컴퓨터 공학 기초 설계 및 실험1 결과 보고서

실험제목: Traffic light controller

실험일자: 2023년 04월 14일 (금)

제출일자: 2023년 04월 16일 (일)

학 과: 컴퓨터정보공학부

담당교수: 신동화 교수님

실습분반: 03

학 번: 2022202065

성 명: 박나림

결과보고서

1. 제목 및 목적

A. 제목

Traffic light controller

B. 목적

Traffic light controller에 대해 알아본다. 여러 예제 문제들을 통해 기능과 원리를 이해할 수 있도록 한다. 또한 Finite State Machine(FSM)도 함께 이해하여 이러한 FSM을 설계할 수 있게 만든다.

2. 실험 결과

1) FSM State Transition Diagram

신호등 색의 조합을 조건으로 상태 선도를 나타냄

2) FSM State Transition Table

위 State diagram을 따라 next state table을 작성

현재 상태	입	다음 상태	
Q	T_{A}	T_{B}	D
S0	0	Х	S1
S1	1	Х	S0
S2	Х	Х	S2
S3	Х	0	S3
S4	Х	1	S2
S3	Х	Х	S0

3) FSM Encoded State Transition Table

상태를 부호화하여 next state stable을 완성시킴 (상태의 비트 길이: $2^{n-1} < 4 \le 2^n$ 을 만족하는 n이므로 비트 길이는 2)

상태 부호화: S0 = 00, S1 = 01, S2 = 10, S3 = 11

현재 상태		입력		다음 상태		
Q_1	Q_0	T_A	T_{B}	D_1	D_0	
0	0	0	X	0	1	
0	0	1	X	0	0	
0	1	X	Х	1	0	
1	0	X	0	1	1	
1	0	X	1	1	0	
1	1	Х	Х	0	0	

$$D_1 = Q_0 \oplus Q_1$$

$$D_0 = \overline{Q_1 Q_0} \overline{T_A} + Q_1 \overline{Q_0} \overline{T_B}$$

4) FSM Output Table

상태에 따른 출력표로써, 출력의 종류 3가지에 맞추어서 출력의 비트 길이 구하고 완성 시킴 ($2^{n-1} < 3 \le 2^n$ 을 만족하는 n이므로 출력 비트 길이는 2)

상태 부호화: Green = 00, Yellow = 01, Red = 10

현재 상태		출력				
Q_1	Q_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}	
0	0	0	0	1	0	
0	1	0	1	1	0	
1	0	1	0	0	0	
1	1	1	0	0	1	

$$L_{A1} = Q_1$$

$$L_{A0} = \overline{Q_1}Q_0$$

$$L_{B1} = \overline{Q_1}$$

$$L_{B0} = Q_1 Q_0$$

5) FSM Schematic

<결과표>

현재	상태			출력		
T_{A}	T_B		L _{A1}	L_{A0}	L_{B1}	L_{B0}
0		1	0	0	1	0
		2	0	1	1	0
	0	3	1	0	0	0
		4	1	0	0	1
		5	0	0	1	0
		1	0	0	1	0
0	1	2	0	1	1	0
		3	1	0	0	0
1		1	1	0	0	0
	0	2	1	0	0	1
		3	0	0	1	0
1	1	1	D	D	D	D

6) FSM Timing Diagram

3. 고찰

이번에 FSM을 설계한 것에 따라 만들면서 D Flip Flop을 사용했어야 하는데 잘못된 것을 가져와서 잠깐 결과가 안 나오는 상황이 발생했었다. 곧바로 알맞은 것으로 바꾸고다시 진행하니 결과 값이 잘 나올 수 있었다. 또한 결과 값이 출력될 때 한쪽에만 4개의 출력 값을 다 꽂아서 맨 처음 결과가 A가 나왔었다. 하나의 자릿수로는 9까지 표현될 수 있으니 10부터는 A로 출력된다는 것을 이번에 깨달았다.