Closed-form solutions of spinning BBHs at 1.5PN (using action-angle variables)

References

• RESEARCH PAPERS

- The standard way of computing the solution (without 1PN part): https://arxiv.org/abs/1908.02927 Action-angle-based solution: https://arxiv.org/abs/2110.15351

• LECTURE NOTES

- Lecture notes (latest): https://github.com/sashwattanay/lectures_integrability_action-angles_PN_BBH/blob/gh- action-result/pdflatex/lecture_notes/main.pdf
- Lecture notes (for citation purposes): https://arxiv.org/abs/2206.05799

• MATHEMATICA PACKAGE

• Mathematica package on GitHub: https://github.com/sashwattanay/BBH-PN-Toolkit

YOUTUBE VIDEO

https://youtu.be/aoiCk5TtmvE

THIS PRESENTATION

• https://github.com/sashwattanay/lectures_integrability_action-angles_PN_BBH/blob/main/UIUC_workshop_presentation/ uiuc workshop presentation.pdf

Lecture plan

Lecture style: standing on the shoulders of giants (due to time constraints)

- Lecture 1:
 - Theory
 - Strategy to compute solution from action-angles

- Lecture 2:
 - Construct the solution

Lecture plan

- Lecture 1:
 - Theory
 - Strategy to compute solution from action-angles

- Lecture 2:
 - Construct the solution

Introduction to the system

Spinning 1.5PN BBH system

COM FRAME

$$R = R_1 - R_2$$

Phase space variables

$$\overrightarrow{R}(t)$$
, $\overrightarrow{P}(t)$, $\overrightarrow{S}_1(t)$ and $\overrightarrow{S}_2(t)$

Statement of the problem

• The 1.5PN Hamiltonian is $H = H_{\rm N} + H_{\rm 1PN} + H_{\rm 1.5PN} + \mathcal{O}\left(c^{-4}\right)$ with

•
$$H_{\rm N} = \mu \left(\frac{p^2}{2} - \frac{1}{r}\right)$$
, $H_{1.5\rm PN} = \frac{2G}{c^2 R^3} \overrightarrow{S}_{\rm cff} \cdot \overrightarrow{L}$.

- Hamilton's equations $\Longrightarrow \frac{d\left(\overrightarrow{R}(t), \overrightarrow{P}(t), \overrightarrow{S}_{1}(t), \overrightarrow{S}_{2}(t)\right)}{dt}$.
- **Problem:** Integrate Hamilton's eqns. to obtain $\overrightarrow{R}(t)$, $\overrightarrow{P}(t)$, $\overrightarrow{S}_1(t)$, $\overrightarrow{S}_2(t)$.

Historical context and the status quo

- The 1.5PN Hamiltonian is $H = H_{\rm N} + H_{\rm 1PN} + H_{\rm 1.5PN} + \mathcal{O}(c^{-4})$.
- **1680s**: Issac Newton gave the Newtonian solution $R = a(1 e \cos u)$.
- 1985: Damour-Deruelle gave 1PN quasi-Keplerian solution.
- 2019: Gihyuk Cho, H. M. Lee gave 1.5PN solution (1PN effects ignored for simplicity)
- **2021**: We worked out an equivalent action-angle based solution (subject of these lectures).
- Why action-angles? Extendible to 2PN via canonical perturbation theory (Goldstein).

Do we even the solution? YouTube link

- Show all three solutions
- YouTube video

EOMs with Poisson brackets Standard approach

• Hamilton's eqns. are
$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$
, $\dot{p}_i = -\frac{\partial H}{\partial q_i}$

• Leads to EOM
$$\frac{df}{dt} = \{f, H\}$$
 with $\{f, g\} \equiv \sum_{i=1}^{N} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right)$.

EOMs with Poisson brackets for BBHs Our approach

• Define EOMs:
$$\frac{df(t)}{dt} = \{f, H\}$$
 where $f = f(\overrightarrow{R}(t), \overrightarrow{P}(t), \overrightarrow{S}_1(t), \overrightarrow{S}_2(t))$.

• Define PBs:
$$\left\{R_i, P_j\right\} = \delta_{ji}$$
 $\left\{S_A^i, S_B^j\right\} = \delta_{AB} \epsilon_k^{ij} S_A^k$.

$$\{f,g\} = -\{g,f\}$$

$$\{af + bg, h\} = a\{f,h\} + b\{g,h\}, \quad \{h,af + bg\} = a\{h,f\} + b\{h,g\}, a,b \in \mathbb{R},$$

$$\{fg,h\} = \{f,h\}g + f\{g,h\},$$

$$\left\{f,g\left(v_i\right)\right\} = \left\{f,v_i\right\} \frac{\partial g}{\partial v_i},$$

• How to define the system? (i) specify the Hamiltonian (ii) define PBs (iii) define the EOMs (via PBs).

PB Exercise 1

Prob: Compute $\{R_x, \sin P_x + P_x\}$.

