Algorithm Foundations of Data Science and Engineering Lecture 11: Submodular and Its Applications

YANHAO WANG

DaSE @ ECNU (for course related communications) yhwang@dase.ecnu.edu.cn

Nov. 22, 2021

Outline

Motivation of Submodular

Submodular

Set Covering Problem
Problem Formulation
Hill-climbing Algorithm

Motivation: set functions Feature selection

Feature selection

• Given a set of features X_1, \dots, X_n ;

Feature selection

- Given a set of features X_1, \dots, X_n ;
- Want to predict Y from a subset $A = (X_{i1}, \dots, X_{ik})$;

Feature selection

- Given a set of features X_1, \dots, X_n ;
- Want to predict Y from a subset $A = (X_{i1}, \dots, X_{ik})$;
- What are the *k* most informative features?

Feature selection

- Given a set of features X_1, \dots, X_n ;
- Want to predict Y from a subset $A = (X_{i1}, \dots, X_{ik})$;
- What are the *k* most informative features?

Influence maximization

Feature selection

- Given a set of features X_1, \dots, X_n ;
- Want to predict Y from a subset $A = (X_{i1}, \dots, X_{ik})$;
- What are the *k* most informative features?

Influence maximization

In a social network, which nodes to advertise to?

Feature selection

- Given a set of features X_1, \dots, X_n ;
- Want to predict Y from a subset $A = (X_{i1}, \dots, X_{ik})$;
- What are the *k* most informative features?

Influence maximization

- In a social network, which nodes to advertise to?
- Which are the most influential blogs?

Feature selection

- Given a set of features X_1, \dots, X_n ;
- Want to predict Y from a subset $A = (X_{i1}, \dots, X_{ik})$;
- What are the *k* most informative features?

Influence maximization

- In a social network, which nodes to advertise to?
- Which are the most influential blogs?

Sensor placement

Feature selection

- Given a set of features X_1, \dots, X_n ;
- Want to predict Y from a subset $A = (X_{i1}, \dots, X_{ik})$;
- What are the *k* most informative features?

Influence maximization

- In a social network, which nodes to advertise to?
- Which are the most influential blogs?

Sensor placement

Given a water distribution network;

Feature selection

- Given a set of features X_1, \dots, X_n ;
- Want to predict Y from a subset $A = (X_{i1}, \dots, X_{ik})$;
- What are the *k* most informative features?

Influence maximization

- In a social network, which nodes to advertise to?
- Which are the most influential blogs?

Sensor placement

- Given a water distribution network;
- Where should we place sensors to quickly detect contaminations?

Feature selection

Feature selection

■ Given r.v.s Y, X_1, \dots, X_n , predict Y from a subset $A = (X_{i1}, \dots, X_{ik})$;

Feature selection

- Given r.v.s Y, X_1, \dots, X_n , predict Y from a subset $A = (X_{i1}, \dots, X_{ik})$;
- Information gain:

$$I(A; Y) = H(Y) - H(Y|A),$$

where H(Y) is the conditional entropy, I(A; Y) measures the difference of uncertainty before and after knowing A;

4 / 29

Let G = (V, E) be an undirected graph.

Let G = (V, E) be an undirected graph.

Let G = (V, E) be an undirected graph.

■ The graph cut function is defined by

$$f(S) = |\{(u, v)|u \in S \subset V, v \in S^c\}|$$

Let G = (V, E) be an undirected graph.

The graph cut function is defined by

$$f(S) = |\{(u,v)|u \in S \subset V, v \in S^c\}|$$

 \Box For $S = \{1, 2, 3\}$, f(S) = 1;

Let G = (V, E) be an undirected graph.

■ The graph cut function is defined by

$$f(S) = |\{(u, v)|u \in S \subset V, v \in S^c\}|$$

- \Box For $S = \{1, 2, 3\}$, f(S) = 1;
- \Box For $S = \{1, 2\}, f(S) = 2;$

Let G = (V, E) be an undirected graph.

The graph cut function is defined by

$$f(S) = |\{(u, v)|u \in S \subset V, v \in S^c\}|$$

- \Box For $S = \{1, 2, 3\}, f(S) = 1;$
- \Box For $S = \{1, 2\}, f(S) = 2;$
- The graph cut is a set function.

Function f(A) is the value of utility of having sensors at subset A of all locations.

Function f(A) is the value of utility of having sensors at subset A of all locations.

■ $A = \{1, 2, 3\}$ very informative (high value of f(A)).

Function f(A) is the value of utility of having sensors at subset A of all locations.

- $A = \{1, 2, 3\}$ very informative (high value of f(A)).
- $A = \{1, 4, 5\}$ redundant information (low value of f(A)).

A finite set
$$V = \{1, 2, \cdots, n\}$$
, set function

$$f: 2^V \to R$$

where 2^V is the power set of V,

A finite set $V = \{1, 2, \cdots, n\}$, set function

$$f: 2^V \to R$$

where 2^V is the power set of V, or

$$f:\{0,1\}^n\to R.$$

A finite set $V = \{1, 2, \dots, n\}$, set function

$$f: 2^V \to R$$

where 2^V is the power set of V, or

$$f:\{0,1\}^n\to R.$$

Other possibly useful properties a set function may have:

A finite set $V = \{1, 2, \dots, n\}$, set function

$$f: 2^V \to R$$

where 2^V is the power set of V, or

$$f: \{0,1\}^n \to R.$$

Other possibly useful properties a set function may have:

■ Monotone: if $A \subseteq B \subseteq X$, then $F(A) \le F(B)$;

A finite set $V = \{1, 2, \dots, n\}$, set function

$$f: 2^V \to R$$

where 2^V is the power set of V, or

$$f: \{0,1\}^n \to R$$
.

