

План

Что делать, если хотим искать нелинейные закономерности линейными методами

«Трюки с ядрами (kernel tricks)»

Вывод нелинейного SVM

«Кернализация» других методов

Решение задач произвольной природы

Проблема линейности

Некоторые задачи не решаются линейными методами

Когда линейной модели не хватает

линейная модель + новые признаки

• деформации существующих / базисные функции GAM (Generalized Additive Models)

Пример: кусочно-полиномиальная модель / RBF

- локально линейные методы Пример: Local Regression
- ядерные методы (Kernel Tricks)

использование нелинейной модели

- метрические алгоритмы
- деревья
- ансамбли
 - o RF
 - o GBM
 - o NN

Деформация: полиномиальная модель

добавляем признаки-мономы

в задаче с одним признаком $(x) \to (1, x, x^2, ..., x^k)$

теперь линейная регрессия превращается в $a(x) = w_0 + w_1 x + w_2 x^2 + \ldots + w_k x^k$

с несколькими
$$(X_1,\ldots,X_n) \to (\ldots,\prod_{t\in T} X_t,\ldots)$$

Деформация: полиномиальная модель

подводные камни – очень много признаков добавлять:

1) переобучение

2) неестественные признаки

потом в материале «сложность»

Минутка кода: полиномиальная модель

```
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear model import Ridge
poly = PolynomialFeatures(degree=degree)
X = poly.fit transform(X)
XX = poly.fit transform(XX)
clf = Ridge(alpha=alpha,
            fit intercept=True,
            normalize= True)
clf.fit(X, y)
a = clf.predict(XX)
```

Деформация

Важно: можно деформировать и целевой признак!

clf.fit(X, np.expm1(y))
$$a = \text{np.log1p(clf.predict(XX))}$$

$$e^{y} - 1 = w^{T}x \Rightarrow y = \log(w^{T}x + 1)$$

Использование других базисных функций

Просто составляем новую признаковую матрицу и «запихиваем» её в функцию регрессии / классификации

$$(X_1,...,X_n) \to (...,f_j(X_1,...,X_n),...)$$

например, характеристические функции интервалов

$$\varphi(X_t) = I[\theta_i \le X_t < \theta_{i+1}]$$

выбор хороших порогов (cutpoints / knots) – отдельная задача, можно:

- квантили
- «межкластерные» точки
 - особые точки

(например, круглые суммы в признаке «зарплата»)

Использование других базисных функций

сравнение с порогом

$$I[X_t \ge \theta_i] = \begin{cases} 1, & X_t \ge \theta_i, \\ 0, & X_t < \theta_i, \end{cases}$$

2 0 > -2 -4 -6 0.0 0.2 0.4 0.6 0.8 1.0

кусочно-линейная регрессия

$$I[\theta_{i} \leq X_{t} < \theta_{i+1}],$$

$$X_{t} \cdot I[\theta_{i} \leq X_{t} < \theta_{i+1}]$$

аналогично кусочно-полиномиальная

Использование других базисных функций

«Сплайны» получаются при добавлении функций вида

$$\begin{cases} |X_t - \theta_i|^k, & X_t \ge \theta_i, \\ 0, & X_t < \theta_i, \end{cases}$$

Здесь (вверху) -

$$\begin{cases} |X_t - \theta_i|, & X_t \ge \theta_i, \\ 0, & X_t < \theta_i, \end{cases}$$

(внизу) –
$$\begin{cases} (X_t - \theta_i)^2, & X_t \ge \theta_i, \\ 0, & X_t < \theta_i, \end{cases}$$

Радиально-базисная функция (Radial basis function, RBF)

Радиальная функция (Radial function) – функция вида

$$\varphi_z(x) = f(||x - z||) : \mathbb{R}^n \to \mathbb{R}$$

т.е. зависящая от расстояния (в более общем случае – любого) до какой-то точки

Радиальная функция называется <u>радиально-базисной,</u> если для любого набора попарно различных точек $\{x_1, \dots, x_m\}$,

функции $\varphi_{x_1}(x), \dots, \varphi_{x_m}(x)$ линейно независимы и матрица $||\varphi_{x_i}(x_i)||_{m imes m}$ невырождена

$$\|\varphi_{x_i}(x_j)\|_{m\times m} = \begin{bmatrix} \varphi_{x_1}(x_1) & \dots & \varphi_{x_m}(x_1) \\ \dots & \dots & \dots \\ \varphi_{x_1}(x_m) & \dots & \varphi_{x_m}(x_m) \end{bmatrix}$$

