

WEBENCH® Design Report

VinMin = 8.0V VinMax = 30.0V Vout = 12.0V Iout = 3.0A Device = LM25118Q1MH/NOPB Topology = Buck_Boost Created = 3/25/15 8:00:50 AM BOM Cost = \$8.51 Footprint = 896.0 mm² BOM Count = 26 Total Pd = 3.41W

Design: 1231947/61 LM25118Q1MH/NOPB LM25118Q1MH/NOPB 8.0V-30.0V to 12.00V @ 3.0A

Electrical BOM

#	Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
1.	Cboot	MuRata	GRM21BR71E104KA01L Series= X7R	Cap= 100.0 nF VDC= 25.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
2.	Ccomp	Samsung Electro- Mechanics	CL21C331JBANFNC Series= C0G	Cap= 330.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
3.	Ccomp2	Yageo America	CC0805KRX7R9BB272 Series= X7R	Cap= 2.7 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
4.	Cin	Panasonic	50SVPF68M Series= 1273	Cap= 68.0 uF ESR= 20.0 mOhm VDC= 50.0 V IRMS= 4.3 A	1	\$0.92	CAPSMT_62_F12 151 mm ²
5.	Cinx	Kemet	C0805C104K5RACTU Series= X7R	Cap= 100.0 nF ESR= 64.0 mOhm VDC= 50.0 V IRMS= 1.64 A	1	\$0.01	0805 7 mm ²
6.	Cout	Panasonic	16SVPE180M Series= 259	Cap= 180.0 uF ESR= 11.0 mOhm VDC= 16.0 V IRMS= 4.46 A	1	\$0.49	CAPSMT_62_C10 74 mm²
7.	Cramp	Yageo America	CC0805KRX7R9BB391 Series= X7R	Cap= 390.0 pF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²
8.	Css	Yageo America	CC0805KRX7R9BB223 Series= X7R	Cap= 22.0 nF VDC= 50.0 V IRMS= 0.0 A	1	\$0.01	0805 7 mm ²

# Name	Manufacturer	Part Number	Properties	Qty	Price	Footprint
9. Cvcc	MuRata	GRM155R61A105KE15D Series= X5R	Cap= 1.0 uF VDC= 10.0 V IRMS= 0.0 A	1	\$0.01	0402 3 mm ²
10. Cvccx	TDK	C1608X5R1C105K Series= X5R	Cap= 1.0 uF ESR= 5.713 mOhm VDC= 16.0 V IRMS= 0.0 A	1	\$0.01	0603 5 mm ²
11. D1	Diodes Inc.	PDS760-13	VF@Io= 560.0 mV VRRM= 60.0 V	1	\$0.60	PowerDI5 50 mm²
12. D2	Diodes Inc.	PDS760-13	VF@Io= 560.0 mV VRRM= 60.0 V	1	\$0.60	PowerDI5 50 mm ²
13. D3	Diodes Inc.	PDS760-13	VF@Io= 560.0 mV VRRM= 60.0 V	1	\$0.60	PowerDI5 50 mm ²
14. D4	Diodes Inc.	PDS760-13	VF@Io= 560.0 mV VRRM= 60.0 V	1	\$0.60	PowerDI5 50 mm ²
15. L1	Bourns	SRP1270-100M	L= 10.0 μH DCR= 16.8 mOhm	1	\$0.60	SRP1270 246 mm ²
16. M1	Texas Instruments	CSD18504Q5A	VdsMax= 40.0 V IdsMax= 50.0 Amps	1	\$0.56	TRANS_NexFET_Q5A 55 mm²
17. M2	Texas Instruments	CSD16340Q3	VdsMax= 25.0 V IdsMax= 60.0 Amps	1	\$0.44	TRANS_NexFET_Q3 19 mm²
18. Rcomp	Vishay-Dale	CRCW040230K9FKED Series= CRCWe3	Res= 30.9 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
19. Renable	Vishay-Dale	CRCW04021M00FKED Series= CRCWe3	Res= 1000.0 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
20. Rfbb	Vishay-Dale	CRCW04021K00FKED Series= CRCWe3	Res= 1000.0 Ohm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
21. Rfbt	Vishay-Dale	CRCW04028K66FKED Series= CRCWe3	Res= 8.66 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
22. Rsense	Susumu Co Ltd	PRL1632-R015-F-T1 Series= 237	Res= 15.0 mOhm Power= 1.0 W Tolerance= 1.0%	1	\$0.19	1206 11 mm ²
23. Rt	Vishay-Dale	CRCW040218K7FKED Series= CRCWe3	Res= 18.7 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
24. Ruv1	Vishay-Dale	CRCW040232K4FKED Series= CRCWe3	Res= 32.4 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²
25. Ruv2	Vishay-Dale	CRCW04027K50FKED Series= CRCWe3	Res= 7.5 kOhm Power= 63.0 mW Tolerance= 1.0%	1	\$0.01	0402 3 mm ²

