

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

Факультет «Радиоэлектроника и лазерная техника» Кафедра «Технологии приборостроения»

Отчет о выполнении Домашнего задания №1 по дисциплине Цифровые устройства и микропроцессоры

Выполнил студент:	Худяков Артём Сергеевич				
	фамилия, имя, отчество				
Группа: РЛ6-61					
Проверил: Семеренко Д. А.					
	подпись				
Оценка	Дата				

План отчета

7
7
8
8
9
9
9
9
9
10
10
10
11
12
12
12
13
13
13
14

Вывод В ССИ	15
СКНФ	15
Минимизация алгебраическим методом	15
Минимизация с помощью карты Карно	15
Минимизация методом Квайна	15
СДНФ	16
Минимизация алгебраическим методом	16
Минимизация с помощью карты Карно	16
Минимизация методом Квайна	17
Перевод в базис 2И-НЕ	18
СКНФ	18
СДНФ	18
Перевод в базис 2ИЛИ-НЕ	19
СКНФ	19
СДНФ	19
Цифровая схема в базисе 2И-НЕ	20
Вывод С ССИ	21
СКНФ	21
Минимизация алгебраическим методом	21
Минимизация с помощью карты Карно	21
Минимизация методом Квайна	21
СДНФ	22
Минимизация алгебраическим методом	22
Минимизация с помощью карты Карно	23
Минимизация методом Квайна	24
Перевод в базис 2И-НЕ	25
СКНФ	25
СДНФ	25
Перевод в базис 2ИЛИ-НЕ	26
СКНФ	
СДНФ	26

Вывод D ССИ	28
СКНФ	28
Минимизация алгебраическим методом	28
Минимизация с помощью карты Карно	28
Минимизация методом Квайна	28
СДНФ	29
Минимизация алгебраическим методом	29
Минимизация с помощью карты Карно	29
Минимизация методом Квайна	30
Перевод в базис 2И-НЕ	31
СКНФ	31
СДНФ	31
Перевод в базис 2ИЛИ-НЕ	32
СКНФ	32
СДНФ	32
Цифровая схема в базисе 2И-НЕ	33
Вывод Е ССИ	34
СКНФ	34
Минимизация алгебраическим методом	34
Минимизация с помощью карты Карно	34
Минимизация методом Квайна	35
СДНФ	36
Минимизация алгебраическим методом	36
Минимизация с помощью карты Карно	36
Минимизация методом Квайна	37
Перевод в базис 2И-НЕ	38
СКНФ	38
СДНФ	38
Перевод в базис 2ИЛИ-НЕ	39
СКНФ	39
СДНФ	39
Цифровая схема в базисе 2И-НЕ	40

Вывод F ССИ	41
СКНФ	41
Минимизация алгебраическим методом	41
Минимизация с помощью карты Карно	41
Минимизация методом Квайна	42
СДНФ	43
Минимизация алгебраическим методом	43
Минимизация с помощью карты Карно	43
Минимизация методом Квайна	44
Перевод в базис 2И-НЕ	45
СКНФ	45
СДНФ	45
Перевод в базис 2ИЛИ-НЕ	46
СКНФ	46
СДНФ	46
Цифровая схема в базисе 2И-НЕ	47
Вывод G ССИ	48
СКНФ	48
Минимизация алгебраическим методом	48
Минимизация с помощью карты Карно	48
Минимизация методом Квайна	49
СДНФ	50
Минимизация алгебраическим методом	50
Минимизация с помощью карты Карно	50
Минимизация методом Квайна	51
Перевод в базис 2И-НЕ	52
СКНФ	52
СДНФ	52
Перевод в базис 2ИЛИ-НЕ	53
СКНФ	53
СДНФ	53
Цифровая схема в базисе 2И-НЕ	54
Полная схема шифратора	55

Реализация счетчика с коэффициентом счета 6	56
Реализация преобразователя кода	57
Конечная схема	58

Дано

Номер студенческого билета

20Л275.

В связи с невозможностью корректно отобразить на ССИ русскую букву «Л» заменяем ее на английскую L.

Тогда, номер студенческого билета: 20L275.

Реализация шифратора

Таблица истинности ССИ

№	x_0	x_1	x_2	x_3	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	1	0	0	0	0	1	1	0	0	0	0
2	0	1	0	0	1	1	0	1	1	0	1
3	1	1	0	0	1	1	1	1	0	0	1
4	0	0	1	0	0	1	1	0	0	1	1
5	1	0	1	0	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	1	1	1	0	1	1	1	0	0	0	0
8	0	0	0	1	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
L	0	1	0	1	0	0	0	1	1	1	0

$$y_{\mathsf{Инвертированы 1}} = (x_0 \lor x_1 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \land (x_0 \lor \overline{x}_1 \lor x_2 \lor x_3)$$

$$\land (\overline{x}_0 \lor \overline{x}_1 \lor x_2 \lor x_3) \land (x_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \land$$

$$\land (x_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (x_0 \lor x_1 \lor x_2 \lor \overline{x}_3) \land$$

$$\land (\overline{x}_0 \lor x_1 \lor x_2 \lor \overline{x}_3) \land (x_0 \lor \overline{x}_1 \lor x_2 \lor \overline{x}_3)$$

$$\lor (\overline{x}_0 \lor x_1 \lor x_2 \lor \overline{x}_3) \lor (x_0 \overline{x}_1 \overline{x}_2 \overline{x}_3) \lor (x_0 \overline{x}_1 \overline{x}_2 \overline{x}_3) \lor (x_0 \overline{x}_1 \overline{x}_2 \overline{x}_3) \lor$$

$$\lor (\overline{x}_0 \overline{x}_1 x_2 \overline{x}_3) \lor (x_0 \overline{x}_1 x_2 \overline{x}_3) \lor (x_0 \overline{x}_1 \overline{x}_2 x_3) \lor$$

$$(x_0 \overline{x}_1 \overline{x}_2 x_3) \lor (\overline{x}_0 x_1 \overline{x}_2 x_3) \lor (\overline{x}_0 x_1 \overline{x}_2 x_3) \lor$$

Вывод А ССИ

СКНФ

$$y_a^{\text{CKH}\Phi} = (\overline{x}_0 \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

Минимизация алгебраическим методом

^{Алгебраический} $y_a^{\text{СКН}\Phi} = \text{ He минимизируется}$

Минимизация с помощью карты Карно

	$x_0 \vee x_1$	$x_0 \vee \overline{x}_1$	$\overline{x}_0 \vee \overline{x}_1$	$\overline{x}_0 \vee x_1$
$x_2 \vee x_3$	1	1	1	0
$x_2 \vee \overline{x}_3$	1	0	1	1
$\overline{x}_2 \vee \overline{x}_3$	0	1	1	1
$\overline{x}_2 \vee x_3$	1	1	1	1

 $_{ ext{Карно}}^{ ext{Метод карт}}y_a^{ ext{СКН}\Phi}= ext{He}$ минимизируется

Минимизация методом Квайна

1	$(\overline{x}_0 \vee x_1 \vee x_2 \vee x_3)$	
2	$(x_0 \lor x_1 \lor \overline{x}_2 \lor x_3)$	
3	$(x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$	

 $_{ ext{Квайна}}^{ ext{Метод}} y_a^{ ext{СКН}\Phi} = ext{He}$ минимизируется

СДНФ

$$y_a^{\mathrm{CДН\Phi}} = (\overline{x}_0 \overline{x}_1 \overline{x}_2 \overline{x}_3) \vee (\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3) \vee (x_0 x_1 \overline{x}_2 \overline{x}_3) \vee (x_0 \overline{x}_1 x_2 \overline{x}_3) \vee (\overline{x}_0 x_1 x_2 \overline{x}_3) \vee (x_0 \overline{x}_1 \overline{x}_2 x_3) \vee (x_0 \overline{x}_1 \overline{x}_$$

Минимизация алгебраическим методом

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_0\overline{x}_2\overline{x}_3$	3'-7'	$x_1\overline{x}_3$
2	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	1-7 (2')	$\overline{x}_0\overline{x}_1\overline{x}_2$	4'-5'	$x_1\overline{x}_3$
3	$x_0 x_1 \overline{x}_2 \overline{x}_3$	2-3 (3')	$x_1\overline{x}_2\overline{x}_3$		
4	$x_0\overline{x}_1x_2\overline{x}_3$	2-5 (4')	$\overline{x}_0 x_1 \overline{x}_3$		
5	$\overline{x}_0 x_1 x_2 \overline{x}_3$	3-6 (5')	$x_0x_1\overline{x}_3$		
6	$x_0x_1x_2\overline{x}_3$	4-6 (6')	$x_0x_2\overline{x}_3$		
7	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	5-6 (7')	$x_1x_2\overline{x}_3$		
8	$x_0\overline{x}_1\overline{x}_2x_3$	7-8 (8')	$\overline{x}_1\overline{x}_2x_3$		

^{Алгебраический} $y_a^{\rm СДН\Phi}=x_1\overline{x}_3$ V $x_0x_2\overline{x}_3$ V $\overline{x}_0\overline{x}_1\overline{x}_2$ V $x_0x_2\overline{x}_3$ V $\overline{x}_1\overline{x}_2x_3$

Минимизация с помощью карты Карно

	x_0x_1	$x_0\overline{x}_1$	$\overline{x}_0\overline{x}_1$	$\overline{x}_0 x_1$
x_2x_3	0	0	0	0
$x_2\overline{x}_3$	1	1	0	1
$\overline{x}_2\overline{x}_3$	1	0		1
$\overline{x}_2 x_3$	0	1	1	0

 $^{\text{Метод карт}}_{\text{Карно}}y_a^{\text{СДН}\Phi} = x_1\overline{x}_3 \vee x_0x_2\overline{x}_3 \vee \overline{x}_0\overline{x}_2\overline{x}_3 \vee \overline{x}_1\overline{x}_2x_3$

Минимизация методом Квайна

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_0\overline{x}_2\overline{x}_3$	3'-7'	$x_1\overline{x}_3$
2	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	1-7 (2')	$\overline{x}_0\overline{x}_1\overline{x}_2$	4'-5'	$x_1\overline{x}_3$
3	$x_0 x_1 \overline{x}_2 \overline{x}_3$	2-3 (3')	$x_1\overline{x}_2\overline{x}_3$		
4	$x_0\overline{x}_1x_2\overline{x}_3$	2-5 (4')	$\overline{x}_0 x_1 \overline{x}_3$		
5	$\overline{x}_0 x_1 x_2 \overline{x}_3$	3-6 (5')	$x_0x_1\overline{x}_3$		
6	$x_0x_1x_2\overline{x}_3$	4-6 (6')	$x_0x_2\overline{x}_3$		
7	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	5-6 (7')	$x_1x_2\overline{x}_3$		
8	$x_0\overline{x}_1\overline{x}_2x_3$	7-8 (8')	$\overline{x}_1\overline{x}_2x_3$		

	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	$x_0 x_1 \overline{x}_2 \overline{x}_3$	$x_0\overline{x}_1x_2\overline{x}_3$	$\overline{x}_0 x_1 x_2 \overline{x}_3$	$x_0x_1x_2\overline{x}_3$	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	$x_0\overline{x}_1\overline{x}_2x_3$
$x_1\overline{x}_3$		×	×		×	×		
$\overline{x}_0\overline{x}_2\overline{x}_3$	×	×						
$\overline{x}_0\overline{x}_1\overline{x}_2$	×						×	
$x_0x_2\overline{x}_3$				×		×		
$\overline{x}_1\overline{x}_2x_3$							×	×

