Lineare Algebra

Vektorgeometrie

Berechnung des Skalarprodukts

$$\vec{a} \bullet \vec{b} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \bullet \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = a_x b_x + a_y b_y + a_z b_z$$

Berechnung des Zwischenwinkels zweier Vektoren

$$\cos \angle(\vec{v}, \vec{w}) = \frac{\vec{v} \bullet \vec{w}}{|\vec{v}| \cdot |\vec{w}|} \Rightarrow \angle(\vec{v}, \vec{w}) = \arccos \frac{\vec{v} \bullet \vec{w}}{|\vec{v}| \cdot |\vec{w}|}$$
$$\vec{v} \bullet \vec{w} = |\vec{v}| \cdot |\vec{w}| \cdot \cos \angle(\vec{v}, \vec{w})$$

Aussage des Skalarprodukts 0

$$\vec{v} \perp \vec{w} \Leftrightarrow \vec{v} \bullet \vec{w} = 0$$

Nullvektoren stehen senkrecht zu allen Vektoren

Berechnung der Länge eines Vektors

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} = \sqrt{\vec{a} \cdot \vec{a}}$$
$$\vec{a} \cdot \vec{a} = a_1^2 + a_2^2 + a_3^2 = |\vec{a}|^2$$

Satz des Pythagoras

Im Dreieck

Mit Vektoren

$$\begin{split} \vec{b} &= \vec{c} - \vec{a} \\ \vec{c} &= \vec{a} + (\vec{c} - \vec{a}) \\ |\vec{c}| &= \sqrt{\vec{c} \bullet \vec{c}} = \sqrt{(\vec{a} + (\vec{c} - \vec{a}) \bullet (\vec{a} + (\vec{c} - \vec{a}))} = \sqrt{(\vec{a} + \vec{b}) \bullet (\vec{a} + \vec{b})} \\ &= \sqrt{\vec{a} \bullet \vec{a} + \vec{a} \bullet \vec{b} + \vec{c} \bullet \vec{b} + \vec{b} \bullet \vec{b}} = \sqrt{|\vec{a}|^2 + 0 + 0 + \left| \vec{b} \right|^2} = \sqrt{|\vec{a}|^2 + \left| \vec{b} \right|^2} \end{split}$$

Cosinussatz

$$\vec{c} = \vec{b} - \vec{a}$$

$$\left| \vec{b} \right|^2 = \vec{b} \bullet \vec{b} = (\vec{a} + \vec{c}) \bullet (\vec{a} + \vec{c}) = \vec{a} \bullet \vec{a} + \vec{a} \bullet \vec{c} + \vec{c} \bullet \vec{a} + \vec{c} \bullet \vec{c}$$

$$= |\vec{a}|^2 + 2\cos \angle (\vec{a}, \vec{c}) \cdot |\vec{a}| \cdot |\vec{c}| + |\vec{c}|^2$$

$$(= |\vec{a}|^2 - 2\cos(180^o - \angle) \cdot |\vec{a}| \cdot |\vec{c}| + |\vec{c}|^2)$$

Daraus folgt:

$$a^2 + c^2 - 2ac \cdot \cos(\beta) = b^2$$

Orthogonalprojektion

- 1. Bestimmen von Vektoren, von denen wir wissen wohin sie Abgebildet werden (In der Regel der Normal- und 1 oder 2 Richtungs-Vektoren)
- 2. Der Normal-Vektor lässt sich aus der Gleichung ablesen, die Richtungsvektoren müssen die Gleichung erfüllen.

2

- 3. Anschliessend lässt sich eine Gleichung aufstellen: $A\cdot(n|r)=\left(egin{array}{cc} s & t \\ u & v \end{array}
 ight)$
- 4. Und nach A auflösen: $A = \begin{pmatrix} s & t \\ u & v \end{pmatrix} \cdot (n|r)^{-1}$

Beispiel:

Gegeben sei im R^2 die Orthogonalprojektion P auf die Gerade g gegeben durch 2x + 3y = 0. Geben sie die vier Einträge der zu P gehörenden Projektionsmatrix A in der kanonischen Basis an.

