MC358 - Fundamentos matemáticos da computação

Prof. Dr. Hilder Vitor Lima Pereira

16 de agosto de 2023

1 Prova por contrapositiva

2 Provas de equivalências

3 Perguntas, observações, comentários?

Prova por contrapositiva

Contrapositiva: visão geral

Vimos nas primeiras aulas que p o q é equivalente à $\neg q o \neg q$.

- \blacksquare Se x é mamífero, então x tem pelos.
 - Ao vermos um animal que não tem pelos, já sabemos que ele não é mamífero.
- \blacksquare Se x é um pássaro, então x tem penas.
 - ► Ao vermos um animal que não tem penas, já sabemos que ele não é um pássaro.

Contrapositiva: visão geral

Vimos nas primeiras aulas que p o q é equivalente à $\neg q o \neg q$.

- \blacksquare Se x é mamífero, então x tem pelos.
 - Ao vermos um animal que não tem pelos, já sabemos que ele não é mamífero.
- \blacksquare Se x é um pássaro, então x tem penas.
 - Ao vermos um animal que não tem penas, já sabemos que ele não é um pássaro.

Assim, para provar $p \Rightarrow q$, podemos provar $\neg q \Rightarrow \neg p$.

Prova por contrapositiva

Negamos a conclusão e tentamos demonstrar a negação da hipótese.

$$(H \Rightarrow C) \Leftrightarrow (\neg C \Rightarrow \neg H)$$

Depois de negarmos C, podemos seguir com uma prova direta (ou qualquer outra estratégia de prova).

Quando usar contrapositiva?

Às vezes é difícil extrair informação útil da hipótese. Então podemos tentar usar $\neg C$ como uma hipótese mais simples.

3 | 13

Teorema

Para todo $n \in \mathbb{Z}$, se $n^3 + 17$ é ímpar, então n é par.

Teorema

Para todo $n \in \mathbb{Z}$, se $n^3 + 17$ é ímpar, então n é par.

Hipóteses:

- Quais são as hipóteses?
- O que podemos derivar imediatamente das hipóteses?

Teorema

Para todo $n \in \mathbb{Z}$, se $n^3 + 17$ é ímpar, então n é par.

Hipóteses:

- Quais são as hipóteses?
- O que podemos derivar imediatamente das hipóteses?
- \blacksquare $n^3 + 17 = 2a + 1$ para algum $a \in \mathbb{Z}$.

Teorema

Para todo $n \in \mathbb{Z}$, se $n^3 + 17$ é ímpar, então n é par.

Hipóteses:

- Quais são as hipóteses?
- O que podemos derivar imediatamente das hipóteses?
- $n^3 + 17 = 2a + 1$ para algum $a \in \mathbb{Z}$.

O que queremos provar exatamente?

$$\exists b \in \mathbb{Z} : n = 2 \cdot b.$$

Se tentarmos uma prova direta, temos

$$n^{3} + 17 = 2a + 1$$

$$\Leftrightarrow n^{3} = 2a - 16$$

$$\Leftrightarrow n = \sqrt[3]{2(a - 8)}$$

Como continuar?

Em vez de uma prova direta, se usarmos a contrapositiva, temos

Para todo $n \in \mathbb{Z}$, se n é ímpar, então $n^3 + 17$ é par.

Em vez de uma prova direta, se usarmos a contrapositiva, temos

Para todo $n \in \mathbb{Z}$, se n é impar, então $n^3 + 17$ é par.

Hipóteses:

- Quais são as hipóteses?
- O que podemos derivar imediatamente das hipóteses?

Em vez de uma prova direta, se usarmos a contrapositiva, temos

Para todo $n \in \mathbb{Z}$, se n é impar, então $n^3 + 17$ é par.

Hipóteses:

- Quais são as hipóteses?
- O que podemos derivar imediatamente das hipóteses?
- \blacksquare n=2a+1 para algum $a\in\mathbb{Z}$.

Em vez de uma prova direta, se usarmos a contrapositiva, temos

Para todo $n \in \mathbb{Z}$, se n é ímpar, então $n^3 + 17$ é par.

