Lecture - 14 Monday, September 28, 2020 2:19 PM
Last Class: a DTFT enamples
DIFT a LTI systems
- convolution property of titles
- Some ideal filter response
* Properties of DTF7
Today's Class: Z-Transfam
Continuas-Time Disoret-Time
Continuas-Time CTFT: $X(\omega) = \int_{-\infty}^{\infty} \chi(t) e^{-j\omega t} dt$ Disoret - Time $\chi(e^{j\omega}) = \int_{-\infty}^{\infty} \chi(e^{j\omega}) dt$
Laplace Transform: Z-Transform:
$\chi(s) = \int \chi(t) e^{-st} dt$ $\chi(z) = \sum \chi(n) z^{n}$
-00 Z=7e3
$S = \sigma + j\omega$ $(complex)$ $\times (e^{j\omega})$ $\times (z)$
$\times (\omega)$ $\times (\stackrel{5}{\circ})$, real complex
real complen.
DTFT: useful for signal analysis of filters. Z-Trainsform: useful for system analysis (Stability, Causity, etc.)
2 transia m. oseivi tor system unary no (analy no) carely, coe.
DIFT $\chi(e^{ju})$ is $\chi(z)$ evaluated $z=e^{ju}$ $(z-plane)$
$\chi(z) = \chi(e^{j\omega})$ $z = e^{j\omega}$
$ x(z) = x(e^{j\omega}) $ $ z = e^{j\omega} = x(e^{j\omega}) $ $ -1z = 1 $
$z = e^{j\omega}$
g(w) = x (eju) - complex valued function of a real variable (w)
$\chi(z)$ - complex valued function of a complex variable (z) $z=rej^{\omega}$
* LTI systems d 2-Transform:

© {1, 2, 5, 7, 0, 13 <	$z^{2} + 2z + 5 + 7z^{1} + z^{3}$	all plane except od ∞
3 {0,0,1,2,5,7,0,13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	all plane except o
(a) {1,2,5 ² }	$ z^2 + 2z + 5 $	all plane encept co
E) S[n]	1 1	1 all plane
	-n _o	1 all plane execpt o
	l Z	I all plane except oo
* For finite duration s		2-plane except possible o a «.
(a) $x(n) = 3^n u(n)$	find $\chi(z)$.	(DTF7 cloes not exist)
$\chi(z) = \sum_{-\infty}^{\infty} \chi[n] \bar{z}^n$	$= \sum_{n=0}^{\infty} 3^{n} = \sum_{n=0}^{\infty} (3z^{n})^{n}$	121=3
$\times (2) = \frac{1}{1-3z^{-1}}$ expression	$L 3\bar{z}^{1} < 1$ i.e. 1	(DTF7 cloes not exist) Z1 > 3.
* ROC always has		
$z = \gamma e^{j\omega}$	$\chi(z) = \sum_{-\infty}^{\infty} \chi(n) \left(re^{jc} \right)$	J)_n
Uithin Ro	C , $ \chi(z) < \infty$ i.e.	
$ \chi(z) = \frac{\infty}{\infty}$		
_ 00	x[n] z e jun	
2 Z -00	$ \chi(n) \tilde{\gamma}^n$	
	∞	

$$|X(z)| \leq \sum_{i=1}^{n} |x_{i}| \sqrt{n} |x_{i}| + |x_{i}| |x_{i}| + \sum_{i=1}^{n} |x_{i}| \sqrt{n} |x_{i}|$$

$$|X(z)| \leq \sum_{i=1}^{n} |x_{i}| \sqrt{n} |x_{i}| + |x_{i}| |x_{i}| + \sum_{i=1}^{n} |x_{i}| \sqrt{n} |x_{i}|$$

$$|X(z)| \leq \sum_{i=1}^{n} |x_{i}| \sqrt{n} |x_{i}| + |x_{i}| |x_{i}| + \sum_{i=1}^{n} |x_{i}| \sqrt{n} |x_{i}|$$

$$|X(z)| \leq \sum_{i=1}^{n} |x_{i}| \sqrt{n} |x_{i}| + |x_{i}| |x_{i}| + \sum_{i=1}^{n} |x_{i}| \sqrt{n} |x_{i}|$$

$$|X(z)| \leq \sum_{i=1}^{n} |x_{i}| \sqrt{n} |x_{i}| + |x_{i}| +$$

