Glass and Ceramics Vol. 61, Nos. 5 – 6, 2004

COATINGS. ENAMELS

UDC 666.112.7:666.295

MODERN LOW-MELTING BOROSILICATE GLASSES AND GLAZES FOR MAJOLICA AND POTTERY (A REVIEW)

V. V. Gerasimov¹ and O. V. Spirina¹

Translated from Steklo i Keramika, No. 6, pp. 26 – 29, June, 2004.

A review of low-melting borosilicate glasses and glazes for majolica and pottery is presented. The data given on the compositions and properties of glasses make it possible to identify a particular composition with the required properties and locate its patent source.

In view of the rapid progress of the modern construction industry, the requirements imposed on traditional silicate materials are becoming ever more stringent with respect to their quality and exterior parameters, which calls for the development of new materials with preset properties. The current trends echo the transition from mass-scale industrialized construction to individual buildings; consequently, current architecture is focused on artistic aspects, and the production volume of household and ornamental items is growing.

These goals can be reached using decorative facing ceramics, such as facing brick, glazed tile, roof tile, majolica, and pottery. Ceramics today has experienced a renaissance. Ceramic materials have an unlimited architectural potential and their properties provide for a number of advantages over other building materials.

However, the production of ceramic materials involves substantial power consumption, which runs counter to the energy strategy of Russia [1]. Nevertheless, the technologies of producing building ceramics are constantly being upgraded for the purpose of improving the consumer properties of ceramics and decreasing power consumption.

Low-melting glazes and glasses are rather popular in the ceramic industry, as they protect the surface of ceramic materials from contamination, the effect of acids and alkalis, the penetration of gases, and at the same time increase their strength and decorate their appearance.

A vast multitude of diverse glazes are known in the ceramic industry. They are classified based on different properties, such as firing temperature (*low-melting and high-melting glazes*), the production method (*raw and fritted*), application (*porcelain, faience, majolica, and pottery glazes*),

composition (feldspar, boric, boric-alkaline, and boric-lead), exterior appearance (lustrous, dull, and crystalline), and translucence (transparent and opaque).

Low-melting glazes are complex multicomponent systems. Low-melting eutectics formed in such a system are less prone to devitrification (crystallization) than systems with a small number of components. An obligatory component in low-melting glazes is boric anhydride B_2O_3 , which is an active glass-forming oxide and a strong flux increasing the luster, hardness, and thermal resistance of glazes. Most frequently B_2O_3 is introduced into a glaze composition in the form of boric acid or borax. Glaze is a silicate glass and, as any glass, consists of a disordered amorphous structure, which determines its main properties.

Glaze glasses are high-molecular inorganic systems containing ordered supermolecular structures [2]. Silicate radicals $[Si_mO_n]$ expand indefinitely in one, two, and three dimensions, forming a continuous pattern. [3]. The forces between the atoms in the radicals have a clearly polarized, directed, and covalent nature. These radicals disintegrate under melting into various complex polyions of a changing structure. The silica radicals in cooling combine with $[B_mO_n]$ radicals and form polymeric structures of mixed type. The fusibility of glass depends mainly on the degree of cross-linking of the polymeric skeleton and the type of its the modifying components.

A review of contemporary low-melting fritted borosilicate glasses and glazes for majolica and pottery with a firing temperature less than 1000°C is represented in the form of Table 1. These fine ceramics can be produced from local argillaceous materials and typically have a high artistic quality reflecting folk motifs. On the other hand, the drawbacks of majolica include its high porosity and water permeability and

¹ Kazan State Power University, Kazan, Russia; Kazan State Architecture and Construction Academy, Kazan, Russia.

