Amendments to the Claims

Claim 1 (Original): A compound of Formula I:

where:

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_6 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^9R^{10} , hydrogen, biphenyl

substituted with halo,

X is CH, N, or N^+ -O⁻;

Y is CR¹⁶, N, or N⁺-O⁻;

Q is CR^{17} , N, or N^+ -O⁻;

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

R³ is hydrogen or C₁-C₆ alkyl;

R⁴ is hydrogen, C₁-C₆ alkyl, or phenyl;

R³ and R⁴ taken together with the carbon to which they are attached form a C₃-C₆ cycloalkyl ring;

```
R<sup>5</sup> is hydrogen, fluoro, trifluoromethyl, R<sup>32</sup>, or phenyl optionally monosubstituted with C<sub>1</sub>-
C_6 alkyl or C_1-C_6 alkoxy;
                R<sup>6</sup> is fluoro, hydroxy, p-toluenesulfonyloxy, R<sup>34</sup>, -CH<sub>2</sub>C(O)R<sup>35</sup>, or
 -OC(O)NHR^{36}; or R^5 and R^6 taken together form =CHC(O)(C_1-C_4 \text{ alkoxy});
                R<sup>7</sup> is hydrogen or fluoro; or R<sup>6</sup> and R<sup>7</sup> taken together form a bond;
                R<sup>8</sup> is hydrogen or fluoro;
                R<sup>9</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, or phenyl;
                R^{10} is hydrogen, C_1-C_6 alkyl, phenyl, -C(O)(C_1-C_6 alkyl), or -SO_2(C_1-C_6 alkyl);
                R<sup>11</sup> and R<sup>12</sup> are independently selected from the group consisting of methyl, ethyl, and
propyl;
                R<sup>13</sup> is hydrogen or C<sub>1</sub>-C<sub>6</sub> alkyl:
                R<sup>14</sup> is C<sub>3</sub>-C<sub>5</sub> cycloalkyl, C<sub>1</sub>-C<sub>6</sub> alkyl, or -CH<sub>2</sub>R<sup>18</sup>;
                R^{15} is -CF_2R^{19}, -OR^{20}, -CH_2C(O)CH_3, -S(O)_{1-2}R^{21}, -NR^{22}SO_2R^{23}, (C_1-C_3 \text{ alkoxy})-CH_2C(O)CH_3, -S(O)_{1-2}R^{21}, -S(O)_{1-2}R^{21}
carbonyl, phenyl optionally substituted with halo, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-
2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl;
                R<sup>16</sup> is hydrogen, chloro, isobutyl, CH<sub>2</sub>R<sup>24</sup>; CF<sub>2</sub>R<sup>25</sup>, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C<sub>2</sub>-
C_4 alkenyl optionally substituted with one or two fluorine atoms, OR^{26}, C(O)R^{27},
N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-
dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from
the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl,
1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl,
oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;
                R<sup>17</sup> is hydrogen or fluoro;
                R<sup>18</sup> is ethynyl or cyclopropyl:
                R<sup>19</sup> is hydrogen or methyl;
                R<sup>20</sup> is difluoromethyl or methanesulfonyl;
                R<sup>21</sup> is C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, phenyl, or -NR<sup>30</sup>R<sup>31</sup>;
                R<sup>22</sup> is hydrogen, C<sub>1</sub>-C<sub>3</sub> alkyl optionally substituted with up to 3 fluorine atoms, or C<sub>3</sub>-C<sub>6</sub>
cycloalkyl;
                R^{23} is C_1-C_3 alkyl or C_3-C_6 cycloalkyl;
                R^{24} is fluoro, hydroxy, or C_1-C_3 alkoxy;
                R<sup>25</sup> is hydrogen, phenyl, or furyl;
                R<sup>26</sup> is C<sub>1</sub>-C<sub>3</sub> alkyl optionally substituted with one or two fluorine atoms;
```

