Electric Vehicle Market Analysis

- Parv Kaul

Problem Statement

The task is to analyze the Electric Vehicles (EV) Market, focusing on segmentation to identify key market opportunities. The aim is to propose a feasible strategy to penetrate the EV market by targeting customer segments based on geographic, demographic, psychographic, and behavioral factors. The analysis considers EV types, region-wise preferences, pricing strategies, and customer behavior to understand market dynamics better.

- What type of EV the company will produce? EV bikes, scoties, hatchbacks, sedans, SUV etc.
- Who are the target customer? i.e. what is age group, income group, professionality, geography etc of the customer.

Data Collection

Data for this analysis was collected from multiple sources, including:

- Kaggle: Datasets providing information on EV specifications, market trends, and customer demographics.
- Web Surfing: Official government and industry reports, articles, and market insights sourced from platforms like PIB, EV Reporter, and industry blogs.

Datasets include:

- EV types, specifications, and manufacturers.
- Customer demographics, including age, income, and profession.
- Geographic data showing regional EV adoption and charging infrastructure distribution.

Da	taset	1 Previ	ew:								
Year Month_Name				Date		State	Vehicle_Class		1		
0	2014.	.0	jan	1/1/2014	Andhr	a Pradesh		ADAPTED	VEHICLE		
1	2014.	.0	jan	1/1/2014	Andhr	a Pradesh	AGR:	ICULTURAL	TRACTOR		
2	2014.	2014.0 jan		1/1/2014	/1/2014 Andhra			AMBULANCE			
3	2014.	2014.0 jan		1/1/2014	4 Andhra Pradesh		AR	ARTICULATED VEHICLE			
4	2014.	.0	jan	1/1/2014	Andhr	a Pradesh			BUS		
	Vehicl	le_Categ	gory Vel	nicle_Typ	e EV_S	ales_Quan	tity				
0		Others		Other	Others			0.0			
1	Others		Other	Others							
2	Others			Others			0.0				
3	Others			Other	S		0.0				
4	Bus			Bu	Bus						
Da	taset	2 Previ	.ew:								
	Age F	Professi	on Mari	rital Sta	tus	Educati	on No	o of Depe	ndents	1	
0	27	Salaried		Single Po		st Graduate		0			
1	35	Salaried		Marr	ied Po	Post Graduate		2			
2	45	Business		Married		Graduate		4			
3	41	Business		Marr	ied Po	Post Graduate			3		
4	31	Salaried		Married		st Graduate			2		
	Wife V	Vorking	Salar	ry Wife	Salary	Total Sa	lary	Make	Price		
0		No	80000	90	0	80	0000	i20	800000		
1		Yes 14000		0 600000		200	2000000		1000000		
2		No	180000	90	0	180	0000	Duster	1200000		
3		Yes 16000		600000		220	2200000		1200000		
4		Yes	180000	90	800000	260	0000	SUV	1600000		

Dataset Preview

Data Preprocessing

- 1. Data Cleaning: Handling missing values, duplicates, and irrelevant entries.
- 2. Feature Encoding:
 - a. Ordinal encoding for specifications like "PowerTrain."
 - b. Label encoding for categorical fields like "RapidCharge" and "Profession."
- 3. Scaling: StandardScaler was used to normalize features for better model performance.
- 4. Merging Datasets: Integrated key columns like Vehicle_Type, Age, Total Salary, and Profession for further analysis.

Exploratory Data Analysis (EDA)

1. Vehicle Type Distribution:

- a. EVs are categorized into two-wheelers, three-wheelers, four-wheelers, and buses.
- b. Visualization shows a higher concentration of two-wheelers and four-wheelers.

2. Geographic Distribution:

- a. States like Maharashtra, Karnataka, and Tamil Nadu exhibit the highest EV adoption rates.
- b. Charging infrastructure is concentrated in urban areas, leaving rural regions underserved.

3. Demographics:

- a. Younger customers (aged 25–35) are more likely to adopt EVs due to environmental awareness and affordability.
- b. Higher-income groups (earning above ₹10 LPA) dominate EV ownership.

4. Customer Professions:

a. A significant portion of customers are professionals in IT and business sectors.

Segment Extraction

Using K-Means Clustering, the dataset was segmented based on:

- 1. Demographic Features: Age, profession, and income.
- 2. Geographic Features: State and urban/rural classification.
- 3. Behavioral Features: Vehicle type preference, charging needs, and price sensitivity.

Optimal Clusters Identified:

• Four segments based on the elbow method, each showing distinct preferences and purchasing behaviors.

Cluster Sizes:
Cluster
1 31
2 24
0 22
3 22
Name: count, dtype: int64

1. Psychographic Factors:

- a. Comfort and Value for Money: High priorities for customers.
- b. Customers value vehicles with fast charging and long range over top speed.

2. Behavioral Factors:

- a. EVs in the price range of ₹20–30 Lakh, with acceleration between 7.5–10 seconds, attract most buyers.
- b. Efficiency and affordability are critical.

3. Geographic Factors:

a. Focus on Maharashtra, Karnataka, Tamil Nadu, and Rajasthan due to higher EV adoption and established charging networks.

Market Mix:

- Product: Emphasize vehicles with superior comfort, efficiency, and competitive pricing.
- **Price:** Introduce a market-oriented pricing strategy, leveraging government subsidies.
- **Promotion:** Use online platforms, public events, and strategic advertising to build awareness.
- **Place:** Focus initially on urban areas before expanding into semi-urban and rural markets.

Potential Customer Base in the Early Market and Profit Estimation

Using demographic and income group data, the following estimations were derived for the early market:

- Potential Customer Base: Approximately 2 million customers fit the target segment, which includes individuals in urban areas, earning above ₹10 LPA, and seeking EVs priced in the ₹1.5–2 Lakh range.
- Target Price Range: Average selling price estimated at ₹25 Lakh.
- Potential Profit:

Profit = Potential Customer Base X Average Price Profit = 2,000,000 X 150,000 = 30,000 Crore

This figure highlights the lucrative potential of targeting early adopters in business-centric cities.

The Most Optimal Market Segments

Based on market research and segmentation, the most optimal market segments to launch include:

- **Demographic Segmentation:** Focus on the 25–40 age group, with a preference for professionals in IT, business, and entrepreneurial roles.
- Geographic Segmentation: Start with urban areas in Maharashtra, Karnataka, Tamil Nadu, and Rajasthan, leveraging higher EV adoption and robust infrastructure in these states.
- **Behavioral Segmentation:** Target customers who value:
 - Long Range in Single Charge.
 - Competitive pricing in the ₹1.5 2 Lakh range.
 - o Efficient charging solutions.

This segmentation ensures a focused strategy, maximizing market penetration and customer satisfaction

GitHub Profile Link

The code, datasets, and analysis have been well-documented and are available on GitHub. Please visit the following link for access:

https://github.com/parvkaul09/EV-Market-Analysis

This repository contains:

- Python scripts for data preprocessing, visualization, and clustering.
- Detailed explanations of segmentation techniques.
- Raw and processed datasets for reproducibility.
- Visualizations and additional insights from the analysis.