Notes on MAT137 Video Playlist 3

Tianyu Du

Monday 8th July, 2019

Info.

Created: September, 2017

Last modified: Monday 8th July, 2019 Revision: 14:26 Monday 8th July, 2019

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 3.0 Unported" license.

Contents

- 1 Video Playlist 1
- 2 Video Playlist 2
- 3 Video Playlist 3
- 3.1 Define Derivate As Slope

Definition Let $a \in \mathbb{R}$, and f(x) is defined on $(a - \delta, a + \delta)$, then the **derivative** of f(x) at a is,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Definition If function is **differentiable** at point x = a, if and only if, there exists,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Interpretation f'(a) is the slope of tangent line a x = a.

3.2 Calculate f'(x) by definition

Example $f(x) = 4x - x^2$, find f'(1):

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{4(h+1) - (h+1)^2 - 3}{h}$$
$$= \lim_{h \to 0} \frac{4h + 4 - 3 - h^2 - 2h - 1}{h} = \lim_{h \to 0} \frac{-h^2 + 2h}{h}$$
$$= \lim_{h \to 0} -h + 2 = 2$$

3.3 Rate of Change

Definition Define derivative as rate of change. Let x = f(t), then f'(x) can be represented as,

$$\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = f'(t) = \frac{dx}{dt}$$

3.4 The Product Rule (Formal Version)

Let $a \in \mathbb{R}$, f and g are functions defined at $(a - \delta, a + \delta)$, let h(x) = f(x)g(x). Then, if f(x), g(x) are differentiable at a, we have,

$$h'(a) = f'(a)g(a) + f(a)g'(a)$$

3.5 Differentiable \implies Continuous

Recall f(x) is differentiable at a:

$$\exists \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \tag{1}$$

Recall f(x) is **continuous** at a:

$$\lim_{x \to a} f(x) = f(a) \tag{2}$$

Proof.

Since f(x) is differentiable at a

$$(1) \iff \exists \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
And
$$\lim_{x \to a} (x - a) = 0$$

$$\implies \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} x - a = 0$$

$$\implies \lim_{x \to a} \frac{f(x) - f(a)}{x - a} x - a = 0$$

$$\implies \lim_{x \to a} f(x) - f(a) = 0$$

$$\implies \lim_{x \to a} f(x) = f(a)$$

2

3.6 Proof of product rule for derivative.

(fg)' = f'g + fg', see above for a formal definition.

$$h'(a) = \lim_{x \to a} \frac{h(x) - h(a)}{x - a}$$

$$= \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a}$$

$$= \lim_{x \to a} \frac{f(x)g(x) + f(a)g(x) - f(a)g(x) - f(a)g(a)}{x - a}$$

$$= \lim_{x \to a} \frac{g(x)(f(x) - f(a)) + f(a)(g(x) - g(a))}{x - a}$$

$$= \lim_{x \to a} g(x) \frac{f(x) - f(a)}{x - a} + \lim_{x \to a} f(a) \frac{g(x) - g(a)}{x - a}$$

$$= g(a) \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + f(a) \lim_{x \to a} \frac{g(x)g(a)}{x - a}$$

$$= g(a)f'(a) + f(a)g'(a)$$

3.7 Partial proof of differentiation rule

WTS
$$\frac{d}{dx}x^c = cx^{c-1}, \forall c \in \mathbb{R}$$

Here we only prove statements is true $\forall c \in \mathbb{Z}^+$

Proof.

Base:
$$\mathbf{c} = \mathbf{1}$$

$$f(x) = x$$

$$f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$= \lim_{x \to a} 1 = 1$$

Induction step

Assume
$$\frac{d}{dx}[x^k] = kx^{k-1}|_{x=a}$$
For $f(x) = x^{k+1}$

$$f'(x) = \frac{d}{dx}[x * x^k]$$

$$= x^k + xkx^{k-1}$$

$$= (k+1)x^k$$

3.8 Higher Order Derivatives: Notations

Original function: f(x)

• Lagrange notation: $f^{(n)}$

• **Leibnitz** notation: $\frac{d^n f}{dx^n}$

3.9 Continuous But Not differentiable

Definition Function f(x) is **non-differentiable** at a.

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \mathbf{DNE}$$

Example 1 Corner/Kink f(x) = |x| at 0.

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{|x|}{x} = -1$$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{|x|}{x} = 1$$

$$\lim_{x \to 0^{-}} \neq \lim_{x \to 0^{+}}$$

$$\implies \lim_{x \to 0} \frac{f(x) - f(0)}{x} \text{ DNE}$$

Example 2 Vertical Tangent Line $g(x) = x^{\frac{1}{3}}$ at 0.

$$g'(0) = \lim_{x \to 0} \frac{x^{\frac{1}{3}}}{x} = \lim_{x \to 0} \frac{1}{x^{\frac{2}{3}}} = \infty(\mathbf{DNE})$$

Caution Difference between vertical asymptote and vertical tangent line

- Vertical asymptote: $f(a) = \infty$ (f(a) is not defined)
- Vertical tangent line: f(a) is defined, f'(a) is undefined.

3.10 Chain Rule

Derivation

$$(g \circ f)'(a) = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{x - a}$$
$$= \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \frac{f(x) - f(a)}{x - a}$$

Attention: we could only apply the operation above if $f(x) \neq f(a)$ during the process of $x \to a$. This holds for majority of functions we operate in calculus.

$$= \lim_{f(x)\to f(a)} \frac{g(f(x)) - g(f(a))}{x - a} f'(a)$$
$$= g'(f(a)) \cdot f'(a)$$

Formal Theorem of Chain Rule Let $a \in \mathbb{R}$, let f and g be functions. If f is differentiable at a and g is differentiable at f(a), then, $(g \circ f)$ is differentiable at a,

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$

3.11 Derivatives of Trig Functions

Basic 6 results

1.
$$\frac{d}{dx}sin(x) = cos(x)$$

2.
$$\frac{d}{dx}cos(x) = -sin(x)$$

3.
$$\frac{d}{dx}tan(x) = sec^2(x)$$

4.
$$\frac{d}{dx}cot(x) = -csc^2(x)$$

5.
$$\frac{d}{dx}sec(x) = sec(x)tan(x)$$

6.
$$\frac{d}{dx}csc(x) = -csc(x)cot(x)$$

Proof. Prove (i) and (ii) and use (i), (ii) and quotient rule to derive (iii), (iv), (v) and (vi).

Proof. (i) WTS f(x) = sin(x), then f'(x) = cos(x)

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(x)}{h}$$

$$= \lim_{h \to 0} \cos(x) \frac{\sin(h)}{h}$$

$$= \cos(x)$$

(3)

Proof. (ii) WTS f(x) = cos(x), then f'(x) = -sin(x)

$$f'(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(h)\sin(x) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{(\cos(h) - 1)\cos(x) - \sin(h)\sin(x)}{h}$$

$$= \lim_{h \to 0} -\frac{\sin(h)}{h}\sin(x)$$

$$= -\sin(x)$$

(4)

Recall Compound angle formula:

1.
$$sin(\alpha + \beta) = sin(\alpha)cos(\beta) + sin(\beta)cos(\alpha)$$

2.
$$sin(\alpha - \beta) = sin(\alpha)cos(\beta) - sin(\beta)cos(\alpha)$$

3.
$$cos(\alpha + \beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)$$

4.
$$cos(\alpha - \beta) = cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)$$

3.12 Implicit Differentiation

Key Use chain rule.

