Structure of Matter

15 gennaio 2023

Indice

1	Introduzione	1
Ι	Meccanica statistica	3
2	Formalismo gran canonico 2.1 Sistemi non interagenti	13 16 17 19 23 25
II	Atomi	30
3	Atomi a due elettroni – elio 3.1 Stato fondamentale	30 31 34
4	Introduzione agli atomi a più elettroni 4.1 Potenziale centrale	36 38 43
5	Effetto Zeeman	50
II	I Molecole	53
6	Approssimazione adiabatica	53
7	Catione idrogeno molecolare	55
8	Idrogeno molecolare	60

Lezione 1

lun 28 nov 2022 15:30

1 Introduzione

Il corso è diviso in quattro parti:

- meccanica statistica, si vede una trattazione organica arrivando a statistiche quantistiche;
- atomi a molti elettroni, si studiano gli atomi espandendo il formalismo di meccanica quantistica con forti approssimazioni;

- molecole, utilizzando conoscenze di chimica;
- solidi cristallini, si introducono i concetti che portano alla progettazione dei dispositivi elettronici e semiconduttori.

Tali parti sono legate dallo studio di sistemi a molte particelle. Finora si sono studiati sistemi costituiti da una particella, ma la maggior parte dei sistemi di interesse sono formati da più particelle. Lo studio di tali sistemi diventa interessante quando si considerano i sistemi interagenti complicando il problema. Si può avere un approccio computazionale, ma in questo caso si utilizza un approccio analitico, sebbene tramite l'utilizzo di approssimazioni.

Da un punto di vista logico-consequenziale, quanto fatto sugli atomi è utile per sviluppare un modello per le molecole.

Meccanica classica. L'approccio classico e quantistico non fanno molta differenza. In meccanica classica, l'hamiltoniana di un sistema conservativo di N particelle interagenti è del tipo

$$H = \sum_{i=1}^{N} \frac{1}{2m_i} \left(p_{x_i}^2 + p_{y_i}^2 + p_{z_i}^2 \right) + U(x_1, y_1, z_1, \dots, x_N, y_N, z_N)$$

Se l'energia potenziale descrive l'interazione elettrica si ha

$$U = \frac{1}{2} \sum_{i \neq j} \frac{e^2}{4\pi \varepsilon_0 r_{ij}}, \quad r_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}$$

Se le particelle hanno momento magnetico e sono immerse in un campo magnetico, l'energia potenziale è

$$U = \sum_{i} \vec{\mu}_{i} \cdot \vec{B} = \sum_{i} U_{i}$$

L'energia potenziale può essere una somma di più energie potenziali di singola particella, ad esempio quando è presente un campo esterno. Per studiare come si comporta una particella si ricavano le leggi del moto

$$m_i \ddot{x}_i = -\partial_{x_i} U, \quad m_i \ddot{y}_i = -\partial_{y_i} U, \quad m_i \ddot{z}_i = -\partial_{z_i} U, \quad \forall i$$

Se U=0, allora le particelle sono libere. Il problema è banale: le particelle non si influenzano. Se il potenziale è somma di energie potenziali di singola particella

$$U = \sum_{j} U_j, \quad U_j = U_j(x_j, y_j, z_j)$$

allora l'equazione del moto è

$$m_i \ddot{x}_i = -\partial_{x_i} \sum_j U_j = -\sum_j \partial_{x_i} U_j \delta_{ij} = -\partial_{x_i} U_i, \quad \forall i$$

cioè la particella dipende solamente dal proprio potenziale. Lo studio di un sistema di N particelle equivale allo studio di una singola particella qualora l'energia potenziale è somma di energie potenziali di singola particella.

Meccanica quantistica. Si studia quanto sia più difficile lo studio di più particelle rispetto la singola particella in meccanica quantistica. L'hamiltoniana è

$$\hat{H} = \sum_{i=1}^{N} -\frac{\hbar^2}{2m_i} \nabla_i^2 + \hat{U}(x_1, y_1, z_1, \cdots, x_N, y_N, z_N)$$

Il termine di energia cinetica è sempre somma di energie cinetiche di singola particella: dell'energia, la parte che si complica di può è la parte potenziale. In generale, l'hamiltoniana \hat{H} non è somma di hamiltoniane di singola particella \hat{h} . Questo è il caso solamente quando $\hat{U} = \sum_i \hat{u}_i$ e ancora una volta, conoscendo la soluzione per una singola particella, si può ottenere la soluzione per tutto il sistema.

Particella in una buca di potenziale monodimensionale. Si studia la particella in una buca di potenziale (particle in a box) infinita di lunghezza L. Nelle regioni esterne, l'hamiltoniana è

$$\hat{h} = -\frac{\hbar^2}{2m} \, \partial_x + U(x), \quad \hat{h}\varphi = E\varphi \implies \varphi \equiv 0$$

La soluzione nella regione interna è

$$\varphi_n(x) = \sqrt{\frac{2}{L}}\sin(k_n x), \quad k_n = \frac{n\pi}{L}, \quad E_n = \frac{\hbar^2}{2m}k_n^2 = \frac{\hbar^2\pi^2}{2mL^2}n^2, \quad n \in \mathbb{N}$$

Particella in una buca di potenziale tridimensionale. L'hamiltoniana si può scrivere come

$$\hat{h} = -\frac{\hbar^2}{2m} \nabla^2 + U(\vec{x}), \quad U(\vec{x}) = U(x) + U(y) + U(z), \quad U(\vec{x}) = \begin{cases} 0, & \vec{x} \in [0, L]^3 \\ +\infty, & \text{altrove} \end{cases}$$

cioè il potenziale è separabile. [r] hamiltoniana. La soluzione è

$$\Phi = \left[\frac{2}{L}\right]^{\frac{3}{2}} \sin(k_{nx}x)\sin(k_{ny}y)\sin(k_{nz}z)$$

mentre gli autovalori sono

$$E = \frac{\hbar^2}{2m} (k_{nx}^2 + k_{ny}^2 + k_{nz}^2)$$

Sapendo risolvere il problema per una particella, si risolve il problema anche per più particelle. Si considerino N particelle non identiche, ma con stessa massa, e non interagenti. L'hamiltoniana è

$$\hat{H} = \sum_{i=1}^N \hat{h}(i), \quad \hat{h}(i) = -\frac{\hbar^2}{2m} \nabla_i^2 + U(i), \quad U(i) = \begin{cases} 0, & \vec{x} \in [0,L]^3 \\ +\infty, & \text{altrove} \end{cases}$$

Pertanto, considerano l'equazione agli autovalori

$$\hat{H}\Psi(x_1,y_1,z_1,\cdots,x_N,y_N,z_N) = E\Psi(x_1,y_1,z_1,\cdots,x_N,y_N,z_N)$$

si ha la soluzione

$$\Psi = \prod_{i=1}^{N} \varphi_i(i), \quad \varphi_i(i) = \left[\frac{2}{L}\right]^{\frac{3}{2}} \sin(k_{nxi}x_i) \sin(k_{nyi}y_i) \sin(k_{nzi}z_i), \quad k_{nxi} = \frac{n_{xi}\pi}{L}$$

L'energia corrispondente è

$$E = \sum_{i} \varepsilon_{i}, \quad \varepsilon_{i} = \frac{\hbar^{2}}{2m} (k_{nxi}^{2} + k_{nyi}^{2} + k_{nzi}^{2})$$

Atomo di idrogeno. Il sistema più complicato visto è l'atomo di idrogeno che ha hamiltoniana

$$\hat{h} = -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0 r}, \quad \hat{h}\varphi = \varepsilon \varphi$$

Gli autovalori sono

$$\varepsilon_n = -\frac{Rhc}{n^2} = -\frac{1}{n^2} 13.6\,\mathrm{eV} = \frac{1}{n^2} E_g^\mathrm{H}$$

La funzione d'onda è

$$\varphi_{nlm} = R_{nl}(r)Y_l^m(\theta,\phi)$$

dove l ed m sono indici di degenerazione dell'energia. La degenerazione g_n per l'atomo di idrogeno è n^2 . Quando si studiano sistemi di tante particelle in tante dimensioni, la degenerazione diventa difficile da stimare e può assumere numeri grandi.

Si vede un esempio. Si consideri ancora la buca di potenziale tridimensionale. L'energia è

$$\varepsilon_{n_x n_y n_z} = \frac{\hbar^2 \pi^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2) = C(n_x^2 + n_y^2 + n_z^2)$$

Si consideri un energia $\varepsilon = 86C$, si possono avere i livelli energetici singoli

$$n_x = 9, \quad ny_{=}2, \quad n_z = 1$$

Essi si possono permutare, ma esistono anche altri numeri

$$n_x = 5, \quad n_y = 5, \quad n_z = 6$$

L'andamento di g_{n^2} rispetto $n^2 = n_x^2 + n_y^2 + n_z^2$ è irregolare, ma cresce in media. Fissato il valore dell'energia, si è ancora ben lontani da sapere in quale stato si trova il sistema. [r]

Parte I

Meccanica statistica

In meccanica classica, se l'hamiltoniana non dipende esplicitamente dal tempo

$$d_t H = \partial_t H = 0$$

allora si conserva l'energia. Similmente, in meccanica quantistica, per Ehrenfest, si conserva il valore medio dell'energia

$$\langle \partial_t \hat{H} \rangle = 0 \implies \mathrm{d}_t \langle \hat{H} \rangle = 0$$

In un sistema isolato si conserva l'energia. La meccanica statistica si introduce partendo dallo studio di sistemi isolati. Il formalismo che si sviluppa prescinde da una trattazione classica o quantistica (l'unica differenza è nei livelli energetici continui o discreti). In un sistema isolato, si conserva l'energia E, il numero N di particelle ed il volume V. Sia g(E) la degenerazione, cioè l'insieme di micro-stati corrispondenti all'energia E. Si utilizza il principio di equiprobabilità: un sistema si può trovare in modo equiprobabile in qualsiasi stato accessibile. Se g(E) è il numero totale di micro-stati, allora la probabilità di ogni micro-stato è

$$P(1n) = \frac{1}{g(E)} \implies \sum_{n} P = 1$$

Si supponga di dividere il sistema in due sottosistemi S_1 ed S_2 . La divisione può avvenire tramite diversi metodi: una parete divisoria la cui posizione dipende dalla pressione dei sistemi, oppure si sceglie una condizione particolare per cui S_i ha sempre volume V_i e numero di particelle N_i . Vale

$$N = N_1 + N_2, \quad V = V_1 + V_2$$

L'energia totale E è conservata

$$E = E_1 + E_2$$

Se E_1 ed E_2 fossero conservati, allora S_1 ed S_2 sono sistemi isolati. Dunque, solamente la somma è conservata. Tuttavia, non è ovvio che l'energia totale sia la somme delle energie dei sistemi. Bisogna porre alcune ipotesi: non si considerano interazioni a lungo raggio. Le interazioni tra le molecole devono avvenire a corto raggio. L'energia comune E_{12} avviene alla parete e, nel limite di sistemi grandi rispetto la superficie di interazione, l'interazione stessa si può trascurare. I due sistemi interagiscono termicamente.

Osservazione. Qualunque sistema isolato lasciato evolvere abbastanza a lungo raggiunge una condizione di equilibrio. Qualunque grandezza macroscopica non cambia più nel tempo. L'energia del sottosistema S_1 è una grandezza macroscopica associata comunque al sistema totale. Se il sistema S è fuori equilibrio, si evolve ad una condizione di equilibrio conservando l'energia E, ma non conservando E_i però arrivando ad una energia dei singoli sistemi costante all'equilibrio.

Sia $P(E_1, E)$ la probabilità che l'energia del sottosistema S_1 parte del sistema ad energia E abbia energia E_1 . Si ha

$$P(E_1,E) = \frac{\text{\# stati in cui il sottosistema } S_1 \text{ ha energia } E_1}{g(E)} = \frac{n(E_1,E)}{g(E)}$$

In quanto probabilità, deve valere

$$1 = \sum_{E_1 < E} P(E_1, E) = \frac{\sum \#}{g(E)}$$

dove si ipotizza che E_i siano positivi. Si cerca la condizione su E_1 ed E_2 per cui si massimizza la probabilità. Questo porta a dire che i due sistemi hanno una quantità [r] uguale.

Lezione 2

mar 29 nov 2022 15:30

[r] u sarebbe μ

Si interpreta la distribuzione di equilibrio come massimo della probabilità $P(E_1, E)$. Si cerca la condizione di massimizzazione. La probabilità

$$P(E_1, E) = \frac{n(E_1, E)}{g(E)} = \frac{g_1(E_1)g_2(E - E_1)}{g(E)}$$

Esempio. Si consideri S_1 come un atomo di idrogeno e pure S_2 . L'energia del sistema totale è $E = \frac{5}{4}E_q^{\rm H}$. L'energia è data da

$$E = E_1 + E_2 = E_g^{\mathrm{H}} \left[\frac{1}{n_1^2} + \frac{1}{n_2^2} \right]$$

per cui una possibile configurazione è $n_1=1$ e $n_2=2$ (o viceversa). I numeri di microstati corrispondenti (considerando lo spin) sono $g_1(E_1)=2$ e $g_2(E-E_g^{\rm H})=8$. Dunque la probabilità è

$$P(E_1 = E_g^{\mathrm{H}}) = \frac{1}{32}g_1(E_1)g_2\left(\frac{5}{4}E_1 - E_1\right) = \frac{1}{2}$$

Si cerca la condizione che massimizza la probabilità

$$\partial_{E_1} P(E_1, E) = 0 \implies [\partial_{E_1} g_1(E_1)] g_2(E - E_1) + g_1(E_1) \partial_{E_1} g_2(E - E_1) = 0$$

In generale si ha

$$g_2 = g_2(E_2) = g_2(E - E_1) \implies \partial_{E_1} g_2 = (\partial_{E_1} E_2) \partial_{E_2} = -\partial_{E_2}$$

Pertanto, la condizione di equilibrio, che corrisponde alla probabilità massima, risulta essere

$$[\partial_{E_1}g_1(E_1)]g_2(E_2) = g_1(E_1)\,\partial_{E_2}g_2(E_2)$$

equivalentemente

$$\frac{1}{g_1(E_1)}\partial_{E_1}g_1(E_1) = \frac{1}{g_2(E_2)}\,\partial_{E_2}g_2(E_2)$$

Si introduce l'entropia come

$$S \equiv k_B \log [g(E)]$$

Pertanto, l'equazione precedente diventa

$$\partial_{E_1} S_1(E_1) = \partial_{E_2} S_2(E_2) \implies \frac{1}{T_1} = \frac{1}{T_2}, \quad \frac{1}{T_i} = \partial_{E_i} S_i(E_i)$$

Questa è la condizione di equilibrio termico tra i due sottosistemi: non cambia il volume (equilibrio meccanico) e non cambia il numero di molecole (equilibrio chimico).

Dalla chimica fisica si ha

$$T^{-1} = (\partial_E S)_{N,V} \implies T = (\partial_S E)_{N,V}$$

dove N e V sono fisse. Infatti, sapendo

$$S = k_B \log[g(E)]$$

Nel caso generale, l'entropia è funzione di N, V ed E. Nel caso studiato, essa dipende solamente dall'energia perché si sono mantenuti costante N e V. Si vede il motivo per cui si scambia numeratore e denominatore della derivata. Il differenziale di una funzione h(x, y, z) è [r]

$$dh = (\partial_x h)_{yz} dx + (\partial_y h)_{xz} dy + (\partial_z h)_{xy} dz$$

Se si riesce invertire anche implicitamente h in x(h, y, z) allora si ha

$$dx = (\partial_h x)_{yz} dh + (\partial_y x)_{hz} dy + (\partial_z x)_{hy} dz$$

Se dy = dz = 0 allora

$$dh = \frac{dx}{(\partial_h x)_{yz}} = (\partial_x h)_{yz} dx \implies (\partial_x h)_{yz} (\partial_h x)_{yz} = 1$$

[r] A questo punto

$$(\partial_E S)_{NV}(\partial_V E)_{NS}(\partial_S V)_{NE} = -1$$

grazie alla regole della catena delle derivate. Infatti, considerato h(x, y, z) si ha

$$dh = (\partial_x h)_{yz} dx + (\partial_y h)_{xz} dy + (\partial_z h)_{xy} dz$$

$$dx = (\partial_h x)_{yz} dh + (\partial_y x)_{hz} dy + (\partial_z x)_{hy} dz$$

Si pone dz = 0. Dunque

$$dx = (\partial_h x)_{yz} (\partial_x h)_{yz} dx + (\partial_h x)_{yz} (\partial_y h)_{xz} dy + (\partial_y x)_{hz} dy$$

= $dx + (\partial_h x)_{uz} (\partial_y h)_{xz} dy + (\partial_u x)_{hz} dy$

Pertanto

$$0 = dy \left[(\partial_h x)_{yz} (\partial_y h)_{xz} + (\partial_y x)_{hz} \right] \implies (\partial_h x)_{yz} (\partial_y h)_{xz} = -(\partial_y x)_{hz}$$

Moltiplicando per $(\partial_x y)_{hz}$ si ha

$$(\partial_x y)_{hz}(\partial_h x)_{yz}(\partial_y h)_{xz} = -1$$

Per la prima legge della termodinamica

$$\mathrm{d}E = \delta Q + \delta W$$

e sapendo che per l'entropia vale

$$S = S(N, V, E), \quad E = E(N, V, S)$$

si ha

$$dE = (\partial_N E)_{Vs} dN + (\partial_V E)_{NS} dV + (\partial_S E)_{NV} dS$$

L'ultimo addendo è il lavoro

$$\delta W$$
, $dS = \frac{\delta Q}{T}$, $(\partial_S E)_{NV} = T$

La derivata parziale del primo addendo è il potenziale chimico u. [r] qualcosa qualcosa [r]

$$\frac{p}{T}(\partial_S V)_{NE} = 1 \implies \frac{p}{T} = (\partial_V S)_{NE}$$

[r] Nel sistema totale, siano fissati solamente N_i : possono cambiare V_i e E_i con vincoli fissati $V = V_1 + V_2$ e $E = E_1 + E_2$. Per trovare la condizione di equilibrio, si massimizza la probabilità

$$P(E_1, V_1; E, V) = \frac{g_1(E_1, V_1)g_2(E - E_1, V - V_1)}{g(E, V)}$$

imponendo

$$\partial_{E_1} p = \partial_{V_1} p = 0$$

Dalla prima si ha $T_1=T_2$ che deriva da $\partial_{E_1}S_1=\partial_{E_2}S_2$. Dalla seconda si ha

$$\partial_{V_1} S_1 = \partial_{V_2} S_2 \implies \frac{p_1}{T_1} = \frac{p_2}{T_2} \implies p_1 = p_2$$

Questo è l'equilibrio termico e meccanico. Se anche le particelle possono cambiare [r] si ha una condizione in più

$$\partial_{N_1} S_1 = \partial_{N_2} S_2 \implies u_1 = u_2$$

[r] L'energia è

$$dE = u dN - p dV + T dS$$

da cui

$$dS = \frac{dE}{T} + \frac{u}{T} dN = \partial_N S dN + \partial_V S dV + \partial_E S dE$$

Fissato il volume, dV = 0, si ha

$$\partial_N S = -\frac{u}{T}$$

[r] qualcosa L'entropia è funzione S = S(N, V, E) dove tra parentesi ci sono le variabili naturali. Lo stesso per l'energia E = E(N, V, S). [r] potenziali termodinamici

$$dE = (\partial_N E)_{VS} dN + (\partial_V E)_{NS} dV + (\partial_S E)_{NV} dS$$

[r]

$$dE = u dN - p dV + T dS$$

Quando si ha un potenziale termodinamico funzione di tre variabili, tale potenziale è adatto a descrivere sistemi con le tre variabili costanti. L'energia dipende dall'entropia, ma sistemi ad entropia costante sono strani. [r] Si vuole costruire un sistema in cui sono conservate N, V e T. Si consideri l'energia F = E - TS libera di Helmholtz. Il differenziale è

$$dF = dE - S dT - T dS = u dN - p dV - S dT \implies F = F(N, V, T)$$

Questo potenziale termodinamico ha come variabili N, V e T. Si è partiti dalla funzione E(N, V, S) e si è sottratto

$$TS = (\partial_S E) S$$

Questo modo di passare a funzioni di grandezze diverse è la trasformata di Legendre. Per esempio, si consideri F(N, V, T). [r] Per temperature basse, si minimizza F [r]. Si vuole rimuovere il volume. Bisogna considerare il potenziale termodinamico

$$G = F - (\partial_V F)V = F + pV = E - TS + pV \implies G(N, \partial_V F, T)$$

cioè l'energia libera di Gibbs. Così si possono costruire potenziali termodinamici arbitrari. Per esempio

$$B(\partial_N E, V, S) = B(u, V, S) = E - (\partial_N E)N = E - uN$$

Si consideri un sistema definito dalle grandezze $E,\ N$ e V. Lo si raddoppia: il sistema complessivo presente i valori doppi delle grandezze. Tuttavia, la temperatura non raddoppia, ma rimane identica: la temperatura è una grandezza intensiva, le altre tre sono estensive. Per una scrittura del tipo

$$dE = u dN - p dV + T dS$$

Si ha una somma di prodotti di quantità intensive ed estensive: l'entropia è una quantità estensiva, così come il potenziale chimico. [r] Per un oggetto estensivo, vale

$$f(\lambda x) = \lambda f(x)$$

cioè è una funzione omogenea di grado uno. L'energia E è una funzione omogenea

$$E(\lambda N, \lambda V, \lambda S) = \lambda E(N, V, S)$$

Teorema. Si consideri

$$\mathrm{d}f = (\partial_{x_j} f) \, \mathrm{d}x_j$$

Se una funzione è omogenea allora

$$\mathrm{d}f \implies f = (\partial_{x_i} f) \, x_j$$

Dimostrazione. dim facoltativa. Si fissi (x, y, z). Siano

$$\alpha(\lambda) = \lambda x, \quad \beta(\lambda) = \lambda y, \quad \gamma(\lambda) = \lambda z$$

[r]

Pertanto, da

$$dE = \mu dN - p dV + T dS$$

in forma finita si ha

$$E = \mu N - pV + TS$$

Il cui differenziale presenta sei termini. Confrontandolo con l'espressione sopra si ha

$$N d\mu - V dp - S dT = 0$$

cioè la relazione di Gibbs-Duhem. Questa relazione implica che le grandezze intensive non sono indipendenti, sebbene la relazione non ha utilità.

Si consideri nuovamente un sistema isolato diviso in due sottosistemi. Sia S grande rispetto a S_1 . Il resto è la reservoir R. La probabilità è

$$P(E_1, E) = \frac{g_1(E_1)g_R(E - E_1)}{g(E)}$$

Data una energia arbitraria (parte di uno spettro discreto), si considera il rapporto

$$\frac{P(E_r, E)}{P(E_s, E)} = \frac{g_1(E_r)g_R(E - E_r)}{g_1(E_s)g_R(E - E_s)} = \frac{g_R(E - E_r)}{g_R(E - E_s)}$$

La seconda uguaglianza deriva dal fatto che se r ed s sono dei set completi di numeri quantici, allora la degenerazione è pari ad uno. Si possono sviluppare numeratore e denominatore in conseguenza della dimensione di S rispetto S_1 . Per il numeratore si ha

$$g_R(E - E_r) = \exp[\log(g_R(E - E - r))] = \exp\left[\frac{1}{k_B}S_R(E - E_r)\right]$$
$$\approx \exp\left[\frac{1}{k_B}(S_R(E) - E_r \partial_E S_R(0))\right]$$

Pertanto

$$\frac{P(E_r)}{P(E_s)} \approx \exp\left[-\frac{E_r - E_s}{k_B} \,\partial_E S_R\right] = \exp\left[-\frac{E_r - E_s}{k_B T}\right]$$

Il sistema S_1 è caratterizzato da una temperatura T. Si passa da un formalismo n(E) ad un formalismo n(T). Il formalismo è detto canonico. La temperatura di S_1 è fissata.

Lezione 3

mer 30 nov 2022 15:30

Osservazione. In quanto l'energia è una funzione omogenea, vale

$$G = E - TS + pV = -pV + \mu N + TS - TS + pV \implies \mu = \frac{G}{N}$$

L'entalpia risulta essere

$$H = E + pV$$

Il cui differenziale è

$$dH = dE + p dV + V dp = \mu dN + T dS + V dp$$

per cui le variabili naturali sono $N,\ S$ e p. I potenziali termodinamici sono minimizzati all'equilibrio.

Fine parte aggiuntiva prima del reservoir [r]

Dalla relazione sulla probabilità si inferisce

$$P_r = ce^{-\beta E_r}, \quad \beta = \frac{1}{k_B T}$$

Dalla normalizzazione si ottiene

$$P_r = \frac{e^{-\beta E_r}}{\sum_i e^{-\beta E_i}}$$

Questa è la probabilità di trovare il sistema alla energia E_r quando non si ha degenerazione. Per la degenerazione si ha

$$P_r = \frac{g_r e^{-\beta E_r}}{\sum_i g_i e^{-\beta E_i}}$$

Il denominatore è detto funzione di partizione canonica Z_{can} , mentre la distribuzione canonica è P_r . Essa descrive la probabilità di trovare un sistema termostatato ad energia E_r . La funzione di partizione è il punto di partenza di teorie statistiche. [r] Conoscendo la funzione di partizione canonica, si possono calcolare quantità importanti.

Esempio. Si consideri l'espressione

$$-\partial_{\beta} \log Z_{\text{can}} = -\frac{1}{Z_{\text{can}}} \partial_{\beta} Z_{\text{can}} = -\frac{1}{Z_{\text{can}}} \partial_{\beta} \sum_{l} e^{-\beta E_{l}} = \frac{1}{Z_{\text{con}}} \sum_{l} E_{l} e^{-\beta E_{l}} = \sum_{l} E_{l} P_{l} = \langle E \rangle$$

Un altro esempio è

$$\partial_V \log Z_{\text{can}} = -\frac{1}{Z_{\text{can}}} \sum_l \partial_V e^{-\beta E_l} = \frac{\beta}{Z_{\text{can}}} \sum_l (\partial_V E_p) e^{-\beta E_l}$$

Il volume compare all'interno dell'energia. Si ottiene

$$-\frac{1}{\beta} \partial_V \log Z_{\text{can}} = \sum_l (-\partial_V E_l) P_l = -\langle \partial_V E \rangle = \langle p \rangle$$

Conoscendo la funzione di partizione canonica si può calcolare l'entropia e anche l'energia libera di Helmholtz.

Noto

$$E = F + TS$$
, $dF = \mu dN - p dV - S dT$, $S = -(\partial_T F)_{NV}$

[r] Pertanto

$$E = F + TS = F - T \,\partial_T F = -T^2 \,\left(\partial_T \frac{F}{T}\right)$$

[r] calcoli calcoli

$$F = -k_B T \log Z_{\rm con}$$

[r]

Gas ideale. Si calcola la funzione di partizione per un gas perfetto. Esso è un gas non interagente. I veri gas sono abbastanza rarefatti. La distanza media tra due molecole è grande e l'interazione si può trascurare. Studiando un gas confinato non interagente, si possono ricavare dei risultati in accordo con la teoria macroscopica. Si calcola la funzione di partizione per un sistema di N particelle libere confinate in un volume L^3 . Dalla definizione

$$Z_{\rm can} = \sum_{l} e^{-\beta E_l}$$

dove E_l sono i livelli energetici di tutto il sistema [r]. L'energia del sistema complessivo si può scrivere come energia di singola particella.

