G52ACE 2017-18
Andrew Parkes
http://www.cs.nott.ac.uk/~pszajp/

#### **Trees**



#### What is a (Rooted) Tree

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parentchild relation (at most one parent!)
- Applications:
  - Organization charts
  - File systems
  - Programming environments



#### Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors (not counting itself)
- Height of a tree: maximum depth of any node = length of longest path from root to a leaf (3 for tree on right)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

 Subtree: tree consisting of a node and its descendants



#### Tree ADT

- We use positions to abstract nodes
- Generic methods:
  - integer size()
  - boolean isEmpty()
  - Iterator iterator()
  - Iterator positions()
- Accessor methods:
  - position root()
  - position parent(p)
  - Iterator children(p)

- Query methods:
  - boolean isInternal(p)
  - boolean isExternal(p)
  - boolean isRoot(p)
- Update method:
  - object replace (p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

#### **Traversals**

- Given a data structure, a common task is to traverse all elements
  - visit each element precisely once
  - visit in some systematic and meaningful order

#### Preorder Traversal

- In a preorder traversal, a node is visited **before** its descendants
- Application: print a structured document

```
Algorithm preOrder(v)

visit(v)

for each child w of v

preorder (w)
```



#### Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)



#### Binary Trees

- A binary tree is a tree with the following properties:
  - Each internal node has at most two children
  - The children of a node are an ordered pair - though one might be "missing"
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
  - a tree consisting of a single node, or
  - a tree whose root has an ordered pair of "children", each of which is missing (a null) or is the root of a binary tree

- Applications:
  - searching



#### **Proper Binary Trees**

- A proper binary tree is a tree with the following properties:
  - Each internal node has either two children or no children
  - The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
  - a tree consisting of a single node, or
  - a tree whose root has an ordered pair of children, each of which is a root of a binary tree

- Applications:
  - arithmetic expressions
  - decision processes



## **Arithmetic Expression Tree**

- Binary tree associated with an arithmetic expression
  - internal nodes: (binary) operators
  - external nodes: operands
- Example: arithmetic expression tree for the expression  $(2 \times (a 1) + (3 \times b))$



#### **Decision Tree**

- Binary tree associated with a decision process
  - internal nodes: questions with yes/no answer
    - hence a proper tree
  - external nodes: decisions
- Example: dining decision



# BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
  - position left(p)
  - position right(p)
  - boolean hasLeft(p)
  - boolean hasRight(p)

 Update methods may be defined by data structures implementing the BinaryTree ADT

#### **Inorder Traversal**

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree by (x,y) coords:
  - x(v) = inorder rank of v
  - y(v) = depth of v

```
Algorithm inOrder(v)

if hasLeft (v)

inOrder (left (v))

visit(v)

if hasRight (v)

inOrder (right (v))
```



## Print Arithmetic Expressions

- Specialization of an inorder traversal
  - print operand or operator when visiting node
  - print "(" before traversing left subtree
  - print ")" after traversing right subtree



# Algorithm printExpression(v) if hasLeft (v) print("(") printExpression (left(v)) print(v.element ()) if hasRight (v) printExpression(right(v)) print ("")")

$$((2 \times (a - 1)) + (3 \times b))$$

## **Evaluate Arithmetic Expressions**

- Specialization of a postorder traversal:
  - recursive method returning the value of a subtree
  - when visiting an internal node, combine the values of the subtrees



```
Algorithm evalExpr(v)

if isExternal (v)

return v.element ()

else

x \leftarrow evalExpr(leftChild (v))

y \leftarrow evalExpr(rightChild (v))

\Diamond \leftarrow operator stored at v

return x \Diamond y
```

- Exercise: what is the value?
- Exercise: Which traversal?
- Post- In- or Pre- ?

#### Linked Structure for Trees

- A node is represented by an object storing
  - Element
  - Parent node
  - Sequence of children nodes
- Node objects implement the Position ADT





# Linked Structure for Binary Trees

A node is represented by an object storing
Element
Parent node
Left child node
Right child node
Node objects implement the Position ADT



nodes are stored in an array





- let rank(node) be defined as follows:
  - $\blacksquare$  rank(root) = 1
  - if node is the left child of parent(node), rank(node) = 2\*rank(parent(node))
  - if node is the right child of parent(node), rank(node) = 2\*rank(parent(node))+1

- let rank(node) be defined as follows:
  - $\blacksquare$  rank(root) = 1
  - if node is the left child of parent(node), rank(node) = 2\*rank(parent(node))
  - if node is the right child of parent(node), rank(node) = 2\*rank(parent(node))+1



| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
|   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

- let rank(node) be defined as follows:
  - $\blacksquare$  rank(root) = 1
  - if node is the left child of parent(node), rank(node) = 2\*rank(parent(node))
  - if node is the right child of parent(node), rank(node) = 2\*rank(parent(node))+1



| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
|   | Α |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

- let rank(node) be defined as follows:
  - $\blacksquare$  rank(root) = 1
  - if node is the left child of parent(node), rank(node) = 2\*rank(parent(node))
  - if node is the right child of parent(node), rank(node) = 2\*rank(parent(node))+1



| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
|   | Α | В |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

