网络药理学和表观遗传学修饰筛选靶点

$2\overline{024} - 0\overline{3} - \overline{25}$

LiChuang Huang

@ 立效研究院

${\bf Contents}$

1	摘要		1
2	前言	i i	1
3	材料	和方法	1
	3.1	材料	1
	3.2	方法	1
4	A 4rt		1
4	分析	"结米	1
5	结论		2
6	附:	分析流程	2
	6.1	网络药理学分析	2
		6.1.1 成分	2
		6.1.2 成分靶点	4
		6.1.3 疾病靶点	5
	6.2	表观遗传学蛋白	5
	6.3	筛选表观遗传学靶点	6
		6.3.1 复方成分与表观遗传学靶点	6
	6.4	脓毒症肠损伤的 GEO 数据分析	8
		6.4.1 数据来源	8
		6.4.2 fastp 质控	9
		6.4.3 RNA 定量	9
		6.4.4 差异分析	10
		6.4.5 将小鼠基因 symbol 映射到人类 (hgnc_symbol)	11
		6.4.6 富集分析 (GSEA)	12
	6.5	复方成分表观遗传学靶点的通路调控	14
		6.5.1 富集表观修饰蛋白的通路	14
		6.5.2 表观修饰靶点	15
		6.5.3 上下游	16
		6.5.4 相关成分	18
	6.6	分子对接	20
		6.6.1 第一批对接	20
		6.6.2 以口服利用度筛选其他成分	22
		6.6.3 第二批对接	22
		6.6.4 对接可视化 (Top 3)	24
Re	eferei	nce	27

List of Figures

1	Intersection of all compounds	4
2	Overall targets number of datasets	5
3	SLBJ network pharmacology of epigenetic target	7
4	SII model vs control DEGs	11
5	KEGG enrichment	13
6	KEGG enrichment with enriched genes	14
7	GSEA plot of the pathways	15
8	Hsa04920 visualization	16
9	Hsa04010 visualization	17
10	Hsa04657 visualization	18
11	SLBJ network pharmacology Target epigenetic related pathway	19
12	FIRST Overall combining Affinity	21
13	HOB 20 prediction	22
14	Overall combining Affinity	24
15	Docking 72326 into GADD45B	25
16	Docking 12313579 into GADD45B	26
17	Docking 5316891 into GADD45B	27
${f List}$	of Tables	
1	Herbs information	2
2	Components of Herbs	3
3	Tables of Herbs compounds and targets	4
4	All protein of epigenetic regulators	6
5	SLBJ Herbs compounds and targets of epigenetic target	7
6	SII metadata	9
7	Quantification	10
8	Mapped DEGs	12
9	KEGG enrichment data	13
10	SLBJ network pharmacology Target epigenetic related pathway data	19

1 摘要

网络药理学分析参苓白术散治治疗脓毒症肠损伤的药物活性成分 XXX, 对接下游的靶点 YYY (表观遗传学修饰蛋白), YYY 可以对靶点 ZZZ 进行表观遗传学修饰。YYY-ZZZ 的机制和调控脓毒症肠损伤相关。

最终筛得成分: Betulin (CID: 72326) (见 Fig. 14) , 对接靶点 GADD45B (表观遗传学蛋白), 根据 KEGG (MARK) 通路图 (Fig. 9) , 其可作用于 MAP3K4 和 TAOK3, 与脓毒症肠损伤有关。

2 前言

3 材料和方法

3.1 材料

All used GEO expression data and their design:

• **GSE202261**: A total of 5 C57BL/6 mice were randomly divided into 2 groups: CLP group (n=3), Sham group (n=2). The disinfected abdomen was incised 1 cm at midline to expose the cecum. Silk thread was subsequentl...

