JailDAM: Jailbreak Detection with Adaptive Memory for Vision-Language Model

Yi Nian^{1,*}, Shenzhe Zhu^{2,*}, Yuehan Qin¹, Shawn Li¹, Ziyi Wang³, Chaowei Xiao⁴, Yue Zhao^{1,†}

University of Southern California¹, University of Toronto², University of Maryland³, University of Wisconsin–Madison⁴

Introduction

- As VLMs become increasingly capable of processing complex text—image content, they face growing risks of jailbreak attacks that bypass safety controls. Existing detection methods struggle with three key challenges: reliance on hidden model states limits black-box applicability (Model Challenge); perturbation-based detection is too slow for real-time use (Speed Challenge); and most methods depend on fully labeled harmful datasets that are rarely available in practice (Data Challenge).
- We introduce **JAILDAM**, a memory-centered, test-time adaptive jailbreak detection framework in VLMs by linking safe inputs with unsafe memories. JAILDAM works efficiently in black-box settings, adapts to new jailbreaks without costly perturbations or labeled harmful data, and enables practical real-world defense.

Figure 3: JAILDAM-D (see §3.6), an end-to-end jailbreak defense framework

Memory Bank Generation

JailDAM Overview

Experiment Setup

Datasets

- MM-SafetyBench (Harmful)
- FigStep (Harmful)
- JailBreakV-28K (Harmful)
- MM-Vet (Benign)

Metrics

- Detection (AUROC, AUPRC)
- Defense (F1-Score)

	Actually Harmful	Actually Benign
Predict as Harmful	TP	FP
Predict as Benign	FN	TN

Table 2: Confusion Matrix for Attack Detection and Attack Defense.

Main Results

TASK 1: Attack Detection

Method Model		Ove	erall	MM-Safe	etyBench	FigS	Step	JailBrea	kV-28K
Withiou	IVIOGEI	AUROC(↑)	AUPRC(↑)	AUROC(↑)	AUPRC(↑)	AUROC(↑)	AUPRC(↑)	AUROC(†)	AUPRC(↑)
Jailguard-13B	MiniGPT-4-Vicuna-13B	0.4768	0.6729	0.4706	0.7500	0.5179	0.3337	0.8029	0.7475
Llavaguard-7B	Qwen2-7B-Instruct	0.7551	0.8412	0.7427	0.8729	0.8360	0.7231	0.8426	0.8589
Llavaguard-13B	Llama-2-13B-hf	0.3797	0.6079	0.3856	0.7335	0.3413	0.3247	0.4347	0.5660
VLGuard-7B	LLaVA-v1.5-7B-Mixed	0.6096	0.6782	0.6106	0.8020	0.6106	0.3817	0.6072	0.6474
VLGuard-13B	LLaVA-v1.5-13B-Mixed	0.5048	0.6306	0.5048	0.7610	0.5048	0.3268	0.5048	0.5929
HiddenDetect-7B	LLaVA-v1.6-Vicuna-7B	0.8050	0.8056	0.8269	0.9353	0.5773	0.3238	0.8330	0.8770
HiddenDetect-13I	BLLaVA-v1.6-Vicuna-13B	0.8425	<u>0.8541</u>	0.8302	0.9333	<u>0.8615</u>	0.5753	0.8633	0.8885
GradSafe-7B	LLaVA-v1.5-Vicuna-7B	<u>0.8513</u>	0.8166	0.8514	0.8752	0.6804	0.2370	0.9082	0.8816
GradSafe-13B	LLaVA-v1.5-Vicuna-13B	0.6723	0.7533	0.7485	0.8004	0.4131	0.5933	0.5920	0.7038
JAILDAM	Memory Network	0.9550	0.9530	0.9472	0.9155	0.9608	0.9616	0.9465	0.9464

Ablations

Ablation 2: OOD Benign Data

Benign Dataset	Jailbreak Dataset	AUROC	AUPR
MM-Vet	JailBreakV-28k	0.9465	0.9464
MMMU	JailBreakV-28k	0.9034	0.8962
MM-Vet	MM-SafetyBench	0.9472	0.9155
MMMU	MM-SafetyBench	0.9452	0.9396
MM-Vet	FigStep	0.9608	0.9616
MMMU	FigStep	0.8852	0.8766

TASK 2: Attack Defense

Let's connect!

Contact Information:

Leader: Yi Nian

• Email: yn2336@columbia.edu

Leader: Shenzhe Zhu

• Email: cho.zhu@mail.utoronto.ca

Advisor: Yue Zhao

• Email: yzhao010@usc.edu

