

e-ISSN: 2541-2019 Volume 2 Nomor 1, Oktober 2017 p-ISSN: 2541-044X

Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation

Anjar Wanto

STIKOM Tunas Bangsa Pematangsiantar Pematangsiantar, Indonesia anjarwanto@amiktunasbangsa.ac.id

Agus Perdana Windarto STIKOM Tunas Bangsa Pematangsiantar Pematangsiantar, Indonesia agus.perdana@amiktunasbangsa.ac.id

Abstrak— Analisis pada sebuah prediksi (peramalan) sangat penting dilakukan pada sebuah penelitian, agar penelitian menjadi lebih tepat dan terarah. Seperti halnya dalam memprediksi Indeks Harga Konsumen berdasarkan kelompok kesehatan, diperlukan adanya kajian-kajian dan penggunaan metode yang tepat untuk mendapatkan hasil yang optimal. Penelitian ini diharapkan dapat bermanfaat secara luas, baik bagi Pemerintah Daerah maupun pihak swasta sebagai salah satu bahan kajian dalam pengembangan bisnis, maupun bagi para akademisi sebagai bahan kajian/penelitian khususnya yang terkait dengan bidang ekonomi dan kebijakan publik. Data yang digunakan dalam penelitian ini adalah data Indeks Harga Konsumen berdasarkan kelompok Kesehatan yang berasal dari Badan Pusat Statistik Kota Medan dari tahun 2014 sampai dengan tahun 2016, bulan Januari sampai dengan Desember. Penelitian ini menggunakan metode jaringan saraf tiruan Backpropagation dengan menggunakan 8 model arsitektur, yakni : 12-5-1 yang nanti nya akan menghasilkan prediksi dengan tingkat akurasi sebesar 58%, 12-26-1 = 58%, 12-29-1 = 75%, 12-35-1 = 50%, 12-40-1 = 42%, 12-60-1 = 67%, 12-70-1 = 92% dan 12-75-1 = 50%. Sehingga diperoleh model arsitektur terbaik menggunakan model 12-70-1 yang menghasilkan tingkat akurasi sebesar 92%, MSE 0,3659742 dengan tingkat error yang digunakan 0,001 - 0,05. Dengan demikian, model ini cukup bagus untuk prediksi Indeks Harga Konsumen berdasarkan kelompok kesehatan.

Kata Kunci; JST, Prediksi, IHK, Kesehatan, Backpropagation

I. PENDAHULUAN

A. Latar Belakang

Indeks Harga Konsumen (IHK) merupakan salah satu indikator ekonomi penting yang dapat memberikan informasi mengenai perkembangan harga barang/jasa yang dibayar oleh konsumen di suatu wilayah. Penghitungan IHK ditujukan untuk mengetahui perubahan harga dari sekelompok tetap barang/jasa yang umumnya dikonsumsi masyarakat setempat [1].

Indeks Harga Konsumen terdiri dari beberapa kelompok, salah satunya berdasarkan kelompok Kesehatan. Kesehatan perlu dibahas karena kesehatan penting bagi umat manusia kelangsungan rutinitas sehari-hari.

Tabel 1. Kelompok Pengeluaran Indeks Harga Konsumen

No	Uraian
1	Bahan Makanan
2	Makanan Jadi, Minuman, Rokok Dan Tembakau
3	Perumahan, Air, Listrik, Gas dan Bahan Bakar
4	Sandang
5	Kesehatan
6	Pendidikan, Rekreasi dan Olahraga
7	Transport, Komunikasi dan Jasa Keuangan
	Sumber : Badan Pusat Statistik Medan

Berdasarkan tabel 1, bahwa setiap kelompok terdiri dari beberapa sub kelompok. Adapun data sub kelompok dari setiap sektor Indeks Harga Konsumen dapat dilihat pada tabel 2. berikut :

