COYGREIR . OHIEDI

CLAIMS

1. (Amended) A quinazoline derivative having the following formula (1) and a pharmaceutically acceptable salt thereof:

$$X \xrightarrow{H} O \xrightarrow{R^1} O \xrightarrow{R^2} O O_2 \xrightarrow{R^3} R^2$$

wherein the ring A represents an aryl group;

R1 represents a hydroxyl group, an amino group, a C_1 to C_4 lower\alkylamino group which may be substituted with a carb α xylic acid group, a C_7 to C_{10} lower aralkylamino group which \may be substituted with a carboxylic acid group, an amino group acylated with a C_1 to C_4 lower aliphatic acid which may be substituted with a carboxylic acid group, an amino group acylated with an aromatic ring carboxylic acid which may be \substituted with a carboxylic acid group, an amino group achlated with a heteroaromatic ring carboxylic acid which may be substituted with a . carboxylic acid group, an amino \group sulfonylated with a C_1 to C_4 lower alkanesulfonic acid which may be substituted with a carboxylic acid group, an amino\group sulfonylated with an aromatic ring sulfonic acid which hay be substituted with a carboxylic acid group, an amino group sulfonylated with a heteroaromatic ring sulfonic acid which may be substituted with a carboxylic acid group, a C_1 to $\backslash C_4$ lower alkyl group substituted with a carboxylic acid group, or a C_2 to C_4 lower alkylene group which may be substituted with a carboxylic acid group;

 R^2 and R^3 may be the same or different and represent a hydrogen atom, an unsubstituted or substituted C_1 to C_4 lower alkyl group, a halogen atom, a hydroxyl group, a C_1 to C_4 lower alkoxyl group, an amino group, an unsubstituted or substituted C_1 to C_4 lower

50 b

O more more

D9753E13.O41EO

alkylamino group, an unsubstituted or substituted C_7 to C_{10} aralky $\$ amino group, an amino group acylated with a C_1 to C_4 lower aliphatic acid which may be substituted with a carboxylic acid group, an amino group acylated with an aromatic ring carboxylic acid which may be substituted with a carboxylic\acid group, an amino group acylated with a heteroaromatic ring carboxylic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with a C_1 to $\c C_4$ lower alkanesulfonic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with an aromatic ring sulfonic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with a heteroaromatic ring sulfonic acid which may be substituted with a carboxylic acid group, or a carboxylic acid group or

when the ring A is a benzene ring, R^1 and R^2 may form, together with the substituting benzene ring, a fused heterocyclic rikg which may be substituted with a carboxylic acid and in\which the carbon atom in the ring may form a carbonyl group ahd R^3 is the same as defined above; and

X represents a hydrogen atom, a C_1 to C_4 lower alkyl group, a C1 to C4 lower alkoxy group, a halogen atom, a hydroxyl group, an amino group, or a nitro group, with the proviso that, when the ring λ is a benzene ring, $2k^1$ is an amino group and both R2 and R3 are a hydrogen atom, R1 is not positioned at the para-position to the sulfonyl group.

- 2. A quinazoline derivative or a pharmaceutically acceptable salt thereof as claimed in claim 1, wherein, in the formula (1), R^1 is a hydroxyl group, an amino group, a C_1 to C4 lower alkylamino group substituted with a carboxylic acid group, or an amino group acylated with a C1 to C4 lower aliphatic acid substituted with a carboxylic acid group.
- A quinazoline derivative or a pharmaceutically acceptable salt thereof as claimed in claim 1 or 2, wherein,

in the formula (1), R^2 is a carboxylic acid group or a hydrogen atom.

A quinaxoline derivative or a pharmaceutically

D9763213 .O41201

5 M

acceptable salt thereof as claimed in any one of claims 1 to 3, wherein R³ in the formula (I) is a hydrogen atom.

- 5. A pharmaceutical composition comprising as an effective ingredient a pharmaceutically effective amount of a quinazoline derivative or the pharmaceutically acceptable salt thereof according to any one of claims 1 to 4 and a pharmaceutically acceptable carrier therefor.
- 6. A chymase inhibitor having as an effective ingredient a quinazoline derivative or its pharmaceutically salt according to any one of claims to 4.

for prevention or treatment of allergic diseases or rheumatic diseases.

- 8. A pharmaceutical composition as claimed in claim 5 for prevention or treatment of bronchial asthma, eczema, atopic dermatitis, mastocytosis, scleriasis, or rheumatoid arthritis.
- 9. A pharmaceutical composition as claimed in claim 5 for prevention or treatment of cardiac and circulatory system diseases due to the abnormal exacerbation of Angiotensin II production.
- 10. A pharmaceutical composition as claimed in claim 5 for prevention or treatment of cardiac insufficiency, hypercardia, stasis cardiac diseases, hypertension, arteriosclerosis, peripheral circulatory diseases, revasoconstriction after PTCA, diabetic renal disorders or non-diabetic renal disorders, coronary diseases including cardiac infarction, angioendothelia, or vascular disorders accompanying arterialization and atheroma.
- 11. (Amended) A sulfonylurea derivative having the formula (4):

DS763613 OF1601

$$X \stackrel{H}{\longrightarrow} X \stackrel{$$

wherein the ring A represents an aryl group;

