This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUA Interna

9604214A1

INTERNATIONAL APPLICATION PUBLISHED (

(51) International Patent Classification 6:

C03C 13/06, C04B 35/622

(11) International Publication Number:

WO 96/04214

A1

(43) International Publication Date:

15 February 1996 (15.02.96)

(21) International Application Number:

PCT/GB95/01797

(22) International Filing Date:

31 July 1995 (31.07.95)

(30) Priority Data:

9415586.8 9508683.1

GB 2 August 1994 (02.08.94) 28 April 1995 (28.04.95)

GB

(71) Applicant (for all designated States except US): THE MOR-GAN CRUCIBLE COMPANY PLC [GB/GB]; Morgan House, Madeira Walk, Windsor, Berkshire SL4 1EP (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only): JUBB, Gary, Anthony [GB/GB]; 16 Walton Close, Stourport-on-Severn, Worcestershire DY13 0LS (GB).

(74) Agent: PHILLIPS & LEIGH; 7 Staple Inn, Holborn, London WC1V 7QF (GB).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

(54) Title: INORGANIC FIBRES

(57) Abstract

Inorganic fibres are disclosed, vacuum preforms of which have a shrinkage of 3.5 % or less when exposed to 1260 °C for 24 hours. The fibres have a composition comprising SrO, Al₂O₃, and sufficient fibre forming additive to allow fibre formation but not so much as to increase shrinkage beyond 3.5 %. A preferred range of fibres has a shrinkage of 3.5 % or less when exposed to 1500 °C for 24 hours and may comprise (in weight percent): SrO 53.2 %-57.6 %, Al₂O₃ 30.4-40.1 %, SiO₂ 5.06-10.1 %.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	Œ	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	K2	Kazakhstan	SK	Slovakia
CM	Cameroon	น	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Larvia	TJ	Tajikistan
DE	Germany	MC	Monaco	iπ	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	ÜA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon			***	A SCC TARREL

INORGANIC FIBRES

This invention relates to man-made inorganic oxide fibres. The invention also relates to products formed from such fibres.

Inorganic fibrous materials are well known and widely used for many purposes (e.g. as thermal or acoustic insulation in bulk, mat, or blanket form, as vacuum formed shapes, as vacuum formed boards and papers, and as ropes, yarns or textiles; as a reinforcing fibre for building materials; as a constituent of brake blocks for vehicles). In most of these applications the properties for which inorganic fibrous materials are used require resistance to heat, and often resistance to aggressive chemical environments.

Inorganic fibrous materials can be either glassy or crystalline. Asbestos is an inorganic fibrous material one form of which has been strongly implicated in respiratory disease.

It is still not clear what the causative mechanism is that relates some asbestos with disease but some researchers believe that the mechanism is mechanical and size related. Asbestos of a critical size can pierce cells in the body and so, through long and repeated cell injury, have a bad effect on health. Whether this mechanism is true or not regulatory agencies have indicated a desire to categorise any inorganic fibre product that has a respiratory fraction as hazardous, regardless of whether there is any evidence to support such categorisation. Unfortunately for many of the applications for which inorganic fibres are used, there are no realistic substitutes.

Accordingly there is a demand for inorganic fibres that will pose as little risk as possible (if any) and for which there are objective grounds to believe them safe.

One line of study has proposed that if inorganic fibres were made that were sufficiently soluble in physiological fluids that their residence time in the human body was short; then damage would not occur or at least be minimised. As the risk of asbestos linked disease appears to depend very much on the length of exposure this idea appears reasonable. Asbestos is extremely insoluble.

As intercellular fluid is saline in nature the importance of fibre solubility in saline solution has long been recognised. If fibres are soluble in physiological saline solution then, provided the dissolved components are not toxic, the fibres should be safer than fibres which are not so soluble. The shorter the time a fibre is resident in the body the less damage it can do.

Such fibres are exemplified by the applicant's earlier International Patent Applications WO93/15028 and WO94/15883 which disclose saline soluble fibres usable at temperatures of 1000°C and 1260°C respectively

7

An alternative line of study has proposed that hydratable fibres that lose their fibrous nature in body fluids may offer another route to "safe" fibres in that the shape and size of the fibres may be what is causing damage. This route is exemplified by European Patent Application Nos. 0586797 and 0585547 which are aimed at providing silica free compositions and which disclose two calcium aluminate compositions (one containing 50/50 wt% alumina/calcined lime and the other disclosing 63/30 wt% alumina/calcined lime with additions of 5% CaSO₄ and 2% other oxides). Such fibres hydrate readily so losing their fibrous nature. Asbestos does not hydrate and seems to maintain its fibrous shape in body fluids effectively indefinitely.

The applicants have found that strontium aluminate compositions do not appear to form fibres when blown from a melt whereas such compositions including additives such as silica do form fibres when blown from a melt. Such fibres appear to hydrate in the manner of calcium aluminate fibres and additionally show the potential for high temperature use. Vacuum formed preforms of some such fibres show shrinkages of 3.5% or less when exposed to 1260°C for 24 hours; some show shrinkages of 3.5% or less when exposed to 1400°C for 24 hours; and some even show shrinkages of 3.5% or less when exposed to 1500°C for 24 hours. Such fibres provide a hydratable high temperature fibre usable in the products recited above.

Accordingly the present invention provides an inorganic fibre, a vacuum cast preform of which having a shrinkage of 3.5% or less when exposed to 1260°C for 24 hours, the fibre comprising SrO, Al₂O₃, and sufficient of a fibre forming additive to allow fibre formation, but not so much as to increase shrinkage beyond 3.5%.

Preferably the fibre forming additive comprises SiO₂ and the constituents SrO, Al₂O₃, and SiO₂ comprise at least 90wt% (more preferably at least 95wt%) of the fibre composition.

The scope of the invention is made clear in the appended claims with reference to the following description.

In the following, where reference is made to a saline soluble fibre, this is to be taken as meaning a fibre having a total solubility of greater than 10ppm in saline solution as measured by the method described below, and preferably having much higher solubility.

