SAMSUNG ELECTRONICS

Knox E-FOTA On-Premises

Installation and Initial Operation Guide

Version: 1.3

Last Update: May 2025

[Document History]

	What	Ver.	When
I.	Updated to 1.0.1.10	Ver1.3	May 2025
I.	Added:		
	Appendix F. Set E-FOTA agent config by managed Configuration		
II.	Updated:		
	4.2.6 (STEP04) Install DFM Module Package		
	4.2.7 (STEP05) Load Container Image		
	4.3.6 (STEP04) Install DFM Module Package	Ver1.2	Dec 2024
	4.3.7 (STEP05) Load Container Image	ver1.2	Dec 2024
	4.4.6 (STEP04) Install DFM Module Package		
	4.4.7 (STEP05) Load Container Image		
	4.6.18 (STEP04) Install DFM Module Package		
	4.6.19 (STEP05) Load Container Image		
	4.7.15 2) On DFM Serve <- added how to make pem file for device		
I.	Added:		
	4.4.12 (STEP10) Copy Background App files		
	4.4.13 (STEP11) Start-up Background App		
II.	Updated:	Ver1.1	June 2024
	4.2.5 (STEP03) Create Service Directories		
	4.2.6 (STEP04) Install DFM Module Package		
	4.4.9 (STEP07) Set-up Configuration(add license app ip set)		
	8.3 Terminate Services > add stop background App		
Initial	Release	Ver1.0	June 2020

Table of Contents

PART I: 0	RT I: Getting Started	
1.	Introduction	8
1.1.	Purpose of this document	
2.	Environment Prerequisites	g
2.1.	Hardware Recommended	
2.2.	Software Recommended	10
2.2.1.	Operating System	10
2.2.2.		
2.2.1.	·	
2.2.3.	Database (MySQL)	10
2.2.4.	HTTPS	11
2.3.	Recommendation Per each Product usage	11
2.3.1.	Product – "PoC"	11
2.3.2.	Product – "Commercial"	13
3.	Deliverables	15
3.1.	DFM Modules	
3.2.	Security Considerations	
3.2.1.	,	
3.3.	Supported Browser	16
PART II:	Installation, and Validation	17
	,	_
4.	Installation & Configuration	18
4.1.	Check Pre-Config	18
4.1.1	Check Web Server config	19
4.1.2	Check DB(MySQL) Server config	22
4.1.3	Check Firmware Storage(minio) Server config	22
4.1.4	Check DFM Core/Console Server config	23
4.1.5	Using the firewalld service	23
4.1.6	Configure Access port	23
4.2.	DB(MySQL) Server	24
4.2.1	(Prerequisites) Install Package	24
4.2.2	(STEP01) Create Service Account and Login	
4.2.3	(STEP02) Prepare "Disk partition & mount" for DFM modules	
4.2.4	Permanently mount the disk	
4.2.5	(STEP03) Create Service Directories	
4.2.6	(STEP04) Install DFM Module Package	30
4.2.7	(STEP05) Load Container Image	
4.2.8	(STEP06) Copy Configuration files	
4.2.9	(STEP07) Set-up Configuration	
4.2.10		
4.3.	Firmware Storage (minio) Server	
4.3.1	(Prerequisites) Install Package	
4.3.2	(STEP01) Create Service Account and Login	
4.3.3	(STEP02) Prepare "Disk partition & mount" for DFM modules	
4.3.4	Permanently mount the disk	
4.3.5	(STEP03) Create Service Directories	
4.3.6	(STEP04) Install DFM Module Package	49

4.3.7	(STEP05) Load Container Image	52
4.3.8	(STEP06) Copy Configuration files	51
4.3.9	(STEP07) Set-up Configuration	
4.3.10	(STEP09) Start-up Firmware Storage(minio) Server	
4.4.	DFM Core/Console Server	
4.4.1	(Prerequisites) Install Package	
4.4.2	(STEP01) Create Service Account and Login	
4.4.3	(STEP02) Prepare "Disk partition & mount" for DFM modules	
4.4.4	Permanently mount the disk	
4.4.5	(STEP03) Create Service Directories	
4.4.6	(STEP04) Install DFM Module Package	
4.4.7	(STEP05) Load Container Image	
4.4.8	(STEP06) Copy Configuration files	
4.4.9	(STEP07) Set-up Configuration	
4.4.10	(STEP08) Configure HAProxy	
4.4.11	(STEP09) Create Container Network	
4.4.12	(STEP10) Copy Background App files	
4.4.13	(STEP11) Start-up Background App	
4.4.14	(STEP12) Start-up DFM Core/Console Server	
4.5	Keepalived	
4.5.1	(STEP01) Install package	
4.5.2	(STEP02) Configure keepalived	
4.5.3	(STEP03) Start-up keepalived	
4.6	WEB Server	
4.6.1	(Prerequisites) Install Package	
4.6.2	(STEP01) Create Service Account and Login	
4.6.3	(STEP02) Prepare "Disk partition & mount" for DFM modules	
4.6.4	Permanently mount the disk	
4.6.5	(STEP03) Create Service Directories	
4.6.6	(STEP04) Install DFM Module Package	
4.6.7	(STEP05) Load Container Image	
4.6.8	(STEP06) Copy Configuration files	
4.6.9	(STEP07) Set-up Configuration	
4.6.10	(STEP08) Configure HAProxy	
4.6.11	(STEP09) Create Container Network	
4.6.12	(STEP10) Start up web server	
4.7	Configure SSL	
4.7.1	DB(MySQL) Server	
4.7.2	DFM Core/Console Server	
4.7.3	WEB Server	
4.8	How to check Server Operation Status	
PART III: I	nitial Operation	86
	·	
5.	Service Operation	
5.1.	How to access the admin console page after installation	87
5.2.	The Contents Upload	
5.3.	Troubleshooting and Logging during using the Service	
5.4.	Updating the SSL Certificate when the old certificate is expired	88
5.5	Configurable length of password digits	89
5.6	Configurable device group polling	90
5.7	Configurable device polling interval and postpone waiting time	91
6	When a Server is Rebooted	0.5
6.	vviicii a Jei vei 13 Nebuuleu	95

6.1.	(STEP01) Login as the dedicated service account	93
6.2.	(STEP02) Prepare "mount" for DFM modules	93
6.3	(STEP03) Start-up Database Server (MySQL)	95
6.4	(STEPO4) Start-up Firmware Storage Server	96
6.5	(STEP05) Start-up DFM Core Server	98
6.6	(STEP06) Start-up DFM Admin Console Server	98
6.7	(STEP07) Start-up HAProxy Server	99
PART IV:	Update the DFM Modules	100
7	Update the DFM Module	101
7.1	Container Image Update	
7.1.1.	DFM Database Update (MySQL)	
7.1.2.	DFM Firmware Storage Update (MinIO)	
7.1.3.	DFM Core Update	
7.1.4.	DFM Admin Console Update	
7.1.5.	HAProxy update	
7.2	The Contents Update	
PART V: F	Purge DFM Modules	105
8	Purge the DFM Modules	106
8.1	Terminate Services	106
8.2	Remove Service directory	107
PART VI:	Install Case Scenario	108
9	How to install 2 servers	109
9.1	Create Service Directories	110
9.1.1.	Web zone	110
9.1.2.	App zone	110
9.1.3.	Data zone	110
9.1.4.	DB zone	110
9.2	Configurations	111
9.2.1.	DB zone	111
9.2.2.	Data zone	118
9.2.3.	App zone	119
9.2.4.	WEB zone	122
9.2.5.	keepalived	123
9.3	Start-up services	123
PART VII:	APPENDICES	125
APPENDI	CES	126
	dix A. Terms and Abbreviations	
Appen	dix B. How to terminate each DFM Module	127
Appen	dix C. Summary for Software (S/W) Recommendation	128
	dix D. A Recommended Schedule for On-Site Installation by CSO/TEO	
	dix E. An Example of "Notice for Completion Installation"	
Appen	dix F. Set E-FOTA agent config by managed Configuration	132

Tables of Figures & Tables

[Figures]	
Fig 2-1 Knox E-FOTA On-Premises Product Arch for "PoC"	12
Fig 2-2 Knox E-FOTA On-Premises Product Arch for "Commercial"	14
Fig 3-1 Knox E-FOTA On-Premises Conceptual Architecture	15
Fig 4-1 Knox E-FOTA On-Premises Product Arch with config	19
Fig 4-2 IP-based Access Environment	20
Fig 4-3 Domain-Based Access Environment (Type A)	20
Fig 4-4 Domain-Based Access Environment (Type B)	21
Fig 4-5 Domain-Based Access Environment (Type C)	21
Fig 4-6 An Disk Partitions for DMF Module on DB(MySQL) server	26
Fig 4-7 An Disk Partitions for DMF Module on Firmware Storage(minio) server	46
Fig 4-8 An Disk Partitions for DMF Module on DFM core/console server	54
Fig 4-9 An Disk Partitions for DMF Module on WEB server	68
Fig 4-10 On Customer's Load Balancer (Proxy)	80
Fig 4-11 On DFM Server	81
Fig 4-12 On DFM Server	83
Fig 5-1 The Admin Console for Knox E-FOTA On-Premises	87
【 <u>Tables</u> 】	
Table 2-1 The Hardware Recommended for user work environment to this On-Premise	10
Table 2-2 The Software Recommended for user work environment to this On-Premise	10
Table 2-3 The Minimum Hardware Recommendation for "PoC"	11
Table 2-4 The Software Recommendation for "PoC"	12
Table 2-5 The Minimum Hardware Recommendation for "Commercial"	13
Table 2-6 Software Recommendation for "Commercial"	13

PART I: Getting Started

PART 1: Getting Started presents the purpose of this document, what customer infrastructure is recommended prior to the installation of the Knox E-FOTA On-Premises service, and provides an overview of deliverables that will be used during the installation.

1. Introduction

1.1. Purpose of this document

The purpose of this document is to present how to plan for, install, and configure the managed DFM module within the customer's network. This document includes information about how to install and configure the 3rd party software, such as Docker, and provides detailed descriptions of the commands used to perform its installations.

This document is intended for the personnel who are in charge of performing the installation.

In order to prepare the installer, this document includes the following tasks:

- 1.1.1 Evaluate the customer's network and hardware facilities
- 1.1.2 Introduce which modules will be installed to provide this service
- 1.1.3 Explain the install flow with DFM Modules
- 1.1.4 Explain how to configure the installed DFM Modules with the proper conditions
- 1.1.5 Explain how to test if the installed DFM Modules are running as expected

The server infrastructure, hereafter referred to as **DFM Modules**, will be installed on the customer's side by Samsung to service the Knox E-FOTA On-Premises environment.

We recommend "The 4-Days Installation" for this installation, as the customer should understand how they are using this service during this program (see "<u>Appendix D. A Recommended Schedule for On-Site Installation by CSO/TEO</u>").

2. Environment Prerequisites

This chapter presents the hardware, software and network facilities required by the DFM. To ensure proper support of E-FOTA On-Premise, the service must be installed upon the following recommended software and hardware infrastructure.

The following recommended items should be prepared by the customer prior to the installation of the Knox E-FOTA On-Premises service by Samsung personnel.

2.1. Hardware Recommended

The recommended user environment, including the network card, for the On-Premises Hardware (H/W) requirements are as follows (the customer can choose the correct value depending on the product type. See "2.3 Recommendation Per each Product Usage"):

Server	Items	Recommended value	Descripstion
			1 Cores is for PoC Product
	Server CPU Cores	Above 1 or 2 CPU Cores	Above 2 Cores is for Commercial
			Product
	RAM	4 or 8 GB	4GB is for PoC Product
		1 0. 0 05	8GB is for Commercial Product
WEB			For DFM Module
		128 GB or 256 GB SSD	128GB (PoC), 256GB (Commercial
	Disk		Product)
		256 GB	For System region
			(OS and Rootfilesystem)
	Network Card	Above 10 Gbps	
			2 Cores is for PoC Product
	Server CPU Cores	Above 2 or 4 CPU Cores	Above 4 Cores is for Commercial
			Product
	RAM	8 or 16 GB	8GB is for PoC Product
			16GB is for Commercial Product
DFM	Disk	128GB or 256GB SSD	For DFM Module
Core/Console			128GBTB (PoC), 256GB (Commercial
			Product)
		256 GB	For System region
			(OS and Rootfilesystem)
	Network Card	Above 10 Gbps	
	Server CPU Cores	Above 1 or 2 CPU Cores	1 Cores is for PoC Product
			Above 2 Cores is for Commercial
			Product
	RAM	4 or 8 GB	4GB is for PoC Product
Firmware	IVAIVI	4 0r 8 GB	8GB is for Commercial Product
Storage		1TB or 2TB SSD	For DFM Module
(minio)	Disk	110 01 210 330	1TB (PoC), 2TB (Commercial Product)
		256 GB	For System region
			(OS and Rootfilesystem)
	Network Card	Above 10 Gbps	
DB			1 Cores is for PoC Product
	Server CPU Cores	Above 1 or 2 CPU Cores	Above 2 Cores is for Commercial
(MySQL)			Product

RAM	4 or 8 GB	4GB is for PoC Product 8GB is for Commercial Product
Disk	128GB or 256GB SSD	For DFM Module 128GB (PoC), 256GB (Commercial Product)
	256 GB	For System region (OS and Rootfilesystem)
Network Card	Above 10 Gbps	

Table 2-1 The Hardware Recommended for the Knox E-FOTA On-Premises user work environment

The recommendations in the above table are the minimum specifications to run this On-Premises Service. User performance expectations may require additional infrastructure resources that exceed the minimum specifications.

2.2. Software Recommended

The recommended user work environment, including the network, for this On-Premises Software (S/W) requirements are as follows:

Items	Recommended Value	Description
Operating System	Red Hat Enterprise Linux 8.4 or 9.2	
Docker Engine	Podman	
MySQL Edition	Enterprise Edition	For Commercial Product

Table 2-2 The Software Recommended for the Knox E-FOTA On-Premises user work environment

Refer to "Appendix C" for a summary of software recommendations.

2.2.1. Operating System

By default, the DFM Server requires Red Hat Enterprise Linux 8.4 or 9.2 for the OS. It should be installed on 64-bit Intel x86, ARM, or MIPS architectures in order to support Podman. Selinux mode in the Red hat OS supports permissive and enforcing modes, and the DFM Server can be installed in each mode.

2.2.2. Keepalived

Keepalived is a routing software for loadbalancing and high-availability to Linux system and Linux based infrastructures. Keepalived implements a set of checkers to dynamically and adaptively maintain and manage loadbalanced server pool according their health. On the other hand, high-availability is achieved by the Virtual Router Redundancy Protocol (VRRP). VRRP is a fundamental brick for router failover.

This is used for continuous use in the event of a server failure.

2.2.1. Podman

Podman is a daemonless container engine for developing, managing, and running OCI Containers on your Linux System. Containers can either be run as root or in rootless mode. Since Red Hat Enterprise Linux 8, Podman is officially supported. For Knox E-FOTA On-Premises, Podman is the recommended container tool for Red Hat users. Podman installation is described in Section 4.1

2.2.3. Database (MySQL)

The MySQL database contains all service-related data, including device models, their IDs, and policy dependencies in Campaigns.

2.2.4. HTTPS

To use the https protocol between Samsung mobile devices and the DFM Modules, the customer should prepare a DNS hostname (FQDN) and public (or private) SSL certificates.

2.3. Recommendation Per each Product usage

Knox E-FOTA On-Premises has 3 types of product use case architecture recommendations, including 2 Commercial and 1 POC architecture.

2.3.1. Product - "PoC"

The **PoC** product is recommended if a customer wants to use the on-premises service to understand its functions and product configuration clearly prior to purchasing a Commercial Product, along with a small number of devices (clients, until 300 devices). The PoC product can run on lower specification hardware than the Commercial product, but the table below contains the minimum specifications to be running Knox E-FOTA On-Premises. To ensure the service runs as expected, the customer should set up the infrastructure with higher specifications than shown below.

[Minimum H/W Recommendation]

Server	Items	Recommended value	Descripstion		
	Server CPU Cores	1 CPU Cores			
	RAM	4 GB			
WEB		128 GB SSD	For DFM Module		
	Disk	256 GB	For System region (OS and Rootfilesystem)		
	Network Card	Above 10 Gbps			
	Server CPU Cores	2 CPU Cores			
	RAM	8 GB			
DFM	Disk	128GB SSD	For DFM Module		
Core/Console		256 GB	For System region (OS and Rootfilesystem)		
	Network Card	Above 10 Gbps			
	One or More DFM Core/Console Servers can be configured.				
	Server CPU Cores	1 CPU Cores			
<u> </u>	RAM	4 GB			
Firmware Storage		1TB SSD			
(minio)	Disk	256 GB	For System region (OS and Rootfilesystem)		
	Network Card	Above 10 Gbps			
DB	Server CPU Cores	1 CPU Cores			
(MySQL)	RAM	4 or 8 GB			

		128GB SSD	For DFM Module
Disk	Disk	256 GB	For System region (OS and Rootfilesystem)
N	letwork Card	Above 10 Gbps	

Table 2-3 The Minimum Hardware Recommendation for PoC

[S/W Recommendation]

Items	Recommended Value	Description
Operating System Red Hat Enterprise Linux 8.4 or 9.2		
Docker Engine	Podman	
MySQL Edition	Community Edition	For continuous Commercial support, recommend Enterprise Edition

Table 2-4 The Software Recommendation for "PoC"

The customer can purchase Ubuntu OS based on this service package, depending on their service environment. Note that the customer must provide the service infrastructure to the Samsung representative in charge of the installation.

Fig 2-1 Knox E-FOTA On-Premises Product Arch for PoC

2.3.2. Product – "Commercial"

The **Commercial** product is recommended for customers who want to use this product with a maximum of 20,000 devices for device firmware updates over-the-air (FOTA), but it also supports more than 20,000 devices.

The recommended specification for the infrastructure is the minimum required to be running the service. To optimize performance expectations, the customer may need to provide infrastructure with higher specifications than the below table to the Samsung representative in charge of the installation.

[Minimum H/W Recommendation]

Server	Items	Recommended value	Descripstion	
	Server CPU Cores	2 CPU Cores	1 Cores is for PoC Product Above 2 Cores is for Commercial Product	
	RAM	8 GB		
WEB		256 GB SSD	For DFM Module	
	Disk	256 GB	For System region (OS and Rootfilesystem)	
	Network Card	Above 10 Gbps		
	Server CPU Cores	4 CPU Cores		
	RAM	16 GB		
DFM		256GB SSD	For DFM Module	
Core/Console	Disk	256 GB	For System region (OS and Rootfilesystem)	
	Network Card	Above 10 Gbps		
	One or More DFM Core/Console Servers can be configured.			
	Server CPU Cores	2 CPU Cores		
	RAM	8 GB		
Firmware Storage		2TB SSD	For DFM Module	
(minio)	Disk	256 GB	For System region (OS and Rootfilesystem)	
	Network Card	Above 10 Gbps		
	Server CPU Cores	2 CPU Cores		
	RAM	8 GB		
DB		256GB SSD	For DFM Module	
(MySQL)	Disk	256 GB	For System region (OS and Rootfilesystem)	
	Network Card	Above 10 Gbps		

Table 2-5 The Minimum Hardware Recommendation for "Commercial"

[S/W Recommendation]

The customer can purchase Red hat OS based this service package, depending on their service environment. Note that the customer must provide the service infrastructure to the Samsung representative in charge of the installation.

Items	Recommended Value	Description	
Operating System	Red Hat Enterprise Linux 8.4 or 9.2		
Docker Engine	Podman		
MySQL Edition	Enterprise Edition		

Table 2-6 Software Recommendation for "Commercial"

Fig 2-2 Knox E-FOTA On-Premises Product Arch for "Commercial"

3. Deliverables

This chapter describes the actions performed by Samsung to deliver the Knox E-FOTA On-Premises environment.

3.1. DFM Modules

The DFM Module consists of the following core modules:

- 3.1.1 **DFM Admin Console Server**: The Frontend module to provide IT admins with an accessible graphical user interface (GUI) on the Google Chrome browser.
- 3.1.2 **DFM Core Server**: The Backend module to manage device (client application) actions, integrated into the device using RESTful APIs from the client.
- 3.1.3 **DFM Database**: The MySQL-based database contains all service-related data, including device models, their IDs, and policy dependencies in Campaigns.
- **3.1.4 DFM Firmware Storage Management**: The firmware files for downloaded files from the client application.
- 3.1.5 **Proxy:** This is used for redirection between outer and DFM modules, and for AP Gateway and TLS/SSL termination

Fig 3-1 Knox E-FOTA On-Premises Conceptual Architecture

3.2. Security Considerations

In order to improve the default security of the Samsung deliverable, it must be implemented using the following standards.