Tabel 2 Kelompok Pengeluaran Indeks Harga Konsumen

No	Sektor	Sub Kelompok						
1	Bahan Makanan	Padi-padian (Umbi-umbian), Daging, Ikan Segar, Ikar Diawetkan, Telur dan Susu, Sayur-Sayuran, Kacang-Kacangan Buah-Buahan, Bumbu-Bumbuan, Lemak dan Minyak, Bahar Makanan Lainnya						
2	Makanan Jadi, Minuman, Rokok Dan Tembakau	Makanan Jadi, Minuman Yang Tidak Beralkohol, Tembakat dan Minuman Beralkohol						
3	Perumahan, Air, Listrik, Gas dan Bahan Bakar	Biaya Tempat Tinggal, Bahan Bakar (Penerangan) dan Air Perlengkapan Rumahtangga, Penyelenggaraan Rumahtangga						
4	Sandang	Sandang Laki-laki, Sandang Wanita, Sandang Anak-anak Barang Pribadi dan Sandang lain						
5	Kesehatan	Jasa Kesehatan, Obat-obatan, Jasa Perawatan Jasmani Perawatan Jasmani dan Kesehatan						
6	Pendidikan, Rekreasi dan Olahraga	Jasa Pendidikan, Kursus-kursus / Pelatihan, Perlengkapan Peralatan Pendidikan, Rekreasi Olahraga						
7	Transport, Komunikasi dan Jasa Keuangan	Transport, Komunikasi dan Pengiriman, Sarana Penunjan, Transport, Jasa Keuangan						

Berdasarkan tabel 2, bahwa setiap sektor Indeks Harga Konsumen memiliki peran penting dalam perkembangan ekonomi. Indeks Harga Konsumen sangat diperlukan dalam kegiatan ekonomi suatu negara karena informasi yang dihasilkan oleh Indeks Harga Konsumen merupakan informasi tentang perkembangan ekonomi yang nantinya menentukan kebijakan perekonomian dimasa yang akan datang.

Metode yang digunakan dalam pembahasan Indeks Harga Konsumen berdasarkan kelompok kesehatan ini adalah algoritma backpropagation. Diharapkan dengan adanya penggunaan metode ini maka akan didapatkan hasil seperti yang diinginkan, karena algoritma backpropagation memungkinkan untuk menghindari kesulitan yang dijelaskan

menggunakan aturan belajar yang mirip dengan plastisitas lonjakan waktu yang tergantung pada sinansis

Pada penelitian sebelumnya A. Wanto (2017), melakukan penelitian untuk memprediksi Indeks Harga Konsumen (IHK) Kelompok Bahan Makanan menggunakan jaringan saraf tiruan Backpropagation dan Conjugate Gradient Fletcher Reeves. Penelitian tersebut menghasilkan tingkat akurasi sebesar 75% dan MSE 0,0142803691 apabila menggunakan metode Backpropagation dengan arsitektur terbaik yang digunakan 12-15-1. Sedangkan dengan menggunakan metode Conjugate Gradient Fletcher Reeves menghasilkan tingkat akurasi sebesar dan MSE 0,0090116088 yang menggunakan model arsitektur 12-15-1. Kekurangan dari penelitian ini adalah hasil akurasi yang kurang maksimal, yang kemungkinan disebabkan oleh pemilihan arsitektur jaringan yang kurang tepat [2].

B. Rumusan Masalah

Backpropagation membutuhkan waktu yang lama dalam proses pembelajaran prediksi data, sehingga dibutuhkan pemilihan parameter yang tepat.

C. Batasan Penelitian

Batasan atau ruang lingkup penelitian perlu dilakukan agar penelitian dapat terarah dengan baik dan tidak menyimpang dari pokok permasalahan. Adapun batasan atau ruang lingkup penelitian yang penulis ambil antara lain:

- 1. Penelitian ini hanya memprediksi perkembangan Indeks Harga Konsumen berdasarkan kelompok Kesehatan menggunakan *Backpropagation*.
- 2. Hanya akan membahas akurasi yang di hasilkan *backpropagation*.

D. Tujuan Penelitian

Tujuan dari penelitian ini adalah melakukan proses pembelajaran prediksi data pada metode backpropagation, sehingga nantinya mampu memberikan informasi yang praktis untuk sistem prediksi data, khususnya dalam memprediksi Indeks Harga Konsumen kelompok Kesehatan.

E. Manfaat Penelitian

Penelitian ini memberikan manfaat pada penggunaan jaringan saraf tiruan dalam beberapa kasus *soft computing* khususnya yang menggunakan algoritma *backpropagation*.

II. TINJAUAN PUSTAKA

e-ISSN: 2541-2019

p-ISSN: 2541-044X

A. Analisis

Analisis adalah kemampuan pemecahan masalah subjek kedalam elemen-elemen konstituen, mencari hubungan-hubungan internal dan diantara elemen-elemen, serta mengatur format-format pemecahan masalah secara keseluruhan yang ada, sehingga pada akhirnya menjadi sebuah nilai-nilai ekspektasi [3].

