Automatic Dynamic Relevance Determination for Gaussian process regressions with functional inputs

Luis Damiano^{†1}, Joaquim Teixeira², Margaret Johnson², Jarad Niemi¹

¹Department of Statistics, Iowa State University ²NASA Jet Propulsion Laboratory

> SIAM Conference on Uncertainty Quantification April 13th, 2022

Funded, in part, by

- ISU Presidential Interdisciplinary Research Initiative on C-CHANGE: Science for a Changing Agriculture
- Foundation for Food and Agriculture Research Grant ID: CA18-SS-0000000278

[†]Idamiano@iastate edu

ian process regressions witi

Overview & motivation

Functional input $X(t): \mathcal{T} o \mathbb{R}$

■ Can we connect the functional input structure to a physical mechanism?

- Can we connect the functional input structure to a physical mechanism?
- Can we incorporate the functional input structure into the GP?

- Can we connect the functional input structure to a physical mechanism?
- Can we incorporate the functional input structure into the GP?
- Can we circumvent input dimension reduction?

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$Index \\ t \in \mathcal{T}$		Mechanism
--------	---	------------------------------	--	-----------

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$Index \\ t \in \mathcal{T}$	$\begin{array}{l} Index \; subspaces \\ t \in \mathcal{T}_u \end{array}$	Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$Index \\ t \in \mathcal{T}$		Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass
	Precipitation	Time	Cycles, seasons	Germination photosynthesis nutrient absorption

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$Index \\ t \in \mathcal{T}$		Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass
	Precipitation	Time	Cycles, seasons	Germination photosynthesis nutrient absorption
Soil erosion	Elevation	Distance	Up/down slope	Water erosion

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$\begin{matrix} Index \\ t \in \mathcal{T} \end{matrix}$		Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass
	Precipitation	Time	Cycles, seasons	Germination photosynthesis nutrient absorption
Soil erosion	Elevation	Distance	Up/down slope	Water erosion
Radiance	Chemical species	Elevation	Atmospheric layers	Reflectivity

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$Index \\ t \in \mathcal{T}$	$\begin{array}{l} Index subspaces \\ t \in \mathcal{T}_u \end{array}$	Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass
	Precipitation	Time	Cycles, seasons	Germination photosynthesis nutrient absorption
Soil erosion	Elevation	Distance	Up/down slope	Water erosion
Radiance	Chemical species	Elevation	Atmospheric layers	Reflectivity

Index subspaces can provide a meaningful representation of the physical process

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$\begin{array}{l} Index \\ t \in \mathcal{T} \end{array}$		Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass
	Precipitation	Time	Cycles, seasons	Germination photosynthesis nutrient absorption
Soil erosion	Elevation	Distance	Up/down slope	Water erosion
Radiance	Chemical species	Elevation	Atmospheric layers	Reflectivity

Index subspaces can provide a meaningful representation of the physical process

Can we establish an explicit link $X(t) \xrightarrow{f} y$ for UQ?

Automatic Oynamic Relevance Determination for Gaussian process regressions with functional inputs

From relevance to dynamic relevance

April 13th, 2022

Some inputs matter more than others

 x_1 vs x_2

Screening

(exploration

& diagnostics)

Permutation Feature

Importance

Model tuning (learning)

Automatic Relevance Determination

^[1] Forthcoming paper

Some inputs matter more than others $x_1 \ \textit{vs} \ x_2$

Some index subspaces \rightarrow matter more than others $X(t_1)$ vs $X(t_2)$

Screening (exploration

& diagnostics)

Feature Importance

Permutation

Model tuning (learning)

Automatic Relevance Determination

^[1] Forthcoming paper

Some inputs matter more than others x_1 vs x_2

→ mat

Some index subspaces matter more than others $X(t_1)$ vs $X(t_2)$

Screening (exploration & diagnostics)

Permutation Feature Importance

 \rightarrow

Permutation Feature *Dynamic Importance*^[1]

Model tuning (learning)

Automatic Relevance Determination

^[1] Forthcoming paper

Some index subspaces \rightarrow matter more than others $X(t_1)$ vs $X(t_2)$

Screening (exploration & diagnostics)

Permutation Feature Importance Permutation
→ Feature

Dynamic Importance[1]

Model tuning (learning)

Automatic Relevance Determination

Automatic

Dynamic Relevance

Determination

^[1] Forthcoming paper

Model tuning (learning)

