A Framework for Substructural Type Systems

James Wood¹ Robert Atkey¹

¹University of Strathclyde

ESOP, April 7, 2022

Mechanisation of type systems

- Boring syntactic operations and lemmas
- Learn how to do syntax well [AR99; McB05; BHKM12].
- Substructural systems are even harder!

Frameworks for type theories

- A framework for substructural type systems in a general-purpose proof assistant (Agda)
- Prior work: simple types [AACMM21]
 - Renaming and substitution for all syntaxes
 - Renaming/substitution fusion laws
 - Scope checking, type checking
 - Printing, optimisation passes, NbE
- This work: similar for *linear* and *modal* type systems.
 - DILL [Bar96], modal S4 [PD99], graded [OLE19]
 - Semiring-annotated usage-aware calculi

Linearity is not simple

- Key invariant of [AACMM21]: contexts are only ever...
 - added to (binding a variable)
 - accessed by the variable rule
- Motivates an abbreviated notation for typing rules.

$$\frac{\vdash A \to B \quad \vdash A}{\vdash B} \text{ App} \qquad \frac{x : A \vdash B}{\vdash A \to B} \text{ Lam}$$

Linearity is not simple

- Key invariant of [AACMM21]: contexts are only ever...
 - added to (binding a variable)
 - accessed by the variable rule
- Motivates an abbreviated notation for typing rules.

$$\frac{\vdash A \to B \quad \vdash A}{\vdash B} \text{ App} \qquad \frac{x : A \vdash B}{\vdash A \to B} \text{ Lam}$$

Variables going out of scope:

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B}$$

Linearity is not simple

- Key invariant of [AACMM21]: contexts are only ever. . .
 - added to (binding a variable)
 - accessed by the variable rule
- Motivates an abbreviated notation for typing rules.

$$\frac{\vdash A \to B \quad \vdash A}{\vdash B} \text{ App} \qquad \frac{x : A \vdash B}{\vdash A \to B} \text{ Lam}$$

Variables going out of scope:

$$\frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \otimes B}$$

Relying on details of the context: [Wad92]

$$\frac{!A_1,\ldots,!A_n\vdash B}{!A_1,\ldots,!A_n\vdash !B}$$

Semiring usage annotations

- Enrich the judgemental syntax to account for substructurality.
- \blacksquare $r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B$
- $r_1, ..., r_n \in \mathcal{R}$, where \mathcal{R} is a (partially ordered) semiring.
- Annotations can appear in types via !r.
- Generalises beyond linearity: [OLE19; AB20; WA21]
 - Linearity: $\mathcal{R} = (\{0, 1, \omega\}, \ldots)$
 - S4 modal logic: $\mathcal{R} = (\{\text{unused}, \text{true}, \text{valid}\}, \ldots)$
 - Monotonicity: $\mathcal{R} = (\{ \equiv, \uparrow, \downarrow, ?\}, \ldots)$
 - **Exact** usage-counting: $\mathscr{R} = (\mathbb{N}, =, +, \times)$

$$\frac{r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B \quad s_1x_1:A_1,\ldots,s_nx_n:A_n\vdash C}{(r_1+s_1)x_1:A_1,\ldots,(r_n+s_n)x_n:A_n\vdash B\otimes C}$$

$$\frac{r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B \quad s_1x_1:A_1,\ldots,s_nx_n:A_n\vdash C}{(r_1+s_1)x_1:A_1,\ldots,(r_n+s_n)x_n:A_n\vdash B\otimes C}$$

$$\frac{\mathcal{P}\gamma \vdash B \quad \mathcal{Q}\gamma \vdash C}{(\mathcal{P} + \mathcal{Q})\gamma \vdash B \otimes C}$$

$$\frac{r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B \quad s_1x_1:A_1,\ldots,s_nx_n:A_n\vdash C}{(r_1+s_1)x_1:A_1,\ldots,(r_n+s_n)x_n:A_n\vdash B\otimes C}$$

$$\frac{\mathcal{P}\gamma \vdash B \quad \mathcal{Q}\gamma \vdash C}{(\mathcal{P} + \mathcal{Q})\gamma \vdash B \otimes C}$$

$$\frac{\mathcal{P}\gamma \vdash B \qquad \mathcal{Q}\gamma \vdash C \qquad \mathcal{R} = \mathcal{P} + \mathcal{Q}}{\mathcal{R}\gamma \vdash B \otimes C}$$

$$\frac{r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B \quad s_1x_1:A_1,\ldots,s_nx_n:A_n\vdash C}{(r_1+s_1)x_1:A_1,\ldots,(r_n+s_n)x_n:A_n\vdash B\otimes C}$$

$$\frac{\mathcal{P}\gamma \vdash B \quad \mathcal{Q}\gamma \vdash C}{(\mathcal{P} + \mathcal{Q})\gamma \vdash B \otimes C}$$

$$\frac{\mathcal{P}\gamma \vdash B \qquad \mathcal{Q}\gamma \vdash C \qquad \mathcal{R} = \mathcal{P} + \mathcal{Q}}{\mathcal{R}\gamma \vdash B \otimes C}$$

$$\frac{\vdash B * \vdash C}{\vdash B \otimes C}$$

With-introduction

$$\frac{r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B \qquad r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash C}{r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B \& C}$$

With-introduction

$$\frac{r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B \qquad r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash C}{r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B \& C}$$

$$\frac{\mathcal{R}\gamma \vdash B \quad \mathcal{R}\gamma \vdash C}{\mathcal{R}\gamma \vdash B \& C}$$