3.13 Derivative of Exponential Functions

Let $f(x) = a^x$ (a > 0), find f'(x), by definition,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$
$$= \lim_{h \to 0} \frac{(a^n - 1)a^x}{h}$$

By property of limit, h is the only variable, so that a^x is a constant

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

(5)

Equivalently, $\frac{d}{dx}a^x = L_a a^x$

Definition e is the only positive number, such that,

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

So that, $\frac{d}{dx}e^x = e^x$

3.14 Properties of logarithms

Definition Let $a > 0, a \neq 1, x > 0, y \in \mathbb{R}$,

$$\log_a x = y \iff a^y = x$$

Properties

1.
$$\log_a 1 = 0$$

2.
$$\log_a a = 1$$

$$3. \log_a x = \frac{\log_b x}{\log ba}$$

4.
$$\log_a xy = \log_a x + \log_a y$$

$$5. \log_a \frac{x}{y} = \log_a x - \log_a y$$

6.
$$\log_a x^r = r \log_a x$$

Proof. (i) let $a>0, a\neq 1, let x, y>0$, **WTS** $\log_a xy = \log_a x + \log_a y$ Let $p=\log_a x \iff a^p=x$ Let $q=\log_a y \iff a^q=y$ We have $a^pa^q=xy$ $\iff a^{p+q}=xy$ $\iff \log_a xy = p+q = \log_a x + \log_a y$

3.15 The derivatives of logarithm functions

For $\ln x$ $\frac{d}{dx} \ln x = \frac{1}{x}$

$$e^{\ln x} = x$$

$$\frac{d}{dx}e^{\ln x} = \frac{d}{dx}x$$

$$\frac{d}{d\ln x}e^{\ln x} \cdot \frac{d}{dx}\ln x = 1$$

$$x\frac{d\ln x}{dx} = 1$$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

3.16 Derivative of other exponentials

WTS $\frac{d}{dx}a^x = \ln a \cdot a^x$,

$$a^{x} = (e^{\ln a})^{x} = e^{x \ln a}$$

$$\frac{d}{dx}a^{x} = \frac{d}{dx}e^{x \ln a}$$

$$= \frac{d}{dx}e^{x \ln a} \cdot \frac{d}{dx} \ln a$$

$$= e^{x \ln a} \ln a$$

$$= \ln a \cdot a^{x}$$

3.17 The power rule, complete proof

WTS $x^c = cx^{c-1}$

$$x^{c} = (e^{\ln x})^{c} = e^{c \ln x}$$
So that
$$\frac{d}{dx}x^{c} = \frac{d}{dx}e^{c \ln x}$$

$$= \frac{de^{c \ln x}}{d \ln xc} \cdot \frac{\ln xc}{d \ln x} \cdot \frac{d \ln x}{dx}$$

$$= e^{c \ln x} \cdot c \cdot \frac{1}{x}$$

$$= c \cdot x^{c} \cdot \frac{1}{x}$$

$$= cx^{c-1}$$

3.18 Logarithmic Differentiation

Example $f(x) = cos(x)^{sin(x)}(\star)$, find f'(x)

Step1. Take ln on both sides of (\star)

$$\ln f(x) = \ln \cos(x)^{\sin(x)} = \sin(x) \ln \cos(x)$$

Step2. Take derivative.

$$\frac{f'(x)}{f(x)} = \cos(x) \ln \cos(x) - \sin^2(x) \frac{1}{\cos(x)}$$

Step3. Solve for f'(x)

$$f'(x) = \cos(x)^{\sin(x)}(\cos(x)\ln\cos(x) - \sin^2(x)\frac{1}{\cos(x)})$$

4 Video Playlist 4

4.1 Functions

In calculus We assume the domain is the largest subset of \mathbb{R} that makes sense. And assume the codomain is always \mathbb{R} .

Notations

Math	Computer Science
Domain	Domain
Codomain	Range
Range	Image

4.2 Inverse Functions

Definition Let $f: A \to B$ be a function. Function $f^{-1}: B \to A$ is the **inverse function** is and only if

$$\forall x \in A, \forall y \in B, x = f^{-1}(y) \iff y = f(x)$$

Properties

- $\forall x \in A, f^{-1}(f(x)) = x$
- $\forall y \in B, f(f^{-1}(y)) = y$

Pre-condition Function f has inverse function f^{-1} if and only if f is **injective/one-to-one** function.

4.3 Surjective Functions

Why function don't have an inverse: Part 1.

Definition Function f(x) is surjective/onto if codomain(f(x)) = range(f(x)).

Problem If f(x) is not surjective, then some points in codomain has no corresponding point in domain, then f^{-1} is not a function.

Solution Shrink the codomain to range.

Example Let $f(x) = e^x$, $g(x) = \ln x$, then we have,

- $-Domain(f(x)) = \mathbb{R}$
 - $Codomain(f(x)) = \mathbb{R}$
 - $Range(f(x)) = (0, \infty)$
- $-Domaing(x) = (0, \infty)$
 - $Codomainq(x) = \mathbb{R}$
 - $Rangeg(x) = \mathbb{R}$

Definition Definition of inverse in calculus (*simplified*, we don't consider codomain here.) Let f(x) be a function, and $f^{-1}(x)$ be the **inverse** of it. Then,

- $Domain(f^{-1}(x)) = Range(f(x))$
- $Range(f^{-1}(x)) = Domain(f(x))$

also,

$$\forall x \in Domain(f(x)), \forall y \in Range(f(x)), x = f^{-1}(y) \iff y = f(x)$$

and,

$$\forall x \in Domain(f(x)), f^{-1}(f(x)) = x$$
$$\forall y \in Range(f(x)), f(f^{-1}(y)) = y$$

4.4 Injective function

Definition Let f(x) be a function, with Domain(f(x)) = A, we say f(x) is **injective/one-to-one** when,

$$\forall x_1, x_2 \in A, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

equivalently (contrapositive)

$$f(x_1) = f(x_2) \implies x_1 = x_2$$

Theorem Function f has an inverse if and only if f is **injective**.

Example $f(x) = x^2$ has no inverse, but we could take it's inverse by shrinking the domain.

- Take domain = $[0, \infty)$, $f^{-1}(x) = \sqrt{x}$
- Take domain = $(-\infty, 0]$, $f^{-1}(x) = -\sqrt{x}$

4.5 Some theorems

Let f(x) be a function with domain I.

Theorem 1 Function f has an inverse function f^{-1} if and only if f is injective.

Theorem 2 For function f, if

- 1. f is **continuous** (This means, f is continuous on its domain.).
- 2. I is an **interval**.

then, $f^{-1}(x)$ is continuous.

Theorem 3 If

- 1. f is differentiable.
- 2. $\forall x \in I, f'(x) \neq 0$ (This ensures the inverse function does not have a vertical tangent line, which causes non-differentiability).

then, $f^{-1}(x)$ is differentiable.

Theorem 4 $\forall x \in I \text{ with } y = f(x), \text{ we have }$

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

Proof.

$$f(f^{-1}(y)) = y$$

$$\frac{d}{dy}f(f^{-1}(y)) = \frac{d}{dy}y$$

$$\frac{d}{dy}f(f^{-1}(y)) = 1$$

$$f'(f^{-1}(y)) \cdot (f^{-1})'(y) = 1$$

$$f'(x) \cdot (f^{-1})'(y) = \frac{1}{f'(x)}$$

4.6 ArcSin

Note ArcSin is **NOT** the inverse of Sin. y = sin(x) has $domain = \mathbb{R}$ and range = [-1, 1], so that, it is **not injective**.

