10. Equilibrios de solubilidad

ACTIVIDADES (pág. 259)

Datos:

$$M_{r} = 106 \text{ u}$$

 $S = 9.0 \text{ g} \cdot L^{-1}$

Expresamos la solubilidad en mol·L-1:

$$S = 9.0 \cdot \frac{g}{L} \cdot \frac{1 \text{ mol}}{106 \text{ g}} = 8.49 \cdot 10^{-2} \text{ mol} \cdot L^{-1}$$

La solubilidad es de 8,49 · 10⁻² mol·L⁻¹.

$$BaSO_4 (aq) \rightarrow Ba^{2+} (aq) + SO_4^{2-} (aq)$$

 $AgCl(aq) \rightarrow Ag^{+}(aq) + Cl^{-}(aq)$

$$Na_{9}C_{8}O_{4}$$
 (aq) $\rightarrow 2 Na^{+}$ (aq) + CrO_{4}^{2-} (aq)

 $CH_{\alpha}COOH$ (aq) $\rightleftharpoons CH_{\alpha}COO^{-}$ (aq) + H^{+} (aq)

1. SOLUBILIDAD DE LOS COMPUESTOS IÓNICOS (pág. 262)

1. Puesto que tenemos dos iones de carga grande (Al³+ y O²⁻) y de tamaño relativamente pequeño, la energía reticular del óxido de aluminio será elevada en valor absoluto, y negativa. Esto significa que el calor de disolución será grande:

$$\Delta H_{disolución} = \Delta H_{solvatación} - U$$

Y también lo será la variación de entalpía libre del proceso de disolución:

$$\Delta G = \Delta H = T\Delta S$$

Si ΔG es positivo, el proceso de disolución no será espontáneo.

- 2. La energía estándar del NaI será menor en valor absoluto que la del LiF debido a que el tamaño de los iones es mayor, y las cargas son las mismas. ΔH_{disolución} será, por lo tanto, menor, y ΔG también será menor. Puesto que ΔG es menor para el NaI, este compuesto será más soluble.
- 3. El hecho de que la solubilidad disminuye con la temperatura significa que el proceso de disolución es exotérmico:

$$\Delta H_{\rm disolución} < 0$$

 $\Delta H_{disolución} = \Delta H_{solvatación} - U$ Como

Esto significa que $\mid \Delta H_{\text{solvatación}} \mid > \mid U \mid$, ya que tanto $\Delta H_{\text{solvatación}}$ como U son valores negativos.

4. Datos: $S[(NH_4)_2Cr_2O_7] = \frac{30.8 \text{ g}}{100 \text{ mLH}_2O}$

$$V = 1 L H_2O$$
 $m [(NH_4)_2Cr_2O_7] = 250.0 g$

Calculamos la masa de (NH₄)₂Cr₂O₇ que puede disolverse en un litro de agua:

$$\begin{split} m_{(NH_4)_2Gr_2O_7} &= \frac{1\,000\,mL}{1\,L} \cdot \frac{30.8\,\,g_{(NH_4)_2Gr_2O_7}}{100\,mL\,H_2O} = \\ &= 308.0\,\,g \cdot L^{-1} \end{split}$$

Como la cantidad que hemos añadido (250 g) es menor que la solubilidad (308,0 g) a esa temperatura, sí se disolverá v obtendremos una disolución insaturada.

5. Datos: m (KCl) = 80.0 g

Sin disolver: 9,0 g KCl

$$V (H_{0}O) = 1.0 L$$

$$d (H_0O) = 1 g \cdot mL^{-1}$$

Calculamos la masa de KCl que se disuelve:

$$m (KCl) = 80.0 g KCl - 9.0 g KCl = 71.0 g KCl$$

Calculamos la masa de agua:

$$\begin{split} m \; (H_2O) = & \; 1 \, L \, H_2O \cdot \frac{1 \, 000 \, mL \, H_2O}{1 \, L \, H_2O} \cdot \frac{1 \, g \, H_2O}{1 \, mL \, H_2O} = \\ = & \; 1 \, 000 \, g \; H_2O \end{split}$$

Calculamos la solubilidad:

S (KCl) =
$$100 \text{ g H}_2\text{O} \cdot \frac{71,0 \text{ g KCl}}{1000 \text{ g H}_2\text{O}} = 7,10 \text{ g KCl}$$

En 100 g de agua se disuelven 7,10 g de KCl.

2. REGLAS DE SOLUBILIDAD (pág. 263)

6. *a*) KI

Soluble. Los compuestos de los metales alcalinos son solubles.

b) CaCO₃

Insoluble. Los carbonatos, excepto los de NH₄, de Mg²⁺ y de los metales alcalinos, son insolubles.

c) NH₄Cl

Soluble. Los compuestos de amonio son solubles.

d) Ba₃(PO₄)₉

Insoluble. Los fosfatos, excepto los de NH₄, de Mg²⁺ y de los metales alcalinos, son insolubles.

e) NaNO₃

Soluble. Los compuestos de los metales alcalinos son solubles.

f) Ag₉S

Insoluble. Los sulfuros, excepto los de los grupos 1 y 2, y los de amonio, son

insolubles.

3. PRODUCTO DE SOLUBILIDAD K_s (págs. 268 y 269)

7. Datos:
$$K_s (BaF_2) = 1.7 \cdot 10^{-6} K_s (CaF_2) = 4.0 \cdot 10^{-11}$$

 $K_s (PbF_2) = 4.1 \cdot 10^{-8}$

Se trata de compuestos de fórmula general AB_2 . Según el equilibrio de solubilidad:

$$AB_{9}(s) \rightleftharpoons A^{2+}(aq) + 2 B^{-}(aq)$$

La relación entre K_s y la solubilidad será:

$$K_s = S \cdot (2 S)^2 = 4 S^3$$

Por tanto, cuanto mayor sea K_s , mayor será la solubilidad: $S(CaF_2) < S(PbF_2) < S(BaF_2)$

8. •
$$MgCO_3$$
 (s) $\rightleftharpoons Mg^{2+}$ (aq) + CO_3^{2-} (aq)
$$K_S = \left\lceil Mg^{2+} \right\rceil \left\lceil CO_3^{2-} \right\rceil = 4.0 \cdot 10^{-5}$$

•
$$PbI_2$$
 (s) $\rightleftharpoons Pb^{2+}$ (aq) + 2 I^- (aq)
$$K_S = \left[Pb^{2+}\right] \left[I^-\right]^2 = 1.4 \cdot 10^{-8}$$

•
$$Ag_2CO_3(s) \rightleftharpoons 2Ag^+(aq) + CO_3^{2-}(aq)$$

$$K_S = \left[Ag^+\right]^2 \left[CO_3^{2^-}\right] = 8.1 \cdot 10^{-12}$$

•
$$Al(OH)_3(s) \rightleftharpoons Al^{3+}(aq) + 3OH^{-}(aq)$$

$$K_S = [Al^{3+}][OH^-]^3 = 1.8 \cdot 10^{-33}$$

•
$$Ca_3(PO_4)_2(s) \rightleftharpoons 3 Ca^{2+}(aq) + 2 PO_4^{3-}(aq)$$

$$K_{_{S}}=\left[\operatorname{Ca}^{2+}\right]^{3}\left[\operatorname{PO}_{4}^{3-}\right]^{2}=1{,}2\cdot10^{-26}$$

$$\bullet \quad Hg_2Cl_2\ (s) \rightleftarrows Hg_2^{2+}\ (aq) + 2\ Cl^-\ (aq)$$

$$K_S = \left[Hg_2^{2+}\right] \left[Cl^{-}\right]^2 = 3.5 \cdot 10^{-18}$$

9. Datos: Q (SrSO₄) =
$$2.1 \cdot 10^{-6}$$

$$K_s (SrSO_4) = 3.8 \cdot 10^{-7}$$

Equilibrio de solubilidad:

$$SrSO_4$$
 (s) $\rightleftharpoons Sr^{2+}$ (aq) + SO_4^{2-} (aq)

Como $Q > K_s$, esto implica que la concentración de iones es mayor a la máxima posible. Por tanto, precipitará el exceso de $SrSO_4$ hasta que: $Q = K_s$.

10. *Datos*: Q (PbCl₂) =
$$3.9 \cdot 10^{-3}$$

$$K_s (PbCl_9) = 2.4 \cdot 10^{-4}$$

Como $Q > K_s$, esto implica que la concentración de iones es mayor que la máxima posible. Por tanto, precipitará el exceso de PbCl₉, hasta que $Q = K_s$.

11. Datos:
$$S(BaSO_4) = \frac{0,0025 \text{ g BaSO}_4}{11}$$

Calculamos la solubilidad expresada en mol·L⁻¹:

$$\begin{aligned} \mathbf{M_{r}} \; (\mathrm{BaSO_4}) &= 137,3 \; \mathbf{u} + 32,07 \; \mathbf{u} + 4 \cdot 16,00 \; \mathbf{u} = \\ &= 233,37 \; \mathbf{u} \end{aligned}$$

$$\begin{split} S \left(BaSO_{4} \right) &= \frac{0{,}0025 \text{ g BaSO}_{4}}{1 \text{ L}} \cdot \frac{1 \text{ mol BaSO}_{4}}{233{,}37 \text{ g BaSO}_{4}} = \\ &= 1{,}07 \cdot 10^{-5} \text{ mol} \cdot \text{L}^{-1} \end{split}$$

Planteamos el equilibrio de solubilidad y determinamos la expresión de K_s :

BaSO₄ (s)
$$\rightleftharpoons$$
 Ba²⁺ (aq) + SO₄²⁻ (aq)

$$K_S = \left[Ba^{2+}\right] \cdot \left[SO_4^{2-}\right] = S^2$$

Sustituimos en esta expresión el dato de la solubilidad y determinamos el valor de K_s :

$$K_s = (1.07 \cdot 10^{-5})^2 = 1.14 \cdot 10^{-10}$$

El producto de solubilidad es $1,14 \cdot 10^{-10}$.

12. Datos:
$$S(Ag_9SO_4) = 1.5 \cdot 10^{-2} \text{ mol} \cdot L^{-1}$$

Equilibrio de solubilidad:

$$Ag_2SO_4$$
 (s) $\rightleftharpoons 2 Ag^+$ (aq) + SO_4^{2-} (aq)

El producto de solubilidad será:

$$K_S = [Ag^+]^2 [SO_4^{2-}] = (2 S)^2 \cdot S = 4 S^3$$

Sustituimos en esta expresión el dato de la solubilidad y determinamos el valor de K_s :

$$K_{S} = 4 \ S^{3} = 4 \cdot (1.5 \cdot 10^{-2})^{3} = 1.35 \cdot 10^{-5}$$

Hallamos la concentración molar de cada ion:

$$\left[Ag^{+}\right] = 2 S = 2 \cdot 1,5 \cdot 10^{-2} = 3,0 \cdot 10^{-2} \,\text{mol} \cdot L^{-1}$$

$$[SO_4^{2-}] = S = 1.5 \cdot 10^{-2} \text{ mol} \cdot L^{-1}$$

El producto de solubilidad vale $1,35 \cdot 10^{-5}$, y las concentraciones molares de los iones Ag^+ y SO_4^{2-} son, respectivamente, $3,0 \cdot 10^{-2}$ mol·L⁻¹ y $1,5 \cdot 10^{-2}$ mol·L⁻¹.

13. *Datos*:
$$S[Cd_3(PO_4)_2] = 1,2 \cdot 10^{-7} \text{mol} \cdot L^{-1}$$

V (disolución) = 1.3 L

Calculamos la masa de $\mathrm{Cd_3(PO_4)_2}$ contenida en 1,3 L de disolución:

$$M_r \left[Cd_3(PO_4)_2 \right] = 3 \cdot 112,4 \text{ u} + 2 \cdot 30,97 \text{ u} + 8 \cdot 16,00 \text{ u} = 527,14 \text{ u}$$

$$m_{Cd_3(PO_4)_2} = 1.3 L \operatorname{disol} \cdot \frac{1.2 \cdot 10^{-7} \operatorname{mol} Cd_3(PO_4)_2}{1 L \operatorname{disol}}$$

$$\cdot \frac{527,14\,\mathrm{g}\;\mathrm{Cd}_{3}(\mathrm{PO}_{4}\,)_{2}}{1\,\mathrm{mol}\;\mathrm{Cd}_{3}(\mathrm{PO}_{4}\,)_{2}} = 8,22\cdot10^{-5}\,\mathrm{g}\;\mathrm{Cd}_{3}(\mathrm{PO}_{4}\,)_{2}$$

Equilibrio de solubilidad:

$$Cd_3(PO_4)_2(s) \rightleftharpoons 3 Cd^{2+}(aq) + 2 PO_4^{3-}(aq)$$

El producto de solubilidad será:

$$K_s = [PO_4^{3-}]^3 [Cd^{2+}]^3 = (2 S)^2 \cdot (3 S)^3 = 108 S^5$$

Sustituimos en esta expresión el dato de la solubilidad y determinamos el valor de K_s :

$$K_{c} = 108 \text{ S}^{5} = 108 \cdot (1.2 \cdot 10^{-7})^{5} = 2.69 \cdot 10^{-33}$$

En la disolución hay $8,22 \cdot 10^{-5}$ g de $Cd_3(PO_4)_2$ y el producto de solubilidad es $2,69 \cdot 10^{-33}$.

