Support Vector Machines

Prof. G Panda, FNAE,FNASc,FIET(UK) IIT Bhubaneswar

Outline

- Introduction
- Maximum Margin/ Linear Separable classification
- Example
- Soft margin/Linear Non-Separable classification
- Non-Linear soft margin classification.
- Pros and cons.

Introduction

- Support Vector Machine(SVM) is a supervised machine learning algorithm which can be used for both classification or regression challenges.
- Mostly used in classification problems.
- An SVM model is a representation of the examples as points in space, so that the examples of the separate categories are divided by a clear gap that is as wide as possible.

SVM: Binary classification

It can be viewed as separating task in feature space.

The idea is to find the equation of a line $\mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{b} = \mathbf{0}$ that divides the set of examples in the target classes.

w: decision hyperplane normal vector

x: data points

b: bias

SVM: Binary classification

$$f(\mathbf{x}) = \text{sign}(\mathbf{w}^\mathsf{T}\mathbf{x} + b)$$

Class =
$$-1$$
; if $f(x) = -ve$
1; if $f(x) = +ve$

Linear Separators

- Any line that separates two classes can be answer to the problem
- Which line to choose?
- Which will be the best separating line?

Linear separators

- Suppose hyperplane is close to sample x_i.
- If we see new sample close to sample 'i', it is likely to be on the wrong side of the hyperplane.
- Poor generalization (performance on unseen data)

Linear separators

- Hyperplanes as far as possible from any sample.
- New samples close to the old samples will be classified correctly.
- Good generalization.

- Aim: To find support vector algorithm for the separating hyperplane with the largest margin.
- For the optimal hyperplane, distance to the closest negative sample(class = -1) equal to distance from the closes positive sample(class = +1).
- This means that only the nearest instances to the separator matter.

Margin is twice the absolute value of distance d of the closest example to the separating hyperplane.

margin = 2d

- The decision function is fully specified by a subset of training samples, the support vectors.
- Support vectors are the samples closest to the separating hyperplane.
- Optimal hyperplane is completely defined by support vectors

Let the training set i : $\{x_i^{}, y_i^{}\}$, i= 1,2,3.....n , $y_i^{} \in \{-1, +1\}$ $x_i^{} \in \mathbf{R^d}$.The points lie on hyperplane if

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b = 0$$

Where, W is normal to separating plane

Perpendicular distance from origin to hyperplane = $\frac{v}{\|w\|}$

Where, ||w|| Euclidean norm of w.

d_{_} or d_{_}: distance from closest positive or negative sample from hyperplane

Margin =
$$d_{+} + d_{-}$$

Distance from sample x_i to the separator is

$$r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$$

Basic Solution approach:

Assume that all data is at least distance 1 from the hyperplane, then the following two constraints follow for a training set

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}} + b \ge 1$$
 if $y_{\mathsf{i}} = 1$

$$\mathbf{w}^\mathsf{T}\mathbf{x}_i + b \le -1$$
 if $y_i = -1$

Combined formulation is, $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$, $\forall i$

For Support vectors, the inequality becomes the equality i.e. support vectors of positive samples lie on the hyperplane H1

i.e.,
$$H_1: \mathbf{w}^T \mathbf{x}_i + b = 1$$
, with perpendicular distance from origin = $\frac{|I-b|}{||w||}$

Support vectors of positive samples lie on the hyperplane H₂

I.e.,
$$H_2: \mathbf{w}^T \mathbf{x}_i + b = -1$$
, with perpendicular distance from origin = $\frac{|-1-b|}{||w||}$

Hence,
$$d_{+} = d_{-} = \frac{1}{\|w\|}$$

... Margin = $d_{+} + d_{-} = \frac{1}{\|w\|}$

$$\frac{1}{\|w\|}$$

$$\frac{2}{\|w\|}$$

Remarks:

- H₁ and H₂ are two parallel hyperplanes (same normal).
- No training data points fall between H₁ and H₂

The goal is to find pair of hyperplanes which gives the maximum margin and since margin is inversely proportional to $\|w\|$ we need to minimize $\|w\|^2$

The formulation of the optimization problem is:

Minimize: $\frac{1}{2} \|w\|^2$

subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$, $\forall i$

Lagrangian formulation

Why?

- Constraints in equation $y_i(w^Tx_i + b) \ge 1$, $\forall i$, will be replaced by constraints on Lagrangian multipliers themselves, hence would become much easier to handle the constraints.
- It can be generalized to non-linear case

Lagrangian primal formulation

$$L_p = \frac{1}{2} ||w||^2 + \sum_{i=1}^{l} \alpha_i (1 - y_i (w^T x_i + b))$$
Objective function constraint

 $\alpha_i \ge 0$, $\forall i$ are Lagrange multipliers

I is number of input values

This is the Lagrange **primal formulation** of optimization problem..

