25 p.

American Rocket Society

LUNAR MISSIONS

MEETING

JULY 17-19, 1962
CLEVELAND AUDITORIUM
CLEVELAND, OHIO

A STATISTICAL OPTIMIZING NAVIGATION PROCEDURE FOR SPACE FLIGHT

by
Richard H. Battin
Massachusetts Institute of Technology
Cambridge, Mass.

2461-62

First publication rights reserved by AMERICAN ROCKET SOCIETY, 500 Fifth Avenue, New York 36, N. Y. Abstracts may be published without permission if credit is given to the author and to ARS.

ACKNOWLEDGMENT

This report was prepared under the auspices of DSR Project 55-191, sponsored by the National Aeronautical Space Administration, under contract NAS-9-153.

The publication of this report does not constitute approval by NASA of the findings or the conclusions contained herein. It is published only for the exchange and stimulation of ideas.

BSTRACT

14462

In a typical self-contained space navigation system celestial observation data are gathered and processed to produce estimated velocity corrections. The results of this paper provide a basis for determining the best celestial measurements and the proper times to implement velocity corrections.

Fundamental to the navigation system is a procedure for processing celestial measurement data which permits incorporation of each individual measurement as it is made to provide an improved estimate of position and velocity. In order to "optimize" the navigation, a statistical evaluation of a number of alternative courses of action is made. The various alternatives, which form the basis of a decision process, concern the following:

- Which star and planet combination provide the "best" available observation?
- Does the best observation give a sufficient reduction in the predicted target error to warrant making the measurement?
- Is the uncertainty in the indicated velocity correction a small enough percentage of the correction itself to justify an engine restart and propellant expenditure?

Numerical results are presented which illustrate the effectiveness of

1. INTRODUCTION

During the past two years, the problems of guiding a space vehicle during the midcourse phase of its mission have been extensively explored at the MIT Instrumentation Laboratory. Following the specific demonstration of the technical feasibility of an unmanned photographic reconnaissance flight to the planet Mars reported by Laning, Frey, and Trageser (1), the detailed navigational aspects of such a venture were developed (2) by Dr. J. H. Laning, Jr., and the present author. Later, a variable time of arrival navigation theory was devised (3) and contrasted with the earlier fixed time of arrival scheme. More recently, the question of optimum utilization of navigation data has been given considerable study. It is the solution of this problem which forms the subject of the present paper.

The general method of navigation is based on perturbation theory so that only deviations in position and velocity from a reference path are utilized. Data is gathered by an optical angle measuring device and processed by a spacecraft digital computer. Periodically, small changes in the spacecraft velocity are implemented by a propulsion system as directed by the computer.

Basically, three problems are considered in this paper: (1) to identify the best sources of data available to the space vehicle navigator; (2) to define the optimum linear operations for processing the data in a manner consistent with the mission objectives; and (3) to minimize both the amount of navigational data and the number of corrective maneuvers required without unduly compromising mission accuracy.

The formulation of an optimum linear estimator as a recursion operation in which the current best estimate is combined with newly acquired information to produce a still better estimate was presented by Kalman (4). The author is indebted to Dr. Stanley F. Schmidt for directing his attention to Kalman's excellent work. In fact, the original application of Kalman's theory to space navigation was made by Schmidt (5) and his associates.

The research described in the following sections of this paper was performed without any detailed knowledge of Schmidt's activities. As a result of this independent approach, several new and interesting ideas have developed:

(1) an extremely simple derivation of the optimum linear operator has been achieved using only the basic technique of least squares estimation; (2) the mathematical problem of determining the optimum plane in which to make a star-planet angular measurement has been solved; (3) a procedure for incorporating cross-correlation effects of random measurement errors in determining the optimum linear operation has been developed. The author is indebted to Mr. Gerald L. Smith for correcting a basic mistake in the original treatment of cross-correlation errors.

Throughout the paper, we shall deal exclusively with discrete information; observations or velocity corrections are made at specific points in time which are termed "decision points." The interval between decision points is not necessarily uniform and may be selected somewhat arbitrarily; e.g., the interval length required for accurate numerical integration of the trajectory equations was used in preparing the computational data presented in Section 6.

Finally, a few remarks relevant to notational conventions are appropriate. We shall deal generally with both three- and six-dimensional vectors. A column vector of any dimension is represented by a lower case underscored letter. Matrices are denoted by capital letters and can be either square or rectangular arrays. The transpose of a vector or a matrix will be denoted by a superscript T. Thus, the scalar product of two vectors \underline{a} and \underline{b} will be written as $\underline{a}^T \underline{b}$. In like manner a quadratic form associated with a square matrix A will be written as $\underline{x}^T A \underline{x}$. The expected value of a random vector \underline{x} will be indicated by an overscore; thus, $\overline{\underline{x}}$ denotes the average value of \underline{x} .

The author wishes to acknowledge the extensive services of Peter-Phillion who prepared the numerical data reported in Section 6.

2. OUTLINE OF THE NAVIGATION AND GUIDANCE PROCEDURE

2.1 A Deterministic Method

The basic process involved in determining spacecraft position by means of a celestial fix consists fundamentally of a sequence of measurements of the angles between selected pairs of celestial objects. Three independent and precise angular measurements made at a known instant of time suffice to determine uniquely the position of the vehicle. Practical constraints, however, preclude simultaneous measurements without severely complicating the instrumentation. On the other hand, if the vehicle dynamics are governed by known laws and if deviations from a pre-determined reference trajectory are kept sufficiently small to permit a linearization of the navigation problem, then the question of simultaneous measurements loses it significance.

Under the assumptions of a linearized theory, a single observation serves to fix the position of the spacecraft in one coordinate. For example, if A_n is the angle measured at time t_n and is defined by the lines-of-sight from the vehicle to a star and to a nearby celestial body, the position of the vehicle is established along a line normal to the direction toward the near body and in the plane of the measurement. It is shown in Appendix A that the deviation in position $\delta \underline{r}_n$ of the spacecraft from the reference position is related to the deviation in angular measurement δA_n by

$$n = \underline{h}_n \quad \delta_{\underline{L}_n} \tag{2.1}$$

if the observation is made at a known instant of time t_n . The vector \underline{t}_n depends upon the geometrical configuration of the relevant celestial objects at time t_n as well as the type of measurement made,

Because of the inherent dynamic coupling of position and velocity, the result at a later time t_{n+1} of a measurement made at time t_n does not lend itself to simple geometric interpretation. In order to provide a geometrical description, it is convenient to introduce the concept of a six dimensional space in which the coordinates represent the components of both position and velocity deviations of the vehicle from the reference path as functions of time.

Points in this space are defined by the six dimensional deviation vector

$$\delta_{\underline{x}_n} = \left\| \frac{\delta_{\underline{x}_n}}{\delta_{\underline{x}_n}} \right\| \tag{2.2}$$

where $\delta \underline{v}_n$ is the deviation in the vector velocity of the vehicle from the reference value. The vector $\delta \underline{x}_n$ defines the "state" of the vehicle dynamics at time t_n . Transition from one state to another is provided by the matrix operation

$$\Phi_{n+1,n} = \Phi(t_{n+1},t_n)$$

which is frequently referred to as the "transition matrix". Indeed, the relation ship between $\delta_{\Sigma h+1}$ and δ_{Σ_h} is simply

$$\delta_{\underline{x}_n+1} = \Phi_{n+1,n} \delta_{\underline{x}_n} \tag{2.3}$$

as shown in Section 3.4.

By means of the rectangular matrix K defined by

$$K = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 (2.4)

 $K = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ Eq. (2.1) may be written in terms of $\delta_{\underline{x}_n}$ as

$$\delta A_{\mu} = \underline{h}_{\mu} K^{T} \delta_{xh} \tag{2.5}$$

The submatrices I and O are, respectively, the three dimensional identity and zero matrices. Now, by combining Eqs. (2.3) and (2.5)

$$\delta A_n = \underline{h}_n^T K^T \Phi_{n+1,n}^{-1} \delta_{n+1}$$
 (2.6)

then

it is clear that the effect at time t_{n+1} of an observation at time t_n is to determine the component of the six dimensional deviation vector in the direction defined by the vector Φ_{n+1} , n_{n-1}^{-1} . Six observations made at different times would provide a set of six equations of the form of Eq. (2.6). If no two of the component directions were parallel, then the deviation vector could be obtained by inverting the six dimensional coefficient matrix.

2.2 Statistical Parameters of the Navigation Problem

Because of the presence of instrument inaccuracies additional observations may be used to reduce the errors associated with the simple deterministic process just described. By applying least square techniques to the observed data, a more accurate estimate of position and velocity is frequently possible than could be obtained from the minimum number of measurements. For this

purpose, it is necessary to know certain statistical information with respect to the instrument inaccuracies. In a linear least squares estimation procedure all statistical calculations are based on first and second order averages and no additional statistical data is needed.

At this point of the discussion it is necessary to distinguish measured values, estimated values and true values of various quantities; e.g., δ_{n}^{A} will be the measured value of the deviation in the angle A_{n} from its reference value at time t_{n} , δ_{A} the true value of the deviation, and δ_{A}^{A} the estimated value. If we write

$$\delta \widetilde{A}_{n} = \delta A_{n} + \alpha_{n} \tag{2.7}$$

then α_n will be the error in the measurement. In the subsequent analysis α_n will be regarded as a random variable with an average value $\tilde{\alpha}_n$ and a variance

$$\sigma_n^2 = \overline{a}_n^2 - \overline{a}_n^2$$
 (2.8)

The possibility of cross-correlation of measurement errors will not be excluded; i.e., in general, the average $\frac{a_n}{n_m}$ may be different from $\frac{a_n}{n_m}$.

In Section 4 an estimation procedure is developed for determining an optimal linear estimate of $\delta_{\rm n}$, denoted by $\delta_{\rm n}^{\hat{\Delta}}$. As each measurement is made, the estimate $\delta_{\rm n}^{\hat{\Delta}}$ is updated by a simple recursive formula and, thereby, the problem associated with inverting sixth order matrices is avoided. An integral part of the estimation technique is the correlation matrix of the errors in the estimate. If we write

$$\delta \hat{\underline{x}}_{n} = \delta \underline{x}_{n} + \underline{e}_{n} \tag{2}.$$

$$|\vec{\epsilon}_n| = \left| \frac{\vec{\epsilon}_n}{\tilde{\delta}_n} \right|$$
 (2.10)

is the six dimensional error vector and may be partitioned as shown using $\underline{\epsilon}_n$ and $\underline{\delta}_n$ to denote, respectively, the position and velocity errors. The correlation matrix is thus defined by

$$E_n = \underbrace{\frac{1}{9}}_{n} \underbrace{\frac{1}{9}}_{n$$

correlation matrix of the actual deviation vector will be needed. This matrix For later use in a statistical analysis of the guidance problem, the is defined by

$$X_n = \delta_{\underline{x}_n} \delta_{\underline{x}_n} \tag{2.12}$$

and may be calculated recursively using

$$X_{n} = \Phi_{n, n-1} X_{n-1} \Phi_{n, n-1}^{T}$$
 (2.13)

Initially, i.e., at injection

$$\delta \underline{\hat{x}}_{o} = \delta \underline{x}_{o} + \underline{e}_{o} = 0 \tag{2.14}$$

so that

provides an initial value for the $\boldsymbol{X}_{\boldsymbol{n}}$ matrix.

from a previous estimate. For the latter case, the notation $\delta \underline{x}_n^1$ is used where incorporating an observation at time t_n , and an estimate simply extrapolated It is important to distinguish between a new estimate $\delta_{\underline{x}_n}$, obtained by

$$\delta \dot{\hat{s}}'_{n} = \Phi_{n, n-1} \delta \dot{\hat{s}}_{n-1}$$
 (2.16)

In like manner, we define an extrapolated error vector \underline{e}_n . The extrapolated correlation matrix is readily shown to be

$$E'_{n} = \Phi_{n,n-1} E_{n-1} \Phi_{n,n-1}^{T}$$
 (2.17)

Note that an estimate of the deviation in the angle to be measured at time t_{n} may be obtained from the extrapolated estimate of $6\frac{\hat{x}}{\Delta_{n-1}}$. We have

$$\delta \hat{A}'_{n} = \underline{h}_{n}^{T} K^{T} \delta \underline{\hat{x}}'_{n}$$
 (2.18)

and it is this quantity, compared with the measured deviation $\delta\widetilde{A}_n$, which is used in arriving at a revised estimate of $\overset{ ext{fx}}{\sim}$.

convenient to use an augmented deviation vector having seven dimensions and When cross-correlation of measurement errors is considered, it is

$$\delta_{\underline{X}_n} = \delta_{\underline{Y}_n} \tag{2.19}$$

Since, in this case, the error in a measurement at time t_n may be predicted on the basis of previous observations, we may define

$$\hat{a}_{\mathbf{n}} = a_{\mathbf{n}} + \beta_{\mathbf{n}} \tag{2.20}$$

as the best estimate of the error to be expected in the measurement of $\mathbf{A}_{\mathbf{n}}$. The term eta_n is then the error in the estimation of the measurement error. The error vector $\underline{\underline{e}}_n$ will, of course, be seven dimensional and expressible as

$$\underline{\underline{e}}_{n} = \begin{vmatrix} \underline{\epsilon}_{n} \\ \underline{\delta}_{n} \\ \beta_{n} \end{vmatrix}$$
 (2.21)

Correspondingly, the correlation matrix becomes

$$E_{n} = \begin{vmatrix} \underline{\epsilon}_{n} & \underline{\epsilon}_{1} \\ \underline{\delta}_{n} & \underline{\delta}_{1} \\ \underline{\delta}_{n} & \underline{\delta}_{n} \\ \underline{\delta}_{n} &$$

It will be convenient in our later work to define the correlation vector $\underline{\phi}_n$ as the last column of the matrix E_n .