Si considerino tre particelle non interagenti e uguali tra loro. L'hamiltoniana è

$$\hat{H}_3 = \sum_{j} \hat{h}(j)$$

Si supponga che ogni particella abbia solamente due livelli: ε_0 e ε_1 . Se il sistema consiste di particelle non [r]. Lo stato fondamentale vede tutte le particelle nello stato ε_0 . L'energia è $E=3\varepsilon_0$. Il primo livello eccitato ha energia $E=2\varepsilon_0+\varepsilon_1$. Il secondo livello è $E=\varepsilon_0+2\varepsilon_1$. Il terzo livello è $E=3\varepsilon_1$. La funzione di partizione è

$$Z_{\rm can} = \sum_{l} e^{-\beta E_l} = e^{-3\beta\varepsilon_0} + 3e^{-\beta(2\varepsilon_0 + \varepsilon_1)} + 3e^{-(2\varepsilon_1 + \varepsilon_0)} + e^{-3\beta\varepsilon_1}$$

L'energia media del sistema è

$$\langle E \rangle = -\partial_{\beta} \log Z_{\text{can}} = \frac{3\varepsilon_0 e^{-3\beta\varepsilon_0} + 3(2\varepsilon_0 + \varepsilon_1)e^{-\beta(2\varepsilon_0 + \varepsilon_1)} + 3(\varepsilon_0 + 2\varepsilon_1)e^{-\beta(\varepsilon_0 + 2\varepsilon_1)} + 3\varepsilon_1 e^{-3\beta\varepsilon_1}}{e^{-3\beta\varepsilon_0} + 3e^{-\beta(2\varepsilon_0 + \varepsilon_1)} + 3e^{-(2\varepsilon_1 + \varepsilon_0)} + e^{-3\beta\varepsilon_1}}$$

Se $\beta \to 0$ cioè $T \to \infty$, allora

$$\langle E \rangle \to \frac{3\varepsilon_0 + 3(2\varepsilon_0 + \varepsilon_1) + 3(\varepsilon_0 + 2\varepsilon_1) + 3\varepsilon_1}{8}$$

Si ha la stessa probabilità di occupare ogni livello [r]. La degenerazione fa comparire delle preferenze

$$P(3\varepsilon_0) = \frac{e^{-3\beta\varepsilon_0}}{Z_{\rm can}} \to \frac{1}{8}, \quad P(2\varepsilon_0 + \varepsilon_1) \to \frac{3}{8}$$

Nel limite $\beta \to \infty$ cioè $T \to 0$, si ha

$$P(3\varepsilon_0) = \frac{e^{-3\beta\varepsilon_0}}{Z_{\text{can}}} \to 1$$

[r]

Per una sola particella, la funzione di partizione di singola particella è

$$Z_I = e^{-\beta \varepsilon_0} + e^{-\beta \varepsilon_1} \implies Z_I^3 = Z_{\text{can}}$$

Elevando la funzione di partizione al numero di particelle si ottiene la funzione canonica

$$Z_{\rm can} = Z_I^N$$

L'energia media è

$$\langle E \rangle = -\partial_{\beta} \log Z_{\text{can}} = N(-\partial_{\beta} \log Z_I)$$

[r] Si ha

$$-\partial_{\beta}\log\sum_{n}e^{-\beta\varepsilon_{n}}=\sum_{n}\varepsilon_{n}\frac{e^{-\beta\varepsilon_{n}}}{Z_{I}}=\langle\varepsilon\rangle$$

Si ottiene la distribuzione di probabilità di Boltzmann

$$P_n = \frac{e^{-\beta \varepsilon_n}}{\sum_n e^{-\beta \varepsilon_n}}$$

Per i sistemi non interagenti, risulta comodo studiare il problema della singola particella. Ritornando al gas di N particelle non interagenti confinate nel volume L^3 . La funzione di partizione è

$$Z_{\rm can} = Z_I^N, \quad Z_I = \sum_i e^{-\beta \varepsilon_i}$$

L'energia di una particella in una scatola è

$$\varepsilon_{n_x n_y n_z} = \frac{\hbar^2}{2m} \frac{\pi^2}{L^2} (n_x^2 + n_y^2 + n_z^2) = C(n_x^2 + n_y^2 + n_z^2), \quad n_j \in \mathbb{N}$$

Pertanto

$$Z_{I} = \sum_{n_{x}, n_{y}, n_{z}} e^{-\beta C(n_{x}^{2} + n_{y}^{2} + n_{z}^{2})} = \left(\sum_{n_{x}} e^{-\beta C n_{x}^{2}}\right) \left(\sum_{n_{y}} e^{-\beta C n_{y}^{2}}\right) \left(\sum_{n_{z}} e^{-\beta C n_{z}^{2}}\right) = \left(Z_{I}^{1D}\right)^{3}$$

In una dimensione, la funzione di partizione di una particella si può approssimare

$$Z_I^{1D} = \sum_n e^{-\beta C n^2}, \quad \beta C = \frac{1}{k_B T} \frac{\hbar^2}{2m} \frac{\pi^2}{L^2}$$

Si consideri un sistema macroscopico con grandezze

$$k_B = 1.38 \times 10^{-23} \,\mathrm{J \, K^{-1}} = \frac{1}{11603} \,\mathrm{eV \, K^{-1}}, \quad h = 6.62 \times 10^{-34} \,\mathrm{J \, s^{-1}}, \quad m_e = 511 \,\mathrm{keV/c^2}$$

la costante C è piccola rispetto l'energia termica $k_BT \approx \frac{1}{40} \text{eV}$ (per $T=300\,\text{K}$). A tutti gli effetti, i livelli sono continui perché vicinissimi. Pertanto si può usare l'approssimazione

$$\sum_{n=1}^{\infty} e^{-\beta C n^2} \approx \int_1^{\infty} e^{-\beta C n^2} \, \mathrm{d}n \approx \int_0^{\infty} e^{-\beta C n^2} \, \mathrm{d}n$$

La seconda approssimazione è giustificata dal fatto che l'integrando è quasi l'unità fino a quando n non diventa grande. Pertanto

$$Z_I^{\rm 1D} = \frac{1}{2} \sqrt{\frac{\pi}{\beta C}} = \frac{L}{\hbar} \sqrt{\frac{k_B T m}{2\pi}}$$

In tre dimensioni si ha

$$Z_I = (Z_I^{\text{1D}})^3 \propto L^3 = V \implies Z_I = \frac{V}{V_O}$$

dove si ha il volume quantistico

$$V_Q = \lambda_T^3, \quad \lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$$

La funzione di partizione canonica del gas completo è

$$Z_{\rm can} = \left(\frac{V}{V_Q}\right)^N$$

La pressione media è

$$\langle p \rangle = \frac{1}{\beta} \, \partial_V \log Z_{\rm can} = \frac{1}{\beta} \partial_V \log V^N = \frac{N}{\beta} \, \partial_V \log V = \frac{N}{\beta V} \implies \langle p \rangle V = \frac{N}{\beta} = N k_B T$$

L'energia media è

$$\langle E \rangle = -\partial_{\beta} \log Z_{\text{con}} = N(-\partial_{\beta} \log Z_I) = N(-\partial_{\beta} \log \beta^{-\frac{3}{2}}) = \frac{3}{2} N k_B T$$

Si ha un problema nella teoria sviluppata quando si cerca una espressione per l'entropia. Vale

$$F = -k_B T \log Z_{\text{can}} = E_T S \implies S = \frac{E}{T} - \frac{F}{T} = \frac{3}{2} N k_B + k_B \log Z_{\text{can}}$$

Se N raddoppia allora pure S perché è una quantità estensiva. Tuttavia il secondo addendo non va bene: il problema si cela in $Z_{\text{can}} = Z_I^N$ [r]. Si è compiuto l'errore di distinguere le particelle. [r]

Lezione 4

lun 05 dic

Si sviluppa un formalismo per la meccanica statistica quantistica. Si calcola l'entropia. Come 2022 15:30 precedentemente

$$S = \frac{E - F}{T} = \frac{3}{2}k_B T - k_B \log Z_I^N = \frac{3}{2}k_B T - k_B N \log \frac{V}{V_q}$$
$$= \frac{3}{2}k_B T - k_B N(\log V - \log V_Q) = Nk_B \left[\frac{3}{2} - \log V + \log\left(\frac{h}{\sqrt{2\pi m k_B T}}\right)^3\right]$$

[r] L'entropia scritta così ha variabili naturali N, V e T. Ma la si vuole scrivere in termini di N, V e E per osservare il fatto che sia estensiva. [r] Si utilizza il valor medio dell'energia

$$E = \frac{3}{2}Nk_BT \implies k_BT = \frac{2E}{3N}$$

Da cui

$$S(N, V, E) = Nk_B \left[\frac{3}{2} - \log V + \log \left(\frac{h}{\sqrt{\frac{4}{3}\pi mE}} \right)^3 \right]$$
$$= Nk_B \left[\frac{3}{2} - \log V + 3\log h - \frac{3}{2}\log \left(\frac{4}{3}\pi m \frac{E}{N} \right) \right]$$

[r] Il termine $\log V$ implica

$$S(\lambda N, \lambda V, \lambda E) \neq \lambda S(N, V, E)$$

Si hanno dei problemi con l'entropia perché si constano gli stati diversi accessibili. Il problema risiede nell'utilizzo della formula

$$Z_{\rm can} = Z_I^N$$

Quando si sono elencate e sommate i micro stati, si sono rese le particelle distinguibili. L'equazione sopra è valida per particelle distinguibili. I casi in cui questo succede sono pochi. Il metodo per correggere la distinguibilità utilizza le statistiche quantistiche. Tuttavia, esiste un limite nel quale si può trovare una correzione alla formula precedente.

Definizione. Dicasi stati termicamente accessibili tutti gli stati per cui vale $e^{-\beta\varepsilon}\gg 0$. Per alte temperature, gli stati accessibili sono tanti [r].

Se il numero di livelli m termicamenti accessibili sono molto maggiori del numero di particelle N indistinguibili, allora la funzione di partizione canonica è data dall'espressione

$$Z_{\rm can} = \frac{Z_I^N}{N!}$$

Quando non si tiene conto di distribuzioni statistiche, allora per particelle distinguibili vale $Z_{\rm can}=Z_I^N$. Mentre per $m\gg N$ si ottiene nuovamente una trattazione classica perché è poco probabile che due particelle si trovino nella stessa energia ε_n [r]. Per particelle distinguibili vale $Z_{\rm can}=Z_I^N$. Per particelle indistinguibili, se $m\gg N$ (cioè

 $T \to \infty$) allora

$$Z_{\rm can} = \frac{Z_I^N}{N!}$$

Altrimenti servono le statistiche quantistiche (Fermi-Dirac o Bose-Einstein). Si vede un risultato ottenuto dalla derivazione delle due statistiche quantistiche:

$$V_Q = \lambda_T^3, \quad \lambda_T = \frac{h}{\sqrt{2\pi m k_B T}}$$

La radice ha le dimensioni di un momento: essa è una stima del momento lineare. Dunque, λ_T ricorda una lunghezza d'onda di de Broglie $(\lambda p \sim \hbar)$ che si associa ad una particella. La lunghezza d'onda termica λ_T ha il significato di estensione spaziale della particella. Ad ogni grandezza nello spazio si può associare una sfera che rappresenta il volume quantistico. Due particelle (descritte come onde) che si sovrappongono, poi non possono essere più riassociate alle particelle iniziali: esse sono indistinguibili. I sistemi per cui ci si aspetta indistinguibilità sono quelli con massa piccola, temperature basse. Gli elettroni hanno comportamento quantistico a grandi temperature: in un metallo di conduzione, gli elettroni si trovano sempre in condizioni di elevata degenerazione quantistica. Si fissi la temperatura e la massa. Avvicinando due particelle, cioè aumentando la densità, la situazione di particelle distinguibili diventa una situazione di particelle indistinguibili. Dunque, alle condizioni sopra bisogna aggiungere anche l'elevata densità. Il gas di elettroni di conduzione di un metallo ha tutte e tre le caratteristiche. In particolare, hanno una densità pari a

$$\frac{N}{V} \approx 10^{23} \, \mathrm{cm}^{-3}$$

Se il volume per particella $\frac{V}{N}$ è molto minore del volume quantistico V_Q allora si ha una elevata degenerazione quantistica.

Se c'è bassa degenerazione quantistica, questo non implica che si possono trattare in modo distinguibili perché le particelle si muovo. Prima o poi due particelle si sovrappongono e cade la distinguibilità. Si ha bassa degenerazione quantistica, ma le particelle sono indistinguibili. Il formalismo da utilizzare è ancora

$$Z_{\rm can} = \frac{Z_I^N}{N!}$$

Esiste anche un caso in cui si hanno sempre particelle distinguibili: questo succede nei cristalli perché i nuclei non si possono muovere (però la temperatura non deve essere bassa). I nuclei oscillano attorno una posizione di equilibrio e, se il volume quantistico è più grande, allora non si ha sovrapposizione:

$$Z_{\rm can} = Z_I^N$$

Per tutti gli altri casi bisogna usare statistiche quantistiche.

Stima della lunghezza d'onda termica. Si stima la lunghezza d'onda termica per un gas i elettroni ? RT

$$\lambda_T = \frac{h}{\sqrt{2\pi m k_B T}} \approx 10^{-8} \,\mathrm{m}, \quad \lambda_T^3 = V_Q \approx 10^{-25} \,\mathrm{m}^3, \quad \frac{V}{N} \approx 10^{23} \,\mathrm{cm}^{-3} \approx 10^{29} \,\mathrm{m}^{-3}$$

Si ha una grande degenerazione quantistica $V_Q \gg \frac{V}{N}$.

I calcoli per la distinzione tra particelle distinguibili o meno non cambiano tanto. Ad esempio, per l'energia media si ha

$$\langle E \rangle = -\partial_{\beta} \log Z_{\text{can}} = -N \, \partial_{\beta} \log Z_{I}, \quad \langle E \rangle = -\partial_{\beta} (\log Z_{I}^{N} - \log N!) = -N \, \partial_{\beta} \log Z_{I}$$

Lo stesso per la pressione. Tuttavia, si è trovata una quantità che dipende dalla distinguibilità: l'entropia perché conta gli stati.

Dal punto di vista della meccanica classica, non è facile definire due particelle distinguibili [r].

2 Formalismo gran canonico

Il modo naturale di derivare le statistiche quantistiche fa uso del formalismo (ensemble) gran canonico (μ, V, T) . Non si conserva più il numero di molecole. [r] canonico qualcosa. La probabilità [r]

$$P_r = \frac{e^{-\beta E r}}{Z_{\text{can}}}$$

Il sistema si può trovare a stati ad energia diversa. La probabilità si può calcolare come casi favorevoli su casi totali. Si può considerare il sistema e replicarlo più volte. Tale insieme di più sistemi identici produce misure di energia diverse. [r]

Si può pensare un gas di particelle non interagenti come repliche di un sistema costituito da una singola particella. La probabilità [r] data dalla distribuzione di Boltzmann è

$$P_r = e^{-\beta \varepsilon r}$$

Il gas è l'ensemble micro canonico statistico per particelle non interagenti. Esso è l'ensemble micro canonico statistico riferito al sistema costituito da una singola particella.

Ensemble gran canonico. Si parte dal sistema del reservoir costituito da S_1 e R. [r]

$$\frac{P(E_r)}{P(E_s)} = \frac{g_R(E - E_r)}{g_R(E - E_s)} = \frac{\exp[\log g_R(E - E_r)]}{\exp[\log g_R(E - E_s)]} = \frac{\exp\left[\frac{1}{k_B}S(E - E_r)\right]}{\exp\left[\frac{1}{k_B}S(E - E_s)\right]} \approx \cdots$$

[r] Nel formalismo gran canonico si rilassa l'ipotesi di conservazione delle particelle. Il numero di particelle del reservoir è talmente grande che scambiandone qualcuna, il numero non cambia. [r] Come prima [r]

$$\frac{P(E_r, N_1)}{P(E_s, N_2)} = \frac{g_R(E - E_r, N - N_1)}{g_R(E - E_s, N - N_2)} = \frac{\exp\left[\frac{1}{k_B}S(E - E_r, N - N_1)\right]}{\exp\left[\frac{1}{k_B}S(E - E_s, N - N_2)\right]}$$

Si applica

$$N_1 \ll N$$
, $N_2 \ll N$, $E_r \ll E$, $E_s \ll E$

da cui si ottiene

$$S(E - E_r, N - N_1) \approx S(E, N) - (\partial_E S)E_r - (\partial_N S)N_1 = S(E, N) - \frac{E_r}{T} + \frac{\mu}{T}N_1$$

e lo stesso per E_S ed N_2 . Pertanto

$$\frac{P(E_r, N_1)}{P(E_s, N_2)} = \frac{\exp\left[\frac{1}{k_B}S(N, E) - \frac{E_r}{T} + \frac{\mu}{T}N_1\right]}{\exp\left[\frac{1}{k_B}S(N, E) - \frac{E_s}{T} + \frac{\mu}{T}N_2\right]} = \exp\left[-\beta(E_r - E_s - \mu(N_1 - N_2))\right]$$

Dunque

$$P(E_r, N_1) = c \exp[-\beta (E_r - \mu N)]$$

La costante si ricava dalla normalizzazione ed è la funzione di partizione gran canonica

$$c^{-1} = \sum_{N} \sum_{r(N)} \exp[-\beta (E_r - \mu N)] = Z_{gr}$$

Essa dipende da μ , T e V. Quindi

$$P(E_r, N_1) = \frac{\exp[-\beta(E_r - \mu N)]}{Z_{gr}}$$

La funzione di partizione si può scrivere come

$$Z_{\rm gr} = \sum_{N} e^{\beta \mu N} \sum_{r(N)} e^{-\beta E_r}$$

Dove la seconda sommatoria è la $Z_{\text{can}}(N)$.

Lezione 5

mar 06 dic

Osservazione. Gli insiemi di numeri quantici $\{r\}$ ed $\{N\}$ sono legati tra loro: un set completo 2022 15:30 di numeri quantici dipende dal numero di particelle.

Osservazione. Il numero medio di particelle è

$$\frac{1}{\beta} \partial_{\mu} \log Z_{\rm gr} = \frac{1}{Z_{\rm gr} \beta} \sum_{N,r} \partial_{\mu} e^{-\beta (E_r - \mu N)} = \frac{1}{Z_{\rm gr}} \sum_{N,r} N e^{-\beta (E_r - \mu N)} = \langle N \rangle$$

Osservazione. Nell'ensemble canonico l'energia libera di Helmholtz

$$F = F(N, V, T) = E - TS$$
, $dF = \mu dN - p dV - S dT$, $-S = (\partial_T F)_{NV}$

è legata alla funzione di partizione canonica dalla relazione

$$F = -k_B T \log Z_{\rm can}$$

Ora si consideri un potenziale termodinamico $\Omega(\mu, T, V)$ ricavato dalla trasformata di Legendre di F:

$$\Omega = F - \mu N \implies d\Omega = \mu d\mathcal{N} - p dV - S dT - \mu d\mathcal{N} - N d\mu$$

Tuttavia

$$\Omega = E - TS - \mu N = -\partial_{\beta} \log Z_{\rm gr} + T \partial_T \Omega, \quad -S = (\partial_T \Omega)_{\mu V}$$

Infatti si nota

$$-\partial_{\beta} \log Z_{\rm gr} = -\frac{1}{Z_{\rm gr}} \partial_{\beta} \sum_{N,r} e^{-\beta(E_r - \mu N)} = \frac{1}{Z_{\rm gr}} \sum_{N,r} (E_r - \mu N) e^{-\beta(E_r - \mu N)} = \langle E \rangle - \mu \langle N \rangle$$

Si è trovata una relazione analoga a quella che lega F e $Z_{\rm can}$. Ripetendo conti simili si ottiene

$$\Omega = -k_B T \log Z_{\rm gr}$$

Osservazione. Vale

$$Z_{\rm gr} = \sum_{N} \sum_{r} e^{-\beta(E_r - \mu N)} = \sum_{N} e^{\beta \mu N} \sum_{r} e^{-\beta E_r}$$

dove la seconda sommatoria è pari a $Z_{\text{can}}(N, V, T)$. Per un gas ideale di particelle non interagenti a bassa degenerazione quantistica si ha

$$Z = \frac{Z_I^N}{N!} = \left(\frac{V}{V_Q}\right)^N \frac{1}{N!}$$

da cui si ottiene

$$Z_{\rm gr} = \sum_{N} e^{\beta \mu N} \left(\frac{V}{V_Q}\right)^N \frac{1}{N!} = \sum_{N} \frac{y^N}{N!}, \quad y \equiv e^{\beta \mu} \frac{V}{V_Q} \implies Z_{\rm gr} = e^y, \quad \log Z_{\rm gr} = y$$

Pertanto

$$\Omega = -k_B T \log Z_{\rm gr} = -k_B T e^{\frac{\mu}{k_B T}} \frac{V}{V_Q}$$

Notando

$$\langle N \rangle = -\partial_{\mu}\Omega = e^{\frac{\mu}{k_B T}} \frac{V}{V_Q}$$

si ottiene

$$\Omega = -k_B T \langle N \rangle$$

In un gas ideale, il potenziale gran canonico è una misura diretta dell'energia termica.

Osservazione. Noto

$$p = -\left(\partial_V \Omega\right)_{T\mu}, \quad \Omega = -k_B T e^{\frac{\mu}{k_B T}} Z_I = -k_B T e^{\frac{\mu}{k_B T}} \frac{V}{V_O}$$

si ottiene

$$p = k_B T \frac{e^{\frac{\mu}{k_B T}}}{V_O} = k_B T \frac{\langle N \rangle}{V} \implies pV = \langle N \rangle k_B T$$

Vale ancora la relazione dei gas perfetti trovata nell'ensemble canonico, ma con $\langle N \rangle$ al posto di N (conservato).

2.1 Sistemi non interagenti

Per sistemi non interagenti, l'energia totale è la somma delle energie di singola particella

$$E = \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha}$$

Il coefficiente n_{α} è detto numero di occupazione e descrive quante particelle si trovano nello stato caratterizzato dal set completo di numeri quantici α . Tenere conto dell'indistinguibilità delle particelle significa, per un sistema non interagente, passare da contare gli scambi tra gli atomi

$$Z_{\rm can} = \sum_{r} e^{-\beta E_r}$$

alla funzione di partizione

$$Z_{\rm can} = \sum_{\{n_{\alpha}\}} e^{-\beta \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha}} = \sum_{\{n_{\alpha}\}} \prod_{\alpha} (e^{-\beta \varepsilon_{\alpha}})^{n_{\alpha}}, \quad \sum_{\alpha} n_{\alpha} = N$$

si somma su tutte le successioni $\{n_{\alpha}\}$ di numeri di occupazione tali per cui $\sum_{\alpha} n_{\alpha} = N$. Si consideri

$$\sum_{N} Z_{\text{can}} = \sum_{N} \sum_{\{n_{\alpha}\}} \prod_{\alpha} (e^{-\beta \varepsilon_{\alpha}})^{n_{\alpha}}, \quad \sum_{\alpha} n_{\alpha} = N$$

Data la somma su N, allora non si ha più alcuna limitazione sulla somma di n_{α} . La sommatoria

$$\sum_{N} \sum_{\{n_{\alpha}\}}, \quad \sum_{\alpha} n_{\alpha} = N$$

diventa una sommatoria su tutte le famiglie $\{n_{\alpha}\}$ di numeri di occupazione, non solo quelli la cui somma è N:

$$\sum_{\alpha} n_{\alpha}$$

Pertanto

$$\sum_{N} Z_{\text{can}} = \sum_{\{n_{\alpha}\}} \prod_{\alpha} (e^{-\beta \varepsilon_{\alpha}})^{n_{\alpha}} = \prod_{\alpha} \sum_{n=0}^{\infty} (e^{-\beta \varepsilon_{\alpha}})^{n}$$

Esempio. Ci si convince della validità della relazione precedente tramite un esempio. Si consideri l'ultima uguaglianza. Si prendono alcune famiglie $\{n_{\alpha}\}_{i}$, si calcola il valore corrispondente alla sommatoria di sinistra e si mostra che tali termini compaiono anche nella produttoria di destra. Si considerino le famiglie

$$\{n_{\alpha}\}_{1} = (0, 0, 0, 0, \cdots), \quad \{n_{\alpha}\}_{2} = (1, 0, 0, 0, \cdots)$$

 $\{n_{\alpha}\}_{3} = (1, 1, 0, 0, \cdots), \quad \{n_{\alpha}\}_{4} = (1, 1, 6, 0, \cdots)$

Il membro di sinistra è

$$\sum_{\{n_{\alpha}\}} \prod_{\alpha} (e^{-\beta \varepsilon_{\alpha}})^{n_{\alpha}} = 1 + e^{-\beta \varepsilon_{0}} + e^{-\beta \varepsilon_{0}} e^{-\beta \varepsilon_{1}} + e^{-\beta \varepsilon_{0}} e^{-\beta \varepsilon_{1}} e^{-6\beta \varepsilon_{2}}$$

Il membro di destra è

$$\prod_{\alpha} \sum_{n=0}^{\infty} (e^{-\beta \varepsilon_{\alpha}})^n = (1 + e^{-\beta \varepsilon_0} + e^{-2\beta \varepsilon_0} + \cdots)(1 + e^{-\beta \varepsilon_1} + e^{-2\beta \varepsilon_1} + \cdots)(1 + e^{-\beta \varepsilon_2} + e^{-2\beta \varepsilon_2} + \cdots) \cdots$$

Moltiplicando tutti gli 1 si ha il primo addendo della sommatoria del membro di sinistra. Moltiplicando $e^{-\beta\varepsilon_0}$ per tutti gli 1 a destra si ottiene il secondo addendo. Moltiplicando $e^{-\beta\varepsilon_0}$ per $e^{-\beta\varepsilon_1}$ e tutti gli 1 successivi si ottiene il terzo addendo. Moltiplicando $e^{-\beta\varepsilon_0}$ per $e^{-\beta\varepsilon_1}$, $e^{-6\beta\varepsilon_2}$ e per tutti gli 1 seguenti ($\alpha \geq 3$) si ottiene il quarto addendo. Così via per sistemi più complicati.

Si consideri la funzione di partizione gran canonica $Z_{\rm gr}$. Se il sistema è non interagente allora

$$E = \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha}, \quad N = \sum_{\alpha} n_{\alpha}$$

Dunque la funzione di partizione diventa

$$Z_{\rm gr} = \sum_{N,r} e^{-\beta(E_r - \mu N)} = \sum_{N\{n_\alpha\}} e^{-\beta \sum_\alpha (\varepsilon_\alpha n_\alpha - \mu n_\alpha)}$$
$$= \sum_{N\{n_\alpha\}} e^{-\beta \sum_\alpha n_\alpha (\varepsilon_\alpha - \mu)} = \prod_\alpha \sum_{n=0}^\infty (e^{-\beta(\varepsilon_\alpha - \mu)})^n$$

La stessa argomentazione fatta per $\sum_N Z_{\rm can}$ vale anche in questo caso, accorgendosi che i livelli sono spostati di μ .

2.2 Distribuzioni Bose-Einstein e Fermi-Dirac

Dall'espressione della funzione di partizione

$$Z_{\rm gr} = \prod_{\alpha} \sum_{n=0}^{\infty} (e^{-\beta(\varepsilon_{\alpha} - \mu)})^n$$

si ricavano le distribuzioni di Bose-Einstein e Fermi-Dirac. Il pedice α indica un insieme completo di numeri quantici di singola particella, mentre la sommatoria è effettuata su tutti i possibili numeri n di occupazione. Si nota che la relazione

$$\langle N \rangle = \frac{1}{\beta} \, \partial_{\mu} \log Z_{\rm gr}$$

vale anche per i sistemi interagenti. Utilizzando l'espressione per Z_{gr} si può trovare, per i sistemi non interagenti,

$$\langle N \rangle = \frac{1}{\beta} \, \partial_{\mu} \log \left[\prod_{\alpha} \sum_{n=0}^{\infty} (e^{-\beta(\varepsilon_{\alpha} - \mu)})^{n} \right] = \sum_{\alpha} \left[\frac{1}{\beta} \, \partial_{\mu} \log \sum_{n} (e^{-\beta(\varepsilon_{\alpha} - \mu)})^{n} \right]$$

Sia n_{α} il numero di occupazione del livello $\alpha.$ Devono valere le relazioni

$$N = \sum_{\alpha} n_{\alpha}, \quad \langle N \rangle = \sum_{\alpha} \langle n_{\alpha} \rangle$$

Confrontandole con l'espressione precedente si ottiene

$$\langle n_{\alpha} \rangle = \frac{1}{\beta} \, \partial_{\mu} \log \sum_{n} (e^{-\beta(\varepsilon_{\alpha} - \mu)})^{n}$$

Esso è il numero medio di occupazione dello stato specificato dall'insieme completo di numeri quantici.

Fermioni. In un sistema di fermioni, una sola particella può avere un dato insieme completo di numeri quantici α (notare che la proiezione del momento magnetico di spin, m_s , è incluso in α). L'indice n può solo assumere due valori: n=0,1 (nessuna o una particella). L'espressione precedente diventa

$$\langle n_\alpha \rangle = \frac{1}{\beta} \, \partial_\mu \log [1 + e^{-\beta(\varepsilon_\alpha - \mu)}] = \frac{1}{\beta} \frac{\beta e^{-\beta(\varepsilon_\alpha - \mu)}}{1 + e^{-\beta(\varepsilon_\alpha - \mu)}} = \frac{1}{e^{\beta(\varepsilon_\alpha - \mu)} + 1}$$

Si definisce la distribuzione di Fermi-Dirac

$$f^{\mathrm{FD}}(\varepsilon) \equiv \frac{1}{e^{\beta(\varepsilon-\mu)} + 1}$$

Essa rappresenta l'occupazione media del livello ε in assenza di degenerazione. La presenza dell'addendo uno al denominatore rende tale distribuzione diversa da quella di Boltzmann. Esiste un metodo più elegante e naturale di derivazione di tale distribuzione in maniera quantistica. Si noti che il potenziale chimico μ è legato al numero di particelle dalla relazione

$$\langle N \rangle = \sum_{\alpha} \frac{1}{e^{\beta(\varepsilon_{\alpha} - \mu)} + 1}$$

Se non fosse presente +1 allora il potenziale chimico fa da costante di normalizzazione alla distribuzione di Boltzmann. Si deve calcolare il potenziale chimico in modo implicito. Spesso si scrive N al posto di $\langle N \rangle$: si sottintende che si stiano considerando sistemi grandi in cui le fluttuazioni relative sono trascurabili

$$\frac{\delta N}{\langle N \rangle} \sim \frac{1}{\sqrt{N}}$$

Si studiano alcuni limite interessanti

- per $\varepsilon = \mu$ si ha $f^{\text{FD}} = \frac{1}{2}$;
- per $\frac{\varepsilon \mu}{k_B T} \to -\infty$ si ha $f \to 1$; se $\varepsilon \mu < 0$, allora per $T \to 0$ si ha $f \to 1$;
- per $\frac{\varepsilon \mu}{k_B T} \to \infty$ si ha $f \to 0$; se $\varepsilon \mu > 0$, allora per $T \to 0$ si ha $f \to 0$;

La distribuzione ha codominio tra 0 ed 1, pertanto risulta utile interpretarla come probabilità. Il potenziale chimico a T=0 è detto energia di Fermi

$$\mu(N, V, T = 0) \equiv \varepsilon_F$$

A temperatura nulla, i livelli energetici al di sotto dell'energia di Fermi sono tutti occupati, mentre i livelli al di sopra sono vuoti. L'energia di Fermi corrisponde al livello energetico massimo a temperatura nulla.

