MATH102 Calculus II 1920 Final Report

Xue Ren Qianqian 19098535-i011-0068

Macau University of Science and Technology June 2, 2020

Transcendental Functions

7.1 Inverse Functions and Their Derivatives

7.1.1 One-to-One Functions

A function that has distinct values at distinct elements in its domain is called one-to-one.

The Horizontal Line Test for One-to-One Functions

A function y = f(x) is one-to-one if and only if its graph intersects each horizontal line at most once.

7.1.2 Inverse Functions

DEFINITION Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by

$$f^{-1}(b) = a$$
 if $f(a) = b$

The domain of f^{-1} is R and the range of f^{-1} is D.

Notice: The symbol f^{-1} for the inverse of f is read "f inverse." The "-1" in f^{-1} is not an exponent.

How to Find Inverses

- 1. Solve the equation y = f(x) for x. This gives a formula $x = f^{-1}(y)$ where x is expressed as a function of y.
- 2. Interchange x and y, obtaining a formula $y = f^{-1}(x)$ where f^{-1} is expressed in the conventional format with x as the independent variable and y as the dependent v ariable.

7.1.3 Derivatives of Inverses of Differentiable Functions

If y = f(x) has a horizontal tangent line at (a, f(a)), then the inverse function f^{-1} has a vertical tangent line at (f(a), a), and this infinite slope implies that f^{-1} is not differentiable at f(a). Theorem 1 gives the conditions under which f^{-1} is differentiable in its domain (which is the same as the range of f).

THEOREM 1 (The Derivative Rule for Inverses)

If f has an interval I as domain and f'(x) exists and is never zero on I, then f'(x) is differentiable at every point in its domain (the range of f). The value of $(f^{-1})'$ at a point b in the domain of f^{-1} is the reciprocal of the value of f'at the point $a = f^{-1}(b)$:

$$(f^{-1})'(b) = \frac{1}{f'(f^{-1}(b))}$$

or

$$\left. \frac{df^{-1}}{dx} \right|_{x=b} = \frac{1}{\left. \frac{df}{dx} \right|_{x=f^{-1}(b)}}$$

Exponential Change and Separable Differential Equations

7.4.1 Exponential Change

If the amount present at time t = 0 is called y_0 , then we can find y as a function of t by solving the following initial value problem:

Differential equation: $\frac{dy}{dt} = ky$ Initial condition: $y = y_0$ when t = 0.

Info: If y is positive and increasing, then k > 0. If y is positive and decreasing, then k < 0

The solution of the initial value problem

$$\frac{dy}{dt} = ky, \qquad y(0) = y_0$$

is

$$y = y_0 e^{kt}$$
.

Indeterminate Forms and L'Hôpital's Rule 7.5

7.6 **Inverse Trigonometric Functions**

Transcendental Functions

- **8.2** Integration by Parts
- 8.3 Trigonometric Integrals
- 8.4 Trigonometric Substitutions
- 8.5 Integration of Rational Functions by Partial Fractions
- 8.8 Integration of Rational Functions by Partial Fractions

Infinite Sequences and Series

- 10.1 Sequences
- 10.2 Infinite Series
- 10.3 The Integral Test
- 10.4 Comparison Tests

10.5 Absolute Convergence; The Ratio and Root Tests

10.5.1 Absolute Convergence

DEFINITION A series $\sum a_n$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$, converges.

THEOREM 2 If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

10.5.2 The Ratio Test

THEOREM 3 Let $\sum a_n$ be any series and suppose that

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$

Then (a) the series converges absolutely if $\rho < 1$, (b) the series diverges if $\rho > 0$ or ρ is ininite, (c) the test is inconclusive if $\rho = 1$

10.5.3 The Root Test

THEOREM 4 Let $\sum a_n$ be any series and suppose that

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \rho$$

Then (a) the series converges absolutely if $\rho < 1$, (b) the series diverges if $\rho > 0$ or ρ is ininite, (c) the test is inconclusive if $\rho = 1$

10.6 Alternating Series and Conditional Convergence

A series in which the terms are alternately positive and negative is an alternating series.

THEOREM 5 (The Alternating Series Test) The series

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \cdots$$

converges if the following conditions are satisfied:

- 1. The u_n 's are all positive.
- 2. The u_n are eventually nonincreasing: $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N.
- 3. $u_n \to 0$.

