(zep) essaupesmilpow 0 1 1 41 61 11 121 123 125 127	00000 00000 0x0000 0x0000 0x0001 0x0005 0x0076 0x00770 0x00770 0x0070 0x0070 0x0070 0x0070	Read coils (0x01)	Read holding registers (0x03)	Write single register (0x06)	Gräte für Geräte mit KE-Firmware ab V2.08 (die installierte Versige gegen der Versig	sion ka	uint(16 cha	2 (40 (40 (40 (40 (40 (40 (40 (4	1 902 00 00 00 00 00 00 00 00 00 00 00 00 0	Daten ASCI ASCI ASCI ASCI ASCI	Beispie/Eribiterung 67 = EUR 10000 Serie EUR 10080-1000 80 1000 30000 5	Profibus slot / Profinet subslot	1 0 1 1 1 1 2 1 3 1 4 1 5 1 6 1 7	X
129 131 151 171 191 211 231 402 405 407 409 410 410 410 417 418 425 442 440	0x008 0x009 0x0009 0x000A 0x00Bi 0x00Bi 0x00Bi 0x00Bi 0x019i 0x019i 0x019i 0x019i 0x01Bi 0x01Bi	77 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	x x x x x x x x x x x x x x x x x x x	x	Min. Invenvidensland Artikeinummer Serierummer X Benutzertext Firmwareversion (KE) Firmwareversion (KE) Firmwareversion (MI) Firmwareversion (MI) Firmwareversion (DR) Fernsteuerungsmodus DC-Ausgang/Eingang Zustand DC-Ausgang/Eingang nach Alarm Power Fail Zustand DC-Ausgang/Eingang nach Alarm Power Fail Zustand DC-Ausgang/Eingang nach Alarm Power Fail Austrauf Company Serierungsmodus DC-Ausgang/Eingang nach Alarm Power Fail Zustand DC-Ausgang/Eingang nach Alarm Power Fail Zustand DC-Ausgang/Eingang nach Peristeuerung Analogschnitistelle: REM-SB Pegel Analogschnitistelle: REM-SB Verhalten Zustand DC-Ausgang/Eingang nach Verlassen der Fernsteuerung Gerat auf Weskeinstellungen zurücksetzen Analogschnitistelle: Pin 14 Konfiguration Analogschnitistelle: Pin 6 Konfiguration	R R R R R R R R R R R R R R R R R R R	uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	r 40 r 40 r 40 r 40	200 200 200 200 200 200 11 11 11 11 11 11 11 11 11 11 11 11 1	ASCII	0.003 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 1234560001 123		11 11 11 12 11 13 14 14 15 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17	x x x x x x x x x x x x x x x x x x x
442 500 501 502 503 505 505	0x018/ 0x01F: 0x01F: 0x01F: 0x01F: 0x01F: 0x01F:	4 4 5 5 6 6 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	x x x x x x x x x x x x x x x x x x x	x x x x	Analogschritistelle: Pin 15 Konfiguration Solwert Spannung Solwert Strom / Beschattung (PV-Funktion) Solwert Widerstand Gerätestatus bitvert Spannung bitvert Spannung street Strom	RW RW RW RW RW R R	unt(16 unt(16 unt(16 unt(32 unt(32 unt(32 unt(32 unt(16 unt(16 unt(16 unt(16 unt(16 unt(16 unt(16 unt(16 unt(16 unt(16 unt(16 unt(16 unt(16) u	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 2 2	DC-Status / Regelungsart 0x0000 - 0xD0E5 (0 - 102%) 0x0000 - 0xCCC (0 - 100%) Bit 0 - 4 : Bedienort Bit 6 : Master-Slave-Typ Bit 7 : Zustand DC-Ausgang Bit 13 : Fernishurung Bit 13 : Fernishurung Bit 13 : Fernishurung Bit 14 : Fernishurung Bit 15 : Alarme Bit 16 : OVP Bit 7 : OCP Bit 17 : OCP Bit 19 : OT Bit 18 : OVP Bit 19 : OT Bit 18 : OVP Bit 19 : OT Bit 19 : OT Bit 19 : OT Bit 19 : OT Bit 19 : OVD Bit 29 : NSS Bit 29 : NSS Bit 30 : REM-SB 0x0000 - 0xFFFF (0 - 125%) 0x0000 - 0xFFFF (0 - 125%)	0x0000 = CV; 0x0001 = Status DC-Eirgang Spanrungswert (Umrechrung slehe Programmieranleitung) Stormwort (Umrechrung slehe Programmieranleitung) Stormwort (Umrechrung slehe Programmieranleitung) Widerstandswert (Umrechrung slehe Programmieranleitung) 0x00 = Reir; 0x01 = lokat; 0x03 = USB; 0x04 = anakog; 0x05 = Profitus; 0x06 = Ethernet Ox06 = Master/Stave; 0x09 = RS232; 0x10 = CANopen; 0x12 = Modulus TCP 1P; 0x13 = Profitine1 EP; 0x14 = Ethernet P; 0x15 = Ethernet Ox06 = Master/Stave; 0x09 = RS232; 0x10 = CANopen; 0x12 = Modulus TCP 1P; 0x13 = Profitine1 EP; 0x14 = Ethernet P; 0x15 = Ethernet 2P; 0x16 = Modulus TCP 2P; 0x17 = Profitine1 2P; 0x15 = GPB; 0x19 = CAN; 0x1A = EtherCAT 0 = Stave; 1 = Master 0 = aux; 1 = aktiv 0 = aux; 1 = aktiv 0 = aux; 1 = aktiv 0 = kein; 1 = aktiv		2	x x x x
509 511 520 521 522 523 554 559 560 561 662 563 564 665	0x01FE 0x01FF 0x01FF 0x0200 0x0200 0x0200 0x0200 0x0200 0x0220 0x0221 0x0221 0x0231 0x0231 0x0233 0x0233	8 9 A B C C C C C C C C C C C C C C C C C C	x x x x x x x x x x x x x x x x x x x	X	Istwert Leistung Gerätestatus 2 Anzahl von OV-Alarmen seit Start des Gerätes Anzahl von OC-Alarmen seit Start des Gerätes Anzahl von OC-Alarmen seit Start des Gerätes Anzahl von OF-Alarmen seit Start des Gerätes Anzahl von PF-Alarmen seit Start des Gerätes Anzahl von PF-Alarmen seit Start des Gerätes Uberspannungsschutzschweite (OVP) Überspannungsschutzschweite OCP Übersteitungsschutzschweite OCP Übersteitungsschutzschweite OCP Überspannungsdelektion UVD Einstellbare UVD Meidung Überspannungsdelektion OVD Einstellbare UVD Meidung Unterstromdetektion UVD Einstellbare UCD Meidung Überstomdetektion UCD Einstellbare UCD Meidung Überstomdetektion UCD Einstellbare UCD Meidung Überstomdetektion OCD	R R R R R R R R R R R R R R R R R R R	uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	2) 2 2) 2 2) 2 2) 2 2) 2 2) 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0000 - 0.0FFFF (0 - 125%) Bit 0 : reserved Bit 1 : SF-Alarm 0.0000 - 0.0FFFF (0 - 110%) 0.0000 - 0.0FFFF (0 - 100%) Elinstellar UN Medium 0.0000 - 0.0DES (0 - 102%) Einstellar UN Medium 0.0000 - 0.0DES (0 - 102%) Einstellar UN Medium 0.0000 - 0.0DES (0 - 102%) Einstellar UN Medium 0.0000 - 0.0DES (0 - 102%) Einstellar UN Medium 0.0000 - 0.0DES (0 - 102%) Einstellar UN Medium 0.0000 - 0.0DES (0 - 102%)	Leistungsistwert (Urrechnung siehe Programmieranleitung) 0 = kein; 1 = aktiv Anzahl Anzahl Anzahl Anzahl Anzahl Anzahl Anzahl CVP-Schwele (Urrechnung siehe Programmieranleitung) OVP-Schwele (Urrechnung siehe Programmieranleitung) OVD-Schwele (Urrechnung siehe Programmieranleitung) OVD-Schwele (Urrechnung siehe Programmieranleitung) D0000 = keing 00001 = Signat 00002 = Warrung; 00003 = Alarm UCD-Schwele (Urrechnung siehe Programmieranleitung) D0000 = keing 00001 = Signat 00002 = Warrung; 00003 = Alarm UCD-Schwele (Urrechnung siehe Programmieranleitung)		3 20 3 3 20 3 3 21 3 22 4 3 24 5 24 7 24 7 25 7 26 7 27 7 27 7 27 7 27 7 27 7 27 7 27	x x x x x x x x x x x x x x x x x x x