14. Datos:
$$\left[Ag^{+} \right] = 1,5 \cdot 10^{-4} \text{ mol} \cdot L^{-1}$$

Equilibrio de solubilidad:

$$Ag_2CrO_4$$
 (s) $\rightleftharpoons 2 Ag^+$ (aq) + CrO_4^{2-} (aq)

La expresión del producto de solubilidad es:

$$K_s = \left[Ag^+\right]^2 \left[CrO_4^{2-}\right] = (2 S)^2 \cdot S = 4 S^3$$

Como conocemos la concentración de Ag⁺, podemos determinar la solubilidad S del Ag₂CrO₄, ya que, según la estequiometría de la reacción:

$$\left[Ag^{+}\right] = 2S \implies S = \frac{\left[Ag^{+}\right]}{2}$$

$$S = \frac{1.5 \cdot 10^{-4} \text{ mol} \cdot \text{L}^{-1}}{9} = 7.50 \cdot 10^{-5} \text{ mol} \cdot \text{L}^{-1}$$

A partir de este dato, calculamos el producto de solubilidad:

$$K_s = 4 \cdot (7,50 \cdot 10^{-5})^3 = 1,69 \cdot 10^{-12}$$

El producto de solubilidad es $1,69 \cdot 10^{-12}$.

15. *Datos:*
$$K_s (CaF_2) = 4.0 \cdot 10^{-11}$$

Equilibrio de solubilidad:

$$CaF_2$$
 (s) $\rightleftharpoons Ca^{2+}$ (aq) + 2 F⁻ (aq)

$$K_S = \left[Ca^{2+}\right] \left[F^{-}\right]^2$$

Si llamamos S a la solubilidad molar del CaF $_2$, según la estequiometría de la reacción obtenemos:

$$\left[Ca^{2+}\right] = S$$
 $\left[F^{-}\right] = 2 S$

Por tanto, la expresión del producto de solubilidad será:

$$K_S = S \cdot (2S)^2 = 4S^3$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$K_S = 4 S^3 \implies S = \sqrt[3]{\frac{K_S}{4}}$$

$$S = \sqrt[3]{\frac{4,0 \cdot 10^{-11}}{4}} = 2,15 \cdot 10^{-4} \text{mol} \cdot \text{L}^{-1}$$

La solubilidad molar del CaF2 es 2,15 · 10⁻⁴ mol·L⁻¹.

16. Datos: K_s (AgCl) = 1,6 · 10⁻¹⁰

Equilibrio de solubilidad:

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

$$K_{S} = \left[Ag^{+}\right]\left[Cl^{-}\right]$$

Si llamamos S a la solubilidad molar de AgCl, según la estequiometría de la reacción tenemos:

$$\left[Ag^{+} \right] = S$$
 $\left[Cl^{-} \right] = S$

Por tanto, la expresión del producto de solubilidad será:

$$K_s = S \cdot S = S^2$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$K_S = S^2 \implies S = \sqrt{K_S} = \sqrt{1.6 \cdot 10^{-10}} = 1.26 \cdot 10^{-5}$$

Con S, calculamos la concentración de los iones:

$$Ag^{+}$$
 = $S = 1,26 \cdot 10^{-5} \text{ mol} \cdot L^{-1}$

$$[Cl^{-}] = S = 1,26 \cdot 10^{-5} \text{ mol} \cdot L^{-1}$$

Para expresar la solubilidad en gramos por litro, hay que determinar la masa molar del AgCl:

$$M_r$$
 (AgCl) = 107,9 u + 35,45 u = 143,35 u

$$S = 1.26 \cdot 10^{-5} \cdot \frac{\text{mol}}{\text{L}} \cdot \frac{143.35 \text{ g}}{1 \text{ mol}} = 1.81 \cdot 10^{-3} \frac{\text{g}}{\text{L}}$$

La solubilidad molar del AgCl es $1,26 \cdot 10^{-5}$ mol·L⁻¹, las concentraciones de ambos iones son $1,26 \cdot 10^{-5}$ M y la solubilidad es $1,81 \cdot 10^{-3}$ g·L⁻¹.

17. Datos:
$$\left[Pb^{2+} \right] = 1,6 \cdot 10^{-2} \text{ mol} \cdot L^{-1}$$

Equilibrio de solubilidad:

$$PbCl_{9}(s) \rightleftharpoons Pb^{2+}(aq) + 2 Cl^{-}(aq)$$

Como conocemos la concentración de Pb²⁺, podemos determinar la solubilidad S del PbCl₂ y, a partir de ella, la concentración de Cl⁻, ya que, según la estequiometría de la reacción:

$$[Pb^{2+}] = S = 1.6 \cdot 10^{-2} \frac{\text{mol}}{\text{L}}$$

$$\left[\text{Cl}^{-}\right] = 2 \text{ S} = 2 \cdot 1,6 \cdot 10^{-2} \frac{\text{mol}}{\text{L}} = 3,20 \cdot 10^{-2} \frac{\text{mol}}{\text{L}}$$

Con los datos anteriores, calculamos el producto de solubilidad:

$$K_s = \left[Pb^{2+}\right]\left[Cl^{-}\right]^2$$

$$K_S = 1.6 \cdot 10^{-2} \cdot (3.20 \cdot 10^{-2})^2 = 1.64 \cdot 10^{-5}$$

La concentración de Cl $^-$ es $3,20 \cdot 10^{-2} \, mol \cdot L^{-1}$ y el producto de solubilidad es $1,64 \cdot 10^{-5} \, mol^3 \cdot L^{-3}$.

4. REACCIONES DE PRECIPITACIÓN (pág. 271)

18. Ecuación no ionizada:

$$Ba(NO_3)_2 (aq) + K_2CO_3 (aq) \rightleftharpoons$$

$$\rightleftharpoons$$
 BaCO₃ (s) + 2 KNO₃ (aq)

Ecuación iónica:

Ba²⁺ (aq) + 2 NO₃⁻ (aq) + 2 K⁺ (aq) + CO₃²⁻ (aq)
$$\rightleftharpoons$$

 \rightleftharpoons BaCO₃ (s) + 2 K⁺ (aq) + 2 NO₃⁻ (aq)

Ecuación iónica neta:

$$Ba^{2+}$$
 (aq) + CO_3^{2-} (aq) $\rightleftharpoons BaCO_3$ (s)

 El compuesto insoluble será el fosfato de calcio, Ca₃(PO₄)₉.

Ecuación no ionizada:

$$2 \text{ K}_{3}\text{PO}_{4} \text{ (aq)} + 3 \text{ Ca(NO}_{3})_{2} \text{ (aq)} \rightarrow \\ \rightarrow \text{Ca}_{3}(\text{PO}_{4})_{2} \text{ (s)} + 6 \text{ KNO}_{3} \text{ (aq)}$$

Ecuación iónica:

$$\begin{array}{l} 6~K^{\scriptscriptstyle +}(aq) + 2~PO_4^{3\scriptscriptstyle -}(aq) + 3~Ca^{2\scriptscriptstyle +}(aq) + 6~NO_3^{\scriptscriptstyle -}(aq) \rightarrow \\ \qquad \rightarrow Ca_3(PO_4)_2~(s) + 6~K^{\scriptscriptstyle +}~(aq) + 6~NO_3^{\scriptscriptstyle -}~(aq) \end{array}$$

Ecuación iónica neta:

$$2 PO_4^{3-} (aq) + 3 Ca^{2+} (aq) \rightarrow Ca_3(PO_4)_2 (s)$$

20. Datos:
$$V_{Ba(NO_3)_2} = 20.0 \,\text{mL}$$
 $M_{Ba(NO_3)_2} = 0.1 \,\frac{\text{mol}}{L}$
$$V_{Na_2CO_3} = 50.0 \,\text{mL}$$
 $M_{Na_2CO_3} = 0.1 \,\frac{\text{mol}}{L}$
$$K_s \, (BaCO_s) = 8.1 \cdot 10^{-19}$$

Ecuación no ionizada:

$$\begin{aligned} \text{Ba}(\text{NO}_3)_2 \text{ (aq)} + \text{Na}_2\text{CO}_3 \text{ (aq)} &\rightleftarrows \\ &\rightleftarrows \text{BaCO}_3 \text{ (s)} + 2 \text{ NaNO}_3 \text{ (aq)} \end{aligned}$$

Ecuación iónica neta:

$$Ba^{2+}$$
 (aq) + CO_3^{2-} (aq) $\rightleftharpoons BaCO_3$ (s)

Calculamos el número de moles de Ba²⁺ y su concentración, una vez mezcladas las disoluciones y considerando volúmenes aditivos:

$$n_{Ba^{2+}} = 20.0 \text{ mL} \cdot \frac{1 \text{ L}}{1000 \text{ mL}} \cdot \frac{0.10 \text{ mol}}{1 \text{ L}} = 2.00 \cdot 10^{-3} \text{ mol}$$

$$\left[Ba^{2+}\right]_0 = \frac{2,00 \cdot 10^{-3} \text{ mol}}{70,0 \text{ mL}} \cdot \frac{1000 \text{ mL}}{1 \text{ L}} = 2,86 \cdot 10^{-2} \frac{\text{mol}}{\text{L}}$$

Calculamos el número de moles de CO_2^2 y su concentración, una vez mezcladas las disoluciones y considerando volúmenes aditivos:

$$n_{CO_3^{2-}} = 50.0 \text{ mL} \cdot \frac{1 \text{ L}}{1000 \text{ mL}} \cdot \frac{0.10 \text{ mol}}{1 \text{ L}} = 5.00 \cdot 10^{-3} \text{ mol}$$

$$\left[CO_3^{2-}\right]_0 = \frac{5,00 \cdot 10^{-3} \text{ mol}}{70.0 \text{ mL}} \cdot \frac{1000 \text{ mL}}{1 \text{ L}} = 7,14 \cdot 10^{-2} \frac{\text{mol}}{\text{L}}$$

Calculamos el producto iónico y lo comparamos con el producto de solubilidad:

Q =
$$\left[Ba^{2+}\right]_0 \left[CO_3^{2-}\right]_0 = \left(2.86 \cdot 10^{-2}\right) \cdot \left(7.14 \cdot 10^{-2}\right) =$$

= $2.04 \cdot 10^{-3}$

Como $Q > K_s$, la disolución está sobresaturada y precipitará $BaCO_s$ hasta que $Q = K_s$.

21. Datos:
$$V_{HCl} = 1.0 L$$
 $M_{HCl} = 1 \cdot 10^{-4} \frac{\text{mol}}{L}$ $m_{AgNO_3} = 1.0 \cdot 10^{-3} \text{g}$ $K_s \text{ (AgCl)} = 1.6 \cdot 10^{-10}$

Ecuación no ionizada:

$$HCl(aq) + AgNO_3(aq) \Rightarrow AgCl(s) + HNO_3(aq)$$

Ecuación iónica neta:

$$Cl^{-}(aq) + Ag^{+}(aq) \rightleftharpoons AgCl(s)$$

Calculamos el número de moles de Ag⁺ y su concentración, suponiendo que no varía el volumen de la disolución:

$$M_r$$
 (AgNO₃) = 107,9 u + 14,01 u + 3 · 16,00 u =
= 169,91 u

$$n_{Ag^+}^{} = 1.0 \cdot 10^{-3} \text{ g AgNO}_3 \cdot \frac{1 \text{ mol AgNO}_3}{169.91 \text{ g AgNO}_3} \cdot \frac{1 \text{ mol AgNO}_3}{169$$

$$\frac{1 \,\text{mol Ag}^+}{1 \,\text{mol AgNO}_3} = 5,89 \cdot 10^{-6} \,\text{mol}$$

$$\left[Ag^{+}\right]_{0} = \frac{5,89 \cdot 10^{-6} \text{ mol}}{10 \text{ L}} = 5,89 \cdot 10^{-6} \frac{\text{mol}}{\text{L}}$$

Como se trata de una disolución diluida, la concentración de Cl⁻ será igual a la de HCl. Por tanto:

$$[Cl^{-}]_{0} = [HCl] = 1,0 \cdot 10^{-4} \text{ mol} \cdot L^{-1}$$

Calculamos el producto iónico y lo comparamos con el producto de solubilidad:

$$Q = \left[Ag^{+}\right]_{0} \left[CI^{-}\right]_{0} = \left(5.89 \cdot 10^{-6}\right) \cdot \left(1.0 \cdot 10^{-4}\right) = 5.89 \cdot 10^{-10}$$

Como $Q > K_s$, precipitará AgCl hasta que $Q = K_s$.

