Battlesnake Challenge: A Multi-agent Reinforcement Learning Playground with Human-in-the-loop

2022. 06. 27 김도현

0. How Am I?

- 경북대학교 컴퓨터학부 4학년 재학 중
- 처음 RL 논문 스터디에 참여했습니다! 부족하지만 잘 부탁드립니다.
- https://github.com/kimdo331

- battlesnake 환경
- multi agent RL
- Human-In-the-Loop Learning, HILL
 - feedback, teachers, overseers
 - state space 차원을 줄임
- AWS labs에서 연구하고 발표한 논문
- Amazon Sagemaker 라이브러리를 활용하여 구현됨

- Framework: Battlesnake Challenge
 - multi agent + HILL 환경 구축 (첫번째 시도)
 - battlesnake는 직관적인 동시에 복잡한 전략이 나올 수 있음
 - offline의 시뮬레이션된 battlesnake 환경
 - online의 battlesnake arena
 - 다양한 heuristic 적용 가능

- Our contributions are as follows:
 - end-to-end framework
 - training deployment testing
 - heuristic with HILL 적용가능한 simulator
 - validate
 - HILL agent가 no HILL agent보다 우수
 - heuristic 중 reward manipulation 가장 우수
 - Framework의 Open Source 공개

2. Related Works

- Multi-agent RL Testbed
 - Keepaway soccer, Pommerman -> no HILL
 - StarCraft 2, Honor of Kings(AOS장르) -> 규칙 복잡
- Human-in-the-loop RL
 - Human intuition
 - 1) by evaluating the actions during training through real-time feedback or intervention(개입)
 - 2) by defining handcrafted rules based on human intuition
 - action masking: 정책 중 불가능한 액션을 금지 (확률을 0으로)
 - reward manipulation: specifically designing a reward function

3. Description of the Battlesnake Challenge

- training phase (offline)
 - 인간의 지식이 state, reward, action에 영향
- inference phase (online)
 - heuristic이 action을 덮어씀

3.1. Battlesnake description

- battlesnake 게임 규칙
 - 매 턴마다 모든 뱀의 체력 1 감소
 - 매 턴마다 상, 하, 좌, 우 1칸 이동
 - 매 턴마다 음식 무작위 생성
 - 음식 먹으면 체력 = 100, 길이 += 1
 - 다음 경우 뱀 사망
 - 지도 경계를 벗어남
 - 다른 뱀의 몸을 침
 - 자신의 몸을 침
 - 생명력 == 0
 - 서로의 머리를 쳤을 때, 본인 뱀의 머리가 더 작을 경우 (길이 같으면 같이 사망)

3.2. Battlesnake as a Reinforcement Learning Environment

• (standard) Markov game

$$M = (\mathcal{N}, \mathcal{S}, \{\mathcal{A}^i\}_{i \in \mathcal{N}}, \mathcal{T}, \{R^i\}_{i \in \mathcal{N}}, \gamma)$$

- \mathcal{N} : set of agents
- S: state space by all agents
- \mathcal{A}^i : action space of agent i

• \mathcal{T} : transition function, s_t , a_t pair for each agent i to a PD over s_{t+1}

- R^i : reward on each transition for each agent i
- γ : discount factor

probability distribution, 확률분포

Figure 2. 에이전트와 OpenAl Gym 시뮬레이터의 상호작용

3.2. Battlesnake as a Reinforcement Learning Environment

State

- 11x11 격자 공간
- snakes, food 좌표, turn_count
- https://github.com/awslabs/sagemaker-battlesnake-ai/blob/main/source/BattlesnakeGym/battlesnake_gym/snake.py#L57

action

- [위, 아래, 왼쪽, 오른쪽]
- reward
 - 마지막까지 유일하게 생존: +1
 - 매 턴마다 생존: +0.002
 - https://github.com/awslabs/sagemaker-battlesnake-ai/blob/main/source/BattlesnakeGym/battlesnake_gym/rewards.py#L28

