Automata and Grammars (BIE-AAG) 9. Transducers

Jan Holub

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague

© Jan Holub, 2020

Definition

Formal translation is a binary relation $Z \subseteq L \times V$.

The domain is set L and the range is set V.

Relation Z maps a set of translations $Z(w) \subseteq V$ to each element w of set L. If Z(w) contains at most one element for every $w \in L$, set Z is a function (could be partial) and the translation is said to be unambiguous.

Definition

Let Σ and D be alphabets. A homomorphism is every mapping h from Σ to D^* . The domain of homomorphism h can be extended to Σ^* as follows: $h(\varepsilon)=\varepsilon$,

$$h(xa) = h(x)h(a), \ \forall x \in \Sigma^*, \forall a \in \Sigma.$$

Example

translation of a string of decimal digits to a string of binary digits

a	0	1	2	3	4	5	6	7	8	9
h(a)	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

$$h(1996) = 0001100110010110$$

Definition (Prefix and postfix notation of expression) Prefix and postfix notation of an expression E:

- 1. If E is a variable or a constant, then prefix notation and postfix notation of E is E.
- 2. If E is an expression of the form E_1 op E_2 , where op is a binary operator, then
 - (a) $op E'_1E'_2$ is prefix notation of E, where E'_1 and E'_2 are prefix notations of E_1 and E_2 , respectively.
 - (b) $E_1''E_2''op$ is postfix notation of E, where E_1'' and E_2'' are postfix notations of E_1 and E_2 , respectively.
- 3. If E is an expression of the form (E_1) , then
 - (a) E'_1 is prefix notation of E, where E'_1 is prefix notation of E_1 ,
 - (b) E_1'' is postfix notation of E, where E_1'' is postfix notation of E_1 .

Example

Infix notation: a * (b + c)

Prefix notation: *a + bc

Postfix notation: abc + *

Example of a translation:

 $\{(x,y):x \text{ is an expression in infix notation, } y \text{ is the same expression in postfix notation}\}.$

Definition

Translation grammar is $TG = (N, \Sigma, D, R, S)$, where

- lacksquare N is a finite set of nonterminal symbols,
- lacksquare Σ is a finite set of input symbols,
- lacksquare D is a finite set of output symbols, $\Sigma \cap D = \emptyset$, $(\Sigma \cup D) \cap N = \emptyset$,
- $\blacksquare \quad R \text{ is a finite set of rules in the form } A \to \alpha \text{, where } A \in N \text{,} \\ \alpha \in (N \cup \Sigma \cup D)^* \text{,}$
- lacksquare $S \in N$ is the starting symbol.

Definition

```
TG = (N, \Sigma, D, R, S), \ \alpha, \beta \in (N \cup \Sigma \cup D)^*. We say that \alpha derives in one step \beta, \alpha \Rightarrow \beta if \exists \tau, \omega, \gamma \in (N \cup \Sigma \cup D)^*, \exists A \in N, \ \alpha = \tau A \omega, \beta = \tau \gamma \omega, \ (A \to \gamma) \in R We say that \alpha derives \beta, \alpha \Rightarrow^* \beta if \exists \alpha_1, \alpha_2, \ldots, \alpha_n \in (N \cup \Sigma \cup D)^*, \ n \geq 1, \alpha = \alpha_1 \Rightarrow \alpha_2 \Rightarrow \ldots \Rightarrow \alpha_n = \beta.
```

The sequence $\alpha_1, \alpha_2, \ldots, \alpha_n$ is called translation derivation of length n of string β from string α .

