

ESP-C3-M1 规格书

版本 V1.1.1

版权 ©2021

文件履历表

版本	日期	制定/修订内容	制定	核准
V1. 1. 0	2021. 10. 08	首次制定	邹胜锌	关宁
V1. 1. 1	2021. 10. 28	增加高温版模组	邹胜锌	关宁

目录

1.	产品概	无述	4
	1. 1.	特性	5
2.	主要参	>数	6
	2. 1.	静电要求	7
	2. 2.	电气特性	7
	2. 3.	WiFi 射频性能	7
	2. 4.	BLE 射频性能	8
	2. 5.	功耗	8
3.	外观万	रेजे	10
4.	管脚定	邑义	11
5.	原理图	<u> </u>	14
6.	天线参	>数	15
	6. 1.	天线的测试条件	15
	6. 2.	天线 S 参数	16
	6. 3.	天线增益和效率	16
	6. 4.	天线场型图	17
7.	设计排	号	18
	7. 1.	模组应用指导电路	18
	7. 2.	天线布局要求	18
	7. 3.	供电	19
	7. 4.	GP10 口的使用	20
8.	回流焊	旱曲线图	21
9.	产品机	目关型号	22
10.	产品	包装信息	23
11.	联系	我们	23
免	责申明	和版权公告	24
注	意		24

1. 产品概述

ESP-C3-M1 是由深圳市安信可科技有限公司开发的 WiFi 模块。该模块核心处理器芯片 ESP32-C3 是一款高集成度的低功耗 WiFi 和蓝牙系统级芯片(SoC), 专为物联网(IoT)、移动设备、可穿戴电子设备、智能家居等各种应用而设计。

ESP32-C3 芯片具有行业领先的低功耗性能和射频性能,支持 WiFi IEEE802.11b/g/n 协议和 BLE 5.0。该芯片搭载 RISC-V 32 位单核处理器,工作频率高达 160 MHz。支持二次开发,无需使用其它微控制器或处理器。芯片内置 400 KB SRAM, 384 KB ROM, 8KB RTC SRAM,内置 4MB Flash。芯片支持多种低功耗工作状态,能够满足各种应用场景的功耗需求。芯片所特有的精细时钟门控功能、动态电压时钟频率调节功能、射频输出功率可调节功能等特性,可以实现通信距离、通信速率和功耗之间的最佳平衡。

ESP-C3-M1 模块提供丰富的外设接口,包括 UART, PWM, SPI, I2S, I2C, ADC,温度传感器和多达 15 个 I0 口。

ESP-C3-M1 模块具有多种特有的硬件安全机制。硬件加密加速器支持 AES、SHA 和 RSA 算法。其中的 RNG、HMAC 和数字签名(Digital Signature) 模块提供了更多安全性能。其他安全特性还包括 Flash 加密和安全启动(secure boot)签名验证等。完善的安全机制使芯片能够完美地应用于各种加密产品。

ESP-C3-M1 模块支持低功耗蓝牙: Bluetooth5, Bluetooth mesh。蓝牙速率支持: 125Kbps, 500Kbps, 1Mbps, 2Mbps。支持广播扩展, 多广播, 信道选择。

图 1 主芯片架构图

1.1.特性

- 支持 WiFi 802. 11b/g/n,1T1R 模式数据速率高达 150Mbps
- 支持 BLE5.0, 速率支持: 125Kbps, 500Kbps, 1Mbps, 2Mbps
- RISC-V 32 位单核处理器, 支持高达 160 MHz 的时钟频率, 拥有 400 KB SRAM, 384 KB ROM, 8KB RTC SRAM
- 支持 UART/GPI0/ADC/PWM/I2C/I2S/SPI 接口, 温度传感器、脉冲计数器
- 采用 SMD-61 封装
- 集成 WiFi MAC/BB/RF/PA/LNA/蓝牙
- 支持多种休眠模式,深度睡眠电流小于 5uA
- 串口速率最高可达 5Mbps

