CS 747, Autumn 2020: Week 6, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2020

MDPs: Weeks 4 and 5

- 1. MDP, policy, value function
- 2. MDP planning
- 3. Alternative formulations
- 4. Applications
- 5. Policy Evaluation
- Banach's Fixed-point theorem
- Bellman optimality operator
- 8. Value Iteration
- 9. Linear Programming

Markov Decision Problems

- 1. Policy Iteration
 - Policy evaluation (review)
 - Policy improvement
 - Algorithm and variants
- 2. Proof of Policy Improvement Theorem
 - Bellman operator
 - Proof
- Computational complexity of MDP planning
- 4. Summary

Markov Decision Problems

- 1. Policy Iteration
 - Policy evaluation (review)
 - Policy improvement
 - Algorithm and variants
- 2. Proof of Policy Improvement Theorem
 - Bellman operator
 - Proof
- Computational complexity of MDP planning
- 4. Summary

Recall that for MDP (S, A, T, R, γ) and policy π : S → A, value function V^π : S → R and action value function Q^π : S × A → R are obtained as below.

- Recall that for MDP (S, A, T, R, γ) and policy $\pi: S \to A$, value function $V^{\pi}: S \to \mathbb{R}$ and action value function $Q^{\pi}: S \times A \to \mathbb{R}$ are obtained as below.
- For $s \in S$:

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \}.$$

- Recall that for MDP (S, A, T, R, γ) and policy $\pi: S \to A$, value function $V^{\pi}: S \to \mathbb{R}$ and action value function $Q^{\pi}: S \times A \to \mathbb{R}$ are obtained as below.
- For $s \in S$:

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \}.$$

• For $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\pi}(s') \}.$$

- Recall that for MDP (S, A, T, R, γ) and policy $\pi: S \to A$, value function $V^{\pi}: S \to \mathbb{R}$ and action value function $Q^{\pi}: S \times A \to \mathbb{R}$ are obtained as below.
- For $s \in S$:

$$V^{\pi}(s) = \sum_{s' \in S} T(s, \pi(s), s') \{ R(s, \pi(s), s') + \gamma V^{\pi}(s') \}.$$

• For $s \in S$, $a \in A$:

$$Q^{\pi}(s, a) = \sum_{s' \in S} T(s, a, s') \{ R(s, a, s') + \gamma V^{\pi}(s') \}.$$

• V^{π} and Q^{π} computable in poly(n, k) arithmetic operations.

Given π ,

Pick one or more improvable states, and in them, Switch to an arbitrary improving action.

Let the resulting policy be π' .

Given π ,

Pick one or more improvable states, and in them, Switch to an arbitrary improving action.

Let the resulting policy be π' .

• For $\pi \in \Pi$, $s \in S$,

$$extbf{IA}(\pi, s) \stackrel{ ext{def}}{=} \{ a \in \mathcal{A} : Q^{\pi}(s, a) > V^{\pi}(s) \}.$$

• For $\pi \in \Pi$, $s \in S$,

$$\mathsf{IA}(\pi, s) \stackrel{\mathsf{def}}{=} \{ a \in \mathsf{A} : Q^{\pi}(s, a) > V^{\pi}(s) \}.$$

• For $\pi \in \Pi$,

$$\mathbf{IS}(\pi) \stackrel{\text{def}}{=} \{ s \in S : |\mathbf{IA}(\pi, s)| \geq 1 \}.$$

• For $\pi \in \Pi$, $s \in S$,

$$\mathsf{IA}(\pi, s) \stackrel{\mathsf{def}}{=} \{ a \in \mathsf{A} : Q^{\pi}(s, a) > V^{\pi}(s) \}.$$

• For $\pi \in \Pi$,

$$\mathbf{IS}(\pi) \stackrel{\text{def}}{=} \{ s \in S : |\mathbf{IA}(\pi, s)| \geq 1 \}.$$

• Suppose $IS(\pi) \neq \emptyset$ and $\pi' \in \Pi$ is obtained by policy improvement on π . Thus, π' satisfies

$$\forall s \in S : \pi'(s) = \pi(s) \text{ or } \pi'(s) \in IA(\pi, s), \text{ and } \exists s \in S : \pi'(s) \in IA(\pi, s).$$

