

IX Congress of the National Group of Bioengineering (GNB)

Palermo, Italy, 16th - 18th June 2025

Prediction of TMS-evoked Potentials from Prestimulus Spectral Features: A Machine Learning Approach

Sadaf Moaveninejad¹, Antonio Luigi Bisogno², Simone Cauzzo ^{1,3}, Maurizio Corbetta², Camillo Porcaro¹

¹Biomedical Engineering Research to Advance and Innovate Translational Neuroscience (BRAIN Unit), Department of Neuroscience, University of Padova ² Department of Neuroscience and Padova Neuroscience Center, University of Padova

³ Parkinson Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-END)

Background

Brain Criticality

A state near phase transition, where neural networks achieve optimal adaptability and computational efficiency.

TMS-EEG

Transcranial Magnetic Stimulation (TMS) combined with EEG provides a non-invasive method to study neural dynamics through TMS-evoked potentials (TEPs).

TEPs

Reflect cortical excitability and connectivity.

Frequency Bands in Brain Function:

- Delta (1–3 Hz): Linked to deep sleep and unconscious processes.
- Theta (4-7 Hz): Involved in memory encoding and cognitive control.
- Alpha (8-13 Hz): Associated with inhibition, sensory gating, and readiness states.
- Beta (14–30 Hz): Reflects motor preparation and top-down control.
- Gamma (31–90 Hz): Related to local processing, excitability, and cortical responsiveness. Goal

To examine the predictive relationship between pre-stimulus TEP features and post-stimulus TEP variability.

Methods

Dataset:

- Publicly available TMS-EEG dataset of 20 right-handed healthy volunteers (age: 24.50 ± 4.86 years; 14 females).
- Recorded with a 62-channel EEG system at 1 kHz.
- EEG preprocessed using **EEGLAB** and **TESA** toolbox.

Features Extraction:

- Each trial segmented into 2000 samples (1000 pre-stimulus, 1000 post-stimulus). Focused on channel C3, where TMS was applied.
- Morlet wavelet transform (constant=7) applied to pre-stimulus window (-800 to -200 ms).

Power Spectral Density (PSD) computed in five frequency bands: delta, theta, alpha, beta, gamma **Targets Variables:**

- Area: Total area under the absolute post-stimulus signal (global response magnitude).
- **Peak:** Maximum amplitude of the post-stimulus signal (most prominent response).

Pre- and post-stimulus from a single trial TEP, with pre-stimulus features predicting post-stimulus targets, separated by the stimulus onset.

Train-set

Tuned Model

Test-set

True-Targets

True-Ranks

Features_

Spearman rank

correlation

Trained Model

Predicted-Targets

Predicted-Ranks

Machine Learning Pipeline

Train-Test split: 5-fold stratified cross-validation was applied at the **subject level**, ensuring that training and test sets contained data from nonoverlapping subjects.

In each fold:

- 16 subjects → training
- 4 subjects → testing
- 3-fold cross-validation was used for

Machine learning model: A Random Forest Regressor was used to predict post-stimulus targets (Area and Peak) from pre-stimulus spectral features.

hyperparameter tuning: Input features were standardized before training.

Model Evaluation Metrics:

- Normalized Mean Squared Error (nMSE): Quantifies prediction error relative to variance. Values < 1 indicate better-than-mean prediction.
- Spearman's ρ:

Measures how well predicted rankings match actual trial order.

 $\rho > 0.7 = strong$

0.5-0.7 = moderate

< 0.3 = weak

Interpretability & Visualization:

SHAP analysis: identified the most influential frequency bands.

Quartile-based visualization: compared predicted vs. true trial groupings across response magnitude.

Results

Performance Metric Table

Target Method	nMSE [95%Confidence Interval]	Spearman's $ ho$ [95%Confidence Interval]
Area (all freq bands)	0.49 [0.44-0.54]	0.76 [0.73 – 0.78]
Peak (all freq bands)	0.8 [0.74 – 0.88]	0.6 [0.57 – 0.63]
Area (alpha band)	1.78 [1.67 – 1.9]	0.11 [0.06 – 0.16]
Peak (alpha band)	1.76 [1.65 – 1.88]	0.11 [0.07 – 0.17]

Predicting **Area** yields better results than **Peak** amplitude:

- Lower nMSE
- Higher Spearman's ρ

Using all frequency bands significantly improves performance.

SHAP Summary Plot

SHAP values quantify how each frequency band influences model predictions. The plots show feature importance for predicting

Area and Peak targets.

Findings:

- Gamma power is the strongest predictor for both targets.
- For **Area**: Gamma > Theta > Beta
- For **Peak**: Gamma > Alpha > Beta
- Alpha is more relevant to transient peak fluctuations, while gamma is linked to sustained excitability.

Color gradient (blue → red): indicates low-to-high feature values and their corresponding SHAP

Area

Quartile Plot

Trials were ranked based on both **true** and predicted values of the Area target.

Trials were divided into four quartiles to analyze prediction accuracy across response magnitudes.

What It Shows:

Each subplot displays the average poststimulus EEG signal (C3) for each quartile. Solid **blue line** = predicted signal Dashed red line = true signal

Strong overlap across quartiles confirms: The model generalizes well across subjects

Pre-stimulus features retain meaningful information about trial-level variability

Conclusion

- Machine learning successfully predicted TMS-evoked responses using pre-stimulus spectral features.
- Gamma power was the most influential feature for both signal Area and Peak.
- Alpha power was more relevant to transient Peak responses, while theta and beta contributed to Area.
- Delta power showed minimal impact.

These results confirm that:

- The full spectrum of frequency bands is essential for accurate prediction.
- Gamma activity may reflect a more excitable or desynchronized cortical state that facilitates stronger TMS responses.
- **Alpha rhythms** may exert inhibitory control, especially over sensorimotor areas.

Acknowledgement

This work was supported by:

HORIZON-ERC SyG (Grant No. 101071900) – NEMESIS: Neurological Mechanisms of Injury and Sleep-Like Cellular Dynamics (to MC, ALB, CP) HORIZON-INFRA-2022 SERV (Grant No. 101147319) – EBRAINS 2.0 (to MC)

PRIN – MUR (Grant No. 20228ARNXS) (to CP and SM)

Github Repository

Brain Lab Unit

