Komplexní analýza

Úvod, komplexní čísla

Zdeněk Mihula

Katedra matematiky FEL ČVUT v Praze mihulzde@fel.cvut.cz

Základní informace

Stránka předmětu: https://moodle.fel.cvut.cz/courses/B0B01KAN Věnujte pozornost pravidlům předmětu (viz Moodle).

- Podmínky zápočtu upřesní cvičící. Ze semestrálních písemek lze získat až 20 bodů ke zkoušce.
- Včas se dobře seznamte s podmínkami a průběhem zkoušky.
 Vějte pozornost vzorovým zadáním zkouškové písemky.

Obsah kurzu:

- Komplexní analýza
- Transformace (Fourierova transformace, Laplaceova transformace a Z-transformace)

Upozornění

Nezaspěte začátek a nenechte si ujet vlak. Vše na sebe navazuje...

Imaginární nevždy znamená smyšlené

- Víme, že rovnice $x^2 = -1$ nemá v oboru reálných čísel řešení.
- Říct, že řešením je jistý imaginární prvek i splňující $i^2 = -1$, může působit uměle:

Otázka

Co ale např. kubická rovnice $x^3 = 15x + 4$?

• Existují tzv. Cardanovy vzorce pro řešení kubické rovnice $x^3 = px + q$:

$$x = \sqrt[3]{\frac{q}{2} + \sqrt{\frac{q^2}{4} - \frac{p^3}{27}}} + \sqrt[3]{\frac{q}{2} - \sqrt{\frac{q^2}{4} - \frac{p^3}{27}}}.$$

• Co když $\frac{q^2}{4} - \frac{p^3}{27} < 0$? Např. pro $x^3 = 15x + 4$ to nastává, ale:

Poučení

Reálné problémy často vyžadují komplexní metody.

Komplexní čísla

Definice (neformální)

Množinou komplexních čísel rozumíme množinu dvojčlenů x+yi, kde x,y jsou reálná čísla, se kterými počítáme jako s reálnými dvojčleny za využití pravidla $i^2=-1$.

Množinu komplexních čísel značíme symbolem C.

- · Prvek i se nazývá imaginární jednotka.
- · Terminologie a značení:
 - z = x + iy algebraický tvar komplexního čísla z.
 - · x reálná část komplexního čísla z. Píšeme Re z = x.
 - · y imaginární část komplexního čísla z. Píšeme Im z = y.
- Ztotožňujeme x = x + 0i a i = 1i.

Upozornění

Reálná i imaginární část komplexního čísla jsou reálná čísla!

Geometrická interpretace komplexních čísel

Poučení

Reálná a imaginární část komplexního čísla jsou kartézské souřadnice bodu v rovině.

- · Zatímco body/(uspořádané dvojice) z \mathbb{R}^2 neumíme násobit, struktura komplexních čísel je o násobení obohacena.
- Tento "drobný detail" má velmi podstatné důsledky.

Velikost (absolutní hodnota) komplexního čísla

Definice

Velikost (nebo také **absolutní hodnota** či modul) komplexního čísla z = x + iy je nezáporné reálné číslo $|z| = \sqrt{x^2 + y^2}$.

- $\cdot \ |z|$... vzdálenost čísla z od počátku
- $\sqrt{x^2 + y^2}$... vzdálenost bodu (x, y) od počátku
- z = 0 právě tehdy, když |z| = 0.

Upozornění

Nedefinujeme uspořádání komplexních čísel! Můžeme porovnávat velikosti komplexních čísel, nikoliv ale komplexní čísla mezi sebou.

Geometrický význam sčítání, vzdálenost komplexních čísel

- · $z + w = (z_1 + w_1) + i(z_2 + w_2)$ pro $z = z_1 + iz_2$ a $w = w_1 + iw_2$
- $z \mapsto z + w$ posun (z_1, z_2) v rovině o (w_1, w_2)

•
$$|z - w| = \sqrt{(z_1 - w_1)^2 + (z_2 - w_2)^2}$$

vzdálenost mezi $z \in \mathbb{C}$ a $w \in \mathbb{C}$

Komplexní sdružení

Definice

Nechť $z=x+iy\in\mathbb{C}$. Komplexní číslo $\overline{z}=x-iy$ se nazývá komplexně sdruženým číslem k číslu z.

