The Š Point

Michal Rolínek, Josef Tkadlec

for OnlineMathCircle 2011 (Lecture 10)

Abstract

This article presents basic geometries properties of the midpoint of arc also known¹ as the Š point. Significance of this point in olympiad geometry cannot be emphasized enough, as it appears at the IMO almost every other year. A set of exercises is included.

In order to introduce properties of the Š point we need to assume some knowledge. Namely, basic concyclicity criteria for quadrilaterals and basic angle-chasing. We hope the reader is familiar with these topics.

Now let's get started!

Definition. Let ABC be a triangle inscribed in a circle ω . Denote by \check{S}_a the midpoint of arc BC which does not contain A. This point is called the \check{S} point of $\triangle ABC$ with respect to the vertex A. Points \check{S}_b , \check{S}_c are defined similarly.

Straight from the definition it is clear that $\check{S}_aB=\check{S}_aC$ and thus \check{S}_a lies on the perpendicular bisector of BC. Also as arcs \check{S}_aB and \check{S}_aC are equal, the corresponding angles must also be equal. Hence $\angle BA\check{S}_a=\angle\check{S}_aAC$ and so \check{S}_a lies on the angle bisector.

We have derived the first important property of the \check{S} point.

Proposition 1. In ABC the angle bisector of $\angle A$, the perpendicular bisector of BC and the circumcircle ω are concurrent. The point of concurrency is \check{S}_a .

We are consistently going to use the following notation.

Notation. In $\triangle ABC$ let I be the incenter, \check{S}_a , \check{S}_b , \check{S}_c the corresponding \check{S} -points, E_a , E_b , E_c the corresponding excenters and let AD, BE, CF be angle bisectors in ABC, where $D \in BC$, $E \in AC$, $F \in AB$.

¹At least in the Czech Republic. In USAMO I would be careful for a few more years.

Fundamental properties

The key to understanding the Š point is to realize that it produces many circles and many pairs of similar triangles.

Proposition 2. In $\triangle ABC$ the points B, C, I, E_a are concyclic and \check{S}_a is the center of this circle. In particular $\check{S}_aI = \check{S}_aB = \check{S}_aC = \check{S}_aE_a$.

Proof. First we use the fact that the incenter (excenter) lie on the interior (exterior) angle bisectors of $\angle B$ and $\angle C$. We obtain

$$\angle IBE_a = \angle IBC + \angle CBE_a = \frac{\angle B}{2} + \frac{180^\circ - \angle B}{2} = 90^\circ$$

and similarly $\angle ICE_a = 90^{\circ}$. Hence the points B, C, I, E_a are indeed concyclic.

We already know that $\check{S}_aC = \check{S}_aB$ so it suffices to prove $\check{S}_aI = \check{S}_aB$, since then \check{S}_a will be the circumcenter of $\triangle IBC$ and thus also the circumcenter of BE_aCI .

We angle-chase to obtain

$$\angle BI\check{S}_a = 180^\circ - \angle BIA = \frac{\angle A}{2} + \frac{\angle B}{2}$$

and

$$\angle \check{S}_a BI = \angle \check{S}_a BC + \angle CBI = \angle \check{S}_a AC + \frac{\angle B}{2} = \frac{\angle A}{2} + \frac{\angle B}{2}.$$

Hence the triangle $IB\check{S}_a$ is isosceles with $\check{S}_aI=\check{S}_aB$ and we may conclude the proof.

With this knowledge the following example is very easy!

Example (IMO 2006). Let ABC be a triangle with incenter I. A point P in the interior of the triangle satisfies

$$\angle PBA + \angle PCA = \angle PBC + \angle PCB$$
.

Show that $AP \geq AI$, and that equality holds if and only if P = I.

Proof. If P = I then the proposition is true (note that point I satisfies $\angle IBA + \angle ICA = \frac{\angle B}{2} + \frac{\angle C}{2} = \angle IBC + \angle ICB$). We are to show that if $P \neq I$ then AP > AI. First, we get rid of the condition.

Since $(\angle PBA + \angle PCA) + (\angle PBC + \angle PCB) = \angle B + \angle C$, simple angle chase gives us that $\angle BPC = 180^{\circ} - (\angle PBC + \angle PCB) = 180^{\circ} - \frac{1}{2}(\angle B + \angle C)$. This should look familiar to us. Indeed, $\angle BIC = 180^{\circ} - (\frac{\angle B}{2} + \frac{\angle C}{2})$ and hence the points B, C, I, P lie on one circle.

