Lecture 12 Continuous Optimization Modeling Mathematical Modeling

Prof. Dr. Jingzhi Li

Department of Mathematics, Southern University of Science and Technology

2025 Spring

- 1 Unconstrained optimization
- 2 Constrained optimization
- 3 Summary of the course

Focus

- Linear programming models studied earlier: Optimize f(X)
 - subject to inequality constraints $g_i(X) \le b_i$, $h_j(X) \ge c_j$ where f, g, h are linear functions
 - If X is a vector of integers, then we deal with integer programming
- In this lecture: optimize f(X), where f is a continuous, potentially non-linear function
 - might have constraints of the form $g_i(X) = b_i$, where functions g_i may also be non-linear
 - in particular, focus on the case where f and g_i are differentiable functions; apply calculus-based techniques

Department of Mathematics, Southern University of Science and Technology

- 1 Unconstrained optimization
- 2 Constrained optimization
- Summary of the course

Unconstrained optimization

0000000000

- **Problem**: optimize f(X), where f is a continuous function
 - we only focus here on the case where f is differentiable
- The single-variable case
 - the optimum is among the solutions of the equation df/dx = 0
 - to check whether a certain solution is a minimum (or a maximum), consider the second derivative test or numerical approaches
- The multi-variable case: $X = (x_1, \dots, x_n)$
 - consider the system of partial derivative equations $\partial f/\partial x_i = 0$, for all $i = 1, \ldots, n$
 - to check whether a certain solution is a minimum (or a maximum), consider the second derivative test or numerical approaches

Example 1: inventory

- Problem: Minimize the daily cost of delivery and storage
 - Chain of gas stations; determine how often and how much gasoline to deliver to the various stations
- Costs
 - Delivery cost d (in addition to the price of the gasoline delivered)
 - Storage costs: assume a constant storage cost per gallon per day
 - Demand rate: assume a constant demand rate *r* per day
- Variables
 - Quantity of gasoline to be delivered periodically
 - Time in-between two deliveries
- Objective

- Minimize the daily storage and delivery costs
- Do not run out of gasoline

Example 1: inventory (continued)

Plan

- Initial delivery;
- wait until it runs out, then have a second (instantaneous) delivery;
- again wait until it runs out, etc
- linear depletion of the stock, with the slope given by the demand rate r

■ Figure 13.3

An inventory cycle consists of an order quantity *q* consumed in *t* days.

Example 1: inventory (continued)

- Given
 - Delivery cost d
 - Demand rate r
- To calculate
 - Daily storage costs
- Calculate storage costs in-between two deliveries
 - constant storage cost per unit
 - ullet calculate the total amount of gasoline stored in an interval of length t
 - in other words: the area under the line curve for the interval [0, t]: qt/2
 - Answer: the cost is sqt/2
- Slope of the curve: r = q/t, i.e., q = rt
- Cost per delivery cycle: $d + sqt/2 = d + srt^2/2$
- Daily cost: d/t + srt/2

Example 1: inventory (continued)

- Our model will be based on equal-interval deliveries (because of constant demand rate), triggered by reaching a minimal value q – this does not change the daily cost
- Problem: find the value $t=T^*$ minimizing the daily cost: f(t)=d/t+srt/2
- Approach: solve df/dt = 0

$$-\frac{d}{t^2} + \frac{sr}{2} = 0 \qquad T^* = \sqrt{\frac{2d}{sr}}$$

■ Figure 13.5

A buffer stock q_b helps prevent stock-outs.