The experimental results are described below with reference to Tables 1, 2, and 3.

Table I shows a series of compositions that were melted and blown in a conventional manner. Those compositions indicated as "&" did not form fibre to

3

a useful extent but formed shot. For each of the compositions the analysed composition in weight percent (found from x-ray fluorescence analysis) is shown. Where a figure "<0.05" is shown this means that the component concerned could not be detected.

Owing to the nature of x-ray fluorescence measurements (which are sensitive to the surrounding environment) the total quantity of material found by analysis can add up to over 100% and in this patent specification (including the description claims and abstract) the figures have not been normalised to 100%. For each composition however the total quantity of analysed material is indicated and it can be seen that the variation from 100% is small. Under the column headed "Relative weight percent" the weight percentage of SrO, Al₂O₃ and SiO₂ to the total of these components is indicated. Except where the context dictates otherwise any percentages quoted in this specification should be taken as percentages as analysed by x-ray fluorescence analysis and not absolute percentages.

Table 2 shows (in the same order as Table 1) shrinkage and solubility data for the fibre forming compositions. Solubility is expressed as parts per million in solution as measured in the method described below.

All of the compositions above and including line A of Tables 1 and 2 include 2.76wt% or less SiO₂. It can be seen that most of these compositions did not form fibre. Some of the fibres include Na₂O in amounts of 2.46wt% or more to assist fibre forming but show poor shrinkage characteristics at temperatures above 1000°C (in the sense of more than 3.5% at measured temperature).

One fibre (SA5(2.5%K2O/SiO2)) which contains 1.96% K₂O and 2.69% SiO₂ has acceptable shrinkage at 1260°C.

Thus it can be seen that "pure" strontium aluminates do not form fibres whereas by addition of fibre forming additives (e.g. SiO₂ and Na₂O) fibres may be formed. The shrinkage characteristics of the resultant fibres depend upon the additives used.

The fibres below line A and above and including line B have a SrO content of less than 35wt% and show poor shrinkage characteristics. The fibres shown below line B have a SrO content of greater than 35wt% and where measured show acceptable shrinkage at 1260°C.

The fibre of line C comprises 2.52wt% CaO and this appears to be damaging to performance at 1400°C. The fibres lying below line D and above and including line E have an Al₂O₃ content of greater than 48.8wt% which appears to affect adversely the performance of the fibres at 1400°C. The fibre

4

below line E has a SiO₂ content of 14.9wt% which appears to be bad for 1400°C performance (see below for 1500°C performance).

A further limited range of compositions (shown as bold text under the column 1400°C) tend to have an acceptable shrinkage at 1400°C. These compositions lie below line C and above and including line D of Tables 1 & 2. The two fibres indicated in this range that do not meet the 3.5% shrinkage requirement may just be anomalous results.

The fibres lying below line C and above and including line D have been sorted on relative weight percent SrO (as defined above) and it can be seen that those compositions with a relative weight percent SrO of greater than 53.7% and less than 59.6% tend to have acceptable shrinkages at 1500°C. The fibre in this region that does not have acceptable shrinkage at 1500°C is a high SiO₂ fibre (12.2wt% SiO₂) and this supports the deleterious effect of too much SiO₂ mentioned above.

Two fibres (SA5a and SA5aII) show acceptable shrinkage at 1550°C.

Additionally it can be seen that some of the fibres show enormous solubilities and so may provide usable refractory fibres that will dissolve in body fluids.

All of the fibres showed hydration on insertion into aqueous fluids, indeed they tended to show some hydration on forming the preforms that were used for shrinkage testing. After 24 hour solubility testing in physiological-type fluids the hydration is very evident. The hydration takes the form of apparent dissolution and re-precipitation of crystals on the fibre surface that results in it losing its fibrous nature.

For some of the compositions, in making the vacuum preforms for testing, a dispersant and wetting agent was used (Troy EX 516-2 (Trade mark of Troy Chemical Corporation)) which is a mixture of non-ionic surfactants and chemically modified fatty acids. This was in an attempt to minimise the time of exposure to water and hence the extent of hydration. It can be seen from Table 3 (which shows the same type of information as Table 2) that those compositions where the dispersant was used (indicated as "troy") tend to have a higher shrinkage than the identical composition not using the dispersant. The applicants surmise that this may be due to the partial hydration "locking" the fibres together so that any one fibre has to shrink against the tension of supporting fibres along its length: such tension may lead to fibre thinning rather than longitudinal shrinkage. When the dispersant is used the fibres are free to shrink along their length.

The following describes in detail the methods used to measure shrinkage and solubility.

Shrinkage was measured by proposed ISO standard ISO/TC33/SC2/N220 (equivalent to British Standard BS 1920, part 6.1986) with some modifications to account for small sample size. The method in summary comprises the manufacture of vacuum cast preforms, using 75g of fibre in 500cm³ of 0.2% starch solution, into a 120 x 65mm tool. Platinum pins (approximately 0.5mm diameter) were placed 100 x 45mm apart in the 4 corners. The longest lengths (L1 & L2) and the diagonals (L3 & L4) were measured to an accuracy of ±5µm using a travelling microscope. The samples were placed in a furnace and ramped to a temperature 50°C below the test temperature at 300°C/hour and ramped at 120°C/hour for the last 50°C to test temperature and left for 24 hours. The shrinkage values are given as an average of the 4 measurements.

It should be noted that although this is a standard way of measuring shrinkage of fibre it has an inherent variability in that the finished density of the preform may vary depending on casting conditions. Further it should be noted that fibre blanket will usually have a higher shrinkage than a preform made of the same fibre. Accordingly the 3.5% figure mentioned in this specification is likely to translate as a higher shrinkage in finished blanket.

Solubility was measured by the following method.

The fibre was first chopped through a 10 mesh sieve and shot removed by hand sieving also through a 10 mesh sieve.

