Module-3 RELATIONS AND FUNCTIONS

PART - 3

RELATION MATRIX, DIGRAPH AND OPERATIONS

Relation Matrix:

Let R be the relation from Set A to set B then the relation matrix is denoted by M_R and is defined by $M_R = \begin{bmatrix} m_{ij} \end{bmatrix}$, where $m_{ij} = \begin{cases} 1, & \text{if } (a,b) \in R \\ 0, & \text{if } (a,b) \notin R \end{cases}$.

Example: Let $R = \{(1, 1), (1, 3), (2, 4), (3, 1), (3, 2), (3, 3)\}$ and $S = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 4), (3, 2), (3, 4)\}$ be two relations from $A = \{1, 2, 3\}$ to $B = \{1, 2, 3, 4\}$ then

$$M_R = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

and
$$M_s = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
.

Digraph of a Relation:

- The pictorial representation of a relation R is called a directed graph or digraph of R.
- Let R be a relation on set A then the elements of set A are called the vertices.
- If (x, y) ∈ R then draw a directed line from x to y which is called an edge.
- An edge of the form (x, x) is represented using an arc from the vertex x back to itself. Such an edge is called a loop.
- The number of edges terminating at a vertex is called the
 in-degree of that vertex and the number edges leaving a
 vertex are called the out-degree of that vertex.

Example:

The following figure is the directed graph or digraph for the relation $R = \{(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)\}$ on set $A = \{a, b, c, d\}$

Vertices	In-degree	Out-degree
a	1	2
b	4	2
c	0	2
d	2	1

PROBLEMS

Suppose that $A = \{1, 2, 3\}$ and $B = \{1, 2\}$. Let R be the relation from A to B containing (a, b) if $a \in A$, $b \in B$, and a > b. Write the matrix representing R.

Solution:

By definition of R, we have

$$R = \{(2, 1), (3, 1), (3, 2)\}.$$

The matrix for R is
$$M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4, 5\}$ and R be a relation from A to B represented

by the matrix $M_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}$. Which ordered pairs are in the relation R?

Solution:

By examining the entries in M_R , we find that

 $R = \{(a, 2), (b, 1), (b, 3), (b, 4), (c, 1), (c, 3), (c, 5)\}.$

Let A = {a, b, c, d} and R be a relation on A has the matrix
$$M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$
.

Write the elements of R.

Solution:

By examining the entries in M_R , we find that

$$R = \{(a, a), (b, b), (b, c), (c, a), (c, b), (c, c), (d, b), (d, d)\}$$

Draw the directed graph of the relation $R = \{(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)\}$ on the set $\{1, 2, 3, 4\}$. Also find in-degree and out-degree of each vertex.

Solution:

Vertices	In-degree	Out-degree
1	4	2
2	1	3
3	2	2
4	1	1

What are the ordered pairs in the relation R represented by the following directed graph. Write its matrix.

The ordered pairs (x, y) in the relation are

$$R = \{(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)\}.$$

The relation matrix is
$$M_R = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Is R reflexive, symmetric, antisymmetric, and/or transitive?

Solution:

Let $A = \{1, 2, 3\}$. By examining the entries in M_R , we find that

$$R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)\}$$

- 1) $\forall a \in A \Rightarrow (a, a) \in R$. $\therefore R$ is reflexive
- 2) \forall (a, b) \in R \Rightarrow (b, a) \in R. \therefore R is symmetric
- 3) $(1, 2), (2, 1) \in \mathbb{R} \Rightarrow 1 \neq 2$. $\therefore \mathbb{R}$ is not antisymmetric
- 4) $(1, 2), (2, 3) \in \mathbb{R} \Rightarrow (1, 3) \notin \mathbb{R}$. $\therefore \mathbb{R}$ is not transitive.

Determine whether the relations for the following directed graphs for the relations R and S are reflexive, symmetric, antisymmetric, and/or transitive.

Solution:

From the first digraph, we find that

 $R = \{(a, a), (a, b), (b, b), (b, c), (c, a), (c, b), (c, c)\}$ on set $A = \{a, b, c\}$

 $\forall x \in A \Rightarrow (x, x) \in R. : R$ is reflexive

 $(a, b) \in R \Rightarrow (b, a) \notin R$. \therefore R is not symmetric

 $(b, c), (c, b) \in R \Rightarrow b \neq c$. \therefore R is not antisymmetric

 $(a, b), (b, c) \in R \Rightarrow (a, c) \notin R$. \therefore R is not transitive.