Метод $y_a^{\rm CДН\Phi}=x_1\overline{x}_3 \vee x_0x_2\overline{x}_3 \vee \overline{x}_1\overline{x}_2x_3 \vee \overline{x}_0\overline{x}_2\overline{x}_3$

Перевод в базис 2И-НЕ

СКНФ

$$y_{a}^{\text{CKH}\Phi} = (\overline{x}_{0} \vee x_{1} \vee x_{2} \vee x_{3}) \wedge (x_{0} \vee x_{1} \vee \overline{x}_{2} \vee x_{3}) \wedge (x_{0} \vee \overline{x}_{1} \vee x_{2} \vee \overline{x}_{3})$$

$$\overline{x}_{0} \vee x_{1} \vee x_{2} \vee x_{3} = \overline{\overline{x}_{0} \vee x_{1}} \vee \overline{\overline{x}_{2} \vee x_{3}} = \overline{\overline{x}_{0} \wedge \overline{x}_{1}} \vee \overline{\overline{x}_{2} \wedge \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}_{1}} \vee \overline{x_{2} \vee \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}_{1}} \wedge \overline{x_{2} \wedge \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}_{1} \wedge \overline{x}_{2} \wedge \overline{x}_{3}} \times \overline{x_{0} \wedge \overline{x}_{1} \wedge \overline{x}_{2} \wedge \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}_{1} \wedge \overline{x}_{2} \wedge \overline{x}_{3}} \times \overline{x_{0} \wedge \overline$$

Перевод в базис 2ИЛИ-НЕ

СКНФ

$$y_a^{\text{CKHoP}} = (\overline{x}_0 \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$(\overline{x}_0 \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x}_2 \vee x_3) =$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \wedge (x_0 \vee x_1 \vee \overline{x}_2 \vee x_3)$$

$$(\overline{x}_0 \vee x_1 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3)$$

$$(\overline{x}_0 \vee x_1 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee x_3}) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x}_0 \vee x_1 \vee x_2 \vee \overline{x}_3}) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3)$$

$$= (\overline{\overline{x$$

Цифровая схема в базисе 2И-НЕ

$$_{\text{Карно}}^{\text{Метод карт}}y_{a}^{\text{СДН}\Phi^{2\text{И}-\text{HE}}} = \overline{\overline{x_{1}}\overline{x_{3}}} \wedge \overline{x_{0}x_{2}}\overline{x_{3}} \wedge \overline{\overline{x_{0}}\overline{x_{2}}\overline{x_{3}}} \wedge \overline{\overline{x_{1}}\overline{x_{2}}x_{3}}$$

Схема

Временная диаграмма

Вывод В ССИ

СКНФ

$$y_b^{\text{CKH}\Phi} = (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

Минимизация алгебраическим методом

^{Алгебраический} $y_b^{\mathsf{CKH}\Phi} = \mathsf{He}$ минимизируется

Минимизация с помощью карты Карно

	$x_0 \vee x_1$	$x_0 \vee \overline{x}_1$	$\overline{x}_0 \vee \overline{x}_1$	$\overline{x}_0 \lor x_1$
$x_2 \vee x_3$	1	1	1	1
$x_2 \vee \overline{x}_3$	1	0	1	1
$\overline{x}_2 \vee \overline{x}_3$	1	1	1	1
$\overline{x}_2 \vee x_3$	1	0	1	0

 $_{\text{Карно}}^{\text{Метод карт}}y_b^{\text{СКН}\Phi}=\text{He}$ минимизируется

Минимизация методом Квайна

1	$\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3$	
2	$x_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3$	
3	$x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3$	

 $_{\mathrm{Квайна}}^{\mathrm{Метод}}y_{b}^{\mathrm{СКН\Phi}}=\mathrm{He}$ минимизируется

СДНФ

$$y_b^{\mathrm{CДH\Phi}} = (\overline{x}_0 \overline{x}_1 \overline{x}_2 \overline{x}_3) \vee (x_0 \overline{x}_1 \overline{x}_2 \overline{x}_3) \vee (\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3) \vee (x_0 x_1 \overline{x}_2 \overline{x}_3) \vee (\overline{x}_0 \overline{x}_1 x_2 \overline{x}_3) \vee (x_0 \overline{x}_1 \overline{x}_2 \overline{x}_3)$$

Минимизация алгебраическим методом

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_1\overline{x}_2\overline{x}_3$	1'-7'	$\overline{x}_2\overline{x}_3$
2	$x_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-3 (2')	$\overline{x}_0\overline{x}_2\overline{x}_3$	1'-9'	$\overline{x}_1\overline{x}_2$
3	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	1-5 (3')	$\overline{x}_0\overline{x}_1\overline{x}_3$	2'-5'	$\overline{x}_2\overline{x}_3$
4	$x_0 x_1 \overline{x}_2 \overline{x}_3$	1-7 (4')	$\overline{x}_0\overline{x}_1\overline{x}_2$	4'-6'	$\overline{x}_1\overline{x}_2$
5	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	2-4 (5')	$x_0\overline{x}_2\overline{x}_3$		
6	$x_0 x_1 x_2 \overline{x}_3$	2-8 (6')	$x_0\overline{x}_1\overline{x}_2$		
7	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	3-4 (7')	$x_1\overline{x}_2\overline{x}_3$		
8	$x_0\overline{x}_1\overline{x}_2x_3$	4-6 (8')	$x_0x_1\overline{x}_3$		
		7-8 (9')	$\overline{x}_1\overline{x}_2x_3$		

Алгебраический $y_b^{\rm CДН\Phi}=\overline{x}_2\overline{x}_3 \vee \overline{x}_1\overline{x}_2 \vee \overline{x}_0\overline{x}_1\overline{x}_3 \vee x_0x_1\overline{x}_3$

Минимизация с помощью карты Карно

	x_0x_1	$x_0\overline{x}_1$	$\overline{x}_0\overline{x}_1$	$\overline{x}_0 x_1$
x_2x_3	0	0	0	0
$x_2\overline{x}_3$	1	0	1	0
$\overline{x}_2\overline{x}_3$	1	1	1	1
$\overline{x}_2 x_3$	0	1	1	0

^{Метод карт} у $_b^{\text{СДН}\Phi} = x_0x_1\overline{x}_3 \vee \overline{x}_1\overline{x}_2 \vee \overline{x}_0\overline{x}_1\overline{x}_3 \vee \overline{x}_2\overline{x}_3$

Минимизация методом Квайна

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_1\overline{x}_2\overline{x}_3$	1'-7'	$\overline{x}_2\overline{x}_3$
2	$x_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-3 (2')	$\overline{x}_0\overline{x}_2\overline{x}_3$	1'-9'	$\overline{x}_1\overline{x}_2$
3	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	1-5 (3')	$\overline{x}_0\overline{x}_1\overline{x}_3$	2'-5'	$\overline{x}_2\overline{x}_3$
4	$x_0 x_1 \overline{x}_2 \overline{x}_3$	1-7 (4')	$\overline{x}_0\overline{x}_1\overline{x}_2$	4'-6'	$\overline{x}_1\overline{x}_2$
5	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	2-4 (5')	$x_0\overline{x}_2\overline{x}_3$		
6	$x_0x_1x_2\overline{x}_3$	2-8 (6')	$x_0\overline{x}_1\overline{x}_2$		
7	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	3-4 (7')	$x_1\overline{x}_2\overline{x}_3$		
8	$x_0\overline{x}_1\overline{x}_2x_3$	4-6 (8')	$x_0x_1\overline{x}_3$		
		7-8 (9')	$\overline{x}_1\overline{x}_2x_3$		

	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	$x_0\overline{x}_1\overline{x}_2\overline{x}_3$	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	$x_0 x_1 \overline{x}_2 \overline{x}_3$	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	$x_0x_1x_2\overline{x}_3$	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	$x_0\overline{x}_1\overline{x}_2x_3$
$\overline{x}_1\overline{x}_2$	×	×					×	×
$\overline{x}_2\overline{x}_3$	×	×	×	×				
$x_0x_1\overline{x}_3$				×		×		
$\overline{x}_0\overline{x}_1\overline{x}_3$	×				×			

 $_{\mathrm{Квайна}}^{\mathrm{Метод}}y_{b}^{\mathrm{СДН\Phi}}=\overline{x}_{1}\overline{x}_{2}\vee\overline{x}_{2}\overline{x}_{3}\vee\overline{x}_{0}\overline{x}_{1}\overline{x}_{3}\vee x_{0}x_{1}\overline{x}_{3}$

Перевод в базис 2И-НЕ

СКНФ

$$y_{b}^{\text{CKH}\Phi} = (\overline{x}_{0} \vee x_{1} \vee \overline{x}_{2} \vee x_{3}) \wedge (x_{0} \vee \overline{x}_{1} \vee \overline{x}_{2} \vee x_{3}) \wedge (x_{0} \vee \overline{x}_{1} \vee x_{2} \vee \overline{x}_{3})$$

$$\overline{x}_{0} \vee x_{1} \vee \overline{x}_{2} \vee x_{3} = \overline{\overline{x}_{0} \vee x_{1}} \vee \overline{\overline{x}_{2} \vee x_{3}} = \overline{\overline{x}_{0} \wedge \overline{x}_{1}} \vee \overline{\overline{x}_{2} \wedge \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}_{1}} \vee \overline{x_{2} \wedge \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}_{1} \wedge \overline{x}_{2} \wedge \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}_{1}} \vee \overline{x_{2} \wedge \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}_{1}} \vee \overline{x_{2} \wedge \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}_{1} \wedge \overline{x}_{2} \wedge \overline{x}_{3} \wedge \overline{x}_{2} \wedge \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}_{1} \wedge \overline{x}_{2} \wedge \overline{x}_{3} \wedge \overline{x}_{2} \wedge \overline{x}_{3}} = \overline{x_{0} \wedge \overline{x}$$