TABLE 1

Composition, wt.% (molar content specified in brackets)	Properties	Specific features	Authors, source
56.95 – 62.65 SiO ₂ , 21.72 – 23.89 B ₂ O ₃ , 9.67 – 10.64 Na ₂ O, 5.96 – 8.52 K ₂ O (0.32 K ₂ O, 1.36 B ₂ O ₃ , 0.67 Na ₂ O, 4.29 SiO ₂)	Melting temperature 1250 – 1300°C Firing temperature 870 – 1000°C TCLE (61.43 – 64.51) × 10 ⁻⁷ K ⁻¹ Thermal resistance 15 – 18 thermal cycles Luster 93 – 94% Resistance to cold 59 cycles	Increased firing interval	R. N. Nilevskaya, I. A. Levitskii, G. S. Balatskii, G. A. Terekhovich, V. V. Kozlov USSR Inventor's Certi No. 1087482
53.62 SiO ₂ , 8 – 10 B ₂ O ₃ , 1 – 2 Na ₂ O, 28 – 37 CaO (0.06 Na ₂ O, 1.68 SiO ₂ , 0.94 CaO, 0.22 B ₂ O ₃)	Whiteness 81 – 82%	_	G. M. Tunik, N. I. Belyusenko, L. L. Koshlyar USSR Inventor's Certi No. 833640
57.8 – 59.3 SiO ₂ , 15.4 – 17.5 B ₂ O ₃ , 1.77 – 4.6 Al ₂ O ₃ , 0.01 – 0.04 CaO, 0.05 – 0.014 MgO (0.16 CaO, 0.1 Al ₂ O ₃ , 4 SiO ₂ , 0.84 MgO, 0.9 B ₂ O ₃)	Firing temperature 900 – 950°C Exposure at the optimum firing temperature 2 h TCLE (48 – 51) × 10 ⁻⁷ K ⁻¹ Spreadability 112 – 118 mm	Increased spreadability of the coating Decreased firing temperature Increased firing interval	R. N. Milevskaya,I. A. Levitskii,G. A. TerekhovichUSSR Inventor's Certino. 962231
48.1 – 53.9 SiO ₂ , 10.14 – 15.6 B ₂ O ₃ , 21.2 – 3.6 ZnO, 5.56 – 9.09 Na ₂ O, 4.6 – 8.98 ZrO ₂ (0.33 Na ₂ O, 2 SiO ₂ , 0.67 ZnO, 0.45 B ₂ O ₃ , 0.13 ZrO ₂)	Firing temperature $900-980^{\circ}\text{C}$ TCLE $(4.5-5.0)\times10^{-7}\text{K}^{-1}$ Whiteness $87-89\%$ Resistance to cold greater than 50 cycles	Increased whiteness Decreased content of scarce compounds	N. M. Bobkova, S. A. Gailevich, O. G. Gorodetskaya, Ya. I. Moiseeva USSR Inventor's Certin No. 1004284
$60.57 - 65.25 \text{ SiO}_2, 3.97 - 7.91 \text{ Al}_2\text{O}_3, \\ 16.3 - 24.43 \text{ B}_2\text{O}_3, 6.7 - 7.74 \text{ Na}_2\text{O}, \\ 2.92 - 4.36 \text{ K}_2\text{O}$	Firing temperature $860 - 950^{\circ}\text{C}$ TCLE $(43 - 46) \times 10^{-7} \text{ K}^{-1}$ Thermal resistance $250 - 260^{\circ}\text{C}$ Chemical resistance 99%	Transparent glaze	N. M. Bobkova, I. A. Levitskii, V. I. Rusak, R. N. Milevskaya USSR Inventor's Certin No. 1025679
