PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:	A1	(11) International Publication Number: WO 96/33267
		(43) International Publication Date: 24 October 1996 (24.10.96)
(21) International Application Number: PCT/DK (22) International Filing Date: 22 April 1996 (2) (30) Priority Data: 0477/95 21 April 1995 (21.04.95) 1173/95 17 October 1995 (17.10.95) 1281/95 16 November 1995 (16.11.95) (71) Applicant (for all designated States except US):	22.04.9 D D 5) D	CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
NORDISK A/S [DK/DK]; Novo Alle, DK-2880 B (DK).	agsvæ	With international search report.
(72) Inventors; and (75) Inventors/Applicants (for US only): DIJKHUIZEN, [NL/NL]; University of Groningen, Broerstraat 5, N CP Groningen (NL). DIJKSTRA, Bauke, W. [NL/N versity of Groningen, Broerstraat 5, NL-9712 CP Gr (NL). ANDERSEN, Carsten [DK/DK]; Novo Nord Novo Allé, DK-2880 Bagsværd (DK). VON DER (Claus [DK/DK]; Novo Nordisk A/S, Novo Allé, D Bagsværd (DK).	NL-971 L]; Un roninge lisk A/S OSTEN	

(54) Title: CYCLOMALTODEXTRIN GLUCANOTRANSFERASE VARIANTS

(74) Common Representative: NOVO NORDISK A/S; Corporate Patents, Novo Allé, DK-2880 Bagsvæerd (DK).

(57) Abstract

The present invention relates to variants of cyclomaltodextrin glucanotransferase. More specifically, the invention relates to a maethod of modifying the substrate binding and/or product selectivity of a precursor CGTase enzyme, and CGTase variants derived from a precursor CGTase enzyme by substitution, insertion and/or deletion of one or more amino acid residue(s), which amino acid residue(s) holds a position close to the substrate. Moreover, the invention relates to DNA constructs encoding the CGTase variants, expression vectors, host cells and methods of producing the CGTase variants of the invention.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	Lì	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

CYCLOMALTODEXTRIN GLUCANOTRANSFERASE VARIANTS

TECHNICAL FIELD

The present invention relates to variants of cyclomaltodextrin glucanotransferase. More specifically the invention relates to a method of modifying 5 the substrate binding and/or product selectivity of a precursor CGTase enzyme, and CGTase variants derived from a precursor CGTase enzyme by substitution, insertion and/or deletion of one or more amino acid residue(s), which amino acid residue(s) holds a position close to the substrate. Moreover, the invention relates to DNA constructs encoding the CGTase variants, expression vectors, host cells and 10 methods of producing the CGTase variants of the invention.

BACKGROUND ART

Cyclomaltodextrin glucanotransferase (E.C. 2.4.1.19), also designated cyclodextrin glucanotransferase or cyclodextrin glycosyltransferase, in the following termed CGTase, catalyses the conversion of starch and similar substrates into cyclomaltodextrins via an intramolecular transglycosylation reaction, thereby forming cyclomaltodextrins, in the following termed cyclodextrins (or CD), of various sizes. Commercially most important are cyclodextrins of 6, 7 and 8 glucose units, which are termed α -, β - and γ -cyclodextrins, respectively. Commercially less important are cyclodextrins of 9, 10, and 11 glucose units, which are termed δ -, ϵ -, and ζ -20 cyclodextrins, respectively.

Cyclodextrins are thus cyclic glucose oligomers with a hydrophobic internal cavity. They are able to form inclusion complexes with many small hydrophobic molecules in aqueous solutions, resulting in changes in physical properties, e.g. increased solubility and stability and decreased chemical reactivity 25 and volatility. Cyclodextrins find applications particularly in the food, cosmetic, chemical and pharmaceutical industries.

Most CGTases have both starch-degrading activity and transglycosylation activity. Although some CGTases produce mainly α -cyclodextrins

and some CGTases produce mainly β -cyclodextrins, CGTases usually form a mixture of α -, β - and γ -cyclodextrins. Selective precipitation steps with organic solvents may be used for the isolation of separate α -, β - and γ -cyclodextrins. To avoid expensive and environmentally harmful procedures, the availability of CGTases capable of producing an increased ratio of one particular type of cyclodextrin is desirable.

CGTases from different bacterial sources, including CGTases obtained from Bacillus, Brevibacterium, Clostridium, Corynebacterium, Klebsiella, Micrococcus, Thermoanaerobacter and Thermoanaerobacterium have been described in the 10 literature.

Thus Kimura et al. [Kimura K, Kataoka S, Ishii Y, Takano T and Yamane K; J. Bacteriol. 1987 169 4399-4402] describe a Bacillus sp. 1011 CGTase, Kaneko et al. [Kaneko T, Hamamoto T and Horikoshi K; J. Gen. Microbiol. 1988 134 97-105] describe a Bacillus sp. Strain 38-2 CGTase, Kaneko et al. [Kaneko T, Song 15 KB, Hamamoto T, Kudo T and Horikoshi K; J. Gen. Microbiol. 1989 135 3447-34571 describe a Bacillus sp. Strain 17-1 CGTase, Itkor et al. [Itkor P, Tsukagoshi N and Udaka S; Biochem. Biophys. Res. Commun. 1990 166 630-636] describe a Bacillus sp. B1018 CGTase, Schmid et al. [Schmid G, Englbrecht A, Schmid D; Proceedings of the Fourth International Symposium on Cyclodextrins (Huber O, Szejtli J, Eds.), 20 1988 71-76] describe a Bacillus sp. 1-1 CGTase, Kitamoto et al. [Kitamoto N, Kimura T, Kito Y, Ohmiya K; J. Ferment. Bioeng. 1992 74 345-351] describe a Bacillus sp. KC201 CGTase, Sakai et al. [Sakai S, Kubota M, Nakada T, Torigoe K, Ando O and Sugimoto T; J. Jpn. Soc. Starch. Sci. 1987 34 140-147] describe a Bacillus stearothermophilus CGTase and a Bacillus macerans CGTase, Takano et al. 25 [Takano T, Fukuda M, Monma M, Kobayashi S, Kainuma K and Yamane K; J. Bacteriol. 1986 166 (3) 1118-1122] describe a Bacillus macerans CGTase, Sin et al. [Sin K A, Nakamura A, Kobayashi K, Masaki H and Uozumi T; Appl. Microbiol. Biotechnol. 1991 35 600-605] describe a Bacillus ohbensis CGTase, Nitschke et al. [Nitschke L, Heeger K, Bender H and Schultz G; Appl. Microbiol. Biotechnol. 1990 30 33 542-546] describe a Bacillus circulans CGTase, Hill et al. [Hill D E, Aldape R and Rozzell J D; Nucleic Acids Res. 1990 18 199] describe a Bacillus licheniformis CGTase, Tomita et al. [Tomita K, Kaneda M, Kawamura K and Nakanishi K; J. Ferm. Bioeng. 1993 75 (2) 89-92] describe a Bacillus autolyticus CGTase, Jamuna

et al. [Jamuna R, Saswathi N, Sheela R and Ramakrishna S V; Appl. Biochem. Biotechnol. 1993 43 163-176] describe a Bacillus cereus CGTase, Akimaru et al. [Akimaru K, Yagi T and Yamamoto S; J. ferm. Bioeng. 1991 71 (5) 322-328] describe a Bacillus coagulans CGTase, Schmid G [Schmid G; New Trends in 5 Cyclodextrins and Derivatives (Duchene D, Ed.), Editions de Sante, Paris, 1991, 25-54] describes a Bacillus firmus CGTase, Abelian et al. [Abelian V A, Adamian M O, Abelian L A A, Balayan A M and Afrikian E K; Biochememistry (Moscow) 1995 60 (6) 665-669] describe a Bacillus halophilus CGTase, and Kato et al. [Kato T and Horikoshi K; J. Jpn. Soc. Starch Sci. 1986 33 (2) 137-143] describe a Bacillus subtilis CGTase.

EP 614971 describes a Brevibacterium CGTase, Haeckel & Bahl [Haeckel K, Bahl H; FEMS Microbiol. Lett. 1989 60 333-338] describe Clostndium thermosulfurogenes CGTase, Podkovyrov & Zeikus [Podkovyrov S M, Zeikus J G; J. Bacteriol. 1992 174 5400-5405] describe a Clostndium thermohydrosulfuricum 15 CGTase, JP 7000183 describes a Corynebacterium CGTase, Binder et al. [Binder F, Huber O and Böck A; Gene 1986 47 269-277] describe a Klebsiella pneumoniae CGTase, US 4,317,881 describes a Micrococcus CGTase, and Wind et al. [Wind R D, Liebl W, Buitelaar R M, Penninga D, Spreinat A, Dijkhuizen L, Bahl H; Appl. Environ. Microbiol. 1995 61 (4) 1257-1265] describe Thermoanaerobacterium 20 thermosulfurigenes CGTase.

A CGTase produced by *Thermoanaerobacter sp.* has been reported by *Norman & Jørgensen* [*Norman B E, Jørgensen S T*; Denpun Kagaku 1992 **39** 99-106, and WO 89/03421], however, its amino acid sequence has never been disclosed. Here we report the nucleotide sequence encoding the *Thermoanaerobacter sp.* CGTase (presented as SEQ ID:NO 1), as well as its amino acid sequence (presented as SEQ ID:NO 2).

Also, CGTases from thermophilic *Actinomycetes* have been reported [Abelian V A, Afyan K B, Avakian Z G, Melkumyan A G and Afrikian E G; Biochemistry (Moscow) 1995 60 (10) 1223-1229].

Recently protein engineering has been employed in order to modify certain CGTases to selectively produce more or less of a specific cyclodextrin.

The Structure of CGTases

CGTases are functionally related to α -amylases. CGTases and α -amylases both degrade starch by hydrolysis of the α -(1,4)-glycosidic bonds, but produce virtually exclusively cyclic and linear products, respectively.

Members of the CGTase family possess a high overall amino acid sequence identity, more than 60 %. CGTases and α -amylases share about 30% amino acid sequence identity. However, the active site clefts of CGTases and α -amylases, located between the A and B domain (Asp229, Glu257 and Asp328), are rather similar.

10 Recently, the tertiary structures of CGTases were determined. Thus, Hofman et al. [Hofman B E, Bender H, Schultz G E; J. Mol. Biol. 1989 209 793-800] and Klein & Schulz [Klein C, Schulz G E; J. Mol. Biol. 1991 217 737-750] report the tertiary structure of a CGTase derived from Bacillus circulans Strain 8, Kubota et al. [Kubota M, Matsuura Y, Sakai S and Katsube Y; Denpun Kagaku 1991 38 141-146] 15 report the tertiary structure of a CGTase derived from Bacillus stearothermophilus TC-91, Lawson et al. [Lawson C L, van Montfort R, Strokopytov B, Rozeboom H J, Kalk K H, de Vries G E, Penninga D, Dijkhuizen L, and Dijkstra B W, J. Mol. Biol. 1994 236 590-600] report the tertiary structure of a CGTase derived from Bacillus circulans Strain 251, Strokopytov et al. [Strokopytov B, Penninga D, Rozeboom H 20 J; Kalk K H. Dijkhuizen L and Dijkstra B W; Biochemistry 1995 34 2234-2240] report the tertiary structure of a CGTase derived from Bacillus circulans Strain 251, which CGTase has been complexed with acarbose, an effective CGTase inhibitor, and Knegtel et al. [Knegtel R M A, Wind R D, Rozeboom H J, Kalk K H, Buitelaar R M, Dijkhuizen L and Dijkstra B W, J. Mol. Biol. 1996 256 611-622] report the tertiary 25 structure of a CGTase derived from Thermoanaerobacterium thermosulfurigenes.

These and other studies reveal that *Bacillus circulans* CGTases are composed of five domains. The three-dimensional structures also reveal that the N-terminal domains of CGTases have structural similarities to those of α -amylases, whereas the C-terminal domains were found to be unique to CGTases.

The catalytic site of CGTases is located in the A domain, and has three catalytic residues (in *Bacillus circulans* strain 251 these are Asp229, Glu257 and Asp328, respectively, cf. *Strokopytov et al.* 1995, *op cit.*). A central amino acid residue is located in the B domain, around which residue the cyclodextrins are

formed, i.e. the cyclization axis. Substitution of this central residue, e.g. tyrosine at residue 188 in *Bacillus ohbensis* (corresponding to position 195, CGTase numbering) in order to increase the relative production of γ-cyclodextrin to β-cyclodextrin has been the object of the study described by *Sin et al.* [*Sin K, Nakamura A, Masaki H, Matsuura Y and Uozumi T*; <u>Journal of Biotechnology</u> 1994 **32** 283-288] and JP-A-5219948.

Nakamura et al. [Nakamura A, Haga K and Yamane K; Biochemistry 1994 33 9929-9936] describe the effects on substrate binding and cyclization characteristics by replacements carried out at four residues in the active center of 10 a Bacillus sp. Strain 1011 CGTase. In these CGTase variants, a phenylalanine at position 183 has been replaced by leucine, a tyrosine at position 195 has been replaced by alanine, phenylalanine, leucine, threonine, valine, and tryptophan, respectively, a phenylalanine at position 259 has been replaced by leucine, and a phenylalanine at position 283 has been replaced by leucine.

Penninga et al. [Penninga D, Strokopytov B, Rozeboom H J, Lawson C L, Dijkstra B W, Bergsma J and Dijkhuizen L; Biochemistry 1995 34 3368-3376] describe the effect on activity and product selectivity of site-directed mutations in tyrosine at position 195 of a Bacillus circulans Strain 251 CGTase. In this publication four CGTase variants have been produced, in which variants the tyrosine at position 20 195 have been replaced by phenylalanine, tryptophan, leucine and glycine, respectively.

Fujiware et al. [Fujiwara S, Kakihara H, Sakaguchi K and Imanaka T, J. Bacteriol. 1992 174 (22) 7478-7481] describe CGTase variants derived from Bacillus stearothermophilus, in which a tyrosine residue at position 191 (corresponding to position 195 CGTase numbering) has been replaced by phenylalanine, a tryptophan residue at position 254 (corresponding to position 258, CGTase numbering) has been replaced by valine, a phenylalanine at position 255 (corresponding to position 259, CGTase numbering) has been replaced by phenylalanine and isoleucine, respectively, a threonine residue at position 591 (corresponding to position 598, CGTase numbering) has been replaced by phenylalanine, and a tryptophan residue at position 629 (corresponding to position 636, CGTase numbering) has been replaced by phenylalanine.

JP-A-7023781 describes CGTase variants derived from *Bacillus sp.* 1011, in which a tyrosine residue at position 195 has been replaced by leucine, valine, phenylalanine and isoleucine, respectively.

JP-A-5244945 describes CGTase variants derived from *Bacillus* 5 stearothermophilus TC-91, in which tyrosine residues at positions 222 and 286 (corresponding to positions 195 and 259, CGTase numbering) have been replaced by phenylalanine in order to increase the relative production of α-cyclodextrin to β-cyclodextrin.

JP-A-5041985 describes CGTase variants derived from *Bacillus sp.*10 #1011, in which histidine at residue 140 in region A, histidine at residue 233 in region B, and histidine at residue 327 in region C, respectively, have been replaced by arginine and asparagine residues, respectively.

EP 630,967 describes CGTase variants in which a tyrosine residue at position 211 of a *Bacillus sp.* 290-3 CGTase (corresponding to position 195, CGTase 15 numbering), at position 217 of a *Bacillus sp.* 1-1 CGTase (corresponding to position 195, CGTase numbering), and at position 229 of a *Bacillus circulans* CGTase (corresponding to position 195, CGTase numbering), have been substituted for tryptophan and serine.

Up to now, all efforts in making CGTase variants have lead to substitutions in the region around the active site, in particular at the central cyclization residue, corresponding to position 195, CGTase numbering. Only few CGTase variants holding substitutions at more distant regions have been suggested, and the manufacture of these variants have not been based on any particular concept.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide novel variants of CGTases, which variants, when compared to the precursor enzyme, show increased product selectivity and/or reduced product inhibition.

Accordingly, in its first aspect, the invention provides a method of modifying the substrate binding and/or product selectivity of a precursor CGTase enzyme, which method comprises substitution, insertion and/or deletion of one or

more amino acid residue(s) of the precursor enzyme, which amino acid residue(s) holds a position close to the substrate.

In another aspect, the invention provides a CGTase variant derived from a precursor CGTase enzyme by substitution, insertion and/or deletion of one 5 or more amino acid residue(s), which amino acid residue(s) holds a position close to the substrate.

In a third aspect, the invention provides a DNA construct encoding a CGTase variant of the invention.

In a fourth aspect, the invention provides a recombinant expression 10 vector comprising the DNA construct of the invention.

In a fifth aspect, the invention provides a host cell comprising the DNA construct of the invention, or the recombinant expression vector of the invention.

In a sixth aspect, the invention provides a method of producing a CGTase variant of the invention, which method comprises culturing the host cell of the invention under conditions permitting the production of the CGTase variant, and recovering the enzyme from the culture.

In further aspects, the invention provides CGTase variants for use in processes for the manufacture of cyclodextrins, in processes for the manufacture of linear oligosaccharides, and in processes for *in situ* generation of cyclodextrins.

20 Amino Acids

In the context of this invention the following symbols and abbreviations for amino acids and amino acid residues are used:

	Α	=	Ala =	Alanine
	С	=	Cys =	Cysteine
25	D	=	Asp =	Aspartic acid
	Ε	=	Glu =	Glutamic acid
	F	=	Phe =	Phenylalanine
	G	=	Gly =	Glycine
	Н	=	His =	Histidine
30	- 1	=	ile =	Isoleucine
	K	=	Lys =	Lysine
	L	=	Leu =	Leucine
	M	=	Met =	Methionine
	Ν	=	Asn =	Asparagine
35	Р	=	Pro =	Proline

Q Gln =Glutamine R Arg = Arginine S Serine Ser = Т Threonine Thr = 5 = Val = Valine Tryptophan = = qnT Tyr =**Tyrosine** В Asp or Asn Asx = Z = Gix =Glu or Gln 10 X = Xaa = Any amino acid Deletion or absent amino acid

CGTase Variants

A CGTase variant of this invention is a CGTase variant or mutated CGTase, having an amino acid sequence not found in nature.

A CGTase variant or mutated CGTase of this invention is a functional derivative of a precursor CGTase enzyme (i.e. the native, parental, or wild-type enzyme), and may be obtained by alteration of a DNA nucleotide sequence of a precursor gene or its derivatives, encoding the precursor enzyme. The CGTase variant or mutated CGTase may be expressed and produced when the DNA nucleotide sequence encoding the CGTase variant is inserted into a suitable vector in a suitable host organism. The host organism is not necessarily identical to the organism from which the precursor gene originated.

In the literature, enzyme variants have also been referred to as mutants or muteins.

25 CGTase Numbering

In the context of this invention a specific numbering of amino acid residue positions in CGTase enzymes is employed. By alignment of the amino acid sequences of various known CGTases it is possible to unambiguously allot a CGTase amino acid position number to any amino acid residue position in any 30 CGTase enzyme, which amino acid sequence is known.

Using the numbering system originating from the amino acid sequence of the CGTase obtained from *Bacillus circulans* Strain 251, which sequence is shown in Table 1 (a), aligned with the amino acid sequence of a number of other known

CGTases, it is possible to indicate the position of an amino acid residue in a CGTase enzyme unambiguously.

In describing the various CGTase variants produced or contemplated according to the invention, the following nomenclatures are adapted for ease of 5 reference:

[Original amino acid; Position; Substituted amino acid]

Accordingly, the substitution of serine with alanine in position 145 is designated as S145A.

Amino acid residues which represent insertions in relation to the amino acid sequence of the CGTase from *Bacillus circulans* Strain 251, are numbered by the addition of letters in alphabetical order to the preceding CGTase number, such as e.g. position 91aF for the "insert" Phe between Thr at position 91 and Gly at position 92 of the amino acid sequence of the CGTase from *Thermoanaerobacter sp.* ATCC 53627, cf. Table 1 (j).

Deletion of a proline at position 149 is indicated as P149*, and an insertion between position 147 and 148 where no amino acid residue is present, is indicated as *147aD for insertion of an aspartic acid in position 147a.

Multiple mutations are separated by slash marks ("/"), e.g. S145A/D147L, representing mutations in positions 145 and 147 substituting serine with alanine and 20 aspartic acid with leucine, respectively.

If a substitution is made by mutation in e.g. a CGTase derived from a strain of *Bacillus circulans*, the product is designated e.g. "B. circulans/S145A".

All positions referred to in this application by CGTase numbering refer to the CGTase numbers described above.

25 Table 1

Amino Acid Sequence Alignment, CGTase Numbering and Domains of Selected CGTases of Different Bacterial Origin

- a Bacillus circulans 251; b Bacillus sp. 1-1; c Bacillus sp. 38-2; d Bacillus sp. 1011;
- <u>e</u> Bacillus licheniformis; <u>f</u> Bacillus macerans; <u>g</u> Bacillus ohbensis; <u>h</u> Bacillus obsensis; <u>h</u> Bacillus stearothermophilus; <u>i</u> Klebsiella pneumoniae; <u>j</u> Thermoanaerobacter ATCC 53627.

** U 70/3320/		LC1/DE20/001
	10	

•	No	<u>8</u>	b	<u>c</u>	<u>d</u>	<u>e</u>	<u>f</u>	Д	<u>h</u>	į	i	<u>Domain</u>
			;						_			
	1	A.	E	Α	Α	D	s	D	Α	E	Α	A
	2	P	Α	Р	P	Α	Ρ	•	G	Р	P	Α
	3	D	D	D	D	D	D	*	N	E	D	Α
5	4	T		T	T	T	T	*	*	E	T	Α
	5	S	•	S	S	*	S	•	•	T	S	Α
	6	٧	V	٧	٧	٧	٧	٧	•	Υ	٧	A
	7	S	T	S	S	T	D	T	L	•	S	Α
	8	N	N	N	N	N	N	N	N	*	N	Α
10	9	K	K	K	K	K	K	K	K	*	٧	Α
	10	Q	٧	Q	Q	Q	٧	٧	٧	L	٧	Α
	11	N	N	N	N	N	N	N	N	D	N	Α
	12	F	Υ	F	F	F	·F	Υ	F	F	Y	Α
	13	S	S	S	S	S	S	T	T	R	S	A
15	14	T	D	T	Ť	T	Т	R	S	K	Т	• A
	14a	*	K	•	•	*	*	R	•	Κ	*	Α
	15	D	D	D	D	D	D	D	D	Ε	D	Α
	16	٧	٧	٧	٧	٧	٧	٧	٧	T	٧	. A
	17	ı	Ł	ı	1	l	1	1	٧	ı	1	Α
20	18	Υ	Υ	Υ	Υ	Y	Υ	Y	Y	Y	Υ	Α
	19	Q	Q	Q	Q	Q	Q	Q	Q	F	Q	Α
•	20	ı	1	1	ı	٧	1	I	. 1	Ļ	1	Α
	21	F	- V	F	F	F	٧	V	٧	F	٧	Α
	22	T	T	T	T	T	T	Т	٧	L	T	Α
25	23	D	D	D	D	D	D	D	D	D	D	Α
	24	R	R	R	R	R	R	R	R	R	R	Α
	25	F	F	F	F	F	F	F	F	F	F	Α
	26	S	S	S	S	L	Α	S	Ÿ	S	Ļ	Α
	27	D	D	D	D	D	D	D.	D	D	D	Α
30	28	G	G	G	G	G	G	G	G	G	G	Α
	29	N	N	N	N	N	D	D	N	D	N	Α

	30	P	P	Ρ	P	P	R	Ρ.	Т	Р	P	Α
	31	Α	G	Α	Α	S	T	S	S	S	S	Α
	32	N	N	N	N	N	N	N	N	N	N	Α
	33 -	N	N	N	N	N	N	N	N	N	N	Α
5	34	Р	P	P	P	P	Р	Р	Р	Α	Р	Α
	35	T	S	T	T	T	Α	T	S	G	Т	Α
	36	G	G	G	G	G	G	G	G	F	G	Α
	37	Α	Α	A	Α	Α	D	A	Α	N	D	Α
	38	Α	ı	Α	Α	Α	Α	1	L	S	L	Α
10	39	F	F	F	F	F	F	Υ	F	Α	Y	Α
	40	D	S	D	D	D	S	S	S	T	D	Α
	41	G	Q	G	G	G	G	Q	S	Υ	P	Α
	42	T	N	S	S	Т	D	D	G	D	T	Α
	43	С	С	С	С	С	R	С	С	Р	Н	Α
15	44	Т	1	T	T	S	S	S	T	N	Т	Α
	45	N	D	N	N	N	N	D	N	N	S	Α
	46	L	L	L	L	L	L	L	L	L	L	Α
	4 7	R	Н	R	R	Κ	K	Н	R	K	K	Α
	48	L	K	L	L	L	L	K	K	K	K	Α
20	49	Y	Y	Υ	Y	Y	Υ	Y	Y	Y	Y	Α
	50	С	С	С	С	С	F	С	С	Т	F	Α
	51	G	G	G	G	G	G	G	G	G	G	Α
	52	G	G ·	G	G	G	G	G	G ·	G	G	Α
	53	D	D	D	D	D	D	D	D	D	D	Α
25	54	W	W	W	W	W	W	W	W	L	W	Α
	55	Q	Q	Q	Q	Q	Q	Q	Q	R	Q	Α
	56	G	G	G	G	G	G	G	G	G	G	Α
	57	ı	I	1	1	L	I	1	1	L	1	Α
	58	1	1	1	ł	V	1 .	1	1	I	1	Α
30	59	N	D	N	N	N	D	D	N	N	N	Α
	60	K	K	K	K	K	K	K	K	K	K	Α
	61	1	1	1	1	İ	1	1	1	L	I	Α
	62	N	N	N	N	Ν	N	N	N	*	N	Α

	63	D	D	D	D	D	D	D .	D	•	D	A
	64	G	G	G	G	N	G	G	G	P	G	A
	65	Y	Υ	Υ	Υ	Υ	Y	Y	Υ.	Y	Y	A
	66	L	L	L	L	F	L	L	L	L	L	A
5	67	T	T	T	T	S	T	T	T	K	T	Α
	68	G	D	G	G	D	G	D	D	S	G	Α
	69	M	L	M	M	L	M	L	M	L	M	A
	70	G	G	G	G	G	G	G	G	G	G	A
	71	V	ı	1	1	V	٧	i	٧	V	1	Α
10	72	T	T	T	T	Т	T	T	Т	T	Т	Α
	73	Α	Α	Α	Α	Α	Α	Α	Α	S	Α	Α
	74	1	L	1	I	L	L	1	I	1	l	Α
	75	W.	W	W	W	W	W	W	W	W	W	Α
	76	I	1	1	1	1	ı	1	1 .	1	1	Α
15	77 -	S	S	S	S	S	S	S	S	T	S	Α
	78	Q	Q	Q	Q	Q	Q	Q	Q	P	Q	Α
	79	P	Р	P	Р	P	Р	P	P	Р	P	Α
	80	٧	V	٧	٧	٧	٧	٧	V	1	V	Α
	81	E	Ε	E	E	E	Ε	Ε	E	D	E	Α
20	82	N	N	N	N	N	N	N	N	N	N	Α
	83	1	V	1	1	I	١	٧	V	٧	ı	Α
	84	Y	Y	Y	Υ	F	T	Υ	F	N	Y	Α
	85	S	Α	S	S	Α	S	Α	S	N	Α	Α
	86	l,	•	٧	٧	T	٧	•	V	T	V	Α
25	87	1	L	I	1	1	1	L	М	D	L	Α
	88	N	Н	N	N	N	K	Н	N	•	Р	Α
	89	Y	P	Y	Y	Y	Y	Р	Ď	•	D	Α
	90	S	S	S	S	S	S	S	Α	Α	S	Α
	91	G	G	G	G	G	G	G	S	Α	T	Α
30	91a	•	Υ	*	•	*	•	Υ	•	•	F	Α
	92	٧	•	٧	٧	٧	٧	•	*'	*	G	Α
	93	N	•	Н	N	Т	N	•	G	G	G	Α
	94	N	*	N	N	N	Ν	•	S	N	S	Α

	95	T .	T	T	· T	T	T	T	Α	T	T	Α
	96 -	Α	S	Α	Α	Α	S	S	S	G	S	Α
	97	Υ	Υ	Υ	Y	Υ	Υ	Υ	Υ	Y	Y	Α
	98	Н	Н	Н	Н	Н	Н	Н	Н	Н	н	Α
5	99	G	G	G	G	G	G	G	G	G	G	Α
	100	Y	Υ	Υ	Υ	Y	Υ	Υ	Υ	Y	Y	Α
	101	W	W	W	W	W	Ŵ	W	W	W	W	Α
	102	Α	Α	Α	Α	Α	Α	Α	Α	G	Α	Α
	103	R	R	R	R	R	R	R	R	R	R	Α
10	104	D	D	D	D	D	D	D	D	D	D	Α
	105	F	Υ	F	F	F.	F	Υ	F	Y	F	Α
	106	K	K	K	K	·K	K	K	K	F	K	Α
	107	K	K,	K	K	K	Q	R	K	R	K	Α
	108	T	T	T	T	T	T	T	P	ı	T	Α
15	109	N	N	N	N	N	Ν	Ν	N	D	N	Α
	110	Р	Р	Р	Р	Р	D	P	P	Ε	Р	Α
	111	Α	Υ	Α	Α	Y	Α	F	F	Н	F	A
	112	Υ	Y	Y	Υ	F	F	Υ	F	F	F	Α
	113	G	G	G	G	G	G	G	G	G	G	Α
20	114	T	N	T	T	T	D	D '	T .	N	S	Α
	115	I	F	М	M	М	F	F	L,	L	F	Α
	116	Α	D	Q	Q	T	Α	S	S	D	Т	Α
	117	D	D	D	D	D	D	D	D	D	D	Α
	118	F	F	F	F	F	F	F	F	F	F	Α
25	119	Q	D	K	K	Q	Q	D	Q	K	Q	Α
	120	N	R	N	N	Ν	N	R	R	E	N	Α
	121	L	L	L	L	L .	L	L	L	L	L	Α
	122	1	М	1	1	V	ı	M	٧	T	1	Α
	123	Α	S	D	D	T	D	D	D	S	Α	Α
30	124	Α	T	T	Т	Т	T	T	Α	L	Τ	Α
	125	Α	Α	Α	Α	Α	L	Α	Α	M	Α	Α
	126	Н	Ή	Н	Н	Н	Т	Н	Н	Н	Н	Α.
	127	Α	S	Α	Α	Α	L	S	À	S	Α	Α

-	128	K	N	H	H	K	I,	N	Ř	P	H	Α
	129	N	G	N	N	G	T	G	G	D	N	Α
	130	1	1	I	1	1	S	1	I	Υ	1	Α
	131	K	K	K	K	K	R	K	K	N	K	Α
5	132	٧	٧	V	٧	1	S	٧	٧	М	V	Α
	133	1	1	1	i	ŀ	D	1	1	K	1	Α
	134	I	М	1	ı	I	R	M		L	1	Α
	135	D	D	D	D	D	L	D	D	٧	D	Α
	136	F _.	F	F	F	F	R	F	F	L	F	Α
10	137	Α	T	Α	Α	Α	Р	T	Α	D	Α	Α
	138	Р	P	P	Р	P	Q	Р	P	Υ	P	Α
	139	N	N	N	N	N	P	N	N,	Α	N	Α
	140	Н	Н	Н	Н	Н	Н	Н	Н	P	Н	A
	141	Т	S	T	Т	T	٧	S	Т	N	Т	A
15	142	S	S	S	S	S	S	S	S	Н	S	Α
	143	P	P	Р	Р	Р	G	Р	Р	S	P	A
	144	Α	Α	Α	Α .	Α	R	Α	Α	N	Α	В
	145	S	L	S	S	M	Α	L	S	Α	S	В
	146	S	Ε	S	S	Ε	G	E	Ε	N	E	В
20	147	D	T	D	D	T	T	T	Ţ	D	T	В
	148	Q	N	D	D	D	N	D	N	Ε	D .	В
	149	P	Р	Р	P	T	Р	Р	P.	N	P	В
	150	S	N	S	S	S	G	S	S	Ε	T	В
	151	F	Υ	F	F	F	F	Y	Y	F	Υ	В
25	152	Α	٧	Α	A	Α	Α	Α	М	G	G	В
	153	E	Ε	Ε	Ε	Ε	E	E	Ε	Α	E	В
	154	N	N	N	N	N	N	N	N	L	N	В
	155	G	G	G	G	G	G	G	G	Υ .	G	В
	156	R	Α	R	R	K	Α	Α	R	R	R	В
30	157	L	1	L	L	L	L	V	L	D	L	В
	158	Y	Υ	Y	Υ	Υ	Υ	Υ	Υ	G	Y	В
	159	D	D	D	D	D	D	N	D	٧	D	В
	160	N	N	N	N	N	N	D	N	F	N	В