From the second digraph, we find that

 $S = \{(a, b), (a, c), (a, d), (b, a), (b, b), (c, a), (d, a), (d, d)\}$ on set $A = \{a, b, c, d\}$

- 1) $\forall x \in A \Rightarrow (x, x) \notin S$. \therefore S is not reflexive
- 2) \forall $(x, y) \in S \Rightarrow (y, x) \in S$. \therefore S is symmetric

3) $(a, b), (b, a) \in S \Rightarrow a \neq b$. \therefore S is not antisymmetric

4) $(a, b), (b, a) \in S \Rightarrow (a, a) \notin S$. \therefore S is not transitive.

Operations on Relations:

Union: The union of two relations R_1 and R_2 from set A to set B is denoted by $R_1 \cup R_2$ and is defined as a relation from A to B with the property that $(a, b) \in R_1 \cup R_2$ iff $(a, b) \in R_1$ or $(a, b) \in R_2$.

Intersection: The intersection of two relations R_1 and R_2 from set A to set B is denoted by $R_1 \cap R_2$ and is defined as a relation from A to B with the property that $(a,b) \in R_1 \cap R_2$ iff $(a,b) \in R_1$ and $(a,b) \in R_2$.

Compliment: The complement of a relation R is denoted by R' and is defined as a relation from set A to set B with the property that $(a, b) \in R'$ iff $(a, b) \notin R$.

Difference: The difference of two relations R_1 and R_2 is denoted by $R_1 - R_2$ and is defined as $(a, b) \in R_1 - R_2$ iff $(a, b) \in R_1$ and $(a, b) \notin R_2$.

Converse: The converse of a relation R is denoted by R^c and is defined as a relation from B to A with the property that $(b,a)\in R^c$ iff $(a,b)\in R$.

Example: Let $R = \{(a, 1), (b, 1), (c, 2), (c, 3)\}$ and $S = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$ be two relations from $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$ then

$$R \cup S = \{ (a, 1), (a, 2), (b, 1), (b, 2), (c, 2), (c, 3) \}$$

$$R \cap S = \{ (a, 1), (b, 1) \}$$

$$R' = \{ (a, 2), (a, 3), (b, 2), (b, 3), (c, 1) \}$$

$$S' = \{ (a, 3), (b, 3), (c, 1), (c, 2), (c, 3) \}$$

$$R - S = \{ (c, 2), (c, 3) \}$$

$$S - R = \{ (a, 2), (b, 2) \}$$

$$R^{c} = \{ (1, a), (1, b), (2, c), (3, c) \}$$

$$S^{c} = \{ (1, a), (2, a), (1, b), (2, b) \}$$

Let A = {a, b, c} and B = {1, 2, 3} and the relations R = {(a, 1), (b, 1), (c, 2), (c, 3)} and S = {(a, 1), (a, 2), (b, 1), (b, 2)} from A to B. Determine $R \cup S$, $R \cap S$, R', S', R - S, S - R, R^c , S^c and their matrix representation.

$$R \cup S = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 2), (c, 3)\}$$

$$R \cap S = \{(a, 1), (b, 1)\}$$

$$R' = \{(a, 2), (a, 3), (b, 2), (b, 3), (c, 1)\}$$

$$S' = \{(a, 3), (b, 3), (c, 1), (c, 2), (c, 3)\}$$

$$R - S = \{(c, 2), (c, 3)\}$$

$$S - R = \{(a, 2), (b, 2)\}$$

$$R^{c} = \{(1, a), (1, b), (2, c), (3, c)\}$$

$$S^{c} = \{(1, a), (2, a), (1, b), (2, b)\}$$

Their matrix representations are

$$M(R \cup S) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, M(R \cap S) = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, M_{R'} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$M_{S'} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad M(R-S) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \quad M(S-R) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

$$M(R^{c}) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, M(S^{c}) = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$ and the relations R and S from A to B are

represented by the matrices
$$M_R = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
 and $M_S = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$. Determine

 $R \cup S$, $R \cap S$, R', S', R - S, S - R, R^c , S^c and their matrix representation.

By examining the entries in M_R and M_S , we find that

$$R = \{(1, 1), (1, 3), (2, 4), (3, 1), (3, 2), (3, 3)\}$$

$$S = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 1), (3, 2), (3, 3)\}$$

$$R \cup S = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 1), (3, 2), (3, 3)\}$$

$$R \cap S = \{(1, 1), (1, 3), (2, 4), (3, 1), (3, 2), (3, 3)\}$$

$$R' = \{(1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (3, 4)\}$$

$$S' = \{ (2, 1), (2, 3), (3, 4) \}$$

$$3 - \{ (2, 1), (2, 3), (3, 4) \}$$

 $R - S = \{ \}$

$$S - R = \{(1, 2), (1, 4), (2, 2)\}$$

$$R^c = \{(1, 1), (3, 1), (4, 2), (1, 3), (2, 3), (3, 3)\}$$

$$S^c = \{(1, 1), (2, 1), (3, 1), (4, 1), (2, 2), (4, 2), (1, 3), (2, 3), (3, 3)\}$$

Their matrix representations are

$$M(R \cup S) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M(R \cap S) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}, M_{R'} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

$$M\left(R^{c}\right) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad M\left(S^{c}\right) = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

If R and S are reflexive relations then show that $R \cup S$ and $R \cap S$ are also reflexive.