- 支持 STA/AP/STA+AP 模式和混杂模式
- 支持安卓、IOS的Smart Config(APP)/AirKiss(微信)一键配网
- 支持串口本地升级和远程固件升级(FOTA)
- 通用 AT 指令可快速上手
- 支持二次开发,集成了 Windows、Linux 开发环境
- 关于 Flash: ESP-C3-M1 芯片默认内置 4MByte Flash

2. 主要参数

表 1 主要参数说明

模组型号	ESP-C3-M1				
封装	SMD-61				
尺寸	16. 6*13. 2*2. 4(±0. 2) mm				
天线形式	板载天线				
频谱范围	2400 ~ 2483. 5MHz				
工作泪由	-40 °C ~ 85 °C (C3FN4 常温版)				
工作温度	-40 °C ~ 105 °C (C3FH4 高温版)				
存储环境	−40 °C ~ 125 °C , < 90%RH				
供电范围	供电电压 3.0V ~ 3.6V,供电电流 >500mA				
支持接口	UART/GPIO/ADC/PWM/I2C/I2S/SPI				
10 口数量	100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 1010, 1018, 1019, 1020 , 1021				
串口速率	支持 110 ~ 4608000 bps ,默认 115200 bps				
蓝牙	BLE 5.0, 不支持传统蓝牙				
安全性	WEP/WPA-PSK/WPA2-PSK				
SPI Flash	4MByte				

2.1. 静电要求

ESP-C3-M1 模块是静电敏感设备,在搬运时需要采取特殊预防措施。

2. 2. 电气特性

表 2 电气特性表

参数条件		最小值	典型值	最大值	单位	
供电电压		VDD	3. 0	3. 3	3. 6	٧
	V _{IL} /V _{IH} –		-0. 3/0. 75VDD -		0. 25VDD/VDD+0. 3	٧
1/0	$V_{\rm OL}/V_{\rm OH}$	_	N/0.8V10	_	0.1VIO/N	٧
	I _{MAX}	_	_	_	12	mA

2. 3. WiFi 射频性能

表 3 WiFi 射频性能表

描述		典型值				
工作频率	2	2400 - 2483.5				
模式	最小值	典型值	最大值	单位		
11n 模式 HT40, MCS7	13	15	17	dBm		
11n 模式 HT20, MCS7	13	15	17	dBm		
11g 模式下,54Mbps	14	16	18	dBm		
11b 模式下,11Mbps	16	18	20	dBm		
	接收灵敏	度				
模式	最小值	典型值	最大值	单位		
11b, 1 Mbps	_	-96	_	dBm		
11b, 11 Mbps	_	-88	_	dBm		

11g, 6 Mbps	_	-91	_	dBm
11g, 54 Mbps	_	-75	_	dBm
11n, HT20 (MCS7)	_	-73	_	dBm
11n, HT40 (MCS7)	_	-70	_	dBm

2. 4. BLE 射频性能

表 4 BLE 射频性能表

描述		典型值					
· · · · · · · · · · · · · · · · · · ·							
模式	最小值	典型值	最大值	单位			
发射功率	-	9	_	dBm			
接收灵敏度 低功耗蓝牙 1M							
模式	最小值	典型值	最大值	单位			
灵敏度@30.8%PER	-	-94	_	dBm			

2.5.功耗

下列功耗数据是基于 3.3V 的电源、25°C 的环境温度,并使用内部稳压器测得。

- 所有测量均在没有 SAW 滤波器的情况下,于天线接口处完成。
- 所有发射数据是基于 100% 的占空比, 在持续发射的模式下测得的。

表 5 功耗表

模式	最小值	平均值	最大值	单位
传送 802.11b,DSSS 1Mbps, POUT=+20dBm	_	350	_	mA
传送 802.11g,OFDM 54Mbps,POUT =+18dBm	_	290	_	mA
传送802.11n, MCS7, POUT =+17dBm	_	280	_	mA
接收 802. 11b, 包长 1024 字节	_	84	_	mA
接收 802. 11g, 包长 1024 字节	_	87	_	mA

