

⑯ Aktenzeichen: 100 07 049.3
⑯ Anmeldetag: 17. 2. 2000
⑯ Offenlegungstag: 23. 8. 2001

⑯ Anmelder:
Volkswagen AG, 38440 Wolfsburg, DE
⑯ Vertreter:
Schneider, H., Dipl.-Ing., Pat.-Anw., 10117 Berlin

⑯ Erfinder:
Hahn, Hermann, 38165 Lehre, DE; Hinze, Sören,
38114 Braunschweig, DE
⑯ Für die Beurteilung der Patentfähigkeit in Betracht
zu ziehende Druckschriften:
DE 197 16 275 C1
DE 198 28 609 A1
DE 197 58 018 A1
DE 196 36 790 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- ⑯ Vorrichtung und Verfahren zur Steuerung einer NO_x-Regeneration eines NO_x-Speicherkatalysators
⑯ Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer NO_x-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine für Kraftfahrzeuge angeordneten NO_x-Speicherkatalysators, wobei die NO_x-Regeneration zumindest eingeleitet wird, wenn ein Schwellenwert für einen Beladungszustand des NO_x-Speicherkatalysators oder eine NO_x-Emission stromab des NO_x-Speicherkatalysators überschritten wird. Es ist vorgesehen, daß
(a) erfaßt wird, ob die Verbrennungskraftmaschine (10) in einen Leerlauf geschaltet ist, und daß
(b) alternativ oder in beliebiger Kombination
- im Leerlauf der Schwellenwert für den Beladungszustand oder die NO_x-Emission erhöht wird,
- die NO_x-Regeneration nur nach Ablauf vorgegebener Zeitintervalle eingeleitet wird,
- eine laufende NO_x-Regeneration beim Wechsel in den Leerlauf unterbrochen wird.

Beschreibung

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Steuerung einer NO_x-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine für Kraftfahrzeuge angeordneten NO_x-Speicherkatalysators mit den in den Oberbegriffen der unabhängigen Ansprüche genannten Merkmalen.

Es ist bekannt, zur Reinigung eines Abgases von Verbrennungskraftmaschinen eine Abgasreinigungsanlage im Abgasstrang zu integrieren. Die Abgasreinigungsanlage umfaßt dabei üblicherweise Komponenten wie Partikelfilter oder Katalysatoren. Soli eine NO_x-Rohemission der Verbrennungskraftmaschine gemindert werden, so umfassen diese Katalysatoren einen Reduktionskatalysator. Sofern die Massenströme an reduzierend wirkenden Schadstoffen wie Kohlenmonoxid CO und unvollständig verbrannten Kohlenwasserstoffen HC im Bereich des Reduktionskatalysators ausreichend hoch sind, wird mit Hilfe der Reduktionsmittel NO_x zu Stickstoff konvertiert.

Unter dem Gesichtspunkt minimierter Kraftstoffverbrauch hat es sich als vorteilhaft erwiesen, die Verbrennungskraftmaschine bei mageren Luftverhältnissen zu betreiben. Allerdings ist der Betrieb im verbrauchsoptimierten Bereich einerseits mit erhöhter NO_x-Emission und andererseits mit verringerten Reduktionsmittelmassenströmen verbunden. Zur Vermeidung hoher NO_x-Emissionen ist daher dem Katalysator ein NO_x-Speicher zugeordnet, der das NO_x als Nitrat absorbiert. Der NO_x-Speicher kann mit dem Katalysator als sogenannter NO_x-Speicherkatalysator zusammengefaßt werden.

