

ANÁLISIS Y DISEÑO LÓGICO DE SISTEMAS

Septiembre 2023

Luis E.Canales C. lcanales@utalca.cl

LENGUAJES DE BASES DE DATOS: ÁLGEBRA RELACIONAL

Relational Algebra

- Es un lenguaje formal que permite consultar bases de datos relacionales
- Conjunto de operadores que toman relaciones como operandos y retornan una relación como resultado → Propiedad de cierre → El resultado de un operador puede ser el operando de otro.
- Es un lenguaje que no es usado directamente por los desarrolladores: usado para la traducción y optimización de consultas SQL
- Utiliza símbolos griegos σ , π , ρ , δ , etc.
- Propuesta por E. F. Codd

Álgebra Relacional: Operadores

- Unión U, intersección
 , diferencia -
- Selección σ
- Proyección π
- Producto Cartesiano join
- (Renombrar p)
- Eliminar Duplicados δ
- Agrupación y agregación y
- Sorting τ

Todos los operadores toman 1 o 2 relaciones como entradas y devuelven otra relación

AR Extendida

Ocho operadores clasificados en dos grupos:

- Tradicionales de la teoría de conjuntos: Unión,
 Intersección, Diferencia y Producto Cartesiano
- Especializados: Restricción (o Selección), Proyección, Reunión (join) y División

Operadores adicionales: Renombrado, Agrupamiento, Derivación (o Extensión)

No traducir *join* como unión

Sean las relaciones:

Nota: Aquí se usa el atributo edad, pero en una BD se debería guardar la fecha de nacimiento

ADMINISTRADOR

Código	Nombre	edad
1	Jorge Campos	33
2	Enrique Muñoz	25
3	Esteban Paz	21

PRODUCTOR

Código	Nombre	Edad
2	Enrique Muñoz	25
8	Jorge Arias	30
10	Juan Martínez	19

Restricción o Selección (σ):

Genera una relación que contiene todas las tuplas de una relación que satisfacen una condición dada.

La condición se construye mediante operadores de comparación $(=, <, \le,$ \square , etc.) y booleanos (AND, OR, etc.)

$$\sigma_p(R) = \{t \mid t \in R \text{ and } p(t)\}$$

• Relación R

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$$\sigma_{A=B^{\land}D>5}(R)$$

Α	В	С	D
α	α	1	7
β	β	23	10

ADMINISTRADOR

Código	Nombre	edad
1	Jorge Campos	33
2	Enrique Muñoz	25
3	Esteban Paz	21

• σ_{edad ≥ 25}(ADMINISTRADOR):

Código	Nombre	edad
1	Jorge Campos	33
2	Enrique Muñoz	25

PRODUCTOR

•	σ _{código < 5} (PRODUCT	OR):
---	-------------------------------------	------

Código	Nombre	Edad
2	Enrique Muñoz	25
8	Jorge Arias	30
10	Juan Martínez	19

Código	Nombre	Edad
2	Enrique Muñoz	25

$\pi_{\text{Lista atributos}}(R)$

Proyección (π) :

Extrae atributos (columnas) de una relación

El resultado es una relación (se eliminan tuplas repetidas)

 $\pi_{A1, A2, ...,An(R)}$

$\pi_{c\text{\'odigo, edad}}(ADMINISTRADOR)$

Código	edad
1	33
2	25
3	21

ADMINISTRADOR

Código	Nombre	edad
1	Jorge Campos	33
2	Enrique Muñoz	25
3	Esteban Paz	21

$\pi_{c\text{odigo, nombre}}(PRODUCTOR)$

PRODUCTOR

Código	Nombre	Edad
2	Enrique Muñoz	25
8	Jorge Arias	30
10	Juan Martínez	19

Código	Nombre
2	Enrique Muñoz
8	Jorge Arias
10	Juan Martínez

Sea una relación JUGADOR:

JUGADOR

cod	nom	país
3	Xiu	China
8	Juan	Chile
2	Juan	Chile

Sea: $\pi_{país}(JUGADOR)$

país China Chile

Sea: $\pi_{\text{nom, pais}}(\text{JUGADOR})$

nom	país
Xiu	China
Juan	Chile

Note que se eliminan **tuplas** repetidas

Componiendo Operadores AR

PACIENTE

Nro.	Nombre	zip	enfermedad
1	P1	98125	gripe
2	P2	98125	corazón
3	Р3	98120	pulmón
4	p4	98120	corazón

