

Ensemble Learning

COMP3314
Machine Learning

Outline

- A set of classifiers can often have a better predictive performance than any of its individual members
- We will learn how to do the following
 - Make predictions based on majority voting
 - Use bagging to reduce overfitting by drawing random combinations of the training set with repetition
 - Apply boosting to build powerful models from weak learners that learn from their mistakes

Learning with Ensembles

- Goal
 - Combine different classifiers into a meta-classifier that has better generalization performance than each individual classifier alone
- E.g., assuming that we collected predictions from 10 experts
 - Ensemble methods let us strategically combine these predictions by the 10 experts to come up with a more accurate and robust prediction

Majority/Plurality Voting

- In this chapter we will focus on the most popular ensemble methods that use the majority voting principle
 - Majority voting simply means that we select the class label that has been predicted by the majority of classifiers, that is, received more than 50 percent of the votes
- Majority vote refers to binary class settings only
 - However, it is easy to generalize the majority voting principle to multi-class settings, which is called plurality voting
 - Select the class label that received the most votes (mode)

COMP 3314

Majority/Plurality Voting

• To predict a class label via simple majority or plurality voting, we combine the predicted class labels of each individual classifier, C_j and select the class label, \hat{y} that received the most votes

$$\hat{y} = mode\left\{C_1(\mathbf{x}), C_2(\mathbf{x}), \dots, C_m(\mathbf{x})\right\}$$

• E.g., in a binary classification task where class_1 = -1 and class_2 = +1, we can write the majority vote prediction as follows

$$C(\mathbf{x}) = sign \left[\sum_{j=1}^{m} C_{j}(\mathbf{x}) \right] = \begin{cases} 1 & \text{if } \sum_{i=1}^{m} C_{j}(\mathbf{x}) \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Does an ensemble method always work better than an individual classifier?

Task

- Suppose we have 101 completely independent binary classifiers, each with an error rate of $\varepsilon = 30\%$
- Calculate the majority vote error

Ensemble Methods vs. Individual Classifier

- Let's apply the simple concepts of combinatorics and assume
 - \circ All n-base classifiers for a binary classification task have an equal error rate, ϵ
 - Classifiers are independent
 - Error rates are not correlated
- Probability that the prediction of the ensemble is wrong

$$P(y \ge k) = \sum_{k=0}^{n} {n \choose k} \varepsilon^{k} (1 - \varepsilon)^{n-k} = \varepsilon_{ensemble}$$

```
import math
def ensemble error(n classifier, error):
    k start = int(math.ceil(n classifier / 2.))
    probs = [comb(n classifier, k) * error**k * (1-error)**(n_classifier - k)
             for k in range(k start, n classifier + 1)]
    return sum(probs)
```

COMP 3314

0.2

0.4

0.6

Base error

0.8

1.0

0.0

0.0

Weighted Majority Vote Classifier

• Consider the following simple weighted majority vote classifier

$$\hat{y} = \arg\max_{i} \sum_{j=1}^{m} w_{j} \chi_{A} \left(C_{j} \left(\mathbf{x} \right) = i \right)$$

- Here,
 - \circ w_i is a weight associated with a base classifier C_i,
 - \circ \hat{y} is the predicted class label of the ensemble,
 - \circ χ_A (Greek chi) is an indicator function
 - A is the set of unique class labels
- For equal weights, we can simplify this equation and write it as follows

$$\hat{y} = mode\{C_1(x), C_2(x), ..., C_m(x)\}$$

Example

COMP 3314

- Consider an ensemble of three base classifiers, C_i ($j \in \{1, 2, 3\}$)
 - Two classifiers predict the class label 0, and one, C₃, predicts that the sample belongs to class 1

