Title	Assignment 01: Information Management (GISC 6354)		
Handed Out	Thursday, February 01, 2024		
Name	Victoria Ebeh		
Email	Vae230000@utdallas.edu		

Q1: What are the differences between relation schema, relation and instance? Give an example using the university database to illustrate.)

- 1. <u>Relation Schema:</u> A relation schema defines the structure of a table in a relational database. It specifies the names and types of attributes (columns) that will be present in the table. A relation schema consists of attributes and domains. For example, The "Department" relation schema may include attributes like department name, building, and budget. It can be written as *department* (*dept name*, *building*, *budget*).
- Relation: A relation, often referred to as a table, is the actual implementation of a relation schema. It is a set of rows, where each row represents a record or tuple, and each column represents an attribute. A relation corresponds to a programming-language variable. For example, the "Department" relation includes actual data, such as (Biology, Watson, 90000), (Comp.Sci, Taylor, 100000), where each tuple represents a department.
- 3. <u>Instance</u>: An instance of a relation refers to the specific set of data contained in the relation at a given point in time. It represents the actual rows and values present in the table. A relation instance is comparable to the value of a variable. Its contents may change over time due to updates. The current data in the "Teaches" relation, including all existing course records, forms an instance of that relation. Consider *figure 1* showing a sample of an instance of the "Teaches" relation which shows 15 tuples corresponding to 15 instructors and their class sections.

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2017
10101	CS-315	1	Spring	2018
10101	CS-347	1	Fall	2017
12121	FIN-201	1	Spring	2018
15151	MU-199	1	Spring	2018
22222	PHY-101	1	Fall	2017
32343	HIS-351	1	Spring	2018
45565	CS-101	1	Spring	2018
45565	CS-319	1	Spring	2018
76766	BIO-101	1	Summer	2017
76766	BIO-301	1	Summer	2018
83821	CS-190	1	Spring	2017
83821	CS-190	2	Spring	2017
83821	CS-319	2	Spring	2018
98345	EE-181	1	Spring	2017

Figure 1: Instance of Teaches relation

Q2: Draw a schema diagram for the following bank database:

```
branch(branch_name, branch_city, assets)
customer (ID, customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)
borrower (ID, loan_number)
account (account_number, branch_name, balance)
depositor (ID, account_number)
```

Figure 2: Schema for bank database.

Figure 3: Schema diagram for bank database

Q3: Consider the above bank database. Assume that branch names (branch_name)and customer names (customer_name)uniquely identify branches and customers, but loans and accounts can be associated with more than one customer.

- i. What are the appropriate primary keys? (Underline each in diagram)
 Please reference the figures 2 & 3 above for the primary keys <u>underlined</u>.
- ii. Given your choice of primary keys, identify appropriate foreign keys
 - 1. Loan Relation Schema:

• branch_name in Loan is a foreign key referencing branch_name in Branch.

2. <u>Borrower Relation Schema:</u>

- ID in Borrower is a foreign key referencing ID in Customer.
- loan_number in Borrower is a foreign key referencing loan_number in Loan.

3. Account Relation Schema:

• branch_name in Account is a foreign key referencing branch_name in Branch.

4. <u>Depositor Relation Schema:</u>

- ID in Depositer is a foreign key referencing ID in Customer.
- account_number in Depositer is a foreign key referencing account_number in Account.