# Osnove statističkog programiranja

Ak. god. 2023./2024.

# Analiza skupa podataka o filmovima s portala IMDb

Dokumentacija

DODAJ JMBAG Julijana Kolarec 0036541450 Lucija Topolko

siječanj 2024., Zagreb

Nastavnik: prof.dr.sc. Damir Pintar

# Sadržaj

| 1  | Uvo  | d                                                  | 2  |
|----|------|----------------------------------------------------|----|
|    | 1.1  | Pregled i čišćenje podataka                        | 2  |
|    | 1.2  | Osnovne informacije o atributima podatkovnog skupa | 3  |
| 2  | Nap  | rednije analize podataka                           | 11 |
|    | 2.1  | Proučavanje međusobne ovisnosti atributa           | 11 |
|    | 2.2  | Dodatne zanimljive vizualizacije                   | 13 |
| 3  | Pre  | diktivni modeli primjenom strojnog učenja          | 16 |
|    | 3.1  | Priprema podataka                                  | 16 |
|    | 3.2  | Modeli s nebalansiranim skupom podataka            | 17 |
|    | 3.3  | Modeli s balansiranim skupom podataka              | 19 |
|    | 3.4  | Atributi najznačajniji za predviđanje              | 22 |
| 4  | Zak  | ljučak                                             | 25 |
| In | deks | slika i dijagrama                                  | 26 |

## 1. Uvod

Cilj ovog projektnog zadatka detaljna je analiza odabranog skupa podataka. Skup podataka čine različiti atributi, a naš je zadatak doći do dubokog razumijevanja njihovih međusobnih odnosa i potencijalnih trendova. Sve to namjeravamo ostvariti kroz proces čišćenja podataka, statističke analize i vizualizacije. Za eksploratornu analizu odabran je podatkovni skup *IMDb movie dataset* koji sadrži informacije o filmovima, uključujući ocjene, godine premijere, glumačku postavu i druge relevantne podatke, prikupljene s popularnog filmskog portala IMDb. Očekujemo da ćemo kroz analizu ovog skupa podataka istražiti i shvatiti karakteristike filmova, odnose između različitih atributa skupa te steći dublji uvid u svijet filmova.

## 1.1 Pregled i čišćenje podataka

Originalni skup podata *IMDb movie dataset* sastoji se od ukupno 5043 zapisa s ukupno 28 atributa. Izvođenjem jednostavne naredbe

```
sum(duplicated(data))
```

utvrđeno je da duplicirani zapisi čine 45 redaka izvornog skupa. Duplicirani su redci izbačeni iz skupa i konačni se skup sastoji od 4998 zapisa. Prije eksportiranja uređenog skupa za daljnje korištenje tijekom analize, zbog lakšeg je snalaženja promijenjen i redoslijed stupaca. Redoslijed stupaca promijenjen je izvršavanjem sljedeće naredbe:

Imena varijabli i opisi značenja mogu se provjeriti u tablici na web stranici Kaggle<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>https://www.kaggle.com/code/harshadeepvattikunta/predicting-movie-success

Nakon navedenih izmjena, podatkovni je skup spreman za eksportiranje u .csv formatu. Sve daljnje analize provode se nad novodobivenom, *očišćenom*, verzijom skupa podataka.

# 1.2 Osnovne informacije o atributima podatkovnog skupa

U ovom ćemo dijelu, s ciljem boljeg upoznavanja sa skupom podatka, provesti jednostavne analize nad podacima svakog stupca zasebno.

Najprije primjenom funkcije sapp1y saznajemo broj vrijednosti koje nedostaju (*NA* vrijednosti) u svakom stupcu.

| Stupac                  | Broj | Stupac                    | Broj |
|-------------------------|------|---------------------------|------|
| movie_title             | 0    | num_user_for_reviews      | 21   |
| duration                | 15   | num_critic_for_reviews    | 49   |
| director_name           | 103  | num_voted_users           | 0    |
| director_facebook_likes | 103  | cast_total_facebook_likes | 0    |
| actor_1_name            | 7    | movie_facebook_likes      | 0    |
| actor_1_facebook_likes  | 7    | plot_keywords             | 152  |
| actor_2_name            | 13   | facenumber_in_poster      | 13   |
| actor_2_facebook_likes  | 13   | color                     | 19   |
| actor_3_name            | 23   | genres                    | 0    |
| actor_3_facebook_likes  | 23   | title_year                | 107  |
| language                | 12   | country                   | 5    |
| content_rating          | 301  | aspect_ratio              | 327  |
| movie_imdb_link         | 0    | gross                     | 874  |
| budget                  | 487  | imdb_score                | 0    |

