

Document-No. I AE-IF-DLR-L2A-004 V

Issue: **V 3.04**

Date: **17.06.2016**

Page: **1 /** 40

DIR.

DocNo.:	AE-IF-DLR-L2A-004			
DocTitle:	Aeolus Level 2a Processor			
	Input/Output Data Definition			
Number of pages:	40 pages			
Prepared by:	Dorit Huber (DoRIT)			
	Alain Dabas (Météo France)			
	Vincent Lever (Météo France)			

Issue: **V 3.04**

Date: **17.06.2016**

Page: **2 /** 40

DLR

Aeolus Level 2a Processor Input/Output Data Definition

0.1 Document Change Log

Issue.	Date	Modified pages (after insertion of new pages)	Observations	Name
V 0.1	01.09.06		Draft based on former AE.TN.DLR.IODD-L2A.200106; Major revision of ADS content based on AE- TN-MFG-L2A-0001 and decisions at L1b PM 7 see AE-MN-DLR-L1B-009	Huber
V 1.0	25.10.06	All pages reformatted	First version; comments on draft by A G. Straume (03.10.06) and O. LeRille (03.10.06) implemented	Huber
V 1.1	03.11.06	2, 12, 13, 14, 15, 16, 22	Errors fixed found by ML. Denneulin and D. Huber while coding L2A output	Huber
V 1.2	04.12.06	2, 6, 8, 9, 15, 22, 26, 27	Comments made by C. Caspar at GSDR implemented	Huber
V 1.3	17.01.07	25, 26, 29	Minor errors corrected	Huber
V 1.4	12.03.07	13, 20, 21, 22	SPR ADM-L2AP-0003	Huber
V 1.5	29.06.07	2, 8, 10, 11, 12, 13, 17, 18, 22, 24	SPR ADM-L2AP-0007 – SPR ADM-L2AP-0013	Huber
V 2.0	04.12.07	1 – 5, 7, 11, 12, 26 – 29, 32 - 38	Added description of AUX_PAR_2A file	Huber
V 2.1	31.01.08	2-5, 7, 9	FAT comments implemented	Huber
V 2.2	02.08	23, 24	Comments by CC on FAT update	Huber
V 2.3	04.08	8, 13	Internal	Huber
V 2.4	31.01.09	27, 31	CAL SPH, Total size, CAL DSDs	Huber
V 2.5	23.03.09		AR-IPF-1, AE-IPF-10, AE-IPF-13, AE-IPF-15, AE-IPF-17, AE-IPF-18, AE-IPF-21, AE-IPF-22	Huber
V 2.6	31.01.12		Delete section on AUX_CAL; correct size table 10;	Huber
V 3.0	15.02.13		Major revision of all sections for new CM product format of L2A prototype V3.2 Oct 2012	Huber
V 3.01	16.03.15	1, 2, 6, 7, 10, 11, 23, 25 -28, 31	AE-IPF-196 stop time of AUX_PAR_2A; AE-IPF-78 Baseline parameter added	Huber
V3.02 Draft 3	07.08.15		AE-IPF-216 AUX_PAR description to be updated; MPH and SPH description updated, and new section Quality_Flag in AUX_PAR	Huber

Issue: V 3.04 Date: 17.06.2016 Page:

3/40

Aeolus Level 2a Processor Input/Output Data Definition

V3.02	31.08.15		MPH description updated; L2A product description new	Huber
V3.03			AE-IPF-160	Huber
V3.04	17.06.16	3 – 9, 13, 14, 31, 32, 36	AE-IPF-160 issues 105, 107, 108, 109, 110, 136, 137	Huber

0.2 Table of Contents

	0.1	Document Change Log	2
	0.2	Table of Contents	3
	0.3	List of Tables	4
	0.4	List of Figures	6
1	Intro	oduction and Purpose of Document	7
	1.1	Format Definition Relation	7
	1.2	Relationship of Input/Output Data Definition Files	7
2	Doc	uments & Acronyms	9
	2.1	Applicable Documents	9
	2.2	Reference Documents	9
	2.3	Acronyms	9
3	L2A	Geophysical Parameters Product	11
	3.1	Product Structure	11
	3.1.	I File Name	11
	3.1.2	2 File Structure	11
	3.2	Fixed Header	11
	3.3	Main Product Header	13
	3.4	Specific Product Header	14
	3.4.	Data Set Descriptors	15
	3.5	Data Sets	16
	3.5.	Geolocation Annotation Data Set	16
	3.5.2	2 L1B Measurement Product Confidence Data	17
	3.5.	SCA Product Confidence Annotation Data Set	20

AE-IF-DLR-L2A-004

Issue: V 3.04 Date: 17.06.2016 Page:

4/40

3.5.4	ICA Product Confidence Annotation Data Set	21
3.5.5	MCA Product Confidence Annotation Data Set	21
3.5.6	AMD Product Confidence Annotation Data Set	22
3.5.7	Group Product Confidence Annotation Data Set	22
3.5.8	SCA Optical Properties Measurement Data Set	23
3.5.9	ICA Optical Properties Measurement Data Set	24
3.5.10	MCA Optical Properties Measurement Data Set	25
3.5.11	Auxiliary Meteorological Data Measurement Data Set	25
3.5.12	Group Optical Properties Measurement Data Set	26
3.5.13	Scene Classification Measurement Data Set	27
3.6 Size	ə	30
4 Input Au	xiliary Files	31
4.1 Aux	riliary Meteorological Data	31
4.2 Call	ibration Coefficients	31
4.3 L2A	Processing Parameters	. 31
4.3.1	Product Structure	31
4.3.2	FH	31
4.3.3	MPH	32
4.3.4	SPH	33
4.3.5	Level 2A Processing Parameters GADS	34
4.3.6	Size	40
4.4 Aer	osol Extinction-To-Backscatter Ratio	40
0.3 List	of Tables	
O.O LIST	or rabios	
Table 1-1 Fo	rmat Definition Table	7
Table 1-2 Li	st of Input/Output Data Definition Files	8
Table 3-1 L2	A Fixed Header Content Description	12
Table 3-2 L2	A Fixed Header Validity_Period Content Description	12
Table 3-3 L2	A Fixed Header Source content description	12
Table 3-4 L2	A Main Product Header	13
Table 3-5 L2	A Specific Product Header	14
Table 3-6 L2	A Data Set Descriptors	15
Table 3-7 Ge	eolocation_ADS	16
Table 3-8 Lis	st_of_Measurement_Geolocation Content Description	16
Table 3-9 M	ie_Geolocation Content Description	17
Table 3-10 R	Aayleigh_Geolocation Content Description	.17

Issue: V 3.04 Date: 17.06.2016

Page: **5 /** 40

Table 3-11 Geolocation_of_Height_Bin Content Description	. 17
Table 3-12 Meas_PCD_ADS Content Description	. 17
Table 3-13 L1B_Input_Screening Content Description	. 18
Table 3-14 L1B_Mie_Meas_Screening Content Description	. 18
Table 3-15 L1B_Rayleigh_Meas_Screening Content Description	. 18
Table 3-16 L1B_CAL_Screening Content Description	. 19
Table 3-17 L2A_Processing_QC Content Description	. 19
Table 3-18 Feature_Finder_Indicator Content Description	. 19
Table 3-19 Layer_Information Content Description	. 19
Table 3-20 Seed Content Description	. 19
Table 3-21 Lowest_Computable_Bin Content Description	. 20
Table 3-22 SCA_PCD_ADS Content Description	. 20
Table 3-23 Profile_PCD_Bin Content Description	. 20
Table 3-24 Profile_PCD_Middle_Bin Content Description	. 20
Table 3-25 ICA_PCD_ADS Content Description	. 21
Table 3-26 ICA_Processing_QC_Flag_Bin Content Description	. 21
Table 3-27 MCA_PCD_ADS Content Description	. 21
Table 3-28 MCA_Processing_QC_Flag_Bin Content Description	. 21
Table 3-29 AMD_PCD_ADS Content Description	. 22
Table 3-30 L2B_AMD_Collocations Content Description	. 22
Table 3-31 Group_PCD_ADS Content Description	. 22
Table 3-32 SCA_Optical_Properties_MDS Content Description	. 23
Table 3-33 SCA_Optical_Property Content Description	. 23
Table 3-34 Geolocation_Middle_Bin Content Description	. 24
Table 3-35 Sca_Optical_Property_Middle_Bin Content Description	. 24
Table 3-36 ICA_Optical_Properties_MDS Content Description	. 24
Table 3-37 ICA_Optical_Property Content Description	. 24
Table 3-38 MCA_Optical_Properties_MDS Content Description	. 25
Table 3-39 MCA_Optical_Property Content Description	. 25
Table 3-40 AMD_ADS Content Description	. 25
Table 3-41 AMD_Property Content Description	. 25
Table 3-42 Group_Optical_Properties_MDS Content Description	. 26
Table 3-43 Group_Optical_Property Content Description	. 26
Table 3-44 Group_Geolocation_Middle_Bins Content Description	. 26
Table 3-45 Group_Optical_Property_Middle_Bins Content Description	. 27
Table 3-46 Scene_Classification_ADS Content Description	. 27
Table 3-47 L2A file size estimation	. 30
Table 4-1 Fixed Header of AUX_PAR_2A file	. 31

Issue: V 3.04

Date: 17.06.2016 Page: **6 /** 40

Table 4-2 Validity_Period Content Description	. 32
Table 4-3 Source Content Description	
Table 4-4 Main Product Header of AUX_PAR_2A file	
Table 4-5 Specific Product Header of the AUX_PAR_2A file	
Table 4-6 Level 2A List_of_Dsds Content Description	
Table 4-7 Dsd Content Description	
Table 4-8 Level 2A Processing Parameters GADS DSR	. 34
Table 4-9 Level 2A Processing Parameters GADS FH_Default_Fields Content Description	
Table 4-10 Level 2A Processing Parameters GADS MPH_Default_Fields Content Description	. 35
Table 4-11 Level 2A Processing Parameters GADS Config_Params Content Description	. 35
Table 4-12 Level 2A Processing Parameters GADS SAMS Content Description	. 35
Table 4-13 Level 2A Processing Parameters GADS MatchAMD Content Description	. 35
Table 4-14 Level 2A Processing Parameters GADS L2Ap Content Description	. 36
Table 4-15 Level 2A Processing Parameters GADS Quality_Flag Content Description	. 36
Table 4-16 Level 2A Processing Parameters GADS Find_Matching_Bins Content Description	. 37
Table 4-17 Level 2A Processing Parameters GADS Feature_Finder Content Description	. 37
Table 4-18 Level 2A Processing Parameters GADS List_of_Smoothed_Betap_Limits Content Description	. 37
Table 4-19 Level 2A Processing Parameters GADS Smoothed_Betap_Limit Content Description	38
Table 4-20Level 2A Processing Parameters GADS SCA Content Description	. 38
Table 4-21 Level 2A Processing Parameters GADS ICA Content Description	. 38
Table 4-22 Level 2A Processing Parameters GADS List_of_Filling_Cases Content Description	38
Table 4-23 Level 2A Processing Parameters GADS Filling_Case Content Description	39
Table 4-24 Level 2A Processing Parameters GADS Trans2LOD Content Description	39
Table 4-25 Level 2A Processing Parameters GADS MCA Content Description	. 39
Table 4-26 Level 2A Processing Parameters GADS Scene_Classification Content Description	39
Table 4-27 Level 2A Processing Parameters System_Params Content Description	39
Table 4-28 Overall size of AUX_PAR_2A file	40
0.4 List of Figures	

Figure 1-	1 Relationship	of Input/Output	Files	3
-----------	----------------	-----------------	-------	---

Issue: **V 3.04**

Date: **17.06.2016**

Page: **7 /** 40

DIR

Aeolus Level 2a Processor Input/Output Data Definition

1 Introduction and Purpose of Document

This document defines the ADM-Aeolus L2A operational processor input and output data format. It is part of the deliverables of the contract studies

- "Aeolus Level 1B/2A Processor Refinement & Pre-Launch Validation" and one of the outputs of WP 2130.
- "Aeolus Level 1B/2A Processor Extended Pre-Launch Support" and one of the outputs of WP 2200, and
- "Aeolus Level 1B/2A Processor Implementation of Continuous Mode Operations & Extended Pre-Launch Support" and one of the outputs of WP 2200. .
- "Aeolus Level 1B/2A ProcessorEnhancements and Launch Extension", and one of the outputs of WP 1300.
- "Aeolus L1B/2A Processor Furhter Enhancments and Launch Extension", and one of the outputs of WP 1300.

