<u>Distribución normal estándar</u> Z~N(0,1)

Tabla de la función de distribución: $P(Z \le z) = p$

En la tabla figuran los valores de probabilidad acumulada p en función de z.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	80.0	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0,7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.810ი	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0,8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0,9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0,9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0,9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999

CAPÍTULO 14

RESPUESTAS A PROBLEMAS SELECCIONADOS

CAPÍTULO 2

ACTIVIDAD 4

DATOS:

Demanda	10	15	20	25	30
Nº de días	10	25	30	20	15
Probabilidad	0,1	0,25	0,3	0,2	0,15

DEFINICIÓN DE VARIABLES:

Xi= cantidad de flores compradas con anticipación

Yj= cantidad de flores demandadas el día de la secretaria

MATRIZ DE LAS COMPENSACIONES:

Oferta/Demanda	Y1= 10	Y2= 15	Y3= 20	Y4= 25	Y5= 30	d(x)
X1= 10	100	175	250	325	400	253,75
X2= 15	135	150	225	300	375	234,75
X3= 20	170	185	200	275	350	230,75
X4= 25	205	170	235	250	325	232,25
X5= 30	240	255	270	285	300	270,75
Pi	0,1	0,25	0,3	0,2	0,15	

Decisión Óptima (D.O.)= comprar 30 flores (X5)

DATOS:

Pr. Venta por unidad: \$1,25
Costo por unidad (normal): \$0,80
Contribución unitaria costo normal: \$0,45
Costo por pedido urgente: \$0,88
Contribución unitaria costo pedido urgente: \$0,37
Reintegro por unidad excente: \$0,60

DEFINICIÓN DE VARIABLES:

Xi= cantidad de yoghurts a comprar por semana

Yj= cantidad de yogurths demandados por semana

MATRIZ DE LAS COMPENSACIONES:

						_			
	C	Cij	Y1	Y2	Y3	Hurwicz	Wald	Laplace	Univ. Aleat
ł			100	200	300	d(x)	d(x)	d(x)	_d(x)
- [X1:	100	45	82	119	67,20	199,00	81,18	76,45
-	X2:	200	25	90	127	55,60	127,00	79,86	
	Х3:	300	5	70	135	44,00		""	74,65
	Deciór	Óptim	a (D.O.)				135,00	69,30	60,25
-		- Penn	<u>u (D.U.)</u>	= max	(a(x):	X1	X1	X1	X1

MATRIZ DE LOS LAMENTOS:

	Τ			
Rij	Y1	Y2	Y3	Savage
	100	200	300	d(x)
X1: 100	40	12	0	40
X2: 200	20	20	8	
X3: 300			- 0	20
	0	0	16	16

ACTIVIDAD 6

El árbol que describe este problema y las probabilidades asociadas a las posibles alternativas es el siguiente:

Luego se deben estimar los posibles resultados frente a cada alternativa:

La decisión óptima será no hacer el estudio de mercado y lanzar el producto.

ACTIVIDAD 10

a) Complete la tabla

			30	20	15	0	0
C_B	Base	VLD	<i>X</i> ₁	X2	Х3	S ₁	S ₂
15	Хз	5	0	0,5	1	-0,5	0
30	X1	20	1	0,5	0	0,5	0
0	S ₂	30	0	1,5	0	-0,5	1
	Zj	675	30	22,5	15	7,5	0
			0	-2,5	0	-7,5	0

b) ¿Es ésta la solución óptima? ¿Por qué?

Es la solución óptima dado que todos los $c_i - z_i \le 0$

c) Si esta es la solución óptima, especifíquela

La solución es:

 $x_1 = 20$

 $x_2 = 0$

 $x_3 = 5$

 $S_1 = 0$

 $S_2 = 30$ el valor de Z = 675

d) Si no es la solución óptima realice las iteraciones necesarias para llegar a ella.

La solución es la óptima.

ACTIVIDAD 11

La siguiente tabla corresponde a un PL de maximización canónico (con restricciones del tipo ≤):

		Cj	15	10	20	0	0	0	
C _B	Base	VLD	Х1	X2	Х3	S ₁	S₂	5 3	
20	Х3	50	0,667	0,333	1	0,333	0	0	150
0	S₂	200	2,333	1,667	0	-0,333	1	0	120
0	S ₃	300	-0,333	2,333	0	-0,667	0	1	128,57
	Zj	1000	13,333	6,667	20	6,667	0	0	
	C _j	- Z _j	1,667	3,333	0	-6,667	0	0	

- a) Complete la tabla, ¿es esta la solución óptima? ¿Por qué? No es la solución óptima ya que hay dos $cj-zj\geq 0$ La variable que entra es x_2 y la que sale es S_2
- b) Si no es la solución óptima realice las iteraciones necesarias para llegar a ella y especifíquela

		Cj	15	10	20	0	0	0
C _B	Base	VLD	X ₁	X2	Хз	S ₁	S ₂	S₃
20	X3	10,00	0,20	0,00	1,00	0,40	-0,20	0,00
10	X2	120,00	1,40	1,00	0,00	-0,20	0,60	0,00
0	S ₃	20,00	-3,60	0,00	0,00	-0,20	-1,40	1,00
	Zi	1400,00	18,00	10,00	20,00	6,00	2,00	0,00
	<u> </u>	- Z _j	-3,00	0,00	0,00	-6,00	-2,00	0,00

Solución óptima:

 $x_1 = 0$

 $x_2 = 120$

 $x_3 = 10$

 $S_1 = 0$

 $S_2 = 0$

 $S_3 = 20$

Z = 1400

ACTIVIDAD 15

I. DESECHOS INDUSTRIALES

Objetivo: minimizar el costo total, de procesamiento de la basura y de transporte. Para el cálculo de los costos se debe tener en cuenta tanto los costos de transporte por Tn como el costo de quemar cada tonelada de basura.

Definición de variables:

 x_1 : Tn de basura que se transporta desde la fábrica al quemador 1

x₂: Tn de basura que se transporta desde la fábrica al quemador 2

 x_3 : Tn de desechos que se transportan desde el quemador 1 al enterramiento 1

 x_4 : Tn de desechos que se transportan desde el quemador 1 al enterramiento 2

 x_5 : Tn de desechos que se transportan desde el quemador 2 al enterramiento 1

 x_6 : Tn de desechos que se transportan desde el quemador 2 al enterramiento 2

Restricciones

- 1. La fábrica produce 100 Tn de basura diaria que debe ser transportada a alguno de los dos quemadores.
- 2. Cada quemador puede recibir hasta 80 Tn de basura
- 3. La basura que entra cada quemador se transforma en desechos que deben ser transportados a a los enterramientos.
- 4. Cada enterramiento puede recibir hasta 50 Tn de desechos cada uno.