Other possibly useful properties a set function may have:

- Monotone: if $A \subseteq B \subseteq X$, then $F(A) \le F(B)$;
- Nonnegative: $F(A) \ge 0$ for all $S \subseteq X$;

A finite set $V = \{1, 2, \dots, n\}$, set function

$$f: 2^V \to R$$

where 2^V is the power set of V, or

$$f: \{0,1\}^n \to R$$
.

Other possibly useful properties a set function may have:

- Monotone: if $A \subseteq B \subseteq X$, then $F(A) \le F(B)$;
- Nonnegative: $F(A) \ge 0$ for all $S \subseteq X$;
- Normalized: $F(\emptyset) = 0$.

A finite set $V = \{1, 2, \dots, n\}$, set function

$$f: 2^V \to R$$

where 2^V is the power set of V, or

$$f: \{0,1\}^n \to R.$$

Other possibly useful properties a set function may have:

- Monotone: if $A \subseteq B \subseteq X$, then $F(A) \le F(B)$;
- Nonnegative: $F(A) \ge 0$ for all $S \subseteq X$;
- Normalized: $F(\emptyset) = 0$.

There are many set functions, such as information gain, graph cut, and sensor utility, etc.

What makes continuous optimization tractable? A function $f: \mathbb{R}^n \to \mathbb{R}$ can be minimized efficiently, if it is convex. A function $f: \mathbb{R}^n \to \mathbb{R}$ can be maximized efficiently, if it is concave. Discrete analogy?

Continuous optimization

What makes continuous optimization tractable?

A function $f: \mathbb{R}^n \to \mathbb{R}$ can be minimized efficiently, if it is convex.

Discrete analogy?

f is now a set function, or equivalently $f: 2^V \to R$ or f:

 $_{8/}\{0,1\}^{n}\to R.$

From concavity to submodularity

From concavity to submodularity

• $f: R \to R$ is concave, if the derivative f'(x) is non-increasing in x.

From concavity to submodularity

Submodularity:

• $f: R \to R$ is concave, if the derivative f'(x) is non-increasing in x.

• $f: \{0,1\}^n \to R$ is submodular, if $\forall i$, the discrete derivative

$$\partial_i f(x) = f(x + e_i) - f(x)$$

is non-increasing in x.

A functions $f: 2^V \to R$ is a submodular if for all $A, B \subseteq V$, we have that

A functions $f: 2^V \to R$ is a submodular if for all $A, B \subseteq V$, we have that

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B).$$

A functions $f: 2^V \to R$ is a submodular if for all $A, B \subseteq V$, we have that

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B).$$

A functions $f: 2^V \to R$ is a submodular if for all $A, B \subseteq V$, we have that

$$f(A) + f(B) \ge f(A \cup B) + f(A \cap B).$$

i.e.,

$$f(A) - f(A \cap B) \ge f(A \cup B) - f(B)$$
.

Algorithmic game theory:

Algorithmic game theory:
 Submodular functions model valuation functions of agents with diminishing returns

■ Algorithmic game theory: Submodular functions model valuation functions of agents with diminishing returns → algorithms and incentive-compatible mechanisms for problems like cost sharing, and marketing on social networks.

- Algorithmic game theory: Submodular functions model valuation functions of agents with diminishing returns → algorithms and incentive-compatible mechanisms for problems like cost sharing, and marketing on social networks.
- Machine learning:

- Algorithmic game theory: Submodular functions model valuation functions of agents with diminishing returns → algorithms and incentive-compatible mechanisms for problems like cost sharing, and marketing on social networks.
- Machine learning:
 Submodular functions often appear as objective functions of machine learning tasks such as sensor placement, document summarization or feature selection

- Algorithmic game theory: Submodular functions model valuation functions of agents with diminishing returns → algorithms and incentive-compatible mechanisms for problems like cost sharing, and marketing on social networks.
- Machine learning: Submodular functions often appear as objective functions of machine learning tasks such as sensor placement, document summarization or feature selection → simple algorithms such as Greedy or local search work well.

We have two equivalent definitions:

■ Diminishing marginal return: for all $S \subseteq T \subseteq V$, all $v \in V \setminus T$,

$$f(S\cup\{v\})-f(S)\geq f(T\cup\{v\})-f(T).$$

We have two equivalent definitions:

■ Diminishing marginal return: for all $S \subseteq T \subseteq V$, all $v \in V \setminus T$,

$$f(S\cup\{v\})-f(S)\geq f(T\cup\{v\})-f(T).$$

■ Group diminishing returns: for all $S \subseteq T \subseteq V$, and $C \subseteq V \setminus T$,

$$f(S \cup C) - f(S) \ge f(T \cup C) - f(T).$$

We have two equivalent definitions:

■ Diminishing marginal return: for all $S \subseteq T \subseteq V$, all $v \in V \setminus T$,

$$f(S\cup\{v\})-f(S)\geq f(T\cup\{v\})-f(T).$$

■ Group diminishing returns: for all $S \subseteq T \subseteq V$, and $C \subseteq V \setminus T$,

$$f(S \cup C) - f(S) \ge f(T \cup C) - f(T).$$

Submodularity is the discrete analogue of concavity; in economics, known as diminishing returns.