3.2.1. HTTPS and Network encryption

The DFM Module uses HTTPS TLS-based encryption to enhance the security of transactions. The Transport Layer Security (TLS) protocol provides data encryption and verification between applications and servers in scenarios where data is being sent across an insecure network—for example, when working with the DFM Module.

HTTPS header fields are components of the header section of HTTPS request and response messages. They define the operating parameters of a HTTPS transaction. The load balancer and reverse proxy are in front of the DFM Module queries.

3.3. Supported Browser

PLEASE NOTE that this version of the DFM Console UI is designed for Google Chrome only.

PART II: Installation, and Validation

PART II: Installation and Validation describes how to install the Knox E-FOTA On-Premises service on the customer-provided infrastructure, and how to validate the installed service infrastructure.

4. Installation & Configuration

This chapter explains the first-time installation flow with the proper configuration conditions of the DFM Modules. Steps in this chapter run only once during initial installation.

Podman can run in root permission mode and rootless permission mode. If you run in root permission mode, you must attach "sudo" in front of the podman or dfm command. The following document is written based on rootless mode. If a command requires "sudo" because the system is running in root mode, "sudo is required in root mode." will be shown in the document.

DFM Modules must be installed on each of the 10 servers: the HA-Proxy server, DFM Core/Console server, Firmware Storage server (at least 4), and MySQL server (at least 3).

For the more details about each server specification, explain each server install information.

4.1. Check Pre-Config

Before installation, determine the config for each server.

The config for outside communication and the config for communication between the internal servers should be set respectively. The config for outside communication is determined through the web server config, and the config for communication between the internal servers is determined through each server config.

In this step, we will set up the initial configuration information needed for the DFM module to run as a container. The config values determined for each step are set during the installation process for each server.

Fig 4-1 Knox E-FOTA On-Premises product arch with config

4.1.1 Check Web Server config

In this step, we will set up the initial configuration information needed for the DFM modules to perform outside communication.

It receives all requests through the VIP (Virtual IP) set in KEEPALIVED and forwards them to HAPROXY on the listen port set in "Web tier".

Configuration List

- cluster_server_name: web(fixed value)
- host ip: Static IP for DFM server.
- listen_port: External listen port at server for DFM module to be accessed.
- listen_scheme: url scheme(http or https) for DFM module to be accessed.
- access_address: domain-based or ip-based
- access scheme: http or https
- access_port: public port
- public_endpoint: {access_scheme}://{access_address}:{access_port}

In order to properly configure this service after installation, check the customer's network environment in advance. Be sure to check and verify any port-forwarding mapping (NAT) in the customer's network.

Here are a few sample use cases:

[Use Case 1] IP-based Access Environment

This environment reflects a real-world network environment. The host IP address is not the same, as the public IP address and the CP port number between the public network side and the customer internal network side (including DFM Modules) may be different.

Fig 4-2 IP-based Access Environment

[Use Case 2] Domain-based Access Environment

This environment represents a domain name-based network environment. You can check the network using the domain name instead of the IP address.

2-1. (Type A) Using HTTP

Fig 4-3 Domain-Based Access Environment (Type A)

2-2. (Type B) Using HTTPS - Customer's LB processes TLS/SSL Termination)

Fig 4-4 Domain-Based Access Environment (Type B)

2-3. (Type C) Using HTTPS - DFM processes TLS/SSL Termination

Fig 4-5 Domain-Based Access Environment (Type C)

The following is **an example** of how to execute the command to set the above configurations:

(CASE01) IP-Based

```
- host_ip: 192.168.1.52
- listen_port: 80
- listen_scheme: http
- access_address: 181.107.61.233
- access_scheme: http
- access_port: 6380
```

(CASE02) Domain-Based

⟨□ (Type ①) Using HTTP

```
- host_ip: 192.168.1.52- listen_port: 80
```

- listen scheme: http

- access address: example-sec-fota.net

access_scheme: httpaccess port: 6380

⟨□ (Type ②) Using HTTPS - Customer's LB processes TLS/SSL Termination

- host_ip: 192.168.1.52

- listen_port: 6380

- listen_scheme: http

- access_address: example-sec-fota.net

- access_scheme: https- access_port: 6443

⟨□ (Type ③) Using HTTPS - DFM processes TLS/SSL Termination

- host_ip: 192.168.1.52

- listen_port: 443

- listen_scheme: https

- access_address: example-sec-fota.net

- access_scheme: https- access_port: 6443

4.1.2 Check DB(MySQL) Server config

The customer should decide whether to use a custom port on the DB(MySQL) server. If so, the following config needs to be set.

[Configuration List]

- host_ip: Static IP
- cluster_server_name: db (fixed value)

4.1.3 Check Firmware Storage(minio) Server config

On the firmware storage (minio) server, the customer should decide:

- 1) Whether to use SSL
- 2) Whether to use a custom port

[Configuration List]

- host_ip: Static IP
- cluster_server_name: data (fixed value)
- cluster_minio_access_port: external access port (default : 9000)
- cluster_minio_access_address: external access address(default: dfm-proxy)
- cluster_minio_scheme: url scheme(default: http)
- minio config dir: config file location (default : /dfm/minio/config)

4.1.4 Check DFM Core/Console Server config

On the MySQL server, the customer should decide:

- 1) Whether to use SSL between the Core server and Firmware storage server
- 2) Whether to use SSL between the Core server and HA Proxy server
- 3) Whether to use a custom port

Configuration List

- host_ip: Static IP
- listen_port: External listen port at server for DFM module to be accessed.
- listen_scheme: url scheme (http or https) for DFM module to be accessed.
- cluster_server_name: app (fixed value)
- cluster_service_address: "access_address" determined in 4.1.1
- cluster_service_port: "access_port" determined in 4.1.1
- cluster service scheme: "access scheme" determined in 4.1.1
- cluster_minio_access_address: "host_ip" determined in 4.1.2
- cluster_minio_access_port: "access_port" determined in 4.1.2
- cluster_minio_access_scheme: http
- cluster mysgl access url: access to database url

4.1.5 Using the firewalld service

If the firewalld service is in operation on the customer's server, a service port must be added.

```
// List all allowed ports
sudo firewall-cmd --list-ports

// Add a port to the allowed ports to open it for incoming traffic
sudo firewall-cmd --add-port={port number}/tcp

// Make the new settings persistent
sudo firewall-cmd --runtime-to-permanent

Example)
dfm config get listen_port
443
dfm config get access_port
4443
sudo firewall-cmd --add-port=443/tcp --add-port=4443
sudo firewall-cmd --runtime-to-permanent
```

4.1.6 Configure Access port

In Red Hat OS, connection is restricted for ports below 1024. We need to set it to listen_port, which was set above:

sudo sysctl net.ipv4.ip_unprivileged_port_start={port number}

Example)

// check listen_port

dfm config get listen_port

443

// open port to listen port

sudo sysctl net.ipv4.ip_unprivileged_port_start=443

4.2. DB(MySQL) Server

Use the Group Replication feature of MySQL enterprise to configure HA for the DB server.

There is a built-in group membership service that keeps the view of the group consistent and available for all servers at any given point in time. Servers can leave and join the group and the view is updated accordingly. Sometimes servers can leave the group unexpectedly, in which case the failure detection mechanism detects this and notifies the group that the view has changed. This is all automatic. In single-primary mode, the group has a single primary server that is set to read-write mode. All the other members in the group are set to read-only mode.

The DFM solution is implemented in single-primary mode.

The DFM Module is logged in with a dedicated service account and operates with the privileges of the account. Therefore, the dedicated service account has to be created in the server. The service account also needs the "sudo" privilege as a command permissions.

4.2.1 (Prerequisites) Install Package

If the installed Podman version is between 4.0 to 4.4 in Red Hat Enterprise Linux 8.4 or 9.2, an additional package installation is required.

The following describes the package that needs to be installed:

podman: manage container tool

podman-plugins: the CNI plugins used to run podman

dnsmasq: use to find local dnsname

[Default]

sudo yum install -y podman

[Red hat 8.4 or 9.2 podman 4.0 ~ 4.4]

sudo yum install -y podman podman-plugins dnsmasq

4.2.2 (STEP01) Create Service Account and Login

The DFM Module is logged in with a **dedicated service account** and operates with the privileges of the account. Therefore, the dedicated service account has to be created in the server. The service account also needs the "**sudo**" privilege as a command permission. Ensure you add your service account into the Wheel group.

We recommend that you create a service account before you start the installation.

The following command shows you how to add your service account into the Wheel group:

We assume that you are using the "nightwatch" account, and that the DFM Module is logged in with a dedicated service account and operates with the privileges of the account.

Add wheel group

sudo usermod --append -G wheel <username>

Example)
sudo usermod --append -G wheel nightwatch

To connect using a created user:

ssh {your-user}@localhost [-p {port}]

Example) ssh nightwatch@localhost

or if you use port 9000 ssh nightwatch@localhost -p 9000

4.2.3 (STEP02) Prepare "Disk partition & mount" for DFM modules

DFM module is installed in and operates in the below directory on the **dedicated disk**.

Therefore, we should check if the dedicated disk exists and the "partition & mount" is ready, in case the customer has not worked with the disk partition for the DFM module before.

Fig 4-6 An Disk Partitions for DMF Module on DB(MySQL) server

For example, we assume that two disks ("sda" and "sdb") exist.

[CASE01] Disk is Ready

If the disks exist, we don't need to format and mount them.

Now, let's check the disk information:

sudo Isblk -f					
NAME	FSTYPE	LABEL	UUID	MOUNTPOINT	
NNNNNN	MANNANNA	unnnnnnnnnnnnn	งเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะเกาะ	UNIVINIVINIVINIVINIVINIVINIVINIVINIVINIV	
sda					
L-sda1	ext4	xxxxxxxx-rootfs	6156ec80-9446-4eb1-95e0-9ae6b7a46187	/	
sdb	ext4		d3269ceb-4418-45d0-ba68-d6b906e0595d	/dfm	

⇒ "sdb" is already formatted and mounted on /dfm

```
sudo file -s /dev/sdb
/dev/sdb: Linux rev 1.0 ext4 filesystem data, UUID=d3269ceb-4418-45d0-ba68-d6b906e0595d (extents) (64bit) (large files) (huge files)
```

[CASE02] Disk is NOT Ready: it is not formatted

If the disk is not ready, it needs to be formatted and mounted on /dfm.

Now, let's check the disk information:

NAME FSTYPE LABEL UUID MOUNTPOINT sda Lsda1 ext4 xxxxxxxx-rootfs 6156ec80-9446-4eb1-95e0-9ae6b7a46187 / sdb

⇒ "sdb" is NOT formatted

```
sudo file -s /dev/sdb
/dev/sdb:=data
```

- ⇒ This means that the disk needs to be formatted
- 1) Format with ext4 file-system

```
sudo file -s /dev/sdb

sudo mkfs -t ext4 /dev/sdb
mke2fs 1.44.1 (24-Mar-2018)
Creating filesystem with 2621440 4k blocks and 655360 inodes
Filesystem UVID: d3269ceb-4418-45d0-ba68-d6b906e0595d
Superblock backups stored on blocks:
    32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
```

2) Check if the disk is formatted

```
sudo mkfs -t ext4 /dev/sdb
```

/dev/sdb: Linux rev 1.0 ext4 filesystem data, UUID=d3269ceb-4418-45d0-ba68-d6b906e0595d (extents) (64bit) (large files) (huge files)

3) Mount "/dev/sdb" on /dfm

```
// create directory to mount
sudo mkdir /dfm

// mount
sudo mount /dev/sdb /dfm
```

4) Verify

df-h

```
Filesystem Size Used Avail Use% Mounted on
/dev/sdb 9.8G 37M 9.3G 1% /dfm
```

[CASE03] Disk is NOT Ready: it is already formatted but not yet mounted on /dfm

If the disk is formatted but not yet mounted, it needs to be mounted on /dfm.

Now, let's check the disk information:

```
sudo Isblk -p
```

```
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

//dev/sda 202:0 0 1T 0 disk

L/dev/sda1 202:1 0 1T 0 part /
/dev/sdb 202:80 0 1T 0 disk
```

sudo lsblk -f

- ⇒ "sdb" " is formatted but Not yet mounted
- 1) Mount /dev/sdb on /dfm

```
// create directory to mount
sudo mkdir /dfm

// mount
sudo mount /dev/sdb /dfm
```

2) Verify

df -h

```
Filesystem Size Used Avail Use% Mounted on
//dev/sdb 9.8G 37M 9.3G 1% /dfm
```

4.2.4 Permanently mount the disk

We recommend that the <u>customer's IT manager</u> sets the boot script so that <u>the dedicated disk</u> is automounted when the server is booted.

If the <u>customer's IT manager</u> has not set the boot script for disk auto-mounting, you should proceed according to the command below.

*) If the settings are incorrect, booting may not be possible. The command below is for general situations, and options may differ depending on the customer's system and situation. Please refer to the "fstab" manual for details.

1) Check mount /dev/sdb on /dfm

sudo Isblk -f

NAME	FSTYPE	LABEL	UUID	MOUNTPOINT
			พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ	
sda				
Lsda1	ext4	xxxxxxxxx-rootfs	6156ec80-9446-4eb1-95e0-9ae6b7a46	187 /
sdb	ext4		d3269ceb-4418-45d0-ba68-d6b906e05	05d /dfm

2) Edit /etc/fstab file

Add the content next to "sdb" to the new line.

4.2.5 (STEP03) Create Service Directories

A separated service directory configuration is required to install and operate the Samsung DFM Module. The service account must have "read / write / execute" permissions to the service directory. The service directory should be mounted in a different device location from the OS installation area.

[Service Directory List]

```
/ dfm/mysql/config

⇒ that is where the config file is referenced when the mysql server starts.

/dfm/mysql/data

⇒ that is where databases are created when mysql server runs.

/dfm/mysql/backups

⇒ that is where databases are backed-up when mysql server runs.

/dfm/config

⇒ that is where the config file contains the information needed to run the DFM module.
```

Now, let's create each service directory.

```
sudo mkdir -p /dfm/mysql/config
sudo mkdir -p /dfm/mysql/data
sudo mkdir -p /dfm/mysql/backups
sudo mkdir -p /dfm/config
```

Set the service account's permission for the created service directory.

We assume that you are using the "nightwatch" account.

```
sudo chown -R nightwatch:nightwatch /dfm
sudo chown -R nightwatch:nightwatch /dfm/mysql
sudo chown -R nightwatch:nightwatch /dfm/mysql/config
sudo chown -R nightwatch:nightwatch /dfm/mysql/data
sudo chown -R nightwatch:nightwatch /dfm/mysql/backups
sudo chown -R nightwatch:nightwatch /dfm/config
```

4.2.6 (STEP04) Install DFM Module Package

The DFM Module is delivered as a TAR archive file. This package contains the following resources:

- executable binary (dfm): managed command to run DFM module
- docker images: docker image about DFM module
- sql query file: DFM module's DB data to initialize mysql
- mysql config file (my.cnf): config file for mysql
- dfm config file (dfm_config.json): config file for DFM module

To install these resources, the files have to be unpacked within the following locations by the host. The files will be used during: 1) Container Image load, 2) initializing MySQL DB, and 3) Copying the config file to the service directory.

executable binary:⇒ /tmp/dfm/bin/dfm

docker images:

- \Rightarrow /tmp/dfm/images/haproxy-debian-{version}.tar
- ⇒ /tmp/dfm/images/minio-RELEASE. {version}.tar
- ⇒ /tmp/dfm/images/mysql-{version}.tar
- ⇒ /tmp/dfm/images/dfm-console-{version}.tar
- ⇒ /tmp/dfm/images/dfm-core-{version}.tar

- sql query file:

- ⇒ /tmp/dfm/mysql-query/init_db.sql
- ⇒ /tmp/dfm/mysql-query/init_dfm_core.sql
- ⇒ /tmp/dfm/mysql-query/init_dfm_console.sql

mysql config file:

⇒ /tmp/dfm/ha/db-server/mysql/config/my.cnf

dfm config file:

⇒ /tmp/dfm/ha/db-server/config/dfm_config.json

The following is a command showing how to install the debian package:

```
Next, check if the necessary files exist:
1) check dfm file
Is -I /tmp/dfm/bin/dfm
2) check images
Is /tmp/dfm/images/ -I
total 971552
-rw-rw-r-- 1 dfm-console-1.0.1.10.tar
-rw-rw-r-- 1 dfm-core-1.0.1.10.tar
-rw-rw-r-- 1 haproxy-debian-2.2.33.tar
-rw-rw-r-- 1 minio-RELEASE.2021-04-18T19-26-29Z.tar
-rw-rw-r-- 1 mysql-enterprise-server-8.0.20.tar
3) check sql query file
Is /tmp/dfm/mysql-query/ -l
total 2076
-rw-r--r-- 1 init db.sql
-rw-r--r-- 1 init_dfm_console.sql
-rw-r--r-- 1 init_dfm_core.sql
4) check mysql config file: my.cnf
Is /tmp/dfm/ha/db-server/mysql/config/ -I
total 4
-rw-r--r-- my.cnf
5) dfm config file: dfm_config.json
Is /tmp/dfm/ha/db-server/config/dfm_config.json
/tmp/dfm/ha/db-server/dfm config.json
```

4.2.7 (STEP05) Load Container Image

Next, register the Images that were unpacked at "/tmp/dfm/images". The loaded Container Images are used when the container is driven. The following shows how to load Container image required for DB(MySQL) server using Podman commands: (sudo is required in root mode.)

podman load < /tmp/dfm/images/mysql-{version}.tar

Next, check if the MySQL Podman image was loaded. Use the "Podman Images" command: (sudo is required in root mode.)

Example)

podman images

REPOSITORY TAG IMAGE ID CREATED SIZE

mysql/enterprise-server 8.0 f350b0949588 8 days ago 462MB

4.2.8 (STEP06) Copy Configuration files

After loading the Docker images, copy the following configuration files into the service directory from the unpacked resources directory.

We assume that you are using the "nightwatch" account.

- copy executable binary:

```
// copy executable binary
sudo cp /tmp/dfm/bin/dfm /usr/bin/ or cp /tmp/dfm/bin/dfm /usr/local/bin

// Set executable
sudo chmod 755 /usr/bin/dfm or sudo chmod 755 /usr/local/bin/dfm
```

- copy mysql config file:

// copy configuration file

cp /tmp/dfm/ha/db-server/mysql-config/my.cnf /dfm/mysql/config

// Set the service account's permission to the configuration file.

- copy dfm config file:

// copy configuration file
cp /tmp/dfm/ha/db-server/dfm_config.json /dfm/config

sudo chown -R nightwatch:nightwatch/dfm/mysql/config

//Set the service account's permission to the configuration file.

sudo chown -R nightwatch:nightwatch /dfm/config

4.2.9 (STEP07) Set-up Configuration

In this step, we will set up the initial configuration needed to connect from another intenal server to DB(MySQL) server.

DB(MySQL) server requires "cluster_server_name".

Proceed with the two steps below.