reflexive and transitive closure: \Rightarrow^*

transitive closure: \Rightarrow^+

Example

$$TG = (\{E\}, \{+, *, a\}, \{\oplus, \circledast, @\}, R, E)$$
, where R :
 $(1) E \rightarrow +EE \oplus (2) E \rightarrow *EE \circledast (3) E \rightarrow a@$

$$E \Rightarrow +EE \oplus$$

$$\Rightarrow +a@E \oplus$$

$$\Rightarrow +a@*EE* \oplus$$

$$\Rightarrow +a@*a@E* \oplus$$

$$\Rightarrow +a@*a@a@* \oplus$$

Definition (Input/Output homomorphism)

$$TG = (N, \Sigma, D, R, S).$$

Input homomorphism h_i^{TG} :

$$h_i^{TG}(a) = \begin{cases} a, & \forall a \in \Sigma \cup N \\ \varepsilon, & \forall a \in D \end{cases}$$

$$h_i^{TG}(x) = h_i^{TG}(x_1).h_i^{TG}(x_2)...h_i^{TG}(x_n), \forall x = x_1x_2...x_n \in (\Sigma \cup N \cup D)^*$$

Output homomorphism h_o^{TG} :

$$h_o^{TG}(a) = \begin{cases} \varepsilon, & \forall a \in \Sigma \\ a, & \forall a \in D \cup N \end{cases}$$

$$h_o^{TG}(x) = h_o^{TG}(x_1).h_o^{TG}(x_2)...h_o^{TG}(x_n), \ \forall x = x_1x_2...x_n \in (\Sigma \cup N \cup D)^*$$

Definition

Translation defined by translation grammar $TG = (N, \Sigma, D, R, S)$:

$$Z(TG) = \{ (h_i^{TG}(w), h_o^{TG}(w)) : w \in (\Sigma \cup D)^*, S \Rightarrow^* w \}.$$

Example

$$TG = (\{E\}, \{+, *, a\}, \{\bigoplus, \circledast, @\}, R, E)$$
, where R : (1) $E \to +EE \oplus$ (2) $E \to *EE \circledast$ (3) $E \to a@$

TG generates a translation of expressions in prefix notation to expressions in postfix notation.

$$E \Rightarrow +EE \oplus$$

$$\Rightarrow +a@E \oplus$$

$$\Rightarrow +a@*EE * \oplus$$

$$\Rightarrow +a@*a@E * \oplus$$

$$\Rightarrow +a@*a@a@ * \oplus$$

$$\Rightarrow +a@*a@a@ * \oplus$$

Derivation generates a pair $(+a*aa, @@@*\oplus)$ that belongs to translation Z(TG).

Definition (Input/Output grammar of translation grammar)

 $TG = (N, \Sigma, D, R, S).$

Input grammar of translation grammar TG is CFG $G_i = (N, \Sigma, P_i, S)$, where $P_i = \{A \to h_i(\alpha) : (A \to \alpha) \in R\}$.

Output grammar of translation grammar TG is CFG $G_o = (N, D, P_o, S)$, where $P_o = \{A \to h_o(\alpha) : (A \to \alpha) \in R\}$.

Definition (Characteristic grammar/sentence/language)

CFG $G = (N, \Sigma \cup D, R, S)$ is characteristic grammar of translation grammar $TG = (N, \Sigma, D, R, S)$.

L(G) is characteristic language of translation Z(TG).

 $w \in L(G)$ is characteristic sentence of pair (x, y), where $x = h_i(w)$, $y = h_o(w)$.

Definition (Regular translation grammar)

 $TG = (N, \Sigma, D, R, S)$ is regular, if all rules in R are of the form:

- lacksquare A o axB or A o ax, where $A, B \in N, a \in \Sigma, x \in D^*$, or
- lacksquare S
 ightarrow arepsilon in case S is not present in the right-hand side of no rule.

Example

 $RTG = (\{S, A, P, K\}, \{a, +, *\}, \{@, \oplus, *\}, R, S), \text{ where } R$:

$$S \rightarrow a@A \qquad A \rightarrow *K$$

$$S \rightarrow a@ \qquad A \rightarrow +P$$

$$K \rightarrow a@*A \qquad P \rightarrow a@\oplus A$$

$$K \rightarrow a@* \qquad P \rightarrow a@\oplus$$

Translation: $(a + a * a, @@ \oplus @*)$.

