Combination Reaction

Opposite reaction

$$\mathbf{A} \stackrel{k_1}{\rightleftharpoons} \mathbf{B}$$

☑ Complex Reaction Consecutive reactions

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

Parallel Reactions

When a reaction is the reverse to another reaction, the combination of the two reactions is called an opposite reaction $N_2 + 3H_2 \gtrsim 2NH_3$

In principle, all reactions are opposite reactions

First Order Opposite Reaction A
$$\Rightarrow k_{-1} \atop k_{-1}$$
 B $v = v_A = v_B$

Forward $v_1 = k_1 c_A$
 $t = 0$ $c_{A0} = 0$
 $t = t$ $c_{A0} = x$ $t = t$ Reverse $v_{-1} = k_{-1} c_B$

Differential $v = v_A = -\frac{dc_A}{dt} = \frac{dx}{dt} = k_1 c_{A0} - (k_1 + k_{-1})x$

Integrated $\ln c_{A0} - \ln(c_{A0} - \frac{k_1 + k_{-1}}{k_1}x) = (k_1 + k_{-1})t$

The Synergy of Thermodynamics and Kinetics!

$$v = v_{A} = -\frac{dc_{A}}{dt} = \frac{dx}{dt} = k_{1}c_{A0} - (k_{1} + k_{-1})x$$

$$K_{c} = \frac{k_{1}}{k_{-1}}$$

$$\frac{dx}{dt} = k_{1}(c_{A0} - x) - \frac{k_{1}}{K_{c}}x$$
Exothermic
$$T \text{ increases}$$

$$K_{c} \text{ decreases}$$

A maximum for the temperature dependence of the reaction rate at a given conversion would be displayed

- $\stackrel{\wedge}{\sim}$ Corresponding temperature $T_{\rm m}$ at the maximum is called the **most favorable temperature**
- $\uparrow T_{\rm m}$ decreases with the increasing conversion

A four-stage reactor for the oxidation of SO₂ and the corresponding operation sketch diagram.

1, 2, 3, 4- catalyst layers, 1', 2', 3'- heat exchanger

Consecutive reactions

When a certain product of a reaction is a reactant of another reaction (the later is **not the reverse reaction** of the former), the combination of these reactions is called a consecutive reaction.

$$C_{6}H_{6} + Cl_{2} \rightarrow C_{6}H_{5}Cl + HCl$$

$$C_{6}H_{5}Cl + Cl_{2} \rightarrow C_{6}H_{4}Cl_{2} + HCl$$

$$C_{6}H_{4}Cl_{2} + Cl_{2} \rightarrow C_{6}H_{3}Cl_{3} + HCl$$

$$A \longrightarrow B \longrightarrow C \longrightarrow ...$$

Consecutive reactions

First Order Consecutive Reactions

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

$$t=0$$
 $c_{A0}\neq 0$, $c_{B0}=c_{C0}=0$

$$v_{A} = -\frac{dc_{A}}{dt} = k_{1}c_{A}$$

$$v_{C} = \frac{dc_{C}}{dt} = k_{2}c_{B}$$

$$v_{B} = v_{A} - v_{C}$$

$$v_{C} = \frac{dc_{C}}{dt} = k_{1}c_{A} - k_{1}c_{C}$$

$$c_{A0}$$

$$c_{C}$$

$$c_{A} = c_{A0}e^{-k_{1}t}$$

$$c_{B} = c_{A0}\frac{k_{1}}{k_{2}-k_{1}}(e^{-k_{1}t}-e^{-k_{2}t})$$

$$c_{C} = c_{A0}\left(1-\frac{k_{2}e^{-k_{1}t}-k_{1}e^{-k_{2}t}}{k_{2}-k_{1}}\right)$$

$$c_{\mathrm{A}} + c_{\mathrm{B}} + c_{\mathrm{C}} = c_{\mathrm{A0}}$$

An appearance of a maximum of the concentration of the intermediate B

Consecutive reactions

Unstable intermediate

$$\frac{\mathrm{d}c_{\mathrm{B}}}{\mathrm{d}t} \approx 0$$

$$S teady State$$

$$k_1 c_{\mathbf{A}} = k_2 c_{\mathbf{B}}$$

When the reactants participate in two or more reactions independently and simultaneously, the combination of these reactions is called a parallel reaction.

