Clase 03 Expansión Multipolar

Griffiths, D. (2013). *Introduction to Electrodynamics*. 4th Edition: pp. 151 – 166

Javier Silva Orellana

jisilva8@uc.cl

Contexto

- En algunas situaciones, podemos aproximar las distribuciones de carga como si fuesen una carga puntual.
- Esto no siempre podrá ser una buena idea, y necesitaremos obtener a estimaciones más precisas.

Objetivos de Aprendizaje involucrados:

- OA-01: Plantear y resolver ecuaciones para la determinación de Fuerzas, Campos, Flujos, Potenciales, Torques y Energías electromagnéticas en problemas de mediana complejidad.
- OA-02: Comprender y aplicar el concepto de expansión multipolar para la estimación precisa de campos electromagnéticos.

Contexto

Vamos a necesitar:

Ley de cosenos

$$a^2 = b^2 + c^2 - 2 \mathbf{b} \cdot \mathbf{c}$$

Potencial Eléctrico

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \int_{\Omega} \frac{\rho_{\tau}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\tau'$$

Relación Campo-Potencial

$$\mathbf{E} = -\nabla V$$

Contenidos

- Monopolo Eléctrico
- Dipolo Eléctrico
- Expansión multipolar
- Momento dipolar y origen de coordenadas
- Expansión multipolar y campo eléctrico

Monopolo Eléctrico

• Dada una carga aislada o *monopolo*, el potencial eléctrico será:

$$V_{mon}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{Q}{|\mathbf{r} - \mathbf{r}'|}$$

• Esto también se hace válido para un arreglo de cargas Q cualquiera, cuando tomamos suficiente distancia.

• Consideremos el siguiente caso para 2 cargas de signo opuesto:

Por superposición:
$$V = \frac{Q}{4\pi\varepsilon_0} \left[\frac{1}{r_1} - \frac{1}{r_2} \right]$$

• Consideremos el siguiente caso para 2 cargas de signo opuesto:

Por Ley de Cosenos :

$$r_1^2 = r^2 + \left(\frac{d}{2}\right)^2 - r \, d \cos\theta, \qquad r_2^2 = r^2 + \left(\frac{d}{2}\right)^2 + r \, d \cos\theta$$

$$r_1^2 = r^2 \left(1 + \frac{d^2}{4r^2} - \frac{d}{r} \cos\theta\right), \qquad r_2^2 = r^2 \left(1 + \frac{d^2}{4r^2} + \frac{d}{r} \cos\theta\right)$$

Si $d \ll r$:

$$r_1 = r\sqrt{1 - \frac{d}{r}\cos\theta}, \qquad r_2 = r\sqrt{1 + \frac{d}{r}\cos\theta}$$

Así:

$$\frac{1}{r_1} = \frac{1}{r} \left(1 - \frac{d}{r} \cos \theta \right)^{-\frac{1}{2}}, \qquad \frac{1}{r_2} = \frac{1}{r} \left(1 + \frac{d}{r} \cos \theta \right)^{-\frac{1}{2}}$$

Desarrollamos expansión binomial: $(1+x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + ...$

$$\frac{1}{r_1} \approx \frac{1}{r} \left(1 - \frac{d}{2r} \cos \theta \right), \qquad \frac{1}{r_2} = \frac{1}{r} \left(1 + \frac{d}{2r} \cos \theta \right)$$

Luego:

$$\frac{1}{r_1} - \frac{1}{r_2} \approx \frac{d}{r^2} \cos\theta$$

• Consideremos el siguiente caso para 2 cargas de signo opuesto:

Reemplazando:

$$V = \frac{Q}{4\pi\varepsilon_0} \frac{d\cos\theta}{r^2} = \frac{Q}{4\pi\varepsilon_0} \frac{(d\mathbf{a_z}) \cdot \mathbf{a_r}}{r^2} = \frac{Q}{4\pi\varepsilon_0} \frac{\mathbf{d} \cdot \mathbf{a_r}}{r^2}$$

$$V_{dip} = \frac{Q}{4\pi\varepsilon_0} \frac{\mathbf{p} \cdot (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^3}$$

Potencial dipolar

$$\mathbf{p} = Q\mathbf{d}$$

Momento dipolar

Replicando ley de cosenos, pero sin simplificar:

$$|\mathbf{r} - \mathbf{r}'|^2 = r^2 \left[1 + \left(\frac{r'}{r} \right)^2 - 2 \left(\frac{r'}{r} \right) \cos \alpha \right]$$
$$|\mathbf{r} - \mathbf{r}'|^2 = r^2 \left[1 + \left(\frac{r'}{r} \right) \left(\frac{r'}{r} - 2\cos \alpha \right) \right]$$

$$|\mathbf{r} - \mathbf{r}'| = r\sqrt{1 + \epsilon}$$

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{r} (1 + \epsilon)^{-\frac{1}{2}}$$

