Mobile Net:

- -> Depthwise separable convolution is introduced in VI that reduces the complexity cost and model size drastically.
- -> these models are suitable for mobile devices with low computational power.

-> There are two layers:

1. Depthwise conv:

if performs lightweight
filtering by applying

single convolution filter
per input chault.

Dwise 3x3, stride=s, Relu6

2. Pointuise convolution:

(1x1) convlayer responsi-ble for building new
feature map through
computing linear
combinations of the
input channels.

-> Relug is used here for its robust-- ness with low precision computa--tion.

- -> In 12 there are 2 types of blocks:
 - -> residual block with stride = 1
 - -> residual block with stride = 2
- -> first læger: (1x1) conv with ReLUG [pointwise]
- -> <u>second layer</u>: (3x3) depthnuise conv mith ReLUG
- -> third layer: (1x1) pointuise conv without non-inearity (no Relue)

Input	Operator	Output	
$h \times w \times k$ $h \times w \times tk$ $\frac{h}{s} \times \frac{w}{s} \times tk$	1x1 conv2d, ReLU6 3x3 dwise s=s, ReLU6 linear 1x1 conv2d	$\begin{array}{c} h \times w \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times (tk) \\ \frac{h}{s} \times \frac{w}{s} \times k' \end{array}$	

-> + 2 expansion tactor

Ex: if +26, internal output $= (6\times64) = 384$ channels.

-> produces better results with snortcuts b/w bottlevecks.

- In typical, the primary network (width multiplier 1, 224×224), has a
 computational cost of 300 million multiply-adds and uses 3.4 million
 parameters. (Width multiplier is introduced in MobileNetV1.)
- The performance trade offs are further explored, for input resolutions from 96 to 224, and width multipliers of 0.35 to 1.4.
- The network computational cost up to 585M MAdds, while the model size vary between 1.7M and 6.9M parameters.
- To train the network, 16 GPU is used with batch size of 96.

Size	MobileNetV1	MobileNetV2	ShuffleNet (2x,g=3)
112x112	64/1600	16/400	32/800
56x56	128/800	32/200	48/300
28x28	256/400	64/100	400/600K
14x14	512/200	160/62	800/310
7x7	1024/199	320/32	1600/156
1x1	1024/2	1280/2	1600/3
max	1600K	400K	600K

Number of Maximum Channels/Memory in Kb) at Each Spatial Resolution for Different Architecture with

Overall Structure:

classification results:

Network	Top 1	Params	MAdds	CPU
MobileNetV1	70.6	4.2M	575M	113ms
ShuffleNet (1.5)	71.5	3.4M	292M	-
ShuffleNet (x2)	73.7	5.4M	524M	-
NasNet-A	74.0	5.3M	564M	183ms
MobileNetV2	72.0	3.4M	300M	75ms
MobileNetV2 (1.4)	74.7	6.9M	585M	143ms