 R^{27} is C_1 - C_3 alkyl, C_3 - C_5 cycloalkyl, C_2 - C_3 alkenyl, C_1 - C_3 alkoxy, $NR^{28}R^{29}$, pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-yl, phenyl, pyridinyl, or furyl;

R²⁸ is hydrogen or methyl;

R²⁹ is methyl, ethyl, or propyl;

R³⁰ is hydrogen or methyl;

R³¹ is methyl; or

R³⁰ and R³¹ taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

 R^{32} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, oxo, or one or two hydroxy groups, C_2 - C_6 alkenyl, or -(CH₂)₀₋₃- R^{33} ;

 R^{33} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, or R^{33} is adamantyl;

 R^{34} is hydrogen, R^{32} , or $-(CH_2)_{0-2}$ -OR³²;

 R^{35} is hydroxy, C_1 - C_6 alkoxy, or $NR^{37}R^{38}$ where R^{37} and R^{38} are independently hydrogen or C_1 - C_6 alkyl, or R^{37} and R^{38} , taken together with the nitrogen to which they are attached, form a piperidine ring optionally substituted with C_1 - C_6 alkyl, a homopiperidine ring, a morpholine ring, or a pyrrolidine ring optionally substituted with $(C_1$ - C_6 alkoxy)methyl;

 R^{36} is C_1 - C_6 alkyl or adamantyl;

or a pharmaceutically acceptable salt thereof; provided that: a) no more than one of X, Y, and Q may be N or N^+ - O^- ; and D0 when D1 is D2, and D3 is D3, then one of D4 and D5 is other than hydrogen.

Claim 2 (Currently amended): A compound of Claim 1 of Formula I(a):

I(a)

where:

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three

groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C₁-C₆ alkoxy, C₃-C₇ cycloalkoxy, oxo, and NR⁹R¹⁰, hydrogen, biphenyl

substituted with halo,

X is CH, N, or N^+ -O⁻;

Y is CR¹⁶, N, or N⁺-O⁻;

O is CR^{17} , N, or N^+ -O⁻;

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

 R^6 is fluoro, hydroxy, <u>p</u>-toluenesulfonyloxy, R^{34} , $-CH_2C(O)R^{35}$, or $-OC(O)NHR^{36}$; or R^5 and R^6 taken together form $=CHC(O)(C_1-C_4$ alkoxy);

R⁹ is hydrogen, C₁-C₆ alkyl, or phenyl;

 R^{10} is hydrogen, C_1 - C_6 alkyl, phenyl, $-C(O)(C_1$ - C_6 alkyl), or $-SO_2(C_1$ - C_6 alkyl);

 R^{11} and R^{12} are independently selected from the group consisting of methyl, ethyl, and propyl;

R¹³ is hydrogen or C₁-C₆ alkyl;

R¹⁴ is C₃-C₅ cycloalkyl, C₁-C₆ alkyl, or -CH₂R¹⁸;

 R^{15} is $-CF_2R^{19}$, $-OR^{20}$, $-CH_2C(O)CH_3$, $-S(O)_{1-2}R^{21}$, $-NR^{22}SO_2R^{23}$, $(C_1-C_3 \text{ alkoxy})$ -carbonyl, phenyl optionally substituted with halo, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C_1-C_3 alkyl;

R¹⁶ is hydrogen, chloro, isobutyl, CH₂R²⁴; CF₂R²⁵, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C₂-C₄ alkenyl optionally substituted with one or two fluorine atoms, OR²⁶, C(O)R²⁷, N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl,

1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl, oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;

R¹⁷ is hydrogen or fluoro;

R¹⁸ is ethynyl or cyclopropyl;

R¹⁹ is hydrogen or methyl;

R²⁰ is difluoromethyl or methanesulfonyl;

R²¹ is C₁-C₄ alkyl, C₃-C₆ cycloalkyl, phenyl, or –NR³⁰R³¹;

 R^{22} is hydrogen, C_1 - C_3 alkyl optionally substituted with up to 3 fluorine atoms, or C_3 - C_6 cycloalkyl;

