[Claims]

- [Claim 1] A cemented material for a hob comprising a WC-βt-Co based cemented carbide, wherein a content of Co forming a binder phase in the cemented carbide is in a range of 8 to 13 wt%, among components forming the βt phase, a content of other components excluding WC is in a range of 16 to 28 wt%, a content of TiC among the other components excluding WC is in a range of 35 to 60 wt%, a percentage of saturation magnetization in the cemented material is in a range of 78 to 87%, and a coercive force in the cemented material is in a range of 180 to 280 Oe.
- [Claim 2] A hob cemented material according to claim 1, wherein an amount of Cr with respect to the cemented material is in a range of 0.2 to 1.0 wt% and the Cr is dissolved in the Co which forms the binder phase.

[Table I]			~		7 1045					xx.
	Components (wt%)						βt Component		Ms	Hc
	~	****		Excluding WC			(%)	(Oe)		
	Co	WC	TiC	TaC	NbC	Other	Total	Amount		
1						Added	(wt%)	of TiC		
						Substances		(wt%)		
Example 1	8	70	10	12	-	<u>-</u>	22	45	85.0	280
Example 2	10	68	10	. 8	4	-	22	45	82.3	245
Example 3	10	67.6	10	8_	4	Cr 0.4	22	45	86.8	275
Example 4	13	65	10	12	-	-	22	45	84.1	191
Example 5	13	64.4	10	12	-	Cr 0.6	22	45	86.5	182
Example 6	12	64	9	10	5	•	24	37.5	80.5	240
Example 7	12	63.8	9	10	5	m Cr~0.2	24	37.5	79.5	253
Example 8	12	68	11	9	-	-	20	55	78.4	248
Example 9	12	67	11	9	-	Cr 1.0	20	55	78.1	260
Example 10	12	67.5	11	9	•	$\mathrm{Cr}~0.5$	20	55	78.0	261
Example 11	10	74	8	7	-	TiN 1	16	50	83.0	238
Example 12	13	59	12	14	-	TaN 2	28	42.9	83.5	218
Comparative	7	71	10	12	-	-	22	45.5	84.0	289
Example 1										
Comparative	15	63	10	8	4	-	22	45.5	83.5	205
Example 2										
Comparative	10	75	5	10	-	-	15	33.3	85.0	241
Example 3										
Comparative	10	59	14	16	-	TiN 1	31	45.2	79.0	262
Example 4										
Comparative	12	65	11	8	4	-	23	47.8	94.2	220
Example 5				ĺ						
Comparative	12	62	11	8	4	Cr 3.0	23	47.8	87.0	190
Example 6										
Comparative	12	65	11	8	4	-	23	47.8	76.5	260
Example 7										
Comparative	12	68	11	9	-	-	20	55	95.0	160
Example 8										
Comparative	9	68	9	14	-	-	23	39.1	84.8	170
Example 9										
Comparative	8	69	9	14	•	-	23	39.1	78.1	310
Example 10										
Comparative	13	59	7	21	-	-	28	25	84.2	220
Example 11										
Comparative	13	59	18	20	-	-	28	64.3	81.3	235
Example 12										

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-20029 (P2001-20029A)

(43)公開日 平成13年1月23日(2001.1.23)

(51) Int.Cl.⁷
C 2 2 C 29/08
B 2 3 F 21/16

識別記号

F I C 2 2 C 29/08 B 2 3 F 21/16 テーマコート*(参考)

3 C 0 2 5

審査請求 未請求 請求項の数2 OL (全 7 頁)

(21)出願番号 (22)出願日 特爾平11-190473

平成11年7月5日(1999.7.5)

(71)出願人 390002521

ダイジ▲ェ▼ット工業株式会社

大阪府大阪市平野区加美東2丁目1番18号

(72)発明者 標木 功

福岡県久留米市小森野町1232 久留米工業

高等専門学校内

(72)発明者 米倉 特隆

福岡県久留米市小森野町1232 久留米工業

高等専門学校内

(74)代理人 100087572

弁理士 松川 克明

最終頁に続く

(54) 【発明の名称】 ホプ用超硬材料

(57)【要約】

【課題】 超硬合金を用いた超硬ホブにおいて、歯車の加工時に切れ刃にチッピングや熱亀裂が発生するのを抑制し、超硬ホブが大気中において腐蝕されて劣化したり、再研削時における研削液によっては劣化するのを抑制し、長期にわたって安定した歯車加工が行えるようにする。

