

Department of Computer, Control and Management Engineering

$\begin{array}{c} \textbf{Atari Breakout with} \\ \textbf{LTL}_f/\textbf{LDL}_f \ \textbf{Goals} \end{array}$

ELECTIVE IN ARTIFICIAL INTELLIGENCE: REASONING ROBOTS

Professor: Giuseppe De Giacomo Students: Ivan Bergonzani Michele Cipriano Armando Nania

Academic Year 2017/2018

Contents

1	Introduction	2
2	Reinforcement Learning 2.1 Q-Learning 2.2 SARSA	3 3
3	$\mathbf{LTL}_f/\mathbf{LDL}_f$ Non-Markovian Rewards	4
4	OpenAI Gym	5
5	ATARI Breakout	6
6	Conclusion	7

1 Introduction

Introduction to the whole project, structure of the report and summary of the work

2 Reinforcement Learning

Introduction to RL.

2.1 Q-Learning

Q-Learning algorithm.

2.2 SARSA

SARSA algorithm.

LTL_f/LDL_f Non-Markovian Rewards

Introduction to the research paper and how can it be used to train a RL model

4 OpenAI Gym

Introduction to the framework. Examples.

5 ATARI Breakout

Original implementation of the paper (non-ATARI). ATARI Breakout and differences from the other one. Results with 6x18 non-ATARI Breakout (+CODE). Results with our experiments (+CODE). RobotFeatureExtractor (OpenCV). GoalFeatureExtractor (OpenCV). *Ext used to improve implementation. $LTL_f/LDL_f \ \, \text{implementation (with Marco Favorito libraries)}.$

6 Conclusion

Why it does not work. Summary + differences between the two environments. Future works (neural networks and parallel computation).

References