Partie I. Mots de Lukasiewicz

I.1 Quelques propriétés

Question 1.1 (-1) est le seul mot de Lukasiewicz de longueur 1; il n'y en a pas de longueur 2, et un seul de longueur 3 : le mot (+1,-1,-1). Si $u=(u_1,u_2,\ldots,u_{2p})$ est un mot de longueur paire, la somme $\sum_{i=1}^{2p}u_i$ est paire donc u ne peut être un mot de Lukasiewicz.

Ouestion 1.2

```
let lukasiewicz =
let rec aux acc = function
| [] -> acc = -1
| t::q -> acc >= 0 && aux (acc + t) q
in aux 0 ;;
```

Cette fonction est de type int list -> bool.

Question 1.3 Si u est un mot, notons p(u) la somme des lettres qui le composent (le *poids* de u). Un mot est de Lukasiewicz lorsque son poids est égal à -1 et le poids de tous ses préfixes stricts, positifs.

Considérons donc deux mots de Lukasiewicz u et v, et posons $w = (+1) \cdot u \cdot v$.

```
On a p(w) = 1 + p(u) + p(v) = 1 - 1 - 1 = -1.
```

Passons maintenant en revue les différents préfixes stricts w' de w:

- si w' = (+1) alors $p(w') = 1 \ge 0$;
- si $w' = (+1) \cdot u'$ où u' est un préfixe strict de u, alors $p(w') = 1 + p(u') \ge 1$;
- si $w' = (+1) \cdot u$ alors p(w') = 1 + p(u) = 0;
- enfin, si $w' = (+1) \cdot u \cdot v'$ où v' est un préfixe strict de v, alors $p(w') = 1 + p(u) + p(v') = p(v') \ge 0$.

Dans tous les cas on a $p(w') \ge 0$ donc w est bien un mot de Lukasiewicz.

Question 1.4 Soit w un mot de Lukasiewicz de longueur supérieure ou égale à 3. On a $p(w_1) \ge 0$ donc $w_1 = (+1)$. Posons $w = (+1) \cdot w'$ et notons u le plus petit préfixe strict de w' vérifiant p(u) = -1. Un tel préfixe existe puisque $p(w_1') \ge -1$ et p(w') = -2. Notons alors $w = (+1) \cdot u \cdot v$, et vérifions que u et v sont des mots de Lukasiewicz.

Par construction, p(u) = -1 et p(w) = 1 + p(u) + p(v) donc p(v) = p(w) = -1.

Si u' est un préfixe strict de u, alors $(+1) \cdot u'$ est préfixe strict de w donc $p(u') \ge -1$. Mais par définition de u, p(u') ne peut être égal à -1, donc $p(u') \ge 0$.

Si v' est un préfixe strict de v, alors $(+1) \cdot u \cdot v'$ est préfixe strict de w donc $1 + p(u) + p(v') \ge 0$ soit $p(v') \ge 0$. u et v sont donc bien des mots de Lukasiewicz.

Supposons maintenant l'existence de deux décompositions $w = (+1) \cdot u \cdot v$ et $w = (+1) \cdot x \cdot y$. Sans perte de généralité on peut supposer que x est un préfixe de u. Mais s'il s'agissait d'un préfixe strict de u on aurait $p(x) \ge 0$, ce qui ne se peut. On a donc x = u et par suite y = v. La décomposition est bien unique.

Question 1.5 On utilise le critère obtenu à la question précédente pour caractériser u:

Cette fonction est de type int list -> int list * int list.

Question 1.6 Un algorithme récursif calculant l'ensemble des mots de longueur 2n + 1 à partir d'un appel récursif sur tous les mots de longueurs 2p + 1 et 2(n - p - 1) + 1 imposerait de recalculer les mêmes mots un très grand nombre de fois et serait donc très coûteux (de coût exponentiel); il est préférable de procéder à une mémoïsation des mots de longueurs inférieures pour ne les calculer qu'une fois ; c'est la démarche qui est suivie dans la question suivante.

Question 1.7 Le seul mot de Lukasiewicz de longueur 1 est égal à (-1); tout mot de longueur 2n+1 s'écrit de manière unique sous la forme $(+1) \cdot u \cdot v$ avec |u| = 2p+1, |v| = 2q+1 et p+q=n-1. Ainsi, pour obtenir tous les mots de longueur inférieure ou égale à 2n+1, nous allons construire un tableau \mathbf{t} de taille n+1, la case $\mathbf{t} \cdot (\mathbf{k})$ contenant la liste des mots de taille 2k+1.

Nous avons tout d'abord besoin d'une fonction qui à deux listes de mots $[u_1, ..., u_p]$ et $[v_1, ..., v_q]$ associe la liste des mots de la forme $(+1) \cdot u_i \cdot v_i$:

Cette fonction est de type int list list -> int list list -> int list list.

