VIII - Intégrales généralisées

I - Intégrales des fonctions continues

Définition 1 - Intégrale sur $[a, +\infty[$

Soit $a \in \mathbb{R}$ et f une fonction continue sur $[a, +\infty[$.

- L'intégrale de f est convergente sur $[a, +\infty[$ si la fonction $F(y) = \int_a^y f(t) dt$ admet une limite finie en $+\infty$.
- Si l'intégrale est convergente, on note

$$\int_{a}^{+\infty} f(t) dt = \lim_{y \to +\infty} \int_{a}^{y} f(t) dt.$$

• Si F n'admet pas de limite finie en $+\infty$, l'intégrale de f sur $[a, +\infty[$ est divergente.

Exemple 1 - Sur $[a, +\infty]$

• Étude de $\int_{2}^{+\infty} \frac{1}{t^2} dt$. Soit y > 0. Alors,

$$F(y) = \int_2^y \frac{1}{t^2} dt = \left[-\frac{1}{t} \right]_2^y = -\frac{1}{y} + \frac{1}{2}.$$

Ainsi, $\lim_{y \to +\infty} F(y) = \frac{1}{2}$. Donc, $\int_2^{+\infty} \frac{1}{t^2} dt$ converge et

$$\int_2^{+\infty} \frac{1}{t^2} \, \mathrm{d}t = \frac{1}{2}.$$

• Étude de $\int_{2}^{+\infty} \frac{1}{t} dt$. Soit y > 0. Alors,

$$F(y) = \int_2^y \frac{1}{t} dt = [\ln(t)]_2^y = \ln(t) - \ln(2).$$

Ainsi,
$$\lim_{y \to +\infty} F(y) = +\infty$$
. Donc, $\int_2^{+\infty} \frac{1}{t^2} dt$ diverge.

Définition 2 - Intégrale sur $]-\infty,a]$

Soit $a \in \mathbb{R}$ et f une fonction continue sur $]-\infty,a]$.

- L'intégrale de f est convergente sur $]-\infty,a]$ si la fonction $F(y)=\int_{y}^{a}f(t)\,\mathrm{d}t$ admet une limite finie en $-\infty$.
- Si l'intégrale est convergente, on note

$$\int_{-\infty}^{a} f(t) dt = \lim_{y \to -\infty} \int_{y}^{a} f(t) dt.$$

• Si F n'admet pas de limite finie en $-\infty$, l'intégrale de f sur $]-\infty,a]$ est divergente.

Exemple 2 - Sur $]-\infty,a]$

• Étude de $\int_{-\infty}^{0} e^{t} dt$. Soit y < 0. Alors,

$$F(y) = \int_{y}^{0} e^{t} dt = [e^{t}]_{y}^{0} = e^{0} - e^{y}.$$

Ainsi, $\lim_{y \to -\infty} F(y) = 1$. Donc, $\int_{-\infty}^{0} e^{t} dt$ converge et

$$\int_{-\infty}^{0} e^t dt = 1.$$

• Étude de
$$\int_{-\infty}^{-1} e^{-t} dt$$
. Soit $y < -1$. Alors,

$$F(y) = \int_{y}^{-1} e^{-t} dt = [-e^{-t}]_{y}^{-1} = -e^{1} + e^{-y}.$$

Ainsi, $\lim_{y \to -\infty} F(y) = +\infty$. Donc, $\int_{-\infty}^{0} e^{-t} dt$ diverge.

Définition 3 - Intégrale sur $]-\infty,+\infty[$

Soit $a \in \mathbb{R}$ et f une fonction continue sur \mathbb{R} .

- L'intégrale de f est convergente sur $]-\infty,+\infty[$ si $\int_a^{+\infty} f(t) dt$ et $\int_{-\infty}^a f(t) dt$ sont convergentes.
- Si l'intégrale est convergente, on note

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{-\infty}^{a} f(t) dt + \int_{a}^{+\infty} f(t) dt.$$

• Si l'une des intégrales $\int_{-\infty}^{a} f(t) dt$ ou $\int_{a}^{+\infty} f(t) dt$ diverge, l'intégrale de f sur $]-\infty,+\infty[$ est divergente.