The solubility test apparatus comprised a shaking incubator water bath, and the test solution had the following composition:-

Compound	<u>Name</u>	<u>Grams</u>
NaCl	Sodium chloride	6.780
NH₁Cl	Ammonium chloride	0.540
NaHCO,	Sodium bicarbonate	2.270
Na ₂ HPO ₄ .H ₂ O	Disodium hydrogen	0.170
	phosphate	
Na,C,H,O2H2O	Sodium citrate	0.060
	dihydrate	
H ₂ NCH ₂ CO ₂ H	Glycine	0.450
H ₂ SO ₄ s.g. 1.84	Sulphuric acid	0.050

6

The above materials were diluted to 1 litre with distilled water to form a physiological-like saline solution.

 $0.500 \text{ grams} = 0.003 \text{ grams of chopped fibre was weighed into a plastic centrifuge tube and 25 cm³ of the above saline solution added. The fibre and saline solution was shaken well and inserted into the shaking incubator water bath maintained at body temperature (37°C <math>\pm$ 1°C). The shaker speed was set at 20 cycles/minute.

After 24 hours the centrifuge tube was removed then supernatant liquid was decanted and the liquid passed through a filter (0.45 micron cellulose nitrate membrane filter paper [WCN type from Whatman Labsales Limited]) into a clean plastic bottle. The liquid was then analysed by one of two methods. The first method used was atomic absorption using a Thermo Jarrell Ash Smith - Hiefje II machine.

The operating conditions were as set out in the applicant's earlier earlier International Patent Applications WO93/15028 and WO94/15883. For SrO the operating conditions were:-

WAVELENGTH	BAND	CURRENT	
<u>(nm)</u>	<u>WIDTH</u>	<u>(mA)</u>	<u>FLAME</u>
460.7	0	12	Fuel Lean

Strontium is measured against a standard atomic absorption solution (Aldrich 970µm/ml). Three standards are prepared to which 0.1%KCl is added (Sr [ppm] 9.7,3.9 & 1.9). Dilutions of x10 and x20 are normally made to measure Sr level in the sample. SrO is then calculated as 1.183xSr.

All stock solutions were stored in plastic bottles.

In the second method used (which was shown to give results consistent with the first method) element concentrations were found by inductively coupled plasma - atomic emission spectroscopy in known manner.

The above has discussed resistance to shrinkage of preforms exposed to 1260°C for 24 hours. This is an indication of the maximum use temperature of a fibre. In practice fibres are quoted for a maximum continuous use temperature and a higher maximum exposure temperature. It is usual in industry when selecting a fibre for use at a given temperature to choose a fibre having a higher continuous use temperature than that nominally required for the intended use. This is so that any accidental increase in temperature does not damage the fibres. It is quite usual for a margin of 100 to 150°C to be given.

7

The applicants are not certain as yet as to how much other oxides or other impurities will affect the performance of fibres as described above and the appendant claims allow, where SiO₂ is the fibre forming additive. up to 10wt% of materials other than SrO. Al₂O₃ and SiO₂, although this should not be seen as limitative.

Although the above description has referred to manufacture of fibres by blowing from a melt the invention is not limited to blowing and also encompasses spinning and other techniques in which fibres are formed from a melt, and also encompasses fibres made by any other process.

Table 1 - Part 1

		Compc	Composition	wt%									-	Relative	Relative weight percent	rcent
Comp.	Sro	A1203 Si02		CaO	MgO	MgO : ZrO2	BaO	K20	Na20	Na20 P205 Fe203 Cr203	Fe203	Cr203	Total	SrO	(10 total SrO+NIZO3+SiOZ) SrO AI2O3 SiOZ	Si02
ಹ	33.1	6.09	<0.05	0.08	<0.05	<0.05	0.20	<0.05	<0.05	90.0	1.92	<0.05	94.34	35.2%	64.8%	
ళ	61.4	37.1	<0.05	0.08	0.08 i <0.05	<0.05	0.30	<0.05	<0.05	<0.05	<0.05	<0.05	98.58	62.3%	37.7%	
ಳ	48.5	49.7	<0.05	90 0	<0.05	<0.05	0.24	<0.05	<0.05	<0.05	0.64	<0.05	98.50	49.4%	20.6%	
SA5(5%Na20)	54.8	39.3	0.14	0.08	<0.05	<0.05	0.21	<0.05	5.14	<0.05	<0.05	<0.05	99.67	58.1%	41.7%	0.1%
5 0)	54.5	41.2	0 19	0.31	<0.05	<0.05	0.21	<0.05	2.46	<0.05	<0.05	<0.05	98.87	56.8%	43.0%	0.2%
త	20	39.4	251	0.08	3.29	<0.05	0.21	<0.05	<0.05	<0.05	1.07	<0.05	98.56	54.4%	42.9%	2.7%
	24.1	72.9	2.52	90.0	<0.05	<0.05	0.10	<0.05	0.12	<0.05	<0.05	<0.05	99.80	24.2%	 .	2.5%
త	39.9	55.4	2 55	0.07	0.12	<0.05	0.19	<0.05	<0.05	<0.05	<0.05	<0.05	98.31	40.8%		
120/SiO2)	56.4	38.8	2.57	0.20	0.08	<0.05	0.21	<0.05	2.57	<0.05	<0.05	<0.05	100.83	57.7%		
SA5(2.5%K2O/SiO2)	56.3	38.8	2.69	0.13	<0.05	<0.05	0.21	1.86		<0.05	0.36	<0.05	100.50	57.6%		
ంర	44.5	52	2.71	0.07	<0.05	<0.05	0.17	<0.05	<0.05	<0.05	0.05	<0.05	99.50	44.9%	52.4%	
රේ	54.5	37.3	2.74	0.30	0.16	0.54	99.0	<0.05	0.22	<0.05	0.08	<0.05	96.50	57.6%		
જ	48.1	47.1	2.76	0.08	<0.05	<0.05	0.22		<0.05	<0.05	0.08	<0.05	98.34	49.1%		
	22.9	65.7	9.62	90.0	<0.05	<0.05	<0.05		<0.05	<0.05	90.0	<0.05	98.28	23.3%	%6.99	9.8%
	26.2	62.4.	9.62	0.10	<0.05	<0.05	60.05		<0.05	<0.05	0.08	<0.05	98.32	26.7%	63.5%	9.8%
	27.4	62.2	9.20	90.0	0.06 <0.05	90.0	0.16	<0.05	<0.05	<0.05	0.10	<0.05	99.18	27.7%	63.0%	9.3%
	32.9	56.1	9.43	90.0	<0.05	<0.05	0.16	<0.05	<0.05	<0.05	0.18	<0.05	98.65	33.4%	57.0%	
	32.9	58.8	7.09	0.07	.07 <0.05	<0.05	0.11	<0.05	0.10	<0.05	<0.05	<0.05	99.07	33.3%	29.5%	
	33.6	59.5	5.12	0.08			0.20	<0.05	<0.05		<0.05	<0.05	98.64	34.2%	89.09	5.2%
	53.9	37.8	5.25	2.52	0.18	<0.05	0.23	<0.05	0.13	<0.05	<0.05	<0.05	100.01	89.55	39.0%	5.4%