- 1) Configure dfm_config.json file. (cluster_server_name)
- 2) Configure mysql file. (my.cnf)
- 1) Configure dfm_config.json file. "cluster_server_name" is "db"

[Configuration List]

- cluster_server_name: db (fixed value)
- host ip: static ip

The following shows the commands: (sudo is required in root mode.)

dfm cluster config set cluster_server_name=db

Next, check if the configured value is correct. Use the "dfm cluster config get {key}" command:

Example)

dfm cluster config get cluster_server_name db

2) Configure my.cnf file

If each server IP is 192.168.0.4, 192.168.0.5, 192.168.0.6, configure it as shown below:

Configuration List

- cluster_server_name: db (fixed value)
- host ip: static ip
- bind_address: static ip
- report_host: static ip ip
- server_id: numeric (Set to 1 if primary server)
- loose-group replication group name: value of uuid
- loose-group_replication_local_address: static ip and port(ex: 192.168.0.4:33161)
- loose-group_replication_group_seeds: IP and port of the server you need to connect (ex: 192.168.0.4:33161)

[client]

default-character-set=utf8mb4

[mysql]

default-character-set=utf8mb4

[mysqld]

user=mysql

```
default-time-zone='+00:00'
event_scheduler = ON
general_log = 0
slow-query-log = 1
long_query_time = 4
lower_case_table_names = 1
collation-server = utf8mb4_unicode_ci
init-connect='SET NAMES utf8mb4'
character-set-server = utf8mb4
group_concat_max_len = 4096
port=33061
mysqlx_port=33071
bind-address="192.168.0.100"
report host="192.168.0.100"
skip-name-resolve
## Disable other storage engines #
disabled storage engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"
## Replication configuration parameters #
server_id=1
gtid_mode=ON
enforce_gtid_consistency=ON
binlog_checksum=NONE
# Not needed from 8.0.21 # # Group Replication configuration #
plugin_load_add='group_replication.so'
loose-group_replication_group_name="f8ad695d-1fc9-49d6-9b70-7e296c86dc03"
loose-group_replication_start_on_boot=off
loose-group_replication_local_address= "192.168.0.100:33161"
loose-group_replication_group_seeds= ""
loose-group_replication_bootstrap_group=off
loose-group-replication-ssl-mode=REQUIRED
loose-group_replication_recovery_use_ssl=ON
```

[UUID Generate]

All MySQL servers must have the same UUID value.

```
uuidgen
ex)
uuidgen
14cfe0c5-fca1-47cd-89eb-cd8d23393dab
```

Show an example of my.cnf settings for servers with IPs of 192.168.0.4, 192.168.0.5, 192.168.0.6, respectively, with the UUIDs generated as above.

[Example about 192.168.0.4 server my.cnf]

```
[client]
default-character-set=utf8mb4
[mysql]
default-character-set=utf8mb4
[mysqld]
user=mysql
default-time-zone='+00:00'
event_scheduler = ON
general_log = 0
slow-query-log = 1
long_query_time = 4
lower_case_table_names = 1
collation-server = utf8mb4_unicode_ci
init-connect='SET NAMES utf8mb4'
character-set-server = utf8mb4
group_concat_max_len = 4096
port=33061
mysqlx_port=33071
bind-address="192.168.0.4"
report_host="192.168.0.4"
skip-name-resolve
```

```
## Disable other storage engines #
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"
## Replication configuration parameters #
server id=1
gtid_mode=ON
enforce_gtid_consistency=ON
binlog_checksum=NONE
# Not needed from 8.0.21 # # Group Replication configuration #
plugin_load_add='group_replication.so'
loose-group_replication_group_name="14cfe0c5-fca1-47cd-89eb-cd8d23393dab"
loose-group_replication_start_on_boot=off
loose-group_replication_local_address= "192.168.0.4:33161"
loose-group_replication_group_seeds= "192.168.0.4:33161, 192.168.0.5:33161,
192.168.0.6:33161"
loose-group_replication_bootstrap_group=off
loose-group-replication-ssl-mode=REQUIRED
loose-group_replication_recovery_use_ssl=ON
```

[Example about 192.168.0.5 server my.cnf]

```
[client]

default-character-set=utf8mb4

[mysql]

default-character-set=utf8mb4

[mysqld]

user=mysql

default-time-zone='+00:00'

event_scheduler = ON

general_log = 0

slow-query-log = 1

long_query_time = 4

lower_case_table_names = 1

collation-server = utf8mb4_unicode_ci

init-connect='SET NAMES utf8mb4'

character-set-server = utf8mb4
```

```
group_concat_max_len = 4096
port=33061
mysqlx_port=33071
bind-address="192.168.0.5"
report_host="192.168.0.5"
skip-name-resolve
## Disable other storage engines #
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"
## Replication configuration parameters #
server_id=2
gtid_mode=ON
enforce_gtid_consistency=ON
binlog_checksum=NONE
# Not needed from 8.0.21 # # Group Replication configuration #
plugin_load_add='group_replication.so'
loose-group_replication_group_name="14cfe0c5-fca1-47cd-89eb-cd8d23393dab"
loose-group replication start on boot=off
loose-group_replication_local_address= "192.168.0.5:33161"
loose-group_replication_group_seeds= "192.168.0.4:33161, 192.168.0.5:33161,
192.168.0.6:33161"
loose-group_replication_bootstrap_group=off
loose-group-replication-ssl-mode=REQUIRED
loose-group_replication_recovery_use_ssl=ON
```

Example about 192.168.0.6 server my.cnf

```
[client]
default-character-set=utf8mb4

[mysql]
default-character-set=utf8mb4

[mysqld]
```

```
user=mysql
default-time-zone='+00:00'
event scheduler = ON
general log = 0
slow-query-log = 1
long_query_time = 4
lower_case_table_names = 1
collation-server = utf8mb4_unicode_ci
init-connect='SET NAMES utf8mb4'
character-set-server = utf8mb4
group_concat_max_len = 4096
port=33061
mysqlx_port=33071
bind-address="192.168.0.6"
report_host="192.168.0.6"
skip-name-resolve
## Disable other storage engines #
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"
## Replication configuration parameters #
server_id=3
gtid_mode=ON
enforce_gtid_consistency=ON
binlog_checksum=NONE
# Not needed from 8.0.21 # # Group Replication configuration #
plugin_load_add='group_replication.so'
loose-group_replication_group_name="14cfe0c5-fca1-47cd-89eb-cd8d23393dab"
loose-group_replication_start_on_boot=off
loose-group_replication_local_address= "192.168.0.6:33161"
loose-group_replication_group_seeds= "192.168.0.4:33161, 192.168.0.5:33161,
192.168.0.6:33161"
loose-group_replication_bootstrap_group=off
loose-group-replication-ssl-mode=REQUIRED
```

loose-group_replication_recovery_use_ssl=ON

4.2.10 (STEP9) Start-up and Initialize DB(MySQL) Server

In this stage, you will perform the following two steps:

- 1) Set DB root password
- 2) Set Group replication.
- 3) Initialize the SQL query file copied in "4.3 Installing the DFM Module Package" above, on the mysql server

To do this, you must first start the mysql server container.

The command to run the mysql server container is as follows: (sudo is required in root mode.)

dfm start dfm-mysql

[Validation]

Make sure the MySQL container is in a healthy state. It may take some time until its state is healthy.

If it is red hat 8.4 version, run health check podman healthcheck run dfm-mysql podman ps -a CONTAINER ID IMAGE **STATUS NAMES** 2cd1bae13406 localhost/mysql/enterprise-server:8.0 Up 3 seconds ago (starting) dfm-mysql \$ podman ps -a CONTAINER ID IMAGE **STATUS** NAMES 2cd1bae13406 localhost/mysql/enterprise-server:8.0 Up 52 seconds ago (healthy) dfm-mysql

If the status is healthy, run each of the following commands. (sudo is required in root mode.)

1) Set DB root password : we assume that "pass-word" is "1q2w3e4r"

We use this command: ALTER USER 'root'@'localhost' IDENTIFIED BY '{password}'

podman exec -it dfm-mysql mysql -uroot

Welcome to the MySQL monitor. Commands end with ; or \g .

Your MySQL connection id is 11

Server version: 5.7.25-log MySQL Community Server (GPL)

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY '1q2w3e4r';

Query OK, 0 rows affected (0.00 sec)

mysql> exit

2) Set Group replication. (sudo is required in root mode.)

Check the group_user password. We assume that the password is "1q2w3e4r".

We use this command: CREATE USER group_user@'%' IDENTIFIED BY '{password}' REQUIRE SSL

[Primary server]

```
Proceed to the primary server, or 192.168.0.4 server in the example above, for group replication.
podman exec -i dfm-mysql mysql -uroot -p1q2w3e4r
Welcome to the MySQL monitor. Commands end with; or \g.
Your MySQL connection id is 11
Server version: 5.7.25-log MySQL Community Server (GPL)
Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> SET SQL LOG BIN=0;
Query OK, 0 rows affected (0.00 sec)
mysgl> CREATE USER group user@'%' IDENTIFIED BY '1q2w3e4r' REQUIRE SSL;
Query OK, 0 rows affected (0.00 sec)
mysql> GRANT REPLICATION SLAVE ON *.* TO group user@'%';
Query OK, 0 rows affected (0.00 sec)
mysql> GRANT CONNECTION_ADMIN ON *.* TO group_user@'%';
Query OK, 0 rows affected (0.00 sec)
mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)
mysql> SET SQL LOG BIN=1;
Query OK, 0 rows affected (0.00 sec)
mysql> CHANGE MASTER TO MASTER_USER='group_user', MASTER_PASSWORD='1q2w3e4r'\
FOR CHANNEL 'group replication recovery';
Query OK, 0 rows affected (0.02 sec)
mysql> SET GLOBAL group_replication_bootstrap_group=ON;
Query OK, 0 rows affected (0.00 sec)
mysql> START GROUP_REPLICATION;
Query OK, 0 rows affected (4.56 sec)
mysql> SET GLOBAL group replication bootstrap group=OFF;
Query OK, 0 rows affected (0.00 sec)
```

[Secondary server]

Proceed to the secondary server, or 192.168.0.5, 192.168.0.6 server in the example above, for group replication. podman exec -i dfm-mysql mysql -uroot -p1q2w3e4r Welcome to the MySQL monitor. Commands end with; or \g. Your MySQL connection id is 11 Server version: 5.7.25-log MySQL Community Server (GPL) Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners. Type 'help;' or '\h' for help. Type '\c' to clear the current input statement. mysql> SET SQL LOG BIN=0; Query OK, 0 rows affected (0.00 sec) mysql> CREATE USER group user@'%' IDENTIFIED BY '1q2w3e4r' REQUIRE SSL; Query OK, 0 rows affected (0.00 sec) mysql> GRANT REPLICATION SLAVE ON *.* TO group_user@'%'; Query OK, 0 rows affected (0.00 sec) mysql> GRANT CONNECTION_ADMIN ON *.* TO group_user@'%'; Query OK, 0 rows affected (0.00 sec) mysql> FLUSH PRIVILEGES; Query OK, 0 rows affected (0.00 sec) mysql> SET SQL LOG BIN=1; Query OK, 0 rows affected (0.00 sec) mysql> CHANGE MASTER TO MASTER USER='group user', MASTER PASSWORD='1q2w3e4r'\ FOR CHANNEL 'group replication recovery'; Query OK, 0 rows affected (0.02 sec) mysql> **START GROUP_REPLICATION**; Query OK, 0 rows affected (4.56 sec)

[validation]

mysql> SELECT MEN performance_schem			BER_STATE, MEMI	BER_ROLE FROM
· — ·	_	MEMBER_STATE	· —	
192.168.0.4 192.168.0.5 192.168.0.6	33061 33061 33061	ONLINE	PRIMARY SECONDARY SECONDARY	

mode.)

Important! DFM db initialization must be performed on the primary server.

For the example above, we'll connect to server 192.168.0.4.

podman exec -i dfm-mysql mysql -uroot -p1q2w3e4r < /tmp/dfm/mysql-query/init_db.sql mysql: [Warning] Using a password on the command line interface can be insecure.

podman exec -i dfm-mysql mysql -uroot -p1q2w3e4r < /tmp/dfm/mysql-query/init_dfm_core.sql mysql: [Warning] Using a password on the command line interface can be insecure.

podman exec -i dfm-mysql mysql -uroot -p1q2w3e4r < /tmp/dfm/mysqlquery/init_dfm_console.sql

mysql: [Warning] Using a password on the command line interface can be insecure.

4.3. Firmware Storage (minio) Server

A server for storing firmware files and client files.

A minimum of four and a maximum of eight servers are required for an HA configuration. Each server is automatically synchronized and will not function properly if the time is different between servers.

4.3.1 (Prerequisites) Install Package

If the installed Podman version is between 4.0 to 4.4 in Red Hat Enterprise Linux 8.4 or 9.2, an additional package installation is required.

The following describes the package that needs to be installed:

podman: manage container tool

podman-plugins: the CNI plugins used to run podman

dnsmasq: use to find local dnsname

[Default]

sudo yum install -y podman

[Red hat 8.4 or 9.2 podman 4.0 ~ 4.4]

sudo yum install -y podman podman-plugins dnsmasq

4.3.2 (STEP01) Create Service Account and Login

The DFM Module is logged in with a **dedicated service account** and operates with the privileges of the account. Therefore, the dedicated service account has to be created in the server. The service account also needs the "**sudo**" privilege as a command permission. Ensure you add your service account into the Wheel group.

We recommend that you create a service account before you start the installation.

The following command shows you how to add your service account into the Wheel group:

We assume that you are using the "nightwatch" account, and that the DFM Module is logged in with a dedicated service account and operates with the privileges of the account.

Add wheel group

sudo usermod --append -G wheel <username>

Example)

sudo usermod --append -G wheel nightwatch

To connect using a created user:

ssh {your-user}@localhost [-p {port}]

Example) ssh nightwatch@localhost

or if you use port 9000 ssh nightwatch@localhost -p 9000

4.3.3 (STEP02) Prepare "Disk partition & mount" for DFM modules

DFM module is installed in and operates in the below directory on the dedicated disk.

Therefore, we should check if the dedicated disk exists and the "partition & mount" is ready, in case the customer has not worked with the disk partition for the DFM module before.

Fig 4-7 An Disk Partitions for DMF Module on Firmware Storage(minio) server

For example, we assume that two disks ("sda" and "sdb") exist.

[CASE01] Disk is Ready

If the disks exist, we don't need to format and mount them.

Now, let's check the disk information:

```
sudo Isblk -p
NAME
             MAJ:MIN RM
                         SIZE RO TYPE MOUNTPOINT
/dev/sda
                               0 disk
            202:0
                      a
                           1T
└/dev/sda1 202:1
                      0
                               0 part /
/dev/sdb
            202:80
                      0
                               0 disk
```

```
        Sudo IsbIk -f

        NAME
        FSTYPE
        LABEL
        UUID
        MOUNTPOINT

        sda
        L-sda1
        ext4
        xxxxxxxxx-rootfs
        6156ec80-9446-4eb1-95e0-9ae6b7a46187 /

        sdb
        ext4
        d3269ceb-4418-45d0-ba68-d6b906e0595d /dfm
```

⇒ "sdb" is already formatted and mounted on /dfm

```
sudo file -s /dev/sdb

/dev/sdb: Linux rev 1.0 ext4 filesystem data, UUID=d3269ceb-4418-45d0-ba68-d6b906e0595d (extents) (64bit) (large files) (huge files)
```

[CASE02] Disk is NOT Ready: it is not formatted

If the disk is not ready, it needs to be formatted and mounted on **/dfm**. Now, let's check the disk information:

sudo lsblk -p NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

```
/dev/sda 202:0 0 1T 0 disk

-/dev/sda1 202:1 0 1T 0 part /
/dev/sdb 202:80 0 1T 0 disk
```

sudo Isblk -f

NAME	FSTYPE	LABEL	UUID	MOUNTPOINT
NANNAN	NUNNNNNNN		\sim	unnnnnnnnnnnnnnnnnnnnnnn
sda				
Lsda1	ext4	xxxxxxxx-rootfs	6156ec80-9446-4eb1-95e6	9-9ae6b7a46187 /
sdb				

⇒ "sdb" is NOT formatted

sudo file -s /dev/sdb

/dev/sdb: data

- ⇒ This means that the disk needs to be formatted
- 5) Format with ext4 file-system

sudo file -s /dev/sdb

```
sudo mkfs -t ext4 /dev/sdb
mke2fs 1.44.1 (24-Mar-2018)
Creating filesystem with 2621440 4k blocks and 655360 inodes
Filesystem UVID: d3269ceb-4418-45d0-ba68-d6b906e0595d
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
```

6) Check if the disk is formatted

sudo mkfs -t ext4 /dev/sdb

/dev/sdb: Linux rev 1.0 ext4 filesystem data, UUID=d3269ceb-4418-45d0-ba68-d6b906e0595d (extents) (64bit) (large files) (huge files)

7) Mount "/dev/sdb" on /dfm

```
// create directory to mount
sudo mkdir /dfm

// mount
sudo mount /dev/sdb /dfm
```

8) Verify

```
df -h
```

```
Filesystem Size Used Avail Use% Mounted on
//dev/sdb 9.8G 37M 9.3G 1% /dfm
```

[CASE03] Disk is NOT Ready: it is already formatted but not yet mounted on /dfm

If the disk is formatted but not yet mounted, it needs to be mounted on /dfm.

Now, let's check the disk information:

- ⇒ "sdb" " is formatted but Not yet mounted
- 3) Mount /dev/sdb on /dfm

```
// create directory to mount
sudo mkdir /dfm

// mount
sudo mount /dev/sdb /dfm
```

4) Verify

df-h

```
Filesystem Size Used Avail Use% Mounted on
/dev/sdb 9.8G 37M 9.3G 1%/dfm
```

4.3.4 Permanently mount the disk

We recommend that the <u>customer's IT manager</u> sets the boot script so that <u>the dedicated disk</u> is automounted when the server is booted.

If the <u>customer's IT manager</u> has not set the boot script for disk auto-mounting, you should proceed according to the command below.

*) If the settings are incorrect, booting may not be possible. The command below is for general situations, and options may differ depending on the customer's system and situation. Please refer to the "fstab" manual for details.

3) Check mount /dev/sdb on /dfm

```
NAME FSTYPE LABEL UUID MOUNTPOINT

sda
L-sda1 ext4 xxxxxxxx-rootfs 6156ec80-9446-4eb1-95e0-9ae6b7a46187 /
sdb ext4 d3269ceb-4418-45d0-ba68-d6b906e0595d /dfm

48
```

sudo Isblk -f

4) Edit /etc/fstab file

Add the content next to "sdb" to the new line.

4.3.5 (STEP03) Create Service Directories

A separated service directory configuration is required to install and operate the Samsung DFM Module. The service account must have "read / write / execute" permissions to the service directory. The service directory should be mounted in a different device location from the OS installation area.

[Service Directory List]

/dfm/minio/data

 $\Rightarrow\,$ that is where efota client APK files and firmware binary files are uploaded when minio server runs.

/dfm/minio/config/certs

 \Rightarrow that is where private key and public key are located by default when minio server communicate by ssl.

/dfm/config

⇒ that is where the config file contains the information needed to run the DFM module.

Now, let's create each service directory.

```
sudo mkdir -p /dfm/minio/data
sudo mkdir -p /dfm/minio/config
sudo mkdir -p /dfm/config
```

Set the service account's permission for the created service directory.

We assume that you are using the "nightwatch" account.

```
sudo chown -R nightwatch:nightwatch /dfm
sudo chown -R nightwatch:nightwatch /dfm/minio
sudo chown -R nightwatch:nightwatch /dfm/minio/config
sudo chown -R nightwatch:nightwatch /dfm/config
```

4.3.6 (STEP04) Install DFM Module Package

The DFM Module is delivered as a TAR archive file. This package contains the following resources:

- executable binary (dfm): managed command to run DFM module
- docker images: docker image about DFM module
- dfm config file (dfm_config.json): config file for DFM module

To install these resources, the files have to be unpacked within the following locations by the host. The files will be used during: 1) Container Image load, and 2) Copying the config file to the service directory.

- executable binary:

⇒ /tmp/dfm/bin/dfm

- docker images:

⇒ /tmp/dfm/images/haproxy-debian-{version}.tar

⇒ /tmp/dfm/images/minio-RELEASE. {version}.tar

⇒ /tmp/dfm/images/mysql-{version}.tar

⇒ /tmp/dfm/images/dfm-console-{version}.tar

⇒ /tmp/dfm/images/dfm-core-{version}.tar

- dfm config file:

⇒ /tmp/dfm/ha/data-server/config/dfm_config.json

The following is a command showing how to install the debian package:

Next, check if the necessary files exist:

```
1) check dfm file

Is -I /tmp/dfm/bin/dfm

2) check images
Is /tmp/dfm/images/ -I
total 971552
-rw-rw-r-- 1 dfm-console-1.0.1.10.tar
-rw-rw-r-- 1 dfm-core-1.0.1.10.tar
-rw-rw-r-- 1 haproxy-debian-2.2.33.tar
-rw-rw-r-- 1 minio-RELEASE. 2021-04-18T19-26-29Z.tar
-rw-rw-r-- 1 mysql-enterprise-server-8.0.20.tar

3) dfm config file : dfm_config.json
```

Is /tmp/dfm/ha/data-server/config/dfm_config.json

/tmp/dfm/ha/data-server/config/dfm_config.json

4.3.7 (STEP05) Load Container Image

Next, register the Images that were unpacked at "/tmp/dfm/images". The loaded container images are used when the container is driven. The following shows how to load container image required for Firmware storage (minio) server using Podman commands: (sudo is required in root mode.)

podman load -i /tmp/dfm/images/minio-RELEASE.{version}.tar

Next, check if the minio image was loaded. Use the "Podman Images" command: (sudo is required in root mode.)