 $C_1(x) \to 0, C_2(x) \to 0, C_3(x) \to 1$

• If we weight the predictions of each base classifier equally, the majority vote would predict that the sample belongs to class 0

$$\hat{y} = mode\{0, 0, 1\} = 0$$

Now, let us assign a weight of 0.6 to C_3 and a weight of 0.2 to C_1 and C_2

$$\hat{y} = \arg \max_{i} \sum_{j=1}^{m} w_{j} \chi_{A} \left(C_{j} \left(\mathbf{x} \right) = i \right)$$

$$= \arg \max_{i} \left[0.2 \times i_{0} + 0.2 \times i_{0} + 0.6 \times i_{1} \right] = 1$$

import numpy as np np.argmax(np.bincount([0, 0, 1], weights=[0.2, 0.2, 0.6])

Probabilities

- Recall that certain classifiers can return the probability of a predicted class label
 - o In scikit-learn: via the <u>predict_proba</u> method
- Using the predicted class probabilities instead of the class labels for majority voting can be useful if the classifiers in our ensemble are well calibrated
- The modified version of the majority vote for predicting class labels from probabilities can be written as follows

$$\hat{y} = \arg\max_{i} \sum_{j=1}^{m} w_{j} p_{ij}$$

• Here, p_{ij} is the predicted probability of the jth classifier for class label i

COMP 3314

- We have a binary classification problem with class labels $i \in \{0, 1\}$ and an ensemble of three classifiers C_i ($j \in \{1, 2, 3\}$)
- The classifiers C_j return the following class membership probabilities for a particular sample x

$$C_1(x) \rightarrow [0.9, 0.1], C_2(x) \rightarrow [0.8, 0.2], C_3(x) \rightarrow [0.4, 0.6]$$

• We can then calculate the individual class probabilities as follows

$$\begin{split} p\left(i_{0}\mid\boldsymbol{x}\right) &= 0.2\times0.9 + 0.2\times0.8 + 0.6\times0.4 = 0.58\\ p\left(i_{1}\mid\boldsymbol{x}\right) &= 0.2\times0.1 + 0.2\times0.2 + 0.6\times0.6 = 0.42\\ \hat{y} &= \arg\max_{i} \left[p\left(i_{0}\mid\boldsymbol{x}\right), p\left(i_{1}\mid\boldsymbol{x}\right)\right] = 0 \end{split} \qquad \begin{aligned} &= \text{np.array}([[0.9, 0.1], \\ [0.8, 0.2], \\ [0.4, 0.6]])\\ &= \text{np.average(ex, axis=0, weights=[0.2, 0.2, 0.6])} \end{aligned}$$

array([0.58, 0.42])

MajorityVoteClassifier

- A majority vote classifier is available in scikit-learn as sklearn.ensemble.VotingClassifier
- Let's prepare a dataset that we can test the MajorityVoteClassifier on

```
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
iris = datasets.load_iris()
X, y = iris.data[50:, [1, 2]], iris.target[50:]
le = LabelEncoder()
y = le.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=1, stratify=y)
```

```
import numpy as np
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.pipeline import Pipeline
from sklearn.model selection import cross val score
clf1 = LogisticRegression(penalty='12', solver='lbfgs', C=0.001, random state=0)
clf2 = DecisionTreeClassifier(max_depth=1, criterion='entropy', random_state=0)
clf3 = KNeighborsClassifier(n neighbors=1, p=2, metric='minkowski')
pipe1 = Pipeline([['sc', StandardScaler()], ['clf', clf1]])
pipe3 = Pipeline([['sc', StandardScaler()], ['clf', clf3]])
clf labels = ['Logistic regression', 'Decision tree', 'KNN']
print('10-fold cross validation:\n')
for clf, label in zip([pipe1, clf2, pipe3], clf_labels):
    scores = cross val score(estimator=clf, X=X train, y=y train, cv=10, scoring='roc auc')
    print("ROC AUC: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
10-fold cross validation:
ROC AUC: 0.92 (+/- 0.15) [Logistic regression]
ROC AUC: 0.87 (+/- 0.18) [Decision tree]
ROC AUC: 0.85 (+/- 0.13) [KNN]
```