Definition ArcSin is the inverse function to the **restriction** of sin to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. So that, Domain(ArcSin) = Range(Sin) = [-1, 1], and, $Range(ArcSin) = Domain(Sin) = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Meaning $ArcSin(\frac{1}{2}) = t$ means:

$$\begin{cases} sin(t) = \frac{1}{2} \\ -\frac{\pi}{2} \le t \le \frac{\pi}{2} \end{cases}$$

Composite

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], ArcSin(Sin(x)) = x$$
$$\forall y \in \left[-1, 1\right], Sin(ArcSin(y)) = y$$

4.7 Derivative of ArcSin

Result

$$\frac{dArcSin(x)}{dx} = \frac{1}{\sqrt{1 - x^2}}$$

Derive.

$$\forall x \in [-1, 1]$$

$$Sin(ArcSin(x)) = x$$

$$\frac{d}{dx}Sin(ArcSin(x)) = \frac{d}{dx}x$$

$$Cos(ArcSin(x)) \cdot \frac{d}{dx}ArcSin(x) = 1$$

$$\frac{d}{dx}ArcSin(x) = \frac{1}{Cos(ArcSin(x))}$$

$$Let \ \theta = ArcSin(x)$$

$$Cos^{2}(\theta) = 1 - Sin^{2}(\theta)$$

$$Cos(\theta) = \pm \sqrt{1 - x^{2}}$$

$$Since \ \forall \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}], Sin(\theta) \ge 0$$

$$\implies Cos(\theta) = +\sqrt{1 - x^{2}}$$

$$\implies \frac{d}{dx}ArcSin(x) = \frac{1}{\sqrt{1 - x^{2}}}$$

4.8 Other inverse trig functions

4.8.1 y = Cos(x)

Definition ArcCos is the inverse function to the restriction of Cos(x) to $[0, \pi]$, and,

$$\forall x \in [-1, 1], \forall y \in [0, \pi], x = ArcCos(y) \iff Cos(y) = x$$

Result

$$\frac{d}{dx}ArcCos(x) = -\frac{1}{\sqrt{1-x^2}}$$

4.8.2 y = Tan(x)

Definition ArcTan(x) is the inverse function to the restriction of Tan(x) to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and,

$$\forall y \in \mathbb{R}, \forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}], x = ArcTan(y) \iff Tan(x) = y$$

5 Video Playlist 5

5.1 Usage of MVT

Theorem Let I be an open interval. Let f be a function defined on I. If $\forall x \in I, f'(x) = 0$ then f is a constant function.

If we want to prove this theorem, we need mean value theorem

5.2 Local Extreme Theorem

Definition Let f be a function with domain I, let $c \in I$.

- f takes **maximum** at c if $\forall x \in I, f(x) \leq f(c)$.
- f takes local maximum at c if $\exists \delta > 0, s.t. |x c| < \delta \implies f(x) \le f(c)$.

Definition Let f be a function with domain I, let $c \in I$.

- f takes **minimum** at c if $\forall x \in I, f(x) \ge f(c)$.
- f takes local minimum at c if $\exists \delta > 0, s.t. |x c| < \delta \implies f(x) \ge f(c)$.

End-point cannot be a local extremum since the definition of local extremum requires a open interval at both left and right sides around point c.

Theorem (Local EVT) Let f be a function with domain I as an interval. Let $c \in I$, then if,

- 1. f(c) is an extremum.
- 2. c is an interior point.

then, f'(c) = 0 or DNE.

Definition Point $c \in I$ for function f is a **critical point** if f'(c) = 0 or it does not exist.

Notes by T.Du 5 VIDEO PLAYLIST 5

Proof. (Local EVT) Proof is in two parts: (1) f has maximum at c, (2) f has minimum at c.

Part1: f(c) is a maximum

Take left and right side limits

$$Asx \to c^+, x - c > 0$$

$$Asx \to c^-, x - c < 0$$

By definition of $\operatorname{maximum} f(x) - f(c) \leq 0$

Left limit

$$x - c < 0 \land f(x) - f(c) \le 0$$

$$\implies \lim x \to c^{-} \frac{f(x) - f(c)}{x - c} \ge 0$$

Right limit

$$x - c > 0 \land f(x) - f(c) \le 0$$

$$\implies \lim x \to c^+ \frac{f(x) - f(c)}{x - c} \le 0$$

For limit to exist

$$\lim x \to c^{+} \frac{f(x) - f(c)}{x - c} \le 0 \land \lim x \to c^{-} \frac{f(x) - f(c)}{x - c} \ge 0$$

$$\implies \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 0$$

$$\iff f'(c) = 0$$

Part2: f(c) is a minimum

Take left and right side limits

$$Asx \rightarrow c^+, x-c > 0$$

$$Asx \to c^-, x - c < 0$$

By definition of $\operatorname{maximum} f(x) - f(c) \ge 0$

Left limit

$$x - c < 0 \land f(x) - f(c) > 0$$

$$\implies \lim x \to c^{-} \frac{f(x) - f(c)}{x - c} \le 0$$

Right limit

$$x - c > 0 \land f(x) - f(c) \ge 0$$

$$\implies \lim x \to c^+ \frac{f(x) - f(c)}{x - c} \ge 0$$

For limit to exist

$$\lim x \to c^{+} \frac{f(x) - f(c)}{x - c} \ge 0 \land \lim x \to c^{-} \frac{f(x) - f(c)}{x - c} \le 0$$

$$\implies \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 0$$

$$\iff f'(c) = 0$$

5.3 Find Extremum

Example find extremum of function $f(x) = x^3 - 3x^2 - 9x + 3$ for I = [-4, 4] **Steps**

- 1. Ensure existence of extremum. f is polynomial and therefore continuous, and [-4, 4] is a compact set. By EVT, extremum exist.
- 2. Find all critical points and end-points.
- 3. Compare values at candidate points.

5.4 Rolle's Theorem

Theorem let a < b, let f be a function defined on a closed interval [a, b] (Compact set). Then, if,

- 1. f(x) is continuous on [a, b].
- 2. (\land) f(x) is differentiable on (a,b).
- 3. (\wedge) f(a) = f(b).

then,

$$\exists c \in (a, b) s.t. f'(c) = 0$$

Proof.

By EVT,
$$f(x)$$
 has extremum in $[a, b]$.
Case1Interior Extremum Point. $(c \in (a, b))$
By Local EVT, $f'(c) = 0 \lor f'(c)DNE$
By (ii) $f'(c) = 0$
Case2End-point Extremum
Since (iii) $f(a) = f(b)$
 $\forall x \in (a, b)$
 $f(x) \le max(f(a), f(b))$
 $f(x) \ge min(f(a), f(b))$
 $\Rightarrow f(x)$ is constant.
 $\Rightarrow \forall c \in (a, b), f(c) = 0$

5.5 Application of Rolle's Theorem

Application How many zeros does a function have.

Step 1 Use IVT to prove it has at least n zeros.

Step 2 Use Rolle's theorem to prove it has at most n zeros.

Example

$$g(x) = x^6 + x^2 + x - 2$$

IVT Applied

$$g(-2) = 64$$
$$g(0) = -2$$
$$g(1) = 1$$

So that, g(x) has at least 2 zeros.

Rolle's theorem applied Assume $f(x_1) = f(x_2) = 0$, by Rolle's theorem, there must exits a $a \in (x_1, x_2)$ such that f'(a) = 0

Conclusion 1 Between any two zeros of f there must be at least one zero of f'.

