Computability and Complexity COSC 4200

Deterministic Finite Automata II

Binary Numbers

Each binary string $x \in \{0,1\}^*$ corresponds to a natural number $bin(x) \in \mathbb{N}$.

X	bin(x)	X	bin(x)
ϵ	0		
0	0	1000	8
1	1	1001	9
10	2	1010	10
11	3	1011	11
100	4	1100	12
101	5	1101	13
110	6	1110	14
111	7	1111	15

Inductive Definition of bin(x)

For any $x \in \{0,1\}^*$, let bin(x) be the number x encodes in binary. This is defined inductively as follows.

- The base case is $bin(\epsilon) = 0$.
- For any x, assuming bin(x) has already been defined,

$$bin(x0) = 2bin(x),$$

$$bin(x1) = 2bin(x) + 1.$$

Inductive Definition of bin(x)

For any $x \in \{0,1\}^*$, let bin(x) be the number x encodes in binary. This is defined inductively as follows.

- The base case is $bin(\epsilon) = 0$.
- For any x, assuming bin(x) has already been defined,

$$bin(x0) = 2bin(x),$$

$$bin(x1) = 2bin(x) + 1.$$

For example,
$$bin(100) = 4$$
 and

$$bin(1000) = 2bin(100) = 2 \cdot 4 = 8,$$
$$bin(1001) = 2bin(100) + 1 = 2 \cdot 4 + 1 = 9.$$

Multiples of 3 in Binary

Show that

$$T = \{x \in \{0,1\}^* \mid \operatorname{bin}(x) \text{ is a multiple of } 3\}$$

is regular.

Х	bin(x)	X	bin(x)
ϵ	0		
0	0	1000	8
1	1	1001	9
10	2	1010	10
11	3	1011	11
100	4	1100	12
101	5	1101	13
110	6	1110	14
111	7	1111	15

Multiples of 3 in Binary

Show that

$$T = \{x \in \{0,1\}^* \mid \operatorname{bin}(x) \text{ is a multiple of } 3\}$$

is regular.

X	bin(x)	Х	bin(x)
ϵ	0		
0	0	1000	8
1	1	1001	9
10	2	1010	10
11	3	1011	11
100	4	1100	12
101	5	1101	13
110	6	1110	14
111	7	1111	15

 $\epsilon,$ 0, 11, 110, 1001, 1100, 1111, \ldots are accepted

$$Q = \{0, 1, 2\} \quad \Sigma = \{0, 1\}$$

$$\delta : Q \times \Sigma \rightarrow Q$$

$$\delta(q, b) = 2q + b \pmod{3}$$

$$Q = \{0, 1, 2\} \quad \Sigma = \{0, 1\}$$

$$\delta : Q \times \Sigma \rightarrow Q$$

$$\delta(q, b) = 2q + b \pmod{3}$$

Claim. For all $x \in \{0,1\}^*$, $\delta^*(0,x) = bin(x) \pmod{3}$.

Induction on Natural Numbers

Goal: Prove $(\forall n \geq 0) P(n)$.

Inductive proof:

- Base case: Prove P(0).
- Inductive hypothesis: Assume that P(k) holds for some k ≥ 0.

Inductive step: Use the inductive hypothesis to prove that P(k+1) also holds.

In the proof, we show that P(0) holds and

$$(\forall k \geq 0) \ P(k) \Rightarrow P(k+1).$$

Induction on Binary Strings

Goal: Prove $(\forall x \in \{0,1\}^*)$ P(x).

Inductive proof:

- Base case: Prove $P(\epsilon)$.
- Inductive hypothesis: Assume that P(x) holds for some $x \in \{0,1\}^*$.

Inductive step: Use the inductive hypothesis to prove that P(x0) and P(x1) also hold.

In the proof, we show that $P(\epsilon)$ holds and

$$(\forall x \in \{0,1\}^*) \ P(x) \Rightarrow P(x0) \land P(x1).$$

Claim. For all $x \in \{0,1\}^*$, $\delta^*(0,x) = bin(x) \pmod{3}$.