$\pi_{\text{zip, enfermedad}}$	(PACIENTE)
--------------------------------	------------

zip	enfermedad
98125	gripe
98125	corazón
98120	pulmón
98120	corazón

$\pi_{\text{zip, enfermedad}}(\mathbf{C})$	enfermedad= 'corazón' (PACIENTE)
--	----------------------------------

Nro.	Nombre	zip	enfermedad
2	P2	98125	corazón
4	p4	98120	corazón

zip	enfermedad	
98125	corazón	
98120	corazón	

Producto Cartesiano: $R_1 \times R_2$

- Retorna una relación que contiene todas las tuplas resultantes de la combinación de cada tupla de R₁ con cada tupla de R₂
- La cabecera de la relación resultante es la unión de las cabeceras de $\rm R_1$ y $\rm R_2$
- Para hacer el producto cartesiano, las cabeceras de R_1 y R_2 no pueden tener nombres de atributos iguales ¿por qué? Si las cabeceras tienen nombres de atributos iguales se debe usar un alias mediante el operador de renombrado ρ (más adelante se explica este operador)

Ejemplo producto cruzado

EMPLEADO

nombre	rut
Juan	99999999
Tomás	77777777

DEPENDIENTE

rutemp	nomemp
99999999	Emilia
77777777	Jaime

EMPLEADO X DEPENDIENTE

Nombre	rut	rutemp	nomemp
Juan	99999999	99999999	Emilia
Juan	99999999	77777777	Jaime
Tomás	77777777	99999999	Emilia
Tomás	77777777	77777777	Jaime

Renombrado temporal

de la relación

Renombrado temporal de los atributos

ADMINISTRADOR $\times \rho_{PRO(cod,nom,ed)}$ ($\pi_{código,nombre,edad}$ (PRODUCTOR))

Operador de renombrado

ADMINISTRADOR

Código	Nombre	edad
1	Jorge Campos	33
2	Enrique Muñoz	25
3	Esteban Paz	21

PRODUCTOR

Código	Nombre	Edad
2	Enrique Muñoz	25
8	Jorge Arias	30
10	Juan Martínez	19

código	nombre	edad	cod	nom	ed
1	. Jorge Campos	33	2	Enrique Muñoz	25
1	. Jorge Campos	33	8	Jorge Arias	30
1	. Jorge Campos	33	10	Juan Martínez	19
2	Enrique Muñoz	25	2	Enrique Muñoz	25
2	Enrique Muñoz	25	8	Jorge Arias	30
2	Enrique Muñoz	25	10	Juan Martínez	19
3	Esteban Paz	21	2	Enrique Muñoz	25
3	Esteban Paz	21	8	Jorge Arias	30
3	Esteban Paz	21	10	Juan Martínez	19

Álgebra Relacional: Unión y diferencia

Unión y diferencia

Solo tiene sentido si R1, R2 tienen el mismo esquema

Álgebra Relacional: Intersección

Operador derivado usando menos

$$R1 \cap R2 = R1 - (R1 - R2)$$

Derivado usando join

$$R1 \cap R2 = R1 \bowtie R2$$

Unión: $R_1 \cup R_2$

Retorna una relación que contiene todas la tuplas de R_1 y de R_2 (se eliminan tuplas repetidas)

Las relaciones deben tener cabecera idéntica para que sean compatibles para la unión

ADMINISTRADOR ∪ PRODUCTOR:

	Código	Nombre	Edad
	1	Jorge Campos	33
•	2	Enrique Muñoz	25
	3	Esteban Paz	21
	8	Jorge Arias	30
	10	Juan Martínez	19

Sólo aparece una vez

ADMINISTRADOR

Código	Nombre	Edad
1	Jorge Campos	33
2	Enrique Muñoz	25
3	Esteban Paz	21

PRODUCTOR

Código	Nombre	Edad
2	Enrique Muñoz	25
8	Jorge Arias	30
10	Juan Martínez	19

• Relaciones R, S:

Α	В
α	1
α	2
β	1
F	7

 $R \cup S$:

Α	В
α	1
α	2
β	1
β	3

Intersección: $R_1 \cap R_2$

Retorna una relación que contiene todas las tuplas que aparecen tanto en R₁ como en R₂ Las relaciones deben tener cabecera idéntica para que sean compatibles para la intersección