Радиально-базисная функция (Radial basis function, RBF)

Gaussian

$$f(r) = \exp(-\varepsilon r^2)$$

Multiquadric

$$f(r) = \sqrt{1 + \varepsilon r^2}$$

Inverse quadratic

$$f(r) = \frac{1}{1 + \varepsilon r^2}$$

Thin plate spline

$$f(r) = r^2 \ln r$$

Inverse multiquadric

$$f(r) = \frac{1}{\sqrt{1 + \varepsilon r^2}}$$

Polyharmonic spline

$$f(r) = \begin{cases} r^k, & k = 1, 3, 5, \dots \\ r^k \ln r, & k = 2, 4, 6, \dots \end{cases}$$

RBF-ядро: пример для регрессии

$$\varphi(x) = \exp(-\gamma ||x - z||^2)$$

тут, правда, выбраны равномерные эталонные точки

RBF-ядро: эффект от ширины ядра

Ядра с разной шириной – центры в выборке

Локальные методы

уже была регрессия Надарая-Ватсона (называют Kernel regression)

Аналогичная идея: прогноз в точке

- по окрестности точки
- по взвешенной выборке (веса ~ 1 / расстояние до точки)

Можно использовать линейный метод

или полиномиальный

Local Regression = Local Polynomial Regression = Moving Regression

см. LOESS – locally estimated scatterplot smoothing (Savitzky–Golay filter)
LOWESS – locally weighted scatterplot smoothing (locally weighted polynomial regression)

https://towardsdatascience.com/loess-373d43b03564

вернёмся в предобработке данных

Ядерные методы (Kernel Tricks)

Идея «искривить/деформировать пространство» – перейти в пространство признаков, где уже можно решить линейными методами

Пример перехода
$$(x) \rightarrow (x, x^2)$$

Ядерные методы (Kernel Tricks)

Пример перехода
$$(x_1, x_2) \rightarrow (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

Переход к пространству мономов ограниченной степени может быть очень трудоёмким, тут и спасают kernel tricks

Пример: SVM

$$\sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^{\mathsf{T}} x_j \to \max_{0 \le \alpha \le C}$$

$$\sum_{i=1}^{m} \alpha_i y_i = 0$$

от обучающей выборки нужны только попарные скалярные произведения!

В некоторых методах надо знать не значения признаков, а уметь вычислять скалярные произведения признаковых описаний некоторых объектов

Kernel Tricks

Пусть
$$x = (x_1, ..., x_n)^{\mathrm{T}}, z = (z_1, ..., z_n)^{\mathrm{T}}$$
 рассмотрим функцию $K(x, z) = (x^{\mathrm{T}}z)^2$

$$K(x,z) = (x_1 z_1 + \ldots + x_n z_n)^2 = x_1^2 z_1^2 + \ldots + x_n^2 z_n^2 + \sum_{ij} \sqrt{2} x_i x_j \sqrt{2} z_i z_j = \varphi(x)^{\mathrm{T}} \varphi(z)$$

где
$$\varphi(x) = (x_1^2, \dots, x_n^2, \dots, \sqrt{2}x_i x_j, \dots),$$

$$\varphi(z) = (z_1^2, \dots, z_n^2, \dots, \sqrt{2}z_i z_j, \dots)$$

Чтобы перейти в пространство всех мономов степени 2 не надо явно строить признаки, достаточно возвести в квадрат скалярное произведение...

Ядро (Kernel) – определение по сути

Ядро (Kernel) – функция
$$K: X \times X \to \mathbb{R}$$
 такая, что существует функция

$$\varphi: X \to F$$
, что $K(x,z) = \varphi(x)^{ \mathrm{\scriptscriptstyle T} } \varphi(z)$ F – гильбертово пространство

Ядра позволяют делать переходы в многомерное пространство неявно!