Conclusion 2 \sharp of zeros of $f' \geq \sharp$ of zeros of f - 1

Conclusion 2' \sharp of zeros of $f \leq \sharp$ of zeros of f' + 1

$$g'(x) = 6x^5 + 2x + 1$$

 $g''(x) = 30x^4 + 2$
 $g''(x)$ has no zeros

5.6 (Lagrange)Mean Value Theorem

Theorem Let a < b, let f be a function defined on [a, b], if,

- 1. f is continuous on [a, b].
- 2. f is differentiable on (a, b).

then,

$$\exists c \in (a,b) s.t. f'(c) = \frac{f(b) - f(a)}{b - a}$$

5.7 Proof. of MVT

Let
$$m = \frac{f(b) - f(a)}{b - a}$$

Let $g(x) = f(x) - f(a) - m(x - a)$
Satisfies $g(a) = f(a) - f(a) - m(a - a) = 0$
 $\land g(b) = f(b) - f(a) - m(b - a) = 0$
By Rolle's Theorem
$$g(a) = g(b) = 0$$

$$\exists c \in (a, b)s.t.g'(c) = 0$$

$$\implies \frac{d}{x}[f(x) - f(a) - m(x - a)] = 0$$

$$\implies f'(c) = \frac{f(b) - f(a)}{b - a}$$

5.8 Zero-derivative implies constant

Theorem Let a < b. Let f be a function defined on [a, b], then,

 $\forall x \in (a,b), f'(x) = 0 \land f \text{ is continuous on } [a,b] \implies f \text{ is constant on } [a,b].$

proof.

Let
$$x_1, x_2 \in [a, b] \land x_1 < x_2$$

By MVT, $\exists c \in (x_1, x_2), s.t.$

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$\therefore f'(c) = 0$$

$$\therefore f(x_1) = f(x_2)$$

5.9 Monotonicity of functions

Definition Let f be a function defined on an interval I.

• f is increasing on I when

$$\forall x_1, x_2 \in I, x_1 < x_2 \implies f(x_1) < f(x_2)$$

• f is non-decreasing on I when

$$\forall x_1, x_2 \in I, x_1 < x_2 \implies f(x_1) \le f(x_2)$$

Theorem Let a < b. Let f be a function defined on (a, b). Then,

$$\forall x \in (a,b), f'(x) > 0 \implies f \text{ is increasing on (a,b)}$$

Theorem Let a < b. Let f be a function defined on [a, b]. Then,

$$\forall x \in (a,b), f'(x) > 0 \land f$$
 is continuous on $[a,b] \implies f$ is increasing on $[a,b]$

Short summary On an open interval

- $f' = 0 \implies f \text{ constant.}$
- $f' > 0 \implies f$ increasing.
- $f' < 0 \implies f$ decreasing.

6 Video Playlist 6

Note This chapter focus on *optimization applications*, and there's no video for this topic.

7 Video Playlist 7

7.1 Integral

Integral Let a < b, let f be a positive function, then integral of f from a to b is denoted as:

$$\int_a^b f(x) \ dx$$

this is represented as the area of region under function f from x = a to x = b.

7.2 Sigma Notation

Sigma Notation The sigma notation, with **index** i, could be represented in the following form:

$$\sum_{i=1}^{N} a_i = a_1 + a_2 + \dots + a_N$$

7.3 Supremum and Infimum

Definitions Let $A \subseteq \mathbb{R}$, let $a \in \mathbb{R}$:

- Upper bound: a is a upper bound of A means $\forall x \in A, x \leq a$.
- Least upper bound(l.u.b) / Supremum: a is the <u>least upper bound</u> or <u>supremum(sup)</u> of A iff a is an upper bound of A and $\forall b \in \{\text{upper bound of } A\}, a \leq b$.
- Maximum: if supremum of $A \in A$, it's maximum of A.
- Bounded above: A is bounded above if A has (at least) one upper bound.

Definitions (counter-part) Let $A \subseteq \mathbb{R}$, let $a \in \mathbb{R}$:

- Lower bound: a is a lower bound of A means $\forall x \in A, x \geq a$.
- Greatest lower bound(g.l.b) / Infimum: a is the greatest lower bound (g.l.b) or a infimum(inf) of a iff a is a lower bound of a and a iff a is a lower bound of a and a if a is a lower bound of a infimum(inf) of a infimu
- Minimum: if infimum of $A \in A$, it's the minimum of A.
- Bounded below: A is bounded below if A has (at least) one lower bound.

Theorem: The l.u.b. principle Let $A \subseteq \mathbb{R}$, if A is <u>bounded above</u> and $A \neq \emptyset$, then, A has a least upper bound(supremum).

Theorem: The g.l.b principle Let $A \subseteq \mathbb{R}$, if A is <u>bounded below</u> and $A \neq \emptyset$, then, A has a greatest lower bound(infimum).

7.4 Supremum and Infimum of a function

Definition Supremum of a function f on a domain I is defined as:

$$\sup_{x \in I} f(x) = \sup\{f(x) \mid x \in I\}$$

Theorem Let f be a function defined on domain $I \neq \emptyset$, if f is bounded above, then $\exists \sup_{x \in I} f(x)$. Similarly, if f is bounded below, then $\exists \inf_{x \in I} f(x)$.

Theorem(EVT) Let a < b, let f defined on [a, b], if f is <u>continuous</u> on [a, b], then f has a maximum and a minimum on [a, b].

7.5 Definition of Integral (i)

Definition A partition of the interval [a,b] is a finite set P, s.t. $\{a,b\} \subseteq P$.

Notation $P = \{x_0, x_1, \dots x_N\}$ on [a, b]. Implicitly, x_i are <u>ordered</u>, such that, $a = x_0 < x_1 < \dots < x_N = b$.

Let f be bounded on [a, b], let $P = \{x_0, x_1, \dots, x_N\}$, let $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$, and $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$, and $\Delta x_i = x_i - x_{i-1}$.

Definition P-Lower sum of f is defined as:

$$L_P(f) = \sum_{i=1}^{N} (m_i \Delta x_i)$$

Definition P-Upper sum of f is defined as:

$$U_P(f) = \sum_{i=1}^{N} (M_i \Delta x_i)$$

Property For all partition P on interval [a, b], the lower sum and upper sum satisfy the following inequality,

$$L_P(f) \le \int_a^b f(x) \ dx \le U_P(f)$$

7.6 Definition of Integral (ii): Properties of $U_P(f)$ and $L_P(f)$

Let f be a <u>bounded</u> function on [a, b], let P and Q be partitions of [a, b], the lower sums and upper sums have the following properties.

- 1. (Always) $L_P(f) \leq U_P(f)$.
- 2. If $P \subseteq Q$ (Q is a finer partition), then $L_P(f) \leq L_Q(f) \wedge U_P(f) \geq U_Q(f)$.
- 3. (Always) $L_P(f) \leq U_Q(f)$

Proof

Let
$$R = P \cup Q$$
,
so that, $P \subseteq R \land Q \subseteq R$. (R is finer than both P and Q)
 $L_P(f) \le L_R(f) \le U_R(f) \le U_Q(f)$
 $\Longrightarrow L_P(f) \le U_Q(f)$

7.7 Definition of Integral (iii): Upper Integral and Lower Integral

Definition Let f be a bounded function on [a, b], then, lower integral of f from a to b is defined as,

$$\underline{I_a^b(f)} = \sup\{\text{lower sums of } f\}$$

and the upper integral of f from a to b is defined as,

$$\overline{I_a^b(f)} = \inf\{\text{upper sums of } f\}$$

Then if $I_a^b(f) < \overline{I_a^b(f)}$, then f is **non-integrable** on [a, b].