Example)

podman images

REPOSITORY TAG IMAGE ID CREATED SIZE

minio/minio RELEASE.2020-06-01T17-28-03Z 2f89782ec9dc 8 days ago 56.7MB

4.3.8 (STEP06) Copy Configuration files

After loading the Docker images, copy the following configuration files into the service directory from the unpacked resources directory.

We assume that you are using the "nightwatch" account.

- copy executable binary:

```
// copy executable binary
sudo cp /tmp/dfm/bin/dfm /usr/bin/ or cp /tmp/dfm/bin/dfm /usr/local/bin

// Set executable
sudo chmod 755 /usr/bin/dfm or sudo chmod 755 /usr/local/bin/dfm
```

- copy dfm config file:

```
// copy configuration file

cp /tmp/dfm/ha/data-server/config/dfm_config.json /dfm/config

//Set the service account's permission to the configuration file.

sudo chown -R nightwatch:nightwatch /dfm/config
```

4.3.9 (STEP07) Set-up Configuration

In this step, we will set up the initial configuration information needed for the DFM module to run as a Container.

[Configuration List]

- cluster server name: data (fixed value)
- cluster_minio_access_address: internal access address for each minio server(All minio server addresses separated by commas)
- cluster minio access port: internal access port (default: 9000)
- minio config dir: ssl file location (default: /dfm/minio/config)

For example, a minio server is configured as a 192.168.0.10, 192.168.0.11, 192.168.0.12, 192.168.0.13 server.

The following shows the commands:

You can't use different ports for each server. If you use port 9001, you must set the other servers to port 9001 as well. Therefore, we recommend setting it up using the default port of 9000.

(CASE01) Use default port,

dfm cluster config set cluster_server_name=data

(CASE02) Use a port other than the default port (ex: Change port to 9001 from default port)

dfm cluster config set cluster_server_name=data

dfm cluster config set cluster_minio_access_port=9001

Next, check if the configured value is correct. Use the "dfm cluster config get {key}" command:

dfm cluster config get cluster_server_name

data

dfm cluster config get cluster_minio_access_port

9000

dfm cluster config get minio_config_dir

/dfm/minio/config

Configure cluster_minio_access_address:

Enter the full server connection address, separated by spaces.

http://{minio server ip}/data1

dfm cluster config set cluster_minio_access_address=http://192.168.0.10/data1 http://192.168.0.11/data1 http://192.168.0.12/data1

4.3.10 (STEP09) Start-up Firmware Storage(minio) Server

In this stage, the installer starts the storage server that manages the firmware binary.

The command to run the Firmware Storage Server container is as follows: (sudo is

required in root mode.)

dfm cluster start dfm-minio

[Validation]

Make sure the Minio container is in a healthy state. It may take some time until its state is healthy.

If it is red hat 8.4 version, run health check podman healthcheck run dfm-minio podman ps -a Example) \$ podman ps -a CONTAINER ID ~ STATUS **NAMES** Up 4 seconds (health: starting) dfm-minio af3949b8db98 \$ \$ podman ps -a CONTAINER ID **STATUS NAMES** af3949b8db9 Up 2 minutes (healthy) dfm-minio

4.4. DFM Core/Console Server

4.4.1 (Prerequisites) Install Package

If the installed Podman version is between 4.0 to 4.4 in Red Hat Enterprise Linux 8.4 or 9.2, an additional package installation is required.

The following describes the package that needs to be installed:

podman: manage container tool

podman-plugins: the CNI plugins used to run podman

dnsmasq: use to find local dnsname

[Default]

sudo yum install -y podman

[Red hat 8.4 or 9.2 podman 4.0 ~ 4.4]

sudo yum install -y podman podman-plugins dnsmasq

4.4.2 (STEP01) Create Service Account and Login

The DFM Module is logged in with a **dedicated service account** and operates with the privileges of the account. Therefore, the dedicated service account has to be created in the server. The service account also needs the "**sudo**" privilege as a command permission. Ensure you add your service account into the Wheel group.

We recommend that you create a service account before you start the installation.

The following command shows you how to add your service account into the Wheel

group:

We assume that you are using the "nightwatch" account, and that the DFM Module is logged in with a dedicated service account and operates with the privileges of the account.

Add wheel group

```
sudo usermod --append -G wheel <username>

Example)
sudo usermod --append -G wheel nightwatch
```

To connect using a created user:

```
ssh {your-user}@localhost [-p {port}]

Example)
ssh nightwatch@localhost

or if you use port 9000
ssh nightwatch@localhost -p 9000
```

4.4.3 (STEP02) Prepare "Disk partition & mount" for DFM modules

DFM module is installed in and operates in the below directory on the dedicated disk.

Therefore, we should check if the dedicated disk exists and the "partition & mount" is ready, in case the customer has not worked with the disk partition for the DFM module before.

Fig 4-8 An Disk Partitions for DMF Module on DFM core/console server

For example, we assume that two disks ("sda" and "sdb") exist.

[CASE01] Disk is Ready

If the disks exist, we don't need to format and mount them.

Now, let's check the disk information:

sudo lsblk -f NAME FSTYPE LABEL UUID MOUNTPOINT sda L-sda1 ext4 xxxxxxxxx-rootfs 6156ec80-9446-4eb1-95e0-9ae6b7a46187 / sdb ext4 d3269ceb-4418-45d0-ba68-d6b906e0595d /dfm

⇒ "sdb" is already formatted and mounted on /dfm

```
sudo file -s /dev/sdb
/dev/sdb: Linux rev 1.0 ext4 filesystem data, UUID=d3269ceb-4418-45d0-ba68-d6b906e0595d (extents) (64bit) (large files) (huge files)
```

[CASE02] Disk is NOT Ready: it is not formatted

If the disk is not ready, it needs to be formatted and mounted on /dfm.

Now, let's check the disk information:

```
      NAME
      MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

      /dev/sda 202:0
      0
      1T 0 disk

      L/dev/sda1 202:1
      0
      1T 0 part /

      /dev/sdb 202:80
      0
      1T 0 disk

Sudo lsblk -f
```

NAME	FSTYPE	LABEL	UUID	MOUNTPOINT
sda	wwwwwww		<u>waamamamamamamamamamamamamamamamamamama</u>	
∟ _{sda1}	ext4	xxxxxxxx-rootfs	6156ec80-9446-4eb1-95e0-	9ae6b7a46187 /

⇒ "sdb" is NOT formatted

```
sudo file -s /dev/sdb
/dev/sdb: data
```

- ⇒ This means that the disk needs to be formatted
- 1) Format with ext4 file-system

sudo file -s/dev/sdb sudo mkfs -t ext4 /dev/sdb mke2fs 1.44.1 (24-Mar-2018) Creating filesystem with 2621440 4k blocks and 655360 inodes Filesystem UUID: d3269ceb-4418-45d0-ba68-d6b906e0595d Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632 Allocating group tables: done Writing inode tables: done Creating journal (16384 blocks): done Writing superblocks and filesystem accounting information: done

2) Check if the disk is formatted

```
sudo mkfs -t ext4 /dev/sdb

/dev/sdb: Linux rev 1.0 ext4 filesystem data, UUID=d3269ceb-4418-45d0-ba68-d6b906e0595d (extents) (64bit) (large files) (huge files)
```

3) Mount "/dev/sdb" on /dfm

```
// create directory to mount
sudo mkdir /dfm

// mount
sudo mount /dev/sdb /dfm
```

4) Verify

df -h

```
Filesystem Size Used Avail Use% Mounted on
/dev/sdb 9.8G 37M 9.3G 1% /dfm
```

[CASE03] Disk is NOT Ready: it is already formatted but not yet mounted on /dfm

If the disk is formatted but not yet mounted, it needs to be mounted on /dfm.

Now, let's check the disk information:

sudo Isblk -f

```
NAME FSTYPE LABEL UUID MOUNTPOINT

sda
L—sda1 ext4 xxxxxxxx-rootfs 6156ec80-9446-4eb1-95e0-9ae6b7a46187 /
sdb ext4 d3269ceb-4418-45d0-ba68-d6b906e0595d
```

- ⇒ "sdb" " is formatted but Not yet mounted
- 1) Mount /dev/sdb on /dfm

```
// create directory to mount
sudo mkdir /dfm

// mount
sudo mount /dev/sdb /dfm

2) Verify

df -h

Filesystem Size Used Avail Use% Mounted on
/dev/sdb 9.8G 37M 9.3G 1% /dfm
```

4.4.4 Permanently mount the disk

We recommend that the <u>customer's IT manager</u> sets the boot script so that <u>the dedicated disk</u> is automounted when the server is booted.

If the <u>customer's IT manager</u> has not set the boot script for disk auto-mounting, you should proceed according to the command below.

*) If the settings are incorrect, booting may not be possible. The command below is for general situations, and options may differ depending on the customer's system and situation. Please refer to the "fstab" manual for details.

5) Check mount /dev/sdb on /dfm

6) Edit /etc/fstab file

Add the content next to "sdb" to the new line.

4.4.5 (STEP03) Create Service Directories

A separated service directory configuration is required to install and operate the Samsung DFM Module. The service account must have "read / write / execute" permissions to the service directory. The service directory should be mounted in a different device location from the OS installation area.

[Service Directory List]

/dfm/haproxy/config

⇒ that is where the config file is referenced when haproxy server starts.

/dfm/console/logs

 \Rightarrow that is where log files are generated when admin console server runs.

/dfm/core/logs

⇒ that is where log files are generated when core server runs.

/dfm/config

⇒ that is where the config file contains the information needed to run the DFM module.

Now, let's create each service directory.

```
sudo mkdir -p /dfm/haproxy/config
sudo mkdir -p /dfm/console/logs
sudo mkdir -p /dfm/core/logs
sudo mkdir -p /dfm/config
```

Set the service account's permission for the created service directory.

We assume that you are using the "nightwatch" account.

```
sudo chown -R nightwatch:nightwatch /dfm
sudo chown -R nightwatch:nightwatch /dfm/console/logs
sudo chown -R nightwatch:nightwatch /dfm/core/logs
sudo chown -R nightwatch:nightwatch /dfm/haproxy/config
sudo chown -R nightwatch:nightwatch /dfm/config
```

4.4.6 (STEP04) Install DFM Module Package

The DFM Module is delivered as a TAR archive file. This package contains the following resources:

- executable binary (dfm): managed command to run DFM module
- docker images: docker image about DFM module
- haproxy config file (haproxy.cfg): config file for haproxy
- dfm config file (dfm_config.json): config file for DFM module

To install these resources, the files have to be unpacked within the following locations by the host. The files will be used during: 1) Container Image load, 2) initializing MySQL DB, and 3) Copying the config file to the service directory.

- executable binary:
 - ⇒ /tmp/dfm/bin/dfm
- docker images:
 - ⇒ /tmp/dfm/images/haproxy-debian-{version}.tar
 - ⇒ /tmp/dfm/images/minio-RELEASE{version}.tar
 - ⇒ /tmp/dfm/images/mysql-{version}.tar
 - ⇒ /tmp/dfm/images/dfm-console-{version}.tar
 - ⇒ /tmp/dfm/images/dfm-core-{version}.tar
- haproxy config file:

```
    ⇒ /tmp/dfm/ha/app-server/haproxy-config/haproxy.cfg
    - dfm config file:
    ⇒ /tmp/dfm/ha/app-server/config/dfm_config.json
```

The following is a command showing how to install the debian package:

Next, check if the necessary files exist:

```
1) check dfm file
Is -I /tmp/dfm/bin/dfm
2) check images
Is /tmp/dfm/images/ -I
total 971552
-rw-rw-r-- 1 dfm-console-1.0.1.10.tar
-rw-rw-r-- 1 dfm-core-1.0.1.10.tar
-rw-rw-r-- 1 haproxy-debian-2.2.33.tar
-rw-rw-r-- 1 minio-RELEASE.2021-04-18T19-26-29Z.tar
-rw-rw-r-- 1 mysql-enterprise-server-8.0.20.tar
4) check haproxy config file: haproxy.cfg
Is /tmp/dfm/ha/app-server/haproxy-config/ -I
total 12
drwxrwxr-x errors
-rw-rw-r-- haproxy.cfg
5) dfm config file: dfm_config.json
Is /tmp/dfm/ha/app-server/config/dfm_config.json
/tmp/dfm/ha/app-server/config/dfm config.json
```

4.4.7 (STEP05) Load Container Image

Next, register the Container Images that were unpacked at "/tmp/dfm/images". The loaded Container Images are used when the container is driven. The following shows how to load Container Images required for DFM Core/Cosole server using Podman commands: (sudo is required in root mode.)

```
podman load -i /tmp/dfm/images/haproxy-debian-{version}.tar
podman load -i /tmp/dfm/images/dfm-core-{version}.tar
podman load -i /tmp/dfm/images/dfm-console-{version}.tar
```

Next, check if the 3 Podman images were loaded. Use the "Podman Images" command: (sudo is required in root mode.)

Example) podman images				
REPOSITORY	TAG	IMAGE ID	CREATED	SIZE
localhost/dfm-console	1.0.1.10	91343f0b589f	2 weeks ago	191 MB
localhost/dfm-core	1.0.1.10	0c838d5b5f1d	2 weeks ago	149 MB
localhost/haproxytech/haproxy-debian	2.2.33	7ba2bc46a616	3 years ago	123 MB

4.4.8 (STEP06) Copy Configuration files

After loading the Docker images, copy the following configuration files into the service directory from the unpacked resources directory.

We assume that you are using the "nightwatch" account.

- copy executable binary:

```
// copy executable binary
 sudo cp /tmp/dfm/bin/dfm /usr/bin/ or cp /tmp/dfm/bin/dfm /usr/local/bin
// Set executable
sudo chmod 755 /usr/bin/dfm or sudo chmod 755 /usr/local/bin/dfm
```

```
    copy haproxy config file:

// copy configuration file
 cp /tmp/dfm/ha/app-server/haproxy-config/haproxy.cfg /dfm/haproxy/config
// copy error files
 cp -rf /tmp/dfm/ha/app-server/haproxy-config/errors/ /dfm/haproxy/config
//Set the service account's permission to the configuration file.
 sudo chown -R nightwatch:nightwatch /dfm/haproxy/config
```

copy dfm config file:

```
// copy configuration file
cp /tmp/dfm/ha/app-server/config/dfm_config.json /dfm/config
//Set the service account's permission to the configuration file.
sudo chown -R nightwatch:nightwatch /dfm/config
```

4.4.9 (STEP07) Set-up Configuration

In this step, we will set up the initial configuration information needed for the DFM module to run asa Container.

Set the configuration reffering to the setting in 4.1. Check Pre-Config.

Configuration List

- host ip: Static IP for DFM server.
- listen port: External listen port at server for DFM module to be accessed.
- listen scheme: url scheme(http or https) for DFM module to be accessed.
- cluster_server_name: app
- cluster service address: address to access admin console (ip or address)
- cluster service port: port to access admin console
- cluster_service_scheme: protocol to access admin console (http or https)
- cluster_minio_access_address: firmware storage server address(fixed: dfm-proxy)
- cluster minio access port: firmware storage server port
- cluster minio access scheme: firmware storage server protocol (http or https)
- cluster mysql access url: database server address with port(ip or address)

- license_app_ip: license app access ip(if you do not need to change ip, the default value is set when input blank, sudo is required in root mode)

The following shows the commands:

cluster mysql access address is set to the address used as an example when setting up the db server.

```
dfm cluster config set host_ip=192.168.1.52

dfm cluster config set listen_port=80

dfm cluster config set cluster_scheme=http

dfm cluster config set cluster_service_address=181.107.61.233

dfm cluster config set cluster_service_port=6380

dfm cluster config set cluster_service_scheme=http

dfm cluster config set cluster_minio_access_address=dfm-proxy

dfm cluster config set cluster_minio_access_port=9000

dfm cluster config set cluster_minio_access_scheme=http

dfm cluster config set cluster_minio_access_scheme=http

dfm cluster config set cluster_minio_access_url=192.168.0.4:33061, 192.168.0.5:33061,

192.168.0.6:33061

dfm config set license_app_ip=
```

Next, check if the configured value is correct. Use the "dfm cluster config get {key}" command:

```
Example)
dfm cluster config get host_ip
192.168.1.52
dfm cluster config get listen_port
dfm cluster config get listen scheme
http
dfm cluster config get cluster server name
арр
dfm cluster config get cluster_service_address
181.107.61.233
dfm cluster config get cluster service port
6380
dfm cluster config get cluster_service_scheme
dfm cluster config get cluster_minio_access_address
dfm-proxy
dfm cluster config get cluster_minio_access_port
9000
dfm cluster config get cluster_minio_access_scheme
http
```

```
dfm cluster config get cluster_mysql_access_url
192.168.0.4:33061, 192.168.0.5:33061, 192.168.0.6:33061

dfm config get license_app_ip
100.0.0.1
```

4.4.10 (STEP08) Configure HAProxy

In this step, set up for communication between minio server and DFM core/console server. Change the value according to all minio server ip and cluster_minio_access_port set in minio server.

```
vi /dfm/haproxy/config/haproxy.cfg

backend dfmMinioReplaceHostBackend
mode http
option httpchk GET /minio/health/live
http-check expect status 200
default-server inter 5s fall 3 rise 2
balance leastconn
# if minio server use ssl
#server dfm-minio 192.168.0.11:9000 ssl verify none check
# otherwise
server dfm-minio-group-1 192.168.0.10:9000 check
server dfm-minio-group-1 192.168.0.11:9000 check
server dfm-minio-group-1 192.168.0.12:9000 check
server dfm-minio-group-1 192.168.0.13:9000 check
```

4.4.11 (STEP09) Create Container Network

The DFM Module is a process executed on a container basis, creating the Podman network required for communications among containers.

To create a network, use the following command: (sudo is required in root mode.)

dfm network create

[Validation]

Run the following command to see if "dfm-network" is visible.

dfm network Is NETWORK ID	NAME	DRIVER	SCOPE
e2697cd6621a	dfm-network	bridge	local

Copy the following Background app files into theservice directoryfrom the unpacked resources directory. We assume that you are using the "**nightwatch**" account.

// copy background files

cp /tmp/dfm/licenseApp /dfm/background/licenseApp

cp /tmp/dfm/efota-license.service /etc/systemd/system/efota-license.service

// Set the service account's permission to the configuration file.

sudo chmod 744 /dfm/background/licenseApp sudo chcon -t bin_t /dfm/background/licenseApp

4.4.13 (STEP11) Start-up Background App

In this stage, the installer starts the Background App for license check The command to run the background app is as follows:

sudo systemctl daemon-reload sudo systemctl enable efota-license.service sudo systemctl start efota-license.service

[Validation]

Make sure the Background app is running.

sudo systemctl status efota-license.service

Loaded: loaded (/etc/system/system/efota-license.service; enabled; vendor preset: enabled)

Active: active (running) since Tue 2024-XX-XX 06:39:10 UTC; 7s ago

Main PID: 2028 (licenseApp)

4.4.14 (STEP12) Start-up DFM Core/Console Server

In this stage, the installer starts the storage server that manages the firmware binary. The command to run the HA proxy, Core and Console containers is as follows: (sudo is

required in root mode.)

dfm cluster start dfm-proxy dfm cluster start dfm-core dfm cluster start dfm-console

[Validation]

Make sure the 3 containers are in a healthy state. It may take some time until its state is healthy.

If it is red hat 8.4 version, run health check podman healthcheck run dfm-proxy podman healthcheck run dfm-core podman healthcheck run dfm-console

podman ps -a

```
Example)
$ podman ps -a
CONTAINER ID
                     STATUS
                                                         NAMES
cbdd8728e551 Up 4 seconds (health: starting)
                                                   dfm-core
                Up 4 seconds (health: starting)
                                                   dfm-console
c1e2cc5634a8
                Up 4 seconds (health: starting)
                                                   dfm-proxy
c88feb369b2c
$
$ podman ps -a
CONTAINER ID
                                                       NAMES
                     STATUS
cbdd8728e551 Up 2 minutes (healthy)
                                                   dfm-core
                Up 2 minutes (healthy)
                                                   dfm-console
c1e2cc5634a8
                Up 2 minutes (healthy)
c88feb369b2c
                                                   dfm-proxy
```

4.5 Keepalived

Install and set up keepalived on your web server before setting up your web server.

