ENGG2020 FUNDAMENTALS OF EMBEDDED SYSTEM DESIGN

LECTURE 1: ENGINEERING DRAWING I

By Dr. Anthony Sum

Department of Computer Science and Engineering
The Chinese University of Hong Kong

1

CONTENTS

- Types of Engineering Drawing
- Project Theory
- Dimensions and Units

WHY ENGINEERING DRAWING?

- Why do we need to know engineering drawing in the embedded system design?
 - In designing new embedded system, we may need some new parts which may not be available in the market
 - During the process of our design, these new parts may be changed accordingly
 - For the new embedded system, design the casing is also important in product design
 - By using engineering drawing techniques, we can create our parts/casings our own, and test it by 3D printing
- Therefore, engineering drawing can help to realize our rapid prototyping of our embedded system design

3

ENGINEERING DRAWING

- An engineering drawing is a type of technical drawing used to fully and clearly define the requirements for engineered items
- A formal and precise way for communicating information about the shape and size of physical objects
- A mean for specifying the precision of physical objects
- It is also a legal document. If the drawing is wrong, it is the fault of the engineer.

EXAMPLES OF ENGINEERING DRAWING

5

5

EXAMPLES OF ENGINEERING DRAWING

6

GRAPHIC LANGUAGE

- Graphic language in engineering applications uses lines to represent the surfaces, edges, and contours of objects
- The language is known as drawing or drafting
- A drawing can be done using freehand, instruments, or computer methods

7

FREEHAND DRAWING

• The lines are sketched without using instruments other than pencils and erasers

INSTRUMENT DRAWING

- Instruments are used to draw straight lines, circles, and curves concisely and accurately
- The drawings are usually made to scale

9

COMPUTER DRAWING

• The drawings are usually made by computer software, such as AutoCAD, SolidWorks, Engineer Pro, etc.

PROJECT THEORY

- The projection theory is used to graphically represent 3D objects on 2D media, such as paper or computer screen
- The project theory is based on two variables:
 - Line of sight
 - Plane of projection

11

LINE OF SIGHT

• LOS is an imaginary ray of light between an observer's eye and an object

Parallel projection

Perspective projection

PLANE OF PROJECTION

 The image is produced by connecting the points where the LOS cross the projection plane

Parallel projection

Perspective projection

13

13

PROBLEM OF PERSPECTIVE PROJECTION

- Perspective projection is not used by engineer for manufacturing of parts, because...
 - It is difficult to create
 - It does not reveal exact shape and size

• Orthographic projection is a parallel projection technique in which the parallel lines of sight are perpendicular to the plane of projection

15

MULTIVIEW PROJECTIONS

Project an object from six principal directions (front, back, top, bottom, left, & right)

17

17

AUXILIARY VIEWS

Used to shown true dimensions of an inclined plane

18

ISOMETRIC DRAWING

- Represent 3D objects by a 2D view in the projection in which the coordinate axes appear equally foreshortened
- It is easy to understand the 3D shape
- However, the project causes shape and angle distortions

Right angle becomes obtuse angle

19

STANDARD ON PLACEMENT OF VIEWS — FIRST ANGLE PROJECTION

- Directly project images along the line of sight
- Front view is put at the middle
- Top view is put at the bottom
- Right view is put on the left

ISO standard Used in Europe, etc.

20

STANDARD ON PLACEMENT OF VIEWS — FIRST ANGLE PROJECTION

21

21

STANDARD ON PLACEMENT OF VIEWS — THIRD ANGLE PROJECTION

- The position of the viewpoint and location of the projection view are the same
 - Right side view is located at right
 - Left side view is located at left

Mainly used in US

FIRST VS THIRD ANGLE PROJECTIONS

• Different signs to represent the standard of the viewing angles

23

23

EXAMPLE OF REPRESENTATION

24

DIMENSIONING AND UNITS

Dimensions in a drawing provides the necessary information for fabricating a part

25

25

SOLIDWORKS

- A Computer Aided Design (CAD) software
- To create 3D design for products or parts
- To create engineering drawings for communications and manufacturing
- To analyze the design

