Algebraic geometry

a desperate attempt to avoid failure

Blitzkrieg z GA

Noetherowskość, wymiary

For any $A \subseteq K[\overline{X}]$ we define

$$V(A) = \{ \overline{x} \in K^n : \forall F \in A F(\overline{x}) = 0 \}.$$

Let $I, J \subseteq K[\overline{X}]$. Then

- $A_0 \subseteq A_1 \implies V(A_1) \subseteq V(A_0)$
- $V(\bigcup A_i) = \bigcap V(A_i)$
- $V(I \cap J) = V(IJ) = V(I) \cup V(J)$
- $V(I+J) = V(I) \cap V(J)$

For any $A\subseteq K[\overline{X}]$ there is a finite $A_0\subseteq A$ such that $V(A)=V(A_0)$ (by the Hilbert's basis theorem).

Definicja 1.1: Noetherian ...

A topological space X is called **Noetherian** if any descending chain of closed subsets of X stabilizes. Meanwhile, a ring is Noetherian if any ascending chain of ideals stabilizes.

Definicja 1.2: irreducible space —

A space X is irreducible if it is not a non-trivial union of its two closed subseteq, i.e. for any Y_1 , $Y_2 \subseteq X$ closed $X = Y_1 \cup Y_2$ then $X = Y_1$ or Y_2 .

If X is a Noetherian space then

- $X = X_1 \cup ... \cup X_k$ for some $X_1, ..., X_k \subseteq X$ irreducible such that $X_i \not\subseteq X_j$ for $i \neq j$
- this sequence is unique up to permutation of indices

An affinie algebraic set V(A) is **affine variety** if it is irreducble as a topological space with the Zariski topology.

Definicja 1.3: dimension

dim(X) = n if there is a strictly decreasing sequence of irreducible closed subsets of X such that

$$X_n \subsetneq X_{n-1} \subsetneq ... \subsetneq X_0 \subseteq X$$

For $V \subseteq \mathbb{A}^n$ we define the **affine coordinate ring of** V as

$$K[v] := \{ f \in \operatorname{Func}(V, K) : \exists F \in K[\overline{X}] : F|_V = f \}$$

K(V) is the field of fractions of K[V], called the field of rational functions on V.

The **ideal of** *V* is defined as

$$\ker \left(K[\overline{X}] \ni F \mapsto F|_{V} \in K[V] \right)$$

which is the same as

$$I(V) = \{ F \in K[\overline{X}] : \forall \overline{x} \in V F(\overline{x}) = 0 \}.$$

The **Zariski closure** of V_0 is the set $V(I(V_0))$.

Twierdzenie 1.4: Hillbert's Nullstellensatz

weak
$$I \subseteq K[\overline{X}] \land ; I \neq K[\overline{X}] \implies V(I) \neq \emptyset$$

strong/regular $I \subseteq K[\overline{X}] \implies I(V(I)) = \sqrt{I}$

If $V \subseteq \mathbb{A}^n$ is Zariski closed, then the following are equivalent

- 1. V is irreducible
- 2. I(V) is prime
- 3. $\exists P \subseteq K[\overline{X}]$ prime such that V = V(P) !!the field K needs to be algebraically closed!!
- 4. K[V] is a domain

Twierdzenie 1.5

If $F \in K[\overline{X}]$ is irreducible, then V(F) is an affine variety.

Let $V \subseteq \mathbb{A}^n$ be an affine algebraic set. Then there is a bijection between radical prime ideals of K[V] and the set of Zariski closed irreducible closed

Definicja 1.6: Krull dimension

For a ring R we define its Krull dimension $\dim(R)$ as the supremum $k \in \mathbb{N}$ such that there is a strictly increasing (or decreasing) sequence of prime ideals

$$P_0 \subsetneq P_1 \subsetneq ... \subsetneq P_k$$

of R.

$$\dim(V) = \dim(K[V])$$

Twierdzenie 1.7

Let R be a finitely generated K-algebra which is a domain. Then

$$\dim(R) = \operatorname{trdeg}_{K}(R_{0})$$

the dimension of *R* is equal to the transcendental degree of the field of fractions of *R* over *K*.

If R = K[V] then $R_0 = K(V)$ and the above statement holds.

Kategoryje

Let $V \subseteq \mathbb{A}^n$ and $W \subseteq \mathbb{A}^m$ be affine algebraic sets. Then $\varphi : V \to W$ is a **morphism** if there are $f_1, ..., f_m \in K[V]$ such that

$$\varphi(\mathbf{v}) = (f_1(\mathbf{v}), ..., f_m(\mathbf{v})).$$

For such a morphism we define

$$\varphi^*: K[W] \to K[V]$$
$$\varphi^*(f) = f \circ \varphi.$$

- 1. The mapping $\varphi \mapsto \varphi^*$ is an isomorphism between the set of morphisms $V \to W$ and the set of morphisms K[W] to K[V].
- 2. Any finitely generated K-algebra R which is reduced (no nilpotent elements) is isomorphic over V to K[V] for some affine algebraic V.

$$V \cong W \iff K[V] \cong_K K[W]$$

For $f \in K(V)$, the **domain** of f, dom f, is the set of points $v \in V$ such that there are f_1 , $f_2 \in K[V]$, $f = \frac{f_1}{f_2}$ and $f_2(v) \neq 0$.