$58 - 63 \text{ SiO}_2, 6 - 12 \text{ Al}_2\text{O}_3, 20 - 28 \text{ RO}$ $(\text{RO} \cdot 0.3 \text{Al}_2\text{O}_3 \cdot 3.3 \text{SiO}_2)$	Melting temperature 1280 – 1450°C Melting duration 20 – 40 min Firing temperature 1170 – 1260°C	Smooth surface High heat resistance	Matsuyama Sirokhito Japan patent application 59-88337
48 – 60 SiO ₂ , 10.5 – 12.5 B ₂ O ₃ , 7 – 11 Al ₂ O ₃ , 9 – 10.15 Na ₂ O, 8 – 10 CaO, 2.5 – 4.5 BaO (0.5 Na ₂ O, 4.8 SiO ₂ , 0.4 CaO, 0.3 Al ₂ O ₃ , 1.3 B ₂ O ₃ , 0.1 BaO)	TCLE $(53 - 54) \times 10^{-7} \text{ K}^{-1}$ Microhardness $75 - 80 \text{ MPa}$	Increased microhardness Chemical resistance Increased adhesion to ceramics	N. M. Bobkova, S. A. Gailevich, S. A. Yankovskaya, G. N. Khrul', T. P. Tupai USSR Inventor's Certif No. 1038304
56.9 – 62.9 SiO ₂ , 15.6 – 23.7 B ₂ O ₃ , 3.77 – 7.6 Al ₂ O ₃ , 1.34 – 2.8 K ₂ O, 7.34 – 8.43 Na ₂ O, 3.59 – 5.9 TiO ₂ (0.14 K ₂ O, 0.3 Al ₂ O ₃ , 86 Na ₂ O, 6.4 SiO ₂ , 1.65 B ₂ O ₃ , 0.33 TiO ₂)	Melting temperature $1280-1300^{\circ}\text{C}$ Firing temperature $760-980^{\circ}\text{C}$ Exposure at the firing temperature 2 h TCLE $(50.98-53.69)\times10^{-7}\text{ K}^{-1}$ Softening temperature $445-490^{\circ}\text{C}$ Spreading start temperature $940-980^{\circ}\text{C}$ Whiteness $12-15\%$	Decreased firing temperature Increased heat resistance and whiteness	N. M. Bobkova, V. I. Rusak, I. A. Levitskii USSR Inventor's Certin No. 1004285
$\begin{array}{l} 58.3 - 64.95 \; \mathrm{SiO_2}, 3.76 - 7.61 \; \mathrm{Al_2O_3}, \\ 15.22 - 20.78 \; \mathrm{B_2O_3}, 7.20 - 7.41 \; \mathrm{Na_2O}, \\ 2.75 - 2.81 \; \mathrm{K_2O}, 3.09 - 6.12 \; \mathrm{SrO} \\ (0.3 \; \mathrm{K_2O}, 0.54 \; \mathrm{Al_2O_3}, 0.7 \; \mathrm{Na_2O}, \\ 1.1 \; \mathrm{SiO_2}, 0.27 \; \mathrm{B_2O_3}) \end{array}$	Melting temperature 1320 – 1350°C Firing temperature 890 – 980°C Exposure 2 h Thermal resistance 230 – 315°C Spreadability 86 – 93 mm Contact wetting angle 70 – 73°	Increased heat resistance and spreadability	N. M. Bobkova, I. A. Levitskii, R. N. Milevskaya USSR Inventor's Certin No. 1090669
12.5 – 14.5 SiO ₂ , 37 – 40 B ₂ O ₃ , 25 – 27.5 ZnO, 6.5 – 7 ZrO ₂ , 5 – 10 CuO, 4 – 11 V ₂ O ₅ (0.8 ZnO, 1 V ₂ O ₅ , 0.6 SiO ₂ , 0.2 CuO, 1.4 B ₂ O ₃ , 0.1 ZrO ₂)	Firing temperature 700°C	_	L. M. Silich, L. G. Yasinskii, V. I. Shamkalovich, I. N. Savelov USSR Inventor's Certif No. 1060586

