Finite Field Arithmetic and Implementations

Xinmiao Zhang

Case Western Reserve University

Applications of Finite Field Arithmetic

- Error-correcting codes
 - Hamming codes
 - BCH codes
 - Reed-Solomon codes
 - Low-density parity-check codes
- Cryptosystems:
 - Elliptic curve cryptography Public key cipher
 - Advanced Encryption Standard Symmetric key cipher
 - Biometric encryption

Group

- A group is a set of objects G on which a binary operation "." is defined. The binary operation takes any two elements in G and generates as its result an element that is also in G. The operation must satisfy the following requirements if G is a group
 - 1. Associativity: (a . b) . c = a . (b . c) for all a, b, $c \in G$
 - 2. Identity: there exists $e \in G$ such that a . e = e . a = a for all $a \in G$
 - 3. Inverse: for each $a \in G$ there exists a unique element $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$
- * A group is said to be commutative (or abelian) if it also satisfies
 - 4. Commutativity: for all $a,b \in G$, $a \cdot b = b \cdot a$

Field

- Let F be a set of objects on which two operations + and are defined, F is said to be a field iff
 - 1. F forms a commutative group under +, the additive identity element is labeled '0'.
 - 2. F-{0} forms a commutative group under . The multiplicative identity element is labeled '1'.
 - 3. The operation + and . distributes: a . (b+c)=(a .b)+(a .c)
- A field with finite number of elements is called a finite field, also called Galois Field, denoted by GF(p). p can be a prime number or power of prime.

Examples of Finite Fields

- Finite field GF(2) consists of elements 0 and 1
 '+' XOR operation
 additive identity: 0
 - '.' AND operation; multiplicative identity: 1
- * Finite field GF(7) consists of elements 0,1, ...6
 '+' mod 7 integer addition
 additive identity: 0
 - ".' mod 7 integer multiplication multiplicative identity: 1

Irreducible Polynomial & Extension Field

- A polynomial $P(x) = p_m x^m + p_{m-1} x^{m-1} + \dots + p_0$, whose coefficients p_i are elements of a field GF(q), is called a polynomial over GF(q).
- A polynomial P(x) is irreducible over GF(q) if P(x) is only divisible by $c \in GF(q)$ or itself.
- ❖ P(x) can be used to construct *extension field* GF(q^m). Each element in GF(q^m) can be represented as a polynomial of degree m-1 over GF(q)
 - '+' polynomial addition
 - '.' polynomial multiplication modulo P(x)

Example of Extension Field

❖ $P(x)=x^3+x+1$ can be used to construct $GF(2^3)$. An element $A ∈ GF(2^3)$ can be expressed by three bits (a_2,a_1,a_0) , which can be considered as the coefficients of a polynomial $A(x)=a_2x^2+a_1x+a_0$. Similarly, another element B can be expressed as: $B(x)=b_2x^2+b_1x+b_0$.

'+'
$$A(x)+B(x)=(a_2 \oplus b_2)x^2+(a_1 \oplus b_1)x+(a_0 \oplus b_0)$$

additive identity: 000

- '.' $A(x) \cdot B(x) \mod P(x)$ multiplicative identity: 001
- x^2 {x², x, 1}, where x is a root of P(x), is called a standard (polynomial) basis of GF(2³).

Representations of Finite Field Elements

- Standard basis
- Normal basis
- Dual basis
- Power representation

For an element $\alpha \in GF(q^m)$, the minimum integer r, such that $\alpha^r=1$, is called the order of α . The maximum order of any element is q^m-1 , and an element with order q^m-1 is called a primitive element. All the nonzero elements of $GF(q^m)$ can be represented by the powers of a primitive element α

$$\{1,\alpha,\alpha^2,\cdots\alpha^{q^m-2}\}$$

• An irreducible polynomial whose roots have order q^m-1 is called a primitive polynomial

Representation Conversion

- ❖ Binary extension field, GF(2^m), is usually adopted for hardware implementations, since each element can be represented by a m-bit binary tuple.
- $P(x)=x^3+x+1$ is a primitive polynomial, and can be used to construct $GF(2^3)$.

Power	Standard basis
0	000
1	001
α	010
α^2	100
α^3	011
α^4	110
α^5	111
α^6	101

•
$$\alpha$$
, x: root of P(x)

$$\alpha^{2} \sim 100 = x^{2}$$

$$\alpha^{3} \sim x^{2} \cdot x = x^{3}$$

$$\mod P(x)$$

$$x+1$$

$$\alpha^{4} \sim 110 = x^{2} + x$$

$$\alpha^{5} \sim (x^{2} + x) \cdot x = x^{3} + x^{2}$$

$$\mod P(x)$$

$$x^{2} + x + 1$$

Composite Field

- * Two pairs {GF(qn), $G(y) = y^n + \sum_{i=0}^{n-1} g_i y^i$ } and {GF((qn)m), $P(x) = x^m + \sum_{i=0}^{m-1} p_i x^i$ } are called a composite field if
 - GF(qⁿ) is constructed from GF(q) by G(y).
 - $GF((q^n)^m)$ is constructed from $GF(q^n)$ by P(x).
- A composite field $GF((q^n)^m)$ is *isomorphic* to the field $GF(q^k)$ with k=nm.
- ightharpoonup Each element of $GF((q^n)^m)$ can be expressed as m elements of $GF(q^n)$