Tablica 1.1: Broj NA vrijednosti po stupcima

Podaci u stupcima s nazivom actor\_n\_facebook\_likes, n = 1,2,3, sadrže podatke o broju *lajkova* na Facebook stranici glumca actor\_n\_name, n = 1,2,3. Izdvajanjem imena glumaca i njihovih odgovarajućih brojeva lajkova te uzimajući u

obzir samo najviši broj *lajkova* za pojedinog glumca, dobivamo podatke o najpoznatijim glumcima (najpoznatiji u ovom kontekstu znači s najviše *lajkova*). Imena i broj *lajkova* pet najpoznatijih glumaca navedeni su u tablici 1.2.

| Ime glumca      | Broj Facebook <i>lajkova</i> |
|-----------------|------------------------------|
| Darcy Donavan   | 640,000                      |
| Matthew Ziff    | 260,000                      |
| Krista Allen    | 164,000                      |
| Andrew Fiscella | 137,000                      |
| Jimmy Bennett   | 87,000                       |

Tablica 1.2: Najpoznatiji glumci

Također, na temelju podataka iz stupaca actor\_n\_name, n = 1,2,3 te director\_name izdvojili smo glumce i redatelje s najviše filmova. U tablici 1.3 prikazan je popis 5 glumaca s najviše uloga, dok su u tablici 1.4 prikazani redatelji koji su režirali najviše filmova.

| Ime glumca     | Broj uloga |  |
|----------------|------------|--|
| Robert De Niro | 54         |  |
| Morgan Freeman | 47         |  |
| Bruce Willis   | 40         |  |
| Johnny Depp    | 40         |  |
| Matt Damon     | 38         |  |

Tablica 1.3: Glumci s najviše uloga

| lme redatelja    | Broj režija |
|------------------|-------------|
| Steven Spielberg | 26          |
| Woody Allen      | 22          |
| Clint Eastwood   | 20          |
| Martin Scorsese  | 20          |
| Ridley Scott     | 17          |

Tablica 1.4: Najčešći redatelji

Iz podataka sadržanih u stupcu nazvanom cast\_total\_facebook\_likes moguće je identificirati filmove s najpoznatijom glumačkom postavom, a to su filmovi navedeni u tablici 1.5.

| Naslov filma                          | Godina<br>premijere | IMDB<br>ocjena | Broj <i>lajkova</i><br>postave |
|---------------------------------------|---------------------|----------------|--------------------------------|
| Anchorman: The Legend of Ron Burgundy | 2004                | 7.2            | 656,730                        |
| The Final Destination                 | 2009                | 5.2            | 303,717                        |
| Treachery                             | 2013                | 3.9            | 283,939                        |
| Hardflip                              | 2012                | 5.6            | 263,584                        |
| Kickboxer: Vengeance                  | 2016                | 9.1            | 261,818                        |

Tablica 1.5: Filmovi s najpoznatijom glumačkom postavom

Stupac plot\_keywords sastoji se od ključnih riječi koje opisuju radnju filma odvojenih znakom '|'. Razdvajanjem sadržaja stupca po znaku '|' izdvajamo pojedinačne ključne riječi i saznajemo koje su najčešće te ih navodimo u tablici 1.6.

| Ključna riječ | Broj filmova | Ključna riječ      | Broj filmova |
|---------------|--------------|--------------------|--------------|
| love          | 194          | fbi                | 71           |
| friend        | 165          | revenge            | 70           |
| murder        | 159          | friendship         | 67           |
| death         | 132          | drugs              | 66           |
| police        | 126          | prison             | 62           |
| new york city | 91           | money              | 61           |
| high school   | 89           | marriage           | 60           |
| alien         | 82           | female protagonist | 57           |
| school        | 73           | island             | 57           |
| boy           | 72           | dog                | 56           |

Tablica 1.6: Najčešće ključne riječi koje opisuju radnju filma

Sličan stupcu plot\_keywords stupac je genres koji, odvojene znakom '|', sadrži informacije o žanrovima filmova. Izdvajamo žanrove za svaki film i prikazujemo broj filmova po svakom od žanrova u histogramu na slici 1.1.



