Generating Equivalent Rhythmic Notations based on Rhythm Tree Languages

Florent Jacquemard

Masahiko Sakai

Adrien Ycart

problem

enumerate all rhythms notations equivalent to a given rhythm

simplify,... or complexify

emphasize meter

problem

enumerate all rhythms notations equivalent to a given rhythm

equivalent: defining the same sequences of durations (IOI)

enumerate:

- from simplest to more complicated... or opposite
- lazily: don't compute all rhythms first and then sort

all: really?

definition of a rhythm notation domain = language: what kind of tuplets? how many nested divisions?...

plan

enumerate all rhythms notations equivalent to a given rhythm

- 1. rhythm tree representation rhythm (formal) languages
- 2. efficient lazy enumeration algorithm
- 3. conclusion & applications

rhythm tree representation

hierarchical representation of sequences of events with durations

used in composition assistance environments since years

Laurson

Patchwork: A Visual Programming Language Helsinki: Sibelius Academy, 1996 Agon, Haddad, Assayag
Rhythmic structures representation and rendering
ICMC, 2002

rhythm trees

principle: "the data is in the structure"

- leaves contain events
- branching defines durations
 by uniform division of a time interval

$$2$$
/ \
n 2
/ \
n n

$$\frac{1}{3} \frac{1}{3} \frac{1}{3}$$

$$\frac{1}{2}$$
 $\frac{1}{4}$ $\frac{1}{4}$

$$\frac{1}{5} \frac{1}{5} \frac{1}{15} \frac{1}{15} \frac{1}{15} \frac{1}{5} \frac{1}{5}$$

rhythm trees: ties and dots

duration sequence

$$\frac{1}{2} \frac{1}{6} \frac{1}{3}$$

pitches, rests, grace notes...

with additional symbols for leaves

with event counters

rhythm dags

extension of RT to *join then split* = ratio notations (p in the time of q) no symbol _: sum of durations represented by node sharing (data in structure)

rhythm languages

fix the set of rhythm notations that we want to support using formal language tools

Lee

The rhythmic interpretation of simple musical sequences
Musical Structure and Cognition, 1985

Andrew McLoed, Mark Steedman Meter Detection in Symbolic Music Using a Lexicalized PCFG SMC 2017

$$\mathbf{c} \to \mathbf{o} \mid \mathbf{-} \mid \frac{2}{4} + \frac{2}{4}$$

$$\frac{2}{4} \to \mathbf{J} \mid \mathbf{-} \mid \frac{1}{4} + \frac{1}{4}$$

$$\frac{1}{4} \to \mathbf{J} \mid \mathbf{8} \mid \frac{1}{8} + \frac{1}{8}$$

$$\frac{1}{8} \to \mathbf{J} \mid \mathbf{7} \mid \cdots$$

rhythm grammars

definition of allowed nested divisions by rules of an acyclic Context-Free grammar

divide by 2 then by 2 or 3, or divide by 3 then by 2

$$G = q_0 \rightarrow q_1, q_1 \qquad q_1 \rightarrow q_3, q_3 \qquad q_2 \rightarrow q_3, q_3 \qquad q_3 \rightarrow \mathbf{r}$$

$$q_0 \rightarrow q_2, q_2, q_2 \qquad q_1 \rightarrow q_3, q_3, q_3 \qquad q_2 \rightarrow \mathbf{n} \qquad q_3 \rightarrow \mathbf{r}$$

$$q_0 \rightarrow \mathbf{n} \qquad q_1 \rightarrow \mathbf{n} \qquad q_2 \rightarrow \mathbf{r}$$

$$q_1 \rightarrow \mathbf{r}$$

language L(G) of generated rhythm trees

derivation trees of the grammar

weighted rhythm grammars

rhythm tree ranking: assign a weight value to every tree of L(G) by extension of grammar with weight values in production rules

 $q_2 \xrightarrow{0.5} q_3, q_3$

 $q_1 \xrightarrow{0.2} q_3, q_3$

 $q_0 \xrightarrow{0.25} q_1, q_1$

$$q_{0} \xrightarrow{0.25} q_{1}, q_{1} \qquad q_{1} \xrightarrow{0.2} q_{3}, q_{3} \qquad q_{2} \xrightarrow{0.5} q_{3}, q_{3} \qquad q_{3} \xrightarrow{0.15} n$$

$$q_{0} \xrightarrow{0.45} q_{2}, q_{2}, q_{2} \qquad q_{1} \xrightarrow{0.7} q_{3}, q_{3}, q_{3} \qquad q_{2} \xrightarrow{0.1} n \qquad q_{3} \xrightarrow{0.35} -$$