Перевод в базис 2ИЛИ-НЕ

СКНФ

$$y_b^{\text{CKH}\Phi} = (\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$(\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) =$$

$$= \overline{(\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3)} =$$

$$= \overline{(\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3)} =$$

$$= \overline{(\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3)} \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3) =$$

$$= \overline{(\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3)} \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3) =$$

$$= \overline{(\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3)} \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3) =$$

$$= \overline{(\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3)} \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3) =$$

$$= \overline{(\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3)} \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$y_b^{\text{CKH}\Phi^{2MJH}-\text{HE}} = \overline{(\overline{x}_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3)} \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

$$CDH\Phi$$

$$\text{Merog. Kapt. } y_b^{\text{CDH}\Phi} = x_0 x_1 \overline{x}_3 \vee \overline{x}_1 \wedge \overline{x}_3 = \overline{\overline{x}_0 \vee \overline{x}_1 \wedge \overline{x}_3} = \overline{\overline{x}_0 \vee \overline{x}_1 \wedge \overline{x}_3} = \overline{\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3}$$

$$\overline{x}_1 \wedge \overline{x}_2 = \overline{\overline{x}_1 \wedge \overline{x}_2} = \overline{\overline{x}_1 \vee \overline{x}_2} = \overline{x}_1 \vee \overline{x}_2$$

$$\overline{x}_0 \wedge \overline{x}_1 \wedge \overline{x}_3 = \overline{\overline{x}_0 \wedge \overline{x}_1} \wedge \overline{x}_3 = \overline{\overline{x}_0 \vee \overline{x}_1 \wedge \overline{x}_3} = \overline{\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3}$$

$$\overline{x}_2 \wedge \overline{x}_3 = \overline{\overline{x}_0 \wedge \overline{x}_1 \wedge \overline{x}_3} = \overline{\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3} = \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3$$

$$\overline{x}_2 \wedge \overline{x}_3 = \overline{\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3} = \overline{\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3} = \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3$$

$$\overline{x}_2 \wedge \overline{x}_3 = \overline{\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3} = \overline{\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3} = \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3$$

$$\overline{x}_2 \wedge \overline{x}_3 = \overline{\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3 = \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3$$

$$\overline{x}_2 \wedge \overline{x}_3 = \overline{\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3 \vee \overline{x}_1 \vee \overline{x}_3 = \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3 \vee \overline{x}_2 \vee \overline{x}_3$$

$$\overline{x}_2 \wedge \overline{x}_3 = \overline{\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 = \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_3 \vee \overline{x}_2 \vee \overline{x}_3$$

$$\overline{x}_1 \wedge \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_1 \vee \overline{x}_3 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3$$

Цифровая схема в базисе 2И-НЕ

$$_{\text{Карно}}^{\text{Метод карт}}y_{b}^{\text{СДН}\Phi^{2\mathsf{V}-\mathsf{HE}}} = \overline{\overline{x_{0}x_{1}\overline{x}_{3}}} \wedge \overline{\overline{x_{1}}\overline{x_{2}}} \wedge \overline{\overline{x_{0}}\overline{x_{1}}\overline{x_{3}}} \wedge \overline{\overline{x_{2}}\overline{x_{3}}}$$

Схема

	Name	Value at 100.0 ns	0 ps	20.0 ns	40.0 ns	60.0 ns	80.0 ns	100, 100.
in	x0	B 0						
in_	x1	B 1						
in_	x2	B 0						
in_	x3	B 1						
out —	b	B 0						

Временная диаграмма

Вывод С ССИ

СКНФ

$$y_c^{\text{CKH}\Phi} = (x_0 \vee \overline{x}_1 \vee x_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$$

Минимизация алгебраическим методом

$$(x_0 \vee \overline{x}_1 \vee x_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3) = (x_0 \vee \overline{x}_1 \vee x_2) \vee (x_3 \wedge \overline{x}_3) =$$

$$= x_0 \vee \overline{x}_1 \vee x_2$$

^{Алгебраический} $y_c^{\rm CKH\Phi} = x_0 \vee \overline{x}_1 \vee x_2$

Минимизация с помощью карты Карно

	$x_0 \vee x_1$	$x_0 \vee \overline{x}_1$	$\overline{x}_0 \vee \overline{x}_1$	$\overline{x}_0 \lor x_1$
$x_2 \vee x_3$	1	0	1	1
$x_2 \vee \overline{x}_3$	1	0	1	1
$\overline{x}_2 \vee \overline{x}_3$	1	1	1	1
$\overline{x}_2 \vee x_3$	1	1	1	1

Метод карт $y_c^{\text{СКН}\Phi} = x_0 \vee \overline{x}_1 \vee x_2$

Минимизация методом Квайна

1	$x_0 \lor \overline{x}_1 \lor x_2 \lor x_3$	1-2 (1')	$\overline{x}_1 \lor x_2 \lor x_3$
2	$x_0 \lor \overline{x}_1 \lor x_2 \lor \overline{x}_3$		

	$x_0 \vee \overline{x}_1 \vee x_2 \vee x_3$	$x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3$
$\overline{x}_1 \lor x_2 \lor x_3$	×	×

 $_{\mathrm{Kвайна}}^{\mathrm{Метод}}y_{c}^{\mathrm{CKH\Phi}}=\overline{x}_{1}\vee x_{2}\vee x_{3}$

СДНФ

$$\begin{aligned} y_c^{\text{СДН}\Phi} &= (\overline{x}_0 \overline{x}_1 \overline{x}_2 \overline{x}_3) \vee (x_0 \overline{x}_1 \overline{x}_2 \overline{x}_3) \vee (x_0 x_1 \overline{x}_2 \overline{x}_3) \vee (\overline{x}_0 \overline{x}_1 x_2 \overline{x}_3) \\ \vee & (x_0 \overline{x}_1 x_2 \overline{x}_3) \vee (\overline{x}_0 x_1 x_2 \overline{x}_3) \vee (x_0 x_1 x_2 \overline{x}_3) \vee (\overline{x}_0 \overline{x}_1 \overline{x}_2 x_3) \vee (x_0 \overline{x}_1 \overline{x}_2 x_3) \end{aligned}$$

Минимизация алгебраическим методом

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_1\overline{x}_2\overline{x}_3$	1'-8'	$\overline{x}_1\overline{x}_3$
2	$x_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-4 (2')	$\overline{x}_0\overline{x}_1\overline{x}_3$	1'-12'	$\overline{x}_1\overline{x}_2$
3	$x_0x_1\overline{x}_2\overline{x}_3$	1-8 (3')	$\overline{x}_0\overline{x}_1\overline{x}_2$	2'-5'	$\overline{x}_1\overline{x}_3$
4	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	2-3 (4')	$x_0\overline{x}_2\overline{x}_3$	3'-6'	$\overline{x}_1\overline{x}_2$
5	$x_0\overline{x}_1x_2\overline{x}_3$	2-5 (5')	$x_0\overline{x}_1\overline{x}_3$	4'-10'	$x_0\overline{x}_3$
6	$\overline{x}_0 x_1 x_2 \overline{x}_3$	2-9 (6')	$x_0\overline{x}_1\overline{x}_2$	5'-7'	$x_0\overline{x}_3$
7	$x_0x_1x_2\overline{x}_3$	3-7 (7')	$x_0x_1\overline{x}_3$	8'-11'	$x_2\overline{x}_3$
8	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	4-5 (8')	$\overline{x}_1 x_2 \overline{x}_3$	9'-10'	$x_2\overline{x}_3$
9	$x_0\overline{x}_1\overline{x}_2x_3$	4-6 (9')	$\overline{x}_0 x_2 \overline{x}_3$		
10		5-7 (10')	$x_0x_2\overline{x}_3$		
11		6-7 (11')	$x_1x_2\overline{x}_3$		
12		8-9 (12')	$\overline{x}_1\overline{x}_2x_3$		

^{Алгебраический} $y_c^{\rm СДН\Phi} = \overline{x}_1 \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 \vee x_0 \overline{x}_3 \vee x_2 \overline{x}_3$

Минимизация с помощью карты Карно

	x_0x_1	$x_0\overline{x}_1$	$\overline{x}_0\overline{x}_1$	$\overline{x}_0 x_1$
x_2x_3	0	0	0	0
$x_2\overline{x}_3$	1	1	1	1
$\overline{x}_2\overline{x}_3$	1	1	1	0
$\overline{x}_2 x_3$	0	1	1	0

^{Метод карт}
$$y_c^{\rm СДН\Phi} = x_2\overline{x}_3 \vee x_0\overline{x}_3 \vee \overline{x}_1\overline{x}_2$$

Минимизация методом Квайна

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_1\overline{x}_2\overline{x}_3$	1'-8'	$\overline{x}_1\overline{x}_3$
2	$x_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-4 (2')	$\overline{x}_0\overline{x}_1\overline{x}_3$	1'-12'	$\overline{x}_1\overline{x}_2$
3	$x_0x_1\overline{x}_2\overline{x}_3$	1-8 (3')	$\overline{x}_0\overline{x}_1\overline{x}_2$	2'-5'	$\overline{x}_1\overline{x}_3$
4	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	2-3 (4')	$x_0\overline{x}_2\overline{x}_3$	3'-6'	$\overline{x}_1\overline{x}_2$
5	$x_0\overline{x}_1x_2\overline{x}_3$	2-5 (5')	$x_0\overline{x}_1\overline{x}_3$	4'-10'	$x_0\overline{x}_3$
6	$\overline{x}_0 x_1 x_2 \overline{x}_3$	2-9 (6')	$x_0\overline{x}_1\overline{x}_2$	5'-7'	$x_0\overline{x}_3$
7	$x_0x_1x_2\overline{x}_3$	3-7 (7')	$x_0x_1\overline{x}_3$	8'-11'	$x_2\overline{x}_3$
8	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	4-5 (8')	$\overline{x}_1 x_2 \overline{x}_3$	9'-10'	$x_2\overline{x}_3$
9	$x_0\overline{x}_1\overline{x}_2x_3$	4-6 (9')	$\overline{x}_0 x_2 \overline{x}_3$		
10		5-7 (10')	$x_0x_2\overline{x}_3$		
11		6-7 (11')	$x_1x_2\overline{x}_3$		
12		8-9 (12')	$\overline{x}_1\overline{x}_2x_3$		

	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	$x_0\overline{x}_1\overline{x}_2\overline{x}_3$	$x_0 x_1 \overline{x}_2 \overline{x}_3$	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	$x_0\overline{x}_1x_2\overline{x}_3$	$\overline{x}_0 x_1 x_2 \overline{x}_3$	$x_0x_1x_2\overline{x}_3$	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	$x_0\overline{x}_1\overline{x}_2x_3$
$\overline{x}_1\overline{x}_3$	×	×		×	×				
$\overline{x}_1\overline{x}_2$	×	×						×	×
$x_0\overline{x}_3$		×	×		×		×		
$x_2\overline{x}_3$				×	×	×	×		

Метод $y_c^{\rm CДН\Phi} = x_0 \overline{x}_3 \vee x_2 \overline{x}_3 \vee \overline{x}_1 \overline{x}_2$

Перевод в базис 2И-НЕ

СКНФ

$$_{\mathrm{Карно}}^{\mathrm{Метод \ Kapt}}y_{c}^{\mathrm{CKH\Phi}}=x_{0}\vee\overline{x}_{1}\vee x_{2}$$

$$x_{0} \vee \overline{x}_{1} \vee x_{2} = \overline{\overline{x}_{0} \vee \overline{x}_{1}} \vee x_{2} = \overline{\overline{x}_{0} \wedge \overline{x}_{1}} \vee x_{2} = \overline{\overline{x}_{0} \wedge x_{1}} \vee x_{2} = \overline{\overline{x}_{0} \wedge x_{1}} \vee x_{2} = \overline{\overline{x}_{0} \wedge x_{1}} \vee x_{2} = \overline{\overline{x}_{0} \wedge x_{1} \wedge \overline{x}_{2}} = \overline{\overline{x}_{0} \wedge x_{1} \wedge \overline{x}_{2}}$$

$$= \overline{\overline{x}_{0} \wedge x_{1} \wedge \overline{x}_{2}} = \overline{\overline{x}_{0} \wedge x_{1} \wedge \overline{x}_{2}}$$

$$\xrightarrow{\text{Metod Kapt } y_{c}^{\text{CZH}\Phi^{2\text{M}-HE}}} = \overline{\overline{x}_{0} \wedge x_{1} \wedge \overline{x}_{2}}$$