Chapter 2 contains the list of applicable and referenced documents and a list of acronyms. Chapter 3 describes the format of the L2A output product and chapter 4 the format of the auxiliary data input files.

1.1 Format Definition Relation

The following table gives an overview over the format version of the different product types, where

- File Type denotes the specific sub-string of the product name that identifies the product.
- **Format Version** denotes the product format version that is also used to identify the proper xmlns version.
- REF_DOC denotes the document reference and the version of the IODD that introduces that
 specific format version of a file. The value displayed in this column will be provided in the
 corresponding REF_Doc fields of the binary .DBL files, the XML .HDR files, and the XML .EEF
 files
- Modified is a field used to specify if a certain product has been modified with the current document version
- Processor denotes the software version at which the specific format version is introduced

Table 1-1 Format Definition Table

File Type	Format Version	REF_DOC	Modified	Processor
AUX_PAR_2A	03.03	AE-IF-DLR-L2A-004 3.03	N	03.03
ALD_U_N_2A	03.03	AE-IF-DLR-L2A-004 3.03	N	03.03

1.2 Relationship of Input/Output Data Definition Files

Table 1-2 summarises the Input/Output Data Definition Files used by the L2A processor.

Oocument-No.	Issue:	Date:	Page:
AE-IF-DLR-L2A-004	V 3.04	17.06.2016	8 / 40

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

Table 1-2 List of Input/Output Data Definition Files

File Type Identifier	File Type	Description	Created By	Used By
	Level 1B Product File			
ALD_U_N_1B	Level 1B Product File	[RD 4]	Level 1B Processor	Level 2A Processor PDS
	Level 2A Product			
ALD_U_N_2A	Level 2A Geophysical Parameters Product	Section 3	Level 2A Processor	PDS
	Input Auxiliary Files			
AUX_PAR_2A	Level 2A Processing Parameters	Section 4.3	L1bP HMI component or external tool	Level 2A Processor
AUX_MET_12	Auxiliary Meteorological Data	[RD 1]	External tool	Level 2A Processor
AUX_CAL_L2	Calibration Coefficients	[RD 10]	Calibration Software	Level 2A Processor
AUX_CLM_L2	Aerosol Extinction-To-Backscatter Ratio	[RD 1]	External tool	Level 2A Processor

The relationship and normal process flow between the various files passed to and from the Level 2a Processor software task is illustrated in Figure 1-1.

Figure 1-1 Relationship of Input/Output Files

Issue: V 3.04 Date: 17.06.2016

Page: 9/40

2.1 Applicable Documents

Documents & Acronyms

[AD 1] PDS-IPF ICD Generic Interface Guideline, ESA-ID-ACS-GS-0001

[AD 2] Earth Explorer Ground Segment File Format Standard, PE-TN-ESA-GS-001

[AD 3] ADM-AEOLUS ANNOTATED SOURCE PACKET FILES FORMAT DESCRIPTION TECHNICAL NOTE, XADM-GSEG-EOPG-TN-04-0024

2.2 Reference Documents

[RD 1] ADM-Aeolus Level-2B/2C Processor Input/Output Data Definitions Interface Control Document, AE-IF-ECMWF-L2BP-001

[RD 2] L2A IODD, AE-IF-MFG-L2A-004

[RD 3] Selection of L2B parameters, AE-TN-MFG-L2P-0021

[RD 4] Input/Output Data Definition Interface Control Document, ADM-IC-52-1666

[RD 5] Generation/Update of L2 Calibration Data at ACMF, AE-TN-MFG-L2A-CAL-002

[RD 6] L2A Algorithm Theoretical Basis Document, AE-TN-IPSL-GS-001

[RD 7] Aeolus Level 2a Processor Software User Manual, AE-MA-DLR-L2A-002

[RD 8] Aeolus Level 2a Processor External Interface Control Document, AE-IF-DLR-L2A-001

[RD 9] Generation and Update of AUX CSR, AE-TN-MFG-L2P-CAL-003

[RD 10] Generation of AUX_CAL, Detailed Processing Model, Input/Output data definition, AE-TN-MFG-L2P-CAL-004

2.3 Acronyms

ADM-Aeolus Atmospheric Dynamics Mission: Aeolus keeper of the winds

ADS Annotation Data Set

AMD Auxiliary Meteorological Data

AUX Auxiliary

BRC Basic Repeat Cycle

CAL Calibration

COG Centre of Gravity

DBL Data Block

DEM **Digital Elevation Model**

DS Data Set

DSD Data Set Descriptor **DSR** Data Set Record

FΗ Fixed HeaderFSR Free Spectral Range

GADS Global Annotation Data Set

Issue: **V 3.04**

Date: **17.06.2016**

Page: **10 /** 40

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

HDR Header

ICD Interface Control Document
IODD Input/Output Data Definition
IPF Instrument Processing Facility

KVT Key Value Terminator

L1b Level 1b L2a Level 2a

LOS Line of sight

MDS Measurement Data Set
MPH Main Product Header
PCD Product Confidence Data
PDS Payload Data Segment

QC Quality Control

SPH Specific Product Header
USR Useful Spectral Range

UTC Universal Time Co-ordinates
XML Extensible Mark up Language

Issue: **V 3.04**

Date: **17.06.2016**

Page: **11 /** 40

DLR

Aeolus Level 2a Processor Input/Output Data Definition

3 L2A Geophysical Parameters Product

The L2A output products are profiles of aerosol optical depths, profiles of aerosol and molecular backscatter coefficients, profiles of extinction to backscatter ratios, profiles of scattering ratios, and elements of scene classification (water cloud, ice cloud, and aerosol cloud). Profiles of optical depths, aerosol, extinction-to-backscatter ratios and scattering ratios will be given at a horizontal resolution going from the measurement to the observation. The idea is to retrieve profiles with the finest possible resolution, but the averaging of several measurements may be necessary to reach a satisfactory signal quality.

The Aeolus Level 2A data products are generated using the Level 1B Wind Measurement product as input to the Level 2A processing step. Each Level 2A cloud and aerosol product can contain a variable amount of data. On average they contain data from one orbit, i.e. about 200 observations, but may contain up to 7 orbits of data (due to on-board storage of downlink data).

3.1 Product Structure

The Level 2A product structure corresponds to the product structure described in [AD 2].

3.1.1 File Name

The Level-2A Product file name has the format:

 $\verb|AE_CCCC_ALD_U_X_2A_yyyymmddThhmmss_yyyymmddThhmmss_vvvv.EEE|$

The extension EEE is HDR for the header and DBL for the data block. That is, the Level-2A product consists of two files:

- A header containing a Fixed Header, the MPH, and the SPH with DSDs. The header is in XML format and has extension EEE='HDR'.
- A data-block containing a copy of MPH and SPH in KVT format followed by the Data Sets in binary format. The data block has the file extension EEE='DBL'.

In the file name, CCCC can be either TEST, OPER, RPRO, or any other four letter string specified as order-type, see [RD 8] depending on whether the data were produced as part of an operational processing or for internal tests, X can be either N, R, or T for nominal or re processing, or tests, and yyyymmddThhmmss and vvvv are validity starting and end dates and version number.

3.1.2 File Structure

The Header File (extension HDR) contains a Fixed Header, a Main Product Header, and a Specific Product Header in XML format as described in [AD 2]. FH and MPH are common to all Aeolus products. Sizes in XML format are variable. Thus throughout this document, sizes of parameters and files in XML format (i.e. HDR and EEF files) are indicative only.

The data block file (extension DBL) recalls the MPH and the SPH in KVT format, followed by the binary data. Sizes in KVT format are fixed, but the tag names used throughout this document for the FH, MPH and SPH refer to XML format. For KVT format the same tag names written in upper case letters are used.

3.2 Fixed Header

The structure of the Fixed Header is identical for all Earth-Explorer missions.

Doc.-Title:

AE-IF-DLR-L2A-004

Issue: **V 3.04**

Date: **17.06.2016**

Page: **12 /** 40

A DIR

Aeolus Level 2a Processor Input/Output Data Definition

Table 3-1 L2A Fixed Header Content Description

Tag Name	Tag Name Content Description		Туре	Si	Size (XML)	
Fixed_Header	Root Tag		Structure		29	
File_Name	Logical file name without the extension		String	11	62	13
File_Description	One line description of the file		String	18	32	20
Notes	Multi-lines free text		String	7	32	9
Mission	String representing the mission name ('Aeolus' for the ADM-Aeolus mission). Note that, in the File_Name, the Mission ID is a two character string ('AE' for the ADM-Aeolus mission)		String	9	6	11
File_Class	OPER or TEST (file type as indicated in the file name)		String	12	4	14
File_Type	The part of the file name that gives the file type. For L2A products, the only file type is ALD_U_N_2A.		String	11	10	13
Validity_Period	See Table 3-2 for structure description		Structure	18	112	19
File_Version	The vvvv part of the file name (see Section 3.1.1)		Integer	14	4	16
Source See Table 3-3 for structure description			Structure	9	172	10
	Total size for XML FH in bytes:				697	

Table 3-2 L2A Fixed Header Validity_Period Content Description

Tag Name	Content Description	Unit	Туре	Siz	e (XIV	IL)
Validity_Start	The validity of a file is managed by the PDGS environment istself, see [AD 3]. Omitting the micro seconds, Validity_Start time equals Sensing_Start of Table 3-4. To indicate the beginning of the mission, the special value: 'UTC=0000-00-00T00:00:00' can be used.	итс	n i			18
Validity Stop	The validity of a file is managed by the PDGS environment istself, see [AD 3]. Omitting the micro seconds, Validity_Stop time equals Sensing_Stop of Table 3-4. To indicate the end of the mission, the special value: 'UTC=9999-12-31T23:59:59' can be used.	UTC	DateTime	15	23	17
	Total size in bytes					

Table 3-3 L2A Fixed Header Source content description

Tag Name	Content Description	Unit	Туре	Size (XML)			
System	Name of facility in charge of running the L2A processor.		String	8	19	10	
Creator					12	11	
Creator_Version Version of L2AP used for the generation of the present product file.			String	17	12	19	
Creation_Date	Date/time of creation.	UTC	DateTime	15	23	17	
Total size in bytes:							

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

Page:

13 / 40

3.3 Main Product Header

The Main Product Header is identical to all Aeolus products.