Sol: Using the bilinearity and the chain rule (2nd and 4th rules) for PBs

$$\left\{ R_x, \sin P_x + P_x \right\}$$

$$= \left\{ R_x, \sin P_x \right\} + \left\{ R_x, P_x \right\}$$

$$= \left\{ R_x, P_x \right\} \frac{\partial \sin P_x}{\partial P_x} + \left\{ R_x, P_x \right\}$$

$$= \cos P_x + 1.$$

PB Exercise 2

Prob: Show that $\{\phi_A, S_B^z\} = \delta_{AB}$, where $\phi_A = \arctan\left(S_A^y/S_A^x\right)$ is the azimuthal angle of \overrightarrow{S}_A .

- Implies that $\phi \sim$ position; $S^z \sim$ momentum upon comparison with $\left\{R_i, P_j\right\} = \delta_{ji}$.
- Lingo: f and g commute if $\{f, g\} = 0$.
- How to evaluate PBs: See the YouTube video (...add hyperlink)

Integrable systems and action-angles

- **Integrable system**: canonical transformation $(\overrightarrow{p}, \overrightarrow{q}) \leftrightarrow (\overrightarrow{\mathcal{J}}, \overrightarrow{\theta})$ exists such that $H = H(\overrightarrow{\mathcal{J}})$ and $\{\overrightarrow{p}, \overrightarrow{q}\} (\theta_i + 2\pi) = \{\overrightarrow{p}, \overrightarrow{q}\} (\theta_i)$.
- Action $\mathcal{J}_i = \sim p$; angle $\theta_i = \sim q$.
- Hamilton's equations ==>

$$\dot{\mathcal{J}}_i = -\partial H/\partial \theta_i = 0 \implies \mathcal{J}_i \text{ stay constant}$$

$$\dot{\theta}_i = \partial H/\partial \mathcal{J}_i \equiv \omega_i(\overrightarrow{\mathcal{J}}) \quad \Longrightarrow \theta_i = \omega_i(\overrightarrow{\mathcal{J}})t.$$

Having action-angles ~ having closed-form solutions.

Liouville-Arnold theorem

- **Theorem**: 2n phase space variables & n commuting constants of motion \Longrightarrow integrability.
- How to check if f is a constant of motion? Check if $\{f, H\} = 0$.
- For BBH phase space $(\overrightarrow{R}, \overrightarrow{P}, \overrightarrow{S}_1, \overrightarrow{S}_2)$, $2n \neq 12$. Positions-momenta delineation not clear for spins.
- Easy to check that $\left\{R_i, P_j\right\} = \delta_{ij}$ and $\left\{\phi_A, S_B^z\right\} = \delta_{AB}$ where $\phi_A = \arctan\left(S_A^y/S_A^x\right)$, the azimuthal angle for \overrightarrow{S}_A .
- (ϕ_A, S_A^z) are the positions, momenta of \overrightarrow{S}_A . Only 2 variables needed for \overrightarrow{S}_A since $dS_A/dt = \{S_A, H\} = 0$.
- Hence $2n = 3 + 3 + 2 + 2 = 10 \implies 10/2 = 5$ commuting constants needed for integrability.

Commuting constants for BBHs

• With
$$m \equiv m_1 + m_2$$
, $\mu \equiv m_1 m_2 / m$, $\nu \equiv \mu / m$, $\overrightarrow{L} \equiv \overrightarrow{R} \times \overrightarrow{P}$
 $\sigma_1 \equiv (2 + 3m_2 / m_1)$, $\sigma_2 \equiv (2 + 3m_1 / m_2)$, $\overrightarrow{S}_{\text{eff}} \equiv \sigma_1 \overrightarrow{S}_1 + \sigma_2 \overrightarrow{S}_2$

• The 5 commuting constants are long known: $H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L}$.

• Hence the 1.5PN BBH is integrable and has action-angles.

Curves, vectors, vector field and flow

• **Pictorial definition**: the vector is $d/d\lambda$ (a derivative operator).

Hamiltonian flow of a function $f(\vec{V})$

- $\overrightarrow{V} \equiv \left\{ \overrightarrow{R}, \overrightarrow{P}, \overrightarrow{S}_1, \overrightarrow{S}_2 \right\}$, unless states otherwise.
- Hamiltonian flow of $f(\overrightarrow{V})$: $\frac{d\overrightarrow{V}}{d\lambda} = \{\overrightarrow{V}, f\}$. f need not be the Hamiltonian.
- Solution of the flow given in the form $\overrightarrow{V} = \overrightarrow{V}(\overrightarrow{V}_0, \Delta \lambda)$.
- Flow \equiv Hamiltonian flow (for brevity).

Prob: Solve the flow under R_x and draw pictures.

Sol: Under the R_x flow:

$$\frac{dP_x}{d\lambda} = \left\{ P_x, R_x \right\} = -1.$$

$$\frac{dV^{i}}{d\lambda} = 0 \text{ for other } V^{i}\text{'s.}$$

$$\implies P_{x} - P_{x}(\lambda_{0}) = (\lambda_{0} - \lambda).$$

Prob: Solve the flow under P_x and draw pictures.

