MATEMATICI APLICATE ÎN INGINERIE

Camelia GHELDIU Mihaela DUMITRACHE

Editura Universității din Pitești 2019

Cuprins

	0.1	Cuvâr	nt înainte	6
1			nata Laplace (LT). Aplicații ale LT în a ecuațiilor diferențiale.	7
	1.1	Consi	derații teoretice	7
	1.2	Exerc	iții rezolvate.	16
	1.3		iţii propuse	61
2	Fun	ıcţii ar	nalitice. Condițiile Cauchy-Riemann.	65
2.1 Numere complexe. Funcții anali			re complexe. Funcții analitice (olomorfe).	65
		2.1.1	Numere complexe	65
		2.1.2	Funcții analitice (olomorfe)	66
	2.2	Funcţ	ii elementare complexe	68
		2.2.1	Funcția polinomială	68
		2.2.2	Funcția exponențială	69
		2.2.3	Funcția rațională	70
		2.2.4	Funcția multivocă.	70
		2.2.5	Funcția putere complexă (aplicație mul-	
			tivocă).	71
		2.2.6	Funcțiile trigonometrice complexe	
			(circulare)	72
		2.2.7	Funcţiile hiperbolice complexe	73
	2.3	Exerc	itii rezolvate.	77

4 CUPRINS

	2.4	Exerciții propuse
3	Rez	iduuri. Integrale improprii rezolvate cu rezi-
	duu	9 - 1
	3.1	Considerații teoretice
		3.1.1 Integrala complexă 97
		3.1.2 Seria Taylor
		3.1.3 Seria Laurent
		3.1.4 Singularități
		3.1.5 Reziduul într-un pol 104
		3.1.6 Teorema reziduurilor 104
		3.1.7 Aplicații ale teoremei reziduurilor în cal-
		culul unor integrale reale 105
	3.2	Exerciții rezolvate
	3.3	Exerciții propuse
4	Tra	nsformata Fourier (TF). Transformata Fou-
*		discretă (TFD). 135
	4.1	Transformata Fourier
	4.2	Transformarea Fourier prin sinus şi cosinus 150
	4.3	Exerciții propuse
	4.4	Transformarea Fourier discretă
5	Tra	nsformata Z (Laplace discretă). Transfor-
	mat	ta Laplace în timp discret (TLTD). 167
	5.1	Transformata Z. Definiţie.
		Proprietăți. Exemple
	5.2	Transformata Laplace discretă
		pentru fruncția original discretă 199
	5.3	Exerciții rezolvate
	5.4	Probleme propuse

CUPRINS 5

6	Serii Fourier.				
	Coa	arda vi	brată finită.	223	
	6.1	Exerc	iții rezolvate	233	
	6.2 Probleme propuse				
7	Ecu	ıaţiile :	fizicii matematice	263	
	7.1 Reducerea la forma canonică a ecuațiilor cu de-				
		rivate parțiale de ordinul doi. Problema Cauchy.			
	Ecuația coardei vibrante				
		7.1.1	Exerciții rezolvate	266	
		7.1.2	Exerciții propuse	306	
	7.2				
		mula	lui Poisson.	308	
		7.2.1	Exerciții rezolvate	311	
		7.2.2	Exerciții propuse	315	
	7.3	7.3 Problema mixtă pentru ecuația coardei vibrante			
	și ecuația căldurii. Metoda separării variabilelor				
	7.3.1 Problema mixtă la ecuația coardei vib				
		7.3.2	Problema mixtă la ecuația căldurii	318	
		7.3.3	Coarda vibrantă finită (oscilații libere) .	322	
		7.3.4	Exerciții rezolvate	327	
		7.3.5	Exerciții propuse	336	
	7.4				
	toda separării variabilelor				
		7.4.1	Exerciții rezolvate	340	
		7.4.2			
Bi	bliog	grafie		351	

6 CUPRINS

0.1 Cuvânt înainte

Lucrarea se adresează studenților din facultățile de inginerie: calculatoare, electronică, rețele, energetică, mecanică. Este alcătuită din trei părți importante: analiză complexă, transformări integrale și ecuațile fizicii matematice; fiecare capitol are în componență trei părți: considerații teoretice, probleme rezolvate și probleme propuse.

Autorii au pus accentul pe prezentarea cât mai succintă a noțiunilor de teorie și pe rezolvarea cât mai schematică a exercițiilor. Problemele propuse și rezolvate sunt apropiate ca structură de cerințele materiilor (cursurilor) inginerești. Autorii doresc studenților interesați de Matematici Speciale și nu numai, o parcurgere plăcută a lucrării.

Autorii

Octombrie 2019

Capitolul 1

Transformata Laplace (LT). Aplicaţii ale LT în rezolvarea ecuaţiilor diferenţiale.

1.1 Considerații teoretice.

Definiția 1.1 Funcția $f: \mathbb{R} \to \mathbb{C}$ se numește original dacă

- a) f(t) = 0 pentru t < 0;
- b) f continuă pe porțiuni;
- c) $\exists M_f > 0, s_f \in \mathbb{R}$ astfel încât $|f(t)| \leq M_f e^{s_f t}, \forall t.$

Notăm

$$\sigma(t) = \begin{cases} 1, t \ge 0 \\ 0, t < 0. \end{cases}$$

funcția lui Heaviside.

8 DIFERENŢIALE. Fie $s \in \mathbb{C}$, Re $s > s_f$. Definim pentru originalul f, aplicația

$$\mathcal{L}[f(t)](s) = F(s) = \int_0^\infty f(t)e^{-st}dt$$

unde

$$\mathcal{L}[f(t)](s)$$

este transformata Laplace, iar

este imaginea.

Observația 1.2 Aplicația care duce fiecare original în imaginea sa se numește *transformarea Laplace* și folosim notația:

$$f(t) \stackrel{\mathcal{L}}{\longleftrightarrow} F(s) = \mathcal{L}[f(t)].$$

Avem

$$|f(t)e^{-st}| \le |f(t)|e^{-t\operatorname{Re} s} \stackrel{(c)}{\le} M_f e^{-(\operatorname{Re} s - s_f)t}.$$

$$M_f \int_0^\infty e^{-(\operatorname{Re} s - s_f)t} dt = -\frac{M_f}{\operatorname{Re} s - s_f} e^{-(\operatorname{Re} s - s_f)t}|_0^\infty =$$

$$= \frac{M_f}{\operatorname{Re} s - s_f} < \infty$$

rezultă cu criteriul de convergență pentru integrale improprii că

$$\int_0^\infty f(t)e^{-st}dt$$

este convergentă, de unde obținem că F(s) este bine definită.

Definiția 1.3 Funcția

$$f(t) = \mathcal{L}^{-1}[F(s)](t)$$

se numește inversa transformatei Laplace.

Observația 1.4 Recuperarea funcției original:

a) Dacă

$$F(s) = \frac{P(s)}{Q(s)}$$

este o funcție rațională; în acest caz descompunem în fracții simple și folosim tabelul;

b) Dacă

$$F(s) = \frac{P(s)}{Q(s)} \cdot e^{-as},$$

în acest caz se determină funcția original pentru $\frac{P(s)}{Q(s)}$, apoi se folosește translația în t pentru recuperarea semnalului original;

c) Formula Mellin Fourier

$$f(t) = \frac{1}{2\pi i} \int_{s_f - i\infty}^{s_f + i\infty} F(s)e^{st}ds =$$

$$= \sum_{k} \{ \operatorname{Res}_{s=s_k} F(s) e^{st} \}$$

unde Re $s_k < s_f$, s_k singularități izolate ale lui F(s).

Proprietăți 1.5

1) Liniaritatea

$$\mathcal{L}\left[\alpha f(t) + \beta g(t)\right](s) =$$

$$= \alpha \mathcal{L}\left[f(t)\right](s) + \beta \mathcal{L}\left[g(t)\right](s), \forall \alpha, \beta \in \mathbb{C},$$

$$\text{Re } s > \max\{s_f, s_g\}.$$

2) Asemănarea

$$\mathcal{L}[f(at)](s) \stackrel{a>0}{=} \int_0^\infty f(at)e^{-st}dt,$$

dar ţinând cont de faptul că $y=at,\,t=y/a,\,dt=\frac{1}{a}dy,$ obţinem

$$\int_0^\infty f(y)e^{-\frac{s}{a}y}\frac{dy}{a} = \frac{1}{a}\mathcal{L}[f(t)]\left(\frac{s}{a}\right).$$

3) Deplasarea

$$\mathcal{L}[f(t)e^{\lambda t}](s) = \int_0^\infty f(t)e^{-(s-\lambda)t}dt = \mathcal{L}[f(t)](s-\lambda).$$

4) Întârzierea (b > 0)

$$\mathcal{L}[f(t-b)\sigma(t-b)](s) = \int_b^\infty f(t-b)e^{-st}dt \stackrel{t-b=y}{=}$$

$$= \int_0^\infty f(y)e^{-sy}e^{-sb}dy = e^{-sb}\mathcal{L}[f(t)](s).$$

5) Derivarea originalului. Considerăm $f \in C^1(0, \infty)$.

$$\mathcal{L}[f'(t)](s) = \int_0^\infty f'(t)e^{-st}dt =$$

$$= f(t)e^{-st}|_{0}^{\infty} + \int_{0}^{\infty} f(t)se^{-st}dt =$$

$$= s\mathcal{L}[f(t)](s) - f(0).$$

Generalizare:

$$\mathcal{L}[f^{n}(t)](s) =$$

$$= s^{n} \mathcal{L}[f(t)](s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f(0).$$

6) Derivarea imaginii. Cu criteriul comparației integrala

$$\int_0^\infty f(t)e^{-st}dt,$$

este absolut convergentă și

$$\int_0^\infty t f(t) e^{-st} dt,$$

este uniform convergentă în raport cu s, astfel putem deriva sub semnul integralei în raport cu s, deci

$$(\mathcal{L}[f(t)](s))' =$$

$$= \left(\int_0^\infty f(t)e^{-st}dt\right)_s' = \int_0^\infty \frac{\partial}{\partial s} \left[f(t)e^{-st}\right]dt =$$

$$= -\int_0^\infty tf(t)e^{-st}dt = -\mathcal{L}[tf(t)](s).$$

$$\mathcal{L}[tf(t)](s) = -\left(\mathcal{L}[f(t)](s)\right)'.$$

Generalizare:

$$\mathcal{L}[t^n f(t)](s) = (-1)^n F^n(s).$$

7) Integrarea originalului

$$\mathcal{L}[f(t)](s) = \mathcal{L}\left[\left(\int_0^t f(x)dx\right)'\right](s) \stackrel{(5)}{=}$$

$$= s\mathcal{L}\left[\int_0^t f(x)dx\right](s) - \int_0^0 f(x)dx =$$

$$= s\mathcal{L}\left[\int_0^t f(x)dx\right](s) \Rightarrow$$

$$\mathcal{L}\left[\int_0^t f(x)dx\right](s) = \frac{1}{s}\mathcal{L}[f(t)](s).$$

8) Integrarea imaginii

$$\int_{s}^{\infty} F(q)dq =$$

$$= \int_{s}^{\infty} \int_{0}^{\infty} f(t)e^{-qt}dtdq = \int_{0}^{\infty} f(t)\left(\int_{s}^{\infty} e^{-qt}dq\right)dt =$$

$$= \int_{0}^{\infty} f(t)\frac{e^{-qt}}{-t}|_{s}^{\infty}dt = \int_{0}^{\infty} \frac{f(t)}{t}e^{-st}dt = \mathcal{L}[\frac{f(t)}{t}](s).$$
Deci
$$\mathcal{L}[\frac{f(t)}{t}](s) = \int_{s}^{\infty} \mathcal{L}[f(t)](q)dq.$$

9) Integrarea cu parametru

$$\mathcal{L}\left[\int_{x_{1}}^{x_{2}} f(x,t)dx\right](s) = \int_{0}^{\infty} \left(\int_{x_{1}}^{x_{2}} f(x,t)dx\right) e^{-st}dt =$$

$$= \int_{0}^{\infty} \int_{x_{1}}^{x_{2}} f(x,t)e^{-st}dxdt = \int_{x_{1}}^{x_{2}} \left[\int_{0}^{\infty} f(x,t)e^{-st}dt\right]dx =$$

$$= \int_{x_{1}}^{x_{2}} \mathcal{L}\left[f(x,t)\right](x,s)dx.$$

10) Produsul de convoluție

$$f(t) * g(t) = (f * g)(t) = \int_0^t f(t - u)g(u)du = (g * t)(t);$$

$$\mathcal{L}[(f * g)](s) = F(s) \cdot G(s);$$

$$\mathcal{L}^{-1}[F(s) \cdot G(s)](t) = f(t) * g(t).$$

Aplicații ale transformatei Laplace în rezolvarea problemei Cauchy pentru ecuații diferențiale liniare cu coeficienți constanți (exemplificăm cu ecuația diferențială de ordinul al II-lea).

