Clase III: Álgebra de Matrices Métodos Computacionales

Métodos Computacionales

Clase III: Álgebra de Matrices

Operaciones de Matrices

Suma de matrices

$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$

Suma de matrices

$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix}$$

<NOTEBOOK>

Suma de matrices

$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$$

$$A+B = \begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix} \qquad A+C = ? \text{ no está definida}$$

Múltiplo escalar

$$2B = 2\begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix}$$

Múltiplo escalar

<NOTEBOOK 1>

<NOTEBOOK 2>

$$2B = 2 \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix}$$

$$A - 2B = \begin{vmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{vmatrix} - \begin{vmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{vmatrix} = \begin{vmatrix} 2 & -2 & 3 \\ -7 & -7 & -12 \end{vmatrix}$$

Propiedades

Sean A, B y C matrices del mismo tamaño, y sean r y s escalares:

$$-A + B = B + A$$

$$-(A+B)+C=A+(B+C)$$

$$-A + 0 = A$$

$$-r(A+B) = rA + rB$$

$$-(r+s)A = rA + sA$$

$$-r(sA) = (rs)A$$

Multiplicación matriz vector:

Composición de mapeos en una sola matriz AB:

 \blacksquare Composición de mapeos en una sola matriz AB:

Si el producto entre AB está definido, entonces la entrada de la fila i y la columna j de AB es la suma de los productos de las entradas correspondientes de la fila i de A y la columna j de B:

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

Si A es una matriz de $m \times n$, y si B es una matriz de $n \times p$ con columnas $\mathbf{b_1}, \dots, \mathbf{b_p}$, entonces el producto AB es la matriz de $m \times p$ cuyas columnas son $A\mathbf{b_1}, \dots, A\mathbf{b_p}$.

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_p \end{bmatrix}$$

<NOTEBOOK>

■ Calcular *AB*:

$$A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 3 & 2 \end{bmatrix}$$

Propiedades

Sea A una matriz de m x n; B, C matrices con tamaños compatibles con la definición de sumas y productos indicados, y r un escalar:

$$-A(BC) = (AB)C$$

$$-A(B+C) = AB + AC$$

$$-(B+C)A = BA + CA$$

-
$$r(AB) = (rA)B = A(rB)$$

-
$$I_m A = A = AI_n$$

¡Advertencias!

- En general $AB \neq BA$
- Si AB = AC, en general no vale B = C (cancelación)
- Si AB = 0, no podemos concluir que A = 0 o B = 0.

$$AB = \begin{bmatrix} 5 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 14 & 3 \\ -2 & -6 \end{bmatrix}$$
$$BA = \begin{bmatrix} 2 & 0 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 5 & 1 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 10 & 2 \\ 29 & -2 \end{bmatrix}$$

Potencias de una matriz

Si A es una matriz de $n \times n$ y k es un entero positivo, entonces A^k denota el producto de k copias de A:

$$A^k = A \cdot \cdot \cdot A$$

Traspuesta de una matriz

Si A es una matriz de $m \times n$, la transpuesta de A es la matriz de $n \times m$, que se denota con A^T , cuyas columnas se forman a partir de las filas correspondientes de A:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7 \end{bmatrix}$$

Traspuesta de una matriz

Si A es una matriz de $m \times n$, la transpuesta de A es la matriz de $n \times m$, que se denota con A^T , cuyas columnas se forman a partir de las filas correspondientes de A:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, \quad B^{T} = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}, \quad C^{T} = \begin{bmatrix} 1 & -3 \\ 1 & 5 \\ 1 & -2 \\ 1 & 7 \end{bmatrix}$$

Propiedades

Sean A y B dos matrices de tamaños adecuados para las siguientes sumas y productos, y r un escalar, entonces:

-
$$(A^T)^T = A$$

- $(A + B)^T = A^T + B^T$
- $(rA)^T = rA^T$
- $(AB)^T = B^T A^T$

- Un área importante de la IA es identificar si un objeto en una imagen coincide con un determinado patrón: un número, una huella digital o una cara.
- Podemos buscar patrones usando multiplicaciones y transpuestas de una matriz.

$$M = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{v}^T M \mathbf{v} = 0$$

$$\mathbf{v}^T M \mathbf{v} = 0$$

$$M = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{v}^T M \mathbf{v} = 0$$
$$\mathbf{v}^T \mathbf{v} \neq 0$$

$$\mathbf{v}^T M \mathbf{v} = 0$$
$$\mathbf{v}^T \mathbf{v} \neq 0$$

Por ejemplo:

Por ejemplo:

¿Qué patrones de 2x2 reconocen las siguientes matrices?

$$M_1 = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad M_2 = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ -1 & -1 & 0 & 2 \end{bmatrix}$$

