Zynq Architecture and Vivado IPI

SDx 2018.2

Objectives

> After completing this module, you will be able to:

- >> Identify the basic building blocks of the Zynq architecture processing system (PS)
- >> List the available PS to the programmable logic (PL) connections through the AXI ports
- >> Identify clocking sources for the PL peripherals
- >> List the various AXI-based system architectural models
- >> Describe what is Vivado IPI and how it can be used to view the SDSoC generated hardware

Outline

- >Zynq SoC
- > Processor Peripherals and Interfaces
- > Clocks and Resets
- > AXI Interfaces
- > Vivado IPI
- Summary

The PS and the PL

> The Zynq-7000 AP SoC architecture consists of two major sections

- >> PS: Processing system
 - Dual ARM Cortex-A9 processor based (Single core versions available)
 - Multiple peripherals
 - Hard silicon core
- >> PL: Programmable logic
 - Shares the same 7 series programmable logic as
 - Artix[™]-based devices: Z-7010, Z-7015, and Z-7020 (high-range I/O banks only)
 - Single core versions: Z-7007S, Z-7012S, and Z-7014S
 - KintexTM-based devices: Z-7030, Z-7035, Z-7045, and Z-7100 (mix of high-range and high-performance I/O banks)

Extending Scalability Across the Zynq Portfolio

Zynq-7000 AP SoC Block Diagram

PS Components

- > Application processing unit (APU)
- > I/O peripherals (IOP)
 - >> Multiplexed I/O (MIO), extended multiplexed I/O (EMIO)
- > Memory interfaces
- > PS interconnect
- > DMA
- > Timers
 - Public and private
- > General interrupt controller (GIC)
- > On-chip memory (OCM): RAM
- > Debug controller: CoreSight

L1 Cache Features

- > Separate instruction and data caches for each processor
- > Caches are four-way, set associative and are write-back
- > Non-lockable
- > Eight words cache length
- On a cache miss, critical word first filling of the cache is performed followed by the next word in sequence

L2 Cache Features

- > 512K bytes of RAM built into the SCU
 - >> Latency of 25 CPU cycles
 - >> Unified instruction and data cache
- > Fixed, 256-bit (32 words) cache line size
- Support for per-master way lockdown between multiple CPUs
- > Eight-way, set associative
- > Two AXI interfaces
 - >> One to DDR controller
 - >> One to programmable logic master (to peripherals)

Snoop Control Unit (SCU)

> Shares and arbitrates functions between the two processor cores

- >> Data cache coherency between the processors
- Initiates L2 AXI memory access
- Arbitrates between the processors requesting L2 accesses
- >> Manages ACP accesses
- A second master port with programmable address filtering between OCM and L2 memory support

Processor Peripherals and Interfaces

Input/Output Peripherals

- > Two GigE
- > Two USB
- > Two SPI
- > Two SD/SDIO
- > Two CAN
- > Two I2C
- > Two UART
- > Four 32-bit GPIOs
- > Static memories
 - >> NAND, NOR/SRAM, Quad SPI
- > Trace ports

Multiplexed I/O (MIO)

> External interface to PS I/O peripheral ports

- >> 54 dedicated package pins available
- >> Software configurable
 - Automatically added to bootloader by tools
- >> Not available for all peripheral ports
 - Some ports can only use EMIO

Extended Multiplexed I/O (EMIO)

> Extended interface to PS I/O peripheral ports

- >> EMIO: Peripheral port to programmable logic
- >> Alternative to using MIO
- Mandatory for some peripheral ports
- >> Facilitates
 - Connection to peripheral in programmable logic
 - Use of general I/O pins to supplement MIO pin usage
 - Alleviates competition for MIO pin usage

PS-PL Interfaces

> AXI high-performance slave ports (HP0-HP3)

- >> Configurable 32-bit or 64-bit data width
- >> Access to OCM and DDR only
- >> Conversion to processing system clock domain
- AXI FIFO Interface (AFI) are FIFOs (1KB) to smoc large data transfers

> AXI general-purpose ports (GP0-GP1)

- >> Two masters from PS to PL
- >> Two slaves from PL to PS
- >> 32-bit data width
- Conversation and sync to processing system clock domain

PS-PL Interfaces

- > One 64-bit accelerator coherence port (ACP) AXI slave interface to CPU memory
- > DMA, interrupts, events signals
 - >> Processor event bus for signaling event information to the CPU
 - >> PL peripheral IP interrupts to the PS general interrupt controller (GIC)
 - >> Four DMA channel RDY/ACK signals
- Extended multiplexed I/O (EMIO) allows PS peripheral ports access to PL logic and device I/O pins
- > Clock and resets
 - >> Four PS clock outputs to the PL with enable control
 - Four PS reset outputs to the PL
- > Configuration and miscellaneous

Clocks and Resets

PL Clocking Sources

- > PS clocks
 - >> PS clock source from external package pin
 - >> PS has three PLLs for clock generation
 - >> PS has four clock ports to PL
- > The PL has 7 series clocking resources
 - >> PL has a different clock source domain compared to the PS
 - >> The clock to PL can be sourced from external clock capable pins
 - >> Can use one of the four PS clocks as source
- Synchronizing the clock between PL and PS is taken care by the architecture of the PS
- > PL cannot supply clock source to PS

Clock Generation (Using Zynq Tab)

> Clock Configuration

- >> Input frequency can be set
 - Processor, DDR
- >> All IOP clock frequencies can be set
- PL fabric clocks can be enabled and configured
- >> Set Timers

Zynq Resets

> Internal resets

- >> Power-on reset (POR)
- >> Watchdog resets from the three watchdog timers
- >> Secure violation reset

> PS resets

- >> External reset: PS_SRST_B
- >> Warm reset: SRSTB

> PL resets

- >> Four reset outputs from PS to PL
- >> FCLK_RESET[3:0]

AXI Interfaces

AXI is Part of ARM's AMBA

Older Performance Newer

AMBA: Advanced Microcontroller Bus Architecture

AXI: Advanced Extensible Interface

AXI is Part of AMBA

Basic AXI Signaling – 5 Channels

The AXI Interface—AXI4-Lite

> No burst

- > Data width 32 or 64 only
 - >> Xilinx IP only supports 32-bits
- > Very small footprint
- Bridging to AXI4 handled automatically by AXI_Interconnect (if needed)

The AXI Interface—AXI4

- Sometimes called "Full AXI" or "AXI Memory Mapped"
 - >> Not ARM-sanctioned names

- > Single address multiple data
 - >> Burst up to 256 data beats
- > Data Width parameterizable
 - >> 1024 bits

The AXI Interface—AXI4-Stream

- No address channel, no read and write, always just master to slave
 - >> Effectively an AXI4 "write data" channel
- > Unlimited burst length
 - >> AXI4 max 256
 - >> AXI4-Lite does not burst
- > Virtually same signaling as AXI Data Channels
 - >> Protocol allows merging, packing, width conversion
 - >> Supports sparse, continuous, aligned, unaligned streams

AXI4-Stream Transfer

Vivado IPI

Vivado View

> Customizable panels

- >> A: Project Management
- >> B: IP Integrator
- >> C: FPGA Flow
- >> D: Layout Selection
- >> E: Project view/Preview Panel
- >> F: Console, Messages, Logs

Summary

Summary

- > The Zynq-7000 processing platform is a system on a chip (SoC) processor with embedded programmable logic
- > The processing system (PS) is the hard silicon dual core consisting of
 - >> APU and components
 - Two Cortex-A9 processors
 - NEON co-processor
 - General interrupt controller (GIC)
 - General and watchdog timers
 - >> I/O peripherals
 - >> External memory interfaces
- > The PS provides clocking resources to the PL
- > Vivado IPI can be used to see the generated hardware

Summary (2)

- > The programmable logic (PL) consists of 7 series devices
- > Communication between the PS and the peripherals in PL may occur using
 - >> Four HP slave ports
 - >> Two GP master ports
 - >> Two GP slave ports
 - >> An ACP slave port
- > AXI is an interface providing high performance point-to-point connection
- > AXI has separate, independent read and write interfaces implemented with channels
- > The AXI4 interface offers improvements over AXI3 and defines
 - >> Full AXI memory mapped
 - >> AXI Lite
 - >> AXI Stream

Adaptable. Intelligent.

