UNIVERZITET U BEOGRADU, SRBIJA MATEMATIČKI FAKULTET

Istraživanje i optimizacija minimalnog nezavisnog dominantnog skupa u grafovima

Sara Kalinić 387/2021

Računarska inteligencija

Definicija problema i značaj

Minimalni nezavisni dominantni skup u grafu je podskup čvorova takav da:

- Svaki čvor koji nije u tom podskupu je sused barem jednog čvora iz podskupa
- Nema dva čvora unutar podskupa koja su međusobno povezana
- Minimalan

Značaj?

- Dizajn bežičnih mreža
- Upravljanje resursima

Pregled optimizacionih metoda

- NP-težak problem
- vremenska složenost eksponencijalna u najgorem slučaju
- a. Gruba sila
- b. Pretraga promenljvih susedstva
- c. Optimizacija kolonijom mrava
- d. Genetski algoritam

Rešenje Grubom silom

- Pretražuje sve moguće podskupove čvorova u grafu i proverava da li ispunjavaju uslove za MNDS.
- Prednosti:
 - Tačnost
- Nedostaci:
 - Vremenska složenost
 - Eksplozija broja kombinacija

Test Name	Number of nodes	Iterations	Time (s)
$test_10_0.3.in$	2	1023	0.0010
$test_10_0.5.in$	3	1023	0.0010
$test_10_0.7.in$	2	1023	0.0010
$test_15_0.3.in$	4	32767	0.0380
$test_15_0.5.in$	2	32767	0.0260
$test_20_0.3.in$	5	1048575	1.2748
test_20_0.5.in	3	1048575	0.6900
test_25_0.3.in	4	33554431	27.9059
test_25_0.5.in	3	33554431	26.8291
$test_25_0.7.in$	2	33554431	23.3268
test_30_0.3.in	0	0	0.0
test_30_0.5.in	0	0	0.0
$test_35_0.3.in$	0	0	0.0
$test_35_0.5.in$	0	0	0.0
$test_40_0.3.in$	0	0	0.0
$test_40_0.5.in$	0	0	0.0
$test_40_0.7.in$	0	0	0.0

Table 1: Rezultati testiranja za minimalni nezavisni dominantni skup Grubom silom

Pretraga promenljivih susedstava (VNS)

 metaheuristički algoritam koji koristi pretragu u različitim susedstvima

• Prednosti:

- izbeći lokalne minimume
- balans između eksploatacije i eksploracije

• Nedostaci:

- ne pronađe globalno optimalno
- efikasnots od odabira i strategije

Test Name	Number of Nodes	Fitness Value	Number of Iterations	Time (s)
test_10_0.3.in	2	0.5	10000	0.93
test_10_0.5.in	3	0.33	10000	1.39
test_10_0.7.in	2	0.5	10000	0.93
$test_15_0.3.in$	4	0.25	10000	2.42
$test_15_0.5.in$	2	0.5	10000	1.91
test_20_0.3.in	5	0.2	10000	4.40
test_20_0.5.in	3	0.33	10000	3.19
test_25_0.3.in	4	0.25	10000	5.06
test_25_0.5.in	3	0.33	10000	4.37
test_25_0.7.in	2	0.5	10000	3.74
test_30_0.3.in	4	0.25	10000	9.27
test_30_0.5.in	3	0.33	10000	6.36
test_35_0.3.in	6	0.17	10000	10.00
test_35_0.5.in	3	0.33	10000	7.49
test_40_0.3.in	5	0.2	10000	10.00
test_40_0.5.in	3	0.33	10000	10.00
$test_40_0.7.in$	2	0.5	10000	7.92

Table 2: Rezultati testiranja za minimalni nezavisni dominantni skup VNS metodom

Optimizacija kolonijom mrava (ACO)

- virtualni mravi istražuju prostor rešenja (graf), ostavljajući tragove feromona
- Prednosti:
 - decentralizovana priroda
 - adaptivnost
- Nedostaci:
 - efikasnost algoritma zavisi od parametara
 - zapadne u lokalne minimume

Test Name	Number of Nodes	Fitness Value	Number of Iterations	Time (s)
test_10_0.3.in	3	0.33	1000	3.70
$test_10_0.5.in$	3	0.33	1000	2.03
$test_10_0.7.in$	2	0.5	1000	1.84
$test_15_0.3.in$	5	0.2	1000	3.72
$test_15_0.5.in$	2	0.5	1000	2.35
$test_20_0.3.in$	5	0.2	1000	4.19
$test_20_0.5.in$	3	0.33	1000	2.52
$test_25_0.3.in$	5	0.2	1000	4.12
$test_25_0.5.in$	3	0.33	1000	3.02
$test_25_0.7.in$	2	0.5	1000	2.96
$test_30_0.3.in$	4	0.25	1000	3.86
$test_30_0.5.in$	4	0.25	1000	4.54
$test_35_0.3.in$	8	0.125	1000	9.62
test_35_0.5.in	4	0.25	1000	5.25
$test_40_0.3.in$	6	0.17	1000	4.31
$test_40_0.5.in$	4	0.25	1000	4.93
$test_40_0.7.in$	3	0.33	1000	3.95

