Phase transitions in inference problems on sparse random graphs

Guilhem Semerjian

LPT-ENS

22.08.2018 / Cargese

with F. Ricci-Tersenghi and L. Zdeborova arxiv:1806.11013

- Inference problems on graphs
- Inference problems on trees
- From graphs to trees
- Bifurcations of fixed point equations
- Main results

- Inference problems on graphs
- Inference problems on trees
- From graphs to trees
- Bifurcations of fixed point equations
- Main results

The Stochastic Block Model

null model for community detection generation of a graph G on N vertices by

- drawing labels $\underline{\tau} = (\tau_1, \dots, \tau_N) \in \{1, \dots, q\}^N$ i.i.d. with proba $\overline{\eta}_{\tau}$
- for each possible edge $\langle i,j \rangle$, include it in G with proba $\frac{1}{N}c_{\tau_i,\tau_j}$

Parameters:

- $q \ge 2$, the number of "communities"
- $\overline{\eta}$, a probability law on $\{1, \dots, q\}$ (prior on the communities)
- c, a $q \times q$ symmetric matrix (affinities)

Inference problem : infer $\underline{\tau}$ from G, Bayesian posterior $\mathbb{P}(\underline{\tau}|G)$

The Stochastic Block Model

- Balanced assumption : $c = \sum_{\sigma} c_{\tau,\sigma} \overline{\eta}_{\sigma}$ independent of τ : same average degree c in all communities, i.e. no information on τ_i contained in the degree of i
- Particular (symmetric) case :

$$\overline{\eta}_{ au} = rac{1}{q}, \qquad oldsymbol{c}_{ au,\sigma} = egin{cases} oldsymbol{c}_{ ext{in}} & ext{if } au = \sigma \ oldsymbol{c}_{ ext{out}} & ext{otherwise} \end{cases}$$

Parameters : c and $\theta = \frac{c_{\rm in} - c_{\rm out}}{qc}$

 $\theta < 0$: disassortative, $\theta > 0$: assortative

 $\theta = 0$: pure Erdos-Renyi

- Signal to Noise Ratio : c at fixed $|\theta|$, or $|\theta|$ at fixed c
- Accuracy : some distance (overlap) between $\underline{\tau}$ and estimator $\widehat{\underline{\tau}}(G)$

Conjectured phase transitions for the symmetric SBM

[Decelle, Krzakala, Moore, Zdeborova 11]

optimal (Bayes)

easily achievable (BP)

Kesten-Stigum (KS) and Information Theoretic (IT) transitions

Graph inference problems

partially proven rigorously

[Massoulié 14]

[Mossel, Neeman, Sly 14]

[Bordenave, Lelarge, Massoulié 15]

[Abbe, Sandon 16]

[Coja-Oghlan, Krzakala, Perkins, Zdeborova 16]

these two scenarios found in many other inference problems, notably:

- low rank matrix factorization problems (dense version of SBM)
- planted CSPs

- Inference problems on graphs
- 2 Inference problems on trees
- From graphs to trees
- Bifurcations of fixed point equations
- Main results

The (robust) reconstruction problem on trees

[Janson, Mossel 04, Mézard, Montanari 06, Sly 08]

- Draw the label τ of the root of a tree with proba $\overline{\eta}$
- Broadcast on each edge with Markov transition probability $M_{\tau\tau'}$

Assumption : M is reversible with respect to $\overline{\eta}$, irreducible, aperiodic

Observations: the labels at distance t from the root, $\underline{\tau}_{V_t}$

Can one guess τ as $t \to \infty$ better than with $\overline{\eta}$?

i.e. does $\underline{\tau}_{V_t}$ carry information on τ ?

The (robust) reconstruction problem on trees

posterior probability $\eta_{\tau} = \mathbb{P}(\tau|\underline{\tau}_{V_t})$ tree structure \rightarrow recursive computation dynamic programming, Belief Propagation

 $P^{(t)}(\eta)$ its distribution, with respect to

- broadcast process
- Galton-Watson tree with offspring probability law q_{ℓ} obeys the functional recurrence $P^{(t+1)} = V(P^{(t)}, \text{ parameters})$

$$P^{(t+1)}(\eta) = \sum_{\ell=0}^{\infty} q_{\ell} \int \mathrm{d}P^{(t)}(\eta^{1}) \dots \mathrm{d}P^{(t)}(\eta^{\ell}) \, \delta(\eta - f(\eta^{1}, \dots, \eta^{\ell})) \, Z(\eta^{1}, \dots, \eta^{\ell})$$

with initial condition :
$$P^{(t=0)}(\eta) = \sum_{ au} \overline{\eta}_{ au} \delta(\eta - \delta_{ au})$$

* 4回 > 4 豆 > 4 豆 > 9 Q (P)

The (robust) reconstruction problem on trees

functional recurrence $P^{(t+1)} = V(P^{(t)}, parameters)$

$$P_{ ext{triv}}(\eta) = \delta(\eta - \overline{\eta})$$
 trivial (uninformative) fixed point, $P_{ ext{triv}} = V(P_{ ext{triv}})$

reconstruction question : does $P^{(t)} \to P_{\text{triv}}$ as $t \to \infty$ or to a non-trivial fixed point ?