Definition

Finite transducer $FT = (Q, \Sigma, D, \delta, q_0, F)$, where

- \blacksquare Q is a finite set of states,
- lacksquare Σ is a finite set of input symbols,
- lacksquare D is a finite set of output symbols,
- lacksquare is a mapping from $Q imes(\Sigma\cup\{arepsilon\})$ into a set of finite subsets $2^{Q imes D^*}$,
- \blacksquare $q_0 \in Q$ is the start state,
- lacksquare $F \subseteq Q$ is the set of final states.

Definition

Configuration of finite transducer $FT = (Q, \Sigma, D, \delta, q_0, F)$ is a triple $(q, x, y) \in Q \times \Sigma^* \times D^*$.

 (q_0, x, ε) is the *initial configuration*.

 (q, ε, y) , $q \in F$ is the final configuration.

Let \vdash_{FT} is a relation over $Q \times \Sigma^* \times D^*$ such that $(q, aw, y) \vdash_{FT} (p, w, yz)$ iff $\delta(q, a) = (p, z)$ for some $a \in \Sigma \cup \{\varepsilon\}$, $w \in \Sigma^*, y, z \in D^*$. An element of relation \vdash_{FT} is called a *move* in finite transducer FT.

 \vdash_{FT}^k – the k-th power of relation \vdash_{FT}

 \vdash_{FT}^+ – the transitive closure of relation \vdash_{FT}

 \vdash_{FT}^* – the transitive and reflexive closure of relation \vdash_{FT}

Definition

Translation defined by a finite transducer $FT = (Q, \Sigma, D, \delta, q_0, F)$: $Z(FT) = \{(u, v) : u \in \Sigma^*, v \in D^*, \exists q \in F, (q_0, u, \varepsilon) \vdash_{FT}^* (q, \varepsilon, v)\}$

Definition

FT is deterministic, if for all its states $q \in Q$ it holds:

- 1. $|\delta(q,a)| \leq 1$, $\forall a \in \Sigma$ and $\delta(q,\varepsilon) = \emptyset$ or
- 2. $|\delta(q,\varepsilon)| \leq 1$ and $\delta(q,a) = \emptyset$, $\forall a \in \Sigma$.

Example

FT, that divides by three binary numbers divisible by three.

$$FT = (\{N, J, D\}, \{0, 1\}, \{0, 1\}, \delta, N, \{N\}), \text{ where } \delta:$$

$$\delta(N, 0) = \{(N, 0)\} \qquad \delta(J, 1) = \{(N, 1)\} \qquad \delta(D, 0) = \{(J, 1)\}$$

$$\delta(N, 1) = \{(J, 0)\} \qquad \delta(J, 0) = \{(D, 0)\} \qquad \delta(D, 1) = \{(D, 1)\}$$

δ	0	1
N	$\{(N,0)\}$	$\{(J,0)\}$
$\int J$	$\{(D,0)\}$	$\{(N,1)\}$
D	$\{(J,1)\}$	$\boxed{\{(D,1)\}}$

Transforming RTG to FT

Theorem

Given $RTG=(N,\Sigma,D,R,S)$. There exists $FT=(Q,\Sigma,D,\delta,q_0,F)$ such that Z(RTG)=Z(FT).

Proof

For a given $RTG=(N,\Sigma,D,R,S)$ we create $FT=(Q,\Sigma,D,\delta,q_0,F)$, where $Q=N\cup\{X\}$, $X\not\in N$.

- 1. Mapping δ is defined as $(y \in D^*, B, C \in N)$:
 - (a) $\delta(B,a)=\{(C,y):(B\to ayC)\in R\}\cup\{(X,y):(B\to ay)\in R\},\ \forall B\in N, \forall a\in\Sigma$
 - (b) $\delta(X, a) = \emptyset, \forall a \in \Sigma$
- 2. $q_0 = S$
- 3. $F = \{S, X\}$, if $(S \to \varepsilon) \in R$ $F = \{X\}$, if $(S \to \varepsilon) \notin R$.

Proof that Z(RTG) = Z(FT): by induction by the length of derivative in RTG and the length of sequence of transitions in FT.