Sol: Under the R_{χ} flow:

$$\frac{dR_x}{d\lambda} = \left\{ R_x, P_x \right\} = 1.$$

$$\frac{dV^i}{d\lambda} = 0 \text{ for other } V^i\text{'s.}$$

$$\implies R_{x} - R_{x}(\lambda_{0}) = (\lambda - \lambda_{0}).$$

Prob: Draw pictures for L_x flow where $\overrightarrow{L} = \overrightarrow{R} \times \overrightarrow{P}$.

Sol: Under the L_{χ} flow:

$$\frac{d\overrightarrow{R}}{d\lambda} = \hat{x} \times \overrightarrow{V}$$

$$\frac{d\overrightarrow{P}}{d\lambda} = \hat{x} \times \overrightarrow{V}$$

Prob: Draw pictures for L^2 and J^2 flow where $\overrightarrow{L} = \overrightarrow{R} \times \overrightarrow{P}$ and $\overrightarrow{J} = \overrightarrow{L} + \overrightarrow{S}_1 + \overrightarrow{S}_2$.

Sol:
$$L^2$$
 flow $\Longrightarrow \left\{ \overrightarrow{L}, L^2 \right\} = \left\{ \overrightarrow{S}_A, L^2 \right\} = 0 \implies \overrightarrow{L}, \overrightarrow{S}_A$ remain fixed.

$$J^2$$
 flow $\Longrightarrow \left\{ \overrightarrow{J}, J^2 \right\} = 0 \implies \overrightarrow{J}$ remains fixed

Hamiltonian flow of the Hamiltonian H

- With $\overrightarrow{V} \equiv \left\{ \overrightarrow{R}, \overrightarrow{P}, \overrightarrow{S}_1, \overrightarrow{S}_2 \right\}$, flow eqn. is $\frac{d\overrightarrow{V}}{d\lambda} = \{\overrightarrow{V}, f\}$.
- Flow under $H \Longrightarrow \frac{dV}{d\lambda} = \{V, H\}.$
- This is the **EOM**. Gives the **realtime evolution**, unlike other flows.
- Hamiltonian flow of the Hamiltonian is special.
- Example: flow under *H* for a pendulum

5 minute break

Coffee, questions?

Lecture plan

- Lecture 1:
 - Theory
 - Strategy to compute solution from action-angles

- Lecture 2:
 - Construct the solution

Action-angle-based solution: strategy

With
$$\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L} \}$$
, assume we have (i) $\mathcal{J}_i(\overrightarrow{C})$ (ii) \overrightarrow{C} flow solutions (subject of the next lecture).

- How to combine \overrightarrow{C} flows?
- Construct action-angles.
- Compute frequencies $\omega_i \equiv \frac{d\theta_i}{dt}$.
- How to flow along the actions \mathcal{J}_i ?
- Solution via action-angles.

Action-angle-based solution: strategy

With
$$\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L} \}$$
, assume we have (i) $\mathcal{J}_i(\overrightarrow{C})$ (ii) \overrightarrow{C} flow solutions (subject of the next lecture).

- How to combine \overrightarrow{C} flows?
- Construct action-angles.
- Compute frequencies $\omega_i \equiv \frac{d\theta_i}{dt}$.
- How to flow along the actions \mathcal{J}_i ?
- Solution via action-angles.

How to combine \vec{C} flows?

- Assume C_i 's are commuting quantities (don't have to be constants).
- Notation: Output of C_i flow $\frac{d\overrightarrow{V}}{d\lambda_i} = \{\overrightarrow{V}, C_i\}$ denoted by $\overrightarrow{V} = \overrightarrow{V}(\overrightarrow{V}_0, \Delta\lambda_i)$.
- **Result**: Order of flow does not matter, i.e. $((\vec{V}_0, \Delta \lambda_1))$, $\Delta \lambda_2 = ((\vec{V}_0, \Delta \lambda_2))$, $\Delta \lambda_1 = ((\vec{V}_0, \Delta \lambda_2))$.
- **Result**: Simultaneous flows can be made sequential: $\frac{d\overrightarrow{V}}{d\lambda} = \{\overrightarrow{V}, C_1 + C_2\}$ by $\Delta\lambda$ is C_1 flow followed by C_2 flow (both by $\Delta\lambda$). Or in the reverse order.

How to combine \overrightarrow{C} flows?

Pictorial depiction of the two flow rules

Action-angle-based solution: strategy

With
$$\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L} \}$$
, assume we have (i) $\mathcal{J}_i(\overrightarrow{C})$ (ii) \overrightarrow{C} flow solutions (subject of the next lecture).

- How to combine \overrightarrow{C} flows?
- Construct action-angles.
- Compute frequencies $\omega_i \equiv \frac{d\theta_i}{dt}$.
- How to flow along the actions \mathcal{J}_i ?
- Solution via action-angles.

Construct action-angles

•
$$\mathcal{J}_i = \frac{1}{2\pi} \oint_{\gamma_i} \overrightarrow{P} \cdot d\overrightarrow{Q}$$
 with $\left\{ R_i, P_j \right\} = \delta_{ij}$ and $\left\{ \phi_A, S_B^z \right\} = \delta_{AB}$.

