CSE 4125: Distributed Database Systems Chapter – 6

Optimization of Access Strategies. (part – B)

Outline

• Importance of Query Optimization in DDB (with Examples).

Importance of Query Optimization in DDB (with Examples)

Comparison between different strategies

- We will see different versions of a query.
- Measure their cost and delay to see which one is better.

Given Scenario

Input Query:

Given Scenario (contd.)

Profiles of SUPPLY₁ and SUPPLY₂:

card
$$(SUPPLY_1) = 30000$$

card $(SUPPLY_2) = 20000$

$$site(SUPPLY_1) = 1$$

 $site(SUPPLY_2) = 4$

	snum	pnum	deptnum	quan
size	6	7	2	10
val	1800	1000	20	500

Profiles of DEPT₁, DEPT₂ and DEPT₃:

 $site(DEPT_1) = 2$

 $site(DEPT_2) = 3$

 $site(DEPT_3) = 5$

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

Strategy - 1

Strategy – 1

8

- Let us execute the query at site 2.
 - We need to collect all the fragments there (assume in parallel).

- Let us execute the query at site 2.
 - We need to collect all the fragments there (assume in parallel).
- Transmitted amount:

$$X_{SUPPIY1} = ?$$

card (SUPPLY₁) =
$$30000$$

	snum	pnum	deptnum	quan
size	6	7	2	10
val	1800	1000	20	500

- Let us execute the query at site 2.
 - We need to collect all the fragments there (assume in parallel).
- Transmitted amount:

```
X_{SUPPLY1} = card(SUPPLY_1)*size(SUPPLY_1)*8 bits
= 30000*(6+7+2+10)*8 bits
= 30000*25*8 bits
= 6000000 bits
```

Transmitted amount for other fragments:

$$X_{SUPPLY2} = ?$$

$$X_{DEPT1} = ?$$

$$X_{DFPT2} = ?$$

$$X_{DFPT3} = ?$$

card (SUPPLY₂) =
$$20000$$

	snum	pnum deptnum		quan
size	6	7	2	10
val	1800	1000	20	500

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

Transmitted amount for other fragments:

$$X_{SUPPLY2} = 20000*25*8 \text{ bits} = 4000000 \text{ bits}$$

$$X_{DFPT1} = 0$$
 bits

$$X_{DEPT2} = 10*25*8 \text{ bits} = 2000 \text{ bits}$$

$$X_{DFPT3} = 10*25*8 \text{ bits} = 2000 \text{ bits}$$

Assume $C_0 = 0$ and $D_0 = 0$

- TC(x) = ?
- TD(x) = ?

Assume $C_0 = 0$ and $D_0 = 0$

- $TC(x) = C_0 + (sum of all the amount) * C_1$ = $(X_{SUPPLY1} + ... + X_{DEPT3}) * C_1 = 10004000 * C_1$
- TD(x) = ?

Assume $C_0 = 0$ and $D_0 = 0$

- $TC(x) = C_0 + (sum of all the amount) * C_1$ = $(X_{SUPPLY1} + ... + X_{DEPT3}) * C_1 = 10004000 * C_1$
- $TD(x) = D_0 + (largest amount) * D_1$ = $6000000*D_1$

Assume $C_0 = 0$ and $D_0 = 0$

- $TC(x) = C_0 + (sum of all the amount) * C_1$ = 10004000*C₁
- $TD(x) = D_0 + (largest amount) * D_1$ = $6000000*D_1$

If $D_1 = 10000$ bit/second,

Transmission Delay = ? minutes

Assume $C_0 = 0$ and $D_0 = 0$

- $TC(x) = C_0 + (sum of all the amount) * C_1$ = 10004000*C₁
- $TD(x) = D_0 + (largest amount) * D_1$ = $6000000*D_1$

If $D_1 = 10000$ bit/second,

Strategy - 2

Strategy – 2

- Performing local processing on fragments.
 - Fragment reducers.
- Then sending reduced fragments to the executing site (i.e. site 2) in parallel.