• For $\pi \in \Pi$, $s \in S$,

$$extbf{IA}(\pi, s) \stackrel{ ext{def}}{=} \{ a \in \mathcal{A} : Q^{\pi}(s, a) > V^{\pi}(s) \}.$$

• For $\pi \in \Pi$.

$$\mathbf{IS}(\pi) \stackrel{\text{def}}{=} \{ s \in S : |\mathbf{IA}(\pi, s)| \geq 1 \}.$$

• Suppose $IS(\pi) \neq \emptyset$ and $\pi' \in \Pi$ is obtained by policy improvement on π . Thus, π' satisfies

$$\forall s \in S : \pi'(s) = \pi(s) \text{ or } \pi'(s) \in \mathbf{IA}(\pi, s), \text{ and } \exists s \in S : \pi'(s) \in \mathbf{IA}(\pi, s).$$

- (1) If $IS(\pi) = \emptyset$, then π is optimal, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.

- (1) If $IS(\pi) = \emptyset$, then π is optimal, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.

- (1) If $IS(\pi) = \emptyset$, then π is optimal, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.

- (1) If $IS(\pi) = \emptyset$, then π is optimal, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.
- But Π has a finite number of policies (k^n) .

- (1) If $IS(\pi) = \emptyset$, then π is optimal, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.
- But Π has a finite number of policies (k^n) .
- Hence, there must exist a policy $\pi^* \in \Pi$ such that $\mathbf{IS}(\pi^*) = \emptyset$.

- (1) If $IS(\pi) = \emptyset$, then π is optimal, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.
- But Π has a finite number of policies (k^n) .
- Hence, there must exist a policy $\pi^* \in \Pi$ such that $\mathbf{IS}(\pi^*) = \emptyset$.
- The theorem itself also tells us that π^* must be optimal.

- (1) If $IS(\pi) = \emptyset$, then π is optimal, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.
- But Π has a finite number of policies (k^n) .
- Hence, there must exist a policy $\pi^* \in \Pi$ such that $\mathbf{IS}(\pi^*) = \emptyset$.
- The theorem itself also tells us that π^* must be optimal.
- Observe that $\mathbf{IS}(\pi^*) = \emptyset \iff B^*(V^{\pi^*}) = V^{\pi^*}$.

- (1) If $IS(\pi) = \emptyset$, then π is optimal, else
- (2) if π' is obtained by policy improvement on π , then $\pi' \succ \pi$.
- If $\pi \in \Pi$ is such that $\mathbf{IS}(\pi) \neq \emptyset$, then there exists $\pi' \in \Pi$ such that $\pi' \succ \pi$.
- But Π has a finite number of policies (k^n) .
- Hence, there must exist a policy $\pi^* \in \Pi$ such that $\mathbf{IS}(\pi^*) = \emptyset$.
- The theorem itself also tells us that π^* must be optimal.
- Observe that $\mathbf{IS}(\pi^*) = \emptyset \iff B^*(V^{\pi^*}) = V^{\pi^*}$.
- In other words, V^{π^*} satisfies the Bellman optimality equations—which we know has a unique solution. It is a convention to denote $V^{\pi^*} = V^*$.

 $\pi \leftarrow$ Arbitrary policy. **While** π has improvable states: $\pi' \leftarrow$ PolicyImprovement(π); $\pi \leftarrow \pi'$. **Return** π .

 $\pi \leftarrow$ Arbitrary policy.

While π has improvable states:

 $\pi' \leftarrow \mathsf{PolicyImprovement}(\pi); \pi \leftarrow \pi'.$

 $\pi \leftarrow$ Arbitrary policy.

While π has improvable states:

 $\pi' \leftarrow \mathsf{PolicyImprovement}(\pi); \pi \leftarrow \pi'.$

 $\pi \leftarrow$ Arbitrary policy.

While π has improvable states:

 $\pi' \leftarrow \mathsf{PolicyImprovement}(\pi); \pi \leftarrow \pi'.$

 $\pi \leftarrow$ Arbitrary policy.

While π has improvable states:

 $\pi' \leftarrow \mathsf{PolicyImprovement}(\pi); \pi \leftarrow \pi'.$

 $\pi \leftarrow$ Arbitrary policy.

While π has improvable states:

 $\pi' \leftarrow \mathsf{PolicyImprovement}(\pi); \pi \leftarrow \pi'.$

 $\pi \leftarrow$ Arbitrary policy.