Modelo Lineal:

Min 60
$$x_1 + 80 x_2 + 30 x_3 + 45 x_4 + 48 x_5 + 36 x_6$$
 Sa:

$$x_1 + x_2 = 100$$

 $x_1 \le 80$

 $X_2 \le 80$

$$X_3 + X_4 = 0.25 X_1$$

$$x_5 + x_6 = 0.20 x_2$$

$$x_3 + x_5 \le 50$$

$$x_4 + x_6 \le 50$$

 X_1 ; X_2 ; X_3 ; X_4 ; X_5 ; $X_6 \ge 0$

II. PROCESO PRODUCTIVO

Se definen las variables como:

XN = Kg. de naranja a procesar por día, para obtener jugo concentrado. XP= Kg. de naranja a procesar por día, para obtener jugo concentrado.

Cálculo de la contribución por cada kg. procesado

	NARANJA	POMELO
Precio de venta	5(0,525)= 2,625	6(0,455) = 2,73
Costo MP	0,75	
Costo M1		0,8
Costo M2	(1/125)30=0,24	(1/125)30 = 0,24
	(1/55)80(0,7)=1,018	
Costo M3		(1/60)90(0,65) = 0,975
Costo Envase	0,10(0,525)= 0,0525	0,10(0,455) = 0,0455
Contribución por Kg.	0,5645	0,6695

Observaciones:

 $\frac{1}{125}$ = 0,008 tiempo de procesamiento de 1 Kg. de fruta en la M1

 $\frac{1}{55}$ = 0,01818 tiempo de procesamiento de 1 lt. de jugo de naranja en la M2

 $\frac{1}{60}$ = 0,01666 tiempo de procesamiento de 1 lt. de jugo de pomelo en la M2

Modelo Lineal:

max 0.5645 XN + 0.6695 XP

sa

М1

 $0.008 \text{ XN} + 0.008 \text{ XP} \le 10 \text{ (hs.)}$

Μ2

 $0.0127 \text{ XN} \le 10 \text{ (hs.)}$

М3

 $0.01079 \text{ XP} \le 10 \text{ (hs.)}$

Embotell

 $0.525 \text{ XN} + 0.455 \text{ XP} \le 500 \text{ (lts.)}$

MaxNar.

 $0.525 \text{ XN} \leq 500 \text{ (lts.)}$

MaxPom.

 $0.455 \text{ XP} \leq 800 \text{ (lts.)}$

Las restricciones de procesamiento en las máquinas pueden también formularse de la siguiente manera:

 $XN + XP \le 1250$ cap. prod. M1

 $0.7 \text{ XN} \leq 550 \text{ cap. prod. M2}$

 $0.65 \text{ XP} \leq 600 \text{ cap. prod. M3}$

CAPÍTULO 4

ACTIVIDAD 5

a)
$$G1 = 57.5$$
 unid.; $G2 = 85$ unid.; $G3 = 40$ unid $S1 = 55$; $S2 = S3 = S4 = 0$ $Z = $2.667.50$

b) El precio dual del Hierro Redondo es de 1,5833, como el precio dual es $> 1 \Rightarrow$ conviene comprar.

- c) De acuerdo al análisis de sensibilidad la máxima cantidad a comprar está dada por el análisis de sensibilidad que es de 110 u. hasta límite el precio dual es válido para realizar el análisis.
- d) La utilidad total podría incrementarse hasta en 1,111111
- e) La solución permanece óptima, el $\Delta Z = 5*85 = 425
- f) $Y_4 = -1,05556 \Rightarrow$ por cada G3 que se produzca más por encima de 40, la contribución total disminuirá en 1,05556

		C _j	40	60	50	0	0	0
CB	Base	VLD	Ж1	X ₂	Хз	Sı	S ₂	S ₃
50	X ₃	600	0,50	0,00	1,00	0,00	0,00	0,50
60	X ₂	200	2,25	1,00	0,00	0,50	0,00	-0,25
0	S ₂	200	-1,25	0,00	0,00	-0,50	1,00	0,25
	Zj	42000	160	60	50	30	0	10
	C _j	- Z _j	-120,00	0,00	0,00	-30,00	0,00	-10,00

- a) Es la solución óptima ya que todos los cj zj son menores o iguales a cero.
- b) solución óptima del problema dual:

$$y_1 = 30$$
; $y_2 = 0$; $y_3 = 10$; $S_1 = 120$; $S_2 = S_3 = 0$
 $Z_{DUAL} = 42000$

c) Si se incrementa la disponibilidad del recurso 3 en 100 unidades, ¿cómo cambia la solución óptima?, ¿cuál es el nuevo valor de z? ¿Cuáles son los nuevos valores de las variables?

De acuerdo al cálculo de los intervalos de sensibilidad del apartado f), el incremento máximo del recurso 3 es de hasta 800 unidades, por lo que estaría dentro del intervalo y como se trata de un recurso limitante las consecuencias de esta modificación son:

- → No cambia la base óptima
- → Se modifican los valores de las variables básicas
- → Se modifica el valor de la función objetivo

Nueva solución:

$$\Delta b_3 = 100$$

$$x_3 = 600 + 100 \left(\frac{1}{2}\right) = 650$$

$$x_2 = 200 + 100 \left(\frac{-1}{4} \right) = 175$$

$$S_2 = 200 + 100 \left(\frac{1}{4}\right) = 225$$

$$Z = 42000 + 100(10) = 43000$$

- d) Solución Factible Básica No Degenerada y óptima.
- e) ¿Cuál es el intervalo de sensibilidad del coeficiente de x₃?

$$c_1 - z_1 = -120 - \left(\frac{1}{2}\right) \Delta c_3 \le 0 \qquad \Delta c_3 \ge -240$$

$$c_6 - z_6 = -10 - \left(\frac{1}{2}\right) \Delta c_3 \le 0 \qquad \Delta c_3 \ge -20$$

