Teoría de la integral y de la medida

Hoja n⁰ 8 (Medidas con signo y el teorema de Radon-Nikodym)

- 1.- Sea ν una medida con signo en el espacio medible $(X\mathcal{A})$. Demostrar que:
 - a) si $\{E_j\}_{j\in\mathbb{N}}$ es una sucesión no decreciente en \mathcal{A} , entonces $\nu(\cup_{j\in\mathbb{N}}E_j)=\lim_{j\to\infty}\nu(E_j)$;
 - b) si $\{E_j\}_{j\in\mathbb{N}}$ es una sucesión no creciente en \mathcal{A} y $\nu(E_1)$ es finita, entonces $\nu(\cap_{j\in\mathbb{N}}E_j)=\lim_{j\to\infty}\nu(E_j)$.
- 2.- Demostrar que cualquier subconjunto medible de un conjunto positivo es positivo, y que la unión de cualquier familia numerable de conjuntos positivos es un conjunto positivo.
- 3.- Sean (X, \mathcal{A}) un espacio medible, μ una medida en \mathcal{A} y ν una medida con signo en \mathcal{A} . Demostrar que:
 - a) $\nu \ll \mu$ si y sólo si $|\nu| \ll \mu$, si y sólo si $\nu^+ \ll \mu$ y $\nu^- \ll \mu$.
 - b) si $\nu \ll \mu$ y $\nu \perp \mu$ entonces $\nu = 0$.
- 4.- Sea $X=\mathbb{N},\,\mathcal{A}=\mathcal{P}(\mathbb{N})$ ν la medida de contar en $\mathbb{N},\,\mu(E)=\sum_{n\in E}\frac{1}{2^n}.$ Comprobar que $\nu\ll\mu,\,\sin$ embargo no se verifica la condición de que dado $\epsilon>0,\,\exists\delta>0$ tal que $\mu(E)<\delta\Rightarrow\nu(E)<\epsilon,\quad E\in\mathcal{A}.$
- 5.- Sea X = [0, 1], $\mathcal{A} = \mathcal{B}_{[0,1]}$ m la medida de Lebesgue en \mathcal{A} , μ la medida de contar en \mathcal{A} . Probar a) $m \ll \mu$ pero $dm \neq f d\mu$ para toda f.
 - b) μ no tiene descomposición de Lebesgue respecto de m.
- 6.- Sea (X, \mathcal{A}, μ) un espacio de medida σ -finito. Sea \mathcal{B} una subálgebra de \mathcal{A} y sea ν la restricción de μ a \mathcal{B} . Si $f \in L^1(\mu)$ demostrar que existe g \mathcal{B} -medible, $g \in L^1(\nu)$ tal que $\int_E f d\mu = \int_E g d\nu$ para todo $E \in \mathcal{B}$, además g es única módulo alteraciones en conjuntos ν -nulos. (A la función g se le llama en probabilidad $E(f|\mathcal{B})$, esperanza condicionada de f con respecto \mathcal{B}).
- 7.- Probar que si una medida λ en $\mathbb R$ tiene soporte en un conjunto numerable $\{x_j\}_j$, entonces existen constantes c_j tales que $\lambda(E) = \sum_j c_j \chi_E(x_j)$, es decir $\lambda = \sum_j c_j \delta_{x_j}$ (δ_a representa la delta de Dirac en el punto x = a).
- 8.- Se dice que una función $F : \mathbb{R} \to \mathbb{R}$ es absolutamente continua si dado $\epsilon > 0$ existe $\delta > 0$ tal que dadas dos sucesiones de números $\{a_k\}_k$ y $\{b_k\}_k$, con $a_k < b_k$, $\forall k$, entonces

si
$$\sum_{k\geq 1} |b_k - a_k| < \delta$$
, se tiene $\sum_{k\geq 1} |F(b_k) - F(a_k)| < \epsilon$.

Probar que si F es absolutamente continua y, además, creciente entonces la medida de Lebesgue-Stieltjes dF es absolutamente continua con respecto a la medida de Lebesgue dx en \mathbb{R} .

9.- Sea dF la medida de Lebesgue-Stieltjes asociada a la función

$$F(x) = \begin{cases} 0, & \text{si } x < 0 \\ x, & \text{si } 0 \le x < 1 \\ 1, & \text{si } 1 \le x \end{cases}$$

a) Demostrar que dF es absolutamente continua con respecto a la medida de Lebesgue m (d $F \ll m$).

- b) Encontrar la derivada de Radon-Nikodym de dF con respecto a m.
- c) Sea μ la medida de contar números racionales en el intervalo [0, 1], es decir, μ viene definida por $\mu(A) = \operatorname{card}(A \cap [0,1] \cap \mathbb{Q})$. Demostrar que dF y μ son mutuamente singulares (dF $\perp \mu$).
- 10.- Sean (X, A) un espacio medible, ν una medida con signo σ -finita en A y λ y μ medidas σ -finitas en \mathcal{A} tales que $\nu << \mu$ y $\mu << \lambda$. Demostrar que: a) Si $g \in L^1(X, \mathcal{A}, \nu)$, entonces $g \frac{d\nu}{d\mu} \in L^1(X, \mathcal{A}, \mu)$ y

$$\int_X g \, d\nu = \int_X g \frac{d\nu}{d\mu} \, d\mu.$$

b) $\nu << \lambda$ y $\frac{d\nu}{d\lambda} = \frac{d\nu}{d\mu} \frac{d\mu}{d\lambda}$ en casi todo punto con respecto a λ .