161	G	G	G	G	G	G	G	G	1	G	. В
162	T	Α	N	N	N	S	. V	T	T	V	В
163	L	L	L	L	L	L	L	L	D	L	• В
164	L	L	L	L	/V	L	1	L	Y	L	В
5 165	G	G	G	G	G	G	G	G	Р	G	В
166	G	N	G	G	G	Α	N	G	Т	G	В
167	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	N	Y	В
168	T	S	T	T	T	S	S	T	٧	Т	В
169	N	N	N	N	N	N	N	Ν	Α	N	В
10 170	D	D	D	D	D	D	D	D	Α	. D	В
171	Т	Q	T	T	T	T	P,	Α	Ν	Т	. В
172	Q	Q	Q	Q	Ν	Α	Ν	N	T	N	В
173	N	Ν	N	N	G	G	N	М	G	G	В
174	L	L	L	L	Y	L	L	Υ	W	Y	В
15 175	F	F	F	F	F	F	F	F	Y	F	В
176	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	В
177	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	В
178	N	N	Y	Υ	N	N	N	N	N	Y	В
179	G	G	G	G	G	G	G	G	G	G	В
20 180	G	G	G	G	G	G	G	G	Ģ	G	В
181	T	T	T	T	S	T	T	T	V	T	В
182	D	D	D	D	D	D	D	T	T	N	В
182a	•	•	•	*	•	•	*	*	N	• .	В
183	F	F	F	F	F	F	F	F	W	F	В
25 184	S	S	S	S	S	S	S	S	N	S	В
185	T	S	T	T	T	Τ.	S	S	D	S	В
186	T	Υ	1	1	L	I	Υ	L	F	Y	В
187	E	Ε	Ε	Ε	Ε	Ε	Ε	E	F	E	В
188	Ν	D	Ν	N	Ν	D	D	D	Q	D	В
30 189	G	S	G	G	G	G	S	G	٧	G	В
190	1	1	1	1	I	i	1	1	K	1	В
191	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	В
192	K	R	K	K	K	K	R	R	Н	R	В

				•								
	193	N	N	N	N	N	N	Ň	N	N	N	В
	194	L	L	L	L	L	L	L	L	L	L	В
	195	Υ	Υ	Υ	Υ .	Υ	Υ,	Υ	F	F	F	В
	196	D	D	D	D	D	D	D	D	N	D	В
5	197	L	L	L	L	L	L	L	L	L	L	В
	198	Α	Α	Α	Α	Α	Α	Α	Α	S	Α	В
	199	D	D	D	D	D	D	D	D	D	D	В
	200	L	Υ	L	L	L	1	Υ	L	L	L	В
	201	N	D	N	N	N	N	D	N	N	D	В
10	202	Н	L	Н	Н	Н	Н	L	Н	Q	Q	В
	203	N	N	Ņ	N	N	N	N	Q	S	Q	В
	204	N	N	N	N	N	N	N	N	N	N	В
	205	S	T	S	S	S	N	T	Р	T	S	Α
	206	Т	٧	S	S	T	Α	V	V	D	T	Α
15	207	٧	M	٧	٧	1	М	M	I	٧	i	Α
	208	D	D	D	D	D	D	D	D	Υ	D	Α
	209	٧	Q	٧	٧	T	Α	Q	R	Q	S	Α
	210	Y	Y	Υ	Υ	Υ	Y	Y	Y	Y	Y	Α
	211	L	L	L	L	F	F	L	L	L	L	Α
20	212	K	K	K	K	K	K	K	K	L	K	Α
	213	D	Ε	D	D	D	S	E	D	D	A	Α
	214	Α	S	Α	Α	Α	Α	S	Α	G	Α	Α
	215	1	ı	I	1	l	1	1	٧	S	I	Α
	216	K	K	K	K	K	D	K	K	K	K	Α
25	217	M	F	М	M	L	L	L	М	F	L	Α
	218	W	W	W	W	W	W	W	W	W	W	Α
	219	L	L	L	L	L	Ļ	L	I	1	L	Α
	220	D	D	D .	D	D	G	D	D	D	D .	Α
	221	L	K	L	L	М	М	K	М	Α	М	Α
30	222	G	G	G	G	G	G	G	G	G	G	Α
	223	1	I	V	٧	٧	٧	1	l	٧	1	Α
	224	D	D	D	D	D	D	D	D	D	D	Α
	225	G	G	G	G	G	G.	G	G	Α	G	Α

	226	1	1	1	1	1	1	1	1	1	1	Α
	227	R	R	R	R	R	R	R	R	R	R	Α
	228	М	٧	V	٧	٧	F	٧	М	1	M	A
	229	D	D	D	D	D	D	D	D	D	D	Α
5	230	Α	Α	Α	Α	A	Α	Ä	Α	Α	Α	Α
	231	٧	٧	٧	٧	٧	٧	٧	٧	I	V	Α
	232	K	K	K	K	K	K	K	K	K	K	Α
	233	Н	Н	Н	Н	Н	Q	Н	Н	Н	H	Α
	234	М	М	М	M	М	Υ	М	M	M	M	Α
10	235	P	S	P	P	Р	Р	S	Р	D .	Α	Α
	236	F	E	F	F	Q	F	Ε	F	K	F	Α
	237	G	G	G	G	G	G	G	G	S.	G	Α
	238	W	W	W	W	W	W	W	W	F	W	Α
	239	Q	Q	Q	Q	Q	Q	Q	Q	I	Q	Α
15	240	K	T	K	K	K	Κ.	Т	K	Q	K	Α
	241	S	S	S	S	N	S	S	S	K	N	Α
	242	F	L	F	F	W	F	L	L	W	F	Α
	243	M	М	M	М	M	٧	М	M	T	M	Α
	244	Α	S	S	Α	S	S	S	D	S	D .	Α
20	245	Α	Ε	T	Т	S	S	D	Ε	D	S	Α
	246	٧	ı	1	I	1	l] ·	ı	1	1	Α
	247	N	Y	N	N	Υ	Y	Υ	D .	Y	L	Α
	248	N	S	N	N	Α	G	Α	N	D	S	Α
	249	Y	Н	Y	Y	Н	G	Н	Υ	Υ	Υ .	Α
25	249a	•	•	*	•	•	D	•	•	S	•	Α
	250	K	K	K	K	K	н .	E	R	K	R	Α
	251	Р	Р	Ρ	Р	P	Р	Р	Р	S	Р	Α
	252	٧	V	V	٧	٧	٧	V	٧	I	V	Α
	253	F	F	F	F	F	F	F	F	G	F	Α
30	254	Т	T	N	Τ.	T	T	Т	Т	R	Т	Α
	255	F	F	F	F	F	F	F	F	E	F	Α
	256	G	G	G	G	G	G	G	G	G	G	Α
	257	Ε	Е	E	E	Ε	E	E	E	F	E	Α

	258	W	W	W	W	W	W	W	W	F	W	Α
	259	F	F	F	F	F	Υ	F	F	F	Y	Α
	260	L	L	L	L	L	L	L	L	F	L	Α
	261	G	G	G	G	G	G	G	S	G	G	Α
5	262	٧	S	V	V	S	Α	S	Ε	Ε	T	Α
	263 .	N	G	N	N	Α	D	G	N	W	N	Α
	264	Ε	E	E	Ε	Α	Q	Ε	Ε	F	E	Α
	265	٧	٧	1	I	Р	T	٧	٧	G	V	Α
	266	S	D	S	S	D	D	D	D	Α	D	Α
10	267	P	P	P	Ρ	Α	G	P.	Α	S	P	Α
	268	E	Q	Ε	Ε	D	D	Q	N	Α	N	Α
	269	N	N	Υ	Y	N	N	N	N	N	N	Α
	270	Н	Н	Н	Н	Т	I	Н	Н	Т	T	Α
	271	K	Н	Q	Q	D	K	Н	Υ	T	Y	Α
15	272	F	F	F	F	F	F	F.	F	T	F	A
	273	Α	Α	Α	Α	Α	Α	Α	Α	G	Α	Α
	274	N	N	N	N	N	N	N	N	V	N	Α
	275	E	E	E	Ε	Ε	Ε	E	E	D	E	Α
	276	S	S	S	S	S	S	S	S	G	S	Α
20	277	G	G	G	G	G	G	G	G	N	G	Α
	278	M	М	M	М	М	M	M	M	Α	М	Α
	279	S	N	S	S	S	N	S	S	i	S	Α
	280	L	L	L	L	L	L	L	L	D	L	A
	281	L	L	L	L	L	L .	L	L	Υ	L	A
25	282	D	D	D	D	D	D	D	D	Α	D .	Α
	283	F	F	F	F	F	F	F	F	Ν	F	Α
	284	R	Q	Р	R	R	Ε	Q	R	T	R	Α
	285	F	F	F	F	F	Υ	F	F	S	F	Α
	286	Α	G	Α	Α	N	Α	G	G	G	Α .	Α
30	287	Q	Q	Q	Q	S	Q	Q	Q	S	Q	Α
	288	K	T	K	K	Α	E.	T	K	Α	K	Α
	289	٧	1	Α	Α	V	٧	I	L	L	V	Α
	290	R	R	R	R	R	R	R	R	L	R	Α

Q 291 Q N Q Q N E D Q D Α ٧ F 292 ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧ A F F F F G F 293 F L L Α L F 294 R R R R R Κ R R M Α 5 295 D D D D D D R D Α D Ν 296 R G N N N Ν K D N A N 297 T Т Т S Т T T T S T Α Ε S 298 S D D S L D A D D Ε 299 Т Т Ν Ν N N N Ν Ν Α 10 300 W M W W R M Α M M М M 301 Y Y Υ Y Υ Κ Υ Υ ٧ Υ Α 302 G G D D G G D G L Α Α 303 F F F ٧ L L L L L Α L K G 304 Κ D Y Ν D K N N Α 15 305 Α Ε Α Α S Ε Ε Q R S Α 306 ٧ S М M M M M M M M Α 307 ı L L 1 ı G L L L 1 Α 308 E Т Ε Ε T Α Α Q N Q Α 309 G S G G S S D T S Α Α . 20 310 S Т S S Т T T T М Ţ Α 311 Ε Ε Ε Ε Α Ä Ε Α Α K Α 312 ٧ ٧ S Ε S T K Α Α Α Α Ε 313 D Q D L D D D Α D Α Υ Υ Υ Υ Υ 314 Y Υ Υ Ν Y Α 25 315 D D S Α Ν Α Α Ν D Ν Α Ε F 316 Q Ε Q Q Q Y Ε Y Α 317 ٧ ٧ ٧ ٧ ٧ ٧ ٧ 1 L l Α L 1 318 N Ν Ν Ν 1 Ν Α D 1 D D D Κ 319 D D D D Ν D Α 30 320 Q Q Q R Q Q Q Q M М Α 321 ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧ Q Α ٧ 322 T T Т Т T T T T T T Α F F F F F 323 F F F ٧ F Α

324 ŀ I ı ŀ ı ı 1 ١ F ı Α 325 D D T D D D D D D D Α 326 N N Ν N N N N Ν S Ν Α 327 Н Н Н Н Н Н Н Н D Н Α 5 328 D D D D D D D D D. D Α 329 M M M М М M M W M M Α 330 E S Ε E D D S D Q D Α 331 R R R R R R R R ٧ R Α 332 F F F F F F F F F V Α 10 333 S Н Н K Q S М F Υ H Α 334 F T ٧ T T T ٧ ı М Α Α 335 S G S S S E D G Α D Α 336 S Q G N N Ν Α G Ν Α 337 Α S G G ٧ S S G Н G Α 15 338 S G S S Ν D D Ν D D Α Τ 339 R N R Ν P T R Ν М Α 340 R R R R R R R Α R Α R 341 Ρ K Q Κ Κ R Α Н K R Α 342 Т T ٧ ٧ T L L 1 L Α Ε 20 343 E E E Ε Ε D D G D Α 344 Q M Q Q Q Q ı М T Q Α 345 Α Α Α Α Α Α Α Α Α Α Α 346 L L L L L L L L L Α 347 R Α Α Α Α Α Α Α Α Α Α F F S F 25 348 F ٧ F L ٧ Α T 349 T L T T Ţ L L Ν T Α 350 L L L L L L L Α L Α L 351 Т T T Ţ Т Т · T T T T Α 352 S S S S S S S S Т S Α R R R R R R F R 30 353 R R Α 354 G. G G G G G G G G G Α Р V 355 ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧ Α 356 Р Ρ Р Ρ P Ρ Ρ Р G Ρ Α

357 T Α Α A Α Α T N N Α A 358 I ١ ı 1 Į ı ı N 1 Α 359 Y Y Y Υ Y Y Y Y Ε Y Α Y Y 360 Y Υ Y Y Y Y T Y Α 5 361 G G G G G G G G G G Α 362 T T S S T T T T G T Α 363 E Ε Ε Ε Ε Ε E Ε S Ε Α 364 Q Q Q Q Q Q Q Q Q Q Α 365 Υ Υ Y Υ Υ Υ Y Υ S Y A 10 366 ٧ Ε M М M L M L M М Α 367 S T S Т T T T S Т Α Α 368 G G G G G G F G G G Α 369 G G G G G Ν D Ν Α Ν Α 370 T N Ν N G G Ν G Q G Α 15 371 D D D D D D D D K D Α 372 Ρ P P Ρ P P Р Р R P Α 373 Ε Ε D D D D Ν N 1 Y Α 374 Ν Ν Ν Ν N Ν N Ν D N Α 375 R R R R R R R R L R Α 20 376 K Α G Α Κ G Α Α Κ Α Α 377 Ρ Ρ R R R K M L М M Α 378 L ı L M M M М М Α 379 P P P Р T S K S T Α Α 380 T S S S S S S D Т S Α F 25 381 F F F F F F F M F Α 382 S D S S S Ν D T N D Α 383 T R T Т K T R K ٧ T Α 384 S S Т T G T T S Ν R Α Т Т Т Т Τ. Т Т 385 T G Т Α 30 386 Т Т Т Т T Ν Ν R 1 T Α 387 S Α S P Α Α Α Α Α Α Α 388 Y Υ Y Υ F Y Υ Y Α Y Α 389 Q Q Q Q Ν K Q Q Ν ı Α

	390	V	l	٧	V	V	V	1	V	Υ	V	Α
	391	1	ı	ţ	ı	I	l	1	ł	Υ	1	Α
	392	Q	S	Q	Q	S	Q	S	Q	G	K	Α
	393	K	K	K	K	K	Α	T	K	Т	K	Α
5	394	L	L	L	L	L	L	L	Ļ	Ε	L	Α
	395	Α	Α	A	Α	Α	Α	Α	S	Н	Α	Α
	396	P	S	Р	P	Р	Р	S	S	Υ	Р	Α
	397	L	L	L	L	L	L	L	L	Α	L	Α
	398	R	R	R	R	R	R	R	R	Α	R	Α
10	399	K	Q	K	K	K	K	Q	,R	N.	K	Α
	400	С	Т	S	S	S	S	N	N	F	S	Α
	401	N	N	N	N	N	N	N	N	Т	N	Α
	402	P	S	Р	Р	Р	P	Р	Р	S	P	Α
	403	Α	Α	Α	Α	Α	Α	Α	Α	N	Α	Α
15	404	ı	L	I	ļ	•	1	L	L	S	1	Α
	405	Α	G	Α	Α	Α	Α	G	Α	F	Α	Α
	406	Y	Υ	Ý	Υ	Υ	Υ	Υ	Υ	G	Y	Α
	407	G	G	G	G	G	G	G	G	Q	G	С
	408	S	T	S	S	S	Т	N	D	٧	Т	С
20	409	Т	T	Т	T	T	T	T	T	G	Q	С
	410	Q	T	Q	Н	Q	T	S	E	S	K	С
	411	E	Ε	Ε.	Ε	Q	Ε	Ē	Q	D	Q	С
	412	R	R	R	R	R	R	R	R	Р	R	С
	413	W	W	W	W	W	W	W	W	Υ	W	С
25	414	1	L	1	1	1	٧	1	1	N	I	С
	415	N	N	Ν	N	N	N	N	N	R	N	С
	416	N	Ε	N	N	N	N	S	G	Ε	N	С
	417	D	D	D	D	D	D	D	D	K	D	С
	418	V	1	٧	٧	٧	٧	٧	٧	М	V	С
30	419	L	Υ	1	i	Υ	L	Υ	Υ	P	Y	С
	420	ľ	1	1	i	1	I	1.	٧	G	I	С
	421	Υ	Υ	Υ	Υ	Υ	I	Υ	Υ	F	Υ	С
	422	Ε	Е	Ε	E	E	Ε	Ε	Ε.	D	E	С

	423	R	R	R	R	R	R	R	R	Т	R	С
	424	K	T	K	K	K	K	S	Q	E	Q	C
	425	F	F	F	F	F	F	F	F	S	F	С
	426	G	G	G	G	G	G	G	G	E	G	С
5	427	S	N	N	N	K	S	D	K	Α	N	C
	428	N	S	N	N	S	S	S	. D	F	N	С
	429	٧	1	٧	V	٧	Α	٧	٧	S	V	С
	430	Α	٧	A	Α	Α	Α	V,	V	1	Α	С
	431	٧	L	٧	٧	V .	L	L	L	1	L	С
10	432	V	T	٧	V	٧	V	T	V	K	٧	C
	433	Α	Α	Α	Α	Α	Α	Α	R	T	Α	С
	434	٧	٧	1	I	٧	ı	٧	٧	L	1	С
	435	N	N	N	N	N	Ν	N	N	G	N	С
	436	R	S	R	R	R	R	S	R	D	R	С
15	437	N	•	N	N	N	N	•	S	L	N	С
	438	L	S	М	M	L	S	G	S	R	L	С
	439	N	\mathbf{N}^{-}	Ν	N	T	S	D	S	K	S	С
	440	Α	S	T	T	T	Α	T	S	S	T	С
	441	Р	N	Ρ	Р	P	Α	S	N	S	S	С
20	442	Α	Q	Α	Α	T	Y	Υ.	Y	Р	Υ	С
	443	S	T	S	S	S	P	T	S	Α	Y	С
	444	I	i	1	ı	I	ı	1.	ł	I	1	С
	445	S	T	T	T	T	S	N	T	Q	T	С
	446	G	N	G	G	N	G	N	G	N	G	С
25	447	L	L	L	L	L	L	L	L	G	L	С
	448	٧	N	٧	٧	N	L	N	F	Т	Υ	C
	449	T	T	T	T	T	S	Т	T	Y	Т	С
	450	S	S	S	S	S	S	S	Α	Т	Α	C
	451	L	L	L	L	L	L	L	·L	Ε	L	С
30	452	Р	Р	P	R	Р	Р	P.	Р	L	Р	С
	453	Q	Q	Q	R	S	Α	Q	Α	W	Α	С
	454	G	G	G	Α	G	G	G	G	, V	G	С
	455	S	N	S	S	T	T	Q	Т	N	T	С

Y 456 Y Y Y Y Υ Y Y D Υ C 457 T S D S C N T N Ν T T 458 D D D D D C D D D D 459 Ε ٧ ٧ ٧ Ε C V ٧ Q L M 5 460 C L L L L L L L L ٧ L C 461 G Q G G G N Q G F G 462 G Q G G G G Q G Ε G C C 463 R ı ٧ L L L R L 464 L R C L L L L L L 10 465 N D Ν N Ν Ν D D S N C 466 G G G G G G G G G G C 467 S C N Ν N N Ν N Ν Ν Ν 468 T T T T Ν S Ε T D S C 469 C L 1 L L 1 1 ı ı ı 1 T T T C 15 470 S Ţ T T Т Q ٧ C 471 ٧ V V S ٧ ٧ V ٧ ı ٧ 472 G G S G ٧ S C G Ν G Ν 473 S C S Α Α G S S S Α Α C 474 G Ν G G G G Ν Ν L Ν C G 20 475 G G N G G G G G Ν S C 476 Α Α Α Α 1 Α Α S R C ٧ ٧ G 477 ٧ Α ٧ ٧ Α Α Е T C 478 S N S S S T D N 479 S Р C S Ν N S Α Ν N Α C 25 480 F F F F F F F F F N 481 T C T Q T T T Q D T T C 482 L L L L L L L L 1 L 483 Α R Α Α Α Α S G Ν Α C С 484 Α Р Р Α Α Α Ρ ٧ Р Α 30 485 G G G G G K G C G N N 486 G G Ε Ε C G S Α G G N C 487 Т ٧ T T T ٧ ٧ T ٧ L Α C 488 Α Α Α Α S G Α Α Α

	489	٧	٧	٧	V	٧	٧	٧	V	٧	V	С
	490	W	W	W	W	W	W	W	W	P	W	С
	491	Q	Q	Q	Q	Q	Q	Q	A .	N	Q	С
	492	Υ	٧	Y	Υ	Υ	Y	ı	Υ	G	Y	С
5	493	T	S	T	T	T	Т	T	S	٧	V	С
	494	Α	N	T	T	Α	Α	E	Α	Υ	S	С
	495	Α	Р	D	D	S	Р	Ε	T	Р	T	С
	496	T	S	A	Α	Ε	Е	Н	Ε	S	T	D
	497	Α	T	T	T	T	T	Α	S	L.	N	D
10	498	T	S	Α	T	٠T	S	S	Т	i	P	D
	499	P	Р	P	P	Р	Р	Р	P	G	P	D
	500	T	L	1	1	T	Α	L	1	N	L	D
	501	1	1	Ν	1	ı	1	1	ı	N	1	D
	502	G	G	G	G	G	G	G	G	S	G	D
15	503	Н	Q	Ν	N	Н	N	Н	Н	٧	Н	D
	504	٧	V	٧	٧	٧	٧	V	٧	S	V	D
	505	G	G	G	G	G	G	G	G	٧	G	D
	506	P	Р	Ρ	P	P .	Ρ	Р	Р	Α	P	D
	507	M	М	M	М	٧	T	M	M	N	T	D
20	508	M	М	М	М	М	M	M	M	K	M	D
	509	Α	G	Α	Α	G	G	G	G	R	Т	D
	510	K	K	Κ	K	K	Q	K	Q	T	K	D
	511	Р	Α	Α	P	Р	P	Н	٧	T	Α	D
	512	G	G	G	G	G	G	G	G	L	G	D
25	513	V	N	V	V	N	N	N	Н	T	Q	D
	514	T	T	T	T	٧	1	Т	Q	L	T	D
	515	!	1	1	1	٧	٧	٧	٧	М	1	D
	516	T	T	Т	T	Т	T	Т	Т	Q	Т	D
	517	1	V	1	1	i	1	1	1	N	1	D
30	518	D	S	D	D	D	D	T	D	Ε	D	D
	519	G	G	G	G	G	G	G	G	Α	G	D
	520	R	Ε	R	R	R	R	Ε	Ε	٧	R	D
	521	G	G	Α	G	G	G	G	G	V	G	D

	522	F	F	•	F	F	F	F	F	1	F	D
	523	G	G	S	G	G	G	G	G	R	G	D
	524	S	D	Α	S	S	G	D.	T	S	Τ	D
	525	S	E	R	G	Α	T	N	N	Q	Т	D
5	526	Κ	R	Q	K	K	Α	Ε	T	S	Α	D
	527	G	G	G	G	G	G	G	G	D	G	D
	528	T	S	Т	T	Т	T	S	T	D	Q	D
	529	V	٧	٧	٧	٧	٧	٧	V	Α	V	D
	530	Y	L	Υ	Υ	Υ	Y	L	K	Ε	L	D
10	531	F	F	F	F	F	F	F	F	N	F	D
	532	G	D	G	G	G	G	D	G	Р	G	D
	533	T	S	T	T	T	T	S	Т	Т	T	D
	534	T	Т	T	T	T	T	D	Τ	٧	T	D
	535	Α	S	Α	Α	Α	Α	F	Α	Q	P	D
15	536	V	S	٧	٧	٧	٧	S	Α	S	Ä	D
	537	S	E	T	T	T	T :	D	N	1	Т	D
	538	G	•′	G	G	G	Ģ	*	•	N	*	D
	539	Α	•	Α	Α	S	S	*	•	F	•	D
	540	D	•	D	D	Α	G	• '	•	Т	•	D
20	541	1	i	1	1	l	1.	V	٧	С	1	D
	542	T	1	٧	V .	T	٧	L	V	N	V	D
	543	S	S	Α	Α .	S	S	S	S	N	S	D
	544	W	W	W	W	W	W	W	W	G	W	D
	545	Ε	S	E	Ε	Ε	E	S	S	Υ,	E	D
25	546	D	N	D	D	D	D	D	Ν	Т	D	D
	547	T	T	T	T	T	T	Т	N .	1	T	D
	548	Q	K	Q	Q	Q	Q	K	Q	S .	E	D
	549	ı	1	i	1	I	1	1	1	G	V	D
	550	K	S	Q	Q	K	K	E	V	Q	K	D
30	551	٧	V	٧	٧	٧	Α	٧	V	S	V	D
	552	K	K	K	K	T	٧	S	Α	V	K	D
	553	ı	V	1	1	1	1	V	٧	Υ	V	D
	554	Р	Р	L	Р	Р	Р	Р	Р	ı	Р	D

	555	Α	N	R	Α	Р	ĸ	D	N	1	Α	D
	556	٧	٧	٧	٧	٧	٧	٧	٧	G	L	D
	557	Α	Α	P	Р	A	Α	T .	S	N	Т	D
	558	G	G	G	G	G	Α	Α	Р	1	P	D
5	559	G	G	G	G	G	G	G	G	P	G	D
	560	N	Υ	1	ı	D	K	Н	K	Q	K	D
	561	Υ	Υ	Υ	Υ	Υ	T	Y	Υ	L	Y	D
	562	N	D	D	D	Α	G	D	N	G	N	D
	563	· -	L	i	1	٧	٧	1	ı	G	1	D
10	564	K	S	R	R	Κ	S	S	T	W	T	D
	565	٧	٧	V	V	٧	V	٧	٧	D	L	D
	566	Α	٧	Α	Α	Α	K	٧	Q	L	K	D
	567	N	Т	Ν	N	Α	T	Ν	S	T	T	D
	568	Α	Α	Α	Α	•	S	Α	S	K	Α	D
15	569	Α	Α	Α	Α	N	S	G	S	Α	S	D
	570	G	N	G	G	G	G	D	G	V	G	. D
	571	T	1	Α	Α	٧	T	S	Q	K	V	,D
	572	Α	K	Α	Α	N	Α	Q	T	1,	T	D
	573	S	S	S	S	S	S	S	S	S	S	D
20	574	N	Р	N	N	N	N	Р	A	Р	N	D
	575	٧	T	ı	1	Α	T	T	Α	T	S	D
	576	Υ	Υ	Υ	Υ	Υ	F	Y	Υ	Q	Y	D
	577	D	K	D	D	N	K	D ·	D	Υ	N	D
	578	N	Ε	N	Ν	D	S	K	N	P	N	D
25	579	F	F	F	F	F	, F	F	F	Q	1	D
	580	Ε	E	E	Ε	T	N	E	Ε	W	N	D
	581	٧	٧	V	٧	l	٧	V	٠٧	S	V	D
	582	L	L	L	L	L	L	L	L	Α	L	D
	583	S	S	T	Т	S	Т	T	T	S	Т	D
30	584	G	G	G	G	G	G	G	N	L	G	Ε
	585	D	N	D	D	Ď	D	D	D	Ε	N	E
	586	Q	Q	Q	Q	Q	Q	Q	Q	L	Q	Ε
	587	V	V	V	V	V	V	V	V	P	V	Ε

	588	S	s	Т	T	S	Т	S	S	S	C	Ε
	589	٧	٧	٧	٧	V .	٧	ı	٧	D	V	Ε
	590	R	R	R	R	R	R	R	R	L	R	E
	591	F	F	F	F	F	F	F	F	N	F	Ε
5	592	V	G	٧	٧ .	٧	L	A	V	٧	V	Ε
	593	V	٧	1	1	1	٧	٧	V	Ε	.V	Ε
	594	N	N	N	N	N	N	N	N	W	N	E
	595	N	N	N	N	N	Q	N	N	K	N	Ε
	596	Α	Α	Α	Α	Α	Α	Α	Α	С	Α	Ε
10	597	T	T	T	T	T	N	T	T	٧	Т	E
	598	T	T	T	T	T	T	T	T	K	Т	Ε
	599	Α	S	Α	A	Α	N	S	N	R	٧	Ε
	600	L	Р	L	L	L	Υ	L	L	N	W	Ε
	601	G	G	G	G	G	G	G	G	E	G	Ε
15	602	Q	Т	Q	Q	Ε	Т	Т	Q	T	E	Ε
	603	N	N	N	Ν,	N	N	N	N	N	N	Ε
	604	V	L	V	٧	1	٧	L	1	P	V	E
	605	Υ	Υ	F	F	Υ	Υ	Υ	Υ	T	Y	Ε
	606	L	1	L	L	L	L	M	1	Α	L	Ε
20	607	T	٧	T	Т	T	٧	٧	V	N	T	Ε
	608	G	G	G	G	G	G	G	G	٧	G	Ε
	609	S	N	N	N	N	N	N	N	Ε	N	Ε
	610	٧	٧	٧	٧	٧	Α	V ·	٧	W	V	Ε
	611	S	N	S	S	S	Α	N	Υ	Q	Α	E
25	612	Ε	Ε	E	E	Ε	E	Ε	Ε	S	E	Ε
	613	L	L	L	L	L	L	L	L	G	L	Ε
	614	G	G	G	G	G	G	G	G	Α	G	Ε
	615	N	N	N	N	N	Т	N	N	N	N	Ε
	616	W	W	W	W	W	W	W	W	N	W	Ε
30	617	D	D	D	D	Т	D	D	D	Q	D	Ε
	618	P	Α	P	Ρ	Т	Р	P	Т	F	Т	Ε
	619	Α	D	N	N	G	N	D	S	N	S	Ε
	620	K	K	N	N	Α	K	Q	K	S	K	Ε

	621	Α	A	Α	Α	Α	Α	Α	Α	N	A	Ε
	621a	*	•	•	•	S	•	•	•	*	•	E
	622	i	ı	1	I	1	ı	ı	1	D	1	Ε
	623	G	G	G	G	G	G	G	G	T	G	Ε
5	624	P	P	Р	P	Р	P	Р	P	Q	Р	Ε
	625	M	M	M	М	A	М	М	М	Т	М	Ε
	626	Υ	F	Υ	Υ	F	Υ	F	F	T	F	, Ε
	627	N	N	N	N	N	N	N	N	N	N	E
	628	Q	Q	Q	Q	Q	Q	Q	Q	G	Q	E
10	629	٧.	V	٧	V	٧	V	٧	V	S	V	Ε
	630	V	M	٧	٧	1	1	M	V	F	V	Ε
	631	Y	Υ	Υ	Υ	Н	Α	Υ	Y	F	Y	Ε
	632	Q	Q	Q	Q	Α	K	Q	S		Q	E
	633	Υ	Υ	Υ	Y	Y	Υ	Υ	Y		Y	E
15	634	Р	Р	Р	Р	Р	Р	Р	Р		Р	E
	635	N	T	T	T	T	S	T	T		Т	Ε
	636	W	W	W	W	W	W.	W	W		W	Ε
	637	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ		Y	Ε
	638	Υ	Υ	Υ	Υ	Υ	Υ	Υ	1		Υ	Ε
20	639	D	D	D	D	D	D	D	D		D	Ε
	640	٧	1	٧	٧	٧	٧	I	٧		V	Ε
	641	S	S	S	S	S .	S	S	S		S	Ε
	642	٧	٧	٧	٧	٧	٧	V	V		٧	Ε
	643	Р	P	P	Р	Р	P	P	Р		P	E
25	644	Α	Α	Α	Α	Α	Α	Α	E		Α	Ε
	645	G	G	G	G	G	G	Ε	G		G	Ε
	646	K	K	Q	Q	K	Т	E	K		T	Ε
	647	T	N	Т	T	Q	K	N	Т		T	Ε
	648	l	L	I	ł	L	L	L	ı		Ī	Ε
30	649	Ε	Ε	Ε	E	Ε	D	E	Ε		E	Ε
	650	F	Υ	F	F	F	F	Υ	F		F	E
	651	K	K	K	K ,	K	Ķ	K	K		K	E
	652	F	Υ	F	F	F	F	F	F		F	Ε

	653	L	1	E	L	F	ŀ	1	1	1	Ε
	654	K	K	K	K	K	K	K	K	K	Ε
	655	K	K	K	K	K	K	K	K	K.	Ε
	656	Q	D	Q	Q	N	G	D	D	N	E
5	657	G	Q	G	G	G	G	S	S	G	E
	658	S	N	S	S	Α	G	S	.Q	S	Ε
	658a	•	G	*	•	*	•	G	G	•	Ε
	659	Т	N	T	Т	T	T	N	N	Т	Ε
	660	٧	٧	٧	٧	I	٧ .	٧	V	V	Ε
10	661	T	٧	Т	T	T 🔻	Т	٧	Т	T	Ε
	662	W	W	W	W	W	W	W	W	W	Ε
	663	E	Q	Ε	E	Ε	E	Ε	E	E	Ε
	664	G	S	G	G	G	G	S	S	G	E
	665	G	G	G	G	G	G	G	G	G	Ε
15	666	S	N	Α	Α	S	G	N	S	Υ	Ε
	667	N	N	N	N	N	N	N	N	N	Ε
	668	Н	R	R	R	Н	Н	Н	Н	Н	Ε
	669	T	T	T	T	T	T	T	V	V	E
•	670	F	Y	F	F	F	Y	Υ	Y	Υ	Ε
20	671	T .	T	T	T	T	T	T	T	Т	Ε
	672	Α	S	T	T	T	T	T	Т	Т	Ε
	673	P	P	P	P	Р	Р	Р	Р	P	Ε
	674	S	T	T	T	Т	Α	A	Τ	Т	Ε
	675	S	T	S	S	S	S	Т	N	S	Ε
25	676	G	G	G	G	G	G	G	Т	G	E
	677	T	Т	T	T	T	٧	T	Т	Т	Ε
	678	Α	D	Α	Α	Α	G	D	G	Α	Ε
	679	Т	T .	Т	T	T	T	T	Κ .	T	Ε
	680	1	٧	V.	٧	V	٧	٧	1	V	Ε
30	68.1	Ν	М	N	N	Т	T	L	1	I	Ε
	682	٧	I	V	٧	I	٧	٧	V	V	Ε
	683	N	N	N	N	N	D	D	D	D	E
•	684	W	W	W	W	W	W	W	W	W	Ε

WO 96/33267						31			PCT/DK96/00179
685	- Q -	Q	Q.	Q	Q	Q	Q.	Q	E

N

686

BRIEF DESCRIPTION OF THE DRAWINGS

N

Ε

- The present invention is further illustrated by reference to the accompanying drawings, in which:
 - Fig. 1 shows a model of the structure of the active site cleft (domains A and B) of a CGTase from *Bacillus circulans* Strain 251, which has been complexed with a linear starch molecule, and residues involved in the enzyme-substrate interactions;
- Fig. 2 shows the formation (% cyclodextrin) of α- (●), β- (■), and γ-cyclodextrin (▲) from 10% Paselli™ WA4 (pre-gelatinized drum-dried starch) during a 50 hour incubation at 50°C catalyzed by (A) wild-type enzyme (*Bacillus circulans* Strain 251 CGTase), (B) the Y89D CGTase variant, (C) the S146P CGTase variant, and (D) the Y89D/S146P CGTase variant;
- Fig. 3 shows the construction of plasmid pDP66K, subcloning steps are indicated adjacent to the arrows;
- Fig. 4 shows the results of starch binding experiments (% of protein bound to raw starch) at starch concentrations of from 0 to 8 % raw starch, (●) without β-cyclodextrin, and (O) with 0.1 mM β-cyclodextrin; (a) wild-type enzyme (*Bacillus* 20 circulans Strain 251 CGTase), (b) the W616A/W662A variant, and (c) the Y633A variant;
- Fig. 5 shows the results of reaction kinetic experiments (activity, U/mg) on Paselli™ SA2 (i.e. partially hydrolysed potato starch) at concentrations of from 0 to 5 % Paselli™, (♠) without β-cyclodextrin, (O) with 0.1 mM β-cyclodextrin, and (♠) with 25 0.2 mM β-cyclodextrin; (a) wild-type enzyme (*Bacillus circulans* Strain 251 CGTase), (b) the W616A/W662A variant, and (c) the Y633A variant;
 - Fig. 6 shows the results of reaction kinetic experiments (activity, U/mg) on raw starch at starch concentration of from 0 to 60 % raw starch, () wild-type

^{*} Amino acid residue absent in this position

enzyme (*Bacillus circulans* Strain 251 CGTase), (□) the W616A/W662A variant, and (■) the Y633A variant; the dotted line indicates the modelled curve resulting from the supposed interaction between MBS2 on the E domain and MBS3 on the C domain;

Fig. 7 shows the product formation (O α-cyclodextrin formation; □ β-5 cyclodextrin formation, and Δγ-cyclodextrin formation) of two CGTase variants of the invention (N193G, Fig. 7B, and Y89G, Fig. 7C) compared to the wild-type enzyme (from *Bacillus circulans* Strain 251, Fig. 7A) during incubation for 0 to 45 hours;

Fig. 8 shows the product formation (O α-cyclodextrin formation; □ β-cyclodextrin formation, and Δγ-cyclodextrin formation) of two CGTase variants of the invention (*145al, Fig. 8B, and D371G, Fig. 8C) compared to the wild-type enzyme (from *Bacillus circulans* Strain 251, Fig. 8A) during incubation for 0 to 45 hours;

Fig. 9 shows the product formation (O α-cyclodextrin formation; □ β-cyclodextrin formation, and Δγ-cyclodextrin formation) of two CGTase variants of the invention (N193G, Fig. 9B, and Y89G, Fig. 9C) compared to the wild-type enzyme 15 (from *Bacillus circulans* Strain 251, Fig. 9A) during incubation for 0 to 10 hours; and

Fig 10 shows the product formation (O α -cyclodextrin formation; \square β -cyclodextrin formation, and $\Delta \gamma$ -cyclodextrin formation) of two CGTase variants of the invention (145al, Fig. 10B, and D371G, Fig. 10C) compared to the wild-type enzyme (from *Bacillus circulans* Strain 251, Fig. 10A) during incubation for 0 to 10 hours.