BATTIN For purposes of illustration consider the following model for correlated measurement errors. Let the error at time t_{n+1} , be composed of two parts.

$$a'_{n+1} = a_n \exp \left[-\lambda (t_{n+1} - t_n) \right]$$

(2. 23)

where a_n and ζ_{n+1} are independent randomnumbers, λ is a positive constant, and $\vec{\zeta}_{n+1}$ is zero. It follows that

$$\hat{a}'_{n+1} = \hat{a}'_{n} \exp \left[-\lambda (t_{n+1} - t_{n}) \right]$$
 (2.24)

and

$$\beta'_{n+1} = \beta_n \exp \left[-\lambda \left(t_{n+1} - t_n \right) \right]$$
 (2.25)

Hence, the extrapolated error vector $\frac{e'_1}{n+1}$ is calculated from

(2.26)

where $\boldsymbol{P}_{n+1,\;n}$ is the augmented transition matrix

$$P_{n+1,n} = \begin{bmatrix} \Phi_{n+1,n} & 0 & 0 \\ 0 & \exp[-\lambda(t_{n+1} - t_n)] & (2.27) \end{bmatrix}$$

The augmented extrapolated correlation matrix is then computed from

$$E'_{n+1} = P_{n+1,n} E_n P_{n+1,n}^T$$
 (2.28)

2,3 Summary of the Navigation and Guidance Equations

launch guidance from Earth is ignored. It is assumed that the main propulsion since, in the absence of any observation, the best unbiased estimate is that the stages are completed at time t_L and that the correlation matrix $E_0 = E(t_L)$ is The initial estimate of position and velocity deviation $\delta \hat{\underline{x}}_0 = \delta \hat{\underline{x}} (t_L)$ is zero, specified initially from a statistical knowledge of injection guidance errors. In the navigation and guidance theory presented here, the problem of spacecraft is on course.

considered to be subdivided into a number of smaller intervals by the sequence estimate of the deviation vector $\delta \underline{x}(t)$ is made at each such point -- the form of (2) a velocity correction is implemented; or (3) no action is taken. A revised three possible courses of action is followed: (1) a single observation is made; the revision depending, of course, on the nature of the decision. Specifically, of times $t_1,\ t_2,\ \dots$ called "decision points". At each decision point one of The time interval from launch to arrival time t_{A} at the target point is

as shown in Section 4, for uncorrelated measurement errors the revised estimate at the decision time t_n is one of the following:

$$\delta \widehat{\underline{k}}_n = \begin{cases} \delta \widehat{k}_n' + a_n^{-1} E_n' K \underline{h}_n (\delta \widetilde{A}_n - \delta \widehat{A}_n') & \text{(measurement)} \\ \delta \widehat{\underline{k}}_n = \begin{cases} (1 + J B_n) \delta \widehat{\delta}_n' & \text{(correction)} \end{cases}$$

The scalar coefficient a is computed from

$$a_n = \underline{h}_n^T K^T E_n' K \underline{h}_n + \overline{a}_n^Z$$
 (2.30)

The rectangular matrix J has six rows and three columns

$$J = \begin{vmatrix} 0 \\ 1 \end{vmatrix}$$
 (2.31)

and is just the reverse of the K matrix. The matrix $\mathbf{B}_{\mathbf{n}}$ is also rectangular having three rows and six columns and is partitioned as shown

$$B_n = \|C_n^* - I\|$$
 (2.32)

where C^{\star} is one of the fundamental navigation matrices described in Section 3.2.

At each decision point it is also necessary to update the correlation matrix E_n. Thus

$$E_n = \begin{cases} E_n' - a_n^{-1} (E_n' \text{ K} \underline{b}_n) (E_n' \text{ K} \underline{b}_n)^T & \text{(measurement)} \\ E_n = \begin{cases} E_n' + J \frac{1}{2n} \frac{1}{2n} \end{bmatrix} \end{cases}$$

BATTIN-5

The vector $\underline{\eta}_n$ is the difference between the commanded velocity correction and the actual velocity change implemented at time t_n .

to date estimate of the deviation vector $\delta rac{\dot{\Delta}}{n}$ but, in themselves, do not provide The above collection of formulae provides the means of maintaining an up any clue as to what decision should be made at each point. Suggestions for reasonable decision rules are discussed in Section 6.2 and in Appendix B.

in the augmented deviation vector and the associated correlation matrix. Thus arises in the method of processing a measurement to obtain a revised estimate When measurement errors are correlated, the only significant change

$$\delta \hat{\mathbf{x}}_{n} = \delta \hat{\mathbf{x}}_{n}' + a_{n}^{-1} \left(\mathbf{E}_{n}' \, \mathbf{K}_{\mathbf{I}_{n}} + \underline{\phi}_{n}' \right) \left[\delta \, \tilde{\mathbf{A}}_{n} - \left(\delta \, \hat{\mathbf{A}}_{n}' + \hat{a}_{n}' \right) \right] \tag{2.34}$$

$$E_n = E'_n - a_n^{-1} (E'_n K \underline{h}_n + \underline{\phi}'_n) (E'_n K \underline{h}_n + \underline{\phi}'_n)^T$$
 (2.35)

$$a_n = \underline{b}_n^T K^T E_n' K \underline{b}_n + 2 \underline{b}_n^T K^T \underline{\phi}_n' + (\beta_n'^2 + \zeta_n^2)$$
 (2.36)

The remaining equations are unaltered; however, certain obvious changes are required in the definition of the matrices J, K, and $\mathbf{B}_{\mathbf{n}}$ in order that they be dimensionally compatible with the seven dimensional deviation vector.

3. FUNDAMENTAL NAVIGATION MATRICES

matrices. The objective here is to introduce these matrices, indicate their role Basic to the solution of the navigation problem is a certain collection of in the navigation theory, and show how they may be obtained as solutions of differential equations.

3.1 General Solution of the Linearized Trajectory Equations

craft in an inertial coordinate system, and let \underline{g} $(\underline{r}_{\mathbf{s}},t)$ denote the gravitational ι Let $\underline{r}_{S}(t)$ and $\underline{v}_{S}(t)$ denote the position and velocity vectors of the spaceacceleration at position \underline{r}_{S} and time t. Then

$$\frac{d\underline{r}_s}{dt} = \underline{r}_s \quad , \quad \frac{d\underline{v}_s}{dt} = \underline{g}(\underline{r}_s, t) \tag{3.1}$$

are the basic equations of motion of the spaceship except for those brief periods during which propulsion is applied.

Let the vectors $\underline{r}_0(t)$ and $\underline{v}_0(t)$ represent the position and velocity at time t associated with the prescribed reference trajectory, and define

$$\delta_{\underline{I}}(t) = \underline{I}_{8}(t) - \underline{I}_{0}(t)$$
 $\delta_{\underline{Y}}(t) = \underline{Y}_{8}(t) - \underline{Y}_{0}(t)$ (3.2)

Then, the deviations $\delta_{\mathbf{L}}$ and $\delta_{\mathbf{V}}$ may be approximately related by means of the linearized differential equations:

$$\frac{d(\delta \underline{L})}{dt} = \delta \underline{y} \qquad \frac{d(\delta \underline{y})}{dt} = G(\underline{L_0}, t) \quad \delta \underline{L} \tag{3.3}$$

where $G(\underline{r}_{\Omega},t)$ is a matrix whose elements are the partial derivatives of the components of $g(r_0, t)$ with respect to the components of r_0 .

BATTIN-6 A particularly useful fundamental set of solutions of Eqs. (3, 3) may be developed in the following way. Let $t_{\rm L}$ and $t_{\rm A}$ be, respectively, the time of launch and the time of arrival at the target. Then, define the matrices R(t), $R^*(t)$, V(t), $V^*(t)$ as the solutions of the matrix differential equations

$$\frac{dR}{dt} = V \qquad \frac{dR^*}{dt} = V^*$$

$$\frac{dV}{dt} = GR \qquad \frac{dV^*}{dt} = GR^*$$
(3.4)

which satisfy the initial conditions

$$R(t_L) = 0$$
 , $R^*(t_A) = 0$ (3.5)

$$V(t_{\perp}) = I$$
 , $V^*(t_{A}) = I$

Here O and I denote, respectively, the zero and identity matrix. If we now write

$$\delta_{\underline{I}}(t) = R(t) \underline{c} + R^*(t) \underline{c}^*$$
 (3.6)

$$\delta_{\underline{V}(t)} = V(t)_{\underline{c}} + V^*(t)_{\underline{c}}^*$$
 (3.7)

where \underline{c} and \underline{c}^* are arbitrary constant vectors, it follows that these expressions satisfy the perturbation differential equations (3.3), and contain precisely the required number of unspecified constants to meet any valid set of initial or boundary conditions.

The elements of the R and V matrices represent deviations in position and velocity from the corresponding reference quantities as the result of certain specific deviations in the launch velocity from its reference value. For example, the first columns of these matrices are the vector deviations at time t due to a unit change in the first component of the velocity at time t_L . Corresponding interpretations may be ascribed to the other columns as well. A similar discussion will provide a physical meaning for the elements of R^{\star} and V^{\star} . For this purpose, however, it is convenient to imagine the roles of launch and target points as reversed.

3.2 The Vector Velocity Correction

Associated with the position \underline{r}_s and the time t is the vector velocity required by the spacecraft to travel in free fall from $\underline{r}_s(t)$ to the target point $\underline{r}_o(t_A)$ in the time t_A - t. An expression for this velocity vector is readily obtained from Eqs. (3.6) and (3.7). The condition that the vehicle pass through the target point is met by the requirement

$$\delta_{\underline{I}}(t_A) = 0 = R(t_A) \underline{c} + R^*(t_A) \underline{c}^*$$

Since R* (t_A) = O, it follows that \underline{c} = 0. Eliminating \underline{c} * between Eqs. (3.6) and (3.7) gives for the required velocity deviation* at time t

$$\delta_{\underline{\mathbf{Y}}}^{+}(t) = V^{*}(t) R^{*}(t)^{-1} \delta_{\underline{\mathbf{I}}}(t)$$
 (3.8)

Hence, the required velocity correction $\Delta \, \underline{v}$ is given by

$$\Delta \underline{v}^*(t) = C^*(t) \ \delta \underline{\underline{\iota}}(t) - \delta \underline{\underline{v}}(t) \tag{3.9}$$

where the C* matrix is defined by

$$C^*(t) = V^*(t) R^*(t)^{-1}$$
 (3. 10

The elements of the C* matrix are deviations in vehicle velocity from the reference values, as required to place the vehicle on a trajectory to the target point, which arise from certain specific deviations in the vehicle position. The interpretation applied to the columns is made in the manner described earlier in connection with the R and V matrices.

If the spacecraft has been in a free-fall status since launch, then, by employing arguments similar to those used in establishing Eq. (3.8), it can be shown that

$$\delta \underline{\mathbf{y}}^{-}(t) = \mathsf{C}(t) \ \delta \underline{\mathbf{f}}(t) \tag{3.11}$$

where

$$C(t) = V(t) R(t)^{-1}$$
 (3.12)

In this case Eq. (3.9) takes the form

$$\Delta \underline{\mathbf{v}}^*(t) = [C^*(t) - C(t)] \ \delta \underline{\mathbf{r}}(t)$$
 (3.13)

Since $\delta \underline{\mathbf{r}}(t)$ is different from zero solely as a result of an injection velocity error $\delta \underline{\mathbf{v}}(t_{\underline{L}})$, it follows, from the definition of the R matrix, that $\Delta \underline{\mathbf{v}}^*(t) = - \Lambda(t) \ \delta \underline{\mathbf{v}}(t_{\underline{L}}) \tag{3.14}$

$$\Lambda(t) = V(t) - C^*(t) R(t)$$
 (3.15)

relates a deviation in launch velocity to the velocity impulse required at time t. A starred form of the \wedge matrix

$$\wedge^*(t) = \forall^*(t) - C(t) \; \mathbb{R}^*(t)$$
 will occur in the subsequent discussions.

