Lei Zhu, Ph.D.

Harvard-Smithsonian Center for Astrophysics 60 Garden St, Cambridge, MA 02138 lei.zhu.02@gmail.com

+1 (617)-384-7266 https://scholar.harvard.edu/leizhu

SCHOLARLY PROFILE

My research goal is to better understand the processes determining the distribution of reactive gases and aerosols, and their implications for air quality, public health, and climate. My research program combines **remote sensing**, **modeling**, and **data assimilation** techniques.

My **research interests** include: Atmospheric chemistry and its implications, Monitoring of trace gases from space, and Modeling of atmospheric composition.

RESEARCH EXPERIENCE

2018 – Post-doctoral Fellow in Astrophysics, Harvard-Smithsonian Center for Astrophysics

<u>Faculty Advisor</u>: Gonzalo Gonzalez Abad, Physicist

<u>Project</u>: Developing operational formaldehyde products from the OMPS satellites

2017 – 2019 Post-doctoral Fellow in Atmospheric chemistry, Harvard University

<u>Faculty Advisor</u>: Daniel J. Jacob, Vasco McCoy Family Professor of Atmospheric Chemistry and Environmental Engineering

Project: A comprehensive coupled model for tropospheric halogen chemistry

EDUCATION

2016 Ph.D. in Environmental Science and Engineering, Harvard University

<u>Thesis</u>: Observing atmospheric formaldehyde from space: validation and implications

Advisor: Daniel J. Jacob

2011 MSci. in Environmental Science, Peking University

Thesis: Monitoring SO₂ emissions in China using satellites

Advisor: Yu Song

2008 B.S. in Environmental Science, Nankai University

PUBLICATIONS

First or corresponding author (*)

Zhu, L.*, Jacob, D. J., Eastham, S. D., *et al.*: Effect of sea salt aerosol on tropospheric bromine chemistry, *Atmos. Chem. Phys.*, 19, 6497-6507, 2019.

Zhu, L.*, L. J. Mickley, D. J. Jacob *et al.*: Long-term (2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic compounds, *Geophys. Res. Lett.*, 44, 7079–7086, 2017.

Zhu, L.*, D. J. Jacob, F. N. Keutsch *et al.*: Formaldehyde (HCHO) as a Hazardous Air Pollutant: Mapping surface air concentrations from satellite and inferring cancer risks in the United States, *Environ. Sci. Technol.*, 51, 5650–5657, 2017.

Zhu, L.*, D. J. Jacob, P. S. Kim *et al.*: Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC⁴RS aircraft observations over the southeast US, *Atmos. Chem. Phys.*, 16, 13477–13490, 2016.

- **Zhu, L.***, D. J. Jacob, L. J. Mickley *et al.*: Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns, *Environ. Res. Lett.*, 9, 114004, 2014.
- **Zhu, L.**, X. Huang, H. Shi *et al.*: Transport pathways and potential sources of PM₁₀ in Beijing, *Atmos. Environ.*, 45, 594–604, 2011.

