Import required libraries

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import accuracy_score, classification_report

import seaborn as sns

import matplotlib.pyplot as plt

Step 1: Load the Dataset from CSV

df = pd.read_csv('iris_is.csv', encoding='ISO-8859-1') # Load the dataset
print(df)

	sepal_length	sepal_width	petal_length	petal_width	species	
0	5.1	3.5	1.4	0.2	Iris-setosa	
1	4.9	3.0	1.4	0.2	Iris-setosa	
2	4.7	3.2	1.3	0.2	Iris-setosa	
3	4.6	3.1	1.5	0.2	Iris-setosa	
4	5.0	3.6	1.4	0.2	Iris-setosa	
145	6.7	3.0	5.2	2.3	Iris-virginica	
146	6.3	2.5	5.0	1.9	Iris-virginica	
147	6.5	3.0	5.2	2.0	Iris-virginica	
148	6.2	3.4	5.4	2.3	Iris-virginica	
149	5.9	3.0	5.1	1.8	Iris-virginica	
[150 rows x 5 columns]						

Step 2: Perform Basic EDA

def basic_eda(data)

#Basic EDA functions to check the data info, head, description, and missing values print("First 5 rows of the dataset:\n", data.head())

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica
[150	rows x 5 colu	mns]	_		

Step 2: Perform Basic EDA

#Basic EDA functions to check the data info, head, description, and missing values print("First 5 rows of the dataset:\n", data.head())

Fir	First 5 rows of the dataset:						
	sepal_length	sepal_width	petal_length	petal_width	species		
0	5.1	3.5	1.4	0.2	Iris-setosa		
1	4.9	3.0	1.4	0.2	Iris-setosa		
2	4.7	3.2	1.3	0.2	Iris-setosa		
3	4.6	3.1	1.5	0.2	Iris-setosa		
4	5.0	3.6	1.4	0.2	Iris-setosa		
<cl< th=""><th colspan="7"><class 'pandas.core.frame.dataframe'=""></class></th></cl<>	<class 'pandas.core.frame.dataframe'=""></class>						
Ran	RangeIndex: 150 entries, 0 to 149						
Dat	Data columns (total 5 columns):						

print("\nInfo about the dataset:\n", data.info())

```
Column
                   Non-Null Count
 #
                                   Dtype
     sepal_length
                   150 non-null
                                   float64
 0
     sepal_width
                   150 non-null
                                   float64
 2
     petal_length
                   150 non-null
                                   float64
     petal width
                   150 non-null
                                   float64
     species
                   150 non-null
                                   object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
Info about the dataset:
None
```

print("\nStatistical description of the dataset:\n", data.describe())

```
Statistical description of the dataset:
        sepal length
                      sepal width
                                    petal length
                                                  petal width
         150.000000
count
                      150.000000
                                     150.000000
                                                  150.000000
                        3.054000
           5.843333
mean
                                       3.758667
                                                    1.198667
std
           0.828066
                        0.433594
                                       1.764420
                                                    0.763161
min
                        2.000000
           4.300000
                                                    0.100000
                                       1.000000
25%
           5.100000
                        2.800000
                                       1.600000
                                                    0.300000
50%
           5.800000
                        3.000000
                                       4.350000
                                                    1.300000
75%
           6.400000
                        3.300000
                                       5.100000
                                                    1.800000
                                                    2.500000
max
           7.900000
                        4.400000
                                       6.900000
```

```
# Checking for missing values

print("\nMissing values in each column:\n", data.isnull().sum())

# Step 3: Handle Missing Values (if any)

def handle_missing_values(data)

#Handle missing values by filling them with the mean (for numeric columns)

# Select only numeric columns (excluding 'species' column)

numeric_columns = data.select_dtypes(include=['float64', 'int64']).columns

data[numeric_columns] = data[numeric_columns].fillna(data[numeric_columns].mean())

print("\nMissing values after handling:\n", data.isnull().sum())

return data
```

```
Missing values in each column:
sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64
```

Step 4: Data Visualization (Exploratory Data Analysis)

#Visualize relationships between features using pairplot and heatmap

Pairplot to see relationships between the features

sns.pairplot(data, hue='species')

plt.title("Pairplot of Iris Dataset")

plt.show()

Correlation Heatmap (exclude the 'species' column)
correlation_matrix = data.drop(columns='species').corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f')
plt.title("Correlation Heatmap")
plt.show()

Step 5: Data Preprocessing and Model Training def train_model(data):

#Function to train a Random Forest model for Iris classification

Define features and target variable

X = data.drop(columns=['species'])

y = data['species']

Split the data into train and test sets (80% train, 20% test)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

```
# Create the RandomForestClassifier model
  model = RandomForestClassifier(random_state=42)
  # Train the model
  model.fit(X_train, y_train)
  # Make predictions on the test set
  y_pred = model.predict(X_test)
  # Evaluate the model
  print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
  print("\nClassification Report:\n", classification_report(y_test, y_pred))
  return model, X_train, X_test, y_train, y_test, y_pred
# Step 6: Predicting for New Data
def predict_new_data(model, new_data, feature_names):
  #Predict the species of a new Iris flower based on its measurements.
  #Ensure new data has the same feature names as the trained model.
  # Convert the new data to a DataFrame with the correct feature names
  new_data_df = pd.DataFrame(new_data, columns=feature_names)
  # Make the prediction
  prediction = model.predict(new_data_df)
  print("\nPredicted species for the new flower:", prediction[0])
```

Main function to execute the steps

```
if __name__ == "__main__":
  # Load the data (already done at the top)
  data = data # Using the DataFrame directly since it is already loaded
  # Perform basic EDA
  basic_eda(data)
  # Handle missing values (if any)
  data = handle_missing_values(data)
  # Visualize the data with pairplot and heatmap
  plot_eda(data)
  # Train the model and evaluate
  model, X_train, X_test, y_train, y_test, y_pred = train_model(data)
  # Get the feature names (columns) from the training data
  feature_names = X_train.columns
  # Example: Predicting a new flower's species
  new_flower = [[5.1, 3.5, 1.4, 0.2]] # Sepal length, Sepal width, Petal length, Petal width
  predict_new_data(model, new_flower, feature_names)
```

Classification Report:						
	precision	recall	f1-score	support		
Iris-setosa	1.00	1.00	1.00	10		
Iris-versicolor	1.00	1.00	1.00	9		
Iris-virginica	1.00	1.00	1.00	11		
accuracy			1.00	30		
•	1 00	1 00				
macro avg	1.00	1.00	1.00	30		
weighted avg	1.00	1.00	1.00	30		
Predicted species	s for the new	flower:	Tris-setosa	1		