Himpunan

Pertemuan 4

Definisi

• Himpunan (set) adalah sekumpulan objek yang berbeda.

• Objek di dalam himpunan disebut elemen, unsur, atau anggota.

 Contoh: HMTIF adalah contoh sebuah himpunan, di dalamnya berisi anggota berupa mahasiswa IF dan SI. Tiap mahasiswa berbeda satu sama lain.

• Contoh: Satu set komputer desktop terdiri dari CPU, monitor, dan keyboard

• Himpunan mahasiswa

• Satu *set* mainan huruf (huruf besar dan kecil)

- Perhatikan bedanya:
 - $\{1, 2, 3, 4, 5, 6\} \rightarrow \text{Himpunan } (set)$
 - $\{1, 2, 2, 3, 4, 4, 4, 5, 6\} \rightarrow$ Himpunan-ganda (*multi-set*) \rightarrow perluasan konsep *set*
 - → Ada elemen yang berulang (ganda)
 - → Dibahas dalam sub-bab tersendiri
- Urutan elemen di dalam himpunan tidak penting

$${a, b, c, d} = {d, b, a, c} = {c, a, d, b}$$

- Perulangan elemen hanya dihitung satu kali, kecuali jiak disebut sebagai multiset
 {1, 2, 2, 3, 4, 4, 4, 5, 6} = {1, 2, 3, 4, 5, 6}
- Setiap elemen di dalam himpunan tidak harus berkorelasi satu sama lain, yang penting BERBEDA satu sama lain
 - { 56, Rp3000, Amir, cacing, Silver Queen, -45° C, paku}

Cara Penyajian Himpunan

1. Enumerasi

Setiap anggota himpunan didaftarkan secara rinci.

- Himpunan empat bilangan asli pertama: A = {1, 2, 3, 4}.
- Himpunan lima bilangan genap positif pertama: B = {4, 6, 8, 10}.
- *C* = {kucing, *a*, Amir, 10, paku}
- $R = \{a, b, \{a, b, c\}, \{a, c\}\}$
- $C = \{a, \{a\}, \{\{a\}\}\}\}$
- $K = \{ \{ \} \}$
- Himpunan 100 buah bilangan asli pertama: {1, 2, ..., 100 }
- Himpunan bilangan bulat ditulis sebagai {..., -2, -1, 0, 1, 2, ...}.

Keanggotaan

 $x \in A$: x merupakan anggota himpunan A;

 $x \notin A$: x bukan merupakan anggota himpunan A.

• Contoh. Misalkan:

$$A = \{1, 2, 3, 4\}, R = \{a, b, \{a, b, c\}, \{a, c\}\}\$$
 $K = \{\{\}\}$

maka

$$3 \in A$$

 $\{a, b, c\} \in R$
 $c \notin R$

$$\{\}\in K$$

Contoh . Jika
$$P_1 = \{a, b\},\$$

$$P_2 = \{ \{a, b\} \},$$

$$P_3 = \{\{\{a, b\}\}\},\$$

maka

$$a \in P_1$$

$$a \notin P_2$$

$$P_1 \in P_2$$

$$P_1 \notin P_3$$

$$P_2 \in P_3$$

2. <u>Simbol-simbol Baku</u>

```
P = himpunan bilangan bulat positif = \{1, 2, 3, ...\}

N = himpunan bilangan alami (natural) = \{1, 2, ...\}

Z = himpunan bilangan bulat = \{..., -2, -1, 0, 1, 2, ...\}

Z<sup>+</sup> = himpunan bilangan bulat positif = \{1, 2, 3, ...\}

Q = himpunan bilangan rasional = \{a/b \mid a, b \in \mathbf{Z} \text{ dan } b \neq 0\}

= \{..., -3/4, -4/5, 2/3, 1/2, ...\} = \{..., -0.6, -0.8, 0.666..., 0.5, ...\}

R = himpunan bilangan riil

R<sup>+</sup> = himpunan bilangan kompleks = \{a + bi \mid a, b \in \mathbf{R}\}
```

Himpunan yang universal: **semesta pembicaraan**, disimbolkan dengan U atau S. Contoh: Misalkan U = $\{1, 2, 3, 4, 5\}$ dan A adalah himpunan bagian dari U, dengan $A = \{1, 3, 5\}$.

