Claims

- 1. A method for fabricating a steel part having a target bulk composition T of iron (Fe) and N additional basic elements E_1 , E_2 , ... E_N , where $N \geq 1$, each present in a respective mass percentage $M_{1,T}$, $M_{2,T}$, ... $M_{N,T}$, and a melting point depressant agent E_{MPD} , present in a mass percentage $M_{MPD,T}$, comprising the steps of:
 - a. providing a skeleton of interconnected adhered metal particles having a network of interconnected porosities throughout, said particles packed at a packing fraction V_{PF} , said particles having a composition consisting essentially of:
 - i. iron and said N basic elements E_1 , E_2 , ... E_N , each present in a respective mass percentage $M_{1,K}$, $M_{2,K}$, ... $M_{N,K}$; and
 - ii. said Melting Point Depressant agent E_{MPD} , present in a mass percentage $M_{\text{MPD},K}$;
 - b. providing an infiltrant having a composition consisting essentially of:
 - i. iron and said same N elements $E_1,\ E_2,\ ...\ E_N,$ each present in a respective mass percentage $M_{1,\,I},$ $M_{2,\,I},\ ...\ M_{N,\,I};$ and
 - ii. said Melting Point Depressant agent $E_{\text{MPD}},$ present in a mass percentage $M_{\text{MPD},I}$, where $M_{\text{MPD},I}$ > $M_{\text{MPD},K}$;

said infiltrant composition being complementary to said skeleton composition, relative to said bulk target composition T; and

d. infiltrating said skeleton with said infiltrant, at an infiltration temperature $T_{\rm infil}$, said infiltration being driven primarily by capillary pressure, said

infiltration temperature, said infiltrant composition and said skeleton composition being such that:

- i. T_{infil} is below a solidus temperature for said skeleton;
- ii. T_{infil} is above a liquidus temperature for said infiltrant; and
- iii. at said infiltration temperature, T_{infil} , at chemical equilibrium, a body having said target composition T, has at least about 7 vol% liquid, and is less than about 50 vol% liquid.
- 2. The method of claim 1, said Melting Point Depressant agent E_{MPD} , further having relatively high diffusivity in said skeleton.
- 3. The method of claim 1, said Melting Point Depressant agent E_{MPD} , further having relatively high solubility in said skeleton.
- 4. The method of claim 2, said Melting Point Depressant agent E_{MPD} , further having relatively high solubility in said skeleton.
- 5. The method of claim 1, said melting point depressant agent having a maximum solubility $M_{\text{MPD-max}}$ in iron (Fe), said melting point depressant mass percentage in said target composition $M_{\text{MPD,T}}$ being less than about $2*M_{\text{MPD-max}}$.
- 6. The method of claim 2, said melting point depressant agent having a maximum solubility $M_{\text{MPD-max}}$ in iron (Fe), said melting point depressant mass percentage in said target composition $M_{\text{MPD,T}}$ being less than about $2*M_{\text{MPD-max}}$.
- 7. The method of claim 1, said melting point depressant element having a maximum solubility $M_{\text{MPD-max}}$ in iron (Fe), said melting point depressant mass percentage in said target composition $M_{\text{MPD-T}}$ being less than about $M_{\text{MPD-max}}$.

- 8. The method of claim 1, said melting point depressant agent comprising carbon (C).
- 9. The method of claim 1, said melting point depressant agent comprising silicon (Si).
- 10. The method of claim 1, said melting point depressant agent consisting essentially of C and Si.
- 11. The method of claim 1, said melting point depressant agent consisting essentially of elements selected from the group consisting of C and Si.
- 12. The method of claim 1, further comprising the step of subjecting said infiltrated skeleton to conditions such that a portion of said melting point depressant diffuses from said infiltrated porosities into said metal powder, and at least partial diffusional solidification occurs.
- 13. the method of claim 12, further where at least 10% of said infiltrated infiltrant volume solidifies at said infiltration temperature $T_{\rm infil}$.
- 14. The method of claim 1, said step of providing infiltrant comprising providing an infiltrant having a composition that is complementary to said composition of said skeleton with respect to said target bulk composition, in a mode that is between a near tie-line mode and a reverse slope mode.
- 15. The method of claim 1, said step of providing infiltrant comprising providing an infiltrant having a composition that is complementary to said composition of said skeleton with respect to said target bulk composition, in a mode that is between a near tie-line mode and a basic mode.
- 16. The method of claim 15, said step of providing infiltrant comprising providing an infiltrant having a composition that is complementary to said composition of said skeleton with respect to said target bulk composition, in an off tie-line mode.