DETAILED DISCLOSURE OF THE INVENTION

Methods of Making CGTase Variants

20

In its first aspect, the present invention provides a method of modifying the substrate binding and/or increasing the product selectivity of a CGTase enzyme, thereby obtaining a CGTase variant having a modified substrate binding capability and/or an increased product selectivity, as compared to the precursor enzyme.

In the context of this invention, a CGTase variant of modified substrate binding capability is meant to describe a CGTase variant that is able to more efficiently act on its substrate, and/or a CGTase variant that is less affected by product inhibition. In the context of this invention, product inhibition is meant to describe the phenomenon that increasing amounts of product reduce or even inhibit

the substrate conversion. It is desirable to obtain CGTase variants that are less affected by product inhibition (i.e. variants of reduced product inhibition).

Moreover, in the context of this invention, a CGTase variant of increased product selectivity is meant to describe a CGTase variant that is able to more 5 selectively produce any of the various cyclodextrins thereby increasing the ratio of the desired product, as compared to the precursor enzyme.

The present invention is based on the concept of removing and/or introducing "obstacles" in the subsites of the active site cleft, the substrate binding cleft, or the groove leading to these clefts, thereby facilitating introduction of the substrate and its disposition in such a way that products of a predetermined size are obtained, and in such a way that substrate binding is not inhibited by the product.

By modifying the substrate binding of a CGTase enzyme, its product selectivity can be modified in order that the CGTase variant is able to more selectively produce any of the various cyclodextrins, α-, β- and γ-cyclodextrins. Even 15 CGTases capable of producing δ-, ε-, and ζ-cyclodextrins with 9, 10 and 11 glucose units, respectively, may be obtained. Modification of the substrate binding of a CGTase may also reduce the tendency of product inhibition, thereby increasing the cyclodextrin yield of the CGTase variant.

The concept of the invention may be expressed differently as the 20 modification of enzyme-substrate side chain intermolecular interactions. By introducing specific mutations according to the invention, the intermolecular interactions between substrate and CGTase can be changed in order to direct the substrate to a specific location in the active site cleft, thereby obtaining a cyclic or linear product of predefined size, preferably α-, a β- or a γ-cyclodextrin, or δ-, ε-, 25 and ζ-cyclodextrins, or a linear oligosaccharide of similar size, preferably of 2-12 glucose units, more preferred 2-9 glucose units.

In a preferred embodiment of the invention, the introduction of more intermolecular interactions (e.g. more hydrogen bonding potential) in the region around glucose units C to I, preferably C to H, of Fig. 1, will lock the substrate in a 30 position 6 glucose units from the catalytic site (between glucose units B and C of Fig. 1), and lead to increased product selectivity for α-cyclodextrins (6 glucose units). Moreover, the formation of larger cyclodextrins and/or larger linear oligosaccharides

may simultaneously be reduced by reducing potential intermolecular interactions of glucose unit I to J of Fig. 1.

In another preferred embodiment of the invention, the introduction of more intermolecular interactions (e.g. more hydrogen bonding potential) in the region 5 around glucose units F to J, preferably H and I, of Fig. 1, will lock the substrate in a position 7 glucose units from the catalytic site (between glucose units B and C of Fig. 1), and lead to increased product selectivity for β-cyclodextrins (7 glucose units). Moreover, the formation of e.g. α-cyclodextrins and/or small linear oligosaccharides may simultaneously be reduced by reducing potential intermolecular interactions of 10 glucose unit C to G of Fig. 1.

In a third preferred embodiment of the invention, the introduction of more intermolecular interactions (e.g. more hydrogen bonding potential) in the region around glucose units H to K, preferably I and J, of Fig. 1, will lock the substrate in a position 8 glucose units from the catalytic site (between glucose units B and C of 15 Fig. 1), and lead to increased product selectivity for γ-cyclodextrins (8 glucose units). Moreover, the formation of smaller cyclodextrins and/or linear oligosaccharides may simultaneously be reduced by reducing potential intermolecular interactions of glucose unit C to H of Fig. 1.

In a fourth preferred embodiment of the invention, the introduction of more intermolecular interactions (e.g. more hydrogen bonding potential) in the region around glucose units J to M, preferably K and L, of Fig. 1, will lock the substrate in a position 9 glucose units from the catalytic site (between glucose units B and C of Fig. 1), and lead to increased product selectivity for δ-cyclodextrins (9 glucose units). Moreover, the formation of smaller cyclodextrins and/or linear oligosaccharides may simultaneously be reduced by reducing potential intermolecular interactions of glucose unit C to H of Fig. 1.

In a fifth preferred embodiment of the invention, the introduction of more intermolecular interactions (e.g. more hydrogen bonding potential) in the region around glucose units K to N, preferably L and M, of Fig. 1, will lock the substrate in a position 10 glucose units from the catalytic site (between glucose units B and C of Fig. 1), and lead to increased product selectivity for ε-cyclodextrins (10 glucose units). Moreover, the formation of smaller cyclodextrins and/or linear

oligosaccharides may simultaneously be reduced by reducing potential intermolecular interactions of glucose unit C to H of Fig. 1.

In a sixth preferred embodiment of the invention, the introduction of more intermolecular interactions (e.g. more hydrogen bonding potential) in the region 5 around glucose units L to O, preferably M and N, of Fig. 1, will lock the substrate in a position 11 glucose units from the catalytic site (between glucose units B and C of Fig. 1), and lead to increased product selectivity for ζ-cyclodextrins (11 glucose units). Moreover, the formation of smaller cyclodextrins and/or linear oligosaccharides may simultaneously be reduced by reducing potential 10 intermolecular interactions of glucose unit C to H of Fig. 1.

In a seventh preferred embodiment of the invention, the formation of linear oligosaccharides of desired length may be increased by combining the above conditions with substitution at the cyclization axis, corresponding to position 195, CGTase numbering.

The CGTase enzyme subjected to the method of the invention may be any CGTase found in nature. However, the CGTase preferably is a microbial enzyme, preferably a bacterial enzyme, and preferably the CGTase is derived from a strain of Bacillus, a strain of Brevibacterium, a strain of Clostridium, a strain of Corynebacterium, a strain of Klebsiella, a strain of Micrococcus, a strain of Thermoanaerobacter, a strain of Thermoanaerobacterium, or a strain of Thermoanaerobacterium, or a strain of Thermoactinomyces.

In more preferred embodiments, the CGTase is derived from a strain of Bacillus autolyticus, a strain of Bacillus cereus, a strain of Bacillus circulans, a strain of Bacillus circulans var. alkalophilus, a strain of Bacillus coagulans, a strain of Bacillus firmus, a strain of Bacillus halophilus, a strain of Bacillus macerans, a strain of Bacillus megaterium, a strain of Bacillus ohbensis, a strain of Bacillus stearothermophilus, a strain of Bacillus subtilis, a strain of Klebsiella pneumonia, a strain of Thermoanaerobacter ethanolicus, a strain of Thermoanaerobacter finnii, a strain of Clostridium thermoamylolyticum, a strain of Clostridium 30 thermosaccharolyticum, or a strain of Thermoanaerobacterium thermosulfurigenes.

In most preferred embodiments, the CGTase is derived from the strain *Bacillus sp.* Strain 1011, the strain *Bacillus sp.* Strain 38-2, the strain *Bacillus sp.* Strain 17-1, the strain *Bacillus sp.* 1-1, the strain *Bacillus sp.* Strain B1018, the strain

10

Bacillus circulans Strain 8, the strain Thermoanaerobacter sp. ATCC 53627, or the strain Bacillus circulans Strain 251, or a mutant or a variant thereof.

The strain Thermoanaerobacter sp. ATCC 53627 was deposited according to the Budapest Treaty on the International Recognition of the Deposit of 5 Microorganisms for the Purposes of Patent Procedure at the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland 20852, USA, on 3 June 1987. The strain Bacillus circulans Strain 251 has been deposited in the open collection at Rijksinstituut voor Volksgezondheid (RIV), Bilthoven, The Netherlands, and allotted the accession number RIV 11115, and thus is publicly available.

The method of the invention comprises substitution, insertion and/or deletion of one or more amino acid residue(s) of the enzyme, which residue(s) hold a position close to the substrate, when the substrate has bound to the CGTase enzyme at its substrate binding sites. In more specific aspects, the method of the invention comprises substitution, insertion and/or deletion of two or more amino acid 15 residue(s), preferably of three or more amino acid residue(s).

In the context of this invention, a CGTase amino acid residue holding a position close to the substrate indicates an amino acid residue located within the enzyme in a way that it is within a potential intermolecular (i.e. enzyme-substrate) interactive distance from a glucose unit of the substrate (i.e. a polysaccharide). 20 Examples of potential intermolecular interactions include, but are not limited to hydrogen bonding, salt bridge formation, polar interactions, hydrophobic interactions, and aromatic interactions.

In a preferred embodiment of this invention, an amino acid position close to the substrate indicates a distance less than 8 Å (angstrom), preferably less than 25 5 Å, more preferred less than 3 Å, from the substrate.

In a more preferred embodiment of this invention, these distances are calculated using the CGTase from Bacillus circulans Strain 251 [cf. Lawson C L, van Montfort R, Strokopytov B, Rozeboom H J, Kalk K H, de Vries G E, Penninga D, Dijkhuizen L, and Dijkstra B W, J. Mol. Biol. 1994 236 590-600], complexed with a 30 derivative of maltonanose, the coordinates of which have been deposited with the Protein Data Bank, Biology Department, Bldg. 463, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA, under the entry code 1DIJ. Knowledge of this structure makes it possible to identify similar positions in other CGTases, having a known primary structure, which positions corresponds to the positions stated in e.g. Table 2, cf. also Table 1.

CGTases have substrate binding regions located at the A domain, at the B domain, at the C domain and at the E domain of the enzyme. Consequently, in a 5 preferred embodiment, the method of the invention comprises substituting one or more amino acid residue(s) of the CGTase enzyme, which residue(s) are located in one or more of the A, B, C and/or E domains, cf. Table 1.

By sequence alignment and molecular modelling of a CGTase enzyme found in nature, amino acid residues located close to the substrate can be identified.

10 By using sequence alignment, the tertiary structure of any homologous CGTase can be modelled based on known three-dimensional CGTase structures.

Table 2, below, presents a list of CGTase amino acid positions located within 8 Å from the substrate, and therefore to be considered in the context of this invention. The amino acid residues are identified by CGTase numbering, which allows identification of the corresponding amino acid positions in any CGTase enzyme.

Preferably, the method of the invention comprises substitution, insertion and/or deletion at one or more amino acid residue(s) identified in Table 2, below.

Table 2

CGTase Amino Acid Residues less than 8 Å from the Substrate

Positions Identified by CGTase Numbering

		-	_			
	19	142	192	301	476	634
5	21	143	193	304	596	635
	46	144	194	326	597	636
	47	145	195	327	598	649
	75	146	196	328	599	650
	78	147	197	329	600	651
10	82	148	198	370	601	652
	87	149	199	371	602	653
	88	150	227	372	603	655
	89	151	228	374	604	656
	90	154	229	375	605	660
15	94	167	230	410	607	661
	95	168	231	411	608	662
	96	176	232	412	609	663
	97	177	233	413	615	664
	98	178	257	414	616	665
20	99	179	258	415	617	666
	100	180	259	416	618	667
	101	181	260	418	624	668
	102	182	261	420	625	685
	135	183	262	443	626	686
25	136	184	264	444	627	
	137	185	266	445	628	
	138	186	268	446	629	
	139	187	281	447	631	
	140	188	283	448	632	
30	141	189	287	449	633	

By molecular modelling of the CGTase obtained from *Bacillus circulans* Strain 251, the amino acid positions presented in Tables 3-5, below, have been identified as positions close to the substrate, i.e. at a distance of 8Å, 5Å and 3Å, respectively.

In a more preferred embodiment, the method of the invention comprises substitution, insertion and/or deletion at one or more amino acid residue(s) identified in Tables 3-5, below.

Table 3
CGTase Amino Acid Residues less than 8 Å from the Substrate
Positions Identified in *B. circulans* Strain 251 (CGTase Numbering)

	GIn-19	Ser-142	Gly-189	Phe-283	Leu-447	Val-629
5	Phe-21	Pro-143	Lys-192	Gln-287	Val-448	Tyr-631
	Arg-47	Ala-144	Asn-193	Tyr-301	Thr-449	Gln-632
	Trp-75	Ser-145	Leu-194	Lys-304	Ala-476	Tyr-633
	Gin-78	Ser-146	Phe-195	Asn-326	Ala-596	Pro-634
	Asn-82	Asp-147	Asp-196	His-327	Thr-597	Asn-635
10	lle-87	Gin-148	Leu-197	Asp-328	Thr-598	Trp-636
	Asn-88	Pro-149	Ala-198	Met-329	Ala-599	Glu-649
	Туг-89	Ser-150	Asp-199	Thr-370	Leu-600	Phe-650
	Ser-90	Phe-151	Arg-227	Asp-371	Gly-601	Lys-651
	Asn-94	Asn-154	Met-228	Pro-372	Gln-602	Phe-652
15	Thr-95	Tyr-167	Asp-229	Asn-374	Asn-603	Lys-655
	Ala-96	Thr-168	Ala-230	Arg-375	Val-604	Gln-656
	Tyr-97	His-176	Val-231	Gln-410	Tyr-605	Val-660
	His-98	His-177	Lys-232	Glu-411	Thr-607	Thr-661
	Gly-99	Asn-178	His-233	Arg-412	Gly-608	Trp-662
20	Tyr-100	Gly-179	Glu-257	Trp-413	Ser-609	Glu-663
	Trp-101	Gly-180	Trp-258	lle-414	Asn-615	Gly-664
	Ala-102	Thr-181	Phe-259	Asn-415	Trp-616	Gly-665
	Asp-135	Asp-182	Leu-260	Asn-416	Asp-617	Ser-666
	Phe-136	Phe-183	Gly-261	Val-418	Pro-618	Asn-667
25	Ala-137	Ser-184	Val-262	lle-420	Pro-624	His-668
	Pro-138	Thr-185	Glu-264	Ser-443	Met-625	GIn-685
	Asn-139	Thr-186	Ser-266	lle-444	Tyr-626	Pro-686
	His-140	Glu-187	Glu-268	Ser-445	Asn-627	
	Thr-141	Asn-188	Leu-281	Gly-446	GIn-628	

Table 4

CGTase Amino Acid Residues less than 5 Å from the Substrate

Positions Identified in *B. circulans* Strain 251 (CGTase Numbering)

	Tyr-89	Pro-149	Asn-193	Leu-260	Asn-415	Tyr-626
5	His-98	Ser-150	Leu-194	Gly-261	Gly-446	Asn-627
	Tyr-100	Tyr-167	Phe-195	Glu-264	Leu-447	Gln-628
	Trp-101	Gly-179	Asp-196	Tyr-301	Val-448	Tyr-633
	Ala-137	Gly-180	Leu-197	His-327	Thr-598	Trp-636
	His-140	Thr-181	Arg-227	Asp-328	Ala-599	Glu-649
10	Pro-143	Asp-182	Asp-229	Asp-371	Leu-600	Lys-651
	Ala-144	Phe-183	Ala-230	Arg-375	Gly-601	Trp-662
	Ser-145	Ser-184	Lys-232	Glu-411	Gln-602	Glu-663
	Ser-146	Thr-185	His-233	Arg-412	Asn-603	Asn-667
	Asp-147	Glu-187	Glu-257	Trp-413	Trp-616	
15	GIn-148	Asn-188	Phe-259	lle-414	Met-625	

Table 5

CGTase Amino Acid Residues less than 3 Å from the Substrate

Positions Identified in *B. circulans* Strain 251 (CGTase Numbering)

Tyr-89	Asp-147	Asn-193	Phe-259	Thr-598	Gln-628
20 His-98	GIn-148	Phe-195	His-327	Ala-599	Туг-633
Tyr-100	Gly-180	Asp-196	Asp-328	Leu-600	Trp-636
Trp-101	Asp-182	Asp-229	Asp-371	Gly-601	Lys-651
His-140	Phe-183	Lys-232	Glu-411	Gln-602	Asn-667
Ser-145	Ser-184	His-233	lle-414	Asn-603	
25 Ser-146	Thr-185	Glu-257	Gly-446	Asn-627	

In a similar manner, molecular modelling of the CGTase obtained from the strain *Thermoanaerobacter sp.* ATCC 53627, has revealed the amino acid positions presented in Tables 6-8, below, as being positions close to the substrate, i.e. at a distance of 8Å, 5Å and 3Å, respectively.

In another preferred embodiment, the method of the invention comprises substitution, insertion and/or deletion at one or more amino acid residue(s) identified in Tables 6-8, below.

Table 6

CGTase Amino Acid Residues less than 8 Å from the Substrate

Positions Identified in *Thermoanaerobacter sp.* (CGTase Numbering)

				•		
	Gln-19	His-140	Tyr-186	Glu-264	Tyr-443	Met-625
5	Val-21	Thr-141	Glu-187	Asp-266	lle-444	Phe-626
	Leu-46	Ser-142	Asp-188	Asn-268	Thr-445	Asn-627
	Lys-47	Pro-143	Gly-189	Leu-281	Gly-446	Gln-628
	Trp-75	Ala-144	Arg-192	Phe-283	Leu-447	Gln-632
	GIn-78	Ser-145	Asn-193	GIn-287	Tyr-448	Tyr-633
10	Asn-82	Glu-146	Leu-194	Tyr-301	Ser-476	Pro-634
	Leu-87	Thr-147	Phe-195	Asn-326	Ala-596	Thr-635
	Pro-88	Asp-148	Asp-196	His-327	Thr-597	Trp-636
•	Asp-89	Pro-149	Leu-197	Asp-328	Thr-598	Glu-649
	Phe-91a	Thr-150	Ala-198	Met-329	Val-599	Phe-650
15	Ser-94	Tyr-151	Asp-199	Gly-370	Trp-600	Lys-651
	Thr-95	Asn-154	Arg-227	Asp-371	Gly-601	Phe-652
	Ser-96	Туг-167	Met-228	Pro-372	Glu-602	lle-653
	Tyr-97	Thr-168	Asp-229	Asn-374	Asn-603	Lys-655
	His-98	His-176	Ala-230	Arg-375	Val-604	Asn-656
20	Gly-99	His-177	Val-231	Lys-410	Tyr-605	Thr-661
	Tyr-100	Tyr-178	Lys-232	Gln-411	Thr-607	Trp-662
	Trp-101	Gly-179	His-233	Arg-412	Gly-608	Glu-663
	Ala-102	Gly-180	Glu-257	Trp-413	Asn-609	Gly-664
	Asp-135	Thr-181	Trp-258	lle-414	Asn-615	Gly-665
25	Phe-136	Asn-182	Tyr-259	Asn-415	Trp-616	Tyr-666
	Ala-137	Phe-183	Leu-260	Asn-416	Asp-617	Asn-667
	Pro-138	Ser-184	Gly-261	Val-418	Thr-618	His-668
	Asn-139	Ser-185	Thr-262	lle-420	Pro-624	GIn-685

Table 7

CGTase Amino Acid Residues less than 5 Å from the Substrate

Positions Identified in *Thermoanaerobacter sp.* (CGTase Numbering)

	Lys-47	Asp-148	Asn-193	Gly-261	Thr-445	Gln-628
5	Ser-94	Pro-149	Leu-194	Giu-264	Gly-446	Tyr-633
	Tyr-97	Thr-150	Phe-195	Asp-266	Leu-447	Trp-636
	His-98	Tyr-151	Asp-196	Tyr-301	Tyr-448	Glu-649
	Tyr-100	Tyr-167	Leu-197	His-327	Thr-598	Lys-651
	Trp-101	Gly-179	Arg-227	Asp-328	Val-599	Trp-662
10	Ala-137	Gly-180	Asp-229	Asp-371	Trp-600	Glu-663
	His-140	Thr-181	Ala-230	Arg-375	Gly-601	Gly-665
	Pro-143	Asn-182	Lys-232	Gln-411	Glu-602	Asn-667
	Ala-144	Phe-183	His-233	Arg-412	Asn-603	
	Ser-145	Ser-184	Glu-257	Trp-413	Trp-616	
15	Glu-146	Ser-185	Tyr-259	lle-414	Met-625	
	Thr-147	Туг-186	Leu-260	Asn-415	Asn-627	

Table 8

CGTase Amino Acid Residues less than 3 Å from the Substrate

Positions Identified in *Thermoanaerobacter sp.* (CGTase Numbering)

20 His-98	Thr-147	Phe-195	Asp-328	Thr-598	Asn-627
Tyr-100	Gly-180	Asp-229	Asp-371	Val-599	Туг-633
Trp-101	Phe-183	His-233	Arg-375	Trp-600	Lys-651
His-140	Ser-184	Glu-257	Gin-411	Gly-601	Asn-667
Ser-145	Ser-185	Tyr-259	lle-414	Glu-602	
25 Glu-146	Asn-193	His-327	Gly-446	Asn-603	

As described above, the substrate binding and product selectivity of a CGTase variant of the invention can be designed by removing existing and/or introducing potential intermolecular interactions between the CGTase variant and its substrate.

Examples of intermolecular interactions include, but are not limited to hydrogen bonding, salt bridge formation, polar interactions, hydrophobic interactions, and aromatic interactions.

Amino acid residues having side chains with hydrogen bonding potentials 5 (i.e. having H-bonding capability) are generally the following:

Ser (S), Thr (T), Asn (N), Gln (Q), His (H), Asp (D), Tyr (Y), Glu (E), Lys (K), Arg (R), Trp (W), and Cys (C).

Correspondingly the following amino acids do not in general possess the potential ability to form side chain hydrogen bonds (i.e. no H-bonding capability):

10 Ala (A), Val (V), Leu (L), lie (I), Phe (F), Gly (G), Met (M), and Pro (P).

Amino acid residues having side chains with salt bridge formation potentials are generally the following:

Asp (D), Glu (E), Lys (K), Arg (R), and His (H).

Amino acid residues having side chains with polar interaction potentials are 15 generally the following:

Asp (D), Asn (N), Glu (E), Gln (Q), Lys (K), Arg (R), His (H), Tyr (Y), Trp (W), and Cys (C).

Amino acid residues having side chains with hydrophobic interaction potentials are generally the following:

Ala (A), Val (V), Leu (L), Ile (I), Phe (F), Met (M), Pro (P), and part of the Arg (R), Glu (E) and Gln (Q) side-chains.

Amino acid residues having side chains with aromatic interaction potentials are generally the following:

His (H), Phe (F), Tyr (Y) and Trp (W).

25 CGTase Variants

In its second aspect, the present invention provides novel CGTase variants, having an amino acid sequence not found in nature. Functionally, the CGTase variant of the invention is regarded a derivative of a precursor CGTase enzyme (i.e. the native, parental, or wild-type enzyme).

In a CGTase variant of the invention, the substrate binding and/or product selectivity has been modified, as compared to the precursor CGTase enzyme, by

46

replacement, insertion and/or deletion of one or more amino acid residue(s) holding a position close to the substrate.

The CGTase variant of the invention may be derived from any CGTase enzyme found in nature. However, the CGTase variant of the invention preferably 5 is derived from a microbial enzyme, preferably a bacterial enzyme, and preferably the CGTase variant is derived from a strain of Bacillus, a strain of Brevibacterium, a strain of Clostridium, a strain of Corynebacterium, a strain of Klebsiella, a strain of Micrococcus, a strain of Thermoanaerobium, a strain of Thermoanaerobacter, a strain of Thermoanaerobacterium, or a strain of Thermoactinomyces.

In more preferred embodiments, the CGTase variant of the invention is derived from a strain of Bacillus autolyticus, a strain of Bacillus cereus, a strain of Bacillus circulans, a strain of Bacillus circulans var. alkalophilus, a strain of Bacillus coagulans, a strain of Bacillus firmus, a strain of Bacillus halophilus, a strain of Bacillus macerans, a strain of Bacillus megaterium, a strain of Bacillus ohbensis, a strain of Bacillus stearothermophilus, a strain of Bacillus subtilis, a strain of Klebsiella pneumonia, a strain of Thermoanaerobacter ethanolicus, a strain of Thermoanaerobacter finnii, a strain of Clostridium thermoamylolyticum, a strain of Clostridium thermoanaerobacterium thermosulfurigenes.

In most preferred embodiments, the CGTase variant of the invention is derived from the strain *Bacillus sp.* Strain 1011, the strain *Bacillus sp.* Strain 38-2, the strain *Bacillus sp.* Strain 17-1, the strain *Bacillus sp.* 1-1, the strain *Bacillus sp.* Strain B1018, the strain *Bacillus circulans* Strain 8, the strain *Bacillus circulans* Strain 251, or the strain *Thermoanaerobacter* sp. ATCC 53627, or a mutant or a 25 variant thereof.

In the context of this invention, an amino acid residue holding a position close to the substrate indicates an amino acid residue located within the enzyme in such a way that it is within a potential intermolecular (i.e. enzyme-substrate) interactive distance from a glucose unit of the substrate (i.e. a polysaccharide).

Examples of potential intermolecular interactions include, but are not limited to hydrogen bonding, salt bridge formation, polar interactions, hydrophobic interactions, and aromatic interactions.

In a preferred embodiment of this invention, an amino acid position close to the substrate indicates a distance less than 8 Å (angstrom), preferably less than 5 Å, more preferred less than 3 Å, from the substrate.

Moreover, CGTases have substrate binding regions located at the A 5 domain, at the B domain, at the C domain and at the E domain. Consequently, in a preferred embodiment, the invention provides a CGTase variant, in which variant a substitution, an insertion and/or a deletion have been introduced at one or more of the amino acid residue(s) located in one or more of the A, B, C and E domains.

In another preferred embodiment, the invention provides a CGTase variant, 10 in which variant a substitution, an insertion and/or a deletion have been introduced at one or more of the amino acid positions corresponding to the positions stated in Table 2.

However, if a substitutions at positions 195 and 198 (CGTase numbering) have been accomplished, the CGTase is not contemplated a CGTase variant of the invention unless additional substitution, insertion and/or deletion at one or more amino acid residue(s) has been introduced. Moreover, a CGTase comprising any of the following specific mutations: H140R, H140N, F183L, H233R, H233N, W258V, F259L, F259I, F259Y, F283L, H327R, H327N, T598F and/or W636F, is not contemplated a CGTase variant of the invention, unless additional substitution, insertion and/or deletion of amino acid residue(s) at one or more positions not stated here has been introduced. Finally, a CGTase comprising any of the following specific mutations: F195Y/F259Y, W258V/F259I, T598F/W636F, and F183L/F259L, is not contemplated a CGTase variant of the invention, unless additional substitution, insertion and/or deletion of amino acid residue(s) at one or more positions has been introduced. Therefore such CGTase variants are disclaimed according to the present invention.

In a more preferred embodiment, the CGTase variant of the invention is a CGTase variant derived from an enzyme obtainable from a strain of *Bacillus*, which enzyme has been modified by substitution, insertion and/or deletion at one or more amino acid positions corresponding to the positions stated in Tables 3-5. Preferably the CGTase variant is derived from a strain of *Bacillus autolyticus*, a strain of *Bacillus circulans*, a strain of *Bacillus circulans* var. alkalophilus, a strain of *Bacillus coagulans*, a strain of *Bacillus firmus*, a strain of

Bacillus halophilus, a strain of Bacillus macerans, a strain of Bacillus megaterium, a strain of Bacillus ohbensis, a strain of Bacillus stearothermophilus, or a strain of Bacillus subtilis. Most preferred, the CGTase variant is derived from the strain Bacillus sp. Strain 1011, the strain Bacillus sp. Strain 38-2, the strain Bacillus sp. Strain 17-1, the strain Bacillus sp. 1-1, the strain Bacillus sp. Strain B1018, the strain Bacillus circulans Strain 8, or the strain Bacillus circulans Strain 251, or a mutant or a variant thereof.

In another preferred embodiment, the CGTase variant of the invention is a CGTase variant derived from an enzyme obtainable from a strain of 10 *Thermoanaerobacter*, which enzyme has been modified by substitution, insertion and/or deletion at one or more of the amino acid positions corresponding to the positions stated in Tables 6-8. Preferably the CGTase variant is derived from the strain *Thermoanaerobacter* sp. ATCC 53627, or a mutant or a variant thereof.