接收 802. 11n, 包长 1024 字节	_	87	_	mA
Modem-Sleep	_	20	_	mA
Light-Sleep	_	130	_	μ A
Deep-Sleep	_	5	_	μΑ
Power Off①	_	330 (默认模组)	_	μ A
	_	1 (定制模组)	_	μ A

备注:

①Power off 的状态是把芯片的 CHIP_EN 管脚拉低, 让芯片处于关闭状态。

因模组正常工作时 CHIP_EN 管脚需要拉高,因此模组内部 CHIP_EN 管脚保留 1 颗 10K 的上拉电阻。

模组默认出货,此上拉电阻是贴件的,此时 Power off 功耗 330uA。如果对 Power off 功耗有特殊要求,可以定制模组。把 10K 上拉电阻去掉,此时 Power off 的功耗可以低至 1uA。

3. 外观尺寸

图 3 模组外观图 (渲染图仅供参考,以实物为准)

图 4 模组尺寸图

4. 管脚定义

ESP-C3-M1 模组共接出 61 个管脚,如管脚示意图,管脚功能定义表是接口定义。

图 5 模组管脚示意图(顶视图)

表 6 管脚功能定义表

脚序	名称	功能说明				
1, 2, 11, 14, 36-61	GND	接地 电源负极				
3	VCC	供电 电源正极				
4, 7, 9, 10 15, 17, 34, 35	NC NC	空管脚				
5	102	GP102, ADC1_CH2, FSP1Q				
6	103	GP103, ADC1_CH3				
8	EN	高电平:芯片使能; 低电平:芯片关机;				
12	100	GP100, ADC1_CH0, XTAL_32K_P				
13	101	GPI01, ADC1_CH1, XTAL_32K_N				
16	1010	GPI010, FSPICS0				
18	104	GP104, ADC1_CH4, FSP1HD, MTMS				
19	105	GP105, ADC2_CH4, FSP1WP, MTD1				
20	106	GP106, FSP1CLK, MTCK				
21	107	GP107, FSP1D, MTD0				
22	108	GP108				
23	109	GP109				
24	SPIHD	NC, 不推荐使用				
25	SPIWP	NC, 不推荐使用				
26	1018	GP1018, USB_D-				
27	1019	GP1019, USB_D+				
28	SPICS0	NC, 不推荐使用				
29	SPICLK	NC, 不推荐使用				
30	RX	UORXD, GP1020				
31	TX	UOTXD, GPI021				
32	SPID	NC, 不推荐使用				
33	SPIQ	NC, 不推荐使用				

表 7 模组启动模式说明

系统启动模式								
管脚	默认	SPI 启动模式	下载启动模式					
108	无	无关项	1					
109	上拉	1	0					

注意: 部分引脚已经内部上拉, 请参考原理图。

5. 原理图

6. 天线参数

6.1. 天线的测试条件

图 7 天线测试条件

6.2. 天线 S 参数

图8天线S参数

6.3. 天线增益和效率

表 8 天线增益和效率

Frequency ID	1	2	3	4	5	6	7	8	9	10	11
Frequency (MHz)	2400. 0	2410. 0	2420. 0	2430. 0	2440. 0	2450. 0	2460. 0	2470. 0	2480. 0	2490. 0	2500. 0
Gain (dBi)	2. 22	2. 33	2. 17	2. 36	2. 39	2. 66	2. 76	2. 73	2. 60	2. 68	2. 46
Efficiency (%)	51.82	53. 28	51. 76	54. 30	54. 53	57. 77	59. 73	60. 40	59. 74	62. 50	61. 58

6. 4. 天线场型图

图 9 天线场型图

7. 设计指导

7.1. 模组应用指导电路

(>= 500mA, 建议使用 DC-DC 或 LDO 独立供电使用)

图 10 应用电路图

注意:

- 1020 做为 UORXD, 需要在外部增加一个上拉电阻。
- 109 为启动控制脚,高电平时处于正常工作模式,低电平时处于烧录固件模式。芯片内部默认高电平。

7. 2. 天线布局要求

■ 在主板上的安装位置,建议以下2种方式:

