Visual Intelligence Platform

Deep Video Analytics + Visual Data Network

Akshay Bhat Cornell Tech, Cornell University.

An overview of computer vision research by Tomasz Malisiewicz

http://www.computervisionblog.com/2015/01/from-feature-descriptors-to-deep.html

Quick summary

Numerous high quality libraries & datasets

- OpenCV
- ROS
- Caffe (model zoo!)
- Theano
- Torch
- Tensor Flow
- CNTK
- MXNET
- Pytorch

- Caltech 101
- Imagenet
- COCO
- Too many to keep track!
 - Open Images
 - Soundnet
 - Mapnet
 - CMU Video patch dataset

A deluge of datasets!

- VideoNet
- Yahoo Flickr Creative Commons
 100M
- ViCom
- Visual Genome
- YouTube-BoundingBoxes
- Youtube 8M

- imSitu by AllenAl
- Charades by Allen Al
- Udacity car dataset
- KITTI
- Caltech, INRIA, ETH Pedestrians
- Stanford Drone Dataset
- COCO text

We are reaching a stage where

Number of datasets ≅ Number of research groups

With each dataset having its own JSON or XML format, incompatible with all others.

State of the art pre trained models

- Imagenet classification
 - Inception
 - Resnet
 - VGG
- Detection models
 - R-CNN
 - o YOLO
 - o SSD

- Face detection / recognition
 - Face-MTCNN
 - Facenet
- Semantic Segmentation models
 - Multipathnet
 - FCN
- Audio embedding models
 - Soundnet

What is hidden in plain sight?

We need a platform which seamlessly combines

Data + Models + User Interface

A Relational Model of Data for Large Shared Data Banks. By Edgar F. Codd

Can we develop an equivalent of relational model / databases for visual data?

Visual Data

E

{ Images, Videos, Annotations, Features}

Relational data: Postgres, MYSQL, SQLite
::
Text, HTML: Lucene/Solr, Elasticsearch
::
Videos & Images:

Previous attempts: Lire project

- LIRE: Lucene Image Retrieval
 - http://www.lire-project.net/
- Developed pre Deep Learning
- Functionality limited to computing & storing feature
 vectors such as Color Layout, Edge Histogram, etc.

Previous attempts: CloudCV

- Large Scale Distributed Computer Vision as a Cloud Service
- Support for OpenCV, Graphlab, Cafe
- Image Classification, VQA, stitching, etc
- Does not retains state. E.g. you cannot store images.

Previous attempts: NVidia DIGITS

- "DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models."
- Load/create datasets, train models, deploy models.
- Aimed at researchers
- Written in Python/Flask with Torch & Caffe supported

Previous attempts: Visipedia

Previous attempts: Visipedia

- Collaborative creation of visual data
- Pre-defined set of concepts E.g. Birds, Trees
- Different type of participants
 - Experts, Annotators, Citizen Scientists, Users, Computer scientists
- Retains state

Previous attempts: VMX.ai

- Underfunded Kickstarter project Circa Jan 2014
- by Tomasz Malisiewicz
- Pre Tensor Flow, Pre Deep Learning
- Allow developers to create real time detectors
- Support for training model

Why now?

- High quality libraries and pre-trained models
 - TensorFlow
 - Inception, SSD, Facenet
 - Flickr LOPQ, Facebook FAISS
- Cheap GPUs (local & cloud)
- Docker enables deployment of complex applications

Relational data: Postgres, MYSQL, SQLite
::
Text, HTML: Lucene/Solr, Elasticsearch
::
Videos & Images:

Relational data : Postgres, MYSQL, SQLite ::

