Package 'simaerep'

September 30, 2024

Title Find Clinical Trial Sites Under-Reporting Adverse Events

URL https://openpharma.github.io/simaerep/,

Version 0.6.0

Description Monitoring of Adverse Event (AE) reporting in clinical trials is important for patient safety. Sites that are under-reporting AEs can be detected using Bootstrap-based simulations that simulate overall AE reporting. Based on the simulation an AE under-reporting probability is assigned to each site in a given trial (Koneswarakantha 2021 <doi:10.1007/s40264-020-01011-5>).

```
https://github.com/openpharma/simaerep/
License MIT + file LICENSE
Encoding UTF-8
Depends R (>= 4.0), ggplot2
Imports dplyr (>= 1.0.0), tidyr (>= 1.1.0), magrittr, purrr, rlang,
     stringr, forcats, cowplot, RColorBrewer, furrr (>= 0.2.1),
     progressr, knitr, tibble, dbplyr
Suggests testthat, devtools, pkgdown, spelling, haven, vdiffr, lintr,
     DBI, duckdb, ggExtra
RoxygenNote 7.3.2
Language en-US
Config/testthat/edition 3
NeedsCompilation no
Author Bjoern Koneswarakantha [aut, cre, cph]
      (<https://orcid.org/0000-0003-4585-7799>),
     F. Hoffmann-La Roche Ltd [cph]
Repository CRAN
```

Date/Publication 2024-09-30 12:10:04 UTC

2 Contents

Contents

Index

aggr_duplicated_visits	3
check_df_visit	3
eval_sites	4
exp_implicit_missing_visits	5
get_config	6
get_ecd_values	7
get_pat_pool_config	9
get_portf_perf	0
get_site_mean_ae_dev	1
get_visit_med75	
is_orivisit	
is_simaerep	
max_rank	
orivisit	
pat_aggr	5
pat_pool	
plot.simaerep	
plot_dots	
plot_sim_example	9
plot_sim_examples	0
plot_study	
plot_visit_med75	
poiss_test_site_ae_vs_study_ae	
prep_for_sim	
prob_lower_site_ae_vs_study_ae	5
purrr_bar	
simaerep	
sim_after_prep	
sim_inframe	
sim_scenario	
sim_sites	
sim_studies	
sim_test_data_patient	
sim_test_data_portfolio	7
sim_test_data_study	9
sim_ur	0
sim_ur_scenarios	1
site_aggr	3
with_progress_cnd	4

47

aggr_duplicated_visits 3

```
aggr_duplicated_visits
```

Aggregate duplicated visits.

Description

Internal function called by check_df_visit().

Usage

```
aggr_duplicated_visits(df_visit)
```

Arguments

df_visit

dataframe with columns: study_id, site_number, patnum, visit, n_ae

Value

df_visit corrected

check_df_visit

Integrity check for df_visit.

Description

Internal function used by all functions that accept df_visit as a parameter. Checks for NA columns, numeric visits and AEs, implicitly missing and duplicated visits.

Usage

```
check_df_visit(df_visit)
```

Arguments

df_visit

dataframe with columns: study_id, site_number, patnum, visit, n_ae

Value

corrected df_visit

eval_sites

Examples

```
df_visit <- sim_test_data_study(
    n_pat = 100,
    n_sites = 5,
    frac_site_with_ur = 0.4,
    ur_rate = 0.6
)

df_visit$study_id <- "A"

df_visit_filt <- df_visit %>%
    dplyr::filter(visit != 3)

df_visit_corr <- check_df_visit(df_visit_filt)
3 %in% df_visit_corr$visit
nrow(df_visit_corr) == nrow(df_visit)

df_visit_corr <- check_df_visit(dplyr::bind_rows(df_visit, df_visit))
nrow(df_visit_corr) == nrow(df_visit)</pre>
```

eval_sites

Evaluate sites.

Description

Correct under-reporting probabilities using p.adjust.

Usage

```
eval_sites(df_sim_sites, method = "BH", under_only = TRUE, ...)
```

Arguments

```
df_sim_sites dataframe generated by sim_sites
method character, passed to stats::p.adjust(), if NULL eval_sites_deprecated() is used instead, Default = "BH"
under_only compute under-reporting probabilities only, default = TRUE check_df_visit(), computationally expensive on large data sets. Default: TRUE
use to pass r_sim_sites parameter to eval_sites_deprecated()
```

Value

dataframe with the following columns:

```
study_id study identification
site_number site identification
```

```
visit_med75 median(max(visit)) * 0.75
mean_ae_site_med75 mean AE at visit_med75 site level
mean_ae_study_med75 mean AE at visit_med75 study level
pval p-value as returned by poisson. test
prob_low bootstrapped probability for having mean_ae_site_med75 or lower
pval_adj adjusted p-values
prob_low_adj adjusted bootstrapped probability for having mean_ae_site_med75 or lower
pval_prob_ur probability under-reporting as 1 - pval_adj, poisson.test (use as benchmark)
prob_low_prob_ur probability under-reporting as 1 - prob_low_adj, bootstrapped (use)
```

See Also

```
site_aggr, sim_sites, p.adjust
```

Examples

```
exp_implicit_missing_visits
```

Expose implicitly missing visits.

Description

Internal function called by check_df_visit().

Usage

```
exp_implicit_missing_visits(df_visit)
```

Arguments

df_visit dataframe with columns: study_id, site_number, patnum, visit, n_ae

Value

df_visit corrected

6 get_config

get_config

Get Portfolio Configuration

Description

Get Portfolio configuration from a dataframe aggregated on patient level with max_ae and max_visit. Will filter studies with only a few sites and patients and will anonymize IDs. Portfolio configuration can be used by sim_test_data_portfolio to generate data for an artificial portfolio.