Automatic Relevance Determination

Distance $d(X_i, X_i)$

$$\sum_{k=1}^{K} \frac{\left(x_{i,k} - x_{j,k}\right)^2}{\ell_k^2}$$

$$\ell_1^{-2},\cdots,\ell_{\mathsf{K}}^{-2} > 0$$

Model tuning (learning)

Automatic Relevance Determination \longrightarrow

Automatic

Dynamic Relevance

Determination

Distance $d(X_i, X_j)$

$$\sum_{k=1}^{K} \frac{\left(x_{i,k} - x_{j,k}\right)^2}{\ell_k^2}$$

Weights (relevance)

$$\ell_1^{-2},\cdots,\ell_{\mathit{K}}^{-2}\,>\,0$$

Model tuning (learning)

Automatic Relevance Determination → Automatic

→ Dynamic Relevance

Determination

Distance $d(X_i, X_j)$

$$\sum_{k=1}^{K} \frac{\left(x_{i,k} - x_{j,k}\right)^2}{\ell_k^2}$$

$$\int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 \mathrm{d}t$$

Weights (relevance)

$$\ell_1^{-2},\cdots,\ell_{\mathit{K}}^{-2}\,>\,0$$

Model tuning (learning)

Automatic Relevance Determination Automatic

→ Dynamic Relevance

Determination

Distance $d(X_i, X_j)$

$$\sum_{k=1}^{K} \frac{(x_{i,k} - x_{j,k})^2}{\ell_k^2}$$

$$\int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

Weights (relevance)

$$\ell_1^{-2}, \cdots, \ell_K^{-2} > 0$$

$$\omega(t) : \mathcal{T} \to \mathbb{R}^+$$

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\}$$

■ The input is most relevant at τ (relevance peak)

- The input is most relevant at τ (relevance peak)
- Relevance increases at a $\lambda_1 = \lambda \kappa^{-1}$ rate from t=0 to the peak

- The input is most relevant at τ (relevance peak)
- Relevance increases at a $\lambda_1 = \lambda \kappa^{-1}$ rate from t=0 to the peak
- Relevance decreases at a $\lambda_2 = \lambda \kappa$ rate from the peak to t=1

- The input is most relevant at τ (relevance peak)
- Relevance increases at a $\lambda_1 = \lambda \kappa^{-1}$ rate from t = 0 to the peak
- Relevance decreases at a $\lambda_2 = \lambda \kappa$ rate from the peak to t=1
- \blacksquare To predict the output, look for input profiles that are similar everywhere but especially near au

- The input is most relevant at τ (relevance peak)
- Relevance increases at a $\lambda_1 = \lambda \kappa^{-1}$ rate from t = 0 to the peak
- Relevance decreases at a $\lambda_2 = \lambda \kappa$ rate from the peak to t=1
- To predict the output, look for input profiles that are similar everywhere but especially near τ circumvent input dimension reduction

$$\mathbf{y} \sim \mathcal{N} \left(0, \sigma_f^2 \ \mathbf{R}_f + \sigma_\varepsilon^2 \mathbf{I} \right) \tag{1}$$
$$\mathbf{r}_{ii} = \exp \left\{ -0.5 \phi^{-2} \ d_f(\mathbf{X}_i, \mathbf{X}_i) \right\} \tag{2}$$

$$(R_f)_{ij} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_j)\right\}$$

(3)

 $\mathbf{y} \sim \mathcal{N}\left(0, \sigma_f^2 \mathbf{R}_f + \sigma_e^2 \mathbf{I}\right)$ $(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_j)\right\}$

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$(X_i(t) - X_j(t))^2 dt$$

(1)

(2)

(3)

$$\sigma_{\varepsilon}^2 > 0$$
, $\sigma_f^2 > 0$, $\phi > 0$, $i, j = 1, \dots, N$
 $\omega(t) : \mathcal{T} \to (0, \infty)$

$$\mathbf{y} \sim \mathcal{N}\left(0, \sigma_f^2 \ \mathbf{R}_f + \sigma_\varepsilon^2 \mathbf{I}\right)$$
$$(\mathbf{R}_f)_{ii} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_i)\right\}$$

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$(t)(X_i(t)-X_j(t))^{-}dt$$

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\}$$

(1)