Inverso multiplicativo de un número:

$$5^{-1} \cdot 5 = 1$$

$$5 \cdot 5^{-1} = 1$$

Inverso multiplicativo de un número:

$$5^{-1} \cdot 5 = 1$$

$$5 \cdot 5^{-1} = 1$$

Inverso multiplicativo de una matriz (cuadrada):

$$A^{-1}A = I$$

$$AA^{-1} = I$$

Ejemplo:

$$A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} \quad C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$$

Ejemplo:

$$AC = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$CA = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Matriz Inversa 2 x 2

$$A = \left[\begin{array}{c} a & b \\ c & d \end{array} \right]$$

Matriz Inversa 2 x 2

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} - A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Matriz Inversa 2 x 2

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} - A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$3x_1 + 4x_2 = 3$$

$$5x_1 + 6x_2 = 7$$

$$3x_1 + 4x_2 = 3$$
 $A\mathbf{x} = \mathbf{b}$
 $5x_1 + 6x_2 = 7$

$$3x_1 + 4x_2 = 3$$
 $A\mathbf{x} = \mathbf{b}$
 $5x_1 + 6x_2 = 7$ $\mathbf{x} = A^{-1}\mathbf{b}$

$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} -3 & 2\\ 5/2 & -3/2 \end{bmatrix} \begin{bmatrix} 3\\ 7 \end{bmatrix} = \begin{bmatrix} 5\\ -3 \end{bmatrix}$$

Propiedades

Si una matriz A es **invertible**, entonces A^{-1} es invertible:

$$(A^{-1})^{-1} = A$$

Propiedades

Si una matriz A es **invertible**, entonces A^{-1} es invertible:

$$(A^{-1})^{-1} = A$$

Si A y B son matrices invertibles, entonces también lo es AB, y la inversa de AB es el producto de las inversas de AB en el orden opuesto:

$$(AB)^{-1} = B^{-1}A^{-1}$$

Propiedades

Si A es una matriz invertible, también lo es su traspuesta, y la inversa de la traspuesta es la traspuesta de la inversa:

$$(A^T)^{-1} = (A^{-1})^T$$

Una matriz elemental es aquella que se obtiene al realizar una única operación elemental por fila sobre una matriz identidad:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Multiplicar (a izquierda) las matrices elementales para averiguar qué operación por fila se realizó en cada caso:

Si realizamos una operación por fila con una matriz A de $m \times n$, la matriz resultante se puede escribir como EA, donde la matriz E de $m \times m$ se crea al realizar **la misma operación** por fila sobre I_m :

$$E_1 A = \begin{bmatrix} a & b & c \\ d & e & f \\ g - 4a & h - 4b & i - 4c \end{bmatrix}$$

- Como las operaciones por fila son reversibles, las matrices elementales son invertibles.
- Por lo tanto, existe una matriz elemental F tal que FE = I.

- Como las operaciones por fila son reversibles, las matrices elementales son invertibles.
- Por lo tanto, existe una matriz elemental F tal que FE = I.
- **E**jemplo: encontrar la inversa de E_{j} :

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$

- Como las operaciones por fila son reversibles, las matrices elementales son invertibles.
- Por lo tanto, existe una matriz elemental F tal que FE = I.
- **E**jemplo: encontrar la inversa de E_{1} :

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix} \rightarrow E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ +4 & 0 & 1 \end{bmatrix}$$

Inversa de una matriz de $n \times n$

Una matriz A de $n \times n$ es invertible si y sólo si A es equivalente por filas a I_n , y en este caso, cualquier secuencia de operaciones elementales por fila que reduzca A a I_n también transforma I_n en A^{-1} .

Si colocamos A e I lado a lado para formar una matriz aumentada $[A\ I]$, las operaciones por fila en esta matriz producen operaciones idénticas sobre A y sobre I.

Las mismas operaciones por fila que transforman a A en I_n , transforman a I_n en A^{-1} , o bien, la matriz A no es invertible.

- Algoritmo:
 - Reducir por filas la matriz aumentada [A I]
 - Si A es equivalente por filas a I, entonces $[A \ I]$ es equivalente por filas a $[I \ A^{-1}]$
 - Sino, A no tiene inversa.

Encontrar, si existe, la inversa de la siguiente matriz:

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$

<NOTEBOOK>

Encontrar, si existe, la inversa de la siguiente matriz:

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix} \quad A^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}$$

Otro punto de vista sobre A^{-1}

Si separamos las columnas de la matriz identidad:

$$A\mathbf{x} = \mathbf{e}_1, \quad A\mathbf{x} = \mathbf{e}_2, \quad \dots, \quad A\mathbf{x} = \mathbf{e}_n$$

El algoritmo anterior puede ser visto como la resolución simultánea de n sistemas de ecuaciones, donde cada solución es una de las columnas de A^{-1} .