Assuming you have two web servers, this section describes the installation and setup process.

```
192.168.0.20(MASTER)
192.168.0.21(BACKUP)
```

4.5.1 (STEP01) Install package

Install the installation on each server with the yum package manager.

```
$ sudo yum install -y keepalived
```

4.5.2 (STEP02) Configure keepalived

[Configuration MASTER]

```
# vi /etc/keepalived/keepalived.conf
vrrp_instance VI_1 {
    state MASTER
    interface eth0
    virtual_router_id 51
    priority 255
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 12345
    }
    virtual_ipaddress {
        192.168.0.200/24
    }
}
```

[Configuration BACKUP]

```
# vi /etc/keepalived/keepalived.conf
vrrp_instance VI_1 {
    state BACKUP
    interface eth0
    virtual_router_id 51
    priority 255
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 12345
    }
    virtual_ipaddress {
        192.168.0.200/24
    }
}
```

4.5.3 (STEP03) Start-up keepalived

Start keepliaved on each server and verify that it is working properly.

```
sudo systemctl start keepalived
```

[Validation]

```
# 192.168.0.20(master server)
ip -br a

Example)
eth0 UP 192.168.0.20/24 192.168.0.200/24

# 192.168.0.21(backup server)
ip -br a

Example)
eth0 UP 192.168.0.21/24
```

4.6 WEB Server

4.6.1 (Prerequisites) Install Package

If the installed Podman version is between 4.0 to 4.4 in Red Hat Enterprise Linux 8.4 or 9.2, an additional package installation is required.

The following describes the package that needs to be installed:

podman: manage container tool

podman-plugins: the CNI plugins used to run podman

dnsmasq: use to find local dnsname

[Default]

sudo yum install -y podman

[Red hat 8.4 or 9.2 podman 4.0 ~ 4.4]

sudo yum install -y podman podman-plugins dnsmasq

4.6.2 (STEP01) Create Service Account and Login

The DFM Module is logged in with a **dedicated service account** and operates with the privileges of the account. Therefore, the dedicated service account has to be created in the server. The service account also needs the "**sudo**" privilege as a command permission. Ensure you add your service account into the Wheel group.

We recommend that you create a service account before you start the installation.

The following command shows you how to add your service account into the Wheel group:

We assume that you are using the "nightwatch" account, and that the DFM Module is logged in with a dedicated service account and operates with the privileges of the account.

sudo usermod --append -G wheel <username>

Example)

sudo usermod --append -G wheel nightwatch

Add wheel group

To connect using a created user:

ssh {your-user}@localhost [-p {port}]

Example)

ssh nightwatch@localhost

or if you use port 9000

ssh nightwatch@localhost -p 9000

4.6.3 (STEP02) Prepare "Disk partition & mount" for DFM modules

DFM module is installed in and operates in the below directory on the dedicated disk.

Therefore, we should check if the dedicated disk exists and the "partition & mount" is ready, in case the customer has not worked with the disk partition for the DFM module before.

Fig 4-9 An Disk Partitions for DMF Module on WEB server

For example, we assume that two disks ("sda" and "sdb") exist.

[CASE01] Disk is Ready

If the disks exist, we don't need to format and mount them.

Now, let's check the disk information:

```
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

/dev/sda 202:0 0 1T 0 disk

L/dev/sda1 202:1 0 1T 0 part /
/dev/sdb 202:80 0 1T 0 disk
```

```
        Sudo IsbIk -f

        NAME
        FSTYPE
        LABEL
        UUID
        MOUNTPOINT

        sda
        L-sda1
        ext4
        xxxxxxxxx-rootfs
        6156ec80-9446-4eb1-95e0-9ae6b7a46187 / d3269ceb-4418-45d0-ba68-d6b906e0595d /dfm
```

⇒ "sdb" is already formatted and mounted on /dfm

```
sudo file -s /dev/sdb
/dev/sdb: Linux rev 1.0 ext4 filesystem data, UUID=d3269ceb-4418-45d0-ba68-d6b906e0595d (extents) (64bit) (large files) (huge files)
```

[CASE02] Disk is NOT Ready: it is not formatted

If the disk is not ready, it needs to be formatted and mounted on /dfm.

Now, let's check the disk information:

⇔ "sdb" is NOT formatted

```
NAME FSTYPE LABEL UUID MOUNTPOINT

sda
Lsda1 ext4 xxxxxxx-rootfs 6156ec80-9446-4eb1-95e0-9ae6b7a46187 /
sdb
```

⇒ This means that the disk needs to be formatted

```
sudo file -s /dev/sdb
/dev/sdb: data
```

5) Format with ext4 file-system

```
sudo mkfs -t ext4 /dev/sdb
mke2fs 1.44.1 (24-Mar-2018)
Creating filesystem with 2621440 4k blocks and 655360 inodes
Filesystem UUID: d3269ceb-4418-45d0-ba68-d6b906e0595d
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Allocating group tables: done
Writing inode tables: done
Creating journal (16384 blocks): done
Writing superblocks and filesystem accounting information: done
```

6) Check if the disk is formatted

```
sudo mkfs -t ext4 /dev/sdb

/dev/sdb: Linux rev 1.0 ext4 filesystem data, UUID=d3269ceb-4418-45d0-ba68-d6b906e0595d (extents) (64bit) (large files) (huge files)
```

7) Mount "/dev/sdb" on /dfm

```
// create directory to mount
sudo mkdir /dfm

// mount
sudo mount /dev/sdb /dfm
```

8) Verify

```
df -h
```

```
Filesystem Size Used Avail Use% Mounted on
//dev/sdb 9.8G 37M 9.3G 1% /dfm
```

[CASE03] Disk is NOT Ready: it is already formatted but not yet mounted on /dfm

If the disk is formatted but not yet mounted, it needs to be mounted on /dfm.

Now, let's check the disk information:

```
sudo Isblk -p
```

```
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

//dev/sda 202:0 0 1T 0 disk

L/dev/sda1 202:1 0 1T 0 part /
/dev/sdb 202:80 0 1T 0 disk
```

sudo lsblk -f

- ⇒ "sdb" " is formatted but Not yet mounted
- 3) Mount /dev/sdb on /dfm

```
// create directory to mount
sudo mkdir /dfm

// mount
sudo mount /dev/sdb /dfm
```

4) Verify

```
df-h
```

```
Filesystem Size Used Avail Use% Mounted on
//dev/sdb 9.8G 37M 9.3G 1% /dfm
```

4.6.4 Permanently mount the disk

We recommend that the <u>customer's IT manager</u> sets the boot script so that <u>the dedicated disk</u> is automounted when the server is booted.

If the <u>customer's IT manager</u> has not set the boot script for disk auto-mounting, you should proceed according to the command below.

*) If the settings are incorrect, booting may not be possible. The command below is for general situations, and options may differ depending on the customer's system and situation. Please refer to the "fstab" manual for details.

7) Check mount /dev/sdb on /dfm

sudo Isblk -f

NAME	FSTYPE	LABEL	UUID	MOUNTPOINT
			พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ	
sda				
Lsda1	ext4	xxxxxxxxx-rootfs	6156ec80-9446-4eb1-95e0-9ae6b7a46	187 /
sdb	ext4		d3269ceb-4418-45d0-ba68-d6b906e05	05d /dfm

8) Edit /etc/fstab file

Add the content next to "sdb" to the new line.

4.6.5 (STEP03) Create Service Directories

A separated service directory configuration is required to install and operate the Samsung DFM Module. The service account must have "read / write / execute" permissions to the service directory. The service directory should be mounted in a different device location from the OS installation area.

[Service Directory List]

/dfm/haproxy/config

⇒ that is where the config file is referenced when haproxy server starts.

/dfm/config

⇒ that is where the config file contains the information needed to run the DFM module.

Now, let's create each service directory.

```
sudo mkdir -p /dfm/haproxy/config
sudo mkdir -p /dfm/config
```

Set the service account's permission for the created service directory.

We assume that you are using the "nightwatch" account.

```
sudo chown -R nightwatch:nightwatch /dfm
sudo chown -R nightwatch:nightwatch /dfm/haproxy
sudo chown -R nightwatch:nightwatch /dfm/haproxy/config
sudo chown -R nightwatch:nightwatch /dfm/config
```

4.6.6 (STEP04) Install DFM Module Package

The DFM Module is delivered as a TAR archive file. This package contains the following resources:

- executable binary (dfm): managed command to run DFM module
- docker images: docker image about DFM module

```
haproxy config file (haproxy.cfg): config file for haproxydfm config file (dfm_config.json): config file for DFM module
```

To install these resources, the files have to be unpacked within the following locations by the host. The files will be used during: 1) Image load, and 2) Copying the config file to the service directory.

- executable binary:
 - ⇒ /tmp/dfm/bin/dfm
- docker images:
 - ⇒ /tmp/dfm/images/haproxy-debian-{version}.tar
 - ⇒ /tmp/dfm/images/minio-RELEASE. {version}.tar
 - ⇒ /tmp/dfm/images/mysql-{version}.tar
 - $\Rightarrow / tmp/dfm/images/dfm-console-\{version\}.tar$
 - ⇒ /tmp/dfm/images/dfm-core-{version}.tar
- haproxy config file:
 - ⇒ /tmp/dfm/ha/web-server/haproxy-config/haproxy.cfg
- dfm config file:
 - ⇒ /tmp/dfm/ha/web-server/dfm_config.json

The following is a command showing how to install the debian package:

Next, check if the necessary files exist:

```
1) check dfm file

Is -I /tmp/dfm/bin/dfm

2) check images
Is /tmp/dfm/images/ -I
total 971552
-rw-rw-r-- 1 dfm-console-1.0.1.10.tar
-rw-rw-r-- 1 haproxy-debian-2.2.33.tar
```

Installation and Initial Operation Guide for Knox E-FOTA On-Premises

```
-rw-rw-r-- 1 minio-RELEASE.2021-04-18T19-26-29Z.tar
-rw-rw-r-- 1 mysql-enterprise-server-8.0.20.tar

4) check haproxy config file: haproxy.cfg
ls/tmp/dfm/ha/web-server/haproxy-config/-l
total 12
drwxrwxr-x errors
-rw-rw-r-- haproxy.cfg

5) dfm config file: dfm_config.json
```

4.6.7 (STEP05) Load Container Image

Is /tmp/dfm/ha/web-server/config/dfm_config.json /tmp/dfm/ha/app-server/config/dfm_config.json

Next, register the Container Images that were unpacked at "/tmp/dfm/images". The loaded Container Images are used when the container is driven. The following shows how to load Container Image required for WEB server using Podman commands:

podman load -i /tmp/dfm/images/haproxy-debian-{version}.tar

Next, check if the image was loaded. Use the "podman Images" command:

Example)				
podman images				
REPOSITORY	TAG	IMAGE ID	CREATED	SIZE
haproxytech/haproxy-debian	2.2.33	88bf690bd83f	6 days ago	99.7MB

4.6.8 (STEP06) Copy Configuration files

After loading the images, copy the following configuration files into the service directoryfrom the unpacked resources directory.

We assume that you are using the "nightwatch" account.

- copy executable binary:

```
// copy executable binary
sudo cp /tmp/dfm/bin/dfm /usr/bin/ or cp /tmp/dfm/bin/dfm /usr/local/bin

// Set executable
sudo chmod 755 /usr/bin/dfm or sudo chmod 755 /usr/local/bin/dfm
```

- copy haproxy config file:

// copy configuration file

cp /tmp/dfm/ha/web-server/haproxy-config/haproxy.cfg /dfm/haproxy/config

// copy error files

cp -rf /tmp/dfm/ha/web-server/haproxy-config/errors/ /dfm/haproxy/config

//Set the service account's permission to the configuration file. sudo chown -R nightwatch:nightwatch /dfm/haproxy/config

- copy dfm config file:

// copy configuration file

cp /tmp/dfm/ha/web-server/config/dfm_config.json /dfm/config

//Set the service account's permission to the configuration file.

sudo chown -R nightwatch:nightwatch /dfm/config

4.6.9 (STEP07) Set-up Configuration

In this step, we will set up the initial configuration information needed for the DFM module to run as a Container.

[Configuration List]

- host_ip: Static IP for DFM server.
- listen_port: External listen port at server for DFM module to be accessed.
- listen_scheme: url scheme(http or https) for DFM module to be accessed.
- access address: domain-based or ip-based
- access_scheme: http or https
- access_port: public port
- public_endpoint: {access_scheme}://{access_address}:{access_port}

The following is **an example** of how to execute the command to set the above configurations:

The following shows the commands:

```
dfm cluster config set host_ip=192.168.1.52
dfm cluster config set listen_port=80
dfm cluster config set listen_scheme=http
dfm cluster config set access_address=181.107.61.233
dfm cluster config set access_scheme=http
dfm cluster config set access_port=6380
```

Next, check if the configured value is correct. Use the "dfm cluster config get {key}" command:

```
Example)
dfm cluster config get host_ip
192.168.1.52

dfm cluster config get listen_port
80

dfm cluster config get listen_scheme
http
```

```
dfm cluster config get access_address
181.107.61.233

dfm cluster config get access_scheme
http

dfm cluster config get access_port
6380
```

4.6.10 (STEP08) Configure HAProxy

In this step, you will set up communication to the DFM core/console server. Change the value according to listen_ip and listen_port set in the DFM core/console server.

[UseCase1] One DFM core/console server is used.

1) If you are **not** using SSL to connect:

Set up to "server dfm-coreproxy_1 {listen_ip}:{listen_port} check"

```
vi /dfm/haproxy/config/haproxy.cfg

backend dfmCoreProxyBackend
balance roundrobin
mode http
option httpchk GET /admin/health/live
http-check expect status 200
default-server inter 5s fall 3 rise 2
cookie SERVER insert indirect nocache

# if core server use ssl
#server dfm-coreproxy_1 192.168.0.3:443 ssl verify none check cookie dfm-coreproxy_1
#server dfm-coreproxy_2 192.168.0.4:443 ssl verify none check cookie dfm-coreproxy_2
# otherwise
server dfm-coreproxy_1 192.168.0.3:80 check cookie dfm-coreproxy_1
#server dfm-coreproxy_2 192.168.0.4:80 check cookie dfm-coreproxy_2
# server dfm-coreproxy_2 192.168.0.4:80 check cookie dfm-coreproxy_2
```

2) If you are using SSL to connect:

Set up to "server dfm-coreproxy_1 {listen_ip}:{listen_port} ssl verify none check"

```
vi /dfm/haproxy/config/haproxy.cfg

backend dfmCoreProxyBackend
balance roundrobin
mode http
option httpchk GET /admin/health/live
http-check expect status 200
default-server inter 5s fall 3 rise 2
cookie SERVER insert indirect nocache

# if core server use ssl
server dfm-coreproxy_1 192.168.0.3:443 ssl verify none check cookie dfm-coreproxy_1
```

[UseCase2] Three DFM core/console servers are used.

1) If you are **not** using SSL to connect:

Set up to "server dfm-coreproxy_{number} {listen_ip}:{listen_port} check"

```
backend dfmCoreProxyBackend
balance roundrobin
mode http
option httpchk GET /admin/health/live
http-check expect status 200
default-server inter 5s fall 3 rise 2
cookie SERVER insert indirect nocache

# if core server use ssl
#server dfm-coreproxy_1 192.168.0.3:443 ssl verify none check cookie dfm-coreproxy_1
#server dfm-coreproxy_2 192.168.0.4:443 ssl verify none check cookie dfm-coreproxy_2
# otherwise
server dfm-coreproxy_1 192.168.0.3:80 check cookie dfm-coreproxy_1
server dfm-coreproxy_2 192.168.0.4:80 check cookie dfm-coreproxy_2
server dfm-coreproxy_3 192.168.0.5:80 check cookie dfm-coreproxy_3
server dfm-coreproxy_3 192.168.0.5:80 check cookie dfm-coreproxy_3
```

2) If you are using SSL to connect:

Set up to "server dfm-coreproxy_{number} {listen_ip}:{listen_port} ssl verify none check"

```
vi /dfm/haproxy/config/haproxy.cfg
backend dfmCoreProxyBackend
  balance roundrobin
 mode http
  option httpchk GET /admin/health/live
  http-check expect status 200
  default-server inter 5s fall 3 rise 2
  cookie SERVER insert indirect nocache
  # if core server use ssl
  server dfm-coreproxy_1 192.168.0.3:443 ssl verify none check dfm-coreproxy_1
  server dfm-coreproxy_2 192.168.0.4:443 ssl verify none check dfm-coreproxy_2
  server dfm-coreproxy 3 192.168.0.5:443 ssl verify none check dfm-coreproxy 3
  # otherwise
  #server dfm-coreproxy_1 192.168.0.3:80 check dfm-coreproxy_1
  #server dfm-coreproxy_2 192.168.0.4:80 check dfm-coreproxy_2
  #server dfm-coreproxy_3 192.168.0.5:80 check dfm-coreproxy_3
```

Set up communication to the Firmware Storage(minio) server

Change the value according to all minio server ip and cluster_minio_access_port set in the Firmware Storage(minio) server.

Set up to "http-request set-header Host dfm-proxy:{cluster_minio_acces_port}"

vi/dfm/haproxy/config/haproxy.cfg

backend dfmMinioProxyBackend

mode http

option httpchk GET /minio/health/live

http-check expect status 200

default-server inter 5s fall 3 rise 2

http-request set-header Host dfm-proxy:9000

#if minio server use ssl

#server dfm-minioproxy 192.168.0.7:9000 ssl verify none check

#otherwise

server dfm-minio-group-1 $\mathbf{192.168.0.10:9000}$ check

server dfm-minio-group-1 192.168.0.11:9000 check

server dfm-minio-group-1 192.168.0.12:9000 check

server dfm-minio-group-1 192.168.0.13:9000 check

4.6.11 (STEP09) Create Container Network

The DFM Module is a process executed on a container basis, creating the Podman network requiredfor communications among containers.

To create a network, use the following command: (sudo is required in root mode.)

dfm network create

[Validation]

Run the following command to see if "dfm-network" is visible.

dfm network Is

NETWORK ID NAME DRIVER SCOPE

~~~~~~

e2697cd6621a dfm-network bridge local

~~~~~~

4.6.12 (STEP10) Start up web server

In this step, the installer starts the storage server that manages the firmware binary.

The command to run HA proxy containers is as follows: (sudo is required in root mode.)

dfm cluster start dfm-proxy

[Validation]

Make sure the 3 containers are in a healthy state. It may take some time until its state is healthy.

If it is red hat 8.4 version, run health check podman healthcheck run dfm-proxy podman ps -a

Example) \$ podman ps -a CONTAINER ID ~~	~ STATUS	~ NAMES
c88feb369b2c ~~ \$	Up 4 seconds (health: starting)	dfm-proxy
\$ podman ps -a		
CONTAINER ID	~ STATUS	~ NAMES
c88feb369b2c ~~	Up 2 minutes (healthy)	dfm-proxy

4.7 Configure SSL

In this step, you can set the configuration for SSL on each server when you want to communicate using SSL between servers.

4.7.1 DB(MySQL) Server

MySQL communicates with SSL by default. No other options are provided due to MySQL policy.

4.7.2 DFM Core/Console Server

1) Certificate preparation on the DFM core/console server

The following assumes that the "example-sec-fota.net.pem" file is the public certificate issued by the customer. The public certificate must be copied into haproxy's config folder, and the "haproxy.cfg" file must be edited to change the bind port information and certificate configuration.

- The crt parameter identifies the location of the PEM-formatted SSL certificate
- This certificate file should contain both the public certificate and private key
- How to generate the unified certificate for the issued certificate file:

For example: we assume that you have the below 4 files and the domain's name is **example-sec-fota.net**

- · cert.pem
- · chain.pem
- · fullchain.pem: cert.pem and chain.pem combined
- · privkey.pem
- ⇒ sudo -E bash -c 'cat fullchain.pem privkey.pem > example-sec-fota.net.pem' 'example-sec-fota.net.pem' is the unified certificate file
- 2) Copy the certificate and restart the container (HA proxy) on the DFM core/console server

We assume that you are using the "nightwatch" account.

Installation and Initial Operation Guide for Knox E-FOTA On-Premises

The certificate file is bound to "/usr/local/etc/haproxy/" in the haproxy container. So only the certificate file (.pem) name needs to be changed, and not the path.

