Problema da Parada e Linguagens Turing-irreconhecíveis

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

06 de julho de 2017

Plano de Aula

- Revisão
 - Conjunto Incontáveis
- Problema da Parada
- 3 Linguagem Turing-Irreconhecíveis

Sumário

- Revisão
 - Conjunto Incontáveis
- 2 Problema da Parada
- 3 Linguagem Turing-Irreconhecíveis

Teorema 4.17

 \mathbb{R} é incontável.

Ideia da Prova

- De forma a mostrar que $\mathbb R$ é incontável, mostramos que nenhuma correspondência existe entre $\mathbb N$ e $\mathbb R$.
 - Supomos, a princípio, que a correspondência f existe.
 - Logo após, apresentamos um valor $x \in \mathbb{R}$ que não está emparelhado com valor algum em \mathbb{N} (o que indica um absurdo).

n	f(n)
1	3,14159
2	55,55555
3	0,12345
4	0,50000
:	÷

Figura: Suposta correspondência f entre $\mathbb N$ e $\mathbb R$.

Figura: Construção de x a partir da correspondência f.

Considerações

Apenas deve-se ter o cuidado de escolher dígitos para x diferentes de 0 e 9, devido ao fato de

$$3,999...=4,000...$$

Corolário do Teorema 4.17

Algumas linguagens não são Turing-reconhecíveis.

Ideia da Prova

- Observar que o conjunto de todas as máquinas de Turing é contável:
- ② Observar que o conjunto de todas as linguagens é incontável.
- Ocomo há mais linguagens do que máquinas de Turing, então algumas linguagens não podem ser Turing-reconhecíveis.

O conjunto de todas as máquinas de Turing é contável

- Σ* é contável;
- Cada máquina de Turing pode ser codificada em uma cadeia (M);
- O conjunto C de todas as máquinas de Turing pode ser representado por um conjunto de cadeias (M);
- É possível enumerar C;
- Logo *C* é contável.

Figura: Construção de $\mathcal{X}A$ a partir da correspondência Σ^* .

O conjunto de todas as linguagens é incontável

- O conjunto B de todas as sequências binárias infinitas é incontável;
- Qualquer linguagem pode ser descrita como uma sequência característica;
- O conjunto L de todas as linguagens podem ser representado por um conjunto de sequências

O conjunto de todas as linguagens é incontável

- O conjunto B de todas as sequências binárias infinitas é incontável;
- Qualquer linguagem pode ser descrita como uma sequência característica;
- O conjunto L de todas as linguagens podem ser representado por um conjunto de sequências característica;
- A função f: L → B
 (em que f(A) é igual à sequência característica de A)
 é uma correspondência;
- Logo, como B é incontável, L é incontável.

Sumário

- Revisão
 - Conjunto Incontáveis
- Problema da Parada
- 3 Linguagem Turing-Irreconhecíveis

A_{MT} é indecidível (Ideia da prova)

ullet Vamos supor que H decida A_{MT}

A_{MT} é indecidível (Ideia da prova)

- Vamos supor que H decida A_{MT}
- Vamos construir a MT D conforme a descrição abaixo:

A_{MT} é indecidível (Ideia da prova)

- ullet Vamos supor que H decida A_{MT}
- Vamos construir a MT D conforme a descrição abaixo: D = "Sobre a entrada $\langle M \rangle$, em que M é uma MT:
 - **1** Rode *H* sobre a entrada $\langle M, \langle M \rangle \rangle$.
 - ② Dê como saída o oposto do que H dá como saída; ou seja, se H aceita, rejeite e se H rejeita, aceite."

Problema da Parada e Linguagens Turing-irreconhecíveis

A_{MT} é indecidível (Ideia da prova)

- ullet Vamos supor que H decida A_{MT}
- Vamos construir a MT D conforme a descrição abaixo: D = "Sobre a entrada $\langle M \rangle$, em que M é uma MT:
 - **1** Rode *H* sobre a entrada $\langle M, \langle M \rangle \rangle$.
 - 2 Dê como saída o oposto do que H dá como saída; ou seja, se H aceita, rejeite e se H rejeita, aceite."
- ullet Entretanto, $D(\langle D \rangle)$ leva a uma contradição.

A_{MT} é indecidível (Ideia da prova)

- ullet Vamos supor que H decida A_{MT}
- Vamos construir a MT D conforme a descrição abaixo: D = "Sobre a entrada $\langle M \rangle$, em que M é uma MT:
 - **1** Rode H sobre a entrada $\langle M, \langle M \rangle \rangle$.
 - ② Dê como saída o oposto do que H dá como saída; ou seja, se H aceita, rejeite e se H rejeita, aceite."
- ullet Entretanto, $D(\langle D \rangle)$ leva a uma contradição.
- Logo, A_{MT} é indecidível.

 A_{MT} é indecidível (Ideia da prova)

Resumindo...

A_{MT} é indecidível (Ideia da prova)

Resumindo...

• H aceita $\langle M, \omega \rangle$ exatamente quando M aceita ω .

A_{MT} é indecidível (Ideia da prova)

Resumindo...

- H aceita $\langle M, \omega \rangle$ exatamente quando M aceita ω .
- D rejeita $\langle M \rangle$ exatamente quando M aceita $\langle M \rangle$.

A_{MT} é indecidível (Ideia da prova)

Resumindo...

- H aceita $\langle M, \omega \rangle$ exatamente quando M aceita ω .
- D rejeita $\langle M \rangle$ exatamente quando M aceita $\langle M \rangle$.
- D rejeita $\langle D \rangle$ exatamente quando D aceita $\langle D \rangle$ (Absurdo!!!).


```
\langle M_1 \rangle
                       \langle M_2 \rangle
                                    \langle M_3 \rangle
                                                 \langle M_4 \rangle
                     rejeite
         aceite
                                   aceite
                                                rejeite
M_1
         aceite
                    aceite
                                   aceite
                                               aceite
M_3
       rejeite
                    rejeite
                                   rejeite
                                                rejeite
                    aceite
                                   rejeite
                                                rejeite
```

A entrada i,j é o valor de H sobre a entrada $\langle M_i,\langle M_j \rangle \rangle$.


```
\langle M_2 \rangle
                                   \langle M_3 \rangle
                                                 \langle M_4 \rangle
         \langle M_1 \rangle
                                                                       \langle D \rangle
                     rejeite
M_1
        aceite
                                   aceite
                                               rejeite
                                                                     aceite
M_2
        aceite
                     aceite
                                   aceite
                                                aceite
                                                                     aceite
M_3
        rejeite
                     rejeite
                                  rejeite
                                               rejeite
                                                                     rejeite
M_4
                      aceite
                                  rejeite
                                               rejeite
        aceite
                                                                     aceite
D
        rejeite
                                   aceite
                     rejeite
                                                aceite
```


Figura: Se D estiver na figura, uma contradição ocorre em "?".

Sumário

- Revisão
 - Conjunto Incontáveis
- Problema da Parada
- 3 Linguagem Turing-Irreconhecíveis

Linguagens Turing-irreconhecíveis

Teorema 4.22

Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

Linguagens Turing-irreconhecíveis

Teorema 4.22

Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

Corolário 4.23

 $\overline{A_{MT}}$ não é Turing-reconhecível.

Problema da Parada e Linguagens Turing-irreconhecíveis

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

06 de julho de 2017

