Exponential Smoothing

This is a widely used forecasting technique in retailing, even though it has not proven to be especially accurate,

Exponential Smoothing

- n-Period Moving Average menggunakan hanya n periode data untuk melakukan peramalan – the rest of the data is ignored,
- Exponential Smoothing menggunakan <u>semua</u> data series untuk melakukan peramalan dengan bobot lebih kecil untuk data yang lebih lama,

Single Exponential Smoothing (SES)

- Metode Moving Average mengakomodir pengaruh data beberapa periode sebelumnya melalui pemberian bobot yang sama dalam proses meratarata,
- Hal ini berarti bobot pengaruh sekian periode data tersebut dianggap sama,
- Dalam kenyataannya, bobot pengaruh data yang lebih baru mestinya lebih besar,
- Adanya perbedaan bobot pengaruh ini diakomodir metode SES dengan menetapkan bobot secara eksponensial,

Single Exponential Smoothing (lanjutan)

• Nilai *smoothing* pada periode ke-t:

$$S_t = \alpha X_t + (1 - \alpha) S_{t-1}$$

- Nilai α merupakan parameter pemulusan dengan nilai o < α < 1,
- S_1 biasanya diambil dari rataan beberapa data pertama (6 untuk MINITAB)
- Nilai *smoothing* pada periode ke-*t* bertindak sebagai nilai *forecast* pada periode ke-(*t*+1)

$$\rightarrow$$
 $F_t = S_{t-1} \operatorname{dan} F_{n,h} = S_n$

I	lustrasi	SES denc =(0,2*5)+(0,8	$\lim_{3*5,5)} \alpha = 0,2$	Rataan 6 data pertama
Periode (t)	Data (X _t)	Smoothing (S_t)	Forecasting (F)	pertame
1	5	5,40000	5,50000	
2	7	5,72000	5,40000_	
3	6	5,77600	5,72000	
4	4	5,42080	5,77600	
5	5	5,33664	5,42080	=S1
6	6	5,46931	5,33664	
7	8	5,97545	5,46931	
8	7	6,18036	5,97545	
9	8	6,54429	6,18036	
10	7	6,63543	6,54429	
11			6,63543	
12			6,63543	

Review

- Exponential smoothing merupakan suatu cara untuk menghilangkan efek acak dari deret waktu dengan menggunakan semua data deret waktu hingga periode sekarang.
- Nilai Pemulusan (Level) pada periode ke-t: $\alpha(\text{data aktual sekarang}) + (1-\alpha)(\text{data pemulusan sebelumnya})$
- Peramalan periode t+1= Data pemulusan periode t
- <u>Inisialisasi:</u>
 - Nilai Pemulusan pertama = Rataan 6 data pertama
- Semakin kecil nilai α , semakin sedikit pergerakan data deret waktu

Pemilihan Model

- Beberapa model dapat diterapkan untuk data yang sama (MA dengan m = 3 atau m = 6, SES dengan α = 0,3 atau α = 0,4)
 - → mana yang dipilih??
- Membagi data menjadi dua bagian, trαining dan testing
- Training: bagian data yang digunakan untuk smoothing atau modeling
- Testing: bagian data yang digunakan untuk verifikasi

- Sebagai ilustrasi, misalkan data time series yang ada berupa data bulanan dari Januari 2005 hingga Oktober 2007,
- Katakanlah data 3 bulan terakhir disisihkan untuk verifikasi,
- Dengan demikian, data Januari 2005 hingga Juli 2007 sebagai data training dan digunakan untuk penerapan metode-metode analisis time series;
- sementara data Agustus 2007 hingga Oktober 2007 sebagai data testing,

Berapa nilai α yang harus digunakan?

- Tergantung pada peneliti/pembuat model
- Jika peneliti mempertimbangkan beberapa nilai α → menghitung ramalan menggunakan masing2 nilai
 - HANYA gunakan α yang memberikan hasil yang bermanfaat (misal, bukan α = 0)
- Nilai performa ramalan(MSE, MAD, MAPE, LAD) yang terkecil, dapat digunakan unuk menentukan α.

