3/22/23, 1:14 PM Print Test

PRINTABLE VERSION

Quiz 10

You scored 60 out of 100

Ouestion 1

Your answer is CORRECT.

Use the "Division Algorithm" to compute $26 \div 22$, and then determine which of the following statements is true.

- a) \bigcirc The value of the quotient is q=26 and the value of the remainder is r=22.
- b) \odot The value of the quotient is q=1 and the value of the remainder is r=4 .
- c) \bigcirc The value of the quotient is q=1 and there are two possible remainder values r=4 and r=26.
- d) \bigcirc The value of the quotient is q=4 and the value of the remainder is r=1.
- e) \bigcirc The value of the quotient is q=22 and the value of the remainder is r=26 .

Ouestion 2

Your answer is INCORRECT.

A mathematician used the division algorithm to divide the number 28 by another number b. Their computation resulted in the facts that the quotient q=1 and the remainder r=20. Determine the value of b.

- a) 0 = 28
- **c)** \bigcirc **b** = 18
- **d)** \bigcirc **b** = 10
- e) There must have been a mistake, as there is no value of b that makes this possible.

Question 3

Your answer is CORRECT.

What are the possible values for the remainder r when using the Division Algorithm to divide an integer a by the number 48?

- a) $0 r \in \{0, 1, 2, \dots, 47, 48\}$
- $\mathbf{b)} \ \bigcirc \ \mathbf{r} \in \{-48, -47, \cdots, -2, -1, 0, 1, 2, \cdots, 47, 48\}$
- $(c) \odot r \in \{0, 1, 2, \cdots, 47\}$
- d) \bigcirc The remainder r can take on any integer value.
- e) \bigcirc There is only one unique value for r , and that is r=1 .

Question 4

Your answer is CORRECT.

A mathematician used the division algorithm to divide an integer a by the number 13. Their computation resulted in the facts that the quotient q=3 and the remainder r=0. Determine the value of a.

- a) \bigcirc There must have been a mistake, as there is no value of a that makes this possible.
- **b)** \bigcirc a = 13
- (c) a = 39
- **d)** \bigcirc a = 26
- e) $a = \frac{13}{3}$

Question 5

Your answer is INCORRECT.

The Division Algorithm states

- **b)** \bigcirc If $a, b \in Z$ (with $b \neq 0$), $\exists q, r \in Z, a = bq + r$ and $0 \le r < |b|$
- c) \bigcirc If $a, b \in Z$ (with $b \neq 0$), $\exists ! q, r \in Z$, a = bq + r and $0 \le r < |b|$
- d) \bigcirc If $a, b \in Z$ (with $b \neq 0$), $\exists ! q, r \in Z, q = br + a$ and $0 \le a < |r|$
- e) \bigcirc If $a,b\in Z$ (with $b\neq 0$), $\exists \ q,r\in Z, b=aq+r$ and $0\leq r<|a|$

Question 6

3/22/23, 1:14 PM Print Test

Your answer		CO	DD	EC	т
rom answe	18		K K		

What is the remainder when the Division Algorithm is used to divide $39\ by\ 18$?

- a) \bigcirc The remainder is r = 39.
- **b)** The remainder is r = 3.
- c) The remainder is $r = \frac{1}{6}$.
- **d)** \bigcirc The remainder is $r = \frac{13}{6}$.
- e) \bigcirc The remainder is r = 18.

Question 7

Your answer is INCORRECT.

A mathematician used the division algorithm to divide an integer a by the number 13, and they found that the remainder r=-1 . Based on this information determine which of the following statements is true.

- a) \odot a $\in \{13m + 7 : m \in Z\}$.
- $\mathbf{b)} \odot \mathbf{a} \in \{13\mathbf{m} : \mathbf{m} \in \mathbf{Z}\} .$
- c) It is impossible for any integer a to make this true.
- d) \bigcirc The only possible value of a is a = 25.

Ouestion 8

Your answer is INCORRECT.

The statement gcd(25, 84) = 4 is false. Which of the following best explains why?

- a) \bigcirc 4 is not a common divisor. 4 | 84, but 4 / 25.
- **b)** The statement is false because the gcd(25, 84) = 2100
- c) 4 is not a common divisor. 4 25, but 4 / 84.
- d) Wait a minute.. 4 is the greatest common divisor for 25 and 84. This statement is true!
- e) \bigcirc The statement is false because the gcd(25, 84) = 84.

Question 9

Your answer is CORRECT.

Of the options provided below, which pair of numbers is **relatively prime**?

- a) 06,4
- **b)** \bigcirc 25, 75
- $(c) \bigcirc 26, 26$
- d) Onne of these pairs are relatively prime.
- e) © 26, 25

Question 10

Your answer is CORRECT.

Recall Bezout's Identity:

$$\forall a, b \in Z, \exists x, y \in Z, ax + by = \gcd(a, b)$$

If we apply this identity to the pair of integers a = 16 and b = 13 we produce the statement

$$\exists x, y \in Z, 16x + 13y = \gcd(16, 13).$$

Of the options provided, which values can we use for x and y to show this statement is true? Are there *other or additional values* one can use for x and y?

- a) $\bigcirc x = 13$ and y = 0, and this pair is the only \emph{unique} solution!
- $\textbf{b)} \ \bigcirc \text{There are no solutions to this equation. Bezout's Identity does not apply because the only solutions for } x \text{ and } y \text{ involve rational numbers!}.$
- c) \bigcirc x = 9 and y = -11 , and yes there are other solutions!
- **d)** \bigcirc x=9 and y=-11 , and this pair is the only *unique* solution!
- e) x = 13 and y = 0, and yes there are other solutions!