Lagrangian primal formulation

• Now we need to minimize L_p with respect to 'w' and 'b' and simultaneously required that derivatives of L_p w.r.t. all α_i vanish, all subject to constraints $\alpha_i \ge 0$.

$$\min_{\forall w,b} L_p$$

• The objective function $\frac{1}{2} \|w\|^2$ s convex, hence this is convex quadratic programming problem(since objective function is quadratic equation subject to constraints)

Since it is a convex quadratic programming problem, we can equivalently solve the following "dual" problem.

Maximize L_p such that gradients of L_p w.r.t. W and b vanish such that $\alpha_i \ge 0$.

Property: Maximum of L_p w.r.t constraints occur at same values of W, b and α as the minimum of L_n w.r.t constraints.

Requiring the gradient of L_p w.r.t. W and b vanish i.e., If we compute the derivative of L_p with respect to w and b and we set them to zero gives the following condition.

Derivation of
$$L_p$$
 w.r.t $w : w + \sum_{i=1}^n \alpha_i (-y_i) x_i = 0 \Rightarrow w = \sum_{i=1}^n \alpha_i y_i x_i$

Derivation of
$$L_p$$
 w.r.t $b = \sum_{i=1}^{n} \alpha_i y_i = 0$

Substitute those values into Lagrangian equation of primal L_{p} .

$$\mathcal{L} = \frac{1}{2} \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{T} \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j} + \sum_{i=1}^{n} \alpha_{i} \left(1 - y_{i} \left(\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}^{T} x_{i} + b \right) \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} + \sum_{i=1}^{n} \alpha_{i} - \sum_{i=1}^{n} \alpha_{i} y_{i} \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}^{T} x_{i}$$

$$-b \sum_{i=1}^{n} \alpha_{i} y_{i} \quad (and \quad given \quad that \quad \sum_{i=1}^{n} \alpha_{i} y_{i} = 0)$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} + \sum_{i=1}^{n} \alpha_{i} \quad (rearranging \quad terms)$$

$$L_{D} = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$$

Remarks:

- L_p and L_D are different formulation, they arise with same objective function but with different constraints.
- This formulation only depends on the α_i
- Solution: minimize L_p or maximize L_D.

Formulation of Dual problem

Maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

subject to $\sum_{i=1}^{n} \alpha_i y_i = 0, \quad \alpha_i \ge 0 \quad \forall i$

This a Quadratic Programming problem (QP)

This means that the parameters form a parabolloidal surface, and an optimal can be found(since it is convex function).

W can be obtained from

$$w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

b can be obtained from a positive support vector (x_{\downarrow}) knowing that

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + \mathbf{b} = 1$$
 or

Can be obtained from a negative support vector (x_{_}) knowing that

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{i}} + b = -1$$

- Many of the α_i are zero.
 - o w is a linear combination of a small number of examples
 - We obtain a sparse representation of the data.
- The examples x_i with non zero αi are the support vectors (SV).
- The vector of parameters can be expressed as:

$$w = \sum_{\forall i \in SV} \alpha_i y_i x_i$$

SVM training phase

Maximize L_D w.r.t. α_i such that $\alpha_i \ge 0$ with the solution $w = \sum_{i=1}^{n} \alpha_i y_i x_i$

In the solution those points for which $\alpha_i > 0$ are support vectors and they lie on Hyperplanes H_1 or H_2 .

For other points $\alpha_i = 0$ and lie on the either sides of H_1 or H_2 such that

$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) > 1, \ \forall i$$

SVM test phase

In order to classify a new instance z we just have to compute.

$$sign(w^Tz + b) = sign(\sum_{\forall i \in SV} \alpha_i y_i x_i^T z + b)$$

This means that w does not need to be explicitly computed

Given data:

Class-1: [1,6],[1,10],[4,11]

Label $y_i = 1$

Class-2: [5.2],[7,6],[10,4]

Label $y_i = -1$

To represent all inputs consider array X

$$X = \begin{pmatrix} 1 & 6 \\ 1 & 10 \\ 4 & 11 \\ 5 & 2 \\ 7 & 6 \\ 10 & 4 \end{pmatrix} \quad \text{and labels Y} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

$$X.X^{T} = \begin{pmatrix} 37 & 61 & 70 & 17 & 43 & 34 \\ 61 & 101 & 114 & 25 & 67 & 50 \\ 70 & 114 & 137 & 42 & 94 & 84 \\ 17 & 25 & 42 & 29 & 47 & 58 \\ 43 & 67 & 94 & 47 & 85 & 94 \\ 34 & 50 & 84 & 58 & 94 & 116 \end{pmatrix}$$