СДНФ

^{Метод карт}
$$y_c^{\rm СДН\Phi} = x_2\overline{x}_3 \vee x_0\overline{x}_3 \vee \overline{x}_1\overline{x}_2$$

$$x_2\overline{x}_3 \vee x_0\overline{x}_3 \vee \overline{x}_1\overline{x}_2 = \overline{\overline{x}_2\overline{x}_3 \vee x_0\overline{x}_3} \vee \overline{x}_1\overline{x}_2 = \overline{\overline{x}_2\overline{x}_3} \wedge \overline{\overline{x}_0\overline{x}_3} \vee \overline{x}_1\overline{x}_2 = \overline{\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} = \overline{\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} = \overline{\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} = \overline{\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} = \overline{\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{x}_1\overline{x}_1\overline{x}_1\overline{x}_2} \vee \overline{\overline{x}_1\overline{$$

$$\frac{\underline{\underline{\underline{}}}\underline{\overline{x_3}} \wedge \overline{\underline{x_0}}\overline{\overline{x_3}} \vee \overline{x_1}\overline{x_2} = \underline{\underline{\underline{}}}\underline{\overline{x_3}} \wedge \overline{\underline{x_0}}\overline{\overline{x_3}} \wedge \overline{\overline{x_1}}\overline{\overline{x_2}} = \underline{\underline{x_2}}\overline{\overline{x_3}} \wedge \overline{x_0}\overline{\overline{x_3}} \wedge \overline{\overline{x_1}}\overline{\overline{x_2}}$$

$$_{\text{Карно}}^{\text{Метод карт}}y_{c}^{\text{СДН}\Phi^{2\text{И}-\text{HE}}} = \overline{\overline{x_{2}}\overline{x_{3}}} \wedge \overline{x_{0}}\overline{x_{3}} \wedge \overline{\overline{x_{1}}\overline{x_{2}}}$$

Перевод в базис 2ИЛИ-НЕ

СКНФ

$$_{\mathrm{Карно}}^{\mathrm{Метод \ Kapt}}y_{c}^{\mathrm{CKH\Phi}}=x_{0}\vee\overline{x}_{1}\vee x_{2}$$

$$_{ ext{Карно}}^{ ext{Метод карт}}y_c^{ ext{СДН}\Phi^{2} ext{ИЛИ}- ext{HE}}=x_0 \vee \overline{x}_1 \vee x_2$$

СДНФ

Метод карт
$$y_c^{\rm СДН\Phi}=x_2\overline{x}_3 \vee x_0\overline{x}_3 \vee \overline{x}_1\overline{x}_2$$

$$x_2 \wedge \overline{x}_3 = \overline{\overline{x}_2 \wedge \overline{x}_3} = \overline{\overline{x}_2 \vee \overline{\overline{x}}_3} = \overline{\overline{x}_2 \vee x_3}$$

$$x_0 \wedge \overline{x}_3 = \overline{\overline{x}_0 \wedge \overline{x}_3} = \overline{\overline{x}_0 \vee \overline{\overline{x}}_3} = \overline{\overline{x}_0 \vee x_3}$$

$$\overline{x}_1 \wedge \overline{x}_2 = \overline{\overline{\overline{x}_1} \wedge \overline{\overline{x}_2}} = \overline{\overline{\overline{x}_1} \vee \overline{\overline{x}_2}} = \overline{x_1} \vee \overline{x_2}$$

$$^{\text{Метод карт}}_{\text{Карно}} y_c^{\text{СДН}\Phi^{2ИЛИ-HE}} = \overline{\overline{x}_2 \vee x_3} \vee \overline{\overline{x}_0 \vee x_3} \vee \overline{x_1 \vee x_2}$$

Цифровая схема в базисе 2И-НЕ

$$_{\text{Карно}}^{\text{Метод карт}} y_c^{\text{СДН}\Phi^{2\text{И}-\text{HE}}} = \overline{\overline{x_2}\overline{x_3}} \wedge \overline{x_0}\overline{x_3} \wedge \overline{\overline{x_1}}\overline{x_2}$$

Схема

	Name	Value at 100.0 ns	0 ps	20.0 ns	40.0 ns	60.0 ns	80.0 ns	100.0 ns 100.0 ns	120,0
in_	x0	B 0							
in_	x1	B 1							
in_	x2	B 0							
in_	x3	B 1							
out -	y_c	B 0							

Временная диаграмма

Вывод D ССИ

СКНФ

$$y_d^{\mathsf{CKH}\Phi} = (\overline{x}_0 \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3)$$

Минимизация алгебраическим методом

^{Алгебраический} $y_d^{\mathsf{CKH}\Phi} = \mathsf{He}$ минимизируется

Минимизация с помощью карты Карно

	$x_0 \vee x_1$	$x_0 \vee \overline{x}_1$	$\overline{x}_0 \vee \overline{x}_1$	$\overline{x}_0 \lor x_1$
$x_2 \vee x_3$	1	1	1	0
$x_2 \vee \overline{x}_3$	1	1	1	1
$\overline{x}_2 \vee \overline{x}_3$	1	1	1	1
$\overline{x}_2 \vee x_3$	0	1	0	1

 $_{\text{Карно}}^{\text{Метод карт}}y_d^{\text{СКН}\Phi}=\text{He}$ минимизируется

Минимизация методом Квайна

1	$\overline{x}_0 \lor x_1 \lor x_2 \lor x_3$	(1')		
2	$x_0 \lor x_1 \lor \overline{x}_2 \lor x_3$	(2')		
3	$\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3$	(3')		

 $_{\mathrm{Квайна}}^{\mathrm{Метод}}y_d^{\mathrm{СКН\Phi}}=\mathrm{He}$ минимизируется

СДНФ

$$y_d^{\text{CДН}\Phi} = (\overline{x}_0 \overline{x}_1 \overline{x}_2 \overline{x}_3) \lor (\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3) \lor (x_0 x_1 \overline{x}_2 \overline{x}_3) \lor (x_0 \overline{x}_1 x_2 \overline{x}_3) \lor (\overline{x}_0 x_1 x_2 \overline{x}_3) \lor (\overline{x}_0 x_1 \overline{x}_2 x_3) \lor (\overline{x}_0 x_1 \overline{x}_2 x_3) \lor (\overline{x}_0 x_1 \overline{x}_2 x_3)$$

Минимизация алгебраическим методом

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_0\overline{x}_2\overline{x}_3$	1'-7'	$\overline{x}_0\overline{x}_2$
2	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	1-6 (2')	$\overline{x}_0\overline{x}_1\overline{x}_2$	2'-5'	$\overline{x}_0\overline{x}_2$
3	$x_0 x_1 \overline{x}_2 \overline{x}_3$	2-3 (3')	$x_1\overline{x}_2\overline{x}_3$		
4	$x_0\overline{x}_1x_2\overline{x}_3$	2-5 (4')	$\overline{x}_0 x_1 \overline{x}_3$		
5	$\overline{x}_0 x_1 x_2 \overline{x}_3$	2-8 (5')	$\overline{x}_0 x_1 \overline{x}_2$		
6	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	6-7 (6')	$\overline{x}_1\overline{x}_2x_3$		
7	$x_0\overline{x}_1\overline{x}_2x_3$	6-8 (7')	$\overline{x}_0\overline{x}_2x_3$		
8	$\overline{x}_0 x_1 \overline{x}_2 x_3$				

^{Алгебраический} $y_d^{\text{СДН}\Phi} = \overline{x}_0 \overline{x}_2 \vee x_1 \overline{x}_2 \overline{x}_3 \vee \overline{x}_0 x_1 \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 x_3$

Минимизация с помощью карты Карно

	x_0x_1	$x_0\overline{x}_1$	$\overline{x}_0\overline{x}_1$	$\overline{x}_0 x_1$
x_2x_3	0	0	0	0
$x_2\overline{x}_3$	0	1	0	1
$\overline{x}_2\overline{x}_3$	1	0	1	1
$\overline{x}_2 x_3$	0	1	1	1

 $^{\text{Метод карт}}_{\text{Карно}}y_d^{\text{СДН}\Phi} = x_1\overline{x}_2\overline{x}_3 \vee \overline{x}_1\overline{x}_2x_3 \vee \overline{x}_0\overline{x}_2 \vee \overline{x}_0x_1\overline{x}_3 \vee x_0\overline{x}_1x_2\overline{x}_3$

Минимизация методом Квайна

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_0\overline{x}_2\overline{x}_3$	1'-7'	$\overline{x}_0\overline{x}_2$
2	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	1-6 (2')	$\overline{x}_0\overline{x}_1\overline{x}_2$	2'-5'	$\overline{x}_0\overline{x}_2$
3	$x_0 x_1 \overline{x}_2 \overline{x}_3$	2-3 (3')	$x_1\overline{x}_2\overline{x}_3$		
4	$x_0\overline{x}_1x_2\overline{x}_3$	2-5 (4')	$\overline{x}_0 x_1 \overline{x}_3$		
5	$\overline{x}_0 x_1 x_2 \overline{x}_3$	2-8 (5')	$\overline{x}_0 x_1 \overline{x}_2$		
6	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	6-7 (6')	$\overline{x}_1\overline{x}_2x_3$		
7	$x_0\overline{x}_1\overline{x}_2x_3$	6-8 (7')	$\overline{x}_0\overline{x}_2x_3$		
8	$\overline{x}_0 x_1 \overline{x}_2 x_3$				

	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	$x_0 x_1 \overline{x}_2 \overline{x}_3$	$x_0\overline{x}_1x_2\overline{x}_3$	$\overline{x}_0 x_1 x_2 \overline{x}_3$	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	$x_0\overline{x}_1\overline{x}_2x_3$	$\overline{x}_0 x_1 \overline{x}_2 x_3$
$\overline{x}_0\overline{x}_2$	×	×				×		×
$x_1\overline{x}_2\overline{x}_3$		×	×					
$\overline{x}_0 x_1 \overline{x}_3$		×			×			
$\overline{x}_1\overline{x}_2x_3$						×	×	

метод $y_d^{\text{СДН}\Phi} = \overline{x}_0 \overline{x}_2 \vee x_1 \overline{x}_2 \overline{x}_3 \vee \overline{x}_0 x_1 \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 x_3 \vee \overline{x}_0 x_1 \overline{x}_2 x_3$