17

COMP 3314

```
COMP 3314 18
```

```
mv_clf = MajorityVoteClassifier(classifiers=[pipe1, clf2, pipe3])
clf_labels += ['Majority voting']
all_clf = [pipe1, clf2, pipe3, mv_clf]
for clf, label in zip(all_clf, clf_labels):
    scores = cross_val_score(estimator=clf, X=X_train, y=y_train, cv=10, scoring='roc_auc')
    print("ROC AUC: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

ROC AUC: 0.92 (+/- 0.15) [Logistic regression]
ROC AUC: 0.87 (+/- 0.18) [Decision tree]
```

ROC AUC: 0.85 (+/- 0.13) [KNN]

ROC AUC: 0.98 (+/- 0.05) [Majority voting]

Plotting ROC Curves

• Let's compute the ROC curves from the test set

Outline

- In this chapter, we will construct a set of classifiers that can often have a better predictive performance than any of its individual members
- We will learn how to do the following
 - Make predictions based on majority voting
 - Use bagging to reduce overfitting by drawing random combinations of the training set with repetition
 - Apply boosting to build powerful models from weak learners that learn from their mistakes

COMP 3314

Bagging

- Bagging is an ensemble learning technique that is closely related to the MajorityVoteClassifier implemented previously
- Instead of using the same training set to fit the individual classifiers in the ensemble, we draw bootstrap samples (random samples with replacement) from the initial training set
- Bagging is also known as bootstrap aggregation
- Bagging was first proposed by <u>Leo Breiman</u> in 1994
 - He showed that bagging can improve the accuracy of unstable models and decrease the degree of overfitting
 - Recommend reading:
 Bagging predictors, L. Breiman, Technical Report
 - \circ > 20 000 citations

Bagging in a Nutshell

- Seven different training instances 1 to 7
- Sampled randomly with replacement in each round of bagging
- Each bootstrap sample is then used to fit a classifier C_i
- Note that each subset contains a certain portion of duplicates and some of the original samples don't appear in a
- resampled dataset at all Once the individual classifiers are fit to the bootstrap samples, the predictions are combined using majority voting

Wine Bagging

from sklearn.preprocessing import LabelEncoder

- Wine Dataset
 - Let's only consider the wine classes 2 and 3 and only two features

• Encode class labels into binary format and split the dataset into 80:20; training:testing

```
from sklearn.model_selection import train_test_split
le = LabelEncoder()
y = le.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1, stratify=y)
```

BaggingClassifier

- A bagging classifier algorithm is already implemented in scikit-learn
 - Imported from ensemble submodule
- We will use an unpruned decision tree as the base classifier and create an ensemble of 500 decision trees fit on different bootstrap samples of the training dataset

Bagging in Action

• Calculate the accuracy score of the prediction on the training and test dataset to compare the performance of the bagging classifier to the performance of a single unpruned decision tree

```
from sklearn.metrics import accuracy score
tree = tree.fit(X_train, y_train)
y train pred = tree.predict(X train)
y test pred = tree.predict(X test)
tree train = accuracy score(y train, y train pred)
tree test = accuracy score(y test, y test pred)
print('Decision tree train/test accuracies %.3f/%.3f' % (tree_train, tree_test))
bag = bag.fit(X train, y train)
y train pred = bag.predict(X train)
y_test_pred = bag.predict(X_test)
bag train = accuracy score(y train, y train pred)
bag test = accuracy score(y test, y test pred)
print('Bagging train/test accuracies %.3f/%.3f' % (bag train, bag test))
```

Decision tree train/test accuracies 1.000/0.833 Bagging train/test accuracies 1.000/0.917

Decision Regions

Bagging - Conclusion

- In practice, more complex classification tasks and a dataset's high dimensionality can often lead to overfitting in single decision tree
- This is where the bagging algorithm can really play to its strengths
 - It can be an effective approach to reduce the variance of a model
- However, bagging is ineffective in reducing model bias, that is, models that are too simple to capture the trend in the data well
- This is why we want to perform bagging on an ensemble of classifiers with low bias
 - E.g., unpruned decision trees

