

Capítulo 2 Modelos lineales y Programación lineal

Método de las 2 fases

FASE 1

Paso 1: Llevar la formulación a la forma estándar

Paso 2: Agregar variables artificiales a las restricciones que no tienen holguras.

Paso 3: Se deben penalizar las variables artificiales pero con el coeficiente igual a 1 (en caso MAX se resta y en caso MIN se suma).

Paso 4: Igualar la función objetivo a cero si separar la ecuación en dos partes: la primera parte debe considerar solamente las variables artificiales y la segunda parte debe considerar solamente las variables de decisión x_i .

Paso 5: Obtener la nueva fila de z en base a la misma idea que en el método de la gran "m" pero tomando la primera parte de la ecuación del pase 4.

<u>Paso 6</u>: Llevar todos los coeficientes y aplicar GAUSS-JOURDAN hasta obtener todos los valores >=0 en la fila de z si es MAX o todos los valores <=0 en caso de minimizar.

Paso 7: Verificar que en el lado derecho de la fila de z se obtenga un valor de 0 para pasar a la FASE 2.

FASE 2

Paso 1: Borrar las columnas de todas las variables artificiales.

Paso 2: Copiar los coeficientes de la ecuación que quedo en el paso 4 de la fase 1 que corresponde a las variables de decisión.

Paso 3: Corregir las columnas de todas variables PIVOTES y luego aplicar GAUSS-JOURDAN hasta obtener todos los valores >=0 en la fila de z si es MAX o todos los valores <=0 en caso de minimizar.

Paso 4: La solución final se encuentra en el lado derecho de la ultima tabla.

$$z = 3x_1 + 5x_2$$

 $x_1 \leq 4$

 $2x_2 = 12$

 $3x_1 + 2x_2 \ge 18$

 $\forall x_i \ge 0 \land x_i \in R$

$$2x_2 + a_1 = 12$$

 $3x_1 + 2x_2 - s_1 + a_2 = 18$

$$z = 3x_1 + 5x_2 + a_1 + a_2$$

FASE 1

$$z - a_1 - a_2 = 0$$

$$z - 3x_1 - 5x_2 = 0$$

	x_1	x_2	s_1	a_1	a_2	LD
Fila de la F.O.	0	0	0	-1	-1	0
Restricciones sumadas (las que tienen variables artificiales)	3	4	-1	1	1	30
Nueva F.O	3	4	-1	0	0	30

	Z	x1	x2	h1	a1	s1	a2	LD	θ	
Z	1	3	4	0	0	-1	0	30		
h1	0	1		1	0	0	0	4		
a1	0	0	2	0	1	0	0	12	6	menor
a2	0	3	2	0	0	-1	1	18	9	
	Z	x1	x2	h1	a1	s1	a2	LD	θ	
Z	1	3	0	0	-2	-1	0	6		
h1	0	1	0	1	0	0	0	4	4	
x2	0	0	1	0	0,5	0	0	6		
a2	0	3	0	0	-1	-1	1	6	2	menor
	Z	x1	x2	h1	a1	s1	a2	LD	θ	
Z	1	0	0	0	-1	0	-1	0		FO es cero
h1	0	0	0	1	0,33	0,33	-0,3	2		
x2	0	0	1	0	0,5	0	0	6		
x1	0	1	0	0	-0,3	-0,3	0,33	2		

FASE II> QUITAMOS LAS COLUMNAS DE TODAS LAS artificiales							S artificiales			
	Z	x1	x2	h1	s1	LD	θ			
Z	1	-3	-5	0	0	0		z-3x1-5x2 = 0		
h1	0	0	0	1	0,33	2		al copiar se debe corregir filas pivote		
x2	0	0	1	0	0	6				
x1	0	1	0	0	-0,3	2				
								FASE 2		
	Z	x1	x2	h1	s1	LD	θ			
Z	1	0	-5	0	-1	6				
h1	0	0	0	1	0,33	2				
x2	0	0	1	0	0	6		Solución óptima factible.		
x1	0	1	0	0	-0,3	2		Solucion optima factible.		
	Z	x1	x2	h1	s1	LD	θ			
Z	1	0	0	0	-1	36		todos son <=0 por tanto el algoritmo termina		
h1	0	0	0	1	0,33	2				
x2	0	0	1	0	0	6				
x1	0	1	0	0	-0,3	2				

Unos grandes almacenes desean liquidar 200 camisas y 100 pantalones de la temporada anterior. Para ello lanzan dos ofertas A y B:

La oferta A, consiste en un lote de una camisa y un pantalón, que se vende a 30 \$us.

La oferta B, consiste en un lote de tres camisas y un pantalón, que se vende a 50 \$us.

No se desea ofrecer menos de 20 lotes de la oferta A, ni menos de 10 de la B. ¿Cuántos lotes ha de vender de cada tipo para maximizar la ganancia?

