Formal Verification of Sequential Galois Field Arithmetic Circuits using Algebraic Geometry

Xiaojun Sun¹, Priyank Kalla¹, Tim Pruss¹, Florian Enescu²

¹Electrical and Computer Engineering, University of Utah, Salt Lake City, USA ²Mathematics & Statistics, Georgia State University, Atlanta, USA

{xiaojuns, kalla, tpruss}@ece.utah.edu, fenescu@gsu.edu

Session 12.2 - Long Presentation

Motivation and Basic Idea

- Target problems
 - Given:
 - A Galois field (GF) and normal basis representation
 - A word level specification polynomial
 - A sequential implementation of polynomial computation
 - Aim: perform property checking on the sequential implementation
- Focus
 - Analyze and abstract the function of sequential GF arithmetic circuits
 - Implicit word-level finite state machine (FSM) traversal
- Motivation
 - Data flow = word level info
 - Conventional techniques are bit-level
 - Gröbner basis theory can assist bit-to-word conversion
 - Word level \rightarrow implicit \rightarrow efficient!

Outline

- Background application
- Preliminaries
 - Field, polynomial ideal
 - Abstraction using Gröbner basis
 - Normal basis representation
- Methodology
 - Basic algorithm
 - Improving our approach
- Experiment results
- Conclusion

Background

- ullet Cryptography: polynomial computation over \mathbb{F}_{2^k}
 - Algebraic nature (GF) of the computation (polynomial)
 - Datapath size k: very large
- Verification of sequential circuits is needed
 - Verify sequential GF circuits designed using normal basis
 - Complicated circuits need to be verified
 - Sequential circuits bounded by k clock cycles
 - Example: [Reyhani-Masoleh and Hasan, Sequential normal basis multipliers, Trans on Computer, 2005]

Our approach vs Conventional approach

- Conventional: explicitly unroll k time-frames
 - Bit-blasting!
- New: Implicitly unroll the finite state machine (FSM)
 - Update the spec poly for k times $(R = \mathcal{F}(A, B))$ when unrolling
 - $R_1 = \mathcal{F}(A_{init}, B_{init}), R_2 = \mathcal{F}(A_1, B_1) = \mathcal{F}^2(A_{init}, B_{init}), \cdots, R_k = \mathcal{F}^k(A_{init}, B_{init}) = A_{init} \cdot B_{init}$

Illustration of implicit unrolling

- Model: restricted Moore finite state machine
 - Some sequential arithmetic circuits will give results after running for k clock cycles
 - The initial operands are preloaded in register files
- State transitions on this model:

$$R_k = Tr(R_{k-1}) = Tr(Tr(\cdots Tr(R_{init})\cdots)) = Tr^k(R_{init})$$

Galois Field Overview

Galois field(GF) \mathbb{F}_q is a finite field with q elements, $q = p^k$

- Commutative Ring with unity, associate, distributive laws
- Closure property: $+, -, \times$, inverse (\div)

Our interest: $\mathbb{F}_q = \mathbb{F}_{2^k}$, i.e. $q = 2^k$

- \mathbb{F}_{2^k} : k-dimensional extension of \mathbb{F}_2
 - k-bit bit-vector, AND/XOR arithmetic

To construct \mathbb{F}_{2^k}

- $\bullet \ \mathbb{F}_{2^k} \equiv \mathbb{F}_2[x] \ (\mathsf{mod} \ P(x))$
- $P(x) \in \mathbb{F}_2[x]$, irreducible polynomial of degree k
- $P(\alpha) = 0$, $\alpha = Primitive element$

Normal basis representation for sequential circuits

- Normal basis representation: $A(a_0, \ldots, a_{k-1}) = \sum_{i=0}^{k-1} a_{n(i)} \beta^{2^i}$
- Normal element: $\beta = \alpha^t$
- Squaring of elements represented in normal bases can be implemented simply by a cyclic right-shift operation.

