

Dipartimento di Studi Linguistici e Culturali Comparati

Longitudinal influence of (meta)phonological skills on the typical and atypical reading development of monolingual and bilingual children in a shallow orthography

Emanuele Casani¹

Università Ca' Foscari Venezia

January 26, 2022 San Sebastián, Spain

INTRODUCTION

• Phonological (Hulme et al., 2015; Snowling, 2001) and metaphonological (Ball & Blachmann, 1988; Bradley, 1988; Frith, 1985; Hulme & Snowling, 1988; Lundberg et al., 1988; Morais, 1991) skills are deemed essential to reading development.

¹ emanuele.casani@unive.it

- Recent studies deem Rapid Automatized Naming (RAN) as a measure of automaticity (Norton & Wolf, 2012) rather than a subcomponent of phonological processing (Wagner et al. 1999).
- The existence of a possible bilingual advantage in executive functions (Adesope et al., 2010) and (meta)language (Bialystok, 2001) is vividly debated (Borragan et al., 2021; Lukasik et al., 2018; Paap et al., 2015).
- Longitudinal research about the influence of phonology and metaphonology on reading is scarce (Dehaene, 2009), notably in shallow-orthography languages (Zoccolotti, 2005) and bilingual populations (Casani, in preparation).

Scientific Objectives (SO)

The present research explores longitudinally

SO1. the differences btw. Italian mono and bilingual children in the typical development of (meta)phonology and reading

SO2. the (meta)phonological predictors of typical reading development in mono and bilinguals;

SO3. the (meta)phonological predictors of reading difficulties in mono and bilinguals;

SO4. the effects of a metaphonological and a RAN intervention on the typical reading development of mono and bilinguals;

SO5. the effects of a metaphonological and a RAN intervention on the atypical reading development of mono and bilinguals;

in the Italian shallow orthography

METHOD SO2

Participants, Materials,

and Procedures As in SO1

GMM(RM)s variable: reading scores

•fixed effects: (meta)phonological and RAN scores*administration

time •random effect: bilingualism

SO3 Participants: 49 children:

• 19 (12 mono+7 bilinguals) with reading/writing difficulties (< 2 SDs), 6 monitored from the last year of kindergarten to the 2nd grade+13 (reported by teachers for learning difficulties) monitored from the 1st to the 3rd grade;

30 typically developing children (17 mono+13 bilinguals included in SO1 and SO2) monitored from the last year of kindergarten to the 2nd grade.

Materials: as in SO1 and SO2

Procedures

- 5 testing sessions as in SO1 and SO2 (KG-1; KG-2; 1-1; 1-2; 2-1) for the 36 children monitored from kindergarten to the 2nd grade;
- 5 testing sessions (1-1; 1-2; 2-1; 2-2; 3-1) for the 13 children monitored from the 1st to the 3rd grade.
- **Analyses:** Logit GMMRMs
- variable: impaired/non-impaired ability
- fixed effects: (meta)phonological and RAN

random effects: mono/bilingualism and grade

Participants: as in SO1 and SO2

SO4

Materials

Testing: as in previous SOs *Interventions:* printed and digital materials adapted or prepared ad hoc.

Procedures Testing: as in SO1 and SO2 Intervention: 34 children (19 mono+15 bilinguals) attended a double cycle (last year of kindergarten+1st grade) of

- different training programs: • a **META** training (N = 12)
- a **RAN** training (N = 11)
- a graphic training (N = 11)
- A Control Group (**CG** = 96) did not attend any training.

Analyses: GMMRMs <u>variable</u>: reading test scores fixed effects:

Participants: as in SO3. Materials: as in SO4. Procedures

Testing: as in previous SOs

Intervention groups (N = 34):

META-1: 6 children (5 mono+1 bilinguals), monitored from 1st to 3rd grade, receiving one META intervention in 1st grade META-2: 9 children (6 mono+3 bilinguals) receiving a double metaphonological intervention (KG+1st grade) RAN: 10 children (6 mono+4 bilinguals) receiving a double RAN intervention. **GRAPH**: 9 children (7 mono+2 bilinguals)

SO5

receiving the double graphic intervention. CG: 10 children (6 mono+4 bilinguals) did not receive any intervention (7 monitored from the 1st to the 3rd grade and 3 from kindergarten to 2nd grade)

Analyses: Logit GMMs •<u>variable</u>: impaired/non-impaired ability •fixed effects: group

•random effects: mono/bilingualism and bilingualism(group)*test session

RESULTS

Sublex decoding:

similar btw. mono

bilinguals are slower

in 2nd grade and less

accurate in 1st grade

Bilingualism and bilinguals.

Text decoding:

than bilinguals.

