## Before we start...

## Go to: whosspeaking.wixsite.com/listen

Listen to the three audio clips on the website, and use the polls to share your impressions of each speaker When you respond, think about:



When you're done, scroll down the page and have a look at other people's responses in the word clouds

whosspeaking.wixsite.com/listen

## Have you done it?

If you don't want to share your thoughts, that's okay, just listen to the voices and think about your impressions of the speakers.







# Does 'more masculine' mean 'less feminine'?

Measures of 'perceived gender' in an investigation of the role of voice quality on gender perception

Joe Pearce (he/she/they)

j.pearce.1@research.gla.ac.uk

Supervised by: Jane Stuart-Smith (Glasgow), Clara Cohen (Glasgow), and Felix Schaeffler (QMU)

IGALA11 22 - 24 June 2021

## Roadmap

- 1. Intro [Now]
- 2. Why did I get you to do that? [1:07]
- 3. Research questions and overview [4:00]
- 4. Predictions [4:45]



- 5. Methods [3:37]
- 6. Results [8:06]
- 7. What this all means [12:17]

References [14:48]

Additional content [14:53]



2. Why did I get you to do that?



Speaker A



Speaker B



Speaker C



## Pitch



## Pitch



### Pitch



Speaker A 120 Hz 'Typical male' pitch



Speaker B 165 Hz 'Ambiguous' pitch



Speaker C 210 Hz 'Typical female' pitch

## Voice quality



Speaker A Breathy voice





Speaker B Modal voice





Speaker C Creaky voice









### **Important**









#### What do we know so far?



Not found by all studies



Less on creaky voice



Addington 1968, Andrews & Schmidt 1997, Bishop & Keating 2012, Gorham-Rowan & Morris 2006, Greer 2015, Lee 2016, Palmer, Dietsch & Searl 2012, Porter 2012, Skuk & Schweinberger 2014, Van Borsel, Jansen & De Bodt 2009

Booz & Ferguson 2016, Holmberg et al. 2010, King, Brown & McCrea 2010, Owen & Hancock 2010

Greer 2015, Lee 2016

## Why the conflicting results?

- Leung et al. 2018 suggest:
  - Different studies measure 'perceived gender' differently



## Why did I get you to do that?

#### What I'm interested in:

• In an experiment, how would the way that we measured 'perceived gender' affect what we found?



# 3. Research questions and overview

## Research questions

- 1. How does voice quality affect our perception of gender?
  - How does it interact with the perceptions we get from pitch?
- 2. How does the type of response used to measure `perceived gender' affect whether voice quality contributes to gender perception?

## The present study: Overview

• Stimuli: 210 Hz ('typical female')
165 Hz ('ambiguous')
120 Hz ('typical male')
Breathy







Questions:







## 4. Predictions

How does voice quality affect our perception of gender?



Creaky => More masculine / more likely to be a man?

#### Predictions





## 5. Methods

### Stimuli



Female speaker from Glasgow

#### Stimuli

|        | Breathy === |             | Modal O |                  | Creaky ~~~ |             |
|--------|-------------|-------------|---------|------------------|------------|-------------|
|        | Natural     | Synthesized | Natural | Synthesized      | Natural    | Synthesized |
| 210 Hz |             |             |         |                  | 7000       |             |
| 165 Hz |             |             |         | Service Comments | Zana,      |             |
| 120 Hz |             |             |         |                  | Course     |             |

Pitch changes created using Praat (Boersma & Weenink 2019); Synthesized differences in voice quality created using KlattGrid (Klatt & Klatt 1990, Weenink 2009) in Praat.



## participants aged **18-62**







## 33 participants aged 18-45





## The experiment

#### PsyToolkit (Stoet 2010, 2017)



### Qualitative data

- 1. What did you pay attention to when deciding whether you thought the voices sounded like a man or a woman?
- 2. What did you pay attention to when rating how masculine/feminine a voice sounded?
- 3. Do you have any further comments about your experience completing this experiment?



## 6. Results

# How does voice quality affect our perception of gender?

And how does it interact with the perceptions we get from pitch?

## Breathy voice increases likelihood of a 'woman' response

• The effect of breathy voice increases as pitch decreases



## Breathy voice increases ratings of femininity



# Creaky voice has no effect on ratings of femininity



### Voice quality affects perception of masculinity

 Listeners rated breathy voice and creaky voice significantly less masculine than modal voice



### Voice quality affects perception of masculinity

• Breathy voice at 120 Hz rated significantly less masculine than breathy voice at higher pitch levels \*\*





- Less masculine
- NOT more feminine
- NOT less likely to be categorised as a woman



- 1. What did you pay attention to when deciding whether you thought the voices sounded like a man or a woman?
- 2. What did you pay attention to when rating how masculine/feminine a voice sounded?
- 3. Do you have any further comments about your experience completing this experiment?

