Exercice 1

Soit $n \geqslant 2$. Calculer:

- **1.** $n \vee (2n+1)$
- **2.** $n \wedge (2n+1)$
- 3. $(n-1) \vee (2n+1)$
- **4.** $(n-1) \wedge (2n+1)$

Solution de l'exercice 1

Quelques explications pour écrire les textes d'arithmétique modulaire.

```
 a \equiv b \pmod{n}   a \equiv b \pmod{n}
```

Exercice 2

Soit
$$(a,b,c)\in (\mathbb{N}*)^3$$
 tel que $a^2+b^2=c^2$ et $a\wedge b\wedge c=1$.
Montrer que $a\wedge b=a\wedge c=b\wedge =1$.

Solution de l'exercice 2

Exercice 3

Soit $(a,b,c) \in (\mathbb{N}*)^3$ tel que $a^2 + b^2 = c^2$ et $a \wedge b = 1$.

Montrer que a et b ne sont pas de même parité.

Indication. On pourra utiliser des congruences modulo 4.

Solution de l'exercice 3