Transforming RTG to FT

Example

 $RTG = (\{S, A, P, K\}, \{a, +, *\}, \{@, \oplus, *\}, R, S), \text{ where } R:$ $S \rightarrow a@A \qquad A \rightarrow *K \qquad P \rightarrow a@ \oplus A \qquad K \rightarrow a@ *A$ $S \rightarrow a@ \qquad A \rightarrow +P \qquad P \rightarrow a@ \oplus \qquad K \rightarrow a@ *$

$$FT = (\{S, X, A, P, K\}, \{a, +, *\}, \{\textcircled{a} \oplus \textcircled{*}\}, \delta, S, \{X\})$$

Transforming FT to RTG

Theorem

Given a finite transducer FT. There exists a regular translation grammar RTG such that Z(FT) = Z(RTG).

Proof

For a given $FT=(Q,\Sigma,D,\delta,q_0,F)$ we construct $RTG=(Q\cup\{S\},\Sigma,D,R,S)$, where $S\not\in Q$ as follows (Suppose that $\Sigma\cap D=\emptyset$, $(\Sigma\cup D)\cap Q=\emptyset$):

- 1. $R \leftarrow \{B \rightarrow ayC : B, C \in Q, a \in \Sigma, y \in D^*, (C, y) \in \delta(B, a)\}$
- 2. $R \leftarrow R \cup \{B \rightarrow ay : B \in Q, C \in F, a \in \Sigma, y \in D^*, (C, y) \in \delta(B, a)\}$
- 3. $R \leftarrow R \cup \{S \rightarrow x : x \in (N \cup D \cup \Sigma)^*, (q_0 \rightarrow x) \in R\}$
- 4. $R \leftarrow R \cup \{S \rightarrow \varepsilon\}, q_0 \in F$

The proof of equivalence Z(RTG) = Z(FT): by induction on the length of derivation in RTG and on the length of sequence of transitions in FT.

Transforming FT to RTG

Example

 $FT = (\{N, J, D\}, \{0, 1\}, \{\textcircled{0}, \textcircled{1}\}, \delta, N, \{N\}), \text{ where } \delta$:

$$\delta(N,0) = \{(N, \textcircled{0})\} \qquad \delta(J,0) = \{(D, \textcircled{0})\} \qquad \delta(D,0) = \{(J, \textcircled{1})\}$$

$$\delta(N,1) = \{(J, \textcircled{0})\} \qquad \delta(J,1) = \{(N, \textcircled{1})\} \qquad \delta(D,1) = \{(D, \textcircled{1})\}$$

 $RTG = (\{S, N, J, D\}, \{0, 1\}, \{(0, 1)\}, R, S), \text{ where } R$:

$$N \to 0@N$$
 $J \to 0@D$ $D \to 0@J$ $S \to 0@N$ $N \to 1@J$ $J \to 1@N$ $D \to 1@D$ $S \to 1@J$ $N \to 0@$ $J \to 1@$ $S \to 0@$ $S \to \varepsilon$

Sequential mapping

Definition

Sequential mapping S is a mapping such that:

- 1. preserves the length of the string, i.e.; if y = S(x), then |x| = |y|,
- 2. if two input strings have the same prefix of length k > 0, then also the corresponding output strings have identical prefixes of length at least k. That means, if $S(xx_1) = y_1$, $S(xx_2) = y_2$, then there exist y, y_1', y_2' such that $|y| \ge |x|$, $y_1 = yy_1'$, and $y_2 = yy_2'$.

Definition

Mealy automaton M is a sixtuple $(Q, \Sigma, D, \delta, \lambda, q_0)$, where

- \blacksquare Q is a finite set of states,
- lacksquare Σ is a finite set of input symbols,
- lacksquare D is a finite set of output symbols,
- lacksquare is a mapping from $Q imes \Sigma$ into Q called $\emph{transition function},$
- $lacktriangleq \lambda$ is a mapping from $Q \times \Sigma$ into D called *output function*,
- lacksquare $q_0\in Q$ is the start state.