Co-authorship

- Shen, L., D. J. Jacob, L. Zhu et al.: The 2005–2016 Trends of Formaldehyde Columns Over China Observed by Satellites: Increasing Anthropogenic Emissions of Volatile Organic Compounds and Decreasing Agricultural Fire Emissions, *Geophys. Res. Lett.*, 46, 2019.
- Zhang, Y. et al. including L. Zhu: Satellite-Observed Changes in Mexico's Offshore Gas Flaring Activity Linked to Oil/Gas Regulations, *Geophys. Res. Lett.*, 46, 1879–1888, 2019.
- Wang, X. et al. including L. Zhu: The role of chlorine in tropospheric chemistry, Atmos. Chem. Phys., 19, 3981–4003, 2019.
- Song, S. *et al.* including **L. Zhu**: Possible heterogeneous chemistry of hydroxymethanesulfonate (HMS) in northern China winter haze, *Atmos. Chem. Phys.*, 19, 1357–1371, 2019.
- Sun, K., **Zhu**, L., K. Cady-Pereira *et al.*: A physics-based approach to oversample multi-satellite, multispecies observations to a common grid, *Atmos. Meas. Tech.*, 11, 6679–6701, 2018.
- Kaiser, J., D. J. Jacob, **L. Zhu** *et al.*: High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US, *Atmos. Chem. Phys.*, 18, 5483–5497, 2018.
- Miller, C. C. *et al.* including **L. Zhu**: Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data, *Atmos. Chem. Phys.*, 17, 8725–8738, 2017.
- Travis, K. R. *et al.* including **L. Zhu**: Why do models overestimate surface ozone in the Southeast United States?, *Atmos. Chem. Phys.*, 16, 13561–13577, 2016.
- Fisher, J. A. *et al.* including **L. Zhu**: Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC⁴RS) and ground-based (SOAS) observations in the Southeast US, *Atmos. Chem. Phys.*, 16, 5969–5991, 2016.
- Yu, K. et al. including L. Zhu: Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions, Atmos. Chem. Phys., 16, 4369– 4378, 2016.
- Marais, E. A. *et al.* including **L. Zhu**: Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO₂ emission controls, *Atmos. Chem. Phys.*, 16, 1603–1618, 2016.
- Kim, P. S. *et al.* including **L. Zhu**: Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, *Atmos. Chem. Phys.*, 15, 10411–10433, 2015.
- Li, M., X. Huang, L. Zhu *et al.*: Analysis of the transport pathways and potential sources of PM₁₀ in Shanghai based on three methods, *Sci. Tot. Environ.*, 414, 525–534, 2012.
- Huang, X. et al. including **L. Zhu**: Mercury Emissions from Biomass Burning in China, *Environ. Sci. Technol.*, 45, 5650–5657, 2011.
- Song, Y. *et al.* including **L. Zhu**: A new emission inventory for nonagricultural open fires in Asia from 2000 to 2009, *Environ. Res. Lett.*, 5, 014014, 2011.
- Wang, B., **L. Zhu**, Z. Gong *et al.*: Introduction to the methods of parameter estimation for environmental monitoring data set with truncated data below a detection limit, *Acta Science Circumstantiae.*, 29, 1345–1350, 2009.

AWARDS & GRANTS

Academic Recognition Recognized reviewer for Atmospheric Pollution Research Outstanding reviewer for Atmospheric Environment NASA Group Achievement Award Graduate with honors, Nankai University Excellent All-round Student, Nankai University	2019 2017 2015 2008 2005 – 2007
Teaching Harvard University Certificate of Distinction in Teaching	2013
Fellowships Harvard Graduate Consortium on Energy and Environment Fellowship Graduate Scholarship, Peking University China National Educational Opportunity Grant Undergraduate scholarship, Nankai University	2014 - 2016 2008 - 2010 2007 2005 - 2006

PRESENTATIONS

Talks

Satellite remote sensing for air quality applications, with a focus on formaldehyde (HCHO), University of Illinois at Urbana–Champaign, Champaign, IL, 2019 (invited).

Satellite remote sensing for air quality applications, with a focus on formaldehyde (HCHO), Institute of Atmospheric Physics Chinese Academy of Sciences, Beijing, China, 2019, (invited).

Satellite remote sensing for air quality applications, with a focus on formaldehyde (HCHO), Peking University, Beijing, China, 2019 (invited).

Satellite remote sensing for air quality applications, with a focus on formaldehyde (HCHO), Southern University of Science and Technology, Shenzhen, China, 2019 (invited).

Modeling of tropospheric halogen (Cl-Br-I) chemistry: cycling, debromination, and impact, *The 1st Regional GEOS-Chem Asia Meeting*, Nanjing, China, 2018.

Mapping surface air concentrations from OMI and inferring cancer risks: implications for TEMPO, *TEMPO Science Meeting*, Cambridge, MA, 2017 (invited).

Observing atmospheric formaldehyde from space: validation, intercomparison, trend analysis and public health implications, *AGU Fall Meeting*, San Francisco, CA, 2016.

Observing atmospheric formaldehyde from space: Validation, intercomparison, trend analysis and public health implications, *Aura Science Meeting*, Rotterdam, The Netherlands, 2016.

Mapping of surface formaldehyde (HCHO) from space for air quality management, *The 9th NASA Air Quality Applied Sciences Team Meeting*, St. Louis University, St. Louis, MO, 2015.

Validation of satellite HCHO observations (OMI, GOME-2B, OMPS) using SEAC⁴RS data, SEAC⁴RS Science Meeting, Caltech, Pasadena, CA, 2015.

