

Complement of a Function

- Obtained by interchange of 1's to 0's and 0's to 1's for the values of F in the truth table
- Can be derived algebraically by applying DeMorgan's theorem
- Complement of an expression is obtained by interchanging AND and OR and complementing each variable and constant
- · Example:

$$F = X'YZ' + X'Y'Z$$

 $F' = (X + Y' + Z)(X + Y + Z')$

Standard Forms

- Variety of possible ways of writing a boolean function algebraically
- Hard to see unambiguously that it is the same function we are talking about
- Standard forms have been developed
- Standard forms also generate more desirable logic circuits
- Product terms and Sum terms
 - Product: XY'Z
 - Sum: X + Y' + Z

Canonical and standard forms

- Canonical and Standard Torms
- Two Standard forms
- 1) Sum of product .. SOP ...minterms .. $\boldsymbol{\Sigma}$
- 2) Product of sum .. POS ... maxterms.. Π

Minterms and maxterms of three binary variables

X	y	Z	SOP Term	Designation	POS Term	Designation
0	0	0	X'Y'Z'	m0	Х+У+Ζ	MO
0	0	1	X'Y'Z	m1	X+Y+Z'	M 1
0	1	0	X'YZ'	m2	X+Y'+Z	M2
0	1	1	X'YZ	m3	X+Y'+Z'	M 3
1	0	0	XY'Z'	m4	X'+Y+Z	M4
1	0	1	XY'Z	m5	X'+Y+Z'	M 5
1	1	0	XYZ'	m6	X'+Y'+Z	M 6
1	1	1	XYZ	m7	X'+Y'+Z'	M7

Canonical standard SOP form: each minterm is having all the variable in normal or complimented form "Normally from the truth table"

$$\mathsf{Ex}\,F = \overline{A}\,B + A\,B + \overline{A}\,\overline{B}$$

Minimal SOP form: Each minterm does not have all the variables in normal or complimented form ...

$$\mathsf{Ex}\ G = A + \overline{B}\ C$$

Que. For the given truth table, minimize the SOP expression

В	А	Y
0	0	0
1	0	1
0	1	0
1	1	1

Sol.

Note in SOP 1 = $A \& 0 = \overline{A}$

We see when Y = 1 and write the expression

Then $Y = \overline{A}B + AB$ This is the standard or canonical form

(each minterm is having all the variable in normal or complimented form

We will convert the standard form to minimal form by simplification.

$$Y = \overline{A}B + AB = B(\overline{A} + A) = B * 1 = B$$

Then Y = B Minimal form

In the truth table Y = B

Que. Simplify the expression for $Y(A,B) = \sum m(0,2,3)$

Sol. from the truth table

m0 means 0 0 $\overline{A} \overline{B}$

m2 means 10 $A \overline{B}$

m3 means 11 A B

Then $Y = \overline{A} \, \overline{B} + A \, \overline{B} + A \, B$

canonical / standard SOP Form

 $Y = \overline{B} \left(\overline{A} + A \right) + A B$

 $= \overline{B} + \underline{A} B = (\overline{B} + A) \quad (\overline{B} + B)$

 $=A+\overline{B}$

minimal SOP form

A	В	Y from TT	\overline{B}	$Y = A + \overline{B}$
0	0	1	1	1
0	1	0	0	0
1	0	1	1	1
1	1	1	0	1
	'	'	U	'

Express the Boolean function f = A + B'C in sum of product

We have two methods .. algebraic & truth table

- 1) Algebraic method (two approaches)
- a) Algebraic first approach

$$F = A + B'C$$

$$A = A*1 = A(B+B') = AB + AB' = AB + AB' (C + C')$$

$$\rightarrow$$
 A = ABC + ABC' + AB'C + AB'C'.

$$B'C = B'C * 1 = B'C (A + A') = B'CA + B'CA' \rightarrow AB'C + A'B'C$$

...
$$F = ABC + ABC' + AB'C' + AB'C' + AB'C' + A'B'C'$$

$$F = ABC + ABC' + AB'C + AB'C' + A'B'C$$

 $F = m1 + m4 + m5 + m6 + m7 \rightarrow look the previous slide$

...
$$F(A, B, C) = \sum (1, 4, 5, 6, 7)$$

b) Algebraic second approach

F = A + B'C (complete each part by all the rest available symbols)

$$F = A (BC + B'C + BC' + B'C') + B'C (A + A')$$

$$\rightarrow$$
 F = ABC + AB'C + ABC' + AB'C' + AB'C + A'B'C.

Erase the repeated symbols

...
$$F = ABC + ABC' + AB'C + AB'C' + A'B'C$$

 $F = m1 + m4 + m5 + m6 + m7 \rightarrow look the previous slide$

...
$$F(A, B, C) = \sum (1, 4, 5, 6, 7)$$

2) Truth table method

$$F = A + B'C$$

A	В	C	В'	B'C	A+B'C	Designation
0	0	0	1	0	0	m0
0	0	1	1	1	1	m1
0	1	0	0	0	0	m2
0	1	1	0	0	0	m3
1	0	0	1	0	1	m4
1	0	1	1	1	1	m5
1	1	0	0	0	1	m6
1	1	1	0	0	1	m7

Solution

$$F(A, B, C) = \sum (1, 4, 5, 6, 7)$$

means at these points results = 1

Example: express the boolean function F = XY + X'Z in product of sum

1 - Algebraic Method

$$F = XY + X'Z = (XY + X')(XY + Z)$$

$$= (X' + X)(X' + Y)(Z + X)(Z + Y)$$

$$= (X' + Y)(Z + X)(Y + Z)$$

MISSING Z Y X

$$X' + Y = X'+Y+O = X'+Y+ZZ' = (X'+Y+Z)(X'+Y+Z')$$

$$Z + X = X + Z + 0 = X + Z + YY' = (X + Z + Y)(X + Z + Y')$$

$$Y + Z = Y+Z+0 = Y+Z+XX' = (X+Y+Z)(X'+Y+Z)$$

$$F = (X'+Y+Z)(X'+Y+Z')(X+Y+Z)(X+Y+Z)(X+Y+Z)(X+Y+Z)$$

$$F(x, y, z) = XY + X'Z = m0 m2 m4 m5 = \Pi(0, 2, 4, 5)$$

Truth table method

F = XY + X'Z

X	У	Z	X'	XY	X'Z	XY+X'Z	Designation
0	0	0	1	0	0	0	m0
0	0	1	1	0	1	1	m1
0	1	0	1	0	0	0	m2
0	1	1	1	0	1	1	m3
1	0	0	0	0	0	0	m4
1	0	1	0	0	0	0	m5
1	1	0	0	1	0	1	m6
1	1	1	0	1	0	1	m7

F (x, y, z)= XY + X'Z = m0 m2 m4 m5 = Π (0, 2, 4, 5) Means at these points results = zeros