3.2 方法

Mainly used method:

- R package biomaRt used for gene annotation¹.
- The biomart was used for mapping genes between organism (e.g., mgi_symbol to hgnc_symbol)¹.
- R package ClusterProfiler used for gene enrichment analysis².
- Database EpiFactors used for screening epigenetic regulators³.
- Fastp used for Fastq data preprocessing⁴.
- GEO https://www.ncbi.nlm.nih.gov/geo/ used for expression dataset aquisition.
- ullet Databses of DisGeNet, GeneCards, PharmGKB used for collating disease related targets $^{5-7}$.
- R package ClusterProfiler used for GSEA enrichment².
- Website HERB http://herb.ac.cn/ used for data source⁸.
- Python tool of HOB was used for prediction of human oral bioavailability⁹.
- Kallisto used for RNA-seq mapping and quantification ¹⁰.
- R package Limma and edgeR used for differential expression analysis 11,12 .
- The CLI tools of AutoDock vina and ADFR software used for auto molecular docking 13-17.
- R package ChemmineR used for similar chemical compounds clustering 18.
- R version 4.3.2 (2023-10-31); Other R packages (eg., dplyr and ggplot2) used for statistic analysis or data visualization.

4 分析结果

• 从 HERB 数据库获取复方的成分信息和靶点信息, 整理如 Tab. 3。

- 从多个数据库获取脓毒症肠损伤 (SH) 相关靶点,见 Fig. 2
- 表观遗传学蛋白的获取通过 EpiFactors 数据库。
- 在复方中存在的表观遗传学相关靶点见 Fig. 3
- 为了进一步筛选与 SH 相关的通路和靶点,以 GEO 的 SH 数据集做了差异分析 (Fig. 4)。
- 该数据集源于小鼠,这里将其映射到人类基因,然后富集分析 Fig. 5
- 在富集的通路中筛选包含表观修饰相关靶点,见 Fig. 6
- 通路具体可见 6.5.2, 6.5.3, 结果上述网络药理学, 可发现相关化学成分为 Fig. 11
- 对 Fig. 11 所示的成分与靶点关系进行分子对接,对接结果见 Fig. 12。
- 由于 Fig. 12 所示对接能量均过高,这里随后尝试挖掘复方中其它可能作用于其相关靶点的化学成分。
- 复方中的成分复杂,为了减少过度的分子对接计算量,以计算 HOB 和化学结果相似聚类的方式,筛选了少数一批化学成分用以分子对接。
- 对接结果见 Fig. 14。其中, Betulin (CID: 72326) 对接 GADD45B 蛋白所需能量最少, 对接可视化见 Fig. 15
- 联系 Fig. 9,可知 GADD45B 下游调控的靶点。其中, TAOK3 是 SH 中上调的基因, GADD45B-TAOK3 的作用,可能是最佳结果,对应成分为 Betulin (CID: 72326)。

5 结论

最终筛得成分: Betulin (CID: 72326) (见 Fig. 14) , 对接靶点 GADD45B (表观遗传学蛋白), 根据 KEGG (MARK) 通路图 (Fig. 9) , 其可作用于 MAP3K4 和 TAOK3, 与脓毒症肠损伤有关。

6 附:分析流程

6.1 网络药理学分析

复方成分和靶点数据来源于 HERB 数据库。

6.1.1 成分

Table 1 (下方表格) 为表格 Herbs information 概览。

(对应文件为 Figure+Table/Herbs-information.xlsx)

注: 表格共有 10 行 18 列,以下预览的表格可能省略部分数据;表格含有 10 个唯一'Herb'。

Table 1: Herbs information

Herb_	Herb_p	${\rm Herb}_{\rm c}$	Herb_e	Herb_l	Proper	Meridians	UsePart	Function	Indica
HERB00	BAI BI	白扁豆	White	Semen	Minor	Spleen	NA	To inv	Treatm
HERB00	BAI ZHU	白术	rhizom	Rhizom	Warm;	Spleen	root	To inv	Spleen
HERB00	FU LING	茯苓	Indian	Poria	Mild;	Spleen	sclero	To cau	Neuras
HERB00	GAN CAO	甘草	Root o	Radix	Mild;	Lung;	root a	To rei	1. Its

Herb_	Herb_p	${\rm Herb_c}$	${\rm Herb}_{\rm e}$	${\rm Herb_l}$	Proper	Meridians	UsePart	Function	Indica
HERB00	JIE GENG	桔梗	Platyc	Radix	Mild;	Lung	root	To rel	Cough
HERB00	LIAN ZI	莲子	Hindu	Nelumb	Mild;	Spleen	seed	To sup	Chroni
HERB00	REN SHEN	人参	Ginseng	Radix	Minor	Lung;	root	To rei	Qi vac
HERB00	SHA REN	砂仁	Villou	Fructu	Warm;	Spleen	ripe f	To eli	Abdomi
HERB00	SHAN YAO	山药	Common	Rhizom	Mild;	Lung;	$\operatorname{rhizome}$	To rep	Reduce
HERB00	YI YI REN	薏苡仁	seed o	semen	Minor	Lung;	seed	1. To	${\bf Edema,}$

