

X-Nuclei Imaging

Johannes Fischer

ISMRM German Chapter Ph.D. Student Training, Freiburg 9 Feb 2024

X-Nuclei

Spin > 0

imaging of native nuclei

tracking of injected cells/tracers

stable

As opposed to positron emission tomography (PET)

$^{3}H^{i}$	_	$^{2}\mathrm{H}^{\mathrm{j}}$	1
³ He	1.37×10^{-4}	⁶ Li	1
¹³ C	1.07	⁷ Li	3/2
¹⁵ N	0.368	⁹ Be	3/2
¹⁹ F	100	¹⁰ B ¹¹ B	3 2/2
²⁹ Si		¹⁴ N ^j	3/2
	4.6832	17O	5/2
³¹ P	100	²¹ Ne	3/2
⁵⁷ Fe	2.119	²³ Na	3/2
⁷⁷ Se	7.63	²⁵ Mg	5/2
^{89}Y	100	2/A1	5/2
103 Rh	100	³³ S	3/2
(^{107}Ag)	51.839	³⁵ Cl	3/2
109Ag	48.161	³⁷ Cl	3/2
(¹¹¹ Cd)		³⁹ K	3/2
(**Ca)	12.80	(⁴⁰ K) (⁴¹ K)	4 3/2
$^{113}\mathrm{Cd}^q$	12.22	⁴³ Ca	7/2
(^{115}Sn)	0.34	⁴⁵ Sc	7/2
(^{117}Sn)	7.68	⁴⁷ Ti	5/2
¹¹⁹ Sn	8.59	⁴⁹ Ti	7/2
(^{123}Te)	0.89	(⁵⁰ V) ^q	6
¹²⁵ Te	7.07	51 V	7/2
¹²⁹ Xe	26.44	⁵³ Cr	3/2
¹⁸³ W	14.31	⁵⁵ Mn	5/2
¹⁸⁷ Os	1.96	⁵⁹ Co ⁶¹ Ni	7/2 3/2
¹⁹⁵ Pt		⁶³ Cu	3/2
199	33.832	65C11	3/2
¹⁹⁹ Hg	16.87	⁶⁷ Zn	5/2
$(^{203}\text{T1})$	29.524	(⁶⁹ Ga)	3/2
²⁰⁵ T1	70.476	⁷¹ Ga	3/2
²⁰⁷ Pb	22.1	⁷³ Ge	9/2

 ^{75}As 3/2 3/2 3/2 3/2 9/2 5/2 5/2 5/2 99Tcq 9/2 5/2 121Sb 7/2 5/2 131 Xe j 3/2 133 Cs 7/2 3/2 ^{177}Hf 7/2 ¹⁸¹Ta 7/2 5/2 5/2 3/2 3/2 3/2 3/2

Nuclei most relevant for in vivo MRI

Nucleus	I	γ/2π [MHz/T]	NA [%]	Rel. Sensitivity
¹ H	1/2	42.577	99.985	1.00
² H	1	6.536	0.015	1.45*10 ⁻⁶
³ He	1/2	-32.434	1.4*10-4	5.75*10 ⁻⁷
¹³ C	1/2	10.708	1.108	1.76*10-4
¹⁷ 0	5/2	-5.772	0.037	1.08*10 ⁻⁵
¹⁹ F	1/2	40.087	100	0.834
²³ Na	3/2	11.262	100	9.27*10-2
³¹ P	1/2	17.235	100	6.65*10-2
¹²⁹ Xe	1/2	-11.777	26.44	5.71*10-3

$$\gamma^3 I(I+1)$$
NA

Oxygen

In the human body

Normal cells

- Low rate of glycolysis
- Oxidation of pyruvate in mitochondria

Tumor cells (Warburg effect)

- high rate of glycolysis
- anaeorbic gycolysis from pyruvate to lactate

Zhu et al, Magn Reson Sprectroscopy 59 (2011)