$$C_6H_5CH_3 + HNO_3 \xrightarrow{\rho - NO_2 - C_6H_4CH_3 + H_2O} m - NO_2 - C_6H_4CH_3 + H_2O$$

$$p - NO_2 - C_6H_4CH_3 + H_2O$$

Parallel Reactions

First Order Parallel Reactions

$$\mathbf{F} \overset{k_2}{\longleftarrow} \mathbf{A} + \mathbf{B} \overset{k_1}{\longrightarrow} \mathbf{E}$$

$$\begin{aligned}
\upsilon_{\rm E} &= k_1 c_{\rm A}^{\alpha} c_{\rm B}^{\beta} \\
\upsilon_{\rm F} &= k_2 c_{\rm A}^{\alpha} c_{\rm B}^{\beta}
\end{aligned}$$

$$\frac{c_{\rm E}}{c_{\rm F}} = \frac{k_1}{k_2}$$

Extension

$$\frac{c_{\rm B}}{c_{\rm C}} = \frac{k_1}{k_2}$$

 $c_{\rm B} = c_{\rm A0} (1 - e^{-(k_1 + k_2)t}) \frac{k_1}{k_1 + k_2}$

$$v_{A} = -\frac{dc_{A}}{dt} = v_{B} + v_{C}$$

$$= (k_{1} + k_{2})c_{A}$$

$$= (k_{1} + k_{2})c_{A}$$
integrated
$$c_{A} = c_{A0}e^{-(k_{1} + k_{2})t}$$
Plot $\ln c_{A}$ vs. t

$$Slope = k_1 + k_2$$

$$\downarrow \qquad \qquad k_1$$

$$k_2$$

Effect of Temperature on Reaction Rates

Common reactions

Explosion reactions

Enzyme reactions

Other reactions

$$NO + \frac{1}{2}O_2 \rightarrow NO_2$$

Arduous process of understanding the influence of T

☑ Ostwald

Temperature dependence is one of the darkest chapters in chemical mechanics.

—— 《Kinetics》, 1904, Mellor

☑ van't Hoff

It is so far impossible to choose between the above equations.

——《Physical Chemistry》, 1898

Differential Form	Integrated Form	Expression for k	Supported by
$\frac{\mathrm{d}\ln k}{\mathrm{d}T} = \frac{B + CT + DT^2}{T^2}$	$\ln k = A' - \frac{B}{T} + C \ln T + DT$	$k = AT^{C}e^{-(B-DT^{2})/T}$	van't Hoff, 1898 Bodenstein, 1899
$\frac{\mathrm{d} \ln k}{\mathrm{d} T} = \frac{B + CT}{T^2}$	$\ln k = A' - \frac{B}{T} + C \ln T$	$k = AT^{C}e^{-BtT}$	Kooij, 1893 Trautz, 1909
$\frac{\mathrm{d} \ln k}{\mathrm{d}T} = \frac{B + DT^2}{T^2}$	$\ln k = A' - \frac{B}{T} + DT$	$k = Ae^{-(B-DT^2)T}$	Schwab, 1883 van't Hoff, 1884 Spohr, 1888 van't Hoff and Reicher, 1889 Buchböck, 1897 Wegscheider, 1899
$\frac{d \ln k}{dT} = \frac{CT + DT^2}{T^2}$	$\ln k = A' + C \ln T + DT$	$k = AT^C e^{DT}$	
$\frac{\mathrm{d}\ln k}{\mathrm{d}T} = \frac{B}{T^2}$	$\ln k = A' - \frac{B}{T}$	$k = Ae^{-B/T}$	van't Hoff, 1884 Arrhenius, 1889 Kooij, 1893
$\frac{\mathrm{d} \ln k}{\mathrm{d} T} = \frac{C}{T}$	$\ln k = A' + C \ln T$	$k = AT^C$	Harcourt and Esson, 1895 Veley, 1908 Harcourt and Esson, 1912
$\frac{\mathrm{d} \ln k}{\mathrm{d}t} = D$	$\ln k = A' + DT$	$k = Ae^{DT}$	Berthelot, 1862 Hood, 1885 Spring, 1887 Veley, 1889 Hecht and Conrad, 1889 Pendelbury and Seward, 1889 Tammann, 1897 Remsen and Reid, 1899 Bugarszky, 1904 Perman and Greaves, 1908

Explanation from Arrhenius——Activated molecules

Arrhenius

Only activated molecules participate in the reaction

The number of activated molecules increase with *T*

An equilibrium exists between the activated molecules and those ordinary molecules

1903 Nobel Prize

"Ionization theory"——Success belongs to the persevering!