Table 3-4 L2A Main Product Header

Tag Name	Content Description	Unit	Туре	Size	(KVT)		Size	(XML)	
Main_Product_ Header	Root tag for XML format only.		Structure	0	0	0		43	
Product	Logical file name, extension i.e., file name excluding the		String	9	62	2	9	62	11
Proc_Stage	Processing stage flag: 'N' for nominal process-ing (quasi-or close to real-time), 'T' for test product, 'R' for reprocessed.		Enum	11	1	1	12	1	14
Ref_Doc	Reference document describing the product		String	9	23	2	9	23	11
Spare_1			Spare	40	0	1	10	0	11
Acquisition_Station	Acquisition station ID		String	21	20	2	21	20	23
Proc_Center	Processing centre ID		String	13	6	2	13	6	15
Proc_Time	Time of processing	UTC	DateTime	11	27	2	11	23	13
Software_Ver	Software version number of processing soft-ware. Format: name of processor (up to 10 characters)/version number(4 characters)		String	14	14	2	14	14	16
Baseline	Baseline identifier (as provided by the Job Order File)		String	10	29	2	10	29	11
Sensing_Start	Start time of sensing	UTC	DateTime	15	27	2	15	23	17
Sensing_Stop	Stop time of sensing	UTC	DateTime	14	27	2	14	23	16
Spare_3			Spare	40	0	1	10	0	11
Phase	Phase number. If not used set to 'X', copied from L1B input product header.		Enum	6	1	1	7	1	9
Cycle	Cycle number, copied from L1B input product header.		IntAuc	6	4	1	7	4	9
Rel_Orbit	Start relative orbit number, copied from L1B input product header.		IntAs	10	6	1	11	6	13
Abs_Orbit	Start absolute orbit number, copied from L1B input product header.		IntAs	10	6	1	11	6	13
State_Vector_Time	Time of state vector, copied from L1B input product header.	UTC	DateTime	19	27	2	19	23	21
Delta_UT1	Delta_UT1 = UT1-UTC, copied from L1B input product header.	S	FAdo06	10	8	4	11	8	13
X_Position	X position in Earth-fixed reference, copied from L1B input product header.	m	FAdo73	11	12	4	12	12	14
Y_Position	Y position in Earth-fixed reference, copied from L1B input product header.	m	FAdo73	11	12	4	12	12	14
Z_Position	Z position in Earth-fixed reference, copied from L1B input product header.	m	FAdo73	11	12	4	12	12	14
X_Velocity	X velocity in Earth-fixed reference, copied from L1B input product header.	m/s	FAdo46	11	12	6	12	12	14
Y_Velocity	Y velocity in Earth-fixed reference, copied from L1B input product header.	m/s	FAdo46	11	12	6	12	12	14
Z_Velocity	Z velocity in Earth-fixed reference	m/s	FAdo46	11	12	6	12	12	14
Vector_Source	Not used by ADM, set to fixed string 'GP'.		String	15	2	2	15	2	17
Spare_4			Spare	40	0	1	10	0	11

Issue: V 3.04 Date: 17.06.2016

Page: **14 /** 40

Aeolus Level 2a Processor Input/Output Data Definition

•	1					1		ı
Time corresponding to SBT below (not								
input product header.	UTC	DateTime	14	27	2	14	23	16
Satellite Binary Time (not used by ADM-								
Aeolus), copied from L1B input product header.		IntAul	16	11	1	17	11	19
Clock step size (not used by ADM-Aeolus),								
copied from L1B input product header.	ps	IntAul	11	11	5	12	11	14
		Spare	32	0	1	10	0	11
Time of occurrence of the next leap second	UTC	DateTime	10	27	2	10	23	12
Leap second sign (+001 if positive leap second, -001 if negative)		IntAc	10	4	1		11	
Leap second error. '1' if leap second error								
occurs during processing segment, '0' otherwise		Boolean	9	1	1	10	1	12
		Spare	40	0	1	10	0	11
'1' or '0' If '1' errors have been reported in		,						
the product. User should then refer to the								
		Boolean	12	1	1	13	1	15
Total size of product (#bytes								
DSR+SPH+MPH)	bytes	IntAd	9	21	8	10	21	12
Length of SPH (#bytes in SPH)	bytes	IntAl	9	11	8	10	11	12
Number of DSDs		IntAl	8	11	1	9	11	11
Length of each DSDs (#bytes for each DSD, all DSDs shall have the same length	bytes	IntAl	9	11	8	10	11	12
Number of DSs attached (not all DSDs have a DS attached)		IntAl	14	11	1	15	11	17
		Spare	40	0	1	10	0	11
	used by ADM-Aeolus), copied from L1B input product header. Satellite Binary Time (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. Time of occurrence of the next leap second Leap second sign (+001 if positive leap second, -001 if negative) Leap second error. '1' if leap second error occurs during processing segment, '0' otherwise '1' or '0'. If '1', errors have been reported in the product. User should then refer to the SPH or Quality ADS of the product for details of the error condition. '0' otherwise. Total size of product (#bytes DSR+SPH+MPH) Length of SPH (#bytes in SPH) Number of DSDs Length of each DSDs (#bytes for each DSD, all DSDs shall have the same length	used by ADM-Aeolus), copied from L1B input product header. Satellite Binary Time (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. Time of occurrence of the next leap second Leap second sign (+001 if positive leap second, -001 if negative) Leap second error. '1' if leap second error occurs during processing segment, '0' otherwise '1' or '0'. If '1', errors have been reported in the product. User should then refer to the SPH or Quality ADS of the product for details of the error condition. '0' otherwise. Total size of product (#bytes DSR+SPH+MPH) Length of SPH (#bytes in SPH) Number of DSDs Length of each DSDs (#bytes for each DSD, all DSDs shall have the same length Number of DSs attached (not all DSDs	used by ADM-Aeolus), copied from L1B input product header. Satellite Binary Time (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. Time of occurrence of the next leap second Leap second sign (+001 if positive leap second, -001 if negative) Leap second error. '1' if leap second error occurs during processing segment, '0' otherwise Spare '1' or '0'. If '1', errors have been reported in the product. User should then refer to the SPH or Quality ADS of the product for details of the error condition. '0' otherwise. Total size of product (#bytes DSR+SPH+MPH) Length of SPH (#bytes in SPH) Number of DSDs Length of each DSDs (#bytes for each DSD, all DSDs shall have the same length Number of DSs attached) IntAl	used by ADM-Aeolus), copied from L1B input product header. Satellite Binary Time (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. Time of occurrence of the next leap second Leap second sign (+001 if positive leap second, -001 if negative) Leap second error. '1' if leap second error occurs during processing segment, '0' otherwise Boolean '1' or '0'. If '1', errors have been reported in the product. User should then refer to the SPH or Quality ADS of the product for details of the error condition. '0' otherwise. Total size of product (#bytes DSR+SPH+MPH) Length of SPH (#bytes in SPH) Number of DSDs Length of each DSDs (#bytes for each DSD, all DSDs shall have the same length Number of DSs attached) IntAl 14 DateTime 15 DateTime 16 DateTime 17 DateTime 10 DateTime 11 DateTime 10 DateTime 10	used by ADM-Aeolus), copied from L1B input product header. Satellite Binary Time (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. ps IntAul 11 11 Spare 32 0 Time of occurrence of the next leap second UTC DateTime 10 27 Leap second sign (+001 if positive leap second, -001 if negative) Leap second error. '1' if leap second error occurs during processing segment, '0' otherwise Boolean 9 1 '1' or '0'. If '1', errors have been reported in the product. User should then refer to the SPH or Quality ADS of the product for details of the error condition. '0' otherwise. Total size of product (#bytes DSR+SPH+MPH) Length of SPH (#bytes in SPH) Number of DSDs Length of each DSDs (#bytes for each DSD, all DSDs shall have the same length Number of DSs attached) IntAl 14 11	used by ADM-Aeolus), copied from L1B input product header. Satellite Binary Time (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. DateTime of occurrence of the next leap second Time of occurrence of the next leap second Leap second sign (+001 if positive leap second, -001 if negative) Leap second error. '1' if leap second error occurs during processing segment, '0' otherwise DateTime of occurrence of the next leap second IntAc	used by ADM-Aeolus), copied from L1B input product header. Satellite Binary Time (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. Clock step size (not used by ADM-Aeolus), copied from L1B input product header. Spare 32 0 1 10 Time of occurrence of the next leap second UTC DateTime 10 27 2 10 Leap second sign (+001 if positive leap second, -001 if negative) Leap second error. '1' if leap second error occurs during processing segment, '0' otherwise Boolean 9 1 1 10 '1' or '0'. If '1', errors have been reported in the product. User should then refer to the SPH or Quality ADS of the product for details of the error condition. '0' otherwise. Total size of product (#bytes DSR+SPH+MPH) Length of SPH (#bytes in SPH) Number of DSDs Length of each DSDs (#bytes for each DSD, all DSDs shall have the same length Number of DSs attached (not all DSDs have a DS attached) IntAl 14 11 1 1 5	used by ADM-Aeolus), copied from L1B input product header. UTC DateTime 14 27 2 14 23 Satellite Binary Time (not used by ADM-Aeolus), copied from L1B input product header. IntAul 16 11 1 17 11 Clock step size (not used by ADM-Aeolus), copied from L1B input product header. ps IntAul 11 11 5 12 11 Clock step size (not used by ADM-Aeolus), copied from L1B input product header. ps IntAul 11 11 5 12 11 Spare (not used by ADM-Aeolus), copied from L1B input product header. ps IntAul 11 11 15 12 11 Spare (not used by ADM-Aeolus), copied from L1B input product header. ps IntAul 11 11 10 0 Time of occurrence of the next leap second UTC DateTime 10 27 2 10 23 Leap second sign (+001 if positive leap second error cocurs during processing segment, '0' otherwise Boolean 9 1 1 10 1

3.4 Specific Product Header

The specific product header has a structure specific to L2A products. It is detailed in table 5 below. The SPH ends with the list of Data Set Descriptors (DSDs).

Table 3-5 L2A Specific Product Header

Name	Description / Comment	Unit	Туре	Size (KVT)		Size (KVT)		ze (XN	1L)
Specific_Product _Header	Root tag for XML format only. Set to AEOLUS_L2A_SPECIFIC_HEADER		Structure	0	0	0		51	
Sph_Descriptor	Specific Product Header descriptor: ASCII string describing the product		String	16	28	2	16	28	18
Spare_1			Spare	40	0	1	10	0	11
Intersect_Start _Lat	Latitude of the intersection of WGS84 DEM and the satellite line-of-sight for the first measurement (first measurement centroid time of the first BRC)	10- 6degN	IntAl	20	11	11	21	9	23
Intersect Start Long	Longitude of the intersection of WGS84 DEM and the satellite line-of-sight for the first measurement (first measurement centroid time of the first BRC)	10- 6degE	IntAl	21	11	11	22	10	24

 Document-No.
 Issue:
 Date:
 Page:

 AE-IF-DLR-L2A-004
 V 3.04
 17.06.2016
 15 / 40

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

Intersect_Stop _Lat	Latitude of the intersection of WGS84 DEM and the satellite line-of-sight for the last measurement (last measurement centroid time of the last BRC)	and the satellite line-of-sight for t measurement (last rement centroid time of the last 10-6degN IntAl ade of the intersection of					20	9	22
Intersect_Stop _Long	Longitude of the intersection of WGS84 DEM and the satellite line-of-sight for the last measurement (last measurement centroid time of the last BRC)	10- 6degE	IntAl	20	11	11	21	10	23
Sat_Track	Sub-satellite track heading at the sensing start time in the MPH	deg	FAdo36	10	15	6	11	11	13
Spare_2			Spare	40	0	1	10	0	11
Num_Brc	Number of L1B input BRCs.		IntAl	8	11	1	10	11	11
Num_Meas_Max_Brc	Maximum number of measurements per BRC of the L1B input data.		IntAl	17	11	1	19	11	20
Num_Bins_Per_Meas	Number height bins without background bin.		IntAl	18	11	1	20	11	21
Num_Prof_Sca	Number of SCA BRC level profiles reported in this product.		IntAl	13	11	1	15	11	16
Num_Prof_Ica	Number of ICA BRC level profiles reported in this product.		IntAl	13	11	1	15	11	16
Num_Prof_Mca	Number of MCA BRC level profiles reported in this product.		IntAl	13	11	1	15	11	16
Num_Group_Tot	Number of group profiles reported in this product.		IntAl	14	11	1	16	11	17
Spare_3			Spare	40	0	1	10	0	11
List_of_Dsds	See 6 for a description.		5184				6426		
Total size for KVT and	Total size for KVT and XML in bytes				5732			7155	

3.4.1 Data Set Descriptors

The Data Sets listed in table 6 appear in Aeolus Level 2A products, each described by a DSD in the SPH, see [RD 4] for format of DSD structure. The "Data Set Type" is "A" for Annotation Data Sets, "G" for Global Annotation Data Set', "M" for Measurement Data Sets and "R" for a Referenced Data Set, that is not attached to this product.