Accuracy Measures

- Beberapa ukuran yang dapat dipakai untuk penilaian seberapa baik metode mengepas data:
 - ➤ Mean Absolute Deviation (MAD)

$$MAD = \frac{1}{n} \sum_{t=1}^{n} |X_{t} - \hat{X}_{t}|$$

➤ Mean Squared Deviation (MSD)

$$MSD = \frac{1}{n} \sum_{t=1}^{n} (X_{t} - \hat{X}_{t})^{2}$$

➤ Mean Absolute Percentage Error (MAPE)

$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{X_t - \hat{X}_t}{X_t} \right| \times 100\%$$

Double Exponential Smoothing (DES)

- Digunakan untuk data yang memiliki pola tren
- Semacam SES, hanya saja dilakukan dua kali
 - ➤ Pertama untuk tahapan 'level'
 - ➤ Kedua untuk tahapan 'tren'

Double Exponential Smoothing

(lanjutan)

• Nilai smoothing data ke-t:

$$S_t = L_t = \alpha X_t + (1 - \alpha)(L_{t-1} + T_{t-1}) \rightarrow \text{level}$$

 $T_t = \gamma (L_t - L_{t-1}) + (1 - \gamma)T_{t-1} \rightarrow \text{Tren}$
Bila: $Y_t = a + b * t + e$, maka $L_o = a \text{ dan } T_o = b$

• Nilai forecasting diperoleh dengan formula

$$F_{t+h} = L_t + (h * T_t)$$

Ilustrasi DES dengan α = 0,2 dan γ = 0,3 (output minitab)

t	X_t	L_t	T_t	S_t	F_t
1	12,50	11,9676	0,571600	11,9676	11,8344
2	11,80	12,3913	0,527251	12,3913	12,5392
3	12,85	12,9049	0,523136	12,9049	12,9186
4	13,95	13,5324	0,554456	13,5324	13,4280
5	13,30	13,9295	0,507245	13,9295	14,0869
6	13,95	14,3394	0,478042	14,3394	14,4367
7	15,00	14,8539	0,488996	14,8539	14,8174
8	16,20	15,5143	0,540420	15,5143	15,3429
9	16,10	16,0638	0,543134	16,0638	16,0548
10					16,6069
11					17,1501
12					17,6932

- Tidak ada pola musiman
- ⇒ Metode pemulusan eksponensial dapat diterapkan

- Eksplorasi:
 - Secara umum terdapat tren naik
 - Tingkat pertumbuhannya berubah-ubah selama periode 52 minggu

Slide 21

Tahapan Pemulusan Exponensial

• Langkah 1: Inisiasi dugaan $\ell_{\rm o}$ dan $t_{\rm o}$ dengan melakukan regresi untuk t dan Yt dengan metode OLS

$$-y$$
-intercept = ℓ_o ; slope = t_o

Slide 22

- teladan
 - Lakukan regresi antara t dan Yt (observasi)
 - Trend line

$$\hat{y}_t = 166,396 + 2,325t$$

$$-\ell_0 = 166,3966; t_0 = 2,325$$

Regression S	tatistics			
Multiple R	0,75261671			
R Square	0,56643191			
Adjusted R Squar	0,55776054			
Standard Error	31,1291614			
Observations	52			
ANOVA				
	df	SS	MS	
Regression	1	63298,77	63298,77	6
Residual	50	48451,23	969,0247	
Total	51	111750		
	Coefficients	andard Err	t Stat	F
Intercept	166,395928	8,759722	18,99557	1
X Variable 1	2.32468198	0.287629	8.082211	1

Slide 23

Exponential Smoothing (lanjutan)

• Langkah 2: hitung nilai y_1 dari t=0

$$\hat{y}_{T+h}(T) = \ell_T + ht_T \qquad T = 0, h = 1$$

• Contoh:

$$\hat{y}_1(0) = \ell_0 + t_0 = 166,396 + 2,325 = 168,721$$

Slide 24

Exponential Smoothing (lanjutan)