Bosoni. Nell'espressione del numero medio di occupazione

$$\langle n_{\alpha} \rangle = \frac{1}{\beta} \, \partial_{\mu} \log \sum_{n} (e^{-\beta(\varepsilon_{\alpha} - \mu)})^{n}$$

sono presenti tutti i valori di $n \in \mathbb{N}_0$. Si noti che se $\varepsilon_{\alpha} - \mu < 0$ allora

$$\sum_{n} (e^{-\beta(\varepsilon_{\alpha} - \mu)})^n \to \infty$$

Affinché la formula abbia senso, si pone $\varepsilon_{\alpha} > \mu$: in un sistema bosonico, il potenziale chimico è sempre minore dello stato fondamentale di singola particella. Se $\varepsilon_{\alpha} > \mu$, allora si pone $x \equiv e^{-\beta(\varepsilon_{\alpha} - \mu)}$ per ottenere

$$\sum_{n} (e^{-\beta(\varepsilon_{\alpha} - \mu)})^n = \sum_{n} x^n = \frac{1}{1 - x} = \frac{1}{1 - e^{-\beta(\varepsilon_{\alpha} - \mu)}}$$

da cui si ricava

$$\langle n_{\alpha} \rangle = -\frac{1}{\beta} \, \partial_{\beta} \log \left(1 - e^{-\beta(\varepsilon_{\alpha} - \mu)} \right) = \frac{1}{e^{\beta(\varepsilon_{\alpha} - \mu)} - 1}$$

Si definisce la distribuzione di Bose-Einstein

$$f^{\mathrm{BE}}(\varepsilon) \equiv \frac{1}{e^{\beta(\varepsilon-\mu)} - 1}, \quad \varepsilon > \mu$$

Lezione 6

lun 12 dic

Osservazione. Le due distribuzioni ricavate differiscono per il segno dell'uno a denominatore. 2022 15:30 Se $e^{\beta(\varepsilon_{\alpha}-\mu)}\gg 1$ per ogni α , allora

$$\langle n_{\alpha} \rangle_{\rm FD} = \langle n_{\alpha} \rangle_{\rm BE} = e^{-\beta(\varepsilon_{\alpha} - \mu)}$$

Si impone che il numero medio totale di particelle sia N:

$$\sum_{\alpha} \langle n_{\alpha} \rangle = \langle N \rangle = N = \sum_{\alpha} e^{-\beta(\varepsilon_{\alpha} - \mu)} \implies e^{\beta \mu} = \frac{N}{\sum_{\alpha} e^{-\beta \varepsilon_{\alpha}}}$$

da ciò segue

$$\langle n_{\alpha} \rangle_{\text{FD}} = \langle n_{\alpha} \rangle_{\text{BE}} = \frac{N e^{-\beta \varepsilon_{\alpha}}}{\sum_{\alpha} e^{-\beta \varepsilon_{\alpha}}} = N P_{\alpha}$$

cioè il numero medio di occupazione NP_{α} che si otterrebbe con Boltzmann, ovvero utilizzando una statistica classica. Per questo si dice che $e^{\beta(\varepsilon_{\alpha}-\mu)}\gg 1$ per ogni α è il limite classico

(principio di corrispondenza). Si noti che in tale limite, i numeri di occupazione sono molto minori dell'unità: si è nelle condizioni in cui

$$Z_{\rm can} = \frac{Z_I^N}{N!}$$

cioè particelle indistinguibili.

Esiste un punto in termini di $\varepsilon - \mu$ in cui le due distribuzioni coincidono. Quando questo avviene, si può usare la statistica classica con $Z_{\text{can}} = \frac{Z_I^N}{N!}$ altrimenti bisogna usare FD o BE.

Osservazione. Se N è piccolo, allora si è in regime classico (fissato V si hanno gas diluiti $\frac{N}{V} \to 0$). Dato che

$$N = \sum_{\alpha} \frac{1}{e^{\beta(\varepsilon_{\alpha} - \mu)} \pm 1}$$

il denominatore dev'essere grande $e^{\beta(\varepsilon_{\alpha}-\mu)}\gg 1$ per ogni α . Si dimostra di seguito che si ottiene il limite classico per

$$\frac{V}{N} \gg V_Q = \lambda_T^3 = \frac{h^3}{(2\pi m k_B T)^{\frac{3}{2}}}$$

cioè se $T \to \infty$ e/o $\frac{N}{V} \to 0$ e/o la massa delle particelle è grande.

2.3 Gas di elettroni non interagenti

Gli elettroni della banda di conduzione dei metalli sono poco legati agli atomi. Alcune loro proprietà possono essere ben comprese trattandoli come un gas di particelle libere non interagenti. Un'approssimazione accettabile consiste nel trascurare la repulsione tra gli elettroni: nel sistema reale esiste uno sfondo (background) di carica positiva data dai nuclei. Si può pensare che, in media, l'interazione attrattiva con lo sfondo positivo cancelli la repulsione tra gli elettroni. Gli elettroni non si trovano mai nel limite classico a causa della loro massa $m_e \approx 9 \times 10^{-31}\,\mathrm{kg}$ e della loro densità $\rho_{\rm el} \approx 10^{23}\,\mathrm{cm}^{-3}$. Si studia in dettaglio un gas di elettroni non interagenti come un insieme di N fermioni con spin $s=\frac{1}{2}$ in una scatola, trascurando completamente ogni interazione. Gli autovalori dell'hamiltoniana del sistema, cioè l'energia, sono dati da

$$\varepsilon_{n_x n_y n_z} = c(n_x^2 + n_y^2 + n_z^2), \quad c = \frac{\hbar^2 \pi^2}{2m_e L^2}, \quad n_i \in \mathbb{N}_0, \quad \sum_i n_i > 0$$

Lo stato di particella singola è totalmente specificato dall'insieme completo di numeri quantici $\alpha = (n_x, n_y, n_z, m_s)$ dove $m_s = \pm \frac{1}{2}$. La statistica che descrive i fermioni è

$$f_{n_x n_y n_z m_s} = \frac{1}{e^{\beta(cn^2 - \mu)} + 1}$$

Si ha degenerazione. Dal conteggio dei singoli stati si passa all'energia passando per la degenerazione. Per passare dalla statistica sopra ad una funzione della sola energia si deve calcolare la degenerazione. Quella riguardo lo spin è banale

$$f_{n_x n_y n_z} = \sum_{m_s} f_{n_x n_y n_z m_s} = \frac{2}{e^{\beta(cn^2 - \mu)} + 1}$$

Quella riguardo gli altri tre numeri quantici è più complicata. Non si può calcolare analiticamente la degenerazione, ma si può dare una stima accurata dell'andamento medio. Nello spazio (n_x, n_y, n_z) , gli stati formato un reticolo cubico semplice nell'ottante positivo. Le celle elementari del reticolo hanno volume unitario. Ogni punto del reticolo appartiene ad otto cubi elementari diversi. Ogni cubo tocca otto punti (cioè i propri vertici): si ha una corrispondenza biunivoca tra i cubi ed i punti. Si vuole stimare il numero di punti in un volume V come $\frac{V}{V_{\rm cubo}}$ cioè il numero di stati con $n^2 < n_x^2 + n_y^2 + n_z^2$. Nello spazio (n_x, n_y, n_z) un

possibile valore di energia equivale ad un possibile valore di $n^2=n_x^2+n_y^2+n_z^2$. Si passa al continuo. Il volume dell'ottavo di sfera nell'ottante positivo contiene un numero di punti

$$N(n) = 2\frac{1}{8} \frac{4}{3} \pi n^3 = \frac{\pi}{3} n^3$$

dove il fattore 2 tiene conto della degenerazione dovuta allo spin. Allo stesso modo

$$N(n + dn) = \frac{2}{8} \frac{4}{3} \pi (n + dn)^3 = \frac{\pi}{3} [n^3 + 3n^2 dn + o(dn)], \quad dn \ll N(n)$$

Pertanto, il numero di stati con n compreso tra n ed n + dn è

$$dN = N(n + dn) - N(n) \approx \pi n^2 dn$$

Questo equivale a dire che la degenerazione è

$$g(n^2) dn = \pi n^2 dn$$

Considerato

$$\varepsilon = cn^2 \implies n = \sqrt{\frac{\varepsilon}{c}}, \quad dn = \frac{d\varepsilon}{2\sqrt{\varepsilon c}}$$

La degenerazione in termini dell'energia diventa

$$\mathrm{d}N = g(\varepsilon)\,\mathrm{d}\varepsilon = \frac{\pi}{2} \frac{\sqrt{\varepsilon}}{c^{\frac{3}{2}}}\,\mathrm{d}\varepsilon = \frac{(2m_e)^{\frac{3}{2}}V}{2\hbar^3\pi^2}\sqrt{\varepsilon}\,\mathrm{d}\varepsilon = A\sqrt{\varepsilon}\,\mathrm{d}\varepsilon, \quad c^{\frac{3}{2}} = \frac{\hbar^3\pi^3}{(2m_e)^{\frac{3}{2}}V}$$

In generale, la densità degli stati per un gas di particelle libere di massa M e spin s contenute in una scatola di volume $V=L^3$ risulta essere

$$g(\varepsilon) d\varepsilon = \frac{\pi}{4} (2s+1)c^{-\frac{3}{2}} \sqrt{\varepsilon} d\varepsilon, \quad c = \frac{\hbar^2 \pi^2}{2ML^2}$$

In una dimensione la degenerazione è $\varepsilon^{-\frac{1}{2}}$ in quanto $g \propto \mathrm{d}n$, mentre in due dimensione è costante, $g \propto n \, \mathrm{d}n$. L'occupazione media del livello energetico ε risulta essere

$$g(\varepsilon)f(\varepsilon)\,\mathrm{d}\varepsilon = \frac{A\sqrt{\varepsilon}}{e^{\beta(\varepsilon-\mu)}+1}\,\mathrm{d}\varepsilon, \quad A \equiv \frac{(2m_e)^{\frac{3}{2}}V}{2\pi^2\hbar^3}$$

Integrando tra $0 \in \infty$, si ottiene il numero di particelle: esso è identico ad ogni temperatura. Affinché ciò avvenga, μ deve dipendere dalla temperatura (per ottenere una espressione esplicita bisogna usare lo sviluppo di Sommerfeld). Nel limite $T \to 0$ si sa

$$f(\varepsilon) \to \begin{cases} 1, & \varepsilon \le \varepsilon_F \\ 0, & \varepsilon > \varepsilon_F \end{cases}$$

Pertanto, il numero medio totale di particelle deve essere

$$N = \int_0^{\varepsilon_F} A\sqrt{\varepsilon} \, \mathrm{d}\varepsilon = \frac{2}{3} \varepsilon_F^{\frac{3}{2}} A \implies A = \frac{3}{2} N \varepsilon_F^{-\frac{3}{2}}$$

da cui l'energia di Fermi risulta essere

$$\varepsilon_F^{\frac{3}{2}} = \frac{3N}{2A} = \frac{3\rho\pi^2\hbar^3}{(2m_e)^{\frac{3}{2}}} \implies \varepsilon_F = \frac{\hbar^2}{2m_e} (3\pi^2\rho)^{\frac{2}{3}} \approx 10^{-18} \, \mathrm{J} \approx 5 \, \mathrm{eV}, \quad \rho = \frac{N}{V}$$

L'energia di Fermi è qualche elettronvolt. Questo è importante perché la deviazione della statistica di Fermi-Dirac dalla funzione gradino è significativa solo per

$$T\approx T_F\equiv \frac{\varepsilon_F}{k_B}\approx 10^4-10^5\,\mathrm{K}$$

A temperatura intense (300 – 1500 K) la statistica è quasi un gradino con l'eccezione di una regione dell'ordine di k_BT tipicamente molto minore dell'energia di Fermi. L'energia media totale a T=0 è

$$U(0) = \int_0^{\varepsilon_F} \varepsilon g(\varepsilon) \, \mathrm{d}\varepsilon = A \int_0^{\varepsilon_F} \varepsilon \sqrt{\varepsilon} \, \mathrm{d}\varepsilon = \frac{3}{2} N \varepsilon_F^{-\frac{3}{2}} \int_0^{\varepsilon_F} \varepsilon^{\frac{3}{2}} \, \mathrm{d}\varepsilon = \frac{3}{5} N \varepsilon_F$$

Esempio. Se $\frac{V}{N} \gg V_Q$, allora un gas di elettroni si trova al limite classico. Esso corrisponde a

$$e^{\beta(\varepsilon_{\alpha}-\mu)}\gg 1, \quad \forall \alpha$$

Se $\varepsilon_{\alpha} - \mu < 0$ allora non si può mai arrivare al limite classico. Sia $\varepsilon_{\alpha} > \mu$. Nello stato fondamentale si ha $\mu < 0$ e $e^{\beta \varepsilon_{\alpha}} = 1$. Affinché si approcci il limite classico bisogna richiedere $e^{-\beta \mu} \gg 1$. Il numero di stati nel limite classico è

$$N = A \int_0^\infty \frac{g(\varepsilon)}{e^{\beta(\varepsilon - \mu)} + 1} d\varepsilon \approx A e^{\beta \mu} \int_0^\infty \sqrt{\varepsilon} e^{-\beta \varepsilon} d\varepsilon = \frac{A\sqrt{\pi}}{2\beta^{\frac{3}{2}}} e^{\beta \mu}$$

dove si utilizza

$$I_0(a) = \int_0^\infty e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} \implies -d_a I_0(a) = \int_0^\infty x^2 e^{-ax^2} dx$$

Da cui si ha

$$e^{-\beta\mu} = \frac{A\sqrt{\pi}}{2N\beta^{\frac{3}{2}}} = \frac{V}{N} \frac{(2m)^{\frac{3}{2}}\sqrt{\pi}}{4\pi^{2}\hbar^{3}\beta^{\frac{3}{2}}} \gg 1 \implies \frac{V}{N} \gg \frac{1}{2} \left[\frac{h}{\sqrt{2\pi m k_{B}T}} \right]^{3} = \frac{1}{2}V_{Q}$$

Pertanto

$$\frac{V}{N} \gg V_Q \implies Z_{\rm can} = \frac{Z_I^N}{N!}$$

Calore specifico a volume costante. Dal corso di Fisica III, il calore specifico di un materiale isolante a basse temperature va come T^3 . In un metallo si ha un andamento lineare: bisogna considerare il gas di conduzione degli elettroni. Il calore specifico a volume costante è

$$c_V = \partial_T U = \partial_T [U(T) - U(0)]$$

L'energia ad una temperatura arbitraria per un gas di elettroni non interagenti è

$$U(T) = \int_0^\infty \varepsilon g(\varepsilon) f(\varepsilon, T) \, \mathrm{d}\varepsilon$$

Si noti valere

$$N = \int_0^\infty g(\varepsilon) f(\varepsilon, T) d\varepsilon = \int_0^{\varepsilon_F} g(\varepsilon) d\varepsilon$$

da cui segue

$$\int_0^{\varepsilon_F} \varepsilon_F g(\varepsilon) \, \mathrm{d}\varepsilon - \int_0^{\infty} \varepsilon_F g(\varepsilon) f(\varepsilon, T) \, \mathrm{d}\varepsilon = 0$$

Lezione 7

Pertanto

mar 13 dic 2022 15:30

$$\Delta U(T) = U(T) - U(0) = \int_0^\infty \varepsilon g(\varepsilon) f(\varepsilon, T) d\varepsilon - \int_0^{\varepsilon_F} \varepsilon g(\varepsilon) d\varepsilon + 0$$

$$= \int_0^\infty \varepsilon g(\varepsilon) f(\varepsilon, T) d\varepsilon - \int_0^{\varepsilon_F} \varepsilon g(\varepsilon) d\varepsilon + \int_0^{\varepsilon_F} \varepsilon_F g(\varepsilon) d\varepsilon - \int_0^\infty \varepsilon_F g(\varepsilon) f(\varepsilon, T) d\varepsilon$$

$$= \int_{\varepsilon_F}^\infty (\varepsilon - \varepsilon_F) g(\varepsilon) f(\varepsilon, T) d\varepsilon + \int_0^{\varepsilon_F} (\varepsilon - \varepsilon_F) g(\varepsilon) [f(\varepsilon, T) - 1] d\varepsilon$$

Il calore specifico a volume costante risulta essere

$$c_V = \partial_T \Delta U = \int_0^\infty (\varepsilon - \varepsilon_F) g(\varepsilon) \, \partial_T f(\varepsilon, T) \, d\varepsilon$$

Si studia il limite $T \ll T_F$, cioè $T \to 0$. La derivata è (apprezzabilmente) diversa da zero attorno a $\varepsilon \approx \varepsilon_F$. Calcolare una funzione liscia come $g(\varepsilon) \sim \sqrt{\varepsilon}$ solo in ε_F è una buona approssimazione (perché la statistica f è molto simile ad un gradino)

$$c_V \approx g(\varepsilon_F) \int_0^\infty (\varepsilon - \varepsilon_F) \, \partial_T f(\varepsilon, T) \, \mathrm{d}\varepsilon$$

Si utilizza un'altra approssimazione. La statistica di Fermi-Dirac presenta una dipendenza dalla temperatura sia nel termine β che nel potenziale chimico μ . Nel limite di basse temperature (si ricordi che $T_F \approx 10^4 \, \mathrm{K}$) il potenziale chimico varia lentamente con la temperatura e si può ipotizzare $\mu(T) \approx \varepsilon_F$ quando si fa la derivata della statistica FD. Quindi, nel limite $T \to 0$ si ha

$$c_{V} \approx g(\varepsilon_{F}) \int_{0}^{\infty} (\varepsilon - \varepsilon_{F}) \, \partial_{T} \left[e^{\frac{\varepsilon - \varepsilon_{F}}{k_{B}T}} + 1 \right]^{-1} \, \mathrm{d}\varepsilon = g(\varepsilon_{F}) \int_{0}^{\infty} \frac{(\varepsilon - \varepsilon_{F})^{2}}{k_{B}T^{2}} \frac{e^{\frac{\varepsilon - \varepsilon_{F}}{k_{B}T}}}{(e^{\frac{\varepsilon - \varepsilon_{F}}{k_{B}T}} + 1)^{2}} \, \mathrm{d}\varepsilon$$

$$= g(\varepsilon_{F}) k_{B}^{2} T \int_{-\beta \varepsilon_{F}}^{\infty} \frac{x^{2} e^{x}}{(e^{x} + 1)^{2}} \, \mathrm{d}x \approx g(\varepsilon_{F}) k_{B}^{2} T \int_{\mathbb{R}} \frac{x^{2} e^{x}}{(1 + e^{x})^{2}} \, \mathrm{d}x, \quad x = \frac{\varepsilon - \varepsilon_{F}}{k_{B}T}$$

$$= \frac{\pi^{2}}{3} g(\varepsilon_{F}) k_{B}^{2} T$$

Alla seconda riga, si approssima l'estremo inferiore d'integrazione:

$$\varepsilon_F \gg k_B T \iff -\beta \varepsilon_F = -\frac{\varepsilon_F}{k_B T} \to -\infty$$

Si è trovata un'espressione del calore specifico di un gas di elettroni liberi nel limite di basse temperature (che è ampiamente applicabile). Inoltre, la linearità in T non è classicamente prevista. Infatti, per il gas ideale si ha

$$U = \frac{3}{2}Nk_BT \implies c_V = \partial_T U$$

cioè indipendente dalla temperatura.

2.4 Condensazione di Bose-Einstein

I bosoni hanno un comportamento diverso dal gas classico. La condensazione di Bose-Einstein è un fenomeno prettamente quantistico. Anche la distribuzione classica di Boltzmann

$$P_m = \frac{e^{-\beta \varepsilon_m}}{Z_I}, \quad Z_I = \sum_m e^{-\beta \varepsilon_m}$$

prevede che tutte le particelle collassino sullo stato fondamentale, ma solo per temperature $k_BT\ll\Delta\varepsilon$ dove $\Delta\varepsilon$ è la tipica separazione tra i livelli energetici. Per sistemi macroscopici (ad esempio una scatola cubica di lato $L=1\,\mathrm{cm}$ con livelli energetici $\varepsilon_n=\frac{\hbar^2\pi^2}{2mL^2}n^2$) vale $\Delta\varepsilon\sim 10^{-14}\,\mathrm{eV}$ e si avrebbe condensazione per temperature non fisiche

$$T \approx 10^{-16} \,\mathrm{K}$$

invece di qualche kelvin che permette di osservare il fenomeno.

Si consideri un gas di N bosoni non interagenti con spin s=0. Quando si è studiato il gas di elettroni non interagenti si è utilizzata la seguente soluzione valida ad ogni temperatura:

$$N = \int_0^\infty g(\varepsilon) f_{\rm FD}(\varepsilon, T) \, \mathrm{d}\varepsilon, \quad f_{\rm FD}(\varepsilon) = \frac{1}{e^{\beta[\varepsilon - \mu(T)]} + 1}, \quad g(\varepsilon) = \frac{(2m_e)^{\frac{3}{2}} V}{2\pi^2 \hbar^3} \sqrt{\varepsilon}$$

Per bosoni a spin nullo vale

$$N = \int_0^\infty g(\varepsilon) f_{\rm BE}(\varepsilon, T) \, \mathrm{d}\varepsilon, \quad f_{\rm BE}(\varepsilon) = \frac{1}{e^{\beta[\varepsilon - \mu(T)]} - 1}, \quad g(\varepsilon) = \frac{(2m_e)^{\frac{3}{2}} V}{4\pi^2 \hbar^3} \sqrt{\varepsilon}$$

La relazione per N vale solo per temperature sufficientemente alte, $T > T_c$. Si vede perché essa non vale per $T \approx 0 \,\mathrm{K}$ e poi si spiega cos'è la temperatura critica T_c . Per i bosoni non vale il principio di esclusione di Pauli: nulla impedisce ad un sistema di minimizzare la propria energia collocando tutte le particelle nello stato fondamentale $\varepsilon_0 = 0$. Il valore zero è dato dal fatto che lo stato fondamentale della particella libera con condizioni periodiche al contorno ha energia zero. Se si usano condizioni di annullamento allora

$$\varepsilon_0 = \frac{\hbar^2 \pi^2}{2mL^2} \approx 0, \quad L \to \infty$$

Altrimenti si possono traslare i livelli e porre $\varepsilon_0 = 0$. Considerando i livelli discreti, vale

$$N = g_0 N(0) + g_1 N(1) + \cdots$$

dove N(i) è il numero medio di particelle nello stato ε_i e g_i è la degenerazione di tale stato. Quando si passa al continuo si introduce $g(\varepsilon) \sim \sqrt{\varepsilon}$ che non pesa lo stato fondamentale in quanto g(0) = 0: non è possibile che la soluzione

$$N = \int_0^\infty g(\varepsilon) f_{\rm BE}(\varepsilon) \, \mathrm{d}\varepsilon$$

tenga conto correttamente del peso macroscopico dello stato fondamentale. Non appena la temperatura diventa abbastanza grande, invece, le particelle si distribuiscono in tanti stati, l'occupazione dello stato fondamentale non è macroscopica e l'espressione di N diventa corretta dato che trascurare l'occupazione dello stato fondamentale diventa una buona approssimazione. In generale, ci si aspetta la seguente situazione. In primo luogo, a basse temperature vale

$$N = N_0 + \int_0^\infty g(\varepsilon) f_{\rm BE}(\varepsilon) d\varepsilon$$

dove N_0 è il numero di particelle sullo stato fondamentale, possibilmente non tutte, ma in numero confrontabile con N. Il parametro N_0 le conteggia tutte qualora $T \to 0$. In secondo luogo, per alte temperature le particelle sono quasi tutte in stati eccitati

$$N = \int_0^\infty g(\varepsilon) f_{\rm BE}(\varepsilon) \, \mathrm{d}\varepsilon$$

Si cerca la temperatura a cui si hanno particelle nello stato fondamentale.

Osservazione. Per $T \approx 0 \,\mathrm{K}$ si ha

$$N \approx N_0 = f(0) = \frac{1}{e^{\beta(0-\mu)} - 1} = \frac{1}{e^{-\beta\mu} - 1}$$

Per i bosoni deve valere

$$\varepsilon - \mu > 0, \quad \forall \varepsilon \iff \mu < 0$$

Se N dev'essere un numero macroscopico per $T \approx 0 \,\mathrm{K} \ (\beta \to \infty)$ allora $e^{-\beta \mu} \approx 1$ cioè $\mu \approx 0$. Questo fornisce un suggerimento su come calcolare la temperatura critica T_c (e quindi β_c) che separa i due casi sopra riportati: si impone $\mu = 0$ e si ha

$$N = \int_0^\infty \frac{g(\varepsilon)}{e^{\beta_c \varepsilon} - 1} \, \mathrm{d}\varepsilon$$

Per $T < T_c$ non si riesce a modificare il potenziale chimico μ affinché l'espressione

$$\int_0^\infty \frac{g(\varepsilon)}{e^{\beta(\varepsilon-\mu)}-1} \,\mathrm{d}\varepsilon$$

fornisca un risultato macroscopico. La condizione limite è ottenuta per $\mu=0^-$ e $\beta=\beta_c$. Equivalentemente si può definire T_c come la temperatura al di sopra della quale l'occupazione

dello stato fondamentale cessa di essere macroscopica. Si calcola la temperatura critica. Dall'espressione trovata per N sopra si ha

$$\frac{N}{V} = n = \frac{(2m)^{\frac{3}{2}}}{4\pi^2 \hbar^3} \int_0^\infty \frac{\sqrt{\varepsilon}}{e^{\beta_c \varepsilon} - 1} d\varepsilon \implies k_B T_c \approx 6.6 \frac{\hbar^2}{2m} n^{\frac{2}{3}}$$

L'integrale si può calcolare analiticamente tramite la funzione zeta di Riemann

$$\Gamma(s)\zeta(s) = \int_0^\infty \frac{x^{s-1}}{e^x - 1} dx, \quad \text{Re}(s) = \sigma > 1$$

La condizione $T < T_c$ si traduce in

$$k_B T < 6.6 \frac{\hbar^2}{2m} n^{\frac{2}{3}} \implies n^{\frac{2}{3}} > \frac{4\pi}{6.6} \frac{2\pi m k_B T}{h^2} \implies n > \frac{2.6}{V_O} = n_Q$$

dove $n_Q = \frac{N}{V_Q}$, $V_Q = \lambda_T^3$. Questo indica che, quando la temperatura è inferiore a quella critica, la densità è superiore a quella probabilistica: il gas è ad alta degenerazione quantistica.

Definizione. La temperatura T_c è la temperatura di condensazione di Bose-Einstein. Un gas di bosoni sotto la temperatura T_c forma un condensato di Bose-Einstein che ha la caratteristica di occupare lo stato fondamentale di singola particella con un numero macroscopico di particelle.

Osservazione. Attorno alla temperatura T_c , il potenziale chimico non dista troppo da zero e si ha

$$N \approx N_0 + \int_0^\infty \frac{g(\varepsilon)}{e^{\beta \varepsilon} - 1} \, \mathrm{d}\varepsilon$$

Questa relazione assegna $N_0 = N_0(T)$ e si può trovare

$$N_0 = \left(1 - \frac{T}{T_c}\right)^{\frac{3}{2}} N$$

Dalla temperatura critica in poi si ha $N_0 = 0$. Al di sotto, vale la relazione sopra.

Esempio. Un esempio di condensato Bose-Einstein è 4 He. A pressione atmosferica si comporta come un fluido (non proprio un gas perché è presente dell'interazione). Inserendo i valori tipici di massa e densità dell'elio liquido, si ottiene una temperatura di condensazione pari a $T_c = 3.1\,\mathrm{K}$. Sperimentalmente, la transizione a superfluido (una manifestazione della condensazione di Bose-Einstein) avviene alla temperatura $T_c = 2.17\,\mathrm{K}$.

Osservazione. La condensazione di Bose-Einstein è solo una condizione necessaria ad avere superfluidità. Esistono sistemi che manifestano la condensazione senza diventare superfluidi. La superfluidità è una conseguenza macroscopica della condensazione che si manifesta in alcuni sistemi.

Lezione 8

2.5 Formulazione puramente classica

 $\begin{array}{cccc} \mathrm{mer} & 14 & \mathrm{dic} \\ 2022 & 15{:}30 \end{array}$

Si consideri un sistema ad N particelle nell'ensemble canonico N, V e T. La funzione di partizione à

$$Z = \sum_{r} e^{-\beta E_r}, \quad \hat{H}\psi_r = E_r \psi_r$$

dove \hat{H} è l'hamiltoniana del sistema ad N particelle, E_r è un suo autovalore ed r rappresenta un insieme completo di numeri quantici del sistema (si noti che r è solamente un indice riassuntivo).

Ad esempio, per un sistema di N particelle libere non interagenti in una scatola con spin s, l'indice rappresenta 4N indici diversi:

$$r = n_x, n_y, n_z, m_s, \dots, n_{x_N}, n_{y_N}, n_{z_N}, m_{s_N}$$

La probabilità che il sistema si trovi nello stato unico individuato da r è

$$P_r = \frac{e^{-\beta E_r}}{Z}$$

Se il sistema è non interagente e le particelle possono essere considerate distinguibili, allora $Z=Z_I^N$ con

$$Z_I = \sum_{m} e^{-\beta \varepsilon_m}, \quad \hat{H} = \sum_{i=1}^{N} \hat{h}(i), \quad \hat{h}(i)\varphi_i = \varepsilon_i \varphi_i$$

dove m rappresenta un insieme completo di numeri quantici di particella singola (se le particelle sono libere, allora tali indici sono quattro per ogni particella: n_x , n_y , n_z e m_s); dove ε è un livello energetico di particella singola (per particelle libere è $\varepsilon = \frac{\hbar^2 \pi^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)$); dove si ha la distribuzione di Boltzmann

$$P_m = \frac{e^{-\beta \varepsilon_m}}{Z_I}$$

Se le particelle sono indistinguibili allora

$$Z \approx \frac{Z_I^N}{N!}$$

perché i livelli termicamente accessibili sono molti di più delle particelle (questo avviene a temperatura alte $T\gg \frac{\Delta}{k_B}$ dove Δ è la tipica separazione tra i livelli energetici). Se ciò non avviene, allora diventa fondamentale considerare la natura fermionica o bosonica delle funzioni d'onda. Questo porta a sostituire la distribuzione di Boltzmann con l'appropriata distribuzione quantistica Fermi-Dirac o Bose-Einstein. La distribuzione di Boltzmann è considerata una distribuzione classica anche se al proprio interno compaiono i livelli energetici ε_m autovalori dell'equazione di Schrödinger. Si studia come cambia il formalismo all'interno di una descrizione puramente classica.

