第一章 线性代数

1.1 线性映射和矩阵

1.1.1 线性映射

定义 线性运算 指向量的加法与数乘。

定义 向量空间 为带有线性运算的集合 \mathbb{R}^m 被称为向量空间。

定义 映射 $f: \mathbb{R}^n \to \mathbb{R}^m$ 若满足

- 1. 任意 $x, x' \in \mathbb{R}^n$, 都有 f(x + x') = f(x) + f(x')
- 2. 任意 $\boldsymbol{x} \in \mathbb{R}^n, k \in \mathbb{R}$, 都有 $f(k\boldsymbol{x}) = kf(\boldsymbol{x})$

则 f 为从 \mathbb{R}^n 到 \mathbb{R}^m 的 **线性映射**。

定义 从 \mathbb{R}^n 到 \mathbb{R}^n 的线性映射称为**线性变换**.

定义 若线性映射 f 有 $f(e_i) = a_i, e_i \in \mathbb{R}^n, a_i \in \mathbb{R}^m$,则矩阵 $A = [a_1, \ldots, a_n]$ 即为标准坐标向量下的 线性映射的表示矩阵,且满足 $Ae_i = a_i$ 。

<u>定理</u> (线性映射的线性运算) 若矩阵 A, B 表示 $\mathbb{R}^n \to \mathbb{R}^m$ 的线性映射,则 A + B 与 kA 也是同样范畴上的线性映射。

<u>定理</u> AB 表示线性映射 A, B 的复合 $A \circ B$ 。需要注意,AB = 0 也不能推出 A = 0 或B = 0。

<u>定义</u> <u>反对称矩阵</u>: $A = -A^T$,反对称矩阵对角线必定为 0。**<u>定义</u>** 若一个上三角矩阵对角线上全为 0,则称为**严格上三角矩阵**。

<u>定义</u> 将阶梯形矩阵,从下向上消元,并单位化主元,得到的矩阵每个非零行上,主变量为 1 而其他列的元素均为 0,称这个矩阵为 **行简化阶梯形矩阵**。

定理 对于 $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^m$, $\boldsymbol{v}^T \boldsymbol{w} = trace(\boldsymbol{w} \boldsymbol{v}^T)$ 。

1.1.2 线性方程式组

<u>定理</u> 对于方程组 Ax = b,将 [A b]简化为阶梯型后,若

- 1. $[A \, b]$ 阶梯数比 $A \, \otimes \, 1$,则方程组无解
- 2. [A b] 阶梯数与 A 相等,则方程组有解

第一章 线性代数 2

- (a) 若阶梯数等于未知数个数,则有唯一解
- (b) 若阶梯数小于未知数个数,则有无穷多组解

定义 Ax = b 称为齐次线性方程组, $\vec{0}$ 为其平凡解,除此之外的解称为非平凡解。

1.1.3 可逆矩阵

<u>定义</u> 设 A 为 n 阶方阵,若存在 n 阶方阵 B,使得 $AB = BA = I_n$,则 A 为 <u>可逆矩阵</u> 或 非奇异矩阵,B 为 A 的逆。

定理 以下命题等价

- 1. A 可逆
- 2. 任意 $\boldsymbol{b} \in \mathbb{R}^n$, $A\boldsymbol{x} = \boldsymbol{b}$ 的解唯一
- 3. 其次方程组 Ax = 0 仅有零解
- 4. A 对应的阶梯形矩阵有 n 个主元
- 5. A 对应的行简化阶梯形矩阵是 I_n
- 6. A 能表示为有限个初等矩阵的乘积(即消元至行简化阶梯形矩阵的逆过程)

<u>定义</u> 若矩阵 $A = [a_{ij}]_{n \times n}$ 对于 i = 1, 2, ..., n 都有 $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$,则称其为(行)对角占优矩阵。 定理 对角占优矩阵必然可逆。

定义 若矩阵 A 通过若干初等**行变换**可以变为矩阵 B,则称 A, B <u>左相抵</u>。即存在可逆矩阵 P,使得 PA = B, $A = P^{-1}B$ 。所有和 A 相抵的矩阵中,最简单的是其行简化阶梯形,它被称为 A 的**左相抵标准形**。

定理 左相抵构成等价关系。

<u>定理</u> (Sherman-Morrison) 设 A 为 n 阶可逆方阵,u, v 为 n 阶向量,则 $A + uv^T$ 可逆 $\iff 1 + v^T A^{-1} u \neq 0$,且此时

$$(A + \boldsymbol{u}\boldsymbol{v}^{T})^{-1} = A^{-1} - \frac{A^{-1}\boldsymbol{u}\boldsymbol{v}^{T}A^{-1}}{1 + \boldsymbol{v}^{T}A^{-1}\boldsymbol{u}}$$
(1.1)

若将 u, v 改为 $n \times k$ 的矩阵, 则类似地有

$$(A + \boldsymbol{u}\boldsymbol{v}^{T})^{-1} = A^{-1} - A^{-1}\boldsymbol{u}(I_{k} + \boldsymbol{v}^{T}A^{-1}\boldsymbol{u})^{-1}\boldsymbol{v}^{T}A^{-1}$$
(1.2)

1.1.4 LU 分解

<u>定理</u> 若 n 阶方阵 A 仅通过倍加矩阵做行变化即可化为阶梯形,则存在<u>单位下三角矩阵</u>(主对角线均为 1)L 与上三角矩阵 U,使得 A = LU,此即 $\mathbf{L}\mathbf{U}$ 分解。

定义 方阵 A 左上角的 $k \times k$ 块为第 k 个顺序主子阵。

<u>定理</u> 可逆矩阵 A 存在 LU 分解,当且仅当 A 的所有顺序主子阵均可逆,此时 LU 分解唯一。(满足在消元过程中不需要行的调换)

第一章 线性代数 3

<u>定理</u> 若可逆矩阵 A 存在 LU 分解,则存在对角线均不为 0 的对角矩阵 D、单位下三角矩阵 L、单位上三角矩阵 U,满足 A = LDU,且该分解唯一。此即 LDU 分解。

定理 若可逆对称阵 A 有 LDU 分解,则 $L = U^T$ 。

<u>定理</u> 可逆矩阵 A 存在分解 A=PLU,P 为置换矩阵,显然该分解不唯一。<u>技巧</u> 将 A 分解成对称阵 $X=\frac{1}{2}(A+A^T)$ 与反对称阵 $Y=\frac{1}{2}(A-A^T)$ 。

1.2 子空间和维数

定义 映射 $A: x \mapsto Ax \in \mathbb{R}^{m \times n}$ 的像集

$$\mathcal{R}(A) = \{A\boldsymbol{x}|\boldsymbol{x} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$$
(1.3)

显然 $\mathbf{0} \in \mathcal{R}(A)$ 总是成立。

(*) $\mathcal{R}(A) = \mathbb{R}^m \iff A$ 为满射。

定义 映射 $A: x \mapsto Ax \in \mathbb{R}^{m \times n}$ 的原像

$$\mathcal{N}(A) = \{ \boldsymbol{x} \in \mathbb{R}^n | A\boldsymbol{x} = \boldsymbol{0} \} \in \mathbb{R}^n$$
(1.4)

(*) $\mathcal{N}(A) = \{\mathbf{0}\} \iff A$ 是单射。