Search History Database Details

Set	Term Searched	Items		
S1	"ENERGY RATIO"	190	Display	
S2	"STANDARD DEVIATION"	19835	Display	·
S 3	S1 AND S2	0	Display	
S4	UNSHARP	1790	Display	
S5	(MASK OR MASKING)	172828	Display	Format
S6	S4 AND S5	747	Display	Free \(\sum_{\text{Number of Records}} \)
S7	S1 AND S6	0	Display	10
S8	S2 AND S6	2	Display	To the second second

Show Databa	se Details for:				Bluesheet	Dates
2: Inspec (189	8-present)			; *	binesileet	Rates
Fields	Formats	Sorts	Limits		Tags	
		© 2007 Dialog, a Thom	nson business			

Electrical Engineering

239:MathSci®

647:CMP Computer Fulltext

V

V

To search the database index, select two or more databases and enter your search terms

Search

Select All X Clear Selections **Begin Databases** 2:Inspec (1898-present) 7 V 6:NTIS - National Technical Information Service 8:Ei Compendex® ~ 25:Weldasearch V 34: SciSearch® - a Cited Reference Science Database - 1990-V 36:MetalBase V 46:Corrosion Abstracts マ 56:Computer and Information Systems V 57:Electronics and Communications Abstracts V 65:Inside Conferences 7 92:IHS International Standards and Specifications V 94: JICST-EPlus - Japanese Science & Technology V 95:TEME - Technology and Management 7 99: Wilson Applied Science & Technology Abstracts V 103: Energy Science and Technology V 7 104: AeroBase 108:CSA Aerospace & High Technology Database 144:PASCAL V

434: SciSearch® - a Cited Reference Science Database - 1974-1989

Back to Engineering
Back to All categories
© 2007 The Dialog Corporation

8/9/1 (Item 1 from file: 2)

09791063

Title: Multi-feature seafloor sediments classification for side-scan sonar imagery based on a quadratic unsharp masking operator

Author Yang Ci-yin; Xu Feng

Author Affiliation: Lab. of Imagery Sonar Tech., Chinese Acad. of Sci., Beijing, China

Journal: Acta Electronica Sinica vol.33, no.10 p. 1841-4

Publisher: Chinese Inst. Electron,

Publication Date: Oct. 2005 Country of Publication: China

CODEN: TTHPAG ISSN: 0372-2112

SICI: 0372-2112(200510)33:10L.1841:MFSS;1-2 Material Identity Number: B902-2005-013

Language: Chinese Document Type: Journal Paper (JP)

Treatment: Practical (P); Theoretical (T)

Abstract: A quadratic unsharp masking (QUM) operator is presented, which extracts edge and detail information from an image with equal weights. QUM which is the mean of QUM values for all pixels in an image, TEM which is the mean of TEM (Laws' texture energy measure) values for all pixels in the image, and standard deviation (sigma) of the image are combined to form a three-dimensional feature vector (QUM, TEM, sigma), for performing classification on side-scan sonar seafloor images. 150 sidescan sonar images for mud, sand and rock seafloors are classified using the presented three-dimensional feature vector, and recognition rates of maximum 96.7% and minimum 90.7% are achieved. These same 150 seafloor images are also classified using the conventional gray level co-occurrence matrix features, and a recognition rate of 87.3% is achieved, which shows that the presented seafloor classification method has better classification performance. (12 Refs)

Subfile: A B C

Descriptors: feature extraction; geophysical signal processing; image classification; image recognition; image segmentation; image texture; matrix algebra; oceanographic techniques; sediments; sonar imaging

Identifiers: seafloor sediment classification; side-scan sonar imagery; quadratic unsharp masking; QUM operator; edge extraction; texture energy measure; TEM; standard deviation; three-dimensional feature vector; seafloor image; cooccurence matrix feature; recognition rate

Class Codes: A9150J (Marine sedimentation and sediments); A9365 (Data and information; acquisition, processing, storage and dissemination in geophysics); B7710D (Oceanographic and hydrological techniques and equipment); B6135E (Image recognition); B0210 (Algebra); B6320E (Sonar and acoustic radar); C7340 (Geophysics computing); C5260B (Computer vision and image processing techniques); C1250M (Image recognition); C1110 (Algebra)

Copyright 2006, IEE

INSPEC (Dialog® File 2): (c) 2007 Institution of Electrical Engineers. All rights reserved.