CoeficienteIncrementoDisminución
$$C_3$$
 ∞ 20

f) Calcule los intervalos de sensibilidad para los lados derechos.

$$\begin{bmatrix} 600 \\ 200 \\ 200 \end{bmatrix} + \Delta b_1 \begin{bmatrix} 0 \\ 1/2 \\ -1/2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$200 + \Delta b_1 \frac{1}{2} \ge 0$$
 $\Delta b_1 \ge -400$

$$200 - \Delta b_1 \frac{1}{2} \ge 0 \qquad \Delta b_1 \le 400$$

$$600 + \Delta b_2 \frac{1}{2} \ge 0 \qquad \Delta b_2 \ge -1200$$

$$200 - \Delta b_2 \frac{-1}{4} \ge 0 \qquad \Delta b_2 \le 800$$

$$200 + \Delta b_2 \frac{1}{4} \ge 0 \qquad \Delta b_2 \ge -800$$

b_i (VLD)	Incremento	Disminución	
b ₁	400	400	Restricción No
b ₂	∞	200	limitante
restrb₃	800	800	

ACTIVIDAD 1

1) h = 9: k = 6

Cantidad de valores nulos deberá tener una solución para que sea no básica= $(h \times k)-(k+k-1)=38$

2) h = 5; k = 8

Cantidad de valores positivos deberá tener una solución para que sea básica degenerada= h+k-1=12

- 3) $X_{34} = 20$, si el origen 3 es ficticio, indica que quedan 20 unidades de demanda insatisfecha en el destino 4
- 4) En un problema de transporte de mínimo, δ_{13} = 4 indica que por cada unidad que se envíe desde el destino 1 al origen 3, el costo de transporte disminuirá en \$4.-
- 5) En un problema de transporte de mínimo, un δ_{24} = 0 en la solución óptima, indica que el problema tiene múltiples soluciones óptimas.
- 6) Para demostrar que en un problema de transporte equilibrado el número de restricciones linealmente independientes es igual a h+k-1, se expresa la demanda de un destino cualquiera como la diferencia entre la suma de la oferta total y la demanda de todos los restantes destinos; o bien expresar la oferta de un origen cualquiera como la diferencia entre la demanda total y la oferta de todos los restantes origenes.

ACTIVIDAD 2

FALSO: x_{ij} son las variables de decisión. Representa la cantidad a enviar desde el origen i al destino j.

El costo de enviar una unidad desde el origen i hacia el destino j se representa por los parámetros c_{ii}

ACTIVIDAD 3

Solución óptima:

Se deberán enviar:

92 unidades desde elorigen 1 al dstino 2

74 unidades desde el origen 2 al destino 2

El origen 3 deberá enviar 37 unidades al destino 1 y 49 unidades al destino 2

El destino 1 queda con 136 unidades de demanda insatisfecha.

El costo total de envío óptimo es de \$4.369.-

16-14-2013	From	To	Shipment	Unit Cost	Total Cost	Reduced Cost
100	Source 1	Destination 2	92	19	1748	0
2	Source 2	Destination 2	74	12	888	0
3	Source 3	Destination 1	37	23	851	0
4	Source 3	Destination 2	49	18	882	O
5	Unfilled_Demand	Destination 1	136	0	0	0
	Total	Objective	Function	Value =	4369	

Podemos observar la solución óptima en el grafo siguiente:

Se debe asignar de la siguiente manera:

A → 1 → \$15

B → 4 → \$14

C → 3 → \$15

D >> 2 >> \$24

Costo Total: \$68,-

ACTIVIDAD 10

B)

Min $0.20 x_{12} + 0.15 x_{13} + 0.10 x_{24} + 0.20 x_{25} + 0.15 x_{34} + 0.25 x_{35}$

Sa

 $2000 = x_{12} + x_{13}$

 $x_{12} = x_{24} + x_{25}$

 $x_{13} = x_{34} + x_{35}$

 $x_{24} + x_{34} \ge 600$

 $x_{25} + x_{35} \ge 800$

 $x_{12} \le 1000$

 $x_{13} \le 500$

 $x_{ij} \ge 0$ para todo i y j

ACTIVIDAD 11

ACTIVIDAD 12

RESPUESTAS A PROBLEMAS SELECCIONADOS

Max f

Sa

 $f = x_{12} + x_{13} + x_{14}$

 $x_{12} = x_{23} + x_{25}$

 $x_{13} + x_{23} = x_{34} + x_{35}$

 $x_{14} + x_{34} = x_{45}$

 $x_{25} + x_{35} + x_{45} = f$

 $x_{12} \le 100$

 $x_{13} \le 300$

 $x_{14} \le 200$

 $x_{23} \le 100$

 $x_{25} \le 400$

 $x_{34} \le 200$

 $x_{35} \le 300$

 $x_{45} \le 650$

 $x_{ij} \ge 0$ para todo i,j $f \ge 0$

CAPÍTULO 6

ACTIVIDAD 1

Objetivo: maximizar el beneficio total

Variables:

x₁: onza de fragancia Floral a producir

x2: onza de fragancia Gardenia a producir

x₃: onza de fragancia Fresca a producir

x₄: onza de fragancia Madera a producir

x5: onza de fragancia Tabaco a producir

Restricciones:

- 1. Disponibilidad del Insumo I
- 2. Disponibilidad del Insumo II
- 3. Disponibilidad de HMO
- 4. Restricciones referidas a las políticas de producción.
- 5. Inclusión de los Costos fijos directos de fabricación

Modelo Lineal:

5.- Costos fijos directos

$$x_1 \le M \ y_1$$

 $x_2 \le M \ y_2$
 $x_3 \le M \ y_3$
 $x_4 \le M \ y_4$
 $x_5 \le M \ y_5$
 $x_i \ge 0 \ (i=1,2,3,4,5) \ y \ y_i=0 \ \acute{0} \ 1$

ACTIVIDAD 2

Objetivo: Minimizar los Costos Totales

Variables:

 x_{ij} = Unidades fabricadas y enviadas desde el depósito i a la Región j i = Córdoba, Buenos Aires, Rosario y Mendoza j = Región I, Región II y Región III

 y_i = Se abre o no el depósito i

- 1.- Lo que envíe cada depósito, si se abre, no debe superar lo que tiene.
- 2.- Cada Región debe recibir al menos lo que solicita.
- 3.- Cumplimiento de las condiciones adicionales

Modelo Lineal:

Min 20
$$x_{11}$$
+ $40x_{12}$ + $50x_{13}$ + $48x_{21}$ + $15x_{22}$ + $26x_{23}$ + $26x_{31}$ + $35x_{32}$ + $18x_{33}$ + $24x_{41}$ + $50x_{42}$ + $35x_{43}$ - 1200 y_1 - $1000y_2$ - $1100y_3$ - $1400y_4$ Sa 1.-
$$x_{11} + x_{12} + x_{13} \le 100y_1$$

$$x_{21} + x_{22} + x_{23} \le 100y_2$$

$$x_{31} + x_{32} + x_{33} \le 100y_3$$

$$x_{41} + x_{42} + x_{43} \le 100y_4$$

```
2.-
        x_{11} + x_{21} + x_{31} + x_{41} \ge 80
        x_{12} + x_{22} + x_{32} + x_{42} \ge 70
        x_{13} + x_{23} + x_{33} + x_{43} \ge 50
3.-
        y_1 - y_2 \le 0
        y_1 + y_2 + y_3 + y_4 \le 2
        y_3 + y_4 = 1
x_{ii} \ge 0 y enteras
(i = Córdoba, Buenos Aires, Rosario y Mendoza), (j = Región I,
Región II y Región III)
y_i = 0 \circ 1
```

ACTIVIDAD 3

Objetivo: maximizar el beneficio total

Variables:

A = unidades del radiador A a producir

B = unidades del radiador B a producir

RESPUESTAS A PROBLEMAS SELECCIONADOS

C = unidades del radiador C a producir

 y_i = se produce o no el radiador i (i = A, B ó C)

Modelo Lineal:

Max
$$20A + 35B + 30C - 1000 \text{ y}_A - 2000 \text{ y}_B - 1500 \text{ y}_C$$
Sa
$$0,015A + 0,020B + 0,020C \le 20$$

$$0,025A + 0,035B + 0,030C \le 100$$

$$10A + 12B + 15C \le 4500$$

$$A \ge 80 \text{ y}_A$$

$$A \le 450 \text{ y}_A$$

$$B \ge 50 \text{ y}_B$$

$$B \le 100 \text{ y}_B$$

$$C \ge 50 \text{ y}_C$$

$$C \le 100 \text{ y}_C$$
A, B y C ≥ 0

ACTIVIDAD 4

Respuesta correcta: c)

 $y_i = 0 \circ 1 \ (i = A, B \circ C)$

453

min
$$300x_1 + 700x_2$$

sa
 $4x_1 + 2(\sqrt[3]{x_2}) \ge 200$
 $x_1^2 + 4(\sqrt{x_2}) \ge 300$
 $x_1, x_2 \ge 0$

ACTIVIDAD 6

Objetivo: maximizar las utilidades

Variables:

 $x_1 = kg de$ Jardín Verde a producir x₂= kg de *Bello Parque* a producir $x_3 = kg$ de compuesto químico a comprar Max $x_1(270-X_1) + x_2(150-2x_2) - 50x_3$ Sa $x_1 + x_2 = x_3$ $x_3 \le 700$ $x_i \ge 0$

ACTIVIDAD 7

Objetivo: maximizar las utilidades Variables:

 $x_1 = kg$ de producto A a producir $x_2 = kg$ de producto B a producir x₃ = kg de materia prima a comprar

$$\max (500 - \sqrt[3]{x_1}) x_1 + 95x_2$$
sa
$$x_1 = 0, 5x_3$$

$$x_2 = 0, 2x_3$$

$$2x_1 + 3x_2 \le 200$$

$$x_3 \le 150$$

$$x_1, x_2 \ge 0$$

ACTIVIDAD 9

RESPUESTAS A PROBLEMAS SELECCIONADOS

Objetivo: minimizar el riesgo de la cartera de inversiones

Variables:

x₁= porcentaje de la cartera a invertir en B. Francés

x₂= porcentaje de la cartera a invertir en Minetti

x₃= porcentaje de la cartera a invertir en Renault

min
$$0,2199x_1^2 + 0,8828x_2^2 + 2,1089x_3^2 + 2 \times 0,2985 \times x_1x_2 + 2 \times 0,268 \times x_1x_3 + 2 \times 0,2688 \times x_2x_3$$

sa
$$x_2 \le 0,6$$

$$y_1 + y_3 = 1$$

$$x_3 = 1 \times y_3$$

$$x_1 = 1 \times y_1$$

$$0,0714x_1 + 0,1223x_2 + 0,1095x_3 \le 0,11$$

$$x_1 + x_2 + x_3 = 1$$

$$x_1, x_2, x_3 \ge 0$$

$$y_1, y_3 \text{ binarias}$$

CAPÍTULO 9

ACTIVIDAD 1

- A. VERDADERO. Si una actividad no crítica se retrasa más allá de su tiempo de holgura, sin cambiar alguno de los demás factores, la duración total del proyecto se extenderá en el tiempo que supera a la holgura.
- B. FALSO. Para todas las actividades del camino crítico, el momento de finalización más tardío es igual al momento de finalización más temprano y el tiempo de inicio más temprano es igual al tiempo de inicio más tardío.
- C. FALSO. En un diagrama de grafo PERT/CPM que utiliza el método americano, cada actividad está representada por un arco de la red.

1)
$$\mu = \{ (1,3) ; (3,5) ; (5,6) ; (6,8) \}$$

 $V(\mu) = 16$

ACTIVIDAD 3

2)

ACTIVIDAD 5

- a) El tiempo esperado de finalización de la campaña política es de 28 días. La probabilidad de que este tiempo se cumpla es de 0,5.
- b) Prob (DT \leq 35) = 0,5

estandarizando la variable aleatoria DT:

$$\operatorname{Prob}\left(Z \le \frac{35 - 28}{\sigma_{DT}}\right) = \operatorname{Prob}\left(Z \le \frac{35 - 28}{2,54}\right) = \operatorname{Prob}\left(Z \le 2,76\right) = 0,9971$$

$$\sigma_{_{\rm nr}} = \sqrt{0.33^2 + 1^2 + 0.55^2 + 2^2 + 0.16^2 + 1^2} \cong 2.54$$