¹⁷O₂ is paramagnetic -> MR-invisible

H₂¹⁷O is MR-visible -> only sensitive to metabolic products

Oxygen-17

properties

only MR-detectable oxygen isotope nuclear spin I: 5/2

- quadrupolar moment
- $T_1 \approx T_2 \approx 5 \, \text{ms}$ (independent of B_0)

gyromagnetic ratio $\frac{\gamma}{2\pi}$: -5.772 MHz/T

Natural abundance: 0.037%

Body mass 80kg (65% H_2O) -> ~19ml $H_2^{17}O$

Measurement of CMRO₂

Cerebral Metabolic Rate of Oxygen

Hoffmann et al., MAGMA 27(6) 2014

Tissue	CMRO2 mmol/(g _{tissue} *min)	CMRO2 mmol/(g _{tissue} *min)	CMRO2 mmol/(g _{tissue} *min)
	3 Tesla	7 Tesla	¹⁵ O PET
Gray matter (GM)	1.65±0.15	1.65±0.29	1.59±0.23
White matter (WM)	1.35±0.08	0.83±0.14	0.65±0.10

Fluor

non-essential nutrient¹

beneficial effect in prevention of dental caries

Forms protective layer

absorbed in bone

Skeletal fluorosisis

total mass ~2.6g in adults² tightly bound -> MR-invisible

no background signal!

gyromagnetic ratio $\frac{\gamma}{2\pi}$: 40.087 MHz/T

Spin I: 1/2

Columbia Pictures

Cell tracking with 19F

WYSIWYG (What you see is what you give)

In vitro cell labeling and injection

In vivo labeling by injection of perfluorcarbon (PFC) compounds

- PFCs are taken up by monocytes and stored in the spleen
- Monocytes respond to inflammation, illuminating the site in 19F images

Kian Tadjalli Mehr, ISMRM 2024

Fluor-19

pH-sensitive On/Off switch (in-vitro)

pH in tumor 0.4-1.0 units below physiological pH (~7.4)

PEG-based gel swells in lower pH environment

- increased mobility of incorporated ¹⁹F
- increased T₂*

pH-dependent swelling can be tuned via amount of trifluoroethyl methacrylate (TFEMA)

Carbon-13

Carbon is the main component of organic chemistry

nuclear spin: 1/2

gyromagnetic ratio $\frac{\gamma}{2\pi}$: 10.708 MHz/T

natural abundance 1.1%

relative sensitivity: 1.76*10⁻⁴

Long T₁, up to 1 min

10⁴-10⁵ signal enhancement [1-2]

Excellent choice for labeling of endogeneous compounds

Pyruvate

Carbon-13

frequency (ppm)

Imaging the Warburg effect

Albers M., et al., Cancer Research (2008) Aggarwal et al., Eur Urol. (2017) Chen et al, Prostate Cancer and Prostatic Diseases (2020)

Where does a low γ affect imaging?

Larmor Frequency:

$$\omega_0 = \gamma B_0$$

RF-excitation:

$$\omega_1 = \gamma \int B_1(t) dt$$

Spatial encoding:

$$k = \gamma \int G(t) dt$$

$$\dot{k}(t) = \gamma G(t)$$

Coils

High SNR for X-nucleus ¹H coil for anatomy and shimming

Dual tuned coils

Single structure

- Frequency trap, frequency blocking
- Same imaging region is scanned

Multi structure

- Geometric B₁ decoupling
- Indiviual tuning, better SNR

Setting up the scanner

- 1. make sure the machine supports multiple nuclei
 - boradband, low-power RF-amplifier for x-nuclei

2. manually adjust the frequency

- 3. calibrate the reference voltage for RF-excitation
 - U_{ref} is the voltage needed for a rectangluar, 1ms long, 180° pulse

calibration of U_{ref}

Create fid sequence with 1ms rect pulse and set FA to 90°

$$S \sim M_{\perp} \sim \sin(\gamma B_1)$$

Repeat measurement for different U_{ref}

When signal is maximized, U_{ref} is correctly calibrated

Multiple resonances

Complex molecular structures lead to chemical shift

- Spectrally selective pulses
- Saturation pulses (think Fat-Sat.)¹
- Model based reconstruction from multi-echo data^{2, 3}

$$s_{TE}\Big(k_x,k_y(t),t\Big) = \int\int_{x,y} \rho(x,y) \Big[\sum_{m=1}^M A_m \exp\Big(i2\pi\cdot(TE+t)f_m\Big)C_m\Big] \exp(i2\pi x k_x) \exp\Big(i2\pi y k_y(t)\Big) dx \ dy$$