22. Datos:
$$V_{MgSO_4} = 1,0 \text{ mL}$$
 $M_{MgSO_4} = 0,001 \frac{\text{mol}}{\text{L}}$

$$V_{AgNO_3} = 100 \,\text{mL}$$
 $M_{MgSO_4} = 5.0 \cdot 10^{-4} \, \frac{\text{mol}}{\text{L}}$

$$K_S(Ag_2SO_4) = 1.4 \cdot 10^{-5}$$

Ecuación no ionizada:

$$\begin{split} \text{MgSO}_4 \text{ (aq)} + 2 \text{ AgNO}_3 \text{ (aq)} &\rightleftarrows \\ &\rightleftarrows \text{Ag}_2 \text{SO}_4 \text{ (s)} + \text{Mg}(\text{NO}_3)_2 \text{ (aq)} \end{split}$$

Ecuación iónica neta:

$$2 \operatorname{Ag}^{+} (\operatorname{aq}) + \operatorname{SO}_{4}^{2-} (\operatorname{aq}) \rightleftharpoons \operatorname{Ag}_{9} \operatorname{SO}_{4} (s)$$

Calculamos el número de moles de Ag⁺ y su concentración, una vez mezcladas las dos disoluciones y suponiendo volúmenes aditivos:

$$n_{Ag^{+}} = 100 \,\text{mL} \cdot \frac{1 \,\text{L}}{1\,000 \,\text{mL}} \cdot \frac{5,0 \cdot 10^{-4} \,\text{mol AgNO}_{3}}{1 \,\text{L}}$$

$$\cdot \frac{1 \, \text{mol Ag}^+}{1 \, \text{mol AgNO}_3} = 5.0 \cdot 10^{-5} \, \text{mol Ag}^+$$

$$\left[Ag^{+}\right]_{0} = \frac{5.0 \cdot 10^{-5} \text{ mol}}{101.0 \text{ mL}} \cdot \frac{1000 \text{ mL}}{1 \text{ L}} = 4.95 \cdot 10^{-4} \frac{\text{mol}}{\text{L}}$$

Calculamos los moles de SO₄²⁻ y su concentración, una vez mezcladas las dos disoluciones y suponiendo volúmenes aditivos:

$$\begin{split} &n_{SO_4^{2-}} = 1{,}0\,mL \cdot \frac{1\,L}{1\,000\,mL} \cdot \frac{0{,}004\,mol\,NaSO_4}{1\,L} \cdot \\ &\cdot \frac{1\,mol\,SO_4^{2-}}{1\,mol\,MgSO_4} = 1{,}00 \cdot 10^{-6}\,mol\,SO_4^{2-} \\ &\left[SO_4^{2-}\right]_0 = \frac{1{,}00 \cdot 10^{-6}\,mol}{101{,}0\,mL} \cdot \frac{1\,000\,mL}{1\,L} = 9{,}90 \cdot 10^{-6}\,\frac{mol}{L} \end{split}$$

Calculamos el producto iónico y lo comparamos con el producto de solubilidad:

$$Q = \left[Ag^{+}\right]_{0} \left[SO_{4}^{2-}\right]_{0} = \left(4,95 \cdot 10^{-4}\right) \cdot \left(9,90 \cdot 10^{-6}\right) =$$

$$= 2,46 \cdot 10^{-13}$$

Como Q < K_s, la disolución está insaturada. En consecuencia, no se produce precipitación de Ag_oSO₄.

23. Datos:
$$\left[\text{Ca}^{2+} \right] = 0.010 \, \frac{\text{mol}}{\text{I}}$$
 $K_{\text{S}} \left(\text{CaF}_2 \right) = 4.0 \cdot 10^{-11}$

Equilibrio de solubilidad y expresión de K_s:

$$\operatorname{CaF}_2(s) \rightleftharpoons \operatorname{Ca}^{2+}(\operatorname{aq}) + 2 \operatorname{F}^-(\operatorname{aq})$$

$$\operatorname{K}_8 = \left[\operatorname{Ca}^{2+}\right] \left[\operatorname{F}^-\right]^2$$

La precipitación comienza cuando las concentraciones de los iones cumplen la expresión de K_s . Por tanto:

$$\mathbf{K}_{\mathbf{S}} = \left[\mathbf{C}\mathbf{a}^{2+}\right] \left[\mathbf{F}^{-}\right] \quad \Rightarrow \quad \left[\mathbf{F}^{-}\right] = \sqrt{\frac{\mathbf{K}\mathbf{s}}{\left[\mathbf{C}\mathbf{a}^{2+}\right]}}$$

$$\left[F^{-}\right] = \sqrt{\frac{4,0 \cdot 10^{-11}}{0,010}} = 6,32 \cdot 10^{-5} \text{ mol} \cdot L^{-1}$$

La concentración mínima de F- para que empiece la precipitación es $6.32 \cdot 10^{-5} \, M$.

24. Datos:
$$\left[Ag^{+}\right] = 1.0 \cdot 10^{-6} \frac{\text{mol}}{\text{L}} \quad K_{s} \left(AgCl\right) = 1.6 \cdot 10^{-10}$$

Equilibrio de solubilidad y expresión de K_s:

$$\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag^{+}}(\operatorname{aq}) + \operatorname{Cl^{-}}(\operatorname{aq})$$

$$\operatorname{K}_{\operatorname{S}} = \left[\operatorname{Ag^{+}}\right] \left[\operatorname{Cl^{-}}\right]$$

La precipitación comienza cuando las concentraciones de los iones cumplen la expresión de K_s. Por tanto:

$$K_S = [Ag^+][Cl^-] \implies [Cl^-] = \frac{K_S}{[Ag^+]}$$

$$\left[\text{Cl}^{-}\right] = \frac{1.6 \cdot 10^{-10}}{1.0 \cdot 10^{-9}} = 0.16 \frac{\text{mol}}{\text{L}}$$

La concentración de Cl⁻ necesaria para que precipite la plata es **0,16 M.**

6. EFECTO DEL ION COMÚN (pág. 274)

25. Datos: M (NaF) = 0,10 mol·L⁻¹

$$K_c$$
 (MgF_o) = 6,4 · 10⁻⁹

Equilibrio de solubilidad y expresión de K_s:

$$MgF_2$$
 (s) $\rightleftharpoons Mg^{2+}$ (aq) + 2 F⁻ (aq)
 $K_s = \left[Mg^{2+}\right] \left[F^-\right]^2$

Como el NaF es un electrólito fuerte, estará totalmente disociado.

NaF (aq)
$$\rightarrow$$
 Na⁺ (aq) + F⁻ (aq)

Por tanto, la concentración de iones procedentes de él serán:

$$\left[Na^{+}\right]_{NaF} = 0.10 \frac{mol}{L} \qquad \left[F^{-}\right]_{NaF} = 0.10 \frac{mol}{L}$$

De acuerdo con la estequiometría de la reacción, si S es la solubilidad molar del MgF₉, entonces:

$$\left[Mg^{2+}\right]_{MgF_2} = S \qquad \qquad \left[F^{-}\right]_{MgF_2} = 2 S$$

En el equilibrio, los iones Mg²⁺ proceden exclusivamente del MgF₉, luego:

$$[Mg^{2+}] = [Mg^{2+}]_{MgF_2} = S$$

Sin embargo, los iones F⁻ proceden tanto del NaF como del MgF₉, luego:

$$\left[F^{-}\right] = \left[F^{-}\right]_{NaF} + \left[F^{-}\right]_{MgF_{2}} = 0.10 + 2 \text{ S} \approx 0.10$$

(S se supone despreciable frente a $0.10~\text{mol}\cdot\text{L}^{-1}$)

Sustituimos las concentraciones en la expresión de K_s y averiguamos el valor de S:

$$K_S = [Mg^{2+}][F^-]^2 = S \cdot (0.10)^2 \implies S = \frac{K_S}{(0.10)^2}$$

$$S = \frac{6.4 \cdot 10^{-9}}{0.1^2} = 6.4 \cdot 10^{-7} \,\text{mol} \cdot L^{-1}$$

Comprobamos la validez de la aproximación:

$$\frac{6.4 \cdot 10^{-7}}{0.1} \cdot 100 = 0.00064\% < 5\%$$

La suposición de que S es despreciable frente a 0,1 es válida (error menor del 5 %). Por tanto, la solubilidad molar del MgF₉ es $6.4 \cdot 10^{-7}$ M.

$$K_s [Pb(IO_3)_9] = 3.2 \cdot 10^{-13}$$

Equilibrio de solubilidad y expresión de Ks:

$$\begin{split} \text{Pb}(\text{IO}_3)_2 \text{ (s)} &\rightleftarrows \text{Pb}^{2+} \text{ (aq)} + 2 \text{ IO}_3^- \text{ (aq)} \\ \\ \text{K}_8 &= \left[\text{Pb}^{2+} \right] \ \left[\text{IO}_3^- \right]^2 \end{split}$$

Seguiremos el mismo procedimiento empleado en el ejercicio anterior:

$$K IO_3 (aq) \rightarrow K^+ (aq) + IO_3^- (aq)$$

$$\left[K^{+}\right]_{\text{KIO}_{3}} = 0.020 \frac{\text{mol}}{L} \left[IO_{3}^{-}\right]_{\text{KIO}_{3}} = 0.020 \frac{\text{mol}}{L}$$

De acuerdo con la estequiometría de la reacción:

$$[Pb^{2+}]_{Pb(IO_3)_9} = S$$
 $[IO_3^-]_{Pb(IO_3)_9} = 2 S$

En el equilibrio:

$$\begin{aligned} \left[\text{Pb}^{2+} \right] &= \left[\text{Pb}^{2+} \right]_{\text{Pb}(\text{IO}_3)_2} = \text{S} \\ \\ \left[\text{IO}_3^- \right] &= \left[\text{IO}_3^- \right]_{\text{KIO}_3} + \left[\text{IO}_3^- \right]_{\text{Pb}(\text{IO}_3)_2} = 0,020 + 2 \text{ S} \approx \\ &\approx 0,020 \end{aligned}$$

(S se supone despreciable frente a 0,020 mol·L⁻¹)

$$K_{S} = \left[Pb^{2+}\right] \left[IO_{3}^{-}\right]^{2} = S \cdot (0,020)^{2} \implies S = \frac{K_{S}}{(0,020)^{2}}$$
$$S = \frac{3,2 \cdot 10^{-13}}{(0,020)^{2}} = 8,0 \cdot 10^{-10} \text{mol} \cdot L^{-1}$$

Comprobamos la validez de la aproximación:

$$\frac{8,0\cdot10^{-10}}{0,020}\cdot100 = 0,0000004\% < 5\%$$

La suposición de que S es despreciable frente a 0,02 es válida (error menor del 5 %). Por tanto, la solubilidad molar del Pb(${\rm IO_3}$)₂ es **8,0** · **10**⁻¹⁰ **M**.

27. Datos: M (HCl) = 0,010 mol·L⁻¹
$$K_c \text{ (AgCl)} = 2.8 \cdot 10^{-10}$$

Equilibrio de solubilidad y expresión de K_s:

$$\begin{split} \mathrm{AgCl}\;(s) & \rightleftarrows \mathrm{Ag^{\scriptscriptstyle +}}\;(\mathrm{aq}) + \mathrm{Cl^{\scriptscriptstyle -}}\;(\mathrm{aq}) \\ \mathrm{K_S} &= \left[\mathrm{Ag^{\scriptscriptstyle +}}\right]\;\left[\mathrm{Cl^{\scriptscriptstyle -}}\right] \end{split}$$

Seguiremos el mismo procedimiento que en los dos ejercicios anteriores:

$$\begin{split} HCl~(aq) \rightarrow H^{\scriptscriptstyle +}~(aq) + Cl^{\scriptscriptstyle -}~(aq) \\ \left[H^{\scriptscriptstyle +}\right]_{HCl} = 0.010 \frac{mol}{L} & \left[Cl^{\scriptscriptstyle -}\right]_{HCl} = 0.010 \frac{mol}{L} \end{split}$$

De acuerdo con la estequiometría de la reacción:

$$\left[Ag^{+}\right]_{AgCl} = S \qquad \left[Cl^{-}\right]_{AgCl} = S$$

En el equilibrio:

$$\left[Ag^{+}\right] = \left[Ag^{+}\right]_{AgCl} = S$$

$$\left[\text{Cl}^{-}\right] = \left[\text{Cl}^{-}\right]_{\text{HCl}} + \left[\text{Cl}^{-}\right]_{\text{AgCl}} = 0,010 + \text{S} \approx 0,010$$

(S se supone despreciable frente 0,010 mol·L⁻¹)

$$K_S = [Ag^+][Cl^-] = S \cdot 0.010 \implies S = \frac{K_S}{0.010}$$

 $S = \frac{2.8 \cdot 10^{-10}}{0.010} = 2.8 \cdot 10^{-8} \text{ mol} \cdot L^{-1}$

Comprobamos la validez de la aproximación:

$$\frac{2.8 \cdot 10^{-8}}{0.010} \cdot 100 = 0.00028\% < 5\%$$

La solubilidad del AgCl será 2,8 · 10-8 M.