Elle nous permet de construire le tableau t :

```
let tab n =
  let t = make_vect (n+1) [] in
  t.(0) <- [[-1]] ;
  for k = 1 to n do
      for p = 0 to k-1 do
          t.(k) <- t.(k) @ (merge t.(p) t.(k-1-p))
      done
  done;
  t ;;</pre>
```

Cette fonction est de type int -> int list list vect.

Enfin, pour obtenir la liste des mots de Lukasiewicz il reste à réunir les cases de ce tableau :

Cette fonction est de type int -> int list list.

I.2 Dénombrement

Question 1.8 Considérons le plus petit des entiers $i \in [1, n]$ pour lesquels $p(u_1, ..., u_i)$ est minimal, et considérons $v = (u_{i+1}, ..., u_n, u_1, ..., u_i)$. Nous avons déjà p(v) = -1; il reste à considérer les préfixes stricts v' de v. Pour simplifier les notations, posons $u' = (u_1, ..., u_i)$ et $u'' = (u_{i+1}, ..., u_n)$.

- Si v' est un préfixe de u'', alors $u' \cdot v'$ est un préfixe de u et par définition de i, $p(u' \cdot v') \ge p(u')$ donc $p(v') \ge 0$.
- Si $v' = u'' \cdot v''$, où v'' est un préfixe strict de u', alors par définition de i, p(v'') > p(u') donc p(v') > p(u') + p(u'') = p(u) = -1, et $p(v') \ge 0$.

De ceci il résulte que *v* est un mot de Lukasiewicz.

Réciproquement, si $w = (u_{j+1}, ..., u_n, u_1, ..., u_j)$ est un mot de Lukasiewicz, alors pour tout $k \in [[j+1,n]], p(u_{j+1}, ..., u_k) \ge 0$ donc $p(u_1, ..., u_k) \ge p(u_1, ..., u_j)$. Ceci prouve que $p(u_1, ..., u_j)$ est minimal. Par définition de i nous avons $i \le j$ et $p(u_1, ..., u_i) = p(u_1, ..., u_i)$.

Mais si i < j nous aurions $p(u_{i+1}, ..., u_j) = 0$, et puisque p(w) = -1 ceci impliquerait que $p(u_{j+1}, ..., u_n, u_1, ..., u_i) = -1$. Puisque w ne peut avoir de préfixe strict de poids négatif, ceci est absurde et i = j, ce qui prouve l'unicité du conjugué.

Question 1.9 Il s'agit donc de calculer le couple (u', u'') de telle sorte que p(u') soit minimal. L'algorithme qui suit repose sur le fait que si $u = u_1 \cdot v$ avec $v = v' \cdot v''$ et p(v') minimal, alors :

$$\begin{cases} u' = u_1 \text{ et } p(u') = u_1 & \text{si } p(v') \ge 0 \\ u' = u_1 \cdot v' \text{ et } p(u') = u_1 + p(v') & \text{si } p(v') < 0 \end{cases}$$

La fonction **aux** calcule le couple (p(u'), (u', u'')) (avec les notations de la question précédente). Cette fonction est de type *int list* \rightarrow *int list*.

Question 1.10 Notons $\mathscr E$ l'ensemble des mots u de longueur 2n+1 qui vérifient p(u)=-1, et $\mathscr L$ l'ensemble des mots de Lukasiewicz de longueur 2n+1.

 \mathscr{E} est l'ensemble des mots composés de n+1 lettres (-1) et de n lettres (+1), donc $|\mathscr{E}| = \binom{2n+1}{n}$.

L'application qui à un mot associe son conjugué réalise une application surjective de $\mathscr E$ vers $\mathscr L$. De plus, pour tout $u \in \mathscr L$, l'ensemble des antécédents de u est égal à l'ensemble des permutations circulaires de ses lettres. Nous allons montrer que celles-ci sont toutes distinctes, ce qui permettra d'affirmer que u possède exactement 2n+1 antécédents, et le lemme des

bergers permettra de conclure que $|\mathcal{L}| = \frac{1}{2n+1} {2n+1 \choose n}$

Supposons donc qu'un mot $u \in \mathcal{E}$ possède deux permutations circulaires v et w identiques. Alors w est aussi une permutation circulaire des lettres de v, donc il existe deux mots x et y tels que $v = x \cdot y$ et $w = y \cdot x$, et donc $x \cdot y = y \cdot x$. D'après le résultat admis, il existe un mot z et deux entiers non nuls i et j tels que $x = z^i$ et $y = z^j$, et alors $v = z^{i+j}$. Mais dans ce cas, p(v) = (i+j)p(z) = -1, ce qui est absurde car $i+j \ge 2$ ne peut diviser -1.