Anthropogenic emissions of highly reactive volatile organic compounds inferred from oversampling of OMI HCHO columns, EOS Aura Science Team Meeting 10th year anniversary celebration, College Park, MD, 2014.

Anthropogenic emissions of highly reactive VOCs (HRVOCs) inferred from oversampling of OMI formaldehyde columns, *The 6th NASA Air Quality Applied Sciences Team Meeting*, Rice University, Houston, TX, 2014.

Math in Nature: finding order in chaos, at Harvard Medical School, *Science in News*, Boston, MA, 2013, (invited).

Variability of HCHO over the United States: Implications for VOCs Emissions, *The 5th NASA Air Quality Applied Sciences Team Meeting*, University of Maryland, College Park, MD, 2013.

A spike in electricity demand due to severe summer heatwaves: Increase of SO₂ emissions detected from space, *The 18th Seminar of JSPS-MOE Core University Program*, Beijing, China, 2010.

Estimating of fire emissions in Boreal Siberia by satellite data sets, *The 6th Seminar of Environment Modeling and Pollution Controlling*, Beijing, China, 2009.

Posters

Validation of satellite formaldehyde (HCHO) retrievals using aircraft observations and implication for TEMPO, *TEMPO Science Meeting*, University of Wisconsin–Madison, WI, 2019.

Effect of sea-salt aerosol on tropospheric bromine chemistry, *The 9th International Conference of GEOS-Chem*, Harvard University, Cambridge, MA, 2019.

Effect of sea-salt aerosol on tropospheric bromine chemistry, *AGU Fall Meeting*, Washington, D.C., 2018. Observing atmospheric formaldehyde from space: trend analysis and public health implications, *The δth International GEOS-Chem Meeting*, Cambridge, MA, 2017.

Validation of satellite HCHO retrievals with aircraft (SEAC⁴RS) observations, *Atmospheric Radiation Workshop*, NCAR, Boulder, CO, 2016.

Indirect validation of new OMI, GOME-2B and OMPS formaldehyde retrievals using SEAC⁴RS data, *The 7th International Conference of GEOS-Chem*, Harvard University, Cambridge, MA, 2015.

Anthropogenic emissions of highly reactive volatile organic compounds inferred from oversampling of OMI HCHO columns, *AGU Fall Meeting*, San Francisco, CA, 2014.

Indirect validation of GOME-2/MetOp-A and B formaldehyde retrievals using SEAC⁴RS data: Preliminary results, *The 7th NASA Air Quality Applied Sciences Team Meeting*, Harvard University, Cambridge, MA. 2014.

Indirect Validation of GOME-2/MetOp-A and B and New OMI formaldehyde (HCHO) retrievals using SEAC⁴RS data: Preliminary results, *SEAC⁴RS Science Meeting*, NIST, Boulder, CO, 2014.

Variability of HCHO over the Southeastern United States observed from space: Implications for VOC emissions, *AGU Fall Meeting*, San Francisco, CA, 2012.

Spikes in electricity demand during severe summer heat waves: Increased SO₂ emissions detected from space, *AGU Fall Meeting*, San Francisco, CA, 2010.

TEACHING & ADVISING EXPERIENCE

Teaching Assistant

Lab demonstrations/tutoring, grading, exam grading, offering weekly sections

- o Atmospheric Chemistry and Physics, Graduate course, Harvard University, 12 students, 2017.
- o *The Fluid Earth: Oceans, Atmosphere, and Climate*, Undergraduate course, Harvard University, 50 students, 2013.

Advising Experience

- o 3 Undergraduate students
- o 2 Graduate students

PROFESSIONAL SERVICE

Committee ExperienceGEMS Science Team Member2019 –OMPS Science Team Member2018 –TEMPO Science Team Member2017 –NASA Aura Science Team Member2016 –

Chair of weekly Harvard Atmospheric Sciences seminar series	2016 - 2017
NASA SEAC ⁴ RS Flight Campaign Team Member	2012 - 2015
NASA Air Quality Applied Sciences Team Science Team Member	2011 - 2015

Peer Review Journals

Atmosphere, Atmospheric Environment, Atmospheric Chemistry and Physics, Atmospheric Measurement Techniques, Atmospheric Pollution Research, Environmental Science & Technology, Geophysical Research Letters, Journal of Geophysical Research, Nature Climate Change, Remote Sensing

Last updated: July 1st, 2019