P159-图5-9中DFA的极小化 (50分)

q1						
q2						
q3	X1	X2	X3			
q4	X4	X5	X6			
q5				X7	X9	
q6				X8	X10	
	q0	q1	q2	q3	q4	q5

去除不可达状态q7 处理{q3,q4}和{q0,q1,q2,q3,q5}的标注

q1						
q2						
q3	X1	X2	X3			
q4	X4	X5	X6			
q5				X7	X9	
q6				X8	X10	
	q0	q1	q2	q3	q4	q5

1.(q0,q1)没有标注; 2. δ (q0,0)=q1 δ (q1,0)=q2 3.此时(q1,q2)还没有标注,所以将(q0,q1)放到(q1,q2)的关联表上 4. δ (q0,1)=q0 δ (q1,1)=q0继续

(q1,q2)->(q0,q1)

q1						
q2	X11					
q3	X1	X2	X3			
q4	X4	X5	X6			
q5				X7	X9	
q6				X8	X10	
	q0	q1	q2	q3	q4	q5

1.(q0,q2)没有标注; 2.δ(q0,0)=q1 δ(q2,0)=q3 3.此时(q1,q3)标注了,所以标记 (q0,q2) 4.由于(q0,q2)没有状态对,算法的

(q1,q2)->(q0,q1)

语句(5)不标记任何项

q1						
q2	X11					
q3	X1	X2	X3			
q4	X4	X5	X6			
q5				X7	X9	
q6				X8	X10	
	q0	q1	q2	q3	q4	q5

1.(q0,q5)没有标注; 2. δ (q0,0)=q1 δ (q5,0)=q2 3.此时(q1,q3)还没有标注,所以将(q0,q5)放到(q1,q2)的关联表上 4. δ (q0,1)=q0 δ (q5,1)=q0继续

(q1,q2)->(q0,q1)->(q0,q5)

q1						
q2	X11					
q3	X1	X2	X3			
q4	X4	X5	X6			
q5				X7	X9	
q6				X8	X10	
	q0	q1	q2	q3	q4	q5

1.(q0,q6)没有标注; 2.δ(q0,0)=q1 δ(q6,0)=q5 3.此时(q1,q5)还没有标注,所以将 (q0,q6)放到(q1,q5)的关联表上 4. δ(q0,1)=q0 δ(q6,1)=q6 继续

$$(q1,q2)->(q0,q1)->(q0,q5)$$

$$(q1,q5)->(q0,q6)$$

q1	X13					
q2	X11	X12				
q3	X1	X2	X3			
q4	X4	X5	X6			
q5	X14			X7	X9	
q6				X8	X10	
	q0	q1	q2	q3	q4	q5

1.(q1,q2)没有标注; 2.δ(q1,0)=q2 δ(q2,0)=q3 3.此时(q2,q3)标注了,所以标注 (q1,q2) 4.依次标记(q1,q2)的状态对(q0,q1) 和(q0,q5)

(q1,q2)->(q0,q1)->(q0,q5)

(q1,q5)->(q0,q6)

q1	X13					
q2	X11	X12				
q3	X1	X2	X3			
q4	X4	X5	X6			
q5	X14			X7	X9	
q6				X8	X10	
	q0	q1	q2	q3	q4	q5

1.(q1,q5)没有标注;

 $2.\delta(q1, 0)=q2 \delta(q5, 0)=q2$ 继续 $3.\delta(q1, 1)=q0 \delta(q5, 1)=q0$ 继续

(q1,q5)->(q0,q6)

q1	X13					
q2	X11	X12				
q3	X1	X2	X3			
q4	X4	X5	X6			
q5	X14			X7	X9	
q6				X8	X10	
	q0	q1	q2	q3	q4	q5

1.(q1,q6)没有标注;

 $2.\delta(q1, 0)=q2\delta(q6, 0)=q5$

3.(q2,q5)没有标注,所以将(q1,q6)

关联到(q2,q5)

4. $\delta(q1, 1)=q0 \delta(q6, 1)=q6$

5.(q0,q6)没有标注,所以将(q1,q6)

关联到(q0,q6)

(q1,q5)->(q0,q6)

(q2,q5)->(q1,q6)

q1	X13					
q2	X11	X12				
q3	X1	X2	X3			
q4	X4	X5	X6			
q5	X14		X15	X7	X9	
q6		X16		X8	X10	
	q0	q1	q2	q3	q4	q 5

1.(q2,q5)没有标注;2.δ(q2,0)=q3 δ(q5,0)=q23.(q2,q3)标注了,所以标注(q2,q5)及其关联状态(q1,q6)

(q1,q5)->(q0,q6)

q1	X13					
q2	X11	X12				
q3	X1	X2	X3			
q4	X4	X5	X6			
q5	X14		X15	X7	X9	
q6		X16	X17	X8	X10	
	q0	q1	q2	q3	q4	q5

1.(q2,q6)没有标注;2.δ(q2,0)=q3 δ(q6,0)=q53.(q3,q5)标注了,所以标注(q2,q6)

(q1,q5)->(q0,q6)

q1	X13					
q2	X11	X12				
q3	X1	X2	X3			
q4	X4	X5	X6	X18		
q5	X14		X15	X7	X9	
q6		X16	X17	X8	X10	
	q0	q1	q2	q3	q4	q5

1.(q3,q4)没有标注;2.δ(q3,0)=q3 δ(q4,0)=q13.(q1,q3)标注了,所以标注(q3,q4)

(q1,q5)->(q0,q6)

q1	X13					
q2	X11	X12				
q3	X1	X2	X3			
q4	X4	X5	X6	X18		
q5	X14		X15	X7	X9	
q6		X16	X17	X8	X10	X19
	q0	q1	q2	q3	q4	q5