Eine Speicherkapazität des NO_x-Speicherkatalysators ist naturgemäß mengenmäßig beschränkt, so daß zur Vermeidung von NO_x-Durchbrüchen in regelmäßigen Abständen eine NO_x-Regeneration stattfinden muß. Während der NO_x-Regeneration erfolgt ein Wechsel in den stöchiometrischen oder fetten Betrieb. Das zuvor in Form von Nitrat absorbierte NO_x wird wieder freigesetzt. Üblicherweise wird die NO_x-Regeneration in Gang gesetzt, wenn ein Schwellenwert für einen Beladungszustand des NO_x-Speicherkatalysators oder eine stromab durch eine NO_x-sensitive Meßeinrichtung erfaßte NO_x-Emission (Durchbruchsemission) überschritten wird. Nachteilig hierbei ist, daß die Bestimmung einer Regenerationsnotwendigkeit in allen Betriebsphasen des Kraftfahrzeugs nach den gleichen Kriterien erfolgt. Da jedoch in einer Leerlaufphase wesentlich geringere Abgasströme und damit bei eingeleiteter NO_x-Regeneration geringere Reduktionsmittelmassenströme vorhanden sind, kann das wieder desorbierte NO_x nur noch unvollständig an der Katalysatorkomponente reduziert werden. Neben der unerwünscht hohen NO_x-Emission während der NO_x-Regeneration ist ein regenerationsbedingter Mehrverbrauch in der Leerlaufphase höher als in Phasen hoher Lastanforderungen an die Verbrennungskraftmaschine. Weiterhin ist nachteilig, daß die NO_x-Regeneration im Leerlauf häufig mit einer unerwünschten Lärmentwicklung einhergeht. Zusätzlich dauern NO_x-Regenerationen im Leerlauf wegen der geringeren Abgasströme länger, und der verbrauchsungünstige Betrieb muß daher auch länger aufrechterhalten werden.

Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren und eine Vorrichtung zur Verfügung zu stellen, mit denen die geschilderten Nachteile des Standes der Technik überwunden werden können. Die gefundene Lösung soll sich dabei in einfacher Weise in bereits Regelungstechnisch bewährten Modellen integrieren lassen.

Erfindungsgemäß wird diese Aufgabe durch die Vorrichtung und das Verfahren zur Steuerung der NO_x-Regenera-

tion des NO_x-Speicherkatalysator mit den in den unabhängigen Ansprüchen genannten Merkmalen gelöst. Dadurch, daß gemäß dem Verfahren

- 5 (a) erfaßt wird, ob die Verbrennungskraftmaschine in einen Leerlauf geschaltet ist, und daß
 (b) alternativ oder in beliebiger Kombination
 – im Leerlauf der Schwellenwert für den Beladungszustand oder die NO_x-Emission erhöht wird,
 – die NO_x-Regeneration nur nach Ablauf vorgegebener Zeitintervalle eingeleitet wird,
 – eine laufende NO_x-Regeneration beim Wechsel in den Leerlauf unterbrochen wird,

kann zum Beispiel eine Magerphase im Leerlaufbetrieb bis zur nächsten zwingend erforderlichen NO_x-Regeneration verlängert werden beziehungsweise entsprechend den vorgegebenen Zeitintervallen geregelt werden.

20 Die erfindungsgemäße Vorrichtung besitzt dabei Mittel, mit denen die geschilderten Verfahrensschritte durchführbar sind. Ein solches Mittel ist vorzugsweise ein Steuergerät, in dem eine Prozedur in digitalisierter Form hinterlegt ist, die die Steuerung der NO_x-Regeneration im Leerlauf ermöglicht. Das Steuergerät kann als selbständige Steuereinheit realisiert werden oder aber auch in ein bereits häufig vorhandenes Motorsteuergerät integriert werden.

25 Wird während eines Wechsels in den Leerlauf gerade eine NO_x-Regeneration durchgeführt, so wird diese in bevorzugter Weise zu Ende geführt, wenn der Wechsel in den Leerlauf in einer Schubabschaltungsphase erfolgt, eine Drehzahl oberhalb eines vorgegebenen Schwellenwertes liegt oder eine Kraftfahrzeuggeschwindigkeit noch eine vorgegebene Grenzgeschwindigkeit übersteigt. Bei Unterbrechung der 30 NO_x-Regeneration wird ein Merker gesetzt, der dazu führt, daß die NO_x-Regeneration in einer sich anschließenden Beschleunigungsphase fortgeführt wird. Selbstverständlich wird der Merker zurückgenommen, wenn bereits eine NO_x-Regeneration im Leerlaufbetrieb durchgeführt werden mußte.