- · $z\mapsto \overline{z}$... zrcadlení kolem reálné osy
- $|z| = |\overline{z}|$

Příklad

Pro každé $z \in \mathbb{C}$ platí $z\overline{z} = |z|^2$.

Dělení komplexních čísel

Otázka

Umíme násobit dvě komplexní čísla. Co by mělo být $\frac{w}{z}$ pro $z \neq 0$?

- $\frac{w}{z} = W_{\overline{z}}^1$
- Inverzní prvek $z^{-1} = \frac{1}{z}$ je definován rovností $z^{-1}z = 1$.
 - pro z=0 inverzní prvek $z^{-1}\in\mathbb{C}$ neexistuje;
 - pro $z \neq 0$ je $z^{-1} = \frac{\bar{z}}{|z|^2}$.
- Odtud pro $z \neq 0$ dostaneme: $\frac{w}{z} = \frac{w\overline{z}}{|z|^2}$.

Příklad

Nechť w = 5 - i a z = 1 + 2i.

- 1 w-z=4-3i, $\overline{w-z}=4+3i$ a |w-z|=5;
- 2 $\frac{w}{z} = \frac{3}{5} \frac{11}{5}i$, Re $\frac{w}{z} = \frac{3}{5}$ a Im $\frac{w}{z} = -\frac{11}{5}$.

Goniometrický tvar komplexního čísla

Nechť z = x + iy je nenulové komplexní číslo.

- $\cdot \ \varphi \in \mathbb{R}$ orientovaný úhel
- $(x,y) = (|z|\cos\varphi, |z|\sin\varphi)$
- · polární souřadnice bodu (x,y)

Poučení

Vyjádření

$$z = |z| (\cos \varphi + i \sin \varphi)$$
, kde $\varphi \in \mathbb{R}$,

nazýváme **goniometrický tvar** čísla $z \neq 0$.

Upozornění

Orientovaný úhel $\varphi \in \mathbb{R}$ není jednoznačný. Můžeme totiž "obíhat" dokola či v opačném směru.

Exponenciální tvar komplexního čísla

Otázka

Jak lze zapsat $z = |z| (\cos \varphi + i \sin \varphi)$ úsporněji?

· Nejspíše jste již někde viděli tzv. Eulerův vzorec:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$
, kde $\varphi \in \mathbb{R}$.

 Pomocí něj lze goniometrický tvar komplexního čísla zapsat mnohem úsporněji jako:

$$z = |z|(\cos \varphi + i \sin \varphi) = |z|e^{i\varphi}.$$

Poučení

Vyjádření

$$z = |z|e^{i\varphi}$$
, kde $\varphi \in \mathbb{R}$,

nazýváme **exponenciální tvar** čísla $z \neq 0$.

Množina argumentů a hlavní hodnota argumentu

Definice

Mějme nenulové $z = |z|(\cos \varphi + i \sin \varphi) = |z|e^{i\varphi}$.

- 1 Libovolné takové $\varphi \in \mathbb{R}$ nazýváme **argument** čísla z.
- 2 Množinu Arg $z = \{ \varphi \in \mathbb{R} : z = |z| (\cos \varphi + i \sin \varphi) = |z| e^{i\varphi} \}$ nazýváme **množina všech argumentů** čísla z.
- 3 To $\varphi \in \operatorname{Arg} z$ spňující navíc $(-\pi, \pi]$ nazýváme hlavní hodnota argumentu čísla z. Toto jedno φ značíme $\operatorname{arg} z$.

Příklad

Mějme z = -1 + i.

