Релационен модел и типове връзки

Учителски екип

Обучение за ИТ кариера https://it-kariera.mon.bg/e-learning/

Връзки между таблиците

Релационен модел в действие

Взаимоотношения (връзки)

 Взаимоотношенията между таблиците са базирани на връзки между тях: основен ключ (primary key) / външен

ключ (foreign key)

Основен ключ

towns Външен ключ

id	name	country_id
1	Sofia	1
2	Varna	1
3	Munich	2
4	Berlin	2
5	Moscow	3

Основен ключ countries

id	name
1	Bulgaria
2	Germany
3	Russia

Взаимоотношение

Взаимоотношения (2)

- Външният ключ е идентификатор на запис намиращ се в друга таблица (обикновено е основен ключ в нея)
- С използването на взаимоотношенията ние избягваме повтаряне на информация в базата данни
 - В последния пример името на държавата не се повтаря отново за всеки град (вместо това се ползва неговия номер)
- Взаимоотношенията биват следните видове:
 - **Един-към-много** например държава / градове
 - Много-към-много например ученик / курс
 - Един-към-един шофьор / кола

Един-към-много / Много-към-един

Основен ключ

Планини

mountain_id	name
5	Caucasus

Основен ключ

Външен ключ

Върхове

peak_id	mountain_id
61	5
66	5

Взаимоотношение

```
Основен ключ
CREATE TABLE mountains(
  mountain_id INT PRIMARY KEY,
  mountain name VARCHAR(50)
                        Таблица за върховете
CREATE TABLE peaks(
  peak_id INT PRIMARY KEY,
  mountain_id INT,
  CONSTRAINT fk_peaks_mountains
                                   Външен ключ
  FOREIGN KEY (mountain id)
  REFERENCES mountains(mountain id)
```

Външен ключ

Име на ограничението

CONSTRAINT fk_peaks_mountains

FOREIGN KEY (mountain_id)

REFERENCES mountains(mountain_id);

Референтна таблица

Основен ключ

Много-към-много

employee_id	employee_name
1	•••
40	•••

projects

project_id	project_name
4	
24	•••

Свързваща таблица

employees_projects

employee_id	project_id
1	4
1	24
40	24

```
CREATE TABLE employees(
   employee_id INT PRIMARY KEY,
   employee_name VARCHAR(50)
);
```

Таблица за служителите

```
CREATE TABLE projects(
   project_id INT PRIMARY KEY,
   project_name VARCHAR(50)
);
```

Таблица за проектите

Свързващата таблица

```
CREATE TABLE employees_projects(
  employee_id INT,
                                      Основен ключ
  project id INT,
  CONSTRAINT pk_employees_projects
  PRIMARY KEY(employee_id, project_id),
  CONSTRAINT fk_employees_projects_employees
  FOREIGN KEY(employee id)
                                        Външен ключ
  REFERENCES employees(employee_id),
  CONSTRAINT fk_employees_projects_projects
  FOREIGN KEY(project_id)
  REFERENCES projects(project_id)
                                     Външен ключ
```

Един-към-един

Основен ключ

cars

Външен ключ

Основен ключ

drivers

driver_id	driver_name
166	
102	

 car_id
 driver_id

 1
 166

 2
 102

Взаимоотношение

```
Основен ключ
CREATE TABLE drivers(
  driver_id INT PRIMARY KEY,
  driver name VARCHAR(50)
                             Един шофьор
CREATE TABLE cars(
                               за кола
  car id INT PRIMARY KEY,
                                   Външен ключ
  driver_id INT UNIQUE,
  CONSTRAINT fk_cars_drivers FOREIGN KEY
  (driver_id) REFERENCES drivers(driver_id)
```

Външен ключ

Име на ограничението

CONSTRAINT fk_cars_drivers

FOREIGN KEY (driver_id)

REFERENCES drivers(driver_id)

Референтна таблица

Основен ключ

E/R диаграми

Entity / relationship диаграми

Релационна схема

- Релационна схема на БД е:
 - Схемата на всяка от таблиците
 - Релациите между таблиците
 - Всякакви други елементи от базата данни (например ограничения)
- Релационната схема описва структурата на базата данни
 - Не съдържа информация, а само метаинформация
- Релационните схеми се изобразвят графично в Entity / Relationship диаграми (E/R диаграми)

E/R Диаграма

Кликнете на "Database" а след това изберете "Reverse Engineer"

E/R Диаграма

E/R Диаграма

Релационен модел и типове връзки

Министерство на образованието и науката (МОН)

 Настоящият курс (презентации, примери, задачи, упражнения и др.) е разработен за нуждите на Национална програма "Обучение за ИТ кариера" на МОН за подготовка по професия "Приложен програмист"

 Курсът е базиран на учебно съдържание и методика, предоставени от фондация "Софтуерен университет" и се разпространява под свободен лиценз СС-ВҮ-NC-SA