1.(q5,q6)没有标注;2.δ(q5,0)=q2 δ(q6,0)=q53.(q2,q5)标注了,所以标注(q5,q6)

(q1,q5)->(q0,q6)

q1	X13					
q2	X11	X12				
q3	X1	X2	X3			
q4	X4	X5	X6	X18		
q5	X14		X15	X7	X9	
q6		X16	X17	X8	X10	X19
	q0	q1	q2	q3	q4	q5

最终剩下(q0,q6)和(q1,q5),所以合并q0,q6为[q0],合并q1,q5为[q1]极小化后的状态转移图为:

12 最小化图5-8的DFA(50分)

	1							()	
q_1	×1							Q_{q_9}	
q_2		×2						19	
q_3		×3							
q_4		×4							
q ₅		×5							
q_6	×9		×10	×11	×12	×13			
q ₇		×6					×14		
q ₈		×7					×15		
q_9		×8					×16		
	q_0	q_1	q_2	q_3	q_4	q ₅	q_6	q ₇	q ₈

图 5-8 DFA M₁

Step1:

标记接受状态{q1,q6}与非接收状态 {q0,q2,q3,q4,q5,q7,q8,q9}状态对为可区分状态对标记顺序可省略。

图 5-8 I	$OFA M_1$
---------	-----------

q_1	×1								
q_2	×17	×2							
q_3	×18	×3							
Q_4	×19	×4							
q ₅		×5	×22	×23	×24				
q_6	×9		×10	×11	×12	×13			
q ₇		×6	×27	×28	×29		×14		
q_8	×20	×7				×25	×15	×30	
q_9	×21	×8				×26	×16	×31	
	q_0	q_1	q_2	q_3	q_4	q ₅	q_6	q ₇	q ₈

Step2:

识别{q0,q2,q3,q4,q5,q7,q8,q9} 中的可区分状态。读0到接受状态和读0后跳转到非接受的状态对。 发现:

$$\delta(q0,0) = q1$$

q1 标记

 $\delta(q2,0) = q3$

{q0,q5,q7}与{q2,q3,q4,q8,q9}

$$\delta(q3,0) = q2$$

$$\delta(q4,0) = q8$$

$$\delta(q5,0) = q1$$

 $\delta(q7,0) = q6$

 $\delta(q8,0) = q9$

 $\delta(q9,0) = q9$

ræi	5-8	DFA	3 /
254	5 - X	I JF A	IVI.

q_1	×1								
q_2	×17	×2							
q_3	×18	×3	×34						
Q_4	×19	×4	×35						
q ₅	×32	×5	×22	×23	×24				
q_6	×9		×10	×11	×12	×13			
q ₇		×6	×27	×28	×29	×33	×14		
q ₈	×20	×7	×36			×25	×15	×30	
q_9	×21	×8	×37			×26	×16	×31	
	q_0	q_1	q_2	q_3	q_4	q ₅	q_6	q ₇	q ₈

分别识别{q0,q5,q7}与{q2,q3,q4,q8,q9} 中的可区分状态对。即读1后分别跳转到接受 状态和非接受状态的状态对。

发现:

 $\delta(q0,1)=q5$ 标记 $\{q0,q7\}$ 与 $\{q5\}$

δ(q7,1)=q8 标记{q2}与{q3,q4,q8,q9}

 $\delta(q2,1) = q6$

 $\delta(q3,1) = q4$

 $\delta(q4,1) = q8$

 $\delta(q8,1) = q4$

 $\delta(q9,1) = q9$

图 5-8 DFA M ₁	图 5-	8 1	DFA	M_1
--------------------------	------	-----	-----	-------

								- /	
q_1	×1								
q_2	×17	×2							
q_3	×18	×3	×34						
q_4	×19	×4	×35						
q ₅	×32	×5	×22	×23	×24				
q_6	×9	×38	×10	×11	×12	×13			
q ₇		×6	×27	×28	×29	×33	×14		
q ₈	×20	×7	×36			×25	×15	×30	
q_9	×21	×8	×37			×26	×16	×31	
	q_0	q_1	q_2	q_3	q_4	q ₅	q_6	q ₇	q ₈

识别{q1,q6}是否可区分状态。

发现:

 $\delta(q1,0) = q5$

 $\delta(q6,0) = q7$

 $\delta(q1,1) = q2$

 $\delta(q6,1) = q2$

(q5, q7) 是已标记的, 因此(q1,q6)可区分

0,1

识别{q3,q4,q8,q9}是否可区分状态。此时1步 转移已经无法区别,必须考虑2步转移。即 读入00、01、10、11后的状态对。

发现:

 $\delta(q3,00) = q3$

 $\delta(q4,00) = q9$

 $\delta(q8,00) = q9$

 $\delta(q9,00) = q9$

此时(q3,q9)尚未识别,可记入可区分状态链表, 也可后期再次判断

 $\delta(q3,01)=q6$

 $\delta(q4,01)=q4$

 $\delta(q8,01)=q9$

 $\delta(q9,01)=q9$

区分{q3}与{q4,q8,q9} 此处由于发现剩余的待区分状态较少,可直接进 入分析阶段。(若进一步分析10,即可区分 q0, q7, 亦可)

现在剩余待判定的状态对已经不多,可分别寻找各状态能勾到达接受态的路径识别{q4,q8,q9}是否可区分状态。发现{q4,q8,q9}读入任何字符串都无法到达接受态。因此{q4,q8,q9}互为不可区分状态。

分析{q0,q7}发现读入10串后,q0可以进入接受态,q7读10串后进入非接受态。 因此标记{q0,q7}

最小化的DFA为:

