# Penalized likelihood based estimation of systems of differential equations with applications

#### Javier González

University of Groningen
J. B. Institute of Mathematics and Computer Science
Systems Biology Centre for Metabolism and Ageing

ICL, BioMath seminar November, 2012



## **Collaborators**

## Theoretical developements and algorithms (JBI)





Ernst Wit Ivan Vujacic

## Applications (SBC-EMA)

Barbara Bakker, Karen van Euen, Matthias Heinemman, Anne Mainena, Georges Janssens...

## **Dynamical systems and ODEs**



Population dynamics



Cell dynamics



Excitable systems

## **Dynamical systems and ODEs**



Population dynamics





Excitable systems



Cell dynamics

$$\begin{split} k_{\omega}([E_{\varepsilon}] & [ES])[S] = (k_{\omega} + k_{\omega})[ES] \\ k_{\omega}[E_{\varepsilon}][S] - k_{\omega}[ES][S] = (k_{\omega} + k_{\omega})[ES] \\ k_{\omega}[E_{\varepsilon}][S] - (k_{\omega} + k_{\omega})[ES] \\ k_{\omega}[E_{\varepsilon}][S] = (k_{\omega} + k_{\omega})[ES] + k_{\omega}[ES][S] \\ [k_{\omega}] = \frac{k_{\omega}[E_{\varepsilon}][S]}{(k_{\omega} + k_{\omega}) + k_{\omega}[S]} - \frac{k_{\omega}[E_{\varepsilon}][S]}{k_{\varepsilon}} \\ \Rightarrow v = k_{\omega}[ES] = \frac{k_{\omega}[E_{\varepsilon}][S]}{(k_{\omega} + k_{\omega}) + k_{\omega}[ES]} - \frac{k_{\omega}[E_{\varepsilon}][S]}{k_{\omega} + k_{\omega}} - \frac{k_{\omega}[E_{\varepsilon}][S]}{k_{\omega} + k_{\omega}$$

## **Biology = Concentrations**



#### Modelling tool to understand biological systems:

## Systems of differential equations

- ▶ Useful to model all type of decay processes, *e.g.* fluorescence, activated receptor returning to inactive state.
- Able to describe metabolic pathways.

# Biological Systems modelled by ODEs

## E-Coli SOS system



- ► 14 genes regulated by a transcription factor.
- Particular kinetics parameters.

## Fatty acid $\beta$ -oxidation



- Kinetic equation for each enzyme.
- ▶ 45 ODEs and more than 200 parameters.

# **Problem statement:** $\theta_1$ , $\theta_2$ , $\beta_1$ and $\beta_2$ ?

#### Data



$$\frac{d}{dt}x_1 = x_1(\theta_1 - \beta_1 x_2), \quad \frac{d}{dt}x_2 = -x_2(\theta_2 - \beta_2 x_1)$$

# **Problem statement:** $\theta_1$ , $\theta_2$ , $\beta_1$ and $\beta_2$ ?

#### Data



$$\frac{d}{dt}x_1 = x_1(0.25 - 0.45x_2), \quad \frac{d}{dt}x_2 = -x_2(0.30 - 0.55x_1)$$

# **Problem statement:** $\theta_1$ , $\theta_2$ , $\beta_1$ and $\beta_2$ ?

#### Data



$$\frac{d}{dt}x_1 = x_1(0.02 - 0.30x_2), \quad \frac{d}{dt}x_2 = -x_2(0.50 - 0.45x_1)$$

**Solution:**  $\theta_1^* = 0.2$  ,  $\theta_2^* = 0.35$ ,  $\beta_1^* = 0.7$  and  $\beta_2^* = 0.4$ 

#### Data



$$\frac{d}{dt}x_1 = x_1(0.20 - 0.35x_2), \quad \frac{d}{dt}x_2 = -x_2(0.70 - 0.40x_1)$$

## Issues in real applications

- 1. Large systems: Forward simulation requieres to solve the ODE which is computationally expensive.
- 2. Lack of data: Small sample with a large uncertaintly.
- 3. True ODE model?
- 4. Unobserved components: Experimental limitations.

## Example (E-Coli SOS system)

- ▶ 14 differential equations.
- ▶ 6 data points per gene.
- ► TF is unobserved.

## Some previous approaches for ODE inference

## Likelihood based approaches

- ▶ Estimation of the  $x_i's$  by nonparametric regression.
- ▶ Differentiation of  $\hat{x}_{j}'s$  and minimization over the parameters using a penalized likelihood [Ramsay et al., 2007].

