CS201: MATHEMATICS FOR COMPUTER SCIENCE - I NITIN SAXENA

ASSIGNMENT 4

POINTS: 35

DATE GIVEN: 30-SEP-2016 DUE: 07-OCT-2016(6PM)

Rules:

• You are strongly encouraged to work independently.

• Write the solutions on your own and honorably *acknowledge* the sources if any.

http://cse.iitk.ac.in/pages/AntiCheatingPolicy.html

- The "0 point" questions are optional.
- Submit your solutions, before time, to your TAs as per the roll numbers: Amit Sinhababu (12000–150130), Pranav Bisht (150131–150365), Ashish Dwivedi (150366–150600), Pulkit Kariryaa (150601–150840).

Let K_n be the complete graph on $n \in \mathbb{N}_{>1}$ vertices.

Question 1: [2+2+3 points] How many subgraphs does K_n have? When will K_n have an Eulerian circuit? What are the eigenvalues of the adjacency matrix of K_n ?

Let G be a graph, A be its adjacency matrix, and d be its maximum degree.

Question 2: [4+4 points] Show that the maximum eigenvalue of A is at most d.

Show that the minimum eigenvalue of A is at least -d.

Question 3: [5 points] Show that the number of walks of length m between vertex i and vertex j is the (i, j)-th entry of A^m .

Question 4: [4+4 points] Define graph product of G_1 and G_2 as the graph $G_1 \hat{\otimes} G_2$ with vertex set $V_1 \times V_2$ as:

((u,i),(v,j)) is an edge in $G_1 \hat{\otimes} G_2$ if,

 $(u = v \text{ and } (i, j) \in E(G_2)) \text{ or } ((u, v) \in E(G_1) \text{ and } i = j).$

Show that $\chi(G) \leq t$ iff $\alpha(G \hat{\otimes} K_t) = |V(G)|$.

(Note: $\chi(\cdot)$ is the chromatic number and $\alpha(\cdot)$ is the stability number.)

Question 5: [2+5 points] What is the chromatic number of a bipartite graph?

Show that a regular bipartite graph has a *perfect* matching.

Question 6: [0 points] How many non-isomorphic graphs are there of degree 3 with 7 vertices?

Question 7: [0 points] Find all graphs on 4 vertices which are isomorphic to their complement.

Question 8: [0 points] Let $K_{m,n}$ be the complete bipartite graph. When is there a Hamiltonian circuit?

Question 9: [0 points] Show that for a connected planar graph: $|E| \le 3|V| - 6$.

Question 10: [0 points] Extend the ideas of alternating path and Hall's theorem to *qeneral* graphs.

