Зміст

Частина I Базові поняття та рівняння			3
1	1.1 1.2	ичини, що спостерігаються в електродинаміці Заряд, електричне та магнітне поле	. 6
		Математичний запис закону збереження заряду	
2	Рівняння електромагнітного поля		
	2.22.32.4	Мікроскопічні рівняння Максвелла (інтегральна форма) Сумісність рівнянь Максвелла із законом збереження заряду	13 14 15 18
3		кі застосовності класичної електродинаміки	22
	3.2	Квантова механіка і електродинаміка	22
Ча	асти	на II Розв'язки рівнянь Максвелла	24
4	Поп	генціали електромагнітного поля	25
5	Пот	енціали ізольованої системи зарядів і струмів	29
	5.1	Перетворення Фур'є та рівняння Гельмгольца	29
		Умова випромінювання для ізольованої системи	
	5.3	Запізнюючі потенціали	31
Д	одат		35
	A	Основні формули векторного аналізу	35

0. Зміст

	А.1 Тривимірний символ Леві-Чівіти	35
		55
	А.2 Диференціальні операції в різних системах коор-	
	динат	35
	А.З Другі похідні	37
	А.4 Похідні від добутків	37
	А.5 Інтегральні характеристики та теореми	37
Б	Поліноми Лежандра	37
В	Сферичні гармоніки	38
Γ	Циліндричні функції	39
Д	Дельта-функція Дірака	41
Літер	атура	42

Частина I

Базові поняття та рівняння

1

Величини, що спостерігаються в електродинаміці

1.1. Заряд, електричне та магнітне поле

Основними спостережуваними величинами в електродинаміці є електричний заряд та електромагнітне поле — сукупність електричного та магнітного полів. Статичні заряди створюють електричне поле, рух зарядів спричинює магнітне поле. Навпаки, електромагнітне поле створює силу, що діє на заряджене тіло. Ця схема відповідає концепції близькодії, яка домінує в сучасній фізиці; за цією концепцією заряди взаємодіють між собою через електромагнітне поле, а не безпосередньо.

Закон Кулона. Числову характеристику заряду можна дати, вимірюючи силу взаємодії F між двома точковими нерухомими зарядами. Якщо ці заряди розташовані на відстані R, за абсолютною величиною:

$$F = k \frac{q_1 q_2}{R^2},\tag{1.1}$$

де q_1 , q_2 — заряди тіл, k — коефіцієнт пропорційності, що залежить від вибору системи одиниць. Це співвідношення називають законом Кулона; воно неодноразово перевірялося різними експериментальними методами. Сила, з якою один заряд діє на інший, направлена вздовж лінії центрів зарядів. З спостережень відомо, що існують лише два сорти електричних зарядів, причому заряди однакового сорту завжди притягуються, а заряди різного сорту — відштовхуються. Цю обставину враховуємо, вводячи знаки зарядів в формулі (1.1). Від'ємними вважаються заряди того ж сорту, що й заряд електрона. Заряд є адитивною числовою величиною: заряд будь-якої системи є алгебраїчною сумою зарядів його підсистем.

Формула (1.1) дає змогу визначити заряд й подати процедуру його вимірювання (тобто спосіб порівняння заряду з деяким еталоном) за допомогою вимірювання сили взаємодії. В гаусовій системі одиниць два одиничних заряди створюють силу взаємодії 1 дина = $1 \text{ r} \cdot \text{cm/c}^2$, якщо знаходяться на відстані 1 см. Відповідно в (1.1) слід покласти

k = 1. Це — означення одиничного заряду в гаусовій системі (тут одиниця заряду не має спеціальної назви):

$$[q] = \Gamma^{1/2} \cdot \text{cm}^{3/2} \cdot \text{c}^{-1}.$$

Підкреслимо, що в (1.1) йдеться про точкові сферичні заряди, тобто такі, взаємодія яких не залежить від їх орієнтації. Справа в тому, що хоча точкове тіло — це таке, розмірами якого можна знехтувати, в конкретній задачі розподіл зарядів всередині цього тіла може бути різко неоднорідним. Це спричинюватиме, взагалі кажучи, відмінність сили взаємодії від (1.1). Прикладом може служити взаємодія точкових диполів. Далі під точковим зарядом ми будемо розуміти саме сферичний точковий заряд, якщо немає інших застережень.

Напруженість електричного поля та індукція магнітного по-

ля. Числову характеристику електромагнітного поля можна дати, вимірюючи сили, що діють на рухомий електричний пробний заряд. Пробний заряд — це такий, впливом якого на зовнішнє поле можна знехтувати. З експерименту відомо, що на заряджене точкове пробне тіло (сферичний точковий заряд) в електромагнітному полі діє сила Лоренца:

$$\mathbf{F} = q\left(\mathbf{E} + \frac{1}{c}\left[\mathbf{v} \times \mathbf{B}\right]\right),\tag{1.2}$$

де q — заряд тіла що не залежить від швидкості, \mathbf{v} — його швидкість, а вектори \mathbf{E} та \mathbf{B} не залежать від тіла і ϵ характеристиками поля; коефіцієнт c визначається системою одиниць.

Вектор **E** називають напруженістю електричного поля, **B** — індукцією магнітного поля. Сукупність цих двох векторів, заданих в кожній точці простору, повністю визначають стан електромагнітного поля в класичній фізиці. Формула (1.2) також дозволяє узагальнити процедуру визначення заряду на випадок руху тіла. Адже спосіб, що базується на законі Кулона (1.1), працює лише для нерухомих зарядів. Спостерігаючи за рухом заряджених частинок, можна визначити (див. вправу 1.1) напруженість електричного поля та індукцію магнітного поля. Звичайно, на практиці існують більш зручні методи вимірювання **E** та **B**.

1.1. Нехай в експерименті визначають прискорення в однорідному електромагнітному полі електронів з заданими початковими швидкостями. Покажіть, що це дає змогу однозначно визначити вектори E та B за формулою (1.2).

В гаусовій системі одиниць коефіцієнт = $2,9979 \cdot 1010$ см/с — швидкість світла, тому розмірності ${\bf E}$ та ${\bf B}$ формально однакові:

$$[E] = [B] = \mathbf{r}^{1/2} \cdot \mathbf{c} \mathbf{m}^{-1/2} \cdot \mathbf{c}^{-1}.$$

Одиниця магнітної індукції має назву «Гаусс». Її не застосовують у випадку електричного поля, хоча формально його напруженість має цю ж розмірність.

1.2. Основні властивості зарядів та електромагнітного поля

Принцип суперпозиції. Формула (1.2) дає змогу виміряти електромагнітне поле, вивчаючи його вплив на рух точкового заряду, але не дозволяє його розрахувати, виходячи з розподілу зарядів. Для цього потрібні

рівняння, що пов'язують певним чином електромагнітне поле з його джерелами. Але перш ніж записати ці рівняння, відзначимо фундаментальний принцип суперпозиції електромагнітних полів: напруженість електричного поля ${\bf E}$ та індукція ${\bf B}$ магнітного поля, створюваних системою зарядів, є сумою полів ${\bf E}_k$, ${\bf B}_k$, що створюються окремими зарядами (або підсистемами) цієї системи:

$$\mathbf{E} = \sum_{k} \mathbf{E}_{k}, \quad \mathbf{B} = \sum_{k} \mathbf{B}_{k}. \tag{1.3}$$

Тут поле (\mathbf{E}_k , \mathbf{B}_k) k-ї підсистеми розглядається окремо. Це твердження, яке значно спрощує розв'язання задач електродинаміки, випливає з дослідних даних. Взагалі кажучи, можна навести приклади, коли фізичні поля не задовольняють принципу суперпозиції. Але ці явища класична електродинаміка не розглядає. В звичайних умовах принцип суперпозиції виконується з дуже високою точністю. Принцип суперпозиції тісно пов'язаний з адитивністю заряду.

Квантування (дискретність) електричного заряду. З експериментів відомо, що найменшим відомим зарядом є заряд електрона, що наближено дорівнює (за абсолютною величиною) $= 4.8 \cdot 10^{-10}$ одиниць гаусової системи. Заряд електрона є від'ємним; заряд протона - додатній і дорівнює заряду електрона з оберненим знаком. Будь-які заряди, що спостерігалися, кратні заряду електрона. Пошуки вільних зарядів, менших за е, або не кратних цій величині, дали негативний результат. Зауважимо, що відхилення зарядів протона й електрона призвело б до порушення електронейтральності атомів, що суперечить експериментальним даним. Слід відзначити, що сучасні експерименти дають змогу вивчати розподіл заряду всередині елементарних часток. Але наявність неперервного розподілу густини заряду всередині, наприклад, протона чи нейтрона, яка досліджується при зіткненнях елементарних часток, не суперечить квантуванню електричного заряду. Ця властивість стосується повного заряду частинок, що можуть існувати ізольовано від інших. **Інваріантність електричного заряду.** Величина заряду не залежить від його швидкості відносно спостерігача. Неінваріантність заряду також могла б призвести до порушення електронейтральності атомів, оскільки електрони в атомах рухаються з швидкостями до 0,1 с; величина швидкості електронів різна на різних оболонках і відрізняється в різних атомах.

Збереження електричного заряду. Якщо вважати встановленим факт квантування заряду, то збереження заряду в звичайних умовах пов'язано зі збереженням кількості протонів та електронів в атомах. Однак відомо, що електричний заряд зберігається і тоді, коли мають місце взаємоперетворення елементарних часток.

Область застосовності законів збереження, квантування та інваріантності електричного заряду виходить далеко за рамки класичної електродинаміки. На цей час порушення цих законів невідомі.

1.3. Розподіли зарядів та струмів

Сила струму. Дамо числову характеристику електричного струму — впорядкованого руху носіїв заряду. Нехай поверхня S є орієнтованою, тобто визначений певний додатній напрямок перетину цієї поверхні. Нехай q(t) — сумарний заряд, що перетнув S з урахуванням напрямку за час t з початку відліку. Тоді, за визначенням, сила струму через поверхню S (в додатному напрямку) є:

$$I_S(t) = \frac{dq(t)}{dt}. (1.4)$$

У разі сталого струму — це заряд, що перетинає S за одиницю часу.

- Здавалося б, що запис (1.4) не ϵ цілком коректний, оскільки заряди дискретні і q(t) змінюється стрибками. Однак завдяки малості цих стрибків q(t) можна апроксимувати гладкою функцією, що ϵ цілком правомірно в макроскопічних застосуваннях.
- Необхідними елементами визначення сили струму є поверхня S та її орієнтація. Але якщо йдеться про сталий струм в провідникові, форма перерізу, через який обчислюється струм, не є суттєвою. Завдяки закону збереження заряду струм через S_1 , S_2 та S_3 (див. рис. 1.1) однаковий. Адже у разі супротивного заряд з часом міг би накопичуватися, наприклад, між S_1 та S_2 , що суперечило б умові стаціонарності.