Матрица ядра (kernel matrix):

$$\|K(x_i, x_j)\|_{m \times m} = \begin{bmatrix} K(x_1, x_1) & \cdots & K(x_1, x_m) \\ \cdots & \cdots & \cdots \\ K(x_m, x_1) & \cdots & K(x_m, x_m) \end{bmatrix}$$

метод называется <u>кернализированным (kernelized)</u>,

если для его реализации достаточно только знания значений скалярных произведений

(на признаковые описания объектов обучения)

Ядро (Kernel) – определение формальное

функция $K: X \times X \to \mathbb{R}$ является <u>неотрицательно определённым ядром</u> (positive semidefinite kernel) тогда и только тогда, когда

1) это симметричная функция:

$$K(x,z) = K(z,x),$$

2) для любой обучающей выборки $\{\mathcal{X}_1, \dots, \mathcal{X}_m\}$ матрица ядра неотрицательно определена:

$$\forall w \in \mathbb{R}^m \quad w^{\mathrm{T}} \parallel K(x_i, x_j) \parallel w \ge 0$$

(~ неотрицательные с.з.)

- условия Мерсера (Mercer's conditions)

ДЗ Попробуйте доказать эквивалентность приведённых определений – это и есть теорема Мерсера (хотя бы в одну сторону ;)

Примеры ядер

Однородные полиномиальные (homogeneous polynomial kernel) степени d

Неоднородные полиномиальные (inhomogeneous polynomial kernel) степени d

«Универсальное» полиномиальное ядро

RBF-ядро
(Gaussian Radial Basis Function)

$$K(x,z) = (x^{\mathrm{T}}z)^d$$
 $K(x,z) = (x^{\mathrm{T}}z+1)^d$
можно + const > 0
большие d ничем не сложнее $d=1$

$$K(x,z) = \frac{1}{1 - \alpha^2 x^{\mathrm{T}} z}$$

$$K(x,z) = \exp(-\gamma \|x - z\|^d)$$

константа 1, сумма, произведение ядер и умножение ядра на положительное число также будет ядром

Обоснование «универсального» ядра

$$K(x,z) = \frac{1}{1 - \alpha^2 x^{\mathrm{T}} z}$$

$$\frac{1}{1 - \alpha^{2} x^{\mathrm{T}} z} = \sum_{i=0}^{+\infty} (\alpha^{2} x^{\mathrm{T}} z)^{i} = 1 + \alpha^{2} x^{\mathrm{T}} z + \alpha^{4} (x^{\mathrm{T}} z)^{2} + \dots =$$

$$= 1 + \alpha^{2} (x_{1} z_{1} + \dots + x_{n} z_{n}) + \alpha^{4} \left(\sum_{i=0}^{+\infty} c_{*} x_{i} x_{j} z_{i} z_{j} \right) + \dots =$$

$$= \varphi(x)^{\mathrm{T}} \varphi(z)$$

$$\varphi(x) = [1, \alpha x_1, \alpha x_2, \dots, \alpha x_n, \dots, \alpha^2 \sqrt{c_*} x_i x_j, \dots]^{\mathrm{T}}$$

Пространство бесконечномерное, а вычисляем за конечное время!

RBF-ядро соответствует переходу в многомерное пространство

Пусть для простоты
$$\gamma=1$$
, $d=2$, $x,z\in\mathbb{R}$

$$K(x,z) = \exp(-(x-z)^2) =$$

$$= \exp(-x^2 + 2xz - z^2) =$$

$$= \exp(-x^2) \left(\sum_{k=0}^{\infty} \frac{2^k x^k z^k}{k!} \right) \exp(-z^2) =$$

$$= \left(\sum_{k=0}^{\infty} \frac{2^{k/2} \exp(-x^2) x^k}{\sqrt{k!}} \cdot \frac{2^{k/2} \exp(-z^2) z^k}{\sqrt{k!}} \right)$$

Пример использования в SVM

в классике...

$$a(x) = \operatorname{sgn}(w^{\mathsf{T}} x) = \operatorname{sgn}\left(\sum_{i \in S} \alpha_i y_i x_i^{\mathsf{T}} x + b\right)$$

теперь...

$$a(x) = \operatorname{sgn}\left(\sum_{i \in S} \alpha_i y_i \varphi(x_i)^{\mathsf{T}} \varphi(x)\right) =$$

$$= \operatorname{sgn}\left(\sum_{i \in S} \alpha_i y_i K(x_i, x)\right)$$

надо знать опорные векторы для классификации

S – множество их индексов

Теперь получили нелинейную модель с помощью линейной!!!