Definition

Moore automaton M is a sixtuple $(Q, \Sigma, D, \delta, \lambda, q_0)$, where

- \blacksquare Q is a finite set of states,
- lacksquare Σ is a finite set of input symbols,
- lacksquare D is a finite set of output symbols,
- lacksquare is a mapping from $Q imes \Sigma$ into Q called *transition function*,
- lacktriangle λ is a mapping from Q into D called output function,
- lacksquare $q_0\in Q$ is the start state.

Remark

For input $w \in \Sigma^*$, n = |w|, a Mealy automaton outputs¹ a string of length n, and a Moore automaton outputs a string of length n+1. In some sense, the output of the initial state of the Moore automaton is not meaningful because it does not depend on the input at all.

 $^{^1 \}mbox{We suppose mapping } \lambda \mbox{ to be total for both automata}.$

Definition (Equivalence of Mealy and Moore automata)

Let X is Mealy or Moore automaton. Denote by $\Lambda_X(u), u \in \Sigma^*$ as output of automaton X for input u (i.e., $\Lambda_X(u) = v, (u,v) \in Z(X), v \in D^*$). We say a Moore automaton M is equivalent to a Mealy automaton M' (denoted as Z(M) = Z(M')) if $\Lambda_M(w) = \Lambda_M(\varepsilon).\Lambda_{M'}(w)$, $\forall w \in \Sigma^*$, i.e., their output strings are identical after we remove the first output symbol of Moore automaton.

Definition (Extended transition function)

Let δ be a transition function of Mealy or Moore automaton. Extended transition function is mapping $\hat{\delta}: Q \times \Sigma^*$ into Q defined as follows:

- 1. $\hat{\delta}(q,\varepsilon) = q, \forall q \in Q$
- 2. $\hat{\delta}(q, a) = \delta(q, a), \forall a \in \Sigma, \forall q \in Q$
- 3. $\hat{\delta}(q, ua) = \delta(\hat{\delta}(q, u), a), \forall a \in \Sigma, u \in \Sigma^*, \forall q \in Q$

Theorem

Let $M=(Q,\Sigma,D,\delta,\lambda,q_0)$ be a Moore automaton. Then there exists Mealy automaton M' with the same number of states such that Z(M)=Z(M').

Proof

Mealy automaton M' is constructed as follows:

- 1. $\lambda'(q, a) \leftarrow \lambda(\delta(q, a)), \forall q \in Q, \forall a \in \Sigma$
- 2. $M' \leftarrow (Q, \Sigma, D, \delta, \lambda', q_0)$

If the input of M is $w = a_1 a_2 \dots a_n, a_i \in \Sigma$, then M' outputs

$$\lambda'(q_0, a_1).\lambda'(\hat{\delta}(q_0, a_1), a_2).\lambda'(\hat{\delta}(q_0, a_1a_2), a_3)...\lambda'(\hat{\delta}(q_0, a_1a_2a_3...a_{n-1}), a_n).$$

But by definition of λ' , this is

$$\lambda(\hat{\delta}(q_0, a_1)).\lambda(\hat{\delta}(q_0, a_1a_2)).\lambda(\hat{\delta}(q_0, a_1a_2a_3))...\lambda(\hat{\delta}(q_0, a_1a_2a_3...a_n)).$$

Theorem

Let $M'=(Q',\Sigma,D,\delta',\lambda',q'_0)$ be a Mealy automaton. Then there exists Moore automaton M with |Q'||D| states such that Z(M)=Z(M').

Proof

Moore automaton M is constructed as follows:

- 1. $Q \leftarrow Q' \times D$
- 2. $\delta((q,b),a) \leftarrow (\delta'(q,a),\lambda'(q,a)), \forall q \in Q', \forall a \in \Sigma, \forall b \in D$
- 3. $q_0 \leftarrow (q_0', c)$, for some arbitrary fixed $c \in D$
- 4. $\lambda((q,b)) \leftarrow b, \forall q \in Q', \forall b \in D$
- 5. $M \leftarrow (Q, \Sigma, D, \delta, \lambda, q_0)$