3. Notasi Pembentuk Himpunan

• Notasi: { x | syarat yang harus dipenuhi oleh x }

- (i) A adalah himpunan bilangan bulat positif kecil dari 5 ditulis sebagai $A = \{x \mid x \text{ adalah bilangan bulat positif lebih kecil dari 5}$ atau $A = \{x \mid x \in P, x < 5\} = \{1, 2, 3, 4\}$
- (ii) $M = \{x \mid x \text{ adalah mahasiswa yang mengambil mata kuliah } Matematika Diskret\}$

4. <u>Diagram Venn</u>

Contoh.

Misalkan U =
$$\{1, 2, ..., 7, 8\}$$
,
 $A = \{1, 2, 3, 5\}$ dan $B = \{2, 5, 6, 8\}$.

Diagram Venn:

Kardinalitas

Jumlah elemen di dalam A disebut **kardinal** dari himpunan A. Notasi: n(A) atau A

```
(i) B = \{x \mid x \text{ merupakan bilangan prima lebih kecil dari } 20 \}, atau B = \{2, 3, 5, 7, 11, 13, 17, 19\} maka |B| = n(B) = 8 (ii) T = \{\text{kucing, } a, \text{Amir, } 10, \text{ paku, laptop}\}, maka |T| = 6 (iii) A = \{2, \{2, 3\}, \{4\}, 6, \{\{7\}\}\}\}, maka |A| = 5 (iv) C = \emptyset, maka n(C) = 0 (v) D = \{x \in \mathbb{N} \mid x < 5000 \}, maka n(D) = 4999 (vi) D = \{x \in \mathbb{N} \mid x \ge 5000 \}, maka n(D) tak berhingga
```

Himpunan kosong (null set)

- Himpunan dengan kardinal = 0 disebut himpunan kosong (null set).
- Notasi : Ø atau {}

- (i) $E = \{x \mid x < x\}$, maka n(E) = 0(ii) $P = \{$ orang Indonesia yang pernah ke bulan $\}$, maka n(P) = 0(iii) $A = \{x \mid x \text{ adalah akar riil persamaan kuadrat } x^2 + 1 = 0 \}$, n(A) = 0
- himpunan {{ }} dapat juga ditulis sebagai {∅}
- himpunan $\{\{\}, \{\{\}\}\}\}$ dapat juga ditulis sebagai $\{\emptyset, \{\emptyset\}\}$
- $\{\emptyset\}$ bukan himpunan kosong karena ia memuat satu elemen yaitu \emptyset .

Himpunan Bagian (Subset)

- Notasi: $A \subseteq B$
- **Defenisi:** Himpunan *A* dikatakan himpunan bagian dari himpunan *B* jika dan hanya jika setiap elemen *A* merupakan elemen dari *B*.

- Secara formal: $A \subseteq B \Leftrightarrow \forall x (x \in A \rightarrow x \in B)$
- A adalah subset dari B.
 Dalam hal ini, B dikatakan superset dari A,
 B ⊃ A


```
(i) \{1, 2, 3\} \subseteq \{1, 2, 3, 4, 5\}
(ii) \{1, 2, 3\} \subset \{1, 2, 3\}
(iii) N \subset Z \subset R \subset C
(iv) Jika A = \{ (x, y) \mid x + y < 4, x \ge, y \ge 0 \} dan
     B = \{ (x, y) \mid 2x + y < 4, x \ge 0 \text{ dan } y \ge 0 \}, \text{ maka } B \subset A.
(v) A = \{3, 9\}, B = \{5, 9, 1, 3\}, A \subset B?
                                                                     Benar
(vi) A = \{3, 3, 3, 9\}, B = \{5, 9, 1, 3\}, A \subset B?
                                                                     Benar
(vii) A = \{1, 2, 3\}, B = \{2, 3, 4\}, A \subset B ?
                                                                     salah
```

Perhatikan bahwa:

 $\emptyset \subseteq A$ untuk sembarang himpunan A $A \subseteq A$ untuk sembarang himpunan A

• $\varnothing \subseteq A$ dan $A \subseteq A$, maka \varnothing dan A disebut himpunan bagian tak-sebenarnya (improper subset) dari himpunan A.