3.3 Differential Equation Solutions

The matrices C, C*, \wedge , \wedge * may also be generated directly as solutions of differential equations. However, for C and C*, a difficulty arises in prescribing appropriate initial conditions. From the initial values of the R and R* matrices, it follows that $C(t_L)$ and $C^*(t_A)$ are both infinite. The singularities may be avoided by working directly with the differential equation for the inverse matrices C^{-1} and C^{*-1} .

^{*}The superscripts- and + are used to distinguish the velocity just prior to correction from the velocity immediately following the correction.

By differentiating the identity

$$C(t)^{-1} V(t) = R(t)$$
 (3.17)

and using Eq. (3.4), the following equation for C^{-1} results

$$\frac{dC^{-1}}{dt} + C^{-1} G C^{-1} = I$$
 (3.18)

Similarly, we obtain

$$\frac{dC^{*-1}}{dt} + C^{*-1} G C^{*-1} = I$$
 (3.19)

all values of t in the interval (t_L, t_A) if they are symmetrical for any particular time. But from Eq. (3.17) and a similar one involving starred matrices, we metrical. It follows at once that the matrices C and C*will be symmetrical for Equations (3.18) and (3.19) may be used to demonstrate an interesting property possessed by C and C * . It is easy to show that the G matrix is symhave

$$C(t_L)^{-1} = 0$$
 , $C^*(t_A)^{-1} = 0$ (3.20)

so that C and C * are, indeed, symmetrical for t equal to $^{}_{
m L}$ and $^{}_{
m A}$ respectively. Hence C(t) and C*(t): are symmetrical for all t in the interval from launch to the target point.

for \wedge and \wedge^* . By differentiating Eqs. (3.15) and (3.16) and using Eq. (3.4), In an entirely analogous manner, differential equations may be developed one readily obtains the equations

$$\frac{dv}{dt} + C^* v = 0 \tag{(}$$

and

$$\frac{d\Lambda^*}{dt} + C \Lambda^* = 0 \tag{3.22}$$

with the initial conditions

$$\wedge (t_{L}) = I$$
 , $\wedge^{*} (t_{A}) = I$ (3.23)

3.4 The State Transition Matrix

Let $\delta_{\underline{r}_n} = \delta_{\underline{r}}(t_n)$ and $\delta_{\underline{r}_n} = \delta_{\underline{r}}(t_n)$ be the deviations in position and velocity at time t_n , and let R_n , V_n , . . be the corresponding values of the fundamental matrices. The g and g must be obtained as solutions of

$$\delta_{\underline{I}_n} = R_n \underline{c} + R_n^* c^* \tag{3.24}$$

$$\delta_{\underline{y}_n} = V_n \underline{c} + V_n^* \underline{c}^* \tag{3.25}$$

Multiplying Eq. (3.24) by R_n^{-1} , we obtain for \underline{c}

$$\mathcal{L} = R_n^{-1} \left(\delta_{I_n} - R_n^* \underline{c}^* \right)$$
(3.

 $\underline{c}=R_n^{-1}\left(\delta_{I_n}-R_n^*\,\underline{c}^*\right) \eqno(3.25)$ Then, by substituting this expression into Eq. (3.25) and using Eqs. (3.12) and 3.16), there results

$$\underline{c}^{\bullet} = - \wedge_{n}^{*-1} \left(C_{n} \delta_{\underline{I}_{n}} - \delta_{\underline{\nu}_{n}} \right) \tag{3.27}$$

Finally, from Eq. (3.26) we have

$$\mathcal{L} = - \wedge_{n}^{-1} \left(C_{n}^{*} \, \delta_{\underline{L}_{n}} - \delta_{\underline{L}_{n}} \right) \tag{3.28}$$

 $\underline{c} = - \wedge_n^{-1} (C_n^* \delta_{\underline{l}n} - \delta_{\underline{l}n})$ after some simplification. Thus, with \underline{c} and \underline{c}^* determined, the position and velocity deviations at any other time t are given by Eqs. (3.6) and (3.7). In terms of the six dimensional deviation vector defined by Eq. $(2.\,2)$, the

$$\delta_{\underline{X}(t)} = \begin{vmatrix} R(t) & R'(t) \\ | V(t) & V^*(t) \\ | V(t) & V^*(t) \end{vmatrix} \begin{vmatrix} c \\ c^* \end{vmatrix}$$
 (3. 29)

result may be written in the form $\delta_{\underline{X}}(t) = \left\| \begin{array}{ccc} R(t) & R^*(t) | \|\underline{c} \| \\ V(t) & V^*(t) | \|\underline{c}^* \| \\ V(t) & V^*(t) | \|\underline{c}^* \| \\ \end{array} \right\|$ (3.29) Consider now a specific value of t = t_{n+1} . Then substituting from Eqs. (3.27) and (3.28) into Eq. (3.29), a relationship between $\delta_{\underline{x}_{n+1}}$ and $\delta_{\underline{x}_n}$ is displayed

 $\delta \underline{x}_n+1=\Phi_n+1,_n\ \delta \underline{x}_n$ (3.30) where $\Phi_{n+1,n}$, the six-dimensional state transition matrix, is computed from

$$\Phi_{n+1,n} = \left\| R_{n+1} R_{n+1}^* \right\| \left\| (C_n^{*-1} \wedge_n)^{-1} 0 \right\| \left\| -1 C_n^{*-1} \right\|$$

$$\Phi_{n+1,n} = \left\| V_{n+1} V_{n+1}^* \right\| \left\| O \left(C_n^{-1} \wedge_n^* \right)^{-1} \right\| \left\| -1 C_n^{-1} \right\|$$
(3.31)

It is not difficult to show than an alternate calculation of the transition matrix may be made directly as the solution of the sixth order matrix differential equation

$$\frac{d \Phi (t, t_n)}{dt} = F(t) \Phi (t, t_n)$$
 (3.33)

subject to the initial condition $\Phi\left(t_{n},\ t_{n}\right)$ equal to the six dimensional identity matrix. The matrix F(t) is

$$F(t) = \begin{vmatrix} 0 & 1 \\ G(t) & 0 \end{vmatrix}$$
 (3.33)

Finally, it has been shown (5) that the inverse of the matrix $\Phi_{n+1,\,n}$ is directly obtained as

$$\Phi_{n+1,n}^{-1} = \Phi_{n,n+1} = \begin{vmatrix} \Phi_1 & \Phi_2 & -1 \\ \Phi_3 & \Phi_4 \end{vmatrix} = \begin{vmatrix} \Phi_1 & \Phi_2 & \Phi_4 \\ -\Phi_3 & \Phi_1 \end{vmatrix}$$
(3.34)

4. DERIVATION OF THE OPTIMUM LINEAR ESTIMATE

4.1 Uncorrelated Measurement Errors

Appendix A is made at time t_n . The observed deviation in the measured quantity As noted in the Introduction, the optimum linear estimate of the deviation A is $\delta \widetilde{A}$, and the best estimate for δA , as obtained from the extrapolated vector may be expressed as a recursion formula. Therefore, assume $\delta \overset{\circ}{x}_{n-1}$ deviation vector $\delta \underline{\mathbf{x}}_n$ at time t is expressible as a linear combination of the extrapolated estimate of δx_{n-1} and the difference between the observed and and $\mathbf{E}_{\mathbf{n-1}}$ are known and that a single measurement of the type described in estimated deviations in the measured quantity $A_{\rm n}$. Thus, for uncorrelated estimate of δ_{n-1}^{Λ} , is given by Eq. (2.18). Then a linear estimate for the measurement errors,

$$\delta \underline{\hat{x}}_{n} = \delta \underline{\hat{x}}_{n}' + \underline{w}_{n} \left(\delta \widetilde{A}_{n} - \delta \widetilde{A}_{n}' \right) \tag{4.1}$$

where the vector $\underline{\mathbf{w}}_{\mathbf{n}}$ is a weighting factor which will be chosen so as to minimize the mean-squared error in the estimate.

For this purpose use Eqs. (2.9), (2.7) and (2.5) to write

$$\underline{\mathbf{e}}_{\mathbf{n}}(\underline{\mathbf{w}}_{\mathbf{n}}) = \delta \underline{\hat{\mathbf{s}}}_{\mathbf{n}} - \delta \underline{\mathbf{s}}_{\mathbf{n}}$$

$$= \delta \underline{\hat{\mathbf{s}}}_{\mathbf{n}}' + \underline{\mathbf{w}}_{\mathbf{n}} \left(\delta \mathbf{A}_{\mathbf{n}} + \alpha_{\mathbf{n}} - \delta \hat{\mathbf{A}}_{\mathbf{n}}' \right) - \delta \underline{\mathbf{s}}_{\mathbf{n}}$$

$$= (1 - \underline{\mathbf{w}}_{\mathbf{n}} \underline{\mathbf{h}}_{\mathbf{n}}^{\mathsf{T}} \mathbf{K}^{\mathsf{T}}) \left(\delta \underline{\hat{\mathbf{s}}}_{\mathbf{n}}' - \delta \underline{\mathbf{s}}_{\mathbf{n}} \right) + \underline{\mathbf{w}}_{\mathbf{n}} \alpha_{\mathbf{n}}$$

$$= (1 - \underline{\mathbf{w}}_n \, \underline{\mathbf{h}}_n^T \, \mathbf{K}^T) \, \underline{\mathbf{e}}_n' + \underline{\mathbf{w}}_n \, \alpha_n$$

 $_{
m n}$ defined by Eq. (2.11) may be expressed as a function of the weighting vector where I is the six-dimensional identity matrix. Then the correlation matrix

$$E_{n}(\underline{w}_{n}) = (1 - \underline{w}_{n} \, \underline{h}_{n} \, K^{T}) \, E_{n}' \, (1 - K \, \underline{h}_{n} \, \underline{w}_{n}^{T}) + \underline{w}_{n} \, \underline{w}_{n}^{T} \, \frac{7}{\alpha_{n}}$$
 (4.1)

The mean-squared errors in the estimate of position and velocity deviations ϵ_n^2 and δ_n^2 are simply the respective traces of the submatrices

 $\mathbf{E}_{n}^{(1)}$ and $\mathbf{E}_{n}^{(4)}$. If the six-dimensional weighting vector $\underline{\mathbf{w}}_{n}$ is partitioned into two three-dimensional vectors

$$\frac{\mathbf{w}}{\mathbf{n}} = \frac{\mathbf{w}}{\mathbf{n}}$$

estimate e_n^2 (w) as the trace of the six-dimensional correlation matrix E_n (w). The subvectors of the optimum weighting vector $\underline{\mathbf{w}}_n$ will then each be optimum then from Eq. (4.3) it is easy to show that $E_n^{(1)}$ is a function only of $\underline{w}_n^{(1)}$ and $E_n^{(4)}$ is a function only of $\underline{w}_n^{(2)}$. Therefore, for the purposes of the following discussion, it is legitimate formally to treat the mean-squared error in the or the respective estimates of position and velocity deviations.

usual technique of the variational calculus. Let \underline{w}_n take on a variation $\delta \underline{w}_n$ and In order to determine the optimum weighting vector, one may apply the obtain from Eq. (4.3)

$$\delta e_n^2 \left(\underline{w}_n \right) = 2 tr \left[- \delta \underline{w}_n \underline{h}_n K^T E_n' \left(1 - K \underline{h}_n \underline{w}_n^T \right) + \delta \underline{w}_n \underline{w}_n^T \underline{a}_n^2 \right] \tag{4.5}$$

If $\delta e^{(\underline{v}_n)}$ is to vanish for all variations $\delta \underline{w}_n$, then it must follow that

where the positive scalar quantity a_n is defined by Eq. (2.30).

