$12n_{0570} \ (K12n_{0570})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 6u^{18} - 3u^{17} + \dots + 4b - 8, -5u^{18} + 3u^{17} + \dots + 4a + 2, u^{19} - 2u^{18} + \dots - 2u + 2 \rangle$$

$$I_2^u = \langle b + u - 1, 3a - 2u + 3, u^2 - 3 \rangle$$

$$I_3^u = \langle a^2u + 2a^2 + 2au + b + 5a - 2u - 2, a^3 + 2a^2 - 3au - u + 1, u^2 + u - 1 \rangle$$

$$I_4^u = \langle b - 1, a + 1, u + 1 \rangle$$

$$I_5^u = \langle b, a + 1, u + 1 \rangle$$

$$I_6^u = \langle b - 2, a + 1, u - 1 \rangle$$

$$I_7^u = \langle b - 1, a, u - 1 \rangle$$

* 8 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 32 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 6u^{18} - 3u^{17} + \dots + 4b - 8, -5u^{18} + 3u^{17} + \dots + 4a + 2, u^{19} - 2u^{18} + \dots - 2u + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{5}{4}u^{18} - \frac{3}{4}u^{17} + \dots + 2u - \frac{1}{2} \\ -\frac{3}{2}u^{18} + \frac{3}{4}u^{17} + \dots + 2u^{2} + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{5}{4}u^{18} - \frac{3}{4}u^{17} + \dots + 2u - \frac{1}{2} \\ -\frac{5}{4}u^{18} + \frac{1}{4}u^{17} + \dots - u + \frac{3}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{18} + \frac{11}{4}u^{16} + \dots - \frac{1}{2}u - \frac{1}{2} \\ \frac{1}{4}u^{18} - \frac{5}{2}u^{16} + \dots + u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{4}u^{16} - \frac{5}{2}u^{14} + \dots - \frac{1}{2}u - \frac{1}{2} \\ \frac{1}{2}u^{11} - \frac{7}{2}u^{9} + \dots + \frac{3}{2}u^{2} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{7} + 4u^{5} - 4u^{3} + 2u \\ u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^{18} - 20u^{16} - 4u^{15} + 74u^{14} + 38u^{13} - 118u^{12} - 130u^{11} + 54u^{10} + 186u^9 + 68u^8 - 90u^7 - 112u^6 - 20u^5 + 38u^4 + 62u^3 + 30u^2 + 4u + 4$$

Crossings	u-Polynomials at each crossing
c_1	$u^{19} + 27u^{18} + \dots + 3437u + 121$
c_2, c_6	$u^{19} - u^{18} + \dots - 37u - 11$
c_3, c_4, c_8 c_9, c_{10}	$u^{19} - 2u^{18} + \dots - 2u + 2$
<i>C</i> ₅	$u^{19} + 5u^{18} + \dots - 2958u + 842$
c_7, c_{11}	$u^{19} + u^{18} + \dots + 11u - 5$
c_{12}	$u^{19} - 3u^{18} + \dots + 261u - 25$

Crossings	Riley Polynomials at each crossing
c_1	$y^{19} - 63y^{18} + \dots + 5592117y - 14641$
c_2, c_6	$y^{19} - 27y^{18} + \dots + 3437y - 121$
c_3, c_4, c_8 c_9, c_{10}	$y^{19} - 24y^{18} + \dots + 195y^2 - 4$
c_5	$y^{19} + 39y^{18} + \dots + 8404544y - 708964$
c_7,c_{11}	$y^{19} - 3y^{18} + \dots + 261y - 25$
c_{12}	$y^{19} + 33y^{18} + \dots + 24021y - 625$

