Exercice 1 - Une suite récurrente

- 1. Soit $\theta \in]0,\pi[$. On a les équivalences $\lambda=2(1-\cos(\theta))\iff \cos(\theta)=1-\frac{\lambda}{2}.$ Or $-1<1-\frac{\lambda}{2}<1$ puisque $\lambda\in]0,4[$. On a donc l'équivalence $\lambda=2(1-\cos(\theta))\iff \theta=\arccos(1-\lambda/2)$ ce qui prouve l'existence et l'unicité d'un tel réel.
- 2. Cette suite vérifie une relation de récurrence linéaire homogène d'ordre 2 à coefficients constants. Son polynôme caractéristique vaut

$$X^{2} + (\lambda - 2)X + 1 = X^{2} - 2\cos(\theta)X + 1 = (X - e^{i\theta})(X - e^{-i\theta})$$

On est dans le cas d'une suite réelle et de racines conjuguées non réelles car $\theta \in]0,\pi[$. Alors $e^{i\theta}$ est de module 1 et possède θ comme argument. Par consqéquent,

$$\exists (a,b) \in \mathbb{R}^2, \forall k \in \llbracket 0, n+1 \rrbracket, x_k = a\cos(k\theta) + b\sin(k\theta)$$

3. On exploite les conditions aux limites. $0 = x_0 = a \times 1 + b \times 0$, donc a = 0. D'autre part, $0 = x_{n+1} = b\sin((n+1)\theta)$. Or b est non nul, sinon le n+2-uplet (x_k) est nul. Par conséquent, $\sin((n+1)\theta) = 0$, donc $(n+1)\theta \in \pi\mathbb{Z}$. Comme $\theta \in]0, \pi[$, on en déduit qu'il existe un entier $j \in [[1,n]]$ tel que $(n+1)\theta = j\pi$, donc $\theta = j\pi/(n+1)$. On en déduit que

$$\forall k \in [[0, n+1]], x_k = b \sin\left(\frac{kj\pi}{n+1}\right)$$

4. On vient de montrer que si λ est solution du problème, alors

$$\exists j \in [[1, n]], \lambda = 2(1 - \cos(j\pi/(n+1))) = 4\sin^2(j\pi/(n+1)).$$

Réciproquement, soit $j \in [[1, n]]$, alors la suite n+2-uplet $(\sin(\frac{kj\pi}{n+1}))_{0 \le k \le n+1}$ est non nul et vérifie la relation de récurrence.

Exercice 2 - Suites sous-additives

- 1. La suite $(u_n/n)_{n\in\mathbb{N}^*}$ est minorée par 0 donc possède une borne inférieure finie et $\inf_{n\geq 1}u_n/n\geq 0$.
- 2. Le réel $\alpha + \varepsilon/2$ est strictement supérieur à α . Par caractérisation de la borne inférieure, il existe un terme de la suite, donc un entier naturel non nul p tel que u_p/p est coincé entre α et $\alpha + \varepsilon/2$, soit

$$\alpha \le \frac{u_p}{p} \le \alpha + \frac{\varepsilon}{2}$$

3. D'après la propriété de sous-additivité de u, on a

$$u_n = u_{kp+r} \le u_{kp} + u_r \le \underbrace{u_p + \dots + u_p}_{k \text{ termes}} + u_r = ku_p + u_r$$

4. D'après ce qui précède, comme n est strictement positif,

$$\frac{u_n}{n} \le \frac{k}{n} u_p + \frac{u_r}{n}$$
.

D'autre part, si k est nul, $k/n = 0 \le 1/p$. Si k est non nul, $k/n = k/(kp+r) \le k/kp = 1/p$. De plus, $u_r \le \max(u_0, \dots, u_{p-1})$. On en déduit, toutes quantités positives,

$$\frac{u_n}{n} \le \frac{u_p}{p} + \frac{\max(u_0, \dots, u_{p-1})}{n}.$$

5. Notons $\beta = \max(u_0, ..., u_{p-1})$. Alors $\beta/n \xrightarrow[n \to +\infty]{} 0$ en restant positif. Par conséquent, il existe un rang N non nul tel que

$$\forall n \ge N, 0 \le \frac{\beta}{n} \le \varepsilon/2.$$

On en déduit d'après les questions 2 et 4 que

$$\forall n \ge N, \alpha \le \frac{u_n}{n} \le \alpha + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \alpha + \varepsilon$$

6. Les questions précédentes ont permis d'établir

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}^*, \forall n \geq N, \left| \frac{u_n}{n} - \alpha \right| \leq \varepsilon$$

Ainsi, la suite $(u_n/n)_{n\in\mathbb{N}^*}$ est convergente de limite α .

