5G LDPC 译码算法详解和仿真

刘杰 hahaliu2001@gmail.com

1 简介

LDPC code 用于 5G PDSCH 和 PUSCH 信道

项目实现了三种 LDPC 译码算法

- 1. Bit Flipping decoding algorithm 硬判决,低复杂度,性能差
- Belief propagation algorithm
 也称作 sum-product algorithm.
 软判决,性能近最优,高复杂度,主要用于仿真
- 3. Min-Sum algorithm 软判决,性能次优,复杂度低。当前产品实现基本都使用这个算法 项目实现了四种 Min-sum algorithms:
 - Traditional Min-sum
 - Normalized Min-sum
 - Offset Min-sum
 - Mixed Min-sum,四种 min-sum 中性能最优

本文讲解这三种算法。

The python 实现代码:

https://github.com/hahaliu2001/python 5gtoolbox.git: py5gphy/ldpc

2 LDPC 码

LDPC 编码矩阵: $H \times \begin{bmatrix} c \\ w \end{bmatrix} = H \times v_n = 0$

其中:

H 是 MxN 校验矩阵 matrix, c 是输入信息 bit, w 是生成的校验 bit.

LDPC 编码就是根据输入信息 bit 和校验矩阵, 生成校验 bit

下面文章解释 5G LDPC encoder 优化:

https://github.com/hahaliu2001/python_5gtoolbox.git:

docs/algorithm/LDPC_encoder_optimization.pdf

LDPC 译码的基本思想就是:

3 Bit-flipping Decoding Algorithm

3.1 Reference

[1] 基于可靠性调度的 LDPC 码比特翻转译码算法

https://www.jsjkx.com/EN/Y2019/V46/I6A/329

[2] Two-Round Selection-Based Bit Flipping Decoding Algorithm for LDPC Codes https://onlinelibrary.wiley.com/doi/10.1155/2023/6262929

[3] Multi-Stage Bit-Flipping Decoding Algorithms for LDPC Codes

https://www.researchgate.net/publication/333913937_Multi-Stage_Bit-Flipping_Decoding_Algorithms_for_LDPC_Codes

3.2 实现

这是 LDPC 硬判决算法

对于 LDPC code (N,K),

其中:

N 是 LDPC 码长,K 是信息 bit 长度,M=N-K 校验 bit 长度 H is M X N 校验矩阵

LDPC 译码是计算 $H \times v_n = s$, 当 s = 0时译码成功

其中:

 v_n 称作 "variable nodes" with length=N

s 称作 "check nodes", with length=M

Tanner 图一般用于显示 variable nodes 和 check nodes 关系

H 矩阵每一行代表哪些 variable nodes 用于计算当前 check node H 矩阵每一列代表哪些 check node 跟当前 variable node 关联

例如上图中,

第 0 行 [1,1,1,0,0]表示 variable nodes[0,1,2]用于计算 check node 0

第 1 列[1,1,0]表示 check nodes [0,1]关联到 variable node 1

BF 译码过程:

输入: N 个接收的 LLR 值

Step 1: 生成硬判决序列 \mathcal{C}_n from LLR, with \mathcal{C}_n =0 if LLR >0 else 1

Step 2: 计算 $s = HC_n$

Step 3: 如果 s==0 -> 译码成功,退出译码过程

Step 4:计算 C_n 的可靠性: $E_n = (2s-1)H$

 E_n 越高代表可靠性越低,也就是说这个 bit 更可能出错

Step 5: bit 翻转最大 E_n 值对应的 C_n ,返回 step 2

备注 1:

一些 paper 描述可靠性 $E_n = sH$, 不是 $E_n = (2s - 1)H$.

