必修第一章复习题 A 组

1.	用列举法表示下列集合: (1) 十二生肖组成的集合; (2) 中国国旗上所有颜色组成	的集合.							
2.	用描述法表示下列集合: (1) 平面直角坐标系中第一象限的角平分线上的所有点组成的集合; (2) 3 的所有倍数组成的集合.								
3.	(1) 若 α : $x^2 - 5x + 6 = 0$, β 四边形 $ABCD$ 的两条对角约		, ,	形 $ABCD$ 是正方形, eta :					
4.	. 已知方程 $x^2 + px + 4 = 0$ 的所有解组成的集合为 A , 方程 $x^2 + x + q = 0$ 的所有解组成的集合为 B , 且 $A \cap B = \{4\}$. 求集合 $A \cup B$ 的所有子集.								
5.	已知集合 $A=(-2,1), B=(-\infty,-2)\cup[1,+\infty).$ 求: $A\cup B, A\cap B.$								
6.	已知全集 $U=(-\infty,1)\cup[2,$	$+\infty$), $\mbox{$\b}}}}}}}}}}}}}}}}}}}}}}}}}}$	$+\infty$). $Rack A$.						
7.	. 已知集合 $A=\{x x^2+px+q=0\},\ B=\{x x^2-x+r=0\},\ $ 且 $A\cap B=\{-1\},\ A\cup B=\{-1,2\}.$ 求实数 p q 、 r 的值.								
8.	设 a 是实数. 若 $x=1$ 是 $x>a$ 的一个充分条件, 则 a 的取值范围为 已知陈述句 α 是 β 的充分非必要条件. 若集合 $M=\{x x$ 满足 $\alpha\},\ N=\{x x$ 满足 $\beta\}$, 则 M 与 N 的关系之(
9.									
	A. $M \subset N$	B. $M \supset N$	C. $M = N$	D. $M \cap N = \emptyset$					
10.	证明: 若梯形的对角线不相等, 则该梯形不是等腰梯形.								
	必修第一章复习题 B 组								
1.	若集合 $M=\{a a=x+\sqrt{2}y,x,y\in\mathbf{Q}\},$ 则下列结论正确的是 ().								
	A. $M \subseteq \mathbf{Q}$	B. $M = \mathbf{Q}$	C. $M \supset \mathbf{Q}$	D. $M \subset \mathbf{Q}$					
2.	若 α 是 β 的必要非充分条件, β 是 γ 的充要条件, γ 是 δ 的必要非充分条件, 则 δ 是 α 的 条件.								
3.	已知全集 $U = \{x x \}$ 不大 $A = $		$= \{3,5\}, \ \overline{A} \cap B = \{7,19\},$	$\overline{A \cup B} = \{2,17\}, \ \mathbb{Q}$					
4.	已知集合 $P = \{x -2 \le x \le $	$\{5\}, Q = \{x x \ge k + 1 且 x \le k + 1 $	$2k-1$ }, 且 $Q \subseteq P$. 求实数	k 的取值范围.					

- 5. 已知全集 $U = \mathbf{R}$, 集合 $A = \{x | x \le a 1\}$, $B = \{x | x > a + 2\}$, $C = \{x | x < 0$ 或 $x \ge 4\}$, 且 $\overline{A \cup B} \subseteq C$. 求实数 a 的取值范围.
- 6. 已知集合 $A = \{x | (a-1)x^2 + 3x 2 = 0\}$. 是否存在这样的实数 a, 使得集合 A 有且仅有两个子集? 若存在, 求出实数 a 的值及对应的两个子集: 若不存在, 说明理由.
- 7. 证明: ³√2 是无理数.

必修第一章复习题 B 组

1. 若集合 $M=\{a a=x+\sqrt{2}y,x,y\in\mathbf{Q}\}$, 则下列结论正确的是 ().									
A. $M \subseteq \mathbf{Q}$	B. $M = \mathbf{Q}$	C. $M \supset \mathbf{Q}$	D. $M \subset \mathbf{Q}$						

