Mathematic Analysis with Matlab

Lecture 11: Linear and Non-linear Regression

Lecturer: Dr. Lian-Sheng Wang
Fall Semester 2022

Contact: lswang@xmu.edu.cn

This material is designed mainly by Wan-Lei Zhao. All rights are reserved by the authors

Outline

1 Linear Regression

Non-linear Regression

Linear Regression: the problem

- Given variable x (house price) and y (rent),
- We have a series of observations $(x^1, y^1), ..., (x^i, y^i)$
- Assuming they are linearly related: $y=\theta x$
- We want to estimate θ based on these observations

Figure: Observations (crosses in blue) and their linear regression (red line).

Linear Regression: modeling the problem (1)

- Assumption (1): $(x^1, y^1), ..., (x^i, y^i), ..., (x^n, y^n)$ are indepent and from identical distribution (IID)
- y^i and x^i are related by following equation:
- We extend to multiple-variable case:
- That is: $x^i = [x_1^i, x_2^i, ... x_m^i]$

$$y^{i} = \theta^{\mathsf{T}} x^{i} + \varepsilon^{i}, \tag{1}$$

where ε^{i} is the error

- Assumption (2): ε^i follows N(0, σ^2)
- We have:

$$p(\varepsilon^{i}) = \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{\varepsilon^{i^{2}}}{2\sigma^{2}})$$
 (2)

Linear Regression: modeling the problem (2)

$$\mathbf{y}^i = \mathbf{\theta}^T \mathbf{x}^i + \mathbf{\varepsilon}^i,$$
 where $\mathbf{\varepsilon}^i$ is the error

- Assumption (2): ε^i follows N(0, σ^2)
- We have:

$$p(\varepsilon^{i}) = \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{\varepsilon^{i^{2}}}{2\sigma^{2}})$$

• This implies:

$$p(y^{i}|x^{i};\theta) = \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{(y^{i} - \theta^{T}x^{i})^{2}}{2\sigma^{2}})$$
 (3)

Linear Regression: modeling the problem (3)

- Remember "Assumption (1)": all (x^i, y^i) s are IID;
- We want to maximize the probability:

$$L(\theta) = \prod_{1}^{n} p(y^{i}|x^{i};\theta)$$

$$= \prod_{1}^{n} \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{(y^{i} - \theta^{T}x^{i})^{2}}{2\sigma^{2}})$$

Take log(·) on both sides:

$$log(L(\theta)) = log \prod_{1}^{n} \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{(y^{i} - \theta^{T}x^{i})^{2}}{2\sigma^{2}})$$
$$= \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} - \sum_{i=1}^{n} \frac{(y^{i} - \theta^{T}x^{i})^{2}}{2\sigma^{2}}$$

Linear Regression: modeling the problem (4)

• We have:

$$log(L(\theta)) = \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} - \sum_{i=1}^{n} \frac{(y^{i} - \theta^{T} x^{i})^{2}}{2\sigma^{2}}$$
(4)

• Maximizing $log(L(\theta))$ is equavlent to minimizing:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y^{i} - \theta^{T} x^{i})^{2}$$
 (5)

- This is a least-square problem
- We are searching for heta that minimizes J(heta)

Linear Regression: solve the problem (1)

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y^{i} - \theta^{T} x^{i})^{2}$$
 (6)

• We define H:

$$H = X\theta - \overrightarrow{y} = \begin{bmatrix} (x^{1})^{T}\theta \\ \vdots \\ (x^{n})^{T}\theta \end{bmatrix} - \begin{bmatrix} (y^{1}) \\ \vdots \\ (y^{n}) \end{bmatrix}$$

$$= \begin{bmatrix} (x^{1})^{T}\theta - (y^{1}) \\ \vdots \\ (x^{1})^{T}\theta - (y^{n}) \end{bmatrix}$$

$$(7)$$

Linear Regression: solve the problem (2)

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y^{i} - \theta^{T} x^{i})^{2}$$

Given H:

$$H = X\theta - \overrightarrow{y} = \begin{bmatrix} (x^1)^T \theta - (y^1) \\ \cdot \\ \cdot \\ (x^1)^T \theta - (y^n) \end{bmatrix}$$

J is written as:

$$J(\theta) = \frac{1}{2} (X\theta - \overrightarrow{y})^{T} (X\theta - \overrightarrow{y})$$
 (8)

Linear Regression: solve the problem (2)