 $E_n = sH$ 用于 regular LDPC(每一行'1'的个数相同,每一列'1'的个数相同,每行'1'的个数和每列'1'的个数可以不同)

5G 使用 irregular LDPC, $E_n = sH$ 是错误的。

备注 2:

一些 paper shows 说 Weighted Bit-Flipping Algorithm 性能比 non- Weighted Bit-Flipping Algorithm 更优,但是我测试时 Weighted Bit-Flipping Algorithm 不 work. BLER 在高 SNR 时仍然为 100%

Weighted Bit-Flipping Algorithm is:

$$e_k^{(2)} = \sum_{j \in M(k)} (2s_j - 1).r_{\min}^j,$$

其中 r_{min}^{j} 是用于计算 jth 校验 bit 的所有 variable bits 中 LLR 最小绝对值

备注 3:

BF 译码性能比软判决性能差很多, 比 BP 算法差 2.25dB

Python code

```
#hard coded LLRin to generate ck bit sequence, LLR >0 ->0, LLR<0 -> 1
ck = np.copy(LLRin)
ck[ck > 0] = 0
ck[ck < 0] = 1

#main loop
for iter in range(L):
S = (H @ ck.T) % 2

if not np.any(S):
#if S is all zero sequence, decoding success, return Tue
return ck, True

#process if S is not all zero
En = (2*S-1) @ H #this is correct equation
max_value = np.max(En)
#bit flip any ck bits with En value=max_value
ck[En==max_value] = 1- ck[En==max_value]
```

3.3 BF 仿真

测试配置:

Zc = 10, bgn = 1, K = Zc*22=220, N=Zc*66=660

测试 L size 16, 32, 64 三个迭代值,测试结果显示 L=32 和 64 性能相当,比 L=16 优 1.6dB BF 仿真代码在 script/sim_ldpc_decoder_bf.py in

https://github.com/hahaliu2001/python 5gtoolbox.git:

4 sum-product algorithm(或者 belief propagation in another name) 备注:

"belief propagation"和 "sum-product algorithm" 是同一个算法

4.1 Reference

 A Generalized Adjusted Min-Sum Decoder for 5G LDPC Codes: Algorithm and Implementation Yuqing Ren, Student Member, IEEE, Hassan Harb, Member, IEEE, Yifei Shen, Member, IEEE, Alexios Balatsoukas-Stimming, Member, IEEE, and Andreas Burg, Senior Member, IEEE

chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://arxiv.org/pdf/2310.15801

- https://github.com/PKU-HunterWu/LDPC-Encoder-Decoder/tree/main
- Improved Min-Sum Decoding of LDPC Codes Using 2-Dimensional Normalization
 Juntan Zhang and Marc Fossorier, Daqing Gu and Jinyun Zhang
- Improved Sum-Min Decoding for Irregular LDPC Codes Gottfried Lechner & Jossy Sayir
- chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/http://staff.ustc.edu.cn/~wyzhou/chapte r8.pdf
- An Introduction to LDPC Codes, William E. Ryan, chromeextension://efaidnbmnnnibpcajpcglclefindmkaj/http://tuk88.free.fr/LDPC/ldpcchap.pdf

4.2 LDPC 译码用到的概率知识

我看到的 paper 都是直接给结果,没有推导过程。这里给出 LDPC BP decoder 中用到的公式的推导。

4.2.1 多随机变量模 2 加概率

这个问题是说,假设输入变量 assume input variables x1, x2, xm 概率为:

$$P1 = P(x1 = 0), P2 = P(x2 = 0), ... Pm = P(xm = 0)$$

计算 $P(x1\oplus.\oplus.\oplus xm)$

首先,

计算 *P*(*x*1⊕*x*2)

$$P(x1 \oplus x2 = 0) = P(x1 = 0)P(x2 = 0) + (P(x1 = 1)(x2 = 1) = P1P2 + (1 - P1)(1 - P2)$$

= 1 - (P1 + P2) + 2P1P1

得到:
$$2P(x1\oplus x2=0)-1=4P1P2-2(P1+P2)+1=(2P1-1)(2P2-1)$$
 (A1)

其次,

根据 $P(x1 \oplus x2)$ 计算 calculate $P(x1 \oplus x2 \oplus x3)$

$$2P(x1 \oplus x2 \oplus x3 = 0) - 1 = (2P(x1 \oplus x2 = 0) - 1)(2P3 - 1) = (2P1 - 1)(2P2 - 1)(2P3 - 1)$$