The key is to identify the center of this circle. It has to be a circumcenter of triangle BIC which we already know to be \check{S}_a . Once we recall that \check{S}_a lies on internal angle bisector, the conclusion should be clear. One way to express it formally is to write down triangle inequality for $A\check{S}_aP$ to obtain

$$AP + P\check{S}_a > A\check{S}_a = AI + I\check{S}_a,$$

from which the result follows.

Proposition 3. Let BC be a chord of circle ω and \check{S}_a midpoint of arc BC. Let p, q be two lines passing through \check{S}_a . Let X,Y be their intersections with chord BC, respectively, and let Z, W be their second intersections with ω . Then X,Y,Z,W are concyclic.

Proof. To prove that XYWZ is cyclic, it suffices to show $\angle XZW + \angle XYW = 180^{\circ}$ or equivalently $\angle XZW = \angle CYW$.

Now using that arcs $B\dot{S}_a$ and \dot{S}_aC are equal we obtain

$$\angle XZW = \angle \check{S}_a ZC + \angle CZW = \angle \check{S}_a CB + \angle C\check{S}_a W.$$

We conclude by observing that $\angle CYW$ is an exterior angle in $\triangle \check{S}_a YC$ hence $\angle CYW = \angle \check{S}_a CB + \angle C\check{S}_a W$ and the proof is finished.

Note that the proposition remains valid for the lines p, q intersecting line BC not necessarily at segment BC. The proof is analogous to the one provided above.

Proposition 4. In $\triangle ABC$ we have $\check{S}_aD \cdot \check{S}_aA = \check{S}_aI^2 = \check{S}_aC^2 = \check{S}_aB^2$.

Proof. Since $\angle \check{S}_a AC = \angle BC\check{S}_a$ the triangles $A\check{S}_a C$ and $C\check{S}_a D$ are similar (AA). Thus

$$\frac{\check{S}_a A}{\check{S}_a C} = \frac{\check{S}_a C}{\check{S}_a D}$$

and then $\check{S}_a I^2 = \check{S}_a C^2 = \check{S}_a D \cdot \check{S}_a A$.

We may use these metric identities to form alternative definitions of the incenter of a triangle. These are often useful, especially in problems, where only one angle bisector is drawn.

Proposition 5. Let X be a point on segment $A\check{S}_a$. The following statements are equivalent

- (i) X = I.
- (ii) $\check{S}_a X = \check{S}_a I$.
- (iii) $\check{S}_a D \cdot \check{S}_a A = \check{S}_a X^2$.

Proof. We only need to realize that I is the unique point on segment $A\check{S}_a$ with properties (ii) and (iii).

Example (IMO 2002). Let BC be a diameter of circle S centered at O. Let A be a point of S such that $\angle AOB < 120^{\circ}$. Let D be the midpoint of the arc AB which does not contain C. The line through O parallel to DA meets the line AC at I. The perpendicular bisector of OA meets S at E and at F. Prove that I is the incenter of the triangle CEF.

Proof. Thanks to condition $\angle AOB < 120^{\circ}$, point A is a midpoint of arc EF which does not contain C. Hence line CA is an angle bisetor of $\angle ECF$. Using previous proposition it is enough to prove that AI = AF. We will show that both lengths are in fact equal to the radius of the circle S.

This assertion is obvious for AF because as F lies on a perpendicular bisector of segment AO, we have AF = OF.

Moreover, since D is midpoint of arc AB we have $\angle BOD = 2 \cdot \angle BCD = \angle BCA$, so $OD \parallel CA$. But this means that quadrilateral DOIA is a parallelogram $(DA \parallel OI)$ by problem statement). Thus AI = DO and we are done.

The last property covered in this article will concern tangent circles. The following proposition is integral part of a deeper concept called *homothety of circles*, which is beyond the scope of this article. Yet, the proposition has many applications by itself.

Proposition 6. Let circle ω be internally tangent to the circumcircle ω_1 of $\triangle ABC$ at A and tangent to BC at D'. Then A,D', \check{S}_a are collinear.

Proof. Take homothety with center A which maps ω to ω_1 . The line BC is mapped to a parallel line, which is tangent to ω_1 . But this must be a tangent at the point \check{S}_a (recall symmetry). Hence A, D' and \check{S}_a are collinear.

Example (Slovak contest). Two circles ω_1 and ω_2 are externally tangent at T and both internally tangent to circle ω at points R and S, respectively. Let Q be the second intersection of RT and ω . Show that $\angle QST = 90^{\circ}$.

