Base Module Theoretical Physics - physics605

Module No.	physics605		
Category	Required		
Credit Points (CP)	7		
Semester	7.		

Module: Base Module Theoretical Physics

Module Elements:

					Teachi	Teaching	
Nr	Course	Course No.	\mathbf{CP}	\mathbf{Type}	hours	Semester	
1	Advanced Quantum Theory	physics606	7	Lect. $+ ex$.	3+2	WT	
2	Advanced Theoretical Physics	physics607	7	Lect. $+ ex$.	3+2	WT	

Requirements:

Preparation:

Content: The course provides fundamental knowledge needed for theoretical lectures in the Master course

Aims/Skills: The M.Sc. Physics programme includes one obligatory module for all students. It includes a theoretical unit to extend the B.Sc. in Physics knowledge

Form of Testing and Examination: Requirements for the module examination (written examination): successful work with exercises

Length of Module: 1 semester

Maximum Number of Participants: ca. 100

Registration Procedure: s. https://basis.uni-bonn.de u. http://bamawww.physik.uni-bonn.de

Note: Note: When the student has (upon admission) demonstrated satisfactory knowledge of Advanced Quantum Theory already, the class Advanced Theoretical Physics may be taken instead

PDF version of this page.

Advanced Quantum Theory - physics606

Course	Advanced Quantum Theory
Course No.	physics606

		Teaching			
Category	Type	Language	hours	\mathbf{CP}	Semester
Required	Lecture with exercises	English	3+2	7	WT

Requirements:

Preparation: Theoretical courses at the Bachelor degree level

Form of Testing and Examination: Requirements for the module examination (written examination):

successful work with exercises

Length of Course: 1 semester

Aims of the Course: Ability to solve problems in relativistic quantum mechanics, scattering theory

and many-particle theory

Contents of the Course:

Born approximation, partial waves, resonances

advanced scattering theory: S-matrix, Lippman-Schwinger equation relativistic wave equations: Klein-Gordon equation, Dirac equation

representations of the Lorentz group

many body theory

second quantization

basics of quantum field theory

path integral formalism

Greens functions, propagator theory

Recommended Literature:

- L. D. Landau, E.M. Lifschitz; Course of Theoretical Physics Vol.3 Quantum Mechanics (Butterworth-Heinemann 1997)
- J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley 1995)
- F. Schwabl, Advanced Quantum Mechanics. (Springer, Heidelberg 3rd Ed. 2005)

PDF version of this page.

Advanced Theoretical Physics - physics607

\overline{Course}	Advanced Theoretical Physics
Course No.	physics607

		Teaching			
Category	Type	Language hours	\mathbf{CP}	Semester	
Elective	Lecture with exercises	English 3+2	7	WT	

Requirements:

Preparation: 3-year theoretical physics course with extended interest in theoretical physics and mathematics

Form of Testing and Examination: Requirements for the module examination (written examination): successful work with exercises

Length of Course: 1 semester

Aims of the Course: Introduction to modern methods and developments in Theoretical Physics in regard to current research

Contents of the Course:

Selected Topics in Modern Theoretical Physics for example:

Anomalies

Solitons and Instantons

Quantum Fluids

Bosonization

Renormalization Group

Bethe Ansatz

Elementary Supersymmetry

Gauge Theories and Differential Forms

Applications of Group Theory

Recommended Literature:

M. Nakahara; Geometry, Topology and Physics (Institute of Physics Publishing, London 2nd Ed. 2003)

R. Rajaraman; Solitons and Instantons, An Introduction to Solitons and Instantons in Quantum Field Theory (North Holland Personal Library, Amsterdam 3rd reprint 2003)

A. M. Tsvelik; Quantum Field Theory in Condensed Matter Physics (Cambridge University Press 2nd Ed. 2003)

A. Zee; Quantum Field Theory in a Nutshell (Princeton University Press 2003)

PDF version of this page.