多スピッ1つの希での実験 (111) スセン状態(一)コラ(かりの粒子に一) 一ア スセックを製造する ○Sxを到定→新果はかららず、一 ·Sze≡则定→結果は猶幸的 獨学言zi个or レ ・現明定結果(ナー・レ)は現定するまで、ままらちに ・ここでのるを幸は(針んの無知を表わすのでなく)本質のちる選挙 二小は普遍の考え方ではまける。 普通の考え方・物理量の個(たとえは、ア・ハレ)は形でが、気が良いるとてもままっている ・我には剽虐前は物理量の値はあるず、到常にてたる。 (日常的なできごと(裏返はたトランプ·・・)はすかととう。 、古典和理学(Newton力学, 更观点, 相对弱,...)でも二の考えが通用なく もし「背道の考えが正しいららしつ〉という記述は不完全・「陽れた変数」があるはす" (Eistein, Padolsky, Rosen 1935)

松子原

到1定235

(量子力学公「局所实在性」)

DSx色测定→結果はかららず。→ DSz色测定→結果は確率的 確率之 z' 个 or レ

二の実験結果を「普通の考工方」(院内上支数)と、再式ですまか? → Yes

アミウトを変めてデル (ただのなり)

- ・粒子が、松子をでるとき(一、个)がるな子」でできましまれる

ポーカ スピチョアをじょう。 (ラ, 「) か (カリカ ハローン
$$\lambda=2$$
 入 (O_X,O_2)
 (三別定結果は三別3前1からちゃんと三尺まって113) (-2) (-2) たしかに 上の実験結果を再現。 2 (-2) (-2)

も、とかやこしり状況を考えたらと、うちいろう?

多エンタングルした2つのスセッンでの実験

Bo = \$4/£-235

地子原的 2つの 粒子 巨 反対 方 lo に うち出し、 といせ い につ lo 2 スピッの まだ に (1) 「里。 >= 一 (1)、 | し)、 |

													٠, ٠
_	\sim		_		_	- (7	$\overline{}$	_	\sim	~	-Q	
10	- 1 '	۱ ، ۔	- 12	$y_1 \propto c$	Ç	~(\		\leq	F. '	/\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	خ	$\neg \omega$	1:4
هيا		1 Y) <i>/</i>) \	(>	_	U	2	_	~~	• 1-1
	·	٠. –											• •)

1 B	確幸
	1/2
	1/2

DACBN" C"TSE SXEERIE

) B	確幸
	1/2
	1 1/2

まず、Aが到1定し个一到定後の状態り/12=点り/(1-)2-16元り ==zi Bが Sxを到1定かは、確率1/2 zi つ。c ←

J₂ A B 7曜章 ↑ → 1/4 ↑ ← 1/4 ↓ → 1/4 ↓ ← 1/4

(Bが我に国り定すると考えても) 全と同じ系規

Aprisz Borsz Aprisz, Borsz A, Brefis A, Brefis 5 A B REF A B REF A B 確率 A B 確率 $\uparrow \qquad \rightarrow \qquad 1/4 \qquad \rightarrow \qquad 1/4$ $\uparrow \qquad \downarrow \qquad |1/2 \qquad \rightarrow \qquad |1/2 \qquad |$ 114 - 114 - 114 1/2 $\leftarrow \rightarrow 1/2$ U 1 → 1 1/4 1 C 1 1/4 1 - C - 114 - C - 114 この実験結果を「路山た変数のモデルで、再規できるか? → Yes! | 粒 3 1 | 粒 3 2 大山子のハッアがうち出せいるときに λ (O_X, O_Z) (O_X, O_Z) 入=[,2,3,4の11ずゆかかい 雅寺 1/4 2" 「書きこまれる」 $(\rightarrow, \downarrow)$ (\leftarrow, \uparrow) $3 \left(\leftarrow, \downarrow \right) \left(\rightarrow, \uparrow \right)$ 主意 このモデ(しか正しいと言,2113の2)はるい! (4) (\leftarrow, \uparrow) $(\rightarrow, \downarrow)$ ニのモディレン、この実験の結果は 再起できるというだけ、

