

The Complexity of Drawing Graphs on Few Lines and Few Planes

Steven Chaplick

Krzysztof Fleszar Alexander Wolff

Fabian Lipp

oitit \\/iir-burg Carman

Julius-Maximilians-Universität Würzburg, Germany

Alexander Ravsky

National Academy of Sciences of Ukraine, Lviv, Ukraine

Oleg Verbitsky

Humboldt-Universität zu Berlin, Germany

For any planar graph (like K_4) there is a *crossing-free* straight-line drawing in the plane.

For any planar graph (like K_4) there is a *crossing-free* straight-line drawing in the plane.

But what about beyond-planar graphs?

For any planar graph (like K_4) there is a *crossing-free* straight-line drawing in the plane.

But what about beyond-planar graphs?

Use more than one plane to draw it.

For any planar graph (like K_4) there is a *crossing-free* straight-line drawing in the plane.

But what about beyond-planar graphs?

Use more than one plane to draw it.

For any planar graph (like K_4) there is a *crossing-free* straight-line drawing in the plane.

But what about beyond-planar graphs?

Use more than one plane to draw it.

For any planar graph (like K_4) there is a *crossing-free* straight-line drawing in the plane.

But what about beyond-planar graphs?

Use more than one plane to draw it.

For any planar graph (like K_4) there is a *crossing-free* straight-line drawing in the plane.

But what about beyond-planar graphs?

Use more than one plane to draw it.

For any planar graph (like K_4) there is a *crossing-free* straight-line drawing in the plane.

But what about beyond-planar graphs?

Use more than one plane to draw it.

How many planes in 3-space do we need to cover all vertices and edges of a crossing-free straight-line drawing of K_5 ? 3

We propose the number of planes needed as a parameter for classifying beyond-planar graphs.

Low number of arcs

[Schulz, JGAA 2015]

Definitions

Let G be a graph and $1 \le m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes

Definitions

Let G be a graph and $1 \le m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes

Interesting cases:

- Line cover numbers in 2D and 3D: ρ_2^1 , ρ_3^1
- Plane cover numbers: ρ_3^2

Definitions

Let G be a graph and $1 \leq m < d$.

Affine cover number $\rho_d^m(G)$:

minimum number of m-dimensional hyperplanes in \mathbb{R}^d s.t. G has a crossing-free straight-line drawing that is contained in these planes

Interesting cases:

- Line cover numbers in 2D and 3D: ρ_2^1 , ρ_3^1
- Plane cover numbers: ρ_3^2

Known results:

- Combinatorial bounds for various classes of graphs
- Relations to other graph characteristics

Our Results

• Computing line cover numbers is $\exists \mathbb{R}$ -hard $(\rho_2^1 \text{ and } \rho_3^1)$

• Computing line cover numbers is fixed-parameter tractable $(\rho_2^1 \text{ and } \rho_3^1)$

• Computing plane cover numbers is NP-hard (ρ_3^2)

Our Results

• Computing line cover numbers is $\exists \mathbb{R}$ -hard $(\rho_2^1 \text{ and } \rho_3^1)$

• Computing line cover numbers is fixed-parameter tractable $(\rho_2^1 \text{ and } \rho_3^1)$

• Computing plane cover numbers is NP-hard (ρ_3^2)

$\exists \mathbb{R}$ -hardness

Decision problem for the existential theory of the reals: decide if first-order formula about the reals of the form $\exists x_1 \ldots \exists x_m \phi(x_1, \ldots, x_m)$ is true where formula ϕ uses:

- no quantifiers
- constants 0, 1
- basic arithmetic operations
- order and equality relations

$\exists \mathbb{R}$ -hardness

Decision problem for the existential theory of the reals: decide if first-order formula about the reals of the form $\exists x_1 \ldots \exists x_m \phi(x_1, \ldots, x_m)$ is true where formula ϕ uses:

- no quantifiers
- constants 0, 1
- basic arithmetic operations
- order and equality relations

 $\exists \mathbb{R}$: problems that can be reduced to that problem [Schaefer, GD 2009]

∃**R**-hardness

Decision problem for the existential theory of the reals:

decide if first-order formula about the reals of the form

 $\exists x_1 \ldots \exists x_m \Phi(x_1, \ldots, x_m)$ is true where formula Φ uses:

- no quantifiers
- constants 0, 1
- basic arithmetic operations
- order and equality relations

 $\exists \mathbb{R}$: problems that can be reduced to that problem

[Schaefer, GD 2009]

∃**R**-hardness

Decision problem for the existential theory of the reals:

decide if first-order formula about the reals of the form

 $\exists x_1 \ldots \exists x_m \Phi(x_1, \ldots, x_m)$ is true where formula Φ uses:

- no quantifiers
- constants 0, 1
- basic arithmetic operations
- order and equality relations

 $\exists \mathbb{R}$: problems that can be reduced to that problem

[Schaefer, GD 2009]

Natural $\exists \mathbb{R}$ -complete problems:

- rectilinear crossing number
- recognition of segment intersection graphs
- recognition of unit disk graphs

- Each pair of lines has exactly one intersection
- No three lines share a common point

- Each pair of lines has exactly one intersection
- No three lines share a common point

- Each pair of lines has exactly one intersection
- No three lines share a common point

Simple line arrangement: set of ℓ lines in \mathbb{R}^2

- Each pair of lines has exactly one intersection
- No three lines share a common point

Problem AGR: Given a graph G = (V, E), decide if it is an arrangement graph of some set of lines.

Simple line arrangement: set of ℓ lines in \mathbb{R}^2

- Each pair of lines has exactly one intersection
- No three lines share a common point

Problem AGR: Given a graph G = (V, E), decide if it is an arrangement graph of some set of lines.

AGR is known to be $\exists \mathbb{R}$ -hard

Line Cover Number is ∃ℝ-hard

Reduction from AGR

Line Cover Number is ∃ℝ-hard

Reduction from AGR

Add tails \Rightarrow G': all vertices have degree 1 or 4.

Line Cover Number is ∃ℝ-hard

Reduction from AGR

Add tails \Rightarrow G': all vertices have degree 1 or 4.

Claim: G is an arrangement graph iff $\rho_2^1(G') \leq \ell$ Proof similar to hardness proof for segment number.

[Durocher, Mondal, Nishat, Whitesides, JGAA 2013]

Theorem: Deciding whether $\rho_2^1(G) \le k$ and $\rho_3^1(G) \le k$ is $\exists \mathbb{R}$ -complete.

Our Results

• Computing line cover numbers is $\exists \mathbb{R}$ -hard $(\rho_2^1 \text{ and } \rho_3^1)$

• Computing line cover numbers is fixed-parameter tractable $(\rho_2^1 \text{ and } \rho_3^1)$

• Computing plane cover numbers is NP-hard (ρ_3^2)

Fixed-parameter Tractability

Kernelization: Reduce G to an instance G' with size bounded by f(k)

Assume that G has a k-line cover.

Fixed-parameter Tractability

Kernelization: Reduce G to an instance G' with size bounded by f(k)

Assume that G has a k-line cover. at most $\binom{k}{2}$ intersections

Kernelization: Reduce G to an instance G' with size bounded by f(k)

Assume that G has a k-line cover. at most $\binom{k}{2}$ intersections Remove connected components that are paths.

Kernelization: Reduce G to an instance G' with size bounded by f(k)

Assume that G has a k-line cover. at most $\binom{k}{2}$ intersections Remove connected components that are paths. Contract long **paths** to at most $\binom{k}{2}$ vertices.

Kernelization: Reduce G to an instance G' with size bounded by f(k)

Assume that G has a k-line cover. at most $\binom{k}{2}$ intersections Remove connected components that are paths. Contract long **paths** to at most $\binom{k}{2}$ vertices.

Number of paths: $O(k^2)$

Vertices per path: at most $\binom{k}{2}$

Kernelization: Reduce G to an instance G' with size bounded by f(k)

Assume that G has a k-line cover. at most $\binom{k}{2}$ intersections Remove connected components that are paths. Contract long **paths** to at most $\binom{k}{2}$ vertices.

Number of paths: $O(k^2)$ $O(k^4)$ vertices Vertices per path: at most $\binom{k}{2}$ $O(k^4)$ edges

Test line cover number for reduced graph G' of size $O(k^4)$. Describe as a formula Φ in the existential theory of the reals and use Renegar's decision algorithm.

