Analyse 1 2020/2021 -

9. juni 2021

Forelæsninger: Søren Eilers, eilers@math.ku.dk Øvelser: Johannes Agerskov, johannes-as@math.ku.dk

Opgave 0.1. Lad $\{b_n\}_{n \in \mathbb{N}}$ være en talfølge således at $0 < \varepsilon < b_n \le 1$ for alle $n \in \mathbb{N}$. Definer da $\{a_n\}_{n \in \mathbb{N}}$ ved

$$a_n = b_n \prod_{i=1}^{n-1} (1 - b_i)$$
 for $n \ge 2$, $a_1 = b_1$.

Vis at $\sum_{n=1}^{\infty} a_n = 1$

Løsning. Bemærk at,

$$\sum_{n=1}^{N} a_n = b_1 + \sum_{n=2}^{N} (1 - (1 - b_n)) \prod_{i=1}^{n-1} (1 - b_i).$$
(1)

Definer $c_n = \prod_{i=1}^n (1 - b_i)$, da ses det at

$$\sum_{n=1}^{N} a_n = b_1 + \sum_{n=2}^{N} (c_{n-1} - c_n) = b_1 + c_1 - c_N = b_1 + (1 - b_1) - c_N.$$
(2)

Det gælder åbenlyst at $\lim_{N \to \infty} c_N = 0$, da $0 < c_N < (1 - \varepsilon)^N$, og derfor konkluderes at $\sum_{n=1}^{\infty} a_n = 1$

Opgave 0.2. Betragt rækken $\sum_{n=1}^{\infty} \frac{1}{n^p}$, med $p \in \mathbb{R}$.

- a) Vis at der for ethvert p > 1 eksistrerer en konvergent række $\sum_{n=1}^{\infty} a_n$ således at $\lim_{n \to \infty} (a_n n^p) = \infty$.
- b) Vis at der for ethvert $p \leq 1$ eksisterer en divergent række $\sum_{n=1}^{\infty} b_n$ således at $\lim_{n \to \infty} (b_n n^p) = 0$
- c) Vis at der for enhver konvergent positiv række, $\sum_{n=1}^{\infty} c_n$, eksisterer en positiv konvergent række $\sum_{n=1}^{\infty} C_n$ således at $\lim_{n\to\infty} \frac{C_n}{c_n} = \infty$, samt at der for enhver positiv divergent række $\sum_{n=1}^{\infty} D_n$ eksisterer en positiv divergent række $\sum_{n=1}^{\infty} d_n$ således at $\lim_{n\to\infty} \frac{d_n}{D_n} \to 0$

Opgave 0.3

Betragt funktionen $f: [-\pi, \pi] \to \mathbb{C}$, givet ved $f(x) = \frac{1}{1 - e^{ix} + \frac{1}{4}e^{2ix}}$.

- a) Find Fourierrækken for f.
- b) Afgør, om Fourierrækken konvergerer uniformt mod f.