CLAIMS

XX 71 .	•		
What	IS C	laım	ed is:

- 1 1. A magnetic head having an air bearing surface, comprising:
- 2 a magnetoresistive sensor;
- 3 a magnetic, electrically conductive shield having a surface defining a plane and having
- 4 first and second lateral sides, formed in proximity to and electrically insulated
- 5 from said sensor;
- 6 first and second electrically conductive layers extending from said first and second sides
- of said shield, said first and second conductive layers being coplanar with and
- 8 electrically insulated from said shield;
- 9 a first electrical lead connected with said first electrically conductive layer; and
- a second electrical lead connected with said second electrically conductive layer.
- 1 2. A magnetic head as recited in claim 1 wherein said at least one of said first and
- 2 second electrical circuits is electrically connected with said sensor.
- 1 3. A magnetic head as recited in claim 1 wherein said first and second electrically
- 2 conductive layers comprise the same material as said shield.
- 1 4. A magnetic head as recited in claim 1 further comprising first and second
- 2 electrically insulating gaps formed at said first and second sides of said shield,
- 3 said gaps electrically isolating said first and second electrically conductive layers
- 4 from said shield.
- 1 5. A magnetic head as recited in claim 1 wherein said sensor has a surface defining a
- 2 second plane and wherein said shield and said sensor are parallel and non-
- 3 coplanar.
- 1 6. A magnetic head, comprising:
- 2 a magnetoresistive sensor;

3.	a shield layer formed in proximity to said sensor, said shield comprising a soft
4	magnetic, electrically conductive material;
5	a layer of electrically conductive material adjacent to said shield;

- a dielectric material disposed between said shield and said electrically conductive
- 7 material layer and electrically isolating said shield therefrom;
- 8 a first electrically conductive lead in electrical communication with said layer of
- 9 electrically conductive material; and
- a second lead in electrical communication with said shield.
- 1 7. A magnetic head as in claim 6, wherein said electrically conductive layer is coplanar with said shield.
- 1 8. A magnetic head as in claim 6, wherein said electrically conductive layer is 2 coplanar with said shield and comprises the same material as said shield.
- 1 9. A magnetic head as in claim 6, wherein said electrically conductive layer is formed in a common manufacturing step with said shield.
- 1 10. A magnetic head as in claim 6, wherein said shield is disposed above said sensor.
- 1 11. A magnetic head as in claim 6, wherein said shield is disposed below said sensor.
- 1 12. A method of manufacturing a magnetic head, comprising:
- 2 forming a layer of magnetic, electrically conductive material;
- 3 forming first and second electrically insulating gaps in said magnetic, electrically
- 4 conductive material layer said first and second gaps terminating substantially at a
- 5 predetermined lap stop location, said first and second gaps defining a central
- 6 portion and first and second laterally opposed outer portions of said magnetic,
- 7 electrically conductive layer;
- 8 forming a magnetoresistive sensor;

- 9 forming a first electrically conductive lead connected with said first outer portion of said 10 magnetic, electrically conductive layer; 11 forming a second electrically conductive lead connected with said second outer portion of 12 said magnetic, electrically conductive layer; and 13 performing a lapping operation until at least on of said first and second gaps is reached. 1 13. A method as recited in claim 12 further comprising measuring an electrical 2 resistance between said first and second leads until an increase in said resistance 3 indicates that said lap stop location has been reached. 1 14. A method as recited in claim 12 wherein a portion of said magnetic, electrically 2 conductive material extending beyond said lap stop location is contiguous. 1 15. A method as recited in claim 12 wherein said magnetic, electrically insulating 2 material is formed before the formation of said sensor so as to be formed below 3 said sensor. 1 6. A method as recited in claim 12 wherein said magnetic, electrically insulating 2 material is formed after the formation of said sensor so as to be formed above said 3 sensor. 1 17. A method for constructing a magnetic head, comprising 2 forming a magnetoresistive sensor; 3 forming a layer of magnetic, electrically conductive material having proximal and 4 distal ends, and first and second lateral side portions;
- 7 performing a lapping operation, said lapping operation initiating from said
- 8 proximal end and proceeding toward said distal end;

5

6

providing a gap in said layer of magnetic, electrically conductive material, said

gap terminating short of said proximal end and extending through said distal end;

1		measuring an electrical resistance between across said magnetic, electrically
2		conductive layer from said first lateral side portion to said second lateral side
3		portion;
4		ceasing lapping when said electrical resistance reaches a predetermined value.
1	18.	A method as in claim 17 wherein said layer of magnetoresistive sensor is formed
2		before the formation of said magnetic, electrically conductive layer.
1	19.	A method as in claim 17, wherein said layer of magnetoresistive sensor is formed
2		after the formation of said magnetic, electrically conductive layer.
1	20.	A method as in claim 17, further comprising depositing a dielectric layer between
2		said sensor and said magnetic electrically conductive material layer.
1	21.	A magnetic recording system, comprising:
2		a housing;
3		a motor connected with said housing;
4		a spindle connected with said motor;
5		a magnetic disk mounted on said spindle for rotation about its own axix;
6		an actuator supported within said housing;
7		a slider supported by said actuator for movement across a surface of said disk;
8		a magnetic head formed on said slider, said magnetic head further comprising:
9		a magnetoresistive sensor;
10		a shield layer formed in proximity to said sensor, said shield comprising a
11		soft magnetic, electrically conductive material;
12		a layer of electrically conductive material adjacent to said shield;
13		a dielectric material disposed between said shield and said electrically
14		conductive material layer and electrically isolating said shield
15		therefrom;
16		a first electrically conductive lead in electrical communication with said
17		layer of electrically conductive material; and

- a second lead in electrical communication with said shield.
- 1 22. A magnetic head, comprising:
- a magnetic, electrically conductive shield;
- a sensor formed above and electrically isolated from said shield;
- 4 first and second lap guides, electrically connected with said shield.
- 1 23. A magnetic head as in claim 22, wherein said first and second lap guides are
- 2 coplanar with said sensor.
- 1 24. A magnetic head as in claim 22 wherein said first and second lap guides are
- 2 comprise the same materials as said sensor.
- 1 25. A magnetic head as in claim 22 wherein said first and second lap guides are
- 2 constructed in a common manufacturing step with said sensor.
- 1 26. A magnetic head as in claim 22 further comprising first and second vias,
- 2 electrically connected said first and second lapping guides with said shield.
- 1 27. A magnetic head as in claim 22 further comprising first and second electrically
- 2 conductive leads in electrical communication with said first and second lap
- guides.