Exemplul 1.6

$$\begin{cases} a_0 y'' + a_1 y' + a_2 y = f(t) \\ y(0) = y_0, y'(0) = y_1. \end{cases}$$

$$\mathcal{L}[y(t)](s) = Y(s);$$

$$\mathcal{L}[y'](s) = sY(s) - y_0;$$

$$\mathcal{L}[y''](s) = s^2 Y(s) - sy_0 - y_1;$$

$$\mathcal{L}[f(t)](s) = F(s);$$

Se obține ecuația operațională:

$$a_0 (s^2 Y(s) - sy_0 - y_1) + a_1 (sY(s) - y_0) + a_2 Y(s) = F(s).$$

$$(a_0 s^2 + a_1 s + a_2) Y(s) = F(s) + a_0 y_0 s + a_0 y_1 + a_1 y_0.$$

Notăm $G(s) = F(s) + a_0 y_0 s + a_0 y_1 + a_1 y_0$ și obținem

$$Y(s) = \frac{G(s)}{a_0 s^2 + a_1 s + a_2}.$$

Se aplică transformata Laplace inversă și rezultă funcția original:

$$y(t) = \mathcal{L}^{-1} \left[\frac{G(s)}{a_0 s^2 + a_1 s + a_2} \right].$$

Observația 1.7

i) Inversa întârzierii.

$$\mathcal{L}^{-1}\left[e^{-sb}F(s)\right](t) = f(t-b)\sigma(t-b).$$

- ii) Determinarea imaginii F
 - a) Calcul direct cu definiția;
 - b) Pentru funcția original: $(0, +\infty)$ fără discontinuități se pot folosi proprietățile transformatei Laplace și tabelul;
 - c) Pentru funcția original "pe ramuri" se folosește definiția sau scrierea cu ajutorul funcției Heaviside.

Tabela 1.1: Transformata Laplace.

Nr.	Funcția	Transf. Laplace	Inversa
crt.	original $f(t)$	$\mathcal{L}\left[f(t)\right](s) \text{ sau } F(s)$	$\mathcal{L}^{-1}\left[F(s)\right](t)$
1)	$1 \cdot \sigma(t)$	1	$1 \cdot \sigma(t)$
2)	$e^{\lambda t}\sigma(t)$	$\frac{1}{s-\lambda}$	$e^{\lambda t}\sigma(t)$
3)	$t^k \sigma(t), k > -1$	$rac{\Gamma(k+1)}{s^{k+1}}$	$\frac{t^k}{\Gamma(k+1)}\sigma(t)$ $\frac{t^k e^{\lambda t}}{\Gamma(k+1)}\sigma(t)$ $\frac{t^n}{n!}\sigma(t)$ $\frac{t^n}{n!}e^{\lambda t}\sigma(t)$
4)	$t^k e^{\lambda t} \sigma(t)$	$\frac{\Gamma(k+1)}{(s-\lambda)^{k+1}}$	$\frac{t^k e^{\lambda t}}{\Gamma(k+1)} \sigma(t)$
5)	$t^n \sigma(t), n \in \mathbb{N}^*$	$\frac{n!}{s^{n+1}}$	$\frac{t^n}{n!}\sigma(t)$
6)	$t^n e^{\lambda t} \sigma(t)$	$\frac{n!}{(s-\lambda)^{n+1}}$	$\left \frac{t^n}{n!} e^{\lambda t} \sigma(t) \right $
7)	$\sin \omega t \sigma(t)$	$\frac{\omega}{s^2 + \omega^2}$	$\frac{\sin \omega t}{\omega} \sigma(t)$
8)	$\cos \omega t \sigma(t)$	$\frac{s}{s^2 + \omega^2}$	$\cos \omega t \sigma(t)$
9)	$\sinh at\sigma(t)$	<u>a</u>	$\frac{\sinh at}{a}\sigma(t)$
10)	$ \cosh at\sigma(t) $	$\frac{s}{s^2-a^2}$	$\cosh at\sigma(t)$
11)	$e^{\lambda t}\sin\omega t\sigma(t)$	$\frac{\omega}{(s-\lambda)^2+\omega^2}$	$e^{\lambda t} \frac{\sin \omega t}{\omega} \sigma(t)$
12)	$e^{\lambda t}\cos\omega t\sigma(t)$	$ \frac{s^2 - a^2}{\frac{s}{s^2 - a^2}} $ $ \frac{\omega}{(s - \lambda)^2 + \omega^2} $ $ \frac{s - \lambda}{(s - \lambda)^2 + \omega^2} $	$e^{\lambda t}\cos\omega t\sigma(t)$
13)	$e^{\lambda t}\sinh at\sigma(t)$	$\frac{a}{(s-\lambda)^2 - a^2}$ $\frac{s-\lambda}{s-\lambda}$	$e^{\lambda t} \frac{\sinh at}{a} \sigma(t)$
14)	$e^{\lambda t} \cosh at \sigma(t)$	$\overline{(s-\lambda)^2-a^2}$	$e^{\lambda t} \cosh at \sigma(t)$
15)	$t\sin\omega t\sigma(t)$	2018	$t \frac{\sin \omega t}{\omega} \sigma(t)$
16)	$t\cos\omega t\sigma(t)$	$\frac{\frac{2\omega}{(s^2+\omega^2)^2}}{\frac{s^2-\omega^2}{(s^2+\omega^2)^2}}$	$t\cos\omega t\sigma(t)$
17)	$t^n \sin \omega t \sigma(t), n \ge 2$	$\frac{n!}{(s^2+s^2)^{n+1}} \operatorname{Im}(s+i\omega)^{n+1}$	$\frac{t^n}{n!}\sin\omega t\sigma(t)$
18)	$t^n \cos \omega t \sigma(t)$	$\frac{n!}{(s^2+\omega^2)^{n+1}} \operatorname{Re}(s+i\omega)^{n+1}$	$t^n \cos \omega t \sigma(t)$
19)	$e^{\lambda t}t\sin\omega t\sigma(t)$	$\frac{2\omega(s-\lambda)}{[(s-\lambda)^2+\omega^2]^2}$	$e^{\lambda t} t \frac{\sin \omega t}{\omega} \sigma(t)$
20)	$e^{\lambda t}t\cos\omega t\sigma(t)$	$\frac{(s-\lambda)^2 - \omega^2}{[(s-\lambda)^2 + \omega^2]^2}$	$e^{\lambda t}t\cos\omega t\sigma(t)$

1.2 Exerciții rezolvate.

Exercițiul 1.8 Calculați transformata Laplace pentru următoarele funcții:

a)
$$f(t) = \cos(\omega t + \theta)\sigma(t);$$

b)
$$\mathcal{L}\left[\sinh 2t \cdot \sin 5t\right](s);$$

c)
$$f(t) = \frac{\sin \omega t}{t} \sigma(t);$$

d)
$$f(t) = \frac{e^{bt} - e^{at}}{2t\sqrt{t}}\sigma(t);$$

e)
$$f(t) = \begin{cases} 1, & t \in (0,1) \\ 2-t, & t \in (1,2) \\ 0, & t > 2. \end{cases}$$

f)
$$f(t) = \begin{cases} \sin t, & t \in (0, 2\pi) \\ 0, & \text{rest.} \end{cases}$$

g)
$$f(t) = \left\{ \begin{array}{ll} t \cdot e^{-t}, & 1 < t < 3 \\ 0, & \text{rest.} \end{array} \right.$$

h)
$$f(t) = \int_0^t \frac{\sin x}{x} \sigma(t) dx;$$

i)
$$f(t) = \int_0^t \frac{\cos s}{\sqrt{t-s}} \sigma(t) ds.$$

Soluţie.

a) Folosim definiția:

$$\mathcal{L}[f(t)](s) = \int_0^\infty \cos(\omega t + \theta) \left(\frac{e^{-st}}{-s}\right)' dt =$$

$$= \cos(\omega t + \theta) \cdot \frac{e^{-st}}{-s} \Big|_0^\infty + \int_0^\infty \omega \sin(\omega t + \theta) \cdot \frac{e^{-st}}{-s} dt =$$

$$= \frac{\cos \theta}{s} + \omega \sin(\omega t + \theta) \cdot \frac{e^{-st}}{(-s)^2} \Big|_0^\infty -$$

$$- \int_0^\infty \omega^2 \cos(\omega t + \theta) \cdot \frac{e^{-st}}{(-s)^2} dt =$$

$$= \frac{1}{s} \cos \theta - \frac{\omega}{s^2} \sin \theta - \frac{\omega^2}{s^2} \mathcal{L}[f(t)](s) \Rightarrow$$

$$\left(1 + \frac{\omega^2}{s^2}\right) \mathcal{L}[f(t)](s) = \frac{1}{s^2} (s \cos \theta - \omega \sin \theta),$$

$$\left(1 + \frac{\omega^2}{s^2}\right) = \frac{s^2 + \omega^2}{s^2},$$

dar

deci

$$\mathcal{L}\left[f(t)\right](s) = \frac{s}{s^2 + \omega^2} \cos \theta - \frac{\omega}{s^2 + \omega^2} \sin \theta.$$

b)

$$\mathcal{L}\left[\sinh 2t \cdot \sin 5t\sigma(t)\right](s) = \frac{1}{2}\mathcal{L}\left[\left(e^{2t} - e^{-2t}\right)\sin 5t\sigma(t)\right](s) =$$

$$= \frac{1}{2} \left\{ \mathcal{L} \left[e^{2t} \sin 5t \sigma(t) \right] (s) - \mathcal{L} \left[e^{-2t} \sin 5t \sigma(t) \right] (s) \right\}.$$

Cu teorema deplasării avem:

$$\mathcal{L}\left[\sinh 2t \cdot \sin 5t\sigma(t)\right](s) = \frac{1}{2} \left[\frac{5}{(s-2)^2 + 25} - \frac{5}{(s+2)^2 + 25} \right].$$

c) Folosim integrarea imaginii:

$$\mathcal{L}[f(t)](s) = \int_{s}^{\infty} \mathcal{L}[\sin \omega t \sigma(t)](q) dq =$$

$$= \int_{s}^{\infty} \frac{\omega}{q^{2} + \omega^{2}} dq = \arctan \frac{q}{\omega}|_{s}^{\infty} =$$

$$= \frac{\pi}{2} - \arctan \frac{s}{\omega} = \arctan \frac{\omega}{s}.$$

$$\mathcal{L}\left[f(t)\right](s) = \mathcal{L}\left[\frac{\frac{e^{bt} - e^{at}}{2\sqrt{t}}}{t}\sigma(t)\right](s) =$$

$$= \int_{s}^{\infty} \mathcal{L}\left[\frac{e^{bt} - e^{at}}{2t^{\frac{1}{2}}}\sigma(t)\right](q)dq =$$

$$= \frac{1}{2}\int_{s}^{\infty} \left\{\mathcal{L}\left[t^{-\frac{1}{2}}e^{bt}\sigma(t)\right](q) - \mathcal{L}\left[t^{-\frac{1}{2}}e^{at}\sigma(t)\right](q)\right\}dq.$$