Robust variant : one observes a fraction ε of the vertices at distance t, with $\varepsilon \to 0$ after $t \to \infty$

idem with
$$P^{(t=0)}(\eta) = \varepsilon \sum_{\tau} \overline{\eta}_{\tau} \delta(\eta - \delta_{\tau}) + (1 - \varepsilon) \, \delta(\eta - \overline{\eta})$$

- Inference problems on graphs
- Inference problems on trees
- From graphs to trees
- Bifurcations of fixed point equations
- Main results

The connection between the SBM and the tree reconstruction

In the SBM, $(\underline{\tau}, G)$ converges **locally** to

- a Galton Watson tree with offspring distribution Poisson(c)
- on which labels τ_i are broadcast with $M_{\tau\tau'} = c_{\tau\tau'} \eta_{\tau'}/c$

But no observation of the labels in the graph problem...

Global connection is subtle, conjectures (cavity method):

- Efficiently achievable accuracy corresponds to robust reconstruction fixed point
- Mutual information between $\underline{\tau}$ and G (hence information theoretically optimal accuracy) related to $\sup \phi(P)$ over all fixed points, $\phi(P)$ functional free-entropy

- Inference problems on graphs
- Inference problems on trees
- From graphs to trees
- Bifurcations of fixed point equations
- Main results

Typology of phase transitions

Interpretation of the previous plots as bifurcation diagrams:

Solid / dashed : stable / unstable fixed point (of P = V(P))

- KS: instability of trivial fixed point / robust reconstruction transition
- sp : spinodal for existence of non-trivial fixed point / reconstruction transition
- IT : crossing of the free-entropies $\phi(P)$ of the two fixed points

Typology of phase transitions

Slightly more complicated bifurcation scenario:

alg for algorithmic spinodal

Where is the IT transition? Which curves are blue and red?

Typology of phase transitions

impossible / hard / hvbrid-hard / easy

- impossible: to beat trivial accuracy
- easy: to achieve optimal accuracy
- hybrid-hard: easy to beat trivial accuracy, but hard to achieve optimal one
- hard: to beat trivial accuracy

matrix factorization with $\{0,\pm 1\}$ prior[Lesieur, Krzakala, Zdeborova 17]

- Inference problems on graphs
- Inference problems on trees
- From graphs to trees
- Bifurcations of fixed point equations
- Main results

Scalar bifurcations

Analytical expansions can determine (perturbatively) the bifurcation diagrams

Bifurcation analysis of a scalar recursion

$$q^{t+1} = V(q^t, \theta)$$
 (with $q \ge 0$)

- $V(0, \theta) = 0$ for all θ : trivial, uninformative fixed point
- $V(q, \theta) = a(\theta)q + b(\theta)q^2 + c(\theta)q^3 + \dots$
- linearized analysis, location of Kesten-Stigum found with $a(\theta_{\rm KS})=1$:

Scalar bifurcations

- next order, depending on the sign of $b(\theta_{KS})$:

• next next order, depending on the signs of $b(\theta_{\rm KS})$ and $c(\theta_{\rm KS})$, one can also have :

hence $\theta_{\rm alg}$ and $\theta_{\rm sp}$ (when they are close to $\theta_{\rm KS}$)

Bifurcation of the uninformative fixed point in inference problems

- for "fully-connected models" (dense or large degree limit), scalar or low-dimensional recursions on $q^{t+1} = V(q^t)$
- for sparse problems like the SBM/tree reconstruction, functional recursion on a probability distribution $P^{(t+1)} = V(P^{(t)})$

```
infinite-dimensional bifurcation, but P(\eta) \approx P_{\text{triv}}(\eta) = \delta(\eta - \overline{\eta}), hence one can close it on a finite number of moments
```

[Borgs, Chayes, Mossel, Roch 06]

[Sly 08]

Also in [Coja-Oghlan, Efthymiou, Jaafari, Kang, Kapetanopoulos 18] expansion of $\phi(P)$ for $P \approx P_{\text{triv}}$

