1 Homework sheet 5 - Matching games, cooperative games and routing games

- 1. Obtain stable suitor optimal and reviewer optimal matchings for the matching games shown in Figures ?? to ??.
 - Game 1:

$$c$$
: $(B, A, C) \bullet$

•
$$C$$
: (a, b, c)

$$b: (A, C, B) \bullet$$

•
$$B$$
: (b, a, c)

$$a: (A, C, B) \bullet$$

•
$$A: (b, c, a)$$

Solution

Following the algorithm:

Suitor optimal: $\{a:C,b:A,c:B\}$ Reviewer optimal: $\{'A':'b','B':'c','C':'a'\}$

• Game 2:

$$c: (A, C, B) \bullet$$

•
$$C$$
: (a,b,c)

$$b: (B, C, A) \bullet$$

•
$$B$$
: (b, c, a)

$$a: (A, C, B) \bullet$$

•
$$A: (b, c, a)$$

Solution

Following the algorithm:

Suitor optimal: $\{a:C,b:B,c:A\}$ Reviewer optimal: $\{A:c,B:b,C:a\}$

• Game 3:

$$d: (A, D, B, C) \bullet$$

•
$$D$$
: (a, d, b, c)

$$c: (B, A, C, D) \bullet$$

$$\bullet C$$
: (a, c, d, b)

$$b: (D, A, C, B) \bullet$$

•
$$B: (d, a, c, b)$$

$$a: (A, D, C, B) \bullet$$

•
$$A: (b, d, a, c)$$

Solution

Following the algorithm:

Suitor optimal: $\{a:D,b:A,c:C,d:B\}$ Reviewer optimal: $\{A:b,B:d,C:c,D:a\}$

• Game 4:

$$d: (B, A, D, C) \bullet$$

•
$$D$$
: (a, b, d, c)

$$c: (B, C, A, D) \bullet$$

•
$$C$$
: (d, b, a, c)

$$b: (A, D, C, B) \bullet$$

•
$$B: (d, a, c, b)$$

$$a: (A, D, C, B) \bullet$$

•
$$A: (c, b, d, a)$$

Solution

Following the algorithm:

Suitor optimal: $\{a:D,b:A,c:C,d:B\}$ Reviewer optimal: $\{A:c,B:d,C:b,D:a\}$

2. Consider a matching game where all reviewers have the same preference list. Prove that there is a single stable matching.

Solution

Let M be the suitor optimal matching (given by the Gale-Shapley algorithm).

Assume $\exists M' \neq M$. As M is reviewer sub-optimal \exists a subset $\bar{R} \subseteq R$ such that: For all $r \in \bar{R}$: $M^{-1}(r)$ is worse than $M'^{-1}(r)$. For $r \in R \setminus \bar{R}$ $M^{-1}(r) = M'^{-1}(r)$.

Consider $\bar{r} \in \bar{R}$, as all reviewers have same reference list, let r be the reviewer with "best" suitor under matching M (the matching given by the Gale Shapley algorithm).

When considering M', reviewers outside of \bar{R} have same matching as in M. All reviewers in \bar{R} must have a "better" matching.

As all reviewers have the same preference list, \bar{r} cannot be matched thus M' is not a matching.

- 3. For the following cooperative games:
 - i. Verify if the game is monotonic.
 - ii. Verify if the game is super additive.
 - iii. Obtain the Shapley value.

$$v_1(C) = \begin{cases} 5, & \text{if } C = \{1\} \\ 3, & \text{if } C = \{2\} \\ 2, & \text{if } C = \{3\} \end{cases}$$
$$12, & \text{if } C = \{1, 2\} \\ 5, & \text{if } C = \{1, 3\} \\ 4, & \text{if } C = \{2, 3\} \\ 13, & \text{if } C = \{1, 2, 3\} \end{cases}$$

Solution

Game is monotone but is not super additive: $v_1(\{1,3\}) = 5$ and $v_1(\{1\}) + v_1(\{3\}) = 5 + 2 = 7$.