CAPÍTULO 10

ACTIVIDAD 2

Artículo	% Total	% Particip. de los art.	% Acumulado	Clasificación
14	0,254623721	5	25,46%	A
19	0,185469932	10	44,01%	A
13	0,160740608	15	60,08%	A
3	0,092734966	20	69,36%	A
6	0,072068317	25	76,56%	A
11	0,052991409	30	81,86%	В
15	0,037835866	35	85,65%	В
9	0,030911655	40	88,74%	В
12	0,026495705	45	91,39%	В
20	0,016506824	50	93,04%	В
18	0,013862553	55	94,42%	В
16	0,01122358	60	95,55%	В
4	0,010598282	65	96,61%	С
2	0,010598282	70	97,67%	С
1	0,006623926	75	98,33%	С
10	0,005299141	80	98,86%	C
8	0,004967945	85	99,36%	С
7	0,003311963	90	99,69%	<i>C</i> .
17	0,001589742	95	99,85%	С
5	0,001545583	100	100,00%	С

ACTIVIDAD 4

a) Cálculo de la cantidad económica a pedir

b) Determine el costo de almacenamiento unitario mensual.

POLÍTICA ACTUAL:

q= 520 unidades

 t_1 = 13 semanas = 65 días

$$CT = Cs \frac{q}{2} t_1 \frac{N}{q} + Cp \frac{N}{q} = 0,006 \left(\frac{520}{2}\right) 65 \left(\frac{2080}{520}\right) + 300 \frac{2080}{520}$$
$$= 405,60,12 + 1200 = \$1605,60$$

POLÍTICA ÓPTIMA:

$$q^* = \sqrt{\frac{2 \text{ Cp N}}{\text{Cs T} \left(1 - \frac{h}{a}\right)}} = \sqrt{\frac{2 (300) 2080}{0,006 (260) \left(1 - \frac{8}{12}\right)}} = 1549,20$$

$$CT = Cp \frac{N}{q} + Cs \frac{q}{2} T \left(1 - \frac{h}{a} \right)$$

CT =
$$300 \frac{2080}{1549,20} + 0,006 \frac{1549,20}{2} 260 \left(1 - \frac{8}{12}\right) = 402,79 + 403,09 = $805,87$$

AHORRO DE COSTOS:

1605,60 - 805,87 = 799,73

El ahorro de costos al aplicar una política adecuada de mantenimiento de inventarios asciende al 49.81%

ACTIVIDAD 8

DATOS

t= 250 días

T=1

N = 960 (80x12)

Cp = 20

Cs= 0.2 Pi (por unidad y por año)

P1 = \$10.00; si

q < 300;

Cs = \$2.00

Cs = \$1.96P2 = \$9.80; si $300 \le q \le 500$;

P3 = \$ 9.70; si $500 \le q$ Cs = \$1.96

Paso 1

$$q_3^* = \sqrt{\frac{2(20)960}{1,94(1)}} = 140,69 \text{ unidades}$$

RESPUESTAS A PROBLEMAS SELECCIONADOS

$$q_2^* = \sqrt{\frac{2(20)960}{1,96(1)}} = 139,97 \text{ unidades}$$

$$q_1^* = \sqrt{\frac{2(20)960}{2(1)}} = 138,56 \text{ unidades}$$

Paso 2

$$Cs = 0.2 p_i$$

$$CT_{(q, pi)} = Cp \frac{N}{q} + Cs \frac{Tq}{2} + p_i N;$$

$$CT_{q_{i}^{e}=138.56, p_{i}=10} = 20 \frac{960}{138,56} + 0.2 (10) \frac{138,56}{2} + 960 (10) = $9.877.$$

$$CT_{q_2=300, p_2=9,8} = 20 \frac{960}{300} + 0.2 (9.8) \frac{300}{2} + 960 (9.80) = $9.766.$$

$$CT_{q_1=500, p_2=9,7} = 20 \frac{960}{500} + 0.2 (9.7) \frac{500}{2} + 960 (9.70) = $9.385.$$

ACTIVIDAD 4

DATOS

Capacidad 50 pasajeros Utilidad por pasajero \$120 Utilidad promedio con la política actual \$5760 Analizar la política de aceptar 52 reservas Costo por asiento vacío \$120 Costo por cada pasajero que no pueda abordar \$ 150 Utilidad Total = 120 (50) - Costo

Para generar los que llegan x = 50 + (Z0)*2

Distribución de los que se presentan: Normal con media 50 y desvío 2

CAPÍTULO 13

Ensayo	-	Asientos	Nº Aleatoric	Zo	Llegan	Entero	Costo por sobreventa	Costo por ausentes	Utilidad Total
1	52	50	0,5029	0,01	50,02	50	0	0	6000
2	52	50	0,7333	0,62	51,24	51	150	0	5850
3	52	50	0,7818	0,78	51,56	51	150	0	
4	52	50	0,4541	-0,12	49,76	49	0	120	5850
5	52	50	0,0727	-1,46	47.08	47	0	360	5880
6	52	50	0,229	-0.74	48,52	48	0		5640
7	52	50	0,3246	-0.45	49,1	49	0	240	5760
8	52	50	0,8961	1,26	52,52	52	300	120	5880
9	52	50	0,8025	0,85	51,7	51		0	5700
10	52	50	0,5754	0,19	50,38	50	150	0	5850
11	52	50	0,4769	-0,06	49,88		0	0	6000
12	52	50	0,9083	1,33		49	0	120	5880
13	52	50	0,0278	-1,91	52,66	52	300	0	5700
14	52	50	0,8062		46,18	46	0	480	5520
15	52	50		0,86	51,72	51	150	0	5850
		- 20	0,1894	-0,88	48,24	48	0	240	5760
		· · · · ·							87120
3	}.	·		l			Utilidad prom	edio simulad	#5808

Considerar que puede haber diferencias (atribuidas a decimales) debido a que la simulación está realizada con la planilla Excel.