7.8 An example of integrable function

$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases} \text{ on } [-1, 1]$$

7.9 An example of non-integrable function

$$g(x) = \begin{cases} 1 \text{ if } x \in \mathbb{Q} \\ 0 \text{ if } x \notin \mathbb{Q} \end{cases} \text{ on } [-1, 1]$$

7.10 Integrals as limits

Definition Let $P = \{x_0, x_1, \dots, x_N\}$ be a partition of [a, b], the **norm** of P is defined as:

$$||P|| = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_N\}$$

Theorem - Lower Integrals For lower integrals, we have,

$$\underline{I_a^b(f)} = \lim_{\|P\| \to 0} L_P(f) = \sup\{\text{lower sums of } f\}$$

alternatively, using $\delta - \epsilon$ expression,

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall P \text{ over } [a,b], \|P\| < \delta \implies |L_P(f) - \underline{I_a^b(f)}| < \epsilon$$

theorem - Upper Integrals For upper integrals, we have,

$$\overline{I_a^b(f)} = \lim_{\|P\| \to 0} U_P(f)$$

7.11 Riemann Sums

Definition Fix a partition P on [a,b], $m_i = \inf_{x \in [x_{i-1},x_i]} f(x)$, $M_i = \sup_{x \in [x_{i-1},x_i]} f(x)$, pick $x_i^* \in [x_{i-1},x_i]$, so that,

$$m_{i} \leq f(x_{i}^{\star}) \leq M_{i}$$

$$\implies m_{i} \Delta x_{i} \leq f(x_{i}^{\star}) \Delta x_{i} \leq M_{i} \Delta x_{i}$$

$$\implies L_{P}(f) = \sum_{i=1}^{N} (m_{i} \Delta x_{i}) \leq \sum_{i=1}^{N} (f(x_{i}^{\star}) * \Delta x_{i}) \leq \sum_{i=1}^{N} (M_{i} \Delta x_{i}) = U_{P}(f)$$

where the term $\sum_{i=1}^{N} (f(x_i^*) \Delta x_i)$ is called a **Riemann sum**.

Definition Let f be a <u>bounded</u> function on [a, b], let $P = \{x_0, x_1, \dots, x_N\}$ be a partition on [a, b], for each i, pick **any** point $x_i^* \in [x_{i-1}, x_i]$. then,

$$S_P^{\star}(f) = \sum_{i=1}^{N} (f(x_i^{\star}) * \Delta x_i)$$

is a **Riemann sum** for f and P. (There are infinitely many Riemann sum).

In general, we have,

$$L_P(f) \le S_P^{\star}(f) \le U_P(f)$$

and also,

$$\lim_{\|P\| \to 0} L_P(f) = \underline{I_a^b(f)}$$

$$\lim_{\|P\| \to 0} U_P(f) = \overline{I_a^b(f)}$$

and if f is **integrable**, then

$$\lim_{\|P\| \to 0} L_P(f) = \lim_{\|P\| \to 0} U_P(f) = \int_a^b f(x) \ dx$$

By Squeeze Theorem,

$$\lim_{\|P\| \to 0} S_P^\star(f) = \int_a^b f(x) \ dx$$

7.12 Properties of the integral

Property 1

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Property 2

$$\int_a^b [cf(x)] \ dx = c \int_a^b f(x) \ dx$$

Property 3 If f is bounded on [a, c], and f is integrable on [a, b] and integrable on [b, c], then,

$$\int_a^c f(x) \ dx = \int_a^b f(x) \ dx + \int_b^c f(x) \ dx$$

Property 4: Backward Integrals

$$\int_{b}^{a} f(x) \ dx = -\int_{a}^{b} f(x) \ dx$$

Negative function f Integral for negative function is the negative area.

$$\int_a^b f(x) \ dx$$

8 Video Playlist 8

8.1 Anti-dervatives

Notations

- Definite integral $\int_a^b f(x) dx$
- Indefinite integral $\int f(x) dx$

Definition Let f be a function defined on an interval, an **anti-dervative** of f is any function F that

$$F'=f$$

Note As a consequence of MVT, if two functions have same dervative on an interval, then they differ by a constant.

8.2 Functions Defined as Integrals

Consider integrable function f, define function F as the definite integral from a, a fixed point in domain of f, to another point x in domain of f, that's,

$$F(x) = \int_{a}^{x} f(t) dt$$

Methodology Let I be an interval, let $a \in I$ and let f be a function integrable on I, then for each $x \in I$, compute $F(x) = \int_a^x f(t) \ dt$ as a <u>number</u>.

8.3 The Fundamental Theorem of Calculus: Part 1

This provides connections between definite integrals and anti-dervatives

Theorem: FTC(part 1)

- \bullet Let I be an interval,
- Let $a \in I$,
- Let f be a function on I.

Define F(x) as

$$F(x) = \int_{a}^{x} f(t) dt$$

If f is continuous, then F is differentiable and F' = f, that's,

$$F'(x) = f(x) \quad \forall x \in I$$

8.4 A Proof of Part 1 of the FTC

Proof.

$$\operatorname{Let}(\operatorname{fix}) \ x \in I$$

$$\operatorname{WTS.} \ F'(x) = f(x)$$

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} \left[\frac{1}{h} (F(x+h) - F(x)) \right]$$

$$= \lim_{h \to 0} \left[\frac{1}{h} \left(\int_{a}^{x+h} f(t) \ dt - \int_{a}^{x} f(t) \ dt \right) \right]$$

$$= \lim_{h \to 0} \left[\frac{1}{h} \int_{x}^{x+h} f(t) \ dt \right]$$

Consider h > 0 (for negative h, the proof would be similar)

Let
$$M_h = \sup_{[x,x+h]} (f)$$

Let $m_h = \inf_{[x,x+h]} (f)$

Then we have, by definition of infimum and supremum,

$$m_h \le \frac{1}{h} \int_x^{x+h} f(t) dt \le M_h$$

Since f is continuous on [x, x + h], by EVT, it has maximum and minimum on this interval.

$$\exists c_h \in [x, x+h] \text{ s.t. } M_h = f(c_h)$$

$$\exists d_h \in [x, x+h] \text{ s.t. } m_h = f(d_h)$$

$$\because \lim_{h \to 0} c_h = x \land \lim_{h \to 0} d_h = x$$

$$\therefore \lim_{h \to 0} M_h = \lim_{h \to 0, c_h \to x} f(c_h) = f(x) \text{ (since } f \text{ is continuous.)}$$
Similarly,
$$\lim_{h \to 0} m_h = \lim_{h \to 0, d_h \to x} f(d_h) = f(x)$$
By Squeeze Theorem,
$$\lim_{h \to 0} \left[\frac{1}{h} \int_x^{x+h} f(t) dt\right] = f(x)$$

$$\therefore F'(x) = f(x) \ \forall x \in I$$

8.5 The Fundamental Theorem of Calculus: Part 2

This provides a quick way to compute definite integrals.

Theorem: FTC(part 2)

- Let $a < b \in \mathbb{R}$,
- let f be continuous on [a, b],

then,

$$\int_{a}^{b} f(x) \ dx = G(b) - G(a)$$

where G is any anti-dervative of f.

Notation

$$G(b) - G(a) = G(x)|_{x=a}^{x=b} = G(x)|_{a}^{b}$$

8.6 A Proof of Part 2 of the FTC

Proof.

We know that, from the first part of FTC, G' = f,

WTS.
$$\int_{a}^{b} f(x) = G(b) - G(a)$$
Define $F(x) = \int_{a}^{x} f(t) dt$
WTS. $F(b) = G(b) - G(a)$
Since f is continuous, $F' = f$
By the consequence of MVT,
$$F' = G' \implies \exists C \in \mathbb{R}s.t.F - G = C \forall x \in [a, b]$$
at $x = a, F(a) = 0 \implies C = -G(a)$

$$\implies \forall x \in [a, b]F(x) = G(x) - G(a)$$
at $x = b, F(b) = G(b) - G(a)$

- 8.7 Summary: Definite and indefinite integrals, notation, definitions and theorems.
- 8.7.1 Definite Integral.

$$\int_{a}^{b} f(x) \ dx$$

Theorem (Formal definite) if $\overline{I_a^b}(f) = \underline{I_a^b}(f)$ then $\int_a^b f(x) \ dx = \overline{I_a^b}(f) = \underline{I_a^b}(f)$.