кстати, если использовать смещение

$$b = \frac{1}{|S|} \sum_{i \in S} \left(y_i - \sum_{j \in S} \alpha_j y_j x_j^{\mathsf{T}} x_i \right) \rightarrow \frac{1}{|S|} \sum_{i \in S} \left(y_i - \sum_{j \in S} \alpha_j y_j K(x_j, x_i) \right)$$

Нелинейный метод SVM

Построить
$$H = \parallel y_i y_j K(x_i, x_j) \parallel_{m \times m}$$

Решить

$$-\frac{1}{2}\alpha^{\mathrm{T}}H\alpha + \tilde{1}^{\mathrm{T}}\alpha \to \max$$

при условиях

$$0 \le \alpha \le C$$
, $y^{\mathrm{T}}\alpha = 0$

здесь везде векторная запись

Решение

$$w = \sum_{i=1}^m lpha_i y_i arphi(x_i)$$
 Можно не выписывать в явном виде

т.к. наш классификатор

$$a(x) = \operatorname{sgn}\left(\sum_{i \in S} \alpha_i y_i K(x_i, x)\right)$$

Наблюдение: запись напоминает простейшую нейронную сеть [Воронцов]

$$a(x) = \operatorname{sgn}\left(\sum_{i \in S} \alpha_i y_i K(x_i, x)\right)$$

- + при настройке единственное решение
- + автоматическое определение числа нейронов в скрытом слое |S|
- непонятно, как выбрать ядро, параметры метода, признаки (это не автоматизировано)
 - использование ядер может вызывать переполнения...
 - если мы сами придумаем пространство, в которое хотим перейти,
 то, скорее всего, не найдём подходящего ядра
 - геометрия в новом пространстве нам, на самом деле,
 не совсем интуитивно ясна

SVM с разными ядрами

linear

RBF

poly

Минутка кода

```
from sklearn.svm import SVC
svm = SVC(kernel='rbf', gamma=1.0)
svm.fit(X, y)
```

Ниже обратите внимание на нелогичности разделений и возможность «обмана алгоритма»

SVM с RBF-ядрами разной ширины

 $\gamma = 1$

признак 1

признак 1

 $\gamma = 0.1$

признак 1

признак 1

SVM с регуляризацией

Нелинейные методы

C = 10

признак 1

признак 2

признак 2

признак 1

SVM с разной степенью полинома

Кернализация гребневой регресии

Метод можно «кернализовать», если он использует только попарные скалярные произведения признаковых описаний объектов.

Тогда делается замена:

$$x^{\mathrm{T}}z \to K(x,z)$$

Гребневая регрессия

$$w = \underset{w}{\operatorname{arg\,min}} \sum_{i=1}^{m} (y_i - w^{\mathsf{T}} x_i)^2 + \lambda w^{\mathsf{T}} w$$

решение может быть записано как

$$w = (X^{\mathsf{T}}X + \lambda I_{n \times n})^{-1}X^{\mathsf{T}}y$$

Вроде здесь не используем попарные скалярные произведения (элементы матрицы XX^{T}), но... решение можно переписать!

$$w = X^{\mathrm{T}} (XX^{\mathrm{T}} + \lambda I_{m \times m})^{-1} y$$

доказательство Representer theorem (попробуйте сами)

$$(X^{\mathrm{T}}X + \lambda I_{n \times n})w = X^{\mathrm{T}}y \Leftrightarrow w = (X^{\mathrm{T}}X + \lambda I_{n \times n})^{-1}X^{\mathrm{T}}y$$
 SVD: $X = U\Lambda V^{\mathrm{T}}$ (используем полное разложение $(m \times m)(m \times n)(n \times n)$)

$$(X^{\mathsf{T}}X + \lambda I_{n \times n})w = X^{\mathsf{T}}y$$

$$((U\Lambda V^{\mathsf{T}})^{\mathsf{T}}U\Lambda V^{\mathsf{T}} + \lambda I)w = (U\Lambda V^{\mathsf{T}})^{\mathsf{T}}y$$

$$(V\Lambda^{\mathsf{T}}U^{\mathsf{T}}U\Lambda V^{\mathsf{T}} + \lambda I)w = V\Lambda^{\mathsf{T}}U^{\mathsf{T}}y$$

$$(V\Lambda^{\mathsf{T}}\Lambda V^{\mathsf{T}} + \lambda I)w = V\Lambda^{\mathsf{T}}U^{\mathsf{T}}y$$

