

Point Symmetries of Partial Differential Equations

Tom van Rees Supervision by Prof. Dr. Daniël Boer and Dr. Jelle Aalbers

Faculty of Science and Engineering University of Groningen

Overview

- 1. Motivation
- 2. Continuous Point Symmetries
- 3. Discrete Point Symmetries
- 4. Conclusion

Motivation

University of Groningen, Faculty of Science and Engineering

Known Examples

• Poincare group for QFT Lagrangians

Known Examples

- Poincare group for QFT Lagrangians
- Schrödinger/Galilean Group

Why do we care?

• Better understanding of symmetry groups

Why do we care?

- Better understanding of symmetry groups
- Finding new solutions to differential equations

Why do we care?

- Better understanding of symmetry groups
- Finding new solutions to differential equations
- Help to explain physical phenomena

Continuous Point Symmetries

University of Groningen, Faculty of Science and Engineering

(Global) Lie group

- Multiplication law
- Inverse
- Identity Element

Group of rotations SO(3)Example below $(\mathbb{R}\setminus\{0\},\times)$

Local Lie Group

- Local Multiplication
- Local Inverse

Let $V = \{x : |x| < 1\}$ with multiplication

$$m(x,y) = \frac{2xy - x - y}{xy - 1}$$
 $\forall x, y \in V$

Then
$$m(-\frac{1}{2}, -\frac{1}{2}) = 2 \notin V$$

Lie Algebra

- Vector Space
- Generators $v_1, v_2, ..., v_r$

Elements can be created using the generators

$$g = \exp(\epsilon_1 \mathbf{v_1}) \exp(\epsilon_2 \mathbf{v_2}) ... \exp(\epsilon_r \mathbf{v_r})$$

Point Transformations

Consider PDE dependent on x and u

Point transformations

$$G:(x,u)\to (f(x,u),h(x,u))=(\tilde{x},\tilde{u})$$

Acting with group element g on coordinates x, u

Let $g_{\epsilon} = \exp(\epsilon \mathbf{v_1})$ with $\mathbf{v_1} = \partial_x$

$$(\tilde{x}, \tilde{u}) = g_{\epsilon} \cdot (x, u) = (x + \epsilon, u)$$

Similarly, let $h_{\epsilon} = \exp(\epsilon \mathbf{v_2})$ with $\mathbf{v_2} = x^2 \partial_x$

$$h_{\epsilon} \cdot (x, u) = \left(\frac{x}{1 - \epsilon x}, u\right)$$
 for $|\epsilon x| < 1$

Symmetry Group

Definition Symmetry Group A symmetry group is a local group of transformations G, with the property that if u=f(x) is a solution of the PDE, then $g\cdot f(x)$ is also a solution for all $g\in G$ (if $g\cdot f$ is defined).

Symmetry Group

Definition Symmetry Group A symmetry group is a local group of transformations G, with the property that if u=f(x) is a solution of the PDE, then $g\cdot f(x)$ is also a solution for all $g\in G$ (if $g\cdot f$ is defined).

Want to find the total symmetry group

How to find these symmetry groups?

Prolongation Method

Clearly described in textbook by Olver [Olver, 1998]

Let generator have the form

$$\mathbf{v} = \sum_{i=1}^{p} \xi^{i}(x, u) \frac{\partial}{\partial x^{i}} + \phi(x, u) \frac{\partial}{\partial u}$$

Let it act on the differential equation

Generators of the symmetry group have constraints on ξ^i and ϕ

Only finds infinitesimal transformations

Logistic Equation

Logistic Equation

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{k}\right),\,$$

$$r, k \in \mathbb{R}$$

$$\mathbf{v_1} = \partial_t$$

$$G_1:(t,P)\to(t+\epsilon,P)$$

$$\tilde{P}(t) = P(t - \epsilon)$$

Logistic Equation

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{k}\right),\,$$

$$r, k \in \mathbb{R}$$

$$\mathbf{v_1} = \partial_t$$

$$G_1:(t,P)\to(t+\epsilon,P)$$

$$\tilde{P}(t) = P(t - \epsilon)$$

(1+1) dimensional: u(x, t)

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

(1+1) dimensional: u(x, t)

