APL103 Lab

Experiment 7:Temperature Measurement Devices

- By 1) Swapnil Kashyap (2021AM10782)
 - 2) Aditya Agrawal (2021AM10198)

OBJECTIVES:

To study various temperature measuring instruments and to estimate their response time.

- 1. Mercury-in-glass thermometer
- 2. Electrical resistance thermometer
- 3. Thermocouple
- 4. Vapor-pressure thermometer.
- 5. Mercury-in steel
- 6. Bi-metallic strip

THEORETICAL BACKGROUND:

- **1. Mercury-in-glass thermometer:** This is the most common thermometer used to measure body temperature, room temperature etc.
- **2.** Thermocouple: This relies on the Seebeck effect when two junctions are formed with two dissimilar metals and the junctions are kept at different temperatures, then an e.m.f. is developed between them which is proportional to the difference in temperature. If fine wires are used to form the junctions, then the time constant can be quite small (ms). Here we will assume that the time constant for the thermocouple is effectively zero and estimate the time constants for the other devices.
- 3. Electrical resistance thermometer: Also called a resistance temperature device (RTD). It has a resistance wire (usually a platinum coil) as the sensing element. After calibration, the temperature may be determined by simply measuring the resistance.
- **4. Bi-metallic strip:** Here two metals with different coefficients of thermal expansion are bonded together. When the temperature changes, the composite strip will bend due to the different rates of expansion. Usually, the strip is arranged in the shape of a helix, within the sensing element, so that it twists with changes in temperature. This twist is shown on the readout.
- 5. Mercury-in-Steel thermometer: Here a steel bulb and the connecting tube is filled with Mercury. If the total volume is kept nearly constant, then the pressure of the Mercury will vary with temperature due to its tendency to expand and contract. The

changes in pressure can be measured (e.g., using a Bourdon gauge) and the temperature may be determined.

6. Vapour-pressure thermometer: Here we have a bulb filled with liquid that has a significant variation in vapour pressure in the temperature range to be measured. At each temperature there is a unique pressure at which the liquid and gas are in equilibrium and hence this pressure can be used to measure the temperature.

APPARATUS:

Steel bath with stirrer, heater, stopwatch, and the temperature measuring devices

OBSERVATIONS:

- 1. Least Count of Stopwatch: 1 sec
- 2. Least Count of the instruments:
 - a. Mercury-in-glass thermometer = 1°
 - b. Thermocouple = 0.00001 V
 - c. Electrical resistance thermometer = 0.00001 V
 - d. Bi-metallic strip = 1°
 - e. Mercury-in steel = 1°
 - f. Vapour-pressure thermometer = 1°

Heating Cycle:

Sr No	Time (in s)	Mercury-in- glass(in °C)	RTD (in V)	THC-K (in V)	VPT (in °C)	Mercury-in- steel(in °C)	Bi-Metallic (in °C)
1	0	18	1.08534	-0.01573	58	14	21
2	313.53	23	1.10829	0.00314	60	19	23
3	447.98	28	1.1348	0.02138	62	24	27
4	578.78	33	1.15678	0.04413	65	29	31
5	689.61	38	1.17861	0.06398	68	34	34
6	815.41	43	1.20288	0.08688	71	40	37
7	924.52	48	1.22532	0.10719	74	44	42
8	1057.17	53	1.24379	0.12866	78	50	46
9	1183.16	58	1.26547	0.14902	81	55	50
10	1319.92	63	1.28638	0.16994	85	60	56
11	1465.58	68	1.30561	0.18968	90	65	60

12	1629.95	73	1.32317	0.20979	93	70	66
13	1812.2	78	1.34042	0.22827	97	73	70
14	2037.47	83	1.35767	0.24567	101	78	75
15	2462.43	88	1.3766	0.26277	105	82	80
16	3881.85	93	1.38774	0.27209	108	83	80

Stable Temperature-No Change even after boling for about 3 min

ercury-in-	RTD	THC-K	VPT	Mercury-in-	Bi-Metallic
ass(in °C)	(in V)	(in V)	(in °C)	steel(in °C)	(in °C)
91	1.38774	0.27209	108	83	

Cooling Cycle:

Sr No	Time (in s)	Mercury-in- glass(in °C)	RTD (in V)	THC-K (in V)	VPT (in °C)	Mercury-in- steel(in °C)	Bi-Metallic (in °C)
1	0	91	1.3853	0.26757	106	82	80
2	119.13	88	1.37263	0.25468	103	79	75
3	239.55	83	1.35843	0.23972	100	76	73
4	359.17	80	1.34698	0.22628	98	74	70
5	479.14	77	1.33462	0.21346	95	71	68
6	599.54	74	1.32363	0.20185	93	69	64
7	719.7	71	1.31355	0.19147	91	66	63
8	840.05	69	1.30332	0.18048	89	63	61
9	960	66	1.29462	0.17116	87	61	59
10	1080.14	64	1.28638	0.16246	86	59	57
11	1200.08	62	1.27829	0.15452	85	57	56
12	1319.98	60	1.2705	0.14719	83	56	54

Analysis:

Calibration in MIG Thermometer:

Corrected Temp	Indicated Temp
0	0
100	93

Corrected temperature = a + b (Indicated Temperature)

- 1. At 0°C it shows 0 degree (given)
- 2. At 100°C it shows 93°C

Using the relation stated above we can see that,

0 = a + 0

100 = a + b(93)

a = 0

b = 1.075268817

Hence, after calibration, we get the corrected ambient temperature for all the devices as follows:

