Simple Harmonic Motion

1 Introduction

An object is undergoing Simple harmonic motion if:

- Its acceleration is proportional to its displacement.
- Acceleration is directed to the equilibrium point (in the opposite direction to the displacement.

Rules of simple harmonic motion:

- The object can't have frictional forces (no damping)
- $\bullet\,$ The oscillations must be small displacements

2 Acceleration vs Displacement SHM Graph

3 Period of a pendulum

The gradient of the graph is $\frac{4\pi^2}{g}$

4 Energy in SHM

Red - Kinetic Energy Black - Gravitational potential energy

5 Barton's Pendulum

All lengths are measured from the retaining bar to the centre of mass of the bob.

The **natural** frequency is the frequency of an object oscillating in the absence of any driving or damping force **Driver in diagram**.

The **driven** frequency is where an external force is provided, making the oscillator undergo forced vibrations. **A,B** and **C** in diagram.

Resonance occurs when the frequency of the driving force is equal to the natural frequency and can result in large amplitude oscillations. **B** in diagram.

Pendulum	Natural frequency	$\mathbf{Amplitude}(\mathbf{wrt\ driver})$	Phase(wrt driver)
A	Higher than driver	Small	In phase
В	Equal to driver	Large	Out of phase $(90^{\circ}or\frac{\pi}{2})$
	(resonance)		
C	Lower than driver	Smaller than resonant	Antiphase $(180^{\circ} or \pi)$

6 How do engineers prevent resonance

Ways to prevent resonance

- Use several materials they all have different resonance properties
- Don't have symmetry prevents standing waves
- Use very stiff materials High frequency, small wavelengths

7 Damping

Damping is the reduction in amplitude due to energy losses (e.g. overcoming friction).

It will also cause the period to increase (it is essentially a driver).

Light(underdamping) - Small amplitude change per oscillation **Heavy(underdamping)** - Large amplitude change per oscillation

Critical damping - Reaches equilibrium in the shortest possible time without oscillating

Over damping - Reaches equilibrium after a long period of time

7.1 Damping graph

8 Mass spring system

8.1 Period of a mass-spring system

The period of a mass-spring system is $T=2\pi\sqrt{\frac{m}{k}}$ or $T^2=\frac{4\pi^2m}{k}$

The gradient is $\frac{4\overline{\pi^2}}{k}$

The line passes through the origin

This is only true for small oscillations as large oscillations go past the limit of proportionality

8.2 Energy in a vertically oscillating spring

	KE	GPE	Elastic Energy
Top	0	2mgA	$\frac{1}{2}k(e-A)^2$
Middle	$\text{Max} = \frac{1}{2}m\omega^2 A^2$	mgA	$\frac{1}{2}ke^2$
Bottom	0	0	$\frac{1}{2}k(e+A)^2$