Traffic Signal Scheduling Problem Formulation

Indices and Sets

$i \in \{0, 1, \dots, I - 1\}$	Intersections
$s \in \{0, 1, \dots, S-1\}$	Streets
$k \in \{0, 1, \dots, V - 1\}$	Cars
$l \in \{0, 1, \dots, P_k - 2\}$	Position in car path P_k
$p \in \{0, 1, \dots, in_streets_i - 1\}$	Slot index at intersection i
$r \in \{0, 1, \dots, street_events_s - 1\}$	Service slot index on street s

Parameters

 B_s, E_s start and end intersections of street s $L_s \text{ length (travel time) of street } s$ D duration of simulation F fixed bonus for reaching destination $P_k \text{ path of car } k \text{ as list of streets}$ $in_streets_i \text{ streets incoming to intersection } i$ $street_events_s \text{ events for street } s \text{ (cars crossing)}$

Decision Variables

Intersection Scheduling Variables:

$y_{i,j} \in \{0,1\}$	whether street j at intersection i has green light
$T_{i,j} \in [0,D]$	duration of green light
$x_{i,j,p} \in \{0,1\}$	whether street j is assigned to slot p at i
$u_{i,p} \in \{0,1\}$	whether slot p at intersection i is used
$b_{i,p} \in [0, D \cdot in_streets_i]$	start time of slot p
$d_{i,p} \in [0, D]$	duration of slot p
$C_i \in [0, D \cdot in_streets_i]$	total cycle time at intersection i

Car Variables:

$$\begin{aligned} & arr_{k,l} \in [0,D \cdot V] & & \text{arrival time of car } k \text{ at street } P_k[l] \\ & \tau_{k,l} \in [0,D \cdot V] & & \text{crossing time of car } k \text{ at street } P_k[l] \\ & z_{k,l} \in \{0,1\} & & \text{whether car } k \text{ crosses street } P_k[l] \\ & fin_k \in [0,D \cdot V] & & \text{finish time of car } k \\ & f_k \in \{0,1\} & & \text{whether car } k \text{ finishes within } D \\ & rscore_k \in [0,D] & & \text{residual score for car } k \\ & sk_k \in [0,F+D] & & \text{total score for car } k \end{aligned}$$

Service Slot Variables:

$$au_{s,r} \in [0,D \cdot V]$$
 crossing time at service slot r of street s
 $R_{s,r} \in [0,D]$ residual time in slot r
 $Q_{s,r} \in [0,V]$ number of cycles before slot r
 $A_{s,local,r} \in \{0,1\}$ assignment of event to slot r

Constraints

Intersection Slot Assignment:

$$T_{i,j} \ge 1 \cdot y_{i,j}, \qquad T_{i,j} = 0 \cdot (1 - y_{i,j}) \qquad (1)$$

$$\sum_{p} x_{i,j,p} = y_{i,j}, \qquad \sum_{j} x_{i,j,p} = u_{i,p} \qquad (2)$$

$$d_{i,p} = \sum_{j} x_{i,j,p} T_{i,j}, \qquad b_{i,0} = 0, \quad b_{i,p+1} = b_{i,p} + d_{i,p} \qquad (3)$$

$$C_{i} = b_{i,|in_streets_{i}|} \qquad (4)$$

Car Arrival and Crossing Times:

$$arr_{k,0} = 0$$

$$arr_{k,l} = \tau_{k,l-1} + L_{P_k[l]}$$

$$\tau_{k,l} \ge arr_{k,l}$$

$$\tau_{k,l} \le arr_{k,l} + M(1 - z_{k,l})$$

$$z_{k,l} \le y_{E_{P_k(l)},j}$$
(big-M enforcement) (8)
$$(8)$$

Finish Times and Scores:

$$fin_k = \tau_{k,|P_k|-2} + L_{P_k[|P_k|-1]}$$
 if $f_k = 1$

(10)

$$f_k \le z_{k,l} \tag{11}$$

$$f_k = 1 \Rightarrow fin_k \le D, \quad f_k = 0 \Rightarrow fin_k \ge D + 1$$
 (12)

$$rscore_k = \begin{cases} D - fin_k, & \text{if } f_k = 1\\ 0, & \text{if } f_k = 0 \end{cases}$$

$$(13)$$

$$sk_k = F \cdot f_k + rscore_k = \begin{cases} F + (D - fin_k), & \text{if } fin_k \le D \\ 0, & \text{if } fin_k > D \end{cases}$$
 (14)

Service Slot and FIFO Ordering:

$$\tau_{s,r} = a_{i,j} + R_{s,r} + Q_{s,r}C_i \tag{15}$$

$$\tau_{s,r} \ge \tau_{s,r-1} + 1 \qquad \forall r \ge 1 \tag{16}$$

$$\tau_{k,l} = \sum_{r} A_{s,local,r} \tau_{s,r}$$
 \text{\text{events on street } s} \tag{17}

Objective

$$\max \sum_{k=0}^{V-1} sk_k$$