L. Dorlöchter¹

K. D. Wutzke¹

M. Radke1

D. Hobusch¹

P. Leitzmann¹

U. Fischer²

The [13C]methacetin breath test: An alternative for monitoring valproic acid therapy in epilepsy during childhood?

[13C]Methacetin Atemtest

Introduction

Valproic acid is a widely used antiepileptic drug which causes liver damage in up to 30% of patients undergoing treatment with this potent pharmacological agent. To detect early alteration of liver function during therapy with valproic acid, a valid and non-invasive method would be of great clinical interest.

Aim

The aim of this study was to prove the use of the [13C]methacetin breath test as a predictive method of detecting early liver dysfunction caused by valproic acid.

Materials and methods

In 4 patients with general epilepsy (age: 3.5 to 16 years, weight: 16.4 to 64.5 kg) valproic acid was therapeutically

introduced. Prior to and 6 weeks after introduction of valproic acid therapy the [\frac{13}{C}]methacetin breath test was performed. An oral single-pulse-labeling of 4 mg/kg [\frac{13}{C}]methacetin was administered. Thereafter, breath samples were collected every 15 minutes over a two-hour period, then every 30 minutes over a 6-hour period. Marked \frac{13}{C}O_2 was measured by IRMS (Tracer mass 20 - 20, Europe Scientific, Crewe, U.K.).

Results

Prior to valproic acid therapy ¹³CO₂ reached a maximum level of 31.0 DOB after 1.25 hours. The mean percentage of cumulative ¹³CO₂ -exhalation was 31.4% after 8 hours. Six weeks after introduction of valproic acid therapy the maximum level of ¹³CO₂ reached 19.9 DOB after 1.25 hours. The mean percentage of cumulative ¹³CO₂ exhalation reached 29.3% after 8 hours. This was, however, not statistically significant compared to the data measured 6 weeks earlier.

Discussion

The metabolising mechanism of [¹³C]methacetin to ¹³CO₂ is probably influenced by valproic acid which causes a liver alteration. One would assume to find a reduced ¹³CO₂ exhalation as a result of a reduction of liver metabolising capacity.

Conclusion

At present, we cannot definitely state whether the presented data are reliable enough to detect early liver alteration induced by valproic acid.

University of Rostock

D-18057 Rostock

Germany

² Institute of Pharmacology and Toxicology

University of Rostock

D-18057 Rostock

Germany

L. Dorlöchter¹ · K. D. Wutzke¹ · M. Radke¹ D. Hobusch¹ · P. Leitzmann¹ · U. Fischer²

¹ Children's Hospital