Proof of equivalence
$$f(S \cup T) + f(S \cap T) \le f(S) + f(T) \Leftrightarrow f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T).$$

$$f(S \cup T) + f(S \cap T) \leq f(S) + f(T) \Leftrightarrow f(S \cup \{v\}) - f(S) \geq f(T \cup \{v\}) - f(T).$$

- ⇒: let $S \subset T$, consider two sets $S \cup \{v\}$ and T, if $v \notin T$,
- then $f(S \cup \{v\} \cup T) + f((S \cup \{v\}) \cap T) \le f(S \cup \{v\}) + f(T)$.

$$f(S \cup T) + f(S \cap T) \leq f(S) + f(T) \Leftrightarrow f(S \cup \{v\}) - f(S) \geq f(T \cup \{v\}) - f(T).$$

■ ⇒: let $S \subset T$, consider two sets $S \cup \{v\}$ and T, if $v \notin T$, then

then
$$f(S \cup \{v\} \cup T) + f((S \cup \{v\}) \cap T) \le f(S \cup \{v\}) + f(T).$$

Note that $f(S \cup \{v\} \cup T) = f(T \cup \{v\})$ and $f((S \cup \{v\}) \cap T) = f(S)$.

$$f(S \cup T) + f(S \cap T) \leq f(S) + f(T) \Leftrightarrow f(S \cup \{v\}) - f(S) \geq f(T \cup \{v\}) - f(T).$$

 $\blacksquare \Rightarrow$: let $S \subset T$, consider two sets $S \cup \{v\}$ and T, if $v \notin T$, then

then
$$f(S \cup \{v\} \cup T) + f((S \cup \{v\}) \cap T) \le f(S \cup \{v\}) + f(T).$$
 Note that $f(S \cup \{v\}) + T = f(T \cup \{v\})$ and

Note that $f(S \cup \{v\} \cup T) = f(T \cup \{v\})$ and $f((S \cup \{v\}) \cap T) = f(S).$

Thus, we have $f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T)$.

$$f(S \cup T) + f(S \cap T) \leq f(S) + f(T) \Leftrightarrow f(S \cup \{v\}) - f(S) \geq f(T \cup \{v\}) - f(T).$$

- ⇒: let $S \subset T$, consider two sets $S \cup \{v\}$ and T, if $v \notin T$, then
 - $f(S \cup \{v\} \cup T) + f((S \cup \{v\}) \cap T) \le f(S \cup \{v\}) + f(T).$ Note that $f(S \cup \{v\} \cup T) = f(T \cup \{v\})$ and

$$f((S \cup \{v\}) \cap T) = f(S).$$
Thus we have $f(S \cup \{v\}) = f(S) > f(T \cup \{v\}) = f(T)$

- Thus, we have $f(S \cup \{v\}) f(S) \ge f(T \cup \{v\}) f(T)$.
- \Leftarrow : let $T \setminus S = \{v_1, v_2, \dots, v_k\}$, $T_j = \{v_1, v_2, \dots, v_j\}$, $A_j = (S \cap T) \cup T_j$, and $B_j = S \cup T_j$, then we have $f(A_j \cup \{v_{j+1}\}) f(A_j) \ge f(B_j \cup \{v_{j+1}\}) f(B_j)$ for $j = 0, 1, 2, \dots, k-1$.

$$f(S \cup T) + f(S \cap T) \le f(S) + f(T) \Leftrightarrow f(S \cup \{v\}) - f(S) \ge f(T \cup \{v\}) - f(T).$$

- ⇒: let $S \subset T$, consider two sets $S \cup \{v\}$ and T, if $v \notin T$, then $f(S \cup \{v\} \cup T) + f((S \cup \{v\}) \cap T) \le f(S \cup \{v\}) + f(T)$. Note that $f(S \cup \{v\} \cup T) = f(T \cup \{v\})$ and $f((S \cup \{v\}) \cap T) = f(S)$. Thus, we have $f(S \cup \{v\}) f(S) \ge f(T \cup \{v\}) f(T)$.
- \Leftarrow : let $T \setminus S = \{v_1, v_2, \dots, v_k\}$, $T_j = \{v_1, v_2, \dots, v_j\}$, $A_j = (S \cap T) \cup T_j$, and $B_j = S \cup T_j$, then we have $f(A_j \cup \{v_{j+1}\}) f(A_j) \ge f(B_j \cup \{v_{j+1}\}) f(B_j)$ for $j = 0, 1, 2, \dots, k-1$.

Summing up all these equations, we have $f(S \cup T) + f(S \cap T) \le f(S) + f(T)$.

■ Marginal gain: $\triangle_f(s|A) = f(A \cup \{s\}) - f(A)$ for $s \notin A$.

- Marginal gain:
 - $\triangle_f(s|A) = f(A \cup \{s\}) f(A)$ for $s \notin A$.
 - □ If $A = \{1, 2\}$, adding s will help a lot.

