

excession) we are given $\dot{x}(t) = p(x(t))$ $x(0) = X_0$ (6) find ϕ_{ϵ} tle solution is x(t)=x0ex, so $\phi_t(x) = xe^{pt}$ i.e. $\phi_0(x) = xe^0$, $\phi_1(x) = xe^p$ e.t.c. (b) What is \$\psi_1(2)? What is \$\psi_2(1)? What is \$\psi_1(x)? What is ot(1)? $\phi_{1}(2) = 2 \cdot e^{p}$ $\phi_{2}(1) = e^{2^{p}}$ $\phi_{3}(x) = xe^{p}$ p+(7) = 6 (c) Draw the 1D phase potrait for decent values of p. Let J=(a,b). Simplify/eval the $\{C_{\Rightarrow X} \mid (X)_{\Rightarrow} \phi\} = \{C_{\Rightarrow X} \mid (X)_{\Rightarrow} \phi\}$

ex2	
(d) Thou that the linear initial value problem defines a dynamical system by verifying care of the ingrediens above with $\phi_t(x)$ in (a)	h (-
We must show (C) in the week note	
$(\emptyset_{c} \notin X) = X \wedge \varphi_{e+s}(X) = \varphi_{e} \circ \varphi_{s}(X)$	
$\int \phi_o(x) = x \cdot e^{p \cdot o} = x$	
$ \sqrt{\phi_{trs}(x)} = x \cdot e^{P(t+s)} $ $ \lambda \phi_{t}(\phi_{s}(x)) = (x \cdot e^{SP}) e^{tP} $ $ = x e^{P(s+t)} $	
(e) What is $(\phi_{\epsilon})^{-1}$? Compare with $\phi_{-\epsilon}$ and (2) for $s=-\epsilon$. Discuss	
(first the $x = \phi_t(\phi_t^{-1}(x)) = (\phi_t^{-1}(x))e^{pt}$ \Rightarrow $x = f(f)$ $x = \phi_t(x)e^{pt} \cdot e^{pt}$	
$= \phi_{\epsilon}^{-1}(x) e^{\circ}$ $= \phi_{\epsilon}^{-1}(x)$	
ve compare with b.t	
$\phi_{-\epsilon}(x) = \chi e^{\rho(-\epsilon)}$	
i.c. ϕ_t^{-1} is reversing time.	
	C

ex3 - first we assume Xo is a solution to for i.e. a fix point therefore are can move and x(t) w:11 be - Next ue assume Xo is not a fix poin of Xo is as then we would more toward a but no further. Therfore X(4) would be strictly increasing 46. If xo was then *(+) x(+) would be strictly decreasing to all time. the solution x(t) can not be both increasing and decreasing because it would result in violating the existence and uniqueness fleoren. A

from ex3 we so know that we can only go towards - on or a fix point Doing soveral would a mean one will violate the uniquiess and existess theorem