B. Kecerdasan Buatan (Artificial Intelligence)

Machine Learning (ML) menawarkan pendekatan alternatif untuk pemodelan prediksi standar yang mungkin mengatasi keterbatasan saat ini. ML dikembangkan dari studi pengenalan pola dan perhitungan semua penghasilan (yang disebut 'kecerdasan buatan'). Hal ini sangat bergantung pada komputer untuk mempelajari semua interaksi linear dan non linier secara kompleks antara variabel dengan meminimalkan kesalahan antara hasil prediksi yang diamati. Selain prediksi berpotensi meningkatkan, ML dapat mengidentifikasi variabel asing, yang tidak mungkin untuk diamati tapi mungkin disimpulkan melalui variabel lain [4].

C. Jaringan Saraf Tiruan

Jaringan Saraf Tiruan (JST) merupakan salah satu representasi buatan otak manusia yang selalu mencoba untuk mensimulasikan proses pembelajaran pada otak manusia [5].

D. Backpropagation

Pendekatan jaringan saraf tiruan dapat meniru perilaku yang kompleks dan *non-linear* melalui *neuron*, dan telah banyak digunakan dalam prediksi. Model yang paling banyak digunakan pada kecerdasan buatan adalah model *backpropagation*. Ciri khas *backpropagation* melibatkan tiga lapisan : lapisan *input*, dimana data diperkenalkan ke jaringan; *hidden layer*, dimana data diproses; dan lapisan *output*, di mana hasil dari masukan yang diberikan oleh lapisan input [6].

E. Indeks Harga Konsumen

Indeks Harga Konsumen merupakan indeks yang menggambarkan perubahan harga dari waktu ke waktu, sehingga sangat cocok dianalisis dengan analisis *time series* [7].

F. Prediksi (Peramalan)

Prediksi (peramalan) adalah usaha menduga atau memperkirakan sesuatu yang akan terjadi di waktu mendatang dengan memanfaatkan berbagai informasi yang relevan pada waktu-waktu sebelumnya (historis) melalui suatu metode ilmiah. Tujuan dari prediksi adalah mendapatkan informasi apa yang akan terjadi di masa datang dengan probabilitas kejadian terbesar.

Metode prediksi dapat dilakukan secara kualitatif melalui pendapat para pakar atau secara kuantitatif dengan perhitungan secara matematis. Salah satu metode prediksi kuantitatif adalah menggunakan analisis deret waktu (*time series*) [8].

III METODOLOGI PENELITIAN

Metodologi penelitian adalah langkah dan prosedur yang akan dilakukan dalam pengumpulan data atau informasi guna memecahkan permasalahan dan menguji hipotesis penelitian.

A. Kerangka Kerja Penelitian

Pada bagian ini akan diuraikan metodologi dan kerangka penelitian kerja yang digunakan dalam menyelesaikan masalah penelitian.

Gambar 1. Kerangka Kerja Penelitian

Berdasarkan kerangka kerja pada gambar diatas maka masing-masing langkah dapat diuraikan sebagai berikut:

1. Mengumpulkan Data

Pada tahap ini, data-data diperoleh dari Berita Resmi Statistik (BRS) yang rutin diterbitkan secara bulanan oleh Badan Pusat Statistik (BPS) Kota Medan.

2. Studi Pustaka

Studi pustaka merupakan langkah awal dalam penelitian ini, studi pustaka ini dilakukan untuk melengkapi pengetahuan dasar dan teoriteoriyang digunakan dalam penelitian ini

3. Mengidentifikasi Masalah

Pada tahap identifikasi masalah ini, dilakukan setelah semua data-data terpenuhi kemudian didapatkan *dataset* yang sesuai untuk dilakukan proses pada tahap konversi data yang didapat sesuai dengan bobot yang ditentukan

4. Praproses

Tahapan yang dikerjakan adalah dengan melakukan perubahan terhadap beberapa tipe data pada atribut *dataset* dengan tujuan untuk mempermudah pemahaman terhadap isi *record*, juga melakukan seleksi dengan memperhatikan konsistensi data, *missing value* dan *redundant* pada data.

e-ISSN: 2541-2019

p-ISSN: 2541-044X

5. Menentukan Model

Hasil dari tahap ini adalah beberapa model jaringan saraf tiruan dengan metode *Backpropagation* untuk menentukan pola

6. Menguji Hasil Pengolahan Data

Seteleh proses penentuan model selesai, maka dilakukan tahapan uji coba terhadap hasil pengolahan data dengan menggunakan *Software Matlab R2011b (7.13)*

7. Memprediksi

Prediksi dilakukan untuk membandingkan jumlah dengan model Jaringan Saraf Tiruan dengan metode *Backpropagation* yang paling akurat

8. Mengevaluasi Akhir

Mengevaluasi akhir dilakukan untuk mengetahui apakah testing hasil pengolahan data sesuai dengan yang diharapkan.