- 17. The method of claim 1, said melting point depressant agent consisting essentially of carbon.
- 18. The method of claim 17, said target bulk composition comprising a steel selected from the group consisting of: D2, M2, 440C, Austenitic Manganese Grade C, A3, O6, 410 and T8.
- 19. The method of claim 1, said melting point depressant agent consisting essentially of silicon.
- 20. The method of claim 19, said target bulk composition comprising CN-7MS.
- 21. The method of claim 19, said target bulk composition comprising CF-10SMnN.
- 22. The method of claim 16, said target bulk composition comprising a steel selected from the group consisting of: H13, S6 And ACI-HF.
- 23. The method of claim 1, said steel target composition comprising D2.
- 24. The method of claim 1, said steel target composition comprising M2.
- 25. The method of claim 1, said steel target composition comprising 440C.
- 26. The method of claim 1, said steel target composition comprising Austenitic Manganese Grade C.
- 27. The method of claim 1, said steel target composition comprising A3.
- 28. The method of claim 1, said steel target composition comprising O6.
- 29. The method of claim 1, said steel target composition comprising T8.
 - 30. The method of claim 1, further wherein:

- a. said melting point depressant agent is present in said skeleton in a mass percentage $M_{\text{MDP},K}$ between zero and the mass percentage of said melting point depressant agent in an equilibrium solid phase at a temperature where the target composition is 93 vol% solid;
- b. said N basic additional elements are present in said skeleton in respective mass percentages, as follows, for n = 1 to N: $M_{n,K} = M_{n,T} + R_n * (M_{n,S} M_{n,T})$, with $-1 \le R_n \le 1$ for each basic additional element;
- c. said melting point depressant agent is present in said infiltrant in a mass percentage as follows: $M_{MPD,I} = M_{MPD,K} + (M_{MPD,T} M_{MPD,K})/M_{I}$; and
- d. said N basic additional elements are present in said infiltrant in respective mass percentages, as follows, for n = 1 to N: $M_{n,I} = M_{n,T} + R_n * (M_{n,L} M_{n,T})$, with $-1 \le R_n \le 1$ for each basic additional element;

wherein said variables are used as defined in the specification hereof.

- 31. The method of claim 30, further wherein, for both said basic additional elements present in said skeleton and said infiltrant, $0 \le R_n \le 1$ for each basic additional element.
- 32. The method of claim 1, said melting point depressant agent having a diffusivity in said skeleton at $1100\,^{\circ}\text{C}$ of greater than 2 x 10^{-15} cm²/sec.
- 33. The method of claim 1, said melting point depressant agent having a diffusivity in said skeleton at 1100°C of greater than 4×10^{-16} cm²/sec.
- 34. The method of claim 1, said skeleton comprising particles of a nominal diameter L said diffusivity D of said melting point depressant agent being such that a Metric = L^2/D is less than or equal to approximately 1.4 x 10^6 seconds.

- 35. The method of claim 1, further comprising the step of maintaining said skeleton after infiltration at said infiltration temperature for a period of time less than fifteen hours, said melting point depressant having a diffusivity such that substantial homogeneity is achieved.
- 36. The method of claim 1, further comprising the step of maintaining said skeleton after infiltration at said infiltration temperature for a period of time less than 3 hours, said melting point depressant having a diffusivity such that substantial homogeneity is achieved.
- 37. The method of claim 1, further comprising the step of maintaining said skeleton after infiltration at an austenitizing temperature for a period of time less than 3 hours, said melting point depressant having a diffusivity such that substantial homogeneity is achieved.

