Gaussian Processes

Bruce Sharpe

My questions for any new technique

- what problems do they solve?
- disadvantages / what problems do they not solve?
- can I get some Python code working?
- what is the motivation for how they work?
- what is the "hello world" example?
- what are the definitions? assumptions? theorems?
- how do you know when to use them?
- are there famous examples where they were used?
- what is the motivation for how they work?
- has it won any Kaggle competitions?
- is there a YouTube video so I don't have to read the paper?
- can I even understand the Wikipedia page?

My questions for any new technique

- what problems do they solve?
- disadvantages / what problems do they not solve?
- can I get some Python code working?
- what is the motivation for how they work?
- what is the "hello world" example?
- what are the definitions? assumptions? theorems?
- how do you know when to use them?
- are there famous examples where they were used?
- what is the motivation for how they work?
- has it won any Kaggle competitions?
- is there a YouTube video so I don't have to read the paper?
- can I even understand the Wikipedia page?

Approaches to GPs

- State space <= most treatments start here
- Function space <= I prefer this

What problems do they solve?

- Regression
- Classification
- Optimization

What problems do they solve?

- Regression (especially things like time series)
- Classification
- Optimization

Let's narrow down the possibilities

- #1: A class of functions
 - well, random field, really: for every x, f(x) is a random variable
- #2: f(x) is normally distributed
- #3: $\{f(x_i), f(x_i)\}$ is jointly Gaussian
- Every finite collection $\{f(x_i)\}_{i=1...N}$ is multivariate normal
- A GP is completely characterized by its mean and covariance
 - $X \sim GP(m, k)$
- Example: $k(x_i, x_j) = \sigma^2 e^{-|x_i x_j|^2/2l^2}$ (squared exponential)

Slightly less mysterious (?)

- A GP is completely characterized by its mean and covariance
 - $f(x) \sim GP(m, k)$
- The covariance k is called the kernel
 - main focus of interest
- Example: $k(x_i, x_i) = \sigma^2 e^{-|x_i x_j|^2/2l^2}$ (squared exponential)

Back to regression (prediction)

- Compute $f(x_*)$ given some observations (x_i, y_i)
- We can calculate the posterior distribution (Bayes)
- Given the magic of normal distributions, can get analytical results

Parametric vs non-parametric

- Parametric: y = mx + b
- GPs are non-parametric
 - there are zillions of parameters, we just don't specify them
- GPs have hyperparameters (like σ and l)
 - $k(x_i, x_j) = \sigma^2 e^{-|x_i x_j|^2/2l^2}$
 - you optimize the hyperparameters
- Usually you can't infer much from non-parametric models
 - but you can (sometimes) infer something from the hyperparameters

The paper

- "Principled"? Hmm...
- Changepoints: cool!
- Examples: pretty good!

Questions

- Can you use an experimentally determined covariance rather than an analytical form?
- GP for big data? (sparse approximations?)

My big fat dumb GP

Audio

Ahem, let's not blow up my memory

Clipping distortion

Fill in the gaps

And now, with confidence

My big fat dumb GP #2

EEG data

EEG data with dropouts

EEG data with predictions

EEG data with confidence