Мікроскопічний та макроскопічний підхід в електродинаміці. Мікроскопічний підхід оперує з якомога точними значеннями величин, що характеризують електромагнітні взаємодії з врахуванням

будови речовини і в цьому розумінні він є найбільш повним та послідовним. Але використання мікроскопічного підходу не завжди доцільно. Приклад такої ситуації – попереднє обговорення формули (1.4)). У макроскопічних вимірюваннях амперметр вимірює усереднене значення сили струму, і тут можна не зважати на дискретну будову електрики. Це дає змогу застосовувати відповідну математичну модель процесу вимірювання, яка працює з гладкими функціями $I_S(t)$ та q(t) в (1.4)). Якщо треба охарактеризувати нерівномірність розподілу зарядів в об'ємі, можна також використовувати ідеалізацію, коли вводиться густина заряду, яка є неперервною функцією координат. Це можливо, якщо кожна ділянка цього об'єму, де виконують вимірювання, містить досить велику кількість елементарних зарядів. Далі під макроскопічними величинами будемо розуміти такі, що отримані внаслідок деякого усереднення — за часом або у деяких просторових масштабах. З одного боку макроскопічний підхід пов'язаний з можливостями конкретного фізичного експерименту, в якому мікробудова може бути несуттєвою, з іншого боку, застосування неперервних розподілів дає змогу застосувати апарат математичного аналізу для опису явищ.

Густина заряду. Для опису заданого просторового розподілу заряду введемо функцію ρ , що може залежати від координат та від часу і дозволяє обчислити заряд в будь-якій області Ω за формулою:

$$q_{\Omega} = \iiint_{\Omega} \rho(t, \mathbf{r}) dV \tag{1.5}$$

де $\mathbf{r} = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z$, dV = dx dy dz.

Інакше, елемент заряду в об'ємі dV — це є $dq = \rho(t, \mathbf{r})dV$.

Функцію $\rho(t, \mathbf{r})$ називають густиною заряду. Для сталого розподілу це ϵ величина заряду в одиниці об'єму.

Якщо в середовищі присутні однакові носії з зарядом q й об'ємною густиною їх числа (концентрацією) n:

$$\rho = qn \tag{1.6}$$

а в більш загальному випадку:

$$\rho(t, \mathbf{r}) = \sum_{k} q_k n_k(t, \mathbf{r}), \tag{1.7}$$

де індекс k відповідає різним сортам носіїв заряду, кожен із своєю концентрацією.

Густина струму. Цю величину можна визначити формулою для сили струму через поверхню S:

$$I_{S}(t) = \iint_{S} \mathbf{j}(t, \mathbf{r}) \cdot d\mathbf{S}, \qquad (1.8)$$

де **j** — вектор густини струму, що не залежить від S, $d\mathbf{S} = \mathbf{n} dS$, \mathbf{n} — нормаль до елемента поверхні dS. Густина сили струму дає напрям руху зарядів в даному елементі об'єму і за абсолютною величиною — силу струму через одиничний переріз, проведений перпендикулярно до цього напрямку. Маємо:

$$\mathbf{j} = nq\mathbf{v} \tag{1.9}$$

якщо усі заряди з концентрацією n мають однакову швидкість \mathbf{v} та заряд q, або для декількох сортів носіїв заряду:

$$\mathbf{j} = \sum_{k} q_k n_k \mathbf{v}_k \tag{1.10}$$

Ще більш загальний вираз можна записати за наявності розподілу за швидкостями:

$$\mathbf{j} = \sum_{k} \int q_k f_k(t, \mathbf{r}, \mathbf{v}) \mathbf{v}_k dV_x dV_y dV_z, \qquad (1.11)$$

де $f_k(t, \mathbf{r}, \mathbf{v})$ — функція розподілу k-го сорту зарядів за швидкостями.

Поверхневі заряди та струми. Якщо електричні заряди зосереджені у тонкому прошарку поблизу деякої поверхні, доцільно ввести поверхневу густину заряду о. Аналогічно (1.5), покладемо:

$$q_S(t) = \iint\limits_{S} \sigma(t, \xi, \eta) dS(\xi, \eta). \tag{1.12}$$

де q_S — заряд на ділянці S цієї поверхні, ξ та η — координати на поверхні; σ характеризує вміст заряду на одиниці площі.

За наявності руху поверхневих зарядів визначимо силу струму через лінію L (див. рис. 1.2) на цій поверхні:

$$I_L(t) = \frac{dq_L(t)}{dt},\tag{1.13}$$

де dq_L — заряд, що перетинає L за час t з початку спостереження. Тут також має бути зафіксований додатній напрямок при перетині L вздовж цієї поверхні. Лінійна густина і поверхневого струму визначається формулою (для будьякої лінії L на поверхні):

$$I_L(t) = \int_L \mathbf{i}(t, \xi, \eta) d\mathbf{l}(\xi, \eta), \qquad (1.14)$$

де $d\mathbf{l} = \mathbf{n}d\ell$ — орієнтовний елемент довжини на L, \mathbf{n} — нормаль до L на поверхні у точці інтегрування.

1.4. Математичний запис закону збереження заряду

Нехай q_{Ω} — заряд в деякому об'ємі Ω , $\partial\Omega$ — поверхня, що обмежує цей об'єм, $I_{\partial\Omega}$ — струм, що виходить через $\partial\Omega$ назовні з об'єму Ω (будемо вважати, що це відповідає додатній орієнтації поверхні Ω). Тоді, за законом збереження заряду і за означенням струму (1.4), маємо у кожний момент часу:

$$\frac{dq_{\Omega}}{dt} + I_{\partial\Omega} = 0. {(1.15)}$$

Співвідношення (1.15) є інтегральною формою закону збереження заряду. Для поверхневих зарядів та струмів можна подати аналогічне співвідношення, що пов'язує швидкість зміни заряду на ділянку поверхні та струм через межу цієї ділянки.

Отримаємо з (1.15) диференціальне співвідношення для густини заряду $\rho(t, \mathbf{r})$ та густини об'ємного струму $\mathbf{j}(t, \mathbf{r})$. Використовуючи визначення (1.5) для нерухомого об'єму:

$$\frac{dq_{\Omega}}{dt} = \frac{d}{dt} \iiint_{\Omega} \rho(t, \mathbf{r}) dV = \iiint_{\Omega} \frac{\partial \rho(t, \mathbf{r})}{\partial t} dV.$$

Тоді з (1.15) та за виначенням густини струму (1.4):

$$\iiint\limits_{\Omega} \frac{\partial \rho(t, \mathbf{r})}{\partial t} dV + \iint\limits_{\partial \Omega} \mathbf{j} \cdot d\mathbf{S} = 0.$$

Перетворимо інтеграл по замкненій поверхні $\partial\Omega$, що оточує об'єм Ω , за теоремою Остроградського-Гаусса:

$$\iint_{\partial\Omega} \mathbf{j} \cdot d\mathbf{S} = \iiint_{\Omega} \operatorname{div} \mathbf{j} dV,$$

звідки

$$\iiint\limits_{\Omega} \left(\frac{\partial \rho(t, \mathbf{r})}{\partial t} + \operatorname{div} \mathbf{j} \right) dV = 0.$$

Це співвідношення виконується для будь-якого об'єму Ω , тому підінтегральний вираз має дорівнювати нулю:

$$\frac{\partial \rho(t, \mathbf{r})}{\partial t} + \operatorname{div} \mathbf{j} = 0 \tag{1.16}$$

Це диференціальна форма закону збереження заряду або рівняння неперервності для об'ємної густини зарядів.

Рівняння електромагнітного

2.1. Мікроскопічні рівняння Максвелла (інтегральна форма)

В цьому розділі буде розглянута система рівнянь, яка дає змогу аналізувати електродинамічні явища в усій класичній області від мікроскопічних до макроскопічних масштабів. В рамках класичної електродинаміки ці рівняння вважаються точними, вони не містять наближень і явно враховують усі заряди і струми в рамках конкретного явища або теоретичної моделі. Далі будемо називати ці рівняння мікроскопічними — на відміну від макроскопічних рівнянь, які припускають певні наближення або макроскопічні усереднення, наприклад, для опису поляризаційних зарядів і струмів намагнічення, що виникають у суцільному середовищі. Мікроскопічні рівняння отримано дослідним шляхом за допомогою узагальнення великої кількості експериментальних даних. Вихідною для нас буде інтегральна форма рівнянь Максвелла, з якої далі будуть отримані граничні умови і диференціальна форма цих рівнянь. Інтегральна форма мікроскопічних рівнянь має вид:

$$\iint_{\partial\Omega} \mathbf{E} \cdot d\mathbf{S} = 4\pi q_{\Omega}, \tag{2.1}$$

$$\iint_{\partial\Omega} \mathbf{B} \cdot d\mathbf{S} = 0, \tag{2.2}$$

$$\iint_{\partial\Omega} \mathbf{B} \cdot d\mathbf{S} = 0, \tag{2.2}$$

(2.3)

де Ω — довільний нерухомий об'єм, $\partial\Omega$ — його межа; S — довільна нерухома орієнтована поверхня, ∂S — замкнений контур, що її обмежує, q_{Ω} — повний заряд в області Ω .

$$\oint_{\partial S} \mathbf{E} \cdot d\mathbf{r} = -\frac{1}{c} \iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}, \tag{2.4}$$

$$\oint_{\partial S} \mathbf{B} \cdot d\mathbf{r} = \frac{4\pi}{c} I_S + \frac{1}{c} \iint_S \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{S},$$
(2.5)

де S — довільна нерухома орієнтована поверхня, ∂S — замкнений контур, що її обмежує. I_S — струм через S у додатному напрямку.

В літературі можна зустріти форму рівнянь електродинаміки для об'ємів та поверхонь, що деформуються із часом. Зокрема, замість рівняння (2.4) часто використовують зв'язок між електрорушійною силою, що виникає у рухомому провідникові, та зміною потоку магнітного поля через поверхню, що обмежена контуром цього провідника. Цей зв'язок можна отримати з записаних рівнянь, якщо при обчисленні е.р.с. врахувати також внесок сил, що діють на носії струму з боку магнітного поля.

2.2. Сумісність рівнянь Максвелла із законом збереження заряду

Наявність довільного об'єму Ω та довільної поверхні S в рівняннях Максвелла є дещо незвичайним; принаймні, треба перевірити, чи не призводить це до неоднозначностей. Наприклад, в рівнянні (2.5) ми можемо вибрати різні поверхні S_1 і S_2 , що мають спільну межу ∂S (рис. 2.1).

Рис. 2.1

Тоді з рівняння (2.5) легко отримати:

$$\frac{4\pi}{c}(I_{S_1} - I_{S_2}) + \frac{1}{c} \left(\iint\limits_{S_1} \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{S} - \iint\limits_{S_2} \frac{\partial \mathbf{E}}{\partial t} \cdot d\mathbf{S} \right) = 0$$
 (2.6)

Чи суперечить це іншим рівнянням? Виявляється, ні, якщо врахувати закон збереження заряду. Нехай Ω — це область, оточена поверхнями S_1 та S_2 . Межа $\partial\Omega$ має орієнтацію, спільну з однією з цих поверхонь і протилежну до іншої на відповідних ділянках. Тоді рівняння (2.6) можна переписати так:

$$4\pi I_{\partial\Omega} + \frac{d}{dt} \iint_{\partial\Omega} \mathbf{E} \cdot d\mathbf{S} = 0, \qquad (2.7)$$

де похідну винесено за знак інтегралу. Оскільки поверхневий інтеграл тут в силу (2.1) пов'язаний із зарядом q_{Ω} в області Ω , звідси:

$$I_{\partial\Omega} + \frac{q_{\Omega}}{dt} = 0. {(2.8)}$$

Таким чином, рівняння (2.6) тотожно виконується внаслідок рівняння (2.1) та закону збереження заряду (2.8). У разі рівняння (2.4) ми можемо також вибрати різні поверхні інтегрування з однаковою межею; тут аналогічні міркування з огляду на рівняння (2.2) також показують відсутність суперечностей.