Outline

- In this chapter, we will construct a set of classifiers that can often have a better predictive performance than any of its individual members
- We will learn how to do the following
 - Make predictions based on majority voting
 - Use bagging to reduce overfitting by drawing random combinations of the training set with repetition
 - Apply boosting to build powerful models from weak learners that learn from their mistakes

AdaBoost (Adaptive Boosting)

- The original idea behind AdaBoost was formulated by Robert E. Schapire in 1990
 - The Strength of Weak Learnability, R. E. Schapire, Machine Learning, 5(2):
 197-227, 1990
 - <u>Experiments with a New Boosting Algorithm</u>, Yoav Freund and Robert E.
 Schapire
- In 2003, Freund and Schapire received the <u>Goedel Prize</u> for their groundbreaking work
 - A prestigious prize for outstanding publications in the field of computer science

Idea

- In boosting, the ensemble consists of simple base classifiers
 - Often referred to as weak learners
- The weak learners may only have a slight performance advantage over random guessing
- The key concept behind boosting is to focus on training samples that are hard to classify
- The weak learners subsequently learn from misclassified training samples to improve the performance of the ensemble

Original Boosting Procedure

- Draw a random subset of training samples d₁ without replacement from training set D to train a weak learner C₁
- Draw a second random training subset d₂ without replacement from the training set and add 50 percent of the samples that were previously misclassified to train a weak learner C₂
- Find the training samples d_3 in training set D, which C_1 and C_2 disagree upon, to train a third weak learner C_3
- Combine the weak learners C_1 , C_2 , and C_3 via majority voting

34

COMP 3314

AdaBoost Pseudocode

- 1. Set the weight vector **w** to uniform weights, where Σ_i w_i = 1
- 2. For j in m boosting rounds, do the following:
 - a. Train a weighted weak learner: $C_i = train(X, y, w)$
 - b. Predict class labels: $\hat{y} = predict(C_i, X)$
 - c. Compute weighted error rate: $\varepsilon = \mathbf{w} \cdot (\hat{\mathbf{y}} \neq \mathbf{y})$
 - d. Compute coefficient: $\alpha_i = 0.5 \log ((1 \epsilon) / \epsilon)$
 - e. Update weights: $\mathbf{w} = \mathbf{w} \times \exp(-\alpha_i \times \hat{\mathbf{y}} \times \mathbf{y})$
 - f. Normalize weights: $\mathbf{w} = \mathbf{w} / (\Sigma_i \mathbf{w}_i)$
- 3. Compute the final prediction: $\hat{\mathbf{y}} = (\Sigma i (\alpha_i \times \text{predict}(C_i, \mathbf{X})) > 0)$

Note: We denote element-wise multiplication by the cross symbol (×) and the dot-product between two vectors by a dot symbol (·)

Example

Sample indices	x	у	Weights	$\hat{y}(x \le 3.0)$?	Correct?	Updated weights
1	1.0	1	0.1	1	Yes	0.072
2	2.0	1	0.1	I	Yes	0.072
3	3.0	1	0.1	1	Yes	0.072
4	4.0	-1	0.1	-1	Yes	0.072
5	5.0	-1	0.1	-1	Yes	0.072
6	6.0	- <u>I</u>	0.1	-1	Yes	0.072
7	7.0	1	0.1	-1	No	0.167
8	8.0	1	0.1	-1	No	0.167
9	9.0	1	0.1	-1	No	0.167
10	10.0	-1	0.1	-1	Yes	0.072

Example: Weight Update

 We start by computing the weighted error rate

$$\varepsilon = 0.1 \times 0 + 0.1 \times 1 + 0.1 \times 1$$

+0.1×1+0.1×0 =
$$\frac{3}{10}$$
 = 0.3
• Next, we compute the coefficient α_i

- After we have computed the coefficient α_j , we can now update the weight vector using the equation $\mathbf{w} = \mathbf{w} \times \exp(-\alpha_i \times \hat{\mathbf{y}} \times \mathbf{y})$
- Here $\hat{\mathbf{y}} \times \mathbf{y}$ is an element-wise multiplication between the vectors of the predicted and true class labels, respectively