Transmitted amount:

Transmitted amount:

```
X_{SUPPLY1} = card(SUPPLY_1)^* \{size(snum) + size(deptnum)\}^* 8 bits
= 30000*(6+2)*8 bits
= 1920000 bits
```

Transmitted amount for other fragments:

Transmitted amount for other fragments:

$$X_{SUPPLY2} = 20000*8*8 \text{ bits} = 1280000 \text{ bits}$$

$$X_{DFPT1} = 0$$
 bits

$$X_{DEPT2} \approx 0 \text{ bits}$$
 Try to investigate why

$$X_{DEPT3} = X_{DEPT2} \approx 0 \text{ bits}$$

	deptnum	name	area	mgrnum
size	2	15	1	7
val	10	10	2	10

Assume $C_0 = 0$ and $D_0 = 0$

- $TC(x) = C_0 + (sum of all the amount) * C_1$ = 320000*C₁
- $TD(x) = D_0 + (largest amount) *D_1$ = 1920000*D₁

If $D_1 = 10000$ bit/second,

Transmission Delay = $1920000*\frac{1}{10000}$ s = $192 s \approx 3$ mins

Strategy - 3

Strategy – 3

Simplification using inference

- Performing local processing on fragments.
 - Fragment reducers.
- Then sending reduced fragments to the executing site (i.e. site 2) in parallel.

Transmitted amount:

Transmitted amount:

```
X_{SUPPLY1} = [same \ as \ strategy - 2] = 1920000 \ bits
X_{DFPT1} = 0 \ bits
```

Assume $C_0 = 0$ and $D_0 = 0$

- $TC(x) = 1920000*C_1$
- $TD(x) = 1920000*D_1$

If $D_1 = 10000$ bit/second, Transmission Delay ≈ 3 mins

Strategy - 4

Strategy – 4

Jubair | AUST

Jubair | AUST

Jubair | AUST

• Transmitted amounts:

$$X_{DEPT1} = ?$$

$$X_{RESUIT} = ?$$

• Transmitted amounts:

$$X_{DEPT1} \approx 0$$
 bits

 X_{RESULT} = val (snum)*2*8 bits = 1800*2*8 bits = 28800 bits

Transmitted amounts:

$$X_{DEPT1} \approx 0$$
 bits

```
X<sub>RESULT</sub> = val (snum) 2*8 bits = 1800*2*8 bits = 28800 bits

WHY ?? See Chapter 2

and investigate.
```

Assume $C_0 = 0$ and $D_0 = 0$

- $TC(x) = 28800 * C_1$
- $TD(x) = 28800*D_1$

If $D_1 = 10000$ bit/second, Transmission Delay = 2.88 s

Comparisons

Strategy	Description	Time
1 (very bad)	No simplification, no optimization.All fragments are brought to one site to execute the query.	10 m
2 (bad)	 Simplification applied (Criterion -1 and 2). No optimization. Processing on fragments are done on the site locally. Then, all fragments are brought to one site to execute the query. 	3 m
3 (bad)	 Simplification applied (Criterion -1 and 2), . Optimization applied (Fragments are reduced). Processing on fragments are done on the site locally. Then, all fragments are brought to one site to execute the query. 	3 m
4 (good)	 Simplification applied (Criterion -1 and 2). Optimization applied (Fragments are reduced). Processing on fragments are done on the site locally. Order of data transmission is changed. 	2.88 s

Additional Reading

- Simplification using inference.
 - Chapter 5 (5.2.5)

Practice Problems/ Questions

- 1. What will happen for *strategy* 1 if the data collection from all the fragments are done sequentially, instead of in parallel?
- 2. What will happen if we skip the *simplification via* inference on the operator tree and apply *strategy* 4?
- 3. What will happen in the comparisons if we execute the query at site 3?