Definicja 1.8

Let $f \in K(V)$ and $v \in V$.

- 1. f is regular at v if $v \in dom f$
- 2. $\mathcal{O}_{V,v} := \{ f \in K(V) : v \in \text{dom } f \}$
- 3. f is regular if f is regular at each $v \in V$, i.e. dom f = V.

Fakt 1.9

For any $v \in V$

$$\mathcal{O}_{V,V} = K[V]_{I_V(v)} = \{ \frac{a}{b} : a \in K[V], b \in K[V] - I_V(v) \}$$

Denote by

$$\mathfrak{m}_{V,v} \leq \mathcal{O}_{V,v}$$

the maximal ideal of $\mathcal{O}_{V,v}$.

f is regular $\iff f \in K[V]$

Lemat 1.10

For a morphism $\varphi: V \to W$ its dual φ^* is a monomorphism $\iff \varphi$ is **dominant**, i.e. $\varphi(V)$ is Zariski dense in W (is an epimorphism in its category).

A function $\varphi: U \subseteq V \to W$ is a **rational function** between V and W if there are $f_1, ..., f_m \in K(V)$ such that

$$U = \operatorname{dom} f_1 \cap ... \cap \operatorname{dom} f_m$$

and for all $v \in U$ there is $\varphi(v) = (f_1(v), ..., f_m(v))$.

 $\varphi: V \dashrightarrow W$ denotes a **dominant rational function** from V to W.

For any field extension $K \subseteq L$ such that L is finitely generated over K there is an affine variety V such that $L \cong_K K(V)$.

The category of affine varieties and dominant rational maps is *entiequivalent* or *dually equivalent* to the category of finitely generated field extensions of *K*.

Smooooth like the fur of a newborn goat

Let R be a ring. The map $\partial R \to R$ is called a **derivation** on R if for all a, $b \in R$

$$\partial(\mathsf{a}+\mathsf{b}) = \partial(\mathsf{a}) + \partial(\mathsf{b})$$

$$\partial(\mathsf{a}\mathsf{b})=\partial(\mathsf{a})\mathsf{b}+\mathsf{a}\partial(\mathsf{b}).$$

The Jacobian matrix of $\overline{F} = (F_1, ..., F_m), F_i \in K[\overline{X}]$ is

$$J_{\overline{F}} := \begin{pmatrix} \frac{\partial F_1}{\partial X_1} & \cdots & \frac{\partial F_1}{\partial X_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial X_1} & \cdots & \frac{\partial F_m}{\partial X_n} \end{pmatrix}$$

Fakt 1.11

If $(G_1, ..., G_k) = I = (F_1, ..., F_m) \subseteq K[\overline{X}]$ and $v \in V(I)$, then

$$\operatorname{rank}(J_{\overline{G}}(v)) = \operatorname{rank}(J_{\overline{F}}(v)).$$

Definicja 1.12: non-singular variety

Let $V \subseteq \mathbb{A}^n$ and $F_1, ..., F_m \in I(V) = (F_1, ..., F_m)$. We say that $a \in V$ is a **non-singular** or smooth point of V if

$$\operatorname{rank}(J_{\overline{F}}(a)) = n - \dim(V).$$

We say that V is a non-singular variety or a smooth variety if V is irreducible and all points of V are smooth.

 $\mathit{F} \in \mathit{K}[\mathit{X},\mathit{Y}] \ \mathsf{and} \ \mathit{V} = \mathit{V}(\mathit{F}) \subseteq \mathbb{A}^2$

- 1. $F \notin K \implies |V| = \infty$
- $2. \ |V(F, \tfrac{\partial F}{\partial X}, \tfrac{\partial F}{\partial Y})| < \infty \implies \sqrt{(F)} = (F) \ \land \ I(V) = (F)$
- 3. $V(F, \frac{\partial F}{\partial X}, \frac{\partial F}{\partial Y}) = \emptyset \implies V \text{ is smooth}$

Lemat 1.13

A point $\mathbf{a} \in V$ is smooth $\iff \dim_K(I_V(\mathbf{a})/I_V(\mathbf{a})^2) = \dim(V)$.