500 507 508 507 508 650 653 654 655 656 660 662 660 667 657 659 659 650 650 651 651 652 653	0x0281 0x0281 0x0281 0x0281 0x0281 0x0281 0x0281 0x0281 0x0281 0x0281 0x0291 0x0291 0x0351 0x0351 0x0351	A x x B B B B B B B B B B B B B B B B B	x x x x x x x x x x x x x x x x x x x	x x x x x x x x	Control Contro	RW RW RW	uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 floa floa	2) 2 2) 2 3) 2 1) 2 1) 2 1) 2 1) 2 1, 2 1, 3 1, 4 1, 4 1, 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Intelligence OCD Meldung 0x0000 - 0x00ES (0 - 102%) Einstelligence OCD Meldung Reg: Zustand Coil: Modus Coil: Modus Coil: Modus Coil: Mos ein/aus Coil: Status Coil: :Abschluß Coil: :BIAS Coil: Stat/Stop Coil: U Coil: Co	0x000 = keinr 0x0001 = Signati 0x0002 = Warrang; 0x0003 = Alarm 0xPD-Schwelle (Umrechrung siehe Programmieraniehung) 0x000 = keinr 0x0001 = Signati 0x0002 = Warrang; 0x0003 = Alarm 0x0000 = keinr 0x0001 = Signati 0x0002 = Warrang; 0x0003 = Alarm 0x0000 = sinve; 0xFF00 = Master 0x0000 = sinve; 0xFF00 = Master 0x00000 = sinve; 0xFF00 = Master 0x00000 = sinve; 0xFF00 = Master 0x00000 = Nicht initialisierin; 0x0001 = kitalisiering liuft; 0x0003 = Setze Standard; 0x0000 = Nicht initialisierin; 0x0001 = kitalisiering liuft; 0x0003 = Setze Standard; 0x0004 = Setze hetrace; 0x0005 = Zuordnung; 0xFFC = gestlort; 0xFFFP = Modelle urterschiedlich, Initialisiering nicht OK; 0xFFFE = Fehler; 0xFFFF = Initialisiering OK 0x000 = sus; 0xFF00 = ein 0x0000 = aus; 0xFF00 = ein 0x0000 = aus; 0xFF00 = sin 0x0000 = richt ausgewählt; 0xFF00 = Zuordnung Funktion zur Spannung 0x000 = richt ausgewählt; 0xFF00 = Zuordnung zu einer HJ-Kurve 0x000 = richt ausgewählt; 0xFF00 = Zuordnung zu einer HJ-Kurve 0x000 = richt ausgewählt; 0xFF00 = Zuordnung zu einer HJ-Kurve 0x000 = richt ausgewählt; 0xFF00 = Zuordnung zu einer HJ-Kurve 0x000 = richt ausgewählt; 0xFF00 = Zuordnung zu einer HJ-Kurve 0x000 = richt ausgewählt; 0xFF00 = Zuordnung zu einer HJ-Kurve 0x000 = richt ausgewählt; 0xFF00 = Zuordnung zu einer HJ-Kurve		3 166 3 177 3 188 3 188 3 3 3 3 3 3 3 3 3 3 3 3 3 3	X
900 900 1 2468	0x035t0 0x035t0 0x035t0 0x038t0 0x09A-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	x x x x x x x x x x x x x x x x x x x	x x	Funktionsgenerator Arbiträr: Endsequenz Funktionsgenerator Arbiträr: Sequenzyden Funktionsgenerator Arbiträr: Sequenzyden Funktionsgenerator Arbiträr: Einstellungen übernehmen (nur nötig bei CAN, CANopen, EtherCAT CoE) X Funktionsgenerator Arbiträr: Setup für Sequenz 1 L L L L L L L L L L L L L L L L L L	RW RW	uint(16 uint(16 uint(16) floa		16	0x0010x0x83 0x00000x08F7 Coil : Übermehmen Arbiträr Bytes 0-3: Us/fst(AC) in V oder A Bytes 4-7: Us/fst(AC) in V oder A Bytes 4-7: Us/fst(AC) in V oder A Bytes 8-11: fst(17) in Hz Bytes 12-15: fst(17) in Hz Bytes 12-15: fst(17) in Voder A Bytes 24-27: Us/fst(DC) in V oder A Bytes 24-27: Us/fst(DC) in V oder A Bytes 24-37: Us/fst(DC) in V oder A Bytes 28-31: Sequenzzeit in µs	0x0000 = unendlich 0xF00 = Einstellungen übernehmen Fießkommazahl nach EEE754, Bereich siehe Handbuch des Gerätes, Abschritt zum Funktionsgenerator Ganzzahl in EEE754-Format 010000 Hz Ganzzahl in EEE754-Format 0390* Fießkommazahl nach EEE754, Bereich siehe Handbuch des Gerätes, Abschritt zum Funktionsgenerator Fießkommazahl nach EEE754, Bereich siehe Handbuch des Gerätes, Abschritt zum Funktionsgenerator Ganzzahl in EEE754-Format 0360 000 000 000 ups Fießkommazahl nach EEE754, Bereich siehe Handbuch des Gerätes, Abschritt zum Funktionsgenerator Ganzzahl in EEE754-Format 010000 Hz Ga	6	5 5 10 5 5 11 5 5 11 1 1 1 1 1 1 1 1 1 1 1 1 1	