Cu teorema deplasării avem:

$$=\frac{1}{2}\int_{s}^{\infty}\left(\frac{\sqrt{\pi}}{\sqrt{q-b}}-\frac{\sqrt{\pi}}{\sqrt{q-a}}\right)dq.$$

Deoarece

$$\mathcal{L}\left[t^{-\frac{1}{2}}\right](q) = \frac{\Gamma\left(\frac{1}{2}\right)}{q^{\frac{1}{2}}} = \frac{\sqrt{\pi}}{\sqrt{q}},$$

obţinem:

$$\mathcal{L}\left[f(t)\right](s) = \sqrt{\pi} \left(\sqrt{q-b} - \sqrt{q-a}\right)|_{s}^{\infty} =$$

$$= \sqrt{\pi} \left[\lim_{q \to \infty} \left(\sqrt{q-b} - \sqrt{q-a}\right) - \left(\sqrt{s-b} - \sqrt{s-a}\right)\right] =$$

$$= \sqrt{\pi} \left(\sqrt{s-a} - \sqrt{s-b}\right).$$

e) Folosim definiția:

$$\mathcal{L}\left[f(t)\right] = F(s) = \int_0^1 e^{-st} dt + \int_1^2 (2-t)e^{-st} dt =$$

$$= -\frac{1}{s}e^{-st}|_0^1 + (2-t)\frac{e^{-st}}{-s}|_1^2 + \int_1^2 \frac{e^{-st}}{-s} dt =$$

$$= -\frac{1}{s}e^{-s} + \frac{1}{s} + \frac{e^{-s}}{s} + \frac{e^{-st}}{s^2}|_1^2 =$$

$$= \frac{1}{s} + \frac{1}{s^2}(e^{-2s} - e^{-s}).$$

$$\mathcal{L}\left[f(t)\right](s) =$$

$$= \mathcal{L}\left[\sin t \cdot \sigma(t)\right](s) - \mathcal{L}\left[\sin((t+2\pi) - 2\pi)\sigma(t-2\pi)\right](s) =$$

$$= \frac{1}{s^2 + 1} - e^{-2\pi s} \cdot \mathcal{L}\left[\sin(t+2\pi)\sigma(t)\right](s) =$$

$$= \frac{1}{s^2 + 1} - \frac{e^{-2\pi s}}{s^2 + 1}.$$

g) Avem:

$$f(t) = \begin{cases} t \cdot e^{-t}, & 1 < t < 3 \\ 0, & \text{rest} \end{cases} = t \cdot e^{-t} (\sigma(t-1) - \sigma(t-3)).$$

$$\mathcal{L}[f(t)](s) =$$

$$= \mathcal{L}\left[t \cdot e^{-t}u(t-1)\sigma(t-1)\right](s) - \mathcal{L}\left[t \cdot e^{-t}u(t-3)\sigma(t-3)\right](s) =$$

$$= e^{-s}\mathcal{L}\left[(t+1)e^{-t-1}\sigma(t)\right](s) - e^{-3s}\mathcal{L}\left[(t+3)e^{-t-3}\sigma(t)\right](s) =$$

$$= e^{-s-1}\mathcal{L}\left[t\sigma(t)\right](s+1) - e^{-3s-3}\mathcal{L}\left[t \cdot e^{-t}\sigma(t)\right](s) +$$

$$+ e^{-s-1}\mathcal{L}\left[e^{-t}\sigma(t)\right](s) - 3e^{-3s-3}\mathcal{L}\left[e^{-t}\sigma(t)\right](s) =$$

$$= (e^{-s-1} - e^{-3s-3})\frac{1}{(s+1)^2} + (e^{-s-1} - 3e^{-3s-3})\frac{1}{s+1}.$$

h) Folosim integrarea originalului:

$$\mathcal{L}\left[f(t)\right](s) = \frac{1}{s}\mathcal{L}\left[\frac{\sin x}{x}\sigma(t)\right](s) \stackrel{(c)}{=} \frac{1}{s}\arctan\frac{1}{s}.$$

i) Folosim transformata Laplace peste un produs de convoluție:

$$\mathcal{L}[f(t)](s) = \mathcal{L}\left[\cos t * \frac{1}{\sqrt{t}}\sigma(t)\right](s) =$$

$$= \mathcal{L}\left[\cos t \cdot \sigma(t)\right](s) \cdot \mathcal{L}\left[\frac{1}{\sqrt{t}}\sigma(t)\right](s) =$$

$$= \frac{s}{s^2 + 1} \cdot \frac{\sqrt{\pi}}{\sqrt{s}} = \frac{\sqrt{\pi s}}{s^2 + 1}.$$

Exercițiul 1.9 Folosind transformata Laplace calculați următoarele integrale improprii:

a)
$$\int_0^\infty \frac{\sin t}{t} dt$$
;

b)
$$\int_0^\infty \frac{\cos bt - \cos at}{t^2} dt;$$

c)
$$\int_0^\infty \frac{\sin tx}{x(x^2+a^2)} dx.$$

Soluție.

a) Aplicăm proprietatea:

$$\int_0^\infty \frac{f(t)}{t} dt = \int_0^\infty \mathcal{L} [f(t)] (s) ds$$

$$\int_0^\infty \frac{\sin t}{t} dt = \int_0^\infty \mathcal{L} [\sin t \cdot \sigma(t)] (s) ds =$$

$$= \int_0^\infty \frac{1}{s^2 + 1} ds = \arctan s|_0^\infty = \frac{\pi}{2}.$$

b) Aceeaşi proprietate ca la a):

$$\int_0^\infty \frac{\cos bt - \cos at}{t^2} dt = \int_0^\infty \mathcal{L} \left[\frac{\cos bt - \cos at}{t} \sigma(t) \right] (s) ds$$

folosind integrarea imaginii avem:

$$= \int_0^\infty \int_s^\infty \mathcal{L} \left[\cos bt \cdot \sigma(t) - \cos at \cdot \sigma(t) \right] (q) dq ds =$$

$$= \int_0^\infty \int_s^\infty \left(\frac{q}{q^2 + b^2} - \frac{q}{q^2 + a^2} \right) dq ds =$$

$$= \frac{1}{2} \int_0^\infty \left[\ln(q^2 + b^2) - \ln(q^2 + a^2) \right] \Big|_s^\infty ds = \frac{1}{2} \int_0^\infty \ln \frac{s^2 + a^2}{s^2 + b^2} ds =$$

$$= \frac{1}{2} \int_0^\infty (s)' \ln \frac{s^2 + a^2}{s^2 + b^2} ds =$$

$$= \frac{1}{2} s \ln \frac{s^2 + a^2}{s^2 + b^2} \Big|_0^\infty - \frac{1}{2} \int_0^\infty \left(\frac{2s^2}{s^2 + a^2} - \frac{2s^2}{s^2 + b^2} \right) ds =$$

$$= \int_0^\infty \left(\frac{a^2}{s^2 + a^2} - \frac{b^2}{s^2 + b^2} \right) ds =$$

$$= a \arctan \frac{s}{a} \Big|_0^\infty - b \arctan \frac{s}{b} \Big|_0^\infty = a \frac{\pi}{2} - b \frac{\pi}{2} = \frac{\pi}{2} (a - b).$$

c) Folosim transformata Laplace și integrarea cu parametru:

$$\mathcal{L}\left[\int_{0}^{\infty} \frac{\sin tx}{x(x^{2} + a^{2})} dx\right](s) = \int_{0}^{\infty} \frac{\mathcal{L}\left[\sin tx \cdot \sigma(t)\right](s)}{x(x^{2} + a^{2})} dx =$$

$$= \int_{0}^{\infty} \frac{x}{x(x^{2} + a^{2})(x^{2} + s^{2})} dx = \int_{0}^{\infty} \frac{dx}{(x^{2} + a^{2})(x^{2} + s^{2})} =$$

$$= \frac{1}{s^{2} - a^{2}} \int_{0}^{\infty} \left(\frac{1}{x^{2} + a^{2}} - \frac{1}{x^{2} + s^{2}}\right) dx =$$

$$= \frac{1}{s^{2} - a^{2}} \left[\frac{1}{a} \arctan \frac{x}{a}\Big|_{0}^{\infty} - \frac{1}{s} \arctan \frac{x}{s}\Big|_{0}^{\infty}\right] =$$

$$= \frac{1}{s^{2} - a^{2}} \left(\frac{\pi}{2a} - \frac{\pi}{2s}\right) =$$

$$= \frac{\pi}{2} \cdot \frac{s - a}{as(s - a)(s + a)} = \frac{\pi}{2a} \cdot \frac{1}{s(s + a)} =$$

$$= \frac{\pi}{2a^{2}} \left(\frac{1}{s} - \frac{1}{s + a}\right) = \frac{\pi}{2a^{2}} \mathcal{L}\left[(1 - e^{-at})\sigma(t)\right](s) \Rightarrow$$

$$\int_{0}^{\infty} \frac{\sin tx}{x(x^{2} + a^{2})} dx = \frac{\pi}{2a^{2}} \left(1 - e^{-at}\right)\sigma(t).$$

Exercițiul 1.10 Aflați originalul pentru următoarele imagini:

a)
$$F(s) = \frac{27 - 12s}{(s+4)(s^2+9)};$$

b)
$$F(s) = \frac{1}{(s^2 + a^2)^2};$$

c)
$$F(s) = \frac{e^{-s}}{s^2 + \pi^2} + \frac{e^{-3s}}{s^2 + \pi^2};$$

d)
$$F(s) = \frac{1}{s^2 - 1} - e^{-\pi} \frac{e^{-\pi s}}{s^2 - 1};$$

e)
$$F(s) = \frac{e^{-s}}{s+2} + \frac{e^{-2s}}{s^2+1} + \frac{e^{-3s}}{s^2+4s+5};$$

f)
$$F(s) = \frac{1}{s^4 + 2s^3 + 3s^2 + 2s + 1};$$

g)
$$F(s) = \frac{e^{-s} (1 - e^{-s})}{s (s^2 + 1)};$$

h)
$$F(s) = \frac{s}{(s+1)^{\frac{5}{2}}};$$

i)
$$F(s) = \frac{2}{(s-1)^2} + \frac{1}{s\sqrt{s}};$$

j)
$$F(s) = \frac{e^{-\frac{s}{2}}}{(s-2)^2};$$

k)
$$F(s)=\frac{e^{-\frac{s+2}{3}}}{s^2+4s+13};$$
 l)
$$F(s)=\frac{(s-2)e^{-\frac{s-2}{3}}}{(s-2)^2+9};$$
 m)
$$F(s)=\frac{s-1-e^{-s}}{s^2-2s+2}.$$

Soluție.