While π has improvable states:

 $\pi' \leftarrow \mathsf{PolicyImprovement}(\pi); \pi \leftarrow \pi'.$

 $\pi \leftarrow$ Arbitrary policy.

While π has improvable states:

 $\pi' \leftarrow \mathsf{PolicyImprovement}(\pi); \pi \leftarrow \pi'.$

Return π .

Path taken (and hence the number of iterations) in general depends on the switching strategy.

Howard's Policy Iteration

- Reference: Howard (1960).
- Greedy; switch all improvable states.

Random Policy Iteration

- Reference: Mansour and Singh (1999).
- Switch a non-empty subset of improvable states chosen uniformly at random.

Random Policy Iteration

- Reference: Mansour and Singh (1999).
- Switch a non-empty subset of improvable states chosen uniformly at random.

Random Policy Iteration

- Reference: Mansour and Singh (1999).
- Switch a non-empty subset of improvable states chosen uniformly at random.

Simple Policy Iteration

- Reference: Melekopoglou and Condon (1994).
- Assume a fixed indexing of states.
- Switch the improvable state with the highest index.

Markov Decision Problems

- 1. Policy Iteration
 - Policy evaluation (review)
 - Policy improvement
 - Algorithm and variants
- 2. Proof of Policy Improvement Theorem
 - Bellman operator
 - Proof
- Computational complexity of MDP planning
- 4. Summary

• For $\pi \in \Pi$, we define $B^{\pi}: (S \to \mathbb{R}) \to (S \to \mathbb{R})$ as follows:

For
$$X: S \to \mathbb{R}$$
 and for $s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{def}}{=} \sum_{s' \in S} T(s, \pi(s), s') (R(s, \pi(s), s') + \gamma X(s')).$$

• For $\pi \in \Pi$, we define $B^{\pi}: (S \to \mathbb{R}) \to (S \to \mathbb{R})$ as follows: For $X: S \to \mathbb{R}$ and for $s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{def}}{=} \sum_{s' \in S} T(s, \pi(s), s') (R(s, \pi(s), s') + \gamma X(s')).$$

• One Bellman operator for each $\pi \in \Pi$. No "max" like B^* .

• For $\pi \in \Pi$, we define $B^{\pi}: (S \to \mathbb{R}) \to (S \to \mathbb{R})$ as follows: For $X: S \to \mathbb{R}$ and for $s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{def}}{=} \sum_{s' \in S} T(s, \pi(s), s') (R(s, \pi(s), s') + \gamma X(s')).$$

- One Bellman operator for each $\pi \in \Pi$. No "max" like B^* .
- Some facts about B^{π} for all $\pi \in \Pi$.
- B^{π} is a contraction mapping with contraction factor γ .
- For $X:S\to\mathbb{R}:\lim_{l\to\infty}(B^\pi)^l(X)=V^\pi.$
- For $X:S \to \mathbb{R}, \ Y:S \to \mathbb{R} \colon X \succeq Y \implies B^{\pi}(X) \succeq B^{\pi}(Y)$.

• For $\pi \in \Pi$, we define $B^{\pi}: (S \to \mathbb{R}) \to (S \to \mathbb{R})$ as follows: For $X: S \to \mathbb{R}$ and for $s \in S$,

$$(B^{\pi}(X))(s) \stackrel{\text{def}}{=} \sum_{s' \in S} T(s, \pi(s), s') (R(s, \pi(s), s') + \gamma X(s')).$$

- One Bellman operator for each $\pi \in \Pi$. No "max" like B^* .
- Some facts about B^{π} for all $\pi \in \Pi$.
- B^{π} is a contraction mapping with contraction factor γ .
- For $X: S \to \mathbb{R}: \lim_{t\to\infty} (B^\pi)^t(X) = V^\pi$.
- For $X:S \to \mathbb{R}, \ Y:S \to \mathbb{R} \colon X \succeq Y \implies B^\pi(X) \succeq B^\pi(Y)$.
- Observe that for $\pi, \pi' \in \Pi, \forall s \in S$:

$$B^{\pi'}(V^{\pi})(s) = Q^{\pi}(s, \pi'(s)).$$

$$\mathbf{IS}(\pi) = \emptyset$$

$$\implies \forall \pi' \in \Pi : \mathbf{V}^{\pi} \succeq \mathbf{B}^{\pi'}(\mathbf{V}^{\pi})$$

$$\begin{split} \textbf{IS}(\pi) &= \emptyset \\ \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \\ \implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^2(V^{\pi}) \end{split}$$

$$\mathbf{IS}(\pi) = \emptyset
\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})
\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})
\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})$$

$$\mathbf{IS}(\pi) = \emptyset
\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})
\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})
\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})
\implies \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

$$\mathbf{IS}(\pi) = \emptyset$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})$$

$$\implies \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

IS $(\pi) \neq \emptyset$ and policy improvement on π yields π'

$$\mathbf{IS}(\pi) = \emptyset
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