Перевод в базис 2И-НЕ

СКНФ

$$\begin{split} y_d^{\text{CKH}\Phi} &= (\overline{x}_0 \vee x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) \\ \overline{x}_0 \vee x_1 \vee x_2 \vee x_3 &= \overline{\overline{x}_0 \vee x_1} \vee \overline{\overline{x}_2 \vee x_3} = \overline{\overline{x}_0 \wedge \overline{x}_1} \vee \overline{\overline{x}_2 \wedge \overline{x}_3} = \overline{x_0 \wedge \overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3} \\ x_0 \vee x_1 \vee \overline{x}_2 \vee x_3 &= \overline{x_0 \vee \overline{x}_1} \vee \overline{\overline{x}_2 \vee x_3} = \overline{x_0 \wedge \overline{x}_1} \wedge \overline{\overline{x}_2 \vee \overline{x}_3} = \overline{x_0 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_3} = \overline{x_0 \wedge \overline{x}_1 \vee x_2 \vee \overline{x}_3} = \overline{x_0 \wedge \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3} = \overline{x_0 \wedge \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3} = \overline{x_0 \wedge \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3} = \overline{x_0 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_3} \\ \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3 &= \overline{x_0 \vee \overline{x}_1} \vee \overline{\overline{x}_2 \vee x_3} = \overline{x_0 \wedge \overline{x}_1} \wedge \overline{x_2 \vee \overline{x}_3} = \overline{x_0 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_3} \\ \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3 &= \overline{x_0 \wedge \overline{x}_1} \vee \overline{x}_2 \vee x_3} &= \overline{x_0 \wedge \overline{x}_1} \vee \overline{x}_2 \vee \overline{x}_3 = \overline{x_0 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_3} \\ \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3 &= \overline{x_0 \wedge \overline{x}_1} \wedge \overline{x}_2 \vee \overline{x}_3} &= \overline{x_0 \wedge \overline{x}_1} \wedge \overline{x}_2 \wedge \overline{x}_3 \\ \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3 &= \overline{x_0 \wedge \overline{x}_1} \wedge \overline{x}_2 \vee \overline{x}_3 = \overline{x_0 \wedge \overline{x}_1} \vee \overline{x}_2 \vee \overline{x}_3} \\ \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3 &= \overline{x_0 \wedge \overline{x}_1} \wedge \overline{x}_2 \vee \overline{x}_3 &= \overline{x_0 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_3} \\ \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3 &= \overline{x_0 \wedge \overline{x}_1} \wedge \overline{x}_2 \vee \overline{x}_3 &= \overline{x_0 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_3} \\ \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3 &= \overline{x_0 \wedge \overline{x}_1} \wedge \overline{x}_2 \vee \overline{x}_3 &= \overline{x_0 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_3} \\ \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3 &= \overline{x_0 \wedge \overline{x}_1 \wedge \overline{x}_2 \vee \overline{x}_3} &= \overline{x_0 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_3} \\ \overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 &= \overline{x_0 \wedge \overline{x}_1 \wedge \overline{x}_2 \vee \overline{x}_3} &= \overline{x_0 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_3} \\ \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 \times \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 \times \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 \times \overline{x}_3 \wedge \overline{x}_1 \overline{x}_2 \times \overline{x}_3} \\ \overline{x}_1 \vee \overline{x}_1 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_1 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_2 \vee \overline{x}_2 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_2 \vee \overline{x}_2 \vee \overline{x}_2 \vee \overline{x}_2 \times \overline{x}_3 \wedge \overline{x}_1 \overline{x}_2 \times \overline{x}_3 \wedge \overline{x}_1 \overline{x}_$$

Перевод в базис 2ИЛИ-НЕ

СКНФ

$$y_d^{\text{CKII}\Phi} = (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \land (x_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$(\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \land (x_0 \lor x_1 \lor \overline{x}_2 \lor x_3) =$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \land (x_0 \lor x_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3)$$

$$(\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$(\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3)$$

$$= (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \lor (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3} \lor (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3)$$

Цифровая схема в базисе 2И-НЕ

$$y_d^{\text{CKH}\Phi^{2\text{M}-\text{HE}}} = \overline{x_0 \wedge \overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3} \wedge \overline{\overline{x}_0 \wedge \overline{x}_1 \wedge x_2 \wedge \overline{x}_3} \wedge \overline{x_0 \wedge x_1 \wedge x_2 \wedge \overline{x}_3}$$

Схема

	Name	Value at 100.0 ns	0 ps	20.0 ns	40.0 ns	60.0 ns	80.0 ns	100,0 ns 100.0 ns	120,0
<u>in</u>	x0	B 0							
in_	x1	B 1							
in	x2	B 0							
in	x3	B 1							
out -	y_d	B 1							

Временная диаграмма

Вывод Е ССИ

СКНФ

$$y_e^{\mathsf{CKH}\Phi} = (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor x_2 \lor x_3) \land (x_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_0 \lor x_1 \lor x_2 \lor \overline{x}_3)$$

Минимизация алгебраическим методом

1	$\overline{x}_0 \lor x_1 \lor x_2 \lor x_3$	1-2 (1')	$\overline{x}_0 \lor x_2 \lor x_3$	1'-6'	$\overline{x}_0 \lor x_3$
2	$\overline{x}_0 \lor \overline{x}_1 \lor x_2 \lor x_3$	1-4 (2')	$\overline{x}_0 \lor x_1 \lor x_3$	2'-4'	$\overline{x}_0 \vee x_3$
3	$x_0 \lor x_1 \lor \overline{x}_2 \lor x_3$	1-6 (3')	$\overline{x}_0 \lor x_1 \lor x_2$		
4	$\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3$	2-5 (4')	$\overline{x}_0 \vee \overline{x}_1 \vee x_3$		
5	$\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3$	3-4 (5')	$x_1 \vee \overline{x}_2 \vee x_3$		
6	$\overline{x}_0 \lor x_1 \lor x_2 \lor \overline{x}_3$	4-5 (6')	$\overline{x}_0 \vee \overline{x}_2 \vee x_3$		

^{Алгебраический} $y_e^{\mathsf{СКН\Phi}} = (\overline{x}_0 \lor x_3) \land (\overline{x}_0 \lor x_1 \lor x_2) \land (x_1 \lor \overline{x}_2 \lor x_3)$

Минимизация с помощью карты Карно

	$x_0 \vee x_1$	$x_0 \vee \overline{x}_1$	$\overline{x}_0 \vee \overline{x}_1$	$\overline{x}_0 \lor x_1$
$x_2 \vee x_3$	1	1	0	0
$x_2 \vee \overline{x}_3$	1	1	1	0
$\overline{x}_2 \vee \overline{x}_3$	1	1	1	1
$\overline{x}_2 \vee x_3$	0	1	0	0

 $^{\text{Метод карт}}_{\text{Карно}} y_e^{\text{СКН}\Phi} = (x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_0 \vee x_1 \vee x_2) \wedge (\overline{x}_0 \vee x_3)$

Минимизация методом Квайна

1	$\overline{x}_0 \lor x_1 \lor x_2 \lor x_3$	1-2 (1')	$\overline{x}_0 \lor x_2 \lor x_3$	1'-6'	$\overline{x}_0 \lor x_3$
2	$\overline{x}_0 \lor \overline{x}_1 \lor x_2 \lor x_3$	1-4 (2')	$\overline{x}_0 \lor x_1 \lor x_3$	2'-4'	$\overline{x}_0 \vee x_3$
3	$x_0 \lor x_1 \lor \overline{x}_2 \lor x_3$	1-6 (3')	$\overline{x}_0 \lor x_1 \lor x_2$		
4	$\overline{x}_0 \lor x_1 \lor \overline{x}_2 \lor x_3$	2-5 (4')	$\overline{x}_0 \vee \overline{x}_1 \vee x_3$		
5	$\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3$	3-4 (5')	$x_1 \vee \overline{x}_2 \vee x_3$		
6	$\overline{x}_0 \lor x_1 \lor x_2 \lor \overline{x}_3$	4-5 (6')	$\overline{x}_0 \vee \overline{x}_2 \vee x_3$		

		$\overline{x}_0 \vee \overline{x}_1 \vee \vee \times $				
$\overline{x}_0 \vee x_3$	×	×		×	×	
$\overline{x}_0 \lor x_1 \lor x_2$	×					×
$x_1 \vee \overline{x}_2 \vee x_3$			×	×		

^{Метод} $y_e^{\mathsf{CKH}\Phi} = (\overline{x}_0 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_0 \lor x_1 \lor x_2)$

СДНФ

$$y_e^{\text{СДН}\Phi} = (\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3) \lor (\overline{x}_0x_1\overline{x}_2\overline{x}_3) \lor (\overline{x}_0x_1x_2\overline{x}_3) \lor (\overline{x}_0\overline{x}_1\overline{x}_2x_3) \lor (\overline{x}_0x_1\overline{x}_2x_3)$$
 Минимизация алгебраическим методом

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_0\overline{x}_2\overline{x}_3$	1'-5'	$\overline{x}_0\overline{x}_2$
2	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	1-4 (2')	$\overline{x}_0\overline{x}_1\overline{x}_2$	2'-4'	$\overline{x}_0\overline{x}_2$
3	$\overline{x}_0 x_1 x_2 \overline{x}_3$	2-3 (3')	$\overline{x}_0 x_1 \overline{x}_3$		
4	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	2-5 (4')	$\overline{x}_0 x_1 \overline{x}_2$		
5	$\overline{x}_0 x_1 \overline{x}_2 x_3$	4-5 (5')	$\overline{x}_0\overline{x}_2x_3$		

^{Алгебраический}
$$y_e^{\rm СДН\Phi}=\overline{x}_0\overline{x}_2$$
 V $\overline{x}_0x_1\overline{x}_3$

Минимизация с помощью карты Карно

	x_0x_1	$x_0\overline{x}_1$	$\overline{x}_0\overline{x}_1$	$\overline{x}_0 x_1$
x_2x_3	0	0	0	0
$x_2\overline{x}_3$	0	0	0	1
$\overline{x}_2\overline{x}_3$	0	0	1	1
$\overline{x}_2 x_3$	0	0	1	1

$$\operatorname*{Kapho}_{\mathrm{Kapho}}y_{e}^{\mathrm{CДH\Phi}}=\overline{x}_{0}\overline{x}_{2}\vee\overline{x}_{0}x_{1}\overline{x}_{3}$$

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_0\overline{x}_2\overline{x}_3$	1'-5'	$\overline{x}_0\overline{x}_2$
2	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	1-4 (2')	$\overline{x}_0\overline{x}_1\overline{x}_2$	2'-4'	$\overline{x}_0\overline{x}_2$
3	$\overline{x}_0 x_1 x_2 \overline{x}_3$	2-3 (3')	$\overline{x}_0 x_1 \overline{x}_3$		
4	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	2-5 (4')	$\overline{x}_0 x_1 \overline{x}_2$		
5	$\overline{x}_0 x_1 \overline{x}_2 x_3$	4-5 (5')	$\overline{x}_0\overline{x}_2x_3$		

	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	$\overline{x}_0 x_1 x_2 \overline{x}_3$	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	$\overline{x}_0 x_1 \overline{x}_2 x_3$
$\overline{x}_0\overline{x}_2$	×	×		×	×
$\overline{x}_0 x_1 \overline{x}_3$		×	×		

Метод
$$y_e^{\mathrm{СДН\Phi}} = \overline{x}_0 \overline{x}_2 \vee \overline{x}_0 x_1 \overline{x}_3$$