a) Descompunem în fracții simple:

$$F(s) = \frac{27 - 12s}{(s+4)(s^2+9)} = \frac{3}{s+4} - \frac{3s}{s^2+9}$$

și aplicând transformata Laplace inversă obținem:

$$f(t) = 3\mathcal{L}^{-1} \left[\frac{1}{s+4} \right] (t) - 3\mathcal{L}^{-1} \left[\frac{s}{s^2+9} \right] (t) =$$
$$= (3e^{-4t} - 3\cos 3t)\sigma(t).$$

b)
$$F(s) = \frac{1}{2a^2} \cdot \frac{-s^2 + a^2 + (s^2 + a^2)}{(s^2 + a^2)^2} = \frac{1}{2a^2} \left[\frac{1}{s^2 + a^2} - \frac{s^2 - a^2}{(s^2 + a^2)^2} \right] \Rightarrow$$

$$f(t) = \frac{1}{2a^2} \left\{ \mathcal{L}^{-1} \left[\frac{1}{s^2 + a^2} \right] (t) - \mathcal{L}^{-1} \left[\frac{s^2 - a^2}{(s^2 + a^2)^2} \right] (t) \right\} =$$

$$= \left(\frac{1}{2a^3} \sin at - \frac{1}{2a^2} t \cos at \right) \sigma(t).$$

c)
$$F(s) = \frac{e^{-s}}{s^2 + \pi^2} + \frac{e^{-3s}}{s^2 + \pi^2} \Rightarrow f(t) = ?$$

$$F_1(s) = \frac{1}{s^2 + \pi^2} \stackrel{L^{-1}}{\longleftrightarrow} f_1(t) = \frac{1}{\pi} \sin \pi t \cdot \sigma(t);$$

$$F_2(s) = \frac{1}{s^2 + \pi^2} \stackrel{L^{-1}}{\longleftrightarrow} f_2(t) = \frac{1}{\pi} \sin \pi t \cdot \sigma(t);$$

$$F_1(s)e^{-s} \stackrel{L^{-1}}{\longleftrightarrow} f_1(t-1) =$$

$$= \frac{1}{\pi} \sin \pi (t-1)\sigma(t-1) = -\frac{1}{\pi} \sin \pi t \cdot \sigma(t-1);$$

$$F_2(s)e^{-3s} \stackrel{L^{-1}}{\longleftrightarrow} f_2(t-3) =$$

$$= \frac{1}{\pi} \sin \pi (t-3)\sigma(t-3) = -\frac{1}{\pi} \sin \pi t \cdot \sigma(t-3);$$

$$f(t) = f_1(t-1)\sigma(t-1) + f_2(t-3)\sigma(t-3) =$$

$$= -\frac{1}{\pi} \sin \pi t (\sigma(t-1) + \sigma(t-3)).$$

Deci

	0 1		3
H(t-1)	0	1	1
H(t-3)	0	0	1
H(t-1)+H(t-3)	0	1	2

Figura 1.

$$f(t) = \begin{cases} 0, & 0 < t < 1 \\ -\frac{1}{\pi} \sin \pi t, & 1 < t < 3 \\ -\frac{2}{\pi} \sin \pi t, & t > 3. \end{cases}$$

d

$$f(t) = \mathcal{L}^{-1} \left[\frac{1}{(s^2 - 1)} \right] (t) - e^{-\pi} \mathcal{L}^{-1} \left[\frac{e^{-\pi s}}{s^2 - 1} \right] (t) =$$

$$= \sinh t \sigma(t) - e^{-\pi} \sinh(t - \pi) \sigma(t - \pi) =$$

$$= \begin{cases} \sinh t, & t < \pi \\ \sinh t - e^{-\pi} \sinh(t - \pi), & t \ge \pi. \end{cases}$$

e) Cu relația din deplasare

$$\mathcal{L}^{-1} \left[\frac{1}{(s+2)} \right] (t) = e^{-2t} \sigma(t);$$

$$\mathcal{L}^{-1} \left[\frac{1}{s^2 + 1} \right] (t) = \sin t \cdot \sigma(t);$$

$$\mathcal{L}^{-1} \left[\frac{1}{s^2 + 4s + 5} \right] (t) = \mathcal{L}^{-1} \left[\frac{1}{(s+2)^2 + 1} \right] (t),$$

folosim teorema deplasării:

$$\mathcal{L}^{-1} \left[\frac{1}{s^2 + 4s + 5} \right] (t) = e^{-2t} \mathcal{L}^{-1} \left[\frac{1}{s^2 + 1} \right] (t) = e^{-2t} \sin t \cdot \sigma(t).$$

Cu relația:

$$\mathcal{L}^{-1}\left[e^{-bs}F(s)\right](t) = \mathcal{L}^{-1}\left[F(s)\right](t-b)\sigma(t-b),$$

obţinem:

$$f(t) = e^{-2(t-1)}\sigma(t-1) + \sin(t-2)\sigma(t-2) +$$

$$+e^{-2(t-3)}\sin(t-3)\sigma(t-3).$$

$$F(s) = \frac{1}{s^4 + 2s^3 + 3s^2 + 2s + 1} = \frac{1}{(s^2 + s + 1)^2} = \frac{1}{\left[\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right]^2} = \frac{1}{\left[\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right]^2} = \frac{2}{3} \cdot \frac{\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 - \left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}{\left[\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right]^2} = \frac{2}{3} \cdot \frac{1}{\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} - \frac{2}{3} \cdot \frac{\left(s + \frac{1}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2}{\left[\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right]^2}.$$

$$\mathcal{L}^{-1} \left[\frac{1}{\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}\right] (t) \xrightarrow{\text{deplasarea}} = e^{-\frac{t}{2}} \mathcal{L}^{-1} \left[\frac{1}{s^2 + \left(\frac{\sqrt{3}}{2}\right)^2}\right] (t) = \frac{2}{\sqrt{3}} e^{-\frac{t}{2}} \sin\left(\frac{\sqrt{3}}{2}t\right) \sigma(t).$$

$$\mathcal{L}^{-1} \left[\frac{\left(s + \frac{1}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}\right)^2}{\left[\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right]^2} \right] (t) \stackrel{\text{deplasarea}}{=}$$

$$= e^{-\frac{t}{2}} \mathcal{L}^{-1} \left[\frac{s^2 - \left(\frac{\sqrt{3}}{2}\right)^2}{\left[s^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right]^2} \right] (t) =$$

$$= e^{-\frac{t}{2}} \mathcal{L}^{-1} \left[-\left(\frac{s}{s^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right)} \right] (t)$$

folosind derivarea imaginii avem:

$$= e^{-\frac{t}{2}} \mathcal{L}^{-1} \left[\mathcal{L} \left[t \cos \left(\frac{\sqrt{3}}{2} t \right) \sigma(t) \right] (s) \right] (t) =$$

$$= e^{-\frac{t}{2}} t \cos \left(\frac{\sqrt{3}}{2} t \right) \sigma(t).$$

Astfel,

$$f(t) = \frac{4}{3\sqrt{3}}e^{-\frac{t}{2}}\sin\frac{\sqrt{3}}{2}t\sigma(t) - \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}t\cos\frac{\sqrt{3}}{2}t\sigma(t).$$

$$F(s) = \frac{e^{-s} (1 - e^{-s})}{s (s^2 + 1)} =$$
$$= \frac{e^{-s}}{s (s^2 + 1)} - \frac{e^{-2s}}{s (s^2 + 1)}$$

$$\mathcal{L}^{-1} \left[\frac{1}{s(s^2 + 1)} \right] (t) =$$

$$= \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{s}{s^2 + 1} \right] (t) = (1 - \cos t)\sigma(t).$$

folosind "intârzierea" avem:

$$f(t) = [1 - \cos(t - 1)] \sigma(t - 1) - [1 - \cos(t - 2)] \sigma(t - 2) =$$

$$= -\sigma(t - 2) + \sigma(t - 1) + \cos(t - 2)\sigma(t - 2) - \cos(t - 1)\sigma(t - 1).$$
Astfel,

$$f(t) = \begin{cases} 0, & t < 1\\ 1 - \cos(t - 1), & 1 \le t < 2\\ \cos(t - 2) - \cos(t - 1), & t \ge 2. \end{cases}$$

h)
$$F(s) = \frac{s}{(s+1)^{\frac{5}{2}}} = \frac{1}{(s+1)^{\frac{3}{2}}} - \frac{1}{(s+1)^{\frac{5}{2}}}.$$

$$f(t) = \mathcal{L}^{-1} \left[\frac{1}{(s+1)^{\frac{3}{2}}} \right] (t) - \mathcal{L}^{-1} \left[\frac{1}{(s+1)^{\frac{5}{2}}} \right] (t)$$

folosind "deplasarea" avem:

$$f(t) = e^{-t} \mathcal{L}^{-1} \left[\frac{1}{(s)^{\frac{3}{2}}} \right] (t) - e^{-t} \mathcal{L}^{-1} \left[\frac{1}{(s)^{\frac{5}{2}}} \right] (t).$$

Ştim că:

$$\mathcal{L}\left[t^k\sigma(t)\right] = \frac{\Gamma(k+1)}{s^{k+1}} \to$$

$$\to \mathcal{L}^{-1}\left[\frac{1}{s^{k+1}}\right](t) = \frac{t^k}{\Gamma(k+1)}\sigma(t), k > -1.$$

Astfel,

$$f(t) = \left(e^{-t} \frac{\sqrt{t}}{\Gamma\left(\frac{3}{2}\right)} - e^{-t} \frac{t\sqrt{t}}{\Gamma\left(\frac{5}{2}\right)}\right) \sigma(t) =$$

$$= \frac{2}{\sqrt{\pi}} e^{-t} \sqrt{t} \left(1 - \frac{2}{3}t\right) \sigma(t) = 2e^{-t} \sqrt{\frac{t}{\pi}} \left(1 - \frac{2}{3}t\right) \sigma(t).$$

i) Ştim că:

$$\mathcal{L}\left[t^n e^{\lambda t} \sigma(t)\right](s) = \frac{n!}{(s-\lambda)^{n+1}}, n \in \mathbb{N}, \lambda \in \mathbb{C}.$$

Atunci:

I)
$$\frac{1}{(s-\lambda)^{n+1}} \stackrel{L^{-1}}{\longleftrightarrow} \frac{t^n e^{\lambda t}}{n!} \sigma(t).$$

II)

$$t^k \sigma(t) \stackrel{L}{\longleftrightarrow} \frac{\Gamma(k+1)}{s^{k+1}}, k > -1.$$

Rezultă

$$\frac{1}{s^{k+1}} \stackrel{L^{-1}}{\longleftrightarrow} \frac{t^k}{\Gamma(k+1)} \sigma(t).$$

Din liniaritatea lui \mathcal{L}^{-1} :

$$f(t) = \mathcal{L}^{-1} \left[\frac{2}{(s-1)^2} + \frac{1}{s\sqrt{s}} \right] (t) =$$

$$= 2\mathcal{L}^{-1} \left[\frac{1}{(s-1)^2} \right] (t) + \mathcal{L}^{-1} \left[\frac{1}{s^{1+\frac{1}{2}}} \right] (t).$$

Pentru n=1 și $\lambda=1$ în relația I) avem:

$$\frac{1}{(s-1)^2} \stackrel{L^{-1}}{\longleftrightarrow} f_1(t) = te^t \sigma(t)$$

și pentru $k = \frac{1}{2}$ în relația II) avem:

$$\frac{1}{s^{1+\frac{1}{2}}} \stackrel{L^{-1}}{\longleftrightarrow} \frac{t^{\frac{1}{2}}}{\Gamma(1+\frac{1}{2})} \sigma(t) = \frac{\sqrt{t}}{\frac{1}{2}\Gamma(\frac{1}{2})} \sigma(t) =$$
$$= 2\sqrt{\frac{t}{\pi}} \sigma(t) = f_2(t).$$

