Решение на домашно 2

Валентин Стоянов

март 2018

Задача 1.

Нека $R = \{a, b, c, d\}$ е пръстен с таблици за събиране и умножение, съответно,

+	a	b	c	d
a	a	b	С	d
b	b	a	d	С
С	С	d	a	b
d	d	С	b	a

V

*	a	b	С	d
a	a	a	a	a
b	a	•	a	b
С	a	•	•	С
d	a	d	•	•

Да се определят отбелязаните с кръгче елементи в таблицата за умножение и да се намерят идеалите на пръстена R.

Решение:

$$dd = (b+c)d = bd + cd = b + c = d$$

$$dc = d(d+b) = dd + db = d + d = a$$

$$bb = b(c+d) = bc + bd = a + b = b$$

$$cb = (b+d)b = bb + db = b + d = c$$

$$cc = c(b+d) = cb + cd = c + c = a$$

След попълване, таблицата за умножение изглежда така:

*	a	b	c	d
a	a	a	a	a
b	a	b	a	b
c	a	c	a	c
d	a	d	a	d

Идеалите в пръстена са: $\{a\}, \{a,b,c,d\}$ и $\{a,c\}.$

Задача 2.

Разглеждаме множествата

$$A = \{ \tfrac{f}{g} \mid f,g \in \mathbb{Q}[x] \, ; \, g(45466) \neq 0 \} \quad \text{и} \quad M = \{ \tfrac{f}{g} \in A \mid f(45466) = 0 \}.$$

Да се докаже, че A е пръстен (относно обичайните операции: събиране и умножение на рационални функции), M е идеал на A, който съдържа всеки собствен идеал на A и $A/M\cong \mathbb{Q}$

Решение:

Нека $\frac{f_1}{g_1},\frac{f_2}{g_2}\in A$. Ще проверим дали $\frac{f_1}{g_1}-\frac{f_2}{g_2}\in A$ и $\frac{f_1}{g_1}\frac{f_2}{g_2}\in A$.

- $\frac{f_1}{g_1} \frac{f_2}{g_2} = \frac{f_1g_2 f_2g_1}{g_1g_2}$, тъй като $\mathbb{Q}[x]$ е пръстен и $f_1, f_2, g_1, g_2 \in \mathbb{Q}[x]$, то следва, че $g_1g_2 \in \mathbb{Q}[x]$ и $f_1g_2 f_2g_1 \in \mathbb{Q}[x]$. Следователно $\frac{f_1g_2 f_2g_1}{g_1g_2} \in A$.
- Тъй като $\mathbb{Q}[x]$ е пръстен следва, че $f_1f_2\in\mathbb{Q}[x]$ и $g_1g_2\in\mathbb{Q}[x]$. Следователно $\frac{f_1f_2}{g_1g_2}\in A$

 $\Rightarrow A$ е пръстен.

M съдържа необратимите елементи на A

 $A \backslash M$ съдържа обратимите на A.

I е идеал. Ако съществува $a \in I$, който е обратим, то I = A. Следователно всеки собствен идеал на A се съдържа в M.

Нека $\varphi:A \to \mathbb{Q}$ такова, че $\varphi(\frac{f}{g})=(\frac{f}{g})(45466).$

Ще проверим дали φ е хомоморфизъм на пръстени. Нека $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in A$.

•
$$\varphi(\frac{f_1}{g_1} + \frac{f_2}{g_2}) = \varphi(\frac{f_1g_2 + f_2g_1}{g_1g_2}) = (\frac{f_1g_2 + f_2g_1}{g_1g_2})(45466) = (\frac{f_1}{g_1})(45466) + (\frac{f_2}{g_2})(45466) = (\frac{f_1}{g_1}) + \varphi(\frac{f_2}{g_2})$$

$$\bullet \ \varphi(\frac{f_1}{g_1}\frac{f_2}{g_2}) = \varphi(\frac{f_1f_2}{g_1g_2}) = (\frac{f_1f_2}{g_1g_2})(45466) = (\frac{f_1}{g_1})(45466)(\frac{f_2}{g_2})(45466) = \varphi(\frac{f_1}{g_1})\varphi(\frac{f_2}{g_2})$$

 $\Rightarrow \varphi$ е хомоморфизъм.

От начина, по който е зададено следва, че $Ker \varphi = M$.

Съгласно Теоремата за хомоморфизми на пръстени: $A/M\cong \mathbb{Q}$

Задача 3.

Нека $I=(3-2\sqrt{-2})$ \triangleleft $\mathbb{Z}[\sqrt{-2}]=\{a+b\sqrt{-2}\mid a,b\in\mathbb{Z}\}$. Да се докаже, че $I=\{a+b\sqrt{-2}\mid 17\mid b-5a\}$ и $\mathbb{Z}[\sqrt{-2}]/I\cong\mathbb{Z}_{17}$.

Решение:

За произволни $x,y\in\mathbb{Z}$ имаме

$$(3-2\sqrt{-2})(x+y\sqrt{-2}) = (3x+4y) + (3y-2x)\sqrt{-2}$$
 17 | $(3y-2x) - 5(3x+4y) \Leftrightarrow$ 17 | $(-17x-17y) \Leftrightarrow$ 17 | $17(-x-y)$

Следователно $I\subseteq \{a+b\sqrt{-2}\mid 17\mid b-5a\}$. Обратно, ако $a,b\in\mathbb{Z}: 17\mid b-5a,$ системата уравнения

$$3x + 4y = a \tag{1}$$

$$-2x + 3y = b \tag{2}$$

Има решение

$$x = \frac{-4b+3a}{17}, y = \frac{3b+2a}{17} \in \mathbb{Z},$$

откъдето $\{a+b\sqrt{-2}\mid 17\mid b-5a\}\subseteq I$. Следователно $I=\{a+b\sqrt{-2}\mid 17\mid b-5a\}$.

