第11章 風險與報酬





#### 期望報酬

- 根據可能產出結果的機率,得出期望報酬
  - 「期望」意謂重複許多次這個過程所得到的平均值
  - 「期望」報酬甚至並不是一個實際上可能出現的報酬

$$E(R_U) = \sum_{i=1}^n p_i R_i$$



# 期望報酬

#### • 表11.1 經濟狀況和股票報酬

|      |            | 各種狀況下的證券報酬 |      |
|------|------------|------------|------|
| 經濟狀況 | 經濟狀況的機率    | 股票 L       | 股票 U |
| 蕭條   | 0.5        | -20%       | 30%  |
| 繁榮   | <u>0.5</u> | 70         | 10   |
|      | 1.0        |            |      |

|     |      | 股票 <b>L</b> |                   | 股    | 票 U               |
|-----|------|-------------|-------------------|------|-------------------|
| (1) | (2)  | (3)         | (4)               | (5)  | (6)               |
| 經濟  | 經濟狀況 | 各種狀況        | (2) × (3)         | 各種狀況 | (2) $	imes$ (5)   |
| 狀況  | 的機率  | 的報酬率        | 的結果               | 的報酬率 | 的結果               |
| 蕭條  | 0.5  | -0.20       | -0.10             | 0.30 | 0.15              |
| 繁榮  | 0.5  | 0.70        | 0.35              | 0.10 | <u>0.05</u>       |
|     | 1.0  |             | $E(R_{L}) = 0.25$ |      | $E(R_{U}) = 0.20$ |



## 風險溢酬

• 假設無風險投資目前提供 8% 的報酬,我們稱無風險利率(以  $R_f$ 表示)是 8%,據此,股票 U 預計的風險溢酬是多少?股票 L 呢?因為股票 U 的期望報酬  $E(R_i)$  是 20%,預計的風險溢酬是:

風險溢酬 = 期望報酬 - 無風險利率

$$= \mathbf{E}(\mathbf{R}_{\mathsf{U}}) - \mathbf{R}_{\mathsf{f}}$$

• 同樣地,股票L的風險溢酬是25% - 8% = 17%



## 變異數與標準差

- 變異數與標準差仍舊衡量報酬的波動性
- 變異數是離差平方的加權平均值
- 標準差是變異數的平方根

$$= \sigma^2 = \sum_{i=1}^n p_i (R_i - E(R))^2$$



# 投資組合 (Portfolio)

- 一項投資組合是許多資產的集合
- 單一資產的風險與報酬,對投資組合之風險與報酬有重要的影響
- 正如個別的資產,投資組合的期望報酬和標準差,也可以用來衡量其風險一報酬的抵換關係



#### 投資組合的期望報酬

投資組合的期望報酬,就是這投資組合中各項資產期望報酬的加權平均值。

$$E(R_P) = \sum_{j=1}^m w_j E(R_j)$$

- 權數  $(w_i)$  = 投資組合中各項資產的百分比
- (另一種表示方式)

在各種情況下計算投資組合的報酬率:

$$R_{P,i} = w_1 R_{1,i} + w_2 R_{2,i} + \dots + w_m R_{m,i}$$



\_\_\_\_

#### 表11.5 股票 L 與 U權數相等之投資組合的期望報酬

| (1)<br>經濟<br>狀況 | <b>(2)</b><br>經濟狀況<br>的機率 | (3)<br>各種狀況下<br>投資組合的報酬                      | (4)<br>(2) × (3)<br>的結果 |
|-----------------|---------------------------|----------------------------------------------|-------------------------|
| 蕭條              | 0.50                      | $0.50 \times -20\% + 0.50 \times 30\% = 5\%$ | 0.025                   |
| 繁榮              | <u>0.50</u>               | $0.50 \times 70\% + 0.50 \times 10\% = 40\%$ | 0.200                   |
|                 | 1.00                      |                                              | $E(R_P) = 0.225$        |



