Bootcamp Assessment 2020

Name:	
Please show your work for all problems, even if you do not arrive at a solution!	
1. For which values of $n > 0$ does $\sum_{n=1}^{\infty} \frac{1}{n}$ converge?	

2. Let X_1, \ldots, X_n be iid samples from $Pois(\lambda)$. Show that both $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ are unbiased estimators for λ .

3.	Skewness is a measure of the asymmetry of a probability distribution of a random vari-
	able about its mean. We define the skewness of a r.v. X as $E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right]$. A random variable that is right-skewed will have positive skewness, and a variable that is left-
	variable that is right-skewed will have positive skewness, and a variable that is left-
	skewed will have negative skewness.

If $X \sim Exp(\lambda)$, what is the skewness of X?

E of $\frac{1}{\theta}$
4

 $MLE = \underline{\hspace{1cm}}$

5. The joint pdf of X and Y is

$$f(x,y) = \frac{e^{-yx^2/2}}{\sqrt{2\pi/y}} \cdot ye^{-y}, \quad x \in \mathbb{R}, y > 0$$

(a) Find the conditional density $f_{X|Y}(x|y)$ of X given Y = y.

Hint: consider decomposing the joint into the product of conditional and marginal densities.

(b) What is E[X|Y]?

(c) What is Var(X|Y)?

(d) What is Var(X)?