In a CGTase variant of the invention, the intermolecular enzyme/substrate interactions have been modified, as compared to the precursor enzyme. Examples of potential intermolecular interactions include, but are not limited to hydrogen bonding, salt bridge formation, polar interactions, hydrophobic interactions, and aromatic interactions. Such modifications may be accomplished by substitution, insertion and/or deletion at one or more of the above described positions, according to the following guidance.

Amino acid residues having side chains with hydrogen bonding potentials (i.e. having H-bonding capability) are generally the following:

Ser (S), Thr (T), Asn (N), Gln (Q), His (H), Asp (D), Tyr (Y), Glu (E), Lys (K), Arg (R), Trp (W), and Cys (C).

Correspondingly the following amino acids do not in general possess the potential ability to form side chain hydrogen bonds (i.e. no H-bonding capability):

Ala (A), Val (V), Leu (L), Ile (I), Phe (F), Gly (G), Met (M), and Pro (P).

Amino acid residues having side chains with salt bridge formation potentials are generally the following:

30 Asp (D), Glu (E), Lys (K), Arg (R), and His (H).

Amino acid residues having side chains with polar interaction potentials are generally the following:

Asp (D), Asn (N), Glu (E), Gln (Q), Lys (K), Arg (R), His (H), Tyr (Y), Trp (W), and Cys (C).

Amino acid residues having side chains with hydrophobic interaction potentials are generally the following:

Ala (A), Val (V), Leu (L), Ile (I), Phe (F), Met (M), Pro (P), and part of the Arg (R), Glu (E) and Gln (Q) side-chains.

Amino acid residues having side chains with aromatic interaction potentials are generally the following:

His (H), Phe (F), Tyr (Y) and Trp (W).

By the method of the invention variants are obtained, which possess an altered number of hydrogen bonds or other interactions in the subsites of the active cleft or in the groove leading to this cleft or on the maltose binding sites. By attering subsites in the binding cleft it is possible to manipulate the number of sugars which are able to bind and thus alter the ratios of α-, β-, γ-cyclodextrins, etc., produced by 15 the enzyme.

In particular, when construction of α-cyclodextrin forming CGTase variants is contemplated, interactions on or before subsites C-I of the substrate (cf. Fig. 1) should be increased, and interactions on subsites I and higher should be decreased. Alternatively sterical hindrance could be applied to prevent binding on subsites I and higher. For instance, starting from an *Bacillus* CGTase, the following mutations are contemplated, separately or in combinations.

Less coupling and disproportionating activity is achieved by removing interactions between the enzyme and the donor/acceptor, i.e. between the CGTase and subsites A, B, C and D. Mutations which remove hydrogen bonds are e.g.:

25 H233Q, D135L, R47L or R47Q.

Mutations which increase hydrogen bonding relative to the substrate are e.g.:

H233Q (relative to subsite B of the substrate), L197D or L197E (subsite D), N94Q or N94K or N94R or N94W or N94F (subsite E), D371N or D371G (subsite 30 E+F), Y89D (subsite E), A144K or A144R or A144D (subsite H), N193D or N193E (subsite H), Y167F (in order to release the residue at position 193 for H-bonding to subsite H), and T185R or T185E or T185D (on maltose binding site 2, cf. below).

Mutations which alter the conformation of the substrate binding cleft, and thus make new enzyme-substrate interactions are e.g.:

N88P, and P143G.

Mutations which decrease hydrogen bonding relative to the substrate are 5 e.g.:

S145E or S145A, and S146P or S146Q or S146G (relative to subsite I of the substrate).

A mutation which increases the hydrogen bonding relative to subsite H is e.g. A144R.

A mutation which increases hydrogen bonding relative to the substrate is e.g. N88K.

Mutations which leads to sterical hindrance are e.g.:

S145W or S145Y or S145F, and S146W or S146I or S146R or S146P (prevent binding on subsite I of the substrate).

Mutations which increase electrostatic interactions (stacking) are e.g.:

L600W or L600F or L600Y (of maltose binding site 2, cf. below).

In a preferred embodiment, a α-cyclodextrin forming CGTase variant of the invention may be a variant, which at positions 87-94 comprises the partial amino acid sequence IKYSGVNN, and/or at positions 143-151 comprises the partial amino acid sequence GRAGTNPGF, or at positions 143-145 comprises the partial amino acid sequence GRW.

In order to produce an enzyme with an improved product selectivity towards β-cyclodextrins it is necessary to circumvent the production of both smaller and larger cyclic products. A rationale might be to prevent the production of α-25 cyclodextrin by removing hydrogen bonds between the enzyme and substrate, which enable the substrate to move more quickly into the active site. Conversely, introduction of hydrogen bonds at relevant positions slow down the movement of substrate leading to the production of larger cyclodextrins. This approach, coupled with the substitution of amino acid residues which cause sterical hindrance for smaller amino acid residues at positions designed to block the movement of substrate, prevent the formation of cyclodextrins larger than β-cyclodextrin. Therefore, if construction of β-cyclodextrin forming CGTase variants is contemplated,

the following mutations are contemplated, separately or in combinations, also starting from an *Bacillus* CGTase.

Mutations which alter the conformation of the substrate binding cleft close to the active site and thus create space for larger cyclodextrins (β - and γ - 5 cyclodextrins) are e.g.:

N88P, Y89* (a deletion), 91aY (an insertion), V92* or N92*, and N94*.

A mutation which increases hydrogen bonding relative to the substrate is e.g. S146E.

Mutations which decrease hydrogen bonding relative to the substrate are 10 e.g.

S145L, and Q148N.

Mutations which remove hydrogen bonds from subsites D, E, F, H, I and J of the substrate are e.g.:

R375G, D371G, D371N, Y89G, N193G, S145A, Q148A, and *145al.

A mutation which introduce sterical hindrance between subsites I and J of the substrate, designed to shift the product ratio towards the production of smaller cyclodextrins is e.g. D147W.

In a preferred embodiment, a β-cyclodextrin forming CGTase variant of the invention may be a variant, which at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAETWPAF.

In another preferred embodiment, a β-cyclodextrin forming CGTase variant of the invention may be a variant, which at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAETWPAF, and which variant at position 195 holds a leucine residue (X195L).

In a third preferred embodiment, a CGTase variant of the invention capable 30 of forming linear oligosaccharides may be a variant, which at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151

comprises the partial amino acid sequence PAAETWPAF, and which variant at position 195 holds a glycine residue (X195G).

Similarly, if construction of γ -cyclodextrin forming CGTase variants is contemplated, the following mutations are contemplated, separately or in 5 combinations, again starting from an *Bacillus* CGTase.

Mutations which alter the conformation of the substrate binding cleft close to the active site and thus create space for larger cyclodextrins (β - and γ -cyclodextrins) are e.g.:

N88P, Y89* (a deletion), 91aY (an insertion), V92* or N92*, and N94*.

A mutation which increases hydrogen bonding relative to the substrate is e.g. S146E.

Mutations which decrease hydrogen bonding relative to the substrate are e.g.

S145L, and Q148N.

Mutations which remove hydrogen bonds from subsites D, E, F and H of the substrate are e.g.:

N193G, R375G, D371G, and D371N.

A mutation which remove hydrogen bonds and hydrophobic stacking from subsites D, E, F and H of the substrate e.g. Y89G.

20 Mutations which change the binding properties at subsites I and J of the substrate are e.g.:

X145al or *145al (via insertion), S145A, and Q148E, in particular S145A/X145al or A145A/*145al, and X145al/Q148E or *145al/Q148E.

Mutations which reduce the coupling activity at subsites A, D and E are 25 e.g.:

R375G, D371G, K232Q, and E264Q.

Mutations reducing the coupling activity by changing specific binding of cyclodextrins is e.g. R47Q.

In particular, when considering CGTase variants derived from a strain of 30 *Thermoanaerobacter*, mutations which lead to less hydrolysis, obtained by removing water molecules close to the active site, are e.g.:

V21F or V21Y.

53

Less coupling and disproportionating activity is achieved by removing interactions between the enzyme and the donor/acceptor, i.e. between the CGTase and subsites A, B, C and D. Mutations which remove hydrogen bonds are e.g.:

Y259F, H233Q, and D135L.

In a preferred embodiment, a γ -cyclodextrin forming CGTase variant of the invention may be a variant, which at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAEADPNF.

In another preferred embodiment, a γ-cyclodextrin forming CGTase variant of the invention may be a variant, which at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAEADPNF, and which variant at position 195 holds a 15 leucine residue (X195W).

In a third preferred embodiment, in order to obtain linear oligosaccharides of a desired length, the variants of the invention may be combined with a substitution at the central amino acid residue forming the cyclization axis, corresponding to position 195, CGTase numbering. At this position, tyrosine and phenylalanine are predominant in wild-type CGTases (cf. Table 1). By changing this residue, the cyclization properties are affected, and cyclization may be prohibited. In a preferred embodiment, glycine is introduced at this position (X195G).

In yet another preferred embodiment, a CGTase variant of the invention is an enzyme which has been modified by substitution, insertion and/or deletion at one 25 or more of the amino acid positions corresponding to the positions stated in Table 9, below. As indicated in this table, the introduction of one or more of these substitutions/insertions/deletions lead to CGTase variants of increased product selectivity in respect of α-, β- or γ-cyclodextrins, respectively.

Table 9
CGTase Variants of Increased Product Selectivity
Positions Identified by CGTase Numbering

	<u>Position</u>	<u>α-cyclodextrin</u>	<u>β-cyclodextrin</u>	y-cyclodextrin
5	21	F,Y	F,Y	F,Y
	47	Q,L	A,Q,H,R,L	A,Q,H,R,L
	87	I,H	I,H	I,H
	88	P,N,K,H	P,N,K,H	P,N,K,H
	89	D,G,A,Y,E,*	D,G,A,E,K,R,Y,P,*	D,G,A,Y,P,*
10	90	S	G,A,S	G,A,S
	91	A,V,D,G,T	A,V,G,S,T	A,V,G,S
	91a	A,V,G,Y,*	A,V,G,Y,F,*	A,V,G,Y,F,*
	92	G,V,*	G,V,*	G,V,*
	93	G,N,*	G,N,H,T,*	G,N,H,T,*
15	94	Q,K,R,W,F,N,S,*	Q,K,R,W,F,N,S,*	Q,K,R,W,F,N,S,*
	98	H .	G,A	G,A
	101	W	G,A	G,A,F,Y
	135	L,D	L,D	L,D
	140	A,R,N	A,R,N	A,R,N
20	143	G,S,A	P	Р
	144	K,R,D,A,N,E,Q	A	Α
	145	A,E,W,P,G,F,Y,P,R,K	A,E,L,W	A,E,L,W
	145a	P,A,F,Q,S,W,I,R,*	P,A,I,Q,S	I,A,Q,P,S
	146	P,A,F,Q,S,W,I,R,G,E,*	P,A,I,Q,S,E,K,D,N,R,F,W,*	I,A,Q,P,S,E
25	147	A,L,I,F,T,*	A,L,I,F,W,G,Y,R,D,T,*	S,T,A,D
	147a	•	•	D,N,E,Q,T
	148	G,A,N	G,A,N,Q	D,E,R,K,Y,F,N,Q
	149	P	W,P	L,I,F,W,P
	150	A,G	A,S	A,S,N
30	167	P,F,Y	A,F,Y	A,F,P,Y
	168	S,T	S,T	S,T
	178	N,Y	N,Y	N,Y

		55	1 C1/D130/001/7
179	end .	C-S N.D	CCND
	S,N,D	G,S,N,D	G,S,N,D
180	S,N,D	G,S,N,D	G,S,N,D
183	F,W,Y,A	F,W,Y,A	F,W,Y,A
185	P,H,R,E,D	P,H,R,E,D	P,H,R,E,D
5 192	K,R	K,R	K,R
193	G,D,E,N,Q	G,A,N	G,A,N
195	Y,F	L,I,W,Y,F	L,I,W,F,Y
196	A,D,N,S	A,D,N,S	A,D,N,S
197	D,E,L	D,E,L	D,E,L
10 232	K,Q,L	K,Q,L	K,Q,L
233	H,Q,N,I	H,Q,N,I	H,Q,N,I
259	F,W,Y,A	F,W,Y,A	F,W,Y,A
264	Q	Q	Q
326	Q,F,L	Q,F,L	Q,F,L
15 370	G	T,N	T,N
371	A,D,S,N,G,E,Q	A,G,N,D,S	A,G,N,V,L,1,D,S
373	D,N,Y	D,E,Y	D,E,Y
375	R,K	A,P,G,R,K	A,P,G,R,K
600	X	X	X

PCT/DK96/00179

20 X = any natural amino acid residue

WO 96/33267

In respect to product binding and product inhibition, the E domain of the Bacillus circulans Strain 251 CGTase has now been identified as a raw starch binding domain. In the maltose dependent crystal structure, three maltose molecules have been found on each enzyme molecule on contact points between these molecules (maltose binding sites, MBS). Two of these maltoses are bound to specific sites on the E domain (MBS1 and MBS2, near 616 and 662), the third site is located on the C domain (MBS3, near 413). Thus, the binding sites on the E domain are required for the conversion of raw starch into cyclodextrins. Experiments, as conducted below, indicate that the enzyme binds to the raw starch granule via MBS1, while MBS2 guides a starch chain protruding from the granule to the active site.

^{*} deleted or absent residue

In another preferred embodiment, a CGTase variant of the invention is an enzyme which has been modified by substitution, insertion and/or deletion at one or more of the amino acid positions corresponding to the positions stated in Table 10, below. Such modifications lead to CGTase variants of reduced product inhibition.

For instance, in the context of this invention, the following mutations, starting from an *Bacillus* CGTase, are contemplated, separately or in combination, in order to reduce product inhibition.

Mutations which reduces non-competitive product inhibition are e.g.:

Y633A (takes place on MBS2, this mutation completely removes non-10 competitive product inhibition), 599aP or 599aR or 599aH, and L600R.

Residues 595-605 form a loop next to MBS2. Insertion enlarges the loop, thereby preventing binding of a cyclodextrin to MBS2 by sterical hindrance, while the role of MBS2 in guidance of the substrate chain is preserved. Mutations at position 600 and adjacent residues could reduce the binding of cyclic products to MBS2, while the binding of linear substrates remains unaffected. Substitution of leucine at position 600 with aspartate, alanine or glycine has minor effects on product inhibition. Substitution with arginine, due to its large size and charged nature, affect binding of cyclodextrins, thereby reducing product inhibition.

Mutations that decrease electrostatic interactions around MBS1, leading 20 to decreased product affinity are e.g. W616A and/or W662A.

Mutations that decrease electrostatic interactions around MBS2, leading to decreased product affinity are e.g. L600A or L600S, and/or Y663A.

A mutations that decreases electrostatic interactions around MBS3, leading to decreased product affinity is e.g. W413A.

Competitive product inhibition is contemplated caused by coupling reactions. Reduction of this coupling reaction may be achieved by reducing the binding of the first (cyclodextrin) and second (malto-oligosaccharide) substrate.

Mutations reducing competitive product inhibition by reducing cyclodextrin binding are e.g.:

30 R47A or R47Q or R47L, Y89G, D196A or D196L, D371G or D371N or D371A or D371L, and R375G or R375Q or R375N or R375A or R375L.

Mutations reducing competitive product inhibition by reducing binding of the second substrate are e.g.:

K232Q or K232N or K232A or K232L, E264A or E264N or E264L, T186A, and E268A.

Table 10
CGTase Variants of Reduced Product Inhibition
5 Positions Identified by CGTase Numbering

	•	_
	47	A,Q,L
	89	G
	100	A,I,L,F,Y
	185	R,E,D
10	186	Α
	196	A,L,D
	232	K,Q,N,A,L
	264	A,N,L
	268	A
15	339	A
	371	G,N,A,L,D,S,E,Q
	375	G,Q,N,A,L,R,K
	382	A,L,V
	384	A,L,V
20	413	A,V,G,W
	598	A,V,G,P,T
	599a	P,R,H
	600	X
	603	A,V,L,G,N
25	616	A,I,L,G,W
	626	A,I,V,L,G
	627	A,V,L,G,N
	628	A,V,L,G,Q
	633	A,V,L,I,G,Y
30	636	I,L,A,G,W
	649	A,G
	651	A,G,V,K

662 A,L,I,G,W 667 A,N

X = any natural amino acid residue

In a preferred embodiment, the CGTase variant of the invention is a 5 CGTase variant derived from an enzyme obtainable from a strain of *Bacillus*, which enzyme has been modified by substitution, insertion and/or deletion at one or more of the amino acid positions corresponding to the positions stated in Table 11, below. Such modifications lead to CGTase variants of increased product selectivity, as indicated in the table.

More preferred, the CGTase variant is derived from a strain of a strain of Bacillus autolyticus, a strain of Bacillus cereus, a strain of Bacillus circulans, a strain of Bacillus circulans var. alkalophilus, a strain of Bacillus coagulans, a strain of Bacillus firmus, a strain of Bacillus halophilus, a strain of Bacillus macerans, a strain of Bacillus megaterium, a strain of Bacillus ohbensis, a strain of Bacillus stearothermophilus, or a strain of Bacillus subtilis.

Most preferred, the CGTase variant is derived from the strain *Bacillus sp.*Strain 1011, the strain *Bacillus sp.* Strain 38-2, the strain *Bacillus sp.* Strain 17-1, the strain *Bacillus sp.* 1-1, the strain *Bacillus sp.* Strain B1018, the strain *Bacillus circulans* Strain 8, or the strain *Bacillus circulans* Strain 251, or a mutant or a variant 20 thereof.

Table 11

Bacillus Derived CGTase Variants of Increased Product Selectivity

Positions Identified by CGTase Numbering

	<u>Position</u>	<u>α-cyclodextrin</u>	<u>β-cyclodextrin</u>	y-cyclodextrin
25	21	FY	F,Y	F,Y
	47	Q,L	A,Q,H,R,L	A,Q,H,R,L
	87	Н	Н	Н
	88	P,N,K,H	P,N,K,H	P,N,K,H
	89	D,G,A,E,*	D,G,A,E,K,R,P,*	D,G,A,P,*
30	90	•	G,A	G,A

	91	A,V,D,T	A,V,S,T	A,V,S
	91a	A,V,G,Y,*	A,V,G,Y,F,*	A,V,G,Y,F,*
	92	G,*	G,*	G,*
	93	G,*	G,H,T,*	G,H,T,*
5	94	Q,K,R,W,F,S,*	Q,K,R,W,F,S,*	Q,K,R,W,F,S,*
	98	•	G,A	G,A
	101	•	G,A	G,A,F,Y
	135	L	L	L
	140	A,R,N	A,R,N	A,R,N
10	143	G,S	P	P :
	144	K,R,D,A,N,E,Q	A	Α
	145	A,E,W,P,G,F,Y,P,R,K	A,E,L,W	A,E,L,W
	145a	P,A,F,Q,S,W,I,R,*	P,A,I,Q,S	I,A,Q,P,S
	146	P,A,F,Q,S,W,I,R,G,E,*	P,A,I,Q,S,E,K,D,N,R,F,W,*	I,A,Q,P,S,E
15	147	A,L,I,F,*	A,L,I,F,W,G,Y,R,D,T,*	S,T,A,D
	147a	•	•	D,N,E,Q,T
	148	G,A,N	G,A,N	D,E,R,K,Y,F,N
	149	-	W	L,I,F,W
	150	A,G	A	A,S,N
20	167	P,F	A,F	A,F,P
	168	S,T	S,T	S,T
	178	N,Y	N,Y	N,Y
	179	S,N,D	S,N,D	S,N,D
	180	S,N,D	S,N,D	S,N,D
25	183	W,Y,A	W,Y,A	W,Y,A
	185	P,H,R,E,D	P,H,R,E,D	P,H,R,E,D
	192	K,R	K,R	K,R
	193	G,D,E,Q	G,A	G,A
	195	F ′	L,I,W,F	L,I,W,F
30	196	A,S,N,G	A,S,N,G	A,S,N,G
	197	D,E	D,E	D,E
	232	Q,L	Q,L	Q,L
	233	Q,N,I	Q,N,I	Q,N,I

WO 96/33267	1	60	PCT/DK96/00179	
259	F,W,A	F,W,A	F,W,A	
264	Q	Q	Q	
326	Q,F,L	Q,F,L	Q,F,L	
370	G	T,N	T,N	
5 371	A,S,N,G,E,Q	A,G,N,S	A,G,N,V,L,I,S	
373	D,N,Y	D,E,Y	D,E,Y	
375	•	A,P,G,K	A,P,G,K	
600	X	X	x .	

X = any natural amino acid residue

In another preferred embodiment, the CGTase variant of the invention is a CGTase variant derived from an enzyme obtainable from a strain of *Bacillus*, which enzyme has been modified by substitution, insertion and/or deletion at one or 15 more of the amino acid positions corresponding to the positions stated in Table 12, below. Such modifications lead to CGTase variants of reduced product inhibition.

Table 12

Bacillus Derived CGTase Variants of Reduced Product Inhibition

Positions Identified by CGTase Numbering

20	47	-	A,Q,L
	89		G
	100		A,I,L,F
	185		R,E,D
	186		, A
25	196		A,L
	232		Q,N,A,L
	264		A,N,L
	268		Α
	339		Α
30	371		G,N,A,L,S,E,Q

^{10 -} conserved residue

^{*} deleted or absent residue

30

	375	G,Q,N,A,L,K
	382	A,L,V
	384	A,L,V
	413	A,V,G
5	598	A,V,G,P
	599a	P,R,H
	600	X
	603	A,V,L,G
	616	A,I,L,G
10	626	A,I,V,L,G
	627	A,V,L,G
	628	A,V,L,G
	633	A,V,L,I,G
	636	I,L,A,G
15	649	A,G
	651	A,G,V
	662	A,L,I,G
	667	Α

X = any natural amino acid residue

As its most preferred embodiments, the invention provides the following CGTase variants:

A CGTase variant, which variant at position 21 holds a tyrosine residue (F21Y).

A CGTase variant, which variant at position 47 holds a glutamine residue (R47Q), or an alanine residue (R47A), or a leucine residue (R47L), or a histidine residue (R47H).

A CGTase variant, which variant at position 88 holds a proline residue (N88P) or a lysine residue (N88K).

A CGTase variant, which variant at position 89 holds an aspartic acid residue (Y89D), or an alanine residue (Y89A), or a glycine residue (Y89G).

A CGTase variant, which variant at position 91a (via insertion) holds an alanine residue (*91aA), or a tyrosine residue (*91aY).

A CGTase variant, in which variant position 92 has been deleted (V92*). A CGTase variant, which variant at position 94 holds a glutamine residue (N94Q), or a lysine residue (N94K), or an arginine residue (N94R), or a tryptophan residue (N94W), or a phenylalanine residue (N94F), or in which variant position 94 has been deleted (N94*).

A CGTase variant, which variant at position 135 holds a leucine residue (D135L).

A CGTase variant, which variant at position 143 holds a natural amino acid residue different from that of the wild-type enzyme (P143X).

A CGTase variant, which variant at position 143 holds an alanine residue (P143A), or a glycine residue (P143G).

A CGTase variant, which variant at position 144 holds a natural amino acid residue different from that of the wild-type enzyme (A144X).

A CGTase variant, which variant at position 144 holds an arginine residue (A144R), or a lysine residue (A144K), or an aspartic acid residue (A144D).

A CGTase variant, which variant at position 145 holds a natural amino acid residue different from that of the wild-type enzyme (S145X).

A CGTase variant, which variant at position 145 holds an alanine residue (S145A), or a glutamic acid (S145E), or a tryptophan residue (S145W), or a glycine residue (S145G), or a phenylalanine residue (S145F), or a tyrosine residue (S145Y), or a leucine residue (S145L).

A CGTase variant, which variant at position 145a (via insertion) holds a natural amino acid residue (*145aX).

A CGTase variant, which variant at position 145a (via insertion) holds an isoleucine residue (*145al).

A CGTase variant, which variant at position 146 holds a natural amino acid residue different from that of the wild-type enzyme (S146X).

A CGTase variant, which variant at position 146 holds a proline residue (S146P), or an isoleucine residue (S146I), or a glutamine residue

10

5

15

20

25

(S146Q), or a tryptophan residue (S146W), or an arginine residue (S146R), or a glutamic acid residue (S146E).

A CGTase variant, which variant at position 147 holds a natural amino acid residue different from that of the wild-type enzyme (D147X).

A CGTase variant, which variant at position 147 holds an isoleucine residue (D147I), or a leucine residue (D147L), or an alanine residue (D147A), or a serine residue (D147S), or a tryptophan residue (D147W). A CGTase variant, which variant at position 147a (via insertion) holds an alanine residue (*147aA).

A CGTase variant, which variant at position 147a (via insertion) holds a natural amino acid residue (*147aX).

A CGTase variant, which variant at position 148 holds a natural amino acid residue different from that of the wild-type enzyme (Q148X).

A CGTase variant, which variant at position 148 holds an alanine residue (Q148A), or a glycine residue (Q148G), or a glutamic acid residue (Q148E), or an asparagine residue (Q148N).

A CGTase variant, which variant at position 149 holds a natural amino acid residue different from that of the wild-type enzyme (P149X).

A CGTase variant, which variant at position 149 holds an isoleucine residue (P149I).

A CGTase variant, which variant at position 167 holds a phenylalanine residue (Y167F).

A CGTase variant, which variant at position 179 holds a serine residue (G179S), an asparagine residue (G179N), or an aspartic acid residue (G179D).

A CGTase variant, which variant at position 180 holds a serine residue (G180S), an asparagine residue (G180N), or an aspartic acid residue (G180D).

A CGTase variant, which variant at position 185 holds an arginine residue (T185R), or a glutamic acid residue (T185E), or an aspartic acid residue (T185D).

A CGTase variant, which variant at position 186 holds an alanine residue (T186A).

15

10

5

20

25

A CGTase variant, which variant at position 193 holds a natural amino acid residue different from that of the wild-type enzyme (N193X).

A CGTase variant, which variant at position 193 holds a glycine residue (N193G), or an alanine residue (N193A), or an aspartic acid residue (N193D), or a glutamic acid residue (N193E).

A CGTase variant, which variant at position 195 holds a natural amino acid residue different from that of the wild-type enzyme (Y195X).

A CGTase variant, which variant at position 196 holds a natural amino acid residue different from that of the wild-type enzyme (D196X).

A CGTase variant, which variant at position 196 holds an alanine residue (D196A), a serine residue (D196S), or a leucine residue (D196L).

A CGTase variant, which variant at position 197 holds an aspartic acid residue (L197D), or a glutamic acid residue (L197E).

A CGTase variant, which variant at position 232 holds a glutamine residue (K232Q), or an asparagine residue (K232N), or an alanine residue (K232A), or a leucine residue (K232L).

A CGTase variant, which variant at position 233 holds a glutamine residue (H233Q).

A CGTase variant, which variant at position 264 holds a glutamine residue (E264Q), or an alanine residue (E264A), or an asparagine residue (E264N), or a leucine residue (E264L).

A CGTase variant, which variant at position 268 holds an alanine residue (E268A).

A CGTase variant, which variant at position 371 holds a natural amino acid residue different from that of the wild-type enzyme (D371X).

A CGTase variant, which variant at position 371 holds a glycine residue (D371G), or an asparagine residue (D371N), or an alanine residue (D371A), or a leucine residue (D371L).

A CGTase variant, which variant at position 375 holds a natural amino acid residue different from that of the wild-type enzyme (R375X).

A CGTase variant, which variant at position 375 holds a proline residue (R375P), or a glycine residue (R375G), or a glutamine residue (R375Q),

10

5

15

20

25

or an asparagine residue (R375N), or an alanine residue (R375A), or a leucine residue (R375L).

A CGTase variant, which variant at position 599a (via insertion) holds a proline residue (*599aP), or an arginine residue (*599aR), or a histidine residue (*599aH).

A CGTase variant, which variant position 600 has been substituted for a different naturally occurring amino acid residue, in particular a tryptophan residue (L600W), a phenylalanine residue (L600F), a tyrosine residue (L600Y), an arginine residue (L600R), a proline residue (L600P), or an asparagine residue (L600N).

A CGTase variant, which variant at position 616 holds an alanine residue (W616A).

A CGTase variant, which variant at position 633 holds an alanine residue (Y633A).

A CGTase variant, which variant at position 662 holds an alanine residue (W662A).

A CGTase variant, which variant at position 47 holds a histidine residue, and at position 135 holds a leucine residue (R47H/D135L).

A CGTase variant, which variant at position 88 holds a proline residue, and at position 143 holds a glycine residue (N88P/P143G).

A CGTase variant, which variant at position 89 holds an aspartic acid residue, and at position 146 holds a proline residue (Y89D/S146P).

A CGTase variant, which variant at position 89 holds a glycine residue, and at position 193 holds a glycine residue (Y89G/N193G).

A CGTase variant, in which variant positions 92 and 94 have been deleted (V92*/N94*).

A CGTase variant, which variant at position 143 holds an alanine residue, and at position 144 holds an arginine residue (P143A/A144R). A CGTase variant, which variant at position 143 holds a glycine residue, and at position 144 holds an arginine residue, and at position 145 holds a tryptophan residue (P143G/A144R/S145W).

A CGTase variant, which variant at position 143 holds a glycine residue, and at position 144 holds an arginine residue, and at position 145 holds

10

5

15

20

25

a tryptophan residue (P143G/A144R/S145W), and which variant at position 179 holds a serine residue (G179S), an asparagine residue (G179N), or an aspartic acid residue (G179D).

A CGTase variant, which variant at positions 143-148 comprises the partial amino acid sequence GRA**A, the partial amino acid sequence GRAPAA, or the partial amino acid sequence GRAPAA, or the partial amino acid sequence GRGPAA.

A CGTase variant, which variant at position 144 holds an arginine residue, at position 145 holds an alanine residue, and at position 146 holds a proline residue (A144R/S145A/S146P).

A CGTase variant, which variant at position 145 holds an alanine residue, and at position 145a (via insertion) holds an isoleucine residue (S145A/*145al).

A CGTase variant, which variant at position 145 holds an alanine residue, and at position 146 holds a glycine residue (S145A/S146G).

A CGTase variant, which variant at position 145 holds a leucine residue, and at position 148 holds an asparagine residue (S145L/Q148N).

A CGTase variant, which variant at position 145 holds a glutamic acid residue, and in position 146 holds a proline residue or a glutamine residue (\$145E/\$146P or \$145E/\$146Q).

A CGTase variant, which variant at position 145 holds a tryptophan residue, and in position 146 holds a tryptophan residue, or an isoleucine residue, or an arginine residue (S145W/S146W or S145W/S146I) or S145W/S146R).

A CGTase variant, which variant at position 145 holds an alanine residue, at position 145a (via insertion) holds an isoleucine residue, and at position 148 holds a glutamic acid residue (\$145A/*145al/Q148E). A CGTase variant, which variant at position 145a (via insertion) holds an isoleucine residue, and at position 148 holds a glutamic acid residue (*145al/Q148E).

A CGTase variant, which variant at position 148 holds a glutamic acid residue, and at position 193 holds a glutamine residue.

15

10

5

20

25

5

10

15

20

A CGTase variant, which variant at position 616 holds an alanine residue, and at position 662 holds an alanine residue (W616AW662A). A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence IKYSGVNN, and/or at positions 143-151 comprises the partial amino acid sequence GRAGTNPGF, or at positions 143-145 comprises the partial amino acid sequence GRW.

A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAETWPAF.

A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAETWPAF, and which variant at position 195 holds a leucine residue (Y195L).

A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAEADPNF.

A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAEADPNF, and which variant at position 195 holds a leucine residue (Y195W).

Preferably, the above CGTase variants are derived from a strain of Bacillus autolyticus, a strain of Bacillus cereus, a strain of Bacillus circulans, a strain of Bacillus circulans var. alkalophilus, a strain of Bacillus coagulans, a strain of Bacillus firmus, a strain of Bacillus halophilus, a strain of Bacillus macerans, a strain of Bacillus megaterium, a strain of Bacillus ohbensis, a strain of Bacillus stearothermophilus, or a strain of Bacillus subtilis.

Most preferred, the above CGTase variants are derived from the strain Bacillus sp. Strain 1011, the strain Bacillus sp. Strain 38-2, the strain Bacillus sp.

Strain 17-1, the strain *Bacillus sp.* 1-1, the strain *Bacillus sp.* Strain B1018, the strain *Bacillus circulans* Strain 8, or the strain *Bacillus circulans* Strain 251, or a mutant or a variant thereof.

In yet another preferred embodiment, the CGTase variant of the invention 5 is a CGTase variant derived from an enzyme obtainable from a strain of *Thermoanaerobacter*, which enzyme has been modified by substitution, insertion and/or deletion at one or more of the amino acid positions corresponding to the positions stated in Table 13, below. Such modification lead to CGTase variants of increased product selectivity, as indicated in the table.

10 Preferably the CGTase variant is derived from a strain of Thermoanaerobacter sp. ATCC 53627, or a mutant or a variant thereof.