$$\vec{n} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \vec{r} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$A \cdot \vec{n} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, A \cdot \vec{r} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

$$\Rightarrow A \cdot (\vec{n}|\vec{r}) = A \cdot \begin{pmatrix} 2 & 3 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 0 & -2 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} 0 & 3 \\ 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 3 \\ 3 & -2 \end{pmatrix}^{-1}$$

Kreuzprodukt

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} x \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 \cdot b_3 - a_3 \cdot b_2 \\ a_3 \cdot b_1 - a_1 \cdot b_3 \\ a_1 \cdot b_2 - a_2 \cdot b_1 \end{pmatrix}$$

Parameterdarstellung

Gerade = Aufpunkt + Faktor * Vektor

$$g: \left(\begin{array}{c} x\\y\\z \end{array}\right) = \left(\begin{array}{c} 10\\3\\-12 \end{array}\right) + s \left(\begin{array}{c} -5\\1\\-3 \end{array}\right)$$

Ebene = Aufpunkt + 1.Faktor * 1.Vektor + 2.Faktor * 2. Vektor

$$E: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 10 \\ 3 \\ -12 \end{pmatrix} + s \begin{pmatrix} -5 \\ 1 \\ -3 \end{pmatrix} + t \begin{pmatrix} 4 \\ 9 \\ 1 \end{pmatrix}$$

Koordinatengleichung der Ebene

Parameterdarstellung:

$$E: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + s \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix} + t \begin{pmatrix} 2 \\ 2 \\ -4 \end{pmatrix}$$

• Kreuzprodukt der Vektoren berechnen

$$\begin{pmatrix} -3\\1\\1 \end{pmatrix} x \begin{pmatrix} 2\\2\\-4 \end{pmatrix} = \begin{pmatrix} -6\\-10\\-8 \end{pmatrix} = \begin{pmatrix} 3\\5\\4 \end{pmatrix}$$

• Gleichung aufstellen

$$3x + 5y + 4z = 0$$

• Aufpunkt einsetzen

$$3-5+8=6$$

$$\Rightarrow 3x+5y+4z=6$$

$$\Rightarrow 3x+5y+4z-6=0$$

Matrizen

Matrix-Vektor Multiplikation

$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} xa_1 + yb_1 + zc_1 \\ xa_2 + yb_2 + zc_2 \\ xa_3 + yb_3 + zc_3 \end{pmatrix}$$

Es gilt:

$$A \cdot (\vec{v} + \vec{w}) = A \cdot \vec{v} + A \cdot \vec{w}$$
$$A \cdot (\alpha \vec{v}) = \alpha A \vec{v}$$
$$A \cdot \vec{0} = \vec{0}$$

Matrix-Matrix Multiplikation

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \cdot \left(\begin{array}{cc} q & r \\ s & t \end{array}\right) = \left(\begin{array}{cc} (aq+bs) & (ar+bt) \\ (cq+ds) & (cr+dt) \end{array}\right)$$

Interpretion

Interpretation als lineare Operation auf die Spalten von A:

$$A \cdot B = \left(\left\{ \begin{array}{c} 2 \\ -1 \end{array} \right\} \left\{ \begin{array}{c} -5 \\ 3 \end{array} \right\} \right) \cdot \left(\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right) = \left(\left\{ \begin{array}{c} 4 \\ -2 \end{array} \right\} \left\{ \begin{array}{c} -15 \\ 9 \end{array} \right\} \right)$$

Interpretation als lineare Operation auf die Zeilen von A:

$$B \cdot A = \left(\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array}\right) \cdot \left(\begin{array}{cc} \{2 & -5\} \\ \{-1 & 3\} \end{array}\right) = \left(\begin{array}{cc} \{4 & -10\} \\ \{-3 & 9\} \end{array}\right)$$

Das Inverse einer Matrix

Für das Inverse A^{-1} einer Matrix A gilt $A \cdot A^{-1} = I$.

Eine quadratische Matrix lässt sich genau dann invertieren, wenn Ihre Spalten linear unabhängig sind:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{ad - bc} \cdot \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Ist eine Matrix grösser (als quadr.) so lässt sich das Inverse mit dem Gausschen Eliminationsverfahren ermittelt.