【解決手段】 WC $-\beta$ t-Co系の超硬合金を使用したホブ用超硬材料において、超便合金中に結合相を構成するCoが8-13重量%の範囲で含有されると共に、 β t相を構成する成分中、WCを除いた他の成分が超硬合金中に16-28重量%の範囲で含有され、このWCを除いた他の成分中にTiCが35-60重量%の範囲で含有され、この超硬合金における飽和磁化%が78-87%、抗磁力が 180-280 Oeの範囲になるようにした。

欠損領域に及ぼす B t 相形成成分量の影響

【特許請求の範囲】

【請求項1】 WC $-\beta$ t-Co系の超硬合金からなるホブ用超硬材料において、上記の超硬合金中に結合相を構成するCoが8-13重量%の範囲で含有されると共に、上記の β t相を構成する成分中、WCを除いた他の成分が超硬合金中に16-28重量%の範囲で含有され、このWCを除いた他の成分中にTiCが35-60重量%の範囲で含有され、上記の超硬合金における飽和磁化%が78-87%、抗磁力が180-2800eの範囲であることを特徴とするホブ用超硬材料。

【請求項2】 請求項1に記載したホブ用超硬材料において、上記の超硬合金に対してCrが $0.2\sim1.0$ 重量%の範囲になるようにして、Crが結合相を構成するCo中に固溶されてなることを特徴とするホブ用超硬材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、歯車を加工するのに使用するホブを製造するのに用いるホブ用材料に係り、特に、耐チッピング性や耐熱亀裂性に優れ、安定した高速切削が行えるホブ用超硬材料に関するものである。

[0002]

【従来の技術】従来、歯車を加工するのにホブが最も多く使用されており、このホブを構成する材料としては、 一般に高速度鋼が主流で用いられていた。

【0003】しかし、このような高速度鋼を用いたホブにより歯車を加工する場合、冷却用の切削オイル等を供給して切削させる湿式切削が行われており、発煙や切削オイルの飛散等によって工場環境が悪くなるという問題があり、またその切削速度が遅くて生産能率が低く、さらに溶着等によって、十分な歯切精度が得られにくいという問題があった。

【0004】このため、従来においても、ホブを構成する材料に超硬合金を用いた超硬ホブについて開発が行われていた。

【0005】ここで、超硬合金を用いた超硬ホブの場合、高速での切削が可能になって生産能率が向上すると共に、乾式での切削が行えて、工場環境等が悪化するのを抑制することができ、また歯切精度も高くなって仕上げ加工等の後加工が容易になり、さらに高硬度材料で構成された歯車の加工も行えるという利点もあった。

【0006】しかし、ホブにおいては切削機構が複雑なため、上記のような超硬ホブを用いて歯車加工を行った場合、この超硬ホブの切れ刃にチッピングや熱亀裂が発生しやすく、長期にわたって安定した歯車加工が行えないという問題があった。

【0007】このため、従来においては、超硬ホブにおける刃先形状やホブ形状を改善したり、ホブ盤を改善して、チッピングや熱亀裂の発生を防止することが検討さ

れているが、十分な効果が得られていないのが現状であ ス

【0008】さらに、このような超硬ホブを大気中に放置した場合に、超硬ホブが次第に腐蝕されて劣化し、またこの超硬ホブを再研削した場合にも、超硬ホブが研削液によっては劣化し、その工具寿命が短くなるという問題もあった。

[0009]

【発明が解決しようとする課題】この発明は、超硬合金を用いた超硬ホブにおける上記のような問題を解決することを課題とするものであり、歯車を加工する時に超硬ホブにおける切れ刃にチッピングや熱亀裂が発生するのを抑制し、また超硬ホブが大気中において酸化されて劣化したり、再研削時における研削液によっては劣化するのを抑制し、長期にわたって安定した歯車加工が行える超硬ホブが得られるようにすることを課題とするものである。

