Part I: Summary of Confidence Intervals:

(I) CI for the Population Mean μ :

Case 1: Large sample ($n \ge 30$):

CI: $(\overline{x} - E, \overline{x} + E)$

 $E = z_c \frac{s}{\sqrt{n}}$

 $z_c = NORM.S.INV\left(\frac{1+c}{2}\right)$

Determining the ample size: $n = \left(\frac{z_c s}{E}\right)^2$

Case 2: Small sample, Population is normal, σ is given: Same as case 1.

Case 3: Small sample, Population is normal, σ is unknown:

CI: $(\overline{x} - E, \overline{x} + E)$ $E = t_c \frac{s}{\sqrt{n}}$

DF = n - 1;

 $t_c = T.INV\left(\frac{1+c}{2},DF\right)$

(II) CI for the Population Proportion *p*:

First ensure that $n \ \widehat{p} \ge 10$ and $n \ \widehat{q} \ge 10$; where : $\ \widehat{p} = \frac{x}{n}$ is the sample proportion and $\hat{q} = 1 - \hat{p}$.

Next,

CI: $(\widehat{p} - E, \widehat{p} + E)$

 $E = z_c \sqrt{\frac{\widehat{p}\,\widehat{q}}{n}}$

 $z_c = NORM. S. INV\left(\frac{1+c}{2}\right).$

Determining the sample size: $n = \hat{p} \hat{q} \left(\frac{z_c}{E}\right)^2$.

CI for the Population Standard Deviation σ : (III)

CI Lower Limit for
$$\sigma$$
:
$$\sqrt{\frac{(n-1) s^2}{\chi_R^2}}$$
CI Upper Limit for σ :
$$\sqrt{\frac{(n-1) s^2}{\chi_L^2}}$$

$$\chi_R^2 := CHISQ.INV\left(\frac{1+c}{2}, DF\right)$$

$$\chi_L^2 := CHISQ.INV\left(\frac{1-c}{2}, DF\right)$$

$$DF = n - 1;$$

Part II Hypothesis Testing Summary:

(I) Hypothesis testing for a population mean μ : (large sample: $n \ge 30$)

	Right Tailed Problem	Left-Tailed Problem	Two Tailed Problem:
Hypotheses	Null: $H_a: \mu \leq \mu_a$	Null: $H_a: \mu \geq \mu_a$	Null: $H_a: \mu = \mu_a$
	Alternative: $H_a: \mu > \mu_o$	Alternative: H_a : $\mu < \mu_o$	Alternative: $H_a: \mu \neq \mu_o$
Test Statistic z	$z = \frac{\left(\overline{x} - \mu_o\right)\sqrt{n}}{s}$ $P\left(Z \ge z\right)$	$z = \frac{\left(\overline{x} - \mu_o\right)\sqrt{n}}{s}$ $P\left(Z \le z\right)$	$z = \frac{\left(\overline{x} - \mu_o\right)\sqrt{n}}{s}$
P-Value:	$P(Z \ge z)$	$P(Z \le z)$	$\begin{cases} 2P(Z \ge z) & \text{if } z \text{ is positive} \\ 2P(Z \le z) & \text{if } z \text{ is negative} \end{cases}$
	Excel:	Excel:	$\begin{cases} 2P(Z \le z) \text{ if } z \text{ is negative} \end{cases}$
	= 1 - norm.s.dist(z, 1)	= $norm.s.dist(z, 1)$	Excel:
			$\sqrt{2*}(1-\text{norm.s.dist}(z,1)) \text{ if } z \geq 0$
Critical	Z_c with an area of $lpha$ on	Z_c with an area of α on	(2*norm.s.dist(z,1) if $z < 0Critical 1:$
Value(s)	its right	its left	Z _c with an area of $\alpha/2$ on its left
	Excel:	Excel:	$\frac{Excel:}{= \text{norm.s.inv}(\alpha/2)}$
	$=$ norm.s.inv $(1 - \alpha)$	$=$ norm.s.inv(α)	
			Critical 2:
			Z_c with an area of $\alpha/2$ on its right
			Excel:
			= norm.s.inv $(1 - \alpha/2)$
Decision	Reject Ho if $z \ge Z_c$	Reject Ho if z≤Zc	$\begin{cases} \text{if } z < 0, \text{ reject Ho if } z \le \text{Critical 1} \end{cases}$
(Using the			\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\
Critical			
values):			
Decision	Reject H ₀ if Pvalue ≤α	Reject H ₀ if Pvalue ≤α	Reject H _o if Pvalue ≤α
(Using the			
P-values):			