Table 2 (下方表格) 为表格 Components of Herbs 概览。

(对应文件为 Figure+Table/Components-of-Herbs.xlsx)

注: 表格共有 1870 行 4 列,以下预览的表格可能省略部分数据; 表格含有 10 个唯一'herb_id'。

Table 2: Components of Herbs

Ingredient.id		
ingreaient.ia	Ingredient.name	Ingredient.alias
HBIN000890	1,2linoleic acid	NA
HBIN005609	2-ethyl-3-hydroxy	NA
HBIN006106	2-Monoolein	2-monoolein; [2-h
HBIN006366	[(2R)-2,3-dihydro	(Z)-octadec-9-eno
HBIN012837	(6Z,10E,14E,18E)	NA
HBIN015611	-monolinolein	NA
HBIN015675	-sitosterol	alpha-sitosterol
HBIN016562	Arabinose	arabinose
HBIN016720	arginine	AC1ODX8E; [(4S)-5
HBIN018278	beta-sitosterol	24.alphaEthylch
HBIN019257	cadmium	NA
HBIN019351	calcium	NA
HBIN019475	campesterol	campesterol ; FT
HBIN019688	caprylic acid	Octanoic acid (mi
HBIN021150	CLR	5-Cholesten-3b-ol
	HBIN005609 HBIN006106 HBIN006366 HBIN012837 HBIN015611 HBIN016562 HBIN016720 HBIN018278 HBIN019257 HBIN019351 HBIN019475 HBIN019688 HBIN019688	HBIN005609 2-ethyl-3-hydroxy HBIN006106 2-Monoolein HBIN006366 [(2R)-2,3-dihydro HBIN012837 (6Z,10E,14E,18E) HBIN015611 -monolinolein HBIN015675 -sitosterol HBIN016562 Arabinose HBIN016720 arginine HBIN018278 beta-sitosterol HBIN019257 cadmium HBIN019351 calcium HBIN019475 campesterol HBIN019688 caprylic acid HBIN021150 CLR

Figure 1 (下方图) 为图 intersection of all compounds 概览。

(对应文件为 Figure+Table/intersection-of-all-compounds.pdf)

Figure 1: Intersection of all compounds

 ${f All_intersection}:$

(上述信息框内容已保存至 Figure+Table/intersection-of-all-compounds-content)

6.1.2 成分靶点

Table 3 (下方表格) 为表格 tables of Herbs compounds and targets 概览。

(对应文件为 Figure+Table/tables-of-Herbs-compounds-and-targets.tsv)

注:表格共有 56685 行 9 列,以下预览的表格可能省略部分数据;表格含有 1661 个唯一'Ingredient.id'。

Table 3: Tables of Herbs compounds and targets

Ingred1	Herb_p	Ingred3	Ingred4	Target.id	Target	Databa	Paper.id	
HBIN00	FU LING	10-hyd	NA	NA	NA	NA	NA	
HBIN00	BAI BI	10-non	(10R)	NA	NA	NA	NA	
HBIN00	GAN CAO	11-deo	11-Deo	HBTAR0	NR3C1	NA	NA	
HBIN00	GAN CAO	11-deo	11-Deo	HBTAR0	AR	NA	NA	
HBIN00	GAN CAO	11-deo	11-Deo	HBTAR0	NR3C1	NA	NA	

Ingred1	Herb_p	Ingred3	Ingred4	Target.id	Target	Databa	Paper.id	
HBIN00	GAN CAO	11-deo	11-Deo	HBTAR0	AR	NA	NA	
HBIN00	GAN CAO	11-deo	11-Deo	HBTAR0	NR3C1	NA	NA	
HBIN00	GAN CAO	11-deo	11-Deo	HBTAR0	AR	NA	NA	
HBIN00	FU LING	1,2,3,	Pentag	NA	NA	NA	NA	
HBIN00	BAI ZHU	12-(12-(NA	NA	NA	NA	
HBIN00	BAI ZHU	12-([(4E,6	NA	NA	NA	NA	
HBIN00	YI YI REN	1,2lin	NA	NA	NA	NA	NA	
HBIN00	GAN CAO	12-met	12-met	NA	NA	NA	NA	
HBIN00	REN SHEN	12-O-N	12-o-n	NA	NA	NA	NA	
HBIN00	BAI ZHU	12-Oxo	(5aR,9	HBTAR0	NR3C1	NA	NA	