Usando expansión binomial:

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{r} (1 + \epsilon)^{-\frac{1}{2}} = \frac{1}{r} \left(1 - \frac{1}{2} \epsilon + \frac{3}{8} \epsilon^2 - \frac{5}{16} \epsilon^3 + \cdots \right)$$

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{r} \left[1 - \frac{1}{2} \left(\frac{r'}{r} \right) \left(\frac{r'}{r} - 2\cos\alpha \right) + \frac{3}{8} \left(\frac{r'}{r} \right)^2 \left(\frac{r'}{r} - 2\cos\alpha \right)^2 - \frac{5}{16} \left(\frac{r'}{r} \right)^3 \left(\frac{r'}{r} - 2\cos\alpha \right)^3 + \cdots \right]$$

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{r} \left[1 - \left(\frac{r'}{r} \right) (\cos \alpha) + \left(\frac{r'}{r} \right)^2 \left(\frac{3\cos^2 \alpha - 1}{2} \right) - \left(\frac{r'}{r} \right)^3 \left(\frac{5\cos^3 \alpha - 3\cos \alpha}{2} \right) + \cdots \right]$$

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{r'}{r}\right)^n P_n(\cos\alpha)$$

Expansión multipolar

Luego, la expansión multipolar del potencial eléctrico será:

$$V(\mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{(n+1)}} \int_{\Omega} r'^n P_n(\cos\alpha) \rho(\mathbf{r}') d\tau'$$

Desarrollando los términos de la expansión:

$$n = 0 V_{mono}(\mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \frac{\int_{\Omega} \rho(\mathbf{r}') d\tau'}{r}$$

$$n = 1 V_{dip}(\mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \frac{\int_{\Omega} r' \cos \alpha \, \rho(\mathbf{r}') \, d\tau'}{r^2}$$

$$n = 2 V_{quad}(\mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \frac{\int_{\Omega} r'^2 \left(\frac{3\cos\alpha - 1}{2}\right) \rho(\mathbf{r}') d\tau'}{r^3}$$

Esto ya lo han visto antes, pero no desde esta perspectiva.

l:		$P_{\ell}^m(\cos \theta) \cos(m \varphi)$							$P_\ell^{ m }(\cos heta) \sin(m arphi)$					
0	s													ŗΖ
1	р						•	8	•				X_	∕″А
2	d					96	38	÷	¥	e jo				
3	f				2/6	频	×	*	N.	*	90			
4	g			4/0	*	×	*	#	4	*	冰	4/6		
5	h		9/0	*	*	¥	*	-	被	*	*	*	9/0	
6	i	3/6	*	*	*	×	*	#	*	*	*	*	*	2/6
	m:	6	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6

Para el caso del monopolo

$$V_{mono}(\mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \frac{\int_{\Omega} \rho(\mathbf{r}') d\tau'}{r}$$

el momento monopolar $\int_{\Omega} \rho(\mathbf{r}') d\tau'$ es independiente del origen de coordenadas, pues solo corresponde a sumar las cargas.

Por otro lado, para el dipolo

$$V_{dip}(\mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \frac{\int_{\Omega} r' \cos\alpha \, \rho(\mathbf{r}') \, d\tau'}{r^2}$$

el momento dipolar $\mathbf{p} = \int_{\Omega} \mathbf{r}' \rho(\mathbf{r}') \, d\tau'$ sí varía según el origen de coordenadas, pues tiene una dependencia de r'.

No obstante, este momento tiene un comportamiento muy especial.

• Consideremos un nuevo punto de referencia a, tal que:

$$\mathbf{p}' = \int_{\Omega} (\mathbf{r}' - \mathbf{a}) \rho(\mathbf{r}') \, d\tau'$$

• Dado que *a* es un vector constante:

$$\mathbf{p}' = \int_{\Omega} \mathbf{r}' \rho(\mathbf{r}') d\tau' - \int_{\Omega} \mathbf{a} \, \rho(\mathbf{r}') d\tau'$$

$$\mathbf{p}' = \mathbf{p} - \mathbf{a} \int_{\Omega} \rho(\mathbf{r}') d\tau' = \mathbf{p} - \mathbf{a} Q$$

$$\mathbf{p}' = \mathbf{p} - \mathbf{a} Q$$

• De este modo, si la carga neta Q es cero, el momento dipolar es independiente del origen.

$$\mathbf{p}' = \mathbf{p} - \mathbf{a}Q$$

Expansión Multipolar y Campo Eléctrico

 Como vimos en la clase anterior, el potencial y el campo están relacionados según:

$$\mathbf{E} = -\nabla \mathbf{V}$$

• De este modo, a partir de la expansión multipolar del potencial eléctrico, es posible hacer estimaciones precisas del Campo Eléctrico.