## Other approaches

- Bayesian method. Solution of the ODE given as a Gaussian process [Calderhead et al., 2008].
- Kernel Method for estimating 1-dimensional, periodic differential equations [Steinke et al. 2008].

# Our idea and approach

#### Idea

- 1. Combine the frequentist set-up with the kernel approach.
- Parameter estimation: maximization of a likelihood with a Reproducing kernel Hilbert space (RKHS) based penalty.
- 3. EM algorithm to deal with missing data.

## Steps

ODE 
$$\rightarrow$$
 RKHS  $\rightarrow$  Penalty  $\rightarrow$  Penalizaed likelihood  $dx = \theta x \rightarrow \mathcal{H} \rightarrow \Omega_H(x) \rightarrow$  likelihood  $+ \Omega_H(x)$ 

#### **Notation**

## ODE describing a dynamical system

$$P_{\theta_{j}}x_{j} = f_{\beta_{j}}(x_{1}, \dots, x_{m}, u_{j}), \ j = 1, \dots, m.$$

#### **Elements**

- $\triangleright$   $x_j$ ,  $u_j$ : state variables and external forces defined on T.
- ▶  $P_{\theta_j} = \sum_{k=0}^d \theta_{jk} D^k$  for  $D^k = d^k/dt$  and  $\theta_j = \{\theta_{j1}, \dots, \theta_{jd}\}$ .
- $f_{\beta_j}$  known parametric function where  $\beta_j = \{\beta_{j1}, \dots, \beta_{jq}\}$ .
- ▶  $S = \{(y_{ji}, t_i) \in \mathbb{R} \times T\}_{i,j=1}^{n,m}$ : sample where  $y_{ji} \sim \mathcal{N}(x_j(t_i), \sigma_j^2)$



# Likelihood apprach

#### Constrained likelihood

$$I_j(\theta_j, \beta_j, \sigma_j | S_j) = -\frac{n}{2} \log(\sigma_j^2) - \frac{1}{2\sigma_j^2} \sum_{i=1}^n (y_{ji} - x(t_i))^2$$

for  $x_j$  satisfying that  $P_{\theta_j}x_j=f_{\beta_j}.$ 

#### Penalized likelihood

$$I_{j,\lambda}(\theta_j,\beta_j,\sigma_j|S_j) = I_j(\theta_j,\beta_j,\sigma_j,x_j|S_j) + \lambda\Omega_j(x)$$

**Questions**: Why a penalized likelihood? How to define  $\Omega_j(x)$ ?



# **MLE vs PMLE**: $dx/dt = \theta x$ with $\theta_{true} = -2$

Explicit solution of the ODE is needed for MLE.



- ► This run:  $\hat{\theta}_{MLE} = -1.12$ ,  $\hat{\theta}_{PMLE} = -1.99$ .
- ▶ 30 runs:  $AD(\hat{\theta}_{MLE}) = 0.87$  and  $AD(\hat{\theta}_{PMLE}) = 0.78$ .

# **Defining** $\Omega_j(x)$

- ▶  $P_{\theta_i} x_i = 0$ , generalization to non-homogeneous is feasible.
- $lackbox{P}_{ heta_i}$ , differential operator on some space of functions  ${\cal H}$

$$||x_j||_{\mathcal{H}}^2 = \int_{\mathcal{T}} (P_{\theta_j} x_j(t))^2 dt.$$

- ▶ When  $||x_j||_{\mathcal{H}}^2 = 0$ ,  $x_j$  is a solution of  $P_{\theta_j} x_j = 0$ .
- ▶  $||x_j||_{\mathcal{H}}^2 = 0$  is a convex functional.
- Use  $\Omega_j(x) = \|x_j\|_{\mathcal{H}}^2$  as penalty.

# Properties of $\Omega_j(x_j) = \|x_j\|_{\mathcal{H}}^2$

## Reproducing kernel Hilbert spaces (RKHS) in a nutshell

- ▶ Mercer kernel: continous, symmetric and positive definite function  $K: T \times T \to \mathbb{R}$ .
- ▶ **RKHS**: completed space spanned by  $x(t) = \sum_{i=1}^{n} \alpha_i K(t_i, t)$ , where  $n \in \mathbb{N}$ ,  $t_i \in T$  and  $\alpha_i \in \mathbb{R}$  and  $\langle x_1, x_2 \rangle_{\mathcal{H}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \beta_j K(t_i, t_j)$ .

#### Important properties

- 1.  $\mathcal{H}$  is a RKHS whose reproducing kernel is a Green's function of  $P_{\theta}^* P_{\theta}$ :  $P_{\theta}^* P_{\theta} K(t, z) = \delta(t z)$ .
- 2.  $||x||_{\mathcal{H}}^2 = \sum_{i=1}^n \sum_{j=1}^n \alpha_i^2 K(t_i, t_j)$ .

## Likelihood in the RKHS

#### Likelihood in the RKHS

$$I_{j,\lambda}(\theta_j,\beta_j,\sigma_j|S_j) = I_j(\theta_j,\beta_j,\sigma_j|S_j) + \lambda \alpha_j^T \mathbf{K}_{\theta_j} \alpha_j$$

- $ightharpoonup (\mathbf{K}_{\theta_i})_{is} = K_{\theta_i}(t_i, t_s).$
- $ightharpoonup lpha_j \in {\rm I\!R}^n$  characterizes  $x_j$ .
- ightharpoonup Note:  $(x_j(t_1),\ldots,x_j(t_n))^T=\mathbf{K}_{\theta_j}\alpha_j$

#### Parameters estimates

$$(\hat{\Theta}, \hat{B}, \hat{\Sigma}|S) = \arg\max_{\Theta, B, \Sigma} \sum_{i=1}^{m} I_{j,\lambda}(\theta_j, \beta_j, \sigma_j|S_j)$$

# **Problem:** function $K_{\theta}$ is rarely available

- ▶ Replace  $\alpha_j^T \mathbf{K}_{\theta_j} \alpha_j$  by an approximation  $\alpha_j^T \tilde{\mathbf{K}}_{\theta_j} \alpha_j$ .
- ▶  $\mathbf{P}_{\theta_i} = \sum_{k=0}^d \theta_{jk} \mathbf{D}^k$ : difference operator defined on  $t_1, \ldots, t_n$

$$\mathbf{D} = \Delta^{-1} \cdot \left( egin{array}{ccccc} -1 & 1 & & & & & \\ -1 & 0 & 1 & & & & \\ & & & \ddots & & & \\ & & & & -1 & 1 \end{array} 
ight)$$

where 
$$\Delta = diag(t_2 - t_1, t_4 - t_2, \dots, t_n - t_{n-2}, t_n - t_{n-1}).$$

▶ Focus on the difference equation and use the approximation of  $\mathbf{K}_{\theta_i}$  given by

$$ilde{\mathbf{K}}_{ heta_j} = (\mathbf{P}_{ heta_j}^T \mathbf{P}_{ heta_j})^{-1}.$$



# Error of the finite dimensional approximation

$$\frac{d}{dt}x_j(t_{i-1}) = \lim_{t_i \to t_{i-1}} \frac{x_j(t_i) - x_j(t_{i-1})}{t_i - t_{i-1}} \approx \frac{x_j(t_i) - x_j(t_{i-1})}{t_i - t_{i-1}}$$

#### Idea

- ▶ To include a number of hidden data points  $(\mathbf{t}_H^*, \mathbf{y}_H^*)$ .
- $K_{\theta_i}$  only depends on the  $t_i's$  (so, we can do it!).
- $lackbox{ More points} 
  ightarrow {
  m better approximations of the derivatives.}$

# **Expectation-Maximization algorithm**

- $\triangleright$   $S_0$ , observed data.
- ►  $S_H$ , data set of hidden points  $(\mathbf{t}_H^*, \mathbf{y}_H^*)$ .
- ▶ Parameters,  $\Gamma = \{\Theta, B, \Sigma\}$ . Start with some  $\Gamma^{(0)}$ .

## E-step

$$Q(\Gamma|\Gamma^{(t)}) = E_{S_H|S_O,\Gamma^{(t)}} [I_{\lambda}(\Gamma|S_O,S_H)]$$

where  $I_{\lambda}$  is the likelihood for the whole system.