ADMINISTRADOR \(\cap \) PRODUCTOR:

Código	Nombre	edad
2	Enrique Muñoz	25

ADMINISTRADOR

Código	Nombre	edad
1	Jorge Campos	33
2	Enrique Muñoz	25
3	Esteban Paz	21

PRODUCTOR

Código	Nombre	Edad
2	Enrique Muñoz	25
8	Jorge Arias	30
10	Juan Martínez	19

Diferencia: R₁ - R₂

Retorna una relación que contiene todas las tuplas que aparecen en R_1 pero **no** en R_2 (tuplas idénticas)

Las relaciones deben tener cabecera idéntica para que sean compatibles para la diferencia

ADMINISTRADOR - PRODUCTOR:

Código	Nombre	edad
1	Jorge Campos	33
3	Esteban Paz	21

ADMINISTRADOR

Código	Nombre	edad
1	Jorge Campos	33
2	Enrique Muñoz	25
3	Esteban Paz	21

PRODUCTOR

Código	Nombre	Edad
2	Enrique Muñoz	25
8	Jorge Arias	30
10	Juan Martínez	19

PRODUCTOR - ADMINISTRADOR:

Código	Nombre	edad
8	Jorge Arias	30
10	Juan Martínez	19

- La unión, intersección y producto cartesiano son conmutativas y asociativas
- La diferencia no es conmutativa ni asociativa
- La intersección no es un operador primitivo ya que se puede expresar mediante la diferencia

No traducirla al español como unión

Reunión (join): Tiene varias modalidades:

Reunión natural (natural join): $R_1 \bowtie R_2$

Sea $R_1(A,B)$ y R_2 (B,C). El resultado de $R_1 \bowtie R_2$ es una relación con cabecera (A,B,C) donde cada tupla de R_1 se combina con cada tupla de R_2 siempre y cuando tengan el mismo valor en el atributo en común (B).

A, B y C pueden ser atributos compuestos.

EMPLEADO

Código	Nombre	edad	depto
1	Jorge Campos	33	1
2	Enrique Muñoz	25	1
3	Esteban Paz	21	1
8	Jorge Arias	30	2
10	Juan Martínez	19	2
12	Anselmo Rodas	28	6

DEPARTAMENTO

depto	descripción
1	Administración
2	Producción
3	Ventas
4	Finanzas

Nota: En este ejemplo, el campo depto en EMPLEADO <u>no</u> es CF con respecto a la relación DEPARTAMENTO

EMPLEADO ⋈ DEPARTAMENTO:

código	nombre	edad	depto	descripción
1	Jorge Campos	33	1	Administración
2	Enrique Muñoz	25	1	Administración
3	Esteban Paz	21	1	Administración
8	Jorge Arias	30	2	Producción
10	Juan Martínez	19	2	Producción

Código	Nombre	edad	depto
1	Jorge Campos	33	1
2	Enrique Muñoz	25	1
3	Esteban Paz	21	1
8	Jorge Arias	30	2
10	Juan Martínez	19	2
12	Anselmo Rodas	28	6

depto	descripción
1	Administración
2	Producción
3	Ventas
4	Finanzas

```
Semi reunión (semi join): R₁▷ R₂:

Similar a la reunión natural pero solo se muestran los atributos de la relación de la izquierda → ¿Utilidad?

Reunión Theta (theta join): R₁ Θ<sub>Condición</sub> R₂

Equivale a: σ<sub>Condición</sub> (R₁ X R₂)

El operador de comparación usado en la condición no es el "=" de la reunión natural sino alguno de los siguientes: ">", "<", ">=", "<=", "≠"
```

EMPLEADO $\Theta_{\text{depto} > \text{dep}} \rho_{\text{DEPT(dep,desc)}}$ $(\pi_{(\text{depto,descripción})}(\text{DEPARTAMENTO}))$

código	nombre	edad	depto	dep	desc
8	Jorge Arias	30	2	1	Administración
10	Juan Martínez	19	2	1	Administración
12	Anselmo Rodas	28	6	1	Administración
12	Anselmo Rodas	28	6	2	Producción
12	Anselmo Rodas	28	6	3	Ventas
12	Anselmo Rodas	28	6	4	Finanzas