Expansión Multipolar y Campo Eléctrico

Para el caso de nuestro dipolo:

$$V_{dip} = \frac{Qd}{4\pi\varepsilon_0} \frac{\cos\theta}{r^2}$$

$$\mathbf{E} = -\nabla V_{dip} = -\left[\frac{\partial V}{\partial r}\mathbf{a}_r + \frac{1}{r}\frac{\partial V}{\partial \theta}\mathbf{a}_\theta\right]$$

$$\mathbf{E} = -\left[-\frac{Qd}{2\pi\varepsilon_0} \frac{\cos\theta}{r^2} \mathbf{a}_r - \frac{1}{r} \frac{Qd}{4\pi\varepsilon_0} \frac{\sin\theta}{r^2} \mathbf{a}_\theta \right]$$

$$\mathbf{E} = \frac{p}{4\pi\varepsilon_0 r^3} [2\cos\theta \, \mathbf{a}_r + \sin\theta \, \mathbf{a}_\theta]$$

Resumen

- No siempre podemos aproximar una distribución de cargas como una carga puntual.
- La expansión multipolar nos permite obtener estimaciones más precisas del potencial eléctrico.

$$V(\mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{(n+1)}} \int_{\Omega} r'^n P_n(\cos\alpha) \rho(\mathbf{r}') d\tau'$$

- Potenciales precisos permiten estimar campos precisos: $\mathbf{E} = -\nabla V$.
- El momento dipolar es inmune a la posición cuando $\sum_{n=1}^{N} Q_n = 0$.

Cerremos la clase de hoy

- Ya analizamos por completo el comportamiento de Campos Electrostáticos en el vacío, para distintas distribuciones de cargas.
- Nos resta analizar el comportamiento en medios materiales.
- Próxima Clase (Jueves 14/marzo):
 Electrostática en Materiales.
- Bibliografía:

Sadiku, M. (2018). Elements of Electromagnetics. 7th Edition: pp. 177 – 198

Cerremos la clase de hoy

Necesito que repasen:

Regla del producto

$$\mathbf{\nabla} \cdot f \mathbf{A} = f \mathbf{\nabla} \cdot \mathbf{A} + \mathbf{A} \cdot \mathbf{\nabla} f$$

Potencial dipolar

$$V = \frac{1}{4\pi\varepsilon_0} \frac{\int_{\Omega} \mathbf{d} \cdot \mathbf{a}_{r} \rho(\mathbf{r}') d\tau'}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{\int_{\Omega} \mathbf{p} \, \rho(\mathbf{r}') d\tau'}{r^2}$$

Ley de Gauss

$$\mathbf{\nabla} \cdot \mathbf{D} = \mathbf{\nabla} \cdot \varepsilon_0 \mathbf{E} = \rho_{tot}$$

Ejemplo 1: Caso Monopolo

• Retomemos el Ejemplo 1 de la clase anterior:

$$V(\rho, \theta, z) = \frac{1}{4\pi\varepsilon_0} \int_{\rho'=a}^{b} \int_{\theta'=0}^{\alpha} \frac{\sigma\rho' d\theta' d\rho'}{\sqrt{\rho^2 + z^2 + {\rho'}^2 - 2\rho\rho'\cos(\theta - \theta')}}$$

Si **r** se hace drásticamente grande:

$$V(\rho, \theta, z) = \frac{1}{4\pi\varepsilon_0} \int_{\rho'=a}^{b} \int_{\theta'=0}^{\alpha} \frac{\sigma\rho' \, d\theta' \, d\rho'}{\sqrt{\rho^2 + z^2}}$$

$$V(\rho, \theta, z) = \frac{1}{4\pi\varepsilon_0 \sqrt{\rho^2 + z^2}} \int_{\rho'=a}^{b} \int_{\theta'=0}^{\alpha} \sigma\rho' \, d\theta' \, d\rho'$$

$$V(\rho, \theta, z) = \frac{Q}{4\pi\varepsilon_0 |\mathbf{r}|}$$

Ejemplo 02: Momento Dipolar

• Determine el momento dipolar para los siguientes arreglos de cargas puntuales:

Ejemplo 02: Momento Dipolar

 Determine el momento dipolar para los siguientes arreglos de cargas puntuales:

$$\mathbf{p} = 0 \,\hat{\mathbf{x}} - \frac{3\sqrt{3}}{2} \,dQ\hat{\mathbf{y}}$$

$$\mathbf{p} = 0 \,\hat{\mathbf{x}} - \frac{3\sqrt{3}}{2} \,dQ\hat{\mathbf{y}} \qquad \qquad \mathbf{p} = -\frac{1}{2} dQ\hat{\mathbf{x}} - \frac{3\sqrt{3}}{2} \,dQ\hat{\mathbf{y}}$$

$$\mathbf{p} = 0\,\hat{\mathbf{x}} - \sqrt{3}\,dQ\hat{\mathbf{y}}$$

$$\mathbf{p} = \sqrt{3} \ dQ\hat{\mathbf{y}}$$