递归得到通用公式:

$$2P(x1 \oplus ... \oplus ... \oplus xm = 0) - 1 = \prod_{n=1}^{m} (2P_n - 1)$$

然后得到

$$P(x1 \oplus ... \oplus ... \oplus xm = 0) = \frac{1}{2} + \frac{1}{2} \prod_{n=1}^{m} (2P_n - 1)$$

$$P(x1 \oplus ... \oplus ... \oplus xm = 1) = 1 - P(x1 \oplus ... \oplus ... \oplus xm = 0) = \frac{1}{2} - \frac{1}{2} \prod_{n=1}^{m} (2P_n - 1)$$

LLR 公式

LDPC 译码一般都用 LLR(log-likelihood ratio)值在传递概率

定义:
$$L(x) = LLR(x) = \log \frac{P(x=0)}{P(x=1)}$$

得到:

$$P(x = 0) = \frac{e^{L(x)}}{1 + e^{L(x)}}, P(x = 1) = \frac{1}{1 + e^{L(x)}}$$

得到:

$$2P(x = 0) - 1 = \frac{e^{L(x)} - 1}{e^{L(x)} + 1}$$

曲 $tanh(t) = \frac{e^{2t}-1}{e^{2t}+1}$ 定义,

得到
$$2P(x=0)-1=\tanh\left(\frac{L(x)}{2}\right)=\frac{e^{L(x)}-1}{e^{L(x)}+1}$$

由此得到:

$$\prod_{n=1}^{m} (2P_n - 1) = \prod_{n=1}^{m} \tanh(L_n(x)/2)$$

下面三个 LLR 公式在不同的 paper 中使用

Equation 1:

$$LLR_{s} = log \frac{P(x1 \oplus ... \oplus xm = 0)}{P(x1 \oplus ... \oplus xm = 1)} = log \frac{\frac{1}{2} + \frac{1}{2} \prod_{n=1}^{m} \tanh(L_{n}(x)/2)}{\frac{1}{2} - \frac{1}{2} \prod_{n=1}^{m} \tanh(L_{n}(x)/2)} = log \frac{1 + \prod_{n=1}^{m} \tanh(L_{n}(x)/2)}{1 - \prod_{n=1}^{m} \tanh(L_{n}(x)/2)}$$
(B1)

Equation 2:

With definition: $tanh^{-1}(t) = \frac{1}{2}\log(\frac{1+t}{1-t})$

$$LLR_s = 2tanh^{-1}(\prod_{n=1}^{m} \tanh(L_n(x)/2))$$
 (B2)

Equation 3:

$$\pm \tanh(L_n(x)) = sign(L_n(x)) \tanh(|L_n(x)/2|)$$

得到:

$$\prod_{n=1}^{m} \tanh (L_n(x)/2) = \prod_{n=1}^{m} \operatorname{sign} (L_n(x)) \prod_{n=1}^{m} \tanh (|L_n(x)/2|) = sA$$

其中
$$s = \prod_{n=1}^{m} \text{sign}(L_n(x)), A = \prod_{n=1}^{m} \text{tanh}(|L_n(x)/2|)$$

得到:
$$log \frac{1+sA}{1-sA} = \begin{cases} log \frac{1+A}{1-A} & s=1 \\ -log \frac{1+A}{1-A} & s=-1 \end{cases} = s * log \frac{1+A}{1-A}$$

LLR 公式 3:

$$LLR_s = \prod_{n=1}^m \text{sign}(L_n(x)) * 2tanh^{-1}(\prod_{n=1}^m \tanh(|L_n(x)/2|))$$
 (B3)

