

Orbit Mechanics Tutorial

Exercise 1: Keplerian Orbits in Space-Fixed, Earthfixed and Topocentric Systems

Tutor: Mario Fuentes Reyes mario.fuentes@tum.de

Directed by: Prof. Urs Hugentobler urs.hugentobler@bv.tum.de

3 tutorials in the semester:

- 1. Keplerian Orbits in Space-Fixed, Earth-fixed and Topocentric Systems
- 2. Numerical Integration of Satellite Orbits
- 3. Integration of Satellite Orbits with Different Force Models

Wednesdays in room 2601 from 13:15 to 14:45. Doubts and code issues.

Given satellites:

Satellite	a[km]	е	i[deg]	Ω [deg]	Ω [deg]	T _o [h]
GOCE	6629	0.004	96.6	210	144.2	02:00
GPS	26560	0.01	55	30	30	11:00
MOLNIYA	26554	0.7	63	200	270	07:30
GEO	Geostationary	0	0	0	50	00:00
MICHIBIKI	Geosynchronous	0.075	41	200	270	04:10

Keplerian Elements:

Task 1: Orbits in 2D plane

Create kep2orb function. Polar coordinates.

• Inputs: a, e, t, T_0

• Outputs: r (position), v (velocity), M, E

Useful formulae

To compute mean anomaly: $n = \sqrt{\frac{GM}{a^3}} \qquad M(t) = n \cdot (t - T_0)$

Kepler's Equation: $M = E - e \sin E$ $\Delta E_i < 10^{-6}$

Radius: $r = a(1 - e\cos E)$

True anomaly: $\tan \frac{v}{2} = \sqrt{\frac{1+e}{1-e}} \tan \frac{E}{2} \qquad \text{Hint:} \\ v = 2 \operatorname{atan2} \left(\sqrt{1+e} \sin \frac{E}{2}, \sqrt{1-e} \cos \frac{E}{2} \right)$

2D coordinates: $x = r \cos v$ $y = r \sin v$

Plot in 2D. Expected result:

Mean, Eccentric and True Anomaly.

GPS and MOLNIYA Satellite. Here for 12 hours.

Technische Universität München

Institut for Astronomical and Physical Geodesy

Task 2: Space-fixed system

Create kep2cart function. Space-fixed system.

- Inputs: a, e, i, Ω , ω , t, T_0
- Outputs: r₂ (position), v₂ (velocity)

Useful formulae

$$\overrightarrow{r_{2\prime}} = r \begin{bmatrix} \cos v \\ \sin v \\ 0 \end{bmatrix} \quad \overrightarrow{r_{2\prime}} = r \begin{bmatrix} \cos v \\ \sin v \\ 0 \end{bmatrix}$$

$$\overrightarrow{r_2} = R_3(-\Omega)R_1(-i)R_3(-\omega)\overrightarrow{r_2}$$

$$\dot{\vec{r}_2} = R_3(-\Omega)R_1(-i)R_3(-\omega)\dot{\vec{r}_{2\prime}}$$

$$R_1(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} R_3(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Plot in 3D. Use Earth_coast(3) from Moodle. Expected result:

Plot in 2D.
Projections.
Expected result:

Task 3: Earth-fixed system

Create cart2efix function. Space-fixed system.

- Inputs: r₂, v₂, t
- Outputs: r₃ (position), v₃ (velocity)

Useful formulae

$$\dot{\Omega_E} = \frac{2\pi}{86164}$$

Rotation angle:
$$\theta_0(t) = \Omega_E t + \text{sidereal angle } (03:29 \text{ in deg})$$

Position:
$$\overrightarrow{r_3}(t) = R_3(\theta_0(t))\overrightarrow{r_2}(t)$$

Plot in 3D. Expected result:

Trajectory of 5 satellites in Earth-Fixed System

Ground-tracks on Earth-surface

Useful formulae

Latitude $\lambda \in [-180^{\circ}, 180^{\circ}]$:

Longitude $\psi \in [-90^{\circ}, 90^{\circ}]$:

$$\tan \lambda = \frac{y_3}{x_3}$$

$$\tan \psi = \frac{z_3}{\sqrt{x_3^2 + y_3^2}}$$

Plot in 2D. Use Earth_coast(2). Expected result:

Task 4: Topo-centric system

Create efix2topo function. Space-fixed system.

- Inputs: r₃, v₃
- Outputs: r_4 (position), v_4 (velocity), azimuth, elevation

Useful formulae

Translated vector $r_{trans} = r_3 - r_{Wettzell}$ (check Exercise)

Topocentric vector $r_4 = Q_1 R_2 (90 - \text{latitude}_{\text{Wettzell}}) R_3 (\text{longitude}_{\text{Wettzell}}) r_{trans}$

Where: $Q_1 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

From right to lefthanded system

Technische Universität München

Institut for Astronomical and Physical Geodesy

Trajectory observed from Wettzell

Useful formulae

Azimuth
$$\tan A = \frac{y_4}{x_4}$$

Elevation
$$\tan h = \frac{z_4}{\sqrt{x_4^2 + y_4^2}}$$

h = elevation angle, measured up from horizon

z = zenith angle, measured from vertical

A = Azimuth angle, measured clockwise from North

Plot using skyplot.

Syntax: skyplot(azimuth, elevation, Marker_shape(like '+b'))

Visualization over Wettzell (consider elevation angle >0)

Suggestions:

- Comment your code.
- Use simple and readable names for variables.
- Avoid nested loops.
- Check angles to be between 0 and 360 or 0 and 2π .
- Separate the code into sections to run just specific parts if required.
- Use atan2 instead of atan.
- Initialize matrices (with zeros())
- Attend on Wednesdays or send an email in case you have doubts.