Problem 1

A wholesale distributor operating in different regions of Portugal has information on annual spending of several items in their stores across different regions and channels. The data consists of 440 large retailers' annual spending on 6 different varieties of products in 3 different regions (Lisbon, Oporto, Other) and across different sales channel (Hotel, Retail).

Question 1.1

From the above description we are expecting: 440 large retailers, Annual Spending Report based on 6 Varieties, 3 Different regions (Lisbon, Oporto, Other) and 2 Sales Channel (Hotel, Retail).

1.1.1 Use methods of descriptive statistics to summarize data

Exploratory data analysis:

by putting df.head(),df.tail() command we can analyse first 5 rows, which can give us overall Idea about how the data is. It has 6 varieties (Fresh, Milk, Grocery, Frozen, Detergents_Paper, Delicatessen).2 Channels(Hotel, Retail) and by putting this command

"df['Region'].unique()" we will get to know the Three Regions are there:

Buyer/Spender	Channel	Region	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen
1	Retail	Other	12669	9656	7561	214	2674	1338
2	Retail	Other	7057	9810	9568	1762	3293	1776
3	Retail	Other	6353	8808	7684	2405	3516	7844
4	Hotel	Other	13265	1196	4221	6404	507	1788
5	Retail	Other	22615	5410	7198	3915	1777	5185

Now by using command df.info(), we will get to know dataset has no null values, Column Fresh, Milk, Grocery Frozen Detergent_Paper and Delicatessen having integer values, int data type while Channel and Region are having string or Object non integers.

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 440 entries, 0 to 439
Data columns (total 9 columns):
   Column
                  Non-Null Count Dtype
#
                   -----
   Buyer/Spender 440 non-null
0
                                int64
                  440 non-null object
1 Channel
2 Region
                  440 non-null object
                  440 non-null int64
3 Fresh
4 Milk
                  440 non-null int64
5 Grocery 440 non-null int64
6 Frozen 440 non-null int64
7 Detergents_Paper 440 non-null int64
8 Delicatessen 440 non-null int64
dtypes: int64(7), object(2)
memory usage: 31.1+ KB
```

To re-confirm it is good habit to use command df.isnull.sum(), it will print total sum of null elements present in particular column, so it is confirmed that data has no null values.

df.isnull().sum()	
Buyer/Spender	0
Channel	0
Region	0
Fresh	0
Milk	0
Grocery	0
Frozen	0
Detergents_Paper	0
Delicatessen	0
dtype: int64	

Descriptive Analysis: It is used to get the idea about how data is distributed, mainly Mean, Median, Mode and standard deviation. 25%,50%, 75% data distribution and Interquirtile ranges.we can get this by giving command as df.describe()

df.des	scribe()						
	Buyer/Spender	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen
count	440.000000	440.000000	440.000000	440.000000	440.000000	440.000000	440.000000
mean	220.500000	12000.297727	5796.265909	7951.277273	3071.931818	2881.493182	1524.870455
std	127.161315	12647.328865	7380.377175	9503.162829	4854.673333	4767.854448	2820.105937
min	1.000000	3.000000	55.000000	3.000000	25.000000	3.000000	3.000000
25%	110.750000	3127.750000	1533.000000	2153.000000	742.250000	256.750000	408.250000
50%	220.500000	8504.000000	3627.000000	4755.500000	<u>1526.000000</u>	816.500000	965.500000
75%	330.250000	16933.750000	7190.250000	10655.750000	3554.250000	3922.000000	1820.250000
max	440.000000	112151.000000	73498.000000	92780.000000	60869.000000	40827.000000	47943.000000

By above table we get the knowledge of how this data is distributed. we can say that Buyer/Spender column has no as such significance we can remove it if we want. It is redundant. From above table we can see that Fresh has highest spending whereas Detergents_Paper has lowest Spending.

For this we can import seaborn library which is used as top of Matplotlib for better visualiation.

1.1.2. Which Region and which Channel seems to spend more? Which Region and which Channel seems to spend less?-->

To get overall idea about regions : 3 regions

```
df['Region'].unique()
array(['Other', 'Lisbon', 'Oporto'], dtype=object)
```

To get Idea about Channels: 2 channels(Hotel/Retail)

To answer the question first we will create a dataframe which will tell us about region vise and Variety vise spending.

df_Region=df.groupby('Region').sum()
df_Region

In this code "df.groupby('Region')" will filter/group table on the basis of 3 region. Sum() will add all spendings within that region.

We can see Buyer/Spender column has no significance, it is random serial number, so we will try to omit it.

