1.Summary Document on VILA[1]

1.1 Key Points

Focus: VILA explores pre-training strategies for VLMs, enhancing the alignment between visual and textual modalities.

Objective: To integrate vision capabilities into LLMs while preserving text-only functionalities.

Architecture: Utilizes an auto-regressive design where visual tokens are processed like textual tokens, making it a flexible and unified framework for multi-modal inputs.

Applications: Excels in vision-language tasks such as Visual Question Answering (VQA), caption generation, and multi-image reasoning.

1.2 Technical Contributions

Pre-training Strategies:

- Demonstrates that fine-tuning LLMs during visual language pre-training is critical for deep embedding alignment and in-context learning.
- Highlights the benefits of using interleaved image-text datasets, which maintain better alignment and minimize text-only capability degradation compared to plain image-text pairs.

Data Blending:

- Reintroduces text-only instruction data during supervised fine-tuning to recover degraded text-only capabilities and boost VLM task performance.
- Proposes blending interleaved datasets with image-text pairs to enhance diversity and downstream task accuracy.

Performance:

- Consistently outperforms state-of-the-art models like LLaVA-1.5 across multiple benchmarks.
- Demonstrates robust multi-image reasoning and improved world knowledge retention.

Efficiency:

 Employs scalable techniques like resolution adjustments and lightweight projection layers for better performance-cost trade-offs.

1.3 Areas for Improvement

Scaling:

- Limited pre-training data (~50M images) compared to billion-scale datasets used in other works.
- Expanding the training dataset could further improve results.

Instruction Dataset Quality:

 While effective, the instruction-tuning dataset could benefit from greater diversity and higher quality prompts.

Edge Deployment:

 Although deployable on devices like Jetson Orin, the current model size may still pose challenges for resource-constrained environments.

Generalization:

 While VILA retains competitive text-only capabilities, smaller models show more degradation, indicating room for improvement in preserving text-only skills during pre-training.

2. Efficiency Optimization Report: Dynamic Token Pruning in Transformer Models

2.1. Introduction

Transformer models are computationally expensive due to their high reliance on token-level computations in self-attention and feedforward layers. Reducing these costs while maintaining accuracy is critical for deploying efficient models in real-world scenarios. This report documents the process of identifying, optimizing, and evaluating efficiency bottlenecks in a transformer model using **Dynamic Token Pruning**.

2.2 Efficiency Bottleneck Identification

2.2.1 Profiling Results

We performed profiling on a baseline transformer model to identify the primary efficiency bottlenecks. The results are summarized below:

Major Bottlenecks:

- Self-Attention Layers: Dominant contributor to FLOPs and computational time.
- Feedforward Layers (Linear Layers): Responsible for secondary computational costs.

Baseline Model FLOPs and Time

FLOPs: 12.908G

CUDA Time: 12.490ms

2.2.2 Conclusion

The inefficiency arises from redundant computations on tokens that contribute little to the final model output. To address this, we focus on optimizing token usage through **Dynamic Token Pruning**.

2.3 Optimization Method: Dynamic Token Pruning

2.3.1 Overview

Dynamic Token Pruning is a method that adaptively removes tokens with low relevance (as measured by saliency scores) from computation. This reduces the sequence length dynamically during inference, leading to significant FLOPs and time savings.

2.3.2 Algorithm

- 1. **Compute Saliency Scores**: Each token's importance is estimated using its L2 norm.
- 2. **Generate Token Mask**: Tokens with saliency scores below a predefined threshold are pruned.
- 3. **Layer-Wise Pruning**: Pass the remaining tokens to the next transformer
- 4. **Final Classification**: Aggregate the output from all active tokens.

2.3.3Pseudo Code

```
class PrunedTransformerEncoder(nn.Module):
    def forward(self, src):
        keep_tokens = torch.ones(src.shape[:2], device=src.device).bool()
    for i, layer in enumerate(self.layers):
        saliency = self.token_pruning.compute_saliency(src)
        keep_tokens = keep_tokens & (saliency > self.token_pruning.saliency_threshold)
        src = layer(src, keep_tokens=keep_tokens)
    return src
```

2.3.4 Implementation Details

Saliency Score: Computed as the L2 norm of each token vector.

Threshold: Adjustable parameter (e.g., 13.0 in this implementation).

Token Mask: Dynamically updated across layers, preserving only the most relevant tokens.

