微分積分学 IV·演習第 12 回

2021年12月14日

問 12-1

以下の級数はそれぞれ次のうちどれに該当するか,理由もあわせて答えよ.

- (a) 正項級数 (b) 交代級数 (c) 収束級数 (d) 絶対収束級数 (e) 条件収束級数 (例えば $\sum_{n=1}^{\infty} \frac{1}{2^n}$ は (a), (c), (d) に該当する.)
- $1. \sum_{n=1}^{\infty} \frac{1}{n}$
- 1. $\sum_{n=1}^{\infty} \frac{1}{n}$ 2. $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 3. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ 4. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ 5. $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log n}$ 6. $\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$

- 7. $\sum_{n=1}^{\infty} n \sin\left(\frac{1}{n}\right)$
- 8. $\sum_{n=1}^{\infty} (-1)^{n+1} n^{\frac{1}{n}}$

問 12-2

級数

$$\sum_{n=1}^{\infty} a_n = 1 - 1 + \frac{1}{2} - \frac{1}{2} + \dots + \frac{1}{n} - \frac{1}{n} + \dots$$

を考える.

- (1) $\sum_{n=1}^{\infty} a_n$ は条件収束することを示せ.
- (2) $\sum_{n=1}^{\infty} a_n$ の正の項全体の和,負の項全体の和が発散することを用いて, $\sum_{n=1}^{\infty} a_n$ の項を並 び替えて π に収束するようにできることを示せ.(ヒント:目標値を超えるまで正の項を足 し、そのあと負の項を少しだけ足す.)
- (3) $\sum_{n=1}^{\infty} a_n$ の項を並び替えて発散するようにできることを示せ.

確認問題 12-a

以下の級数はそれぞれ次のうちどれに該当するか, 理由もあわせて答えよ.

- (a) 正項級数 (b) 交代級数 (c) 収束級数 (d) 絶対収束級数 (e) 条件収束級数
- 1. $\sum_{n=1}^{\infty} \frac{\cos(n)}{n!}$ 2. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ 3. $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n$

確認問題 12-b

級数

$$Z(x) = \sum_{n=0}^{\infty} e^{-nx}$$

を考える.

- (1) Z(x) はどのような x について収束するか.
- (2) $Z(x_0)$ が収束するとき、Z(x) は関数として $x=x_0$ で連続であることを示せ.(ヒント: $|Z(x_0+h)-Z(x_0)|$ を考える.)