Usage

```
get_config(
  df_site,
  min_pat_per_study = 100,
  min_sites_per_study = 10,
  anonymize = TRUE,
  pad_width = 4
)
```

Arguments

```
df_site dataframe aggregated on patient level with max_ae and max_visit
min_pat_per_study
minimum number of patients per study, Default: 100
min_sites_per_study
minimum number of sites per study, Default: 10
anonymize logical, Default: TRUE
pad_width padding width for newly created IDs, Default: 4
```

Value

```
dataframe with the following columns:
```

```
study_id study identification
ae_per_visit_mean mean AE per visit per study
site_number site
max_visit_sd standard deviation of maximum patient visits per site
max_visit_mean mean of maximum patient visits per site
n_pat number of patients
```

See Also

```
sim_test_data_study get_config sim_test_data_portfolio sim_ur_scenarios get_portf_perf
```

get_ecd_values 7

Examples

```
df_visit1 <- sim_test_data_study(n_pat = 100, n_sites = 10,</pre>
                                   frac_site_with_ur = 0.4, ur_rate = 0.6)
df_visit1$study_id <- "A"</pre>
df_visit2 <- sim_test_data_study(n_pat = 100, n_sites = 10,</pre>
                                   frac_site_with_ur = 0.2, ur_rate = 0.1)
df_visit2$study_id <- "B"</pre>
df_visit <- dplyr::bind_rows(df_visit1, df_visit2)</pre>
df_site_max <- df_visit %>%
  dplyr::group_by(study_id, site_number, patnum) %>%
  dplyr::summarise(max_visit = max(visit),
             max_ae = max(n_ae),
             .groups = "drop")
df_config <- get_config(df_site_max)</pre>
df_config
df_portf <- sim_test_data_portfolio(df_config)</pre>
df_portf
df_scen <- sim_ur_scenarios(df_portf,</pre>
                              extra_ur_sites = 2,
                              ur_rate = c(0.5, 1)
df_scen
df_perf <- get_portf_perf(df_scen)</pre>
df_perf
```

get_ecd_values

Get empirical cumulative distribution values of pval or prob_lower

Description

Test function, test applicability of poisson test, by calculating

• the bootstrapped probability of obtaining a specific p-value or lower, use in combination with sim_studies().

8 get_ecd_values

Usage

```
get_ecd_values(df_sim_studies, df_sim_sites, val_str)
```

Arguments

```
df_sim_studies dataframe, generated by sim_studies()
df_sim_sites dataframe, generated by sim_sites()
val_str c("prob_low","pval")
```

Details

trains a ecdf function for each studies based on the results of sim_studies()

Value

dataframe with the following columns:

```
study_id study identification
site_number site identification
visit_med75 median(max(visit)) * 0.75
mean_ae_site_med75 mean AE at visit_med75 site level
mean_ae_study_med75 mean AE at visit_med75 study level
pval/prob_low p-value as returned by poisson.test
pval/prob_low_ecd p-value as returned by poisson.test
```

get_pat_pool_config 9

```
get_pat_pool_config Configure study patient pool by site parameters.
```

Description

Internal Function used by sim_sites()

Usage

```
get_pat_pool_config(df_visit, df_site, min_n_pat_with_med75 = 1)
```

Arguments

```
df_visit dataframe

df_site dataframe as created by site_aggr()

min_n_pat_with_med75

minimum number of patients with visit_med_75 for simulation, Default: 1
```

Details

For simulating a study we need to configure the study patient pool to match the configuration of the sites

Value

dataframe

10 get_portf_perf

get_portf_perf

Get Portfolio Performance

Description

Performance as true positive rate (tpr as tp/P) on the basis of desired false positive rates (fpr as fp/P).

Usage

```
get_portf_perf(df_scen, stat = "prob_low_prob_ur", fpr = c(0.001, 0.01, 0.05))
```

Arguments

df_scen dataframe as returned by sim_ur_scenarios

stat character denoting the column name of the under-reporting statistic, Default:

'prob_low_prob_ur'

fpr numeric vector specifying false positive rates, Default: c(0.001, 0.01, 0.05)

Details

DETAILS

Value

dataframe

See Also

sim_test_data_study get_config sim_test_data_portfolio sim_ur_scenarios get_portf_perf

get_site_mean_ae_dev 11

get_site_mean_ae_dev Get site mean ae development.

Description

Internal function used by site_aggr(), plot_visit_med75(), returns mean AE development from visit 0 to visit_med75.

Usage

```
get_site_mean_ae_dev(df_visit, df_pat, df_site)
```

Arguments

df_visit dataframe
df_pat dataframe as returned by pat_aggr()
df_site dataframe as returned by site_aggr()

Value

dataframe

is_orivisit

 get_visit_med75

Get visit_med75.

Description

Internal function used by site_aggr().

Usage

```
get_visit_med75(df_pat, method = "med75_adj", min_pat_pool = 0.2)
```

Arguments

df_pat dataframe as returned by pat_aggr()

method character, one of c("med75", "med75_adj") defining method for defining evalu-

ation point visit_med75 (see details), Default: "med75_adj"

min_pat_pool double, minimum ratio of available patients available for sampling. Determines

maximum visit_med75 value see Details. Default: 0.2

Value

dataframe

is_orivisit

is orivisit class

Description

internal function

Usage

is_orivisit(x)

Arguments

Х

object

Value

logical

is_simaerep 13

is_simaerep

is simaerep class

Description

internal function

Usage

```
is_simaerep(x)
```

Arguments

Χ

object

Value

logical

max_rank

Calculate Max Rank

Description

like rank() with ties.method = "max", works on tbl objects

Usage

```
max_rank(df, col, col_new)
```

Arguments

df dataframe

col character column name to rank y
col_new character column name for rankings

Details

this is needed for hochberg p value adjustment. We need to assign higher rank when multiple sites have same p value

14 orivisit

Examples

```
df <- tibble::tibble(s = c(1, 2, 2, 2, 5, 10)) %>%
    dplyr::mutate(
        rank = rank(s, ties.method = "max")
)

df %>%
    max_rank("s", "max_rank")

# Database
con <- DBI::dbConnect(duckdb::duckdb(), dbdir = ":memory:")

dplyr::copy_to(con, df, "df")
max_rank(dplyr::tbl(con, "df"), "s", "max_rank")

DBI::dbDisconnect(con)</pre>
```

orivisit

create orivisit object

Description

Internal S3 object, stores lazy reference to original visit data.

Usage

```
orivisit(df_visit, call = NULL, env = parent.frame())
```

Arguments

```
df_visit dataframe with original visit data

call optional, provide call, Default: NULL

env optional, provide environment of original visit data, Default: parent.frame()
```

Details

Saves variable name of original visit data, checks whether it can be retrieved from parent environment and stores summary. Original data can be retrieved using as.data.frame(x).