If *V* is an affine variety and $a \in V$, then we have

$$I_{V}(a)/I_{V}(a)^{2} \cong_{K} \mathfrak{m}_{V,a}/\mathfrak{m}_{V,a}^{2}$$

A Noetherian local ring (R, \mathfrak{m}) is **regular** if $\dim(R) = \dim_{R/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2)$.

The K-vector space $\mathfrak{m}_{V,a}/\mathfrak{m}_{V,a}^2$ is the **cotangent space** of V at a. The dual space is the *tangent space*.

DVR

A local ring (R, \mathfrak{m}) is a discrete valuation ring if

- 1. R is Noetherian domain
- 2. R is not a field
- 3. m is principal (generated by a single element)

In any Noetherian domain R and any $I \triangleleft R$ we have

$$\bigcup_{n\geq 1}I^n=\{0\}.$$

Any DVR is PID (the generator of \mathfrak{m} is the uniformizing parameter)

Let R be a UFD, $r \in R$ irreducible and R_0 be the field of fractions of R. Define

$$\mathsf{v}_r: \mathsf{R}_0^* \to \mathbb{Z}$$

$$v_r(r^n \frac{a}{b}) = n$$
, $r \not | a$, $r \not | b$.

We call v_r the **r-addic valuation** on R_0 .

Fakt 1.14

R, r, R_0 and v_r as above. Then for all α , $\beta \in R_0^*$

- 1. $\alpha + \beta \in R_0^* \implies \mathbf{v_r}(\alpha + \beta) \ge \min\{\mathbf{v_r}(\alpha), \mathbf{v_r}(\beta)\}$
- 2. $\mathbf{v_r}(\alpha\beta) = \mathbf{v_r}(\alpha) + \mathbf{v_r}(\beta)$
- 3. $v_r(R_0^*) = \mathbb{Z}$

For any irreducible $r, s \in R$ if (r) = (s) then $v_r = v_s$.

Definicja 1.15: discrete valuation

Let L be a field. Any function $v:L^*\to\mathbb{Z}$ satisfying 1-3 from the fact above is called a **(discrete) valuation** on L. For any valuation $v:L^*\to\mathbb{Z}$

- $\mathcal{O}_{\mathbf{V}} := \{ \alpha \in L^* : \mathbf{v}(\alpha) \ge 0 \} \cup \{ 0 \} \rightarrow \mathbf{valuation} \ \mathbf{ring} \ \mathbf{of} \ \mathbf{v}$
- $\mathfrak{m}_{\mathsf{V}} := \{ \alpha \in \mathsf{L}^* \ : \ \mathsf{v}(\alpha) > 0 \} \cup \{ 0 \}$ -> valuation ideal of v

For a valuation $v: L^* \to \mathbb{Z}$, $(\mathcal{O}_v, \mathfrak{m}_n)$ is a DVR.

Twierdzenie 1.16

Let C be an affine curve and $a \in C$. Then a is smooth $\iff (\mathcal{O}_{C,a}, \mathfrak{m}_{C,a})$ is a DVR.

Definicja 1.17

Let C be an affine curve and $a \in C$ be a smooth point

- 1. a uniformizing parameter $f \in \mathcal{O}_{C,a}$ is a local parameter for C at a
- 2. the unique valuation on K(C) given by $(\mathcal{O}_{C,a},\mathfrak{m}_{C,a})$ is denoted ord_a
- 3. for $f \in K(C) \{0\}$ and $n \in \mathbb{N}_{>0}$
 - ord_a $(f) = n \implies f$ has a zero at a of order n
 - ord_a $(f) = -n \implies r$ has a pole at a of order n

$$\operatorname{ord}_{a}(f) = \dim_{K}(\mathcal{O}_{C,a}/f\mathcal{O}_{C,a})$$

$$\dim_{K}(K[X]/(F)) = \sum_{a \in V(F)} \operatorname{ord}_{a}(F)$$

Definicja 1.18: intersection number

The intersection number of F and G at $a = (x, y) \in \mathbb{A}^2$ is

$$I(a, F \cap G) := \dim_K(\mathcal{O}/(F, G)\mathcal{O}),$$

where

$$\mathcal{O} := K[X, Y]_{(X-X,Y-Y)} = K[X, Y]_{I(a)} = \mathcal{O}_{\mathbb{A}^2, a}$$

For curves C_1 , C_2 such that $F = I(C_1)$ and $G = I(C_2)$ we define $I(a, C_1 \cap C_2) := I(a, F \cap G)$.

$$I(a, F \cap G) > 0 \iff a \in V(F, G)$$

$$|\textit{V}(\textit{F},\textit{G})|<\infty \implies \textit{I}(\textit{a},\textit{F}\cap\textit{G})<\infty$$

F irreducible and $a \in V(F)$ smooth then

$$I(a, F \cap G) = \operatorname{ord}_a(G|_{V(F)}).$$

26/43