2.4 Results and Evaluation

2.4.1 Accuracy

The optimized model maintains the same accuracy as the baseline:

Baseline Model Accuracy: 52.5%

Pruned Model Accuracy: 52.5%

2.4.2 FLOPs and Time Comparison

Model	FLOPs	CUDA Time	FLOPs Reduction	Time Reduction
Baseline	12.908G	12.490ms	-	-
Pruned	8.874G	9.968ms	31.2%	20.2%

The pruning method significantly reduces FLOPs and computational time while preserving accuracy.

2.4.3 Profiling Results

Baseline Model

• FLOPs: 12.908G

CUDA Memory Usage: 72.02MB

• CUDA Time: 12.490ms

Pruned Model

• FLOPs: 8.874G

• CUDA Memory Usage: 72.02MB

• CUDA Time: 9.968ms

2.4.4 Efficiency Analysis

Dynamic Token Pruning successfully reduces computation while maintaining the accuracy of the model. Profiling indicates that FLOPs and execution time reductions are most prominent in the self-attention layers.

2.5 Discussion and Considerations

2.5.1 Strengths

Efficiency Gains:

- Reduced FLOPs and execution time, achieving over 31.2% FLOPs reduction.
- Preserves accuracy on binary classification tasks.

Scalability:

• The pruning method is layer-wise and dynamic, allowing integration into large-scale models.

2.5.2 Limitations

Static Threshold: The saliency threshold is fixed, which may not generalize well across diverse datasets.

Evaluation on Toy Data: While accuracy is maintained on simulated tasks, real-world datasets may require further validation.

2.6 Conclusion

This report demonstrates the feasibility of **Dynamic Token Pruning** in optimizing transformer efficiency. By dynamically reducing sequence length through saliency-based pruning, we achieved:

- 1. Significant reductions in FLOPs and execution time.
- 2. Maintenance of accuracy on a binary classification task.

Future work will involve validating this approach on larger datasets and exploring adaptive thresholds for saliency computation.

Reference:

[1] Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo Molchanov, Andrew Tao, Huizi Mao, Jan Kautz, Mohammad Shoeybi, and Song Han. Vila: On pre-training for visual language models, 2023.

Appendix:

Github links:

https://github.com/ADglory/ECE1512_2024F_ProjectB_PartB_Repo_YingshunLu_Minghao-Ma