Si riparte dal sistema ad N particelle — anche interagenti — e dall'espressione

$$P_r = \frac{e^{-\beta E_r}}{\sum_r e^{-\beta E_r}}$$

In meccanica quantistica, lo stato di un sistema è individuato da un insieme completo di numeri quantici r a cui è associato un autovalore E_k ed un'auto-funzione ψ_k . In meccanica classica, da un punto (q,p) dello spazio continuo delle fasi, cui è associata l'hamiltoniana del sistema H(q,p) dove

$$q = x, y, z, \dots, x_n, y_n, z_n, \quad p = p_x, p_y, p_z, \dots, p_{x_N}, p_{y_N}, p_{z_N}$$

al posto della distribuzione P_r si ha una distribuzione $P_{q,p}$ che, essendo q e p variabili continue, è del tipo

$$P_{q,p} = f(q,p) \,\mathrm{d}q \,\mathrm{d}p$$

Risulta evidente che l'estensione dell'espressione di \mathcal{P}_r al caso continuo porta a

$$f(q,p) dq dp = \frac{e^{-\beta H(q,p)} dq dp}{\iint e^{-\beta H(q,p)} dq dp}, \quad Z = \iint e^{-\beta H(q,p)} dq dp$$

dove Z è la funzione di partizione canonica (puramente classica) sul continuo. Esattamente, come nel caso di livelli discreti, nota la funzione di partizione sono noti tutti i potenziali termodinamici. Ad esempio

$$-\partial_{\beta} \log Z = -\frac{1}{Z} \partial_{\beta} Z = -\frac{1}{Z} \partial_{\beta} \iint e^{-\beta H(q,p)} dq dp = \iint H(q,p) \frac{e^{-\beta H(q,p)}}{Z} dq dp = \langle H \rangle$$

Infatti, nel discreto e nel continuo rispettivamente si ha

$$\sum_{r} P_r A_r = \langle A \rangle = \iint A(q, p) f(q, p) \, \mathrm{d}q \, \mathrm{d}p$$

Come nel caso discreto, i sistemi non interagenti possono essere trattati usando il formalismo a particella singola. Per un sistema non interagente si ha

$$H(q,p) = \sum_{i} h(q_i, p_i)$$

dove h è l'hamiltoniana classica per la particella i-esima. Dunque, la funzione di partizione diventa

$$Z = \iint \exp\left[-\beta \sum_i h(q_i, p_i)\right] \mathrm{d}^{3N} q \, \mathrm{d}^{3N} p = \prod_i \iint \exp[-\beta h(q_i, p_i)] \, \mathrm{d}\vec{q} \, \mathrm{d}\vec{p} = Z_I^N$$

dove gli integrali nel secondo membro è 6N dimensionali, mentre gli integrali nel terzo membro sono 6 dimensionali (perché sia \vec{q} che \vec{p} sono tridimensionali; Z_I^N vale per particelle distinguibili e si ha

$$Z_I = \iint \exp[-\beta h(\vec{q}, \vec{p})] d\vec{q} d\vec{p}$$

Si noti che

$$\langle H \rangle = -\partial_{\beta} \log Z_I^N = -N \, \partial_{\beta} \log Z_I = N \iint e^{-\beta h(\vec{q}, \vec{p})} h(\vec{q}, \vec{p}) \, d\vec{q} \, d\vec{p} = N \langle h \rangle$$

Inoltre, la distribuzione di Boltzmann sul continuo è

$$f_I(\vec{q}, \vec{p}) dq d\vec{p} = \frac{e^{-\beta h(\vec{q}, \vec{p})}}{Z_I} d\vec{q} d\vec{p}$$

L'hamiltoniana di singola particella è

$$h(q,p) = \frac{p^2}{2m} + U(\vec{q})$$

da cui si ottiene la distribuzione di energia totale

$$f_I(\vec{q}, \vec{p}) \, d\vec{q} \, d\vec{p} = \frac{\exp\left[-\frac{p^2}{2m}\beta\right] \exp\left[-U(\vec{q})\beta\right] \, d\vec{q} \, d\vec{p}}{\int \exp\left[-U(\vec{q})\beta\right] \, d\vec{q} \int \exp\left[-\frac{p^2}{2m}\beta\right] \, d\vec{p}}$$

Integrando sulle posizioni si ottiene la distribuzione dei soli momenti

$$f(\vec{p}) d\vec{p} = \int f_I(\vec{q}, \vec{p}) d\vec{q} = \frac{\exp\left[-\frac{p^2}{2m}\beta\right] d\vec{p}}{\int \exp\left[-\frac{p^2}{2m}\beta\right] d\vec{p}}$$

In termini di velocità si ha

$$f(\vec{v}) d\vec{v} = \frac{\exp\left[-\frac{m}{2}v^2\beta\right] d\vec{v}}{\int \exp\left[-\frac{m}{2}v^2\beta\right] d\vec{v}} = \prod_i f(v_i) dv_i, \quad f(v_i) dv_i = \frac{\exp\left[-\frac{m}{2}v_i^2\beta\right] dv_i}{\int_{\mathbb{R}} \exp\left[-\frac{m}{2}v_i^2\beta\right] dv_i}$$

Ogni componente è distribuita in modo gaussiano. Sapendo che

$$I = \int_0^\infty e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad -d_a I = \int_0^\infty x^2 e^{-ax^2} dx = \frac{\sqrt{\pi}}{4} a^{-\frac{3}{2}}$$

Si ottiene

$$f(v_i) dv_i = \sqrt{\frac{m}{2\pi k_B T}} \exp\left[-\frac{mv_i^2}{2k_B T}\right] dv_i$$

Per ricavare i moduli delle velocità si passa alle coordinate sferiche e si integra sugli angoli

$$f(\vec{v}) d\vec{v} = \frac{v^2 \sin \theta e^{-\frac{m}{2}v^2 \beta} dv d\theta d\varphi}{\iiint v^2 \sin \theta e^{-\frac{m}{2}v^2 \beta} dv d\theta d\varphi}$$

per poi integrare sugli angoli

$$f(v) dv = \iint f(\vec{v}) d\theta d\varphi = \frac{v^2 e^{-\frac{m}{2}v^2 \beta} dv}{\int_0^\infty v^2 e^{-\frac{m}{2}v^2 \beta} dv} = 4\pi \left[\frac{m}{2\pi k_B T} \right]^{\frac{3}{2}} v^2 \exp\left[-\frac{mv^2}{2k_B T} \right] dv$$

cioè la distribuzione di Maxwell-Boltzmann. Si calcola la sua moda, media e valor quadratico medio. La moda, cioè la velocità v_p più probabile è

$$d_v f(v) = 0 \implies 2v e^{-\frac{m}{2}v^2\beta} - m\beta v^3 e^{-\frac{m}{2}v^2\beta} = 0 \implies 1 = \frac{1}{2}m\beta^2 v^2 \implies v_p = \sqrt{2}\sqrt{\frac{k_B T}{m}}$$

Il valor medio è

$$\langle v \rangle = 4\pi \left[\frac{m}{4\pi k_B T} \right]^{\frac{3}{2}} \int_0^\infty v^3 e^{-\frac{mv^2}{2k_B T}} \, \mathrm{d}v = 4\pi \left[\frac{m}{4\pi k_B T} \right]^{\frac{3}{2}} \frac{2k_B^2 T^2}{m^2} = \sqrt{\frac{8}{\pi}} \sqrt{\frac{k_B T}{m}}$$

dove si è utilizzato

$$I = \int_0^\infty x e^{-ax^2} \, \mathrm{d}x = -\frac{1}{2a} e^{-ax^2} \Big|_0^\infty = \frac{1}{2a}, \quad -\mathrm{d}_a I = \int_0^\infty x^3 e^{-ax^2} \, \mathrm{d}x = \frac{1}{2a^2}$$

Il valor quadratico medio è

$$\langle v^2 \rangle = 4\pi \left[\frac{m}{4\pi k_B T} \right]^{\frac{3}{2}} \int_0^\infty v^4 e^{-\frac{mv^2}{2k_B T}} \, \mathrm{d}v = 4\pi \left[\frac{m}{4\pi k_B T} \right]^{\frac{3}{2}} \frac{3}{8} \sqrt{\pi} \left[\frac{2k_B T}{m} \right]^{\frac{5}{2}} = 3\frac{k_B T}{m}$$

dove si è utilizzato il trucco di derivare l'integrale rispetto al parametro. La root mean square è

$$v_{\rm rms} = \sqrt{3}\sqrt{\frac{k_BT}{m}} > \langle v \rangle > v_p$$

Osservazione. Le tre velocità calcolate sono dell'ordine di $\sqrt{\frac{k_BT}{m}}$. Per un gas di massa pari a 50 unità atomiche a temperatura ambiente si ha

$$\sqrt{\frac{k_B T}{m}} \approx 10^2 \,\mathrm{m\,s^{-1}}$$

Osservazione. Dal valor quadratico medio si può ottenere l'energia cinetica media

$$\langle v^2 \rangle = 3 \frac{k_B T}{m} \implies \langle K \rangle = \frac{1}{2} m \langle v^2 \rangle = \frac{3}{2} k_B T$$

Il valor quadratico medio per ogni componente è $\frac{1}{2m}k_BT$. Ogni termine quadratico nelle componenti dela velocità porta un contributo all'energia pari a $\frac{1}{2}k_BT$. Per N particelle, l'energia cinetica totale è

$$K^{\rm tot} = NK \implies \langle K^{\rm tot} \rangle = \frac{3}{2} N k_B T$$

Infatti, i termini quadratici nelle velocità sono 3N.

Il risultato si può generalizzare. Si supponga che l'energia potenziale di singola particella sia armonica

$$U = \frac{1}{2}k_x x^2 + \frac{1}{2}k_y y^2 + \frac{1}{2}k_z z^2 \implies \langle U \rangle = \frac{1}{2}k_x \langle x^2 \rangle + \frac{1}{2}k_y \langle y^2 \rangle + \frac{1}{2}k_z \langle z^2 \rangle$$

La distribuzione nelle sole posizioni si ottiene integrando $f_I(\vec{q}, \vec{p})$ sui momenti

$$f(x) dx = \frac{e^{-\frac{1}{2}k_x x^2 \beta} dx}{\int_{\mathbb{R}} e^{-\frac{1}{2}k_x x^2 \beta} dx} = \sqrt{\frac{k_x}{2\pi k_B T}} e^{-\frac{k_x x^2}{2k_B T}} dx$$

Il valor quadratico medio della posizione è

$$\langle x^2 \rangle = \sqrt{\frac{k_x}{2\pi k_B T}} \int_{\mathbb{R}} x^2 e^{-\frac{k_x x^2}{2k_B T}} dx = \sqrt{\frac{k_x}{2\pi k_B T}} \frac{\sqrt{\pi}}{2} \left[\frac{2k_B T}{k_x} \right]^{\frac{3}{2}} = \frac{k_B T}{k_x}$$

Pertanto, l'energia media totale riceve un contributo dall'energia potenziale pari a

$$\frac{1}{2}k_x\langle x^2\rangle = \frac{1}{2}k_BT$$

cioè lo stesso contributo dei termini quadratici cinetici.

Teorema. di equipartizione. Per ogni termine quadratico nell'hamiltoniana, si ha un contributo $\frac{1}{2}k_BT$ all'energia totale.

Esempio. Si consideri un gas di oscillatori armonici non interagenti. Le hamiltoniane sono

$$H_{\text{tot}} = \sum_{i=1}^{N} h(i), \quad h = \frac{p^2}{2m} + \frac{1}{2}k_x x^2 + \frac{1}{2}k_y y^2 + \frac{1}{2}k_z z^2$$

L'energia media è

$$\langle H_{\rm tot} \rangle = 6N \frac{k_B T}{2} = 3N k_B T$$

Il calore specifico a volume costante e la versione molare risultano essere

$$c_V = \partial_T U = 3Nk_B, \quad c_{V,m} = 3R$$

Questa è la previsione classica per un gas di molecole biatomiche libere di traslare e vibrare. Non si ha dipendenza dalla temperatura T. Il risultato coincide con il limite classico $(T \gg \theta_{\rm vib})$ che si è ottenuto con l'approccio quantistico. Esso coincide anche con il valore previsto da Dulong e Petit per i solidi (sbagliato nel limite di basse temperature).

Si noti che come limite classico per le rotazioni delle molecole biatomiche si ottiene R. La spiegazione è più complessa. In generale, per un corpo rigido che ruota, ci si aspetta un contributo all'energia cinetica del tipo

$$K = \frac{1}{2}I_1\omega_1^2 + \frac{1}{2}I_2\omega_2^2 + \frac{1}{2}I_3\omega_3^2$$

dove I_i è il momento d'inerzia rispetto all'*i*-esimo asse principale. Nella molecola biatomica, il momento d'inerzia rispetto all'asse internucleare è nullo. Pertanto, rimangono solo due contributi quadratici per molecola: questo spiega il contributo (nel limite classico) pari a R.

Osservazione. Si è dimostrato il teorema di equipartizione solo per casi semplici: coordinate cartesiano e hamiltoniana del tipo

$$h(q,p) = \frac{p^2}{2m} + \frac{1}{2}kx^2, \quad H = \sum_{i=1}^{N} h(i)$$

ovvero per oscillatori indipendenti. Il teorema ha validità generale. Presa un'energia potenziale totale

$$U = U(\vec{x}_1, \cdots, \vec{x}_N)$$

se tale energia U ha un minimo, allora lo sviluppo al secondo ordine attorno al minimo è

$$U \approx U_0 + \frac{1}{2} \sum_{i,j=1}^{N} \sum_{h,k=1}^{3} (\partial_{x_{ih}x_{jk}}^2 U)_{\text{minimo}} (x_{ih} - x_{ih}^0) (x_{jk} - x_{jk}^0)$$

Non si hanno più N oscillatori indipendenti, ma si dimostra che la forma quadratica appena scritta porta comunque ad un contributo $\frac{3}{2}Nk_BT$ (i fermioni si trattano così, da cui la stima — inclusa l'energia cinetica — di 3R per il calore specifico dei solidi, legge di Dulong-Petit). Inoltre, il teorema si applica a qualunque sistema di coordinate, non solo a quelle cartesiane. Per esempio, per le rotazioni si ha

$$K = \frac{1}{2}I_1\omega_1^2 + \frac{1}{2}I_2\omega_2^2 + \frac{1}{2}I_3\omega_3^2, \quad \omega_i = d_t\theta_i$$

Calcolo della funzione di partizione classica per un gas di particelle libere. La relazione $Z=Z_I^N$ vale solo per particelle distinguibili. Anche in un approccio puramente classico, ci si pone il problema della particelle indistinguibili e si utilizza

$$Z = \frac{Z_I^N}{N!}$$

Quando si sono trattati i livelli discreti, si è giustificata la relazione precedente solo a temperature sufficientemente alte da rendere il numero di stati accessibili molto maggiore del numero di particelle. Se i livelli sono continui, allora il problema non si pone nemmeno. Se le particelle sono libere e occupano un volume V, allora si ha

$$Z_{I} = \iint e^{-\frac{p^{2}}{2m}\beta} \, d\vec{q} \, d\vec{p} = V \int e^{-\frac{p^{2}}{2m}\beta} \, d\vec{p} = 4\pi V \int_{0}^{\infty} p^{2} e^{-\frac{p^{2}}{2m}\beta} \, dp = V(2\pi m k_{B}T)^{\frac{3}{2}}$$

Partendo da livelli discreti quantistici si è trovato

$$Z_I = V \left(\frac{2\pi m k_B T}{h^2}\right)^{\frac{3}{2}}$$

Per $h \to 1$ si passa dalla Z_I quantistica a quella classica.

Osservazione. Come nel caso discreto, vale

$$\langle E \rangle = -\partial_{\beta} \log Z = -N \, \partial_{\beta} \log Z_I = \frac{3}{2} N k_B T$$

Allo stesso modo, la pressione è

$$P = \frac{1}{\beta} \, \partial_V \log Z = N k_B T$$

Lezione 9

gio 15 dic 2022 15:30

Parte II

Atomi

3 Atomi a due elettroni – elio

Dall'atomo di elio non si può risolvere analiticamente l'equazione di Schrödinger. Si considerino elettroni in un riferimento solidale con il centro di massa dell'atomo di elio. L'hamiltoniana è

data da

$$\hat{H}=-\frac{\hbar^2}{2m}\nabla_1^2-\frac{Ze^2}{4\pi\varepsilon_0r_1}-\frac{\hbar^2}{2m}\nabla_2^2-\frac{Ze^2}{4\pi\varepsilon_0r_2}+\frac{e^2}{4\pi\varepsilon_0|\vec{r}_1-\vec{r}_2|}$$

Si ha l'energia cinetica dell'elettrone, l'interazione con il nucleo e l'ultimo termine è l'interazione elettrone-elettrone. Tale hamiltoniana è del tipo

$$\hat{H} = \hat{h}(1) + \hat{h}(2) + \hat{V}_{e-e}(1,2)$$

In assenza del potenziale di interazione, il problema sarebbe di particella singola e di facile soluzione. Lo studio dell'elio è importante perché esso è il primo esempio di un sistema con due fermioni identici. Se $\hat{V}_{e-e} = 0$, allora l'hamiltoniana di singola particella

$$\hat{h} = -\frac{\hbar^2}{2m}\nabla^2 - \frac{Ze^2}{4\pi\varepsilon_0 r}$$

risulta essere quella di uno ione idrogenoide con Z=2, l'elio, le cui funzioni d'onda

$$\psi_{nlmm_s}(r,\theta,\varphi) = R_{nl}^{(Z)}(r)Y_l^m(\theta,\varphi)\chi_{m_s}$$

sono identiche a quelle dell'atomo di idrogeno con l'eccezione di una semplice dipendenza da Z nella funzione radiale. Ad esempio

$$\psi_{100}(r,\theta,\varphi) = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-\frac{Zr}{a_0}}$$

che, per Z=1, è quella dell'idrogeno. Dato che $\hat{H}=\hat{h}(1)+\hat{h}(2)$, allora gli autovalori di \hat{H} sono la somma degli autovalori delle hamiltoniane di singola particella

$$\hat{h}\psi_{nlmm_s} = \left[E_g^{\rm H} \frac{Z^2}{n^2}\right] \psi_{nlmm_s}, \quad E_g^{\rm H} = -\frac{e^2}{8\pi\varepsilon_0 a_0} \approx -13.6\,\mathrm{eV}$$

Gli autovalori di \hat{H} sono del tipo

$$E_{n_1,n_2} = Z^2 E_g^{\mathrm{H}} \left[\frac{1}{n_1^2} + \frac{1}{n_2^2} \right], \quad n_i \in \mathbb{N}$$

Se gli elettroni fossero distinguibili, le auto-funzioni sarebbero

$$\psi_{\alpha_1,\alpha_2}(\vec{r}_1,\vec{r}_2) = \psi_{\beta_1}\chi_{m_{s1}}\psi_{\beta_2}\chi_{m_{s2}}, \quad \alpha = nlmm_s$$

Ma gli elettroni sono due particelle indistinguibili con spin $s = \frac{1}{2}$: bisogna anti-simmetrizzare la funzione d'onda $\psi(1,2)$.

3.1 Stato fondamentale

Approccio perturbativo. Si considerino gli elettroni nello stato fondamentale n = 1, l = 0, m = 0, $m_s = \pm \frac{1}{2}$. La funzione d'onda senza interazione è

$$\Phi_g^0 = \psi_{100}(\vec{r}_1)\psi_{100}(\vec{r}_2)\chi_0^0$$

dove $\chi_s^{m_s}$ è la parte (anti-simmetrica) di spin, mentre s=0 e $m_s=0$ indicano il momento di angolare di spin totale. L'energia è

$$E_g^{\mathrm{He0}} = Z^2 E_g^{\mathrm{H}} \left[\frac{1}{n_1^2} + \frac{1}{n_2^2} \right] \approx -109 \,\mathrm{eV}$$

Tuttavia, l'energia sperimentale è $-79\,\mathrm{eV}$. Trascurare l'interazione è un'approssimazione troppo forte. Si considera l'interazione come perturbazione e si studia la correzione perturbativa del primo ordine. Lo stato fondamentale è non degenere. L'energia risulta essere

$$E_g = E_g^{(0)} + \left\langle \Phi_g^0 \right| \hat{V}_{e-e} \left| \Phi_g^0 \right\rangle$$

dove E_g^0 è l'energia in assenza della perturbazione. Il valore di aspettazione risulta essere

$$\left\langle \psi_{100}(1)\psi_{100}(2)\chi_0^0\right|\frac{e^2}{4\pi\varepsilon_0r_{12}}\left|\psi_{100}(1)\psi_{100}(2)\chi_0^0\right\rangle = \left\langle \psi_{100}(1)\psi_{100}(2)\right|\frac{e^2}{4\pi\varepsilon_0r_{12}}\left|\psi_{100}(1)\psi_{100}(2)\right\rangle$$

Quindi, la correzione al primo ordine è

$$E_g^{(1)} = \iint \frac{[-e|\psi_{100}(1)|^2][-e|\psi_{100}(2)|^2]}{4\pi\varepsilon_0 r_{12}} d^3x_1 d^3x_2$$

Questo è l'integrale di Hartree o diretto. La densità di carica associata alla funzione d'onda è

$$\rho(\vec{r}) = -e|\psi_{100}(\vec{r})|$$

Dunque, l'integrale di Hartree diventa l'interazione elettrostatica calssica in un continuo carico in cui la distribuzione di carica è ρ :

$$E_g^{(1)} = \iint \frac{\rho(1)\rho(2)}{4\pi\varepsilon_0 |\vec{r}_1 - \vec{r}_2|} d^3x_1 d^3x_2$$

[r] La correzione all'energia è

$$E_g^{(1)} = \frac{e^2}{4\pi\varepsilon_0} \int \psi_{100}^2(1) \int \frac{\psi_{100}^2(2)}{|\vec{r_1} - \vec{r_2}|} d^3r_2 d^3r_1$$

Si sovrappone l'asse z con \vec{r}_1 . Siano θ_2 e φ_2 gli angoli che individuano \vec{r}_2 in tale riferimento. Allora, il secondo integrale della correzione è

$$I_2(\vec{r}_1) = \int \frac{\psi_{100}^2(2)}{|\vec{r}_1 - \vec{r}_2|} d^3r_2 = \int r_2^2 \sin\theta \frac{\psi_{100}^2(2)}{|\vec{r}_1 - \vec{r}_2|} dr_2 d\theta_2 d\varphi_2$$

Ricordando

$$|\vec{r}_1 - \vec{r}_2| = \sqrt{\langle \vec{r}_1 - \vec{r}_2 | \vec{r}_1 - \vec{r}_2 \rangle} = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos\theta_2}$$

si ha

$$I_2(\vec{r}_1) = 2\pi \int r_2^2 \psi_{100}^2(2) \int_0^\pi \frac{\sin \theta_2}{\sqrt{r_1^2 + r_2^2 - 2r_1 r_2 \cos \theta_2}} \, \mathrm{d}\theta_2$$

L'integrale diventa su θ_2 diventa

$$\int_0^{\pi} \frac{\sin \theta_2}{\sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos \theta_2}} d\theta_2 = \frac{\sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos \theta_2}}{r_1r_2} \bigg|_0^{\pi} = \frac{(r_1 + r_2) - |r_1 - r_2|}{r_1r_2}$$

Etc. Si ottiene

$$E_g = E_g^{(0)} + E_g^{(1)} = 2Z^2 E_g^{\text{H}} - \frac{5}{4} Z E_g^{\text{H}} \approx -75 \,\text{eV}$$

Lezione 10

lun 19 dic 2022 15:30

Approccio variazionale allo stato fondamentale. Si mostra il principio variazionale. Data l'equazione di Schrödinger

$$\hat{H}\psi = E\psi$$

L'energia dello stato fondamentale è

$$E_q = \min E$$

Data una funzione d'onda arbitraria φ si ha

$$E_g \leq \min_{|\varphi|=1} \langle \varphi | \hat{H} | \varphi \rangle$$

Se φ è un'auto-funzione di \hat{H} relativa ad E allora

$$\langle \varphi | \hat{H} | \varphi \rangle = E \langle \varphi | \varphi \rangle = E$$

Di solito la funzione d'onda è scritta in termini di un parametro. Pertanto, lo stato fondamentale, cioè il minimo, si cerca come

$$\langle \varphi(\beta) | \hat{H} | \varphi(\beta) \rangle = f(\beta), \quad \partial_{\beta} f(\beta) = 0$$

Il punto di partenza per l'applicazione della teoria perturbativa è stato riconoscere che per $\hat{V}_{e-e}=0$ si ha

$$\Phi_g^0 = \psi_{100}(1)\psi_{100}(2)\chi_0^0 = \frac{1}{\sqrt{2}\pi} [\alpha_1\beta_2 - \alpha_2\beta_1] \left(\frac{Z}{a_0}\right)^3 e^{-\frac{Z}{a_0}(r_1 + r_2)}, \quad Z = 2$$

Si può usare l'espressione sopra come funzione di prova e stimare l'energia dello stato fondamentale come

$$E_g^{\text{var}} = \min_{Z>0} \left\langle \Phi_g^0 \middle| \hat{H} \middle| \Phi_g^0 \right\rangle$$

Per semplificare i calcoli conviene scrivere l'hamiltoniana dell'atomo dell'elio nel modo seguente

$$\begin{split} \hat{H} &= -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{2e^2}{4\pi\varepsilon_0 r_1} - \frac{\hbar^2}{2m} \nabla_2^2 - \frac{2e^2}{4\pi\varepsilon_0 r_2} + \frac{e^2}{4\pi\varepsilon_0 |\vec{r_1} - \vec{r_2}|} \\ &= \left[-\frac{\hbar^2}{2m} \nabla_1^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_1} + \frac{(Z-2)e^2}{4\pi\varepsilon_0 r_1} \right] + \left[-\frac{\hbar^2}{2m} \nabla_2^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_2} + \frac{(Z-2)e^2}{4\pi\varepsilon_0 r_2} \right] + \frac{e^2}{4\pi\varepsilon_0 |\vec{r_1} - \vec{r_2}|} \\ &= \hat{h}^Z(1) + \hat{h}^Z(2) + \hat{V}_{e-e} \end{split}$$

Essa non dipende dallo spin. Il valor medio da calcolare è

$$\left\langle \Phi_{g}^{0}\right|\hat{H}\left|\Phi_{g}^{0}\right\rangle =\left\langle \Phi_{g}^{0}\right|\hat{h}^{Z}(1)\left|\Phi_{g}^{0}\right\rangle +\left\langle \Phi_{g}^{0}\right|\hat{h}^{Z}(2)\left|\Phi_{g}^{0}\right\rangle +\left\langle \Phi_{g}^{0}\right|\hat{V}_{e-e}\left|\Phi_{g}^{0}\right\rangle =2\left\langle \Phi_{g}^{0}\right|\hat{h}^{Z}(1)\left|\Phi_{g}^{0}\right\rangle -\frac{5}{4}ZE_{g}^{H}$$

dove si ha

$$\left\langle \Phi_g^0 \middle| \hat{h}^Z(1) \middle| \Phi_g^0 \right\rangle = \left\langle \Phi_g^0 \middle| \left[-\frac{\hbar^2}{2m} \nabla_1^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_1} \right] \middle| \Phi_g^0 \right\rangle + \left\langle \Phi_g^0 \middle| \frac{(Z-2)e^2}{4\pi\varepsilon_0 r_1} \middle| \Phi_g^0 \right\rangle$$

Il primo valor medio risulta essere

$$\left\langle \Phi_g^0 \right| \left[-\frac{\hbar^2}{2m} \nabla_1^2 - \frac{Z e^2}{4\pi \varepsilon_0 r_1} \right] \left| \Phi_g^0 \right\rangle = \left\langle \psi_{100}(1) \right| \left[-\frac{\hbar^2}{2m} \nabla_1^2 - \frac{Z e^2}{4\pi \varepsilon_0 r_1} \right] \left| \psi_{100}(1) \right\rangle = Z^2 E_g^{\rm H}$$

Il secondo valor medio è

$$\begin{split} \left\langle \Phi_g^0 \right| \frac{(Z-2)e^2}{4\pi\varepsilon_0 r_1} \left| \Phi_g^0 \right\rangle &= \left\langle \psi_{100}(1) \right| \frac{(Z-2)e^2}{4\pi\varepsilon_0 r_1} \left| \psi_{100}(1) \right\rangle = \frac{(Z-2)e^2}{4\pi\varepsilon_0} \left\langle r_1^{-1} \right\rangle \\ &= \frac{(Z-2)e^2}{4\pi^2\varepsilon_0} \left(\frac{Z}{a_0} \right)^3 \int_{\mathbb{R}^3} e^{-\frac{2Z}{a_0}r} r \sin\theta \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}\varphi \\ &= \frac{(Z-2)e^2}{\pi\varepsilon_0} \left(\frac{Z}{a_0} \right)^3 \int_0^\infty r e^{-\frac{2Z}{a_0}r} \, \mathrm{d}r = \frac{(Z-2)e^2}{\pi\varepsilon_0} \left(\frac{Z}{a_0} \right)^3 \left(\frac{a_0}{2Z} \right)^2 \\ &= \frac{(Z-2)e^2}{4\pi\varepsilon_0} \frac{Z}{a_0} = -2Z(Z-2)E_g^\mathrm{H}, \quad E_g^\mathrm{H} = Rhc \end{split}$$

dove R è la costante di Rayleigh. Pertanto, il valor medio d'interesse è

$$\left\langle \Phi_g^0 \middle| \hat{H} \middle| \Phi_g^0 \right\rangle = \left[-2Z^2 + \frac{27}{4}Z \right] E_g^{\mathrm{H}}$$

Si cerca il minimo in funzione di Z:

$$\partial_Z \left[-2Z^2 + \frac{27}{4}Z \right] = 0 \implies Z_{\min} = \frac{27}{16} \approx 1.7$$

L'energia al minimo calcolata con il metodo variazionale è

$$E_g^{\rm var} = \left[-2Z_{\rm min}^2 + \frac{27}{4}Z_{\rm min} \right] E_g^{\rm H} = \left[-2Z_{\rm min}^2 + 4Z_{\rm min}^2 \right] E_g^{\rm H} = 2Z_{\rm min}^2 E_g^{\rm H} \approx -77\,{\rm eV}$$

Il risultato sperimentale dista solamente di due elettronvolt.

Osservazione. Tramite la teoria variazionale si osserva che l'energia minima dell'atomo di elio si ottiene per la funzione d'onda con numero atomico Z=1.7<2: un elettrone sente l'interazione con il nucleo tramite uno schermo prodotto dall'altro elettrone. Questo è un primo modo di considerare la presenza dell'altro elettrone.