Value

orivisit object

pat_aggr 15

Examples

```
df_visit <- sim_test_data_study(
    n_pat = 100,
    n_sites = 5,
    frac_site_with_ur = 0.4,
    ur_rate = 0.6
)

df_visit$study_id <- "A"

visit <- orivisit(df_visit)

object.size(df_visit)

as.data.frame(visit)</pre>
```

pat_aggr

Aggregate visit to patient level.

Description

Internal function used by site_aggr() and plot_visit_med75(), adds the maximum visit for each patient.

Usage

```
pat_aggr(df_visit)
```

Arguments

df_visit dataframe

Value

dataframe

plot.simaerep

pat_pool

Create a study specific patient pool for sampling

Description

Internal function for sim_sites, filter all visits greater than max_visit_med75_study returns dataframe with one column for studies and one column with nested patient data.

Usage

```
pat_pool(df_visit, df_site)
```

Arguments

```
df_visit dataframe, created by sim_sites
df_site dataframe created by site_aggr
```

Value

dataframe with nested pat_pool column

Examples

```
df_visit <- sim_test_data_study(
    n_pat = 100,
    n_sites = 5,
    frac_site_with_ur = 0.4,
    ur_rate = 0.6
)

df_visit$study_id <- "A"

df_site <- site_aggr(df_visit)

df_pat_pool <- pat_pool(df_visit, df_site)

df_pat_pool</pre>
```

plot.simaerep

plot AE under-reporting simulation results

Description

generic plot function for simaerep objects

plot.simaerep 17

Usage

```
## S3 method for class 'simaerep'
plot(
    x,
    ...,
    study = NULL,
    what = "ur",
    n_sites = 16,
    df_visit = NULL,
    env = parent.frame()
)
```

Arguments

X	simaerep object
	additional parameters passed to plot_study() or plot_visit_med75()
study	character specifying study to be plotted, Default: NULL
what	one of c("ur", "med75"), specifying whether to plot site AE under-reporting or visit_med75 values, Default: 'ur'
n_sites	number of sites to plot, Default: 16
df_visit	optional, pass original visit data if it cannot be retrieved from parent environment, Default: NULL
env	optional, pass environment from which to retrieve original visit data, Default: parent.frame()

Details

```
see plot_study() and plot_visit_med75()
```

Value

ggplot object

```
df_visit <- sim_test_data_study(
    n_pat = 100,
    n_sites = 5,
    frac_site_with_ur = 0.4,
    ur_rate = 0.6
)

df_visit$study_id <- "A"

aerep <- simaerep(df_visit)

plot(aerep, what = "ur", study = "A")
plot(aerep, what = "med75", study = "A")</pre>
```

18 plot_dots

plot_dots

Plots AE per site as dots.

Description

This plot is meant to supplement the package documentation.

Usage

```
plot_dots(
    df,
    nrow = 10,
    ncols = 10,
    col_group = "site",
    thresh = NULL,
    color_site_a = "#BDBDBD",
    color_site_b = "#757575",
    color_site_c = "gold3",
    color_high = "#00695C",
    color_low = "#25A69A",
    size_dots = 10
)
```

Arguments

```
df
                  dataframe, cols = c('site', 'patients', 'n_ae')
                  integer, number of rows, Default: 10
nrow
                  integer, number of columns, Default: 10
ncols
col_group
                  character, grouping column, Default: 'site'
thresh
                  numeric, threshold to determine color of mean_ae annotation, Default: NULL
color_site_a
                  character, hex color value, Default: '#BDBDBD'
color_site_b
                  character, hex color value, Default: '#757575'
color_site_c
                  character, hex color value, Default: 'gold3'
                  character, hex color value, Default: '#00695C'
color_high
                  character, hex color value, Default: '#25A69A'
color_low
size\_dots
                  integer, Default: 10
```

Value

ggplot object

plot_sim_example 19

Examples

```
study <- tibble::tibble(
    site = LETTERS[1:3],
    patients = c(list(seq(1, 50, 1)), list(seq(1, 40, 1)), list(seq(1, 10, 1)))
) %>%
    tidyr::unnest(patients) %>%
    dplyr::mutate(n_ae = as.integer(runif(min = 0, max = 10, n = nrow(.))))

plot_dots(study)
```

plot_sim_example

Plot simulation example.

Description

This plots supplements the package documentation.

Usage

```
plot_sim_example(
   substract_ae_per_pat = 0,
   size_dots = 10,
   size_raster_label = 12,
   color_site_a = "#BDBDBD",
   color_site_b = "#757575",
   color_site_c = "gold3",
   color_high = "#00695C",
   color_low = "#25A69A",
   title = TRUE,
   legend = TRUE,
   seed = 5
)
```

Arguments

```
substract_ae_per_pat
                  integer, subtract aes from patients at site C, Default: 0
size_dots
                  integer, Default: 10
size_raster_label
                  integer, Default: 12
                  character, hex color value, Default: '#BDBDBD'
color_site_a
                  character, hex color value, Default: '#757575'
color_site_b
color_site_c
                  character, hex color value, Default: 'gold3'
                  character, hex color value, Default: '#00695C'
color_high
color_low
                  character, hex color value, Default: '#25A69A'
```

20 plot_sim_examples

```
title logical, include title, Default: T
legend logical, include legend, Default: T
seed pass seed for simulations Default: 5
```

Details

uses plot_dots() and adds 2 simulation panels, uses made-up site config with three sites A,B,C simulating site C

Value

ggplot

See Also

```
get_legend,plot_grid
```

Examples

```
plot_sim_example(size_dots = 5)
```

plot_sim_examples

Plot multiple simulation examples.

Description

This plot is meant to supplement the package documentation.

Usage

```
plot_sim_examples(substract_ae_per_pat = c(0, 1, 3), ...)
```

Arguments

```
substract_ae_per_pat
integer, Default: c(0, 1, 3)
... parameters passed to plot_sim_example()
```

Details

This function is a wrapper for plot_sim_example()

Value

ggplot

plot_study 21

See Also

```
ggdraw,draw_label,plot_grid
```

Examples

```
plot_sim_examples(size_dot = 3, size_raster_label = 10)
plot_sim_examples()
```

plot_study

Plot ae development of study and sites highlighting at risk sites.

Description

Most suitable visual representation of the AE under-reporting statistics.

