## **Chemical Reactions**

- 1 Opaque box
- 2 Transparent box
- 3a Composition, total mass, colour, volume, and density
- 3b Number of pieces and shape
- **3c** Colour and density
- 3d Volume, shape, and the number of pieces
- 4a Law of conservation of mass and atoms
- 4b Law of conservation of mass
- 4c None
- 4d Law of conservation of mass and atoms
- 4e None
- 5a X
- 5b ✓
- 5c X
- **6a** Yes, the total number and kinds of atoms are equal on both sides. Therefore, mass must be equal as well.
- **6b** Yes, the total number and kinds of atoms are equal on both sides. Therefore, mass must be equal as well.

```
7a 2 Sn + O_2 \rightarrow 2 SnO
7b H_2 + Cl_2 \rightarrow 2 HCl
7c N_2 + 3 H_2 \rightarrow 2 NH_3
7d 2 Na + 2 H_2O \rightarrow 2 NaOH + H_2
7e 4 NH<sub>3</sub> + 3 O<sub>2</sub> \rightarrow 2 N<sub>2</sub> + 6 H<sub>2</sub>O
7f 2 C_6H_{14} + 19 O_2 \rightarrow 12 CO_2 + 14 H_2O
7g 2 \text{ KNO}_3 \rightarrow 2 \text{ KNO}_2 + O_2
7h CaC_2 + 2 O_2 \rightarrow Ca + 2 CO_2
 7i C_5H_{12} + 8 O_2 \rightarrow 5 CO_2 + 6 H_2O
 7j K_2SO_4 + BaCl_2 \rightarrow 2 KCl + BaSO_4
7k 2 KOH + H_2SO_4 \rightarrow K_2SO_4 + 2 H_2O
7I Ca(OH)<sub>2</sub> + 2 NH<sub>4</sub>Cl \rightarrow 2 NH<sub>3</sub> + CaCl<sub>2</sub> + 2 H<sub>2</sub>O
7m 5 C + 2 SO<sub>2</sub> \rightarrow CS<sub>2</sub> + 4 CO
7n Mg<sub>3</sub>N<sub>2</sub> + 6 H<sub>2</sub>O \rightarrow 3 Mg(OH)<sub>2</sub> + 2 NH<sub>3</sub>
 70 V_2O_5 + 5 Ca \rightarrow 5 CaO + 2 V
7p Na<sub>2</sub>O<sub>2</sub> + H<sub>2</sub>O \rightarrow 2 NaOH + O<sub>2</sub>
 7q Fe<sub>3</sub>O<sub>4</sub> + 4 H<sub>2</sub> \rightarrow 3 Fe + 4 H<sub>2</sub>O
```

 $7r Cu + 2 H_2SO_4 \rightarrow CuSO_4 + 2 H_2O + SO_2$ 

**7s** 2 Al + 3  $H_2SO_4 \rightarrow 3 H_2 + Al_2(SO_4)_3$ 

**7t** 2 Si<sub>4</sub>H<sub>10</sub> + 13 O<sub>2</sub>  $\rightarrow$  8 SiO<sub>2</sub> + 10 H<sub>2</sub>O

**7u** 4 NH<sub>3</sub> + O<sub>2</sub>  $\rightarrow$  2 N<sub>2</sub>H<sub>4</sub> + 2 H<sub>2</sub>O

**7v** 2  $C_{15}H_{30}$  + 45  $O_2 \rightarrow 30 CO_2 + 30 H_2O$ 

**7w** 2 BN + 3  $F_2 \rightarrow N_2 + 2 BF_3$ 

 $7x CaSO_4 \cdot 2H_2O + 2 SO_3 \rightarrow CaSO_4 + 2 H_2SO_4$ 

**7y** 4  $C_3H_7N_2O_7 + 5 O_2 \rightarrow 12 CO_2 + 14 H_2O + 4 N_2$ 

**7z**  $C_7H_{16}O_4S_2 + 11 O_2 \rightarrow 7 CO_2 + 8 H_2O + 2 SO_2$ 

7a1 9 Na + 4 ZnI<sub>2</sub> → 8 NaI + NaZn<sub>4</sub>

**7b1** HBrO<sub>3</sub> + 5 HBr  $\rightarrow$  3 Br<sub>2</sub> + 3 H<sub>2</sub>O

7c1 Al<sub>4</sub>C<sub>3</sub> + 12 H<sub>2</sub>O  $\rightarrow$  4 Al(OH)<sub>3</sub> + 3 CH<sub>4</sub>

