Développement d'un outil de traitement d'images par filtrage bilatéral Soutenance de PFE

Natacha Marlio-Marette

Polytech Tours

DI5 2014-2015 encadré par Moncef Hidane

11 avril 2015

Plan

- Introduction
- 2 Filtre bilatéral
 - Definition
 - Formulation
 - Implémentation
 - 3 Validation
 - Mise en place
 - Résultat
- Pyramide
 - Décomposition
 - Méthodes
 - Stratégies

- Manipulation
 - Définition
 - Exemples
- 6 Interface
 - Cas d'utilisation
 - Structure
- Accélération
 - Intensité homogène
 - Convolution
 - Processus
 - Benchmark
- 8 Conclusion

Introduction

Objectifs

- Création d'une méthode de manipulation de détails d'une image
- ▶ Réalisation d'une interface graphique
- Étude sur l'accélération du filtre bilatéral

Filtre bilatéral

Definition

Lisse une image en préservant les contours

Filtre bilatéral

Definition

Lisse une image en préservant les contours

Utilisations

- Débruitage
- ▶ Outil de gestion de contraste
- Fusion d'images
- ► Lissage 3D
- ▶ Effet cartoon

Formulation

Filtre gaussien

$$GC[I]_p = \sum_{q \in S} G_{\sigma}(\parallel p - q \parallel) I_q$$

Formulation

Filtre gaussien

$$GC[I]_p = \sum_{q \in S} G_{\sigma}(\parallel p - q \parallel) I_q$$

Filtre bilatéral

► $BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_s}(||p-q||) G_{\sigma_r}(|I_p-I_q|) I_q$

Développement d'un outil de traitement d'images

 $W_p = \sum_{q \in S} G_{\sigma_s}(\parallel p - q \parallel) G_{\sigma_r}(\mid I_p - I_q \mid)$

Formulation

Filtre gaussien

$$\blacktriangleright GC[I]_p = \sum_{q \in S} G_{\sigma}(\parallel p - q \parallel) I_q$$

Filtre bilatéral

- ► $BF[I]_p = \frac{1}{W_p} \sum_{q \in S} G_{\sigma_s}(||p-q||) G_{\sigma_r}(|I_p-I_q|) I_q$
- ► $W_p = \sum_{q \in S} G_{\sigma_s}(||p q||)G_{\sigma_r}(||I_p I_q|)$

Différences

- ▶ Prise en compte de la valeur des pixels
- ► Image moins "floue"

Exemples

(a) Image originale

(b) Filtre gaussien

(c) Filtre bilatéral

Algorithme

```
pour p \in I faire
   // Initialisation
   BF[I]_p = 0
   W_n = 0
   pour q \in S faire
       w = G_{\sigma_s}(||p - q||)G_{\sigma_r}(|I_p - Iq|)
       BF[I]_p + = wI_q
       W_p + = w
   fin
   // Normalisation
   BF[I]_p = BF[I]_p/W_p
fin
```


Luminance

Definition

- ▶ Sensation visuelle de luminosité d'une image
- Grandeur photométrique qui est dépendante de l'œil humain
- Différents espaces colorimétriques (CIE XYZ, xyY ou YCbCr)
- ▶ Y représente la luminance

Luminance

Definition

- Sensation visuelle de luminosité d'une image
- Grandeur photométrique qui est dépendante de l'œil humain
- Différents espaces colorimétriques (CIE XYZ, xyY ou YCbCr)
- ▶ Y représente la luminance

Algorithme

- ► Passage par la luminance
- Application du filtre bilatéral sur la composante Y
- ▶ Retour en RGB

Mise en place

Méthodologie

- ▶ Ajout d'un bruit gaussien
- ► Comparaison avec CImg
 - Différence max entre pixels
 - Différence entre images

Résultat

Comparaison en débruitage (variation de σr, image NdG)

11/05/15

Pourcentage de différence entre les

Validation 000

Résultat

Comparaison en débruitage (variation de σS, image NdG)

Pourcentage de différence entre les

Définitions (1 sur 2)

Définition

- $\triangleright u$: couche de base
- $\triangleright v$: couche de détails

Développement d'un outil de traitement d'images

Définitions (2 sur 2)

Formulation

- \blacktriangleright Décomposition à (k+1) niveaux
- $ightharpoonup u^1, \ldots, u^k$: les versions filtrés de g
- $ightharpoonup u^k = b$: dernière couche de base
- $v^i = u^{i-1} u^i$: couche de détail

Définitions (2 sur 2)

Formulation

- \blacktriangleright Décomposition à (k+1) niveaux
- $ightharpoonup u^1, \ldots, u^k$: les versions filtrés de g
- $ightharpoonup u^0 = g$
- $v^i = u^{i-1} u^i$: couche de détail

Reconstruction

$$g = b + \sum_{i=1}^k v^i$$

Pyramide 000000

Exemple

(d) Image originale

(e) Couche de base

(f) Couche de détails

Développement d'un outil de traitement d'images

Méthodes

Méthode 1

- ► Filtrage toujours sur l'image originale
- ▶ Variation uniquement de σ_s et σ_r

$$\mathbf{v}^{i+1} = BF[g]$$

Méthodes

Méthode 1

- ► Filtrage toujours sur l'image originale
- ▶ Variation uniquement de σ_s et σ_r
- $u^{i+1} = BF[g]$