Let R and S be reflexive relations on set A.

i.e.,
$$\forall a \in A \Rightarrow (a, a) \in R \text{ and } (a, a) \in S$$

$$\Rightarrow$$
 (a, a) \in R \cup S and (a, a) \in R \cap S

 \therefore R \cup S and R \cap S are also reflexive.

If R and S are symmetric relations then show that

$R \cup S$ and $R \cap S$ are also symmetric.

Let R and S be symmetric relations on set A.

i.e.,
$$\forall$$
 $(a,b) \in R \Rightarrow (b,a) \in R \text{ and } \forall$ $(a,b) \in S \Rightarrow (b,a) \in S$ ---- (1)

(i) Let
$$(a, b) \in R \cup S$$

$$\Rightarrow$$
 $(a,b) \in R \text{ or } (a,b) \in S$

$$\Rightarrow$$
 $(b,a) \in R \text{ or } (b,a) \in S$ [by using (1)]

$$\Rightarrow$$
 (b,a) $\in R \cup S$

 \therefore R \cup is symmetric.

(ii) Let
$$(a, b) \in R \cap S$$

$$\Rightarrow$$
 $(a,b) \in R \text{ and } (a,b) \in S$

$$\Rightarrow$$
 (b,a) \in R and (b,a) \in S [by using (1)]

$$\Rightarrow$$
 $(b,a) \in R \cap S$

 \therefore R \cap S is symmetric.

If R and S are antisymmetric relations then show that $R \cap S$ is also antisymmetric and $R \cup S$ need not be antisymmetric.

Let R and S be antisymmetric relations on set A.

i.e.,
$$\forall$$
 $(a, b) \in R$, $(b, a) \in R \Rightarrow a = b$ and
$$\forall$$
 $(a, b) \in S$, $(b, a) \in S \Rightarrow a = b$ ---- (I)

(i) Let $(a, b) \in R \cap S$ and $(b, a) \in R \cap S$

$$\Rightarrow$$
 (a, b) \in R and (a, b) \in S & (b, a) \in R and (b, a) \in S

$$\Rightarrow$$
 (a, b) \in R, (b, a) \in R and (a, b) \in S, (b, a) \in S

$$\Rightarrow$$
 a = b [by using (1)]

 \therefore R \cap S is antisymmetric.

(ii) Let $R = \{(1, 1), (1, 2), (1, 3), (2, 3)\}$ and $S = \{(2, 1), (2, 2), (2, 3), (3, 1)\}$

be two antisymmetric relations on set $A = \{1, 2, 3\}$ then

$$R \cup S = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1)\}$$

is not antisymmetric.

 \therefore R \cup S need not be antisymmetric.

If R and S are transitive relations then show that $R \cap S$ is also transitive and $R \cup S$ need not be transitive.

Let R and S be transitive relations on set A.

i.e.,
$$\forall$$
 $(a,b),(b,c) \in R \Rightarrow (a,c) \in R$ and
$$\forall (a,b),(b,c) \in S \Rightarrow (a,c) \in S \qquad \qquad ---- (1)$$

(i) Let
$$(a, b), (b, c) \in R \cap S$$

$$\Rightarrow$$
 (a,b), (b,c) \in R and (a,b), (b,c) \in S

$$\Rightarrow$$
 (a,c) \in R and (a,c) \in S [by using (1)]

$$\Rightarrow$$
 $(a,c) \in R \cap S$

 \therefore R \cap S is transitive

(ii) Let
$$R = \{(1,1), (1,2), (1,3), (2,3)\}$$
 and $S = \{(2,1), (2,2), (2,3), (3,1)\}$ be two transitive relations on set $A = \{1,2,3\}$ then

$$R \cup S = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1)\}$$
 is not transitive.

 \therefore R \cup S need not be transitive.

If R and S are equivalence relations then show that $R \cap S$ is also equivalence and $R \cup S$ need not be equivalence.

- (i) Let R and S be equivalence relations on set A.i.e., R and S are reflexive, symmetric and transitive.
 - \Rightarrow R \cap S is reflexive, symmetric and transitive.
 - \therefore R \cap S is equivalence relation.
- (ii) Since R and S are equivalence relations, they are transitive. But R \cup S need not be transitive. Hence R \cup S need not be equivalence.

Let R be a non-empty relation on a set A then prove that if R satisfies any two of the properties: irreflexive, symmetric and transitive then it cannot satisfy the third.

Case I: Suppose, R is irreflexive and symmetric.