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

$$\mathbf{v_1} = \partial_x$$

$$\mathbf{v_2} = \partial_t$$

$$\mathbf{v_3} = u\partial_u$$

$$\mathbf{v_4} = x\partial_x + 2t\partial_t$$

$$\mathbf{v_5} = 2t\partial_x - xu\partial_u$$

$$\mathbf{v_6} = 4tx\partial_x + 4t^2\partial_t - (x^2 + 2t)u\partial_u$$

$$\mathbf{v}_{\alpha} = \alpha(x, t)\partial_u$$

$$\mathbf{v_1} = \partial_x \qquad G_1: \quad (x + \epsilon, t, u)$$

$$\mathbf{v_2} = \partial_t \qquad G_2: \quad (x, t + \epsilon, u)$$

$$\mathbf{v_3} = u\partial_u \qquad G_3: \quad (x, t, e^{\epsilon}u)$$

$$\mathbf{v_4} = x\partial_x + 2t\partial_t \qquad G_4: \quad (e^{\epsilon}x, e^{2\epsilon}t, u)$$

$$\mathbf{v_5} = 2t\partial_x - xu\partial_u \qquad G_5: \quad (x + 2\epsilon t, t, e^{-\epsilon x - \epsilon^2 t}u)$$

$$\mathbf{v_6} = 4tx\partial_x + 4t^2\partial_t - (x^2 + 2t)u\partial_u \qquad G_6: \quad \left(\frac{x}{1 - 4\epsilon t}, \frac{t}{1 - 4\epsilon t}, \sqrt{1 - 4\epsilon t} \exp\left(-\frac{\epsilon x^2}{1 - 4\epsilon t}\right)u\right)$$

$$\mathbf{v}_{\alpha} = \alpha(x, t)\partial_u \qquad G_{\alpha}: \quad (x, t, u + \epsilon\alpha(x, t))$$

Heat equation cannot be described generally as a global group!

 $L^2(\mathbb{R})$ (square-integrable) solutions do satisfy global group properties, transformations from $\mathbf{v_6}$ do nothing to $f \in L^2(\mathbb{R})$

Similar situation for Schrödinger equation

Discrete Point Symmetries

University of Groningen, Faculty of Science and Engineering

Motivation

Missing obvious symmetries!

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

$$G_4: (x, t, u) \to (x, t, e^{\epsilon}u)$$

Motivation

Missing obvious symmetries!

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

$$G_4: (x, t, u) \to (x, t, e^{\epsilon}u)$$

What about $u \rightarrow -u$?

Method described by Hydon ([Hydon, 2000])

Finding Hidden Symmetry Group

How to find these symmetries?

Prolongation gives generators $v_1, ..., v_r$

Each generates its own symmetry group G_i

Finding Hidden Symmetry Group

How to find these symmetries?

Prolongation gives generators $v_1, ..., v_r$

Each generates its own symmetry group G_i

$$\Gamma:(x,t,u)\to(\tilde{x},\tilde{t},\tilde{u})$$

Finding Hidden Symmetry Group

How to find these symmetries?

Prolongation gives generators $v_1,...,v_r$

Each generates its own symmetry group G_i

$$\Gamma:(x,t,u)\to(\tilde{x},\tilde{t},\tilde{u})$$

Then we also have the symmetry group

$$\tilde{G}_i = \Gamma G_i \Gamma^{-1} = \exp(\epsilon \Gamma \mathbf{v_i} \Gamma^{-1})$$

With generator $\tilde{\mathbf{v_i}} = \Gamma \mathbf{v_i} \Gamma^{-1}$

How to find these Γ symmetries?

Prolongation gives generators $v_1, ..., v_r$

$$[\mathbf{v_i},\mathbf{v_j}]=\mathit{c}_{\mathit{ij}}^{\mathit{k}}\mathbf{v_k}$$

Turns out new generators ($ilde{v_i} = \Gamma v_i \Gamma^{-1}$) satisfy

$$[\tilde{\mathbf{v}_i}, \tilde{\mathbf{v}_j}] = c_{ij}^k \tilde{\mathbf{v}_k}$$

How to find these Γ symmetries?