(2)

$$\sigma_{\varepsilon}^2 > 0$$
, $\sigma_f^2 > 0$, $\phi > 0$, $i, j = 1, \dots, N$
 $\omega(t) : \mathcal{T} \to (0, \infty)$

 $\mathbf{y} \sim \mathcal{N}\left(0, \sigma_f^2 \ \mathbf{R}_f + \sigma_{\varepsilon}^2 \mathbf{I}\right)$ $(\mathbf{R}_f)_{ii} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_i)\right\}$

$$\int_{-\infty}^{\infty} (-0.5\varphi - \mathbf{u}_f(X_i, X_j))^2 dx$$

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\}$$

Weak priors
$$\phi \sim \text{InvGamma}(\cdot, \cdot)$$
, $\tau \sim \text{Beta}(\cdot, \cdot)$, $\lambda \sim \text{N}^+(\cdot, \cdot)$, $\log(\kappa) \sim \text{N}(\cdot, \cdot)$

$$\sigma_{\varepsilon}^2 > 0, \ \sigma_f^2 > 0, \ \phi > 0, \ i, j = 1, \dots, N$$
 $\omega(t): \mathcal{T} \to (0, \infty)$

(1)

(2)

(3)

(4)

Weak priors
$$\phi \sim \text{InvGamma}(\cdot, \cdot)$$
, $\tau \sim \text{Beta}(\cdot, \cdot)$, $\lambda \sim \text{N}^+(\cdot, \cdot)$, $\log(\kappa) \sim \text{N}(\cdot, \cdot)$ Multiple inputs e.g., correlation product

 $d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$

 $\omega(t) = \exp\{-(t-\tau)\lambda\kappa^{s}s\}$

 $\mathbf{v} \sim \mathcal{N} \left(0, \sigma_{\mathbf{f}}^2 \mathbf{R}_{\mathbf{f}} + \sigma_{\mathbf{c}}^2 \mathbf{I} \right)$

 $(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\}$$

$$\sigma_{\varepsilon}^2 > 0$$
, $\sigma_f^2 > 0$, $\phi > 0$, $i, j = 1, \dots, N$
 $\omega(t) : \mathcal{T} \to (0, \infty)$

(1)

(2)

(3)

(4)

Weak priors
$$\phi \sim \text{InvGamma}(\cdot, \cdot)$$
, $\tau \sim \text{Beta}(\cdot, \cdot)$, $\lambda \sim \text{N}^+(\cdot, \cdot)$, $\log(\kappa) \sim \text{N}(\cdot, \cdot)$
Multiple inputs e.g., correlation product

 $\mathbf{v} \sim \mathcal{N} \left(0, \sigma_{\mathbf{f}}^2 \mathbf{R}_{\mathbf{f}} + \sigma_{\mathbf{c}}^2 \mathbf{I} \right)$

 $d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$

 $\omega(t) = \exp\{-(t-\tau)\lambda\kappa^{s}s\}$

 $(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$

Multiple inputs e.g., correlation product

Complex index spaces e.g., spatio-temporal spectral structures AKA tesseract

$$\sigma_{\varepsilon}^2 > 0$$
, $\sigma_f^2 > 0$, $\phi > 0$, $i, j = 1, \dots, N$
 $\omega(t) : \mathcal{T} \to (0, \infty)$

 $\omega(t): \mathcal{T} \to (0, \infty)$

(1)

(2)

(3)

(4)

Functional Input Gaussian Process (fiGP)

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$\omega(t) = \exp\left\{-(t - \tau)\lambda \kappa^s s\right\}$$

 $\mathbf{v} \sim \mathcal{N} \left(0, \sigma_{\mathbf{f}}^2 \mathbf{R}_{\mathbf{f}} + \sigma_{\mathbf{c}}^2 \mathbf{I} \right)$

 $(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$

Weak priors $\phi \sim \text{InvGamma}(\cdot, \cdot)$, $\tau \sim \text{Beta}(\cdot, \cdot)$, $\lambda \sim N^+(\cdot, \cdot)$, $\log(\kappa) \sim N(\cdot, \cdot)$

Multiple inputs e.g., correlation product

Complex index spaces e.g., spatio-temporal spectral structures AKA tesseract

Flexibility no need to match input-output structure nor index space $\frac{\sigma_{\varepsilon}^2 > 0, \ \sigma_f^2 > 0, \ \phi > 0, \ i,j=1,\ldots,N}{\sigma_{\varepsilon}^2 > 0, \ \sigma_f^2 > 0, \ \phi > 0, \ i,j=1,\ldots,N}$