 R^{23} is C_1 - C_3 alkyl or C_3 - C_6 cycloalkyl;

R²⁴ is fluoro, hydroxy, or C₁-C₃ alkoxy;

R²⁵ is hydrogen, phenyl, or furyl;

R²⁶ is C₁-C₃ alkyl optionally substituted with one or two fluorine atoms;

R²⁷ is C₁-C₃ alkyl, C₃-C₅ cycloalkyl, C₂-C₃ alkenyl, C₁-C₃ alkoxy, NR²⁸R²⁹, pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-yl, phenyl, pyridinyl, or furyl;

R²⁸ is hydrogen or methyl;

R²⁹ is methyl, ethyl, or propyl;

R³⁰ is hydrogen or methyl;

R³¹ is methyl; or

R³⁰ and R³¹ taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

 R^{32} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, oxo, or one or two hydroxy groups, C_2 - C_6 alkenyl, or - $(CH_2)_{0.3}$ - R^{33} :

 R^{33} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, or R^{33} is adamantyl;

 R^{34} is hydrogen, R^{32} , or $-(CH_2)_{0-2}$ - OR^{32} ;

 R^{35} is hydroxy, C_1 - C_6 alkoxy, or $NR^{37}R^{38}$ where R^{37} and R^{38} are independently hydrogen or C_1 - C_6 alkyl, or R^{37} and R^{38} , taken together with the nitrogen to which they are attached, form a piperidine ring optionally substituted with C_1 - C_6 alkyl, a homopiperidine ring, a morpholine ring, or a pyrrolidine ring optionally substituted with $(C_1$ - C_6 alkoxy)methyl;

 R^{36} is C_1 - C_6 alkyl or adamantyl;

Serial No. 10/599,129

or a pharmaceutically acceptable salt thereof; provided that: a) no more than one of X, Y, and Q may be N or N^+ - O^- ; and D) when X is CH, Y is CR^{16} , and Q is CR^{17} , then one of R^{16} and R^{17} is other than hydrogen.

Claims 3-7 (Cancelled)

Claim 8 (Previously presented): A pharmaceutical formulation comprising a compound of Claim 1, in combination with a pharmaceutically acceptable carrier, diluent, or excipient.

Claim 9 (Original) A compound of Formula III:

where:

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_6 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^9R^{10} , hydrogen, biphenyl

substituted with halo,

X is CH, N, or N^+ -O⁻;

Y is CR¹⁶, N, or N⁺-O⁻;

Q is CR^{17} , N, or N^+ -O⁻;

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 -

 C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

 R^3 is hydrogen or C_1 - C_6 alkyl;

R⁴ is hydrogen, C₁-C₆ alkyl, or phenyl;

R³ and R⁴ taken together with the carbon to which they are attached form a C₃-C₆ cycloalkyl ring;

 R^5 is hydrogen, fluoro, trifluoromethyl, R^{32} , or phenyl optionally monosubstituted with C_1 - C_6 alkyl or C_1 - C_6 alkoxy;

R⁶ is fluoro, hydroxy, <u>p</u>-toluenesulfonyloxy, R³⁴, -CH₂C(O)R³⁵, or

 $-OC(O)NHR^{36}$; or R^5 and R^6 taken together form $=CHC(O)(C_1-C_4 \text{ alkoxy})$;

R⁷ is hydrogen or fluoro; or R⁶ and R⁷ taken together form a bond;

R⁸ is hydrogen or fluoro;

R⁹ is hydrogen, C₁-C₆ alkyl, or phenyl;

R¹⁰ is hydrogen, C₁-C₆ alkyl, phenyl, -C(O)(C₁-C₆ alkyl), or -SO₂(C₁-C₆ alkyl);

R¹¹ and R¹² are independently selected from the group consisting of methyl, ethyl, and propyl;

 R^{13} is hydrogen or C_1 - C_6 alkyl;

R¹⁴ is C₃-C₅ cycloalkyl, C₁-C₆ alkyl, or -CH₂R¹⁸;