Hipóteses:

- Quais são as hipóteses?
- O que podemos derivar imediatamente das hipóteses?
- \blacksquare n=2a+1 para algum $a\in\mathbb{Z}$.

O que queremos provar exatamente?

$$\blacksquare \exists b \in \mathbb{Z} : n^3 + 17 = 2 \cdot b.$$

Em vez de uma prova direta, se usarmos a contrapositiva, temos

Para todo $n \in \mathbb{Z}$, se n é ímpar, então $n^3 + 17$ é par.

Hipóteses:

- Quais são as hipóteses?
- O que podemos derivar imediatamente das hipóteses?
- \blacksquare n=2a+1 para algum $a\in\mathbb{Z}$.

O que queremos provar exatamente?

 $\blacksquare \exists b \in \mathbb{Z} : n^3 + 17 = 2 \cdot b.$

Agora podemos simplesmente substituir n=2a+1 em n^3+17 e verificar se o resultado é par.

Teorema

Suponha $u \in \mathbb{Z}$. Se $u^2 - 6u + 7$ é par, então u é ímpar.

Teorema

Suponha $u \in \mathbb{Z}$. Se $u^2 - 6u + 7$ é par, então u é ímpar.

Mise en place... (Hipóteses? Resultados diretos da hipótese? O que exatamente queremos provar?)

Teorema

Suponha $u \in \mathbb{Z}$. Se $u^2 - 6u + 7$ é par, então u é ímpar.

Mise en place... (Hipóteses? Resultados diretos da hipótese? O que exatamente queremos provar?)

Parece difícil transformar $u^2 - 6u + 7 = 2a$ em u = 2b + 1...

Teorema

Suponha $u \in \mathbb{Z}$. Se $u^2 - 6u + 7$ é par, então u é ímpar.

Prova por contrapositiva:

Suponha $u \in \mathbb{Z}$. Se u é par, então $u^2 - 6u + 7$ é ímpar

Teorema

Suponha $u \in \mathbb{Z}$. Se $u^2 - 6u + 7$ é par, então u é ímpar.

Prova por contrapositiva:

Suponha $u \in \mathbb{Z}$. Se u é par, então $u^2 - 6u + 7$ é ímpar

Novo prato, nova *mise en place...* (Hipóteses? Resultados diretos da hipótese? O que exatamente queremos provar?)

Teorema

Suponha $u \in \mathbb{Z}$. Se $u^2 - 6u + 7$ é par, então u é ímpar.

Prova por contrapositiva:

Suponha $u \in \mathbb{Z}$. Se u é par, então $u^2 - 6u + 7$ é ímpar

Novo prato, nova *mise en place...* (Hipóteses? Resultados diretos da hipótese? O que exatamente queremos provar?)

Prova na lousa.

Prólogo: Dizemos que o resto da divisão de um inteiro n por um inteiro d é $r \in \mathbb{N}$ se existir $q \in \mathbb{Z}$ tal que

$$n = dq + r \wedge 0 \le r < d.$$

Teorema

Seja n um inteiro cujo resto da divisão por 4 é igual a 2 ou a 3. Então, n não é um quadrado perfeito.

Prólogo: Dizemos que o resto da divisão de um inteiro n por um inteiro d é $r \in \mathbb{N}$ se existir $q \in \mathbb{Z}$ tal que

$$n = dq + r \wedge 0 \le r < d.$$

Teorema

Seja n um inteiro cujo resto da divisão por 4 é igual a 2 ou a 3. Então, n não é um quadrado perfeito.

Prólogo: Dizemos que o resto da divisão de um inteiro n por um inteiro d é $r \in \mathbb{N}$ se existir $q \in \mathbb{Z}$ tal que

$$n = dq + r \wedge 0 \le r < d$$
.

Teorema

Seja n um inteiro cujo resto da divisão por 4 é igual a 2 ou a 3. Então, n não é um quadrado perfeito.

Mise en place...

