SPATIAL, INHOMOGENOUS POISSON POINT PROCESS MODEL

FOR GROUPED DATA

Brian M. Brost

18 March 2016

Description

An inhomogenous Poisson point process model for grouped spatial data.

Implementation

The file spatial.ppp.mixed.sim.R simulates data according to the model statement presented below, and spatial.ppp.mixed.mcmc.R contains the MCMC algorithm for model fitting.

Model statement

Let $\mathbf{s}_{j}(t) = (s_{j,x}(t), s_{j,y}(t))'$, for $t \in \mathcal{T}$ and j = 1, ..., J, denote observed spatial locations, where the index t denotes replicate times within group j, and n_{j} is the number of observations in group j. Furthermore, let $\mathbf{x}_{j}(t)$ be a vector of p covariates (including the intercept) associated with the location $\mathbf{s}_{j}(t)$ and $\boldsymbol{\beta}_{j}$ be the corresponding vector of coefficients for group j.

$$\mathbf{s}_{j}\left(t
ight) \sim rac{\exp\left(\mathbf{x}\left(\mathbf{s}_{j}\left(t
ight)
ight)'oldsymbol{eta}_{j}
ight)}{\int\exp\left(\mathbf{x}\left(\mathbf{s}
ight)'oldsymbol{eta}_{j}
ight)d\mathbf{s}} \ eta_{j} \sim \mathcal{N}\left(oldsymbol{\mu}_{eta},oldsymbol{\Sigma}
ight) \ oldsymbol{\mu}_{eta} \sim \mathcal{N}\left(\mathbf{0},\sigma_{eta}^{2}\mathbf{I}
ight) \ oldsymbol{\Sigma}^{-1} \sim \operatorname{Wish}\left(\mathbf{S}_{0}^{-1},
u
ight)$$

Full conditional distributions

Regression coefficients (β_i):

$$\begin{split} \left[\boldsymbol{\beta}_{j}\mid\cdot\right] & \propto & \prod_{t\in\mathcal{T}}\left[\mathbf{s}_{j}\left(t\right)\mid\boldsymbol{\beta}_{j}\right]\left[\boldsymbol{\beta}_{j}\mid\boldsymbol{\mu}_{\beta},\boldsymbol{\Sigma}\right] \\ & \propto & \prod_{t\in\mathcal{T}}\left(\frac{\exp\left(\mathbf{x}\left(\mathbf{s}_{j}\left(t\right)\right)'\boldsymbol{\beta}_{j}\right)}{\int\exp\left(\mathbf{x}\left(\mathbf{s}\right)'\boldsymbol{\beta}_{j}\right)d\mathbf{s}}\right)\mathcal{N}\left(\boldsymbol{\beta}_{j}\mid\boldsymbol{\mu}_{\beta},\boldsymbol{\Sigma}\right). \end{split}$$

The update for β_i proceeds using Metropolis-Hastings.

Mean of regression coefficients (μ_{β}) :

$$egin{aligned} \left[oldsymbol{\mu}_{eta}\mid\cdot
ight] & \propto & \prod_{j=1}^{J}\left[oldsymbol{eta}_{j}\midoldsymbol{\mu}_{eta},oldsymbol{\Sigma}
ight]\left[oldsymbol{\mu}_{eta}\midoldsymbol{0},\sigma_{eta}^{2}
ight] \ & \propto & \prod_{j=1}^{J}\mathcal{N}\left(oldsymbol{eta}_{j}\midoldsymbol{\mu}_{eta},oldsymbol{\Sigma}
ight)\mathcal{N}\left(oldsymbol{\mu}_{eta}\midoldsymbol{0},\sigma_{eta}^{2}\mathbf{I}
ight) \end{aligned}$$

$$\propto \exp\left\{\sum_{j=1}^{J} \left(-\frac{1}{2} \left(\boldsymbol{\beta}_{j} - \boldsymbol{\mu}_{\beta}\right)' \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{\beta}_{j} - \boldsymbol{\mu}_{\beta}\right)\right)\right\}$$

$$\times \exp\left\{-\frac{1}{2} \left(\boldsymbol{\mu}_{\beta} - \boldsymbol{0}\right)' \left(\sigma_{\beta}^{2} \mathbf{I}\right)^{-1} \left(\boldsymbol{\mu}_{\beta} - \boldsymbol{0}\right)\right\}$$

$$\propto \exp\left\{-\frac{1}{2} \left(-2 \left(\sum_{j=1}^{J} \boldsymbol{\beta}_{j}' \boldsymbol{\Sigma}^{-1}\right) \boldsymbol{\mu}_{\beta} + \boldsymbol{\mu}_{\beta}' \left(J \boldsymbol{\Sigma}^{-1}\right) \boldsymbol{\mu}_{\beta}\right)\right\}$$