7. Soit n et m deux entiers naturels non nuls, alors si le gain moyen des n premières parties est supérieur ou égal à x, et si le gain moyen des m parties suivantes est supérieur ou égal à x, alors le gain moyen sur les n+m parties disputées est supérieures ou égal à x, donc $p_{n+m} \geq p_n p_m$ par indépendance des parties. Par conséquent, la suite $(-\ln(p_n))_{n\in\mathbb{N}}$ est sous-additive positive, donc $(-\ln(p_n)/n)_{n\in\mathbb{N}^*}$ est convergente. On en déduit par continuité de l'exponentielle, que la suite $(p_n^{1/n})_{n\in\mathbb{N}^*}$ est convergente.

Correction du problème - Autour de la moyenne arithméticogéométrique

Question préliminaire : Comparaison des moyennes arithmétique et géométrique Soit *a* et *b* deux réels positifs. On a

$$m_a(a,b) - m_g(a,b) = \frac{a - 2\sqrt{ab} + b}{2} = \frac{(\sqrt{a} - \sqrt{b})^2}{2} \geqslant 0.$$

Ainsi $m_g(a, b) \leqslant m_a(a, b)$.

Partie I - Définition de la moyenne arithmético-géométrique

Soit $(a,b) \in \mathbb{R}^2_+$. On définit deux suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ par les relations :

$$\left\{ \begin{array}{l} a_0 = a, \\ b_0 = b \end{array} \right., \text{ et } \forall \, n \in \mathbb{N}, \quad \left\{ \begin{array}{l} a_{n+1} = \frac{a_n + b_n}{2} = m_a(a_n, b_n) \\ b_{n+1} = \sqrt{a_n b_n} = m_g(a_n, b_n) \end{array} \right.$$

1. — D'après la question préliminaire, pour tout $n \ge 1$, $a_n \ge b_n$. Alors, étant donné $n \ge 1$,

$$a_{n+1} = \frac{a_n + b_n}{2} \leqslant \frac{a_n + a_n}{2} = a_n,$$

donc la suite $(a_n)_{n\geqslant 1}$ est décroissante.

— De même pour $n \ge 1$,

$$b_{n+1}=\sqrt{a_nb_n}\geqslant \sqrt{b_nb_n}=b_n.$$

Donc la suite $(b_n)_{n\geqslant 1}$ est croissante.

— On obtient alors, pour tout $n \ge 1$:

$$a_n \geqslant b_n \geqslant b_1$$
 et $b_n \leqslant a_n \leqslant a_1$.

Ainsi $(a_n)_{n\in\mathbb{N}^*}$ est décroissante et minorée, donc $(a_n)_{n\in\mathbb{N}}$ converge vers un réel α , et (b_n) est croissante et majorée, donc $(b_n)_{n\in\mathbb{N}}$ converge vers un réel β .

2. En passant à la limite dans la première relation de récurrence, il vient :

$$\alpha = \frac{\alpha + \beta}{2}$$
 soit: $\alpha = \beta$

3. On a $m_a(a,b)=a_1$ et $m_g(a,b)=b_1$. La suite (a_n) étant décroissante de limite α , il vient

$$m_a(a,b) = a_1 \geqslant \lim a_n = M(a,b).$$

De la même manière, la décroissance de (b_n) amène $m_g(a,b) \leq M(a,b)$. Ainsi :

$$m_g(a,b) \leqslant M(a,b) \leqslant m_a(a,b).$$

Partie II - Expression intégrale de la moyenne arithméticogéométrique

On pose, pour tout $x \in [0,1[$, et pour tout $(\lambda, \mu) \in \mathbb{R}^2$:

$$I(x) = \int_0^{\frac{\pi}{2}} \frac{dt}{\sqrt{1 - x^2 \sin^2 t}} \quad \text{ et } \quad J(\lambda, \mu) = \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{\lambda^2 \cos^2(x) + \mu^2 \sin^2(x)}}.$$