It can be readily shown that the \underline{w}_n determined from Eq. (4.6) actually does minimize $e_n^2(\underline{w}_n)$. Suppose that the optimum \underline{w}_n is replaced by another weighting factor $\underline{\underline{w}}_n - \underline{\underline{y}}_n$. Then from Eqs. (4.3) and (2.17)

$$e_{n}^{2}(\underline{w}_{n} - \underline{y}_{n}) = tr \left[E_{n}^{1} - 2 (\underline{w}_{n} - \underline{y}_{n}) \underline{h}_{n}^{T} E_{n}^{1} + a_{n} (\underline{w}_{n} - \underline{y}_{n}) (\underline{w}_{n}^{T} - \underline{y}_{n}) \right]$$
(4.7)

(4.8)

$$e_n^2 \left(\underline{w}_n - \underline{y}_n \right) = \text{tr} \left[E_n' - a_n \left(\underline{w}_n - \underline{y}_n \right) \left(\underline{w}_n^T + \underline{y}_n^T \right) \right]$$

Thus, the mean-squared error is not decreased by perturbing \underline{w}_n if Eq. (4.6)

Having obtained the optimum weighting vector, the expression for the correlation matrix of the estimate errors Engiven by Eq. (4.3) may be written by in a more convenient form. Thus, from the definition of a in Eq. (2.30),

there results

$$E_{n} = E'_{n} (1 - K \underline{h}_{n} \underline{w}_{n}^{T}) - \underline{w}_{n} h_{n}^{T} K^{T} E'_{n} + \alpha_{n} \underline{w}_{n}^{T}$$
(4.10)

Substituting from Eq. (4.6), the final expression may be written as

$$E_n = E'_n - a_n^{-1} (E'_n K \underline{h}_n) (E'_n K \underline{h}_n)^T$$
 (4.11)

Equations (4.1) and (4.11) then serve as recursive relations to be used in obtaining improved estimates of position and velocity deviations at each of the measurement times t_1 , t_2 , ...

4.2 Correlated Measurement Errors

If the measurement errors are correlated, the derivation is only slightly altered. The linear estimate for the seven dimensional deviation vector $\frac{\delta_{\underline{x}}}{\delta_n}$ at time t_n is again expressible as a linear combination of the extrapolated estimate of $\delta_{\underline{x}_{n-1}}$ and the difference between the observed and estimated deviations in the measured quantity A_n . However, the estimated deviation in A_n must also include the estimate of the error in the observation. Thus

$$s\hat{S}_{n} = s\hat{S}'_{n} + \underline{w}_{n} \left[s\hat{A}'_{n} - (s\hat{A}'_{n} + \hat{\Delta}'_{n}) \right]$$
 (4.12)

where now the weighting vector $\underline{\mathbf{w}}_n$ is seven dimensional.

The error in the estimate may be written as

$$\begin{aligned}
&\underline{e}_{n} = \delta \hat{\underline{A}}_{n} - \delta \underline{x}_{n} \\
&= \delta \hat{\underline{A}}_{n}^{'} + \underline{w}_{n} (\delta A_{n} - \beta'_{n} + \zeta_{n} - \delta \hat{A}'_{n}) - \delta \underline{x}_{n} \\
&= (1 - \underline{w}_{n} \underline{b}_{n}^{T} K^{T}) (\delta \hat{\underline{A}}_{n}^{'} - \delta \underline{x}_{n}) - \underline{w}_{n} (\beta'_{n} - \zeta_{n}) \\
&= (1 - \underline{w}_{n} \underline{b}_{n}^{T} K^{T}) \underline{e}_{n}^{'} - \underline{w}_{n} (\beta'_{n} - \zeta_{n})
\end{aligned}$$

The correlation matrix, expressed as a function of the weighting vector $\frac{W_{i}}{H_{i}}$, is

$$\mathsf{E}_{\mathsf{n}}(\underline{\mathsf{w}}_{\mathsf{n}}) = (\mathsf{I} - \mathsf{w}_{\mathsf{n}} \ \underline{\mathsf{h}}_{\mathsf{n}}^{\mathsf{T}} \ \mathsf{K}^{\mathsf{T}}) \ \mathsf{E}_{\mathsf{n}}^{\mathsf{n}} \ (\mathsf{I} - \mathsf{K} \ \underline{\mathsf{h}}_{\mathsf{n}} \ \underline{\mathsf{w}}_{\mathsf{n}}^{\mathsf{T}})$$

$$-(I - \underline{w}_{n} \ \underline{h}_{n} \ K^{T}) \underline{\phi}_{n} \ \underline{w}_{n}^{T}$$

$$-\underline{\phi}_{n}^{'T} (I - K \underline{h}_{n} \ \underline{w}_{n}^{T}) + \underline{w}_{n} \ \underline{w}_{n}^{T} (\beta_{n}^{'Z} + \overline{\zeta}_{n}^{Z})$$
(4. 14)

Again if we require $\delta e^2(\underline{w_n})$ to vanish for all variations $\delta \, \underline{w_n}$, it is readily shown that

$$a_n = E_n K h_n + \Phi_n'$$
 (4...

where a_n is defined by Eq. (2.36).

4.3 Correlation Between the Estimate and the Error

An important property of the optimum estimate, which is needed for the development of the statistical analysis procedures described in Section 5, will be derived here. The result may be stated simply as

$$\mathbf{e}_{x}$$
 $\mathbf{\hat{s}}_{x}$ = 0 (4.1)

if $\delta \underline{\hat{x}}_n$ is the optimum estimate; i.e., the optimum estimate and the associated error in the estimate are uncorrelated. In the proof we consider, for simplicity, only the case of uncorrelated measurement errors, but the property is readily established in general.

From Eq. (4.5) we have

$$\underline{w}_{n} = \frac{1}{a_{n}} - (I - \underline{w}_{n} \ \underline{h}_{n}^{T} \ K^{T}) E_{n}^{*} \ K \underline{h}_{n} = 0$$
 (4.17)

or alternately,

(4.13)

$$\underline{w}_{n} \ a_{n}^{2} - [(1 - \underline{w}_{n} \ \underline{h}_{n}^{T} \ K^{T}) e_{n}'] \underline{e}_{n}'^{T} \ K_{\underline{h}_{n}} = 0 \tag{4.18}$$

$$\underline{w}_n \alpha_n^2 + (\underline{w}_n \alpha_n - \underline{e}_n) \underline{e}_n'^T K \underline{h}_n = 0$$
 (4.19)

But since $a_n = \frac{T}{n} = 0$, we have

$$(\underline{\mathbf{w}}_{n} \alpha_{n}) \alpha_{n} - \underline{\mathbf{e}}_{n} \underline{\mathbf{e}}_{n}^{\mathsf{T}} \mathbf{K} \underline{\mathbf{h}}_{n} = 0 \tag{4.20}$$

Again substituting for $\underline{w}_n\,\alpha_n$ from Eq. (4.2) gives

$$[\underline{e}_{n} - (1 - \underline{v}_{n} \, \underline{b}_{n}^{T} \, K^{T}) \, \underline{e}_{n}^{'}] \, \alpha_{n} - \underline{e}_{n} \, \underline{e}_{n}^{'T} \, K \, \underline{b}_{n} = 0$$
 (4.21)

or, simply,

$$\underline{\underline{\mathbf{e}}_{\mathbf{n}}} \left(\underline{\mathbf{a}}_{\mathbf{n}} - \underline{\mathbf{e}}_{\mathbf{n}}^{'\mathsf{T}} \, \mathbb{K} \, \underline{\underline{\mathbf{h}}}_{\mathbf{n}} \right) = 0 \tag{4.22}$$

Thus, \underline{e}_n and the scalar quantity $a_n - \underline{e}_n'^T \ K \ \underline{h}_n$ are uncorrelated. Hence,

$$\underline{e}_{n} \left[\underline{w}_{n}^{T} (\alpha_{n} - \underline{e}_{n}^{T} K \underline{h}_{n}) \right] = 0$$
 (4.23)

or, from Eq. (4.2)

$$\underline{\mathbf{e}}_{\mathbf{n}} (\underline{\mathbf{e}}_{\mathbf{n}}^{\mathsf{T}} - \underline{\mathbf{e}}_{\mathbf{n}}^{\mathsf{T}}) = 0 \tag{4.24}$$

Therefore,

$$\underline{\mathbf{e}}_{n} \left[\delta \underline{\mathbf{x}}_{n}^{\mathsf{T}} + \underline{\mathbf{e}}_{n}^{\mathsf{T}} - (\delta \underline{\mathbf{x}}_{n}^{\mathsf{T}} + \underline{\mathbf{e}}_{n}^{\mathsf{T}}) \right] = 0$$
 (4.25)

or

$$\underline{\underline{e}_{n}} \ \underline{s}_{\underline{A}, n}^{\underline{A}} = \underline{\underline{e}_{n}} \ \underline{s}_{\underline{A}, n}^{\underline{A}, T} \tag{4.26}$$

From this final relationship it is easy to show that \underline{e}_n and $\delta \, \underline{\hat{x}}_n$ are uncorrelated. For if we substitute from Eqs. (4.2) and (2.16), it follows that

$$\mathbf{e}_{n} \ \delta \hat{\mathbf{x}}_{n}^{\mathsf{T}} = [(\mathbf{I} - \underline{\mathbf{w}}_{n} \ \underline{\mathbf{h}}_{n}^{\mathsf{T}} \, \mathbf{K}^{\mathsf{T}}) \ \Phi_{n,n-1} \ \underline{\mathbf{e}}_{n-1} + \underline{\mathbf{w}}_{n} \ \alpha_{n}] \ \delta \hat{\underline{\mathbf{x}}}_{n-1}^{\mathsf{T}} \ \Phi_{n,n-1}$$

$$= (\mathbf{I} - \underline{\mathbf{w}}_{n} \ \underline{\mathbf{h}}_{n}^{\mathsf{T}} \, \mathbf{K}^{\mathsf{T}}) \ \Phi_{n,n-1} \ \underline{\mathbf{e}}_{n-1} \ \delta \hat{\underline{\mathbf{x}}}_{n}^{\mathsf{T}} \ \Phi_{n,n-1}^{\mathsf{T}}$$

$$(4.27)$$

Then by continuing the reduction of $\frac{1}{e_n-1} \delta \frac{\Lambda}{2} T$ we have, finally, $\frac{1}{e_n} \delta \frac{\Lambda}{2} T$ related to $\frac{1}{e_n} \delta \frac{\Lambda}{2} \delta \delta \frac{1}{2}$ which is zero. Thus, Eq. (4.16) is established and the proof is complete.

5. STATISTICAL ANALYSIS OF THE GUIDANCE PROCEDURE

From exact knowledge of the six-dimensional deviation vector $\delta \, \underline{x}_n$ at time t , a velocity correction may be calculated which, if implemented, will insure the vehicle's arrival at a fixed point in space at the required time. However, only the estimate $\delta \, \underline{x}_n^{\lambda}$ is available. From this, an estimate of the velocity correction vector $\Delta \, \underline{\hat{v}}_n$ may be determined from

$$\Delta \underline{\hat{Y}}_n = B_n \delta \underline{\hat{X}}_n \tag{5.1}$$

where B_n is defined by Eq. (2.32). (Refer to the discussion leading to Eq.(3.9),)

The need for a velocity correction arises solely from improper injection into orbit. If the first such correction is executed perfectly, then, of course, no further corrections are required. However, because of imperfect knowledge of position and velocity obtained from navigational measurements, the commanded velocity change will be in error. Furthermore, the actual velocity change experienced will differ from that commanded because of imperfect instrumentation. Therefore, subsequent corrections will be required to remove the effects produced by earlier inaccuracies.

5.1 Correlation Matrix of the Velocity Correction Vector

An estimate of the required velocity correction vector $\Delta \, \overset{\circ}{\Delta}_n$, as computed from Eq. (5.1), may be determined at each decision time whether or not the correction is actually implemented. The correlation matrix of the velocity correction vector may be expressed directly in terms of the extrapolated matrices E_n and X_n .