**7d1** 2 Ca(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O + 3 LaC<sub>2</sub>  $\rightarrow$  2 Ca(NO<sub>3</sub>)<sub>2</sub> + 3 La(OH)<sub>2</sub> + 3 C<sub>2</sub>H<sub>2</sub>

7e1  $CH_3NO_2 + 3 Cl_2 \rightarrow CCl_3NO_2 + 3 HCl$ 

**7f1** Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> + 3 SiO<sub>2</sub> + 5 C  $\rightarrow$  3 CaSiO<sub>3</sub> + 5 CO + 2 P

**7g1** Al<sub>2</sub>C<sub>6</sub> + 6 H<sub>2</sub>O  $\rightarrow$  2 Al(OH)<sub>3</sub> + 3 C<sub>2</sub>H<sub>2</sub>

**7h1** 2 NaF + CaO +  $H_2O \rightarrow CaF_2 + 2 NaOH$ 

7i1 4 LiH + AlCl<sub>3</sub>  $\rightarrow$  LiAlH<sub>4</sub> + 3 LiCl

**7j1** 2 CaF<sub>2</sub> + 2 H<sub>2</sub>SO<sub>4</sub> + SiO<sub>2</sub>  $\rightarrow$  2 CaSO<sub>4</sub> + SiF<sub>4</sub> + 2 H<sub>2</sub>O

**7k1** 3 CaSi<sub>2</sub> + 2 SbCl<sub>3</sub>  $\rightarrow$  6 Si + 2 Sb + 3 CaCl<sub>2</sub>

**7I1** 2 TiO<sub>2</sub> + B<sub>4</sub>C + 3 C  $\rightarrow$  2 TiB<sub>2</sub> + 4 CO

**7m1** 4 NH<sub>3</sub> + 5 O<sub>2</sub>  $\rightarrow$  4 NO + 6 H<sub>2</sub>O

7n1 SiF<sub>4</sub> + 8 NaOH  $\rightarrow$  Na<sub>4</sub>SiO<sub>4</sub> + 4 NaF + 4 H<sub>2</sub>O

