
6 f2=24; A2=0:0.01:1; fi2=0;
7 Fs=1000;
8 t = (0:Nx-1)/Fs;
9 f=(0:Nfft-1)*(Fs/Nfft);
10 x1=A1*sin(2*pi*f1*t+fi1);
11 for k=1:length(A2)
12
     x2=A2(k)*sin(2*pi*f2*t+fi2);
13
     x=x1+x2;
14
     Xw=fft(x,Nfft); Xw=2*Xw/Nx; Xw(1)=Xw(1)/2;
      plot(f,abs(Xw),'.-');
15
            title(['A 2=' num2str(A2(k),'%2.2f')])
16
            xlabel('f [Hz]')
17
            ylabel('|X(e^j^\omega)|')
18
            axis([0 50 0 1.5]), grid on
19
2.0
            drawnow
21 end
```

Zadanie 8.4

Dla sygnału w postaci $x[n]=A\sin(2\pi f_1t+\varphi_1)+A\sin(2\pi f_2t+\varphi_2)$, $f_1=20$ Hz, $f_2=22$ Hz, częstotliwość próbkowania $F_s=100$ Hz zaobserwować jego widmo amplitudowe dla liczby próbek N z przedziału od 256 do 2000. Przed liczeniem widma uzupełnić sygnał zerami do długości N=2048 próbek.

Rozwiązanie

Program 8.3 przedstawia możliwość zwiększenia rozdzielczości częstotliwościowej i amplitudowej DFT przez wydłużenie okna obserwacji.

Należy zwrócić uwagę, że przeciek widmowy może być znacznie ograniczony przez stosowanie okien czasowych innych niż prostokątne. Usunięcie znaku % w linii 14 powoduje zastosowanie okna Hamminga. Sygnał jest dzielony przez wartość średnią okna, żeby prążki DFT miały wysokość amplitudy sygnału.

Program 8.3

```
1 close all, clear all, clc
```

```
2 % Poprawa rozdzielczość przez wydłużenie obserwacji
3 \text{ Nx} = [256:4:2000];
4 Nfft = 2048;
5 f1=20; A1=1; fi1=pi/7;
6 f2=23; A2=1; fi2=0;
7 Fs=1000;
8 f=(0:Nfft-1)*(Fs/Nfft);
9 for k=1:length(Nx)
     t = (0:Nx(k)-1)/Fs;
10
     x1=A1*sin(2*pi*f1*t+fi1);
11
12
     x2=A2*sin(2*pi*f2*t+fi2);
13
     x=x1+x2;
14
     w=hamming(length(x)); x=x(:).*w; x=x/mean(w);
     Xw=fft(x,Nfft); Xw=2*Xw/Nx(k); Xw(1)=Xw(1)/2;
15
     plot(f,abs(Xw),'.-');
16
     title(['N=' num2str(Nx(k),'%2.0f')])
17
     xlabel('f [Hz]')
18
     ylabel('|X(e^j^\omega)|')
19
20
     axis([10 30 0 1.2]), grid on
21
     drawnow
22 end
```

Zadanie 8.5

Napisać funkcję do liczenia okien Rifea-Vincenta klasy I dla rzędów M=0,1,2,...,6. Przyjąć następującą deklarację funkcji:

```
1 function [okno, Am]=window_RV(N,ord);
2 %okna Rifea-Vincenta klasy I
3 %N - długość okna
4 %ord - rząd okna 0,1,2,...,6 0-prostokątne, 1-Hanning
```

Dla wybranej długości okna, np. *N*=32, zaobserwować przebiegi czasowe okna oraz charakterystyki amplitudowe w skali decybelowej.

Zadanie 8.6

Napisać funkcję do liczenia interpolowanego DFT dla okien Rifea-Vincenta klasy I dla rzędów M=0,1,2,...,6. Przyjąć następującą deklarację funkcji:

```
1 function [Xw,w0,fi,Xw3p,w3p]=interp_dft_Rif_Vinc(x,ord);
2 % Interpolowane DFT dla okien Rifea-Vincenta klasy I
3 % x - sygnał
4 % ord- rząd okna 0,1,...6, ord=0-okno prostokątne, ord=1-okno Hanninga
5 % Xw - amplituda, interpolacja dwupunktowa
6 % w0 - pulsacja cyfrowa [rad], interpolacja dwupunktowa
7 % fi - faza [rad]
8 % Xw3p- amplituda, interpolacja trzypunktowa
9 % w03p-pulsacja cyfrowa [rad], interpolacja trzypunktowa
```

Zadanie 8.7

Wyznaczyć błędy systematyczne estymacji częstotliwości dla dwupunktowej i trzypunktowej interpolacji DFT dla okien Rifea-Vincenta klasy I dla ustalonej długości sygnału, np. N=128. Narysować zależność błędu maksymalnego estymacji częstotliwości od częstotliwości cyfrowej sygnału. Częstotliwość sygnału testowego zmieniać w przedziale $(0, \pi)$ z krokiem $\pi/20$. Dla ustalonej częstotliwości wygenerować sygnały testowe z fazą zmieniającą się w przedziale $(-\pi/2, \pi/2)$ z krokiem $\pi/20$; za wynik przyjąć maksymalną różnicę pomiędzy

zadaną częstotliwością sygnału testowego, a częstotliwością estymowaną dla sygnałów o różnej fazie.

Zadanie 8.8

Napisać funkcję liczącą spektrogram. Przyjąć następującą deklarację funkcji:

