CLAIM AMENDMENTS

- 1. (Cancelled)
- 1 2. (Currently Amended) The apparatus of claim 1 claim 22 wherein the output of the
- 2 amplifier to the load is through a blocking capacitor, the digital-to-analog converter to
- 3 control the ramp of the voltage at the output to at least one of charging the blocking
- 4 capacitor to a steady-state reference value at the predetermined rate and of discharging
- 5 the blocking capacitor from the steady-state reference value at the predetermined rate.
- 1 3. (Original) The apparatus of claim 2 wherein the amplifier to generate an audio
- 2 output to the load in which the at least one of powering up and powering down at the
- 3 predetermined rate reduces audio pop and click at the load.
- 1 4. (Currently Amended) The apparatus of claim 1 claim 22 further comprises a
- 2 control circuit to generate data sent to the digital-to-analog converter during at least one
- 3 of powering up and powering down the amplifier.
- 1 5. (Original) The apparatus of claim 4 wherein the data from the control circuit
- 2 ramps the voltage at a substantially linear ramp rate

1	6. (Currently Amended) An apparatus comprising:
2	an audio amplifier to generate an output to an audio load;
3	a digital-to-analog converter to drive the audio amplifier during at least one of
4	powering up and powering down the audio amplifier, the digital-to-analog converter to
5	control the audio amplifier to ramp the voltage at the output at a predetermined rate to
6	reduce audio pop and click from being heard at the load during the at least one of
7	powering up or powering down of the audio amplifier; and
8	a control circuit to generate data sent to the digital-to-analog converter during at
9	least one of powering up and powering down the audio amplifier; and
10	a clamping switch at the output of the amplifier to selectively clamp the output of
11	the amplifier to a power return potential at a designated output level of the digital-to-
12	analog converter.

- 7. (Currently Amended) The apparatus of claim 6 further comprises a clamping
 switch at an output node of the audio amplifier to clamp the node to a power return
- 3 potential, wherein the clamping switch clamps the output node to the return potential at
- 4 initiation of a powering up sequence and releases the clamp when the audio amplifier and
- 5 the digital-to-analog converter are substantially fully powered.
- 1 8. (Original) The apparatus of claim 7 wherein the data from the control circuit
- 2 ramps the voltage at a ramp rate below frequency heard at the load.
- 1 9. (Currently Amended) The apparatus of claim 6 further comprises a clamping
- 2 switch at an output node of the audio amplifier to clamp the node to a power return
- 3 potential, wherein the clamping switch clamps the output node to the return potential at
- 4 initiation of a powering down sequence and releases the clamp when the audio amplifier
- 5 and the digital-to-analog converter are substantially turned off.
- 1 10. (Original) The apparatus of claim 9 wherein the data from the control circuit
- 2 ramps the voltage at a ramp rate below frequency heard at the load.

1	11.	(Currently	Amended)	A method to	o power u	ip or power	down an a	audio a	mplifier
_									

- 2 <u>comprising comprises</u>:
- 3 sending digital data for digital-to-analog conversion during a powering up or
- 4 powering down of an audio amplifier, which generates an output to an audio load;
- 5 converting the digital data to drive the audio amplifier; and
- 6 clamping of an output node of the audio amplifier to a power return potential at a
- 7 designated output level of the converted digital data; and
- 8 using the converted digital data to control the ramping of the voltage at the output
- 9 to not exceed a predetermined rate to reduce audio pop and click from being heard at the
- load during the powering up or powering down of the audio amplifier.
- 1 12. (Original) The method of claim 11 further comprises ramping the voltage at the
- 2 output to a steady-state reference value at the predetermined rate during the powering up
- 3 of the audio amplifier.
- 1 13. (Currently Amended) The method of claim 12 further comprises the clamping of
- 2 an output node of the audio amplifier to a power return potential during powering up and
- 3 releasing the clamp when the amplifier is substantially fully powered.
- 1 14. (Original) The method of claim 12 wherein using the converted digital data
- 2 controls the ramping of the voltage to a ramp rate below frequency heard at the load.
- 1 15. (Original) The method of claim 11 further comprises ramping the voltage at the
- 2 output from a steady-state reference value at the predetermined rate during the powering
- 3 down of the audio amplifier.
- 1 16. (Currently Amended) The method of claim 15 further comprises the clamping of
- 2 an output node of the audio amplifier to a power return potential wherein the designated
- 3 output level is provided during powering down and releasing the clamp when the
- 4 amplifier is substantially turned off.
- 1 17. (Original) The method of claim 15 wherein using the converted digital data
- 2 controls the ramping of the voltage to a ramp rate below frequency heard at the load.

1	18. (Currently Amended) An integrated circuit comprising:
2	an audio amplifier to generate an analog output to an audio load, when the audio
3	load is operably coupled to the integrated circuit;
4	a digital-to-analog converter to drive the audio amplifier during at least one of
5	powering up and powering down the audio amplifier, the digital-to-analog converter to
6	control the audio amplifier to ramp the voltage at the output at a predetermined rate to
7	reduce audio pop and click from being heard at the load during the at least one of
8	powering up or powering down of the audio amplifier; and
9	a control circuit to generate data sent to the digital-to-analog converter during at
10	least one of powering up and powering down the audio amplifier; and
11	a clamping switch at the output of the amplifier to selectively clamp the output of
12	the amplifier to a power return potential at a designated output level of the digital-to-
13	analog converter.
1 2	19. (Original) The integrated circuit of claim 18 wherein the control circuit is a digital signal processor.
1	20. (Currently Amended) The integrated circuit of claim 18 further comprises a
2	clamping switch at an output node of the audio amplifier to clamp the node to a power
3	return potential, wherein the clamping switch clamps the output node to the return
4	potential at initiation of a powering up sequence and releases the clamp when the audio
5	amplifier and the digital-to-analog converter are substantially fully powered.
1	21. (Currently Amended) The integrated circuit of claim 18 further comprises a
2	clamping switch at an output node of the audio amplifier to clamp the node to a power
3	return-potential, wherein the clamping switch clamps the output node to the return
4	potential at initiation of a powering down sequence and releases the clamp when the
5	audio amplifier and the digital-to-analog converter are substantially turned off.

1	22.	(New) An apparatus comprising:
2		an amplifier to generate an output to a load;
3		a digital-to-analog converter to drive the amplifier during at least one of powering
4	up and	d of powering down the amplifier, the digital-to-analog converter to control the
5	amplif	fier to ramp the voltage at the output at a predetermined rate to reduce rapid voltage
6	change	es from being sent to the load during the at least one of powering up or powering
7	down	of the amplifier; and
8		a clamping switch at the output of the amplifier to selectively clamp the output of
9	the an	applifier to a power return potential at a designated output level of the digital-to-
10	analog	g converter