Table 3-6 L2A Data Set Descriptors

Num.	Data Set Descriptor Name	Content Description	Туре	Update Frequency
1	Geolocation_ADS	DSD for Geolocation & AOCS data (attached). See Table 3.7 for a description.	Α	1 DSR per BRC
2	Meas_PCD_ADS	DSD for L1B, CAL and CLM input screening quality control. See Table 3.10 for a description.	Α	1 DSR per BRC
3	SCA_PCD_ADS	DSD for PCD of SCA products.	Α	1 DSR per SCA profile
4	ICA_PCD_ADS	DSD for PCD of ICA products.	Α	1 DSR per ICA profile
5	MCA_PCD_ADS	DSD for PCD of MCA products.	Α	1 DSR per MCA profile
6	AMD_PCD_ADS	DSD for PCD of AMD input screening.	Α	1 DSR per BRC.
7	Group_PCD_ADS	DSD for PCD of the processing of all algorithms.	Α	1 DSR per group

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

8	SCA_Optical_Properties_MDS	DSD for SCA products.	М	1 DSR per SCA profile
9	ICA_Optical_Properties_MDS	DSD for ICA products.	М	1 DSR per ICA profile
10	MCA_Optical_Properties_MDS	DSD for MCA products.	М	1 DSR per MCA profile
11	AMD_ADS	DSD for Atmospheric, molecular data computed from MET files.	Α	1 DSR per BRC
12	Group_Optical_Properties_MDS	DSD for group level products	М	1 DSR per group
13	Scene_Classification_ADS	DSD for Scene classification data	М	1 DSR per group
14	Level_2A_Proc_Params	DSD for L2A processing parameters (reference to auxiliary file)	R	No Ds
15	Aeolus_Level_1B_Product	DSD for the L1B input file (reference to)	R	No Ds
16	Aux_Met_Product	DSD for Meteorological Data (reference to auxiliary file).	R	No Ds
17	Cal_Product	DSD for calibration coefficients (reference to auxiliary file).	R	No Ds
18	Clim_Product	DSD for the aerosol backscatter to extinction ratio (reference to auxiliary file)	R	No Ds

3.5 Data Sets

3.5.1 Geolocation Annotation Data Set

The size of the Geolocation Annotation Data Set depends on the maximum number of measurements found in the L1B input BRCs. Sizes are calculated here for 30 measurements.

Table 3-7 Geolocation_ADS

Name	Description / Comment	Unit	Туре	Size (binary)				
Start_of_Obs_Time	Start date and time of Observation (or BRC)	UTC	DateTime	12				
Num_Meas_Eff	Effective number of measurement in the BRC.		IntAuc	1				
List_of_Measurement_ Geolocations	List of measurement geolocation structures. See Table 3-8 for Measurement_Geolocation structure description		List of Num_Meas_Max_Brc structures	24840				
Geoid_Separation	Height of geoid above WGS84 ellipsoid. It is assumed this difference is valid for the whole observation.	m	FAdoxy	8				
Total size in bytes								

Table 3-8 List_of_Measurement_Geolocation Content Description

Name	Description / Comment	Unit	Туре	Size (binary)
Centroid_Time	Measurement centroid time from L1B	UTC	DateTime	12
Mie_Geolocation	List of geolocation parameters of the 24 Mie height bins of the profile. See Table 3-9 for a description.		Structure	400
Rayleigh_Geolocation	List of geolocation parameters of the 24 Mie height bins of the profile. See Table 3-10 for a description.		Structure	400
Longitude_of_DEM_ Intersection	Longitude of the intersection of the DEM and the line-of-sight	10-6degE	IntAl	4
Latitude_of_DEM_ Intersection	Latitude of the intersection of the DEM and the line-of-sight	10-6degN	IntAl	4

Do	cui	mer	۱t-N	١о.				
ΑI	E-I	F-I	DL	R-	L 2	Α-	00	4

Page:

Total size in bytes							
Altitude_of_DEM_ Intersection	Altitude relative to the geoid of the intersection of the DEM and the line-of-sight	m	Fadoxy	8			

Table 3-9 Mie_Geolocation Content Description

	2		_	Size
Name	Description / Comment	Unit	Type	(binary)
	List of Geolocation Height Bin structures. This			
	list contains 25 values. The first item contains			
	the geolocation of the upper edge of the top-			
	most bin (= defined as lower edge of bin 0).			
	The remaining 24 items contain the			
	geolocation of the lower edge of the each			
	height bin. (bin 1~24). See Table 3-11 for		List of 25	
List_of_Geolocation_of_Height_Bins	structure description.		Structures	400
	Total size in bytes			400

Table 3-10 Rayleigh_Geolocation Content Description

				Size
Name	Description / Comment	Unit	Туре	(binary)
List_of_Geolocation_of_Height_Bins	List of Geolocation Height Bin structures. This list contains 25 values. The first item contains the geolocation of the upper edge of the topmost bin (= defined as lower edge of bin 0). The remaining 24 items contain the geolocation of the lower edge of the each height bin. (bin 1~24). See Table 3-11 for structure description.		List of 25 Structures	400
	Total size in bytes			400

Table 3-11 Geolocation_of_Height_Bin Content Description

Name	Description / Comment	Unit	Туре	Size (binary)	
Longitude_of_Height_Bin	Latitude of the start point of the profile height bin	10-6degN	IntAl	4	
Latitude_of_Height_Bin	Longitude of the start point of the profile height bin.	10-6degE	IntAl	4	
Altitude_of_Height_Bin	Bottom altitude of the height bin. The altitude is reference to a geoid.	m	Fadoxy	8	
	Total size in bytes				

L1B Measurement Product Confidence Data

Table 3-12 Meas_PCD_ADS Content Description

Name	Description / Comment	Unit	Туре	Binary
Start_of_Obs_Time	Start date and time of Observation (or BRC).	UTC	DateTime	12
	Structure describing any problems found during reading of			
L1B_Input_Screening	the L1B datafile (see Table 3-13)		structure	247
	Structure describing any problem found during reading of			
L1B_CAL_Sceening	the calibration datafile (see Table 3-16)		structure	6

Do	cui	mer	۱t-N	١о.				
ΑI	E-I	F-I	DL	R-	L 2	Α-	00	4

Issue: V 3.04 Date: 17.06.2016 Page:

18 / 40

Aeolus Level 2a Processor Input/Output Data Definition

	Total size in bytes				
L2A_Processing_QC	processing algorithms (see Table 3-17)		structure	797	
	Structure describing QC parameters resulting from the			ı	

Table 3-13 L1B_Input_Screening Content Description

Name	Description / Comment	Unit	Туре	Binary
L1B_Obs_Screening	A code describing a problem which prevent using this whole BRC TBD		IntAuc	1
L1B_Obs_Screening_ Flags1	5 bytes each holding up to 8 flags, so in total 40 flags to store individual problems detected in the L1B_Obs screening (exact definition to be defined later)			
L1B_Obs_Screening_ Flags2	Bit 1 in byte 1 : TBD			
L1B_Obs_Screening_ Flags3	Bit 2 in byte 1: TBD			
L1B_Obs_Screening_ Flags4				
L1B_Obs_Screening_ Flags5	Bit 3 in byte 4 : TBD			
	Bit 8 in byte 5 : TBD		5*IntAuc	5
List_of_L1B_Mie_ Meas_Screening	List of N_Meas structures describing the problems found for each Mie measurement (see Table 3-14)		list of N_Meas structures	120
List_of_L1B_Rayleigh_ Meas_Screening	List of N_Meas structures describing the problems found for each Rayleigh measurement (see Table 3-15)		list of N_Meas structures	120
Spare_1				1
	Total size in bytes			247

Table 3-14 L1B_Mie_Meas_Screening Content Description

Name	Description / Comment	Unit	Туре	Binary
L1B_Mie_Meas_QC	A code describing a problem which prevent using this Mie measurement TBD		IntAus	2
	Flags describing problems which prevent using this Mie Measurement:			
	Bit 1 : TBD			
	Bit 2 : TBD			
L1B_Mie_Meas_QC_				
Flags	Bit 8 : TBD		IntAuc	1
Spare_1				1
	Total size in bytes			

Table 3-15 L1B_Rayleigh_Meas_Screening Content Description

Name	Description / Comment	Unit	Туре	Binary
L1B_Rayleigh_Meas_ QC	A code describing a problem which prevent using this Rayleigh measurement TBD		IntAus	2
L1B_Rayleigh_Meas_ QC_Flags	Flags describing problems which prevent using this Rayleigh measurement:		IntAuc	1

Document-No.
AE-IF-DLR-L2A-004

Issue: **V 3.04**

Date: **17.06.2016**

Page: **19 /** 40

DIR

Doc.-Title: Aeolus Level 2a Processor Input/Output Data Definition

Total size in bytes			1
Spare_1			1
	Bit 8 : TBD		
	Bit 2 : TBD		
	Bit 1: TBD		

Table 3-16 L1B_CAL_Screening Content Description

Name	Description / Comment	Unit	Туре	Binary
CAL_Valid	A flag indicating the calibration file was found correct.		IntAuc	1
Spare_1				5
Total size in bytes				

Table 3-17 L2A_Processing_QC Content Description

Name	Description / Comment	Unit	Туре	Binary
SCA_Applied	1 if the SCA is applied at BRC level; 0 else.		IntAuc	1
ICA_Applied	1 if the ICA is applied at BRC level; 0 else.		IntAuc	1
MCA_Applied	1 if the MCA is applied at BRC level; 0 else.		IntAuc	1
Spare_1				20
List_of_Feature_Finder_Indicators	List of Feature Finder algrithm module results. See Table 3-18 for structure description		Structure	774
Total size in bytes				797

Table 3-18 Feature_Finder_Indicator Content Description

Name	Description / Comment	Unit	Туре	Binary
List_of_Layer_Informations	Feature Finder output for 24 layers. See Table 3-19 for structure definition.		List of 24 structures	744
List_of_Lowest_Computable_Bins	See Table 3-21 for structure definition.		Structure	30
Total size in bytes				774

Table 3-19 Layer_Information Content Description

Name	Description / Comment	Unit	Туре	Binary
Bin_Loaded	Set to 1 if bin was loaded for group detection and groups have been discovered. Set 0 if bin was loaded for group detection, but no group detected. Set to -1 if bin was not loaded fo group detection.		IntAuc	1
List_of_Seeds	Structure holding information on layer seeds (see Table 3-20).		Structure	30
	Total size in bytes			31

Table 3-20 Seed Content Description

Name Description / Comment	Unit	Туре	Binary
----------------------------	------	------	--------

Docur	ment-l	No.		
AE-I	F-DL	R-L	2A	-004

Issue: **V 3.04**

Date: **17.06.2016**

Page: **20 /** 40

DLR

Doc	Γitl⊃

Aeolus Level 2a Processor Input/Output Data Definition

Total size in bytes				1
Seed	Set to 1 if the measurement was set as seed for the group detection, set to 0 if measruement was no seed.		IntAuc	1

Table 3-21 Lowest_Computable_Bin Content Description

Name	Description / Comment	Unit	Туре	Binary
	Lowest (in atmosphere) bin that was used by the			
Lowest Computable Bin	Feature Finder to detect groups for a maximum of 30		IntAug	4
Lowest_Computable_Bin	measurements.		IntAuc	I
Total size in bytes				

3.5.3 SCA Product Confidence Annotation Data Set

This ADS is only written if the SCA was applied to the input L1B BRC level data. So the number of reported SCA PCD ADS is less or equal to the number of input L1B BRCs.