Teorema de la matriz invertible l

- Sea A una matriz cuadrada de $n \times n$. Entonces, las siguientes afirmaciones son equivalentes. Es decir, para una A dada, las afirmaciones son **todas verdaderas o todas falsas**.
 - A es una matriz invertible.
 - A es equivalente por filas a la matriz identidad de $n \times n$.
 - A tiene n pivotes.
 - La ecuación $A \mathbf{x} = 0$ tiene solo la solución trivial.

Teorema de la matriz invertible II

- Sea A una matriz cuadrada de $n \times n$. Entonces, las siguientes afirmaciones son equivalentes. Es decir, para una A dada, las afirmaciones son **todas verdaderas o todas falsas**.
 - ...
 - Las columnas de A forman un conjunto linealmente independiente.
 - La transformación lineal $x \mapsto Ax$ es uno-a-uno.
 - La ecuación $A \mathbf{x} = \mathbf{b}$ tiene una sola solución para cada \mathbf{b} en \mathbb{R}^n .
 - Las columnas de A generan \mathbb{R}^n .

Teorema de la matriz invertible III

- Sea A una matriz cuadrada de $n \times n$. Entonces, las siguientes afirmaciones son equivalentes. Es decir, para una A dada, las afirmaciones son todas verdaderas o todas falsas.
 - ...
 - La transformación lineal $\mathbf{x} \mapsto A\mathbf{x}$ mapea \mathbb{R}^n sobre \mathbb{R}^n .
 - Existe una matriz $n \times n$ C tal que CA=I.
 - Existe una matriz $n \times n D$ tal que AD=I.
 - A^T es una matriz invertible.

Matrices Particionadas

Matriz por bloques

Idea simple:

$$A = \begin{bmatrix} 3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 & 4 & 0 & -3 & 1 \\ -8 & -6 & 3 & 1 & 7 & -4 \end{bmatrix}$$

Matriz por bloques

Idea simple:

$$A = \begin{bmatrix} 3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 & 4 & 0 & -3 & 1 \\ \hline -8 & -6 & 3 & 1 & 7 & -4 \end{bmatrix}$$

Matriz por bloques

Idea simple:

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix}$$

$$A_{11} = \begin{bmatrix} 3 & 0 & -1 \\ -5 & 2 & 4 \end{bmatrix}, \quad A_{12} = \begin{bmatrix} 5 & 9 \\ 0 & -3 \end{bmatrix}, \quad A_{13} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

 $A_{21} = \begin{bmatrix} -8 & -6 & 3 \end{bmatrix}, \quad A_{22} = \begin{bmatrix} 1 & 7 \end{bmatrix}, \quad A_{23} = \begin{bmatrix} -4 \end{bmatrix}$

Operaciones en matrices por bloques

- Suma: se suma cada bloque (deben estar particionadas de exactamente la misma manera los operandos).
- Multiplicación por un escalar: se multiplica cada bloque.
- Multiplicación de matrices: ¿?

Operaciones en matrices por bloques

- Suma: se suma cada bloque (deben estar particionadas de exactamente la misma manera los operandos).
- Multiplicación por un escalar: se multiplica cada bloque.
- Multiplicación de matrices: ¿?

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ \hline 0 & -4 & -2 & 7 & -1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \\ \hline -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ \hline 0 & -4 & -2 & 7 & -1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \\ \hline -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

Particiones conformadas para la multiplicación por bloques:

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ \hline 0 & -4 & -2 & 7 & -1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ \hline -3 & 7 \\ \hline -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$
5 columnas \longrightarrow 3,2 columnas

Particiones conformadas para la multiplicación por bloques:

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B_1 + A_{12}B_2 \\ A_{21}B_1 + A_{22}B_2 \end{bmatrix} = \begin{bmatrix} -5 & 4 \\ -6 & 2 \\ \hline 2 & 1 \end{bmatrix}$$

Además, vale que:

$$AB = \begin{bmatrix} \operatorname{col}_{1}(A) & \operatorname{col}_{2}(A) & \cdots & \operatorname{col}_{n}(A) \end{bmatrix} \begin{bmatrix} \operatorname{row}_{1}(B) \\ \operatorname{row}_{2}(B) \\ \vdots \\ \operatorname{row}_{n}(B) \end{bmatrix}$$

$$= \operatorname{col}_1(A) \operatorname{row}_1(B) + \cdots + \operatorname{col}_n(A) \operatorname{row}_n(B)$$

Operaciones en matrices por bloques

- Suma: se suma cada bloque (deben estar particionadas de exactamente la misma manera los operandos).
- Multiplicación por un escalar: se multiplica cada bloque.
- Multiplicación de matrices: siempre y cuando tengamos particiones conformadas para la multiplicación.

Operaciones en matrices por bloques

- Suma: se suma cada bloque (deben estar particionadas de exactamente la misma manera los operandos).
- Multiplicación por un escalar: se multiplica cada bloque.
- Multiplicación de matrices: siempre y cuando tengamos particiones conformadas para la multiplicación.
- Traspuesta: (en la práctica)
- Inversa: (en la práctica)