

New York - 2019

Understanding the past and planning the Future!!

By - Aman Nehra

Problem Areas...

Clarity on Data.

Details of the Data, background & clean Data is not provided.

Problem statement.

It is very important to know what exactly the problem statement.

Presenting Data.

Deciding on what type of information is to be added.

Solution

EDA & Domain Knowledge:

Following Exploratory Data analysis and knowledge of the business model can help solve these problems.

Clean the Data.

Look for insights.

Present as per audience.

Clean the Data!!

```
bnb = bnb.drop(['latitude','longitude', 'host_name'], axis =1)
bnb.head()
```

Droping 'Name' null record as they comprise of only 0.03% of data.
bnb1 = bnb[~bnb.name.isnull()].copy()
bnb1.shape

```
## Filling '0' in place of 'null' in 'newviews_per_month'
bnb1['reviews_per_month'] = bnb1['reviews_per_month'].replace(np.nan, 0)
bnb1['reviews_per_month'].isnull().sum()
```

Drop Unwanted Columns.

Drop Blank Rows.

Filling null values.

Addressing Outliers.

Checking for outliers in Price and minimum_nights. Removing the outlier values from the data set.

Values over \$500.00:

2.1359%

Values equal to \$0:

11

0.0225%

Values over 30 nights:

746

1.5262%

Understanding Data.

Understanding the data and figuring out what aspects can be compared and what are importat to the decision makers.

```
1 ##Let's find number of unique values in each Columns
 2 bnb1.nunique(axis = 0)
id
                                  47110
                                  46157
name
host id
                                  36245
neighbourhood group
neighbourhood
room type
price
                                    454
minimum_nights
number of reviews
reviews_per_month
                                    938
calculated host listings count
availability 365
                                    366
dtype: int64
```


Comparing vectors.

 Comparing Average price of stay of different neighbourhood's.

 Comparing Average price of stay in different room types in different neighbourhood's.

```
1 # Lets now compare the price of diffrent neighborhood.
 2 df = bnb1[['neighbourhood group', 'price']]
   df = bnb1.groupby(['neighbourhood group'], as index=False)[['price']].mean()
   plt.figure(figsize=(12, 6))
6 df = sns.barplot(x="neighbourhood group", y="price", data=df)
 7 for p in df.patches:
       df.annotate(format(p.get height(), '.2f'),
                      (p.get x() + p.get width() / 2., p.get height()),
                      ha = 'center', va = 'center', size = 12,
11
                      xytext = (0, -12), textcoords = 'offset points')
12
13 plt.xlabel('Neighbourhood\'s')
14 plt.ylabel('Average Price')
15 plt.title('Average Price by Neighbourhood')
16 plt.show()
```

```
1 # Checking price of diifrent room type at diffrent Neighboourhood Groups
   df3 = bnb1[['neighbourhood_group', 'room_type', 'price']]
 4 df3 = df3.groupby(['neighbourhood group', 'room type'], as index=False)[['price']].mean()
 6 plt.figure(figsize=(12, 6))
 7 sns.set theme(style='white')
 8 df = sns.barplot(x="neighbourhood group", y="price", data=df3, hue='room type')
 9 for p in df.patches:
       df.annotate(format(p.get_height(), '.2f'),
10
11
                       (p.get_x() + p.get_width() / 2., p.get_height()),
12
                      ha = 'center', va = 'center', size = 11,
13
                      xytext = (0, -12), textcoords = 'offset points')
15 plt.xlabel('Neighbourhood Group')
16 plt.vlabel('Average Price')
17 plt.title('Average Price by Room Type')
18 plt.show()
```


Selection of Problem.

```
1 df6 = df5[['neighbourhood group', 'availability 365']].copy()
2 | df6 = df5.groupby(['neighbourhood group'], as index=False)[['availability 365']].count()
   plt.figure(figsize=(12, 6))
 5 | df = sns.barplot(x="neighbourhood group", y="availability 365", data=df6)
6 for p in df.patches:
       df.annotate(format(p.get_height(), '.2f'),
8
                      (p.get x() + p.get width() / 2., p.get height()),
9
                      ha = 'center', va = 'center', size = 12,
10
                      xytext = (0, -12), textcoords = 'offset points')
12 plt.xlabel('Neighbourhood Group')
13 plt.ylabel('Number of Outlets')
14 plt.title('Number of Zero Days Available Units')
15 plt.show()
```

We see that a major number of units are not available for even a single day throughout the year.

This shows that they are registered but not renting out the space available or may be renting out on different platform.

```
# Share of Zero days available Airbnb in each Neighbourhood_Group
#assuming 46175(count of unique name) as total number od listings in Airbnb
#data for 0 night AirBnb
bronx = 177/(46175*.02)*100
brooklyn = 7733/(46175*.41)*100
manhattan = 7870/(46175*.44)*100
queens = 1353/(46175*.12)*100
staten = 40/(46175*.01)*100

print('Following is the Percentage of listings which are showing availabe for 0 Nights')
print('Bronx =' , bronx)
print('Brooklyn =' , brooklyn)
print('Manhattan =' , manhattan)
print('Queens =' , queens)
print('Statten Island =' , staten)
```

```
Following is the Percentage of listings which are showing availabe for 0 Nights Bronx = 19.16621548456957
Brooklyn = 40.84672573850806
Manhattan = 38.73603386326722
Queens = 24.41797509474824
Statten Island = 8.662696264212236
```


Presenting the findings.

Simple bar charts have been used in the presentation for the ease of perception and comparison by the decision makers.

Method Followed

- Cleaning and understanding the Data.
- Figuring out the problem.
- Presenting the problem with solution to stake holders.

Present findings & **Solution.** Present the Data.

Output !!

Problem?

Focus on cause of problem.

With domain knowledge find problem.

EDA

Understanding the Data.

Clean the data and figure out what is given.

#

Questions Please ??

Separate PDF File is attached for the Methodology and assumptions.