1. On pose, dans l'intégrale

$$I\left(\frac{2\sqrt{x}}{1+x}\right) = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{1 - \frac{4x}{(1+x)^2}\sin^2(u)}} du$$

le changement de variable $u = \operatorname{Arcsin}\left(\frac{(1+x)\sin(t)}{1+x\sin^2(t)}\right) = \varphi(t)$ Le réel x étant dans [0,1], la fonction $\psi: t \mapsto \frac{(1+x)\sin(t)}{1+x\sin^2(t)}$ est continue et de classe \mathcal{C}^1 sur $\left[0,\frac{\pi}{2}\right]$, et pour tout t de cet intervalle :

$$\psi'(t) = \frac{(1+x)\cos(t)\left(1+x\sin^2(t)\right) - 2x\cos(t)\sin(t)(1+x)\sin(t)}{\left(1+x\sin^2(t)\right)^2} = \frac{(1+x)\cos(t)\left(1-x\sin^2(t)\right)}{\left(1+x\sin^2(t)\right)^2} > 0$$

Ainsi, ψ est strictement croissante, et $\psi(0)=0, \psi\left(\frac{\pi}{2}\right)=1$. En particulier, pour tout $t\in\left[0,\frac{\pi}{2}\right]$, $\psi(t)$ in [0,1[. Par composition de fonctions de classe \mathcal{C}^1 , on en déduit que φ est de classe \mathcal{C}^1 sur $\left[0,\frac{\pi}{2}\right]$. Comme on n'a pas la classe \mathcal{C}^1 sur l'intervalle fermé, on se restreint dans un premier temps à un intervalle [0,A], où $A\in\left[0,\frac{\pi}{2}\right]$. Ainsi, sur cet intervalle, on a

$$\begin{split} \frac{\mathrm{d}u}{\mathrm{d}t} &= \frac{(1+x)\cos(t)\left(1-x\sin^2(t)\right)}{\left(1+x\sin^2(t)\right)^2} \cdot \frac{1}{\sqrt{1-\frac{(1+x)^2\sin^2(t)}{(1+x\sin^2(t)^2}}} \\ &= \frac{(1+x)\cos(t)\left(1-x\sin^2(t)\right)}{\left(1+x\sin^2(t)\right)} \cdot \frac{1}{\sqrt{\left(1-x\sin^2(t)\right)^2-(1+x)^2\sin^2(t)}} \\ &= \frac{(1+x)\cos(t)\left(1-x\sin^2(t)\right)}{\left(1+x\sin^2(t)\right)} \cdot \frac{1}{\sqrt{\left(1-x\sin^2(t)-(1+x)\sin(t)\right)\left(1-x\sin^2(t)+(1+x)\sin(t)\right)}} \\ &= \frac{(1+x)\cos(t)\left(1-x\sin^2(t)\right)}{\left(1+x\sin^2(t)\right)} \cdot \frac{1}{\sqrt{(1-\sin(t))(1-x\sin(t))(1+\sin(t))(1+x\sin(t))}} \\ &= \frac{(1+x)\cos(t)\left(1-x\sin^2(t)\right)}{\left(1+x\sin^2(t)\right)} \cdot \frac{1}{\sqrt{\cos^2(t)\left(1-x^2\sin^2(t)\right)}} \\ &= \frac{(1+x)\left(1-x\sin^2(t)\right)}{\left(1+x\sin^2(t)\right)\sqrt{\left(1-x^2\sin^2(t)\right)}} \end{split}$$