$$V^{\mathsf{T}}(V\Lambda^{\mathsf{T}}\Lambda V^{\mathsf{T}} + \lambda I)w = V^{\mathsf{T}}V\Lambda^{\mathsf{T}}U^{\mathsf{T}}y$$

$$(\Lambda^{\mathsf{T}}\Lambda V^{\mathsf{T}} + \lambda V^{\mathsf{T}})w = \Lambda^{\mathsf{T}}U^{\mathsf{T}}y$$

$$(\Lambda^{\mathsf{T}}\Lambda V^{\mathsf{T}} + \lambda I)V^{\mathsf{T}}w = \Lambda^{\mathsf{T}}U^{\mathsf{T}}y$$

$$V^{\mathsf{T}}w = (\Lambda^{\mathsf{T}}\Lambda + \lambda I)^{-1}\Lambda^{\mathsf{T}}U^{\mathsf{T}}y$$

$$VV^{\mathsf{T}}w = V(\Lambda^{\mathsf{T}}\Lambda + \lambda I)^{-1}\Lambda^{\mathsf{T}}U^{\mathsf{T}}y$$

$$w = V(\Lambda^{\mathsf{T}}\Lambda + \lambda I)^{-1}\Lambda^{\mathsf{T}}U^{\mathsf{T}}y$$

$$w = X^{\mathsf{T}} (XX^{\mathsf{T}} + \lambda I_{m \times m})^{-1} y$$

$$w = V \Lambda^{\mathsf{T}} U^{\mathsf{T}} (U \Lambda V^{\mathsf{T}} V \Lambda^{\mathsf{T}} U^{\mathsf{T}} + \lambda I_{m \times m})^{-1} y$$

$$w = V \Lambda^{\mathsf{T}} U^{\mathsf{T}} (U \Lambda \Lambda^{\mathsf{T}} U^{\mathsf{T}} + \lambda U U^{\mathsf{T}})^{-1} y$$

$$w = V \Lambda^{\mathsf{T}} U^{\mathsf{T}} (U (\Lambda \Lambda^{\mathsf{T}} + \lambda I_{m \times m}) U^{\mathsf{T}})^{-1} y$$

$$w = V \Lambda^{\mathsf{T}} U^{\mathsf{T}} (U (\Lambda \Lambda^{\mathsf{T}} + \lambda I_{m \times m}) U^{\mathsf{T}})^{-1} y$$

$$w = V \Lambda^{\mathsf{T}} U^{\mathsf{T}} U (\Lambda \Lambda^{\mathsf{T}} + \lambda I_{m \times m})^{-1} U^{\mathsf{T}} y$$

$$w = V \Lambda^{\mathsf{T}} (\Lambda \Lambda^{\mathsf{T}} + \lambda I_{m \times m})^{-1} U^{\mathsf{T}} y$$

Осталось доказать, что синие матрицы равны;)

$$\operatorname{diag}(\lambda_1 / (\lambda_1^2 + \lambda), \dots, \lambda_k / (\lambda_k^2 + \lambda))_{n \times m}$$

$$k = \min(m, n)$$

Кернализация гребневой регресии

сравним число операций...

$$w = (X^{\mathsf{T}}X + \lambda I_{n \times n})^{-1}X^{\mathsf{T}}y$$
 $w = X^{\mathsf{T}}(XX^{\mathsf{T}} + \lambda I_{m \times m})^{-1}y$

время (time)

$$O(mn^2 + n^3)$$

$$O(m^2n+m^3)$$

память (space)

$$O(mn \vee n^2)$$

$$O(mn \vee m^2)$$

Кстати

$$w = X^{\mathrm{T}} \underbrace{(XX^{\mathrm{T}} + \lambda I_{m \times m})^{-1} y}_{\equiv \alpha \in \mathbb{R}^{m}} = \sum_{t=1}^{m} \alpha_{t} x_{t}$$

отдельный смысл: коэффициенты = л/к объектов

Representer theorem

- возможность кернализовать
- другие затраты по времени и памяти
- опять видим, что коэффициенты = л/к объектов
- можно и SGD использовать!!! (пока это опустим)

