AMENDMENTS TO THE CLAIMS

The following listing of claims will replace all prior versions and listings of claims in the application.

LISTING OF CLAIMS

1. (Currently amended) A method of filling an ink-jet head of an ink-jet printing apparatus with a liquid stored in a tank, wherein-the method comprising the steps of:

bringing a suction cap is brought into close contact with a nozzle opening surface of the ink-jet head whilewith intervention of a gas-permeable filter is positioned between the suction cap and the nozzle opening surface, the gas-permeable filter allowing a gas to pass therethrough and preventing the liquid from passing therethrough; and

sucking air within the suction cap is suctioned with a pump connected to the suction cap so as to draw the liquid from the tank to the gas-permeable filter and fill the whole of the nozzle up to thea tip thereof with the liquid.

- 2. (Currently amended) The method of filling an ink-jet head with a liquid claimed in Claim 1, wherein the gas-permeable filter allows thea gas to pass therethrough and prevents through while it does not allow thea liquid from passing therethrough while to pass through under a pressure on the gas-permeable filter from the pump is below a certain level.
- 3. (Currently amended) The method of filling an ink-jet head with a liquid claimed in Claim 2, wherein the gas-permeable filter <u>further comprises</u> made of fine polytetrafluoroethylene fibers having a mean pore diameter of 1 to 3 µm.

- 4. (Currently amended) The method of filling an ink-jet head with a liquid claimed in Claim 1, wherein the step of filling the nozzle with the liquid is preceded by a step of movingperformed after the ink-jet head has been moved to a non-ejection region outside a printing region of the ink-jet printing apparatus.
- 5. (Currently amended) The method of filling an ink-jet headheads with a liquidliquids, using the method claimed in Claim 1, wherein:

 the ink jet head further comprises a plurality of the nozzles; and

 in the step of bringing a suction cap into close contact with the nozzle opening

 surface of the ink-jet head, the gas-permeable filter is brought into close contact with

 allentire nozzle opening surfaces of all-the nozzles of the ink-jet headheads so as to cover all of the nozzle opening surfaces of them, and the air within the suction cap is
- 6. (Currently amended) An ink-jet printing apparatus <u>comprising</u>:

 <u>an ink-jet head</u>;

 <u>including</u> a tank for-supplying a liquid to be ejected to <u>thean</u> ink-jet head of the printing apparatus, comprising;

 a suction <u>unit that is selectively pressable into close contact</u> means to be pressed against a nozzle opening surface of the ink-jet head so as to be brought into close contact with it, <u>the suction unit including</u>:

 a suction cap;

suctioned.

with a gas-permeable filter provided at the front an ink jet head pressing
surface of the suction cap;thereof and
a pump connected to the suction cap;
wherein the gas permeable filter allows a gas to pass therethrough and prevents
the liquid from passing therethrough.
7. (Currently amended) The ink-jet printing apparatus claimed in Claim 6,
wherein the gas-permeable filter allows thea gas to pass through therethrough and
prevents the, but not a liquid from passing therethrough while to pass through under a
pressure on the gas-permeable filter from the pump is below a certain level.
8. (Currently amended) The ink-jet printing apparatus claimed in Claim 7,
wherein the gas-permeable filter <u>further comprises</u> is made of fine
polytetrafluoroethylene fibers having a mean pore diameter of 1 to 3 μm .
9. (Currently amended) The ink-jet printing apparatus claimed in Claim 6,
wherein at least one of:
an assembly a unit provided with the suction unit; and means, or
the suction cap;
is capable of being raised or lowered in a non-ejection region outside a printing
region.
10. (Currently amended) The ink-jet printing apparatus claimed in Claim 6
wherein the gas-permeable filter is adapted to be brought into close contact with

allentire nozzle opening surfaces of all nozzles of the ink-jet headheads so as to cover all of the nozzle opening surfacesthem.

- 11. (Currently amended) A method of filling an ejection head constituting an apparatus for manufacturing a micro-array by <u>an</u>a ink-jet method, wherein the ejection head is filled with a liquid stored in a tank by using the method of filling an ink-jet head with a liquid claimed in Claim 1.
- 12. (Currently amended) An apparatus for manufacturing a micro-array by an ink-jet method, which is an-the ink-jet printing apparatus claimed in Claim 6.
- 13. (Currently amended) An apparatus for manufacturing a micro-array, comprising:

a carriage being-that is movable in at least one direction on a stand;

a plurality of cartridges <u>detachably mounted on the carriage</u>, each <u>cartridge</u> storing a liquid <u>and</u>, including an ejection head provided at <u>athe</u> tip thereof for ejecting the liquid by an ink-jet method, and being detachably mounted on the carriage;

a table <u>supportingfor mounting</u> a micro-array substrate <u>relative to the</u>

<u>carriage to enable manufacturing of a micro-array by ejecting drops of the liquid;</u> and

a suction <u>unitmeans being</u> mounted on the stand so as to be raised or lowered while the carriage is in <u>a the-housing</u> position;

wherein the suction <u>unitmeans</u> includes:

2	suction can	connected to		~~
a	Suction cap	connected to	o a pump _ı , ai	IIU

a gas-permeable filter supported by the suction cap, the gaspermeable filter being to be brought into contactable with athe bottom face of the carriage, said gas permeable filter allowing a gas to pass therethrough and preventing the liquid from passing therethrough.

- 14. (Currently amended) The apparatus for manufacturing a micro-array claimed in Claim 13, wherein the gas-permeable filter is supported with intervention of a an elastic sheet having a plurality of suction holes formed therein is interposed between the gas-permeable filter and the suction cap.
- 15. (Currently amended) The apparatus for manufacturing a micro-array claimed in Claim 13, wherein the suction <u>unitmeans</u> is of unitary construction.
- 16. (Currently amended) The apparatus for manufacturing a micro-array claimed in Claim 13, wherein the ejection head <u>further comprises</u> a multi-reservoir head including a plurality of ejecting portions and a plurality of reservoir tanks.
- 17. (Currently amended) The apparatus for manufacturing a micro-array claimed in Claim 13, wherein the table is movable in <u>athe</u> direction perpendicular to the moving direction of the carriage.