The Characteristic Direction: A Geometrical Approach to Differential Expression – Part Two

Network Analysis in Systems Biology

Neil Clark, PhD

Instructor, Ma'ayan Lab

Department of Pharmacology and Systems Therapeutics

Icahn School of Medicine at Mount Sinai, New York, NY 10029

Linear Discriminant Analysis

► Bayes rule for the classification probability:

Class conditional Prior probability of X of class k
$$\Pr(G = k | X = x) = \frac{\int_{I_{l=1}^{K}} f_l(x) \pi_k}{\sum_{l=1}^{K} f_l(x) \pi_l}$$

Linear Discriminant Analysis

► Bayes rule for the classification probability:

Class conditional Prior probability density of X of class k
$$\Pr(G = k | X = x) = \frac{\int_{l=1}^{K} f_l(x) \pi_k}{\sum_{l=1}^{K} f_l(x) \pi_l}$$

► Model the class conditional density:

Class mean Class covariance matrix
$$f_k(x) = \frac{1}{(2\pi)^{\frac{p}{2}|\Sigma_k|^{\frac{1}{2}}}} e^{-\frac{1}{2}(x-\mu_k)^T \sum_k^{T-1} (x-\mu_k)}$$

Linear Discriminant Analysis

► Bayes rule for the classification probability:

Prior probability of X

$$Prior probability of X of class k$$

$$Pr(G = k | X = x) = \frac{\int_{l=1}^{K} f_l(x) \pi_k}{\sum_{l=1}^{K} f_l(x) \pi_l}$$

► Model the class conditional density:

$$f_k(x) = \frac{1}{(2\pi)^{\frac{p}{2}|\Sigma_k|^{\frac{1}{2}}}} e^{-\frac{1}{2}(x-\mu_k)^T \sum_{k=1}^{Class covariance} (x-\mu_k)}$$

► Estimate classification probability:

$$\log \frac{\Pr(G = k | X = x)}{\Pr(G = l | X = x)} = \log \frac{\pi_k}{\pi_l} - \frac{1}{2} (\mu_k - \mu_l)^T \Sigma^{-1} (\mu_k - \mu_l) + x^T \Sigma^{-1} (\mu_k - \mu_l)$$

► The orientation of the separating hyper plane

is given by:
$$b = \Sigma^{-1}(\mu_k - \mu_l)$$

Interpreting the Characteristic Direction

► The square of the component corresponding to each gene is interpreted as a quantification of its significance in the total differential *M*

Use Shrinkage to Address the Curse of Dimensionality

- Our estimate of the covariance matrix is likely to be fraught with error because of the curse of dimensionality
- Attempt to smooth away the error while retaining the signal with shrinkage
- Shrink the covariance matrix to the scalar variance
 - $\hat{\Sigma}(\gamma) = \gamma \hat{\Sigma} + (1 \gamma)\sigma^2 I_p$, with $\gamma \in [0,1]$