$$\sum_{k=0}^{N_{0}} \frac{\partial k}{\partial z} \sum_{k=1}^{N_{0}} \frac{\partial k}{\partial z}$$

QUESTION

A three digit number is formed by using the digit 1,2,3 without repeating any of them. What is the sum of all such possible three digit number?

123+132+213+231+312+321=1332

Short Cut:-

Basic sum X Visibility in the column X Sum of place value

$$(1+2+3) \times (2) \times (100+10+1) = 1332$$

Visibility in the column = N!/ Number of digit

GATE-2014

Q:- A five digit number is formed using the digits 1,3,5,7 and 9 without repeating any of them what is the sum of all such possible five digit numbers?

- (a) 6666660
- (b) 6666600
- (c) 6666666
- (d) 6666606

Basic sum X Visibility in the column X Sum of place value

$$(1+3+5+7+9) \times 5!/5 \times (10000+1000+100+100+10+1) = 9999900$$

QUESTION

A new flag is to be design having 5 vertical strips selected colour (R,G,B,Y,P) how many such flag are there in which no two adjacent strip will have the same colour.

5 4 4 4 4

5 X 4 X 4 X 4 X 4 = 1280

PSU

10 identical balls distributed among 3 friends. How many ways can be distribution done? (whole number solution)

A	В	С	=10
	0	10	
	1	9	
	2	8	
	3	7	
	4	6	
0	5	5	
	6	4	
	7	3	
	8	2	
	9	1	
	10	0	

CONT....

A	В	С	10
	0	9	
	1	8	
	2	7	
	3	6	
1	4	5	
	5	4	
	6	3	
	7	2	
	8	1	
	9	0	

CONT.....

Α	В	С	10
9	0	1	
	1	0	
10	0	0	

n identical object are to distributed among r people can be done in

$$^{n+r-1}$$
 C $_{r-1}$ $^{10+3-1}$ C $_{3-1}$ = 66

NOTE:-

- 1- Identical object.
- 2- Whole number solution.

NATURAL NUMBER SOLUTION

$$A + B + C = 10$$

$$A+B+C=7$$

$$^{7+3-1}C_{3-1} = {}^{9}C_{2} = 9x8/2 = 36$$

CAT

Q:- 15 identical ball are to be distributed among 4 friends (A,B,C,D) in how many way distribution is made if A to get at least 3 balls, B at least 2 balls and C at least 1 ball?

$$A + B + C + D = 15$$

A + B + C + D = 9

$$^{9+4-1}$$
 C $_{4-1}$ = 12 C $_3$ = 220

PSU, ONGC, NTPC, GMAT

How many different shortest route from A to B?

```
Formula = (H + D)!/H! X D!
= (6 + 4)!/6! X 4!
= 10!/6! X 4!
```

How Many Paths?

10!/6! X 4! = 210

QUESTION

Q:- 12 points how many straight line?

$$^{12}C_2 = 12 \times 11/2 \times 1 = 66$$

QUESTION

Q:- 12 points how many straight line, in this question 5 points collinear?

- (a) 56
- (b) 66
- (c) 21
- (d) 57

$$^{12}C_2 - (^5C_2) + 1 = 57$$

QUESTION

Q:- 12 points how many triangle?

 ${}^{12}C_3 = 12 \times 11 \times 10 / 3 \times 2 \times 1 = 220$

QUESTION

- Q:- 12 points how many triangle, in this question 5 points are collinear?
- (a) 220
- (b) 210
- (c) 200
- (d) NOT

$$^{12}C_3 - (^5C_3) = 220 - 10 = 210$$

UPSC

Q:- Line L parallel to line M, L has 10 points M has 11 points. How many triangle form?

$$^{21}C_3 - ^{10}C_3 - ^{11}C_3 = 1045$$
10 Points

11 Points

$${}^{10}C_2 X {}^{11}C_1 + {}^{11}C_2 X {}^{10}C_1 = 1045$$

COGNIZANT

10 points lie in a plane out of which 4 points are collinear. Barring this 4 points no 3 points are collinear. How many distinct quadrilateral can be drawn from these points.

Out of 10 points 4 are collinear so remaining non-collinear points are 6

No. of quadrilateral:-

- 4 points from 6 non-collinear points
- 3 points from non-collinear and 1 from collinear points
- 2 from collinear and 2 from non-collinear points

$$= {}^{6}C_{4} + {}^{6}C_{3} * {}^{4}C_{1} + {}^{6}C_{2} * {}^{4}C_{2}$$
$$= 15 + 80 + 90$$

= 185

CONCEPT

Number of diagonal of any n – sides polygon

$$=n(n-3)/2$$

PROOF

 ${}^{n}C_{2}$ = All sides + All diagonal All diagonal = ${}^{n}C_{2}$ - n = n (n-1)/2 - n = n (n-3)/2

CAT

- Q:- If number of diagonal of n sides polygon is 50% more than its number of side. Then the polygon is ?
- (a)Pentagon
- (b)Hexagon
- (c)Heptagon
- (d)Triangle

CIRCULAR PERMUTATION

LINEAR PERMUTATION:-

A,B,C = N!

 $3 \times 2 \times 1 = 6$

3 2 1

<u> Circular Gardening:-</u>

To plant N different
Flowers
(N-1)!/2
In Gardening Clockwise
and Anticlockwise is
considered same

CIRCULAR PERMUTATION:-

A,B,C = (N-1)!

$$(3-1)! = 2! = 2$$

IB 2006

In how many ways 5 cricketer and 4 basket ball players can be seated around a table if.

- There is no restriction.
- II. All the 4 basket ball player sit together.
- III. None of the basket ball player sit together.

I.
$$(N-1)! = (9-1)! = 8!$$

II.5! X 4!

III.8! - (5! X 4!)

WIPRO

A gardener want to plant 6 different types of Flowers in his garden in a circle. In how many different ways can he plant these Flowers.

The order of planting flowers is important as the flowers are of different types.

As the order is important we use **Permutation**

The number of permutation of P object arranged in circle is (P-1)!/2

Hence 6 plant in(6-1)!/2 i.e. **60 ways.**

- Q:- A couple invite there 10 friends to a dinner party to be held a cross a circular dinning table having 12 chair, in how many way can be get sheeted if there has to be exactly 1 friend in between the couple?
- (a) 10 X 9!
- (b) 10!
- (c) 2 X 10!
- (d) NOT

 $HF_1W + 9F$

(10-1)! X 10 X 2 = 10! X 2 (Ans.)

CHESS BOARD

1Q:- How many Rectangle?

9 H, 9 V line

$${}^{9}C_{2} \times {}^{9}C_{2} = 36 \times 36 =$$
1296

Alternate method

$$=\frac{N^2(N+1)^2}{4}$$

Were N is boxes

Q:- How many square?

Size	Vertical positions	Horizontal positions	Total Positions
1*1	8	8	64
2*2	7	7	49
3*3	6	6	36
4 * 4	5	5	25
5*5	4	4	16
6*6	3	3	9
7*7	2	2	4
8*8	1	1	1
•		Total	204

Q:- How many different type of rectangle?


```
Different type of rectangle=
1X1,1X2,1X3,1X4,1X5,1X6,1X7,1X8 = 8
2X2,2X3,2X4,2X5,2X6,2X7,2X8 = 7
3X3,3X4,3X5,3X6,3X7,3X8 = 6
8X8 = 1
8+7+6+5+4+....+1 = n(n+1)/2
                   = (8 \times 9)/2 = 36
```