Le plus dur est fait. On a alors (φ étant bijective de $\left[0,\frac{\pi}{2}\right[$ sur lui-même d'après le théorème de la bijection, car continue et strictement croissante)

$$\int_{0}^{A} \frac{dt}{\sqrt{1 - \frac{4x}{(1+x)^{2}} \sin^{2}(u)}} du = \int_{0}^{\varphi^{-1}(A)} \frac{1}{\sqrt{1 - \frac{4x}{(1+x)^{2}} \times \frac{(1+x)^{2} \sin^{2}(t)}{(1+x \sin^{2}(t))^{2}}}} \times \frac{(1+x)\left(1 - x \sin^{2}(t)\right)}{\left(1 + x \sin^{2}(t)\right)\sqrt{1 - x^{2} \sin^{2}(t)}} dt$$

$$= (1+x) \int_{0}^{\varphi^{-1}(A)} \frac{\left(1 - x \sin^{2}(t)\right)}{\sqrt{\left(1 + x \sin^{2}(t)\right)^{2} - 4x \sin^{2}(t)}} dt$$

$$= (1+x) \int_{0}^{\varphi^{-1}(A)} \frac{\left(1 - x \sin^{2}(t)\right)}{\sqrt{\left(1 - x \sin^{2}(t)\right)^{2}} \times \sqrt{1 - x^{2} \sin^{2}(t)}} dt$$

$$= (1+x) \int_{0}^{\varphi^{-1}(A)} \frac{1}{\sqrt{1 - x^{2} \sin^{2}(t)}} dt$$

et donc, en passant à la limite lorsque A tend vers $\frac{\pi}{2}$ (la fonction φ^{-1} étant continue en tant que récirpoque d'une fonction continue, donc $\lim_{A\to \frac{\pi}{2}} \varphi^{-1}(A) = \varphi^{-1}\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$), on obtient :

$$I\left(\frac{2\sqrt{x}}{1+x}\right) = (1+x)I(x)$$

2. On a, pour tout $x \in]0,1]$:

$$J(1,x) = \int_0^{\frac{\pi}{2}} \frac{dt}{\sqrt{\cos^2(t) + x^2 \sin^2(t)}} = \int_0^{\frac{\pi}{2}} \frac{dt}{\sqrt{1 - (1 - x^2) \sin^2(t)}} = I\left(\sqrt{1 - x^2}\right)$$

D'un autre côté:

$$J\left(\frac{1+x}{2}, \sqrt{x}\right) = \int_0^{\frac{\pi}{2}} \frac{dt}{\sqrt{\left(\frac{1+x}{2}\right)^2 \cos^2(t) + x \sin^2 t}} = \frac{2}{1+x} \int_0^{\frac{\pi}{2}} \frac{dt}{\sqrt{1 - \left(\frac{1-x}{1+x}\right)^2 \sin^2(t)}} = \frac{2}{1+x} I\left(\frac{1}{1+x}\right)$$

Par ailleurs, d'après la question précédente :

$$\frac{2}{1+x}I\left(\frac{1-x}{1+x}\right) = \frac{2}{1+x} \times \frac{1}{1+\frac{1-x}{1+x}} \times I\left(\frac{2\sqrt{\frac{1-x}{1+x}}}{1+\frac{1-x}{1+x}}\right) = I\left(\sqrt{1-x^2}\right)$$

On en déduit alors $J(1, x) = J(\frac{1+x}{2}, \sqrt{x})$.

3. Soit $n \in \mathbb{N}$. Supposons $a_n \neq 0$. Alors

$$J(a_{n+1}, b_{n+1}) = J\left(\frac{a_n + b_n}{2}, \sqrt{a_n b_n}\right) = J\left(a_n \times \frac{1 + \frac{b_n}{a_n}}{2}, a_n \times \sqrt{\frac{b_n}{a_n}}\right)$$

Or, de façon évidente, pour tout $\alpha > 0$, et tout (λ, μ) , on a $J(\alpha \lambda, \alpha \mu) = \frac{1}{\alpha} J(\lambda, \mu)$, donc

$$J(a_{n+1}, b_{n+1}) = \frac{1}{a_n} J\left(\frac{1 + \frac{b_n}{a_n}}{2}, \sqrt{\frac{b_n}{a_n}}\right) = \frac{1}{a_n} J\left(1, \frac{b_n}{a_n}\right)$$

d'après la question précédente, d'où, en rentrant de nouveau le facteur a_n :

$$J(a_{n+1}, b_{n+1}) = J(a_n, b_n)$$

Comme $a = a_0 > 0$, une récurrence immédiate montre alors que cette propriété est vraie pour tout n et que $(J(a_n,b_n))_{n\in\mathbb{N}}$ est constante.

