Model Predictive Control of a Sewer System

June 14, 2018

Group 1030

Jacob Naundrup Pedersen Thomas Holm Pilgaard

Department of Electronic Systems Aalborg University Denmark

Agenda

Group 1030

Diskussion/Konklusion

Introduktion

Kloakker og rensningsanlæg Problem formulering

System beskrivelse

Løsninger og begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Typisk opbygning af kloak ledning

Agenda

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

Degrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementeri

Kontro

Lineariserin

Resulta

Diskussion/Konklusion

Agenda

Group 1030

oduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

System beskriver

Løsninger og

Modellering

WOOGCHCIIII

simulerin

Ou untui

Implementeri

impiementerir

Linearise

MPC Resultat

Diakussian/Kanklusian

► Mekanisk rensning

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

Modellerin

Simulerin

Struktur

Preissmann

Implementerin

Kontro

Lineariserin

Resultat

- ▶ Mekanisk rensning
- Sandfang

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

Modellelli

Simulering

Struktur

Preissmann

Implementering

Kontro

Linearisering

Resulta

- ► Mekanisk rensning
- Sandfang
- Primær rensning

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellerin

Simulerin

Droinomonn

1 1010011101111

IZ. . I . . I

Linoaricori

Lineariserin

Resulta

- ▶ Mekanisk rensning
- Sandfang
- Primær rensning
- ▶ Sekundær rensning

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modelleriii

Simulering

Struktur

Preissmann

Linearisering

Diskussion/Konklusio

► Mekanisk rensning

- ▶ Sandfang
- Primær rensning
- Sekundær rensning
- Kemisk rensning

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formularin

System beskrivel

System beskrives

Løsninger og

begrænsninge

Modellering

Simulei

Ou untui

Preissmann

Implementerin

Kontrol

Lineariserin

Resulta

Diskussion/Konklusion

Virksomheds besøg ved Fredericia Spildevand og Energi A/S.

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellerin

Modellelli

Simuler

Struktur

Preissmann

Implementeri

Kontrol

Lineariseri

Resulta

- ► Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivel:

Løsninger og

begrænsninger

Modellerin

Struktur

Desirence

Preissmann

Implementer

Kontroi

Lineariserin

Resulta

- ► Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - ► Problemer for aerobe bakterier

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivels

Løsninger og

begrænsninger

Modellerin

....

Simulei

- .

Preissmann

Implementering

KOHITOI

Linearisering

Resulta

- Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - ► Problemer for aerobe bakterier
 - Andre forstyrelser

Problem formulering

Agenda

Group 1030

Problem formulering

Diskussion/Konklusion

How can a simulation environment be constructed, which mimic the behavior of a real sewer system, where MPC is utilized as the control scheme to obtain stable sewage output such that optimal performance can be obtained from a WWTP.

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

.

Simulering

- .

Preissmani

Implementenii

Kontrol

MPC

Resultat

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

System beskrivelse

begrænsninge

Modellering

Struktur

Implementarin

. . . .

Lineariserin

Resulta

- Data fra industri.
- ► Flow profiler af beboelse og mindre industri.

Løsninger og begrænsninger

Agenda

Group 1030

System beskrivelse

Løsninger og

begrænsninger

Modellering

Resultat

Indsættelse af tank

Løsninger og begrænsninger

Agenda

Group 1030

System beskrivelse

Løsninger og

begrænsninger

Indsættelse af tank

► Afgrænse simulering til enkelt kemisk component

Løsninger og begrænsninger

Agenda

Group 1030

troduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og begrænsninger

Modellerin

Simulerin

Struktur

Preissmann

Implementer

Kontro

Lineariserin

Dogulto

Diskussion/Konklusion

Indsættelse af tank

► Afgrænse simulering til enkelt kemisk component

► Runde kloak rør

Agenda

Group 1030

System beskrivelse

Modellering

Kloak ledning

► Transport af koncentrat i kloak ledning

Sammenkobling af kloakledninger

Tank.

Agenda

Group 1030

atroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrive

Løsninger og hearænsninge

begrænsninger

Modellering

Charleton

Preissmann

Implemente

Kontrol

Lineariserir MPC

Resulta

Diskussion/Konklusion

► Kloak ledning

- ▶ Saint-Venant
- ► Kontinuitet:
- ► Impuls:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

Transport af koncentrat i kloak ledning

► Sammenkobling af kloakledninger

► Tank.