Example

For $a, b \in \mathbb{F}_{2^k}$, $(a+b)^2 = a^2 + b^2$. Applying this rule for element squaring:

$$B = b_0 \beta + b_1 \beta^2 + b_2 \beta^4 + \dots + b_{k-1} \beta^{2^{k-1}}$$

$$B^2 = b_0^2 \beta^2 + b_1^2 \beta^4 + b_2^2 \beta^8 + \dots + b_{k-1}^2 \beta^{2^k}$$

$$= b_{k-1} \beta + b_0 \beta^2 + b_1 \beta^4 + \dots + b_{k-2} \beta^{2^{k-1}}$$

as $\beta^{2^k}=\beta$ by applying Fermat's little theorem to \mathbb{F}_{2^k} , and $b_i^2=b_i$. It is an 1-bit cyclic right-shift \to implemented efficiently with sequential circuit

Verification of a sequential GF multiplier (Normal basis)

SPEC: $R = A_{init} \cdot B_{init} \pmod{P(\alpha)}$ after k clock cycles

Figure: A 3-bit RH-SMPO and its Moore FSM model

Algebraic Geometry Terminology

Let
$$\mathbb{F}_q = GF(2^k)$$
:

- ullet $\mathbb{F}_q[x_1,\ldots,x_n]$: ring of all polynomials with coefficients in \mathbb{F}_q
- Given a set of polynomials:
 - $f, f_1, f_2, \ldots, f_s \in \mathbb{F}_q[x_1, \ldots, x_n]$
 - Find solutions to $f_1 = f_2 = \cdots = f_s = 0$
- Variety: Set of ALL solutions to a given system of polynomial equations: $V(f_1, \ldots, f_s)$
 - In $\mathbb{R}[x, y]$, $V(x^2 + y^2 1) = \{all \ points \ on \ circle : x^2 + y^2 1 = 0\}$
 - In $\mathbb{R}[x]$, $V(x^2 + 1) = \emptyset$
 - In $\mathbb{C}[x]$, $V(x^2 + 1) = \{(\pm i)\}$
- Variety depends on the ideal generated by the polynomials.
- Reason about the Variety by analyzing the Ideals

Ideals and Gröbner basis (GB)

Definition

Ideals of Polynomials: Let $f_1, f_2, \ldots, f_s \in \mathbb{F}_q[x_1, \ldots, x_d]$. Let

$$J = \langle f_1, f_2, \dots, f_s \rangle = \{ f_1 h_1 + f_2 h_2 + \dots + f_s h_s : h_i \in \mathbb{F}_q[x_1, \dots, x_d] \}$$

 $J = \langle f_1, f_2, \dots, f_s \rangle$ is an ideal generated by f_1, \dots, f_s and the polynomials are called the generators.

- Different generators can generate the same ideal
- $\bullet \langle f_1, \cdots, f_s \rangle = \cdots = \langle g_1, \cdots, g_t \rangle$
- Some generators are a "better" representation of the ideal
- A (reduced) **Gröbner basis** is a "canonical" representation of an ideal

Given $F = \{f_1, f_2, \dots, f_s\}$, Compute a GB (using Buchberger's algorithm) $G = \{g_1, g_2, \dots, g_t\}$, such that $I = \langle F \rangle = \langle G \rangle$

$$V(F) = V(G)$$

Use of Elimination Term Ordering

- GB computation requires a term order
- Let ideal $I = \langle f_1, f_2, f_3 \rangle$ where
 - $f_1 = x^2 + y + z 1$
 - $f_2 = x + y^2 + z 1$
 - $f_3 = x + y + z^2 1$
- The Gröbner basis of I with lex order (x > y > z) is
 - $g_1 = x + y + z^2 1$
 - $g_2 = y^2 y z^2 + z$
 - $g_3 = 2yz^2 + z^4 z^2$
 - $g_4 = z^6 4z^4 + 4z^3 z^2$
- g_2, g_3 and g_4 : only contain variables y and z
 - Eliminates variable $x \Leftrightarrow \exists_x$ in Boolean formula!
- ullet g₄: only contains the variable z o eliminates x and y

Abstraction Term Ordering[Pruss et al, Abstraction using GB, DAC'14]

- Impose a lex term order > on the polynomial ring such that circuit-variables including $a_0, \ldots, a_{k-1}, z_0, \ldots, z_{k-1} > Z > A$.
- This elimination term order >: Abstraction Term Order (ATO).
- ullet Compute a Gröbner basis G of ideal $(J+J_0)$ using >
 - G will contain a polynomial of the form $Z + \mathcal{F}(A)$ $(Z = \mathcal{F}(A))$
 - $Z = \mathcal{F}(A)$ is a unique, canonical, polynomial representation of C over \mathbb{F}_q

Abstraction Term Order Example

$$(z_0 > z_1 > r_0 > s_0 > s_3 > s_1 > s_2 > a_0 > a_1 > b_0 > b_1 > Z > A > B)$$

$$f_1: s_0 + a_0 \cdot b_0; \quad f_2: s_1 + a_0 \cdot b_1; \quad f_3: s_2 + a_1 \cdot b_0; \quad f_4: s_3 + a_1 \cdot b_1$$