To prove: R is not transitive.

Assume that R is transitive.

Let
$$(a,b) \in R$$

$$\Rightarrow$$
 (b,a) \in R (by symmetry)

$$\Rightarrow$$
 (a, a) \in R (by transitive)

 \Rightarrow R is not irreflexive.

This is not true because R is irreflexive.

... R cannot be transitive when it is irreflexive and symmetric.

Case 2: Suppose, R is irreflexive and transitive.

To prove: R is not symmetric.

Assume that R is symmetric.

Let
$$(a, b) \in R$$

$$\Rightarrow$$
 (b, a) \in R

 $(b, a) \in R$ (by symmetry)

$$\Rightarrow$$

$$(a, a) \in R$$

 $(a, a) \in R$ (by transitive)

R is not irreflexive.

This is not true because R is irreflexive.

... R cannot be symmetric when it is irreflexive and transitive.

Case 3: Suppose, R is symmetric and transitive.

To prove: R is not irreflexive.

Let
$$(a, b) \in R$$

$$\Rightarrow$$
 (b, a) \in R

 $(b, a) \in R$ (by symmetry)

$$\Rightarrow$$
 (a, a) \in F

 $(a, a) \in R$ (by transitive)

R is not irreflexive.

Composition of Relations:

Let R be a relation from set A to set B and S be a relation from set B to set C then the composition of two relations R and S is denoted by S o R and is defined as a relation from A to C with the property that $(x, z) \in S$ o R iff $(x, y) \in R$ and $(y, z) \in S$.

i.e., S o R =
$$\{(x, z) | (x, y) \in R \text{ and } (y, z) \in S\}$$

Similarly, the composition of the relations S and R is defined as

R o S =
$$\{(x, z) | (x, y) \in S \text{ and } (y, z) \in R\}$$

Note:

- In general, R o S \neq S o R. i.e., the composition of the relations is not commutative.
- The composition of the relations is associative.

i.e.,
$$R_1 \circ (R_2 \circ R_3) = (R_1 \circ R_2) \circ R_3$$

- The composition of R with itself is R o R and is also denoted by R^2 .
- In general, R^n is a relation on A defined recursively by $R^n = R^{n-1}$ o R for $n \ge 2$.

Example: Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 2), (2, 3), (3, 4)\}$ and $S = \{((1, 4), (2, 4), (3, 1), (4, 4)\}$ be relations from A to B then

S o R = {(1,4), (2, 1), (3, 4)}
R o S = {(3, 1), (3, 2)}

$$R^2 = R \circ R = {(1, 1), (1, 2), (1, 3), (2, 4)}$$

 $S^2 = S \circ S = {(1, 4), (2, 4), (3, 4), (4, 4)}$

What is the composite of the relations R and S, where R is the relation from $\{1, 2, 3\}$ to $\{1, 2, 3, 4\}$ with $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$ and S is the relation from $\{1, 2, 3, 4\}$ to $\{0, 1, 2\}$ with $S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}$?

So R =
$$\{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

If $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (1, 3), (2, 4), (4, 4)\}$ and $S = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4)\}$ be relations on A then find R o S, S o R, R^2 and S^2 . Also write their matrices.

Their Matrices are

$$M(R \circ S) = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix},$$

Let $A = \{a, b, c\}$ and R and S be relations on A whose matrices are given below:

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } M_S = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Find the composite relations R o S, S o R, R² and S². Also write their matrices.

By examining the entries in M_R and M_S , we find that

$$R = \{(a, a), (a, c), (b, a), (b, b), (b, c), (c, b)\}$$

$$S = \{(a, a), (b, b), (b, c), (c, a), (c, c)\}$$

S o R =
$$\{(a, a), (a, c), (b, a), (b, b), (b, c), (c, b), (c, c)\}$$

R o S =
$$\{(a, a), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$$

$$R^2 = R \circ R = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$$

$$S^2 = S \circ S = \{(a, a), (b, a), (b, b), (b, c), (c, a), (c, c)\}$$

Their Matrices are

$$M(SoR) = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix},$$

$$M(R^2) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

$$M(R \circ S) = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

$$M(S^{2}) = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{vmatrix}$$

If $A = \{1, 2, 3, 4\}$ and R be a relation on A defined by $R = \{(1, 2), (1, 3), (2, 4), (3, 2), (3, 3), (3, 4)\}$, find R^2 and R^3 . Also write their matrices.

$$R^2 = R \circ R = \{(1, 2), (1, 3), (1, 4), (3, 2), (3, 3), (3, 4)\}$$

 $R^3 = R^2 \circ R = \{(1, 2), (1, 3), (1, 4), (3, 2), (3, 3), (3, 4)\}$

Their Matrices are

$$M(R^{2}) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad M(R^{3}) = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$