Theorem (FTC: part 2) Choose <u>one</u> anti-dervative G(x) of f(x), then compute the definite integral as $\int_a^b f(x) dx = G(b) - G(a)$.

8.7.2 Indefinite Integral

$$\int f(x) dx$$
 A collection of functions.

Find indefinite integral Find G(x) as <u>one</u> anti-dervative, by the consequence of MVT, then the indefinite integral of f could be constructed as,

$$F(x) = \{G(x) + C \mid C \in \mathbb{R}\}\$$

8.7.3 Function Defined by an Integral.

$$F(x) = \int_{a}^{x} f(t) dt$$
 This is one function with fixed value of a.

Theorem (FTC: part 1) if f is continuous, then F'(x) = f(x)

9 Video Playlist 9

9.1 Integration By Substitution: derivation of the formula

Backwards usage of chain rule.

If $\int f(x) dx = F(x)$ is the anti-derivative of f(x), then

$$F(g(x)) = \int f(g(x))g'(x) \ dx = F(g(x))$$

- 9.2 Example 2
- 9.3 Example 3
- 9.4 Example 4

Theorem Let a < b, let f be a continuous function, let g be a function with <u>continuous derivative</u> in [a, b], assume the range of g on [a, b] is contained in the domain of f. Then,

$$\int_{a}^{b} f(g(x))g'(x) \ dx = \int_{g(a)}^{g(b)} f(u) \ du$$

9.5 Integration by parts

Backwards product rule

Let f and g be two differentiable function, by product rule of differentiation, we have,

$$f'(x)g(x) + f(x)g'(x) = \frac{d}{dx}f(x)g(x)$$

$$\implies \int f'(x)g(x) + f(x)g'(x) dx = f(x)g(x) + C$$

$$\implies \int f'(x)g(x) dx + \int f(x)g'(x) dx = f(x) + g(x) + C$$

$$\implies \int f'(x)g(x) dx = f(x) + g(x) - \int f(x)g'(x) dx$$

The integral constant is implicitly contained in the integral term.

9.6 Examples

Example 1

$$\int x^2 e^2 \ dx$$

Example 2

$$\int e^2 \sin x \ dx$$

Use integration by parts twice.

Example 3

$$\int \arctan x \ dx$$

Consider the form $1 \times f(x)$ as partition method.

9.7 Integration of products of trigonometric functions

Types

$$\int \sin^n x \, \cos^m x \, dx$$
$$\int \sec^n x \, \tan^m x \, dx$$

Keys

$$sin^{2}(x) + cos^{2}(x) = 1$$
$$sec^{2}(x) = 1 + tan^{2}(x)$$

Summary I Consider the integral in the following form

$$\int \sin^n x \, \cos^m x \, \, dx$$

- If **m** is odd then try u = sin(x), then du = cos(x)dx
- If **n** is odd then try u = cos(x), then du = -sin(x)dx

10 Video Playlist 10

Note This chapter focus on *volumes*, and there's no video for this topic.

11 Video Playlist 11

11.1 What Is a Sequence

Definition A sequence is a function with domain \mathbb{N} .

11.1.1 Conventions

Functions function with domain <u>interval</u>.

- x as variable.
- f(x) as value at x.

Sequence function with domain \mathbb{N} .

- n as variable.
- a_n as value at n.

A sequence is not a set.

11.1.2 Describe sequences

Equation
$$a_n = \frac{2^n n!}{n+1}$$

First few values $\{1, 2, 4, 8, 16, ...\}$

Words $p_n = \text{n-th prime.}$

Recurrence relation e.g. Fibonacci Sequence.

$$\{F_n\}_{n=0}^{\infty}: F_0 = F_1 = 1, \ F_n = F_{n-1} + F_{n-2} \ \forall n \geq 2$$

A general definition A sequence is a function with domain $\{n \in \mathbb{Z} \mid n \geq n_0\}$ for some fixed $n_0 \in \mathbb{Z}$.

11.2 The Limit of a Sequence

Example

$$\left\{\frac{n}{n+1}\right\}_{n=0}^{\infty} \quad \lim_{n \to \infty} \frac{n}{n+1} = 1$$

Definition(Limit) We say that the sequence $\{a_n\}_{n=0}^{\infty}$ converges to the number $L \in \mathbb{R}$ when

$$\forall \epsilon > 0, \ \exists n_0 \in \mathbb{N} s.t. \ \forall n \in \mathbb{N}, \ n \ge n_0 \implies |L - a_n| < \epsilon$$

denoted as

$$\lim_{n \to \infty} a_n = L \text{ or } a_n \to L$$

 ${\it Tail: all terms of the sequence after the first few terms.}$

Every interval centred at L contains a tail of the sequence.

Definition A sequence is **convergent** if it has a limit. This sequence is **divergent** if it does not have a limit.

11.3 Properties of Limits of Sequences

Properties from the limit of functions

- Limit laws: Yes
- Squeeze theorem: Yes
- L'Hôpital's Rule: No

11.3.1 Sequence from a function

Let $c \in \mathbb{Z}$ and function f defined on $[c, \infty)$, and define the seuquce $\{a_n\}_{n=c}^{\infty}$ as

$$a_n = f(n)$$

We have if $\lim_{n\to\infty} f(n) = L$ then $\lim_{n\to\infty} a_n = L$. If $\lim_{n\to\infty} f(n)$ DNE, then $\lim_{n\to\infty} a_n$ may or may not exist.

11.3.2 Composite of sequence and function

Theorem If $a_n \to L$ and f is continuous at L then

$$f(a_n) \to f(L)$$

11.4 Monotonic and Bounded Sequences

11.4.1 Monotonic Sequences

Definition We say $\{a_n\}_{n=0}^{\infty}$ is **increasing** if

$$\forall n, m \in \mathbb{N}, \ n < m \implies a_n < a_m$$

Also, we say this sequence is non-decreasing if the inequality is in the weak form as

$$\forall n, m \in \mathbb{N}, \ n < m \implies a_n \le a_m$$

Definition We say $\{a_n\}_{n=0}^{\infty}$ is **decreasing** if

$$\forall n, m \in \mathbb{N}, \ n < m \implies a_n > a_m$$

Also, if the inequality is in the weak form as

$$\forall n, m \in \mathbb{N}, \ n < m \implies a_n \ge a_m$$

we say this sequence is **non-increasing**.

Definition We say a sequence $\{a_n\}_{n=0}^{\infty}$ is **monotonic** is if is has any of the four properties above.

Definition $\{a_n\}_{n=0}^{\infty}$ is eventually decreasing if

$$\exists n_0 \in \mathbb{N}, \ s.t. \forall n \in \mathbb{N}, n \ge n_0 \implies a_n > a_{n+1}$$

11.4.2 Bounded Sequences

Definition We say a sequence $\{a_n\}_{n=0}^{\infty}$ is **bounded below** if

$$\exists A \in \mathbb{R} s.t. \forall n \in \mathbb{N}, \ A < a_n$$

Similarly, the sequence is bounded above if

$$\exists B \in \mathbb{R}.s.t. \forall n \in \mathbb{N}, \ B \geq a_n$$

Definition We say a sequence is **bounded** if and only if it is <u>both</u> bounded above and below.

Theorem If a sequence is <u>convergent</u> then it is <u>bounded</u>.