Agenda

Group 1030

Modellering

Diskussion/Konklusion

Kloak ledning

- Saint-Venant
- Kontinuitet:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial t}{\partial t} + \frac{\partial x}{\partial x} = \frac{1}{2} \frac{\partial Q}{\partial x} + \frac{1}{2} \frac{\partial Q}$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

$$gA \partial t + gA \partial x + A + \partial x + \partial t$$

- Transport af koncentrat i kloak ledning
 - Afhænger af flow i kloak ledning
 - Antagelser
- Sammenkobling af kloakledninger

Tank.

Agenda

Group 1030

Modellerina

Diskussion/Konklusion

Kloak ledning

- Saint-Venant
- Kontinuitet:

► Impuls: Antagelser

$$\frac{\partial A(\lambda)}{\partial \lambda}$$

$$\frac{\partial f}{\partial t}$$

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$(Q^2)$$

$$\left(\frac{Q^{2}}{A}\right)$$

$$\left(\frac{G}{A}\right)$$

$$\left(\overline{A} \right)$$

$$\left(\frac{a}{A}\right) + \frac{1}{2}$$

$$\left(\frac{G}{A}\right) + \frac{G}{6}$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

- Transport af koncentrat i kloak ledning
 - Afhænger af flow i kloak ledning
 - Antagelser
- Sammenkobling af kloakledninger
 - Summering af flow og koncentrat
 - Antagelser
- Tank.

Agenda

Group 1030

Modellerina

Diskussion/Konklusion

Kloak ledning

- Saint-Venant
- Kontinuitet:

► Impuls: Antagelser

 $\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$

$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$

- Transport af koncentrat i kloak ledning
 - Afhænger af flow i kloak ledning
 - Antagelser
- Sammenkobling af kloakledninger
 - Summering af flow og koncentrat
 - Antagelser
- Tank.
 - Ændring i højde og koncentrat
 - Antagelser

Agenda

Group 1030

ntroduktion

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellering

Simulering

Struktur

untui

BISSIIIdIIII

IIIpidilidilidili

Kontrol

Lineariserin

Resultat

nesultat

Diskussion/Konklusion

Intialisering

Dept. of Electronic Systems Aalborg University Denmark

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninge

Modellering

Simulering

Struktur

Iroloomono

eissmann

Implementering

Lineariserir

MPC

Resultat

Diskussion/Konklusion

► Intialisering

Opsætning af komponenter

Agenda

Group 1030

Introduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

. .

Modellering

imulering

Struktur

reissmann

Implementaring

I/a minal

Lineariseri

MPC

nesultat

Diskussion/Konklusion

► Intialisering

- Opsætning af komponenter
- ► System i steady state

Agenda

Group 1030

System beskrivelse

Struktur

► Intialisering

- Opsætning af komponenter
- System i steady state
- ▶ Simulering

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivel

Løsninger og

Modelleilli

Simulering

Struktur

reissmann -

Implementerin

IZ. at a l

Lineariserin

....

Diskussion/Konklusio

Resultat

► Intialisering

- Opsætning af komponenter
- System i steady state

Simulering

Iterativ beregning af komponenterne

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problem formulering

System beskrive

Løsninger og

WIOGCIICIIII

. . . .

Struktur

Preissmann

Implementerin

Kontrol

Lineariserin

. . . .

Diskussion/Konklusion

► Intialisering

- Opsætning af komponenter
- System i steady state

Simulering

- Iterativ beregning af komponenterne
- ► Gennemgang af resultat

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

Struktur

dictor

1 1010011101111

impiementerin

Kontrol

Lineariserin

Resultat

Dialaussian/Kanklusia

Preissmann

Agenda

Group 1030

System beskrivelse

Modellering

Preissmann

Resultat

► Kinematisk bølge aproksimering

$$ightharpoonup S_b = S_f$$

► Fyldningsgrad kurve for rør

Agenda

Group 1030

ntroduktio

Kloakker og

Problem formulerin

System beskrivelse

Løsninger og

Modellering

simuleri

Preissmann

land land a state

Implemente

Kontrol

Lineariseri

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Preissmann iteration

Agenda

Group 1030

troduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivel

Løsninger og

Modellering

Otendeton

Preissmann

Implementer

IZ.