Marginal gain:

$$\triangle_f(s|A) = f(A \cup \{s\}) - f(A)$$
 for $s \notin A$.

- □ If $A = \{1, 2\}$, adding s will help a lot.
- □ If $A = \{1, 2, 3\}$, adding s does not help much.

Marginal gain:

$$\triangle_f(s|A) = f(A \cup \{s\}) - f(A)$$
 for $s \notin A$.

- □ If $A = \{1, 2\}$, adding s will help a lot.
- □ If $A = \{1, 2, 3\}$, adding s does not help much.
- Diminishing marginal return:

$$\forall A \subset B \text{ and } s \notin B$$
,

$$\triangle_f(s|A) = f(A \cup \{s\}) - f(A) = f(\{s\} \setminus A)$$

$$\geq f(\{s\} \setminus B) = f(B \cup \{s\}) - f(B)$$

Marginal gain:

$$\triangle_f(s|A) = f(A \cup \{s\}) - f(A)$$
 for $s \notin A$.

- □ If $A = \{1, 2\}$, adding s will help a lot.
- □ If $A = \{1, 2, 3\}$, adding s does not help much.
- Diminishing marginal return: $\forall A \subset B$ and $s \notin B$,

$$\triangle_f(s|A) = f(A \cup \{s\}) - f(A) = f(\{s\} \setminus A)$$

$$\geq f(\{s\} \setminus B) = f(B \cup \{s\}) - f(B)$$

There are many similar applications, such as information cascade, document summarization, community detection, etc.

Count distinct colors Given a set S of balls, f(S) counts the number of distinct colors.

Count distinct colors

Given a set S of balls, f(S) counts the number of distinct colors.

 Submodularity: incremental value of object diminishes in a larger context.

Count distinct colors

Given a set S of balls, f(S) counts the number of distinct colors.

- Submodularity: incremental value of object diminishes in a larger context.
- \blacksquare Thus, f is a submodular.

Count distinct colors

Given a set S of balls, f(S) counts the number of distinct colors.

- Submodularity: incremental value of object diminishes in a larger context.
- Thus, f is a submodular.

Set covering

Assume that $A = \{S_1, S_2\}$ and $B = \{S_1, S_2, S_3, S_4\}$, then we have $f(A \cup \{S'\}) - f(A) \ge f(B \cup \{S'\}) - f(B)$.

Closedness property of submodularity

Submodularity has the closedness property under nonnegative linear combinations

Submodularity has the closedness property under nonnegative linear combinations

Given a set V, let f_1 and f_2 be two submodular functions.

Submodularity has the closedness property under nonnegative linear combinations

Given a set V, let f_1 and f_2 be two submodular functions.

• Let $a_1, a_2 \ge 0$, then $a_1f_1 + a_2f_2$ is a submodular.

Submodularity has the closedness property under nonnegative linear combinations

Given a set V, let f_1 and f_2 be two submodular functions.

- Let $a_1, a_2 \ge 0$, then $a_1f_1 + a_2f_2$ is a submodular.
- Let $S \subset V$ be a fixed set, then $f'(A) = f(A \cap S)$ and $\overline{f}(A) = f(A^c)$ are also submodulars.

Submodularity has the closedness property under nonnegative linear combinations

Given a set V, let f_1 and f_2 be two submodular functions.

- Let $a_1, a_2 \ge 0$, then $a_1 f_1 + a_2 f_2$ is a submodular.
- Let $S \subset V$ be a fixed set, then $f'(A) = f(A \cap S)$ and $\overline{f}(A) = f(A^c)$ are also submodulars.
- Let $S_1, S_2 \subset V$ be two fixed sets and $a_1, a_2 \geq 0$, then $f'(A) = a_1 f(A \cap S_1) + a_2 f(A \cap S_2)$ is also a submodular.

Submodularity has the closedness property under nonnegative linear combinations

Given a set V, let f_1 and f_2 be two submodular functions.

- Let $a_1, a_2 \ge 0$, then $a_1f_1 + a_2f_2$ is a submodular.
- Let $S \subset V$ be a fixed set, then $f'(A) = f(A \cap S)$ and $\overline{f}(A) = f(A^c)$ are also submodulars.
- Let $S_1, S_2 \subset V$ be two fixed sets and $a_1, a_2 \geq 0$, then $f'(A) = a_1 f(A \cap S_1) + a_2 f(A \cap S_2)$ is also a submodular.

Extremely useful fact

Submodularity has the closedness property under nonnegative linear combinations

Given a set V, let f_1 and f_2 be two submodular functions.

- Let $a_1, a_2 \ge 0$, then $a_1f_1 + a_2f_2$ is a submodular.
- Let $S \subset V$ be a fixed set, then $f'(A) = f(A \cap S)$ and $\overline{f}(A) = f(A^c)$ are also submodulars.
- Let $S_1, S_2 \subset V$ be two fixed sets and $a_1, a_2 \geq 0$, then $f'(A) = a_1 f(A \cap S_1) + a_2 f(A \cap S_2)$ is also a submodular.

Extremely useful fact

• $f_{\theta}(A)$ is a submodular $\Rightarrow \sum_{\theta} P(\theta) f_{\theta}(A)$ is a submodular;

Submodularity has the closedness property under nonnegative linear combinations

Given a set V, let f_1 and f_2 be two submodular functions.