Contoh: $A = \{1, 2, 3\}$, maka $\{1, 2, 3\}$ dan \emptyset adalah *improper subset* dari A. $\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}$ adalah *proper subset* dari A

- A dikatakan himpunan bagian sejati (proper subset) dari B jika:
 - (i) setiap elemen dari A juga elemen dari B, dan
 - (ii) sekurang-kurangnya ada satu elemen di B yang tidak ada di A

- Perhatikan bahwa penulisan $A \subseteq B$ berbeda dengan $A \subset B$
- (i) $A \subset B$: digunakan untuk menekankan bahwa A adalah himpunan bagian dari B tetapi $A \neq B$.
 - A disebut himpunan bagian sejati (proper subset) dari B.
 - Contoh: {1} dan {2, 3} adalah proper subset dari {1, 2, 3}
 Jadi, {1} ⊂ {1, 2, 3}, {2, 3} ⊂ {1, 2, 3}
- (ii) $A \subseteq B$: digunakan untuk menekankan bahwa A adalah himpunan bagian dari B yang memungkinkan A = B.
 - Contoh: {1, 2, 3} ⊆ { himpunan bilangan asli < 4}
 {1, 2, 3} adalah improper subset dari { himpunan bilangan asli < 4}

• Latihan

Misalkan $A = \{1, 2, 3\}$ dan $B = \{1, 2, 3, 4, 5\}$. Tentukan semua kemungkinan himpunan C sedemikian sehingga $A \subset C$ dan $C \subset B$, yaitu A adalah *proper subset* dari C dan C adalah *proper subset* dari C.

Jawaban:

Data: A = $\{1, 2, 3\}$ dan B = $\{1, 2, 3, 4, 5\}$, lalu A \subset C dan C \subset B

C harus mengandung semua elemen $A = \{1, 2, 3\}$ dan sekurang-kurangnya satu elemen dari B.

Dengan demikian, $C = \{1, 2, 3, 4\}$ atau $C = \{1, 2, 3, 5\}$.

C tidak boleh memuat 4 dan 5 sekaligus karena C adalah proper subset dari B.

• Jika $A \subseteq B$ dan $B \subseteq C$ maka $A \subseteq C$

Latihan

- 1. Misalkan $A = \{5\}$ dan $B = \{5, \{5\}\}$.
 - (a) Apakah $A \subseteq B$? Jelaskan!
 - (b) Apakah $A \in B$? Jelaskan!
 - (c) Apakah A adalah himpunan bagian sebenarnya (proper subset) dari B?
- 2. Tentukan apakah pernyataan di bawah ini benar atau salah:
 - (a) $\{\emptyset\} \subseteq \{\emptyset\}$
 - (b) $\emptyset \in \{\emptyset\}$
 - (c) $\{\emptyset\} \in \{\emptyset\}$
 - (d) $\{a, b\} \subseteq \{a, b, \{\{a, b\}\}\}\$
 - (e) Jika $A \subseteq B$ dan $B \in C$, maka $A \in C$
 - (f) Jika $A \in B$ dan $B \subseteq C$, maka $A \in C$.
 - (g) Jika $A = \{\emptyset, \{\emptyset\}\}$, maka $\emptyset \in 2^A$
 - (h) Jika $A = \{\emptyset, \{\emptyset\}\}, \text{ maka } \{\{\emptyset\}\} \subseteq 2^A$

Himpunan yang Sama

• **Defenisi:** A = B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B merupakan elemen A.

