Microbiome Premature

Jaewoong Lee

Ulsan National Institute of Science and Technology jwlee230@unist.ac.kr

2020-09-23

Overview

- Introduction
- 2 Materials
- 3 Literature Survey I (Dominguez-Bello et al., 2016)
- 4 Literature Survey II (Fettweis et al., 2019)
- Methods
- 6 Results
- Proceedings
 References

Introduction

Microbiome

- Microbiota: the microorganisms which live inside & on humans (Turnbaugh et al., 2007)
- Microbiome: 10^{13} to 10^{14} microorganisms whose which collective genome (Gill et al., 2006)

Figure: Concept of a core human microbiome (Turnbaugh et al., 2007)

rRNA

- Ribosomal RNA
- Well-known as a key to phylogeny (Olsen & Woese, 1993)

Premature (Preterm Birth)

Figure: Definitions of Premature (Tucker & McGuire, 2004)

∴ Hence, in this study,

• Premature: < 37 weeks

• Normal: \geq 37 weeks

Materials

16S rRNA Sequencing

16S rRNA sequencing is the *reference method* for bacterial taxonomy & identification (Mignard & Flandrois, 2006) Reasons (Janda & Abbott, 2007):

- 16S rRNA exists in almost all bacteria
- Functions of the 16S rRNA has not changed over time
- 16S rRNA is large enough for bioinformatics

Train/Test Data vs. Validate Data

- Train/Test data
 - Helixco: Data collected by Helixco
- Validate data
 - EBI (European Bioinformatics Institute): Data collected by Dominguez-Bello et al., 2016
 - HMP (Human Microbiome Project): Data collected by Fettweis et al., 2019

Table: Metadata of Data

Data	Participants	Samples	Remarks
Helixco	24	107	-
EBI	18	1016	Only Normal
HMP	1572	9205	Only Premature

Literature Survey I (Dominguez-Bello et al., 2016)

BRIEF COMMUNICATIONS

Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer

Maria G Dominguez-Bello^{1,2}, Kassandra M De Jesus-Laboy², Nan Shen³, Laura M Cox¹, Amnon Amir⁴, Antonio Gonzalez⁴, Nicholas A Bokulich¹, Se Jin Song^{4,5}, Marina Hoashi^{1,6}, Juana I Rivera-Vinas⁷, Keimari Mendez⁷, Rob Knight^{4,6} & Jose C Clemente^{5,9} estimated 15% of births that require C-section delivery to protect the health of the mother or baby 11 .

Here we exposed C-section-delivered infants to their maternal vaginal fluids at birth and longitudinally determined the composition of their microbiotic to assess whether it developed more similarly to vaginally born babies than to unexposed C-section-delivered infants. We collected samples from 18 infants and their mothers, including 7 born vaginally and 11 delivered by scheduled C-section, of which four were exposed to the maternal vaginal fluids at birth (Supplementary Table 1). Briefly the microbial restoration procedure, or vaginal microbial transfer, consists of incubating sterile gauze in the vagina of moth-

Literature Survey II (Fettweis et al., 2019)

