

Partial Differentiation

Dr. Anitha

Science and Humanities

UNIT 2: Partial Differentiation

Session: 2

Sub Topic: Higher Order Partial Derivatives, Geometrical Interpretation

Dr. Anitha

Department of Science and Humanities

Higher Order Partial Derivatives

• Third, fourth and nth order derivatives involve 3, 4 or n times differentiation respectively.

Note:

A function of 2 variables has two first order derivatives, four second order derivatives and 2^n of nth order derivatives.

A function of m independent variables will have m^n derivatives of order n.

Geometrical Interpretation of Partial differentiation

We know that the derivative of a single valued function gives the slope of the tangent line to the curve at the given point.

IMAGE SOURCE: https://www.youtube.com/watch?v=Q8mbXy0oJj8

Geometrical Interpretation of Partial differentiation

If the points (x,y) lie on a circle in the xy plane, then z = f(x,y) is a curve which looks like the graph shown.

If the points (x,y) lie on a parabola in the xy plane, then z = f(x,y) is a curve which looks like the graph shown.

IMAGE SOURCE:

https://www.youtube.com/watch?v=Q8mbXy0oJj8

Geometrical Interpretation of Partial differentiation

Partial derivative of the function f(x,y) at the point (x_0, y_0) can be visualized as the slope of the tangent line along the direction of the independent variable with respect to which we would differentiate the function.

Geometrical Interpretation of Partial differentiation

Slope of tangent along any arbitrary direction (Gradient of a function)

Geometrical Interpretation of Partial differentiation

- Mixed partials tell us how a partial in one variable is changing in the direction of the other.
- f_{xy} tells us how the rate of change of f(x,y) in the x direction is changing as we move in the y direction.

Geometrical Interpretation of Partial differentiation

Second-Order Partial Derivatives

Dr. Anitha

Department of Science and Humanities

nanitha@pes.edu

Extn 730