```
1 function [X,n_spe,w_spe]=spektogram(x,w,Nfft,R);
2 %x - sygnał
3 %w - okno czasowe - wektor o długości L
4 %Nfft - długość fft >= L
5 %R - przesunięcie okna
6 %X - spektrogram - płaszczyzna czas-częstotliwość
7 %n_spe - indeks czasu
8 %w spe - pulsacja cyfrowa
```

Następnie użyć napisaną funkcję spektogram w programie 8.4 do obserwacji widma sygnału w czasie dla modulacji amplitudy i modulacji częstotliwości. Dokonać obserwacji spektrogramu dla różnych długości okna prostokątnego i Hamminga oraz dla różnych przesunięć okna *R*.

```
Program 8.4
```

```
1 close all, clear all, clc
2 Nx=2048;
3 n=(0:Nx-1);
4 if 0 % modulacja AM
     w0=1;
6
     wm=0.01;
7
     k = 0.9;
8
     x1=1+k*cos(wm*n);
    x2=cos(w0*n);
9
10
     x = x1.*x2;
11 else % modulacja FM
   w0 = pi/2;
12
13
     wm = 0.01;
    k = 1;
14
15
    x = \cos(w0*n+k*\cos(wm*n)/wm);
16 end
17 L = 128;
18 Nfft= 256;
19 R = 64;
20 w = ones(1, L);
21 %w = hamming(L);
22 [X,n spe,w spe]=spektogram(x,w,Nfft,R);
23 figure,
24 plot(x, '.-k', 'LineWidth', 1)
25
    xlabel('n'), ylabel('x[n]')
26
     axis tight
27 figure
imagesc(n spe, w spe, abs(X)), axis xy, colorbar
     xlabel('n'), ylabel('\omega [rad]')
     title(['L=' num2str(L) ', R=' num2str(R) ' , N F F T='
num2str(Nfft)])
31
     axis tight
```

Zadanie 8.9

Napisać funkcję liczącą periodogram:

```
I[k] = \frac{1}{LU} | \text{DFT}\{w[n]x[n]\}|^2, U = \frac{1}{L} \sum_{n=0}^{L-1} (w[n])^2.  (8.1)
```

Przyjąć następującą deklarację funkcji:

```
1 function [Iw,w] =periodogram_lab(x,okno);
2 %x - sygnał
3 %okno - wektor okna czasowego o długości sygnału
4 %I - periodogram
5 %w - pulsacja cyfrowa [rad]
```

Porównać wyniki z funkcją Matlaba periodogram wg programu 8.5.

```
Program 8.5
```

```
1 close all, clear all, clc
2 Nx = 1024;
3 n=0:Nx-1;
4 = \sin(n*pi/4) + 2.5*randn(1,Nx);
5 w=hamming(Nx);
6 %w=ones(Nx,1);
7 [Pxx,w1] = periodogram(x,w); Pw = Pxx*pi; Pw(1) = Pw(1)*2;
8 [Iw, w2] = periodogram lab(x,w);
9 figure
10
      subplot(2,1,1)
11
           plot(n, x, '-k')
12
            xlabel('n')
13
           vlabel('x[n]')
14
           axis tight, box on
15 subplot (2,1,2), hold on
16
           plot(w2, Iw, '.-k')
17
            plot(w1, Pw, 'o-b')
            xlabel('\omega'), ylabel('I(\omega)')
18
19
            axis tight
```

Zadanie 8.10

Napisać funkcje licząca uśredniony periodogram metoda Welcha:

$$\hat{I}[k] = \frac{1}{K} \sum_{r=0}^{K-1} I_r[k], \qquad (8.2)$$

gdzie $I_r[k]$ są periodogramami (8.1) dla kolejnych przesunięć okna analizy. Przyjąć następującą deklarację funkcji:

```
1 function [Iw,w] = periodogram_usredniony(x,okno,R, Nfft);
2 %x - sygnał
3 %okno - wektor okna czasowego
4 %Nfft - długość FFT
5 %R - przesunięcie okna (liczba próbek)
6 %I - periodogram
7 %w - pulsacja cyfrowa [rad]
```

Porównać wyniki z funkcja Matlaba pwelch wg programu 8.6.

Program 8.6