при доказательстве также можно Matrix inversion lemma

$$(FH^{-1}G-E)^{-1}FH^{-1}=E^{-1}F(GE^{-1}F-H)^{-1}$$

Кернализация гребневой регресии

$$W = X^{\mathrm{T}} (XX^{\mathrm{T}} + \lambda I_{m \times m})^{-1} y$$

тогда
$$w=X^{\scriptscriptstyle \mathrm{T}}lpha=\sum_{i=1}^mlpha_ix_i o\sum_{i=1}^mlpha_iarphi(x_i)$$
, где

$$\alpha = (XX^{T} + \lambda I_{m \times m})^{-1} y \to (\|K(x_{i}, x_{j})\|_{m \times m} + \lambda I_{m \times m})^{-1} y,$$

Ответ нашей kernel-ridge-регрессии:

$$a(x) = w^{\mathsf{T}} x \to w^{\mathsf{T}} \varphi(x) = \sum_{i=1}^{m} \alpha_i \varphi(x_i)^{\mathsf{T}} \varphi(x) = \sum_{i=1}^{m} \alpha_i K(x_i, x)$$

для справки: Hal Daume' «From Zero to Reproducing Kernel Hilbert Spaces in Twelve Pages or Less» http://users.umiacs.umd.edu/~hal/docs/daume04rkhs.pdf

Минутка кода

sklearn.kernel_ridge.KernelRidge

kernel="linear"	Ядро		
alpha=1	Коэффициент регуляризации		
gamma=None	Параметр для ядер RBF-типа		
degree=3	Параметр для полиномиального ядра		
coef0=1	Параметр для полиномиального ядра и сигмоиды		
kernel_params	Параметр для пользовательского ядра		

Кернализации с нестандартными данными

kernels on probability distributions
kernels on strings
kernels on functions
kernels on groups
kernels on graphs

Кернализация в анализе последовательностей

```
x = "ACAGCAGTA"
z = "AGCAAGCGAG"
from collections import Counter
def phi(x):
    11 11 11
    пространство 3-подпоследовательностей
    11 11 11
    cnt = Counter()
    for i in range (len(x)-2):
        cnt[x[i: i+3]] += 1
    return dict(cnt)
phix = phi(x) \# \{ 'ACA': 1, 'CAG': 2, 'AGC': 1, 'GCA': 1, 'AGT': 1, 'GTA': 1 \}
phiz = phi(z) #{'AGC': 2, 'GCA': 1, 'CAA': 1, 'AAG': 1, 'GCG': 1, 'CGA': 1, 'GAG': 1}
def phidot(phix, phiz):
    11 11 11
    скалярное произведение в новом пространстве
    11 11 11
    return ({name: phix[name] * phiz[name] for name in set(phix.keys()) & set(phiz.keys())})
x dot y = phidot(phix, phiz) # {'GCA': 1, 'AGC': 2}
sum(list(x dot y.values())) # 3
```

Математика ядер – операции над ядрами

С ядрами можно делать много «неявных» операций Пример: вычислить разброс в новом пространстве

$$\sigma_{\varphi}^{2} = \frac{1}{m} \sum_{i=1}^{m} \| \varphi(x_{i}) - \mu_{\varphi} \|^{2}$$

сначала вычислим
$$\|\varphi(x_i) - \mu_{\varphi}\|^2 =$$

$$= (\varphi(x_i) - \mu_{\varphi})^{\mathrm{\scriptscriptstyle T}} (\varphi(x_i) - \mu_{\varphi}) = \varphi(x_i)^{\mathrm{\scriptscriptstyle T}} \varphi(x_i) - 2\varphi(x_i)^{\mathrm{\scriptscriptstyle T}} \mu_{\varphi} + \mu_{\varphi}^{\mathrm{\scriptscriptstyle T}} \mu_{\varphi} =$$

$$= K(x_i, x_i) - \frac{2}{m} \sum_{j=1}^{m} \varphi(x_i)^{\mathsf{T}} \varphi(x_j) + \left(\frac{1}{m} \sum_{j=1}^{m} \varphi(x_j)\right)^{\mathsf{T}} \left(\frac{1}{m} \sum_{j=1}^{m} \varphi(x_j)\right) = 0$$

$$= K(x_i, x_i) - \frac{2}{m} \sum_{j=1}^{m} K(x_i, x_j) + \frac{1}{m^2} \sum_{j=1}^{m} \sum_{t=1}^{m} K(x_j, x_t)$$

Математика ядер – операции над ядрами

поэтому разброс...