Perfluorooctyl bromide (PFOB)

- [1] Nöth et al., Magn Reson Imag 12 (1994)
- [2] van Heesweijk et al., MRM 79(5) (2018)
- [3] Brodsky et al. MRM 59(5) (2008)

Low signal amplitude

$$\frac{\text{SNR}}{\text{voxel}} \sim \Delta x \Delta y \Delta z \sqrt{N_{\text{Acq}} N_{\text{Avg}} T_{\text{Ro}}} * B_0 \sin(\alpha) \frac{1 - e^{-1R}/T_1}{1 - \cos(\alpha) e^{-TR}/T_1} e^{-TE}/T_2^*$$

Average

Increase B_0

Increase voxel size

1.5T 3T

3Na

3Na

Huhn K., et al., Front. Neurol. 10:84

Increase readout time T_{RO} (lower BW)

Reduce TE

Short T₂ relaxation times

signal:
$$S(t) \sim e^{-TE/T_2^*}$$

short, non-selective excitation pulse

3-dimensional encoding of k-Space using radial spokes

archimedian spiral¹

$$z(n) = \frac{2n - N - 1}{N},$$

$$x(n) = \cos(\sqrt{N\pi}\sin^{-1}z(n))\sqrt{1 - z^{2}(n)},$$

$$y(n) = \sin(\sqrt{N\pi}\sin^{-1}z(n))\sqrt{1 - z^{2}(n)},$$

Inhomogeneous sampling density

Uniform sampling density improves SNR¹

Adapt gradient-shape such that density is constant for $k > k_0$

$$G(t) = k_0^2 G_0 \left(3 \frac{\gamma}{2\pi} k_0^2 G_0 (t - t_0) + k_0^3 \right)^{-\frac{2}{3}}$$

1,7x

Pulseq sequence

Gradient amplitudes in pulseq

Sequence design is independent of γ

Gradient amplitudes in pulseq are defined in $A = \frac{\gamma}{2\pi}G$

$$k(t) = \int \frac{\gamma}{2\pi} G(t) dt = \int A(t) dt$$

Pulseq provides functions to calculate between Hz/m and mT/m

How to run an X-nuclei sequence with pulseq?

$$system = pp.opts(..., gamma=-5.772e6)$$

Pulseq sequence

design a center out readout

Use pypulseq.make_extended_trapezoid, which requires a numpy array of times and amplitudes.

- Find: t_0, T, A_0
- t_0 , T must lie on opts.gradient_raster_time (10 μ s)

Calculate the gradient amplitude: BW =
$$\frac{\text{FOV}*A_0}{N} \rightarrow A_0 = \frac{\text{BW}*N}{\text{FOV}}$$

Choose a high slew rate, SR: $t_0 = \frac{A_0}{SR} \rightarrow t_{0grt} = \lceil t_0 \rceil$

$$k_{\text{max}} = \frac{t_{0\text{grt}}A_0}{2} + A_0(T - t_{0\text{grt}})$$

$$T = \frac{k_{\text{max}}}{A_0} + \frac{t_{\text{grt}}}{2} \to T_{\text{grt}} = [T]$$

Pulseq sequence

design a center out readout

Use pypulseq.make_adc, which requires a dwell time, τ , and a duration TADC

- τ must lie on opts.adc_raster_time (100ns)
- Nyquist must be fulfilled: $\tau A_0 = \Delta k = \frac{1}{\text{FOV}}$
- Chose an oversampling of 2

$$\tau = \frac{1}{\text{OS}} \frac{1}{\text{FOV}A_0} = \frac{1}{2\text{BW}N} \to \tau_{\text{art}} = \lfloor \tau \rfloor$$

Number of ADC samples (multiple of 2)

$$N_{\rm ADC} = \left[\frac{T}{\tau_{\rm art}} \right]$$

$$T_{\rm grt} = [N_{\rm ADC} \tau_{\rm art}]$$