4. Soit $\varepsilon > 0$ tel que $\varepsilon < M(a, b)$. Il existe un rang $N \in \mathbb{N}$ tel qu'on ait à la fois :

$$\forall n \geqslant N$$
, $|a_n - M(a, b)| \leqslant \varepsilon$ et $|b_n - M(a, b)| \leqslant \varepsilon$.

On a alors, pour tout $t \in \left[0, \frac{\pi}{2}\right]$ et tout $n \ge N$:

$$\frac{1}{\sqrt{(\mathsf{M}(a,b)+\varepsilon)^2 \left(\cos^2 t + \sin^2 t\right)}} \leqslant \frac{1}{\sqrt{a_n^2 \cos^2 t + b_n^2 \sin^2 t}} \leqslant \frac{1}{\sqrt{(\mathsf{M}(a,b)-\varepsilon)^2 \left(\cos^2 t + \sin^2 t\right)}},$$

soit:

$$\frac{1}{\mathsf{M}(a,b)+\varepsilon} \leqslant \frac{1}{\sqrt{a_n^2 \cos^2 t + b_n^2 \sin^2 t}} \leqslant \frac{1}{\mathsf{M}(a,b)-\varepsilon},$$

et par croissante de l'intégrale, il vient facilement :

$$\forall n \geqslant N, \quad \frac{\pi}{2} \cdot \frac{1}{M(a,b) + \varepsilon} \leqslant J(a_n, b_n) \leqslant \frac{\pi}{2} \cdot \frac{1}{M(a,b) - \varepsilon}.$$

5. Le terme du milieu de l'encadrement précédent est constant, égal à $J(a_0,b_0)=J(a,b)$, et ε peut être choisi aussi petit qu'on veut. Une fois qu'on a remplacé $J(a_n,b_n)$ par J(a,b), on n'a plus de dépendance en n, on peut donc sans problème faire tendre ε vers 0, et il vient :

$$J(a, b) = \frac{\pi}{2M(a, b)},$$
 soit: $M(a, b) = \frac{\pi}{2J(a, b)}$

Partie III - Une variante de la moyenne arithmético-géométrique

Soit toujours $(a,b) \in (\mathbb{R}_+^*)^2$. On définit cette fois (a_n) et (b_n) par :

$$\left\{\begin{array}{ll} a_0=a \\ b_0=b \end{array}\right. \quad \text{et} \quad \forall n \in \mathbb{N}, \quad \left\{\begin{array}{ll} a_{n+1}=\frac{a_n+b_n}{2} \\ b_{n+1}=\sqrt{a_{n+1}b_n} \end{array}\right.$$

1. — Supposons $a \leq b$, montrons par récurrence sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n) : 0 \leq a_n \leq b_n$. La propriété $\mathcal{P}(0)$ est satisfaite d'après l'hypothèse $a \leq b$.

Soit $n \in \mathbb{N}$ tel que $\mathcal{P}(n)$ est vrai. Alors on obtient :

$$0 \leqslant a_{n+1} \leqslant b_n$$
 puis: $b_{n+1} \geqslant \sqrt{(a_{n+1})^2} \geqslant a_{n+1}$.

Ainsi, la propriété $\mathcal{P}(n+1)$ est encore vraie.

D'après le principe de récurrence, on a donc, pour tout $n \in \mathbb{N}$, $0 \le a_n \le b_n$.

Soit $n \in \mathbb{N}$. On déduit alors de la relation définissant a_{n+1} , de la même manière que ci-dessus, que :

$$a_n \leqslant a_{n+1} \leqslant b_n$$

puis de la seconde relation, que

$$b_{n+1}=\sqrt{a_{n+1}b_n}\leqslant \sqrt{b_n^2}=b_n,$$

d'où la croissance de (a_n) et la décroissance de (b_n) .

