Lezioni di Ricerca Operativa 2 Dott. F. Carrabs

A.A. 2009/2010

Lezione 3b:

Lezione in laboratorio:
- Esercizi

Una fabbrica produce un tipo di cibo ottenuto dalla miscelazione di 5 differenti olii. Ci sono due olii di tipo vegetale (VEG1, VEG2) e tre olii di tipo non vegetale (OIL1, OIL2, OIL3). Ogni olio è inizialmente allo stato grezzo e deve essere raffinato. Ogni mese è possibile raffinare al massimo 200 tons di olii vegetali e 250 di olii non vegetali. Si suppone che non ci sia perdita di peso in questo processo di raffinamento e che il costo sia trascurabile. Ogni olio ha un costo ed una densità differente:

	VEG1	VEG2	OIL1	OIL2	OIL3
Costo (Euro/ton)	110	120	130	110	115
Densità (per ton)	8.8	6.1	2.0	4.2	5.0

Quando gli olii vengono mescolati la densità del prodotto finale cresce linearmente. La densità del prodotto finale deve essere compresa tra 3 e 6. Il prodotto finale viene venduto ad un prezzo di Euro 150 per ogni tonnellata.

COME PRODURRE IL PRODOTTO FINALE PER MASSIMIZZARE I PROFITTI NETTI?

Esempio: Miscela di Olii

z*=17592.59259

```
var veg1>=0;
var veg2>=0;
var oil1>=0;
var oil2>=0;
var oil3>=0;
```

s.t.

c5: 8.8*veg1+6.1*veg2+2*oil1+4.2*oil2+5*oil3 >= 3*y;

Esempio: Miscela di Olii

```
set OLII:
set RISORSE;
set DOMANDA:
var x{OLII}>=0;
var y>=0;
                                                     z^*=17592.59259
param profitto;
param costo(OLII);
param b{RISORSE};
param b2{DOMANDA};
param a{RISORSE,OLII};
param a2{DOMANDA,OLII};
maximize obj: profitto*y - sum{i in OLII} costo[i]*x[i];
subject to
                   c1 {i in RISORSE}: sum{j in OLII} a[i,j]*x[j] <= b[i];
subject to
                   c2 {i in DOMANDA}: sum{j in OLII} a2[i,j]*x[j] <= y*b2[i];
subject to
                   c3 : sum\{i \text{ in OLII}\} x[i] = y;
```

Esempio: Miscela di Olii

D2

-8.8

-6.1

-2.0

-4.2

-5.0;

```
set OLII:= VEG1
                             VEG2
                                            OIL1
                                                           OIL2
                                                                         OIL3:
set RISORSE:= Raff1 Raff2:
                                                                              set OLII:
set DOMANDA:= D1 D2;
                                                                              set RISORSE:
param profitto:= 150;
                                                                              set DOMANDA;
param costo:=
                                                                              var x{OLII}>=0;
     VEG1 110
                                                                              var y>=0;
     VEG2 120
     OIL1 130
                                                                              param profitto;
                                                                              param costo{OLII};
     OIL2 110
                                                                              param b{RISORSE};
     OIL3 115:
                                                                              param b2{DOMANDA};
                                                                              param a{RISORSE,OLII};
param b:=
                                                                              param a2{DOMANDA,OLII};
     Raff1 200
     Raff2 250;
                                                                              maximize obj: profitto*y - sum{i in OLII} costo[i]*x[i];
                                                                              subject to
                                                                                             c1 {i in RISORSE}: sum{j in OLII} a[i,j]*x[j] <= b[i]:
                                                                                             c2 {i in DOMANDA}: sum{j in OLII} a2[i,j]*x[j] \le y*b2[i];
                                                                              subject to
param b2:=
                                                                                             c3 : sum\{i \text{ in OLII}\} x[i] = y;
                                                                              subject to
     D1 6
     D2 -3;
              VEG1
                             VEG2
                                            OIL1
                                                           OIL2
                                                                         OIL3:=
param a:
     Raff1
                                            0
                                                           0
     Raff2
                             0
                                                                          1;
                                                                         OIL3:=
param a2: VEG1
                             VEG2
                                            OIL1
                                                           OIL2
                                            2.0
                                                           4.2
                                                                         5.0
     D1
              8.8
                             6.1
```

Esercizio: Curve Fitting

Una quantità y dipende da un'altra quantità x. Il seguente insieme di valori è stato osservato:

0.0 1.0				
4.5 3.5				

- 1) Determinare la retta y = mx+q che minimizza la somma dei valori assoluti delle deviazioni dai dati osservati
- 2) Determinare la retta y = mx+q che minimizza la massima deviazione dai dati osservati.