TABLE 1. (Continued)

Composition, wt.% (molar content specified in brackets)	Properties	Specific features	Authors, source
40.42 – 48.28 SiO ₂ , 20.97 – 26.19 B ₂ O ₃ , 8.83 – 12.28 Al ₂ O ₃ , 8.43 – 12.28 CaO, 4.5 – 6.25 Na ₂ O, 3.63 – 7.24 ZrO ₂ (0.7 CaO, 0.4 Al ₂ O ₃ , 3 SiO ₂ , 0.3 Na ₂ O, 1.3 B ₂ O ₃ , 0.16 ZrO ₂)	Melting temperature $1200 - 1250^{\circ}\text{C}$ Firing temperature $800 - 820^{\circ}\text{C}$ TCLE $(52 - 54) \times 10^{-7} \text{ K}^{-1}$ Thermal resistance $225 - 250^{\circ}\text{C}$ Luster $76 - 78\%$ Whiteness $93 - 96\%$	Decreased melting and firing temperature Increased heat resistance and whiteness	N. M. Bobkova, É. V. Apanovich, S. A. Gailevich, A. A. Stepanchuk USSR Inventor's Certif No. 1098919
40 – 50 SiO ₂ , 25 – 28 B ₂ O ₃ , 3 – 5 Al ₂ O ₃ , 3 – 4 K ₂ O, 4 – 6 Na ₂ O, 12 – 15 CaO (0.17 K ₂ O, 2.16 SiO ₂ , 0.23 Na ₂ O, 0.12 Al ₂ O ₃ , 1.1 B ₂ O ₃ , 0.7 CaO)	Melting temperature 1300° C Firing temperature $840 - 920^{\circ}$ C TCLE $(52.1 - 53.2) \times 10^{-7}$ K ⁻¹ Thermal resistance 280° C Luster $78 - 79\%$	Increased heat resistance	N. M. Bobkova, A. A. Stepanchuk, S. A. Gailevich USSR Inventor's Certif No. 1119993
$\begin{array}{l} 57.3-67.2~{\rm SiO_2},~14.4-16.5~{\rm B_2O_3},\\ 1.7-3.1~{\rm CaO},~9.7-12.4~{\rm ZnO},\\ 3.6-5.5~{\rm Na_2O},~3.4-5.2~{\rm ZrO_2}\\ (0.3~{\rm Na_2O},~4~{\rm SiO_2},~0.1~{\rm CaO},~0.6~{\rm B_2O_3},\\ 0.6~{\rm ZnO},~0.15~{\rm ZrO_2}) \end{array}$	Melting temperature $1300 - 1350^{\circ}$ C Firing temperature $900 - 950^{\circ}$ C TCLE $(51 - 55) \times 10^{-7}$ K ⁻¹ Thermal resistance $210 - 220^{\circ}$ C Microhardness $71 - 72$ MPa Abradability 0.05 g/cm ² Luster $42 - 46\%$ Whiteness 94% Resistance to cold 80 cycles	Increased resistance to cold Thermal resistance Production of defect-free glaze coating	N. M. Bobkova, O. G. Gorodetskaya, S. A. Gailevich USSR Inventor's Certif No. 1119992
27 – 33 SiO ₂ , 7 – 9 B ₂ O ₃ , 39 – 46 Bi ₂ O ₃ , 4 – 7 ZnO, 3 – 8 BaO, 1 – 3 TiO ₂ , 4 – 12 CuO (0.38 ZnO, 2.1 SiO ₂ , 0.42 CuO, 0.7 Bi ₂ O ₃ , 0.5 B ₂ O ₃ , 0.2 BaO, 0.1 IrO ₂)	Softening temperature $367 - 372^{\circ}$ C TCLE $(80 - 83) \times 10^{-7}$ K ⁻¹ Density $6.2 - 6.4$ g/cm ³	Decreased softening temperature	M. D. Shcheglova,É. Ya. BerkovskayaUSSR Inventor's Certif No. 945107
