	DS (Corrigé)	
Ecole Supérieure Privée d'Ingénierie et de Technologies	Semestre : 1 2 Session : Principale Rattrapage	
Module : Electronique Analogique Intégrée		
Enseignant(s): Nidhal AYARI, Abderrazek HACHANI, Ali LABBENE, Mohamed MAALEJ.		
Classe(s): 2P & 3B		
Documents autorisés : OUI Calculatrice autorisée : OUI Date : 28/10/2016 Heure : 11	NON Nombre de pages : 2 + (1 à rendre) NON Barème : 9 + 11 h15 Durée : 1h	

Exercice 1 [9 pts]

Soit le circuit de la figure 1 ci-dessous.

Figure 1 : Circuit de charge à étudier

1. Nous souhaitons simplifier le circuit de la figure 1 en utilisant la méthode de Thévenin. Notre charge est la branche contenant le condensateur C et l'interrupteur.

Commençons par marquer notre charge de deux points A et B (voir **figure 1** ci-dessus). Ensuite, débranchons la charge du circuit. Nous obtenons le schéma de **figure 1.1**.

Figure 1.1 : Circuit de la figure 1 suite au débranchement de la charge

a. [2 pts] Retrouvez l'expression de la résistance R_{TH} et calculez sa valeur.

A partir du schéma de la **figure 1.1**, ci-dessus, annulons l'effet des sources de tension E_1 et E_2 en les remplaçant par des courts-circuits. Nous obtenons le schéma de la **figure 1.2**.

La résistance de Thévenin est la résistance équivalente vue entre les points A et B :

•
$$R_{TH} = R_{EQ-AB} = R_1 // R_2 // (R_3 + R_4)$$
 sig. $\frac{1}{R_{TH}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{(R_3 + R_4)}$
• $R_{TH} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{(R_3 + R_4)}} = \frac{10^3}{\frac{1}{2} + \frac{1}{2} + \frac{1}{(0.25 + 0.75)}} = 500\Omega$

Figure 1.2 : Circuit de la figure 1.1 suite à l'annulation de l'effet des sources E1 et E2

b. [2 pts] Retrouvez l'expression de la tension E_{TH} et calculez sa valeur.

Il nous faut revenir au schéma de la **figure 1.1**. Cette étape consiste, simplement à retrouver l'expression et la valeur de la tension U_{AB} , vue entre les points A et B. Le plus simple est de recourir au théorème de **Millman**:

s simple est de recourir au théorème de **Millman** :
$$E_{TH} = U_{AB} = \frac{\frac{E_1}{R_1} + \frac{E_2}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{(R_3 + R_4)}} = \frac{\frac{8V}{2\Omega} + \frac{6V}{2\Omega}}{\frac{1}{2\Omega} + \frac{1}{2\Omega} + \frac{1}{1\Omega}} = \frac{7A}{2\Omega^{-1}} = 3,5V$$

2. [1 pt] Déduisez-en l'expression de la constante de temps de ce circuit et calculez sa valeur.

Suite à la simplification par la méthode de Thévenin, nous obtenons le circuit équivalent montré à la **figure 1.3**.

Les circuits des figures 1 et 1.3 étant **équivalents**, ils sont caractérisés par la même constante de temps. Nous déduisons, donc, de la **figure 1.3**, que cette constante de temps est :

•
$$\tau = R_{TH} \times C = 500\Omega \times 3.10^{-3} F = 1,5s$$

Figure 1.3 : Circuit équivalent simplifié obtenu avec la méthode de Thévenin

- **3.** Lorsque nous fermons l'interrupteur, à l'instant t = 0s, le condensateur C est totalement déchargé. Dans ce cas :
 - **a.** [1 pt] Déduisez la valeur de la tension u_c(t) en régime établi (permanent).

Toujours à partir de la figure 1.3, nous savons qu'en régime établi :

•
$$u_c(t\rightarrow \infty) = E_{TH} = 3.5V$$

b. [3 pts] Calculez la valeur de la tension $u_{R4}(t)$ à l'instant t = 1,5s.

Nous remarquons que $t = 1.5s = \tau$.

D'après l'énoncé de la question, le condensateur C est, initialement, totalement déchargé. Nous en déduisons, donc, que :

• $u_c(t=\tau) = 0.63 \ u_c(t\to\infty) = 0.63 \ E_{TH} \approx 2.2V$

En revenant à la figure 1, nous voyons bien que :

- R₃ et R₄ sont en série.
- La tension totale à leurs bornes est u_c(t).
- Nous pouvons, donc, utiliser la formule du diviseur de tension :

$$u_{R4}(\tau) = \frac{R_4}{R_3 + R_4} u_c(\tau) = 0.75 \text{ x } 2.2V \approx 1.65V$$

Exercice 2 [11 pts]

Nous nous intéressons au montage à base d'amplificateur présenté à la figure 2.1 ci-dessous. Les résistances αR et βR sont deux résistances réglables et l'amplificateur est supposé idéal.