4.2.2 多事件条件概率

得到

$$\frac{{}_{P}(c|x1,x2,\ldots,xm)}{{}_{P}(c)} = \frac{{}_{P}(x1,x2,\ldots,xm|c)}{{}_{P}(x1,x2,\ldots,xm)} = \frac{{}_{P}(x1|c)}{{}_{P}(x1)} \frac{{}_{P}(x2|c)}{{}_{P}(x2)} \ldots \frac{{}_{P}(xm|c)}{{}_{P}(xm)} =$$

$$\frac{P(c|x1)}{P(c)} \frac{P(c|x2)}{P(c)} \dots \frac{P(c|xm)}{P(c)}$$

其中:

x1, x2, ..., xm 相互独立

由此得到:

$$P(c = 0|x_1, x_2, ..., x_m) = K \prod_{n=1}^m P(c = 0|x_n),$$

$$P(c = 1|x_1, x_2, ..., x_m) = K \prod_{n=1}^m P(c = 1|x_n),$$

其中:

$$K = \frac{1}{\prod_{n=1}^{m-1} P(c)}$$
为常量

LLR 公式:

$$LLR(c|x1, x2, ..., xm) = log \frac{P(c = 0|x1, x2, ..., xm)}{P(c = 1|x1, x2, ..., xm)} = \sum_{n=1}^{m} LLR(c|x_n)$$
 (C1)

4.3 通过例子学习 SP algorithm

首先最好通过一个例子来学习 SP algorithm.

Parity-check matrix:

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

上面是 (N=7, M=3) H 校验矩阵和 Tanner 图.

v₁, v₂, ... v₇ 是 variable nodes

 c_1 , c_2 , c_3 是 check nodes

 $y_1, y_2, ... y_7$ 是译码器外部输入到 variable nodes 值,一般来自外部信道均衡输出通常提供 $y_1, y_2, ... y_7$ LLR 值

Step 1: Check node 处理

每个 check node 期望值都是零,也就是说对 $c1: v1 \oplus v2 \oplus v3 \oplus v5 = 0$, 如果 $v2 \oplus v3 \oplus v5 = 0$ or 1, 那么v1= also 0 or 1

概率值 $P(v1|c1) = P(v2 \oplus v3 \oplus v5)$ 是 check node c1 到 variable node v1 传递的概率值根据公式 (B2) 得到:

$$LLR(v1|c1) = 2tanh^{-1}(\tanh(LLR(v2)/2)\tanh(LLR(v3)/2)\tanh(LLR(v5)/2))$$

类似对于 $c3: v1 \oplus v2 \oplus v4 \oplus v7 = 0$

 $P(v1|c3) = P(v2 \oplus v4 \oplus v7)$ 是 check node c3 到 variable node v1 传递的概率值 $LLR(v1|c3) = 2tanh^{-1}(\tanh(LLR(v2)/2)\tanh(LLR(v4)/2)\tanh(LLR(v7)/2))$

Step 2: Variable node 处理

v1 接收三个外部信息:

P(v1|y1), P(v1|c1), P(v1|c3)

其中:

P(v1|y1) 时译码器外部输入的初始信息

P(v1|c1), P(v1|c3) 是从连接到v1的 check nodes 收到的信息

从公式 (C1) 得到:

$$LLR(v1) = LLR(v1|y1) + LLR(v1|c1) + LLR(v1|c3)$$

类似方法得到 LLR(v2), ..., LLR(v7)

Step 3: 验证 LDPC decoding result

从 LLR 值得到 7 个硬 bit 序列: $c_i = \begin{cases} 0 & LLR(v_i) > 0 \\ 1 & else \end{cases}$

如果Hc = 0, LDPC 译码成功, 退出 LDPC 译码.

否则进入下一步.

Step 4: 更新从 variable node 到 check node 的 LLR messages if LDPC decoding

failed

LLR(v1) 使用初试 LLR 和来自 check node 的 LLR 值计算得到

更新从 v1 到任何一个 check node 的 LLR 值时,需要去掉来自这个 check node 的 LLR。例 如 for v1:

$$LLR(v1 \rightarrow c1) = LLR(v1|v1) + LLR(v1|c3)$$

$$LLR(v1 \rightarrow c3) = LLR(v1|v1) + LLR(v1|c1)$$

类似方法计算所有从 variable node 到 check node 的 LLR, 回到 step 1.