 $\omega(t): \mathcal{T} \to (0, \infty)$

$$j, j = 1, \dots, N$$

(1)

(2)

(3)

(4)

NASA's Microwave Limb Sounder

Data structure

Credit: NASA Aura

Implementation

- 8 training, 8 test complementary sets
- 1,000 soundings each
- One model fit separately per input-output pair
- Fully Bayesian inference
- Hamiltonian Monte Carlo using Stan
- 1 long chain
- Extensive search for an initial value
- 500 post-warmup iterations
- 1,500 posterior samples

Weight function posterior samples

fiGP vs a vector-input GP

- + High dimensional inputs with no dimension reduction
 - ► Reduce unknowns 3 << K
 - \triangleright Scales up for applications with higher input resolution $\uparrow K$

^[1] Forthcoming paper

- + High dimensional inputs with no dimension reduction
 - ► Reduce unknowns 3 << K
 - \triangleright Scales up for applications with higher input resolution $\uparrow K$
- + Explicit link between output correlation and input functional structure
 - Can incorporate domain-specific knowledge
 - Tangible for prior elicitation
 - Interpretation \rightarrow insight?
 - Smooths out erratic relevance patterns

- High dimensional inputs with no dimension reduction
 - ► Reduce unknowns 3 << K
 - \triangleright Scales up for applications with higher input resolution $\uparrow K$
- + Explicit link between output correlation and input functional structure
 - Can incorporate domain-specific knowledge
 - Tangible for prior elicitation
 - Interpretation \rightarrow insight?
 - Smooths out erratic relevance patterns
- Similar predictive power as vector-input GP^[1]

- High dimensional inputs with no dimension reduction
 - ► Reduce unknowns 3 << K
 - \triangleright Scales up for applications with higher input resolution $\uparrow K$
- + Explicit link between output correlation and input functional structure
 - Can incorporate domain-specific knowledge
 - Tangible for prior elicitation
 - Interpretation \rightarrow insight?
 - Smooths out erratic relevance patterns
- Similar predictive power as vector-input GP^[1]
- Extensible to complex index spaces, e.g., spatio-temporal spectral inputs^[2]

[1] Forthcoming paper

Acknowledgments

The MLS team at JPL, California Institute of Technology

Thank you!

Idamiano@iastate.edu

repo https://github.com/luisdamiano/SIAMUQ22

Appendix

Automatic Dynamic Relevance Determination for Gaussian process regressions with functional inputs

References

Thomas Muehlenstaedt, Jana Fruth, and Olivier Roustant.

Computer experiments with functional inputs and scalar outputs by a norm-based approach. Statistics and Computing, 27(4):1083-1097, July 2017.

Trapezoidal approximation

$$\int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt \approx \sum_{k=2}^{K} (t_k - t_{k-1}) \frac{\Delta_{i,j,k} + \Delta_{i,j,k-1}}{2}$$
 (5)

$$\Delta_{i,j,k} = \omega(t_{k-1})(x_{i,k} - x_{j,k})^2$$
 (6)

Out-of-sample prediction

	H2O	HNO3	N2O	О3	Temp	Mean		H2O	HNO3	N2O	О3	Temp	Mean
SE	.34	.48	.44	.32	.25	.37	SE	273	614	585	138	-7	323
ARD	.31	.47	.43	.30	.25	.35	ARD	196	619	581	92	-13	295
FPCA	.67	.91	.99	.46	.54	.71	FPCA	1024	1320	1406	637	802	1038
FFPCA	.46	.54	.46	.38	.33	.44	FFPCA	535	646	630	295	268	475
Edn	.33	.47	.44	.29	.25	.36	E_{DN}	261	623	585	90	4	312
SDE	.31	.47	.44	.29	.25	.35	SDE	202	623	585	85	4	300
ADE	.31	.47	.43	.29	.25	.35	ADE	202	610	581	87	2	297
Mean	.39	.55	.52	.33	.31	.42	Mean	385	722	708	204	152	434

Mean validation statistics: RMSE (left) and negative posterior predictive log-density (right). Smaller values are better. Bold: best in column. EDN $\tau=0, \kappa=1$; SDE $\tau=0$; ADE τ, κ, λ all free; ARD as many free parameters as measurements per vertical profile.