THEOREM 6 (The Alternating Series Estimation Theorem)

If the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ satisfies the three conditions of Theorem 15, then for $n \geq N$,

$$s_n = u_1 - u_2 \cdots + (-1)^{n+1} u_n$$

approximates the sum L of the series with an error whose absolute value is less than u_{n+1} , the absolute value of the irst unused term. Furthermore, the sum L lies between any two successive partial sums s_n and s_{n+1} , and the remainder, $L-s_n$, has the same sign as the irst unused term.

10.6.1 Conditional Convergence

DEFINITION A series that is convergent but not absolutely convergent is called conditionally convergent.

10.6.2 Rearranging Series

THEOREM 7 (The Rearrangement Theorem for Absolutely Convergent Series)

If $\sum_{n=1}^{\infty} a_n$ converges absolutely, and $b_1, b_2, \dots, b_n, \dots$ is any arrangement of the sequence $\{a_n\}$, then $\sum b_n$ converges absolutely and

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n$$

10.6.3 Summary of Tests to Determine Convergence or Divergence

Here is a summary of the tests we have considered.

- 1. The nth-term test for Divergence: Unless $a_n \to 0$, the series diverges.
- 2. **Geometric series:** $\sum ar^n$ converges if |r| < 1; otherwise it diverges
- 3. **p-series:** $\sum \frac{1}{n^p}$ converges if p > 1; otherwise it diverges.
- 4. **Series with nonnegative terms:** Try the Integral Test or try comparing to a known series with the Direct Comparison Test or the Limit Comparison Test. Try the Ratio or Root Test.
- 5. Series with some negative terms: Does $\sum |a_n|$ converge by the Ratio or Root Test, or by another of the tests listed above? Remember, absolute convergence implies convergence.
- 6. Alternating series: $\sum a_n$ converges if the series satisfies the conditions of the Alternating Series Test.

Info: There are other tests we have not presented which are sometimes given in more advanced courses.

10.7 Power Series

10.7.1 Power Series and Convergence

DEFINITION A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + \cdots$$

A pover series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots$$

in which the **center** a and the **coefficients** $c_0, c_1, c_2, \cdots, c_n, \cdots$ are constants.

THEOREM 8 (The Convergence Theorem for Power Series)

If the power series $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$ converges at $x = c \neq 0$, then it converges absolutely for all x with |x| < |c|. If the series diverges at x = d, then it diverges for all x with |x| > |d|.

10.8 Taylor and Maclaurin Series

10.8.1 Taylor and Maclaurin Series

DEFINITION Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the **Taylor series generated by f at** x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

The **Maclaurin series of f** is the Tailor series generated by f at x = 0, or

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + f^{(n)}(0)n! x^n + \dots$$

6

10.8.2 Taylor Polynomials

DEFINITION Let f be a function with derivatives of order k for $k=1,2,\cdots,N$ in some interval containing a as an interior point. Then for any integer n from 0 through N, the **Taylor polynomial of order n** generated by f at x=a is the polynomial

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a) + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Parametric Equations and Polar Coordinates

11.1 Parametrizations of Plane Curves

11.1.1 Parametric Equations

Some path can describe as x=f(t) and y=g(t) where f and g are continuous functions. When studying motion, t usually denotes time. Equations like these can describe more general curves than those described by a single function, and they provide not only the graph of the path traced out but also the location of the particle (x,y)=((t),g(t)) at any time t.

11.1.2 Brachistochrones and Tautochrones

11.2 Calculus with Parametric Curves

11.2.1 Tangents and Areas

THEOREM 9 (Parametric Formula for dy/dx)

If all three derivatives exist and $dx/dt \neq 0$, then

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

THEOREM 10 (Parametric Formula for d^2y/dx^2)

If the equations x=(t),y=g(t) define y as a twice-differentiable function of x, then at any point where $dx/dt \neq 0$ and y'=dy/dx

$$\frac{d^2y}{dx^2} = \frac{dy'/dt}{dx/dt}$$

11.2.2 Length of a Parametrically Defined Curve

11.3 Polar Coordinates

- 11.4 Graphing Polar Coordinate Equations
- 11.5 Areas and Lengths in Polar Coordinates