With-introduction

$$\frac{r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B \qquad r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash C}{r_1x_1:A_1,\ldots,r_nx_n:A_n\vdash B \& C}$$

$$\frac{\mathcal{R}\gamma \vdash B \qquad \mathcal{R}\gamma \vdash C}{\mathcal{R}\gamma \vdash B \& C}$$

$$\frac{\vdash B \ \dot{\times} \ \vdash C}{\vdash B \& C}$$

$$\frac{s_1x_1:A_1,\ldots,s_nx_n:A_n\vdash B}{rs_1x_1:A_1,\ldots,rs_nx_n:A_n\vdash !rB}$$

$$\frac{s_1x_1:A_1,\ldots,s_nx_n:A_n\vdash B}{rs_1x_1:A_1,\ldots,rs_nx_n:A_n\vdash !rB}$$

$$\frac{\mathcal{P}\gamma \vdash A}{(r\mathcal{P})\gamma \vdash !rA}$$

$$\frac{s_1x_1:A_1,\ldots,s_nx_n:A_n\vdash B}{rs_1x_1:A_1,\ldots,rs_nx_n:A_n\vdash !rB}$$

$$\frac{P\gamma \vdash A}{(rP)\gamma \vdash !rA}$$

$$\frac{\mathcal{P}\gamma \vdash A \quad \mathcal{R} = r\mathcal{P}}{\mathcal{R}\gamma \vdash !rA}$$

$$\frac{s_1x_1:A_1,\ldots,s_nx_n:A_n\vdash B}{rs_1x_1:A_1,\ldots,rs_nx_n:A_n\vdash !rB}$$

$$\frac{\mathcal{P}\gamma \vdash A}{(r\mathcal{P})\gamma \vdash !rA} \qquad \frac{\mathcal{P}\gamma \vdash A \quad \mathcal{R} = r\mathcal{P}}{\mathcal{R}\gamma \vdash !rA}$$

$$\frac{r\cdot (\vdash A)}{\vdash !rA}$$

Plus-elimination

$$\frac{P\gamma \vdash A \oplus B \quad Q\gamma, 1A \vdash C \quad Q\gamma, 1B \vdash C}{(P+Q)\gamma \vdash C}$$

$$\frac{\vdash A \oplus B \quad * \quad (1A \vdash C \quad \dot{\times} \quad 1B \vdash C)}{\vdash C}$$

Syntax descriptions

Premises
$$ps, qs ::= \Delta \vdash A$$
 $\mid \dot{1} \mid ps \stackrel{.}{\times} qs \mid I^* \mid ps * qs \mid r \cdot ps$

Rule $r ::= \frac{ps}{\vdash A}$

System $s := \Sigma(Label : Set). \ Label \rightarrow Rule$

Resembles bunched logic [RBKV20].

Variables

Basis vector

$$\overline{\ldots, 0y_k : B_k, 1x : A, 0y_{k+1} : B_{k+1}, \ldots \vdash x : A}$$

$$\frac{|\gamma|\ni i \quad \gamma_i=A}{(\langle i|)\gamma\vdash A}$$

$$\exists A$$

 $\vdash A$

"System + variables = terms"

Instances

We have definitions (in Agda) of:

- Linear/quantitative STLC
- Core Granule
- Linear/non-linear type theory; A ::= lin X | int Y
 - Translations to and from L/nL and linear STLC
- Classical linear logic via $\mu \tilde{\mu}$; $A := command \mid term X \mid coterm X$

Moreover, we have substitution for any of these. . .

Substitution: intuitionistic

Let
$$\Delta = \Delta_1, \ldots, \Delta_n$$
.

$$\forall A. \ \Delta \ni A \to \Gamma \vdash A$$

Substitution: linear

Let
$$\Gamma = \mathcal{P}\gamma$$
 and $\Delta = \mathcal{Q}_1\delta_1, \dots, \mathcal{Q}_n\delta_n$.

$$\mathcal{P} = \sum_{i} \mathcal{Q}_{i} \Psi_{i}$$

Substitution: linear

Let
$$\Gamma = \mathcal{P}\gamma$$
 and $\Delta = \mathcal{Q}_1\delta_1, \dots, \mathcal{Q}_n\delta_n$.

$$\mathcal{P} = \sum_{i} \mathcal{Q}_{i} \Psi_{i}$$

i.e.

$$P = Q\Psi$$

Substitution

- A substitution is based around a *linear* transformation.
- Using the linearity, substitutions commute with addition and scaling.
- We can deal with bunched connectives, and also variable-binding, so substitution works.

Substitution

- A substitution is based around a *linear* transformation.
- Using the linearity, substitutions commute with addition and scaling.
- We can deal with bunched connectives, and also variable-binding, so substitution works.

Substitution generalises to traversal over terms...

- Replace \vdash by \exists to get *simultaneous renaming*.
- Replace ⊢ by semantic morphisms to get a denotational semantics.

Results

- Back in the room: AACMM-style semantic traversal follows.
 - Refine between \dot{x} and \dot{x} , and \dot{y} and \dot{x} .
- Renaming and substitution for all syntaxes we can describe
 - lacktriangle E.g: DILL, S4 modal logic, core Granule, L/nL, classical $\mu ilde{\mu}$
 - We add a \square connective for *duplicable* premises, e.g recursion.
- A generic usage elaborator for *all* these syntaxes
- Some tools for denotational semantics

Conclusions

https://github.com/laMudri/generic-lr/tree/display

- Lesson: we can adapt an intuitionistic framework when we understand...
 - the algebra of contexts, and
 - what it means to derive one context from another.
- Future work:
 - Explore expressibility of typing rules.
 - Try other substructural disciplines ~ other interpretations of the bunched connectives.
 - Proofs about renaming/substitution (fusion laws)
 - A generalisation of multicategories