Be sure to uncomment the "bind *:443 ..." line in the haproxy.cfg file:

cp example-sec-fota.net.pem /dfm/haproxy/config sudo chown nightwatch:nightwatch /dfm/haproxy/config/example-sec-fota.net.pem sudo chmod 600 /dfm/haproxy/config/example-sec-fota.net.pem

vi /dfm/haproxy/config/haproxy.cfg

```
frontend fe_web
bind *:80
bind *:443 ssl crt /usr/local/etc/haproxy/example-sec-fota.net.pem
```

- Restart the container (HA proxy) (sudo is required in root mode.)

dfm cluster restart dfm-proxy

3) Set up the "Web server" and restart the container (HA proxy)
Set up to "server dfm-coreproxy_{number} {listen_ip}:{listen_port} ssl verify none check"

```
vi /dfm/haproxy/config/haproxy.cfg
backend dfmCoreProxyBackend
 balance roundrobin
 mode http
 option httpchk GET /admin/health/live
 http-check expect status 200
  default-server inter 5s fall 3 rise 2
  cookie SERVER insert indirect nocache
  # if core server use ssl
  server dfm-coreproxy 1 192.168.0.3:443 ssl verify none check cookie dfm-coreproxy 1
  server dfm-coreproxy 2 192.168.0.4:443 ssl verify none check cookie dfm-coreproxy 2
  server dfm-coreproxy_3 192.168.0.5:443 ssl verify none check cookie dfm-coreproxy_3
  # otherwise
  #server dfm-coreproxy_1 192.168.0.3:80 check cookie dfm-coreproxy_1
  #server dfm-coreproxy_2 192.168.0.4:80 check cookie dfm-coreproxy_2
  #server dfm-coreproxy_3 192.168.0.5:80 check cookie dfm-coreproxy_3
```

Restart the container (HA proxy) (sudo is required in root mode.)

```
dfm cluster restart dfm-proxy
```

4.7.3 WEB Server

If the external connection type is "https", the customer must prepare 1) the access domain they were issued, 2) a public certificate for the domain in advance. If the customer is using IP address-based addressing rather than DNS, this step may be skipped.

If "ingress_url_scheme" is set to "https" on the "4.7. (STEP07) Set-up Configuration", this step must be completed.

I. HTTPS Handling

There are two possibilities for TLS/SSL Termination:

1) On Customer's Load Balancer (Proxy)

Fig 4-10 On Customer's Load Balancer (Proxy)

In this case, the customer's IT manager will operate "public certificate" on its own Load Balancer.

1. Web server configuration

Be careful to comment the "bind *:443 ..." line in the haproxy.cfg file:

vi/dfm/haproxy/config/haproxy.cfg

```
frontend fe_web
bind *:80
#bind *:443 ssl crt /usr/local/etc/haproxy/example-sec-fota.net.pem
```

2. DFM core/console server configuration

Be careful to uncomment "#http-response replace-valueLocation (.*)

https://%[var(txn.host)]/admin/ if logout_path_set" line in the haproxy.cfg file:

vi/dfm/haproxy/config/haproxy.cfg

```
backend dfmConsoleBackend
mode http
acl logout_path_set var(txn.path) path /admin/logout
http-request set-header X-Forwarded-Port
%[dst_port]
http-request add-header X-Forwarded-Proto https if { ssl_fc }

option httpchk GET
/admin/health/livehttp-check expect
status 200
default-server inter 5s fall 3 rise 2

# if DFM Server is behind customer's Load-Balancer and also customer's Load-Balancer provides ssl termination.
http-response replace-value Location (.*) https://%[var(txn.host)]/admin/ if logout_path_set
# otherwise
```

server dfm-console dfm-console:10050 check resolvers docker init-addr libc,none

Since the DFM server can no longer add "Location Header" in response, the **Customer's Load Balancer must provide the corresponding function**. If the Load Balancer does not provide this function, the user cannot log out after logging into the "admin console webpage" on the DFM.

2) On DFM Server

Fig 4-11 On DFM Server

In this case, we need to configure TLS/SSL on our DFM Server. Follow the below steps to do so.

The following assumes that the "example-sec-fota.net.pem" file is the public certificate issued by the customer. The public certificate must be copied into haproxy's config folder, and the "haproxy.cfg" file must be edited to change the bind port information and certificate configuration.

- The crt parameter identifies the location of the PEM-formatted SSL certificate
- This certificate file should contain both the public certificate and private key
- How to generate the unified certificate for the issued certificate file:

For example: we assume that you have the below 4 files and the domain's name is **example-sec-fota.net**

- · cert.pem
- · chain.pem
- · fullchain.pem: cert.pem and chain.pem combined
- · privkey.pem
- ⇒ sudo -E bash -c 'cat fullchain.pem privkey.pem > example-sec-fota.net.pem'
- ⇒ 'example-sec-fota.net.pem' is the unified certificate file
- Also you can make a pem file for devices. Copy the "chain.pem" file to create a new file named "efota.pem"
 - ⇒ cp chain.pem efota.pem

We assume that you are using the "nightwatch" account.

Installation and Initial Operation Guide for Knox E-FOTA On-Premises

The certificate file is bound to "/usr/local/etc/haproxy/" in the haproxy container. So only the certificate file (.pem) name needs to be changed, and not the path.

Be careful to uncomment the "bind *:443 ..." line and uncomment the "#http-response replace-value Location (.*) https://%[var(txn.host)]/admin/ if logout_path_set" line in the haproxy.cfg file:

1. Web server configuration

Be careful to uncomment the "bind *:443 ..." line in the haproxy.cfg file:

cp example-sec-fota.net.pem /dfm/haproxy/config sudo chown nightwatch:nightwatch /dfm/haproxy/config/example-sec-fota.net.pem sudo chmod 600 /dfm/haproxy/config/example-sec-fota.net.pem

vi /dfm/haproxy/config/haproxy.cfg

frontend fe_web
bind *:80
bind *:443 ssl crt /usr/local/etc/haproxy/example-sec-fota.net.pem

2. DFM core/console server configuration

Be careful to uncomment the "#http-response replace- value Location (.*) https://%[var(txn.host)]/admin/ if logout_path_set" line in the haproxy.cfg file:

vi /dfm/haproxy/config/haproxy.cfg

```
backend dfmConsoleBackend
mode http
acl logout_path_set var(txn.path) path
/admin/logout http-request set-header X-
Forwarded-Port %[dst_port]
http-request add-header X-Forwarded-Proto https if { ssl_fc }

option httpchk GET
/admin/health/livehttp-check
expect status 200
default-server inter 5s fall 3 rise 2

# if DFM Server is behind customer's Load-Balancer and also customer's Load-Balancer provides ssl
termination.#http-response replace-value Location (.*) https://%[var(txn.host)]/admin/ if logout_path_set
# otherwise
http-response replace-value Location (.*) %[var(txn.scheme)]://%[var(txn.host)]/admin/ if logout_path_set
server dfm-console dfm-console:10050 check resolvers docker init-addr libc,none
```

II. HTTP Handling

Fig 4-12 On DFM Server

Be careful to comment out the "bind *:443 ..." line in the haproxy.cfg file in a HTTP-only (non HTTPS) configuration.

1. Web server configuration

vi/dfm/haproxy/config/haproxy.cfg

```
frontend fe_web
bind *:80
#bind *:443 ssl crt /usr/local/etc/haproxy/example-sec-fota.net.pem
```

2. DFM core/console configuration

vi/dfm/haproxy/config/haproxy.cfg

```
backend dfmConsoleBackend
mode http
acl logout_path_set var(txn.path) path
/admin/logout http-request set-header X-
Forwarded-Port %[dst_port]
http-request add-header X-Forwarded-Proto https if { ssl_fc }

option httpchk GET
/admin/health/livehttp-check
expect status 200
default-server inter 5s fall 3 rise 2

# if DFM Server is behind customer's Load-Balancer and also customer's Load-Balancer provides ssl
termination.#http-response replace-value Location (.*) https://%[var(txn.host)]/admin/ if logout_path_set
# otherwise
http-response replace-value Location (.*) %[var(txn.scheme)]://%[var(txn.host)]/admin/ if logout_path_set
server dfm-console dfm-console:10050 check resolvers docker init-addr libc,none
```

4.8 How to check Server Operation Status

Finally, the installer has completed the installation of the on-premises service-based Podman, and the service is now ready for use. However, we first need to validate whether the above five containers are running in a healthy state.

To check the status of the containers, use the command shown below. If every status returns healthy, the service is ready for operation. (sudo is required in root mode.)

```
podman ps -a
Example)
1) MySQL Server (1 Container)
podman ps -a
CONTAINER ID
                   ~ STATUS
                                                          NAMES
d882c61ba91c
                      Up 15 hours (healthy)
                                                      dfm-mysql
2) Firmware Storage Server (1 Container)
podman ps -a
CONTAINER ID
                     ~ STATUS
                                                     ~ NAMES
af3949b8db98
                                                        dfm-minio
                         Up 6 minutes (healthy)
3) DFM Core/Console Server (3 Containers)
podman ps -a
CONTAINER ID
                                                     ~ NAMES
                      ~ STATUS
07ffa549f3cf
                        Up 2 minutes (healthy)
                                                        dfm-console
a470bb8bb995
                        Up 5 minutes (healthy)
                                                        dfm-core
e10be66fe8bc
                        Up 3 minutes (healthy)
                                                        dfm-proxy
4) HA Proxy Server (1 Container)
podman ps -a
CONTAINER ID
                     ~ STATUS
                                                     ~ NAMES
e10be66fe8bc
                     Up 3 minutes (healthy)
                                                     dfm-proxy
```

Here, the health status means:

```
Healthy(0): Normal
Unhealthy(1): Abnormal
Starting (2): Starting
```

When the installer checks the health status after the installation is completed, if the status is not "Normal", the installer must redo the installation. If the installation is unsuccessful after several tries, please contact the Samsung engineering team.

We assume that you are using the "nightwatch" account.

If you do not enable linger on the account you added dfm — in this case, "nightwatch" — the account will drop the dfm containers and E-FOTA will stop working.

The command to enable linger is:

Installation and Initial Operation Guide for Knox E-FOTA On-Premises

loginctl enable-linger <username>

Example)

loginctl enable-linger nightwatch

PART III: Initial Operation

PART III describes how to operate the Knox E-FOTA On-Premises service upon completion of the service installation on the customer's infrastructure.

5. Service Operation

This chapter explains how to check the operation status of each DFM Server, and how to use the service properly.

5.1. How to access the admin console page after installation

If you completed every installation step, go to the admin page to check whether the DFM Service was successfully installed and is working as expected.

[URL to the admin site]

{access scheme}://{access address}:{access port}/admin/

⇒ Refer to "4.5.7. (STEP07) Set-up Configuration".

In this guide, we are using the URL and other information as follows:

```
- host_ip : 192.168.1.52
- listen_port : 80
```

- listen_scheme : http

- access_address : 181.107.61.233

- access_scheme : http- access_port : 6380

[Account & Initial Password (PWD)]

⇒ Account will be: admin

⇒ Initial PWD will be: admin12#

[Example] http://192.168.1.52:6380/admin/ (using a new Chrome browser)

Fig 5-1 The Admin Console for Knox E-FOTA On-Premises

^{*)} This PWD is created by Samsung, so **change the password** after you sign in.

5.2. The Contents Upload

In order to use this service, IT admins must upload the contents (such as license and firmware) properly (please refer to the "Knox E-FOTA On-Premises User Manual" provided).

5.3. Troubleshooting and Logging during using the Service

While using this service, any issues should first be addressed on the site to avoid service disruptions from the issues. In order to support issue analysis, Samsung provides the "<u>TS & Logging Guide for Knox E-FOTA On-Premises</u>" guide for reference.

5.4. Updating the SSL Certificate when the old certificate is expired

SSL certificates have an expiration date. When the expiration date for the certificate approaches, the customer must reissue the certificate from the certificate signing authority before the current certificate expires.

This work must be done on the web server.

There are two possibilities for TLS/SSL Termination.

- On Customer's Load Balancer (proxy)
 We don't need to update the certificate file.
 Refer to ([Use Case 2]:Type B) in "4.6.4. Web server"
- On DFM Server
 We need to update the certificate file on the DFM Server.
 Refer to ([Use Case 2]:Type C) in "4.6.4. Web server"

We assume that the newly certificate file is "new-example-fota.net.pem", and we also assume that you are using the "nightwatch" service account.

[STEP01] Stop Proxy

The command to stop the proxy Server container is as follows: (sudo is required in root mode.)

dfm terminate dfm-proxy

[STEP02] Copy the newly certificate

```
cp new-example-fota.net.pem /dfm/haproxy/config sudo chown nightwatch:nightwatch /dfm/haproxy/config/new-example-fota.net.pem sudo chmod 600 /dfm/haproxy/config/new-example-fota.net.pem vi /dfm/haproxy/config/haproxy.cfg
```

frontend fe_web

bind *:80

bind *:443 ssl crt /usr/local/etc/haproxy/new-example-sec-fota.net.pem

[STEP03] Restart proxy

The command to restart the proxy Server container is as follows: (sudo is required in root mode.)

dfm cluster start dfm-proxy

To make sure that the HAProxy container is in a healthy state, run the following command. It may take some time until its state is healthy.

If it is red hat 8.4 version, run health check podman healthcheck run dfm-proxy podman ps -a CONTAINER ID IMAGE **STATUS NAMES** e80b80bdba55 localhost/haproxytech/haproxy-debian:2.2.33 Up 3 seconds ago (starting) dfm-proxy \$ podman ps -a CONTAINER ID IMAGE **STATUS** NAMES e80b80bdba55 localhost/haproxytech/haproxy-debian:2.2.33 Up 52 seconds ago (healthy) dfm-proxy

5.5 Configurable length of password digits

This work must be done on the DFM Core/Console server.

The installer can change this default value of a minimum and maximum length of password digits. (default password_min_length=8, default password_max_length=12)

[STEP01] Stop DFM Admin Console

The command to stop the DFM Admin Console Server container is as follows (sudo is required in root

dfm terminate dfm-console

mode.)

[STEP02] Set-up the length of the password digits

The minimum length of password is allowed from 8 to 20.

The max length of password is allowed from 12 to 30.

```
dfm config set password_min_length=8 dfm config set password_min_length=20
```

[STEP03] Check the length of the password digits

```
dfm config get password_min_length
8
dfm config get password_max_length
20
```

[STEP04] Restart DFM Admin Console

The command to restart the DFM Admin Console Server container is as follows (sudo is required in root mode.)

dfm cluster start dfm-console

To make sure that the DFM Admin Console container is in a healthy state, run the following command. It may take some time until the state shows as healthy.

If it is red hat 8.4 version, run health check podman healthcheck run dfm-console podman ps -a **NAMES** CONTAINER ID IMAGE **STATUS** 8a3e2f4452e8 localhost/dfm-console:1.0.1.10 dfm-console Up 3 seconds ago (starting) \$ podman ps -a CONTAINER ID IMAGE **STATUS** NAMES 8a3e2f4452e8 localhost/dfm-console:1.0.1.10 Up 52 seconds ago (healthy) dfm-console

5.6 Configurable device group polling

The installer can change the default value of the device group. (default device_group_enable=false, device_group_max_limit=20000)

This function is used to distribute a large number of devices when serving, and all the devices are distributed across 60 groups.

[STEP01] Stop DFM Core

The command to stop the DFM Core Server container is as follows: (sudo is required in root mode.)

dfm terminate dfm-core

[STEP02] Set up the device group polling

The allowed values of "device group enable" are "true" or "false". The device group max limit is 20000.

dfm config set device_group_enable=true dfm config set device_group_max_limit=20000

[STEP03] Check the device group polling

dfm config get device_group_enable true

dfm config get device_group_max_limit

20000

[STEP04] Restart the DFM Core

The command to restart the DFM Core Server container is: (sudo is required in root mode.)

dfm cluster start dfm-core

To make sure that the DFM Admin Console container is in a healthy state, run the following command. It may take some time until its state is healthy.

If it is red hat 8.4 version, run health check podman healthcheck run dfm-core

podman ps -a

CONTAINER ID IMAGE STATUS NAMES
120be188f49f localhost/dfm-core:1.0.1.10 Up 3 seconds ago (starting) dfm-core

\$ podman ps -a

CONTAINER ID IMAGE STATUS NAMES
120be188f49f localhost/dfm-core:1.0.1.10 Up 52 seconds ago (healthy) dfm-core

5.7 Configurable device polling interval and postpone waiting time

The installer can change the default value of the device polling interval and postpone the waiting time. (default polling_interval_register=86400, default_waiting_time=30)

[STEP01] Stop DFM Core

The command to stop the DFM Core Server container is: (sudo is required in root mode.)

dfm cluster terminate dfm-core

[STEP02] Set up the device polling interval and postpone waiting time

The polling_interval_register can only be an integer.

The postpone waiting time limit is allowed from 1 to 7200.

dfm config set polling_interval_register=86400 dfm config set default_waiting_time=30

(STEP03) Check the device polling interval and postpone waiting time

dfm config get polling_interval_register 86400

dfm config get default_waiting_time

30

[STEP04] Restart DFM Core

The command to restart the DFM Core Server container is: (sudo is required in root mode.)

dfm cluster start dfm-core

To make sure that the DFM Admin Console container is in a healthy state, run the following command. It may take some time until its state is healthy.

If it is red hat 8.4 version, run health check podman healthcheck run dfm-core podman ps -a CONTAINER ID IMAGE STATUS NAMES 120be188f49f localhost/dfm-core:1.0.1.10 Up 3 seconds ago (starting) dfm-core \$ podman ps -a CONTAINER ID IMAGE **STATUS** NAMES 120be188f49f localhost/dfm-core:1.0.1.10 Up 52 seconds ago (healthy) dfm-core

6. When a Server is Rebooted

This chapter explains the steps to restart the DFM Modules if the server is rebooted, to ensure the service can run properly.

The steps to start the DFM Module server are as follows:

6.1. (STEP01) Login as the dedicated service account

The DFM Module is logged in with a dedicated service account and operates with the privileges of the account (see, "4.1. (STEP01) Create Service Account and Login").

6.2. (STEP02) Prepare "mount" for DFM modules

The DFM module is installed and operates in the below directory on the **dedicated disk**.

The customer <u>may NOT configure</u> the auto-mount on the dedicated disk. For such cases, it is necessary to manually mount the dedicated disk on **/dfm**.

Prepare "mount" reffering to image of (STEP02) for each server written in 4. Installation & Configuration.

For example, we assume that two disks ("sda" and "sdb") exist.

[CASE01] Disk is Ready

If the disk is ready, we don't need to mount it.

Now, let's check the disk information:

sudo lsblk -p

```
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

/dev/sda 202:0 0 1T 0 disk

L/dev/sda1 202:1 0 1T 0 part /
/dev/sdb 202:80 0 1T 0 disk
```

sudo Isblk -f

NAME	FSTYPE	LABEL	UUID	MOUNTPOINT
NNNNNN		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>งณะเทมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกมเกม</u>	งการการการการการการการการการการการการการก
sda				
L-sda1	ext4	xxxxxxxx-rootfs	6156ec80-9446-4eb1-95e0-9ae6b7a	46187 /
sdb	ext4		d3269ceb-4418-45d0-ba68-d6b906e	20595d /dfm

^{⇒ &}quot;sdb" is already formatted and mounted on /dfm

```
sudo file –s /dev/sdb
```

/dev/sdb: Linux rev 1.0 ext4 filesystem data, UUID=d3269ceb-4418-45d0-ba68-d6b906e0595d (extents) (64bit) (large files) (huge files)

[CASE02] Disk is NOT Ready: it is already formatted but not yet mounted on /dfm

If the disk is formatted but not yet mounted, it needs to be mounted on **/dfm**. Now, let's check the disk information.

sudo Isblk -p

NAME						MOUNTPOINT
						1012F-21752F-0775
/dev/sda	202:0	8	1T	8 (lisk	
└─/dev/sda1	202:1	8	1T	0 1	part	/
/dev/sdb	202:80	0	1T	0 0	lisk	

sudo Isblk -f

NAME	FSTYPE	LABEL	UUID	MOUNTPOINT
	andronananananana			
sda L-sda1	ext4	xxxxxxxx-rootfs	6156ec80-9446-4eb1-95	Se0-9ae6b7a46187 /
sdb	ext4		d3269ceb-4418-45d0-ba	

⇒ "sdb" " is formatted but not yet mounted

1) Mount /dev/sdb on /dfm

```
// create directory to mount
sudo mkdir /dfm

// mount
sudo mount /dev/sdb /dfm
```

2) Verify

6.3(STEP03) Start-up Database Server (MySQL)

After the system is rebooted, restart MySQL using the following command: (sudo is required in root mode.)

dfm cluster restart dfm-mysql

To rejoin group replication after a restart:

- 6.3.1 Delete and create a data folder.
- 6.3.2 Start MySQL.
- 6.3.3 Start the group replication.