Slika 1.1: Podjela filmova po žanru

Stupac title\_year poprima vrijednosti od 1916 do 2016, a predstavlja godinu premijere filma. Koje je godine premijerno prikazano koliko filmova prikazano je na slici 1.2.



Slika 1.2: Broj filmova po godini premijere

U stupcu facenumber\_in\_poster zapisan je broj glumaca koji se pojavljuju na plakatu filma. Za većinu filmova (njih ukupno 2136) taj je broj nula, a najveći broj glumaca na plakatu iznosi 43 (za film *500 Days of Summer*). Prosječna je vrijednost atributa facenumber\_in\_poster 1.37, a medijan 1.

Za koju je dobnu skupinu film namijenjen sadržano je u stupcu content\_rating. Popis najčešćih starosnih ograničenja i njihova značenja dana su u tablici 1.7.

| Ograničenje | Broj filmova | Značenje                      |
|-------------|--------------|-------------------------------|
| R           | 2098         | Za osobe starije od 17 godina |
| PG-13       | 1444         | Za osobe starije od 13 godina |
| PG          | 688          | Za osobe starije od 8 godina  |

Tablica 1.7: Najčešća starosna ograničenja filmova

Omjer širine i visine (proporcije) filmske slike za pojedini film zapisan je u stupcu aspect\_ratio. U skupu podataka pojavljuje se ukupno 23 različitih omjera, a za sedam najčešćih napravljen je pregled (slika 1.3) kretanja broja filmova s tim proporcijama po godinama.



Slika 1.3: Broj filmova s najčešćim proporcijama filmske slike po godinama

U stupcima budget i gross nalaze se podaci o budžetu filma i ukupnoj bruto zaradi filma u američkim dolarima. Koliki je postotak filmova svake godine ostvario manju zaradu od iznosa budžeta prikazujemo na slici 1.4.



Slika 1.4: Postotak filmova koji su ostvarili manji prihoda od iznosa budžeta

Stupac duration sadrži podatke o trajanju filmova. Najkraći film iz našeg skupa podataka traje 7, a najduži 511 minuta. Prosječno film traje 107 minuta. Histogram na slici 1.5 prikazuje broj filmova u ovisnosti o njihovom trajanju.



Slika 1.5: Broj filmova po trajanju

Većina filmova snimljena je u Sjedinjenim Američkim Državama te je na engleskom jeziku. Ipak, zastupljeno je i ponešto filmova iz drugih zemalja i na drugim jezicima. U tablicama 1.8 i 1.9 izdvajamo broj filmova snimljenih u najzastupljenijim državama i na najzastupljenijim jezicima.

| Država    | Broj filmova |
|-----------|--------------|
| SAD       | 3773         |
| UK        | 443          |
| Francuska | 154          |
| Kanada    | 124          |
| Njemačka  | 96           |

Tablica 1.8: Podjela filmova po državi nastanka

| Jezik      | Broj filmova |
|------------|--------------|
| engleski   | 4662         |
| francuski  | 73           |
| španjolski | 40           |
| hindi      | 28           |
| kineski    | 24           |

Tablica 1.9: Podjela filmova po jeziku

Posljednji stupac, imdb\_score, sadrži podatak o prosječnoj ocjeni kojom su korisnici portala IMDb ocijenili pojedini film. Graf na slici 1.6 prikazuje broj filmova po prosječnoj ocjeni.



Slika 1.6: Podjela filmova po uspješnosti

## 2. Naprednije analize podataka

## 2.1 Proučavanje međusobne ovisnosti atributa

Graf na slici 2.1 pokazuje očekivanu pojavu proporcionalnog rasta između IMDb ocjene i broja glasova. Ovaj trend sugerira da, što je film više ocijenjen, to je vjerojatnije da će dobiti višu ocjenu. Međutim, valja primijetiti da, iako postoji općeniti pozitivan trend, postoje i filmovi s visokim brojem glasova koji ne ostvaruju visoke ocjene, što može ukazivati na različite preferencije publike.