9000 9001 9001 9003 9004 9006	0x1A11 0x1A11 0x2321 0x2322 0x2322 0x2322 0x2322	8 8 9 9 A B C C	x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X	Dere Grenze Spannungssollwert (U-max) Untere Grenze Spannungssollwert (U-min) Obere Grenze Stormsollwert (H-min) Obere Grenze Stormsollwert (H-min) Obere Grenze Stormsollwert (H-min) Obere Grenze Leistungssollwert (P-max) Obere Grenze Leistungssollwert (P-max)	RW	uint(16 uint(16) 2) 2) 2) 2	16 16 11 11 11	L-Modus: Stormoolivert (Block aus 16 Werten) 0x0000 - 0x00E5 (0 - 102%) 0x0000 - 0x00E5 (0 - 102%) ELR: variabel - 0x00E5 (x - 102%) ELR: variabel - 0x00E5 (x - 102%)	Wett = Realer Spannungssolivert * 0.8 / Unern * 32768 oder Wett = Realer Stromsoliwert * 0.8 / Inern * 32768 Spannungswert (Unrechnung siehe Programmieranleitung) Spannungswert (Unrechnung siehe Programmieranleitung) Spannungswert (Unrechnung siehe Programmieranleitung) Stromwert (Unrechnung siehe Programmieranleitung) Leistungswert (Unrechnung siehe Programmieranleitung) Widerstandswert (Unrechnung siehe Programmieranleitung) Widerstandswert (Unrechnung siehe Programmieranleitung)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 7 255 2 31 2 32 2 33 2 34 2 35 2 37	x x x
10007 10008 10010 10011 10012 10013 10020	0x2711 0x2711 0x2711 0x2711 0x2711 0x2711 0x2712	8 x A x B x C x	X		Ethernet: TCP-Keep-alive-Timeout Ethernet: Profinet/Modbus TCP: DHCP Profokoli: Modbus Profokoli: SGCPI Schrittstellermodul neu starten Etirhahung der Modbus Spezifikation AnyBus-Modul: Typ		uint(16		1 1 1 1 1 1 1 1 1 1	werden, siehe Programmieranteitung PS: oxbooto - oxbotts (o - 102%) Coit Keep-alive einfatus Coit DHCP einfatus Coit MODBUS einfatus Coit SCPleinfatus Coit SCPleinfatus Coit Koustart Coit Modus	0x0000 = aus; 0xFF00 = ein 0x0000 = aus; 0xFF00 = ein 0x0000 = aus; 0xFF00 = ein 0x00000 = aus; 0xFF00 = ein 0x0000 = aus; 0xFF00 = ein 0xF00 = Neustart aus/bsen 0x0000 = Umisert (Standard; 0xFF00 = Voll 0x0000 = Proflotus 0x0000 = Proflotus 0x0000 = Proflotus 0x0000 = Proflotus 0x0000 = VSS232 0x00010 = X6Abpen 0x00110 = X6Abpen 0x00			
10021 10041 10043 10251 10252 10253 10269 10280 10300 10300 10506 10506 10506 10506 10506 10567	0x272: 0x273: 0x273: 0x280: 0x280: 0x280: 0x281: 0x282: 0x283: 0x287: 0x290: 0x290: 0x290: 0x290: 0x294: 0x294: 0x294: 0x294:	9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	x x x x x x x x x x x x x x x x x x x	x	AnyBus-Modul: Bezeichnung AnyBus-Modul: Versionsnummer AnyBus-Modul: Seriennummer Profibusi Seriennummer Profibusi Seriennummer Profibusi Seriennummer Profibusi Seriennummer Profibusi Seriennummer Profibusi Seriennummer > Profibusi Profine Benutzerdefirerbares "Function tag" > Profibusi Profine Benutzerdefirerbares "Location tag" > Profibusi Profine Benutzerdefirerbares "Location tag" > Profibusi Profine Benutzerdefirerbares Pascellum Profibusi Profine Benutzerdefirerbares Pascellum Profibusi Prof	R R R R R R R R R R R R R R R R R R R	chai uint(8 uint(16 uint(16 chai chai chai chai uint(8 uint(8 uint(8 uint(8 uint(8 uint(8 uint(8 uint(8 uint(8 uint(8) uint(8 uint(8) uint(8) uint(8) uint(8) uint(8) uint(8) uint(8) uint(8) uint(16 uint(16) uint(16) uint(16) uint(16)) 4 4 4 1 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3 3 2 3	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ASCII ASCII ASCII ASCII ASCII ASCII ASCII Bytes 0-3: 0. 