- Let $a_1, a_2 \ge 0$, then $a_1f_1 + a_2f_2$ is a submodular.
- Let $S \subset V$ be a fixed set, then $f'(A) = f(A \cap S)$ and $\overline{f}(A) = f(A^c)$ are also submodulars.
- Let $S_1, S_2 \subset V$ be two fixed sets and $a_1, a_2 \geq 0$, then $f'(A) = a_1 f(A \cap S_1) + a_2 f(A \cap S_2)$ is also a submodular.

Extremely useful fact

- $f_{\theta}(A)$ is a submodular $\Rightarrow \sum_{\theta} P(\theta) f_{\theta}(A)$ is a submodular;
- Multicriterion optimization: f_1, \dots, f_m are submodulars, and $\lambda_i > 0 \Rightarrow \sum_i \lambda_i f_i(A)$ is a submodular;

Combinatorial optimization

There are many problems that we study in combinatorial optimization, such as min cut, max cut, max clique, vertex cover, set cover, etc.

Combinatorial optimization

There are many problems that we study in combinatorial optimization, such as min cut, max cut, max clique, vertex cover, set cover, etc.

■ They are all problems in the forms

$$\arg\max_{S}\{f(S):S\in\mathcal{F}\} \text{ or } \arg\min_{S}\{f(S):S\in\mathcal{F}\},$$

where ${\cal F}$ is a discrete set of feasible solution.

Combinatorial optimization

There are many problems that we study in combinatorial optimization, such as min cut, max cut, max clique, vertex cover, set cover, etc.

■ They are all problems in the forms

$$\arg\max_{\mathcal{S}}\{f(\mathcal{S}):\mathcal{S}\in\mathcal{F}\} \text{ or } \arg\min_{\mathcal{S}}\{f(\mathcal{S}):\mathcal{S}\in\mathcal{F}\},$$

where \mathcal{F} is a discrete set of feasible solution.

For set covering problem:

minimize
$$\sum_{i=1}^{|S|} c_i x_i$$

s.t. $\sum_{i=1}^{|S|} x_i S_{ij} > 0$, for $j=1,2,\cdots,|U|$
 $x_i \in \{0,1\}$

Outline

Motivation of Submodular

Submodular

Set Covering Problem
Problem Formulation
Hill-climbing Algorithm

Set coverage

 Each entry u is a subset of some base elements;

Set coverage

- Each entry u is a subset of some base elements;
- Coverage $f(S) = |\cup_{u \in S} u|$;

Set coverage

- Each entry u is a subset of some base elements:
- Coverage $f(S) = |\cup_{u \in S} u|$;
- $f(S \cup \{v\}) f(S)$ is additional coverage of v on top of S.

k-max cover problem

 Find k subsets that maximizes their total coverage;

Set coverage

- Each entry u is a subset of some base elements:
- Coverage $f(S) = |\cup_{u \in S} u|$;
- $f(S \cup \{v\}) f(S)$ is additional coverage of v on top of S.

k-max cover problem

- Find k subsets that maximizes their total coverage;
- It is NP-hard;

Set coverage

- Each entry u is a subset of some base elements:
- Coverage $f(S) = |\cup_{u \in S} u|$;
- $f(S \cup \{v\}) f(S)$ is additional coverage of v on top of S.

k-max cover problem

- Find k subsets that maximizes their total coverage;
- It is NP-hard;
- It is a special case of IM problems in IC model.

19 / 29

Ground set $\{a, b, c, d, e, f, g, h, i, j, k, l\}$

Ground set
$$\{a, b, c, d, e, f, g, h, i, j, k, l\}$$

Subsets
$$\{a, b, c, d, e, r, g, n, r, j, k, r\}$$

 $A_1 = \{a, b, c, d\}, A_2 = \{e, f, g, h\}, A_3 = \{i, j, k, l\}$
 $A_4 = \{a, e\}, A_5 = \{i, b, f, g\}, A_6 = \{c, d, g, h, k, l\}$
 $A_7 = \{l\}$

Ground set
$$\{a, b, c, d, e, f, g, h, i, j, k, l\}$$

Subsets
$$A_1 = \{a, b, c, d\}, A_2 = \{e, f, g, h\}, A_3 = \{i, j, k, l\}$$
$$A_4 = \{a, e\}, A_5 = \{i, b, f, g\}, A_6 = \{c, d, g, h, k, l\}$$
$$A_7 = \{l\}$$

• A_6 has six elements, and A_1 , A_2 , A_3 , A_5 have four elements;

Ground set
$$\{a, b, c, d, e, f, g, h, i, j, k, l\}$$

Subsets
$$A_1 = \{a, b, c, d\}, A_2 = \{e, f, g, h\}, A_3 = \{i, j, k, l\}$$

$$A_4 = \{a, e\}, A_5 = \{i, b, f, g\}, A_6 = \{c, d, g, h, k, l\}$$

$$A_7 = \{l\}$$

- A_6 has six elements, and A_1 , A_2 , A_3 , A_5 have four elements;
- We find that

$$|A_1 \cup A_6| = 8, |A_2 \cup A_6| = 8$$

 $|A_3 \cup A_6| = 8, |A_5 \cup A_6| = 9.$

Ground set
$$\{a, b, c, d, e, f, g, h, i, j, k, l\}$$

Subsets
$$A_1 = \{a, b, c, d\}, A_2 = \{e, f, g, h\}, A_3 = \{i, j, k, l\}$$
$$A_4 = \{a, e\}, A_5 = \{i, b, f, g\}, A_6 = \{c, d, g, h, k, l\}$$
$$A_7 = \{l\}$$

- A_6 has six elements, and A_1 , A_2 , A_3 , A_5 have four elements;
- We find that

$$|A_1 \cup A_6| = 8, |A_2 \cup A_6| = 8$$

 $|A_3 \cup A_6| = 8, |A_5 \cup A_6| = 9.$

■ Collection $C = \{A_5, A_6\}$ is a 2-max cover since it covers nine elements.