Proof. (by induction on strings)

Base case:
$$x = \epsilon$$
: $bin(\epsilon) = 0$.

$$\delta^*(0,\epsilon) = 0 = \sin(\epsilon).$$

Inductive hypothesis: Suppose the claim holds for some $x \in \{0,1\}^*$.

$$\delta^*(0,x) = \operatorname{bin}(x) \text{ (mod 3)}.$$

Inductive hypothesis: Suppose the claim holds for some $x \in \{0,1\}^*$.

$$\delta^*(0,x) = \sin(x) \pmod{3}.$$

Inductive step: We must prove that the claim holds for the extensions x0 and x1 of x as well:

$$\delta^*(0,x0) = \operatorname{bin}(x0) \pmod{3}$$

$$\delta^*(0,x1) = \operatorname{bin}(x1) \pmod{3}$$

Inductive hypothesis: Suppose the claim holds for some $x \in \{0,1\}^*$.

$$\delta^*(0,x) = \sin(x) \pmod{3}.$$

Inductive step: We must prove that the claim holds for the extensions x0 and x1 of x as well:

$$\delta^*(0, x0) = bin(x0) \pmod{3}$$

 $\delta^*(0, x1) = bin(x1) \pmod{3}$

For convenience, we'll work with both statements at the same time:

$$\delta^*(0, xb) = bin(xb) \pmod{3}$$
 for $b \in \{0, 1\}$

$$\delta^*(0,xb) = \delta(\delta^*(0,x),b)$$

definition of δ^*

$$\delta^*(0, xb) = \delta(\delta^*(0, x), b)$$

$$= 2\delta^*(0, x) + b \pmod{3}$$

definition of δ^* definition of δ

$$\begin{array}{lll} \delta^*(0,xb) & = & \delta(\delta^*(0,x),b) & \text{definition of } \delta^* \\ & = & 2\delta^*(0,x) + b \pmod{3} & \text{definition of } \delta \\ & = & 2(\operatorname{bin}(x) \pmod{3}) + b \pmod{3} & \text{inductive hypothesis} \end{array}$$

$$\delta^*(0, xb) = \delta(\delta^*(0, x), b)$$
 definition of δ^*
 $= 2\delta^*(0, x) + b \pmod{3}$ definition of δ
 $= 2(\text{bin}(x) \pmod{3}) + b \pmod{3}$ inductive hypothesis
 $= 2\text{bin}(x) + b \pmod{3}$

$$\delta^*(0, xb) = \delta(\delta^*(0, x), b)$$
 definition of δ^*
 $= 2\delta^*(0, x) + b \pmod{3}$ definition of δ
 $= 2(\operatorname{bin}(x) \pmod{3}) + b \pmod{3}$ inductive hypothesis
 $= 2\operatorname{bin}(x) + b \pmod{3}$
 $= \operatorname{bin}(xb) \pmod{3}$ definition of bin

$$\delta^*(0, xb) = \delta(\delta^*(0, x), b)$$
 definition of δ^*
 $= 2\delta^*(0, x) + b \pmod{3}$ definition of δ
 $= 2(\operatorname{bin}(x) \pmod{3}) + b \pmod{3}$ inductive hypothesis
 $= 2\operatorname{bin}(x) + b \pmod{3}$
 $= \operatorname{bin}(xb) \pmod{3}$ definition of bin

Therefore $\delta^*(0, xb) = bin(xb) \pmod{3}$ for both $b \in \{0, 1\}$.

$$\delta^*(0, xb) = \delta(\delta^*(0, x), b)$$
 definition of δ^*
 $= 2\delta^*(0, x) + b \pmod{3}$ definition of δ
 $= 2(\operatorname{bin}(x) \pmod{3}) + b \pmod{3}$ inductive hypothesis
 $= 2\operatorname{bin}(x) + b \pmod{3}$
 $= \operatorname{bin}(xb) \pmod{3}$ definition of bin

Therefore
$$\delta^*(0, xb) = bin(xb) \pmod{3}$$
 for both $b \in \{0, 1\}$.