255 Ubertragurgsgeschwindigkeit	000FF = kein Modul gesteckt bzw. unbekannt "Frofibus DPV" "Profibus C-125; CANopen: 0-127 "Test" "13.01.2012 09.59.00" "www.webpage.de" "Test" "13.01.2012 09.59.00" "www.webpage.de" "Test" "192.168.0.2 (Standard) "252.555.265.0 (Standard) "252.555.265.0 (Standard) "192.168.0.1 (Standard) "Cleert (Standard) "Workgroup" (Standard) "Workgroup" (Standard) "0.0.0.0 (Standard)	£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	i 0 0 i 1 1 i 2 2 i 3 3 3 4 4 3 5 5 6	
10571 10572 10573 10700	0x2946 0x2940 0x2940 0x29C0	D X	x x x x x x x x		Ethernet/Modbus TCP: Übertragungsgeschwindigkeit Port 2 (2-Port-Modul) Ethernet (außer ModBus TCP): Portnummer Ethernet: TCP-Socket-Timeout (in Sekunden) RS232/GANopen/GAN: Baudrate CAN: ID -Format GAN: Terminierung	RW RW RW	uint(16 uint(16 uint(16	0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 2 2 0 0 0 0 2 2 0	1 1 1 1 1 1 1 1 1	Ubertragungsgeschwindigkeit 0.05535 5.05535 Baudrate Colt Base/Extended Colt Busteminierung	0.0002 = 10Mbit full diplex: 0.0003 = 100Mbit half duplex 0.0004 = 100Mbit half duplex 0.0006 = Auto: 0.0006 = Auto: 0.0007 = 10Mbit half duplex 0.0002 = 10Mbit half duplex 0.0002 = 10Mbit half duplex 0.0003 = 100Mbit half duplex 0.0003 = 100Mbit half duplex 0.0004 = 100Mbit half duplex 0.0006 = 0.00			
10704 10706 10709 10710 10712 10714 10715 10716 10717 10718 10719	0x29Di 0x29Di 0x29Di 0x29Di 0x29Di 0x29Di 0x29Di 0x29Di 0x29Di 0x29Di 0x29Di 0x244i 0x2A4i	5 x 4 A A A A A A A A A A A A A A A A A A	x x x x x x x x x x x x x x x x x x x	x x x x	X CAN: Broadcast-ID CAN: Dateritinge CAN: Zyklisch Lesen: Basis-ID X CAN: Zyklisch Lesen: Basis-ID X CAN: Zyklisch Sender: Basis-ID CAN: Zykliszeit Lesen (in ms): Status CAN: Zykliszeit Lesen (in ms): Status CAN: Zykliszeit Lesen (in ms): Status CAN: Zykliszeit Lesen (in ms): Einsteligrenzen z (P. R) CAN: Zykliszeit Lesen (in ms): Einsteligrenzen z (P. R) CAN: Zykliszeit Lesen (in ms): Einsteligrenzen z (U. I) CAN: Zykliszeit Lesen (in ms): Istwert U. I, P Interme Ethernetschriftstelle: Status Interme Ethernetschriftstelle: TCP-Keep-alive-Timeout Interme Ethernetschriftstelle: NTCP-Keep-alive-Timeout Interme Ethernetschriftstelle: NTCP-Keep-alive-Timeout Interme Ethernetschriftstelle: NTCP-Keep-alive-Timeout Interme Ethernetschriftstelle: NTCP-Keep-alive-Timeout Interme Ethernetschriftstelle: Netzwerkadresse (P)	RW RW RW RW RW RW RW RW RW RW RW RW RW	uint(32 uint(16 uint(32 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	0 4 0 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0.0000007FF oder 0.0000007FF oder 0.0000001FFFFFF 0.00000001FFFFFF 0.00000001FFFFFFF 0.00000001FFFFFF 0.00000000000001FFFFFF 0.00000000000001FFFFFF 0.00000000000000000000000	Standard: 0x7FF 0x0000 = Auto; 0xFF00 = Immer 8 Bytes Standard: 0x100 Standard: 0x200 Standard: aus Standard: aus Standard: aus Standard: aus Standard: aus			
