Εκθετική και Λογαριθμική Συνάρτηση Εκθετική Συνάρτηση

Κωνσταντίνος Λόλας

Ξέρουμε όλοι τι σημαίνει

- αριθμός υψωμένος σε φυσικό αριθμό
- αριθμός υψωμένος σε ακέραιο αριθμό
- μάθαμε στην Α Λυκείου, αριθμό υψωμένο σε ρητό
- πάμε για αριθμό υψωμένο σε πραγματικό!

και επειδή σίγουρα δεν θυμάστε...

Ξέρουμε όλοι τι σημαίνει

- αριθμός υψωμένος σε φυσικό αριθμό
- αριθμός υψωμένος σε ακέραιο αριθμό
- μάθαμε στην Α Λυκείου, αριθμό υψωμένο σε ρητό
- πάμε για αριθμό υψωμένο σε πραγματικό!

και επειδή σίγουρα δεν θυμάστε...

Ξέρουμε όλοι τι σημαίνει

- αριθμός υψωμένος σε φυσικό αριθμό
- αριθμός υψωμένος σε ακέραιο αριθμό
- 💿 μάθαμε στην Α Λυκείου, αριθμό υψωμένο σε ρητό
- πάμε για αριθμό υψωμένο σε πραγματικό!
 και επειδή σίγουρα δεν θυμάστε...

Ξέρουμε όλοι τι σημαίνει

- αριθμός υψωμένος σε φυσικό αριθμό
- αριθμός υψωμένος σε ακέραιο αριθμό
- 💿 μάθαμε στην Α Λυκείου, αριθμό υψωμένο σε ρητό
- πάμε για αριθμό υψωμένο σε πραγματικό!

και επειδή σίγουρα δεν θυμάστε...

Ξέρουμε όλοι τι σημαίνει

- αριθμός υψωμένος σε φυσικό αριθμό
- αριθμός υψωμένος σε ακέραιο αριθμό
- μάθαμε στην Α Λυκείου, αριθμό υψωμένο σε ρητό
- πάμε για αριθμό υψωμένο σε πραγματικό!

και επειδή σίγουρα δεν θυμάστε...

Ιδιότητες δυνάμεων με $\alpha \in \mathbb{R}$ και κ , $\lambda \in \mathbb{N}$

Ορισμός

$$\alpha^{\frac{\kappa}{\lambda}} = \sqrt[\lambda]{\alpha^{\kappa}}$$

Ιδιότητες δυνάμεων με $\alpha \in \mathbb{R}$ και κ , $\lambda \in \mathbb{N}$

- $\bullet \ \alpha^{\kappa-\lambda} = \frac{\alpha^{\kappa}}{\alpha^{\lambda}}$

Ορισμός

$$\alpha^{\frac{\kappa}{\lambda}} = \sqrt[\lambda]{\alpha^{\kappa}}$$

Ιδιότητες δυνάμεων με $\alpha \in \mathbb{R}$ και κ , $\lambda \in \mathbb{N}$

- $\bullet \ \alpha^{\kappa-\lambda} = \frac{\alpha^{\kappa}}{\alpha^{\lambda}}$

Ορισμός

$$\alpha^{\frac{\kappa}{\lambda}} = \sqrt[\lambda]{\alpha^{\kappa}}$$

Ιδιότητες δυνάμεων με $\alpha \in \mathbb{R}$ και κ , $\lambda \in \mathbb{N}$

- $\bullet \ \alpha^{\kappa-\lambda} = \frac{\alpha^{\kappa}}{\alpha^{\lambda}}$
- $\bullet \ \left(\alpha^{\kappa}\right)^{\lambda} = \alpha^{\kappa \cdot \lambda}$

Ορισμός

$$\alpha^{\frac{\kappa}{\lambda}} = \sqrt[\lambda]{\alpha^{\kappa}}$$

Ιδιότητες δυνάμεων με $\alpha \in \mathbb{R}$ και κ , $\lambda \in \mathbb{N}$

- $\bullet \ \alpha^{\kappa-\lambda} = \frac{\alpha^{\kappa}}{\alpha^{\lambda}}$
- $\bullet \ \left(\alpha^{\kappa}\right)^{\lambda} = \alpha^{\kappa \cdot \lambda}$
- $\bullet \ \frac{\alpha^{\kappa}}{\beta^{\kappa}} = \left(\frac{\alpha}{\beta}\right)^{\kappa}$

