Aplicando esse teorema uma segunda vez, temos

$$D_{\mathbf{u}}^{2} f = D_{\mathbf{u}}(D_{\mathbf{u}} f) = \frac{\partial}{\partial x} (D_{\mathbf{u}} f) h + \frac{\partial}{\partial y} (D_{\mathbf{u}} f) k$$

$$= (f_{xx} h + f_{yx} k) h + (f_{xy} h + f_{yy} k) k$$

$$= f_{xx} h^{2} + 2f_{xy} h k + f_{yy} k^{2}$$
 (pelo Teorema de Clairaut)

Se completarmos os quadrados na expressão, obteremos

$$D_{\mathbf{u}}^{2} f = f_{xx} \left(h + \frac{f_{xy}}{f_{xx}} k \right)^{2} + \frac{k^{2}}{f_{xx}} \left(f_{xx} f_{yy} - f_{xy}^{2} \right)$$

Foi-nos dado que $f_{xx}(a, b) > 0$ e D(a, b) > 0. Mas f_{xx} e $D = f_{xx} f_{yy} - f_{xy}^2$ são funções contínuas, portanto há uma bola aberta B com centro (a, b) e raio $\delta > 0$ tal que $f_{xx}(x, y) > 0$ e D(x, y) > 0 sempre que (x, y) está em B. Logo, ao olhar na Equação 10, vemos que $D_u^2 f(x, y) > 0$ sempre que (x, y) pertencer a B. Isso significa que se C é a curva obtida pela intersecção do gráfico de f com o plano vertical que passa por P(a, b, f(a, b)) na direção de f0, então f0 e côncava para cima no intervalo do comprimento f1. Isso é verdadeiro na direção de cada vetor f1, portanto se restringirmos f2, f3 para ficar em f3, o gráfico de f3 fica acima de seu plano horizontal tangente em f3. Assim, f3, f4, f5 sempre que f6, f6 e um mínimo local.

14.7 Exercícios

1. Suponha que (1, 1) seja um ponto crítico de uma função *f* com derivadas de segunda ordem contínuas. Em cada caso, o que se pode dizer sobre *f*?

(a)
$$f_{xx}(1, 1) = 4$$
, $f_{xy}(1, 1) = 1$, $f_{yy}(1, 1) = 2$
(b) $f_{xx}(1, 1) = 4$, $f_{xy}(1, 1) = 3$, $f_{yy}(1, 1) = 2$

2. Suponha que (0, 2) seja um ponto crítico de uma função g com derivadas de segunda ordem contínuas. Em cada caso, o que se pode dizer sobre g?

(a) $g_{xx}(0, 2) = -1$, $g_{xy}(0, 2) = 6$, $g_{yy}(0, 2) = 1$ (b) $g_{xx}(0, 2) = -1$, $g_{xy}(0, 2) = 2$, $g_{yy}(0, 2) = -8$ (c) $g_{xx}(0, 2) = 4$, $g_{xy}(0, 2) = 6$, $g_{yy}(0, 2) = 9$

3–4 Utilize as curvas de nível da figura para predizer a localização dos pontos críticos de f e se f tem um ponto de sela ou um máximo ou mínimo local em cada um desses pontos. Explique seu raciocínio. Em seguida, empregue o Teste da Segunda Derivada para confirmar suas predições.

3. $f(x, y) = 4 + x^3 + y^3 - 3xy$

4. $f(x, y) = 3x - x^3 - 2y^2 + y^4$

5–18 Determine os valores máximos e mínimos locais e pontos de sela da função. Se você tiver um programa de computador para desenhar em três dimensões, trace o gráfico da função usando um ponto de vista e domínio convenientes para mostrar os aspectos importantes da função.

5. $f(x, y) = 9 - 2x + 4y - x^2 - 4y^2$

6.
$$f(x, y) = x^3y + 12x^2 - 8y$$

7. f(x, y) = (x - y) (1 - xy)

8.
$$f(x, y) = xe^{-2x^2-2y^2}$$

9. $f(x, y) = y^3 + 3x^2y - 6x^2 - 6y^2 + 2$

10.
$$f(x, y) = xy(1 - x - y)$$

11. $f(x, y) = x^3 - 12xy + 8y^3$

857

13.
$$f(x, y) = e^x \cos y$$

14.
$$f(x, y) = y \cos x$$

15.
$$f(x, y) = (x^2 + y^2)e^{y^2 - x^2}$$

16.
$$f(x, y) = e^{y}(y^2 - x^2)$$

17.
$$f(x, y) = y^2 - 2y \cos x$$
, $-1 \le x \le 7$

18.
$$f(x, y) = \sin x \sin y$$
, $-\pi < x < \pi$, $-\pi < y < \pi$

- **19.** Mostre que $f(x, y) = x^2 + 4y^2 4xy + 2$ em um número infinito de pontos críticos e que D = 0 em cada um. A seguir, mostre que f tem um mínimo local (e absoluto) em cada ponto crítico.
- **20.** Mostre que $f(x, y) = x^2ye^{-x^2-y^2}$ tem valores máximos em $(\pm 1, 1/\sqrt{2})$ e valores máximos em $(\pm 1, -1/\sqrt{2})$. Mostre também que f tem infinitos outros pontos críticos e que D = 0 em cada um deles. Quais deles dão origem a valores máximos? E a valores mínimos? E a pontos de sela?
- **21–24** Utilize um gráfico e/ou curvas de nível para estimar os valores máximos e mínimos locais e pontos de sela da função. Em seguida, use o cálculo para determinar esses valores de modo preciso.