10825 10827 10829 10856 10833 10885 10888 10889 11000 11001 11002 11003 11006 11006 11006 11008	0x2A41 0x2A4E 0x2A61 0x2A61 0x2A81 0x2A81 0x2AF1 0x2AF1 0x2AF1 0x2AF1 0x2AF1 0x2AF1 0x2AF1 0x2AF1 0x2AF1 0x2AF1 0x2AF1 0x2AF1 0x2AF1 0x2AF1	B	x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X	x Interne Ethernetschritistelle: Subnetzmaske x Interne Ethernetschritistelle: Asterway x Interne Ethernetschritistelle: Hostname x Interne Ethernetschritistelle: Hostname x Interne Ethernetschritistelle: Domaine x Interne Ethernetschritistelle: DNS x Interne Ethernetschritistelle: MAC Werne Ethernetschritistelle: Portnurmer interne Ethernetschritistelle: Portnurmer interne Ethernetschritistelle: TCP-Socket-Timeout (in Sekunden) MPP Tracking: MPP-Modus (Setup) MPP Tracking: Unce (Setup) MPP Tracking: Unce (Setup) MPP Tracking: Unce (Setup) MPP Tracking: Prop (Ergebris in MPP1/2/4) MPP Tracking: Tmpp (Ergebris in MPP1/2/4) MPP Tracking: Prop (Ergebris in MPP1/2/4)		uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	54 (a) 4 (b) 6 (c) 2 (c) 2 (c) 2 (d) 2	2 2 27 27 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bytes 0.3: 0.255 ASCII ASCII Bytes 0.3: 0.255 Bytes 0.3: 0.255 Bytes 0.5: 0.255 Bytes 0.5: 0.255 Bytes 0.5: 0.255 5. 65535 (0 = Timeout deaktivlert) 0.4 0.0000 - 0.0CCCC (0 - 100%) 0.00000 - 0.0CCCC (0 - 100%)	0 = aus; 1 = MPP1; 2 = MPP2; 3 = MPP3; 4 = MPP4 Spanrungswert in % von Uhenn (Uhrrechnung siehe Programmierantieltung) Spanrungswert in % von Uhenn (Uhrrechnung siehe Programmierantieltung) Spanrungswert in % von Uhenn (Uhrrechnung siehe Programmierantieltung) Stoornwert in % von Penen (Uhrrechnung siehe Programmierantieltung) Leistungswert in % von Penen (Uhrrechnung siehe Programmierantieltung) Spanrungswert in % von Uhenn (Uhrrechnung siehe Programmierantieltung) Spanrungswert in % von Denn (Uhrrechnung siehe Programmierantieltung) Leistungswert in % von Penen (Uhrrechnung siehe Programmierantieltung) Leistungswert in % von Prenn (Uhrrechnung siehe Programmierantieltung)	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9 3 9 4 9 5 9 6 9 7	X X X X X X X
11010 11011 11012 11013 11014 11015 11017 11037 11077 11077 11077 11077	0x280; 0x280; 0x280; 0x280; 0x280; 0x280; 0x280; 0x281; 0x283; 0x284; 0x285; 0x286;	5 6 7 8 8 9 9 0 11 15 9 0	x x x x x x x x x x x x x x x x x x x	x x x	MPP Tracking: Start/Stopp MPP Tracking: Fehler wahrend der Funktion MPP Tracking: Fehler wahrend der Funktion MPP-Tracking: Intervall (Setup) MPP4 : Start MPP4 : Start MPP4 : Start MPP7 Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 1-20 X MPP Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 21-40 X MPP Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 41-60 X MPP Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 61-80 X MPP Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 61-80 X MPP Tracking: Benutzerkurve (MPP4 Modus) Spannungswerte 61-100 MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 1-10 (10x