Therefore Matrix H with $H_{ij} = y_i y_j x_i^T x_j$ can be written as

$$H = Y^TY.X^TX =$$

37 61 70 -17 -43 -34

61 101 114 -25 -67 -50

70 114 137 -42 -94 -84

-17 -25 -42 29 47 58

-43 -67 -94 47 85 94

-34 -50 -84 58 94 116

SVM:Example in Matlab

Matlab expects quadratic programming to be stated in the canonical (standard) form which is

minimize $L_n(\alpha) = f^T \alpha + \frac{1}{2} \alpha^T H \alpha$ constrained to $A\alpha \le a$ and $B\alpha = b$.

where A,B,H are n by n matrices and f, a, b are vectors

Need to convert our optimization problem to canonical form

Maximize
$$L_{D}(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix}^{t} H \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix}$$
 constrained to
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0, \quad \alpha_{i} \geq 0 \quad \forall i$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0, \ \alpha_i \ge 0 \ \forall i$$

SVM:Example in Matlab

Multiply by
$$-1$$
 to convert to minimization: $L_D(\alpha) = -\sum_{i=1}^{n} \alpha_i + \frac{1}{2} \alpha^i H \alpha$
Let $f = \begin{bmatrix} -1 \\ -1 \end{bmatrix} = -\text{ones}(6,1)$, then we can write

Minimize
$$L_D(\alpha) = f^T \alpha + \frac{1}{2} \alpha^T H \alpha$$

First constraint is $\alpha i \ge 0 \ \forall i$

$$A = \begin{bmatrix} -1 & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & -1 \end{bmatrix} = -\text{eye}(6), \ a = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix} : \text{zeros}(6,1)$$

Rewrite the first constraint in canonical form : $A\alpha \le a$

SVM:Example in Matlab

Our Second constraint is $\sum_{i=1}^{n} \alpha_i y_i = 0$, $\alpha_i \ge 0 \ \forall i$

Let
$$B = [[Y]; [zeros(5,6)]$$

and
$$b = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = zeros(6,1)$$

Second constraint in canonical form is $\mathbf{B}\alpha = \mathbf{b}$.

 α = quadprog(H, f, A, a, B, b) %%in matlab

Solution

$$\alpha = \begin{pmatrix} 0.036 \\ 0 \\ 0.039 \\ 0 \\ 0.076 \\ 0 \end{pmatrix}$$

Support Vectors

Find W using
$$w = \sum_{\forall i \in SV} \alpha_i y_i x_i = (\alpha . Y)^T.X$$

 X_{1}

$$\alpha . Y = [0.036 , 0 , 0.04 , -0 , -0.076 , -0]$$

$$W = (\alpha . Y)^{T} . X = [-0.33 , 0.20] => w_{1} = -0.33 w_{2} = 0.20$$

$$We can find b using w^{T}x_{i} + b = 1 for positive support vector i = 1$$

$$b = 1 - w^{T}x_{1} = 1 - (-0.33x1 + 6x0.20) = 1 - (-0.33 + 1.20)$$

$$= 0.13$$

Equation of the line can be written as

 X_2

$$-0.33 X_1 + 0.20 X_2 + 0.13 = 0$$

(since
$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b = 0$$
)

Testing Phase:

Suppose give a new point z = [1,2]

Find
$$sign(w^Tz + b)$$
:

 $sign(-0.33x1 \ 0.20x2 + 0.13)$

sign(-0.07 + 0.13) = positive

Therefore z is in class 1

X,

SVM:Linear Non-Separable

- Sometimes data has errors and we want to ignore them to obtain a better solution
- Sometimes data is just non linearly separable
- We can obtain better linear separators being less strict.

SVM : Soft Margin classification

- We want to be permissive for certain examples, allowing that their classification by the separator diverge from the real class.
- This can be obtained by adding to the problem what is called slack variables (ξ_i)
- This variables represent the deviation of the examples from the margin.
- Doing this we are relaxing the margin, we are using a soft margin

SVM: Soft Margin classification

- We are allowing an error in classification based on the separator $w^Tx_i + b$.
- The values of ξ_i approximate the number of misclassifications.
- ξ_i is a measure of deviation from the ideal for sample i.
 - $ξ_i$ >1 sample i is on the wrong side of the separating hyperplane.
 - \circ 0< ξ_i <1 sample i is on the right side of separating hyperplane but within the region of maximum margin.
 - \circ ξ_i < 0 is the ideal case for sample i

