MTH1102D Calcul II

Chapitre 9, section 2: Les intégrales curvilignes

Intégrale curviligne générale

Introduction

- Intégrale d'une fonction le long d'une courbe.
- Propriété des intégrales curvilignes.

Rappel:

Si C est paramétrée par $\vec{r}(t)$ avec $a \leq t \leq b$ alors la longueur de C est

$$L = \int_{a}^{b} ||\vec{r}'(t)|| dt$$

Rappel:

Si C est paramétrée par $\vec{r}(t)$ avec $a \leq t \leq b$ alors la longueur de C est

$$L = \int_{a}^{b} ||\vec{r}'(t)|| dt = \int_{C} 1 ds$$

Rappel:

Si C est paramétrée par $\vec{r}(t)$ avec $a \leq t \leq b$ alors la longueur de C est

$$L = \int_{a}^{b} ||\vec{r}'(t)|| dt = \int_{C} 1 ds$$

Définition

Si f est une fonction définie dans un voisinage de C alors l'intégrale de f le long de C est

$$\int_{C} f(x, y, z) ds = \int_{a}^{b} f(x(t), y(t), z(t)) ||\vec{r}'(t)|| dt$$

Rappel:

Si C est paramétrée par $\vec{r}(t)$ avec $a \leq t \leq b$ alors la longueur de C est

$$L = \int_{a}^{b} ||\vec{r}'(t)|| dt = \int_{C} 1 ds$$

Définition

Si f est une fonction définie dans un voisinage de C alors l'intégrale de f le long de C est

$$\int_{C} f(x, y, z) ds = \int_{a}^{b} f(x(t), y(t), z(t)) ||\vec{r}'(t)|| dt$$

Notation : On écrit $f(x(t), y(t), z(t)) = f(\vec{r}(t))$ pour simplifier.

Propriétés

• Les propriétés habituelles des intégrales (linéarité, etc.) s'appliquent aussi aux intégrales curvilignes.

Propriétés

- Les propriétés habituelles des intégrales (linéarité, etc.) s'appliquent aussi aux intégrales curvilignes.
- En particulier, si $C = C_1 \cup C_2$ et les courbes C_1 , C_2 ne se chevauchent pas alors

$$\int_{C} f(x, y, z) ds = \int_{C_{1}} f(x, y, z) ds + \int_{C_{2}} f(x, y, z) ds$$

Si
$$C$$
 est paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ avec $a \le t \le b$ alors $dx = x'(t) dt$, $dy = y'(t) dt$, $dz = z'(t) dt$.

Si
$$C$$
 est paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ avec $a \le t \le b$ alors
$$dx = x'(t) \, dt, \quad dy = y'(t) \, dt, \quad dz = z'(t) \, dt.$$

Définition

Si f est une fonction définie dans un voisinage de C, on définit

Si
$$C$$
 est paramétrée par $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ avec $a \le t \le b$ alors $dx = x'(t) dt, \quad dy = y'(t) dt, \quad dz = z'(t) dt.$

Définition

Si f est une fonction définie dans un voisinage de C, on définit

Pour ces intégrales, on tient compte de la variation selon une seule des variables.

Résumé

• Définition de l'intégrale curviligne par rappport à s comme généralisation de l'intégrale donnant la longueur d'une courbe.

Résumé

- Définition de l'intégrale curviligne par rappport à s comme généralisation de l'intégrale donnant la longueur d'une courbe.
- Définition de l'intégrale curviligne rappport à une variable.

Résumé

- Définition de l'intégrale curviligne par rappport à s comme généralisation de l'intégrale donnant la longueur d'une courbe.
- Définition de l'intégrale curviligne rappport à une variable.
- Propriétés des intégrales curvilignes.