#### 例 11.3 投資組合的期望報酬

假設三支股票預測資料如下:

|      |        | 報酬  |      |      |
|------|--------|-----|------|------|
| 經濟狀況 | 各狀況的機率 | 股票A | 股票 B | 股票 C |
| 景氣好  | 0.40   | 10% | 15%  | 20%  |
| 景氣差  | 0.60   | 8   | 4    | 0    |

我們想要計算兩種狀況下投資組合的期望報酬。首先,如果三支股票各自投入相等的金額,投資組合的期望報酬會是多少?其次,如果一半資金投入股票 A,另一半均分,投入股票 B 與股票 C,這投資組合的期望報酬又是多少?

根據上文,個別股票的期望報酬是(請自行驗算):

$$E(R_A) = 8.8\%$$

$$E(R_B) = 8.4\%$$

$$E(R_{\rm C}) = 8.0\%$$

如果投資組合中各資產的投入金額相等,也就是說,投資組合權數都相等,這種投資組合稱為權數相等(equally weighted)的投資組合。因為這個例子有三種股票,均等的權數是 1/3,因此,投資組合的期望報酬是:

$$E(R_P) = \frac{1}{3} \times 8.8\% + \frac{1}{3} \times 8.4\% + \frac{1}{3} \times 8.0\% = 8.4\%$$

第二種狀況下,請自行驗算投資組合的期望報酬是8.5%。

對照例11.4變異數



#### 投資組合風險

: 變異數 & 標準差

- 投資組合的標準差不是各證券風險成份之標準 差的加權平均值
  - 如果它是,就不存在多樣化的效益



#### 例 11.4 投資組合的變異數和標準差

在例 11.3 中,兩種投資組合的標準差是多少?為了找出答案,首先必須計算在兩種狀況下投資組合的報酬。以下算出第二種投資組合,也就是股票 A 占50%,且股票 B 與 C 各占 25%。相關的計算彙整如下:

|      | 各種狀況 | 報酬   |      |      |        |
|------|------|------|------|------|--------|
| 經濟狀況 | 的機率  | 股票 A | 股票 B | 股票 C | 投資組合   |
| 景氣好  | 0.40 | 10%  | 15%  | 20%  | 13.75% |
| 景氣差  | 0.60 | 8    | 4    | 0    | 5.00   |

當景氣好的時候,投資組合報酬計算如下:

$$0.50 \times 10\% + 0.25 \times 15\% + 0.25 \times 20\% = 13.75\%$$

當景氣轉差時,計算報酬的方式相同。投資組合的期望報酬是 8.5%,因此,變 異數是: 參考例11.3狀況二

$$\sigma^2 = 0.40 \times (0.1375 - 0.085)^2 + 0.60 \times (0.05 - 0.085)^2$$
$$= 0.0018375$$

因此,標準差大約是 4.3%,請自行驗算權數相等之投資組合的標準差,答案大約是 5.4%。

\_\_\_



#### 宣告、意外與期望報酬

- 宣告與消息,包含期望和意外
- 意外的部分會影響股價
- 效率市場,是投資人依據宣告中非預期的部分交易的結果
  - 愈容易根據意外消息去交易,市場應該會 變得愈有效率
- 因為我們無法預測到意外的狀況,所以,效率市場涉及隨機價格變動



12

# 系統風險 (systematic risk)

- 影響絕大多數資產的風險因子
- 又稱為不可分散 (non-diversifiable) 風險
- 又稱為市場 (market) 風險
- 包括GDP、通貨膨脹或利率等因子的變化,都 是系統風險的例子



# 非系統 (Unsystematic) 風險

- · 就是「可分散 (diversifiable ) 風險」
- 影響少數資產的風險因子
- 投資組合之資產多樣化可以消除這類風險
- 又稱為獨特 (unique) 風險、特定資產 (assetspecific) 風險
- 包括罷工、零組件缺貨等事件,都是非系統風險的例子。