35 Weiterhin ist bevorzugt, die NO_x-Regeneration unter Vorgabe eines Lambdawertes im Bereich von 0,85 bis 1,0 durchzuführen. Auf alle Fälle sollte die NO_x-Regeneration jedoch weniger fett als bei sonst üblichen NO_x-Regenerationen durchgeführt werden. Hierdurch läßt sich die Lärmentwicklung im Vergleich zur "normalen" NO_x-Regeneration bei Lambdawerten, die deutlich geringer sind als 0,85, herabsetzen. In einer weiteren bevorzugten Ausgestaltung des Verfahrens wird eine NO_x-Regeneration im Leerlauf immer 40 dann eingeleitet, wenn aus irgendeinem Grund ein Wechsel in einen $\lambda = 1$ -Betrieb erforderlich ist. Dies kann beispielsweise der Fall sein, wenn ein Druck in einem Bremskraftverstärker erhöht werden soll.

45 Insgesamt kann durch die genannten Maßnahmen eine Anzahl an NO_x-Regenerationen im Leerlaufbetrieb gegenüber den sonstigen Betriebsphasen des Kraftfahrzeugs gemindert werden, so daß Kraftstoffverbrauch, NO_x-Emission während der NO_x-Regeneration und die Lärmentwicklung verringert werden.

50 Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.

55 Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Fig. 1 ein Prinzipschaltbild einer Verbrennungskraftmaschine mit einem im Abgasstrang angeordneten NO_x-Speicherkatalysator und

Fig. 2 ein Blockschaltbild zur Steuerung einer NO_x-Regeneration des NO_x-Speicherkatalysators im Leerlauf.

Die **Fig. 1** zeigt eine Verbrennungskraftmaschine **10** mit einem nachfolgend im Abgasstrang **12** angeordneten NO_x-Speicherkatalysator **14**. Hierbei ist dem Abgasstrang **12** eine geeignete Sensorik zur Erfassung der Luftverhältnisse im Abgas oder der Anteile spezifischer Schadstoffkomponenten zugeordnet. So kann beispielsweise ein Gassensor **16** als Lambdasonde und ein Gassensor **18** als NO_x-sensitive Meßeinrichtung vorgesehen sein. Die durch die Sensorik erfaßten Daten werden in bekannter Weise in einem Motorsteuergerät **20** zur Verfügung gestellt. In dem Motorsteuergerät **20** sind in digitalisierter Form Modelle hinterlegt, mit denen Stellgrößen für der Verbrennungskraftmaschine **10** zugeordneten Komponenten ermittelt werden. Die Komponenten erlauben eine Beeinflussung des Verbrennungsvorganges hinsichtlich eines Luftverhältnisses, eines Zündwinkels oder auch einer eingespritzten Kraftstoffmasse. So kommen beispielsweise als Stellgrößen in Frage ein Öffnungswinkel eines Abgasrückführventils **22** oder eine Stellung einer Drosselklappe **24**. Die Vorrichtung und das Verfahren zur Regulierung des Verbrennungsvorganges sind hinreichend bekannt und werden daher an dieser Stelle nicht näher erläutert.

Daneben werden weitere Zustandsparameter, wie zum Beispiel eine Drosselklappenstellung oder ein Fahrpedalwinkel, in das Motorsteuergerät **20** eingelesen, mit denen in bekannter Weise ermittelt werden kann, ob sich das Kraftfahrzeug in einer Phase des Leerlaufes befindet. Dieser Status des Kraftfahrzeugs wird anschließend in ein Steuergert **36** eingelesen, das hier in dem Motorsteuergerät **20** implementiert ist.