58 – 65 SiO ₂ , 12.5 – 19.5 B ₂ O ₃ , 5.5 – 10 Al ₂ O ₃ , 5.5 – 10.5 Na ₂ O, 1.5 – 2.5 BaO, 1.5 – 3 MgO, 1.5 – 3.5 ZrO ₂ (0.1 Na ₂ O, 0.89 SiO ₂ , 0.8 MgO, 0.1 Al ₂ O ₃ , 0.2 B ₂ O ₃ , 0.1 BaO)	Melting temperature $1400 - 1450^{\circ}\text{C}$ Fusing temperature $1000 - 1050^{\circ}\text{C}$ TCLE $(55 - 56) \times 10^{-7} \text{ K}^{-1}$ Thermal resistance 220°C Resistance to cold 50 cycles	Increased whiteness and viscosity	N. M. Bobkova, O. G. Gorodetskaya, S. A. Yankovskaya USSR Inventor's Certif No. 962229
5.5 – 14.5 SiO ₂ , 28 – 42 B ₂ O ₃ , 32.5 – 42.5 PbO, 3 – 7.5 ZnO, 3 – 5 CuO, 2.5 – 4 V ₂ O ₅ , 4.4 – 5.5 ZrO ₂ (0.6 PbO, 0.05 Al ₂ O ₃ , 0.7 SiO ₂ , 0.22 ZnO, 0.03 V ₂ O ₅ , 1.75 B ₂ O ₃ , 0.18 CuO, 0.14 ZrO ₂)	Firing temperature 690 – 720°C Softening temperature 480 – 510°C Spreading temperature 610 – 660°C	Decreased TCLE	L. M. Silich,L. G. Yasinskii,V. I. Shamkalovich,I. N. SavelovUSSR Inventor's Certif No. 975622
37 – 45 SiO ₂ , 25 – 30 B ₂ O ₃ , 2.5 – 5 Al ₂ O ₃ , 5 – 15 CaO, 2.5 – 11 ZnO, 1 – 5 Na ₂ O, 5 – 10 K ₂ O (0.16 CaO, 0.73 ZnO, 0.03 Al ₂ O ₃ , 0.7 SiO ₂ , 0.04 Na ₂ O, 0.3 B ₂ O ₃ , 0.07 K ₂ O)	Melting temperature $1300 - 1350^{\circ}$ C Firing temperature $850 - 920^{\circ}$ C TCLE $(60.8 - 69) \times 10^{-7}$ K ⁻¹ Thermal resistance 12 thermal cycles Resistance to cold 60 cycles	Increased resistance to cold	N. M. Bobkova,S. A. Gailevich,A. A. Stepanchuk,S. A. YankovskayaUSSR Inventor's Certif No. 1044609
15.3 – 55.5 SiO ₂ , 13.2 – 23 B ₂ O ₃ , 5.2 – 15.6 Al ₂ O ₃ , 3.3 – 9 CaO, 3.4 – 7.4 Na ₂ O, 2.2 – 5.3 K ₂ O, 3.3 – 7.3 MgO 0.23 CaO, 0.26 Na ₂ O, 0.32 Al ₂ O ₃ , 2.5 SiO ₂ , 0.11 K ₂ O, 0.7 B ₂ O ₃ , 0.4 MgO)	Melting temperature $1200 - 1250^{\circ}$ C Firing interval $820 - 850^{\circ}$ C TCLE $(51 - 53) \times 10^{-7}$ K ⁻¹ Chemical resistance 3.26% Thermal resistance 10 thermal cycles Luster 92%	Decreased TCLE Increased luster and acid resistance	N. M. Bobkova, S. A. Gailevich USSR Inventor's Certif No. 1025671
14.5 – 52.6 SiO ₂ , 14 – 18.5 B ₂ O ₃ , 7.1 – 12 Al ₂ O ₃ , 0.1 – 2.0 SrO, 10.9 – 15.5 CaO, 8.6 – 11.9 K ₂ O, 0.1 – 0.9 MoO ₃ (0.02 SrO, 0.23 Al ₂ O ₃ , 2 SiO ₂ , 0.6 CaO, 0.6 B ₂ O ₃ , 0.3 K ₂ O, 0.08 MoO ₃)	Melting temperature 1250°C Firing temperature 960°C TCLE 65×10^{-7} K $^{-1}$ Whiteness 82%	Increased whiteness	Ya. K. Klivin'sh, A. P. Raman, P. G. Pauksh, M. M. Miezis, M. L. Grinberg, Yu. Ya. Éiduk USSR Inventor's Certif No. 1052481

