Evolução gramatical: exemplo

Profa Ana Carolina Lorena ITA Outubro 2019

Considere a gramática de expressões G = (V, Σ , P, S):

```
V = \{< \exp>, < op>, < var> \}
\Sigma = \{+, -, *, /, x, y\}
S = < \exp>
P = \{< \exp> ::= < \exp> < op> < exp> | < var> < op> ::= +, -, /, *
< var> ::= x | y \}
```

Exemplo de cromossomo:

<exp> ::= <exp><op><exp></exp></op></exp></exp>	<var></var>
<op>::= +, -, /, *</op>	
<var> ::= x y</var>	

Derivações	Escolha de regra	Regra aplicada
<exp></exp>	4 % 2 = 0	<exp>::=<exp><op><exp></exp></op></exp></exp>
<exp></exp> <op><exp></exp></op>	15 % 2 = 1	<exp>::=<var></var></exp>
<var></var> <op><exp></exp></op>	75 % 2 = 1	<var>::=y</var>
y <op></op> <exp></exp>	8 % 4 = 0	<op>::= +</op>
y+ <exp></exp>	41 % 2 = 1	<exp>::=<var></var></exp>
y+ <var></var>	12 % 2 = 0	<var>::=x</var>
y+x		

Exemplo de cromossomo:

C2: [6, 10, 255, 7, 50, 35]

<exp>::= <exp><op><exp></exp></op></exp></exp>	<var></var>
<op>::= +, -, /, *</op>	
<var> ::= x y</var>	

Derivações	Escolha de regra	Regra aplicada
<exp></exp>	6 % 2 = 0	<exp>::=<exp><op><exp></exp></op></exp></exp>
<exp></exp> <op><exp></exp></op>	10 % 2 = 0	<exp>::=<exp><op><exp></exp></op></exp></exp>
<exp></exp> <op><exp><exp></exp></exp></op>	255 % 2 = 1	<exp>::=<var></var></exp>
<var></var> <op><exp><op><exp></exp></op></exp></op>	7 % 2 = 1	<var>::= y</var>
y <op></op> <exp><op><exp></exp></op></exp>	50 % 4 = 2	<op>::=/</op>
y/ <exp></exp> <op><exp></exp></op>	35 % 2 = 1	<exp>::=<var></var></exp>
y/ <var></var> <op><exp></exp></op>	6 % 2 = 0	<var>::=x</var>
y/x <op></op> <exp></exp>	10 % 4 = 2	<op>::=/</op>
y/x/ <exp></exp>	255 % 2 = 1	<exp>::=<var></var></exp>
y/x/ <var></var>	7 % 2 = 1	<var>::= y</var>
y/x/y		

Exemplo de cromossomo:

C3: [9, 40, 7, 43, 2, 11]

Derivações	Escolha de regra	Regra aplicada
<exp></exp>	9 % 2 = 1	<exp>::=<var></var></exp>
<var></var>	40 % 2 = 0	<var>::=x</var>
X		

Χ

Exemplo de cromossomo:

C4: [20, 5, 200, 5, 67, 23]

<exp>::= <exp><op><exp></exp></op></exp></exp>	<var></var>
<op>::=+,-,/,*</op>	
<var> ::= x y</var>	

Derivações	Escolha de regra	Regra aplicada
<exp></exp>	20 % 2 = 0	<exp>::=<exp><op><exp></exp></op></exp></exp>
<exp></exp> <op><exp></exp></op>	5 % 2 = 1	<exp>::=<var></var></exp>
<var><op><exp></exp></op></var>	200 % 2 = 0	<var>::=x</var>
x <op><exp></exp></op>	5 % 4 = 1	<op>::=-</op>
x- <exp></exp>	67 % 2 = 1	<exp>::=<var></var></exp>
x- <var></var>	23 % 2 = 1	<var>::=y</var>
x-y		

Temos os seguintes pontos para os quais sabemos a saída desejada:

X	у	desejado
0,9	0,8	1,61
0,3	0,1	0,19
0,5	0,2	0,45
0,88	0,5	1,2744
0,6	0,7	1,06

Avaliando C1: x+y

X	У	desejado	produzido	Erro quadrático
0,9	0,8	1,61	1,7	0,008
0,3	0,1	0,19	0,4	0,044
0,5	0,2	0,45	0,7	0,063
0,88	0,5	1,2744	1,38	0,011
0,6	0,7	1,06	1,3	0,058
			média	0,037

Avaliando C2: y/x/y

X	У	desejado	produzido	Erro quadrático
0,9	0,8	1,61	1,1	0,249
0,3	0,1	0,19	3,3	9,881
0,5	0,2	0,45	2	2,040
0,88	0,5	1,2744	1,1	0,019
0,6	0,7	1,06	1,7	0,368
			média	2,584

