Машинное обучение

Лекция 4 Метрики качества классификации

Михаил Гущин

mhushchyn@hse.ru

На прошлой лекции

Модель логистической регрессии:

$$\hat{y} = \sigma(Xw)$$

Функция потерь log-loss:

$$L = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i))$$

ightharpoonup Мы хотим минимизировать L:

$$L \rightarrow \min_{w}$$

Градиентный спуск:

$$w^{(k+1)} = w^{(k)} - \eta \nabla L(w^{(k)})$$

План

- Матрица ошибок (Confusion matrix)
- ▶ Доля правильных ответов (Accuracy)
- Точность (Precision)
- ► Полнота (Recall)
- ► F₁-мера
- ROC кривая
- Precision-Recall кривая

Матрица ошибок

Задача

Рассмотрим задачу бинарной классификации для некоторого набора данных.

Цель – **оценить качество классификатора**, определить как
хорошо он разделяет объекты разных
классов.

Матрица ошибок (confusion matrix)

- **TP** (True Positive) правильно предсказанные 1
- **FP** (False Positive) предсказанные как **1**, но правильно **0** (ошибка 1го рода)
- **TN** (True Negative) правильно предсказанные 0
- FN (False Negative) предсказанные как **0**, но правильно **1** (ошибка 2го рода)

PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

POSITIVE (1) NEGATIVE (0)

TP	FN
FP	TN

Михаил Гущин, НИУ ВШЭ

Матрица ошибок (confusion matrix)

- TP (True Positive) правильно предсказанные 1
- ► **FP** (False Positive) предсказанные как **1**, но правильно **0** (ошибка 1го рода)
- ► TN (True Negative) правильно предсказанные **0**
- ► **FN** (False Negative) предсказанные как **0**, но правильно **1** (ошибка 2го рода)

Матрица ошибок (confusion matrix)

Bce 1 (*Pos*):

$$Pos = TP + FN$$

► Bce **0** (*Neg*):

$$Neg = TN + FP$$

▶ Все прогнозы 1 (*PosPred*):

$$PosPred = TP + FP$$

Все прогнозы 0 (NegPred):

$$NegPred = TN + FN$$

Метрики

Доля правильных ответов (accuracy)

Accuracy:

Accuracy =
$$\frac{TP + TN}{TP + FN + TN + FP} = \frac{TP + TN}{Pos + Neg}$$

Error rate:

Error rate
$$= 1 - Accuracy$$

▶ Измеряет долю верных прогнозов во всех классах

Точность (precision)

Precison:

$$Precison = \frac{TP}{TP + FP} = \frac{TP}{PosPred}$$

Показывает какая доля прогнозов 1 правильная

Пример: предсказали 100 объектов класса 1, но только 90 прогнозов верны. Тогда точность = 0.9.

Полнота (recall)

Recall:

$$Recall = \frac{TP}{TP + FN} = \frac{TP}{Pos}$$

▶ Показывает какую долю настоящих 1 классификатор предсказал правильно.

Пример: в данных 50 объектов класса 1, классификатор правильно предсказал 40 этих объектов. Тогда полнота = 0.8.

F-мера

 $ightharpoonup F_1$ -score:

$$F_1 = \frac{2 \cdot \text{Precison} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

▶ Показывает среднее геометрическое точности и полноты

Пример

Metric	Value
Accuracy	0.89
Precision	0.89
Recall	0.89
F_1	0.89

- В этом простом симметричном примере все метрики равны
- Далее увидим другие примеры

ROC кривая

Метка класса vs вероятность класса

Прогноз **1** если $p \ge 0.5$ Прогноз **0** если p < 0.5

Вероятность клааса **1** p:

ROC кривая

РОС (Receiver operating characteristic) кривая – зависимость $TPR(\mu)$ от $FPR(\mu)$ для разных пороговых значений μ вероятности p

 $ightharpoonup TPR(\mu)$ (True Positive Rate):

$$TPR(\mu) = \frac{1}{Pos} \sum_{i \in Pos} I[p_i \ge \mu] = \frac{TP(\mu)}{Pos}$$

 \blacktriangleright *FPR*(μ) (False Positive Rate):

$$FPR(\mu) = \frac{1}{Neg} \sum_{i \in Neg} I[p_i \ge \mu] = \frac{FP(\mu)}{Neg}$$

ROC кривая

ROC AUC

 Можно сравнивать классификаторы с помощью площади под ROC кривой (ROC AUC)

- ▶ ROC AUC \in [0, 1]
- ► ROC AUC = 0.5 случайные прогнозы
- ► ROC AUC = 1 идеальный классификатор
- ► ROC AUC = 0 тоже идеальный классификатор, то с противоположными ответами [©]

lmg: https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/

Индекс Джини

► Gini:

$$Gini = 2 (ROC AUC) - 1$$

▶ Измеряется в диапазоне от 0 до 1

Михаил Гущин, НИУ ВШЭ

Precision-Recall кривая

- ► По аналогии с ROC кривой, можно построить Precision-Recall (PR) кривую
- РR зависимость $Precision(\mu)$ от $Recall(\mu)$ для разных пороговых значений μ вероятности p

Демонстрация

Metric	1:1	1:10	10:1
Accuracy	0.89		
Precision	0.89		
Recall	0.89		
F_1	0.89		
ROC AUC	0.97		

- Обучили модель на сбалансированной выборке
- Фиксируем модель и будем менять баланс классов

Демонстрация

Metric	1:1	1:10	10:1
Accuracy	0.89	0.89	
Precision	0.89	0.99	
Recall	0.89	0.89	
F_1	0.89	0.94	
ROC AUC	0.97	0.97	

Значения некоторых метрик меняются при смене баланса классов

Демонстрация

Metric	1:1	1:10	10:1
Accuracy	0.89	0.89	0.89
Precision	0.89	0.99	0.47
Recall	0.89	0.89	0.89
F_1	0.89	0.94	0.61
ROC AUC	0.97	0.97	0.97

- Recall и ROC AUC устойчивы к дисбалансу классов
- Для Accuracy это не выполняется в общем случае

Заключение

Резюме

- Матрица ошибок (Confusion matrix)
- ▶ Доля правильных ответов (Accuracy)
- Точность (Precision)
- ► Полнота (Recall)
- ► F₁-мера
- ROC кривая
- Precision-Recall кривая

Вопросы

- Что такое точность, полнота и F-мера?
- Что такое AUC-ROC? Опишите алгоритм построения ROC-кривой.

Михаил Гущин, НИУ ВШЭ