Kern einer Matrix

Der Kern einer Matrix sind diejenigen Vektoren die durch die Matrix auf den Nullpunkt abgebildet werden. Sie müssen folgende Gleichung erfüllen:

$$A \cdot v = 0$$

Bei der Matrix $A=\left(\begin{array}{cc} 1 & 3 \\ 2 & 6 \end{array}\right)$ lässt sich der Kern mit dem Gauss wie folgt berechnen:

$$\begin{pmatrix} 1 & 3 & 0 \\ 2 & 6 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Rightarrow Kern(A) = \{\alpha \cdot \begin{pmatrix} -3 \\ 1 \end{pmatrix}, \alpha \varepsilon \mathbb{R}\} = \{\alpha \cdot \begin{pmatrix} -3 \\ 1 \end{pmatrix}, \alpha \varepsilon \mathbb{R}\}$$

Bild einer Matrix

Das Bild einer Matrix sind diejenigen Vektoren die mit der Matrix abgebildet werden können.

Das Bild für die Matrix $A = \begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$ wird wie folgt berechnet:

$$Bild(A) = \{\alpha \cdot \left(\begin{array}{c} 1 \\ 2 \end{array}\right) + \beta \cdot \left(\begin{array}{c} 3 \\ 6 \end{array}\right), \alpha\beta\varepsilon\mathbb{R}\}$$

Vektorräume

Vektorraumaxiome

V heisst Vektorraum über \mathbb{H} , wenn für alle $u, v, w \in V$ und $\lambda, \mu \in \mathbb{H}$ gilt:

- Abgeschlossenheit: $u + v \in V$ und $\lambda v \in V$
- Assoziativität: u + (v + w) = (u + v) + w
- Neutrales Element: Es existiert ein $0 \in V$ mit v + 0 = v
- entgegengesetztes Element: Es gibt ein $-v \in V$ sodaa v + (-v) = 0
- Kommutativität: v + w = w + v
- $\lambda(v+w) = \lambda v + \lambda w$
- $\bullet \ (\lambda + \mu)v = \lambda v + \mu v$
- $\lambda(\mu v) = (\lambda \mu)v$
- 1v = v, wobei 1 das multiplikative neutrale Element von \mathbb{H} ist.

Unterräume

Symmetrische reelle Matrizen

Formel

$$A = V \cdot \Lambda \cdot V^{-1} \Longleftrightarrow A^{-1} = V \cdot \Lambda^{-1} \cdot V$$

Berechnungen

- 1. Eigenwerte berechnen
- 2. Eigenvektoren berechnen (Wenn es eine orthogonale Matrix sein, muss, müssen die Eigenvektoren orthogonal sein)
- 3. Eigenvektoren normieren
- 4. Gleichung $A = V \cdot \Lambda \cdot V^T$ aufstellen wobei gilt V = Eigenvektoren, $V^{-1} = V^T$, $\Lambda = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

Beispiel:

Berechnen Sie die Eigenwerte der Matrix $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ sowie eine orthogonale Matrix V, die A diagonalisiert, das heisst $A = V \cdot \Lambda \cdot V^T$, $A = diag(\lambda_1, \lambda_2)$, $V^{-1} = V^T$

$$det(A - \lambda I) = \begin{pmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{pmatrix} = (3 - \lambda)(3 - \lambda) - 1 = \lambda^2 - 6\lambda + 8$$

$$\Rightarrow \lambda_{1,2} = 4/2$$

 Λ ist also:

$$\begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\lambda = 4$$

$$\begin{pmatrix} 3-4 & 1 \\ 1 & 3-4 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix} \Rightarrow v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\lambda = 2$$

$$\left(\begin{array}{cc} 3-2 & 1 \\ 1 & 3-2 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \Rightarrow \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right) \Rightarrow v_2 = \left(\begin{array}{cc} 1 \\ -1 \end{array}\right)$$

Kontrolle:

$$v_1 \bullet v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 1 \cdot 1 + 1 \cdot (-1) = 0$$

Normierung:

$$|v_1| = \sqrt{x^2 + y^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$$

 $|v_2| = \sqrt{x^2 + y^2} = \sqrt{1^2 + (-1)^2} = \sqrt{2}$

Folglich sehen die Normierten Vektoren wie folgt aus:

$$v_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, v_2 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{pmatrix}$$