Umon, mon, Pmon)	RW R RW RW RW RW RW RW RW RW RW	uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16 uint(16	40) 40) 40) 40) 40) 40) 60	20 20 20 20 20 30	0x0000 - 0xCCCC (0 - 100%)	0x0000 = stoppen; 0xFF00 = starten 0x0000 = isunt; 0xFF00 = fertig 0x00000 = fertigenerized in Misioskurden für das Tracking in Modi 1 und 2 bzw. die Abarbeilung der Benutzerweite im Modus 3 Arfangsspannungswert aus 1-100 (bezogen auf Register 11100-11199) für MPP- Trackingmodus 4 0x00000 = keine Wiederholungen 0x00000 = keine Wiederholungen 0x000000 = keine Wiederholungen 0x000000 = keine Wiederholungen 0x00000000000000000000000000000000000		99 100 99 111 99 122 99 13 13 14 99 15 15 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	x x x x x x x x x
	0x2B8E 0x2BA 0x2BA 0x2BC 0x2C0 0x2C0 0x2C2	7 7 5 5 5 5 1 1 1 1	x x x x x x x x x		MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 11-20 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 21-30 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 31-40 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 41-50 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 51-60 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 51-60 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 61-70 (10x Umon, Imon, Pmon)	R R R R	uint(16 uint(16 uint(16 uint(16) uint(16) uint(16)	60	30 30 30 30	0.0000 - 0.xCCCC (0 - 100%) 0.00000 - 0.xCCCC (0 - 100%)	Spanrungswert in % von Unern Stornwert in % von Penen (Unrechrung siehe Programmieranielung) Spanrungswert in % von Penen (Unrechrung siehe Programmieranielung) Spanrungswert in % von Unern Stornwert in % von Enen (Unrechrung siehe Programmieranielung) Spanrungswert in % von Penen (Unrechrung siehe Programmieranielung) Spanrungswert in % von Denen Leistungswert in % von Denen Leistungswert in % von Denen Spanrungswert in % von Denen		99 24 99 24 25 26 27 28 29 29 29	x x x
11367 11387 11500 11502 11504 11506 11508 11510 11512	0x2C5E 0x2CFE 0x2CFE 0x2CFE 0x2CFE 0x2CFE 0x2CFE 0x2CFE 0x2CFE	B C C C C C C C C C C C C C C C C C C C	x x x x x x x x x x x x x x x x x x x	x	MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 81-90 (10x Umon, Imon, Pmon) MPP Tracking: Benutzerkurve (MPP4 Modus) Ergebnisse 91-100 (10x Umon, Imon, Pmon) X Batterietest Entladen (statisch): Max. Strom X Batterietest Entladen (statisch): Max. Strom X Batterietest Entladen (statisch): Max. Widerstand X Batterietest Entladen (statisch): Max. Widerstand X Batterietest Entladen (statisch): Max. Stromenter (statisch): Ass. Widerstand X Batterietest Entladen (statisch): Ass. Viderstand X Batterietest Entladen (statisch): Ass. Ass. Viderstand Batterietest Entladen (statisch): Ass. Entladen (statisch): Ass. Entladen (statisch): Ass. Batterietest Entladen (statisch): Asson bei Erreichen der max. Entladezeit Batterietest Entladen (statisch): Asson bei Erreichen der max. Entladezeit	RW RW	floa floa floa floa uint(32 uint(16	t 4 t 4 t 4 t 4 t 4 t 4 t 4		0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%) 0x0000 - 0xCCCC (0 - 100%)	Leistungswert in % von Penern (Umrechrung siehe Programmierarieitung) Sparnungswert in % von Liven Stormwert in % von Liven Stormwert in % von Penern (Umrechrung siehe Programmierarieitung) Sparnungswert in % von Penern (Umrechrung siehe Programmierarieitung) Sparnungswert in % von Denern Stormwert in % von Penern (Umrechrung siehe Programmierarieitung) 3 - Nennstrom 3 - Nennstrom 4 - Nennstrom 5 - Nennstrom 6 - Nennstrom 7 - Nennstrom 9 - Nenns	11 11	2 3 4 5	
