Computer Vision

Undergraduate Course

Chapter 8. Image Restoration (Practice)

Dongbo Min

Department of Computer Science and Engineering

Chungnam National University, Korea

Practice Lecture (1/2)

Perform Salt-and-Pepper Noise Removal

- Generate a noisy image with Salt-and-Pepper Noise (Chapter. 8.2.1)
- Using the median filtering's code provided in textbook (Chapter 8.3.2)
- Using the outlier rejection method's code provided in textbook (Chapter 8.3.4)

Perform Gaussian Noise Removal

- Generate a noisy image with AWGN (Additive White Gaussian Noise).
 (Chapter 8.2.2)
- Using the simple average filtering's code provided in textbook (Chapter 8.4.2)
- Using the adaptive filtering's code provided in textbook (Chapter 8.4.3)

Practice Lecture (2/2)

Perform Inverse Filtering

- Generate a blurry image using the code provided in textbook (Chapter 8.6)
- Perform inverse filtering using the code provided in textbook (Chapter 8.6)
- Generate a motion-blurry image using the code provided in textbook (Chapter 8.6.1)
- Perform inverse filtering using the code provided in textbook (Chapter 8.6.1)

Perform Wiener Filtering

- Generate a blurry image using the code provided in textbook (Chapter 8.7)
- Perform inverse filtering using the code provided in textbook (Chapter 8.7)

Principles for homework submission

MATLAB homework

- Submit all source codes (m file) for each (sub-) problem
- If the codes do NOT work, then there will be a penalty.
- The report for MATLAB homework should include the intermediate process, reason, and final results.

Report homework

- The report should include the intermediate process, reason, and final results.
- The report homework should be done by hand, NOT using any computer software.

Example of Source Code

- For each problem, the source code should consist of two functions, as below.
 - In the 'homwork_main.m', the results should appear or be saved as below.

```
homework_main.m
in1 = imread('cameraman.tif');
out1 = function_example(in1);
imshow(out1); % or use imwrite(out1, 'output.png');
```

function_example.m

```
% Please make sure that there is a return variable to save an output.
% In the example below, 'y' is the return variable.
function y = function_example( im )
% Implement your code here.
end
```

숙제 제출 원칙

• 매트랩 숙제

- 각 세부문제 별로 모든 소스 코드를 제출
- 만약 코드가 작동하지 않을 경우, 감점
- 매트랩 숙제에 대한 보고서는 중간 결과, 이유, 최종 결과 등을 모두 포함하여 자세히 서술할 것

• 문제풀이 숙제

- 보고서는 중간 결과, 이유, 최종 결과 등을 모두 포함하여 자세히 서술할 것
- 문제풀이 숙제는 반드시 손으로 해서 낼 것 (컴퓨터 SW를 사용하지 말 것!)

Practice Homework (1/2)

- 1. (MATLAB) 3x3와 5x5 median filter를 직접 구현하여 수행하여라, MATLAB 내장함수를 사용하지 마시오. (ordfilt2 or medfilt2) (정렬(sorting)이 포함된 모든 함수는 직접 구현해야한다.)
 - 'twin.tif' 이미지를 grayscale image로 변환 ('rgb2gray')
 - 위의 이미지에 MATLAB function imnoise('input image', 'salt & pepper', D)를 사용하여 salt-and-pepper noise를 더하여라.

D는 noise density 즉, 얼마나 많은 픽셀이 salt and pepper noise에 의해 변하게 되는지를 의미한다.

- 그리고 median filter를 적용하라.
- 직접 구현한 함수와 내장함수를 비교하여라.

Practice Homework (1/2)

1. (MATLAB) Implement 3x3 and 5x5 median filter by yourself, NOT using MATLAB functions (ordfilt2 or medfilt2)

(All the functions including 'sorting' should be implemented by yourself.)

- The image 'twin.tif' should be converted into grayscale image ('rgb2gray')
- Add the salt-and-pepper noise to the grayscale image 'twin.tif' using the MATLAB function imnoise('input image', 'salt & pepper', D)

D means the noise density indicating how many pixels are corrupted by salt and pepper noise.

Then, apply the median filter (you implement above) to the noisy 'twin.tif' image.

Practice Homework (2/2)

- 2. (MATLAB)Implement adaptive filtering in Chapter 8.4.3 by yourself.
 - 1. 'twin.tif' (grayscale image)에 Gaussian noise를 더하여 노이즈 이미지를 만들어라.

```
imnoise(t, 'gaussian', 0, 0.005)
```

- 2. 7×7 filtering mask를 사용하여 각 픽셀(x,y)의 m(x,y)과 $\sigma_f^2(x,y)$ 를 구하라. The filtering mask is an uniform average filter.
- 3. 전체 이미지에 대하여 모든 $\sigma_{\!f}{}^2(x,y)$ 값의 평균을 가지고 ${\sf n}$ 을 구하라.
- 4. Perform the following equation about adaptive filtering

$$m_2(x,y) = m(x,y) + \frac{\max(0,\sigma_f^2 - n)}{\max(\sigma_f^2, n)} (I_G(x,y) - m(x,y))$$

- (1) m(x, y) 와 $m_2(x, y)$ 를 비교하여라.
- (2) 결과 $m_2(x,y)$ 와 MATLAB function wiener2(input, [7,7])의 결과를 비교하여라. It should be identical.

m(x,y) and σ_f^2 : the mean and variance of the mask at a pixel (x,y) $I_G(x,y)$: an original input intensity at a pixel (x,y) n: the variance of noise over the entire image

Practice Homework (2/2)

- 2. (MATLAB)Implement adaptive filtering in Chapter 8.4.3 by yourself.

 - 2. Obtain m(x, y) and $\sigma_f^2(x, y)$ for each pixel (x, y) when 7×7 filtering mask is used. The filtering mask is an uniform average filter.
 - 3. Obtain n by taking the mean of all values of $\sigma_f^2(x, y)$ over the entire image.
 - 4. Perform the following equation about adaptive filtering

$$m_2(x,y) = m(x,y) + \frac{\max(0,\sigma_f^2 - n)}{\max(\sigma_f^2, n)} (I_G(x,y) - m(x,y))$$

- (1) Compare two results m(x, y) and $m_2(x, y)$.
- (2) Compare your result $m_2(x, y)$ and the result by the MATLAB function wiener2(input, [7,7]). It should be identical.

m(x,y) and σ_f^2 : the mean and variance of the mask at a pixel (x,y) $I_G(x,y)$: an original input intensity at a pixel (x,y) n: the variance of noise over the entire image