SOLUÇÃO

5.

a) Supondo (a, p) = 1 mostre que $a^{p-1} \equiv 1 \pmod{p}$.

Solução

Como (a, p) = 1, então $\overline{a} \in \mathbb{Z}_p^*$ por outro lado lembremos que $|\mathbb{Z}_p^*| = p - 1$, logo:

$$\overline{a^{p-1}} = \overline{a}^{p-1} = \overline{1}$$

por tanto $a^{p-1} \equiv 1 \pmod{p}$.

b) $a^p + (p-1)!a \equiv 0 \pmod{p}$.

Solução

Caso 1: $a \equiv 0 \pmod{p}$.

Neste primer caso como $a \equiv 0 \pmod{p}$, então a = kp para algum $k \in \mathbb{Z}$, logo $a^p = k^p p^p$ assim $a^p + (p-1)!a = k^p p^p + (p-1)!k p = p[k^{p-1} p^p + (p-1)!k]$ ou seja

$$a^p + (p-1)!a \equiv 0 \pmod{p}.$$

Caso 2: $a \not\equiv 0 \pmod{p}$, em outras palavras (a, p) = 1.

Pelo item a) temos que $\overline{a}^{p-1}=\overline{1}$ em \mathbb{Z}_p^* , então $\overline{a}^p=\overline{a}$ em \mathbb{Z}_p^* , daqui

$$a^p - a = mp \tag{I}$$

para algum $m \in \mathbb{Z}$

Agora pelo Teorema de Wilson, $(p-1)! \equiv -1 \pmod{p}$, ou seja (p-1)! + 1 = np, para algum $n \in \mathbb{Z}$, logo

$$(p-1)! \ a = npa - a \tag{II}$$

Agora somando (I) e (II) temos:

$$a^{p} + (p-1)! \ a = mp + npa = p(m+na)$$

em outras palavras $a^p + (p-1)!$ $a \equiv 0 \pmod{p}$.

c) Sejam $m,n\in\mathbb{N}$ primos relativos, (G,\cdot) um grupo e $g\in G$ tal que $g^m=e$ e $g^n=e$ mostre que g=e.

Solução

Como (m, n) = 1 existem $r, s \in \mathbb{Z}$ talque rm + sn = 1, assim:

$$g = g^1 = g^{rm+sn} = g^{rm} \cdot g^{sn} = (g^m)^r \cdot (g^n)^s = e^r \cdot e^s = e \cdot e = e$$