Exemple 3 - Sur $]-\infty,+\infty[$

- Étude de $\int_{-\infty}^{+\infty} t e^{-t^2} dt$.
 - ★ D'une part,

$$\int_{y}^{0} t e^{-t^{2}} dt = \left[-\frac{1}{2} e^{-t^{2}} \right]_{y}^{0} = -\frac{1}{2} e^{0} + \frac{1}{2} e^{-y^{2}}.$$

Ainsi,
$$\lim_{y \to -\infty} \int_y^0 t e^{-t^2} dt = -\frac{1}{2}$$
. Donc, $\int_{-\infty}^0 t e^{-t^2} dt$

converge et

$$\int_{-\infty}^{0} t e^{-t^2} dt = -\frac{1}{2}.$$

* D'autre part,

$$\int_0^y t e^{-t^2} dt = \left[-\frac{1}{2} e^{-t^2} \right]_0^y = -\frac{1}{2} e^{-y^2} + \frac{1}{2} e^0.$$

Ainsi, $\lim_{y\to +\infty} \int_0^y t e^{-t^2} dt = \frac{1}{2}$. Donc, $\int_0^{+\infty} t e^{-t^2} dt$ converge et

$$\int_0^{+\infty} t \, e^{-t^2} \, dt = \frac{1}{2}.$$

Finalement, $\int_{-\infty}^{+\infty} t e^{-t^2} dt$ converge et

$$\int_{-\infty}^{+\infty} t e^{-t^2} dt = -\frac{1}{2} + \frac{1}{2} = 0.$$

- Étude de $\int_{-\infty}^{+\infty} e^t dt$.
 - \star D'une part

$$F(y) = \int_{y}^{0} e^{t} dt = [e^{t}]_{y}^{0} = e^{0} - e^{y}$$

Ainsi, $\lim_{y \to -\infty} F(y) = 1$. Donc, $\int_{-\infty}^{0} e^{t} dt$ converge et

$$\int_{-\infty}^{0} e^t dt = 1.$$

* D'autre part,

$$F(y) = \int_0^y e^t dt = [e^t]_0^y = e^y - e^0$$

Ainsi, $\lim_{y \to +\infty} F(y) = +\infty$. Donc, $\int_0^y e^t dt$ diverge.

Finalement, $\int_{-\infty}^{+\infty} e^t dt$ diverge.

II - Fonctions continues par morceaux

Définition 4 - Fonction continue par morceaux

Soit I un intervalle non vide de \mathbb{R} et f une fonction définie sur I. La fonction f est continue sauf en un nombre fini de points si

- f est continue en tout point de I, sauf en un nombre fini de points a_0, \ldots, a_n ,
- f admet des limites finies à gauche et à droite en chaque point a_0, \ldots, a_n .

Exemple 4

• La fonction f définie sur \mathbb{R} par

$$f(x) = \begin{cases} 0 & \text{si } x < 0\\ e^{-x} & \text{sinon} \end{cases}$$

Comme $\lim_{x\to 0^-} f(x) = 0$ et $\lim_{x\to 0^+} f(x) = 1$, alors f est continue sur $\mathbb R$ sauf en 0 où elle admet des limites finies à gauche et à droite.

• La fonction g définie sur \mathbb{R} par

$$g(x) = \begin{cases} \frac{1}{x^2} & \text{si } |x| > 1\\ 0 & \text{sinon} \end{cases}$$

Comme $\lim_{x \to -1^-} f(x) = \lim_{x \to 1^+} f(x) = 1$ et $\lim_{x \to -1^+} f(x) = \lim_{x \to 1^-} f(x) = 0$, alors f est continue sur \mathbb{R} sauf en -1 et 1 où elle admet des limites finies à gauche et à droite.

Définition 5 - Intégrales des fonctions continues par morceaux

Soit f une fonction continue sauf en un nombre fini de points sur I. Alors, l'intrégale de f, si elle converge, est égale à la somme des intégrales de f sur chacun des intervalles sur lesquels elle est

continue.

Exemple 5

En reprenant les définitions précédentes.

•

$$\int_{-\infty}^{+\infty} f(t) dt = \int_{-\infty}^{0} f(t) dt + \int_{0}^{+\infty} f(t) dt$$
$$= 0 + \int_{0}^{+\infty} e^{-t} dt = 1.$$

.

$$\int_{-\infty}^{+\infty} g(t) dt = \int_{-\infty}^{1} \frac{dt}{t^2} + \int_{-1}^{1} 0 dt + \int_{1}^{+\infty} \frac{dt}{t^2}$$
$$= 1 + 0 + 1 = 2.$$