Solutions to I_1^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.794152 + 0.543465I		
a = 0.482447 + 0.204059I	-7.34662 - 0.67943I	5.65616 + 1.50255I
b = 0.924151 + 0.772270I		
u = -0.794152 - 0.543465I		
a = 0.482447 - 0.204059I	-7.34662 + 0.67943I	5.65616 - 1.50255I
b = 0.924151 - 0.772270I		
u = 0.935136 + 0.498632I		
a = -0.009698 - 0.441743I	-6.45737 + 7.68487I	7.03505 - 5.77603I
b = -1.24024 + 1.35546I		
u = 0.935136 - 0.498632I		
a = -0.009698 + 0.441743I	-6.45737 - 7.68487I	7.03505 + 5.77603I
b = -1.24024 - 1.35546I		
u = -0.787128 + 0.325506I		
a = 0.150228 + 0.339895I	1.07697 - 4.13087I	9.45859 + 7.55506I
b = -0.48300 - 1.36935I		
u = -0.787128 - 0.325506I		
a = 0.150228 - 0.339895I	1.07697 + 4.13087I	9.45859 - 7.55506I
b = -0.48300 + 1.36935I		
u = -0.071777 + 0.733673I		
a = 0.15515 - 1.56739I	-9.51900 - 3.56143I	3.03301 + 2.71216I
b = -0.214541 - 0.685780I		
u = -0.071777 - 0.733673I		
a = 0.15515 + 1.56739I	-9.51900 + 3.56143I	3.03301 - 2.71216I
b = -0.214541 + 0.685780I		
u = -0.039838 + 0.447508I		
a = 1.21035 + 1.34300I	-1.13039 + 1.43084I	1.52232 - 3.59827I
b = -0.102434 + 0.177489I		
u = -0.039838 - 0.447508I		
a = 1.21035 - 1.34300I	-1.13039 - 1.43084I	1.52232 + 3.59827I
b = -0.102434 - 0.177489I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.382837		
a = 0.501969	0.831777	13.6610
b = 0.660647		
u = 1.62442 + 0.15410I		
a = -0.86935 + 1.16752I	0.84264 + 3.32574I	7.36493 - 0.96716I
b = 1.85650 - 1.36466I		
u = 1.62442 - 0.15410I		
a = -0.86935 - 1.16752I	0.84264 - 3.32574I	7.36493 + 0.96716I
b = 1.85650 + 1.36466I		
u = 1.64903 + 0.08490I		
a = 0.26722 - 2.31947I	9.55424 + 5.66378I	11.29825 - 4.88655I
b = -0.55282 + 2.88445I		
u = 1.64903 - 0.08490I		
a = 0.26722 + 2.31947I	9.55424 - 5.66378I	11.29825 + 4.88655I
b = -0.55282 - 2.88445I		
u = -1.69418 + 0.14515I		
a = 1.07205 + 2.00699I	2.65549 - 10.25360I	8.99721 + 4.95875I
b = -1.98554 - 2.27964I		
u = -1.69418 - 0.14515I		
a = 1.07205 - 2.00699I	2.65549 + 10.25360I	8.99721 - 4.95875I
b = -1.98554 + 2.27964I		
u = 1.72122		
a = -0.936889	14.6839	18.0050
b = 0.803538		
u = -1.74710		
a = -1.48185	11.7122	5.60290
b = 2.13166		

II.
$$I_2^u = \langle b+u-1, 3a-2u+3, u^2-3 \rangle$$

a) Arc colorings
$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u \\ -2u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} \frac{2}{3}u - 1 \\ -u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{2}{3}u - 1 \\ u + 2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -\frac{5}{3}u + 1 \\ 2u - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -\frac{2}{3}u + 1 \\ u - 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_{11} \\ c_{12}$	$(u-1)^2$
c_3, c_4, c_5 c_8, c_9, c_{10}	u^2-3
c_6, c_7	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^2$
c_3, c_4, c_5 c_8, c_9, c_{10}	$(y-3)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.73205		
a = 0.154701	13.1595	12.0000
b = -0.732051		
u = -1.73205		
a = -2.15470	13.1595	12.0000
b = 2.73205		

$$III. \\ I_3^u = \langle a^2u + 2a^2 + 2au + b + 5a - 2u - 2, \ a^3 + 2a^2 - 3au - u + 1, \ u^2 + u - 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -a^{2}u - 2a^{2} - 2au - 5a + 2u + 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a^{2}u + 2a^{2} + 3au + 4a - 2u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -a^{2}u - 2a^{2} - 3au - 4a + 2u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -a^{2} - au - 3a + 2u \\ -a^{2}u - a^{2} - 2au - 2a + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 10

Crossings	u-Polynomials at each crossing
c_1	$u^6 + 4u^5 + 6u^4 + 7u^3 + 7u^2 + 3u + 1$
c_2, c_6, c_7 c_{11}	$u^6 - 2u^4 - u^3 + u^2 + u - 1$
c_3, c_4, c_8 c_9, c_{10}	$(u^2+u-1)^3$
<i>C</i> ₅	u^6
c_{12}	$u^6 - 4u^5 + 6u^4 - 7u^3 + 7u^2 - 3u + 1$

Crossings	Riley Polynomials at each crossing
c_1,c_{12}	$y^6 - 4y^5 - 6y^4 + 13y^3 + 19y^2 + 5y + 1$
c_2, c_6, c_7 c_{11}	$y^6 - 4y^5 + 6y^4 - 7y^3 + 7y^2 - 3y + 1$
c_3, c_4, c_8 c_9, c_{10}	$(y^2 - 3y + 1)^3$
<i>c</i> ₅	y^6

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 0.365159 + 0.080975I	0.986960	10.0000
b = 0.626987 - 0.659789I		
u = 0.618034		
a = 0.365159 - 0.080975I	0.986960	10.0000
b = 0.626987 + 0.659789I		
u = 0.618034		
a = -2.73032	0.986960	10.0000
b = 0.746026		
u = -1.61803		
a = -0.659441	8.88264	10.0000
b = -0.238962		
u = -1.61803		
a = -0.67028 + 1.87638I	8.88264	10.0000
b = 1.11948 - 2.34901I		
u = -1.61803		
a = -0.67028 - 1.87638I	8.88264	10.0000
b = 1.11948 + 2.34901I		