- 2. 若 α 是 β 的必要非充分条件, β 是 γ 的充要条件, γ 是 δ 的必要非充分条件, 则 δ 是 α 的______ 条件, γ 是 α 的______ 条件.
- 3. 已知全集 $U = \{x | x$ 为不大于20的素数 }. 若 $A \cap \overline{B} = \{3,5\}, \ \overline{A} \cap B = \{7,19\}, \ \overline{A \cup B} = \{2,17\}, \ 则$ A=________.
- 4. 已知集合 $P = \{x \mid -2 \le x \le 5\}$, $Q = \{x \mid x \ge k + 1 \exists x \le 2k 1\}$, 且 $Q \subseteq P$. 求实数 k 的取值范围.
- 5. 已知全集 $U = \mathbf{R}$, 集合 $A = \{x | x \le a 1\}$, $B = \{x | x > a + 2\}$, $C = \{x | x < 0$ 或 $x \ge 4\}$, 且 $\overline{A \cup B} \subseteq C$. 求实数 a 的取值范围.
- 6. 已知集合 $A = \{x | (a-1)x^2 + 3x 2 = 0\}$. 是否存在这样的实数 a, 使得集合 A 有且仅有两个子集? 若存在, 求出实数 a 的值及对应的两个子集: 若不存在, 说明理由.
- 7. 证明: ³√2 是无理数.

必修第一章拓展与思考

- 1. 设 a, b 是正整数. 求证: 若 ab-1 是 3 的倍数, 则 a 与 b 被 3 除的余数相同.
- 2. 已知非空数集 S 满足: 对任意给定的 $x,y \in S(x,y)$ 可以相同), 有 $x+y \in S$ 且 $x-y \in S$.
 - (1) 哪个数一定是 S 中的元素? 说明理由;
 - (2) 若 S 是有限集, 求 S;
 - (3) 若 S 中最小的正数为 5, 求 S.

必修第二章复习题 A 组

- 1. 设一元二次方程 $2x^2 6x 3 = 0$ 的两个实根为 $x_1, x_2,$ 求下列各式的值:
 - (1) $(x_1+1)(x_2+1)$;
 - $(2) (x_1^2-1)(x_2^2-1).$
- 2. 设 a>b>0, 比较 $\frac{b+2a}{a+2b}$ 与 $\frac{a}{b}$ 的值的大小.

- 3. 已知 x > y, 求证: $x^3 y^3 > x^2y xy^2$.
- 4. 若关于 x 的不等式 (a+1)x a < 0 的解集为 $(2, +\infty)$, 求实数 a 的值, 并求不等式 (a-1)x + 3 a > 0 的解集.
- 5. 解下列一元二次不等式:

$$(1) -x^2 + 11 < -2x - 4;$$

(2)
$$3x^2 < 13x + 10$$
;

(3)
$$6x + 2 \ge 5x^2$$
;

(4)
$$x^2 \le 8(1-x)$$
;

$$(5) -x^2 \ge 9(9-2x);$$

(6)
$$3(x-3) \le x^2$$
.

6. 试写出一个二次项系数为1的一元二次不等式, 使它的解集分别为:

$$(1) (-\infty, \sqrt{2}) \cup (\sqrt{2}, +\infty);$$

(2)
$$[2-\sqrt{3},2+\sqrt{3}].$$

- 7. 求不等式 $5 \le x^2 2x + 2 < 26$ 的所有正整数解.
- 8. 解下列分式不等式:

$$(1) \frac{2x+1}{x+7} > -3$$

(2)
$$\frac{3x}{x^2+2} \ge 1$$

9. 设关于 x 的不等式 $a_1x^2 + b_1x + c_1 > 0$ 与 $a_2x^2 + b_2x + c_2 > 0$ 的解集分别为 $A \setminus B$, 试用集合运算表示下列不等式组的解集:

$$(1) \begin{cases} a_1x^2 + b_1x + c_1 > 0, \\ a_2x^2 + b_2x + c_2 > 0; \end{cases}$$

$$(2) \begin{cases} a_1x^2 + b_1x + c_1 \le 0, \\ a_2x^2 + b_2x + c_2 > 0; \end{cases}$$

$$(3) \begin{cases} a_1x^2 + b_1x + c_1 \le 0, \\ a_2x^2 + b_2x + c_2 \le 0; \end{cases}$$

- 10. 解下列含绝对值的不等式:
 - (1) $|2x 1| \le x$;
 - (2) |2x+1|+|x-2|<8.
- 11. 已知 a、b 是正数, 求证: $\sqrt{(1+a)(1+b)} \ge 1 + \sqrt{ab}$.
- 12. 如图, 在直角三角形 ABC 中, AD 垂直于斜边 BC, 且垂足为 D. 设 BD 及 CD 的长度分别为 a 与 b.
 - (1) 求斜边上的高 AD 与中线 AE 的长;
 - (2) 用不等式表示斜边上的高 AD 与中线 AE 长度的大小关系.

