Элементы теории чисел. Теория сравнений.

Ученик 10-4 класса Оконешников Д.Д. по лекции к.ф.-м.н. Протопоповой Т.В. от 20 января 2021 г.

1 Лекция №13

1.1 Каноническое разложение числа. НОД. НОК

Весь алгоритм: Пример. HOД(5083,3553)-? 1) $a=q_1b+r_1$ $\Rightarrow r_1=a-q_1b=A_1a+B_1b$ $\Rightarrow r_2=b-q_2r_1=b-q_2(A_1a+B_1b)=-q_2A_1a+(1-B_1q_2)b=A_2a+B_2b$ $\Rightarrow r_3=r_1-q_3r_2=A_1a+B_1b-q_3(A_2a+B_2b)=$... $=(A_1-q_3A_2)a+(B_1-q_3B_2)b=A_3a+B_3b$ k) $r_{k-2}=q_kr_{k-1}+r_k$ k+1) $r_{k-1}=q_{k+1}r_k+0$ $HOД(a,b)=r_k$

Утверждение. Если d = HOД(a, b), то существуют целые A и B : d = Aa + Bb.

Замечание. Если НОД(a,b)=1 (т.е. a и b взаимно просты), то существуют целые A и B:1=Aa+Bb.

1.2 Доказательство свойств делимости 8 и 9

Свойство 8. Если ab.m и НОД(a,m)=1, то b.m

 \uparrow Имеем НОД $(a, m) = 1 \Rightarrow \exists A, M : Aa + Mm = 1.$

Домножим последнее равенство на $b:Aab+Mmb=b\Rightarrow b:m\downarrow$

m m

Свойство 9. Если $a.m,\ a.k$ и НОД(m,k)=1, то a.mk

 \uparrow

- 1) $a m \Rightarrow a = mq_1$
- 2) $a k \Rightarrow mq_1 k$
- 3) из 2) и НОД $(m,k)=1\Rightarrow$ по свойству 8 q_1 $k\Rightarrow q_1=kq_2$
- 4) $a = mq_1 = mkq_2$, T.e. $a.mk \downarrow$

1.3 Решение уравнений ax + by = c

Определение. Диофантово уравнение первой степени - уравнение вида ax + by = c, где a, b, c, x, y — целые числа.

Пусть HOД(a,b) = d.

- 1) Если c.d, то делим на d правую и левую части уравнения и получаем $a_1x+b_1y=c_1$, где $\mathrm{HOД}(a_1,b_1)=1$.
- 2) Если c не делится на d, то уравнение решений не имеет.

Таким образом, будем рассматривать уравнения (*) ax + by = c, HOД(a, b) = 1.

Так как $\mathrm{HOД}(a,b)=1,$ то по следствию из алгоритма Евклида \exists целые $A,\ B:Aa+Bb=1.$

Домножим равенство на c: Aca + Bcb = c.

Видим, что пара целых чисел $(x_0, y_0) = (Ac, bc)$ является решением уравнения.

Мы нашли частное (одно из) решение нашего уравнения. Найдем все решения (x,y).

$$\begin{cases} ax_0 + by_0 = c, \\ ax + by = c. \end{cases} \Rightarrow a(x - x_0) + b(y - y_0) = 0, \ a(x - x_0) = -b(y - y_0)$$

 $\mathrm{HOД}(a,b)=1$, значит $(x-x_0)$; b, т.е. $x-x_0=bt$ или $x=x_0+bt$, где t — целое. Тогда $y-y_0=\frac{-a(x-x_0)}{b}=-at$ или $y=y_0-at$. Таким образом, все пары вида (x_0+bt,y_0-at) , где t — целое, являются решениями (*).

Замечание. Общее решение диофантова уравнения представляет собой сумму частного решения уравнения и решения соответствующего однородного уравнения (уравнения ax + by = 0).

Легко понять, что решениями однородного уравнения являются все пары вида (bt, -at), где t — целое.

