راهنمای استفاده از مثال ADC

هدف از مثال زیر این است که شما با مبدل آنالوگ به دیجیتال (ADC) و طریقه ی راه اندازی آن در میکروکنترلرهای ARM آشنا شوید.

1. شرح كلى برنامه

مقدار آنالوگ متصل شده به کانال ۸ (ADC1) در یک حلقه ی بی نهایت به دیجیتال تبدیل می شود و مقادیر خوانده شده از طریق مبدل USART1 and USART2) RS232 به کامپیوتر ارسال می شود.

2. سخت افزار

برای تست این برنامه می توانید از یک پتانسیومتر استفاده نمائید و آن را به ADC1 متصل کنید.

3. آشنایی و کار با برنامه

ANALOG INPUT OUTPUT

ابتدا برنامه را با نرم افزار Keil باز بکنید.

ll Help	T+10/+F/17 17:09	File folder	
 obj	T+10/+5/17 17:05	File folder	
bsp	T+10/+5/17 17:59	H File	1 KB
delay	T+10/+0/17 1+:++	C File	1 KB
delay	T+10/+0/17 +T:TV	H File	1 KB
JLinkLog	T+10/+5/17 17:05	TXT File	46 KB
JLinkSettings	T-10/-5/17 17:07	Configuration sett	1 KB
main	T+10/+5/17 17:05	C File	3 KB
project.uvgui.Mahmood	T-10/-5/17 11:57	MAHMOOD File	135 KB
project.uvgui_Mahmood.bak	T+10/T//11 11:1+	BAK File	69 KB
project.uvopt	T+10/+5/17 11:57	UVOPT File	10 KB
project	T+10/T9/11 +V:17	μVision4 Project	17 KB
project_Target 1	T+10/T9/11 +0:T9	DEP File	3 KB
project_uvopt.bak	7+10/7//11 1+:17	BAK File	9 KB
project_uvproj.bak	T-10/Y///1 11:1+	BAK File	17 KB
startup_stm32f10x_cl	PQ:+1 +1\f\/	Assembler Source	16 KB

تغذیه Δ ولت را به برد آموزشی متصل کنید و بعد از اینکه پروگرامر ST-LINK را به برد متصل نمودید؛ برنامه را با استفاده از دکمه Δ Download پروگرم نمائید.

4. توضيحات مربوط به برنامه

ابتدا كتابخانه هاى مربوطه فراخوانى شده اند.

```
1  #include "stm32f10x_usart.h"
2  #include <stdio.h>
3  #include "bsp.h"
4  #include "delay.h"
```

دستوراتی که در زیر آورده شده است، مربوط به ارسال داده از طریق سریال است که این تنظیمات برای ارسال داده ها استفاده می شوند تا امکان استفاده از printf وجود داشته باشد.

```
6 //printf init
7 struct FILE { int handle;};
8
9 FILE __stdout;
10 FILE stdin;
11 FILE stderr;
12
13 int fputc(int ch, FILE *f)
14 🗏 {
     while (!USART GetFlagStatus (COM1, USART FLAG TXE));
15
16
    USART SendData (COM1, ch);
17
18
    while(!USART GetFlagStatus(COM2, USART FLAG TXE));
19
20
21
    USART SendData(COM2,ch);
22
23
     return ch;
   }
24
25
```

در تابع اصلی (main) ابتدا کلاک مربوط به Usart ، GPIO و مربوط به اسلی (main) ابتدا کلاک مربوط به هر یک از این ADC روشن می شود و سپس پیکربندی مربوط به هر یک از این پریفرالها انجام می گیرد. در داخل حلقه ی while از طریق تابع getval مقدار آنالوگ تبدیل به دیجیتال شده و از طریق USAR1, USART2

```
27 int main (void)
28 □ {
       /************************* Intial the clock and perpherals *******************/
29
      RCC_Configuration();
30
    GPIO_Configuration();
31
32
      Com1_Intial(); //usb to serial
      Com2_Intial(); //COM PORT (Rs232)
33
34
      ADC1_Intial();
35
36
     delay_intial();
37
38
      printf("Naminic STM32 evaluation board\n\n\n");
39
40
41 -
       printf("adc get val = %d\n\r",getVal());
42
43
        delayMs (400);
44
45
     return 0;
46
47
48 }
```