Slika 2.1: IMDb ocjena u ovisnosti o broju glasova

Slika 2.2 prikazuje povezanost između broja glasova i ukupnog broja recenzija. Ovaj graf ukazuje na to da povećanje popularnosti filma, izraženo većim brojem recenzija, često prati i povećanje broja glasova. To može ukazivati na širu angažiranost publike, odnosno da se popularni filmovi često doživljavaju i komentiraju od strane većeg broja gledatelja.



Slika 2.2: Broj glasova u ovisnosti u broju recenzija

Osim što porastom broja recenzija raste broj glasova, raste i broj loših recenzija ( slika 2.3). Ova je pojava očekivana - filmovi s većim brojem recenzija privlače više publike različitih preferencija pa time i više loših recenzija.



Slika 2.3: Broj loših recenzija u ovisnosti o ukupnom broju recenzija

### 2.2 Dodatne zanimljive vizualizacije

Na slici 1.1 primjećujemo da je "Drama" najčešći žanr s najvećim ukupnim brojem filmova. Izdvajajući podatke o filmovima s tim žanrom, možemo prikazati popularnost žanra "Drama" po godinama. Iz vizualizacije na slici 2.4 dalo bi se zaključiti da popularnost *eksplodira* u razdoblju od 1990. do 2016. godine, no to zapravo nije slučaj. Uzimajući u obzir ukupan broj filmova izdanih tih godina (vidi sliku 1.2), uviđamo da je veliki broj filmova s žanrom "Drama" zapravo rezultat općenitog povećanja produkcije filmova u tom razdoblju. Ako umjesto apsolutnog broja filmova promatramo udio filmova s žanrom "Drama" u ukupnom broju filmova te godine, zaključujemo da je taj udio konstantan, prosječno 0.4805 (medijan 0.4976) za sve godine.



Slika 2.4: Broj filmova žanra "Drama" po godinama

Iz tablice 1.4 saznajemo da je Steven Spielberg redatelj koji je režirao najveći broj filmova iz ovog skupa podataka, njih ukupno 26. S ciljem uvida u trend IMDb ocjena filmova tog redatelja i usporedbe s novim podacima stvaramo graf na slici 2.5. Ljubičaste točke na grafu predstavljaju godine premijere filmova redatelja Stevena Spielberga i njihove odgovarajuće IMDb ocjene. Tim je točkama dodana glatka krivulja (ljubičasta isprekidana linija) koja ilustrira trend ocjena tijekom godina dobivena korištenjem metode geom\_smooth i postavljanjem method = 'loess'. Dodatno, ružičastom su bojom prikazani podaci o filmovima istog redatelja od 2017. do 2022. godine. Novim je podacima dodana i regresijska krivulja (metoda geom\_smooth i method = 'lm').



Slika 2.5: IMDb ocjene filmova Stevena Spielberga po godinama

Drugi po redu stupac s najviše nedostajućih (*NA*) vrijednosti stupac je budget. Taj stupac sadrži podatke o trošku proizvodnje (budžetu) filma u američkim dolarima. Prilagodbom iznosa navedenih u stupcu budget uzevši u obzir stope inflacije<sup>1</sup> dobivamo ekvivalentne iznose za 2016. godinu (posljednja godina za koju imamo zapise o filmovima u ovom skupu podataka). Sada možemo uspoređivati prosječni iznos budžeta filmova po godinama. Graf na slici 2.6 pokazuje značajne oscilacije prosječnog budžeta, s oštrim usponima i padovima, no lako je primijetiti rast minimalnog iznosa prosječnog budžeta kroz godine.

<sup>&</sup>lt;sup>1</sup>https://www.minneapolisfed.org/about-us/monetary-policy/inflation-calculator/consumer-price-index-1913-



Slika 2.6: Prosječni budžet filmova po godinama

# 3. Prediktivni modeli primjenom strojnog učenja

Kako bismo bolje razumjeli što film čini uspješnim ili neuspješnim, provele smo analizu dobivenog skupa podataka primjenom strojnog učenja. Cilj nam je bio razviti model koji može čim točnije predviđati uspjeh filma na temelju njegovih karakteristika.

