Séances de TP du 10/11/2010 et du 01/12/2010:

Introduction aux séries chronologiques

1. Trafic Aérien.

L'objectif de cette partie est de reproduire les graphiques vus en cours relatif au trafic aérien

	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960
Janvier	112	115	145	171	196	204	242	284	315	340	360	417
Février	118	126	150	180	196	188	233	277	301	318	342	391
Mars	132	141	178	193	236	235	267	317	356	362	406	419
Avril	129	135	163	181	235	227	269	313	348	348	396	461
Mai	121	125	172	183	229	234	270	318	355	363	420	472
Juin	135	149	178	218	243	264	315	374	422	435	472	535
Juillet	148	170	199	230	264	302	364	413	465	491	548	622
Août	148	170	199	242	272	293	347	405	467	505	559	606
Septembre	136	158	184	209	237	259	312	355	404	404	463	508
Octobre	119	133	162	191	211	229	274	306	347	359	407	461
Novembre	104	114	146	172	180	203	237	271	305	310	362	390
Décembre	118	140	166	194	201	229	278	306	336	337	405	432

FIGURE 1 – Trafic Aérien

Commencer par récupérer les données en chargeant le fichier

http://www.lama.univ-savoie.fr/~briand/MATH906/TraficAerien_data.m

et tracer la série chronologique X_t ainsi que la série des logarithmes Y_t

1.1. Approche moyenne mobile.

Dans cette partie, on se propose d'estimer la tendance et la saisonnalité à l'aide des moyennes mobiles.

- 1. Créer une fonction étant donné une série chronologique X et un ordre h renvoie la moyenne mobile symétrique et centrée usuelle d'ordre h.
- 2. Écrire également une fonction qui retourne la moyenne mobile symétrique et centrée d'ordre 3 ; les poids seront passés en entrée.

On pourra compléter les séries des moyennes mobiles par des termes constants de sorte de manipuler des séries toujours de la même longueur.

3. Estimer la tendance de la série en utilisant une moyenne mobile d'ordre 12. Tracer la série obtenue.

- 4. Estimer à présent la saisonnalité en utilisant une moyenne mobile d'ordre 3 centrée et symétrique de paramètres 0.2 0.6 0.2.
- 5. En déduire une estimation du bruit résiduel.
- 6. Tracer les graphes de la saisonnalité et du bruit en pourcentage.

1.2. Différentiation et différentiation saisonnière.

- 1. Écrire des fonctions qui étant donné une série chronologique détermine la série différenciée ainsi que la série différenciée de période s.
- 2. Vérifier la commutation des opérateurs ∇ et ∇_s .
- 3. Utiliser ces fonctions pour filtrer la série du trafic aérien.

1.3. Méthode de Holt-Winters.

Tester la méthode de Holt–Winters multiplicative sur la série chronologique du trafic aérien et comparer les résultats obtenus avec ceux du paragraphe 1.1.

2. Production industrielle.

Le tableau ci-dessous contient les indices trimestriels Y_t de la production industrielle de 1963 à 1982 (base 100 en 1970) :

Année	Trimestre 1	Trimestre 2	Trimestre 3	Trimestre 4
1970	100	104	87	110
1971	107	108	92	117
1972	114	115	96	123
1973	122	122	103	130
1974	129	129	108	126
1975	117	117	97	125
1976	127	127	108	134
1977	133	130	107	132
1978	133	134	110	140
1979	138	136	118	146
1980	145	138	115	141

FIGURE 2 – Production industrielle trimestrielle de 63 à 82

Le modèle retenu est un modèle additif : $Y_t = T_t^a + S_t^a + U_t^a$.

2.1. Moyenne Mobile.

- 1. Commencer par représenter graphiquement cette série.
- 2. Estimer la tendance en utilisant une moyenne mobile. Quel ordre utiliser? Tracer la série de départ et la tendance sur le même graphique.
- 3. Déterminer la série résiduelle. Pour chaque trimestre, calculer la moyenne \bar{s}_i , i = 1, ..., 4, à partir de la série résiduelle.