[Delete and create a data folder]

```
# delete folder
sudo rm -rf /dfm/mysql/data

# make directory
mkdir -p /dfm/mysql/data
```

[Start MySQL]

dfm cluster restart dfm-mysql

Run the following command to ensure the MySOL container is in a healthy state. It may take some time until its state is healthy.

# If it is red hat 8.4 version, run health check podman healthcheck run dfm-mysql		
podman ps -a		
CONTAINER ID IMAGE	STATUS	NAMES
2cd1bae13406 localhost/mysql/enterprise-server:8.0	Up 3 seconds ago (starting)	dfm-mysql
\$ podman ps -a		
CONTAINER ID IMAGE	STATUS	NAMES
2cd1bae13406 localhost/mysql/enterprise-server:8.0	Up 52 seconds ago (healthy)	dfm-mysql

[Start group replication]

```
podman exec -i dfm-mysql mysql -uroot -p1q2w3e4r
Welcome to the MySQL monitor. Commands end with; or \g.
Your MySQL connection id is 11
Server version: 5.7.25-log MySQL Community Server (GPL)
Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> SET SQL_LOG_BIN=0;
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE USER group_user@'%' IDENTIFIED BY '1q2w3e4r' REQUIRE SSL;
Query OK, 0 rows affected (0.00 sec)
mysql> GRANT REPLICATION SLAVE ON *.* TO group_user@'%';
Query OK, 0 rows affected (0.00 sec)
mysql> GRANT CONNECTION_ADMIN ON *.* TO group_user@'%';
Query OK, 0 rows affected (0.00 sec)
mysql> FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.00 sec)
mysql> SET SQL_LOG_BIN=1;
Query OK, 0 rows affected (0.00 sec)
mysql> CHANGE MASTER TO MASTER_USER='group_user', MASTER_PASSWORD='1q2w3e4r'\
FOR CHANNEL 'group replication recovery';
Query OK, 0 rows affected (0.02 sec)
mysql> START GROUP_REPLICATION;
Query OK, 0 rows affected (4.56 sec)
```

[validation]

mysql> SELECT MEMBER_HOST, MEMBER_PORT, MEMBER_STATE, MEMBER_ROLE FROM performance_schema.replication_group_members;						
·	•	MEMBER_STATE	•			
192.168.0.4	33061	ONLINE	PRIMARY			
192.168.0.5	33061	ONLINE	SECONDARY			
192.168.0.6	33061	ONLINE	SECONDARY			
+	+		·+	•		

6.4(STEP04) Start-up Firmware Storage Server

After the system is rebooted, restart Minio. The command to run Minio server container is as follows: (sudo is required in root mode.)

After the restart, proceed in the order below to synchronise between minio server.

```
# Delete and create data folder.
rm -rf /dfm/minio/data
mkdir -p /dfm/minio/data
#restart minio service
dfm cluster restart dfm-minio
#load to minio mc images for syncronise between minio server.
podman load -i /tmp/dfm/docker-images/minio_mc.tar
#start minio syncronise
dfm cluster sync dfm-minio
The command is running
Added 'dfm' successfully.
[Green -> Green] ** system:disk-format **
[Green -> Green] ** system:bucket-metadata:.minio.sys/config/config.json **
[Green -> Green] ** system:bucket-metadata:.minio.sys/config/iam/format.json **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/.bloomcycle.bin **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/.usage-cache.bin **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/.usage.json **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/dfm-agent-storage/.metadata.bin **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/dfm-agent-storage/.usage-cache.bin **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/dfm-fw-storage/.metadata.bin **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/dfm-fw-storage/.usage-cache.bin **
[Green -> Green] dfm-fw-storage/
Healed: 0/0 objects; 0 B in 1s
[Green -> Green] ** system:disk-format **
[Green -> Green] ** system:bucket-metadata:.minio.sys/config/config.ison **
[Green -> Green] ** system:bucket-metadata:.minio.sys/config/iam/format.json **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/.bloomcycle.bin **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/.usage-cache.bin **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/.usage.json **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/dfm-agent-storage/.metadata.bin **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/dfm-agent-storage/.usage-cache.bin **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/dfm-fw-storage/.metadata.bin **
[Green -> Green] ** system:bucket-metadata:.minio.sys/buckets/dfm-fw-storage/.usage-cache.bin **
[Green -> Green] dfm-agent-storage/
Healed: 0/0 objects; 0 B in 1s
```

[Validation]

Run the following command to make sure the Minio container is in a healthy state. It may take some time until its state is healthy.

```
# If it is red hat 8.4 version, run health check

podman healthcheck run dfm-minio

podman ps -a

CONTAINER ID IMAGE

c8f8232a8ca1 localhost/minio/minio:RELEASE.2020-06-01T17-28-03Z  Up 3 seconds ago (starting)  dfm-minio
```

\$ podman ps -a CONTAINER ID IMAGE STATUS NAMES c8f8232a8ca1 localhost/minio/minio:RELEASE.2020-06-01T17-28-03Z Up 52 seconds ago (healthy) dfm-minio

6.5(STEP05) Start-up DFM Core Server

After the system is rebooted, restart DFM Core. The command to run the core server container is as follows: (sudo is required in root mode.)

dfm cluster restart dfm-core

[Validation]

Run the following command to make sure the core container is in a healthy state. It takes some time until its state is healthy.

artificity state is field								
	# If it is red hat 8.4 version, run health check							
podman healthch	podman healthcheck run dfm-core							
podman ps -a								
CONTAINER ID 120be188f49f	IMAGE localhost/dfm-core:1.0.1.10	STATUS Up 3 seconds ago (starting)	NAMES dfm-core					
podman ps -a								
CONTAINER ID 120be188f49f	IMAGE localhost/dfm-core:1.0.1.10	STATUS Up 3 seconds ago (healthy)	NAMES dfm-core					

6.6(STEP06) Start-up DFM Admin Console Server

After the system is rebooted, restart DFM Admin. The command to run the admin server container is as follows: (sudo is required in root mode.)

dfm cluster restart dfm-console

[Validation]

Run the following command to ensure the admin container is in a healthy state. It takes some time until its state is healthy.

If it is red hat 8.4 version, run health check podman healthcheck run dfm-console podman ps -a **CONTAINER ID** IMAGE **STATUS** NAMES localhost/dfm-8a3e2f4452e8 Up 3 seconds ago (starting) dfm-console console:1.0.1.10 podman ps -a **CONTAINER ID IMAGE** STATUS **NAMES** 8a3e2f4452e8 localhost/dfm-Up 3 seconds ago (healthy) dfm-console

6.7(STEP07) Start-up HAProxy Server

After the system is rebooted, restart HAProxy. The command to run the HAProxy server container is as follows: (sudo is required in root mode.)

dfm cluster restart dfm-proxy

[Validation]

Run the following command to make sure the HAProxy container is in a healthy state. It takes some time until its state is healthy.

If it is red hat 8.4 version, run health check podman healthcheck run dfm-proxy podman ps -a **STATUS** CONTAINER ID **IMAGE** NAMES e80b80bdba55 localhost/haproxytech/haproxy-debian:2.2.33 Up 3 seconds ago (starting) dfm-proxy podman ps -a CONTAINER ID IMAGE STATUS NAMES $e80b80bdba55 \qquad localhost/haproxytech/haproxy-debian: 2. \underline{2.33} \\$ Up 3 seconds ago (healthy) dfm-proxy

PART IV: Update the DFM Modules

PART IV: Update the DFM Modules describes how to update the Knox E-FOTA On-Premises service if there are any updates within the service resources.

7 Update the DFM Module

This chapter explains how to update the DFM Modules in operation, such as a fetch version. In order to properly update each module, the updater must first stop the module based on the related command (see, *Appendix B*).

During the update, the Knox E-FOTA On-Premises service may not be available.

The DFM Module is logged in with a dedicated service account and operates with the privileges of the account. Ensure you log in with the account you previously used for installation.

7.1 Container Image Update

If there is an updated DFM Module, it is released as a container Image Package and packed as a tar file. In the release, the Docker Image contains repository and tag information as well.

7.1.1. DFM Database Update (MySQL)

This work must be done on DFM Core/Console server and DB(MySQL) server.

For example, assume that the released MySQL image information is as follows:

- podman image: dfm-mysql-xx.xx.xx.tar
- repository: dfm-mysql
- tag: xx.xx.xx

It should be updated as per the following steps. (sudo is required in root mode.)

[STEP01] Stop the running DFM Core Server, Admin Console Server, and Mysql Server.

dfm cluster terminate dfm-core

dfm cluster terminate dfm-console

dfm cluster terminate dfm-mysql

[STEP02] Load the released Podman image.

podman load -i mysql-enterprise-server-xx.xx.xx.tar

【STEP03】 Change the repository and tag's configuration

dfm config set mysql_img_rep=localhost/mysql/enterprise-server dfm config set mysql_img_tag=xx.xx.xx

【STEP04】 Confirm the changed repository and tag's configuration

dfm config get mysql_img_rep dfm config get mysql_img_tag

[STEP05] Start up Server

MySQL Server

dfm cluster start dfm-mysql

[Validation]

Run the following command to ensure the mysql container is in a healthy state. It takes some time until its state is healthy.

podman ps -a

7.1.2. DFM Firmware Storage Update (MinIO)

This work must be done on the firmware Storage(minio) server.

For example, assume that the released **MinIO** image information is as follows: (sudo is required in root mode.)

- podman image : dfm-minio-xx.xx.xx.tar

- repository: dfm-minio

- tag:xx.xx.xx

[STEP01] Stop the MinIO server.

dfm cluster terminate dfm-minio

[STEP02] Load the released Podman Image.

podman load -i minio-xx.xx.xx.tar

[STEP03] Change the repository and tag's configuration

dfm config set minio_img_rep=localhost/minio/minio dfm config set minio_img_tag=xx.xx.xx

[STEP04] Confirm the changed repository and tag's configuration

dfm config get minio_img_rep dfm config get minio_img_tag

[STEP05] Start-up Server

MinIO Server

dfm cluster start dfm-minio

[Validation]

Run the following command to ensure the mysql container is in a healthy state. It takes some time until its state is healthy.

podman ps -a

7.1.3. DFM Core Update

This work must be done on DFM Core/Console server.

For example, assume that the released **Core** image information is as follows: (sudo is required in root mode.)

- podman image : dfm-core-xx.xx.xx.tar

repository : dfm-core

- tag:xx.xx.xx

[STEP01] Stop the running core server.

dfm cluster terminate dfm-core

[STEP02] Load the released Podman image.

podman load -i dfm-core-xx.xx.xx.tar

[STEP03] Change the repository and tag's configuration

dfm config set core_img_rep=dfm-core dfm config set core_img_tag=xx.xx.xx

[STEP04] Confirm the changed repository and tag's configuration

dfm config get core_img_rep dfm config get core_img_tag

【STEP05】 Start-up Server

- DFM Core Server

dfm cluster start dfm-core

[Validation]

Run the following command to ensure the mysql container is in a healthy state. It takes some time until its state is healthy.

podman ps -a

7.1.4. DFM Admin Console Update

The following work must be done on the DFM Core/Console server.

For example, assume that the released **Admin** image information is as follows: (sudo is required in root mode.)

- podman image : dfm-console-xx.xx.xx.tar
- repository : dfm-console
- tag:xx.xx.xx

[STEP01] Stop the running core, admin and mysgl servers.

dfm cluster terminate dfm-console

[STEP02] Load the released Podman image.

podman load -i dfm-console-xx.xx.xx.tar

【STEP03】 Change the repository and tag's configuration

dfm config set console_img_rep=dfm-console dfm config set console_img_tag=xx.xx.xx

(STEP04) Confirm the changed repository and tag's configuration

dfm config get console_img_rep dfm config get console_img_tag

(STEP05) Start-up Server

- Admin Console Server

dfm cluster start dfm-console

[Validation]

Run the following command to make sure the mysql container is in a healthy state. It takes some time until its state is healthy.

podman ps -a

7.1.5. HAProxy update

The following work must be done on the web server and the DFM Core/Console server. For example, assume that the released **HAProxy** image information is as follows: (sudo is required in root mode.)

- docker image : dfm-haproxy-xx.xx.xx.tar

repository : dfm-haproxy

tag:xx.xx.xx

[STEP01] Stop the running haproxy server.

dfm cluster terminate dfm-proxy

【STEP02】 Load the released Podman image.

podman load -i haproxy-debian-xx.xx.xx.tar

[STEP03] Change the repository and tag's configuration

dfm config set haproxy_img_rep=localhost/haproxytech/haproxy-debian dfm config set haproxy_img_tag=xx.xx.xx

(STEP04) Confirm the changed repository and tag's configuration

dfm config get haproxy_img_rep dfm config get haproxy_img_tag

【STEP05】 Start-up Server

- HAProxy Server

dfm cluster start dfm-proxy

[Validation]

Run the following command to ensure the HAProxy container is in a healthy state. It may take some time until its state is healthy.

podman ps -a

7.2The Contents Update

In order to use this service, IT admins must upload the contents (such as the license and firmware) properly. Please refer to the "Knox E-FOTA On-Premises User Manual" provided.

PART V: Purge DFM Modules

This section, which covers purging the DFM Modules, describes how to erase all installed services when you want to delete the existing installed modules.

Please note that doing so erases all existing data.

After completing these actions, you can reinstall the DFM modules without any interference from the old installation (see <u>4.3. (STEP03) Create Service Directories</u>).

8 Purge the DFM Modules

This chapter explains how to purge the installed DFM Modules.

The DFM Module is logged in with a dedicated service account and operates with the privileges of the account. Log in with the account you used during the installation.

8.1Terminate Services

If there are active services, terminate them. (sudo is required in root mode.)

[STEP01] Check if there are any running or exited services. If they exist, we need to terminate them.

```
podman ps -a
Example)
podman ps -a
CONTAINER ID
                                                                                                 Up 9 days ago
97e26cc3bea3 registry.access.redhat.com/ubi8/pause:latest
                                                                                     9 days ago
87788c0f949a localhost/mysql/enterprise-server:8.0
                                                                mysqld
                                                                                     9 days ago
                                                                                                Up 9 days ago
4f6bb6af2920 localhost/dfm-console:1.0.1.2-rootless
                                                                                     9 days ago
636ab5081c12 localhost/dfm-core:1.0.1.2-rootless
                                                                                     9 days ago
0f9bc568fcd5 localhost/minio/minio:RELEASE.2020-06-01T17-28-03Z
                                                               server /data
                                                                                       days ago
f2c052532d5
             localhost/haproxytech/haproxy-debian:2.1.4
                                                                haproxy -f /usr/l
```

1. DFM Database (MySQL)

Stop the server with the following command:

```
dfm cluster terminate dfm-mysql
```

2. DFM Firmware Storage (MinIO)

Stop the server with the following command:

```
dfm cluster terminate dfm-minio
```

3. DFM Core Server

Stop the server with the following command:

```
dfm cluster terminate dfm-core
```

4. DFM Admin Console Server

Stop the server with the following command:

```
dfm cluster terminate dfm-console
```

5. DFM HAProxy Server

Stop the server with the following command:

```
dfm cluster terminate dfm-proxy
```

6. Check if all services are removed.

Check with the following

```
podman ps -a
```

command:

7. Stop Background App and check

Stop background app with the following command:

sudo systemctl stop efota-license.service

Check with the following command:

sudo systemctl status efota-license.service

Loaded: loaded (/etc/system/system/efota-license.service; enabled; vendor preset: enabled)

Active: inactive (dead) since Tue 2024-XX-XX 06:39:10 UTC; 7s ago

8.2 Remove Service directory

Remove old data using the following: Remove all directory in /dfm

cd /dfm

sudo rm -rf *

PART VI: Install Case Scenario

This part describes a scenario where you are installing on two servers.

9 How to install 2 servers

The full diagram is shown below.

Initial requests are received via keepliaved's VIP (Virtual IP).

It then passes the request from the HAProxy in the web zone to the HAProxy in the app zone on server 1 and server 2 via load balancing (L7).

The minio in the data zone should have four independent storage spaces under it. In this scenario, we have four folders with independent storage.

The MySQL containers in the db zone are serviced by 2 per server. The minimum requirement for group replication is 3, so we go with an even number. Since it is in single-primary mode, write/read is handled by one server.

The procedure below describes what happens after the DFM package is installed.

It is assumed that

the IP of server 1 is 192.168.0.10 and

the IP of server 2 is 192.168.0.11.

9.1 Create Service Directories

9.1.1. Web zone

```
mkdir -p /dfm/web-server/config
mkdir -p /dfm/web-server/haproxy/config
mkdir -p /dfm/web-server/haproxy/errors
```

9.1.2. App zone

```
mkdir -p /dfm/app-server/config
mkdir -p /dfm/app-server/haproxy/config
mkdir -p /dfm/app-server/haproxy/errors
mkdir -p /dfm/app-serer/core/logs
mkdir -p /dfm/app-server/console/logs
```

9.1.3. Data zone

```
mkdir -p /dfm/data-server/config
mkdir -p /dfm/data-server/minio/config
mkdir -p /dfm/data-server/minio/data
mkdir -p /dfm/data-server/minio/data2
mkdir -p /dfm/data-server/minio/data3
mkdir -p /dfm/data-server/minio/data4
```

9.1.4. DB zone

Since it's running in a different container, we'll create two different folders to make it work.

```
mkdir -p /dfm/db-server-1/config
mkdir -p /dfm/db-server-1/mysql/config
mkdir -p /dfm/db-server-1/mysql/data

mkdir -p /dfm/db-server-2/config
mkdir -p /dfm/db-server-2/mysql/config
mkdir -p /dfm/db-server-2/mysql/data
```

9.2 Configurations

9.2.1. DB zone

Describes the necessary settings for file copying and group replication.

The image below shows db-server-1 (folder name), dfm-mysql-1 (container name), primary (mode), and 33061 (service port).

It is located in the db-server-1 folder on server 1 under th container service name dfm-mysql-1.

