In-Class 2. Categorical Data Analysis

Suzer-Gurtekin

January 2025

Overview

Analysis of Two-Way Tables

Odds Ratios and Relative Risk

Two-Way Tables

Rows=I Columns=J

Starting with general notation...

	Columns					
Rows	1	2	3	4	5	
1	n ₁₁	<i>n</i> ₁₂	<i>n</i> ₁₃	<i>n</i> ₁₄	n ₁₅	n ₁₊
2	<i>n</i> ₂₁	n_{22}	n_{23}	n_{24}	n_{25}	n_{2+}
3	n_{31}	n_{32}	n_{33}	<i>n</i> ₃₄	n_{35}	n_{3+}
4	<i>n</i> ₄₁	<i>n</i> ₄₂	<i>n</i> ₄₃	<i>n</i> ₄₄	<i>n</i> ₄₅	<i>n</i> ₄₊
	n ₊₁	n ₊₂	n ₊₃	n ₊₄	n ₊₅	n

Two-Way Tables

In this notation, each cell is n_{ij} where i is the row and j is the column.

The plus sign denotes marginal totals:

$$n_{i+} = \sum_{j=1}^{J} n_{ij}$$
 Sum across columns holding row constant

$$n_{+j} = \sum_{i=1}^{l} n_{ij}$$
 Sum across rows holding column constant

$$n = \sum_{i=1}^{I} n_{i+} = \sum_{j=1}^{J} n_{+j} = \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij}$$

2 × 2 Tables

Special Case of IxJ table: I=2 number of rows and J=2 number of columns:

i= 1,2

j= 1,2

Condition	Present	Absent	Row Total
Yes	<i>n</i> ₁₁	<i>n</i> ₁₂	n ₁₊
No	<i>n</i> ₂₁	n ₂₂	n_{2+}
Column Total	<i>n</i> ₊₁	n ₊₂	n

Group Assignments

Group Student

- Finolf, Zach Scott
- Fan. Zhaovun
- Mishra, Rohin Prem
- Deslardins, Grace
- Adenivi. Kehinde
- Lugu, Nicholas Reign LU. Aria
- Gunderson, Jeremy
- Wenner, Theodore D
- Zhou, Zhenjing
- Kim. Jav
- Bei. Rongai Beshaw, Yael Dejene
- Hoglund, Quentin Michael
- Jiang, Yujing Jiang, Weishan
- Popky, Dana
- Sani, Jamila
- O'Connell, Greg Al
- Saucedo, Valeria Castaneda

Group Student

- Hussein, Ava Moham
- 6 Zou, Jianing
- Wang, Zixin
- 6 Chakravarty, Sagnik
- Valmidiano, Megan
- Glidden, Sarah Acton
- Sun. Yao
- Blakney, Aaron
- Xu. Kailin
- Linares, Kevin
- Odei, Doris
- 8 Nana Mba. Line
- Zhou, Huan
- Meng, Lingchen
- Lin. Xinvu Ge. Feiran
- 10 Liu, Xiaoqing
- 10 Lu. Angelina
- 10 Baez-Santiago, Felix
- 10 Ma. Ruisi

Group Student

- 11 Ding, Yuchen
- 11 Shrivastava, Namit
- Kakiziha Johnia Johansen
- 11 Cranmer, Evan Koba

Expectations

Active participation in

- Reviewing question/data/method
- Code writing
- Computations
- Interpretation of results
- Select a spokesperson for group discussion

Starting discussion as a group ...

Disease				
	Yes	No	Row Total	
Male	10	40	50	
Female	20	30	50	
Column Total	30	70	100	

- 1. What is n_{+1} ? [Please tell me what this quantity is in plain English]
- 2. What is n_{2+} ?
- 3. What is Pr(M, D)?
- 4. What is Pr(D|F)?

Group Discussion

- Work in groups
- Randomly selected group to go over the solutions to questions 1 and 2
- Randomly selected group to go over the solutions to questions 3 and 4

Disease

	Yes	No	Row Total
Male	10	40	50
Female	20	30	50
Column Total	30	70	100

What is n_{+1} ? 30

$$\sum_{i=1}^{l=2} n_{1,1} + n_{2,1} = 10 + 20 = 30$$

What is n_{2+} ? 50

$$\sum_{i=1}^{J=2} n_{2,1} + n_{2,2} = 20 + 30 = 50$$

Disease

	Yes	No	Row Total
Male	10	40	50
Female	20	30	50
Column Total	30	70	100

What is Pr(M, D)?0.10

$$Pr(M, D) = \frac{n_{11}}{n} = \frac{10}{100} = 0.10$$

What is Pr(D|F)?0.40

$$\Pr(D|F) = \frac{n_{22}}{n_{2+}} = \frac{n_{22}}{\sum_{j=1}^{2} n_{2j}} = \frac{n_{22}}{n_{21} + n_{22}} = \frac{20}{20 + 30} = \frac{20}{50} = 0.40$$

Two-Way Tables

If the two variables are unrelated, then any cell proportion is the product of the marginal proportions. Using the notation from last time: $\pi_{ii} = \pi_{i+}\pi_{+i}$.

