Designing Network Design Spaces

Петр Гринберг, Владимир Якшимамедов и Дмитрий Поляков

Мотивация

Это я на дл пытаюсь подобрать правильную архитектуру сети

Это я после прочтения статьи

Цель

Выявить принципы дизайна архитектур нейросетей, которые позволяют получать хорошее качество, просты для понимания и имеют ограниченную сложность (не требуют больших вычислительных мощностей для обучения)

Как будем идти к цели

- 1. Возьмём очень широкое семейство архитектур
- 2. Будем его сужать, повышая качество архитектур и контролируя интерпретацию
- 3. Получим интерпретируемое узкое семейство с высоким качеством
- 4. Выявим и проверим те принципы, которые нам помогли построить узкое семейство

Очень широкое семейство архитектур (AnyNet)

Семейство определяется ограничениями на w_i, b_i, g_i, d_i

Как измерить качество семейства архитектур

Построение хорошего семейства архитектур

Поиск лучшего семейства архитектур

Как ведет себя распределение ошибки

Начинаем сужение семейства

	restriction	dim.	combinations	total
$AnyNetX_A$	none	16	$(16.128.3.6)^4$	$\sim 1.8 \cdot 10^{18}$
$AnyNetX_B$	$+b_{i+1} = b_i$	13	$(16.128.6)^4.3$	$\sim 6.8 \cdot 10^{16}$
${\tt AnyNetX}_{\tt C}$	$+g_{i+1}=g_i$	10	$(16.128)^4 \cdot 3.6$	$\sim 3.2 \cdot 10^{14}$

Смотрим на характеристики моделей

Смотрим на характеристики моделей

Продолжаем сужение

AnyNetX_E

	restriction	dim.	combinations	total
$AnyNetX_A$	none	16	$(16.128.3.6)^4$	$\sim 1.8 \cdot 10^{18}$
$AnyNetX_B$	$+b_{i+1} = b_i$	13	$(16 \cdot 128 \cdot 6)^4 \cdot 3$	$\sim 6.8 \cdot 10^{16}$
$AnyNetX_C$	$+g_{i+1} = g_i$	10	$(16.128)^4.3.6$	$\sim 3.2 \cdot 10^{14}$
$AnyNetX_D$	$+ w_{i+1} \ge w_i$	10	$(16\cdot128)^4\cdot3\cdot6/(4!)$	$\sim 1.3 \cdot 10^{13}$
$\mathtt{AnyNetX}_\mathtt{E}$	+ $d_{i+1} \ge d_i$	10	$(16\cdot128)^4\cdot3\cdot6/(4!)^2$	$\sim 5.5 \cdot 10^{11}$

Смотрим на лучшие модели

Смотрим на лучшие модели

Конструируем RegNet

$$u_j = w_0 + w_a \cdot j$$
 for $0 \le j < d$
 $u_j = w_0 \cdot w_m^{s_j}$
 $w_i = w_0 \cdot w_m^i \longrightarrow w_j = w_0 \cdot w_m^{\lfloor s_j \rceil}$
 $d_i = \sum_j \mathbf{1}[\lfloor s_j \rceil = i]$

Осознаем новую параметризацию

О, получилось

	restriction	dim.	combinations	total
$AnyNetX_A$	none	16	$(16 \cdot 128 \cdot 3 \cdot 6)^4$	$\sim 1.8 \cdot 10^{18}$
$AnyNetX_B$	$+b_{i+1} = b_i$	13	$(16 \cdot 128 \cdot 6)^4 \cdot 3$	$\sim 6.8 \cdot 10^{16}$
$\mathtt{AnyNetX}_\mathtt{C}$	$+g_{i+1} = g_i$	10	$(16.128)^4.3.6$	$\sim 3.2 \cdot 10^{14}$
$\mathtt{AnyNetX}_\mathtt{D}$	$+ w_{i+1} \ge w_i$	10	$(16\cdot128)^4\cdot3\cdot6/(4!)$	$\sim 1.3 \cdot 10^{13}$
$AnyNetX_E$	$+d_{i+1} \geq d_i$	10	$(16\cdot128)^4\cdot3\cdot6/(4!)^2$	$\sim 5.5 \cdot 10^{11}$
RegNet	quantized linear	6	$\sim 64^4 \cdot 6 \cdot 3$	$\sim 3.0 \cdot 10^8$