 $f_5: r_0 + s_1 + s_2; \quad f_6: z_0 + s_0 + s_3; \quad f_7: z_1 + r_0 + s_3; \quad f_8: a_0 + a_1\alpha + A$
 $f_9: b_0 + b_1\alpha + B; \quad f_{10}: z_0 + z_1\alpha + Z$

$$J = \langle f_1, \dots, f_{10} \rangle$$
 + $J_0 = \langle \text{vanishing poly } x^q - x \rangle$

Abstraction Term Order Example

 $(z_0>z_1>r_0>s_0>s_3>s_1>s_2>a_0>a_1>b_0>b_1>Z>A>B)$ Compute the Gröbner basis, G, of $\{J+J_0\}$ with respect to abstraction term ordering >. $G=\{g_1,\ldots,g_{14}\}$

$$g_1: B^4 + B; \quad g_2: b_0 + b_1\alpha + B; \quad g_3: a_0 + a_1\alpha + A; \quad g_4: A^4 + A;$$

$$g_5: s_0 + s_1\alpha + s_2(\alpha + 1) + Z; \quad g_6: r_0 + s_1 + s_2; \quad g_7: z_1 + r_0 + s_3$$

$$g_7: z_0 + z_1\alpha + Z; \quad \mathbf{g_9}: \mathbf{Z} + \mathbf{A} * \mathbf{B}; \quad g_{10}: b_1 + B^2 + B; \quad g_{11}: a_1 + A^2 + A$$

$$g_{12}: s_3 + a_1b_1; \quad g_{13}: s_2 + a_1b_1\alpha + a_1B; \quad g_{14}: s_1 + a_1b_1\alpha + b_1A$$

Verification of a sequential GF multiplier (Normal basis)

SPEC: $R = A_{init} \cdot B_{init} \pmod{P(\alpha)}$ after k clock cycles

Figure: A 3-bit RH-SMPO and its Moore FSM model

Basic algorithm to verify the function of sequential GF multipliers

ALGORITHM 1: Abstraction via implicit unrolling for Sequential GF circuit verification

```
Input: Circuit polynomial ideal J, vanishing ideal J_0, initial state ideal R(=0), \mathcal{G}(A_{init}), \mathcal{H}(B_{init})

1 from_0(R,A,B) = \langle R,\mathcal{G}(A_{init}), \mathcal{H}(B_{init}) \rangle;

2 i=0;

3 repeat

4 i \leftarrow i+1;

5 G \leftarrow GB(\langle J+J_0+from_{i-1}(R,A,B) \rangle) with ATO;

6 to_i(R',A',B') \leftarrow G \cap \mathbb{F}_{2^k}[R',A',B',R,A,B];

7 from_i \leftarrow to_i(\{R,A,B\} \setminus \{R',A',B'\});

8 until\ i == k;

9 return\ from_k(R_{final})
```

Experiment on 3-bit RH-SMPO

• The elimination ideal (first iteration):

$$\begin{split} J = & d_0 + b_2 \cdot a_2, c_1 + a_0 + a_2, c_2 + b_0 + b_2, d_1 + c_1 \cdot c_2, \\ e_0 + d_0 + d_1, e_2 + d_1, r'_0 + r_2 + e_0, r'_1 + r_0, r'_2 + r_1 + e_2, \\ A + a_0\beta + a_1\beta^2 + a_2\beta^4, B + b_0\beta + b_1\beta^2 + b_2\beta^4, \\ R + r_0\beta + r_1\beta^2 + r_2\beta^4, R' + r'_0\beta + r'_1\beta^2 + r'_2\beta^4; \end{split}$$

Experiment on 3-bit RH-SMPO(2)

•
$$from_0 = \{R, A_{init} + a_0\beta + a_1\beta^2 + a_2\beta^4, B_{init} + b_0\beta + b_1\beta^2 + b_2\beta^4\}$$