Prolongation gives generators $v_1, ..., v_r$

$$[\mathbf{v_i}, \mathbf{v_j}] = c_{ij}^k \mathbf{v_k}$$

Turns out new generators ($ilde{\mathbf{v_i}} = \Gamma \mathbf{v_i} \Gamma^{-1}$) satisfy

$$[\tilde{\mathbf{v}_i}, \tilde{\mathbf{v}_j}] = c_{ij}^k \tilde{\mathbf{v}_k}$$

New generators can be found using linear basis transformations $\mathbf{v_i} = b_i^l \tilde{\mathbf{v_l}}$

New generators are found using basis transformations $\mathbf{v_i} = b_i^l \tilde{\mathbf{v_l}}$

$$\begin{pmatrix} \tilde{\mathbf{v}_1} \\ \tilde{\mathbf{v}_2} \\ \vdots \\ \tilde{\mathbf{v}_r} \end{pmatrix} = \underbrace{\begin{pmatrix} b_1^1 & b_1^2 & \dots & b_1^r \\ b_2^1 & b_2^2 & \dots & b_2^r \\ \vdots & \vdots & \ddots & \vdots \\ b_r^1 & b_r^2 & \dots & b_r^r \end{pmatrix}}_{B} \begin{pmatrix} \mathbf{v_1} \\ \mathbf{v_2} \\ \vdots \\ \mathbf{v_r} \end{pmatrix}$$

New generators are found using basis transformations $\mathbf{v_i} = b_i^l \tilde{\mathbf{v_l}}$

$$\begin{pmatrix} \tilde{\mathbf{v_1}} \\ \tilde{\mathbf{v_2}} \\ \vdots \\ \tilde{\mathbf{v_r}} \end{pmatrix} = \underbrace{\begin{pmatrix} b_1^1 & b_1^2 & \dots & b_1^r \\ b_2^1 & b_2^2 & \dots & b_2^r \\ \vdots & \vdots & \ddots & \vdots \\ b_r^1 & b_r^2 & \dots & b_r^r \end{pmatrix}}_{B} \begin{pmatrix} \mathbf{v_1} \\ \mathbf{v_2} \\ \vdots \\ \mathbf{v_r} \end{pmatrix}$$

Because we require the same structure constants, B satisfies

$$c_{lm}^n b_i^l b_j^m = c_{ij}^k b_k^n$$

Spherical Burgers Equation

$$\frac{\partial u}{\partial t} + \frac{u}{t} + u \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2}$$

Lie algebra spanned by three generators

$$\mathbf{v_1} = -x\partial_x - 2t\partial_t + u\partial_u$$
$$\mathbf{v_2} = \ln(t)\partial_x + \frac{1}{t}\partial_u$$
$$\mathbf{v_3} = \partial_x$$

Spherical Burgers Equation

$$\mathbf{v_1} = -x\partial_x - 2t\partial_t + u\partial_u, \quad \mathbf{v_2} = \ln(t)\partial_x + \frac{1}{t}\partial_u, \quad \mathbf{v_3} = \partial_x$$
$$[\mathbf{v_1}, \mathbf{v_2}] = \mathbf{v_2} - 2\mathbf{v_3}, \quad [\mathbf{v_1}, \mathbf{v_3}] = \mathbf{v_3}$$

Most general transformation matrix

$$B = \begin{pmatrix} b_1^1 & b_1^2 & b_1^3 \\ b_2^1 & b_2^2 & b_2^3 \\ b_3^1 & b_3^2 & b_3^3 \end{pmatrix}$$

$$c_{lm}^nb_i^lb_j^m=c_{ij}^kb_k^n$$
 All nonlinear conditions (n,i,j)
$$(1,1,2): \qquad 0=b_2^1-2b_3^1$$

$$(1,1,3): \qquad 0=b_3^1$$

$$(1,2,3): \qquad 0=0$$

$$(2,1,2): \qquad b_1^1b_2^2=b_2^2-2b_3^2$$

$$(2,1,3): \qquad b_1^1b_3^2=b_3^2$$

$$(3,1,2): \qquad -2b_1^1b_2^2+b_1^1b_3^3=b_3^3$$

$$(3,1,3): \qquad -2b_1^1b_3^2+b_1^1b_3^3=b_3^3$$

$$c_{lm}^n b_i^l b_j^m = c_{ij}^k b_k^n$$

All nonlinear conditions (n, i, j)