Table 1 - Part 2

									بِ															
_																					٥	٠.	Ш	_
rcent	3+Si02) Si02	7 700	2 0	R 0 1	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	θ α τ σ	7 6 6	12.0%	7 7%	7.5%	10.3%	5.4%	5 1%	80.9	7 5%	12.3%	10.3%	5.4%	%96	7 3%	4.9%	5 1%	4.8%	14 8%
veight pe	SrO+Al20	47 C02	2 0 C	5 5 6	40.6%	30.7%	42.1%	35.7%	39.1%	39 1%	36.0%	40.5%	40 1%	37.4%	34.7%	29.6%	31.0%	35.0%	29.6%	31.9%	30.3%	50.0%	53.6%	30.5%
Relative weight percent	(to total SrO+Al2O3+SiO2) SrO Al2O3 SiO2	708 77	A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	70. 0	40.4%	50.4%	50.5%	52.3%	53.2%	53.5%	53 7%	54 0%	54 9%	26.6%	57.8%	58.1%	58.7%	29.6%	60.7%	60.8%	64.7%	45.0%	41.6%	54.7%
.'	Total	100 20	100.00		00.00	100.50	100 90	100 60	100.30	101.96	97.86	98.84	100.89	100.40	98 75	99.40	96.48	98.83	101.40	102.00	99.22	98.13	99.38	100.90
	P205 Fe203 Cr203	<0.05	000	200	000 000 000 000 000	<0.05	<0.05			<0.05	<0.0>	<0.05	<0.05				<0.05		<0.05	<0.05		<0.05		<0.05
	Fe203	0 05 0 05	40.05	200	9.6	<0.05	<0.05	0.05	<0.05	0.0	<0.05	<0.05	<0.05	0.07	0.0	<0.05	<0.05	0.18	<0.05	<0.05	0.18	<0.05	0.06	<0.05
	P205	<0.05	<0.05	\$0 0×	0.05 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05	<0.05	<0.05
	Na20	0.10	600	0	<0.05	0.10	0.13	0.12	0.23	0.23	<0.05	<0.05	<0.05	0.19	0.16	0.19	<0.05	<0.05	0.10	0.11	<0.05	<0.05	<0.05	0.10
	K20	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05
	BaO	0 19	0.17	0.20	0.24	0.18	0.18		0.22	0.20	0.24	0.26	0.26	0.21	0.22	0.23	0.30	0.20	0.23	0.22	0.30	0.21	_	0.19
		<0.05			<0.05		<0.05	0.15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05			<0.05	<0.05			<u> </u>	0.08
	Cao Mgo izroz	0.0	<0.0>	0.11	Y.		0.05	0.05	0.12	0.08	0.12	<0.05	<0.05	0.10				<0.05	<0.05	<0.05		<0.05		0.05
n wt%	CaO	0.07	90.0	0 24	0.08	0.07	0.07	0.09	0.10	0.08	0.10	0.14	0.08	0.14	0.12	0.0	0.08	0.0	6 0.0	0.08	0.08	0.07	900	000
Composition	Si02	7.65	9.77	5 30	4.72	9.85	7.41	12.00	7 63	7.57	10.00	5.34	2.06	6.01	1.7.37	12.20	10.10	5.35	9.73	7.44	4.84	4.95	4.74	30.6 14.90
omb	A1203	47.4	44.9	45.4	44.8	39.8	42.3	35.7	39	39.6	35.1	39.9	40.1	37.3	34.1	29.2	30.4	34.4	29.9	32.4	29.9	48.9	53.1	30.6
	Sro AI203	44.7	45	47.5	48.9	50.5	50.8	52.2	53	54.2	52.3	53.2	54.9	56.4	56.7	57.4	57.6	58.6	61.3	61.7	63.8	4	41.2	54.9
	Сотр.																							:
		SAR8	SARS	SAR9	SA2a	SAR4	SAR7	SAR1	SA5d	SASd II	SASP	SA5a	SA5a II	SAR10	SA4d	SAR12	SA4b	SA4a	SAR3	SAR6	SA1a	SABa	SA3a	SARZ