38. A method for fabricating a steel part having a target bulk composition T as set forth in the row entitled Target range in the immediately following table:

	С	Cr	Mn	Мо	Ni	Si	V	Fe
Target Range	1.4-1.6	11-13	0.6 max	0.7-1.0	0.3 max	0.6 max	1.1 max	balance
Infiltrant - B	3.50	17.20	0.6 max	2.0	0.3 max	0.6 max	2.30	balance
Skeleton - B	0.30	9.76	0.6 max	0.57	0.3 max	0.6 max	0.48	balance
Infiltrant - D	3.79	9.84	0.6 max	0.58	0.3 max	0.6 max	0.46	balance
Skeleton - D	0.13	12.93	0.6 max	1.18	0.3 max	0.6 max	1.22	balance

of iron (Fe) and carbon, present in a mass percentage within a range as specified in a column headed by symbol C, and additional basic elements listed, each present in a respective mass percentage within a range set forth in a column headed by said respective element symbol, said method of fabricating comprising the steps of:

- a. providing a skeleton of interconnected adhered metal particles having a network of interconnected porosities throughout, said particles packed at a packing fraction V_{pp} , said particles having a composition consisting essentially of:
 - i. iron and said additional basic elements each present in a respective mass percentage between those as specified in a column headed by said respective element symbol in: a row entitled Skeleton-B; and a row entitled Skeleton-D; and
 - ii. Carbon, present in a mass percentage between zero and the mass percentage of carbon in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;
- b. providing an infiltrant having a composition consisting essentially of:
 - i. iron and said same additional basic elements
 each present in a respective mass percentage

between approximately as specified in a column headed by said respective element symbol in: a row entitled Infiltrant-B; and a row entitled Infiltrant-D; and

ii. Carbon, present in a mass percentage of at least the mass percentage of carbon in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid;

said infiltrant composition and said skeleton composition further being complementary relative to said target composition T; and

- c. infiltrating said skeleton with said infiltrant, at said infiltration temperature $T_{\rm infil}$, said infiltration being driven primarily by capillary pressure, said infiltration temperature, said infiltrant composition and said skeleton composition further being such that:
 - i. T_{infil} is below a solidus temperature for said skeleton;
 - ii. T_{infil} is above a liquidus temperature for said infiltrant; and
 - iii. at said infiltration temperature, T_{infil} , at chemical equilibrium, a body having said target composition T, has at least about 7% vol liquid, and is less than about 50% vol liquid.
- 39. The method of claim 38, further wherein:
- a. said step of providing a skeleton further comprising providing a skeleton of particles having a composition consisting essentially of:
 - i. iron and said additional basic elements,
 each present in a respective mass percentage
 between approximately as specified in said column

headed by said respective element symbol in: a row entitled Skeleton-A of the immediately following table:

	С	Cr	Mn	Мо	Ni	Si	V	Fe
Infiltrant - A	3.50	12.00	0.6 max	1.00	0.4 max	0.6 max	1.00	balance
Skeleton - A	0.30	12.00	0.6 max	1.00	0.4 max	0.6 max	1.00	balance

and in said row entitled Skeleton-B; and

- ii. Carbon, present in said mass percentage between zero and the mass percentage of carbon in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;
- b. said step of providing an infiltrant further comprising providing an infiltrant having a composition consisting essentially of:
 - i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: said row entitled Infiltrant-A; and said row entitled Infiltrant-B; and
 - ii. Carbon, present in said mass percentage of at least the mass percentage of carbon in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid.

40. A method for fabricating a steel part having a target bulk composition T as set forth in the row entitled Target range in the immediately following table:

	С	Cr	Mn	Мо	Ni	Si	V	Fe
Target Range	0.32-0.45	4.75-5.5	0.2-0.5	1.1-1.75	0.3 max	0.8-1.0	0.8-1.0	bal
Infiltrant - B	0.88	5.73	0.33	1.80	0.3 max	2.00	1.31	bal
Skeleton - B	0.05	4.78	0.33	1.18	0.3 max	0.37	0.81	bal
Infiltrant - D	0.88	4.86	0.33	1.23	0.3 max	2.09	0.85	bal
Skeleton - D	0.05	5.34	0.33	1.54	0.3 max	0.31	1.10	bal

of iron (Fe) and Silicon, present in a mass percentage within a range as specified in a column headed by symbol Si, and Carbon, present in a mass percentage within a range as specified in a column headed by symbol C, and additional basic elements listed, each present in a respective mass percentage within a range set forth in a column headed by said respective element symbol, said method of fabricating comprising the steps of:

- a. providing a skeleton of interconnected adhered metal particles having a network of interconnected porosities throughout, said particles packed at a packing fraction V_{pr} , said particles having a composition consisting essentially of:
 - i. iron and said additional basic elements each present in a respective mass percentage between those as specified in a column headed by said respective element symbol in: a row entitled Skeleton-B; and a row entitled Skeleton-D; and
 - ii. Silicon and Carbon, each present in a mass percentage between zero and the mass percentage of silicon and carbon, respectively, in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;
- b. providing an infiltrant having a composition consisting essentially of:

- i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in a column headed by said respective element symbol in: a row entitled Infiltrant-B; and a row entitled Infiltrant-D; and
- ii. silicon and Carbon, each present in a mass percentage of at least the mass percentage of silicon and carbon, respectively, in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid;

said infiltrant composition and said skeleton composition further being complementary relative to said target composition T; and

- c. infiltrating said skeleton with said infiltrant, at said infiltration temperature $T_{\rm infil}$, said infiltration being driven primarily by capillary pressure, said infiltration temperature, said infiltrant composition and said skeleton composition further being such that:
 - i. $T_{\mbox{\scriptsize infil}}$ is below a solidus temperature for said skeleton;
 - ii. T_{infil} is above a liquidus temperature for said infiltrant; and
 - iii. at said infiltration temperature, $T_{\rm infil}$, at chemical equilibrium, a body having said target composition T, has at least about 7% vol liquid, and is less than about 50% vol liquid.
- 41. The method of claim 40, further wherein:
- a. said step of providing a skeleton further comprising providing a skeleton of particles having a composition consisting essentially of:

i. iron and said additional basic elements, each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: a row entitled Skeleton-A of the immediately following table:

	C	Cr	Mn	Мо	Ni	Si	V	Fe
Infiltrant - A	0.88	5.15	0.33	1.42	0.3 max	2.00	1.00	balance
Skeleton - A	0.05	5.15	0.33	1.42	0.3 max	0.37	1.00	balance

and in said row entitled Skeleton-B; and

- ii. Silicon and Carbon, each present in a mass percentage between zero and the mass percentage of silicon and carbon, respectively, in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;
- b. said step of providing an infiltrant further comprising providing an infiltrant having a composition consisting essentially of:
 - i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: said row entitled Infiltrant-A; and said row entitled Infiltrant-B; and
 - ii. silicon and Carbon, each present in a mass percentage of at least the mass percentage of silicon and carbon, respectively, in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid.
- 42. A method for fabricating a steel part having a target bulk composition T as set forth in the row entitled Target range in the immediately following table:

	С	Cr	Mn	Мо	Ni	Si	Cu	Fe
Target Range	0.07 max	18.0-20.0	1.5 max	2.5-3.0	22.0-25.0	1.5 max	1.5-2.0	bal
Infiltrant - B	0.11	21.51	1.5 max	3.04	17.52	6.84	1.68	bal
Skeleton - B	0.02	17.53	1.5 max	2.58	27.00	0.75	1.79	bal
Infiltrant - D	0.05	17.75	1.5 max	2.61	26.49	6.92	1.79	bal
Skeleton - D	0.05	19.74	1.5 max	2.84	21.75	0.71	1.73	bal

of iron (Fe) and silicon, present in a mass percentage within a range as specified in a column headed by symbol Si, and additional basic elements listed, each present in a respective mass percentage within a range set forth in a column headed by said respective element symbol said method of fabricating comprising the steps of:

- a. providing a skeleton of interconnected adhered metal particles having a network of interconnected porosities throughout, said particles packed at a packing fraction V_{PF} , said particles having a composition consisting essentially of:
 - i. iron and said additional basic elements each present in a respective mass percentage between those as specified in a column headed by said respective element symbol in: a row entitled Skeleton-B; and a row entitled Skeleton-D; and
 - ii. silicon, present in a mass percentage between zero and the mass percentage of silicon in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;
- b. providing an infiltrant having a composition consisting essentially of:
 - i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in a column headed by said respective element symbol in: a row entitled Infiltrant-B; and a row entitled Infiltrant-D; and

ii. silicon, present in a mass percentage of at least the mass percentage of silicon in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid;

said infiltrant composition and said skeleton composition further being complementary relative to said target composition T; and

