Практичне завдання № 3 **КОДИ ТА ЇХ ВЛАСТИВОСТІ**

3.1. Алфавіт дискретного джерела налічує N символів, які кодуються завадостійким двійковим кодом довжиною n . Згідно з варіантами, поданими в табл. 3.1, визначити надлишковість коду.

Таблиця 3.1.

Варіант	Кількість символів, <i>N</i>	Довжина коду, п
1	128	10
2	30	8
3	32	7
4	305	9
5	512	12
6	512	9
7	32	9
8	335	11
9	375	13
10	256	8
11	100	10
12	256	9
13	16	5
14	285	13
15	410	13
16	64	7

3.2. Згідно з варіантами, поданими в табл. 3.2, визначити кодову відстань між двійковими комбінаціями A та B двійкового коду та записати всі комбінації, які знаходяться від комбінації A на кодовій відстані d.

Таблиця 3.2.

Варіант	A B		d	
1	0001110	1001010	6	
2	100001	001010	5	
3	11011	01100	3	
4	00001011	11010000	7	
5	11011	00011	3	
6	11011	01010	3	
7	10010111	01101101	7	
8	11000110	11110001	7	
9	1001001	0101011	6	
10	01010	11000	2	
11	1110	0010	3	
12	10111	01011	4	
13	1001101	0111110	6	
14	00011	10000	2	
15	000110	111011	4	
16	11111010	11001000	7	

3.3. Згідно з варіантами, поданими в табл. 3.3, визначити мінімальну та максимальну кодові відстані Хеммінга d між комбінаціями A, B, C, D двійкового n-елементного простого коду.

Таблиця 3.3.

Варіант	A	В	С	D
1	10110	10001	11001	11001
2	11111	11011	11100	10000
3	100011	101000	000000	111111
4	00101	11000	10100	10101
5	11010011	01001110	00101010	01110101
6	10011	10010	01110	00111
7	11010	10001	00111	01111
8	0011011	1010011	0010011	0110000
9	110001	101101	000010	101000
10	0110100	1000100	0101111	1110101
11	110100	101000	000100	110101
12	1010100	0010101	1110110	1001000
13	0100000	0110110	1010111	1010101
14	000100	101010	110000	101101
15	101001	011101	110011	100100
16	0000101	0000100	0110011	1001100