NETWORK ARCHITECTURE SEARCH & COMPRESSION

Rundong Li
ShanghaiTech University

PAPERS TODAY

- Differentiable methods:
 - DARTS: Differentiable Architecture Search [arXiv]
 - Differentiable Fine-grained Quantization [arXiv]
 - You Only Search Once: Single Shot Neural Architecture Search via Direct Sparse Optimization [arXiv] [OpenReview]
 - Neural Architecture Optimization [arXiv]
- RL based methods:
 - HAQ: Hardware-Aware Automated Quantization [arXiv]

ARCHITECTURE SEARCH (NAS)

REINFORCEMENT LEARNING

EVOLUTIONARY APPROACH

 $\boldsymbol{x}_o^{(1)} = 0\text{-}01\text{-}000\text{-}0010\text{-}00101\text{-}0$

Given computation graph node, Agent (top, usually LSTM) predicts the preceding node(s) and operation type. Sampled ops and edges form a building cell (bottom).

Encoding building blocks into genotype, then apply evolution operations, finally decode back to phenotypes (building block).

教练,我想用 SGD...

DIFFERENTIABLE ARCHITECTURE SEARCH (DARTS)

Rectangles: intermediate feature maps;

Arrows: operations (e.g. Conv3x3, DepthWiseConv3x3, Identity...);

Thickness: architecture parameters.

DARTS: ARCHITECTURE

$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
s.t.
$$w^*(\alpha) = \operatorname{argmin}_{w} \ \mathcal{L}_{train}(w, \alpha)$$

- α : architecture parameter
- w:model parameter (weights)
- $w^*(\alpha)$: optimal weights on given architecture

DARTS: OPTIMIZATION

Algorithm 1: DARTS – Differentiable Architecture Search

Create a mixed operation $\bar{o}^{(i,j)}$ parametrized by $\alpha^{(i,j)}$ for each edge (i,j) while not converged do

- 1. Update weights w by descending $\nabla_w \mathcal{L}_{train}(w, \alpha)$
- 2. Update architecture α by descending $\nabla_{\alpha} \mathcal{L}_{val}(w \xi \nabla_{w} \mathcal{L}_{train}(w, \alpha), \alpha)$

Replace $\bar{o}^{(i,j)}$ with $o^{(i,j)} = \operatorname{argmax}_{o \in \mathcal{O}} \alpha_o^{(i,j)}$ for each edge (i,j)

- It's prohibitive to optimize: $w^*(\alpha)$ varies whenever α updated;
- Approximation: relax $w^*(\alpha)$ into one-step update of w on training set: $w' = w \varepsilon \nabla_w \mathcal{L}_{train}(w, \alpha)$;
- Problem: when taking derivative w.r.t. α : first derivative $\frac{\partial L}{\partial w'}$, then $\frac{\partial w'}{\partial \alpha}$...
- WTF, it's Hessian...

DARTS: OPTIMIZATION

,
$$w^+ = w + \epsilon \nabla_{w'} \mathcal{L}_{val}(w', \alpha)$$
 and $w^- = w - \epsilon \nabla_{w'} \mathcal{L}_{val}(w', \alpha)$. Then:

$$\nabla^2_{\alpha, w} \mathcal{L}_{train}(w, \alpha) \nabla_{w'} \mathcal{L}_{val}(w', \alpha) \approx \frac{\nabla_{\alpha} \mathcal{L}_{train}(w^+, \alpha) - \nabla_{\alpha} \mathcal{L}_{train}(w^-, \alpha)}{2\epsilon}$$

- It's prohibitive to optimize: $w^*(\alpha)$ varies whenever α updated;
- Approximation: relax $w^*(\alpha)$ into one-step update of w on training set: $w' = w \varepsilon \nabla_w \mathcal{L}_{train}(w, \alpha)$;
- Problem: when taking derivative w.r.t. α : first derivative $\frac{\partial L}{\partial w'}$, then $\frac{\partial w'}{\partial \alpha}$...
- WTF, it's Hessian...

DARTS: RESULTS

On CIFAR 10: the normal cell (top) and the
reduction cell (bottom, with stride 2).

On CIFARIO	Top-I Acc
Paper (2 nd order)	97.17 ± 0.06
Paper (Ist order)	97.06
Code README	97.24 ± 0.9
Official code	97.14

DARTS: PROS AND CONS

PROS.

- Fast to converge: take ~18
 hours on single 1080Ti (RL
 methods usually take thousands
 GPU hours);
- Intuitive architecture and learning process;

CONS.

- Does the 2nd derivative really necessary? (no 1st vs. 2nd reports on ImageNet)
- Only able to search small building blocks (takes ~IIG GRAM when searching CIFARIO);
- Not able to search blocks with different channel numbers;

YOU ONLY SEARCH ONCE

- a) NAS as pruning: prune the completely connected block;
- b) In the search process, jointly optimize the weights and the scale λ associated with each edge. Note that λ is sparse regularized (L1) during training;
- c) The final model after removing useless connections and operations;

DIFFERENTIABLE FINE-GRAINED QUANTIZATION

$$q_i = \frac{\sum_{j=0}^{1} exp(\alpha_{i_j}) \mathcal{B}(q_{i_j})}{\sum_{j=0}^{1} exp(\alpha_{i_j})},$$

$$\min_{\alpha} \mathcal{G}(\alpha),$$

s.t.
$$\mathcal{L}_{val}(w^*, \alpha) - \theta \leq 0$$
,

$$w^* = \arg\min_{w} \mathcal{L}_{train}(w^*, \alpha).$$

- Almost identical structure to DARTS;
- Focus on minimize model size $G(\alpha)$;
- Candidate bit-width: binary and 8-bits on VGG-16;

NEURAL ARCHITECTURE OPTIMIZATION

- Encoder (E, vanilla LSTM): string description of architecture $\mathcal X$ into continuous embedding ε ;
- Predictor (P, regression FC net): predict performance s from embedding ε ;
- Take **SGD** on P's gradient to get optimal ε^* !
- Decoder (D, attention LSTM): mapping ε^* back to architecture \mathcal{X}^* ;

HAQ: HARDWARE AWARE AUTOMATED QUANTIZATION

HAQ: HARDWARE AWARE AUTOMATED QUANTIZATION

Observations (Conv and FC layers):

$$O_k = (k, c_{\text{in}}, c_{\text{out}}, s_{\text{kernel}}, s_{\text{stride}}, s_{\text{feat}}, n_{\text{params}}, i_{\text{dw}}, i_{\text{w/a}}, a_{k-1})$$

$$O_k = (k, h_{\text{in}}, h_{\text{out}}, 1, 0, s_{\text{feat}}, n_{\text{params}}, 0, i_{\text{w/a}}, a_{k-1})$$

• Actions: continues bit-width factor a_k ,

$$b_k = \text{round}(b_{\min} - 0.5 + a_k \times (b_{\max} - b_{\min} + 1))$$

- Rewards: accuracy drop and real hardware feedback,
 - "If the current policy exceeds our resource budget (on latency, energy or model size), we will sequentially decrease the bitwidth of each layer until the constraint is finally satisfied."