Table 13

Thermoanaerobacter Derived CGTase Variants of Increased Product Selectivity
Positions Identified by CGTase Numbering

15	<u>Position</u>	α-cyclodextrin	<u>β-cyclodextrin</u>	γ-cyclodextrin
	21	F,Y	F,Y	F,Y
	47	Q,L	A,Q,H,R,L	A,Q,H,R,L
	87	I,H	I,H	I,H
	88	N,K,H	N,K,H	N,K,H
20	89	G,A,Y,E,*	G,A,E,K,R,Y,P,*	G,A,Y,P,*
	90	-	G,A	G,A
	91	A,V,D,G	A,V,G,S	A,V,G,S
	91a	A,V,G,Y,*	A,V,G,Y,*	A,V,G,Y,*
	92	V,*	V,*	V,*
25	93	N,*	N,H,T,*	N,H,T,*
	94	Q,K,R,W,F,N,*	Q,K,R,W,F,N,*	Q,K,R,W,F,N,*
	98	-	G,A	G,A
	101	-	G,A	G,A,F,Y
	135	L	L	L
30	140	A,R,N	A,R,N	A,R,N
	143	G,S	•	-
	144	K,R,D,N,E,Q	•	-

			,	
	145	A,E,W,P,G,F,Y,P,R,K	A,E,L,W	A,E,L,W
	145a	P,A,F,Q,S,W,I,R,*	P,A,I,Q,S	I,A,Q,P,S
	146	P,A,F,Q,S,W,I,R,G,*	P,A,I,Q,S,K,D,N,R,F,W,*	I,A,Q,P,S
	147	A,L,I,F,*	A,L,I,F,W,G,Y,R,D,*	S,A,D
5	147a	•	•	D,N,E,Q,T
	148	G,A,N	G,A,N,Q	E,R,K,Y,F,N,Q
	149	•	W	L,I,F,W
	150	A,G	A,S	A,S,N
	167	P,F	A,F	A,F,P
10	168	S	S	S
	178	N	N	N
	179	S,N,D	S,N,D	S,N,D
	180	S,N,D	S,N,D	S,N,D
	183	W,Y,A	W,Y,A	W,Y,A
15	185	P,H,R,E,D	P,H,R,E,D	P,H,R,E,D
	192	K	K	Ķ
	193	G,D,E,Q	G,A	G,A
	195	Y	L,I,W,Y	L,I,W,Y
	196	A,S,N,G	A,S,N,G	A,S,N,G
20	197	D,E	D,E	D,E
	232	Q,L	Q,L	Q,L
	233	Q,N.I	Q,N,I	Q,N,1
	259	F,W,A	F,W,A	F,W,A
	264	Q	Q ,	Q
25	326	Q,F,L	Q,F,L	Q,F,L
	370	-	T,N	T,N
	371	A,S,N,G,E,Q	A,G,N,S	A,G,N,V,L,I,S
	373	D,N	D,E	D,E
	375	-	A,P,G,K	A,P,G,K
30	600	X	X	X

X = any natural amino acid residue

⁻ conserved residue

^{*} deleted or absent residue

In yet another preferred embodiment, the CGTase variant of the invention is a CGTase variant derived from an enzyme obtainable from a strain of *Thermoanaerobacter*, which enzyme has been modified by substitution, insertion and/or deletion at one or more of the amino acid residues corresponding to the positions stated in Table 14, below. Such modifications lead to CGTase variants of reduced product inhibition.

Preferably the CGTase variant is derived from a strain of Thermoanaerobacter sp. ATCC 53627, or a mutant or a variant thereof.

Table 14

10 Thermoanaerobacter Derived CGTase Variants of Reduced Product Inhibition
Positions Identified by CGTase Numbering

	47	A,Q,L
	89	G
	100	A,I,L,F
15	185	R,E,D
	186	A
	196	A,L
•	232	Q,N,A,L
	264	A,N,L
20	268	Α .
	339	Α
	371	G,N,A,L,S,E,Q
	375	G,Q,N,A,L,K
	382	A,L,V
25	384	A,L,V
	413	A,V,G
	598	A,V,G,P
	599a	P,R,H .
	600	X
30	603	A,V,L,G
	616	A,I,L,G
	626	A,I,V,L,G

WO 96/33267		PCT/DK96/00179
W U 90/3320 /	• .	rc1/D/20/001/9

71

627	A,V,L,G
628	A,V,L,G
633	A,V,L,I,G
63 6	I,L,A,G
5 649	A,G
651	A,G,V
662	A,L,I,G
667	A

X = any natural amino acid residue

15

20

25

As its most preferred embodiments, the invention provides the following CGTase variants, derived from a strain of *Thermoanaerobacter sp.*, preferably the strain of *Thermoanaerobacter* ATCC 53627, or a mutant or a variant thereof:

A CGTase variant, which variant at position 21 holds a phenylalanine residue (V21F) or a tyrosine residue (V21Y).

A CGTase variant, which variant at position 47 holds a glutamine residue (K47Q), or an alanine residue (K47A), or a leucine residue (K47L), or a histidine residue (K47H), or an arginine residue (K47R).

A CGTase variant, which variant at position 88 holds a lysine residue (P88K).

A CGTase variant, which variant at position 89 holds an alanine residue (D89A), or a glycine residue (D89G).

A CGTase variant, which variant at position 91a holds an alanine residue (F91aA) or a tyrosine residue (F91aY), or in which variant position 91a has been deleted (F91a*).

A CGTase variant, in which variant position 92 has been deleted (G92*). A CGTase variant, which variant at position 94 holds a glutamine residue (S94Q), or a lysine residue (S94K), or an arginine residue (S94R), or a tryptophan residue (S94W), or a phenylalanine residue (S94F), or in which variant position 94 has been deleted (S94*).

A CGTase variant, which variant at position 135 holds a leucine residue (D135L).

A CGTase variant, which variant at position 143 holds a natural amino acid residue different from that of the wild-type enzyme (p143X).

A CGTase variant, which variant at position 143 holds an alanine residue (P143A), or holds a glycine residue (P143G).

A CGTase variant, which variant at position 144 holds a natural amino acid residue different from that of the wild-type enzyme (A145X).

A CGTase variant, which variant at position 144 holds an arginine residue (A144R), or a lysine residue (A144K), or an aspartic acid residue (A144D).

A CGTase variant, which variant at position 145 holds a natural amino acid residue different from that of the wild-type enzyme (S145X).

A CGTase variant, which variant at position 145 holds an alanine residue (S145A), or a glutamic acid (S145E), or a tryptophan residue (S145W), or a glycine residue (S145G), or a phenylalanine residue (S145F), or a tyrosine residue (S145Y), or a leucine residue (S145L).

A CGTase variant, which variant at position 145a (via insertion) holds a natural amino acid residue (*145aX).

A CGTase variant, which variant at position 145a (via insertion) holds an isoleucine residue (*145al).

A CGTase variant, which variant at position 146 holds a natural amino acid residue different from that of the wild-type enzyme (E145X).

A CGTase variant, which variant at position 146 holds a proline residue (E146P), or a serine residue (E146S), or an isoleucine residue (E146I), or a glutamine residue (E146Q), or a tryptophan residue (E146W), or an arginine residue (E146R).

A CGTase variant, which variant at position 147 holds a natural amino acid residue different from that of the wild-type enzyme (T147X).

A CGTase variant, which variant at position 147 holds an isoleucine residue (T147I), or a leucine residue (T147L), or an alanine residue (T147A), or a serine residue (T147S), or a tryptophan residue (T147W). A CGTase variant, which variant at position 147a (via insertion) holds a natural amino acid residue (*147aX).

10

5

15

20

25

5

10

15

20

25

A CGTase variant, which variant at position 147a (via insertion) holds an alanine residue (*147aA).

A CGTase variant, which variant at position 148 holds a natural amino acid residue different from that of the wild-type enzyme (D148X).

A CGTase variant, which variant at position 148 holds an alanine residue (D148A), or a glycine residue (D148G), or a glutamic acid residue (D148E), or an asparagine residue (D148N).

A CGTase variant, which variant at position 149 holds a natural amino acid residue different from that of the wild-type enzyme (P149X).

A CGTase variant, which variant at position 149 holds an isoleucine residue (P149I).

A CGTase variant, which variant at position 167 holds a phenylalanine residue (Y167F).

A CGTase variant, which variant at position 179 holds a serine residue (G179S), an asparagine residue (G179N), or an aspartic acid residue (G179D).

A CGTase variant, which variant at position 180 holds a serine residue (G180S), an asparagine residue (G180N), or an aspartic acid residue (G180D).

A CGTase variant, which variant at position 185 holds an arginine residue (S185R), or a glutamic acid residue (S185E), or an aspartic acid residue (S185D).

A CGTase variant, which variant at position 186 holds an alanine residue (Y186A).

A CGTase variant, which variant at position 193 holds a natural amino acid residue different from that of the wild-type enzyme (N193X).

A CGTase variant, which variant at position 193 holds a glycine residue (N193G), or an alanine residue (N193A), or an aspartic acid residue (N193D), or a glutamic acid residue (N193E).

A CGTase variant, which variant at position 195 holds a natural amino acid residue different from that of the wild-type enzyme (F195X).

A CGTase variant, which variant at position 196 holds a natural amino acid residue different from that of the wild-type enzyme (D196X).

A CGTase variant, which variant at position 196 holds an alanine residue (D196A), a serine residue (D196S), or a leucine residue (D196L).

A CGTase variant, which variant at position 197 holds an aspartic acid residue (L197D), or a glutamic acid residue (L197E).

A CGTase variant, which variant at position 232 holds a glutamine residue (K232Q), or an asparagine residue (K232N), or an alanine residue (K232A), or a leucine residue (K232L).

A CGTase variant, which variant at position 233 holds a glutamine residue (H233Q).

A CGTase variant, which variant at position 259 holds a phenylalanine residue (Y259F).

A CGTase variant, which variant at position 264 holds a glutamine residue (E264Q), or an alanine residue (E264A), or an asparagine residue (E264N), or a leucine residue (E264L).

A CGTase variant, which variant at position 268 holds an alanine residue (N268A).

A CGTase variant, which variant at position 371 holds a natural amino acid residue different from that of the wild-type enzyme (D371X).

A CGTase variant, which variant at position 371 holds a glycine residue (D371G), or an asparagine residue (D371N), or an alanine residue (D371A), or a leucine residue (D371L), or a glutamic acid residue (D371E).

A CGTase variant, which variant at position 375 holds a natural amino acid residue different from that of the wild-type enzyme (R375X).

A CGTase variant, which variant at position 375 holds a proline residue (R375P), or a glycine residue (R375G), or a glutamine residue (R375Q), or an asparagine residue (R375N), or an alanine residue (R375A), or a leucine residue (R375L).

A CGTase variant, which variant at position 599a (via insertion) holds a proline residue (*599aP), or an arginine residue (*599aR), or a histidine residue (*599aH).

A CGTase variant, which variant position 600 has been substituted for a different amino acid residue, in particular a phenylalanine residue

15

5

20

25

(W600F), a tyrosine residue (W600Y), an arginine residue (W600R), a proline residue (W600P), a leucine residue (W600L), or an asparagine residue (W600N).

A CGTase variant, which variant at position 616 holds an alanine residue (W616A).

A CGTase variant, which variant at position 633 holds an alanine residue (Y633A).

A CGTase variant, which variant at position 662 holds an alanine residue (W662A).

A CGTase variant, which variant at position 47 holds a histidine residue or an arginine residue, and/or at position 135 holds a leucine residue (K47H/D135L or K47R/D135L).

A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence IKYSGVNN, or the partial amino acid sequence INDSGVNN, and/or at positions 143-151 comprises the partial amino acid sequence GRAGTNPGF, or at positions 143-145 comprises the partial amino acid sequence GRW, and/or at position 195 holds a tyrosine residue (F195Y).

A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence INDSGVNN, and/or at positions 146-150 comprises the partial amino acid sequence SDQPS.

A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAETWPAF.

A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAETWPAF, and which variant at position 195 holds a leucine residue (F195L).

A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises

10

5

15

20

25

the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAEADPNF.

A CGTase variant, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAEADPNF, and which variant at position 195 holds a leucine residue (F195W).

A CGTase variant, in which variant positions 92 and 94 have been deleted (G92*/S94*).

A CGTase variant, which variant at position 143 holds an alanine residue, and at position 144 holds an arginine residue (P143A/A144R). A CGTase variant, which variant at position 143 holds a glycine residue, and at position 144 holds an arginine residue, and at position 145 holds a tryptophan residue (P143G/A144R/S145W).

A CGTase variant, which variant at position 143 holds a glycine residue, and at position 144 holds an arginine residue, and at position 145 holds a tryptophan residue (P143G/A144R/S145W), and which variant at position 179 holds a serine residue (G179S), an asparagine residue (G179N), or an aspartic acid residue (G179D), and/or at position 180 holds an asparagine residue (G180N), or an aspartic acid residue (G180D).

A CGTase variant, which variant at positions 143-148 comprises the partial amino acid sequence GRA**A, the partial amino acid sequence GRAAAA, the partial amino acid sequence GRPAAA, the partial amino acid sequence GRAPAA, or the partial amino acid sequence GRGPAA. A CGTase variant, which variant at positions 143-151 comprises the partial amino acid sequence GRAGTNPG.

A CGTase variant, which variant at positions 143-151 comprises the partial amino acid sequence GRAGTNPG, and at position 195 holds a tyrosine residue (F195Y).

A CGTase variant, which variant at position 144 holds an arginine residue, at position 145 holds an alanine residue, and at position 146 holds a proline residue (A144R/S145A/E146P).

10

5

15

20

25

5

10

15

20

A CGTase variant, which variant at position 145 holds an alanine residue, and at position 145a (via insertion) holds an isoleucine residue (S145A/*145al).

A CGTase variant, which variant at position 145 holds an alanine residue, and at position 146 holds a glycine residue (S145A/E146G).

A CGTase variant, which variant at position 145 holds a leucine residue, and at position 148 holds an asparagine residue (S145L/D148N).

A CGTase variant, which variant at position 145 holds a glutamic acid residue, and in position 146 holds a proline residue or a glutamine residue (\$145E/E146P or \$145E/E146Q).

A CGTase variant, which variant at position 145 holds a tryptophan residue, and in position 146 holds a tryptophan residue, or an isoleucine residue, or an arginine residue (S145W/E146W or S145W/E146I or S145W/E146R).

A CGTase variant, which variant at position 145 holds an alanine residue, at position 145a (via insertion) holds an isoleucine residue, and at position 148 holds a glutamic acid residue (\$145A/*145al/D148E). A CGTase variant, which variant at position 145a (via insertion) holds an isoleucine residue, and at position 148 holds a glutamic acid residue (*145al/D148E).

A CGTase variant, which variant at position 616 holds an alanine residue, and at position 662 holds an alanine residue (W616A/W662A).

Methods of Producing CGTase Variants

The production of the CGTase variants of the invention follows the 25 general principles of recombinant DNA technology, e.g. as described by Sambrook et al. [Sambrook J, Fritsch E F, Maniatis T; Molecular Cloning; A Laboratory Manual, Cold Spring Harbor Laboratory Press, 1989, New York], and known to the person skilled in the art.

Formally, the production takes rise in the provision of a DNA construct 30 encoding CGTase variant of the invention.

15

DNA Constructs

In another aspect, the invention provides a DNA construct encoding a CGTase variant of the invention. As defined herein, the term "DNA construct" is intended to indicate any nucleic acid molecule of cDNA, genomic DNA, synthetic 5 DNA or RNA origin. The term "construct" is intended to indicate a nucleic acid segment which may be single- or double-stranded, and which may be based on a complete or partial naturally occurring nucleotide sequence encoding the CGTase variant of interest. The construct may optionally contain other nucleic acid segments.

The DNA construct of the invention may be prepared by suitably 10 modifying a DNA sequence encoding the precursor CGTase, which modification may bring about:

- (i) introduction of one or more amino acid residues at one or more different sites in the amino acid sequence; and/or
- (ii) substitution of one or more amino acid residues at one or more different sites in the amino acid sequence; and/or
- (iii) deletion of one or more amino acid residues at one or more sites in the amino acid sequence.

The modification of the DNA sequence may be performed by sitedirected mutagenesis or by random mutagenesis, or by a combination of these 20 techniques in accordance with well-known procedures, e.g. as described by Sambrook et al., op cit.

In more preferred embodiments, the DNA construct of the invention comprises one or more of the partial oligonucleotide sequences (primers) described in the examples below. These partial oligonucleotide sequences are in particular

25 5'-G GTC GTT TAC CAG GCG CCG AAC TGG-3' (Y633A);

5'-GC GAG CTC GGG AAC GCG GAC CCG-3' (W616A:);

5'-CC GTC ACC GCG GAA GGC GGC-3' (W662A);

5'-GC ATC TAC AAG GGC CTG TACGAT CTC G-3' (N193G);

5'-GCA TCA TCA ATG GAT CCG GCG TAA AC-3' (Y89G);

5'-CAT ACG TCG CCC GCT AGC ATT TCC GAC CAG CCT TCC-3'
(145al);

5'-CG GGC GGG ACC GGT CCG GAC AAC CG-3' (D371G);

5'-G TCG GGC GGT ACC AAT CCG GAC AAC C-3' (D371N);

5'-CG TTC <u>ATC GAT</u> CAG CAT GAC ATG G-3' (N326Q); 5'-GC ATC ATC AAT GAT <u>TCC GGA</u> GTA AAC AAC ACG GC-3' (Y89D); and

5'-G CCC GCC TCT CCG GAC CAG CCT TC-3' (\$146P);

and the partial oligonucleotide sequences (primers) described as primers A1-A24, primers B1-B15, and C1-C9, of Examples 5, 6 and 7.

Expression Vectors

Subsequent to modification, the CGTase variant may be obtained by combining the DNA construct encoding the CGTase variant of the invention with an 10 appropriate expression signal in an appropriate expression vector.

The expression vector of the invention may be any expression vector that is conveniently subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e. a vector which exists as an extra15 chromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

In the expression vector of the invention, the DNA sequence encoding the CGTase variant preferably is operably linked to additional segments required for transcription of the DNA. In general, the expression vector is derived from plasmid or viral DNA, or may contain elements of both. The term, "operably linked" indicates that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in a promoter and proceeds through the DNA sequence coding for the CGTase variant.

Thus, in the expression vector of the invention, the DNA sequence encoding the CGTase variant preferably should be operably connected to a suitable promoter and terminator sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from 30 genes encoding proteins either homologous or heterologous to the host cell. The procedures used to ligate the DNA sequences coding for the CGTase variant, the

promoter and the terminator, respectively, and to insert them into suitable vectors are well known to persons skilled in the art (cf., for instance, Sambrook et al., op cit)

The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins 5 either homologous or heterologous to the host cell.

Examples of suitable promoters for directing the transcription of the DNA encoding the CGTase variant of the invention in bacterial host cells include the promoter of the *Bacillus stearothermophilus* maltogenic amylase gene, the *Bacillus licheniformis* alpha-amylase gene, the *Bacillus amyloliquefaciens* BAN amylase 10 gene, the *Bacillus subtilis* alkaline protease gen, or the *Bacillus pumilus* xylanase or xylosidase gene, or by the phage Lambda P_R or P_L promoters or the *E. coli* <u>lac</u>, <u>trp</u> or <u>tac</u> promoters.

Examples of suitable promoters for use in yeast host cells include promoters from yeast glycolytic genes [Hitzeman et al., J. Biol. Chem. 1980 255 15 12073 - 12080; Alber and Kawasaki, J. Mol. Appl. Gen. 1982 1 419 - 434] or alcohol dehydrogenase genes [Young et al., in Genetic Engineering of Microorganisms for Chemicals (Hollaender et al, Eds.), Plenum Press, New York, 1982], or the TPI1 [US 4,599,311] or ADH2-4c [Russell et al., Nature 1983 304 652 - 654] promoters.

Examples of suitable promoters for use in filamentous fungus host cells are, for instance, the <u>ADH3</u> promoter [*McKnight et al.*, <u>EMBO J.</u> 1985 4 2093 - 2099] or the <u>tpi</u>A promoter. Examples of other useful promoters are those derived from the gene encoding *A. oryzae* TAKA amylase, *Rhizomucor miehei* aspartic proteinase, *A. niger* neutral α-amylase, *A. niger* acid stable α-amylase, *A. niger* or *A. awamon* glucoamylase (gluA), *Rhizomucor miehei* lipase, *A. oryzae* alkaline protease, *A. oryzae* triose phosphate isomerase or *A. nidulans* acetamidase. Preferred are the TAKA-amylase and gluA promoters.

The expression vector of the invention may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. The expression vector may also comprise a selectable marker, e.g. a gene the product of which 30 complements a defect in the host cell, such as the gene coding for dihydrofolate reductase (DHFR) or the Schizosaccharomyces pombe TPI gene [Russell PR; Gene 1985 40 125-130], or one which confers resistance to a drug, e.g. ampicillin,

kanamycin, tetracyclin, chloramphenicol, neomycin, hygromycin or methotrexate. For filamentous fungi, selectable markers include <u>amdS</u>, <u>pyrG</u>, <u>argB</u>, <u>niaD</u> and <u>sC</u>.

To direct the CGTase into the secretory pathway of the host cells, a secretory signal sequence (also known as a leader sequence, prepro sequence or 5 pre sequence) may be provided in the expression vector. The secretory signal sequence is joined to the DNA sequence encoding the CGTase in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the CGTase variant. The secretory signal sequence may be that normally associated with the CGTase or may be from a gene encoding another 10 secreted protein.

In a preferred embodiment, the expression vector of the invention may comprise a secretory signal sequence substantially identical to the secretory signal encoding sequence of the *Bacillus licheniformis* α -amylase gene, e.g. as described in WO 86/05812.

Also, measures for amplification of the expression may be taken, e.g. by tandem amplification techniques, involving single or double crossing-over, or by multicopy techniques, e.g. as described in US 4,959,316 or WO 91/09129. Alternatively the expression vector may include a temperature sensitive origin of replication, e.g. as described in EP 283,075.

Procedures for ligating DNA sequences encoding the CGTase variant, the promoter and optionally the terminator and/or secretory signal sequence, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al., op cit)

25 Host Cells

20

In yet another aspect the invention provides a host cell comprising the DNA construct of the invention and/or the recombinant expression vector of the invention.

The host cell of the invention, into which the DNA construct or the 30 recombinant expression vector of the invention is to be introduced, may be any cell, preferably a non-pathogenic cell, which is capable of producing the CGTase variant and includes bacteria, yeast, fungi and higher eukaryotic cells.

Examples of bacterial host cells which, on cultivation, are capable of producing the CGTase variant of the invention are grampositive bacteria such as strains of Bacillus, in particular a strain of B. subtilis, B. licheniformis, B. lentus, B. brevis. B. stearothermophilus, B. alkalophilus, B. amyloliquefaciens, B. coagulans, 5 B. circulans, B. lautus, B. megatherium, B. pumilus, B. thuringiensis or B. agaradherens, or strains of Streptomyces, in particular a strain of S. lividans or S. murinus, or gramnegative bacteria such as Echerichia coli. The transformation of the bacteria may be effected by protoplast transformation or by using competent cells in a manner known per se (cf. Sambrook et al., op cit).

When expressing the CGTase variant in bacteria such as E. coli, the 10 CGTase may be retained in the cytoplasm, typically as insoluble granules (known as inclusion bodies), or may be directed to the periplasmic space by a bacterial secretion sequence. In the former case, the cells are lysed and the granules are recovered and denatured after which the CGTase is refolded by diluting the 15 denaturing agent. In the latter case, the CGTase may be recovered from the periplasmic space by disrupting the cells, e.g. by sonication or osmotic shock, to release the contents of the periplasmic space and recovering the CGTase variant.

Examples of suitable yeasts cells include cells of Saccharomyces spp. or Schizosaccharomyces spp., in particular strains of Saccharomyces cerevisiae or 20 Saccharomyces kluyveri. Methods for transforming yeast cells with heterologous DNA and producing heterologous polypeptides therefrom are described, e.g. in US 4,599,311, US 4,931,373, US 4,870,008, 5,037,743, and US 4,845,075, all of which are hereby incorporated by reference. Transformed cells are selected by a phenotype determined by a selectable marker, commonly drug resistance or the 25 ability to grow in the absence of a particular nutrient, e.g. leucine. A preferred vector for use in yeast is the POT1 vector disclosed in US 4,931,373. The DNA sequence encoding the CGTase variant of the invention may be preceded by a signal sequence and optionally a leader sequence, e.g. as described above. Further examples of suitable yeast cells are strains of Kluyveromyces, such as K. lactis, 30 Hansenula, e.g. H. polymorpha, or Pichia, e.g. P. pastoris [Gleeson et al., J. Gen. Microbiol. 1986 132 3459-3465; US 4,882,279].

Examples of other fungal cells are cells of filamentous fungi, e.g. Asperaillus spp., Neurospora spp., Fusarium spp. or Trichoderma spp., in particular strains of *A. oryzae*, *A. nidulans* or *A. niger*. The use of *Aspergillus* spp. for the expression of proteins have been described in e.g., EP 272,277 and EP 230,023. The transformation of *F. oxysporum* may, for instance, be carried out as described by *Malardier et al.*, Gene 1989 78 147-156.

The transformed or transfected host cell described above is then cultured in a suitable nutrient medium under conditions permitting the expression of the CGTase, after which the resulting CGTase variant is recovered from the culture.

The medium used to culture the cells may be any conventional medium suitable for growing the host cells, such as minimal or complex media containing appropriate supplements. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. in catalogues of the American Type Culture Collection). The CGTase variant produced by the cells may then be recovered from the culture medium by conventional procedures including separating the host cells from the medium by centrifugation or filtration, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt, e.g. ammonium sulphate, purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, gelfiltration chromatography, affinity chromatography, or the like, dependent on the type of CGTase in question.

Method of Producing CGTase Variants

- In a still further aspect, the present invention provides a method of producing the CGTase variant of the invention, wherein a suitable host cell, which has been transformed with a DNA sequence encoding the CGTase, is cultured under conditions permitting the production of the enzyme, and the resulting enzyme is recovered from the culture.
- The medium used to culture the transformed host cells may be any conventional medium suitable for growing the host cells in question. The expressed CGTase may conveniently be secreted into the culture medium and may be recovered therefrom by well-known procedures including separating the cells from the medium by centrifugation or filtration, precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

Industrial Applications

The CGTase variant of the invention find application in processes for the manufacture of cyclodextrins for various industrial applications, particularly in the food, cosmetic, chemical, agrochemical and pharmaceutical industries.

Therefore, in another aspect, the invention provides CGTase variants for use in a process for the manufacture of cyclodextrins, in particular α -, β -, γ -, δ -, ϵ -, and/or ζ -cyclodextrins. In a more preferred embodiment, the invention provides CGTase variants for use in a process for the manufacture of α -, β - and γ -cyclodextrins, or mixtures hereof. In another preferred embodiment, the invention provides CGTase variants for use in a process for the manufacture of δ -, ϵ -, and ζ -cyclodextrins, or mixtures hereof.

The CGTase variants of the invention may also be used in a process for the manufacture of linear oligosaccharides, in particular linear oligosaccharides of 2 to 12 glucose units, preferably linear oligosaccharides of 2 to 9 glucose units.

In yet another preferred embodiment, the CGTase variants of the invention may be used for *in situ* generation of cyclodextrins. In this way the CGTase variants of the invention may be added to a substrate containing medium in which the enzyme variants are capable of forming the desired cyclodextrins. This application is particularly well suited for being implemented in methods of producing baked products, in methods for stabilizing chemical products during their manufacture, and in detergent compositions.

Certain cyclodextrins are known to improve the quality of baked products.

The CGTase variants of the invention therefore also may be used for implementation into bread-improving additives, e.g. dough compositions, dough additives, dough conditioners, pre-mixes, and similar preparations conventionally used for adding to the flour and/or the dough during processes for making bread or other baked products.

Cyclodextrins have an inclusion ability useful for stabilization, solubilization, etc. Thus cyclodextrins can make oxidizing and photolytic substances stable, volatile substances non-volatile, poorly-soluble substances soluble, and odoriferous substances odorless, etc. and thus are useful to encapsulate perfumes, vitamins, dyes, pharmaceuticals, pesticides and fungicides. Cyclodextrins are also

capable of binding lipophilic substances such as cholesterol, to remove them from egg yolk, butter, etc.

Cyclodextrins also find utilization in products and processes relating to plastics and rubber, where they have been used for different purposes in plastic 5 laminates, films, membranes, etc. Also cyclodextrins have been used for the manufacture of biodegradable plastics.

EXAMPLES

The invention is further illustrated with reference to the following examples which are not intended to be in any way limiting to the scope of the 10 invention as claimed.

EXAMPLE 1

Crystal Structure and Molecular Modelling of a CGTase Enzymes

The CGTase from Bacillus circulans Strain 251 [cf. Lawson C L, van Montfort R, Strokopytov B, Rozeboom H J, Kalk K H, de Vries G E, Penninga D, 15 Dijkhuizen L, and Dijkstra B W, J. Mol. Biol. 1994 236 590-600] was soaked in a buffer solution containing the non-hydrolyzable tetrasaccharide acarbose, and an X-ray structure of the CGTase including the pseudo-tetrasaccharide located in the catalytic site was obtained, cf. Strokopytov et al. [Strokopytov B, Penninga D, Rozeboom H J; Kalk K H, Dijkhuizen L and Dijkstra B W, Biochemistry 1995 34 2234-2240]. Coordinates of this structure have been deposited with the Protein Data Bank, Biology Department, Bldg. 463, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA, under the entry code 1CXG.

By additional soaking in a buffer containing maltoheptaose, a nonasaccharide (A-I) was formed in an enzyme-substrate-complex structure. 25 Coordinates of this structure have been deposited with the Protein Data Bank, Biology Department, Bldg. 463, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA, under the entry code 1DIJ. By further adding a trisaccharide (J-L) to the non-reducing end of the nonasaccharide by computer modelling, the substrate binding cleft and the residues involved herein in the A and 30 B domain have been located.

By aid of a computer program, Insight™ Software Package from Biosym, using subset-zone function, positions within selected distances could be identified. In this way Tables 1-4 were generated.

The residues listed in Fig. 1 are referring to *Bacillus circulans* Strain 251 5 CGTase and comprise only the closest contacts between the substrate and the enzyme. By changing the number of hydrogen-bonds and other interactions between the enzyme and the substrate, the product selectivity can be altered. Normally, cleavage of the starch takes place between glucose unit B and C in the model.

By computer modelling, a trisaccharide has been added to the reducing end of the acarbose (A) and to the non-reducing end of a pentasaccaride located in the E-domain, and hereby linking together the substrate binding sites in the A-B and E-domains. In total a substrate of 20 glucose-units has been located in the enzyme.

The structure of a *Thermoanaerobacter* CGTase was modelled based on the known structure of *Bacillus circulans* CGTase. Again the computer program 15 Insight™ from Biosym was employed, using the homology module, according to the manufacturers instructions. The substrate found in *Bacillus circulans* was docked into the *Thermoanaerobacter* model, and the positions stated in Tables 5-7 identified.

EXAMPLE 2

Construction of α -cyclodextrin Producing CGTase Variants from Bacillus

This example describes the construction of three α-cyclodextrin producing CGTase variants, in which site-directed mutagenesis have lead to an altered number of hydrogen bonds in the subsites of the active site cleft. The variants are derived from a *Bacillus circulans* Strain 251 CGTase (i.e. the wild-type enzyme), obtained as described by *Lawson et al.* [*Lawson C L, van Montfort R, Strokopytov B, Rozeboom H J, Kalk K H, de Vries G E, Penninga D, Dijkhuizen L, and Dijkstra B W; J. Mol. Biol.* 1994 236 590-600].

For construction of the variants a method based on PCR for site-directed mutagenesis. The following oligonucleotides (primers) were used to produce the mutations:

30 Y89G: 5'-GCA TCA TCA ATG GAT CCG GCG TAA AC-3' (Bam HI); and

S146P: 5'-G CCC GCC TCT CCG GAC CAG CCT TC-3' (BspE I).

Successful mutagenesis resulted in appearance of the underlined restriction sites, allowing rapid screening of potential mutants.

The mutations were confirmed by restriction analysis and sequencing.

Mutant proteins were produced by the use of an amylase and protease negative

5 Bacillus subtilis strain, and purified using affinity chromatography.

CGTase activity was determined by incubating appropriately diluted enzyme solutions with substrate in 10 mM sodium citrate, pH 6.0, for 5-10 minutes at 50°C.

Cyclodextrin forming activity (transglycosylation activity) was determined 10 using 5% Paselli[™] SA2 (i.e. partially hydrolysed potato starch with an average degree of polymerization of 50, available from AVEBE, Foxhol, The Netherlands) as substrate. The β-cyclodextrin formed was determined with phenolphthalein. One unit of activity is defined as the amount of enzyme able to produce 1 μmol of β-cyclodextrin per minute. α- and β-cyclodextrin formation was subsequently 15 determined by use of HPLC (cf. below).

Cyclodextrin formation was also determined under industrial production process conditions. For this purpose 0.1 U/ml CGTase was incubated with 10% PaselliTM WA4 (i.e. jet-cooked, pre-gelatinized drum-dried starch) in a 10 mM sodium citrate buffer (pH 6.0) at 50°C for 45 hours. Samples were collected at regular 20 intervals of time, boiled for 5 minutes, and the products formed analyzed by HPLC using a 25 cm Econosil-NH₂ 10 micron column (Alltech Associates Inc., USA) eluted with acetonitril/water (60/40% v/v) at a flow rate of 1 ml per minute.