## M-step

$$\Gamma^{(t+1)} = arg \max_{\Gamma} Q(\Gamma | \Gamma^{(t)})$$

# Performance of the EM approach



# Non-homogeneous cases $P_{\theta}x = f_{\beta}$

#### Penalized likelihood

$$I_{\lambda,j}(\theta_{j},\beta_{j},\sigma_{j}|S_{j}) = -\frac{1}{2\sigma_{j}^{2}}\sum_{i=1}^{n}(y_{ji} - x(t_{i}))^{2} - \lambda \|P_{\theta_{j}}x_{j} - f_{\beta}\|^{2}$$

#### **Transformation**

$$\tilde{x}_j = x_j - P^{-1} f_\beta$$
$$\tilde{y}_{ji} = y_{ji} - P^{-1} f_\beta(t_i)$$

#### **New Penalized likelihood**

$$I_{\lambda,j}(\theta_j,\beta_j,\sigma_j|S_j) = -\frac{1}{2\sigma_j^2} \sum_{i=1}^n (\tilde{y}_{ji} - \tilde{x}(t_i))^2 - \lambda \|P_{\theta_j}\tilde{x}_j\|^2$$

## We have seen so far...

- ► To regularize the likelihood is a good idea. Biased but more robust estimates.
- The constrained likehood can be written like a penalized likelihood in a RKHS.
- The Green's function of the differential operator is the key ingredient.
- ► The finite dimensional representation of the problem allows to use this idea in general cases.
- ► A EM formulation allows to correct errros derived from the finite dimensional aproximation of the ODE.

## **Implementation**



## Package 'oderkhs'

November 1, 2012

Type Package

Title Reproducing kernel Hilbert Space based estimation of parameters of systems of Ordinary Differential equations

Version 1.0

Date 2012-10-31

Author Ivan Vujacic<i.vujacic@rug.nl>, Javier Gonzalez <j.gonzalez.hernandez>, Ernst Wit <e.c.witg@rug.nl>

**Depends** R (>= 2.10.1), expm, pspline, magic, MASS, corpcor, pspline, gplots

Maintainer Ivan Vujacic <i.vujacic@rug.nl>

**Description** These functions implement RKHS based estimation of parameters of ODEs. They provide parameter estimates, confidence intervals and estimates of state variables.



# 'oderkhs' in our original example (0.2,0.35,0.7,0.4)

- > res = rkhs(data,f,coef,times,lambda,int=1,em.it=5)
- > res.boot = ci.boot(res.ode,50)
- > plot.odesol(res.boot)



> res.boot\$ci
2.5% 0.15 0.32 0.47 0.24
97.5% 0.29 0.41 0.73 0.45

# FitzHugh-Nagumo model (a, b = 0.2 and c = 3)

$$\frac{dx_1}{dt} = c\left(x_1 - \frac{x_1^3}{3} + x_2\right), \frac{dx_2}{dt} = \frac{1}{c}(x_1 - a + bx_2)$$



# Comparative with the method proposed in (Ramsay et al., 2009)

- We compare the estimates for sample sizes n = 50 and n = 300.
- ▶ 50 replicates of the experiment.
- ▶ Differences between the estimates of the parameters and their true values are used across the 50 replicates are considered.
  - Maximum error.
  - Averaged error.
  - ▶ Minimum error.

# Errors comparative with (Ramsay et al., 2009)

| n   | FHN   | Av. error |        | Max. error |        | Min. error |        |
|-----|-------|-----------|--------|------------|--------|------------|--------|
|     | pars. | PMLE      | Rams.  | PMLE       | Rams.  | PMLE       | Ram.   |
| 50  | а     | 0.0780    | 0.2892 | 0.1829     | 0.5130 | 0.0000     | 0.0019 |
|     | b     | 0.0485    | 0.7023 | 0.1737     | 1.2936 | 0.0012     | 0.0619 |
|     | С     | 0.0983    | 0.2503 | 0.3028     | 0.6253 | 0.0006     | 0.0488 |
| 300 | а     | 0.0058    | 0.0032 | 0.0150     | 0.0126 | 0.0000     | 0.0000 |
|     | b     | 0.0175    | 0.0101 | 0.0609     | 0.0318 | 0.0005     | 0.0002 |
|     | С     | 0.0348    | 0.0134 | 0.1133     | 0.0476 | 0.0008     | 0.0010 |

- For n = 50 the proposed methodology is the best under the three criteria.
- ▶ For n = 300 only minor differences are found.

# Errors comparative with (Ramsay et al., 2009)



The proposed method outperform (Ramsay et al., 2009) in small-sample scenarios.

# E-Coli SOS system



Model

$$\dot{x}_k(t) = \beta_k \frac{1}{\gamma_k + \eta(t)} + \varphi_k - \delta_k x_k(t),$$

▶ Gene-dependent kinetics parameters:  $\beta_k, \gamma_k, \delta_k$  and  $\varphi_k$ .