```
1 close all, clear all, clc
```

```
2 Nx=1024;
3 L =128; %długość okna
4 R =round(L/2); %przesunięcie
5 n=0:Nx-1;
6 x=\sin(n*pi/4)+2.5*randn(1,Nx);
7 %w=hamming(L);
8 w=ones(L,1);
9 [Iw, w1] = periodogram_usredniony(x,w,R,Nx);
10 [Pxx, w2] = pwelch(x, w, L-R, Nx); Pxx=Pxx*pi; Pxx(1)=2*Pxx(1);
11 figure
12
     subplot(2,1,1)
13
            plot(n, x, '-k')
            xlabel('n')
14
15
            ylabel('x[n]')
16
            axis tight, box on
17
     subplot(2,1,2), hold on
            plot(w1, Iw ,'.-k')
plot(w2, Pxx,'o-b')
18
19
20
            xlabel('\omega'), ylabel('I(\omega)')
21
            axis tight, box on
```

9. Zmiana częstotliwości próbkowania. Sygnał analityczny

Zadanie 9.1

- 1. Wygenerować sygnał testowy $x[n]=A\sin(2\pi ft+\varphi)$ o częstotliwości f=100 Hz, długości N=256 próbkowany z $F_s=1000$ Hz. Napisać program do zmiany częstotliwości próbkowania tego sygnału z $F_s=1000$ Hz na $F_s=1200$ Hz.
- 2. Narysować przebiegi czasowe sygnału dla F_s =1000 Hz i F_s =1200 Hz na jednym wykresie z osią OX wyskalowaną w sekundach.
- 3. Narysować widma amplitudowe sygnału dla F_s =1000 Hz i F_s =1200 Hz na jednym wykresie z osią OX wyskalowaną w hercach.
- 4. Porównać wyniki z funkcją Matlaba resample.

Zadanie 9.2

Zastosować sygnał analityczny, obliczony funkcją Matlaba hilbert, do demodulacji amplitudy i częstotliwości sygnałów testowych z programu 8.4.

Zadanie 9.3

Napisać program do obliczania sygnału analitycznego metodą filtracji w dziedzinie czasu. Odpowiedź impulsowa idealnego filtra Hilberta dana jest wzorem:

$$h[n] = \begin{cases} \frac{2\sin^2(\pi n/2)}{\pi n}, & n \neq 0 \\ 0, & n = 0 \end{cases}$$
 (9.1)

Zastosować wyznaczony sygnał analityczny do demodulacji amplitudy i częstotliwości sygnałów testowych z programu 8.4.

Zadanie 9.4

Napisać program do obliczania sygnału analitycznego metodą modyfikacji widma:

$$Z[k] = \begin{cases} X[k], & k = 0\\ 2X[k], & k = 1, 2, \dots, \frac{N}{2} - 1\\ X[k], & k = \frac{N}{2} \\ 0, & k = \frac{N}{2} + 1, \dots, N - 1 \end{cases}$$
(9.2)

Zastosować wyznaczony sygnał analityczny do demodulacji amplitudy i częstotliwości sygnałów testowych z programu 8.4.

10. Filtry adaptacyjne

Zadanie 10.1

Napisać funkcję realizującą algorytm filtra adaptacyjnego RLS.

Algorytm RLS jest następujący:

- I. Inicjalizacja
 - 1. Wybór długości filtra M,
 - 2. Początkowe współczynniki filtra można ustawić na zero $\mathbf{h}_0 = \mathbf{0}$,
 - 3. Początkowa macierz odwrotna $P_0 = \delta^{-1} I$, gdzie δ jest małą wartością dodatnią.
- II. Obliczenia dla *N*=1,2,3,...

1.
$$\mathbf{k}_{N} = \frac{\mathbf{R}_{N-1}^{-1}\mathbf{q}_{N}}{1 + \mathbf{q}_{N}^{H}\mathbf{R}_{N-1}^{-1}\mathbf{q}_{N}},$$

2. $\varepsilon_{N} = d_{N} - \mathbf{q}_{N}^{H}\mathbf{h}_{N-1},$
3. $\mathbf{h}_{N} = \mathbf{h}_{N-1} + \mathbf{k}_{N}\varepsilon_{N},$
4. $\mathbf{P}_{N} = \mathbf{P}_{N-1} - \mathbf{k}_{N}\mathbf{q}_{N}^{H}\mathbf{P}_{N-1}.$

Rozwiązanie

Program 10.1

```
1 function [hrls, h n, e n] = rls lab(x,d,hrls,delt);
2 %Filtr adaptacyjny RLS
3 %x - sygnał wejściowy
4 %d - sygnał odniesienia
5 %hrls - współczynniki filtra
6 %delt - mała wartość dodatnia, np.0.01
7 %h_n - kolejne wektory współczynników filtra
8 %e_n - kolejne wartości błędu
10 M = length(hrls);
11 P = 1/\text{delt*eye}(M, M);
12 q = zeros(M, 1);
13 h n=hrls;
14 e n=[];
15 for k=1:length(x)
16 q = [q(2:M); x(k)];
      kg = (P*q)/(1+q'*P*q);
17
P = P - kq*q'*P;
20
21 end
```

Zadanie 10.2

Napisać funkcję realizującą algorytm filtra adaptacyjnego LMS.

Algorytm LMS jest następujący:

- I. Inicjalizacja
 - 1. Wybór długości filtra M,
 - 2. Początkowe współczynniki filtra można ustawić na zero $\mathbf{h}_0 = \mathbf{0}$,
 - 3. Wybór wartości μ .
- II. Obliczenia dla *N*=1,2,3,...
 - 1. $e_N = d_N \mathbf{x}_N^T \mathbf{h}_N$,
 - 2. $\mathbf{h}_{N+1} = \mathbf{h}_N + \mu \mathbf{x}_N e_N$.

Przyjąć następującą deklarację funkcji:

Zadanie 10.3

Zastosować napisane funkcje rls_lab i lms_lab do identyfikacji odpowiedzi impulsowej układu zgodnie z programem 10.2.

Program 10.2