B. Arsitektur Jaringan

Contoh arsitektur jaringan yang digunakan dapat dilihat pada Gambar 2. yang terdiri dari tiga lapisan, yaitu : 12 masukan (*input*), 12 neuron *hidden layer* dan 1 lapisan keluaran (*output*).

Gambar 2. Arsitektur Jaringan Saraf Tiruan Yang Digunakan

Keterangan:

 $X_1 - X_{12}$: Data masukan (*input layer*)

b (warna merah) : Bias

e-ISSN : 2541-2019 p-ISSN : 2541-044X

 V_{ij} : Bobot ke simpul *hidden* W_{ij} : Bobot ke simpul *output*

 $Z_1 - Z_{12}$: Hidden Layer

Y : Hasil Keluaran (*output*)

Pola arsitektur jaringan yang digunakan untuk prediksi Indeks Harga Konsumen (IHK) yaitu 12-N-1. Dimana 12 adalah node data input. Sedangkan jumlah hidden node N menggunakan aturan 'rule of thumb', serta 1 keluaran.

C. Data Yang Digunakan

Data yang digunakan dalam penelitian ini adalah data Indeks Harga Konsumen (IHK) kota Medan berdasarkan kelompok kesehatan dari tahun 2014 sampai 2016, dari Januari sampai Desember.

Tabel 3. Data Indeks Harga Konsumen Kelompok Kesehatan

			I I	ndeks l	Harga H	Consum	nen 20:	14-201	6			
	Kelompok : Kesehatan											
Tahun	Bulan											
ranun	Jan	Feb	Mar	Apr	Mel	Jun	Jul	Agu	Sep	Okt	Nov	Des
2014	103,39	104,13	105,26	105,40	105,46	105,55	106,53	106,88	107,04	107,16	107,24	107,73
2015	108,28	108,63	109,46	109,58	110,09	112,34	113,23	113,31	113,65	114,10	114,39	114,44
2016	117,95	118,20	118,37	118,48	119,03	119,13	113,23	120,62	120,73	121,00	121,10	121,26

Dataset Indeks Harga Konsumen berdasarkan kelompok kesehatan pada 2014-2015 digunakan sebagai data Training, sedangkan dataset pada 2015-2016 digunakan sebagai testing data. Data yang disajikan adalah data Januari sampai Desember setiap tahunnya. Data Training dan testing ini nantinya akan dilakukan dengan menggunakan rotasi putar, maksudnya setiap dataset memiliki hak yang sama untuk mencapai target.

D. Normalisasi Data

Sebelum diproses, data dinormalisasi terlebih dahulu. Normalisasi terhadap data dilakukan agar keluaran jaringan sesuai dengan fungsi aktivasi yang digunakan. Fungsi aktivasi yang peneliti gunakan dalam penelitian ini adalah fungsi aktivasi *sigmoid*. Fungsi sigmoid adalah fungsi asimtotik (tidak pernah mencapai 0 ataupun 1), maka transformasi data dilakukan pada interval yang lebih kecil yaitu [0.1; 0.9], ditunjukkan dengan persamaan (1).

$$x' = \frac{0.8(x-a)}{b-a} + 0.1 \tag{1}$$

Tabel 4. Data Training Awal Sebelum Normalisasi

Data						Inj	put						Tanget
Data	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agu	Sep	0kt	Nov	Des	Target
1	103,39	104,13	105,26	105,40	105,46	105,55	106,53	106,88	107,04	107,16	107,24	107,73	108,28
2	104,13	105,26	105,40	105,46	105,55	106,53	106,88	107,04	107,16	107,24	107,73	108,28	108,63
3	105,26	105,40	105,46	105,55	106,53	106,88	107,04	107,16	107,24	107,73	108,28	108,63	109,46
4	105,40	105,46	105,55	106,53	106,88	107,04	107,16	107,24	107,73	108,28	108,63	109,46	109,58
5	105,46	105,55	106,53	106,88	107,04	107,16	107,24	107,73	108,28	108,63	109,46	109,58	110,09
6	105,55	106,53	106,88	107,04	107,16	107,24	107,73	108,28	108,63	109,46	109,58	110,09	112,34
7	106,53	106,88	107,04	107,16	107,24	107,73	108,28	108,63	109,46	109,58	110,09	112,34	113,23
8	106,88	107,04	107,16	107,24	107,73	108,28	108,63	109,46	109,58	110,09	112,34	113,23	113,31
9	107,04	107,16	107,24	107,73	108,28	108,63	109,46	109,58	110,09	112,34	113,23	113,31	113,65
10	107,16	107,24	107,73	108,28	108,63	109,46	109,58	110,09	112,34	113,23	113,31	113,65	114,10
11	107,24	107,73	108,28	108,63	109,46	109,58	110,09	112,34	113,23	113,31	113,65	114,10	114,39
12	107,73	108,28	108,63	109,46	109,58	110,09	112,34	113,23	113,31	113,65	114,10	114,39	114,44