Expansions around KS for tree reconstruction

$$\begin{array}{lcl} a_{\sigma\tau} & = & \mathbb{E}[\ell]\,\overline{\eta}_{\sigma}\overline{\eta}_{\tau}\,\widehat{a}_{\sigma\tau} \\ \\ & + & \frac{1}{2}\mathbb{E}[\ell(\ell-1)]\,\overline{\eta}_{\sigma}\overline{\eta}_{\tau}\left[\widehat{a}_{\sigma\tau}^{2} - \sum_{\gamma}\overline{\eta}_{\gamma}(\widehat{a}_{\sigma\gamma} + \widehat{a}_{\gamma\tau})^{2} + \sum_{\gamma\beta}\overline{\eta}_{\gamma}\overline{\eta}_{\beta}\widehat{a}_{\gamma\beta}^{2}\right] \end{array}$$

Expansions around KS for tree reconstruction

$$\delta_{\sigma} = \eta_{\sigma} - \overline{\eta}_{\sigma} \;, \quad a_{\sigma\tau} = \mathbb{E}[\delta_{\sigma} \delta_{\tau}] \;, \quad b_{\sigma\tau\gamma} = \mathbb{E}[\delta_{\sigma} \delta_{\tau} \delta_{\gamma}] \;, \quad c_{\sigma\tau\gamma\beta} = \mathbb{E}[\delta_{\sigma} \delta_{\tau} \delta_{\gamma} \delta_{\beta}]$$

$$\begin{split} a_{\sigma\tau} &= & \mathbb{E}[\ell|\overline{\eta}_{\sigma}\overline{\eta}_{\tau}\hat{a}_{\sigma\tau} + \frac{1}{2}\mathbb{E}[\ell(\ell-1)]\overline{\eta}_{\sigma}\overline{\eta}_{\tau} \left[\hat{a}_{\sigma\tau}^{2} - \sum_{\gamma}\overline{\eta}_{\gamma}(\hat{a}_{\sigma\gamma} + \hat{a}_{\gamma\tau})^{2} + \sum_{\gamma\beta}\overline{\eta}_{\gamma}\overline{\eta}_{\beta}\hat{a}_{\gamma\beta}^{2}\right] \\ &+ \mathbb{E}[\ell(\ell-1)]\overline{\eta}_{\sigma}\overline{\eta}_{\tau} \left[- \sum_{\gamma}\overline{\eta}_{\gamma}\hat{b}_{\sigma\tau\gamma}(\hat{a}_{\sigma\gamma} + \hat{a}_{\tau\gamma}) + \sum_{\gamma\beta}\overline{\eta}_{\gamma}\overline{\eta}_{\beta}(\hat{b}_{\sigma\gamma\beta} + \hat{b}_{\tau\gamma\beta})\hat{a}_{\gamma\beta} + \sum_{\gamma\beta}\overline{\eta}_{\gamma}\overline{\eta}_{\beta}\hat{c}_{\sigma\tau\gamma\beta}\hat{a}_{\gamma\beta} \right] \\ &+ \mathbb{E}[\ell(\ell-1)(\ell-2)]\overline{\eta}_{\sigma}\overline{\eta}_{\tau} \left[\frac{1}{6}\hat{a}_{\sigma\tau}^{3} - \frac{1}{6}\sum_{\gamma}\overline{\eta}_{\gamma}(\hat{a}_{\sigma\gamma} + \hat{a}_{\tau\gamma})^{3} - \frac{1}{2}\hat{a}_{\sigma\tau}\sum_{\gamma}\overline{\eta}_{\gamma}(\hat{a}_{\sigma\gamma} + \hat{a}_{\tau\gamma})^{2} + \frac{1}{6}\sum_{\gamma\beta}\overline{\eta}_{\gamma}\overline{\eta}_{\beta}\hat{a}_{\gamma\beta}^{2} \\ &+ \frac{1}{2}\sum_{\gamma\beta}\overline{\eta}_{\gamma}\overline{\eta}_{\beta}\hat{a}_{\gamma\beta}^{2}(\hat{a}_{\sigma\tau} + \hat{a}_{\sigma\gamma} + \hat{a}_{\tau\gamma} + \hat{a}_{\sigma\beta} + \hat{a}_{\tau\beta}) + \sum_{\gamma\beta}\overline{\eta}_{\gamma}\overline{\eta}_{\beta}\hat{a}_{\gamma\beta}(\hat{a}_{\sigma\gamma} + \hat{a}_{\tau\gamma})(\hat{a}_{\sigma\beta} + \hat{a}_{\tau\beta}) \\ &- \sum_{\gamma\beta\alpha}\overline{\eta}_{\gamma}\overline{\eta}_{\beta}\overline{\eta}_{\alpha}\hat{a}_{\gamma\beta}\hat{a}_{\beta\alpha}\hat{a}_{\alpha\gamma} \right] \\ b_{\sigma\tau\gamma} &= \mathbb{E}[\ell|\overline{\eta}_{\sigma}\overline{\eta}_{\tau}\overline{\eta}_{\gamma}\hat{b}_{\sigma\tau\gamma} \\ &+ \mathbb{E}[\ell(\ell-1)]\overline{\eta}_{\sigma}\overline{\eta}_{\tau}\overline{\eta}_{\gamma} \left[\hat{a}_{\sigma\tau}\hat{a}_{\tau\gamma} + \hat{a}_{\sigma\gamma}\hat{a}_{\gamma\tau} + \hat{a}_{\tau\sigma}\hat{a}_{\sigma\gamma} - \sum_{\beta}\overline{\eta}_{\beta}(\hat{a}_{\sigma\beta}\hat{a}_{\beta\gamma} + \hat{a}_{\sigma\beta}\hat{a}_{\beta\tau} + \hat{a}_{\tau\beta}\hat{a}_{\beta\gamma}) \right] \\ \sigma_{\tau\gamma\beta} &= \mathbb{E}[\ell|\overline{\eta}_{\sigma}\overline{\eta}_{\tau}\overline{\eta}_{\gamma}\overline{\eta}_{\beta}\hat{c}_{\sigma\tau\gamma\beta} + \mathbb{E}[\ell(\ell-1)]\overline{\eta}_{\sigma}\overline{\eta}_{\tau}\overline{\eta}_{\gamma}\overline{\eta}_{\beta}(\hat{a}_{\sigma\tau}\hat{a}_{\gamma\beta} + \hat{a}_{\sigma\gamma}\hat{a}_{\tau\beta} + \hat{a}_{\sigma\beta}\hat{a}_{\tau\gamma}) \end{split}$$