### 3.1 Priprema podataka

Iz dobivenih podataka izbacile smo retke kojima su nedostajali neki podaci. Takvih je redaka bilo 1261. Također, uklonile smo stupce koji su sadržavali jedinstvene ili skoro jedinstvene vrijednosti (*movie\_title, movie\_imdb\_link, plot\_keywords, genres*). Još smo izbacile tekstualne stupce koji su bili prekorelirani s nekim numeričkim stupcem. Na primjer, *actor\_1\_name* je prekoreliran s *actor\_1\_facebook\_likes*.

```
columns <- c('duration', 'director_facebook_likes', 'actor_1_facebook_
    likes','actor_2_facebook_likes', 'actor_3_facebook_likes', 'num_user_
    for_reviews', 'num_critic_for_reviews', 'num_voted_users', 'cast_
    total_facebook_likes', 'movie_facebook_likes', 'facenumber_in_poster'
    , 'color', 'title_year', 'language', 'country', 'content_rating', '
    aspect_ratio', 'gross', 'budget', 'imdb_score')

mldata <- data[,columns]

mldata <- na.omit(mldata)</pre>
```

Preostale nenumeričke stupce pretvorile smo u tip integer.

```
1 label_encode <- function(column) {
2   as.integer(factor(column, levels = unique(column)))
3 }</pre>
```

Značajka koju predviđamo je *imdb\_score*. To broj zaokružen na jednu decimalu, pa smo za bolje rezultate uspjeh filma podijelile u tri skupine: loš, osrednji i dobar,

a stupac imdb\_score smo zbog prekoreliranosti uklonile.

```
mldata$score <- ifelse(mldata$imdb_score < 3.33, "los", ifelse(mldata$
imdb_score < 6.66, "osrednji", "dobar"))</pre>
```

Graf 3.1 prikazuje omjer broja filmova po uspjehu. Filmova koji su ocijenjeni kao loši znatno je manje od ostalih. Točnije, loših je filmova 43, osrednjih 1981, a dobrih 1746.



Slika 3.1: Podjela filmova po uspjehu

## 3.2 Modeli s nebalansiranim skupom podataka

Kako bismo razvile model za predviđanje uspješnosti, skup podataka podijelile smo u omjeru 80:20. Na temelju 80% gradile smo model, a na 20% ga testirale. Prvi model koji smo razvile koristi metodu potpornih vektora.

```
Model <- train(score ~ ., data = training_set,
method = "svmPoly",

na.action = na.omit,
preProcess=c("scale","center"),
trControl= trainControl(method="none"),
tuneGrid = data.frame(degree=1,scale=1,C=1)</pre>
```

Model radi s uspješnošću od 72.8%.

Detection Prevalence 0.00000

Balanced Accuracy 0.50000

#### Confusion Matrix and Statistics Reference Prediction loš osrednji dobar loš 0 0 osrednji 8 339 141 dobar 0 54 205 Overall Statistics Accuracy: 0.7282 95% CI: (0.6948, 0.7599) No Information Rate : 0.5261 P-Value [Acc > NIR] : < 2.2e-16Kappa: 0.4518 Mcnemar's Test P-Value : NA Statistics by Class: Class: loš Class: osrednji Class: dobar Sensitivity 0.00000 0.8626 0.5925 1.00000 0.5791 Specificity 0.8653 Pos Pred Value NaN 0.6947 0.7915 0.98929 Neg Pred Value 0.7915 0.7111 Prevalence 0.01071 0.5261 0.4632 Detection Rate 0.00000 0.4538 0.2744

Slika 3.2: Metoda potpornih vektora - rezultati

Drugi model koji smo razvile koristi metodu slučajne šume. Rezultati su nešto bolji, uspješnost je 78.3%.

```
Model_rf <- randomForest(score ~ ., data = training_set, ntree = 500,
importance = TRUE)</pre>
```

0.3467

0.7289

0.6533

0.7208

Confusion Matrix and Statistics

# Reference Prediction loš osrednji dobar loš 0 0 0 osrednji 7 325 86

Overall Statistics

dobar 1

Accuracy: 0.7831

68

95% CI: (0.7518, 0.8122)

