Geocoding Truck Stops Documentation

William Co

2025-08-27

This report documents the geocoding of U.S. truck stop data, addressing challenges from inconsistent address formats. Using phone number matching and structured data from Truck Stops and Services, Yelp, Yellow Pages, and iExit, we achieved a 99.19% match rate. A custom interface was developed to support manual verification and ensure data accuracy.

Table of contents

1 Data Cleaning

1.1 Shape and Column Analysis

We begin by checking the structure and columns of the dataset to ensure consistency. The data contains 47,776 rows and 12 columns, including variables such as weight, year, age, education, race, asset_total, asset_housing, debt_total, debt_housing, and wealth. For our analysis, we focus on the variables relevant to wealth and asset calculations, and note that sex and income are not used further.

	Column Name		Type	Description
weight		float64	Survey	weight
year		int64	Survey	year
age		int64	Age of	respondent
sex		object	Sex (no	ot used in an
education		object	Educat	ion level
race		object	Race/e	thnicity
asset_tota	al	float64	Total a	ssets
asset_hou	ısing	float64	Housin	g assets
debt_tota	al	float64	Total d	lebts
debt_hou	sing	float64	Housin	g debts
income		float64	Income	(not used in
wealth		float64	Calcula	ated wealth

1.2 Missing Values Check

A review of the dataset shows that there are no missing values in any column, so no imputation or removal of rows is necessary.

1.3 Data Types and Ranges

Below are the observed data types and value ranges:

	Variable	Type	Min	Max
	variable	туре	101111	wiax
weight	float64	0.20		3
year	int64	1989		2
age	int64	17		9
sex	object	2 uniq	ue	
education	object	3 uniq	ue	
race	object	4 uniq	ue	
$asset_total$	float64	-22,487	7,306.62	2 2
$asset_housing$	float64	0.00		1
$debt_total$	float64	0.00		2
debt_housing	float64	0.00		4
income	float64	0.00		3
wealth	float64	-221,98	85,489.2	24 2

1.4 Negative Values Check and Cleaning

We identify that asset_total contains 7 negative values, which is about 0.01% of the data. Since assets cannot logically be negative, we set all negative values in asset_total to zero. This adjustment ensures that all asset values are non-negative, as required by financial logic. After this cleaning step, asset_total has a minimum value of zero, and no negative values remain.

weight 0 0.0 asset_total 7 (before) 0.0 asset_total 0 (after) 0.0 asset_housing 0 0.0 debt_total 0 0.0 debt_housing 0 0.0	
asset_total 7 (before) 0.0 asset_total 0 (after) 0.0 asset_housing 0 0.0 debt_total 0 0.0 debt_housing 0 0.0	ative Values % of Total
asset_total 0 (after) 0.0 asset_housing 0 0.0 debt_total 0 0.0 debt_housing 0 0.0	0.00%
asset_housing 0 debt_total 0 debt_housing 0	(before) 0.01%
debt_total 0 0.0 debt_housing 0 0.0	(after) 0.00%
debt_housing 0 0.0	0.00%
= 0	0.00%
income 0 0.0	0.00%
	0.00%

A table of the rows with negative asset_total values (before cleaning) is available in the appendix or supplementary materials.

A summary table of asset_total after cleaning:

Statistic	asset_total
Min	0
Max	2,928,346,179.67
Negative Values	0

1.5 Outlier Detection

We also check for outliers using the interquartile range (IQR) method. While some variables have a notable number of outliers, these are retained for analysis unless they are logically impossible (such as negative assets, which have already been addressed).

Variable	Outliers (N)	% of Total	Lower Bound	Upper Bound
weight	330	0.7%	-4,095	12,858
$asset_total$	8,281	17.3%	-2,215,818	3,831,215
asset_housing	5,405	11.3%	-651,383	1,085,639
$debt_total$	5,091	10.7%	-236,639	394,398
debt_housing	5,033	10.5%	-167,927	279,879
income	$7,\!542$	15.8%	-179,464	385,518

1.6 Categorical Distribution

Count	%
37,044	77.5%
5,186	10.9%
3,553	7.4%
1,993	4.2%
	37,044 5,186 3,553

Education	Count	%
college degree	19,444	40.7%
no college	17,820	37.3%
some college	$10,\!512$	22.0%

5	Sex	Count	%
male fema		37,212 10,564	

1.7 Year Distribution