## 報酬

• 總報酬 = 期望報酬 + 非期望報酬 R = E(R) + U

- 非期望報酬 (U) = 系統部分 (m) + 非系統部分 ( $\epsilon$ )
- 總報酬 = 期望報酬 E(R) + 系統部分 (m) + 非系統部分  $(\epsilon)$  = E(R) + m +  $\epsilon$

## 多樣化投資原則

- 多樣化投資足以降低風險,卻不會等額減少期 望報酬
  - 降低報酬的變異性
  - 會發生風險降低的情況,是因為一項資產的 期望報酬變差時,能藉由另一項期望報酬變 好的資產而抵銷
- 多樣化投資無法降低系統風險



#### 表11.7 投資組合每年報酬的標準差

| (1)<br>投資組合中<br>股票的數目 | (2)<br>投資組合<br>每年報酬的平均標準差 | (3)<br>投資組合標準差<br>和單一股票標準差的比值 |
|-----------------------|---------------------------|-------------------------------|
| 1                     | 49.24%                    | 1.00                          |
| 2                     | 37.36                     | 0.76                          |
| 4                     | 29.69                     | 0.60                          |
| 6                     | 26.64                     | 0.54                          |
| 8                     | 24.98                     | 0.51                          |
| 10                    | 23.93                     | 0.49                          |
| 20                    | 21.68                     | 0.44                          |
| 30                    | 20.87                     | 0.42                          |
| 40                    | 20.46                     | 0.42                          |
| 50                    | 20.20                     | 0.41                          |
| 100                   | 19.69                     | 0.40                          |
| 200                   | 19.42                     | 0.39                          |
| 300                   | 19.34                     | 0.39                          |
| 400                   | 19.29                     | 0.39                          |
| 500                   | 19.27                     | 0.39                          |
| 1,000                 | 19.21                     | 0.39                          |



1/

# 圖11.1 多樣化投資組合

年平均標準差(%) 49.2 可分散風險 23.9 19.2 不可分散風險 投資組合中 股票的數目 10 20 30 40 1,000



18

#### 總風險=個別風險

- 總風險 = 系統風險 + 非系統風險
- 以報酬率的標準差衡量總風險
- 對一個充分多樣化的投資組合而言,非系統風險是微不足道的
- 總之,多樣化投資組合的總風險,實際上就等 於系統風險



## 系統風險原則

- 承擔風險,就有報酬!是嗎??
- 承擔非必要的風險,不會有任何報酬
- 資產的期望報酬(市場的必要報酬),僅依其 系統風險而決定



#### 投資組合的貝它值

βρ = 在投資組合中所有資產的貝它值加權平均

權數  $(w_i)$  = i 資產投入在投資組合金額中的%

$$\beta_p = \sum_{i=1}^n \mathbf{w}_i \beta_i$$



## 說明貝它值

- 市場的貝它值 = 1; 國庫券的貝它值 = 0
  - 貝它值大於1,表示該項資產的系統風險比整體市場更高
  - 貝它值小於1,表示該項資產的系統風險比整體市場更低
  - 貝它值等於1,表示該項資產與整體市場的 系統風險相同
- 多數股票的貝它值介於0.5至1.5



## 表11.8 入選公司的貝它係數

| 公司               | 貝它係數 (β <sub>i</sub> ) |
|------------------|------------------------|
| Costco           | 0.79                   |
| Macy's           | 0.84                   |
| Starbucks        | 0.88                   |
| Apple            | 0.96                   |
| Google(Alphabet) | 1.07                   |
| Home Depot       | 1.19                   |
| Amazon           | 1.41                   |
| Tesla            | 1.47                   |
| Citigroup        | 1.84                   |



#### 貝它值與風險溢酬

• 風險溢酬 = 期望報酬 - 無風險利率 = E(R) - R<sub>f</sub>

- 貝它值愈大,則風險溢酬應該愈高
- 如果我們能界定風險溢酬與貝它值之間的關係 就可以估計期望報酬嗎?
  - 答案是:正確!



