Neural Ideal Point Estimation Network (NIPEN)

Kyungwoo Song, Wonsung Lee, II-Chul Moon

gtshs2@kaist.ac.kr

• : Republican

: Democrat

Why did legislator "X" vote on bill "Y" as "YEA"? (Interpretable Model)

Motivation

contents and

network

- Political ideal points are expressed by legislative voting
- Political ideal points affects public behavior patterns
- It is necessary to understand the Congressional votes

Research Questions

- RQ 1) Quantifying the ideal points of bills / legislators
- RQ 2) Quantification of trust between legislators
- RQ 3) Modeling the behavior of individual legislators, taking into account ideal points and trust
- RQ 4) Voting predictions for individual legislators

Modeling Assumption

The modeling assumption of NIPEN is based on the theory claimed in the political domain.

- Ideal point is important in the legislative process (Poole and Rosenthal, AJPS 1991)
- Multi-dimensional representation of the ideal point is necessary (Clinton, APSR 2010)
- The legislative process must be influenced by the social network between the legislators (Kirkland, The journal of politics 2011)
- Relation could be asymmetric (Fowler, APSA 2005)
- the voting is relevant to the ideal point as well as the network (Jackson, AJPS 1992)

Dataset

- Roll call data: The recorded votes of deliberative bodies
- Politic2013 and Politic2016 include records 1990~2013 and 1990~2016 respectively
- Politic2013 is a more sparse dataset than Politic2016 in the ratings and the vocabulary sizes.

	Politic2013	Politic2016		
# of legislators (U)	1,540	1,537		
# of bills (D)	7,162	7,975		
# of votings (D)	2,779,703	2,999,844		
# of House	1,299	1,266		
# of Senator	241	271		
# of Republican	767	778		
# of Democrat	767	752		
# of unique word (V)	10,000	13,581		
Average # of unique word for each bill $(\frac{\sum_{d,v}(I_{w_{dv}>0})}{V})$	192.77	378.66		
# of bills less than 10 unique words	65	0		
Period	1990-2013	1989-2016		
Source	THOMAS	GovTrack		
Data type	1 (YEA), -1 (NAY)			

Politic2013: Thomas [Yupeng Gu, 2014] / Politic2016: Govtrack

Methodology

- We adopted VAE / SDAE to model the bills and combined it with various causalities to create a model with high explanatory power
- In order to consider the correlation between the topics in the bills, we adopted a tensor-based operation
- NIPEN-Tensor is a more generalized model than the existing models (including NIPEN-VAE/SDAE).

VAE for bill modeling:

 $L = -D_{KL}(q_{\phi}(z|w)||p_{\theta}(z)) + \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(w|z^{l})$

Voting modeling with contents and network component:

 $p(r_{ud} = 1) = \sigma(\alpha_u(\sum_k y_{dk} a_{dk} x_{uk} + \eta_d) + \beta_u(\sum_{u' \in I_u} \tau_{uu'} r_{u'd})$

Assumption:

 $a_{dk}x_{uk} > 0$ and $y_{dk} \uparrow$

 $\Rightarrow p(r_{ud}=1) \uparrow$

 $\tau_{uu'} \uparrow \text{ and } r'_{ud} = 1$

 $\Rightarrow p(r_{ud} = 1) \uparrow$

 C_{ud} , $N_{ud} > 0$ and α_u , $\beta_U \uparrow$

$p(r_{ud}=1) \uparrow$

NIPEN_Tensor

- If multiple topics are combined, the ideal point for that topic combination may vary.
- Existing models derive an ideal points for cross-topic by simple summation.
- NIPEN-Tensor to incorporate the cross-topic influence in casting a vote, and it is a generalized version of existing model

Results

RQ 1) Quantifying the ideal points of bills / legislators

- The major topic of H.Res.794 (114th) is "Business and Finance" with negative ideal points
- There is greatest disagreement between the Republicans and the Democrats on that topic
- The voting was very partisan (92.2% republican voted YEA and 90.3% Democrat voted NAY)

RQ 2) Quantification of trust between legislators

- In general, the legislators have a strong positive relationship when they have the same district and the party
- The closest relation is 'Thomas E. Petri' and 'Jim Sensenbrenner'. (Republican representatives from Wisconsin)
- J. Duncan Jr and Dana Rohrabacher have the greatest network impact on the Republican party. (Duncan started as a congressman in Tennessee in 1988 and Rohrabacher as a California congressman in 1989.)

