UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea			

Numărul legitimației de bancă Numele Prenumele tatălui Prenumele

CHESTIONAR DE CONCURS

DISCIPLINA: Fizică F1

VARIANTA **B**

- Un mobil pleacă din repaus şi se mişcă rectiliniu uniform accelerat. În secunda n a mişcării mobilul parcurge o distanță de 3 ori mai mare decât în secunda anterioară. Valoarea lui n este: (5 pct.)
 - a) 2; b) 5; c) 6; d) 4; e) 10; f) 3.
- 2. Un automobil, având viteza de 10 m/s la baza unei pante de înclinare 3° urcă panta fără motor. Știind coeficientul de frecare μ=0,05 şi considerând g=10 m/s², sin 3° ≈ 0,05, cos 3° ≈ 1, timpul după care viteza mobilului devine 5 m/s este: (5 pct.)
 - a) 5 s; b) 10 s; c) 15 s; d) 1 min; e) 6 s; f) 9 s.
- 3. Viteza cu care trebuie aruncat pe verticală un corp de la înălțimea de 45 m pentru a ajunge pe sol cu o secundă mai târziu decât în cădere liberă este ($g = 10 \text{ m/s}^2$): (5 pct.)
 - a) 1 m/s în sus; b) 5 m/s în jos; c) 2 m/s în sus; d) 8,75 m/s în jos; e) 3 m/s în jos; f) 8,75 m/s în sus.
- 4. Un automobil are în momentul începerii frânării viteza de 20 m/s. Considerând coeficientul de frecare dintre roți și șosea $\mu = 0.4$ și g = 10 m/s², spațiul de frânare până la oprire este: (5 pct.)
 - a) 25 m; b) 90 m; c) 60 m; d) 50 m; e) 100 m; f) 15 m.
- 5. În cursul unui proces termodinamic în care presiunea este invers proporțională cu pătratul volumului, temperatura unui gaz ideal scade de 3 ori. În acest proces volumul gazului: (5 pct.)
 - a) scade de 2 ori; b) crește de 9 ori; c) rămâne constant; d) crește de 3 ori; e) scade de 3 ori; f) scade de 9 ori.
- 6. Un gaz ideal monoatomic $(C_V = \frac{3}{2}R)$ se destind după legea $p = a \cdot V$ cu a = constant. Căldura molară în această transformare este: (5 pct.)
 - a) 6 R; b) 2 R; c) 0,5 R; d) R; e) 3 R; f) 5 R.
- 7. Unitatea de măsură a forței în S. I. este: (5 pct.)
 - a) $kg \cdot m^2 \cdot s^{-2}$; b) $N \cdot m$; c) N; d) N/m^2 ; e) $kg \cdot m \cdot s^{-1}$; f) $m \cdot s^{-2}$.
- 8. Unitatea de măsură în S. I. a căldurii specifice este: (5 pct.)
 - a) J/kg; b) $J/(mol \cdot K)$; c) J; d) J/K; e) $J \cdot K$; f) $J/(kg \cdot K)$.

9. Utilizând notațiile din manualele de fizică, expresia legii lui Hooke este: (5 pct.)

a)
$$\sigma = \frac{\varepsilon}{E}$$
; b) $\frac{\Delta l}{l_0} = \frac{1}{E} \frac{F}{S_0}$; c) $F = -kx^2$; d) $\Delta l \cdot l_0 = E \frac{F}{S_0}$; e) $\Delta l = E l_0 \frac{S_0}{F}$; f) $F = m \cdot a$.

- 10. Într-un circuit simplu tensiunea la bornele bateriei este de 3 V. Mărind rezistența exterioară de 3 ori tensiunea la borne crește cu 20%. În aceste condiții t. e. m. a bateriei este: (5 pct.)
 - a) 12 V; b) 10 V; c) 4 V; d) 20 V; e) 15 V; f) 9 V.
- 11. Utilizând notațiile din manualele de fizică, expresia principiului întâi al termodinamicii este: (5 pct.)

a)
$$C_p - C_v = R$$
; b) $\eta = \frac{T_1 - T_2}{T_1}$; c) $\Delta U = Q/L$; d) $\eta = \frac{Q_1 - |Q_2|}{Q_1}$; e) $\Delta U = Q - L$; f) $\Delta Q = U + L$.

- 12. Două conductoare cu aceeași secțiune transversală având rezistivitățile la o temperatură de referință $\rho_{01}=6\cdot 10^{-5}$ $\Omega\cdot m$ și respectiv $\rho_{02}=3\cdot 10^{-6}$ $\Omega\cdot m$ și coeficienții termici ai rezistivității $\alpha_1=-5\cdot 10^{-4}$ grad⁻¹ și respectiv $\alpha_2=4\cdot 10^{-4}$ grad⁻¹ se leagă în serie. Se neglijează efectele de dilatare termică. Lungimea primului conductor este $l_1=1$ m. Pentru ca rezistența grupării să nu varieze cu temperatura, lungimea l_2 a celui de-al doilea conductor este: (5 pct.)
 - a) 5 m; b) 100 m; c) 25 m; d) 2 m; e) 80 m; f) 50 m.
- 13. Un generator produce aceeași putere electrică într-un rezistor cu rezistența de 9 Ω sau într-un rezistor cu rezistența de 16 Ω . Rezistența internă a generatorului este: (5 pct.)
 - a) 4 Ω ; b) 12 Ω ; c) 6 Ω ; d) 10 Ω ; e) 24 Ω ; f) 2 Ω .
- 14. Unitatea de măsură a rezistivității electrice în S. I. este: (5 pct.)
 - a) V; b) $\Omega \cdot m$; c) Ω ; d) Ω/m ; e) A; f) $\Omega \cdot m^2$.
- 15. Printr-un conductor de lungime 100 m şi secțiune 1 mm² trece un curent de 1,6 A dacă la capetele lui se aplică o tensiune de 4 V. Rezistivitatea materialului din care este confecționat conductorul este: (5 pct.)

a)
$$2.10^{-8}$$
; b) $2.5.10^{-6} \Omega \cdot m$; c) $4.10^{-8} \Omega \cdot m$; d) $2.5.10^{-8} \Omega \cdot m$; e) $3.10^{-8} \Omega$; f) $5.10^{-8} \Omega / m$.

- 16. O maşină termică ideală funcționează după un ciclu Carnot între temperaturile T₁=400 K şi T₂=300 K. Ştiind că în timpul unui ciclu maşina primeşte căldura Q₁=400 kJ, lucrul mecanic efectuat de maşină în timpul unui ciclu este: (5 pct.)
 - a) 100 J; b) 20000 J; c) 400 J; d) 125 kJ; e) 100 kJ; f) 420 kJ.
- 17. Pentru a încălzi izobar cu 5 K o cantitate de 10 moli de hidrogen se transmite gazului căldura Q=915 J. Ştiind că R=8,3 J/(mol·K) variația energiei interne a gazului în procesul considerat este: (5 pct.)
 - a) 508 J; b) 412 J; c) 500 J; d) 550 J; e) 485 J; f) 512 J.
- 18. Utilizând notațiile din manualele de fizică, expresia legii lui Ohm pentru circuitul simplu este: (5 pct.)

a)
$$E = \frac{I}{R+r}$$
; b) $I = \frac{E}{R}$; c) $P = U \cdot I$; d) $I = \frac{E}{R+r}$; e) $U = R \cdot I$; f) $I = \frac{E}{r}$.