- Loop γ_i on the \overrightarrow{C} = constant submanifold.
- No. of independent $\mathcal{J}_i's = n$ despite infinite no. of loops.
- \mathcal{J}_i flow by $2\pi \to \text{loop}$ (different from γ_i).
- Angle $\theta_i \equiv \lambda_i$ along the \mathcal{J}_i flow.

Construct action-angles

Pictorial depiction of the construction

Action-angle-based solution: strategy

With
$$\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L} \}$$
, assume we have (i) $\mathcal{J}_i(\overrightarrow{C})$ (ii) \overrightarrow{C} flow solutions (subject of the next lecture).

- How to combine \overrightarrow{C} flows?
- Construct action-angles.
- Compute frequencies $\omega_i \equiv \frac{d\theta_i}{dt}$.
- How to flow along the actions \mathcal{J}_i ?
- Solution via action-angles.

Integrable systems and action-angles

- **Integrable system**: canonical transformation $(\overrightarrow{p}, \overrightarrow{q}) \leftrightarrow (\overrightarrow{\mathcal{J}}, \overrightarrow{\theta})$ exists such that $H = H(\overrightarrow{\mathcal{J}})$ and $\{\overrightarrow{p}, \overrightarrow{q}\} (\theta_i + 2\pi) = \{\overrightarrow{p}, \overrightarrow{q}\} (\theta_i)$.
- Action $\mathcal{J}_i = \sim p$; angle $\theta_i = \sim q$.
- Hamilton's equations \Longrightarrow

$$\dot{\mathcal{J}}_i = -\partial H/\partial \theta_i = 0 \implies \mathcal{J}_i \text{ stay constant}$$

$$\dot{\theta}_i = \partial H/\partial \mathcal{J}_i \equiv \omega_i(\overrightarrow{\mathcal{J}}) \quad \Longrightarrow \theta_i = \omega_i(\overrightarrow{\mathcal{J}})t.$$

Having action-angles ~ having closed-form solutions.

Compute frequencies $\omega_i \equiv d\theta_i/dt$

- Recall $\dot{\theta}_i = \partial H/\partial \mathcal{J}_i \equiv \omega_i$.
- With $\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L} \}$, assume we have $\mathscr{J}_i(\overrightarrow{C})$ (next lecture's subject).
- Compute the Jacobian $M_{ij}(\overrightarrow{C}) \equiv \frac{\partial \mathcal{J}_i}{\partial C_i}$ (consists of numeric constants).
- Inverse function theorem: If $N_{ij} \equiv \frac{\partial C_i}{\partial \mathcal{J}_i}$, then $N = M^{-1}$.
- The first row of N corresponding to $(C_1 = H)$ contains $\dot{\theta}_i = \partial H/\partial \mathcal{J}_i \equiv \omega_i$.

Action-angle-based solution: strategy

With
$$\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L} \}$$
, assume we have (i) $\mathcal{J}_i(\overrightarrow{C})$ (ii) \overrightarrow{C} flow solutions (subject of the next lecture).

- How to combine \overrightarrow{C} flows?
- Construct action-angles.
- Compute frequencies $\omega_i \equiv \frac{d\theta_i}{dt}$.
- How to flow along the actions \mathcal{J}_i ?
- Solution via action-angles.

EOMs with Poisson brackets for BBHs Our approach

• Define EOMs:
$$\frac{df(t)}{dt} = \{f, H\}$$
 where $f = f(\overrightarrow{R}(t), \overrightarrow{P}(t), \overrightarrow{S}_1(t), \overrightarrow{S}_2(t))$.

• Define PBs: $\left\{R_i, P_j\right\} = \delta_{ji}$ $\left\{S_A^i, S_B^j\right\} = \delta_{AB} \epsilon_k^{ij} S_A^k$.

$$\{f,g\} = -\{g,f\}$$

$$\{af + bg,h\} = a\{f,h\} + b\{g,h\}, \quad \{h,af + bg\} = a\{h,f\} + b\{h,g\}, a,b \in \mathbb{R},$$

$$\{fg,h\} = \{f,h\}g + f\{g,h\},$$

$$\left\{f,g\left(v_i\right)\right\} = \left\{f,v_i\right\} \frac{\partial g}{\partial v_i},$$

• How to define the system? (i) specify the Hamiltonian (ii) define PBs (iii) define the EOMs (via PBs).

How to flow along the actions \mathcal{J}_i ?

- With $\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{eff} \cdot \overrightarrow{L}\}$, assume we have (i) $\mathcal{J}_i(\overrightarrow{C})$ (ii) \overrightarrow{C} flow solutions (next lecture's subject).
- Using chain rule for PBs, $\frac{d\overrightarrow{V}}{d\lambda} = \left\{ \overrightarrow{V}, \mathcal{J}_i \right\} = \left\{ \overrightarrow{V}, C_j \right\} \left(\frac{\partial \mathcal{J}_i}{\partial C_j} \right) = 2.5 \{ \overrightarrow{V}, C_1 \} + 5.1 \{ \overrightarrow{V}, C_2 \}$ = $\{ \overrightarrow{V}, 2.5C_1 + 5.1C_2 \}$.
- \mathcal{J}_i flow by $\Delta \lambda = (C_1 \text{ flow by } 2.5\Delta \lambda, \text{ then } C_2 \text{ flow by } 5.1\Delta \lambda)$, reverse the order.