- 13. 如图, 已知直角梯形 ABCD 的顶点 A(a,0)、B(b,0) 位于 x 轴上, 顶点 C、D 落在函数 y=|x| 的图像上, M、N 分别为线段 AB、CD 的中点, O 为坐标原点, Q 为线段 OC 与线段 MN 的交点.
 - (1) 求中点 M 的坐标, 以及线段 MQ、MN 的长度;
 - (2) 用不等式表示 MQ、MN 长度的大小关系.

必修第二章复习题 B 组

- 1. 已知一元二次方程 $x^2 + px + p = 0$ 的两个实根分别为 α 、 β , 且 $\alpha^2 + \beta^2 = 3$, 求实数 p 的值.
- 2. 已知一元二次方程 $2x^2 4x + m + 3 = 0$ 有两个同号实根, 求实数 m 的取值范围.
- 3. 设 $a, b \in \mathbb{R}$, 已知关于 x 的不等式 (a+b)x + (b-2a) < 0 的解集为 $(1, +\infty)$, 求不等式 (a-b)x + 3b a > 0 的解集.
- 4. 解下列不等式:
 - $(1) -2 < \frac{1}{2x+1} \le 3;$
 - (2) $2 < |x+1| \le 3$.
- 5. 已知集合 $A = \{x | |x-a| < 2\}, B = \{x | \frac{2x-1}{x+2} < 1\}, 且 A \subseteq B. 求实数 a 的取值范围.$
- 6. 证明: 若 x > -1, 则 $x + \frac{1}{x+1} \ge 1$, 并指出等号成立的条件.
- 7. 设 a、b 为正数, 且 a + b = 2. 求 $\frac{1}{a} + \frac{1}{b}$ 的最小值.
- 8. 已知 a、b、c 都是正数, 求证: $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6$.
- 9. 设实数 $x \times y$ 满足 x + y = 1, 求 xy 的最大值.
- 10. 已知 a、b 为实数, 求证: $|a| + |b| \le |a+b| + |a-b|$, 并指出等号成立的条件.

- 11. 已知 a、b 是实数,
 - (1) 求证: $a^2 + ab + b^2 > 0$, 并指出等号成立的条件:
 - (2) 求证: 如果 a > b, 那么 $a^3 > b^3$.

必修第二章拓展与思考

- 1. 解下列不等式:
 - $(1) \ \frac{3x 11}{x^2 6x + 9} \le 1;$
- 2. 已知集合 $A = \{x | x^2 2x 3 > 0\}, B = \{x | x^2 + px + q \le 0\}.$ 若 $A \cup B = \mathbf{R}$, 且 $A \cap B = [-2, -1)$, 求实数 $p \in A$ 及g的值.
- 3. 已知实数 0 < a < b, 求证: $a < \frac{2ab}{a+b} < \sqrt{ab} < \frac{a+b}{2} < \sqrt{\frac{a^2+b^2}{2}} < b$.
- 4. 方程 (x-1)(x-2)(x-3)=0 的三个根 1, 2, 3 将数轴划分为四个区间,即 $(-\infty,1), (1,2), (2,3), (3,+\infty)$. 试在这四个区间上分别考察 (x-1)(x-2)(x-3) 的符号, 从而得出不等式 (x-1)(x-2)(x-3) > 0 与 (x-1)(x-2)(x-3) < 0 的解集.

一般地, 对 x_1 、 x_2 、 $x_3 \in \mathbb{R}$, 且 $x_1 \le x_2 \le x_3$, 试分别求不等式 $(x-x_1)(x-x_2)(x-x_3) > 0$ 与 $(x-x_1)(x-x_2)(x-x_3) > 0$ $(x_2)(x-x_3) < 0$ 的解集 (提示: (x_1, x_2, x_3) 相互之间可能相等, 需要分情况讨论).