$$\begin{array}{llll} (1,1,2): & 0 = b_2^1 - 2b_3^1 & \rightarrow & b_2^1 = 0 \\ (1,1,3): & 0 = b_3^1 & \rightarrow & b_3^1 = 0 \\ (1,2,3): & 0 = 0 \\ (2,1,2): & b_1^1 b_2^2 = b_2^2 - 2b_3^2 & \rightarrow & b_3^2 = 0 \\ (2,1,3): & b_1^1 b_3^2 = b_3^2 & \rightarrow & b_1^1 = 1 \\ (3,1,2): & -2b_1^1 b_2^2 + b_1^1 b_2^3 = b_2^3 - 2b_3^3 \\ (3,1,3): & -2b_1^1 b_3^2 + b_1^1 b_3^3 = b_3^3 \end{array}$$

Solving the nonlinear conditions we find

$$b_2^1 = 0, \quad b_3^1 = 0, \quad b_3^2 = 0, \quad b_1^1 = 1$$

Most general transformation matrix

$$B = \begin{pmatrix} 1 & b_1^2 & b_1^3 \\ 0 & b_2^2 & b_2^3 \\ 0 & 0 & b_3^3 \end{pmatrix}$$

Removing Continuous Symmetries

What about the symmetries generated by $v_1,...,v_r?$

Each generator creates its own basis transformations

Remove these transformations using adjoint matrix

$$B = \begin{pmatrix} 1 & b_1^2 & b_1^3 \\ 0 & b_2^2 & b_2^3 \\ 0 & 0 & b_3^3 \end{pmatrix}$$

Make use of the adjoint matrices

$$A(1,\epsilon) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-\epsilon} & 2\epsilon e^{-\epsilon} \\ 0 & 0 & e^{-\epsilon} \end{pmatrix}, \quad A(2,\epsilon) = \begin{pmatrix} 1 & \epsilon & -2\epsilon \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad A(3,\epsilon) = \begin{pmatrix} 1 & 0 & \epsilon \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & b_1^2 & b_1^3 \\ 0 & b_2^2 & b_2^3 \\ 0 & 0 & b_3^3 \end{pmatrix}$$

Make use of the adjoint matrices

$$A(1,\epsilon) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-\epsilon} & 2\epsilon e^{-\epsilon} \\ 0 & 0 & e^{-\epsilon} \end{pmatrix}, \quad A(2,\epsilon) = \begin{pmatrix} 1 & \epsilon & -2\epsilon \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad A(3,\epsilon) = \begin{pmatrix} 1 & 0 & \epsilon \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$BA(3,\epsilon) = \begin{pmatrix} 1 & b_1^2 & b_1^3 + \epsilon \\ 0 & b_2^2 & b_2^3 \\ 0 & 0 & b_3^3 \end{pmatrix}$$

Eliminating continuous symmetries gives

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & b_2^2 & 0 \\ 0 & 0 & b_3^3 \end{pmatrix}$$

Apply nonlinear conditions again

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & b \end{pmatrix} \qquad b \in \mathbb{R} \backslash \{0\}$$

Solving PDEs (*)

Transformation matrix B gives conditions on which transformations generated by Γ are allowed

$$\Gamma:(x,t,u)\to(\tilde{x},\tilde{t},\tilde{u})$$

Doing the basis transformations from x,t,u to $\tilde{x},\tilde{t},\tilde{u}$ gives conditions on $\tilde{x},\tilde{t},\tilde{u}$

Lastly, the transformations have to satisfy the symmetry condition

$$\Delta(x, u^{(n)}) = 0$$
 \rightarrow $\Delta(\tilde{x}, \tilde{u}^{(n)}) = 0$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & b \end{pmatrix}$$

The transformations Γ generates are

$$(\tilde{x}, \quad \tilde{t}, \quad \tilde{u}) = \left(b(x + \ln(c_1)tu + c_3\sqrt{t}), \quad c_1t, \quad \frac{b}{c_1}u + c_2\frac{1}{\sqrt{t}}\right)$$

Symmetry condition sets $c_2=c_3=0,\,c_1=1$ and $b=\pm 1$

$$\Gamma:(x,t,u)\to(-x,t,-u)$$

$$\frac{\partial u}{\partial t} + \frac{u}{t} + u \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2}$$