28. Datos: M (KBr) = 0,10 mol·L⁻¹
$$K_{S} \text{ (PbBr}_{2}) = 8.9 \cdot 10^{-6}$$

$$M [Pb(NO_3)_2] = 0.20 \text{ mol} \cdot L^{-1}$$

Equilibrio de solubilidad y expresión de K_s:

$$PbBr_{2}$$
 (s) $\rightleftharpoons Pb^{2+}$ (aq) + 2 Br^{-} (aq)
$$K_{S} = \left[Pb^{2+}\right] \left[Br^{-}\right]^{2}$$

 a) Si llamamos S a la solubilidad molar del PbBr₂, según la estequiometría de la reacción tenemos:

$$\left[Pb^{2+}\right] = S \qquad \left[Br^{-}\right] = 2 S$$

Por tanto, la expresión del producto de solubilidad será:

$$K_S = S \cdot (2 S)^2 = 4 S^3$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$K_S = 4 S^3 \implies S = \sqrt[3]{\frac{K_s}{4}} = \sqrt[3]{\frac{8,9 \cdot 10^{-6}}{4}} = 1,31 \cdot 10^{-2}$$

La solubilidad del PbBr₉ en agua es 1,31 · 10⁻² M.

b) Para calcular la solubilidad S' del ${\rm PbBr_2}$ en bromuro de potasio, seguiremos el mismo procedimiento empleado en los ejercicios anteriores:

$$\begin{split} \text{KBr } (aq) &\rightarrow \text{K}^{\scriptscriptstyle +} \left(aq \right) + \text{Br}^{\scriptscriptstyle -} \left(aq \right) \\ \left[\text{K}^{\scriptscriptstyle +} \right]_{\text{KBr}} &= 0.10 \, \frac{\text{mol}}{\text{L}} \end{split}$$

De acuerdo con la estequiometría de la reacción:

$$[Pb^{2+}]_{PbB_{\bar{1}_2}} = S'$$
 $[Br^-]_{PbB_{\bar{1}_2}} = 2 S'$

En el equilibrio:

$$\begin{aligned} & \left[Pb^{2+} \right] = \left[Pb^{2+} \right]_{PbBr_2} = S' \\ & \left[Br^{-} \right] = \left[Br^{-} \right]_{KBr} + \left[Br^{-} \right]_{PbBr_2} = 0,10 + 2 \text{ S'} \approx 0,10 \end{aligned}$$

(2 S' se supone despreciable frente a 0,10)

$$K_S = \text{[Pb$^{2+}$]} \text{[Br$^{-}$]$^2} = \text{S'} \cdot (0,10)^2 \quad \Rightarrow \quad \text{S'} = \frac{K_S}{(0,10)^2}$$

$$S' = \frac{8.9 \cdot 10^{-6}}{(0.10)^2} = 8.9 \cdot 10^{-4} \text{ mol} \cdot \text{L}^{-1}$$

Comprobamos la validez de la aproximación:

$$\frac{8,9 \cdot 10^{-4}}{2 \cdot 0.10} \cdot 100 = 0,445\% < 5\%$$

La solubilidad del PbBr_2 en bromuro de potasio es $\mathbf{8.9} \cdot \mathbf{10^{-4}} \ \mathbf{M.}$

 c) Para calcular la solubilidad S" del PbBr₂ en nitrato de plomo (II), seguiremos el mismo procedimiento:

$$\mathrm{Pb}(\mathrm{NO_3})_2 \; (\mathrm{aq}) \to \mathrm{Pb^{2+}} \; (\mathrm{aq}) + 2 \; \mathrm{NO_3^-} \; (\mathrm{aq})$$

$$[Pb^{2+}]_{Pb(NO_3)_2} = 0.20 \frac{mol}{L}$$

$$\left[NO_{3}^{-}\right]_{Pb(NO_{3})_{2}} = 2 \cdot 0.20 \frac{mol}{L} = 0.40 \frac{mol}{L}$$

De acuerdo con la estequiometría de la reacción:

$$\left[Pb^{2+}\right]_{PbBr_0} = S''$$

$$\left[Br^{-}\right]_{PbBr_{0}} = 2 S''$$

En el equilibrio:

$$\begin{bmatrix} Br^- \end{bmatrix} = \begin{bmatrix} Br^- \end{bmatrix}_{PbBr_9} = 2 S''$$

$$\begin{split} \left[Pb^{2+} \right] &= \left[Pb^{2+} \right]_{Pb(NO_3)_2} + \left[Pb^{2+} \right]_{PbBr_2} = 0,20 + S'' \approx \\ &\approx 0.20 \end{split}$$

(S" se supone despreciable frente a 0,20)

$$K_S = [Pb^{2+}][Br^-]^2 = 0.20 \cdot (2 S'')^2 \Rightarrow S'' = \frac{1}{2} \sqrt{\frac{K_S}{0.20}}$$

$$S'' = \frac{1}{2} \sqrt{\frac{8.9 \cdot 10^{-6}}{0.20}} = 3.34 \cdot 10^{-3} \text{ mol} \cdot \text{L}^{-1}$$

Comprobamos la validez de la aproximación:

$$\frac{3,34 \cdot 10^{-3}}{0.20} \cdot 100 = 1,67 \% < 5 \%$$

La solubilidad del PbBr $_2$ en nitrato de plomo (II) es $3.34 \cdot 10^{-3}$ M.

29. *Datos*:
$$K_s (CaC_2O_4) = 2.0 \cdot 10^{-9}$$

$$M [(NH_4)_9 C_9 O_4] = 0.1 \text{ mol} \cdot L^{-1}$$

Equilibrio de solubilidad y expresión de K_s:

$$\begin{aligned} \text{CaC}_2\text{O}_4 \text{ (s)} &\rightleftarrows \text{Ca}^{2+} \text{ (aq)} + \text{C}_2\text{O}_4^{2-} \text{ (aq)} \\ \text{K}_\text{S} &= \left[\text{C}_2\text{O}_4^{2-}\right] \left[\text{Ca}^{2+}\right] \end{aligned}$$

a) Si llamamos S a la solubilidad molar de CaC₂O₄, según la estequiometría de la reacción tenemos:

$$\left[\text{Ca}^{2+} \right]_{\text{CaC}_2\text{O}_4} = \text{S}$$
 $\left[\text{C}_2\text{O}_4^{2-} \right]_{\text{CaC}_2\text{O}_4} = \text{S}$

Por tanto, la expresión del producto de solubilidad será:

$$K_S = S \cdot S = S^2$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$K_S = S^2 \implies S = \sqrt{K_S} = \sqrt{2.0 \cdot 10^{-9}} = 4.47 \cdot 10^{-5}$$

Para expresar la solubilidad en g·L⁻¹, determinamos la masa molecular del CaC₂O₄:

$$M_r$$
 (CaC₂O₄) = 40,08 u + 2 · 12,01 u + 4 · 16,00 u =
= 128.10 u

$$\begin{split} S = \frac{4,47 \cdot 10^{-5} \, mol \, CaC_2O_4}{1 \, L} \cdot \frac{128,10 \, g \, \, CaC_2O_4}{1 \, mol \, CaC_2O_4} = \\ = 5.73 \cdot 10^{-3} \, g \cdot L^{-1} \end{split}$$

La solubilidad del $\rm CaC_2O_4$ en agua pura es de ${\bf 5,73\cdot10^{-3}\,g\cdot L^{-1}.}$

b) Para calcular la solubilidad S' del CaC₂O₄ en oxalato de amonio 0,1 M seguiremos el mismo procedimiento de ejercicios anteriores:

$$(NH_4)_9 C_9 O_4 (aq) \rightarrow 2 NH_4^+ (aq) + C_9 O_4^{2-} (aq)$$

$$\begin{split} \left[N{H_4}^+\right]_{(NH_4)_2C_2O_4} &= 2 \cdot 0.1 \, \frac{mol}{L} = 0.2 \, \frac{mol}{L} \\ \\ \left[C_2O_4^{2-}\right]_{(NH_4)_2C_2O_4} &= 0.1 \, \frac{mol}{L} \end{split}$$

De acuerdo con la estequiometría de la reacción:

$$\left[\text{Ca}^{2+} \right]_{\text{CaC}_2\text{O}_4} = \text{S'}$$
 $\left[\text{C}_2\text{O}_4^{2-} \right]_{\text{CaC}_2\text{O}_4} = \text{S'}$

En el equilibrio:

$$\begin{split} \left[\mathbf{C} \mathbf{a}^{2+} \right] &= \left[\mathbf{C} \mathbf{a}^{2+} \right]_{\mathbf{C} \mathbf{a} \mathbf{C}_2 \mathbf{O}_4} = \mathbf{S'} \\ \left[\mathbf{C}_2 \mathbf{O}_4^{2-} \right] &= \left[\mathbf{C}_2 \mathbf{O}_4^{2-} \right]_{(\mathbf{N} \mathbf{H}_4)_2 \mathbf{C}_2 \mathbf{O}_4} + \left[\mathbf{C}_2 \mathbf{O}_4^{2-} \right]_{\mathbf{C} \mathbf{a} \mathbf{C}_2 \mathbf{O}_4} = \\ &= 0.1 + \mathbf{S'} \approx 0.1 \end{split}$$

(S' se supone despreciable frente a 0,1)

$$K_S = \left[Ca^{2+}\right] \left[C_2O_4^{2-}\right] = S' \cdot 0.1 \implies S' = \frac{K_S}{0.1}$$

 $S' = \frac{2.0 \cdot 10^{-9}}{0.1} = 2.0 \cdot 10^{-8} \text{ mol L}^{-1}$

Comprobamos la validez de la aproximación:

$$\frac{2.0 \cdot 10^{-8}}{0.10} \cdot 100 = 0.00002 \% < 5 \%$$

La solubilidad del CaC_2O_4 en oxalato de amonio 0,1 M es ${\bf 2,0\cdot 10^{-8}~M.}$

7. DISOLUCIÓN DE PRECIPITADOS (pág. 278)

30.
$$Fe(OH)_3$$
 (s) $\rightleftharpoons Fe^{3+}$ (aq) + 3 OH^- (aq)

Al añadir ácido clorhídrico, los iones H⁺ proporcionados por la ionización se combinan con los iones OH⁻ de la disolución formando agua.

$$3 \text{ H}^+\text{ (aq)} + 3 \text{ OH}^-\text{ (aq)} \rightleftharpoons 3 \text{ H}_2\text{O (aq)}$$

Al disminuir la concentración de OH⁻, el equilibrio de solubilidad del hidróxido de hierro (III) se desplaza *hacia la derecha* para contrarrestar esta variación, y el hidróxido se disuelve. La ecuación sumaria es:

$$Fe(OH)_{3}(s) + 3 H^{+}(aq) \rightleftharpoons Fe^{3+}(aq) + 3 H_{9}O(aq)$$

31. MnS (s)
$$\rightleftharpoons$$
 Mn²⁺ (aq) + S²⁻ (aq)

Los iones H⁺ proporcionados por el ácido se combinan con los iones S²⁻ de la disolución para formar H₉S.

$$2 H^{+} (aq) + S^{2-} (aq) \rightleftharpoons H_{9}S (g)$$

Al disminuir la concentración de S^2 -, el equilibrio se desplaza *hacia la derecha* para contrarrestar este efecto. La ecuación sumaria es:

$$MnS(s) + 2 H^{+}(aq) \rightleftharpoons Mn^{2+}(aq) + H_{9}S(g)$$

32. El equilibrio de solubilidad del hidróxido de manganeso viene dado por la expresión:

$$Mn(OH)_9$$
 (s) $\rightleftharpoons Mn^{2+}$ (aq) + 2 OH^- (aq)

Los iones NH_4^+ de la sal amónica se combinan con los iones OH^- de la disolución para dar dos electrólitos débiles: H_9O y NH_3

$$2 \text{ NH}_{4}^{+} (\text{aq}) + 2 \text{ OH}^{-} (\text{aq}) \rightleftharpoons 2 \text{ NH}_{3} (\text{aq}) + 2 \text{ H}_{2} O (\text{aq})$$

Para contrarrestar la disminución de la concentración de iones OH⁻, el equilibrio de solubilidad del Mn(OH)₂ se desplaza hacia la derecha, con lo que se disuelve algo de hidróxido. La ecuación sumaria es:

$$\begin{split} &Mn\left(OH\right)_{2}\left(s\right)+2\;NH_{4}^{+}\left(aq\right)\;\rightleftarrows\\ &\;\;\rightleftarrows Mn^{2+}\left(aq\right)+2\;NH_{3}\left(aq\right)+2\;H_{2}O\left(l\right) \end{split}$$

33. En disolución acuosa, el equilibrio de solubilidad del BaSO₄ viene dado por la expresión:

$$BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$$

En disolución ácida se establece un equilibrio entre los iones H⁺ del ácido y los iones SO₄²⁻ del BaSO₄, que viene dado por la expresión:

$$H^+$$
 (aq) + SO_4^{2-} (aq) $\rightleftharpoons HSO_4^-$ (aq)

Por tanto, el equilibrio de solubilidad del BaSO₄ se desplazará hacia la derecha para compensar la disminución de iones SO₄²-.

Idéntico razonamiento puede realizarse para el Fe(OH)₂, el BaCO₃ y el Zn(OH)₂. Los respectivos equilibrios que se establecen son:

• Para el Fe(OH)₂:

$$Fe(OH)_2$$
 (s) $\rightleftharpoons Fe^{2+}$ (aq) + 2 OH⁻ (aq)
 H^+ (aq) + OH⁻ (aq) $\rightleftharpoons H_9O$ (l)

• Para el BaCO₃:

$$BaCO_3$$
 (s) $\rightleftharpoons Ba^{2+}$ (aq) + CO_3^{2-} (aq)
 H^+ (aq) + CO_3^{2-} (aq) $\rightleftharpoons HCO_3^-$ (aq)
 H^+ (aq) + HCO_3^- (aq) $\rightleftharpoons CO_2$ (g) + H_2O (l)

• Para el Zn(OH)₂:

$$Zn(OH)_2$$
 (s) $\rightleftharpoons Zn^{2+}$ (aq) + 2 OH⁻ (aq)
 H^+ (aq) + OH⁻ (aq) $\rightleftharpoons H_2O$ (l)

Por tanto, el BaSO₄, el Fe(OH)₂, el BaCO₃ y el Zn(OH)₂

serán más solubles en disolución ácida que en disolución acuosa.

Por el contrario, el PbCl₂ y el CuI no pueden establecer ningún equilibrio entre el ácido y uno de los iones, de manera que *no aumenta su solubilidad* en disolución ácida.

