Daniel Pérez Palau

Tema 2. Modelado matemático de sistemas físicos

Contenidos

- Tema 1. Conceptos generales de modelado matemático y simulación
- Tema 2. Modelado matemático de sistemas físicos
- Tema 3. Sistemas físicos y sus modelos
- Tema 4.Simulación
- Tema 5. Generación de números aleatorios
- Tema 6. Generación de variables aleatorias
- Tema 7. Medidas estadísticas
- Tema 8. Simulación de Monte Carlo
- Tema 9. Conceptos y elementos de simulación con eventos
- Tema 10. Modelado y simulación de sistemas de eventos discretos
- Tema 11. Software para modelado matemático y simulación

Calendario

Odiolidalio								
	Semana	Tema	Refuerzo	Laboratorio	Actividad			
09/11/2020								
16/11/2020	1	S0 + T1						
23/11/2020	2	T2						
30/11/2020	3	Т3		L1				
07/12/2020	4	T4						
14/12/2020	5	T5			L1			
21/12/2020		Semana de repaso	R-L1					
28/12/2020		Semana de repaso						
04/01/2021	6	T6						
11/01/2021	7	T6						
18/01/2021	8	T7						
25/01/2021	9	T7			AG			
01/02/2021	10	Т8						
08/02/2021	11	Т9		L2				
15/02/2021	12	T10	R-AG1					
22/02/2021	13	T11			12			
01/03/2021	14	Sesión examen	R-L2 P	róximas sesior	nes			
08/03/2021	15	Repaso (sesión doble)		2-> (27/11 17:0	,			
15/03/2021	16		Seman	3-> (02/12 17:0 1-> (03/12 17-1	OCET)			
			L	1-> (U3/12 17-1	19061)			

2.2 El modelado y la naturaleza de los sistemas

Definición: Modelado

El modelado es el proceso de escribir un conjunto de fórmulas (usualmente ecuaciones diferenciales) para describir una situación física.

Modelado y Naturaleza de los sistemas: ideas clave

2.3 Conceptos fundamentales

Variables del Sistema

Variables de esfuerzo

Variables de flujo

Variables directas (o generales) Variables dinámicas (o energéticas)

- Almacenamiento de esfuerzo (momento)
- Almacenamiento de flujo (desplazamiento)

- Energía: capacidad para realizar un trabajo.
- La poténcia: transferencia de energía por unidad de tiempo.

2.3 Conceptos fundamentales: potencia instantánea

En muchos sistemas la potencia instantánea puede expresarse a través del producto de una variable de flujo f(t) y una variable de esfuerzo e(t).

Potencia instantánea= e(t)-f(t)

- e(t) -> variable extensiva (depende del tamaño del sistema).
- f(t) -> variable intensiva (permanece constante, no depende del tamaño).

2.3 Conceptos fundamentales: Variables flujo y esfuerzo

Algunas variables across y through que podemos encontrar habitualmente al modelar un sistema son:

Sistemas		Variables across		Variables through	
		(variables relacionadas con el esfuerzo)		(variables relacionadas con el flujo)	
		Esfuerzo	almacenamiento esfuerzo	Flujo	almacenamiento de flujo
Mecánico	Traslación				
	Rotación				
Eléctricos			Desplazamiento (x, r	n)	
De fluidos			Velocidad (v, m/s) Momento lineal (p, N Fuerza (F,N)	s)	
Térmicos					

2.3 Conceptos fundamentales: Variables flujo y esfuerzo

Algunas variables across y through que podemos encontrar habitualmente al modelar un sistema son:

Sistemas		Variables across		Variables through	
		(variables relacionadas con el esfuerzo)		(variables relacionadas con el flujo)	
		Esfuerzo	Momento (almacenamiento esfuerzo)	Flujo	Desplazamiento (almacenamiento de flujo)
Mecánico s	Traslación	Fuerza (F) (N)	Momento lineal (p) (N.s)	Velocidad (v) (m/s)	Desplazamiento (x) (m)
	Rotación	Par o esfuerzo de torsión (т) (N.m)	Momento angular (L) (N.m.s)	Velocidad angular (ω) (rad/s)	Desplazamiento angular (φ) (rad)
Eléctricos		potencial eléctrico (v)	-	Corriente(I) (A)	Carga (Q) (C)
De fluidos		Presión (P) (N/m^2)	Momento o impulso del fluido (Γ) (N·s/m^2)	Caudal (Q) (m^3/s)	Volumen (V) (m^3)
Térmicos		Temperatura (T) (K)	-	Flujo de entropia (dξ/dt) (J/(K·s))	Entropía (S) (J/K)

2.3 Conceptos fundamentales: Energía transmitida

Además:

La energía transmitida en un intervalo de tiempo (0,t), desde un punto a otro se calcula mediante la integral de la potencia en el tiempo.

$$E(t) = \int_0^t e(t)f(t)dt$$

2.3 Conceptos fundamentales: energía

almacenamiento de información →almacenamiento de energía.