Obţinem:

$$f(t) = 2f_1(t) + f_2(t) = \left(2te^t + 2\sqrt{\frac{t}{\pi}}\right)\sigma(t).$$

$$F(s) = \frac{e^{-\frac{s}{2}}}{(s-2)^2};$$

$$f(t) = \mathcal{L}^{-1} \left[F(s) \right] (t) = \mathcal{L}^{-1} \left[e^{-\frac{s}{2}} \frac{1}{(s-2)^2} \right] (t)$$

folosind "intârzierea" avem:

$$= \mathcal{L}^{-1} \left[\frac{1}{(s-2)^2} \right] (t - \frac{1}{2}) \sigma(t - \frac{1}{2}) = (t - \frac{1}{2}) e^{2(t - \frac{1}{2})} \sigma(t - \frac{1}{2}) =$$

$$= \frac{1}{2} (2t - 1) e^{2t - 1} \sigma(2t - 1).$$

k)
$$F(s) = \frac{e^{-\frac{s+2}{3}}}{s^2 + 4s + 13};$$

$$f(t) = \mathcal{L}^{-1} \left[F(s) \right](t) = \mathcal{L}^{-1} \left[\frac{1}{(s+2)^2 + 9} e^{-\frac{s+2}{3}} \right](t)$$

folosind "deplasarea" avem:

$$= e^{-2t} \mathcal{L}^{-1} \left[\frac{1}{s^2 + 9} e^{-\frac{s}{3}} \right]$$

folosind "intârzierea" avem:

$$= e^{-2t} \mathcal{L}^{-1} \left[\frac{1}{s^2 + 9} \right] (t - \frac{1}{3}) \sigma(t - \frac{1}{3}) =$$

$$= \frac{1}{3} e^{-2t} \sin 3(t - \frac{1}{3}) \sigma(t - \frac{1}{3}) =$$

$$= \frac{1}{3} e^{-2t} \sin(3t - 1) \sigma(3t - 1).$$

l)
$$F(s) = \frac{(s-2)e^{-\frac{s-2}{3}}}{(s-2)^2 + 9};$$

$$f(t) = \mathcal{L}^{-1} \left[F(s) \right](t) = \mathcal{L}^{-1} \left[\frac{(s-2)e^{-\frac{s-2}{3}}}{(s-2)^2 + 9} \right](t)$$

folosind "deplasarea" avem:

$$=e^{2t}\mathcal{L}^{-1}\left[\frac{s}{s^2+9}e^{-\frac{s}{3}}\right]$$

folosind "intârzierea" avem:

$$= e^{2t} \mathcal{L}^{-1} \left[\frac{s}{s^2 + 9} \right] (t - \frac{1}{3}) \sigma(t - \frac{1}{3}) =$$

$$= e^{2t} \cos 3(t - \frac{1}{3}) \sigma(t - \frac{1}{3}) =$$

$$= e^{2t} \cos(3t - 1) \sigma(3t - 1).$$

$$F(s) = \frac{s - 1 - e^{-s}}{s^2 - 2s + 2}.$$

$$F(s) = \frac{s - 1}{(s - 1)^2 + 1} - \frac{e^{-s}}{(s - 1)^2 + 1}$$

$$f(t) = \mathcal{L}^{-1} [F(s)] (t) =$$

$$= \mathcal{L}^{-1} \left[\frac{s - 1}{(s - 1)^2 + 1} \right] - \mathcal{L}^{-1} \left[\frac{e^{-s}}{(s - 1)^2 + 1} \right]$$

folosind "deplasarea" și "intârzierea" avem:

$$f(t) = e^t \mathcal{L}^{-1} \left[\frac{s}{s^2 + 1} \right] - \mathcal{L}^{-1} \left[\frac{1}{(s - 1)^2 + 1} \right] (t - 1) \sigma(t - 1) =$$

 $\stackrel{deplasarea in al doilea termen}{=} e^t \cos t \sigma(t) - e^{t-1} \sin(t-1)\sigma(t-1).$

Exercițiul 1.11 Rezolvați ecuațiile diferențiale următoare cu transformata Laplace:

a)
$$y'' - 4y = \sigma(t - 1), y(0) = y'(0) = 0;$$

b)
$$y'' + 4y' + 4y = \sin t \cdot \sigma(t), y(0) = 1, y'(0) = 2;$$

c)
$$y(t) + y'(t) - 2 \int_0^t y(s) \sin(t - s) ds = (\cos t + \sinh t) \sigma(t),$$

 $y(0) = 1.$

d)
$$y''(t) - y(t) = t\sigma(t), y(0) = 1, y'(0) = 1;$$

e)
$$y''(t) + 9y(t) = 10e^{-t}\sigma(t), y(0) = 0, y'(0) = 0;$$

f)
$$y''(t) - y(t) = g(t), y(0) = y'(0) = 0;$$

 $g(t) = \begin{cases} t, 0 < t < 1 \\ 0, \text{ rest} \end{cases}$

g)
$$y'' - 2y' - 3y = 0$$
, $y(1) = -3$, $y'(1) = -17$;

h)
$$y'' - y = \cosh 2t \cdot \sigma(t), y(0) = y'(0) = 0;$$

Soluţie.

a) Aplicăm transformata Laplace și ținem cont de liniaritate:

$$\mathcal{L}\left[y''\right](s) - 4\mathcal{L}\left[y\right](s) = \mathcal{L}\left[\sigma(t-1)\right](s).$$

Cu derivarea originalului avem:

$$\mathcal{L}[y'](s) = s\mathcal{L}[y](s) - y(0) = sY(s).$$

$$\mathcal{L}[y''](s) = s\mathcal{L}[(y')'](s) = s\mathcal{L}[y'](s) - y'(0) = s^2Y(s).$$

Cu întârzierea:

$$\mathcal{L}[\sigma(t-1)](s) = e^{-s}\mathcal{L}[1](s) = \frac{1}{s}e^{-s}.$$

Ecuația operațională este:

$$s^2Y(s) - 4Y(s) = \frac{e^{-s}}{s} \Leftrightarrow$$

$$Y(s) = e^{-s} \frac{1}{s(s^2 - 4)}.$$

Aplicăm transformata Laplace inversă:

$$y(t) = \mathcal{L}^{-1} \left[e^{-s} \frac{1}{s(s^2 - 4)} \right] (t) = \mathcal{L}^{-1} \left[\frac{1}{s(s^2 - 4)} \right] (t - 1) \sigma(t - 1).$$

Am folosit formula:

$$\mathcal{L}^{-1}\left[e^{-sb}F(s)\right](t) = \mathcal{L}^{-1}\left[F(s)\right](t-b)\sigma(t-b).$$

Acum:

$$\mathcal{L}^{-1} \left[\frac{1}{s(s^2 - 4)} \right] (t) = \frac{1}{4} \mathcal{L}^{-1} \left[\frac{s}{s^2 - 4} - \frac{1}{s} \right] (t) =$$
$$= \frac{1}{4} (\cosh 2t - 1) \sigma(t).$$

Deci

$$y(t) = \frac{1}{4} \left[\cosh 2(t-1) - 1 \right] \sigma(t-1).$$

b) Aplicăm transformata Laplace ecuației și folosim liniaritatea:

$$\mathcal{L}[y''](s) + 4\mathcal{L}[y'](s) + 4\mathcal{L}[y](s) = \mathcal{L}[\sin t \cdot \sigma(t)](s).$$

Notăm

$$\mathcal{L}\left[y\right](s) = Y(s).$$

Cu derivarea originalului avem:

$$\mathcal{L}[y'](s) = sY(s) - y(0) = sY(s) - 1.$$

$$\mathcal{L}[y''](s) = \mathcal{L}[(y')'](s) = s\mathcal{L}[y'](s) - y'(0) = s^2Y(s) - s - 2.$$

$$\mathcal{L}\left[\sin t \cdot \sigma(t)\right](s) = \frac{1}{s^2 + 1}.$$

Ecuația operațională este:

$$s^{2}Y(s) - s - 2 + 4(sY(s) - 1) + 4Y(s) = \frac{1}{s^{2} + 1} \Leftrightarrow (s + 2)^{2}Y(s) = s + 6 + \frac{1}{s^{2} + 1} = \frac{s^{3} + 6s^{2} + s + 7}{s^{2} + 1} \Rightarrow Y(s) = \frac{s^{3} + 6s^{2} + s + 7}{(s + 2)^{2}(s^{2} + 1)}.$$

Cu descompunerea în fracții simple avem:

$$Y(s) = \frac{a}{s+2} + \frac{b}{(s+2)^2} + \frac{cs+d}{s^2+1}$$

și folosind metoda coeficienților nedeterminați obținem

$$a = \frac{7}{25}, b = \frac{21}{5}, c = \frac{-4}{25}, d = \frac{3}{25}.$$

$$Y(s) = \frac{7}{25} \cdot \frac{1}{s+2} + \frac{21}{5} \cdot \frac{1}{(s+2)^2} - \frac{4}{25} \cdot \frac{s}{s^2+1} + \frac{3}{25} \cdot \frac{1}{s^2+1}.$$

Aplicăm transformata Laplace inversă și folosim liniaritatea:

$$y(t) = \frac{7}{25} \cdot \mathcal{L}^{-1} \left[\frac{1}{s+2} \right] (t) + \frac{21}{5} \cdot \mathcal{L}^{-1} \left[\frac{1}{(s+2)^2} \right] (t) - \frac{4}{25} \cdot \mathcal{L}^{-1} \left[\frac{s}{s^2+1} \right] (t) + \frac{3}{25} \cdot \mathcal{L}^{-1} \left[\frac{1}{s^2+1} \right] (t).$$

Ştim că

$$\mathcal{L}^{-1} \left[\frac{s}{s^2 + a^2} \right] (t) = \cos at \cdot \sigma(t)$$

şi

$$\mathcal{L}^{-1} \left[\frac{1}{s^2 + a^2} \right] (t) = \frac{\sin at}{a} \cdot \sigma(t)$$

avem:

$$y(t) = \left(\frac{7}{25} \cdot e^{-2t} + \frac{21}{5} \cdot te^{-2t} - \frac{4}{25} \cdot \cos t + \frac{3}{25} \cdot \sin t\right) \sigma(t).$$

c) Folosind liniaritatea transformatei Laplace, ecuația operațională obținută este:

$$Y(s) + sY(s) - 1 - 2Y(s)\frac{1}{s^2 + 1} = \frac{s}{s^2 + 1} + \frac{1}{s^2 - 1}$$

$$\Rightarrow Y(s) = \frac{s(s^3 + s^2 + s - 1)}{(s^2 - 1)(s^3 + s^2 + s - 1)} = \frac{s}{s^2 - 1} \Rightarrow y(t) = \cosh t \cdot \sigma(t).$$

$$\mathcal{L}[y''] - \mathcal{L}[y] = \mathcal{L}[t\sigma(t)],$$

dar

$$\mathcal{L}[y] = F(s) \text{ si } \mathcal{L}[t] = \frac{1}{s^2},$$

deci

$$s^{2}F(s) - sy(0) - y'(0) - F(s) = \frac{1}{s^{2}}$$

$$(s^{2} - 1)F(s) = s + 1 + \frac{1}{s^{2}} \Rightarrow F(s) = \frac{s}{s^{2} - 1} + \frac{1}{s^{2} - 1} + \frac{1}{s^{2}(s^{2} - 1)} \Rightarrow$$

$$F(s) = \frac{s}{s^{2} - 1} + \frac{2}{s^{2} - 1} - \frac{1}{s^{2}} \Rightarrow$$

$$y(t) = (\cosh t + 2\sinh t - t)\sigma(t).$$

f) Ştim că

$$g(t) = \begin{cases} t, 0 < t < 1 \\ 0, \text{ rest} \end{cases} = t \left(\sigma(t) - \sigma(t - 1) \right)$$

deci

$$(s^{2} - 1)F(s) = \mathcal{L}[t] - \mathcal{L}[((t+1) - 1)\sigma(t-1)] =$$

$$= \frac{1}{s^{2}} - e^{-s}\mathcal{L}[t+1] = \frac{1}{s^{2}} - \frac{1}{s^{2}}e^{-s} - \frac{1}{s}e^{-s}.$$