```
1 close all, clear all, clc
2 %% identyfikacja odpowiedzi impulsowej h[n]
3 h = fir1(10,0.5); %odpowiedź impulsowa do identyfikacji
4 x = randn(1,500); %wymuszenie
5 d = conv(x,h); %odpowiedź układu identyfikowanego na x
6 d = d + 0.1*randn(size(d)); %pomiar odpowiedzi zakłócony szumem
7 %% zadanie: zastosować RLS i LMS do wyznaczenia h na podstawie x i d
```

11. Transformacja falkowa

Zadanie 11.1

Napisać funkcję implementującą transformację falkową w wersji predykcyjnej z opcją transformacji całkowitoliczbowej.

Rozwiązanie

Program 11.1

```
1 function [c,d,P,U]=lwt_lab(x,P,U,int);
2 %LWT x musi mieć parzystą dlugosć
3 %P,U - numer predyktora i updata od 1 do 4;
4 %int=1 - transformacja całkowitoliczbowa
6 switch P
7
  case 1
8
           P = [1];
9 case 2
10
           P=[1/2 1/2];
11 case 3
12
           P=[-1/2^4 9/2^4 9/2^4 -1/2^4];
13 case 4
14
           P=[3/2^8 -25/2^8 150/2^8 150/2^8 -25/2^8 3/2^8];
15 otherwise
16
           P=[1/2 1/2];
17 end
18 switch U
19 case 1
20
           U = [1];
21 case 2
22
           U=[1/2 1/2];
23 case 3
           U = [-1/2^4 \ 9/2^4 \ 9/2^4 \ -1/2^4];
24
25 case 4
           U=[3/2^8 -25/2^8 150/2^8 150/2^8 -25/2^8 3/2^8];
26
27
    otherwise
28
           U=[1/2 1/2];
29 end
30 x=x(:); N =length(x);
31 %% podział
32 ce=x(1:2:N);
33 co=x(2:2:N);
34 %% predykcja
35 if int==1
36
     d = co-round(lwt step(ce,P));
37 else
38 d = co-lwt step(ce, P);
39 end
40 %% uaktualnienie
41 if int==1
     c = ce + round(lwt step(d, U)/2);
43 else
44 c = ce+lwt step(d,U)/2;
45 end
```

Zadanie 11.2

Napisać funkcję implementującą odwrotną transformację falkową w wersji predykcyjnej z opcją transformacji całkowitoliczbowej.

Zastosować następującą deklarację funkcji:

```
1 function x=ilwt_lab(c,d,P,U,int);
2 %odwrotna LWT
3 %P,U predyktor i update z funkcji lwt_lab
4 %int=1 transformacja całkowitoliczbowa
```

Sprawdzić błąd rekonstrukcji sygnału dla transformacji zmiennoprzecinkowej i całkowitoliczbowej w programie 11.2.

Program 11.2

```
1 close all, clear all, clc
2 %% generator sygnału EKG
3 x = ecg(128);
4 x = repmat(x, [1 9]);
5 x = x+0.05*randn(size(x)); %szum pomiarowy
6 x = sgolayfilt(x, 0, 5);
                             %wygładzenie
7 %% kwantowanie na Lb bitów
8 T.b=8:
9 x = x-min(x); x=x/max(x); x=round((2^Lb-1)*x);
10 %% Transformacja falkowa
11 P=2;
12 U=2;
13 int=0;
14 [c,d,P1,U1] = lwt lab(x,P,U,int);
                                         %analiza
15 xr = ilwt lab(c,d,P1,U1,int);
                                         %synteza
16 blad=x(:)-xr(:);
17 figure
18
     subplot(2,1,1)
19
           plot(x);
20
           xlabel('n')
           ylabel('x[n]')
21
22
           axis tight,
23 subplot (2,1,2)
24
           plot(blad, '.-k')
25
           xlabel('n')
26
           ylabel('x[n]-x r[n]')
27
           axis tight
```

Zadanie 11.3

Napisać funkcję do wielopoziomowej falkowej dekompozycji sygnału.

Rozwiązanie

Program 11.3