Table 3-22 SCA_PCD_ADS Content Description

Name	Description / Comment	Unit	Туре	Binary
Start_Time	Start date and time of the SCA profile covered by the present DSR. This is the centroid time of the first measurement of the profile.	UTC	DateTime	12
First_Matching_Bin	Index of the first matching bin		IntAuc	1
QC_Flag	SCA QC flag about processed data: 1 if the first matching bin is clear; 0 else.		IntAuc	1
List_of_Profile_PCD_Bins	Structure containing variances of SCA BRC-level products bin per bin in Rayleigh scale. See Table 3-23 for structure definition.		List of 24 structures	600
List_of_Profile_PCD_Middle_Bins	Structure containing variances of SCA BRC-level products in bins made from 2 halves of adjacent original Rayleigh bins. See Table 3-24 for structure definition.		List of 23 structures	759
	Total size in bytes			1373

Table 3-23 Profile_PCD_Bin Content Description

Name	Description / Comment	Unit	Туре	Binary
Extinction_Variance	Variance of the extinction coefficient retrieved by the SCA in this bin.	m ⁻²	FAdoxy	8
Backscatter_Variance	Variance of the backscatter coefficient retrieved by the SCA in this bin.	m ⁻² * sr ⁻²	FAdoxy	8
LOD_Variance	Variance of the LOD retrieved by the SCA in this bin.		FAdoxy	8
Processing_QC_Flag	QC information about processing		IntAuc	1
Total size in bytes			25	

Table 3-24 Profile_PCD_Middle_Bin Content Description

Name	Description / Comment	Unit	Туре	Binary
Mid_Extinction_Variance	Variance of the extinction coefficient retrieved by the SCA in this bin.	m ⁻²	FAdoxy	8
Mid_Backscatter_Variance	Variance of the backscatter coefficient retrieved by the SCA in this bin.	m ⁻² * sr ⁻²	FAdoxy	8

Document-No.	Issue:
AE-IF-DLR-L2A-004	V 3.04

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

Date:

17.06.2016

Page: **21 /** 40

Total size in bytes				
Mid_Processing_QC_Flag			IntAuc	1
Mid_BER_Variance	Variance of the backscatter-to-extinction ratio.	sr ⁻²	FAdoxy	8
Mid_LOD_Variance	Variance of the LOD retrieved by the SCA in this bin.		FAdoxy	8

3.5.4 ICA Product Confidence Annotation Data Set

This ADS is only written if the ICA was applied to the input L1B BRC level data. So the number of reported ICA PCD ADS is less or equal to the number of input L1B BRCs.

Table 3-25 ICA_PCD_ADS Content Description

Name	Description / Comment	Unit	Туре	Binary
Start_Time	Start date and time of the ICA profile covered by the present DSR. This is the centroid time of the first measurement of the profile.	UTC	DateTime	12
First_Matching_Bin	Index of the first matching bin		IntAuc	1
QC_Flag	ICA QC flag about processed data: 1 if the first matching bin is clear; 0 else.		IntAuc	1
List_of_ICA_Processing_QC_Flag_Bins	Structure containing QC information about processing. See Table 3-26 for structure definition.		List of 24 structures	24
Total size in bytes				

Table 3-26 ICA_Processing_QC_Flag_Bin Content Description

Name	Description / Comment		Туре	Binary	
ICA Processing OC Flor Bin	OC information about processing gurrently set to 0		Int A	4	
ICA_Processing_QC_Flag_bin	QC information about processing, currently set to 0.		IntAuc	ı	
Total size in bytes					

3.5.5 MCA Product Confidence Annotation Data Set

This ADS is only written if the MCA was applied to the input L1B BRC level data. So the number of reported MCA PCD ADS is less or equal to the number of input L1B BRCs.

Table 3-27 MCA_PCD_ADS Content Description

Name Description / Comment			Туре	Binary
	Start date and time of the MCA profile covered by the present DSR. This is the centroid time of the first measurement of the			
Start_Time	profile.	UTC	DateTime	12
List_of_MCA_Processing_QC_Flag_Bins	Structure containing QC information about processing. See Table 3.24 for structure definition.		List of 24 structures	24
Total size in bytes				

Table 3-28 MCA_Processing_QC_Flag_Bin Content Description

Name		Description / Comment		Туре	Binary
MCA_Processing_0	QC_Flag_Bin QC info	mation about processing, currently set to 0.		IntAuc	1

Issue: **V 3.04**

Date: **17.06.2016**

Page: **22 /** 40

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

Total size in bytes 1

3.5.6 AMD Product Confidence Annotation Data Set

The Product Confidence Data Set for the synthetic signal calculated from the meteorological input data is reported for every L1B input BRC location.

Table 3-29 AMD PCD ADS Content Description

Name	Description / Comment	Unit	Туре	Binary
Start_Time	Start date and time of the BRC covered by the present DSR.	UTC	DateTime	12
L2B_AMD_Screening _QC	A code describing a problem which prevent using this L2B AMD file, currently set to 0.		IntAuc	1
L2B_AMD_Screening _QC_Flags	Flags describing problems which prevent using this L2B AMD file, currently set to 0.		IntAuc	1
L2B_AMD_ Collocations	List of Max_Num_Meas_Brc structures describing the problems found while collocating each measurement, see Table 3-30.		structure	90
Total size in bytes				

Table 3-30 L2B_AMD_Collocations Content Description

Name	Description / Comment	Unit	Туре	Binary
L2B_AMD_Collocation _QC	A code describing what problem occurred during the collocation of this measurement with the AUX NWP data, currently set to zero.		IntAuc	1
L2B_AMD_Collocation _QC_Flags	Flags describing what problems occurred during the collocation of this measurement with the AUX NWP data, currently set to 0.		IntAuc	1
Spare_1				1
Total size in bytes				

3.5.7 Group Product Confidence Annotation Data Set

This Product Confidence Data Set shall be reported for all groups identified in all the input L1B BRCs. Thus the number of data sets reported exceeds the number of input L1B BRCs

Table 3-31 Group_PCD_ADS Content Description

Name	Description / Comment	Unit	Туре	Binary
	Start date and time of the group profile covered by the present DSR. This is the			
Start_Time	centroid time of the first measurement of the profile.	UTC	DateTime	12
Brc_Start	Brc of the first measurement of the group.		IntAus	2
Measurement_Start	First measurement of the group.		IntAuc	1
Brc_End	Brc of the last measurement of the group.		IntAus	2
Measurement_End	Last measurement of the group.		IntAuc	1
Height_Bin_Index	Index of the height level of the group in Rayleigh scale.		IntAuc	1
	problem in the column above the group; 0 else. A problem may be slightly negative backscatter identified as a fluctuation around			
Upper_Problem_Flag	0.		IntAuc	1

Issue: **V 3.04**

Date: **17.06.2016**

Page: **23 /** 40

40

Aeolus Level 2a Processor Input/Output Data Definition

Particle Extinction Variance	Variance of the particle extinction coefficient.	m ⁻²	Fadoxy	8
Variance of the particle backscatter Particle Backscatter Variance Variance of the particle backscatter coefficient.			Fadoxy	8
Particle_LOD_Variance	Variance of the particle local optical depth.		Fadoxy	8
QC_Flag	Currently set to 0.		IntAuc	1
Mid_Particle_Extinction_Variance_Top	Variance of the particle extinction coefficient in this height top middle bin.	m ⁻²	Fadoxy	8
Mid_Particle_Backscatter_Variance_Top	Variance of the particle backscatter coefficient in this height top middle bin.	m ⁻² * sr ⁻	Fadoxy	8
Mid_Particle_LOD_Variance_Top	Variance of the particle local optical depth in this height top middle bin.		Fadoxy	8
Mid_Particle_BER_Variance_Top	Variance of the BER in this height top middle bin.	sr ⁻²	Fadoxy	8
Mid_Particle_Extinction_Variance_Bot	Variance of the particle extinction coefficient in this height top middle bin.	m ⁻²	Fadoxy	8
Mid_Particle_Backscatter_Variance_Bot	Variance of the particle backscatter coefficient in this height top middle bin.	m ⁻² * sr ⁻	Fadoxy	8
Mid_Particle_LOD_Variance_Bot	Variance of the particle local optical depth in this height top middle bin.		Fadoxy	8
Mid_Particle_BER_Variance_Bot	Variance of the BER in this height top middle bin.	sr ⁻²	Fadoxy	8
	Total size in bytes			109

3.5.8 SCA Optical Properties Measurement Data Set

This ADS is only written if the SCA was applied to the input L1B BRC level data. So the number of reported SCA PCD ADS is less or equal to the number of input L1B BRCs.

Table 3-32 SCA_Optical_Properties_MDS Content Description

Name	Description / Comment	Unit	Туре	Binary	
	Start date and time of the SCA profile covered by the present DSR. This is the				
Start_Time	centroid time of the first measurement of the profile.	UTC	DateTime	12	
List_of_SCA_Optical_Properties	Structure containing SCA products for the BRC in the Rayleigh height levels,		List of 24		
List_ot_SOA_Optical_r topetiles	see Table 3-33 for structure description.		structures	768	
List_of_Geolocation_Middle_Bins	Horizontal averaged coordinates of the boundaries of the middle bins over the BRC. Middle bins are made of 2 halves of adjacent Rayleigh bins. See Table		List of 24 structures		
	3-34 for structure description.			384	
List_of_SCA_Optical_Properties_Middle_Bins	Structure containing SCA BRC-level products in bins made from 2 halves of adjacent original Rayleigh bins, see Table 3-35 for structure description.		List of 23 structures	736	
Total size in bytes					

Table 3-33 SCA_Optical_Property Content Description

Name	Description / Comment	Unit	Туре	Binary
Extinction	Particle extinction of the height bin	10 ⁻⁶ * m ⁻¹	FAdoxy	8

Do	cui	mer	۱t-N	١о.				
ΑI	E-I	F-I	DL	R-	L 2	Α-	00	4

Issue: V 3.04 Date: 17.06.2016 Page:

24 / 40

Doc.-Title:

Backscatter	Particle backscatter of the height bin	10 ⁻⁶ * m ⁻¹ * sr ⁻¹	FAdoxy	8
LOD	Particle LOD of the height bin		FAdoxy	8
SR	Scattering ratio of the height bin.		FAdoxy	8
Total size in bytes			32	

Table 3-34 Geolocation_Middle_Bin Content Description

Name	Description / Comment	Unit	Туре	Size (binary)
Longitude_of_Middle_Bin	Latitude of the start point of the profile middle bin	10-6degN	IntAl	4
Latitude_of_Middle_Bin	Longitude of the start point of the profile middle bin.	10-6degE	IntAl	4
Altitude_of_Middle_Bin	Bottom altitude of the middle bin.	m	Fadoxy	8
Total size in bytes			16	

Table 3-35 Sca_Optical_Property_Middle_Bin Content Description

Name	Description / Comment	Unit	Туре	Binary
Mid_Extinction	Particle extinction of the middle bin	10 ⁻⁶ * m ⁻¹	FAdoxy	8
Mid_Backscatter	Particle backscatter of the middle bin	10 ⁻⁶ * m ⁻¹ * sr ⁻¹	FAdoxy	8
Mid_LOD	Particle LOD of the middle bin		FAdoxy	8
Mid_BER	Backscatter-to-extinction ratio of the middle bin.		FAdoxy	8
Total size in bytes			32	

3.5.9 ICA Optical Properties Measurement Data Set

This ADS is only written if the ICA was applied to the input L1B BRC level data. So the number of reported ICA PCD ADS is less or equal to the number of input L1B BRCs.

Table 3-36 ICA_Optical_Properties_MDS Content Description

Name	Description / Comment	Unit	Туре	Binary
Start Time	Start date and time of the ICA profile covered by the present DSR. This is the centroid time of the first measurement of the profile.	UTC	DateTime	12
List_of_ICA_Optical_Properties	Structure containing ICA products for the BRC in the Rayleigh height levels, see Table 3-37 for structure description.		List of 24 structures	600
Total size in bytes				612

Table 3-37 ICA_Optical_Property Content Description

Name	Description / Comment	Unit	Туре	Binary
Case	Filling case estimated by the algorithm		IntAuc	1
Extinction	Particle extinction of the height bin	10 ⁻⁶ * m ⁻¹	FAdoxy	8
Backscatter	Particle backscatter of the height bin	10 ⁻⁶ * m ⁻¹ * sr ⁻¹	FAdoxy	8
LOD	Particle LOD of the height bin		FAdoxy	8

Issue: **V 3.04**

Date: **17.06.2016**

Page: **25 /** 40

A DUR

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

Total size in bytes 25

3.5.10 MCA Optical Properties Measurement Data Set

This ADS is only written if the MCA was applied to the input L1B BRC level data. So the number of reported MCA PCD ADS is less or equal to the number of input L1B BRCs.

