

Oblique Projectile Motion

- 1. A projectile fired with initial velocity u at some angle θ has a range R. If the initial velocity be doubled at the same angle of projection, then the range will be
 - (a) 2R
- (b) R/2

(c) R

- (d) 4R
- 2. If the initial velocity of a projectile be doubled, keeping the angle of projection same, the maximum height reached by it will
 - (a) Remain the same
 - (b) Be doubled
 - (c) Be quadrupled
 - (d) Be halved
- In the motion of a projectile freely under gravity, its
 - (a) Total energy is conserved
 - (b) Momentum is conserved
 - (c) Energy and momentum both are conserved
 - (d) None is conserved
- 4. The range of a projectile for a given initial velocity is maximum when the angle of projection is 45°. The range

will be minimum, if the angle of projection is

- (a) 90°
- (b) 180°
- (c) 60°
- (d) 75°
- 5. The angle of projection at which the horizontal range and maximum height of projectile are equal is
 - (a) 45°
 - (b) $\theta = tan^{-1}(0.25)$
 - (c) $\theta = tan^{-1} 4 \text{ or } (\theta = 76^{\circ})$
 - $(d)60^{o}$
- 6. A ball is thrown upwards and it returns to ground describing a parabolic path. Which of the following remains constant
 - (a) Kinetic energy of the ball
 - (b) Speed of the ball
 - (c) Horizontal component of velocity
 - (d) Vertical component of velocity
- At the top of the trajectory of a projectile, the directions of its velocity and acceleration are
 - (a) Perpendicular to each other
 - (b) Parallel to each other
 - (c) Inclined to each other at an angle of 45^{o}
 - (d) Antiparallel to each other

- 8. An object is thrown along a direction inclined at an angle of 45° with the horizontal direction. The horizontal range of the particle is equal to
 - (a) Vertical height
 - (b) Twice the vertical height
 - (c) Thrice the vertical height
 - (d) Four times the vertical height
- g. The height y and the distance x along the horizontal plane of a projectile on a certain planet (with no surrounding atmosphere) are given by $y = (8t 5t^2)$ meter and x = 6t meter, where t is in second. The velocity with which the projectile is projected is
 - (a) 8 *m*/sec
 - (b) 6 *m*/sec
 - (c) 10 *m*/sec
 - (d) Not obtainable from the data
- 10. Referring to above question, the angle with the horizontal at which the projectile was projected is
 - (a) $tan^{-1}(3/4)$
 - (b) $tan^{-1}(4/3)$
 - (c) $sin^{-1}(3/4)$
 - (d) Not obtainable from the given data

- 11. Referring to the above two questions, the acceleration due to gravity is given by
 - (a) $10m/sec^2$
 - (b) $5m/sec^2$
 - (c) $20m/sec^2$
 - (d) $2.5m/sec^2$
- 12. The range of a particle when launched at an angle of 15° with the horizontal is 1.5 km. What is the range of the projectile when launched at an angle of 45° to the horizontal
 - (a) 1.5 *km*
- (b) 3.0 km
- (c) 6.0 km
- (d) 0.75 km
- 25m/s at 60^o above the horizontal. How far above the ground it passes over a fielder 50 m from the bat (assume the ball is struck very close to the ground)
 - (a) 8.2 *m*
- (b) 9.0 *m*
- (c) 11.6 *m*
- (d) 12.7 *m*

IIT-JEE PHYSICS

- 14. A stone is projected from the ground with velocity 25m/s. Two seconds later, it just clears a wall 5 m high. The angle of projection of the stone is $(g = 10m/sec^2)$
 - (a) 30°
- (b) 45^{o}
- (c) 50.2°
- (d) 60°
- 15. Galileo writes that for angles of projection of a projectile at angles $(45+\theta)$ and $(45-\theta)$, the horizontal ranges described by the projectile are in the ratio of (if $\theta \le 45$)
 - (a) 2:1
- (b) 1:2
- (c) 1:1
- (d) 2:3
- 16. A projectile thrown with a speed v at an angle θ has a range R on the surface of earth. For same v and θ , its range on the surface of moon will be
 - (a) R/6
- (b) **6R**
- (c) R/36
- (d) 36R
- 17. The greatest height to which a man can throw a stone is $\sqrt{\frac{F}{mr}}$. The greatest distance to which he can throw it, will be

- (a) $2\pi r^2/T$
- (b) v, v and v
- (c) 2h
- (d) 3h
- **18.** The horizontal range is four times the maximum height attained by a projectile. The angle of projection is
 - (a) 90°
- (b) 60°
- (c) 45°
- (d) 30^{o}
- 19. A ball is projected with kinetic energy E at an angle of 45° to the horizontal. At the highest point during its flight, its kinetic energy will be
 - (a) Zero
- (b) $\frac{E}{2}$
- (c) $\frac{E}{\sqrt{2}}$
- (d) E
- with velocity v making an angle of 45^o with the horizontal. The magnitude of the angular momentum of the particle about the point of projection when the particle is at its maximum height is (where g = acceleration due to gravity)
 - (a) Zero
- (b) $mv^3/(4\sqrt{2}g)$
- (c) $mv^3/(\sqrt{2}g)$
- (d) $mv^2/2g$