Deoarece

$$\mathcal{L}\left[f(t)\sigma(t-b)\right] = e^{-bs}\mathcal{L}\left[f(t+b)\right].$$

Avem

$$F(s) = \frac{1}{\frac{s^2(s^2-1)}{F_1(s)}} - \frac{1}{\frac{s^2(s^2-1)}{F_2(s)}} e^{-s} - \frac{1}{\frac{s^2(s^2-1)}{F_3(s)}} e^{-s}$$

$$\begin{cases}
F_1(s) = \frac{1}{s^2-1} - \frac{1}{s^2} & \stackrel{L^{-1}}{\longleftrightarrow} (\sinh t - t)\sigma(t) = f_1(t) \\
F_2(s) = \frac{1}{s^2(s^2-1)} = \frac{1}{s^2} - \frac{1}{s^2-1} & \stackrel{L^{-1}}{\longleftrightarrow} (t - \sinh t)\sigma(t) = f_2(t) \\
F_3(s) = \frac{-1}{s(s^2-1)} = \frac{1}{s} - \frac{s}{s^2-1} & \stackrel{L^{-1}}{\longleftrightarrow} (1 - \cosh t)\sigma(t) = f_3(t)
\end{cases}$$

$$\begin{cases}
F_2(s)e^{-s} & \stackrel{L^{-1}}{\longleftrightarrow} f_2(t-1)\sigma(t-1) = [t-1 - \sinh(t-1)]\sigma(t-1) \\
F_3(s)e^{-s} & \stackrel{L^{-1}}{\longleftrightarrow} f_3(t-1)\sigma(t-1) = [1 - \cosh(t-1)]\sigma(t-1).
\end{cases}$$
Astfel,
$$y(t) = f_1(t)\sigma(t) + f_2(t-1)\sigma(t-1) + f_3(t-1)\sigma(t-1) =$$

$$= \begin{cases} \sinh t - t, & 0 < t < 1 \\ \sinh t - \sinh(t-1) - \cosh(t-1), & t > 1. \end{cases}$$

$$g) \tilde{t} = t - 1, \tilde{y}(\tilde{t}) = y(t) = y(\tilde{t}+1) = \tilde{y}(\tilde{t}) \text{ deci } \tilde{y}''(\tilde{t}) - 2\tilde{y}'(\tilde{t}) - 3\tilde{y}(\tilde{t}) = 0, \ \tilde{y}(0) = -3, \ \tilde{y}'(0) = -17; \text{ Astfel.} \end{cases}$$

Notăm $F(s) = \mathcal{L}[y]$ și avem

$$s^{2}F(s) - s\widetilde{y}(0) - \widetilde{y}'(0) - 2(sF(s) - \widetilde{y}(0)) - 3F(s) = 0 \Rightarrow$$

$$\left(s^{2} - 2s - 3\right)F(s) = 3s - 17 + 6 \Rightarrow$$

$$F(s) = \frac{-3s - 11}{(s - 3)(s + 1)} = \frac{2}{s + 1} - \frac{5}{s - 3}.$$

 $\mathcal{L}\left[\widetilde{y}''\right] - 2\mathcal{L}\left[\widetilde{y}'\right] - 3\mathcal{L}\left[\widetilde{y}\right] = 0.$

Obţinem

$$\widetilde{y}(\widetilde{t}) = 2e^{-\widetilde{t}} - 5e^{3\widetilde{t}},$$

de unde găsim că

$$y(t) = (2e^{-t+1} - 5e^{3(t-1)})\sigma(t) = (2e^{-t+1} - 5e^{3t-3})\sigma(t).$$

h)

$$\mathcal{L}[y''] - 4\mathcal{L}[y] = \mathcal{L}[\cosh 2t \cdot \sigma(t)] \Rightarrow$$

$$(s^2 - 4)F(s) = \frac{s}{(s^2 - 4)} \Rightarrow$$

$$F(s) = \frac{s}{(s^2 - 4)^2} = \frac{s}{(s - 2)^2(s + 2)^2}.$$

$$F(s) = \frac{1}{8} \left(\frac{1}{(s - 2)^2} - \frac{1}{(s + 2)^2}\right) = \frac{1}{8} \frac{1}{(s - 2)^2} - \frac{1}{8} \frac{1}{(s + 2)^2}.$$

Folosind deplasarea (sau tabelul), obținem

$$y(t) = \left(\frac{1}{8}te^{2t} - \frac{1}{8}te^{-2t}\right)\sigma(t) = \left(\frac{t}{4}\sinh 2t\right)\sigma(t).$$

Exercițiul 1.12 Rezolvați ecuațiile diferențiale următoare cu transformata Laplace:

a)
$$y'' + y = 2t\sigma(t), y\left(\frac{\pi}{4}\right) = \frac{\pi}{2}, y'\left(\frac{\pi}{4}\right) = 2 - \sqrt{2};$$

b)
$$y'' + ky' - 2k^2y = 0$$
, $y(0) = 2$, $y'(0) = 2k$;

c)
$$2x'' + 3x' - 2x = 5e^{-2t}\sigma(t), x(0) = 2, x'(0) = 5;$$

d)
$$y'' - 3y' + 2y = (4t + e^{3t})\sigma(t), y(0) = 1, y'(0) = -1;$$

Solutie.

a)
$$y'' + y = 2t$$
, $y(\frac{\pi}{4}) = \frac{\pi}{2}$, $y'(\frac{\pi}{4}) = 2 - \sqrt{2}$;

$$\begin{split} \widetilde{t} &= t - \frac{\pi}{4}, t = \widetilde{t} + \frac{\pi}{4}, \, \mathrm{deci} \\ \widetilde{y}(\widetilde{t}) &= y(t) \to \\ y'(t) &= \widetilde{y}'(\widetilde{t}) \frac{d\widetilde{t}}{dt} = \widetilde{y}'(\widetilde{t}) \Rightarrow \\ y''(t) &= \widetilde{y}''(\widetilde{t}) \left(\frac{d\widetilde{t}}{dt} \right)^2 + \widetilde{y}'(\widetilde{t}) \frac{d^2\widetilde{t}}{dt^2} = \widetilde{y}''(\widetilde{t}). \end{split}$$

Astfel,

$$\widetilde{y}'' + \widetilde{y} = 2\widetilde{t} + \frac{\pi}{2}$$

şi

$$\widetilde{y}(0) = y\left(\frac{\pi}{4}\right) = \frac{\pi}{2}, \ \widetilde{y}'(0) = y'\left(\frac{\pi}{4}\right) = 2 - \sqrt{2};$$

Obţinem

$$\mathcal{L}\left[\widetilde{y}'\right](s) = sY(s) - \widetilde{y}(0) = sY(s) - \frac{\pi}{2}$$

$$\mathcal{L}\left[\widetilde{y}''\right](s) = \mathcal{L}\left[\left(\widetilde{y}'\right)'\right](s) = s\mathcal{L}\left[\widetilde{y}'\right](s) - \widetilde{y}'(0) = s^{2}Y(s) - \frac{\pi}{2}s - 2 + \sqrt{2}.$$

Dar

$$\mathcal{L}\left[\tilde{t}\right](s) = \frac{1}{s^2}$$

$$\mathcal{L}\left[\frac{\pi}{2}\right](s) = \frac{1}{s}\frac{\pi}{2}$$

$$s^2Y(s) - \frac{\pi}{2}s - 2 + \sqrt{2} + Y(s) = \frac{2}{s^2} + \frac{\pi}{2}\frac{1}{s} \Leftrightarrow$$

$$(s^2 + 1)Y(s) = \frac{\pi}{2}s + (2 - \sqrt{2}) + \frac{2}{s^2} + \frac{\pi}{2}\frac{1}{s} \Rightarrow$$

$$Y(s) = \frac{\pi}{2}\frac{s}{s^2 + 1} + (2 - \sqrt{2})\frac{1}{s^2 + 1} +$$

$$+2\left(\frac{1}{s^2} - \frac{1}{s^2 + 1}\right) + \frac{\pi}{2}\left(\frac{1}{s} - \frac{s}{s^2 + 1}\right) \Rightarrow$$

$$Y(s) = \frac{2}{s^2} - \frac{\sqrt{2}}{s^2 + 1} + \frac{\pi}{2}\frac{1}{s} \Rightarrow$$

$$\widetilde{y}(\widetilde{t}) = 2\widetilde{t} - \sqrt{2}\sin\widetilde{t} + \frac{\pi}{2} \Rightarrow$$

$$y(t) = \left[2t - \sqrt{2}\left(\frac{1}{\sqrt{2}}\sin t - \frac{1}{\sqrt{2}}\cos t\right)\right]\sigma(t)$$

de unde găsim că

$$y(t) = (2t - \sin t + \cos t)\sigma(t).$$

b)
$$y'' + ky' - 2k^2y = 0$$
, $y(0) = 2$, $y'(0) = 2k$;

$$\mathcal{L}[y'](s) = sY(s) - y(0) = sY(s) - 2$$

$$\mathcal{L}[y''](s) = \mathcal{L}[(y')'](s) = s\mathcal{L}[y'](s) - y'(0) = s^2Y(s) - 2s - 2k$$

Deci

$$s^{2}Y(s) - 2s - 2k + ksY(s) - 2k - 2k^{2}Y(s) = 0$$
$$\left(s^{2} + ks - 2k^{2}\right)Y(s) = 2s + 4k \Rightarrow$$
$$Y(s) = \frac{2s + 4k}{(s - k)(s + 2k)} = \frac{2}{s - k}$$

de unde găsim că

$$y(t) = 2e^{kt}\sigma(t).$$

c)
$$2x'' + 3x' - 2x = 5e^{-2t}$$
, $x(0) = 2$, $x'(0) = 5$;

$$(2s^{2} + 3s - 2) X(s) = \frac{5}{s+2} + 4s + 16 = \frac{4s^{2} + 24s + 37}{s+2} \Rightarrow X(s) = \frac{4}{s - \frac{1}{2}} - \frac{1}{(s+2)^{2}} - \frac{2}{s+2}$$

Deci

$$x(t) = (4e^{t/2} - te^{-2t} - 2e^{-2t}) \sigma(t).$$

d)
$$y'' - 3y' + 2y = (4t + e^{3t})\sigma(t), \ y(0) = 1, \ y'(0) = -1;$$

$$\mathcal{L}[y''](s) - 3\mathcal{L}[y'](s) + 2\mathcal{L}[y](s) = \frac{4}{s^2} + \frac{1}{s - 3}.$$

Avem

$$\mathcal{L}[y''](s) = s^{2}Y(s) - s + 1;$$

$$\mathcal{L}[y'](s) = sY(s) - 1;$$

$$\mathcal{L}[y](s) = Y(s);$$

Deci

$$s^{2}Y(s) - s + 1 - 3(sY(s) - 1) + Y(s) = \frac{4}{s^{2}} + \frac{1}{s - 3} \Leftrightarrow$$

$$(s^{2} - 3s + 2)Y(s) = \frac{s^{4} - 7s^{3} + 13s^{2} + 4s - 12}{s^{2}(s - 3)} \Rightarrow$$

$$Y(s) = \frac{s^{4} - 7s^{3} + 13s^{2} + 4s - 12}{s^{2}(s - 3)(s - 1)(s - 2)} \Rightarrow$$

$$Y(s) = \frac{a}{s - 1} + \frac{b}{s - 2} + \frac{c}{s - 3} + \frac{d}{s^{2}} + \frac{e}{s}$$

de unde obținem coeficienții:

$$a=-rac{1}{2};b=-4;c=rac{5}{9};d=2;e=1;$$

și găsim că

$$y(t) = \left(-\frac{1}{2}e^t - 4e^{2t} + \frac{5}{9}e^{3t} + 2t + 1\right)\sigma(t).$$

Exercițiul 1.13 Rezolvați ecuația următoare cu transformata Laplace:

$$y(t) + \int_0^t \sin(t - u)y(u)du =$$

$$= t \left[\sigma(t) - \sigma(t - 2)\right] + \int_0^t f(u)du - 2\sigma(t - 2) =$$

$$= t\sigma(t) - (t - 2)\sigma(t - 2) + \int_0^t f(u)du - 4\sigma(t - 2),$$

unde f(u) este original.