必修第三章复习题 A 组

- 1. 填空题:

 - (2) 将 $\sqrt[4]{a\sqrt[3]{a}}$ (a > 0) 化成有理数指数幂的形式为_____.
 - (3) 若 $\log_8 x = -\frac{2}{3}$, 则 x =______.
 - (4) 若 $\log_a b \cdot \log_5 a = 3(a > 0$ 且 $a \neq 1$), 则 b =____
- 2. 选择题:
 - (1) 若 $\lg a$ 与 $\lg b$ 互为相反数,则有(

A.
$$a + b = 0$$

B.
$$ab = 1$$

C.
$$\frac{a}{b} = 1$$

D. 以上答案均不对

(2) 设 a > 0, 下列计算中正确的是 ().

A.
$$a^{\frac{2}{3}} \cdot a^{\frac{3}{2}} = a$$

B.
$$a^{\frac{2}{3}} \div a^{\frac{3}{2}} = a$$

C.
$$a^{-4} \cdot a^4 = 0$$

D.
$$(a^{\frac{2}{3}})^{\frac{3}{2}} = a$$

- 3. 已知 $10^{\alpha} = 3$, $10^{\beta} = 4$. 求 $10^{\alpha+\beta}$ 及 $10^{\alpha-\frac{\beta}{2}}$ 的值.
- 4. 求下列各式的值:

(1)
$$\frac{1}{4^x + 1} + \frac{1}{4^{-x} + 1}$$
;
(2) $4^{\sqrt{2}+1} \times 2^{3-2\sqrt{2}} \times 8^{-\frac{2}{3}}$.

(2)
$$4^{\sqrt{2}+1} \times 2^{3-2\sqrt{2}} \times 8^{-\frac{2}{3}}$$

5. 已知 $\lg a < 1$, 化简 $\sqrt{(\lg a)^2 - \lg \frac{a^2}{10}}$.
6. 已知 $m = \log_2 10$, 求 $2^m - m \lg 2 - 4$ 的值.
必修第三章复习题 B 组
1. 填空题:
(1) $ 4^x = 2^{-12}, \ 4^y = \sqrt[3]{32}, \ \mathbb{M} \ 2x - 3y = \underline{\hspace{1cm}} . $
(2) 若 $\log_3(\log_4 x) = 1$, 则 $x = $
(3) $\ddot{A} = 3^a = 7^b = 63$, $y = \frac{2}{a} + \frac{1}{b}$ 的值为
a = b
2. 已知 $\log_{18} 9 = a$, $18^b = 5$, 则 $\log_{36} 45$ 等于 ().
A. $\frac{a+b}{2+a}$ B. $\frac{a+b}{2-a}$ C. $\frac{a+b}{2a}$ D. $\frac{a+b}{a^2}$
z+u $z-u$ zu u
3. 设 $\log_{0.2} a > 0$, $\log_{0.2} b > 0$, 且 $\log_{0.2} a \cdot \log_{0.2} b = 1$, 求 $\log_{0.2} (ab)$ 的最小值.
4. 化简 $\frac{(1+2^x)(1+2^{2x})(1+2^{4x})(1+2^{8x})(1+2^{16x})}{1-2^{32x}}(其中 x \neq 0).$
5. 已知 $a > 1, b > 0$. 求证: 对任意给定的实数 $k, a^{2b+k} - a^{b+k} > a^{b+k} - a^k$.
必修第三章拓展与思考
1. 甲、乙两人同时解关于 x 的方程: $\log_2 x + b + c \log_x 2 = 0$. 甲写错了常数 b , 得两根 $\frac{1}{4}$ 及 $\frac{1}{8}$; 乙写错了常数
c , 得两根 $\frac{1}{2}$ 及 64 . 求这个方程的真正根.
2. 已知 a 、 b 及 c 是不为 1 的正数,且 $\lg a + \lg b + \lg c = 0$.求证: $a^{\frac{1}{\lg b} + \frac{1}{\lg c}} \cdot b^{\frac{1}{\lg c} + \frac{1}{\lg a}} \cdot c^{\frac{1}{\lg a} + \frac{1}{\lg b}} = \frac{1}{1000}$.
必修第四章复习题 A 组
1. 填空题:
(1) 若点 $(2,\sqrt{2})$ 在幂函数 $y=x^a$ 的图像上,则该幂函数的表达式为
数 $y = a^x(a > 0$ 且 $a \ne 1)$ 的图像上,则该指数函数的表达式为; 若点 $(\sqrt{2}, 2)$ 在对数函数
$y = \log_a x (a > 0$ 且 $a \neq 1)$ 的图像上,则该对数函数的表达式为
(2) 若幂函数 $y = x^k$ 在区间 $(0, +\infty)$ 上是严格减函数,则实数 k 的取值范围为
(3) 已知常数 $a > 0$ 且 $a \ne 1$, 假设无论 a 为何值, 函数 $y = a^{x-2} + 1$ 的图像恒经过一个定点. 则这个点的坐

2. 选择题:

标为_

(1) 若指数函数 $y=a^x(a>0$ 且 $a\neq 1$)在 R 上是严格减函数,则下列不等式中,一定能成立的是 ().