- Langkah 3: perbaiki dugaan ℓ_{τ} dan t_{τ} (using some predetermined values of smoothing constants)
- Misal: $t \alpha = 0.2 \text{ dan } \gamma = 0.1$

$$\ell_1 = \alpha x_1 + (1 - \alpha)(\ell_0 + t_0)$$

= 0.2(206) + 0.8(166,396 + 2,325) = 176,376

$$t_1 = \gamma(\ell_1 - \ell_0) + (1 - \gamma)t_0$$

= 0.1(176, 376 - 166, 396) + 0.9(2, 325) = 3,09027

$$\hat{y}_2(1) = \ell_1 + t_1 = 176,376 + 3,09 = 179,4668$$

Slide 25

Output Minitab

Xt	t	SMOO	FITS
206	1	176,176	168,721
245	2	192,397	179,247
185	3	194,426	196,783
169	4	192,661	198,576
162	5	189,375	196,219
177	6	189,199	192,249
207	7	194,814	191,768
•		•	•
•			•
•	•	•	•
	48	301,688	300,36
307 281	48 49		
		301,595	306,744
281	49 50	301,595 306,509	306,744 306,136
281 308	49 50	301,595 306,509	306,744 306,136 311,087

Slide 26

Auto Parts, Accessories, and Tires (Alpha = .69)

Year	Month	Actual
2006	7	6493
2006	8	6914
2006	9	6245
2006	10	6419
2006	11	6072
2006	12	5900
2007	1	5628
2007	2	5526
2007	3	6608
2007	4	6144
2007	5	6702
2007	6	6619
2007	7	6538

Beer, Wine, and Liquor (Alpha = .1280)

Year	Month	Actual
2006	7	3322
2006	8	3228
2006	9	3212
2006	10	3120
2006	11	3359
2006	12	4588
2007	1	2710
2007	2	2748
2007	3	3176
2007	4	3037
2007	5	3459
2007	6	3578
2007	7	3547

Januari 2015 6.96 % Desember 2014 8.36 % Nopember 2014 6.23 % Oktober 2014 4.83 % September 2014 4.53 % Agustus 2014 3.99 % Juli 2014 4.53 % Juni 2014 6.70 % Mei 2014 7.32 % April 2014 7.25 % Maret 2014 7.32 % Februari 2014 7.75 % Januari 2014 8.22 % Desember 2013 8.38 % Nopember 2013 8.37 % Oktober 2013 8.32 % September 2013 8.40 % Agustus 2013 8.79 % Juli 2013 8.61 % Juni 2013 5.90 %

Data Inflasi

http://www.bi.go.id/id/moneter/inflasi/d ata/Default.aspx

Data Kurs					
27 February 201512,863.00	30 January 2015	12,625.00	31 December 2014	12,440.00	
26 February 201512,862.00	29 January 2015	12,515.00	30 December 2014	12,436.00	
25 February 201512,887.00	28 January 2015	12,498.00	29 December 2014	12,434.00	
24 February 201512,866.00	27 January 2015	12,493.00	24 December 2014	12,467.00	
23 February 201512,813.00	26 January 2015	12,517.00	23 December 2014	12,456.00	
20 February 201512,849.00	23 January 2015	12,444.00	22 December 2014	12,435.00	
18 February 201512,804.00	22 January 2015	12,451.00	19 December 2014	12,500.00	
17 February 201512,757.00	21 January 2015	12,557.00	18 December 2014	12,565.00	
16 February 201512,742.00	20 January 2015	12,659.00	17 December 2014	12,720.00	
13 February 201512,769.00	19 January 2015	12,612.00	16 December 2014	12,900.00	
12 February 201512,794.00	16 January 2015	12,593.00	15 December 2014	12,599.00	
11 February 2015 12,700.00	15 January 2015	12,617.00	12 December 2014	12,432.00	
10 February 201512,644.00	14 January 2015	12,580.00	11 December 2014	12,336.00	
9 February 2015 12,679.00	13 January 2015	12,608.00	10 December 2014	12,336.00	
6 February 2015 12,613.00	12 January 2015	12,568.00	9 December 2014	12,347.00	
5 February 2015 12,653.00	9 January 2015	12,640.00	8 December 2014	12,352.00	
4 February 2015 12,609.00	8 January 2015	12,731.00	5 December 2014	12,296.00	
3 February 2015 12,643.00	7 January 2015	12,732.00	4 December 2014	12,318.00	
2 February 2015 12,700.00	6 January 2015	12,658.00	3 December 2014	12,295.00	
	5 January 2015	12,589.00	2 December 2014	12,276.00	
	2 January 2015	12,474.00	1 December 2014	12,264.00	

Tugas Kelompok

- Gunakan data yang anda kumpulkan pada pertemuan pertama
- Lakukan pemulusan dengan metode yang paling sesuai
- Berikan komentar anda terhadap hasil pemulusan yang diperoleh