2.3. Диференціальна форма рівнянь Максвелла

В рівнянні (2.1) за означенням:

$$q_{\Omega} = \iiint_{\Omega} \rho dV \tag{2.9}$$

де ρ — об'ємна густина заряду. За теоремою Остроградського-Гаусса ліва частина (2.1) також зводиться до об'ємного інтегралу, звідки:

$$\iiint_{\Omega} \operatorname{div} \mathbf{E} dV = \iiint_{\Omega} \rho dV$$

зважаючи на довільність області Ω :

$$\operatorname{div} \mathbf{E} = 4\pi\rho \tag{2.10}$$

Аналогічно, з (2.2) маємо:

$$\operatorname{div} \mathbf{B} = 0. \tag{2.11}$$

В рівнянні (2.4) перетворимо ліву частину за теоремою Стокса:

$$\iint\limits_{S} \operatorname{rot} \mathbf{E} \cdot d\mathbf{S} = -\frac{1}{c} \iint\limits_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}$$

звідки, з урахуванням довільності S:

$$\operatorname{rot} \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}.$$
 (2.12)

Аналогічно, виражаючи також згідно до (2.8) струм у правій частині eqrefInt IV через інтеграл від густини струму \mathbf{j} , отримаємо:

$$\operatorname{rot} \mathbf{B} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}.$$
 (2.13)

Рівняння (2.10) – (2.13) складають систему мікроскопічних рівнянь Максвелла у диференціальній формі.

З рівнянь Максвелла (2.10), (2.13) можна виразити густини заряду та струму через напруженості полів. Виникає питання, чи не суперечитимуть ці рівняння закону збереження заряду (2.8), де цих напруженостей немає. Це питання вище було розглянуто на основі інтегральної форми рівнянь Максвелла. Покажемо це також за допомогою диференціальної форми рівнянь. Візьмемо дивергенцію від обох частин (2.8) враховуючи, що div rot ≡ 0:

$$0 = \frac{4\pi}{c}\operatorname{div}\mathbf{j} + \frac{1}{c}\frac{\partial}{\partial t}\operatorname{div}\mathbf{E}.$$

Підставляючи div **E** з (2.10) отримаємо:

$$\operatorname{div}\mathbf{j} + \frac{\partial \rho}{\partial t} = 0.$$

що збігається з рівнянням неперервності (2.8) — диференціальною формою закону збереження заряду. Зауважимо, що обчислення дивергенції від обох частин (2.12) з урахуванням (2.11) приводить до тотожності.

2.4. Умови на поверхні розриву

Досить часто трапляється ситуація, коли поля **E** або **B** мають розриви першого роду на деякій поверхні S, залишаючись скінченними і неперервними при переміщеннях вздовж цієї поверхні. Це пов'язано з існуванням поверхневих зарядів та струмів на S з густинами σ та **i** відповідно.

Для отримання граничних умов на поверхні розриву, розглянемо довільний досить малий елемент поверхні S, котрий можна вважати майже плоским.

Нехай ${\bf n}$ — нормаль до площини розриву, що розділяє 1 та 2, причому ${\bf n}$ напрямлена з 1 в 2

Нехай Ω — область всередині циліндра (рис. 2.2), з основами S_1 та S_2 , паралельними S, причому S_1 лежить у середовищі $1, S_2$ — в 2, а висота циліндра дорівнює h.

Застосуємо рівняння (2.1) розбиваючи інтеграл по $\partial\Omega$ на частини, що відповідають S_1 , S_2 та боковій поверхні циліндра $\partial\Omega'$:

$$\iint_{S_1} \mathbf{E} \cdot d\mathbf{S} + \iint_{S_2} \mathbf{E} \cdot d\mathbf{S} + \iint_{\partial \Omega'} \mathbf{E} \cdot d\mathbf{S} = 4\pi q_{\Omega},$$

де повний заряд всередині Ω складається в загальному випадку з неперервнорозподіленого об'ємного заряду із інтегрованою об'ємною

густиною ρ та поверхневого заряду з поверхневою густиною σ на S:

$$q_{\Omega} = \iiint\limits_{\Omega} \rho dV + \iint\limits_{S} \sigma dS.$$

Якщо висота $h \to 0$, об'єм та бокова поверхня циліндра також прямують до нуля, а з ними й інтеграли по об'єму та по бічній поверхні. Відкидаючи ці інтеграли, отримаємо:

$$\iint\limits_{S_1} \mathbf{E}_1 \cdot d\mathbf{S} + \iint\limits_{S_2} \mathbf{E}_2 \cdot d\mathbf{S} = 4\pi q_{\Omega}.$$

Оскільки:

$$\iint\limits_{S_1} \mathbf{E}_1 \cdot d\mathbf{S} = -\iint\limits_{S} \mathbf{E}_1 \cdot \mathbf{n} \ dS, \iint\limits_{S_2} \mathbf{E}_2 \cdot d\mathbf{S} = \iint\limits_{S} \mathbf{E}_1 \cdot \mathbf{n} \ dS,$$

де враховано напрямки нормалей до $\partial\Omega$ на S_1 та S_2 , звідки:

$$\iint\limits_{S} (\mathbf{E}_2 - \mathbf{E}_1) \cdot \mathbf{n} \ dS = 4\pi \iint\limits_{S} \sigma dS.$$

Завдяки довільності S, дістаємо співвідношення в будь-якій точці поверхні розриву:

$$(\mathbf{E}_2 - \mathbf{E}_1) \cdot \mathbf{n} = 4\pi\sigma,\tag{2.14}$$

яке пов'язує нормальні до поверхні розриву складові напруженості електричного поля з обох боків розриву.

Щоб отримати зв'язок тангенціальних компонент Е, звернемося до рівняння (2.4). Розглянемо прямокутний контур, дві сторони *BC* і *AD* (рис. 2.3) якого паралельні до поверхні розриву.

3 рівняння (<mark>2.4</mark>):

$$\int_{AB} \mathbf{E} \cdot d\mathbf{r} + \int_{BC} \mathbf{E} \cdot d\mathbf{r} + \int_{CD} \mathbf{E} \cdot d\mathbf{r} + \int_{DA} \mathbf{E} \cdot d\mathbf{r} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{S}.$$

Рис. 2.3. До виведення другої граничної умови

Інтеграл по S (за умови неперервності $\frac{\partial \mathbf{B}}{\partial t}$) прямує до нуля при $h \to 0$. Тому, враховуючи напрямок обходу контура, що визначає знак інтегралів по BC і AD, можна записати:

$$\int_{BC} (\mathbf{E}_2 - \mathbf{E}_1) \cdot \tau d\ell = 0$$

де τ — тангенціальний одиничний вектор вздовж BC. Звідси, завдяки довільності вибору контура ABCD,

$$(\mathbf{E}_2 - \mathbf{E}_1) \cdot \boldsymbol{\tau} = 0 \tag{2.15}$$

Очевидно, це співвідношення справедливе, якщо τ — довільний тангенціальний до поверхні S одиничний вектор. Легко перевірити, розглядаючи (2.15) для двох незалежних напрямків τ на поверхні S, що еквівалентна формі граничних умов для тангенціальних складових може бути записана так:

$$[\mathbf{n} \times (\mathbf{E}_2 - \mathbf{E}_1)] = 0$$

Таким чином, тангенціальна складова напруженості електричного поля не має розриву на S.

З рівняння Максвелла (2.2) отримуємо співвідношення для нормальних компонент індукції магнітного поля аналогічно (2.14):

$$(\mathbf{B}_2 - \mathbf{B}_1) \cdot \mathbf{n} = 0 \tag{2.16}$$

тобто нормальна компонента індукції магнітного поля не має розривів. Це ϵ наслідком відсутності магнітних зарядів, в даному випадку, поверхневих.

На відміну від цього, тангенціальна компонента ${\bf B}$ може мати розриви за наявності поверхневого струму з поверхневою густиною ${\bf i}$.

Нехай **n** — вектор нормалі до поверхні, проведений з 1 в 2, τ — тангенціальний одиничний вектор вздовж BC, а **b** — вектор, що перпендикулярний до τ та **n** і утворює разом з ними праву трійку Запишемо:

$$\mathbf{B} = B_n \mathbf{n} + B_\tau \tau + B_b \mathbf{b},$$

де напрямок одиничного вектора **b** відповідає напрямку **i**, напрямок одиничного вектора τ перпендикулярний до **n** та **b**. З рівняння (2.5) для контура *ABCD* при $h \to 0$, враховуючи, що за цієї умови інтеграли по сторонам *AB* і *CD* прямують до нуля, маємо:

$$\int_{BC} \mathbf{B} \cdot d\mathbf{r} + \int_{DA} \mathbf{B} \cdot d\mathbf{r} = \int_{BC} (\mathbf{B}_2 - \mathbf{B}_1) \cdot \tau d\ell = \frac{4\pi}{c} I_{BC},$$

де $I_{BC} = \int\limits_{BC} \mathbf{i} \cdot \mathbf{b} \ d\ell$ — поверхневий струм через ВС. Звідси:

$$(\mathbf{B}_2 - \mathbf{B}_1) \cdot \boldsymbol{\tau} = \frac{4\pi}{c} \mathbf{i} \cdot \mathbf{b}. \tag{2.17}$$

Розглядаючи (2.17) для двох незалежних напрямків τ можемо написати:

$$[\mathbf{n} \times (\mathbf{B}_2 - \mathbf{B}_1)] = \frac{4\pi}{c} \mathbf{i}. \tag{2.18}$$

2.5. Закони збереження

Збереження енергії електромагнітного поля. В електромагнітному полі на заряди діє сила Лоренца (1.2). Потужність, що витрачає ця сила, ϵ :

$$\mathbf{F} \cdot \mathbf{v} = q \mathbf{E} \cdot \mathbf{v}.$$

Якщо концентрація зарядів ϵ n, маємо $\mathbf{j} = qn\mathbf{v}$; тоді потужність, що витрача ϵ електричне поле в одиничному об'ємі, ϵ :

$$\frac{dA}{dt} = \mathbf{j} \cdot \mathbf{E}.\tag{2.19}$$

Легко перевірити, що ця формула зберігається у разі загального розподілу різних зарядів за швидкостями.