Avaliando C3: x

X	У	desejado	produzido	Erro quadrático
0,9	0,8	1,61	0,9	0,504
0,3	0,1	0,19	0,3	0,012
0,5	0,2	0,45	0,5	0,003
0,88	0,5	1,2744	0,88	0,156
0,6	0,7	1,06	0,6	0,212
			média	0,177

Avaliando C4: x-y

X	У	desejado	produzido	Erro quadrático
0,9	0,8	1,61	0,1	2,280
0,3	0,1	0,19	0,2	0,0001
0,5	0,2	0,45	0,3	0,023
0,88	0,5	1,2744	0,38	0,799
0,6	0,7	1,06	-0,1	1,346
			média	0,889

Avaliações dos indivíduos da população inicial:

C1: 0,037 (melhor indivíduo)

C2: 2,584 (pior indivíduo)

C3: 0,177

C4: 0,889

Fazendo torneios para selecionar próxima população (torneios de 2):

C1: 0,037 (melhor indivíduo)

C2: 2,584 (pior indivíduo)

C3: 0,177

C4: 0,889

Primeiro torneio: escolhe dois aleatoriamente: C1 e C3

C1 ganha o torneio, por ter melhor avaliação

Fazendo torneios para selecionar próxima população (torneios de 2):

C1: 0,037 (melhor indivíduo)

C2: 2,584 (pior indivíduo)

C3: 0,177

C4: 0,889

Segundo torneio: escolhe dois aleatoriamente: C2 e C3

C3 ganha o torneio, por ter melhor avaliação

Fazendo torneios para selecionar próxima população (torneios de 2):

C1: 0,037 (melhor indivíduo)

C2: 2,584 (pior indivíduo)

C3: 0,177

C4: 0,889

Terceiro torneio: escolhe dois aleatoriamente: C3 e C4

C3 ganha o torneio, por ter melhor avaliação

Fazendo torneios para selecionar próxima população (torneios de 2):

C1: 0,037 (melhor indivíduo)

C2: 2,584 (pior indivíduo)

C3: 0,177

C4: 0,889

Quarto torneio: escolhe dois aleatoriamente: C2 e C4

C4 ganha o torneio, por ter melhor avaliação

Indivíduos escolhidos na seleção por torneio: C1, C3, C3 e C4

Pareando: C1 com C3 e C3 com C4

Agora temos o cruzamento: supor que a probabilidade de cruzamento é 0,8

Gera dois números aleatórios entre 0 e 1: 0,5 e 0,9

Como 0,5 < 0,8, o primeiro par vai fazer cruzamento

Como 0,9 > 0,8, o segundo par não terá cruzamento, passa direto

Cruzamento: C1 com C3

C1: [4, 15, 75, 8, 41, 12]

C3: [9, 40, 7, 43, 2, 11]

Sorteando ponto de cruzamento entre 1 e 5: 3

Filhos gerados:

F1: [4, 15, 75, 43, 2, 11]

F2: [9, 40, 7, 8, 41, 12]

Mutação: com probabilidade pequena 0,1

F1: [4, 15, 75, 43, 2, 11]

F2: [9, 40, 7, 8, 41, 12]

C3: [9, 40, 7, 43, 2, 11]

C4: [20, 5, 200, 5, 67, 23]

Gerando 6 * 4 números aleatórios entre 0 e 1:

0,89; 0,82; 0,52; 0,94; 0,15; 0,53; 0,84; 0,90; 0,54; 0,98; 0,38; 0,97; 0,11; **0,02**; 0,41; 0,31; 0,27; 0,33; 0,79; 0,91; **0,09**; 0,36; 0,58; 0,4

Mutações em genes: 2 de C3 e 3 de C4

Mutação: com probabilidade pequena 0,1

F1: [4, 15, 75, 43, 2, 11]

F2: [9, 40, 7, 8, 41, 12]

C3: [9, **40**, 7, 43, 2, 11]

C4: [20, 5, **200**, 5, 67, 23]

Após mutação:

F1: [4, 15, 75, 43, 2, 11]

F2: [9, 40, 7, 8, 41, 12]

C3: [9, **55**, 7, 43, 2, 11]

C4: [20, 5, **3**, 5, 67, 23]

Nova população:

C1: [4, 15, 75, 43, 2, 11]

C2: [9, 40, 7, 8, 41, 12]

C3: [9, 55, 7, 43, 2, 11]

C4: [20, 5, 3, 5, 67, 23]

O algoritmo é então iterado até que um número de gerações (iterações estipulado) seja atingido