Estimación, diagnóstico y pronóstico de los modelos

Javier López

Universidad los Libertadores

Abril, 2020

Índice

- Estimación
- Diagnóstico

Pronóstico

Estimación del Modelo

El objetivo es estimar los parámetros del modelo ARIMA a partir de valores observados $Y_1, Y_2, ..., Y_n$

Asumimos que el modelo ha sido especificado con valores de p, d, q. Sabemos que d lo tenemos por diferenciación, luego estimamos los parámetros de un ARMA(p, q).

Método de Momentos

Autoregresivo:

- AR(1): Tenemos que $\rho_1 = \phi$, luego igualando ρ_1 a γ_1 por el método de momentos, tenemos que $\hat{\phi} = \gamma_1$
- AR(2): $\rho_1 = \phi_1 + \rho_1 \phi_2$ y $\rho_2 = \rho_1 \phi_1 + \phi_2$, luego por momentos tenemos que $\rho_1 = \gamma_1$ y $\rho_2 = \gamma_2$, así $\hat{\phi_1} = \frac{\gamma_1(1-\gamma_2)}{(1-\gamma_1^2)} \text{ y } \hat{\phi_2} = \frac{\gamma_2-\gamma_1^2}{1-\gamma_1^2}$
- AR(p): Tenemos por la ecuaciones de Yule-Walker estimadas:

$$\begin{split} \phi_1 + \gamma_1 \phi_2 + \gamma_2 \phi_3 + \ldots + \gamma_{p-1} \phi_p &= \gamma_1 \\ \gamma_1 \phi_1 + \phi_2 + \gamma_1 \phi_3 + \ldots + \gamma_{p-2} \phi_p &= \gamma_2 \\ &\vdots \\ \gamma_{p-1} \phi_1 + \gamma_{p-2} \phi_2 + \gamma_{p-3} \phi_3 + \ldots + \phi_p &= \gamma_p \end{split}$$

Método de Momentos

Media Móvil:

• MA(1): Tenemos que $ho_1=rac{- heta}{1+ heta^2}$, igualando ho_1 a γ_1 , tenemos dos raíces reales dadas por:

$$\hat{ heta} = rac{-1}{2\gamma_1} \pm \sqrt{rac{1}{4\gamma_1^2} - 1} = rac{-1 \pm \sqrt{1 - 4\gamma_1^2}}{2\gamma_1}$$

Con $|\gamma_1| < 0.5$.

 Para Medias Móviles de orden más alto puede ser complicado ya que se pueden producir estimaciones pobres dadas por las ecuaciones no lineales en θ

Método de Momentos

Modelos Mixtos:

• **ARMA(1,1):** Tenemos que $\rho_k = \frac{(1-\theta\phi)(\phi-\theta)}{1-2\theta\phi+\theta^2}\phi^{k-1}$, para $k \geq 1$ Note que $\frac{\rho_2}{\rho_1} = \phi$, luego $\hat{\phi} = \frac{\gamma_2}{\gamma_1}$ así, $\gamma_1 = \frac{(1 - \theta \hat{\phi})(\hat{\phi} - \theta)}{1 - 2\theta \hat{\phi} + \theta^2}$

Para encontrar $\hat{\theta}$ resolvemos la ecuación cuadrática.

Método de Momentos - Estimación de Varianza

• Para todos los casos necesitamos estimar σ_e^2 , inicialmente $\gamma_0 = Var(Y_t)$ que es la varianza muestral, con:

$$s^2 = \frac{1}{n-1} \sum_{t=1}^{n} (Y_t - \overline{Y})^2$$

- Para AR(p): $\hat{\sigma}_{e}^{2} = (1 \hat{\phi}_{1}\gamma_{1} \hat{\phi}_{2}\gamma_{2} ... \hat{\phi}_{n}\gamma_{n})s^{2}$
- Para MA(q): $\hat{\sigma_e^2} = \frac{s^2}{1 + \hat{\theta_1}^2 + \hat{\theta_2}^2 + ...\hat{\theta_r}^2}$
- Para ARMA(1,1): $\hat{\sigma_e^2} = \frac{1-\hat{\phi}^2}{1-2\hat{\theta}\hat{\phi}+\hat{\theta}^2}$