Die Orthogonale Matrix ist folglich:

$$V = \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{array}\right)$$

Und zum Schluss:

$$A = V \cdot \Lambda \cdot V^T$$

$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}^T$$

Basen

Kanonische Basisvektoren

Sind die Vektoren $l_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und $l_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Mit ihnen lassen sich beliebige Vektoren Darstellen

$$\left(\begin{array}{c} 3\\4 \end{array}\right) = 3 \cdot \left(\begin{array}{c} 1\\0 \end{array}\right) + 4 \left(\begin{array}{c} 0\\1 \end{array}\right)$$

Neue Basis verwenden

Es können auch andere Basen verwendet werden, zb. $b_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$\left(\begin{array}{c} 3 \\ 4 \end{array}\right) = \alpha \cdot \left(\begin{array}{c} 1 \\ 1 \end{array}\right) + \beta \cdot \left(\begin{array}{c} 1 \\ -1 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \cdot \left(\begin{array}{c} \alpha \\ \beta \end{array}\right)$$

Wobei es sich bei der Matrix $B=\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right)$ nun um die neue Basis handelt.

Daraus folgt:

$$v = B \cdot v_B = C \cdot v_C$$

Basis prüfen

Um zu prüfen ob Vektoren eine Basis von \mathbb{R}^3 ist, kann die Determinante ausgerechnet werden.

- Determinante = $0 \Rightarrow$ Keine Basis, da linear abhängig
- Determinante $\neq 0 \Rightarrow$ Ist eine Basis

Basiswechsel

$$A_B = B^{-1} \cdot A \cdot B \iff A = B \cdot A_B \cdot B^{-1}$$

Bei Potenzen:

$$A^{10} = (B \cdot A_B \cdot B^{-1})^{10} = B \cdot A_B^{10} \cdot B^{-1}$$

Determinate einer Matrix

2x2 Matrizen

Die Determinate einer Matrix mit linear unabhängigen Zeilen und Spalten lässt sich wie folgt berechnen:

$$Det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$$

Enthält die Matrix jedoch linear abhängige Zeilen oder Spalten oder eine Zeile oder Spalte besteht nur aus Nullen, so ist die Determinate 0.

6

3x3 Matrizen

$$Det(A) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

NxN Matrizen

Grundsätzlich kann die Determinate mit folgendem Trick berechnet werden:

- Eine Zeile auswählen, am besten eine mit vielen 0en
- Für jeden Eintrag Kreuzweise abdecken

Zum Beispiel Zeile 2:

$$\begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix} \Rightarrow \begin{pmatrix} & b & c & d \\ e & & & & \\ & j & k & l \\ & n & o & p \end{pmatrix}, \begin{pmatrix} a & & c & d \\ & f & & & \\ i & & k & l \\ m & & o & p \end{pmatrix}, \begin{pmatrix} a & b & & d \\ & & g & & \\ i & j & & l \\ m & n & & p \end{pmatrix}, \begin{pmatrix} a & b & c & & \\ & & & h & \\ i & j & k & \\ m & n & o & \end{pmatrix}$$

Anschliessend können mit der Hilfmatrix $\begin{pmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{pmatrix}$ die Vorzeichen ermittelt werden. Schlussendliche sie die Determination

$$Det(A) = -e \cdot det \begin{pmatrix} b & c & d \\ j & k & l \\ n & o & p \end{pmatrix} + f \cdot det \begin{pmatrix} a & c & d \\ i & k & l \\ m & o & p \end{pmatrix} - g \cdot det \begin{pmatrix} a & b & d \\ i & j & l \\ m & n & p \end{pmatrix} + h \cdot det \begin{pmatrix} a & b & c \\ i & j & k \\ m & n & o \end{pmatrix}$$

Eigenwert & Eigenvektor

Es gilt:

$$A\vec{v} = \lambda \cdot \vec{v}$$
, $\lambda \in \mathbb{R}$, $\vec{v} \neq \vec{0}$

Wobei es sich bei λ um den Eigenwert handelt und bei \vec{v} um den Eigenvektor. Daraus folgt:

$$(A - \lambda I) \cdot \vec{v} = \vec{0}$$

Nun können mit Hilfe der Determinaten die Eigenwerte berechnet werden (ausmultiplizieren und in Mitternachtsformel einsetzen.

$$det(A - \lambda I) = \begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix}$$
$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$$

Um nun die Eigenvektoren zu erhalten, setzt man die möglichen λ ein und wendet auf diese Matrix den Gauss an und eine Zeile zu eliminieren.