ACTIVIDAD 5

DATOS

Hotel tiene 100 habitaciones Se aceptan hasta 105 reservas Las reservas se pueden aproximar con una distribución uniforme [96; 105]

Los que no se presentan

Ausentes	Probabilidad	P.Acumlada
0	0,1	0,1
1	0,15	0,25
2	0,2	0,45
3	0,3	0,75
4	0,15	0,9
5	0,1	1

Noche	Aleat. Reservas	Reservas Solicitadas	Reservas aceptadas	Aleat. Ausencias	Ausentes	Ocupación
1	0,5521	101	101	0,6318	3	98
2	0,2189	98	98	0,8432	4	94
3	0,3812	99	99	0,1831	1	98
4	0,4678	100	100	0,2569	2	98
5	0,5602	101	101	0,3071	2	99
6	0,3356	99	99	0,4809	3	96
7	0,7395	103	103	0,9354	5	98
8	0,283	99	99	0,0008	0	99
9	0,9431	104	104	0,1478	1	100
10	0,8049	103	103	0,027	0	100

Las reservas se generan con: x=96 + (105-96)* Aleat. y se redondearon al entero más próximo

ACTIVIDAD 6

Demanda se puede aproximar Normal con media 100 y desviación 20 unidades

Datos económicos:

Margen Bruto \$50.-

Costo almacenamiento unitario \$15 (semanal)

Costo unitario de escasez \$30 (semanal)

Los que no se venden se deben tirar

De acuerdo a la información que tenemos, nuestro modelo es:

Utilidad = 50* (unidades vendidas) - costo de escasez *(unidades que faltaron) - costo de almacenamiento * (stock inicial)

Se deben probar las dos políticas

Como la demanda es la misma independientemente de la política que se adopte, se deben usar los mismos números aleatorios.

Politica :	1: Comprai	80 unidade	es semana	les				1
Semana	Stock Inicial	Nº Aleat. Demanda	Demanda	Unidades Faltantes	Costo Escasez	Costo almacenam,	Unidades vendidas	Utilidad
1	80	0,028	62	0	0	1200	62	1900
2	80	0,076	71	0	0	1200	71	2350
3	80	0,286	89	9	270	1200	80	2530
4	80	0,025	61	0	0	1200	61	1850
5	80	0,294	89	9	270	1200	80	2530
6	80	0,842	120	40	1200	1200	80	1600
7	80	0,208	84	4	120	1200	80	2680
8	80	0,605	105	25	750	1200	80	2050
9	8D	0,292	89	9	270	1200	80	2530
10	80	0,444	97	17	510	1200	80	2290
11	80	0,005	48	0	0	1200	48	1200
12	80	0,687	110	30	900	1200	80	1900
13	80	0,108	75	0	0	1200	75	2550
14	80	0,132	78	0	0	1200	78	2700
15	80	0,163	80	O	0	1200	80	2800
16	80	0,615	106	26	780	1200	80	2020
17	80	0,903	126	46	1380	1200	80	1420
18	80	0,673	109	29	870	1200	80	1930
19	80	0,711	111	31	930	1200	80	1870
20	80	0,993	149	69	2070	1200	80	730
			1	ļ				41430
					······································	Utilidad Prom	edio	2071,5

Semana	2: Comprai	Nº Aleat.	Demanda	Unidades	Costo	Costo	Unidades	Utilidad
1	Inicial	Demanda	<u> </u>	Faltantes	Escasez	almacenam.	vendidas	ULINGAG
	100	0,028	62	0	0	1500	62	. 1600
2	100	0,076	71	0	0	1500	71	2050
3	100	0,286	89	0	0	1500	89	2950
4	100	0,025	61	. 0	0	1500	61	1550
5	100	0,294	89	0	0	1500	89	2950
6	100	0,842	120	20	600	1500	100	2900
7 .	100	0,208	84	0	0	1500	84	2700
8	100	0,605	105	5	150	1500	100	3350
9	100	0,292	89	0	0	1500	89	2950
10	100	0,444	97	0	0	1500	97	3350
11	100	0,005	48	0	0	1500	48	900
12	100	0,687	110 ,	10	300	1500	100	3200
13	100	0,108	75	0	0	1500	75	2250
14	100	0,132	78	0	0	1500	78	2400
15	100	0,163	80	0	0	1500	80	2500
16	100	0,615	106	6	180	1500	100	3320
17	100	0,903	126	26	780	1500	100	2720
18	100	0,673	109	9	270	1500	100	3230
19	100	0,711	111	11	330	1500	100	3170
20	100	0,993	149	49	1470	1500	100	2030
					2.70	1300	100	
						Utilidad Promi		52070 2603,5

CAPÍTULO 12

ACTIVIDAD 2

	Belleza	Inteligencia	Personalidad
Belleza	1	3	5
Inteligencia	0,3333	1	3
Personalidad	0,2000	0,3333	1
	1.5333	4,3333	9

Matriz Normalizada

0,6522	0,6923	0,5556
0,2174	0,2308	0,3333
0,1304	0,0769	0,1111

	V	V		
22.50	0,6	53	Š	111
	0,,	26	o'	
	O;	io	6,	

Vector de pesos de criterios

Belleza	A	В	С
А	1,00	5,00	3,00
В	0,20	1,00	0,50
С	0,33	2,00	1,00
Suma	1,53	8,00	4,50

Normalizada	A	В	С
/ A	0,6522	0,6250	0,6667
В	0,1304	0,1250	0,1111
C	0,2174	0,2500	0,2222

	Belleza		
A	0,648		
В	0,122		
С	0,230		

intel genda (Α	В	С
А	1	0,17	0,25
8	6	1	2
С	4	0,50	1
Suma	11	1,67	3,25

Normalizada	Α	В	С
А	0,09091	0,1	0,07692
В	0,54545	0,6	0,61538
С	0,36364	0,3	0,30769

Inteligencia			
A	0,089		
В	0,587		
C	0,324		

Personalidad	А	В	С
А	1,00	4,00	0,25
В	0,25	1,00	0,11
С	4,00	9,00	1,00
Suma	5,25	14,00	1,36

463

Normalizada

a	A	B	С
A	0,1905	0,2857	0,1837
В	0,0476	0,0714	0,0816
c [0,7619	0,6429	0,7347

	Personalidad
A	0,220
В	0,067
C	0,713

Se debe comprobar la consistencia de los juicios para todas las matrices utilizadas y antes de realizar la síntesis. Si alguna matriz no es consistente deberá analizarse nuevamente con el decisor.

A título de ejemplo comprobamos la consistencia de los juicios en la comparación de los criterios.

