

TEMA 2. Capa física y capa de enlace

Capas física y de enlace

La arquitectura TCP/IP se suele implementar mediante un modelo de 5 capas

Aplicación	Capa 5
Transporte (TCP/UDP)	Capa 4
Red (IP)	Capa 3
Enlace de Datos	Capa 2
Física	Capa 1

- La organización y función de las capas de Enlace y Física dependerá del tipo de infraestructura de red que estemos utilizando:
 - Red de área local o LAN (ej. Ethernet/WiFi)
 - Red troncal (ej. ATM)
 - Red de acceso residencial (ej. ADSL)

Principales infraestructuras de red

- Redes troncales (WAN)
 - Se utilizan en los proveedores de acceso a Internet (ISP)
 - Tecnologías: redes telefónicas, redes conmutadas y redes de telefonía móvil

Redes de área local (LAN)

 Usadas en redes de empresas, instituciones y hogar

- Tecnologías: Ethernet y WiFi
- Conectadas a las redes troncales mediante una conexión directa entre routers o una conexión de acceso residencial
- Tecnologías de acceso residencial
 - Conectan las redes LAN con las WAN (ISP)
 - Tecnologías: modem convencional, módem de cable, ADSL y Fibra óptica

Redes de área local (LAN)

Topologías

- En la actualidad las redes de área local están dominadas por:
 - Canal compartido (o de difusión) en estrella (WiFi)
 - Conmutadas en estrella con switch

Capas física y de enlace

Capa física Conceptos de Transmisión de Datos

¿Cómo representar datos binarios mediante señales?

Usando señales digitales ⇒ distintos niveles discretos de voltaje.
 Se denomina transmisión digital o transmisión en banda base

Ejemplos:

Codificación polar NRZ (sin retorno a cero)

> Utiliza dos niveles eléctricos con polaridades opuestas (-V, +V)

Codificación polar bifase Manchester

- ➤ Utiliza dos niveles eléctricos de polaridad opuesta (-V, +V)
- Cada elemento de datos se codifica con una transición en mitad del intervalo

0 = Nivel alto seguido de bajo

1 = Nivel bajo seguido de alto

¿Cómo representar datos binarios mediante señales?

 Usando señales analógicas ⇒ distintas formas de onda (ej. variaciones de la amplitud, frecuencia o fase).

Se denomina transmisión analógica o transmisión en banda ancha

Ejemplos:

Modulación en Amplitud

Utiliza una señal portadora con frecuencia y fase constante, pero dos niveles de amplitud distintos para representar el 1 y el 0 lógicos:

$$1 \rightarrow s(t) = A sen(2\pi ft)$$

 $0 \rightarrow s(t) = B sen(2\pi ft)$

Modulación en Fase

Utiliza dos fases distintas para representar el 1 y el 0 lógicos, por ejemplo:

$$0 \rightarrow s(t) = A sen(2\pi ft)$$

 $1 \rightarrow s(t) = A sen(2\pi ft + \pi)$

- Elementos de señal (símbolos) y elementos de datos (bits)
 - Un elemento de señal o símbolo es cada uno de los distintos estados de la señal (distintos niveles eléctricos o distintas formas de onda) que se utilizan para codificar los datos binarios
 - Cada elemento de señal puede representar uno o varios elementos de datos o bits:
 - R = relación de bits por elemento de señal
 - Si tenemos V símbolos podemos codificar R bits por elemento de señal siendo V=2^R Ejemplos:
 - V = 2 elementos de señal ⇒ R = 1 bit por elemento de señal
 - V = 4 elementos de señal ⇒ R = 2 bits por elemento de señal
 - V = 8 elementos de señal ⇒ R = 3 bits por elemento de señal
 - V = 16 elementos de señal ⇒ R = 4 bits por elemento de señal
 -

Transmisión digital

Ejemplo 1

Dos elementos de señal = 2 niveles eléctricos

 $V=2^R \Rightarrow 2=2^R \Rightarrow R = 1$ bit por elemento de señal

Ejemplo 2

Cuatro elementos de señal = 4 niveles eléctricos

 $V=2^R \Rightarrow 4=2^R \Rightarrow R=2$ bit por elemento de señal

Transmisión analógica

Ejemplo 1

Dos elementos de señal = 2 fases distintas: 0° y 180°

 $V=2^R \Rightarrow 2=2^R \Rightarrow R=1$ bit por elemento de señal

Ejemplo 2

Cuatro elementos de señal = 4 fases distintas: 0°, 90°, 180°, 270°

 $V=2^R \Rightarrow 4=2^R \Rightarrow R=2$ bit por elemento de señal

Tasa de baudios (baud rate) de un canal de transmisión

- Número de veces que puede cambiar el estado de la señal (cambios de nivel eléctrico o de forma de onda) por unidad de tiempo, es decir, nº de símbolos o elementos de señal por segundo
- Ejemplo: en un canal de 100 baudios, se pueden transmitir 100 elementos de señal distintos por segundo