		Mercury- in-glass (in °C)	RTD (in V)	THC-K (in V)	VPT (in °C)	Mercury- in-steel (in °C)	Bi- Metallic (in °C)
AT	Indicated	18	1.08534	-0.01573	58	14	21
AT	Corrected	19.35484	19.35449	19.35484	19.35487	19.35483	19.35484
ВТ	Indicated	93	1.38774	0.27209	108	83	80
ВТ	Corrected	100	99.99964	99.99999	100	99.99996	99.99999
	а				-74		
		0	-270.088	23.76228	-74.1935	2.992052	1.366867
	b	1.075269	266.6837	280.193	1.612903	1.16877	-9.34937

Heating Cycle Readings After correction:

		Mercury- In-glass		тнс-к		Mercury- In-steel	Bi- Metallic
Sr No	Time(in s)	(in °C)	RTD(in V)	(in V)	VPT(in °C)	(in °C)	(in °C)
1	0	19.35484	19.35449	19.35484	19.35487	19.35483	19.35484
2	153.53	24.73119	25.47488	24.64209	22.58068	25.19868	22.08857
3	287.98	30.10753	32.54466	29.75281	25.80649	31.04253	27.55604
4	418.78	35.48388	38.40637	36.1272	30.6452	36.88638	33.02351
5	529.61	40.86022	44.22808	41.68903	35.4839	42.73023	37.12411
6	655.41	46.23657	50.70049	48.10545	40.32261	49.74285	41.22471
7	764.52	51.61291	56.68487	53.79617	45.16132	54.41793	48.05904
8	897.17	56.98926	61.61052	59.81191	51.61293	61.43055	53.52651
9	1023.16	62.3656	67.39222	65.51664	56.45164	67.2744	58.99398
10	1159.92	67.74195	72.96858	71.37828	62.90326	73.11825	67.19518
11	1305.58	73.11829	78.09691	76.90929	70.96777	78.9621	72.66265
12	1469.95	78.49464	82.77987	82.54397	75.80648	84.80595	80.86385
13	1652.2	83.87098	87.38017	87.72194	82.25809	88.31226	86.33132
14	1877.47	89.24733	91.98046	92.59729	88.7097	94.15611	93.16566
15	2302.43	94.62367	97.02878	97.38859	95.16132	98.83119	99.99999
16	3721.85	100	99.99964	99.99999	100	99.99996	99.99999

Cooling Cycle Readings After correction:

Sr No	Time(in s)	Mercury-in- glass(in °C)	RTD(in V)	THC-K(in V)	VPT(in °C)	Mercury-in- steel(in °C)	Bi-Metallic(i n °C)
1	0	97.8494623	99.3489296	98.6940410	96.774218	98.831192	99.99999
2	119.13	94.6236559	95.9700471	95.0823532	91.935509	95.324882	93.16566
3	239.55	89.2473118	92.1831385	90.8906659	87.0968	91.818572	90.43192

4	359.17	86.0215053	89.1296102	87.1248720	83.870994	89.481032	86.33132
5	479.14	82.7956989	85.8333996	83.5327977	79.032285	85.974722	83.59759
6	599.54	79.5698924	82.9025458	80.2797570	75.806479	83.637182	78.13012
7	719.7	76.3440860	80.2143741	77.3713537	72.580673	80.130872	76.76325
8	840.05	74.1935483	77.4861998	74.2920326	69.354867	76.624562	74.02952
9	960	70.9677419	75.1660516	71.6806338	66.129061	74.287022	71.29578
10	1080.14	68.8172043	72.9685780	69.2429547	64.516158	71.949482	68.56205
11	1200.08	66.666666	70.8111068	67.0182223	62.903255	69.611942	67.19518
12	1319.98	64.5161293	68.7336408	64.9644076	59.677449	68.443172	64.46145

For each of the devices, the slope of the linear part of the curve from the graph for increasing temperatures is the time constant of that particular temperature device.

Time (in s)	Mercury-in -glass (in °C)	RTD (in V)	THC-K (in V)	VPT (in °C)	Mercury-in -steel (in °C)	Bi-Metallic (in °C)
2302.43	94.62367	97.02878	97.38859	95.16132	98.83119	99.99999
3721.85	100	99.99964	99.99999	100	99.99996	99.99999
Slope	0.003787694	0.002093009	0.001839765	0.003408913	0.000823413	0

Graphs for Heating Cycle:

Graphs for cooling cycle:

DISCUSSION:

- 1. Compare all the devices based on the following: ruggedness, ease of use, linearity, accuracy, and time of response.
 - a. Ruggedness: MiS > THC-K > RTD > VPT > Bi-M > MiG
 - b. Ease of Use: THC-K > RTD = Bi-M = MiS > VPT > MiG
 - c. Linearity: THC-K > RTD > VPT > MiG > MiS > Bi-M
 - d. Accuracy: RTD > THC-K
 - e. Time of Response: RTD > THC-K > VPT

2. Suggest ways to improve the experiment.

- At higher temperatures, it becomes very difficult to take readings through a naked eye, as the glass starts to become hazy due to the boiling vapours. Maybe a digital thermometer would have been a better option, in which direct readings can be observed.
- 2) There are rapid fluctuations in the readings of THC-K and RTD, especially at higher temperatures. Maybe, if a temporary memory is allocated to it, so that it can store the value when we press a button or some other mechanism. This way, extracting readings from the device becomes much easier.
- 3) While performing experiment, we found it pretty difficult to place the stirrer in the middle of the beaker's base, because of which uniformity in the temperature of the entire water in the beaker cannot be ensured.
- 4) The water in the beaker was quite dirty, which must be accounting for higher boiling points than usual. So, a beaker with clean water should be used for the experiment.
- 5) Lastly, there were 6 devices working simultaneously, and even if there were 5 people to take the readings, one person or the other was not in a perfect position to take the readings, which must be resulting in parallax error.