From Eq. (5.1) we have

$$\Delta \underline{\hat{Q}}_n = B_n \left(\delta \underline{x}_n' + \underline{e}_n' \right) \tag{5.2}$$

so that

$$\Delta_{\Delta_n} \Delta_{\Delta_n}^{T} = B_n \left(\delta_{\underline{x}_n} \delta_{\underline{x}_n}^{T} + \underline{e}_n^{\prime} \delta_{\underline{x}_n}^{T} + \delta_{\underline{x}_n^{\prime}} \underline{e}_n^{\prime} + \overline{E}_n^{\prime} \right) B_n^{T}$$
 (5.3)

BATTIN-11

On the other hand

$$\underline{s}\underline{\hat{x}}, T = \underline{s}\underline{x}, T + \underline{e}, T \tag{5.4}$$

from which

$$\underline{\mathbf{e}}_{n}^{\prime} \ \widehat{\mathbf{x}}_{n}^{\prime \prime} \ \underline{=} \underline{\mathbf{e}}_{n}^{\prime} \ \widehat{\mathbf{x}}_{n}^{\prime \prime} \ + \overline{\mathbf{E}}_{n}^{\prime} = 0 \tag{5.5}$$

according to the theorem proved in Section 4.3.

ence

$$\Delta \hat{\Delta}_{\mathbf{n}}^{\mathbf{T}} = \mathbf{B}_{\mathbf{n}} (\mathbf{X}_{\mathbf{n}}^{\mathbf{T}} - \mathbf{E}_{\mathbf{n}}^{\mathbf{T}}) \mathbf{B}_{\mathbf{n}}^{\mathbf{T}}$$
 (5. 6)

The correlation matrix $\mathbf{X_n}$ may be calculated using Eq. (2.13) when no velocity correction is made. If the velocity is corrected at time t_n , the following procedure is valid.

Using Eq. (2.29) we may write

$$\delta_{\underline{x}_n} = \delta_{\underline{x}_n'} + JB_n \delta_{\underline{x}_n'} - J\underline{\eta}_n$$

$$= (I + JB_n) \delta_{\underline{x}_n'} + JB_n e_n' - J\underline{\eta}_n$$

(5.7)

Hence

$$\delta_{\underline{x}_{n}} \delta_{\underline{x}_{n}}^{T} = (1 + JB_{n}) \delta_{\underline{x}_{n}} \delta_{\underline{x}_{n}}^{T} (1 + JB_{n})^{T}
+ JB_{n} E_{n}^{T} (JB_{n})^{T} + J \underline{y}_{n} \underline{y}_{n}^{T} J^{T}
+ (1 + JB_{n}) \delta_{\underline{x}_{n}}^{T} e_{n}^{T} (JB_{n})^{T}
+ JB_{n} e_{n}^{T} \delta_{\underline{x}_{n}}^{T} (1 + JB_{n})^{T}$$
(5.8)

which may be further reduced using Eq. (5.5). In summary, then

$$X_{n} = \begin{cases} X'_{n} \\ (I + JB_{n}) (X'_{n} - E'_{n}) (I + JB_{n})^{T} + E'_{n} + J \frac{T}{2n} \frac{T}{2n} J^{T} \text{ (correction)} \end{cases}$$
(5.9)

Just as the extrapolated error vector and the associated correlation matrix are altered at an observation point, so also will they change at a correction point. Thus,

$$\underline{e}_{n} = \underline{e}'_{n} + \begin{vmatrix} 0 \\ n \end{vmatrix}$$
 (5.1)

and

$$E_n = E'_n + \begin{vmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{2^n} & \frac{1}{2^n} \end{vmatrix}$$
 (5.1)

The mean-squared estimate of the velocity correction is determined as the trace of the matrix $\Delta \frac{\Delta}{n} \Delta \frac{\Delta T}{n}$. As a basis for a decision theory, it is important to know something of the precision of the estimate. Clearly, a velocity correction having a large uncertainty should not be commanded if it is possible to improve substantially the estimate by future observations. The uncertainty $\frac{\Delta}{n}$ in the estimate $\Delta \frac{\Delta}{n}$ is simply

Hence, the mean-squared uncertainty is determined as the trace of the matrix
$$\frac{d_n}{d_n} = A_n \hat{s}_n = B_n \hat{e}_n' \qquad (5.12)$$

5.2 Uncertainty in the Applied Velocity Correction

In order to complete the statistical analysis of the velocity correction, it is necessary to examine more carefully the vector uncertainty η in the velocity correction. The inaccuracy in establishing a commanded velocity correction $\Delta_{\underline{Y}}^{\lambda}$ is due to errors in both magnitude and orientation. In the following analysis the two sources of error will be assumed independently random with zero means.

Consider a coordinate system in which the estimated velocity correction vector is along one of the coordinate axes. Then if M is the transformation matrix which relates the selected axis system and the original reference system, we may write

$$\Delta \hat{\underline{\nabla}} = \Delta \hat{\nabla} M \begin{vmatrix} 0 \\ 0 \end{vmatrix}$$

(5.14)

Now, define a random variable κ such that

such that
$$\Delta v = (1 + \kappa) \Delta \hat{V}$$
 (5. 15)

 κ and γ are small quantities so that powers and products are negligible compared and let γ be the random angle between $\Delta \underline{\hat{V}}$ and $\Delta \underline{v}$. It will be assumed that both with unity. The actual vector velocity correction is then

$$\Delta_{\underline{\mathbf{Y}}} = (1 + \kappa) \ \Delta^{\hat{\mathbf{Y}}}_{\mathbf{M}} \| \begin{array}{c} \gamma \cos \beta \\ \gamma \sin \beta \\ 1 \end{array} \|$$

(5.16)

where eta is a polar angle defining the rotation of $\Delta \, \underline{\mathrm{v}} \,$ with respect to $\Delta \, \underline{\mathrm{v}} \,$. Hence,

the uncertainty vector $\underline{\eta}$ is expressible as

$$\underline{\eta} = \Delta \underline{\hat{\mathbf{v}}} - \Delta \underline{\mathbf{v}} = -\Delta \hat{\mathbf{v}} \, \mathbb{M} \, \left\{ (1 + \kappa) \gamma \, \middle| \, \begin{array}{c} \cos \beta \\ \sin \beta \\ 0 \end{array} \right. + \kappa \, \middle| \, \begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \, \left\{ (5.17) \right.$$

Assume that κ , γ , β are statistically independent random variables with zero means. Further assume that β is uniformly distributed over the interval - π to π . Then one obtains for the correlation matrix of the velocity correction uncertainty

$$\frac{1}{2\eta^{T}} = \frac{1}{\kappa^{2}} \frac{1}{\Delta_{Q}^{2}} \frac{1}{\Delta_{Q}^{2}} + \frac{1}{2} \frac{1}{\Delta_{Q}^{2}} \frac{1}{\Delta$$

where I is the three-dimensional identity matrix and κ and γ^2 are the meansquared valued of κ and γ .

Miss Distance at the Target

the position deviation vector at the nominal time of arrival at the target is made ection. Thus, if t_{N} is the time of the last correction and $\delta_{\underline{x}A}$ is the deviation by extrapolating the deviation vector from the point of the final velocity corr-Turning now to the problem of guidance accuracy, the determination of vector at the time of arrival t_A , then

$$(9) \qquad \qquad \stackrel{\mathsf{N}_{\mathbf{X}^{\mathsf{Q}}}}{\overset{\mathsf{N}}{\mathsf{N}^{\mathsf{Q}}}} \, \mathsf{N}^{\mathsf{A}} \Phi = \mathsf{A}^{\mathsf{A}} \mathsf{A}^{\mathsf{Q}}$$

But from Eq. (3.31) and the terminal conditions for the navigation matrices,

$$\Phi_{A,N} = \begin{vmatrix} -R_A \wedge \bar{A} & 0 & C_N & -1 \\ -V_A \wedge \bar{A} & -V_A \wedge \bar{A} & -V_A \end{pmatrix} = \begin{pmatrix} C_N & -1 \\ C_N & -1 \end{pmatrix}$$
(5.20)

Hence, the position deviation vector at the target $\, \delta_{\underline{L}\underline{A}} \,$ may be written as

$$\delta_{\underline{I}A} = -R_A \wedge_N^{-1} B_N \delta_{\underline{x}N}^+ \tag{5.21}$$

with a similar expression obtainable for the velocity deviation at time ${\sf t}_{A}.$

The target position error may be written ultimately in terms of the error vector e_N according to the following self-evident steps

= RA AN (BN EN - IN)

(5.22)

The mean square position error at the target is then computed as the trace of the matrix $\delta \underline{r}_A$ $\delta \underline{r}_A^T$.

6. APPLICATION TO TRANS-LUNAR NAVIGATION

1 Decision Rules

As a necessary step in the application of the navigation and guidance scheme formulated in this paper, certain rules must be adopted concerning the course of action to be taken at each of the "decision points" described in Section 2.3. The number and frequency of observations must be controlled in some manner -- ideally by a decision rule which is realistically compatible with both the mission objectives and the capabilities of the measuring device. If an observation is to be made, a decision is required regarding the type of measurement and the celestial objects to be used. Periodic velocity corrections must be applied and the number of impulses and times of occurrence must be decided.

Once the decision rules have been specified, it is necessary to test their effectiveness according to some measure of performance. A typical objective is to minimize the miss distance at the target. However, a reduction in miss distance usually implies an increase in either the required number of measurements or a greater expenditure of corrective propulsion or both. In the face of these conflicting objectives, compromises are clearly necessary and statistical simulation provides a means of arriving at an acceptable balance.

In the interest of minimizing the number of simulator runs, Monte Carlo techniques should be avoided if possible. Fortunately, it is unnecessary to generate the true spacecraft trajectory, as would be required for Monte Carlo simulation, in order to analyze the effects of a particular set of decision rules. The reader may readily verify that (Eq. (2.29), which defines the estimate $\delta \frac{\lambda}{L_n}$ and depends on actual measurement data, is never involved in any of the statistical calculations.

A specific example of a set of decision rules to be applied at each decision point is as follows:

1. The estimated mean-squared velocity correction Δv_n^2 and the mean-squared uncertainty $\frac{d^2}{d}$ associated with the estimate are computed from Eqs. (5.6) and (5.13). If the ratio

$$R_{\nu} = \sqrt{\frac{d^2}{d^n}/\Delta \hat{v}_n^2} \tag{6.1}$$

is less than a specified amount $R_{\nu(\mathrm{min})}$, a velocity correction is made at time t_n .

2. If the criteria is not met which would call for initiation of a velocity correction, the desirability of making an observation is examined. For this purpose, an abbreviated star catalog is postulated together with selected planets. Each star and planet measurement combination is analyzed to determine its effect on the reduction in position uncertainty at the target. The particular star-planet combination producing the greatest mean-square reduction is then defined as the best potential measurement.

Now let $\delta\,r_A^{2\,+}$ and $\delta\,\,r_A^{2\,-}$ be the respective mean-square position uncertainties at the target which would result with and without the best possible observation. Then, if the ratio

$$R_{p} = \sqrt{\frac{\hat{s}r_{A}^{2} - \hat{s}r_{A}^{2}}{\hat{s}r_{A}^{2}}}$$
 (6.2)

is greater than a specified value $R_{p(max)}$, the best potential measurement is made at time t. In other words, for a measurement to be made, a significant reduction in the potential miss distance must result. If, on the other hand, the above criterion is not met, no action is taken at the decision point t.

6.2 Numerical Example

In this section, the decision rules presented previously are applied to the circumlunar navigation problem. It was found that the velocity correction criterion worked quite well to establish the times of mid-course maneuvers with the exception of the final correction. The required velocity change increases quite rapidly as the target is approached and the timing of this last correction is critical. After preliminary experimentation with different values of R_{ν} , it was decided to fix apriori the correction times for the remainder of the study of the navigation problem. Cross correlation between measurement errors was ignored and only the Earth and Moon together with the 20 brightest stars were considered for potential measurements.

The date and time of orbital injection was Julian Day 2440043,6088 with the closest point of approach some 60 miles from the lunar surface. The nominal total time of flight from injection was 126.4 hours.

The correlation matrix of injection errors \boldsymbol{E}_0 was obtained from the following assumed root-mean-square injection errors,

Range	5000 ft	4 ft/sec
Track	15, 000 ft	6 ft/sec
Altitude	10,000 ft	15 ft/sec

The correlation matrix below was obtained by a transformation from the altitude, track, range coordinate system to a coordinate system with the x axis along the vernal equinox, z axis along the Earth polar axis and the y axis chosen to make a right handed coordinate system. The basic units in the E_0 matrix are miles and miles per hour.

0	0	0	2.72	36.0	36.1
0	0	0	4.65	83.8	36.0
0	0	0	7.73	4.65	2.72
0.203	-1.86	7.04	0	0	0
0.063	4.58	-1.86	0	0	0
0.918	0.063	0.203	0	0	0
): L	ا .		

At each decision point, forty potential measurements were examined and evaluated according to the decision criterion. The minimum time between observations was required to be 15 minutes. For simplicity, only star elevations above an illuminated horizon of either the Earth or Moon were considered. Certain practical constraints were imposed so that physically unrealizable measurements were screened out. For example, in order to keep the field of view requirements reasonable, the lines of sight to the star and to the horizon were required not to exceed seventy degrees. Also no measurement could be made if the line of sight to either star or planet edge were closer than fifteen degrees

from the direction to the Sun. Furthermore, if the illuminated face of the Moon formed the background of the edge of the Earth from which a star elevation was to be reckoned, that particular measurement would not be made.