• A = B jika A adalah himpunan bagian dari B dan B adalah himpunan bagian dari A. Jika tidak demikian, maka $A \neq B$.

• Notasi : $A = B \leftrightarrow A \subseteq B \text{ dan } B \subseteq A$

- (i) Jika $A = \{0, 1\}$ dan $B = \{x \mid x (x 1) = 0\}$, maka A = B
- (ii) Jika $A = \{3, 5, 8\}$ dan $B = \{5, 3, 8\}$, maka A = B
- (iii) Jika $A = \{3, 5, 5, 5, 8, 8\}$ dan $B = \{5, 3, 8\}$, maka A = B
- (iv) Jika $A = \{3, 5, 8, 5\}$ dan $B = \{3, 8\}$, maka $A \neq B$
- (iv) $A = \{anjing, kucing, kuda\}, B = \{kucing, kuda, tupai, anjing\}, maka <math>A \neq B$
- Untuk tiga buah himpunan, A, B, dan C berlaku aksioma berikut:
 - (a) A = A, B = B, dan C = C
 - (b) jika A = B, maka B = A
 - (c) jika A = B dan B = C, maka A = C

Himpunan yang Ekivalen

• **Defenisi:** Himpunan *A* dikatakan ekivalen dengan himpunan *B* jika dan hanya jika kardinal dari kedua himpunan tersebut sama.

• Notasi :
$$A \sim B \leftrightarrow |A| = |B|$$

Contoh. Misalkan
$$A = \{ 1, 3, 5, 7 \}$$
 dan $B = \{ a, b, c, d \}$, maka $A \sim B$ sebab $|A| = |B| = 4$

Himpunan Saling Lepas

• **Defenisi:** Dua himpunan A dan B dikatakan saling lepas (*disjoint*) jika keduanya tidak memiliki elemen yang sama.

Notasi : A // B

• Diagram Venn:

Contoh. Jika $A = \{ x \mid x \in P, x < 8 \} \text{ dan } B = \{ 10, 20, 30, ... \}, \text{ maka } A // B.$

Himpunan Kuasa

- **Defenisi:** Himpunan kuasa (*power set*) dari himpunan A adalah suatu himpunan yang elemennya merupakan semua himpunan bagian dari A.
- Notasi: P(A) atau 2^A
- Jika |A| = m, maka $|P(A)| = 2^m$.

Contoh. Jika A = { 1, 2 }, maka P(A) =
$$2^A = {\emptyset, {1}, {2}, {1, 2}}$$
, dan $|P(A)| = 2^2 = 4$

Contoh. Himpunan kuasa dari himpunan kosong adalah $P(\emptyset) = {\emptyset}$, dan himpunan kuasa dari himpunan ${\emptyset}$ adalah $P({\emptyset}) = {\emptyset}$, ${\emptyset}$.

Operasi Terhadap Himpunan

1. Irisan (intersection)

• Notasi : $A \cap B = \{ x \mid x \in A \text{ dan } x \in B \}$

- (i) Jika $A = \{2, 4, 6, 8, 10\}$ dan $B = \{4, 10, 14, 18\}$, maka $A \cap B = \{4, 10\}$
- (ii) Jika $A = \{ 3, 5, 9 \}$ dan $B = \{ -2, 6 \}$, maka $A \cap B = \emptyset$. Artinya: A // B

2. Gabungan (union)

• Notasi : $A \cup B = \{ x \mid x \in A \text{ atau } x \in B \}$

Contoh.

(i) Jika $A = \{ 2, 5, 8 \}$ dan $B = \{ 7, 5, 22 \}$, maka $A \cup B = \{ 2, 5, 7, 8, 22 \}$

(ii)
$$A \cup \emptyset = A$$

3. Komplemen (complement)

• Notasi : $\overline{A} = \{ x \mid x \in U, x \notin A \}$

(Keterangan: \overline{A} sering ditulis juga dengan notasi A^{C} atau A')

Contoh.

