Interpolation-4

Content

- Lagrange's Interpolation
- Divided Differences
- Interpolation using Divided Differences
- > Finite Differences
- Newton's formula for Interpolation or Gregory Newton formula
 - Forward
 - o Backward

Finite Differences

Some finite difference operators are as follows:

- Shift Operator
- 2. Forward difference operator
- 3. Backward difference operator
- 4. Central difference operator

Shift Operator (E)

It is defined as

$$Ef(x) = f(x+h)$$

$$EEf(x) = E^{2} f(x) = f(x+2h)$$

•

•

$$EE..Ef(x) = E^{n} f(x) = f(x+nh)$$

For example

$$E^{1/2}f(x) = f\left(x + \frac{h}{2}\right)$$
$$E^{-1/2}f(x) = f\left(x - \frac{h}{2}\right)$$

Forward difference Operator(△)

It is defined as $\Delta f(x) = f(x+h) - f(x)$

$$\Delta y_0 = y_1 - y_0$$
 $\Delta y_1 = y_2 - y_1$
.
$$\Delta y_{n-1} = y_n - y_{n-1}$$

Where, Δ is called the forward difference operator & Δy_0 , Δy_1 Δy_{n-1} are called first forward differences

Forward difference Operator(△) (Cont...)

The difference of first forward difference is called second forward difference and are denoted by $\Delta^2 y_0$, $\Delta^2 y_1$

$$\Delta^{2} y_{0} = \Delta(\Delta y_{0}) = \Delta(y_{1} - y_{0})$$

$$= \Delta(y_{1}) - \Delta(y_{0})$$

$$= (y_{2} - y_{1}) - (y_{1} - y_{0})$$

$$= y_{2} - 2y_{1} + y_{0}$$

Forward difference Operator(△) (Cont...)

The difference of first forward difference is called second forward difference

$$\Delta^2 f(x) = \Delta . \Delta f(x) = \Delta (f(x+h) - f(x))$$

$$= \Delta f(x+h) - \Delta f(x)$$

$$= [f(x+2h) - f(x+h)] - [f(x+h) - f(x)]$$

$$= f(x+2h) - 2f(x+h) + f(x)$$
Similarly, third, fourth and other forward difference can be obtained

R

Backward difference Operator(∇)

It is defined as

$$\nabla f(x) = f(x) - f(x - h)$$

$$\nabla^2 f(x) = \nabla \cdot \nabla f(x) = \nabla (f(x) - f(x - h))$$

$$= \nabla f(x) - \nabla f(x - h)$$

$$= [f(x) - f(x - h)] - [f(x - h) - f(x - 2h)]$$

$$= f(x) - 2f(x - h) + f(x - 2h)$$

$$= f(x - 2h) - 2f(x - h) + f(x)$$

Central Difference Operator (δ)

It is defined as:

$$\delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$$

$$\delta^2 f(x) = \delta f\left(x + \frac{h}{2}\right) - \delta f\left(x - \frac{h}{2}\right)$$

$$= f\left(x + \frac{h}{2} + \frac{h}{2}\right) - f\left(x + \frac{h}{2} - \frac{h}{2}\right) - \left[f\left(x - \frac{h}{2} + \frac{h}{2}\right) - f\left(x - \frac{h}{2} - \frac{h}{2}\right)\right]$$

$$= f(x + h) - f(x) - f(x) + f(x - h)$$

$$= f(x + h) - 2f(x) - f(x - h)$$

Forward difference Table

X	f(x)	Δ^1	Δ^2	Δ^3
\mathbf{x}_0	y_0	$\Delta y_0 = y_1 - y_0$	$\Delta^2 y_0 = \Delta y_1 - \Delta y_0$	$\Delta^3 \mathbf{y}_0 = \Delta^2 \mathbf{y}_1 - \Delta^2 \mathbf{y}_0$
\mathbf{x}_1	y_1	$\Delta y_1 = y_2 - y_1$	$\Delta^2 y_1 = \Delta y_2 - \Delta y_1$	
\mathbf{x}_2	y_2	$\Delta y_2 = y_3 - y_2$		
\mathbf{x}_3	y_3			

Backward difference Table

X	f(x)	$ abla^1$	$ abla^2$	∇^3
\mathbf{x}_0	y_0	$\nabla y_1 = y_1 - y_0$	$\nabla^2 \mathbf{y}_2 = \nabla \mathbf{y}_2 - \nabla \mathbf{y}_1$	$\nabla^3 \mathbf{y}_3 = \nabla^2 \mathbf{y}_3 - \nabla^2 \mathbf{y}_2$
\mathbf{x}_1	\mathbf{y}_1	$\nabla y_2 = y_2 - y_1$	$\nabla^2 \mathbf{y}_3 = \nabla \mathbf{y}_3 - \nabla \mathbf{y}_2$	
\mathbf{x}_2	y_2	$\nabla y_3 = y_3 - y_2$		
\mathbf{x}_3	y_3			