Theorem 2A(The monotone convergence theorem for sequence) If a sequence is <u>eventually increasing</u> and <u>bounded above</u>, then it is <u>convergent</u>

Theorem If a sequence is eventually increasing and not bounded above then it divergent to ∞ .

Remark for a sequence:

Sequence
$$\begin{cases} \text{Convergent} \\ \text{Divergent} \end{cases} \begin{cases} \text{to } \infty \\ \text{to } - \infty \\ \text{Oscillating} \end{cases}$$

11.5 Proof: Every convergent sequence is bounded

Theorem Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, if $\{a_n\}_{n=0}^{\infty}$ is <u>convergent</u> then the sequence is <u>bounded</u>. Equivalently, *Proof.*

> Assume sequence $\{a_n\}_{n=0}^{\infty}$ is convergent. Let L be the limit. By the definition of limit, choose $\epsilon = 10$ So that, $\exists n_0 \in \mathbb{N} s.t. \forall n \in \mathbb{N}, n \geq n_0 \implies L - 10 \leq a_n \leq L + 10$ Take $A = min\{a_0, \dots, a_{n_0-1}, L - 10\}$ Take $B = max\{a_0, \dots, a_{n_0-1}, L + 10\}$ By definition of max and min, let $n \in \mathbb{N}$ case $1n > n_0 \implies A \leq a_n \leq B$ case $2n \geq n_0 \implies L - 10 \leq a_n \leq L + 10$ Since $A \leq L - 10 \land B \geq L + 10$ $\implies A \leq a_n \leq B \forall n \in \mathbb{N}$ $\therefore \{a_n\}_{n=0}^{\infty}$ is bounded.

11.6 The monotone convergence theorem of sequences

(General) Theorem If a sequence is (eventually) monotonic and bounded then it is convergent.

(Particular Case) Theorem 1 If a sequence is increasing and bounded above the it's convergent.

Proof.

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence that's increasing and bounded above.

Consider
$$A = \{a_n \mid n \in \mathbb{N}\} \neq \emptyset$$

By least upper bound principle, there exists a supremum of set A

Take
$$L = \sup\{A\}$$

Let $\epsilon > 0$

By definition of supremum,

$$\exists a_{n0} \in A \ s.t. \ a_{n0} > L - \epsilon$$

Take this value n_0

Since sequence is increasing,

$$\forall n \geq n_0 \ a_n > L - \epsilon$$

Also, by definition of supremum, $a_n \leq L$

$$\implies a_n \le L + \epsilon$$

Therefore, $\forall n \in \mathbb{N}, n \geq n_0 \implies L - \epsilon < a_n < L + \epsilon$

Therefore, $\lim_{n\to\infty} \{a_n\}_{n=0}^{\infty} = L$

Therefore, $\{a_n\}_{n=0}^{\infty}$ is convergent.

11.7 the Big theorem of sequences

Definition (for positive sequences only) Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be positive sequences.

$$a_n << b_n \iff \lim_{n \to \infty} \frac{a_n}{b_n} = 0$$

say $\{a_n\}$ is much smaller than $\{b_n\}$.

Theorem for every a > 0 and c > 1

$$\ln n << n^a << c^n << n! << n^n$$

12 Video Playlist 12

12.1 Improper Integral

12.1.1 Improper integral "type 1" (Unbounded domain)

Definition Let $a \in \mathbb{R}$ and f continuous on $[a, \infty]$ the integral of f from a to ∞ , denoted as

$$\int_{a}^{\infty} f(x) \ dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \ dx$$

assuming the limit exists. If the limit exists, the integral is called **convergent**, otherwise, it's called **divergent**.

12.2 The most important family if the improper integrals

Let $p \in \mathbb{R}$ consider

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$

Summary

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ is } \begin{cases} \textbf{convergent if } p > 1 \\ \textbf{divergent to } \infty \text{ if } p \leq 1 \end{cases}$$

12.3 Example

$$\int_0^\infty \sin(x) \ dx$$

12.4 The most important family of improper integral

Consider

$$I = \int_{1}^{\infty} \frac{1}{x^{p}} \ dx$$

Summary

- 1. $p > 1 \iff I$ converges.
- 2. $p \le 1 \iff I$ diverges to ∞ .

12.5 Example

Vertical asymptote improper.

$$\int_0^1 ln(x) \ dx$$

12.6 Doubly improper integrals

General Strategy Assume A has multiple improper.

- 1. Break A into pieces with **single** improper at their endpoints.
- 2. If each piece convergent **seperately**, then A converges.
- 3. Else, A diverges, it's not a number.

12.7 Basic Comparison Test

Theorem Let $a \in \mathbb{R}$,

Let f and g be continuous functions one $[a, \infty)$, and

$$\forall x \ge a, 0 \le f(x) \le g(x)$$

we have.

1.
$$\int_a^\infty g(x) \ dx < \infty \implies \int_a^\infty f(x) \ dx < 0$$

2.
$$\int_a^\infty f(x) \ dx = \infty \implies \int_a^\infty g(x) \ dx = \infty$$

12.8 Examples

12.9 Limit Comparison Test

Theorem Let $a \in \mathbb{R}$, f and g are positive and continuous functions on $[a, \infty)$. And the following limit exists,

$$L = \lim_{x \to \infty} \frac{f(x)}{g(x)} \in \mathbb{R}$$

Then, $\int_a^\infty f(x) \ dx$ and $\int_a^\infty g(x) \ dx$ are **both** convergent or **both** divergent.

12.10 Proof of LCT

Omitted

13 Video Playlist 13

13.1 Infinite Sums

Nothing.

13.2 Definition of series

Definition Series $\sum_{n=1}^{\infty} a_n$ is defined as

$$\lim_{k\to\infty} S_k$$

where $S_k = \sum_{n=1}^k a_n$ as finite sum. If the above limit exist, we say series $\sum_{n=1}^{\infty} a_n$ is convergent (it's a number), else series is divergent and it's not a number.

13.3 Example

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n} = \sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1} = \lim_{k \to \infty} 1 - \frac{1}{k+1} = 1$$

13.4 Divergent Series Examples

$$S = \sum_{n=1}^{\infty} 1 = \lim_{k \to \infty} k = \infty$$

$$S = \sum_{n=1}^{\infty} (-1)^n = \begin{cases} 0 \text{ if k is odd} \\ 1 \text{ if k is even} \end{cases}$$
 divergent due to osciallation.

13.5 Geometric Series

Let $x \in \mathbb{R}$

$$S = \sum_{n=0}^{\infty} x^n = \lim_{k \to \infty} S_k = \lim_{k \to \infty} \sum_{n=0}^{\infty} x^n$$

Consider

$$S_k = 1 + x + x^2 + \dots + x^k$$
$$xS_k = x + x^2 + x^3 + \dots + x^{k+1}$$
$$S_k - xS_k = 1 - x^{k+1}$$

If x = 1, the series is simply divergent to ∞ .

$$S_k = \frac{1 - x^{k+1}}{1 - x}, \ x \neq 1$$

$$S = \lim_{k \to \infty} 1 - x^{k+1} = \frac{1 - \lim_{k \to \infty} (x^(k+1))}{1 - x} = \begin{cases} \frac{1}{1 - x} \iff x \in (-1, 1) \\ \text{Divergent} \end{cases} \begin{cases} \infty \iff x > 1 \\ \text{Oscillating} \iff x \le -1 \end{cases}$$

13.6 Linearity of series

Simple form of fact

$$\sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} c \ b_n = \sum_{n=0}^{\infty} a_n + c \ b_n, \ \forall c \in \mathbb{R}$$

Theorem If series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are both convergent, then $\sum_{n=0}^{\infty} a_n + b_n$ is also convergent and

$$\sum_{n=0}^{\infty} a_n + b_n = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$$

Proof.