重复上面过程,直到 LDPC 译码成功,或者达到最大迭代次数.

4.4 通用 SP algorithm

公式中使用到的标识

 LQ_n variable node n 总 LLR

 \mathbf{L}_n variable node n 初始 LLR

 Lq_{nm} is the LLR from variable node n to check node m

 ${\rm Lr}_{mn}$ is the LLR from check node m to variable node n

 c_n is the decoded bit for variable node ${\sf n}$

A(j) is '1' position list for H line j, is all variable nodes connecting to check node j

B(i) is '1' position list for H column I, if all check nodes to connect to variable node i

流程

Step 1 initialization $Lq_{nm}=L_n$

Step 2: calculate Lr_{mn} , LLR from check node m to variable node n

$$\operatorname{Lr}_{mn} = 2 tanh^{-1}(\prod_{i \in A(m), i! = n} \tanh(Lq_{mi}/2))$$

Step 3: calculate overall LLR for variable nodes

$$LQ_n = \sum_{j \in B(n)} Lr_{jn}$$

Step 4: check LDPC result

Hard -bit decision:
$$c_n = \begin{cases} 0 & LQ_n > 0 \\ 1 & else \end{cases}$$

If Hc = 0 or reach maximum iteration:

Terminate LDPC decoding

Else:

Step 5: update Lq_{nm} and go back step 1

$$Lq_{nm} = LQ_n - Lr_{mn}$$

5 Min-sum 最小和 algorithm

Step 2 in BP algorithm $\operatorname{Lr}_{mn} = 2tanh^{-1}(\prod_{i \in A(m),i!=n} \tanh{(Lq_{mi}/2)}))$ 硬件和软件实现的效率 很低,Min-sum algorithm 用来简化这个步骤。

From equation (B3) we get:

$$\operatorname{Lr}_{mn} = \prod_{i \in A(m), i! = n} \operatorname{sign}(Lq_{mi}) * 2tanh^{-1}(\prod_{i \in A(m), i! = n} \operatorname{tanh}(|Lq_{mi}/2|))$$

With approximation:

$$\prod_{i \in A(m), i! = n} \tanh \left(|Lq_{mi}/2| \right) \approx \min_{i \in A(m), i! = n} \tanh \left(\left| \frac{Lq_{mi}}{2} \right| \right)$$

We get:

$$\operatorname{Lr}_{mn} = \prod_{i \in A(m), i! = n} \operatorname{sign} (Lq_{mi})) * \min_{i \in A(m), i! = n} |Lq_{mi}|$$

用上面公式替换 BP Lr_{mn} 的计算,其他步骤不变,就是传统的 min-sum 算法.

下面公式用于 the optimization of min-sum approximation:

$$\prod_{i \in A(m), i!=n} \tanh\left(\left|\frac{Lq_{mi}}{2}\right|\right) \approx \alpha * \max\left(\min_{i \in A(m), i!=n} \tanh\left(\left|\frac{Lq_{mi}}{2}\right|\right) - \beta, 0\right)$$

- $\alpha = 1, \beta = 0$: traditional min-sum algorithm
- α in (0,1), β = 0: normalized min-sum algorithm
- $\alpha = 1, \beta \ in(0,1)$ offset min-sum algorithm
- $\alpha in(0,1)$, $\beta in(0,1)$ mixed min-sum algorithm

前三个 min-sum 算法都可以在 paper 中找到,matlab 5g toolbox 也实现了这三个算法。我没有看到 paper 或者 open source 提到 mixed min-sum. 但是从上面的公式可以很自然的想到'what happen if α in(0,1), β in(0,1)'?我的仿真中如果正确选择 α , β 值,mixed min-sum 性能时最好的。