- c. infiltrating said skeleton with said infiltrant, at said infiltration temperature $T_{\rm infil}$, said infiltration being driven primarily by capillary pressure, said infiltration temperature, said infiltrant composition and said skeleton composition further being such that:
 - i. T_{infil} is below a solidus temperature for said skeleton;
 - ii. T_{infil} is above a liquidus temperature for said infiltrant; and
 - iii. at said infiltration temperature, $T_{\rm infil}$, at chemical equilibrium, a body having said target composition T, has at least about 7% vol liquid, and is less than about 50% vol liquid.
- 43. The method of claim 42, further wherein:
- a. said step of providing a skeleton further comprising providing a skeleton of particles having a composition consisting essentially of:
 - i. iron and said additional basic elements, each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: a row entitled Skeleton-A of the immediately following table:

	С	Cr	Mn	Мо	Ni	Si	Cu	Fe
Infiltrant - A	0.05	19.00	1.5 max	2.75	23.50	6.84	1.75	bal
Skeleton - A	0.05	19.00	1.5 max	2.75	23.50	0.75	1.75	bal

and in said row entitled Skeleton-B; and

- ii. silicon, present in said mass percentage between zero and the mass percentage of silicon in an equilibrium solid phase at a temperature where said target composition T is 93 vol% solid;
- b. said step of providing an infiltrant further comprising providing an infiltrant having a composition consisting essentially of:
 - i. iron and said same additional basic elements each present in a respective mass percentage between approximately as specified in said column headed by said respective element symbol in: said row entitled Infiltrant-A; and said row entitled Infiltrant-B; and
 - ii. silicon, present in said mass percentage of at least the mass percentage of silicon in an equilibrium liquid phase, at a temperature where the target composition is 50 vol% liquid.

- 44. A method for designing a process for fabricating a steel part by infiltrating a skeleton of metal particles, said method comprising the steps of:
 - a. selecting a target bulk composition T of iron (Fe) and N additional basic elements E_1 , E_2 , ... E_N , where $N \ge 1$, each element present in a respective mass percentage $M_{1,T}$, $M_{2,T}$, ... $M_{N,T}$, and a melting point depressant (MPD) agent E_{MPD} , present in a mass percentage $M_{MPD,T}$; [900]
 - b. selecting a particle type, having a representative size, and packing to a packing fraction $V_{PF}=V_K$, with a corresponding void fraction $V_v=100\%-V_K$; [902]
 - c. determining a temperature, T_{PF} , at which a composition T has a solid portion V_{S} equal in volume to V_{K} and a liquid portion V_{L} equal in volume to V_{V} ; [904]
 - d. determining a tie line composition at T_{PF} for said solid portion, comprising mass percentages of each of said elements of said target composition T, said mass percentages designated $M_{1,s}$, $M_{2,s}$, ... $M_{N,s}$ respectively, and said MPD agent $M_{MPD,s}$; [906]
 - e. determining a tie line composition at T_{PF} for said liquid portion, comprising mass percentages of each of said elements of said target composition T, said mass percentages designated $M_{1,L}$, $M_{2,L}$, ... $M_{N,L}$ respectively, and said MPD agent $M_{MPD,L}$; [906]
 - f. determining a mass percentage M_s , of said solid portion and a mass percentage M_L , of said liquid portion, where $M_s + M_L = 100\%$; [906]
 - g. determining a skeleton composition for said basic elements, comprising mass percentages of iron and each of said basic elements of said target composition