 $R^{15} \text{ is } -CF_2R^{19}, \text{ } -OR^{20}, \text{ } -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } (C_1\text{-}C_3 \text{ alkoxy}) -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -NR^{22}SO_2R^{23}, \text{ } -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -S(O)_{1\text{-}2}R^{22}, \text{ } -CH_2C(O)CH_3, \text{ } -S(O)_{1\text{-}2}R^{21}, \text{ } -S(O)_{1\text{-}2}R^{22}, \text{ } -CH_2C(O)_{1\text{-}2}R^{22}, \text{ } -S(O)_{1\text{-}2}R^{$

carbonyl, phenyl optionally substituted with halo, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C₁-C₃ alkyl;

 R^{16} is hydrogen, chloro, isobutyl, CH_2R^{24} ; CF_2R^{25} , 1,1,1-trifluoro-2-hydroxyeth-2-yl, C_2 - C_4 alkenyl optionally substituted with one or two fluorine atoms, OR^{26} , $C(O)R^{27}$,

N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl, 1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl, oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;

R¹⁷ is hydrogen or fluoro;

R¹⁸ is ethynyl or cyclopropyl;

R¹⁹ is hydrogen or methyl;

R²⁰ is difluoromethyl or methanesulfonyl;

R²¹ is C₁-C₄ alkyl, C₃-C₆ cycloalkyl, phenyl, or –NR³⁰R³¹;

R²² is hydrogen, C₁-C₃ alkyl optionally substituted with up to 3 fluorine atoms, or C₃-C₆ cycloalkyl;

 R^{23} is C_1 - C_3 alkyl or C_3 - C_6 cycloalkyl;

R²⁴ is fluoro, hydroxy, or C₁-C₃ alkoxy;

R²⁵ is hydrogen, phenyl, or furyl;

R²⁶ is C₁-C₃ alkyl optionally substituted with one or two fluorine atoms;

R²⁷ is C₁-C₃ alkyl, C₃-C₅ cycloalkyl, C₂-C₃ alkenyl, C₁-C₃ alkoxy, NR²⁸R²⁹, pyrrolidin-1-yl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-yl, phenyl, pyridinyl, or furyl;

R²⁸ is hydrogen or methyl;

R²⁹ is methyl, ethyl, or propyl;

R³⁰ is hydrogen or methyl;

R³¹ is methyl; or

R³⁰ and R³¹ taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

 R^{32} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, oxo, or one or two hydroxy groups, C_2 - C_6 alkenyl, or -(CH₂)₀₋₃- R^{33} ;

 R^{33} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, or R^{33} is adamantyl;

 R^{34} is hydrogen, R^{32} , or $-(CH_2)_{0-2}$ -OR³²;

 R^{35} is hydroxy, C_1 - C_6 alkoxy, or $NR^{37}R^{38}$ where R^{37} and R^{38} are independently hydrogen or C_1 - C_6 alkyl, or R^{37} and R^{38} , taken together with the nitrogen to which they are attached, form a piperidine ring optionally substituted with C_1 - C_6 alkyl, a homopiperidine ring, a morpholine ring, or a pyrrolidine ring optionally substituted with $(C_1$ - C_6 alkoxy)methyl;

R³⁶ is C₁-C₆ alkyl or adamantyl;

R³⁹ is hydrogen or a nitrogen protecting group;

R⁴⁰ is hydrogen or an oxygen protecting group;

or an acid addition salt thereof; provided that: a) no more than one of X, Y, and Q may be N or N^+ - O^- ; b) when X is CH, Y is CR^{16} , and Q is CR^{17} , then one of R^{16} and R^{17} is other than hydrogen; and c) at least one of R^{39} and R^{40} is other than hydrogen.