HMP Data I

ARTICLES

https://doi.org/10.1038/s41591-019-0450-2

OPEN

The vaginal microbiome and preterm birth

Jennifer M. Fettweis ⁰ ^{1,2,3} Myrna G. Serrano^{1,3} , J. Paul Brooks^{3,4}, David J. Edwards^{3,5}, Philippe H. Girerd^{2,3}, Hardik I. Parikh', Bernice Huang', Tom J. Arodz^{3,6}, Laahirie Edupuganti^{1,3}, Abigail L. Glascock⁷, Jie Xu^{3,8,9}, Nicole R. Jimenez^{1,3}, Stephany C. Vivadelli^{1,3}, Stephen S. Fong^{3,10}, Nihar U. Sheth¹, Sophonie Jean¹, Vladimir Lee^{1,3}, Yahya A. Bokhari⁶, Ana M. Lara¹, Shreni D. Mistry¹, Robert A. Duckworth III¹, Steven P. Bradley¹, Vishal N. Koparde¹¹, X. Valentine Orenda ¹⁰, Sarah H. Milton², Sarah K. Rozycki¹², Andrey V. Matveyev¹, Michelle L. Wright ^{13,4,15}, Snehalata V. Huzurbazar¹⁶, Eugenie M. Jackson¹⁶, Ekaterina Smirnova ^{10,18}, Jonas Korlach¹⁹, Yu-Chih Tsai ¹⁰, Molly R. Dickinson¹, Jamie L. Brooks¹, Jennifer I. Drake¹, Donald O. Chaffin²⁰, Amber L. Sexton²⁰, Michael G. Gravett^{20,21}, Craig E. Rubens²⁰, N. Romesh Wijesooriya⁹, Karen D. Hendricks-Muñoz^{3,8,9}, Kimberly K. Jefferson^{1,3}, Jerome F. Strauss III^{2,3} and Gregory A. Buck ^{1,3,6}*

Methods

Qiime 2

Figure: QIIME 2 workflow (Bolyen et al., 2019; Mandal et al., 2015; McDonald et al., 2012)

Filitering with Quality Score I

Drawback between:

- Longer sequence read
- Higher quality value

 \therefore I select the length n where:

$$\forall n_i \in \{n_k | \text{MedianQualityScore} \ge 30\}$$

$$\exists! n \in \{n_i\} : n \ge n_i$$
 (1)

Filitering with Quality Score II

Figure: Sequence Quality Plot from Helixco Data

Maximum Length: 265

Filitering with Quality Score III

Figure: Sequence Quality Plot from EBI

Maximum Length: 150

Filitering with Quality Score IV

Maximum Length: 226

Denoising Techniques

- DADA2: Amplicon Sequence Variants (ASVs) (Callahan et al., 2016)
- Deblur: Operational Taxonomic Units (OTUs) (Amir et al., 2017)

Taxonomy Classification

- Greengenes (GG): Kingdom ↔ Species (DeSantis et al., 2006)
- SILVA: Domain ↔ Genus (Pruesse et al., 2007; Quast et al., 2012)

"A **higher** performance at taxonomic levels above *genus level*; but performance appears to **drop** at *species level*" (Gihawi et al., 2019)

Mothur

Figure: Mothur

Note: Still in progress

t-distributed Stochastic Neighbor Embedding (t-SNE)

Figure: t-SNE with handwritten data (Maaten & Hinton, 2008)

- 4日 > 4日 > 4目 > 4目 > 4目 > 100 の (*)

23 / 46

Python Packages

- Pandas (McKinney et al., 2011)
- Scikit-Learn (Pedregosa et al., 2011)
- SciPy (Virtanen et al., 2020)
- Matplotlib (Hunter, 2007)
- Seaborn (Waskom et al., 2020)

Results

t-SNE for Brief Information I

Figure: t-SNE for Brief Information

t-SNE for Brief Information II

t-SNE with Site I

Figure: t-SNE with Site

t-SNE with Site II

(c) Deblur + GG

(d) Deblur + SILVA

Figure: t-SNE with Site

t-SNE with Site + Premature I

Figure: t-SNE with Site + Premature

t-SNE with Site + Premature II

Histogram with Clinical Information

Figure: Histogram with Clinical Information

Random Forest Classifier I

Input Data was treated with **Deblur** and **SILVA**.

Figure: Feature Importance derived by Random Forest Classifier

Jaewoong Lee (UNIST)

Random Forest Classifier II

Figure: Number of Features vs. Accuracy

Random Forest Classifier III

Figure: Random Forest Classifier

Random Forest Classifier IV

Figure: Violin Plot of Leptotrichia

Fusobacteriota Fusobacteriia Fusobacteriales Leptotrichiaceae Leptotrichia

Proceedings

Yields I

- t-SNE with databases
- Random Forest Classifier

Requirements I

- More data
- Metadata for databases
- Mothur pipeline

Expectations I

Classifier result (Statistical values)

References I

- Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T., Xu, Z. Z., . . . others (2017). Deblur rapidly resolves single-nucleotide community sequence patterns. *MSystems*, 2(2).
- Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., . . . Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using qiime 2. *Nature Biotechnology*, *37*(8), 852-857. Retrieved from https://doi.org/10.1038/s41587-019-0209-9 doi: 10.1038/s41587-019-0209-9
- Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). Dada2: high-resolution sample inference from illumina amplicon data. *Nature methods*, 13(7), 581–583.