• To minimize $J(\theta)$, we search for its derivatives with respect to θ

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - \overrightarrow{y})^{T} (X\theta - \overrightarrow{y})$$

$$= \frac{1}{2} \nabla_{\theta} (\theta^{T} X^{T} X \theta - \theta^{T} X^{T} \overrightarrow{y} - \overrightarrow{y}^{T} X \theta + \overrightarrow{y}^{T} \overrightarrow{y})$$

$$= \frac{1}{2} (X^{T} X \theta + X^{T} X \theta - 2X^{T} \overrightarrow{y})$$

$$= X^{T} X \theta - X^{T} \overrightarrow{y}$$
(9)

• Set $\nabla_{\theta} J(\theta)$ to **0**, we have

$$X^{T}X\theta - X^{T}\overrightarrow{y} = 0$$

$$\Rightarrow X^{T}X\theta = X^{T}\overrightarrow{y}$$

$$\Rightarrow \theta = (X^{T}X)^{-1}X^{T}\overrightarrow{y}$$
(10)

Linear Regression: closed form solution

- Given $X = \{x_1, x_2, \dots, x_n\}$ and
- $y = \theta_1 x + \theta_0$
- ullet Try to solve heta with closed form solution we obtained

$$\Rightarrow \theta = (X^T X)^{-1} X^T \overrightarrow{y} \tag{11}$$

Linear Regression: numerical solution (1)

Recall the least square problem:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}$$
 (12)

• Gradient descent solve θ by performing update:

$$\theta_j = \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j},\tag{13}$$

where α is a constant.

Linear Regression: numerical solution (2)

• Try to solve $\frac{\partial J(\theta)}{\partial \theta_j}$

$$\frac{\partial J(\theta)}{\partial \theta_{j}} = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (\sum_{i=0}^{n} \theta_{i} x_{i} - y)$$

$$= (h_{\theta}(x) - y) \cdot x_{j}$$
(14)

Linear Regression: numerical solution (3)

Now we have:

$$\theta_j := \theta_j - \alpha(h_\theta(x^i) - y^i) \cdot x_j^i \tag{15}$$

- Given $X = \{x_{i=1}^m\}$, the gradient descent procedure is:
 - Repeat
 - 2 For $i=1\cdots D$
 - $\theta_j := \theta_j \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^i) y^i) \cdot x_i^i$
 - 4 End-for
 - untile convergence
- Course project: implement above procedure in C and call it in Matlab:
 - 1 axi=[1:1:100]
 - 2 X=rand(1,100)*2+2*axi;
 - 3 Y=rand(1,100)*2+axi;
 - 4 plot(X,Y,'+');
 - 5 theta=linRegress(X, Y)

Linear Regression: Matlab solution

- Given x and y:
 - 1 axi=[1:1:100]
 - 2 X=rand(1,100)*2+2*axi;
 - 3 Y=rand(1,100)*2+axi;
 - 4 n=length(Y)

 - **6** [b, bint, r, rint, s]=regress(Y',x)
 - 7 syms u v;
 - 0 v=[1:1:300];
 - u=b(2)*v+b(1);
 - plot(X,Y,'+',v,u,'r-');

Outline

1 Linear Regression

Non-linear Regression

Non-linear Regression (1)

- Given x and y
- Fit x and y with following polynomial:

$$y = b_0 + b_1 x + b_2 x^2 + \varepsilon$$
(16)

- Solution 1: via linear regression
 - 1 axi=[1:1:100]
 - 2 X=randn(1,100)+axi;
 - Y=randn(1,100)+2*axi.^2;
 - 4 x1=X; x2=X.^2;
 - $\mathbf{6}$ n=length(X);
 - **6** x=[ones(n,1),x1', x2'];
 - [b, bint, r, rint, s]=regress(Y',x);

- Solution 2: via polyfit
 - 1 axi=[1:1:100]
 - 2 X=randn(1,100)+axi;
 - 3
- $Y = randn(1,100) + 2*axi.^2;$
- $\mathbf{4}$ a=polyfit(X, Y, 2)

Non-linear Regression (1) the results

• Comments: two different solutions generate the same outputs

Exercise (1)

 The following table gives (in U.S. dollars) the estimated public expenditures on education, per inhabitant, in the indicated years in Europe and North America.

Year	Europe	US
1970	90	317
1975	197	474
1980	335	816
1985	394	1101

- Given the expenditure and time follow a linear equation f(x)=cx+b
- Please work out c and b that best fit to data from Europe and US
- Hints:
 - c·0+b should be close to 90
 - c·5+b should be close to 197
 - . . .