Penjelasan:

- Data Training Tahun 2014-2015 dilakukan dengan menggunakan rotasi putar, maksudnya setiap dataset memiliki hak yang sama untuk mencapai target.
- Nilai data 1 diambil dari IHK kelompok kesehatan tahun 2014. Sedangkan nilai Target diambil dari IHK kelompok kesehatan bulan Januari tahun 2015.
- Nilai data 2 diambil dari IHK kelompok kesehatan tahun 2014 bulan Februari s/d Desember serta dataset bulan Januari tahun 2015. Nilai Target pada pola 2 ini diambil dari IHK kelompok kesehatan bulan Februari tahun 2015.
- Nilai data 3 diambil dari IHK kelompok kesehatan tahun 2014 bulan Maret s/d Desember serta dataset bulan Januari s/d Februari tahun 2015. Nilai Target pada pola 3 ini diambil dari IHK kelompok kesehatan bulan Maret tahun 2015.
- Begitu seterusnya hingga seluruh nilai selesai di putar.
- Nilai maksimum (b) dari dataset adalah 114,44. Sedangkan nilai minimum (a) adalah 103,39.
- Dengan menggunakan fungsi sigmoid maka akan di peroleh data normalisasi sebagai berikut :

$$x' = \frac{0.8 (103.39 - 103.39)}{114.44 - 103.39} + 0.1$$

Maka akan didapatkan hasil Normalisasi pola 1 untuk bulan Januari 0,1000. Begitu seterusnya untuk semua data, di normalisasi dengan menggunakan fungsi yang sama.

Tabel 5. Data Training Setelah Normalisasi

D-4-						Inp	out						T
Data	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agu	Sep	0 kt	Nov	Des	Target
1	0,1000	0,1536	0,2354	0,2455	0,2499	0,2564	0,3273	0,3527	0,3643	0,3729	0,3787	0,4142	0,4540
2	0,1536	0,2354	0,2455	0,2499	0,2564	0,3273	0,3527	0,3643	0,3729	0,3787	0,4142	0,4540	0,4794
3	0,2354	0,2455	0,2499	0,2564	0,3273	0,3527	0,3643	0,3729	0,3787	0,4142	0,4540	0,4794	0,5395
4	0,2455	0,2499	0,2564	0,3273	0,3527	0,3643	0,3729	0,3787	0,4142	0,4540	0,4794	0,5395	0,5481
5	0,2499	0,2564	0,3273	0,3527	0,3643	0,3729	0,3787	0,4142	0,4540	0,4794	0,5395	0,5481	0,5851
6	0,2564	0,3273	0,3527	0,3643	0,3729	0,3787	0,4142	0,4540	0,4794	0,5395	0,5481	0,5851	0,7480
7	0,3273	0,3527	0,3643	0,3729	0,3787	0,4142	0,4540	0,4794	0,5395	0,5481	0,5851	0,7480	0,8124
8	0,3527	0,3643	0,3729	0,3787	0,4142	0,4540	0,4794	0,5395	0,5481	0,5851	0,7480	0,8124	0,8182
9	0,3643	0,3729	0,3787	0,4142	0,4540	0,4794	0,5395	0,5481	0,5851	0,7480	0,8124	0,8182	0,8428
10	0,3729	0,3787	0,4142	0,4540	0,4794	0,5395	0,5481	0,5851	0,7480	0,8124	0,8182	0,8428	0,8754
11	0,3787	0,4142	0,4540	0,4794	0,5395	0,5481	0,5851	0,7480	0,8124	0,8182	0,8428	0,8754	0,8964
12	0,4142	0,4540	0,4794	0,5395	0,5481	0,5851	0,7480	0,8124	0,8182	0,8428	0,8754	0,8964	0,9000

data training pada tabel 5 diperoleh dengan menggunakan rotasi putar berdasarkan tabel 3, tahun 2014-2015.

