	_	_	_	 	_	 			
Reg. No.				0.00					
10g. 110.									

B.Tech. DEGREE EXAMINATION, MAY 2024

Sixth Semester

18CSC304J - COMPILER DESIGN

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note	9:							
(i		Part - A should be answered in OMR shall invigilator at the end of 40 th minute Part - B & Part - C should be answered) .	ithin first 40 minutes and OMR sheet should swer booklet.	d be ha	nded	l ove	r to
		hours			Max. N	/ // Aark	ks: 1	00
		PART – A (20'×	1 – 2		Marks			
		Answer ALI						
	1.			d together with object files and library	1	1	1	1
	2	(A) Preprocessor (C) Linker	. ,	Compiler Loader				
	2.	Which of the following regular expr by any number of 1's and any numb	ression er of 2	n denotes any number of 0's, followed 2's?	1	2	1	1
		(A) $(0+1+2)^*$						
		(C) $(0^*+1^*+2^*).0$	(D)	(0+1*)2				
	3.	The minimum number of states to rec	cogniz	ze binary strings not ending with "000"	1	2	1	1
		(A) 5	(B)	1				
		(A) 3 (C) 3	(D)					
	4.	A programmer writes a program to them. This error can be found in(A) Lexical	ph	ple two numbers instead of dividing ase of compiler. Syntax	1	1	1	1
		(C) Cannot be determine by any		Semantic				
	5.	What are the symbols that can be first	` /		1	1	2	2
		$S \rightarrow F \mid H$ $F \rightarrow p \mid c$ $H \rightarrow d \mid c$	()					
		(A) {p, c}	(B)	{d, c}				
		(C) $\{p, d, c\}$		{p}				
	6.	Which of the following is not an error	or reco	overy strategy?	1	1	2	2
		(A) Phrase recognition		Phrase level recovery				
_		(C) Panic mode		Error production				
	7.	The parsing technique that avoids ba	ıcktrac	cking is	1	1	2	2
		(A) Bottom up parsing		Predictive parsing				
		(C) Top down parsing		Recursive descent parsing				
	8.	Top down parser generates			1	1	2	2
		(A) Rightmost derivation	(B)	Rightmost derivation in reverse				
		(C) Leftmost derivation		Leftmost derivation in reverse	- 4			

9.	Handle always occurs	ž.		1	1	3	2
	(A) On the top of a stack	(B)	At the bottom of the stack				
	(C) Inside the stack		Not one the stack				
	(0)						
10.	Which of the following is an o	perator type	of grammar?	1	2	3	2
		(B)					
	(C) $A \rightarrow AB \mid \varepsilon$		$A \rightarrow ABCa$				
		,					
11	The symbols present in leading	z(A) in the fo	ollowing grammar are	1	2	3	3
	$A \rightarrow Bx y$						
	$B \rightarrow yA z$						
	(A) x, y	(B)	x, y, z				
	(C) y	(D)	<u>-</u>				
		(-)	J, -				
12	Which is the most powerful pa	rser?		1	1	3	2
12.	(A) Simple LR		Canonical LR				
	(C) Lookahead LR	` ,	Shift reduce				
	(C) Lookanead Ex	(D)	Sint roduce				
13	Heap allocation is a part of the	mintime env	vironment in languages with	1	2	4	2
15.	(A) Dynamic data structure						
	(C) Recursion		Global variables				
	(C) Recuision	(D)	Global variables				
11	Replacing a*2 by x<<1 is an e	vample for		1	2	4	3
17.			Accessing machine instruction				
	expression	corate (D)	Accessing machine manachon				
	(C) Code motion	(D)	Strength reduction				
	(C) Code motion	(D)	Suchgai reduction				
15	Which of the below mentioned	1 statements	is not a three address code?	1	1	4	2
15.	(A) $a = 3$		a = a + b				
	(C) $a = b + 3 + c$	` '	a = b				
	(C) a 0 / 3 / 0	(D)					
16	SDT scheme is desirable becar	use it is		1	1	4	2
10.	(A) Based on syntax		Independent of any implementation				
	(C) Easy to write	, ,	Unable to modify				
	(C) Lasy to write	(2)	chaoto to mounty				
17.	Which of following produces	no executabl	le code when complied?	1	1	5	2
17.	(A) Assignment statement		Input and output				
	(C) Structural statement		Declaration				
	(C) Structurar statement	(2)					
18	Which of the following is not	a NP comple	ete problem?	1	1	5	2
10.			Evaluation order				
	(C) Memory assignment		Instruction selection				
	(c) Wellery assignment						
19	Replacing $a = 3+37$ by $a = 40$	is .		1	1	5	2
17.	(A) Algebraic simplification		Elimination of redundant instruction				
	(C) Strength reduction	, ,	Constant folding				
	(C) buongui reduction	(D)	Continue roraning				
20	In algebraic expression simpli	fication repl	acing $a = a+1$ can be done using	1	2	5	2
۵0.	(A) a		ADD A, 1				
	(C) INC a		ADD 1, A				
	(U) MIU u	(1)					