 $\alpha_j = 0.5 \log \left(\frac{1 - \varepsilon}{\varepsilon} \right) \approx 0.424$

• Thus, if a prediction \hat{y}_i is correct, $\hat{y}_i \times y_i$ will have a positive sign so that we decrease the ith weight, since α_j is a positive number as well

Sample indices	x	у	Weights	$\hat{y}(x \le 3.0)$?	Correct?	Updated weights
1	1.0	1	0.1	1	Yes	0.072
2	2.0	I	0.1	1	Yes	0.072
3	3.0	I	0.1	1	Yes	0.072
4	4.0	-1	0.1	-1	Yes	0.072
5	5.0	-1	0.1	-1	Yes	0.072
6	6.0	-1	0.1	-1	Yes	0.072
7	7.0	II.	0.1	-1	No	0.167
8	8.0	I	0.1	-I	No	0.167
9	9.0	I	0.1	-1	No	0.167
10	10.0	-1	0.1	-1	Yes	0.072

$$0.1 \times \exp\left(-0.424 \times 1 \times 1\right) \approx 0.065$$

Similarly, we will increase the *i*th weight if \hat{y}_i predicted the label incorrectly, like this:

COMP 3314

$$0.1 \times \exp(-0.424 \times 1 \times (-1)) \approx 0.153$$

$$0.1 \times \exp(-0.424 \times (-1) \times (1)) \approx 0.153$$

After we have updated each weight in the weight vector, we normalize the weights so that they sum up to one (step 2f):

$$w := \frac{w}{\sum_{i} w_{i}}$$

Here,
$$\sum_{i} w_i = 7 \times 0.065 + 3 \times 0.153 = 0.914$$
.

Thus, each weight that corresponds to a correctly classified sample will be reduced from the initial value of 0.1 to $0.065/0.914 \approx 0.071$ for the next round of boosting. Similarly, the weights of the incorrectly classified samples will increase from 0.1 to $0.153/0.914 \approx 0.167$.

Sample indices	x	у	Weights	ŷ(x <= 3.0)?	Correct?	Updated weights
1	1.0	T	0.1	1	Yes	0.072
2	2.0	T	0.1	I	Yes	0.072
3	3.0	I	0.1	1	Yes	0.072
4	4.0	-1	0.1	-1	Yes	0.072
5	5.0	-1	0.1	-1	Yes	0.072
6	6.0	-1	0.1	-1	Yes	0.072
7	7.0	T	0.1	-I	No	0.167
8	8.0	I	0.1	-I	No	0.167
9	9.0	I	0.1	-I	No	0.167
10	10.0	-1	0.1	-1	Yes	0.072

AdaBoost in scikit-learn

from sklearn.ensemble import AdaBoostClassifier

tree test = accuracy score(y test, y test pred)

ada_train = accuracy_score(y_train, y_train_pred)
ada test = accuracy score(y test, y test pred)

ada = ada.fit(X train, y train)

y_train_pred = ada.predict(X_train)
y test pred = ada.predict(X test)

```
tree = DecisionTreeClassifier(criterion='entropy', max_depth=1, random_state=1)
ada = AdaBoostClassifier(base_estimator=tree, n_estimators=500, learning_rate=0.1, random_state=1)

tree = tree.fit(X_train, y_train)
y_train_pred = tree.predict(X_train)
y_test_pred = tree.predict(X_test)
tree train = accuracy score(y train, y train pred)
```

print('Decision tree train/test accuracies %.3f/%.3f' % (tree_train, tree_test))

print('AdaBoost train/test accuracies %.3f/%.3f' % (ada_train, ada_test))
Decision tree train/test accuracies 0.916/0.875
AdaBoost train/test accuracies 1.000/0.917

Decision Region Plotting

AdaBoost: Conclusion

- It is worth noting that ensemble learning increases the computational complexity compared to individual classifiers
- In practice, we need to think carefully about whether we want to pay the price of increased computational costs for an often relatively modest improvement in predictive performance

References

- Most materials in this chapter are based on
 - o <u>Book</u>
 - o <u>Code</u>