Claim 10 (Original): A compound of Formula IV:

where:

 R^1 is $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_1-C_6$ alkyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkenyl), $(C_3-C_7$ cycloalkyl)₀₋₁ $(C_2-C_6$ alkynyl) or C_3-C_7 cycloalkyl, each optionally substituted with up to three groups independently selected from halo, hydroxy, thiol, cyano, trifluoromethyl, trifluoromethoxy, C_1-C_6 alkoxy, C_3-C_7 cycloalkoxy, oxo, and NR^9R^{10} , hydrogen, biphenyl

substituted with halo,

X is CH, N, or N^+ -O⁻;

Y is CR¹⁶, N, or N⁺-O⁻;

Q is CR¹⁷, N, or N⁺-O⁻;

 R^2 is C_1 - C_3 alkyl, benzyl optionally monosubstituted in the phenyl ring with a substituent selected from the group consisting of halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, or benzyl optionally disubstituted in the phenyl ring with a first substituent independently selected from halo and a second substituent independently selected from halo, C_1 - C_6 alkoxy optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl, and C_1 - C_6 alkylthio optionally substituted in the alkyl chain with C_3 - C_7 cycloalkyl;

R³ is hydrogen or C₁-C₆ alkyl;

R⁴ is hydrogen, C₁-C₆ alkyl, or phenyl;

R³ and R⁴ taken together with the carbon to which they are attached form a C₃-C₆ cycloalkyl ring;

 R^5 is hydrogen, fluoro, trifluoromethyl, R^{32} , or phenyl optionally monosubstituted with C_1 - C_6 alkyl or C_1 - C_6 alkoxy;

R⁶ is fluoro, hydroxy, <u>p</u>-toluenesulfonyloxy, R³⁴, -CH₂C(O)R³⁵, or

```
R<sup>7</sup> is hydrogen or fluoro; or R<sup>6</sup> and R<sup>7</sup> taken together form a bond;
                   R<sup>8</sup> is hydrogen or fluoro;
                   R<sup>9</sup> is hydrogen, C<sub>1</sub>-C<sub>6</sub> alkyl, or phenyl;
                   R^{10} is hydrogen, C_1-C_6 alkyl, phenyl, -C(O)(C_1-C_6 alkyl), or -SO_2(C_1-C_6 alkyl);
                   R<sup>11</sup> and R<sup>12</sup> are independently selected from the group consisting of methyl, ethyl, and
propyl;
                   R^{13} is hydrogen or C_1-C_6 alkyl;
                   R<sup>14</sup> is C<sub>3</sub>-C<sub>5</sub> cycloalkyl, C<sub>1</sub>-C<sub>6</sub> alkyl, or -CH<sub>2</sub>R<sup>18</sup>;
                   R^{15} \text{ is } - CF_2R^{19}, \text{ } - OR^{20}, \text{ } - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NR^{22}SO_2R^{23}, \text{ } (C_1 - C_3 \text{ alkoxy}) - CH_2C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NC_1C(O)CH_3, \text{ } - S(O)_{1\text{-}2}R^{21}, \text{ } - NC_1C(O)CH_3, \text{ } - S(O)_{1\text{-}
carbonyl, phenyl optionally substituted with halo, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,1-dioxo-
2,3,4,5-tetrahydroisothiazol-2-yl, or tetrazol-5-yl optionally substituted with C<sub>1</sub>-C<sub>3</sub> alkyl;
                   R<sup>16</sup> is hydrogen, chloro, isobutyl, CH<sub>2</sub>R<sup>24</sup>; CF<sub>2</sub>R<sup>25</sup>, 1,1,1-trifluoro-2-hydroxyeth-2-yl, C<sub>2</sub>-
C_4 alkenyl optionally substituted with one or two fluorine atoms, OR^{26}, C(O)R^{27},
N(methyl)(methylsulfonyl), N(methyl)(acetyl), pyrrolidin-2-on-1-yl, methylsulfonyl, N,N-
dimethylaminosulfonyl, phenyl optionally substituted with one or two substituents selected from
the group consisting of hydroxymethyl, methoxy, fluoro, and methylsulfonyl, 1,3-dioxolan-2-yl,
1,3-dithiolan-2-yl, 1,3-oxathiolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithian-2-yl, pyridinyl, thiazolyl,
oxazolyl, or 1,2,4-oxadiazolyl optionally substituted with methyl;
                   R<sup>17</sup> is hydrogen or fluoro:
                   R<sup>18</sup> is ethynyl or cyclopropyl:
                   R<sup>19</sup> is hydrogen or methyl:
                   R<sup>20</sup> is difluoromethyl or methanesulfonyl;
                   R<sup>21</sup> is C<sub>1</sub>-C<sub>4</sub> alkyl, C<sub>3</sub>-C<sub>6</sub> cycloalkyl, phenyl, or -NR<sup>30</sup>R<sup>31</sup>;
                   R<sup>22</sup> is hydrogen, C<sub>1</sub>-C<sub>3</sub> alkyl optionally substituted with up to 3 fluorine atoms, or C<sub>3</sub>-C<sub>6</sub>
cycloalkyl;
                   R^{23} is C_1-C_3 alkyl or C_3-C_6 cycloalkyl;
                   R<sup>24</sup> is fluoro, hydroxy, or C<sub>1</sub>-C<sub>3</sub> alkoxy;
                   R<sup>25</sup> is hydrogen, phenyl, or furyl;
                   R<sup>26</sup> is C<sub>1</sub>-C<sub>3</sub> alkyl optionally substituted with one or two fluorine atoms;
                   R<sup>27</sup> is C<sub>1</sub>-C<sub>3</sub> alkyl, C<sub>3</sub>-C<sub>5</sub> cycloalkyl, C<sub>2</sub>-C<sub>3</sub> alkenyl, C<sub>1</sub>-C<sub>3</sub> alkoxy, NR<sup>28</sup>R<sup>29</sup>, pyrrolidin-1-
yl optionally substituted with methyl or one or two fluorine atoms, piperidin-1-yl, phenyl,
pyridinyl, or furyl;
```