Action-angle-based solution: strategy

With
$$\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L} \}$$
, assume we have (i) $\mathcal{J}_i(\overrightarrow{C})$ (ii) \overrightarrow{C} flow solutions (subject of the next lecture).

- How to combine \overrightarrow{C} flows?
- Construct action-angles.
- Compute frequencies $\omega_i \equiv \frac{d\theta_i}{dt}$.
- How to flow along the actions \mathcal{J}_i ?
- Solution via action-angles.

Solution via action-angles.

- Start with an initial $\overrightarrow{V}_0 = \{\overrightarrow{R}, \overrightarrow{P}, \overrightarrow{S}_1, \overrightarrow{S}_2\}$. Assign it $\overrightarrow{\theta} = \overrightarrow{0}$.
- We want $\overrightarrow{V} = \overrightarrow{V}(\overrightarrow{V_0}, t)$.
- Recall $\dot{\theta}_i = \partial H/\partial \mathcal{J}_i \equiv \omega_i$ and $\Delta \theta_i = \Delta \lambda_i$.
- After time t, $\theta_i(t) = \omega_i t$.
- How to increase the angles? Action flows increase the angles.
- We need to flow under \mathcal{J}_i 's by an amount $\lambda_i = \theta_i(t) = \omega_i t$.

Action-angle-based solution: strategy

With
$$\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L} \}$$
, assume we have (i) $\mathcal{J}_i(\overrightarrow{C})$ (ii) \overrightarrow{C} flow solutions (subject of the next lecture).

- How to combine \overrightarrow{C} flows?
- Construct action-angles.
- Compute frequencies $\omega_i \equiv \frac{d\theta_i}{dt}$.
- How to flow along the actions \mathcal{J}_i ?
- Solution via action-angles.

Construct action-angles

- $\mathcal{J}_i = \frac{1}{2\pi} \oint_{\gamma_i} \overrightarrow{P} \cdot d\overrightarrow{Q}$. Loop γ_i on the $\overrightarrow{C} = \text{constant}$ submanifold.
- \mathcal{J}_i flow by $2\pi \to \text{loop}$ (different from γ_i).
- Angle $\theta_i \equiv \lambda_i$ along the \mathcal{J}_i flow.
- To show: $\{\theta_i, J_k\} = \delta_{ij}$, $\{J_i, J_k\} = 0$, $\{\theta_i, \theta_k\} = 0$.

Construct action-angles

• Using
$$\theta_i = \lambda_i$$
, $\frac{d\theta_i}{d\lambda_i} = 1$ and $\frac{d\theta_i}{d\lambda_i} = \{\theta_i, \mathcal{J}_i\} \Longrightarrow \{\theta_i, \mathcal{J}_i\} = 1$.

- From definition \mathcal{J}_i and chain rule for PBs, $\mathcal{J}_i = \mathcal{J}_i(\overrightarrow{C}) \Longrightarrow \{J_i, J_k\}$ $= \frac{\partial J_i}{\partial C_l} \frac{\partial J_k}{\partial C_m} \{C_l, C_m\} = 0.$
- $\{\theta_i, \theta_j\} = 0$ involves changing \mathcal{J}_i , which does not happen with real evolution. Hence ignore.
- "Integrable system: canonical transformation $(\overrightarrow{p}, \overrightarrow{q}) \leftrightarrow (\overrightarrow{\mathcal{J}}, \overrightarrow{\theta})$ exists such that $H = H(\overrightarrow{\mathcal{J}})$ and $\{\overrightarrow{p}, \overrightarrow{q}\}(\theta_i + 2\pi) = \{\overrightarrow{p}, \overrightarrow{q}\}(\theta_i)$." that lead to $\overrightarrow{\mathcal{J}}_i = 0$; $\theta_i = \omega_i t$ is satisfied because action flow makes a loop after 2π .

Action-angle-based solution: strategy

With
$$\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L} \}$$
, assume we have (i) $\mathscr{J}_i(\overrightarrow{C})$ (ii) \overrightarrow{C} flow solutions (subject of the next lecture).

- How to combine \overrightarrow{C} flows?
- Construct action-angles.
- Compute frequencies $\omega_i \equiv \frac{d\theta_i}{dt}$.
- How to flow along the actions \mathcal{J}_i ?
- Solution via action-angles.

Lecture plan

- Lecture 1:
 - Theory
 - Strategy to compute solution from action-angles

- Lecture 2:
 - Construct the solution

Action-angle-based solution: strategy

With
$$\overrightarrow{C} = \{H, J^2, L^2, J_z, \overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L} \}$$
, assume we have (i) $\mathscr{J}_i(\overrightarrow{C})$ (ii) \overrightarrow{C} flow solutions (subject of this lecture).