 $0 \mid 1$

Prólogo: Dizemos que o resto da divisão de um inteiro n por um inteiro d é $r \in \mathbb{N}$ se existir $q \in \mathbb{Z}$ tal que

$$n = dq + r \wedge 0 \le r < d.$$

Teorema

Seja n um inteiro cujo resto da divisão por 4 é igual a 2 ou a 3. Então, n não é um quadrado perfeito.

Mise en place...

Contrapositiva

n é um quadrado perfeito \Rightarrow o resto da divisão de n por 4 é 0 ou 1.

Prólogo: Dizemos que o resto da divisão de um inteiro n por um inteiro d é $r \in \mathbb{N}$ se existir $q \in \mathbb{Z}$ tal que

$$n = dq + r \wedge 0 \le r < d$$
.

Teorema

Seja n um inteiro cujo resto da divisão por 4 é igual a 2 ou a 3. Então, n não é um quadrado perfeito.

Mise en place...

Contrapositiva

n é um quadrado perfeito \Rightarrow o resto da divisão de n por 4 é 0 ou 1.

Nova *mise en place...* (Hipóteses? Resultados diretos da hipótese? O que exatamente queremos provar?)

9 | 13

Provas de equivalências

Condição necessária e condição suficiente

Quando provamos $H \Rightarrow C$ dizemos que H implica C.

Ou seja, se H é verdade, então C é verdade, mas não podemos concluir nada quando H é falso.

Mas às vezes, duas proposições são equivalentes, i.e.,

$$H \Leftrightarrow C$$

Ou seja, tanto H implica C, quanto C implica H. Por exemplo

Considere a equação $E: x^2 + bx + c = 0$, onde $b, c \in \mathbb{R}$. E tem duas raízes reais diferentes $\Leftrightarrow b^2 - 4ac > 0$.

Como provar $H \Leftrightarrow C$

Duas possibilidades:

- Prove a "ida" e prove a "volta"
 - ► Duas provas separadas
 - ▶ Uma prova para $H \Rightarrow C$
 - ightharpoonup Outra prova para $C \Rightarrow H$
 - ► Pode-se usar qualquer estratégia para cada prova
- Uma só prova
 - ightharpoonup Cada passo da prova deve usar \Leftrightarrow em vez de \Rightarrow .
 - ► Pode ser mais complicado.

Exemplo: prova de "se, e somente se"

Teorema

Dois inteiros a e b são ambos ímpares se, e somente se, $a \cdot b$ é ímpar.

Tentem provar.

Exemplo: prova de "se, e somente se"

Teorema

Dois inteiros a e b são ambos ímpares se, e somente se, $a \cdot b$ é ímpar.

Tentem provar.

Prova por partes:

- Provando \Rightarrow :
 - ▶ $(a \text{ impar}) \land (b \text{ impar}) \Rightarrow a \cdot b \text{ impar}.$
 - ► Prova direta

Exemplo: prova de "se, e somente se"

Teorema

Dois inteiros a e b são ambos ímpares se, e somente se, $a \cdot b$ é ímpar.

Tentem provar.

Prova por partes:

- Provando ⇒:
 - ► $(a \text{ impar}) \land (b \text{ impar}) \Rightarrow a \cdot b \text{ impar}.$
 - ► Prova direta
 - Provando <=:
 - ▶ $a \cdot b$ impar \Rightarrow (a impar) \land (b impar).
 - Prova por contrapositiva.

Segundo exemplo de prova de equivalência

Teorema

 $\forall x \in \mathbb{Z} \ (x \text{ \'e impar} \Leftrightarrow 5x + 8 \text{ \'e impar}).$

Segundo exemplo de prova de equivalência

Teorema

 $\forall x \in \mathbb{Z} \ (x \in \text{impar} \Leftrightarrow 5x + 8 \in \text{impar}).$

Tentem provar.

Segundo exemplo de prova de equivalência

Teorema

 $\forall x \in \mathbb{Z} \ (x \in \text{impar} \Leftrightarrow 5x + 8 \in \text{impar}).$

Tentem provar.

Desta vez, é fácil fazer uma prova única usando o teorema do exemplo anterior.

- - Perguntas, observações, comentários?