- 1. (20 points) Answer each of the following short answer questions. Justify your answers in each case. These are to be short answers (truth) not novels (fiction)!
 - (a) (5 points) Let P be a problem. Suppose algorithm A is a solution to problem P with asymptotic worse case run time of $O(n^2)$. What can we say about the asymptotic worse case run time of other algorithms that solve problem P? What does the run time of algorithm A say about problem P? What doesn't A say about P.
 - (b) (5 points) Suppose algorithm A solves problem P and has actual run time $20 \log_2 n$ for all inputs of size n. Suppose algorithm B is also a solution to problem P with actual run time of $20 \log_3 n$ for all inputs of size n. Is the asymptotic run time behavior of the two algorithms the same? What can we conclude when comparing algorithm A and B?
 - (c) (5 points) Suppose algorithm A runs in $\Theta(n^3)$ time. What can we say about the input to A relative to its run time?
 - (d) (5 points) Show $c \log_b n = \Theta(\log_2 n)$ for c, b > 1.
- 2. (10 points) Solve the following recurrence equations for which the Master Method applies. Show your work.
 - (a) (5 points) $T(n) = 7T(n/2) + n^2$
 - (b) (5 points) $T(n) = 2T(n/2) + n \log_2 n$
- 3. (10 points) The recurrence $T(n) = 7T(n/2) + n^2$ describes the running time of an algorithm A. A competing algorithm A' has running time of $T'(n) = aT'(n/4) + n^2$. What is the largest integer value of a such that A' is asymptotically faster than A. (In this case, asymptotically faster means a smaller polynomial degree than T(n).) Justify your work.
- 4. (20 points) For each function state its best and worst case asymptotic run time with respect to n. Assume all arithmetic operates in constant time and that a single integer prints in constant time. Justify your answers for full credit. Each part is worth 5 points.
 - (a) (5 points)

```
Function (A)
    n = A.length
    for j = 2 to n
        k = A[j]
        i = j-1
        while i>0 and A[i]>k
        A[i+1] = A[i]
        i = i-1
        A[i+1] = k
```

```
(b) (5 points)
   Function(A)
       n = A.length
       for i = 1 to n
            Print(A[1..i])
(c) (5 points)
   Function(A)
       n = A.length
       for i = 1 to n
            Print(A[i])
(d) (5 points)
   Function(n)
        if n \le 1 then
             return 10
       else
           m = Function(n/4)
           h = Function(n/4)
           return f(n,m.h)
                            // where f(n,m.h) runs in linear time
```

Master Theorem Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) can be bounded asymptotically as follows,

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.