FPGA-Based Board Pacman Game with Integrated AI

Minhyeok An 217078668 Kevin Nguyen 217228255 Prithviraj Keswani 215649817 Vincent Mai 217990136 Humza Inam 218144865

Introduction

In this project, created a Pac-Man style game using VHDL on DE10 Lite boards and AI. The goal was to create an interactive game that combines real-time graphics, player controls, and smart AI behavior. Used a DE10 Lite board for the Pac-Man map and Pac-Man player and Raspberry Pico Pi 2W board for the ghost AI.

Implementation Details

- The Pac-Man maze would be created by coding individual pixels.
- For the border and walls on the map we draw lines of blue pixels to create a maze for the Pac-Man and Ghost to roam around.
- The Pac-Man uses color yellow and Ghost uses color red.
- Pac-Man moves up/down using KEY0 and KEY1, and switches to left/right when SW0 is off.
- The Ghost AI will be controlled by Raspberry Pico Pi 2W.
- The Ghost will move based on the movement and coordinates of the player.
- Ghost movement will based on the Euclidean Distance Algorithm.

Hardware & Software Configuration

- DE10 Lite board
- Raspberry Pico Pi 2W board
- Bread board
- Jumper wires
- VGA wire
- Micro USB
- Quartus Prime
- MicroPython

Code Explanation

- image_gen.vhd: handles image generation in VGA
- maze_rom.vhd: defines the maze layout of the pacman map
- start_screen.vhd: generates the start screen
- start_screen_pkg: contains the constants and parameters used in start_screen
- vga_controller.vhd: generates necessary timings for VGA display
- Wall_mapping.vhd: contains the arrays and parameters needed for the walls
- Mapping_pkg.vhd: contains the parameters for the map
- PACMANGHOST.py: handles the movement and AI of the ghost
- pacman_top: top level which reroutes the process of the code
- pacman_common: defines basic parameters for the pacman code

Testing & Debugging

- User Testing was used to test wiring and the implementation of the code and display
- Gameplay Testing was used to configure the potential issues and mapping of the system

Challenges

- Displaying the graphics on the VGA and finding the connection.
- The movement of the pacman using 4 buttons.
- Connecting the DE10 Lite board with the Raspberry Pico Pi board using GPIO.

Concluding Remarks

- This project aimed to cover the important aspects taught in EECS 3216.
- Previous knowledge from EECS 3201 help us developed the FPGA VHDL code.
- New knowledge was required to implement the GPIO connections between the Raspberry Pico Pi 2W and the DE10 Lite FPGA board.
- We worked as a team together to solve these problems.

Resources

"VGA Controller (VHDL)": https://forum.digikey.com/t/vga-controller-vhdl/12794