Ορισμός

$$\alpha^{\frac{\kappa}{\lambda}} = \sqrt[\lambda]{\alpha^{\kappa}}$$

χ φορές

- $Φυσικός: α^x = \widetilde{\alpha \cdot \alpha \cdots \alpha}$
- Ακέραιος: $\alpha^{-x} = \frac{1}{a^x}$
- Ρητός: $\alpha^{\frac{x}{y}} = \sqrt[y]{\alpha^x}$, μόνο για $\alpha \ge 0$
- Άρρητος: ΤΣΟΥΚ! Μόνο με υπολογιστή, προσεγγιστικά

$$Φυσικός: α^x = \overbrace{\alpha \cdot \alpha \cdots \alpha}^{x \text{ φορές}}$$

- ullet Ακέραιος: $\alpha^{-x}=rac{1}{a^x}$
- Ρητός: $\alpha^{\frac{x}{y}} = \sqrt[y]{\alpha^x}$, μόνο για $\alpha \ge 0$
- Άρρητος: ΤΣΟΥΚ! Μόνο με υπολογιστή, προσεγγιστικά

$$Φυσικός: α^x = \overbrace{\alpha \cdot \alpha \cdots \alpha}^{x \text{ φορές}}$$

- Ακέραιος: $\alpha^{-x} = \frac{1}{a^x}$
- Ρητός: $\alpha^{\frac{x}{y}} = \sqrt[y]{\alpha^x}$, μόνο για $\alpha \ge 0$
- Άρρητος: ΤΣΟΥΚ! Μόνο με υπολογιστή, προσεγγιστικά

$$Φυσικός: α^x = \overbrace{\alpha \cdot \alpha \cdots \alpha}^{x \text{ φορές}}$$

- Ακέραιος: $\alpha^{-x} = \frac{1}{a^x}$
- Ρητός: $\alpha^{\frac{x}{y}} = \sqrt[y]{\alpha^x}$, μόνο για $\alpha \ge 0$
- Άρρητος: ΤΣΟΥΚ! Μόνο με υπολογιστή, προσεγγιστικά!

Επιστροφή στο σήμερα

Ιδιότητες δυνάμεων με α , β θετικοί πραγματικοί και x, x_1 , $x_2 \in \mathbb{N}$

Με τι θα ασχοληθούμε

Συνάρτησεις $f(x)=a^x$ και εξισώσεις με άγνωστους εκθέτες!!!!

Πάμε!

Ορισμός

Εκθετική συνάρτηση ονομάζεται κάθε $f:\mathbb{R}\to\mathbb{R}$ με $f(x)=a^x$, $\alpha>0,$ $a\neq 1$

- Για ποιά α ορίζεται ως εκθετική?
- Τι γίνεται με την μονοτονία
- Τι γίνεται με τα ακρότατα
- Τι γίνεται με τα -∞ και +∞
- Υπάρχει ένα σταθερό σημείο για όλες?
- Σύνολο τιμών?

- Για ποιά α ορίζεται ως εκθετική?
- Τι γίνεται με την μονοτονία
- Τι γίνεται με τα ακρότατα
- ullet Τι γίνεται με τα $-\infty$ και $+\infty$
- Υπάρχει ένα σταθερό σημείο για όλες?
- Σύνολο τιμών?

- Για ποιά α ορίζεται ως εκθετική?
- Τι γίνεται με την μονοτονία
- Τι γίνεται με τα ακρότατα
- ullet Τι γίνεται με τα $-\infty$ και $+\infty$
- Υπάρχει ένα σταθερό σημείο για όλες?
- Σύνολο τιμών?

- Για ποιά a ορίζεται ως εκθετική?
- Τι γίνεται με την μονοτονία
- Τι γίνεται με τα ακρότατα
- ullet Τι γίνεται με τα $-\infty$ και $+\infty$
- Υπάρχει ένα σταθερό σημείο για όλες
- Σύνολο τιμών?

- Για ποιά α ορίζεται ως εκθετική?
- Τι γίνεται με την μονοτονία
- Τι γίνεται με τα ακρότατα
- Τι γίνεται με τα $-\infty$ και $+\infty$
- Υπάρχει ένα σταθερό σημείο για όλες?
- Σύνολο τιμών?

- Για ποιά α ορίζεται ως εκθετική?
- Τι γίνεται με την μονοτονία
- Τι γίνεται με τα ακρότατα
- Τι γίνεται με τα $-\infty$ και $+\infty$
- Υπάρχει ένα σταθερό σημείο για όλες?
- Σύνολο τιμών?

