II Campo Eléctrico_parte I

Definição de campo eléctrico Linhas do campo eléctrico

Campo eléctrico de carga puntiforne e princípio de superposição Dipolo eléctrico e seu campo eléctrico. O dipolo em um campo eléctrico

Campo eléctrico criado por distribuição linear de cargas (anel ou fio carregados)

Campo eléctrico criado por distribuição superficial de cargas (disco carregado)

Definição do campo eléctrico

 O campo eléctrico é uma grandeza vectorial que caracteriza o efeito da carga(s) eléctrica(s) sobre o meio onde ela(s) está(ão) inserida(s);

Portanto, o campo eléctrico define a grandeza que descreve o efeito da carga eléctrica Q sobre a sua vizinhança:

$$\vec{E} = k \frac{Q}{r^2} \vec{u}_r$$

O valor do campo eléctrico ($k\frac{|Q|}{r^2}$) depende do valor da carga, como da localização do ponto em que ele é medido .

Podemos definir \vec{E} no ponto P como a força electrostática por unidade de carga (carga de teste, suficientemente pequena para não modificar a distribuição de cargas que criam o campo no dado ponto):

$$\vec{E} = \frac{\vec{F}}{q_0}$$

O campo eléctrico é independente da carga de teste q_0 usada para medir a força de interacção.

Linhas do campo eléctrico

As linhas das cargas positivas afastam-se (onde começam)

Linhas de campo (linhas de forças) são usadas para visualizar a direcção e a intensidade do campo eléctrico:

As linhas das cargas negativas aproxima-se(onde terminam)

A direcção de \vec{E} aponta para carga, enquanto que para a carga positiva aponta para fora.

 A terra apresenta uma carga líquida que produz um campo eléctrico orientado para o centro da Terra.
 Em pontos próximos à superfície o campo é da ordem de 150 N/C.

Relação entre linhas do campo e o vector \vec{E} :

- ➤ Magnitude do campo eléctrico: quanto mais densas forem as linhas, mais intenso o campo é nessa região.
- ightharpoonup Direcção: a direcção da linha rectilínea ou da tangente da linha não rectilínea coincide com a direcção de \vec{E} .

Propriedades das linhas de campo:

- ✓ As linhas nunca se cruzam (se ocorrer, é nos pontos em que \vec{E} é zero);
- ✓ Elas são ortogonais à superfícies equipotenciais (veremos na parte 2)

Linhas de campo e vector \vec{E} para (a) 2 cargas de mesmo sinal e (b) 2 cargas de sinais contrários e igual valor (dipolo eléctrico).

Campo eléctrico de carga puntiforme e princípio de sobreposição

 O campo criado por única carga puntiforme Q é dado por

$$\vec{E} = k \frac{Q}{r^2} \vec{u}_r.$$

Quando em volta do ponto P existem várias cargas, cada uma cria independentemenete da outra, um campo eléctrico. O campo resultante determina-se pela soma gométrica dos campos singulares criados por cada carga:

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \dots + \vec{E}_N$$

Exemplo: três partículas de cargas $q_1 = +2Q$; $q_2 = -2Q$ e q_3 = -4Q, estão situadas a uma distância d da origem, tal como mostra a figura ao lado. Determine o campo eléctrico produzido na origem pelas partículas.

Três cargas equidistantes da oriem

Analisando o problema pode-se concluir que os campos \vec{E}_1 e \vec{E}_2 têm a mesma direcção e sentido, pelo que os 2 campos podem ser repesentados por um único vector.

(a)

Consequentemente, a resultante de 3 vectores pode ser reduzida em resultante de 2 vectores

(b)

Método geométrico:

$$E = \sqrt{E_{1-2}^2 + E_3^2 + 2E_{1-2}E_3\cos 2\alpha} =$$

$$E = \sqrt{(2E_1)^2 + E_3^2 + 4E_1E_3\cos 2\alpha} = 2E_3\cos \alpha$$
; $\alpha = 30^\circ$

$$E_1 = k \frac{|q_1|}{r_1^2} = 9 \times 10^9 \frac{2Q}{d^2}$$
; $E_2 = 9 \times 10^9 \frac{2Q}{d^2}$; $E_3 = 9 \times 10^9 \frac{4Q}{d^2} \& E_{1-2} = 2E_1$

Método analítico com os 3 vectores:

$$\begin{cases} E_{x} = E_{1}\cos\alpha + E_{2}\cos\alpha + E_{3}\cos\alpha = 2E_{1}\cos\alpha + E_{3}\cos\alpha \\ E_{y} = E_{3}\sin\alpha - E_{1}\sin\alpha - E_{2}\sin\alpha = E_{3}\sin\alpha - 2E_{1}\sin\alpha \end{cases}$$

$$E_x = (2E_1 + E_3)\cos\alpha & E_y = (E_3 - 2E_1)\sin\alpha = 0$$

$$E = \sqrt{E_x^2 + E_y^2} = E_x = 2E_3\cos\alpha = 72 \times 10^9 \frac{Q}{d^2} \times \frac{\sqrt{3}}{2} = \frac{N}{C}$$

$$E = 36\sqrt{3} \times 10^9 \frac{Q}{d^2}$$

Dipolo eléctrico

Um dipolo eléctrico é um par de cargas puntiformes com mesmo módulo, porém de sinais contrários (+q e - q), separadas por uma distância d.

O conceito de dipolo eléctrico é extremamente importante pois muitos sistemas físicos como moléculas e antenas de TV podem ser descritos como dipolos eléctricos.

Define-se de momento dipolar eléctrico \vec{p} de um dipolo eléctrico como um vector que aponta da carga negativa para a positiva. A molécula de H₂O comporta-se como um dipolo eléctrico.