Basic algorithm to verify the function of sequential GF multipliers

ALGORITHM 2: Abstraction via implicit unrolling for Sequential GF circuit verification

```
Input: Circuit polynomial ideal J, vanishing ideal J_0, initial state ideal R(=0), \mathcal{G}(A_{init}), \mathcal{H}(B_{init})

1 from_0(R,A,B) = \langle R,\mathcal{G}(A_{init}), \mathcal{H}(B_{init}) \rangle;

2 i=0;

3 repeat

4 i \leftarrow i+1;

5 G \leftarrow GB(\langle J+J_0+from_{i-1}(R,A,B) \rangle) with ATO;

6 to_i(R',A',B') \leftarrow G \cap \mathbb{F}_{2^k}[R',A',B',R,A,B];

7 from_i \leftarrow to_i(\{R,A,B\} \setminus \{R',A',B'\});

8 until\ i==k;

9 return\ from_k(R_{final})
```

Experiment on 3-bit RH-SMPO(2)

- $J_0 = \langle x_i^2 x_i, X^q X \rangle$
- $from_0 = \{R, A_{init} + a_0\beta + a_1\beta^2 + a_2\beta^4, B_{init} + b_0\beta + b_1\beta^2 + b_2\beta^4\}$ $(\beta = \alpha^3)$
- $to_1: R' + (\alpha^2)A_{init}^4B_{init}^4 + (\alpha^2 + \alpha)A_{init}^4B_{init}^2 + (\alpha^2 + \alpha)A_{init}^4B_{init} + (\alpha^2 + \alpha)A_{init}^2B_{init}^4 + (\alpha^2 + \alpha + 1)A_{init}^2B_{init}^2 + (\alpha^2)A_{init}^2B_{init} + (\alpha^2 + \alpha)A_{init}B_{init}^4 + (\alpha^2)A_{init}B_{init}^2$
- from₁ = $\{R' + (\alpha^2)A_{init}^4B_{init}^4 + (\alpha^2 + \alpha)A_{init}^4B_{init}^2 + (\alpha^2 + \alpha)A_{init}^4B_{init} + (\alpha^2 + \alpha)A_{init}^4B_{init} + (\alpha^2 + \alpha)A_{init}^4B_{init}^4 + (\alpha^2 + \alpha + 1)A_{init}^2B_{init}^2 + (\alpha^2)A_{init}^2B_{init} + (\alpha^2 + \alpha)A_{init}B_{init}^4 + (\alpha^2)A_{init}B_{init}^2, A_{init} + a_2\alpha^3 + a_0\alpha^6 + a_1\alpha^{12}, B_{init} + b_2\alpha^3 + b_0\alpha^6 + b_1\alpha^{12} \}$
- • •
- After 3 iterations: $to_3 = \{R' + A_{init}B_{init}, A_{init} + a'_0\alpha^3 + a'_1\alpha^6 + a'_2\alpha^{12}, B_{init} + b'_0\alpha^3 + b'_1\alpha^6 + b'_2\alpha^{12}\}$

Refined Abstraction Term Ordering (RATO)[Pruss et al, *Abstraction using GB*, DAC'14]

- Computing GB: high computational complexity
- Buchberger's algorithm simplified w/ special term order
- reverse-topological term order: only input variables left in remainder

Example

Elimination ideal under RATO:

$$J = d_0 + b_2 \cdot a_2, c_1 + a_0 + a_2, c_2 + b_0 + b_2, d_1 + c_1 \cdot c_2,$$

$$e_0 + d_0 + d_1, e_2 + d_1, r'_0 + r_2 + e_0, r'_1 + r_0, r'_2 + r_1 + e_2,$$

$$a_0\alpha^3 + a_1\alpha^6 + a_2\alpha^{12} + A, b_0\alpha^3 + b_1\alpha^6 + b_2\alpha^{12} + B,$$

$$r_0\alpha^3 + r_1\alpha^6 + r_2\alpha^{12} + R, r'_0\alpha^3 + r'_1\alpha^6 + r'_2\alpha^{12} + R';$$

Refined Abstraction Term Ordering (RATO) (2)

Example

$$r'_{0}\alpha^{3} + r'_{1}\alpha^{6} + r'_{2}\alpha^{12} + R' \xrightarrow{J}_{+}$$

$$(\alpha + 1)r_{1} + r_{2} + \alpha b_{1}a_{1} + (\alpha^{2} + \alpha)b_{1}a_{2} + \alpha^{2}b_{1}A + (\alpha^{2} + \alpha)b_{2}a_{1} + \alpha b_{2}a_{2} + (\alpha^{2} + \alpha + 1)b_{2}A + \alpha^{2}a_{1}B + (\alpha^{2} + \alpha + 1)a_{2}B + R' + (\alpha + 1)R + (\alpha + 1)AB$$