Tabel 6. Data Testing Awal Sebelum Normalisasi

В.						In	put						m .
Data	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agu	Sep	0kt	Nov	Des	Target
1	108,28	108,63	109,46	109,58	110,09	112,34	113,23	113,31	113,65	114,10	114,39	114,44	117,95
2	108,63	109,46	109,58	110,09	112,34	113,23	113,31	113,65	114,10	114,39	114,44	117,95	118,20
3	109,46	109,58	110,09	112,34	113,23	113,31	113,65	114,10	114,39	114,44	117,95	118,20	118,37
4	109,58	110,09	112,34	113,23	113,31	113,65	114,10	114,39	114,44	117,95	118,20	118,37	118,48
5	110,09	112,34	113,23	113,31	113,65	114,10	114,39	114,44	117,95	118,20	118,37	118,48	119,03
6	112,34	113,23	113,31	113,65	114,10	114,39	114,44	117,95	118,20	118,37	118,48	119,03	119,13
7	113,23	113,31	113,65	114,10	114,39	114,44	117,95	118,20	118,37	118,48	119,03	119,13	113,23
8	113,31	113,65	114,10	114,39	114,44	117,95	118,20	118,37	118,48	119,03	119,13	113,23	120,62
9	113,65	114,10	114,39	114,44	117,95	118,20	118,37	118,48	119,03	119,13	113,23	120,62	120,73
10	114,10	114,39	114,44	117,95	118,20	118,37	118,48	119,03	119,13	113,23	120,62	120,73	121,00
11	114,39	114,44	117,95	118,20	118,37	118,48	119,03	119,13	113,23	120,62	120,73	121,00	121,10
12	114,44	117,95	118,20	118,37	118,48	119,03	119,13	113,23	120,62	120,73	121,00	121,10	121,26

Penjelasan:

- Data testing Tahun 2015-2016 dilakukan dengan menggunakan rotasi putar, maksudnya setiap dataset memiliki hak yang sama untuk mencapai target.
- Nilai data 1 diambil dari IHK kelompok kesehatan tahun 2015. Sedangkan nilai Target diambil dari IHK kelompok kesehatan bulan Januari tahun 2016.
- Nilai data 2 diambil dari IHK kelompok kesehatan tahun 2015 bulan Februari s/d Desember serta dataset bulan Januari tahun 2016. Nilai Target data 2 ini diambil dari IHK kelompok kesehatan bulan Februari tahun 2016.
- Nilai data 3 diambil dari IHK kelompok kesehatan tahun 2015 bulan Maret s/d Desember serta dataset bulan Januari s/d Februari tahun 2016. Nilai Target data 3 ini diambil dari IHK kelompok kesehatan bulan Maret tahun 2016.
- Begitu seterusnya hingga seluruh nilai selesai di putar.
- Nilai maksimum (b) dari dataset adalah 121,26. Sedangkan nilai minimum (a) adalah 108,28.
- Dengan menggunakan fungsi sigmoid maka akan di dapat data normalisasi sebagai berikut :

$$x' = \frac{0.8 (108.28 - 108.28)}{121.26 - 108.28} + 0.1$$

- Maka akan didapatkan hasil Normalisasi 1 untuk bulan Januari 0,1000. Begitu seterusnya untuk semua data, di normalisasi dengan menggunakan fungsi yang sama.

Tabel 7. Data Testing Setelah Normalisasi

N-6		Input													
Data	Jan	Feb	Mar	Apr	Mei	Jun	Jul	Agu	Sep	Okt	Nov	Des	Target		
1	0,1000	0,1216	0,1727	0,1801	0,2116	0,3502	0,4051	0,4100	0,4310	0,4587	0,4766	0,4797	0,6960		
2	0,1216	0,1727	0,1801	0,2116	0,3502	0,4051	0,4100	0,4310	0,4587	0,4766	0,4797	0,6960	0,7114		
3	0,1727	0,1801	0,2116	0,3502	0,4051	0,4100	0,4310	0,4587	0,4766	0,4797	0,6960	0,7114	0,7219		
4	0,1801	0,2116	0,3502	0,4051	0,4100	0,4310	0,4587	0,4766	0,4797	0,6960	0,7114	0,7219	0,7287		
5	0,2116	0,3502	0,4051	0,4100	0,4310	0,4587	0,4766	0,4797	0,6960	0,7114	0,7219	0,7287	0,7626		
6	0,3502	0,4051	0,4100	0,4310	0,4587	0,4766	0,4797	0,6960	0,7114	0,7219	0,7287	0,7626	0,7687		
7	0,4051	0,4100	0,4310	0,4587	0,4766	0,4797	0,6960	0,7114	0,7219	0,7287	0,7626	0,7687	0,4051		
8	0,4100	0,4310	0,4587	0,4766	0,4797	0,6960	0,7114	0,7219	0,7287	0,7626	0,7687	0,4051	0,8606		
9	0,4310	0,4587	0,4766	0,4797	0,6960	0,7114	0,7219	0,7287	0,7626	0,7687	0,4051	0,8606	0,8673		
10	0,4587	0,4766	0,4797	0,6960	0,7114	0,7219	0,7287	0,7626	0,7687	0,4051	0,8606	0,8673	0,8840		
11	0,4766	0,4797	0,6960	0,7114	0,7219	0,7287	0,7626	0,7687	0,4051	0,8606	0,8673	0,8840	0,8901		
12	0,4797	0,6960	0,7114	0,7219	0,7287	0,7626	0,7687	0,4051	0,8606	0,8673	0,8840	0,8901	0,9000		

