Théorie des langages II

Wassim SAIDANE

01/03/2021

Note:

Ce cours est ma prise de note du cours de L3 infos de Théorie des langages II de Mamadou Kante

Chapitre 0 : Langages rationnels et reconaissables

Si A est un ensemble fini, on note A* l'ensemble des mots finis (un mot = séquance de lettre). On appelle A un alphabet et les éléments de A des lettres. On notera ϵ : le mot vide.

On appel L un langage est un sous ensemble de A*.

Rappel: La concaténation de mots dera notée ".".

Voici les opérations dur les langages :

- Union (notée \bigcup) :

- Produit (notée .) ou concaténation : $L.L' = \{uv \in A* \mid u \in L, v \in L'\}$
- Itération de Leene (notée *) :

$$L\overline{*=\bigcup_{i\geq 0}L^i}$$
 où $L^0=\{\epsilon\},$ $L^i=L.L^{i-1}(i\geq 1)$ - $L^+=\bigcup_{i\geq 0}L^i$

Une expression rationnelle est définie inductive lement :

- \emptyset est une expression rationnelle.
- a est une expression rationnelle $\forall a \in A$
- Si r_1 et r_2 sont des expressions rationnellles, alors r_1+r_2 et $r_1.r_2$ sont des expressions rationnelles.
- Si r est une expression rationnelle, alors r* l'est aussi.

Si r est une expression rationnelle, alors son langage noté L(r) est défini ainsi :

Si
$$r$$
 est une expression rationnelle, alors s
$$L(r) = \begin{cases} \phi & \text{si } r = \\ \alpha\{a\} \text{ si } r = a \end{cases}$$

$$L(r) = \begin{cases} L(r_1)UL(r_2) & \text{si } r = r_1 + r_2 \\ L(r_1) \cdot L(r_2) & \text{si } r = r_1 \cdot r_2 \\ L(s)^* & \text{si } r = s^* \end{cases}$$
Un langage L est dit **rationnel** s'il existe

Un langage L est dit **rationnel** s'il existe une expression rationnelle r telle que L = L(r)

Automate à états finis Un automate (à états finis) est un tuple $(\Sigma, Q, \delta, I, F)$

tel que:

- Σ : Alphabet
- -Q: Il s'agit d'un ensemble fini appelé ensemble des états.
- $I \subseteq Q$: Ensemble des états initiaux.
- $F\subseteq Q$: Ensemble des états finaux.
- $\delta: Q \times \Sigma \to 2^Q$ [$2^Q = P(Q)$: tous les sous-ensembles de Q]

Un automate $A=(\Sigma, Q, \delta, I, F)$ est:

- Déterministe si $\forall q \in Q, a \in \Sigma, |\delta(q, a)| \leq 1$
- Complet si $\forall q \in Q, a \in \Sigma, |\delta(q, a)| \ge 1$

Si un automate n'est pas déterministe, on dit que c'est un automate non déterministe.

Une exécution d'un automate $A=(\Sigma,Q,\delta,I,F)$ sur un mot $u=u_1,u_2,...,u_n$ est une séquance $(q_0,q_1,...,q_n)$ d'états telle que :

- $q_0 \in I$
- $\forall 1 \le i \le n, q_i = \delta(q_{i-1}, u_i)$

Un mot u est $\mathbf{reconnu}/\mathbf{accepter}$ par un automate $A = (\Sigma, Q, \delta, I, F)$ s'il existe une exécution $(q_0, q_1, ..., q_n)$ de A sur $u = u_1, u_2, ..., u_n$ telle que $q_n \in F$. On parlera d'exécution acceptante sur u par A.

Le langage d'un automate A, noté L(A), c'est l'ensemble des mots u acceptées par A.

Un langage L est dit **reconnaissable** s'il existe un automate tel que L = L(A).