IV.
$$I_4^u = \langle b-1, a+1, u+1 \rangle$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 18

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	u
c_3, c_4, c_7 c_8, c_9, c_{10} c_{11}	u+1
c_5, c_{12}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6	y
c_3, c_4, c_5 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	4.93480	18.0000
b = 1.00000		

V.
$$I_5^u = \langle b, a+1, u+1 \rangle$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} -1 \end{pmatrix}$$

$$a_{\alpha} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_4 \\ c_6, c_7, c_{12}$	u-1
$c_2, c_5, c_8 \\ c_9, c_{10}, c_{11}$	u+1

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1	

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	3.28987	12.0000
b = 0		

VI.
$$I_6^u=\langle b-2,\ a+1,\ u-1
angle$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1\\2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -2\\3 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1\\2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{12}	u-1
c_2, c_3, c_4 c_{11}	u+1

Crossings	Riley Polynon	nials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1	

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	3.28987	12.0000
b = 2.00000		

VII.
$$I_7^u = \langle b-1,\ a,\ u-1 \rangle$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1\\2 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

Crossings	u-Polynomials at each crossing
c_1,c_5	u+1
c_2, c_3, c_4 c_6, c_8, c_9 c_{10}	u-1
c_7, c_{11}, c_{12}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_8, c_9, c_{10}	y-1
c_7, c_{11}, c_{12}	y

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	1.64493	6.00000
b = 1.00000		

VIII.
$$I_1^v = \langle a, \ b-1, \ v-1 \rangle$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_{11} \\ c_{12}$	u-1
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	u
c_6, c_7	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	y-1
c_3, c_4, c_5 c_8, c_9, c_{10}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0	0
b = 1.00000		

IX. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u(u-1)^{5}(u+1)(u^{6}+4u^{5}+6u^{4}+7u^{3}+7u^{2}+3u+1)$ $\cdot (u^{19}+27u^{18}+\cdots+3437u+121)$
c_2	$u(u-1)^{4}(u+1)^{2}(u^{6}-2u^{4}-u^{3}+u^{2}+u-1)$ $\cdot (u^{19}-u^{18}+\cdots-37u-11)$
$c_3, c_4, c_8 \\ c_9, c_{10}$	$u(u-1)^{2}(u+1)^{2}(u^{2}-3)(u^{2}+u-1)^{3}(u^{19}-2u^{18}+\cdots-2u+2)$
c_5	$u^{7}(u-1)^{2}(u+1)^{2}(u^{2}-3)(u^{19}+5u^{18}+\cdots-2958u+842)$
<i>C</i> ₆	$u(u-1)^{3}(u+1)^{3}(u^{6}-2u^{4}-u^{3}+u^{2}+u-1)$ $\cdot (u^{19}-u^{18}+\cdots-37u-11)$
c ₇	$u(u-1)^{2}(u+1)^{4}(u^{6}-2u^{4}-u^{3}+u^{2}+u-1)$ $\cdot (u^{19}+u^{18}+\cdots+11u-5)$
c_{11}	$u(u-1)^{3}(u+1)^{3}(u^{6}-2u^{4}-u^{3}+u^{2}+u-1)$ $\cdot (u^{19}+u^{18}+\cdots+11u-5)$
c_{12}	$u(u-1)^{6}(u^{6} - 4u^{5} + 6u^{4} - 7u^{3} + 7u^{2} - 3u + 1)$ $\cdot (u^{19} - 3u^{18} + \dots + 261u - 25)$

X. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y(y-1)^{6}(y^{6} - 4y^{5} - 6y^{4} + 13y^{3} + 19y^{2} + 5y + 1)$ $\cdot (y^{19} - 63y^{18} + \dots + 5592117y - 14641)$
c_2, c_6	$y(y-1)^{6}(y^{6} - 4y^{5} + 6y^{4} - 7y^{3} + 7y^{2} - 3y + 1)$ $\cdot (y^{19} - 27y^{18} + \dots + 3437y - 121)$
$c_3, c_4, c_8 \ c_9, c_{10}$	$y(y-3)^{2}(y-1)^{4}(y^{2}-3y+1)^{3}(y^{19}-24y^{18}+\cdots+195y^{2}-4)$
<i>C</i> ₅	$y^{7}(y-3)^{2}(y-1)^{4}(y^{19}+39y^{18}+\cdots+8404544y-708964)$
c_7, c_{11}	$y(y-1)^{6}(y^{6} - 4y^{5} + 6y^{4} - 7y^{3} + 7y^{2} - 3y + 1)$ $\cdot (y^{19} - 3y^{18} + \dots + 261y - 25)$
c_{12}	$y(y-1)^{6}(y^{6} - 4y^{5} - 6y^{4} + 13y^{3} + 19y^{2} + 5y + 1)$ $\cdot (y^{19} + 33y^{18} + \dots + 24021y - 625)$