(II) Hypothesis testing for a population mean μ : (small sample, population is Normal, σ is unknown)

	Right Tailed Problem	Left-Tailed Problem	Two Tailed Problem:
Hypotheses	Null: $H_a: \mu \leq \mu_o$	Null: $H_a: \mu \geq \mu_o$	Null: $H_a: \mu = \mu_o$
	Alternative: $H_a: \mu > \mu_o$	Alternative: H_a : $\mu < \mu_o$	Alternative: $H_a: \mu \neq \mu_o$
Test Statistic t	$t = \frac{\left(\overline{x} - \mu_o\right)\sqrt{n}}{s}$ $P\left(T \ge t\right)$	$t = \frac{\left(\overline{x} - \mu_{o}\right)\sqrt{n}}{s}$ $P\left(T \le t\right)$	$t = \frac{\left(\overline{x} - \mu_o\right)\sqrt{n}}{s}$
P-Value:	$P(T \ge t)$	$P(T \le t)$	$P(T \ge t)$ if t is positive
	Excel:	Excel:	$\begin{cases} 2P(T \ge t) & \text{if } t \text{ is positive} \\ 2P(T \le t) & \text{if } t \text{ is negative} \end{cases}$
	= 1 - T.DIST(t, df, 1)	= T.DIST(t, df, 1)	Excel:
	df = n- 1		$ \frac{2 * (1 - T.DIST(t, df, 1)) \text{ if } t \ge 0}{2 * T.DIST(t, df, 1) \text{ if } t < 0} $
<u>Critical</u>	T_c with an area of $lpha$ on	T_c with an area of α on	Critical 1:
<u>Value(s)</u>	its right	its left	T_c with an area of $\alpha/2$ on its left
	$\frac{Excel:}{= \text{T.INV}(1 - \alpha, df)}$	$\frac{Excel}{= T.INV(\alpha, df)}$	$\frac{Excel:}{= T.INV(\alpha/2, df)}$
			Critical 2:
			T_c with an area of $\alpha/2$ on its right
			$\frac{Excel:}{= \text{T.INV}(1 - \alpha/2, df)}$
Decision	Reject Ho if t≥Tc	Reject Ho if $z \leq T_c$	(if $t < 0$, reject Ho if $t \le C$ ritical 1
(Using the			(If $t > 0$, reject Ho if $t \ge $ Critical 2
Critical			
values):			
Decision	Reject H _o if Pvalue ≤α	Reject $H_{_{o}}$ if Pvalue $\leq \alpha$	Reject $H_{_{o}}$ if Pvalue $\leq \alpha$
(Using the			
P-values):			

(III) Hypothesis testing for a population Proportion p:

	Right Tailed Problem	Left-Tailed Problem	Two Tailed Problem:
Hypotheses	Null: $H_a: p \leq p_o$	Null: $H_a: p \ge p_o$	Null: $H_a: p=p_o$
	Alternative: $H_a: p > p_o$	Alternative: H_a : $p < p_o$	Alternative: $H_a: p \neq p_o$
Test	^ 42 42	^ 42 42	^
Statistic z	$z = \frac{p - p_o}{}$	$z = \frac{p - p_o}{\Gamma}$	$z = \frac{p - p_o}{\Gamma}$
	$z = \frac{p - p_o}{\sqrt{\frac{p_o q_o}{n}}}$	$z = \frac{p - p_o}{\sqrt{\frac{p_o q_o}{n}}}$	$z = \frac{p - p_o}{\sqrt{\frac{p_o q_o}{n}}}$
P-Value:	$P(Z \ge z)$	$P(Z \le z)$	$\begin{cases} 2P(Z \ge z) & \text{if } z \text{ is positive} \\ 2P(Z \le z) & \text{if } z \text{ is negative} \end{cases}$
	Excel:	Excel:	
	= 1 - norm.s.dist(z, 1)	= $norm.s.dist(z, 1)$	Excel:
			$\boxed{ \left\{ 2 * (1 - \text{norm. s. dist}(z, 1)) \text{ if } z \geq 0 \right. }$
0.141 1			$\begin{array}{ccc} (& 2 * norm. s. dist(z, 1) & \text{if } z < 0 \end{array}$
<u>Critical</u>	Z_c with an area of α on	Z_c with an area of α on	Critical 1:
<u>Value(s)</u>	its right	its left	Z_c with an area of $\alpha/2$ on its left
	Excel:	Excel:	Excel:
	= norm.s.inv $(1 - \alpha)$	= norm.s.inv(α)	= norm.s.inv($\alpha/2$)
	1101111011111(1 0)	- 1101111.5.111v(<i>u</i>)	Critical 2:
			Z_c with an area of $\alpha/2$ on its right
			Excel:
D	D ' (II 'C > 7	D ' (II 'C 47	= norm.s.inv(1 - $\alpha/2$) (if $z < 0$, reject Ho if $z \le C$ ritical 1
Decision	Reject Ho if $z \ge Z_c$	Reject Ho if $z \leq Z_c$	$\begin{cases} \text{If } z > 0, \text{ reject Ho if } z \leq \text{Critical I} \\ \text{If } z > 0, \text{ reject Ho if } z \geq \text{Critical 2} \end{cases}$
(Using the			
Critical			
values):			
Decision	Reject H _o if Pvalue ≤α	Reject $H_{_{o}}$ if Pvalue $\leq \alpha$	Reject $H_{_{o}}$ if Pvalue $\leq \alpha$
(Using the			
P-values):			