Proof. Denote by X,Y the intersections of ω and common internal tangent of ω_1 and ω_2 . Further, let W be the second intersection of ST and ω . By Proposition 6 both Q and W are midpoints of the respective arcs XY. Hence they are antipodal and form a diameter. The proof follows.

Problems

Problem 1 (Junior Balkan 2010). Let AL and BK be angle bisectors in the non-isosceles triangle ABC (L lies on the side BC, K lies on the side AC). The perpendicular bisector of BK intersects the line AL at point M. Point N lies on the line BK such that LN is parallel to MK. Prove that LN = NA.

Problem 2. In $\triangle ABC$ prove the following metric identities

- (i) $A\check{S}_a \cdot ID = \check{S}_a I \cdot AI$.
- (ii) $A\check{S}_a \cdot AD = AI \cdot AE_a = AB \cdot AC$.
- (iii) $IA \cdot E_a D = E_a A \cdot ID$.

Problem 3 (IMO 2004). Let ABC be an acute-angled triangle with $AB \neq AC$. The circle with diameter BC intersects the sides AB and AC at M and N respectively. Denote by O the midpoint of the side BC. The bisectors of the angles $\angle BAC$ and $\angle MON$ intersect

at R. Prove that the circumcircles of the triangles BMR and CNR have a common point lying on the side BC.

Problem 4 (IMO Shortlist 2005). Given a triangle ABC satisfying $AC + BC = 3 \cdot AB$. The incircle of triangle ABC has center I and touches the sides BC and CA at the points D and E, respectively. Let K and L be the reflections of the points D and E with respect to I. Prove that the points A, B, K, L lie on one circle.

Problem 5 (IMO 2010). Given a triangle ABC, with I as its incenter and Γ as its circumcircle, AI intersects Γ again at D. Let E be a point on the arc BDC, and F a point on the segment BC, such that $\angle BAF = \angle CAE < \frac{1}{2} \angle BAC$. If G is the midpoint of IF, prove that the meeting point of the lines EI and DG lies on Γ .

Problem 6. Let K be a point on the shorter arc BC of the circumcircle of $\triangle ABC$. Two circles are tangent to the circumcircle of a triangle ABC at K and one of them is tangent to the side AB at a point M, and the other is tangent to AC at a point N. Prove that the incenter of ABC lies on the line MN.

Problem 7. Line ℓ intersects circle Γ at points A, B. Two externally tangent circles Γ_1 , Γ_2 are inscirbed in circular segment corresponding to shorter arc AB. Show that their common internal tangent passes through a fixed point if the two circles move inside the circular segment.

Problem 8 (Lemma for Sawayama-Thebault theorem). Let ABC be a triangle inscribed in circle ω and D on side BC. Let ω_1 be a circle tangent to AD at F, to BC at E and to ω at K. Prove that the incenter I of $\triangle ABC$ lies on EF.

Problem 9 (Asian-Pacific MO 2000). Let ABC be a triangle. Let M and N be the points in which the median and the angle bisector, respectively, at A meet the side BC. Let Q and P be the points in which the perpendicular at N to NA meets MA and BA, respectively. Finally, let O be the point in which the perpendicular at P to BA meets line AN. Prove that QO is perpendicular to BC.

Hints

- 1 Use Proposition 1 to interpret M as \check{S} point of smoe triangle. Angle chase to show that N is also \check{S} point for some triangle.
- 2 Use similarites, expressing distances in terms of basic elements of $\triangle ABC$ and keep in mind Proposition 4
- 3 Use Proposition 1 to say that R is \check{S} point of $\triangle AMN$. Angle chase!
- 4 Guess where the center of the circle will be! Reduce the problem into proving a metric relation (equal tangents may be useful).

- 5 Draw E_a to get rid of the midpoint, then use result of Problem 2 (and possibly some angle-chasing). More approaches are possible you may use Menelaus theorem, Proposition 3 and angle-chasing.
- 6 Make use of Proposition 6 and Pascal theorem.
- 7 Use Proposition 3, Proposition 6 and the existence of radical center.
- 8 Intersect angle-bisector of $\angle A$ with EF (draw also the \check{S} point!) and use alternative definition of the incenter from Proposition 5(iii). By power of a point and Proposition 6 this reduces the problem into angle-chasing.
- 9 Draw B', C' such that we are in fact proving that O is \check{S} point for $\triangle AB'C'$. Then proceed indirectly (be careful about your logic!), take O' as this \check{S} point and show $\angle O'PA$ is right. Use angle-chasing.