 TABLE 1. (Continued)

Composition, wt.% (molar content specified in brackets)	Properties	Specific features	Authors, source
48 – 52 SiO ₂ , 2.4 – 8 B ₂ O ₃ , 20 – 31 Al ₂ O ₃ , 8 – 10 CaO, 6 – 8 MgO, 2 – 4 BaO, 1 – 2 Na ₂ O (0.42 CaO, 0.65 Al ₂ O ₃ , 0.08 Na ₂ O, 2.16 SiO ₂ , 0.05 BaO, 1.93 B ₂ O ₃ , 0.45 MgO)	No data	Ensuring the process of glaze coating formation in a reducing medium	L. N. Trushkova, V. V. Troshin, R. D. Zhukovskaya USSR Inventor's Certif. No. 1071586
$\begin{array}{l} 35-39~{\rm SiO}_2, 35-37~{\rm B}_2{\rm O}_3, 5-10~{\rm Al}_2{\rm O}_3, \\ 3.5-5~{\rm CaO}, 2-10~{\rm BaO}, 2-4.9~{\rm Na}_2{\rm O}, \\ 1.5-5~{\rm K}_2{\rm O}~(0.23~{\rm K}_2{\rm O}~0.37~{\rm CaO}, \\ 0.3~{\rm Al}_2{\rm O}_3, 2.17~{\rm B}_2{\rm O}_3, 0.24~{\rm Na}_2{\rm O}, \\ 2.6~{\rm SiO}_2, 0.16~{\rm BaO}) \end{array}$	Melting temperature 1400° C Firing temperature $800-850^{\circ}$ C TCLE $(46-47)\times10^{-7}$ K $^{-1}$ Luster 93%	Decreased TCLE	V. I. Rusak, A. G. Smolonoka, N. I. Vidmand, T. K. Vidmand, T. I. Mikhal'skaya USSR Inventor's Certif. No. 1079619
$\begin{array}{l} 49.5-54~{\rm SiO_2}, 24-27.5~{\rm B_2O_3}, \\ 4-6~{\rm Al_2O_3}, 4-6~{\rm CaO}, 0.5-1~{\rm MgO}, \\ 4-6~{\rm BaO}, 5.5-8~{\rm Na_2O}~(0.4~{\rm CaO}, \\ 0.1~{\rm MgO}, 0.2~{\rm Al_2O_3}, 3.5~{\rm SiO_2}, 0.2~{\rm BaO}, \\ 1.5~{\rm B_2O_3}, 0.3~{\rm Na_2O}) \end{array}$	Firing temperature $1000-1020^{\circ}\text{C}$ TCLE $6.7\times10^{-6}~\text{K}^{-1}$ Thermal resistance $170-200^{\circ}\text{C}$	Improved quality of coating	G. B. Obukhova, I. I. Ryshchenko, V. A. Goncharov, L. F. Kochura USSR Inventor's Certif. No. 1089068
$\begin{array}{l} 2.78 - 3.2 \; SiO_{2}, 1.1 - 1.5 \; B_{2}O_{3}, \\ 0.24 - 0.35 \; Al_{2}O_{3}, 0.25 - 0.44 \; CaO, \\ 0.1 - 0.17 \; BaO, 0.25 - 0.3 \; Na_{2}O, \\ 0.12 - 0.2 \; K_{2}O \end{array}$	Firing temperature $820-890^{\circ}\text{C}$ TCLE $(6.83-6.92)\times10^{-6}\text{K}^{-1}$ Melting duration 45 min	Ensuring transparency Decreased fusing duration Decreased melting temperature and TCLE	Ingeborg Sheler USSR Inventor's Certif. No. 722863 Imano Shigeishi, Sato Ukira Japan patent application 56-78448
47.8 – 57.6 SiO ₂ , 11.2 – 15.8 Al ₂ O ₃ , 5 – 6.4 B ₂ O ₃ , 0.5 – 0.6 Fe ₂ O ₃ , 0.6 – 0.8 CaO, 0.2 – 0.3 MgO, 15.5 – 21.6 Na ₂ O, 7.8 – 9.1 F	Firing temperature 750 – 800°C	Increased thermal resistance and mechanical strength	I. G. Khizanishvili, A. A. Aizenberg, Sh. A. Dzhaparidze USSR Inventor's Certif. No. 416322