SO2. (Meta)phonological predictors of typical reading development

SO4. Effects of metaphonological or RAN intervention on typical reading development

Dependent variable	Predictor	Coeff.*	StdErr	t	p	Conf. interval	
						lower	upper
Word decoding speed (syll/sec)	META (MONO)	0.213	0.096	2.225	0.038	0.013	0.414
	META (BI)	0.410	0.136	3.023	0.007	0.127	0.693
Word decoding errors (%)	META (MONO)	- 0.080	0.030	- 2.646	0.015	- 0.143	- 0.017
Pseudoword decoding speed (syll/sec)	META (MONO)	0.409	0.141	2.900	0.009	0.115	0.704
	META (BI)	0.399	0.163	2.450	0.024	0.059	0.739
Sublexical decoding speed (syll./sec.)	META*2-1 (MONO)	0.349	0.134	2.606	0.017	0.071	0.628
	META*2-1 (BI)	0.342	0.155	2.210	0.038	0.020	0.664
Sublexical decoding errors (%)	META*1-1 (BI)	- 1.088	0.521	- 2.089	0.042	- 2.133	- 0.043
Text decoding speed (syll/sec)	META*2-1 (MONO)	0.450	0.180	2.506	0.021	0.077	0.824
	META*1-2 (BI)	- 0.756	0.234	- 3.237	0.003	- 1.230	- 0.283
Text decoding errors (%)	META (MONO)	- 1.548	0.359	- 4.308	0.000	- 2.277	- 0.819
	RAN (MONO)	- 0.866	0.338	- 2.565	0.014	- 1.549	- 0.183
	RAN (BI)	- 0.937	0.277	- 3.377	0.002	- 1.499	- 0.374

- The double metaphonological intervention (kindergarten+1st grade) affected decoding speed and word decoding accuracy in typically developing children, with some differences btw. mono and bilinguals.
- The double RAN intervention affected text reading accuracy in 2nd grade.

This Ph.D. research was funded by the Italian Ministry for Education, University, and Research

SO5. Effects of metaphonological or RAN intervention on atypical reading development

OF READING DIFFICULTIES

Initial-syllable recognition -

global accuracy (Akaike) = 78%

sensitivity = 46%

specificity = 91%

SO3. KINDERGARTEN (META)PHONOLOGICAL PREDICTORS

0.264

→ Text decoding accuracy

F df1 df2 p Coeff. StdErr t

Conf. Interval

• The single metaphonological intervention (META-1) on 1stgraders reported for learning difficulties did not have effects. metaphonological The double (META-2) intervention

(kindergarten+1st grade) predicted fewer decoding accuracy problems.

DISCUSSION

(SO1) Pseudoword repetition and syllable segmentation might be used to test, respectively, phonological and global metaphonological skills of both mono and bilinguals since kindergarten, as the two groups did not show any significant differences in these two abilities. Bilinguals reach a comparable level as monolinguals in both metaphonological skills and RAN btw. the middle and the end of the 1st grade, thus suggesting that the bilinguals' initial difficulties are not due to a delay in their language development but to their reduced exposure to the Italian input. The only exception (phonemic verbal fluency), which is still problematic in 2nd grade for bilinguals, depends on their reduced vocabulary compared to monolinguals. Bilinguals' difficulties in decoding non-paroxytone words have the same reason. No bilingual advantage emerged, thus suggesting that the putative bilingual advantage has linguistic rather than cognitive nature (Borragan et al., 2021). (SO2) A developmental metaphonological pattern emerged (from global to analytical, from recognition to manipulation). Analytical metaphonological skills develop interactively with reading (Bradley & Bryant, 1983; Frost, 2006; Morais, 1991). Different measures of metaphonology and RAN predict different portions of reading (Zoccolotti et al., 2005), for both accuracy and speed. The role of RAN in reading emerges later than that of metaphonology, but relatively soon compared to more opaque orthographies (Norton & Wolf, 2012). This confirms RAN as a measure of automaticity and suggests that phonological processes are early automatized in the (Italian) shallow orthography (Norton & Wolf, 2012). (SO3) Initial-syllable recognition in kindergarten is a good longitudinal predictor of text decoding accuracy difficulties. High specificity suggests that children that are proficient in initial-syllable recognition in kindergarten are unlikely to experience text decoding accuracy problems in 2nd and 3rd grade. (SO4) The double metaphonological intervention increased decoding speed in mono and bilingual typically developing children, but accuracy only in monolinguals, who have larger Italian vocabulary. Both mono and bilinguals benefited from the double RAN intervention to increase text decoding accuracy, thus confirming RAN as a predictor of reading accuracy besides speed (Di Filippo et al., 2005). (SO5) Metaphonological interventions should be planned timely (in kindergarten) and reinforced during early literacy acquisition.

(MIUR) at Ca' Foscari University of Venice (2017 – 2021). The complete work will appear as Casani (in preparation), Literacy in Monolinguals and Bilinguals. Acquisition and Preliteracy Intervention in Italian. Berlin, DE: De Gruyter Mouton.