- Μια γνησίως μονότονη συνάρτηση πιάνει οποιαδήποτε πραγματική τιμή, το πολύ μία φορά!
- ② Αν $x_1 \neq x_2$ τότε $f(x_1) \neq f(x_2)$
- (3) Αν $f(x_1) = f(x_2)$ τότε $x_1 = x_2$

- Μια γνησίως μονότονη συνάρτηση πιάνει οποιαδήποτε πραγματική τιμή, το πολύ μία φορά!
- ② Αν $x_1 \neq x_2$ τότε $f(x_1) \neq f(x_2)$
- 3 Αν $f(x_1) = f(x_2)$ τότε $x_1 = x_2$

- Μια γνησίως μονότονη συνάρτηση πιάνει οποιαδήποτε πραγματική τιμή, το πολύ μία φορά!
- ② Αν $x_1 \neq x_2$ τότε $f(x_1) \neq f(x_2)$

- Μια γνησίως μονότονη συνάρτηση πιάνει οποιαδήποτε πραγματική τιμή, το πολύ μία φορά!
- ② Αν $x_1 \neq x_2$ τότε $f(x_1) \neq f(x_2)$
- 3 Aν $f(x_1) = f(x_2)$ τότε $x_1 = x_2$

- ullet Αν μπορούμε να έχουμε $a^x=a^y$ τότε x=y
- Αν δεν μπορούμε, ίσως δεν μπορούμε να λύσουμε άμεσα ως προς x. Τσως
 - Θέτουμε
 - Μετασχηματίζουμε
 - o ...

- ullet Αν μπορούμε να έχουμε $a^x=a^y$ τότε x=y
- Αν δεν μπορούμε, ίσως δεν μπορούμε να λύσουμε άμεσα ως προς x. Ίσως
 - Θέτουμε
 - Μετασχηματίζουμε
 - o ..

- Αν μπορούμε να έχουμε $a^x = a^y$ τότε x = y
- Αν δεν μπορούμε, ίσως δεν μπορούμε να λύσουμε άμεσα ως προς x. Ίσως
 - Θέτουμε
 - Μετασχηματίζουμε
 - o ..

- Αν μπορούμε να έχουμε $a^x = a^y$ τότε x = y
- Αν δεν μπορούμε, ίσως δεν μπορούμε να λύσουμε άμεσα ως προς x. Ίσως
 - Θέτουμε
 - Μετασχηματίζουμε
 - ·..

Να απλοποιήσετε τις παραστάσεις

$$\frac{2}{\sqrt[3]{4}}$$

$$\frac{x}{\sqrt[4]{x^3}}, x > 0$$

Να απλοποιήσετε τις παραστάσεις

- 1 $\frac{2}{\sqrt[3]{4}}$
- ② $\frac{x}{\sqrt[4]{x^3}}, x > 0$

Να παραστήσετε γραφικά τις συναρτήσεις:

- **1** $f(x) = e^x + 1$

Να παραστήσετε γραφικά τις συναρτήσεις:

- **1** $f(x) = e^x + 1$
- ② $f(x) = e^{x-1}$

Να παραστήσετε γραφικά τις συναρτήσεις:

- **1** $f(x) = e^x + 1$
- ② $f(x) = e^{x-1}$
- **3** $f(x) = e^{|x|}$

Έστω η συνάρτηση $f(x) = (a-1)^x$. Να βρείτε τις τιμές του α για τις οποίες η συνάρτηση f:

- Φ ορίζεται σε όλο το R

Έστω η συνάρτηση $f(x) = (a-1)^x$. Να βρείτε τις τιμές του α για τις οποίες η συνάρτηση f:

- Φ ορίζεται σε όλο το R
- είναι γνησίως αύξουσα στο $\mathbb R$

Έστω η συνάρτηση $f(x) = (a-1)^x$. Να βρείτε τις τιμές του α για τις οποίες η συνάρτηση f:

- Φ ορίζεται σε όλο το R
- είναι γνησίως αύξουσα στο $\mathbb R$
- είναι γνησίως φθίνουσα στο $\mathbb R$

- **1** Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία

- $oldsymbol{1}$ Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία
- $\mbox{2}$ Να βρείτε τη τιμή f(0)και στη συνέχεια να λύσετε την εξίσωση f(x)=0
- ③ Να λύσετε την ανίσωση $e^x + x < 1$
- \P Αν $\alpha < \beta$, να δείξετε ότι $e^{\alpha} e^{\beta} < \beta \alpha$