Note: $\Delta y_0 = \nabla y_1$ and $\Delta^2 y_0 = \nabla^2 y_2$

Relationship between E, Δ and ∇

$$\Delta f(x) = f(x+h) - f(x)$$

$$\Delta f(x) = Ef(x) - f(x)$$

$$\Delta f(x) = (E-1)f(x)$$

$$E = 1 + \Delta$$

Again,

$$\nabla f(x) = f(x) - f(x - h)$$

$$\nabla f(x) = f(x) - E^{-1} f(x)$$

$$\nabla f(x) = (1 - E^{-1}) f(x)$$

$$\nabla = (1 - E^{-1})$$

$$E^{-1} = 1 - \nabla$$

Relationship between E and δ

As

$$\mathcal{S}f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$$

$$\mathcal{S}f(x) = E^{1/2} f(x) - E^{-1/2} f(x)$$

$$\mathcal{S}f(x) = (E^{1/2} - E^{-1/2}) f(x)$$

$$\mathcal{S} = (E^{1/2} - E^{-1/2})$$

$$\mathcal{S} = E^{-1/2} (E - 1)$$

Show that $\nabla = E^{-1}\Delta$

R.H.S.

 $E^{\text{-}1}\Delta$

 $E^{-1}(E-1)$

as

 $\Delta = (E-1)$

 $1 - E^{-1}$

 ∇

L.H.S

Show that

1.
$$\Delta - \nabla = -\Delta \nabla$$

2.
$$\Delta + \nabla = \Delta / \nabla - \nabla / \Delta$$

3.
$$\delta = \nabla (1 - \nabla)^{-1/2}$$

Gregory Newton Formula or Newton's formula for interpolation

1. Newton's Forward Difference Formula: For equal interval, we consider the more simpler formula. Let for equal spaced (h) data, We have x_0 , $x_0 + h$, $x_0 + 2h$, $x_0 + nh$, Or $x_n = x_0 + nh$, n=0,1,2.....

$$f(x) = f \left[x_0 + \left(\frac{x - x_0}{h} \right) h \right]$$

$$Let...: u = \left(\frac{x - x_0}{h} \right)$$

$$f(x) = f(x_0 + uh)$$

$$f(x) = E^u f(x_0)$$

$$f(x) = (1 + \Delta)^u f(x_0)$$

$$f(x) = f(x_0) + u \frac{\Delta f(x_0)}{1!} + u(u - 1) \frac{\Delta^2 f(x_0)}{2!} + ... u(u - 1) ... (u - (n - 1)) \frac{\Delta^n f(x_0)}{n!}$$

2. Newton's Backward Difference Formula: For equal interval, we consider the more simpler formula. Let for equal spaced (h) data, We have x_0 , $x_0 + h$, $x_0 + 2h$, $x_0 + nh$, Or $x_n = x_0 + nh$, n = 0,1,2...

$$f(x) = f\left[x_n + \left(\frac{x - x_n}{h}\right)h\right]$$

$$let....u = \left(\frac{x - x_n}{h}\right)$$

$$f(x) = f(x_n + uh)$$

$$f(x) = E^u f(x_n)$$

$$f(x) = (1 - \nabla)^{-u} f(x_n)$$

$$f(x) = \left[1 + u \frac{\nabla}{1!} - u(-u - 1) \frac{\nabla^2}{2!} + ... u(u + 1)...(u + n - 1) \frac{\nabla^n}{n!}\right] f(x_n)$$

$$f(x) = f(x_n) + u \frac{\nabla f(x_n)}{1!} + u(u+1) \frac{\nabla^2 f(x_n)}{2!} + \dots + u(u+1) \dots + (u+n-1) \frac{\nabla^n f(x_n)}{n!}$$

Example-1

Given the values

X	-2	-1	0	1	2	3
f(x)	-4	1	0	-1	4	21

Construct Newton forward difference table for the given data.

•

Solution

We have

X	f(x)	Δ	∆²	∇_3	∆4
-2	-4	(1+4)=5	-6	6	0
-1	1	0-1=-1	0	6	0
0	0	-1-0=-1	6	6	
1	-1	4+1=5	12		
2	4	21-4=17			
3	21				

Example-2

Given the values

X	-2	-1	0	1	2	3
f(x)	-4	1	0	-1	4	21

Construct an interpolating polynomial for the data given in the table using Newton forward interpolation formula and compute the value of f(-1.5).