Esquema de simulación y estimación por Momentos

Modelo	Parámetros	Estimación	n	
MA(1)	-0.9	-0.86	120	
MA(1)	0.9	0.78	120	
MA(1)	-0.9	-0.81	60	
MA(1)	0.9	0.83	60	
MA(1)	0.5	0.6	60	
AR(1)	0.9	0.81	60	
AR(1)	0.4	0.42	60	
AR(2)	(1.5, -0.75)	(1.21, -0.52)	120	

Ver código en R

Estimación de Mínimos Cuadrados

Autoregresivo:

• AR(1): $Y_t - \mu = \phi(Y_{t-1} - \mu) + e_t$ luego $e_t = (Y_t - \mu) - \phi(Y_{t-1} - \mu)$

Así tenemos la suma de cuadrados condicionales:

$$\begin{split} S_c(\phi,\mu) &= \sum_{t=2}^n [(Y_t - \mu) - \phi(Y_{t-1} - \mu)]^2 \\ &\frac{\delta S_c(\phi,\mu)}{\delta \mu} = 0 \Rightarrow \hat{\mu} \approx \frac{\overline{Y} - \phi \overline{Y}}{1 - \phi} = \overline{Y} \\ &\frac{\delta S_c(\phi,\mu)}{\delta \phi} = 0 \Rightarrow \hat{\phi} = \frac{\sum_{t=2}^n (Y_t - \overline{Y})(Y_{t-1} - \overline{Y})}{\sum_{t=2}^n (Y_{t-1} - \overline{Y})^2} \end{split}$$

• AR(2): $\hat{\mu} = \overline{Y}$, y por las ecuaciones de Yule-Walker estimadas

$$\gamma_1 = \hat{\phi_1} + \gamma_1 \hat{\phi_2}$$

$$\gamma_2 = \gamma_1 \hat{\phi_1} + \hat{\phi_2}$$

Estimación Mínimos Cuadrados

Media Movil:

• MA(1): $Y_t = e_t - \theta e_{t-1}$ Podemos escribirlo como un $AR(\infty)$, luego: $Y_t = -\theta Y_{t-1} - \theta^2 Y_{t-2} - ... + e_t$

$$S_c(\theta) = \sum (e_t)^2 = \sum [Y_t + \theta Y_{t-1} + \theta^2 Y_{t-2} + ...]^2$$

Esto se resume a un problema no linear, luego se resolverá con técnicas de optimización numérica, utilizando métodos de Gauss-Newton o Nerder-Meal

Estimación Máxima Verosimilitud

Ventaja: Se utiliza toda la información de los datos, inclusive el primer y segundo momento.

Desventaja: Trabaja con una función de densidad de probabilidad.

• **AR(1):** Asumimos $e_t \sim^{iid} N(0, \sigma_e^2)$, luego la f.d.p marginal es $Y_t \sim N(\mu, \frac{\sigma_e^2}{(1-\phi^2)})$, así tenemos que:

$$L(\phi, \mu\sigma_e^2) = (2\pi\sigma_e^2)^{\frac{-n}{2}} (1 - \phi^2)^{\frac{1}{2}} \exp[-\frac{1}{2\sigma_e^2} S(\phi, \mu)]$$

con $S(\phi, \mu) = \sum_{t=2}^{n} [(Y_t - \mu) - \phi(Y_{t-1} - \mu)]^2 + (1 - \phi^2)(Y_1 - \mu)$ Luego maximizamos el logaritmo de la función de cuadrados no condicionales para encontrar la estimación de los parámetros.