34. Datos:
$$K_s (AgOH) = 2,0 \cdot 10^{-8}$$

 $K_s [Co(OH)_9] = 1,0 \cdot 10^{-15}$

• Calculamos la solubilidad del AgOH:

Equilibrio de solubilidad y expresión de K_s:

AgOH (s)
$$\rightleftharpoons$$
 Ag⁺ (aq) + OH⁻ (aq)

$$K_s = \left[Ag^+\right]\left[OH^-\right]$$

Si llamamos S a la solubilidad molar del AgOH, según la estequiometría de la reacción tenemos:

$$\left[Ag^{+}\right] = S \qquad \left[OH^{-}\right] = S$$

Por tanto, la expresión del producto de solubilidad será:

$$K_S = [Ag^+][OH^-] = S \cdot S = S^2$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$\begin{split} K_S &= S^2 \quad \Rightarrow \quad S = \sqrt{K_S} \\ S_{AgOH} &= \sqrt{2.0 \cdot 10^{-8}} = 1{,}41 \cdot 10^{-4} \, \frac{mol}{L} \end{split}$$

La solubilidad del hidróxido de plata, AgOH, es $1.41 \cdot 10^{-4} \, \text{M}.$

• Calculamos la solubilidad del Co(OH)₂:

Equilibrio de solubilidad y expresión de K_s:

$$\begin{split} \text{Co(OH)}_2 \text{ (s)} &\rightleftarrows \text{Co}^{2+} \text{ (aq)} + 2 \text{ OH}^{-} \text{ (aq)} \\ &K_\text{S} = \left[\text{Co}^{2+}\right] \left[\text{OH}^{-}\right]^2 \end{split}$$

Si llamamos S a la solubilidad molar del Co(OH)₂, según la estequiometría de la reacción tenemos:

$$\left[\text{Co}^{2+}\right] = \text{S}$$
 $\left[\text{OH}^{-}\right] = 2 \text{ S}$

Por tanto, la expresión del producto de solubilidad será:

$$K_S = [Co^{2+}][OH^-]^2 = S \cdot (2S)^2 = 4S^3$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$K_S = 4 S^3 \implies S = \sqrt[3]{\frac{K_s}{4}}$$

$$S_{Co(OH)_2} == \sqrt[3]{\frac{1,0 \cdot 10^{-15}}{4}} = 6,30 \cdot 10^{-6} \frac{mol}{L}$$

La solubilidad del hidróxido de cobalto, $Co(OH)_2$, es $6.30 \cdot 10^{-6} M$.

a) Para hallar el pH en la disolución saturada de AgOH, partiremos de la concentración de iones OH⁻, que viene dada por la solubilidad S:

$$\begin{split} \left[\mathrm{OH}^{-} \right] &= \mathrm{S} = 1,41 \cdot 10^{-4} \, \frac{\mathrm{mol}}{\mathrm{L}} \\ & \mathrm{K}_{\mathrm{W}} = \left[\mathrm{H}_{3} \mathrm{O}^{+} \right] \left[\mathrm{OH}^{-} \right] \quad \Rightarrow \quad \left[\mathrm{H}_{3} \mathrm{O}^{+} \right] = \frac{\mathrm{K}_{\mathrm{W}}}{\left[\mathrm{OH}^{-} \right]} \\ & \left[\mathrm{H}_{3} \mathrm{O}^{+} \right] = \frac{1,0 \cdot 10^{-14}}{1,41 \cdot 10^{-4}} = 7,09 \cdot 10^{-11} \, \frac{\mathrm{mol}}{\mathrm{L}} \\ & \mathrm{pH} = -\mathrm{log} \, \left[\mathrm{H}_{3} \mathrm{O}^{+} \right] = -\log \, \left(7,09 \cdot 10^{-11} \right) = 10,15 \end{split}$$

El pH de la disolución de AgOH es 10,15.

 b) Para hallar el pH en la de cobalto procederemos de modo similar:

$$\begin{split} \left[OH^{-} \right] &= 2 \, S' = 2 \cdot 6,30 \cdot 10^{-6} = 1,26 \cdot 10^{-5} \, \frac{\mathrm{mol}}{\mathrm{L}} \\ & K_{\mathrm{W}} = \left[H_{3} O^{+} \right] \left[OH^{-} \right] \quad \Rightarrow \quad \left[H_{3} O^{+} \right] = \frac{K_{\mathrm{W}}}{\left[OH^{-} \right]} \\ & \left[H_{3} O^{+} \right] = \frac{K_{\mathrm{w}}}{\left[OH^{-} \right]} = \frac{1,0 \cdot 10^{-14}}{1,26 \cdot 10^{-5}} = 7,94 \cdot 10^{-10} \, \frac{\mathrm{mol}}{\mathrm{L}} \\ & \mathrm{pH} = -\mathrm{log} \, \left[H_{3} O^{+} \right] = -\log \, \left(7,94 \cdot 10^{-10} \right) = 9,10 \end{split}$$

El pH de la disolución de Co(OH)₂ es 9,10.

35. El equilibrio de solubilidad del AgCl viene dado por la expresión:

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

La ecuación de formación del ion complejo $[Ag(NH_3)_2]^+$ es:

$$Ag^+$$
 (aq) + 2 NH_3 (aq) \rightleftharpoons $[Ag(NH_3)_2]^+$ (aq)

El amoníaco se combina con los iones plata para formar el complejo. Para compensar la disminución de la concentración de Ag⁺, el equilibrio de solubilidad del AgCl se desplaza *hacia la derecha*.

La reacción global será:

$$AgCl(s) + 2NH_3(aq) \rightleftharpoons Cl^-(aq) + [Ag(NH_3)_2]^+(aq)$$

RESOLUCIÓN DE EJERCICIOS Y PROBLEMAS (pág. 282)

36. Datos:
$$\begin{split} M \; (NaCl) &= 0,01 \; mol \cdot L^{-1} \\ K_S \; (AgCl) &= 1,6 \cdot 10^{-10} \\ M \; (K_2CrO_4) &= 4,0 \; mol \cdot L^{-1} \\ K_S \; (Ag_0CrO_4) &= 4,0 \cdot 10^{-12} \end{split}$$

• Equilibrio de solubilidad del AgCl y expresión de K_s:

$$\begin{split} \operatorname{AgCl} (s) &\rightleftarrows \operatorname{Ag^+} (\operatorname{aq}) + \operatorname{Cl^-} (\operatorname{aq}) \\ \operatorname{K}_S &= \left[\operatorname{Ag^+}\right] \left[\operatorname{Cl^-}\right] \end{split}$$

Como la disolución de NaCl es 0,01 M, entonces:

$$\left[\text{Cl}^{-}\right] = 0.01 \text{ mol} \cdot \text{L}^{-1}$$

Con este dato y con K_S (AgCl), calculamos la concentración de Ag⁺ necesaria para que empiece a precipitar AgCl:

$$K_{S} = \left[Ag^{+}\right]\left[CI^{-}\right] \implies \left[Ag^{+}\right] = \frac{K_{S}}{\left[CI^{-}\right]}$$
$$\left[Ag^{+}\right] = \frac{16 \cdot 10^{-10}}{0.01} = 1.6 \cdot 10^{-8} \frac{\text{mol}}{I}$$

 Equilibrio de solubilidad del Ag₂CrO₄ y expresión de K₅:

$$Ag_2CrO_4$$
 (s) $\rightleftharpoons 2 Ag^+$ (aq) + CrO_4^{2-} (aq)
 $K_S = \left[Ag^+\right]^2 \left[CrO_4^{2-}\right]$

Como la disolución de K₂CrO₄ es 4,0 M, entonces:

$$\left[CrO_4^{2-}\right] = 4.0 \text{ mol} \cdot L^{-1}$$

Con este dato y con K_S (Ag_2CrO_4), calculamos la concentración de Ag^+ necesaria para que empiece a precipitar Ag_2CrO_4 :

$$\begin{split} K_s = & \left[Ag^+ \right]^2 \left[CrO_4^{2-} \right] \quad \Rightarrow \quad \left[Ag^+ \right] = \sqrt{\frac{K_S}{\left[CrO_4^{2-} \right]}} \\ & \left[Ag^+ \right] = \sqrt{\frac{4,0 \cdot 10^{-12}}{4,0}} = 1,00 \cdot 10^{-6} \, \frac{mol}{L} \end{split}$$

Como la concentración de Ag⁺ necesaria es menor para el AgCl que para el Ag₂CrO₄, precipitará en primer lugar el **AgCl.**

37. Datos: 5,844 g·L⁻¹ NaCl
$$1,942 \text{ g·L}^{-1} \text{ K}_2\text{CrO}_4$$

$$K_S \text{ (AgCl)} = 1,6 \cdot 10^{-10}$$

$$K_S \text{ (Ag_CrO}_4) = 4,0 \cdot 10^{-12}$$

Calculamos las concentraciones molares iniciales de cada especie química:

$$\begin{split} &M_{r} \; (\mathrm{NaCl}) = 22,99 \; u + 35,45 \; u = 58,44 \; u \\ &M_{\mathrm{NaCl}} = \frac{5,844 \, \mathrm{g}}{1 \; \mathrm{L}} \cdot \frac{1 \; \mathrm{mol}}{58,44 \, \mathrm{g}} = 0,10 \, \frac{\mathrm{mol}}{\mathrm{L}} \\ &M_{r} \; (\mathrm{K_{2}CrO_{4}}) = 2 \cdot 39,10 \; u + 52,00 \; u + 4 \cdot 16,00 \; u = \\ &= 194,20 \; u \\ &M_{\mathrm{K_{2}CrO_{4}}} = \frac{1,942 \, \mathrm{g}}{1 \; \mathrm{L}} \cdot \frac{1 \; \mathrm{mol}}{194,20 \; \mathrm{g}} = 0,010 \, \frac{\mathrm{mol}}{\mathrm{L}} \end{split}$$

a) Equilibrio de solubilidad del AgCl y expresión de K_s:

$$AgCl(s) \rightleftharpoons Ag^+(aq) + Cl^-(aq)$$

$$K_S = [Ag^+][Cl^-]$$

Como la disolución de NaCl es 0,1 M, entonces:

$$\left[\text{Cl}^{-}\right] = 0.1 \text{ mol} \cdot \text{L}^{-1}$$

Con este dato y con K_S (AgCl), calculamos la concentración de Ag^+ necesaria para que empiece a precipitar AgCl:

$$K_S = [Ag^+][Cl^-] \implies [Ag^+] = \frac{K_S}{[Cl^-]}$$

$$\left[Ag^{+}\right] = \frac{1.6 \cdot 10^{-10}}{0.1} = 1.6 \cdot 10^{-9} \frac{\text{mol}}{L}$$

Equilibrio de solubilidad del Ag $_2{\rm CrO}_4$ y expresión de K $_{\rm S}$:

$$\begin{split} Ag_2CrO_4~(s) &\rightleftharpoons 2~Ag^+~(aq) + CrO_4^{2-}~(aq) \\ K_S &= \left\lceil Ag^+ \right\rceil^2~\left\lceil CrO_4^{2-} \right\rceil \end{split}$$

Como la disolución de K₂CrO₄ es 0,01 M, entonces:

$$\left[\text{CrO}_{4}^{2-} \right] = 0.01 \text{ mol} \cdot \text{L}^{-1}$$

Con este dato y con K_S (Ag₂CrO₄), calculamos la concentración de Ag⁺ necesaria para que empiece a precipitar Ag₂CrO₄:

$$\mathbf{K}_{s} = \left[\mathbf{A}\mathbf{g}^{+}\right]^{2} \left[\mathbf{C}\mathbf{r}\mathbf{O}_{4}^{2-}\right] \quad \Rightarrow \quad \left[\mathbf{A}\mathbf{g}^{+}\right] = \sqrt{\frac{\mathbf{K}_{S}}{\left[\mathbf{C}\mathbf{r}\mathbf{O}_{4}^{2-}\right]}}$$

$$\left[Ag^{+}\right] = \sqrt{\frac{4,0 \cdot 10^{-12}}{0,01}} = 2,0 \cdot 10^{-5} \frac{mol}{L}$$

Para que precipite AgCl se necesita una concentración de Ag⁺ de $1,6 \cdot 10^{-9}$ mol·L⁻¹, y para que precipite Ag₂CrO₄, una de $2,0 \cdot 10^{-5}$ mol·L⁻¹.

b) Primero precipita la sal, que requiere menor concentración de ion plata, que es AgCl, y después Ag₂CrO₄.

a) Equilibrios de solubilidad:

$$CuCl\ (s) \rightleftarrows Cu^{\scriptscriptstyle +}\ (aq) + Cl^{\scriptscriptstyle -}\ (aq)$$

$$\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag^{\scriptscriptstyle +}}(\operatorname{aq}) + \operatorname{Cl^{\scriptscriptstyle -}}(\operatorname{aq})$$

$$AuCl(s) \Rightarrow Au^{+}(aq) + Cl^{-}(aq)$$

Teniendo en cuenta las concentraciones inicia- les de los cationes presentes y los valores respectivos de K_s , calculamos las concentraciones necesarias de Cl^- para que empiece a precipitar cada catión:

$$\mathbf{K}_{\mathbf{S}} = \left[\mathbf{C} \mathbf{u}^{+} \right] \left[\mathbf{C} \mathbf{l}^{-} \right] \implies \left[\mathbf{C} \mathbf{l}^{-} \right] = \frac{\mathbf{K}_{\mathbf{S}}}{\left[\mathbf{C} \mathbf{u}^{+} \right]}$$

$$\left[\text{Cl}^{-}\right] = \frac{1.9 \cdot 10^{-7}}{0.2} = 9.5 \cdot 10^{-7} \text{ mol} \cdot \text{L}^{-1}$$

$$\begin{split} K_{S} = & \left[Ag^{+} \right] \left[CI^{-} \right] \implies \left[CI^{-} \right] = \frac{K_{S}}{\left[Ag^{+} \right]} \\ & \left[CI^{-} \right] = \frac{1.6 \cdot 10^{-10}}{0.2} = 8,00 \cdot 10^{-10} \text{ mol} \cdot L^{-1} \\ & K_{S} = & \left[Au^{+} \right] \left[CI^{-} \right] \implies \left[CI^{-} \right] = \frac{K_{S}}{\left[Au^{+} \right]} \\ & \left[CI^{-} \right] = \frac{2.0 \cdot 10^{-13}}{0.2} = 1,00 \cdot 10^{-12} \text{ mol} \cdot L^{-1} \end{split}$$

Según estas concentraciones, el orden de precipitación es: primero **AuCl**, después **AgCl** y por último **CuCl**.

b) Cuando empieza a precipitar CuCl, la concentración de iones Cl $^-$ es $9.5 \cdot 10^{-7}$ mol·L $^{-1}$.

