LINEAR ALGEBRA I (MA2102)

Assignment 3

INSTRUCTOR: SOUMYA BHATTACHARYA

TEACHING ASSISTANTS: MD. NURUL MOLLA, RAJIV MISHRA, ABISEK DEWAN

Exercise 1. (10 points)

Let V be a finite dimensional vector space and let $T: V \to V$ be a linear operator such that $\operatorname{rank}(T) = \operatorname{rank}(T^2)$. Show that $V = \ker(T) \oplus \operatorname{im}(T)$.

Exercise 2. (10 points)

Let p be a prime, let V be a finite dimensional vector space over \mathbb{F}_p and let $T:V\to V$ be a surjective linear operator. For $n\in\mathbb{N}$, define $T^n:V\to V$ inductively by

$$T^n(v) := T(T^{n-1}(v))$$

for all $v \in V$, where T^0 denotes the identity map of V. Show that there exists an integer m > 0 such that $T^m = T^0$.

Exercise 3. (12 points)

Let $n \in \mathbb{N}$, let V be a vector space of dimension n and let $T: V \to V$ be a linear operator such that there exists a $v \in V$ with $T^n(v) = 0$ and $T^{n-1}(v) \neq 0$. Show that

$$\mathbb{B} := (v, T(v), T^{2}(v), \dots, T^{n-1}(v))$$

is a basis of V and write down the matrix representation of T w.r.t. the basis \mathbb{B} .

Exercise 4. (10 points)

Prove that every $m \times n$ matrix of rank 1 with entries from a field \mathbb{F} has the form $A = XY^{\mathrm{T}}$, where $X \in \mathbb{F}^m$ and $Y \in \mathbb{F}^n$.

Exercise 5. (12 points)

Let M be an $n \times n$ real matrix. Show that the rank $(M) = \operatorname{rank}(MM^{T})$.