Discrete Mathematics

Chapter 5: Counting

Department of Mathematics
The FPT university

Topics covered:

Topics covered:

5.1 The Basics of Counting

Topics covered:

5.1 The Basics of Counting

The sum rule - The Inclusion-exclusion Principle

The sum rule - The Inclusion-exclusion Principle

• Let A and B be two disjoint sets. Then

The sum rule - The Inclusion-exclusion Principle

• Let A and B be two disjoint sets. Then $|A \cup B| = |A| + |B|$

The sum rule - The Inclusion-exclusion Principle

- Let A and B be two disjoint sets. Then $|A \cup B| = |A| + |B|$
- Let A and B be two arbitrary sets. Then:

The sum rule - The Inclusion-exclusion Principle

- Let A and B be two disjoint sets. Then $|A \cup B| = |A| + |B|$
- Let A and B be two arbitrary sets. Then:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

The sum rule - The Inclusion-exclusion Principle

- Let A and B be two disjoint sets. Then $|A \cup B| = |A| + |B|$
- Let A and B be two arbitrary sets. Then:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Example 1.

The sum rule - The Inclusion-exclusion Principle

- Let A and B be two disjoint sets. Then $|A \cup B| = |A| + |B|$
- Let A and B be two arbitrary sets. Then:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Example 1. A class has 24 male students and 2 female students.

The sum rule - The Inclusion-exclusion Principle

- Let A and B be two disjoint sets. Then $|A \cup B| = |A| + |B|$
- Let A and B be two arbitrary sets. Then:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick some one from this class to be a representative to University's Student council is

The sum rule - The Inclusion-exclusion Principle

- Let A and B be two disjoint sets. Then $|A \cup B| = |A| + |B|$
- Let A and B be two arbitrary sets. Then:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick some one from this class to be a representative to University's Student council is 24+2=26.

The sum rule - The Inclusion-exclusion Principle

- Let A and B be two disjoint sets. Then $|A \cup B| = |A| + |B|$
- Let A and B be two arbitrary sets. Then:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick some one from this class to be a representative to University's Student council is 24+2=26.

Example 2. (Counting numbers)

Example 3.

Example 3. Count:

(a) The number of positive integers not exceeding 1000 and divisible by 12

- (a) The number of positive integers not exceeding 1000 and divisible by 12
- (b) The number of positive integers less than 1000, greater than 100 and divisible by 12

- (a) The number of positive integers not exceeding 1000 and divisible by 12
- (b) The number of positive integers less than 1000, greater than 100 and divisible by 12
- (c) The number of integers not exceeding 1000 and divisible by 12 or 8

- (a) The number of positive integers not exceeding 1000 and divisible by 12
- (b) The number of positive integers less than 1000, greater than 100 and divisible by 12
- (c) The number of integers not exceeding 1000 and divisible by 12 or 8
- (d) The number of positive integers less than 1000, divisible by 12 but not divisible by 8.

Let A and B be two sets. Then

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1.

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students.

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$

Example 2.

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$

Example 2. The number of bit strings of length n is

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$

Example 2. The number of bit strings of length n is 2^n .

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$

Example 2. The number of bit strings of length n is 2^n .

Example 3.

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$

Example 2. The number of bit strings of length n is 2^n .

Example 3. Count the number of bit strings of length 7 and either starts with a 0 or ends with the two bits 10.

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$

Example 2. The number of bit strings of length n is 2^n .

Example 3. Count the number of bit strings of length 7 and either starts with a 0 or ends with the two bits 10.

Example 4. (Counting functions)

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$

Example 2. The number of bit strings of length n is 2^n .

Example 3. Count the number of bit strings of length 7 and either starts with a 0 or ends with the two bits 10.

Example 4. (Counting functions) Count:

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$

Example 2. The number of bit strings of length n is 2^n .

Example 3. Count the number of bit strings of length 7 and either starts with a 0 or ends with the two bits 10.

Example 4. (Counting functions) Count:

(a) The number of functions from a set of 5 elements to a set of 3 elements

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

Example 1. A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$

Example 2. The number of bit strings of length n is 2^n .

Example 3. Count the number of bit strings of length 7 and either starts with a 0 or ends with the two bits 10.

Example 4. (Counting functions) Count:

- (a) The number of functions from a set of 5 elements to a set of 3 elements
- (b) The number of one-to-one functions from a set of 5 elements to a set of 3 elements

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

- **Example 1.** A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$
- **Example 2.** The number of bit strings of length n is 2^n .
- **Example 3.** Count the number of bit strings of length 7 and either starts with a 0 or ends with the two bits 10.
- **Example 4.** (Counting functions) Count:
- (a) The number of functions from a set of 5 elements to a set of 3 elements
- (b) The number of one-to-one functions from a set of 5 elements to a set of 3 elements
- (c) The number of one-to-one functions from a set of 3 elements to a set of 5 elements

Let A and B be two sets. Then $|A \times B| = |A| \cdot |B|$

- **Example 1.** A class has 24 male students and 2 female students. The number of choices to pick a pair of one male and one female student for a dancing contest is $24 \times 2 = 48$
- **Example 2.** The number of bit strings of length n is 2^n .
- **Example 3.** Count the number of bit strings of length 7 and either starts with a 0 or ends with the two bits 10.
- **Example 4.** (Counting functions) Count:
- (a) The number of functions from a set of 5 elements to a set of 3 elements
- (b) The number of one-to-one functions from a set of 5 elements to a set of 3 elements
- (c) The number of one-to-one functions from a set of 3 elements to a set of 5 elements