```
column_list = list(df_Region)
column_list.remove('Buyer/Spender')
column_list

['Fresh', 'Milk', 'Grocery', 'Frozen', 'Detergents_Paper', 'Delicatessen']
```

column_list = list(df_Region) → Pulling out column list and storing into variable column list.

column_list.remove('Buyer/Spender') → Using .remove() function to remove 'Buyer/Spender column.

column list -> Again Printing column list which do not have column'Buyer/Spender'.

Now, Furthermore df[column_list] will print below result it has omitted 'Buyer/Spender column.

	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen
Region						
Lisbon	854833	422454	570037	231026	204136	104327
Oporto	464721	239144	433274	190132	173311	54506
Other	3960577	1888759	2495251	930492	890410	512110

df_Region[column_list].sum(axis=0)

it will print sum of all the elements along Y axis.

Fresh	5280131
Milk	2550357
Grocery	3498562
Frozen	1351650
Detergents_Paper	1267857
Delicatessen	670943
dtype: int64	

df_Region[column_list].sum(axis=1)

it will print sum of all the elements along X axis.

Region Lisbon 2386813 Oporto 1555088 Other 10677599 dtype: int64

df_Region["sum"]=df_Region[column_list].sum(axis=1)

df_Region

This two lines are adding separate Sum column and prints table with addition

	Buyer/Spender	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen	sum
Region								
Lisbon	18095	854833	422454	570037	231026	204136	104327	2386813
Oporto	14899	464721	239144	433274	190132	173311	54506	1555088
Other	64026	3960577	1888759	2495251	930492	890410	512110	10677599

To get Maximum value Regionwise, which region has Highest spending among all

```
Regionwise_max=pd.DataFrame(data=df_Region, columns=['sum'] )
Regionwise_max[Regionwise_max['sum'] == Regionwise_max['sum'].max()]
```

Now we are Particularly Intersting in Region and Sum column. So line 1 will store sum values and Region column. Next task is Print only that row which is having maximum value.

In "Other" region highest Spending Occurred.

The below lines will print Regionwise_min table, by comparing to minimum value with region and sum.

```
Regionwise_min=Regionwise_max[Regionwise_max['sum'] == Regionwise_max['sum'].min()]
Regionwise_min

sum

Region

Oporto 1555088
```

"Oporto" region seems to spend less

Now we are focussing upon channel, Maximum and Minimum Spendings. The below code will print the table which contains minimum and maximum value with Separate column Sum.

```
# Print dataframe, where addition done for different channels with different Varieties.

df_channel=df.groupby('Channel').sum()

df_channel

# From the Dataframe generated above, we are removing Buyer/Spender column as it is not useful here

list2=list(df_channel)

list2.remove('Buyer/Spender')

list2

# Passing the Above created list to Dataframe df_Channel and addition will be done by using sum function on dataframe

df_channel2=df_channel[list2]

df_channel2['sum']=df_channel2.sum(axis=1)

df_channel2
```

	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen	sum
Channel							
Hotel	4015717	1028614	1180717	1116979	235587	421955	7999569
Retail	1264414	1521743	2317845	234671	1032270	248988	6619931

Now we are Interested in the channel which is Spending Maximum.

The below code will print Output of Channel which has highest spendings. First we have created df_channel3 which stores table which has Highest addition by using max function.

df channel4 will take input as df channel3 and it will show the Column Sum

```
df_channel3=df_channel2[df_channel2['sum']==df_channel2['sum'].max()]
df_channel4=pd.DataFrame(data= df_channel3,columns=['sum'])
df_channel4

sum

Channel

Hotel 7999569
```

Hotel is the channel which has Highest Spending.

Now we are Interested in the channel which has lowest Spending. We will just put min function to the dataframe, and it will print the output what we want.

Retail is the channel which has Lowest spending amongst Channel.

Question 1.2:

There are 6 different varieties of items are considered. Do all varieties show similar behaviour across Region and Channel? Provide justification for your answer.

To Answer this question, we can plot a barplot(To get statistica difference between mean) and boxplot(To get the distribution idea,Outliers,mean), which will tell us the relations between each variety and Region, Each variety and Channel.

First we will try to create a desired dataframe, by dropping column(Buyer/Spender) and store this in new dfd datafrme.

```
dfd=df.drop(['Buyer/Spender'], axis='columns')
```

Now again we will introduce for loop to print all barplots Region vs Varieties.It will iterate through all columns.