It follows by mathematical induction that the claim holds for all $x \in \{0,1\}^*$.

Regular Operations

We will see that the regular languages are closed under the regular operations of union, concatenation, and star. This means that if $A, B \in \mathrm{REG}$, then

$$A \cup B \in \text{REG},$$

 $A \cdot B \in \text{REG},$
 $A^* \in \text{REG}.$

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

$$A \cdot B = \{xy \mid x \in A \text{ and } y \in B\}$$

$$A^* = \{x_1 x_2 \cdots x_k \mid x_1, x_2, \dots x_k \in A \text{ and } k \ge 0\}$$

If $A, B \in REG$, then $A \cup B \in REG$.

Proof. Let $A, B \in \text{REG}$. Then there exist two DFAs $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ and $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ with $L(M_A) = A$ and $L(M_B) = B$. We will use M_A and M_B to construct a new DFA M with $L(M) = A \cup B$.

If $A, B \in REG$, then $A \cup B \in REG$.

Proof. Let $A, B \in \text{REG}$. Then there exist two DFAs $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ and $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ with $L(M_A) = A$ and $L(M_B) = B$. We will use M_A and M_B to construct a new DFA M with $L(M) = A \cup B$.

Product Construction. We let $M = (Q, \Sigma, \delta, q_0, F)$ where

•
$$Q = Q_A \times Q_B = \{(p,q) \mid p \in Q_A, q \in Q_B\}$$

If $A, B \in REG$, then $A \cup B \in REG$.

Proof. Let $A, B \in \text{REG}$. Then there exist two DFAs $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ and $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ with $L(M_A) = A$ and $L(M_B) = B$. We will use M_A and M_B to construct a new DFA M with $L(M) = A \cup B$.

Product Construction. We let $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = Q_A \times Q_B = \{(p,q) \mid p \in Q_A, q \in Q_B\}$
- $\delta: Q \times \Sigma \to Q$ is defined by

$$\delta((p,q),a)=(\delta_A(p,a),\delta_B(q,a))$$

for all $(p,q) \in Q$ and $a \in \Sigma$.

If $A, B \in REG$, then $A \cup B \in REG$.

Proof. Let $A, B \in \text{REG}$. Then there exist two DFAs $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ and $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ with $L(M_A) = A$ and $L(M_B) = B$. We will use M_A and M_B to construct a new DFA M with $L(M) = A \cup B$.

Product Construction. We let $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = Q_A \times Q_B = \{(p,q) \mid p \in Q_A, q \in Q_B\}$
- $\delta: Q \times \Sigma \to Q$ is defined by

$$\delta((p,q),a)=(\delta_A(p,a),\delta_B(q,a))$$

for all $(p,q) \in Q$ and $a \in \Sigma$.

• $q_0 = (q_A, q_B)$.

If $A, B \in REG$, then $A \cup B \in REG$.

Proof. Let $A, B \in \text{REG}$. Then there exist two DFAs $M_A = (Q_A, \Sigma, \delta_A, q_A, F_A)$ and $M_B = (Q_B, \Sigma, \delta_B, q_B, F_B)$ with $L(M_A) = A$ and $L(M_B) = B$. We will use M_A and M_B to construct a new DFA M with $L(M) = A \cup B$.

Product Construction. We let $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = Q_A \times Q_B = \{(p,q) \mid p \in Q_A, q \in Q_B\}$
- $\delta: Q \times \Sigma \to Q$ is defined by

$$\delta((p,q),a)=(\delta_A(p,a),\delta_B(q,a))$$

for all $(p,q) \in Q$ and $a \in \Sigma$.