$$q_{0} \xrightarrow{0.1} n \qquad q_{1} \xrightarrow{0.25} -$$

$$q_{1} \xrightarrow{0.25} -$$

$$q_{1} \xrightarrow{0.7} -$$

weight domains

	sum	product
penalties	min	+
probabilities	max	•

$$t = a(t_1, \dots, t_n)$$

$$weight(t, q) = \sum_{q \xrightarrow{v} q_1, \dots, q_n} v. \prod_{i=1}^n weight(t_i, q_i)$$

grammars construction

- incremental construction by composition of elementary languages using composition operators (union, intersection, etc)
- learning weighted grammar from score corpus
 - → compact representation of rhythm notations in corpus

enumeration: k-best parsing

 $best(k,q_i)$ is the $\it k^{th}$ best weighted tree generated by $\it q_i$ defined recursively thanks to the monotonicity of weight evaluation

$$best(1, q_0) = min \left\{ \begin{array}{l} 2\big(best(1, q_1), best(1, q_1)\big), \\ 3\big(best(1, q_2), best(1, q_2), best(1, q_2)\big), \\ \mathsf{n} \end{array} \right\}$$

assuming it is the first term, then

$$best(2, q_0) = min \left\{ \begin{array}{l} 2\big(best(1, q_1), best(2, q_1)\big), \\ 2\big(best(2, q_1), best(1, q_1)\big), \\ 3\big(best(1, q_2), best(1, q_2), best(1, q_2)\big), \\ \mathsf{n} \end{array} \right\}$$

etc

enumeration of rhythms

problem reformulation

given a grammar G and a rhythm of duration sequence D enumerate all rhythm in L(G) and of duration sequence D, according to their weight in G

product grammar DxG

 $\langle D', q_i \rangle$: trees generated from q_i and of duration sequence D'

$$D = \left\lfloor \frac{1}{2} \frac{1}{6} \frac{1}{3} \right\rfloor$$

from

we obtain

$$q_0 \xrightarrow{0.25} q_1, q_1 \qquad \langle D, q_0 \rangle \xrightarrow{0.25} \langle \left[\frac{1}{2}\right], q_1 \rangle, \langle \left[\frac{1}{6}, \frac{1}{3}\right], q_1 \rangle$$

$$q_0 \xrightarrow{0.45} q_2, q_2, q_2 \qquad \langle D, q_0 \rangle \xrightarrow{0.45} \langle \left[\frac{1}{3}\right], q_2 \rangle, \langle -\left[\frac{1}{6}, \frac{1}{6}\right], q_2 \rangle, \langle \left[\frac{1}{3}\right], q_2 \rangle$$

$$q_1 \xrightarrow{0.2} q_3, q_3 \qquad \langle \left[\frac{1}{6}, \frac{1}{3}\right], q_1 \rangle \xrightarrow{0.2} \qquad \langle \left[\frac{1}{6}, \frac{1}{12}\right], q_3 \rangle, \langle -\left[\frac{1}{4}\right], q_3 \rangle q_1 \xrightarrow{0.7} q_3, q_3, q_3 \qquad \langle \left[\frac{1}{6}, \frac{1}{3}\right], q_1 \rangle \xrightarrow{0.7} \qquad \langle \left[\frac{1}{6}\right], q_3 \rangle, \langle \left[\frac{1}{6}\right], q_3 \rangle, \langle -\left[\frac{1}{6}\right], q_3 \rangle$$

enumeration

for the product of

we obtain the following rhythms

enumeration (bis)

$$\mathbf{D} = \frac{1}{2} \frac{1}{6} \frac{1}{3}$$

$$\mathbf{G} = q_0 \xrightarrow{0.1} \mathbf{n}$$

$$q_0 \xrightarrow{0.25} q_1, q_1$$

$$q_0 \xrightarrow{0.45} q_1, q_1, q_1$$

$$q_0 \xrightarrow{0.45} q_4, q_4, q_4, q_4, q_4$$

$$q_0 \xrightarrow{0.45} q_4, q_4, q_4, q_4, q_4, q_4$$

 $q_3 \xrightarrow{0.5} q_5, q_5$

merged polyrhythms

merging both rhythms gives duration sequence [1/5 2/15 1/15 1/15 1/15 2/15 1/5] and 6 alt. notations (with a complex enough grammar):

conclusion

- formal grammars defining languages of weighted rhythm notations
- ranked enumeration of equivalent rhythms in a given language

applications

transcription

backend procedure (once a rhythm quantization is found)

score editors / composition assistants propose several rhythm notations

rendering of text based notation languages logical layout (beaming *etc*): rhythm grammar to specify (structured) layout preferences?

transcription

- 1. enumerate rhythms in language L(G) exactly of duration sequence D
- 2. enumerate rhythms in language L(*G*) close to duration sequence *D* (*D* unquantized in case 2.)
- → base of an interactive rhythm quantization procedure

implemented as an Open Music library

http://repmus.ircam.fr/cao/rq