```
# ALL Varieties Across Region
for i in dfd.columns:
   if dfd[i].dtypes != "object":
        sns.barplot(df['Region'],dfd[i])
        plt.show()
```


If we see Graph1 for 'Fresh' variety - Other Region has highest mean value so it is highly bought variety as comapre to Lisbon and Oporto region. This variety is not showing similar nature in case of average selling.

If we see Graph2 for 'Milk' variety - Other Region has highest mean value so it is highly bought variety as comapre to Lisbon and Oporto region. This variety is not showing similar nature in case of average selling.

If we see Graph3 for 'Grocery' variety - Oporto Region has highest mean value so it is highly bought variety as comapre to Lisbon and Oporto region. This variety is not showing similar nature in case of average selling.

If we see Graph4 for 'Frozen' variety - Oporto Region has highest mean value so it is highly bought variety as comapre to Lisbon and Oporto region. This variety is not showing similar nature in case of average selling.

If we see Graph5 for 'Detergent_paper' variety - Oporto Region has highest mean value so it is highly bought variety as comapre to Lisbon and Oporto region. This variety is not showing similar nature in case of average selling.

If we see Graph6 for 'Delicatessen' variety - Other Region has highest mean value so it is highly bought variety as comapre to Lisbon and Oporto region. This variety is not showing similar nature in case of average selling.

The similarity can be found is, In Nutshell, Fresh, Milk and Delicatessen are the varieties gives highest average income from Other Region and Grocery, Detergent_papers and Frozen varieties are giving highest revenue from Oporto region

Lets plot Boxplot, so that we will deep dive into regionwise distribution. Again we will use for loop and plot as boxplot.

```
for i in dfd.columns:
   if df[i].dtypes != "object":
       sns.boxplot(df['Region'],df[i])
       plt.show()
```

Plot can be seen for all 6 varieties and 3 regions:

Only one Combination which is "Oporto and Fresh" has no outliers and data is consistent. While other all Varieties across region has Outliers.

Now lets plot Channel vise boxplot :

```
for i in dfd.columns:
   if df[i].dtypes != "object":
       sns.boxplot(df['Channel'],df[i])
       plt.show()
```


From plot 1, here it can be noticed that every variety has outliers across Channel and Fresh items are highly sold in Hotels than Retails, and difference is significant.

Milk, Grocery and detergent paper generating High revenues in retail sector as comapare to Hotel channel.

Delicatessen is the variety having almost similar distribution in Both the channels.

```
# All varieties across Channel.

for i in dfd.columns:
   if dfd[i].dtypes != "object":
        sns.barplot(df['Channel'],df[i])
        plt.show()
```


If we see Fresh and Frozen in channel Hotel has the maximum average values over Channel Retail and Delicatessen, Detergent_paper, Milk, Grocery has highest average spendings in Retail Channel thats the inter Similarity we can get.

Question 1.3

1.3 On the basis of a descriptive measure of variability, which item shows the most inconsistent behaviour? Which items show the least inconsistent behaviour?

```
df_del=df.drop(['Buyer/Spender','Channel','Region'], axis = 1)
df_del.std()
```

from the below Output Fresh has the highest Standard deviation, hence it shows Highest inconsistency whereas Delicatessen has the lowest Standard deviation, hence it shows least inconsistent behaviour.

Fresh	12647.328865
Milk	7380.377175
Grocery	9503.162829
Frozen	4854.673333
Detergents_Paper	4767.854448
Delicatessen	2820.105937
dtype: float64	

from the below Output Fresh has the highest variance, hence it shows Highest inconsistency whereas Delicatessen has the lowest variance, hence it shows least inconsistent behaviour.

Fresh	1.599549e+08
Milk	5.446997e+07
Grocery	9.031010e+07
Frozen	2.356785e+07
Detergents_Paper	2.273244e+07
Delicatessen	7.952997e+06
dtype: float64	

Question 1.4

Are there any outliers in the data?

Here to get the dea of outliers we will plot a barplot for each variety.

From below boxplots, we can say that every variety has Outlier

By observing below plot we can say that Yes All Varieties: Fresh, Milk, Frozen, Grocery, Detergents_paper, Delicatessen have outliers.

Question 1.5

On the basis of your analysis, what are your recommendations for the business? How can your analysis help the business to solve its problem? Answer from the business perspective

Now for clear understanding of Distribution we can plot 6 distribuion plots for each variety having continuous distribution. For this we can import seaborn library which is used as top of Matplotlib for better visualiation.

```
# From this below line, we are defining color palete we have used further for different colors R for Red
sns.set(color_codes=True)