Definition

Given a keyword set denoted as $V = \{w_1, w_2, \dots, w_n\}$, and sentence set $S = \{S_1, S_2, \dots, S_m\}$, where $S_j = \{w_k | w_k \in V\}$, then text summarization is to find k sentences from C such that maximizes the coverage.

Definition

Given a keyword set denoted as $V = \{w_1, w_2, \cdots, w_n\}$, and sentence set $S = \{S_1, S_2, \cdots, S_m\}$, where $S_j = \{w_k | w_k \in V\}$, then text summarization is to find k sentences from C such that maximizes the coverage.

■ Let *C* be the set of *k* sentences;

Definition

Given a keyword set denoted as $V = \{w_1, w_2, \cdots, w_n\}$, and sentence set $S = \{S_1, S_2, \cdots, S_m\}$, where $S_j = \{w_k | w_k \in V\}$, then text summarization is to find k sentences from C such that maximizes the coverage.

- Let *C* be the set of *k* sentences;
- Let $X_i = \begin{cases} 1, & S_i \in C \\ 0, & otherwise \end{cases}$, and $s_{ij} = \begin{cases} 1, & w_i \in S_j \\ 0, & otherwise \end{cases}$.

Definition

Given a keyword set denoted as $V = \{w_1, w_2, \cdots, w_n\}$, and sentence set $S = \{S_1, S_2, \cdots, S_m\}$, where $S_j = \{w_k | w_k \in V\}$, then text summarization is to find k sentences from C such that maximizes the coverage.

- Let C be the set of k sentences;
- Let $X_i = \begin{cases} 1, & S_i \in C \\ 0, & otherwise \end{cases}$, and $s_{ij} = \begin{cases} 1, & w_i \in S_j \\ 0, & otherwise \end{cases}$.

Maximize:
$$\sum_{j=1}^{n} \bigvee_{i=1}^{m} X_i s_{ij}$$

Definition

Given a keyword set denoted as $V = \{w_1, w_2, \cdots, w_n\}$, and sentence set $S = \{S_1, S_2, \cdots, S_m\}$, where $S_j = \{w_k | w_k \in V\}$, then text summarization is to find k sentences from C such that maximizes the coverage.

- Let *C* be the set of *k* sentences;
- Let $X_i = \begin{cases} 1, & S_i \in C \\ 0, & otherwise \end{cases}$, and $s_{ij} = \begin{cases} 1, & w_i \in S_j \\ 0, & otherwise \end{cases}$.

Maximize:
$$\sum_{j=1}^{n} \bigvee_{i=1}^{m} X_{i} s_{ij}$$

Subject to: $\sum_{i=1}^{m} X_i = k$

Definition

Given a keyword set denoted as $V = \{w_1, w_2, \cdots, w_n\}$, and sentence set $S = \{S_1, S_2, \cdots, S_m\}$, where $S_j = \{w_k | w_k \in V\}$, then text summarization is to find k sentences from C such that maximizes the coverage.

- Let C be the set of k sentences;
- Let $X_i = \begin{cases} 1, & S_i \in C \\ 0, & otherwise \end{cases}$, and $s_{ij} = \begin{cases} 1, & w_i \in S_j \\ 0, & otherwise \end{cases}$.

Maximize:
$$\sum_{j=1}^{n} \bigvee_{i=1}^{m} X_i s_{ij}$$

Subject to:
$$\sum_{i=1}^{m} X_i = k$$
$$X_i, s_{ii} \in \{0, 1\} \text{ for } 1 \le i \le m \text{ and } 1 \le j \le n$$

Submodularity of coverage

• Coverage of C can be defined as

$$f(C) = \big| \bigcup_{S_i \in C} S_i \big|.$$

Submodularity of coverage

• Coverage of C can be defined as

$$f(C) = \big|\bigcup_{S_i \in C} S_i\big|.$$

■ Let $C \subset D$, and $S_k \in D$, we have

$$f(C \cup \{S_k\}) - f(C) = |S_k - \bigcup_{S_i \in C} S_i|$$

$$\geq |S_k - \bigcup_{S_i \in D} S_i| = f(D \cup \{S_k\}) - f(D).$$

In addition, since $\bigcup_{S_i \in C} S_i \subset \bigcup_{S_i \in D} S_i$, we therefore have

$$f(C) \leq f(D)$$
.