References II

- DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., . . . Andersen, G. L. (2006). Greengenes, a chimera-checked 16s rrna gene database and workbench compatible with arb. *Applied and environmental microbiology*, 72(7), 5069–5072.
- Dominguez-Bello, M. G., De Jesus-Laboy, K. M., Shen, N., Cox, L. M., Amir, A., Gonzalez, A., ... others (2016). Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. *Nature medicine*, *22*(3), 250.
- Fettweis, J. M., Serrano, M. G., Brooks, J. P., Edwards, D. J., Girerd, P. H., Parikh, H. I., . . . others (2019). The vaginal microbiome and preterm birth. *Nature medicine*, *25*(6), 1012–1021.

References III

- Gihawi, A., Rallapalli, G., Hurst, R., Cooper, C. S., Leggett, R. M., & Brewer, D. S. (2019). Sepath: benchmarking the search for pathogens in human tissue whole genome sequence data leads to template pipelines. *Genome biology*, 20(1), 1–15.
- Gill, S. R., Pop, M., DeBoy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., ... Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. *science*, *312*(5778), 1355–1359.
- Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. *Computing in science & engineering*, *9*(3), 90–95.
- Janda, J. M., & Abbott, S. L. (2007). 16s rrna gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. *Journal of clinical microbiology*, 45(9), 2761–2764.
- Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-sne. Journal of machine learning research, 9(Nov), 2579–2605.

References IV

- Mandal, S., Van Treuren, W., White, R. A., Eggesbø, M., Knight, R., & Peddada, S. D. (2015). Analysis of composition of microbiomes: a novel method for studying microbial composition. Microbial ecology in health and disease, 26(1), 27663. doi: 10.3402/mehd.v26.27663
- McDonald, D., Clemente, J. C., Kuczynski, J., Rideout, J. R., Stombaugh, J., Wendel, D., ... Caporaso, J. G. (2012). The biological observation matrix (biom) format or: how i learned to stop worrying and love the ome-ome. GigaScience, 1(1), 7. doi: 10.1186/2047-217X-1-7
- McKinney, W., et al. (2011). pandas: a foundational python library for data analysis and statistics. Python for High Performance and Scientific Computing, 14(9).
- Mignard, S., & Flandrois, J.-P. (2006). 16s rrna sequencing in routine bacterial identification: a 30-month experiment. Journal of microbiological methods, 67(3), 574-581.

References V

- Olsen, G. J., & Woese, C. R. (1993). Ribosomal rna: a key to phylogeny. The FASEB journal, 7(1), 113–123.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . others (2011). Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12, 2825–2830.
- Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. (2007). Silva: a comprehensive online resource for quality checked and aligned ribosomal rna sequence data compatible with arb. *Nucleic acids research*, *35*(21), 7188–7196.
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., ... Glöckner, F. O. (2012). The silva ribosomal rna gene database project: improved data processing and web-based tools. *Nucleic acids research*, *41*(D1), D590–D596.
- Tucker, J., & McGuire, W. (2004). Epidemiology of preterm birth. *Bmj*, 329(7467), 675–678.

References VI

- Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The human microbiome project. *Nature*, 449(7164), 804–810.
- Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., . . . others (2020). Scipy 1.0: fundamental algorithms for scientific computing in python. *Nature methods*, 17(3), 261–272.
- Waskom, M., Botvinnik, O., Ostblom, J., Gelbart, M., Lukauskas, S., Hobson, P., ... Brian (2020, April). mwaskom/seaborn: v0.10.1 (april 2020). Zenodo. Retrieved from https://doi.org/10.5281/zenodo.3767070 doi: 10.5281/zenodo.3767070