Test Suite Prioritization and Reduction by Combinationalbased Criteria

Dr. Renée Bryce Associate Professor University of North Texas Renee.Bryce@unt.edu

1

Presentation outline

- □ Test Suite Prioritization
 - Exercise: Prioritize a test suite
- □ Test Suite Reduction
 - Exercise: Reduce a test suite using HGS
- Discussion

Test Suite Prioritization

- □ Test Suite Prioritization
 - Problem: Given T, a test suite, Π , the set of all test suites obtained by permuting the tests of T, and f, a function from Π to the set of real numbers, the problem is to find $\pi \in \Pi$ such that $\forall \pi' \in \Pi$, $f(\pi) \ge f(\pi')$. In this definition, Π refers to the possible prioritizations of T and f is a function applied to evaluate the

Case Study: Prioritizing User-session-based Test Suites

- ☐ Methodology: Convert web logs to user-session-based test suites, prioritize, and write to an XML format.
- ☐ Algorithm: Efficiently prioritize by combinatorial-based coverage for large test suites
- ☐ Empirical Studies: Families of empirical studies to analyze the effectiveness in relation to characteristics of the applications and test suites.

Research Questions

- □ Can we improve the rate of fault detection for user-session-based testing with new prioritization criteria?
- □ Which techniques are valuable in different scenarios?
 - i.e.: tests have a high/low Fault Detection Density
 - i.e.: predicted distribution of faults (deemed from prior versions of the software)
- □ Can we fine tune the criteria?
 - i.e.: cost-based prioritization

5

Prioritization Metrics

- ☐ Test length based on number of base requests:
 - order by the number of HTTP requests in a test case
- ☐ Frequency-based prioritization:
 - order such that test cases that cover most frequently accessed pages/sequence
 of pages are selected for execution before test cases that exercise the less
 frequently accessed pages/sequences of pages.
- □ Unique coverage of parameter-values:
 - order tests to cover all unique parameter-values as soon as possible
- □ 2-way parameter-value interaction coverage:
 - order tests to cover all pair-wise combinations of parameter-values between pages as soon as possible
- ☐ Test length based on number of parameter-value:
 - order by number of parameter-values used in a test case
- □ Random:
 - randomly permute the order of tests

Empirical Studies

- TerpCalc, TerpPaint, Terp Spreadsheet, and TerpWord
- Online Bookstore
- Online Course Project Manager (CPM)
- Online Conference Management System
- SchoolMate
- Online Music Store
- Metavist (sponsored by USDA)

7

Results for an on-line system for a Course Project Manager and 890 Test Cases

[1] R. Bryce, S. Sampath, A. Memon. Developing a Single Model and Test Prioritization Strategies for Event-Driven Software, Transactions on Software Engineering, (January 2011), 37(1):48-64.

8

Sample results								
% of test suite run	Most frequent requests	No. of Requests Long to short	No. of Requests Short to long	PVs Long to short	PVs Short to Long	1-way	2-way	Randon
10	85.28	78.17	75.14	83.53	16.38	83.79	83.72	48.6
20	88.52	80.34	77.76	88.77	25.6	87.78	90.8	57.5
30	89.4	81.77	80.27	88.77	26.44	91.54	91.72	64.5
40	89.86	84.58	81.39	92.71	28.76	94.79	95.64	69.1
50	91.04	85.58	82.95	92.71	30.33	94.79	95.64	73.0
60	91.58	87.14	84.44	94.26	34.64	94.79	95.64	75.3
70	92.1	87.74	85.15	94.26	39.15	94.79	95.64	77.3
80	92.35	88.27	86.21	94.26	39.58	94.79	95.64	78.2
90	92.37	88.3	86.31	94.26	42.18	94.99	95.64	78.4
100	92.45	88.36	86.35	94.26	43.09	94.99	95.64	78.4

Empirical Studies

☐ Traffic Collision Avoidance Syst Standard

Fi<u>n</u>d what:

software defect

Find whole words only

Match case

- □ GUI-based Testing
 - Word processor
 - Spreadsheet
 - Paint
 - Calculator
- □ Web application Testing
 - Bookstore
 - Course Project Manager
 - Conference Management Software

11

Close

Replace.

Transfer of Work (Demo) Start New Session Open Test Suite (xmi) Start New Session Open Test Suite (xmi) Log Statistics Total URLs: 3565 Average Length(Gets/Posts): 38.45 Average Length(Gets/Posts): 38.50 Reduction Length (Gets/Posts) Number of Parameters Selected Session Statistics ID: 1000040.XML Number of Parameters Selected Session Statistics ID: 1000040.XML Number of Parameters ID: 1000040.XML Number

[1] S. Sampath, R. Bryce, S. Jain, S. Manchester. A Tool for Combinatorial-based Prioritization and Reduction of User-Session-Based Test Suites, *International Conference on Software Maintenance (ICSM) - Tool Demonstration Track*, Williamsburg, VA, September 2011

Next steps

- □ Methodologies
 - Examining issues with RIAs
- □ Algorithms
 - Hybrid techniques
- Empirical Studies
 - "Real" studies
 - RIA studies

Test Suite Reduction

□ Problem: Given T, a test suite with test cases {
},ta, test of the sting requirements,{
}, that must, be satisfied to provide the desired test coverage of the program, and subsets {
} of T, the each of the s such that any one of the tests belonging to Ti satisfies. Find the minimal cardinality subset of T that exercises all of the requirements exercised by the original test suite T.

Original Test Suite (Too large for our budget) Reduced Test Suite (Fits into budget)

15

Reduction Example

- □ Original Test Suite
 - $= \{t_1, t_2, t_3, t_4\}$
- □ Requirements covered by the test suite
 - $= \{r_1, r_2, r_3, r_4\}$
- □ Problem: Reduce the test suite such that it maintains coverage of these requirements

Test Suite Reduction Example

Т	Requirement	Ti
1	1	{t3,t4}
2	2	{t ₄ }
3	3	{ t 1, t2, t3, t5}
4	4	{t1, t2, t3}

In this example, there are three possible solutions. We highlighted 1: {t1, t4}

17

Test Suite Reduction Example

T	Requirement	Ti
4	1	{t+, t5}
2	2	{ts}
3	3	{t1, t2, t3}
4	4	{t2, t6}
5	5	[t ₁ t ₄]
	c c	(4, 4)
7	7	(ti, to)
0	0	(13, 14, 17)
0	0	{t2, t3, t4, t/}

HGS Algorithm

3. **T4** is of cardinality 2, there is a tie between **t3** and **t6**, so we look at sets of size cardinality (m+1). We choose **t3**.

Reduced Test Suite: {t5, t1, t3}

18

Exercise

□ Reduce this test suite using the HGS algorithm:

Т	Requirement	Ti
1	1	{t1, t5}
2	2	{t ₅ }
3	3	{t1, t2, t3}
4	4	{t3, t6}
5	5	{t1, t4}
6	6	{t1, t6}
7	7	{t3, t4, t7}
8	8	{t2, t3, t4, t7}

19

Test Suite Reduction Example

HGS Algorithm

3. **T4** is of cardinality 2, there is a tie between **t3** and **t6**, so we look at sets of size cardinality (m+1). We choose **t3**.

Reduced Test Suite:

{t₅, t₁, t₃}

20