- $q_0 = (q_A, q_B)$.
- $F = \{(p, q) \in Q \mid p \in F_A \text{ or } q \in F_B\}$

$$A = \{ x \in \{0, 1\}^* \mid |x| \text{ is even} \}$$

$$0, 1$$

$$0, 1$$

$$0, 1$$

$$(p_0, q_2)$$

$$(p_1,q_0)$$

$$\left(p_{1},q_{1}
ight)$$

$$p_1, q_2$$

$$A = \{x \in \{0, 1\}^* \mid |x| \text{ is even} \}$$

$$0, 1$$

$$0, 1$$

$$0, 1$$

$$A = \{ x \in \{0, 1\}^* \mid |x| \text{ is even} \}$$

$$0,1$$

$$0,1$$

$$0,1$$

Proof. The proof is by induction on strings.

For the base case, we have

$$\delta^*(q_0,\epsilon)=q_0=(q_A,q_B)=(\delta^*(q_A,\epsilon),\delta^*(q_B,\epsilon)).$$

Proof. The proof is by induction on strings.

For the base case, we have

$$\delta^*(q_0,\epsilon)=q_0=(q_A,q_B)=(\delta^*(q_A,\epsilon),\delta^*(q_B,\epsilon)).$$

Proof. The proof is by induction on strings.

For the base case, we have

$$\delta^*(q_0,\epsilon) = q_0 = (q_A,q_B) = (\delta^*(q_A,\epsilon),\delta^*(q_B,\epsilon)).$$

$$\delta^*(q_0, xb) = \delta(\delta^*(q_0, x), b)$$

Proof. The proof is by induction on strings.

For the base case, we have

$$\delta^*(q_0,\epsilon)=q_0=(q_A,q_B)=(\delta^*(q_A,\epsilon),\delta^*(q_B,\epsilon)).$$

$$\delta^*(q_0, xb) = \delta(\delta^*(q_0, x), b)$$

= $\delta((\delta_A^*(q_A, x), \delta_B^*(q_B, x)), b)$

Proof. The proof is by induction on strings.

For the base case, we have

$$\delta^*(q_0,\epsilon)=q_0=(q_A,q_B)=(\delta^*(q_A,\epsilon),\delta^*(q_B,\epsilon)).$$

$$\delta^*(q_0, xb) = \delta(\delta^*(q_0, x), b)$$

$$= \delta((\delta_A^*(q_A, x), \delta_B^*(q_B, x)), b)$$

$$= (\delta_A(\delta_A^*(q_A, x), b), \delta_B(\delta_B^*(q_B, x), b))$$

Proof. The proof is by induction on strings.

For the base case, we have

$$\delta^*(q_0,\epsilon)=q_0=(q_A,q_B)=(\delta^*(q_A,\epsilon),\delta^*(q_B,\epsilon)).$$

$$\delta^*(q_0, xb) = \delta(\delta^*(q_0, x), b)$$

$$= \delta((\delta_A^*(q_A, x), \delta_B^*(q_B, x)), b)$$

$$= (\delta_A(\delta_A^*(q_A, x), b), \delta_B(\delta_B^*(q_B, x), b))$$

$$= (\delta_A^*(q_A, xb), \delta_B^*(q_B, xb)). \square$$

$$x \in L(M) \Leftrightarrow \delta^*(q_0, x) \in F$$

$$x \in L(M) \Leftrightarrow \delta^*(q_0, x) \in F$$

 $\Leftrightarrow (\delta_A^*(q_A, x), \delta_B^*(q_B, x)) \in F$

$$x \in L(M) \Leftrightarrow \delta^*(q_0, x) \in F$$

 $\Leftrightarrow (\delta_A^*(q_A, x), \delta_B^*(q_B, x)) \in F$
 $\Leftrightarrow \delta_A^*(q_A, x) \in F_A \text{ or } \delta_B^*(q_B, x)) \in F_B$

$$x \in L(M) \Leftrightarrow \delta^*(q_0, x) \in F$$

$$\Leftrightarrow (\delta_A^*(q_A, x), \delta_B^*(q_B, x)) \in F$$

$$\Leftrightarrow \delta_A^*(q_A, x) \in F_A \text{ or } \delta_B^*(q_B, x)) \in F_B$$