[0010]

【課題を解決するための手段】この発明においては、上記のような課題を解決するため、WC $-\beta$ t-Co ∞ の超硬合金からなるホブ用超硬材料において、上記の超硬合金中に結合相を構成するCo ∞ 8 \sim 13 \upmu 5 \upmu 6 \upmu 6 \upmu 7 \upmu 8 \upmu 8 \upmu 8 \upmu 8 \upmu 9 \upmu 8 \upmu 8 \upmu 9 \upmu 8 \upmu 8 \upmu 9 \upmu 8 \upmu 9 \upmu 9 \upmu 8 \upmu 9 \upmu 9

【0011】ここで、この発明におけるホブ用超硬材料において、超硬合金中に結合相を構成するComboldsign 3 重量%の範囲で含有されるようにした理由は、Comboldsign 2 の範囲とりも少なくなると、超硬ホブにおける切れ刃の耐欠損性が低下して、初期にチッピングが生じやすくなる一方、Comboldsign 2 の一般囲よりも多くなると、得られる超硬合金の硬さが低下して、超硬ホブにおける切れ刃の耐摩耗性が低下し、長期にわたって歯切精度を維持できない。また、切削速度を300mmin 以上にして歯車加工を行う場合には、切屑と超硬合金との親和性が増大して、溶着による欠損が生じやすくなると共に塑性変形しやすくなる。

【 $0\ 0\ 1\ 2$ 】また、この発明における上記の β t 相は、一般に知られているようにWC-TiC-TaC(NbC)の固溶体相を意味し、B 1 型構造の相であり、Ti, T a 等の窒化物が固溶されていてもよい。

【0013】そして、この発明におけるホブ用超硬材料において、上記の β t相を構成する成分中、WCを除いた他の成分が超硬合金中に $16\sim28$ 重量%の範囲で含有されると共に、このWCを除いた他の成分中にTiCが $35\sim60$ 重量%の範囲で含有されるようにした理由は、WCを除いた他の成分の量及びWCを除いた他の成

分中におけるT i C の量が上記の範囲よりも少なくなると、超硬合金中における β t 相の量が少なくなり、超硬合金における耐溶着性が低下して、超硬ホブに切屑の溶着による欠損が生じやすくなるためであり、特に、超硬ホブにおいてはすくい面を再研削しながら使用するため、、すくい面にコーティング膜を設けないことが多く、このため、このような切屑の溶着による欠損が生じやすくなる。一方、WC を除いた他の成分の量及びWC を除いた他の成分中におけるT i C の量が上記の範囲よりも多くなると、超硬合金の靱性が低下し、超硬ホブの刃先に初期欠損が生じやすくなるためである。

【0015】飽和磁化(%) = [Mo / (M1 · a/100)] × 100

【0016】また、この発明におけるホブ用超硬材料において、超硬合金における抗磁力が180~2800 eの範囲になるようにした理由は、抗磁力が上記の範囲より低くなると、超硬合金中に3 μ m以上の粗い粒子のWC相が比較的多く存在する組織になり、超硬ホブの切れ刀に欠損や熱亀裂が発生しやすくなるためであり、特に、超硬ホブにおいては切れ刃にホーニングをしない場合が多いため、超硬合金中におけるWC相の粒子を細粒にして刃立ち性を向上させ、加工する歯車の歯形精度を向上させる必要がある。一方、超硬合金における研究ともである。一方、超硬合金中におけるWC相の粒子が細かくなり過ぎると共に、特に超硬合金中におけるCの量が8~10重量%と少ない場合には、超硬ホブの切れ刃に疲労によるチッピングが生じやすくなる。