・様元方複雑な実験」を考え、との結果を再現する現れた変数のモデルをつくる。

(自然な)だいた変観では意め

量子为学也完全上同心新编证? 与了了隐的正爱的理论已为c3

· John Bell 1964 里の発想

まともないので変数のモデルではかならず成分の関係をみつける

どれかい、王皇帝ではかからうかとうかを言からる

(情報が一瞬で透くまで石からなり)

多八川の不等すど局所安在上生

可設定

A 国现定是35 粒子1につける物理量A1,A2

粒子2につける物理量B、B、B2 のと、ちらかを三則定(結果は土1)

aとうらかを三則定(結果は土1)

といちらも当りるかは、粒子をうける直前にラッからに来ぬる、 (4加理量の選択が、粒子の状態、もうな人の三型に発展に影響を与えなり)

▶三別定結集(何度もCリ返す)

 A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7} A_{1} A_{1} A_{2} A_{3} A_{4} A_{5} A_{6} A_{7} A_{1} A_{1} A_{1} A_{2} A_{3} A_{4} A_{5} A_{5} A_{5} A_{6} A_{7} A_{1} A_{1} A_{1} A_{2} A_{3} A_{5} A_{5

ト同様にはすが2のバ,jの発用について(ÂiB;)をすでめる
(2) $C=\langle\hat{A}_1\hat{B}_1\rangle+\langle\hat{A}_2\hat{B}_1\rangle-\langle\hat{A}_1\hat{B}_2\rangle+\langle\hat{A}_2\hat{B}_2\rangle$

BがBにBzのというらを受りるかの産代は $\lambda = A_1(\lambda) = A_2(\lambda) = B_1(\lambda) = B_2(\lambda)$ 1 + 1 + 1 + 1 + 1 + 1 $A_1(\lambda), A_2(\lambda) = 影響 (51)!$ $A_1(\lambda), A_2(\lambda) = 影響 (51)!$ AがAIJAZのどうらを製物の選択は 局部坐(情報は一瞬では位からるり) 入はどのようなルールで言れまってもより N回的常题のうち λ が、出于回数 $N(\lambda)$ λ の出現頻度 $Y(\lambda) = \frac{N(\lambda)}{N}$ ものすごく一般的なモデル。こうなんでも説明できょう 主意「隐水应爱数」はもっと為難できまれ、Â1,Â2,B1,B2の個でけか 同題なので、それによって16個のかにつかに分けて、かにつかに入との行けた

2)路水压宽截的干产化で成分立了一般的在不等式(Bello不等式)

▲ λ1=52 A1, A2, B1, B2の 現(定語果は完全に来る)

◆ 松子对的"発生打除口「隐山在发数」入=1,2,…,16 か"暑于127h3」

相関関数の表式

10

(1)
$$(\hat{A}_1 \hat{B}_2) = \frac{1}{N_{12}} \sum_{N=1}^{N_{12}} A_1(\lambda_N) B_2(\lambda_N)$$

$$= \sum_{\lambda=1}^{16} A_{I}(\lambda) B_{2}(\lambda) \frac{N_{I2}(\lambda)}{N_{I2}} \xrightarrow{N_{I}(\lambda)} \sum_{\lambda=1}^{16} A_{I}(\lambda) B_{2}(\lambda) Y(\lambda)$$

$$A \subset B \text{ si } A_{I}, A_{2} \text{ #31110 } B_{I}, B_{2} \text{ or } C \subset B \text{ #35110 } B$$

$$\lambda \subset B \text{ find } C \subset B \text{ find } C$$

(ア(h)= N(h) (は)の出現境度/

Nが十分に大きければ、すか、この に、)=1,2につ113

$$(2) \langle \hat{A}_i \hat{B}_j \rangle = \sum_{\lambda} A_i(\lambda) B_j(\lambda) \Gamma(\lambda)$$

