35 A cell with internal resistance is connected to a variable resistor R as shown.

The resistance of R is gradually decreased.

How do the current I and the terminal potential difference (p.d.) across the cell change?

	current I	terminal p.d. across cell
Α	decreases	decreases
В	decreases	increases
С	increases	decreases
D	increases	increases

36 The diagram shows a circuit with a cell and three resistors with resistances R_1 , R_2 and R_3 .

The cell has negligible internal resistance.

The total resistance of the circuit is R_T .

Which equation for R_T is correct?

A
$$R_T = R_1 + R_2 + R_3$$

B
$$R_{\rm T} = \frac{1}{R_1 + R_2} + \frac{1}{R_3}$$

$$\mathbf{C} \quad \frac{1}{R_{\rm T}} = \frac{1}{R_1 + R_2 + R_3}$$

$$\mathbf{D} \quad \frac{1}{R_{\rm T}} = \frac{1}{R_1 + R_2} + \frac{1}{R_3}$$