Risolvere il problema tramite l'ampl.

Esempio: Curve Fitting (minsum)


```
param begin;
param end > begin;
set Coordinate:= begin .. end;
param x{Coordinate};
param y{Coordinate};
var m;
var q;
var u{Coordinate}>=0;
var v{Coordinate}>=0;
minimize distance : sum{i in Coordinate} (u[i]+v[i]);
s.t. c1 {i in Coordinate}: m*x[i]+q+u[i]-v[i]=y[i];
```

Esempio: Curve Fitting (minsum)

```
000
0000
0000
0000
0000
```

```
param begin := 1;
param end := 19;
param x:=
                                 param y:=
                                                            param begin;
1 0.0
                                 1 1.0
                                                            param end > begin:
2 0.5
                                 20.9
                                                            set Coordinate:= begin .. end:
3 1.0
                                 30.7
4 1.5
                                 4 1.5
                                                            param x{Coordinate};
                                                            param y{Coordinate};
51.9
                                 520
62.5
                                 62.4
                                                            var m
7 3.0
                                 7 3.2
                                                            var a:
8 3.5
                                 820
                                                            var u{Coordinate}>=0;
                                                            var v{Coordinate}>=0:
                                 92.7
9 4.0
10 4.5
                                 10 3.5
                                                            minimize distance : sum{i in Coordinate} (u[i]+v[i]);
11 5.0
                                 11 1.0
                                                            s.t. c1 {i in Coordinate}: m*x[i]+q+u[i]-v[i]=y[i];
12 5.5
                                 12 4.0
                                 13 3.6
13 6.0
146.6
                                 14 2.7
15 7.0
                                 15 5.7
16 7.6
                                 16 4.6
                                                          z^*=11.46625
17 8.5
                                 17 6.0
18 9.0
                                 18 6.8
19 10.0;
                                 19 7.3:
```

Esempio: Curve Fitting (minsum)

CPLEX 11.2.0: optimal solution; objective 11.46625

m = 0.6375

q = 0.58125

:	u	v :=
1	0,41875	0
2	0	0
3	0	0,51875
4	0	0,0375
5	0,2075	0
6	0,225	0
7	0,70625	0
8	0	0,8125
9	0	0,43125
10	0,05	0
11	0	2,76875
12	0	0,0875
13	0	0,80625
14	0	2,08875
15	0,65625	0
16	0	0,82625
17	0	0
18	0,48125	0
19	0,34375	0

17 dual simplex iterations (0 in phase I)

Esempio: Curve Fitting (min violation)

```
param begin;
param end > begin;
set Coordinate:= begin .. end;
param x{Coordinate};
param y{Coordinate};
var m;
var q;
var u{Coordinate}>=0;
var v{Coordinate}>=0;
var z >= 0:
minimize violation : z;
                                                        z^*=1.725
s.t. c1 {i in Coordinate}: m*x[i]+q+u[i]-v[i]=y[i];
s.t. c2 {i in Coordinate}: z>=u[i];
```

s.t. c3 {i in Coordinate}: z>=v[i];

Esempio: Curve Fitting

CPLEX 11.2.0: optimal solution; objective 1.725

11 dual simplex iterations (0 in phase I)

m = 0.625

q = -0.4

:	u	v :=
1	1,4	0
2	0,9875	0
3	0,475	0
4	0,9625	0
5	1,2125	0
6	1,2375	0
7	1,725	0
8	0,2125	0
9	0,6	0
10	1,0875	0
11	0	1,725
12	0,9625	0
13	0,25	0
14	0	1,025
15	1,725	0
16	0,25	0
17	1,0875	0
18	1,575	0
19	1,45	0