```
1 function [c,dall,P1,U1]=lwt_level(x,P,U,int,lv);
2 %Wielopoziomowa dekompozycja LWT
3 %długość x musi dzielić się przez 2^lv
4 %P,U - numer predyktora i updata od 1 do 4;
5 %int=1 - transformacja całkowitoliczbowa
6 %lv - liczba poziomów dekompozycji
7
8 c=x;
9 dall=[];
10 for k=1:lv
```

```
11    [c,d,P1,U1]=lwt_lab(c,P,U,int);
12    dall=[d; dall];
13 end
```

Zadanie 11.4

Napisać funkcję do wielopoziomowej falkowej syntezy sygnału. Przyjąć następującą deklarację funkcji:

```
1 function c=ilwt_level(c,dall,P,U,int,lv);
2 %Wielopoziomowa synteza LWT
3 %długość x musi dzielić się przez 2^lv
4 %P,U predyktor i update z funkcji lwt_lab
5 %int=1 - transformacja całkowitoliczbowa
6 %lv - liczba poziomów dekompozycji
```

Sprawdzić błąd rekonstrukcji dla dekompozycji i analizy wielopoziomowej analogicznie jak w programie 11.2.

Zadanie 11.5

Napisać program do rysowania falki i funkcji skalującej.

Zadanie 11.6

Napisać program do rysowania płaszczyzny czas-skala dla wielopoziomowej, dyskretnej analiz falkowej sygnału.

Rozwiązanie

Program 11.4

```
1 close all, clear all, clc
2 %% generator sygnału EKG
3 x = ecg(128);
4 x = repmat(x, [1 9]);
5 x = x+0.05*randn(size(x)); %szum pomiarowy
6 \times = \text{sgolayfilt}(x, 0, 5);
                              %wygładzenie
7 %% kwantowanie na Lb bitów
8 Lb=8; x = x-min(x); x=x/max(x); x=round((2^Lb-1)*x);
9 %% LWT
10 P=2; U=2;
11 \ lv = 5;
12 int=0;
13 [c,dall,P1,U1]=lwt level(x,P,U,int,lv); %analiza wielopoziomowa
14 %% Prezentacja detali na płaszczyźnie czas-skala
15 k1=1;
16 Nc = length(c);
17 TS = zeros(lv,length(c)+length(dall));
18 for k=1:1v
19
     d = dall(k1:k1+Nc-1); k1=k1+Nc; Nc=2*Nc;
20
      d=repmat(d(:),[1 2^(lv-k+1)]); d=d.'; d=d(:);
21
     TS(lv-k+1,:)=d.';
22 end
23 figure
     imagesc(abs(TS)), axis xy, colorbar
24
25
     xlabel('n')
    ylabel('j')
26
27
     axis tight
```

12. Kompresja sygnałów

Zadanie 12.1

Napisać funkcję do liczenia entropii dla wektora liczb całkowitych wg wzoru:

$$H(p_1,...,p_n) = H(S) = -\sum_{i=1}^n p_i \log_2 p_i.$$
 (12.1)

Zadanie 12.2

- 1. Obliczyć entropię sygnału rzeczywistego (np. sygnału EKG) o długości N=4096.
- 2. Obliczyć entropię tego sygnału po kodowaniu różnicowym:

$$x[n] = \begin{cases} x[n], & n=1\\ x[n]-x[n-1], & n>1 \end{cases} \quad n = 1, 2, ..., N.$$
 (12.2)

3. Obliczyć entropię tego sygnału na 5 poziomie całkowitoliczbowej dekompozycji falkowej.

Zadanie 12.3

Zakodować koderem Huffmana i koderem arytmetycznym sygnał rzeczywisty (np. EKG) o długości *N*=4096. Określić średnią liczbę bitów na symbol dla każdego z koderów, liczby te porównać z entropią sygnału.

Zadanie 12.4

- 1. Wykonać pięciopoziomową, całkowitoliczbową dekompozycję falkową sygnału rzeczywistego (np. EKG) o długości N=4096. Współczynniki detali, których amplituda jest mniejsza od wartości przyjętego progu T_r ustawić na wartość zero.
- 2. Obliczyć entropię współczynników falkowych po operacji progowania.
- 3. Obliczyć błąd PRD (Percent Residual Difference) rekonstrukcji sygnału:

$$PRD = \sqrt{\sum_{n} (x[n] - x_r[n])^2 / \sum_{n} x[n]^2} \cdot 100\%.$$
 (12.3)

4. Dla zwiększanych wartości progu T_r ={0,1,2,3.....} wyznaczyć charakterystykę PRD=f{H} obrazującą zależność pomiędzy współczynnikiem kompresji, a błędem rekonstrukcji, tj. jakością kompresji stratnej.

13. Filtracja obrazów

Zadanie 13.1

- 1. Wygenerować obraz testowy I=checkerboard(60,2,2) i zakłócić go addytywnie szumem
- 2. Przefiltrować obraz testowy filtrami uśredniającymi 2D: filtrem Gaussa, filtrem o prostokątnej odpowiedzi impulsowej i filtrem o odpowiedzi impulsowej w kształcie dysku. Użyć funkcji Matlaba imfilter lub conv2.
- 3. Przefiltrować obraz testowy filtrem medianowym, funkcja Matlaba medfilt2.

Zadanie 13.2

Przefiltrować obraz naturalny (np. I =imread('cameraman.tif')) filtrami z zadania 13.1.

Zadanie 13.3

Przefiltrować obrazy testowe z zadania 13.1 i zadania 13.2 filtrami do detekcji krawędzi.

Zadanie 13.4

Napisać funkcję liczącą ciągłe widmo 2D obrazu.

Rozwiązanie

Program 13.1

