2021 방학세미나

3팀

이승우 고경현 김지현 박세령 임주은

INDEX

1. EDA

2. 전처리

3. 모델링

4. 결론 및 의의와 한계

● 시작하기 전에

분석 흐름도

1

EDA

EDA 클래스 불균형 NA 상관관계 특이사항

클래스 불균형

EDA 클래스 불균형 NA 상관관계 특이사항

NA (결측치) 확인

target	var_0	var_1	
0	5.0702	-0.5447	
1	16.3699	1.5934	

28001 rows X 201 cols

상관관계 존재 여부

특이사항 발견

1) Target 별 변수 분포 확인에서 특이사항 발견

target 값과 상관없이 유사한 분포를 갖는 변수가 존재한다!

유사한 분포를 갖는 변수는 분류에 영향을 미치지 않을 것이라고 생각

클래스 불균형 NA

상관관계

특이사항

특이사항 발견

1) Target 별 변수 분포 확인에서 특이사항 발견

타겟 클래스에 따라 독립변수의 분포를 시각화

target 값과 상관없이 유사한 분포를 갖는 변수가 존재한다!

유사한 분포를 갖는 변수는 분류에 영향을 미치지 않을 것이라고 생각

특이사항 발견

빈도 수가 높은 변수들을 발견

이 변수들.. 연도가 아닌가..? 하는 의심을 하게 되었습니다 ..

2

전처리

Incremental PCA (IPCA)

학습 데이터넷을 미니배치로 나눈 뒤, IPCA 알고리즘에 주입하는 방식

Kernel PCA (KPCA)

다변량 자료를 저차원의 비선형적 공간에 시각화하는 방식

Factor Analysis

변수들 간의 상관관계를 고려해 저변에 내재된 요인들을 추출해내는 방식

t-SNE

높은 차원의 복잡한 데이터를 2차원에 차원 축소하는 방식

Kern변수 간 상관관계가 존재하지 않아서인지

다변량 자료를 저차원 4가지 차원축소 방법

모두 실패 ㅜㅜ

Feature Selection

유의미한 변수를 알아보고자 Lgbm. feature_importances를 사용

Feature	Value
var_187	0
var_14	1
var_61	1
var_94	40
var_53	43

Target 값에 따른 변수 <mark>분포도</mark>를 확인하여 Feature를 줄이려는 계획!

Feature Selection

target 값이 0 일 때와 1 일 때 분포가 <mark>다른</mark> 변수.

분포가 다른 변수는 대체로 feature_importance 결과에서 높은 값을 기록

Feature Selection

target 값이 0 일 때와 1 일 때 분포가 같은 변수.

분포가 같은 변수는 대체로 feature_importance 결과에서 낮은 값을 기록

2 전처리 IPCA KPCA FA t-SNE Feature Selection

Feature Selection

KS-test로 분포 동질성 검사를 한 결과 동일한 분포를 갖는 54개의 변수는 제외하기로 함!

target	var_0	var_1	var_2	var_5		var_199
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.0702	-0.5447	9.5900	- 18.8687	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-7.6652
1 000	16.3699	1.5934	16.7395	5.9004	0 000 000 000 000 000 000 000 000 000	10.8529
0	5.0615	0.2689	15.1325	-6.5477	0 000 000 000 000 000 000 000 000 000	11.1524

28000 X 146

Data set 확보

3

모델링

기존 train data는 targe의 비율이약 9대1의 imbalanced data

불균형 상태의 모델링으로 인한 편향된 학습을 피하고자 Sampling 방법 도입

Samples of majority class Original dataset

Oversampling

Oversampling

Undersampling

SMOTE

SVMSMOTE

BorderlineSMOTE

ADASYN

KmeansSMOTE

Random undersampling

NearMiss

Edited Nearest Neighbors

One-sided selection

Neighborhood cleaning rule

Oversampling

Undersampling

SVMSMOTE

BorderlineSMOTE

ADASYN

KmeansSMOTE

Random undersampling

NearMiss

Edited Nearest Neighbors

One-sided selection

Neighborhood cleaning rule

SVM SMOTE

- 1.소수 클래스 포인트를 노이즈 포인트와 경계 포인트로 분류
- 2. 노이즈 포인트는 무시하고, 경계 포인트 데이터 하나를 선택
- 3. 선택된 데이터의 k- 최근 접 이웃 알고리즘을 사용하여 합성 데이터를 생성

기존 train을 train_test_split으로 나눈 뒤 SVMSOTE를 적용하여 불균형을 해결

총 37,786 행의 train data 생성

파라미터 튜닝 (Stratified Kfold CV + Grid Search)

Stratified Kfold CV(계층별 교차 검증)

: 폴드 안의 클래스 비율이 전체 데이터 셋의 클래스 비율과 같도록 해준 뒤 교차 검증을 해주어 불균형 데이터셋에 유용한 교차검증

LDA

LinearDiscriminantAnalysis

: LDA는 PCA와 유사하게 데이터 셋의 차원을 축소하는 기법이지만, PCA와 다르게 지도학습의 분류(Classification)에서 사용됨

parameter	value
n_components	0
priors	[0.7, 0.3]
Shirinkage	'auto'
Solver	'eigen'
Store_covarianc e	True
'tol'	1e-05

LGBM

LightGradientBoosting Model

: leaf-wise 트리분할을사용하는 Gradient boosting 모델로 속도가 빠른 장점이 있음

parameter	value
Is_unbalanced	True
learning rate	0.1
boosting	'gbdt'
objective	'binary'
num_leaves	31
max_depth	-1

LogisticRegression

: 종속변수가 이진분류일 때 수행하는 회귀분석 모델

parameter	value
warm_start	False
tol	0.00045
penalty	L1
max_iter	300
intercept_scaling	1.5
fit_intercept	True
dual	False
class_weight	Balanced
С	0.5

GNB

parameter	value
priors	[0.8,0.2]
var_smoothing	1e-09

GaussianNaiveBayes

: Gaussian 정규분포를 따르고 독립변수가 연속 데이터일 때 사용하는 Naïve Bayes의 변형

표본평균과 표본 분산을 가진 정규분포 하에서 <mark>베이즈 정리</mark>를 사용한 것!

4개의 모델 비교

<LightGBM>

F1 SCORE = 0.42654

<SVMsmote + Logistic Regression>

F1 SCORE = 0.35967

<LDA>

F1 SCORE = 0.43404

<Gaussian Naïve Bayes>

F1 SCORE = 0.49462

4

결론 및 의의와 한계

<최종결론>

Feature importance및 Kstest로 유사한 분포인 변수 삭제

SVMsmote (Logistic Regression만)

Modeling

<Kaggle 결과>

F1 score = 0.49462

< 의의 >

- 1. FANCY 한 모델이라고 성능을 보장하는 것이 아님을 알게 되었다..
- 2. PCA 뿐 아니라, Feature importance와 Kstest를 통해 변수를 제거 하는 방법을 시도해 보았다.
- 3. 모델마다 좋은 성능을 발휘하는 oversampling의 기법이 다른 것을 알게 되었다.
- 4. 불균형 데이터를 가진 경우 교차검증과 그리드 서치를 진행하는 방법을 배울 수 있었다.

< 한계 >

- 1. 마의 0.5를 넘지 못하였다.. ㅠ^ㅠ
- 2. Unique값을 보았을 때, var108변수에서 유독 연도처럼 보이는 데이터들이 있었으나, 변수에 대한 정보가 없어 그 의미를 끝내 알 수는 없었다…

THANK YOU