【0017】特に、この発明におけるホブ用超硬材料のように、超硬合金における飽和磁化%を78-87%の範囲にすると共に、超硬合金における抗磁力を180~

2800eの範囲にすると、これらの重畳作用によって、超硬ホブの切れ刃に欠損や熱亀裂が発生するのを抑制する効果が著しく向上する。

【0018】そして、上記のような特性を有するホブ用 超硬材料を用いて超硬ホブを作製した場合、歯車を加工 する時に超硬ホブの切れ刃にチッピングや熱亀裂が発生 するのが十分に抑制されると共に、この超硬ホブが大気 中において腐蝕されて劣化したり、再研削時における研削液によっては劣化するのが抑制され、長期にわたって 安定した歯車加工が行えるようになる。

[0020]

【実施例】以下、この発明の条件を満たす実施例のホブ 用超硬材料と、この発明の条件を満たしていない比較例 のホブ用超硬材料とを比較し、この発明の条件を満たす 実施例のホブ用超硬材料が優れている点を明らかにす る。なお、この発明におけるホブ用超硬材料は下記の実 施例に示したものに限定されず、その要旨を変更しない 範囲において適宜変更して実施できるものである。

【0021】(実施例 $1\sim12$ 及び比較例 $1\sim12$)実施例 $1\sim12$ 及び比較例 $1\sim12$ においては、ホプ用超硬材料の原料粉末として、WC粉、(W, Ti)C粉、TaC粉、(Ta, Nb)C粉、TiN粉、TaN粉、Cr粉、Co粉、W粉を用い、これら原料粉末を所定の割合で混合させて所定の形状に成形し、その後、真空又は不活性ガスの雰囲気下において、1400℃で60分間焼結させて、WC, TiC, TaC等の合金組成が下記の表1に示す重量比率になった実施例 $1\sim12$ 及び比較例 $1\sim12$ の各ホプ用超硬材料を得た。

【0022】そして、上記の各ホブ用超硬材料について、それぞれ飽和磁化%(Ms%)及び抗磁力(Hc)を求め、その結果を下記の表1に合わせて示した。

[0023]

【表1】

	合成組成(wt%)							WC を除いた βt成分		Нс
	Co	₩C	ric	TaC	ирс	その他の 添加物	合計 (*1%)	TiC 含有率 (wt%)	Ms (%)	(0e)
実施例 1	8	7 D	10	12	_	_	22	45	85.0	280
実施例 2	10	58	TD	8	4	_	22	45	82.3	245
実施例3	10	67.6	10	8	4	Cr 0.4	22	45	86.8	275
実施例 4	13	85	10	12		_	22	45	84.1	191
実施例 5	13	64.4	10	12		Cr 0.6	22	45	86.5	182
実施例 6	12	64	9	10	5		24	37.5	80.5	240
実施例 7	12	63.8	9	10	5	Cr 0.2	24	37.5	79.5	253
実施例8	12	68	11	9	-	_	20	55	78.4	248
実施例 9	12	67	11	9		Cr 1.0	20	55	78.1	260
実施例 10	12	67.5	11	9	_	Cr 0.5	20	55	78.0	261
実施例 11	10	74	8	7		TiN 1	16	50	83.0	238
実施例 12	13	59	12	14	-	TaN 2	28	42.9	83.5	218
比較例 1	7	71	10	12	-	_	22	45.5	84.0	289
比較例 2	15	63	10	8	4		22	45.5	83.5	205
比較例3	10	75	5	10		-	15	33.3	85.0	241
比較例1	10	59	14	16	_	Tin 1	31	45.2	79.0	262
比較例5	12	65	11	8	4	-	23	47.8	94.2	220
比較例日	12	62	11	8	4	Cr 3.0	23	47.8	87.0	190
比較例 7	12	65	11	8	4	_	23	47.8	76.5	260
比較例 8	12	68	11	9	_		20	55	95.0	160
比較例 9	ø	68	9	14	-	_	23	39.1	84.8	170
比較例 10	8	69	9	14	_	_	23	39.1	78. i	310
比較例11	13	59	7	21	_	_	28	25	84.2	220
比較例(2	13	59	18	20	_	_	28	64.3	81.3	235