IS
$$(\pi) \neq \emptyset$$
 and policy improvement on π yields π' $\implies B^{\pi'}(V^{\pi}) \succ V^{\pi}$

$$\mathbf{IS}(\pi) = \emptyset
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

IS
$$(\pi) \neq \emptyset$$
 and policy improvement on π yields π'

$$\implies B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies (B^{\pi'})^2(V^{\pi}) \succ B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\mathbf{IS}(\pi) = \emptyset
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq V^{\pi'}.$$

$$\mathbf{IS}(\pi) \neq \emptyset$$
 and policy improvement on π yields π'

$$\implies B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies (B^{\pi'})^2(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies \lim_{l\to\infty} (B^{\pi'})^l(V^{\pi}) \succeq \cdots \succeq (B^{\pi'})^2(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\mathbf{IS}(\pi) = \emptyset
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succeq B^{\pi'}(V^{\pi}) \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq \cdots \succeq \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi})
\Rightarrow \forall \pi' \in \Pi : V^{\pi} \succ V^{\pi'}.$$

IS $(\pi) \neq \emptyset$ and policy improvement on π yields π'

$$\implies B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies (B^{\pi'})^{2}(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies \lim_{l \to \infty} (B^{\pi'})^{l}(V^{\pi}) \succeq \cdots \succeq (B^{\pi'})^{2}(V^{\pi}) \succeq B^{\pi'}(V^{\pi}) \succ V^{\pi}$$

$$\implies V^{\pi'} \succ V^{\pi}.$$

- In principle, an agent can follow a policy λ that maps every possible history s^0 , a^0 , r^0 , s^1 , a^1 , r^1 , ..., s^t for $t \ge 0$ to a probability distribution over A.
- Let Λ be the set of such policies λ (which are in general non-Markovian, non-stationary, and stochastic).

- In principle, an agent can follow a policy λ that maps every possible history s⁰, a⁰, r⁰, s¹, a¹, r¹,..., s^t for t ≥ 0 to a probability distribution over A.
- Let Λ be the set of such policies λ (which are in general non-Markovian, non-stationary, and stochastic).
- Recall that we only considered Π, the set of all policies
 π : S → A (which are Markovian, stationary, and
 deterministic). Observe that Π ⊂ Λ.
- We have shown that there exists $\pi^* \in \Pi$ such that for all $\pi \in \Pi$, $\pi^* \succeq \pi$.

- In principle, an agent can follow a policy λ that maps every possible history s^0 , a^0 , r^0 , s^1 , a^1 , r^1 , ..., s^t for $t \ge 0$ to a probability distribution over A.
- Let Λ be the set of such policies λ (which are in general non-Markovian, non-stationary, and stochastic).
- Recall that we only considered Π, the set of all policies
 π : S → A (which are Markovian, stationary, and
 deterministic). Observe that Π ⊂ Λ.
- We have shown that there exists $\pi^* \in \Pi$ such that for all $\pi \in \Pi$, $\pi^* \succeq \pi$.

Could there exist $\lambda \in \Lambda \setminus \Pi$ such that $\neg(\pi^* \succeq \lambda)$?

- In principle, an agent can follow a policy λ that maps every possible history s^0 , a^0 , r^0 , s^1 , a^1 , r^1 , ..., s^t for $t \ge 0$ to a probability distribution over A.
- Let Λ be the set of such policies λ (which are in general non-Markovian, non-stationary, and stochastic).
- Recall that we only considered Π, the set of all policies
 π : S → A (which are Markovian, stationary, and
 deterministic). Observe that Π ⊂ Λ.
- We have shown that there exists $\pi^* \in \Pi$ such that for all $\pi \in \Pi$, $\pi^* \succeq \pi$.

Could there exist $\lambda \in \Lambda \setminus \Pi$ such that $\neg(\pi^* \succeq \lambda)$? No.