```
1 function [Xw,w1,w2]=fourier_ciagly_2D(x,dw,wz);
2 % 2D FT
3 for k=1:size(x,1)
4     [H, w1]=fourier_ciagly(x(k,:),dw,wz);
5     Xw1(k,:)= H;
6 end
7 for k=1:size(Xw1,2)
8     [H, w2]=fourier_ciagly(Xw1(:,k),dw,wz);
9     Xw(:,k)= H(:);
10 end
```

Funkcja fourier_ciagly_2D liczy transformatę Fouriera wierszy a następnie kolumn obrazu za pomocą funkcji fourier ciagly dla sygnałów 1D.

Program 13.2

```
1 function [Xw, w]=fourier_ciagly(x,dw,wz);
2 %ciagla transformacja Fouriera sygnałów dyskretnych
3 %dw - krok częstotliwości [rad]
4 %wz=[w1 w2]- zakres częstotliwości [rad]
5 %x - sygnał
6 %Xw - widmo sygnału x
7 %w - pulsacje, dla których wyznaczono widmo Xw
8 %
9 %przykładowe wywołanie
10 %[Xw, w]=fourier_ciagly(x,0.01,[-pi pi]);
11
12 w=wz(1):dw:wz(2);
13 nn=0:1:length(x)-1;
14 for k=1:length(w)
15 Xw(k)=exp(-j*w(k)*nn)*x(:);
```

Zadanie 13.5

- 1. Zaprojektować separowalny filtr dolnoprzepustowy o rozmiarze 11x11 o częstotliwości odcięcia $\pi/4$.
- 2. Narysować odpowiedź impulsową i charakterystykę amplitudową tego filtra funkcją Matlaba surf.
- 3. Przefiltrować tym filtrem obrazy testowe z zadania 13.1 i zadania 13.2.

Zadanie 13.6

- 1. Zaprojektować separowalny filtr górnoprzepustowy o rozmiarze 11x11 o częstotliwości odcięcia $\pi/4$.
- 2. Narysować odpowiedź impulsową i charakterystykę amplitudową tego filtra.
- 3. Przefiltrować tym filtrem obrazy testowe z zadania 13.1 i zadania 13.2.

Zadanie 13.7

- 1. Zaprojektować cylindryczny filtr dolnoprzepustowy o rozmiarze 11x11 o częstotliwości odcięcia $\pi/4$.
- 2. Narysować odpowiedź impulsową i charakterystykę amplitudową tego filtra.
- 3. Przefiltrować tym filtrem obrazy testowe z zadania 13.1 i zadania 13.2.

Zadanie 13.8

- 1. Zaprojektować cylindryczny filtr górnoprzepustowy o rozmiarze 11x11 o częstotliwości odcięcia $\pi/4$.
- 2. Narysować odpowiedź impulsową i charakterystykę amplitudową tego filtra.
- 3. Przefiltrować tym filtrem obrazy testowe z zadania 13.1 i zadania 13.2.

14. DFT i DWT obrazów

Zadanie 14.1

- 1. Napisać funkcję do liczenia DFT sygnałów 2D z wykorzystaniem funkcji Matlaba fft.
- 2. Zamienić ćwiartki płaszczyzny $X[k_1,k_2]$ tak, aby składowa stała X[0,0] była w środku płaszczyzny, w tym celu użyć funkcji Matlaba fftshift.
- 3. Zaobserwować widmo obrazu naturalnego (np. I =imread('cameraman.tif')) o rozmiarze 256x256 w skali liniowej i skali decybelowej.
- 4. Zaobserwować widmo obrazu naturalnego po odjęciu wartości średniej, tj. składowej stałej.
- 5. Zaobserwować widmo obrazu naturalnego z oknem separowalnym (np. Hamminga).
- 6. Zwiększyć gęstość próbkowania osi częstotliwości ω_1 i ω_2 przez uzupełnienie obrazu zerami do rozmiaru 512x512.

Zadanie 14.2

Za pomocą IDFT 2D (funkcja Matlaba ifft2) wyznaczyć odpowiedź impulsową dolnoprzepustowego filtra cylindrycznego o częstotliwości odcięcia $\pi/4$.

Rozwiązanie

Program 14.1