A.
$$a > 1$$
 B. $a < 0$ C. $a(a - 1) < 0$ D. $a(a - 1) > 0$

(2) 在同一平面直角坐标系中,一次函数 y=x+a 与对数函数 $y=\log_a x (a>0$ 且 $a\neq 1)$ 的图像关系可能是 ().

3. 求下列函数的的定义域:

- (1) $y = (x-1)^{\frac{5}{2}}$;
- (2) $y = 3^{\sqrt{x-1}}$;
- (3) $y = \lg \frac{1+x}{1-x}$

4. 比较下列各题中两个数的大小:

- (1) $0.1^{0.7} = 0.2^{0.7}$;
- (2) $0.7^{0.1} = 0.7^{0.2}$;
- (3) $\log_{0.7} 0.1 = \log_{0.7} 0.2$;

5. 设点 $(\sqrt{2},2)$ 在幂函数 $y_1=x^a$ 的图像上, 点 $(-2,\frac{1}{4})$ 在幂函数 $y_2=x^b$ 的图像上. 当 x 取何值时, $y_1=y_2$?

6. 设 $a = (\frac{2}{3})^x$, $b = x^{\frac{3}{2}}$ 及 $c = \log_{\frac{2}{3}} x$, 当 x > 1 时, 试比较 a、b 及 c 之间的大小关系.

7. 设常数 a > 0 且 $a \ne 1$, 若函数 $y = \log_a(x+1)$ 在区间 [0,1] 上的最大值为 1, 最小值为 0, 求实数 a 的值.

8. 如果光线每通过一块玻璃其强度要减少 10%,那么至少需要将多少块这样的玻璃重叠起来,才能使通过它们的光线强度低于原来的 $\frac{1}{3}$?

必修第四章复习题 B 组

1. 填空题:

(1) 已知 $m \in \mathbf{Z}$,设幂函数 $y = x^{m2-4m}$ 的图像关于原点成中心对称,且与 x 轴及 y 轴均无交点,则 m 的值为______.

(2) 设 a、b 为常数, 若 0 < a < 1, b < -1, 则函数 $y = a^x + b$ 的图像必定不经过第______ 象限.

2. 选择题:

(1) 若 m > n > 1, 而 0 < x < 1, 则下列不等式正确的是 ().

A. $m^x < n^x$

- B. $x^m < x^n$
- C. $\log_x m > \log_x n$
- D. $\log_m x < \log_n x$

(2) 在同一平面直角坐标系中, 二次函数 $y = ax^2 + bx$ 与指数函数 $y = (\frac{b}{a})^x$ 的图像关系可能为 ().

-1 Q x

3. 设 a 为常数且 0 < a < 1, 若 $y = (\log_a \frac{3}{5})^x$ 在 ${\bf R}$ 上是严格增函数, 求实数 a 的取值范围.

- 4. 在同一平面直角坐标系中,作出函数 $y=(\frac{1}{2})^x$ 及 $y=x^{\frac{1}{2}}$ 的大致图像,并求方程 $(\frac{1}{2})^x=x^{\frac{1}{2}}$ 的解的个数.
- 5. 已知集合 $A = \{y|y = (\frac{1}{2})^x, \ x \in [-2,0)\}$,用列举法表示集合 $B = \{y|y = \log_3 x, \ x \in A$ 且 $y \in \mathbf{Z}\}$. 必修第四章拓展与思考
- 1. log₂ 3 是有理数吗? 请证明你的结论.
- 2. 仅利用对数函数的单调性和计算器上的乘方功能来确定对数 log₂ 3 第二位小数的值.