One discrete symmetry generator

$$\Gamma:(x,t,u)\to(-x,t,-u)$$

Gradient Descent Method

Other ways to find the transformation matrix? Utilizing gradient descent

Figure: Source: https://ekamperi.github.io/machine%20learning/2019/07/28/gradient-descent.html

Gradient Descent Method

Random transformation matrix

$$B^{(0)} = \begin{pmatrix} b_1^1 & b_1^2 & \dots & b_1^r \\ b_2^1 & b_2^2 & \dots & b_2^r \\ \vdots & \vdots & \ddots & \vdots \\ b_r^1 & b_r^2 & \dots & b_r^r \end{pmatrix} \rightarrow \begin{pmatrix} 0.3142 & 1.9728 & \dots & 1.2987 \\ -0.9425 & -1.2042 & \dots & 0.8242 \\ \vdots & \vdots & \ddots & \vdots \\ 0.5528 & -1.9230 & \dots & 1.0125 \end{pmatrix}$$

Calculate nonlinear conditions

$$L(b_1^1, b_1^2, ..., b_r^r) = \sqrt{\sum_n \sum_i \sum_j \left(c_{lm}^n b_i^l b_j^m - c_{ij}^k b_k^n \right)^2}$$

Gradient Descent Method

Update transformation matrix

$$B^{(1)} = B^{(0)} - \alpha \nabla L(b_1^1, b_1^2, ..., b_r^r)$$

Keep going until loss converges

Take average of multiple simulations

Analytically found

$$B = \begin{pmatrix} 1 & b_1^2 & b_1^3 \\ 0 & b_2^2 & b_2^3 \\ 0 & 0 & b_3^3 \end{pmatrix}$$

Gradient descent algorithm gives

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

Lie algebra consists of 6 generators

$$B = \begin{pmatrix} b_1^1 & b_1^2 & b_1^3 & b_1^4 & b_1^5 & b_1^6 \\ b_2^1 & b_2^2 & b_2^3 & b_2^4 & b_2^5 & b_2^6 \\ b_3^1 & b_3^2 & b_3^3 & b_3^4 & b_3^5 & b_3^3 \\ b_4^1 & b_4^2 & b_4^3 & b_4^4 & b_4^5 & b_4^6 \\ b_5^1 & b_5^2 & b_5^3 & b_5^4 & b_5^5 & b_5^6 \\ b_6^1 & b_6^2 & b_6^3 & b_6^4 & b_5^5 & b_6^6 \end{pmatrix}$$

Difficult to solve the nonlinear conditions

Heat Equation (*)

$$B_{1} = \begin{pmatrix} ae^{\epsilon_{4}} & 0 & 0 & 0 & 0 & 0\\ 0 & a^{2}e^{2\epsilon_{4}} & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{a}e^{-\epsilon_{4}} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{a^{2}}e^{-2\epsilon_{4}} \end{pmatrix}$$

$$B_{2} = \begin{pmatrix} 0 & 0 & 0 & 0 & ae^{\epsilon_{4}} & 0\\ 0 & 0 & 0 & 0 & 0 & a^{2}e^{2\epsilon_{4}}\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & -1 & 0 & 0\\ -\frac{1}{a}e^{-\epsilon_{4}} & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{1}{a^{2}}e^{-2\epsilon_{4}} & 0 & 0 & 0 & 0 \end{pmatrix}$$

University of Groningen, Faculty of Science and Engineering

2 types of discrete symmetries depending on B_1 , B_2 . For B_1 :

Real: $\Gamma_1:(x,t,u)\to (-x,t,u), \qquad \Gamma_2:(x,t,u)\to (x,t,-u)$

Complex: $\Gamma_3:(x,t,u)\to(ix,-t,u), \qquad \Gamma_4:(x,t,u)\to(x,t,iu)$

From B_2 :

$$\Gamma_5: (x, t, u) \to \left(\frac{x}{2t}, -\frac{1}{4t}, \sqrt{t} \exp\left(\frac{x^2}{2t}\right) u\right)$$

2 types of discrete symmetries depending on B_1 , B_2 . For B_1 :