- **1** Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία
- Να βρείτε τη τιμή f(0) και στη συνέχεια να λύσετε την εξίσωση f(x) = 0
- **3** Να λύσετε την ανίσωση $e^x + x < 1$

- **1** Να εξετάσετε τη συνάρτηση f ως προς τη μονοτονία
- Να βρείτε τη τιμή f(0) και στη συνέχεια να λύσετε την εξίσωση f(x) = 0
- 3 Να λύσετε την ανίσωση $e^x + x < 1$
- \bullet Αν $\alpha < \beta$, να δείξετε ότι $e^{\alpha} e^{\beta} < \beta \alpha$

Να κάνετε το πίνακα προσήμων της συνάρτησης $f(x) = e^x - 1 + \frac{x}{x^2 + 1}$

$$f(x) = e^x - 1 + \frac{x}{x^2 + 1}$$

- Να βρείτε το πεδίο ορισμού των συναρτήσεων

$$h(x) = \begin{cases} \frac{1}{\sqrt[3]{x}}, & x > 0\\ -\frac{1}{\sqrt[3]{-x}}, & x < 0 \end{cases}$$

- Να βρείτε το πεδίο ορισμού των συναρτήσεων
- Να βρείτε το ευρύτερο δυνατό υποσύνολο του $\mathbb R$ στο οποίο ισχύει f(x) = q(x)

$$h(x) = \begin{cases} \frac{1}{\sqrt[3]{x}}, & x > 0\\ -\frac{1}{\sqrt[3]{-x}}, & x < 0 \end{cases}$$

- Να βρείτε το πεδίο ορισμού των συναρτήσεων
- Να βρείτε το ευρύτερο δυνατό υποσύνολο του $\mathbb R$ στο οποίο ισχύει f(x) = q(x)
- Να γράψετε τη συνάρτηση g σε μορφή δύναμης

$$h(x) = \begin{cases} \frac{1}{\sqrt[3]{x}}, & x > 0\\ -\frac{1}{\sqrt[3]{-x}}, & x < 0 \end{cases}$$

- Να βρείτε το πεδίο ορισμού των συναρτήσεων
- Να βρείτε το ευρύτερο δυνατό υποσύνολο του $\mathbb R$ στο οποίο ισχύει f(x) = q(x)
- **3** Να γράψετε τη συνάρτηση g σε μορφή δύναμης
- **4** Έστω η συνάρτηση $h(x) = \frac{g(x)}{x}$, $x \neq 0$. Να δείξετε ότι:

$$h(x) = \begin{cases} \frac{1}{\sqrt[3]{x}}, & x > 0\\ -\frac{1}{\sqrt[3]{-x}}, & x < 0 \end{cases}$$

- $3^x = 9$
- $2^{x-1} = \frac{1}{8}$
- $3^x = \sqrt{3}$
- $4 \left(\frac{3}{2}\right)^{2x-1} = \frac{8}{27}$

- $3^x = 9$
- $2^{x-1} = \frac{1}{8}$
- $3^x = \sqrt{3}$
- $4 \left(\frac{3}{2}\right)^{2x-1} = \frac{8}{27}$

- $3^x = 9$
- $2^{x-1} = \frac{1}{8}$
- $3^x = \sqrt{3}$
- $4 \left(\frac{3}{2}\right)^{2x-1} = \frac{8}{27}$

- $3^x = 9$
- $2^{x-1} = \frac{1}{8}$
- $3^x = \sqrt{3}$

- $e^x e = 0$
- $e^{3x-2} = 1$
- $e^{-x} \sqrt{e} = 0$
- $e^x e^{-x} = 0$
- $e^x + 1 = 0$

- $e^x e = 0$
- $e^{3x-2} = 1$
- $e^{-x} \sqrt{e} = 0$
- $e^x e^{-x} = 0$
- $e^x + 1 = 0$

- $e^x e = 0$
- $e^{3x-2} = 1$
- 3 $e^{-x} \sqrt{e} = 0$
- $e^x e^{-x} = 0$
- $e^x + 1 = 0$

- $e^x e = 0$
- $e^{3x-2} = 1$
- 3 $e^{-x} \sqrt{e} = 0$
- $e^x e^{-x} = 0$

- $e^x e = 0$
- $e^{3x-2} = 1$
- 3 $e^{-x} \sqrt{e} = 0$
- $e^x e^{-x} = 0$
- $e^x + 1 = 0$