```
1 close all, clear all, clc
2 %% Projektowanie filtra cylindrycznego w dziedzinie DFT
3 N = 256;
             %rozmiar widma 2*N x 2*N
                 %częstotliwość odcięcia [rad]
4 w = pi/4;
5 R = N*w/pi;
6 Hw=zeros(2*N, 2*N);
7 for k1=1:2*N
8
     for k2=1:2*N
9
           promien=sqrt((N-k1+1)^2+(N-k2+1)^2);
10
           if promien<R
11
                 Hw(k1, k2) = 1;
12
           end
13
    end
14 end
15 %Hw=~Hw; %FGP
16 phi1=exp(-j*(1:2*N)*pi); %liniowa faza
17 phi2=exp(-j*(1:2*N)*pi); %liniowa faza
18 Hw=Hw.*(phi1(:)*phi2);
19 hr=ifft2(fftshift(Hw));
20 hr=real(hr);
21 %% sprawdzenie
22 Nh = 8; %rozmiar filtra 2*Nh \times 2*Nh
23 k1 = 64; %rozmiar widma
24 h = hr(N-Nh+1:N+Nh,N-Nh+1:N+Nh);
                                         %fragment odpowiedzi impulsowej
25 h=h.*(hamming(2*Nh)*hamming(2*Nh)'); %okno czasowe
26 hz=zeros(k1,k1); hz(1:2*Nh,1:2*Nh)=h; %zagęszczenie próbkowania osi
częstotliwości
27 Hzw=fft2(hz);
28 Hzw=fftshift(Hzw);
29 w=2*pi*((0:k1-1)-k1/2)/k1;
30 figure
31
     surf(h)
     xlabel('n 1'), ylabel('n 2'), zlabel('h[n 1,n 2]')
32
33
     axis tight, box on
34 figure,
```

```
35    surf(w,w,abs(Hzw)), alpha(0.5)
36    xlabel('\omega_1'), ylabel('\omega_2')
37    zlabel('|X(\omega_1,\omega_2)|')
38    axis tight, box on
```

Zadanie 14.3

Przefiltrować dolnoprzepustowo obraz naturalny w dziedzinie częstotliwości, tzn. policzyć widmo obrazu, wyzerować właściwe współczynniki widma $X[k_1,k_2]$ i wrócić do dziedziny czasu za pomocą funkcji Matlaba ifft2.

Zadanie 14.4

Napisać program do wielopoziomowej, falkowej dekompozycji i rekonstrukcji obrazów. DWT 2D zaimplementować w postaci predykcyjnej z opcją transformacji całkowitoliczbowej.

Rozwiązanie

Program 14.2 wykorzystuje funkcje lwt2d i ilwt2d. Implementacje funkcji lwt_lab i lwt step podane są w rozdziale 11.

```
Program 14.2
```

```
1 close all, clear all, clc
2 Ao = double(imread('cameraman.tif'));
3 Lv=3; %poziom dekompozycji
4 P=2; U=2; int=1;
5 %% Dekompozycja
6 A = double(Ao);
7 AA = A;
8 for k=1:Lv
      [AA, AD, DD, DX, P1, U1]=lwt2d(AA, P, U, int);
     temp=[AA AD; DD DX]; [n1, n2]=size(temp);
     A(1:n1,1:n2) = temp;
12
     figure, imshow (uint8(A));
13 end
14 %% Rekonstrukcja
15 [n1, n2] = size(A);
16 n1=n1/2^Lv;
17 n2=n2/2^Lv;
18 for k=1:Lv
19
   AA = A(1:n1, 1:n2);
20
   AD = A(1:n1, 1+n2:2*n2);
21 DD = A(1+n1:2*n1, 1:n2);
    DX = A(1+n1:2*n1, 1+n2:2*n2);
23
   AR=ilwt2d(AA, AD, DD, DX, P1, U1, int);
24
    A(1:2*n1,1:2*n2) = AR;
25
    n1=2*n1;
2.6
     n2=2*n2;
27 end
28 blad=sum(abs(A(:)-Ao(:)))
Program 14.3
1 function [AA, AD, DD, DX, P1, U1]=lwt2d(B,P,U,int);
2 %Dekompozycja falkowa obrazów
3 % AA | DD
4 % -----
5 % AD | DX
```