3 рівняння (2.13):

$$\mathbf{j} = \frac{c}{4\pi} \operatorname{rot} \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}.$$

звідси, за формулами векторного аналізу:

$$\mathbf{j} \cdot \mathbf{E} = \frac{c}{4\pi} \mathbf{E} \cdot \operatorname{rot} \mathbf{B} - \frac{1}{4\pi} \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial t} =$$

$$= -\operatorname{div} \left(\frac{c}{4\pi} [\mathbf{E} \times \mathbf{B}] \right) + \frac{c}{4\pi} \mathbf{B} \cdot \operatorname{rot} \mathbf{E} - \frac{\partial}{\partial t} \left(\frac{1}{8\pi} \mathbf{E}^2 \right)$$

В силу рівняння (2.12):

$$\mathbf{j} \cdot \mathbf{E} = -\operatorname{div}\left(\frac{c}{4\pi}[\mathbf{E} \times \mathbf{B}]\right) - \frac{1}{4\pi}\mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial t} - \frac{\partial}{\partial t}\left(\frac{1}{8\pi}\mathbf{E}^{2}\right) =$$

$$= -\operatorname{div}\left(\frac{c}{4\pi}[\mathbf{E} \times \mathbf{B}]\right) - \frac{\partial}{\partial t}\left(\frac{1}{8\pi}\mathbf{E}^{2} + \frac{1}{8\pi}\mathbf{B}^{2}\right)$$

Звідси отримуємо важливе співвідношення:

$$\mathbf{j} \cdot \mathbf{E} + \operatorname{div} \mathbf{\Pi} + \frac{\partial}{\partial t} \frac{\mathbf{E}^2 + \mathbf{B}^2}{8\pi} = 0, \tag{2.20}$$

де величину:

$$\mathbf{\Pi} = \frac{c}{4\pi} [\mathbf{E} \times \mathbf{B}] \tag{2.21}$$

називають вектором Пойнтінга; як буде видно далі, він має зміст густини потоку енергії.

Співвідношення (2.20) виражає енергетичний баланс в одиниці об'єму. Проінтегруємо його по деякій області Ω , перетворюючи інтеграл з дивергентним членом в інтеграл по (замкненій) поверхні $\partial\Omega$, що оточує Ω :

$$\iiint_{\Omega} \mathbf{j} \cdot \mathbf{E} dV + \oiint_{\partial \Omega} \mathbf{\Pi} \cdot d\mathbf{S} + \frac{\partial}{\partial t} \iiint_{\Omega} \frac{\mathbf{E}^2 + \mathbf{B}^2}{8\pi} dV = 0.$$
 (2.22)

Перший в доданок в (2.22) — це робота, яку виконує поле за одиницю часу в об'ємі Ω , другий — потік енергії через поверхню $\partial\Omega$, останній доданок — швидкість зміни енергії електромагнітного поля в об'ємі Ω . Величина:

$$W = \iiint\limits_{\Omega} \frac{\mathbf{E}^2 + \mathbf{B}^2}{8\pi} dV \tag{2.23}$$

являє собою енергію поля в області Ω .

Закон збереження імпульсу. Імпульс, що передає поле зарядам в одиниці об'єму, визначається силою Лоренца (1.2):

$$\mathbf{f} = \rho \mathbf{E} + \frac{1}{c} \left[\mathbf{j} \times \mathbf{B} \right].$$

З рівняння Максвелла (2.10):

$$\rho \mathbf{E} = \frac{1}{4\pi} \mathbf{E} \operatorname{div} \mathbf{E},$$

або для k-ої компоненти:

$$4\pi\rho E_k = E_k \partial_i E_i = \partial_i (E_i E_k) - E_i \partial_i E_k.$$

Запишемо рівняння (2.12) rot $\mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$ покомпонентно:

$$(\operatorname{rot} \mathbf{E})_i = \varepsilon_{ijk} \partial_j E_k = -\frac{1}{c} \frac{\partial B_i}{\partial t},$$

помножимо його на ε_{pqi} ε та підсумуємо по i:

$$\varepsilon_{pqi}\varepsilon_{ijk}\partial_{j}E_{k} = -\varepsilon_{pqi}\frac{1}{c}\frac{\partial B_{i}}{\partial t},$$

або, за допомогою формули згортки:

$$\partial_p E_q - \partial_q E_p = -\varepsilon_{pqi} \frac{1}{c} \frac{\partial B_i}{\partial t}.$$

Враховуючи це співвідношення, дістанемо:

$$\begin{split} 4\pi\rho E_k &= \partial_i (E_i E_k) - E_i \partial_k E_i - \frac{1}{c} \varepsilon_{kij} E_i \frac{\partial B_j}{\partial t} = \\ &= \partial_i \left(E_k E_i - \frac{1}{2} \mathbf{E}^2 \delta_{ik} \right) - \frac{1}{c} \left[\mathbf{E} \times \frac{\partial \mathbf{B}}{\partial t} \right]_k. \end{split}$$

3 останнього рівняння Максвелла(2.13) $vect j = \frac{c}{4\pi} \operatorname{rot} \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$:

$$\frac{1}{c} \left[\mathbf{j} \times \mathbf{B} \right]_{k} = \varepsilon_{kij} j_{i} B_{j} = \frac{1}{c} \varepsilon_{kij} \left[\frac{c}{4\pi} \varepsilon_{ipq} \partial_{p} B_{q} - \frac{1}{4\pi} \frac{\partial E_{i}}{\partial t} \right] B_{j} =
= \frac{1}{4\pi} \left(\delta_{kq} \delta_{jp} - \delta_{kp} \delta_{jq} \right) B_{j} \partial_{p} B_{q} - \frac{1}{4\pi c} \varepsilon_{kij} \frac{\partial E_{i}}{\partial t} B_{j} =
= \frac{1}{4\pi} \left(B_{j} \partial_{j} B_{k} - B_{j} \partial_{k} B_{j} \right) - \frac{1}{4\pi c} \left[\frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} \right]_{k}.$$

Це можна подати як:

$$\frac{4\pi}{c} \left[\mathbf{j} \times \mathbf{B} \right]_k = \partial_j \left(B_k B_j - \delta_{ij} \frac{\mathbf{B}^2}{2} \right) - \frac{1}{4\pi c} \left[\frac{\partial \mathbf{E}}{\partial t} \times \mathbf{B} \right]_k.$$

Маємо результат для балансу імпульсу в одиниці об'єму:

$$f_k + T_{kj,j} + \frac{\partial \pi_k}{\partial t} = 0, \quad \pi = \frac{\Pi}{c^2},$$
 (2.24)

де

$$T_{kj} = \frac{1}{4\pi} (E_k E_j + B_k B_j) - \frac{1}{8\pi} \delta_{kj} (\mathbf{E}^2 + \mathbf{B}^2)$$

максвеллівський тензор натягу.

Інтегральне співвідношення:

$$\iiint_{\Omega} f_k dV + \oiint_{\partial \Omega} T_{kj} n_j dS + \frac{\partial}{\partial t} \iiint_{\Omega} \pi_k dV = 0$$
 (2.25)

пов'язує зміну імпульсу в об'ємі Ω з дією зовнішніх зовнішніх сил та потоком через бічну поверхню; тут π_k — імпульс поля в одиниці об'єму.

Закон збереження момента імпульсу. Виходимо з рівнянь:

$$\frac{d\mathbf{L}}{dt} = \mathbf{M}, \quad \mathbf{M} = [\mathbf{r} \times \mathbf{f}].$$

Момент сили, що діє на заряди в одиниці об'єму, є, за означенням,

$$M_k = \varepsilon_{kij} x_i f_j.$$

Використовуючи співвідношення, отримані для баланса імпульсу, маємо:

$$\varepsilon_{ijk}x_jf_k + \varepsilon_{ijk}x_jT_{kj,j} + \frac{\partial L_i}{\partial t} = 0,$$
 де $L_i = \varepsilon_{ijk}x_i\pi_k$

можна інтерпретувати як густину момента імпульсу поля.

Завдяки симетрії T_{kl} по індексах:

$$\varepsilon_{ijk}x_jT_{kl,l}=\partial_l(\varepsilon_{ijk}x_jT_{kl})-\varepsilon_{ijk}\delta_{lj}T_{kl}=\partial_l(\varepsilon_{ijk}x_jT_{kl}).$$

Звідси дістаємо локальне співвідношення для зміни моменту імпульсу:

$$M_i + \partial_l(\varepsilon_{ijk}x_jT_{kl}) + \frac{\partial L_i}{\partial t} = 0.$$
 (2.26)

Рівняння баланса моменту імпульсу в об'ємі Ω має вид:

$$\iiint_{\Omega} M_i dV + \oiint_{\partial \Omega} \varepsilon_{ijk} x_j T_{kl} n_l dS + \frac{\partial}{\partial t} \iiint_{\Omega} L_i dV = 0.$$
 (2.27)

3

Межі застосовності класичної електродинаміки

3.1. Квантова механіка і електродинаміка.

На сучасному рівні знань найбільш фундаментальним є квантовий розгляд фізичних процесів, який і визначає межі застосовності класичної теорії. Електродинамічна система складається з заряджених частинок та електромагнітного поля; тут необхідно визначити, яка з цих складових (або уся система в цілому) допускає класичний опис. Широке коло фізичних задач потребує квантового опису руху частинок в класичному електромагнітному полі. Основні зміни, у порівнянні з класичною механікою, тут стосуються рівнянь (1.1), (1.2) та інших, пов'язаних із поняттями траєкторії, сили, другим законом Ньютона, тощо. Перегляд цих понять у дослідженнях атомів та молекул – прерогатива квантової механіки, яка аналізує мікрооб'єкти з розмірами $10^{-13} \div 10^{-16}$ см. Однак деякі мікропроцеси відзначають властивості твердих тіл і рідин також на макроскопічних масштабах. Хоча рух заряджених частинок в цих задачах визначається законами квантової механіки, досить часто залишаються незмінними класичні поняття про напруженість електричного поля та магнітну індукцію; наприклад, в рівнянні Шредінгера для електрона в атомі водню фігурує класичний кулонівський потенціал поля ядра. Звичайно, що для визначення цих полів ми не завжди можемо прямо скористатися формулою (1.2), що пов'язана з механікою точкової частинки. Але зберігається класичний опис електромагнітного поля.

3.2. Квантова будова випромінювання

За певних умов треба враховувати квантові властивості самого електромагнітного поля. Вивчення рівноважного електромагнітного випромінювання, а також фотоелектричних явищ (М. Планк, 1900; А. Ейнштейн,1905) привело до висновку, що електромагнітне випромінювання має корпускулярні властивості і може розглядатися як сукупність окремих квантів-фотонів, з енергією $= h\nu$, де h— стала Планка, ν — частота випромінювання. Коли фотонів багато, можли-

вий класичний опис поля випромінювання. Але в слабких пучках випромінювання рахунок йде на окремі фотони і сучасна техніка дозволяє майже поодиночну їх реєстрацію. Теоретичну базу для опису процесів, в яких суттєвими ϵ квантові властивості і речовини, і електромагнітного поля, дає квантова електродинаміка, яка ε складовою частиною квантової теорії поля. Квантова електродинаміка передбачає суттєві зміни характеру електродинамічної взаємодії також в області дуже сильних полів. В електричному полі з напруженістю $E \sim \frac{m_e^2 c^3}{he} = 10^{20} \; {\rm B/m}$ необхідно враховувати процеси народження та знищення електрон-позитронних пар. В цих умовах електромагнітне поле не може розглядатися окремо від електрон- позитронного поля, навіть при поширенні електромагнітної хвилі в вакуумі. Складна взаємодія цих полів робить нелінійними ефективні рівняння для класичних величин Е та В; завдяки цьому стає можливим процес розсіювання фотона фотоном. В цьому розумінні можна говорити про порушення класичного принципу суперпозиції.

