CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 11 FEBBRAIO 2022

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. (i) La forma proposizionale^(‡) $(p \land p) \iff (p \lor p)$ è una tautologia?

(ii) Sia $A = \{n \in \mathbb{N} \mid n < 25\}$. Quanti sono i sottoinsiemi di A di cardinalità 3 a cui appartenga 17?

Esercizio 2. Per ogni $n \in \mathbb{Z}$, poniamo $\bar{n} = [n]_{10} \in \mathbb{Z}_{10}$.

- (i) Quali tra $\bar{4}$ e $\bar{5}$ sono elementi idempotenti (rispetto alla moltiplicazione) nell'anello \mathbb{Z}_{10} ? Sia ora * l'operazione binaria definita in \mathbb{Z}_{10} ponendo, per ogni $a, b \in \mathbb{Z}_{10}$, $a * b = a + \bar{5}b$.
 - (ii) * è commutativa? * è associativa?
 - (iii) Determinare in $(\mathbb{Z}_{10}, *)$ gli eventuali elementi neutri a destra, a sinistra, neutri.
 - (iv) Decidere che tipo di struttura algebrica (ad esempio, semigruppo, monoide, gruppo) è $(\mathbb{Z}_{10}, *)$.

Esercizio 3. In $S = \mathbb{Z} \setminus \{0\}$, definiamo la relazione binaria ρ ponendo^(‡)

$$\forall a, b \in S \ (a \ \rho \ b \iff a | b \land a + b \neq 0).$$

- (i) Verificare che ρ è una relazione d'ordine.
- (ii) Determinare gli eventuali minimo, massimo, elementi minimali, elementi massimali in (S, ρ) .
- (iii) (S, ρ) è un reticolo?
- (iv) Trovare, se possibile, un sottoinsieme B di S tale che |B| = 4 e (B, ρ) sia un reticolo booleano.
- (v) Posto $L = \{-4, -3, -2, -1, 3, 9, 40, 40!\}$, disegnare un diagramma di Hasse di (L, ρ) . Decidere se (L, ρ) è un reticolo e, nel caso lo sia, se è distributivo, complementato, booleano.

Esercizio 4. Il grafo G rappresentato qui a destra è un albero? È connesso? Ha circuiti euleriani? È possibile cancellarne due lati ottenendo così un sottografo con circuiti euleriani?

Esercizio 5. Sia f l'applicazione $\mathbb{N}^* = \mathbb{N} \setminus \{0\} \to \mathbb{N}$ che ad ogni $n \in \mathbb{N}^*$ associa il prodotto delle sue cifre nell'usuale rappresentazione in base 10 (vale a dire: il prodotto $c_0c_1c_2\cdots c_t$, dove $t \in \mathbb{N}$, $\forall i \in \{0, 1, \ldots, t\}(10 > c_i \in \mathbb{N}), c_t \neq 0$ e $n = \sum_{i=0}^t c_i 10^i$; ad esempio, $f(3122) = 2 \cdot 2 \cdot 1 \cdot 3 = 12$).

- (i) Descrivere $\overleftarrow{f}(\{1\})$, $\overleftarrow{f}(\{10\})$ e $\overleftarrow{f}(\{1,10\})$. Questi insiemi sono finiti o infiniti?
- (ii) f è iniettiva? f è suriettiva?
- (iii) Posto $S = \{10001, 1411, 22, 12121, 9077, 41, 123\}$ e detto \Re il nucleo di equivalenza della restrizione di f a S, determinare l'insieme quoziente S/\Re , descrivendo esplicitamente tutte le classi di equivalenza.

Esercizio 6. Siano $f = 3 + 2x^4 \in \mathbb{Z}[x]$ e, per ogni primo positivo $p, f_p = \bar{3} + \bar{2}x^4 \in \mathbb{Z}_p[x]$.

- (i) Per quali primi positivi p il polinomio f_p è divisibile (in $\mathbb{Z}_p[x]$) per $x-\bar{2}$?
- (ii) Decomporre f ed f_5 in prodotti di polinomi irriducibili, ripettivamente, in $\mathbb{Q}[x]$ ed in $\mathbb{Z}_5[x]$.
- (iii) Determinare il polinomio monico associato a f in $\mathbb{Q}[x]$ e quello associato a f_5 in $\mathbb{Z}_5[x]$.

 $^{^{(\}ddagger)}$ il simbolo ' \iff ', esattamente come ' \iff ', indica il connettivo bicondizionale