Test line cover number for reduced graph G' of size $O(k^4)$. Describe as a formula Φ in the existential theory of the reals and use Renegar's decision algorithm.

Theorem: For graph G and integer k, in time $2^{O(k^3)} + O(n+m)$ we can decide

- whether $\rho_d^1(G) \leq k$ and, if so,
- give a combinatorial description of the drawing.

Our Results

• Computing line cover numbers is $\exists \mathbb{R}$ -hard $(\rho_2^1 \text{ and } \rho_3^1)$

• Computing line cover numbers is fixed-parameter tractable $(\rho_2^1 \text{ and } \rho_3^1)$

• Computing plane cover numbers is NP-hard (ρ_3^2)

$$(x_1, x_2, x_6)$$

$$(x_1, x_4, x_5)$$

$$(x_1, x_3, x_4)$$

$$(x_1, x_2, x_6)$$
 (x_1, x_4, x_5) (x_1, x_3, x_4) (x_3, x_5, x_6) (x_2, x_3, x_6)

$$(x_2, x_3, x_6)$$

$$(x_1, x_2, x_6)$$

$$(x_1, x_4, x_5)$$

$$(x_1, x_3, x_4)$$

$$(x_1, x_2, x_6)$$
 (x_1, x_4, x_5) (x_1, x_3, x_4) (x_3, x_5, x_6) (x_2, x_3, x_6)

$$(x_2, x_3, x_6)$$

$$(x_1, x_2, x_6)$$

$$(x_1, x_4, x_5)$$

$$(x_1, x_3, x_4)$$

$$(x_1, x_2, x_6)$$
 (x_1, x_4, x_5) (x_1, x_3, x_4) (x_3, x_5, x_6) (x_2, x_3, x_6)

$$(x_2, x_3, x_6)$$

We use a reduction from Positive Planar Cycle 1-in-3-SAT

NP-hardness proof:

We use a reduction from Positive Planar Cycle 1-in-3-SAT

NP-hardness proof:

Positive Planar Cycle 1-in-3-SAT is NP-hard

Intersection Line Gadget

Intersection Line Gadget

Assume that G is embedded on two planes

Intersection Line Gadget

Assume that G is embedded on two planes

⇒ Red vertices are placed on the intersection line

Theorem: Deciding $\rho_3^2(G) = 2$ is NP-hard.

Theorem: Deciding $\rho_3^2(G) = 2$ is NP-hard.

Proof:

intersection line

Theorem: Deciding $\rho_3^2(G) = 2$ is NP-hard.

Hardness of the Plane Cover Number

Theorem: Deciding $\rho_3^2(G) = 2$ is NP-hard.

Theorem: Deciding $\rho_3^2(G) = 2$ is NP-hard.

Proof:

Corollary: Deciding $\rho_3^2(G) = k$ is NP-hard for any $k \ge 2$. (add more blocking gadgets)

Plane cover number not FPT in k.

 Computing the line cover numbers is hard, but fixed-parameter tractable.

Can it be computed efficiently for trees?

- Computing the line cover numbers is hard, but fixed-parameter tractable.
 Can it be computed efficiently for trees?
- Positive Planar Cycle
 1-in-3-SAT is NP-hard.

- Computing the line cover numbers is hard, but fixed-parameter tractable.
 Can it be computed efficiently for trees?
- Positive Planar Cycle
 1-in-3-SAT is NP-hard.
- Computing the plane cover number is NP-hard and contained in ∃ℝ.
 Is it also ∃ℝ-hard?

- Computing the line cover numbers is hard, but fixed-parameter tractable.
 Can it be computed efficiently for trees?
- Positive Planar Cycle
 1-in-3-SAT is NP-hard.
- Computing the plane cover number is NP-hard and contained in ∃ℝ.
 Is it also ∃ℝ-hard?
- Approximation Algorithms?

- Computing the line cover numbers is hard, but fixed-parameter tractable.
 Can it be computed efficiently for trees?
- Positive Planar Cycle
 1-in-3-SAT is NP-hard.
- Computing the plane cover number is NP-hard and contained in ∃ℝ.
 Is it also ∃ℝ-hard?
- Approximation Algorithms?