3.3. Електродинаміка і гравітація

Взаємодію гравітаційного та електромагнітного полів розглядає загальна теорія відносності. Сильне гравітаційне поле не міняє класичний характер електричного та магнітного полів, але вносить корективи в рівняння електродинаміки на фоні викривлення простору-часу. Вплив гравітаційних ефектів можна оцінити за допомогою параметра $\mu = |U|/c^2$, де U — порядок зміни ньютонівського гравітаційного потенціалу в конкретній задачі. Наприклад, при проходженні променів світла біля Сонця $\mu = 10^{-6}$, відповідний порядок величини має кут зміщення віддаленого джерела променів, що його спостерігають з Землі. Гравітаційно-релятивістські ефекти в Сонячній системі необхідно враховувати для правильної інтерпретації найбільш точних астрометричних спостережень.

Частина II

Розв'язки рівнянь Максвелла

4

Потенціали електромагнітного поля

Існує досить багато методів аналізу рівнянь Максвелла (2.10) – (2.13), серед яких одним з найбільш поширених є введення потенціалів, що дозволяють дещо зменшити число невідомих функцій.

З умови соленоїдальності магнітного поля (2.11) випливає, що існує деяке векторне поле \mathbf{A} , таке, що:

$$\mathbf{B} = \operatorname{rot} \mathbf{A} \tag{4.1}$$

Підставляючи це в (2.12), після елементарних перетворень маємо:

$$\operatorname{rot}\left(\mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t}\right) = 0,$$

звідки випливає існування скалярного поля ϕ , такого, що

$$\mathbf{E} = -\nabla \phi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \tag{4.2}$$

Таким чином, якщо шукати електромагнітне поле у вигляді (4.1), (4.2), рівняння (2.11), (2.12) виконуються автоматично.

Калібрувальна інваріантність. Формули (4.1), (4.2) не визначають потенціали однозначно. Розглянемо перетворення $(\phi, \mathbf{A}) \to (\phi', \mathbf{A}')$:

$$\mathbf{A}' = \mathbf{A} + \nabla \chi \tag{4.3}$$

$$\phi' = \phi - \frac{1}{c} \frac{\partial \chi}{\partial t} \tag{4.4}$$

Підставляючи в (4.1), (4.2), бачимо, що напруженості електромагнітного поля виражаються через ϕ' , \mathbf{A}' подібно до ϕ , \mathbf{A} :

$$\mathbf{B} = \operatorname{rot} \mathbf{A}' \tag{4.5}$$

$$\mathbf{E} = -\nabla \phi' - \frac{1}{c} \frac{\partial \mathbf{A}'}{\partial t} \tag{4.6}$$

Таким чином, потенціали (ϕ, \mathbf{A}) містять деякі степені свободи, що ніяк не впливають на фізичну ситуацію. Цю обставину називають калібрувальною інваріантністю рівнянь поля, а перетворення (4.3), (4.4), або інші, що не впливають на спостережувані величини (\mathbf{E}, \mathbf{B}) , називають калібрувальними перетвореннями.

Калібрувальна умова Лоренца. Калібрувальна інваріантність дозволяє накладати додаткові умови на потенціали (ϕ, \mathbf{A}) , за допомогою яких можна привести рівняння до більш зручного вигляду.

Розглянемо умову Лоренца:

$$\operatorname{div} \mathbf{A} + \frac{1}{c} \frac{\partial \phi}{\partial t} = 0 \tag{4.7}$$

Цю умову можна задовольнити за допомогою перетворень (4.3), (4.4). Дійсно, припустимо, що:

$$\operatorname{div} \mathbf{A} + \frac{1}{c} \frac{\partial \phi}{\partial t} = f \neq 0$$

та перейдемо до нових потенціалів (ϕ' , \mathbf{A}') за формулами (4.3), (4.4). Тоді:

$$\operatorname{div} \mathbf{A}' + \frac{1}{c} \frac{\partial \phi'}{\partial t} = f - \frac{1}{c^2} \frac{\partial^2 \chi}{\partial t^2} + \nabla^2 \chi$$

Підбираючи функцію χ таким чином, щоб $f = \prod \chi$ (де $\prod = \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$ – оператор Даламбера), бачимо, що нові потенціали (ϕ' , \mathbf{A}') задовольняють калібрувальній умові Лоренца (4.7).

Отримаємо рівняння для (ϕ, \mathbf{A}) , припускаючи тепер, що умова (4.7) виконана. З подальшого буде видно, що розв'язки рівнянь, з якими матимемо справу, дійсно задовольняють цій умові. З урахуванням співвідношень (4.2) та (4.7) маємо:

$$\operatorname{div} \mathbf{E} = \operatorname{div} \left(-\nabla \phi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} \right) = -\nabla^2 \phi - \frac{1}{c} \frac{\partial}{\partial t} \operatorname{div} \mathbf{A} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi.$$

Тоді з рівняння (2.10) маємо:

$$\Box \phi = -4\pi\rho \tag{4.8}$$

Підставимо (4.1) та (4.2) в (2.13):

rot rot
$$\mathbf{A} = \nabla \operatorname{div} \mathbf{A} - \nabla^2 \mathbf{A} = -\frac{1}{c} \nabla \frac{\partial \phi}{\partial t} - \nabla^2 \mathbf{A}.$$

де враховано умову Лоренца (4.7). Оскільки члени з скалярним потенціалом ϕ в останній формулі скорочуються, отримуємо:

$$\square \mathbf{A} = -\frac{4\pi}{c} \mathbf{j} \tag{4.9}$$

Перевіримо, чи сумісні рівняння (4.8) та (4.9) з умовою Лоренца (4.7). Комбінування рівнянь $\frac{1}{c}\frac{\partial}{\partial t}$ (4.8) + div (4.9) дає:

За умови Лоренца права частина дорівнює нулю, тобто закон збереження заряду є необхідною умовою існування розв'язку. Навпаки, якщо цей закон виконується, то:

Останнє співвідношення, якщо його розглядати як рівняння для:

$$f = \operatorname{div} \mathbf{A} + \frac{1}{c} \frac{\partial \phi}{\partial t} \tag{4.11}$$

само по собі не гарантує $f \equiv 0$, оскільки розв'язок рівняння:

$$\Box f = 0 \tag{4.12}$$

не є єдиним (воно має, наприклад, хвильові розв'язки). Але за умови відсутності зовнішнього випромінювання, коли розглядається обмежена система зарядів і струмів, рівняння (4.12) має тільки тривіальний розв'язок f = 0. Ця ситуація відповідає запізнюючим розв'язкам рівнянь(4.8) та (4.9), що розглядаються нижче.

Калібрування Гамільтона. Розглянемо іншу калібрувальну умову Гамільтона:

$$\phi = 0 \tag{4.13}$$

Це співвідношення також завжди можна задовольнити за допомогою калібрувальних перетворень (4.3), (4.4). Тоді за умови (4.13) рівняння поля (2.10) перепишеться, з урахуванням (4.2), так:

$$-\frac{1}{c}\frac{\partial}{\partial t}(\operatorname{div}\mathbf{A}) = -4\pi\rho\tag{4.14}$$

Рівняння (2.13) перепишеться, з урахуванням (4.1) та (4.2), так:

$$\square \mathbf{A} + \nabla \operatorname{div} \mathbf{A} = -\frac{4\pi}{c} \mathbf{j}$$
 (4.15)

Перевіримо, чи сумісні рівняння ці рівняння. Застосування дивергенції до лівої частини останнього рівняння дає:

$$\operatorname{div}(\square \mathbf{A} - \nabla \operatorname{div} \mathbf{A}) = \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \operatorname{div} \mathbf{A} - \nabla^2 \operatorname{div} \mathbf{A} + \nabla^2 \operatorname{div} \mathbf{A},$$

або

$$-\frac{1}{c}\frac{\partial}{\partial t}\left[\frac{1}{c}\frac{\partial}{\partial t}(\operatorname{div}\mathbf{A})\right] + \frac{4\pi}{c}\operatorname{div}\mathbf{j} = 0.$$
 (4.16)

Якщо врахувати (4.15), маємо:

$$\operatorname{div} \mathbf{J} + \frac{\partial \rho}{\partial t} = 0$$

тобто закон збереження заряду (1.16) є необхідною умовою розв'язку (4.15), (4.16) за умови (4.13).

Калібрування Кулона. Кулонівське калібрування накладає умову:

$$\operatorname{div} \mathbf{A} = 0 \tag{4.17}$$

також може бути виконана за допомогою підбору калібрувального перетворення.

За умовою (4.17) з (2.10) маємо рівняння Пуассона для потенціалу ϕ :

$$\nabla^2 \phi = -4\pi \rho \tag{4.18}$$

аналогічно електростатиці.

З іншого рівняння Максвелла (2.13) дістаємо:

$$\square \mathbf{A} = \frac{4\pi}{c} \mathbf{j} - \frac{1}{c} \nabla \frac{\partial \phi}{\partial t}.$$
 (4.19)

Для перевірки сумісності (4.18) та (4.19) обчислимо з останнього рівняння з урахуванням (4.17):

де підставлено $\nabla^2 \phi$ з (4.18). Знову рівняння неперервності — закон збереження заряду — виступає як необхідна умова існування розв'язку при заданій калібрувальній умові. Навпаки, якщо виконується рівняння неперервності, для розв'язку (4.19) маємо $\square \operatorname{div} \mathbf{A} = 0$ і за відповідних граничних умов дістанемо (4.17).

5

Потенціали ізольованої системи зарядів і струмів

В цьому розділі нас цікавитиме поле обмеженої системи, яка є ізольована. Це означає, що протягом усієї історії системи, починаючи з нескінченного минулого, зовнішніх впливів немає; тобто немає джерел на нескінченності чи якогось зовнішнього випромінювання. На відміну від задачі Коші , коли поля розглядають за t > 0, а при t = 0 задають початкові умови (разом з граничними умовами на нескінченності), у разі ізольованої системи будемо розглядати поля за усіх часів, припускаючи, що функції $\rho(t, \mathbf{r})$ та $\mathbf{j}(t, \mathbf{r})$ задані на усій дійсній осі t. Це, зокрема, дозволяє оперувати з перетворенням Фур'є цих функцій за часом. Для ізольованої системи буде отримано розв'язок рівнянь (4.8), (4.9) у вигляді запізнюючих потенціалів, який застосовується для розгляду різноманітних задач теорії випромінювання.

