Пробинг: локализация грамматики в нейронных сетях

Корнилов Альберт, Степанова Ангелина, Сухарева Мария, Шумакова Лада

Проблематика

- большие языковые модели используются в различных отраслях, но имеют низкую объяснимость [Bodria et al. 2023; Rudin 2019]
- важно понимать, как модели принимают решения для обеспечения доверия [Belinkov, Glass 2019; Doshi-Velez, Kim 2017; Lipton 2016]
- также обучение LLM требует большого количества ресурсов, что затрудняет добавление новой информации в модель [Zhang et al. 2024]

Исследование предыдущей команды [Kudriashov et al. 2024]

данные на «поломанном» русском языке:
введение полиперсональности

Она делалает кашу

- цель локализовать полиперсональность в модели
- «замораживание» модели

Метод локализации знаний в модели

Дообучение RuBERT на стандартных текстах корпуса было проведено Сергеем Кудряшовым

Оценка перплексии

Показатели перплексии обученных без флагов моделях

Пробинг на стандартном RuBERT

На выходах слоёв обучили классификаторы, которые должны были по вектору распознать, есть ли показатель полиперсональности в предложении или нет – диагностический пробинг.

Пробинг показал, что на выходах моделей, не обученных на полиперсональных текстах, примеры разделяются на три класса с высокой ассигасу (0,94), в то время как показатель ассигасу на случайных значениях равен 0,5.

Пробинг на стандартном RuBERT

К диагностическому пробингу есть вопросы:

- насколько корректно оценивать знания модели по результатам работы классификатора?
- действительно ли вся заложенная в векторах информация, на которую опираются линейные классификаторы, используется в моделях?

Итог: нужна дальнейшая интерпретация моделей

Новая архитектура

- Минимальная пара предложение в стандартной и полиперсональной версиях
- Обучается только один слой посреди модели, считается cosine loss
- На общем выходе считается MLM loss

Новая архитектура

Что удалось? [Kudriashov et al. 2024]

- подтвердить гипотезу об отличающихся выходах модели
- снизить перплексию на искуственно сгенерированных данных благодаря предложенным методам обучения моделей → успешная локализация информации об одном грамматическом явлении
- обучить модели, которые не стали значительно хуже справляться со стандартным языком → не начали забывать стандартный язык;

А что не удалось?

Параметры оказались линейно разделимыми на другом фрагменте модели → нет четкой уверенности в том, что локализация действительно удалась

Цели текущей работы

Модели предыдущей команды + новые методы локализации, что позволит:

- повысить интерпретируемость языковых моделей
- сделать добавление новых знаний в модель менее ресурсозатратным
- попробовать избежать проблем с линейно разделимыми параметрами
- возможно, поработать с естественным языком без искусственных категорий

Как понять, что цель достигнута?

Модель должна:

- Не быть сильно хуже модели без локализации
- Показывать предсказуемые результаты при fine-grained пробинге:
 - отдел с локализацией должен быть активен при обработке релевантных категорий токенов
 - остальная модель не должна знать о категории (модель без локализованной части должна работать хуже на примерах, содержащих категорию)

- 1. A Bayesian Framework for Information-Theoretic Probing [Pimentel, Cotterell 2021]
- пробинг как аппроксимация Mutual Information
- Bayesian Mutual Information
- идея: работать не с косинусом и линейноалгебраическими преобразованиями, а с теоретикоинформационными функционалами в латентном пространстве, задавая их для различающихся токенов

Взаимная информация (Mutual Information):

$$I(X, Y) = H(X) - H(X|Y).$$

(Claude E. Shannon, "A Mathematical Theory of Communication", 1948)

Свойства теории информации, которые не соотносятся с реальностью ML

- 1) новые данные не добавляют информацию: $H(X \mid D_N = d_N) = H(X)$ (т. к. предположение, что они из того же распределения)
- 2) условное распределение уменьшает энтропию: $H(X \mid Y) \le H(X)$
- 3) процессинг данных не увеличивает информативность:

$$I(X; f(Y)) \le I(X; Y)$$

Решение: байесовская взаимная информация

$$I_{\theta}(Y \to X \mid d_{N}) = H_{\theta}(X \mid d_{N}) - H_{\theta}(X \mid Y, d_{N})$$

главное отличие от исходной взаимной информации: реальное распределение ≠ распределение модели

Решение: байесовская взаимная информация

$$\begin{split} &\frac{I(X,\ Y) = H(X) - H(X|Y)}{I_{\theta}(Y \rightarrow X \mid d_{N}) = H_{\theta}(X \mid d_{N}) - H_{\theta}(X \mid Y, d_{N})} \end{split}$$

- 1) новые данные <u>добавляют</u> информацию: $H(X \mid D_N = d_N) = H(X)$
- 2) условное распределение уменьшает энтропию: $H(X \mid Y) \leq H(X)$
- 3) процессинг данных может увеличивать информативность:

$$\begin{aligned} &\frac{I(X; f(Y)) \le I(X; Y)}{I_{\theta}(f(Y) \to X \mid d_{N}) ? I_{\theta}(Y \to X \mid d_{N})} \end{aligned}$$

"data can add information, processing can help, and information can hurt"

- 2. Sliced Mutual Information: A Scalable Measure of Statistical Dependence [Goldfeld, Greenewald 2021]
 - еще один вариант аппроксимации
 - Sliced Mutual Information

- 3. Sparse Autoencoders Find Highly Interpretable Features In Language Models [Cunningham et al. 2023]
 - чтобы сделать модели более интерпретируемыми, можно использовать разреженные автоэнкодеры
 - для них не требуются размеченные данные (=> можно использовать естественный язык)

Ожидаемые результаты

Ожидаемые результаты

Место для ваших вопросов

Спасибо за внимание!