ERRATA for Krusemeyer, *Differential Equations* (For Math 241, Winter 2013)

p.7, line -5
$$\frac{\partial f}{\partial y}$$
 should be $\frac{\partial f}{\partial y}$

p.17, line 6
$$x^{-x}$$
 should be e^{-x}

p.20, line -3
$$\frac{dy}{dx}$$
 should be $\frac{dy}{dx}$

p.22, line 4
$$e^{Kt} + C$$
 should be e^{Kt+C}

p.115, line -4
$$Ae^{2t} + 2Be^{3t} + \cdots$$
 should be $-Ae^{2t} + 2Be^{3t} + \cdots$

p.120, line -4
$$m'' + kx = 0$$
 should be $mx'' + kx = 0$

p.127, line -10
$$x = \frac{mg}{h}$$
 should be $x = \frac{mg}{k}$

$$\alpha' = \frac{-h(t)x_1(t)}{W(t)}, \ \beta' = \frac{-h(t)x_2(t)}{W(t)}$$
 should be $\alpha' = \frac{-h(t)x_2(t)}{W(t)}, \ \beta' = \frac{-h(t)x_1(t)}{W(t)}$

p.161, Figure 3.2.4(b), caption

p.170, line -12
$$\frac{\partial}{\partial y}(3xy - 2y^2) = 3x - 2y$$
 should be $\frac{dx}{dy}$
p.170, line -12 $\frac{\partial}{\partial y}(3xy - 2y^2) = 3x - 2y$ should be $\frac{\partial}{\partial y}(3xy - 2y^2) = 3x - 4y$

p.187, line 7
$$\lambda - (a + d) + (ad - bc) = 0$$
 should be $\lambda^2 - (a + d)\lambda + (ad - bc) = 0$ p.193, line -6 $x = P, Y = R$ should be $x = P, y = R$

p.202, Example 3.5.2
$$\mathbf{A} = \begin{pmatrix} 3 & 4 \\ 2 & -1 \end{pmatrix}$$
 should be $\mathbf{A} = \begin{pmatrix} 3 & -4 \\ 2 & -1 \end{pmatrix}$

p.218, Figure 3.6.3, caption $\nu \pm i\nu$ should be $\mu \pm i\nu$

p.229, Exercise 24(a) x, y-plane should be X, Y-plane

p.242, Figure 3.7.6 The labels
$$(1/\sqrt{2}, -1/\sqrt{2})$$
 and $(-1/\sqrt{2}, 1/\sqrt{2})$ for the stationary points should be interchanged.

p.269, Figure 3.9.5(b) The direction of the arrow in region IV should be reversed.

p.283, line 3
$$\cdots = t(36t^4 - 24t^4) = 12t^5$$
 should be $\cdots = t(36t^4 - 24t^4) - t^3(12t^2) + t^4(6t) = 6t^5$

p.289, Exercise 17(b)
$$p_{n-1}(t)x^{n-1}$$
 should be $p_{n-1}(t)x^{(n-1)}$

p.299, line 8
$$C_1 = \frac{1}{52}$$
 should be $C = \frac{1}{52}$

p.338, line -1
$$\begin{pmatrix} -104 & -340 \\ 120 & 376 \end{pmatrix}$$
 should be $\begin{pmatrix} -104 & -360 \\ 120 & 376 \end{pmatrix}$

p.339, line 2 same correction

p.349, Exercise 24 should be starred, or double-starred.

p.364, Exercise 18(b)
$$R = 0.7$$
 should be $R = \frac{10}{7}$

p.371, line -3
$$-2a_0 + 2a_1x$$
 should be $-2a_0 - 2a_1x$ p.379, line -3 $M = 4$ should be $M = 3$ p.379, line -1 $\cdots - \frac{1}{72} + \frac{1}{1440}$ should be $\cdots - \frac{1}{72}$

p.394, Exercise 62(b)
$$M=4$$
 should be $M=3$ p.403, line -3 $\cdots + (x-1)y' + \cdots$ should be $\cdots + (x+2)y' + \cdots$

p.403, line -2
$$p(x) = \frac{x-1}{3x+1}$$
 should be $p(x) = \frac{x+2}{3x+1}$

p.404, line 8
$$\cdots - (n+1)a_{n+1} - 2a_n = 0$$
 should be
$$\cdots + 2(n+1)a_{n+1} - 2a_n = 0$$

p.458, Exercise 33(a) Add at the end of the sentence: unless g(0) = h(0) = 0.