Tasa de bits (bit rate) de un canal de transmisión

- También se llama velocidad de transmisión
- Número de bits de datos que se transmiten por unidad de tiempo
- Se mide en bits por segundo (bps)

Relación entre tasa de baudios y tasa de bits

R	Nº de bits por elemento de señal (también denominada relación bits por baudio)
В	Tasa de baudios
$C = R \times B$	Tasa de bits o velocidad de transmisión (bps)

- Ancho de banda de un canal de transmisión
 - El ancho de banda (H) de un canal es el rango de frecuencias que este canal puede transmitir para una distancia determinada sin atenuación

$$H = fs - fi$$

- > fi = frecuencia de corte inferior
- fs = frecuencia de corte superior
- Tipos de canales de transmisión

Canal paso-baja

- ➤ La frecuencia de corte inferior es fi=0
- Deja pasar todas las frecuencias inferiores a fs (f ≤ fs)

Canal paso-banda

- La frecuencia de corte inferior es fi>0
- Deja pasar todas las frecuencias dentro de la banda entre fi y fs (fi ≤ f ≤ fs)

Atenuación

✓ La energía de la señal decae con la distancia recorrida en el canal de transmisión

Ruido

✓ Todos los medios de transmisión están sujetos a ciertos tipos de ruidos.

Los tipos de ruido más comunes son:

- ✓ Ruido térmico o ruido blanco: se debe a la agitación de los electrones dentro del conductor
- ✓ Diafonía: se debe al acoplamiento entre líneas o señales cercanas
- ✓ Ruido impulsivo o electromagnético: se genera por perturbaciones electromagnéticas exteriores (tormentas, líneas de alta tensión, fallos en el sistema de comunicación, etc.)

Ejemplo 1: Relación señal/ruido alta

Ejemplo 2: Relación señal/ruido baja

Capa de enlace

Capa de enlace: funciones

Los protocolos de la capa de enlace son **responsables** de:

- > Entramado
 - Construir tramas de datos según el formato específico del protocolo
- > Direccionamiento, identificar a cada host en el enlace
 - ¿De qué estación procede la trama?
 - ¿A qué estación o estaciones va dirigida la trama?
- Ofrecer servicios de comunicación a las capas superiores
 - Servicios orientados a conexión y fiables
 - Control de errores: Se detectan y descartan las tramas erróneas. Todas las tramas perdidas o erróneas se retransmiten
 - Control de flujo: controlar el flujo de transmisión para evitar que el emisor pueda saturar a un receptor más lento
 - Servicios sin conexión, no fiables
 - La arquitectura TCP/IP sobre red Ethernet utiliza estos servicios
- Control de acceso al medio
 - para evitar o resolver el problema de las colisiones cuando dos o más estaciones acceden de forma simultánea al un medio compartido

Capa de enlace: Protocolos y estándares

Marco de referencia: IEEE 802

- Control de enlace lógico (LLC, Logical Link Control)
 - Interfaz con las capas superiores

LAN

- Control de errores y flujo si las capas superiores lo demandan
- Control de acceso al medio (MAC, Media Access Control)
 - Ensamblado y desensamblado de tramas con campos de dirección
 - Control de acceso al medio de transmisión LAN

LLC				IEEE 802.2	2			
MAC	IEEE 802.3 (Ethernet)	IEEE 802.4 Token Bus	IEEE 802.5	IEEE 802.3u (Fast Ethernet)	IEEE 802.3z (Gbit Ethernet)	FDDI Token Ring	IEEE 802.6	IEEE 802.11 (WiFi) CSMA/CA
Física	Coax banda base (10 Mbps) Par trenzado (1,10 Mbps) Coax banda ancha (10 Mbps)	Coax banda ancha (1, 5, 10 Mbps) Coax banda portad. (1, 5, 10 Mbps) Fibra óptica (5, 10, 20 Mbps)	Par trenzado (4, 16 Mbps)	Par trenzado (100 Mbps) Fibra óptica (100 Mbps)	Fibra óptica (1 Gbps)	Fibra óptica (100 Mbps)	Fibra óptica (44.7 Mbps, 155.5 Mbps)	Microondas (11-300 Mbps) Infrarrojos (1-10 Mbps)

