Lista 1 - MAC0338 Análise de Algoritmos

Daniel Angelo Esteves Lawand 10297693

28 de agosto de 2021

Exercício 2

c)

Para provar que $\lg n = O(\log_{10} n)$, precisamos provar que existem c e n_0 tais que $\lg n \le c \log_{10} n$, $\forall n > n_0$

Uma solução é c=4 e $n_0=1$

$$\frac{1}{\log_{16} 10} \ge 1 \iff \frac{\log_{16} n}{\log_{16} 10} \ge \log_{16} n \iff$$

$$\iff \log_{10} n \ge \log_{16} n \iff \log_{10} n \ge \frac{\lg n}{\lg 16} \iff$$

$$\iff \log_{10} n \lg 16 \ge \lg n \iff \lg n \le 4 \log_{10} n$$

e)

Para realizar a prova de que $\frac{n}{1000}$ não é O(1), suponha que exista c constante e $n_0 > 0$ tais que $\frac{n}{1000} \le c \cdot 1$, $\forall n > n_0$, portanto

$$n \le 1000 \cdot c \ \forall n > n_0$$

Isso é um absurdo, pois sabemos que n é uma variável, crescente (sem ser limitada superiormente) para $n > n_0$, porém a desigualdade $n \le 1000 \cdot c$, afirma que n tem um limitante superior constante $(1000 \cdot c)$, assim podemos perceber que essas duas afirmações se contradizem, nos garantindo que $\frac{n}{1000}$ não é O(1).

Exercício 5

a)

Por indução iremos comprovar que a quantidade de comparações que se tem quando o elemento procurado está na n-ésima posição (denotado por F(n)) é n.

Seja
$$F(0) = 0$$
 e $F(i) = F(i-1) + 1$, $\forall i > 0$.

Seja a hipótese de indução
$$F(k)=k$$
, portanto, para $F(k+1)=F(k)+1$, como $F(k)=k$, logo, $F(k+1)=k+1$

Assim, se o elemento procurado está na primeira posição, temos a sua probabilidade como $\frac{1}{n}$ e o compararemos com um elemento.

Se o estiver na segunda posição, temos sua probabilidade como $\frac{1}{n}$ e o compararemos com 2 elementos. Se o estiver na n-ésima posição, temos sua probabilidade como $\frac{1}{n}$ e o compararemos com n elementos. Assim, com n valores, podemos perceber que a média de elementos analisados é uma soma de quantos elementos foram comparados com o elemento procurado na primeira posição até o na n-ésima posição, vezes as suas probabilidades, logo:

$$Media = \frac{1}{n} + \frac{2}{n} + \frac{3}{n} + \dots + \frac{n}{n} \iff$$

$$\iff Media = \frac{1}{n}(1 + 2 + \dots + n) \iff$$

$$\iff Media = \frac{1}{n}(n+1)\frac{n}{2} \iff$$

$$\iff Media = \frac{n+1}{2}$$

b)

O pior caso é o caso em que o elemento procurado está no último elemento do vetor, pois é o caso em que há o maior número de comparações até encontrar o elemento procurado. Assim, o pior caso leva n comparações, ou seja, é O(n).

 $\mathbf{c})$

Para este item queremos descobrir uma função f(n) em que o pior caso seja $\Theta(f(n))$ e em que o caso médio seja $\Theta(f(n))$.

Como vimos, o pior caso é linear, ou seja, assume a função n. Assim, para descobrir para qual f(n) o pior caso é $\Theta(f(n))$, ou seja, $c_1f(n) \le n \le c_2f(n)$, $\forall n > n_0$, $c_1 > 0$ e $c_2 > 0$.

Assim como, o caso médio segue a função $\frac{n+1}{2}$, portanto, para descobrir para qual f(n) o caso médio é $\Theta(f(n))$, ou seja, $c_3f(n) \leq \frac{n+1}{2} \leq c_4f(n)$, $\forall n > n_0$, $c_3 > 0$ e $c_4 > 0$.

Seja,
$$f(n) = n$$
, $n_0 = 1$, $c_1 = c_3 = \frac{1}{2}$, $c_2 = 2$ e $c_4 = 1$.

$$\frac{1}{2}n \le n \iff$$

$$\iff \frac{n}{2} \le n \le 2n, \, \forall n > 1$$

Logo, o pior caso é $\Theta(n)$.

$$\frac{1}{2}n \le \frac{n+1}{2} \iff$$

$$\iff \frac{n}{2} \leq \frac{n+1}{2} \leq n, \, \forall n > 1$$

Logo, o caso médio é $\Theta(n)$.