Duration: 90 mins

5 Hardware Lab (Amplitude Modulation/Demodulation)

5.1 Purpose

Analyze conventional DSB and DSB-SC AM modulation and demodulation by implementing basic analogue communication circuits.

5.2 Equipment

 $1 \times$ Oscilloscope

 $1 \times$ DC Power Supply

 $2 \times$ Function Generator

<u>IC:</u> 1× MC 1496 (LM1496)

Resistors: $3 \times 56\Omega$, $2 \times 750 \Omega$, $2 \times 3K9\Omega$, $3 \times 1K\Omega$, $1 \times 6K8\Omega$, $1 \times 5K1\Omega$,

 $1 \times 50 \text{K}\Omega$ Trimpot. Capacitors: $3 \times 0.1 \mu\text{F}$

Diode: 1N4148

5.3 Pre Lab Tasks

- 3.3.1 Study amplitude modulation (AM) and demodulation.
- 3.3.2 Study the types of AM and the differences between them.
- 3.3.3 Study the datasheet of the integrated circuit MC 1496.

5.4 Lab Work

- 3.4.1 Set up the circuit in Figure 1, check the connections of feed voltages (+12V), (-8V) and the ground connections.
- 3.4.2 Apply a sinusoidal signal with amplitude of 1V (peak to peak) and 500KHz frequency for the carrier signal.
- 3.4.3 Apply a sinusoidal signal with amplitude of $0.4\mathrm{V}$ (peak to peak) and 200Hz frequency for the message signal.
- 3.4.4 The modulated signal is observed at sixth pin of the IC (MC 1496). Draw the observed signal.
- 3.4.5 Observe the variation of the output by using the trimpot.
- 3.4.6 Draw the demodulator circuit in Figure 2 and feed the input of the demodulator by the output of the modulator. Observe the message vs. demodulator output and comment on the results.

5.5 Results and Conclusion

- Plot the message and the recovered signals together. If you observe any difference between two signals, explain the reasons.
- Calculate the modulation index (μ) by using the plot you obtained during the modulation step. Determine the type of modulation according to this value.
- Explain the reason of the variation when you change the value of the trimpot.
- Plot the output signal for the cases of $\mu < 1$, $\mu = 1$ and $\mu > 1$.

March 21, 2022 Page 1

Duration: 90 mins

Figure 1: Amplitude Modulation

Figure 2: Demodulator Circuit (Envelope Detector)

• How does the values of R and C in the envelope detector circuit affect the demodulation? What is the limitation of these values associated with the message signal.

March 21, 2022 Page 2