- let rank(node) be defined as follows:
  - $\blacksquare$  rank(root) = 1
  - if node is the left child of parent(node), rank(node) = 2\*rank(parent(node))
  - if node is the right child of parent(node), rank(node) = 2\*rank(parent(node))+1



| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
|   | Α | В | D |   |   |   |   |   |   |    |    |    |    |    |    |    |

- let rank(node) be defined as follows:
  - $\blacksquare$  rank(root) = 1
  - if node is the left child of parent(node), rank(node) = 2\*rank(parent(node))
  - if node is the right child of parent(node), rank(node) = 2\*rank(parent(node))+1



| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
|   | Α | В | D | Е | F | С | J |   |   | G  | Н  |    |    |    |    |    |

#### **Implemention**

- Remember that if think of the rank, r(n) of node n, as a binary number then
  - "times 2" is a left shift "<<1"</li>
- r(n) = r(par(n)) < <1 + 0 for left
- r(n) = r(par(n)) < <1 + 1 for right
- E.g. r(par(n)) = 101 gives children at
  - "101''+''0'' = 1010
  - "101"+"1" = 1011
- Going to the parent is a right shift
- Hence, implementations of this can be very fast – used in binary heaps next semester.

# Exercise (offline)

- Why is this representation correct?
  - I.e. does the mapping between array satisfy needed uniqueness properties?
  - Is it true that each element of the array corresponds to a unique node of the tree?
  - E.g. If I claim that it is incorrect, then how would you convince me otherwise?
- Hint: from the previous slide think of the rank written as binary number
  - Realise that it describes the "L" vs. "R" decisions on going from the root.
  - Relate to each number having a unique binary representation

## Properties of perfect binary trees

- A binary tree is said to be "proper" (a.k.a. "full") if every internal node has exactly 2 children
- It is "perfect" if it is proper and all leaves are at the same depth; hence all levels (depths) are full.



Properties of perfect binary

trees



| d | at d | at d or<br>less |
|---|------|-----------------|
| 0 | 1    | 1               |
| 1 | 2    | 3               |
| 2 | 4    | 7               |
| 3 | 8    | 15              |

Counting suggests numbers of nodes are:

- 2<sup>d</sup> at level d
- 2<sup>d+1</sup>-1 at level d or less

Can formally prove using induction

# Height (h) is logarithmic in size (n)

- This is a very important property of perfect binary trees
- Exercise: is this true for all trees?
- Tree algorithms often work by going down the tree level by level – following a path from root to a leaf
- So, their running time depends on the number of levels – but we usually only know the number of nodes
- Let us prove that for perfect binary trees  $h = \log_2 (n + 1) 1$  where n in the number of nodes. Or (same thing): number of levels =  $\log_2 (n + 1)$ .

# How many nodes at level k

- First, it is useful to find out how many nodes are at a certain level in perfect binary tree
- Let us count levels from 0. This way level k contains nodes which have depth k.

## How many nodes at level k

- Claim: level k contains 2<sup>k</sup> nodes.
- Proof: by induction on k.
  - (basis of induction) if k = 0, the claim is true:
  - $2^0 = 1$ , and we only have one node (root) at level 0.
  - (inductive step): suppose the claim is true for k-1: level k-1 contains 2<sup>k-1</sup> nodes.
  - We need to prove that then the claim holds for k: level k holds 2<sup>k</sup> nodes.
  - Since each node at level k-1 has 2 children, there are twice as many nodes at level k.
  - So, level k contains  $2 * 2^{k-1} = 2^k$  nodes. QED

# How many nodes in a tree of height h?

*Theorem:* A perfect binary tree of height h contains 2 h+1 - 1 nodes.

**Proof:** by induction on h

- (basis of induction): h=0. The tree contains 2¹ 1
   = 1 node.
- (inductive step): assume a tree of height h-1 contains 2<sup>h</sup> 1 nodes. A tree of depth h has one more level (h) which contains 2<sup>h</sup> nodes. The total number of nodes in the tree of height h is: 2<sup>h</sup> 1 + 2<sup>h</sup> = 2 \* 2<sup>h</sup> 1 = 2<sup>h+1</sup> 1. QED

# What is the height of a (perfect) binary tree of size n (with n nodes)?

We know that  $n = 2^{h+1} - 1$ .

So, 
$$2^{h+1} = n + 1$$
.

$$h + 1 = \log_{2}(n+1)$$

$$h = \log_2(n+1) - 1.$$

So, the height of the tree is logarithmic in the size of the tree.

The size of the tree is exponential in the height (number of levels) of the tree.

# What is the height of an arbitrary binary tree of size n (with n nodes)?

- If the tree is perfect, then it has height that is logarithmic in the size of the tree:  $\Theta(log(n))$
- If it is imperfect then for the same n it must have at least this height:  $\Omega(\log(n))$
- However, consider a simple "chain"
  - each node has just one child (or none)
  - It is a special case of a binary tree.
  - It has height n and is (obviously) the maximal height
  - Hence, trees have height O(n).
- Hence, for a general binary tree on n nodes, the height is  $\Omega(\log(n))$  and O(n)

#### Minimum Expectations

- Definitions associated with trees
- Post- Pre- and In-order traversal and their usages
- Implementation methods
  - nodes
  - array based
- Binary Trees meaning of proper, perfect
- Sizes and heights of binary trees