Soluție.

a) Aplicăm transformata Laplace cu liniaritatea și notăm:

$$\mathcal{L}\left[y(t)\right](s) = Y(s)$$

deci

$$Y(s) + \mathcal{L} \left[\sin t * y(t) \right](s) = \mathcal{L} \left[t \sigma(t) \right](s) - \mathcal{L} \left[(t-2)\sigma(t-2) \right](s) + \mathcal{L} \left[\int_0^t f(u) du \right](s) - 4\mathcal{L} \left[\sigma(t-2) \right](s).$$

Folosim proprietățile: produsul de convoluție, întârzierea și derivarea originalului, dar și faptul că:

$$\mathcal{L}\left[t^{n}\sigma(t)\right](s) = \frac{n!}{s^{n+1}}, n \in \mathbb{N}^{*},$$

$$\mathcal{L}\left[\sin t \cdot \sigma(t)\right](s) = \frac{1}{s^2 + 1},$$

cu care obţinem

$$Y(s) + \frac{Y(s)}{s^2 + 1} = \frac{1}{s^2} - \frac{e^{-2s}}{s^2} + \frac{1}{s}F(s) - \frac{4}{s}e^{-2s} \Leftrightarrow$$

$$\frac{s^2 + 2}{s^2 + 1}Y(s) = \frac{1}{s^2} - \frac{e^{-2s}}{s^2} - \frac{4}{s}e^{-2s} + \frac{1}{s}F(s) \Leftrightarrow$$

$$Y(s) = \frac{s^2 + 1}{s^2(s^2 + 2)} - \frac{s^2 + 1}{s^2(s^2 + 2)}e^{-2s} - 4\frac{s^2 + 1}{s(s^2 + 2)}e^{-2s} +$$

$$+F(s)\frac{s^2 + 1}{s(s^2 + 2)}$$

Ţinem cont că:

$$\frac{s^2+1}{s^2(s^2+2)} = \frac{1}{2} \left(\frac{1}{s^2} + \frac{1}{s^2+2} \right)$$

şi

$$\frac{s^2+1}{s(s^2+2)} = \frac{1}{2} \left(\frac{1}{s} + \frac{s}{s^2+2} \right).$$

Astfel

$$y(t) = \frac{1}{2} \cdot \mathcal{L}^{-1} \left[\frac{1}{s^2} + \frac{1}{s^2 + 2} \right] (t) \sigma(t) - \frac{1}{2} \cdot \mathcal{L}^{-1} \left[\frac{1}{s^2} + \frac{1}{s^2 + 2} \right] (t - 2) \sigma(t - 2) - \frac{1}{2} \cdot \mathcal{L}^{-1} \left[\frac{1}{s} + \frac{s}{s^2 + 2} \right] (t - 2) \sigma(t - 2) + \frac{1}{2} \cdot \mathcal{L}^{-1} \left[\mathcal{L} \left[f(t) \right] (s) \cdot \mathcal{L} \left[(1 + \cos \sqrt{2}t) \sigma(t) \right] (s) \right] (t) = 0$$

$$= \frac{1}{2} \left(t + \frac{1}{\sqrt{2}} \sin \sqrt{2}t \right) \sigma(t) -$$

$$-\frac{1}{2} \left(t - 2 + \frac{1}{\sqrt{2}} \sin \sqrt{2}(t - 2) \right) \sigma(t - 2) -$$

$$-2 \left(\sigma(t - 2) + \cos \sqrt{2}(t - 2)\sigma(t - 2) \right) +$$

$$+\frac{1}{2} \cdot \mathcal{L}^{-1} \left[\mathcal{L} \left[f(t) * (1 + \cos \sqrt{2}t)\sigma(t) \right] (s) \right] (t) \Rightarrow$$

$$y(t) = \frac{1}{2} \left(t + \frac{1}{\sqrt{2}} \sin \sqrt{2}t \right) \sigma(t) -$$

$$-\frac{1}{2} \left(t - 2 + \frac{1}{\sqrt{2}} \sin \sqrt{2}(t - 2) \right) \sigma(t - 2) -$$

$$-2 \left(\sigma(t - 2) + \cos \sqrt{2}(t - 2)\sigma(t - 2) \right) +$$

$$+\frac{1}{2} \int_{0}^{t} f(t - u)(1 + \cos \sqrt{2}u) du.$$

Exercițiul 1.14 Fie un circuit format dintr-o rezistență R, o inductanță L și o capacitate C. La momentul t, considerat momentul inițial t=0, circuitul este conectat la o sursă cu tensiunea electromotoare e(t). Atunci intensitatea curentului i(t) care trece prin circuit satisface ecuația:

$$Li'(t) + Ri(t) + \frac{1}{c} \int_0^t i(u)du = e(t), t > 0, i(0) = 0,$$

i(t) = 0 pentru t < 0 local integrabilă. Aflați i(t).

Soluţie.

Aplicăm transformata Laplace cu liniaritatea, derivarea originalului și integrarea originalului:

$$LsI(s) + RI(s) + \frac{1}{c} \frac{1}{s} I(s) = E(s) \Rightarrow$$
$$I(s) = \frac{s}{Ls^2 + Rs + \frac{1}{s}} E(s).$$

Avem

$$Ls^2 + Rs + \frac{1}{c} = 0 \Rightarrow s_{\pm} = \frac{-R}{2L} \pm \frac{\sqrt{d}}{2L},$$

unde $d := R^2 - 4\frac{L}{c}$.

$$\frac{s}{Ls^2 + Rs + \frac{1}{c}} = \frac{s}{L(s - s_+)(s - s_-)} = \frac{1}{L} \left(\frac{a}{s - s_+} + \frac{b}{s - s_-} \right) \Rightarrow$$

$$a = \frac{s_+}{s_+ - s_-} = \frac{s_+}{\frac{\sqrt{d}}{L}} = \frac{L}{\sqrt{d}} s_+$$

şi

$$b = -\frac{s_{-}}{s_{+} - s_{-}} = -\frac{s_{-}}{\frac{\sqrt{d}}{I}} = -\frac{L}{\sqrt{d}}s_{-}$$

rezultă

$$I(s) = E(s) \frac{1}{\sqrt{d}} \left(\frac{s_{+}}{s - s_{+}} - \frac{s_{-}}{s - s_{-}} \right) =$$

$$= \frac{1}{\sqrt{d}} \mathcal{L} \left[s_{+} e^{s_{+}t} - s_{-} e^{s_{-}t} \right] (s) \cdot \mathcal{L} \left[e(t) \right] (s) =$$

$$= \mathcal{L} \left[\frac{1}{\sqrt{d}} \left(s_{+} e^{s_{+}t} - s_{-} e^{s_{-}t} \right) * e(t) \right] (s)$$

şi aplicăm transformata Laplace inversă:

$$i(t) = \frac{1}{\sqrt{d}} \left(s_+ e^{s_+ t} - s_- e^{s_- t} \right) * e(t) \Rightarrow$$

$$i(t) = \frac{1}{\sqrt{d}} \int_0^t \left[s_+ e^{s_+(t-u)} - s_- e^{s_-(t-u)} \right] e(u) du,$$

unde $d := R^2 - 4\frac{L}{a}$.

Exercițiul 1.15 Să se rezolve ecuațiile:

a)
$$x''' + 2x'' + 2x' = \sigma(t)$$
, $x(0) = x'(0) = x''(0) = 0$;

b)
$$x''' - 2x'' - x' + 2x = 5\sin 2t \cdot \sigma(t),$$

 $x(0) = 1, x'(0) = 1, x''(0) = -1;$

c)
$$x''' + 2x' = \sigma(t-2) - \sigma(t-5),$$

 $x(0) = 0, x'(0) = -1, x''(0) = 2;$

d)
$$x(t) + 3 \int_0^t x(\tau) d\tau = t\sigma(t) - (t-2)\sigma(t-2);$$

e)
$$x(t) = t \cos 3t \cdot \sigma(t) + \int_0^t \sin 3(t - \tau)x(\tau)d\tau$$
;

Solutie.

Soluţie.
a)
$$x''' + 2x'' + 2x' = \sigma(t)$$
, $x(0) = x'(0) = x''(0) = 0$;

$$(s^3 + 2s^2 + 2s + 1) X(s) = \frac{1}{s} \Rightarrow$$

$$X(s) = \frac{1}{s} - \frac{1}{s+1} - \frac{1}{s^2 + s + 1} =$$

$$= \frac{1}{s} - \frac{1}{s+1} - \frac{\sqrt{3}}{2} \frac{\frac{2}{\sqrt{3}}}{\left(s + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}.$$

$$(1) \qquad \qquad (2) \qquad \qquad (3t) \qquad \qquad (3t)$$

$$x(t) = \left(1 - e^{-t} - \frac{2}{\sqrt{3}}e^{-\frac{t}{2}}\sin\frac{\sqrt{3}t}{2}\right)\sigma(t).$$

b)
$$x''' - 2x'' - x' + 2x = 5\sin 2t \cdot \sigma(t)$$
, $x(0) = 1$, $x'(0) = 1$, $x''(0) = -1$;

$$X(s) = \frac{s^2 - s - 2}{(s - 1)(s + 1)(s - 2)} + \frac{10}{(s - 1)(s + 1)(s - 2)(s^2 + 4)} =$$

$$= \frac{1}{3} \frac{1}{s + 1} + \frac{5}{12} \frac{1}{s - 2} + \frac{1}{4} \left(\frac{s}{s^2 + 4} + \frac{2}{s^2 + 4} \right) \Rightarrow$$

$$x(t) = \left(\frac{1}{3} e^{-t} + \frac{5}{12} e^{2t} + \frac{1}{4} \cos 2t + \frac{1}{4} \sin 2t \right) \sigma(t).$$

c)
$$x''' + 2x' = \sigma(t-2) - \sigma(t-5)$$
, $x(0) = 0$, $x'(0) = -1$, $x''(0) = 2$;

$$\mathcal{L}[x'](s) = sX(s);$$

$$\mathcal{L}[x''](s) = s\mathcal{L}[x'(t)](s) - x'(0) = s^2X(s) + 1;$$

$$\mathcal{L}[x'''](s) = \mathcal{L}[(x'')'(t)](s) = s\mathcal{L}[x''](s) - x''(0) = s^3X(s) + s - 2;$$

$$s^{3}X(s) + s - 2 + 2sX(s) = \frac{1}{s}e^{-2s} - \frac{1}{s}e^{-5s} \Rightarrow$$

$$\mathcal{L}\left[\sigma(t-2)\right](s) = e^{-2s}\mathcal{L}\left[1\right](s) = \frac{1}{s}e^{-2s};$$

$$\mathcal{L}\left[\sigma(t-5)\right](s) = e^{-5s}\mathcal{L}\left[1\right](s) = \frac{1}{s}e^{-5s};$$

$$X(s)(s^3 + 2s) = -(s - 2) + \frac{1}{s}e^{-2s} - \frac{1}{s}e^{-5s} \Rightarrow$$

$$X(s) = -\frac{s-2}{s(s^2+2)} + \frac{1}{s^2(s^2+2)}e^{-2s} - \frac{1}{s^2(s^2+2)}e^{-5s} =$$

$$X(s) = -\frac{1}{s^2 + 2} + \frac{2}{s(s^2 + 2)} + \frac{1}{2} \left(\frac{1}{s^2} - \frac{1}{s^2 + 2} \right) e^{-2s} - \frac{1}{2} \left(\frac{1}{s^2} - \frac{1}{s^2 + 2} \right) e^{-5s}$$

$$x(t) = -\mathcal{L}^{-1} \left[\frac{1}{s^2 + 2} \right] (t) + \mathcal{L}^{-1} \left[\frac{1}{s} \right] (t) - \mathcal{L}^{-1} \left[\frac{s}{s^2 + 2} \right] (t) +$$

$$+ \frac{1}{2} \mathcal{L}^{-1} \left[\left(\frac{1}{s^2} - \frac{1}{s^2 + 2} \right) e^{-2s} \right] (t) - \frac{1}{2} \mathcal{L}^{-1} \left[\left(\frac{1}{s^2} - \frac{1}{s^2 + 2} \right) e^{-5p} \right] (t)$$

