

Flip-flop Conversion

Presented by Nabanita Das

FLIP FLOP CONVERSIONS

- SR to D
- SR to JK
- SR to T
- JK to T
- JK to D
- JK to SR

- D to T
- D to SR
- T to D

CONVERSION OF FLIP FLOPS

The conversion from one type of flip flop to the other (say SR FF to JK FF) needs a systematic approach using the excitation tables and K map simplifications.

General model used to convert one type of FF to the other

PROCEDURE FOR CONVERSION

- 1. Draw the block diagram of the target flip flop from the given problem.
- 2. Write truth table for the target flip-flop.
- 3. Write excitation table for the available flip-flop.
- 4. Draw k-map for target flip-flop.
- 5. Draw the block diagram.

SR(Available) to D(Target) Flip flop Conversion

Truth table of D Flip flop

Input	Present state	Next State
D	Qn	Qn+1
0	0	0
0	1	0
1	0	1
1	1	1

Flip-fle	p inputs	Present output	Next output
S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	x

Excitation table SR Flip Flop

Present state	Next state	Flip flop Inputs	
Qn	Qn+1	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	Х	0

SR to D Flip flop Conversion

Conversion Table

Input	Present state	Next state	Flip flop Inputs	
D	Qn	Qn+1	S	R
0	0	0	0	X
0	1	0	0	1
1	0	1	1	0
1	1	1	X	0

K- MAP SIMPLIFICATION

SR to D Flip Flop

SR(Available) to JK(Target) Flip-Flop

Truth table of JK Flip flop

Inp	out	Present State	Next State
J	К	Q n	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Excitation table SR Flip Flop

Present state	Next state	Flip flop Inputs		
Q n	Qn+1	S	R	
0	0	0	Х	
1	0	0	1	
0	1	1	0	
1	1	X	0	

Flip-flo	p inputs	Present output	Next output
S	R	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	x
1	1	1	x

SR(Available) to JK(Target) Flip-Flop

Conversion Table

Inp	out	Present State	Next State	Flip-F	lop Inputs
J	К	Qn	Qn+1	S	R
0	0	0	0	0	X
0	0	1	1	X	0
0	1	0	0	0	Χ
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	X	0
1	1	0	1	1	0
1	1	1	0	0	1

SR to JK Flip- Flop

K-map Simplification

Logic Diagram (SR to JK)

SR(Available) to T(Target) Flip Flop

Conversion Table

Input	Present state	Next state	Flip flop Inputs	
Т	Qn	Qn+1	S	R
0	0	0	0	X
0	1	1	X	0
1	0	1	1	0
1	1	0	0	1

K- MAP SIMPLIFICATION

Logic Diagram (SR to T)

JK(Available) to T (Target) Flip-Flop

Input	Present state	Next state
Т	Qn	Qn+1
0	0	0
0	1	1
1	0	1
1	1	0

Flip-fl	op inputs	Present output	Next output
J	K	Q_{n}	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Excitation Table of JK Flip-Flop

Qn	Qn+1	J	K
0	0	0	X
0	1	1	Х
1	0	Х	1
1	1	Х	0

JK(Available) to T (Target) Flip-Flop

Input	Present state	Next state	Flip flop	o Inputs
Т	Qn	Qn+1	J	К
0	0	0	0	X
0	1	1	X	0
1	0	1	1	Х
1	1	0	Х	1

K- MAP SIMPLIFICATION

Logic Diagram (JK to T) Flip- Flop

JK(Available) to D(Target)Flip-flop

Input	Present state	Next state
D	Q n	Qn+1
0	0	0
0	1	0
1	0	1
1	1	1

Flip-f	lop inputs	Present output	Next output
J	K	Q_n	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Excitation Table of JK Flip-Flop

Qn	Qn+1	J	K
0	0	0	X
0	1	1	X
1	0	Х	1
1	1	Х	0

JK(Available) to D(Target)Flip-flop

Conversion Table

Input	Present state	Next state	Flip flop	o Inputs
D	Qn	Qn+1	J	К
0	0	0	0	Х
0	1	0	X	1
1	0	1	1	Х
1	1	1	Х	0

K- MAP SIMPLIFICATION

Logic Diagram (JK to D)

D(Available) to T(Target)Flip-Flop

Input	Present state	Next state
T	Qn	Qn+1
0	0	0
0	1	1
1	0	1
1	1	0

Excitation Table of D Flip-Flop

Qn	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1

D(Available) to T(Target)Flip-Flop

Conversion Table

Input	Present State	Next state	Flip flop Inputs
Т	Qn	Qn+1	D
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	O

K- MAP SIMPLIFICATION

Logic Diagram(D to T) Flip-Flop Conversion

T (Available) to D(Target) Flip-Flop

Input	Present state	Next state
D	Q n	Qn+1
0	0	0
0	1	0
1	0	1
1	1	1

Excitation Table of T Flip-Flop

Qn	Qn+1	T
0	0	0
0	1	1
1	0	1
1	1	0

T (Available) to D(Target) Flip-flop

Conversion Table

Input	Present state	Next state	Flip flop Inputs
D	Qn	Qn+1	Т
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

Logic Diagram(T to D) Flip-Flop Conversion

JK(Available) to SR(Target)Flip-flop

Inp	out	Present State	Next State
S	R	Qn	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

Flip	flop inputs	Present output	Next output	
J	K	Q_n	Q_{n+1}	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	0	

Excitation Table of JK Flip-Flop

Qn	Qn+1	J	K
0	0	0	X
0	1	1	X
1	0	Х	1
1	1	Х	0

JK(Available) to SR(Target)Flip-flop

Conversion Table

Input		Present State	Next State	Flip-Flop Inputs	
S	R	Q n	Qn+1	J	К
0	0	0	0	0	Х
0	0	1	1	Х	0
0	1	0	0	0	Х
0	1	1	0	Х	1
1	0	0	1	1	X
1	0	1	1	Х	0
1	1	0	X	Х	Х
1	1	1	X	Х	Х

JK(Available) to SR(Target)Flip-flop conversion

JK to SR Flip-Flop Logic Diagram

D(Available) to SR(Target) Flip-Flop

Input		Present State	Next State
S	R	Q n	Qn+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

Excitation Table of D Flip-Flop

Q n	Qn+1	D
0	0	0
0	1	1
1	0	0
1	1	1

D(Available) to SR(Target) Flip-Flop

Conversion Table

Input		Present State	Next State	Flip-Flop Inputs
S	R	Qn	Qn+1	D
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	X	Х
1	1	1	X	X

D to SR Flip Flop

K- MAP SIMPLIFICATION