关于 min-sum 的进一步优化,有兴趣的可以开发。

1. H不同行可以分配单独的 α , β 值

 α , β 值很大的可能跟 H 矩阵每行'1'的个数有关。5G LDPC 是不规则矩阵,也就是 H 矩阵每行'1'的个数不用。每行选择不同的 α , β 值,对 LDPC decoder 性能也许会有提升。这个功能。

2. 不同迭代分配不同的 α , β 值

当前算法相同的 α , β 值用于所有的迭代。如果每次分配不同的 α , β 值,也许性能会有一定的提升

3. 不同 Eb/NO 分配不同的 α , β 值

5.1 α , β 在不同 LDPC 配置下的搜索结果

 α , β 值很大可能在不同 LDPC 配置下有不同的最优解。

这个仿真时选择几个 5G LDPC 配置,然后从[0.1,0.3,0.5,0.7,0.9]中搜索最优 α , β 值.

NMS_ldpc_search_best_alpha.py, OMS_ldpc_search_best_beta.py, mixed_MS_ldpc_search_best_pair.py Python script 用于搜索 best α for NMS, best β for OMS and best α , β for mixed-MS.

测试中使用了不同的 5G LDPC ZC/bgn 配置

测试结果:

- 1. NMS 在所有 LDPC 配置下 $\alpha = 0.7$ 最优
- 2. MS 在所有 LDPC 配置下 $\beta = 0.5$ 最优
- 3. mixed-MS $\alpha=0.8$, $\beta=0.3$ 最优
- 4. 对所有 bgn=1 配置最大行向量(H矩阵每行'1'的个数)是 19
- 5. 对所有 bgn=2 配置最大行向量(H矩阵每行'1'的个数)是 10

Below is the test result

NMS alpha searching for - 0.5dB Eb/N0 and L=32 5G LDPC											
	5G LD	PC configu	ration	-	BLER for different alpha value						
Zc	bgn	N	max line weight	min line weight	0.1	0.3	0.5	0.7	0.9		
8	1	544	19	3	1	0.88	0.245	0.16	0.44		
8	2	416	10	3	0.995	0.17	0.00375	0.0005	0.005		
12	1	816	19	3	1	0.935	0.19	0.085	0.405		
12	2	624	10	3	1	0.285	0	0	0.0005		
28	1	1904	19	3	1	0.995	0.055	0.0125	0.35		
28	2	1456	10	3	1	0.425	0	0	0		
40	1	2720	19	3	1	1	0.02	0.0025	0.36		
40	2	2080	10	3	1	0.405	0	0	0		
72	1	4896	19	3	1	1	0.02	0.0005	0.35		
72	2	3744	10	3	1	0.78	0	0	0		
176	1	11968	19	3	1	1	0.035	0	0.21		
176	2	9152	10	3	1	0.97	0	0	0		
208	1	14144	19	3	1	1	0.055	0	0.145		
208	2	10816	10	3	1	0.975	0	0	0		
384	1	26112	19	3	1	1	0.05	0	0.115		

OMS beta searching for -0.5dB Eb/N0 and L=16 5G LDPC											
	5G LD	PC configu	ration		BLER for different beta value						
Zc	bgn N		max line weight	min line weight	0.1	0.3	0.5	0.7	0.9		
12	1	816	19	3	0.54	0.245	0.2	0.195	0.44		
12	2	624	10	3	0	0.0005	0	0	0		
28	1	1904	19	3	0.54	0.14	0.09	0.09	0.295		
28	2	1456	10	3	0	0	0	0	0		
40	1	2720	19	3	0.505	0.19	0.0225	0.05	0.285		
40	2	2080	10	3	0	0	0	0	0		
72	1	4896	19	3	0.7	0.095	0.00625	0.02	0.355		
72	2	3744	10	3	0	0	0	0	0		
176	1	11968	19	3	0.685	0.0175	0.0005	0.0025	0.43		
176	2	9152	10	3	0	0	0	0	0		
208	1	14144	19	3	0.735	0.02	0	0.002	0.48		