#### The same for some

'I paid attention to the same things when deciding whether man or woman, masculine or feminine'

'same as before' for Q1 & Q2

'higher rating [on
masculine/feminine scales] came
when i was more sure of the
gender'

#### ...but different for others

'Sometimes a more masculine voice meant a less feminine one but not always so it was good to have the two sliders'

'there should have been an option for "women speaker but with a masculine voice"'

# How we perceive gender interacts with how we perceive other characteristics

#### Age

"What might have been young female could well have been late adolescent male. Also, it was challenging to guess between possible post-menopausal female versus male with high-registered voices."

"Sometimes I found it difficult to decide whether the voice was a man or a woman because it sounded to me like a young boy"

# How we perceive gender interacts with how we perceive other characteristics

#### **Sexuality**

"A lot of the ones I put as "masculine" were because I could imagine gay men I know saying it in that tone/pitch/whatever it's called."

# How we perceive gender interacts with how we perceive other characteristics

#### **Trans status**

Two participants noted the voices sounded like transgender people they knew



### Background may influence gender perception





7. What does this all mean?

# Voice quality does influence gender perception



- Listeners more likely to give a 'woman' response for breathy voices
- Breathy voice perceived as less masculine & more feminine



Creaky voice decreases perception of masculinity

# The way we perceive gender is mediated by our experiences and sociolinguistic background

- N. American vs Scottish listeners have different thresholds for gender perception in terms of pitch
- Masculinity, femininity, and gender (woman/'not woman') are equivalent for some listeners, but not others
- Perception of gender intersects with perception of other characteristics

# A call for trans-centred gender perception research



### Thank you for listening!

- Please feel free to get in touch with questions or comments
- Look at additional material for more examples of stimuli, model outputs, more results



#### References

- Addington, David W. (1968). "The relationship of selected vocal characteristics to personality perception". In: *Speech Monographs* 35 (4), pp. 492–503.
- Andrews, Moya L. and Charles P. Schmidt (1997). "Gender presentation: Perceptual and acoustical analyses of voice". In: Journal of Voice 11 (3), pp. 307–313.
- Bishop, Jason and Patricia Keating (2012). "Perception of pitch location within a speaker's range: Fundamental frequency, voice quality and speaker sex". In: The Journal of the Acoustical Society of America 132 (2), pp. 1100–1112.
- Boersma, Paul and David Weenink (2019). Praat: doing phonetics by computer. [Computer program]. Version 6.0.49, Amsterdam
- Booz, Jaime A. and Sarah H. Ferguson (2016). "Perceived gender in clear and conversational speech". In: *The Journal of the Acoustical Society of America*.
- Gorham-Rowan, Mary and Richard Morris (2006). "Aerodynamic Analysis of Male-to-Female Transgender Voice". In: *Journal of Voice* 20 (2), pp. 251–262.
- Greer, Sarah Doris Faye (2015). "The Perception of Coolness: Voice Quality and Its Social Uses and Interpretations". MA thesis. University of Calgary.
- Holmberg, Eva B., Jennifer Oates, Georgia Dacakis, and Cameron Grant (2010). "Phonetograms, aerodynamic measurements, self-evaluations, and auditory perceptual ratings of male-to-female transsexual voice". In: Journal of Voice 24 (5), pp. 511–522.
- King, Robert S., George R. Brown, and Christopher R. McCrea (2012). "Voice parameters that result in identification or misidentification of biological gender in male-to-female transgender veterans". In: International Journal of Transgenderism 13 (3), pp. 117–130.

### References (cont.)

- Klatt, Dennis and Laura Klatt (1990). "Analysis, synthesis, and perception of voice quality variations among female and male talkers". In: The Journal of the Acoustical Society of America 87 (2), pp. 820–857.
- Laver, John (1980). The Phonetic Description of Voice Quality. Cambridge: Cambridge University Press.
- Lee, Kaitlyn (2016). "The Perception of Creaky Voice: Does Speaker Gender Affect our Judgments?" MA thesis. University of Kentucky.
- Leung, Yeptain, Jennifer Oates, and Siew Pang Chan (2018). "Voice, Articulation, and Prosody Contribute to Listener Perceptions of Speaker Gender: A Systematic Review and Meta-Analysis". In: *Journal of Speech, Language and Hearing Research*, 61 (2), pp. 266–297.
- Owen, Kelly and Adrienne Hancock (2010). "The role of self- and listener perceptions of femininity in voice therapy". In: *International Journal of Transgenderism* 12 (4), pp. 272–284.
- Palmer, Derek, Angela Dietsch, and Jeff Searl (2012). "Endoscopic and stroboscopic presentation of the larynx in male-to-female transsexual persons". In: *Journal of Voice* 26 (1), pp. 117–126.
- Prolific (2014). *Prolific*. Version July 2019. Oxford. Available at: www.prolific.co

