

DLD Lab-07 Magnitude Compactor

Instructor: Mazhar Iqbal

EL227 – Digital Logic Design-Lab

SEMESTER SPRING 2023

MARCH 20, 2022

NATIONAL UNIVERSTIY OF COMPUTER AND EMERGING SCIENCES, FAST- PESHAWAR CAMPUS

Department Of Computer Science

Contents

1.	Objectives:	2
2.	Digital Comparator	2
3.	Magnitude Comparator	3
4.	1-Bit Magnitude Comparator	3
5.	2-Bit Magnitude Comparator	6
6.	How to design a 4-bit comparator?	9
7.	Applications of Comparators	. 11
8.	Code converters	. 12
9.	BCD, Excess-3 code	. 12
10.	Binary, BCD, Excess-3 code	. 13
11.	Students Task	. 15

1. Objectives:

Magnitude Comparator

- 1. Design and implement the circuitry for 1-bit magnitude comparator.
- 2. Design and implement the circuitry for 2-bit magnitude comparator.
- 3. Design and implement the circuitry for 4-bit magnitude comparator
 - Truth Table
 - K-Map
 - Equation
 - Circuit Diagram
 - Implementation

Code Converters

Design and implement the circuitry for a BCD-to-Excess 3 Code Converter.

2. Digital Comparator

- It is a combinational (circuit without memory) logic circuit.
- Digital Comparator is used to compare the value of two binary digits.
- There are two types of digital comparator
 - (i) Identity Comparator

(ii) Magnitude Comparator.

IDENTITY COMPARATOR:

This comparator has only one output terminal for when A=B, either A=B=1 (High)
or A=B=0 (Low)

• MAGNITUDE COMPARATOR:

- This Comparator has three output terminals namely **A>B**, **A=B**, **A<B**. Depending on the result of comparison, one of these output will be high (1)
- Block Diagram of Magnitude Comparator is shown below in Fig. 1

3. Magnitude Comparator

BLOCK DIAGRAM OF MAGNITUDE COMPARATOR

Fig. 1

4. 1-Bit Magnitude Comparator

- 1. This magnitude comparator has two inputs A and B and three outputs:
- 2. A < B, A = B and A > B.
- 3. This magnitude comparator compares the two numbers of single bits.
- 4. Truth Table of 1-Bit Comparator

INP	UTS	OUTPUTS			
A	В	$Y_1 (A \leq B)$	$Y_1 (A < B) \mid Y_2 (A = B)$		
0	0	0	1	0	
0	1	1	0	0	
1	0	0	0	1	
1	1	0	1	0	

Inp	uts	Outputs				
A	В	Y_1 (A <b)< th=""><th>Y₂ (A=B)</th><th>Y₃ (A>B)</th></b)<>	Y ₂ (A=B)	Y ₃ (A>B)		
0	0	0	1	0		
0	1	1	0	0		
1	0	0	0	1		
1	1	0	1	0		

K-Maps For All Three Outputs:

$$K\text{-Map for }Y_1:A{<}B$$

$$Y_1{=}\overline{AB}$$

$$\begin{array}{c|cccc}
 & B & \overline{B} & B \\
 & 0 & 1 \\
 \hline
A & 0 & 0 & 0 \\
 & A & 1 & 1 & 0
\end{array}$$

K-Map for $Y_2:A>B$

$$Y_3 = AB$$

CIRCUIT DIAGRAM OF ONE BIT COMPARATOR

$$Y_1 = \overline{AB}$$

$$Y_2 = \overline{AB} + AB$$

$$Y_3 = A\overline{B}$$

Circuit Diagram by Using AND, EX-NOR gates

5. 2-Bit Magnitude Comparator

- A comparator which is used to compare two binary numbers each of two
- bits is called a 2-bit magnitude comparator.
- Fig. 2 shows the block diagram of 2-Bit magnitude comparator.
- It has four inputs and three outputs.
- Inputs are A_0 , A_1 , B_0 and B_1 and Outputs are Y_1 , Y_2 and Y_3

GREATER THAN (A>B)

A ₁	A_0	B_1	\mathbf{B}_0
1	0	0	1
1	1	1	0
0	1	0	0

- 1. If $A_1 = 1$ and $B_1 = 0$ then A > B
- 2. If A_1 and B_1 are same, i.e $A_1=B_1=1$ or $A_1=B_1=0$ and $A_0=1$, $B_0=0$ then A>B

LESS THAN (A<B)

Similarly,

- 1. If $A_1 = B_1 = 1$ and $A_0 = 0$, $B_0 = 1$, then A < B
- 2. If $A_1 = B_1 = 0$ and $A_0 = 0$, $B_0 = 1$ then A < B

TRUTH TABLE

	INF	UT	OUTPUT			
A_1	A_0	B_{1}	B_0	$Y_1 = A < B$	$Y_2 = (A = B)$	$Y_3=A>B$
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

K-MAP FOR A<B:

 $Y_1 \!=\! \overline{A_1} \; \overline{A_0} \; B_0 + \overline{A_1} \; B_1 + \overline{A_0} \; B_1 \; B_0$