Codes:

```
11
       1. Introduce necessary dependencies
12
13
14
       !pip install fvcore
15
16
       import torch
       import torch.nn as nn
17
18
       import torch.nn.functional as F
19
       from fvcore.nn import FlopCountAnalysis, flop_count_table
       import torch.profiler as profiler
20
21
       from torch.utils.data import DataLoader, TensorDataset
       from copy import deepcopy
22
       """2. Token Saliency computing module"""
24
26 v class TokenSaliency(nn.Module):
27
28
           Compute saliency scores for visual tokens based on their contribution.
29
30
           def __init__(self, method="norm"):
31
               super(TokenSaliency, self).__init__()
               self.method = method
32
33
34 V
         def forward(self, tokens):
35
36
              Args:
37
                 tokens: Tensor of shape (B, N, D), where
                         B = Batch size,
                         N = Number of tokens,
39
                         D = Dimension of each token.
40
41
             Returns:
                 saliency_scores: Tensor of shape (B, N), saliency scores for each token.
42
43
44
              if self.method == "norm":
45
                  saliency_scores = tokens.norm(dim=-1) # Use L2 norm
46
47
                  raise ValueError(f"Unsupported method: {self.method}")
              return saliency_scores
50
      """3. Adaptive Token pruning module"""
51
52
53 v class AdaptiveTokenPruning(nn.Module):
         def __init__(self, saliency_threshold=0.5):
54
55
              super(AdaptiveTokenPruning, self).__init__()
56
              self.saliency_threshold = saliency_threshold
          def forward(self, x):
60
              Compute token saliency and generate a pruning mask.
61
             saliency_scores = self.compute_saliency(x)
62
             keep_tokens = saliency_scores > self.saliency_threshold
63
              return keep_tokens
64
65
```

```
66 V
          def compute_saliency(self, x):
67
               Compute saliency scores (e.g., L2 norm across embedding dimensions).
68
              saliency_scores = x.norm(p=2, dim=-1) # Shape: (batch_size, seq_len)
70
              return saliency_scores
73
       """4. Pruned Transformer Encoder"""
75 ∨ class PrunedTransformerEncoder(nn.Module):
77
           Transformer encoder with token pruning capability.
78
          def __init__(self, encoder_layer, num_layers, saliency_threshold=0.5):
79
80
               super().__init__()
               self.layers = nn.ModuleList([deepcopy(encoder_layer) for _ in range(num_layers)])
81
               self.token pruning = AdaptiveTokenPruning(saliency threshold=saliency threshold)
82
83
           def forward(self, src):
84 🗸
85
86
               Forward pass with token pruning.
87
                  src: Input tensor of shape (batch_size, seq_len, d_model).
88
89
               Returns:
90
                 Output tensor after pruning.
91
92
               batch_size, seq_len, d_model = src.shape
93
              keep_tokens = torch.ones((batch_size, seq_len), device=src.device).bool() # Initialize with all True
94
               for i, layer in enumerate(self.layers):
95
                  # Calculate saliency scores
                  saliency = self.token_pruning.compute_saliency(src)
97
99
                     # Update keep_tokens
100
                     new_keep_tokens = (saliency > self.token_pruning.saliency_threshold)
                     keep_tokens = keep_tokens & new_keep_tokens # Retain the accumulated crop state
101
102
103
                     # Dynamically crop the input tensor
104
                     pruned_src = []
105
                     pruned_keep_tokens = []
106
                     for batch_idx in range(batch_size):
107
                         active_token_indices = keep_tokens[batch_idx].nonzero(as_tuple=True)[0]
108
                         pruned_src.append(src[batch_idx, active_token_indices])
109
110
                         pruned_keep_tokens.append(keep_tokens[batch_idx, active_token_indices])
111
                     # Update src and keep_tokens with the trimmed tensor
112
113
                     src = torch.nn.utils.rnn.pad_sequence(pruned_src, batch_first=True)
114
                     keep_tokens = torch.nn.utils.rnn.pad_sequence(pruned_keep_tokens, batch_first=True)
115
116
                     # Print debugging information
                     print(f"Layer {i}: Active tokens per batch = {[len(t) for t in pruned_src]}")
117
118
                     # Pass the clipped tensor to the next layer
119
120
                     src = layer(src)
```

```
121
122
                return src
123
        """5. FLOPs evaluation tool"""
124
125
126
        from fvcore.nn import FlopCountAnalysis, flop_count_table
127
128
        def calculate_dynamic_flops(model, x, keep_tokens):
129
130
            Calculate FLOPs dynamically based on active tokens.
131
                model: The pruned Transformer model.
132
                x: Input tensor of shape (batch_size, seq_len, d_model).
133
                keep_tokens: Boolean tensor indicating active tokens for the pruned model.
134
            ....
135
136
            # Get the maximum number of active tokens
            active_tokens = keep_tokens.sum(dim=1).max().item()
137
            x = x[:, :active_tokens, :] # Crop to active Token
138
139
            flops = FlopCountAnalysis(model, x)
            print(flop_count_table(flops))
140
141
        """6. Memory usage evaluation tool"""
142
143
144 🗸
        def profile_memory_and_time_safe(model, input_tensor):
145
146
            Profile memory and time for the given model and input.
147
            Args:
                model: PyTorch model to profile.
148
                input tensor: Tensor input to pass through the model.
149
150
151
            try:
152
                with torch.profiler.profile(
153
                     activities=[
                         torch.profiler.ProfilerActivity.CPU,
154
                         torch.profiler.ProfilerActivity.CUDA,
155
156
                     ],
157
                     record_shapes=True,
158
                     profile_memory=True,
                     with_stack=False, # Disable stack tracing to reduce possible conflicts
159
                ) as prof:
160
161
                     model(input_tensor) # Perform model forward propagation
                 print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))
162
             except RuntimeError as e:
163
                 print(f"Profiler failed: {e}")
164
165
        """7. Model accuracy evaluation"""
166
```

```
167
168 <a href="mailto:def">def</a> evaluate_model_accuracy(model, train_data, train_labels, test_data, test_labels):
169
            Train and evaluate model accuracy on a toy dataset.
170
            Args:
171
                 model: PyTorch model to evaluate.
172
173
                 train data, train labels, test data, test labels: Dataset tensors.