Results

Variants were designed in order to increase α-cyclodextrin formation. In 25 the first experiment, a tyrosine residue at position 89 was changed into an aspartic acid residue (Y89D), which introduces an additional hydrogen bond with subsite F of the substrate, cf. Fig. 1. This gives rise to stronger binding of the amylose chain in the active site cleft, with the formation of smaller cyclodextrins. In result an increase in α-cyclodextrin forming activities was detected, with a simultaneous 30 decrease in the β-cyclodextrin forming activity, as seen from the ratio of cyclodextrins produced from PaselliTM WA4, cf. Table 16, below, and in the cyclodextrin formation profiles, cf. Fig. 2B.

In a second experiment, serine at position 146 was changed into a proline residue (S146P). This gives rise to a dramatic change in the hydrogen network at subsite I of the substrate, cf. Fig. 1. As seen from Table 15 below, this mutation has a substantial impact on the cyclodextrin forming activities. The α-5 cyclodextrin forming activity increased drastically at the expense of the β-cyclodextrin forming activity. There was little effect on the γ-cyclodextrin forming activity. This also corresponds with the ratio of cyclodextrins determined and presented in Table 16 and in Fig. 2C.

In a third experiment, a double mutation was accomplished. In this experiment tyrosine at position 89 was changed into an aspartic acid residue, and serine at position 146 was changed into a proline residue (Y89D/S146P). These mutations results in a combination of the effects seen from the two single mutations carried out as described above. This variant possesses the largest α-cyclodextrin forming activity, cf. Table 15, and the largest formation of α-cyclodextrin, cf. Table 15 and Fig. 2D.

Table 15 Specific Activities of α - β - and γ -CD Forming CGTases

Enzyme	Cyclization Activity (U/mg)			
	α	β	γ .	· · · · · · · · · · · · · · · · · · ·
Wild-type	2	280	80	
Y89D	5	270	47	
S146P	25	104	82	
Y89D/S146P	35	109	79	
	Wild-type Y89D S146P	α Wild-type 2 Y89D 5 S146P 25	α β Wild-type 2 280 Y89D 5 270 S146P 25 104	α β γ Wild-type 2 280 80 Y89D 5 270 47 S146P 25 104 82

Table 16 Ratio of Cyclodextrin Formation from 10% Paselli™ WA4 (at 50°C and for 50 hours)

Enzyme	Cyclod	Cyclodextrin Produced (%)			
5	α	β	γ		
Wild-type	14	63	23		
Y89D	17	63	20		
S146P	26	55	19		
Y89D/S146P	31	51	18		

10 EXAMPLE 3

Mutations in the E-domain of a Bacillus CGTase

This example describes the construction of two CGTase variants, holding mutations in the E domain cleft. The variants are derived from a Bacillus circulans Strain 251 CGTase (i.e. the wild-type enzyme), obtained as described by Lawson et 15 al. [Lawson C L, van Montfort R, Strokopytov B, Rozeboom H J, Kalk K H, de Vries G E, Penninga D, Dijkhuizen L, and Dijkstra B W; J. Mol. Biol. 1994 236 590-600].

Two maltose binding sites (MBS) have been identified in the E domain and in this experiment it is found that these sites are of particular importance for the raw starch binding properties of the enzyme. The first site (MBS1) includes 20 tryptophan at positions 616 and 662, which bind a maltose unit through van der Waals contacts of their indole groups with the glucose rings of the substrate. In the second site (MBS2), the in most cases conserved tyrosine at position 633, forms van der Waals contacts with a glucose residue of the substrate. Hydrogen bonds with surrounding residues enhance binding at these sites. MBS2 is located near the 25 groove leading to the active site.

Mutations were introduced by a method based on two PCR reactions using VENT-DNA polymerase. For each mutation specific oligonucleotides were developed. The mutations were confirmed by restriction analysis and sequencing. Variants were obtained from an amylase and protease negative *Bacillus subtilis* strain and were purified using affinity chromatography.

Bacterial Strains and Plasmids: Escherichia coli MC1061 [Meissner P S, Sisk W P, Berman M L; Proc. Natl. Acad. Sci. USA 1987 84 4171-4175] was used 5 for recombinant DNA manipulations and site-directed mutagenesis. E. coli DH5a [Hanahan D; J. Mol. Biol. 1983 166 557] was used for the production of monomeric supercoiled plasmid DNA for sequencing. CGTases variants were produced with the a-amylase and protease negative Bacillus subtilis Strain DB104A [Smith H. de Jona A, Bron S, Venema G; Gene 1988 70 351-361]. The fragment containing the 10 kanamycin-resistance marker was ligated with the largest fragment from plasmid pDP66S [Penninga D, Strokopytov B, Rozeboom H J, Lawson C L, Dijkstra B W, Bergsma J, Dijkhuizen L; Biochemistry 1995 34 3368-33761 containing the Bacillus circulans CGTase gene, digested with HIndIII and Xbal (made blunt with Klenow polymerase). The resulting CGTase protein expression shuttle vector pDP66K, with 15 the CGTase gene under control of the erthromycin-inducible p32 promotor [van der Vossen J M B M, Kodde J, Haandrikman A J, Venema G, Kok J; Appl. Environ. Microbiol. 1992 58 3142-3149], was transformed to E. coli MC1061 under selection for erythromycin and kanamycin resistance, cf. Fig. 3.

Construction of CGTase Variants: As only relatively low stability with pDP66S (8.5 kb) [Saenger W; Angew. Chem. 1980 19 344-362] was found, pDP66K (7.7 kb) was constructed, cf. Fig. 3, with the CGTase gene under the control of the strong p32 promotor [van der Vossen J M B M, Kodde J, Haandrikman A J, Venema G, Kok J; Appl. Environ. Microbiol. 1992 58 3142-3149]. Plasmid pDP66K containing the additional antibiotic resistance marker for kanamycin appeared to be considerably more stable in E. coli as well as in B. subtilis cells than plasmid pDP66S containing the streptomycin/spectinomycin resistance cassette. Using this shuttle vector, a high extracellular production of wild-type enzyme and CGTase variants was obtained reproducibly in batch fermentations with the α-amylase and protease negative B. subtilis Strain DB104A. A single 5 I erlenmeyer of flask with 1 I B. subtilis Strain DB104A culture allowed purification to homogeneity of up to 25 mg of the CGTase variants. Mutations were constructed via site-directed (PCR) mutagenesis. Using specific oligonucleotide primers a mutation frequency

close to 70% was observed. All mutations were confirmed by restriction analysis and DNA sequencing.

Growth Conditions: Plasmid carrying bacterial strains were grown on LB medium in presence of the antibiotics erythromycin and kanamycin, at concentrations of 100 and 5 μg/ml for *E. coli* and *Bacillus subtilis*, respectively [*Sambrook et al., op cil*]. When appropriate, agar plates contained 1% starch to screen for halo formation. *Bacillus subtilis* Strain DB 104A was grown in a 5 l flask, containing 1 l medium with 2% tryptone, 0.5% yeast extract, 1% sodium chloride and 1% casamino acids (pH 7.0) with 10 μg/ml erythromycin and 5 μg/ml kanamycin.

DNA Manipulations: Restriction endonucleases and Klenow enzyme were purchased from Pharmacia LKB Biotechnology, Sweden, and used according to the manufacturers instructions. DNA manipulations and calcium chloride transformation of *E. coli* strains were accomplished as described [Sambrook et al., op cif]. Transformation of Bacillus subtilis was performed as described by Bron [Harwood 15 C R and Cutting S M, Eds.; Modern Microbiological Methods for Bacillus, 1990, Wiley & Sons, New York/Chichester; "Plasmids", pp. 146-147].

Site-directed Mutagenesis: To introduce mutations we used a method based on two PCR reactions using VENT-DNA polymerase (New-England Biolabs, Beverly, MA, USA), in which a first PCR was carried out using a mutagenesis primer on the coding strand plus a primer 910-1050 bp downstream on the template strand. The product of this reaction (910-1050 bp) was subsequently used as primer in the second PCR together with a primer 760-900 bp upstream on the coding strand. The product of the last reaction (1800 bp) was cut with Bgll and HindIII and exchanged with the corresponding fragment (600 bp) from the vector pDP66K. The resulting (mutant) plasmid was transformed to *E. coli* MC 1061 cells. The following oligonucleotides (primers) were used to produce the mutations:

Y633A: 5'-G GTC GTT TAC CAG GCG CCG AAC TGG-3'

W616A: 5'-GC GAG CTC GGG AAC GCG GAC CCG-3'

W662A: 5'-CC GTC ACC GCG GAA GGC GGC-3'

Successful mutagenesis resulted in the appearance of the underlined restriction sites, allowing rapid screening of potential mutations. For Y633A this restriction site was Narl, for W616A Sacl, and for W662A Sacll.

DNA Sequencing: Plasmid pDP66K carrying the right restriction site was 5 transformed to *E. coli* DH5α cells. DNA sequence determination was performed on supercoiled plasmid DNA using the dideoxy-chain termination method [Sanger F, Coulson A R; J. Mol. Biol. 1975 94 441-448] and the T7-sequencing kit from Pharmacia LKB Biotechnology, Sweden

Production and Purification of CGTase Variants: Plasmid pDP66K, 10 carrying positively characterized mutant CGtase genes, was transformed to *Bacillus subtilis* Strain DB104A. The organism was grown to an optical density of 4.5 determined at 600 nm in a 5 l flask (for approx. 36 hours). Under these conditions high extracellular CGTase levels were produced. The culture was centrifuged (x 10,000 g) at 4°C for 30 minutes. The (mutant) CGTases were further purified to 15 homogeneity by affinity chromatography using a 30 ML α-cyclodextrin-Sepharose-6FF column (Pharmacia, Sweden) [*Sundberg L, Porath J*; *J. Chromatogr.* 1974 **90** 87-98] with a maximal capacity of 3.5 mg protein per ml. After washing with 10 mM sodium acetate buffer (pH 5.5), bound CGTase was eluted with the same buffer containing 10 mg/ml α-cyclodextrin.

20 Enzyme Assays

β-cyclodextrin Forming Activity: β-cyclodextrin forming activity was determined using 5% Paselli™ SA2 (i.e. partially hydrolysed potato starch with an average degree of polymerization of 50, available from AVEBE, Foxhol, The Netherlands) as substrate and after incubation for 3 minutes at 50°C. 0.1-0.1 units of activity were used. The β-cyclodextrin formed was determined based on its ability to form a stable colorless inclusion complex with phenolphthalein. One unit of activity is defined as the amount of enzyme able to form 1 μmol of β-cyclodextrin per minute.

Raw Starch Binding Properties: Raw starch binding properties were 30 studied by incubating 6 µg/ml of enzyme with increasing amounts (0-10%) of granular potato starch (Paselli™ SA2, available from AVEBE, Foxhol, The Netherlands) for 1 hour at 4°C, with and without 0.1 mM of β-cyclodextrin

WO 96/33267 PCT/DK96/00179 93

(equilibrium was reached within 10 minutes). After incubation, protein bound to the starch granules was spun down for 1 minute at 4°C and at 10,000xg, and the remaining β -cyclodextrin forming activity of the supernatant was determined as described above.

Kinetic Studies: Kinetic studies on Paselli™ SA2 (AVEBE, Foxhol, The Netherlands) were performed by determination of the β-cyclodextrin forming activity of the enzyme on Paselli™ concentrations ranging from 0 to 5%, with and without addition of 0.1 or 0.2 mM of β-cyclodextrin. In these experiments approx. 0.6 µg/ml (0.15-0.18 units) of enzyme was used.

10 <u>Kinetic Studies:</u> Alternatively, kinetic studies on raw starch were performed by incubating 6 μg/ml of enzyme for 10 minutes with raw starch concentrations in the range of from 0 to 50%. β-cyclodextrin formation was determined as described above.

The data collected from these kinetic and binding studies were fitted 15 using the Hill equation, yielding Y_{max} and K_{so} values for the binding studies, and V_{max} and K_{so} values for the kinetic studies. K_i values were calculated as follows.

For non-competitive inhibition:

$$K_{i} = \frac{[1]}{V_{\text{max}}} - 1$$

20 For competitive inhibition:

$$K_{i} = \frac{[1]}{\underbrace{K_{so}}_{c} - 1}$$

Results

Since maltose binding site 1 (MBS1) includes two tryptophan residues, 25 the double mutation W616A/W662A was constructed. In this way we created comparable changes in the two binding sites, which were designed to completely remove the hydrophobic interactions of the aromatic residues with the glucose units of the substrate. The two separate CGTase variants, W616A and W662A, gave intermediate results compared to the double mutant, W616A/W662A.

From the results presented in Figs. 4-6, in which the curves are better fitted to a Hill equation than to a Michaelis-Menten equation, indicates that there is a form of cooperativity involved in the reaction and binding kinetics.

The results of the raw starch binding experiments are presented in Table 17 and Fig. 4. Determination of raw starch binding revealed a sharp decrease for the W616A/W662A variant, indicating that MBS1 is required and has the highest affinity for substrate binding. The Y633A variant shows only small decreases in affinity and 5 Y_{max}, which suggests that MBS2 has only little contribution to raw starch binding.

The effect of β -cyclodextrin on raw starch binding indicates that it can inhibit the binding by competition with a starch chain for the binding sites of the enzyme. This effect is more pronounced for the variants produced as compared to the wild-type, indicating that when one MBS is deleted, competition of β -cyclodextrin with raw starch for the remaining site is stronger. This also indicates a form of cooperativity between MBS's.

The Hill factor "n", indicating the degree of cooperativity involved in raw starch binding is strongly decreased in the W616A/W662A variant, showing that MBS1 contributes highly to cooperative binding. The Y633A variant has the same 15 "n" value as the wild-type enzyme. This suggests that sites other than MBS2 cooperate with MBS1 in binding.

The results of the reaction kinetics on hydrolysed potato starch (Paselli™ SA2) are presented in Table 18 and Fig. 5. These results show another role for MBS2 in the wild-type enzyme. The lower affinity for Paselli™ of the Y633A variant 20 suggests that the substrate might be less efficiently guided to the active site in the absence of this binding site. This is also supported by the decrease of factor "n" to approx. 1, which shows that the cooperativity observed in reaction kinetics has been lost in this variant. The shift from non-competitive to competitive inhibition by β-cyclodextrin implies that MBS2 is responsible for the non-competitive product inhibition. The results with the W616A/W662A variant show that MBS1 is only slightly involved in degradation of Paselli™.

The results of the reaction kinetics on raw starch are presented in Table 19 and Fig. 6. These results show a high decrease in affinity when either of the MBS's are deleted, indicating that for activity on raw starch both MBS's are equally important. At high raw starch concentrations, however, the curve representing the W616A/W662A variant aligns to that of the wild-type enzyme, suggesting that a binding site other than MBS1 takes over its function. This site might be MBS3 on the C domain.

From these experiments it is concluded that the E domain with its binding sites is required for the conversion of raw starch into cyclodextrins. The enzyme binds to the raw starch granule via MBS1, while MBS2 guides the starch chain protruding from the granule to the active site.

5 Table 17
Binding Properties on Raw Starch

Enzyme	Y,	Y _{max}		K₅₀ (% RS)		n	
	0 mM β-CD	0.1 mM β-CD	0 mM β-CD	0.1 mM β-CD	0 mM β-CD	0.1 mM β-CD	
10	Wild-type	96.2 ±3.3	76.4 ±1.3	0.70 ±0.05	0.89 ±0.04	1.71 ±0.19	1.25 ±0.06
	W616A/W662A	48.7 ±1.3	33.4 ±2.0	2.36 ±0.13	2.27 ±0.30	1.19 ±0.06	1.07 ±0.07
15	Y633A	90.8 ±2.2	58.4 ±5.9	0.99 ±0.05	2.70 ±0.58	1.73 ±0.12	1.34 ±0.20

Table 18
Kinetic Properties Determined on Paselli™ SA2

Enzyme	(V _{mex} units/mg)		(% P	K _{so} aselā™ S	A2)	n	K, (nM)
5	0 mM	0.1 mM	0.2 mM	0 mM	0.1 mM	0.2 mM		•
	β-CD	β-CD	β-CD	β-CD	β-CD	β-CD		
Wild-type	280.4	221.0	184.5	0.098	0.077	0.071	1.40	0.38
	±2.6	±3.7	±1.6	±0.003	±0.005	±0.002	±0.12	±0.02
W616A/W662A	247.2	224.5	212.6	0.115	0.104	0.109	1.26	1.11
0	±3.0	±1.6	±1.2	±0.005	±0.002	±0.002	±0.12	±0.14
Y633A	316.2	316.5	317.2	0.23	0.35	0.44	0.98	0.21
٠	±3.6	±6.1	±5.5	±0.01	±0.02	±0.03	±0.15	±0.04

Table 19
Kinetic Properties Determined on Raw Starch

15 En:	zyme	V _{max} (units/mg)	K _∞ (%RS)	
	d-type	153.1 ±4.8	18.4 ±1.3	
W6	16AW662A	(153.1)	(42.5)	
Y6:	33A	159.5 ±5.0	42.5 ±2.7	

20 EXAMPLE 4

Construction of β -and γ -cyclodextrin Producing CGTase Variants from Bacillus

This example describes the construction of several β -and γ -cyclodextrin producing CGTase variants, in which site directed mutagenesis has lead to an

altered number of hydrogen bonds in the active site cleft. The variants are derived from a *Bacillus circulans* Strain 251 CGTase (i.e. the wild-type enzyme), obtained as described by *Lawson et al.* [*Lawson C L, van MOntfort R, Strokopytov B, Rozeboom H J, Kalk K H, de Vries G E, Penninga D, Dijkhuizen L and Dijkstra B W, 5 J. Mol. Biol.* 1994 **236** 590-600].

Mutations were introduced with a PCR method using VENT-DNA polymerase (New-England Biolabs, Beverly, MA, USA). A first PCR reaction was carried out with a mutagenesis primer for the coding strand, plus a primer downstream on the template strand. The reaction product was subsequently used as primer in a second PCR reaction together with a primer upstream on the coding strand. The product of the last reaction was cut with *Pvull* and *Sall* and exchanged with the corresponding fragment (1200 bp) from the vector pDP66K (cf. Fig. 3). The resulting (mutant) plasmid was transformed to *E. coli* MC1061 cells [*Meissner P S, Sisk W P, Berman M L*; <u>Proc. Natl. Acad. Sci. USA</u> 1987 84 4171-4175].

The following oligonucleotides (primers) were used to produce the mutations:

N193G: 5'-GC ATC TAC AAG GGC CTG TACGAT CTC G-3' (Dra II);

Y89G: 5'-GCA TCA TCA ATG GAT CCG GCG TAA AC-3' (Bam HI);

*145al: 5'-CAT ACG TCG CCC GCT AGC ATT TCC GAC CAG CCT TCC-3'

20 (Nhe I);

D371G: 5'-CG GGC GGG ACC GGT CCG GAC AAC CG-3' (Pin AI);

D371N: 5'-G TCG GGC GGT ACC AAT CCG GAC AAC C-3' (Kpn I); and

N326Q: 5'-CG TTC ATC GAT CAG CAT GAC ATG G-3' (Cla I).

Successful mutagenesis resulted in appearance of the underlined 25 restriction sites, allowing rapid screening of potential mutants.

Plasmid pDP66K carrying the right restriction site was transformed to *E. coli* DH5α cells [*Hanahan D*; J. Mol. Biol. 1983 **166** 557]. DNA sequence determination was performed on supercoiled plasmid DNA using the dideoxy-chain termination method [*Sanger F, Coulson A R*; J. Mol. Biol. 1975 **94** 441-448] and the 30 T7-sequencing kit from Pharmacia-LKB Biotechnology, Sweden.

Plasmid pDP66K, carrying positively characterized mutant cgt genes, was transformed to *B. subtilis* strain DB104A [Smith H, de Jong A, Bron S, Venema G; Gene 1988 70 351-361]. The organism was grown to an optical density at 600 nm of 4.5 in a 5 I flask (for approx. 36 hours). Under these conditions high extracellular 5 CGTase levels were produced.

The culture was centrifuged at 4°C for 30 minutes at 10,000 xg. The CGTases variant in the culture supernatants were further purified to homogeneity by affinity chromatography, using a 30 ml α-cyclodextrin-Sepharose-6FF column (Pharmacia, Sweden) [Sundberg L, Porath J; J. Chromatogr. 1974 90 87-98] with a 10 maximal capacity of 3.5 mg protein per ml. After washing with 10 mM sodium acetate buffer (pH 5.5), bound CGTase was eluted with the same buffer containing 10 mg/ml α-cyclodextrin.

β-cyclodextrin forming activity was determined by incubating an appropriately diluted enzyme sample (0.1-0.2 units of activity) for 3 minutes at 50°C.

15 Paselli™ SA2 (5% solution), partially hydrolysed potato starch with an average degree of polymerization of 50 (AVEBE, Foxhol, The Netherlands), was used as a substrate. The β-cyclodextrin formed was determined based on its ability to form a stable colorless inclusion complex with phenolphthalein. One unit of activity is defined as the amount of enzyme able to produce 1 μmol of β-cyclodextrin per 20 minute.

Cyclodextrin forming activity was also measured under production process conditions. For this purpose 0.1 U/ml CGTase was incubated with 10 % Paselli™ WA4 (i.e. jet-cooked, pregelatinized drum-dried starch) in a 10 mM sodium citrate buffer (pH 6.0) at 50°C for 45 hours. Samples were collected at regular time 25 intervals, diluted 10 times, boiled for 8 min. and the products formed analyzed by HPLC using a 25 cm Econosphere-NH₂ 5 micron column (Alltech Associates Inc., USA) eluted with acetonitrile/water (60/40 v/v) at 1 ml per min.

Results

The variants of this example were designed in order to increase β-and 30 γ-cyclodextrin formation. The N193G, Y89G, D371G, D371N and the Y89G/N193G CGTase variants were all designed with the intention to decrease the interactions between the amylose chain and the first part of the active site cleft (Subsites C-G).

As a result, the amylose chain would be able to move further into the active site cleft, thereby changing the ratio of cyclodextrins towards the β -and γ -cyclodextrins.

The N193G CGTase variant demonstrates a rapid increase in β -cyclodextrin (Figs. 7 and 9). As a result, the ratio is changed already dramatically after 5 hours of incubation (Table 20) towards α -and β -cyclodextrin. However, after 45 hours (Table 21) the ratio has changed towards α -cyclodextrin formation only. This mutation seems particularly well suited for combination with other mutations, e.g. D371G or D371N.

The Y89G CGTase variant results in a small change towards 10 β -cyclodextrin after 45 hours of incubation at the expense of α -cyclodextrin (cf. Fig. 7 and Table 21).

The D371N and D371G CGTase variants both show a shift towards formation of the larger cyclodextrins (cf. Fig. 8 and Table 21). Both β -and γ -cyclodextrin increased at the expense of α -cyclodextrin. This shift is more 15 pronounced at early incubation times (cf. Table 20 and Fig. 10).

The Y89G/N193G CGTase double mutant resulted in a shift from β -cyclodextrin to both α -and γ -cyclodextrin (cf. Table 21). In combination with other mutations, in particular D371G or D371N, this mutation could give rise to a single shift to β -cyclodextrin.

The *145al CGTase variant was constructed on the basis of alignment studies. This insertion mutation seems especially advantageous for obtaining β-cyclodextrin producing CGTase variants. Both short incubation times (cf. Fig. 10 and Table 20) and long incubation times (cf. Fig. 8 and Table 21) gave a shift from β-cyclodextrin to both α-and γ-cyclodextrin. Also, in order to obtain a single shift to β-cyclodextrin, this mutation seems particularly well suited for combination with other mutations, e.g. D371G or D371N.

The N326Q CGTase variant was constructed and shown to cause a shift from α -cyclodextrin to β - and γ -cyclodextrin formation (cf. Table 21).

Finally, combinations of the above mutations seems straightforward in 30 order to obtain CGTase variants with increased β - and/or γ -cyclodextrin formation.

Table 20
Ratio of Cyclodextrin Formation from 10% Paselli™ WA4
(at 50°C for 5 hours)

Enzyme	Сус	(%)	
5	α	β	γ.
Wild-type	7.4 ± 1.4	70.8 ± 1.8	21.8 ± 0.5
N193G	13.5 ± 0.2	57.5 ± 0.7	29.0 ± 0.8
Y89G	9.5 ± 1.2	72.4 ± 2.1	18.0 ± 1.0
*145al	18.8 ± 1.2	46.3 ± 1.3	34.3 ± 1.5
0 D371G	2.4 ± 0.2	71.8 ± 1.6	25.9 ± 1.4

Table 21
Ratio of Cyclodextrin Formation from 10% Paselli™ WA4
(at 50°C for 45 hours)

	Enzyme	C	yclodextrins Produce	d (%)
15		α	β	γ
	Wild-type	14.4 ± 1.0	67.7 ± 0.7	18.0 ± 0.8
	N193G	25.5 ± 0.1	60.4 ± 0.2	14.1 ± 0.4
	Y89G	12.7 ± 0.3	69.3 ± 0.6	18.0 ± 0.3
	*145al	24.6 ± 0.5	53.5 ± 0.8	21.9 ± 0.7
20	D371G	4.4 ± 0.1	73.9 ± 0.1	21.7 ± 0.1
	D371N	6.5 ± 0.5	73.4 ± 0.5	20.1 ± 0.4
	N326Q	5.0 ± 0.1	75.4 ± 0.1	19.6 ± 0.2
	Y89G/N193G	18.8 ± 0.6	53.8 ± 0.7	27.4 ± 0.3
	N193G/Q148E	17.5 ± 0.5	60.9 ± 0.7	21.6 ± 0.8
	•			
	·			

Table 22
Specific Activities of Initial Cyclization

Enzyme	Cyclization Activity (U/mg)			
	α	β	γ ,	
Wild-type	2	280	53	
5 *145al		111	59	
N193G		132	66	
N326Q	3	63	14	
D371N	25	108	30	
D371G	7	81	29	

10 EXAMPLE 5

Construction of α -cyclodextrin Producing CGTase Variants from Thermoanaerobacter

This example describes the construction of 24 α-cyclodextrin producing CGTase variants (A1-A24), in which site-directed mutagenesis either has lead to an altered number of hydrogen bonds in the subsites of the active cleft or, alternatively, to sterical hindrance in parts of the substrate binding left.

The variants are derived from a *Thermoanaerobacter sp.* CGTase obtained according to WO 89/03421, and having the nucleotide and amino acid sequences presented as SEQ ID NOS: 1-2 (i.e. the wild-type enzyme).

Mutations were introduced by a method based on PCR by the use of PWO 20 polymerase. For each mutation, specific oligonucleotides (primers) were developed. The mutations were confirmed by restriction analysis whenever possible, and by sequencing. Mutant proteins were expressed in either *Escherichia coli* MC1061 [*Meissner P S, Sisk W P, Berman M L*; Proc. Natl. Acad. Sci. USA 1987 84 4171-4175], or in the α-amylase and protease negative *Bacillus subtilis* Strain DB104A 25 [*Smith H, de Jong A, Bron S, Venema G*; Gene 1988 70 351-361]. Proteins were purified from the media using affinity chromatography (AfC) and/or anion-exchange chromatography (AEC).

Enzyme Assays

Enzymatic activity was measured by a slightly modified procedure of the Phadebas amylase test (Pharmacia). Phadebas tablets (Phadebas™ Amylase Test, Pharmacia) are used as substrate. This substrate is a cross-linked insoluble blue-scolored starch polymer, which is mixed with bovine serum albumin and a buffer substance. After suspension in water, starch is hydrolyzed by the enzyme, thereby yielding blue fragments. The determination is carried out after incubation at 60°C, pH 6.2, in 0.15 nM calcium for 15 minutes. The absorbance of the resulting blue solution, determined at 620 nm, corresponds the enzymatic activity.

The enzyme activity is compared to that of an enzyme standard, and the activity is expressed in the same unit as that of the enzyme standard. The enzyme standard was Termamyl™ (Novo Nordisk A/D, Denmark), the amylolytic activity of which has been be determined using potato starch as substrate. This method is based on the break-down of modified potato starch by the enzyme, and the reaction is followed by mixing samples of the starch/enzyme solution with an iodine solution. Initially, a blackish-blue color is formed, but during the break-down of the starch the blue color gets weaker and gradually turns into a reddish-brown, which is compared to a colored glass standard.

One Kilo Novo alfa Amylase Unit (KNU) is defined as the amount of enzyme 20 which, under standard conditions (i.e. at 37°C +/- 0.05; 0.0003 M Ca²⁺; and pH 5.6) dextrinizes 5.26 g starch dry substance Merck Amylum solubile. Below the activity is expressed in Novo Units (NU) per ml.

CGTase activity was determined by incubating diluted enzyme with substrate in 10 mM sodium citrate, pH 6.0 for 4-10 minutes at 60°C.

25 Cyclodextrin forming activity was determined using 5% PaselliTM SA2 (i.e. partially hydrolysed potato starch with an average degree of polymerization of 50, available from AVEBE, Foxhol, The Netherlands) as substrate. The α-cyclodextrin formed was determined with Methyl-orange, the β-cyclodextrin formed was determined with phenolphthalein, and the γ-cyclodextrin formed was determined with bromo cresol green. The activity is expressed in units per mg (U/mg). One unit of enzyme activity is defined as the amount of enzyme able to produce one μmol of the specific cyclodextrin per minute.

Cyclodextrin formation was also determined under conventional industrial production process conditions. A precooked 10% amylopectin solution in 0.5 mM CaCl₂ at pH 5.5 was incubated with 50 NU of CGTase per gram of substrate, at 60°C and for 24 hours. Samples are regularly withdrawn and boiled for 10 minutes at a pH of 2.5-3 prior to analysis by HPLC.

The results of these experiments are discussed and presented in tables 23-25, below. In Table 25, the figures are the ratio at maximum total level of cyclodextrin.

Oligonucleotide Primers

The following oligonucleotides were synthesized in order to initiate the site-10 directed mutagenesis (the numbers indicate positions according to the CGTase numbering):

- **A1:** 143-151(G R A G T N P G);
- 5'-AATCATACATCTGGACGAGCAGGTACCAACCCGACTTTGGGGAA-AATGGTAC-3';
- 15 A2: 87-94(I K Y S G V N N) + 143-151(G R A G T N P G);

Using the B9 variant (87-94(I K Y S G - V N N)), described in Example 6 below, as starting point, the 143-151(G R A G T N P G) mutations was introduced using the A1 primer;

- **A3:** F195Y + 143-151(G R A G T N P G);
- 5'-TTACCGTAATTTATATGACTTAGCAG-3' was used to introduce the F195Y mutation and using this variant as starting point, the 87-94(I K Y S G V N N) mutations was introduced using the A1 primer;
 - A4: F195Y + 87-94(I K Y S G V N N) + 143-151(G R A G T N P G);

The Spe I - Bst X I fragment of A2 was ligated into the CGTase gene holding the 25 F195Y mutation. The F195Y was introduced by the use of the A3 primer;

A5: P143G-A144R-S145W;

5'-ATCATACATCCGGACGATGGGAGACAGACCCTACC-3';

A6: 87-94(I N D S G - V N N);

5'-CATTTACGCAGTTATCAATGATTCCGGAGTTAACAATACATCCTA-TCATGG-5 3';

A7: 87-94(I N D S G - V N N) + 146-150(S D Q P S);

Using the A6 variant (87-94(I N D S G - V N N)) as starting point, the 146-150(S D Q P S) mutations were introduced using the primer 5'-CTCCTGCATC-ATCTGATCAACCGTCCTTTGGGGAAAATGG-3';

10 **A8:** 143-148(G R G P A A);

A9: 143-148(G R A P A A);

A10: 143-148(G R A * * A);

15 5'-CAAATCATACATCTGGACGAGCAGCACCTACCTATGGGG-3';

A11: 143-148(G R P A A A);

A12: G180S;

5'-CCATCATTACGGATCCACTAATTTTTCATC-3';

20 A13: A144R;

5'-CATACATCTCCTCGATCGGAGACAGACCC-3';

A14: P143A-A144R;

5'-CATACATCTGCTCGATCGGAGACAGACCC-3';

A15: G180N;

5'-CCATCATTACGGAAACACTAATTTTTCATC-3';

A16: G180D:

5'-CCATCATTACGGAGACACTAATTTTTCATC-3';

5 A17: G180N + P143G-A144R-S145W;

Using the A5 variant (P143G-A144R-S145W) as starting point, the G180N mutation was introduced using the primer 5'-CCATCATTACGGAAACACTA-ATTTTCATC-3':

A18: G180D + P143G-A144R-S145W;

10 Using the A5 variant (P143G-A144R-S145W) as starting point, the G180N mutation was introduced using the primer 5'-CCATCATTACGGAGACACTAA-TTTTTCATC-3':

A19: G179N:

5'-CCATCATTATAATGGAACTAATTTTTCATC-3';

15 **A20**: G179S;

5'-CCATCATTATAGTGGAACTAATTTTTCATC-3';

A21: G179D;

5'-CCATCATTATGATGGAACTAATTTTTCATC-3';

A22: G179N + P143G-A144R-S145W;

Using the A5 variant (P143G-A144R-S145W) as starting point, the G180N mutation was introduced using the primer 5'-CCATCATTATAATGGAACTAA-TTTTTCATC-3';

A23: G179S + P143G-A144R-S145W;

Using the A5 variant (P143G-A144R-S145W) as starting point, the G180N mutation was introduced using the primer 5'-CCATCATTATAGTGGAACTAA-TTTTTCATC-3'; and

A24: G179D + P143G-A144R-S145W;

5 Using the A5 variant (P143G-A144R-S145W) as starting point, the G180N mutation was introduced using the primer 5'-CCATCATTATGATGGAACTAA-TTTTTCATC-3'.