Variables energéticas (dinámicas):

Variable de momento $e_a(t)$ ó p:
almacenamiento del esfuerzo acumulado:

$$e_a(t) = \int_0^t e(t)dt$$
 o bien $e(t) = \frac{de_a}{dt}$

Variable de desplazamiento $f_a(t)$ ó q:

almacenamiento del flujo acumulado:

$$f_a(t) = \int_0^t f(t)dt$$
 o bien $f(t) = \frac{df_a}{dt}$

2.3 Conceptos fundamentales: elementos del sistema

Fuentes de energía. Proporcionan energía al sistema. fuentes de variables de esfuerzo (variables across) fuentes de flujo (variables through).

2.3 Conceptos fundamentales: elementos del sistema

Almacenadores de energía.

Almacenan y ceden energía.

Definen el comportamiento dinámico del sistema.

Pueden ser almacenadores de esfuerzo o de flujo.

2.3 Conceptos fundamentales: elementos del sistema

Disipadores de energía.

Transforman la energía o generan pérdidas

Si provocan pérdidas, resistencias.

Si transforman la energía, transformadores.

2.3 Conceptos fundamentales: conexiones

Serie

$$f_i = f_T \quad \forall i$$
$$\sum e_i = e_T$$

Paralelo

$$\sum f_i = f_T$$

$$e_i = e_T \quad \forall i$$

Estas normas sobre las variables esfuerzo y flujo se conocen como restricciones de compatibilidad y continuidad.

2.4 Etapas para el modelado de los sistemas físicos dinámicos

- Formulación del modelo matemático:
 - a. Determinar características relevantes:
 - Dominios físicos
 - b. Identificar variables y componentes
 - c. Identificar leyes empíricas
 - d. Plantear ecuacioes
- 2. Verificación del modelo.
- Validación del modelo.
- 4. Análisis de las soluciones.
- 5. Si es necesario, rediseño del modelo.

2.5 Métodos de modelado: Enfoque hacia el modelado de sistemas físicos

Para obtener el modelo matemático de un sistema físico se deberían realizar los siguientes pasos:

- 1. Identificación de los elementos que conforman el sistema.
- 2. Obtención del conjunto de ecuaciones diferenciales.
- 3. Obtención de una forma de representación del modelo:
 - a) funciones de transferencia,
 - b) diagramas de bloques,
 - c) grafos mediante la técnica de Bond-Graph.

2.5 Métodos de modelado: Técnica del Bond-Graph

- Técnica del Bond-Graph:
 - representa flujos mediante enlaces
 - Los componentes del sistema se representan mediante un conjunto de elementos básicos idealizados:
 - Resistencias
 - Condensadores
 - ...
- Un diagrama puede corresponder a múltiples dominios del sistema (eléctrico, mecánico, etc).

2.5 Métodos de modelado: Bond-Graph II

- Grafos de enlaces: permiten la representación de las interacciones energéticas.
- En esta forma de modelado cada enlace representa dos señales esfuerzo y flujo, cuyo producto es la potencia. Estas señales fluyen en dirección opuesta.
- Los diferentes elementos se caracterizan por las letras:
 - R Resistencias.
 - C Capacitadores.
 - ▶ I Inercias.
 - ► TF Transformadores.
 - GY Giradores.
 - ► **Sf** Fuente de flujo.
 - ▶ Se Fuente de esfuerzo.

2.5 Métodos de modelado: Bond-Graph III

- Representamos las conexiones en serie y paralelo mediante nodos tipo 0 y 1.
- En el diagrama de enlaces debe estar representada la causalidad entre las dos variables que están asociadas al grafo.

Matlab - Simulink

Matlab - Simulink

¿Dudas?

www.unir.net