$$\sigma_{\varphi}^{2} = \frac{1}{m} \sum_{i=1}^{m} \left(K(x_{i}, x_{i}) - \frac{2}{m} \sum_{j=1}^{m} K(x_{i}, x_{j}) + \frac{1}{m^{2}} \sum_{j=1}^{m} \sum_{t=1}^{m} K(x_{j}, x_{t}) \right) =$$

$$= \frac{1}{m} \sum_{i=1}^{m} K(x_i, x_i) - \frac{2}{m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} K(x_i, x_j) + \frac{1}{m^2} \sum_{j=1}^{m} \sum_{t=1}^{m} K(x_j, x_t) =$$

$$= \frac{1}{m} \sum_{i=1}^{m} K(x_i, x_i) - \frac{1}{m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} K(x_i, x_j)$$

Разброс вычисляется через значения ядер, такие сущности как «средние» не надо определять в явном виде

аналогично(доказать):
$$\|\varphi(x_i) - \varphi(x_j)\|^2 = K(x_i, x_i) + K(x_j, x_j) - 2K(x_i, x_j)$$

Математика ядер – операции над ядрами

нормировка в новом признаковом пространстве

$$\varphi(x) \to \frac{\varphi(x)}{\|\varphi(x)\|}$$

$$K(x_{i}, x_{j}) \to K(x_{i}, x_{j}) = \frac{\varphi(x_{i})^{\mathsf{T}} \varphi(x_{j})}{\|\varphi(x_{i})\| \cdot \|\varphi(x_{j})\|} = \frac{K(x_{i}, x_{j})}{\sqrt{K(x_{i}, x_{i})K(x_{j}, x_{j})}}$$

можно имитировать модификацией матрицы ядра:

$$K \to W^{-1/2}KW^{-1/2}$$
, где $W = \text{diag}(K(x_1, x_1), ..., K(x_m, x_m))$

Проблема выбора ядра

Выбор ядра – экспертно / перебор

Настройка гиперпараметров ядра – скользящий контроль

Интерпретация ядра:

$$(K(x_i, x_1), K(x_i, x_2), ..., K(x_i, x_m))$$

- можно рассматривать как новое признаковое описание, т.е. «сходства» с объектами обучения

Но почему именно с этими объектами???

⇒ настройка (определение) объектов

Не забывать

храним много информации например, $m \times m$ -матрицу

есть методы увеличения скорости kernel-методов

RBF – суть метода

$$\|K(x_i,x_j)\|_{m imes m} = egin{bmatrix} K(x_1,x_1) & \cdots & K(x_1,x_m) \\ \cdots & \cdots & \cdots \\ K(x_m,x_1) & \cdots & K(x_m,x_m) \end{bmatrix}$$
 Помним... базисность (в RBF) нужна матрицы невырожденности этой матрицы $\|K(x_1,x_2)\| \|w = v\|$

Помним... базисность (в RBF) нужна для

$$||K(x_i, x_i)|| w = y$$

– система m уравнений с m неизвестными

$$\sum_{i=1}^{m} w_i \exp(-\gamma \| x_j - x_i \|^2) = y_j, j \in \{1, 2, ..., m\}$$

$$a(x) = \sum_{i=1}^{m} w_i \exp(-\gamma ||x - x_i||^2)$$

помним, что аналогично было в SVM... $a(x) = \operatorname{sgn}\left(\sum_{i=s} \alpha_i y_i K(x_i, x)\right)$

RBF – проблема выбора эталонных точек

лучше в качестве центров использовать k эталонных точек Как выбрать?

один из способов: кластеризация — центры кластеров

Support vectors

RBF centers

RBF – проблема настройки весов

если точек будет меньше... (собственно, как в SVM)

$$\sum_{i \in S} w_i \exp(-\gamma ||x_j - x_i||^2) = y_j, \ j \in \{1, 2, ..., m\}$$

$$||K(x_i, x_j)||_{m \times |S|} w = y$$

решение через псевдообратную (если матрицу обозначить через К):

$$w = (K^{\mathrm{T}}K + \lambda I)^{-1}K^{\mathrm{T}}y$$

а практичнее – SGD
или RBF-сеть

RBF-сеть (Radial basis function network)

