ØVING 2

KJ1041: KJEMISK BINDING, SPEKTROSKOPI OG KINETIKK

HERMITSKE OPERATORER

- 1) Skriv opp kravet som må tilfredstilles for at en operator $\hat{\Omega}$ kan kalles Hermitsk. Formuler kravet med både integral- og braket-notasjon.
- 2) Vis at \hat{x} og \hat{p}_x er Hermitske operatorer. Du kan anta at funksjonene du bruker i definisjonen av Hermitisitet går til null når $x \to \pm \infty$.
- 3) Vi er ofte interessert i egenverdilikningen til en Hermitsk operator:

$$\hat{\Omega}\psi_n = \omega_n \psi_n, \quad n = 1, 2, 3, \dots \tag{1}$$

- a) Hvilke størrelser kalles egenverdien og egenfunksjonen i likningen? Hvilke verdier av Ω er det mulig å måle i et eksperiment?
- b) Gitt en vilkårlig bølgefunksjon ψ (en superposisjon av egenfunksjonene ψ_n), hvordan kan vi uttrykke sannsynligheten for at resultatet blir ω_k i en måling av Ω ?
- c) Vis at egenverdiene til $\hat{\Omega}$ er reelle. (Hint: ta utgangspunkt i $\omega_n = \langle \psi_n | \hat{\Omega} \psi_n \rangle$ og vis at $\omega^* = \omega$.)
- d) Usikkerheten $\Delta\Omega$ i en observabel Ω er definert som

$$\Delta\Omega = \sqrt{\langle (\hat{\Omega} - \langle \Omega \rangle)^2 \rangle}.$$
 (2)

Vis at usikkerheten i Ω er null dersom bølgefunksjonen er en egenfunksjon av $\hat{\Omega}$.

e) Forklar resultatet i d) med den generaliserte Born-foltolkningen.

KOMMUTATORER OG USIKKERHETSPRINSIPPET

- 4) Hva er definisjonen på kommutatoren $[\hat{\Omega}_1, \hat{\Omega}_2]$ mellom $\hat{\Omega}_1$ og $\hat{\Omega}_2$?
- 5) Vis at $[\hat{x}, \hat{p}_x] = i \hbar$ ved å la kommutatoren virke på en vilkårlig funksjon $\varphi(x)$.
- 6) Utled $\Delta x \Delta p \ge \frac{1}{2} \hbar$ fra det generelle uttrykket for Heisenbergs usikkerhetsprinsipp,

$$\Delta\Omega_1 \Delta\Omega_2 \ge \frac{1}{2} |\langle [\hat{\Omega}_1, \hat{\Omega}_2] \rangle| \tag{3}$$

7) Skriv opp Hamilton-operatoren \hat{H} for en partikkel i en en-dimensjonal boks $(0 \le x \le L)$ og vis at

$$\psi_n(x) = C \sin\left(\frac{n\pi x}{L}\right), \quad n = 1, 2, 3, \dots$$
 (4)

tilfredstiller den tidsuavhengige Schrödinger-likning for \hat{H} . Det vil si, vis at $\psi_n(x)$ er en egenfunksjon av \hat{H} . Basert på resultatet, hva er egenverdiene til \hat{H} ? Og hva er nullpunktsenergien til systemet?

8) Normaliser $\psi_n(x)$ (finn C).

2 ØVING 2

- 9) For grunntilstanden $\psi_1(x)$, beregn Δx og Δp , og sjekk at Δx og Δp er i samsvar med Heisenbergs usikkerhetsprinsipp $(\Delta x \Delta p \ge \frac{1}{2}\hbar)$. Du kan bruke at $\langle \hat{x} \rangle = L/2$ og $\langle \hat{p}_x \rangle = 0$.
- 10) Hva mener vi når vi sier at to operatorer kommuterer? La oss anta at vi har to kommuterende operatorer, \hat{A} og \hat{B} . Vis at dersom

$$\hat{A} \psi_n = \alpha_n \psi_n, \quad n = 1, 2, 3, \dots$$
 (5)

så er $\varphi_n = \hat{B} \psi_n$ også en egenfunksjon av \hat{A} for alle n. Dersom egenverdiene er forskjellige $(a_1 \neq a_2 \neq \ldots)$, kan man vise at egenfunksjonene er unike opp til en konstant. Med andre ord er $\varphi_1 = b_1 \psi_1$, $\varphi_2 = b_2 \psi_2$, ... for et sett konstanter b_1, b_2, \ldots Vis at \hat{A} og \hat{B} har identiske egenfunksjoner. Kan observablene A og B kan ha veldefinerte verdier på samme tid?

Følgende integral kan være nyttig:

$$\int_0^{\pi} \sin^2 x (ax+b)^2 dx = \frac{\pi}{12} \Big((2\pi^2 - 3)a^2 + 6\pi ab + 6b^2 \Big)$$
 (6)