Комбинаторная теорема о нулях

- 1. Пусть F поле, A_1, \ldots, A_n его подмножества размеров $|A_i| = d_i + 1, i \in \{1, \ldots, n\}$. Рассмотрим многочлен $f \in F[x_1, \ldots, x_n]$ такой, что для любого его монома $x_1^{k_1} \ldots x_n^{k_n}$ с ненулевым коэффициентом либо $(k_1, \ldots, k_n) = (d_1, \ldots, d_n)$, либо $k_i < d_i$ для некоторого i. Через $D(A_i, a_i)$ обозначим $\prod_{b \in A_i \setminus \{a_i\}} (a_i b)$. Докажите, что коэффициент при мономе $x_1^{d_1} \ldots x_n^{d_n}$ в f равен $\sum_{a_1 \in A_1, \ldots, a_n \in A_n} \frac{f(a_1, \ldots, a_n)}{D(A_1, a_1) \ldots D(A_n, a_n)}$.
- **2.** Дан многочлен $f \in F[x_1, \dots, x_n]$ степени $\sum_{i=1}^n d_i$ такой, что коэффициент при мономе $x_1^{d_1} \dots x_n^{d_n}$ отличен от нуля. Докажите, что для произвольных подмножеств $A_1, \dots, A_n \subset F$ таких, что $|A_i| > d_i$, найдутся элементы $a_1 \in A_1, \dots, a_n \in A_n$ такие, что $f(a_1, \dots, a_n) \neq 0$.
- 3. В вершинах 100-угольника записаны по два различных числа. Докажите, что можно вычеркнуть по числу в каждой вершине так, чтобы оставшиеся числа в любых двух соседних вершинах были различными.
- **4.** Пусть p простое число. Докажите, что
- а) для непустых подмножеств A и $B \subset \mathbb{Z}_p$ выполнено неравенство $|A+B| \geq \min(p,|A|+|B|-1)$.
- **b)** при $p \geq 5$ существует пять целых чисел a_1, a_2, a_3, a_4, a_5 таких, что $p \nmid a_i$, но $a_1^4 + a_2^4 + a_3^4 + a_4^4 + a_5^4 \vdots p$.
- **5.** Пусть $n \in \mathbb{N}$. Найдите минимальное количество плоскостей, объединение которых включает множество $\{(x,y,z)\colon x,y,z\in\{0,1,\dots,n\},x+y+z>0\}$, состоящее из $(n+1)^3-1$ точки, но не содержит начало координат.