必修第五章复习题 A 组

- 1. 求函数 $y = \frac{1}{2-x} + \sqrt{x^2 1}$ 的定义域.
- 2. 判断下列函数 y = f(x) 的奇偶性, 并说明理由:

(1)
$$f(x) = \left|\frac{1}{2}x - 3\right| + \left|\frac{1}{2}x + 3\right|;$$

(2)
$$f(x) = x^3 + \frac{2}{x}$$
;

- (3) $f(x) = x^2, x \in (k, 2)$ (其中常数 k < 2).
- 3. 已知 m、n 是常数, 而函数 $y = (m-1)x^2 + 3x + (2-n)$ 为奇函数. 求 m、n 的值.
- 4. 求函数 $y=x+\frac{4}{x}$ 的单调区间.
- 5. 分别作出下列函数的大致图像, 并指出它们的单调区间:
 - (1) $y = |x^2 4x|$;
 - (2) y = 2|x| 3.
- 6. 已知二次函数 y = f(x), 其中 $f(x) = ax^2 2ax + 3 a$ (a > 0). 比较 f(-1) 和 f(2) 的大小.
- 7. 已知 k 是常数, 设 α 、 β 是二次方程 $x^2 2kx + k + 20 = 0$ 的两个实根. 问: 当 k 为何值时, $(\alpha + 1)^2 + (\beta + 1)^2$ 取到最小值?
- 8. 邮局规定: 当邮件质量不超过 100g 时,每 20g 邮费 0.8 元,且不足 20g 时按 20g 计算;超过 100g 时,超过 100g 的部分按每 100g 邮费 2 元计算,且不足 100g 按 100g 计算;同时规定邮件总质量不得超过 2000g.请写出邮费关于邮件质量的函数表达式,并计算 50g 和 500g 的邮件分别收多少邮费.
- 9. 若函数 $y = (a^2 + 4a 5)x^2 4(a 1)x + 3$ 的图像都在 x 轴上方 (不含 x 轴), 求实数 a 的取值范围.

必修第五章复习题 B 组

- 1. 已知 y = f(x) 是奇函数, 其定义域为 \mathbf{R} ; 而 y = g(x) 是偶函数, 其定义域为 D. 判断函数 y = f(x)g(x) 的奇偶性, 并说明理由.
- 2. 设函数 $y = x^2 + 10x a + 3$, 当 $x \in [-2, +\infty)$ 时, 其函数值恒大于等于零. 求实数 a 的取值范围.
- 3. 已知函数 $y = -x^2 + 2ax + 1 a$, $x \in [0,1]$ 的最大值为 2. 求实数 a 的值.

- 4. 设 $f(x) = x^2 + ax + 1$. 若对任意给定的实数 x, f(2+x) = f(2-x) 恒成立, 求实数 a 的值.
- 5. 已知 y = f(x) 是定义在 (-1,1) 上的奇函数, 在区间 [0,1) 上是严格减函数, 且 $f(1-a) + f(1-a^2) < 0$, 求 实数 a 的取值范围.
- 6. 已知 $f(x) = 2 x^2$ 及 g(x) = x. 定义 h(x) 如下: 当 $f(x) \ge g(x)$ 时, h(x) = g(x); 而当 f(x) < g(x) 时, h(x) = f(x). 求函数 y = h(x) 的最大值.

必修第五章拓展与思考

- 1. 试讨论函数 $y = \frac{x}{1-x^2}$ 的单调性.
- 2. 作出函数 $y = (x^2 1)^2 1$ 的大致图像, 写出它的单调区间, 并证明你的结论.
- 3. 已知函数 y = f(x) 为偶函数, y = g(x) 为奇函数, 且 $f(x) + g(x) = x^2 + 2|x 1| + 3$. 求 y = f(x) 及 y = g(x)的表达式.
- 4. 设函数 $y = f(x), x \in \mathbf{R}$ 的反函数是 $y = f^{-1}(x)$.
 - (1) 如果 y = f(x) 是奇函数, 那么 $y = f^{-1}(x)$ 的奇偶性如何?
 - (2) 如果 y = f(x) 在定义域上是严格增函数, 那么 $y = f^{-1}(x)$ 的单调性如何?

必修第六章复习题 A 组

1. 选择题:

(1) 与 $\sin(\theta - \frac{\pi}{2})$ 一定相等的是 ().