### References (cont.)

- Porter, Courtney Cain (2012). "Voice quality and gender identification: Acoustic and perceptual analysis". PhD thesis. Dalhousie University.
- Skuk, Verena G and Stefan R Schweinberger (2014). "Influences of fundamental frequency, formant frequencies, aperiodicity, and spectrum level on the perception of voice gender". In: *Journal of Speech Language and Hearing Research* 57 (1), p. 285.
- Stoet, Gijsbert (2010). "PsyToolkit A software package for programming psychological experiments using Linux". In: Behaviour Research Methods 42 (4), pp. 1096–1104.
- Stoet, Gijsbert (2017). "PsyToolkit: A novel web-based method for running onlinequestionnaires and reaction-time experiments". In: *Teaching of Psychology* 44 (1),pp. 24–31.
- Van Borsel, John, Joke Janssens, and Marc De Bodt (2009). "Breathiness as a feminine voice characteristic: A perceptual approach". In: *Journal of Voice* 23 (3), pp. 291–294.
- Weenink, David (2009). The KlattGrid speech synthesizer. Amsterdam.

# Additional content

#### Dependent variables:

Perceived speaker gender (woman, man or neither/can't tell)

grouped together for model, 'not woman'

- Generalised linear mixed-effects regression using lme4
- Perceived femininity (1-100)
- Perceived masculinity (1-100)
  - Linear mixed-effects regression using lme4



Helmert coding – 165 Hz compared to 210 Hz, 120 Hz compared to higher levels



- + Phonation:f0 + f0:origin
- + (1|sentence) + (1|participant)



## Model outputs

|                                                                   | Dependent variable:                                           |                                                               |                                                                    |
|-------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                   | femininity                                                    | masculinity                                                   | response                                                           |
|                                                                   | $\begin{array}{c} linear \\ mixed\text{-}effects \end{array}$ | $\begin{array}{c} linear \\ mixed\text{-}effects \end{array}$ | $\begin{array}{c} generalized\ linear\\ mixed-effects \end{array}$ |
|                                                                   | (1)                                                           | (2)                                                           | (3)                                                                |
| Constant                                                          | 78.301***<br>(2.300)                                          | 28.099***<br>(2.102)                                          | $-2.672^{***}$ (0.370)                                             |
| ${\it f0} Helmertsc 210 vs 165$                                   | $-9.623^{***}$ $(1.322)$                                      | 7.238***<br>(1.661)                                           | $1.634** \\ (0.498)$                                               |
| ${\it f0} Helmertsc 120 Hzvs higher levels$                       | $-28.719^{***}$ $(1.248)$                                     | 35.752***<br>(1.436)                                          | 5.835***<br>(0.410)                                                |
| VQbreathy                                                         | 4.312***<br>(1.145)                                           | $-2.625^{**} (0.832)$                                         | $-0.916^{***} (0.260)$                                             |
| VQcreaky                                                          | 1.233 $(1.257)$                                               | $-2.363^{**}$ (0.859)                                         | -0.051 $(0.227)$                                                   |
| originNorth America                                               | 0.381 (2.771)                                                 | $-8.837^{**}$ $(2.701)$                                       | -0.531 (0.423)                                                     |
| naturalnesssynthesized                                            | $-20.405^{***}$ $(0.827)$                                     | 12.019***<br>(0.646)                                          | 2.657***<br>(0.184)                                                |
| ${\it f0} Helmertsc 210 vs 165; VQ breathy$                       |                                                               | -2.063 $(1.917)$                                              | $-1.731^*$ (0.679)                                                 |
| ${\it f0} Helmertsc 120 Hzvs higher levels: VQ breathy$           |                                                               | -4.688** (1.817)                                              | $-1.071^*$ (0.439)                                                 |
| ${\it f0} Helmertsc 210 vs 165; VQ creaky$                        |                                                               | 1.957 $(2.104)$                                               | $ \begin{array}{c} 1.112 \\ (0.612) \end{array} $                  |
| ${\it f0} Helmertsc 120 Hzvshigher levels: VQ creaky$             |                                                               | -2.130 (1.816)                                                | $-1.579^{**} $ $(0.507)$                                           |
| ${\it f0} Helmertsc 210 vs 165: origin North\ America$            | 4.230**<br>(1.335)                                            | -4.535*** $(1.349)$                                           | $-1.621^{***}$ $(0.295)$                                           |
| ${\it f0} Helmertsc 120 Hzvshigher levels: origin North\ America$ | 3.117**<br>(1.149)                                            | $-11.583^{***}$ $(1.166)$                                     | $-1.187^{***} $ $(0.234)$                                          |
| Log Likelihood                                                    | -16,887.490                                                   | -16,926.600                                                   | -1,287.036                                                         |
| Note:                                                             |                                                               | *p<0.05; **p                                                  | <0.01; ***p<0.001                                                  |

### Keep in mind!

- One female speaker as the original voice
- Data is skewed towards 'woman', 'not masculine' and 'feminine' responses overall



# Synthesized stimuli decrease ratings of femininity