Código	Nombre	edad	depto
1	Jorge Campos	33	1
2	Enrique Muñoz	25	1
3	Esteban Paz	21	1
8	Jorge Arias	30	2
10	Juan Martínez	19	2
12	Anselmo Rodas	28	6

depto	descripción
1	Administración
2	Producción
3	Ventas
4	Finanzas

División: $R_1 \div R_2$ Sean las relaciones $R1(\mathbf{A}, \mathbf{B})$ y $R2(\mathbf{B})$. El resultado de $R_1 \div R_2$ es una relación con el atributo \mathbf{A}

Un valor $\underline{\mathbf{a}} \in A$ hace parte del resultado de la división si $\underline{\mathbf{a}}$ está en R_1 combinado con cada valor $\in B$ que aparece en R_2

A y B pueden ser atributos compuestos

ARTISTAYGENERO

codartista	nomgénero
45	Soul
45	Pop
45	Dance
8	Soul
8	Pop
23	Dance

GÉNERO

nomgénero Soul Pop Dance

ARTISTAYGENERO ÷ GÉNERO

codartista

45

Ya que en este caso sólo el artista 45 está combinado con todos los géneros que aparecen en la relación GÉNERO

División: $R_1 \div R_2$

$$R \div S = \left\{ t \mid t \in \pi_{R-S}(R) \land (\forall_{u \in S})(tu \in R) \right\}$$

Ejemplos

1

2

Operadores adicionales:

Asignación: VbleRelacion ← Relación

p: Renombra atributos y el nombre de la relación:

 $\rho_{\text{NUEVONOMBRERELACIÓN(atributos renombrados)}}(\pi_{\text{(atributos)}}(R))$

Nota: El renombrado **no es definitivo**, este solo tiene efecto durante la expresión del álgebra relacional.

Ģ: Operador de agrupamiento. Funciones de grupo: SUM(), AVG(), MAX(), MIN(), COUNT()

Lista atributos de agrupamiento ς Lista valores agregados (R)

Ej. Sea:

EMP

Código	Nombre	Edad	Depto
1	Jorge Campos	33	1
2	Enrique Muñoz	25	1
3	Esteban Paz	21	1
8	Jorge Arias	30	2
10	Juan Martínez	19	2
12	Anselmo Rodas	28	6

Valor agregado: función de grupo aplicada a un atributo, cada uno con su renombrado

¿Qué hace la siguiente consulta?

depto GCOUNT(código) AS conteo (EMP)

Renombrado del valor agregado

TRABAJADOR

cod	género	país	salario
1	m	China	100
2	m	UK	200
4	m	China	100
3	f	China	300
8	f	China	100
9	m	UK	50
23	f	China	100

país, género SUM (salario) AS total, COUNT(cod) AS cuantos (TRABAJADOR)

país	género	total	cuantos
China	m	200	2
UK	m	250	2
China	f	500	3

Derivación:

EXTEND R ADD Lista cálculos AS Lista atributos

EMP

Código	Nombre	Edad	Depto
1	Jorge Campos	33	1
2	Enrique Muñoz	25	1
3	Esteban Paz	21	1
8	Jorge Arias	30	2
10	Juan Martínez	19	2
12	Anselmo Rodas	28	6

Ejemplo: EXTEND EMP ADD sal+bono AS totsal

Se genera una relación como la original pero con

un atributo totsal adicional:

Código	Nombre	Edad	bono	totsal
1	Jorge Campos	33	1	34
2	Enrique Muñoz	25	1	26
3	Esteban Paz	21	1	22
8	Jorge Arias	30	2	32
10	Juan Martínez	19	2	21
12	Anselmo Rodas	28	6	34

La relación original permanece intacta

¿Qué hace la siguiente consulta?

Ej: EXTEND EMP ADD 1 AS num, 'Hola' AS mensaje

Relación (Control de bancos):

```
Cliente = (nombre_cliente PK, ciudad, calle)
Sucursal = (nombre_sucursal PK, activo, ciudad)
Prestamo = (num_prestamo PK, nombre_sucursal FK, nombre_cliente FK, importe)
Deposito = (num_cuenta PK, nombre_sucursal FK, nombre_cliente FK, saldo)
```

 Obtener el nombre de clientes y ciudades donde viven, que cumplan con la condición de tener un préstamo.

```
\pi prestamo.nombre_cliente, ciudad (\sigma_{prestamo.nombre\_cliente} = cliente.nombre_cliente (cliente x prestamo))
```

• Obtener los nombres de los clientes que tienen, una cuenta, un préstamo, o ambas cosas en la sucursal "2":