Herrscht ein Sauerstoffüberschuß während des Verbrennungsvorganges eines Luft-Kraftstoff-Gemisches, ist eine NO_x-Rohemission der Verbrennungskraftmaschine **10** erhöht und gleichzeitig sind die zur Konvertierung von NO_x benötigten Reduktionsmittel Kohlenmonoxid CO und unvollständig verbrannte Kohlenwasserstoffe HC gemindert. Da sich dieser Betriebsbereich als besonders verbrauchs-günstig erwiesen hat, muß zur Vermeidung von NO_x-Emissionen das NO_x in einer Speicherkomponente des NO_x-Speicherkatalysators **14** absorbiert werden. Erfolgt ein Wechsel in den stöchiometrischen oder fetten Betrieb, wird das in Form von Nitrat gespeicherte NO_x zumindest unmittelbar nach Wechsel der atmosphärischen Bedingungen im NO_x-Speicherkatalysator **14** wieder sehr schnell desorbiert. Bei zu niedrigen Reduktionsmittelmassenströmen ist dann eine Bereitstellung der Reduktionsmittel an der Katalysatorkomponente des NO_x-Speicherkatalysators nicht in dem notwendigen Maße möglich, so daß unerwünschte NO_x-Emissionen auftreten können.

Mit Hilfe des nachfolgend geschilderten Verfahrens (siehe **Fig. 2**) ist es unter anderem möglich, in der durch niedrige Abgasströme gekennzeichneten Leerlaufphase den Magerbetrieb länger aufrechtzuerhalten und damit eine Anzahl von NO_x-Regenerationen im Leerlaufbetrieb gegenüber anderen Betriebsphasen zu reduzieren. Weiterhin kann eine Lärmentwicklung durch die NO_x-Regeneration unterdrückt werden.

Zunächst wird in einer ersten Abfrage ermittelt, ob sich das Kraftfahrzeug in einer Leerlaufphase befindet (Schritt 51). Ist dies zu verneinen, so kann die NO_x-Regeneration des NO_x-Speicherkatalysators **14** nach einem herkömmlichen Verfahren gesteuert werden. Dazu kann beispielsweise ein Beladungszustand des NO_x-Speicherkatalysators **14** oder eine NO_x-Emission stromab des NO_x-Speicherkatalysators **14** überwacht werden (Schritt 52). Beim Überschreiten eines Schwellenwertes für diese Größe wird die NO_x-

Regeneration durch einen Wechsel in den stöchiometrischen oder fetten Betrieb initiiert.

Liegt eine Leerlaufphase vor, so wird zunächst in einer sich anschließenden Abfrage (Schritt S3) ermittelt, ob der Wechsel in den Leerlauf während einer laufenden NO_x-Regeneration stattfindet. Ist dies zu bejahen, so wird im Schritt S4 ermittelt, ob eine Schubabschaltungsphase vorliegt und/oder das Kraftfahrzeug noch eine Geschwindigkeit aufweist, die oberhalb einer vorgegebenen Grenzgeschwindigkeit liegt, und/oder eine Drehzahl einen vorgegebenen Schwellenwert übersteigt. Liegen diese Randbedingungen vor, so wird zunächst die NO_x-Regeneration zu Ende geführt (Schritt S5). Ansonsten wird die laufende NO_x-Regeneration unterbrochen und ein Merker gesetzt (Schritt S6).

Mit Hilfe des Merkers wird sichergestellt, daß nach Ende der Leerlaufphase, beispielsweise in einer sich anschließenden Beschleunigungsphase des Kraftfahrzeugs, die NO_x-Regeneration wieder aufgenommen wird.

Den Schritten S5 und S6 oder wenn der Wechsel in den Leerlauf nicht während einer laufenden NO_x-Regeneration erfolgt (Schritt S3) schließt sich eine Neufestlegung der Schwellenwerte zur Bestimmung der Regenerationsnotwendigkeit an (Schritt S7). Dazu werden die in den herkömmlichen Verfahren genutzten Schwellenwerte für den Beladungszustand beziehungsweise die NO_x-Emission erhöht. Selbstverständlich sind die Werte so festzulegen, daß es im Leerlauf nicht zu erheblichen NO_x-Durchbrüchen kommen kann. Aufgrund der geringen Abgasmassenströme kann dies jedoch auch mit höheren Schwellenwerten als für die anderen Betriebsphasen der Verbrennungskraftmaschine **10** sichergestellt werden.

