Lecture 3

Story...

- The bear race
- Takeaway: Even if a defense is not perfect, it is important to always stay on top of best security measures

I don't have to outrun the bear. I just have to outrun you

Design in security from the start

- When building a new system, include security as part of the design considerations rather than patching it after the fact
 - A lot of systems today were not designed with security from the start, resulting in patches that don't fully fix the problem!
- Keep these security principles in mind whenever you write code!

Human Factors

The users

- Users like convenience (ease of use)
- If a security system is unusable, it will be unused
- Users will find way to subvert security systems if it makes their lives easier

The programmers

- Programmers make mistakes
- Programmers use tools that allow them to make mistakes (e.g. C and C++)

Everyone else

 Social engineering attacks exploit other people's trust and access for personal gain

Summary for Chapter 1

- Have learned:
 - Security requirements
 - Attack models
 - X.800 secure architecture, security services, mechanisms

Supplementary materials

- Internet Security Glossary, v2 produced by Internet Society https://datatracker.ietf.org/doc/html/rfc4949
- X.800 OSI network security

https://www.itu.int/rec/dologin_pub.asp?lang=f&id=T-REC-X.800-199103-I!!PDF-E&type=items

Review Questions

- William Stallings (WS), "Network Security Essentials", 6th Global Edition
- RQ 1.1 1.3
- Prob 1.5

Network Security

Chapter 2

Symmetric encryption

- Sender and recipient share a common/same key
- Was the only type of cryptography, prior to invention of public-key in 1970's

Symmetric Encryption Principles

Simplified model of symmetric encryption

Symmetric encryption

- Has five ingredients
 - Plaintext: the original message or data
 - Encryption algorithm: performs various substitutions and transformations on the plaintext
 - Secret key
 - **Ciphertext**: the coded message
 - **Decryption algorithm**: takes the ciphertext and the same secret key and produces the original plaintext

Other basic terminology

- cipher algorithm for transforming plaintext to ciphertext
- encipher (encrypt) converting plaintext to ciphertext
- decipher (decrypt) recovering plaintext from ciphertext
- cryptography study of encryption principles/methods
- cryptanalysis (codebreaking) the study of principles/ methods of deciphering ciphertext without knowing key

Requirements

- Two requirements for secure use of symmetric encryption:
 - a strong encryption algorithm
 - a secret key known only to sender / receiver

$$Y = \mathsf{E}_{\kappa}(X)$$
$$X = \mathsf{D}_{\kappa}(Y)$$

- assume encryption algorithm is known
- the security of symmetric encryption depends on the secrecy of the key
- implies a secure channel to distribute key