	PART – B ($5 \times 4 = 20$ Marks) Answer ANY FIVE Questions	Marks	BL	CO	PO
21.	Elucidate the roles of forward and lexeme points in input buffering scheme.	4	3	1	1
22.	List the functions of preprocessor, linker and loader.	4	3	1	1
23.	Can the string "banana" be derived from the CFG: $S \to baAB; A \to B; B \to na$ Using recessive descent parsing. Give the limitations of the recursive descent parser.	4	3	2	3
24.	Eliminate left recursion from the following (i) $S \rightarrow (L) \mid x$ $L \rightarrow L, S \mid S$ (ii) $A \rightarrow AB \mid BA \mid a$ $B \rightarrow b \mid a$	4	3	2	3
25.	Perform shift reduce parsing for the input $id+id+id$ using the grammar $E \rightarrow E+E \mid E*E \mid id$.	4	3	3	3
26.	Give the syntax directed translation scheme for $ \begin{array}{c} L \to E_n \\ E \to E_1 + T \\ E \to T \\ T \to T_1 F \\ T \to F \\ F \to (E) \\ F \to \text{digit} \end{array} $	4	3	4	3
27.	Brief about various fields in activation record.	4	3	5	2
	PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	CO	PO
28. a.	Consider the following code: while (a < b) { int x = y + z; a + = x; } Give the transformation of this code to target code in various phases. Brief about the phases as well.	12	3	1	3
	(OR)	12	3	1	3
b. 29. a.	Convert the regular expression $RE = ba(a+b)^*ab$ to a DFA. Also mention the rules for computing first Pos, last Pos and nullable. Construct a predictive parsing table for the given gammaer. Exp → Exp + Term Exp − Term Term Term → Term * Factor Term / Factor Factor Factor → (Exp) a Also list the rules for computing first () and follow ().	12	4	2	3
•	(OD)				

(OR)

b.	Check whether the following grammers are ambiguous (i) $S \rightarrow AB \mid C$ $A \rightarrow aAb \mid ab$ $B \rightarrow cBb \mid cd$ $C \rightarrow aCd \mid aDd$ $D \rightarrow bDc \mid bc$ (ii) $S \rightarrow AB \mid CD$ $A \rightarrow aAb \mid \epsilon$ $B \rightarrow bB \mid \epsilon$ $C \rightarrow aC \mid bC \mid \epsilon$ $D \rightarrow bB \mid \epsilon$	12	4	2	3
30. a.	Compute operator precedence relation for the grammer: $S \rightarrow a \mid (T); T \rightarrow T, b \mid s$ Give the rules for leading and trailing.	12	4	3	3
b.	(OR) Examine the effect of CLR parsing on the grammer. $S \rightarrow L = R \mid R$ $L \rightarrow * R \mid id$ $R \rightarrow L$	12	4	3	3
31. a.i.	Elaborate on the issues in the design of code generator.	6	3	4	2
ii.	Analyze the code generator algorithm.	6	3	4	2
b.	For the expression " $x=a*b+c*d-e$ ", generate the following (i) Three address code (ii) Syntax tree and DAG (iii) Quadruples (iv) Triples	12	3	4	3
32. a.	For the following code identify the leader instruction, its basic block and draw the control flow block: (1) $P=0$ (2) $I=1$ (3) $P=P+1$ (4) $If P <= 80 \text{ Goto } (7)$ (5) $P=0$ (6) $I=5$ (7) $T1=I*2$ (8) $I=T1+1$ (9) $If I <= 10 \text{ Goto } (3)$ (10) $K=P*3$ Also mention the rules for identifying the leader in basic block.	12	3	5	3
	(OR)				
b.	Describe in detail about global data flow analysis. Give the data flow equations with analysis for (i) Sequential execution	12	3	5	2
	(ii) Branched execution (iii) Loops				
	+ + + + +				

Page 4 of 4