

Fig. 1(a)

FIG 1(b)

$$\bar{P} = f(t)$$

Fig. 3(c)

FIG.3(a) BEZENTROPIC TURBINE
(using heat to Potential Energy Conversion)

Fig.3(b)

Fig. 4(2)

Fig. 4(b)

Fig. 4(c)

Fig.5(a)

Two Stages

Fig.5(b)

Fig. 6(2)

Fig. 6(b)

Fig. 6(c)

Fig. 7(b)

Fig.8(a)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad y = \pm b \left(1 - \frac{b^2}{a^2}\right)^{\frac{1}{2}}$$

Fig.8(b)

Fig.8.(c)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad y = \pm b \left(1 - \frac{b^2}{a^2}\right)^{\frac{1}{2}}$$

Fig.8(d)

Fig. 8(e)

BEZENTROPIC VORTEX PROPULSION

Fig. 9

Fig. 10 (a)

Fig. 10(b)

Fig. 10(c).

Fig.11

Fig.12

Fig.13