Dynamic Additive and Multiplicative Effects (DAME) Network Model with Application to the United Nations Voting Behaviors

Bomin Kim¹ Xiaoyue Niu¹ David Hunter ¹ Xun Cao²

The Pennsylvania State University

July 20, 2017

¹ Department of Statistics

² Department of Political Science

Dynamic Additive and Multiplicative Effects Model

- Network regression model for symmetric discrete-time networks
- Integration of two existing works:
 - Model formulation: AMEN for latent factor models (Minhas, Hoff, and Ward, 2016)
 - GP Priors: Bayesian dynamic networks with time-varying predictors (Durante and Dunson, 2014)

Model Formulation

ullet For N imes N symmetric matrices $\mathcal{Y} = \{Y(t), t \in \mathcal{T}\}$, define $(i,j)^{th}$ entry

$$y_{ij}(t) = X_{ij}^T(t)\beta(t) + \theta_i(t) + \theta_j(t) + u_i(t)^T D(t)u_j(t) + \epsilon_{ij}(t),$$

where

- 1. $\beta(t)$: P-dimensional edge covariate effects
- 2. $\theta_i(t)$ and $\theta_j(t)$: additive nodal random effects of i and j
- 3. $u_i(t)^T D(t) u_j(t)$: multiplicative random effect
- 4. $\epsilon_{ij}(t)$: random noise
- Each parameter has Gaussian process (GP) priors

$$\begin{split} \beta_p(\cdot) \sim \mathsf{GP}(0,\tau_p^\beta c_\beta) \text{ for } p = 1,...,P \\ \tau_p^\beta \sim \mathsf{IG}(a_\beta,b_\beta) \text{ and } c_\beta(t,t') = f(\kappa_{\beta_p},|t-t'|), \end{split}$$

where f() is Exponential or squared Exponential covariance functions.

United Nations Voting Networks

- Roll-call votes in the UN General Assembly 1983-2014 (Voeten et al., 2016)
- 23 most active countries in international relations (Hoff, 2015)
- Annual agreement network from 'Yes', 'No', and 'Abstain'
- Six relevent dyadic predictors:
 - 1. Intercept
 - 2. $log(distance)_{ij}$
 - 3. Alliance $_{ijt}$
 - 4. Polity score difference $_{ijt}$
 - 5. Lower trade-to-GDP ratio $_{ijt}$ (Gartzke, 2000)
 - 6. Common language $_{ij}$

Results: Main Effects and Random Effects