Table 2 - Part 1

										_				<	-		- 80	_	9	3	
	Total	•			1066	565				511	13		_		9					13	
i ty	Sio2				-	_				-	7				က		7	-	_	က	ľ
Solubility ppm	Nizoa	•		-	1000	563				500					2	_	8	_	+	7	ŀ
	Sro Alzo3 Sioz, Total				65	-	-			10	=				5		4	2	4	œ	
rcent 3+SiO2)	SiO2				0.1%	0.2%	2.7%	2.5%	2.6%	2.6%	2.8%	2.7%	2.9%	2.8%	9.8%	8.6	9.3%	89.6	7.2%	5.2%	
Relative weight percent (to total SrO+AI2O3+SiO2)	AI203	64.8%				43.0%	42.9%	73.3%	26.6%	39.7%		52.4%		48.1%	%6.99	63.5%		57.0%	59.5%	%9.09	
Relative (to total \$		35.2%	62.3%	49.4%	58.1%	56.8%	54.4%	24.2%	40.8%	57.7%	57.6%	44.9%	27.6%	49.1%	23.3%	26.7%	27.7%	33.4%	33.3%	34.2%	
	1600																				
	1550								_												
	1350 1400 1450 1500 1550 1600																	_			
ភ	1450				8.22												9.94			6.52	
24 hou	1400																		7.8		ļ
rinkage at 24 hours (°C)	1350																_				I
Shrinka						8.64				6.53	3.02				12.1	5.33	5.4	6.42	7.48	8.81	,,,
	1000 1200 1260									3.95											
	1000				_	3.38				2.39 3.95		_			10.16	4.82	4	3.62		7.02	
	Сотр.	ళ	જ	త	SA5(5%Na2O)	5%Na20)	ల	లక	త	5%Na20/Si02)	SA5(2.5%K2O/SiO2)	બ્ ઇ	త	వ							
		SA3	SA1	SA2	SA5(5%	SA5(2.	SA5c	SA8c	SA3c	SA5(2.	SA5(2.	SA9c	SA4c	SA2c	SA8b	SA7b	SA7a	SA6b	SA6d	SA6a	,00,0