Exercise (2)

Year	Europe	US
1970	90	317
1975	197	474
1980	335	816
1985	394	1101

$$A = \left| \begin{array}{cc} 1 & 0 \\ 1 & 5 \\ 1 & 10 \\ 1 & 15 \end{array} \right|$$

$$f_1 = \left| egin{array}{c} 90 \\ 197 \\ 335 \\ 394 \end{array} \right|,$$

```
1 A = [1 0;1 5;1 10;1 15]

2 f = [90 197 335 394];

3 r = inv(A'*A)*A'*f;
```

Answers: [96.5, 21.0]

Exercise (3)

Year	Europe	US
1970	90	317
1975	197	474
1980	335	816
1985	394	1101

- Think about fit the data with $f(x) = A + Bx + Cx^2$
- Work out A, B and C

Exercise (4)

Year	Europe	US
1970	90	317
1975	197	474
1980	335	816
1985	394	1101

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 5 & 25 \\ 1 & 10 & 100 \\ 1 & 15 & 225 \end{array} \right]$$

$$f_1 = \begin{bmatrix} 90 \\ 197 \\ 335 \\ 394 \end{bmatrix},$$

```
1 A = [1 0 0;1 5 25;1 10 100;1 15 225]
2 f = [90 197 335 394]';
3 r = inv(A'*A)*A'*f;
```

Answers: [84.5, 28.2, -0.48]

Non-linear Regression (2): linear or non-linear

- Depends on θ instead of x
- Given following form
- $f_{\theta}(x) = \theta_0 + \theta_1 * g_1(x) + \theta_2 * g_2(x) + \cdots$
- It is linear
- Given following form
- $f_{\theta}(x) = g_1(x) * \theta^1 + g_2(x) * \theta^2 + \cdots$
- It is non-linear
- Now make your judgement

$$f_{\theta}(x) = \theta_1 \sin(x) + \theta_2 \cos(x) \quad f_{\theta}(x) = \frac{\theta_1}{\theta_2} \sin(x) + \theta_2^2 \cos(x)$$
$$f_{\theta}(x) = \theta_1 x^2 + \theta_2^2 x \qquad f_{\theta}(x) = \theta_1 x^2 + 5\theta_2 x$$

Non-linear Regression (2-1): linear or non-linear

Given following function

•
$$f_{\theta}(x) = t_1 * \sin(x) + t_2 * \cos(x)^2$$

- x is in the range of $[1,2\pi]$
- Estimate 't1' and 't2' by '???'
- 1 A=load('reg_data2.txt');
- $2 \times A(:,1);y=A(:,2);$
- g plot(x,y); hold on;
- 4

Non-linear Regression (2-2): linear or non-linear

- Given following function
- $f(x) = t_1 * sin(x) + t_2 * cos(x)^2$
- x is in the range of $[1,2\pi]$
- Estimate 't₁' and 't₂' by 'regress'

```
A = load('reg_data2.txt');

x = A(:,1); y=A(:,2);

plot(x,y,'b+'); hold on;

X = [sin(x),(cos(x)^2)];

[b int] = regress(y,X);

u = b(1)*sin(x)+b(2)*cos(x)^2;

plot(x, u, 'r-');
```

Non-linear Regression (3)

- Given x=[0.02 0.02 0.06 0.06 0.11 0.11 0.22 0.22 0.56 0.56 1.10]
- Given y=[67 51 84 86 98 115 131 124 144 158 160]
- Fit x and y with function:

$$y = \frac{\beta_1 x}{\beta_2 + x} \tag{17}$$

- Solution 1: via linear regression
 - 1 $\frac{1}{y} = \frac{1}{\beta_1} + \frac{\beta_2}{\beta_1} \frac{1}{x}$ 2 $\frac{1}{y} = \theta_1 + \theta_2 \frac{1}{x}$

 - 3 call 'regress'

- Solution 2: via polyfit
 - 1 b0=[143 0.03]
 - fun=inline('b(1)*x./(b(2)+x)','b','x');
 - (3) [b,R,J]=nlinfit(x,y,fun,b0);
 - $4 \times = 0.0.01:1.2$
 - **5** yy=b(1)*xx./(b(2)+xx);
 - 6 plot(x, v, 'b+', xx, vv 'r-');

Non-linear Regression (2) the results

Food for thought: how about no model is predefined??

- How about a series of X, Y are given
- However we have no idea about the target function

Q & A

Thanks for your attention!

This material is designed mainly by Wan-Lei Zhao. All rights are reserved by the authors.