A.
$$\sin(\frac{3\pi}{2} - \theta)$$

B.
$$\cos(\theta - \frac{\pi}{2})$$

C.
$$\cos(2\pi - \theta)$$

D.
$$\sin(\theta + \frac{\pi}{2})$$

A. $\sin(\frac{3\pi}{2}-\theta)$ B. $\cos(\theta-\frac{\pi}{2})$ C. $\cos(2\pi-\theta)$ D. $\sin(\theta+\frac{\pi}{2})$ (2) 当 $0<\alpha<\frac{\pi}{4}$ 时,化简 $\sqrt{1-\sin 2\alpha}$ 的结果是().

A.
$$\cos \alpha$$

B.
$$\sin \alpha - \cos \alpha$$

C.
$$\cos \alpha - \sin \alpha$$

D.
$$\sin \alpha + \cos \alpha$$

- 2. 填空题:
 - (1) 若 θ 为锐角, 则 $\log_{\sin \theta} (1 + \cot^2 \theta) =$ ______;
 - (2) 若 $-\frac{\pi}{2} < \alpha < 0$,则点 $(\cot \alpha, \cos \alpha)$ 必在第______ 象限;
 - (3) 若 $\sin(\pi \alpha) = \frac{2}{3}$, $\alpha \in (\frac{\pi}{2}, \pi)$, 则 $\sin 2\alpha =$
- 3. 已知圆 O 上的一段圆弧长等于该圆的内接正方形的边长, 求这段圆弧所对的圆心角的弧度.
- 4. 已知角 α 的终边经过点 $P(3a, 4a)(a \neq 0)$, 求 $\sin \alpha \cos \alpha$ 和 $\tan \alpha$.
- 5. 化简:

$$(1) \frac{\sin(\theta - 5\pi)}{\tan(3\pi - \theta)} \cdot \frac{\cot(\frac{\pi}{2} - \theta)}{\tan(\theta - \frac{3\pi}{2})} \cdot \frac{\cos(8\pi - \theta)}{\sin(-\theta - 4\pi)};$$

$$(2) \sin(\theta - \frac{\pi}{4}) + \cos(\theta + \frac{\pi}{4}).$$

6. 已知
$$\tan \alpha = 3$$
, 求 $\frac{1}{\sin^2 \alpha + 2 \sin \alpha \cos \alpha}$ 的值.

- 7. 在 $\triangle ABC$ 中, 已知 a = 5, b = 4, A = 2B. 求 $\cos B$.
- 8. 已知 $\triangle ABC$ 的面积为 S, 求证:

(1)
$$S = \frac{a^2 \sin B \sin C}{2 \sin(B+C)};$$

(2) $S = \frac{a^2}{2(\cot B + \cot C)}.$

(2)
$$S = \frac{a^2}{2(\cot B + \cot C)}$$

- 9. (1) 已知 $\sin \alpha = \frac{\sqrt{5}}{5}$, $\sin \beta = \frac{\sqrt{10}}{10}$, 且 α 及 β 都是锐角. 求 $\alpha + \beta$ 的值;
 - (2) 在 $\triangle ABC$ 中, 已知 $\tan A$ 与 $\tan B$ 是方程 $x^2 6x + 7 = 0$ 的两个根, 求 $\tan C$.
- 10. 证明: $(\sin \alpha + \sin \beta)^2 + (\cos \alpha + \cos \beta)^2 = 4\cos^2 \frac{\alpha \beta}{2}$.

必修第六章复习题 B 组

1. 选择题:

(1) 若 $0 < x < \frac{\pi}{4}$, 且 $\lg(\sin x + \cos x) = \frac{1}{2}(3\lg 2 - \lg 5)$, 则 $\cos x - \sin x$ 的值为 (

A.
$$\frac{\sqrt{6}}{2}$$

B.
$$\frac{\sqrt{3}}{2}$$

C.
$$\frac{\sqrt{10}}{5}$$

D.
$$\frac{\sqrt{5}}{4}$$

- A. $\frac{\sqrt{6}}{3}$ B. $\frac{\sqrt{3}}{2}$ (2) 下列命题中, 真命题为 ().
 - A. 若点 $P(a,2a)(a \neq 0)$ 为角 α 的终边上一点, 则 $\sin \alpha = \frac{2\sqrt{5}}{5}$
- B. 同时满足 $\sin \alpha = \frac{1}{2}, \, \cos \alpha = \frac{\sqrt{3}}{2}$ 的角 α 有且只有一个
- C. 如果角 α 满足 $-3\pi < \alpha < -\frac{5}{2}\pi$, 那么角 α 是第二象限的角
- D. $\tan x = -\sqrt{3}$ 的解集为 $\{x | x = k\pi \frac{\pi}{3}, k \in \mathbf{Z}\}$