Пример. 7х - 23у = 131 Проверка решения: $c : HOД(a,b) \Rightarrow$ имеет решения. Можно угадать частное решение (22,1), так как 154 - 23 = 131. Тогда все решения — $(22-33t,1-7t), t \in \mathbb{Z}$.

1.4 Сравнения

Основная идея теории сравнений заключается в том, что два числа a и $b \in \mathbb{Z}$, имеющие при делении на $m \in \mathbb{N}$ один и тот же остаток, обнаруживают целый ряд одинаковых свойств по отношению к m.

Так по отношению к 2 мы выделяем четные и нечетные числа. Знаем, например, что сумма/разность четных - четное число, произведение четных - четное и т.д.

Определение. Целые числа a и b называются сравнимыми по модулю $m(a \equiv b \pmod{m})$, если при делении на m они дают одинаковые остатки. (1)

Пример. $8 \equiv 3 \pmod{5} \equiv 103 \pmod{5} \equiv -2 \pmod{5} \equiv -17 \pmod{5}$ и т.д.

Определение. $a \equiv b \pmod{m} \Leftrightarrow (a-b)m$. (2)

Докажем эквивалентность определений 1 и 2.

1) (1) \Rightarrow (2). Пусть остатки одинаковы, т.е. $a = q_1 m + r, \ b = q_2 m + r \Rightarrow a - b = m(q_1 - q_2), \ (q_1 - q_2) \in \mathbb{Z},$ т.е. (a - b):m;

2) (2) \Rightarrow (1). От противного.

Пусть остатки разные, т.е. $a=q_1m+r_1,\ b=q_2m+r_2,$ где $0\leq r_1<|m|\ ,\ 0\leq r_2<|m|\ (-|m|<-r_2\leq 0).$

Тогда $a-b=m(q_1-q_2)+r_1-r_2$ и $-|m|< r_1-r_2<|m|$ ($|r_1-r_2|<|m|$ (3)) \Rightarrow (r_1-r_2):m Но тогда по свойству делимости 4, если $r_1-r_2\neq 0$, то $|r_1-r_2|\geq |m|$, противоречие с (3). Таким образом, $r_1=r_2$. \downarrow

1.5 Свойства сравнений

- 1) $a \equiv a \pmod{m}$
- 2) $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$
- 3) $a \equiv b \pmod{m}, \ b \equiv c \pmod{m} \Rightarrow a \equiv c \pmod{m}$

$$\uparrow \begin{cases} (a-b)m, & \Rightarrow a-c = (a-b) + (b-c)m \downarrow \\ (b-c)m. & \vdots \\ m & \vdots \end{cases}$$

Далее считаем, что $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$

4/5) $a \pm c \equiv b \pm d \pmod{m}$

$$\uparrow \begin{cases} (a-b)m, \\ (c-d)m. \end{cases} \Rightarrow (a+c)-(b+d)=(a-b)+(c-d)m\downarrow$$

6) $ac \equiv bd \pmod{m}$

$$\begin{cases} (a-b):m, \\ (c-d):m. \end{cases} \Rightarrow ac-bd = ac-bc+bc-bd = c(a-b)+b(c-d):m \downarrow \\ \vdots \\ m : m \end{cases}$$

```
7) a^k \equiv b^k
```

Следствие. Пусть P(x) — любой многочлен с целыми коэффициентами, т.е. $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$, тогда из $x \equiv y \pmod{m} \Rightarrow P(x) \equiv P(y) \pmod{m}$.

8) Если $ac \equiv bc \pmod{m}$ и НОД(c, m) = 1, то $a \equiv b \pmod{m}$.