8/9/2 (Item 1 from file: 56)

0000525767 IP Accession No: 200609-34-056981

Use of blur-space for deblurring and edge-preserving noise smoothing

Immerkaer, J

IEEE Transactions on Image Processing, v 10, n 6, p 837-840, June 2001

Publication Date: 2001

Publisher: Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Ln, Piscataway, NJ,

08854-1331

Country Of Publication: USA
Publisher Url: http://ieee.org
Publisher Email: inspec@ieee.org

Document Type: Journal Article

Record Type: Abstract Language: English ISSN: 1057-7149 Electronic Issn: NO DOI: 10.1109/83.923280

File Segment: Computer & Information Systems Abstracts

Abstract:

The Gaussian blur-space for an unblurred nD-image I is the set of the images obtained by blurring I with multivariate nD-Gaussians. Using the variance, instead of the standard deviation, of a Gaussian as blur parameter makes it simpler to extrapolate a deblurred image from a blurred image. Unsharp masking is shown to be a special case of the use of blur-space. Algorithms using blur-space for deblurring and edge-preserving noise smoothing, without explicit edge detection, are described and implemented

Descriptors: Images; Neodymium; Gaussian; Image processing; Masking; Blurring; Variance; Smoothing; Edge detection; Noise; Standard deviation; Algorithms; Blurred; Extrapolation

Subj Catg: 34, Multimedia Information Systems

Computer and Information Systems Abstracts (Dialog® File 56): (c) 2007 CSA. All rights reserved.

© 2007 Dialog, a Thomson business

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
S1	5	((TZU-HUNG) near2 (CHENG)).INV.	US-PGPUB; USPAT; USOCR	OR	OŃ	2007/02/22 12:19
S2	1	((TZU-HUNG) near2 (CHENG)).INV.	EPO; JPO; DERWENT	OR	ON	2007/02/22 13:20
S6	1212	unsharp near2 mask\$5	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/02/22 13:21
S7	175	S6.ab.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/02/22 13:28
S8	121	S7 and "unsharp mask"	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/02/22 13:29
S9 ·	175	S6 and S7	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/02/22 13:30
S10	8	deviation and S9	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/02/22 13:31
S11	. 8	deviation and S7	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/02/22 13:34
S18	66	S6 and 382/132.ccls.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/02/22 13:56

S31	2182	energy adj ratio	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/15 13:28
S32	41	S31 and "382".clas.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/15 13:30
S33	190	S31 same filter	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/15 13:30
S34	5	S33 and "382".clas.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/15 13:32
S35	128940	bandpass or (band adj pass)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/15 13:33
S36	20	S31 same S35	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/15 13:38
S37	1194	unsharp adj mask\$4	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/15 13:38
S38	467	S37 and "382".clas.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/15 13:42

				1		· · · · · · · · · · · · · · · · · · ·
S40	39	S38 and S35	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 09:46
S41	2141	(382/260,263,264,266).CCLS.	US-PGPUB; USPAT; USOCR	OR	OFF	2007/03/29 09:47
S42	1220	unsharp near2 mask\$5	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 09:47
S43	196	S41 and S42	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 09:50
S44	360526	lumin\$6	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 09:50
S48	129276	bandpass or (band adj pass)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 10:15
S49	129276	S48	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR .	ON	2007/03/29 10:15
S50	46	S49 and S44 and S42	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 10:19
S51	230126	brightness	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 10:19

S52	97	S51 same S42	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 10:19
S53	11	S52 and S41	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 10:19
S54	85524	standard adj deviation	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 12:51
S55	149	S48 same S54	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 12:51
S56	3	S42 and S55	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 12:54
S57	27	S42 same S54	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/03/29 12:54