Explanation from Arrhenius—Activation Energy

A \longrightarrow A* Rapid Equilibrium $K_c = \frac{c_A^*}{c}$

$$K_c = \frac{c_{\rm A}^*}{c_{\rm A}}$$

 $v = k'c_{\Lambda}^* = k'K_{c}c_{\Lambda} = kc_{\Lambda}$

$$A \rightarrow P$$
 $A^* \rightarrow P$

$$A^* \to P$$

Rate-control step (Irrelevant with T)

$$\frac{\mathrm{d} \ln k}{\mathrm{d} T} = \frac{\mathrm{d} \ln K_{\mathrm{c}}}{\mathrm{d} T} = \frac{\Delta U_{\mathrm{m}}^{\mathrm{e}}}{RT^{2}}$$

$$E_{\rm a} = RT^2 \frac{\mathrm{d} \ln k}{\mathrm{d} T}$$

 \square Elementary Reaction— E_a refers to the difference between the average energy of 1mol activated molecules and 1mol reactant molecules.

Complex reaction——*No physical meaning* Apparent activation energy

Arrhenius Equation

$$E_{a} = RT^{2} \frac{d \ln k}{dT} \quad \Longrightarrow \quad k = Ae^{-E_{a}/(RT)}$$

A——Frequency factor

$$E_a \longrightarrow$$
 is constant

$$\ln\{k\} = -\frac{E_a}{RT} + \ln\{A\}$$

is constant
$$\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

反 应	$E_a/(kJ \cdot mol^{-1})$
$2HI \rightarrow H_2 + I_2$	183
$H_2 + I_2 \rightarrow 2HI$	167
$2NH_3 \rightarrow N_2 + 3H_2$	330(近似值)
$2NOC1 \rightarrow 2NO + C1_2$	98.7
$2NO_2 \rightarrow 2NO + O_2$	112
$2H_2O_2 \rightarrow 2H_2O + O_2$	75.3
$CH_1CHO \rightarrow CH_4 + CO$	190
$H_2 + C_2H_4 \rightarrow C_2H_6$	180
$C_2H_5OC_2H_5 \rightarrow C_2H_6 + CO + CH_4$	224
$C1 + NOC1 \rightarrow NO + C1_2$	4.2
$H_2 + Cl_2 \rightarrow 2HCl(光化反应)$	25
$2N_2O \rightarrow 2N_2 + O_2$	245
$CH_2I \cdot COO^- + OH^- \rightarrow CH_2OHCOO^- + I^-$	93.7
$C_2H_3Br + OH^- \rightarrow C_2H_3OH + Br^-$	89.5
$CH_3Br + I^- \rightarrow CH_3I + Br^-$	76.1
$CH_3I + OH^- \rightarrow CH_3OH + I^-$	92.9
$C_6H_5N(CH_3)_2 + CH_3I \rightarrow C_6H_5N(CH_3)_3I$	49

40 ~ 400kJmol⁻¹

 $60 \sim 250 \text{ kJmol}^{-1}$

Arrhenius Equation

For a certain reaction, $E_a = 100 \text{ kJ} \cdot \text{mol}^{-1}$ try to estimate

(a) T increases from 300K to 310K; (b) T increases from 400K to 410K, the increase times of k?

If $E_a = 150 \text{ kJ} \cdot \text{mol}^{-1}$, what about the results?

What's your conclusions from the calcualtions?

$$\mathbf{A} \xrightarrow{k_1, E_{\mathbf{a}, 1}} \mathbf{B}$$

$$k_2, E_{\mathbf{a}, 2} \longrightarrow \mathbf{C}$$

$$A \xrightarrow{k_1, E_{\mathbf{a}, 1}} \mathbf{B} \xrightarrow{k_2, E_{\mathbf{a}, 2}} \mathbf{C}$$

If we want to increase the concentration of B in the final products, how to control the temperature?

Extension of Arrhenius Equation

☑ Consider the impact of relative humidity (RH)

$$k = Ae^{(-E_a/(RT) + B \times RH)}$$

AAPS PharmSciTech, 2011, 12, 932-937

☑ Calculation of physical properties

J. Phys. Chem. B, 2020, 124, 9115-9125

J. Mol. Liqs., 2022, 351, 118621