Comme première étape de notre étude de ce circuit, nous nous proposons de retrouver l'expression de la tension de sortie V_S en fonction de la tension d'entrée V_E .

Figure 2.1 : Montage à base d'amplificateur à étudier

Il est, d'abord, important de noter que el fait que les bornes gauches des résistances R et α R soient connectées, ne signifie pas que les entrées v^+ et v^- de l'AOP sont reliées.

Il s'agit, simplement, d'une sorte de « factorisation » au niveau du schéma pour éviter de redessiner la tension d'entrée $V_{\rm E}$ deux fois, comme sur le schéma de la **figure 2.3**.

1. [2 pts] Etablissez l'expression de la tension v, entre la borne inverseuse et la masse. En isolant la borne « - », ainsi que les résistances et les tensions qui y sont reliées, du reste du montage, nous obtenons le schéma de la figure 2.4. Nous voyons bien que le plus simple, pour obtenir l'expression de la tension v^- est d'appliquer le théorème de Millman :

$$\bullet \quad V^{-} = \frac{\frac{V_E}{\alpha R} + \frac{V_S}{R}}{\frac{1}{\alpha R} + \frac{1}{R}} = \frac{V_E + \alpha V_S}{1 + \alpha}$$

Figure 2.4 : Schéma obtenu après isolation

2. [2 pts] Etablissez l'expression de la tension v⁺, entre la borne non-inverseuse et la masse. L'AOP étant en mode linéaire et supposé idéal, nous savons que i⁺ = 0A. Nous pouvons, donc, considérer les résistances R et βR en série.

La tension v⁺ peut, alors, être obtenue via la formule du diviseur de tension :

•
$$v^+ = U_{\beta R} = \frac{\beta R}{R + \beta R} V_E = \frac{\beta}{1 + \beta} V_E$$

3. [1 pt] Déduisez-en l'expression de la tension de sortie V_S en fonction de V_E , α et β .

L'AOP étant en mode linéaire et supposé idéal, nous savons que v⁺ = v̄.

$$\bullet \quad \frac{V_E + \alpha V_S}{1 + \alpha} = \frac{\beta}{1 + \beta} \ V_E \ \text{sig.} \ \alpha V_S = \frac{(1 + \alpha) \, \beta}{1 + \beta} \ V_E - V_E \ \text{sig.} \ V_S = \frac{\alpha \beta - 1}{\alpha \, (1 + \beta)} \ V_E$$

Dans la suite, Nous appliquons, à l'entrée du montage, une tension $v_E(t)$ sinusoïdale, d'amplitude maximale $V_{EMAX}=2V$ (voir figure 2.2). Notre objectif est d'étudier l'allure de la tension de sortie $v_S(t)$ en fonction des deux coefficients α et β .

- **4.** Nous commençons par étudier le cas particulier où $\beta = 0$.
 - a. [0,5 pt] Que devient l'expression de la tension de sortie $v_{\rm S}(t)$?

•
$$\beta = 0$$
 sig. $V_S = -\frac{1}{\alpha} V_E$

- **b. [0,5 pt]** Déduisez-en la fonction réalisée par ce montage ? Il s'agit d'un montage inverseur.
- **c.** Tracez (sur la feuille à rendre) l'allure de $v_s(t)$, tout en précisant ses valeurs minimale et maximale.
 - i. [1 pt] Dans le cas où α = 2.

•
$$\alpha = 2$$
 sig. $V_S = -0.5 V_E$

•
$$-2V \le V_E \le +2V \rightarrow -1V \le V_S \le +1V$$

ii. [1 pt] Dans le cas où $\alpha = 0.2$.

•
$$\alpha = 0.2 \text{ sig. } V_S = -5 V_E$$

•
$$-2V \le V_E \le +2V \rightarrow -10V \le V_S \le +10V$$

- Or, l'AOP est alimenté entre $+V_{CC}=+5V$ et $-V_{CC}=-5V$ (voir figure 2.1).
- ✓ Il y aura donc écrêtage de la tension de sortie V_s.

- 5. Nous finissons cette étude par deux cas où $\beta \neq 0$. Tracez (sur la feuille à rendre) l'allure de $v_S(t)$, tout en précisant ses valeurs minimale et maximale.
 - i. [1,5 pt] Dans le cas où $\alpha = \beta = 2$.

•
$$V_S = \frac{\alpha\beta - 1}{\alpha(1 + \beta)} V_E = \frac{3}{6} V_E = +0.5 V_E$$

ii. [1,5 pt] Dans le cas où $\alpha = \beta = 1$.

•
$$V_S = \frac{\alpha\beta - 1}{\alpha(1 + \beta)} V_E = \frac{0}{2} V_E = \mathbf{0}V$$

Figure 2.2 : Allure de la tension $\nu_{\text{E}}(t)$

Bonne chance

ETUDIANT(e)	
Nom et Prénom :	Code:
Classe:	

**><-

