Introduction to Machine Learning

Quantitative Data Analysis for Education Research

Chaitanya Jadhav

Al Engineer, PhillipCapital

Julian Tan

PhD Student, PESS

John Komar

Assistant Dean, Research Support

Workshop Structure

Agenda

- Inferential Statistics vs. Machine Learning
- Supervised vs. Unsupervised Learning
- Introduction to K Means
- Introduction to rule mining with decision trees
- Apply techniques through Python and Google Colab

Inferential Statistics

Motivation

Use Cases:

Identify student learning patterns
Predict academic performance
Support targeted interventions
Enhance curriculum design
Enable evidence-based policy decisions

Supervised Learning

"I see both inputs and outputs, so I learn to map one to the other."

Unsupervised Learning

"I only see inputs, so I have to figure out the structure myself."

Applications of Unsupervised Learning

- 1. Student Segmentation
- 2. Curriculum Evaluation
- 3. Early Risk Detection
- 4. Personalized Learning
- 5. Data Exploration

Clustering

Hierarchical Clustering (HCA)

K-Means Clustering

Clustering Methods

Aspect	HCA	K-Means
Use Case	Small to medium datasets	Large Datasets
Pros	No need to define the number of clusters	Fast, scales well with large datasets
Cons	Slow for large datasets Sensitive to noise.	Must choose K Best suited for spherical datasets

Data Pre-Processing

01

Handle NULL values

02

Check Data
Types

03

Feature Scaling 04

Feature Selection

https://www.ibm.com/think/topics/feature-engineering
https://www.geeksforgeeks.org/machine-learning/what-is-feature-engineering/
https://towardsdatascience.com/introduction-to-data-preprocessing-in-machine-learning-a9fa83a5dc9d/

Choosing the Number of Clusters

Visualize Results

Scatter Plot

Mean and SD Plot

Code Walkthrough

K Means Clustering on Google Colab

https://tinyurl.com/ml-workshop-1

Decision Trees

Classification & Regression

Walks through the possible outcomes and maps out decision pathways

Root Node

Internal Node

Leaf Node

Overview

Items	Classification	Regression
Independent Variable	Numerical Data	Numerical Data
Dependent Variable	Categorical Data	Numerical Data
Advantages	Easy to interpret No need for feature scaling Relatively quick to implement	
Disadvantages	Prone to overfitting Unstable Does not work as well with large dataset	

Rule Mining

A set of conditions used to determine decision making paths

"IF-THEN" framework

How Decision Trees Choose Splits?

Gini Impurity - Criterion measure on how "impure" child nodes are in relation to parent node

Entropy - Measure on the amount of "disorderliness" or "uncertainty" in the data

Through a concept called....

"Impurity"

Code Walkthrough

Decision Trees and Rule Mining

https://tinyurl.com/ml-workshop-2

Thank you for attending!

Feel free to send in any questions to:

Chaitanya [CHAITANY002@e.ntu.edu.sg]

Julian [NIE22.TQJ@e.ntu.edu.sg]