- $2^{x+1} + 4 \cdot 2^{x-1} = 4$

- $2^{x+1} + 4 \cdot 2^{x-1} = 4$
- $9^x + 3^{x+1} 4 = 0$

- $2 3 \cdot 2^x 2 \cdot 3^x = 0$

- $3^x < 9$
- $2 \left(\frac{2}{3}\right)^x > \frac{8}{27}$
- $e^x 1 < 0$

- $3^x < 9$
- $2 \left(\frac{2}{3}\right)^x > \frac{8}{27}$
- $e^x 1 < 0$

- $\mathbf{1} \ 3^x < 9$
- 3 $e^x 1 < 0$

Να λύσετε την ανίσωση $5^x + 5^{1-x} < 6$

- $e^x + e^{-x} 2 \ge 0$, για κάθε $x \in \mathbb{R}$

- $e^x + e^{-x} 2 \ge 0$, για κάθε $x \in \mathbb{R}$
- ② $e^{x^2} 1 \ge 0$ για κάθε $x \in \mathbb{R}$

- $e^x + e^{-x} 2 \ge 0$, για κάθε $x \in \mathbb{R}$
- $e^{x^2} 1 \ge 0$ για κάθε $x \in \mathbb{R}$
- 3 $e^x 1 > 0$ για κάθε x > 0

- $e^x + e^{-x} 2 \ge 0$, για κάθε $x \in \mathbb{R}$
- ② $e^{x^2} 1 \ge 0$ για κάθε $x \in \mathbb{R}$
- 3 $e^x 1 > 0$ για κάθε x > 0
- $e^{-x} 1 < 0$ για κάθε x > 0

Να κάνετε τον πίνακα προσήμων των συναρτήσεων

- **1** $f(x) = e e^x$
- ② $f(x) = \frac{e^x e^2}{x 1}$

Να κάνετε τον πίνακα προσήμων των συναρτήσεων

2
$$f(x) = \frac{e^x - e^2}{x - 1}$$

Να λύσετε τα συστήματα

$$\begin{cases} 3^x - 5^y = 4 \\ 9 \cdot 3^{-x} + 5^y = 6 \end{cases}$$

Να λύσετε τα συστήματα

$$\begin{cases} 3^x - 5^y = 4 \\ 9 \cdot 3^{-x} + 5^y = 6 \end{cases}$$

$$2^x + \sqrt{2^{x+4}} - 5 = 0$$

$$2 \cdot 5^{x-2} + 2^x - 12 \cdot 5^{x-3} - 3 \cdot 2^{x-3} = 0$$

$$2^x + \sqrt{2^{x+4}} - 5 = 0$$

$$2 \cdot 5^{x-2} + 2^x - 12 \cdot 5^{x-3} - 3 \cdot 2^{x-3} = 0$$

Να λύσετε την ανίσωση $8^x + 4^x - 2 < 0$

- Να αποδείξετε ότι $e^x > \eta \mu x$ για κάθε x > 0

- Να αποδείξετε ότι $e^x > \eta \mu x$ για κάθε x > 0
- Να λύσετε την εξίσωση $e^x = \sigma v \nu x$ στο διάστημα $[0, +\infty)$

Αν η ημιζωή ενός ραδιενεργού υλικού είναι t_0 χρόνια, να δείξετε ότι η συνάρτηση που εκφράζει την εκθετική απόσβεση αυτού είναι $Q(t) = Q_0 \cdot 2^{-\frac{t}{t_0}}$

Αν η ημιζωή ενός ραδιενεργού υλικού είναι 10 χρόνια και η αρχική ποσότητα είναι 20 γραμμάρια, τότε:

- Να βρείτε τη συνάρτηση που εκφράζει την εκθετική απόσβεση αυτού

Αν η ημιζωή ενός ραδιενεργού υλικού είναι 10 χρόνια και η αρχική ποσότητα είναι 20 γραμμάρια, τότε:

- Να βρείτε τη συνάρτηση που εκφράζει την εκθετική απόσβεση αυτού
- Να υπολογίσετε την ποσότητ που θα έχει απομείνει μετά από 20 χρόνια

Αν η ημιζωή ενός ραδιενεργού υλικού είναι 10 χρόνια και η αρχική ποσότητα είναι 20 γραμμάρια, τότε:

- Να βρείτε τη συνάρτηση που εκφράζει την εκθετική απόσβεση αυτού
- Να υπολογίσετε την ποσότητ που θα έχει απομείνει μετά από 20 χρόνια
- ③ Να βρείτε μετά από πόσα χρόνια θα έχουν απομείνει $\frac{5}{256}$ γραμμάρια του ραδιενεργού υλικού