第二章 λ -矩阵与矩阵的Jordan标准形

A-矩阵的基本概念

定义: 设 $a_{ij}(\lambda)(i=1,2,\dots,m;j=1,2,\dots,n)$ 为数域 F 上的

多项式,则称
$$A(\lambda) = \begin{bmatrix} a_{11}(\lambda) & a_{12}(\lambda) & \cdots & a_{1n}(\lambda) \\ a_{21}(\lambda) & a_{22}(\lambda) & \cdots & a_{2n}(\lambda) \\ \cdots & \cdots & \cdots \\ a_{m1}(\lambda) & a_{m2}(\lambda) & \cdots & a_{mn}(\lambda) \end{bmatrix}$$

为多项式矩阵或 2-矩阵.

 $a_{ij}(\lambda)(i=1,2,\cdots,m;j=1,2,\cdots,n)$ 中最高的次数为 $A(\lambda)$ 的次数.

例:数字矩阵,特征矩阵 $\lambda E - A$.

定义: 如果 λ -矩阵 $A(\lambda)$ 中有一个 r 阶 $(r \ge 1)$ 子式不为零,而 所有 r+1 阶子式 (如果有的话) 全为零,则称 $A(\lambda)$ 的秩为 r,记为 $rank A(\lambda) = r$. 零矩阵的秩为 0.

定义:下列各种类型的变换,叫做 1-矩阵的初等变换.

- (1)矩阵的任二行(列)互换位置;
- (2) 非零常数 c 乘矩阵的某一行(列);
- (3) 矩阵的某一行(列)的 $\varphi(\lambda)$ 倍加到另一行(列)上去,其中 $\varphi(\lambda)$ 是 λ 的一个多项式.

对单位矩阵施行上述三种类型的初等变换,得到相应的三种 λ -矩阵的初等矩阵: P(i,j), P(i(c)), $P(i,j(\varphi))$

定理: 对一个 $m \times n$ 的 λ -矩阵 $A(\lambda)$ 作初等行变换,相当于用相应的 m 阶初等矩阵左乘 $A(\lambda)$. 对 $A(\lambda)$ 作初等列变换,相当于用相应的 n 阶初等矩阵右乘 $A(\lambda)$.

$$P(i,j)^{-1} = P(i,j),$$
 $P(i(c))^{-1} = P(i(c^{-1})),$ $P(i,j(\varphi))^{-1} = P(i,j(-\varphi)).$

定义: 如果 $A(\lambda)$ 经过有限次的初等变换之后变成 $B(\lambda)$, 则称 $A(\lambda)$ 与 $B(\lambda)$ 等价,记之为 $A(\lambda) \simeq B(\lambda)$.

2-矩阵的等价关系满足:

- (1) 自反性: $A(\lambda) \simeq A(\lambda)$;
- (2) 对称性: $A(\lambda) \simeq B(\lambda)$ 则 $B(\lambda) \simeq A(\lambda)$;
- (3) 传递性: 若 $A(\lambda) \simeq B(\lambda)$, $B(\lambda) \simeq C(\lambda)$, 则 $A(\lambda) \simeq C(\lambda)$.