If the input of M' is $w=a_1a_2\ldots a_n, a_i\in \Sigma$, then M' enters the states $q_0',\hat{\delta}'(q_0',a_1),\hat{\delta}'(q_0',a_1a_2),\ldots,\hat{\delta}'(q_0',a_1a_2a_3\ldots a_n)$ and outputs $\lambda'(q_0,a_1)\lambda'(\hat{\delta}'(q_0,a_1),a_2)\ldots\lambda'(\hat{\delta}'(q_0,a_1a_2a_3\ldots a_{n-1}),a_n)$ If the input of M is w, then M enters the states $(q_0',c),(\hat{\delta}'(q_0',a_1),\lambda'(q_0',a_1)),(\hat{\delta}'(q_0',a_1a_2),\lambda'(\hat{\delta}'(q_0',a_1),a_2)),\ldots$

$$(\hat{\delta}'(q'_0, a_1 a_2 \dots a_n), \lambda'(\hat{\delta}'(q'_0, a_1 a_2 \dots a_{n-1}), a_n)$$
 and outputs $c.\lambda'(q'_0, a_1).\lambda'(\hat{\delta}'(q'_0, a_1), a_2) \dots \lambda'(\hat{\delta}'(q'_0, a_1 a_2 \dots a_{n-1}), a_n)$

Definition

The pushdown translation automaton is an octuple $PTA = (Q, \Sigma, G, D, \delta, q_0, Z_0, F)$, where

- lacksquare Q is a finite set of states,
- lacksquare Σ is a finite set of input symbols,
- \blacksquare G is a finite set of symbols (pushdown symbols),
- \blacksquare D is a finite set of output symbols,
- \bullet is a finite mapping from $Q\times (\Sigma\cup\{\varepsilon\})\times G^*$ to a set of subsets $Q\times G^*\times D^*$,
- \blacksquare $q_0 \in Q$ is the start state,
- lacksquare $Z_0 \in G$ is an initial symbol of the pushdown store,
- lacksquare $F\subseteq Q$ is a set of final states.

Definition

The configuration of a pushdown translation automaton $PTA = (Q, \Sigma, G, D, \delta, q_0, Z_0, F)$ is defined as a quadruple $(q, x, \alpha, y) \in Q \times \Sigma^* \times G^* \times D^*$.

 $(q_0, x, Z_0, \varepsilon)$ – the initial configuration (q_0) is the initial state and Z_0 is the initial pushdown symbol)

Transition relation \vdash : $(q, ax, u\gamma, y) \vdash (r, x, \alpha\gamma, yv)$, $\forall a \in \Sigma \cup \{\varepsilon\}$, $\forall x \in \Sigma^*$, $\forall \gamma, \alpha \in G^*$, $\forall y, u, v \in D^*$, $\forall q \in Q$, $\forall r \in Q$, $(r, \alpha, v) \in \delta(q, a, u)$.

Definition

The translation defined by a pushdown translation automaton $PTA = (Q, \Sigma, G, D, \delta, q_0, Z_0, F) \text{ by move into final state is a set of pairs } Z(PTA) = \{(x,y): x \in \Sigma^*, y \in D^*, \exists q \in F, \exists \alpha \in G^*, (q_0,x,Z_0,\varepsilon) \vdash^* (q,\varepsilon,\alpha,y)\}.$

The translation defined by a pushdown translation automaton $PTA = (Q, \Sigma, G, D, \delta, q_0, Z_0, \emptyset)$ by move into configuration with empty pushdown store is a set of pairs

$$Z_{\varepsilon}(PTA) = \{(x,y) : x \in \Sigma^*, y \in D^*, \exists q \in Q, (q_0, x, Z_0, \varepsilon) \vdash^* (q, \varepsilon, \varepsilon, y)\}.$$

Example

```
\begin{split} PTA &= (\{q\}, \{a, +, *\}, \{+, *, E\}, \{a, +, *\}, \delta, q, E, \emptyset), \text{ where } \delta : \\ \delta(q, a, E) &= \{(q, \varepsilon, a)\} \\ \delta(q, +, E) &= \{(q, EE +, \varepsilon)\} \\ \delta(q, *, E) &= \{(q, EE *, \varepsilon)\} \\ \delta(q, \varepsilon, +) &= \{(q, \varepsilon, +)\} \\ \delta(q, \varepsilon, *) &= \{(q, \varepsilon, *)\}. \end{split}
```