Results

The variants of this example were designed in order to increase α -cyclodextrin 10 formation.

In experiment A1, the loop at positions 143 to 151 was replaced by (G R A G T N P G) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and J (cf. Fig. 1). The initial rate of both β -CD formation and of γ -CD formation has 15 decreased. In the CD-production assay, the ratio of α -CD has increased, whereas the β -CD ratio has decreased.

In experiment A2, the loop at positions 87 to 94 was replaced by (I K Y S G * V N N), and simultaneously the loop at positions 143 to 151 was replaced by (G R A G T N P G) in order to increase the interactions between the enzyme and glucose units E, F and H, and in order to decrease the interactions between the enzyme and glucose units I and J (cf. Fig. 1). The initial rate of both β-CD formation and of γ-CD formation has decreased.

In experiment A3, the loop at positions 143 to 151 was replaced by (G R A G T N P G) in order to increase the interactions between the enzyme and glucose unit 25 H, and in order to decrease the interactions between the enzyme and glucose units I and J (cf. Fig. 1). Simultaneously, the F195 was replaced by 195Y in order to decrease the contact between enzyme and substrate. The initial rate of both β -CD formation and of γ -CD formation has decreased. In the CD-production assay, the ratio of α -CD has increased whereas the β -CD ratio has decreased.

30 In experiment A4, the loop at positions 87-94 was replaced by (I K Y S G * V N N), and simultaneously the loop at positions 143 to 151 was replaced by (G R A G

T N P G) in order to increase the interactions between the enzyme and glucose units E, F and H, and in order to decrease the interactions between the enzyme and glucose units I and J (cf. Fig. 1). Simultaneously, the F195 was replaced by 195Y in order to decrease the contact between enzyme and substrate. The initial rate of β-CD formation has decreased. In the CD-production assay, the β-CD ratio has decreased.

In experiment A5, the region at positions 143 to 145 was replaced by (G R W) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and 10 J by making a sterical hindrance (cf. Fig. 1). The initial rate of α -CD formation has increased, whereas the initial rate of both β -CD formation and of γ -CD formation has decreased. In the CD-production assay, the ratio of α -CD has increased whereas the β -CD ratio has decreased.

In experiment A6, the loop at positions 87-94 was replaced by (I K D S G * V N 15 N) in order to increase the interactions between the enzyme and glucose units E and F (cf. Fig. 1).

In experiment A7, the loop at positions 87-94 was replaced by (I K D S G * V N N), and simultaneously the loop at positions 146 to 150 was replaced by (S D Q P S) in order to increase the interactions between the enzyme and glucose units E and 20 F, and in order to decrease the interactions between the enzyme and glucose units I and J (cf. Fig. 1).

In experiment A8, the loop at positions 143 to 148 was replaced by (G R G P A A) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and 25 J (cf. Fig. 1).

In experiment A9, the loop at positions 143 to 148 was replaced by (G R A P A A) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and J (cf. Fig. 1).

In experiment A10, the loop at positions 143 to 148 was replaced by (G R A * * A) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and J (cf. Fig. 1).

In experiment A11, the region at positions 143 to 148 was replaced by (G R W) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and J (cf. Fig. 1). The initial rate of both β -CD formation and of γ -CD formation has decreased more significantly than the initial rate of α -CD formation, which results in an increased ration between α -cd formation and β -CD formation.

In experiment A12, G180 was replaced by 180S in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1).

In experiment A13, A144 was replaced by 144R in order to increase the 10 interactions between the enzyme and glucose unit H (cf. Fig. 1).

In experiment A14, P143-A144 was replaced by 143A-144R in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1).

In experiment A15, G180 was replaced by 180N in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1).

15 In experiment A16, G180 was replaced by 180D in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1).

In experiment A17, G180 was replaced by 180N in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1). Simultaneously, the region at positions 143 to 145 was replaced by (G R W) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and J by making a sterical hindrance (cf. Fig. 1).

In experiment A18, G180 was replaced by 180D in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1). Simultaneously, the region at positions 143 to 145 was replaced by (G R W) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and J by making a sterical hindrance (cf. Fig. 1).

In experiment A19, G179 was replaced by 179N in order to increase the 30 interactions between the enzyme and glucose unit H (cf. Fig. 1).

In experiment A20, G179 was replaced by 179S in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1).

In experiment A21, G179 was replaced by 179D in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1).

In experiment A22, G179 was replaced by 179N in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1). Simultaneously, the 5 region at positions 143 to 145 was replaced by (G R W) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and J by making a sterical hindrance (cf. Fig. 1).

In experiment ABBE, G179 was replaced by 179S in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1). Simultaneously, the region at positions 143 to 145 was replaced by (G R W) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and J by making a sterical hindrance (cf. Fig. 1).

In experiment A24, G179 was replaced by 179D in order to increase the interactions between the enzyme and glucose unit H (cf. Fig. 1). Simultaneously, the region at positions 143 to 145 was replaced by (G R W) in order to increase the interactions between the enzyme and glucose unit H, and in order to decrease the interactions between the enzyme and glucose units I and J by making a sterical 20 hindrance (cf. Fig. 1).

Table 23

Production, Purification and Enzyme Activities of CGTases

Enzyme	Host	Purification method	Enzyme activity (NU/mg)
Wild-type	E. coli	AfC	1513
25 A1	E. coli	AfC	432
A2	E. coli	AfC	1009
A	E. coli	AfC	1404

5 A11	E. coli	AfC + AEC	2200
A10 .	E. coli	•	
A9	E. coli		
A5	E. coli	AfC + AEC	2100
A4	E. coli	AfC	1082

Table 24 Specific Activities of $\alpha\text{--},\ \beta\text{--}$ and $\gamma\text{--}CD$ Forming CGTases

	Enzyme	Cyclization Activity (U/mg)						
		α	β	Y				
	Wild-type	39	49	40				
10	A1		26	29				
	A2		32	36				
	A		24	26				
	A4		32	39				
	A5	43	27	27				
15	A11	20	6	13				

Table 25
Ratio of Cyclodextrin Formation at Optimum CD Formation

Enzyme	Су	clodextrin produced	(%)
	α	β	γ
Wild-type	. 39	45	17
5 A1	42	38	20
A2	38	45	17
A	42	38	20
A4	39	41	20
A5	. 42	37	20

10 EXAMPLE 6

Construction of β -cyclodextrin Producing CGTase Variants from Thermoanaerobacter

This example describes the construction of 15 β-cyclodextrin producing CGTase variants (B1-B9), in which site-directed mutagenesis either has lead to an altered number of hydrogen bonds in the subsites of the active cleft or, alternatively, to sterical hindrance in parts of the substrate binding left.

The variants are derived from a *Thermoanaerobacter sp.* CGTase obtained according to WO 89/03421, and having the nucleotide and amino acid sequences presented as SEQ ID NOS: 1-2 (i.e. the wild-type enzyme).

Mutations were introduced by a method based on PCR by the use of PWO polymerase. For each mutation, specific oligonucleotides (primers) were developed. The mutations were confirmed by restriction analysis whenever possible, and by sequencing. Mutant proteins were expressed in either *Escherichia coli* MC1061 [*Meissner P S, Sisk W P, Berman M L*; Proc. Natl. Acad. Sci. USA 1987 84 4171-4175], or in the α-amylase and protease negative *Bacillus subtilis* Strain DB104A 25 [*Smith H, de Jong A, Bron S, Venema G*; Gene 1988 70 351-361]. Proteins were purified from the media using affinity chromatography (AfC) and/or anion-exchange chromatography (AEC).

Enzyme Assays

Enzymatic activity was measured by a slightly modified procedure of the Phadebas amylase test (Pharmacia). Phadebas tablets (Phadebas™ Amylase Test, Pharmacia) are used as substrate. This substrate is a cross-linked insoluble blue-scolored starch polymer, which is mixed with bovine serum albumin and a buffer substance. After suspension in water, starch is hydrolyzed by the enzyme, thereby yielding blue fragments. The determination is carried out after incubation at 60°C, pH 6.2, in 0.15 nM calcium for 15 minutes. The absorbance of the resulting blue solution, determined at 620 nm, corresponds the enzymatic activity.

The enzyme activity is compared to that of an enzyme standard, and the activity is expressed in the same unit as that of the enzyme standard. The enzyme standard was Termamyl™ (Novo Nordisk A/D, Denmark), the amylolytic activity of which has been be determined using potato starch as substrate. This method is based on the break-down of modified potato starch by the enzyme, and the reaction is followed by mixing samples of the starch/enzyme solution with an iodine solution. Initially, a blackish-blue color is formed, but during the break-down of the starch the blue color gets weaker and gradually turns into a reddish-brown, which is compared to a colored glass standard.

One Kilo Novo alfa Amylase Unit (KNU) is defined as the amount of enzyme 20 which, under standard conditions (i.e. at 37°C +/- 0.05; 0.0003 M Ca²⁺; and pH 5.6) dextrinizes 5.26 g starch dry substance Merck Amylum solubile. Below the activity is expressed in Novo Units (NU) per ml.

CGTase activity was determined by incubating diluted enzyme with substrate in 10 mM sodium citrate, pH 6.0 for 4-10 minutes at 85°C.

25 Cyclodextrin forming activity was determined using 5% PaselliTM SA2 (i.e. partially hydrolysed potato starch with an average degree of polymerization of 50, available from AVEBE, Foxhol, The Netherlands) as substrate. The α-cyclodextrin formed was determined with Methyl-orange, the β-cyclodextrin formed was determined with phenolphthalein, and the γ-cyclodextrin formed was determined with bromo cresol green. The activity is expressed in units per mg (U/mg). One unit of enzyme activity is defined as the amount of enzyme able to produce one μmol of the specific cyclodextrin per minute.

Cyclodextrin formation was also determined under conventional industrial production process conditions. A precooked 10% amylopectin solution in 0.5 mM CaCl₂ at pH 5.5 was incubated with 50 NU of CGTase per gram of substrate, at 85°C and for 24 hours. Samples are regularly withdrawn and boiled for 10 minutes 5 at a pH of 2.5-3 prior to analysis by HPLC.

The results of these experiments are discussed and presented in tables 26-28, below. In Table 28, the figures are the ratio at maximum total level of cyclodextrin.

Oligonucleotide Primers

The following oligonucleotides were synthesized in order to initiate the site-10 directed mutagenesis (the numbers indicate positions according to the CGTase numbering):

B1: S145A:

5'-CTCCTGCAGCTGAGACAGACCC-3':

B2: E146S;

15 5'-CTCCTGCATCGTCGACAGACCC-3';

B3: T147A:

5'-TCAGAGGCGGATCCTACCTATGG-3':

B4: T147L;

5'-TCAGAGCTCGACCCTACCTATGG-3';

20 **B5**: D148A;

5'-CAGAGACGGCGCCTACCTATGGGG-3':

B6: D89A;

5'-CGCAGTTTTGCCGGCTTCCAC-3';

B7: F91aA;

25 5'-TCCACTGCCGGCGGAAGCAC-3';

B8: F91a*;

5'-AGATTCTACCGGTGGAAGCAC-3';

B9: 87-94(I K Y S G - V N N);

5'-TTTACGCAGTTATTAAATATTCCGGCGTTAACAACACACCTCTATCA-TGG-3'.

5 This variant is also used in the construction of A2 of Example 5, above;

B10: F195Y + 87-94(I K Y S G - V N N);

5'-TTACCGTAATTTATATGACTTAGCAG-3' was used to introduce the F195Y mutation. Using this variant as starting point, the 87-94(I K Y S G - V N N) mutations was introduced using primer B9. Simultaneously, the F195 was replaced by 195Y 10 in order to decrease the contact between enzyme and substrate;

B11: D196S:

5'-CGTAATTTATTCTCGCTAGCAGATTTAG-3':

B12: D196A:

5'-CGTAATTTATTCGCGCTAGCAGATTTAG-3';

15 **B13**: D371N:

5'-CAGGTAATGGTAACCCTTATAATAGAGC-3';

B14: D371G;

5'-CAGGTAATGGAGGGCCTTATAATAGAGC-3'; and

B15: D371A:

20 5'-CAGGTAATGGAGCGCCTTATAATAGAGC-3'.

Results

The variants of this example were designed in order to increase β -cyclodextrin formation.

In experiment B1, S145 was replaced by 145A in order to decrease the 25 interactions between the enzyme and glucose unit J (cf. Fig. 1). The initial rate of

both β -CD formation and of γ -CD formation has increased. In the CD-production assay, the ratio of α -CD has decreased whereas the β -CD ratio has increased.

In experiment B2, E146 was replaced by 146S in order to increase the interactions between the enzyme and glucose unit I (cf. Fig. 1). The initial rate of 5 both β -CD formation and of γ -CD formation has increased. In the CD-production assay, the ratio of α -CD has decreased.

In experiment B3, T147 was replaced by 147A in order to decrease the interactions between the enzyme and glucose unit J (cf. Fig. 1). In the CD-production assay, the ratio of α -CD has decreased, whereas the β -CD ratio has increased.

In experiment B4, T147 was replaced by 147L in order to decrease the interactions between the enzyme and glucose unit J (cf. Fig. 1). In the CD-production assay, the ratio of α -CD has decreased, whereas the β -CD ratio has increased.

In experiment B5, D148 was replaced by 148A in order to decrease the interactions between the enzyme and glucose unit J. In the CD-production assay, the 15 ratio of α-CD has decreased, whereas the β-CD ratio has increased.

In experiment B6, D89 was replaced by 89A in order to decrease the interactions between the enzyme and glucose unit F. The initial rate of both β -CD formation and of γ -CD formation has decreased.

In experiment B7, Y91a was replaced by 91aA in order to decrease the 20 interactions between the enzyme and glucose unit F. The initial rate of both β -CD formation and of γ -CD formation has decreased.

In experiment B8, Y91a was replaced by Y91a* (deleted) in order to decrease the interactions between the enzyme and glucose unit F. The initial rate of β -CD formation has decreased.

In experiment B9, the loop at positions 87 to 94 was replaced by (I K Y S G * V N N) in order to increase the contacts between the enzyme and glucose units E and F (cf. Fig. 1).

In experiment B10, 5'-TTACCGTAATTTATATGACTTAGCAG-3' was used to introduce the F195Y mutation. Using this variant as starting point, the 87-94(I K Y 30 S G - V N N) mutations was introduced using primer B9. Simultaneously, the F195 was replaced by 195Y in order to decrease the contact between enzyme and substrate.

In experiment B11, D196 was replaced by 196S in order to decrease the interactions between the enzyme and glucose unit E and glucose unit F.

In experiment B12, D196 was replaced by 196A in order to decrease the interactions between the enzyme and glucose unit E and glucose unit F.

In experiment BBB, D371 was replaced by 371N in order to decrease the interactions between the enzyme and glucose unit E and glucose unit F.

In experiment B14, D371 was replaced by 371G in order to decrease the interactions between the enzyme and glucose unit E and glucose unit F.

In experiment B15, D371 was replaced by 371A in order to decrease the 10 interactions between the enzyme and glucose unit E and glucose unit F.

Table 26

Production, Purification and Enzyme Activities of CGTases

	Enzyme	Host	Purification method	Enzyme activity (NU/ml)
	Wild-type	Bacillus	AfC	1513
15	B1	Bacillus	AfC	1925
	B2	Bacillus	AfC	2290
	В3	Bacillus	AfC	1636
	B4	Bacillus	AfC	1949
	B5	Bacillus	AfC	1839
20	B6	E. coli	AfC	1908
	B7	E. coli	AfC	1686
	B8	E. coli	AfC	1212
	B9	E. coli	AfC	1862

Table 27 Specific Activities of α -, β - and γ -CD Forming CGTases

Enzyme		Су	Cyclization Activity (U/mg)						
		α	β	γ					
	Wild-type	39	131	96					
5	B1		150	140					
	B2		140	120					
	В3		120	84					
	B4		110	97					
	B5		120	82					
10	B6		101	84					
	B7		107	80					
	B8		118	97					
	B9		131.	63					

Table 28

15 Ratio of Cyclodextrin Formation at Optimum CD Formation

Enzyme	Су	clodextrin produced	(%)
	α	β	γ
Wild-type	39	45	17
B1	35	49	16
B2	35	. 46	18
20 B3	35	48	16
B4	35	49	16
B5	35	49	16

B9 35 48 17

EXAMPLE 7

Construction of β -cyclodextrin Producing CGTase Variants from Thermoanaerobacter

This example describes the construction of 9 β-cyclodextrin producing CGTase 5 variants (C1-C9), in which site-directed mutagenesis either has lead to an altered number of hydrogen bonds in the subsites of the active cleft or, alternatively, to sterical hindrance in parts of the substrate binding left.

The variants are derived from a *Thermoanaerobacter sp.* CGTase obtained according to WO 89/03421, and having the nucleotide and amino acid sequences 10 presented as SEQ ID NOS: 1-2 (i.e. the wild-type enzyme).

Variants were introduced by a method based on Unique Site Elimination (USE), following the protocol from the supplier (Stratagene®). The unique restriction site BsaMI at the plasmid opposite to the CGTase gene was removed by the use of the 5'P-CACTGTTCCTTCGAACGCGTAACCTTAAATACC-3' oligonucleotide. In this oligonucleotide, "P" indicates a 5' phosphorylation necessary for the procedure. For each mutation specific oligonucleotides were developed. The mutations were confirmed by restriction analysis whenever possible, and by sequencing. Mutant proteins were expressed in either *Escherichia coli* MC1061 [*Meissner P S, Sisk W P, Berman M L*; Proc. Natl. Acad. Sci. USA 1987 84 4171-4175]. Proteins were purified from the media using affinity chromatography (AfC).

Enzyme Assays

Enzymatic activity was measured by a slightly modified procedure of the Phadebas amylase test (Pharmacia). Phadebas tablets (Phadebas™ Amylase Test, Pharmacia) are used as substrate. This substrate is a cross-linked insoluble blue-25 colored starch polymer, which is mixed with bovine serum albumin and a buffer substance. After suspension in water, starch is hydrolyzed by the enzyme, thereby yielding blue fragments. The determination is carried out after incubation at 60°C, pH 6.2, in 0.15 nM calcium for 15 minutes. The absorbance of the resulting blue solution, determined at 620 nm, corresponds the enzymatic activity.

The enzyme activity is compared to that of an enzyme standard, and the activity is expressed in the same unit as that of the enzyme standard. The enzyme standard was Termamyl™ (Novo Nordisk A/D, Denmark), the amylolytic activity of which has been be determined using potato starch as substrate. This method is based on the 5 break-down of modified potato starch by the enzyme, and the reaction is followed by mixing samples of the starch/enzyme solution with an iodine solution. Initially, a blackish-blue color is formed, but during the break-down of the starch the blue color gets weaker and gradually turns into a reddish-brown, which is compared to a colored glass standard.

One Kilo Novo alfa Amylase Unit (KNU) is defined as the amount of enzyme which, under standard conditions (i.e. at 37°C +/- 0.05; 0.0003 M Ca²⁺; and pH 5.6) dextrinizes 5.26 g starch dry substance Merck Amylum solubile. Below the activity is expressed in Novo Units (NU) per ml.

CGTase activity was determined by incubating diluted enzyme with substrate in 15 10 mM sodium citrate, pH 6.0 for 4-10 minutes at 85°C.

Cyclodextrin forming activity was determined using 5% Paselli[™] SA2 (i.e. partially hydrolysed potato starch with an average degree of polymerization of 50, available from AVEBE, Foxhol, The Netherlands) as substrate. The α-cyclodextrin formed was determined with Methyl-orange, the β-cyclodextrin formed was determined with bromo cresol phenolphthalein and the γ-cyclodextrin formed was determined with bromo cresol green. The activity is expressed in units per mg (U/mg). One unit of enzyme activity is defined as the amount of enzyme able to produce one μmol of the specific cyclodextrin per minute.

Cyclodextrin formation was also determined under conventional industrial production process conditions. A precooked 10% amylopectin solution in 0.5 mM CaCl₂ at pH 5.5 was incubated with 50 NU of CGTase per gram of substrate, at 60°C and for 24 hours. Samples are regularly withdrawn and boiled for 10 minutes at a pH of 2.5-3 prior to analysis by HPLC.

The results of these experiments are discussed and presented in tables 29-31, 30 below. In Table 31, the figures are the ratio at maximum total level of cyclodextrin.

Oligonucleotide Primers

The following oligonucleotides were synthesized in order to initiate the sitedirected mutagenesis (the numbers indicate positions according to the CGTase numbering):

5 C1: N193A;

5'P-TTACCGTGCACTATTTGACTTAGC-3';

C2: 146-150(S D Q P S);

5'P-CTCCTGCATCATCTGATCAACCGTCCTTTGGGGAAAATGG-3';

C3: 145-148(A E L A);

10 5'P-CATCTCCTGCAGCAGAGCTCGCACCTACCTATGGG-3';

C4: 145-148(A E W A);

5'P-CATCTCCTGCAGCAGAGTGGGCACCTACCTATGGG-3';

C5: 87-94(I N Y S G * V N N);

5'P-CATTTACGCAGTTATCAATTATTCCGGAGTTAACAATACATCCTA15 TCATGG-3':

C6: 87-94(H P * S G Y * * *);

5'P-CATTTACGCAGTTCATCCTTCCGGGTATACATCCTATCATGG-3';

C7: 145-148(L E T N);

5'P-TACATCTCCTGCACTCGAGACAAATCCTACCTATGG-3';

20 C8: 87-94(H P * S G Y * * *) + 145-148(L E T N);

Both primers listed as C6 and C7 were used simultaneously;

C9: 87-94(I N Y S G * V N N) + 146-150(S D Q P S);

Both primers listed C2 and C5 were used simultaneously.

Results

The variants of this example were designed in order to increase β -cyclodextrin formation.

In experiment C1, N193 were replaced by 193A in order to decrease the 5 interactions between the enzyme and glucose unit H. In the CD-production assay, the ratio of α -CD has decreased, and the ratio of β -CD has increased.

In experiment C2, the region at positions 146-150 was replaced by (S D Q P S) in order to decrease the interactions between the enzyme and glucose unit J, and in order to increase the interactions between the enzyme and glucose unit I.

In experiment C3, the region at positions 145-148 was replaced by (A E L A) in order to decrease the interactions between the enzyme and glucose unit J, and in order to increase the interactions between the enzyme and glucose unit I.

In experiment C4, the region at positions 145-148 was replaced by (A E W A) in order to decrease the interactions between the enzyme and glucose unit J, and in 15 order to increase the interactions between the enzyme and glucose unit I.

In experiment C5, the loop at positions 87-94 was replaced by (I N Y S G * V N N) in order to decrease the interactions between the enzyme and glucose unit E and glucose unit F.

In experiment C6, the loop at positions 87-94 was replaced by (H P * S G Y * * 20 *) in order to decrease the interactions between the enzyme and glucose unit E and glucose unit F.

In experiment C7, the region at positions 145-148 was replaced by (L E T N) in order to decrease the interactions between the enzyme and glucose unit J, and in order to increase the interactions between the enzyme and glucose unit I.

- In experiment C8, the loop at positions 87-94 was replaced by (H P * S G Y * * *) in order to decrease the interactions between the enzyme and glucose unit E and glucose unit F. Simultaneously, the region at positions 145-148 was replaced by (L E T N) in order to decrease the interactions between the enzyme and glucose unit J, and in order to increase the interactions between the enzyme and glucose unit I.
- 30 In experiment C9, the loop at positions 87-94 was replaced by (I N Y S G * V N N) in order to decrease the interactions between the enzyme and glucose unit E and glucose unit F. Simultaneously, the region at positions 145-148 was replaced by (S

D Q P S) in order to decrease the interactions between the enzyme and glucose unit J, and in order to increase the interactions between the enzyme and glucose unit I.

Table 29

Production, Purification and Enzyme Activities of CGTases

5 Enzyme	Host	Purification method	Enzyme activity
· 	,		(NU/mI)
Wild-type	E. coli	AfC	1513
C1	E. coli	AfC	1643

Table 30 Specific Activities of α -, β - and γ -CD Forming CGTases

10 Enzyme	Су	clization Activity (U/	ion Activity (U/mg)					
	α	β	γ					
Wild-type	39	131	96					
C1		102	90					

Table 31

Ratio of Cyclodextrin Formation at Optimum CD Formation

Cyclodextrin produced (%)							
α	β	γ.					
39	45	17					
35	49	16					
	α 39 35	 α β 39 45 35 49 					

SEQUENCE LISTING

	(2)	INF	ORMA	TION	FOR	SEC	ID	NO:	1:								
5		(1	(QUEN (A) L (B) T (C) S (D) T	engt Ype : Tran	TH: 2 DUC DEDN	133 leic Ess:	base aci sin	pai d	rs							•
		(11) 140	LECU	LE T	YPE:	CDN	i A									
10		(AŢ	(IGIN A) O B) S	RGAN	ISM:	The		_	obac	ter	sp.					
		(ix	(ATUR A) N B) L	ame/												
15		(XI) se	OOEN	CE D	escr	IPTI	ON:	SEQ	ID N	0: 1	:					
	ATG	NAGA	AAA	CGCT	TAAA	CT T	CTGT	CGAT	T CT	GTTG	ATAA	CCA	TTGC	TCT	TCTT	TTCAG	- 6
	TCA	ATTC	CAT	CCGT.	accg	gc a		Pro							GTT Val		11
20	AAT Asn	TAT Tyr	TCA Ser	ACA Thr	GAT Asp 15	Val	ATC Ile	TAC Tyr	CAG Gln	ATA Ile 20	GTC Val	ACA Thr	GAC Asp	CGT Ar g	TTT Phe 25	TTA Leu	15
25	GAT Asp	GGG GGG	AAT Asn	CCC Pro 30	AGT Ser	AAT Asn	AAT Asn	CCA Pro	ACA Thr 35	GC	GAC Asp	TTA Leu	TAT Tyr	GAC Asp 40	CCT Pro	ACC Thr	20
	CAT His	ACT Thr	AGT Ser 45	TTA Leu	AAG Lys	AAA Lys	TAT Tyr	TTT Phe 50	GGT Gly	GGC	GAT Asp	TGG Trp	Gln 55	GGT Gly	ATT Ile	ATT Ile	25
30	AAC Asn	AAA Lys 60	ATT Ile	AAT Asn	gat Asp	GGT Gly	TAT Tyr 65	CTT Leu	ACT Thr	GGT Gly	ATG Met	GGA Gly 70	ATT Ile	ACA Thr	GCT Ala	ATA Ile	30
	TGG Trp 75	ATT Ile	TCG Ser	CAA Gln	CCT Pro	GTA Val 80	GAA Glu	AAC Asn	ATT Ile	TAC Tyr	GCA Ala 85	GTT Val	TTG Leu	CCA Pro	gat Asp	TCC Ser 90	35
35	ACT Thr	TTT Phe	GC Gly	GJ Y GGY	AGC Ser 95	Thr	Ser	TAT Tyr	His	Gly	TAC Tyr	TGG Trp	GCA Ala	CGA Arg	GAC Asp 105	TTC Phe	39
40															AAT Asn		44
															TTT Phe		49
45	CCA Pro	AAT Asn 140	CAT His	ACA Thr	TCT Ser	CCT Pro	GCA Ala 145	TCA Ser	GAG Glu	ACA Thr	yab gyc	CCT Pro 150	ACC Thr	TAT Tyr	GGG Gly	GAA Glu	543

												GGT Gly					591
_	155	011	,9	200	-1-	160		 j.	V-1		165			-1-		170	
5												ACT Thr					639
					Ile							TTA Leu					687
10												GCG Ala					735
15	Trp											GAT Asp 230					783
												TCT Ser					831
20												GGA Gly					879
												GGT Gly					927
25												TTC Phe				ACA Thr	975
30												TCT Ser 310					1023
												GAT Asp					1071
35	gac Asp	AGA Arg	TTT Phe	TAT Tyr	ACA Thr 335	gg a Gly	GC GC	AGT Ser	ACA Thr	CGG Arg 340	CCT Pro	GTT Val	GAG Glu	CAA Gln	GCG Ala 345	TTA Leu	1119
												ATA Ile					1167
40	GAG Glu	CAA Gln	TAT Tyr 365	ATG Met	ACA Thr	GGT Gly	AAT Asn	GGA Gly 370	Asp	CCT Pro	TAT Tyr	AAT Asn	AGA Arg 375	GCT Ala	ATG Met	ATG Met	1215
45	Thr	TCA Ser 380	TTT Phe	GAC Asp	ACC Thr	ACA Thr	ACG Thr 385	ACG Thr	GCA Ala	TAT Tyr	AAT Asn	GTG Val 390	ATA Ile	AAA Lys	AAG Lys	CTT Leu	1263
	GCT Ala 395	CCA Pro	CTG Leu	CGT Ar g	AAA Lys	TCT Ser 400	AAC Asn	CCT Pro	GCA Ala	ATT Ile	GCT Ala 405	TAC Tyr	GGT Gly	ACA Thr	CAA Gln	AAA Lys 410	1311
50	CAG Gln	CGA Arg	TGG Trp	ATA Ile	AAT Asn 415	AAT Asn	GAT Asp	GTT Val	TAC Tyr	ATT Ile 420	TAT Tyr	GAA Glu	AGA Arg	CAA Gln	TTT Phe 425	GGT Gly	1359

																	•
												CTT Leu					1407
5												GGA					1455
												ACA Thr 470					1503
10												GAA Glu					1551
15	Gln										Ile	GGA Gly					1599
												GAT Asp					1647
20												ACT Thr					1695
	Val	Ser 540	Trp	Glu	λsp	Thr	Glu 545	Val	Lys	Val	Lys	GTT Val 550	Pro	Ala	Leu	Thr	1743
25												TCA Ser					1791
30												AAT Asn					1839
												GGA Gly					1887
35	Leu	Thr	Gly 605	Asn	Val	Ala	Glu	Leu 610	Gly	Asn	Trp	gat Asp	Thr 615	Ser	Lys	Ala	1935
												TAT Tyr 630					1983
40												GAG Glu					2031
45												GGA Gly					2079
•												ATT Ile					2127
50	CCG Pro	TGA															2133

5

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 683 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Ala Pro Asp Thr Ser Val Ser Asn Val Val Asn Tyr Ser Thr Asp Val

1 5 10 15

. 10 Ile Tyr Gln Ile Val Thr Asp Arg Phe Leu Asp Gly Asn Pro Ser Asn 20 25 30

Asn Pro Thr Gly Asp Leu Tyr Asp Pro Thr His Thr Ser Leu Lys Lys 35

Tyr Phe Gly Gly Asp Trp Gln Gly Ile Ile Asn Lys Ile Asn Asp Gly 15 50 60

Tyr Leu Thr Gly Met Gly Ile Thr Ala Ile Trp Ile Ser Gln Pro Val 65 70 75 80

Glu Asn Ile Tyr Ala Val Leu Pro Asp Ser Thr Phe Gly Gly Ser Thr 85 90 95

20 Ser Tyr His Gly Tyr Trp Ala Arg Asp Phe Lys Lys Thr Asn Pro Phe 100 105 110

Phe Gly Ser Phe Thr Asp Phe Gln Asn Leu Ile Ala Thr Ala His Ala 115 120 125

His Asn Ile Lys Val Ile Ile Asp Phe Ala Pro Asn His Thr Ser Pro 25 130 135 140

Ala Ser Glu Thr Asp Pro Thr Tyr Gly Glu Asn Gly Arg Leu Tyr Asp 145 150 155 160

Asn Gly Val Leu Gly Gly Tyr Thr Asn Asp Thr Asn Gly Tyr Phe 165 170 175

30 His His Tyr Gly Gly Thr Asn Phe Ser Ser Tyr Glu Asp Gly Ile Tyr 180 185 190

Arg Asn Leu Phe Asp Leu Ala Asp Leu Asp Gln Gln Asn Ser Thr Ile 195 200 205

Asp Ser Tyr Leu Lys Ala Ala Ile Lys Leu Trp Leu Asp Met Gly Ile 35 210 220

Asp Gly Ile Arg Met Asp Ala Val Lys His Met Ala Phe Gly Trp Gln 225 230 235 240

Lys Asn Phe Met Asp Ser Ile Leu Ser Tyr Arg Pro Val Phe Thr Phe 245 250 255

40 Gly Glu Trp Tyr Leu Gly Thr Asn Glu Val Asp Pro Asn Asn Thr Tyr 260 265 270

Phe Ala Asn Glu Ser Gly Met Ser Leu Leu Asp Phe Arg Phe Ala Gln 275 280 285

Lys Val Arg Gln Val Phe Arg Asp Asn Thr Asp Thr Met Tyr Gly Leu 45 290 295 300

Asp Ser Met Ile Gln Ser Thr Ala Ala Asp Tyr Asn Phe Ile Asn Asp Met Val Thr Phe Ile Asp Asn His Asp Met Asp Arg Phe Tyr Thr Gly 325 330 335 5 Gly Ser Thr Arg Pro Val Glu Gln Ala Leu Ala Phe Thr Leu Thr Ser Arg Gly Val Pro Ala Ile Tyr Tyr Gly Thr Glu Gln Tyr Met Thr Gly Asn Gly Asp Pro Tyr Asn Arg Ala Met Met Thr Ser Phe Asp Thr Thr 370 380 Thr Thr Ala Tyr Asn Val Ile Lys Lys Leu Ala Pro Leu Arg Lys Ser Asn Pro Ala Ile Ala Tyr Gly Thr Gln Lys Gln Arg Trp Ile Asn Asn 15 Asp Val Tyr Ile Tyr Glu Arg Gln Phe Gly Asn Asn Val Ala Leu Val Ala Ile Asn Arg Asn Leu Ser Thr Ser Tyr Tyr Ile Thr Gly Leu Tyr Thr Ala Leu Pro Ala Gly Thr Tyr Ser Asp Met Leu Gly Gly Leu Leu Asn Gly Ser Ser Ile Thr Val Ser Ser Asn Gly Ser Val Thr Pro Phe Thr Leu Ala Pro Gly Glu Val Ala Val Trp Gln Tyr Val Ser Thr Thr 25 Asn Pro Pro Leu Ile Gly His Val Gly Pro Thr Met Thr Lys Ala Gly Gln Thr Ile Thr Ile Asp Gly Arg Gly Phe Gly Thr Thr Ala Gly Gln Val Leu Phe Gly Thr Thr Pro Ala Thr Ile Val Ser Trp Glu Asp Thr Glu Val Lys Val Lys Val Pro Ala Leu Thr Pro Gly Lys Tyr Asn Ile Thr Leu Lys Thr Ala Ser Gly Val Thr Ser Asn Ser Tyr Asn Asn Ile 35 Asn Val Leu Thr Gly Asn Gln Val Cys Val Arg Phe Val Val Asn Asn Ala Thr Thr Val Trp Gly Glu Asn Val Tyr Leu Thr Gly Asn Val Ala Glu Leu Gly Asn Trp Asp Thr Ser Lys Ala Ile Gly Pro Met Phe Asn Gln Val Val Tyr Gln Tyr Pro Thr Trp Tyr Tyr Asp Val Ser Val Pro Ala Gly Thr Thr Ile Glu Phe Lys Phe Ile Lys Lys Asn Gly Ser Thr 45 Val Thr Trp Glu Gly Gly Tyr Asn His Val Tyr Thr Thr Pro Thr Ser 665

Gly Thr Ala Thr Val Ile Val Asp Trp Gln Pro 675

CLAIMS

- A method of modifying the substrate binding and/or product selectivity
 of a precursor CGTase enzyme, which method comprises substitution, insertion
 and/or deletion of one or more amino acid residue(s) of the precursor enzyme, which
 amino acid residue(s) holds a position close to the substrate.
 - 2. The method according to claim 1, in which the amino acid residue(s) hold(s) a position less than 8 Å from the substrate.
 - 3. The method according to either of claims 1-2, in which the amino acid residue(s) is located in domain A of the enzyme.
- 10 4. The method according to either of claims 1-2, in which the amino acid residue(s) is located in domain B of the enzyme.
 - 5. The method according to either of claims 1-2, in which the amino acid residue(s) is located in domain C of the enzyme.
- 6. The method according to either of claims 1-2, in which the amino acid 15 residue(s) is located in domain E of the enzyme.
 - 7. The method according to any of claims 1-6, in which the amino acid residues holding a position close to the substrate are the amino acid residues corresponding to the positions listed in Table 2.
- 8. The method according to any of claims 1-7, in which the amino acid 20 residue(s) is substituted by introducing one or more amino acid residue(s) with more intermolecular interaction(s).
 - 9. The method according to any of claims 1-7, in which the amino acid residue(s) is substituted by introducing one or more amino acid residue(s) with less intermolecular interaction(s).