6.1.3 疾病靶点

取以下基因集的合集:

Figure 2 (下方图) 为图 Overall targets number of datasets 概览。

(对应文件为 Figure+Table/Overall-targets-number-of-datasets.pdf)

Figure 2: Overall targets number of datasets

6.2 表观遗传学蛋白

自数据库 https://epifactors.autosome.org/ 获取相关蛋白。

Table 4 (下方表格) 为表格 All protein of epigenetic regulators 概览。

(对应文件为 Figure+Table/All-protein-of-epigenetic-regulators.xlsx)

注: 表格共有801行25列, 以下预览的表格可能省略部分数据; 表格含有801个唯一'Id'。

Table 4: All protein of epigenetic regulators

Id	HGNC_s	Status	HGNC_ID	HGNC_name	GeneID	UniPro7	UniPro8	Domain	MGI_sy
1	A1CF	#	24086	APOBEC	29974	Q9NQ94	A1CF_H	DND1_D	A1cf
2	ACINU	New	17066	Apopto	22985	Q9UKV3	ACINU	PF1629	Acin1
3	ACTB	#	132	actin,	60	P60709	$ACTB_H$	Actin	Actb
4	ACTL6A	#	24124	actin	86	O96019	${\rm ACL6A}\$	Actin	Actl6a
5	ACTL6B	#	160	actin	51412	O94805	ACL6B	Actin	Actl6b
6	ACTR3B	#	17256	ARP3 a	57180	Q9P1U1	ARP3B	Actin	Actr3b
7	ACTR5	#	14671	ARP5 a	79913	Q9H9F9	${\rm ARP5_H}$	Actin	Actr5
8	ACTR6	#	24025	ARP6 a	64431	Q9GZN1	${\rm ARP6_H}$	Actin	Actr6
9	ACTR8	#	14672	ARP8 a	93973	Q9H981	ARP8_H	Actin	Actr8
10	ADNP	#	15766	activi	23394	Q9H2P0	ADNP_H	Homeob	Adnp
11	AEBP2	#	24051	AE bin	121536	Q6ZN18	${\rm AEBP2}\$	Pfam-B	Aebp2
12	AICDA	#	13203	activa	57379	Q9GZX7	AICDA	APOBEC	Aicda
13	AIRE	#	360	autoim	326	O43918	${\rm AIRE_H}$	PHD PF	Aire
14	ALKBH1	#	17911	alkB,	8846	Q13686	ALKB1	20G-Fe	Alkbh1
15	ALKBH1	New	17911	Nuclei	8846	Q13686	ALKB1	PF13532	Alkbh1

6.3 筛选表观遗传学靶点

6.3.1 复方成分与表观遗传学靶点

Figure 3 (下方图) 为图 SLBJ network pharmacology of epigenetic target 概览。

(对应文件为 Figure+Table/SLBJ-network-pharmacology-of-epigenetic-target.pdf)

Figure 3: SLBJ network pharmacology of epigenetic target

Table 5 (下方表格) 为表格 SLBJ Herbs compounds and targets of epigenetic target 概览。

(对应文件为 Figure+Table/SLBJ-Herbs-compounds-and-targets-of-epigenetic-target.csv)

注: 表格共有 583 行 3 列,以下预览的表格可能省略部分数据; 表格含有 10 个唯一'Herb_pinyin_name'。

Table 5: SLBJ Herbs compounds and targets of epigenetic target

Herb_pinyin_name	Ingredient.name	Target.name
SHA REN	acetic acid	HDAC8
SHA REN	acetic acid	PKM
SHA REN	acetic acid	HDAC8
SHA REN	acetic acid	PKM
JIE GENG	adeninenucleoside	ACTB
JIE GENG	a denine nucleo side	CDK9
JIE GENG	adeninenucleoside	MAP3K7
JIE GENG	adeninenucleoside	TP53
JIE GENG	adeninenucleoside	PPARGC1A