I.3 Capsules

Question 1.11 La suite $(|\rho^n(u)|)_{n\in\mathbb{N}}$ est une suite d'entiers décroissante et minorée par 0, donc stationnaire. Il en est donc de même de la suite $(\rho^n(u))_{n\in\mathbb{N}}$.

Question 1.12

Cette fonction est de type int list -> int list.

Question 1.13

```
let rec rholim u =
let v = rho u in if u = v then u else rholim v ;;
```

Cette fonction est de type int list -> int list.

Question 1.14 Montrons tout d'abord que si u est un mot de Lukasiewicz, il en est de même de $\rho(u)$:

- -p(+1,-1,-1) = -1 donc $p(\rho(u)) = p(u) = -1$.
- Notons v le préfixe qui précède la première capsule de u : $u = v \cdot (+1, -1, -1) \cdot w$. Alors $\rho(u) = v \cdot (-1) \cdot w$. Quel que soit le préfixe strict w' de w, on a $p(v \cdot (-1) \cdot w') = p(v) 1 + p(w') = p(v \cdot (+1, -1, -1) \cdot w') \ge 0$ car u est un mot de Lukasiewicz. Ceci prouve que tout préfixe strict de $\rho(u)$ est de poids positif ou nul.

De ces deux points il résulte que $\rho(u)$ est encore un mot de Lukasiewicz. Par un raisonnement analogue on prouve la réciproque : si $\rho(u)$ est un mot de Lukasiewicz, il en est de même de u.

Montrons maintenant par récurrence sur $n \in \mathbb{N}^*$ que tout mot u de Lukasiewicz de longueur 2n + 1 contient au moins une capsule :

- C'est clair lorsque n = 1 puisque le seul mot de Lukasiewicz vaut dans ce cas (+1, -1, -1).
- Si $n \ge 2$ et si le résultat est acquis jusqu'au rang n-1, on utilise la question $1.4 : u = (+1) \cdot v \cdot w$, où v et w sont deux mots de Lukasiewicz, l'un au moins étant de longueur supérieure ou égale à 3. Par hypothèse de récurrence ce dernier contient une capsule, et donc u aussi.

Ainsi, si u est un mot de Lukasiewicz alors $\rho^*(u)$ doit être un mot de Lukasiewicz sans capsule, autrement dit (-1). Réciproquement, (-1) est un mot de Lukasiewicz donc si $\rho^*(u) = -1$ alors u est aussi un mot de Lukasiewicz.

Partie II. Recherche de motif

II.1 Algorithme naïf

Question 2.1 On utilise le princide de l'évaluation paresseuse pour éviter des comparaisons inutiles :

Cette fonction est de type string -> string -> int -> bool.

Question 2.2

Cette fonction est de type string -> string -> int list.

Question 2.3 Dans le pire des cas, le nombre total de comparaison est égal à $|p| \times (|m| - |p| + 1)$; c'est par exemple le cas lorsque m = "aaaa...aaa" et p = "aaa...aab".

II.2 Algorithme de Rabin-Karp

Question 2.4

Cette fonction est de type string -> int -> int.

Question 2.5 Pour modifier le compteur nous aurons besoin d'une fonction calculant les puissances de 10 :

La fonction principale s'écrit alors :

Cette fonction est de type string -> string -> int list.

Question 2.6 Lorsque m = 97463667305 et q = 9, les différentes valeurs de c' sont :

С	974	746	463	636	366	667	673	730	305
c'	2	8	4	6	6	1	7	1	8

Sachant que $p \equiv 6 \pmod{9}$, il y a une seule fausse-position, pour c = 636.

Question 2.7 En toute rigueur, il faut aussi réécrire les fonctions **init** et **puissance** pour tenir compte du calcul modulo *q* et éviter tout risque de débordement :

Question 2.8 Lorsque p = 0001000, m = 000000000 et q = 1000, le compteur sera en permanence nul, ainsi que $p \pmod{q}$. Toutes les positions seront des fausses positions.

Question 2.9 La question précédente, aisément généralisable à des mots de tailles quelconques, montre qu'il y a des cas où toutes les positions sont des fausses positions, nécessitant alors autant de comparaisons entre caractères que l'algorithme naïf. Sachant qu'il y a en plus à effectuer un certain nombre de calculs arithmétiques, l'algorithme de Rabin-Karp est dans le pire des cas moins bon que l'algorithme naïf.

Question 2.10 L'objectif de l'algorithme de Rabin-Karp est de remplacer les comparaisons entre caractères par des calculs arithmétiques, qui ont l'avantage de se faire en coût constant. l'objectif est donc de minimiser le recours à la fonction **coincide** et donc de minimiser le nombre de fausses-positions.

À l'évidence de petites valeurs de q augmentent le risque de fausses-positions; on a donc tout intérêt à prendre q le plus grand possible. Sachant que les entiers Caml étant calculés modulo 2^{63} (avec un processeur 64 bits), on choisira donc cette valeur pour q.