Outline

Motivation of Submodular

Submodular

Set Covering Problem
Problem Formulation
Hill-climbing Algorithm

- 1: initialize $C = \emptyset$;
- 2: for i = 1 to k do

- 1: initialize $C = \emptyset$;
- 2: for i = 1 to k do
- 3: select $c = \arg\max_{s \in S \setminus C} [f(C \cup \{s\}) f(C)];$

- 1: initialize $C = \emptyset$; 2: for i = 1 to k do
- 3: select $c = \arg \max_{s \in S \setminus C} [f(C \cup \{s\}) f(C)];$
- 4: $C = C \cup \{c\};$
- 5: output *C*;

- 1: initialize $C = \emptyset$; 2: for i = 1 to k do
- 3: select $c = \arg \max_{s \in S \setminus C} [f(C \cup \{s\}) f(C)];$
- 4: $C = C \cup \{c\};$
- 5: output *C*;

Theorem

If the set function f is monotone and submodular with $f(\emptyset) = 0$, then the greedy algorithm achieves $(1 - \frac{1}{e})$ approximation ratio,

```
1: initialize C = \emptyset;

2: for i = 1 to k do

3: select c = \arg\max_{s \in S \setminus C} [f(C \cup \{s\}) - f(C)];

4: C = C \cup \{c\};

5: output C;
```

Theorem

If the set function f is monotone and submodular with $f(\emptyset)=0$, then the greedy algorithm achieves $(1-\frac{1}{e})$ approximation ratio, that is, the solution S found by the algorithm satisfies:

Hill-climbing algorithm

- 1: initialize $C = \emptyset$;
- 2: for i = 1 to k do
- 3: select $c = \arg \max_{s \in S \setminus C} [f(C \cup \{s\}) f(C)];$
- 4: $C = C \cup \{c\};$
- 5: output *C*;

Theorem

If the set function f is monotone and submodular with $f(\emptyset)=0$, then the greedy algorithm achieves $(1-\frac{1}{e})$ approximation ratio, that is, the solution S found by the algorithm satisfies:

$$f(S) \ge (1 - \frac{1}{e}) \max_{S' \subset V, |S'| = k} f(S'),$$

Hill-climbing algorithm

```
1: initialize C = \emptyset;

2: for i = 1 to k do

3: select c = \arg\max_{s \in S \setminus C} [f(C \cup \{s\}) - f(C)];

4: C = C \cup \{c\};

5: output C;
```

Theorem

If the set function f is monotone and submodular with $f(\emptyset)=0$, then the greedy algorithm achieves $(1-\frac{1}{e})$ approximation ratio, that is, the solution S found by the algorithm satisfies:

$$f(S) \ge (1 - \frac{1}{e}) \max_{S' \subseteq V \mid S' \mid = k} f(S'),$$

where f is monotonicity if $f(S) \leq f(T)$ for all $S \subseteq T \subseteq V$.

```
keyword set W = \{w_1, w_2, \cdots, w_8\}

sentences s_1 = \{w_1, w_2, w_8\}, s_2 = \{w_1, w_3, w_7\}, s_3 = \{w_1, w_6\}

s_4 = \{w_1, w_3, w_7, w_8\}, s_5 = \{w_1, w_5, w_6\}, s_6 = \{w_1, w_5, w_8\}

s_7 = \{w_5\}, s_8 = \{w_1, w_4, w_6\}, s_9 = \{w_2, w_8\}
```

```
keyword set W = \{w_1, w_2, \cdots, w_8\}
sentences s_1 = \{w_1, w_2, w_8\}, s_2 = \{w_1, w_3, w_7\}, s_3 = \{w_1, w_6\}
                   s_4 = \{w_1, w_3, w_7, w_8\}, s_5 = \{w_1, w_5, w_6\}, s_6 = \{w_1, w_5, w_8\}
                   s_7 = \{w_5\}, s_8 = \{w_1, w_4, w_6\}, s_9 = \{w_2, w_8\}
Sentence
              f(C) f(C \cup \{S_i\}) \Delta(S_i)
    S<sub>1</sub>
    S2
    53
    SΔ
    S5
    S<sub>6</sub>
    S7
```

Table: First iteration

58 **5**9

keyword set
$$W = \{w_1, w_2, \cdots, w_8\}$$

sentences $s_1 = \{w_1, w_2, w_8\}, s_2 = \{w_1, w_3, w_7\}, s_3 = \{w_1, w_6\}$
 $s_4 = \{w_1, w_3, w_7, w_8\}, s_5 = \{w_1, w_5, w_6\}, s_6 = \{w_1, w_5, w_8\}$
 $s_7 = \{w_5\}, s_8 = \{w_1, w_4, w_6\}, s_9 = \{w_2, w_8\}$

Sentence	f(C)	$f(C \cup \{S_i\})$	$\Delta(S_i)$
s_1	0	3	3
<i>s</i> ₂	0	3	3
<i>s</i> ₃	0	2	2
<i>S</i> ₄	0	4	4
<i>S</i> ₅	0	3	3
<i>s</i> ₆	0	3	3
<i>S</i> ₇	0	1	1
<i>s</i> ₈	0	3	3
So	0	2	2

Sentence S_4 is selected in the first iteration since it has maximal coverage gain.