K-Map for A=B:

$$Y_2 \!=\! \overline{A_1} \; \overline{A_0} \; \overline{B_1} \; \overline{B_0} + \overline{A_1} \; A_0 \; \overline{B_1} \; B_0 + A_1 A_0 B_1 B_0 + A_1 \; \overline{A_0} \; B_1 \; \overline{B_0}$$

K-MAP FOR A>B

$$Y_3 = A_0 \ \overline{B_1} \ \overline{B_0} + A_1 \ \overline{B_1} + A_1 A_0 \ \overline{B_0}$$

FOR A=B FROM K-MAP

LOGIC DIAGRAM OF 2-BIT COMPARATOR:

6. How to design a 4-bit comparator?

The truth table for a 4-bit comparator would have $4^4 = 256$ rows. So we will do things a bit differently here. We will compare each bit of the two 4-bit numbers, and based on that comparison and the weight of their positions, we will draft a truth table.

A3B3	A2B2	A1B1	A0B0	A>B	A <b< th=""><th>A=B</th></b<>	A=B
A3>B3	x	x	x	1	0	0
A3 <b3< td=""><td>x</td><td>x</td><td>x</td><td>0</td><td>1</td><td>0</td></b3<>	x	x	x	0	1	0
A3=B3	A2>B2	x	x	1	0	0
A3=B3	A2 <b2< td=""><td>x</td><td>x</td><td>0</td><td>1</td><td>0</td></b2<>	x	x	0	1	0
A3=B3	A2=B2	A1>B1	x	1	0	0
A3=B3	A2=B2	A1 <b1< td=""><td>x</td><td>0</td><td>1</td><td>0</td></b1<>	x	0	1	0
A3=B3	A2=B2	A1=B1	A0>B0	1	0	0
A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>0</td><td>1</td><td>0</td></b0<>	0	1	0
A3=B3	A2=B2	A1=B1	A0=B0	0	0	1

• In a 4-bit comparator the condition of A>B can be possible in the following four cases:

```
If A3 = 1 and B3 = 0

If A3 = B3 and A2 = 1 and B2 = 0

If A3 = B3, A2 = B2 and A1 = 1 and B1 = 0

If A3 = B3, A2 = B2, A1 = B1 and A0 = 1 and B0 = 0
```

• Similarly the condition for A<B can be possible in the following four cases:

```
If A3 = 0 and B3 = 1

If A3 = B3 and A2 = 0 and B2 = 1

If A3 = B3, A2 = B2 and A1 = 0 and B1 = 1

If A3 = B3, A2 = B2, A1 = B1 and A0 = 0 and B0 = 1
```

• The condition of A=B is possible only when all the individual bits of one number exactly coincide with corresponding bits of another number.

A=B: (A3 Ex-Nor B3) (A2 Ex-Nor 82) (Al Ex-Nor BI) (AO Ex-Nor BO)

7. Applications of Comparators

- These are used in the address decoding circuitry in computers and microprocessor based devices to select a specific input/output device for the storage of data.
- These are used in control applications in which the binary numbers representing physical variables such as temperature, position, etc. are compared with a reference value. Then the outputs from the comparator are used to drive the actuators so as to make the physical variables closest to the set or reference value.
- Process controllers
- Servo-motor control
- Used in password verification and biometric applications.

8. Code converters

- The Code converter is used to convert one type of binary code to another.
- There are different types of binary codes like BCD code, gray code, excess-3 code, etc. Different codes are used for different types of digital applications.
- To get the required code from any one type of code, the simple code conversion process is done with the help of combinational circuits.
- A code converter circuit will convert coded information in one form to a different coding form.

9. BCD, Excess-3 code

BCD or 8421 code:-

It is composed of four bits representing the decimal digits 0 through 9. The 8421 indicates

The Excess-3 code:-

It is an important BCD code , is a 4 bit code and used with BCD numbers

To convert any decimal numbers into its excess-3 form ,add 3 to each decimal digit and then convert the sum to a BCD number

As weights are not assigned, it is a kind of non weighted codes.

Decimal Digit	BCD Code	Excess-3 Code
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

10. Binary, BCD, Excess-3 code

Decimal	Binary	BCD	Excess-3	Gray
0	0	0000	0011	0000
1	1	0001	0100	0001
2	10	0010	0101	0011
3	11	0011	0110	0010
4	100	0100	0111	0110
5	101	0101	1000	0111
6	110	0110	1001	0101
7	111	0111	1010	0100
8	1000	1000	1011	1100
9	1001	1001	1100	1101

BCD(8421)					Exc	ess-3	
A	В	С	D	w	х	у	\mathbf{z}
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	Х	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	Χ	X	X
1	1	1	0	X	Χ	X	X
1	1	1	1	X	X	Х	X

(a) k-map for W

(b) k-map for X

(c) k-map for Y

(d) k-map for Z

11. Students Task

- Implement 1 bit, 2 bit and 4 bit comparator on logic lay
- Implement Excess 3 Converter circuit on on logic lay
- Design K-map and circuit diagram for Gray Code like Excess 3