三角不等立' (1) $|x-y| \leq |x|+|y|$ $\forall x,y \in \mathbb{R}$ 住意の入についる (2) $\left\{ \left\{ A_{l}(\lambda) + A_{z}(\lambda) \right\} B_{l}(\lambda) - \left\{ A_{l}(\lambda) - A_{z}(\lambda) \right\} B_{z}(\lambda) \right\}$ AI AZ AITAZ AI-AZ +1 +1 2 0 2 $\leq |\{A_i(\lambda) + A_2(\lambda)\}B_i(\lambda)| + |\{A_i(\lambda) - A_2(\lambda)\}B_2(\lambda)|$ -1 +1 D -2 O $= |A_{l}(\lambda) + A_{2}(\lambda)| + |A_{l}(\lambda) - A_{2}(\lambda)| = 2$ $f_{3}^{2} = 2 \leq A_{1}(\lambda)B_{1}(\lambda) + A_{2}(\lambda)B_{1}(\lambda) - A_{1}(\lambda)B_{2}(\lambda) + A_{2}(\lambda)B_{2}(\lambda) \leq 2$ (4) $\langle \hat{A}_i \hat{B}_j \rangle = \sum_{\lambda} A_i(\lambda) B_j(\lambda) r(\lambda) f'$ $(5) - 2 \le (\hat{A}_1 \hat{B}_1) + (\hat{A}_2 \hat{B}_1) - (\hat{A}_1 \hat{B}_2) + (\hat{A}_2 \hat{B}_2) \le 2$ Clauser-Horne-Shimony-Holt(CHSH)不等才(Bella不等才の改造版)

不等する事出

CHSH不等才の意味

(1) $C = \langle \hat{A}_1 \hat{B}_1 \rangle + \langle \hat{A}_2 \hat{B}_1 \rangle - \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{B}_2 \rangle = \langle \hat{B}_2 \rangle = \langle \hat{B}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{B}_2 \hat{B}_2 \rangle = \langle \hat{B}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{B}_2 \hat{B}_2 \rangle = \langle \hat{B}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{B}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat{B}_2 \rangle = \langle \hat{A}_1 \hat{B}_2 \rangle + \langle \hat{A}_2 \hat$ $(2) \quad -12 \leq C \leq 2$

局的生(情報は一瞬では行うるり)を仮定した「強いた変数」の理論では

かならず成り立つまでりまえの不等す 出の主皇の「実在」生」

局所性+实在心生巨影的内心、CHSH不等对这么对对立。

奥際にあたりまえ、

ACBの到它結果がいった完全に一致CZIIZCZ. (AiBi)=1 52 C=1+1-1+1=2

ACBの割定結果がUDも正反対などき $(\hat{A}_i \hat{B}_j) = -1$ $f_{32} C = -(-(-i) - i) = -2$ etc.

13

3 量子力学によける具体はいの角状が

スピッを動催 細子類 スピッを動催 知子類 (1)
$$| \Phi_0 \rangle = \sqrt{| (1/2 - 1/2 - 1/2) | ($$

(2) $\hat{A}_{\hat{i}} = \frac{2}{\hbar} \left(\cos \theta_{\hat{i}} \, \hat{S}_{z}^{(i)} + \sin \theta_{\hat{i}} \, \hat{S}_{x}^{(i)} \right)$ $(\hat{i}=1,2)$