Example 2: producer of competing products

- Problem: maximize the profit of a company producing two new, competing products (say two versions of a computer)
 - There are some fixed costs to prepare the launch of the two products
 - There is a cost per unit of product for each type of the product
 - Revenue per unit of product for each type
 - Decline in the value of both products with each sold unit of either products

Variables

 x_i: the number of products i that the producer will make, i = 1, 2

Costs, prices

- F = fixed cost for preparing the launch of the two products
- C_i = manufacturing cost of one unit of product i
- P_i = initial selling price of one unit of product i
- $a_i = \text{decline}$ in the price of x_i with each sold unit of product 1
- b_i = decline in the price of x_i with each sold unit of product 2
- **Objective**: how much to manufacture to maximize the profit

Example 2 (continued)

Costs, prices

- F =fixed cost for preparing the launch of the two products
- C_i = manufacturing cost of one unit of product i
- P_i = initial selling price of one unit of product i
- a_i = decline in the price of x_i with each sold unit of product 1
- b_i = decline in the price of x_i with each sold unit of product 2

Model building

- Price P₁(x₁, x₂) for product 1 after already selling x₁ units of product 1, x₂ units of product 2: P₁(x₁, x₂) = P₁ a₁x₁ b₁x₂
- Price P₂(x₁, x₂) for product 2 after already selling x₁ units of product 1, x₂ units of product 2: P₂(x₁, x₂) = P₂ a₂x₁ b₂x₂
- Total revenue: $R(x_1, x_2) = x_1 P_1(x_1, x_2) + x_2 P_2(x_1, x_2)$
- Total cost: $C(x_1, x_2) = F + C_1x_1 + C_2x_2$
- **Objective**: maximize function $f(x_1, x_2) = R(x_1, x_2) C(x_1, x_2)$

Example 2 (continued)

Objective: maximize function

$$f(x_1, x_2) = R(x_1, x_2) - C(x_1, x_2)$$

$$f(x_1, x_2) = x_1(P_1 - a_1x_1 - b_1x_2) + x_2(P_2 - a_2x_1 - b_2x_2) - F - C_1x_1 - C_2x_2$$

- Note: our model is discrete
 - However, maximize the function as if it were continuous!
- Calculate the "critical" point equilibrium

•
$$\partial f/\partial x_1 = P_1 - 2a_1x_1 - b_1x_2 - a_2x_2 - C_1 =$$

-2a₁x₁ - (b₁ + a₂)x₂ + P₁ - C₁ = 0

•
$$\partial f/\partial x_2 = -b_1x_1 + P_2 - a_2x_1 - 2b_2x_2 - C_2 = -(b_1 + a_2)x_1 - 2b_2x_2 + P_2 - C_2 = 0$$

- Check whether the critical point is a maximum point
 - Check convexity/concavity

Figure 13.9

The total profit surface

 $R(x_1, x_2) = 1440x_1 - 0.1x_1^2 + 1740x_2 - 0.1x_2^2 - 0.07x_1x_2 - 400,000$

- Unconstrained optimization
- 2 Constrained optimization
- 3 Summary of the course

Constrained optimization

- **Problem**: optimize f(X), subject to some constraints $g_i(X) = b_i$, i = 1, 2, ..., n, where f and g_i are continuous functions
 - we only focus here on the case where they are differentiable

Constrained optimization

- Unconstrained optimization was in some sense "simple"
 - Only has one goal: optimize the objective function
- Constrained optimization is more difficult
 - It has a potential conflict of requirements: the optimization of the objective function and the feasibility of the optimum
- Many approaches exist; we only focus here on one: merit **functions**

Merit functions for constrained optimization

- Consider here problems of minimization: minimize f(X), subject to the constraint g(X) = b,
- Approach: replace the constrained problem with an unconstrained problem, whose solution is an approximation of the solution of the original problem
- That a point x_0 is an approximation has two meanings here:
 - x_0 is an approximation of a minimum point of f
 - x_0 is an approximation of a solution of equation g(X) = b
- Then solve the unconstrained problem as discussed earlier

Merit functions for constrained optimization (continued)