3.2 Stati eccitati

Per studiare gli stati eccitati non si usa il determinante di Slater, ma conviene considerare la base comune dello spin totale \hat{S}^2 e \hat{S}_z . Dato che \hat{H} non dipende dalle variabili di spin, allora

$$\hat{H}\psi = E\psi \implies \psi(1,2) = \varphi_{nlm}\chi_s^{m_s}$$

dove lo spin totale è s=0,1 e la proiezione è

$$m_s = \begin{cases} 0, & s = 0, \text{ singoletto} \\ \pm 1, 0, & s = 1, \text{ tripletto} \end{cases}$$

Le parte di spin $\chi_s^{m_s}$ è simmetrica (tripletto) o anti-simmetrica (singoletto), pertanto la parte configurazionale va anti-simmetrizzata o simmetrizzata rispettivamente. Nello stato fondamentale dell'atomo di elio, si può avere solamente lo stato di singoletto: anti-simmetrizzando la parte configurazionale si troverebbe il principio di Pauli (cioè la parte spaziale anti-simmetrica e parte di spin simmetrica producono una funzione d'onda nulla perché nlm sono identici). Si consideri il primo stato eccitato nell'ipotesi $\hat{V}_{e-e}=0$. I numeri quantici configurazionali sono diversi: si può avere parte di spin costituita da stati di singoletto o tripletto.

Le quattro funzioni d'onda che si possono scrivere corrispondono alla stessa energia

$$E_I = 4E_g^{\rm H} \left(\frac{1}{1} + \frac{1}{4}\right) = 5E_g^{\rm H} \approx -68\,{\rm eV}$$

Si utilizza la teoria perturbativa al primo ordine (senza diagonalizzare la matrice di interazione) per stimare l'effetto dell'interazione. Come già visto, nel valor medio della perturbazione, lo spin ha prodotto scalare unitario. Quindi

$$E_I^{(1)} = \frac{1}{2} \int [\psi_{100}^*(1) \psi_{200}^*(2) \pm \psi_{100}^*(2) \psi_{200}^*(1)] \frac{e^2}{4\pi\varepsilon_0 |\vec{r_1} - \vec{r_2}|} [\psi_{100}(1) \psi_{200}(2) \pm \psi_{100}(2) \psi_{200}(1)] d^6r$$

dove il segno meno corrisponde agli stati di tripletto e viceversa.

Lezione 11

Svolgendo i prodotti si ha

$$\begin{array}{cccc} \text{mar} & 20 & \text{dic} \\ 2022 & 15:30 \end{array}$$

$$\begin{split} E_{I}^{(1)} &= \frac{e^{2}}{4\pi\varepsilon_{0}} \int \frac{\left|\psi_{100}(1)\psi_{200}(2)\right|^{2}}{\left|\vec{r}_{1} - \vec{r}_{2}\right|} \pm \frac{\psi_{100}^{*}(1)\psi_{200}^{*}(2)\psi_{100}(2)\psi_{200}(1)}{\left|\vec{r}_{1} - \vec{r}_{2}\right|} \\ &\pm \frac{\psi_{100}^{*}(2)\psi_{200}^{*}(1)\psi_{100}(1)\psi_{200}(2)}{\left|\vec{r}_{1} - \vec{r}_{2}\right|} \pm \frac{\left|\psi_{100}(2)\psi_{200}(1)\right|^{2}}{\left|\vec{r}_{1} - \vec{r}_{2}\right|} d^{6}r \end{split}$$

Gli integrali del primo e del quarto addendo sono uguali, così come quelli del secondo e del terzo (ciò si vede scambiando le variabili di integrazione). Pertanto

$$E_{I}^{(1)} = \frac{e^{2}}{4\pi\varepsilon_{0}} \int \frac{\left|\psi_{100}(1)\psi_{200}(2)\right|^{2}}{\left|\vec{r}_{1} - \vec{r}_{2}\right|} \pm \frac{\psi_{100}^{*}(1)\psi_{200}^{*}(2)\psi_{100}(2)\psi_{200}(1)}{\left|\vec{r}_{1} - \vec{r}_{2}\right|} d^{6}r = J \pm K$$

L'integrale J è diretto. Come fatto per Hartree, si può interpretare come interazione classica elettrostatica tra la densità di carica associata a ψ_{100} e quella associata a ψ_{200} . L'integrale K è di scambio: deriva dalla anti-simmetria. Si noti che nello stato fondamentale si ha solamente

$$E_{q}^{(1)} = J$$

perché la parte spaziale della funzione d'onda è un prodotto $\psi_1(1)\psi_1(2)$.

Osservazione. L'integrale J è positivo. Si è scelto il primo stato eccitato $\psi_{n_1,n_2}=\psi_{1,2}$, ma si può fare lo stesso calcolo per un qualunque livello del tipo $\psi_{100,nlm}$. Per farlo, si fissano i numeri quantici e si calcola la correzione all'energia come singolo valore di aspettazione senza diagonalizzare la matrice di interazione. Questo è garantito dal fatto che le tre componenti del momento angolare totale commutano con \hat{V}_{e-e} e che il termine di interazione non dipende dallo spin.

Si ottiene un risultato analogo a quello trovato per il primo stato eccitato:

$$E_{100,nlm}^{(1)} = J_{100,nlm} \pm K_{100,nlm} = J_{nl} \pm K_{nl}$$

$$= \frac{e^2}{4\pi\varepsilon_0} \int \frac{|\psi_{100}(1)\psi_{nlm}(2)|^2}{|\vec{r}_1 - \vec{r}_2|} \pm \frac{\psi_{100}^*(1)\psi_{nlm}^*(2)\psi_{100}(2)\psi_{nlm}(1)}{|\vec{r}_1 - \vec{r}_2|} d^6r$$

Si nota che J > 0, ma anche K > 0 sebbene non sia ovvio. Inoltre

$$J - K > 0$$

da cui la correzione all'energia (così come l'energia totale) per gli stati di tripletto (J - K) è minore di quella degli stati di singoletto (J + K). La perturbazione \hat{V}_{e-e} aumenta l'energia dei livelli imperturbati in misura minore qualora lo spin totale del sistema è s=1. Questo perché per gli stati di tripletto, la parte spaziale della funzione d'onda è anti-simmetrica

$$\psi_{100}(1)\psi_{nlm}(2) - \psi_{100}(2)\psi_{nlm}(1)$$

La repulsione coulombiana è forte se $\vec{r}_1 \approx \vec{r}_2$. In tal caso, la parte spaziale è prossima a zero: la probabilità (pari a $|\psi|^2$) di trovare i due elettroni vicini è piccola rispetto allo stato di singoletto. La minore energia degli stati di tripletto è stata osservata sperimentalmente. Si è scoperto un effetto interessante: un termine di interazione che non dipende dallo spin totale induce una traslazione dei livelli energetici che ne dipende. I valori numerici delle quantità calcolate sono i seguenti

Le ultime due colonne della seconda riga si riferiscono agli stati di tripletto s=1 e allo stato di singoletto s=0 rispettivamente.

Definizione. L'elio negli stati con a momento angolare totale di spin s=1 è detto ortoelio (orthohelium). Quando si trova nello stato con s=0 è detto paraelio (parahelium).

Osservazione. La differenza tra lo stato fondamentale dell'elio ed il primo stato eccitato è enorme pari a circa 20 eV. Non si sono considerati gli stati $\psi_{n',n}$ con n' > 1 perché hanno energie molto alte: i tipici stati eccitati dell'elio sono del tipo $\psi_{100,nlm}$, ovvero quelli in cui un elettrone rimane nel livello n = 1.

Osservazione. Anche considerando gli stati $\psi_{100,nlm}$, la differenza di energia tra lo stato fondamentale e gli stati eccitati è così grande che per eccitare un atomo di elio non basta scaldarlo

$$P \sim \exp\left[\frac{\Delta e}{k_B T}\right] \approx 0 \iff T < 10^4 \,\mathrm{K}$$

Tipicamente, si invia una radiazione elettromagnetica. Se un elettrone assorbe un fotone con

$$\nu = \frac{\Delta E}{\hbar}$$

allora l'elettrone transisce ad uno stato eccitato (si noti che l'energia pari al visibile è insufficiente). In processi di assorbimento, la probabilità che l'elettrone cambi il proprio stato di spin è nulla (in approssimazione di dipolo elettrico). Sperimentalmente, segue che si osservano separatamente gli spettri di paraelio e di ortoelio.

4 Introduzione agli atomi a più elettroni

Si utilizza un sistema di riferimento con origine nel centro di massa dell'atomo: in prima approssimazione coincide con il nucleo. L'hamiltoniana con i termini di struttura fine è

$$\hat{H} = -\sum_{i=1}^{Z} \frac{\hbar^2}{2m} \nabla_i^2 + \frac{Ze^2}{4\pi\varepsilon_0 r_i} + \left[\frac{1}{2} \sum_{i \neq j} \frac{e^2}{4\pi\varepsilon_0 r_{ij}} \right] = \hat{K} + \hat{V}_{e-e}, \quad r_{ij} = |\vec{r}_i - \vec{r}_j|$$

L'equazione di Schrödinger è

$$\hat{H}\psi(\vec{r}_1,\omega_1,\ldots,\vec{r}_N,\omega_N) = E\psi(\vec{r}_1,\omega_1,\ldots,\vec{r}_N,\omega_N)$$

La grandezza ω_i è una variabile di spin e gli autovalori dell'hamiltoniana è l'energia totale dell'atomo. Non si può risolvere l'equazione di Schrödinger in modo esatto: servono dei metodi approssimativi. Ci si focalizza solamente sullo stato fondamentale.

Prima approssimazione. Si approssima:

- si trascurano le interazioni elettrone-elettrone cioè la seconda sommatoria dell'hamiltoniana;
- si trascura lo spin.

L'hamiltoniana diventa

$$\hat{H} = -\sum_{i=1}^Z \frac{\hbar^2}{2m} \nabla_i^2 + \frac{Ze^2}{4\pi\varepsilon_0 r_i} = \sum_{i=1}^Z \hat{h}(i), \quad \hat{h}(i)\psi_{n_i,l_i,m_i}(\vec{r}_i) = \varepsilon_{n_i}\psi_{n_i,l_i,m_i}(\vec{r}_i)$$

dove ciascuna \hat{h} è l'hamiltoniana dell'atomo idrogenoide con carica nucleare Z. Infatti

$$\psi_{n_i,l_i,m_i}(\vec{r_i}) = R_{n_i,l_i}(r_i)Y_{l_i}^{m_i}(\theta_i,\varphi_i), \quad \varepsilon_{n_i} = E_g^{\mathrm{H}} \frac{Z^2}{n_i^2}, \quad n_i \in \mathbb{N}$$

In quanto si trascura lo spin, non si considera alcun principio di esclusione: lo stato fondamentale consiste di tutti gli elettroni nello stato di singola particella ad energia più bassa, $n_i=1$. L'energia dello stato fondamentale è

$$E_g^{\rm tot}(Z) = Z\varepsilon = Z^3 E_g^{\rm H}, \quad E_g^{\rm H} = -\frac{e^2}{8\pi\varepsilon_0 a_0} \approx -13.6\,{\rm eV}$$

Sperimentalmente si ha accesso più diretto al potenziale di prima ionizzazione V^I , ovvero all'energia minima da fornire all'atomo per ionizzarlo rimuovendo un elettrone. L'energia dell'atomo con un elettrone in meno è

$$E = (Z - 1)\varepsilon = (Z - 1)Z^{2}E_{q}^{H}$$

Ogni elettrone ha energia ε , ma sono presenti Z-1 elettroni. Pertanto, l'energia di prima ionizzazione è

$$V^I = (Z-1)Z^2 E_g^{\rm H} - Z^3 E_g^{\rm H} = -Z^2 E_g^{\rm H}$$

Tramite questa approssimazione, si prevede un andamento quadratico dell'energia di prima ionizzazione: questo è sbagliato. Nella realtà la curva di prima ionizzazione in funzione della carica nucleare Z è un dente di sega che si rimpicciolisce. L'andamento quadratico è incompatibile con la tavola periodica in cui l'ordine in cui appaiono gli elementi è scelto in base a risultati sperimentali come la curva di prima ionizzazione: aumentando di una unità il numero atomico degli elementi posizionati a fine periodo, il cambiamento è radicale. Ad esempio $V^I(\mathrm{Ne}) \gg V^I(\mathrm{Na})$. Un elevato valore di V^I implica elevata stabilità e quindi scarsa propensione a reagire chimicamente, caratteristica tipica di tutti gli elementi nobili (He, Ne, Ar, Kr e Xe). Al contrario , gli elementi alcalini (Li, Na, K, Rb, etc) hanno V^I molto bassa ed è facile perturbare lo stato arrivando anche a ionizzarli (Li⁺, Na⁺). Si studia se il livello predittivo aumenta tenendo conto del principio di esclusione di Pauli.

Seconda approssimazione. Si approssima: questa volta si trascurano solamente le interazioni elettrone-elettrone e si tiene conto del principio di esclusione. I livelli energetici non cambiano rispetto al caso precedente

$$\varepsilon_n = E_g^{\mathrm{H}} \frac{Z^2}{n^2}$$

ma cambia il loro riempimento: non più di due elettroni per ogni valore della terna $n,\,l$ e m. Si ha

Z	$E_g^{ m tot}(Z)/E_g^{ m H}$	$V^I/E_g^{ m H}$
1	1	-1
2	$2\cdot 4$	$-1\cdot 4$
3	$2 \cdot 9 + 1 \cdot \frac{9}{4}$	$-\frac{9}{4}$
[3, 10]	$2Z^2 + (Z-2)\frac{Z^2}{4}$	$-\frac{Z^{2}}{4}$

Da Z=11 fino a Z=28 si riempie il livello n=3. L'energia di ionizzazione corrispondente è

$$V^I = -Z^2 \frac{E_g^{\mathrm{H}}}{\mathrm{q}}$$

Si noti che $V^I>0$ in quanto $E_g^{\rm H}<0$. Le previsioni si accordano meglio con gli esperimenti: i valori assoluti sono ancora sbagliati, ma migliora l'andamento. In particolare

$$V^I(\mathrm{Li}) < V^I(\mathrm{He}), \quad V^I(\mathrm{Na}) < V^I(\mathrm{Ne})$$

Nella curva in funzione del numero atomico si inizia ad intravedere parte della complessità dell'andamento reale. Dopo Z=11, la curva teoria prevede la caduta di energia solo per Z=29 perdendo quella tra Ar (Z=18) e K (Z=19). Per questo modello, l'elio e il neon sono nobili, ma non l'argon.

Un altro problema è dato dal valore di V^I dopo le cadute. Secondo gli esperimenti, gli alcalini hanno valori di V^I molto simili tra loro, mentre per il modello essi crescono enormemente con Z. Il modello ha due problemi fondamentali:

• si trascura completamente l'interazione elettrone-elettrone, si sovrastimano le energie die legame (in modulo, cioè si producono energie troppo negative) e quindi anche i valori di

 V^I . Inoltre, trascurando l'interazione tra elettroni non si tiene conto dell'effetto schermo. Negli elementi alcalini, l'elettrone esterno risente del nucleo schermato dagli altri Z-1 elettroni e quindi viene attratto da una carica efficace [Z-(Z-1)]e=e indipendente da Z: questo spiega V^I molto simile in tutti gli alcalini.

• Si considera $\varepsilon = \varepsilon_n$ mentre i livelli energetici sono dipendenti anche da l: questo spiega la maggiore complessità della curva sperimentale.

Serve un modello più avanzato che permetta di descrivere in modo accettabile l'effetto dell'interazione elettrone-elettrone. Utilizzare la teoria perturbativa come fatto per l'elio porta a risultati

- poco accurati, l'interazione è troppo grande per trattarla come perturbazione al prim'ordine;
- difficili da ottenere a causa delle tante variabili;
- poco istruttivi, non sarebbe facile costruire una teoria generale.

Risulta conveniente nell'approssimazione di potenziale centrale.

4.1 Potenziale centrale

L'approssimazione di potenziale centrale sostituisce l'hamiltoniana esatta

$$\hat{H}_{e} = -\sum_{i=1}^{Z} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} + \frac{Ze^{2}}{4\pi\varepsilon_{0}r_{i}} + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{4\pi\varepsilon_{0}r_{ij}} = \hat{K} + \hat{V}_{e-e}, \quad r_{ij} = |\vec{r}_{i} - \vec{r}_{j}|$$

con una somma di hamiltoniane di singola particella

$$\hat{H}_c = \sum \hat{h}_c(i), \quad \hat{h}_c(i) = -\frac{\hbar^2}{2m} \nabla_i^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_i} + \hat{V}(r_i) = -\frac{\hbar^2}{2m} \nabla_i^2 + \hat{V}_c(r_i)$$

dove $\hat{V}(r_i)$ è un opportuno potenziale centrale a particella singola. Si noti che le approssimazioni nel passare dall'hamiltoniana esatta \hat{H}_e a quella centrale \hat{H}_c sono due:

- si impone $\hat{H}_c = \sum \hat{h}_c(i)$;
- si impone $V(\vec{r_i}) = V(r_i)$.

Trovare una buona di forma di $\hat{V}(r)$ non è facile, si vede successivamente come fare. Si può richiedere che il potenziale centrale

$$V_c(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r} + V(r)$$

abbia i seguenti andamenti asintotici

$$\lim_{r\to 0} V_c(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}, \quad \lim_{r\to \infty} V_c(r) = -\frac{e^2}{4\pi\varepsilon_0 r}$$

Essi sono alquanto intuitivi. Se l'elettrone k è molto vicino al nucleo allora sente l'interazione nucleare (molto forte) ed è poco influenzato dagli altri elettroni

$$r_k \approx 0 \implies V_c(r_k) \approx -\frac{Ze^2}{4\pi\varepsilon_0 r_k}$$

D'altra parte, grazie alla teoria variazionale applicata all'atomo di elio, ogni elettrone scherma parzialmente il nucleo agli altri elettroni. Se l'elettrone k è molto lontano, $r_k \to \infty$, allora esso risente di una carica nucleare pari a

$$[Z - (Z - 1)]e = e$$

Pertanto, l'andamento del potenziale centrale \hat{V}_c passa da

$$-\frac{Ze^2}{4\pi\varepsilon_0 r_k}$$

per brevi distanze a

$$-\frac{e^2}{4\pi\varepsilon_0 r_k}$$

per grandi distanze. Anche senza conoscere la forma funzionale di $\hat{V}_c(r)$, si possono trarre delle conclusioni importanti. Si consideri l'equazione di particella singola

$$\hat{h}f = \varepsilon f, \quad \hat{h} = -\frac{\hbar^2}{2m}\nabla^2 + \hat{V}_c(r)$$

Dato che \hat{h} non dipende dallo spin, la funzione d'onda della particella singola è

$$f = \psi(r, \theta, \varphi) \chi_{m_s}$$

dove ψ è soluzione di

$$-\frac{\hbar^2}{2m}\nabla^2\psi + \hat{V}_c\psi = \varepsilon\psi$$

Se il potenziale centrale fosse

$$\hat{V}_c(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$

allora l'equazione sopra sarebbe l'equazione di Schrödinger per un sistema idrogenoide. Conviene riscriverla introducendo il momento angolare

$$\hat{L}^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \, \partial_{\theta} (\sin \theta \, \partial_{\theta}) + \frac{1}{\sin^2 \theta} \, \partial_{\varphi}^2 \right]$$

Ricordando l'espressione del laplaciano in coordinate sferiche

$$\nabla^2 = \frac{1}{r^2} \, \partial_r(r^2 \, \partial_r) + \frac{1}{r^2 \sin \theta} \, \partial_\theta(\sin \theta \, \partial_\theta) + \frac{1}{r^2 \sin^2 \theta} \, \partial_\varphi^2$$

l'equazione di Schrödinger diventa

$$\left[-\frac{\hbar^2}{2mr^2} \, \partial_r(r^2 \, \partial_r) + \frac{\hat{L}^2}{2mr^2} + \hat{V}_c(r) \right] \psi(r,\theta,\varphi) = \varepsilon \psi(r,\theta,\varphi)$$

In questo modo risulta evidente che le armoniche sferiche sono autofunzioni di \hat{h} . Imponendo

$$\psi(r,\theta,\varphi) = R(r)Y_l^m(\theta,\varphi)$$

si ottiene

$$\left[-\frac{\hbar^2}{2mr^2} \, \partial_r(r^2 \, \partial_r) + \frac{\hbar^2 l(l+1)}{2mr^2} + \hat{V}_c(r) \right] R(r) Y_l^m(\theta, \varphi) = \varepsilon R(r) Y_l^m(\theta, \varphi)$$

$$\left[-\frac{\hbar^2}{2mr^2} \, \partial_r(r^2 \, \partial_r) + \frac{\hbar^2 l(l+1)}{2mr^2} + \hat{V}_c(r) \right] R(r) = \varepsilon R(r)$$

Ponendo

$$R(r) = \frac{\chi(r)}{r} \implies \partial_r R(r) = (\partial_r \chi) \frac{1}{r} - \frac{1}{r^2} \chi \implies \partial_r (r^2 \partial_r R) = \partial_r \left[(\partial_r \chi) r - \chi \right] = r \partial_r^2 \chi$$

si ottiene

$$\left[-\frac{\hbar^2}{2m} \frac{1}{r} \partial_r^2 + \frac{\hbar^2 l(l+1)}{2mr^3} + \frac{1}{r} \hat{V}_c(r) \right] \chi(r) = \varepsilon \frac{\chi(r)}{r}$$
$$-\frac{\hbar^2}{2m} \partial_r \chi(r) + \left[\hat{V}_c(r) + \frac{\hbar^2 l(l+1)}{2mr^2} \right] \chi(r) = \varepsilon \chi(r)$$

Si ha un'equazione di radiale cioè un'equazione di Schrödinger monodimensionale in cui appare un termine di energia cinetica

$$-\frac{\hbar}{2m}\,\partial_r^2$$

ed uno di energia potenziale

$$V_{\mathrm{eff}}(r) = V_c(r) + \frac{\hbar^2 l(l+1)}{2mr^2}$$

Il secondo addendo è detto potenziale centrifugo. Si noti che mentre $V_c(r)$ è attrattivo, il secondo addendo è positivo, cioè tende ad aumentare l'energia e cresce con il numero quantico angolare l. La trattazione riportata è identica a quella per gli atomi idrogenoidi. L'unica differenza risiede nel sostituire il potenziale coulombiano

$$-\frac{Ze^2}{4\pi\varepsilon_0 r}$$

con il potenziale centrale $V_c(r)$. Si vedono alcune conseguenze. La soluzione dell'equazione radiale dipende dal numero quantico angolare l a causa del potenziale centrifugo. Inoltre, quando si trovano gli autovalori e le auto-funzioni, si introduce il numero quantico magnetico m. In generale si possono ricavare delle soluzioni $\chi_{n,l}(r)$ (e quindi $R_{n,l}$) corrispondenti ad autovalori $\varepsilon_{n,l}$. Solamente nel caso coulombiano

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$

che gli autovalori non dipendono da l (conservazione del vettore di Lagrange-Runge-Lenz?). Per qualunque altra scelta del potenziale centrale $V_c(r)$, i livelli energetici dipendono da n e da l: la degenerazione in l è rimossa (ma in m resta). Non conoscendo l'espressione di $V_c(r)$, non si possono calcolare i livelli energetici $\varepsilon_{n,l}$ in modo esplicito. Tuttavia, in quanto il valore asintotico coincide con quello coulombiano, si può concludere che, per un potenziale $V_c(r)$ qualunque, vale:

- per un valore fissato di n, il numero l può assumere i valori tra 0 ed n-1 comprsi (nel caso dell'idrogeno si trova tale relazione analizzando il comportamento per $r \to 0$);
- per raggi r sufficientemente piccoli, si ha $R(r) \sim r^l$, pertanto, maggiore è l, più distante si trova l'elettrone, maggiore è l'effetto di schermo e maggiore è l'energia.

In generale, i livelli energetici $\varepsilon_{n,l}$ crescono con n e con l. Per capire come crescono serve l'espressione di $V_c(r)$. Se, per un sistema idrogenoide, i livelli sono del tipo

$$\varepsilon_n = \frac{Z^2}{n^2} E_g^{\mathrm{H}}$$

per un atomo a molti elettroni si ha dipendenza anche da l, ma non si conosce i valori dell'energia perché non si sa risolvere analiticamente l'equazione radiale.

Definizione. La generica funzione d'onda a singola particella ψ_{nlmm_s} prende il nome di orbitale atomico.

Compresi questi aspetti dell'equazione a particella singola siano pronti a descrivere lo stato fondamentale dell'intero atomo descritto, in approssimazione di campo centrale, dall'hamiltoniana

$$\hat{H}_c = \sum \hat{h}_c(i), \quad \hat{h}_c(i) = -\frac{\hbar^2}{2m} \nabla_i^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_i} + \hat{V}(r_i)$$

occorre utilizzare un risultato che si ottiene utilizzando una forma accurata di $V_c(r)$. La sequenza dei livelli energetici dal più basso al più alto segue il principio dell'aufbau. Per atomi a molti elettroni, la sequenza di riempimento degli orbitali in ordine energetico per gli elettroni interni risulta essere ordinata per n ed l: non si ha più un problema a singolo elettrone.

Lezione 12

 $\begin{array}{ccc} \text{mer} & 21 & \text{dic} \\ 2022 & 15:30 \end{array}$

Prima di analizzare la configurazione elettronica di un atomo in approssimazione di potenziale centrale, si vede come si può costruire un potenziale centrale in grado di fornire una descrizione accettabile dei livelli energetici.

Metodo di Hartree. Il metodo di Hartree produce dei livelli energetici in accordo con gli esperimenti e produce risultati migliori della teoria perturbativa. Tale metodo permette di costruire un possibile potenziale centrale $V_c(r)$ in grado di riprodurre qualitativamente e semi-quantitativamente diverse proprietà degli atomi. Si dà un'ipotesi plausibile di funzione d'onda. Si considerino le soluzioni di

$$\hat{h}(i)\varphi^{0}(i) = \varepsilon_{i}\varphi^{0}(i), \quad \hat{h}(i) = -\frac{\hbar^{2}}{2m}\nabla_{i}^{2} - \frac{Ze^{2}}{4\pi\varepsilon_{0}r}$$

Nel metodo di Hartree non si impone l'anti-simmetria della funzione d'onda totale e non si considerano esplicitamente i gradi di libertà di spin. Tuttavia, si impone il principio di esclusione di Pauli limitando l'occupazione di ogni livello quantico a due elettroni. Noti i livelli energetici ε_i^0 (l'esponente zero indica il passo zero del metodo) che sono gli autovalori corrispondenti alle soluzioni φ_i^0 , si costruisce lo stato fondamentale riempiendo progressivamente i livelli energetici a partire dal più basso, esattamente come fatto in precedenza quando si è considerato $\hat{V}_{e-e}=0$. Assegnato lo stato ad ogni elettrone e detto j l'insieme dei numeri quantici dell'elettrone j-esimo, si costruisce il potenziale di Hartree che agisce sul generico elettrone i:

$$\hat{V}_H(r_i) = \frac{e^2}{4\pi\varepsilon_0} \sum_{i \neq i}^Z \int \frac{|\varphi_j^0(\vec{r}_j)|^2}{|\vec{r}_i - \vec{r}_j|} \,\mathrm{d}^3 r_j$$

Se le soluzioni φ_j^0 sono di tipo s, allora il potenziale è centrale. Se sono di tipo p o successivo e la carica è distribuita simmetricamente, allora il potenziale è centrale. Se questo non avviene, allora nei calcoli si dividono gli elettroni in modo da avere una distribuzione simmetrica (un elettrone solo nello stato n=2 e l=1 viene diviso tra i tre stati $m_l=0,\pm 1$). Costruito il potenziale di Hartree $\hat{V}_H(r_i)$, si assegna l'hamiltoniana seguente ad ogni elettrone:

$$\hat{h}(i) = -\frac{\hbar^2}{2m} \nabla_i^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_i} + \underbrace{\frac{e^2}{4\pi\varepsilon_0} \sum_{j\neq i}^N \int \frac{|\varphi_j^0(\vec{r}_j)|^2}{|\vec{r}_i - \vec{r}_j|} \, \mathrm{d}^3 r_j}_{\hat{V}_H(r_i)}$$

Si stima l'energia dell'elettrone i come

$$\left\langle \varphi_{i}^{0} \right| \hat{h}(i) \left| \varphi_{i}^{0} \right\rangle = \frac{Z^{2}}{n_{i}^{2}} E_{g}^{\mathrm{H}} + \left\langle \varphi_{i}^{0} \right| \hat{V}_{H}(r_{i}) \left| \varphi_{i}^{0} \right\rangle$$

dove φ_i^0 sono le auto-funzione dell'hamiltoniana nel caso $\hat{V}_{e-e}=0$. Si ha

$$\left\langle \varphi_i^0 \middle| \hat{V}_H(r_i) \middle| \varphi_i^0 \right\rangle = \frac{e^2}{4\pi\varepsilon_0} \sum_{j\neq i}^N \int \frac{|\varphi_i^0(\vec{r_i})\varphi_j^0(\vec{r_j})|^2}{|\vec{r_i} - \vec{r_j}|} \, \mathrm{d}^3 r_i \, \mathrm{d}^3 r_j$$

Da questa espressione si può capire il significato del potenziale di Hartree. Esso è costruito in modo da ottenere, quando si calcolano le energie, una correzione ai livelli con un integrale

diretto dovute all'interazione elettrone-elettrone, tenendo conto di tutti gli elettroni. Il metodo di Hartree non è un'estensione diretta della teoria perturbativa utilizzata per l'atomo di elio (oltre a non essere esatta in quanto non si stima l'anti-simmetria dell'auto-funzione totale) e si è già detto che la teoria perturbativa al prim'ordine fornisce risultati insoddisfacenti. Il metodo non si limita a calcolare l'effetto del potenziale \hat{V}_H perturbativamente, cioè quanto fatto sopra per capire che la forma di \hat{V}_H deriva da esprimere le correzioni tramite integrali diretti. Il metodo di Hartree funziona come segue:

- Si assegna un'ipotesi plausibile alle funzioni d'onda φ_i^0 degli Z elettroni (non è necessario che siano le funzioni d'onda nel caso $\hat{V}_{e-e} = 0$, si può anche utilizzare le funzioni d'onda di un atomo idrogenoide). Siano ε_i^0 i livelli energetici corrispondenti.
- Si costruisce il potenziale di Hartree per il generico elettrone i:

$$\hat{V}_H^0(r_i) = \frac{e^2}{4\pi\varepsilon_0} \sum_{i \neq i}^Z \int \frac{|\varphi_j^0(\vec{r}_j)|^2}{|\vec{r}_i - \vec{r}_j|} \,\mathrm{d}^3 r_j$$

si somma riempiendo i livelli più bassi compatibilmente al principio di esclusione fino al numero totale Z di elettroni.