$$\times \exp\left\{-\frac{1}{2} \left(\boldsymbol{\mu}_{\beta}' \left(\sigma_{\beta}^{2} \mathbf{I}\right)^{-1} \boldsymbol{\mu}_{\beta}\right)\right\}$$

$$\propto \exp\left\{-\frac{1}{2} \left(-2 \left(\sum_{j=1}^{J} \boldsymbol{\beta}_{j}' \boldsymbol{\Sigma}^{-1}\right) \boldsymbol{\mu}_{\beta} + \boldsymbol{\mu}_{\beta}' \left(J \boldsymbol{\Sigma}^{-1} + \left(\sigma_{\beta}^{2} \mathbf{I}\right)^{-1}\right) \boldsymbol{\mu}_{\beta}\right)\right\}$$

$$= \mathcal{N}(\mathbf{A}^{-1} \mathbf{b}, \mathbf{A}^{-1}),$$

where $\mathbf{A} = J \mathbf{\Sigma}^{-1} + \left(\sigma_{\beta}^2 \mathbf{I}\right)^{-1}$ and $\mathbf{b}' = \boldsymbol{\beta}' \mathbf{\Sigma}^{-1}$, where $\boldsymbol{\beta}$ is the vector sum $\sum_{j=1}^{J} \boldsymbol{\beta}_j$.

Variance-covariance of regression coefficients (Σ):

$$\begin{split} \left[\mathbf{\Sigma} \mid \cdot \right] & \propto & \prod_{j=1}^{J} \left[\beta_{j} \mid \boldsymbol{\mu}_{\beta}, \mathbf{\Sigma} \right] \left[\mathbf{\Sigma} \mid \mathbf{S}_{0}, \boldsymbol{\nu} \right] \\ & \propto & \prod_{j=1}^{J} \mathcal{N} \left(\beta_{j} \mid \boldsymbol{\mu}_{\beta}, \mathbf{\Sigma} \right) \operatorname{Wish} \left(\mathbf{\Sigma} \mid \mathbf{S}_{0}, \boldsymbol{\nu} \right) \\ & \propto & \left| \mathbf{\Sigma} \right|^{-\frac{J}{2}} \exp \left\{ -\frac{1}{2} \sum_{j=1}^{J} \left(\beta_{j} - \boldsymbol{\mu}_{\beta} \right)' \mathbf{\Sigma}^{-1} \left(\beta_{j} - \boldsymbol{\mu}_{\beta} \right) \right\} \\ & \times \left| \mathbf{S}_{0} \right|^{-\frac{\nu}{2}} \left| \mathbf{\Sigma} \right|^{-\frac{\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \operatorname{tr} \left(\mathbf{S}_{0} \mathbf{\Sigma}^{-1} \right) \right\} \\ & \propto & \left| \mathbf{\Sigma} \right|^{-\frac{J+\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \left[\sum_{j=1}^{J} \operatorname{tr} \left(\left(\beta_{j} - \boldsymbol{\mu}_{\beta} \right)' \mathbf{\Sigma}^{-1} \left(\beta_{j} - \boldsymbol{\mu}_{\beta} \right) \right) + \operatorname{tr} \left(\mathbf{S}_{0} \mathbf{\Sigma}^{-1} \right) \right] \right\} \\ & \propto & \left| \mathbf{\Sigma} \right|^{-\frac{J+\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \left[\operatorname{tr} \left(\sum_{j=1}^{J} \left(\left(\beta_{j} - \boldsymbol{\mu}_{\beta} \right) \left(\beta_{j} - \boldsymbol{\mu}_{\beta} \right)' \right) \mathbf{\Sigma}^{-1} \right) + \operatorname{tr} \left(\mathbf{S}_{0} \mathbf{\Sigma}^{-1} \right) \right] \right\} \\ & \propto & \left| \mathbf{\Sigma} \right|^{-\frac{J+\nu-p-1}{2}} \exp \left\{ -\frac{1}{2} \left[\operatorname{tr} \left(\sum_{j=1}^{J} \left(\left(\beta_{j} - \boldsymbol{\mu}_{\beta} \right) \left(\beta_{j} - \boldsymbol{\mu}_{\beta} \right)' \right) + \mathbf{S}_{0} \right) \mathbf{\Sigma}^{-1} \right] \right\} \\ & = & \operatorname{Wish} \left(\left(\sum_{j=1}^{J} \left(\left(\beta_{j} - \boldsymbol{\mu}_{\beta} \right) \left(\beta_{j} - \boldsymbol{\mu}_{\beta} \right)' \right) + \mathbf{S}_{0} \right)^{-1}, J + \nu \right). \end{split}$$