Перевод в базис 2И-НЕ

СКНФ

$$_{\text{Карно}}^{\text{Метод карт}} y_e^{\text{СКН}\Phi} = (x_1 \vee \overline{x}_2 \vee x_3) \wedge (\overline{x}_0 \vee x_1 \vee x_2) \wedge (\overline{x}_0 \vee x_3)$$

$$x_1 \vee \overline{x}_2 \vee x_3 = \overline{\overline{x_1} \vee \overline{x_2}} \vee x_3 = \overline{\overline{\overline{x_1}} \wedge \overline{\overline{x_2}}} \vee x_3 = \overline{\overline{\overline{x_1}} \wedge \overline{x_2}} \wedge \overline{x_3} = \overline{\overline{x_1}} \wedge \overline{x_2} \wedge \overline{x_3} = \overline{\overline{x_1}} \wedge x_2 \wedge \overline{x_3}$$

$$\overline{x_0} \vee x_1 \vee x_2 = \overline{\overline{x_0}} \vee x_1 \vee x_2 = \overline{\overline{x_0}} \wedge \overline{x_1} \vee x_2 = \overline{\overline{x_0}} \wedge \overline{x_1} \vee x_2 = \overline{x_0} \wedge \overline{x_1} \wedge \overline{x_2} = \overline{x_0} \wedge \overline{x_1} \wedge \overline{x_2}$$

$$\overline{x}_0 \vee x_3 = \overline{\overline{\overline{x}_0} \vee \overline{x_3}} = \overline{\overline{\overline{x}_0} \wedge \overline{x}_3} = \overline{x_0 \wedge \overline{x}_3}$$

$$^{\text{Метод карт}}_{\text{Карно}} y_e^{\text{СДН}\Phi^{\text{2И}-\text{HE}}} = \overline{\overline{x}_1} \wedge \overline{x_2} \wedge \overline{\overline{x}_3} \wedge \overline{x_0} \wedge \overline{\overline{x}_1} \wedge \overline{\overline{x}_2} \wedge \overline{x_0} \wedge \overline{\overline{x}_3}$$

СДНФ

^{Метод карт}
$$y_e^{\rm СДН\Phi} = \overline{x}_0 \overline{x}_2 \vee \overline{x}_0 x_1 \overline{x}_3$$

$$\overline{x_0}\overline{x_2} \vee \overline{x_0}x_1\overline{x_3} = \overline{\overline{\overline{x_0}\overline{x_2}} \vee \overline{x_0}x_1\overline{x_3}} = \overline{\overline{\overline{x_0}\overline{x_2}} \wedge \overline{\overline{x_0}x_1}\overline{x_3}}$$

Метод карт
$$y_e^{\text{СДН}\Phi^{\text{2}\text{И}}-\text{HE}}=\overline{\overline{\overline{x}_0}\overline{x}_2}\wedge\overline{\overline{x}_0}\overline{x}_1\overline{x}_3$$

Перевод в базис 2ИЛИ-НЕ

СКНФ

$$(x_{1} \lor \overline{x}_{2} \lor x_{3}) \land (\overline{x}_{0} \lor x_{1} \lor x_{2}) \land (\overline{x}_{0} \lor x_{3})$$

$$(x_{1} \lor \overline{x}_{2} \lor x_{3}) \land (\overline{x}_{0} \lor x_{1} \lor x_{2}) = \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3}) \land (\overline{x}_{0} \lor x_{1} \lor x_{2})} =$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3}) \lor (\overline{x}_{0} \lor x_{1} \lor x_{2})}$$

$$\overline{(x_{1} \lor \overline{x}_{2} \lor x_{3}) \lor (\overline{x}_{0} \lor x_{1} \lor x_{2})} \land (\overline{x}_{0} \lor x_{3}) =$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3}) \lor (\overline{x}_{0} \lor x_{1} \lor x_{2})} \land (\overline{x}_{0} \lor x_{3}) =$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3}) \lor (\overline{x}_{0} \lor x_{1} \lor x_{2})} \lor (\overline{x}_{0} \lor x_{3}) =$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3}) \lor (\overline{x}_{0} \lor x_{1} \lor x_{2})} \lor (\overline{x}_{0} \lor x_{3}) =$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3}) \lor (\overline{x}_{0} \lor x_{1} \lor x_{2})} \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{1} \lor x_{2}) \lor (\overline{x}_{0} \lor x_{3})$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor x_{2} \lor \overline{x}_{3} \lor \overline{x}_{3} \lor \overline{x}_{3}$$

$$= \overline{(x_{1} \lor \overline{x}_{2} \lor x_{3})} \lor (\overline{x}_{0} \lor \overline{x}_{3} \lor \overline{x}_{3} \lor \overline{x}_{3} \lor \overline{x}_{3} \lor \overline$$

Цифровая схема в базисе 2И-НЕ

$$_{\text{Карно}}^{\text{Метод карт}} y_e^{\text{СДН}\Phi^{2\mathsf{V}-\text{HE}}} = \overline{\overline{\overline{x}_0}\overline{x}_2} \wedge \overline{\overline{x}_0x_1}\overline{x}_3$$

	Name	Value at 100.0 ns	0 ps	20.0 ns	40.0 ns	60.0 ns	80.0 ns	100.0 ns 100.0 ns	120,0
in_	x0	B 0							
in_	x1	B 1							
in_	x2	B 0							
<u>in</u>	x3	B 1							
out -	y_e	B 1							

Временная диаграмма

Вывод F ССИ

СКНФ

$$y_f^{\text{CKH}\Phi} = (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \land (x_0 \lor \overline{x}_1 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$$

Минимизация алгебраическим методом

1	$\overline{x}_0 \lor x_1 \lor x_2 \lor x_3$	1-3 (1')	$\overline{x}_0 \lor x_2 \lor x_3$
2	$x_0 \vee \overline{x}_1 \vee x_2 \vee x_3$	2-3 (2')	$\overline{x}_1 \lor x_2 \lor x_3$
3	$\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee x_3$	3-4 (3')	$\overline{x}_0 \vee \overline{x}_1 \vee x_3$
4	$\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3$		

^{Алгебраический}
$$y_f^{\text{СКН}\Phi} = (\overline{x}_0 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor x_3)$$

Минимизация с помощью карты Карно

	$x_0 \vee x_1$	$x_0 \vee \overline{x}_1$	$\overline{x}_0 \vee \overline{x}_1$	$\overline{x}_0 \vee x_1$
$x_2 \vee x_3$	1	0	0	0
$x_2 \vee \overline{x}_3$	1	1	1	1
$\overline{x}_2 \vee \overline{x}_3$	1	1	1	1
$\overline{x}_2 \vee x_3$	1	1	0	1

^{Метод карт} $y_f^{\text{СКН}\Phi} = (\overline{x}_1 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor x_3)$

1	$\overline{x}_0 \lor x_1 \lor x_2 \lor x_3$	1-3 (1')	$\overline{x}_0 \lor x_2 \lor x_3$
2	$x_0 \vee \overline{x}_1 \vee x_2 \vee x_3$	2-3 (2')	$\overline{x}_1 \lor x_2 \lor x_3$
3	$\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee x_3$	3-4 (3')	$\overline{x}_0 \vee \overline{x}_1 \vee x_3$
4	$\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3$		

	$\overline{x}_0 \lor x_1 \lor x_2 \lor \lor x_3$	$x_0 \lor \overline{x}_1 \lor x_2 \lor \lor x_3$	$\overline{x}_0 \vee \overline{x}_1 \vee x_2 \vee \vee x_3$	$\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee $ $\vee x_3$
$\overline{x}_0 \lor x_2 \lor x_3$	×		×	
$\overline{x}_1 \lor x_2 \lor x_3$		×	×	
$\overline{x}_0 \vee \overline{x}_1 \vee x_3$			×	×

^{Метод} $y_f^{\mathsf{CKH\Phi}} = (\overline{x}_0 \lor x_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor x_3)$

СДНФ

$$y_f^{\mathrm{CДH\Phi}} = (\overline{x}_0 \overline{x}_1 \overline{x}_2 \overline{x}_3) \vee (\overline{x}_0 \overline{x}_1 x_2 \overline{x}_3) \vee (x_0 \overline{x}_1 x_2 \overline{x}_3) \vee (\overline{x}_0 x_1 x_2 \overline{x}_3) \vee (\overline{x}_0 \overline{x}_1 \overline{x}_2 x_3) \vee (\overline{x}_0 \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3 \nabla (\overline{x}_0 \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline$$

Минимизация алгебраическим методом

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_0\overline{x}_1\overline{x}_3$
2	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	1-5 (2')	$\overline{x}_0\overline{x}_1\overline{x}_2$
3	$x_0\overline{x}_1x_2\overline{x}_3$	2-3 (3')	$\overline{x}_1 x_2 \overline{x}_3$
4	$\overline{x}_0 x_1 x_2 \overline{x}_3$	2-4 (4')	$\overline{x}_0 x_2 \overline{x}_3$
5	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	5-6 (5')	$\overline{x}_1\overline{x}_2x_3$
6	$x_0\overline{x}_1\overline{x}_2x_3$	5-7 (6')	$\overline{x}_0\overline{x}_2x_3$
7	$\overline{x}_0 x_1 \overline{x}_2 x_3$		

^{Алгебраический}
$$y_f^{\rm СДН\Phi} = \overline{x}_0 \overline{x}_1 \overline{x}_3 \vee \overline{x}_0 \overline{x}_1 \overline{x}_2 \vee \overline{x}_1 x_2 \overline{x}_3 \vee \overline{x}_0 x_2 \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 x_3 \vee \overline{x}_0 \overline{x}_2 x_3$$

Минимизация с помощью карты Карно

	x_0x_1	$x_0\overline{x}_1$	$\overline{x}_0\overline{x}_1$	$\overline{x}_0 x_1$
x_2x_3	0	0	0	0
$x_2\overline{x}_3$	0	1	1	1
$\overline{x}_2\overline{x}_3$	0	0	1	0
$\overline{x}_2 x_3$	0	1	1	1

 $^{\text{Метод карт}}_{\text{Карно}} y_f^{\text{СДН}\Phi} = \overline{x}_1 x_2 \overline{x}_3 \vee \overline{x}_0 \overline{x}_1 \overline{x}_3 \vee \overline{x}_0 x_2 \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 x_3 \vee \overline{x}_0 \overline{x}_2 x_3$

1	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	1-2 (1')	$\overline{x}_0\overline{x}_1\overline{x}_3$
2	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	1-5 (2')	$\overline{x}_0\overline{x}_1\overline{x}_2$
3	$x_0\overline{x}_1x_2\overline{x}_3$	2-3 (3')	$\overline{x}_1 x_2 \overline{x}_3$
4	$\overline{x}_0 x_1 x_2 \overline{x}_3$	2-4 (4')	$\overline{x}_0 x_2 \overline{x}_3$
5	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	5-6 (5')	$\overline{x}_1\overline{x}_2x_3$
6	$x_0\overline{x}_1\overline{x}_2x_3$	5-7 (6')	$\overline{x}_0\overline{x}_2x_3$
7	$\overline{x}_0 x_1 \overline{x}_2 x_3$		

	$\overline{x}_0\overline{x}_1\overline{x}_2\overline{x}_3$	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	$x_0\overline{x}_1x_2\overline{x}_3$	$\overline{x}_0 x_1 x_2 \overline{x}_3$	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	$x_0\overline{x}_1\overline{x}_2x_3$	$\overline{x}_0 x_1 \overline{x}_2 x_3$
$\overline{x}_0\overline{x}_1\overline{x}_3$	×	×					
$\overline{x}_0\overline{x}_1\overline{x}_2$	×				×		
$\overline{x}_1 x_2 \overline{x}_3$		×	×				
$\overline{x}_0 x_2 \overline{x}_3$		×		×			
$\overline{x}_1\overline{x}_2x_3$					×	×	
$\overline{x}_0\overline{x}_2x_3$					×		×

