AA 2017-2018 - Metodi del Calcolo Scientifico - Progetto 2

Compressione di immagini tramite la DCT 16 maggio 2018

Lo scopo di questo progetto è di utilizzare l'implementazione della DCT2 in un ambiente open source e di studiare gli effetti della compressione tipo jpeg sulle immagini in toni di grigio.

Prima parte

Implementare la DCT2 come spiegata a lezione in un ambiente open source a vostra scelta e confrontare i tempi di esecuzione con la DCT2 ottenuta usando la libreria dell'ambiente utilizzato, che si presuppone essere nella versione fast (FFT).

In particolare, procurarsi array quadrati $\mathbb{N} \times \mathbb{N}$ con \mathbb{N} crescente e rappresentare su un grafico in scala semilogaritmica (solo le ordinate) al variare di \mathbb{N} il tempo impiegato ad eseguire la DCT2 col vostro algoritmo fatto in casa e con l'algoritmo della libreria.

I tempi dovebbero essere proporzionali a \mathbb{N}^3 per la DCT2 fatta in casa e a \mathbb{N}^2 per la versione fast (più precisamente a $\mathbb{N}^2 \log(\mathbb{N})$). I tempi ottenuti con la versione fast potrebbero avere un andamento irregolare dovuto al tipo di algoritmo utilizzato.

Seconda parte

Scrivere un software che esegua i seguenti task:

- Creare una semplice interfaccia in modo che l'utente possa scegliere un'immagine .bmp di dimensione $N \times M$ in toni di grigio (array f);
- applicare la DCT2 (della libreria) all'intera immagine: c = DCT2(f);
- far scegliere all'utente un intero d compreso tra 0 e N+M-2 e un coefficiente β ;
- moltiplicare per il coefficiente β solo le frequenze $c_{k\ell}$ con $k+\ell \geq d$ (sto assumendo che le frequenze partano da 0: se d=0 le modifico tutte, se d=N+M-2 modifico solo la più alta, cioè quella con k=N-1, $\ell=M-1$). In sostanza bisogna moltiplicare per il fattore β i coefficienti in frequenza a destra della diagonale individuata dall'intero d, come esemplificato nei due casi riportati qui sotto; i coefficienti da modificare sono indicati in rosso:

- applicare la DCT2 inversa all'array c così modificato: ff = IDCT2(c);
- arrotondare ff all'intero più vicino, mettere a zero i valori negativi e a 255 quelli maggiori di 255 in modo da avere una immagine ammissibile;
- visualizzare sullo schermo affiancate: l'immagine originale f e l'immagine ff ottenuta dopo aver modificato le frequenze.

Fate qualche esperimento con le immagine proposte o con altre a vostra scelta (naturali e artificali) e commentate i risultati. All'esame potrà venire richiesto di eseguire il vostro software su immagini fornite da me al momento.

NOTE:

- Il software dovrà essere open-source (per esempio MATLAB è escluso).
- Se il software permette solo il calcolo della DCT monodimensionale si può ricavare la DCT2 operando prima per righe e poi per colonne come spiegato a lezione.
- Se il software prescelto permette di calcolare solo la DFT (Discrete Fourier Transform), di solito implementata come FFT (Fast Fourier Transform), bisogna o cambiare ambiente (scelta consigliata) oppure come *ultima ratio* ricavare la DCT dalla DFT come spiegato nelle mie note: qui per la DCT e qui per la IDCT.
- Prestare molta attenzione a come viene scalata la DCT2 (o la DCT). Infatti non sempre si usa lo scaling che abbiamo visto a lezione per le funzioni di base. Come caso test dovete verificare che il seguente blocchetto 8 × 8:

231	32	233	161	24	71	140	245
247	40	248	245	124	204	36	107
234	202	245	167	9	217	239	173
193	190	100	167	43	180	8	70
11	24	210	177	81	243	8	112
97	195	203	47	125	114	165	181
193	70	174	167	41	30	127	245
87	149	57	192	65	129	178	228

venga trasformato in questo modo dalla DCT2:

```
1.11e+03
            4.40e+01
                       7.59e+01
                                  -1.38e+02
                                              3.50e+00
                                                          1.22e+02
                                                                      1.95e+02
                                                                                -1.01e+02
7.71e+01
            1.14e+02
                      -2.18e+01
                                   4.13e+01
                                              8.77e+00
                                                          9.90e+01
                                                                      1.38e+02
                                                                                 1.09e+01
4.48e+01
          -6.27e+01
                       1.11e+02
                                  -7.63e+01
                                              1.24e+02
                                                          9.55e+01
                                                                    -3.98e+01
                                                                                 5.85e+01
-6.99e+01
           -4.02e+01
                      -2.34e+01
                                  -7.67e+01
                                              2.66e+01
                                                         -3.68e+01
                                                                     6.61e+01
                                                                                 1.25e+02
-1.09e+02
                                                         -2.86e+01
           -4.33e+01
                      -5.55e+01
                                   8.17e+00
                                              3.02e+01
                                                                     2.44e+00
                                                                                -9.41e+01
-5.38e+00
            5.66e+01
                                  -3.54e+01
                                              3.23e+01
                                                          3.34e+01
                                                                    -5.81e+01
                                                                                 1.90e+01
                       1.73e+02
7.88e+01
           -6.45e+01
                        1.18e+02
                                  -1.50e+01
                                              -1.37e+02
                                                         -3.06e+01
                                                                     -1.05e+02
                                                                                 3.98e+01
                                             -2.15e+01
 1.97e+01
          -7.81e+01
                       9.72e-01
                                  -7.23e+01
                                                          8.13e+01
                                                                      6.37e+01
                                                                                 5.90e+00
```

Dovete inoltre controllare che la prima riga del blocchetto 8×8 sopra:

```
231 32 233 161 24 71 140 245
```

venga trasformata dalla vostra DCT monodimensionale in

4.01e+02 6.60e+00 1.09e+02 -1.12e+02 6.54e+01 1.21e+02 1.16e+02 2.88e+01

- Nella relazione riportate il vostro codice e notizie sulla libreria utilizzata per le trasformate di Fourier.
- All'esame portate un computer in modo che possiamo far girare il vostro programma su immagini (e parametri) scelti da me.
- La relazione dovrà essere scritta direttamente in un formato adatto ad essere proiettato (divisa in slides); all'esame verrà richiesto a uno studente del gruppo di farne la presentazione.
- La relazione mi dovrà essere consegnata almeno 3 giorni prima dell'esame, o comunque entro la data specificata sul sito del corso.
- E' possibile lavorare in gruppo purché i gruppi siano composti al massimo di 3 studenti.

Se avete dei dubbi scrivetemi.