5.1. Перетворення Фур'є та рівняння Гельмгольца

Позначимо:

$$\tilde{\phi}(\omega, \vec{r}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dt \, e^{i\omega t} \phi(t, \mathbf{r}). \tag{5.1}$$

$$\tilde{\mathbf{A}}(\omega, \mathbf{r}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dt \, e^{i\omega t} \mathbf{A}(t, \mathbf{r}). \tag{5.2}$$

— перетворення Фур'є для потенціалів. Оскільки диференціювання за часом індукує множення фур'є-образів на $(-i\omega)$, аналог калібрувальної умови Лоренца (4.7) має вигляд:

$$-\frac{i\omega}{c}\tilde{\phi} + \operatorname{div}\tilde{\mathbf{A}} = 0. \tag{5.3}$$

З закону збереження заряду (1.16) маємо:

$$-i\omega\tilde{\rho} + \operatorname{div}\tilde{\mathbf{j}} = 0, \tag{5.4}$$

де

$$\tilde{\rho}(\omega, \mathbf{r}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dt \, e^{i\omega t} \rho(t, \mathbf{r}), \tag{5.5}$$

$$\tilde{\mathbf{j}}(\omega, \mathbf{r}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dt \, e^{i\omega t} \mathbf{j}(t, \mathbf{r}). \tag{5.6}$$

Далі розглянемо рівняння для потенціалів саме за умови Лоренца (4.7) або (4.3). З рівнянь (4.8), (4.9), де друга похідна за часом індукує множення на $-\omega^2$ фур'є-образів, отримаємо *рівняння Гельмгольца*:

$$\Delta \tilde{\phi} + k^2 \tilde{\varphi} = -4\pi \tilde{\rho}, \quad \text{ge} \quad k = \frac{\omega}{c}.$$
 (5.7)

$$\Delta \tilde{\mathbf{A}} + k^2 \tilde{\mathbf{A}} = -\frac{4\pi}{c} \tilde{\mathbf{j}}.$$
 (5.8)

5.2. Умова випромінювання для ізольованої системи

Систему зарядів і струмів називатимемо ізольованою, якщо вона зосереджена в обмеженій області за відсутності зовнішнього випромінювання, що йде з нескінченності. Зосередимось на пошуку розв'язку рівняння (4.8) та його фур'є-образу (5.7)для скалярного потенціалу ϕ . Зараз ми зацікавлені у знаходженні розв'язку, що описує поле ізольованої системи джерел. Розглянемо спочатку розв'язок, що відповідає сферично симетричному точковому джерелу, та задовольняє рівнянню:

де $\chi(t, \mathbf{r}') = 4\pi \rho(t, \mathbf{r}_0)$. Очевидно, розв'язок (4.8) можна подати, як суперпозицію таких розв'язків з різними \mathbf{r}_0 .

Нехай $\mathbf{r}'=0$. Поле, що створюється точковим джерелом у точці \mathbf{r} , є сферично-симетричним $\phi=\phi(t,r),\ r=|\mathbf{r}|$. Завдяки сферичній симетрії:

$$\Box \phi = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \phi}{\partial r} \right).$$

Покладемо $\phi = \frac{\psi}{r}$, тоді за r > 0:

$$\Box \phi = \frac{1}{r} \left(\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} - \frac{\partial^2 \psi}{\partial r^2} \right) = 0.$$

Це одновимірне хвильове рівняння, яке має загальний розв'язок:

$$\psi = f_1 \left(t - \frac{r}{c} \right) + f_2 \left(t + \frac{r}{c} \right),$$

де f_1 та f_2 — довільні функції однієї змінної. Тут f_1 описує хвилі, що випромінюються джерелом, а f_2 — хвилі, що приходять з нескінченності. За відсутності зовнішнього випромінювання слід покласти $f_2 = 0$. Звідси:

$$\phi = \frac{1}{r} f_1 \left(t - \frac{r}{c} \right).$$

Якщо джерело знаходиться у точці $\mathbf{r}' \neq 0$, очевидно:

$$\phi(t, \mathbf{r}) = \frac{1}{|\mathbf{r} - \mathbf{r}'|} f_1 \left(t - \frac{|\mathbf{r} - \mathbf{r}'|}{c} \right). \tag{5.9}$$

Умова випромінювання і рівняння Гельмгольца

Для фур'є-образів розв'язку (5.9) маємо:

$$\tilde{\phi}(\omega, \mathbf{r}) = \frac{1}{\sqrt{2\pi}} \int dt \, e^{i\omega t} \frac{1}{|\mathbf{r} - \mathbf{r}_0|} \exp\left[i\frac{\omega}{c}|\mathbf{r} - \mathbf{r}_0|\right] \tilde{f}_1(\omega), \tag{5.10}$$

де

$$\tilde{f}_1(\omega) \equiv \frac{1}{\sqrt{2\pi}} \int d\xi \, e^{i\omega\xi} f_1(\xi). \tag{5.11}$$

На великих відстанях

$$\tilde{\phi}(\omega, \mathbf{r}) \sim \frac{e^{i\omega(r - \mathbf{n}\mathbf{r}_0)/c}}{r} + O(r^{-2}).$$
 (5.12)

Очевидно, для будь-якого сферично-симетричного розв'язку рівняння Гельмгольца (5.7) зовні області, де права частина цього рівняння відмінна від нуля, за умови відсутності зовнішнього випромінювання

$$\tilde{\phi}(\omega, \mathbf{r}) \sim \frac{e^{ikr}}{r}.$$
 (5.13)

Розв'язок рівняння Гельмгольца, що задовольняє умовам випромінювання, у випадку обмеженої системи джерел має бути суперпозицією розв'язків типу (5.13) з різними \mathbf{r}' і мати асимптотику

$$\tilde{\phi}(\omega, \mathbf{r}) \approx C(\mathbf{n}) \frac{e^{ikr}}{r} + O(r^{-2}),$$
 (5.14)

де амплітуда $C(\mathbf{n})$ залежить лише від кутів.

5.3. Запізнюючі потенціали

Умови випромінювання однозначно задають поля ізольованої системи струмів і розв'язки хвильових рівнянь (2.1.6), (2.1.8) для

потенціалів, а також рівнянь Гельмгольца (2.2.5), (2.2.6) для їх Фур'єперетворень. Розв'язки (2.1.6), (2.1.8) можна отримати безпосередньо, використовуючи сферично-симетричний розв'язок (2.2.7). Але ми проведемо аналогічний розгляд з використанням сферично-симетричного розв'язку рівнянь Гельмгольца, а потім перейдемо до розв'язків (2.1.6), (2.1.8) через перетворення Фур'є. Розглянемо рівняння для скалярного потенціалу (2.2.5) і шукатимемо фундаментальний розв'язок оператора в лівій частині (2.2.5):

$$\nabla^2 \tilde{G} + k^2 \tilde{G} = \delta(\mathbf{r}) \tag{5.15}$$

Поле, створюване сферично-симетричним точковим джерелом, також є сферично-симетричним, тому можна покласти

$$\tilde{G}(\mathbf{r}) = \frac{g(r)}{r} \tag{5.16}$$

Тоді з (2.2.9) за r > 0 маємо

$$\frac{d^2g}{dr^2} + k^2g = 0 \quad \Rightarrow \quad g = C_1(k)e^{ikr} + C_2(k)e^{-ikr}. \tag{5.17}$$

Враховуючи умову випромінювання, слід покласти $C_2(k) = 0$:

$$\tilde{G}(r) = C_1(k) \frac{e^{ikr}}{r}, \quad \text{3a} \quad r > 0.$$
 (5.18)

Залишається визначити $C_1(k)$. Коли $r \to 0$, поведінку розв'язку визначає співмножник C_1/r , а в лівій частині рівняння (2.2.9) домінує доданок $\Delta \varphi$. Тому асимптотика розв'язку за $r \to 0$ повинна збігатися з розв'язком рівняння Пуассона для точкового заряду:

$$\Delta\left(\frac{q}{r}\right) = -4\pi q \delta(\mathbf{r}). \tag{5.19}$$

Співставлення за r > 0 дає:

$$\tilde{G}(r) = \frac{e^{ikr}}{4\pi r}. ag{5.20}$$

Більш послідовний розгляд фундаментальних розв'язків операторів Даламбера та Гельмгольца з точки зору узагальнених функцій див. Додаток 1.

З урахуванням (10), за принципом суперпозиції розв'язки рівнянь (5),(6) за умови випромінювання можна подати згортками:

$$\tilde{\varphi}(\omega, \mathbf{r}) = \int \frac{dV'}{|\mathbf{r} - \mathbf{r}'|} \exp\left[i\frac{\omega}{c}|\mathbf{r} - \mathbf{r}'|\right] \tilde{\rho}(\omega, \mathbf{r}'), \tag{5.21}$$

$$\tilde{\mathbf{A}}(\omega, \mathbf{r}) = \int \frac{dV'}{c|\mathbf{r} - \mathbf{r}'|} \exp\left[i\frac{\omega}{c}|\mathbf{r} - \mathbf{r}'|\right] \tilde{\mathbf{j}}(\omega, \mathbf{r}'). \tag{5.22}$$

За допомогою оберненого до (2.2.1),(2.2.2) перетворення Фур'є маємо:

$$\varphi(t, \mathbf{r}) = \frac{1}{\sqrt{2\pi}} \int e^{-i\omega t} \tilde{\varphi}(\omega, \mathbf{r}) d\omega, \qquad (5.23)$$

$$\rho(t, \mathbf{r}) = \frac{1}{\sqrt{2\pi}} \int e^{-i\omega t} \tilde{\rho}(\omega, \mathbf{r}) d\omega.$$
 (5.24)

Звідси та з (2.2.11)

$$\varphi(t,\mathbf{r}) = \int \frac{dV'}{|\mathbf{r} - \mathbf{r}'|} \int \frac{d\omega}{\sqrt{2\pi}} e^{-i\omega t} \tilde{\rho}(\omega,\mathbf{r}') = \int \frac{dV'}{|\mathbf{r} - \mathbf{r}'|} \rho(t_{\text{ret}},\mathbf{r}'), \quad (5.25)$$

де $t_{\text{ret}} = t - \frac{1}{c} |\mathbf{r} - \mathbf{r}'|$.

Остаточно запишемо:

$$\varphi(t, \mathbf{r}) = \int \frac{dV'}{|\mathbf{r} - \mathbf{r}'|} \rho\left(t - \frac{1}{c}|\mathbf{r} - \mathbf{r}'|, \mathbf{r}'\right), \tag{5.26}$$

а також, аналогічно, для розв'язку (2.1.8):

$$\mathbf{A}(t,\mathbf{r}) = \frac{1}{c} \int \frac{dV'}{|\mathbf{r} - \mathbf{r}'|} \mathbf{j} \left(t - \frac{1}{c} |\mathbf{r} - \mathbf{r}'|, \mathbf{r}' \right). \tag{5.27}$$

Формули (2.2.15), (2.2.16) подають *запізнюючі розв'язки* рівнянь (2.1.6), (2.1.8), що задовольняють умовам випромінювання в разі обмеженої ізольованої системи зарядів та струмів.