нейросеть

RBF-сеть

https://www.youtube.com/watch?v=O8CfrnOPtLc

RBF-сеть (Radial basis function network)

https://github.com/JeremyLinux/PyTorch-Radial-Basis-Function-Layer

Реализации методов, основанных на ядрах

FALKON, 2017

$$O(m)$$
 – память $O(m\sqrt{m})$ – время

идея: случайные подмножества

$$S \subseteq \{12,...,m\}$$
 + SGD

$$\sum_{i=1}^{m} \alpha_i K(x_i, x) \to \sum_{i \in S} \alpha_i K(x_i, x)$$

Algorithm	train time	kernel evaluations	memory	test time
SVM / KRR + direct method	n^3	n^2	n^2	\overline{n}
KRR + iterative I, 2	$n^2\sqrt[4]{n}$	n^2	n^2	\boldsymbol{n}
Doubly stochastic 22	$n^2\sqrt{n}$	$n^2\sqrt{n}$	n	\boldsymbol{n}
Pegasos / KRR $+$ sgd [27]	n^2	n^2	n	n
KRR + iter + precond 3 28 4, 5, 6	n^2	n^2	n	\boldsymbol{n}
Divide & Conquer 29	n^2	$n\sqrt{n}$	n	\boldsymbol{n}
Nyström, random features [7, 8, 9]	n^2	$n\sqrt{n}$	n	\sqrt{n}
Nyström + iterative 23, 24	n^2	$n\sqrt{n}$	\boldsymbol{n}	\sqrt{n}
Nyström $+ \text{ sgd } \boxed{20}$	n^2	$n\sqrt{n}$	\boldsymbol{n}	\sqrt{n}
FALKON (see Thm. 3)	$n\sqrt{n}$	$n\sqrt{n}$	\boldsymbol{n}	\sqrt{n}

Table 1: Computational complexity required by different algorithms, for optimal generalization. Logarithmic terms are not showed.

Реализации методов, основанных на ядрах

Figure 1: Falkon is compared to stochastic gradient, gradient descent and conjugate gradient applied to Problem (\boxtimes), while NYTRO refer to the variants described in [23]. The graph shows the test error on the HIGGS dataset $(1.1 \times 10^7 \text{ examples})$ with respect to the number of iterations (epochs for stochastic algorithms).

Alessandro Rudi, Luigi Carratino, Lorenzo Rosasco «FALKON: An Optimal Large Scale Kernel Method» // https://arxiv.org/pdf/1705.10958.pdf

Дальше

В обучении без учителя будет метод kernel PCA, kernel k-means (?)

Также есть Kernel ICA, Kernel CCA

Пример деформации пространства на практике: (m×k)*(k×n)

Дано: m, n, k, характеристики ЭВМ

Целевой признак: Время перемножения матриц размеров m×k и k×n

В контроле: ~5000 Записей, ~950 признаков

В тесте: =*=

Функционал качества: МАРЕ

Прагматика: прогнозирование времени вычислений

Простая логика: результат произведения – mn элементов, вычисление каждого – k умножений, общее число умножений = m×n×k

Пример деформации пространства на практике: (m×k)*(k×n)

Регрессия:

$$\log(y) - \log(mnk) \approx \text{const}$$

Пусть

$$\log(y) - \log(mnk) = w_1 \log(mnk) + w_0$$
 потом покажем, почему не const

Ответ задачи:

$$a = e^{w_0} \cdot (mnk)^{w_1+1}$$

Пример деформации пространства на практике: (m×k)*(k×n)

Пример деформации пространства на практике: биология

Есть предположение

$$y \approx \frac{\alpha x}{\beta + x}$$

(некоторые биологические процессы так описываются)

Как решать стандартами методами?

Пример деформации пространства на практике: биология

Пусть

$$y = \frac{\alpha x}{\beta + x}$$

Это линейная регрессия для обратных признаков:

$$\frac{1}{y} = \frac{\beta}{\alpha} \frac{1}{x} + \frac{1}{\alpha}$$

Итог

Можно решать сложные задачи линейными методами ~ пополнение признакового пространства

Есть «автоматические способы пополнения»

Многие методы можно «кернализовать»

Ссылки

Scholkopf, B. and Smola, A. J. «Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond» Cambridge, MA: MIT Press, 2002.

Scholkopf, B., Tsuda, K., and Vert, J.-P. «Kernel methods in computational biology» Cambridge, MA: MIT press, 2004.

Shawe-Taylor, J. and Cristianini, N. «Kernel Methods for Pattern Analysis» New York: Cambridge University Press, 2004.

RBF https://en.wikipedia.org/wiki/Radial_basis_function