方案一: 把模组放在主板边沿, 且天线区域伸出主板边沿。

方案二: 把模组放在主板边沿, 主板边沿在天线位置挖空一个区域。

■ 为了满足板载天线的性能,天线周边禁止放置金属件,远离高频器件。

图 11 天线布局示意图

7.3. 供电

- 推荐 3.3V 电压, 峰值 500mA 以上电流。
- 建议使用 LDO 供电;如使用 DC-DC 建议纹波控制在 30mV 以内。
- DC-DC 供电电路建议预留动态响应电容的位置,可以在负载变化较大时,优化输出纹波。
- 3.3V 电源接口建议增加 ESD 器件

图 12 DC-DC 降压电路图

7. 4. GPIO 口的使用

- 模组外围引出了一些 IO 口,如需使用建议在 IO 口上串联 10-100 欧姆的电阻。这样可以抑制过冲,使两边电平更平稳。对 EMI 和 ESD 都有帮助。
- 特殊 I0 口的上下拉,需参考规格书的使用说明,此处会影响到模组的启动配置。
- 模组的 10 口是 3.3V 如果主控与模组的 10 口电平不匹配,需要增加电平转换电路。
- 如果 I0 口直连到外围接口,或者排针等端子,建议在 I0 口走线靠近端子处预留 ESD 器件。

图 13 电平转换电路

8. 回流焊曲线图

图 14 回流焊曲线图

9. 产品相关型号

表9 产品相关型号表

产品型号	主芯片	封装	尺寸	天线接口
ESP-C3-12F	ESP32-C3	SMD-22	24. 0*16. 0*3. 1 (±0. 2) mm	板载 PCB 天线 /IPEX 座子兼容
ESP-C3-32S	ESP32-C3	SMD-38	25. 5*18. 0*3. 1 (±0. 2) mm	板载 PCB 天线 /IPEX 座兼容
ESP-C3-13	ESP32-C3	SMD-18	20. 0*18. 0*3. 1 (±0. 2) mm	板载 PCB 天线 /IPEX 座兼容
ESP-C3-13U	ESP32-C3	SMD-18	14. 0*18. 0*3. 1 (±0. 2) mm	IPEX 接口
ESP-C3-01M (常温版)	ESP32-C3	DIP-18 金手指 插件	18. 0*18. 0*2. 8 (±0. 2) mm	板载 PCB 天线
ESP-C3-01M (高温版)	ESP32-C3	DIP-18 金手指 插件	18. 0*18. 0*2. 8 (±0. 2) mm	板载 PCB 天线
ESP-C3-M1-I (常温版)	ESP32-C3	SMD-61	12. 5*13. 2*2. 4 (±0. 2) mm	IPEX 接口
ESP-C3-M1-I (高温版)	ESP32-C3	SMD-61	12. 5*13. 2*2. 4 (±0. 2) mm	IPEX 接口
产品相关信息: https://docs.ai-thinker.com				

产品包装信息 10.

ESP-C3-M1 模组采用编带包装, 900pcs/盘。如下图所示:

图 15 包装编带图

联系我们 11.

官方官网: https://www.ai-thinker.com

开发 DOCS: https://docs.ai-thinker.com

官方论坛: http://bbs.ai-thinker.com

样品购买: https://aithinker.tmall.com

https://anxinke.taobao.com

商务合作: sales@aithinker.com

技术支持: <u>support@aithinker.com</u>

公司地址:深圳市宝安区西乡固戍华丰智慧创新港 C 栋 403、408-410

联系电话: 0755-29162996

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

文中所得测试数据均为安信可实验室测试所得,实际结果可能略有差异。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

最终解释权归深圳市安信可科技有限公司所有。

注 意

由于产品版本升级或其他原因, 本手册内容有可能变更。

深圳市安信可科技有限公司保留在没有任何通知或者提示的情况下对本手册的内容进行修改的权利。

本手册仅作为使用指导,深圳市安信可科技有限公司尽全力在本手册中提供准确的信息,但是深圳市安信可科技有限公司并不确保手册内容完全没有错误,本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。