Department of Computer Science University of Bristol

Image Processing and Computer Vision

www.ole.bris.ac.uk/bbcswebdav/courses/COMS30121_2018/content www.ole.bris.ac.uk/bbcswebdav/courses/COMSM0020_2018/content

Lecture 04

Edges and Shapes

Andrew Calway | Tilo Burghardt | Sion Hanunna

Edges in Artistic Drawings

Source: http://www.ateliermagique.com

Motivation: Why detecting Edges?

- Edges: sharp changes of image brightness
- Sources: Object boundaries, Patterns, Shadows, ...
- Meaningful edges ← → Nuisance edges
- For Segmentation: finding object boundaries
- For Recognition: extracting patterns
- For Motion Analysis: reliable tracking regions

Edge Detection Strategy

- Recognition Strategy:
 Determine a 'measure of change' in the pixel's neighbourhood
- First derivation in 2D space → Image Gradient

The Image Gradient

- A vector variable
 - Direction ψ of the maximum growth of the function
 - Magnitude $|\nabla f(x,y)|$ of the growth
 - Perpendicular to the edge direction

Example: Gradient & Edge Vectors

Gradient Extraction via Filtering

$$\frac{\partial f}{\partial x} \approx \begin{bmatrix} -1 & 0 & 1\\ -1 & 0 & 1\\ -1 & 0 & 1 \end{bmatrix}$$

$$\frac{\partial f}{\partial x} \approx \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \qquad \frac{\partial f}{\partial y} \approx \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$grad(f) = |\nabla f(x,y)| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \quad \psi = \arctan\left(\frac{\partial f/\partial y}{\partial f/\partial x}\right)$$

Roberts Operator

Oldest gradient approximation kernel

•
$$h_1 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
, $h_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

•
$$\nabla f = |f(i,j) - f(i+1,j+1)| + |f(i,j+1) - f(i+1,j)|$$

- Very efficient only 2x2 mask size
- High sensitivity to noise

Prewitt Operator

- Central difference $\frac{\delta f}{\delta x} \approx \frac{f(x+1) f(x-1)}{2}$
- Mask [-1 0 1] is very sensitive to noise
- Smoothing in the perpendicular direction
- For 3x3 mask, ∇f estimated in 8 directions

$$h_{hor} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$
 , $h_{dia} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}$, ...

Sobel Operator

- As Prewitt, relies on central differences
- Greater weight to the central pixels

$$\bullet \ \frac{\partial}{\partial x} \approx \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \frac{\partial}{\partial y} \approx \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

- Can be approx as derivative of a Gaussian
- First Gaussian smoothing, then derivation

•
$$\frac{\partial}{\partial x}(I*G) = I*\frac{\partial G}{\partial x}$$

Shape Recognition via Hough Transform

- How to detect, locate and describe simple geometrical shapes?
- Basic recognition task
- Choice of feature set and processing domain
- Detecton/Recognition algorithm

Line Representation

A straight line in 2D space described by this parametric equation:

$$f(x, y, \rho_0, \theta_0) = x \cos \theta_0 + y \sin \theta_0 - \rho_0 = 0$$

can be represented in the 2D parameter space by a point (ρ_0, θ_0) , where ρ_0 is the distance between the straight line and the origin, and θ_0 is the angle between the distance vector and the positive x-direction.

The Hough Space

A point (x_0, y_0) in the image space is transformed into a sinusoidal curve in the parameter space. A point (θ, ρ) on this sinusoidal curve represents a straight line passing through the point (x_0, y_0) in the image space.

100 55	point 1	point 2	point 3	point 4
θ	$\pi/2 = 1.571$	$-\pi/4 = -0.785$	0	$\pi/4 = 0.785$
ρ	1	0	1	1.4142

Line Detection Algorithm

- 1. Make available an n=2 dimensional array $H(\rho,\theta)$ for the parameter space;
- 2. Find the gradient image: $G(x,y) = |G(x,y)| \angle G(x,y)$;
- 3. For any pixel satisfying $|G(x,y)| > T_s$, increment all elements on the curve $\rho = x \cos \theta + y \sin \theta$ in the parameter space represented by the H array:

$$\forall \theta \mid \rho = x \cos \theta + y \sin \theta$$
$$H(\rho, \theta) = H(\rho, \theta) + 1;$$

