2021 Spring MAS 365: Homework 4

posted on Apr 1; due by Apr 8

- 1. [5+5+10 points] Let A be a nonsingular $n \times n$ matrix, $||\cdot||$ be any natural norm, and $K_p(A) = ||A||_p ||A^{-1}||_p$. Let λ_1 be the smallest and λ_n be the largest eigenvalues of the matrix $A^t A$.
 - (a) Show that if λ is an eigenvalue of A^tA , then $0 < \lambda \le ||A^t|| \ ||A||$.
 - (b) Show that $K_2(A) = \sqrt{\frac{\lambda_n}{\lambda_1}}$. (Hint: $||A|| = \sqrt{\rho(A^t A)} = \sqrt{\rho(AA^t)}$.)
 - (c) Show that $K_2(A) \leq \sqrt{K_1(A)K_{\infty}(A)}$. (Hint: $||A||_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{ij}|$ and $||A||_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{ij}|$.)
- 2. [10+10+10 points] Prove Theorem 7.33 in the textbook using mathematical induction as follows:
 - (a) Show that $\langle r^{(1)}, v^{(1)} \rangle = 0$.
 - (b) Assume that $\langle \boldsymbol{r}^{(k)}, \boldsymbol{v}^{(j)} \rangle = 0$, for each $k \leq l$ and j = 1, 2, ..., k, and show that this implies that $\langle \boldsymbol{r}^{(l+1)}, \boldsymbol{v}^{(j)} \rangle = 0$, for each j = 1, 2, ..., l.
 - (c) Show that $\langle \boldsymbol{r}^{(l+1)}, \, \boldsymbol{v}^{(l+1)} \rangle = 0.$
- 3. [10+10 points]
 - (a) Implement the SOR method with the optimal choice of w for the positive definite and tridiagonal matrix via MATLAB grader.
 - (b) Implement the steepest descent method via MATLAB grader.