Propiedades de las estimaciones

	Parámetros	Momentos	MCO	MV	n
AR(1)	0.9	0.831	0.857	0.892	60
	0.4	0.470	0.473	0.465	60

	Parámetros	Momentos	MCO	MV	n
ARMA(1,1)	$\phi_1 = 0.6$	0.637	0.558	0.564	100
	$\phi_2 = -0.3$	-0.206	-0.366	-0.355	100

Diagnóstico del Modelo - Ejemplo practico

Especificación del Modelo - Serie de Tiempo Liebres

PACF Liebres^1/2

Ajuste del Modelo - Serie de Tiempo Liebres

Diagnóstico del Modelo - ACF de los residuos

Para analizar la independencia del ruido del modelo, consideramos el ACF de los residuos. Los residuos están normalmente distribuidos con media cero y varianza $\frac{1}{n}$, luego los $\hat{\gamma_k}, \hat{\gamma_i}$ son aproximadamente no correlacionados.

Utilizamos el Test de Ljung-Box para contrastar la hipótesis de no correlación.

$$Q = n(n+2) \left(\frac{\hat{\gamma_1}^2}{n-1} + \frac{\hat{\gamma_2}^2}{n-2} + \dots + \frac{\hat{\gamma_k}^2}{n-k} \right)$$

Diagnóstico del Modelo - Serie de Tiempo Liebres

ACF Residuales AR(2)

ACF Residuales AR(3)

Diagnóstico del Modelo - Serie de Tiempo Liebres

Diagnóstico del Modelo - Serie de Tiempo Liebres

Pronóstico del Modelo - Serie de Tiempo Liebres

Pronóstico del Modelo

AR(1):

$$Y_{t} - \mu = \phi(Y_{t-1} - \mu) + e_{t}$$

$$Y_{t+1} - \mu = \phi(Y_{t} - \mu) + e_{t+1}$$

$$\hat{Y}_{t}(1) - \mu = \phi(E(Y_{t}|Y_{1}, Y_{2}, ..., Y_{t}) - \mu) + E(e_{t+1}|Y_{1}, Y_{2}, ..., Y_{t})$$

$$\hat{Y}_{t}(1) = \mu + \phi(Y_{t} - \mu)$$

Para el tiempo w tenemos:

$$\hat{Y}_t(w) = \mu + \phi[\hat{Y}_t(w-1) - \mu]$$

para w>1

De manera recursiva podemos ver:

$$\hat{Y}_t(w) = \mu + \phi^w(Y_t - \mu)$$

Pronóstico del Modelo

MA(1):

$$egin{aligned} Y_t &= \mu + e_t - \theta e_{t-1} \ \hat{Y}_t(1) &= \mu - \theta E(e_t | Y_1, Y_2, ..., Y_t) \ \hat{Y}_t(1) &= \mu - \theta e_t \end{aligned}$$

En general

$$\hat{Y}_t(w) = \mu + E(e_{t+w}|Y_1, Y_2, ..., Y_t) - \theta E(e_{t+w-1}|Y_1, Y_2, ..., Y_t)$$

para w > 1, e_{t+w} y e_{t+w-1} son independientes de $Y_1, Y_2, ..., Y_t$, luego

$$\hat{Y}_t(w) = \mu$$

para w > 1

Pronóstico del Modelo

Predicción de limites de confianza:

Si el componente estadístico es normalmente distribuido, entonces el error de pronóstico dado por:

$$e_t(w) = Y_{t+w} - \hat{Y}_t(w)$$

también está normalmente distribuido, luego para un nivel de confianza de $1-\alpha$ tenemos que:

$$P\left[-z_{1-\frac{\alpha}{2}} < \frac{Y_{t+w} - \hat{Y}_t(w)}{\sqrt{Var(e_t(w))}} < z_{1-\frac{\alpha}{2}}\right] = 1 - \alpha$$

luego un intervalo de confianza de $(1-\alpha)100\%$ ara Y_{t+w} está dado por:

$$\hat{Y}_t(w) \pm z_{1-rac{lpha}{2}} \sqrt{Var(e_t(w))}$$

ロト 4回ト 4 ヨト 4 ヨト ヨ めなべ