$\begin{array}{l} 50.2-54.6~SiO_2,5.4-7.1~Al_2O_3,\\ 15.3-17.6~B_2O_3,4-5.8~CaO,0.4-1.0\\ MgO,0.8-1.2~ZnO,5.1-6~Na_2O,\\ 0.8-1.5~BaO,9.5-11.4~ZrO_2 \end{array}$	Melting temperature 1400° C Firing temperature $950 - 970^{\circ}$ C TCLE $(48 - 52) \times 10^{-7}$ K ⁻¹	Decreased TCLE Ensuring a high degree of whiteness	K. K. Kvyatkovskaya USSR Inventor's Certif. No. 383698
40.2 – 48.3 SiO ₂ , 3 – 5 Al ₂ O ₃ , 35.8 – 39.6 B ₂ O ₃ , 6.5 – 8.5 Na ₂ O, 1.5 – 1.7 K ₂ O, 2.4 – 3 CaO, 0.7 – 0.9 MgO, 0.3 – 0.5 CuO, 1.5 – 1.7 SnO ₂	Firing temperature 900 – 950°C Microhardness 547 – 579 kg/mm ² Resistance to cold 81 – 85 cycles	Increased fusibility	S. S. Takibaeva, G. I. Shulgaubaeva USSR Inventor's Certif. No. 833634
57.2 - 62.1 SiO ₂ , 6.1 - 8.6 Al ₂ O ₃ , 12.6 - 13.5 Fe ₂ O ₃ , 3.3 - 5.2 ZnO, 3.1 - 5.5 CaO, 0.2 - 1.2 MgO, 2.4 - 4.1 K ₂ O, 1.1 - 1.9 Na ₂ O, 2.5 - 4.6 GeO ₂	Melting temperature 1250°C Firing temperature 950°C TCLE (59.6 – 61.7) \times 10 ⁻⁷ K ⁻¹	Decreased firing temperature	A. A. Novospashin, T. B. Arbuzova, D. A. Romanyuk USSR Inventor's Certif. No. 814916
$\begin{split} &53.1-56.5~SiO_2,9.8-10.4~B_2O_3,\\ &11.7-12.2~Al_2O_3,0.3-0.36~Fe_2O_3,\\ &0.51-0.54~CaO,12-12.7~Na_2O,\\ &2.46-2.6~K_2O,3-5~CuO,0.5-5~Cr_2O_3 \end{split}$	Firing temperature 950°C Firing duration 3 h TCLE $(60 - 62.5) \times 10^{-7} \text{ K}^{-1}$ Microhardness $680 - 686 \text{ kg/mm}^2$	Increased luster	E. Sh. Kharashvili, L. V. Mgaloblishvili USSR Inventor's Certif. No. 981268
$\begin{array}{l} 41-51~{\rm SiO_2},8-10~{\rm Al_2O_3},10-17~{\rm B_2O_3},\\ 4-6~{\rm ZnO},0.02-0.5~{\rm Fe_2O_3},3-8~{\rm CaO},\\ 0.03-0.5~{\rm MgO},6-10~{\rm Na_2O},1-3~{\rm K_2O},\\ 8-11~{\rm ZrO_2} \end{array}$	Firing temperature 820 – 860°C Whiteness 89 – 90% Mohs hardness 6 – 7	Increased whiteness	N. V. Kulikova, O. V. Privezentseva USSR Inventor's Certif. No. 833630
37 – 39 SiO ₂ , 5 – 6.5 Al ₂ O ₃ , 18.6 – 21.5 B ₂ O ₃ , 10 – 13 SrO, 2.5 – 4.2 ZnO, 0.5 – 1.5 MgO, 3 – 7.1 Na ₂ O, 2.6 – 4 K ₂ O, 8 – 10 CaO, 2 – 3.5 F	Firing temperature $900 - 920^{\circ}$ C TCLE $(67 - 73) \times 10^{-7}$ K ⁻¹ Whiteness $79 - 80\%$	Decreased viscosity Increased whiteness	A. S. Krasnousova, T. S. Solnyshkina USSR Inventor's Certif. No. 833637