 $\operatorname*{Keaйha}_{KBaйha}y_f^{\mathrm{CДH\Phi}} = \overline{x}_1x_2\overline{x}_3 \vee \overline{x}_0x_2\overline{x}_3 \vee \overline{x}_1\overline{x}_2x_3 \vee \overline{x}_0\overline{x}_2x_3 \vee \overline{x}_0\overline{x}_1\overline{x}_3$

Перевод в базис 2И-НЕ

СКНФ

$$\overline{x_1} \vee x_2 \vee x_3 = \overline{\overline{x_1}} \overline{\vee x_2} \wedge \overline{x_3} = \overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}$$

$$\overline{x_0} \vee x_2 \vee x_3 = \overline{\overline{x_0}} \overline{\vee x_2} \vee x_3 = \overline{\overline{x_0}} \overline{\vee x_2} \vee x_3 = \overline{\overline{x_0}} \overline{\vee x_2} \wedge \overline{x_3} = \overline{x_0} \wedge \overline{x_2} \wedge \overline{x_3}$$

$$\overline{x_0} \vee \overline{x_1} \vee x_3 = \overline{\overline{x_0}} \overline{\vee x_1} \vee x_3 = \overline{\overline{x_0}} \overline{\vee x_1} \vee x_3 = \overline{x_0} \wedge \overline{x_1} \wedge \overline{x_3} = \overline{x_0} \wedge \overline{x_1} \wedge \overline{x_3}$$

$$\overline{x_0} \vee \overline{x_1} \vee x_3 = \overline{\overline{x_0}} \overline{\vee x_1} \vee x_3 = \overline{\overline{x_0}} \overline{\wedge x_1} \wedge \overline{x_3} = \overline{x_0} \wedge \overline{x_1} \wedge \overline{x_3}$$

$$\overline{x_1} \vee \overline{x_2} \wedge \overline{x_3} \wedge \overline{x_0} \wedge \overline{x_1} \wedge \overline{x_3} = \overline{x_0} \wedge \overline{x_1} \wedge \overline{x_3} \wedge \overline{x_0} \wedge \overline{x_1} \wedge \overline{x_3}$$

$$C \square H \Phi$$

$$\overline{M}^{\text{Merod Kapr}} y_f^{\text{CAH}\Phi} = \overline{x_1} x_2 \overline{x_3} \vee \overline{x_0} \overline{x_1} \overline{x_3} \vee \overline{x_0} \overline{x_1} \overline{x_3} = \overline{\overline{x_1} x_2 \overline{x_3}} \wedge \overline{x_0} \overline{x_1} \overline{x_3} \vee \overline{x_0} \overline{x_2} \overline{x_3}$$

$$\overline{x_1} x_2 \overline{x_3} \wedge \overline{x_0} \overline{x_1} \overline{x_3} \vee \overline{x_0} \overline{x_1} \overline{x_3} \vee \overline{x_0} \overline{x_1} \overline{x_3} = \overline{\overline{x_1} x_2} \overline{x_3} \wedge \overline{x_0} \overline{x_1} \overline{x_3} \vee \overline{x_0} \overline{x_2} \overline{x_3}$$

$$\overline{\overline{x_1} x_2} \wedge \overline{x_0} \wedge \overline{\overline{x_1}} \overline{x_3} \wedge \overline{\overline{x_0} x_2} \overline{x_3} \wedge \overline{\overline{x_0} x_1} \overline{x_3} \wedge \overline{\overline{x_0} x_2} \overline{x_3} \wedge \overline{\overline{x_0} x_2} \overline{x_3} = \overline{\overline{x_1} x_2} \overline{x_3} \wedge \overline{\overline{x_0} x_1} \overline{x_3} \wedge \overline{\overline{x_0} x_2} \overline{x_3} \wedge \overline{\overline{x_0} x_2} \overline{x_3}$$

$$\overline{\overline{x_1} x_2} \wedge \overline{\overline{x_0}} \wedge \overline{\overline{x_0}} \overline{x_1} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_2} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_1} \overline{x_2} \overline{x_3} = \overline{\overline{x_1} x_2} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_1} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_2} \overline{x_3} = \overline{\overline{x_1} x_2} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_1} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_2} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_2} \overline{x_3} = \overline{\overline{x_1} x_2} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_1} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_2} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_2} \overline{x_3} = \overline{\overline{x_1} x_2} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_2} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_2} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_2} \overline{x_3} = \overline{\overline{x_1} x_2} \overline{x_3} \wedge \overline{\overline{x_0}} \overline{x_2} \overline{x_3} = \overline{\overline{x_0}} \overline{\overline{x_0}} \overline{\overline{x_0}} \overline{x_0} \overline{x$$

Перевод в базис 2ИЛИ-НЕ

СКНФ

Метод карт
$$Y_f^{\text{СКНФ}} = (\overline{x}_1 \vee x_2 \vee x_3) \wedge (\overline{x}_0 \vee x_2 \vee x_3) \wedge (\overline{x}_0 \vee \overline{x}_1 \vee x_3)$$

$$(\overline{x}_1 \vee x_2 \vee x_3) \wedge (\overline{x}_0 \vee x_2 \vee x_3) \wedge (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \wedge (\overline{x}_0 \vee x_2 \vee x_3) \wedge (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee x_3) =$$

$$= (\overline{x_1} \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee x_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{$$

 $\vee \overline{x_1 \vee x_2 \vee \overline{x_3}} \vee \overline{x_0 \vee x_2 \vee \overline{x_3}}$

Цифровая схема в базисе 2И-НЕ

$$_{\text{Карно}}^{\text{Метод карт}} y_f^{\text{СКН}\Phi^{2\mathsf{M}-\mathsf{HE}}} = \overline{x_1 \wedge \overline{x}_2 \wedge \overline{x}_3} \wedge \overline{x_0 \wedge \overline{x}_2 \wedge \overline{x}_3} \wedge \overline{x_0 \wedge x_1 \wedge \overline{x}_3}$$

	Name	Value at 100.0 ns	0 ps	40.0 ns	80.0 ns 100	120,0 ns .0 ns
<u>in</u>	x0	B 0				
<u>in</u>	x1	B 1				
in_	x2	B 0				
in	x3	B 1				
out -	y_f	B 1				

Временная диаграмма

Вывод ССИ

СКНФ

$$y_g^{\text{CKH}\Phi} = (x_0 \lor x_1 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor x_1 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (x_0 \lor \overline{x}_1 \lor x_2 \lor \overline{x}_3)$$

Минимизация алгебраическим методом

1	$x_0 \lor x_1 \lor x_2 \lor x_3$	1-2 (1')	$x_1 \lor x_2 \lor x_3$
2	$\overline{x}_0 \lor x_1 \lor x_2 \lor x_3$	(2')	
3	$\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3$	(3')	
4	$x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3$	(4')	

^{Алгебраический} $y_g^{\text{СКН}\Phi} = (x_1 \lor x_2 \lor x_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (x_0 \lor \overline{x}_1 \lor x_2 \lor \overline{x}_3)$

Минимизация с помощью карты Карно

	$x_0 \vee x_1$	$x_0 \vee \overline{x}_1$	$\overline{x}_0 \vee \overline{x}_1$	$\overline{x}_0 \lor x_1$
$x_2 \vee x_3$	0	1	1	0
$x_2 \vee \overline{x}_3$	1	0	1	1
$\overline{x}_2 \vee \overline{x}_3$	1	1	1	1
$\overline{x}_2 \vee x_3$	1	1	0	1

^{Метод карт} $y_g^{\mathsf{CKH\Phi}} = (x_1 \lor x_2 \lor x_3) \land (x_0 \lor \overline{x}_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_0 \lor \overline{x}_1 \lor \overline{x}_2 \lor x_3)$

1	$x_0 \vee x_1 \vee x_2 \vee x_3$	1-2 (1')	$x_1 \lor x_2 \lor x_3$
2	$\overline{x}_0 \lor x_1 \lor x_2 \lor x_3$	(2')	
3	$\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3$	(3')	
4	$x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3$	(4')	

	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\overline{x_0} \vee x_1 \vee x_2 \vee \\ \vee x_3$	$\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee $ $\vee x_3$	$x_0 \vee \overline{x}_1 \vee x_2 \vee \\ \vee \overline{x}_3$
$x_1 \lor x_2 \lor x_3$	×	×		

 $_{\mathrm{Kвайна}}^{\mathrm{Метод}}y_g^{\mathrm{CKH}\Phi} = (x_1 \vee x_2 \vee x_3) \wedge (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)$

СДНФ

$$y_g^{\text{CДН}\Phi} = (\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3) \vee (x_0 x_1 \overline{x}_2 \overline{x}_3) \vee (\overline{x}_0 \overline{x}_1 x_2 \overline{x}_3) \vee (x_0 \overline{x}_1 x_2 \overline{x}_3) \vee (\overline{x}_0 x_1 x_2 \overline{x}_3) \vee (\overline{x}_0 \overline{x}_1 \overline{x}_2 x_3) \vee (\overline{x}_0 \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3 \vee (\overline{x}_0 \overline{x}_1 \overline{x}_2 \overline{x}_3 \overline{x}_3 \overline{x}_3 \overline{x}_3$$

Минимизация алгебраическим методом

1	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	1-2 (1')	$x_1\overline{x}_2\overline{x}_3$
2	$x_0x_1\overline{x}_2\overline{x}_3$	1-5 (2')	$\overline{x}_0 x_1 \overline{x}_3$
3	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	3-4 (3')	$\overline{x}_1 x_2 \overline{x}_3$
4	$x_0\overline{x}_1x_2\overline{x}_3$	3-5 (4')	$\overline{x}_0 x_2 \overline{x}_3$
5	$\overline{x}_0 x_1 x_2 \overline{x}_3$	6-7 (5')	$\overline{x}_1\overline{x}_2x_3$
6	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$		
7	$x_0\overline{x}_1\overline{x}_2x_3$		

^{Алгебраический}
$$y_g^{\rm СДН\Phi} = x_1\overline{x}_2\overline{x}_3 \vee \overline{x}_0x_1\overline{x}_3 \vee \overline{x}_1x_2\overline{x}_3 \vee \overline{x}_0x_2\overline{x}_3 \vee \overline{x}_1\overline{x}_2x_3$$

Минимизация с помощью карты Карно

	x_0x_1	$x_0\overline{x}_1$	$\overline{x}_0\overline{x}_1$	$\overline{x}_0 x_1$
x_2x_3	0	0	0	0
$x_2\overline{x}_3$	0	1	1	1
$\overline{x}_2\overline{x}_3$	1	0	0	1
$\overline{x}_2 x_3$	0	1	1	0

^{Метод карт} $y_g^{\rm СДН\Phi} = \overline{x}_1 x_2 \overline{x}_3 \vee \overline{x}_0 x_1 \overline{x}_3 \vee x_1 \overline{x}_2 \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 x_3$

1	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	1-2 (1')	$x_1\overline{x}_2\overline{x}_3$
2	$x_0 x_1 \overline{x}_2 \overline{x}_3$	1-5 (2')	$\overline{x}_0 x_1 \overline{x}_3$
3	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	3-4 (3')	$\overline{x}_1 x_2 \overline{x}_3$
4	$x_0\overline{x}_1x_2\overline{x}_3$	3-5 (4')	$\overline{x}_0 x_2 \overline{x}_3$
5	$\overline{x}_0 x_1 x_2 \overline{x}_3$	6-7 (5')	$\overline{x}_1\overline{x}_2x_3$
6	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$		
7	$x_0\overline{x}_1\overline{x}_2x_3$		