Lineariserin

Resultat

Diskussion/Konklusion

Preissmann stabilitet

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

Modellering

....

Preissmann

Implementeri

...,

Lineariserin

Resulta

Diskussion/Konklusion

Ubetinget stabilitet

Courant's tal

Agenda

Group 1030

Introduktio

rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

Simulering

Preissmann

Implementer

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

► Indikation af præcision

$$C_r = \frac{\sqrt{g \cdot \overline{\mathsf{H}}} \cdot \Delta t}{\Delta x}$$

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrive

Løsninger og

Modellering

01-----

Struktur

Preissmann

Implementer

Kontrol

MPC

Resultat

Diskussion/Konklusion

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivel

Løsninger og

.....

Modellering

Simulem

Preissmann

Implementer

Kontrol

Resultat

Diekussien/Kenklusie

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsninger

Modellering

. . .

0.....

Preissmann

Implementering

IZ.

Linearia

Linearisering

Resultat

Diskussion/Konklusio

- ► Implementering
- ► Kontrol
- ► Resultater
- ► Diskussion/Konklusion

Group 1030

ntroduktion

rensningsanlæg

Problem formulerin

System beskrivelse

_øsninger og

Modellering

....

Simulerin

Outun

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Group 1030

Implementering

Diskussion/Konklusion

1. Pipe

- ▶ Længde [m]
- Sektioner
- ► S_b (Hældning) [‰]
- ► ∆x = Længde/Sektioner [m]
- Diameter [m]
- ► Theta
 - $Q_f[m^3/s]$
- Side inflow
- Placering i data

2. Tank

- Størrelse [m³]
- ► Højde [m]
- ▶ Areal = Størrelse / Højde [m²]
- ► Maximum outflow [m³/s]
- Placering i data

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementering

implementeri

Lineariserin

MPC

Resultat

Diskussion/Konklusion

► Steady state

► System opsætning

Fields	type type	□ component	sections
1	'Pipe'	1	35
2	'Tank'	1	1
3	'Pipe'	17	207
4	'Tank'	1	1
5	'Pipe'	1	38
6	'Total'	21	282

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

Modellering

Simulerin

Struktur

Preissmann

Implementering

IZ---I---I

Kontrol

Linearisering

Resulta

Diskussion/Konklusion

► Iterere igennem rør og tank for hvert tidsskridt

Group 1030

ntroduktio

rensningsanlæg

Problem formuleri

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulerin

Preissmann

Implementering

Kontrol

Lineariseri

MPC

Resultat

Diskussion/Konklusio

24

38

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrive

Løsninger og

Modellelli

Simulering

Struktur

Preissmann

Implementer

Kontre

Linearisering

....

Resultat

Diskussion/Konklusion

► Linear model til MPC

- ► Linearisering af kontinuitets ligningen
- ▶ Højde states
- ► Priessmann scheme

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial A(h)}{\partial h} \frac{\partial h(x,t)}{\partial t} + \frac{\partial Q(h)}{\partial h} \frac{\partial h(x,t)}{\partial x} = 0$$

Group 1030

ntroduktio

- Kloakker og rensningsanlæg
- Problem formuler

System beskrive

Løsninger og

begrænsninger

Modellerin

0.....

Droinomonn

Preissmann

Implementer

Kontro

Linearisering

MPC

Resulta

Diskussion/Konklusion

► Opsat på matrix og vektor form

► Opstilles på state space form

$$\left[\underbrace{\frac{1}{2\Delta t}\frac{\partial A}{\partial h} - \frac{\theta}{\Delta x}\frac{\partial Q}{\partial h}}_{a} \underbrace{\frac{1}{2\Delta t}\frac{\partial A}{\partial h} + \frac{\theta}{\Delta x}\frac{\partial Q}{\partial h}}_{b}\right] \begin{bmatrix} h_{j+1}^{i+1} \\ h_{j+1}^{i+1} \end{bmatrix} =$$

$$- \left[\underbrace{\frac{-1}{2\Delta t}\frac{\partial A}{\partial h} - \frac{(1-\theta)}{\Delta x}\frac{\partial Q}{\partial h}}_{G} \underbrace{\frac{-1}{2\Delta t}\frac{\partial A}{\partial h} + \frac{(1-\theta)}{\Delta x}\frac{\partial Q}{\partial h}}_{d} \right] \begin{bmatrix} h_{j+1}^{i} \\ h_{j+1}^{i} \end{bmatrix} =$$

Group 1030

atroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellering

. . . .