- How to combine \overrightarrow{C} flows?
- Construct action-angles.
- Compute frequencies $\omega_i \equiv \frac{d\theta_i}{dt}$.
- How to flow along the actions \mathcal{J}_i ?
- Solution via action-angles.

Computing actions: strategy

•
$$\mathscr{J}_i = \frac{1}{2\pi} \oint_{\gamma_i} \overrightarrow{P} \cdot d\overrightarrow{Q}$$
; loop γ_i is on the surface of constant \overrightarrow{C} .

•
$$\left\{R_i, P_j\right\} = \delta_{ij}$$
 and $\left\{\phi_A, S_B^z\right\} = \delta_{AB}$

- How to be on the surface of constant \overrightarrow{C} ? Flow along $C_i's$: $\frac{dC_i}{d\lambda} = \left\{C_i, C_j\right\} = 0$.
- $\mathcal{J} = \mathcal{J}^{orb} + \mathcal{J}^{spin}$

$$\mathcal{J}^{\text{orb}} = \frac{1}{2\pi} \oint_{\mathscr{C}} \sum_{i} P_{i} dR^{i} \qquad \qquad \mathcal{J}_{A}^{\text{spin}} = \frac{1}{2\pi} \oint_{A}^{z} d\phi_{A}.$$

Computing \mathcal{J}_1

• With
$$\overrightarrow{V} = \{\overrightarrow{R}, \overrightarrow{P}, \overrightarrow{L}, \overrightarrow{S}_1, \overrightarrow{S}_2\}, J^2 \text{ flow} \Longrightarrow \frac{d\overrightarrow{V}}{d\lambda} = 2\overrightarrow{J} \times \overrightarrow{V} \equiv \overrightarrow{n} \times \overrightarrow{V}.$$

$$\bullet \quad \left\{ \overrightarrow{J}, J^2 \right\} = 0.$$

- Solution: $\phi(\lambda) = n \lambda + \phi_0$.
- Loop closes after flowing by $\Delta \lambda = 2\pi/n = 2\pi/(2J) = \pi/J$.

•
$$\mathscr{J}^{\mathrm{orb}} = \frac{1}{2\pi} \int_0^{\Delta \lambda} P_i \frac{dR^i}{d\lambda} d\lambda = \frac{1}{2\pi} \int_0^{\Delta \lambda} \overrightarrow{P} \cdot (\overrightarrow{n} \times \overrightarrow{R}) d\lambda = \frac{1}{2\pi} \int_0^{\Delta \lambda} \overrightarrow{n} \cdot \overrightarrow{L} d\lambda = \hat{n} \cdot \overrightarrow{L}.$$

•
$$\mathscr{J}_A^{\text{spin}} = \frac{1}{2\pi} \oint S_A^z d\phi_A = S_A^z = \hat{n} \cdot \overrightarrow{S}_A$$
 (with \overrightarrow{n} along z-axis)

• The spin integral is rotationally invariant, but not manifestly so.

•
$$\mathcal{J}_1 = \hat{n} \cdot \left(\overrightarrow{L} + \overrightarrow{S}_1 + \overrightarrow{S}_2 \right) = \hat{n} \cdot \overrightarrow{J} = J.$$

• **Summary**: We have computed \mathcal{J}_1 and also computed the solution to $C_1 = J^2$.

Computing \mathcal{J}_1 , \mathcal{J}_2 and \mathcal{J}_3

- For flows under J^2 , J_z , and L^2 : $\frac{d\overrightarrow{V}}{d\lambda} = \overrightarrow{n} \times \overrightarrow{V}$. $\overrightarrow{n} = 2\overrightarrow{J}$, \hat{z} , and $2\overrightarrow{L}$ (with \overrightarrow{n} being fixed)
- Exception: Under L^2 flow, spins don't move.
- **Solution**: $\phi(\lambda) = n \lambda + \phi_0$. Doesn't apply to spins under the L^2 flow.
- Loop closes after flowing by $\Delta \lambda = 2\pi/n$.

•
$$\mathcal{J}_A^{\text{spin}} = \frac{1}{2\pi} \oint S_A^z d\phi_A = S_A^z = \hat{n} \cdot \overrightarrow{S}_A$$
 (with \overrightarrow{n} along z-axis)

- $\mathcal{J}_1 = J$, $\mathcal{J}_2 = J_z$, $\mathcal{J}_3 = L$.
- Summary: We have computed $\{\mathcal{J}_1,\mathcal{J}_2,\mathcal{J}_3\}$ and also computed the solution to $C_i=\{J^2,J_z,L^2\}$.

Computing \mathcal{J}_4

• We won't compute it here.

• \mathcal{J}_4 has a Newtonian version (Eq. (10.139) of Goldstein).

• 1PN version given in Eq. (3.10) of Damour-Schafer.

• 1.5PN version in Eq. (38) of [arXiv: 2012.06586].