Проверяем обобщающую способность RegNet

Ищем подходящие параметры RegNet

Инсайты

- d ~ 20
- b ~ 1
- w_m ~ 2,5
- g, w_a, w_0 возрастают

Сравнение с другими архитектурами: Mobile

	flops (B)	params (M)	top-1 error
MOBILENET [9]	0.57	4.2	29.4
MOBILENET-V2 [25]	0.59	6.9	25.3
SHUFFLENET [33]	0.52	-	26.3
SHUFFLENET-V2 [19]	0.59	_	25.1
NASNET-A [35]	0.56	5.3	26.0
AMOEBANET-C [23]	0.57	6.4	24.3
PNASNET-5 [17]	0.59	5.1	25.8
DARTS [18]	0.57	4.7	26.7
REGNETX-600MF	0.60	6.2	25.9±0.03
REGNETY-600MF	0.60	6.1	24.5 ±0.07

Сравнение с другими архитектурами: Full Regime

Выводы

Пространство RegNet (в сравнении с AnyNet)

- 1. Упрощенно как с точки зрения размеров, так и с точки зрения сетевых конфигураций
- 2. Содержит более высокую концентрацию хороших моделей
- 3. Лучше поддается анализу и интерпретации.

Авторы статьи представили новую парадигму проектирования архитектур нейросетей. Их результаты показывают, что проектирование семейств архитектур является многообещающим направлением для будущих исследований.

Авторы статьи

Facebook Meta Al Research

Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo - CV (Object Detection, Video Recognition)

Piotr Dollar - CV + NAS (Neural Architecture Search)

 Ilija Radosavovic, Piotr Dollar - On Network Design Spaces for Visual Recognition

Предшествующие и конкурирующие работы

AutoML: A Survey of the State-of-the-Art (2021) - не совсем конкурент, но...

- Разбирает полностью автоматизированный пайплайн обучения нейронки, включая обработку данных (пока с пропусками)
- Одной из частей является разбор различных алгоритмов поиска NAS (RL, Evolutionary, Cell-Based and so on)
- Фокусируется только на Auto-ML

Немного об алгоритмах

Evolutionary: Играем в жизнь: пытаемся эволюционировать лучшими сетками

Selection - оставляем часть структуры, чтобы сохранить общую хорошую генетику.

Cross-over - скрещиваем двух родителей в ребенка, который забирает по половине информации от родителей в свободных узлах.

Мутация - Случается рандом. Рандомные веса, новый слой, изменение слоя и т.д. (На самом деле, он немного задается исследователями)

Немного об алгоритмах

Cell-Based - Учим super-network, которая генерирует архитектуры блоков (cells) из которых мы строим network для задачи.

Weight-Sharing Cell-Based - super-network вместе с архитектурой блоков, учит pretrained веса для этих блоков.

Проблемы:

Как вообще нормально учить super-network?

Сходство блоков.

Очень нестабильное обучение.

Предшествующие и конкурирующие работы

On Network Design Spaces for Visual Recognition (2019) - вводит EDF и предлагает метод сравнения распределений

Weight-Sharing Neural Architecture Search: A Battle to Shrink the Optimization Gap (2020) - предлагает модификации к Weight-Sharing NAS для стабильности обучения супер-сетки.

Последующие работы и возможности

- 569 цитирований, но нет прямых последователей.
 - В этих статьях используется EDF, сравниваются сетки, полученные разными способами NAS или поднимается вопрос: насколько вообще достаточно оптимизировать CNN только на ImageNet.
- В целом идею данной статьи можно использовать не только в CV, но и в других областях ML.

Список литературы

Designing Network Design Spaces - https://arxiv.org/pdf/2003.13678.pdf On Network Design Spaces for Visual Recognition - https://arxiv.org/pdf/1905.13214.pdf AutoML: A Survey of the State-of-the-Art - https://arxiv.org/pdf/1908.00709.pdf Weight-Sharing Neural Architecture Search: A Battle to Shrink the Optimization Gap

https://arxiv.org/pdf/2008.01475.pdf