

Background Info

Youtube: @1bit2far

Github:github.com/krisciu/SurvivingtheSingularity

Course Resource:https://d2l.ai

Classification

One-Hot Encoding

One-Hot Encoding

One-Hot Encoding

Neural Network Model

Neural Network Model

$$O_1 = x_1 w_{11} + x_2 w_{12} + x_3 w_{13} + b_1$$

$$O_2 = x_1 w_{21} + x_2 w_{22} + x_3 w_{23} + b_2$$

Problem: Want to calculate probability a given feature is a class, but we only have difficult-to-decipher output numbers

Problem: Want to calculate probability a given feature is a class, but we only have difficult-to-decipher output numbers

$$f(x)_{i} = \frac{e^{x_{i}}}{\sum_{j=1}^{K} e^{x_{j}}}$$

Problem: Want to calculate probability a given feature is a class, but we only have difficult-to-decipher output numbers

Forces the output to be greater than 0

$$f(x)_{i} = \frac{e^{x_{i}}}{\sum_{j=1}^{K} e^{x_{j}}}$$

Problem: Want to calculate probability a given feature is a class, but we only have difficult-to-decipher output numbers

Normalizes the output so it adds up to 1 by dividing by sum

Forces the output to be greater than 0

$$f(x)_{i} = \frac{e^{x_{i}}}{\sum_{j=1}^{K} e^{x_{j}}}$$

Cross-Entropy Loss

$$loss(E,A) = -\sum_{j=1}^{K} A_{j} log E_{j}$$

BEEG Data

BEEG Data

MNIST

Absolute Classic
Used as a sanity check today
Fashion-MNIST used fairly commonly today
60k training set – 10k testing set

BEEG Data

MNIST

Absolute Classic
Used as a sanity check today
Fashion-MNIST used fairly commonly today
60k training set – 10k testing set

IMAGENET

Modern Standard > 14M images

Typically use subsets of 1.2M training 150k testing set

Softmax Regression Lab

Common Problems

Covariate Shift

This is a Fox!

Covariate Shift

This is a Fox!

Core labeling function/model does not change...

Covariate Shift

This is a Fox!

This is a Mutant!

Core labeling function/model does not change...

But input does!

Concept Shift

This is a Cool dude!

Definitions change over time

Concept Shift

This is a Cool dude!

Lame Alert!

Definitions change over time

Distributions are nonstationary

Questions?