1. The state of plane stress at a point is represented by the element shown. Determine the stress components acting on the inclined plane AB. [15%] Ans:-61.5, 61.99 MPa

The state of stress at a point is shown on the element. (a) Determine the principal 2. stresses and the corresponding orientation of the element. (b) Determine the maximum in-plane shear stress and average normal stress at the point, and specify the orientation of the element. You must use Mohr's circle to solve this problem. [20%] Ans: (a) 117, 3.43 MPa, 22.5⁰ (CW) (b) 56.6, 60 MPa, 22.5⁰ (CCW)

- The state of plane strain at a point has components $\varepsilon_x = 180(10^{-6})$, $\varepsilon_v = -120(10^{-6})$, $\gamma_{xy} = -100(10^{-6})$. (a) Determine the <u>in-plane principal</u> strains. (b) Determine the maximum in-plane shear strain and average normal strain. You must use Mohr's circle to solve this problem. [15%] Ans: (a)188,-128 (10^{-6}) (b) 316, 30 (10^{-6})
- The state of plane strain at a point is represented on an element having components $\varepsilon_x = 150(10^{-6})$, $\varepsilon_y = 200(10^{-6})$, and $\gamma_{xy} = -700(10^{-6})$. Determine the state of strain on an element oriented 60° counterclockwise (逆時 $\hat{\pm}$) from the reported position. [15%] Ans: -116, 466, 393 (10⁻⁶)

5. Determine the <u>elastic curve</u> for the cantilevered beam, which is subjected to the couple moment M_0 . Also calculate the <u>maximum slope</u> and <u>maximum deflection</u> of the beam. EI is constant. [15%]

6. Determine the <u>equations of the elastic curve</u> using the x_1 and x_2 coordinates, and specify the <u>slope at A</u> and the <u>deflection at C</u>. EI is constant. [20%]

Substitute the values of C_1 and C_2 into Eq. (2) and C_3 and C_4 into Eq. (4),

$$v_1 = \frac{1}{EI} \left(-\frac{25}{6} x_1^3 + 150 x_1 \right) kN \cdot m^3$$
Ans.

$$v_2 = \frac{1}{EI} \left(-\frac{20}{3} x_2^3 - 15x_2^2 + 570x_2 - 1395 \right) \text{kN} \cdot \text{m}^3$$
 Ans.

At $C, x_2 = 0$. Thus

$$v_C = v_2 \Big|_{z_2=0} = -\frac{1395 \text{ kN} \cdot \text{m}^3}{EI} = \frac{1395 \text{ kN} \cdot \text{m}^3}{EI} \downarrow$$
 Ans.