```
7 [n1 	 n2]=size(B); k=round(n2/2); w=round(n1/2);
8 A=zeros(n1,k);
9 D=zeros(n1, k);
10 AA=zeros(w,k); AD=AA; DD=AA; DX=AA;
11 for n=1:n1
12
      [A(n,:),D(n,:),P1,U1] = lwt lab(B(n,:),P,U,int);
13 end
14 [n1 \ n2] = size(A);
15 for n=1:n2
16
      [a,d]=lwt lab(A(:,n),P,U,int);
17
      AA(:,n)=a;
18
      AD(:,n)=d;
19 end
20 for n=1:n2
      [a,d]=lwt lab(D(:,n),P,U,int);
22
      DD(:,n)=a;
23
      DX(:,n)=d;
24 end
Program 14.4
1 function B=ilwt2d(AA, AD, DD, DX, P1, U1, int);
2 %Rekonstrukcja falkowa obrazów
3 % AA | DD
4 % -----
5 % AD | DX
7 [n1 n2]=size(AA);
8 A=zeros(2*n1,n2); D=A;
9 B=zeros(2*n1,2*n2);
10 for n=1:n2
11
      a=DD(:,n);
12
      d=DX(:,n);
13
      x=ilwt lab(a(:),d(:),P1,U1,int);
    D(:,n)=x(:);
14
15 end
16 for n=1:n2
17
     a=AA(:,n);
18
     d=AD(:,n);
19
     x=ilwt lab(a(:),d(:),P1,U1,int);
20
     A(:,n)=x(:);
21 end
22 [n1 \ n2] = size(A);
23 for n=1:n1
      B(n,:) = ilwt lab(A(n,:),D(n,:),P1,U1,int);
25 end
Program 14.5
1 function x=ilwt lab(c,d,P,U,int);
2 %odwrotna LWT
3 %P,U predyktor i update z funkcji lwt lab
4 %int=1 transformacja całkowitoliczbowa
6 c=c(:);
7 d=d(:);
8 % odwrócenie uaktualnienia
9 if int==1
10
    ce = c-round(lwt step(d,U)/2);
11 else
12 ce = c-lwt step(d,U)/2;
13 end
```

```
14 % odwrócenie predykcji
15 if int==1
16    co = d+round(lwt_step(ce,P));
17 else
18    co = d+lwt_step(ce,P);
19 end
20 % łączenie
21 N=2*length(c);
22 x = zeros(N,1);
23 x(1:2:N)=ce;
24 x(2:2:N)=co;
```

Zadanie 14.6

Korzystając z algorytmu rekonstrukcji DWT narysować funkcję skalującą oraz falkę horyzontalną, wertykalną i diagonalną.

15. Transformacja Radona

Zadanie 15.1

Za pomocą funkcji Matlaba phantom wygenerować model Sheppa i Logana przekroju głowy o rozmiarze 256 x 256 pikseli. Wyznaczyć transformatę Radona tego modelu funkcją Matlaba radon, a następnie zrekonstruować obraz za pomocą funkcji Matlaba iradon. Zaobserwować błąd rekonstrukcji dla różnych liczb projekcji transformacji Radona dla kąta Θ z przedziału [0, 180).

Zadanie 15.2

Napisać program do detekcji linii w obrazie wykorzystujący transformację Radona.

Rozwiązanie

Program 15.1

```
1 close all, clear all, clc
2 %% Syntetyczny obraz testowy zawierający linie
3 N=128;
4 I=zeros(N,N);
5 I(110,:)=ones(N,1); %linia pozioma
6 a=[0 \ 0.4 \ -0.3 \ 0.1 \ -0.5];
7 b=[120 20 N-10 3 N-2];
8 for k1=1:length(a);
    x=1:N; y=a(k1)*x+b(k1); y=round(y);
10 for k2=1:N;
11
            if y \le N & y > 0
12
                  I(x(k2), y(k2))=1;
13
14
    end
15 end
16 %% Obraz naturalny
17 % I = imread('cameraman.tif');
18 % h = fspecial('prewitt');
19 % h=h.';
20 % I = imfilter(I,h, 'replicate','same');
21 %% Transformata Radona
22 dte=1; theta = 0:dte:180-dte;
23 [R,xp] = radon(I,theta);
24 %% Detekcja linii tj. maksimów transformaty Radona
25 NL=8; %liczba linii
26 x=1:size(I,2); x=x-size(I,2)/2;
27 y=1:size(I,1); y=y-size(I,1)/2;
28 figure(1), hold on
      imagesc(theta,xp,R); colorbar
30
      title(['P {\theta} (t), d\theta=' num2str(dte)]);
      xlabel('\textstyle theta'); ylabel('t'); axis tight
31
32 figure(2); hold on
33
      imagesc(x,y,I), colormap gray
      set(gca, 'YDir', 'reverse')
34
35
     axis tight, box on, axis on
36 for k=1:NL
37
     [val, ind] = max(R(:));
38
      [n1,n2] = ind2sub(size(R),ind);
39
      % wyznaczenie parametrów prostej
40
      if theta(n2) == 0 %prosta równoległa do OY
41
            x line=ones(size(y))*xp(n1);
```

```
y_line=y;
42
43
     elseif theta(n2) == 90 %prosta równoległa do OX
44
           y_line=-ones(size(y))*xp(n1);
45
           x_line=y;
46
     else
47
           a=-tand(theta(n2)+90);
48
           b=xp(n1)/sind(theta(n2));
49
           y_line=a*x-b;
           ind1=find(y_line<min(y) | y_line>max(y));
50
           y_line(ind1)=[]; x_line=x; x_line(ind1)=[];
51
52
     end
53
     figure(1),plot(theta(n2),xp(n1),'ow','MarkerSize',15),
54
     figure(2),plot(x_line,y_line,'g')
55
     R(n1, n2) = 0; %usunięcie aktualnego maksimum
56 end
```