

COC Berlin Code of Conduct

CATEGORY THEORY FOR PROGRAMMERS

Bartosz Milewski

Category Theory for

Programmers Chapter 17:

It's All About Morphisms

Part Three	254
17 It's All About Morphisms	254
17.1 Functors	254
17.2 Commuting Diagrams	255
17.3 Natural Transformations	256
17.4 Natural Isomorphisms	258
17.5 Hom-Sets	258
17.6 Hom-Set Isomorphisms	259
17.7 Asymmetry of Hom-Sets	260
17.8 Challenges	261

The I haven't convinced you yet that category theory is all about morphisms then I haven't done my job properly. Since the next topic is adjunctions, which are defined in terms of isomorphisms of hom-sets, it makes sense to review our intuitions about the building blocks of hom-sets. Also, you'll see that adjunctions provide a more general language to describe a lot of constructions we've studied before, so it might help to review them too.

17.3 Natural Transformations

In general, natural transformations are very convenient whenever we need a mapping from morphisms to commuting squares. Two opposing sides of a naturality square are the mappings of some morphism f under two functors F and G. The other sides are the components of the natural transformation (which are also morphisms).

17.8 Challenges

1. Consider some degenerate cases of a naturality condition and draw the appropriate diagrams. For instance, what happens if either functor F or G map both objects a and b (the ends of $f::a \rightarrow b$) to the same object, e.g., Fa = Fb or Ga = Gb? (Notice that you get a cone or a co-cone this way.) Then consider cases where either Fa = Ga or Fb = Gb. Finally, what if you start with a morphism that loops on itself $-f::a \rightarrow a$?


```
safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:xs) = Just x
```

[] / List Functor


```
safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:xs) = Just x
```

[] / List Functor