Table 3-38 MCA_Optical_Properties_MDS Content Description

Name	Description / Comment	Unit	Туре	Binary
Start_Time	Start date and time of the MCA profile covered by the present DSR. This is the centroid time of the first measurement of the profile.	UTC	DateTime	12
List_of_MCA_Optical_Properties	Structure containing MCA products for the BRC in the Rayleigh height levels, see Table 3-39 for structure description.		List of 24 structures	576
Total size in bytes				588

Table 3-39 MCA_Optical_Property Content Description

Name	Description / Comment	Unit	Туре	Binary
ClimBER	Particle backscatter-to-extinction ratio extracted from the climatology	sr ⁻¹	FAdoxy	8
Extinction	Particle extinction of the bin	10 ⁻⁶ * m ⁻¹	FAdoxy	8
LOD	Particle LOD of the bin		FAdoxy	8
Total size in bytes			24	

3.5.11 Auxiliary Meteorological Data Measurement Data Set

The Measurement Data Set for the synthetic signal calculated from the meteorological input data is reported for every input L1B BRC location.

Table 3-40 AMD_ADS Content Description

Name	Description / Comment	Unit	Туре	Binary
Start_Time	Start date and time of the BRC covered by the present DSR.	UTC	DateTime	12
List_of_AMD_Properties	List of structure containing molecular atmospheric data, see Table 3-41 for structure definition.		List of 24 structures	1824
Total size in bytes			1836	

Table 3-41 AMD_Property Content Description

Name	Description / Comment	Unit	Туре	Binary
Pressure_FP	NWP pressure in current Rayleigh bin.	Pa	IntAl	4
Temperature_FP	NWP temperature in current Rayleigh bin.	10 ⁻² *K	IntAus	2
FrequencyShift_FP	Doppler frequency shift in current Rayleigh bin derived from NWP wind velocity estimation.	10 ⁶ *Hz	FAdoxy	8
RelativeHumidity_FP	NWP relative humidity in current Rayleigh bin.		FAdoxy	8
MolecularLOD_FP	NWP-derived molecular local optical depth in current Rayleigh bin.		FAdoxy	8

Issue: **V 3.04**

Date: **17.06.2016**

Page: **26 /** 40

DIR

Doc.-Title: Aeolus Level 2a Processor Input/Output Data Definition

MolecularBackscatter_FP	NWP-derived backscatter coefficient in current Rayleigh bin.	10 ⁻⁶ * m ⁻¹ * sr ⁻¹	FAdoxy	8
Pressure_Fiz	NWP pressure in current Mie bin.	Pa	IntAl	4
Temperature_Fiz	NWP temperature in current Mie bin.	10 ⁻² *K	IntAus	2
FrequencyShift_Fiz	Doppler frequency shift in current Mie bin derived from NWP wind velocity estimation.	10 ⁶ *Hz	FAdoxy	8
RelativeHumidity_Fiz	NWP relative humidity in current Mie bin.		FAdoxy	8
MolecularLOD_Fiz	NWP-derived molecular local optical depth in current Mie bin.		FAdoxy	8
MolecularBackscatter_Fiz	NWP-derived backscatter coefficient in current Mie bin.	10 ⁻⁶ * m ⁻¹ * sr ⁻¹	FAdoxy	8
	Total size in bytes			76

3.5.12 Group Optical Properties Measurement Data Set

This Measurement Data Set shall be reported for all groups identified in all the input L1B BRCs. Thus the number of data sets reported exceeds the number of input L1B BRCs

Table 3-42 Group_Optical_Properties_MDS Content Description

Name	Description / Comment	Unit	Туре	Binary
	Start date and time of the group profile covered by the present DSR. This is the			
	centroid time of the first measurement of the			
Start_Time	group.	UTC	DateTime	12
Height_Bin_Index	Index of the height level of the group in Rayleigh scale.		IntAuc	1
	Structure containing particle products in the			
Group_Optical_Property	group's height level, see Table 3-43 for		Structure	
	structure description.			32
Craup Cooleantian Middle Dine	Horizontal averaged coordinates of the boundaries of the middle bins over the group.		Structure	
Group_Geolocation_Middle_Bins	See Table 3-44 for structure description.		Structure	48
	Structure containing the averages values for			
Group_Optical_Property_Middle_Bins	the group. See Table 3-45 for structure		Structure	
	description.			64
	Total size in bytes			157

Table 3-43 Group_Optical_Property Content Description

Name	Description / Comment	Unit	Туре	Binary
Group_Extinction	Particle extinction of the height bin	10 ⁻⁶ * m ⁻¹	FAdoxy	8
Group_Backscatter	Particle backscatter of the height bin	10 ⁻⁶ * m ⁻¹ * sr ⁻¹	FAdoxy	8
Group_LOD	Particle LOD of the height bin		FAdoxy	8
Group_SR	Scattering ratio of the height bin.		FAdoxy	8
Total size in bytes			32	

Table 3-44 Group_Geolocation_Middle_Bins Content Description

				Size
Name	Description / Comment	Unit	Type	(binary)

AE-IF-DLR-L2A-004

Issue: V 3.04 Date: 17.06.2016 Page:

27 / 40

Aeolus Level 2a Processor Input/Output Data Definition

Chart Langitude of Craus		10-	la t A I	4
Start_Longitude_of_Group	Latitude of the start point of the two group middle bins.	6degN	IntAl	4
Start_Latitude_of_Group	Longitude of the start point of the two group middle bins.	10-6degE	IntAl	4
Start_Altitude_of_Group	Altitude of the start point of the two middle bins.	m	Fadoxy	8
Mid_Longitude_of_Group	Latitude of the md point of the two group middle bins.	10- 6degN	IntAl	4
Mid_Latitude_of_Group	Longitude of the mid point of the two group middle bins.	10-6degE	IntAl	4
Mid_Altitude_of_Group	Altitude of the mid point of the two middle bins.	m	Fadoxy	8
Stop_Longitude_of_Group	Latitude of the stop point of the two group middle bins.	10- 6degN	IntAl	4
Stop_Latitude_of_Group	Longitude of the stop point of the two group middle bins.	10-6degE	IntAl	4
Stop_Altitude_of_Group	Altitude of the stop point of the two middle bins.	m	Fadoxy	8
	Total size in bytes			48

Table 3-45 Group_Optical_Property_Middle_Bins Content Description

Name	Description / Comment	Unit	Туре	Binary
Mid_Extinction_Top	Particle extinction of the top middle bin	10 ⁻⁶ * m ⁻¹	FAdoxy	8
Mid_Backscatter_Top	Particle backscatter of the top middle bin	10 ⁻⁶ * m ⁻¹ * sr ⁻¹	FAdoxy	8
Mid_LOD_Top	Particle LOD of the top middle bin		FAdoxy	8
Mid_BER_Top	Backscatter-to-extinction ratio of the top middle bin.		FAdoxy	8
Mid_Extinction_Bot	Particle extinction of the bottom middle bin	10 ⁻⁶ * m ⁻¹	FAdoxy	8
Mid_Backscatter_Bot	Particle backscatter of the bottom middle bin	10 ⁻⁶ * m ⁻¹ * sr ⁻¹	FAdoxy	8
Mid_LOD_Bot	Particle LOD of the bottom middle bin		FAdoxy	8
Mid_BER_Bot	Backscatter-to-extinction ratio of the bottom middle bin.		FAdoxy	8
Total size in bytes				64

3.5.13 Scene Classification Measurement Data Set

This Measurement Data Set shall be reported for all groups identified in all the input L1B BRCs. Thus the number of data sets reported exceeds the number of input L1B BRCs

Table 3-46 Scene_Classification_ADS Content Description

Name	Description / Comment	Unit	Type	Binary
Stort Time	Start date and time of the group profile covered by the present DSR. This is the centroid time of the first	UTC	DotoTimo	12
Start_Time	measurement of the group.	UIC	DateTime	12
	Index of the height level of the group in Rayleigh			
Height_Bin_Index	scale.		IntAuc	1

AE-IF-DLR-L2A-004

Issue: V 3.04 Date:

17.06.2016

Page: **28 /** 40

Aladin_Cloud_Flag	Flag testifying for various pieces of information inferred from instrumental data and from NWP relative humidity. 4 flags are included in this one: TopCIBER: 1 if the BER of the upper middle bin is lesser than a given threshold under which a cloud is assumed. 0 else. DownCIBER: 1 if the BER of the lower middle bin is lesser than the threshold. 0 else. CISR: 1 if the scattering ratio in the bin is greater than a given threshold above which a cloud is assumed. 0 else. CIRH: 1 if the relative humidity is greater than a given threshold. 0 else. It is built as: TopCIBER+2*DownCIBER+4*CISR+8*CIRH. Interpretation of single bits: 0: no cloud. 1: the BER says there is a cloud in the upper middle bin, but not in the lower one. Nor the SR and the RH foresee a cloud. 2: the BER says there is a cloud in the lower middle bin, but not in the upper one. Nor the SR and the RH foresee a cloud. 3: the BER says there is a cloud in both middle bins. Nor the SR and the RH foresee a cloud. 4: only the SR says there is a cloud. 5: SR & upper BER find a cloud. 6: SR & lower BER find a cloud. 7: SR & both BERs find a cloud. 10: RH & upper BER find a cloud. 11: RH & both BERs find a cloud. 12: RH & SR find a cloud. 13: RH & SR find a cloud.		IntAuc	1
-------------------	--	--	--------	---

AE-IF-DLR-L2A-004

Issue: V 3.04

Date: 17.06.2016

Page: **29 /** 40

L2A_Group_Class_Reliability Coefficient characterising the reliability of the classification. FAdoxy 8 Spare_1 1 Total size in bytes 24	NWP_Cloud_Flag	Flag testifying for various pieces of information about the cloud composition inferred from NWP data. ClContent is based on clwc & ciwc analysis and ClTp on the temperature analysis, in case the lidar detects a cloud unforeseen by the model. - ClContent: 0 if no cloud is forecasted; 1 if there is only a liquid phase; 2 if there is a mixed liquid+solid phase (i.e. clwc and ciwc are, each taken separately, >0 in at least one region of the group); 3 if there is only a solid phase. - ClTp: 1 if there is only a liquid phase (T>273.15K); 2 if there is a probability of a mixed liquid+solid phase (233.15K <t<273.15k); (t<273.15k).="" (very="" +="" 10:="" 11:="" 12:="" 1:="" 2:="" 3="" 3*clcontent.="" 3:="" 4:="" 6:="" 7:="" 8:="" a="" as:="" be="" built="" but="" cloud="" cltp="" detected,="" forecasted="" forecasted.<="" if="" in="" is="" it="" liquid="" may="" mixed="" no="" one="" only="" phase="" phase.="" solid="" th="" there="" unlikely).="" will=""><th>IntAuc</th><th>1</th></t<273.15k);>	IntAuc	1
	L2A_Group_Class_Reliability		FAdoxy	8
	Spare_1	Total size in bytes		

Issue: **V 3.04**

Date: **17.06.2016**

Page: **30 /** 40

Aeolus Level 2a Processor Input/Output Data Definition

3.6 Size

Table 32 summarizes the typical product size for Aeolus Level 2A products. The size of the product will not necessarily be fixed, so the sizes given are only rough approximations. This assumes an orbit contains \sim 470 observations, N_Max = 30 measurements, all BRCs are processed with the ICA, and 6 groups per BRC are found.

The upper bound of the number of L1B input BRCs is used to estimate the sizes for the SCA, ICA, and MCA profile data reported on L1B input BRC level.

Table 3-47 L2A file size estimation

	Section	Format	Size per orbit in bytes	
Header File	FH	XML	~ 650	
THE	MPH	XML	~ 1800	
	SPH	XML	~ 4250	
	Total size in bytes for HDR file		~ 6700	
Data Block	MPH	KVT	1247	1
DIOCK	SPH	KVT	5732	1
	Geolocation_ ADS	Binary	11684670	
	Meas_PCD_ADS	Binary	499140	1
	SCA_PCD_ADS	Binary	645310	1
	ICA_PCD_ADS	Binary	17860]
	MCA_PCD_ADS	Binary	16920	1
	AMD_PCD_ADS	Binary	48880	1
	Group_PCD_ADS	Binary	307380	1
	SCA_Optical_Properties_MDS	Binary	893000	
	ICA_Optical_Properties_MDS	Binary	287640	
	MCA_Optical_Properties_MDS	Binary	276360	1
	AMD_ADS	Binary	862920	
	Group_OPT_MDS	Binary	442740	Ī
	SCL_ADS	Binary	67680	1
	Total size in bytes for DBL file		16057479	

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

Page:

31 / 40

4 Input Auxiliary Files

4.1 Auxiliary Meteorological Data

AUX_MET_12, see section 5.1 of [RD 1].

