```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

In [2]: from sklearn.linear_model import LogisticRegression

In [3]: df=pd.read_csv("used_cars.csv").dropna()
 df

	onnameu. 0	model	year	price	transmission	mileage	fuelType	tax	mpg	engineSize ^
0	0	T-Roc	2019	25000	Automatic	13904	Diesel	145	49.6	2.0
1	1	T-Roc	2019	26883	Automatic	4562	Diesel	145	49.6	2.0
2	2	T-Roc	2019	20000	Manual	7414	Diesel	145	50.4	2.0
3	3	T-Roc	2019	33492	Automatic	4825	Petrol	145	32.5	2.0
4	4	T-Roc	2019	22900	Semi-Auto	6500	Petrol	150	39.8	1.5
	•••									
99182	10663	А3	2020	16999	Manual	4018	Petrol	145	49.6	1.0
99183	10664	A 3	2020	16999	Manual	1978	Petrol	150	49.6	1.0
99184	10665	A3	2020	17199	Manual	609	Petrol	150	49.6	1.0
99185	10666	Q3	2017	19499	Automatic	8646	Petrol	150	47.9	1.4
99186	10667	Q3	2016	15999	Manual	11855	Petrol	150	47.9	1.4

In [4]: df.dropna(inplace=True)

```
In [5]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 99187 entries, 0 to 99186
         Data columns (total 11 columns):
              Column
                            Non-Null Count Dtype
          - - -
                                            int64
          0
              Unnamed: 0
                            99187 non-null
          1
              model
                            99187 non-null object
          2
              year
                            99187 non-null int64
          3
                            99187 non-null int64
              price
              transmission 99187 non-null object
          4
          5
                            99187 non-null int64
              mileage
          6
              fuelType
                            99187 non-null object
          7
                            99187 non-null int64
              tax
          8
              mpg
                            99187 non-null float64
          9
                            99187 non-null float64
              engineSize
          10 Make
                            99187 non-null object
         dtypes: float64(2), int64(5), object(4)
         memory usage: 9.1+ MB
 In [6]: | feature_matrix = df[['year','price','mileage','tax','mpg','engineSize']]
         target vector = df['transmission']
 In [8]: feature matrix.shape
 Out[8]: (99187, 6)
 In [9]: |target_vector.shape
 Out[9]: (99187,)
In [10]: | from sklearn.preprocessing import StandardScaler
In [11]: | fs = StandardScaler().fit transform(feature matrix)
In [12]: logr = LogisticRegression()
         logr.fit(fs,target_vector)
Out[12]: LogisticRegression()
In [13]: feature_matrix.shape
Out[13]: (99187, 6)
In [14]: | target_vector.shape
Out[14]: (99187,)
```

```
In [15]: from sklearn.preprocessing import StandardScaler
In [16]: fs = StandardScaler().fit_transform(feature_matrix)
In [17]: logr = LogisticRegression()
logr.fit(fs,target_vector)
Out[17]: LogisticRegression()
In [18]: observation=df[['year','price','mileage','tax','mpg','engineSize']]
In [19]: prediction = logr.predict(observation)
prediction
Out[19]: array(['Semi-Auto', 'Semi-Auto', 'Semi-Auto', ..., 'Semi-Auto', 'Semi-Auto', 'Semi-Auto'], dtype=object)
In [20]: logr.classes_
Out[20]: array(['Automatic', 'Manual', 'Other', 'Semi-Auto'], dtype=object)
In [21]: logr.predict_proba(observation)[0][1]
Out[21]: 0.0
```