The optical measuring device used for the observations was assumed to be unbiased with a random error whose variance was

$$\sigma_{\rm E}^2 = (0.00005)^2 + \left(\frac{1}{\rm r_{SE}}\right)^2 \text{ radians}$$

for the Earth, and

$$\sigma_{\rm M}^2 = (0.00005)^2 + \left(\frac{0.5}{r_{\rm SM}}\right)^2 \text{ radians}$$

for the Moon where $r_{\rm SE}$ and $r_{\rm SM}$ are the distances in miles from the spacecraft to the Earth and Moon respectively. In this manner it was possible to account for the larger uncertainty in defining the horizon which would exist when the spacecraft is close to a planet. At large distances the rms error is approximately 0.05 milliradians.

The magnitude error in applying a velocity correction was assumed to be isotropic and proportional to the commanded correction. Specifically, the relation

$$\frac{7}{7_n^2} = 0.0001 \ \triangle \ v_n^2$$

was adopted so that the rms error would be one percent of the rms correction. The orientation error assumed was 0.01 radians.

Preliminary results of an analysis of this sample trajectory are summarized in the accompanying tables. A number of simulated guidance flights were made for which the strategy parameters $R_{\rm v}$ and $R_{\rm p}$ had various assigned values. Then, in order to evaluate the effect on the navigation data of a variation in the time of year, a set of pseudo-trajectories was generated by the simple device

of rotating the direction of the Sun as viewed from the Earth. The trajectory was considered to be unchanged by this process-the assumption being quite adequate for the purpose of this preliminary analysis. In this manner different illuminated portions of the Earth and Moon were visible to the spacecraft resulting, thereby, in different measurements.

In general, as R is increased, one requires each measurement to have a proportionately greater significance in the reduction of the potential target error, with the result that the required total number of measurements decreases. There may be a corresponding penalty, of course, in that the resulting uncertainties in position and velocity at the target can increase. The objective in preparing a measurement schedule is to arrive at an acceptable compromise.

The number of velocity corrections as well as the times of their occurrence is, of course, controlled by $R_{\rm v}$. On the other hand, the number of measurements is not sensibly affected by variations in this parameter. As an example, in Table 1 navigation data for the Earth to Moon trajectory is given for two values of the velocity correction uncertainty ratio $R_{\rm v}$. Although the final position uncertainties are of the order of two miles, the deviations from the reference path are approximately twelve miles. This large difference results from the fact that measurement data was gathered after the final velocity correction so that knowledge of the orbit improved although no attempt was made to reduce the target error. It should be noted that if one elects to eliminate the final position deviation by a velocity correction one tenth hour before the nominal arrival time, velocity corrections of 104 mph and 68 mph, rethe nominal arrival time, velocity corrections of 104 mph and 68 mph, rein the final velocity deviations of 51 mph and 52 mph, respectively.

In Table 2 the navigation data for the Earth to Moon trajectory is given as a function of the miss distance reduction ratio R_p for velocity corrections made at 5, 20, 52, and 61.5 hours. For the case R_p = 0.6, there is a noticeable decrease in the final position uncertainty compared to that for R_p = 0.5. This apparent anomaly arises from the fact that for the R_p = 0.6 case, three objectivations are made after the last velocity correction, while, correspondingly, cally two observations are made for the R_p = 0.5 case. Table 3 presents sim: ar data for the Moon to Earth trajectory.

In order to study the effect of variations in the illuminated portions of the planet's surfaces, one set of values for $R_{\rm p}$ and times for velocity corrections was selected and the Sun direction altered in sixty degree steps except for the 70° and 250° cases. These two directions were singled out because they form a line approximately perpendicular to the Earth-Moon line at launch. Table 4 gives the results for the Earth to Moon trajectory and further shows that the 70° and 180° cases produce significantly larger uncertainties. For the 120° case the total velocity correction of 114 mph is somewhat higher. However this can be improved since the times selected for velocity corrections were not optimum for all cases. Table 5 presents similar data for the Moon to Earth trajectory.

In all cases the final velocity correction just prior to arrival at perilune is significantly larger than the previous two mid-course corrections. The result is a rather large velocity deviation from the nominal value at the target point. On the return flight this deviation causes the first velocity correction to be substantial which accounts for the increase in fuel requirements required for the Moon to Earth trip. If the objective of the flight does not include passage through a preassigned perilune position, then, obviously, the total of velocity corrections can be reduced.

Table 6 summarizes Earth to Moon flight navigation data for various Moon horizon uncertainties. The number of measurements remained constant (76 and 77) for the cases investigated. Total velocity corrections, final velocity deviations and final position deviations did not increase until the uncertainty reached 5 miles. However final position and velocity uncertainties are sensitive to Moon horizon determination as would be expected.

Table 7 presents the same data for the Moon to Earth flight for various Earth horizon uncertainties. The number of measurements and total velocity correction did not vary appreciably. However all uncertainties and deviations are sensitive to Earth horizon determination.

Finally, in Tables 8 and 9, a complete history of a circumlunar mission s given corresponding to the starred cases summarized in Tables 4 and 5.

Table 1. Earth to Moon flight navigation data as a function of velocity correction uncertainty ratio.

Miss Distance Reduction Ratio
$$\equiv$$
 $\left\{\begin{array}{l} 0.1 \text{ start to 8 hrs} \\ 0.5 \text{ 8 hrs to 62.5 hrs} \end{array}\right.$

Sun Line $= 250^{\circ}$

 1			
Final Velocity Deviation (mph)	95	39	
Final Position Deviation (miles)	12.5	12.0	
Final Velocity Uncertainty (mph)	11.1	4.6.	
Final Position Uncertainty (miles)	2.5	1.8	
Total Velocity Correction (mph)	107	7.2	
Times for Velocity Corrections	7.0 hrs 18.0 hrs	61.8 hrs 5.5 hrs	11.5 hrs 26.0 hrs 61.4 hrs
Number of Measurement	39	40	
Velocity Correction Uncertainty Ratio	0.2	0.3	

Table 3. Moon to Earth flight navigation data as a function of miss distance reduction ratio.

Velocity Corrections at 64, 88, 120, 125 hrs Sun Line = 250°

Final Velocity Deviation (mph)	22	78	33	94	123
Final Position Deviation (miles)	10.0	12.6	13.9	15.2	28.0
Final Velocity Uncertainty (mph)	2.8	3.1	3.4	4.8	8.0
Final Position Uncertainty (miles)	1.5	1.6	1.8	2.5	4.3
Total Velocity Correction (mph)	82	68	66	197	211
Number of Measurements	26	44	58	12	91
Miss Distance Reduction Ratio	0.2	0.3	0.4	0.5	9.0

Table 4. Earth to Moon flight navigation data for pseudo trajectories as a function of sun direction rotation.

Miss Distance Reduction Ratio $\stackrel{=}{=}\begin{cases} 0.1 \text{ start to } 8 \text{ hrs} \\ 0.5 \text{ 8 hrs to } 62.5 \text{ hrs} \end{cases}$

Velocity Corrections at 5, 20, 52, 61.5 hrs

	Sun Direction Rotation (degrees)	Number of Measurements	Total Velocity Correction (mph)	Final Position Uncertainty (miles)	Final Velocity Uncertainty (mph)	Final Position Deviation (miles)	Final Velocity Deviation (mph)
	0	41	89	1.3	3	3	31
	70	39	64	6.5	18	80	39
	120	39	114	1.6	3	12	92
	180	40	99	5.2	21	12	84
•	250	40	78	1.2	4	11	09
	300	39	88	1.2	4	4	46
					_	_	

distance reduction ratio

(miss distance reduction ratio constant at 0.1 from 0 to 8 hrs)

Velocity Corrections at 5, 20, 52, 61.5 hrs Sun Line = 250°

Miss Distance Reduction Ratio (from 8 hrs to 62.5 hrs)	Number of Measurements	Total Velocity Correction (mph)	Final Position Uncertainty (miles)	Final Vetocity Uncertainty (mph)	Final Position Deviation (miles)	Final Velocity Deviation (mph)
0.2	115	52	0.70	1.7	3.9	16
0.3	77	2 6	1.10	3.7	7.1	23
0.4	\$\$	59	1.10	3.7	8.7	92
6.5	40	78	1.20	4.0	11.0	99
9.0	32	89	0.84	3.1	17.4	99

Table 5. Moon to Earth flight navigation data for pseudo trajectories as a function of sun direction rotation.

Miss Distance Reduction Ratio $^{\pm}$ 0.4 Velocity Corrections at 64, 88, 120, 125 hrs (* first corr. at 70 hrs)

Table 8. Typical navigation data for Earth to Moon flight.

Miss Distance Reduction Ratio $^{\circ}$ $\left\{ \begin{array}{l} 0.1 \text{ start to 8 hts.} \\ 0.5 \text{ 8 hts to } 62.5 \text{ hts.} \end{array} \right.$

Sun Line = 250°

L_		`	-1		
					_
Final Velocity Deviation (mph)	53	\ 8	41	33	66
Final Position Deviation (miles)	24	21	10	14	31
Final Vetocity Uncertainty (mph)	6.5	5.5	4.3	3.4	3.9
Final Position Uncertainty (miles)	3.5	2.9	2.1	1.8	2.3
Total Velocity Correction (mph)	80	227	94	66	163
Number of Measurements	91	91	20	28	14
Sun Direction Rotation (degrees)	70	120	180	250	300

Table 6. Earth to Moon flight navigation data as a function of Moon horizon uncertainty.

	10 3 8 hrs to 62.5 hrs
ss Distance Reduction Ratio =	

Sun Line = 250°

Table 7. Moon to Earth flight navigation data as a function of Earth horizon uncertainty.

Miss Distance Reduction Ratio $^{\pm}$ 0.3 Sun Line $^{\pm}$ 250° Velocity Corrections at 64, 88, 120, 125 hrs

Earth Horizon Uncertainty (miles)	Number of Measurements	Total Velocity Correction (mph)	Final Position Uncertainty (miles)	Final Velocity Uncertainty (mph)	Final Position Deviation (miles)	Final Velocity Deviation (mph)
1	44	68	9.1	3.1	12.6	28
2	4	88	2.6	4.8	15.3	32
3	42	89	3.8	7.1	1.61	ė,
'n	42	91	5.8	10.7	21.6	.43
		-				