260

No Information Rate : 0.5261 P-Value [Acc > NIR] : <2e-16

Kappa: 0.5677

Mcnemar's Test P-Value: 0.0177

Statistics by Class:

|                      | Class: loš | Class: osrednji | Class: dobar |
|----------------------|------------|-----------------|--------------|
| Sensitivity          | 0.00000    | 0.8270          | 0.7514       |
| Specificity          | 1.00000    | 0.7373          | 0.8279       |
| Pos Pred Value       | NaN        | 0.7775          | 0.7903       |
| Neg Pred Value       | 0.98929    | 0.7933          | 0.7943       |
| Prevalence           | 0.01071    | 0.5261          | 0.4632       |
| Detection Rate       | 0.00000    | 0.4351          | 0.3481       |
| Detection Prevalence | 0.00000    | 0.5596          | 0.4404       |
| Balanced Accuracy    | 0.50000    | 0.7821          | 0.7897       |

Slika 3.3: Metoda slučajne šume - rezultati

lako su ovi rezultati na prvi pogled donekle zadovoljavajući, nijedan od ovih modela nije predvidio da će ijedan film biti loš. To je očekivani rezultat jer podaci nisu nimalo balansirani - loših filmova je znatno manje pa ih je i puno teže predvidjeti. Produkciji filma bilo bi najkorisnije imati model koji može predvidjeti neuspjeh filma, a ovi modeli to ne uspijevaju pa smo ih odbacile.

### 3.3 Modeli s balansiranim skupom podataka

S ciljem poboljšanja točnosti predviđanja loših filmova, podatke smo balansirale. Nastojale smo broj loših i dobrih filmova približiti broju osrednjih filmova ( Graf 3.4 ).

```
oversample <- ovun.sample(score\tilde{}., data = over, method = "both", N = 3932)$data
```



Slika 3.4: Podjela filmova po uspjehu - balansirani podaci

Nad novim smo podacima ponovo testirale naše modele. Ovaj je put metoda potpornih vektora postigla uspješnost od 75.6% (Slika 3.5), a metoda slučajne šume visokih 90.9% (Slika 3.6).

#### Confusion Matrix and Statistics

#### Reference

Prediction loš osrednji dobar loš 374 69 34 osrednji 7 256 109 dobar 0 68 261

#### Overall Statistics

Accuracy: 0.7564

95% CI: (0.7308, 0.7806)

No Information Rate : 0.343 P-Value [Acc > NIR] : < 2.2e-16

Kappa: 0.6352

Mcnemar's Test P-Value : < 2.2e-16

#### Statistics by Class:

|                      | Class: loš | Class: | osrednji | Class: dobar |
|----------------------|------------|--------|----------|--------------|
| Sensitivity          | 0.9816     |        | 0.6514   | 0.6460       |
| Specificity          | 0.8708     |        | 0.8522   | 0.9121       |
| Pos Pred Value       | 0.7841     |        | 0.6882   | 0.7933       |
| Neg Pred Value       | 0.9900     |        | 0.8300   | 0.8316       |
| Prevalence           | 0.3234     |        | 0.3336   | 0.3430       |
| Detection Rate       | 0.3175     |        | 0.2173   | 0.2216       |
| Detection Prevalence | 0.4049     |        | 0.3158   | 0.2793       |
| Balanced Accuracy    | 0.9262     |        | 0.7518   | 0.7791       |

Slika 3.5: Metoda potpornih vektora - rezultati s balansiranim podacima

Confusion Matrix and Statistics

#### Reference Prediction loš osrednii dobar

| I CUICCIOII | 103 | oor carry r | aobai |
|-------------|-----|-------------|-------|
| loš         | 381 | 0           | 0     |
| osrednji    | 0   | 330         | 44    |
| dobar       | 0   | 63          | 360   |

Overall Statistics

Accuracy: 0.9092

95% CI : (0.8913, 0.925)

No Information Rate : 0.343 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.8637