1	3	5
0,3333	1	3
0,2000	0,3333	1

_	W	
	0,6333	7
L	0,2605]
	0,1062]

Aw
1,9456
0,7901
0,3197

$$\lambda_{\text{max}} = \frac{1}{n} \sum_{i}^{n} \frac{(Aw)_{i}}{w_{i}} = \frac{1,9456}{0,6333} + \frac{0,7901}{0,2605} + \frac{0,3197}{0,1062} = \frac{1}{3}(9,11614) = 3,0387$$

$$IC = \frac{\lambda_{\text{max}} - n}{n - 1} = \frac{3,0387 - 3}{2} = 0,0193$$

$$RC = \frac{IC}{IA} = \frac{0.0193}{0.58} = 0.0333 < 0.10$$

Los RC de todas las matrices deben ser menores a 0,10, si todas dan consistentes procedemos a realizar la síntesis y obtener el orden:

	Belleza	Inteligencia	Personalidad
A	0,64795	0,08928	0,21995
В	0,12218	0,58695	0,06689
С	0,22987	0,32378	0,71315

A	:	0,45698
В		0,23738
C		0,30564

w 0,6333 0,2605 0,1062

Orden
A
C
В

ACTIVIDAD 3

							,		,	
	M	p	С						W	
M	1	2	5			0,61538	0,5		0,56787	
Р	0,5	1	4			0,30769			0,33394	P
C	0,2	0,25	1		0,11765	0,07692	0,1		0,09819	C
	1,7	3,25	10	ļ	1	1	1		1	
					1					
*										
М	Α	В			Α	8			М	
Α	1	3		Α	0,75000	0,75		Α		
В	0,33333	1		В	0,25000	0,25		. 8	0,25	.
	1,33333	4								
P									P	
Α	1	0,25			0,2	0,2		Α	0,2	
В	4	1			0,8	0,8		В	0,8	
	5	1,25			-					
С						 			С	
Α	1	5				0,83333		Α	0,83333	
В	0,2	1			0,16667	0,16667		В	0,16667]
	1,2	б								
	!			Ì	l	<u> </u>				
Com	probar la c	onsistenci	a de los j	uicio	s del deciso	pr				
	AW		$(Aw_i)/w_i$							
	1,726697		3,040637							
	1,010633		3,026423		Lambda λ	3,024658	(Suma/n)			
	0,295249		3,006912							
		Suma	9,073973							***************************************
					(λ-n)/n-1					
				IC =	0,012329		RC =	0		
)							RC < a 0	,10, e	ntonces no	hay
1.							incohere	ncias	serias	
Orde	nación Glo		<			İ		<u> </u>		
	М	Р	С	1				ļ		<u></u>
А	0,75	0,2			A	0,5745				
В	0,25	8,0			В	0,4255	.			ļ
w	0,5679	0,3339	0,0982]						
!				l						1

ACTIVIDAD 6

El primer paso es expresar a las evaluaciones lingüísticas en una escala cardinal, para esto usamos la propuesta en la actividad.

A continuación se normaliza la matriz utilizando un método de normalización que considera la distancia euclídea ya que es la que usaremos posteriormente, cabe aclarar que no necesariamente debe usarse la misma métrica para normalizar y calcular las distancias S⁺ y S⁻ Finalmente recordar que algunos criterios son a maximizar y otros a minimizar, y esto debe tenerse en cuenta al momento de seleccionar el ideal y el anti-ideal.

	Max	Max	Max	Min
Challe Annes	C1	C2	C3	C4
A1	100	7	6	1800
A2	200	8	6	1600
A3	100	4	8	1200
A4	200	6	10	2500
A5	250	9	8	3000
Pesos wj	0,365	0,185	0,2	0,25
MÉTODO DE	NORMALIZ			
	<i>r</i> _{''} =	$\left(\sum_{i} \bar{a}_{ii}^{T}\right)$	1	
		(-10_0)		

1112/5016	C1 444	C2	C3	C4	
A1	10000	49	36	3240000	
A2	40000	64	36	2560000	//
A3	10000	16	64	1440000	
A4	40000	36	100	6250000	
A5	62500	81	64	9000000	
	403		47	77/2	
MATRIZ NO	RMALIZADA				
ΜΔΤΡΙΖ ΝΟ	PMALTZADA				
MATRIZ NO	RMALIZADA Ci	C2	€ C3	C4	
MATRIZ NO A1	TO STANDARD AND A STANDARD				
	C1	C2	С3	C4	
A1 A2	C1 0,2480695	C2 0,4463	% C3 0,34641	C4 0,379558	
A1	C1 0,2480695 0,4961389	C2 0,4463 0,51006		C4 0,379558 0,337385 0,253038	
A1 A2 A3 A4	C1 0,2480695 0,4961389 0,2480695	C2 0,4463 0,51006 0,25503	C3 0,34641 0,34641 0,46188	C4 0,379558 0,337385 0,253038 0,527163	
A1 A2 A3	0,2480695 0,4961389 0,2480695 0,4961389	C2 0,4463 0,51006 0,25503 0,38255	C3 0,34641 0,34641 0,46188 0,57735	C4 0,379558 0,337385 0,253038 0,527163	

matriz nor	malizada y p	onderada			
	C1	C2	С3	C4	
A1.	0,0905454	0,08257	0,069282	***************************************	
A2	0,1810907	0,09436			-
A3	0,0905454			 	- • • • • • • • • • • • • • • • • • • •
A4	0,1810907			0,131791	- 100 - 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2
A5	0,2263634	0,10616			
A+					Definir Ideal y Anti-ideal
A-	0,0905454	0,04718	0.069282	0.158149	

	$S_i^+ = $	$\sum_{j}^{n} \nu_{ij} -$	$\left[v_{j}^{+}\right]^{p}$			
C1	C2	C3/	€ C4	Suma	Sij	
0,0184465	0,00056	0,002133	0,001	0,02214	0,14878	
0,0020496	0,00014	0,002133	0,000445	0,00477	0,06904	
0,0184465	0,00348	0,000533	0	0,02246	0,14986	
0,0020496	0,00125	0	0,004697	0,00800	0,08943	
0	0	0,000533	0,009004	0,00954	0,09766	
	0,0184465 0,0020496 0,0184465	0,0184465 0,00056 0,0020496 0,00014 0,0184465 0,00348 0,0020496 0,00125	0,0184465 0,00056 0,002133 0,0020496 0,00014 0,002133 0,0184465 0,00348 0,000533 0,0020496 0,00125 0	0,0184465 0,00056 0,002133 0,001 0,0020496 0,00014 0,002133 0,000445 0,0184465 0,00348 0,000533 0 0,0020496 0,00125 0 0,004697	0,0184465 0,00056 0,002133 0,001 0,02214 0,0020496 0,00014 0,002133 0,000445 0,00477 0,0184465 0,00348 0,000533 0 0,02246 0,0020496 0,00125 0 0,004697 0,00800	0,0184465 0,00056 0,002133 0,001 0,02214 0,14878 0,0020496 0,00014 0,002133 0,000445 0,00477 0,06904 0,0184465 0,00348 0,000533 0 0,02246 0,14986 0,0020496 0,00125 0 0,004697 0,00800 0,08943