LAN alta velocidad

18

Inalámbrica

MAN

Capa de enlace: Protocolos y estándares

- Ethernet II vs. IEEE 802.3 (cont.)
 - Encapsulado de IP sobre LLC (802.2) y Ethernet (802.3)

Encapsulado de IP sobre Ethernet II

NOTA: En la arquitectura de TCP/IP sobre la red WiFi (802.11) siempre se utiliza LLC

Ethernet: Formato de la Trama

Campos de sincronización y delimitación

- Preámbulo (7 bytes)
 - Patrón de bits 10101010 repetido 7 veces
 - Se utiliza para permitir que el receptor se sincronice con el emisor
- SFD (Start Frame Delimiter) o delimitador de inicio de trama (1 byte)
 - Se utiliza para delimitar el inicio de la trama Ethernet
 - Patrón 10101011

Ethernet: Formato de la Trama

- Direcciones MAC origen y destino (6 bytes)
 - Identifican a la estación origen y destinataria(s) de la trama
- Campo Longitud/Tipo (2 bytes)
 - En el estándar 802.3: campo Longitud (valor ≤ 1500)
 - Indica la longitud del campo de datos
 - En Ethernet II: campo Tipo (valor > 1500)
 - Indica el tipo de protocolo de la capa superior al que van dirigidos los datos
 (Ejm: IP (0x0800) ARP (0x0806))
- > **Datos** (0-1500 bytes): Como máximo pueden ocupar 1500 bytes
- > **Relleno** (0-46 bytes): Bytes de relleno para el caso de tramas menores de 64 bytes
- CRC (4 bytes): Código para detectar errores de transmisión de los bits de la trama

Ethernet: Direcciones MAC Ethernet

Identifican al emisor y destinatario(s) de una trama en el ámbito de la red local

Dir. MAC = Dir. Ethernet = Dir. Física = Dir. Hardware

- Pueden ser de tres tipos:
 - Individual (unicast): Hace referencia a una única estación
 - Normalmente, esta dirección está grabada en la tarjeta de red
 - Grupo (multicast): Grupo de máquinas en la red local
 - Difusión (broadcast): Todas los hosts (FF:FF:FF:FF:FF)
- Se escriben en hexadecimal, separando cada byte con :

Ethernet: Elementos de Red (Switch)

Switch

- Dispositivo conmutador
- Retransmite la información solo por la salida adecuada
- Libre de colisiones, el enlace no se comparte
- Transmisión full-duplex

- Switch de almacenamiento y reenvío (store-and-forward)
 - Ventajas
 - Realizar la comprobación de errores y descartar tramas erróneas
 - Adaptar diferentes velocidades de transmisión
 - Desventajas
 - Introduce retardos adicionales por el procesamiento extra
- Switch de truncamiento (cut-through)
 - Ventajas
 - Menores retardos, ya que no almacena la trama
 - Desventajas
 - Puede reenviar tramas erróneas
 - Dificultad para interconectar dispositivos de distintas velocidades

Ethernet: Elementos de Red (Switch)

Funcionamiento de los switches: Auto-aprendizaje

- Cada switch tiene una tabla de conmutación (switching table)
 - Almacena las direcciones MAC asociadas a cada puerto
 - Cada entrada de la tabla de conmutación contiene:
 - Dirección MAC
 - Nº de puerto
 - Marca de tiempo
 - Las entradas antiguas (no usadas) son descartadas (TTL ~60 s)
- > La tabla de conmutación se va creando de forma automática
 - El auto-aprendizaje se realiza a partir de las tramas recibidas por el switch
 - Cuando el switch recibe una trama con dirección origen MAC-X a través del puerto P
 - El switch añade a su tabla que la dirección MAC-X está asociada al puerto P
 - Durante el proceso de aprendizaje
 - Si el switch recibe una trama dirigida a la dirección MAC-Y y todavía no conoce el puerto asociado a esa dirección, entonces envía la trama por todos los puertos (broadcast), excepto el de procedencia

Ethernet: Elementos de Red (Switch)

Ejemplo Funcionamiento de los switches

Dir. MAC	Puerto
Vacía	3

Dir. MAC	Puerto
A	1

Después de que A envíe una trama a D

Dir. MAC	Puerto
A	1
E	3

Después de que E envíe una trama a A

Dir. MAC	Puerto
A	1
E	3
В	1

Después de que B envíe una trama a C

Redes LAN inalámbricas: WiFi

- Tipos de redes WiFi soportados
 - Con infraestructura
 - Sin infraestructura (ad-hoc)
- Necesidad de protocolos de control y gestión de acceso al medio por ser un medio compartido (espacio de radio-frecuencia)