Herb_pinyin_name	Ingredient.name	Target.name
JIE GENG	adeninenucleoside	ACTB
JIE GENG	adeninenucleoside	CDK9
JIE GENG	adeninenucleoside	MAP3K7
JIE GENG	adeninenucleoside	TP53
JIE GENG	adeninenucleoside	PPARGC1A
JIE GENG	adeninenucleoside	ACTB

6.4 脓毒症肠损伤的 GEO 数据分析

6.4.1 数据来源

注:由于该数据的原作者没有上传定量后的原始 Count,不利于差异分析;因此,这里下载了 SRA 原始数据,使用 Kallisto 重新定量。

Data Source ID:

GSE202261

data_processing:

Raw data (raw reads) of fastq format were firstly processed using fastp(version 0.20.0) softeware with default parameters in pair end mode.

data_processing.1:

The clean data were obtained for downstream analyses by removing reads containing adapter, reads containing ploy-N and low-quality reads from raw data.

data_processing.2:

The clean reads were mapped to reference of mouse mRNAs and lncRNAs using bowtie2(version 2.3.1) with parameters -q -L 16 -phred64 -p 6

data_processing.3:

TPM value and read counts of each transcript were obtained by eXpress(version 1.5.1) with parameters –no-update-check –rf-stranded.

(Others):

. . .

(上述信息框内容已保存至 Figure+Table/SII-GSE202261-content)

Table 6 (下方表格) 为表格 SII metadata 概览。

(对应文件为 Figure+Table/SII-metadata.csv)

注:表格共有 4 行 8 列,以下预览的表格可能省略部分数据;表格含有 4 个唯一 'sample'。

sample: 样品名称
 group: 分组名称

Table 6: SII metadata

sample	group	lib.size	norm.f	file	directory	sample1	gsm
SRR211	control	206657	1	kallis	kallis	SRR211	GSM646
SRR211	control	194806	1	kallis	kallis	SRR211	$\operatorname{GSM646}$
SRR211	model	205782	1	kallis	kallis	SRR211	$\operatorname{GSM646}$
SRR211	model	230056	1	kallis	kallis	SRR211	$\operatorname{GSM646}$

6.4.2 fastp 质控

'Fastp QC'数据已全部提供。

(对应文件为 ./fastp_report/)

注:文件夹./fastp_report/共包含 4 个文件。

- 1. SRR21101636.html
- 2. SRR21101637.html
- 3. SRR21101638.html
- $4. \ \mathrm{SRR21101639.html}$

6.4.3 RNA 定量

使用小鼠 cDNA 作为参考基因组 (Mus_musculus.GRCm39.cdna.all.fa.gz), Kallisto 定量。

Table 7 (下方表格) 为表格 Quantification 概览。

(对应文件为 Figure+Table/Quantification.csv)

注:表格共有 116873 行 5 列,以下预览的表格可能省略部分数据;表格含有 116873 个唯一 'target_id'。

Table 7: Quantification

target_id	SRR211016361	SRR211016371	SRR211016381	SRR211016391
ENSMUST00000196221	0	0	0	0
ENSMUST00000179664	0	0	0	0
ENSMUST00000177564	0	0	0	0
ENSMUST00000178537	0	0	0	0
ENSMUST00000178862	0	0	0	0
ENSMUST00000179520	0	0	0	0
ENSMUST00000179883	0	0	0	0
ENSMUST00000195858	0	0	0	0
ENSMUST00000179932	0	0	0	0
ENSMUST00000180001	0	0	0	0
ENSMUST00000178815	0	0	0	0
ENSMUST00000177965	0	0	0	0
ENSMUST00000178909	0	0	0	0
ENSMUST00000177646	0	0	0	0
ENSMUST00000178230	0	0	0	0

6.4.4 差异分析

使用 limma 差异分析

Figure 4 (下方图) 为图 SII model vs control DEGs 概览。

(对应文件为 Figure+Table/SII-model-vs-control-DEGs.pdf)

Figure 4: SII model vs control DEGs

6.4.5 将小鼠基因 symbol 映射到人类 (hgnc_symbol)

使用 biomart 将基因映射

Table 8 (下方表格) 为表格 Mapped DEGs 概览。

(对应文件为 Figure+Table/Mapped-DEGs.xlsx)