p.473, footnote p. 601); hence should be p. 602); hence

p.478, line -4 The statement made here ("then $f(T)e^{-sT}$ will approach 0 for $T \to \infty$ ") is not quite correct in general. See me for details if you're curious. (We won't be covering the Laplace transform.)

p.479, lines 11-13 Same correction

p.488, Exercise 44 Same correction

p.511, line -3 Exercise 13 should be Exercise 11

p.529, Exercise 24(a) $(t \ge \epsilon)$ should be $(t > \epsilon)$

p.537, line -5 $\Delta^2 x + \Delta x + x = 0 \text{ should be } \Delta^2 x + \Delta x - x = 0$

Same line $\frac{d^2x}{dt^2} + \frac{dx}{dt} + x = 0 \quad \text{should be} \quad \frac{d^2x}{dt^2} + \frac{dx}{dt} - x = 0$

p.542, Exercise 10(b) $\Delta^2 x + \Delta x + x = 0$ should be $\Delta^2 x + \Delta x - x = 0$

p.543, Exercise 13(a) unique solution should be unique nonzero solution

p.543, Exercise 14(b) one solution should be one nonzero solution

p.568, Exercise 5 $\frac{dX}{dt} = g(T, X)$ should be $\frac{dX}{dT} = g(T, X)$

p.569, Exercise 7(c),(d) The hypothesis for part (c), which is still assumed in part (d), is garbled; see me for details if you're curious.

p.569, Exercise 7(e) $\frac{dx_{n+1}(t)}{dt}$ should be $\frac{d(x_{n+1}(t))}{dt}$

p.585, Exercise 12(b) is incorrect and should be deleted.

p.594, line -4 $zz = |z|^2$ should be $z\overline{z} = |z|^2$

ANSWERS

p.628, Section 1.2, 3(a) Add: ,
$$-\frac{\pi}{2} < \frac{1}{2}t^2 - t + C < \frac{\pi}{2}$$

p.629, Section 1.2, 7(a) Add: , x = 0

p.631, 23(c) The curves in the second quadrant should not "come together"

p.636, 55 $\sin t + \frac{1}{2}e^{2t} + \cdots$ should be $\sin t - \frac{1}{2}e^{2t} + \cdots$

p.638, 27(b) $W=e^{-\int p(t)dt}$ should be $W=Ae^{-\int p(t)dt}$, where A can be taken to be ± 1 or 0. p.640, Section 2.6, 7 $-\frac{2}{5}\sin t + \frac{9}{5}\cos t$ should be $-\frac{2}{5}\sin t - \frac{9}{5}\cos t$

p.654, 11(b) The figure shown is incorrect; the curves should be ellipses (elongated in a roughly northwest-southeast direction), followed *clockwise*.

p.663, Section 4.5, 9 The lower right entry of the matrix should be 1, so

the matrix is
$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ \frac{1}{2} & 3 & 1 \end{pmatrix}$$

```
should be
p.676, Section 7.1, 13
                          (b)
                                                      (c)
p.677, Section 7.3, 7(d)
                                                      M = 0
                         m = 0
                                         should be
p.678, line -3
                          (pp. 589-591)
                                         should be
                                                      (pp. 590-591)
p.679, line 3
                          (pp. 592-598)
                                         should be
                                                      (pp. 597-598)
p.679, line -6
                          (pp. 599-603)
                                         should be
                                                      (pp. 602-603)
p.679, line -4
                          (pp. 605-609)
                                         should be
                                                      (pp. 608-609)
p.680, line 4
                          (pp. 610-614)
                                         should be
                                                      (pp. 613-614)
p.680, line 8
                          (pp. 615-620)
                                         should be
                                                      (pp. 619-620)
p.680, line -5
                          (pp. 621-626)
                                         should be
                                                      (pp. 624-626)
p.688, entry for Vector function 189,* 307
                                              should be
                                                          189*, 307
```

Please let me know of any other typos/errors/unclear passages you notice. Thanks!