CMSC 411 | Computer Architecture

Lecture 12: Performing Division and Handling Floating Point Numbers

Ergun Simsek

Overview

Previous Lecture

- Algorithms for multiplying unsigned numbers
- Booth's algorithm for signed number multiplication

This Lecture

- Algorithms for dividing unsigned numbers
- Handling of sign while performing a division
- Hardware design for integer division
- Floating point number arithmetic
- Hardware design for floating point numbers

Dividing Unsigned Numbers: Humans

Let's divide a 7-bit Dividend with a 4-bit Divisor

$$(1)_2 < (1000)_2$$

We place a zero (0)

$$(10)_2 < (1000)_2$$

We place a zero (0)

$$(100)_2 < (1000)_2$$

We place a zero (0)

$$(1001)_2 >= (1000)_2$$

We place a one (1)

• • • • •

Dividing Unsigned Numbers: Computers

WARNING: This is not exactly happening in our MIPS Here we are just trying to understand the main concept

Paper and pencil example (unsigned):

3 versions of divide, successive refinement

Initialization

Remainder 0000000

<u>Divisor</u> 0001000

0000001 - 0001000 < 0 We place a zero (0)

0000010 - 0001000 < 0 We place a zero (0)

0000100 - 00010000 < 0 We place a zero (0)

0001001 - 0001000 > 0 We place a one (1)

Note that each time we place a 0 or 1, in fact, we also do a left shift on the quotient

Divide Hardware (version 1)

The 32-bit value of the Divisor starts in the left half of the 64-bit register

Divisor Register: 64-bit

Divisor	000000000000000000000000000000000000000
---------	---

The Remainder register is initialized with the value of the Dividend

Remainder Register: 64-bit

000000000000000000000000000000000000000	Dividend

Quotient Register: 32-bit

Quoziente

Divide Hardware (version 1)

- The Quotient is shifted left
- The Divisor is shifted to the right every step to align with the Dividend
- Control decides when to shift the Divisor and the Quotient registers and when to write new value into the Remainder register

Divide Algorithm Version 1

Dividing two n-bit numbers needs n+1 steps to generate n-bit Quotient and Remainder

- If the Remainder is positive, a 1 is generated in the Quotient
- A negative Remainder indicates that the divisor did not go into the Dividend
- Shifting the Divisor in step 3 aligns the Divisor with the Dividend for next iteration
- We repeat for 33 times (You will understand why in the next slide)

An Example

Follow the division algorithm (version 1) to divide 7 by 2 using only 4-bit binary representation

We always need n+1 iterations to do n-bit division

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1				
2				
3				
4				
5				

What's wrong with the 1st version?

In the 1st version of divide hardware,

Half of the bits in Divisor is always 0

- => Half of 64-bit adder is wasted
- => Half of 64-bit divisor is wasted

Can we decrease the number of iterations to n from n+1?

Divide Hardware (version 2)

This time let's

- use a 32-bit register for the Divisor, and
- place the dividend in the right half of the Remainder

Divisor Register: 32-bit

Divisor

Remainder Register: 64-bit

00000000000000000000000000000 Dividend

Quotient Register: 32-bit

Quoziente

Divide Hardware (version 2)

- Divisor is not shifted
- Both the Remainder and Quotient are shifted to the left
- 1st step cannot produce a 1 in quotient bit (divide by zero) => switch order shift first and then subtract (to save 1 iteration)
- The most significant 32-bits would be used by the ALU as a result register

Divide Algorithm Version 2

An Example

Follow the division algorithm (version 2) to divide 7 by 2 using only 4-bit binary representation

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010	0000 0111
1	- -			_
2				·
3	-			
4				

What's wrong with the 2nd version?

- Remainder register wastes space
- And this space exactly matches size of Quotient

Then why don't we combine Quotient register and Remainder register.

Divide Hardware (version 3)

This time let's

- place the Dividend in the right half of the Remainder
- place the Quotient in the left half of the Remainder

Divisor Register: 32-bit	No Quotient Register
Divisor	
Remainder Register: 64-bit	
Quotient	Remainder

- ☐ The same number of shift operations would apply to the Remainder and the Quotient
- ☐ The Remainder needs to be corrected at the end
- ☐ The most significant 32-bits are still being used by ALU as a result register

Divide Algorithm Version 3

Dividing 7 by 2

Iteration	Step	Divisor	Remainder
0	Initial values	0010	0000 0111
1			
		•	
2			
3			
4			·
		-	

Remainder would be shifted an extra time and need to be corrected at the end

Division Hardware (Spot the Problem!)