Qual é a força resultante e torque exercidos sobre um dipolo quando este está colocado num campo eléctrico?

Dipolo eléctrico num campo eléctrico uniforme

As 2 extremidades sofrem forças F = qE em módulo, mas de sentidos opostos.

Sendo \vec{E} uniforme, a força resultante é nula e o CM está em repouso.

Entretanto, em relação ao CM, o dipolo sofre um torque . O torque relativo a qualquer ponto ao longo da recta que une as cargas é τ , tal que:

$$\tau = qEx\sin\theta + qE(d-x)\sin\theta = qEd\sin\theta$$

Usando o conceito de momento dipolar \vec{p} ($\vec{p}=q\vec{d}$), podemos expressar o torque resultante como

$$\tau = pE \sin \theta$$

Ou

$$\vec{\tau} = \vec{p} \times \vec{E}$$

O toque aplicado ao dipolo tende a girar \vec{p} na direcção de \vec{E} , diminuindo o valor de θ . Para rotação horária podemos $\tau = -pE \sin \theta$.

 Qual é o campo eléctrico criado pelo próprio dipolo?

Pela facilidade de resolução usando o conceito de potencial eléctrico, deixemos a resposta para a parte 2 do tema.

Contudo, quando o ponto de interesse situa-se ao longo da mediatriz, perpendicularmente a linha que une as cargas, a solução é muito simples:

$$\vec{E} = \vec{E}_{+} + \vec{E}_{-}$$

$$E_{+} = E_{-} = k \frac{q}{r^{2}}$$

Umas vez que as componentes Y anulam-se, então teremos:

$$E \equiv 2E_x = 2k\frac{q}{r^2}\cos\theta$$

Usando $\cos \theta = \frac{d}{2r}$, teremos

$$E = 2k\frac{q}{r^2}\frac{d}{2r} = k\frac{p}{r^3}$$

Campo eléctrico criado por distribuição linear de cargas

Anel carregado: Calcule o campo eléctrico criado por um anel uniformemente carregado com carga Q, ao longo do seu eixo axial.

$$d\vec{E} = dE_x \vec{\imath} + dE_y \vec{\jmath}$$

$$\vec{E} = \int dE_x \vec{\imath} + \int dE_y \vec{\jmath}; \quad \int dy = 0 \text{ (pela simetria)}.$$

$$Logo, E = \int dE_x = \int dE \cos \alpha$$

$$dE = \frac{kdq}{r^2} = k \frac{\lambda dl}{x^2 + a^2}; \qquad a = R$$

 $E = k\lambda \int \frac{dl}{r^2 + R^2} \cos \alpha$. O denominador independe de l. Logo,

$$E = \frac{k\lambda}{x^2 + R^2} \int_{0}^{2\pi R} dl \frac{x}{(x^2 + R^2)^{1/2}} = \frac{k\lambda x}{(x^2 + R^2)^{3/2}} \cdot 2\pi R = \frac{kQx}{(x^2 + R^2)^{3/2}}$$

Disco carregado: Determine o campo eléctrico criado por um disco carregado de raio R, ao longo do seu eixo de simetria.

(Truque!): O disco pode ser considerado como conjunto de um número considerável de aneis concêntricos e nós conhecemos o campo criado por um anel.

Disco é conjunto de aneis concêtricos

Seja σ a densidade superficial de carga do disco de carga total Q.

A carga elementar de cada anel é $dQ = \sigma dS = \sigma 2\pi r dr$.

Escolhamos um anel de largura dr e raio r e avaliemos o campo elementar criado no ponto P.

Vimos que o campo eléctrico criado por anel ao longo do eixo x é:

$$\frac{kQx}{(x^2+R^2)^{3/2}}$$

Logo, o campo eléctrico criado por qualquer anel do disco ao longo do eixo z é:

$$dE = \frac{kdQz}{(z^2 + r^2)^{3/2}}$$

Consequentemente, o campo eléctrico total do disco (criado por todos os aneis) é:

$$E = \int_0^R \frac{kdQz}{(z^2 + r^2)^{3/2}} =$$

$$E = k \int_{0}^{R} \frac{\sigma 2\pi r dr}{(r^2 + z^2)^{3/2}} z = k\sigma\pi z \int_{0}^{R} \frac{d(r^2 + z^2)}{(r^2 + z^2)^{3/2}} =$$

$$E = k\sigma\pi z \cdot \left\{ -\frac{1\times 2}{\sqrt{r^2 + z^2}} \right\} = 2k\sigma\pi z \cdot \left\{ -\frac{1}{\sqrt{R^2 + z^2}} + \frac{1}{z} \right\}$$

$$E = \frac{2\sigma\pi z}{4\pi\varepsilon_0} \cdot \left\{ \frac{1}{z} - \frac{1}{\sqrt{R^2 + z^2}} \right\} = \frac{\sigma z}{2\varepsilon_0} \cdot \left\{ \frac{1}{z} - \frac{1}{\sqrt{R^2 + z^2}} \right\}$$

Ou

$$E = \frac{\sigma}{2\varepsilon_0} \cdot \left\{ 1 - \frac{z}{\sqrt{R^2 + z^2}} \right\}$$

Para um disco de raio infinito e z finito temos:

$$E = \frac{\sigma}{2\varepsilon_0}$$

O resultado obtido seria o mesmo se z fosse zero e R finito. Isto significa que para pontos muito próximos do disco, o campo eléctrico produzido pelo disco ao longo do eixo de simetria, é igual ao que seria produzido por um disco de raio infinito.

Conclusão: O campo eléctrico criado por um plano condutor infinito tem:

- ✓ direcção perpendicular ao plano (± z);
- ✓ Magnitude igual a $\frac{\sigma}{2\varepsilon_0}$.