Sustituimos este valor en las K_s de AgCl y AuCl para hallar las concentraciones de cada catión:

$$K_S = [Ag^+][Cl^-] \implies [Ag^+] = \frac{K_S}{[Cl^-]}$$

$$\left[Ag^{+}\right] = \frac{1.6 \cdot 10^{-10}}{9.50 \cdot 10^{-7}} = 1.68 \cdot 10^{-4} \text{ mol} \cdot L^{-1}$$

$$K_S = [Au^+][Cl^-] \implies [Au^+] = \frac{K_S}{[Cl^-]}$$

$$\left[Au^{+}\right] = \frac{2.0 \cdot 10^{-13}}{9.50 \cdot 10^{-7}} = 2.11 \cdot 10^{-7} \text{ mol} \cdot L^{-1}$$

Cuando empieza a precipitar el CuCl, la concentración de Ag $^+$ será $1,68 \cdot 10^{-4}$ mol·L $^{-1}$ y la de Au $^+$, $2,11 \cdot 10^{-7}$ mol·L $^{-1}$.

39. Datos:
$$M \; (NaCl) = M \; (NaBr) = 0,1 \; mol \cdot L^{-1}$$

$$K_S \; (AgCl) = 1,6 \cdot 10^{-10}$$

$$K_S \; (AgBr) = 7,7 \cdot 10^{-13}$$

a) Precipitarán el AgCl y el AgBr.

Las reacciones químicas que se producen son:

$$AgNO_3$$
 (s) $\rightleftharpoons Ag^+$ (aq) + NO_3^- (aq)
 Ag^+ (aq) + Cl^- (aq) $\rightleftharpoons AgCl$ (s)
 Ag^+ (aq) + Br^- (aq) $\rightleftharpoons AgBr$ (s)

b) Teniendo en cuenta las concentraciones iniciales y los valores respectivos de K_s, calculamos las concentraciones necesarias de Ag⁺ para que precipite cada compuesto:

$$AgCl (s) \rightleftharpoons Ag^{+} (aq) + Cl^{-} (aq)$$

$$K_{S} = \left[Ag^{+}\right] \left[Cl^{-}\right] \implies \left[Ag^{+}\right] = \frac{K_{S}}{\left[Cl^{-}\right]}$$

$$\left[Ag^{+}\right] = \frac{1.6 \cdot 10^{-10}}{0.1} = 1.6 \cdot 10^{-9} \text{mol} \cdot L^{-1}$$

$$AgBr (s) \rightleftharpoons Ag^{+} (aq) + Br^{-} (aq)$$

$$K_S = [Ag^+][Br^-] \Rightarrow [Ag^+] = \frac{K_S}{[Br^-]}$$

$$\left[Ag^{+}\right] = \frac{7,7 \cdot 10^{-13}}{0,1} = 7,7 \cdot 10^{-12} \text{mol} \cdot L^{-1}$$

Precipitará primero **AgBr** porque requiere una concentración menor de Ag⁺.

 $\it c)$ Cuando empieza a precipitar el AgCl, la concentración de Ag^+ es 1,6 \cdot 10^-9 mol·L^-1.

Sustituimos este valor en la expresión de K_S para determinar la concentración de Br^- :

$$K_{S} = [Ag^{+}][Br^{-}] \implies [Br^{-}] = \frac{K_{S}}{[Ag^{+}]}$$

$$\left[Br^{-}\right] = \frac{7.7 \cdot 10^{-13}}{1.6 \cdot 10^{-9}} = 4.81 \cdot 10^{-4} \text{ mol·L}^{-1}$$

Cuando empieza a precipitar el AgCl, la concentración de Br $\bar{}$ será $4.81 \cdot 10^{-4}$ mol·L $^{-1}$.

40. Datos:
$$[I^-] = [CI^-] = 0.1 \text{ mol} \cdot L^{-1}$$

$${\rm K_{S}\; (AgI) = 8.3 \cdot 10^{-17} \qquad {\rm K_{S}\; (AgCl) = 1.6 \cdot 10^{-10}}$$

a) Equilibrios de solubilidad:

$$AgI(s) \rightleftharpoons Ag^{+}(aq) + I^{-}(aq)$$

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

Teniendo en cuenta las concentraciones iniciales de los aniones presentes y los valores respectivos de K_s , calculamos las concentraciones necesarias de Ag^+ para que empiece a precipitar cada sal:

$$K_S = [Ag^+][I^-] \implies [Ag^+] = \frac{K_S}{[I^-]}$$

$$[Ag^+] = \frac{8.3 \cdot 10^{-17}}{0.1} = 8.3 \cdot 10^{-16} \ mol \cdot L^{-1}$$

$$K_S = [Ag^+][Cl^-] \Rightarrow [Ag^+] = \frac{K_S}{[Cl^-]}$$

$$[Ag^+] = \frac{1.6 \cdot 10^{-10}}{0.1} = 1.6 \cdot 10^{-9} \ mol \cdot L^{-1}$$

Para que precipite AgI se necesita una concentración de Ag $^+$ 8,3 \cdot 10 $^{-16}$ M y para que precipite AgCl, 1,6 \cdot 10 $^{-9}$ M.

b) El anión que precipita en segundo lugar es Cl⁻, y lo hace cuando $\left[Ag^{+} \right] = 1,6 \cdot 10^{-9} \, \text{M}.$

41. Datos:
$$[Cl^-] = [Br^-] = 0.020 \text{ mol} \cdot L^{-1}$$

$$K_c \text{ (AgCl)} = 1.6 \cdot 10^{-10}$$

$$K_s (AgBr) = 7.7 \cdot 10^{-13}$$

a) Equilibrios de solubilidad:

$$AgCl(s) \rightleftharpoons Ag^+(aq) + Cl^-(aq)$$

$$AgBr(s) \rightleftharpoons Ag^{+}(aq) + Br^{-}(aq)$$

Teniendo en cuenta las concentraciones iniciales de los aniones presentes y los valores respectivos de K_s, calculamos las concentraciones necesarias de Ag⁺ para que empiece a precipitar cada especie:

$$K_{S} = [Ag^{+}][Cl^{-}] \implies [Ag^{+}] = \frac{K_{S}}{[Cl^{-}]}$$

$$[Ag^{+}] = \frac{1.6 \cdot 10^{-10}}{0.020} = 8.0 \cdot 10^{-9} \text{mol} \cdot L^{-1}$$

$$K_S = [Ag^+][Br^-] \implies [Ag^+] = \frac{K_S}{[Br^-]}$$

$$\left[Ag^{+}\right] = \frac{7,7 \cdot 10^{-13}}{0.020} = 3.9 \cdot 10^{-11} \text{mol} \cdot L^{-1}$$

La concentración de Ag^+ mínima para que precipiten los Cl^- es $8,0 \cdot 10^{-9}$ M, y para que precipiten los Br^- , $3.9 \cdot 10^{-11}$ M.

b) Cuando empiece a precipitar AgCl, la concentración de Ag $^+$ es $8.0 \cdot 10^{-9}$ mol·L $^{-1}$.

Sustituimos este valor en la expresión de K_s para determinar la concentración de Br⁻:

$$K_S = [Ag^+][Br^-] \implies [Br^-] = \frac{K_S}{[Ag^+]}$$

$$\left[Br^{-}\right] = \frac{7,7 \cdot 10^{-13}}{8,0 \cdot 10^{-9}} = 9,6 \cdot 10^{-5} \text{ mol·L}^{-1}$$

El porcentaje de ion Br⁻ que queda en la disolución será:

% Br⁻ =
$$\frac{9.6 \cdot 10^{-5}}{0.020} \cdot 100 = 0.48$$
 %

Cuando comienza a precipitar el AgCl, el porcentaje de Br⁻ presente en la disolución es del **0,48** %.

42. Datos:
$$\left[\text{Cu}^+ \right] = \left[\text{Ag}^+ \right] = 0.010 \,\text{M}$$

$$K_c$$
 (CuI) = 5.1 · 10⁻¹²

$$K_c \text{ (AgI)} = 8.3 \cdot 10^{-17}$$

Equilibrios de solubilidad:

$$CuI(s) \Rightarrow Cu^+(aq) + I^-(aq)$$

$$AgI(s) \rightleftharpoons Ag^{+}(aq) + I^{-}(aq)$$

Teniendo en cuenta las concentraciones iniciales de los cationes presentes y los valores respectivos de K_s , calculamos las concentraciones necesarias de I^- para que empiece a precipitar cada catión:

$$\mathbf{K}_{\mathbf{S}} = \left[\mathbf{C}\mathbf{u}^{+}\right]\left[\mathbf{I}^{-}\right] \implies \left[\mathbf{I}^{-}\right] = \frac{\mathbf{K}_{\mathbf{S}}}{\left[\mathbf{C}\mathbf{u}^{+}\right]}$$

$$[I^-] = \frac{5.1 \cdot 10^{-12}}{0.010} = 5.1 \cdot 10^{-10} \text{mol} \cdot L^{-1}$$

$$K_{S} = \left[Ag^{+}\right]\left[\Gamma^{-}\right] \implies \left[\Gamma^{-}\right] = \frac{K_{S}}{\left[Ag^{+}\right]}$$
$$\left[\Gamma^{-}\right] = \frac{8,3 \cdot 10^{-9}}{0.010} = 8,3 \cdot 10^{-7} \operatorname{mol} L^{-1}$$

Empezará a precipitar en primer lugar el **AgI**, ya que necesita una menor concentración de I⁻.

EJERCICIOS Y PROBLEMAS (pág. 283)

43. *Datos:* S (BaSO₄) = $2.5 \cdot 10^{-3} \text{ g} \cdot \text{L}^{-1}$

Para expresar la solubilidad en mol·L⁻¹, calculamos la masa molecular del BaSO₄.

$$\begin{aligned} \mathbf{M_{r}} \; (\text{BaSO}_{4}) &= 137,3 \; \mathbf{u} + 32,07 \; \mathbf{u} + 4 \cdot 16,00 \; \mathbf{u} = \\ &= 233,37 \; \mathbf{u} \end{aligned}$$

$$S_{BaSO_4} = \frac{2.5 \cdot 10^{-3} \, g}{1 \, L} \cdot \frac{1 \, mol}{233.37 \, g} = 1.07 \cdot 10^{-5} \, \frac{mol}{L}$$

La solubilidad molar del BaSO₄ es 1,07 · 10⁻⁵ mol·L⁻¹.