According to the drawing, Quotient should be kept in \$HI and Remainder should be kept in \$LO, but in MIPS it is reverse!

MIPS: \$LO keeps the quotient \$HI keeps the remainder

Dividing Signed Numbers

Simplest approach is to remember signs, make positive, and complement quotient and remainder if necessary

- Rule 1: Dividend and Remainder must have same sign
- Rule 2: Quotient negated if Divisor sign & Dividend sign are different

Examples:

Dividend = Quotient × Divisor + Remainder

$$7 \div 2 = 3$$
, remainder = 1

$$-7 \div 2 = -3$$
, remainder = -1

$$7 \div - 2 = -3$$
, remainder = 1

$$-7 \div -2 = 3$$
, remainder = -1

According to the mathematicians, the remainder has to be a positive number!

Working with Floating Point Numbers

Remember IEEE 754 Floating-Point Formats

Single-precision format

Double-precision format

$$v = -1^{S} \times 1.$$
 Significand $\times 2^{Exponent-1023}$

Floating Point Arithmetic

Floating point arithmetic differs from integer arithmetic

both exponents and magnitudes of the operands must be handled

Subtraction/Addition (in 3 steps)

- The exponents of the operands must be made equal
- 2. The fractions are then added or subtracted as appropriate, and
- 3. The result is normalized.

Floating Point Arithmetic

Example:

Perform the following addition: $(.101 \times 2^3 + .111 \times 2^4)_2$

Start by adjusting the smaller exponent to be equal to the larger exponent, and adjust the fraction accordingly.

$$101 \times 2^3 = .010 \times 2^4$$

note we lose $.001 \times 2^3$ of precision in the process

 $(.010 + .111) \times 2^4 = 1.001 \times 2^4 = .1001 \times 2^5$

Rounding to three significant digits,

=
$$.100 \times 2^5$$

and we have lost another 0.001×2^4
in the rounding process.

Floating Point Addition

For addition (or subtraction) this translates into the following steps:

- (1) Compute Ye Xe (getting ready to align)
- (2) Right shift Xm to form Xm 2 (Xe -Ye)
- (3) Compute Xm 2^(Xe -Ye) + Ym

If representation demands normalization, then the following step:

- (4) Left shift result, decrement result exponent Right shift result, increment result Continue until MSB of data is (Hidden bit)
- (5) If result is 0 mantissa, may need to set exponent to zero by special step

Floating Addition Hardware

Floating Point Multiplication/Division

Performed in a manner similar to floating point add/subtraction

Main Difference: The sign, exponent, and fraction of the result can be computed separately.

- ☐ Same/opposite signs produce positive/negative results, respectively
- ☐ Exponent of result is obtained by adding/subtracting exponents for multiplication/division.
- ☐ Fractions are multiplied or divided according to the operation, and then normalized.

Floating Point Multiplication/Division

Example: Perform :
$$(+.110 \times 2^5) / (+.100 \times 2^4)_2$$

The source operand signs are the same, which means that the result will have a positive sign.

We subtract exponents for division, and so the exponent of the result is 5 - 4 = 1.

We divide fractions, producing the result: 110/100 = 1.10.

Putting it all together,

$$(+.110 \times 2^5) / (+.100 \times 2^4) = (+1.10 \times 2^1).$$

After normalization, the final result is $(+.110 \times 2^2)$.

Computers do the almost same thing to do mult/division The only difference is that they use **BIAS!**

$$2^7 \times 2^{-3} = 2^4$$

An Example

Let's say we want to use 8 as are our bias So 2¹⁵ will represent 2⁷ and 2⁵ will represent 2⁻³

If we multiply two representations, we will get

$$2^{15} \times 2^5 = 2^{20}$$

But according to our representation we were supposed to have 2¹² as the representor of 2⁴. What went wrong?

We double dipped the base! We need to adjust it

Floating Point Multiplication

For addition (or subtraction) this translates into the following steps:

- (1) Compute Ye + Xe (adding exponents)
- (2) Correct the doubly biased exponent
- (3) Multiply the significands
- (4) Perform normalization
- (4) Round the number to the specified size
- (5) Calculate the sign of the product