Table 2 - Part 2

Comp. 1200 1200 1200 1200 1450 1500 1550 1600 5rO A12O3 5rO2 SrO A12O3 5rO2 Total SrO A12O3 5rO A12O3 5rO2 Total SrO A12O3 5rO A12				Shrink	Shrinkage at 24 hours	24 hou	IIS				Relative	Relative weight percent	rcent		Solubility	diity	
0.94 1.14 7.86 39.6 44.8% 47.5% 7.7% 6 1.6 1.0 1.0 1.0 33.6 45.1% 45.0% 98% 10 1 1 1 1.0 33.6 48.1% 46.2% 58% 10 1 <th>Сатр</th> <th>1000</th> <th>1200</th> <th>1260</th> <th>1350</th> <th>1400</th> <th>1450</th> <th>1500</th> <th>1550</th> <th>1600</th> <th>(to total SrO</th> <th>SrO+A120 A1203</th> <th>3+Si02) Si02</th> <th>Sro</th> <th>AIZO3</th> <th>pm SiO2</th> <th>Total</th>	Сатр	1000	1200	1260	1350	1400	1450	1500	1550	1600	(to total SrO	SrO+A120 A1203	3+Si02) Si02	Sro	AIZO3	pm SiO2	Total
1.55 2.85 3.77 5.91 1.70 33.6 48.4% 46.5% 47.8% 46.5% 47.8% 10 1 10 1.6 3.19 31.1 48.4% 48.4% 48.8% 10 1 10 1 10 1 10 1<			0.94			1 14	7 86	30.6			74 00/			(
2.52 2.85 3.77 5.91 3.11 49.7% 45.5% 54% 10 1 10			1.55			161	2 5	33.6			44.076			0 6	(•	Φ;
1.61 2.26 2.94 4.7 45.5% 45.5% 45.5% 10 1 6 1.07 1.6 3.19 31.1 49.7% 45.5% 42.8% 10 1 6 1.07 1.10 1.19 1.36 2.14 25.25 2.3% 35.7% 35.7% 36.0% 17 1 1 1.10 1.19 1.36 2.14 25.25 4.21 7.7% 17 1 1 1.10 1.19 1.36 2.6 4.7 53.2% 39.1% 7.7% 17 1 1.20 0.69 0.66 2.6 4.7 53.7% 36.0% 10.3% 11 1 2.2 2.23 2.48 2.51 Melts 56.6% 37.4% 6.0% 56 7 1.4 1.4 1.19 1.16 1.93 7.9 56.6% 37.4% 6.0% 25 25 1.4 1.31 1.16 <t< td=""><td></td><td>1.25</td><td>2 52</td><td></td><td>3 77</td><td>5</td><td> :</td><td>3</td><td></td><td></td><td>70.4</td><td></td><td>8.0%</td><td>0 0</td><td>N</td><td>- (</td><td>= ;</td></t<>		1.25	2 52		3 77	5	 :	3			70.4		8.0%	0 0	N	- (= ;
1.06 1.5 3.19 31.1 49.7% 49.5% 4.8% 10 1 6 1.07 1.19 1.26 3.19 31.1 50.4% 39.7% 4.8% 10 1 6 1.07 1.19 1.36 2.14 25.25 3.5 35.7% 12.0% 14 1			i			200	7 75				40.4		84.0	2 :		2	20
1.07 1.26 2.26 2.94 4.7 50.4% 39.7% 9.8% 6 1.10 1.19 1.36 2.14 25.25 4.21 7.4% 7 7 1.10 1.19 1.36 4.21 55.3% 35.7% 12.0% 14 1 1.36 2.14 25.25 4.13 58.8 53.9% 35.7% 10.0% 17 1 1 0.69 0.66 2.6 4.7 3.19 5.88 54.0% 40.5% 54.% 45 2 2.2 2.23 2.48 3.19 5.88 54.0% 40.5% 54.% 45 7 1.4 1.4 1.31 Melts 56.6% 37.4% 60.% 56 7 1.4 1.31 1.6 1.93 7.9 58.6% 37.4% 60.% 56 7 1.4 1.31 1.6 1.93 7.9 58.6% 35.0% 35.0% 54.%			•			70.7					49.7%		4.8%		_	9	17
1.10 1.19 1.36 2.14 25.25 4.21 55.28 35.7% 12.0% 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	3			9.	3.19	31.1			50.4%		9.8%	9			9
1.10 1.19 1.36 2.14 25.25 4.21 55.3% 35.7% 12.0% 14 1		·· -	1.07		2.26	2.94	4.7				50.5%		7.4%	7			-
2.2 2.23 2.41 3.19 5.88 54.0% 40.5% 57.% 17 1 1 1.4 1.4 1.7 3.19 5.88 54.0% 40.5% 5.4% 45 2 2.2 2.71 2.75 2.86 3.14 9.46 54.9% 40.1% 5.1% 45 2 1.4 1.4 1.31 Melts 56.6% 37.4% 60.8% 56.7% 57.8% 51% 2 1.4 1.4 1.31 Melts 6.9 57.8% 34.7% 7.5% 15 1 2 1.49 1.35 1.98 2.21 5.36 8.19 60.7% 29.6% 12.3% 25 2 1.42 2.35 1.98 2.21 5.31 60.8% 31.9% 7.3% 15 1 2 2.45 3.94 6.36 8.19 60.8% 31.9% 7.3% 15 1 1 2.45 3.94 6.43 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%		0.75	1.10	1.19	1.36	2.14	25.25				52.3%		12.0%	14		Ψ-	. A
2.2 2.23 2.41 2.75 2.86 3.19 53.5% 39.1% 7.5% 11 3 1.4 1.7 1.78 3.19 5.88 54.0% 40.5% 54% 45 2 2.2 2.71 2.75 2.86 3.14 9.46 54.9% 40.5% 54% 45 2 1.4 1.4 1.78 3.19 5.88 54.0% 40.5% 54% 45 2 1.4 1.4 1.78 3.14 9.46 54.9% 40.5% 5.4% 45 7 1.4 1.4 1.31 Melts 6.9 57.8% 34.7% 7.5% 15 7 1.49 1.35 1.16 1.93 7.9 58.7% 31.0% 10.3% 15 1 2 1.42 2.35 6.36 8.19 60.7% 29.6% 5.4% 19 1 1 2.45 3.94 6.43 4.16% <td< td=""><td></td><td></td><td></td><td></td><td></td><td>1.36</td><td></td><td>4.21</td><td></td><td></td><td>53.2%</td><td></td><td>7 7%</td><td>17</td><td>•</td><td></td><td></td></td<>						1.36		4.21			53.2%		7 7%	17	•		
0.69 0.66 2.6 4.7 3.19 5.88 54.0% 10.3% 11 3 2.71 2.75 2.86 3.14 9.46 54.9% 40.5% 54% 45 2 2.2 2.71 2.75 2.86 3.14 9.46 54.9% 40.1% 5.1% 2 1.4 1.4 1.31 Melts 6.9 57.8% 37.4% 6.0% 56 7 1.4 1.4 1.31 Melts 6.9 57.8% 34.7% 7.5% 15 1 2 1.4 1.34 1.16 1.93 7.9 58.7% 31.0% 10.3% 15 1 2 1.49 1.35 1.98 2.21 5.31 60.7% 29.6% 9.6% 22 2 1.42 2.37 8.57 8.19 60.8% 31.9% 7.3% 161 897 4 2.45 6.43 4.16% 53.6% 4.16%						£.		4.13			53.5%		7.5%	:	-	-	-
2.2 2.23 2.48 3.19 5.88 54.0% 40.5% 5.4% 45 5 2.2 2.23 2.48 2.51 Melts 56.6% 37.4% 6.0% 56 7 1.4 1.4 1.31 Melts 6.9 57.8% 37.4% 6.0% 56 7 1.4 1.31 Melts 6.9 57.8% 34.7% 7.5% 15 7 1.4 1.34 1.6 1.93 7.9 58.7% 31.0% 10.3% 15 2 1.49 1.35 1.98 2.21 5.31 60.7% 29.6% 9.6% 22 2 1.42 2.37 2.22 2.42 6.36 8.19 60.8% 31.9% 7.3% 15 45.6% 2.45 3.94 6.43 6.47% 30.3% 4.9% 16 4.9% 4.9% 17 3 6 2.45 3.94 6.43 4.1.6% 53.6% <td></td> <td>90</td> <td></td> <td></td> <td></td> <td>99.0</td> <td>2.6</td> <td>4.7</td> <td></td> <td>-</td> <td>53.7%</td> <td></td> <td>10.3%</td> <td>11</td> <td></td> <td>"</td> <td>7</td>		90				99.0	2.6	4.7		-	53.7%		10.3%	11		"	7
2.2 2.71 2.75 2.86 3.14 9.46 54.9% 40.1% 5.1% 5.6% 37.4% 6.0% 5.6 7 1.4 1.4 1.31 Melts 56.6% 37.4% 6.0% 56 7 1.4 1.4 1.31 Melts 58.7% 37.0% 12.3% 25 2 1.49 1.35 1.98 2.21 5.31 60.7% 29.6% 35.0% 54.% 19 1 2 1.42 1.35 1.98 2.21 5.31 60.7% 29.6% 35.0% 54.% 19 1 2 1.42 2.35 8.19 60.7% 29.6% 31.9% 7.3% 15 2 2 2 1.42 2.37 8.57 8.19 60.8% 31.9% 7.3% 15 4 1 1 4 2.45 3.94 6.43 8.43 41.6% 53.6% 4.8% 14.8% 12						1:1		1.78	3.19	5.88	54 0%		5.4%	45			
2.2 2.23 2.48 2.51 Melts 56.6% 37.4% 6.0% 56 7 1.4 1.4 1.31 Melts 58.7% 37.4% 6.0% 56 75 15 1 2 1.4 1.4 1.35 1.16 1.93 7.9 58.7% 37.0% 15.3% 25 2 2 1.49 1.56 4.6 1.6 1.93 7.9 58.7% 31.0% 10.3% 15 3 1.49 1.35 1.98 2.21 5.31 60.7% 29.6% 9.6% 22 2 1.42 2.22 2.42 6.36 8.19 60.8% 31.9% 7.3% 15 4 2.45 3.94 6.43 41.6% 53.6% 4.8% 12 3 6 2.45 3.94 6.43 41.6% 53.6% 4.8% 12 3 6 2.45 3.94 6.43 30.5% 4						2.71	2.75	2.86	3.14	9 46	54.9%		ر ا)		1	ř
1.4 1.69 2.77 3.36 6.9 57.8% 34.7% 7.5% 15 1 2 1.4 1.4 1.31 Melts 58.1% 29.6% 12.3% 25 2 3 3 3 3 3 4 3 4 3 4 3 4 3 4 3 3 3 3 3 3 3 3 3 3 3 4 3 4 <t< td=""><td></td><td>2.18</td><td>2.2</td><td></td><td></td><td>2.48</td><td></td><td>2.51</td><td>Melts</td><td></td><td>56.6%</td><td></td><td>800</td><td>55</td><td></td><td>7</td><td>9</td></t<>		2.18	2.2			2.48		2.51	Melts		56.6%		800	55		7	9
1.4 1.4 1.31 Melts 58.1% 29.6% 12.3% 25 2 1.56 4.6 1.19 1.16 1.93 7.9 58.7% 31.0% 10.3% 15 2 1.49 1.56 4.6 4.6 1.6 1.93 7.9 58.7% 31.0% 10.3% 15 3 1.49 1.35 1.98 2.21 5.31 60.7% 29.6% 9.6% 22 2 1.42 2.37 8.57 6.36 8.19 60.8% 31.9% 7.3% 15 4 2.45 3.94 6.43 4.6% 50.0% 5.1% 5 1 1 2.45 3.94 6.43 41.6% 53.6% 41.8% 12 3 6 2.75 2.00 3.94 8.43 54.7% 30.5% 14.8% 14 3 6					-	1.69	2.77	3.36		69	57.8%		7 5%	+ 5	•	٠ ،	7 9
0.41 1.19 1.16 1.93 7.9 58.7% 31.0% 10.3% 15 3 1.56 4.6 4.6 4.6 4.6 59.6% 35.0% 54% 19 1 2 1.42 2.21 5.31 60.7% 29.6% 9.6% 22 2 2 2 2 2.45 6.36 8.19 60.8% 31.9% 7.3% 15 2 4			4.	4.		1.31		Melts)	58 1%		12.3%	- c	_	4 C	- 6
1.56 4.6 4.6 59.6% 35.0% 5.4% 19 1 2 1.42 1.35 1.98 2.21 5.31 60.7% 29.6% 9.6% 22 2 2.37 2.37 8.57 6.36 8.19 60.7% 30.3% 4.9% 161 897 4 2.45 3.94 6.43 41.6% 53.6% 41.8% 12 3 6 0.73 2.00 3.94 8.43 54.7% 30.5% 14.8% 14 3 6		0.55		0.41		1.19	1.16	1.93	7.9		58 7%		10.05	4 5		4 6	7
1.49 1.35 1.98 2.21 5.31 60.7% 29.6% 9.5% 1.3 2 1.42 2.37 2.22 2.42 6.36 8.19 60.8% 31.9% 7.3% 15 2.37 2.37 7.19 8.57 64.7% 30.3% 4.9% 161 897 4 2.45 3.94 6.43 41.6% 53.6% 4.8% 12 3 6 0.73 2.00 3.94 8.43 54.7% 30.5% 14.8% 14 2				1.56		46)		?		50.6		200	2 \$	•	o (~ 6
1.42 2.22 2.42 6.36 8.19 60.8% 31.9% 7.3% 15 2.37 7.19 7.19 45.0% 50.0% 51.9% 7.3% 161 897 4 2.45 3.94 6.43 41.6% 53.6% 4.8% 12 3 6 0.73 2.00 3.94 8.43 54.7% 30.5% 14.8% 14 2			1.49	1.35	1.98	2.21	5.31				60.7%		2 %	2 C	-	ν (3 6
2.37 8.57 64.7% 30.3% 4.9% 161 897 4 2.45 3.94 6.43 41.6% 53.6% 4.8% 12 3 6 0.73 2.00 3.94 8.43 54.7% 30.5% 14.8% 14 2		-	1.42			2.22	2.42	6.36	8.19		60.8%		7.3%	15		٧	1 4
2.45 3.94 6.43 41.6% 53.6% 4.8% 12 3 0.73 2.00 3.94 8.43 54.7% 30.5% 14.8% 14 2							8.57				64.7%		4.9%	161	897	4	1062
2.45 3.94 6.43 41.6% 53.6% 4.8% 12 3 6 0.73 2.00 3.94 8.43 54.7% 30.5% 14.8% 14 2						7.19					45.0%	L	5.1%	5	-	-	
2.00 3.94 8.43		1.12		7		6.43					41.6%		4.8%	12	ေ	9	2
		_	0.73	~		8.43					54.7%		L	14		2	9