(3)
$$\hat{B}_{j} = \frac{2}{h} \{\cos 9_{j} \hat{S}_{z}^{Q} + \sin 9_{j} \hat{S}_{x}^{Q} \}$$
 $(j=1,2)$ \hat{Z}_{x}^{Q} $\hat{A}_{i} \hat{B}_{j} = \frac{2}{h} \{\cos 9_{j} \hat{S}_{z}^{Q} + \sin 9_{j} \hat{S}_{x}^{Q} \}$ $(j=1,2)$ \hat{Z}_{x}^{Q} $\hat{A}_{i} \hat{B}_{j} = \frac{2}{h} \{\cos 9_{j} \hat{S}_{z}^{Q} + \sin 9_{j} \hat{S}_{x}^{Q} \}$ $(j=1,2)$ \hat{Z}_{x}^{Q} $\hat{A}_{i} \hat{B}_{j} = \frac{2}{h} \{\cos 9_{j} \hat{S}_{x}^{Q} + \sin 9_{j} \hat{S}_{x}^{Q} \}$ $(j=1,2)$ \hat{Z}_{x}^{Q} $\hat{A}_{i} \hat{B}_{j} = \frac{2}{h} \{\cos 9_{j} \hat{S}_{x}^{Q} + \sin 9_{j} \hat{S}_{x}^{Q} \}$ $(j=1,2)$

期待便の計算 (1) [里。)= 点
$$\{ |\uparrow\rangle, |\downarrow\rangle_2 - |\downarrow\rangle, |\downarrow\rangle_2$$
 (2) (里。)= 点 $\{ \langle \downarrow \downarrow | \langle \uparrow \uparrow - \langle \uparrow \uparrow \rangle |\downarrow \rangle \}$ (3) (里。)= 点 $\{ \langle \downarrow \downarrow | \langle \uparrow \uparrow - \langle \uparrow \uparrow \rangle |\downarrow \rangle \}$ $A_iB_i \{ \uparrow \uparrow \rangle, |\downarrow\rangle_2 - |\downarrow\rangle, |\uparrow\rangle_2$ $= \frac{1}{2} \{ \langle \uparrow \uparrow A_i |\uparrow \rangle \langle \downarrow \uparrow B_i |\downarrow \rangle - \langle \uparrow \uparrow A_i |\downarrow \rangle \langle \downarrow \uparrow B_i |\downarrow \rangle - \langle \uparrow \uparrow A_i |\downarrow \rangle \langle \downarrow \uparrow B_i |\downarrow \rangle$

 $(5) \hat{A}_{i} = \begin{pmatrix} \cos\theta_{i} & \sin\theta_{i} \\ \sin\theta_{i} & -\cos\theta_{i} \end{pmatrix}$

(5)
$$Ai - (\sin \theta i - \cos \theta i)$$

(1) $Ai (\uparrow) = \cos \theta i$
(1) $Ai (\downarrow) = -\cos \theta i$
(MAi (\downarrow) = $(\downarrow) Ai (\uparrow) = \sin \theta i$

B;1=>112€ B ()

$$= \frac{1}{2} \left(\langle \Lambda \hat{A}_{\lambda} | \Lambda \rangle \langle J | \hat{B}_{\beta} | J \rangle - \langle \Lambda | \hat{A}_{\lambda} | J \rangle \langle J | \hat{B}_{\beta} | \Lambda \rangle \right)$$

$$- \langle J | \hat{A}_{\lambda} | \Lambda \rangle \langle \Lambda | \hat{B}_{\beta} | J \rangle + \langle J | \hat{A}_{\lambda} | J \rangle \langle \Lambda | \hat{B}_{\beta} | \Lambda \rangle \right)$$

$$= \frac{1}{2} \left\{ -\cos\theta_{\lambda}\cos\theta_{\beta} - \sin\theta_{\lambda}\sin\theta_{\beta} - \sin\theta_{\lambda}\sin\theta_{\beta} - \cos\theta_{\lambda}\cos\theta_{\beta} \right\}$$

(1)
$$\langle \hat{A}_{i} \hat{B}_{j} \rangle = -\cos(\theta_{i} - \theta_{j})$$

(2) $\theta_{i} = 0$ $\theta_{2} = \frac{\pi}{2}$ $\theta_{i} = \frac{\pi}{4}$ $\theta_{2} = \frac{3}{4}\pi \times \hat{B}_{i}$

(3) $\langle \hat{A}_{i} \hat{B}_{i} \rangle = -\cos(-\frac{\pi}{4}) = -\frac{1}{\sqrt{2}}$

