Cardinalidad #2

Venus 2 Abril

Conjuntos numerables

X es numerable <=> If: M -> X Biyectiva

Observación

X es numerable (=) X se pue de ercribir como una sucesión de elementos distintos

Dem:

L f ez ne moerion!

Sea
$$x_n = f(n)$$

$$X = \{ x_n : n \in \mathbb{N} \}$$

que es lo mismo que

Falta 2° propieded

5:
$$n \neq m \Rightarrow f(n) \neq f(m)$$

f in yeative

(biyeative)

(=) Penser. Muy perecido. Lo hago:

$$\begin{array}{lll}
50 & \times & = & \left\{ \chi_{0} \right\}_{0 \in \mathbb{N}} & \text{con } \chi_{0} \neq \chi_{m} \text{ si } n \neq m \\
& = & \left\{ \chi_{0} : n \in \mathbb{N} \right\}
\end{array}$$

=> Xn + Xm

Ses
$$f: \mathbb{N} \to X$$

 $f(n) = \chi n$

Como Xn = Xm si n = m

=> f es biyectiva (a cada natural le a signa un)
elemento distinto de X

 \rightarrow $\mathbb{N} \sim \mathbb{X}$

.. X es numerable

M

Ejemplo

· R no es numerable.

R no es una sucesión.

Ses {Xn}, CR dons ruce sión cudques

y veamos que

I y = R / y + Xn Yn = N

Deserrollo de cinel de los Xn:

Porte entero e I

 $\chi_1 = m_1$, a_{11} a_{12} a_{13} a_{14} ...

 $\chi_2 = m_2$, α_{21} α_{22} α_{23} α_{24} ...

 $\chi_3 = m_3$, a_{31} , a_{32} , a_{33} , a_{34} ...

۰

500

y = 0, b, b2 b3 b4

eligiando

b, \(\alpha_{11} \)
bz \(\alpha_{22} \)
bz \(\alpha_{33} \)

mas precisamente

 $b_n = \begin{cases} 3 & a_{nn} \neq 3 \\ 5 & a_{nn} = 3 \end{cases}$ lo fuer zo a que sea distint

Con esto, y tiene deserrollo único (no es 0,99)

>> y + Xn Yne N

Pres el n-ésimo digito de y es + el n-ésimo digito de Xn

· · If: N -> R Biyective

or numerable.

M

Otra manora ex mostrar que

 $\mathcal{D}(\mathcal{W}) \sim \mathcal{R}$

Propiedades Fundamentales de Conjuntos Inhinitos

Teorema

Dem

Solo bests montrer une sucesión detro de X

Cono

$$\times$$
 onlinito \Rightarrow \times \(\lambda_{\chi,\} \neq \phi\)

Cono

$$\times$$
 onlimito \Rightarrow \times \{\xi_1,\xi_2\} \def \phi

$$\Rightarrow \exists \chi_3 \in X_{\{\chi_1,\chi_2\}}$$

y en pre de seguir

Indictive mente

5: yz elegil mos

 $\chi_1, \chi_2, \ldots, \chi_{n-1}$ distintos

 \Rightarrow \times $\{\chi_1, \chi_2, \ldots, \chi_{n-1}\} \neq \phi$

 $\Rightarrow \exists \chi_n \in X, \{\chi_1, \chi_2, \dots, \chi_{n-1}\}$

con $2n \neq x$:

con i = [1, n-1]

Defino

 $(\chi_{\nu})_{\nu} \subset \chi$

Xn + Xm si n + m

 $Y = \{ \chi_0 : 0 \in \mathbb{N} \} \subset X$

es numerable!

Observación

Dear

"X tiene un subconjunto numerable"

es lo mismo que decir

If: N -> X In yectiva

Entonour, el Teorens dica que

XAleph Xo \left \pm \times \ti

0651

Alepho es el menor de todos los cardinales inhinitar,

tro po sición

Si X es infinito,

JZCX, Znumerable/X~X\Z

m teo
X infinito => 3 Y c X numerable

$$X = (X \setminus Y) \cup Y$$

$$= (X \setminus Y)$$

$$Y_{Parer} = \{ y_{2n} : n \in \mathbb{N} \}$$

$$Y_{Imparer} = \{ y_{2n+1} : n \in \mathbb{N} \}$$

Entonces

Sillamo
$$Z = Y_{\text{Imparer}}$$

en contré un $Z \subset X / X \sim X \setminus Z$

M

Otis forms:

Puedo definir

$$h(x) = \begin{cases} x & \text{si } x \notin Y \\ f(x) & \text{si } x \in Y \end{cases}$$

que es Biyectiva

$$S: llamo Z = Y_{Imperer}$$
 en contré un $Z \subset X / X \sim X \setminus Z$

Ejeracio (de la práctica 2)

Si A es numerable

y BiA es infinito

=> BiA N B

Ezacção

Si X es in Pinito

y A es numerable

 \Rightarrow \times \sim \times \cup A

065

Puedo unir numerable numerables, a obtener un numerable

Subconjuntos Propios

Corolario

Un conjunto er infinito (=) es coordinable con un sub conjunto propio

 $\mathbb{R} \sim \overline{(1,\pi)}$

TR ~ Colquier intervalo

 $\mathbb{R} \sim \{e^{\times} : x \in \mathbb{R}\}$

Dem

Idez:

Supongamos que $\#X \le \#Y$ y que $\#Y \le \#X$. ¿Es cierto que #X = #Y?