[STEP01] Copy required files.

```
# copy to dfm-mysql-1 files
cp /tmp/dfm/ha/db-server/config/dfm_config.json /dfm/db-server-1/config/
cp /tmp/dfm/ha/db-server/mysql/config/my.cnf /dfm/db-server-1/mysql/config/
#copy to dfm-mysql-2 files
cp /tmp/dfm/ha/db-server/config/dfm_config.json /dfm/db-server-2/config/
cp /tmp/dfm/ha/db-server/mysql/config/my.cnf /dfm/db-server-2/mysql/config/
```

[STEP02] Configure my.cnf file. (dfm-mysql-1 on server 1)

The loose-group replication group name setting refers to the generation of the UUID.

```
# config

vi /dfm/db-server-1/mysql/config/my.cnf

[client]
  default-character-set=utf8mb4

[mysql]
  default-character-set=utf8mb4

[mysqld]
  user=mysql
  default-time-zone='+00:00'
  event_scheduler = ON
  general_log = 0
```

```
slow-query-log = 1
long_query_time = 4
lower_case_table_names = 1
collation-server = utf8mb4_unicode_ci
init-connect='SET NAMES utf8mb4'
character-set-server = utf8mb4
group_concat_max_len = 4096
port=33061
mysqlx port=33071
bind-address="192.168.0.10"
report_host="192.168.0.10"
skip-name-resolve
## Disable other storage engines #
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"
## Replication configuration parameters #
server_id=1
gtid mode=ON
enforce_gtid_consistency=ON
binlog_checksum=NONE
# Not needed from 8.0.21 # # Group Replication configuration #
plugin_load_add='group_replication.so'
loose-group_replication_group_name="14cfe0c5-fca1-47cd-89eb-cd8d23393dab"
loose-group_replication_start_on_boot=off
loose-group_replication_local_address= "192.168.0.10:33161"
loose-group_replication_group_seeds= "192.168.0.10:33161, 192.168.0.10:33261,
192.168.0.11:33161, 192.168.0.11:33261"
loose-group_replication_bootstrap_group=off
loose-group-replication-ssl-mode=REQUIRED
loose-group_replication_recovery_use_ssl=ON
```

[STEP03] Configure my.cnf file. (dfm-mysql-2 on server 1)

The loose-group_replication_group_name setting refers to the generation of the UUID.

```
# config
vi /dfm/db-server-2/mysql/config/my.cnf
```

```
[client]
default-character-set=utf8mb4
[mysql]
default-character-set=utf8mb4
[mysqld]
user=mysql
default-time-zone='+00:00'
event_scheduler = ON
general_log = 0
slow-query-log = 1
long_query_time = 4
lower_case_table_names = 1
collation-server = utf8mb4_unicode_ci
init-connect='SET NAMES utf8mb4'
character-set-server = utf8mb4
group_concat_max_len = 4096
port=33062
mysqlx_port=33072
bind-address="192.168.0.10"
report_host="192.168.0.10"
skip-name-resolve
## Disable other storage engines #
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"
## Replication configuration parameters #
server_id=2
gtid_mode=ON
enforce_gtid_consistency=ON
binlog_checksum=NONE
# Not needed from 8.0.21 # # Group Replication configuration #
plugin_load_add='group_replication.so'
loose-group_replication_group_name="14cfe0c5-fca1-47cd-89eb-cd8d23393dab"
loose-group_replication_start_on_boot=off
loose-group_replication_local_address= "192.168.0.10:33261"
```

```
loose-group_replication_group_seeds="192.168.0.10:33161, 192.168.0.10:33261, 192.168.0.11:33161,
192.168.0.11:33261"
loose-group_replication_bootstrap_group=off
loose-group-replication-ssl-mode=REQUIRED
loose-group_replication_recovery_use_ssl=ON
```

[STEP04] Configure my.cnf file. (dfm-mysql-1 on server 2)

The loose-group_replication_group_name setting refers to the generation of the UUID.

```
# config
vi /dfm/db-server-1/mysql/config/my.cnf
 [client]
 default-character-set=utf8mb4
 [mysql]
 default-character-set=utf8mb4
 [mysqld]
 user=mysql
 default-time-zone='+00:00'
 event_scheduler = ON
 general_log = 0
 slow-query-log = 1
 long_query_time = 4
 lower_case_table_names = 1
 collation-server = utf8mb4_unicode_ci
 init-connect='SET NAMES utf8mb4'
 character-set-server = utf8mb4
 group_concat_max_len = 4096
 port=33061
 mysqlx_port=33071
 bind-address="192.168.0.11"
 report_host="192.168.0.11"
 skip-name-resolve
```

```
## Disable other storage engines #
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"
## Replication configuration parameters #
server_id=3
gtid mode=ON
enforce_gtid_consistency=ON
binlog_checksum=NONE
# Not needed from 8.0.21 # # Group Replication configuration #
plugin load add='group replication.so'
loose-group_replication_group_name="14cfe0c5-fca1-47cd-89eb-cd8d23393dab"
loose-group_replication_start_on_boot=off
loose-group_replication_local_address= "192.168.0.11:33161"
loose-group_replication_group_seeds="192.168.0.10:33161, 192.168.0.10:33261, 192.168.0.11:33161,
192.168.0.11:33261"
loose-group_replication_bootstrap_group=off
loose-group-replication-ssl-mode=REQUIRED
loose-group_replication_recovery_use_ssl=ON
```

[STEP05] Configure my.cnf file. (dfm-mysql-2 on server 2)

The loose-group replication group name setting refers to the generation of the UUID.

```
# config
vi /dfm/db-server-2/mysql/config/my.cnf

[client]
default-character-set=utf8mb4

[mysql]
default-character-set=utf8mb4

[mysqld]
user=mysql
default-time-zone='+00:00'
event_scheduler = ON
general_log = 0
slow-query-log = 1
long_query_time = 4
lower_case_table_names = 1
collation-server = utf8mb4_unicode_ci
```

```
init-connect='SET NAMES utf8mb4'
character-set-server = utf8mb4
group_concat_max_len = 4096
port=33062
mysqlx_port=33072
bind-address="192.168.0.11"
report host="192.168.0.11"
skip-name-resolve
## Disable other storage engines #
disabled_storage_engines="MyISAM,BLACKHOLE,FEDERATED,ARCHIVE,MEMORY"
## Replication configuration parameters #
server_id=1
gtid_mode=ON
enforce_gtid_consistency=ON
binlog_checksum=NONE
# Not needed from 8.0.21 # # Group Replication configuration #
plugin_load_add='group_replication.so'
loose-group\_replication\_group\_name="14cfe0c5-fca1-47cd-89eb-cd8d23393dab"
loose-group_replication_start_on_boot=off
loose-group_replication_local_address= "192.168.0.11:33261"
loose-group_replication_group_seeds="192.168.0.10:33161, 192.168.0.10:33261, 192.168.0.11:33161,
192.168.0.11:33261"
loose-group_replication_bootstrap_group=off
loose-group-replication-ssl-mode=REQUIRED
loose-group_replication_recovery_use_ssl=ON
```

[STEP06] modify the dfm_config file (dfm-mysql-1 on server 1)

mysql_config_dir: mysql config file path mysql_data_dir: mysql data folder path

```
vi /dfm/db-server-1/config/dfm_config.json
{
    "base_dir': "/",
```

[STEP07] modify the dfm_config file (dfm-mysql-2 on server 1)

mysql_config_dir: mysql config file path mysql_data_dir: mysql data folder path

[STEP08] modify the dfm_config file (dfm-mysql-1 on server 2)

mysql_config_dir: mysql config file path mysql_data_dir: mysql data folder path

[STEP09] modify the dfm_config file (dfm-mysql-2 on server 2)

mysql_config_dir: mysql config file path mysql_data_dir: mysql data folder path

9.2.2. Data zone

Setting up the minio service to work is done by creating a total of four folders.

It operates on the default port of 9000 and cannot operate on a different port between servers (9000 for server 1 and 9090 for server 2).

If created, the folder name will be set to the value incremented by 1 in the order set in minio_data_idr when bound to the container.

For example, if you bind a folder created with data, data1, data2, and data3, it will be named data -> data1, data1 -> data2, data2 -> data3, data3 -> data4.

[STEP01] Copy the required files

```
# copy files

cp /tmp/dfm/ha/data-server/config/dfm_config.json /dfm/data-server/config/
```

[STEP02] Modify the dfm_config file

- minio_data_dir: minio data folder path (absolute path)
- cluster_minio_config_dir: minio config folder path
- cluster_minio_access_address: access address minio server(space-separated access point)

```
}
```

9.2.3. App zone

[STEP01] Copy required file

```
# copy file for haproxy
cp -r /tmp/dfm/ha/app-server/haproxy-config/* /dfm/app-server/haproxy/config/

# copy config file
cp /tmp/dfm/ha/app-server/config/dfm_config.json /dfm/app-server/config/
```

[STEP02] Modify the dfm_config file

For the settings below, except cluster_minio_access_address, please refer to setion 4.4.9 (STEP07) Set-up Configuration.

If you set listen_port and access_port to 80 when the external access port (cluster_service_port) is port 80, you will get a port conflict.

The cluster_minio_access_address value should contain the name of the haproxy container in the app zone.

Here, we write it as dfm-minio-app because we creating it with the dfm-minio-app name.

```
# for server 1
vi /dfm/app-server/config/dfm_config.json
 {
   "host_ip': "192.168.0.10",
   "listen_port":"10010",
   "listen_scheme":"http",
   "access_scheme":"http",
   "access_address":"192.168.0.10",
   "access port":" 10010",
   "console_log_dir": "/dfm/app-server/console/logs",
   "core_log_dir": "/dfm/app-server/core/logs",
   "haproxy_config_dir": "/dfm/app-server/haproxy/config",
   "cluster_service_address": "http://efota-test.com",
   "cluster_service_scheme": "http",
   "cluster_service_port": "80",
   "cluster_minio_access_address": "dfm-proxy-app",
   "cluster_minio_access_port": "9000",
   "cluster_minio_access_scheme": "http",
```

```
"cluster_mysql_access_url":
 "192.168.0.10:33061,192.168.0.10:33062,192.168.0.11:33061,192.168.0.11:33062",
 }
# for server 2
vi /dfm/app-server/config/dfm_config.json
 {
   "host_ip': "192.168.0.11",
   "listen port":"10010",
   "listen_scheme":"http",
   "access_scheme":"http",
   "access_address":"192.168.0.11",
   "access_port":" 10010",
   "console log dir": "/dfm/app-server/console/logs",
   "core_log_dir": "/dfm/app-server/core/logs",
   "haproxy_config_dir": "/dfm/app-server/haproxy/config",
   "cluster_service_address": "efota-test.com",
   "cluster service scheme": "http",
   "cluster service port": "80",
   "cluster_minio_access_address": "dfm-proxy-app",
   "cluster_minio_access_port": "9000",
   "cluster_minio_access_scheme": "http",
   "cluster_mysql_access_url":
 "192.168.0.10:33061,192.168.0.10:33062,192.168.0.11:33061,192.168.0.11:33062",
 }
```

[STEP03] Create the network for app zone

Create a new dfm-network for the app zone.

name: dfm-network-appsubnet: 100.0.1.0/24

```
# create network

dfm cluster network create -n dfm-network-app -f /dfm/app-server/config/dfm_config.json -
subnet 100.0.1.0/24

The dfm network was created with the name "dfm-network-app".
```

```
# check network
docker network Is

NETWORK ID NAME DRIVER SCOPE
515b8fe23711 dfm-network-app bridge local
```

[STEP04] Modify the haproxy.cfg file

Modify the server IP for minio access.

The dns1 value changes according to the subnet value of the network created in the step above. For example, if your network created 100.0.1.0, you should set it to 100.0.1.1.

```
vi /dfm/app-server/haproxy/config/haproxy.cfg
resolvers docker
 nameserver dns1 100.0.1.1:53
 resolve_retries 3
 timeout resolve 1s
  backend dfmMinioReplaceHostBackend
     mode http
     option httpchk GET /minio/health/live
     http-check expect status 200
     default-server inter 5s fall 3 rise 2
     balance leastconn
     # if minio server use ssl
     #server dfm-minio 192.168.1.60:9000 ssl verify none check
     server dfm-minio-group-1 192.168.0.10:9000 check
    server dfm-minio-group-2 192.168.0.11:9000 check
```

9.2.4. WEB zone

[STEP01] Copy the required file

```
# copy file for haproxy
cp -r /tmp/dfm/ha/web-server/haproxy-config/* /dfm/web-server/haproxy/config/

# copy config file
cp /tmp/dfm/ha/web-server/config/dfm_config.json /dfm/web-server/config/
```

[STEP02] Modify the haproxy.cfg file

Proceed to 4.6.8 and 4.6.9 for further explain.

```
vi /dfm/web-server/config/dfm_config.json

{
    "base_dir': "/",
    "host_ip': "192.168.0.10",
    "listen_port":"80",
    "listen_scheme":"http",
    "access_scheme":"http",
    "access_address":" efota-test.com",
    "access_port":" 80",
    "haproxy_config_dir":" /dfm/web-server/haproxy/config",
    "**Constant of the configuration of the
```

[STEP03] Modify the haproxy.cfg file

Proceed to 4.6.8 and 4.6.9 for further explain.

http-check expect status 200

default-server inter 5s fall 3 rise 2

#set up point

http-request set-header Host dfm-proxy-app:9000

server dfm-minio-1 192.168.0.10:9000 check

server dfm-minio-2 192.168.0.11:9000 check

9.2.5. keepalived

Proceed to 4.5 for more details.

9.3Start-up services

You will need to use the modified dfm command to run the same DFM service on the same server. Each dfm command requires you to import the dfm_config.json file, which is the configuration file for the individual dfm service, upon execution.

For example, for the dfm-mysql-1 server, the /dfm/db-server-1/config/dfm_config.json file must be imported when running the dfm command.

dfm cluster {[start|...] run type} {[dfm-mysql|...] service name} -f {service config file path} -n {service another name} --network {dfm network name} --subnet {subnet mask}

- run type : start, terminate, restart
- service name : dfm-mysql, dfm-minio, dfm-core, dfm-console, dfm-proxy
- service config file path: dfm_config.json file absolute path(default: /dfm/config/dfm_config.json)
- service another name: container execute name. (default: same name as service name)
- dfm network name: the additional network name(default: dfm-network)
- subnet mask: parameters required when createing a network (default: 100.0.0.0/24)

dfm cluster start dfm-mysql -f /dfm/db-server-1/config/dfm_config.json -n dfm-mysql-1

[STEP01] Start the Mysql service (server1, server2)

dfm cluster start dfm-mysql -f /dfm/db-server-1/config/dfm_config.json -n dfm-mysql-1 dfm cluster start dfm-mysql -f /dfm/db-server-2/config/dfm_config.json -n dfm-mysql-2

[STEP02] Configure group replication.

See the group replication topic in 4.2.9

[STEP03] Start minio service.(server1, server2)

dfm cluster start dfm-minio -f /dfm/data-server/config/dfm_config.json

[STEP04] Start haproxy service on data zone (server1, server2)

dfm cluster start dfm-proxy -f /dfm/app-server/config/dfm_config.json -n dfm-proxy-app -- network dfm-network-app

[STEP05] Start core, console services on data zone (server1, server2)

dfm cluster start dfm-core -f /dfm/app-server/config/dfm_config.json --network dfm-network-app dfm cluster start dfm-console -f /dfm/app-server/config/dfm_config.json --network dfm-network-app

[STEP06] Start haproxy service on web zone (server1, server2)

dfm cluster start dfm-proxy -f /dfm/web-server/config/dfm_config.json

[STEP07] Start keepalived (server1, server2)

See section 4.5.3 for more information.

PART VII: APPENDICES

PART IV: APPENDICES presents more in-depth explanations for each item.

APPENDICES

Appendix A. Terms and Abbreviations

This chapter outlines the terms and abbreviations used in this guide.

App: Application
CAT: Category Codes

CSO/TEO: Customer Service Operation/Technical Engineer for On-Premises

CM: Commercial Type Product

DE: Docker Enterprise

DFM: Device Firmware Management

DNS: Domain Name Server

E2E: End to End

E-FOTA: Enterprise – Firmware over the Air

FYI: For Your Information HA: High Availability H/W: Hardware

ID: Identification
KE: Knox E-FOTA (Brand)

LB: Load Balancer

NAT: Network Address Translation

OS: Operating System PoC: Proof of Concept

PWD: Password

SSL: Secure Sockets Layer

TLS: Transport Layer Security, successor to SSL

UI: User Interface

Appendix B. How to terminate each DFM Module

These commands should not be used in normal operation, as stopping a module can seriously impact how the service runs. Use this command for updates, such as when there is a fetch version delivery.

1. DFM Database (MySQL)

Stop the server with the following command:

dfm cluster terminate dfm-mysql

2. DFM Firmware Storage (MinIO)

Stop the server with the following command:

dfm cluster terminate dfm-minio

3. DFM Core Server

Stop the server with the following command:

dfm cluster terminate dfm-core

4. DFM Admin Console Server

Stop the server with the following command:

dfm cluster terminate dfm-console

5. DFM HAProxy Server

Stop the server with the following command:

dfm cluster terminate dfm-proxy

Appendix C. Summary for Software (S/W) Recommendation

Read more about detailed recommendations in "2.3. Recommendation Per each Product usage".

Product	Category	s/w	Version	Supported Options	Additional Info
СМ	Server OS	Red hat	8.4 or 9.2	Enterprise (Paid)	
	Container	Podman	over 4.0		
	Database	MySQL	Enterprise Edition	Enterprise (Paid)	https://www.mysql.com/products/
PoC	Server OS	Red hat	8.4 or 9.2	Community (free)	
	Container	Podman	Over 4.0		
	Database	MySQL	Community Edition	Community (Free)	If a customer wants to continue using the Commercial (CM) product after PoC ends, recommend Enterprise Edition for both Server OSand Database at the start of the PoC

Appendix D. A Recommended Schedule for On-Site Installation by CSO/TEO

This recommended schedule can be used by the CSO/TEO while they are doing the on-site installation. The detailed schedule can be freely modified.

We recommend "The 4-Day Installation", as the customer should understand how they are using the Knox E-FOTA On-Premises service during this program. A training session should be included to support this purpose as well.

Day	Actions	Program
Day1	Check the customer's infrastructures (such as H/W and S/W) to install the service on, based on the prerequisites (see "2.3 Recommendation Per each Product usage")	 Introduce each other Introduce "The 4-Days Installation" program Introduce the Knox E-FOTA On-Premises Service (using "Knox E-FOTA On-Premises Service Intro 2020.pdf" Check the customer's infrastructures H/W recommendation, such as Server CPU cores, RAM, Disk, Network Card S/W recommendation, such as Operating System, Docker Engine, MySQL Edition, and whether those have been installed by the customer Get public certificate files for https Get port number (6443) for https
Day2	Perform the installation based on this guide (see "4. Installation & Configuration")	 Wrap-up Introduce the program to Installation Start Installation Configure the DFM service infrastructure Check the service operation via the Web Console Wrap-up
Day3	Perform an acceptance test through E2E with devices	 Introduce how to do an E2E test with devices Introduce how to use the service Web Console (using "Knox E-FOTA On-Premises User Guide.pdf, and Knox E-FOTA On-Premises User Guide for Device.pdf") Upload the License into the Server Upload the Firmware deltas (Contents for FOTA) Upload the device information using during the test Create the Campaign Perform E2E test with devices Wrap-up
Day4	Introduce Operation and Maintenance procedures (Get document for "The Confirmation of Installation Process End" from the Customer)	 Introduce the steps and how to perform them if there is an issue Using "TS & Logging Guide for Knox E-FOTA On-Premises.pdf" Introduce how to raise issues Using "Issue raising process" Introduce service operation steps Using "Service Operation Guide" Sign the "Notice for Completion Installation"

Installation and Initial Operation Guide for Knox E-FOTA On-Premises

	■ Refer to "Appendix E" (Installation and Initial
	Operation Guide for Knox E-FOTA On-Premises.pdf)
	5. Wrap-up

Appendix E. An **Example** of "Notice for Completion Installation"

Notice for Completion Installation

Dear < Customer Name >,					
This form is to sign-off completion of your project with us. Kindly complete as best as possible and send back to us.					
PRODUCT: Knox E-FOTA One On-premise	MANAGER NAME:				
START DATE:	COMPLETION DATE:				
June 1 2020 ~ June 4 2020					
DELIVERABLES: 1. Device Client It means Client application running on Samsung mobile devices. It is responsible for interacting with the E-FOTA (Enterprise-Firmware Over The Air) Server, including binary package download, and installer					
activation for the binary package. 2. Device Firmware Management (DFM) It is a main module for E-FOTA, including managed devices to FOTA, creation and management of FOTA Campaigns, and Firmware binaries for devices. It is consist of followings: 1) DFM Core – It consists of Core Backend and Front End for Administrators 2) DB (MySQL) – It is a data base for system operation 3) Storage – It is a storage for Firmware binaries 3. Installed in Customer's Environment It depends on the contraction. 1) Pre-Prod Environment (1 Set) 2) Prod Environment (1 Set)					
CUSTOMER'S COMMENTS:					
REMARK:					
By signing this document, I acknowledge that I have delivered all the stated deliverables.	By signing this document, I acknowledge that I have received all the stated deliverables.				
Samsung (subsidiary office name)	< Customer Name >				
Name:	Name:				
Signature:	Signature:				
Date:	Date:				

We recommend that you complete and send this form within 5 working days. However, if after this period we do not receive the completed form, we shall assume that the project has been signed off by you and no further action will be required of you.

Installation and Initial Operation Guide for Knox E-FOTA On-Premises

Appendix F. Set E-FOTA agent config by managed Configuration

KE On-Premises client requires server URL information and TLS certificate to connect to server.

Managed Configuration becomes standard way of configuring android apps and local EMMs are familiar with it.

KE On-Premises client should support Managed Configuration to configure server URL information and TLS certificate of the installed server.

Reference: https://developer.android.com/work/managed-configurations

1.1 Server URL information can update by Managed Configuration

String server_url;

You can send a string 'server_url' in Mananged Configure to change the server address.

1.2 TLS certificate of the installed server domain can update by Managed Configuration

String pem;

You can send a string 'pem' in Mananged Configure to change the TLS certificate file.

When sending a PEM value, it must be sent as a string.

1.3 Check pem file in Downloads folder

You can find the pem file named "efota.pem" in the downloads folder.

If you have a PEM file, you can rename it to 'efota.pem' and copy it to the Downloads

< EOF (End Of File) >