Taking stock

- We solved the flows under $C_i = \{J^2, J_z, L^2\}$.
- Finding the solution $\overrightarrow{V}(\overrightarrow{V}_0, \Delta \lambda)$ of a flow under C_i : $\frac{d\overrightarrow{V}}{d\lambda} = \{\overrightarrow{V}, C_i\}$ is basically solving an ODE.
- Solution of flow under $\overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L}$ given in [arXiv:2110.15351].
- Solution of flow under *H* given in [arXiv:1908.02927]. This is the standard solution of the system. Omit 1PN terms for simplicity.
- Quite lengthy but nothing esoteric.
- Future focus: compute \mathcal{J}_5 .

J₅ computation

For
$$\overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L}$$
 flow:

• Important: \overrightarrow{n} not fixed

$$\frac{d\overrightarrow{R}}{d\lambda} = \overrightarrow{S}_{\text{eff}} \times \overrightarrow{R}$$

$$\frac{d\overrightarrow{P}}{d\lambda} = \overrightarrow{S}_{\text{eff}} \times \overrightarrow{P}$$

$$\frac{d\overrightarrow{S}_{a}}{d\lambda} = \sigma_{a} \left(\overrightarrow{L} \times \overrightarrow{S}_{a} \right)$$

$$\frac{d\overrightarrow{L}}{d\lambda} = \overrightarrow{S}_{\text{eff}} \times \overrightarrow{L}$$

J₅ computation

$$2\pi \mathcal{J} = 2\pi \left(\mathcal{J}^{\text{orb}} + \mathcal{J}^{\text{spin}} \right)$$
$$= \int_{\lambda_i}^{\lambda_f} \left(P_i dR^i + S_1^z d\phi_1^z + S_2^z d\phi_2^z \right)$$

$$= \int_{\lambda_i}^{\lambda_f} \left(P_i \frac{dR^i}{d\lambda} + S_1^z \frac{d\phi_1^z}{d\lambda} + S_2^z \frac{d\phi_2^z}{d\lambda} \right) d\lambda$$

•
$$2\pi \mathcal{J}^{\text{orb}} = \int_{\lambda_i}^{\lambda_f} \overrightarrow{P} \cdot \left(\overrightarrow{S}_{\text{eff}} \times \overrightarrow{R} \right) d\lambda = \int_{\lambda_i}^{\lambda_f} \left(S_{\text{eff}} \cdot L \right) d\lambda = \left(S_{\text{eff}} \cdot L \right) \Delta \lambda$$

• Can't do spin sector integral because $\overrightarrow{S}_A \neq \overrightarrow{R}_A \times \overrightarrow{P}_A$. A refers to the BHs.

\mathcal{J}_5 computation: enter fictitious variables

- Define \overrightarrow{R}_a , \overrightarrow{P}_a (fictitious variables) such that $\overrightarrow{S}_a \equiv \overrightarrow{R}_a \times \overrightarrow{P}_a$.
- **Hamiltonian**: Now a function of \overrightarrow{R} , \overrightarrow{P} , $\overrightarrow{R}_{1/2}$, $\overrightarrow{P}_{1/2}$ and not \overrightarrow{R} , \overrightarrow{P} , \overrightarrow{S}_1 , \overrightarrow{S}_2 .
- **PBs and EOMs**: $\left\{R_i, P_j\right\} = \delta_{ij}, \quad \left\{R_{ai}, P_{bj}\right\} = \delta_{ab}\delta_{ji}; \quad \frac{df}{dt} = \{f, H\}.$
- $\left\{ R_{i}, P_{j} \right\} = \delta_{ij}, \quad \left\{ R_{ai}, P_{bj} \right\} = \delta_{ab} \delta_{ji} \implies \left\{ R_{i}, P_{j} \right\} = \delta_{ij}, \quad \left\{ \phi_{A}, S_{B}^{z} \right\} = \delta_{AB}$
- PBs \rightarrow EOMs \Longrightarrow The standard phase space (**SPS**) is equivalent to the extended phase space (**EPS**).
- Integrability equivalency: EPS needs n = 2n/2 = 18/2 = 9 = (5 + 4) C_i 's. The next 4 C_i 's are S_a^2 and $R_a \cdot P_a$.

J₅ computation: sanity checks

• Check 1: Final \mathcal{J}_5 depends on \overrightarrow{R} , \overrightarrow{P} , \overrightarrow{S}_1 and \overrightarrow{S}_2 .

• Check 2: Numerical flow by 2π under \mathcal{J}_5 closes a loop in the SPS picture.

 We have all seen fictitious variables before (in spirit)!

• Inventing complex numbers to do real integrals.

542 Chapter 11 Complex Variable Theory

11.8.19 Prove that
$$\int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2} dx = \pi \ln 2.$$

11.8.20 Show that

$$\int_{0}^{\infty} \frac{x^a}{(x+1)^2} dx = \frac{\pi a}{\sin \pi a},$$

where -1 < a < 1.

Hint. Use the contour shown in Fig. 11.26, noting that z = 0 is a branch point and the positive x-axis can be chosen to be a cut line.

