

Introduction to WOFRY

Manuel Sanchez del Rio

srio@lbl.gov

WOFRY

https://github.com/oasys-kit/wofry

Wave Optics FRamwork in pYthon

WOFRY is the OASYS framework for waveoptics calculations. It contains a threefold functionality:

- it provides a generalization (or abstraction) of a software tool for wave optics, combining the component definitions from SYNED with the abstract declaration of wavefronts and propagators https://doi.org/10.1117/12.2274232
- it defines a mechanism for interfacing a wave optics code (e.g., SRW, WISE etc.) in it, a first step for becoming interfaced in OASYS
- it provides native implementations of simple wavefronts (e.g., plane waves, spherical waves, Gaussian sources) and propagators for prototyping optical systems.

WOFRY

Sources

Optical elements

Tools

Propagators

1D

Fresnel
Fresnel (convolution)
Integral
Fresnel Zoom
Fresnel Zoom Scaled

2D

Zoom Propagator

$$U(x_{2}, y_{2}) = \frac{e^{ik\Delta z}}{\sqrt{m_{x}m_{y}}} e^{i\frac{k}{2\Delta z} \left[\frac{m_{x}-1}{m_{x}}x_{2}^{2} + \frac{m_{y}-1}{m_{y}}y_{2}^{2}\right]}$$

$$\mathcal{F}^{-1} \left[\mathcal{F}\left[U(x_{1}, y_{1})e^{i\frac{k}{2\Delta z}}\left[(1-m_{x})x_{1}^{2} + (1-m_{y})y_{1}^{2}\right]\right] \times e^{-i\pi\lambda\Delta z\left(\frac{f_{x}^{2}}{m_{x}} + \frac{f_{y}^{2}}{m_{y}}\right)}\right]$$

Jason D. Schmidt. Numerical Simulation of Optical Wave Propagation. SPIE Press, Bellingham, WA, USA, 2010.

G. Pirro, Master Thesis (2017)

https://github.com/oasys-kit/documents/blob/master/zoom_propagator_pirro_thesis.pdf

wofry_examples.ows simple propagation cases

Aperture=0.4 mm, E=17225 eV, D=5cm

Converging spherical + Propagation (D)

Plane + Lens (F=D)+ Propagation (D)

F=D/

Spherical divergent+ Lens (F=D/2)+

Propagation (D)

6

1D simplified model of ISN Beamline

2D Oversimplified Beamline

Theoretical consideration

The diffraction by a DxD square aperture of a collapsing spherical wavefront has an intensity distribution proportional to $sinc^2(kDx/2f)$ sinc²(kDy/2f), where $k=2\pi/\lambda$, x(y) is the horizontal (vertical) coordinate, and f is the distance aperture-focus (D/f is the divergence). Considering that the FWHM of $sinc^2(x)$ is approximately 2.78, one obtains a FWHM=0.885 * wavelength / divergence=18nm

2D simplified model of ISN Beamline

WOFRY 2D

Shortcuts to second OASYS school web:

http://tinyurl.com/r5fq6pe

http://tinyurl.com/v98cllg/ISN undulator 25KeV.json