- 44. *a*) Cu(OH)₂: Insoluble. Los hidróxidos, excepto los de los metales alcalinos y el de Ba²⁺, son insolubles.
 - b) $\rm ZnSO_4$: Soluble. Los sulfatos, excepto los de $\rm Ba^{2^+}, \ Hg^{2^+} \ y \ Pb^{2^+}, \ son \ generalmente solubles.$
 - c) AgBr: Insoluble. Es de los pocos bromuros insolubles, junto con los de Hg_2^{2+} y Pb^{2+} .
 - d) Ca(CH₃COO)₂: Soluble. Todos los acetatos son solubles, sin excepción.
 - e) $(NH_4)_3PO_4$: Soluble, al igual que los fosfatos de los metales alcalinos y el de Mg^{2+} .
 - f) PbSO $_4$: Insoluble. Los sulfatos son generalmente solubles, excepto éste y los de Ca $^{2+}$ y Ag $^+$.
- 45. a) BaF_{2} (s) $\rightleftharpoons Ba^{2+}$ (aq) + 2 F⁻ (aq)

$$K_S = [Ba^{2+}][F^-]^2 = 1,7 \cdot 10^{-6}$$

b) $Mg(OH)_2$ (s) $\rightleftharpoons Mg^{2+}$ (aq) + 2 OH^- (aq)

$$K_S = [Mg^{2+}][OH^-]^2 = 1,2 \cdot 10^{-11}$$

c) AgI (s) \rightleftharpoons Ag⁺ (aq) + I⁻ (aq)

$$K_S = [Ag^+][I^-] = 8.3 \cdot 10^{-9}$$

d) PbF_9 (s) $\rightleftharpoons Pb^{2+}$ (aq) + 2 F⁻ (aq)

$$K_S = [Pb^{2+}][F^-]^2 = 4.1 \cdot 10^{-8}$$

46. a) Equilibrio de solubilidad del Ca(OH)₉:

$$Ca(OH)_2 (s) \rightleftharpoons Ca^{2+} (aq) + 2 OH^- (aq)$$

 $K_S = \left[Ca^{2+} \right] \left[OH^- \right]^2 = 8.0 \cdot 10^{-6}$

Si llamamos S a la solubilidad molar del Ca(OH)₂, según la estequiometría de la reacción obtenemos:

$$\left[\text{Ca}^{2+} \right] = \text{S}$$
 $\left[\text{OH}^{-} \right] = 2 \text{ S}$

Por tanto, la expresión del producto de solubilidad será:

$$K_S = S \cdot (2 S)^2 = 4 S^3$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$K_S = 4 S^3 \implies S = \sqrt[3]{\frac{K_S}{4}}$$

$$S = \sqrt[3]{\frac{8.0 \cdot 10^{-6}}{4}} = 1,26 \cdot 10^{-2} \text{ mol} \cdot \text{L}^{-1}$$

b) Repetimos el proceso con el Zn(OH)₂:

$$Zn(OH)_{2} (s) \rightleftharpoons Zn^{2+} (aq) + 2 OH^{-} (aq)$$

$$K_{S} = \left[Zn^{2+}\right] \left[OH^{-}\right]^{2} = 1,8 \cdot 10^{-14}$$

$$\left[Zn^{2+}\right] = S \qquad \left[OH^{-}\right] = 2 S$$

$$K_{S} = S \cdot \left(2 S\right)^{2} = 4 S^{3} \quad \Rightarrow \quad S = \sqrt[3]{\frac{K_{S}}{4}}$$

$$S = \sqrt[3]{\frac{1,8 \cdot 10^{-14}}{4}} = 1,65 \cdot 10^{-5} \text{mol} \cdot L^{-1}$$

c) Repetimos el proceso con el Cu(OH)₉:

$$\begin{aligned} \text{Cu(OH)}_2 \text{ (s)} &\rightleftarrows \text{Cu}^{2+} \text{ (aq)} + 2 \text{ OH}^- \text{ (aq)} \\ \text{K}_S &= \left[\text{Cu}^{2+} \right] \left[\text{OH}^- \right]^2 = 2, 2 \cdot 10^{-20} \\ \left[\text{Cu}^{2+} \right] &= \text{S} \qquad \left[\text{OH}^- \right] = 2 \text{ S} \\ \text{K}_S &= \text{S} \cdot \left(2 \text{ S} \right)^2 = 4 \text{ S}^3 \quad \Rightarrow \quad \text{S} = \sqrt[3]{\frac{\text{K}_S}{4}} \\ \text{S} &= \sqrt[3]{\frac{2 \cdot 10^{-20}}{4}} = 1,77 \cdot 10^{-7} \text{ mol·L}^{-1} \end{aligned}$$

d) Repetimos el proceso con el Al(OH)₃:

Al(OH)₃ (s)
$$\rightleftharpoons$$
 Al³⁺ (aq) + 3 OH⁻ (aq)
 $K_S = \left[AI^{3+}\right] \left[OH^{-}\right]^3 = 1,8 \cdot 10^{-33}$
 $\left[AI^{3+}\right] = S \qquad \left[OH^{-}\right] = 3 S$
 $K_S = S \cdot \left(3 S\right)^3 = 27 S^4 \implies S = \sqrt[4]{\frac{K_S}{27}}$
 $S = \sqrt[4]{\frac{1,8 \cdot 10^{-33}}{27}} = 2,86 \cdot 10^{-9} \text{ mol·L}^{-1}$

De acuerdo con los resultados, el orden creciente de solubilidad es:

$$S_{Al(OH)_3} < S_{Cu(OH)_2} < S_{Zn(OH)_2} < S_{Ca(OH)_2}$$

47. Datos: $S (AgCl) = 1.26 \cdot 10^{-5} \text{ mol} \cdot L^{-1}$

Equilibrio de solubilidad y expresión de K_s:

$$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$$

$$K_S = \left[Ag^+\right] \left[Cl^-\right]$$

Según la estequiometría de la reacción:

$$Ag^+$$
 = S

$$\left[\text{Cl}^{-}\right] = \text{S}$$

Por tanto:

$$K_S = [Ag^+][Cl^-] = S^2 = (1,26 \cdot 10^{-5})^2 = 1,59 \cdot 10^{-10}$$

El producto de solubilidad del AgCl es $1.59 \cdot 10^{-10}$.

 $S (MnCO_{\circ}) = 4.2 \cdot 10^{-6} \text{ mol} \cdot L^{-1}$ 48. Datos:

Equilibrio de solubilidad y expresión de K_s:

$$MnCO_3$$
 (s) $\rightleftharpoons Mn^{2+}$ (aq) + CO_3^{2-} (aq)

$$K_S = \left[Mn^{2+}\right] \left[CO_3^{2-}\right]$$

Según la estequiometría de la reacción:

$$\left[Mn^{2+}\right] = S$$

$$\left[CO_3^{2-} \right] = S$$

Por tanto:

$$K_{S} = \left\lceil Mn^{2+} \right\rceil \left\lceil CO_{3}^{2-} \right\rceil = S^{2} = (4.2 \cdot 10^{-6})^{2} = 1.76 \cdot 10^{-11}$$

El producto de solubilidad del MnCO₃ es $1,76 \cdot 10^{-11}$.

 $m (PbF_9) = 0.103 g$ 49. Datos:

$$V = 200 \text{ mL}$$

Suponemos que el volumen de la disolución es el mismo que el de agua y calculamos la solubilidad molar del compuesto:

$$M_r (PbF_9) = 207.2 u + 2 \cdot 19.00 u = 245.2 u$$

$$\begin{split} S_{PbF_2} &= \frac{0103\,\mathrm{g}}{200\,\mathrm{mL}} \cdot \frac{1\,000\,\mathrm{mL}}{1\,\mathrm{L}} \cdot \frac{1\,\mathrm{mol}}{2452\,\mathrm{g}} = \\ &= 2,10\,\cdot\,10^{-3}\,\,\mathrm{mol}\!\cdot\!\mathrm{L}^{-1} \end{split}$$

Equilibrio de solubilidad y expresión de Ks:

$$PbF_{2}$$
 (s) $\rightleftharpoons Pb^{2+}$ (aq) + 2 F^{-} (aq)
 $K_{S} = \left[Pb^{2+}\right] \left[F^{-}\right]^{2}$

Según la estequiometría de la reacción:

$$\left[Pb^{2+} \right] = S$$
 $\left[F^{-} \right] = 2 S$

$$\left[\mathbf{F}^{-}\right] = 2 \, \mathbf{S}$$

Por tanto:

$$\begin{split} K_{S} &= \left[Pb^{2+}\right] \left[F^{-}\right]^{2} = S \cdot (2 \ S)^{2} = 4 \ S^{3} = \\ &= 4 \cdot (2,10 \cdot 10^{-3})^{3} = 3,70 \cdot 10^{-8} \end{split}$$

El producto de solubilidad del PbF₂ es $3,70 \cdot 10^{-8}$.

50. Datos: V = 200 mL

$$m (Ag_3PO_4) = 3.2 g$$

Suponemos que el volumen de la disolución es el mismo que el de agua y calculamos la solubilidad molar del compuesto:

$$M_r (Ag_3PO_4) = 3 \cdot 107.9 u + 30.97 u + 4 \cdot 16.00 u =$$

$$= 418.67 u$$

$$S_{Ag_3PO_4} = \frac{32 \text{ g}}{200 \text{ mL}} \cdot \frac{1000 \text{ mL}}{1 \text{ L}} \cdot \frac{1 \text{ mol}}{418,67 \text{ g}} =$$

$$=3.82 \cdot 10^{-2} \text{ mol} \cdot \text{L}^{-1}$$

Equilibrio de solubilidad y expresión de K_s:

$$\begin{split} Ag_3PO_4~(s) &\rightleftarrows 3~Ag^+~(aq) + PO_4^{3-}~(aq) \\ K_S &= \left[Ag^+\right]^3~\left[PO_4^{3-}\right] \end{split}$$

Según la estequiometría de la reacción:

$$\left[Ag^{+} \right] = 3 S \qquad \left[PO_{4}^{3-} \right] = S$$

$$\left[PO_4^{3-} \right] = S$$

Por tanto:

$$K_s = [Ag^+]^3 [PO_4^{3-}] = (3 S)^3 \cdot S = 27 S^4 =$$

= $27 \cdot (3.82 \cdot 10^{-2})^4 = 5.75 \cdot 10^{-5}$

El producto de solubilidad del Ag₂PO₄ es $5.75 \cdot 10^{-5}$.

 $K_{\rm s}$ (PbI_s) = 8.7 · 10⁻⁹ 51. Datos:

Equilibrio de solubilidad y expresión de K_s:

$$PbI_{2}(s) \rightleftharpoons Pb^{2+}(aq) + 2 I^{-}(aq)$$

$$K_{S} = \left[Pb^{2+}\right] \left[I^{-}\right]^{2}$$

Si llamamos S a la solubilidad molar del PbI₂, según la estequiometría de la reacción obtenemos:

$$\left[Pb^{2+} \right] = S$$
 $\left[I^{-} \right] = 2 S$

Por tanto, la expresión del producto de solubilidad será:

$$K_S = S \cdot (2S)^2 = 4S^3$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$K_S = 4 S^3 \implies S = \sqrt[3]{\frac{K_S}{4}}$$

 $S = \sqrt[3]{\frac{8,7 \cdot 10^{-9}}{4}} = 1,30 \cdot 10^{-3} \text{mol·L}^{-1}$

La solubilidad molar del PbI₉ es 1,30 · 10⁻³ mol·L⁻¹.

Para expresar la solubilidad en gramos por litro, hay que determinar la masa molar del PbI₉:

M (PbL) =
$$207.2 \text{ u} + 2 \cdot 126.9 \text{ u} = 461.0 \text{ u}$$

$$S_{PbI_2} = \frac{1,30 \cdot 10^{-3} \text{ mol PbI}_2}{1 \text{ L disolución}} \cdot \frac{461,0 \text{ g PbI}_2}{1 \text{ mol PbI}_2} = 0,60 \frac{\text{g}}{\text{L}}$$

La solubilidad del PbI₉ es 0,60 g·L⁻¹.

 $K_s [Al(OH)_s] = 1.8 \cdot 10^{-33}$ 52. Datos:

Equilibrio de solubilidad y expresión de K_s:

$$Al(OH)_3$$
 (s) $\rightleftharpoons Al^{3+}$ (aq) + 3 OH^- (aq)
$$K_S = \left[Al^{3+}\right] \left[OH^-\right]^3$$

Si llamamos S a la solubilidad molar del Al(OH)₃, según la estequiometría de la reacción obtenemos:

$$\left[Al^{3+}\right] = S \qquad \left[OH^{-}\right] = 3 S$$

Por tanto, la expresión del producto de solubilidad será:

$$K_S = S \cdot (3 S)^3 = 27 S^4$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$K_S = 27 S^4 \implies S = \sqrt[4]{\frac{K_S}{27}}$$

 $S = \sqrt[4]{\frac{18 \cdot 10^{-33}}{27}} = 2.86 \cdot 10^{-9} \text{ mol} \cdot L^{-1}$

La solubilidad del Al(OH)₃ es 2,86 · 10⁻⁹ mol·L⁻¹.

53. *Datos*: K_s (CuI) = 5,1 · 10⁻¹²

Equilibrio de solubilidad y expresión de Ks:

$$\begin{aligned} \text{CuI (s)} &\rightleftarrows \text{Cu}^{\scriptscriptstyle +} \left(\text{aq} \right) + \text{I}^{\scriptscriptstyle -} \left(\text{aq} \right) \\ &K_{\text{S}} = \left\lceil \text{Cu}^{\scriptscriptstyle +} \right\rceil \left\lceil \text{I}^{\scriptscriptstyle -} \right\rceil \end{aligned}$$

Si llamamos S a la solubilidad molar del CuI, según la estequiometría de la reacción obtenemos:

$$\left[Cu^{+} \right] = S$$
 $\left[I^{-} \right] = S$

Por tanto, la expresión del producto de solubilidad será:

$$K_S = S \cdot S = S^2$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$K_S = S^2 \implies S = \sqrt{K_S}$$

$$S = \sqrt{5.1 \cdot 10^{-12}} = 2.26 \cdot 10^{-6} \text{ mol} \cdot \text{L}^{-1}$$

A partir de este dato, calculamos la concentración de los iones:

$$\left[Cu^{+}\right] = \left[I^{-}\right] = S = 2,26 \cdot 10^{-6} \text{ mol} \cdot L^{-1}$$

La solubilidad molar de la sal es **2,26** · **10**⁻⁶ **mol·L**⁻¹, valor que también coincide con la concentración de sus iones.

54. • Ecuación no ionizada:

2 AgNO
$$_3$$
 (aq) + Na $_2$ CrO $_4$ (aq) \rightarrow
$$\rightarrow$$
 Ag $_2$ CrO $_4$ (s) + 2 NaNO $_3$ (aq)

• Ecuación iónica:

$$\begin{split} 2 \, Ag^+(aq) + 2 \, NO_3^-(aq) + 2 \, Na^+(aq) + CrO_4^{2-}(aq) \to \\ & \to Ag_2CrO_4 \, (s) + 2 \, Na^+ \, (aq) + 2 \, NO_3^- \, (aq) \end{split}$$

· Ecuación iónica neta:

$$2 \operatorname{Ag^{+}} (aq) + \operatorname{CrO_{4}^{2-}} (aq) \rightleftharpoons \operatorname{Ag_{9}CrO_{4}} (s)$$

- 55. *a)* No tendrá lugar una reacción de precipitación, porque las dos posibles sales que se formarán son: Cu(NO₃)₂ y K₂SO₄, ambas solubles.
 - b) De las posibles sales que se formarán (cloruro de potasio, KCl, y sulfato de bario, BaSO₄) la primera es soluble pero el BaSO₄ no lo es, y por tanto precipitará.