This gives us a method for creating **Expected** counts if we want to test for independence.

Write EXPECTED counts, using our notation:

$$e_{ij} = np_{i+}p_{+j} = \frac{n_{i+}n_{+j}}{n}$$

Pearson Chi-Square Statistic

$$X^{2} = \sum_{i=1}^{K} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

where $O_i = n_i$ is the observed count in the i^{th} category, and $E_i = np_{0i}$ is the expected count in the i^{th} category (from H_0).

The FREQ Procedure

R

Table of gender by age

gender	age					
Frequency Expected Cell Chi-Square	0-29	30-39	40-49	50-59	>=60	Total
males	185 180.22 0.1269	207 209.78 0.0368	260 257.46 0.0252	180 178.31 0.016	71 77.237 0.5036	903
females	4 8.7814 2.6034	13 10.222 0.7551	10 12.545 0.5163	7 8.6885 0.3281	10 3.7635 10.335	44
Total	189	220	270	187	81	947

Statistics for Table of gender by age

Statistic	DF	Value	Prob
Chi-Square	4	15.2461	0.0042
Likelihood Ratio Chi-Square	4	12.6670	0.0130
Mantel-Haenszel Chi-Square	1	4.8961	0.0269
Phi Coefficient		0.1269	
Contingency Coefficient		0.1259	
Cramer s V		0.1269	

Sample Size = 947

Please use the table on the previous page:

- Write down what is I and J?
- Write down the table in IxJ notation.
- 3. Data as the table form is saved on canvas website drunk.dat:
- 4. Write down the case level data for this table with the following variable names and give definitions (min/max, value labels):

Case Number Sex Age Disease

5. Using table data calculate a X^2 test of association by hand (or in a spreadsheet), that is, not using R.

drunk.r

Now let's look at the solution in R. The following code:

```
chisq.test(data.matrix(drunk))
Produces the following output:
 Pearson's Chi-squared test
data: data.matrix(drunk)
X-squared = 15.2461, df = 4, p-value = 0.004217
Warning message:
In chisq.test(data.matrix(drunk)) :
  Chi-squared approximation may be incorrect
```

We can also produce a graphic of the chi-square deviations:

chi deviations for drunk.dat

Now let's look at the example in R. We have a *matrix* with our data:

	delinq	non.del	Row Total
glasses	а	b	a+b
no.glasses	С	d	c+d
Column Total	a+c	b+d	n

What is the probability that the table would be lopsided if wearing glasses was unrelated to delinquency?

0.06464255

We can request Fisher's exact test with the following code:

```
fisher.test(glasses)
```

Which produces the following output:

```
Fisher's Exact Test for Count Data
```

```
data: glasses
p-value = 0.03497
alternative hypothesis: true odds ratio is not equal t
95 percent confidence
  interval: 0.0009525702
  0.9912282442
sample
estimates:
odds ratio
```

19/32 Suzer-Gurtekin in-Class 2

OR and RR

	Yes	No	Row Total
Male	π_{11}	π_{12}	π_{1+}
Female	π_{21}	π_{22}	π_{2+}
Column Total	π_{+1}	π_{+2}	

	Disease			
	Yes	No		
Male Female	0.15 0.10	0.35 0.40		

We want the **conditional probability** that you have disease given that are male: $PR(D|M) = \pi_{1|1} = \frac{\pi_{11}}{\pi_{11} + \pi_{12}}$.

$$PR(D|M) = \pi_{1|1} = \frac{0.15}{0.15 + 0.35} = 0.3$$

Relative Risk

Now, define the relative risk.

Relative Risk (Response Category 1) =
$$\frac{\pi_{1|1}}{\pi_{1|2}}$$

For example:

$$\frac{\pi_{1|1}}{\pi_{1|2}} = \frac{\Pr(D|M)}{\Pr(D|F)} = \frac{.3}{.2} = 1.5$$

Please take a moment and compute the conditional probability of having a disease given that you are a female.

Relative Risk

An easy way to estimate the relative risk is:

$$\frac{n_{11}/n_{1+}}{n_{21}/n_{2+}}$$

The distribution of the relative risk is **highly skewed**. Therefore, it is better to estimate the variance on the log scale.

$$\hat{V}\left\{\ln\left(\frac{n_{11}/n_{1+}}{n_{21}/n_{2+}}\right)\right\} = \frac{1 - \frac{n_{11}}{n_{1+}}}{n_{11}} + \frac{1 - \frac{n_{21}}{n_{2+}}}{n_{21}} = \frac{\Pr(\bar{D}|M)}{n_{11}} + \frac{\Pr(\bar{D}|F)}{n_{21}}$$

This is the variance of the **natural logarithm** of the Relative Risk(Response Category 1).

Group Exercise

	Disease		
	Yes	No	
Male	20	40	
Female	30	30	

- 1. What is the relative risk for men relative to women?
- 2. What is the variance of this estimate? Leave it on the natural log scale, $\hat{V}\left(\ln(\hat{RR})\right)$.