• Si risolve numericamente l'equazione di Schrödinger a particella singola:

$$\hat{h}(i)\varphi^1(i) = \varepsilon_i^1 \varphi^1(i), \quad \hat{h}(i) = -\frac{\hbar^2}{2m} \nabla_i^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_i} + V_H^0(r_i)$$

- Si riempiono i nuovi livelli energetici ε_i^1 dal più basso. Si selezionano le Z funzioni d'onda corrispondenti.
- Si costruisce

$$\hat{V}_{H}^{1}(r_{i}) = \frac{e^{2}}{4\pi\varepsilon_{0}} \sum_{j\neq i}^{Z} \int \frac{|\varphi_{j}^{1}(\vec{r}_{j})|^{2}}{|\vec{r}_{i} - \vec{r}_{j}|} d^{3}r_{j}$$

• Si risolve l'equazione di Schrödinger a particella singola:

$$\hat{h}(i)\varphi^2(i) = \varepsilon_i^2 \varphi^2(i), \quad \hat{h}(i) = -\frac{\hbar^2}{2m} \nabla_i^2 - \frac{Ze^2}{4\pi \varepsilon_0 r_i} + V_H^1(r_i)$$

Si itera la procedura finché si raggiunge l'auto-consistenza: le funzioni $\varphi_j^{(n)}$ usate per costruire $V_H^{(n)}(r_i)$ sono soluzioni di

$$\left[-\frac{\hbar^2}{2m} \nabla_i^2 - \frac{Ze^2}{4\pi\varepsilon_0 r_i} \hat{V}_H^{(n)}(r_i) \right] \varphi^{(n+1)}(i) = \varepsilon^{(n+1)} \varphi^{(n+1)}(i)$$

Il potenziale e l'hamiltoniana dipendono dalle auto-funzioni stesse. Le funzioni con cui si costruisce V_H producono delle soluzioni dell'hamiltoniana che danno un nuovo V_H identico a quello costruito. Si dimostra che

- fissata una certa tolleranza numerica, la soluzione auto-consistente si può sempre ottenere in un numero finito di passi;
- ad ogni iterazione, l'energia totale dell'atomo diminuisce finché non cambia quando si è raggiunta la convergenza.

Osservazione. Si presenta un problema. L'hamiltoniana dell'atomo è

$$\hat{H} = \sum_{i} \hat{h}(i)$$

Si potrebbe ingenuamente dire che l'energia totale è

$$E_{\rm tot} = \sum_{i} \varepsilon_i$$

Tuttavia si conterebbero due volte alcuni termini. Infatti

$$\varepsilon_{i} = \left\langle \varphi_{i} \right| \hat{h}(i) \left| \varphi_{i} \right\rangle = \left\langle \varphi_{i} \right| - \frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \frac{Ze^{2}}{4\pi\varepsilon_{0}r_{i}} \left| \varphi_{i} \right\rangle + \left\langle \varphi_{i} \right| \frac{e^{2}}{4\pi\varepsilon_{0}} \sum_{k \neq i} \int \frac{\left| \varphi_{k}^{0}(\vec{r_{k}}) \right|^{2}}{\left| \vec{r_{i}} - \vec{r_{k}} \right|} \, \mathrm{d}^{3}r_{k} \left| \varphi_{i} \right\rangle$$

Il primo valor medio è un contributo di particella singola i. L'integrale diretto (da qui in avanti J_{ik}) risulta essere l'interazione totale tra l'elettrone i e l'elettrone k. Pertanto, l'energia totale è

$$E_{\text{tot}} = \sum_{i=1}^{Z} \varepsilon_i - \frac{1}{2} \sum_{k \neq i} J_{ik}, \quad J_{ik} = J_{ki}$$

Esempio. Questo esempio non è chiesto all'esame. Si consideri un atomo con tre elettroni nei livelli energetici ε_0 , ε_1 ed ε_2 . L'energia totale è

$$E_{\text{tot}} = \varepsilon_0 + \varepsilon_1 + \varepsilon_2 - \frac{1}{2}J_{01} - \frac{1}{2}J_{02} - \frac{1}{2}J_{12} - \frac{1}{2}J_{10} - \frac{1}{2}J_{20} - \frac{1}{2}J_{21}$$
$$= \varepsilon_0 + \varepsilon_1 + \varepsilon_2 - J_{01} - J_{02} - J_{12}$$

I livelli energetici di ogni elettrone sono dati dall'energia nel caso dell'atomo idrogenoide più le interazioni con gli altri elettroni

$$\varepsilon_0 = \varepsilon_0^0 + J_{01} + J_{02}, \quad \varepsilon_1 = \varepsilon_1^0 + J_{10} + J_{12}, \quad \varepsilon_2 = \varepsilon_2^0 + J_{20} + J_{21}$$

Pertanto, si ottiene l'espressione corretta dell'energia totale

$$E_{\text{tot}} = \varepsilon_0^0 + \varepsilon_1^0 + \varepsilon_2^0 + J_{01} + J_{02} + J_{12}$$

Rimuovendo l'elettrone nel livello ε_2 si ha

$$E_{\text{tot}}^{+} = \varepsilon_{0}^{0} + \varepsilon_{1}^{0} + J_{01} \implies E_{\text{tot}} - E_{\text{tot}}^{+} = \varepsilon_{2}^{0} + J_{02} + J_{12} = \varepsilon_{2}$$

Tramite questa definizione dell'energia totale, si include nel valore di ε_i il fatto che se si rimuove l'elettrone corrispondente, allora l'atomo perde i valori degli integrali diretti associati.

Da Hartree ad Hartree-Fock. Nel metodo di Hartree, la trattazione dei gradi di libertà di spin è semplificata. Nonostante si imponga la validità del principio di esclusione di Pauli, si considera solo la parte spaziale della funzione d'onda che è il prodotto delle funzioni d'onda di singola particella

$$\psi^{\text{tot}} = \prod_{i=1}^{Z} \varphi_i$$

La stima dei livelli energetici della teoria di Hartree può essere ricavata con il metodo variazionale imponendo la struttura sopra di $\psi^{\rm tot}$.

Nel metodo di Hartree-Fock, si impone che la funzione d'onda sia anti-simmetrica: il riempimento dei livelli si effettua assegnando esplicitamente lo spin. I livelli energetici di Hartree-Fock si ottengono in modo variazionale partendo dalla funzione d'onda espressa in termini di determinante di Slater.

La procedura auto-consistente è analoga anche se complicata dalla presenza dei termini di scambio K oltre a quelli diretti J, permettendo anche di giustificare la prima regola di Hund. Rimane il fatto che la teoria di Hartree-Fock non è esatta: essa forza una descrizione a particella singola e si impone un potenziale centrale. Esistono tecniche migliori come quelle che utilizzano la teoria del funzionale densità, ma vanno oltre gli scopi del corso. Indipendentemente dalla scelta particolare del potenziale centrale, si può discutere il riempimento progressivo degli orbitali atomici all'aumentare di Z.

4.2 Riempimento degli orbitali

In approssimazione di potenziale centrale, i livelli energetici di singola particella sono del tipo $\varepsilon = \varepsilon_{nlm}$ e l'energia totale degli Z elettroni nello stato fondamentale è ottenuta riempiendo progressivamente i livelli di singola particella partendo dal più basso e tenendo conto del principio di esclusione di Pauli.

Si vede un aspetto importante: l'approssimazione di potenziale centrale prevede che i livelli energetici dipendano solo dai numeri quantici $\{n_i, l_i\}$. I simboli di termine sopra corrispondono a stati con la stessa energia. Sperimentalmente, si trova che l'energia di uno stato atomico dipende anche dai valori di L ed s: ai simboli di termine sopra devono avere energie diverse. La dipendenza da questi due numeri quantici è causata dalla correzione non sferica, cioè dal fatto che il potenziale centrale è solo un'approssimazione. Trascurando l'interazione spin-orbita, l'hamiltoniana esatta del sistema è

$$\hat{H}_{e} = -\sum_{i=1}^{Z} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} + \frac{Ze^{2}}{4\pi\varepsilon_{0}r_{i}} + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{4\pi\varepsilon_{0}r_{ij}} = \hat{K} + \hat{V}_{e-e}, \quad r_{ij} = |\vec{r}_{i} - \vec{r}_{j}|$$

che, in approssimazione di potenziale centrale diventa

$$\hat{H}_c = -\sum_i \frac{\hbar^2}{2m} \nabla_i^2 + \frac{Ze^2}{4\pi\varepsilon_0 r_i} + \sum_i V(r_i)$$

Si può scrivere

$$\hat{H} = \hat{H}_c + \hat{H}', \quad \hat{H}' = \frac{1}{2} \sum_{i \neq j} \frac{e^2}{4\pi \varepsilon_0 r_{ij}} - \sum_i V(r_i)$$

il secondo addendo è la correzione non sferica. Utilizzando la teoria perturbativa per stimare la correzione ai livelli previsti dall'approssimazione di potenziale centrale, risulta evidente che convenga considerare la base comune di \hat{L}^2 e \hat{L}_z (una volta fissata la configurazione $\{n_i, l_i\}$ e quindi fissata l'energia dello stato imperturbato). Infatti, come visto in precedenza, l'hamiltoniana \hat{H}' non commuta con i momenti angolari orbitali dei singoli elettroni: bisogna utilizzare la teoria delle perturbazioni degeneri senza semplificazioni, cioè bisogna considerare una matrice 15×15 del tipo

$$\left\langle \left\{ n_{i}l_{i}s_{i}m_{i}m_{s_{i}}\right\} \right|\hat{H}'\left|\left\{ n_{i}'l_{i}'s_{i}'m_{i}'m_{s_{i}}'\right\} \right\rangle$$

per poi diagonalizzarla. Tuttavia, l'hamiltoniana \hat{H}' commuta con \hat{L}^2 e \hat{L}_z . Anche se lo spin non causa problemi di commutazione con \hat{H}' , conviene passare alla base comune di \hat{S}^2 e \hat{S}_z totali. Dopo di questo, sfruttando le combinazioni lineari con i coefficienti di Glebsch-Gordan, le correzioni perturbative all'approssimazione di potenziale centrale sono del tipo:

$$\langle \{n_i, l_i, s_i\} L m_L s m_s | \hat{H}' | \{n_i, l_i, s_i\} L m_L s m_s \rangle = E_{Ls}$$

Non esistono direzioni privilegiate: m_L ed m_s sono indici di degenerazione. Non si calcolano le correzioni date dalla formula sopra, ma ci si accontenta di aver capito l'origine della dipendenza dell'energia da L ed s.

Idrogeno. Per Z=1, lo stato fondamentale è dato dalla configurazione 1s e l'energia corrispondente è $E_g^{\rm H}\approx -13.6\,{\rm eV}$. Si notano alcune caratteristiche ovvie per l'atomo di idrogeno, ma interessanti per gli altri atomi. L'elettrone dell'atomo di idrogeno nello stato fondamentale è caratterizzato da momento angolare orbitale l=0. Pertanto, il quadrato del momento angolare orbitale totale, calcolato su tutti gli elettroni (uno per l'idrogeno),

$$\hat{L}^2 = \left[\sum_{i=1}^Z \hat{\vec{L}}_i\right]^2$$

risulta essere nullo L=0 e quindi l'elettrone si trova in un auto-stato di \hat{L}^2 corrispondente all'auto-valore $\hbar^2 L(L+1)=0$. Similmente, riguardo il momento angolare totale di spin, l'elettrone si trova nell'auto-stato corrispondente a $s=\frac{1}{2}$. Si consideri il momento angolare somma

$$\hat{J}^2 = (\hat{L}^2 + \hat{S}^2)$$

Dato che L=0 e $s=\frac{1}{2}$, la teoria generale del momento angolare afferma che i possibili valori del numero quantico angolare j, che determinano gli autovalori di \hat{J}^2 , possono assumere i valori

$$j = L + s, \dots, |L - s| = \frac{1}{2}$$

Definizione. Dicasi simbolo di termine relativo ad uno stato elettronico di un atomo, la seguente notazione

$$^{2s+1}L_j$$
, $L=s,p,d,f,\dots$

Nel caso dell'atomo di idrogeno nello stato fondamentale, il simbolo di termine è $^2s_{\frac{1}{2}}$.

Elio. Si consideri l'elio nello stato fondamentale cioè la configurazione $1s^2$. Lo spin totale è s=0, così pure il momento angolare orbitale totale $L=l_1+l_2=0$. Pertanto j=0 e il simbolo di termine è 1s_0 . Si noti che, dell'elio, si è anche stimata l'energia dello stato fondamentale, ma non per gli elementi successivi.

Litio. Si consideri il litio Z=3. Lo stato fondamentale ha configurazione $1s^22s$. Per calcolare i numeri quantici totali conviene sfruttare un'osservazione: ogni sotto-orbitale pieno fornisce un valore nullo di L, s e j. Si ricorda che un valore fissato del numero quantico principale n individua un orbitale. I numeri quantici l, m ed m_s individuano un sotto-orbitale. Ad esempio, per n=1 esiste solamente 1s (l=0, $m_0=e$ $m_s=\pm\frac{1}{2}$) che può ospitare solo due elettroni. Per n=2 esiste 2s e 2p che possono ospitare due e sei elettroni rispettivamente. Tornando al litio, per calcolare i numeri quantici totali L, s e j, si considera un singolo elettrone sul livello 2s. Risulta evidente che il simbolo di termine è 2s come per l'idrogeno.

Berillio. Per il berillio Z=4, la configurazione elettronica esterna è $1s^22s^2$ ed il simbolo di termine è uguale a quello dell'elio 1s_0 .

Boro. Si consideri il boro Z=5, la cui configurazione è $1s^22s^22p$. I numeri quantici sono

$$j=1, \quad s=rac{1}{2}, \quad j=rac{1}{2}, rac{3}{2}$$

L'approssimazione di potenziale centrale non prevede la dipendenza dei livelli energetici da j. Si hanno due simboli di termine: ${}^2p_{\frac{3}{2}}$ e ${}^2p_{\frac{1}{2}}$.

Lezione 13

 $\begin{array}{cccc} {\rm gio} & 22 & {\rm dic} \\ 2022 & 15:30 \end{array}$

Carbonio. Il carbonio Z=6 ha configurazione $1s^22s^22p^2$. Si hanno diversi modi per riempire lo stato 2p con i due elettroni presenti. Ad esempio, si considerino i due elettroni aventi $m_l=-1$ e $m_s=\pm\frac{1}{2}$, cioè riempiendo uno dei tre orbitali 2p. I due elettroni hanno l=1 e $s=\frac{1}{2}$. Pertanto, i numeri quantici angolari orbitali e di spin totali sono

$$L = 0, 1, 2, \quad S = 0, 1$$

Senza considerare j si hanno i simboli di termine

$${}^{1}D, {}^{3}D, {}^{1}P, {}^{3}P, {}^{1}S, {}^{3}S$$

In approssimazione di potenziale centrale, tutti questi simboli di termine risultano energeticamente equivalenti. Si analizzano i simboli sopra. Essi sono stati trovati tramite la teoria generale del momento angolare per due elettroni con l=1 e $s=\frac{1}{2}$. Tale teoria prevede i numeri quantici L ed S visti, ma non tiene conto dell'indistinguibilità delle particelle. Ovviamente, passare da una descrizione con numeri quantici di particella singolari ad una descrizione con numeri quantici totali non deve alterare il numero totale di stati. Gli stati hanno le seguenti degenerazioni (2L+1)(2S+1):

Stato	$\mid L$	s	Degenerazione
^{3}D	2	1	15
^{1}D	2	0	5
^{3}P	1	1	9
^{1}P	1	0	3
3S	0	1	3
^{1}S	0	0	1

Si hanno 36 stati totali. Tenendo conto del principio di esclusione di Pauli e, più in generale, dell'indistinguibilità delle particelle, gli stati sono molti meno

$$\binom{6}{2} = 15$$

Il numero inferiore di stati sopra implica che alcuni simboli di termine non sono possibili. Dal punto di vista della teoria generale del momento angolare, per considerare L ed S totali si costruiscono le auto-funzioni comuni a

$$\hat{L}^2$$
, \hat{L}_z , \hat{S}^2 , \hat{S}_z

tramite delle combinazioni lineari opportune una volta fissati $l_1,\,l_2,\,s_1$ ed s_2 :

$$|l_1s_1l_2s_2Lm_LSm_S\rangle = \sum_{m_1+m_2=m_L}\sum_{m_{s_1}+m_{s_2}=m_S}c\,|l_1s_1m_1m_{s_1}l_2s_2m_2m_{s_2}\rangle$$

dove i coefficienti c sono quelli di Glebsch-Gordan

$$c = \langle l_1 s_1 m_1 m_{s_1} l_2 s_2 m_2 m_{s_2} | l_1 s_1 l_2 s_2 L m_L s m_s \rangle$$

Quando si lavora con elettroni, si ha $s_1=s_2=\frac{1}{2}$ e spesso si omette di indicare lo spin. In questo caso, vale anche $n_1=n_2$ e lo specifico valore è sottinteso. La scrittura più generale è

$$|\{n_i l_i s_i\} L m_L S m_S\rangle = \sum c |\{n_i l_i s_i m_{l_i} m_{s_i}\}\rangle, \quad i \in \{1, \dots, Z\}$$

Si noti che la base $|l_1m_1m_{s_1}l_2m_2m_{s_2}\rangle$ deve essere anti-simmetrica: essa può essere intesa come determinante di Slater delle funzioni d'onda a singola particella $|l_1m_1m_{s_1}\rangle$ e $|l_2m_2m_{s_2}\rangle$ che sono

soluzioni del problema a potenziale centrale.

Si consideri L=2 e s=1, cioè 3d . La base dei momenti angolari totali è

$$|l_1 s_2 l_2 s_2 L m_L S m_S\rangle = |1, 1, 2, m_L, 1, m_S\rangle = \sum_{m_1 + m_2 = m_L} \sum_{m_{s_1} + m_{s_2} = m_S} \cdots$$

Sapendo che i possibili valori sono

$$m_L = \pm 2, \pm 1, 0, \quad m_S = \pm 1, 0, \quad m_{1,2} = \pm 1, 0, \quad m_{s_{1,2}} = \pm \frac{1}{2}$$

Se $m_L = 2$ allora $m_1 = m_2 = 1$. Se $m_S = 1$ allora $m_{s_1} = m_{s_2} = \frac{1}{2}$. I due elettroni hanno gli stessi numeri quantici: lo stato non può esistere a causa del principio di esclusione. Si dimostra che se alcuni valori di m_L ed m_S relativi a L ed S sono vietati dal principio di esclusione, allora non esiste l'intero stato (L, S) con tutti gli m_L ed m_S possibili. Il simbolo di termine 3d non esiste.

Se L=2 e S=0, allora non ci sono stati vietati: m_{s_1} e m_{s_2} sono opposti. Il simbolo di termine 1d esiste ed è legato a 5 stati distinti sui 15 totali.

Si consideri p con L = 1 e S = 1. Si ha

$$m_L = \pm 1, 0, \quad m_s = \pm 1, 0, \quad m_{1,2} = \pm 1, 0, \quad m_{s_{1,2}} = \pm \frac{1}{2}$$

Nessun valore di m_L implica $m_1 = m_2$. Pertanto il simbolo 3p esiste ed è legato a 9 stati. Manca l'ultimo stato. L'unico simbolo di termine rimanente che ha un solo stato è 1s . Pertanto, per il carbonio Z = 6 si hanno tre simboli di termine

$$^{1}d, ^{3}p, ^{1}s$$

Tutto questo senza considerare i valori possibili del momento angolare somma j.

Si può dimostrare la validità delle seguenti regole di Hund.

Prima regola di Hund. Una volta assegnata la configurazione elettronica di particella singola (ovvero i gli stati $\{n_i, l_i\}$ occupati), l'energia più bassa corrisponde allo stato con s massimo. Questa regole è la generalizzazione di quanto visto per l'atomo di elio e riflette la minore repulsione coulombiana tra gli elettroni con spin parallelo. Questa regola individua 3p come simbolo di termine dello stato fondamentale dell'atomo di carbonio.

Seconda regola di Hund. Soddisfatta la prima regola, l'energia più bassa corrisponde allo stato con momento angolare orbitale totale L massimo. Infatti, in tal caso la repulsione coulombiana è minima. Capire la regola in termini qualitativi è difficile, la si considera come regola empirica. Per gli atomi visti finora, la seconda regole non serve a stabilire lo stato fondamentale, ma sarà utile per elementi più pesanti.

Terza regola di Hund. Si consideri l'interazione spin-orbita fino ad adesso trascurata. Per un sistema idrogenoide, l'hamiltoniana di interazione spin-orbita è del tipo

$$\hat{h}_{SO} = f(r)\hat{\vec{S}} \cdot \hat{\vec{L}}, \quad f(r) = \frac{1}{2m_e^2 c^2} \frac{1}{r} \, \partial_r U(r) = \frac{Ze^2}{8\pi\varepsilon_0} \frac{1}{m_e^2 c^2} \frac{1}{r^3} > 0$$

Il suo effetto sui livelli idrogenoidi ε_n si può calcolare utilizzando la teoria perturbativa. Si passa dalla base $|nlmm_s\rangle$ alla base $nljm_j$ dove $\vec{J}=\vec{L}+\vec{S}$ è il momento angolare totale. Gli operatori \hat{J}^2 e \hat{J}_z commutano con $\hat{h}_{\rm SO}$ a differenza di \hat{S}_z e \hat{L}_z . La correzione ai livelli energetici nella nuova

base non necessita di diagonalizzare la matrice di interazione e può essere calcolata come

$$\begin{split} \Delta E_{\mathrm{SO}} &= \left\langle n l j m_{j} \right| f(r) \hat{\vec{S}} \cdot \hat{\vec{L}} \left| n l j m_{j} \right\rangle = \frac{1}{2} \left\langle n l j m_{j} \right| f(r) (\hat{J}^{2} - \hat{L}^{2} - \hat{S}^{2}) \left| n l j m_{j} \right\rangle \\ &= \frac{\hbar^{2}}{2} \left[j(j+1) - l(l+1) - s(s+1) \right] \left\langle n l \right| f(r) \left| n l \right\rangle \\ &= \frac{\hbar^{2}}{2} \left[j(j+1) - l(l+1) - \frac{3}{4} \right] \left\langle n l \right| f(r) \left| n l \right\rangle, \quad s = \frac{1}{2} \end{split}$$

Il momento angolare totale è $j=l\pm\frac{1}{2}$ in quanto $s=\frac{1}{2}$. Inoltre

$$f(r) > 0 \implies \langle nl | f(r) | nl \rangle \sim Z^4 \alpha^2 > 0$$

Se $j = l + \frac{1}{2}$, allora

$$\Delta E_{\mathrm{SO}} = \frac{\hbar^2}{2} \left[\left(l + \frac{1}{2} \right) \left(l + \frac{3}{2} \right) - l(l+1) - \frac{3}{4} \right] \langle nl| f(r) | nl \rangle = \frac{1}{2} \hbar^2 l \langle nl| f(r) | nl \rangle > 0$$

Se $j = l - \frac{1}{2}$, allora

$$\Delta E_{\rm SO} = \frac{\hbar^2}{2} \left[\left(l - \frac{1}{2} \right) \left(l + \frac{1}{2} \right) - l(l+1) - \frac{3}{4} \right] \langle nl| f(r) | nl \rangle = -\frac{1}{2} \hbar^2 (l+1) \langle nl| f(r) | nl \rangle < 0$$

Lo stato ad energia più bassa è quello che minimizza il momento angolare totale j. La correzione dovuta all'interazione spin-orbita scala come α^2 , esattamente come la correzione relativistica all'energia cinetica. Quest'ultima, da sola, rompe la degenerazione in l. Tuttavia, per gli atomi idrogenoidi, se essa è sommata alla correzione spin-orbita, allora la dipendenza da l scompare. L'interazione spin-orbita porta ai seguenti livelli energetici

$$E_{nj} = E_g^{\rm H} \frac{Z^2}{n^2} \left[1 + \frac{Z^2 \alpha^2}{n^2} \left(\frac{n}{i + \frac{1}{2}} - \frac{3}{4} \right) \right], \quad E_g^{\rm H} < 0$$

Questa espressione include il termine di Darwin per l=0, ma si trascura il Lamb shift. Per $j=l+\frac{1}{2}$ si ha

$$\frac{n}{j+\frac{1}{2}} = \frac{n}{l+1}$$

mentre per $j = l - \frac{1}{2}$ si ha

$$\frac{n}{j + \frac{1}{2}} = \frac{n}{l} > \frac{n}{l + 1} > \frac{3}{4}$$

cioè per j minore, l'energia è più bassa, come visto (questo rimane vero anche con la correzione relativistica).

Tornando agli atomi a molti elettroni, si osserva sperimentalmente che l'energia degli stati atomici dipende

- dalla configurazione elettronica $\{n_i l_i\}$ (previsione dell'approssimazione a potenziale centrale);
- dai numeri quantici totali L ed S (correzioni non sferiche);
- dal numero quantico totale j associato a \hat{J}^2 e $\vec{J} = \vec{L} + \vec{S}$.

Alla luce di questa osservazione, dovrebbe essere chiarii perché il simbolo di termine è basta sui valori di L, s e j: essi sono i tre numeri quantici che determinano le correzioni alla approssimazione di campo centrale. Appare evidente che la dipendenza sopracitata dell'energia degli stati atomici

da j è dovuta all'interazione spin-orbita. Per un atomo a Z elettroni in approssimazione di campo centrale si ha

$$\hat{H}_{SO} = \sum_{i=1}^{Z} f(r_i) \hat{\vec{S}}_i \cdot \hat{\vec{L}}_i, \quad f(r_i) = \frac{1}{2m_e^2 c^2} \frac{1}{r_i} \, \partial_{r_i} V_c(r_i), \quad V_c(r_i) = -\frac{Ze^2}{4\pi \varepsilon_0 r_i} + \tilde{V}(r_i)$$

dove $\widetilde{V}(r_i)$ è, ad esempio, il potenziale di Hartree. Per calcolare perturbativamente la correzione spin-orbita conviene passare dalla base

$$|\{n_i l_i s_i\} L m_L s m_s\rangle$$

utilizzata per calcolare le correzioni non sferiche, alla base

$$|\{n_i l_i s_i\} L s j m_j\rangle$$

similmente a quanto fatto per calcolare la correzione spin-orbita per un sistema idrogenoide (da $|nlmsm_s\rangle$ a $|nlsjm_j\rangle$). Sfruttando il teorema di Wigner-Eckart, si dimostra che gli elementi diagonali

$$\langle \{n_i l_i s_i\} L s j m_j | \hat{H}_{SO} | \{n_i l_i s_i\} L s j m_j \rangle$$

sono gli unici elementi non nulli (quindi non occorre diagionalizzare la perturbazione) e che

$$\langle \{n_i l_i s_i\} L s j m_j | \hat{H}_{SO} | \{n_i l_i s_i\} L s j m_j \rangle = \frac{\hbar^2}{2} \left[j(j+1) - L(L+1) - s(s+1) \right] A(\{n_i l_i s_i\}, L, s)$$

dove A è un'opportuna costante determinata dai valori di L ed s e dalla configurazione elettronica $\{n_il_is_i\}$. L'analogia con i sistemi idrogenoidi

$$\Delta E_{\rm SO} = \frac{\hbar^2}{2} \left[j(j+1) - l(l+1) - \frac{3}{4} \right] \langle nl| f(r) |nl\rangle, \quad j = l \pm \frac{1}{2}$$

è evidente. Il numero quantico j non è limitato a due soli valori e A non è sempre positivo come $\langle nl | f(r) | nl \rangle$. Il risultato è empiricamente descritto dalla terza regola di Hund: fissata la configurazione elettronica $\{n_i l_i s_i\}$, lo spin totale s (prima regola) e il momento orbitale totale L (seconda regola), lo stato ad energia minima corrisponde al valore di j più piccolo se il sotto-orbitale più esterno è meno che semi-pieno, oppure viceversa (se il sotto-orbitale è semi-pieno, allora la prima regola costringe gli elettroni ad occupare tutti i valori di m_l per poter avere spin paralleli, dunque lo stato possiede L=0 e j può assumere un solo valore pari ad s).

Boro. Si consideri l'atomo di boro Z=5. Questo è il primo caso in cui $j=\frac{1}{2},\frac{3}{2}$ può assumere più di un valore. Il sotto-orbitale più esterno è il 2p che è meno che semi-pieno. La terza regola implica che lo stato fondamentale è quello relativo a $j=\frac{1}{2}$. Il simbolo di termine dello stato fondamentale dell'atomo di boro è $^2p_{\frac{1}{2}}$.

Carbonio. Si consideri il carbonio Z=6. Si sono individuati tre simboli di termine. La prima regola permette di individuare 3p come lo stato fondamentale trascurando il valore di j. I valori dei numeri quantici totali sono

$$L = 1, \quad s = 1, \quad J = 2, 1, 0$$

Dato che il sotto-orbitale è meno che semi-pieno, la terza regola afferma che l'energia è minimizzata per j=0. Il simbolo di termine per lo stato fondamentale del carbonio è 3p_0 .

Azoto. Si consideri l'azoto Z=7 con configurazione elettronica $1s^22s^22p^3$. La prima regola fissa gli spin sul livello 2p. Il principio di esclusione forza l'occupazione dei tre numeri quantici magnetici m_l corrispondenti. Si ha

$$L = 0, \quad j = s = \frac{3}{2}$$

Non si può avere L=1 perché dovrebbe esistere $m_L=1=m_1+m_2+m_3$ cioè due elettroni con m=1 (e uno con m=0), ma ciò è vietato dal Pauli in quanto le proiezioni dello spin m_s sono identiche. Dunque, il simbolo di termine dello stato fondamentale dell'azoto è ${}^4s_{\frac{3}{2}}$.