56. Datos:
$$\begin{split} V_{Na_2SO_4} = & 100,0 \, mL \qquad M_{Na_2SO_4} = 7,5 \cdot 10^{-4} \, \frac{mol}{L} \\ V_{BaCl_2} = & 50,0 \, mL \qquad M_{BaCl_2} = 0,015 \, \frac{mol}{L} \\ K_s \; (BaSO_4) = & 1,1 \cdot 10^{-10} \end{split}$$

Ecuación no ionizada:

$$Na_2SO_4$$
 (aq) + $BaCl_2$ (aq) $\rightleftharpoons BaSO_4$ (s) + 2 NaCl (aq)

Ecuación iónica neta:

$$Ba^{2+}$$
 (aq) + SO_4^{2-} (aq) $\rightleftharpoons BaSO_4$ (s)

Calculamos el número de moles de Ba²⁺ y de SO²⁻ y la concentración de cada uno considerando volúmenes aditivos:

$$\begin{split} V_{\rm T} &= 100~{\rm mL} + 50,0~{\rm mL} = 150,0~{\rm mL} \\ n_{SO_4^{2-}} &= 100,0~{\rm mL} \cdot \frac{1~{\rm L}}{1000~{\rm mL}} \cdot \frac{7,5 \cdot 10^{-4}~{\rm mol}}{1~{\rm L}} = \\ &= 7,5 \cdot 10^{-5}~{\rm mol} \\ \left[SO_4^{2-}\right] &= \frac{7,5 \cdot 10^{-5}~{\rm mol}}{150,0~{\rm mL}} \cdot \frac{1000~{\rm mL}}{1~{\rm L}} = 5,0 \cdot 10^{-4}~\frac{{\rm mol}}{\rm L} \\ n_{Ba^{2+}} &= 50,0~{\rm mL} \cdot \frac{1~{\rm L}}{1000~{\rm mL}} \cdot \frac{0,015~{\rm mol}}{1~{\rm L}} = \\ &= 7,5 \cdot 10^{-4}~{\rm mol} \\ \left[Ba^{2+}\right] &= \frac{7,5 \cdot 10^{-4}~{\rm mol}}{150,0~{\rm mL}} \cdot \frac{1000~{\rm mL}}{1~{\rm L}} = 5,0 \cdot 10^{-3}~\frac{{\rm mol}}{\rm L} \end{split}$$

Calculamos el producto iónico y lo comparamos con el producto de solubilidad:

Q =
$$\left[Ba^{2+}\right] \left[SO_4^{2-}\right] = (5.0 \cdot 10^{-3}) \cdot (5.0 \cdot 10^{-4}) =$$

= $2.5 \cdot 10^{-6}$

Como $Q > K_s$, se formará precipitado de $BaSO_4$ hasta que $Q y K_s$ se igualen.

57. *Datos*: S (PbI₂) = $0.70 \text{ g} \cdot \text{L}^{-1}$

a) Equilibrio de solubilidad y expresión de K_s:

$$PbI_{2}$$
 (s) $\rightleftharpoons Pb^{2+}$ (aq) + 2 I^{-} (aq)
$$K_{S} = \left[Pb^{2+}\right] \left[I^{-}\right]^{2}$$

Calculamos primero la solubilidad molar:

$$M_r$$
 (PbI₂) = 207,2 u + 2 · 126,9 u = 461,0 u

$$S_{PbI_2} = \frac{0.70 \text{ g}}{1 \text{ L}} \cdot \frac{1 \text{ mol}}{461.0 \text{ g}} = 1.52 \cdot 10^{-3} \frac{\text{mol}}{\text{L}}$$

Si llamamos S a la solubilidad molar del PbI₂, según la estequiometría de la reacción obtenemos:

$$\left[Pb^{2+} \right] = S \qquad \left[I^{-} \right] = 2 S$$

Por tanto, el valor del producto de solubilidad será:

$$K_S = S \cdot (2S)^2 = 4S^3 = 4 \cdot (1.52 \cdot 10^{-3})^3 =$$

= 1.40 \cdot 10^-8

El producto de solubilidad del yoduro de plomo (II) es $1,40 \cdot 10^{-8}$.

 b) Como el KI es un electrólito fuerte, estará totalmente disociado.

$$KI(s) \rightarrow K^{+}(aq) + I^{-}(aq)$$

Por tanto, la concentración de iones procedentes de él serán:

$$\left[K^{+}\right]_{KI} = 0,50 \, \frac{mol}{L} \qquad \qquad \left[I^{-}\right]_{KI} = 0,50 \, \frac{mol}{L}$$

De acuerdo con la estequiometría de la reacción, si S' es la solubilidad molar del PbI₀, entonces:

$$\left[Pb^{2+}\right]_{PbI_2} = S' \qquad \qquad \left[I^{-}\right]_{PbI_2} = 2 \; S'$$

En el equilibrio, los iones Pb²⁺ proceden exclusivamente del PbI₂, luego:

$$[Pb^{2+}] = [Pb^{2+}]_{PbI_0} = S'$$

Sin embargo, los iones I $^-$ proceden tanto del KI como del PbI $_9$, luego:

$$[\Gamma] = [\Gamma]_{KI} + [\Gamma]_{PbI_2} = 0,50 + 2 \text{ S'} \approx 0,50$$

(2 S' se supone despreciable frente a 0,50 mol·L⁻¹)

Sustituimos las concentraciones en la expresión de K_s y averiguamos el valor de S':

$$K_S = [Pb^{2+}][I^-]^2 = S' \cdot (0,50)^2 \implies S' = \frac{K_S}{(0,50)^2}$$

$$S' = \frac{1,40 \cdot 10^{-8}}{(0,50)^2} = 5,60 \cdot 10^{-8} \,\text{mol} \cdot L^{-1}$$

Comprobamos la validez de la aproximación:

$$\frac{2 \cdot \left(5,60 \cdot 10^{-8}\right)}{0.5} \cdot 100 = 0,0000224 \% < 5 \%$$

La suposición de que S' es despreciable frente a 0,5 es válida (error menor del 5%). Por tanto, la solubilidad del yoduro de plomo (II) en la disolución de KI es $5,60 \cdot 10^{-8}$ mol·L⁻¹.

58. Datos:
$$K_s (AgCl) = 1,6 \cdot 10^{-10}$$

 $K_s (Ag_oPO_A) = 1,8 \cdot 10^{-18}$

Equilibrios de solubilidad y expresiones de K_s:

$$\begin{split} AgCl~(s) &\rightleftharpoons Ag^{\scriptscriptstyle +}~(aq) + Cl^{\scriptscriptstyle -}~(aq) \\ K_{\scriptscriptstyle S} &= \left[Ag^{\scriptscriptstyle +}\right] \left[Cl^{\scriptscriptstyle -}\right] \\ Ag_{\scriptscriptstyle 3}PO_{\scriptscriptstyle 4}~(s) &\rightleftharpoons 3~Ag^{\scriptscriptstyle +}~(aq) + PO_{\scriptscriptstyle 4}^{\scriptscriptstyle 3-}~(aq) \\ K_{\scriptscriptstyle S} &= \left[Ag^{\scriptscriptstyle +}\right]^{\scriptscriptstyle 3}~\left[PO_{\scriptscriptstyle 4}^{\scriptscriptstyle 3-}\right] \end{split}$$

Si llamamos S a la solubilidad molar del AgCl y S' a la del Ag₃PO₄, según la estequiometría de las respectivas reacciones obtenemos:

Para el AgCl:
$$\left[Ag^{+}\right] = S$$
 $\left[Cl^{-}\right] = S$
Para el Ag₃PO₄: $\left[Ag^{+}\right] = 3$ S' $\left[PO_{4}^{3-}\right] = S$

Por tanto, las expresiones de los productos de solubilidad de cada sal serán:

$$K_{S} (AgCl) = S \cdot S = S^{2}$$

$$K_{S} (Ag_{3}PO_{4}) = (3 \text{ S}')^{3} \cdot S' = 27 \text{ (S}')^{4}$$

A partir de estas expresiones, podemos calcular las solubilidades molares S y S':

 $K_s(AgCl) = S^2 \implies S = \sqrt{K_s(AgCl)}$

$$S = \sqrt{1,6 \cdot 10^{-10}} = 1,26 \cdot 10^{-5} \text{ mol} \cdot \text{L}^{-1}$$

$$K_{S}(Ag_{3}PO_{4}) = 27 (S')^{4} \implies S' = \sqrt[4]{\frac{K_{S}(Ag_{3}PO_{4})}{27}}$$

$$S' = \sqrt[3]{\frac{1,8 \cdot 10^{-18}}{27}} = 1,61 \cdot 10^{-5} \text{ mol} \cdot \text{L}^{-1}$$

La solubilidad molar de AgCl es $1,\!26\cdot 10^{\text{-5}}$ M y la del ${\rm Ag_3PO_4}$ es $1,\!61\cdot 10^{\text{-5}}$ M.

El nitrato de plata se disocia dando iones Ag⁺ y NO₃⁻. En consecuencia, al aumentar la concentración de Ag⁺, los equilibrios de solubilidad del AgCl y del Ag₃PO₄ se desplazarán hacia la izquierda, con lo que *la solubilidad de ambas sales disminuye*.

59. Equilibrio de solubilidad:

$$CaCO_3$$
 (s) $\rightleftharpoons Ca^{2+}$ (aq) + CO_3^{2-} (aq)

Al añadir HCl, éste se disocia dando iones H^+ y Cl⁻. Los iones H^+ se combinan con el ion CO_3^{2-} para producir CO_2 y H_2O , según la reacción:

$$2 H^{+} (aq) + CO_{3}^{2-} (aq) \rightleftharpoons CO_{2} (g) + H_{2}O (l)$$

En consecuencia, disminuye la concentración de CO_3^{2-} , el equilibrio de solubilidad del $CaCO_3$ se desplaza hacia la derecha y se disuelve más H_2CO_3 .

60. Datos: $K_c (MOH) = 2.3 \cdot 10^{-9}$

Equilibrio de solubilidad y expresión de K_s:

$$\begin{aligned} \text{MOH (s)} &\rightleftarrows \text{M}^+ \left(\text{aq} \right) + \text{OH}^- \left(\text{aq} \right) \\ & \text{K}_{\text{S}} = \left[\text{M}^+ \right] \left[\text{OH}^- \right] \end{aligned}$$

Si llamamos S a la solubilidad molar del MOH, según la estequiometría de la reacción obtenemos:

$$M^+$$
 = S OH^- = S

Por tanto, la expresión del producto de solubilidad será:

$$K_S = S \cdot S = S^2$$

A partir de esta expresión, podemos calcular la solubilidad molar S:

$$K_S = S^2 \implies S = \sqrt{K_S}$$

$$S = \sqrt{2.3 \cdot 10^{-9}} = 4.80 \cdot 10^{-5} \,\text{mol} \cdot \text{L}^{-1}$$

Por tanto, $\left[OH^{-} \right] = S = 4,80 \cdot 10^{-5} \text{ mol} \cdot L^{-1}$.

Conocida la concentración de OH-, podemos determinar el pH:

pOH =
$$-\log \left[\text{OH}^- \right] = -\log \left(4.80 \cdot 10^{-5} \right) = 4.32$$

pH = $14 - \text{pOH} = 14 - 4.32 = 9.68$

El pH de la disolución es 9,68.

61. Datos:
$$pH = 8.00$$
 $K_S [Fe(OH)_2] = 1.6 \cdot 10^{-14}$

Equilibrio de solubilidad y expresión de K_s:

$$\begin{split} \text{Fe(OH)}_2 \text{ (s)} &\rightleftarrows \text{Fe}^{2+} \text{ (aq)} + 2 \text{ OH}^- \text{ (aq)} \\ &K_S = \left[\text{Fe}^{2+} \right] \ \left[\text{OH}^- \right]^2 \end{split}$$

A partir del dato del pH, podemos conocer la concentración de OH⁻ en el equilibrio:

$$pOH = 14 - pH = 14 - 8 = 6$$

 $OH^{-} = 1 \cdot 10^{-6} \text{ mol} \cdot L^{-1}$

Si llamamos S a la solubilidad molar del Fe(OH)₂, según la estequiometría de la reacción tenemos:

$$\left[Fe^{2+} \right] = S$$

Sustituimos ambos valores en la expresión del producto de solubilidad y calculamos el valor de S:

$$\begin{split} K_S = & \left[Fe^{2+} \right] \left[OH^- \right]^2 = S \cdot \left(1 \cdot 10^{-6} \right)^2 \quad \Rightarrow \quad S = \frac{K_S}{\left(1 \cdot 10^{-6} \right)^2} \\ S = & \frac{1,6 \cdot 10^{-14}}{\left(1 \cdot 10^{-6} \right)^2} = 0,016 \, \text{mol} \cdot L^{-1} \end{split}$$

La solubilidad molar del $Fe(OH)_2$ a pH = 8,00 es **0,016** M.