Table 3

	.		Shrink	age at	Shrinkage at 24 hours	2				Relative	Relative weight percent	cent		Solubility	iţ.	•
				<u></u>					_	(to total S	(to total SrO+Al2O3+SiO2)	3+Si02) :				
Сощь	1000	1000 1200	1260	1350	1400	1260 1350 1400 1450 1500 1550 1600	1500	1550		SiO	AIZO3	SiO2	SrO	SrO AI203 SiO2 Total	SiO2	Total
SA4d				· •=-	1.69	77 (3 36		0.9	57 R%	34 7%	7 50%		_	-	4
SA4d (trov)	 .				3 12	200	17	-	13.63	57.0%	24.7%	7.5%	-	<u>-</u> -	-	<u>-</u>
C 4 6 - 11								;	70.01	0.00	04.7.9	0.0.7				
SASali		-			2.71	2.75	7 86	3.14		54.9%	40.1%	5.1%		_	_	
SA5a II-troy	,				1.56				14.2	54.9%	40.1%	5.1%				
SA5d					1.36		1.21			53.2%	39.1%	7.7%	17	_	_	9
SA5d (troy)					0.93	-	t0 9			53.2%	39.1%	7 7%				
SA5d II					£.1	_	+ 13			53.5%	39 1%	7.5%				
SA5d II (troy)					1.35		5.21			53.5%	39 1%	7.5%				
SA5(2.5%Na2O/SiO2)	2.39	3.95								57.7%	39.7%	2.6%				
SA5(2.5%Na2O/SiO2) troy			7.17			-				57.7%	39.7%	2 6%		-		-
SA5(5%Na2O)	_					8.22				58 1%	41 7%	0 1%	Ş	1200		1331
SA5(5%Na2O) troy					••	14.47				58.1%	41.7%	. %	;			
SA6b	3.62		6.42							33.4%	57.0%	%9 6 6	7		~	=
SA6b (tros)			13.18		•					33.4%	57.0%	 %9 6		t	 1	<u>-</u> -