Table: First iteration

```
keyword set W = \{w_1, w_2, \cdots, w_8\}

sentences s_1 = \{w_1, w_2, w_8\}, s_2 = \{w_1, w_3, w_7\}, s_3 = \{w_1, w_6\}

s_5 = \{w_1, w_5, w_6\}, s_6 = \{w_1, w_5, w_8\}, s_7 = \{w_5\}

s_8 = \{w_1, w_4, w_6\}, s_9 = \{w_2, w_8\}
```

```
keyword set W = \{w_1, w_2, \cdots, w_8\}
  sentences s_1 = \{w_1, w_2, w_8\}, s_2 = \{w_1, w_3, w_7\}, s_3 = \{w_1, w_6\}
                    s_5 = \{w_1, w_5, w_6\}, s_6 = \{w_1, w_5, w_8\}, s_7 = \{w_5\}
                    s_8 = \{w_1, w_4, w_6\}, s_9 = \{w_2, w_8\}
             f(C) f(C \cup \{S_i\}) \Delta(S_i)
Sentence
    S<sub>1</sub>
    S2
    53
    S<sub>5</sub>
    S6
    S7
    s8
    S9
         Table: The second iteration
```

keyword sentence	s s ₁		$\{s, s_2 = \{s\}, s_6 =$	$\{w_1, w_3, w_7\}, s_3 = \{w_1, w_6\}$ $\{w_1, w_5, w_8\}, s_7 = \{w_5\}$ $\{w_2, w_8\}$
Sentence	f(C)	$f(C \cup \{S_i\})$	$\Delta(S_i)$	
s_1	4	5	1	
<i>s</i> ₂	4	4	0	
<i>s</i> ₃	4	5	1	Sentence S_5 is
<i>S</i> ₅	4	6	2	selected in the second
<i>S</i> ₆	4	5	1	iteration since it has
<i>S</i> ₇	4	5	1	maximal coverage
<i>s</i> ₈	4	6	2	gain.
S 9	4	5	1	

Table: The second iteration

```
keyword set W = \{w_1, w_2, \cdots, w_8\}

sentences s_1 = \{w_1, w_2, w_8\}, s_2 = \{w_1, w_3, w_7\}, s_3 = \{w_1, w_6\}

s_6 = \{w_1, w_5, w_8\}, s_7 = \{w_5\}

s_8 = \{w_1, w_4, w_6\}, s_9 = \{w_2, w_8\}
```

```
keyword set W = \{w_1, w_2, \cdots, w_8\}
  sentences s_1 = \{w_1, w_2, w_8\}, s_2 = \{w_1, w_3, w_7\}, s_3 = \{w_1, w_6\}
                    s_6 = \{w_1, w_5, w_8\}, s_7 = \{w_5\}
                    s_8 = \{w_1, w_4, w_6\}, s_9 = \{w_2, w_8\}
              f(C) f(C \cup \{S_i\}) \Delta(S_i)
Sentence
    S<sub>1</sub>
                 6
    S2
                 6
    53
                 6
    S<sub>6</sub>
                 6
    S7
```

Table: The third iteration

6

S⊗

S9

Table: The third iteration

keyword sentence	s s ₁	$ ' = \{w_1, w_2, \cdots \\ $	$\{s_1, s_2 = \{s_3, s_7 = \{s_7, s_7 = \{s_7$,
Sentence	f(C)	$f(C \cup \{S_i\})$	$\Delta(S_i)$	
s_1	6	7	1	Sentence S_1 is
<i>s</i> ₂	6	6	0	selected in the third
<i>s</i> ₃	6	6	0	iteration since it has
<i>s</i> ₆	6	6	0	maximal coverage
<i>S</i> 7	6	6	0	gain.
<i>s</i> ₈	6	7	1	Finally, it outputs
S 9	6	7	1	text summarization
Ta	ble: The	third iteration		$C = \{S_4, S_5, S_1\}.$

Project assignr	ment: Only for undergraduate students
Task	

Task

 Crawl a corpus, which contains some plain text in the Web under a topic;

Task

- Crawl a corpus, which contains some plain text in the Web under a topic;
- Extract keywords from them;

Task

- Crawl a corpus, which contains some plain text in the Web under a topic;
- Extract keywords from them;
- Implement an algorithm to generate 100 summarizations from the corpus;

Task

- Crawl a corpus, which contains some plain text in the Web under a topic;
- Extract keywords from them;
- Implement an algorithm to generate 100 summarizations from the corpus;

Task

- Crawl a corpus, which contains some plain text in the Web under a topic;
- Extract keywords from them;
- Implement an algorithm to generate 100 summarizations from the corpus;

Submissions

Crawled corpus;

Task

- Crawl a corpus, which contains some plain text in the Web under a topic;
- Extract keywords from them;
- Implement an algorithm to generate 100 summarizations from the corpus;

- Crawled corpus;
- Source code and readme file;

Task

- Crawl a corpus, which contains some plain text in the Web under a topic;
- Extract keywords from them;
- Implement an algorithm to generate 100 summarizations from the corpus;

- Crawled corpus;
- Source code and readme file;
- A technique report;

Task

- Crawl a corpus, which contains some plain text in the Web under a topic;
- Extract keywords from them;
- Implement an algorithm to generate 100 summarizations from the corpus;

- Crawled corpus;
- Source code and readme file;
- A technique report;
- All data and documents submit to Baoli Gao, Email: 1760001992@qq.com;

Take-home messages

- Motivation of Submodular
- Submodular
- Set Covering Problem
 - Problem Formulation
 - □ Hill-climbing Algorithm