3.3. Training Algorithm

- Proximal Policy Optimization
- 이 framework는 알고리즘에 독립적
 - QMIX, SAC 등 discrete action-based algorithm 적용 가능

- 이 framework는 휴리스틱과 독립적
- 테스트를 위해 4가지 휴리스틱 시도해봄
 - 1. 벽 부딪힘 방지
 - 2. 이동 방향의 반대 방향으로 이동 금지
 - 3. 체력 낮을 때 음식으로 이동
 - 4. 다른 뱀을 공격

• 휴리스틱에 의한 편향 가능성 -:	> 학습 충분히 되면 휴리스틱 비활성화
----------------------	-----------------------

- 규칙3에 의해 음식에만 집착
- 규칙4에 의한 과도한 공격성

Rule	Prevention/ Promotion	Interaction	Training phase
1	Prev.	Env.	Early
2	Prev.	Env.	Early
3	Promo.	Env.	Middle
4	Promo.	Agents	Late

Table 1. Properties of the heuristics. Prev. refers to action pre-

- 휴리스틱을 RL에 포함시키는 세가지 방법
- In-training action masking
- Ad-hoc action overwriting
- Reward manipulation

- In-training action masking
- 학습 단계 중 정책의 최종 출력에서, invalid action 확률을 0으로 만들고 softmax
- Heuristics
 based
 rules

 Action
 masking
 Interprets the
 human actions

 Agent

 Figure 3. In-training action masking.

- 규칙1, 규칙2에 적용
- https://github.com/awslabs/sagemaker-battlesnake-ai/blob/main/source/RLlibEnv/HILL-training.ipynb

- Ad-hoc action overwriting
- 이전 방식과 유사하나, 추론 단계에서 휴리스틱 적용
- 정책 업데이트 X

- Reward manipulation
- 리워드 조건을 재정의

```
forbidden_move_rewards = { "another_turn": 0.01,
                             "ate_food": 0,
                             "won": 5.
                            "died": -5,
                            "ate_another_snake": 0,
                            "hit_wall": 0,
                            "hit_other_snake": 0,
                            "hit_self": 0.
                            "was_eaten": O.
                            "other_snake_hit_body": 0,
                            "forbidden_move": -2,
                            "starved": 0}
hit_wall_rewards = {"another_turn": 0.01,
                     "ate_food": O.
                    "won": 5,
                    "died": -5.
                    "ate_another_snake": 0,
                    "hit_wall": -2,
                    "hit_other_snake": 0,
                    "hit_self": 0.
                    "was_eaten": O.
                    "other_snake_hit_body": 0,
                    "forbidden_move": O.
                    "starved": 0}
starved_rewards = { "another_turn": 0.01,
                    "ate_food": 0.
                    "won": 5,
                    "died": 5,
                    "ate_another_snake": 0,
                    "hit_wall": 0,
                    "hit_other_snake": 0.
                    "hit_self": 0.
                    "was_eaten": O.
                    "other_snake_hit_body": 0.
                    "forbidden_move": 0,
                    "starved": -2
kill_other_snake_rewards = { "another_turn": 0.01.
                            "ate_food": 0,
                            "won": 5.
                            "died": -5,
                            "ate_another_snake": 2,
                            "hit_wall": 0,
                            "hit_other_snake": 0,
                            "hit_self": 0.
                            "was_eaten": 0,
                            "other_snake_hit_body": 2,
                            "forbidden_move": 0,
                            "starved": 0}
```

