HRI: Vision Control for Dexterous Robotics

GRASP: Intuitive Tele- Operation

Problem: Remote critical tasks (eg. medical, disaster relief) require natural dexterity, but current interfaces are complex and costly.

Solution & Goal

Goal: Achieve real-time, low-latency robotic control by directly translating natural human hand gestures using affordable, open-source methods.

Technology Highlights

Core Tech: Vision-Based Inverse Kinematics Input Model: Mediapipe Hand Tracking

Control Platform: Arduino Microcontroller

Key Feature: High-Fidelity Human-Robot Interaction (HRI)

Data Flow: From Lens To Limb

System Architecture:

- 1. Camera Input: Captures real-time video feed.
- 2. Vision Model: (Mediapipe) Processes the feed to identify the human hand.
- 3. Serial Data: Angular commands sent from Python/PC to the Arduino.
- 4. Servo Pulses: Arduino generates PWM signals for motor actuation.

Gesture Translation

A. 3D Tracking

The model tracks 21 key hand landmarks (X, Y, Z coordinates) on the human hand in real-time.

B. Angle Mapping

Calculated angles between specific joints (eg. PIP and DIP) are mapped directly to the robotic hand's angular range, ensuring 1:1 motion fidelity.

