Parallel Particle Swarm Optimization on Inverse kinematics

第六組 林宗佑 10967222 劉禮榮 10967241

Introduction to Inverse Kinematics

Introduction to Particle Swarm Optimization

Related Work

Paralle Particle Swarm Optimization

Experiment

Demo

Introduction to Inverse Kinematic

Introduction to Particle Swarm Optimization

Related Work

Paralle Particle Swarm Optimization

Experiment

Demo

Conclusion and Future work

Introduction to Inverse Kinematics

Neutrino's Blog: 電腦動畫中的反向動力法 (Inverse Kinematics)

> 常見的方法包含 Cyclic Coordinate Descent 方法、Jacobian Pseudoinverse 方法、Jacobian Transpose 方法、Levenberg-Marquardt Damped Least Squares 方法、Quasi-Newton and Conjugate Gradient 方法、神經網路方法

https://www.mathworks.com/discovery/inverse-kinematics.html

Introduction to Inverse Kinematic

Introduction to Particle Swarm Optimization

Related Work

Paralle Particle Swarm Optimization

Experiment

Demo

Conclusion and Future work

Introduction to Particle Swarm Optimization

$$V_{ij}^{t+1} = wV_{ij}^t + c_1r_1^t \left(pbest_{ij} - X_{ij}^t\right) + c_2r_2^t \left(gbest_j - X_{ij}^t\right)$$

$$X_{ij}^{t+1} = X_{ij}^t + V_{ij}^{t+1}$$

https://de.mathworks.com/matlabcentral/fileexchange/43541-particle-swarm-optimization-pso

- 1. Initialization
 - 1.1. For each particle i in a swarm population size P:
 - 1.1.1. Initialize X_i randomly
 - 1.1.2. Initialize V_i randomly
 - 1.1.3. Evaluete the fitness $f(X_i)$
 - 1.1.4. Initialize $pbest_i$ with a copy of X_i
 - 1.2. Initialize gbest with a copy of X_i with the best fitness
- 2. Repeat until a stopping criterion is satisfied:
 - 2.1. For each particle i:
 - 2.1.1. Update V_i^t and X_i^t according to Eqs. (1) and (2)
 - 2.1.2. Evaluete the fitness $f(X_i^t)$
 - 2.1.3. $pbest_i X_i^t$ if $f(pbest_i) < f(X_i^t)$
 - 2.1.4. $gbest \blacktriangleleft X_i^t$ if $f(gbest) < f(X_i^t)$

Particle Swarm Optimization: A Powerful Technique for Solving Engineering Problems by Bruno Seixas Gomes de Almeida and Victor Coppo Leite

Introduction on Inverse Kinematic

Introduction on Particle Swarm Optimization

Related Work

Paralle Particle Swarm Optimization

Experiment

Demo

Conclusion and Future work

Related Work

Parallel global optimization with the particle swarm algorithm, by J. F. Schutte, J. A. Reinbolt.

Int J Numer Methods Eng. 2004 December 7

Particle swarm optimization within the CUDA architecture, by Luca Mussi, Stefano Cagn

,Conference: Genetic and Evolutionary Computation Conference - GECCO 2009

Parallel asynchronous particle swarm optimization, by Byung-II Koh, Alan D. George. Int J

Numer Methods Eng. 2006 July 23

1. Initialization

- 1.1. For each particle i in a swarm population size
 - 1.1.1. Initialize X_i randomly
 - 1.1.2. Initialize V_i randomly
 - 1.1.3. Evaluete the fitness $f(X_i)$
 - 1.1.4. Initialize $pbest_i$ with a copy of X_i
- 1.2. Initialize gbest with a copy of X_i with the be

Related Work

Master processor

- Initializes all optimization parameters and particle positions and velocities;
- Holds a queue of particles for slave processors to evaluate;
- 3. Updates particle positions and velocities based on currently available information p^i , p^g ;
- 4. Sends the position x^i of the next particle in the queue to an available slave processor;
- 5. Receives cost function values from slave processors;
- **6.** Checks convergence.
- Slave processor
 - Receives a particle position from the master processor;
 - **8.** Evaluates the analysis function $f(x^i)$ at the given particle position x^i ;
 - **9.** Sends a cost function value to the master processor.

Related Work

Rastrigin's function

positions / velocities / best positions

fitnesses / best fitnesses

global best positions

Figure 3: CUDAPSO vs sequentialPSO: Speedup

Introduction on Inverse Kinematic

Introduction on Particle Swarm Optimization

Related Work

Paralle Particle Swarm Optimization

- OpenMP
- CUDA

Experiment

Demo

Problem Definition

- 1. Introduce MTGP32 random number generator
- 2. Reduce memory copy between host to device
- 3. Reduction when evaluating pBestFit

random number generator is needed when:

- 1. particle is out of bound
- 2. generating R1 R2

Generating 32768 * 128 * 256 random floats between 1000000 and 0 costs:

5.65640s for GPU with 128 * 256 threads

57.94887s for CPU

Reduce memory copy between host to device

			-						
	Type	Time(%)	Time	Calls	Avg	Min	Max	Name	
GPU activ	/ities:	97.63%	549.72ms	10000	54.972us	44.575us	104.93us	<pre>deviceSearch(double*,</pre>	dou
e*, double*, double*, double*, double*,				int*,	int*, cura	ndStateMtg	p32*)		
		2.37%	13.345ms	20038	665ns	543ns	126.14us	[CUDA memcpy HtoD]	
		0.00%	4.5130us	6	752ns	672ns	928ns	[CUDA memcpy DtoH]	
		0.00%	832ns	1	832ns	832ns	832ns	[CUDA memset]	
API	calls:	70.77%	567.56ms	10000	56.756us	2.0550us	510.99us	cudaDeviceSynchronize	
		16.23%	130.14ms	17	7.6553ms	1.2310us	130.00ms	cudaMalloc	
		9.16%	73.466ms	20017	3.6700us	2.2340us	947.63us	cudaMemcpyToSymbol	
		3.69%	29.599ms	10000	2.9590us	2.6690us	256.10us	cudaLaunchKernel	
		0.07%	557.79us	27	20.659us	4.9910us	35.661us	cudaMemcpy	
		0.03%	253.08us	1	253.08us	253.08us	253.08us	cuDeviceTotalMem	
		0.02%	182.71us	17	10.747us	1.3650us	95.969us	cudaFree	

CUDA MEMCPY HtoD Only costs 2.37%

CUDA MEMCPY DtoH Only costs 0.00%

1. Reduction when evaluating pBestFit

Paralle Particle Swarm Optimization : OpenMP

work sharing:

#pragma omp parallel for

- 1. Initialization
 - 1.1. For each particle i in a swarm population size P:
 - 1.1.1. Initialize X_i randomly
 - 1.1.2. Initialize V_i randomly
 - 1.1.3. Evaluete the fitness $f(X_i)$
 - 1.1.4. Initialize $pbest_i$ with a copy of X_i
 - 1.2. Initialize gbest with a copy of X_i with the best fitness
- 2. Repeat until a stopping criterion is satisfied:
 - 2.1. For each particle i:
 - 2.1.1. Update V_i^t and X_i^t according to Eqs. (1) and (2)
 - 2.1.2. Evaluete the fitness $f(X_i^t)$
 - 2.1.3. $pbest_i \blacktriangleleft X_i^t$ if $f(pbest_i) < f(X_i^t)$
 - 2.1.4. $gbest \leftarrow X_i^t$ if $f(gbest) < f(X_i^t)$

Introduction on Inverse Kinematic

Introduction on Particle Swarm Optimization

Related Work

Paralle Particle Swarm Optimization

Experiment

Demo

Conclusion and Future work

Experiment--Platform

Device name | lin-Genuine-ZEUS-15H-GNB15H-9RG60

Memory 15.4 GiB

Processor Intel® Core™i7-9750H CPU @ 2.60GHz × 12

Graphics NVIDIA GeForce RTX 2060/PCIe/SSE2

GNOME 3.28.2 OS type 64-bit Disk 202.5 GB Parallel platform:

OpenMp

Cuda

C++

Demo platform:

Qt

Experiment--CUDA evaluation

10, 100, 10000 iteration: log2(NumParticle) to fitness

Experiment--CUDA evaluation

10000 iteration: log2(NumParticle) to time

16384NumParticles: iteration to time

Experiment--CUDA vs Serialize

16384NumParticles: log10(Iterations) to time

10000iteration: log2(NumParticles) to time

OpenMP

Context Switch - number of threads

4 Threads

OpenMP

4 Threads

OpenMP

Speedup-number of Particles

Introduction on Inverse Kinematic

Introduction on Particle Swarm Optimization

Related Work

Paralle Particle Swarm Optimization

Experiment

Demo

Conclusion and Future work

Demo--serialize 3000iter 15 times slow

gBest is at: a1:0.453, a2:0.489, a3:0.357,d2: 4.791

arm position:(6.0000, 3.000)

time elapsed: 3.53499s

fitness: 0.505182

Demo--openMP 3000iter 15 times slow

gBest is at: a1:0.894, a2:-0.599, a3:0.599,d2: 4.960

arm position:(6.0000, 3.000)

time elapsed: 0.6425s

fitness: 0.505182

6.99745X

Demo--openMP 10000iter 15 times slow

gBest is at: a1:0378, a2:-0.001, a3:0.624,d2: 4.871

arm position:(6.0000, 3.000)

time elapsed: 4.409s

fitness: 0.519673

Demo--cuda 3000 iter 15 times slow

gBest is at: a1:0.234, a2:0.119, a3:1.037,d2: 5.163

arm position:(6.0000, 3.000)

time elapsed: 0.332s

fitness: 0.505182

10.6468X

Demo--cuda and openMP 3000iter normal speed

Introduction on Inverse Kinematic

Introduction on Particle Swarm Optimization

Related Work

Paralle Particle Swarm Optimization

Experiment

Demo

Conclusion and Future work

Conclusion and Future work

Conclusion:

openMP and CUDA can significantly speedup PSO when solving Inverse Kinematics

CUDA done better when the problem size increases;

It is much more easier to parallelize PSO by openMP

Future work:

Real time tracing Inverse Kinematics

Introduction on Inverse Kinematic

Introduction on Particle Swarm Optimization

Related Work

Paralle Particle Swarm Optimization

Experiment

Demo

Conclusion and Future work

Reference

J. F. Schutte, J. A. Reinbolt., Parallel global optimization with the particle swarm algorithm, Int J Numer Methods Eng. 2004 December 7

Luca Mussi, Stefano Cagn , Particle swarm optimization within the CUDA architecture, , Conference: Genetic and Evolutionary Computation Conference - GECCO 2009

Byung-II Koh , Alan D. George , Parallel asynchronous particle swarm optimization,.Int J Numer Methods Eng. 2006 July 23

Bruno Seixas Gomes de Almeida and Victor Coppo Leite (2019),

Particle Swarm Optimization: A Powerful Technique for Solving Engineering Problems. IntechOpen. PySwarms (2021), Lj Miranda, https://github.com/ljvmiranda921/pyswarms.

Thank you for your attention