Misalkan $U = \{ 1, 2, 3, ..., 9 \},$

- (i) jika $A = \{1, 3, 7, 9\}$, maka $\overline{A} = \{2, 4, 6, 8\}$
- (ii) jika $A = \{ x \mid x/2 \in P, x < 9 \}$, maka $\overline{A} = \{ 1, 3, 5, 7, 9 \}$

Contoh. Misalkan:

A = himpunan semua mobil buatan dalam negeri

B = himpunan semua mobil impor

C = himpunan semua mobil yang dibuat sebelum tahun 1990

D = himpunan semua mobil yang nilai jualnya kurang dari Rp 100 juta

E = himpunan semua mobil milik mahasiswa universitas tertentu

- (i) "mobil mahasiswa di universitas ini produksi dalam negeri atau diimpor dari luar negeri" \Rightarrow $(E \cap A) \cup (E \cap B)$ atau $E \cap (A \cup B)$
- (ii) "semua mobil produksi dalam negeri yang dibuat sebelum tahun 1990 yang nilai jualnya kurang dari Rp 100 juta" $\rightarrow A \cap C \cap D$
- (iii) "semua mobil impor buatan setelah tahun 1990 mempunyai nilai jual lebih dari Rp 100 juta" $\rightarrow \overline{C} \cap \overline{D} \cap B$

4. Selisih (difference)

• Notasi : $A - B = \{ x \mid x \in A \text{ dan } x \notin B \} = A \cap \overline{B}$

- (i) Jika $A = \{ 1, 2, 3, ..., 10 \}$ dan $B = \{ 2, 4, 6, 8, 10 \}$, maka $A B = \{ 1, 3, 5, 7, 9 \}$ dan $B A = \emptyset$
- (ii) $\{1, 3, 5\} \{1, 2, 3\} = \{5\}$, tetapi $\{1, 2, 3\} \{1, 3, 5\} = \{2\}$

5. Beda Setangkup (Symmetric Difference)

• Notasi: $A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$

Contoh.

Jika $A = \{ 2, 4, 6 \}$ dan $B = \{ 2, 3, 5 \}$, maka $A \oplus B = \{ 3, 4, 5, 6 \}$

Contoh. Misalkan

U = himpunan mahasiswa

P = himpunan mahasiswa yang nilai ujian UTS di atas 80

Q = himpunan mahasiswa yang nilain ujian UAS di atas 80

Seorang mahasiswa mendapat nilai A jika nilai UTS dan nilai UAS keduanya di atas 80, mendapat nilai B jika salah satu ujian di atas 80, dan mendapat nilai C jika kedua ujian di bawah 80.

- (i) "Semua mahasiswa yang mendapat nilai A": $P \cap Q$
- (ii) "Semua mahasiswa yang mendapat nilai B" : $P \oplus Q$
- (iii) "Semua mahasiswa yang mendapat nilai C": $U (P \cup Q)$

TEOREMA 2. Beda setangkup memenuhi sifat-sifat berikut:

 $(a) A \oplus B = B \oplus A$

(hukum komutatif)

(b) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

(hukum asosiatif)

Latihan

Misalkan X adalah himpunan mahasiswa IF, Y adalah mahasiswa yang mengambil kuliah Matematika Diskrit (Matdis), dan Z adalah mahasiswa yang menyukai mata kuliah Matdis. Buatlah ekspresi matematika himpunan dari pernyataan berikut dalam istilah X, Y, dan Z.

- a. Himpunan mahasiswa IF yang tidak menyukai kuliah Matdis
- b. Himpunan mahasiswa IF yang tidak mengambil kuliah Matdis tetapi menyukainya
- c. Himpunan mahasiswa ITB bukan IF yang mengambil kuliah Matdis atau menyukai kuliah Matdis
- d. Himpunan mahasiswa ITB yang bukan merupakan mahasiswa IF atau yang tidak mengambil kuliah Matdis atau yang tidak menyukai kuliah Matdis