4.2 Calibration Coefficients

AUX_CAL_L2, see section 5.3 of reference [RD 10].

4.3 L2A Processing Parameters

The L2A Processing Parameters file is a file in XML format. All size values given in the following tables are estimated lower bound sizes.

4.3.1 Product Structure

The Level 2A Processing Parameters product is contained in one product file containing Fixed Header and Main Product Header as defined in sections 3.2 and 3.3 respectively, as well as a Specific Product Header and a Data Set as described in following subsections. All headers and data sets are in XML format.

The Level 2A Processing Parameters auxiliary file name has the format defined in Section 3.1.1:

AE_CCCC_AUX_PAR_2A_yyyymmddThhmmss_99991231T235959_vvvv.EEF

The date/times represent the start and stop of the validity period. This validity period will generally extend over a long period of time. The product file has an extension .EEF to designate a single file in XML format.

4.3.2 FH

See also section 3.2.

Table 4-1 Fixed Header of AUX_PAR_2A file

Tag Name	Content Description	Unit	Туре	
Fixed_Header	Root tag		String	29
File_Name	Logical file name without the extension		String	83
File_Description	One line description of the file		String	72
Notes	Multi-lines free text		String	50
Mission	String representing the mission name ('Aeolus' for the ADM-Aeolus mission). Note that, in the File_Name, the Mission ID is a two character string ('AE' for the ADM-Aeolus mission)		String	43
File_Class	This order type is a 4 character string. Currently the order types "TEST", "OPER", "RPRO" and "OFFL" are defined. The list of order types may be expanded or modified depending on operational needs.		String	49
File_Type	The part of the file name that gives the file class. Here, AUX_PAR_2A.		String	33
Validity_Period	See Table 4-2 for structure description		Structure	145
File_Version	The vvvv part of the file name (see §5.1).Set to 0001.		Integer	33
Source	See Table 4-3 for structure description		Structure	171

Document-No. Is AE-IF-DLR-L2A-004 V:

Issue: **V 3.04**

Date: **17.06.2016**

Page: **32 /** 40

DLR

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

Table 4-2 Validity_Period Content Description

Tag Name	Content Description	Unit	Туре	
Validity_Start	The validity of a file is managed by the PDGS environment itself, see [AD 3]. Omitting the micro seconds, Validity_Start time equals Sensing_Start of Table 3 7.	UTC	DateTime	56
Validity_Stop	The validity of a file is managed by the PDGS environment istself, see [AD 3]. Omitting the micro seconds, Validity_Stop time equals Sensing_Stop of Table 3 7. To indicate the end of the mission, the special value: 'UTC=9999-12-31T23:59:59' can be used.	UTC	DateTime	54
Total size for XML FH in bytes:				110

Table 4-3 Source Content Description

Tag Name	Content Description	Unit	Туре	
System	Set to "Manual".		String	21
Creator	Set to "Manual".		String	29
Creator_Version	Set to "01.00"		String	40
Creation_Date	Date/time of creation.	UTC	DateTime	64
Total size for XML FH in bytes:			154	

4.3.3 **MPH**

Table 4-4 Main Product Header of AUX_PAR_2A file

Tag Name	Content Description	Unit	Туре	
Main_Product_ Header	Root tag for XML format only		Structure	43
Product	Logical file name, i.e. the file name excluding the extension		String	73
Proc_Stage	Processing stage flag: 'N' for nominal process-ing (quasi-or close to real-time), 'T' for test product, 'R' for reprocessed.		Enum	27
Ref_Doc	Reference document describing the product		String	10
Spare_1			Spare	10
Acquisition_Station	Field left empty.		String	49
Proc_Center	Set to "Local".		String	32
Proc_Time	Set to Creation_Date	UTC	DateTime	53
Software_Ver	Set to "1.00".		String	21
Baseline	Baseline identifier (as provided by the Job Order File)		String	51
Spare_2			Spare	10
Sensing_Start	Set to Validity_Start thereby omitting the micro seconds part.	UTC	DateTime	61
Sensing_Stop	Set to Validity_Stop thereby omitting the micro seconds part.	UTC	DateTime	59
Spare_3			Spare	10
Phase	Phase number. If not used set to 'X'		Enum	16

Issue: **V 3.04**

Date: **17.06.2016**

Page: **33 /** 40

DIR

Doc.-Title: Aeolus Level 2a Processor Input/Output Data Definition

Cycle	Cycle number		IntAuc	19
Rel_Orbit	Start relative orbit number		IntAs	29
Abs_Orbit	Start absolute orbit number		IntAs	29
State_Vector_Time	Time of state vector	UTC	DateTime	69
Delta_UT1	Delta_UT1 = UT1-UTC	s	FAdo06	40
X_Position	X position in Earth-fixed reference	m	FAdo73	32
Y_Position	Y position in Earth-fixed reference	m	FAdo73	32
Z_Position	Z position in Earth-fixed reference	m	FAdo73	32
X_Velocity	X velocity in Earth-fixed reference	m/s	FAdo46	34
Y_Velocity	Y velocity in Earth-fixed reference	m/s	FAdo46	34
Z_Velocity	Z velocity in Earth-fixed reference	m/s	FAdo46	34
Vector_Source	Source of orbit vectors (not used by ADM-Aeolus) , set to "GP".		String	33
Spare_4			Spare	10
Utc_Sbt_Time	Time corresponding to SBT below (not used by ADM-Aeolus)	UTC	DateTime	59
Sat_Binary_Time	Satellite Binary Time (not used by ADM-Aeolus)		IntAul	46
Clock_Step	Clock step size (not used by ADM-Aeolus)	ps	IntAul	46
Spare_5			Spare	10
	Time of occurrence of the			
Leap_Utc	leap second	UTC	DateTime	51
Leap_Sign	Leap second sign (+001 if positive leap second, -001 if negative)		IntAc	27
Leap_Err	Leap second error. '1' if leap second error occurs during processing segment, '0' otherwise		Boolean	25
Spare_6			Spare	10
Product_Err	Set to "FALSE".		Boolean	32
Tot_Size	Set to "-1".	bytes	IntAd	37
Sph_Size	Set to "-1".	bytes	IntAl	37
Num_Dsd	Set to "1".		IntAl	21
Dsd_Size	Set to "-1".	bytes	IntAl	38
Num_Data_Sets	Set to "1".		IntAl	33
Spare_7			Spare	10
Total size for XML	MPH in bytes			1434

4.3.4 **SPH**

Table 4-5 Specific Product Header of the AUX_PAR_2A file

Name	Description / Comment	Unit	Туре	
Specific_Product_Header	Root tag for XML format only.		Structure	45
Sph_Descriptor	Set to "AUX_PAR_2A_SPECIFIC_HEADER".		String	59
List_of_Dsds	List of data set descriptors. See table 49 for structure definition		List of 1 Structure	296
Total size for XML SPH in bytes				400

Issue: **V 3.04**

Date: **17.06.2016**

Page: **34 /** 40

DIR

Aeolus Level 2a Processor Input/Output Data Definition

Table 4-6 Level 2A List_of_Dsds Content Description

Doc.-Title:

Name	Description / Comment	Unit	Туре	XML
Dsd	Data set descriptor. See for structure description.		Structure	267
Total size in bytes				267

Table 4-7 Dsd Content Description

Name	Description / Comment	Unit	Туре		
Ds_Name	Set to "Level_2A_Proc_Params".		String	39	
Ds_Type	Set to "G" for Global Annotation Data Set.		Enum	20	
Filename	Set to "Unused".		String	27	
Ds_Offset	Set to "1".		IntAd	37	
Ds_Size	Set to "1".		IntAul	36	
Num_Dsr	Number of data set records in data set.		IntAl	20	
Dsr_Size	Set to "1".		IntAl	38	
Byte_Order	"3210 for binary DS's to designate byte order is most significant byte first.		String	29	
Spare_1			Spare	10	
Total size for XM	Total size for XML SPH in bytes				

4.3.5 Level 2A Processing Parameters GADS

Table 4-8 Level 2A Processing Parameters GADS DSR

Name	Description / Comment	Unit	Туре	XML
Level_2A_Processing_Parameters	Root tag.		Structure	65
FH_Default_Fields	Values responsible for populating the fixed header. See table 51 for structure definition.		Structure	336
MPH_Default_Fields	Values responsible for populating the main product header. See table 52 for structure definition		Structure	153
Config_Params	Configurable processing parameters. See table 53 for structure definition.		Structure	4688
System_Params	System set-up parameters. See table 58 for structure definition.		Structure	79
Total size in bytes				5321

Table 4-9 Level 2A Processing Parameters GADS FH_Default_Fields Content Description

Name	Description / Comment	Unit	Туре	XML
File_Description	1-line description of the file		String	53
Notes	Multi-lines free text		String	40
Mission	Set to "Aeolus".		String	25
Mission_ld	Set o "AE".		String	27
File_Class	Set to "TEST".		String	29
File_Version	Set to "0001".		String	33

Issue: **V 3.04**

Date: **17.06.2016**

Page: **35 /** 40

DLR

Doc.-Title: Aeolus Level 2a Processor Input/Output Data Definition

Total size in bytes			297	
Creator_Version	Set to "1.00".		String	40
Creator	Set to "Manual".		String	29
System	Set to "Manual".		String	21

Table 4-10 Level 2A Processing Parameters GADS MPH_Default_Fields Content Description

Name	Description / Comment	Unit	Туре	XML
Ref_Doc	Reference document describing the product		String	32
Software_Ver	Set to "01.00".		String	43
Proc_Centre	Set to "Local".		String	37
Total size in bytes				112

Table 4-11 Level 2A Processing Parameters GADS Config_Params Content Description

Name	Description / Comment	Unit	Туре	XML
SAMS	Structure containing configurable parameters of the Synthetic Accumulated Molecular Signal Construction algorithm. See table 59 for structure description.		Structure	513
L2Ap	Structure containing configurable parameters of the L2A processor itself. See table 60 for structure description.		Structure	4144
Total size in bytes				

Table 4-12 Level 2A Processing Parameters GADS SAMS Content Description

Name	Description / Comment	Unit	Туре	XML
Wavelength	Laser wavelength.	m	Fadoxy	33
Maximum_Altitude	Altitude up to which AMD profiles are calculated.	m	IntAus	42
Minimum_Altitude	Altitude down to which AMD profiles are calculated.	m	IntAus	42
Altitude_Step	Vertical resolution of the calculation of AMD profiles.	m	IntAus	36
Betam_Factor	Multiplicative factor in the formula to get the molecular backscatter coefficient from atmospheric data.		Fadoxy	37
Reference_Wavelength	Reference wavelength in the formula to get the molecular backscatter coefficient from atmospheric data.	m	Fadoxy	53
Wavelength_Exponent	Exponent of the ratio of wavelengths in the formula to get the molecular backscatter coefficient from atmospheric data.		Fadoxy	53
Reference_Pressure	Reference pressure in the formula to get the molecular backscatter coefficient from atmospheric data.	hPa	IntAus	46
Reference_Temperature	Reference temperature in the formula to get the molecular backscatter coefficient from atmospheric data	K	IntAus	52
	Structure containing the parameters for the algorithm that identifies the AMD profiles that match the L1B			
Match AMD	measurements. See Table 4-13 table for structure		Structuro	106
MatchAMD description. Structure Total size in bytes				500

Table 4-13 Level 2A Processing Parameters GADS MatchAMD Content Description

Name	Description / Comment	Unit	Туре	XML
Earth_Radius	Radius of the blue planet.	m	IntAul	39