21.
$$f(x, y) = x^2 + y^2 + x^{-2}y^{-2}$$

22.
$$f(x, y) = xye^{-x^2-y^2}$$

23.
$$f(x, y) = \sin x + \sin y + \sin(x + y),$$

 $0 \le x \le 2\pi, 0 \le y \le 2\pi$

24.
$$f(x, y) = \sin x + \sin y + \cos(x + y),$$

 $0 \le x \le \pi/4, 0 \le y \le \pi/4$

25–28 Utilize uma ferramenta gráfica como no Exemplo 4 (ou o Método de Newton ou um determinador de raízes) para encontrar os pontos críticos de *f* com precisão de três casas decimais. Em seguida, classifique o ponto crítico e determine o valor mais alto e o mais baixo do gráfico, se houver.

25.
$$f(x, y) = x^4 + y^4 + 4x^2y + 2y$$

26.
$$f(x, y) = y^6 - 2y^4 + x^2 - y^2 + y$$

27.
$$f(x, y) = x^4 + y^3 - 3x^2 + y^2 + x - 2y + 1$$

28.
$$f(x, y) = 20e^{-x^2 - y^2} \sin 3x \cos 3y$$
, $|x| \le 1$, $|y| \le 1$

- **29–36** Determine os valores máximo e mínimo absolutos de f no conjunto D.
- **29.** $f(x, y) = x^2 + y^2 2x$, D é a região triangular fechada com vértices (2, 0), (0, 2) e (0, -2)
- **30.** f(x, y) = x + y xy, D é a região triangular fechada com vértices (0, 0), (0, 2) e (4, 0)

31.
$$f(x, y) = x^2 + y^2 + x^2y + 4$$
,
 $D = \{(x, y) | |x| \le 1, |y| \le 1\}$

32.
$$f(x, y) = 4x + 6y - x^2 - y^2$$
, $D = \{(x, y) | 0 \le x \le 4, 0 \le y \le 5\}$

33.
$$f(x, y) = x^4 + y^4 - 4xy + 2$$
,
 $D = \{(x, y) | 0 \le x \le 3, 0 \le y \le 2\}$

34.
$$f(x, y) = xy^2$$
, $D = \{(x, y) | x \ge 0, y \ge 0, x^2 + y^2 \le 3\}$

35.
$$f(x, y) = 2x^3 + y^4$$
, $D = \{(x, y) | x^2 + y^2 \le 1\}$

36.
$$f(x, y) = x^3 - 3x - y^3 + 12y$$
, D é o quadrilátero cujos vértices são $(-2, 3)$, $(2, 3)$, $(2, 2)$ e $(-2, -2)$.

Para as funções de uma variável, é impossível uma função contínua ter dois pontos de máximo local e nenhum de mínimo local. Para as funções de duas variáveis, esse caso existe. Mostre que a função

$$f(x, y) = -(x^2 - 1)^2 - (x^2y - x - 1)^2$$

só tem dois pontos críticos, ambos de máximo local. Em seguida, utilize um computador com uma escolha conveniente de domínio e ponto de vista para ver como isso é possível.

38. Se uma função de uma variável é contínua em um intervalo e tem um único ponto crítico, então um máximo local tem de ser um máximo absoluto. Mas isso não é verdadeiro para as funções de duas variáveis. Mostre que a função

$$f(x, y) = 3xe^y - x^3 - e^{3y}$$

tem exatamente um ponto crítico, onde *f* tem um máximo local, porém este não é um máximo absoluto. Em seguida, utilize um computador com uma escolha conveniente de domínio e ponto de vista para ver como isso é possível.

- **39.** Determine a menor distância entre o ponto (2, 0, -3) e o plano x + y + z = 1.
- **40.** Determine o ponto do plano x 2y + 3z = 6 que está mais próximo do ponto (0, 1, 1).
- **41.** Determine os pontos do cone $z^2 = x^2 + y^2$ que estão mais próximos do ponto (4, 2, 0).
- **42.** Determine os pontos da superfície $y^2 = 9 + xz$ que estão mais próximos da origem.
- **43.** Determine três números positivos cuja soma é 100 e cujo produto é máximo.
- **44.** Encontre três números positivos cuja soma é 12 e cuja soma dos quadrados é a menor possível.
- **45.** Encontre o volume máximo de uma caixa retangular que está inscrita em uma esfera de raio *r*.
- **46.** Encontre as dimensões de uma caixa com volume de 1.000 cm³ que tenha a área de sua superfície mínima.
- **47.** Determine o volume da maior caixa retangular no primeiro octante com três faces nos planos coordenados e com um vértice no plano x + 2y + 3z = 6.
- **48.** Determine as dimensões da caixa retangular de maior volume se a área total de sua superfície é dada por 64 cm².
- **49.** Determine as dimensões de uma caixa retangular de volume máximo tal que a soma dos comprimentos de suas 12 arestas seja uma constante *c*.
- **50.** A base de um aquário com volume V é feita de ardósia e os lados são de vidro. Se o preço da ardósia (por unidade de área) equivale a cinco vezes o preço do vidro, determine as dimensões do aquário para minimizar o custo do material.