(IV) Hypothesis testing for a population Standard Deviation σ :

	Right Tailed Problem	Left-Tailed Problem	Two Tailed Problem:
Hypotheses	Null: $H_a: \sigma \leq \sigma_o$	Null: $H_a: \sigma \geq \sigma_o$	Null: $H_a: \sigma = \sigma_o$
	Alternative: $H_a: \sigma > \sigma_o$	Alternative: $H_a: \sigma < \sigma_o$	Alternative: $H_a: \sigma \neq \sigma_o$
Test Statistic χ^2	$\chi^2 = \frac{\left(n-1\right)s^2}{\sigma_o^2}$	$\chi^2 = \frac{\left(n-1\right)s^2}{\sigma_o^2}$	$\chi^2 = \frac{\left(n-1\right)s^2}{\sigma_o^2}$
P-Value:	$P(X^{2} \ge \chi^{2})$ <u>Excel</u> : = 1 - chisq.dist(χ^{2} , df, 1) $df = n - 1$	$P(X^{2} \le \chi^{2})$ <u>Excel</u> : = chisq.dist(χ^{2} , df, 1)	The smaller of $2 P(X^2 \ge \chi^2)$ or $2 P(X^2 \le \chi^2)$ Excel: The smaller of $= 2^* (1 - \text{chisq.dist}(\chi^2, \text{df}, 1))$ Or $= 2^* \text{chisq.dist}(\chi^2, \text{df}, 1)$
Critical Value(s)	χc^2 with an area of α on its right Excel: = chisq.inv(1 - α , df)	χc^2 with an area of α on its left Excel: = chisq.inv(α , df)	Critical 1: χc^2 with an area of $\alpha/2$ on its left Excel: = chisq.inv($\alpha/2$, df) Critical 2: χc^2 with an area of $\alpha/2$ on its right Excel: = chisq.inv(1 - $\alpha/2$, df)
Decision (Using the Critical values):	Reject Ho if $\chi^2 \ge \chi_{c^2}$	Reject Ho if $\chi^2 \leq \chi_{c^2}$	Reject Ho if either $\chi^2 \le Critical 1$, or if $\chi^2 \ge Critical 2$
Decision (Using the P-values):	Reject H _o if Pvalue ≤α	Reject H_o if Pvalue $\leq \alpha$	Reject $H_{_{o}}$ if Pvalue $\leq \alpha$

Part III: Summary of Continuous Probability Formulas in Excel

- 1. The Normal Distribution:
- (i) Standard Normal Distribution Z

$$Pig(Z \le zig) := NORM.S.DISTig(z,1ig)$$
 $z := NORM.S.INVig(Pig(Z \le zig)ig)$
 $Pig(Z \le zig)$ represents the area on the left of z

(ii) Non-Standard Normal Distribution X

$$P(X \le x): = NORM.DIST(x, \mu, \sigma, 1)$$

$$x: = NORM.INV(P(X \le x), \mu, \sigma)$$

$$P(X \le x)$$
 represents the area on the left of x

2. The T Distribution T (DF = n - 1)

$$P(T \le t)$$
: = $T.DIST(t, df)$

$$t: = T.INV(P(T \le t), df)$$

$$P(T \le t)$$
 represents the area on the left of t

3. The Chi-squared Distribution X^2 (DF = n - 1)

$$P(X^{2} \le \chi^{2}): = CHISQ.DIST(\chi^{2}, df, 1)$$

 $\chi^{2}: = CHISQ.INV(P(X^{2} \le \chi^{2}), df)$

$$P(X^2 \le \chi^2)$$
 represents the area on the left of χ^2