## 報酬對風險的比率

• 報酬對風險的比率:

$$\frac{E(R_i) - R_f}{\beta_i}$$

- 在均衡狀態,所有資產之報酬對風險的比率應 該相同
- 當所有資產之期望報酬與β相對應,結果應該 繪出一條直線



#### 例 11.7 買低賣高

如果已知一項資產的價格相對於期望報酬與風險顯得太高,就稱為價格高估。假設你觀察到下列的狀況:

| 證券        | 期望報酬 | 貝它值 |
|-----------|------|-----|
| Fama 公司   | 14%  | 1.3 |
| French 公司 | 10   | 0.8 |

目前無風險利率是 6%,相對於另一種證券而言,這兩種證券中哪一種價格高估了?

要找出答案,先計算兩種證券的報酬對風險比率。對 Fama 公司而言,這 比率是 (14% - 6%)/1.3 = 6.15%;對 French 公司是 5%。計算結果是 French 公司對其風險所提供的期望報酬不足,至少相對於 Fama 公司而言是如此。因 為它的期望報酬太低,導致其價格過高。換言之,French 公司與 Fama 公司相 比,其價格高估了,相對於 Fama 公司,我們預計會看到 French 公司的證券價 格下滑。請注意,我們也可以説,與 French 公司相比,Fama 公司的價格低估 了。



#### 證券市場線 (security market line)

- 證券市場線 (SML) 代表市場均衡
- SML的斜率就是報酬對風險的比率:

$$(E(R_M) - R_f) / \beta_M$$

• 因為市場的貝它值總是等於1,所以它的斜率可以寫成:

斜率 =  $E(R_M) - R_f = 市場風險溢酬$ 



#### SML與必要報酬率

· 證券市場線(SML)是資本資產定價模式 (CAPM) 的一部分

$$E(R_i) = R_f + (E(R_M) - R_f)\beta_i$$

$$E(R_i) = R_f + (E(R_M) - R_f)\beta_i$$

其中,

 $R_f = 無風險利率 (國庫券或政府公債的利率)$ 

*R<sub>M</sub>* = 市場報酬率 ≈ S&P 500

 $E(R_i) = i 證券的必要報酬率$ 



28

#### 資本資產定價模式 (capital asset pricing model)

• 資本資產定價模式 (CAPM) 界定了風險與報酬 之間的關係

$$E(R_i) = R_f + (E(R_M) - R_f)\beta_i$$

• 如果我們知道某資產的系統風險 $(\beta_i)$ ,根據 CAPM,就能決定它的期望報酬



# 影響期望報酬的因素

$$E(R_i) = R_f + (E(R_M) - R_f)\beta_i$$

- $> R_f$ : 無風險利率,衡量純粹貨幣的時間價值
- $\ge E(R_M) R_f$ : 市場風險溢酬,衡量 承擔系統風險得到的報酬
- $> \beta_i$ :第種資產的系統風險,衡量系統風險的大小



## 圖11.4 證券市場線 (SML)

資產的期望報酬( $E(R_i)$ )



證券市場線的斜率等於市場風險溢酬,換言之,即承擔平均系統風險的報酬, SML 方程式表示為:

$$E(R_i) = R_f + [E(R_M) - R_f] \times \beta_i$$

這就是資本資產定價模式(CAPM)。



31

#### 作業5-報酬率與風險

- 於所選類股選20家公司,不足20家的選全部公司。
- 計算3、4月份的個股日報酬率及平均值(期望報酬率)。
- 計算這期間日報酬率的標準差(風險)。
- 以風險為橫軸,平均報酬率為縱軸,畫出20家公司的散布圖。



#### 作業6-證券市場線

- 接續作業5。
- 計算3、4月類股指數的日報酬率。
- 以迴歸分析估計此期間個股的β值。
- 畫出證券市場線。