Ossigeno. Si consideri l'ossigeno Z=8 con configurazione elettronica $1s^22s^22p^4$. La prima regola implica la massimizzazione dello spin. Tuttavia, non si possono disporre quattro elettrone in tre valori diversi della proiezione m senza violare il principio di esclusione. Due elettroni devono necessariamente avere spin anti-parallelo e occupare la stessa proiezione m. Si hanno diverse possibilità e si devono elencare tutti i simboli di termine per poter applicare le regole di Hund così da individuare l'insieme L, s e j corrispondente allo stato fondamentale. Ci si accontenta dell'atomo di carbonio. Per gli altri atomi non si elencano tutti i simboli di termine possibili, ma si individua direttamente quello corrispondente allo stato fondamentale. Tornando all'ossigeno, la prima regola massimizza lo spin: il momento di spin di due elettroni dev'essere anti-parallelo. La seconda regola massimizza il momento angolare orbitale L. In quanto l'orbitale è più che semi-pieno allora si massimizza j. Dunque, il simbolo di termine è 3P_2 . Per gli elementi successivi basta seguire la stessa procedura. Si noti che l'ordine delle regole deve essere rispettato.

Osservando la curva dell'energia di prima ionizzazione per gli atomi con sotto-orbitale 2p estremo, si nota una discesa quando si passa dall'azoto all'ossigeno per poi salire nuovamente. Diventa più facile rimuovere un elettrone nonostante il numero atomico aumenti. Si tratta di un effetto simile a quanto visto per l'elio. Nell'atomo di ossigeno sono presenti due elettroni con numeri quantici configurazionali identici. La somma dello spin di tale coppie è nulla, quindi la repulsione coulombiana è più forte.

Osservazione. Nella discussione sopra, si è dato per scontato che le correzioni spin-orbita siano meno importanti di quelle non-sferiche: prima si stabiliscono S e L, poi j. Questo ordine di importanza è detto accoppiamento L-S o accoppiamento di Russel-Saunders. Essi si riflette nelle regole di Hund e vale per $Z \lesssim 40$. Dato che l'interazione spin-orbita scala come Z^4 , per atomi sufficientemente pesanti essa diventi più importante delle correzioni non sferiche.

5 Effetto Zeeman

Si consideri un atomo a molti elettroni in un campo magnetico esterno \vec{B} statico e uniforme. Come nel caso dell'idrogeno, si distingue tra effetto Zeeman normale ed anomalo. Il primo si osserva quando il campo magnetico esterno è molto maggiore di quello interno dell'atomo e viene sovrastata l'interazione spin-orbita. Si ha l'effetto Zeeman anomalo nel limite opposto. Il caso intermedio è più difficile e non si considera. Per avere effetto Zeeman normale occorrono campi magnetici esterni molto maggiori di 1 T (il valore dipende dalla carica nucleare Z, per campi magnetici $B \gtrsim 10\,\mathrm{T}$ si prevale sul campo interno). Per avere effetto Zeeman anomalo si richiede $B \leq 10^{-2}\,\mathrm{T}$.

Effetto Zeeman normale. Studiare l'effetto Zeeman normale è facile per tutti gli atomi. Si può trascurare l'interazione spin-orbita e considerare un termine addizionale nell'hamiltoniana

$$\hat{H}_{\mathrm{Zeeman}} = -\sum_{i=1}^{Z} \hat{\vec{\mu}}_i \cdot \vec{B} = \sum_{i=1}^{Z} \frac{e}{2m_e} (\hat{\vec{L}}_i + 2\hat{\vec{S}}_i) \cdot \vec{B}$$

Orientando l'asse z parallelamente al campo si ha

$$H_{\rm Z} = \sum_{i=1}^{Z} \frac{eB_0}{2m_e} (\hat{L}_{z,i} + 2\hat{S}_{z,i}) = \frac{eB_0}{2m_e} (\hat{L}_z + 2\hat{S}_z), \quad B_0 = |\vec{B}|$$

Gli operatori senza pedice i si riferiscono ai momenti angolari totali. La presenza di un campo magnetico forte permette di ignorare la terza regola di Hund e scrivere i simboli di termine senza specificare j. Questo equivale a considerare le auto-funzioni del tipo

$$|\{n_i l_i\} L m_L S m_S\rangle$$

Esse sono auto-funzioni anche dell'hamiltoniana dell'effetto Zeeman

$$\hat{H}_{\rm Z}\left|\{n_il_i\}Lm_LSm_S\right\rangle = \frac{e\hbar}{2m_e}B_0(m_L+2m_S)\left|\{n_il_i\}Lm_LSm_S\right\rangle$$

dove si ha il magnetone di Bohr

$$\mu_B \equiv \frac{e\hbar}{2m_e} \approx 5.788 \times 10^{-5} \,\text{eV} \,\text{T}^{-1}$$

Il campo magnetico forte rompe almeno parzialmente la degenerazione in m_L ed m_S . Sebbene non si sappia calcolare analiticamente i livelli energetici in assenza del campo magnetico, si può calcolare la divisione dei livelli energetici dovuta al campo. Per l'ossigeno Z=8 si ha

$$m_L = \pm 1, 0, \quad 2m_S = \pm 2, 0 \implies m_L + 2m_S = \pm 3, \pm 2, \pm 1, 0$$

Il livello nove volte degenere si divide in sette livelli due di cui ancora degeneri (due volte, $m_L + 2m_S = \pm 1$). La differenza di energia è

$$\Delta E = \mu_B B_0$$

Anche con $B_0 \approx 10 \,\mathrm{T}$, la separazione tra i livelli di multi-pletto è piccola.

Effetto Zeeman anomalo. Se il campo esterno è debole, allora bisogna considerare l'interazione spin-orbita. Nel caso dell'ossigeno è fondamentale considerare il valore j=2 e, più in generale, le auto-funzioni del tipo

$$|\{n_i l_i\} L S j m_j\rangle$$

Come fatto per l'atomo di idrogeno, conviene scrivere

$$\hat{H}_{\rm Z} = \frac{eB_0}{2m_e} (2\hat{S}_z + \hat{L}_z) = \frac{eB_0}{2m_e} (2\hat{S}_z + \hat{L}_z)$$

Le auto-funzioni sopra sono auto-funzioni di \hat{J}_z , ma non di \hat{S}_z . Anche rinunciando ad ottenere una soluzione esatta e applicando la teoria delle perturbazioni si ha il problema che gli stati sopra sono degeneri in m_j . Si deve costruire e diagonalizzare una matrice (2j+1)(2j+1) del tipo

$$\langle \{n_i l_i\} L S j m'_j | \hat{S}_z | \{n_i l_i\} L S j m_j \rangle$$

Come per l'idrogeno, si dimostra con il teorema di Wigner-Eckart che la correzione Zeeman ai livelli energetici è data da

$$\Delta E = \left\langle \{n_i l_i\} L S j m_j' \middle| \hat{H}_{\mathbf{Z}} \middle| \{n_i l_i\} L S j m_j \right\rangle = g_{LjS} \mu_B B_0 m_j$$

dove si ha il fattore di Landé

$$g_{LjS} = 1 + \frac{j(j+1) - L(L+1) + S(S+1)}{2j(j+1)}$$

L'espressione è identica a quanto trovato per l'idrogeno. Si ha una sola differenza: compaiono i numeri quantici angolari totali j, L ed S invece di quelli di singola particella.

Osservazione. Noti j, L ed S del simbolo di termine, si hanno tutte le informazioni necessarie per calcolare analiticamente la divisione (riportata sopra) dei livelli per B_0 debole.

Lezione 14

lun 09 gen 2023 15:30

Schema j-j. Per atomi pesanti l'interazione spin-orbita diventa più importante delle correzioni non sferiche. Si tratta tale situazione tramite l'accoppiamento j-j. Esso descrive bene gli atomi con $Z\gtrsim 50$ (mentre tra i 40 ed 50 nessuno schema funziona bene). Il punto di partenza è l'approssimazione di potenziale centrale

$$\hat{H}_c = \sum_{i=1}^{Z} -\frac{\hbar^2}{2m_e} \nabla_i^2 + \hat{V}_c(r_i)$$

a cui si aggiunge il termine a particella singola

$$\hat{H}_{SO} = \sum_{i=1}^{Z} f(r_i) \vec{S}_i \cdot \vec{L}_i$$

Risulta evidente che $\hat{H}+\hat{H}_{\mathrm{SO}}$ è somma di hamiltoniane a particella singola

$$\hat{H}_c + \hat{H}_{SO} = \sum_{i=1}^{Z} \hat{h}(i), \quad \hat{h}(i) = -\frac{\hbar^2}{2m_e} \nabla_i^2 + V_c(r_i) + f(r_i) \vec{S}_i \cdot \vec{L}_i$$

Sebbene si ha

$$V_c(r_i) = -\frac{Ze^2}{4\pi\varepsilon_0 r_i} + \widetilde{V}(r_i)$$

per comprendere l'effetto dell'interazione spin-orbita si suppone $\widetilde{V}=0$. In tal caso, si conosce l'effetto dell'interazione. Introdotto j di particella singola, si ha

$$j = l \pm \frac{1}{2}$$

la correzione spin-orbita diminuisce l'energia dello stato con $j=l-\frac{1}{2}$ rispetto a quello per $J=\frac{1}{2}$ (si noti che j riguarda le singole particelle, mentre J riguarda molti elettroni).

Si consideri l'atomo di stagno (Z=50). Esso ha due elettroni esterni sull'orbitale p come il carbonio. Gli elettroni sono nello stato 5p. Nella base di singola particella $\{n_il_i\}jm_j$, per l=1 si ha 2j=3,1, dove il secondo è il livello più basso. Per $j=\frac{1}{2}$ si ha $m_j=\pm\frac{1}{2}$ e i due elettroni occupano gli stati ed energia inferiore (non si devono più disegnare delle frecce perché non si utilizzano più i numeri m_s). La configurazione corrispondente risulta essere $p_{\frac{1}{2}}^2$. Si noti che non si ha degenerazione.

Si consideri il tellurio che presenta due elettroni in più dello stagno $5p^4$. Si hanno due elettroni in $j = \frac{1}{2}$ e altri due in $j = \frac{3}{2}$. Si ha un numero pari a

$$\binom{4}{2} = 6$$

di modi di disporre due elettroni in quattro orbitali pari a $j=\frac{3}{2}$. Il principio di Pauli impedisce di collocare due elettroni con lo stesso m_j . La configurazione elettronica è del tipo $(P_{\frac{1}{2}}^2,P_{\frac{3}{2}}^2)_J$ e si hanno sei modi equivalenti. Si possono introdurre le correzioni non sferiche che sono meno importanti dell'interazione spin-orbita, ma non del tutto trascurabili. Si possono calcolare le correzioni perturbative senza diagonalizzare una matrice 6×6 che va diagonalizzata prima di costruire le auto-funzioni comuni a \hat{J}^2 e \hat{J}_z totali. Si dice accoppiamento j-j perché si costruisce il momento angolare \hat{J} totale a partire dai momenti angolari \hat{j}_i di singola particella; nell'accoppiamento L-S lo si costruisce a partire da \hat{L} e \hat{S} totali.

Si consideri nuovamente il tellurio. Si devono disporre due elettroni con in orbitali con

$$j_1 = j_2 = \frac{3}{2} \implies J = 3, 2, 1, 0$$

Non tutte le somme del momento angolare sono accettabili: J=3 implica l'esistenza di $M_J=3$ che non è permesso dal principio di esclusione (infatti corrisponde a due elettroni con $m_j=\frac{3}{2}$, a parità degli altri numeri quantici). Se J=2, allora $M_J=\pm 2,\pm 1,0$ cioè valori che si possono ottenere disponendo due elettroni su stati con $m_j=\pm\frac{3}{2},\pm\frac{1}{2}$ rispettando il principio di esclusione. Gli stati di partenza sono 6: di questi se ne assegnano 5 a J=2 e il rimanente a J=0. Si hanno due valori diversi di J, ma quello che garantisce l'energia minore è dato (e si può dimostrare) dalla terzo regola di Hund. Dato che l'orbitale è più che semi-pieno (p^4) , l'energia dello stato fondamentale corrisponde a J=2. Il simbolo di termine completo è

$$\left(P_{\frac{1}{2}}^{2}, P_{\frac{3}{2}}^{2}\right)_{2}$$

Nel caso dello stagno (2 elettroni su 5p), il momento angolare J può assumere solo il valore 0 per cui il simbolo di termine è $(P_{\frac{1}{2}}^2)_2$.

Si è dedicato più tempo all'accoppiamento L-S rispetto a quello j-j per un motivo. Se si vuole studiare solamente lo stato fondamentale, allora si dimostra esistere una corrispondenza biunivoca tra il simbolo di termine LS e quello jj. Risulta essere una convenzione comune assegnare anche agli atomi pesanti il simbolo di termine LS. Ad esempio, per lo stagno si hanno due elettroni in 5p, perciò bisogna disporli in modo da ottenere L=1, S=1, J=0 secondo le regole di Hund: il simbolo di termine 3P_0 . Il pedice 0 è lo stesso valore di momento angolare totale J che si trova applicando la terza regola di Hund nello schema jj da $(P_{\frac{1}{2}})$ dove il valore $\frac{1}{2}$ si ottiene subito nota la configurazione elettronica.

Lezione 15

mar 10 gen 2023 15:30

Parte III

Molecole

6 Approssimazione adiabatica

Nello studio degli atomi si è affrontato il problema elettronico nel sistema di riferimento del nucleo, circa corrispondente a quello del centro di massa dell'atomo. Se si considera un qualunque sistema composta da più di un atomo (e quindi da più di un nucleo) – come ad esempio una molecola, un liquido, un solido – occorre studiare il problema elettronico sia quello molecolare (che, a differenza del caso atomico, diventa non banale). Trascurando i termini legati allo spin, l'hamiltoniana di un sistema composta da N_n nuclei a $N_{\rm el}$ elettroni è

$$\hat{H} = \hat{T}_{e1} + \hat{T}_{rr} + \hat{V}_{e-r} + \hat{V}_{e-e} + \hat{V}_{r-r}$$

dove i termini cinetici sono

$$\hat{T}_{\rm el} = -\sum_{i=1}^{N_{\rm el}} \frac{\hbar^2}{2m_e} \nabla_i^2, \quad \hat{T}_n = -\sum_{\alpha=1}^{N_n} \frac{\hbar^2}{2\mu_\alpha} \nabla_\alpha^2$$

mentre i termini di interazione sono

$$\hat{V}_{e-n} = -\sum_{i=1}^{N_{\rm el}} \sum_{\alpha=1}^{N_n} \frac{Z_\alpha e^2}{4\pi\varepsilon_0 |\vec{r}_i - \vec{R}_\alpha|}, \quad \hat{V}_{e-e} = \sum_{i \neq j}^{N_{\rm el}} \frac{e^2}{4\pi\varepsilon_0 |\vec{r}_i - \vec{r}_j|}, \quad \hat{V}_{n-n} \sum_{\alpha \neq \beta}^{N_n} \frac{Z_\alpha Z_\beta e^2}{4\pi\varepsilon_0 |\vec{R}_\alpha - \vec{R}_\beta|}$$

In questa scrittura, le lettere minuscole e gli indici latini per indicare gli elettroni, mentre le lettere maiuscole e gli indici greci indicano i nuclei. La soluzione all'equazione di Schrödinger

$$i\hbar \,\partial_t \Psi = \hat{h} \Psi$$

risulta essere del tipo

$$\Psi(\vec{r}_{i1},\cdots,\vec{r}_{N_{\rm el}},\vec{R}_{1},\cdots,\vec{R}_{N_{n}}) \equiv \Psi(r,R)$$

Le auto-funzioni Φ sono

$$\hat{H}\Phi = E\Phi, \quad \Phi = \Phi(r, R)$$

Si dimostra che le auto-funzioni Φ possono essere separate come

$$\Phi(r,R) = \sum_{i} \varphi_i(R) \chi_i^{\rm el}(r|R)$$

dove le funzioni $\chi_i^{\rm el}$ sono le auto-funzioni dell'hamiltoniana elettronica $\hat{H}_{\rm el}$ ottenuta a partire dall'hamiltoniana \hat{H} completa per nuclei fissati alla posizione R. Se i nuclei sono bloccati, allora $T_n=0$ e l'interazione \hat{V}_{e-n} può essere vista come un potenziale esterno che agisce sugli elettroni, mentre \hat{V}_{n-n} è una costante c(R) dipendente da R

$$\hat{H}_{el} = \hat{T}_{el} + \hat{V}_{e-n} + c(R) + \hat{V}_{e-e}, \quad \hat{H}_{el}\chi_i^{el}(r|R) = V_i(R)\chi_i^{el}(r|R)$$

dove la scrittura (r|R) indica che l'auto-funzione $\chi_i^{\rm el}$ è funzione delle variabili elettroniche r, ma dipende dal valore di R fissato in modo parametrico (come in statistica: funzione di r dato R). Anche l'autovalore v_i relativo a $\chi_i^{\rm el}$ dipende da R. L'indice i è riassuntivo di un insieme completo di numeri quantici di tutti gli elettroni. La separazione dell'auto-funzione $\Phi(r,R)$ è esatta. Si vede l'approssimazione adiabatica o di Born-Oppenheimer. Essa è una doppia approssimazione basata su due ipotesi.

Prima ipotesi. si restringe la somma \sum_i sugli stati elettroni nell'espressione di $\Phi(r,R)$ al solo stato fondamentale elettronico. Questo equivale a pensare che gli elettroni si trovano nel proprio stato fondamentale quando sono assegnate le posizioni nucleari R. Anche se R varia, gli elettroni continuano a rimanere nello stato fondamentale sebbene, naturalmente, lo stato fondamentale cambia

$$\Phi(r,R) \approx \chi_0^{\rm el}(r|R)\varphi_0(R)$$

In tale approssimazione, gli elettroni seguono adiabaticamente il moto nucleare: si può immaginare che gli elettroni riescano istantaneamente a minimizzare la propria energia in seguito ad una variazione della configurazione nucleare. Si capisce che, affinché tale approssimazione sia valida, il moto nucleare deve essere lento rispetto a quello elettronico (si può usare il termine "ionico" al posto di "nucleare").

Si inserisce l'espressione sopra delle auto-funzioni $\Phi(r,R)$ nell'equazione agli autovalori completa

$$\hat{H}\Phi = E\Phi \implies (\hat{T}_n + \hat{H}_{el})\chi_0^{el}(r|R)\varphi_0(R) = E\chi_0^{el}(r|R)\varphi_0(R)$$

L'hamiltoniana $\hat{H}_{\rm el}$ non contiene derivate rispetto ad R

$$\hat{H}_{\rm el} \left[\chi_0^{\rm el}(r|R) \varphi_0(R) \right] = V_0(R) \chi_0^{\rm el}(r|R) \varphi_0(R)$$

Inoltre, si può applicare l'approssimazione

$$\hat{T}_n \left[\chi_0^{\text{el}}(r|R)\varphi_0(R) \right] = \chi_0^{\text{el}}(r|R)\hat{T}_n\varphi_0(R)$$

Pertanto

$$\chi_0^{\mathrm{el}}(r|R)[\hat{T}_n + V_0(R)]\varphi_0(R) = E\chi_0^{\mathrm{el}}(r|R)\varphi_0(R) \implies [\hat{T}_n + V_0(R)]\varphi_0(R) = E(r|R)\varphi_0(R)$$

La funzione $\varphi_0(R)$ che si è introdotta come coefficiente di uno sviluppo, è una auto-funzione di un'hamiltoniana nucleare

$$\hat{H}_n = \hat{T}_n + \hat{V}_0(R)$$

Pertanto, l'autovalore $V_0(R)$ è relativo allo stato fondamentale elettronico ed assume il significato di un potenziale (efficace, medio) di cui risentono i nuclei.

Lezione 16

mer 11 gen 2023 15:30

Seconda ipotesi. La seconda approssimazione su cui si basa Born-Oppenheimer è la precedente:

 $\hat{T}_n \left[\chi_0^{\rm el}(r|R) \varphi_0(R) \right] \approx \chi_0^{\rm el}(r|R) \hat{T}_n \varphi_0(R)$

Il pedice 0 in $\varphi_0(R)$ ricorda che si considerano elettrone nello stato fondamentale, non che lo siano pure i nuclei. Risolvendo

$$\hat{H}_n \varphi_0(R) = E \varphi_0(R)$$

si può trovare lo spettro di stati nucleari $\varphi_{0,j} \to E_j$. Il pedice 0 viene spesso omesso.

Riassunto. Nell'approssimazione di Born-Oppenheimer, il moto nucleare viene separato da quello elettronico: prima si considerano i nuclei fissi in posizioni assegnate e si trova l'autovalore dello stato fondamentale elettronico. Poi si usa tale autovalore dipendente dalle posizioni nucleari come potenziale efficace nell'hamiltoniana nucleare. Questo risultato dipende da due approssimazioni. La prima prevede che gli elettroni siano nel proprio stato fondamentale e che seguano adiabaticamente il moto nucleare. La prima parte di questa ipotesi è giustificata in un ampio intervallo di condizioni sperimentali. Infatti, la separazione in energia tra lo stato fondamentale ed il primo stato eccitato negli atomi è dell'ordine dell'elettronvolt, come pure l'energia di Fermi per un gas di elettroni di conduzione in un metallo: servirebbe una temperatura $T \approx 10^4 \, {\rm K}$ per eccitare termicamente uno stato elettronico. La situazione rimane analoga per le molecole.

La seconda parte della prima ipotesi insieme alla seconda ipotesi si dimostrano giustificate grazie alla differenza tra la massa dei nuclei e la massa degli elettroni. Nel caso dell'approssimazione adiabatica, risulta intuitivo affermare che la differenza di massa introduce una differenza tra le scale temporali tipiche. Infatti

- la massa nucleare è dalle 100 alle 10⁵ volte maggiore di quella dell'elettrone;
- i nuclei e gli elettroni sono soggetti a forze coulombiane (che dipendono dalla carica ma non dalla massa) di intensità simili.

Per queste ragioni, i nuclei si muovo più lentamente degli elettroni. Classicamente, i nuclei si spostano di poco dall'equilibrio secondo

$$M\ddot{x} = F = -kx$$

In tal modo si hanno delle oscillazioni con frequenza $\omega_N^2 = \frac{k}{M}$. Per gli elettroni, le forze hanno intensità confrontabile, pertanto si mantiene k simile. Dunque

$$\omega_e = \sqrt{\frac{k}{m_e}} \implies \frac{\omega_e}{\omega_N} \sim \sqrt{\frac{M}{m_e}} \implies T_e \sim \sqrt{\frac{m_e}{M}} T_N$$

Infatti, i tempi tipici associati al moto nucleare sono dell'ordine dei picosecondi 10^{-12} s mentre quelli elettroni dell'ordine dei femtosecondi 10^{-15} s.

7 Catione idrogeno molecolare

La molecola più semplice è l'idrogeno molecolare ${\rm H_2}^+$: esso è costituito da due nuclei identici ed un solo elettrone. Non si tratta di una molecole neutra, ma di uno ione molecolare. Coerentemente con l'approssimazione adiabatica, si assegnano le posizioni dei due nuclei A e B la cui distanza è \vec{R} orientato da B ad A. Si pone l'origine degli assi nel punto medio di \vec{R} così il nucleo A è individuato da $\frac{1}{2}\vec{R}$, mentre B da $-\frac{1}{2}\vec{R}$. L'elettrone si trova in posizione \vec{r} rispetto al

centro ed \vec{r}_A e \vec{r}_B rispetto i due nuclei. [immagine] Trascsurando la struttura fine, l'hamiltoniana elettronica risulta essere

$$\hat{H} = -\frac{\hbar^2}{2m_e} \nabla_{\vec{r}}^2 - \frac{e^2}{4\pi\varepsilon_0 r_A} - \frac{e^2}{4\pi\varepsilon_0 r_B} + \frac{e^2}{4\pi\varepsilon_0 R}, \quad e > 0$$

L'ultimo termine è costante una volta che si assegna \vec{R} . In quanto compare un solo elettrone, non è presente il potenziale \hat{V}_{e-e} d'interazione: il problema è semplificato. Si ha

$$\vec{r}_A = \vec{r} - \frac{1}{2}\vec{R}, \quad \vec{r}_B = \vec{r} + \frac{1}{2}\vec{R}$$

Una volta assegnato \vec{R} , l'unica variabile indipendente è \vec{r} . L'equazione agli autovalori è

$$\hat{H}\Phi(r|R) = E\Phi(r|R)$$

Questa equazione è risolvibile numericamente a qualunque livello di precisione: seppure non in modo analitico, è possibile conoscere le auto-funzioni e gli autovalori in modo esatto. Per le molecole più complesse sono necessarie delle approssimazioni anche per ottenere soluzioni numeriche. Si introducono già tali approssimazioni per poterle testare rispetto alla soluzione esatta. Essere aiutano a capire la fisica della molecola.

Metodo della linear combination of atomic orbitals (LCAO). Per $R \to \infty$ il sistema assume la configurazione di un atomo di idrogeno ed un protone. Nessuno dei due protoni può essere privilegiato: la funzione d'onda in qualunque molecola biatomica omonucleare deve godere di una simmetria. Si consideri una riflessione rispetto l'origine $\vec{r} \to -\vec{r}$. L'hamiltoniana \hat{H} non cambia. Infatti, il laplaciano è invariante per rotazioni (una riflessione è una rotazione impropria) e l'ultimo addendo non dipende da \vec{r} . Gli altri due addendi si mappano l'uno nell'altro: si scelga il riferimento cartesiano per cui l'asse z è diretto lungo \vec{R} e l'elettrone faccia parte del piano xy. La distanza dell'elettrone dai nuclei è

$$r_{A,B}^2 = x^2 + y^2 + \left(z \mp \frac{1}{2}R\right)^2$$

Per riflessione rispetto l'origine, le due distanze si scambiano

$$r_{A,B}^2 \to (-x)^2 + (-y)^2 + \left(-z \mp \frac{1}{2}R\right)^2 = x^2 + y^2 + \left(z \pm \frac{1}{2}R\right)^2 = r_{B,A}^2$$

Pertanto, l'hamiltoniana rimane invariata e l'origine del riferimento, cioè il punto medio dei nuclei, è il centro di simmetria. Si consideri l'operatore di parità

$$\hat{P}\Psi(r,R) = \Psi(-r,R)$$

Esso commuta con l'hamiltoniana

$$[\hat{P}, \hat{H}] = 0$$

L'operatore di parità ammette delle auto-funzioni simmetriche ed anti-simmetriche. Per evidenziare gli effetti della simmetria rispetto l'origine conviene scegliere una base comune ad \hat{H} e \hat{P} . Presa la generica auto-funzione $\Psi_e(r)$ di \hat{H} è sufficiente considerare le combinazioni lineari del tipo

$$\Psi_e(r) \pm \Psi_e(-r)$$

opportunamente normalizzate. Come detto precedentemente, per $R \to \infty$, il sistema è costituito da un atomo di idrogeno ed un protone libero. Pertanto, in tale limite ci si aspettano delle auto-funzioni dello stato fondamentale del tipo

$$\Phi(r|R) = \frac{1}{\sqrt{2}} \left[\Psi_{1s}(r_A) \pm \Psi_{1s}(r_B) \right]$$

Questa form, che soddisfa la centro-simmetria, è molto sensata dato che non privilegia il nucleo A né quello B. L'elettrone forma l'atomo di idrogeno insieme ad uno dei due nuclei con equiprobabilità. Si spiegano di seguito i simboli introdotti. La funzione $\Psi_{1s}(r_A)$ è la funzione d'onda elettronica valutata in \vec{r} pari a quella di un elettrone a distanza r_A dal nucleo A, nello stato 1s, con

$$r_A = |\vec{r}_A| = \left| \vec{r} - \frac{1}{2} \vec{R} \right|$$

Inoltre, $\Psi_{1s}(r_A) \sim e^{-\frac{r_A}{a_0}}$ in quanto Ψ_{1s} è calcolata con l'origine posizionata in A. Rispetto all'origine del riferimento scelto si ha

$$\Psi_{1s}(r) = \frac{a_0^{-\frac{3}{2}}}{\sqrt{\pi}} \exp\left(-\left|\vec{r} - \frac{1}{2}\vec{R}\right| a_0^{-1}\right)$$

Si noti che $\Phi(r|R)$ è una funzione d'onda molecolare, costituita come combinazione lineare di orbitali atomici (linear combination of atomic orbitals) centrati su due nuclei diversi: si tratta dell'applicazione più semplice del metodo LCAO che si può estendere a molecole poliatomiche e solidi cristallini.

Si studia la combinazione lineare con il segno positivo (detta "gerade", cioè "pari" in tedesco):

$$\Phi_g(r|R) = \frac{1}{\sqrt{2}} \left[\Psi_{1s}(r_A) + \Psi_{1s}(r_B) \right]$$

La sua norma è

$$\|\Phi_g\|^2 = \langle \Phi_g | \Phi_g \rangle = \frac{1}{2} \left[\langle r_A | r_A \rangle + 2 \langle r_A | r_B \rangle + \langle r_B | r_B \rangle \right] = \frac{1}{2} \left[2 + 2 \langle r_A | r_B \rangle \right]$$

Il secondo termine è l'integrale I(R) di sovrapposizione. Se $R \to \infty$ la sovrapposizione delle funzioni d'onda è trascurabile: la sovrapposizione (overlap) è nulla. Pertanto, la funzione d'onda Φ_g è normalizzata correttamente. Inoltre, le funzioni d'onda dei due nuclei sono entrambe (reali e) positive: la probabilità di trovare l'elettrone tra i due nuclei non è nulla (quando R è finito) pertanto si ha un sistema legato.

Si consideri la combinazione lineare con il segno negativo (detta "ungerade" per "dispari"):

$$\Phi_u(r,R) = \frac{1}{\sqrt{2}} \left[\Psi_{1s}(r_A) - \Psi_{1s}(r_B) \right]$$

La funzioni relative ai nuclei sono una positiva ed una negativa, pertanto in $\vec{r}=0$ la funzione d'onda totale è nulla: la probabilità di trovare l'elettrone tra i due nuclei è nulla, questa è una condizione che non dà legame. Come per il caso precedente, per $R\to\infty$ la sovrapposizione è nulla e quindi $\langle \Phi_u | \Phi_u \rangle = 1$.