Зауважимо, що (2.2.15), (2.2.16) можна записати у вигляді згортки фундаментального розв'язку оператора Даламбера з правими частинами рівнянь (2.1.6), (2.1.8) (див. Додаток 1). Цей фундаментальний розв'язок має вигляд:

$$D(t, \mathbf{r}) = \frac{1}{2\pi c} \delta\left(t^2 - r^2/c^2\right) \theta(t). \tag{5.28}$$

Згортка з правою частиною (2.1.6):

$$\varphi(t, \mathbf{r}) = 4\pi \int dt' dV' D(t - t', \mathbf{r} - \mathbf{r}') \rho(t', \mathbf{r}'). \tag{5.29}$$

Підставимо (2.2.17):

$$\varphi(t, \mathbf{r}) = \frac{2}{c} \int dt' dV' \delta \left[(t - t')^2 - \frac{(r - r')^2}{c^2} \right] \theta(t - t') \rho(t', \mathbf{r}')$$
 (5.30)

$$= \frac{1}{c} \int dV' \int \delta \left[t - t' - \frac{|\mathbf{r} - \mathbf{r}'|}{c} \right] \rho(t', \mathbf{r}') dt', \tag{5.31}$$

що збігається з (2.2.15) після інтегрування по t'. Аналогічно:

$$\mathbf{A}'(t,\mathbf{r}) = \frac{4\pi}{c} \int dt' dV' G(t-t',\mathbf{r}-\mathbf{r}') \mathbf{j}(t',\mathbf{r}'). \tag{5.32}$$

Перевіримо виконання калібрувальної умови Лоренца для розв'язків (2.2.18), (2.2.19):

$$\frac{1}{c}\frac{\partial\varphi}{\partial t} + \operatorname{div}\mathbf{A} =
= \frac{4\pi}{c}\int dt'dV' \left[\left(\frac{\partial}{\partial t'}G(t-t',\mathbf{r}-\mathbf{r}') \right) \rho(t,\mathbf{r}) + \left(\frac{\partial}{\partial x_i}G(t-t',\mathbf{r}-\mathbf{r}') \right) J_i(t',\mathbf{r}') \right] =
= \frac{4\pi}{c}\int dt'dV' \left[-\left(\frac{\partial}{\partial t'}G(t-t',\mathbf{r}-\mathbf{r}') \right) \rho(t',\mathbf{r}') - \left(\frac{\partial}{\partial x_i}G(t-t',\mathbf{r}-\mathbf{r}') \right) J_i(t',\mathbf{r}') \right] =
= \frac{4\pi}{c}\int dt'dV' \left[G(t-t',\mathbf{r}-\mathbf{r}') \frac{\partial}{\partial t'} \rho(t',\mathbf{r}') + G(t-t',\mathbf{r}-\mathbf{r}') \frac{\partial}{\partial x_i} J_i(t',\mathbf{r}') \right] =
= \frac{4\pi}{c}\int dt'dV' G(t-t',\mathbf{r}-\mathbf{r}') \left[\frac{\partial}{\partial t'} \rho(t',\mathbf{r}') + \operatorname{div}\mathbf{j}(t',\mathbf{r}') \right] = 0$$

де $\mathbf{r} = \{x_i\}$, $\mathbf{r}' = \{x_i'\}$, в останньому перетворенні проведено інтегрування частинами по t' та по x_i' з урахуванням обмеженості області, де густини зарядів та струмів відмінні від нуля.

Таким чином, виконання умови Лоренца для (2.2.18), (2.2.19) забезпечено законом збереження заряду.

А. Основні формули векторного аналізу

А.1. Тривимірний символ Леві-Чівіти. Тривимірний символ Леві-Чівіти визначений співвідношеннями

$$\varepsilon_{ijk} = -\varepsilon_{jik} = -\varepsilon_{ikj}. \tag{A.33}$$

Деякі співвідношення з цим символом:

$$\varepsilon_{ijk}\varepsilon_{kpq} = \delta_{ip}\delta_{jq} - \delta_{iq}\delta_{jp},\tag{A.34}$$

$$\varepsilon_{iqk}\varepsilon_{pqk} = 2\delta_{ip}.\tag{A.35}$$

Ротор та векторний добуток у декартових координатах $\{x, y, z\} = \{x_1, x_2, x_3\}$:

$$[\mathbf{\nabla} \times \mathbf{A}]_i = \varepsilon_{ijk} \partial_i A_k, \tag{A.36}$$

$$\left[\mathbf{A} \times \mathbf{B}\right]_i = \varepsilon_{ijk} A_j B_k,\tag{A.37}$$

всі індекси пробігають значення 1, 2, 3.

А.2. Диференціальні операції в різних системах координат.

Декартова система координат

grad
$$\psi \equiv \nabla \psi = \frac{\partial \psi}{\partial x} \mathbf{e}_x + \frac{\partial \psi}{\partial y} \mathbf{e}_y + \frac{\partial \psi}{\partial z} \mathbf{e}_z$$
 (A.38)

$$\operatorname{div}\left(\operatorname{grad}\psi\right) \equiv \Delta\psi = \frac{\partial^{2}\psi}{\partial x^{2}} + \frac{\partial^{2}\psi}{\partial y^{2}} + \frac{\partial^{2}\psi}{\partial z^{2}} \tag{A.39}$$

$$\operatorname{div} \mathbf{A} \equiv \mathbf{\nabla} \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$
 (A.40)

$$\operatorname{rot} \mathbf{A} \equiv \mathbf{\nabla} \times \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \mathbf{e}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \mathbf{e}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \mathbf{e}_z \tag{A.41}$$

Циліндрична система координат

$$\nabla \psi = \frac{\partial \psi}{\partial \rho} \mathbf{e}_{\rho} + \frac{1}{\rho} \frac{\partial \psi}{\partial \phi} \mathbf{e}_{\phi} + \frac{\partial \psi}{\partial z} \mathbf{e}_{z}$$
 (A.42)

$$\Delta \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \phi^2} + \frac{\partial^2 \psi}{\partial z^2}$$
 (A.43)

$$\mathbf{\nabla \cdot A} = \frac{1}{\rho} \frac{\partial (\rho A_{\rho})}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$$
(A.44)

$$\nabla \times \mathbf{A} = \left(\frac{1}{\rho} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z}\right) \mathbf{e}_{\rho} + \left(\frac{\partial A_{\rho}}{\partial z} - \frac{\partial A_z}{\partial \rho}\right) \mathbf{e}_{\phi} + \frac{1}{\rho} \left(\frac{\partial (\rho A_{\phi})}{\partial \rho} - \frac{\partial A_{\rho}}{\partial \phi}\right) \mathbf{e}_z$$
(A.45)

Орти циліндричної системи координат зв'язані з декартовими ортами як:

$$\mathbf{e}_r = \cos\phi \,\mathbf{e}_x + \sin\phi \,\mathbf{e}_y,\tag{A.46}$$

$$\mathbf{e}_{\phi} = -\sin\phi\,\mathbf{e}_{x} + \cos\phi\,\mathbf{e}_{y},\tag{A.47}$$

$$\mathbf{e}_z = \mathbf{e}_z. \tag{A.48}$$

Сферична система координат

$$\nabla \psi = \frac{\partial \psi}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial \psi}{\partial \theta} \mathbf{e}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial \psi}{\partial \phi} \mathbf{e}_{\phi}$$
 (A.49)

$$\Delta \psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial \psi}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2}$$
 (A.50)

$$\nabla \cdot \mathbf{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$
(A.51)

$$\nabla \times \mathbf{A} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \left(A_{\phi} \sin \theta \right) - \frac{\partial A_{\theta}}{\partial \phi} \right) \mathbf{e}_r + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r} \left(r A_{\phi} \right) \right) \mathbf{e}_{\theta} + \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r A_{\theta} \right) - \frac{\partial A_r}{\partial \theta} \right) \mathbf{e}_{\phi}$$
(A.52)

Орти сферичної системи координат зв'язані з декартовими ортами як:

$$\mathbf{e}_r = \sin\theta\cos\phi\,\mathbf{e}_x + \sin\theta\sin\phi\,\mathbf{e}_y + \cos\theta\,\mathbf{e}_z,\tag{A.53}$$

$$\mathbf{e}_{\theta} = \cos\theta\cos\phi\,\mathbf{e}_{x} + \cos\theta\sin\phi\,\mathbf{e}_{y} - \sin\theta\,\mathbf{e}_{z},\tag{A.54}$$

$$\mathbf{e}_{\phi} = -\sin\phi \,\mathbf{e}_{x} + \cos\phi \,\mathbf{e}_{y}.\tag{A.55}$$

(A.56)

А.З. Другі похідні.

$$rot \operatorname{grad} \phi = \nabla \times (\nabla \phi) = 0 \tag{A.57}$$

$$\operatorname{div}\operatorname{rot}\mathbf{A} = \nabla \cdot (\nabla \times \mathbf{A}) = 0 \tag{A.58}$$

$$rot rot \mathbf{A} = \mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{A}) = \mathbf{\nabla} (\mathbf{\nabla} \cdot \mathbf{A}) - \Delta \mathbf{A}$$
 (A.59)

А.4. Похідні від добутків.

$$\operatorname{grad}(\phi\psi) = \psi \operatorname{grad}\phi + \phi \operatorname{grad}\psi \tag{A.60}$$

$$\operatorname{div}(\phi \mathbf{A}) = \phi \operatorname{div} \mathbf{A} + \mathbf{A} \operatorname{grad} \phi \tag{A.61}$$

$$rot(\phi \mathbf{A}) = \phi \operatorname{rot} \mathbf{A} + \operatorname{grad} \phi \times \mathbf{A} \tag{A.62}$$

$$\operatorname{grad}(\mathbf{A} \cdot \mathbf{B}) = \mathbf{B} \times \operatorname{rot} \mathbf{A} + \mathbf{A} \times \operatorname{rot} \mathbf{B} + (\mathbf{B}\nabla)\mathbf{A} + (\mathbf{A}\nabla)\mathbf{B}$$
 (A.63)

$$\operatorname{div}(\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \operatorname{rot} \mathbf{A} - \mathbf{A} \cdot \operatorname{rot} \mathbf{B} \tag{A.64}$$

$$rot (\mathbf{A} \times \mathbf{B}) = (\mathbf{B}\nabla) \mathbf{A} - (\mathbf{A}\nabla) \mathbf{B} + \mathbf{A} \operatorname{div} \mathbf{B} - \mathbf{B} \operatorname{div} \mathbf{A}$$
 (A.65)

$$\frac{1}{2}\operatorname{grad} A^2 = (\mathbf{A}\nabla)\mathbf{A} + \mathbf{A} \times \operatorname{rot} \mathbf{A}$$
 (A.66)

А.5. Інтегральні характеристики та теореми. Теорема Остроградського-Гаусса:

$$\iint_{\partial\Omega} \mathbf{A} \cdot d\mathbf{S} = \iiint_{\Omega} \mathbf{\nabla} \cdot \mathbf{A} dV, \tag{A.67}$$

де Ω — об'єм, $\partial\Omega$ — його межа.

Теорема Стокса:

$$\oint_{\partial S} \mathbf{A} \cdot d\mathbf{l} = \iint_{S} \mathbf{\nabla} \times \mathbf{A} \cdot d\mathbf{S}, \tag{A.68}$$

де S — поверхня, що спирається на контур ∂S .

