HW4: pthreads: Functional Decomposition ("Grainville")

1.) My own choice quantity was a simulated hunting season. This operated based on a random chance (1 in 10) that the human citizens of Grainville grew tired of eating just grain, in which case they open a hunting season during a month where they hunt deer. If a month is chosen as a hunting season, between 0 and 5 deer can be killed. This quantity did not play into my simulation all that much. Many of the 72 months were selected as a hunting season, but most yielded zero deaths of deer. Clearly the citizens of Grainville are poor hunters. The months in which deer were killed, a small spike of grain growth occurred.

2.) Table Data.

	Precipitation	Temperature (Celsius)	Grain Height (cm)	Grain Deer	Dead Deer
0	7.1	3.0	16.3	1.0	0.0
1	9.0	6.7	16.3	2.0	0.0
2	10.9	10.1	14.5	2.0	0.0
3	12.3	12.6	14.5	3.0	0.0
4	12.1	18.0	0.0	3.0	0.0
5	8.4	22.2	0.0	3.0	0.0
6	2.5	21.9	0.0	2.0	0.0
7	3.0	13.8	0.0	1.0	0.0
8	0.0	9.1	0.0	0.0	0.0
9	2.2	2.8	8.8	1.0	0.0
10	3.1	2.3	8.8	2.0	0.0
11	5.0	-3.0	0.0	4.0	0.0

12	9.4	-0.8	3.2	4.0	0.0
13	10.3	5.2	14.9	4.0	0.0
14	13.4	6.0	14.9	5.0	0.0
15	13.0	11.2	10.4	5.0	0.0
16	12.0	13.1	0.0	5.0	0.0
17	8.2	17.3	0.0	5.0	0.0
18	2.7	19.1	0.0	3.0	0.0
19	0.0	17.4	0.0	2.0	0.0
20	1.8	18.1	0.0	2.0	0.0
21	0.4	4.5	6.8	2.0	0.0
22	1.8	5.0	6.8	3.0	0.0
23	2.6	-0.4	3.0	2.0	0.0
24	8.4	4.1	3.0	1.0	0.0
25	10.8	4.8	16.3	3.0	0.0
26	10.5	9.2	5.9	3.0	0.0
27	13.1	17.1	0.0	1.0	0.0
28	9.6	22.2	0.1	0.0	0.0
29	9.4	22.8	0.0	0.0	0.0
30	5.9	22.5	0.0	0.0	0.0
31	3.0	16.7	0.1	0.0	0.0
32	0.1	17.4	0.0	0.0	0.0
33	1.9	12.1	0.0	0.0	0.0
34	2.3	6.4	1.6	0.0	0.0
35	4.9	-1.5	5.0	0.0	0.0
36	6.8	2.4	5.0	1.0	0.0

37	9.0	-0.9	14.8	3.0	0.0
38	10.5	6.2	5.4	2.0	1.0
39	11.8	8.7	7.1	2.0	0.0
40	11.0	22.7	7.1	3.0	0.0
41	8.6	19.4	0.0	3.0	0.0
42	3.4	18.4	0.0	1.0	0.0
43	0.4	15.0	0.0	1.0	0.0
44	1.4	8.7	5.4	1.0	0.0
45	0.0	12.1	5.4	0.0	1.0
46	2.9	-0.7	2.6	1.0	0.0
47	5.0	4.5	2.6	2.0	0.0
48	5.9	2.2	12.0	2.0	0.0
49	8.6	2.4	12.2	4.0	0.0
50	11.6	3.8	14.5	4.0	0.0
51	12.8	13.7	0.0	4.0	0.0
52	12.2	14.1	0.0	3.0	0.0
53	6.1	25.1	0.0	2.0	0.0
54	2.7	26.3	0.0	1.0	0.0
55	0.0	13.1	0.0	0.0	0.0
56	0.6	17.6	0.0	0.0	0.0
57	0.0	3.4	0.0	1.0	0.0
58	2.0	0.6	5.3	1.0	0.0
59	5.2	-1.3	4.4	1.0	0.0
60	8.6	-0.4	6.8	3.0	0.0
61	11.8	3.0	6.8	2.0	0.0

62	12.3	9.9	4.9	2.0	0.0
63	13.1	15.6	0.0	2.0	0.0
64	11.6	22.0	0.0	0.0	0.0
65	9.5	25.2	0.0	0.0	0.0
66	4.4	22.6	0.0	0.0	0.0
67	3.3	21.5	0.0	0.0	0.0
68	0.7	10.1	0.0	0.0	0.0
69	1.0	4.1	9.0	0.0	0.0
70	0.7	0.2	3.5	2.0	0.0
71	3.3	0.7	3.5	0.0	1.0

The above table shows the month number in the leftmost column and the various simulation properties in the topmost row.

- **3.)** The data graph is on the back page.
- **4.)** The most obvious patterns visible are the sin like curves among the temperature, precipitation, and grain height curves. They generally follow the same pattern. More specifically:
 - Periods of high temperatures are often followed by higher grain height.
 - The amount of grain growth very closely follows the pattern of precipitation.
 - Lower temperatures and lower grain height clearly lead to a decline in deer population.
 - Periods of high deer population generally lead to a fast drop in grain height, which is quickly followed by a decline in deer population.
 - A killed deer, of course, causes a drop in deer population which is the quickly followed by an increase in grain growth.

These numbers followed as I expected based on the code. Grain growth is dependent upon temperature and precipitation, and everything else was generally dependent on grain growth. The growth a drop of deer population and grain growth followed its design.

Respective to Data Series

Precipitation
Temperature (Celsius)
Grain Height (cm)
Grain Deer
Dead Deer

pthreads: Functional Decomposition ("Grainville")

Project 4

Month Number