Méthode 2

- ▶ Filtrage à partir de la dernière image obtenue
- $u^{i+1} = BF[u^i]$

Pyramide

Stratégies

Stratégie 1

▶ Variation de σ_s et σ_r

Stratégies

Stratégie 1

 \blacktriangleright Variation de σ_s et σ_r

Stratégie 2

- ▶ Utilisation de la méthode 2
- \triangleright Variation uniquement de σ_r

Exemple

FIGURE: Décomposition pyramidale (méthode 2 et stratégie 2 - σ_{rougs} divisé par 2), paramètre de départ σ_s =36 et σ_r =100

Définition

Formulation

- ightharpoonup Ajout de paramètres : α et β
- $g = \alpha * b + \sum_{i=1}^{k} \beta * (i+1) * v^{i}$

Définition

Formulation

- ightharpoonup Ajout de paramètres : α et β
- $g = \alpha * b + \sum_{i=1}^{k} \beta * (i+1) * v^{i}$

Niveau de détails

- ightharpoonup Réhaussement : $\alpha < \beta$
- ▶ Atténuation : $\alpha > \beta$

Réhaussement

FIGURE: Réhaussement des détails avec $\alpha = 0.8$ et $\beta = 3$ (Stratégie 2)

Atténuation

(a) Méthode 1 et 2

(b) Image originale

FIGURE: Atténuation des détails avec $\alpha=1$ et $\beta=0.5$

Cas d'utilisation

Structure

- ► C++ / Qt
- ► Modèle MVC (Modèle Vue Contrôleur)
- ► Librairie CImg

Interface

Rappels

Filtre Bilatéral

 non-linéaire : chaque pixel est remplacé par un poids de ses voisins

Développement d'un outil de traitement d'images

- ▶ et non-itératif : le résultat est obtenu en un seul passage
- ▶ $I_p^{bf} = \frac{1}{W_p^{bf}} \sum_{q \in S} G_{\sigma_s}(||p-q||) G_{\sigma_r}(||I_p-I_q|) I_q$
- $W_p^{bf} = \sum_{q \in S} G_{\sigma_s}(\parallel p q \parallel) G_{\sigma_r}(\mid I_p I_q \mid)$

Rappels

Filtre Bilatéral

- non-linéaire : chaque pixel est remplacé par un poids de ses voisins
- ▶ et non-itératif : le résultat est obtenu en un seul passage
- ► $I_p^{bf} = \frac{1}{W_p^{bf}} \sum_{q \in S} G_{\sigma_s}(||p-q||) G_{\sigma_r}(||I_p-I_q|) I_q$
- $\blacktriangleright W_p^{bf} = \sum_{q \in S} G_{\sigma_s}(\parallel p q \parallel) G_{\sigma_r}(\mid I_p I_q \mid)$

Non-linéarité

- ▶ Division par W_p^{bf}
- ▶ Dépendance entre l'intensité des pixels par $G_{\sigma_r}(|I_p I_q|)$

Intensité homogène

Suppression de la division

Convolution (1 sur 2)

Symbole de Kronecker

- $\delta(\zeta) \ (1 \text{ si } \zeta = 0, 0 \text{ sinon})$
- $[\delta(\zeta I_q) = 1] \leftrightarrow [\zeta = I_q]$

$$\binom{W_p^{bf}I_p^{bf}}{W_p^{bf}} = \sum_{q \in S} \sum_{\zeta \in R} G_{\sigma_s}(\parallel p - q \parallel) G_{\sigma_r}(\mid I_p - \zeta \mid) \delta(\zeta - I_q) \binom{W_qI_q}{W_q}$$

Convolution (2 sur 2)

Nouvelles fonctions

- $g_{\sigma_s,\sigma_r}: (x \in S, \zeta \in R) \mapsto G_{\sigma_s}[\parallel x \parallel) G_{\sigma_r}(\mid \zeta \mid)$
- $i: (x \in S, \zeta \in R) \mapsto I_x$
- $w: (x \in S, \zeta \in R) \mapsto \delta(\zeta I_x)W_x$

Convolution (2 sur 2)

Nouvelles fonctions

- $g_{\sigma_s,\sigma_r}: (x \in S, \zeta \in R) \mapsto G_{\sigma_s}[\parallel x \parallel) G_{\sigma_r}(\mid \zeta \mid)$
- $i: (x \in S, \zeta \in R) \mapsto I_x$
- $w: (x \in S, \zeta \in R) \mapsto \delta(\zeta I_x)W_x$

Conclusion

- linéaire : $(w^{bf}i^{bf}, w^{bf}) = g_{\sigma_s, \sigma_r} \otimes (wi, w)$
- ▶ non-linéaire : $I_p^{bf} = \frac{w^{bf}(p,I_p)i^{bf}(p,I_p)}{w^{bf}(p,I_p)}$

Processus (Signal 1D)

- Données de bases
- Représentation par une fonction à deux dimensions (wi, w)
- Convolution gaussienne $(w^{bf}i^{bf}, w^{bf})$
- Division
- Extraction par échantillonnage de la valeur à la position des données de bases

Benchmark

FIGURE: $\sigma_s = 16$ et $\sigma_r = 0.1$

Planning

Gestion de projet

- ▶ Git
- ► Cycle en V
- ▶ Prise de contact régulière

Bilan

Travail fini

- ▶ application avec filtre naïf
- application avec filtre optimisé

<u>Améliorations</u>

- ▶ Objet 3D
- Niveaux de manipulations supplémentaires
- Nouveaux paramètres de base
- ▶ Reconstruction avec des gradients