【0024】次に、上記の実施例 $1\sim12$ 及び比較例 $1\sim12$ の各ホブ用超硬材料の切削性能等を評価するため、各ホブ用超硬材料を用いて11836-1に相当する各バイトを作製した。

【0025】そして、CNC装置($FANUC \cdot SYSTEM 6M$)付きの横型マシニングセンタ(日立精工社製:MACCMATIC-50HL)を改造し、主軸のヘッドに舞いツールホルダを両持ちで支えるようにオーバーアームを設け、この舞いツールホルダに上記のように製造した初期における各バイトをそれぞれ来いツールの径が80mmになるように取り付けて、耐初期欠損性試験と耐熱亀製性試験と変労による欠損性試験とを行い、これらの結果を下記の表2に示した。

【0026】ここで、耐初期欠損性試験においては、被削材に鍛造したSNCM420(HB155)を用い、送り0.38mm/rev、切り込み0.75mmの条件で乾式のアップカット切削を行うようにし、切削速度を250m/minから徐々に速め、各バイトに初期欠損が発生しなくなる切削速度(m/min)を測定し、その結果を表2に示した。なお、この切削速度が遅ど初期欠損が発生しやすくなるため、この切削速度が遅

いほど耐初期欠損性に優れているといえる。

【0027】また、耐熱亀裂性試験においては、被削材に鍛造したSNCM420(HB155)を用い、送り0.38mm/rev、切り込み0.75mm、切削速度400m/minの条件で乾式のアップカット切削を行い、熱亀裂が発生し始める切削長(m)を測定し、その結果を表2に示した。ここで、比較例1,70ものにおいては、切削速度が400m/minと上記の初期欠損が生じる切削速度より遅いため、直ぐに欠損が生じたため、熱亀裂が発生し始める切削長を測定することができなかった。

【0028】また、疲労による欠損性試験においては、被削材に鍛造したSNCM420(HB155)を用い、送90.9mm/rev、切り込み1.125mm、切削速度450m/min0条件で乾式のアップカット切削を行い、欠損が発生し始める切削長(m)を測定し、その結果を表2に示した。

【0029】また、実施例7,8,10及び比較例2,5,8,9の各ホブ用超硬材料を用いて作製したバイトについては、上記のバイトを15週間放置させた後において、上記の疲労による欠損性試験を行って欠損が発生

٤

し始める切削長(m)を測定し、作製した初期における各バイトにおいて測定された上記の切削長(m)に対する比率を求め、これを経年劣化による工具寿命の低下率(%)として下記の表2に示した。

【0030】次に、上記の実施例 1 、 2 、 4 、 6 、 8 、 $10 \sim 12$ 及び比較例 $1 \sim 5$ 、 7 、 9 、 10 の各ホブ用 超硬材料を使用して、モジュール:1 、 25 、外径:32 mm、歯数:12 、条数:1 になったソリッドホブを作製し、これらのソリッドホブにおける切れ刃のすくい面以外の部分に(Ti 、A1)N コーティングを施した。

【0031】そして、上記の各ソリッドホブを使用し、

被削材 SMn 4 3 5 (HRc 5 4) に対して、それぞれ送り 1.5mm/rev、切り込み 0.25mm、切削速度 80m/min 0.25mm (0.25mm) 削を行い、モジュール: 1.25、圧力角: 20° (歯数: 0.25mm) 8、ねじれ角: 0.25mm (0.25mm) 8、ねじれ角: 0.25mm (0.25mm) 8、ねじれ角: 0.25mm (0.25mm) 8、ねじれ角: 0.25mm (0.25mm) 8 次の個の歯車の加工を行った後において、各ソリッドホブホブの切れ刃に生じた最大チッピング量 (0.25mm) 8 次め、その結果を表 0.25mm (0.25mm) 6 次め、その結果を表 0.25mm (0.25mm) 8 次め、その結果を表 0.25mm (0.25mm) 8 次め、その結果を表 0.25mm (0.25mm) 8 次の

