Marginal Structural Models

Ian Lundberg

17 Nov 2023

Learning goals for today

- 1. define causal estimands
- 2. make causal assumptions with Directed Acyclic Graphs
- 3. estimate with inverse probability weights
 - ► in one period
 - ▶ in two periods
- 4. estimate with a marginal structural model

Running example

- ▶ at time 1,
 - ightharpoonup a student receives a midterm test score X_1
 - ▶ they decide whether to study more *A*₁
- ▶ at time 2,
 - ightharpoonup a student receives a midterm test score X_2
 - ▶ they decide whether to study more A_2
- ► they get a final exam score *Y*

Effect of studying at time 2

Expected outcome $E(Y^{a_2})$ if assigned to the value a_2 for studying at time 2

Student	$Y^{a_2=0}$	$Y^{a_2=1}$
1	80	95
2	70	95
3	90	90
÷	:	:

Effect of studying at time 2

Expected outcome $E(Y^{a_2})$ if assigned to the value a_2 for studying at time 2

Student	$Y^{a_2=0}$	$Y^{a_2=1}$
1	80	?
2	70	?
3	?	90
÷	:	:

Effect of studying at time 1 and 2

Expected outcome $E(Y^{a_1,a_2})$ if assigned to the value (a_1,a_2) for studying at time 1 and time 2

Student	$Y^{a_1=0,a_2=0}$	$Y^{a_1=0,a_2=1}$	$Y^{a_1=1,a_2=0}$	$Y^{a_1=1,a_2=1}$
1	70	80	75	90
2	80	95	80	95
3	90	90	90	90
:	:	:	:	:

Effect of studying at time 1 and 2

Expected outcome $E(Y^{a_1,a_2})$ if assigned to the value (a_1,a_2) for studying at time 1 and time 2

Student	$Y^{a_1=0,a_2=0}$	$\gamma^{a_1=0,a_2=1}$	$Y^{a_1=1,a_2=0}$	$\gamma^{a_1=1,a_2=1}$
1	?	?	?	90
2	?	95	?	?
3	?	?	90	?
÷	:	:	:	÷

Causal assumptions

We observe data from this model

Causal assumptions

We observe data from this model

 $A_1 \xrightarrow{A_2} Y$ $\uparrow \qquad \uparrow \qquad \uparrow$ $X_1 \xrightarrow{X_2} X_2$

We want this

- Untreated
- Treated

- Untreated
- Treated

Propensity score:
$$\pi_i = P(A = A_i \mid X = X_i)$$

- Untreated
- Treated

Propensity score:
$$\pi_i = P(A = A_i \mid X = X_i)$$

Inverse probability weight:

$$w_i = \frac{1}{\pi_i}$$

- Untreated
- Treated

Propensity score:
$$\pi_i = P(A = A_i \mid X = X_i)$$

Inverse probability weight: $w_i = \frac{1}{\pi_i}$

Propensity score:
$$\pi_i = P(A = A_i \mid X = X_i)$$

Inverse probability weight: $w_i = \frac{1}{\pi_i}$

Inverse probability weighting

At every time t, define an inverse probability of treatment weight given the measured past confounders and treatments

$$W^{A_t} = rac{1}{\mathsf{P}(A_t \mid ar{A}_{t-1}, ar{L}_t)}$$

Inverse probability weighting

At every time t, define an inverse probability of treatment weight given the measured past confounders and treatments

$$W^{A_t} = rac{1}{\mathsf{P}(A_t \mid ar{A}_{t-1}, ar{L}_t)}$$

Define the overall weight as the product

$$W^{\bar{A}} = \prod_{k=1}^K \frac{1}{\mathsf{P}(A_k \mid \bar{A}_{k-1}, \bar{L}_k)}$$

Inverse probability weighting

The weight

$$W^{\bar{A}} = \prod_{k=1}^{N} \frac{1}{\mathsf{P}(A_k \mid \bar{A}_{k-1}, \bar{L}_k)}$$

Takes us from this

to this pseudo-population

Marginal structural models

▶ inverse probability weighting estimates by weighted means

$$\mathsf{E}(Y^{a_1=1,a_2=1}) = \frac{1}{\sum_{i:\vec{A}=1} w_i} \sum_{i:\vec{A}=1} Y_i w_i$$

► marginal structural model estimates by a weighted regression

$$\mathsf{E}(Y^{a_1,a_2}) = \beta_0 + \beta_1 a_1 + \beta_2 a_2$$

Let's try it

- ▶ logistic regression for treatment at each time
- ▶ predict the propensity score
- ► create inverse probability weights
- ► estimate by IPW and MSM

A1	A2	estimate
0	0	Ê(Y ⁰⁰)
0	1	$\hat{E}(Y^{01})$
1	0	$\hat{E}(Y^{10})$
1	1	$\hat{E}(Y^{11})$