On est dans une situation similaire à celle des suites adjacentes (à part qu'on ne sait pas bien montrer de façon directe que $a_n - b_n$ tend vers 0), la démonstration de la convergence est rigoureusement la même : $(a_n)_{n\in\mathbb{N}}$ est croissante et majorée par b_0 , et $(b_n)_{n\in\mathbb{N}}$ est décroissante et minorée par a_0 . Donc, d'après le théorème de la limite monotone, (a_n) et (b_n) convergent.

- Si $a \ge b$, alors on montre strictement par les mêmes arguments que pour tout $n \in \mathbb{N}$, $b_n \le a_n$, que (b_n) est croissante et majorée par a_0 et (a_n) est décroissante et minorée par b_0 . Ainsi, dans cette situation aussi, (a_n) et (b_n) convergent.
- Appelons α la limite de (a_n) et β la limite de (b_n) . Alors, on montre comme plus haut, en passant à la limite dans la relation définissant a_{n+1} , que $\alpha = \beta$.
- 2. Le plus simple est de faire une récurrence.

Soit, pour tout n dans \mathbb{N} , la propriété $\mathcal{P}(n)$: $B_n = \frac{1}{2^n} \frac{\sin(\alpha)}{\sin(\frac{\alpha}{2n})}$.

 B_0 est un produit vide, donc par convention B_0 = 1, ce qui valide $\mathcal{P}(0)$.

Soit $n \in \mathbb{N}$. On suppose que $\mathcal{P}(n)$ est vrai. Alors

$$\mathsf{B}_{n+1} = \frac{1}{2^n} \frac{\sin(\alpha)}{\sin\left(\frac{\alpha}{2^n}\right)} \times \cos\left(\frac{\alpha}{2^{n+1}}\right) = \frac{1}{2^n \sin(\alpha)} \times \frac{1}{2\sin\left(\frac{\alpha}{2^{n+1}}\right)\cos\left(\frac{\alpha}{2^{n+1}}\right)} \times \cos\left(\frac{\alpha}{2^{n+1}}\right) = \frac{1}{2^{n+1}} \frac{\sin(\alpha)}{\sin\left(\frac{\alpha}{2^{n+1}}\right)}$$

Cela montre $\mathcal{P}(n+1)$

Par conséquent, $\mathcal{P}(0)$ est vraie, et pour tout n dans \mathbb{N} , $\mathcal{P}(n)$ entraı̂ne $\mathcal{P}(n+1)$. D'après le principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout n dans \mathbb{N} .

3. On suppose que $a \le b$. Comme a et b sont positifs, on a alors $\frac{a}{b} \in [0,1]$, donc $\alpha = \operatorname{Arccos}\left(\frac{a}{b}\right)$ est bien défini. Si $\alpha = 0$, alors a = b et les suites (a_n) et (b_n) sont clairement constantes, d'où le résultat attendu.

On suppose don désormais que $\alpha \neq 0$. Comme $a_0 = b_0 \cos(\alpha)$, on obtient :

$$a_1 = \frac{a_0 + b_0}{2} = b_0 \frac{1 + \cos(\alpha)}{2} = \cos^2(\frac{\alpha}{2}),$$

puis:

$$b_1 = \sqrt{a_1 b_0} = b_0 \cos\left(\frac{\alpha}{2}\right).$$

Pour continuer à exprimer les termes b_n , on exprime (b_n) indépendamment de (a_n) : pour tout $n \ge 0$,

$$b_{n+2} = \sqrt{a_{n+2}b_{n+1}} = \sqrt{\frac{a_{n+1} + b_{n+1}}{2} \times b_{n+1}} = \sqrt{\frac{b_{n+1}^2 + b_{n+1}}{2} \times b_{n+1}} = b_{n+1}\sqrt{\frac{1 + \frac{b_{n+1}}{b_n}}{2}}.$$

Ainsi, on trouve par exemple:

$$b_2 = b_1 \sqrt{\frac{1 + \cos\left(\frac{\alpha}{2}\right)}{2}} = b_1 \sqrt{\cos^2\left(\frac{\alpha}{4}\right)} = b_0 \cos\left(\frac{\alpha}{2}\right) \cos\left(\frac{\alpha}{4}\right)$$

(les cosinus étant positif, a étant par définition dans $\left[0,\frac{\pi}{2}\right]$). Ainsi, on voit apparaître le déubut du produit de cosinus étudié dans la question précédente. On effectue alors une récurrence.