- T, said mass percentages designated $M_{1,K}, M_{2,K}, ... M_{N,K}$ respectively; [912]
- h. determining an infiltrant composition for said basic elements, comprising mass percentages of iron and each of said basic elements of said target composition T, said mass percentages designated $M_{1,I}$, $M_{2,I}$, ... $M_{N,I}$ respectively; [912]
 - i. selecting a temperature range T_{SAFE} ; [920]
- j. determining a skeleton solidus temperature, $T_{\text{KS}},$ equal to $T_{\text{PF}} + T_{\text{SAFE}};$ [922]
- k. determining a mass percent of said MPD agent in said skeleton, designated $M_{\mbox{\tiny MPD},K},$ at $T_{\mbox{\tiny KS}};$ [924]
- l. determining a mass percent of said MPD agent in said infiltrant, designated $M_{\text{MPD},I}$, at T_{KS} , such that $M_{\text{MPD},I} = M_{\text{MPD},K} + (M_{\text{MPD},T} M_{\text{MPD},K}) / M_{I}$, whereby said mass percentage of said MPD element in a product formed by infiltrating said skeleton with said infiltrant is equal to said target mass percentage of said MPD element $M_{\text{MPD},T}$; [926]
- m. deciding on an amount of solidification of infiltrant during infiltration, said amount designated ΔV ;
- n. détermining a volume of solid upon any such solidification $V_s{=}V_\kappa{+}\Delta V;$ and
- o. determining a proposed infiltration temperature T_{infil} at which said target composition T has a solid volume fraction V_s ; [932]
- 45. The method of claim 44, further comprising the steps of:
 - a. determining a liquidus temperature T_{IL} , for said infiltrant composition of said basic elements in mass percentages $M_{\text{I,I}}$, $M_{\text{2,I}}$, ... $M_{\text{N,I}}$, and said MPD element in mass percentage $M_{\text{MPD,I}}$; [934]

- b. Comparing said infiltrant liquidus temperature $T_{\text{\tiny IL}}$ to said proposed infiltration temperature $T_{\text{infil}};$ and
 - i. if $T_{\rm IL} <$ $T_{\rm infil}$, then infiltrate said skeleton, with said infiltrant composition at said proposed infiltration temperature $T_{\rm infil}$; and
 - ii. if $T_{IL} \ge T_{infil}$, then reevaluate at least one of the parameters PF, T_{SAFE} , or ΔV and return to said step b of claim 3501, selecting a particle type.

- 46. The method of infiltrating of claim 3044, where said MPD agent is carbon and a second MPD agent, MPD2, and said mass percentage of MPD in said target composition T $M_{\text{MPD},T}$ equals a mass percentage of carbon in said target composition $M_{\text{C},T}$ and a mass percentage of MPD2 in said target composition $M_{\text{MPD2},T}$ further comprising the steps of:
 - a. assigning mass percentage of said second MPD element in said skeleton, designated $M_{MPD2,K}$ which = $P_{MPD2}*M_{MPD2,S}$, with $0<P_{MPD2}<1/3$; [916]
 - b. determining a mass percentage of said second MPD element in said infiltrant composition so that $M_{\text{MPD2,I}} = M_{\text{MPD2,K}} + (M_{\text{MPD2,T}}, -M_{\text{MPD2,K}})/M_{\text{I}}$, whereby a mass percentage of said second MPD element in said skeleton infiltrated with said infiltrant equals said mass percentage of said second MPD in said target. [918]
- 47. The method of claim 46, said MPD element comprising silicon.
- 48. The method of claim 44, said MPD element comprising carbon.

- 49. The method of claim 44, further wherein,
- a. said step of determining a skeleton composition for said basic elements, comprises assigning said mass percentages designated $M_{1,K},\ M_{2,K},\ ...\ M_{N,K}$ equal to the corresponding mass percentages of said basic elements in said target composition, $M_{1,T},\ M_{2,T},\ ...\ M_{N,T}$ respectively; and
- b. said step of determining an infiltrant composition for said basic elements, comprises assigning said mass percentages designated $M_{1,I},\ M_{2,I},\ ...\ M_{N,I}$ as follows:
 - $i. M_{1,I} = M_{1,K};$
 - ii. $M_{2,I}=M_{2,K}$; and
 - iii. $M_{N,I}=M_{N,K}$.

- 50. The method of claim 44, further wherein,
- a. said step of determining a skeleton composition for said basic elements, comprises assigning said mass percentages designated $M_{1,K},\ M_{2,K},\ ...\ M_{N,K}$ equal to the corresponding mass percentages of said basic elements in said tie line solid portion composition, $M_{1,S},\ M_{2,S},\ ...\ M_{N,S}$ respectively; and
- b. said step of determining an infiltrant composition for said basic elements, comprises assigning said mass percentages designated $M_{1,I}$, $M_{2,I}$, ... $M_{N,I}$ as follows:

i.
$$M_{1,I}=M_{1,K}+(M_{1,T}-M_{1,K})/M_L;$$

ii.
$$M_{2,T}=M_{2,K}+(M_{2,T}-M_{2,K})/M_L$$
; and

iii.
$$M_{N,I} = M_{N,K} + (M_{N,T} - M_{N,K}) / M_{L}$$
.