**701** 2 NH<sub>4</sub>Cl + CaO  $\rightarrow$  2 NH<sub>3</sub> + CaCl<sub>2</sub> + H<sub>2</sub>O

**7p1** 4 NaPb + 4  $C_2H_5CI \rightarrow Pb(C_2H_5)_4 + 3 Pb + 4 NaCl$ 

**7q1** Be<sub>2</sub>C + 4 H<sub>2</sub>O  $\rightarrow$  2 Be(OH)<sub>2</sub> + CH<sub>4</sub>

**7r1** 4 NpF<sub>3</sub> + O<sub>2</sub> + 4 HF  $\rightarrow$  4 NpF<sub>4</sub> + 2 H<sub>2</sub>O

**7s1** 3 NO<sub>2</sub> + H<sub>2</sub>O  $\rightarrow$  2 HNO<sub>3</sub> + NO

**7t1** 3 LiAlH<sub>4</sub> + 4 BF<sub>3</sub>  $\rightarrow$  3 LiF + 3 AlF<sub>3</sub> + 2 B<sub>2</sub>H<sub>6</sub>

## Solubility and Precipitates

1. Use a Table of Solubilities to predict whether or not the following compounds are soluble in water.

Cal<sub>2</sub> – Yes

MgSO₄ – Yes

AIPO<sub>4</sub> – No

Pb(NO<sub>3</sub>)<sub>2</sub> - Yes

 $Ag_2SO_4 - No$ 

Ca(OH)<sub>2</sub> - No

- 2. Write formulas and predict solubility.
  - a. potassium phosphate K₃PO₄ Yes
  - b. calcium carbonate CaCO<sub>3</sub> No
  - c. copper (II) bromide CuBr<sub>2</sub> Yes
  - d. aluminium sulphide Al<sub>2</sub>S<sub>3</sub> No
- 3. Predict products, write balanced equations, and net ionic if precipitate forms.
  - a.  $Mg(NO_3)_2$  (aq) + 2 NaOH (aq)  $\rightarrow$   $Mg(OH)_2$  (s) + 2 NaNO<sub>3</sub> (aq)
- b. CuSO₄ (aq) + FeCl₃ (aq) → NR (no precipitate forms)
- c.  $K_2CO_3$  (aq) +  $Sr(OH)_2$  (aq)  $\rightarrow$   $SrCO_3$  (s) + 2 KOH (aq)
  - 4. Choose the ion that can selectively precipitate Pb<sup>2+</sup> from Ba<sup>2+</sup> and Ca<sup>2+</sup>.

    Answer: S<sup>2-</sup>

5.

In what order should the solutions Na2S, Na2CO3, and NaBr be added? NaBr, Na2S, Na2CO3 identify the three precipitates that form after the addition of those solutions. AgBr, CuS, CaCO3 which one cation will remain in solution? K +

## Types of Chemical Reaction

```
SYN 1.) 8 Fe (s) + S<sub>8</sub> (s) \rightarrow 8 FeS (s)

SR 2.) Zn (s) + Cu<sub>2</sub>SO<sub>4</sub> (aq) \rightarrow ZnSO<sub>4</sub> (aq) + 2 Cu (s)

DR 3.) AgNO<sub>3</sub> (aq) + NaBr (aq) \rightarrow NaNO<sub>3</sub> (aq) + AgBr (s)

DR 4.) FeCl<sub>3</sub> (aq) + 3 NH<sub>4</sub>OH (aq) \rightarrow Fe(OH)<sub>3</sub> (s) + 3 NH<sub>4</sub>Cl (aq)

DECOMP 5.) 2 H<sub>2</sub>O (l) \rightarrow 2 H<sub>2</sub> (g) + O<sub>2</sub> (g)

DR 6.) 2 Kl (aq) + Pb(NO<sub>3</sub>)<sub>2</sub> (aq) \rightarrow Pbl<sub>2</sub> (s) + 2 KNO<sub>3</sub> (aq)

DECOMP 7.) 2 HgO (s) \rightarrow 2 Hg (l) + O<sub>2</sub> (g)

SYN 8.) 4 Al (s) + 3 O<sub>2</sub> (g) \rightarrow 2 Al<sub>2</sub>O<sub>3</sub> (s)

DR 9.) MgCl<sub>2</sub> (aq) + 2 NH<sub>4</sub>NO<sub>3</sub> (aq) \rightarrow Mg(NO<sub>3</sub>)<sub>2</sub> (aq) + 2 NH<sub>4</sub>Cl (aq)

DECOMP 10.) 2 KClO<sub>3</sub> (s) \rightarrow 2 KCl (s) + 3 O<sub>2</sub> (g)

MISC 11.) 2 Na<sub>2</sub>O<sub>3</sub> (s) + 2 H<sub>2</sub>O (l) \rightarrow 4 NaOH (aq) + O<sub>2</sub> (g)
```

## **Energy Changes in Chemical Reactions**

- 1a.) Absorb
- 1b.) Give off
- 1c.) Step 2
- 2.) 432 kJ

Answer – The two reactions are the exact opposite of each other.

- 3.) Exothermic, as heat (energy) is produced.
- 4.) Endothermic, as heat (energy) is absorbed by the sugar to change phases.
- 5.) Losing energy.

Exothermic, as energy is released (lost).

6.) Products

Answer – The reactants gain energy to become high energy products.

7.) Remove energy from reactants

Answer – Lower energy products are formed.

8a.)  $\Delta H > 0$  for an endothermic reaction

Hreactants < Hproducts, so  $\Delta H = Hp - Hr$  is positive

8b.)  $\Delta H < 0$  for an exothermic reaction

Answer – Energy is released, so the enthalpy of products is less than that of reactants.

9.) Draw an energy diagram having  $\Delta H = +25 \ kJ$ .



10.) Draw and energy diagram having  $\Delta H = -50 \ kJ$ .



Reaction Proceeds →

Reaction Proceeds →

11. F-> G + 50 kJ

12. ΔH = +30 kJ

13.  $\Delta H$  =-25 kJ, reactant has more energy