Рекуррентные нейронные сети

Векторизация слов

```
In [1]:
        # N-граммы (комбинации из N последовательных терминов)
         from sklearn.feature extraction.text import CountVectorizer
         print("Модель для N-грамм от 1 до 1 слова") # bag of words
         vect = CountVectorizer(ngram range=(1, 1))
         res = vect.fit transform(['он не делает работу', 'не он делает работу']).toarray()
         print(res)
         print(vect.vocabulary )
         print()
         print("Модель для N-грамм от 1 до 2 слов")
         vect = CountVectorizer(ngram range=(1, 2))
         res = vect.fit transform(['он не делает работу', 'не он делает работу']).toarray()
         print(res)
         print(vect.vocabulary )
        Модель для N-грамм от 1 до 1 слова
         [[1 \ 1 \ 1 \ 1]]
         [1 \ 1 \ 1 \ 1]]
        {'он': 2, 'не': 1, 'делает': 0, 'работу': 3}
```

{'он': 5, 'не': 2, 'делает': 0, 'работу': 8, 'он не': 7, 'не делает': 3, 'делает рабо

Модель для N-грамм от 1 до 2 слов

ту': 1, 'не он': 4, 'он делает': 6}

 $[[1\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 1]$ $[1\ 1\ 1\ 0\ 1\ 1\ 1\ 0\ 1]]$

Word2Vec

13598 предожений

```
In [45]: # Обучение модели
word_model = gensim.models.Word2Vec(sentences, size=100, min_count=1, window=5, iter=100)
In [47]: pretrained_weights = word_model.wv.syn0
vocab_size, embedding_size = pretrained_weights.shape
print(vocab_size, embedding_size)
```

24681 100

```
In [52]: print('Похожие слова:')
    for word in ['хоббит', 'кольцо', 'гном', 'эльф', 'лук']:
        most_similar = ', '.join('%s (%.2f)' % (similar, dist) for similar, dist in word_mod el.wv.most_similar(word)[:8])
        print(' %s -> %s' % (word, most_similar))
```

Похожие слова:

```
хоббит -> горлума? (0.67), гондорец (0.65), бильбо, (0.59), маг (0.58), бродяжник, (0.58), сэм, (0.57), спутникам, (0.57), гимли (0.57) кольцо -> другое (0.57), недостает, (0.56), оно (0.54), всевластья (0.51), представ ляется (0.50), воинство (0.50), кольцо, (0.48), кольцу (0.48) гном -> гимли (0.73), гондорец (0.70), ошеломленный (0.69), бирюк (0.69), маг, (0.67), боромир (0.66), дарина! (0.65), горислав (0.65) эльф -> хэлдар (0.78), гондорец (0.74), по-эльфийски, (0.72), «гэндальф! (0.71), но сом (0.71), мордора! (0.70), коню (0.70), отворить, (0.69) лук -> лихолесского (0.94), лориэнский (0.94), эльфа! (0.94), дожевав (0.93), благо словен (0.88), упруг (0.86), хопкин-бобкин, (0.82), элендил, (0.81)
```

```
In [51]: # Получение вектора
         word model.wv.word vec('хоббит')
Out[51]: array([ 1.4920405 , 0.3855237 , -2.1392462 , 1.6713449 , 2.076249 ,
                 0.24096918, -1.0232087, 1.6717471, -0.9787734, -1.2110564,
                -0.24157877, 1.3178241, -0.6365279, -0.9205003, 2.100536,
                0.12447252, 1.1303604, -0.37761056, -1.9567635, -1.042313,
                -1.0693281 , 0.39517692, 0.09959457, 0.07394334, -0.0322785 ,
                0.96153355, -0.93003166, -0.5966073, 1.4453518, 0.21228427,
                -0.86422783, 0.29630557, -0.50275165, 0.43376654, -0.16708575,
                -2.0124283 , 1.6950493 , 2.5790198 , 0.7920905 , 2.0803225 ,
                0.92059624, 0.1692214, 1.438246, 1.093751, -0.629431,
                 1.5013747 , 0.35440475 , -0.99809 , -0.29649833 , -1.0948515 ,
                 1.8772261 , 0.48367494, -0.17703338, -0.5097192 , 1.6049448 ,
                 1.8505365 , 1.9792376 , 0.00394805 , 1.443503 , 0.5531206 ,
                 0.27404526, 0.6261111, 1.5988548, -0.5643878, -0.6396273,
                -0.70211333, 0.21090426, 0.881619 , 1.3347114 , -0.81313866,
                 0.9451234 , -0.55156237, 0.16172506, -1.058579 , -0.21224062,
                0.10320344, 0.3443041, -1.3860737, 0.37131464, 0.32129505,
                -0.54975843, -1.073246 , -1.4167166 , -1.763418 , 0.98476034,
                -0.19235449, 0.4858428, 0.85763645, 0.9705493, 0.6104786,
                 0.8499049 , 1.5897483 , 0.47834682 , -0.29817703 , 0.5047057 ,
                 1.1952504 , -1.6282395 , -1.744008 , 2.0948386 , -1.2528886 ],
               dtvpe=float32)
```