Usage

```
plot_study(
   df_visit,
   df_site,
   df_eval,
   study,
   df_al = NULL,
   n_sites = 16,
   pval = FALSE,
   prob_col = "prob_low_prob_ur"
)
```

Arguments

```
df_visit
                  dataframe, created by sim_sites()
df_site
                  dataframe created by site_aggr()
df_eval
                  dataframe created by eval_sites()
study
                  study
df_al
                  dataframe containing study_id, site_number, alert_level_site, alert_level_study
                  (optional), Default: NA
n_sites
                  integer number of most at risk sites, Default: 16
pval
                  logical show p-value, Default:FALSE
prob_col
                  character, denotes probability column, Default: "prob_low_prob_ur"
```

22 plot_visit_med75

Details

Left panel shows mean AE reporting per site (lightblue and darkblue lines) against mean AE reporting of the entire study (golden line). Single sites are plotted in descending order by AE underreporting probability on the right panel in which grey lines denote cumulative AE count of single patients. Grey dots in the left panel plot indicate sites that were picked for single plotting. AE under-reporting probability of dark blue lines crossed threshold of 95%. Numbers in the upper left corner indicate the ratio of patients that have been used for the analysis against the total number of patients. Patients that have not been on the study long enough to reach the evaluation point (visit_med75) will be ignored.

Value

ggplot

Examples

plot_visit_med75

Plot patient visits against visit_med75.

Description

Plots cumulative AEs against visits for patients at sites of given study and compares against visit_med75.

Usage

```
plot_visit_med75(
   df_visit,
   df_site = NULL,
   study_id_str,
   n_sites = 6,
   min_pat_pool = 0.2,
   verbose = TRUE
)
```

Arguments

df_visit dataframe

df_site dataframe, as returned by site_aggr()
study_id_str character, specify study in study_id column

n_sites integer, Default: 6

min_pat_pool double, minimum ratio of available patients available for sampling. Determines

maximum visit_med75 value see Details. Default: 0.2

verbose logical, Default: TRUE

Value

ggplot

Examples

```
poiss_test_site_ae_vs_study_ae
```

Poisson test for vector with site AEs vs vector with study AEs.

Description

Internal function used by sim_sites().

Usage

```
poiss_test_site_ae_vs_study_ae(site_ae, study_ae, visit_med75)
```

Arguments

site_ae vector with AE numbers study_ae vector with AE numbers

visit_med75 integer

Details

sets pvalue=1 if mean AE site is greater than mean AE study or ttest gives error

24 prep_for_sim

Value

pval

See Also

```
sim_sites()
```

Examples

```
poiss_test_site_ae_vs_study_ae(
    site_ae = c(5, 3, 3, 2, 1, 6),
    study_ae = c(9, 8, 7, 9, 6, 7, 8),
    visit_med75 = 10
)

poiss_test_site_ae_vs_study_ae(
    site_ae = c(11, 9, 8, 6, 3),
    study_ae = c(9, 8, 7, 9, 6, 7, 8),
    visit_med75 = 10
)
```

prep_for_sim

Prepare data for simulation.

Description

Internal function called by sim_sites. Collect AEs per patient at visit_med75 for site and study as a vector of integers.

Usage

```
prep_for_sim(df_site, df_visit)
```

Arguments

df_site dataframe created by site_aggr
df_visit dataframe, created by sim_sites

Value

dataframe

See Also

```
sim_sites, sim_after_prep
```

Examples

```
df_visit <- sim_test_data_study(
    n_pat = 100,
    n_sites = 5,
    frac_site_with_ur = 0.4,
    ur_rate = 0.2
)

df_visit$study_id <- "A"

df_site <- site_aggr(df_visit)

df_prep <- prep_for_sim(df_site, df_visit)

df_prep</pre>
```

```
prob_lower_site_ae_vs_study_ae
```

Calculate bootstrapped probability for obtaining a lower site mean AE number.

Description

Internal function used by sim_sites()

Usage

```
prob_lower_site_ae_vs_study_ae(
    site_ae,
    study_ae,
    r = 1000,
    parallel = FALSE,
    under_only = TRUE
)
```

Arguments

```
site_ae vector with AE numbers

study_ae vector with AE numbers

r integer, denotes number of simulations, default = 1000

parallel logical, toggles parallel processing on and of, default = F

under_only compute under-reporting probabilities only, default = TRUE
```

Details

sets pvalue=1 if mean AE site is greater than mean AE study

26 purrr_bar

Value

pval

See Also

```
safely
```

Examples

```
prob_lower_site_ae_vs_study_ae(
    site_ae = c(5, 3, 3, 2, 1, 6),
    study_ae = c(9, 8, 7, 9, 6, 7, 8),
    parallel = FALSE
)
```

purrr_bar

Execute a purrr or furrr function with a progress bar.

Description

Internal utility function.

Usage

```
purrr_bar(
    ...,
    .purrr,
    .f,
    .f_args = list(),
    .purrr_args = list(),
    .steps,
    .slow = FALSE,
    .progress = TRUE
)
```

Arguments

```
iterable arguments passed to .purrr
. . .
.purrr
                  purrr or furrr function
                  function to be executed over iterables
.f
                  list of arguments passed to .f, Default: list()
.f_args
                  list of arguments passed to .purrr, Default: list()
.purrr_args
.steps
                  integer number of iterations
.slow
                  logical slows down execution, Default: FALSE
                  logical, show progress bar, Default: TRUE
.progress
```

purrr_bar 27

Details

Call still needs to be wrapped in with_progress or with_progress_cnd()

Value

result of function passed to .f

```
# purrr::map
progressr::with_progress(
  purrr_bar(rep(0.25, 5), .purrr = purrr::map, .f = Sys.sleep, .steps = 5)
# purrr::walk
progressr::with_progress(
purrr_bar(rep(0.25, 5), .purrr = purrr::walk,.f = Sys.sleep, .steps = 5)
# progress bar off
progressr::with_progress(
 purrr_bar(
   rep(0.25, 5), .purrr = purrr::walk,.f = Sys.sleep, .steps = 5, .progress = FALSE
  )
)
# purrr::map2
progressr::with_progress(
  purrr_bar(
   rep(1, 5), rep(2, 5),
    .purrr = purrr::map2,
   .f = `+`,
    .steps = 5,
    .slow = TRUE
)
)
# purrr::pmap
progressr::with_progress(
  purrr_bar(
   list(rep(1, 5), rep(2, 5)),
    .purrr = purrr::pmap,
    .f = `+`,
    .steps = 5,
    .slow = TRUE
)
)
# define function within purr_bar() call
progressr::with_progress(
  purrr_bar(
```

28 simaerep

```
list(rep(1, 5), rep(2, 5)),
   .purrr = purrr::pmap,
   .f = function(x, y) {
    paste0(x, y)
   },
   .steps = 5,
   .slow = TRUE
)

# with mutate
progressr::with_progress(
   tibble::tibble(x = rep(0.25, 5)) %>%
   dplyr::mutate(x = purrr_bar(x, .purrr = purrr::map, .f = Sys.sleep, .steps = 5))
)
```

simaerep

Create simaerep object

Description

Simulate AE under-reporting probabilities.