2. 填空题:

- (1) 在 $\triangle ABC$ 中, 若 $a^2 + b^2 + ab = c^2$, 则 C =
- (2) 若 $\sin \theta = a$, $\cos \theta = -2a$, 且 θ 为第四象限的角, 则实数 a = -2a
- 3. 已知 $\sin \alpha = a \sin \beta$, $b \cos \alpha = a \cos \beta$, 且 α 及 β 均为锐角, 求证: $\cos \alpha = \sqrt{\frac{a^2 1}{\hbar^2 1}}$.
- 4. 已知 $0<\alpha<\frac{\pi}{2}<\beta<\pi$, 且 $\cos\beta=-\frac{1}{3},\,\sin(\alpha+\beta)=\frac{7}{6},\,$ 求 $\sin\alpha$ 的值.
- 5. 已知 $\pi < \alpha < \frac{3\pi}{2}$, $\pi < \beta < \frac{3\pi}{2}$, 且 $\sin \alpha = -\frac{\sqrt{5}}{5}$, $\cos \beta = -\frac{\sqrt{10}}{1}$ 0. 求 $\alpha \beta$ 的值.
- 6. 已知 $(1+\tan\alpha)(1+\tan\beta)=2$, 且 α 及 β 都是锐角. 求证: $\alpha+\beta=\frac{\pi}{4}$.
- 7. 已知 α 是第二象限的角,且 $\sin \alpha = \frac{\sqrt{15}}{4}$. 求 $\frac{\sin(\alpha + \pi 4)}{1 + \sin 2\alpha + \cos 2\alpha}$ 的值.

8. 证明:

(1)
$$\frac{2(1+\sin 2\alpha)}{1+\sin 2\alpha + \cos 2\alpha} = 1+\tan \alpha;$$

(2)
$$2\sin \alpha + \sin 2\alpha = \frac{2\sin^3 \alpha}{1-\cos \alpha}.$$

(2)
$$2\sin\alpha + \sin 2\alpha = \frac{2\sin^3\alpha}{1-\cos\alpha}$$
.

9. 根据下列条件, 分别判断三角形 ABC 的形状:

$$(1)\sin C + \sin(B - A) = \sin 2A;$$

$$(2) \ \frac{\tan A}{\tan B} = \frac{a^2}{b^2}.$$

10. 在
$$\triangle ABC$$
 中,求证: $\tan\frac{A}{2}\tan\frac{B}{2}+\tan\frac{B}{2}\tan\frac{C}{2}+\tan\frac{C}{2}\tan\frac{A}{2}=1.$

必修第六章拓展与思考

1. (1) 完成下表 (θ 为弧度数):

θ	1	0.5	0.1	0.01	0.001
$\sin \theta$					
$\frac{\sin \theta}{\theta}$					

(2) 观察上表中的数据, 你能发现什么规律?

(3) 已知 $0 < \theta < \frac{\pi}{2}$,利用图形面积公式证明 $\sin \theta < \theta < \tan \theta$,并应用该公式说明 (2) 中猜想的合理性.

2. 在 $\triangle ABC$ 中, 已知 $A=30^{\circ}$, b=18. 分别根据下列条件求 B:

(1) (1) a = 6, (2) a = 9, (3) a = 13, (4) a = 18, (5) a = 22;

(2) 根据上述计算结果, 讨论使 B 有一解、两解或无解时 a 的取值情况.

3. (1) 根据 $\cos 54^{\circ} = \sin 36^{\circ}$ 和三倍角公式, 求 $\sin 18^{\circ}$ 的值;

(2) 你还能使用其他方法求 sin 18° 的值吗? 若能, 请给出你的求法.

4. 如图, 要在 A 和 D 两地之间修建一条笔直的隧道, 现在从 B 地和 C 地测量得到: $\angle DBC = 24.2^{\circ}, \angle DCB = 35.4^{\circ}, \angle DBA = 31.6^{\circ}, \angle DCA = 17.5^{\circ}$. 试求 $\angle DAB$ 以确定隧道 AD 的方向 (结果精确到 0.1°).