- **1** $|z| = \sqrt{2}$, Arg $z = \left\{ \frac{3\pi}{4} + 2k\pi : k \in \mathbb{Z} \right\}$ a arg $z = \frac{3\pi}{4}$.
- 2 $z = \sqrt{2}(\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})) = \sqrt{2}e^{\frac{11}{4}\pi i} = \sqrt{2}e^{-\frac{5}{4}\pi i} = \cdots$

Pro jistotu ještě jednou

Hodnotu φ z obrázku nevidíme.

$$\varphi = \frac{7\pi}{4}$$
? $\varphi = -\frac{\pi}{4}$? $\varphi = \frac{31\pi}{4}$?

Ovšem vidíme, že $\arg z = -\frac{\pi}{4}$.

Poučení

Nenulové komplexní číslo má nekonečně mnoho argumentů. Ovšem má ale pouze jednu jedinou hlavní hodnotu argumentu, která leží v intervalu $(-\pi,\pi]$.

Rovnost komplexních čísel

Tvrzení (O rovnosti komplexních čísel)

Nechť $z,w\in\mathbb{C}$ jsou nenulová. Nechť $\varphi\in\operatorname{Arg} z$ a $\psi\in\operatorname{Arg} w$. Potom z=w právě tehdy, když

$$|z|=|w|$$
 a zároveň $\psi=arphi+2k\pi$ pro nějaké $k\in\mathbb{Z}.$

Poučení

Velikosti stejné, ale dva "náhodné" argumenty se mohou lišit o celočíselný násobek 2π .

Geometrický význam násobení

- Mějme nenulová $z=|z|(\cos\varphi+i\sin\varphi)$ a $w=|w|(\cos\psi+i\sin\psi)$.
- Za použití součtových vzorců můžeme ověřit: $(\cos \varphi + i \sin \varphi)(\cos \psi + i \sin \psi) = \cos(\varphi + \psi) + i \sin(\varphi + \psi)$
- · A tedy:

$$ZW = |Z||W|(\cos(\varphi + \psi) + i\sin(\varphi + \psi)) = |Z||W|e^{i(\varphi + \psi)}$$

Poučení

Úhly se sčítají a velikosti násobí.

- $\cdot |zw| = |z||w|$
- $\varphi + \psi \in Arg(zw)$
- Nemusí ale být $\varphi + \psi = \arg(zw)$.

Moivreova věta

Tzv. Moivreova věta by teď už pro nás neměla být překvapením.

Věta (Moivreova věta)

Pro každé $n \in \mathbb{Z}$ a $\varphi \in \mathbb{R}$ platí

$$(\cos \varphi + i \sin \varphi)^n = \cos(n\varphi) + i \sin(n\varphi).$$

Stručněji:

$$\left(e^{i\varphi}\right)^n=e^{in\varphi}.$$

Příklad

Uvažme rovnici $z^4 = -2$. Množina všech jejích řešení je

$$\left\{ \sqrt[4]{2}e^{i\left(\frac{\pi}{4} + \frac{k\pi}{2}\right)} : k = 0, 1, 2, 3 \right\} = \\
\left\{ \sqrt[4]{2} \left(\cos\left(\frac{\pi}{4} + \frac{k\pi}{2}\right) + i\sin\left(\frac{\pi}{4} + \frac{k\pi}{2}\right) \right) : k = 0, 1, 2, 3 \right\}$$

Základní identity

Tvrzení (Základní identity)

Nechť $z, w \in \mathbb{C}$. Potom

- 1 Re $z = \frac{z + \overline{z}}{2}$ a Im $z = \frac{z \overline{z}}{2i}$;
- $2 \ \overline{\overline{Z}} = Z;$
- $\overline{ZW} = \overline{Z} \ \overline{W};$
- $\mathbf{6} \ z\overline{z} = \left|z\right|^2 \ge 0$
- $|z| = |\overline{z}|;$
- |zw| = |z| |w|;

Rozšířená komplexní rovina

- Existuje také tzv. rozšířená komplexní rovina (a s ní souvisí pojem Riemannova sféra), která vznikne rozšířením komplexní roviny o jeden "nevlastní bod".
- · Tento jeden prvek má interpretaci "komplexního nekonečna".
- · My se ale obejdeme bez toho.

Upozornění

V komplexní analýze nemáme $+\infty$ a $-\infty$ jako v reálné analýze.