 In MDPs, the agent can sense state, and the consequence of each action depends solely on state.

- In MDPs, the agent can sense state, and the consequence of each action depends solely on state.
- Moreover, we are maximising an infinite sum of expected discounted rewards—the challenge at each time step is the same: to maximise the expected long-term reward starting from the current state!

- In MDPs, the agent can sense state, and the consequence of each action depends solely on state.
- Moreover, we are maximising an infinite sum of expected discounted rewards—the challenge at each time step is the same: to maximise the expected long-term reward starting from the current state!
- History and stochasticity can help if the agent is unable to sense state perfectly. Such a situation arises in an abstraction called the Partially Observable MDP (POMDP).

- In MDPs, the agent can sense state, and the consequence of each action depends solely on state.
- Moreover, we are maximising an infinite sum of expected discounted rewards—the challenge at each time step is the same: to maximise the expected long-term reward starting from the current state!
- History and stochasticity can help if the agent is unable to sense state perfectly. Such a situation arises in an abstraction called the Partially Observable MDP (POMDP).
- Optimal policies for the finite horizon reward setting are in general non-stationary (time-dependent).

- In MDPs, the agent can sense state, and the consequence of each action depends solely on state.
- Moreover, we are maximising an infinite sum of expected discounted rewards—the challenge at each time step is the same: to maximise the expected long-term reward starting from the current state!
- History and stochasticity can help if the agent is unable to sense state perfectly. Such a situation arises in an abstraction called the Partially Observable MDP (POMDP).
- Optimal policies for the finite horizon reward setting are in general non-stationary (time-dependent).
- Optimal policies ("strategies") in many types of multi-player games are in general stochastic ("mixed").

Markov Decision Problems

- 1. Policy Iteration
 - Policy evaluation (review)
 - Policy improvement
 - Algorithm and variants
- 2. Proof of Policy Improvement Theorem
 - Bellman operator
 - Proof
- 3. Computational complexity of MDP planning
- 4. Summary

(Full references: see Kalyanakrishnan, Misra, Gopalan, 2016.)

(Full references: see Kalyanakrishnan, Misra, Gopalan, 2016.)

• Value Iteration: $V_0 \to V_1 \to \cdots \to V_\infty = V^{\pi^*}$. Upper Bound: $\operatorname{poly}(n, k, B, \frac{1}{1-\gamma})$. iterations [LKM95]; B is the number of bits used to represent the MDP.

(Full references: see Kalvanakrishnan, Misra, Gopalan, 2016.)

- Value Iteration: $V_0 \to V_1 \to \cdots \to V_{\infty} = V^{\pi^*}$. Upper Bound: poly $(n, k, B, \frac{1}{1-\alpha})$. iterations [LKM95]; B is the number of bits used to represent the MDP.
- Linear Programming: With (n variables, nk constraints) or (nk variables, n constraints). poly(n, k, B) [K80, K84].

```
poly(n, k) \cdot exp(O(\sqrt{n \log(n)})) (Expected) [MSW96].
```

(Full references: see Kalyanakrishnan, Misra, Gopalan, 2016.)

- Value Iteration: $V_0 \to V_1 \to \cdots \to V_\infty = V^{\pi^*}$. Upper Bound: $\operatorname{poly}(n, k, B, \frac{1}{1-\gamma})$. iterations [LKM95]; B is the number of bits used to represent the MDP.
- **Linear Programming**: With (n variables, nk constraints) or (nk variables, n constraints). poly(n, k, B) [K80, K84]. poly(n, k) $\cdot \exp(O(\sqrt{n \log(n)}))$ (Expected) [MSW96].
- Strong bounds are those that depend solely on *n* and *k*.

(Full references: see Kalyanakrishnan, Misra, Gopalan, 2016.)

- Value Iteration: $V_0 \to V_1 \to \cdots \to V_\infty = V^{\pi^*}$. Upper Bound: $\operatorname{poly}(n, k, B, \frac{1}{1-\gamma})$. iterations [LKM95]; B is the number of bits used to represent the MDP.
- Linear Programming: With (n variables, nk constraints) or (nk variables, n constraints). poly(n, k, B) [K80, K84]. poly(n, k) · exp($O(\sqrt{n \log(n)})$) (Expected) [MSW96].
- Strong bounds are those that depend solely on *n* and *k*.
- **Policy Iteration** naturally yields strong bounds (also enjoys good weak bounds [P94]). We review strong bounds.

