Total No. of Questions: 6

## Total No. of Printed Pages:3

| Enrollment No |
|---------------|
|---------------|



## Faculty of Engineering End Sem (Even) Examination May-2019

IT3CO20 Computer System Architecture

Programme: B.Tech. Branch/Specialisation: IT

Duration: 3 Hrs. Maximum Marks: 60

| Note: A | all ane | stions are compulsory. Interns    | al choices, if any, are indicated. Answers of |  |  |
|---------|---------|-----------------------------------|-----------------------------------------------|--|--|
|         | -       | should be written in full instead | -                                             |  |  |
| Q.1     | i.      |                                   | em transfers data from device to 1            |  |  |
| ٧.1     | 1.      | (a) Cache (b) Registers           |                                               |  |  |
|         | ii.     | ISP stands for                    | (c) mackes (d) Buriers                        |  |  |
|         | 111.    | (a) Instruction Set Processor     |                                               |  |  |
|         |         | (b) Information Standard Pro      |                                               |  |  |
|         |         | (c) Interchange Standard Pro      | _                                             |  |  |
|         |         | _ · ·                             |                                               |  |  |
|         |         | (d) Interrupt Service Procedure   |                                               |  |  |
|         | iii.    | In case of, Zero-address inst     | ruction method the operands are stored in 1   |  |  |
|         |         |                                   |                                               |  |  |
|         |         | (a) Registers                     | (b) Accumulators                              |  |  |
|         |         | (c) Push down stack               |                                               |  |  |
|         | iv.     |                                   | detect the occurrence of an overflow. 1       |  |  |
|         |         | (a) NAND (b) XOR                  | (c) XNOR (d) AND                              |  |  |
|         | v.      | The approach where the me         | emory contents are transferred directly to 1  |  |  |
|         |         | the processor from the memory     | ory is called                                 |  |  |
|         |         | (a) Read-later                    | (b) Read-through                              |  |  |
|         |         | (c) Early-start                   | (d) None of these                             |  |  |
|         | vi.     | is the bottlenec                  | k, when it comes computer performance. 1      |  |  |
|         |         | (a) Memory access time            |                                               |  |  |
|         |         | (c) Delay                         | (d) Latency                                   |  |  |
|         | vii.    | •                                 | red signals and addresses are given by the 1  |  |  |
|         |         | (a) Processor                     | (b) Device drivers                            |  |  |

(d) The program itself

(c) DMA controllers

P.T.O.

[2]

|     | viii.     | When the R/W bit of the status register of the DMA controller is set 1.                                                                                                                            |            |  |
|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
|     |           | <ul><li>(a) Read operation is performed</li><li>(b) Write operation is performed</li><li>(c) Read &amp; Write operation is performed</li><li>(d) None of these</li></ul>                           |            |  |
|     | ix.       | To increase the speed of memory access in pipelining, we make use of                                                                                                                               | 1          |  |
|     | x.        | (a) Special memory locations (b) Special purpose registers (c) Cache (d) Buffers The situation where in the data of operands are not available is called                                           | 1          |  |
|     |           | (a) Data hazard (b) Stock (c) Deadlock (d) Structural hazard                                                                                                                                       |            |  |
| Q.2 | i.        | Draw and explain block diagram of general purpose register architecture of CPU.                                                                                                                    | 2          |  |
|     | ii.       | What is instruction cycle? Explain different phases of instruction cycle and show flow chart for instruction cycle.                                                                                | 3          |  |
|     | iii.      | What is the need of Von Neumann Model in computer system organization?                                                                                                                             | 5          |  |
| OR  | iv.       | How Register Transfer Language work is in computer system explain in detailed?                                                                                                                     |            |  |
| Q.3 | i.<br>ii. | Evaluate (A+B)*(C+D) by one address, two address and three address. Explain the working principal of micro program sequencer with neat block diagram.                                              |            |  |
| OR  | iii.      | What is the difference between Microprogrammed and hardwired control unit?                                                                                                                         | 8          |  |
| Q.4 | i.<br>ii. | Explain floating point representation with example. Explain booth's algorithm. Show the step by step multiplication using Booth's algorithm to multiply the number (+15) and (-13) in binary.  [3] | <b>3 7</b> |  |

| k <b>4</b> |
|------------|
| h <b>6</b> |
| 6          |
|            |
| 5          |
| or 5       |
|            |
| 5          |
| t          |