Let
$$\sum_{n=0}^{\infty} a_n = \lim_{k \to \infty} S_k$$
Let
$$\sum_{n=0}^{\infty} b_n = \lim_{k \to \infty} T_k$$
Let
$$\sum_{n=0}^{\infty} a_n + b_n = \lim_{k \to \infty} R_k$$
Where
$$S_k = \sum_{n=0}^k a_n$$

$$T_k = \sum_{n=0}^k b_n$$

$$R_k = \sum_{n=0}^k a_n + b_n$$
Since
$$R_k = S_k + T_k, \ \forall k \in \mathbb{N}$$
By limit laws,
$$\lim_{k \to \infty} S_k + \lim_{k \to \infty} T_k = \lim_{k \to \infty} R_k$$

$$\implies \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n = \sum_{n=0}^{\infty} a_n + b_n$$

Theorem If series $\sum_{n=0}^{\infty} a_n$ is convergent, then for any $c \in \mathbb{R}$, series $\sum_{n=0}^{\infty} c \ a_n$ is also convergent and

$$\sum_{n=0}^{\infty} c \ a_n = c \sum_{n=0}^{\infty} a_n$$

General proof procedure

- 1. Write series as limit of partial sums.
- 2. Manipulate partial sums (finite).
- 3. Manipulate limits.

13.7 the Tail of a series

Fact Consider two series

$$\sum_{n=0}^{\infty} a_n \text{ convergent } \iff \sum_{n=1}^{\infty} a_n \text{ convergent}$$

And $\sum_{n=1}^{\infty} a_n$ is a tail of series $\sum_{n=0}^{\infty} a_n$.

Notation We say $\sum_{n=0}^{\infty} a_n$ is convergent or divergent without specifying the starting index of the series.

Specific form of theorem If $\forall n \in \mathbb{N}$ [Condition(s)] then $\sum_{n=0}^{\infty} a_n$ is convergent or divergent.

General form of theorem If $\exists n_0 \in \mathbb{N} \text{ s.t. } \forall n \in \mathbb{N}, \ n \geq n_0 \implies [\text{Condition(s)}] \text{ then } \sum_n^{\infty} a_n \text{ is convergent.}$

13.8 A necessary condition for convergence of series

Fact Series $\sum_{n=0}^{\infty} a_n$ is convergent if and only if the sequence of its partial sums $\{S_n\}_{n=0}^k$ is convergent.

Theorem If $\sum_{n=0}^{\infty} a_n$ is convergent then

$$\lim_{n\to\infty} a_n = 0$$

Note The above theorem is often used as it's contrapositive form

$$\lim_{n\to\infty} a_n \neq 0 \implies \sum_{n=0}^{\infty} a_n \text{ is divergent}$$

Proof.

Let
$$S = \sum_{n=0}^{\infty} a_n$$
 be convergent
$$S = \lim_{n \to \infty} S_k, S_k = \sum_{n=0}^{k} a_n$$

$$S = \lim_{k \to \infty} S_k, \ S_k = \sum_{n=0}^k a_n$$

$$S = \lim_{k-1 \to \infty} S_{k-1}$$

$$\implies \lim_{k \to \infty} S_k - \lim_{k-1 \to \infty} S_{k-1} = 0$$

By the convergence assumption, those two limits above exist.

$$\implies \lim_{k \to \infty} S_k - S_{k-1} = 0$$

$$\implies \lim_{k \to \infty} a_k = 0$$

$$\implies \{a_n\}_{n=1}^{\infty} \to 0$$

13.9 Positive series

Definition A series $\sum_{n=0}^{\infty} a_n$ is positive when $\forall n \in \mathbb{N}, \ a_n > 0$. And a series is positive means it could never diverge to $-\infty$ or *oscillating*.

Notation (For positive series only)

1. $\sum_{n=0}^{\infty} a_n = \infty \iff \text{divergent.}$

2. $\sum_{n=0}^{\infty} a_n < \infty \iff \text{convergent.}$

13.10 The Integral Test

Theorem Let $a \in \mathbb{R}$, let f be a continuous, positive and decreasing function on $[a, \infty)$, then

$$\int_{a}^{\infty} f(x) \ dx < \infty \iff \sum_{n=1}^{\infty} f(n) < \infty$$

That's the improper integral and series have the same convergence/divergence feature. Note as

$$\int_{a}^{\infty} f(x) \ dx \sim \sum_{n}^{\infty} f(n)$$

13.11 Examples

p-series consider for what values of p the following series is convergent.

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

Example2

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

13.12 Comparison Tests for Series

Works exactly the same as basic and limit comparison tests for improper integrals.

Basic Comparison Test Consider series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, assume¹

$$\forall n \in \mathbb{N}, \ 0 \le a_n \le b_n$$

then

$$\sum_{n=1}^{\infty} b_n < \infty \implies \sum_{n=1}^{\infty} c_n < \infty$$

$$\sum_{n=1}^{\infty} a_n = \infty \implies \sum_{n=1}^{\infty} b_n = \infty$$

Limit Comparison Test Consider series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, assume existing limit

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} > 0$$

Then both series convergent or both of them divergent.

14 Video Playlist 14

14.1 Power Series: Example

$$g(x) = \sum_{n=1}^{\infty} \frac{x^n}{n3^n}$$

Domain of g(x) is defined as

$$\{x \in \mathbb{R} \mid g(x) \text{ is convergent}\}\$$

The above series convergent when $x \in [-3,3)$, and [-3,3) is the **interval of convergence** and 3 is the radius of convergent.

14.2 Main Theorem

Definition Let $a \in \mathbb{R}$, a power series centred at a is a function f defined by a equation like

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

¹Notice that for large natural number n would be sufficient here also.

Main Theorem Let f(x) be a power series, then

- 1. Domain of f is an interval centred at a, with radius of convergence R, $0 \leq \mathbb{R} \leq \infty$
- 2. In the *interior* of the interval of convergence, the series is *absolutely convergent*, in the *exterior* of IC, the series is *divergent*, and at the boundaries this theorem is *inconclusive*.
- 3. In the *interior* of the IC, power series can be treated like polynomial, without change of radius of convergence.

14.3 Taylor Polynomial Definition 1

Definition Let f(x) and g(x) be two functions that are continuous at a, let n > 0 and g is a approximation for f near a of or when

$$\lim_{x \to a} \frac{f(x) - g(x)}{(x - a)^n} = 0$$

Definition Let $a \in \mathbb{R}$, let f be a continuous function defined at a, let $n \in \mathbb{N}$ then the n^{th} **Taylor Polynomial** for f at a is the polynomial P_n of *smallest* possible degree is an approximating for f near a of order n, that's,

$$\lim_{x \to a} \frac{f(x) - P_n(x)}{(x - a)^n} = 0$$

14.4 Taylor Polynomial Definition 2

Definition Let $a \in \mathbb{R}$, $n \in \mathbb{N}$ and let f be a C^n function at a, the n^{th} Taylor Polynomial for f at a is a polynomial P_n s.t.

$$P_n(a) = f(a), P'_n(a) = f'(a), \dots P_n^{(n)}(a) = f^{(n)}(a)$$

with smallest possible degree.

14.5 Taylor Polynomial Definition 3

Definition Let $a \in \mathbb{R}$, let f be a C^{∞} function at a, the **Taylor's series** for f at a is the power series

$$S(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

with the fact that

$$\forall k \in \mathbb{N}, S^{(k)}(a) = f^{(k)}(a)$$