Formato de trama (estándar 802.11)

Redes LAN inalámbricas: WiFi (802.11)

Tipos de redes WiFi

- Red WiFi con infraestructura
 - Las estaciones inalámbricas se comunican a través de un punto de acceso inalámbrico (AP, Access Point)
 - Cada AP tiene un identificador (dirección MAC)
 - La conexión de un estación a un AP se denomina asociación
 - FI AP funciona como un hub inalámbrico
 - La estación emisora envía su trama de datos al AP
 - El AP retransmite la trama de datos a la estación destinataria
- Red WiFi sin infraestructura (ad-hoc)
 - Las estaciones inalámbricas se comunican directamente entre sí, sin necesidad de un AP

WiFi: Formato de la trama 802.11

- Tipos de tramas 802.11
 - Tramas de datos
 - Tramas de control
 - Tramas de gestión
 - Por ejemplo las tramas de solicitud de asociación al AP
- Formato de la trama
 - Nos vamos a centrar en los campos marcados en azul

Código para

WiFi: Formato de la trama 802.11

- Campo FC (control de trama): está compuesto de 11 subcampos:
 - Versión de protocolo: permite el funcionamiento simultáneo en una celda de dos versiones del protocolo
 - **Tipo:** datos (=10), control (=01) y gestión (=00)
 - Subtipo: para distinguir las tramas dentro de un tipo
 - A DS/De DS: indica si la trama se dirige o proviene de un sistema de distribución (DS). Se usa para determinar el papel de las cuatro direcciones de la cabecera de la trama
 - Más fragmentos: indica si a continuación irá otro fragmento de la trama
 - Reintento: indica si la trama es la retransmisión de una trama previa
 - **Gestión de energía:** indica si la estación se pondrá en el modo de ahorro de energía o permanecerá activa
 - Más datos: se pone a 1 tanto si el coordinador como la estación tienen más datos por enviar tras esta trama
 - Protección: indica que se está haciendo uso de un mecanismo de seguridad
 - Orden: indica si las tramas recibidas deben ser procesadas en orden
- Campo D: Indica -en microsegundos- cuánto tiempo ocuparán el medio la trama
- Campo SC: Control de secuencia
- Campos de Dirección 1 a 4

WiFi: Formato de la trama 802.11

Campos de Dirección 1 a 4

- > A DS=1 indica que la trama se dirige a un sistema de distribución (DS)
- > De DS=1 indica que la trama proviene de un sistema de distribución (DS)
- > Estos valores determinan el papel de las cuatro direcciones de la cabecera de la trama

A DS	De DS	Dirección 1	Dirección 2	Dirección 3	Dirección 4
0	0	Destino	Origen	ID de BSS	No usado
0	1	Destino	AP emisor	Origen	No usado
1	0	AP receptor	Origen	Destino	No usado
1	1	AP receptor	AP emisor	Destino	Origen

WiFi: Formato de la trama

A DS	De DS	Dirección 1	Dirección 2	Dirección 3	Dirección 4
0	0	Destino	Origen	ID de BSS	No usado
0	1	Destino	AP emisor	Origen	No usado
1	0	AP receptor	Origen	Destino	No usado
1	1	AP receptor	AP emisor	Destino	Origen

Ejemplo:

a) La trama va de una estación origen a otra estación destino sin pasar por un AP
 A DS= 0 De DS=0

b) La trama procede de un AP y va dirigida a una estación

c) La trama procede de una estación y va dirigida a un AP

A DS= 1 De DS=0

d) La trama va de un AP a otro AP a través de un sistema de distribución inalámbrico

A DS= 1 De DS=1

Redes LAN Ethernet-WiFi

Ejemplo: Dada la siguiente interconexión de redes Ethernet-WiFi

¿Qué tramas viajan en una transmisión desde el host A al host B?

Redes LAN Ethernet-WiFi

En las tramas solo vamos a poner los campos A DS, De DS y de las direcciones

Solución: Tramas en una transmisión desde el host A (BSS2) al host B (BSS1)

➤ A envía una trama al AP (BSS2): Trama WiFi

A DS	De DS	Dir1	Dir2	Dir3	Dir4	
1	0	AP (BSS2)	А	В	No usado	

AP (BSS2) envía una trama al AP (BSS1) a través del conmutador Ethernet:
Trama Ethernet

> AP (BSS1) envía trama al host B: Trama WiFi

A DS	De DS	Dir1	Dir2	Dir3	Dir4	
0	1	В	AP (BSS1)	Α	No usado	