PI: Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant	Type	<i>k</i> = 2	General k
Howard's (Greedy) PI [H60, MS99]	Deterministic	$O\left(\frac{2^n}{n}\right)$	$O\left(\frac{k^n}{n}\right)$
Mansour and Singh's Random PI [MS99]	Randomised	1.7172 ⁿ	$pprox O\left(\frac{k}{2}\right)^n$

PI: Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant	Type	<i>k</i> = 2	General k
Howard's (Greedy) PI [H60, MS99]	Deterministic	$O\left(\frac{2^n}{n}\right)$	$O\left(\frac{k^n}{n}\right)$
Mansour and Singh's Random PI [MS99]	Randomised	1.7172 ⁿ	$pprox O\left(\frac{k}{2}\right)^n$

Lower bounds on number of iterations

 $\Omega(n)$ Howard's PI on *n*-state, 2-action MDPs [HZ10].

PI: Switching Strategies and Bounds

Upper bounds on number of iterations

PI Variant	Type	<i>k</i> = 2	General k
Howard's (Greedy) PI [H60, MS99]	Deterministic	$O\left(\frac{2^n}{n}\right)$	$O\left(\frac{k^n}{n}\right)$
Mansour and Singh's Random PI [MS99]	Randomised	1.7172 ⁿ	$pprox O\left(rac{k}{2} ight)^n$

Lower bounds on number of iterations

- $\Omega(n)$ Howard's PI on *n*-state, 2-action MDPs [HZ10].
- $\Omega(2^n)$ Simple PI on *n*-state, 2-action MDPs [MC94].

PI: Some Recent Results (k = 2)

(Authors with names underlined once took CS 747!)

PI: Some Recent Results (k = 2)

(Authors with names underlined once took CS 747!)

- Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479ⁿ iterations.
- <u>Taraviya</u> and Kalyanakrishnan (2019) use a similar approach to provide an upper bound of 1.6001ⁿ iterations (in expectation) for a randomised PI variant.

PI: Some Recent Results ($k \ge 2$)

- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with an upper bound of $k^{0.7207n}$ iterations, improved by Taraviya and Kalyanakrishnan to $k^{0.7019}$ iterations.
- Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of $(2 + \ln(k 1))^n$ iterations for a randomised PI variant.
- Taraviya and Kalyanakrishnan (2019) show an upper bound of $(\sqrt{k \log(k)})^n$ iterations for a randomised variant of Howard's PI.
- <u>Ashutosh</u>, <u>Consul</u>, <u>Dedhia</u>, <u>Khirwadkar</u>, <u>Shah</u>, and Kalyanakrishnan (2020) show a lower bound of √kⁿ iterations for a particular deterministic variant of PI.

Open Problems

- Is the complexity of Howard's PI on 2-action MDPs upper-bounded by the Fibonacci sequence (≈ 1.6181ⁿ)?
- Is Howard's PI the most efficient among deterministic PI algorithms (worst case over all MDPs)?
- Is there a super-linear lower bound on the number of iterations taken by Howard's PI on 2-action MDPs?
- Is Howard's PI strongly polynomial on deterministic MDPs?
- Is there a variant of PI that can visit all k^n policies in some n-state, k-action MDP—implying an $\Omega(k^n)$ lower bound?
- Is there a strongly polynomial algorithm for MDP planning?

Markov Decision Problems

- 1. Policy Iteration
 - Policy evaluation (review)
 - Policy improvement
 - Algorithm and variants
- 2. Proof of Policy Improvement Theorem
 - Bellman operator
 - Proof
- Computational complexity of MDP planning
- 4. Summary

Summary of MDP Planning

- MDPs are an abstraction of sequential decision making.
- Many applications; many different formulations.
- Essential solution concept: optimal policy (known to exist).
- Three main families of planning algorithms: Value Iteration, Linear Programming, Policy Iteration.
- Have strengths and weaknesses in theory and in practice.
- Can combine (especially Value Iteration, Policy Iteration).
- We showed correctness of all three methods.
- Used Banach's fixed-point theorem, Bellman optimality operator, Bellman operator.
- What if T, R were not given, but have to be learned from interaction? Can we still learn to act optimally?
- Yes: that's the Reinforcement Learning problem. Next week!