Usage

```
simaerep(
  df_visit,
  r = 1000,
  check = TRUE,
  under_only = TRUE,
  visit_med75 = TRUE,
  inframe = FALSE,
  progress = TRUE,
  mult_corr = TRUE,
  param_site_aggr = list(method = "med75_adj", min_pat_pool = 0.2),
  param_sim_sites = list(r = 1000, poisson_test = FALSE, prob_lower = TRUE),
  param_eval_sites = list(method = "BH"),
  env = parent.frame()
)
```

Arguments

df_visit Data frame v

Data frame with columns: study_id, site_number, patnum, visit, n_ae.

r

Integer or tbl_object, number of repetitions for bootstrap simulation. Pass a tbl object referring to a table with one column and as many rows as desired repetitions. Default: 1000.

simaerep 29

```
Logical, perform data check and attempt repair with check_df_visit(). Com-
check
                  putationally expensive on large data sets. Default: TRUE.
                  Logical, compute under-reporting probabilities only. Supersedes under_only
under_only
                  parameter passed to eval_sites() and sim_sites(). Default: TRUE.
                  Logical, should evaluation point visit_med75 be used. Default: TRUE.
visit_med75
inframe
                  Logical, only table operations to be used; does not require visit_med75. Com-
                  patible with dbplyr supported database backends.
                  Logical, display progress bar. Default: TRUE.
progress
mult_corr
                  Logical, multiplicity correction, Default: TRUE
param_site_aggr
                  List of parameters passed to site_aggr(). Default: list(method = "med75_adj",
                  min_pat_pool = 0.2).
param_sim_sites
                  List of parameters passed to sim_sites(). Default: list(r = 1000, poisson_test)
                  = FALSE, prob_lower = TRUE).
param_eval_sites
                  List of parameters passed to eval_sites(). Default: list(method = "BH").
                  Optional, provide environment of original visit data. Default: parent.frame().
env
```

Details

Executes site_aggr(), sim_sites(), and eval_sites() on original visit data and stores all intermediate results. Stores lazy reference to original visit data for facilitated plotting using generic plot(x).

Value

A simaerep object.

See Also

```
site_aggr(), sim_sites(), eval_sites(), orivisit(), plot.simaerep()
site_aggr(), sim_sites(), eval_sites(), orivisit(), plot.simaerep()
```

```
df_visit <- sim_test_data_study(
    n_pat = 100,
    n_sites = 5,
    frac_site_with_ur = 0.4,
    ur_rate = 0.6
)
df_visit$study_id <- "A"
aerep <- simaerep(df_visit)
aerep
str(aerep)
# In-frame table operations</pre>
```

30 sim_after_prep

```
simaerep(df_visit, inframe = TRUE, visit_med75 = FALSE, under_only = FALSE)$df_eval
simaerep(df_visit, inframe = TRUE, visit_med75 = TRUE, under_only = FALSE)$df_eval
# Database example
con <- DBI::dbConnect(duckdb::duckdb(), dbdir = ":memory:")
df_r <- tibble::tibble(rep = seq(1, 1000))
dplyr::copy_to(con, df_visit, "visit")
dplyr::copy_to(con, df_r, "r")
tbl_visit <- dplyr::tbl(con, "visit")
tbl_r <- dplyr::tbl(con, "r")
simaerep(tbl_visit, r = tbl_r, inframe = TRUE, visit_med75 = FALSE, under_only = FALSE)$df_eval
simaerep(tbl_visit, r = tbl_r, inframe = TRUE, visit_med75 = TRUE, under_only = FALSE)$df_eval
DBI::dbDisconnect(con)</pre>
```

sim_after_prep

Start simulation after preparation.

Description

Internal function called by sim_sites after prep_for_sim

Usage

```
sim_after_prep(
   df_sim_prep,
   r = 1000,
   poisson_test = FALSE,
   prob_lower = TRUE,
   progress = FALSE,
   under_only = TRUE
)
```

Arguments

df_sim_prep dataframe as returned by prep_for_sim

r integer, denotes number of simulations, default = 1000

poisson_test logical, calculates poisson.test pvalue

prob_lower logical, calculates probability for getting a lower value

progress logical, display progress bar, Default = TRUE

under_only compute under-reporting probabilities only, default = TRUE check_df_visit(),

computationally expensive on large data sets. Default: TRUE

Value

dataframe

sim_inframe 31

See Also

```
sim_sites, prep_for_sim
```

Examples

```
df_visit <- sim_test_data_study(
    n_pat = 100,
    n_sites = 5,
    frac_site_with_ur = 0.4,
    ur_rate = 0.2
)

df_visit$study_id <- "A"

df_site <- site_aggr(df_visit)

df_prep <- prep_for_sim(df_site, df_visit)

df_sim <- sim_after_prep(df_prep)

df_sim</pre>
```

sim_inframe

Calculate prob_lower for study sites using table operations

Description

Calculate prob_lower for study sites using table operations

Usage

```
sim_inframe(df_visit, r = 1000, df_site = NULL)
```

Arguments

df_visit	Data frame with columns: study_id, site_number, patnum, visit, n_ae.	
r	Integer or tbl_object, number of repetitions for bootstrap simulation. Pass a tbl object referring to a table with one column and as many rows as desired repetitions. Default: 1000.	
df_site	dataframe as returned be site_aggr(), Will switch to visit_med75. Default: NULL	

32 sim_scenario

Examples

```
df_visit <- sim_test_data_study(
    n_pat = 100,
    n_sites = 5,
    frac_site_with_ur = 0.4,
    ur_rate = 0.6
)
df_visit$study_id <- "A"

df_sim <- sim_inframe(df_visit)
df_eval <- eval_sites(df_sim)
df_eval</pre>
```

sim_scenario

simulate single scenario

Description

internal function called by simulate_scenarios()

Usage

```
sim_scenario(n_ae_site, n_ae_study, frac_pat_with_ur, ur_rate)
```

Arguments

Value

list

sim_sites 33

sim_sites

Calculate prob_lower and poisson.test pvalue for study sites.

