Closed-Form Factorization of Latent Semantics in GANs

Seungmin Lee (profile2697@gmail.com; 2020-20866),

Dept. of Electrical and Computer Engineering, Seoul National University

1. Introduction

The latent space of Generative Adversarial Network (GAN) has a rich set of interpretable directions that we can use to edit synthesized images. However, previous methods to find the interpretable directions require human annotations on a collection of synthesized images. In this paper, the authors propose a closed-form algorithm that identifies the semantic directions without using human annotations. More specifically, the proposed method discovers semantics by only using the weights of a pre-trained generator.

2. Preliminaries: Manipulating Generator in GAN Latent Space

A generator $G(\cdot)$ takes a d-dimensional latent vector \mathbf{z} from the latent space $\mathcal{Z} \in \mathbf{R}^d$ and produces an image $\mathbf{I} = G(\mathbf{z})$. The authors focus on the first layer of the generator $(G_1 \colon \mathbf{R}^d \to \mathbf{R}^m)$ since it directly acts on the latent space. Like most many GANs have done, the authors assume G_1 is an affine transformation:

$$\mathbf{y} := G_1(\mathbf{z}) = \mathbf{W}\mathbf{z} + \mathbf{b},$$

where $\mathbf{W} \in \mathbf{R}^{m \times d}$ and $\mathbf{b} \in \mathbf{R}^m$ denote the weights and bias, respectively.

We can manipulate the image generation by adding a particular direction $\mathbf{n} \in \mathbf{R}^d$ that represents a semantic concept to a given input vector:

$$\operatorname{edit}(G(\mathbf{z})) = G(\mathbf{z} + \alpha \mathbf{n})$$

where α controls the manipulation intensity.

3. Method

At the first layer, we can simplify the manipulation as follows:

$$\mathbf{y}' = G_1(\mathbf{z} + \alpha \mathbf{n}) = \mathbf{W}(\mathbf{z} + \alpha \mathbf{n}) + \mathbf{b}$$
$$= (\mathbf{W}\mathbf{z} + \mathbf{b}) + \alpha \mathbf{W}\mathbf{n}$$
$$= \mathbf{y} + \alpha \mathbf{W}\mathbf{n}. \tag{1}$$

By observing Eq. (1), the authors claim that **W** already contains essential information about the image edition, and thus, we can discover useful latent directions by decomposing **W**.

Assume that we want to find k most significant directions $\mathbf{N}^* \in \mathbf{R}^{d \times k}$. Then, \mathbf{N}^* should satisfy the following

equation:

$$\mathbf{N}^* = \underset{\{\mathbf{N} \in \mathbf{R}^{d \times k} : \mathbf{n}_i^T \mathbf{n}_i = 1 \ \forall i = 1, \dots, k\}}{\arg \max} \sum_{i=1}^k ||\mathbf{W} \mathbf{n}_i||_2^2, \quad (2)$$

where $\mathbf{n}_i \in \mathbf{R}^d$ denotes the *i*-th column of \mathbf{N} , and $||\cdot||_2$ corresponds to l_2 norm.

The authors use the Lagrange multipliers $\{\lambda_i\}_{i=1}^k$ to solve Eq. (2). With the multipliers, Eq. (2) can be written as:

$$\mathbf{N}^* = \underset{\mathbf{N} \in \mathbf{R}^{d \times k}}{\operatorname{arg max}} \sum_{i=1}^k ||\mathbf{W} \mathbf{n}_i||_2^2 - \sum_{i=1}^k \lambda_i (\mathbf{n}_i^T \mathbf{n}_i - 1)$$
$$= \underset{\mathbf{N} \in \mathbf{R}^{d \times k}}{\operatorname{arg max}} \sum_{i=1}^k (\mathbf{n}_i^T \mathbf{W}^T \mathbf{W} \mathbf{n}_i - \lambda_i \mathbf{n}_i^T \mathbf{n}_i + \lambda_i). \quad (3)$$

By taking partial derivative of Eq. (3), we get n_i :

$$2\mathbf{W}^T \mathbf{W} \mathbf{n}_i - 2\lambda_i \mathbf{n}_i = 0. \tag{4}$$

4. Results

The authors conduct experiments using various GANs. The proposed method consistently finds useful directions, as we can observe from Fig. (1).

Figure 1. Some qualitative results.

5. Personal Note

The authors' claims are intuitive and useful. Moreover, the proposed method seems practical since it does not require any data samples and human annotations.