

SEMESTER TWO

MATHEMATICS METHODS UNITS 1 and 2

2017

SOLUTIONS

Calculator-free Solutions

1.

Origin is at
$$(2, 8)$$

Radius = $\sqrt{(2-6)^2 + (8-8)^2}$
= 4 $\sqrt{(x-2)^2 + (y-8)^2} = 16$ $\sqrt{(2-6)^2 + (8-8)^2}$

2. (a)
$$\sin 2x = \frac{\sqrt{3}}{2}$$

$$\therefore 2x = \frac{\pi}{3}, \frac{2\pi}{3}, -\frac{4\pi}{3}, -\frac{5\pi}{3}$$

$$\therefore x = \frac{\pi}{6}, \frac{\pi}{3}, -\frac{2\pi}{3}, -\frac{5\pi}{6}$$

[4] (b) $\cos x$ cannot be more than 1.

3. (a)
$$\frac{dy}{dx} = \frac{9}{5}kx^2$$

(a)
$$y = 3 - \frac{3x^2}{2} + \frac{x^{-\frac{1}{2}}}{2}$$

(b) $y = 3 - \frac{3x^2}{2} + \frac{x^{-\frac{1}{2}}}{2}$
 $\frac{dy}{dx} = -3x - \frac{1}{4x^{\frac{3}{2}}}$

(b)
$$\frac{dy}{dx} = -3x - \frac{1}{3}$$
(c)
$$y = 4x^3 - 9x$$

$$\frac{dy}{dx} = 12x^2 - 9$$

$$\checkmark$$
[7]

4. $y = -2^{-x} - 1$ $y = 2^x + 3$ $y = 2^{x} - 1$ $y = \left(\frac{1}{2}\right)^x$ **√√√√** [4]

С D Α В 5. (a) (i)

$$(2^{4} \times 3^{4})^{\frac{1}{4}}$$

$$= 6$$

$$\frac{(ab^{2}c^{-3})^{2}\sqrt{a^{4}b^{-2}c^{6}}}{a^{3}b^{2}c}$$

$$= \frac{ab}{c^{4}}$$

$$\checkmark \checkmark$$

(b) (i)
$$\frac{2^{4x-4}}{2^4} = 2^{-3}$$

$$2^{4x} = 2^{-3}$$

$$4x = -3$$

$$x = -\frac{3}{4}$$
(ii) $(2^x - 8)(2^x - 1) = 0$

$$2^x = 8 \text{ or } 2^x = 1$$

$$x = 3 \text{ or } x = 0$$
(iii) 0.2
(iii) 0.4
(iii) 0.7
(b) ${}^5C_2 \times 2^3 \times 3^2 = 720$

7. (a) (i) $\int x^2 + 1 dx = \frac{x^3}{3} + x + c$
(ii) $\int x^2 + 1 dx = \frac{x^3}{3} + x + c$
(b) $y = 3x + \frac{x^2}{2} - \frac{2x^5}{5} + c$

$$2 = 3 + \frac{1}{10} - \frac{7}{10} + c$$

$$x = -\frac{11}{10}$$

$$y = -\frac{2x^5}{5} + \frac{x^2}{2} + 3x - \frac{11}{10}$$
(b) $\frac{6^4}{2}(4 - b) = 0$

$$b = 4$$
(c) $2x^2(x - 3) = 0$

$$x = 0 \text{ or } x = 3 \text{ (} x = 0 \text{ is not a minimum)}$$

$$x = 3 \quad y = \frac{3^4}{2} - 2(3^3)$$

$$(3, -\frac{27}{2})$$
(c) Stationary point at $x = 0$, $p'(0) = 0$

$$p''(x) = 6x^3 - 12x = 0$$

$$6x(x - 2) = 0$$

$$x = 0 \quad p'(x) = p''(x) = 0$$
Horizontal point of inflection or sign table:
$$x < 0 \quad x = 0 \quad 0 < x < 3 \quad x = 3 \quad x > 3$$

p(x)	↓	\leftrightarrow	1	\leftrightarrow	1
p'(x)	-	0	-	0	+

9. (a)
$$a_1 = 3$$

 $a_2 = 6$
 $a_3 = 10$
(b) $T_{n+2} = T_n + T_{n+1}$ $T_1 = 1$ $T_2 = 1$

Calculator-assumed Solutions

10. (a)
$$x^2 = 4x^2 + 9 - 2(2x)(3)\cos Q$$

 $\frac{-3(x^2 + 3)}{-12x} = \cos Q$
 $\cos Q = \frac{x^2 + 3}{4x}$
(b) $\cos Q = 0.9125$
 $Q = 24.1468^{\circ}$
Area = $\frac{1}{2}(3)(4.8)\sin 24.1468$
 $= 2.945 \text{ units}^2$

11. (a)
$$-\frac{b}{2a} = -\frac{2}{2a} = -\frac{1}{a}$$

$$y\left(-\frac{1}{a}\right) = a - \frac{1}{a} \text{ or } \frac{a^2 - 1}{a}$$

$$\left(-\frac{1}{a}, \frac{a^2 - 1}{a}\right)$$
Turning point
$$\sqrt{a}$$

(b)
$$b^2 - 4ac > 0$$

 $4 - 4a^2 > 0$ \checkmark
 $a^2 < 1$
 $-1 < a < 1$ \checkmark [4]