Struktur

Preissmann

Implementer

Kontrol

Linearisering

Resultat

riocanai

Diskussion/Konklusion

$$\underbrace{\begin{bmatrix} 1 \\ -a_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{B} h_0^{i+1} + \underbrace{\begin{bmatrix} \frac{\partial n}{\partial Q} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{B_d} d_0^{i+1}$$

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formuleri

System beskrivel

Løsninger og

begrænsninger

Modellering

Preissmann

land land and a

...

Kontrol

Linearisering

MPC

Resulta

Diskussion/Konklusion

▶ e - Forøgelse af højde i tank(inflow)

- ► f Reducering af højde i tank(Outflow)
- ► g Inflow i efterfølgende rør

$$= \underbrace{\begin{bmatrix} b_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & a_{2,1} & b_{2,2} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} h_{1,2}^{i} \\ h_{1,nk}^{i+1} \\ h_{2,0}^{i+1} \\ h_{2,1}^{i+1} \end{bmatrix}}_{x(k+1)} + \underbrace{\begin{bmatrix} 0 & 0 \\ 0 & -f \\ 0 & g \\ 0 & 0 \end{bmatrix}}_{B} \begin{bmatrix} h_{0}^{i+1} \\ u_{tank} \end{bmatrix}$$

Group 1030

Introduktio

rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninger

Modellering

01-1-1-1-1

Otendeton

Preissmann

Implementer

Kontrol

Linearisering

Lineariserin

Resultat

Diskussion/Konklusion

 Samligning af ulineær og linear model

- ► System setup
- ► Sinus input

Туре	Components	Sections
Pipe	1	35
Tank	1	1
Pipe	18	227
Total	20	263

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

Contain lead of the

Løsninger og

begrænsninger

Modellering

Cimularina

Simulemi

Preissma

Implemente

Kontr

Linearisering

Resulta

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

System beskrivelse

Modellering

MPC

▶ Cost function

- Afgrænset til at minimiere flow variationer
- ▶ Constraints
 - ▶ Højde
 - ► Kontrol input
- ► Prediction model

Group 1030

tradulatio

- Kloakker og rensningsanlæg
- Problem formulering

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implemente

Kontro

Lineariseri MPC

Dogultot

Diskussion/Konklusion

▶ Begrænsning af Prediction horizon

- ► System setup
- ► Forstyrrelses input

Fields	type type	component	sections
1	'Pipe'	1	5
2	'Tank'	1	1
3	'Pipe'	1	5
4	'Total'	3	11

Group 1030

Modellering

MPC

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

Kloakker og rensningsanlæg

System backrival

Løsninger og

begrænsninger

Modellering

Simulerin

Struktur

Preissman

Implementerin

Kontr

Lineariserir MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

.....

Modellering

Modellerii

Simulering

Struktu

Preissmann

Implementerin

Kontrol

Linearisering

Resultat

Diskussion/Konklusio

 System setup, efterligning af Fredericia

Flow profiler

Type	Component	Sections
Pipe	1	35
Tank	1	1
Pipe	17	207
Tank	1	1
Pipe	1	38
Total	21	282

0.6

Group 1030

Modellering

Resultat

Output flow

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduletio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Løsninger og

Modellering

Simulemi

Preissmani

Implementeri

...,

Kontrol

Lineariserin

Resultat

Diskussion/Konklus

Diskussion/Konklusion

Agenda

Group 1030

.

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsninge

Modellering

....

Cimularina

Struktur

Preissmann

land bear and a si

mplomomorm

1.01101

Linearisering

Resultat

Diskussion/Konklusion (38

- ► Courant's tal
- ► Model reduktion
- ► Simulering
- ► MPC