data testing pada tabel 6 juga diperoleh dengan menggunakan rotasi putar berdasarkan tabel 3, tahun 2015-2016.

IV. ANALISIS DAN HASIL

Langkah pertama yang harus dilakukan untuk memprogram backpropagation dengan software Matlab adalah membuat inisialisasi jaringan. Sebelum Training dilakukan, terlebih dahulu ditentukan nilai parameter yang diinginkan guna memperoleh hasil yang optimal.

Tabel 8. Arsitektur JST Backpropagation

e-ISSN: 2541-2019

p-ISSN: 2541-044X

Karakteristik	Spesifikasi
Arsitektur	1 lapisan tersembunyi
Neuron input	12
Neuron Hidden	5, 26, 29, 35, 40,60,70,75
Fungsi Aktivasi	Sigmoid
Inisialisasi bobot	Random
Goal	0.001
Minimum Error	0.001 - 0.05
Maksimum Epoch	10000
Learning Rate	0.01

A. Analisis

Sebelumnya data yang akan diujikan haruslah dibagi menjadi dua (2) bagian, di mana bagian pertama adalah untuk data training dan bagian kedua adalah untuk data testing. Parameter-parameter yang digunakan secara umum pada aplikasi Matlab untuk training dan testing dapat dilihat pada kode berikut:

<pre>net=newff(minmax(P),[Hidden,Target],{'logsig','purelin'},'traingd');</pre>
>> net.IW{1,1};
>> net.b{1};

- $>> net.LW\{2,1\};$
- >> net.b{2};
- >> net.trainparam.epochs=10000;
- >> net.trainparam.LR=0.01;
- >> net.trainParam.goal = 0.001;
- >> net.trainParam.show = 1000;

B. Hasil

Penelitian ini menggunakan 8 arsitektur. Antara lain 12-5-1, 12-26-1, 12-29-1, 12-35-1, 12-40-1, 12-60-1, 12-70-1, 12-75-1. Dari ke 8 arsitektur ini, arsitektur terbaiknya yaitu 12-70-1 dengan tingkat akurasi sebesar 92%.

Gambar 3. Hasil Data Training 12-70-1

Dari gambar model arsitektur 12-70-1 diatas dapat dijelaskan bahwa Epoch yang terjadi sebesar 5931 dengan lama waktu 45 detik.

Gambar 4. Hasil Epoch Training Dengan Arsitektur 12-70-1

Dari gambar model arsitektur 12-70-1 diatas dapat dijelaskan bahwa dari *Epoch training* dapat diperoleh *Mean Square Error* (MSE) sebesar 0,00099976.