Real:
$$\Gamma_1:(x,t,u)\to (-x,t,u), \qquad \Gamma_2:(x,t,u)\to (x,t,-u)$$

Complex:
$$\Gamma_3:(x,t,u)\to(ix,-t,u), \qquad \Gamma_4:(x,t,u)\to(x,t,iu)$$

From B_2 :

$$\Gamma_5: (x, t, u) \to \left(\frac{x}{2t}, -\frac{1}{4t}, \sqrt{t} \exp\left(\frac{x^2}{2t}\right) u\right)$$

New solutions of the form

$$\tilde{f}(x,t) = \frac{i}{2\sqrt{t}} \exp\left(-\frac{x^2}{2t}\right) f\left(-\frac{x}{2t}, -\frac{1}{4t}\right)$$

Real solutions and real transformations: 2 discrete generators, total symmetry group has 4 components

Complex solutions and complex transformations: At least 32 distinct discrete symmetries \rightarrow 32 components

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

 $\mathbf{v_1} = \partial_{-}$

 $\mathbf{v_2} = \partial_u$

 $\mathbf{v}_2 = \partial_{\sim}$

 $\mathbf{v}_{7} = u\partial_{x}$

 $\mathbf{v}_5 = z\partial_x - x\partial_z$ $\mathbf{v_6} = x\partial_y - y\partial_x$

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

$$\mathbf{v_1} = \partial_x \qquad \mathbf{v_8} = (x^2 - y^2 - z^2)\partial_x + 2xy\partial_y + 2xz\partial_z - xu\partial_u$$

$$\mathbf{v_2} = \partial_y \qquad \mathbf{v_9} = 2yx\partial_x + (-x^2 + y^2 - z^2)\partial_y + 2yz\partial_z - yu\partial_u$$

$$\mathbf{v_3} = \partial_z \qquad \mathbf{v_{10}} = 2zx\partial_x + 2zy\partial_y + (-x^2 - y^2 + z^2)\partial_z - zu\partial_u$$

$$\mathbf{v_4} = y\partial_z - z\partial_y \qquad \mathbf{v_{11}} = x\partial_x + y\partial_y + z\partial_z$$

B contains 121 parameters

605 coupled nonlinear equations, looking like

$$\begin{aligned} -b_1^{11}b_2^1 + b_1^6b_2^2 - b_1^5b_2^3 + b_1^3b_2^5 - b_1^2b_2^6 + b_1^1b_2^{11} &= 0 \\ 2b_7^{10}b_8^2 - 2b_7^9b_8^3 + b_7^6b_8^5 - b_7^5b_8^6 + 2b_7^7b_8^9 - 2b_7^2b_8^{10} &= 0 \\ 2b_4^9 - b_2^{10}b_{10}^4 + b_2^8b_{10}^6 - b_2^6b_{10}^8 + b_2^{11}b_{10}^9 + b_2^4b_{10}^{10} - b_2^9b_{10}^{11} &= 0 \end{aligned}$$

Real transformations from B_1 , map (x, y, z, u) to

$$\Gamma_1: (-x, y, z, u), \quad \Gamma_2: (x, -y, z, u), \quad \Gamma_3: (x, y, -z, u), \quad \Gamma_4: (x, y, z, -u)$$

Complex transformations from B_1

$$\Gamma_1: (ix, y, z, u), \quad \Gamma_2: (x, iy, z, u), \quad \Gamma_3: (x, y, iz, u), \quad \Gamma_4: (x, y, z, iu)$$

From B_2

$$\Gamma_5: \left(\frac{x}{x^2+y^2+z^2}, \frac{y}{x^2+y^2+z^2}, \frac{z}{x^2+y^2+z^2}, (x^2+y^2+z^2)^{1/2}u\right)$$

From B_2

$$\Gamma_5: \left(\frac{x}{x^2+y^2+z^2}, \frac{y}{x^2+y^2+z^2}, \frac{z}{x^2+y^2+z^2}, (x^2+y^2+z^2)^{1/2}u\right)$$

Hence if u = f(x, y, z) is a solution, so is

$$\tilde{f}(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}} f\left(\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z}{x^2 + y^2 + z^2}\right)$$