11.8.21 Show that

$$\int_{-\infty}^{\infty} \frac{x^2 dx}{x^4 - 2x^2 \cos 2\theta + 1} = \frac{\pi}{2 \sin \theta} = \frac{\pi}{2^{1/2} (1 - \cos 2\theta)^{1/2}}.$$

Exercise 11.8.16 is a special case of this result.

11.8.22 Show that

$$\int_{0}^{\infty} \frac{dx}{1+x^n} = \frac{\pi/n}{\sin(\pi/n)}.$$

Hint. Try the contour shown in Fig. 11.30, with $\theta = 2\pi/n$.

11.8.23 (a) Show that

$$f(z) = z^4 - 2z^2 \cos 2\theta + 1$$

has zeros at $e^{i\theta}$, $e^{-i\theta}$, $-e^{i\theta}$, and $-e^{-i\theta}$.

(b) Show that

$$\int_{-\infty}^{\infty} \frac{dx}{x^4 - 2x^2 \cos 2\theta + 1} = \frac{\pi}{2 \sin \theta} = \frac{\pi}{2^{1/2} (1 - \cos 2\theta)^{1/2}}.$$

Exercise 11.8.22 (n = 4) is a special case of this result.

\mathcal{J}_5 computation using fictitious variables

$$\mathcal{J}_{k} = \frac{1}{2\pi} \oint_{\mathcal{C}_{k}} \left(\overrightarrow{P} \cdot d\overrightarrow{R} + \overrightarrow{P}_{1} \cdot d\overrightarrow{R}_{1} + \overrightarrow{P}_{2} \cdot d\overrightarrow{R}_{2} \right)$$

EOMs for $\overrightarrow{S}_{\text{eff}} \cdot \overrightarrow{L}$ flow are

$$\frac{d\overrightarrow{R}}{d\lambda} = \overrightarrow{S}_{\text{eff}} \times \overrightarrow{R}$$

$$\frac{d\overrightarrow{P}}{d\lambda} = \overrightarrow{S}_{\text{eff}} \times \overrightarrow{P}$$

$$\frac{d\overrightarrow{R}_{a}}{d\lambda} = \sigma_{a} \left(\overrightarrow{L} \times \overrightarrow{R}_{a} \right)$$

$$\frac{d\overrightarrow{P}_{a}}{d\lambda} = \sigma_{a} \left(\overrightarrow{L} \times \overrightarrow{P}_{a} \right)$$

$$\begin{split} &2\pi\mathcal{J}_{S_{\text{eff}}\cdot L} = 2\pi\left(\mathcal{J}^{\text{orb}} + \mathcal{J}^{\text{spin}}\right) \\ &= \int_{\lambda_{i}}^{\lambda_{f}} \left(P_{i} \frac{dR^{i}}{d\lambda} + P_{1i} \frac{dR_{1}^{i}}{d\lambda} + P_{2i} \frac{dR_{2}^{i}}{d\lambda}\right) d\lambda \\ &= \int_{\lambda_{i}}^{\lambda_{f}} \left(\overrightarrow{P} \cdot \left(\overrightarrow{S}_{\text{eff}} \times \overrightarrow{R}\right) + \overrightarrow{P}_{1} \cdot \left(\sigma_{1} \overrightarrow{L} \times \overrightarrow{R}_{1}\right) + \overrightarrow{P}_{2} \cdot \left(\sigma_{2} \overrightarrow{L} \times \overrightarrow{R}_{2}\right)\right) d\lambda \\ &= 2 \int_{\lambda_{i}}^{\lambda_{f}} \left(S_{\text{eff}} \cdot L\right) d\lambda = 2\left(S_{\text{eff}} \cdot L\right) \Delta\lambda_{S_{\text{eff}}\cdot L} \\ &\mathcal{J}_{S_{\text{eff}}\cdot L} = \frac{\left(S_{\text{eff}} \cdot L\right) \Delta\lambda_{S_{\text{eff}}\cdot L}}{\pi} \end{split}$$

\mathcal{J}_5 computation using fictitious variables

$$\begin{split} \mathcal{J}_{S_{\text{eff}}\cdot L} &= \frac{\left(S_{\text{eff}}\cdot L\right)\Delta\lambda_{S_{\text{eff}}\cdot L}}{\pi}, \\ \mathcal{J}_{J^2} &= \frac{J^2\Delta\lambda_{J^2}}{\pi}, \\ \mathcal{J}_{L^2} &= \frac{L^2\Delta\lambda_{L^2}}{\pi}, \\ \mathcal{J}_{S_1^2} &= \frac{E^2\Delta\lambda_{L^2}}{\pi}, \\ \mathcal{J}_{S_1^2} &= \frac{S_1^2\Delta\lambda_{S_1^2}}{\pi}, \\ \mathcal{J}_{S_2^2} &= \frac{S_2^2\Delta\lambda_{S_2^2}}{\pi}. \end{split}$$

- Loop for \mathcal{J}_5 is closed by flowing under 5 C_i 's (not one).
- Flow amounts $\Delta \lambda_i$'s give \mathcal{J}_5

\mathcal{J}_5 computation: flow overview

THEEND

Please send comments on the lecture notes and the presentation _/_

Thank you!