Števili e^2 in π^2 sta iracionalni

Ema Češek

Seminar, FMF

29. 3. 2019

Realna števila, ki niso racionalna, t.j. $\mathbb{R}\setminus\mathbb{Q}$, imenujemo iracionalna števila.

Realna števila, ki niso racionalna, t.j. $\mathbb{R}\setminus\mathbb{Q}$, imenujemo iracionalna števila.

Primeri

$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{5}$,...

Realna števila, ki niso racionalna, t.j. $\mathbb{R}\setminus\mathbb{Q}$, imenujemo iracionalna števila.

Primeri

$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{5}$,...

$$\sqrt{2} + \sqrt{3}$$
, $\sqrt{5} + \sqrt{3}$, $\sqrt{15}$, $\sqrt{6}$,...

Realna števila, ki niso racionalna, t.j. $\mathbb{R}\setminus\mathbb{Q}$, imenujemo iracionalna števila.

Primeri

$$\sqrt{2}$$
, $\sqrt{3}$, $\sqrt{5}$,...
$$\sqrt{2} + \sqrt{3}$$
, $\sqrt{5} + \sqrt{3}$, $\sqrt{15}$, $\sqrt{6}$,...
$$\sqrt{2} \pm 5$$
, $\frac{1}{\sqrt{3}}$, $-\frac{\sqrt{5}+\sqrt{3}}{7}$,...

Število α je algebraično, če obstaja neničeln polinom $f(x) = c_n x^n + \cdots + c_1 x + c$, kjer $c_i \in \mathbb{Z}$ in $f(\alpha) = 0$. Če tak polinom ne obstaja, rečemo, da je število transcendentno.

Število lpha je algebraično, če obstaja neničeln polinom $f(x) = c_n x^n + \cdots + c_1 x + c$, kjer $c_i \in \mathbb{Z}$ in $f(\alpha) = 0$. Če tak polinom ne obstaja, rečemo, da je število transcendentno.

Primeri

$$\sqrt{7}$$
, $\sqrt[3]{5}$, $\sqrt[5]{91}$,...

 e, π, \dots

Število e

$$e := \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!}$$

$$= 2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{1 + \frac{1}{$$

2.71828182845904523536028747135266249775724709369995...

Število e^2 je iracionalno.

Število e² je iracionalno.

Izrek

Število e^r je iracionalno za vsak $r \in \mathbb{Q} \setminus \{0\}$.

Število π

$$\pi = 3.14159265358979323846264338327950288419716939937510...$$

Približki
$$\frac{22}{7}$$
, $\frac{355}{113}$ in $\frac{104348}{33215}$.

Primeri

$$cos(r)$$
, $sin(r)$, $tan(r)$,...; $r \in \mathbb{Q} \setminus \{0\}$

In(r); r > 0 in $r \neq 1$

Število π^2 je iracionalno.

Naj bo
$$n \ge 1$$
 in $f(x) = \frac{x^n(1-x)^n}{n!}$.

- 2 Za 0 < x < 1 velja $0 < f(x) < \frac{1}{n!}$.
- 3 Vrednosti odvoda $f^{(k)}(x)$ za x = 0 in x = 1 sta celi števili za $\forall k > 0$.

Število π^2 je iracionalno.

Trditev

Naj bo $n \ge 1$ in $f(x) = \frac{x^n(1-x)^n}{n!}$.

- **1** Funkcija je oblike $f(x) = \frac{1}{n!} \sum_{i=1}^{2n} c_i x^i$, kjer $c_i \in \mathbb{Z}$.

Število π^2 je iracionalno.

Trditev

Naj bo $n \ge 1$ in $f(x) = \frac{x^n(1-x)^n}{n!}$.

- Funkcija je oblike $f(x) = \frac{1}{n!} \sum_{i=1}^{2n} c_i x^i$, kjer $c_i \in \mathbb{Z}$.
- 2 Za 0 < x < 1 velja $0 < f(x) < \frac{1}{n!}$.

Število π^2 je iracionalno.

Trditev

Naj bo $n \ge 1$ in $f(x) = \frac{x^n(1-x)^n}{n!}$.

- **1** Funkcija je oblike $f(x) = \frac{1}{n!} \sum_{i=1}^{2n} c_i x^i$, kjer $c_i \in \mathbb{Z}$.
- 2 $Za \ 0 < x < 1 \ velja \ 0 < f(x) < \frac{1}{n!}$
- **3** Vrednosti odvoda $f^{(k)}(x)$ za x = 0 in x = 1 sta celi števili za $\forall k \geq 0$.

Odprta vprašanja

$$e + \pi, \frac{e}{\pi}, 2^e, \pi^e, \pi^{\sqrt{2}}, \gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{\infty} \frac{1}{k} - \ln(n) \right), \dots$$