# Here we are plotting distplot and assigning it to variate dist, color Red.
dist=sns.distplot(df['Fresh'],color='R')

# Setting Title to the graph as Fresh Items
dist.set_title('Fresh Items')

# Setting x Label to the graph as Spending on Fresh Variety
dist.set_xlabel('Spending on Fresh Variety')

# Setting y Label to the graph as density plot for Fresh variety
dist.set_ylabel('density plot for Fresh variety')
```


Maximum data points accumulated spendings in between 0 to 40000, very less buyer or Spender spent money on Fresh variety greater than 40000 and distribution is right skewed.

Similarly we can have distplot for each variety,

Maximum data points accumulated spendings in between 0 to 30000, very less buyer or Spender spent money on Milk greater than 30000 and distribution is right skewed.

Maximum data points accumulated spendings in between 0 to 30000, very less buyer or Spender spent money on Grocery greater than 30000 and distribution is right skewed.

Maximum data points accumulated spendings in between 0 to 10000, very less buyer or Spender spent money on Frozen items greater than 10000 and distribution is right skewed.

Maximum data points accumulated spendings in between 0 to 10000, very less buyer or Spender spent money on Detergent_Paper greater than 10000 and distribution is right skewed.

Maximum data points accumulated spendings in between 0 to 9000, very less buyer or Spender spent money on Delicatessen variety greater than 9000 and distribution is right skewed.

From Above graphs, Overall Revenue for varieties and its production, Production should be high in case of Milk,Grocery,Fresh Items and also it will increase chances of Revenues and for Frozen and Detergents_Paper production should be moderate to avoid initial investment issues. And Delicatessen has low revenues, so to be in the business we should produce this in limited quantity. More Focus should be given on Milk,Grocery,Fresh till some saturation.

We can also consider some branding factor and usability of varieties such as Delicatessen, Frozen and Detergents_Paper. by collecting data, we can decide for more branding, Marketing to improve sales.

Now, we will try to plot pie charts/pairplots to see spendings, relations, the column Buyer/Spender is insignificant here so we will drop it by using drop command.

```
df_drop=df.drop(['Buyer/Spender','Channel','Region'],axis='columns')
df_drop
```

To plot pairplot amongst all variables, we will use below code:

```
sns.pairplot(data=df_drop,corner=True,kind='reg')
```


We can find correlation between varieties by using corr() function.

	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen
Fresh	1.000000	0.100510	-0.011854	0.345881	-0.101953	0.244690
Milk	0.100510	1.000000	0.728335	0.123994	0.661816	0.406368
Grocery	-0.011854	0.728335	1.000000	-0.040193	0.924641	0.205497
Frozen	0.345881	0.123994	-0.040193	1.000000	-0.131525	0.390947
Detergents_Paper	-0.101953	0.661816	0.924641	-0.131525	1.000000	0.069291
Delicatessen	0.244690	0.406368	0.205497	0.390947	0.069291	1.000000

In above correlation table, the highest correlation is between Grocery and Detergents_Paper, so it can be assumed that buyer buying Detergent_paper also buy Grocery, chances of this combination is high and follows linear relation and directly proportional. Similarly Milk and grocery has correlation index 0.7283 which is also good, so production of these items should be increased to increase Revenue.

Now we will print addition, and filter dataset by region.

```
dfd1=dfd.groupby('Region').sum()
dfd1
```

	Fresh	Milk	Grocery	Frozen	Detergents_Paper	Delicatessen
Region						
Lisbon	854833	422454	570037	231026	204136	104327
Oporto	464721	239144	433274	190132	173311	54506
Other	3960577	1888759	2495251	930492	890410	512110

lets compare the total Regionwise spendings, lets plot for Region: Lisbon

To select row named as Lisbon, we use iloc function

```
# To select row named as Lisbon, we use iloc function
dfd2=dfd1.iloc[0,:]
dfd2

fig = plt.figure(figsize =(10, 7))
varieties=['Fresh','Milk','Grocery','Frozen','Detergents_Paper','Delicatessen']
plt.pie(dfd2,labels=varieties)
plt.title('Region : Lisbon')
```


In Lisbon Region, Fresh variety seems to be highest spending. In the Lisbon region it is generating Highest revenue whereas Delicatessen has lowest spendings

Now lets plot All varieties Spendings in Oporto, we can see below pie chart for it

```
dfd3=dfd1.iloc[1,:]
dfd3

fig = plt.figure(figsize =(10, 7))
varieties=['Fresh','Milk','Grocery','Frozen','Detergents_Paper','Delicatessen']
plt.pie(dfd3,labels=varieties)
plt.title('Region : Oporto')
```


In Oporto Region, Fresh variety seems to be highest spending. In the Oporto region it is generating Highest revenue whereas Delicatessen has lowest spendings in this region

Now lets plot All varieties Spendings in other region,

```
dfd4=dfd1.iloc[1,:]
dfd4

fig = plt.figure(figsize =(10, 7))
varieties=['Fresh','Milk','Grocery','Frozen','Detergents_Paper','Delicatessen']
plt.pie(dfd4,labels=varieties)
plt.title('Region : Other')
```


In Other Region, Fresh variety seems to be highest spending. In Other region it is generating Highest revenue whereas Delicatessen has lowest spendings in this region

Overall, in all Region Fresh and Grocery are sources of Maximum income, so transport for this Varieties should be quickest, with high production and needed more focus, as compare to others