Description

Collects the number of AEs of all eligible patients that meet visit_med75 criteria of site. Then calculates poisson.test pvalue and bootstrapped probability of having a lower mean value.

Usage

```
sim_sites(
  df_site,
  df_visit,
  r = 1000,
  poisson_test = TRUE,
  prob_lower = TRUE,
  progress = TRUE,
  check = TRUE,
  under_only = TRUE
)
```

Arguments

progress logical, display progress bar, Default = TRUE

check logical, perform data check and attempt repair with

under_only compute under-reporting probabilities only, default = TRUE check_df_visit(),

computationally expensive on large data sets. Default: TRUE

Value

dataframe with the following columns:

```
study_id study identification
site_number site identification
n_pat number of patients at site
visit_med75 median(max(visit)) * 0.75
n_pat_with_med75 number of patients at site with med75
mean_ae_site_med75 mean AE at visit_med75 site level
```

34 sim_studies

```
mean_ae_study_med75 mean AE at visit_med75 study level
n_pat_with_med75_study number of patients at study with med75 excl. site
pval p-value as returned by poisson. test
prob_low bootstrapped probability for having mean_ae_site_med75 or lower
```

See Also

```
sim_sites, site_aggr, pat_pool, prob_lower_site_ae_vs_study_ae, poiss_test_site_ae_vs_study_ae,
sim_sites, prep_for_sim
```

Examples

```
df_visit <- sim_test_data_study(
    n_pat = 100,
    n_sites = 5,
    frac_site_with_ur = 0.4,
    ur_rate = 0.2
)

df_visit$study_id <- "A"

df_site <- site_aggr(df_visit)

df_sim_sites <- sim_sites(df_site, df_visit, r = 100)

df_sim_sites %>%
    knitr::kable(digits = 2)
```

sim_studies

Simulate studies.

Description

Test function, test applicability of poisson test, by calculating a the bootstrapped probability of obtaining a specific p-value or lower, use in combination with get_ecd_values().

Usage

```
sim_studies(
  df_visit,
  df_site,
  r = 100,
  poisson_test = TRUE,
  prob_lower = TRUE,
  r_prob_lower = 1000,
  under_only = TRUE,
  parallel = FALSE,
  keep_ae = FALSE,
```

sim_studies 35

```
min_n_pat_with_med75 = 1,
  studies = NULL,
  .progress = TRUE
)
```

Arguments

	df_visit	dataframe
	df_site	dataframe
	r	integer, denotes number of simulations, Default: 1000
	poisson_test	logical, calculates poisson.test pvalue, Default: TRUE
	prob_lower	logical, calculates probability for getting a lower value, Default: FALSE
	r_prob_lower	integer, denotes number of simulations for prob_lower value calculation,, Default: 1000
	under_only	compute under-reporting probabilities only, default = TRUE
	parallel	logical, see examples for registering parallel processing framework , Default: \ensuremath{FALSE}
	keep_ae	logical, keep ae numbers in output dataframe memory increase roughly 30 percent, Default: F
min_n_pat_with_med75		
		integer, min number of patients with med75 at site to simulate, Default: 1
	studies	vector with study names, Default: NULL
	.progress	logical, show progress bar

Details

Here we simulate study replicates maintaining the same number of sites, patients and visit_med75 by bootstrap resampling, then probabilities for obtaining lower or same mean_ae count and p-values using poisson.test are calculated.

adds column with simulated probabilities for equal or lower mean_ae at visit_med75

Value

dataframe

```
df_visit <- dplyr::bind_rows(df_visit1, df_visit2)

df_site <- site_aggr(df_visit)

sim_studies(df_visit, df_site, r = 3, keep_ae = TRUE)

## Not run:
# parallel processing ------
library(future)
future::plan(multiprocess)
sim_studies(df_visit, df_site, r = 3, keep_ae = TRUE, parallel = TRUE)
future::plan(sequential)

## End(Not run)</pre>
```

sim_test_data_patient simulate patient ae reporting test data

Description

helper function for sim_test_data_study()

Usage

```
sim_test_data_patient(
   .f_sample_max_visit = function() rnorm(1, mean = 20, sd = 4),
   .f_sample_ae_per_visit = function(max_visit) rpois(max_visit, 0.5)
)
```

Arguments

```
. f\_sample\_max\_visit \\ function used to sample the maximum number of aes, Default: function() rnorm(1, \\ mean = 20, sd = 4) \\ . f\_sample\_ae\_per\_visit \\ function used to sample the aes for each visit, Default: function(x) rpois(x, 0.5) \\
```

Details

""

Value

vector containing cumulative aes

Examples

```
replicate(5, sim_test_data_patient())
replicate(5, sim_test_data_patient(
    .f_sample_ae_per_visit = function(x) rpois(x, 1.2))
)
replicate(5, sim_test_data_patient(
    .f_sample_max_visit = function() rnorm(1, mean = 5, sd = 5))
)
```

sim_test_data_portfolio

Simulate Portfolio Test Data

Description

Simulate visit level data from a portfolio configuration.

Usage

```
sim_test_data_portfolio(
   df_config,
   df_ae_rates = NULL,
   parallel = FALSE,
   progress = TRUE
)
```

Arguments

df_config dataframe as returned by get_config df_ae_rates dataframe with ae rates. Default: NULL

parallel logical activate parallel processing, see details, Default: FALSE

progress logical, Default: TRUE

Details

uses sim_test_data_study. We use the furrr package to implement parallel processing as these simulations can take a long time to run. For this to work we need to specify the plan for how the code should run, e.g. 'plan(multisession, workers = 3)

Value

dataframe with the following columns:

```
study_id study identification
ae_per_visit_mean mean AE per visit per study
site_number site
```

```
max_visit_sd standard deviation of maximum patient visits per site
max_visit_mean mean of maximum patient visits per site
patnum number of patients
visit visit number
n_ae cumulative sum of AEs
```