(1001)	ě	Observation	Velocity Correction (mph)	In Position Uncertainty at Target (miles)	Uncertainty at Target (miles)	Velocity Correction (mph)	in Velocity Correction (mph)	Position Uncertainty (miles)	Velocity Uncertainty (mph)	Position Deviation (miles)	Velocity Deviation (mph)
				2,50	35.78	c	11.9	4.8	10.9	4.9	11.0
9.0	Moon	Antares		707	1504	, ::	12.9	4.5	7.9	7.4	11.3
6.0	Earth	Fomerhaut		1607	707	0 11	9.5	5.3	7.9	10.4	15.0
1.2	Earth	Deneb		240	13.63	12.6	9.2	6.5	7.6	13.9	12.7
1.5	Earth	Aldebaran		417	1342	2		8.2	7.6	17.6	13.5
8.	Earth	Aldebaran		370	0671	14.0	• •	9 01	7.6	23.1	14.6
2.2	Earth	Aldebaran		408	1224	5.5		13.0	7.2	28.9	15.5
2.6	Earth	Pollux		456	1136	6.01		12:0	8 4	15.2	16.4
3.0	Earth	Procyon		515	1013	18.3	7.7	7.61	5 4	4	17.2
3.4	Earth	Procyon		405	9.78	19.7	8.7	0	; ;	48.7	17.9
	Earth	Pollux		426	825	20.9	8.3	7.57	5	· ·	2
	Earth	Procyon		403	719	22.8	8.0	0./1	o.	;	
.0.			24.1				ì	5	0,1	20.0	7.8
:	Farch	Pollux		435	573	0	2.6	18.4	į.	2 6	1,6
	T day	Procyon		273	504	4.6	6.4	18.3	4.	6,70	
	1	Pollur		244	441	5.7	5.8	18.1	4	0.60	: :
ŝ	T T	1		761	395	6.5	5.3	18.2	3.7	1.69	?
0.	Moon	Vuceron I		201	148	7.2	6.4	17.9	3.4	69.5	7.5
7.5	E acth	Foliar		2 2	204	7.9	4.7	18.3	3.0	71.4	7.6
8.5	Moon	Antares		9 5	248	8.7	1.4	18.3	2.7	74.3	7.7
9.5	Moon	Antares		9 3	96	10	3.6	17.1	2.4	76.2	7.8
10.0	Earth	Pollux		6 5	62,5	6.7		16.0	2.1	78.3	7.9
10.5	Мооп	Antares		ò ò			2.9	16.7	1.8	85.8	8.3
12.0	Moon	Antares		S :	107	000		15.9	1.7	88.7	8.4
12.5	Earth	Pollux		18	3 :	10.0	; ;	15.6	1.5	94.9	8.6
13.5	Moon	Antares		89	= 1	11.5		16.0	1.3	105.2	8.9
15.0	Moon	Antares		ž	ક	12.0	9 9	2 7	1.2	112.7	9.1
16.0	Earth	Pollux		84	83	12.6	9 -	2 2	-	120.6	9.3
17.0	Moon	Antares		4	72	0.51	ì :	: :	-	141.9	9.6
19.5	Moon	Antares		×	62	14.3	<u>.</u>	À:			
20.0	_		14.5					-	0	137.4	4.6
22.0	Earth	Pollux		32	*	0	3 :	7 0	8	131.2	4.4
23.5	Moon	Antares		78	4)	9.6	: :	2	0.7	112.4	4.0
28.5	Moon	Antares		23	4	: : 	: :	20.	0.7	109.0	3.9
29.5	Earth	Pollur		9	3	<u>.</u>	;;	7	0.6	86.2	3.6
37.0	Moon	Antares		17	<u></u>	6.1	0	3 7	í	77.4	3.5
40.5	Earth	Pollux		22	8	5.4	9.7		}		
22			*.			,		78.7	4.0	54.4	2.1
53.5	Мооп	Antares		13	22	- ·	* -	ž	. 6	40.9	4.9
57.5	Earth	Regulus		=	61	8.7°		9 9	0.7	35.5	4.8
0,09	Moon	Regulus		<u></u>	- 1	ر د د		1 2	9.0	34.7	5.0
808	Earth	Procyon		6	14	:: -) · ·	: :	-	13.1	6.7
} }	Моом	Regulus		8.5	11.2	21.1	10.9		<u>:</u>		
		•	33.5				.,			23.6	36.2
	T COOL	Aldebaran	_	10.5	3.9	•	24.6	-	÷	2 2	
170		0.000		3.8		59.9	22.7	£:-	7.4	Ŷ.	
62.4	Moon	a Crees	_			_				:	•

Table 9. Typical navigation data for Moon to Earth flight.

Miss Distance Reduction Ratio = 0.4 Sun Line = 250 $^{\rm o}$

				Reduction in Position	Position	Indicated	Uncertainty			. — 		T
Time (hours)	Obser	Observation	Velocity Correction (mph)	Uncertainty at Target (miles)	-	Velocity Correction (mph)	in Velocity Correction (mph)	Position Uncertainty (miles)	Velocity Uncertainty (mph)	Position Deviation (miles)	Velocity Deviation (mph)	determinground b
62.6	Moon	Achemar		98	154	59.8	4.9	-	3.8	11.1	60.2	approxi
64.0	Moon	Fomalhaut		%	120	62.7	2.5	1.9	1.1	1.98	63.2	perturbs
64.4			63.4									
0.50	Moon	Altair		105	172	•	1.4	1.7	Ξ	111.4	3.4	Se
79.0	Earth	Pollux		20	157	1.0	1.3	12.7	8.0	9.001	2.0	
79.5	Moon	Fomalhaut		\$	143	1.3		11.6	0.7	100.1	2.0	or stars
80.0	Earth	Aldebaran		13	130	4.	1.0	11.2	0.7	9.66	2.0	gother f
80.5	Moon	Antares		53	118	1.4	6.0	8.3	0.5	1.66	5.0	genier i
81.0	Earth	Pollux		×	104	9.1	0.7	7.7	0.5	98.6	2.0	the stor
81.5	Earth	Pollux		4	26	9.1	9.0	7.4	4.0	98.1	5.0	1.
83.5	Earth	Pollux		38	87	1.7	9.0	7.8	0.4	96.2	5.0	ured at
86.5	Earth	Pollux		33	67	8.1	9.0	8.5	0.4	93.5	5.0	
88.5			1.9									Ę,
90.5	Earth	Pollux		32	7.2	0	9.0	9.4	4.0	88.7	1.7	2000000
95.5	Earth	Aldebaran		62	99	0.3	0.7	9.01	0.3	80.9	1.8	apaceci
98.0	Moon	Antares		23	09	0.4	0.7	8.6	0.3	80.1	8.1	of time.
97.0	Earth	Regulus		24	\$	0.5	9.0	9.5	0.3	78.5	8.1	1
105.0	Earth	Regulus		77	12	8.0	6.0	11.3	0.3	65.1	2.0	thoroug
105.5	Moon	Antares		20	46	6.0	9.0	10.8	0.3	64.2	2.0	•
113.0	Earth	Regulus		61	4	1.8	1.3	12.2	0.3	50.3	2.4	A
114.0	Moon	Antares		7.	33	5.0	1.4	11.8	0.3	48.4	2.5	200000
120.5			5.7									apacect
121.0	Моол	Antares		91	%	0	3.7	13.2	8.0	33.9	 	measur
122.5	Моов	Fomalhaut		14	33	2.4	5.2	13.2	1.2	77.7	5.6	:
123.8	Earth	Procyon		=	53	5.4	8.3	Ξ:	1.7	23.5	0.0	then it.v
124.2	Earth	Pollux		61	22	8.4	9.0	9.3	1.7	22.6	6.4	Out to
124.6	Earth	Canopus		7	11	13.1	9.1	7.9	1.7	22.1	7.0	crait po
125.0	Earth	Canopus		=	14	6.61	9.8	7.0	6.1	22.3	8.2	
125.3			28.7									
125.6	Earth	Canopus		=	6	0	16.0	.: ::	2.5	17.4	21.4	regardi
125.9	Earth	a Centauri		æ	~	22.2	18.3	2.1	 	13.3	21.0	erize th
126.2	Earth	Antares		7	7	2.99	14.4	9.7	1.7	12,2	24.0	2011
126.4								8.	3.4	13.9	33.1	ß

NAVIGATIONAL MEASUREMENTS

based radar measurements. It is assumed throughout the analysis that mations to spacecraft position and velocity are already known so that ining spacecraft position by means of both celestial observation and he mathematical processes are considered here in some detail for ation techniques may be employed. econdary effects arising from the finite speed of light, the finite distance red data which represent reference values for the quantities to be measfor a particular reference point on the trajectory as a modification to s, etc. are ignored in this analysis. Such effects may be lumped tothat point.

raft clock is perfect so that all measurements are made at known instants . Methods of including clock errors in the computation are discussed or simplicity in the present analysis, it will be assumed that the thly in reference 2.

as indicated in Section 2.1 each measurement establishes a component of ed and δ Q is the difference between the true and the reference values, will be shown that the relation between 6 Q and the deviation in spaceraft position along some direction in space. If Q is the quantity to be osition 6 r is

less of the type of measurement. Thus, the \underline{h} vector alone will charact-8Q = h 8r he kind of measurement.

Sun-Planet Measurement

The first type of measurement to be considered is that of the angle from gather Sun to a planet. By passing to the limit of infinite distance from one or the context of these bodies, corresponding relations for the Sun-star or planet-star example. The first type of measurement to be considered is that of the angle from type of measurement may be obtained.

$$\cos A = -(\underline{\mathbf{r}} \cdot \underline{\mathbf{z}})/r\mathbf{z}$$

d z denote magnitudes of the respective vectors r and z. Treating

where r and z denote magnitudes of the respective vectors <u>r</u> and <u>z</u>. Treating all changes as first-order differentials, it can be shown that

$$\delta A = \left(\frac{\underline{m} - (\underline{n} \cdot \underline{m}) \underline{n}}{r \sin A} + \frac{\underline{n} - (\underline{n} \cdot \underline{m}) \underline{m}}{z \sin A}\right) \cdot \delta_{\underline{L}}$$
 (A.3)

For details the reader is referred to reference 2. Here $\underline{\mathrm{n}}$ and $\underline{\mathrm{m}}$ are, respectdual vector coefficients of 6r in Eq. (A.3) are vectors in the plane of the measively, the unit vectors from $S_{\rm o}$ toward the Sun and toward $P_{\rm o}$. The two indiviurement and normal, respectively, to the lines-of-sight to the Sun and to the planet

Planet Diameter Measurement

If D is the actual diameter of a planet, the apparent angular diameter A is found from

$$\sin (A/2) = D/2z$$
 (A. 4.)

Again taking differentials as before, one can show that $\delta A = \frac{1}{z^2 \cos (A/2)}$ D<u>m</u>·δ<u>r</u>

(A.5)

Star Occultations

at which a star is occulted by a planet. Let \underline{z} be the vector from S_0 to P, \underline{r} the vector from the Sun to S_0 and \underline{n} a unit vector in the direction of the star to be The next type of measurement to be considered is that of noting the time occulted. With γ denoting the angle from the star line to the planet line as shown in Fig. A-1, we have, at the nominal instant of occultation,

$$\tilde{n} \cdot \tilde{z} = z \cos \gamma$$
 (A. 6)

Treating changes as first order differentials we obtain

$$\underline{n} \cdot \delta \underline{z} = \cos \gamma \delta z - z \sin \gamma \delta \gamma$$
 (A.7)

where \underline{m} is a unit vector from S_0 toward P_0 .

Fig. A-1. Measurement of time of a star occultation.

The angle deviation $\delta\gamma$ is computed from a first order differential of $2z \sin \gamma = D$. There results

$$\delta \gamma = -D_{\underline{m}} \cdot \delta \underline{z}/2z^2 \cos \gamma$$
 (A.8)

the spacecraft and if δau is the difference between the observed and the reference Furthermore, if \underline{y}_p and \underline{y}_s are the respective velocity vectors of the planet and occultation times, we have

$$\delta \underline{z} = \underline{y}_{p} \delta \tau - (\delta \underline{t} + \underline{y}_{s} \delta \tau)$$
 (A,9)

where y, is the velocity of the spacecraft relative to the planet. Then by combining Eqs. (A.7), (A.8) and (A.9) we have finally

$$\delta \tau = -\frac{\rho \cdot \delta_{\underline{I}}}{\rho \cdot \underline{v}_{r}} \tag{A.10}$$

where ho is a unit vector perpendicular to $_{ ilde{ exttt{D}}}$ and lying in the plane determined by the lines-of-sight to the planet and the star,

Star Elevation Measurement

a star and the edge of a planet disc. From Fig. A-2 we have

$$\underline{n} \cdot \underline{z} = z \cos(A + \gamma) \tag{A}$$

where A is the angle to be measured. A jain taking total differentials and noting that $\delta \underline{r} = -\delta \underline{z}$, we obtain

$$\frac{1}{z}\varrho \cdot \delta_{\underline{L}} = \delta A + \delta \gamma \tag{A.12}$$

$$= \delta A + D_{\underline{m}} \cdot \delta_{\underline{r}}/2z^2 \cos \gamma$$

= 8 A + tan y m · 81/z

or finally

$$\delta A = \frac{\varrho \cdot \delta \underline{r}}{z \cos \gamma}$$

$$\delta I = \frac{\rho}{r} \cdot \delta I$$

$$\delta A = \frac{\rho}{r$$

Fig. A-2. Measurement of star elevation angle.