	$\overline{x}_0 x_1 \overline{x}_2 \overline{x}_3$	$x_0 x_1 \overline{x}_2 \overline{x}_3$	$\overline{x}_0\overline{x}_1x_2\overline{x}_3$	$x_0\overline{x}_1x_2\overline{x}_3$	$\overline{x}_0 x_1 x_2 \overline{x}_3$	$\overline{x}_0\overline{x}_1\overline{x}_2x_3$	$x_0\overline{x}_1\overline{x}_2x_3$
$x_1\overline{x}_2\overline{x}_3$	×	×					
$\overline{x}_0 x_1 \overline{x}_3$	×				×		
$\overline{x}_1 x_2 \overline{x}_3$			×	×			
$\overline{x}_0 x_2 \overline{x}_3$			×		×		
$\overline{x}_1\overline{x}_2x_3$						×	×

метод $y_g^{\rm СДН\Phi} = x_1\overline{x}_2\overline{x}_3 \vee \overline{x}_1x_2\overline{x}_3 \vee \overline{x}_1\overline{x}_2x_3 \vee \overline{x}_0x_1\overline{x}_3$

Перевод в базис 2И-НЕ

СКНФ

$$^{\text{Метод карт}}_{\text{Карно}} y_g^{\text{СКН}\Phi} = (x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3)$$

$$x_1 \lor x_2 \lor x_3 = \frac{\overline{\overline{\overline{x_1} \lor x_2}} \lor \overline{\overline{x_3}}}{\overline{\overline{x_1}} \lor \overline{\overline{x_2}}} \land \overline{\overline{x_2}} \land \overline{\overline{x_3}} = \overline{\overline{\overline{x_1}} \land \overline{\overline{x_2}} \land \overline{\overline{x_3}}}$$

$$x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3 = \overline{x_0 \vee \overline{x}_1} \vee \overline{x_2} \vee \overline{x}_3 = \overline{\overline{x}_0 \wedge \overline{\overline{x}_1}} \wedge \overline{\overline{x}_2} \wedge \overline{\overline{x}_3} = \overline{\overline{x}_0 \wedge x_1 \wedge \overline{x}_2 \wedge x_3}$$

$$\overline{x_0} \vee \overline{x_1} \vee \overline{x_2} \vee x_3 = \overline{\overline{x_0}} \vee \overline{\overline{x_1}} \vee \overline{\overline{x_2}} \vee x_3 = \overline{\overline{x_0}} \wedge \overline{\overline{x_1}} \wedge \overline{\overline{x_2}} \wedge \overline{x_3} = \overline{x_0} \wedge x_1 \wedge x_2 \wedge \overline{x_3}$$

$$^{\text{Метод карт}}_{\text{Карно}} y_g^{\text{СДН}\Phi^{2\mathsf{И}-\mathsf{HE}}} = \overline{\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3} \wedge \overline{\overline{x}_0 \wedge x_1 \wedge \overline{x}_2 \wedge x_3} \wedge \overline{x_0 \wedge x_1 \wedge x_2 \wedge \overline{x}_3}$$

СДНФ

^{Метод карт}
$$y_g^{\rm CДН\Phi} = \overline{x}_1 x_2 \overline{x}_3 \vee \overline{x}_0 x_1 \overline{x}_3 \vee x_1 \overline{x}_2 \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 x_3$$

$$\overline{x_1}x_2\overline{x_3} \vee \overline{x_0}x_1\overline{x_3} \vee x_1\overline{x_2}\overline{x_3} \vee \overline{x_1}\overline{x_2}x_3 = \overline{\overline{x_1}x_2\overline{x_3} \vee \overline{x_0}x_1\overline{x_3}} \vee \overline{\overline{x_1}\overline{x_2}\overline{x_3} \vee \overline{x_1}\overline{x_2}x_3} = \overline{\overline{x_1}x_2\overline{x_3} \vee \overline{x_1}\overline{x_2}}$$

$$= \frac{\overline{\overline{x_1}x_2\overline{x_3}} \wedge \overline{\overline{x_0}x_1\overline{x_3}} \wedge \overline{\overline{x_1}\overline{x_2}\overline{x_3}} \wedge \overline{\overline{x_1}\overline{x_2}x_3} = \overline{\overline{x_1}x_2\overline{x_3}} \wedge \overline{\overline{x_0}x_1\overline{x_3}} \wedge \overline{\overline{x_1}\overline{x_2}\overline{x_3}} \wedge \overline{\overline{x_1}\overline{x_2}x_3}$$

$$_{\text{Карно}}^{\text{Метод карт}}y_g^{\text{СДН}\Phi^{2\mathsf{И}-\mathsf{HE}}} = \overline{\overline{\overline{x}_1}x_2\overline{x}_3} \wedge \overline{\overline{x}_0}x_1\overline{\overline{x}_3} \wedge \overline{\overline{x}_1}\overline{\overline{x}_2}\overline{x}_3} \wedge \overline{\overline{\overline{x}_1}\overline{x}_2}x_3$$

Перевод в базис 2ИЛИ-НЕ

СКНФ

$$\frac{\text{Metorig Kaphr}}{\text{Kaphro}} y_g^{\text{CKH}\Phi} = (x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3) \wedge (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) \\ = \overline{(x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)} = \overline{(x_1 \vee x_2 \vee x_3) \wedge (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)} \\ = \overline{(x_1 \vee x_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)} \wedge (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) = \\ = \overline{(x_1 \vee x_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)} \wedge (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) = \\ = \overline{(x_1 \vee x_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)} \wedge (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) = \\ = \overline{(x_1 \vee x_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)} \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) = \\ = \overline{(x_1 \vee x_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)} \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) = \\ = \overline{(x_1 \vee x_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)} \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) \\ \wedge \text{Metorig Kaphr} y_g^{\text{CJH}\Phi} = \\ = \overline{(x_1 \vee x_2 \vee x_3) \vee (x_0 \vee \overline{x}_1 \vee x_2 \vee \overline{x}_3)} \vee (\overline{x}_0 \vee \overline{x}_1 \vee \overline{x}_2 \vee x_3) \\ \wedge \text{CJH}\Phi$$

$$\text{Metorig Kaphr} y_g^{\text{CJH}\Phi} = \overline{x}_1 x_2 \overline{x}_3 \vee \overline{x}_0 x_1 \overline{x}_3 \vee x_1 \overline{x}_2 \overline{x}_3 \vee \overline{x}_1 \overline{x}_2 x_3 \\ \overline{x}_1 \wedge x_2 \wedge \overline{x}_3 = \overline{\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3} = \overline{\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3} = \overline{x}_1 \vee \overline{x}_2 \vee x_3 \\ \overline{x}_0 \wedge x_1 \wedge \overline{x}_3 = \overline{\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3} = \overline{\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3} = \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \\ \overline{x}_1 \wedge \overline{x}_2 \wedge x_3 = \overline{\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3} = \overline{\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3} = \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \\ \overline{x}_1 \wedge \overline{x}_2 \wedge x_3 = \overline{\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3} = \overline{\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3} = \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \\ \overline{x}_1 \wedge \overline{x}_2 \wedge x_3 = \overline{\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3} = \overline{\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3} \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \\ \overline{x}_1 \wedge \overline{x}_2 \wedge x_3 = \overline{\overline{x}_1 \wedge \overline{x}_2 \wedge x_3} = \overline{\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3} \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \\ \overline{x}_1 \wedge \overline{x}_2 \wedge x_3 = \overline{\overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3} = \overline{\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3} \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \\ \overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3 = \overline{\overline{x}_1 \wedge \overline{x}_2 \vee \overline{x}_3} \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \\ \overline{x}_1 \wedge \overline{x}_2 \wedge \overline{x}_3 = \overline{\overline{x}_1 \wedge \overline{x}_2 \vee \overline{x}_3} \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3 \vee \overline{x}_1 \vee \overline{x}_2$$

Цифровая схема в базисе 2И-НЕ

	Name	Value at 100.0 ns	0 ps	20.0 ns	40.0 ns	60.0 ns	80.0 ns	100.0 ns 100.0 ns	120.
in_	x0	B 0							
in_	x1	B 1							
in_	x2	B 0							
in_	x3	B 1							
out	y_g	B 0							

Временная диаграмма

Полная схема шифратора

Временная диаграмма

Реализация счетчика с коэффициентом счета 3

Схема

	Name	Value at	0 ps	80.0 ns	160,0 ns	240,0 ns	320 _, 0 ns	400,0 ns	480,0 ns	560,0 ns	640,0 ns	720,0 ns	800,0 ns	880,0 ns	960,0 ns
	Name	0 ps	0 ps												
in	Reset	B 1													
in-	С	B 0													
out	Q0	B 0	ШП			штшт	штшт		штшт						
out	Q1	B 0													
out	Q2	B 0													

Временная диаграмма

Q_2	Q_1	Q_0	R
1	0	1	0

Таблица истинности для сброса

$$\mathbf{y}_{R} = \overline{Q}_{2} \vee Q_{1} \vee \overline{Q}_{0} = Q_{1} \vee \overline{Q_{2} \vee Q_{0}} = \overline{\overline{Q}_{1} \wedge Q_{2} \wedge Q_{0}}$$

Реализация преобразователя кода

Q_0	Q_1	Q_2	y_0	y_1	<i>y</i> ₂	y_3
0	0	0	0	1	0	0
1	0	0	0	0	0	0
0	1	0	0	1	0	1
1	1	0	0	1	0	0
0	0	1	1	1	1	0
1	0	1	1	0	1	0

Таблица истинности

$$\begin{split} y_0^{\text{CДН}\Phi} &= \left(\overline{Q}_0 \wedge \overline{Q}_1 \wedge Q_2\right) \vee \left(Q_0 \wedge \overline{Q}_1 \wedge Q_2\right) = \overline{\left(\overline{Q}_0 \wedge \overline{Q}_1 \wedge Q_2\right)} \wedge \overline{\left(Q_0 \wedge \overline{Q}_1 \wedge Q_2\right)} \\ y_1^{\text{CKH}\Phi} &= \left(\overline{Q}_0 \vee Q_1 \vee Q_2\right) \wedge \left(\overline{Q}_0 \vee Q_1 \vee \overline{Q}_2\right) = \overline{Q_0 \wedge \overline{Q}_1 \wedge \overline{Q}_2} \wedge \overline{Q_0 \wedge Q_2 \wedge \overline{Q}_1} \\ y_2^{\text{CДН}\Phi} &= \left(\overline{Q}_0 \wedge \overline{Q}_1 \wedge Q_2\right) \vee \left(Q_0 \wedge \overline{Q}_1 \wedge Q_2\right) = \overline{\left(\overline{Q}_0 \wedge \overline{Q}_1 \wedge Q_2\right)} \wedge \overline{\left(Q_0 \wedge \overline{Q}_1 \wedge Q_2\right)} \\ y_3^{\text{CДН}\Phi} &= \overline{Q}_0 \wedge Q_1 \wedge \overline{Q}_2 \end{split}$$

Временная диаграмма

Конечная схема

out

out

LED-E B 1

LED-F B 0

