

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

Лекции для студентов факультета ПМ-ПУ (III курс, 6-ой семестр)

Доцент кафедры моделирования электромеханических и компьютерных систем, кандидат физ.-мат. наук Владимир Олегович Сергеев

Оглавление

1	Теория Рисса линейных уравнений второго рода	2
	1.1 Теорема Шаудера	2

Глава 1

Теория Рисса линейных уравнений второго рода

В этой главе мы будем рассматривать вполне непрерывные операторы.

1.1 Теорема Шаудера

Определение. Последовательность $\{y_n\}$ элементов пространства Y называется **компактной**, если в ней существует фундаментальная подпоследовательность.

Лемма (Лемма I). Пусть Y -банахово пространство. Если последовательность элементов $\{y_n\}$ слабо сходится κ элементу $y_0 \in Y$ и компактна, то $y_n \to y_0$ сильно, т.е. $||y_n - y_0||_Y \to 0$ при $n \to \infty$.

Доказательство. (от противного) Предположим, что $\{y_n\}$ не стремится к y_0 , т.е. существует подпоследовательность $\{y_{nk}\}$ такая, что $\|y_{nk}-y_0\|>\varepsilon$ при достаточно больших значениях k. Тогда (по теореме Хана-Банаха глава 3, $\S 2$, следствие 4) существует функционал $\phi\in Y^*$, $\|\phi\|=1$ такой, что $\phi(y_{nk}-y_0)=\|y_{nk}-y_0\|>\varepsilon$ при всех $k\to k_0$. Следовательно последовательность $\{y_n\}$ не имеет слабого предела.

Лемма (Лемма II). Пусть $A \subset \sigma(X,Y)$. Если $\{x_n\} \to x_0$, то $Ax_n \to Ax_0$ сильно.

Доказательство. Так как $\{x_n\} \to x_0$, то $\{\|x_n\|\}$ ограничена (глава 4, §1). Из полной непрерывности оператора A следует, что последовательность элементов $y_n = Ax_n$ компактна.

Покажем, что $Ax_n \to Ax_0$.

Для любого линейного функционала $\phi \in Y^*$ значения $< A(x_n - x_0), \phi > = < x_n - x_0, A^*\phi >$. Обозначим $A^*\phi = f \in X^*$:

$$< A(x_n - x_0), \phi > = < x_n - x_0, f >$$

и так как $x_n \to x_0$, то $< A(x_n - x_0), \phi > \to 0$ при $n \to \infty$. Тогда $Ax_n \to Ax_0$. По лемме I $||Ax_n - Ax_0||_Y \to 0$ при при $n \to \infty$.

Теорема (Шаудер). Пусть $A \subset \mathcal{L}(X,Y)$, где Y — банахово пространство. Тогда операторы A и A^* вполне непрерывны одновременно.

Доказательство. Пусть $A \subset \sigma(X,Y)$. Рассмотрим последовательность линейных функционалов $\phi_n \in Y^*$ с нормами $\|\phi_n\| = 1$. Покажем, что в последовательности функционалов $\{A^*\phi_n\} \in X^*$ существует фундаментальная подпоследовательность, что и будет означать полную непрерывность оператора A^* .

Обозначим $\{\phi_n\} = \{y_n\} \in Y^*$ и последовательность функционалов $A^*\phi_n = A^*y_n = f_n \in X^*$. Ясно, что $||f_n|| = ||A^*y_n|| = ||A^*\phi_n|| \le ||A^*|| ||\phi_n|| = ||A||$.

Таким образом $\{f_n\}$ ограничена в совокупности. Функционалы f зависят от выбранного y: $f_n = f_n(y) = f(y)$.

Ясно, что если y'' и $y' \in Y^*$, то

$$\|f(y'')-f(y')\|=\|A^ky''-A^ky'\|\leq \|A\|\|y''-y'\|\leq \varepsilon,\,\operatorname{если}\|y''-y'\|<\delta\,\operatorname{и}\,\|A\|\delta<\varepsilon$$

Таким образом функции f(y) равностепенно непрерывны. Следуя доказательству теоремы Арцела-Асколи (глава I, §1) получаем существование фундаментальной подпоследовательности $f_{nk} = A^k \phi_{nk}$ последовательности $A^* \phi_n$, $\phi_n \in S_1 \subset Y^*$: A^* — вполне непрерывный оператор.

Если же $A^* \in \sigma(X^*, Y^*)$, то так как $(A^*)^* = A$, то получаем, что и оператор A вполне непрерывен.