174
175
            # Make sure the shape of the label is 1D
176
            train_labels = train_labels.squeeze()
             test_labels = test_labels.squeeze()
177
178
179
            model.train()
180
             # Dataset and DataLoader
181
182
            train_dataset = TensorDataset(train_data, train_labels)
             test_dataset = TensorDataset(test_data, test_labels)
183
            train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
184
             test_loader = DataLoader(test_dataset, batch_size=16)
185
186
187
             # Optimizer and Loss
            optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
188
189
            loss_fn = nn.CrossEntropyLoss()
190
             # Training loop
191
             for epoch in range(5):
192
193
                 for inputs, labels in train_loader:
194
                     inputs, labels = inputs.cuda(), labels.cuda()
                     optimizer.zero_grad()
195
196
                     outputs = model(inputs)
                     outputs = outputs.mean(dim=1)
197
                     loss = loss fn(outputs, labels)
198
                      loss.backward()
199
200
                      optimizer.step()
201
             # Evaluation loop
202
             model.eval()
203
             correct, total = 0, 0
204
             with torch.no_grad():
205
                  for inputs, labels in test loader:
206
                      inputs, labels = inputs.cuda(), labels.cuda()
207
208
                      outputs = model(inputs)
209
                      outputs = outputs.mean(dim=1)
                      _, predicted = torch.max(outputs, 1)
210
211
                      total += labels.size(0)
212
                      correct += (predicted == labels).sum().item()
```

```
213
214
             accuracy = 100 * correct / total
215
             print(f"Accuracy: {accuracy:.2f}%")
216
         from fvcore.nn import FlopCountAnalysis, flop_count_table
217
218
219 v def evaluate_pruned_model(baseline_model, pruned_model, test_data):
220
             Compare baseline and pruned models in terms of FLOPs and active token efficiency.
221
222
             Args:
                 baseline_model: The baseline Transformer model.
                 pruned_model: The pruned Transformer model.
224
                test_data: Sample input tensor for efficiency evaluation.
225
226
             print("=== Baseline Model Efficiency ===")
             flops_baseline = FlopCountAnalysis(baseline_model, test_data)
228
             print(flop_count_table(flops_baseline))
229
230
231
             print("\n=== Pruned Model Efficiency ===")
232
             # Assuming the PrunedTransformerEncoder dynamically prunes tokens
233
             with torch.no_grad():
234
                 pruned_outputs = pruned_model[0](test_data) # Get the intermediate result of PrunedTransformer
                 active_tokens = pruned_outputs.shape[1] # The number of valid tokens remaining
235
236
                 flops pruned = FlopCountAnalysis(pruned model, test data[:, :active tokens, :])
                 print(flop_count_table(flops_pruned))
237
238
239
         """8. Prepare the data set"""
240
241 ∨ def prepare_data():
242
243
            Prepare simulated toy dataset for training and testing.
244
               train_data, train_labels, test_data, test_labels
246
247
            train_data = torch.rand(1000, 128, 512).cuda() # 1000 samples, 128 tokens, 512 dimensions
248
            train_labels = torch.randint(0, 2, (1000,), dtype=torch.long).cuda() # Make sure it's a 1D long integral tensor
            test_labels = torch.randint(0, 2, (200,), dtype=torch.long).cuda()
249
250
            test_data = torch.rand(200, 128, 512).cuda() # 200 samples for testing
251
            return train_data, train_labels, test_data, test_labels
253
        train data, train labels, test data, test labels = prepare data()
        print(train_data.shape, train_labels.shape)
254
255
        """9. Define the model"""
256
257
        # Keep the SimpleClassifierHead class
258
259 ∨ class SimpleClassifierHead(nn.Module):
260
            A simple classification head for transformer output.
261
263
            def init (self, input dim, num classes):
                super(SimpleClassifierHead, self). init ()
264
265
                self.fc = nn.Linear(input_dim, num_classes)
266
267
            def forward(self, x):
268
                return self.fc(x)
```

```
270
271
        # TransformerEncoderLayerWithPruning class
272 	✓ class TransformerEncoderLayerWithPruning(nn.TransformerEncoderLayer):
273
            A customized TransformerEncoderLayer that supports dynamic token skipping.
274
275
            def __init__(self, *args, **kwargs):
                super().__init__(*args, **kwargs)
278
279 🗸
            def forward(self, src, src_mask=None, src_key_padding_mask=None, keep_tokens=None):
280
281
                Args:
282
                   src: Input tensor of shape (batch_size, seq_len, d_model).
283
                   keep_tokens: Boolean tensor of shape (batch_size, seq_len).
284
                if keep_tokens is not None:
285
286
                    # Dynamically crop the tensor shape, keeping only tokens marked True
                    batch_size, seq_len, d_model = src.shape
287
                    active indices = keep tokens.nonzero(as tuple=True) # Gets the index of active tokens
288
                   max_active_tokens = keep_tokens.sum(dim=1).max().item() # Maximum number of active tokens
289
                   pruned_src = torch.zeros(batch_size, max_active_tokens, d_model, device=src.device)
290
291
                   for batch_idx in range(batch_size):
292
                       active_token_indices = keep_tokens[batch_idx].nonzero(as_tuple=True)[0]
293
                       pruned_src[batch_idx, :len(active_token_indices)] = src[batch_idx, active_token_indices]
294
295
296
                    src = pruned src # Update to the clipped tensor
297
298
                # A forward method that passes the trimmed tensor to the parent class
299
                return super().forward(src, src_mask, src_key_padding_mask)
300
301
302
303
304
         # create_models function
306 ∨ def create models():
              ....
307
             Create baseline and pruned Transformer models, each with a classification head.
308
309
              Returns:
310
                  baseline_model, pruned_model
311
312
              num_classes = 2 # dichotomy
313
314
             # Baseline model
315
              baseline_encoder = nn.TransformerEncoderLayer(d_model=512, nhead=8)
              baseline transformer = nn.TransformerEncoder(baseline encoder, num layers=2).cuda()
316
              baseline model = nn.Sequential(
317
318
                  baseline transformer,
319
                  SimpleClassifierHead(input_dim=512, num_classes=num_classes).cuda()
320
              )
```

