Akademia Górniczo-Hutnicza w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Inżynieria wiedzy i uczenie maszynowe

Konspekt zajęć laboratoryjnych prowadzonych w Katedrze Informatyki Studia Drugiego Stopnia Drugi rok

Bartłomiej Śnieżyński

Laboratorium nr 4

Temat

System Weka

Cel

Celem zajęć jest wprowadzenie do systememu Weka i zapoznanie się z jego dwoma modułami: Explorer i Experimenter.

Wymagane wiadomości wstępne z wykładu

Problem klasyfikacji

Konfiguracja komputera

Podczas laboratorium wykorzystywany będzie system Weka.

Linki

http://www.cs.waikato.ac.nz/ml/weka/

Plan laboratorium

- 1. Uruchomić system Weka
- 2. Uruchomić moduł Explorer
 - 2.1. Otworzyć plik z danymi Iris (C:\Program Files\Weka-3-6\data)
 - 2.2. Sprawdzić rozkłady poszczególnych atrybutów:

- 2.3. Obejrzeć wizualizację (zakładka Visualize)
 - 2.3.1. Przesunąć suwak PointSize oraz Jitter, a następnie wcisnąć Update. Jaki jest tego efekt?
 - 2.3.2. Które dwa atrybuty dobrze nadają się do klasyfikacji?
- 2.4. Przejść do zakładki Classify i wygenerować kilka klasyfikatorów: z różną reprezentacją wiedzy: J48, JRip, NaiveBayes, ZeroR, BayesNet (zmienić parametr P maxNrOfParents na liczbę 4)
- 2.5. Porównać wygenerowaną wiedzę (w przypadku J48 i BayesNet można kliknąć prawym przyciskiem na elemencie Result list i wybrać VisualiseTree/Graph)
- 2.6. Oglądnąć błędy klasyfikacji: PKlik na Result list/Visualise classifier erors
- 3. Uruchomić moduł Experimenter
 - 3.1. Utworzyć nową konfigurację (New)
 - 3.2. Dodać 5 zestawów danych (Datasets)
 - 3.3. Dodać 5 metod uczenia (Algorithms) z różną reprezentacją wiedzy
 - 3.4. Uruchomić eksperyment w zakładce Run
 - 3.5. Oglądnąć wyniki w zakładce Analyse (wyniki pojawią się po wciśnięciu przycisku Experiment, a następnie Perform test). V oznacza wynik statestycznie lepszy, a * statystycznie gorszy od pierwszego algorytmu:

Dataset	(1) ru	ıles.De	(2) bayes	(3) rules	(4) trees	(5) rules
iris weather	(100)	92.93	67.50	93.93 67.50	94.73 66.50	93.93
soybean	(100) 	83.97 (∀/ /*)		91.80 v (1/2/0)	91.78 v (1/2/0)	39.75 * (0/1/2)

3.6. Zmienić output format na latex i powtórzyć test.

- 3.7. Powtórzyć operację dla eksperymentu typu train/test percentage split (parametr Experiment Type w zakładce Setup).
- 4. Stworzyć plik ARFF opisujący mieszkania do wynajęcia (metraż, liczba pokoi, wyposarzenie, koszty, piętro, winda itp.) z podziałem na klasy czy dane mieszkanie by nas interesowało czy nie.
 - 4.1. Zwizualizować przykłady na diagramach.
 - 4.2. Porównać wiedzę wygenerowaną przez różne algorytmy pod względem poprawności klasyfikacji i czytelności wiedzy.
- 5. Przeprowadzić operację "backward elimination" aby wybrać najlepsze atrybuty dla zbioru *glass*:
 - 5.1. Uruchomić uczenie przy użyciu algorytmu *IBk* dla kolejnych zestawów atrybutów, z których usunięto jeden z nich i sprawdzić dla którego poprawność klasyfikacji (z kroswalidacją) będzie największa.
 - 5.2. Zapisać wyniki w tabeli takiej jak poniżej.
 - 5.3. Procedurę wykonać rekurencyjnie wybierając do kolejnego etapu najlepszy zestaw atrybutów.

Liczba atrybutów	Atrybuty w najlepszym podzbiorze	Poprawność klasyfikacji
9		
8		
7		
6		
5		
4		
3		
2		
1		

6. **Zadanie domowe**. Wybrać dziedzinę i przygotować dla niej 20-30 przykładów treningowych. Porównać wiedzę wygenerowaną przez różne algorytmy pod względem poprawności klasyfikacji i czytelności wiedzy. Szczegóły w zadaniu na Moodle.