Landmark Measurement

For the measurement of the angle between a landmark on a planet surface and a star, let $\underline{\rho}$ be a unit vector perpendicular to the line-of-sight to the landmark and in the plane of the measurement. Then if p is the vector position of the landmark relative to the center of the planet, we have

$$\delta A = \frac{\varrho \cdot \delta_L}{\left| z + \varrho \right|} \tag{A. 14}$$

Radar Range, Azimuth, and Elevation Measurements

are to be measured; the y axis completes the coordinate system. Then, we may the radar site; the x axis is positive in the direction from which radar azimuths other origins could equally well be used. Let a cartesian coordinate system be chosen such that the z axis is radially out from the center of the Earth through Assume the radar site to be the origin of the coordinate system although

vehicle from the radar site. Taking differentials separately for each of the where r, θ , β are, respectively, the range, azimuth, and elevation of the three variables gives

$$\frac{\partial \underline{I}}{\partial r} \delta r = \left\| \begin{array}{ccc} \cos \beta \cos \theta \\ \cos \beta \sin \theta \\ \sin \beta \end{array} \right\| \delta r \tag{A.16}$$

$$\frac{\partial \mathbf{r}}{\partial \beta} \delta \beta = \mathbf{r} \begin{vmatrix} -\sin \beta \cos \theta & | \\ -\sin \beta \sin \theta & | \\ \cos \beta & | \end{vmatrix}$$
 (A.17)

$$\frac{\partial r}{\partial \theta} \delta \theta = r \begin{vmatrix} -\cos \beta \sin \theta \\ \cos \beta \cos \theta \end{vmatrix} \delta \theta$$
(A. 18)

Then, by expressing each of these relations in the form of Eq. (A.1), we obtain

$$\delta r = \|\cos \beta \cos \theta \cos \beta \sin \theta \sin \beta\| \delta \underline{r}$$
 (A.19)

$$\delta\beta = \frac{1}{r} \left\| -\sin\beta\cos\theta - \sin\beta\sin\theta\cos\beta \right\| \delta\underline{L}$$
 (A.20)
$$\delta\theta = \frac{1}{r\cos\beta} \left\| -\sin\theta\cos\theta \right\| \delta\underline{L}$$
 (A.21)

$$\delta\theta = \frac{1}{r\cos\beta} \left\| -\sin\theta \cos\theta \right\| = 0 \left\| \frac{\delta_T}{\delta} \right\|$$
The vector coefficients in Eqs. (A. 19) - (A. 21) are each unit vectors in the direction of increasing r, β , θ , respectively.

(B. 10)

APPENDIX B

OPTIMUM SELECTION OF NAVIGATION MEASUREMENTS

perhaps greater significance would be the requirement of selecting the measurein an optimum linear manner has been developed. The purpose of this appendix ment which minimizes the uncertainty in any linear combination of position and example, one might wish to select that measurement which, if followed imme-In the main body of this paper a method of processing measurement data is to treat the associated problem of selecting those measurements which are, minimizes the uncertainty in the required velocity correction. As a further diately by a velocity correction, would result in the smallest position error reduction in mean-squared positional or velocity uncertainty at time $t_{\rm n}$, Of in some sense, most effective. For example, the requirement might be to select the measurement to be made at time t in order to get the maximum velocity deviations. Specifically, one might select the measurement which

positional uncertainty at time ${f t}_n$. From Eq. (2, 29) the mean-squared positional Consider first the simplest case, i.e., minimizing the mean-squared uncertainty is expressible as

$$\epsilon_n^2 = tr \left(E_n^{(1)}' \right) - \frac{\underline{h}_n}{\underline{h}_n} \frac{E_n^{(1)'} E_n^{(1)'} \underline{h}_n}{\underline{h}_n} + \frac{2}{\alpha_n^2}$$
(B. 1)

measurement error ($a\frac{2}{n}$ = 0) , the problem of minimizing either mean-squared error is equivalent to finding a direction for the hn vector which maximizes the error, the geometrical interpretation is clear. Since the principal directions of $E_n^{(1)}$ and $E_n^{(1)}$ are the same, the optimal direction for $\frac{1}{h}$ coincides with the major principal direction of $E_n^{(1)}$. assuming the measurement errors to be uncorrelated. In the absence of any ratio of two quadratic forms. For the case of the mean-squared positional

The problem of minimizing the mean-squared velocity uncertainty at time t_n by proper choice of the $\frac{1}{t_n}$ vector is not as easily solved or interpreted. Again, from Eq. (2.29) the mean-squared velocity uncertainty may be written

 $\delta_n^2 = tr (E_n^{(4)}) - \frac{h_1}{h_1} \frac{E_n^{(2)}}{E_n^{(1)}} \frac{E_n^{(3)} h_n}{h_1 + \alpha_n^2}$

Denote by p and q the two quadratic forms

$$p = b_n^T E_n^{(2)}' E_n^{(3)}' b_n$$
, $q = b_n^T E_n^{(1)}' b_n$ (B.3)

From the theory of quadratic forms there exists an orthogonal transformation which will reduce q to a diagonal form. Thus

$$b_n = Q \underline{d} \tag{B.4}$$

$$q = \underline{d}^T Q^T E_n^{(1)}' Q_{\underline{d}} = \mu_1 d_1^2 + \mu_2 d_2^2 + \mu_3 d_3^2$$
 (B.5)

where μ_1 , μ_2 , μ_3 are the characteristic roots of the matrix $E_n^{(1)}$ and the columns of the Q matrix are the associated characteristic unit vectors. Since $E_n^{(1)}$ is a positive definite matrix, the characteristic roots are positive and a further transformation

$$\mathbf{f} = \mathbf{D} \, \mathbf{d} \tag{B.6}$$

gives

$$q = \underline{f}^T \ \underline{f} = f_1^2 + f_2^2 + f_3^2$$
 (B. 7)

where D is a diagonal matrix whose diagonal elements are $\sqrt{\mu_1}$, $\sqrt{\mu_2}$, $\sqrt{\mu_3}$

The same transformation from $\frac{1}{n}$ to $\frac{1}{n}$ applied to the quadratic form p produces

$$p = \underline{f}^{T} D^{-1} Q^{T} E_{n}^{(2)'} E_{n}^{(3)'} Q D^{-1} \underline{f}$$
 (B. 8)

One final transformation applied to \underline{f} will reduce Eq. (B, 8) to a diagonal form

results in

 $p = \lambda_1 m_1^2 + \lambda_2 m_2^2 + \lambda_3 m_3^2$

where the columns of the S matrix are the characteristic unit vectors of the matrix D^1 Q^T E $_{n}^{(2)}$ E $_{n}^{(3)}$ QD^1 and $_{\lambda_1}$, $_{\lambda_2}$, $_{\lambda_3}$, the corresponding characteristic roots. The same transformation (B.9) applied to (B.7) gives

$$q = m^{T} S^{T} S_{JJJ} = m_{1}^{2} + m_{2}^{2} + m_{3}^{2}$$
 (B.11)

since S is an orthogonal matrix.

In summary, then, the transformation

(B. 12)

(B. 13)

he two quadratic forms
$$\frac{p}{q} = \frac{\lambda_1 m_1^2 + \lambda_2 m_2^2 + \lambda_3 m_3^2}{q}$$

$$\frac{q}{m_1^2 + m_2^2 + m_3^2}$$

Furthermore, if the matrix $E_n^{(2)}$ is nonsingular, the product $E_n^{(2)}$ if $E_n^{(3)}$ is positive definite and it would then follow that λ_1 , λ_2 , λ_3 are all real and positive.

the direction for the optimum $\frac{1}{n}$ or, equivalently, the optimum $\frac{1}{m}$. Therefore, B. 14) The problem of maximizing the ratio p/q is now readily solved. Since no measurement error is assumed, one cannot hope to determine more than it may be assumed that m is a unit vector. Let

$$\lambda_k = \max (\lambda_1, \lambda_2, \lambda_3)$$

Then the optimum value of m is

(B. 15)

minimizes the uncertainty in the velocity correction which would be required minimizes the uncertainty in any linear combination of position and velocity deviations. Specifically, consider the selection of that measurement which The same technique can be used to select that direction for $\underline{\mathbf{h}}_n$ which immediately following the measurement.

The correlation matrix of the velocity correction uncertainty is

$$d_n d_n^T = B_n E_n B_n^T$$
 (B. 16)

and the mean-squared uncertainty may be expressed as

$$\frac{1}{d^2} = tr (B_n E'_n B_n^T) - \frac{h_n^T W h_n}{h^T E'_n^{(1)}} + \frac{1}{h_n^T a_n^2}$$

(B.17)

Here W is a symmetric matrix defined by

$$W = \left\| E_n^{(1)}' E_n^{(2)}' \right\| B_n^T B_n \left\| E_n^{(1)}' \right\|$$

(B. 18)

so that if $\parallel E_n^{(1)} - E_n^{(2)} - \parallel B_n^T$ is nonsingular, the matrix W will be positive definite. Under any circumstances, if the identification

$$E_n^{(2)}' \sim \left\| E_n^{(1)}' \quad E_n^{(2)}' \right\| B_n^T$$

is made, then the exact same procedure may be used to select the optimum direction for the $\frac{1}{n}$ vector as was used previously to minimize the mean-squared velocity uncertainty.

the star. For such a measurement the h vector is required to be perpendicular In all cases of practical interest the determination of the optimum direction to the line of sight to the planet. If \underline{z}_n is the position vector of the planet from for the h vector must be made subject to certain constraints. For example, between the line of sight to the center of a planet disc and the line of sight to one might wish to select the "best" star to be used in measuring the angle the space vehicle, then we must have

$$b_n \quad \dot{z}_n = 0 \tag{B. 19}$$

Applying the transformation defined in Eq. (B. 12) gives

$$\underline{\mathbf{m}}^{\mathsf{T}} \, \mathbf{S}^{\mathsf{T}} \, \mathbf{D}^{-1} \, \mathbf{Q}^{\mathsf{T}} \, \underline{\mathbf{z}}_{\mathsf{n}} = \mathbf{0}$$
 (B.20)

Let p be a unit vector in the direction of S T D $^{-1}$ Q T $_z$. Then the problem of selecting the optimum direction for $\frac{1}{n}$ or, equivalently, for \overline{m} is to maximize

$$\lambda_1 m_1^2 + \lambda_2 m_2^2 + \lambda_3 m_3^2$$

subject to the conditions of constraint

$$\underline{\mathbf{m}}^{\mathsf{T}} \mathbf{p} = 0 \text{ and } \underline{\mathbf{m}}^{\mathsf{T}} \underline{\mathbf{m}} = 1 \tag{B}.$$

In terms of the Lagrange multipliers ho and σ , this is equivalent to the problem of obtaining a free maximum for

$$\sum_{j=1}^{3} \lambda_{j} \ m_{j}^{2} - 2\rho \sum_{j=1}^{3} \ p_{j} \ m_{j} - \sigma \ \left\{ \sum_{j=1}^{3} \ m_{j}^{2} - 1 \right\}$$

Setting the partial derivatives with respect to each of the mj's equal to zero,

ve have

$$=\frac{\rho \, \mathsf{b}_{\mathsf{j}}}{\lambda_{\mathsf{i}} - \sigma}$$

=1, 2,3 (B. 22)

where ρ and σ are to be determined from the requirements of Eq. (B-21).

ä

The condition that $\underline{\mathbf{m}}$ be orthogonal to $\underline{\mathbf{p}}$ leads to a quadratic equation

$$\sigma^{2} - \left[p_{1}^{2}\left(\lambda_{2} + \lambda_{3}\right) + p_{2}^{2}\left(\lambda_{1} + \lambda_{3}\right) + p_{3}^{2}\left(\lambda_{1} + \lambda_{2}\right)\right]\sigma$$

(B. 23)

If the λ 's are ordered $\lambda_1 < \lambda_2 > \lambda_1 + \lambda_3^2 > 1$, then the two roots σ_1 and σ_2 will be such that $\lambda_1 < \sigma_1 < \lambda_2 < \delta_3$, The other Lagrange multiplier ρ is determined so that \underline{m} will be a unit vector. With the optimum vector \underline{m} selected, the corresponding value for \underline{h}_n is found from Eq. (B.12).

It is easy to show that σ_2 provides the desired maximum while σ_1 gives the minimum. From Eq. (B.22) one obtains

$$\sum_{j=1}^{3} \lambda_{j} m_{j}^{2} - \sigma \sum_{j=1}^{3} m_{j}^{2} = \rho \sum_{j=1}^{3} p_{j} m_{j}$$
 (B. 24)

Using this and Eqs. (B. 21) it follows that

$$\sigma = \sum_{j=1}^{3} \lambda_j \, m_j^2$$
 (B. 25)

Hence, σ_1 and σ_2 are the respective minimum and maximum of the original expression to be maximized.

BIBLIOGRAPHY

- Laning, J. H., Jr., Frey, E. J., and Trageser, M. B., Preliminary Considerations on the Instrumentation of a Photographic Reconnaissance of Mars, Vistas in Astronautics, Vol. 2, Pergamon Press, 1959.
- Battin, R. H., and Laning, J. H., Jr., A Navigation Theory for Round-Trip Reconnaissance Missions to Venus and Mars, Planetary and Space Science, Vol. 7, pp. 40-56, Pergamon Press, July 1961.

ς;

Battin, R. H., A Comparison of Fixed and Variable Time of Arrival Navigation for Interplanetary Flight, Proceedings of the Fifth AFBMD/STL Aerospace Symposium on Ballistic Missile and Space Technology, Academic Press, 1960.

က

Kalman, R. E., A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, March 1960.

4.

ე.

McLean, J. D., Schmidt, S. F., and McGee, L. A., Optimal Filtering and Linear Prediction Applied to a Space Navigation System for the Circumlunar Mission, NASA TN D-1208.