The automaton makes the following moves for input +*aaa:

$$(q, +*aaa, E, \varepsilon) \qquad \vdash (q, *aaa, EE+, \varepsilon) \\ \vdash (q, aaa, EE*E+, \varepsilon) \\ \vdash (q, aa, E*E+, a) \\ \vdash (q, a, *E+, aa) \\ \vdash (q, a, E+, aa*) \\ \vdash (q, \varepsilon, +, aa*a) \\ \vdash (q, \varepsilon, c, aa*a+).$$

Definition

Pushdown translation automaton $PTA = (Q, \Sigma, G, D, \delta, q_0, Z_0, F)$ is called deterministic if:

- 1. $|\delta(q, a, \gamma)| \leq 1$, $\forall q \in Q, \forall a \in (\Sigma \cup \{\varepsilon\}), \forall \gamma \in G^*$.
- 2. If $\delta(q, a, \alpha) \neq \emptyset$, $\delta(q, a, \beta) \neq \emptyset$ and $\alpha \neq \beta$, then α is not a prefix of β and β is not a prefix of α (i.e., $\gamma\alpha \neq \beta, \alpha \neq \gamma\beta, \gamma \in G^*$).
- 3. If $\delta(q, a, \alpha) \neq \emptyset$, $\delta(q, \varepsilon, \beta) \neq \emptyset$, then α is not a prefix of β and β is not a prefix of α (i.e., $\gamma\alpha \neq \beta, \alpha \neq \gamma\beta, \gamma \in G^*$).

Theorem

Let $TG = (N, \Sigma, D, R, S)$ be a translation grammar. Then there exists pushdown translation automaton PTA such that $Z_{\varepsilon}(PTA) = Z(TG)$.

Proof: For given $TG = (N, \Sigma, D, R, S)$ we construct $PTA = (\{q\}, \Sigma, N \cup \Sigma \cup D, D, \delta, q, S, \emptyset)$, where δ :

- 1. $\delta(q, \varepsilon, A) \leftarrow \{(q, \alpha, \varepsilon) : (A \to \alpha) \in R\}, \forall A \in N, \rhd (expansion)$
- 2. $\delta(q, a, a) \leftarrow \{(q, \varepsilon, \varepsilon)\}, \forall a \in \Sigma,$ \triangleright (comparison)
- 3. $\delta(q, \varepsilon, b) \leftarrow \{(q, \varepsilon, b)\}, \forall b \in D.$ $\triangleright (\mathbf{output})$

The proof that $Z(TG) = Z_{\varepsilon}(PTA)$ will be made by induction on the length of derivation in grammar TG and on length of sequence of transitions of automaton PTA.

Example

 $TG = (\{E, T, F\}, \{+, *, (,), a\}, \{\oplus, *, @\}, R, E), \text{ where } R$:

$$E \to E + T \oplus$$
 $E \to T$
 $T \to T * F *$ $T \to F$
 $F \to (E)$ $F \to a@$.

```
PTA = (\{q\}, \{+, *, (,), a\}, \{+, *, (,), a, E, T, F, \oplus, \circledast, @\}, \{\oplus, \circledast, @\}, \delta, q, E, \emptyset), \text{ where } \delta:
\delta(q, \varepsilon, E) = \{(q, E + T \oplus, \varepsilon), (q, T, \varepsilon)\},
\delta(q, \varepsilon, T) = \{(q, T * F \circledast, \varepsilon), (q, F, \varepsilon)\},
\delta(q, \varepsilon, F) = \{(q, (E), \varepsilon), (q, a@, \varepsilon)\},
\delta(q, c, c) = \{(q, \varepsilon, \varepsilon)\}, \forall c \in \{+, *, (,), a\},
\delta(q, \varepsilon, b) = \{(q, \varepsilon, b)\}, \forall b \in \{\oplus, \circledast, @\}.
```