	S		$\sum_{j}^{n} \left v_{ij} \right =$	\[\v_j = \right ^2 \]	<i>p</i>	
	C1	C2	, СЗ №		Suma 👔	S-
A1	0	0,00125	0	0,004002	0,005254	0,07248
A2	0,0081985	0,00223	0	0,005447	0,015871	0,12598
A3	0	0	0,000533	0.009004	0,009537	0,09766
A4	0,0081985	0,00056	0,002133	0,000695	0,011583	0,10762
A5	0,0184465	0,00348	0,000533	0	0,022458	0,14986

CALCULO	DEL INDICE D	E SIMILAI	RIDAD		
	C*:://				ļ
A1	0,3275836			. ~	
A2	0,6459831		*	S	
АЗ	0,3945522		=-		<u>.</u> !
A4	0,5461577		S	$+S_{-}$	
A5	0,6054478				
				İ	İ

A continuación ordenamos los proyectos para que el decisor resuelva cuál o cuáles seleccionar.

Ordenación	C*	
A2	0,645983	
A5	0,605448	
A4	0,546158	
АЗ	0,394552	
A1	0,327584	

BIBLIOGRAFÍA

- o Anderson D., Sweeney D. y Williams T. (2004): *Métodos cuantitativos para los negocios*. Novena Edición. Internacional Thomson Editores. México.
- o Autran Gomes L., González Araya M. y Carignano C. (2004): Tomada de decisoes em cenarios complexos. Thomson Editores. Sao Paulo, Brasil.
- o Barba Romero S. y Pomerol J. C. (1997): Decisiones Multicriterio. Servicio de Publicaciones de la Universidad de Alcalá. Alcalá, España
- Bazaraa M. y Jarvis J. (1981): Programación Lineal y Flujo en Redes. Ed. Limusa. México DF, México.
- Blanch N., Caro N., Casini R., Chiavassa N., Díaz M., Joekes S.
 Y Stimolo M.: Estadística I. Ciclo Básico a Distancia- FCE. UNC
- Checkland P. (2000): Soft Systems Methodology: A Thirty Year Retrospective. Systems Research and Behavioral Science, 17, pp S11-S58.
- o Davis R. y McKeown P. (1986): *Modelos Cuantitativos para Administración*. Grupo Editorial Iberoamérica, México.
- o Eden C. (2004): *Analyzing cognitive maps to help structure issues or problems*. European Journal of Operational Research, 159, pp 673–686.
- o Eppen G., Gould F., Schmidt C., Moore J. y Weatherford L. (2000): *Investigación de Operaciones en la Ciencia Administrativa*. Quinta Edición. Prentice Hall Hispanoamericana S.A. México.
- o Franco L. y Lord E. (2011): *Understanding multi-methodology:* Evaluating the perceived impact of mixing methods for group budgetary decisions. Omega, 39, pp 362–372.
- o Gass S. (1979): "Programación Lineal". Ed. CECSA. Bogotá, Colombia.
- o Georgiou I. (2006): Managerial Effectiveness from a System Theorical Point of View. Systemic Practice and Action Research, 19, pp 441–459.

- Georgiou I. (2008): Making decisions in the absence of clear facts. European Journal of Operational Research, pp 185, 299– 321.
- o Giuliodori R. F. (1994): *Estadística Descriptiva y Probabilidad*. Editorial Eudecor. Primera edición. Córdoba Argentina.
- Hillier F. y Lieberman G. (2002): Introducción a la Investigación de Operaciones. 7^{ma} Edición. McGraw-Hill. México.
- o Lawrence J. y Pasternak B. (1998): *Applied Management Science*. Wiley, USA.
- Lèvine P y Pomerol, J. C. (1986): An interactive program for choosing among multiple criteria decision making. Computers and Operations Research. Vol. 25, pp. 272 -280.
- o Mingers J. (2011): Soft OR comes of age but not everywhere!. Omega, doi: 10.1016 / j.omega. 2011.01.005
- Pérez Mackeprang C, Alberto C, Carignano C y Castro S (1996): Simulación como Método de Verificación de Hipótesis Teóricas - su aplicación al PERT. Anales del IX Encuentro Nacional de Docentes de Investigación Operativa. Mar del Plata.
- Pérez Mackeprang C. (2004): Introducción a la Programación Matemática. Asociación Cooperadora de la Facultad de Ciencias Económicas. Córdoba, Argentina.
- o Roy B. Y Bouyssou D. (1993): Aide multicritere a la decision: methodes et cas, Editorial Economica, Paris (Francia).
- Saaty T. L. (1980): The Analytic Hierarchy Process. Mc Graw Hill. N. Y. USA.
- simon H. (1957): A Behavioral Model of Rational Choice, in Models of Man, Social and Rational: Mathematical Essays on Rational Human Behavior in a Social Setting. New York: Wiley.
- O Sorensen Vidal R. (2003): The anatomy of soft approach. Pesquisa Operacional, 24, 2.
- Stanecka, Nancy y Chiarle Miguelina: Matemática II Álgebra.
 Ciclo Básico a Distancia- FCE. UNC. Asociación Cooperadora,
 FCE UNC.
- Tversky A. y Kahneman D. (1986): Rational Choice and the Framing of Decisions, en The Journal of Bussiness, vol. 59, num. 4, pp. S251-S278.

- Tversky A. y Kahneman D. (1971): The belief in law numbers, en Psychological Bulletin, vol. 76, pp. 105-110.
- Winston y Wayne L. (2005): Investigación de Operaciones:
 Aplicaciones y Algoritmos. Editorial Thomson. México
- Yoon K y Hwang C. (1995): Multiple Attribute Decision Making an Introduction. Sage. California, USA.

Impreso en la
Asociación Cooperadora de la
Facultad de Ciencias Económicas
Universidad Nacional de Córdoba