SVM: Soft Margin classification

In order to minimize the error, we can minimize $\sum_i \xi_i$ introducing the slack variables to the constraints of the problem:

$$w^{T}x_{i} + b \ge 1 - \xi_{i}$$
 $y_{i} = 1$
 $w^{T}x_{i} + b \ge -1 + \xi_{i}$ $y_{i} = -1$
 $\xi_{i} \ge 0$

 $\xi_i = 0$ if there are no errors (linearly separable problem)

SVM: Primal Optimization Problem

We need to introduce this slack variables on the original problem, we have now:

Minimize:
$$\frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i$$

Subject to
$$y_i(w^Tx_i + b) \ge 1 - \xi_i, \forall i, \xi_i \ge 0$$

Now we have an additional parameter C that is the tradeoff between the error and the margin. If C is small, we allow a lot of samples not in ideal position and if C is large, we want to have very few samples not in ideal position. Smaller c larger margin and vice versa.

SVM: Dual Optimization problem

Performing the transformation to the dual problem we obtain the following:

We can recover the solution as

Maximize:
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$$

Subject to
$$\sum_{i=1}^{n} \alpha_i y_i = 0$$
, $C \ge \alpha_i \ge 0 \ \forall i$

This problem is very similar to the linearly separable case, except that there is a upper bound C on the values of α_i .

SVM: Non-linear classification

- So far we have only considered large margin classifiers that use a linear boundary.
- In order to have better performance we have to be able to obtain non-linear boundaries.
- The idea is to transform the data from the input space (the original attributes of the examples) to a higher dimensional space using a function $\phi(x)$.
- This new space is called the feature space .
- The advantage of the transformation is that linear operations in the feature space are equivalent to non-linear operations in the input space.

Feature Space transformation

XOR - Problem

The XOR problem is not linearly separable in its original definition, but we can make it linearly separable if we add a new feature $x_1 \cdot x_2$

x_1	<i>X</i> 2	$x_1 \cdot x_2$	x_1 XOR x_2
0	0	0	1
0	1	0	0
1	0	0	0
1	1	1	1

The linear function $h(x) = 2x_1x_2 - x_1 - x_2 + 1$ classifies correctly all the examples.

Transforming the data

- Working directly in the feature space can be costly.
- We have to explicitly create the feature space and operate in it.
- We may need infinite features to make a problem linearly separable.
- We can use what is called the **Kernel trick**

The Kernel trick

- In the problem that define a SVM only the inner product of the examples is needed(Data in training algorithm is in the form of dot products $X_i \cdot X_j$).
- This means that if we can define how to compute this product in the feature space, then it is not necessary to explicitly build it.
- There are many geometric operations that can be expressed as inner products, like angles or distances

The Kernel trick

Mapping of inner product to higher dimension

$$X_i^T.X_j \rightarrow \phi(X_i)^T.\phi(X_j)$$

We can define the kernel function as:

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j)$$

We would only need to use "k" in the training algorithm and never even required to know what is $\phi(.)$

The Kernel Example

We can show how this kernel trick works in an example. Lets assume a feature space defined as:

$$\phi\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2x_2^2, \sqrt{2}x_1x_2)$$

A inner product in this feature space is:

$$\left\langle \phi\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right), \phi\left(\left[\begin{array}{c}y_1\\y_2\end{array}\right]\right)\right\rangle = (1+x_1y_1+x_2y_2)^2$$

So, we can define a kernel function to compute inner products in this space as: $K(x, y) = (1 + x_1y_1 + x_2y_2)^2$

and we are using only the features from the input space.

The dual problem

In all the previous equations we replace $X_i^T.X_j$ with $K(X_i, X_j)$

Due to the introduction of the kernel function, the optimization problem has to be modified:

Maximize:
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$

Subject to
$$\sum_{i=1}^{n} \alpha_i y_i = 0, \quad C \ge \alpha_i \ge 0 \quad \forall i$$

Non-Linear Classification

To classify new samples

$$h(z) = sign\left(\sum_{\forall i \in SV} \alpha_i, y_i k(x_i, z) + b\right)$$

Example:

Polynomial kernel of degree d : $K(x, y) = (x^T y + 1)^d$

Gaussian kernel with width σ : $K(x,y) = \exp(-||x-y||^2/2\sigma^2)$

Pros and Cons

Pros:

- objective function has no local minima.
- Complexity of the classifier is characterized by the number of support vectors rather than the dimensionality of the transformed space.

Cons:

- tends to be slower than other methods.
- quadratic programming is computationally expensive.

References

- An Introduction to Support Vector Machines and Other Kernel-based Learning ,2000,Book by John Shawe-Taylor and Nello Cristianini.
- Support Vector Machines,12 August 2008,Book by Ingo Steinwart
- Knowledge Discovery with Support Vector Machines, 2009, Book by Lutz
 H. Hamel

Thank you