See Also

sim_test_data_study get_config sim_test_data_portfolio sim_ur_scenarios get_portf_perf

```
df_visit1 <- sim_test_data_study(n_pat = 100, n_sites = 10,</pre>
                                   frac_site_with_ur = 0.4, ur_rate = 0.6)
df_visit1$study_id <- "A"</pre>
df_visit2 <- sim_test_data_study(n_pat = 100, n_sites = 10,</pre>
                                   frac_site_with_ur = 0.2, ur_rate = 0.1)
df_visit2$study_id <- "B"</pre>
df_visit <- dplyr::bind_rows(df_visit1, df_visit2)</pre>
df_site_max <- df_visit %>%
  dplyr::group_by(study_id, site_number, patnum) %>%
  dplyr::summarise(max_visit = max(visit),
            max_ae = max(n_ae),
             .groups = "drop")
df_config <- get_config(df_site_max)</pre>
df_config
df_portf <- sim_test_data_portfolio(df_config)</pre>
df_portf
df_scen <- sim_ur_scenarios(df_portf,</pre>
                              extra_ur_sites = 2,
                              ur_rate = c(0.5, 1)
df_scen
df_perf <- get_portf_perf(df_scen)</pre>
df_perf
```

sim_test_data_study 39

Description

evenly distributes a number of given patients across a number of given sites. Then simulates ae development of each patient reducing the number of reported AEs for patients distributed to AE-under-reporting sites.

Usage

```
sim_test_data_study(
    n_pat = 1000,
    n_sites = 20,
    frac_site_with_ur = 0,
    ur_rate = 0,
    max_visit_mean = 20,
    max_visit_sd = 4,
    ae_per_visit_mean = 0.5,
    ae_rates = NULL
)
```

Arguments

```
integer, number of patients, Default: 1000
n_pat
n_sites
                  integer, number of sites, Default: 20
frac_site_with_ur
                  fraction of AE under-reporting sites, Default: 0
                  AE under-reporting rate, will lower mean ae per visit used to simulate patients
ur_rate
                  at sites flagged as AE-under-reporting. Negative Values will simulate over-
                  reporting., Default: 0
max_visit_mean mean of the maximum number of visits of each patient, Default: 20
                  standard deviation of maximum number of visits of each patient, Default: 4
max_visit_sd
ae_per_visit_mean
                  mean ae per visit per patient, Default: 0.5
                  vector with visit-specific ae rates, Default: Null
ae_rates
```

Details

maximum visit number will be sampled from normal distribution with characteristics derived from max_visit_mean and max_visit_sd, while the ae per visit will be sampled from a poisson distribution described by ae_per_visit_mean.

Value

```
tibble with columns site_number, patnum, is_ur, max_visit_mean, max_visit_sd, ae_per_visit_mean, visit, n_ae
```

40 sim_ur

Examples

sim_ur

simulate under-reporting

Description

we remove a fraction of AEs from a specific site

Usage

```
sim_ur(df_visit, study_id, site_number, ur_rate)
```

Arguments

```
df_visit dataframe
study_id character
site_number character
ur_rate double
```

Details

we determine the absolute number of AEs per patient for removal. Then them remove them at the first visit. We intentionally allow fractions

sim_ur_scenarios 41

sim_ur_scenarios Simulate Under-Reporting Scenarios

Description

Use with simulated portfolio data to generate under-reporting stats for specified scenarios.

Usage

```
sim_ur_scenarios(
  df_portf,
  extra_ur_sites = 3,
  ur_rate = c(0.25, 0.5),
  r = 1000,
  poisson_test = FALSE,
  prob_lower = TRUE,
  parallel = FALSE,
  progress = TRUE,
  site_aggr_args = list(),
  eval_sites_args = list(),
  check = TRUE
```

Arguments

```
df_portf
                  dataframe as returned by sim_test_data_portfolio
extra_ur_sites numeric, set maximum number of additional under-reporting sites, see details
                  Default: 3
                  numeric vector, set under-reporting rates for scenarios Default: c(0.25, 0.5)
ur_rate
                  integer, denotes number of simulations, default = 1000
                  logical, calculates poisson.test pvalue
poisson_test
prob_lower
                  logical, calculates probability for getting a lower value
                  logical, use parallel processing see details, Default: FALSE
parallel
progress
                  logical, show progress bar, Default: TRUE
site_aggr_args
                  named list of parameters passed to site_aggr, Default: list()
eval_sites_args
                  named list of parameters passed to eval_sites, Default: list()
                  logical, perform data check and attempt repair with
check
```

Details

The function will apply under-reporting scenarios to each site. Reducing the number of AEs by a given under-reporting (ur_rate) for all patients at the site and add the corresponding under-reporting statistics. Since the under-reporting probability is also affected by the number of other sites that are

42 sim_ur_scenarios

under-reporting we additionally calculate under-reporting statistics in a scenario where additional under reporting sites are present. For this we use the median number of patients per site at the study to calculate the final number of patients for which we lower the AEs in a given under-reporting scenario. We use the furrr package to implement parallel processing as these simulations can take a long time to run. For this to work we need to specify the plan for how the code should run, e.g. plan(multisession, workers = 18)

Value

```
dataframe with the following columns:
study_id study identification
site_number site identification
n_pat number of patients at site
n_pat_with_med75 number of patients at site with visit_med75
visit med75 median(max(visit)) * 0.75
mean ae site med75 mean AE at visit med75 site level
mean_ae_study_med75 mean AE at visit_med75 study level
n pat with med75 study number of patients at site with visit med75 at study excl site
extra_ur_sites additional sites with under-reporting patients
frac_pat_with_ur ratio of patients in study that are under-reporting
ur_rate under-reporting rate
pval p-value as returned by poisson.test
prob_low bootstrapped probability for having mean_ae_site_med75 or lower
pval_adj adjusted p-values
prob_low_adj adjusted bootstrapped probability for having mean_ae_site_med75 or lower
pval_prob_ur probability under-reporting as 1 - pval_adj, poisson.test (use as benchmark)
prob_low_prob_ur probability under-reporting as 1 - prob_low_adj, bootstrapped (use)
```

See Also

```
sim_test_data_study get_config sim_test_data_portfolio sim_ur_scenarios get_portf_perf
```

site_aggr 43

```
df_visit <- dplyr::bind_rows(df_visit1, df_visit2)</pre>
df_site_max <- df_visit %>%
  dplyr::group_by(study_id, site_number, patnum) %>%
  dplyr::summarise(max_visit = max(visit),
            max_ae = max(n_ae),
            .groups = "drop")
df_config <- get_config(df_site_max)</pre>
df_config
df_portf <- sim_test_data_portfolio(df_config)</pre>
df_portf
df_scen <- sim_ur_scenarios(df_portf,</pre>
                              extra_ur_sites = 2,
                              ur_rate = c(0.5, 1)
df_scen
df_perf <- get_portf_perf(df_scen)</pre>
df_perf
```

site_aggr

Aggregate from visit to site level.