注: 表格共有 4409 行 13 列,以下预览的表格可能省略部分数据;表格含有 4338 个唯一'hgnc_symbol'。

- 1. hgnc_symbol: 基因名 (Human)
- 2. mgi_symbol: 基因名 (Mice)
- 3. logFC: estimate of the log2-fold-change corresponding to the effect or contrast (for 'topTableF' there may be several columns of log-fold-changes)
- 4. Ave Expr: average log2-expression for the probe over all arrays and channels, same as 'Amean' in the 'Marray LM' object
- 5. t: moderated t-statistic (omitted for 'topTableF')
- 6. P.Value: raw p-value
- 7. B: log-odds that the gene is differentially expressed (omitted for 'topTreat')

Table 8: Mapped DEGs

${\rm hgnc_s}$	mgi_sy	$\log FC$	P.Value	rownames	ensemb6	ensemb7	entrez	descri	
ENPP7	Enpp7	-3.851	1.8936	43380	ENSMUS	ENSMUS	238011	ectonu	
THBS1	Thbs1	2.7918	3.2577	94883	ENSMUS	ENSMUS	21825	${\rm thromb}$	
DNASE1	Dnase1	-3.650	2.6636	26241	ENSMUS	ENSMUS	13419	deoxyr	
ANPEP	Anpep	-1.838	1.0218	50217	ENSMUS	ENSMUS	16790	alanyl	
CLIC5	Clic5	-2.664	8.8784	45278	ENSMUS	ENSMUS	224796	chlori	
ZBTB16	Zbtb16	3.8536	5.3567	5449	ENSMUS	ENSMUS	235320	zinc f	
CEP85	Cep85	2.4595	1.1643	45584	ENSMUS	ENSMUS	70012	centro	
REG1B	Reg3b	4.2139	9.5036	25543	ENSMUS	ENSMUS	18489	regene	
IGFBP5	Igfbp5	2.5428	1.5655	72899	ENSMUS	ENSMUS	16011	insuli	
PMAIP1	Pmaip1	3.3882	1.7795	14956	ENSMUS	ENSMUS	58801	phorbo	
CYP4F2	Cyp4f14	-1.967	2.2471	66083	ENSMUS	ENSMUS	64385	cytoch	
PRR15	Prr15	-2.404	2.0582	38200	ENSMUS	ENSMUS	78004	prolin	
FKBP5	Fkbp5	2.8596	2.2370	54319	ENSMUS	ENSMUS	14229	FK506	
ERRFI1	Errfi1	2.3357	2.1310	90849	ENSMUS	ENSMUS	74155	ERBB r	
LGMN	Lgmn	2.5094	2.3522	59306	ENSMUS	ENSMUS	19141	leguma	

6.4.6 富集分析 (GSEA)

Figure 5 (下方图) 为图 KEGG enrichment 概览。

(对应文件为 Figure+Table/KEGG-enrichment.pdf)

Figure 5: KEGG enrichment

Table 9 (下方表格) 为表格 KEGG enrichment data 概览。

(对应文件为 Figure+Table/KEGG-enrichment-data.xlsx)

注:表格共有5行13列,以下预览的表格可能省略部分数据;表格含有5个唯一'ID'。

1. pvalue: 显著性 P。

Table 9: KEGG enrichment data

ID	Descri	$\operatorname{setSize}$	enrich	NES	pvalue	p.adjust	qvalue	rank	leadin
hsa04610	Comple	20	0.6129	2.1798	0.0002	0.0444	0.0415	789	tags=5
hsa04920	Adipoc	29	0.5336	2.1079	0.0004	0.0444	0.0415	1541	tags=8
hsa04010	MAPK s	109	0.3242	1.7682	0.0004	0.0444	0.0415	1026	tags=4
hsa00340	Histid	10	-0.726	-2.053	0.0008	0.0496	0.0464	536	tags=7
hsa04657	IL-17	29	0.5129	2.0264	0.0008	0.0496	0.0464	704	tags=5

6.5 复方成分表观遗传学靶点的通路调控

6.5.1 富集表观修饰蛋白的通路

以 Fig. 3 的靶点筛选,发现存在三条通路:

Figure 6 (下方图) 为图 KEGG enrichment with enriched genes 概览。

(对应文件为 Figure+Table/KEGG-enrichment-with-enriched-genes.pdf)

Figure 6: KEGG enrichment with enriched genes

Figure 7 (下方图) 为图 GSEA plot of the pathways 概览。

(对应文件为 Figure+Table/GSEA-plot-of-the-pathways.pdf)

Figure 7: GSEA plot of the pathways

6.5.2 表观修饰靶点

这三条通路存在的表观遗传学修饰靶点为:

(上述信息框内容已保存至 Figure+Table/unnamed-chunk-32-content)

6.5.3 上下游

Figure 8 (下方图) 为图 Hsa04920 visualization 概览。

(对应文件为 Figure+Table/hsa04920.pathview.png)

Figure 8: Hsa04920 visualization

Interactive figure:

https://www.genome.jp/pathway/hsa04920

Figure 9 (下方图) 为图 Hsa04010 visualization 概览。

(对应文件为 Figure+Table/hsa04010.pathview.png)

Figure 9: Hsa04010 visualization

Interactive figure:

https://www.genome.jp/pathway/hsa04010

Figure 10 (下方图) 为图 Hsa04657 visualization 概览。

(对应文件为 Figure+Table/hsa04657.pathview.png)

Figure 10: Hsa04657 visualization

Interactive figure:

https://www.genome.jp/pathway/hsa04657

6.5.4 相关成分

Figure 11 (下方图) 为图 SLBJ network pharmacology Target epigenetic related pathway 概览。

(对应文件为 Figure+Table/SLBJ-network-pharmacology-Target-epigenetic-related-pathway.pdf)

Figure 11: SLBJ network pharmacology Target epigenetic related pathway

Table 10 (下方表格) 为表格 SLBJ network pharmacology Target epigenetic related pathway data 概览。

(对应文件为 Figure+Table/SLBJ-network-pharmacology-Target-epigenetic-related-pathway-data.csv)

注:表格共有 42 行 3 列,以下预览的表格可能省略部分数据;表格含有 8 个唯一'Herb_pinyin_name'。

Table 10: SLBJ network pharmacology Target epigenetic related pathway data

Herb_pinyin_name	Ingredient.name	Target.name
JIE GENG	adeninenucleoside	MAP3K7
JIE GENG	adeninenucleoside	MAP3K7
JIE GENG	a denine nucleo si de	MAP3K7
JIE GENG	a denine nucleo si de	MAP3K7
REN SHEN	a denine nucleo si de	MAP3K7
REN SHEN	a denine nucleo si de	MAP3K7
REN SHEN	a denine nucleo si de	MAP3K7
REN SHEN	a denine nucleo si de	MAP3K7
SHAN YAO	adeninenucleoside	MAP3K7

Herb_pinyin_name	Ingredient.name	Target.name
SHAN YAO	adeninenucleoside	MAP3K7
SHAN YAO	adeninenucleoside	MAP3K7
SHAN YAO	a denine nucleo side	MAP3K7
JIE GENG	betulin	PRKAB1
JIE GENG	betulin	PRKAB1
JIE GENG	betulin	PRKAB1

6.6 分子对接

6.6.1 第一批对接

根据 HERB 数据库记录的成分靶点信息,Fig. 11 中的成分能作用于其对应的靶点。以下尝试分子对接。 Figure 12 (下方图) 为图 FIRST Overall combining Affinity 概览。

(对应文件为 Figure+Table/FIRST-Overall-combining-Affinity.pdf)

Fig. 12显示, 候选分子与对应靶点的对接能量均较大。

6.6.2 以口服利用度筛选其他成分

由于 Fig. 12 所示对接能量过大,以下尝试挖掘复方中其它能够作用于 Fig. 11 表观遗传修饰靶点的成分。 以下通过 HOB 筛选成分 (预测是否达到 20% HOB)。

Figure 13 (下方图) 为图 HOB 20 prediction 概览。

(对应文件为 Figure+Table/HOB-20-prediction.pdf)

HOB (20%) Prediction

Figure 13: HOB 20 prediction

6.6.3 第二批对接

对于 Fig. 13 满足 HOB 条件的化合物,尝试分子对接;然而由于化合物数量过多,运算过于将过于耗时,这里,以 ChemmineR 对化合物结构聚类 (0.4 cut-off),每个聚类团随机抽取三个化合物,最后用于分子对接。实际对接的有:

(上述信息框内容已保存至 Figure+Table/unnamed-chunk-43-content)

对每个靶点都选择了对接能量最小的 Top 5, 结果如下:

Figure 14 (下方图) 为图 Overall combining Affinity 概览。

(对应文件为 Figure+Table/Overall-combining-Affinity.pdf)

Figure 14: Overall combining Affinity

6.6.4 对接可视化 (Top 3)

Figure 15 (下方图) 为图 Docking 72326 into GADD45B 概览。

(对应文件为 Figure+Table/72326_into_GADD45B.png)

Figure 15: Docking 72326 into GADD45B

Figure 16 (下方图) 为图 Docking 12313579 into GADD45B 概览。

(对应文件为 Figure+Table/12313579_into_GADD45B.png)

Figure 16: Docking 12313579 into GADD45B

Figure 17 (下方图) 为图 Docking 5316891 into GADD45B 概览。

(对应文件为 Figure+Table/5316891_into_GADD45B.png)

Figure 17: Docking 5316891 into GADD45B

Reference

- 1. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the r/bioconductor package biomaRt. *Nature protocols* 4, 1184–1191 (2009).
- 2. Wu, T. et al. Cluster Profiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2, (2021).
- 3. Marakulina, D. et al. EpiFactors 2022: Expansion and enhancement of a curated database of human epigenetic factors and complexes. Nucleic acids research 51, D564–D570 (2023).
- 4. Chen, S. Ultrafast one-pass fastq data preprocessing, quality control, and deduplication using fastp. iMeta 2, (2023).

- 5. Piñero, J. et al. The disgenet knowledge platform for disease genomics: 2019 update. Nucleic Acids Research (2019) doi:10.1093/nar/gkz1021.
- 6. Stelzer, G. et al. The generards suite: From gene data mining to disease genome sequence analyses. Current protocols in bioinformatics 54, 1.30.1–1.30.33 (2016).
- 7. Barbarino, J. M., Whirl-Carrillo, M., Altman, R. B. & Klein, T. E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley interdisciplinary reviews. Systems biology and medicine 10, (2018).
- 8. Fang, S. et al. HERB: A high-throughput experiment- and reference-guided database of traditional chinese medicine. Nucleic Acids Research 49, D1197–D1206 (2021).
- 9. Wei, M. et al. HobPre: Accurate prediction of human oral bioavailability for small molecules. *Journal of Cheminformatics* 14, (2022).
- 10. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic rna-seq quantification. *Nature Biotechnology* **34**, (2016).
- 11. Ritchie, M. E. *et al.* Limma powers differential expression analyses for rna-sequencing and microarray studies. *Nucleic Acids Research* **43**, e47 (2015).
- 12. Chen, Y., McCarthy, D., Ritchie, M., Robinson, M. & Smyth, G. EdgeR: Differential analysis of sequence read count data user's guide. 119.
- 13. Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. *Journal of Chemical Information and Modeling* **61**, 3891–3898 (2021).
- 14. Zhang, Y., Forli, S., Omelchenko, A. & Sanner, M. F. AutoGridFR: Improvements on autodock affinity maps and associated software tools. *Journal of computational chemistry* **40**, 2882–2886 (2019).
- 15. Zhang, Y. & Sanner, M. F. AutoDock crankpep: Combining folding and docking to predict protein-peptide complexes. *Bioinformatics (Oxford, England)* **35**, 5121–5127 (2019).
- 16. Ravindranath, P. A. & Sanner, M. F. AutoSite: An automated approach for pseudo-ligands prediction-from ligand-binding sites identification to predicting key ligand atoms. *Bioinformatics (Oxford, England)* 32, 3142–3149 (2016).
- 17. Ravindranath, P. A., Forli, S., Goodsell, D. S., Olson, A. J. & Sanner, M. F. AutoDockFR: Advances in protein-ligand docking with explicitly specified binding site flexibility. *PLoS computational biology* **11**, (2015).
- 18. Cao, Y., Charisi, A., Cheng, L.-C., Jiang, T. & Girke, T. ChemmineR: A compound mining framework for r. *Bioinformatics (Oxford, England)* **24**, 1733–1734 (2008).