Mahatma Gandhi Mission's College of Engineering & Technology

Kamothe , Navi Mumbai

Class: S.E. COMPS/I.T Subject: AM IV

Tutorial No. : 1 (Matrix Theory):

Qn	Questions	Module	C.O	Level
.No				
1	If $A = \begin{bmatrix} 1 & 0 \\ 2 & 4 \end{bmatrix}$ then find the eigen values of $4 A^{-1} + 3 A + 2I$	3.1	CO 3	3
2	Find the eigen values and eigen vectors of the following matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$	3.1	CO 3	4
3	Verify Cayley Hamilton theorem for A = $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find \mathbf{A}^{-1}	3.2	CO 3	4
4	Show that the given matrices are diagonalisable. Find diagonal matrix and transforming matrix $ \begin{pmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{pmatrix} $	3.3	CO 3	4
5	Find the symmetric matrix of order 3 having eigen values 3,6,9 with corresponding eigen vectors $X 1 = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$, $X 2 = \begin{bmatrix} -2 & 2 & -1 \end{bmatrix}$, $X 3$	3.1	CO 3	3
6	If A = $\begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$ show that A 100 = $\begin{bmatrix} -299 & -300 \\ 300 & 301 \end{bmatrix}$	3.4	CO 3	4
7	If A = $\begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$ prove that 3 tan A = A tan 3	3 .4	CO 3	4
8	IF A = $\begin{bmatrix} \pi & \pi/4 \\ 0 & \pi/2 \end{bmatrix}$ find Cos A	3.4	CO 3	4
9	If A = $\begin{bmatrix} 2 & 0 & 0 \\ 5 & -1 & 0 \\ 2 & 3 & 3 \end{bmatrix}$ find the eigen values of A2 + 6A ⁻¹ – 3 I	3.1	CO 3	3

Mahatma Gandhi Mission's College of Engineering & Technology

Kamothe , Navi Mumbai

Class: S.E. EXTC/Electrical Subject: A M IV

Tutorial No. : 2 (Probability)

Qn.	Questions					Module	C.O	Level		
No.										
1	A discrete random variable X has the probability density function as					3	3	4		
	given .Find the mean and variance									
	X	-2	-1	0	1	2	3			
	P(X=x)	0.2	k	0.1	2k	0.1	2k	_	_	_
2	A continuous random variable X is distributed over the interval [0, 1]						3	3	4	
	with p.d.f $ax^2 + bx$, where a and b are constants. If the arithmetic									
	mean of X is 0.5 , find the value of a and b						2			
3	A continuous random variable has probability density function $\frac{-x}{x}$					3	3	4		
	$f(x) = kx e^{\frac{-x}{3}}$, $x > 0$. Find k and the mean Let X be a continuous random variable with probability distribution									
4	**				-	ability dist	ribution	3	3	4
	$F(x) = \frac{x}{6} + k$, $0 \le x \le 3$ and $f(x) = 0$, elsewhere									
	Evaluate k a									
5	If the rando							3	3	4
	2 P(X=1)=3	•			* *	probabili probabili	ty			
	distribution and cumulative distribution of X						3	3	4	
6	Find the MGF of a random variable whose probability density						3	3	4	
	function is $P(X=x) = (\frac{1}{2})^x$, $x = 1, 2, 3,$									
	Hence find the mean and variance									
7	A perfect coin is tossed twice. If X denotes the number of heads that						3	3	4	
	appear, find the moment generating function of X. Also find the mean and variance.									
8							3	3	4	
	Given that X has the probability distribution $p(x) = \frac{1}{8}3C_{\chi}$,									
	x = 0, 1, 2, 3. Find the moment generating function and hence find									
9	the mean and variance The density function of a R.V X is $f(x) = a(x-1)^2$, $0 < x < 2$;							3	3	4
	The density function of a R. V λ is $I(x) = a(x-1)$, $0 < x < 2$, = 0, otherwise						~ ~ ,			-
	Find the constant 'a', E(X), Var(X), and MGF of X									
10	Show that the expected number of failures preceding the first success						3	3	4	
	in a series of Bernoullian trials with a constant probability of success									
	$p is \frac{1-p}{p}$									
	ν							L	1	l

Mahatma Gandhi Mission's College of Engineering & Technology

Kamothe , Navi Mumbai

Class: S.E. EXTC/Electrical Subject: A M IV

Tutorial No. : 3 (Probability Distributions)

Qn.	Questions	Module	C.O	Level
No.	The incidence of an accounting of disease in an industry is such that	4	4	4
1	The incidence of an occupational disease in an industry is such that the workers have 20% chance of suffering from it. What is the	4	4	4
	probability that out of six workers chosen at random 4 or more will			
	be suffering from the disease?			
2	If the birth sex ratio is 49 girls to 51 boys, find the probability of	4	4	4
_	there being 8 or more girls among 10 babies born on the same day in	4 4		-
	a maternity hospital.			
3	Assuming that the number of cars passing a junction obeys a Poisson	4	4	4
	distribution, if the probability of no cars pass in 1 minute is 0.20, what	'		1 '
	is the probability that more than one car pass in 2 minutes?			
4	The average percentage of marks of candidates in an university	4	4	4
	examination is 42 with a S D of 10. The minimum for a pass is 50%.			-
	If 1000 candidates appear for an examination, how many can be			
	expected to pass it assuming normality of the distribution of marks?			
	If it is required that double that number should pass, what should be			
	the minimum percentage of marks?			
5	Obtain the moment generating function of binomial distribution with	4	4	3
	n = 7, $p = 0.6$. Find the mean. Find also the first three moments about			
	the mean of the distribution			
6	A manufacture of pins knows that 2% of his products are defective. If	4	4	4
	he sells pins in boxes of 100 and guarantees that not more than 4 pins			
	will be defective, then what is the probability that a box will fail to			
	meet the guaranteed quality?			
7	In a normal distribution of a large group of men 5% are under 60 and	4	4	4
	40% are between 60 & 65. Find the mean height and standard			
	deviation.			1
8	Find the mean and variance of Poisson distribution	4	4	2
9	It was found that the burning life of electric bulbs of a particular	4	4	4
	brand was normally distributed with the mean 1200 hrs and the SD of			
	90 hrs. Estimate the number of bulbs in a lot of 2500 bulbs having the			
	burning life (1) more than 1300 hrs (2) between 1050 and 1400 hrs	_		<u> </u>
10	The lowest wage of 1000 workmen is normally distributed around a	4	4	4
	mean of Rs 70 and standard deviation of Rs 5. Estimate the number			
	of workers whose weekly wages will be (i) between 69 & 72 (ii)			
	more than 75 (iii) less than 63. Also estimate the lowest wages of the			
	100 highest paid workers			1