Q1 1 Point
Which of the following best describes the sample proportion (\hat{p})?
O It is the standard deviation of the sample
It is the proportion of a characteristic in a sample
O It is a fixed value for all samples of the same size
O It is always equal to the population proportion
Q2 1 Point
When estimating a population proportion, which of the following serves as a point estimate?
O Population proportion (p)
O Standard Error (SE)
$lacktriangle$ Sample proportion (\hat{p})
\bigcirc Sample mean ($ar{x}$)
Q3 1 Point
The Central Limit Theorem can apply to:
Only the sample proportion
Both the sample mean and the sample proportion
O Neither the sample mean nor the sample proportion
Only the sample mean

Q4

1 Point

If a sample of 200 people is taken and 15% say they are left-handed, does this sample meet the success/failure condition for applying the Central Limit Theorem to proportions?

- Yes, but only if the population is less than 2000
- \bigcirc No, because 200×0.15 is less than 30
- lacktriangle Yes, because 200 imes 0.15 and 200 imes 0.85 are both greater than 10
- O No, because the sample size is too large

Q5

1 Point

How is the width of a confidence interval affected by the sample size?

- It increases as the sample size increases
- It decreases as the sample size increases
- O It is not affected by the sample size
- The relationship between sample size and confidence interval width cannot be determined

Q6

1 Point

Which of the following steps is NOT a part of constructing a confidence interval?

- Choosing a sample size
- Finding the z-score corresponding to the chosen confidence level
- Calculating the sample proportion
- Ensuring that the Central Limit Theorem conditions are met

1 Point
Compared to a 95% confidence interval, a 99% confidence interval is:
Narrower and reflects less certainty
Narrower and reflects less certainty
Wider and reflects greater certainty
 Wider and reflects less certainty
Q8 1 Point
In the context of constructing a confidence interval, why is it important to ensure that the conditions for the Central Limit Theorem are met?
O It ensures that the population proportion is normally distributed
O It decreases the standard error
\bigcirc It guarantees that the sample proportion will equal the population proportion
It ensures that the sample proportion is nearly normally distributed

Q7