('попадались', 0.3720041513442993), ('оборвалось', 0.36449873447418213),

('договорились,', 0.3403235673904419), ('обращаясь', 0.33938926458358765), ('здоровье»', 0.3366469144821167)]

('HOBAR', 0.3572019040584564),

RNN

Рекуррентные нейронные сети (RNN) — вид нейронных сетей, где связи между элементами образуют направленную последовательность. Благодаря этому появляется возможность обрабатывать серии событий во времени или последовательные пространственные цепочки. В отличие от многослойных перцептронов, рекуррентные сети могут использовать свою внутреннюю память для обработки последовательностей произвольной длины. Поэтому сети RNN применимы в таких задачах, где нечто целостное разбито на части, например: распознавание рукописного текста или распознавание речи.

Внутреннее устройство простых RNN

Входной вектор и вектор внутренней памяти объединяются и отправляются на полносвязный слой с функцией активации *tanh*

$$h_t = tanh(w st [h_{t-1}; x_t])$$

Виды RNN

Many to many (Генерация текста)

One to many (Подпись изображений)

Началом и концом предложения являются специальные слова: < start > < end >

LSTM

Долгая краткосрочная память (Long short-term memory; LSTM) – особая разновидность архитектуры рекуррентных нейронных сетей, способная к обучению долговременным зависимостям.

- «вентиль забывания» контролирует меру сохранения значения в памяти
- «входной вентиль» контролирует меру вхождения нового значения в память
- «выходной вентиль» контролирует меру того, в какой степени значение, находящееся в памяти, используется при расчёте выходной функции активации для блока

«Вентиль забывания»

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

«Входной вентиль»

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

«Выходной вентиль»

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

GRU

Управляемые рекуррентные блоки (Gated Recurrent Units, GRU) — механизм вентилей для рекуррентных нейронных сетей, представленный в 2014 году. Было установлено, что его эффективность при решении задач моделирования музыкальных и речевых сигналов сопоставима с использованием долгой краткосрочной памяти (LSTM). По сравнению с LSTM у данного механизма меньше параметров, т.к. отсутствует выходной вентиль.

Архитектуры LSTM

Объединение нескольких RNN

Input shape: (20, 30, 500)

Двунаправленные

Seq2Seq

ADXITEKTYPA Google's Neural Machine Translation

Механизм внимания (Attention)

$$c_i = \sum_{j=1}^k \alpha_{ij} h_j$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{l} \exp(e_{ik})}$$

where $e_{ij} = fc(s_{i-1}, h_j)$

Результат

Пример

In [84]: import pandas as pd from keras.layers import Dense, LSTM, Input from keras.models import Model

> df = pd.read_csv('./data/production.csv') df.head()

Out[84]:

	API	Year	Month	Liquid	Gas	RatioGasOil	Water	Peı
0	5005072170100	2014	11	9783	11470	1.172442	10558	1.0
1	5005072170100	2014	12	24206	26476	1.093778	5719	0.2
2	5005072170100	2015	1	20449	26381	1.290088	2196	0.1
3	5005072170100	2015	2	6820	10390	1.523460	583	0.0
4	5005072170100	2015	3	7349	7005	0.953191	122	0.0

Name: Liquid, dtype: int64

Out[98]:

	0	1	2	3	4	5	6	7
API								
5005072170100	9783	24206	20449	6820	7349	16552	13844	10655
5123377130000	2341	4689	3056	1979	2037	2260	1961	1549
5123379280000	6326	6405	6839	6584	4775	3917	3840	3031
5123379400000	8644	13977	9325	6445	5326	4538	3403	2534
5123385820100	1753	4402	1187	1204	1176	1523	1169	782