Теорема Гріна:

$$\iiint\limits_{\Omega} (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \ dV = \iint\limits_{\partial\Omega} (\phi \nabla \psi - \psi \nabla \phi) \cdot d\mathbf{S}. \tag{A.69}$$

Б. Поліноми Лежандра

Поліноми Лежандра застосовуються у теорії потенціалу при розкладанні виразу в околі точки ${\bf r}$:

$$\frac{1}{|\mathbf{r} - \mathbf{r}_0|} = \frac{1}{\sqrt{r^2 - 2rr_0 \cos \chi + r_0^2}} = \sum_{l=0}^{\infty} \frac{r_<^l}{r_>^{l+1}} P_l(\cos \chi),$$

де $r_>$, $r_<$ — більша і менша із величин $|\mathbf{r}|$ та \mathbf{r}_0 , відповідно, $\cos \chi$ — кут між векторами \mathbf{r} та $|\mathbf{r}_0|$.

Деякі поліноми Лежандра

$$P_0(\cos \chi) = 1$$
, $P_1(\cos \chi) = \cos \chi$, $P_2(\cos \chi) = \frac{1}{2}(3\cos^2 \chi - 1)$, $P_3(\cos \chi) = \frac{1}{2}(5\cos^2 \chi - 3\cos \chi)$.

В. Сферичні гармоніки

Сферичні функції, що залежать від полярних кутів визначаються формулою:

$$Y_{lm}(\theta,\phi) = (-1)^{(m+|m|)/2} \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^{|m|}(\cos\theta) e^{im\phi},$$

де l=0,1,2,...,m пробігає значення від -l до l, а $P_l^{|m|}(x)$ — приєднані функції Лежандра.

Вони утворюють повну ортонормовану систему функцій:

$$\int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} Y_{l',m'}^*(\theta,\phi) Y_{l,m}(\theta,\phi) \sin \theta d\theta d\phi = \delta_{l,l'} \delta_{m,m'}.$$

Деякі сферичні гармоніки:

$$\begin{split} Y_{0,0}(\theta,\phi) &= \sqrt{\frac{1}{4\pi}}, \\ Y_{1,\pm 1}(\theta,\phi) &= \sqrt{\frac{3}{8\pi}} \sin\theta \, e^{\pm i\phi}, \\ Y_{1,0}(\theta,\phi) &= \sqrt{\frac{3}{4\pi}} \cos\theta, \\ Y_{2,0}(\theta,\phi) &= \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1), \\ Y_{2,\pm 1}(\theta,\phi) &= \sqrt{\frac{15}{8\pi}} \sin\theta \cos\theta \, e^{\pm i\phi}, \\ Y_{2,\pm 2}(\theta,\phi) &= \sqrt{\frac{15}{32\pi}} \sin^2\theta \, e^{\pm 2i\phi}. \end{split}$$

Г. Циліндричні функції

Рівняння, що виникають в задачах з циліндричною симетрією, мають вигляд:

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(1 - \frac{m^2}{x^2}\right)y = 0,$$
 (\Gamma.1)

розв'язок яких можна представити за допомогою функцій Бесселя $J_m(x)$ та Неймана N_m у вигляді лінійної комбінації $y(x) = AJ_m(x) + BN_m(x)$ або у вигляді лінійної комбінації $y(x) = AH_m^{(1)}(x) + BH_m^{(2)}(x)$, де функції $H_m^{(1,2)} = J_m \pm iN_m$ — називаються функціями Ганкеля 1-го та 2-го роду, відповідно. Доцільність введення функцій Ганкеля обумовлена тим, що вони мають прості асимптотичні розкладання при $|x| \gg 1$ і зручні для задач, пов'язаних з поширенням хвиль.

Для m=0,1,2,... функції Неймана нескінченні в точці x=0, тобто $\lim_{x\to 0}N_m(x)=-\infty.$

Функції Бесселя можна представити за допомогою ряду (в околі точки x=0 для цілих, або невід'ємних m):

$$J_m(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!\Gamma(n+m+1)} \left(\frac{x}{2}\right)^{2n+m},$$
 (\Gamma.2)

де Γ — гамма-функція. Для $m \in \mathbb{Z}$ має місце рівність $J_{-m}(x) = (-1)^m J_m(x)$.

Графіки функцій Бесселя J_m для m = 0, 1, 2.

Графіки функцій Неймана N_m для m=0,1,2.

Функції Неймана визначаються через функції Бесселя як:

$$N_m(x) = \frac{J_m(x)\cos m\pi - J_{-m}(x)}{\sin m\pi}.$$
 (\Gamma.3)

Деякі рекурентні співвідношення:

$$J_{m+1}(x) + J_{m-1}(x) = \frac{2m}{x} J_m(x). \tag{\Gamma.4}$$

Деякі диференціальні та інтегральні співвідношення для нецілих m (для цілих m ці функції можна визначити за допомогою граничного переходу).:

$$\frac{d}{dx}J_0(x) = -J_1(x),\tag{\Gamma.5}$$

$$\frac{d}{dx}(x^{-m}J_m(x)) = -x^{-m}J_{m+1}(x),$$
(\Gamma.6)

$$\int_{0}^{x} x'^{m+1} J_{m}(x') dx' = x^{m+1} J_{m+1}. \tag{\Gamma.7}$$

Інтеграли від добутків:

$$\int_{0}^{x} J_{m}(k_{1}x')J_{m}(k_{2}x')x'dx' = \frac{x(k_{2}J_{m}(k_{1}x)J'_{m}(k_{2}x) - k_{1}J_{m}(k_{2}x)J'_{m}(k_{1}x))}{k_{1}^{2} - k_{2}^{2}}.$$
 (Γ.8)

В задачах, зазвичай, часто необхідно знайти наближений вигляд циліндричних функцій при малих та великих значеннях аргументу x: при $|x| \ll 1$ з (Γ .2)

$$J_0(x) \approx 1 - \frac{x^2}{4}, \quad J_m \approx \frac{x^m}{2^m m!}, \quad m \ge 1, \quad m \in \mathbb{N};$$
 (\Gamma.9)

при $|x| \gg 1$

$$J_m \approx \sqrt{\frac{2}{\pi x}} \cos\left(x - m\frac{\pi}{2} - \frac{\pi}{4}\right),$$
 (\Gamma.10)

$$N_m \approx \sqrt{\frac{2}{\pi x}} \sin\left(x - m\frac{\pi}{2} - \frac{\pi}{4}\right),$$
 (Γ.11)

$$H_m^{(1,2)} \approx \sqrt{\frac{2}{\pi x}} e^{\pm i\left(x - m\frac{\pi}{2} - \frac{\pi}{4}\right)}.$$
 (Γ.12)

Співвідношення Якобі-Ангера (розкладання за функціями Бесселя):

$$e^{ix\cos\theta} = \sum_{m=-\infty}^{\infty} i^m J_m(x) e^{im\theta}, \quad e^{ix\sin\theta} = \sum_{m=-\infty}^{\infty} J_m(x) e^{im\theta}.$$
 (Γ.13)

Дельта-функція Дірака

Дельта-функція Дірака (або δ -функція) ϵ узагальненою функці ϵ ю і була введена фізиком Полем Діраком для моделювання густини ідеалізованої точкової маси або точкового заряду.

На «фізичному рівні строгості» можна визначити δ -функцію формальним співвідношенням:

$$\int_{-\infty}^{+\infty} f(x)\delta(x - x_0) dx = f(x_0), \tag{Д.1}$$

У випадку інтегрування по скінченному об'єму V:

$$\int_{V} f(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}_{0})dV = f(\mathbf{r}_{0}), \tag{Д.2}$$

де точка \mathbf{r}_0 знаходиться всередині об'єму V.

Властивості дельта-функції

- а) Дельта-функція парна $\delta(-x) = \delta(x)$,
- $\delta) x\delta (x) = 0,$
- B) $\delta(ax) = \frac{1}{|a|}\delta(x)$,
- г) $x\delta'(x) = -\delta(x)$, д) $\delta(f(x)) = \sum_{k} \frac{\delta(x-x_k)}{|f'(x_k)|}$, де x_k нулі функції f(x),

Література

Підручники та посібники

- 1. *Greiner W.* Classical electrodynamics. Springer, 1998. 556 c. ISBN 978-1-4612-0587-6.
- 2. *Griffiths D. J.* Introduction to Electrodynamics. Addison Wesley, 2012. 625 c. ISBN 0-321-85656-2.
- 3. Zangwill A. Modern electrodynamics. Cambridge University Press, 2013. 977 c. ISBN 978-0-521-89697-9.
- 4. Власов А. А. Макроскопическая электродинамика. 2-е изд. М.: Физматлит, 2005. 236 с. ISBN 5-9221-0560-4.
- 5. *Джексон Д.* Классическая электродинамика. М. : Мир, 1965. 703 с.
- 6. Жданов В. І. Вступ до електродинаміки суцільних середовищ. ФТІ, КПІ ім. Ігоря Сікорського, 2017. 101 с.
- 7. *Жданов В. І.* Вступ до теорії відносності. ВПЦ «Київський університет», 2008. 290 с. ISBN 978-966-439-050-4.
- 8. *Жданов В. І.* Класична теорія електромагнітного поля. Мікроскопічна теорія. ФТІ, НТУУ «КПІ», 2014. 84 с.
- 9. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: в 10 т. Том II. Теория поля. 8-е. М.: Физматлит, 2003. 534 с. ISBN 5922100564.
- 10. *Ландау Л. Д.*, *Лифшиц Е. М.* Теоретическая физика : в 10 т. Том VIII. Электродинамика сплошных сред. 4-е, стереотипное. М. : Физматлит, 2005. 656 с. ISBN 5-9221-0123-4.
- 11. *Пеннер Д. И.*, *Угаров В. А.* Электродинамика и специальная теория относительности. М.: Просвещение, 1980. 271 с.
- 12. *Тамм И. Е.* Основы теории электричества. 11-е изд. М.: Физматлит, 2003. 618 с.
- 13. *Терлецкий Я. П., Рыбаков Ю. П.* Электродинамика. 2-е переработ. М.: Высшая школа, 1990. 352 с.

Задачники

- 14. *Алексеев А. И.* Сборник задач по классической электродинамике. — М.: Наука, 1977. — 319 с.
- 15. *Батыгин В. В.*, *Топтыгин И. Н.* Сборник задач по электродинамике и специальной теории относительности. 4-е, переработанное. Лань, 2010. 480 с. ISBN 978-5-8114-0921-1.
- 16. Векштейн Е. Г. Сборник задач по электродинамике. М.: Высшая школа, 1966. 288 с.
- 17. Гильденбург В. Б. Сборник задач по электродинамике. 2-е изд. М.: Физматлит, 2001. 198 с. ISBN 5-9221-0113-7.
- 18. *Жирнов Н. И.* Задачник-практикум по электродинамике. 3-е изд. Просвещение, 1970. 352 с.
- 19. *Крамм М. Н.* Сборник задач по основам электродинамики: Учебное пособие. М.: Лань, 2011. 256 с. ISBN 978811411221.
- 20. Сборник задач по теоретической физике / Л. Г. Гречко [и др.]. 2-е изд. М. : Высшая школа, 1984. 319 с.