Tabel 9. Hasil Data Training Dan Testing Pada Arsitektur 12-70-1

		Data	Training				Data T	esting	
No	Target	Output	Error	SSE	Target	Output	Error	SSE	Prediksi
1	0,45403	0.47250	-0.01847	0,0003412462	0,69599	0,84010	-0,14411	0,0207665863	1
2	0,47937	0,44640	0,03297	0,0010867912	0,71140	1,33360	-0,62220	0,3871301556	1
3	0,53946	0,57120	-0,03174	0,0010076172	0,72188	0,76760	-0,04572	0,0020903353	1
4	0,54814	0,52970	0,01844	0,0003402105	0,72866	1,35150	-0,62284	0,3879303182	1
5	0,58507	0,57340	0,01167	0,0001361393	0,76256	1,37800	-0,61544	0,3787691247	1
6	0.74796	0.74870	-0.00074	0.0000005420	0.76872	1.12160	-0.35288	0.1245235114	1
7	0,81240	0,85170	-0,03930	0,0015446323	0,40508	1,04950	-0,64442	0,4152710199	1
8	0,81819	0.76170	0,05649	0,0031911252	0,86055	1.08860	-0.22805	0,0520046591	1
9	0,84281	0,89420	-0,05139	0,0026414018	0,86733	1,93220	-1,06487	1,1339388301	1
10	0,87538	0.83910	0,03628	0,0013165733	0,88398	1,54580	-0,66182	0,4380118717	1
11	0,89638	0,91570	-0,01932	0,0003732589	0,89014	1,89280	-1,00266	1,0053297329	1
12	0.90000	0,89580	0,00420	0,0000176400	0.90000	0,68570	0,21430	0,0459244900	0
			Total	0,0119971779			Total	4,3916906352	02
			MSE	0,0009997648			MSE	0,3659742196	92

Tabel 10. Hasil Training Dan Testing Backpropagation

			Backpro	pagation				
No	Arsitektur		Traini	ıg	Testing			
NO AISITERIUI		Epoch	Waktu	MSE	MSE	Akurasi		
1	12-5-1	2243	00:17	0,0009987	0,0434634	58%		
2	12-26-1	6409	00:42	0,0009997	0,2058664	58%		
3	12-29-1	9551	01:02	0,0010006	0,3104408	75%		
4	12-35-1	5770	00:37	0,0010007	0,8914768	50%		
5	12-40-1	5963	00:37	0,0009999	0,4471319	42%		
6	12-60-1	3904	00:24	0,0009998	0,2459785	67%		
7	12-70-1	5931	00:45	0,0009998	0,3659742	92%		
8	12-75-1	3231	00:24	0,0009997	0,4680778	50%		

V. KESIMPULAN

Kesimpulan yang dapat diambil dari penelitian ini adalah sebagai berikut:

 Dengan model arsitektur 12-70-1, dapat melakukan prediksi Indeks Harga Konsumen berdasarkan kelompok kesehatan dengan Akurasi 92%. Model Arsitektur jaringan yang digunakan sangat mempengaruhi tingkat training dan testing.

e-ISSN: 2541-2019

p-ISSN: 2541-044X

 Dengan melihat hasil pengujian, dapat diambil kesimpulan bahwa terjadi kecepatan dan hasil akurasi yang bervariasi pada 8 percobaan di setiap pengujian yang dilakukan.

Referensi

- [1] M. S. Frits Fahridws Damanik, SST and S. Magdalena Sinaga, "No. Publikasi: 1273.15.21," *Publikasi Analisa Indeks Harga Konsumen Kota Pematangsiantar*, 2014.
- [2] A. Wanto, M. Zarlis, and D. Hartama, "Analysis of Artificial Neural Network Backpropagation Using Conjugate Gradient Fletcher Reeves In The Predicting Process," *International Conference Information and Communication Technology (IConICT)*, 2017.
- [3] Mirsantoso, T. U. Kalsum, and R. Supardi, "Implementasi Dan Analisa Per Connection Queue (PCQ) Sebagai Kontrol Penggunaan Internet Pada Laboratorium Komputer," *Jurnal Media Infotama*, vol. 11, no. 2, pp. 139–148, 2015.
- [4] S. F. Weng, J. Reps, J. Kai, J. M. Garibaldi, and N. Qureshi, "Can Machine-learning improve cardiovascular risk prediction using routine clinical data?," *PLoS One*, vol. 12, no. 4, pp. 1– 15, 2017.
- [5] A. P. Windarto, "Implementasi JST Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation," *Jurnal Sains Komputer & Informatika*, vol. (1), no. 1, pp. 12–23, 2017.
- [6] D. Huang and Z. Wu, "Forecasting outpatient visits using empirical mode decomposition coupled with backpropagation artificial neural networks optimized by particle swarm optimization," *PLoS One*, vol. 12, no. 2, pp. 1– 18, 2017.
- [7] Listyowati and B. S. S.U, "Pemodelan Indeks Harga Konsumen (IHK) Umum Berdasarkan IHK Sektor Bahan Makanan dan IHK Sektor Makanan Jadi, Minuman/Rokok," *Jurnal Sains Dan Seni Pomits*, no. 3, pp. 323–328.
- [8] Nurmahaludin, "Analisis Perbandingan Metode Jaringan Syaraf Tiruan Dan Regresi Linear Berganda Pada Prakiraan Cuaca," *Jurnal INTEKNA*, no. 2, 2014.