insufficient bending strength, which restricts its application area. However, a low-melting glaze used as a vitreous coating on a majolica or pottery product can eliminate these drawbacks and impart an attractive appearance to the surface of the product. Furthermore, tinted glazes can conceal the defects of majolica and pottery acquired in firing (a change of color or chips).

The glazes in Table 1 are arranged in the order of growing complexity of their compositions. In view of the toxicity and scarcity of lead, the current trend is to completely stop the use of lead oxides in glazes; therefore, low-melting lead glazes are not listed. Table 1 specified the main technological and physicotechnical properties of glasses. Particular attention is paid to the specific features of glasses used as coatings on ceramics (their spreadability, adhesion to the substrate, firing interval, and chemical resistance).

Ceramic technologists widely use the Seger formula for calculating composition and classifying glazes, according to which all oxides making up glazes are split into three groups: alkali and alkaline-earth R_2O and RO (Na_2O , K_2O , CaO, MgO), neutral R_2O_3 (Al_2O_3), and acid RO_2 (SiO_2). Furthermore, the group of acid oxides includes boric anhydride B_2O_3 .

In calculations using the Seger formula the oxides are represented as molar fractions, whereas the sum of the alkali and alkaline-earth oxides is reduced to unity, and the basic and acid oxides are expressed in molar fractions per 1 mole of alkali and alkaline-earth oxides.

Accordingly all glaze compositions should satisfy the formula

$$1(\mathsf{R}_2\mathsf{O} + \mathsf{RO}) \cdot m \mathsf{R}_2\mathsf{O}_3 \cdot n \mathsf{RO}_2.$$

The Seger formula provides for a clear representation of a complex glaze composition and creates a basis for the classification of glazes according to their chemical compositions.

Low-melting glazes have the following formula:

$$1(R_2O + RO)(0.1 - 0.3)R_2O_3(1 - 3)RO_2$$
.

We have calculated molecular formulas for several glaze glasses, which makes it possible to predict the probable properties of the glazes proposed.

The low-melting borosilicate glasses listed in Table 1 structurally have a lot in common and differ only in the degree of cross-linking of the silica skeleton. Researchers developing glazes in fact just control the ratio between the polymer-forming and the modifier elements. Several cations, mainly the multi-charge ones, perform both of these structural functions.

The data supplied on the compositions and properties of low-melting glasses and glazes make it possible to identify a particular composition with the required properties and locate its source.

REFERENCES

- 1. A. N. Yankovskii, A. M. Mastepanov, V. V. Bushuev, et al. "Main principles of the energy strategy of Russia for the period up to 2020," *Teploenergetika*, No. 1, 2 8 (2002).
- V. V. Gerasimov, "The overskeleton structure of vitreous matter," Bull. of the V. Tarasov Centre of the Chemotronics of Glass [in Russian], Moscow (2000), pp. 31 – 35.
- 3. A. A. Appen, *Chemistry of Glass* [in Russian], Khimiya, Leningrad (1962).