Anschliessend können die erhaltenen Werte umgedreht werden, und einer der beiden negiert werden. Beispiel:

$$\left(\begin{array}{ccc|c} -3 & -1 & |0\\ 3 & 3 & |0 \end{array}\right) \Rightarrow \left(\begin{array}{ccc|c} -3 & -1 & |0\\ 0 & 0 & |0 \end{array}\right) \Rightarrow v = \left(\begin{array}{ccc|c} 1\\ -3 \end{array}\right)$$

Komplexe Zahlen

Komplexe Zahlen bestehen aus einem rellen Teil a und einem imaginärem Teil $i \cdot b$ und sehen wie folgt aus:

$$z = a + i \cdot b$$

Wobei i folgendermassen definiert ist:

$$i = \sqrt{-1} \Leftrightarrow i^2 = -1$$

Komplex konjugiert

Komplex konjugiert nennt man eine komplexe Zahl, wenn das Vorzeichen des imaginären Teiles geändert wird:

$$z = a + i \cdot b \Rightarrow \bar{z} = a - i \cdot b$$

Addition

$$z_1 + z_2 = (a_1 + ib_1) + (a_2 + ib_2) = (a_1 + a_2) + i \cdot (b_1 + b_2)$$

Subtraktion

$$z_1 - z_2 = (a_1 + ib_1) - (a_2 + ib_2) = (a_1 - a_2) + i \cdot (b_1 - b_2)$$

Multiplikation

$$\begin{aligned} z_1 \cdot z_2 &= (a_1 + ib_1) \cdot (a_2 + ib_2) = a_1 a_2 + ib_1 a_2 + a_1 ib_2 + ib_1 ib_2 = a_1 a_2 + ib_1 a_2 + a_1 ib_2 - b_1 \cdot b_2 \\ |z|^2 &= z \cdot \bar{z} = (a + i \cdot b)(a - i \cdot b) = a^2 + b^2 \Leftrightarrow |z| = \sqrt{z \cdot \bar{z}} = \sqrt{(a + i \cdot b)(a - i \cdot b)} = \sqrt{a^2 + b^2} \\ (a + i \cdot b)^2 &= a^2 + 2iab - b^2 \\ (a - i \cdot b)^2 &= a^2 - 2iab - b^2 \\ i^0 &= i^4 = i^8 = 1 \\ i^1 &= i^5 = i^9 = i \\ i^2 &= i^6 = i^{10} = -1 \\ i^3 &= i^7 = i^{11} = -i \end{aligned}$$

Division

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \bar{z_2}}{z_2 \cdot \bar{z_2}} = \frac{z_1 \cdot \bar{z_2}}{|z_2|^2}$$

$$\frac{1}{z} = \frac{\bar{z}}{z \cdot \bar{z}} = \frac{\bar{z}}{|z|^2} = \frac{a - ib}{a^2 + b^2}$$

Nullstellen

$$x^4 = 1 \Rightarrow x_1 = 1, \ x_2 = -1, \ x_3 = i, \ x_4 = -i$$

 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Sollte $b^2 - 4ac$ eine negative Zahl ergeben, so kann -1 mit i^2 ersetzt werden.

Polarkoordinaten

$$\begin{split} r &= |z| = \sqrt{z \cdot \overline{z}} = \sqrt{(a+i \cdot b)(a-i \cdot b)} = \sqrt{a^2 + b^2} \\ a &= r \cdot \cos(\gamma) \Rightarrow \cos(\gamma) = \frac{a}{r} \\ b &= r \cdot \sin(\gamma) \Rightarrow \sin(\gamma) = \frac{b}{r} \\ tan(\gamma) &= \frac{b}{a} = \frac{r \cdot \sin(\gamma)}{r \cdot \cos(\gamma)} = \frac{\sin(\gamma)}{\cos(\gamma)} \end{split}$$

$$r \cdot e^{i\gamma} = a + i \cdot b = \sqrt{a^2 + b^2} \cdot e^{i \cdot arctan(\frac{b}{a})}$$

Hilfsmittel

Cos-Table