 $-OC(O)NHR^{36}$; or R^5 and R^6 taken together form $=CHC(O)(C_1-C_4 \text{ alkoxy})$ or oxo;

R²⁸ is hydrogen or methyl;

R²⁹ is methyl, ethyl, or propyl;

R³⁰ is hydrogen or methyl;

R³¹ is methyl; or

R³⁰ and R³¹ taken together with the nitrogen atom to which they are attached form a pyrrolidine or piperidine ring;

 R^{32} is C_1 - C_{10} alkyl optionally substituted with 1-6 fluorine atoms, oxo, or 1 or 2 hydroxy groups, C_2 - C_6 alkenyl, or -(CH₂)₀₋₃- R^{33} ;

 R^{33} is C_3 - C_7 cycloalkyl or phenyl each optionally substituted with one or two substitutents independently selected from the group consisting of halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, hydroxy, trifluoromethyl, and trifluoromethoxy, or R^{33} is adamantyl;

 R^{34} is hydrogen, R^{32} , or $-(CH_2)_{0-2}$ -OR³²;

 R^{35} is hydroxy, C_1 - C_6 alkoxy, or $NR^{37}R^{38}$ where R^{37} and R^{38} are independently hydrogen or C_1 - C_6 alkyl, or R^{37} and R^{38} , taken together with the nitrogen to which they are attached, form a piperidine ring optionally substituted with C_1 - C_6 alkyl, a homopiperidine ring, a morpholine ring, or a pyrrolidine ring optionally substituted with $(C_1$ - C_6 alkoxy)methyl;

R³⁶ is C₁-C₆ alkyl or adamantyl;

R³⁹ is hydrogen or a nitrogen protecting group;

R⁴¹ and R⁴² are independently selected from methyl, ethyl, and propyl;

or an acid addition salt thereof; provided that no more than one of X, Y, and Q may be N or $N^+\text{-}O^-$.

Claim 11 (Previously presented): A method for the inhibition of production of A- β peptide comprising administering to a mammal in need of such treatment an effective amount of a compound of Claim 1.

Claim 12 (Cancelled)