4. In the parameter space, any element $H(\rho, \theta) > T_h$ represents a straight line detected in the image.

Line Detection using Gradient Information

This algorithm can be improved by making use of the gradient direction $\angle G$, which, in this particular case, is the same as the angle θ . Now for any point $|G(x,y)| > T_s$, we only need to increment the elements on a small segment of the sinusoidal curve. The third step in the above algorithm can be modified as:

- 1. Make n=2 dimensional array $H(\rho,\theta)$
- 2. Find the gradient image: $G(x,y) = |G(x,y)| \angle G(x,y)$;
- 3. For any pixel satisfying $|G(x,y)| > T_s$,

$$\forall \theta \mid \angle G(x,y) - \Delta \theta \le \theta \le \angle G(x,y) + \Delta \theta$$
$$\rho = x \cos \theta + y \sin \theta$$
$$H(\rho,\theta) = H(\rho,\theta) + 1;$$

where $\Delta\theta$ defines a small range in θ to allow some room for error in $\angle G$.

4. Any element $H(\rho, \theta) > T_h$ represents a straight line

Line Detection Example

Circle Detection Algorithm

1. For any pixel satisfying $|G(x,y)| > T_s$, increment all elements satisfying the two simultaneous equations

$$\forall r$$
,
$$\begin{cases} x_0 = x \pm r \cos \angle G \\ y_0 = y \pm r \sin \angle G \end{cases}$$
$$H(x_0, y_0, r) = H(x_0, y_0, r) + 1;$$

2. In the parameter space, any element $H(x_0, y_0, r) > T_h$ represents a circle with radius r located at (x_0, y_0) in the image.

Encoding Shapes Generally

General Hough Parameters

No analytical form of the targeted shape \Rightarrow Generate an approximation by calculating $\theta \& \phi$ in k points as follows:

- Prepare a table with k entries each indexed by an angle ϕ_i , $(i=1,\cdots,k)$, $\Delta\phi=180/k$
- Define a reference point (x_c, y_c) (e.g., center of gravity) $\forall P(x, y)$ on the boundary of the shape, find

$$\begin{cases} r = \sqrt{(x - x_c)^2 + (y - y_c)^2} \\ \beta = tan^{-1} (y - y_c)/(x - x_c) \end{cases}$$

and the gradient direction $\angle G$. Add the pair (r, β) to the table entry with its ϕ closest to $\angle G$.

• Prepare a 2D Hough array $H(x_c, y_c)$ initialized to 0.

Generalised Hough Transform

- For each image point (x, y) with $|G(x, y)| > T_s$, find the table entry with its corresponding angle ϕ_i closest to $\angle G(x,y)$
- For each of the n_i pairs $(r, \beta)_i$ $(i = 1, \dots, n_i)$ in this table entry, find

$$\begin{cases} x_c = x + r \cos \beta \\ y_c = y + r \sin \beta \end{cases}$$

Increment the corresponding element in the H array by 1:

$$H(x_c, y_c) = H(x_c, y_c) + 1$$

All elements in the H table satisfying $H(x_c, y_c) > T_h$ represent the locations of the shape in the image.

Invariant Generalised Hough Transform

It is desirable to detect a certain 2D shape independent of its **orientation and scale**, as well as its location. Two additional parameters, a scaling factor S and a rotational angle θ , are needed to describe the shape. Now the Hough space becomes 4-dimensional $H(x_c, y_c, S, \theta)$.

 $\forall P(x,y)$ with |G(x,y)| > T, find the proper table entry with $\phi_j = \angle G(x,y)$. Then for each of the n_j pairs $(r,\beta)_i$ $(i=1,\cdots,n_j)$ in this table entry, do the following for all S and θ : find

$$\begin{cases} x_c = x + r S \cos(\beta + \theta) \\ y_c = y + r S \sin(\beta + \theta) \end{cases}$$

and increment the corresponding element in the 4D H array by 1:

$$H(x_d, y_c, S, \theta) = H(x_c, y_c, S, \theta) + 1$$

All elements in the H table satisfying $H(x_c, y_c, S, \theta) > T_h$ represent the scaling factor S, rotation angle θ of the shape, as well as its reference point location (x_c, y_c) in the image.