Le fondamenta su cui si basa il metodo LCAO è utilizzare le combinazioni lineari gerade e ungerade come funzioni di prova (trial functions) per stimare l'energia dello stato fondamentale utilizzando il principio variazionale. Se R non tende all'infinito, allora

$$\langle \Phi_g | \Phi_g \rangle = \frac{1}{2} [2 + 2I(R)] = 1 + I(R), \quad \langle \Phi_u | \Phi_u \rangle = 1 - I(R)$$

dove l'integrale di sovrapposizione è (calcolo nelle dispense, sapere espressione sotto per l'orale)

$$I(R) = e^{-\frac{R}{a_0}} \left[1 + \frac{R}{a_0} + \frac{1}{3} \frac{R^2}{a_0^2} \right]$$

L'energia dello stato fondamentale delle funzioni (un)gerade è

$$E_{g} = \frac{\langle \Phi_{g} | \hat{H} | \Phi_{g} \rangle}{\langle \Phi_{a} | \Phi_{a} \rangle} = \frac{\langle \Phi_{g} | \hat{H} | \Phi_{g} \rangle}{1 + I(R)}, \quad E_{u} = \frac{\langle \Phi_{u} | \hat{H} | \Phi_{u} \rangle}{\langle \Phi_{u} | \Phi_{u} \rangle} = \frac{\langle \Phi_{u} | \hat{H} | \Phi_{u} \rangle}{1 - I(R)}$$

Si noti che si può anche ridefinire la funzione normalizzata

$$\Phi_{g,u} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1 \pm I(R)}} \left[\Psi_{1s}(r_A) \pm \Psi_{1s}(r_B) \right] \implies E_{g,u} = \langle \Phi_{g,u} | \, \hat{H} \, | \Phi_{g,u} \rangle$$

In ogni caso si ha

$$E_{g} = \frac{1}{2} \frac{1}{1 + I(R)} \left[\langle r_{A} | \hat{H} | r_{A} \rangle + \langle r_{B} | \hat{H} | r_{B} \rangle + \langle r_{A} | \hat{H} | r_{B} \rangle + \langle r_{B} | \hat{H} | r_{A} \rangle \right]$$

$$= \frac{1}{2} \frac{1}{1 + I(R)} \left[H_{AA} + H_{BB} + H_{AB} + H_{BA} \right] = \frac{H_{AA} + H_{AB}}{1 + I(R)}$$

Risulta semplice vedere che $H_{AA}=H_{BB}$. Invece, dato che \hat{H} è simmetrico per scambio di A e B, allora $H_{AB}=H_{BA}$. Per la funzione ungerade si ha

$$E_u = \frac{H_{AA} - H_{AB}}{1 - I(R)}$$

Si calcolano i valori medi. Dunque

$$H_{AA} = \langle r_A | \left(-\frac{\hbar^2}{2m_e} \nabla_{\vec{r}}^2 - \frac{e^2}{4\pi\varepsilon_0 r_A} - \frac{e^2}{4\pi\varepsilon_0 r_B} + \frac{e^2}{4\pi\varepsilon_0 R} \right) | r_A \rangle$$

Siano i primi due addendi pari all'hamiltoniana \hat{h}_1 . Conviene porre l'origine in A per cui si ha

$$\vec{r}_A = \vec{r}, \quad \vec{r}_B = \vec{r} - \vec{R}$$

Pertanto

$$H_{AA} = \langle r_A | \hat{h}_1 | r_A \rangle + \frac{e^2}{4\pi\varepsilon_0 R} - \frac{e^2}{4\pi\varepsilon_0} \langle r_A | \frac{1}{|\vec{r} - \vec{R}|} | r_A \rangle = E_{1s} - \frac{2E_{1s}}{R} e^{-\frac{2R}{a_0}} (R + a_0)$$

Il primo addendo è pari a $E_{1s}=E_g^{\rm H}\approx -13.6\,{\rm eV}.$ Inoltre vale

$$-2E_{1s}a_0 = \frac{e^2}{4\pi\varepsilon_0}$$

(Per l'orale serve sapere che) il secondo addendo decade esponenzialmente per $R \to \infty$. Si calcola l'altro termine

$$\begin{split} H_{AB} &= \langle r_A | \left(-\frac{\hbar^2}{2m_e} \nabla_{\vec{r}}^2 - \frac{e^2}{4\pi\varepsilon_0 r_A} - \frac{e^2}{4\pi\varepsilon_0 r_B} + \frac{e^2}{4\pi\varepsilon_0 R} \right) | r_B \rangle \\ &= \langle r | \left(-\frac{\hbar^2}{2m_e} \nabla_{\vec{r}}^2 - \frac{e^2}{4\pi\varepsilon_0 r} - \frac{e^2}{4\pi\varepsilon_0 |\vec{r} - \vec{R}|} + \frac{e^2}{4\pi\varepsilon_0 R} \right) \left| |\vec{r} - \vec{R}| \right\rangle \end{split}$$

I primi due termini danno

$$\langle r|\hat{h}_1||\vec{r}-\vec{R}|\rangle = \langle \hat{h}_1r||\vec{r}-\vec{R}|\rangle = E_{1s}\langle r||\vec{r}-\vec{R}|\rangle = E_{1s}I(R)$$

L'ultimo termine fornisce

$$\frac{e^2}{4\pi\varepsilon_0 R} \left\langle r \Big| |\vec{r} - \vec{R}| \right\rangle = \frac{e^2}{4\pi\varepsilon_0 R} I(R)$$

Come prima, (per l'orale serve sapere che) l'addendo rimanente decade esponenzialmente per $R \to \infty$. Pertanto

$$H_{AB} = I(R) \left[E_{1s} + \frac{e^2}{4\pi\varepsilon_0 R} \right] + 2E_{1s}e^{-\frac{R}{a_0}} \left[1 + \frac{R}{a_0} \right]$$

Unendo tutto quanto si ottengono due grafici in funzione di R [immagine]. Lo stato gerade presenta un minimo la cui energia è negativa: la molecola ${\rm H_2}^+$ è stabile (rispetto alla dissociazione in un atomo di idrogeno ed un protone) ed ha energia di dissociazione pari a $D\approx 1.77\,{\rm eV}$ e una distanza di equilibrio $R_{\rm eq}\approx 1.32\,{\rm Å}$. Lo stato ungerade è anti-legante: non prevede la formazione di uno ione molecolare stabile.

I risultati ottenuti non sono esatti: si è utilizzato il metodo LCAO. I calcoli numerici esatti confermano le previsioni qualitative, ma prevedono una distanza di equilibrio inferiore ed un energia di legame maggiore. Questo non sorprende in quanto l'approccio utilizzato presenza delle limitazioni:

- Per $R \to 0$ ci si aspetta che l'elettrone si comporti come quello del catione elio He⁺ (nello stato 1s, Z = 2). Questo non succede nella costruzione LCAO.
- Per $R \to \infty$ il sistema assume la configurazione di un atomo di idrogeno più un protone. Un approccio più sofisticato tiene conto del fatto che la carica del protone induce un momento di dipolo elettrico ed una conseguente interazione carica-dipolo indotto ($\sim \frac{1}{R^4}$) di tipo attrattivo.

Natura di legame ed anti-legame. Si studia la natura di legame della soluzione gerade e la natura di anti-legame della soluzione ungerade. Si riprende la motivazione accennata in precedenza. Riportando le funzioni d'onda in un grafico, si notano dei particolari comportamenti. La soluzione gerade prevede una differenza dal caso $R \to \infty$: c'è sovrapposizione. La densità di probabilità $|\Psi_g|^2$ associata ha un andamento simile. Se viene moltiplicata per -e < 0, allora la densità di probabilità fornisce la distribuzione di densità di carica elettrica $\rho_q^{\rm el}$. All'origine si ha

$$\rho(0) = -\frac{e}{2(1+I(R))} \left| \Psi_{1s} \left(\frac{R}{2} \right) + \Psi_{1s} \left(\frac{R}{2} \right) \right|^2 = -\frac{2e}{1+I(R)} \Psi_{1s}^2 \left(\frac{R}{2} \right)$$

Se in A è presente un atomo con mezzo elettrone, allora la densità di carica nell'origine è

$$-\frac{e}{2}\Psi_{1s}^2\left(\frac{R}{2}\right)$$

che, sommata alla densità di carica prodotta da un atomo equivalente in B, fornisce una densità in modulo pari a

$$e\Psi_{1s}^2\left(\frac{R}{2}\right)$$

Essa va confrontata con la densità $\rho(0)$ ricavata sopra:

$$|\rho(0)| = \frac{2e}{1 + I(R)} \Psi_{1s}^2\left(\frac{R}{2}\right) > e \Psi_{1s}^2\left(\frac{R}{2}\right), \quad 0 < I(R) < 1$$

cioè la densità è maggiore quando calcolata con il metodo LCAO rispetto a solamente avvicinare due atomi identici. Seppur con la stranezza di assegnare metà elettrone ad ogni atomo, risulta verificata la tipica condizione che caratterizza un legame molecolare a partire da due atomi isolati: nella molecola è presente uno spostamento di carica elettronica verso il centro dei nuclei.

D'altra parte, la soluzione ungerade presenta una densità nulla nell'origine. Le cariche positive dei nuclei non sono schermate in modo efficiente dalla carica elettronica: la repulsione aumenta l'energia dello stato ungerade e lo rende sfavorito rispetto al caso dei due atomi isolati con mezzo elettrone, a differenza del caso gerade.

Osservazione. A differenza degli atomi, le molecole biatomiche hanno una direzione privilegiata data dall'asse internucleare. Di conseguenza, ci si aspetta che il momento angolare orbitale totale \vec{L} non si conserva, ma si conservi la proiezione sull'asse internucleare (fatto coincidere con l'asse z), cioè si conserva \hat{L}_z : questa è la situazione incontrata in problemi a simmetria cilindrica. Per ragioni di simmetria del sistema (e del corrispondente operatore hamiltoniano \hat{H}), l'energia degli stati corrispondenti agli autovalori $\pm \hbar |m|$ è la stessa. Per questi motivi, gli orbitali molecolari sono distinti in base al valore di $\Lambda = |m|$:

- se $\Lambda = 0$ si hanno orbitali σ ,
- se $\Lambda = 1$ si hanno orbitali π ,
- se $\Lambda = 2$ si hanno orbitali δ e così via.

Le lettere greche sono reminiscenti della nomenclatura spettroscopica s, p, d, etc, sebbene la situazione sia diversa: negli atomi, i numeri quantici magnetici m sono legati ai numeri quantici angolari l, ma nelle molecole non è così perché l non più un buon numero quantico (\hat{L}^2 non commuta con \hat{H}).

Si ritorni al catione dell'idrogeno molecolare H_2^+ . In quanto combinazione lineare di autofunzioni di \hat{L}_z con m=0, risulta chiaro che sia Φ_g che Φ_u sono stati σ . Si descrive lo stato legante come $\sigma_{g,1s}$ e quello anti-legante come $\sigma_{u,1s}^*$. Si fornisce la seguente rappresentazione grafica [immagine].

Lezione 17

gio 12 gen 2023 15:30

8 Idrogeno molecolare

I nuclei sono fissi a distanza R assegnata. Le posizione (rispetto l'origine del riferimento) degli elettroni 1 e 2 sono individuate da \vec{r}_1 ed \vec{r}_2 rispettivamente. [immagine] Sebbene gli altri vettori che congiungono due punti dipendono dalle variabili indipendenti \vec{r}_1 , \vec{r}_2 e dal valore di \vec{R} , essi vengono introdotti per comodità. L'hamiltoniana elettronica in unità atomiche è

$$\hat{H} = -\frac{1}{2}\nabla_1^2 - \frac{1}{r_{A1}} - \frac{1}{r_{B1}} - \frac{1}{2}\nabla_2^2 - \frac{1}{r_{A2}} - \frac{1}{r_{B2}} + \frac{1}{r_{12}} + \frac{1}{R}$$

dove si ha

$$\hat{T}(j) = -\frac{1}{2}\nabla_j^2, \quad \hat{V}_{e-e} = \frac{1}{r_{12}} = \frac{1}{|\vec{r}_1 - \vec{r}_2|}, \quad (r_{A,B})_j = \left|\vec{r}_j \mp \frac{1}{2}\vec{R}\right|$$

Aggiungendo e sottraendo R^{-1} si ha

$$\hat{H} = \hat{h}(1) + \hat{h}(2) - \frac{1}{R} + \hat{V}_{e-e}, \quad \hat{h}(j) = \hat{T}(j) - \frac{1}{r_{Aj}} - \frac{1}{r_{Bj}} + \frac{1}{R}$$

dove $\hat{h}(j)$ è l'hamiltoniana della molecola $\mathrm{H_2}^+$ per l'elettrone j. Nella trattazione del catione si è approssimata l'energia corrispondente con

$$E_g = \frac{\langle \Phi_g | \hat{h} | \Phi_g \rangle}{\langle \Phi_g | \Phi_g \rangle}, \quad \Phi_g = \frac{1}{\sqrt{2}} \left[\Psi_{1s}(r_A) + \Psi_{1s}(r_B) \right]$$

Risulta possibile calcolare esatta l'auto-funzione dello stato fondamentale di H_2^+ . Quanto segue è indipendente dal fatto che la funzione Φ_g utilizzata sia quella esatta oppure l'approssimazione vista per H_2^+ (cioè l'auto-funzione dell'ultima espressione di \hat{H} sopra).

La funzione Φ_g del catione costituisce la funzione d'onda molecolare a singolo elettrone (per la notazione, si utilizza Φ per le funzioni d'onda molecolari e Ψ per quelle atomiche). Per l'idrogeno atomico H_2 si deve costruire la funzione d'onda a due elettroni. La procedura è identica a quella usata per lo stato fondamentale dell'elio a partire dalle funzioni d'onda idrogenoidi a singolo elettrone. Per l'atomo di elio, una volta nota la funzione $\Psi_{1s}(r)$ del sistema idrogenoide con Z=2 (cioè He^+ che corrisponde a H_2^+ in questo caso), si è scritta la funzione d'onda dello stato fondamentale

$$\Psi_{100,100}(1,2) = \chi_0^0 \Psi_{100}(1,2)$$

per poi calcolare l'energia dello stato fondamentale come

$$\langle \Psi_{100,100} | \hat{H}_{\text{He}} | \Psi_{100,100} \rangle$$

utilizzando la funzione $\Psi_{100,100}$ come funzione di prova. Per l'idrogeno molecolare si fa la stessa cosa. Si consideri la funzione di prova

$$\Phi_g(1,2) = \chi_0^0 \Phi_g(1) \Phi_g(2)$$

Si è detto che si indicano le funzioni d'onda molecolari con Φ . Se la molecola ha un solo elettrone, allora la funzione Φ ha un solo argomento (il numero degli argomenti è il numero degli elettroni). Dunque $\Phi(2)$ significa considerare la funzione d'onda di H_2^+ e chiamare 2 i gradi di libertà dell'unico elettrone presente. Utilizzando l'espressione di \hat{H} sopra come approssimazione, allora

$$\Phi(2) = \frac{1}{\sqrt{2}} \left[\Psi_{1s}(r_{A2}) + \Psi_{1s}(r_{B2}) \right]$$

Inoltre, si noti che g indica "gerade" e non "ground state": risulta sottinteso studiare lo stato fondamentale. Per una funzione a due elettroni, "gerade" implica la parità. L'espressione sopra per $\Phi_g(1,2)$ è gerade dato che il prodotto di due gerade è ancora gerade (funzione pari per funzione pari è ancora pari, funzione dispari per funzione pari è dispari). Si stima l'energia dello stato fondamentale dell'idrogeno come

$$E_g(\mathbf{H}_2) = \langle \Phi_g(1,2) | \hat{H} | \Phi_g(1,2) \rangle, \quad \Phi_g(j) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1 + I(R)}} [\Psi_{1s}(r_{Aj}) + \Psi_{1s}(r_{Bj})]$$

Si considera $\Phi_g(1,2)$ già normalizzata. Lo spin si fattorizza e il prodotto scalare è unitario. Inoltre, I(R) è l'integrale di sovrapposizione. Alleggerendo la notazione, si pone

$$\Phi_g(1,2) = \Phi_g(1)\Phi_g(2)\chi_0^0 \equiv |12\rangle |00\rangle$$

da cui si ha

$$\begin{split} E_g(\mathbf{H}_2) &= \langle 12 | \, \hat{H} \, | 12 \rangle = \langle 12 | \, \left[\hat{h}(1) + \hat{h}(2) - \frac{1}{R} + \frac{1}{r_{12}} \right] | 12 \rangle \\ &= \langle 12 | \, [\hat{h}(1) + \hat{h}(2)] \, | 12 \rangle - \langle 12 | \, \frac{1}{R} \, | 12 \rangle + \langle 12 | \, \frac{1}{r_{12}} \, | 12 \rangle \equiv A - B + C \end{split}$$

Notando

$$\left\langle 12\right|\hat{h}(1)\left|12\right\rangle =\left\langle 1\right|\hat{h}(1)\left|1\right\rangle \left\langle 2\right|2\right\rangle =E_{g}^{\mathbf{H}_{2}^{+}}=\left\langle 12\right|\hat{h}(2)\left|12\right\rangle$$

il primo termine risulta essere

$$A = \langle 12 | \left[\hat{h}(1) + \hat{h}(2) \right] | 12 \rangle = 2 {E_q^{{\rm{H}_2}}}^+$$

Il secondo termine è

$$\langle 12|\frac{1}{R}|12\rangle = \frac{1}{R}$$

Infine, il terzo termine è

$$C = \langle 12 | \frac{1}{r_{12}} | 12 \rangle = \iint \frac{|\Phi_g(1)|^2 |\Phi_g(2)|^2}{|\vec{r}_1 - \vec{r}_2|} \, \mathrm{d}^3 r_1 \, \mathrm{d}^3 r_2$$

Esso ha una forma analoga all'integrale diretto di Hartree trovato per l'elio, ma è più complicato perché compaiono le funzioni d'onda Φ_g che due centri (i protoni) e, per questo, dipende da \vec{R} . Risolvendo tale integrale, si trova solo una dipendenza dell'energia da R:

$$E_g^{\rm H_2} = E_g^{\rm H_2^+} - \frac{1}{R} + \langle r_{12}^{-1} \rangle$$

Per studiare la stabilità della molecola occorre valutare il segno di $\Delta E = E_g - 2E_{1s}$, cioè la differenza di energia tra H_2 e due atomi di idrogeno isolati nel proprio stato fondamentale (in unità atomiche si ha $E_{1s} = -\frac{1}{2}$). Si ottiene una curva qualitativa simile a quella trova per H_2 [immagine]. Tutte le molecole biatomiche stabili condividono la stessa curva: per $R \to 0$ domina

la repulsione tra i nuclei pertanto $\Delta E \to \infty$; per $R \to \infty$ si ha $\Delta E \to 0$ e se la molecola è stabile deve esistere una regione in cui $\Delta E < 0$.

L'approccio seguito prevede che l'idrogeno molecolare sia stabile rispetto alla dissociazione in due atomi di idrogeno (infatti, per diverse applicazioni che richiedono l'idrogeno atomico, bisogna fornire energia per dissociare l'idrogeno molecolare). Inoltre, la previsione $R_{\rm eq}\approx 0.8\,\mbox{\normalfone}$ è in accordo con gli esperimenti $R_{\rm exp}\approx 0.74\,\mbox{\normalfone}$. L'energia di dissociazione è la metà degli esperimenti ($D_{\rm eq}\approx 2.68\,\mbox{\normalfone}$ Contro $D_{\rm exp}\approx 4.75\,\mbox{\normalfone}$ Questo disaccordo è aspettato: la funzione d'onda utilizzata non è esatta. Si vuole capire dove si sono fatte approssimazioni troppo forti. Per farlo si studia un metodo alternativo per stimare l'energia dello stato fondamentale dell'elio detto metodo di Heitler-London o di legame di valenza.

Nell'approccio descritto, risultano fondamentali gli orbitali molecolari (molecular orbitals, MO) di singola particella costruiti tramite delle combinazioni lineari di orbitali atomi (linear combination of atomic orbitals, LCAO). Per tale motivo si parla di metodo MO-LCAO. Un metodo alternativo utilizza due atomi di idrogeno al posto degli orbitali molecolari e segue lo stesso ragionamento nel limite $R \to \infty$ fatto per ${\rm H_2}^+$. Per tale molecola, il limite prevede la formazione di un atomo di idrogeno e di un protone. Nel caso dell'idrogeno molecolare ${\rm H_2}$, il limite corrisponde a due atomi di idrogeno. Tuttavia, si aggiunge la complicazione di avere due elettroni: la funzione d'onda deve essere anti-simmetrica per scambio dei gradi di libertà degli elettroni.

Metodo di Haitler-London. Si consideri la funzione d'onda di due elettrone appartenenti a due atomi di idrogeno con spin in stato di singoletto:

$$\Phi(1,2) = \frac{1}{\sqrt{2}} \left[\Psi_{1s}(r_{A1}) \Psi_{1s}(r_{B2}) + \Psi_{1s}(r_{A2}) \Psi_{1s}(r_{B1}) \right] \chi_0^0$$

Essa è la funzione d'onda di Haitler-London. Può esistere anche una funzione d'onda con spin in stato di tripletto e parte spaziale simmetrica, ma svolgendo i calcoli si nota che è anti-legante. Dunque

$$\langle \Phi | \Phi \rangle = \frac{1}{2} \left[\langle A_1 B_2 | A_1 B_2 \rangle + 2 \langle A_1 B_2 | A_2 B_1 \rangle + \langle A_2 B_1 | A_2 B_1 \rangle \right] = 1 + I^2(R)$$

Come nel caso di ${\rm H_2}^+$ si utilizza la funzione Φ che dà il risultato atteso per $R \to \infty$ come funzione di prova ad R finito. La funzione Φ così costruita coincide con la sola componente covalente del metodo MO (cioè sovrapposizione di funzioni d'onda riferite a nuclei diversi). Si consideri la funzione d'onda normalizzata

$$|\Phi\rangle = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+I^2(R)}} \left[|A_1 B_2\rangle + |A_2 B_1\rangle \right] |00\rangle$$

Si stima l'energia tramite

$$E(H_2) = \langle \Phi | \hat{H} | \Phi \rangle$$

L'hamiltoniana è

$$\begin{split} \hat{H} &= \hat{T}_1 - \frac{1}{r_{A1}} - \frac{1}{r_{B1}} + \hat{T}_2 - \frac{1}{r_{B2}} - \frac{1}{r_{A2}} + \frac{1}{r_{12}} + \frac{1}{R} \\ &= \hat{h}(1) - \frac{1}{r_{B1}} + \hat{h}(2) - \frac{1}{r_{A2}} + \frac{1}{r_{12}} + \frac{1}{R} \end{split}$$

Si calcolano i vari termini. Per l'hamiltoniana $\hat{h}(1)$ si ha

$$\langle A_1 B_2 | \hat{h}(1) | A_1 B_2 \rangle = \langle B_1 A_2 | \hat{h}(1) | B_1 A_2 \rangle = E_{1s}$$

così come

$$\langle B_1 A_2 | \hat{h}(1) | A_1 B_2 \rangle = \langle B_1 | \hat{h}(1) | A_1 \rangle \langle A_2 | B_2 \rangle = E_{1s} I^2(R)$$

Analogamente per $\hat{h}(2)$ ed in totale si ha

$$\langle \Phi | \hat{h}(1) + \hat{h}(2) | \Phi \rangle = 2E_{1s}$$

Il termine \mathbb{R}^{-1} non agisce sulla funzione d'onda. Posti i reciproci dei raggi pari a

$$\rho = \frac{1}{r_{12}} - \frac{1}{r_{B1}} - \frac{1}{r_{A2}}$$

si ha

$$\langle \Phi | \rho | \Phi \rangle = 2 \langle A_1 B_2 | \rho | A_1 B_2 \rangle + 2 \langle A_1 B_2 | \rho | A_2 B_1 \rangle = 2(J + K)$$

dove J è un integrale di tipo diretto e K è un integrale di tipo scambio, ma più complicati di quelli dell'elio. In tutto si ha

$$E(H_2) = E_g = 2E_{1s} + \frac{1}{R} + \frac{J+K}{1+I^2}, \quad J > 0, \quad K < 0$$

L'energia per lo stato di tripletto è

$$E(H_2) = 2E_{1s} + \frac{1}{R} + \frac{J - K}{1 - I^2}$$

Il suo grafico mostra che la funzione d'onda è anti-legante. Disegnando la curva $E_g - 2E_{1s}$ in funzione di R per la funzione d'onda di singoletto si ottiene il tipico grafico con parametri rilevanti

$$R_{\rm eq} \approx 0.87 \,\text{Å}, \quad D_{\rm eq} \approx 3.14 \,\text{eV}$$

L'energia di dissociazione teorica si avvicina di più al valore sperimentale rispetto all'approccio MO. Per molecole più complesse, l'approccio HL non fornisce risultati migliori del MO-LCAO il quale si può facilmente estendere a tutte le molecole biatomiche.

Confronto tra Haitler-London e MO-LCAO. Approccio variazionale. (Parte non chiesta all'orale).

Si consideri lo stato fondamentale nel metodo MO-LCAO, in particolare la parte spaziale della funzione d'onda:

$$\begin{aligned} |12\rangle &\equiv \Phi_g(1)\Phi_g(2) = c \left[\Psi_{1s}(r_{A1}) + \Psi_{1s}(r_{B1}) \right] \left[\Psi_{1s}(r_{A2}) + \Psi_{1s}(r_{B2}) \right] \\ &= c \left(|A_1\rangle + |B_1\rangle \right) \left(|A_2\rangle + |B_2\rangle \right) = c \left[\left(|A_1A_2\rangle + |B_1B_2\rangle \right) + \left(|A_1B_2\rangle + |B_1A_2\rangle \right) \right] \\ &= c \left[\Phi_{\text{ionica}} + \Phi_{\text{covalente}} \right] \end{aligned}$$

La componente ionica descrive lo spostamento della carica su di un nucleo. La componente covalente descrive la condivisione degli tra i due nuclei. Se l'unico contributo a $\Phi_g(1,2)$ fosse dato dalla componente ionica, allora la funzione d'onda descriverebbe con equiprobabilità solo due situazioni: due elettroni sul nucleo A ed un protone su B o viceversa. In particolare, per $R \to \infty$ si avrebbe un anione H^- ed un protone. Tale limite non fornirebbe lo stato ad energia minima costituito da due atomi di idrogeno neutri, cosa che è prevista dalla componente covalente. L'approccio di Heitler-London considera una funzione d'onda puramente covalente e per questo porta ad una stima dell'energia di dissociazione più vicina a quella sperimentale. Tuttavia, si è lontani dal valore sperimentale: considerare solo la componente covalente è un'approssimazione eccessiva.

Si studia come si può procedere alla costruzione di una funzione d'onda con pesi ottimali delle due componenti. Nel farlo, si osserva un ruolo importante della funzione ungerade del modello MO-LCAO. Siano

$$\Phi_A(1,2) = \Phi_q(1)\Phi_q(2), \quad \Phi_B(1,2) = \Phi_u(1)\Phi_u(2)$$

Non si considera solamente Φ_A come funzione di prova, ma

$$\Phi_T(1,2) = (\Phi_A + \lambda \Phi_B) \chi_0^0$$

che presenta simmetria gerade. Ricordando che

$$\Phi_u(i) = \frac{1}{\sqrt{2}} \left[\Psi_{1s}(r_{Ai}) - \Psi_{1s}(r_{Bi}) \right]$$

risulta

$$\Phi_T(1,2) = (\Phi_A + \lambda \Phi_B)\chi_0^0 = [(1+\lambda)\Phi_{\text{ion}} + (1-\lambda)\Phi_{\text{cov}}]\chi_0^0$$

L'introduzione del termine $\lambda\Phi_B$ equivale a considerare una componente ionica ed una covalente con pesi diversi. L'importanza relativa dei due termini è espressa tramite il rapporto

$$q \equiv \frac{1+\lambda}{1-\lambda}$$

che descrive il peso della componente ionica. Se q=0, cioè $\lambda=-1$, allora si ha solo la componente covalente; se q=1, $\lambda=0$, allora si hanno pesi uguali; se $q\to\infty$, $\lambda=1$ allora si ha solamente componente ionica. Tutti i casi sono descritti da $\lambda\in[-1,1]$. Fissato R, si calcola l'energia

$$E_g(\lambda) = \frac{\langle \Phi_T(\lambda) | \hat{H} | \Phi_T(\lambda) \rangle}{\langle \Phi_T(\lambda) | \Phi_T(\lambda) \rangle}$$

imponendo che sia la minima

$$\partial_{\lambda} E(\lambda) = 0$$

Così si trova il valore di λ che minimizza l'energia. Esso è pari a $\lambda \approx -\frac{2}{3}$ cioè $q \approx 0.2$. Per tale valore, la curva $E_g(R) - 2E_{1s}$ presenta un minimo, cioè l'opposto dell'energia di dissociazione, di $-4\,\mathrm{eV}$: ci si è avvicinati al valore sperimentale. Inoltre, il valore q=0.2 rispecchia quanto anticipato: la parte ionica pesa di meno di quella covalente. Il valore ottenuto di λ implica

$$\Phi(1,2) = c \left[\frac{1}{3} \Phi_{\text{ion}} + \frac{5}{3} \Phi_{\text{cov}} \right]$$

Per $R \to \infty$ si trova una componente ionica non nulla che fornisce il sistema sbagliato (un anione idrogeno ed un protone). Per risolvere questo problema, si potrebbe introdurre una dipendenza del parametro λ dalla distanza nucleare R, ma questo complica la trattazione. Si riassumono gli approcci visti

Metodo	q	D_{eq}
MO	1	$2.69\mathrm{eV}$
H-L	0	$3.14\mathrm{eV}$
Variazionale	0.2	$4\mathrm{eV}$

Il valore sperimentale è di $D_{\rm eq}\approx 4.75\,{\rm eV}$. Si noti che i valori previsti per $R_{\rm eq}$ sono meno indicativi: essi risultano abbastanza prossimi e l'errore è inferiore al 20% del valore sperimentale $R\approx 0.74\,{\rm \AA}$.

Inoltre, il metodo variazionale (quello migliore) sottostima di non poco il legame nell'idrogeno molecolare neutro. Questo risulta aspettato in quanto la funzione d'onda non è esatta. Peraltro, non viene considerato un termine importante: i due atomi neutri interagiscono mediante un'interazione di tipo dipolo-dipolo (elettrico) indotto. Tale interazione è detta di van der Waals e scala come R^{-6} .