Background	Project Description	Results	Conclusion
------------	---------------------	---------	------------

SESE is necessary, but is it sufficient?

J. Gavenois et al., *Nat. Chem. Biol.* **10**, 716–722 (2014) T. Siegert et al., *Methods Mol. Biol.* **1561**, 255-277 (2017) B. Hal et al., *Mol. Cell* **20**, 9-19 (2005)

Yellow: residues contributing > 1 kcal/mol binding energy Orange: residues contributing > 2 kcal/mol binding energy

PDB: 2ASS

Does the in-vitro experiment

tell the whole story?

J. Gavenois et al., Nat. Chem. Biol. 10, 716–722 (2014)

T. Siegert et al., Methods Mol. Biol. 1561, 255-277 (2017)

B. Hal et al., *Mol. Cell* **20**, 9-19 (2005)

His-Cks1

Endogenous Cks1

FLGA-Skp2

His-Cks1

DMS(

ΙN

ПΝ

IP: FLAG-Skp2

SESEavTG

SESEGvvTG

1 4_

Cyclin A

Skp2 was already pre-

already binds to Skp2?

endogenous Cks1.

occupied with

Can the inhibitor properly

function when Cks1