

Amendments to the Claims:

Claims 1 and 13 have been amended herein. Please note that all claims currently pending and under consideration in the referenced application are shown below. Please enter these claims as amended. This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

1. (Currently Amended) A method of fabricating a substrate assembly, comprising:
providing a substrate having a first surface and an opposing second surface;
forming a layer of resilient conductive material on at least a portion of at least one of the first and
second surfaces of the substrate;
forming at least one electrically isolated spring-biased electrical contact and an associated
elongate conductive trace extending therefrom from the layer of resilient conductive
material;
deforming at least a portion of the at least one electrically isolated spring-biased electrical contact
to extend away from the at least one of the first and second surfaces of the substrate; and
treating the layer of resilient conductive material after forming the at least one electrically
isolated spring-biased electrical contact to permanently enhance strength and elasticity of
a portion of the resilient conductive material comprising the at least one electrically
isolated spring-biased electrical contact.

2. (Previously Presented) The method of claim 1, wherein forming a layer of
resilient conductive material on at least a portion of at least one of the first and second surface of
the substrate comprises:
providing a laminate sheet of the resilient conductive material; and
bonding the laminate sheet to the at least one of the first and second surfaces of the substrate.

3. (Previously Presented) The method of claim 2, wherein bonding the laminate sheet to the at least one of the first and second surfaces of the substrate comprises adhering the laminate sheet to the at least one of the first and second surfaces of the substrate using an adhesive or bonding the laminate sheet to the at least one of the first and second surfaces of the substrate using a thermocompression bonding process.

4. (Previously Presented) The method of claim 1, wherein forming a layer of resilient conductive material on at least a portion of at least one of the first and second surfaces of the substrate comprises forming the layer of resilient conductive material on the at least one of the first and second surfaces of the substrate using a deposition process.

5. (Previously Presented) The method of claim 4, wherein the deposition process comprises chemical vapor deposition or sputtering.

6. (Previously Presented) The method of claim 1, further comprising forming at least one via in the substrate, the at least one via underlying the at least one electrically isolated spring-biased electrical contact.

7. (Previously Presented) The method of claim 6, wherein forming at least one via in the substrate further comprises forming a via opening only to the at least one of the first and second surfaces of the substrate.

Claim 8 (Canceled).

9. (Previously Presented) The method of claim 1, further comprising forming at least one contact element on a surface of the at least one electrically isolated spring-biased electrical contact.

10. (Previously Presented) The method of claim 9, wherein forming at least one contact element further comprises forming a plurality of alternating grooves and ridges, forming at least one protrusion, or forming a roughened surface.

11. (Original) The method of claim 10, wherein forming a plurality of alternating grooves and ridges, forming at least one protrusion or forming a roughened surface is effected by etching.

12. (Previously Presented) The method of claim 1, wherein forming at least one electrically isolated spring-biased electrical contact in the layer of resilient conductive material comprises forming a cantilevered spring, forming a transversely deflecting hoop-shaped spring, forming a spiral-shaped spring, or forming a rosette spring.

13. (Currently Amended) The method of claim 1, wherein forming at least one electrically isolated spring-biased electrical contact and an associated elongate conductive trace from the layer of resilient conductive material is effected by etching the layer of resilient conductive material.

Claims 14 through 17 (Canceled).

18. (Previously Presented) The method of claim 1, further including disposing a dielectric layer overlying the layer of resilient conductive material, the dielectric layer being formed with at least one aperture therethrough substantially aligned with the at least one electrically isolated spring-biased electrical contact.

19. (Previously Presented) The method of claim 18, further comprising forming the dielectric layer to be of sufficient thickness to encompass at least a portion of each lead element of an integrated circuit device contacting the at least one electrically isolated spring-biased electrical contact.

20. (Previously Presented) The method of claim 18, further including forming the at least one aperture to be of frustoconical configuration.

21. (Previously Presented) The method of claim 18, further including preforming the dielectric layer with the at least one aperture prior to disposing the dielectric layer over the layer of resilient conductive material.

22. (Previously Presented) The method of claim 18, further including forming the dielectric layer in place over the layer of resilient conductive material and subsequently forming the at least one aperture therethrough.

Claims 23 through 27 (Canceled).