RQ 3) Modeling the behavior of individual legislators, taking into account ideal points and trust

140	ai points and trust	Scores by person	
	Contents based	Network based	
1	Ron Paul	Ralph M. Hall	1200 -
1	(0.260, R, TX)	(0.304, R, TX)	1000 -
2	Virgil H. Goode	Nick J. Rahall II	
	(0.220, R, VA)	(0.250, D, WV)	800 -
3	Dennis J. Kucinich	Peter A. DeFazio	
	(0.218, D, OH)	(0.247, D, OR)	600 -
4	Henry Cuellar	Don Young	400 -
	(0.198, D, TX)	(0.228, R, AK)	
5	Walter B. Jones	Jim Sensenbrenner.	200 -
	(0.195, R, NC)	(0.227, R, WI)	

- x < 0.05 0.05 < x < 0.1 0.1 < x < 0.15 0.15 < x < 0.2 x > 0.2 Top-five legislators who are affected by contents or network factors a lot
- Majority of legislators are voting to focus on contents rather than network effect
- A small number of legislators are highly dependent on the network effect.

RQ 4) Voting predictions for individual legislators

	Politic2013				Politic2016			
	RMSE	MAE	Accuracy	NALL	RMSE	MAE	Accuracy	NALL
Trust SVD	0.2253	0.1399	0.9408	0.1866	0.2168	0.1353	0.9463	0.1782
	(± 0.0007)	(± 0.0011)	(± 0.0003)	(± 0.0011)	(± 0.0011)	(± 0.0010)	(± 0.0009)	(± 0.0015)
Autorec	0.2110	0.0975	0.9411	0.1466	0.2031	0.0886	0.9454	0.1349
	(± 0.0099)	(± 0.0136)	(± 0.0056)	(± 0.0177)	(± 0.0015)	(± 0.0110)	(± 0.0007)	(± 0.0125)
CDAE	0.2059	0.0831	0.9428	0.1450	0.1977	0.0802	0.9475	0.1357
	(± 0.0007)	(± 0.0009)	(± 0.0006)	(± 0.0009)	(± 0.0037)	(± 0.0052)	(± 0.0023)	(± 0.0046)
TFIPM	0.1872	0.0682^{\dagger}	0.9526	0.1213	0.1794	0.0625^{\dagger}	0.9566	0.1121
	(± 0.0002)	(± 0.0002)	(± 0.0003)	(± 0.0007)	(± 0.0010)	(± 0.0006)	(± 0.0005)	(± 0.0016)
CDL	0.1834^{\dagger}	0.0786	0.9554^{\dagger}	0.1147^{\dagger}	0.1780^{\dagger}	0.0769	0.9583^{\dagger}	0.1106^{\dagger}
	(± 0.0008)	(± 0.0019)	(± 0.0004)	(± 0.0018)	(± 0.0013)	(± 0.0012)	(± 0.0008)	(± 0.0017)
NIPEN-	0.1801**	0.0591**	0.9566**	0.1155	0.1779	0.0560**	0.9581	0.1173
PGM(SDAE)	(± 0.0014)	(± 0.0012)	(± 0.0006)	(± 0.0018)	(± 0.0005)	(± 0.0004)	(± 0.0003)	(± 0.0015)
NIPEN- PGM(VAE,	0.1804	0.0611*	0.9565	0.1165	0.1791	0.0599	0.9571	0.1152
	(± 0.0089)	(± 0.0065)	(± 0.0047)	(±0.0086)	(± 0.0076)	(± 0.0057)	(± 0.0039)	$(\pm 0.0070$
approx.)		,						`
NIPEN-	0.1753**	0.0588**	0.9587**	0.1075**	0.1753**	0.0570**	0.9590**	0.1112
PGM(VAE)	(± 0.0007)	(± 0.0008)	(± 0.0006)	(± 0.0011)	(± 0.0017)	(± 0.0012)	(± 0.0010)	(± 0.0024)
NIPEN-	0.1818**	0.0663**	0.9556**	0.1155	0.1729**	0.0608**	0.9600**	0.1057**
Tensor	(± 0.0008)	(± 0.0003)	(± 0.0003)	(± 0.0020)	(± 0.0015)	(± 0.0006)	(± 0.0008)	$(\pm 0.0022$
Improvement	4.41%	13.78%	0.35%	6.27%	2.87%	10.40%	0.18%	4.43%

NALL: Negative Average Log Likelihood

Improvement: Relative improvement of the best version of NIPEN compared to the best model, which is marked by †, among the baselines $P^* < 0.05$; $P^{**} < 0.01$ (Student's one-tailed t-test against the † model)

- Variations of NIPEN shows the best performance in every metric and dataset
- NIPEN-Tensor is a model that considers the correlation between topics, and NIPEN-Tensor may have a better performance when a bill text has multiple topics with complex and rich textual information