

Depart of the interpolation o

COMPOSICIÓN DE FUNCIONES

La operación de aplicar sucesivamente dos o más funciones en un orden determinado da origen a otra función llamada composición de funciones.

Suponga que $f(x) = \sqrt{x}$ y $g(x) = x^2 + 1$ a partir de estas dos funciones se puede definir

una nueva función
$$h$$
 como $h(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$

DEFINICIÓN

$$((g(x)) = f(g(x)) = f$$

Dadas las funciones f y g, tal que Dom $f \cap \text{Ran}g \neq \{\}$, la composición f de g, denotada $f \circ g$ se define mediante la siguiente regla de correspondencia $(f \circ g)(x) = f(g(x))$

$$f(x) = 5x - 4 \qquad (f \circ g)(x) = f(g(x)) = 5g(x) - 4 = 5(x+7) - 4 = 5x + 31$$

$$g(x) = x + 7$$

$$(g \circ f)(x) = g(f(x)) = f(x) + 7 = (5x - 4) + 7 = 5x + 3$$

$$(hof)(x) = h(f(x)) = (f(x))^{2} = (5x - 4)^{2}$$

COMPOSICIÓN DE FUNCIONES

f(x)	g(x)	$(f \circ g)(x)$	$(g \circ f)(x)$
$f(x) = x^2 + 1$	$g(x) = \cos x$	$f(g(x)) = (g(x))^{2}+1$ = $(\cos(x))^{2}+1$	$g(f(x)) = \cos(f(x))$ $= \cos(x^2 + 1)$
$f(x)=e^x+3$	g(x)=x-3	$f(g(x)) = e^{g(x)} + 3$ = $e^{x-3} + 3$	g(f(x)) = f(x) - 3 = $(e^x + 3) - 3$
f(x)=x-1	$g(x) = x^2$	$f(g(x)) = g(x) - 1$ $= x^2 - 1$	$g(f(x)) = (f(x))^2$ = $(x-1)^2$

FUNCIÓN INYECTIVA

Una función es inyectiva o uno a uno, si y solo si a elementos distintos del dominio le corresponden imágenes distintas.

¿Cuál de las siguientes funciones es inyectiva?

Sea f una función cuya regla es

$$f(x) = x^2$$
 jes inyectiva? (X j 3)

$$f(-3) = (-3)^2 = 9$$
 (-3)

$$f(3) = (3)^2 = 9$$
 (3 | 9)

Observa que para dos valores diferentes de x se obtiene el mismo valor de y.
¿Qué implica?

La función f no es inyectiva

En la figura adjunta se muestra las gráfica de la función f, ¿es inyectiva?

Grafique en el mismo plano la inversa de f.

$$(4/5)$$
 $(5/4)$

$$(x:y)$$
 $(g:x)$

REGLA DE CORRESPONDENCIA DE LA FUNCIÓN INVERSA

Dada la función y = f(x), f(x) = 3x + 7 para determinar la regla de correspondencia de - Función creevoute f^{-1} , se debe seguir los siguientes pasos:

Paso 1: Verifique que f es inyectiva

Paso 2: Escriba en lugar de f(x) la variable y.

Paso 3: Despeje la variable x en términos de y. Paso 3: $x = \frac{y-7}{3}$

Paso 4: Cambie la variable y por x y viceversa.

Paso 5: Cambie la variable y por $f^{-1}(x)$.

Paso 1: f(x) = 3x + 7 M = 3 > 0

Paso 2: y = 3x + 7 y = 3x + 7

Paso 4: $y = \frac{x-7}{3}$

Paso 5: $f^{-1}(x) = \frac{x-7}{2}$

REGLA DE CORRESPONDENCIA DE LA FUNCIÓN INVERSA

Dada la función f con regla de correspondencia $f(x) = x^2$, definida en el intervalo $[0; +\infty[$.

Halle la regla de correspondencia de f^{-1} e indique su dominio y su rango. Esboce la gráfica.

Paso 1: f es inyectiva en $[0; +\infty]$

Paso 2: $y = x^2$ \times People of $y = x^2$ \times Paso 3: $\begin{cases} x = \pm \sqrt{y} & \text{como } x \ge 0 \\ x = \sqrt{y} & \text{possible of } y = \sqrt{x} \end{cases}$ Paso 4: $y = \sqrt{x}$

Paso 5: $f^{-1}(x) = \sqrt{x}$ Dom $(f^{-1}) = \text{Rau}(f) = \text{Co}_1 + \text{co}_2$

REGLA DE CORRESPONDENCIA DE LA FUNCIÓN INVERSA Dada la función f con regla de correspondencia $f(x) = x^2$, definida en el intervalo $[0; +\infty[$. Halle la regla de correspondencia de f^{-1} e indique su dominio y su rango. Esboce la gráfica. Paso 1: f es invectiva en $[0; +\infty[$ Paso 2: $y = x^2$ Paso 3: $x = \pm \sqrt{y}$ como $x \ge 0$ $x = \sqrt{y}$ Paso 4: $y = \sqrt{x}$ Dom $f^{-1} = \operatorname{Ran} f = [0; +\infty[$ Ran $f^{-1} = \operatorname{Dom} f = [0; +\infty[$

e)
$$f(x) = (x-2)^2$$
; $x \ge 2$

P1: f es injectiva.

P2: $y = (x-2)^2$

P3: $\pm \sqrt{y} = x-2$

Positivo

 $\sqrt{y} = x-2$

P4: $\sqrt{x} + 2 = y$
 $\sqrt{-1x} + 2 = f(x)$

ACTIVIDADES DE LA SEMANA

Inicio de TAREA 4, fecha de entrega: domingo 20 de junio, ASESORÍA 4, clase programada con el AAD CONTROL DE RECUPERACIÓN 3, se evalúa en la asesoría 4