\*\*\*\*\*

## Marking Scheme IT3CO20 Computer System Architecture

| 2.1    | i.                                                               | Controller of computer system transfers data from device to            | 1   |  |
|--------|------------------------------------------------------------------|------------------------------------------------------------------------|-----|--|
|        |                                                                  | (d) Buffers                                                            |     |  |
|        | ii.                                                              | ISP stands for                                                         | 1   |  |
|        |                                                                  | (a) Instruction Set Processor                                          |     |  |
|        | iii.                                                             | In case of, Zero-address instruction method the operands are stored in | 1   |  |
|        |                                                                  | (c) Push down stack                                                    |     |  |
|        | iv.                                                              | A gate is used to detect the occurrence of an overflow.                | 1   |  |
|        | 14.                                                              | (b) XOR                                                                | •   |  |
|        | v.                                                               | The approach where the memory contents are transferred directly to     | 1   |  |
|        |                                                                  | the processor from the memory is called                                |     |  |
|        |                                                                  | (c) Early-start                                                        |     |  |
|        | vi.                                                              | is the bottleneck, when it comes computer performance                  | . 1 |  |
|        |                                                                  | (b) Memory cycle time                                                  |     |  |
|        | vii.                                                             | In DMA transfers, the required signals and addresses are given by the  | 1   |  |
|        |                                                                  | (c) DMA controllers                                                    |     |  |
|        | viii. When the R/W bit of the status register of the DMA con     |                                                                        | 1   |  |
|        |                                                                  | 1.                                                                     |     |  |
|        |                                                                  | (a) Read operation is performed                                        |     |  |
|        | ix.                                                              | To increase the speed of memory access in pipelining, we make use of   | ì 1 |  |
|        |                                                                  | (c) Cache                                                              |     |  |
|        | x. The situation where in the data of operands are not available |                                                                        |     |  |
|        |                                                                  | 1                                                                      |     |  |
|        |                                                                  | (a) Data hazard                                                        |     |  |
| ).2    | i.                                                               | General purpose register architecture of CPU.                          | 2   |  |
| 2.2    | 1.                                                               | Diagram 1 mark                                                         | _   |  |
|        |                                                                  | Explanation 1 mark                                                     |     |  |
|        | ii.                                                              | Instruction cycle 1 mark                                               | 3   |  |
|        | 11.                                                              | Phases of instruction cycle 1 mark                                     | ·   |  |
|        |                                                                  | Flow chart for instruction cycle. 1 mark                               |     |  |
|        | iii.                                                             | Need of Von Neumann Model in computer system organization              | 5   |  |
|        |                                                                  | 1 mark for each (1 mark * 5)                                           |     |  |
| OR iv. |                                                                  | Register Transfer Language work is in computer system                  | 5   |  |
|        | - ' '                                                            | 1 mark for each (1 mark * 5)                                           |     |  |
|        |                                                                  |                                                                        |     |  |

| Q | .3 | i.   | (A+B)*(C+D) by one address, two address and thre    | e address.       | 2 |
|---|----|------|-----------------------------------------------------|------------------|---|
|   |    |      | Formula                                             | 1 mark           |   |
|   |    |      | Solution                                            | 1 mark           |   |
|   |    | ii.  | Working principal of micro program sequencer        | 5 marks          | 8 |
|   |    |      | Block diagram.                                      | 3 marks          |   |
| O | R  | iii. | Difference between Microprogrammed and hardwin      | red control unit | 8 |
|   |    |      | 2 marks for each point                              | (2 marks * 4)    |   |
| 0 | 4  |      |                                                     | 2 1              | 2 |
| Q | .4 | i.   | Floating point representation                       | 2 marks          | 3 |
|   |    |      | Example                                             | 1 mark.          | _ |
|   |    | ii.  | Booth's algorithm                                   | 2 marks          | 7 |
|   |    |      | Step by step multiplication using Booth's algorithm |                  |   |
|   |    |      | Final result                                        | 3 marks          |   |
| O | R  | iii. | Cache is used in cache organization                 |                  | 7 |
|   |    |      | 1 mark for each point (1 mark * 4)                  | 4 marks          |   |
|   |    |      | Mapping techniques with diagram                     |                  |   |
|   |    |      | 1 mark for each (1 mark * 3)                        | 3 marks          |   |
| 0 | .5 | i.   | DMA controller with block diagram                   |                  | 4 |
|   |    |      | 0.5 mark for each (0.5 mark * 4)                    | 2 marks          |   |
|   |    |      | Block transfer                                      |                  |   |
|   |    |      | 0.5 mark for each (0.5 mark * 4)                    | 2 marks          |   |
|   |    | ii.  | Handshaking method of asynchronous data transfer    |                  | 6 |
|   |    |      | 0.75 mark for each point (0.75 mark * 6)            | 4.5 marks        |   |
|   |    |      | Diagram.                                            | 1.5 marks        |   |
| O | R  | iii. | Basic concept of bus control                        | 3 marks          | 6 |
|   |    |      | Its working                                         | 3 marks          | ŭ |
|   |    |      |                                                     |                  |   |
| Q | .6 |      | Attempt any two:                                    |                  |   |
|   |    | i.   | Arithmetic                                          | 2.5 marks        | 5 |
|   |    |      | Instruction pipelines.                              | 2.5 marks        |   |
|   |    | ii.  | Factor which affect the performance of pipelining p |                  | 5 |
|   |    |      | 0.5 mark for each point                             | (0.5 mark * 10)  | _ |
|   |    | iii. | Array processor.                                    | 2.5 marks        | 5 |
|   |    | 111. | Vector processor.                                   | 2.5 marks        | J |
|   |    |      | rector processor.                                   | 2.5 marks        |   |
|   |    |      |                                                     |                  |   |

\*\*\*\*\*