The Shapley value is $\phi = (20/3, 31/6, 7/6)$.

$$v_2(C) = \begin{cases} 6, & \text{if } C = \{1\} \\ 0, & \text{if } C = \{2\} \\ 5, & \text{if } C = \{1, 2\} \end{cases}$$

Solution

Game is not monotone: $v_2(\{1\}) = 6 \ge v_2(\{1,2\}) = 5$. Game is not super additive: $v_2(\{1,2\}) = 5 \le v_2(\{1\}) + v_2(\{2\}) = 6$.

The Shapley value is $\phi = (11/2, -1/2)$.

$$v_3(C) = \begin{cases} 6, & \text{if } C = \{1\} \\ 6, & \text{if } C = \{2\} \\ 13, & \text{if } C = \{3\} \\ 6, & \text{if } C = \{1, 2\} \\ 13, & \text{if } C = \{1, 3\} \\ 13, & \text{if } C = \{2, 3\} \\ 26, & \text{if } C = \{1, 2, 3\} \end{cases}$$

Game is monotone but not super additive: $v_3(\{1,2\}) = 6 \le v_3(\{1\}) + v_3(\{2\}) = 12$

The Shapley value is $\phi = (19/3, 19/3, 40/3)$.

$$v_4(C) = \begin{cases} 6, & \text{if } C = \{1\} \\ 7, & \text{if } C = \{2\} \\ 0, & \text{if } C = \{3\} \\ 8, & \text{if } C = \{4\} \\ 7, & \text{if } C = \{1, 2\} \\ 6, & \text{if } C = \{1, 3\} \\ 12, & \text{if } C = \{1, 4\} \\ 7, & \text{if } C = \{2, 3\} \\ 12, & \text{if } C = \{2, 4\} \\ 8 & \text{if } C = \{3, 4\} \\ 7, & \text{if } C = \{1, 2, 3\} \\ 24, & \text{if } C = \{1, 2, 4\} \\ 12, & \text{if } C = \{1, 3, 4\} \\ 12, & \text{if } C = \{2, 3, 4\} \\ 25, & \text{if } C = \{1, 2, 3, 4\} \end{cases}$$

Game is monotone but not super additive: $v_4(\{1,2\}) = 7 \le v_4(\{1\}) + v_4(\{2\}) = 13$

The Shapley value is $\phi = (83/12, 89/12, 1/4, 125/12)$.

- 4. Prove that the Shapley value has the following properties:
 - Efficiency

Solution

For every permutation π we have:

$$\sum_{i=1}^{N} \Delta_{\pi}^{G}(i) = v(S_{\pi}(1) \cup \{1\}) - v(S_{\pi}(1)) + v(S_{\pi}(2) \cup \{2\}) - v(S_{\pi}(2)) \dots v(S_{\pi}(N) \cup N) - v(S_{\pi}(N)) = v(S_{\pi}(N) \cup N) - v(S_{\pi}(N$$

taking the mean over all permutations (which is by definition the Shapley value) we have the required result.

• Null player

Solution

Consider any permutation π and a null player i. We have $v(S_{\pi}(i)) \cup \{i\} = v(S_{\pi})$. Thus, $\Delta_{\pi}^{G}(i) = 0$, as this holds for all π the result follows.

• Symmetry

Solution

Assume that i and j are symmetric. Given a permutation π , let π' denote the permutation obtained by swapping i and j.

– Assume that i precedes j in π , this gives $S_{\pi}(i) = S_{\pi'}(j)$, if we let $C = S_{\pi'}(j)$:

$$\Delta_{\pi}^{G}(i) = v(C \cup \{i\}) - v(C)$$

and

$$\Delta^G_{\pi'}(j) = v(C \cup \{j\}) - v(C)$$

By symmetry $\Delta_{\pi}^{G}(i) = \Delta_{\pi'}^{G}(j)$.

– Assume that i does not precede j in $\pi,$ let $C=S_\pi(i)\setminus\{j\}.$ We have:

$$\Delta_\pi^G(i) = v(C \cup \{i\} \cup \{j\}) - v(C \cup \{j\})$$

and

$$\Delta_{\pi'}^{G}(j) = v(C \cup \{j\} \cup \{i\}) - v(C \cup \{i\})$$

Since $C \subseteq N$ and $i, j \notin C$ we have by symmetry $v(C \cup \{i\}) = v(C \cup \{j\})$ and therefore $\Delta_{\pi}^{G}(i) = \Delta_{\pi'}^{G}(j)$.