Implementation of Finite Field Arithmetic

Finite Field Addition

- Additions over GF(2^m) using basis representations can be performed by bit-wise XOR operation
- * Additions over $GF(2^m)$ using power representation need look-up tables of size $2^m \times m$

Example: $GF(2^3)$ can be constructed using irreducible polynomial $P(x)=x^3+x+1$

0	000	α^3	011
1	001	α^4	110
α	010	α^5	111
α^2	100	α^6	101

$$\alpha^{2} + \alpha^{4} \longrightarrow 100 + 110$$

$$= 010 \longrightarrow \alpha$$

Finite Field Multipliers

Multiplication using Power Representation

❖ Using power representation, multiplication over GF(2^m) can be implemented by adding up the exponents of the operands modulo 2^m-1.

Example: multiplications over $GF(2^3)$

$$\alpha^5 \cdot \alpha^6 = \alpha^{(5+6) \bmod 7} = \alpha^4$$

❖ Implementation: m-bit unsigned integer addition with the carry-out added to the least significant bit.

Multiplication using Standard Basis

ightharpoonup The product of A(x) and B(x) is C(x)=A(x)B(x) mod P(x)

$$C(x) = a_0 B(x) \bmod P(x) + a_1(xB(x)) \bmod P(x) + \dots + a_{m-1}(x^{m-1}B(x)) \bmod P(x)$$

Xtime: multiply an element by x modulo P(x)

$$P(x)=x^8+x^7+x^6+x+1$$

Multiplication over Composite Field

* In composite field $GF((2^n)^m)$, the elements are represented by polynomials with maximum degree m-1 over $GF(2^n)$

$$A(x) = a_{m-1}x^{m-1} + a_{m-2}x^{m-2} + \cdots + a_0 \qquad a_i \in GF(2^n)$$

The complexity of composite field multiplication can be reduced by the Karatsuba-Ofman Algorithm (KOA), which reduces the number of sub-field multiplications at the cost of more additions.

Multiplication over Composite Field

 \bullet C(x)=A(x)B(x)

$$A(x) = x^{\frac{m}{2}} (x^{\frac{m}{2}-1} a_{m-1} + \dots + a_{\frac{m}{2}}) + (x^{\frac{m}{2}-1} a_{\frac{m}{2}-1} + \dots + a_{0}) = x^{\frac{m}{2}} A_{h}(x) + A_{l}(x)$$

$$B(x) = x^{\frac{m}{2}} (x^{\frac{m}{2}-1} b_{m-1} + \dots + b_{\frac{m}{2}}) + (x^{\frac{m}{2}-1} b_{\frac{m}{2}-1} + \dots + b_{0}) = x^{\frac{m}{2}} B_{h}(x) + B_{l}(x)$$

$$define \qquad D_{0}(x) = A_{l}(x) B_{l}(x)$$

$$D_{1}(x) = [A_{l}(x) + A_{h}(x)][B_{l}(x) + B_{h}(x)]$$

$$D_{2}(x) = A_{h}(x) B_{h}(x)$$

$$C(x) = x^{m} D_{2}(x) + x^{\frac{m}{2}} [D_{1}(x) - D_{0}(x) - D_{2}(x)] + D_{0}(x)$$

The number of element multiplications is reduced

$$m^2 \rightarrow 3/4m^2$$

Finite Field Inverters

Inversion Using Look-up Table & Power representation

- * Inversions over $GF(2^m)$ can be implemented by look-up tables of size $2^m \times m$
- Assuming an element $A \in GF(2^m)$ can be expressed in power representation as $A=\alpha^b$, where α is a primitive element of $GF(2^m)$ and $0 \le b \le 2^m 1$

$$A^{-1} = \alpha^{-b} = \alpha^{-b} \times \alpha^{2^m - 1} = \alpha^{2^m - 1 - b}$$

Example: for $A = \alpha^6 \in GF(2^4)$, $A^{-1} = \alpha^{16-1-6} = \alpha^9$

* Implementation: m-bit integer subtraction

Inversion using Multiply-square

❖ For an element $A ∈ GF(2^m)$ (A ≠ 0), since $A^{2^m-1} = 1$ $A^{-1} = A^{-1+(2^m-1)} = A^{2^m-2} = A^2 \cdot A^4 \cdots A^{2^{m-1}}$

- Compared to a general multiplier, a squarer can be implemented by simpler architecture
- * Has high complexity and long latency

Inversion over Composite Field GF((2^m)²)

- * The inversion over $GF((2^m)^2)$ can be converted to computations over $GF(2^m)$
- An element $A \in GF((2^m)^2)$ can be represented as $A(x) = a_0 + a_1 x$, $a_0, a_1 \in GF(2^m)$
- Assume that the irreducible polynomial used to construct $GF((2^m)^2)$ from $GF(2^m)$ is $P(x) = x^2 + x + \phi$. Apply the Extended Euclidean algorithm

$$A^{-1}(x) = a_1(a_0(a_0 + a_1) + \phi a_1^2)^{-1}x + (a_0 + a_1)(a_0(a_0 + a_1) + \phi a_1^2)^{-1}$$