4.1. Implementation details

• Amazon SageMaker RL 패키지 내에서 RLlib 사용하여 구현됨

```
jupyter 2_PolicyTraining (autosaved)
                                                                                                                                         Logout
                                                                                                             Not Trusted / conda_tensorflow2_p36_O
                                                          sgd minibatch size: 256,
                   'num sgd iter': 3,
                   'lr': 5.0e-4,
              estimator = RLEstimator(entry_point="train-mabs.py",
                                      source dir='training/training src',
                                      dependencies=["training/common/sagemaker rl", "inference/inference src/", "../BattlesnakeGym/"],
                                      image name=image name,
                                      role=role,
                                      train instance type=instance type,
                                      train instance count=1.
                                      output path=s3 output path,
                                      base job name=job name prefix,
                                      metric definitions=metric definitions,
                                      hyperparameters={
                                         # See train-mabs.py to add additional hyperparameters
                                         # Also see ray launcher.py for the rl.training.* hyperparameters
                                         "num iters": 10,
                                         # number of snakes in the gym
                                          "num agents": num agents,
                                         "iterate map size": False,
                                          "map size": map size,
                                          "algorithm": algorithm,
                                         "additional configs": additional config,
                                          "use heuristics action masks": False
              estimator.fit()
              job name = estimator.latest training job.job name
              print("Training job: %s" % job name)
```

- HILL을 이용한 RL agent 평가하는 방법
- 1. Training 중 퍼포먼스 평가
- 2. 블랙박스로 Battlesnake arena에서 다른 뱀과 경쟁

- baseline
 - agent 개수 (서로 다른 seed)
 - map size

Figure 5. Episode lengths with (a) varying the number of agents on a 11×11 map and (b) varying the map size with five agents.

- 1. Training 중 퍼포먼스 평가
 - episode length
 - event 빈도 (벽에 부딫히거나 금지된 행동, 음식먹는 횟수 등)
- in-training action masking
 - 규칙1(벽충돌): 약 250
 - 규칙2(금지동작): 약 300
 - action masking으로 학습 가속화

Figure 6. Experiments with action masking for rule 1 and 2 with 5 agents on a 11×11 map

- 1. Training 중 퍼포먼스 평가
- reward manipulation
 - 금지된 이동은 주요 사망 요인
 - 평균 10에서 3으로 감소
 - reward manipulation 없이도 금지된 이동 감소함
- reward manipulation보다 action masking이 성능 우수

Figure 7. Experiments with reward manipulation for rule 2, forbidden moves with 5 agents on a 11×11 map.

Figure 8. Comparison between the performance of in-training action masking, reward manipulation, and no HILL with 5 agents on a 11×11 map.

- 2. 블랙박스로 Battlesnake arena에서 다른 뱀과 경쟁
- 목적: 최고 수준의 agent 학습 (X) heuristic이 학습에 어떤 영향을 주는지 평가
- Table 2. 경기장에 4마리 뱀이 서로 경쟁, 30게임
 - 훈련: 2500 episode, llxll map
 - 1등 -> 4점, 2등 -> 3점, …
 - 금지된 이동 횟수 기록

HILL type	Arena score	%Forbidden moves
No HILL	2.200 ± 0.846	26.6%
In-training AM	2.533 ± 1.074	0%
RM	2.900 ± 1.296	13.3%
Ad-hoc AO	2.333 ± 1.154	0 %

Table 2. Scores in the Battlesnake arena and the % of deaths caused by forbidden moves. AM refers to action masking, RM refers to reward manipulation, and AO refers to action overwriting.

- 2. 블랙박스로 Battlesnake arena에서 다른 뱀과 경쟁
- Table 3. 1대1 경기, 각 10경기씩
 - HILL 적용 시 향상 (?)

	No HILL	IT AM	RM	AH AO
No HILL	-	4	3	6
IT AM	6	-	1	2
RM	7	9	-	1
AH AO	4	8	9	-

Table 3. Scores (with respect to the rows) in the Battlesnake arena in a 1 vs 1 format. IT AM, AH AO and RM refer to in-training action masking, Ad-hoc action overwriting and reward manipulation respectively.

6. Conclusion

- Battlesnake Challenge: Human-in-the-loop에서의 multi-agent RL 프레임워크를 도입
- 휴리스틱 성능 측정, 각 휴리스틱 별 offline, online 성능이 다름
- 전반적으로 HILL 적용 시 성능 향상
- in-training action masking 적용 시 에피소드 길이 확장
- 반대로, battlesnake arena에서는 reward manipulation이 AM 능가