From B_2

$$\Gamma_5: \left(\frac{x}{x^2+y^2+z^2}, \frac{y}{x^2+y^2+z^2}, \frac{z}{x^2+y^2+z^2}, (x^2+y^2+z^2)^{1/2}u\right)$$

Hence if u = f(x, y, z) is a solution, so is

$$\tilde{f}(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}} f\left(\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z}{x^2 + y^2 + z^2}\right)$$

Additionally, all permutations between $x,\,y,\,z$ can be found as discrete symmetries

Conclusion

University of Groningen, Faculty of Science and Engineering

Conclusion

- Heat and Schrödinger equation do not have global symmetry groups
- Discrete point symmetries can also be found using an optimization algorithm
- Discrete point symmetries provide additional information about the total symmetry group structure

Outlook

Future Research

- Alter algorithm to increase accuracy of finding transformation matrices
- Automate steps between solving nonl. conds and adjoint matrices
- Combine the results of continuous and discrete point transformations

References

P. J. Olver (1998)

Applications of Lie groups to Differential Equations Springer New York 2nd edition.

P. E. Hydon (2000)

How to construct the discrete symmetries of partial differential equations European Journal of Differential Equations 11(5), 515 – 527.

Thank you for your attention

Tom van Rees Supervision by Prof. Dr. Daniël Boer and Dr. Jelle Aalbers

Faculty of Science and Engineering University of Groningen

Local Transformation Group

Acting with group element g on coordinates x, u

Let
$$g_{\epsilon} = \exp(\epsilon \mathbf{v_1})$$
 with $\mathbf{v_1} = \partial_x$

$$g_{\epsilon} \cdot (x, u) = (x + \epsilon, u)$$

Similarly, let $h_{\epsilon} = \exp(\epsilon \mathbf{v_2})$ with $\mathbf{v_2} = x^2 \partial_x$

$$h_{\epsilon} \cdot (x, u) = \left(\frac{x}{1 - \epsilon x}, u\right)$$
 for $|\epsilon x| < 1$

Prolongation Method

Infinitesimal Criterion Theorem Suppose $\Delta(x,u^{(n)})=0$ is a differential equation defined over $M\subseteq X\times U$. If G is a local group of transformations acting on M and

$$\operatorname{pr}^{(n)}\mathbf{v}[\Delta(x, u^{(n)})] = 0 \tag{1}$$

whenever $\Delta(x,u^{(n)})=0$ for every infinitesimal generator ${\bf v}$ of G, then G is a symmetry group of the system.

Prolongation Method

Generator Prolongation

Let \mathbf{v} be a vector field, defined on subset $M \subseteq X \times U$. The n-th order prolongation of \mathbf{v} is the vector field

$$\operatorname{pr}^{(n)}\mathbf{v} = \mathbf{v} + \sum_{\mathbf{J}} \phi^{\mathbf{J}}(x, u^{(n)}) \frac{\partial}{\partial u_{\mathbf{J}}}$$

defined on $M^{(n)} \subseteq X \times U^{(n)}$, where $\mathbf{J} = (j_1, j_2, ..., j_k)$ with $1 \le j_k \le p$ and $1 \le k \le n$. The coefficient functions $\phi^{\mathbf{J}}$ are given by

$$\phi^{\mathbf{J}}(x, u^{(n)}) = D_{\mathbf{J}} \left(\phi - \sum_{i=1}^{p} \xi^{i} \frac{\partial u}{\partial x^{i}} \right) + \sum_{i=1}^{p} \xi^{i} \frac{\partial u_{\mathbf{J}}}{\partial x^{i}}$$

where $D_{\mathbf{J}}$ is the total derivative w.r.t. \mathbf{J} and $u_{\mathbf{J}} = \frac{\partial u}{\partial x^{\mathbf{J}}}$