Text, HTML: Lucene/Solr, Elasticsearch

•••

Videos & Images: Deep Video Analytics

People: Facebook, MySpace

•••

Code: Git / GitHub, GitLab

•••

Visual Data: Visual Data Network

Relational data: SQL

•

Text, HTML: inverted word index, Page Rank

•••

Videos & Images : Approximate Nearest Neighbor

Provides images & videos, along with metadata, annotations

Deep Video Analytics
Running locally

Deep Video Analytics enables rapid data creation

Visual Data Network allows seamless sharing

Push, Pull video / dataset, Annotations, just like you would with GitHub

Sharing data using Visual Data Network

Import & export new datasets / annotations share with other users

Flexible deployment: local & remote server

Deep Video Analytics Design goals

- Usable by non-researchers
- Visual Search as a "Primary User Interface"
- Users can provide data easily (via upload, youtube-dl, annotation UI etc.)
- Batteries-included approach with an indexing and detection pipeline
 - Tensor Flow Inception v3, Single Shot Detector trained on VOC & YOLO 9000
 - Face detection / alignment / recognition
 - More algorithms such Text detection, Audio features.
- Pre-indexed datasets from different domains can be quickly loaded
- Can be easily customized by developers & researchers.

Deep Video Analytics Technical goals

- Useful without having to write code or config
- Works on machines with and without GPUs
 - Works (albeit slowly) without a GPU, tested on Linode VPS with 8Gb RAM & 4 Cores
- Handles uploads and continuous index updates
- Data can be easily imported, exported and shared
- Can be easily modified by technical users
 - o E.g. Adding more operations to processing pipeline
- Can be scaled out by adding more GPUs / Machines

Deep Video Analytics Frameworks & technologies used

 Django, Postgres, Celery, RabbitMQ, Tensorflow, Docker, all are widely used.

Emulating datacenter on a machine Docker, Docker-compose, Nvidia-docker

Docker enables same codebase across all configurations (a laptop, multi-GPU machine, datacenter).

Deep Video Analytics Data Model

- Video / Dataset
 - Video or collection of images
- Frame
 - Single frames or image
 - Must have parent Video / Dataset
- Detection
 - A bounding box in a frame/image
 - o Algorithm, confidence & label
- Annotation
 - Name, Metadata
 - Bounding box in frame / detection

- Query
 - Optional user, time
- QueryResult
 - Parent query
- Task Event
 - Outcome of processing on a particular video/dataset or a query
- IndexEntry
 - o Indexing algorithm (inception, facenet, etc.)
 - Indexed object (frames, specific object)
 - Entry and numpy features filename

Deep Video Analytics Flowchart Video & Query processing

Deep Video Analytics Code organization: dvaapp & dvalib

dvaapp: a django app/project

- Handles UI and data processing
- Data model
 - Video, Frame, Detection
 - Query, QueryResult
 - Event, etc.
- A set of celery tasks
 - Extract frames / process video
 - Perform indexing
 - Perform detection
- Uses dvalib to carry out tasks

dvalib: library for handling algorithms

- A database & celery agnostic library
- Interface with Tensor Flow & Pytorch for
 - extraction
 - detection
 - indexing
- Usable without having a running django instance, but designed to interface with it.
 E.g. assumptions regarding layout of directories containing videos, frames etc.

Visual Data Network Structure & Organization

Root "Datasets" nodes

- Contain a single video (raw video + frames) or multiple images
- Can optionally contain detections, annotations & features
- Immutable with global address in form of a URI
 - E.g. https://www.visualdata.network/api/datasets/4/

Visual Data Network Structure & Organization

Child "Dataset" nodes

- Immutable with global URI
- Must have a parent node
 - Parent can be root or a children node
 - Parent can be on any VDN server identified by a URL
- Cannot contain new video, frames or images
- Can contain detections, annotations, indexes

Visual Data Network Structure & Organization

Annotation entries

- Represents a single annotation for a bounding box or a frame
- Must have a parent dataset
 - Can be on the same server or another (as referenced by the URL)
- Immutable with global address in form of a URI
 - E.g. https://www.visualdata.network/api/annotations/4/

User Interface: Search across frames + detections (faces, etc.)

Demo Version Alpha 1, 15th March 2016

Demo Version Alpha 2, 7th April 2017

Open questions: A work in progress

- How to rank results using auxiliary information?
- How to balance fast/static vs slow/dynamic indexes?
- How to incorporate text data extracted from images?
- Learning from annotations?
- Real time plug-in that bypasses queue based system?
- An Android / iOS frontend app for data acquisition?

Thanks!

Contact me:

akshayubhat@gmail.com www.akshaybhat.com