## E-Coli SOS system: Data

- ▶ Data set of 14 expression genes.
- ► The genes are targets of the master repressor LexA and their expression is studied under UV exposure (40J/m2).
- ► Abundance of the mRNA molecules measured at 0, 5, 10, 20, 40 and 60 minutes.
- ► The LexA abundance is unobserved. Is modelled by a splines expansion

$$\eta(t) = \sum_{k=1}^{d} \mu_k \phi_k.$$

# E-Coli SOS system: Results

Reconstructed the activity of the repressor  $\eta(t)$  gene dinl.



Confidence intervals for the parameters  $Cl_{95\%}(\beta) = (0.56, 1.39)$   $Cl_{95\%}(\delta) = (0.15, 0.27)$   $Cl_{95\%}(\gamma) = (1.71, 2.83)$ ,  $\sigma = 0.04$ .

# E-Coli SOS system: Genes behaviour



- ▶ The activity of gene dinl decline after minute 20.
- ▶ The activity of gene recN does not decline.

# E-Coli SOS system Parameters estimates and CI

| Gene | $\hat{eta}_{m{k}}$ | $CI_{95\%}(\beta_k)$ | $\hat{\delta_k}$ | $	extstyle CI_{95\%}(\delta_k)$ | $\hat{\gamma_k}$ | $	extstyle CI_{95\%}(\gamma_k)$ |
|------|--------------------|----------------------|------------------|---------------------------------|------------------|---------------------------------|
| recN | 6912.05            | (6465.5, 6933.1)     | 0.29             | (0.21, 0.30)                    | 3568.3           | (3527.4, 4433.5)                |
| umuC | 79.94              | (78.22, 88.71)       | 0.09             | (0.09, 0.10)                    | 123.21           | (117.45, 124.12)                |
| ijW  | 12.44              | (2.90, 28.20)        | 0.42             | (0.21, 0.46)                    | 22.54            | (9.05, 76.17)                   |
| ruvA | 5.27               | (3.82, 6.30)         | 0.42             | (0.35, 0.45)                    | 6.02             | (4.64, 7.15)                    |
| Ie×A | 4.75               | (2.28, 7.56)         | 0.33             | (0.25, 0.38)                    | 7.70             | (4.23, 11.75)                   |
| sulA | 4.36               | (1.03, 9.24)         | 0.39             | (0.15, 0.40)                    | 2.66             | (1.42, 6.88)                    |
| umuD | 2.99               | (2.13, 3.94)         | 0.15             | (0.13, 0.16)                    | 5.11             | (4.08, 6.66)                    |
| yegG | 2.10               | (1.79, 2.42)         | 0.23             | (0.21, 0.25)                    | 3.72             | (3.31, 4.20)                    |
| ruvB | 1.98               | (1.79, 2.23)         | 0.27             | (0.26, 0.29)                    | 4.38             | (4.11, 4.74)                    |
| uvrB | 1.89               | (1.26, 3.40)         | 0.10             | (0.09, 0.11)                    | 7.11             | (5.07, 12.08)                   |
| dinl | 0.99               | (0.56, 1.39)         | 0.21             | (0.15, 0.27)                    | 2.36             | (1.71, 2.83)                    |
| recA | 0.48               | (0.39, 0.67)         | 0.11             | (0.10, 0.13)                    | 0.85             | (0.72, 1.11)                    |
| sbmC | 0.26               | (0.22, 0.30)         | 0.11             | (0.11, 0.12)                    | 0.71             | (0.62, 0.78)                    |
| dinF | 5.01               | (2.06, 32.16)        | 0.12             | (0.08, 0.18)                    | 31.59            | (17.32, 167.07)                 |

Genes *recN* and *umuC* do not decline after minute 20. Miss specified model (no regulation).

$$\dot{x}_k(t) = \varphi_k + \delta_k x_k(t),$$

## **Conclusions**

- ▶ Penalized likelihood approach where the ODE is directly used to define the penalty. The Green function of the differential operator is the key ingredient.
- Efficient approach to estimate the parameters of ODE.
- Able to deal with the lack of data common in most real applications. Specially accurate in small sample scenarios.
- Available online within the CRAN project.

# Work in progress / future work

#### Methodological:

- Explore statistical properties of the method.
- More efficient estimation of the parameters.
- Generalization to stochastic ODEs.

## Applied:

- Statistical analysis of competition among enzymes in Fatty acid  $\beta$  oxidation. 45 ODEs with more than 200 parameters. Impact on ageing in mices.
- Analysis of the "ageing system" in yeast. Combine this method with other methodologies to get a high level understanding of the ageing process in yeast.

# Thanks!

#### **Acknowledgements:**

Project SBC-EMA-435065