- 51. The method of claim 44, further wherein,
- a. said step of determining a skeleton composition, comprises, for each of said basic elements designating a respective factor $R_1,\ R_2,...\ R_N,$ where each R_n factor $0{\le}R_n{\le}1$, and where at least one R_n factor $0{<}R_n{<}1$, assigning said mass percentages designated $M_{1,K},\ M_{2,K},\ ...$ $M_{N,K}$ as follows;

i.
$$M_{1,K}=M_{1,T}+R_1(M_{1,S}-M_{1,T})$$
;

ii.
$$M_{2,K}=M_{2,T}+R_2(M_{2,S}-M_{2,T})$$
;

iiii.
$$M_{N,K}=M_{N,T}+R_{N}(M_{N,S}-M_{N,T})$$
; and

b. said step of determining an infiltrant composition for said basic elements, comprises assigning said mass percentages designated $M_{1,\text{I}},\ M_{2,\text{I}},\ ...\ M_{N,\text{I}}$ as follows:

i.
$$M_{1,I}=M_{1,K}+(M_{1,T}-M_{1,K})/M_{L}$$
;

ii.
$$M_{2,I}=M_{2,K}+(M_{2,T}-M_{2,K})/M_L$$
; and

iii.
$$M_{N,I} = M_{N,K} + (M_{N,T} - M_{N,K}) / M_{L}$$
.

- 52. The method of claim 44, further wherein,
- a. said step of determining a skeleton composition, comprises, for each of said basic elements designating a respective factor R_1 , R_2 ,... R_N , where each R_n factor $-1 \le R_n \le 0$, and where at least one R_n factor $R_n < 0$, assigning said mass percentages designated $M_{1,K}$, $M_{2,K}$, ... $M_{N,K}$ as follows;

i.
$$M_{1,K}=M_{1,T}+R_1(M_{1,S}-M_{1,T})$$
;

ii.
$$M_{2,K}=M_{2,T}+R_2(M_{2,S}-M_{2,T})$$
;

iiii.
$$M_{N,K}=M_{N,T}+R_N(M_{N,S}-M_{N,T})$$
; and

b. said step of determining an infiltrant composition for said basic elements, comprises assigning said mass percentages designated $M_{1,I},\ M_{2,I},\ ...\ M_{N,I}$ as follows:

i.
$$M_{1,I}=M_{1,K}+(M_{1,T}-M_{1,K})/M_{L}$$
;

ii.
$$M_{2.T} = M_{2.K} + (M_{2.T} - M_{2.K}) / M_L$$
; and

iii.
$$M_{N,I} = M_{N,K} + (M_{N,T} - M_{N,K}) / M_L$$
.

- 53. The method of claim 44, further wherein,
- a. said step of determining a skeleton composition, comprises, for each of said basic elements designating a respective factor R_1 , R_2 ,... R_N , where each R_n factor $-1 \le R_n \le 1$, assigning said mass percentages designated $M_{1,K}$, $M_{2,K}$, ... $M_{N,K}$ as follows;

i.
$$M_{1,K}=M_{1,T}+R_1(M_{1,S}-M_{1,T})$$
;

ii.
$$M_{2,K}=M_{2,T}+R_2(M_{2,S}-M_{2,T})$$
;

iiii.
$$M_{N,K}=M_{N,T}+R_N(M_{N,S}-M_{N,T})$$
; and

b. said step of determining an infiltrant composition for said basic elements, comprises assigning said mass percentages designated $M_{1,I},\ M_{2,I},\ ...\ M_{N,I}$ as follows:

i.
$$M_{1,T}=M_{1,K}+(M_{1,T}-M_{1,K})/M_{L};$$

ii.
$$M_{2,I}=M_{2,K}+(M_{2,T}-M_{2,K})/M_L$$
; and

iii.
$$M_{N,I} = M_{N,K} + (M_{N,T} - M_{N,K}) / M_L$$
.