5

10

20

25

30

35

R1, is R1, which may be protected with a protecting group, and which represents a hydroxyl group, an amino group, a C₁ to C₄ lower alkylamino group which may be substituted with a carboxylic acid group, a C, to C₁₀ lower aralkylamino group which may be substituted with a carboxylic acid group, an amino group acylated with a C1 to C4 lower aliphatic acid which may be substituted with a carboxylic acid group, an amino group acylated with an aromatic ring carboxylic acid which may be substituted with a carboxylic acid group, an amino group acylated with a heteroaromatic ring carboxylic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with\a C₁ to C₄ lower alkanesulfonic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with an aromatic ring sulfonic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with a heteroaromatic ring sulfonic acid which may be substituted with a carboxylic acid group, a C, to C, lower alkyl group substituted with a carboxylic acid group, or a C2 to C4 lower alkylene group which may be substituted with a carboxylic acid group;

 R^2 ' and R^3 ' are R^2 and R^3 , respectively, which may be protected with a protecting group, which may be the same or different, and which represent a hydrogen atom, an unsubstituted or substituted C_1 to C_4 lower alkyl group, a halogen atom, a hydroxyl group, a C_1 to C_4 lower alkoxyl group, an amino group, an unsubstituted or substituted C_1 to C_4 lower alkylamino group, an unsubstituted or substituted C_7 to C_{10} aralkylamino group,

an amino group acylated with a C_1 to C_4 lower aliphatic acid which may be substituted with a carboxylic acid group, an amino group acylated with an aromatic ring carboxylic acid which may be substituted with a carboxylic acid group, an amino group acylated with a heteroaromatic ring carboxylic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with a C_1 to C_4 lower alkanesulfonic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with an aromatic ring sulfonic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with a heteroaromatic ring sulfonic acid which may be substituted with a heteroaromatic ring sulfonic acid which may be substituted with a carboxylic acid group, or a carboxylic acid group or

when the ring A is a benzene ring, R¹ and R² may form, together with the substituting benzene ring, a fused heterocyclic ring which may be substituted with a carboxylic acid and in which the carbon atom in the ring may form a carbonyl group and R³ is the same as defined above; and

X' is X, which may be protected with a protecting group and which represents a hydrogen atom, a C₁ to C₄ lower alkyl group, a C₁ to C₄ lower alkoxyl group, a halogen atom, a hydroxyl group, an amino group, or a nitro group, with the proviso that, when the ring A is a benzene ring, R¹ is an amino group and both R² and R³ are a hydrogen atom, R¹ is not positioned at the para-position to the sulfonyl group.

12. (Amended) A sulfonylurea derivative having the formula (7):

wherein, the ring A represents an aryl group; $R^{1} \text{ is } R^{1}, \text{ which may be protected with a}$

protecting group and which represents a hydroxyl group,

TOSTATA "OFTEOT

an amino group, a C1 to C4 lower alkylamino group which may be substituted with a carboxylic acid group, a C, to C₁₀ lower aralkylamino group which may be substituted with a carboxylic acid group, an amino group acylated with a C, to C, lower aliphatic acid which may be substituted with a carboxylic acid group, an amino group acylated with an aromatic ring carboxylic acid which may be substituted with a carboxylic acid group, an amino group acylated with a heteroaromatic ring carboxylic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with a C, to C, lower alkanesulfonic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with an aromatic ring sulfonic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with a heteroaromatic ring sulfonic acid which may be substituted with a carboxylic acid group, a C, to C, lower alkyl group substituted with a carboxylic acid group, or a C2 to C4 lower alkylene group which may be substituted with a carboxylic acid group;

5

10

15

20

25

30

35

R2' and R3' are R2 and R3, respectively, which may be protected with a protecting group, which may be the same or different and which represent a hydrogen atom, an unsubstituted or substituted C, to C, lower alkyl group, a halogen atom, a hydroxyl group, a C1 to C4 lower alkoxyl group, an amino group, an unsubstituted or substituted C, to C, lower alkylamino group, an unsubstituted or substituted C₇ to C₁₀ lower aralkylamino group, an amino group acylated with a C₁ to C₄ lower aliphatic acid which may be substituted with a carboxylic acid group, an amino group acylated with an aromatic ring carboxylic acid which may be substituted with a carboxylic acid group, an amino group acylated\with a heteroaromatic ring carboxylic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with a C, to C, lower alkanesulfonic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with an aromatic ring sulfonic acid which may be substituted with a carboxylic acid group, an amino group sulfonylated with a heteroaromatic ring sulfonic acid which may be substituted with a carboxylic acid group, or a carboxylic acid group or

when the ring A is a benzene ring, R^1 and R^2 may form together with the substituting benzene ring a fused heterocyclic ring which may be substituted with a carboxylic acid and in which the carbon atom in the ring may form a carbonyl group and R^3 is the same as defined above;

R4 represents a protecting group for a

carboxyl group; and

X' is X, which may be protected with a protecting group and which represents a hydrogen atom, a C₁ to C₄ lower alkyl group, a to C₄ lower alkoxy group, a halogen atom, a hydroxyl group, an amino group, or a nitro group, with the proviso that, when the ring A is a benzene ring, R¹ is an amino group and both R² and R³ are a hydrogen atom, R¹ is not positioned at the para-position to the sulfonyl group.

13. A method for producing a quinazoline derivative having the formula (1) according to claim 1 comprising:

allowing a sulfonylurea derivative having the formula (4) according to claim 11 to a ring-closing reaction with a condensation agent or

deprotecting a carboxyl group of the sulfonylurea derivative having the formula (7) according to claim 12, followed by effecting a ring-closing reaction with a condensation agent.

add add Ei

OSYGERTE OHLEOI