Example of Finite Field Inverter over GF(28)

Complexity of Constant Multiplier over GF(28)

Assuming irreducible polynomial $P(x)=x^8+x^4+x^3+x+1$ is used to construct $GF(2^8)$, the coefficients of $C=A^2$ can be computed as:

$$c7=a7+a6$$
 $c3=a7+a6+a5+a4$

$$c6=a5+a3$$
 $c2=a5+a1$

$$c5=a6+a5$$
 $c1=a7+a6+a4$

$$c4 = a7 + a4 + a2$$
 $c0 = a6 + a4 + a0$

Complexity: 11 XOR gate

Critical path: 2 XOR gate

Complexity of Standard Basis Multiplier

Complexity: 77 XOR, 64 AND

Critical path: 10 gates

Inverter Based on Multiply-square

Approach A

$$A^{-1} = A^{254} = A^2 A^4 A^8 A^{16} A^{32} A^{64} A^{128}$$

of XOR: 539

of AND: 384

Critical path: 64 gates

Inverter Based on Multiply-square

Approach B

$$A^{-1} = A^2 (A^3)^4 (A^3)^{4^2} (A^3)^{4^3}$$

- * # of XOR: 11*(1+2*3)+77*4=385
- **♦** # of AND: 64*4=256
- * Critical path: 2+10+2*2+3*10=46 gates

Inverter Based on Multiply-square (C)

Approach C
$$A^{-1} = \left(\left(\left(A^7 \right)^2 \right)^4 \right)^4 \left(\left(A^3 \right)^2 \right)^4 (A^3)^2$$

$$A \longrightarrow A^3 \longrightarrow A^2 \longrightarrow A^4 \longrightarrow A^4 \longrightarrow A^4 \longrightarrow A^{-1}$$

- A^3 :
 - # of XOR: 75, # of AND: 40, Critical path: 6 gates
- * # of XOR: 75+2*11+3*2*11+3*77=394
- * # of AND: 40+3*64=232
- ❖ Critical path: 6+2*2+2*10+2*2*2=38 gates

Inverter based on Composite Field

* The following irreducible polynomials can be used to construct the composite field of $GF(2^8)$:

•
$$GF(2) \rightarrow GF(2^2)$$
 : $P0(x) = x^2 + x + 1$

•
$$GF(2^2) \rightarrow GF((2^2)^2)$$
 : $P1(x) = x^2 + x + \phi$

• GF
$$(2^2)^2$$
) \rightarrow GF $(((2^2)^2)^2)$: P2(x)=x²+x+ λ

$$\Phi = \{10\}_2, \ \lambda = \{1100\}_2$$

Inverter Based on Composite Field

- * Multiplications over $GF(2^4)$ can be further decomposed into $GF(2^2)$, then into GF(2).
- * Multiplications over GF(2) are simply AND operations.

$$\Phi = \{10\}_2, \ \lambda = \{1100\}_2$$

Block	# of gates	Critical path
×λ	3 XOR	2 XOR
\mathbf{x}^2	4 XOR	2 XOR
Multiplier in GF(2 ²)	4 XOR + 3 AND	2 XOR + 1 AND
Multiplier in GF(2 ⁴)	21 XOR +9 AND	4 XOR + 1 AND

Implementation of Inversion over GF(24)

Approach D: Inversion over GF(2⁴) can be implemented by multiply-square

for
$$A \in GF(2^4)$$
, $A^{-1} = A^{14} = A^2 \cdot A^4 \cdot A^8$

- **❖** # of XOR: 54
- **❖** # of AND: 18
- Critical path: 14 gates

Implementation of Inversion over GF(24)

Approach E: Inversion over $GF(2^4)$ can be further decomposed into inversion over $GF((2^2)^2)$ using the Extended Euclidean algorithm

$$A^{-1}(x) = (a_0 + a_1)(a_0(a_0 + a_1) + \phi a_1^2)^{-1} + a_1(a_0(a_0 + a_1) + \phi a_1^2)^{-1}x$$

- **❖** # of XOR: 17
- **❖** # of AND: 9
- Critical path: 9 gates

Implementation of Inversion over GF(24)

Approach F: The bits in $A^{-1}=\{a_3^{-1}, a_2^{-1}, a_1^{-1}, a_0^{-1}\}$ can be expressed in terms of the bits in $A=\{a_3, a_2, a_1, a_0\}$ by following the computations done by each of the blocks in the previous figure

Critical path: 5 gates

Complexities of Inverters over GF(28)

Approach	# of XOR	# of AND	Critical path
A	539	384	64
В	385	256	46
C	394	232	38
D	159	45	34
E	122	36	29
F	119	36	25

$$GF(2^8)$$
 decompose $GF((2^4)^2)$ decompose $GF((2^2)^2)$ $GF((2^4)^2)$ $GF(2^4)$ GF