Table 4: Rezultati testiranja za minimalni nezavisni dominantni skup koristeći Ant Colony Optimization

Genetski algoritam

- simulira evolucioni proces kroz generacije rešenja
- Prednosti:
 - efikasni za pretragu velikih prostora rešenja
 - omogućava paralelnu evoluciju više rešenja odjednom
- Nedostaci:
 - podešavanja parametara
 - konvergira prema suboptimalnim rešenjima

Test Name	Number of Nodes	Fitness Value	Number of Iterations	Time (s)
$test_10_0.3.in$	2	0.5	10000	0.10
$test_10_0.5.in$	3	0.33	10000	0.16
$test_10_0.7.in$	2	0.5	10000	0.09
$test_15_0.3.in$	5	0.2	10000	0.11
$test_15_0.5.in$	2	0.5	10000	0.14
$test_20_0.3.in$	6	0.17	10000	0.25
test_20_0.5.in	4	0.25	10000	0.17
$test_25_0.3.in$	6	0.17	10000	0.25
test_25_0.5.in	4	0.25	10000	0.22
$test_25_0.7.in$	3	0.33	10000	0.15
$test_30_0.3.in$	6	0.17	10000	0.20
test_30_0.5.in	4	0.25	10000	0.17
$test_35_0.3.in$	7	0.14	10000	0.38
$test_35_0.5.in$	4	0.25	10000	0.18
test_40_0.3.in	6	0.17	10000	0.32
$test_40_0.5.in$	5	0.2	10000	0.25
$test_40_0.7.in$	3	0.33	10000	0.28

Table 3: Rezultati testiranja za minimalni nezavisni dominantni skup Genetskim algoritmom

Zaključak

• Brzina:

 Brute Force je spor, dok su VNS i Genetski algoritam brži, što čini VNS boljim izborom za brzinu.

• Fleksibilnost:

• GA i VNS su prilagodljiviji različitim grafovima

• Praktična primena:

 Heuristički pristupi su efikasni za MNDS probleme kada klasične metode ne uspevaju.

Test Name	Brute Force	VNS	Genetski	ACO
test_10_0.3.in	2	2	2	3
$test_10_0.5.in$	3	3	3	3
$test_10_0.7.in$	2	2	2	2
test_15_0.3.in	4	4	5	5
test_15_0.5.in	2	2	2	2
test_20_0.3.in	5	5	6	5
test_20_0.5.in	3	3	4	3
test_25_0.3.in	4	4	6	5
test_25_0.5.in	3	3	4	3
test_25_0.7.in	2	2	3	2
test_30_0.3.in	/	4	6	4
test_30_0.5.in	/	3	4	4
test_35_0.3.in	/	6	7	8
test_35_0.5.in	/	3	4	4
test_40_0.3.in	/	5	6	6
test_40_0.5.in	/	3	5	4
$test_40_0.7.in$	/	2	3	3

Table 5: Broj čvorova za svaki test i algoritam

Test Name	Brute Force (s)	VNS (s)	Genetski (s)	ACO (s)
test_10_0.3.in	0.0010	0.9300	0.1030	3.7007
test_10_0.5.in	0.0010	1.3901	0.1578	2.0337
test_10_0.7.in	0.0010	0.9280	0.0890	1.8351
$test_15_0.3.in$	0.0380	2.4229	0.1060	3.7234
test_15_0.5.in	0.0260	1.9116	0.1385	2.3490
test_20_0.3.in	1.2748	4.3955	0.2510	4.1910
test_20_0.5.in	0.6900	3.1933	0.1736	2.5222
test_25_0.3.in	27.9059	5.0600	0.2548	4.1194
test_25_0.5.in	26.8291	4.3726	0.2200	3.0172
test_25_0.7.in	23.3268	3.7416	0.1476	2.9572
test_30_0.3.in	0.0	9.2687	0.2040	3.8563
test_30_0.5.in	0.0	6.3634	0.1698	4.5444
test_35_0.3.in	0.0	10.0042	0.3790	9.6152
test_35_0.5.in	0.0	7.4882	0.1820	5.2517
$test_40_0.3.in$	0.0	10.0047	0.3160	4.3098
$test_40_0.5.in$	0.0	10.0019	0.2481	4.9279
$test_40_0.7.in$	0.0	7.9168	0.2840	3.9456

Table 6: Vreme izvršenja za svaki test i algoritam

Hvala na pažnji!