Test 2

Ilya Yaroshevskiy

December 24, 2020

Contents

1	\mathbf{H} еоднородные n -го порядка	1
2	Неодноролные 2-го порядка	1
3	Системы	1
4	Устойчивость	2

1 Неоднородные n -го порядка

Читать больше

Уравнения вида $y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-2} y' + a_{n-1} y = f(x)$

Его решение будет $y=y_0+y_1$, где y_0 - решение соответствующего одноролного, а y_1 - частное(хуй его че значит) решение неоднородного Алгоритм

- 1. Находим $y_0 = C_1 Y_1 + C_2 Y_2 + \cdots + C_n Y_n$
- 2. Принимаем C_m за функцию от x. Решаем систему

$$\begin{cases} C'_1Y_1 + C'_2Y_2 + \dots + C'_nY_n = 0 \\ C'_1Y'_1 + C'_2Y'_2 + \dots + C'_nY'_n = 0 \end{cases}$$

$$\vdots$$

$$C'_1Y_1^{(n-1)} + C'_2Y_2^{(n-1)} + \dots + C'_nY_n^{(n-1)} = f(x)$$

Елси правая часть предсавляет собой $P_n(x)e^{\alpha x}$ или $(P_n(x)\sin(\beta x)+Q_m(x)\cos(\beta x))e^{\alpha x}$ Тогда ищем решение, например, так:

- 1. Для $f(x) = P_n(x)e^{\alpha x}$ $y_1 = x^sA_n(x)e^{\alpha x}$, где $A_n(x)$ многочлен той-же степени что и $P_n(x)$, коээффиценты ищем из кравнения $y_1 = f(x)$ Если α совпадает с каким либо корнем y_0 , то s равно кратности этого корня, иначе s=0
- 2. Для $f(x) = (P_n \sin(\beta x) + Q_m \cos(\beta x))e^{\alpha x}$, $y_1 = x^s (A_n \sin(\beta x) + B_m \cos(\beta x))e^{\alpha x}$ Остальное аналогично предыдущему пункту

2 Неодноролные 2-го порядка

Читать больше

3 Системы

Читать больше

4 Устойчивость

$$\begin{cases} \dot{x}=ax+by\\ \dot{y}=cx+dy\\ \begin{pmatrix} a & b\\ c & d \end{pmatrix}\\ \Re\lambda_1>0\ or\ \Re\lambda 2>0\ -\ \text{неустойчивоe}\\ v(t,x,y),\ v>0,\ x,y\neq 0,\ v(0)=0,\ \text{тогдa} .\end{cases}$$

- $\frac{dv}{dt} \leq 0$ устойчивость
- $\frac{dv}{dt} < 0$ ассимптотически устойчивость

Читать больше

Еще больше