Mcnemar's Test P-Value : NA

Statistics by Class:

|                      | Class: loš Cla | ss: osrednji | Class: dobar |
|----------------------|----------------|--------------|--------------|
| Sensitivity          | 1.0000         | 0.8397       | 0.8911       |
| Specificity          | 1.0000         | 0.9439       | 0.9186       |
| Pos Pred Value       | 1.0000         | 0.8824       | 0.8511       |
| Neg Pred Value       | 1.0000         | 0.9216       | 0.9417       |
| Prevalence           | 0.3234         | 0.3336       | 0.3430       |
| Detection Rate       | 0.3234         | 0.2801       | 0.3056       |
| Detection Prevalence | 0.3234         | 0.3175       | 0.3591       |
| Balanced Accuracy    | 1.0000         | 0.8918       | 0.9048       |

Slika 3.6: Metoda slučajne šume - rezultati s balansiranim podacima

Ovim smo rezultatima zadovoljne jer oba modela s visokom točnošću predviđaju loše filmove.

## 3.4 Atributi najznačajniji za predviđanje

Idući je korak u analizi bio otkriti koji atributi najviše koriste pri predviđanju uspješnosti filmova, posebice onih loših.

Analizu smo provele nad modelom koji koristi metodu slučajne šume i balansirani skup podataka jer upravo taj model daje najbolje rezultate.

Atributi koji su u našem modelu u najvećoj korelaciji s uspješnosti su trajanje i broj negativnih recenzija.

Filmovi koji su dobili loše ocjene gledatelja najčešće traju između sat i dva sata, a većina ih traje do 100 minuta. Grafovi za ostale filmove također prikazuju da najviše filmova traje 100 ili više minuta.



Slika 3.7: Metoda slučajne šume - rezultati s balansiranim podacima

Za predviđanje uspješnih i neuspješnih filmova bio je važan i broj negativnih recenzija. Zanimljivo, filmovi koje smo klasificirale kao neuspješne imali su manji broj negativnih recenzija. Razlog tome je vjerojatno taj što se velik broj ljudi odlučio uopće ne pogledati film kad je vidio da je većina recenzija negativna. Uspješnije filmove pogleda puno više ljudi različitih mišljenja pa je očekivano da se nekima neće svidjeti. Ovaj trend potvrđuje i graf na slici 2.3.



Slika 3.8: Metoda slučajne šume - rezultati s balansiranim podacima

Atributi koji su najmanje korelirani s uspjehom filma su jezik i broj ljudi na plakatu.

# 4. Zaključak

# Indeks slika i dijagrama

| 1.1 | Podjela filmova po žanru                                           | 6  |
|-----|--------------------------------------------------------------------|----|
| 1.2 | Broj filmova po godini premijere                                   | 6  |
| 1.3 | Broj filmova s najčešćim proporcijama filmske slike po godinama    | 7  |
| 1.4 | Postotak filmova koji su ostvarili manji prihoda od iznosa budžeta | 8  |
| 1.5 | Broj filmova po trajanju                                           | 9  |
| 1.6 | Podjela filmova po uspješnosti                                     | 10 |
| 2.1 | IMDb ocjena u ovisnosti o broju glasova                            | 11 |
| 2.2 | Broj glasova u ovisnosti u broju recenzija                         | 12 |
| 2.3 | Broj loših recenzija u ovisnosti o ukupnom broju recenzija         | 12 |
| 2.4 | Broj filmova žanra "Drama" po godinama                             | 13 |
| 2.5 | IMDb ocjene filmova Stevena Spielberga po godinama                 | 14 |
| 2.6 | Prosječni budžet filmova po godinama                               | 15 |
| 3.1 | Podjela filmova po uspjehu                                         | 17 |
| 3.2 | Metoda potpornih vektora - rezultati                               | 18 |
| 3.3 | Metoda slučajne šume - rezultati                                   | 19 |
| 3.4 | Podjela filmova po uspjehu - balansirani podaci                    | 20 |
| 3.5 | Metoda potpornih vektora - rezultati s balansiranim podacima       | 21 |
| 3.6 | Metoda slučajne šume - rezultati s balansiranim podacima           | 22 |
| 3.7 | Metoda slučajne šume - rezultati s balansiranim podacima           | 23 |
| 3.8 | Metoda slučajne šume - rezultati s balansiranim podacima           | 24 |