Alternativ zu letzterer Vorgehensweise kann im Schritt S7 ein festes Zeitintervall vorgegeben werden, nach dessen Ablauf die NO_x-Regeneration durchgeführt werden muß. Neben der geschilderten Vorgehensweise zur Regelung der NO_x-Regeneration im Leerlauf hat es sich als vorteilhaft erwiesen, das Luftverhältnis während der NO_x-Regeneration auf einen Wert im Bereich von $\lambda = 0,85$ bis 1,0 und zumindest weniger fett als bei sonst üblichen NO_x-Regenerationen festzulegen, da dann die Lärmentwicklung wesentlich geringer ist.

Patentansprüche

1. Verfahren zur Steuerung einer NO_x-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine für Kraftfahrzeuge angeordneten NO_x-Speicherkatalysators, wobei die NO_x-Regeneration zumindest dann eingeleitet wird, wenn ein Schwellenwert für einen Beladungszustand des NO_x-Speicherkatalysators oder eine NO_x-Emission stromab des NO_x-Speicherkatalysators überschritten wird, dadurch gekennzeichnet, daß

- (a) erfaßt wird, ob die Verbrennungskraftmaschine (**10**) in einen Leerlauf geschaltet ist, und daß
- (b) alternativ oder in beliebiger Kombination
 - im Leerlauf der Schwellenwert für den Beladungszustand oder die NO_x-Emission erhöht wird,
 - die NO_x-Regeneration nur nach Ablauf vorgegebener Zeitintervalle eingeleitet wird,
 - eine laufende NO_x-Regeneration beim Wechsel in den Leerlauf unterbrochen wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine laufende NO_x-Regeneration beim Wechsel in den Leerlauf nicht unterbrochen wird, wenn eine Schubabschaltungsphase vorliegt, eine Kraftfahrzeug-

geschwindigkeit eine vorgegebene Grenzgeschwindigkeit übersteigt oder eine Drehzahl oberhalb eines vorgegebenen Schwellenwertes liegt.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß bei Unterbrechung einer laufenden NO_x-Regeneration ein Merker gesetzt wird, der dazu führt, daß die NO_x-Regeneration in einer sich anschließenden Beschleunigungsphase des Kraftfahrzeuges fortgeführt wird. 5

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Merker zurückgenommen wird, wenn bereits eine NO_x-Regeneration im Leerlaufbetrieb durchgeführt werden mußte. 10

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die NO_x-Regeneration im Leerlaufbetrieb unter Vorgabe eines Lambdawertes im Bereich von 0,85 bis 1,0, auf alle Fälle aber weniger fett als bei sonst üblicher NO_x-Regeneration, durchgeführt wird. 15

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die NO_x-Regeneration eingeleitet wird, wenn aus irgendeinem Grund ein Wechsel in den $\lambda = 1$ -Betrieb erforderlich ist. 20

7. Vorrichtung zur Steuerung einer NO_x-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine für Kraftfahrzeuge angeordneten NO_x-Speicherkatalysators, mit der die NO_x-Regeneration zumindest dann eingeleitet wird, wenn ein Schwellenwert für einen Beladungszustand des NO_x-Speicherkatalysators oder eine NO_x-Emission stromab des NO_x-Speicherkatalysators überschritten wird, dadurch gekennzeichnet, daß Mittel vorhanden sind, mit denen 25

(a) erfaßt wird, ob die Verbrennungskraftmaschine (10) in einen Leerlauf geschaltet ist, und daß 30

(b) alternativ oder in beliebiger Kombination – im Leerlauf der Schwellenwert für den Beladungszustand oder die NO_x-Emission erhöht wird,
– die NO_x-Regeneration nur nach Ablauf 40 vorgegebener Zeitintervalle eingeleitet wird,
– eine laufende NO_x-Regeneration beim Wechsel in den Leerlauf unterbrochen wird. 35

8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Mittel ein Steuergerät (36) umfassen, 45 in dem eine Prozedur zur Steuerung der NO_x-Regeneration des NO_x-Speicherkatalysators (14) im Leerlauf in digitalisierter Form hinterlegt ist.

9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß das Steuergerät (36) in ein Motorsteuergerät (20) integriert ist. 50

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

FIG. 1

FIG. 2