Théorème 0.1:

- 1) Pour tout langage reconnaissabe L, il existe un <u>automate déterministe A</u> tel que L = L(A).
- 2) \forall l'alphabet Σ , Recog(Σ^*)=Rat(Σ^*)

Recog = l'ensemble des langages reconaissables

Rat = L'ensemble des langages rationnels.

Remarque : Les deux points du théorème sont constructifs.

- Si A est un automate, on peut construire un automate déterministe A' tel que L(A) = L(A').

Conséquance : Pour un automate A, savoir si $u\in L(A)$ peut se faore en temps :

- $f(|Q|) + 2^{O(|Q|)} \cdot |u|$
- $f(\mid Q\mid)$: Temps pour construire l'automate déterministe.

 $2^{O(|Q|)}$: Temps pour tester si un mot u est accepté (le nombre d'états $\leq 2^{|Q|}$).

|u|: Nombre de lettres du mot u.

Preuve de la proposition 1 : si $A=(\Sigma,Q,\delta,I,F)$ est un automate, alors on peut construire un automate déterministe $A'=(\Sigma,Q',\delta',\{\%\},F')$ où $\mid Q'\mid \leq 2^{\mid Q\mid}$.

Preuve de la proposition 2 : Pour tout automate A, on peut construire une expression rationnelle r telle que $L(A) = L(r_A)$.

Inversement, pour toute expression rationnelle r, on peut construire un automate A_r tel que :

$$L(A_r) = L(r).$$

Pour passer des expressions rationelles aux automates, on définis des opérations sur les automates qui correspondent aux opérations sur les expressions rationnelles.

Expressions nationnelles 971 + 972	- on execute sur 1 des
n1 • n2	a l'est final de l'autorate de rizzen fait 1 transition vide vers 1 état initial de 12 automate de rig
N.*	- Orienter 1 transition vide d'1 état final vers 1 état initial.

Tous les langages ne sont pas rationels.

Mais, comment montrer qu'un langage n'est pas rationnel?

Exemple de langage non rationnel :

- $-\{0^n1^n: n \ge 1\}$
- palindromes
- $\{1^P : ppremier\}$

Pour convaincre, on utilise le lemme de pompage (appelé aussi lemme d'itération).

Lemme d'itération des langages rationnels : Soit L un langage reconaissables. Alors il existe un entier p (appelé longueur d'itération) tel que pour tout mot S de taille $\geq p, s$ admet une décomposition en facteurs x, y, z:

- 1) s = xyz
- 2) |y| > 0
- $3) \mid xy \mid \leq p$
- 4) $\forall i \geq 0, xy^i z \in L$

Idée de preuve

Soit $\overline{A}=(\Sigma,Q,\overline{\delta},I,F)$ un automate reconnaissant L. Si un mot u est tel que $\mid u\mid>Q, u$ est reconnu par B, alors il existera forcément un état $q\in Q$ visite deux fois. Si on regarde l'exécution de B sur u.

Exemple d'utilisation sur $L = \{0^n 1^n : n \ge 1\}$

Preuve par l'absurde :

On va supposer L reconnaissable, notons p la longueur d'itération. On va chercher un mot $w \in L$, ensuite on applique le lemme d'itérations sur w, on montre ensuite qu'on pourra trouver un mot w', qui est construit à partir du lemme d'itération avec $w' \notin L$ et pourtant devrait appartenir à L.

Prenons $w=0^p1^p$. Par le lemme d'itération, $\exists x,y,z$ tel que $w=xyz,\mid xy\leq p,\mid y\mid \geq 1$ et $\forall i\geq 0, xy'z\in L$.

Comme $|xy| \supseteq P$, alors $w = 0^l 0^{l'} 0^{l''} 1^p$ où $x = 0^l$, $y = 0^{l'}$, $z = 0^l 1^p$ $l' \ge 1$. Si on applique la proposition 4 du lemme d'itération avec i = 0 on obtient $0^l 0^{l''} 1^p \in L$, or l + l'' < P. $(l + l' + l'' = p, l' \ge 1)$

CONTRADICTION.