(4) $\hat{A}_{i} \hat{B}_{i} = -\cos(-\frac{\pi}{4}) = -\frac{1}{\sqrt{2}}$

(5) $\hat{A}_{i} \hat{B}_{i} = -\cos(-\frac{\pi}{4}) = -\frac{1}{\sqrt{2}}$

$$(3) \langle \hat{A}_{1} \hat{B}_{1} \rangle = -\cos \left(-\frac{\pi}{4} \right) = -\frac{1}{12}$$

$$(4) \langle \hat{A}_{2} \hat{B}_{1} \rangle = -\cos \left(\frac{\pi}{4} \right) = -\frac{1}{12}$$

$$(5) \langle \hat{A}_{2} \hat{B}_{2} \rangle = -\cos \left(-\frac{\pi}{4} \right) = -\frac{1}{12}$$

$$(6) \langle \hat{A}_{1} \hat{B}_{2} \rangle = -\cos \left(-\frac{3}{4}\pi \right) = \frac{1}{12} > 0$$

$$(6) \langle \hat{A}_{1} \hat{B}_{2} \rangle = -\cos \left(-\frac{3}{4}\pi \right) = \frac{1}{12} > 0$$

$$(7) C = \langle \hat{A}_{1} \hat{B}_{1} \rangle + \langle \hat{A}_{2} \hat{B}_{1} \rangle - \langle \hat{A}_{1} \hat{B}_{2} \rangle + \langle \hat{A}_{2} \hat{B}_{2} \rangle = -\frac{4}{12} = -2\sqrt{2}$$

CHSH不等式10 1C1 ≤ 2 /

不再足(期待他吃去寸) p13-(4) を使ってより建田 17 À: Â, Â, a 113'ha B: B, B, B, a 113'ha (1) $\hat{A}[Y_a]_1 = a|Y_a|_1$ $(a=\pm 1)$ $\hat{B}[Y_b]_2 = b|Y_b|_2$ $(b=\pm 1)$ 全状原を (2) (中。)= 2, Cab (9a), (4b)2 と展前 Dまず名を割定 る電子 Pa= ∑ |Cab|2 z" a=1181"元5いる. 到定後の状態(3) $|\Phi_a\rangle = \left(\sum_{b=1}^{L} |C_{ab}|^2\right)^{-1/2} \sum_{b=+}^{L} |C_{ab}|^2$ DCREBを到定 確等 (\(\Sigma | Cab|^2\) | (Cab|^2 z" b==1/か2543. のよって到定話果のりかの得られる確率は「Cable 期待使日 (4) 〈AB)= $\sum_{ab} |C_{ab}|^2 = \langle \Psi_a | \hat{A} \hat{B} | \Psi_a \rangle$

のAとBを測定する順番をかえても同じ、

18

Spin-singlet 1里。) E用11年具体例

- ·量子为学。結論 C=-2√2 ~ -2.8
- ・局所性をもう「陽htを変数」の母為の結論 ICIS2

事見1 この具体何川ころ112の量子力学の結論はどれなに複雑なる所性をもつ「隠れた気数」の理論を使っても再現できなり

(量子が学と整合する「限めた変数」の理論をつくりたけかは、人角所は上はまきらぬるしかでし)。

CHSH不等了的石质的巨大的配力了更繁

o Aspect 他 1982 光子E用()石桌额 (C(>2) E報告

Hensen 16 2015 "Loophole-Free Bell inequality violation using electron spins separated by 1.3 kilometers" I-A-MICCT=電子2でシの出版電を用112 [Cl 22.42 I 0.20 を存在ら

われわれの世界ではCHSH不等すでは成立Cちり

事度2 どんなに為難な局所性をもう限めた変数の理論」を使っても お水かれの世界を言と近することはできる!!

的二的世界以局所更在1上至去,左理論では来,LZ 記述できる」)

手が生皇の他は三別定しなくても定まっている。 音通の考え」 → 1清報が一届で虚C = 伝わることはあり