Chemical Reaction Engineering

Practical Session 7

21 December 2018

Gas/Liquid reactors

1. Overall rate of change through the 2-film theory

Air with gaseous species A bubbles through a vertical tower containing aqueous species B at uniform, constant temperature of 303 K. Reaction occurs as follows:

$$A_{(q\to l)} + 2B_{(l)} \to C_{(l)}$$

The reaction rate is given by: $r=k\mathcal{C}_A\mathcal{C}_B^2$, with a kinetic constant $k=10^8\frac{m^6}{mol^2h}$.

The diffusion coefficients of species A and B are $\Gamma_A=10^{-6}\frac{m^2}{h}$ and $\Gamma_B=10^{-6}\frac{m^2}{h}$. The liquid volume fraction is $f_L=0.98$ and the gas/liquid interface area per unit of volume is $a=20\frac{m^2}{m^3}$. The Henry's constant at the given temperature is equal to $H_A=10^5\frac{Pa\ m^3}{mol}$ and the liquid and gas mass transfer coefficients equal to $K_La=2\frac{1}{h}$ and $K_Ga=0.01\frac{mol}{h\ m^3Pa}$.

Estimate the overall rate of change according to the 2-film theory if the partial pressure of A is $5000 \ Pa$ and the concentration of B is $1 \ mol/m^3$.

2. Simulation of a co-current bubble tower

The reaction described in Exercise 1 is carried out in a co-current bubble tower with internal circular section having diameter of $30\ cm$ and height of $5\ m$. The air stream (containing species A, with partial pressure of $5000\ Pa$) is fed at total pressure of $1\ atm$ and volumetric flow rate of $0.8\ l/s$. The liquid stream, containing only species B and water with concentrations equal to $1\ mol/m^3$ and $300\ mol/m^3$, respectively, is fed with volumetric flow rate of $20\ l/s$.

Calculate the profiles of partial pressure of A and concentrations of B and C along the reactor and estimate the conversion of A at the outlet section.

3. Simulation of a counter-current bubble tower

Repeat the previous exercise in case of counter-current configuration.