•

X	f(x)	Δ	Δ ²	Δ^3	Δ4
-2	-4	(1+4)=5	-6	6	0
-1	1	0-1=-1	0	6	0
0	0	-1-0=-1	6	6	
1	-1	4+1=5	12		
2	4	21-4=17			
3	21				

From Newton's forward interpolation formula

$$f(x) = f(x_0) + u \frac{\Delta f(x_0)}{1!} + u(u - 1) \frac{\Delta^2 f(x_0)}{2!} + \dots + u(u - 1) \dots + (u - (u - 1)) \frac{\Delta^n f(x_0)}{n!}$$

$$f(x) = f(x_0) + u \frac{\Delta f(x_0)}{1!} + u(u-1) \frac{\Delta^2 f(x_0)}{2!} + \dots + u(u-1)(u-2) \frac{\Delta^3 f(x_0)}{3!}$$

$$as. u = \frac{(x-x_0)}{h}$$

$$f(x) = f(x_0) + (x-x_0) \frac{\Delta f(x_0)}{1!} + (x-x_0)(x-x_1) \frac{\Delta^2 f(x_0)}{2!} + (x-x_0)(x-x_1)(x-x_2) \frac{\Delta^3 f(x_0)}{3!}$$

$$f(x) = -4 + (x+2) \frac{5}{1!} + (x+2)(x+1) \frac{-6}{2!} + (x+2)(x+1)(x) \frac{6}{3!}$$

$$f(x) = -4 + 5x + 10 + (x^2 + 3x + 2)(-3) + (x^2 + 3x + 2)x$$

$$f(x) = x^3 + 3x^2 + 2x - 3x^2 - 9x - 6 + 5x + 6$$

$$f(x) = x^3 - 2x$$

At
$$x = -1.5$$

$$f(x) = x^{3} - 2x$$

$$f(x) = (-1.5)^{3} - 2(-1.5)$$

$$f(x) = -0.375$$

Example-3

Given the values

X	-2	-1	0	1	2	3
f(x)	-4	1	0	-1	4	21

Compute the value of f(2.5) using Newton Backward interpolation formula and

•

Backward difference Table

X	f(x)	$ abla^1$	$ abla^2$	∇^3
\mathbf{x}_0	y_0	$\nabla y_1 = y_1 - y_0$	$\nabla^2 \mathbf{y}_2 = \nabla \mathbf{y}_2 - \nabla \mathbf{y}_1$	$\nabla^3 \mathbf{y}_3 = \nabla^2 \mathbf{y}_3 - \nabla^2 \mathbf{y}_2$
\mathbf{x}_1	\mathbf{y}_1	$\nabla y_2 = y_2 - y_1$	$\nabla^2 \mathbf{y}_3 = \nabla \mathbf{y}_3 - \nabla \mathbf{y}_2$	
\mathbf{x}_2	y_2	$\nabla y_3 = y_3 - y_2$		
\mathbf{x}_3	y_3			

X	f(x)	∇^1	∇^2	∇^3	$ abla^4$
-2	-4	(1+4)=5	-6	6	0
-1	1	0-1=-1	0	6	0
0	0	-1-0=-1	6	6	
1	-1	4+1=5	12		
2	4	21-4=17			
3	21				

From Newton's backward interpolation formula

$$f(x) = f(x_n) + u \frac{\nabla f(x_n)}{1!} + u(u+1) \frac{\nabla^2 f(x_n)}{2!} + \dots + u(u+1) \dots + (u+n-1) \frac{\nabla^n f(x_n)}{n!}$$

Where,

$$u = \left(\frac{x - x_n}{h}\right)$$

From Newton's backward interpolation formula

$$f(x) = f(x_n) + u \frac{\nabla f(x_n)}{1!} + u(u+1) \frac{\nabla^2 f(x_n)}{2!} + \dots + u(u+1) \dots (u+n-1) \frac{\nabla^n f(x_n)}{n!}$$

Where,
$$u = \left(\frac{x - x_n}{h}\right)$$
 $u = (2.5-3)/1 = -0.5$

$$f(2.5) = 21 + (-0.5)\frac{17}{1!} + (-0.5)(-0.5 + 1)\frac{12}{2!} + (-0.5)(-0.5 + 1)(-0.5 + 2)\frac{6}{3!}$$
$$f(2.5) = 21 - 8.5 - 1.5 - 0.375$$
$$f(2.5) = 10.625$$

Practice Problem

Given the values

X	0	1	2	3	4
f(x)	1	7	23	55	109

find f(0.5) and f(1.5) using Newton's forward difference formula.

•

Suggested books

1. Numerical Methods by S.R.K Lyenger & R.K. Jain.

2. Numerical Analysis by Richard L. Burden.

3. Introductory methods of Numerical analysis by **S.S. Sastry**.

Thank you