269

```
321
322
            # Pruned model
323
            pruned_encoder = TransformerEncoderLayerWithPruning(d_model=512, nhead=8)
            pruned transformer = PrunedTransformerEncoder(pruned encoder, num layers=2, saliency threshold=13.0).cuda()
324
325
            pruned_model = nn.Sequential(
326
                pruned transformer,
                SimpleClassifierHead(input_dim=512, num_classes=num_classes).cuda()
327
328
329
330
            return baseline_model, pruned_model
331
332
        baseline_model, pruned_model = create_models()
        print(baseline model)
333
        print(pruned_model)
335
336
        input_tensor = torch.rand(16, 128, 512).cuda()
337
338
        pruned outputs = pruned model[0](input tensor)
339
        print(f"Output shape after pruning: {pruned_outputs.shape}")
340
341
        saliency_scores = pruned_model[0].token_pruning.compute_saliency(input_tensor)
342
        print(f"Saliency scores range: {saliency_scores.min().item()} - {saliency_scores.max().item()}")
343
344
        keep\_tokens = pruned\_model[@].token\_pruning.compute\_saliency(input\_tensor) > pruned\_model[@].token\_pruning.saliency\_threshold
345
        print(f"Keep tokens mask (sample batch): {keep_tokens[0].cpu().numpy()}")
346
347
        """10. Evaluate model accuracy"""
348
349 v def compare_models_accuracy(baseline_model, pruned_model, train_data, train_labels, test_data, test_labels):
350
            Compare accuracy of baseline and pruned models.
351
352
            print("\n=== Baseline Model Accuracy ===")
353
            evaluate model accuracy(baseline model, train data, train labels, test data, test labels)
354
355
            print("\n=== Pruned Model Accuracy ===")
356
            evaluate_model_accuracy(pruned_model, train_data, train_labels, test_data, test_labels)
358
359
        compare_models_accuracy(baseline_model, pruned_model, train_data, train_labels, test_data, test_labels)
360
        """11.FLOPs versus memory performance"""
361
362
363
        from torch.profiler import profile, ProfilerActivity
        from fvcore.nn import FlopCountAnalysis, flop_count_table
364
365
366 ∨ def calculate_dynamic_flops_and_profile(pruned_model, input_tensor):
367
368
            Calculate dynamic FLOPs and memory usage for the pruned model.
369
            Args:
370
               pruned_model: Model with dynamic token pruning.
371
               input_tensor: Input tensor.
372
373
             # Dynamic computing FLOPs
            print("\n=== Pruned Model ===")
374
             flops pruned = FlopCountAnalysis(pruned model, input tensor)
375
376
            print(flop_count_table(flops_pruned))
378
             # Dynamic profile memory and time
379
             with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
                 _ = pruned_model(input_tensor)
380
381
             print(prof.key_averages().table(sort_by="cuda_time_total"))
382
```

```
383 v def compare_efficiency(baseline_model, pruned_model):
384
385
            Compare FLOPs and memory usage for baseline and pruned models.
386
           baseline_model, pruned_model: Models to compare.
"""
387
388
389
           input_tensor = torch.rand(16, 128, 512).cuda() # Simulated input: batch size=16, tokens=128, dim=512
390
391
           # FLOPs and performance evaluation of Baseline Model
392
           print("\n=== Baseline Model ===")
393
           flops_baseline = FlopCountAnalysis(baseline_model, input_tensor)
394
           print(flop_count_table(flops_baseline))
395
           profile_memory_and_time_safe(baseline_model, input_tensor)
396
           # Pruned Model dynamic FLOPs and performance evaluation
397
            calculate_dynamic_flops_and_profile(pruned_model, input_tensor)
398
399
       compare_efficiency(baseline_model, pruned_model)
400
```