- In [Pruss et al, Abstraction using GB, DAC'14], the authors did not address the problem when there are bit-level input variables in the remainder.
- Improve abstraction using RATO:

$$A = a_0 \beta + a_1 \beta^2 + \dots + a_{k-1} \beta^{2^{k-1}}$$

$$\implies a_0 = \mathcal{F}_0(A), a_1 = \mathcal{F}_1(A), \dots$$

Improve abstraction using RATO

• Given word definition $A = a_0\beta + a_1\beta^2 + \cdots + a_{k-1}\beta^{2^{k-1}}$, by squaring:

$$A = a_0\beta + a_1\beta^2 + \dots + a_{k-1}\beta^{2^{k-1}}$$

$$A^2 = a_0\beta^2 + a_1\beta^4 + \dots + a_{k-1}\beta^{2\cdot 2^{k-1}}$$

$$\vdots \quad \vdots \quad \vdots$$

$$A^{2^{k-1}} = a_0\beta^{2^{k-1}} + a_1\beta^{2^{k-1}\cdot 2} + \dots + a_{k-1}\beta^{2^{2(k-1)}}$$

Write in matrix form:

$$\begin{pmatrix} \beta & \beta^2 & \cdots & \beta^{2^{k-1}} \\ \beta^2 & \beta^4 & \cdots & \beta^{2^{k-1} \cdot 2} \\ \vdots & \vdots & \ddots & \vdots \\ \beta^{2^{k-1}} & \beta^{2^{k-1} \cdot 2} & \cdots & \beta^{2^{2(k-1)}} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{k-1} \end{pmatrix} = \begin{pmatrix} A \\ A^2 \\ \vdots \\ A^{2^{k-1}} \end{pmatrix}$$

Improve abstraction using RATO (2)

Example

Solve system of equations using Gaussian elimination:

$$\begin{pmatrix} \alpha^3 & \alpha^6 & \alpha^{12} \\ \alpha^6 & \alpha^{12} & \alpha^{24} \\ \alpha^{12} & \alpha^{24} & \alpha^{48} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} A \\ A^2 \\ A^4 \end{pmatrix}$$

Results are:

$$\begin{cases} a_0 = (\alpha^2 + \alpha + 1)A^4 + (\alpha^2 + 1)A^2 + (\alpha + 1)A \\ a_1 = (\alpha + 1)A^4 + (\alpha^2 + \alpha + 1)A^2 + (\alpha^2 + 1)A \\ a_2 = (\alpha^2 + 1)A^4 + (\alpha + 1)A^2 + (\alpha^2 + \alpha + 1)A \end{cases}$$

Similarly replace $b_0, b_1, b_2, r_0, r_1, r_2$ with B, R

Final approach

ALGORITHM 3: Abstraction via implicit unrolling for Sequential GF circuit verification

```
Input: Circuit polynomial ideal J, vanishing ideal J_0, initial state ideal
              R(=0), \mathcal{G}(A_{init}), \mathcal{H}(B_{init})
1 from_0(R, A, B) = \langle R, \mathcal{G}(A_{init}), \mathcal{H}(B_{init}) \rangle;
i = 0:
3 repeat
4 i \leftarrow i + 1:
  f_2 \xrightarrow{J+J_0+from_{i-1}(R,A,B)} f_r under RATO;
  to_i(R', A', B') \leftarrow f_r(\{R', A', B'\} \setminus \{r_0, \dots, r_{k-1}, a_0, \dots, a_{k-1}, b_0, \dots, b_{k-1}\};
       from_i \leftarrow to_i(\{R, A, B\} \setminus \{R', A', B'\});
8 until i == k:
9 return from_k(R_{final})
```

Experiment results

Table: Run-time (seconds) for verification of bug-free and buggy RH-SMPO using our approach

Operand size k	33	51	65	81	89	99
#variables	4785	11424	18265	28512	34354	42372
#polynomials	3630	8721	13910	21789	26255	32373
#terms	13629	32793	52845	82539	99591	122958
Runtime(bug-free)	112.6	1129	5243	20724	36096	67021
Runtime(buggy)	112.7	1129	5256	20684	36120	66929

- Experimented performed using SINGULAR
- Note: Using conventional methods we cannot verify any multipliers with 23+ bits datapath

Conclusion

- Succeed to verify large GF arithmetic circuits based on k-cycle unrolling
- Provide a way to simplify GB computation
- Has the potential to be applied to the verification of other sequential circuits

Singular code available: ece.utah.edu/~xiaojuns/codes.html