10 【0032】 【表2】

記の各ソリッドホブを使用し、									
	耐初期欠損性試験 性試験 (m/min)	耐熱龜製作 武験 (m)	授労による 欠損性試験 (m)	経年劣化による る E 具寿命の 低下率 (%)	ソリッドホブ による実機 試験 (mn)				
実施例 1	300	15	50	_	0.033				
実施例 2	250	15	65	_	0.010				
実施例 3	250	20	70	_	_				
実施例 4	250	20	75	_	0.012				
実施例 5	280	20	78	_	-				
実施例 6	250	20	70		0.022				
実施例7	280	20	75	7.5					
実施例8	300	20	70	14.3	0.020				
実施例 9	290	22.5	75	_	-				
実施例 10	300	20	75	6.7	0.012				
実施例 11	250	20	63	_	0.031				
実施例 12	300	20	72	_	0.028				
比較例 1	420	_	25	_	0.048				
比較例 2	350	ι 5	40	35.6	0.039				
比較例 3	380	10	35	_	0.048				
比較例 4	400	5	30		0.078				
比較例 5	350	12.5	28	40.8	0.041				
比较例6	380	10	35	_	_				
比較例?	450		22	_	0.105				
比較例8	350	10	40	43.8	_				
比較例 9	400	7.5	35	30.5	0.047				
比較例 10	300	10	40	_	0.051				
比較例 11	380	15	30	_	_				
比較例 12	350	10	30						

【0033】この結果から明らかなように、この発明の条件を満たす実施例 $1\sim12$ のホブ用超硬材料を用いたものは、この発明の条件を満たさない比較例 $1\sim12$ のホブ用超硬材料を用いたものに比べて、切削速度を遅くした場合や長く切削を行った場合における切れ刃の欠損が抑制されると共に熱亀裂の発生が抑制され、さらに長い間使用せずに放置した場合における工具の劣化も少なくなっていた。

【0034】ここで、超硬合金中において、WC除いた β t 成分の割合が 22 wt %になった実施例 2 の材料

と、 $1.5 \times t$ %になった比較例3の材料と、 $3.1 \times t$ %になった比較例4の材料とを用いて作製した各バイトを使用し、上記の耐初期欠損性試験において初期欠損が発生する領域と、耐熱亀裂性試験において熱亀裂が発生する領域とを、切削速度と切削長との関係で求め、その結果を図1に示した。

【0035】この結果、WC除いた β t 成分の割合が 2 2 w t %になった実施例 2 の材料で作製したバイトにおいては、WC除いた β t 成分の割合が 16 \sim 28 w t %の範囲外になった比較例 3 の材料や比較例 4 の材料で作

- 1

製した各バイトに比べて、初期欠損や熱亀裂が発生しない安全領域が著しく拡大した。

【0036】また、超硬合金の抗磁力が2450e, 飽和磁化%(Ms)が82.3%になった実施例2の材料と、抗磁力が2200e, 飽和磁化%(Ms)が94.2%になった比較例5の材料と、抗磁力が1700e, 飽和磁化%(Ms)が84.8%になった比較例9の材料とを用いて作製した各バイトを使用し、上記の耐初期欠損性試験において初期欠損が発生する領域と、耐熱亀裂性試験において熱亀裂が発生する領域とを、切削速度と切削長との関係で求め、その結果を図2に示した。

【0037】この結果、抗磁力が2450e,飽和磁化%(Ms)が82.3%になった実施例2の材料で作製したバイトにおいては、飽和磁化%(Ms)が87%よりも大きい94.2%になった比較例5の材料や、抗磁力が2000eよりも低い1700eになった比較例4の材料で作製した各バイトに比べて、初期欠損や熱亀裂が発生しない安全領域が著しく拡大した。

【0038】また、飽和磁化%(Ms)が82.3%になった実施例2の材料と、飽和磁化%(Ms)が80.5%になった実施例6の材料と、飽和磁化%(Ms)が94.2%になった比較例5の材料とを用いて作製した各バイトを使用し、上記の疲労による欠損性試験において欠損が発生し始める切削長を図3に示した。