13

Claims

- An inorganic fibre, a vacuum preform of which has a shrinkage of 3.5% or less when exposed to 1260°C for 24 hours, the fibre having a composition comprising SrO, Al₂O₃, and sufficient fibre forming additive to allow fibre formation but not so much as to increase shrinkage beyond 3.5%.
- 2. An inorganic fibre as claimed in claim 1, in which the fibre forming additive comprises SiO₂ and the constituents SrO, Al₂O₃, and SiO₂ comprise at least 90wt% of the fibre composition.
- 3. An inorganic fibre as claimed in claim 2 in which the constituents SrO, Al₂O₃, and SiO₂ comprise at least 95wt% of the fibre composition.
- An inorganic fibre as claimed in any preceding claim and comprising 35wt% or more SrO
- 5. An inorganic fibre as claimed in any preceding claim and comprising

SrO 4

41.2wt% - 63.8wt%

ALO,

29.9wt% - 53.1wt%

- 6. An inorganic fibre as claimed in claim 5 and comprising greater than 2.76wt% to less than 14.9wt% SiO₂.
- An inorganic fibre as claimed in any preceding claim, a vacuum preform of which has a shrinkage of 3.5% or less when exposed to 1400°C for 24 hours.
- 8. An inorganic fibre as claimed in claim 7 in which the amount of Al₂O₃ is 48.8wt% or less.

- An inorganic fibre as claimed in any preceding claim, a vacuum preform of which has a shrinkage of 3.5% or less when exposed to 1500°C for 24 hours.
- 10. An inorganic fibre as claimed in claim 9 in which the weight percentage of SrO relative to the total amount of SrO plus Al₂O₃ plus SiO₂ is in the range greater than 53.7wt% to less than 59.6wt %.
- .11 An inorganic fibre as claimed in claim 10 and comprising in wt%:-

SrO

53.2wt%-57.6wt%

 Al_2O_3

30.4wt%-40.1wt%

SiO.

5.06wt%-10.1wt%

- 12. An inorganic fibre as claimed in any preceding claim comprising Na₂O in an amount less than 2.46wt%.
- 13. An inorganic fibre as claimed in any preceding claim, a vacuum preform of which has a shrinkage of 3.5% or less when exposed to 1550°C for 24 hours.
- 14. An inorganic fibre as claimed in claim 13 and comprising:-

SrO

53.2wt%-54.9wt%

Al.O,

39.9wt%-40.1wt%

SiO.

5.06wt%-5.34wt%

- 15. A saline soluble inorganic fibre as claimed in any preceding claim.
- 16. A hydratable saline soluble inorganic fibre as claimed in any preceding claim.
- 17. A hydratable saline soluble inorganic fibre having a shrinkage of 3.5% or less when exposed to 1260°C for 24 hours

- 18. A hydratable saline soluble inorganic fibre having a shrinkage of 3.5% or less when exposed to 1400°C for 24 hours.
- 19. A hydratable saline soluble inorganic fibre having a shrinkage of 3.5% or less when exposed to 1500°C for 24 hours.
- 20. A process for the formation of fibres from a melt comprising predominantly SrO and Al₂O₃ in which minor amounts of SiO₂ are added to allow fibre formation.

INTERNATIONAL SEARCH REPORT

Int onal Application No PCT/GB 95/01797

A. CLASS IPC 6	IFICATION OF SUBJECT MATTER C03C13/06 C04B35/622		
	to International Patent Classification (IPC) or to both national class	ification and IPC	
	S SEARCHED	ton remboles	
IPC 6	tocumentation searched (classification system followed by classification s	uon symoots)	
	tion searched other than minimum documentation to the extent that $$,	
Electronic d	lata base consulted during the international search (name of data ba	se and, where practical, search terms used)	
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the r	elevant passages	Relevant to claim No.
A	DATABASE WPI Section Ch, Week 7814 Derwent Publications Ltd., London Class F01, AN 78-25915A & JP,A,52 139 113 (ASAHI GLASS November 1977 see abstract		1-20
A	EP,A,O 586 797 (DIDIER-WERKE AG) 1994 cited in the application see abstract 	16 March	1-20
Furth	ner documents are listed in the continuation of box C.	Patent family members are listed in	n annex.
	egones of cited documents : ent defining the general state of the art which is not	"T" later document published after the inte or priority date and not in conflict wi cited to understand the principle or th	th the application but
	red to be of particular relevance document but published on or after the international	invention	
filing d	late	"X" document of particular relevance; the cannot be considered novel or cannot	be considered to
which i	int which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an inventive step when the do "Y" document of particular relevance; the	
	or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	cannot be considered to involve an in- document is combined with one or me	ventive step when the ore other such docu-
other m	neans int published prior to the international filing date but	ments, such combination being obviou in the art. *&* document member of the same patent	
	an the priority date claimed actual completion of the international search	Date of mailing of the international sea	
30	October 1995	27. 11. 95	
Name and m	nailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Van Bommel, L	

1

INTERNATIONAL SEARCH REPORT

information on patent family members

Internal Application No
PCT/GB 95/01797

	nformation on patent family men	DGTS	PCT/GB	95/01797
Patent document cited in search report	Publication date	Patent fan member(nily s)	Publication date
EP-A-586797	16-03-94	AU-B- JP-A-	4228353 4490993 6272116 5346868	28-04-94 03-03-94 27-09-94 13-09-94

	·			
· ·				
	•			