- There is no unique way in which to introduce a merit function
- Examples for the problem minimize f(X), subject to g(X) = b
 - Quadratic penalty function: $\Phi(x, \mu) = f(x) + \frac{1}{2\mu} |g(x) - b|^2$
 - Lagrange multiplier merit function: $\Theta(x, \lambda) = f(x) + \lambda |g(x) b|$
- Intuition when choosing a merit function
 - Estimate where lies the major effort in solving the original problem: in finding the optimum, or in satisfying the constraint
 - Introduce a smaller (larger, resp.) term based on the constraint
 - No guarantee that a solution to the merit function will be a good approximation of the solution to the original problem; may need to iterate

Example

- Minimize $f(x_1, x_2) = \frac{27}{x_1} + 0.25x_1 + \frac{20}{x_2} + 0.1x_2$, such that $2x_1 + 4x_2 = 24$
- Approach: Lagrange multipliers
 - Introduce the merit function

$$L(x_1, x_2, \lambda) = f(x_1, x_2) + \lambda(2x_1 + 4x_2 - 24)$$

•
$$L(x_1, x_2, \lambda) = \left(\frac{27}{x_1} + 0.25x_1 + \frac{20}{x_2} + 0.1x_2\right) + \lambda(2x_1 + 4x_2 - 24)$$

20 / 27

Learning objectives

- Understand the concept of constrained/unconstrained optimization
- Be able to solve a simple unconstrained optimization problem through the differential-based method
- Understand the approach for solving constrained optimization based on merit functions
- Be able to define a merit function for a simple constrained optimization problem

• Minimize $L(x_1, x_2, \lambda)$

$$\frac{\partial L}{\partial x_1} = -\frac{27}{x_1^2} + 0.25 + 2\lambda = 0$$

$$\frac{\partial L}{\partial x_1} = 0$$

$$\frac{\partial L}{\partial x_2} = -\frac{20}{x_2^2} + 0.1 + 4\lambda = 0$$

$$\frac{\partial L}{\partial \lambda} = 2x_1 + 4x_2 - 24 = 0$$

Solution:

- $x_1 = 5.0968$; $x_2 = 3.4516$; $\lambda = 0.3497$
- $f(x_1, x_2) = 12.71$
- $2x_1 + 4x_2 = 24$
- Varying x₁, x₂ while obeying the constraint shows that this is a minimum point

- Unconstrained optimization
- 2 Constrained optimization
- 3 Summary of the course

Goal of the course

- Give an introduction to mathematical modeling
 - Formulate the problem
 - Identify the type of problem: data-driven, hypothesis-driven, optimization
 - Identify the main variables to be included
 - Identify the dependencies
 - Formulate the model
 - Solve the problem
- Only concerned with elementary methods and approaches for mathematical modeling
 - Modeling focused on change, proportionality, geometric similarity
 - Data-driven modeling
 - Discrete probabilistic modeling
 - Modeling with difference and with differential equations
 - Discrete and continuous optimization
 - Dimensional analysis

Course content

- Only included elementary methods, only gave an introduction to each of them
- Content kept generic, independent of a specific application field
- Focused only on model formulation and simple mathematical analysis of the models
 - Left out algorithmic issues, complexity aspects, implementation of simulations, computer-based modeling environments, numerical methods, etc.
 - Left out modeling methods stemming from computer science rather than mathematics

Course content

- Focused on learning about the modeling process through lectures and exercises
 - Did not include a student project component into the course
- Some of the omitted topics will be included in the second modeling course
 - Computer science-based approaches
 - Computer-based modeling environments
 - Partly a project-based course

Course content

Modeling paradigms

- Modeling change
- Modeling using proportionality
- Modeling using geometric similarity
- Data-driven modeling
- Hypothesis-driven modeling
- Dimensional analysis
- Modeling of optimization

Modeling methods

Lecture 12 Continuous Optimization Modeling

- Differential equations
- Discrete-time Markov chains

Data and modeling

- Model fitting
- Model interpolation

Optimization

- Discrete, especially linear programming
- Algebraic and geometric solutions to linear programming
- Simplex
- Continuous optimization, constrained and unconstrained