Teorema de Schröder-Bernstein o de Cantor-Bernstein o de Cantor-Schröder-Bernstein

Si existen $f: X \to Y$, $g: Y \to X$ inyectivas, entonces existe $h: X \to Y$ biyectiva.

5:

Corolerio

La relación (entre cardinales es una relación de orden.

Ejemph

Sirve pors mostrar que

N~Q

sin de Rini r la Runción bi yectiva: , 6000

Dehim

f:N - Q

f(n) = n in yective

 $g: \mathcal{Q} \to \mathcal{N}$

Sez $q \in \mathbb{Q} \implies q = \frac{m}{n}$ con $m, n \in \mathbb{Z}$

y(m,n)=1

MCD

(coprimor)

 $g(q) = \begin{cases} 2^{m} & 3^{n} & s' & m > 0 \\ 5^{m} & 3^{n} & 5i & m < 0 \end{cases}$

Por des composición única:

Ejemph:

$$N \sim N \times N$$

Armo 2 Runcioner in ye diver

$$f(n) = (n, 1)$$
 in yearing

men de non de nomenter distinter de N

$$g(n, m) = 2^n \cdot 3^m$$
 inyetiva.

Para cada n, m, tengo una des compossición
distinta en primos (O)

· Por C.S.B.

 $N \sim N \times N$

(M)

Obs:

Je puede user pers prober que union numerable de numerables es numerable.

Dem. de

Teorema de Schröder-Bernstein o de Cantor-Bernstein o de Cantor-Schröder-Bernstein

Si existen $f: X \to Y$, $g: Y \to X$ inyectivas, entonces existe $h: X \to Y$ biyectiva.

Idez

Tenenos

queremor h biyectiva

Entoncer

Si partimor X e y, de forma que

y ademár, si encuentro

Entoncer, bus oo f y g /

ya existía (ginyectiva)

$$h(x) = \begin{cases} f(x) & \text{si } x \in X, \\ g^{-1}(x) & \text{si } x \in X_2 \end{cases}$$

Que es biyective, à listo,

Dab cod quier
$$X: \in X_1$$
 $|e = plico f_2 cado X_1 \in X_1|$
 $|e = plico f_2 cado X_2|$
 $|e = plico f_2 cado X_1|$
 $|e = plico f_2 cado X_2|$
 $|e = plico f_2$

El "Truco" soró elegir bien el X, inicial.

Bus camos

Delino

$$\phi: \mathcal{P}(x) \to \mathcal{P}(x)$$

$$\phi(A) = X \times g(y \setminus f(A))$$

$$\phi(x_1) = x_1$$
 $\phi(x_1) = x_1$
 $\phi(x_1) = x_1$

Prop de p

$$\Rightarrow$$
 $f(A) \subseteq f(B)$

$$\Rightarrow$$
 $y \cdot f(A) = y \cdot f(B)$

$$\Rightarrow g() \land f(A)) \supseteq g() \land f(B)$$

$$\Rightarrow \times \langle g(), f(A)) \subseteq \times \langle g(), f(B))$$

$$\Rightarrow$$
 $\phi(A) \subseteq \phi(B)$

:0 des une función creciente

SI
$$A \subseteq B \subset X \Rightarrow \phi(A) \subseteq \phi(B)$$

Volviendo, buscames

$$X_{i} \subset X / \phi(X_{i}) = X_{i}$$

De him

$$C = \{C \subseteq X / \phi(C) \subseteq C\}$$
solo une designal ded

Obs!

Si de todos los C E le me que do con los más chicos o los más grandes => tengo gran des chances de que complan la igual dad

Pera eso, elijo

y vesmos que sirve.

$$\Rightarrow \phi(x_i) \subseteq \phi(C) \subseteq C \quad \forall CeG$$
def. de G

$$\Rightarrow \phi(x_1) \subseteq C \quad \forall C \in \mathcal{C}$$

$$\Rightarrow \phi(X_1) \subseteq \bigcap_{C \in \mathcal{C}} C$$

$$\Rightarrow$$
 $\phi(X_1) \in X_1$ Tenemos \subseteq , falta \cong

Si aplico de nuevo

$$\Rightarrow \phi(\phi(x_i)) \subseteq \phi(x_i)$$

De mevo, por def. de
$$C = \{C \subseteq X \mid \phi(C) \subseteq C\}$$

$$\Rightarrow \phi(x_i) \in \mathcal{C}$$

$$\phi(\phi(x_i)) \leq \phi(x_i)$$

$$X_1 = \bigcap C$$
 $Cee f$
 $\phi(X_1)$ es uno de ellos

$$\Rightarrow X_1 = \bigcap_{C \in \mathcal{C}} C \subseteq \phi(X_1)$$

$$\Rightarrow$$
 $X_1 \subseteq \phi(X_1)$ que er lo que buscébemos

$$\times$$
, \Rightarrow $\phi(\times)$

Tengo
$$Y_1 = f(X_1)$$

Tengo
$$Y_z = Y \cdot f(X_i)$$

=> 3h: X > y Biyective

W