- 10. The method according to any of claims 1-9, in which the CGTase is derived from a strain of *Bacillus*, a strain of *Brevibacterium*, a strain of *Clostridium*, a strain of *Corynebacterium*, a strain of *Klebsiella*, a strain of *Micrococcus*, a strain of *Thermoanaerobacterium*, a strain of *Thermoana*
- 11. The method according to claim 10, in which the CGTase is derived from a strain of Bacillus autolyticus, a strain of Bacillus cereus, a strain of Bacillus circulans var. alkalophilus, a strain of Bacillus coagulans, a strain of Bacillus firmus, a strain of Bacillus halophilus, a strain of Bacillus macerans, a strain of Bacillus megaterium, a strain of Bacillus ohbensis, a strain of Bacillus stearothermophilus, or a strain of Bacillus subtilis.
- 12. The method according to claim 10, in which the CGTase is derived from the strain *Bacillus sp.* Strain 1011, the strain *Bacillus sp.* Strain 38-2, the strain *Bacillus sp.* Strain 17-1, the strain *Bacillus sp.* 1-1, the strain *Bacillus sp.* Strain 15 B1018, the strain *Bacillus circulans* Strain 8, or the strain *Bacillus circulans* Strain 251, or a mutant or a variant thereof.
- 13. The method according to claim 10, in which the CGTase is derived from a strain of Klebsiella pneumonia, a strain of Thermoanaerobacter ethanolicus, a strain of Thermoanaerobacter finnii, a strain of Clostridium thermoamylolyticum, a strain of Clostridium thermosaccharolyticum, or a strain of Thermoanaerobacterium thermosulfurigenes.
 - 14. The method according to claim 10, in which the CGTase is derived from the strain *Bacillus circulans* Strain 251.
- 15. The method according to claim 10, in which the CGTase is derived from 25 the strain *Thermoanaerobacter sp.* ATCC 53627.

- 16. A CGTase variant derived from a precursor CGTase enzyme by substitution, insertion and/or deletion of one or more amino acid residue(s), which amino acid residue(s) holds a position close to the substrate.
- 17. The CGTase variant according to claim 16, in which one or more amino 5 acid residue(s) holding a position less than 8 Å from the substrate have been substituted, inserted and/or deleted.
 - 18. The CGTase variant according to either of claims 16-17, in which one or more amino acid residue(s) located in domain A of the enzyme have been substituted, inserted and/or deleted.
- 10 19. The CGTase variant according to either of claims 16-17, in which one or more amino acid residue(s) located in domain B of the enzyme have been substituted, inserted and/or deleted.
- 20. The CGTase variant according to either of claims 16-17, in which one or more amino acid residue(s) located in domain C of the enzyme have been 15 substituted, inserted and/or deleted.
 - 21. The CGTase variant according to either of claims 16-17, in which one or more amino acid residue(s) located in domain E of the enzyme have been substituted, inserted and/or deleted.
- 22. The CGTase variant according to any of claims 16-21, in which one or 20 more amino acid residue(s) have been substituted by an amino acid residue with more hydrogen binding potential.
 - 23. The CGTase variant according to any of claims 16-21, in which one or more amino acid residue(s) have been substituted by an amino acid residue with less hydrogen binding potential.

- 24. The CGTase variant according to any of claims 16-23, which is derived from a strain of *Bacillus*, a strain of *Brevibacterium*, a strain of *Clostridium*, a strain of *Corynebacterium*, a strain of *Klebsiella*, a strain of *Micrococcus*, a strain of *Thermoanaerobacterium*, a strain of *Thermoanaerob*
- 25. The CGTase variant according to claim 24, which is derived from a strain of Bacillus autolyticus, a strain of Bacillus cereus, a strain of Bacillus circulans, a strain of Bacillus circulans var. alkalophilus, a strain of Bacillus coagulans, a strain of Bacillus firmus, a strain of Bacillus halophilus, a strain of Bacillus macerans, a strain of Bacillus megaterium, a strain of Bacillus ohbensis, a strain of Bacillus stearothermophilus, or a strain of Bacillus subtilis.
- 26. The CGTase variant according to claim 24, which is derived from the strain Bacillus sp. Strain 1011, the strain Bacillus sp. Strain 38-2, the strain Bacillus sp. Strain 17-1, the strain Bacillus sp. 1-1, the strain Bacillus sp. Strain B1018, the strain Bacillus circulans Strain 8, or the strain Bacillus circulans Strain 251, or a mutant or a variant thereof.
 - 27. The CGTase variant according to claim 24, which is derived from the strain *Bacillus circulans* Strain 251.
- 28. The CGTase variant according to claim 24, which is derived from a strain of Klebsiella pneumonia, a strain of Thermoanaerobacter ethanolicus, a strain of Thermoanaerobacter finnii, a strain of Clostridium thermoamylolyticum, a strain of Clostridium thermoanaerobacterium thermosulfurigenes.
- 29. The CGTase variant according to claim 24, which is derived from the 25 strain *Thermoanaerobacter sp.* ATCC 53627.

- 30. The CGTase variant according to any of claims 16-29, in which one or more of the amino acid residue(s) corresponding to the positions listed in Table 2 have been substituted, inserted and/or deleted.
- 31. The CGTase variant according to any of claims 16-29, in which one or 5 more of the amino acid residue(s) corresponding to the positions listed in Table 9 have been substituted, inserted and/or deleted, as indicated in this table.
 - 32. The CGTase variant according to any of claims 16-29, in which one or more of the amino acid residue(s) corresponding to the positions listed in Table 10 have been substituted, inserted and/or deleted, as indicated in this table.
- 10 33. The CGTase variant according to any of claims 16-29, in which one or more of the amino acid residue(s) corresponding to the positions listed in Tables 3-5 have been substituted, inserted and/or deleted.
- 34. The CGTase variant according to any of claims 16-29, in which one or more of the amino acid residue(s) corresponding to the positions listed in Table 11
 15 have been substituted, inserted and/or deleted, as indicated in this table.
 - 35. The CGTase variant according to any of claims 16-29, in which one or more of the amino acid residue(s) corresponding to the positions listed in Table 12 have been substituted, inserted and/or deleted, as indicated in this table.
- 36. The CGTase variant according to any of claims 33-35, which is derived 20 from a strain of *Bacillus*.
- 37. The CGTase variant according to claim 36, which is derived from a strain of Bacillus autolyticus, a strain of Bacillus cereus, a strain of Bacillus circulans, a strain of Bacillus circulans var. alkalophilus, a strain of Bacillus coagulans, a strain of Bacillus firmus, a strain of Bacillus halophilus, a strain of Bacillus macerans, a strain of Bacillus megaterium, a strain of Bacillus ohbensis, a strain of Bacillus stearothermophilus, a strain of Bacillus subtilis, the strain Bacillus sp. Strain 1011,

the strain *Bacillus sp.* Strain 38-2, the strain *Bacillus sp.* Strain 17-1, the strain *Bacillus sp.* 1-1, the strain *Bacillus sp.* Strain B1018, the strain *Bacillus circulans* Strain 8, or the strain *Bacillus circulans* Strain 251, or a mutant or a variant thereof.

- 38. The CGTase variant according to claim 36, which is derived from the strain *Bacillus circulans* Strain 251, or a mutant or a variant thereof.
 - 39. The CGTase variant according to any of claims 16-29, in which one or more of the amino acid residue(s) corresponding to the positions listed in Tables 6-8 have been substituted, inserted and/or deleted.
- 40. The CGTase variant according to any of claims 16-29, in which one or 10 more of the amino acid residue(s) corresponding to the positions listed in Table 13 have been substituted, inserted and/or deleted.
 - The CGTase variant according to any of claims 16-29, in which one or more of the amino acid residue(s) corresponding to the positions listed in Table 14 have been substituted, inserted and/or deleted.
- 15 42. The CGTase variant according to any of claims 39-41, which is derived from a strain of *Thermoanaerobacter*.
 - The CGTase variant according to claim 41, which is derived from the strain *Thermoanaerobacter sp.* ATCC 53627, or a mutant or a variant thereof.
- A CGTase variant according to any of claims 16-29, which variant at 20 position 21 holds a phenylalanine residue (X21F) or a tyrosine residue (X21Y).
 - A CGTase variant according to any of claims 16-29, which variant at position 47 holds a glutamine residue (X47Q), or an alanine residue (X47A), or a leucine residue (X47L), or a histidine residue (X47H), or an arginine residue (X47R).

- 46. A CGTase variant according to any of claims 16-29, which variant at position 88 holds a proline residue (X88P) or a lysine residue (X88K).
- 47. A CGTase variant according to any of claims 16-29, which variant at position 89 holds an aspartic acid residue (X89D), or an alanine residue (X89A), or 5 a glycine residue (X89G).
 - 48. A CGTase variant according to any of claims 16-29, which variant at position 91a (e.g. via insertion) holds an alanine residue (X91aA or *91aA), or a tyrosine residue (X91aY or *91aY), or in which variant position 91a has been deleted (X91a*).
- 10 49. A CGTase variant according to any of claims 16-29, in which variant position 92 has been deleted (X92*).
- 50. A CGTase variant according to any of claims 16-29, which variant at position 94 holds a glutamine residue (X94Q), or a lysine residue (X94K), or an arginine residue (X94R), or a tryptophan residue (X94W), or a phenylalanine residue (X94F), or in which variant position 94 has been deleted (X94*).
 - 51. A CGTase variant according to any of claims 16-29, which variant at position 135 holds a leucine residue (X135L).
 - 52. A CGTase variant according to any of claims 16-29, which variant at position 143 holds an alanine residue (X143A), or a glycine residue (X143G).
- 20 53. A CGTase variant according to any of claims 16-29, which variant at position 144 holds an arginine residue (X144R), or a lysine residue (X144K), or an aspartic acid residue (X144D).
- 54. A CGTase variant according to any of claims 16-29, which variant at position 145 holds an alanine residue (X145A), or a glutamic acid (X145E), or a 25 tryptophan residue (X145W), or a glycine residue (X145G), or a phenylalanine

residue (X145F), or a tyrosine residue (X145Y), or a leucine residue (X145L), or a proline residue (X145P).

- 55. A CGTase variant according to any of claims 16-29, which variant at position 145a (e.g. via insertion) holds an isoleucine residue (X145al or *145al).
- 5 56. A CGTase variant according to any of claims 16-29, which variant at position 146 holds a proline residue (X146P), or a serine residue (X146S), or an isoleucine residue (X146I), or a glutamine residue (X146Q), or a tryptophan residue (X146W), or an arginine residue (X146R), or a glutamic acid residue (X146E).
- 57. A CGTase variant according to any of claims 16-29, which variant at 10 position 147 holds an isoleucine residue (X147I), or a leucine residue (X147L), or an alanine residue (X147A), or a serine residue (X147S), or a tryptophan residue (X147W).
 - 58. A CGTase variant according to any of claims 16-29, which variant at position 147a (e.g. via insertion) holds an alanine residue (X147aA or *147aA).
- 15 59. A CGTase variant according to any of claims 16-29, which variant at position 148 holds an alanine residue (X148A), or a glycine residue (X148G), or a glutamic acid residue (X148E), or an asparagine residue (X148N).
 - 60. A CGTase variant according to any of claims 16-29, which variant at position 149 holds an isoleucine residue (X149I).
- 20 61. A CGTase variant according to any of claims 16-29, which variant at position 167 holds a phenylalanine residue (X167F).
 - 62. A CGTase variant according to any of claims 16-29, which variant at position 185 holds an arginine residue (X185R), or a glutamic acid residue (X185E), or an aspartic acid residue (X185D).

- 63. A CGTase variant according to any of claims 16-29, which variant at position 186 holds an alanine residue (X186A).
- 64. A CGTase variant according to any of claims 16-29, which variant at position 193 holds a glycine residue (X193G), or an alanine residue (X193A), or an spartic acid residue (X193D), or a glutamic acid residue (X193E).
 - 65. A CGTase variant according to any of claims 16-29, which variant at position 196 holds an alanine residue (X196A), or a leucine residue (X196L).
- 66. A CGTase variant according to any of claims 16-29, which variant at position 197 holds an aspartic acid residue (X197D), or a glutamic acid residue (X197E).
 - 67. A CGTase variant according to any of claims 16-29, which variant at position 232 holds a glutamine residue (X232Q), or an asparagine residue (X232N), or an alanine residue (X232A), or a leucine residue (X232L).
- 68. A CGTase variant according to any of claims 16-29, which variant at 15 position 233 holds a glutamine residue (X233Q).
 - 69. A CGTase variant according to any of claims 16-29, which variant at position 259 holds a phenylalanine residue (X259F).
- 70. A CGTase variant according to any of claims 16-29, which variant at position 264 holds a glutamine residue (X264Q), or an alanine residue (X264A), or 20 an asparagine residue (X264N), or a leucine residue (X264L).
 - 71. A CGTase variant according to any of claims 16-29, which variant at position 268 holds an alanine residue (X268A).
 - 72. A CGTase variant according to any of claims 16-29, which variant at position 371 holds a glycine residue (X371G), or an asparagine residue (X371N), or

an alanine residue (X371A), or a leucine residue (X371L), or a glutamic acid residue (X371E).

- 73. A CGTase variant according to any of claims 16-29, which variant at position 375 holds a proline residue (X375P), or a glycine residue (X375G), or a glutanine residue (X375Q), or an asparagine residue (X375N), or an alanine residue (X375A), or a leucine residue (X375L).
 - 74. A CGTase variant according to any of claims 16-29, which variant at position 599a (e.g. via insertion) holds a proline residue (X599aP or *599aP), or an arginine residue (X599aR or *599aR), or a histidine residue (X599aH or *599aH).
- 10 75. A CGTase variant according to any of claims 16-29, which variant at position 600 has been substituted for a different amino acid residue, in particular a tryptophan residue (X600W), a phenylalanine residue (X600F), a tyrosine residue (X600Y), an arginine residue (X600R), a proline residue (X600P), a leucine residue (X600L), or an asparagine residue (X600N).
- 15 76. A CGTase variant according to any of claims 16-29, which variant at position 616 holds an alanine residue (X616A).
 - 77. A CGTase variant according to any of claims 16-29, which variant at position 633 holds an alanine residue (X633A).
- 78. A CGTase variant according to any of claims 16-29, which variant at 20 position 662 holds an alanine residue (X662A).
 - 79. A CGTase variant according to any of claims 16-29, which variant at position 47 holds a histidine residue or an arginine residue, and/or at position 135 holds a leucine residue (X47H/X135L or X47R/X135L).

- 80. A CGTase variant according to any of claims 16-29, which variant at position 88 holds a proline residue, and at position 143 holds a glycine residue (X88P/X143G).
- 81. A CGTase variant according to any of claims 16-29, which variant at 5 position 89 holds an aspartic acid residue, and at position 146 holds a proline residue (X89D/X146P).
 - 82. A CGTase variant according to any of claims 16-29, in which variant at positions 92 and 94 have been deleted (X92*/X94*).
- 83. A CGTase variant according to any of claims 16-29, which variant at 10 position 143 holds an alanine residue, and at position 144 holds an arginine residue (X143A/X144R).
 - 84. A CGTase variant according to any of claims 16-29, which variant at position 143 holds a glycine residue, and at position 144 holds an arginine residue, and at position 145 holds a tryptophan residue (X143G/X144R/X145W).
- 15 85. A CGTase variant according to any of claims 16-29, which variant at positions 143-148 comprises the partial amino acid sequence GRA**A, the partial amino acid sequence GRAPAA, or the partial amino acid sequence GRGPAA.
- 86. A CGTase variant according to any of claims 16-29, which variant at 20 position 144 holds an arginine residue, at position 145 holds an alanine residue, and at position 146 holds a proline residue (X144R/X145A/X146P).
 - 87. A CGTase variant according to any of claims 16-29, which variant at position 145 holds an alanine residue, and at position 145a (e.g. via insertion) holds an isoleucine residue (X145A/X145al or X145A/*145al).

- 88. A CGTase variant according to any of claims 16-29, which variant at position 145 holds an alanine residue, and at position 146 holds a glycine residue (X145A/X146G).
- 89. A CGTase variant according to any of claims 16-29, which variant at 5 position 145 holds a leucine residue, and at position 148 holds an asparagine residue (X145L/X148N).
 - 90. A CGTase variant according to any of claims 16-29, which variant at position 145 holds a glutamic acid residue, and in position 146 holds a proline residue or a glutamine residue (X145E/X146P or X145E/X146Q).
- 10 91. A CGTase variant according to any of claims 16-29, which variant at position 145 holds a tryptophan residue, and in position 146 holds a tryptophan residue, or an isoleucine residue, or an arginine residue (X145W/X146W or X145W/X146I or X145W/X146R).
- 92. A CGTase variant according to any of claims 16-29, which variant at 15 position 145 holds an alanine residue, at position 145a (e.g. via insertion) holds an isoleucine residue, and at position 148 holds a glutamic acid residue (X145A/X145al/X148E or X145A/*145al/X148E).
- 93. A CGTase variant according to any of claims 16-29, which variant at position 145a (e.g. via insertion) holds an isoleucine residue, and at position 148 20 holds a glutamic acid residue (X145al/X148E or *145al/X148E).
 - 94. A CGTase variant according to any of claims 16-29, which variant at position 616 holds an alanine residue, and at position 662 holds an alanine residue (X616A/X662A).
- 95. A CGTase variant according to any of claims 16-29, which variant at 25 positions 87-94 comprises the partial amino acid sequence IKYSGVNN, and/or at

positions 143-151 comprises the partial amino acid sequence GRAGTNPGF, or at positions 143-145 comprises the partial amino acid sequence GRW.

- 96. A CGTase variant according to any of claims 16-29, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at 5 positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAETWPAF.
- 97. A CGTase variant according to any of claims 16-29, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at 10 positions 143-151 comprises the partial amino acid sequence PAAETWPAF, and which variant at position 195 holds a leucine residue (X195L).
- 98. A CGTase variant according to any of claims 16-29, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at 15 positions 143-151 comprises the partial amino acid sequence PAAEADPNF.
- 99. A CGTase variant according to any of claims 16-29, which variant at positions 87-94 comprises the partial amino acid sequence HP*SGY**, and/or at positions 143-151 comprises the partial amino acid sequence PALETNPNF, or at positions 143-151 comprises the partial amino acid sequence PAAEADPNF, and 20 which variant at position 195 holds a leucine residue (X195W).
- 100. A CGTase variant according to any of claims 44-99, which variant is derived from a strain of a strain of Bacillus autolyticus, a strain of Bacillus cercus, a strain of Bacillus circulans, a strain of Bacillus circulans var. alkalophilus, a strain of Bacillus coagulans, a strain of Bacillus firmus, a strain of Bacillus halophilus, a strain of Bacillus macerans, a strain of Bacillus megaterium, a strain of Bacillus ohbensis, a strain of Bacillus stearothermophilus, or a strain of Bacillus subtilis.

- 101. A CGTase variant according to any of claims 44-99, which variant is derived from the strain *Bacillus sp.* Strain 1011, the strain *Bacillus sp.* Strain 38-2, the strain *Bacillus sp.* Strain 17-1, the strain *Bacillus sp.* 1-1, the strain *Bacillus sp.* Strain B1018, the strain *Bacillus circulans* Strain 8, or the strain *Bacillus circulans* 5 Strain 251, or a mutant or a variant thereof.
 - 102. A CGTase variant according to any of claims 44-99, which variant is derived from a strain of *Thermoanaerobacter sp.*
- 103. A CGTase variant according to any of claims 44-99, which variant is derived from the strain *Thermoanaerobacter* sp. ATCC 53627, or a mutant or a 10 variant thereof.
 - 104. A DNA construct encoding a CGTase variant according to any of claims 16-103.
 - 105. The DNA construct according to claim 104, comprising one or more of the partial oligonucleotide sequences describes as primers in examples 3-7.
- 15 106. A recombinant expression vector comprising the DNA construct according to either of claims 104-105.
 - 107. A host cell comprising a DNA construct according to either of claims 104-105, or the recombinant expression vector according to claim 106.
- 108. A method of producing a CGTase variant according to any of claims 16-20 103, which method comprises culturing the cell according to claim 107 under conditions permitting the production of the CGTase variant, and recovering the enzyme from the culture.
 - 109. Use of a CGTase variant according to any of claims 16-103, in a process for the manufacture of cyclodextrins.

- 110. The use according to claim 109, of the CGTase variant in a process for the manufacture of α -, β and γ -cyclodextrins, or mixtures hereof.
- 111. The use according to claim 109, of the CGTase variant in a process for the manufacture of δ -, ϵ -, and ζ -cyclodextrins, or mixtures hereof.
- 5 112. Use of a CGTase variant according to any of claims 16-98, in a process for the manufacture of linear oligosaccharides.
 - 113. Use of a CGTase variant according to any of claims 16-98, in a process for *in situ* generation of cyclodextrins.
- 114. The use according to claim 113, of the CGTase variant in a process for 10 the manufacture of a baked product.
 - 115. The use according to claim 113, of the CGTase variant in a process for stabilizing chemical products during their manufacture.
 - 116. Use of a CGTase variant according to any of claims 16-98, in a process for *in situ* generation of linear oligosaccharides.

FIG. 1

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

WO 96/33267 PCT/DK96/00179

SUBSTITUTE SHEET (RULE 26)

FIG. 6
SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

International application No.

PCT/DK 96/00179 A. CLASSIFICATION OF SUBJECT MATTER IPC6: C12N 9/26 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI, CLAIMS, CA, MEDLINE, BIOSIS, EMBASE, JAPIO C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. P,X Dialog Information Services, File 155, MEDLINE, 1-7,9-21, Dialog accession no. 09572717, Medline accession 23-30,33, no. 96094317, Knegtel RM et al:, "Crystallographic 36-39,42-43. studies of the interaction of cyclodextrin 100-116 glycosyltransferase from Bacillus circulans strain 251 with natural substrates and products", J Biol Chem (UNITED STATES), Dec 8 1995, 270 (49) p29256-64 X Biochemistry, Volume 33, 1994, Akira Nakamura et 1-8, 10-21, al, "Four Aromatic Residues in the Active Center 23-34,36-40, of Cyclodextrin Glucanotransferase from 42-43,69. Alkalophilic Bacillus sp. 1011: Effects of 100-116 Replacements on Substrate Binding and Cyclization Characteristics" page 9929 - page 9936 X Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document defining the general state of the art which is not considered to be of particular relevance ertier document but published on or after the international filing date "X" document of particular relevance: the claimed invention cannot be document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other considered novel or cannot be considered to involve an inventive step when the document is taken alone special reason (as specified) document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed being obvious to a person skilled in the art "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 24.07.96 <u>23 July 1996</u> Name and mailing address of the ISA/ Authorized officer Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Åke Lindberg

Telephone No.

+46 8 782 25 00

Facsimile No. +46 8 666 02 86

International application No. PCT/DK 96/00179

	C (Continu
nt, with indication, where appropriate, of the relevant passages Relevant to claim No	Category*
Volume 34, 1995, Dirk Penninga et al, ected Mutations in Tyrosine 195 of 33-34,36-40, rin Glycosyl transferase from Bacillus 42-43, Strain 251 Affect Activity and Product ty" page 3368 - page 3376	x
tation Services, File 155, MEDLINE, cession no. 08610037, Medline accession 1037, Nakamura, A:, "Three histidine residues tive center of *cyclodextrin* ransferase* from alkalophilic Bacillus sp. ects of the replacement on ph dependence tition-state stabilization", try (UNITED STATES), Jul 6 1993, 32 (26)	X
<u></u>	
cteriology, Volume 174, No 22, 1992, Fujiwara et al, "Analysis of Mutations in 35-39,41-43, rin Glucanotransferase from Bacillus 104-116 rmophilus Which Affect Cyclization istics and Thermostability" - page 7481	X
	
ation Services, File 155, MEDLINE, cession no. 09231397, Medline accession 397, Strokopytov, B:,"X-ray structure extrin glycosyltransferase complexed with Implications for the catalytic mechanism idases", try (UNITED STATES) Feb 21 1995, 34 (7)	K
otechnology, Volume 32, 1994, Sin et al, "Replacement of an amino acid f cyclodextrin glucano transferase of ohbensis doubles the production of extrin" page 283 - page 288	X
f cyclodextrin glucano transferase of lobbensis doubles the production of	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.
PCT/DK 96/00179

		Relevant to claim No		
Category* Citation of document, with indication, where appropriate, of the relevant passages Rele				
X	Dialog Information Services, File 155, MEDLINE, Dialog accession no. 07973781, Medline accession no. 92111781, Nakamura, A: "Fuctional relationships between cyclodextrin glucanotransferase from an alkalophilic Bacillus and alpha-amylases. Site- directed mutagenesis of the conserved two Asp and on Glu residues", FEBS Lett (NETHERLANDS) Jan 13 1992, 296 (1) p37-40	1-7,9-22, 24-30,33, 36-39,42-43, 104-116		
		<u> </u>		
X	Dialog Information Services, File 351, DERWENT WPI, Dialog accession no. 010199689, WPI accession no. 95-100943/14, Oji Corn Starch CO LTD:, "Modified cyclo-malto-dextrin glucano-transferase and corresp. gene- useful in the prodn. of gamma-dextrin", JP,A,7023781,950127,9514 (BASIC)	1-7,9-21, 23-31,33-34, 36-40,42-43, 104-116		
x	Dialog Information Services, File 351, DERWENT WPI, Dialog accession no. 009653923, WPI accession no. 93-347473/44, Nippon Shokuhin Kako KK:, "New alphacyclodextrin prepn. by substituting tyrosine for phenylalanine of cyclo malto-dextrin glucanotransferase", JP,A,5244945,930924,9344 (BASIC)	1-6,8,10-22, 24-29, 104-116		
x	Dialog Information Services, File 351, DERWENT WPI, Dialog accession no. 009410097, WPI accession no. 93-103608/13, Oji Corn Starch CO LTD:, "Mutated cyclo malto dextran glucan transferase CGTase - prepd. by culturing transformants contg. CGTase expression vector using starch-contg. medium and sepg. gamma cyclodextrin from mixt", JP,A,5041985,930223,9313 (BASIC)	1-22,24-31, 33-34,36-40, 42-43, 104-116		
				
A	EP 0614971 A2 (AMANO PHARMACEUTICAL CO, LTD.), 14 Sept 1994 (14.09.94), see whole document	1-116		
ĺ	· · ·			
A	WO 8903421 A1 (NOVO INDUSTRI A/S), 20 April 1989 (20.04.89), see whole document	1-116		
1				

International application No.
PCT/DK 96/00179

C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
A	EP 0630967 A1 (CONSORTIUM FUR ELEKROCHEMISCHE INDUSTRIE GMBH), 28 December 1994 (28.12.94), see whole document	1-116
A	US 5278059 A (T. SUGIMOTO ET AL), 11 January 1994 (11.01.94), see whole document	1-116
A	WO 9114770 A2 (CONSORTIUM FUR ELECTROCHEMISCHE INDUSTRIE GMBH), 3 October 1991 (03.10.91), see whole document	1-116
. [
		
{		
İ		
	·	
	·	
		•
	•	•
sm. PCT/IC 1	/210 (continuation of second sheet) (July 1992)	

International application No.

PCT/DK 96/00179

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. 🔲	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.:
,	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
	See extra sheet
	···
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. X	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
÷. 🔲	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Not.:
Daman's	on Protest The additional search fees were accompanied by the applicant's protest.
Vernalk	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/DK 96/00179

The present invention refers to CGTase variants. Claim 1 pertains to a method of modifying the substrate binding and/or product selectivity of a precursor CGTase enzyme. This is done by substitution, insertion and/or deletion of one or more amino acid residue(s) of the precursor enzyme, which amino acid residue(s) holds a position close to the substrate. As the search report reveals several documents showing modifications of CGTases in regions close to the substrate and hereby an altered product selectivity is achieved, there is a lack of unity a posteriori and there can be at least 4 different inventions identified:

- 1. Claims 1-32 and 41 pertain partially to CGTtases with reduced product inhibition
- 2-4. Claims 1-99 pertain partially to three different CGTases with different abilities of producing cyclodextrin variants. There is one CGTase which produces more α -cyclodextrin than the others. There is also a variant which produces more β -cyclodextrin and the third one which produces more γ -cyclodextrin than the others.

Although this lack of unity all claims have been searched.

Information on patent family members

01/07/96 PC

International application No.
PCT/DK 96/00179

Patent document cited in search report		Publication date					Publication date
EP-A2-	0614971	14/09/94	NONE				
WO-A1-	8903421	20/04/89	DE-D.T- 3886382	05/05/94			
		1	DK-B- 170307	31/07/95			
			EP-A,A,B 0338057	25/10/89			
			SE-T3- 0338057				
	•		JP-T- 2500247	01/02/90			
			US-A- 5501968	26/03/96			
EP-A1-	0630967	28/12/94	NONE				
US-A-	5278059	11/01/94	NONE				
WO-A2-	9114770	03/10/91	AT-T- 123808	15/06/95			
			CA-A- 2078992	28/09/91			
			DE-A,A- 4009822	02/10/91			
			DE-D- 59105733	00/00/00			
			EP-A,A,B 0521948	13/01/93			
			SE-T3- 0521948				
		•	ES-T- 2073743	16/08/95			
			JP-T- 5501059	04/03/93			
			JP-B- 6030575 US-A- 5409824	27/04/94 25/04/95			

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.