Нека изображението $\varphi: \mathbb{Z}[\sqrt{-2}] \to \mathbb{Z}_{17}$ е такова, че $\varphi(a+b\sqrt{-2})=b-5a \pmod{17}$. φ е хомоморфизъм на пръстени, тъй като:

- $\varphi((a_1 + b_1\sqrt{-2}) + (a_2 + b_2\sqrt{-2})) = \varphi((a_1 + a_2) + (b_1 + b_2)\sqrt{-2}) =$ = $[(b_1 + b_2) - 5(a_1 + a_2) \pmod{17}] = [b_1 - 5a_1 \pmod{17}] + [b_2 - 5a_2 \pmod{17}] = \varphi((a_1 + b_1\sqrt{-2})) + \varphi((a_2 + b_2\sqrt{-2}))$
- $\varphi((a_1+b_1\sqrt{-2})(a_2+b_2\sqrt{-2})) = \varphi((a_1a_2+2b_1b_2)+(a_1b_2+a_2b_1)\sqrt{-2}) =$ = $[(a_1a_2+2b_1b_2)-5(a_1b_2+a_2b_1) \pmod{17}] = [b_1-5a_1 \pmod{17}]+[b_2-5a_2 \pmod{17}] = \varphi((a_1+b_1\sqrt{-2}))+\varphi((a_2+b_2\sqrt{-2}))$

Задача 4.

Да се докаже, че факторпръстенът $\mathbb{Z}_3[x]/(x^3+\bar{2}x+\bar{1})$ е поле. Намерете обратния елемент на $\bar{2}x^2+x+\bar{1}$.

Решение:

```
Нека f=x^3+\bar{2}x+\bar{1}. \mathbb{Z}_3[x]/(f) е поле, ако f е неразложим над \mathbb{Z}_3. Понеже deg(f)=3, то f е неразложим \Leftrightarrow f няма корен в \mathbb{Z}_3. \mathbb{Z}_3=\{\bar{0},\bar{1},\bar{2}\}; \quad f(\bar{0})=\bar{1}\neq 0 \quad f(\bar{1})=\bar{1}\neq 0 \quad f(\bar{2})=\bar{1}\neq 0 \Rightarrow f няма корени в \mathbb{Z}_3\Rightarrow f е неразложим над \mathbb{Z}_3\Rightarrow \mathbb{Z}_3[x]/(f) е поле. Нека g=\bar{2}x^2+x+\bar{1}. Искаме да намерим обратния елемент на g в \mathbb{Z}_3[x]/(f), т.е търсим такъв полином h, че gh\equiv 1\pmod f. gh\equiv 1\pmod f gh\equiv 1
```

Задача 5.

Нека K е комутативен пръстен с единица. Да се докаже, че

- а) Ако $I \subseteq K$, то $M_n(I) \subseteq M_n(K)$ и $M_n(K)/M_n(I) \cong M_n(K/I)$;
- б) Всеки идеал $J \subseteq M_n(K)$ е от вида $J = M_n(I)$, където $I \subseteq K$.

Решение:

a)

- Нека $(a_{ij})_{n\times n}, (b_{ij})_{n\times n} \in M_n(I)$? \Rightarrow $(a_{ij})_{n\times n} (b_{ij})_{n\times n} \in M_n(I)$ $(a_{ij})_{n\times n} (b_{ij})_{n\times n} = (a_{ij} b_{ij})_{n\times n}, I$ е идеал $\Rightarrow a_{ij} b_{ij} \in I \Rightarrow (a_{ij})_{n\times n} (b_{ij})_{n\times n} \in M_n(I)$
- Нека $(a_{ij})_{n\times n} \in M_n(I)$ и $(k_{ij})_{n\times n} \in M_n(K)$? \Rightarrow $(a_{ij})_{n\times n} (k_{ij})_{n\times n} \in M_n(I)$ $(a_{ij})_{n\times n} (k_{ij})_{n\times n} = (a_{ij}k_{ij})_{n\times n}, I$ е идеал $\Rightarrow a_{ij}k_{ij} \in I \Rightarrow (a_{ij})_{n\times n} (k_{ij})_{n\times n} \in M_n(I)$
- $\Rightarrow M_n(I) \leq M_n(K)$

С помощта на хомоморфизма $\psi: K \to K/I$ такъв, че $\psi(a) = \bar{a} = a + I$, дефинираме изображение $\varphi: M_n(K) \to M_n(K/I)$, действащо по правилото $\varphi((a_{ij})_{n \times n}) = (\bar{a}_{ij})_{n \times n}$. От това, че ψ е хомоморфизъм на пръстени следва, че φ е хомоморфизъм. Ясно е, че $Ker\varphi = M_n(I)$. От теоремата за хомоморфизмите на пръстени следва, че $M_n(K)/M_n(I) \cong M_n(K/I)$.

б) Нека $J ext{ } ext{ } M_n(K)$ и I да е подмножество на K, състоящо се от всички елементи на всички матрици на J. Ще докажем, че $I ext{ } ext{$

Нека $(c_{ij})_{n\times n}\in M_n(I)$. За всеки 2 индекса (i,j) съществува матрица $A\in J$, за която c_{ij} е елемент на A. Ако c_{ij} стои на (s,t)-то място в A, то получаваме, че $c_{ij}e_{ij}=e_{is}Ae_{tj}\in J$. Тогава $(c_{ij})_{n\times n}=\sum_{i,j=1}^n c_{ij}e_{ij}\in J$. Следователно $M_n(I)\subseteq J$. Лесно се проверява и че $J\subseteq M_n(I)$. Откъдето следва, че $J=M_n(I)$.