 $\uparrow ac-bc=c(a-b)$. Так как левая часть делится на m и $\mathrm{HOД}(c,m)=1$, то $(a-b)m\downarrow$

9) Если $a \equiv b \pmod{m}$ и $\exists k \in \mathbb{Z} : a = ka_1, b = kb_1, m = km_1, \text{ то } a_1 \equiv b_1 \pmod{m_1}$.

$$\uparrow a - c = k(a_1 - b_1), \text{ T.e. } k(a_1 - b_1) km_1 \Rightarrow (a_1 - b_1) m_1 \downarrow$$

Примеры.

1) Признак делимости на 3

 $\forall n \in \mathbb{N}$ $n = a_k 10^k + a_{k-1} 10^{k-1} + ... + a_1 10 + a_0$. Так как $10 \equiv 1 \pmod{3}$, то $10^k \equiv 1 \pmod{3} \Rightarrow n \pmod{3} = (a_k + a_{k-1} + ... + a_1 + a_0) \pmod{3}$.

2) Признак делимости на 11

```
Так как 10 \equiv -1 \pmod{11}, то 10^k \equiv (-1)^k \pmod{11}.
Тогда n \pmod{11} = ((-1)^k a_k + ... + a_2 - a_1 + a_0) \pmod{11}
```

3) Найти остаток от деления на 3 числа $n = (1^2 + 1)(2^2 + 1)(3^2 + 1)...(1000^2 + 1)$

```
n(mod\ 3) = \{(4^2+1) = (1^2+1)(mod\ 3),\ (4^2+1) = (1^2+1)(mod\ 3),\ 1000: 3 = 333*3+1\} = (1^2+1)^{334}(2^2+1)^{333}(3^2+1)^{333}(mod\ 3) \equiv (2)^{334}(2)^{333}(1)^{333}(mod\ 3) \equiv (2)^{667}(mod\ 3) \equiv (-1)^{667}(mod\ 3) \equiv -1(mod\ 3) \equiv 2(mod\ 3).
```

4) При каких натуральных n число 8n + 3 делится на 13?

То есть при каких $n \ 8n + 3 \equiv 0 \pmod{13}$?

```
8n \equiv -3 (mod\ 13)
8n \equiv 10 (mod\ 13)
4n \equiv 5 (mod\ 13)
12n \equiv 15 (mod\ 13)
-n \equiv 2 (mod\ 13)
n \equiv -2 (mod\ 13)
n = 13t-2,\ t \in \mathbb{N} или n = 13t+11,\ t \in \mathbb{N}
```

5) Найти все пары целых чисел x и y, удовлетворяющих уравнению 7x - 23y = 131.

Избавимся от одного неизвестного: рассмотрим уравнение, например, по модулю 7.

```
\begin{array}{l} -23y \equiv 131 (mod\ 7) \\ -2y \equiv 5 (mod\ 7) \\ 2y \equiv -5 (mod\ 7) \\ 2y \equiv 2 (mod\ 7) \\ y \equiv 1 (mod\ 7) \Rightarrow y = 7t+1,\ t \in \mathbb{Z} \\ x = \frac{131+23y}{7} = \frac{131+23*7t+23}{7} = \frac{154+23*7t}{7} = 22+23t \\ \text{Ответ: } (22+23t,1+7t),t \in \mathbb{Z}. \end{array}
```

1.6 Классификация чисел по данному модулю

Все числа сравнимые с данным a (а значит, сравнимые между собой) по модулю m в один класс.

Остатками при делении на m могут быть 0, 1, 2, ..., m-1.

Значит, можно выделить ровно m классов по модулю m.

Класс характеризуется остатком: $a=mt+r,\ t\in\mathbb{Z},\ 0\leq r\leq m-1.$ Фактически, каждый класс — арифметическая прогрессия со множителем m.

Выберем произвольным образом по одному числу в каждом классе. Такую группу назовем полной системой вычетов по модулю $m(\Pi CB(m))$. Для данного m таких систем существует бесконечно много.

Пример. По $mod\ 3$: $\Pi CB(3) = (0,1,2)$; $\Pi CB(3) = (10,11,12)$; $\Pi CB(3) = (-4,6,-5)$.