11514 11516 11518 11520 11522 11524 11528 11530 11531 11531	0x2CF/ 0x2CF(0x2CF(0x2D0) 0x2D0) 0x2D0/ 0x2D0/ 0x2D0/ 0x2D0/ 0x2D0/ 0x2D0/	0 22 44 66 88 AA	x x x x x x x x x x x x x x x x x x x	x	Batterietest Enfladen (dynamisch): Strompegel 1 x Batterietest Enfladen (dynamisch): Strompegel 2 x Batterietest Enfladen (dynamisch): Verweildauer Strompegel 1 x Batterietest Enfladen (dynamisch): Verweildauer Strompegel 2 x Batterietest Enfladen (dynamisch): War. Leitslung x Batterietest Enfladen (dynamisch): Max. Leitslung x Batterietest Enfladen (dynamisch): Entladeschlußspannung x Batterietest Enfladen (dynamisch): Max. Entladezeit Batterietest Enfladen (dynamisch): Aktion bei Erreichen der max. zu entnehmenden Kapazität Batterietest Enfladen (dynamisch): Aktion bei Erreichen der max. Enfladezeit Batterietest Enfladen (dynamisch): Aktion bei Erreichen der max. Enfladezeit Batterietest Start/Stopp Batterietest: Noduswahl	RW R	uint(16 uint(16	t 4 t 4 t 4 t 4 t 4 t 4 t 4 t 4 t 4 t 2 t 4 t 2 t 4 t 4	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	Fießkommazahl nach EEE754 Fießkommazahl nach EEE754 Fießkommazahl nach EEE754 Fießkommazahl nach EEE754 Fießkommazhl nach EEE754 Fießkommazhl nach EEE754 Fießkommazhl nach EEE754 Fießkommazhl nach EEE754 August nach EEE754 August nach EEE754 August nach EE6754 Coli Start/Stop Moduswahl	0.0002 = Test benden 0 - Nenrstrom 1 - 36000 s 1 - 36000 s 1 - 36000 s 1 - 36000 s 0 - Nenrishtom 0 - Nenrishtom 0 - Neminishtung 0 - 99999.99 0.00010203 - 01:02:03 als HH-MM-SS, entspricht [00][STD][MN][SEK] 0.0000 = Noths thur, 0.0001 = Moleton (siehe Register 11544); 0.0002 = Test benden 0.0000 = Nichts tur; 0.0001 = Moleton (siehe Register 11544); 0.0002 = Test benden 0.0000 = Sicht sur; 0.0001 = Moleton (siehe Register 11544); 0.0002 = Test benden 0.0000 = Sicht sur; 0.00001 = Sicht sicher Modus; 0.00001 = Solatischer Modus; 0.00001 = Slatischer Modus; 0.00001 = Kombinitert Modus;	111 111 111 111 111 111 111 111	9 10 11 12 13 14 15 16	x x x
11536 11538 11540 11544	0x2D1: 0x2D1: 0x2D1:		x x x x		x Batterietest Entrommene Kapazität in Ah x Batterietest Entrommene Energie in Wh Batterietest Zeit am Testende Batterietest Status 2	RW R	floa floa uint(16) uint(16)) 8		x Ah XWh HH-MM-SS-MS Bit 0 : Batterietestmodus aus (Standard) Bit 1 : Test läuft Bit 2 : Test läuft Bit 2 : Test abgeschlossen Bit 3 : Felher aufgetreten Bit 4 : Linitialssiert Bit 5 : Maximale Ah erreicht (rur Meldung) Bit 7 : Maximale Ah erreicht (fur Meldung) Bit 7 : Maximale Ah erreicht (festende) Bit 8 : Maximale Zeit erreicht (Testende) Bit 9 : Ladon Bit 10 : Enfladen Bit 10 : Enfladen	10.5 Ah Wort 0 = Stunden (0-10) Wort 1 = Minuten (0-59) Wort 2 = Sekunden (0-59) Wort 3 = Millisekunden (0-599) Wort 3 = Millisekunden (0-599) O = kein; 1 = aktiv	11	22 23 24 25	x