Name Manufacturer Part Number Properties Qty Price Footprint

26. U1 Texas Instruments LM25118Q1MH/NOPB Switcher 1 \$2.76

Operating Values

#	Name	Value	Category	Description
1.	Cin IRMS	1.476 A	Current	Input capacitor RMS ripple current
2.	Cout IRMS	725.395 mA	Current	Output capacitor RMS ripple current
3.	lin Avg	1.314 A	Current	Average input current
4.	L lpp	2.513 A	Current	Peak-to-peak inductor ripple current
5.	L1 Irms	3.086 A	Current	Inductor ripple current
6.	M1 Irms	1.924 A	Current	MOSFET RMS ripple current
7.	M2 Irms	6.429 A	Current	MOSFET RMS ripple current
8.	SW lpk	4.256 A	Current	Peak switch current
9.	BOM Count	26	General	Total Design BOM count
10.	FootPrint	896.0 mm ²	General	Total Foot Print Area of BOM components
11.	Frequency	294.659 kHz	General	Switching frequency
12.	IC Tolerance	18.0 mV	General	IC Feedback Tolerance
13.	M1 Rdson	9.8 mOhm	General	Drain-Source On-resistance
14.		51.0 degC/W	General	MOSFET junction-to-ambient thermal resistance
15.		4.3 mOhm	General	Drain-Source On-resistance
16.		58.0 degC/W	General	MOSFET junction-to-ambient thermal resistance
	Pout	36.0 W	General	Total output power
18.	Total BOM	\$8.51	General	Total BOM Cost
-	D1 Ti	52.251 degC	Op_Point	D1 junction temperature
	D1 Tj	52.251 degC	Op_Point	D1 junction temperature
	D2 Tj	67.8 degC	Op_Point	D1 junction temperature
	D3 Tj	52.251 degC	Op_Point	D1 junction temperature
	D4 Tj	67.8 degC	Op_Point	D1 junction temperature
	Vout OP	12.0 V	Op_Point	Operational Output Voltage
	Cross Freq	14.779 kHz	Op_point	Bode plot crossover frequency
26.	Duty Cycle	41.135 %	Op_point	Duty cycle
-	Efficiency	91.347 %	Op_point	Steady state efficiency
28.	•	39.962 degC	Op_point	IC junction temperature
29.	ICThetaJA	40.0 degC/W	. —	IC junction temperature IC junction-to-ambient thermal resistance
	IOUT_OP	3.0 A	Op_point	·
	_		Op_point	lout operating point
31.	M1 TjOP M2 TjOP	41.814 degC 41.997 degC	Op_point Op_point	MOSFET junction temperature MOSFET junction temperature
	,	0	. —.	Bode Plot Phase Margin
	Phase Marg	48.869 deg	Op_point	
	VIN_OP	30.0 V	Op_point	Vin operating point
	Vout p-p	28.269 mV	Op_point	Peak-to-peak output ripple voltage
36.	Cin Pd	43.585 mW	Power	Input capacitor power dissipation
	Cout Pd	5.788 mW	Power	Output capacitor power dissipation
38.	D1 Pd	494.465 mW	Power	Diode power dissipation
	D2 Pd	840.0 mW	Power	Diode power dissipation
	D3 Pd	494.465 mW	Power	Diode power dissipation
	D4 Pd	840.0 mW	Power	Diode power dissipation
	Diode Pd	494.465 mW	Power	Diode power dissipation
	IC Pd	249.061 mW	Power	IC power dissipation
	L Pd	189.0 mW	Power	Inductor power dissipation
45.		242.281 mW	Power	MOSFET power dissipation
46.	M1 PdCond	51.005 mW	Power	M1 MOSFET conduction losses
47.		191.275 mW	Power	M1 MOSFET switching losses
48.	M2 Pd	21.404 mW	Power	MOSFET power dissipation
49.	M2 PdCond	0.0 W	Power	M2 MOSFET conduction losses
50.	M2 PdSw	21.404 mW	Power	M2 MOSFET switching losses
51.	Total Pd	3.41 W	Power	Total Power Dissipation

Design Inputs

Name	Value	Description
lout	3.0	Maximum Output Current
lout1	3.0	Output Current #1
VinMax	30.0	Maximum input voltage
VinMin	8.0	Minimum input voltage
Vout	12.0	Output Voltage
Vout1	12.0	Output Voltage #1
base_pn	LM25118-Q1	Base Product Number
source	DC	Input Source Type
Та	30.0	Ambient temperature
	lout lout1 VinMax VinMin Vout Vout1 base_pn source	lout 3.0 lout1 3.0 VinMax 30.0 VinMin 8.0 Vout 12.0 Vout1 12.0 base_pn LM25118-Q1 source DC

Design Assistance

- 1. The LM25118-Q1 is a wide range buck-boost controller which is operable in an ultra wide input range of 3 to 75V. A buck-boost regulator can maintain regulation for input voltages either higher or lower than the output voltage. The challenge is that buck-boost power converters are not as efficient as buck regulators. The LM5118 has been designed as a dual mode controller whereby the power converter acts as a buck regulator while the input voltage is above the output. As the input voltage approaches the output voltage, a gradual transition to the buck-boost mode occurs. This gradual transition between modes eliminates disturbances at the output during transitions.
- 2. LM25118-Q1 Product Folder: http://www.ti.com/product/lm25118%2Dq1: contains the data sheet and other resources.

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.