Homework 9:

This content is protected and may not be shared, uploaded, or distributed

- 1. For $X(t) = W^3(t) 3tW(t)$, find dX(t)
- 2. Simplify $\int_0^t W^3(u)dW(u)$
- 3. For dY(t) = 3Y(t)dt + 2dW(t), determine $d(e^{-3t}Y(t))$.
- 4. If X(t) = 3tW(t) and $Y(t) = 2 + \int_0^t 6u^2 dW(u)$, then determine dX(t)dY(t).
- 5. If $Z(t) = \int_0^t 3uW(u)dW(u) + \int_0^t 6W(u)du$ and $X(t) = e^{Z^2(t)}$, find dX(t).
- 6. Let $Y(t) = 6 + \int_0^t W(u)dW(u) + \int_0^t e^{3u}du$, find $\mathbb{E}[Y(t)]$.
- 7. Simplify $\int_0^p t^2 W(t) dW(t)$