Application 1 : SBM with 2 asymmetric communities

$$q=2, \qquad \overline{\eta}_1=rac{1+\overline{m}}{2}, \qquad \overline{\eta}_2=rac{1-\overline{m}}{2}$$

a.k.a. reconstruction of the asymmetric Ising model, \overline{m} : magnetization Previous results:

- KS is tight for small $|\overline{m}|$ [Borgs, Chayes, Mossel, Roch 06]
- KS is not tight for $|\overline{m}|$ close to 1 [Mossel 01]

new conjecture on the critical asymmetry :
$$\overline{m}_{\rm c} = \frac{1}{\sqrt{3}}$$
 [Liu, Ning 18]

independence of the critical asymmetry on the degree distribution hence $\overline{m}_{\rm c}$ coincides with

- a fully connected equivalent problem
 - [Barbier, Dia, Macris, Krzakala, Lesieur, Zdeborova 16]
- the large degree limit result [Caltagirone, Lelarge, Miolane 16]

Application 1 : SBM with 2 asymmetric communities

analytical expansions of the spinodal and IT line for $\overline{m} \rightarrow \overline{m}_c^+$

Application 2 : symmetric SBM with q = 4

recall:

- q = 2,3 has a continuous transition
- $q \ge 5$ has a discontinuous transition

[Sly 08]

• q = 4 is marginal: first non-linear term at KS proportional to q - 4 the cubic term in the expansion yields

$$-\frac{7}{3}\frac{\mathbb{E}[\ell(\ell-1)(\ell-2)]}{\mathbb{E}[\ell]^3} + \left(\frac{\mathbb{E}[\ell(\ell-1)]}{\mathbb{E}[\ell]^2}\right)^2 \left(\frac{5}{\mathbb{E}[\ell]-1} - \frac{12}{\mathsf{sign}(\theta)\sqrt{\mathbb{E}[\ell]}-1}\right)$$

analysis of the sign of this expression:

- in the assortative case ($\theta > 0$), continuous transition (KS tight)
- in the disassortative case ($\theta < 0$)
 - for small degrees, discontinuous transition (KS non-tight)
 - for large degrees, continuous transition

Application 2 : symmetric SBM with q = 4

Poisson degree distribution : changes at $d \approx 22.2694$

For *d*-regular trees (*d* offspring), changes between $d \le 24$ and $d \ge 25$

Application 3 : planted symmetric CSPs

 $au_i = \pm 1$ with proba 1/2 hyperedges between k variables with proba dependent on $\sum au_i$

- if symmetry +/-
- and KS happens at finite degree (no 2-wise independence)

then the Kesten-Stigum transition is always continuous,

i.e. possible scenarios:

Application 4 : SBM with $q = q_1 + q_2$ communities

Simplest pattern to break the permutation symmetry between q states :

symmetric inside each of the two groups

exhibits the hybrid-hard phase for some parameters