Finding Transformed Functions

For transformations of type

$$(\tilde{x}, \tilde{u}) = g \cdot (x, u) = (\Xi_g(x), \Phi_g(x)u)$$

Then the solutions u = f(x) transform as

$$\tilde{f}(x) = \Phi_g(\Xi_g^{-1}(x))f(\Xi_g^{-1}(x))$$

For transformations of type

$$(\tilde{x}, \tilde{u}) = g \cdot (x, u) = (\Xi_g(x, u), \Phi_g(x, u))$$

Then the solutions u = f(x) transform as (*I* is identity function, I(x) = x)

$$\tilde{f}(x) = [\Phi_g \circ (I \times f)] \circ [(\Xi_g \circ (I \times f))]^{-1}$$

$$\begin{split} &\tilde{f}(x,t) = f(x-\epsilon,t) \\ &\tilde{f}(x,t) = f(x,t-\epsilon) \\ &\tilde{f}(x,t) = e^{\epsilon} f(x,t) \\ &\tilde{f}(x,t) = f(e^{-\epsilon} x, e^{-2\epsilon} t) \\ &\tilde{f}(x,t) = e^{-\epsilon x + \epsilon^2 t} f(x-2\epsilon t,t) \\ &\tilde{f}(x,t) = \frac{1}{\sqrt{1+4\epsilon t}} \exp\left(\frac{-\epsilon x^2}{1+4\epsilon t}\right) f\left(\frac{x}{1+4\epsilon t}, \frac{t}{1+4\epsilon t}\right) \\ &\tilde{f}(x,t) = f(x,t) + \epsilon \alpha(x,t) \end{split}$$

$$\begin{split} \tilde{u}_{\tilde{t}} + \frac{\tilde{u}}{\tilde{t}} + \tilde{u}\tilde{u}_{\tilde{x}} &= \tilde{u}_{\tilde{x}\tilde{x}} \\ J = \begin{vmatrix} D_x\tilde{x} & D_x\tilde{t} \\ D_t\tilde{x} & D_t\tilde{t} \end{vmatrix} = bc_1 \\ \tilde{u}_{\tilde{x}} = \frac{1}{J} \begin{vmatrix} D_x\tilde{u} & D_x\tilde{t} \\ D_t\tilde{u} & D_t\tilde{t} \end{vmatrix} = \frac{1}{c_1}u_x \\ \tilde{u}_{\tilde{x}\tilde{x}} = \frac{1}{J} \begin{vmatrix} D_x\tilde{u}_{\tilde{x}} & D_x\tilde{t} \\ D_t\tilde{u}_{\tilde{x}} & D_t\tilde{t} \end{vmatrix} = \frac{1}{bc_1}u_{xx} \\ \tilde{u}_{\tilde{t}} = \frac{1}{J} \begin{vmatrix} D_x\tilde{u}_{\tilde{x}} & D_x\tilde{u} \\ D_t\tilde{u}_{\tilde{x}} & D_t\tilde{u} \end{vmatrix} = \frac{b}{c_1^2}u_t - \frac{1}{2}\frac{c_2}{c_1}t^{-3/2} - \frac{b}{c_1}\ln(c_1)uu_x - \frac{1}{2}\frac{bc_3}{c_1^2}t^{-1/2}u_x \end{split}$$

Original:

$$u_t + \frac{u}{t} + uu_x = u_{xx}$$

Transformed PDF

$$\frac{b}{c_1^2}u_t + \frac{b}{c_1^2}\frac{u}{t} + \frac{b}{c_1^2}(1 - \ln(c_1))uu_x + \frac{1}{2}\frac{c_2}{c_1}t^{-3/2} + \left(\frac{c_2}{c_1} - \frac{1}{2}b\frac{c_3}{c_1^2}\right)u_xt^{-1/2} = \frac{1}{bc_1}u_{xx}$$

Only holds for $c_2=c_3=0,\,c_1=1$ and $b=\pm 1$

Transformation matrix before removing the cont. symm. from the spatial rotations.

$$B_1 = \begin{pmatrix} & & b_1^8 & b_1^0 & b_1^{10} \\ & & b_2^8 & b_2^8 & b_2^{10} \\ & & & b_3^8 & b_3^9 & b_3^{10} \\ & & & b_3^4 & b_3^5 & b_6^6 \\ & & b_4^4 & b_5^5 & b_6^6 \\ & & b_5^4 & b_5^5 & b_6^6 \\ & & & b_7^7 \\ \\ b_8^1 & b_8^2 & b_8^3 \\ b_9^1 & b_9^2 & b_9^3 \\ b_{10}^1 & b_{10}^2 & b_{10}^3 \\ & & & b_{11}^7 & & -1 \end{pmatrix}$$

Local Transformation Group

1