【0039】この結果、飽和磁化%(Ms)が80.5%になった実施例6の材料や、飽和磁化%(Ms)が82.3%になった実施例2の材料で作製した各パイトにおいては、飽和磁化%(Ms)が87%よりも大きい94.2%になった比較例5の材料で作製したバイトに比べて、欠損が発生し始める切削長が著しく長くなっており、疲労による欠損が発生しにくくなっていた。

【0040】また、Co中にCrを固溶させていない実施例 8の材料と、Co中にCrを固溶させた実施例 10の材料と、実施例 8の材料と合金組成は同じであるが、飽和磁化%(Ms)が 95%と高く、抗磁力が 1600 e と低くなった比較例 8の材料とを用いて作製した各バイトにおいて、バイトを作製した初期と、15週間放置させた後とにおいて、それぞれ上記の疲労による欠損性試験において欠損が発生し始める切削長を測定して図 4に示した。

【0041】この結果、飽和磁化%(Ms)が95%と高く、かつ抗磁力が1600eと低くなった比較例8の材料で作製したバイトは、実施例8の材料や実施例10の材料で作製した各バイトに比べて、欠損が発生し始める切削長が著しく短くなっており、疲労による欠損が発生しやすくなっており、また15週間放置させた後にお

いては、欠損が発生し始める切削長がバイトを作製した 初期に比べて大きく低下しており、放置による劣化も大 きくなっていた。

【0042】また、Co中にCrを固溶させていない実施例8の材料で作製したバイトと、Co中にCrを固溶させた実施例10の材料で作製したバイトとを比較すると、Co中にCrを固溶させた実施例10の材料で作製したバイトの方が、Co中にCrを固溶させていない実施例8の材料で作製したバイトに比べて、欠損が発生し始める切削長が長くなって、疲労による欠損が発生しにくくなっており、特に、Co中にCrを固溶させた実施例10の材料で作製したバイトにおいては、15週間放置させた後においても、欠損が発生し始める切削長の変化が非常に少なくなっており、放置によって劣化するのが十分に抑制されるようになった。

[0043]

【発明の効果】以上詳述したように、この発明におけるホブ用超硬材料においては、WC- β t-Co系の超硬合金中に、結合相を構成するCoが8~13重量%の範囲で含有されると共に、 β t 相を構成する成分中、WCを除いた他の成分が超硬合金中に16~28重量%の範囲で含有され、このWCを除いた他の成分中にTiCが35~60重量%の範囲で含有され、この超硬合金における飽和磁化%が78~87%、抗磁力が180~28000eの範囲になるようにしたため、このホブ用超硬材料を用いて超硬ホブを作製した場合、歯車を加工する時に超硬ホブの切れ刃にチッピングや熱亀裂が発生するのが十分に防止されると共に、この超硬ホブが大気中において酸化されて劣化したり、再例削時における研削液によっては劣化するのも抑制され、長期にわたって安定した歯車加工が行えるようになった。

【図面の簡単な説明】

【図1】実施例2の材料と、比較例3の材料と、比較例4の材料で作製した各バイトを用いて、欠損領域に及ぼすβt相形成成分量の影響を示した図である。

【図2】実施例2の材料と、比較例5の材料と、比較例9の材料で作製した各バイトを用いて、耐欠損性及び耐熱亀裂性に及ぼすMs%値と抗磁力値の影響を示した図である。

【図3】実施例2の材料と、実施例6の材料と、比較例5の材料で作製した各バイトを用いて、耐疲労チッピング性に及ぼすMs%値の影響を示した図である。

【図4】実施例8の材料と、実施例10の材料と、比較例8の材料で作製した各バイトを用いて、耐疲労チッピング性に対するCr添加の有無と比較材料との差を示した図である。

フロントページの続き

(72) 発明者 阪上 楠彦 大阪市平野区加美東2丁目1番18号 ダイ ジ▲ェ▼ット工業株式会社内 (72)発明者 河野 信一 大阪市平野区加美東2丁目1番18号 ダイジ▲ェ▼ット工業株式会社内
 (72)発明者 山本 勉 大阪市平野区加美東2丁目1番18号 ダイジ▲ェ▼ット工業株式会社内
 Fターム(参考) 3C025 FF03