4. Comment transformer \bar{s}_i en \tilde{s}_i de sorte que

$$\frac{1}{4} \sum_{i=1}^{4} \tilde{s}_i = 0. \tag{1}$$

Les coefficients \tilde{s}_i s'appellent les coefficients saisonniers.

5. Déterminer puis tracer la série corrigée des valeurs saisonnières.

2.2. Régression Linéaire.

On modélise l'indice trimestriel de production industrielle Y_t par $Y_t = \beta_1 + \beta_2 t$.

- 1. Estimer les coefficients β_1 et β_2 par régression linéaire. On pourra se limiter à la période 1976-1980. Que vaut le R^2 ? Est-ce normal?
- 2. Calculer à partir des résidus les coefficients saisonniers.
- 3. En déduire la série corrigée $\tilde{Y} = \hat{Y} + \tilde{s}$ ainsi que le bruit $\tilde{U} = Y \tilde{Y} = \hat{U} \tilde{s}$.
- 4. Calculer \tilde{R}^2 .
- 5. Quelle sera la valeur de l'indice de production industrielle au premier trimestre 1987?

3. Processus stationnaires.

On rappelle que si X est un processus stationnaire, la moyenne m s'estime via la formule

$$\hat{m} = \hat{X}_T = \frac{1}{T} \sum_{t=1}^{T} X_t, \tag{2}$$

et que la covariance s'estime quant à elle à l'aide de la formule

$$\hat{\gamma}_X(h) = \frac{1}{T - h} \sum_{t=h+1}^{T} \left(X_t - \hat{X}_T \right) \left(X_{t-h} - \hat{X}_T \right), \tag{3}$$

cette dernière estimation étant acceptable si h est petit.

Dans la suite, on considère une suite de variables aléatoires $(U_t)_{t\geq 0}$ indépendantes et identiquement distribuées, centrée et de variance $\sigma^2 > 0$ c'est à dire un bruit blanc fort. On utilisera pour la loi commune des variables aléatoires U soit la loi gaussienne $\mathcal{N}(0, \sigma^2)$ soit la loi uniforme sur l'intervalle $[-\sigma\sqrt{3}; \sigma\sqrt{3}]$.

3.1. Introduction.

- 1. Simuler une trajectoire du processus $(U_t)_{1 \le t \le T}$.
- 2. En utilisant la méthode de Monte Carlo, c'est à dire en simulant N trajectoires du processus U estimer la moyenne et la covariance du processus U.
- 3. Choisir une trajectoire de U et comparer les estimations précédentes avec celles données par les formules (2) et (3).
- 4. Mêmes questions pour le processus $X_t = U_t U_{t-1}$.

3.2. Moving average d'ordre 1.

Soit a un réel non nul. On considère le processus $X_t = U_t - aU_{t-1}, t \ge 1$.

- 1. Simuler une trajectoire de ce processus et faites varier le paramètre a.
- 2. En simulant N trajectoires de ce processus, tracer l'histogramme de X_1 et X_{10} . Qu'obtenezvous?
- 3. Estimer la covariance du processus X à l'aide d'une seule trajectoire via les formules (2) et (3). Qu'obtient-on pour $\gamma_X(h)$ si $h \ge 2$?
- 4. Quel est l'effet de la transformation $a \mapsto 1/a$ sur la fonction de covariance?

3.3. Modèle auto-régressif d'ordre 1.

On considère la suite $(X_t)_{t\geq 0}$ de variables aléatoires définie par :

$$X_0 = x \in \mathbf{R}, \quad \forall t \ge 0, \quad X_{t+1} = a X_t + U_{t+1}, \quad \text{où } |a| < 1.$$

- 1. Simuler des trajectoires de $(X_t)_{0 \le t \le T}$. On pourra faire varier a et tester les deux lois $\mathcal{N}(0, \sigma^2)$ et uniforme sur $[-\sigma\sqrt{3}; \sigma\sqrt{3}]$ pour loi commune des U.
- 2. Utiliser la méthode de Monte-Carlo pour estimer la moyenne et la variance de X_t . Le processus est-il stationnaire?
- 3. Lorsque T est grand, le processus $(X_t)_{T/2 \le t \le T}$ vous semble-t-il stationnaire? Si oui estimer sa fonction de covariance.