13. (a)
$$C(t) = \frac{t^3}{3} - \frac{t^2}{2} - 12t + 105$$

$$C(2) = 81.7_{cents}$$
(b) $(t-4)(t+3) = 0$

$$t = 4 \text{ weeks}$$

$$C(4) = 70.3_{cents}$$
(c) Week 6.8 therefore during week 7

[8]

	00.00		
14.	(a)	$d = k\sqrt{h}$	
	(0.)	$4665 = k\sqrt{1.7}$ ∴ $k = 3577.89 \approx 3578$	✓
		$d = 3577.89\sqrt{(1.76 + 85)}$	
		$d = 33\ 326.3\ m$ $d \approx 33\ km$	✓ ✓
	(b)	$d = 3577.89\sqrt{0.8h}$, ✓
	(6)	$d = 3577.89 (0.8944) \sqrt{h}$	
		d decreases by 10.6%.	√ [5]
15.	(a)	(i) $T_{n+1} = T_n + \sqrt{2}$ $T_1 = 3 - \sqrt{2}$	√ √ √
	(b)	(ii) $T_{n+1} = 3 T_n T_1 = -2$ $T_n = 17 + (n-1)(3)$	↓ ↓
	,	$T_{25} = 17 + (24)(3)$	/ [0]
		= 89	✓ [6]
16.	(a)	$h \rightarrow 0$ Limit =	
		0.1 3.05	
		0.01 3.005 0.0001 3.00005	
		0.000001 3.0000005	✓ ✓
			✓
	(b)	$f(x) = 3x^2$ f'(x) = 6x	✓ ✓
	(c)	4x + k = 0	✓
		4(3) + k = 0 : $k = -12$	✓
		$y = \int 4x + 1 \ dx$	
	(d)	$y = 2x^2 + x + c$	√.
		$2(1)^{2} + 1 + c = -2$ $c = -5$	·
		$c = -5$ $y = 2x^2 + x - 5$	/ [0]
			✓ [9]
		$\frac{\sqrt{1.44 \times 10^6}}{(2 \times 10^{-2})^4}$	
17.	(a)	$(2 \times 10^{-2})^4$	
		$=\frac{1.2\times10^3}{1.6\times10^{-7}}$	
		1.6×10^{-7} = 0.75×10^{10}	√
		$= 0.75 \times 10^{9}$	∨ ✓
	(b)	(i) $1.5 \times 10^4 = 1200(r)^6$	
	(-)	$P_0 = 1200$	√
		r = 1.5234 (ii) $P = 187500$	✓
		(iii) $t = 15.987$	√
		15 hours and 50 minutes	√ [Q]

15 hours and 59 minutes.

18. (a)

(b)

Α В С

(iii)

(ii) (i)

[6]

19. (a)

n = 13(i) $T_{13} = 26 + (12)(2)$ = 50 seats

(ii) n = 23 Row W

n = 24(iii)

Sum of seats = 1176

205 = 5(2a + 9d)(b)

710 = 10(2a + 19d)

a = 7 d = 3 $S_{30} = 15(14 + 29(3))$

= 1515

a = 254 d = -3 $T_n = 176$ 176 = 254 + (n-1)(-3)

n = 27

 $S_{\rm n} = \frac{27}{2}(254 + 176)$

= 5805

[10]

20. (a)

(b)

 $V(x) = 3x(90 - 3x)\left(\frac{x}{3}\right)$

 $=x^2(90-3x)$

 $=90x^2-3x^3$

 $V'(x) = 180x - 9x^2$

9x(20-x)=0

x = 0 or x = 20

 $V''(x) = 180 - 18x \ V''(20) < 0 : Maximum$

Maximum volume is $12000 m^3$

When length = 60 m, width = 30 m and depth = 6.67 m

[6]

21. (a) (i)
$$A_{1} = \frac{3}{2} \quad A_{2} = \frac{9}{2} \quad A_{3} = \frac{27}{2}$$

(ii) $A_{n-1} = 3 \quad A_{n} \quad A_{1} = 2$

(iii) $S_{29} = 6.356 \times 10^{11}$

(b) (i) $T_{n} = 2 \quad T_{n-1} \quad T_{n} = 6$
 $T_{12} = 24 \quad 576 \text{ users}$

(ii) After 18 months

(Or during the 18^{m} month)

(Goodbood)

1.15

During the 20^{m} month

(c) $S_{m} = \frac{45}{1-r}$

$$\frac{45}{100} + \left(1 - \frac{1}{100}\right)$$

$$\frac{45}{2} = \frac{99}{9}$$

$$= 11$$

22. (a) $S = -\frac{1}{2} + t^{2} + 20t$
(b) $S_{m} = \frac{1}{2} + t^{2} + 20t$
(c) $S_{m} = \frac{1}{2} + t^{2} + 20t$
(d) $S_{m} = \frac{3}{2} + 2t + 20$
(e) $S_{m} = \frac{3}{2} + 2t + 20 = 0$

$$S_{m} = \frac{3}{2} + 2t + 20 = 0$$

$$S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$$
(e) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(f) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(g) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(h) $S_{m} = \frac{1}{3} \cdot 2x - 6 = \frac{1}{3}$
(

End of Questions