$$\Leftrightarrow x \in L(M_A) \text{ or } x \in L(M_B)$$

$$x \in L(M) \Leftrightarrow \delta^{*}(q_{0}, x) \in F$$

$$\Leftrightarrow (\delta_{A}^{*}(q_{A}, x), \delta_{B}^{*}(q_{B}, x)) \in F$$

$$\Leftrightarrow \delta_{A}^{*}(q_{A}, x) \in F_{A} \text{ or } \delta_{B}^{*}(q_{B}, x)) \in F_{B}$$

$$\Leftrightarrow x \in L(M_{A}) \text{ or } x \in L(M_{B})$$

$$\Leftrightarrow x \in L(M_{A}) \cup L(M_{B}) = A \cup B.$$

Therefore $L(M) = A \cup B$, so $A \cup B$ is regular.

Closure Under Complementation

The *complement* of a language A is

$$A^c = \{x \in \Sigma^* \mid x \not\in A\}.$$

Theorem

If A is regular, then A^c is regular.

Closure Under Complementation

The *complement* of a language A is

$$A^c = \{ x \in \Sigma^* \mid x \not\in A \}.$$

Theorem

If A is regular, then A^c is regular.

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA for A. Define a new DFA

$$M' = (Q, \Sigma, \delta, q_0, Q - F)$$

that flips the accepting and nonaccepting states of M. Then $L(M') = L(M)^c = A^c$.

Example - Closure Under Complementation

 $C = \{w \in \{0,1\}^* \mid w \text{ contains 010 as a substring}\}.$

 $C^c = \{w \in \{0,1\}^* \mid w \text{ does not contain 010 as a substring}\}.$

Closure Under Intersection

Theorem

If A and B are regular languages, then $A \cap B$ is regular.

Closure Under Intersection

Theorem

If A and B are regular languages, then $A \cap B$ is regular.

Proof. This follows from the previous two theorems. Observe that $A \cap B = (A^c \cup B^c)^c$.

The yellow region is $A^c \cup B^c$.

The complement of the yellow region is $A \cap B$.

Formally, we have

$$(A^c \cup B^c)^c =$$

Formally, we have

$$(A^c \cup B^c)^c = (A^c)^c \cap (B^c)^c$$
 De Morgan's Law

Formally, we have

$$(A^c \cup B^c)^c = (A^c)^c \cap (B^c)^c$$
 De Morgan's Law
= $A \cap B$ Double Complement Law.

Now we apply closure properties:

• Since A and B are regular, A^c and B^c is also regular.

Formally, we have

$$\begin{array}{rcl} (A^c \cup B^c)^c & = & (A^c)^c \cap (B^c)^c & \text{De Morgan's Law} \\ & = & A \cap B & \text{Double Complement Law}. \end{array}$$

Now we apply closure properties:

- Since A and B are regular, A^c and B^c is also regular.
- Therefore $A^c \cup B^c$ is regular.

The yellow region is $A^c \cup B^c$.

The complement of the yellow region is $A \cap B$.

Formally, we have

$$(A^c \cup B^c)^c = (A^c)^c \cap (B^c)^c$$
 De Morgan's Law
= $A \cap B$ Double Complement Law.

Now we apply closure properties:

- Since A and B are regular, A^c and B^c is also regular.
- Therefore $A^c \cup B^c$ is regular.
- Finally, $(A^c \cup B^c)^c$ is regular. \square

Theorem

If A and B are regular languages, then $A \cap B$ is regular.

We could also prove this by modifying the accepting states in the product construction.

Theorem

If A and B are regular languages, then $A \cap B$ is regular.

We could also prove this by modifying the accepting states in the product construction.

Change the "or" in F to an "and":

$$F = \{(p,q) \in Q \mid p \in F_A \text{ or } q \in F_B\}$$
$$= F_A \times F_B$$