Analysis of Networks

Tao Wang

University of Southampton t.wang@soton.ac.uk

October 23, 2015

Distribution of Link Weights

Experimental Results

The figure is the probability density function (PDF) of the W matrix, including in-strength and out-strength, where $\alpha=2.05$ and standard error (i.e., RMSE) $\sigma=0.029$ (The power-law distributions are formulated with: $p(x) \propto x^{-\alpha}$).

Distribution of Strength

Experimental Results

The figure is obtained by in/out strength plus one. The PDF of in-strength are fitted by a power-law with $\alpha=2.01$ and $\sigma=0.041$. The PDF of out-strength are fitted by a power-law with $\alpha=2.12$ and $\sigma=0.041$.

Distribution of Degrees

Experimental Results

The figure is obtained by in/out degrees plus one. The probability density function (PDF) of in-degrees are fitted by a power-law with $\alpha=1.73$ and $\sigma=0.012$. The PDF of out-degrees are fitted by a power-law with $\alpha=4.92$ and $\sigma=0.423$.

Dependence of Strength and Degrees

Experimental Results

The figure is obtained by in/out degrees and in-out degrees plus one. The dependence of in-strength and in-degrees are fitted by a power-law with $\alpha=1.282$ and $\sigma=0.027$. The PDF of out-degrees are fitted by a power-law with $\alpha=1.424$ and $\sigma=0.052$.

Dependence of In-degrees and Out-degrees

Experimental Results

The figure is obtained by in/out degrees (without plus one). The $k_o(k_i)$ fitted by a power-law with $\alpha=0.8121$ and $\sigma=0.016$. The $k_i(k_o)$ is fitted by a power-law with $\alpha=1.231$ and $\sigma=0.019$.

Dependence of In-strength and Out-strength

Experimental Results

The figure is obtained by in/out strength (without plus one). The $s_o(s_i)$ fitted by a power-law with $\alpha=0.9123$ and $\sigma=0.028$. The $s_i(s_o)$ is fitted by a power-law with $\alpha=1.095$ and $\sigma=0.031$.

The End