	Disease			
	Yes	No		
Male	20	40		
Female	30	30		

What is the relative risk for men relative to women? $\frac{20/60}{30/60} = \frac{.33}{.5} = 0.67$

What is the variance of this estimate? $\hat{V}\left(In(\hat{RR})\right) = \frac{3}{60}$

Odds Ratio

Within row 1 the *odds* (*not* odds ratio) that the response is in column 1 instead of column 2 is defined as:

$$Odds_1 = \frac{\pi_{1|1}}{\pi_{2|1}} = \frac{\pi_{11}}{\pi_{12}}$$

probability of you are in column 1 given that you are in row 1 probability of you are in column 2 given that you are in row 1 $\,$

From our example, this could be written:

$$\frac{\Pr(D|M)}{\Pr(D|M)} = \frac{\Pr(D|M)}{1 - \Pr(D|M)}$$

	Yes	No	Row Total
Male	π_{11}	π ₁₂	π ₁₊
Female	π ₂₁	π ₂₂	π ₂₊
Column Total	π ₊₁	π ₊₂	

Continuing the example, the odds that a man will have the disease are $\frac{.3}{1-.3}$ = .43. For women, this odds are $\frac{.2}{1-.2}$ = .25

Odds Ratio

Those are the odds. The ratio of the odds is called the *odds ratio*.

$$\theta = \frac{\pi_{1|1}/\pi_{2|1}}{\pi_{1|2}/\pi_{2|2}}$$

	Yes	No	Row Total
Male	π ₁₁	π_{12}	π_{1+}
Female	π ₂₁	π22	π ₂₊
Column Total	π+1	π ₊₂	

Remember that $\pi_{1|1} = \frac{\pi_{11}}{\pi_{11} + \pi_{12}}$. So we can also write it in the following manner:

$$\theta = \frac{\frac{\pi_{11}}{\pi_{11} + \pi_{12}} / \frac{\pi_{12}}{\pi_{11} + \pi_{12}}}{\frac{\pi_{21}}{\pi_{21} + \pi_{22}} / \frac{\pi_{22}}{\pi_{21} + \pi_{22}}} = \frac{\pi_{11} / \pi_{12}}{\pi_{21} / \pi_{22}} = \frac{\pi_{11} \pi_{22}}{\pi_{21} \pi_{12}}$$

Hence the name cross-product ratio.

Odds Ratio

We estimate the odds ratio using:

$$\hat{\theta} = \frac{n_{11}n_{22}}{n_{21}n_{12}}$$

The variance of $ln(\hat{\theta})$ can be estimated as:

$$\hat{V}\left\{\ln\left(\hat{\theta}\right)\right\} = \frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}$$

Leg Healing Trial Callum et al. 1992								
Leg Wound Healing								
	Healed	Not Healed	Total	P_{i+}				
Elastic	35	30	65	0.538				
Inelastic	19	48	67	0.284				

- 1. Please calculate the **relative risk** and **odds ratio** of healing comparing elastic to inelastic bandages.
- 2. Please calculate the **variance** of the odds ratio estimate.

$$\hat{\theta} = \frac{35 \times 48}{19 \times 30} = 2.9474$$

The variance is determined for $ln(\hat{\theta}) = 1.0809$.

$$\hat{V}\left\{\ln\left(\hat{\theta}\right)\right\} = \frac{1}{35} + \frac{1}{30} + \frac{1}{48} + \frac{1}{19} = 0.13537$$

Do all the steps on the natural logarithmic scale!

- 2 1.96 * 0.36793 = 0.72114.
- 1.0809 0.72114 = 0.359777398 and 1.0809 + 0.72114 = 1.802048025. This is the 95% confidence interval on the logarithmic scale.
- **Solution** Exponentiate to get back to the scale of $\hat{\theta}$. Therefore, $(e^{0.359777398}, e^{1.802048025}) = (1.443, 6.062).$

30/32 Suzer-Gurtekin in-Class 2

R Code

We can do this work in R. Here I'm using the epiR package:

```
library(epiR)
bandage<-matrix(data=c(35,19,30,48),nrow=2)
bandage<-as.table(bandage)
epi.2by2(bandage)</pre>
```

Which produces the following output:

```
> epi.2by2 (bandage)
Outcome + Outcome - Total
Exposed + 35
Exposed - 19
                            30
                                     65
                            48
                                     67
Total
               5.4
                            78
                                    132
Inc risk * Odds
               53.8 1.167
Exposed +
Exposed -
                 28.4 0.396
Total
                   40.9 0.692
Point estimates and 95% CIs:
                                      1.90 (1.22, 2.95)
Inc risk ratio
                                       2.95 (1.43, 6.06)
Odds ratio
Attrib risk *
                                    25.49 (9.26, 41.72)
Attrib risk in population *
                               12.55 (-1.12, 26.22)
Attrib fraction in exposed (%) 47.33 (18.05, 66.15)
Attrib fraction in population (%) 30.68 (7.22, 48.21)
Test that OR = 1: chi2(1) = 8.866 Pr>chi2 = 0.00
Wald confidence limits
CI: confidence interval
* Outcomes per 100 population units
```