208	2	10816	10	3	0	0	0	0	0
-----	---	-------	----	---	---	---	---	---	---

	mixed MS [alpha,beta] searching for - 1dB Eb/N0 and L=16 5G LDPC										
	5G LDPC configuration						[alpha, bler] pair and BLER				
				max line	min line						
Zc		bgn	N	weight	weight	Eb/N0	[0.7,0.5]	[0.7,0.3]	[0.5,0.5]	[0.8,0.3]	
	12	1	816	19	3	-1dB	0.55	0.32	0.96	0.26	
	12	1	816	19	3	-0.5dB	0.12	0.075	0.675	0.035	
	12	2	624	10	3	-1dB	0	0	0.06	0	
	12	2	624	10	3	-0.5dB	0	0	0.006	0	
·	28	1	1904	19	3	-1dB	0.385	0.14	0.99	0.095	
	28	1	1904	19	3	-0.5dB	0.022	0.0025	0.74	0.00625	

6 LDPC Simulation and comparison with matlab toolbox LDPC decoder

6.1 Summary of LDPC simulation and performance analysis

- $\alpha = 0.7$ is optimized for NMS for all LDPC configuration
- $\beta = 0.5$ is optimized for OMS for all LDPC configuration
- $\alpha = 0.8$, $\beta = 0.3$ is optimized for mixed-MS for all LDPC configuration
- BP has the best performance
- Mixed-MS performance is better than other mix-sum algorithms
 - 0.1dB worse than BP,
 - o 0.1dB better than NMS and OMS
 - o 0.75dB better than traditional min-sum
- L=32 and L=64 performance is close to each other and is 0.2dB better than L=16

_

6.2 Different LDPC decoder simulation comparison

Below test used optimized α , β values.

It shows that mixed MS with $\alpha=0.8$, $\beta=0.3$ has the best performance among all min-sum algorithm

6.3 LDPC decoder performance with different iteration L value

6.4 Matlab toolbox LDPC decoder simulation

6.5 Py5gphy LDPC decoder simulation

6.6 Test analysis and comparison with Matlab toolbox

Test configuration for both Py5gphy and matlab code

- Zc = 10, bgn = 1 which means K = Zc*22=220, N = Zc*66==660
- Algorithm: BP, min-sim, normalized min-sum, offset min-sum and mixed-min-sum(Py5gphy only)
- Alpha values used for Normalized min-sim: [0.8, 0.5]
- Beta values used for offset min-sum: [0.3, 0.1]
- Alpha and beta pair used for mixed min-sum: [0.8, 0.3]
- LDPC decoder iteration number: 32

Eb/N0 db	-1	-0.5	0	0.5	1
Matlab BP	0.21	0.0425	0.0047	0.0003	0
Py5gphy BP	0.203	0.04	0.0033	0	0
Matlab min-sum	0.93	0.78	0.4758	0.1807	0.0495
Py5gphy min-sum	0.87	0.64	0.28	0.073	0.012
Matlab NMS alpha 0.8	0.545	0.205	0.0313	0.0055	0.0003
Py5gphy NMS alpha 0.8	0.61	0.25	0.049	0.0044	0.00067
Matlab NMS alpha 0.5	0.445	0.15	0.0338	0.0057	0.0005
Py5gphy NMS alpha 0.5	0.51	0.21	0.048	0.0062	0.00089
Matlab OMS beta 0.3	0.3925	0.14	0.0253	0.0025	0
Py5gphy OMS beta 0.3	0.503	0.19	0.035	0.0053	0.00044
Matlab OMS beta 0.1	0.75	0.5025	0.2075	0.0535	0.0088
Py5gphy OMS beta 0.1	0.76	0.51	0.178	0.036	0.0038
Py5gphy mixed MS	0.28	0.07	0.0092	0.0011	0

Observation

- Py5gphy BP performance is a little better than Matlab BP
 In another test, above BLER for snr_db[-1,-0.5,0] is [0.13,0.03,0.0025]
- Normalized min-sum and offset min-sum performance is a little worse than matlab code
- Mixed min-sum performance is much better than Normalized min-sum and offset min-sum. It is very close to BP performance