Description

Calculates visit_med75, n_pat_with_med75 and mean_ae_site_med75

Usage

```
site_aggr(df_visit, method = "med75_adj", min_pat_pool = 0.2, check = TRUE)
```

Arguments

df_visit	dataframe with columns: study_id, site_number, patnum, visit, n_ae
method	character, one of c("med75", "med75_adj") defining method for defining evaluation point visit_med75 (see details), Default: "med75_adj"
min_pat_pool	double, minimum ratio of available patients available for sampling. Determines maximum visit_med75 value see Details. Default: 0.2
check	logical, perform data check and attempt repair with check_df_visit(), computationally expensive on large data sets. Default: TRUE

44 with_progress_cnd

Details

For determining the visit number at which we are going to evaluate AE reporting we take the maximum visit of each patient at the site and take the median. Then we multiply with 0.75 which will give us a cut-off point determining which patient will be evaluated. Of those patients we will evaluate we take the minimum of all maximum visits hence ensuring that we take the highest visit number possible without excluding more patients from the analysis. In order to ensure that the sampling pool for that visit is large enough we limit the visit number by the 80% quantile of maximum visits of all patients in the study.

Value

```
dataframe with the following columns:
```

```
study_id study identification
site_number site identification
n_pat number of patients, site level
visit_med75 adjusted median(max(visit)) * 0.75 see Details
n_pat_with_med75 number of patients that meet visit_med75 criterion, site level
mean_ae_site_med75 mean AE at visit_med75, site level
```

Examples

```
df_visit <- sim_test_data_study(
    n_pat = 100,
    n_sites = 5,
    frac_site_with_ur = 0.4,
    ur_rate = 0.6
)

df_visit$study_id <- "A"

df_site <- site_aggr(df_visit)

df_site %>%
    knitr::kable(digits = 2)
```

with_progress_cnd

Conditional with_progress.

Description

Internal function. Use instead of with_progress within custom functions with progress bars.

Usage

```
with_progress_cnd(ex, progress = TRUE)
```

with_progress_cnd 45

Arguments

ex expression

progress logical, Default: TRUE

Details

This wrapper adds a progress parameter to with_progress so that we can control the progress bar in the user facing functions. The progressbar only shows in interactive mode.

Value

No return value, called for side effects

See Also

```
with_progress
```

```
if (interactive()) {
 with_progress_cnd(
  purrr_bar(rep(0.25, 5), .purrr = purrr::map, .f = Sys.sleep, .steps = 5),
   progress = TRUE
 )
 with_progress_cnd(
   purrr_bar(rep(0.25, 5), .purrr = purrr::map, .f = Sys.sleep, .steps = 5),
  progress = FALSE
 )
# wrap a function with progress bar with another call with progress bar
f1 <- function(x, progress = TRUE) {</pre>
  with_progress_cnd(
  purrr_bar(x, .purrr = purrr::walk, .f = Sys.sleep, .steps = length(x), .progress = progress),
    progress = progress
  )
}
# inner progress bar blocks outer progress bar
progressr::with_progress(
  purrr_bar(
   rep(rep(1, 3), 3), .purrr = purrr::walk, .f = f1, .steps = 3,
    .f_args = list(progress = TRUE)
  )
)
# inner progress bar turned off
progressr::with_progress(
  purrr_bar(
```

46 with_progress_cnd

```
rep(list(rep(0.25, 3)), 5), .purrr = purrr::walk, .f = f1, .steps = 5,
    .f_args = list(progress = FALSE)
)
)
)
}
```

Index

aggr_duplicated_visits, 3	<pre>plot_study(), 17 plot_visit_med75, 22</pre>	
<pre>check_df_visit, 3</pre>	plot_visit_med75(), 11, 15, 17	
check_df_visit(), 3–5, 29, 30, 33, 43	poiss_test_site_ae_vs_study_ae, 23, 34	
, , , , , , , , , , , , , , , , , , ,	poisson.test, 5, 34, 42	
draw_label, 21	prep_for_sim, 24, 30, 31, 34	
	prob_lower_site_ae_vs_study_ae, 25, 34	
eval_sites, 4, <i>41</i>	purrr_bar, 26	
eval_sites(), <i>21</i> , <i>29</i>	puri i _bar, 20	
<pre>exp_implicit_missing_visits, 5</pre>	safely, 26	
	sim_after_prep, 24, 30	
get_config, 6, 6, 10, 37, 38, 42	sim_inframe, 31	
<pre>get_ecd_values, 7</pre>	sim_scenario, 32	
<pre>get_ecd_values(), 34</pre>	sim_sites, 4, 5, 16, 24, 30, 31, 33, 33, 34	
get_legend, 20	sim_sites(), 8, 9, 21, 23–25, 29	
<pre>get_pat_pool_config, 9</pre>	sim_studies, 34	
get_portf_perf, 6, 10, 10, 38, 42	sim_studies(), 7, 8	
<pre>get_site_mean_ae_dev, 11</pre>	sim_test_data_patient, 36	
<pre>get_visit_med75, 12</pre>	sim_test_data_portfolio, 6, 10, 37, 38, 41	
ggdraw, <i>21</i>	42	
in anivinit 12	sim_test_data_study, 6, 10, 37, 38, 39, 42	
is_orivisit, 12	<pre>sim_test_data_study(), 36</pre>	
is_simaerep, 13	sim_ur,40	
max_rank, 13	sim_ur_scenarios, 6, 10, 38, 41, 42	
max_r arm, 15	simaerep, 28	
orivisit, 14	site_aggr, 5, 16, 24, 33, 34, 41, 43	
orivisit(), 29	site_aggr(), 11, 12, 15, 21, 23, 29, 31	
p.adjust, 4, 5	with_progress, 27, 44, 45	
pat_aggr, 15	with_progress_cnd, 44	
pat_aggr(), <i>12</i>	with_progress_cnd(),27	
pat_pool, 16, 34		
plot.simaerep, 16		
plot.simaerep(), 29		
plot_dots, 18		
plot_dots(), 20		
plot_grid, 20, 21		
plot_sim_example, 19		
plot_sim_examples, 20		
plot_study, 21		