5 rows × 24 columns

```
In [108]: # Масштабирование и деление на трейн/тест
          data = df prod.values
          data = data / data.max()
           data = data[:, :, np.newaxis]
           data tr = data[:40]
           data tst = data[40:]
           print(data tr.shape, data tst.shape)
          (40, 24, 1) (10, 24, 1)
In [109]: | x_data = [data_tr[:, i:i+12] for i in range(11)]
          y_data = [data_tr[:, i+1:i+13] for i in range(11)]
          x_data = np.concatenate(x_data, axis=0)
          y_data = np.concatenate(y_data, axis=0)
           print(x data.shape, y data.shape)
```

(440, 12, 1) (440, 12, 1)

```
In [124]: timesteps = 12
    inp = Input(shape=(timesteps, 1))
    lstm = LSTM(units=32, return_sequences=True)(inp)
    lstm = LSTM(units=32, return_sequences=True)(lstm)
    out = Dense(1, activation="relu")(lstm)

model = Model(inp, out)
    model.summary()
    model.compile(optimizer='adam', loss='mse', metrics=['mae'])
```

Layer (type)	Output Shape	Param #
<pre>input_5 (InputLayer)</pre>	(None, 12, 1)	0
lstm_9 (LSTM)	(None, 12, 32)	4352
lstm_10 (LSTM)	(None, 12, 32)	8320
dense_5 (Dense)	(None, 12, 1)	33

Total params: 12,705 Trainable params: 12,705 Non-trainable params: 0

```
In [125]: model.fit(x data, y_data, epochs=20)
  Epoch 1/20
  error: 0.0732
  Epoch 2/20
  te error: 0.0574
  Epoch 3/20
  te error: 0.0492
  Epoch 4/20
  te error: 0.0457
  Epoch 5/20
  te error: 0.0454
  Epoch 6/20
  te error: 0.0430
  Epoch 7/20
  te error: 0.0412
  Epoch 8/20
  te error: 0.0395
  Epoch 9/20
  te error: 0.0379
  Epoch 10/20
  te error: 0.0365
  Epoch 11/20
  te error: 0.0354
  Epoch 12/20
```

```
te error: 0.0344
Epoch 13/20
te error: 0.0337
Epoch 14/20
te error: 0.0334
Epoch 15/20
te error: 0.0326
Epoch 16/20
te error: 0.0319
Epoch 17/20
te error: 0.0317
Epoch 18/20
te error: 0.0311
Epoch 19/20
te error: 0.0304
Epoch 20/20
te error: 0.0303
```

Out[125]: <keras.callbacks.History at 0xb2887846a0>

```
In [143]: # Предскажем на год вперёд используя данные только первого года
x_tst = data_tst[:, :12]
predicts = np.zeros((x_tst.shape[0], 0, x_tst.shape[2]))

for i in range(12):
    x = np.concatenate((x_tst[:, i:], predicts), axis=1)
    pred = model.predict(x)
    last_pred = pred[:, -1:] # Нас интересует только последний месяц
    predicts = np.concatenate((predicts, last_pred), axis=1)
```

```
In [157]: import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))
for iapi in range(4):
    plt.subplot(2, 2, iapi+1)
    plt.plot(np.arange(x_tst.shape[1]), x_tst[iapi, :, 0], label='Actual')
    plt.plot(np.arange(predicts.shape[1])+x_tst.shape[1], predicts[iapi, :, 0], label='P rediction')
    plt.legend()
    plt.show()
```


Задание

- 1. Подготовьте данные для word2vec по одной из недавно прочитанных книг, удалив все символы, кроме букв и обучите модель. Посмотрите результат.
- 2. Для обучения на нефтяных скважин добавьте во входные данные информацию со столбцов Gas, Water (т.е. размер x_data будет (440, 12, 3)) и обучите новую модель. Выход содержит только Liquid.
- 3. Из этого же текста возьмите небольшой фрагмент, разбейте на предложения с одинаковым числом символов. Каждый символ предложения закодируйте с помощью one hot encoding. В итоге у вас должен получиться массив размера (n_sentences, sentence_len, encoding_size).
- 4. На полученных в п.3 задании обучение модель RNN для предсказания следующего символа. Посмотрите результат при последовательной генерации.
- 5. * (не обязательное) На полученных в п.1 задании обучение модель RNN для предсказания следующего слова. Посмотрите результат при последовательной генерации.