Soit, pour tout n dans \mathbb{N} , la propriété $\mathcal{P}(n)$: $b_n = b_0 B_n$.

Nous venons de montrer que $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vrais (et même $\mathcal{P}(2)$).

Soit $n \in \mathbb{N}$. On suppose que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vrais. Alors, par les hypothèses de récurrence,

$$\frac{b_{n+1}}{b_n} = \cos\left(\frac{\alpha}{2^{n+1}}\right),$$

donc, d'après la relation établie ci-dessus

$$b_{n+2} = b_{n+1} \sqrt{\frac{1 + \cos\left(\frac{\alpha}{2^{n+1}}\right)}{2}} = b_{n+1} \cos\left(\frac{\alpha}{2^{n+2}}\right) = b_0 B_{n+1} \cos\left(\frac{\alpha}{2^{n+2}}\right) = b B_{n+2}.$$

Par conséquent, $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont vraies, et pour tout n dans $\mathbb{N}, \mathcal{P}(n)$ et $\mathcal{P}(n+1)$ entraînent $\mathcal{P}(n+2)$. D'après le principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout n dans \mathbb{N} .

Par conséquent, d'après le calcul précédent, pour tout $n \in \mathbb{N}$,

$$b_n = \frac{b}{\alpha} \times \frac{\alpha}{2^n} \frac{\sin(\alpha)}{\sin\left(\frac{\alpha}{2^n}\right)} \longrightarrow \frac{b\sin(\alpha)}{\alpha}.$$

On peut donc conclure:

$$\lim_{n \to +\infty} b_n = \begin{cases} \frac{b \cdot \sin(\alpha)}{\alpha} & \text{si } \alpha \neq 0 \\ b & \text{si } \alpha = 0 \end{cases}$$

4. On reprend le même argument en l'adaptant aux fonctions hyperboliques. Pour cela, nous démontrons d'abord, par analogie avec le cas trigonométrique :

Tout d'abord, puisque $a \geqslant b$, $\frac{a}{b} \geqslant 1$. Comme ch est strictement croissante sur $[0,+\infty[$, allant de 1 à $+\infty$, et continue, d'après le théorème de la bijection, ch induit une bijection de $[0,+\infty[$ sur $[1,+\infty[$. Ainsi, il existe un unique réel α tel que $a = \operatorname{ch}(\alpha)b$. On a alors,

$$a_1 = b \frac{1 + \operatorname{ch}(\alpha)}{2} = b \operatorname{ch}^2\left(\frac{\alpha}{2}\right)$$
 puis : $b_1 = \sqrt{b^2 \operatorname{ch}^2\left(\frac{\alpha}{2}\right)} = b \operatorname{ch}\left(\frac{\alpha}{2}\right)$.

La récurrence effectuée dans le cas $a \le b$ s'adapte bien pour montrer que

$$\forall n \in \mathbb{N}, \quad b_n = b \prod_{k=1}^n \operatorname{ch}\left(\frac{\alpha}{2^k}\right).$$

Le même calcul vaut aussi pour ce produit /

$$\forall n \in \mathbb{N}, \quad b_n = \frac{b}{2^n} \frac{\operatorname{sh}(\alpha)}{\operatorname{sh}\left(\frac{\alpha}{2^n}\right)}.$$

Or, tout comme pour le sinus, $\lim_{x\to 0} \frac{\operatorname{sh}(x)}{x} = 0$, d'où le résultat escompté :

$$\lim_{n \to +\infty} b_n = \begin{cases} \frac{b \cdot \operatorname{sh}(\alpha)}{\alpha} & \text{si } \alpha \neq 0 \\ b & \text{si } \alpha = 0 \end{cases}$$