AE-IF-DLR-L2A-004

Issue: **V 3.04**

Date: **17.06.2016**

Page: **36 /** 40

4

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

Total size in bytes					1
Time_Gap_Threshold	Threshold lesser than which the delay between a measurement and an AMD profile must be.	s	IntAus	46	

Table 4-14 Level 2A Processing Parameters GADS L2Ap Content Description

Name	Description / Comment	Unit	Туре	XML
Quality_Flag	Structure containing the different thresholds used to provide a data quality flag on each of the main L2A optical properties: extinction, backscatter, extinction to backscatter ratio. See table for structure description.		Structure	596
Find_Matching_Bins	Structure containing configurable parameters of the matching bin finder between both channels. See Table 4-16 for structure description.		Structure	99
Feature_Finder	Structure containing configurable parameters of the feature finder. See for structure description.		Structure	2028
SCA	Structure containing configurable parameters of the SCA. See for structure description.		Structure	255
ICA	Structure containing configurable parameters of the ICA. See for structure description.		Structure	486
Trans2LOD	Structure containing configurable parameters of the Trans2LOD. See for structure description.		Structure	199
MCA	Structure containing configurable parameters of the MCA. See for structure description.		Structure	66
Scene_Classification	Structure containing configurable parameters of the scene classification. See for structure description.		Structure	380
Total size in bytes				4109

Table 4-15 Level 2A Processing Parameters GADS Quality_Flag Content Description

Name	Description / Comment	Unit	Туре	XML
Mie_Snr_Threshold	Threshold on the Mie SNR to consider the Mie signal as valid		IntAus	41
Rayleigh_Snr_Threshold	Threshold on the Rayleigh SNR to consider the Rayleigh signal as valid		IntAus	49
Mid_Mie_Snr_Threshold	Threshold on the Mie SNR defined on middle bins to consider the Mie signal as valid		IntAus	47
Mid_Rayleigh_Snr_Threshold	Threshold on the Rayleigh SNR defined on middle bins to consider the Rayleigh signal as valid		IntAus	57
Beta_Error_Bar_Threshold	Threshold on the relative error of backscatter retrieval (ratio of the variance of the backscatter coefficient to the backscatter coefficient)	%	IntAus	53
Alpha_Error_Bar_Threshold	Threshold on the relative error of extinction retrieval (ratio of the variance of the extinction coefficient to the extinction coefficient)	%	IntAus	55
Mid_Beta_Error_Bar_Threshold	Threshold on the relative error of backscatter retrieval on middle bins (ratio of the variance of the backscatter coefficient to the backscatter coefficient defined on middle bins)	%	IntAus	61
Mid_Alpha_Error_Bar_Threshold	Threshold on the relative error of extinction retrieval on middle bins (ratio of the variance of the extinction coefficient to the extinction coefficient defined on middle bins)	%	IntAus	63
Total_Optical_Depth_Threshold	Threshold above which we consider that the backscattered signal was totally attenuated by absorption.		IntAus	63
BER_Max_Threshold	Above this value, the BER retrieval is supposed to	sr-1	Fadoxy	39

Issue: **V 3.04**

Date: **17.06.2016**

Page: **37 /** 40

DIR

Doc.-Title:

Aeolus Level 2a Processor Input/Output Data Definition

	be invalid			
BER_Min_Threshold	Below this value, the BER retrieval is supposed to be invalid	sr-1	Fadoxy	39
Total size in bytes				567

Table 4-16 Level 2A Processing Parameters GADS Find_Matching_Bins Content Description

Name	Description / Comment	Unit	Туре	XML
	Threshold lesser than which the gap between a Rayleigh bin border and a Mie bin border must be for them to			
Altitude_Match_Threshold	match.	m	IntAus	58
Total size in bytes			58	

Table 4-17 Level 2A Processing Parameters GADS Feature_Finder Content Description

Name	Description / Comment	Unit	Туре	XML
	Parameter used to tune the minimum size			
Group_Energy_Threshold	of groups before they may be nibbled.	J	Fadoxy	58
	Standard deviation of the smoothing			
Causaina Maali Ctd5	Gaussian mask when it is 5-bin wide, i.e.			40
Gaussian_Mask_Std5	when the minimum group length is 3.		Fadoxy	49
	Standard deviation of the smoothing Gaussian mask when it is 3-bin wide, i.e.			
Gaussian_Mask_Std3	when the minimum group length is 2.		Fadoxy	49
Gaassan_mask_stas	<u> </u>		Гаасху	10
Emptiness_Betap_Threshold	Value below which it is considered that there is no significant amount of particles.	1/(m*sr)	Fadoxy	63
Empliness_Betap_Titleshold	Negative value under which fluctuations		гацоху	03
	are considered to be too high, leading to a	1/(m*sr)		
Negative_Betap_Threshold	rejection of the bin.	17(111 31)	Fadoxy	61
3 =	Threshold on the normalised variation of		,	
	the standard deviation of the smoothed			
	particulate backscatter when attempting to	1/(m*sr)		
	swap a bin between two neightbour			
Nibbling_Threshold	groups.		Fadoxy	47
	Threshold on the unsmoothed particulate			
	backscatter relative error, esti ated by the			
	error propagation, above which products from a group will be considered			
Remove_Group_Relative_Error_Threshold	untrustworthy and rejected.		Fadoxy	87
Tromovo_Group_Troidinvo_Emoi_Timeonoid	Distribution of smoothed particulate		Тааоху	- 01
	backscatter standard deviation values in			
	function of the average particulate			
	backscatter of the goup. See Table 4-18		List of 14	
Limits_of_Smoothed_Betap_Limits	for structure description.		structures	1532
	Coefficient to infer a limit to the smoothed			
	particulate backscatter standard deviation			
	variation when adding a bin to a group,			
	making use of the Smoothed_Betap_Limits		l	
DSigma_Coefficient	distribution above.		Fadoxy	49
Total size in bytes				1995

Table 4-18 Level 2A Processing Parameters GADS List_of_Smoothed_Betap_Limits Content Description

Name	Description / Comment	Unit	Туре	XML
Smoothed_Betap_Limit	Structure of smoothed betap limits, see Table 4-19 for content description.		Structure	105
Total size in bytes		105		

Issue: **V 3.04**

Date: **17.06.2016**

Page: **38 /** 40

4

Doc.-Title: Aeolus Level 2a Processor Input/Output Data Definition

Table 4-19 Level 2A Processing Parameters GADS Smoothed_Betap_Limit Content Description

Name	Description / Comment	Unit	Туре	XML
BetapStd	Smoothed particulate backscatter standard deviation.	1/(m*sr)	Fadoxy	29
BetapMean	Corresponding smoothed particulate backscatter mean.	1/(m*sr)	Fadoxy	31
Total size in bytes	•	- -	-	60

Table 4-20Level 2A Processing Parameters GADS SCA Content Description

Name	Description / Comment	Unit	Туре	XML
Clear_FMB_Beta_Threshold	Particulate backscatter value below which the first matching bin will be considered empty of any particle, introducing thus no oscillating bias in the extinction retrieval.	1/(m*sr)	Fadoxy	61
Negative_Betap_Threshold	Particulate backscatter value below which the coefficient and its derivatives will be considered invalid and set to -1. Slightly ngative values may be accepted to catch a glimps of the oscillations around zero.	1/(m*sr)	Fadoxy	61
Negative_SLOD_Threshold	SLOD value below which the coefficient and its derivatives will be considered invalid and set to -1. Slightly ngative values may be accepted to catch a glimps of the oscillations around zero.		Fadoxy	59
Negative_Betap_Threshold2	Particulate backscatter value below which thecoefficient and its derivatives will be considered invalid and set to - 1. Slightly ngative values may be accepted to catch a glimps of the oscillations around zero.	1/(m*sr)	Fadoxy	63
Total size in bytes				244

Table 4-21 Level 2A Processing Parameters GADS ICA Content Description

Name	Description / Comment	Unit	Туре	XML
Emptiness_Betap_Threshold	Particulate backscatter value below which it is considered that there is no significant amount of particles. Note that it may be the same as for the feature finder.	1/(m*sr)	Fadoxy	63
Negative_Betap_Threshold	Negative value under which fluctuations are considered to be too high, leading to a rejection of the bin.	1/(m*sr)	Fadoxy	61
List_of_Filling_Cases	Array of the factors enabling case assumption in the equations, see Table 4-22 for structure description		List of 3 structures	296
Credibility_Criterion	Particulate backscatter value below which thecoefficient and its derivatives will be considered invalid and set to - 1. Slightly ngative values may be accepted to catch a glimps of the oscillations around zero.		Fadoxy	55
Total size in bytes			475	

Table 4-22 Level 2A Processing Parameters GADS List_of_Filling_Cases Content Description

Name	Description / Comment	Unit	Туре	XML
Filling_Case	Factors for one specific filling case, see Table 4-23 for structure description.		Structure	83
Total size in bytes			83	

Issue: V 3.04

Aeolus Level 2a Processor Input/Output Data Definition

Date: 17.06.2016

Page: **39 /** 40

Table 4-23 Level 2A Processing Parameters GADS Filling_Case Content Description

Name	Description / Comment	Unit	Туре	XML
F1	Factor of the constant member.		Fadoxy	18
F2	Factor of the H function.		Fadoxy	18
F3	Factor of the exponential function.		Fadoxy	18
Total size in bytes			54	

Table 4-24 Level 2A Processing Parameters GADS Trans2LOD Content Description

Name	Description / Comment	Unit	Туре	XML
Iteration_Max	Maximum number of iterations in the iterative estimation of the SLOD.		IntAus	36
Inversion_Tolerance	Maximum gap between the ratio of the normalized two way transmission and the squared transmission from the satellite to the bin and the value resulting of the SLOD estimation.		Fadoxy	51
Asymptotic_Expansion_Limit_Coefficient	Coefficient involved in the determination of the asymptotic expansion to be used in the inversion to get the SLOD. It's value is set to 0.4 and may be static.		Fadoxy	89
Total size in bytes				176

Table 4-25 Level 2A Processing Parameters GADS MCA Content Description

Name	Description / Comment		Туре	XML
Low_SR_fine_Threshold	Value below which the SR_fine frim L1B data is considered not vali. Note that the default value of 0.75 will obviously lead to quantitatively wrong results, but the shape of the variations may be ept in the calculation thus enabling some interpretation.		Fadoxy	55
Total size in bytes				55

Table 4-26 Level 2A Processing Parameters GADS Scene_Classification Content Description

Name	Description / Comment	Unit	Туре	XML
Scattering_Ratio_Cloud_Threshold	Value of the SR above which the presence of a cloud is strongly assumed.		Fadoxy	77
BER_Cloud_Threshold	Value of the BER below which the presence of a cloud is strongly assumed.	1/(m*sr)	Fadoxy	51
Water_Melting_Temperature	Set to 273.15 K for 1 bar pressure.	K	Fadoxy	63
Surfusion_Threshold_Temperature	Temperature down to which supercooled water may be seen in the atmosphere. Set to 233.15 K.	K	Fadoxy	65
Relative_Humidity_Cloud_Threshold	RH value above which the presence of a cloud is strongly assumed. Taking the incertitude of the model, it is set to 0.94.		Fadoxy	79
Total size in bytes				335

Table 4-27 Level 2A Processing Parameters System_Params Content Description

Name	Description / Comment	Unit	Туре	XML
Simulated_Data_Flag	Set to TRUE if input L1B product was generated of E2S simulated data.		Boolean	48

Document-No. Issue: AE-IF-DLR-L2A-004 V 3.04

Date: 17.06.2016

Page: **40 /** 40

Total size in bytes

4.3.6 **Size**

The size figures given here are just an estimation of the size of the XML file.

Table 4-28 Overall size of AUX_PAR_2A file

	Section	Format	Size per file
Header	FH	XML	708
	MPH	XML	1434
	SPH	XML	400
	Level_2A_Proc_Params_ADS	XML	5321
Total size in bytes for XML file			7863

4.4 Aerosol Extinction-To-Backscatter Ratio

AUX_CLM_L2, see section 5.3 of [RD 1].