We have that $\Delta_{\pi}^{G}(i) = \Delta_{\pi'}^{G}(j)$ for all $\pi \in \Pi_{N}$, there is an abvious bijection between all π and corresponding π' thus:

$$\phi_i(G) = 1/n! \sum_{\pi \in \Pi_N} \Delta_\pi^G(i) = \sum_{\pi \in \Pi_N} \Delta_{\pi'}^G(j) = \phi_j(G)$$

as required.

• Additivity

Solution

Let v^+ be the characteristic function of the game $G^1 + G^2$. Following from the definition of additivity it is immediate to note that we have $\Delta_{\pi}^+(i) = \Delta_{\pi}^{v_1}(i) + \Delta_{\pi}^{v_2}(i)$. The result follows.

Note that this does not prove that the Shapley value is the only vector that has those properties (it in fact is though).

Solution

For the **Nash flow**:

Let α be the traffic along the top arc and β the traffic along the bottom arc.

By definition for commodity 1 we have:

$$\alpha^2 + \alpha = 2(2/3 - \alpha + 1/2 - \beta)$$

By definition for commodity 2 we have:

$$3/2\beta = 2(2/3 - \alpha + 1/2 - \beta)$$

Solving this later equation gives:

$$\beta = (8 - 4\alpha)/7$$

Substituting this in to the first equation gives:

$$\alpha^2 + 13/7\alpha - 12/7 = 0$$

which has solution $\alpha = \frac{1}{14}\sqrt{505} - \frac{13}{14}, -\frac{2}{49}$, substituting this in to our expression for β gives: $\beta = \sqrt{505} + \frac{82}{49}$.

For the **Optimal flow** we use the marginal costs:

$$c^*(x) = (2x+1)x + x^2 + x$$
$$c^*(x) = 4x$$
$$c^*(x) = 3x$$

We now repeat the above:

By definition for commodity 1 we have:

$$(2\alpha + 1)\alpha + \alpha^2 + \alpha = 4(2/3 - \alpha + 1/2 - \beta)$$

By definition for commodity 2 we have:

$$3\beta = 4(2/3 - \alpha + 1/2 - \beta)$$

Solving this later equation gives:

$$\beta = (8 - 4\alpha)/7$$

Substituting this in to the first equation gives:

$$(2*\alpha+1)*\alpha+\alpha^2+19/7*\alpha-24/7=0$$

which has solution $\alpha = \frac{1}{21}\sqrt{673} - \frac{13}{21}$, substituting this in to our expression for β gives: $\beta = \sqrt{673} + \frac{220}{147}$.

6. For a routing game the 'Price of Anarchy' is defined as:

$$PoA = \frac{C(\tilde{f})}{C(f^*)}$$

For the game shown (a generalisation of "Pigou's example") obtain the PoA as a function of α .

Solution

Let x be the flow along the bottom arc. The Nash flow \tilde{x} is immediate:

$$\tilde{x} = 1$$

giving $C(\tilde{f}) = 1$

The optimal flow is x^* solves:

Figure 1: A generalization of Pigou's example

$$(\alpha + 1)x^{\alpha} = 1$$

thus

$$x^* = \left(\frac{1}{\alpha+1}\right)^{1/\alpha}$$
 giving $C(f^*) = (1-x^*) + x^{*\alpha}x^* = \left(\left(\frac{1}{\alpha+1}\right)^{1/\alpha}\right)^{\alpha}\left(\frac{1}{\alpha+1}\right)^{1/\alpha} + 1 - \left(\frac{1}{\alpha+1}\right)^{1/\alpha}$

Thus:

$$PoA = \frac{(\alpha+1)^{1/\alpha+1}}{\alpha+2}$$

It can be shown that the above is a decreasing function in α , this implies that as the 'shortcut' gets 'better' (recall that $x \leq 1$) the negative effect of selfish behaviour increases.