Ținem cont de relațiile următoare:

$$\mathcal{L}\left[f(t-b)\sigma(t-b)\right](s) = e^{-sb}\mathcal{L}\left[f(t)\right](s), b > 0$$

din care obţinem

$$\mathcal{L}^{-1}\left[e^{-sb}\mathcal{L}\left[f(t)\right](s)\right](t) = f(t-b)\sigma(t-b)$$

sau, altfel scris

$$\mathcal{L}^{-1}[F(s)e^{-sb}](t) = \mathcal{L}^{-1}[F(s)](t-b)\sigma(t-b), b > 0.$$

Ştim că

$$\mathcal{L}^{-1} \left[\frac{1}{s^2} \right] (t) = t\sigma(t),$$

$$\mathcal{L}^{-1} \left[\frac{1}{s^2 + 2} \right] (t) = \frac{1}{\sqrt{2}} \sin \sqrt{2}t \cdot \sigma(t),$$

$$\mathcal{L}^{-1} \left[\left(\frac{1}{s^2} - \frac{1}{s^2 + 2} \right) e^{-2s} \right] (t) =$$

$$= \mathcal{L}^{-1} \left[\frac{1}{s^2} - \frac{1}{s^2 + 2} \right] (t - 2)\sigma(t - 2) =$$

$$= \left[t - 2 - \frac{1}{\sqrt{2}}\sin\sqrt{2}(t - 2)\right]\sigma(t - 2),$$

$$\mathcal{L}^{-1}\left[\left(\frac{1}{s^2} - \frac{1}{s^2 + 2}\right)e^{-5s}\right](t) =$$

$$= \mathcal{L}^{-1}\left[\frac{1}{s^2} - \frac{1}{s^2 + 2}\right](t - 5)\sigma(t - 5) =$$

$$= \left[t - 5 - \frac{1}{\sqrt{2}}\sin\sqrt{2}(t - 5)\right]\sigma(t - 5),$$

deci

$$x(t) = \left[1 - \frac{1}{\sqrt{2}}\sin\sqrt{2}t - \cos\sqrt{2}t\right]\sigma(t) +$$

$$+ \frac{1}{2}\left[t - 2 - \frac{1}{\sqrt{2}}\sin\sqrt{2}(t-2)\right]\sigma(t-2) -$$

$$- \frac{1}{2}\left[t - 5 - \frac{1}{\sqrt{2}}\sin\sqrt{2}(t-5)\right]\sigma(t-5).$$

$$d) x(t) + 3 \int_0^t x(\tau) d\tau = t\sigma(t) - (t-2)\sigma(t-2);$$
 Ştim că
$$\mathcal{L}[x(t)](s) = X(s).$$

$$\mathcal{L}\left[t\sigma(t)\right](s) = \frac{1}{s^2},$$

$$\mathcal{L}\left[\int_0^t x(\tau)d\tau\right](s) = \frac{1}{s}X(s),$$

$$\mathcal{L}[(t-2)\sigma(t-2)](s) = e^{-2s}\mathcal{L}[t](s) = \frac{1}{s^2}e^{-2s}$$

cu care găsim:

$$\left(1+\frac{3}{s}\right)X(s) = \frac{1}{s^2} - \frac{1}{s^2}e^{-2s} \Rightarrow$$

$$X(s) = \frac{1}{s(s+3)} - \frac{1}{s(s+3)}e^{-2s}.$$

Dar

$$\frac{1}{s(s+3)} = \frac{1}{3} \left(\frac{1}{s} - \frac{1}{s+3} \right),$$

adică

$$x(t) = \frac{1}{3}\mathcal{L}^{-1} \left[\frac{1}{s} - \frac{1}{s+3} \right] (t)\sigma(t) - \frac{1}{3}\mathcal{L}^{-1} \left[\frac{1}{s} - \frac{1}{s+3} \right] (t-2)\sigma(t-2).$$

Cu

$$\mathcal{L}^{-1} \left[\frac{1}{s} - \frac{1}{s+3} \right] (t) = (1 - e^{-3t}) \sigma(t)$$

vom avea

$$x(t) = \frac{1}{3}(1 - e^{-3t})\sigma(t) - \frac{1}{3}(t - 2 - e^{-3(t-2)})\sigma(t - 2).$$

e)
$$x(t) = t \cos 3t \cdot \sigma(t) + \int_0^t \sin 3(t - \tau)x(\tau)d\tau$$
;

$$\mathcal{L}\left[\int_0^t \sin 3(t-\tau)x(\tau)d\tau\right](s) =$$

$$=\mathcal{L}\left[x(t)*\sin 3t \cdot \sigma(t)\right](s) = \frac{3X(s)}{s^2+9} \Rightarrow$$

$$X(s) = -\left(\frac{s}{s^2 + 9}\right)' + \frac{3}{s^2 + 9}X(s) \Leftrightarrow$$

$$\frac{s^2 + 6}{s^2 + 9}X(s) = \frac{s^2 - 9}{(s^2 + 9)^2} \Rightarrow$$

$$X(s) = \frac{(s^2 - 9)(s^2 + 9)}{(s^2 + 6)(s^2 + 9)^2} = \frac{s^2 - 9}{(s^2 + 6)(s^2 + 9)} = \frac{6}{s^2 + 9} - \frac{5}{s^2 + 6} \Rightarrow$$

$$x(t) = \left(2\sin 3t - \frac{5}{\sqrt{6}}\sin \sqrt{6}t\right)\sigma(t).$$

Exercițiul 1.16 Să se rezolve sistemele următoare:

a)
$$\begin{cases} x'' + 2x' + x + y'' + y' + y = \sigma(t), \\ 2x' + 2x + y'' + 2y' = 2t\sigma(t), \end{cases}$$

$$x(0) = 0, \ x'(0) = 2, \ y(0) = 1, \ y'(0) = -2;$$
 b)
$$\begin{cases} x' = y - 7x. \end{cases}$$

$$\begin{cases} x' = y - 7x, \\ y' = -x - 5y, \end{cases}$$
$$x(0) = 2, y(0) = 1;$$

Soluție.

a)
$$\begin{cases} x'' + 2x' + x + y'' + y' + y = \sigma(t), \\ 2x' + 2x + y'' + 2y' = 2t\sigma(t), \end{cases}$$

$$x(0) = 0, \ x'(0) = 2, \ y(0) = 1, \ y'(0) = -2;$$

$$\text{Avem}$$

$$\mathcal{L}[x'] = sX(s),$$

$$\mathcal{L}[x''] = \mathcal{L}[(x')'] = s^2X(s) - 2,$$

$$\mathcal{L}[y'] = sY(s) - 1,$$

$$\mathcal{L}[y''] = \mathcal{L}[(y')'] = s(sY(s) - 1) + 2 = s^2Y(s) - s + 2,$$

$$\mathcal{L}[t] = \frac{1}{s^2},$$

$$\mathcal{L}[1] = \frac{1}{s}.$$

$$\begin{cases} s^2X(s) - 2 + 2sX(s) + X(s) + \\ + s^2Y(s) - s + 2 + pY(s) - 1 + Y(s) = \frac{1}{s}, \Rightarrow \\ 2pX(s) + 2X(s) + s^2Y(s) - s + 2 + 2sY(s) - 2 = \frac{2}{s^2}, \end{cases}$$

$$\begin{cases} (s+1)^2X(s) + (s^2 + s + 1)Y(s) = 1 + \frac{1}{s} + s = \frac{s^2 + s + 1}{s}, \\ 2(s+1)X(s) + s(s+2)Y(s) = \frac{2}{s^2} + s = \frac{s^3 + 2}{s^2}, \end{cases}$$

$$\triangle = \begin{vmatrix} (s+1)^2 & s^2 + s + 1 \\ 2(s+1) & s(s+2) \end{vmatrix} =$$

$$= (s+1) \left[s(s^2 + 3s + 2) - 2s^2 - 2s - 2 \right] = (s+1)(s-1)(s^2 + 2s + 2).$$

$$\triangle_x = \begin{vmatrix} \frac{s^2 + s + 1}{s^3 + 2} & s^2 + s + 1 \\ \frac{s^3 + 2}{s^2} & s(s+2) \end{vmatrix} =$$

$$= (s^2 + s + 1) \begin{vmatrix} \frac{1}{s^3 + 2} & 1 \\ \frac{s^3 + 2}{s^2} & s(s+2) \end{vmatrix} =$$

$$= (s^2 + s + 1) \left(s + 2 - s - \frac{2}{s^2} \right) = \frac{2}{s^2}(s+1)(s-1)(s^2 + s + 1).$$

$$\triangle_y = \begin{vmatrix} (s+1)^2 & \frac{s^2 + s + 1}{s^3 + 2} \\ 2(s+1) & \frac{s^3 + 2}{s^2} \end{vmatrix} =$$

$$= \frac{1}{s^2}(s+1)(s-1)(s^3 - 2s - 2).$$

$$X(s) = \frac{\triangle_x}{\triangle} = \frac{2(s+1)(s-1)(s^2 + s + 1)}{s^2(s+1)(s-1)(s^2 + 2s + 2)} =$$

$$= \frac{2s^2 + 2s + 2}{s^2(s^2 + 2s + 2)} = \frac{s^2}{s^2(s^2 + 2s + 2)} + \frac{s^2 + 2s + 2}{s^2(s^2 + 2s + 2)} \Rightarrow$$

$$X(s) = \frac{1}{s^2} + \frac{1}{(s+1)^2 + 1}.$$

$$Y(s) = \frac{\triangle_y}{\triangle} = \frac{s^3 - 2s - 2}{s^2(s^2 + 2s + 2)} =$$

$$= \frac{s^3 + s^2}{s^2(s^2 + 2s + 2)} - \frac{s^2 + 2s + 2}{s^2(s^2 + 2s + 2)} = -\frac{1}{s^2} + \frac{s + 1}{(s + 1)^2 + 1} \Rightarrow$$

$$Y(s) = -\frac{1}{s^2} + \frac{s + 1}{(s + 1)^2 + 1}.$$

Adică

$$x(t) = (t + e^{-t}\sin t)\sigma(t)$$

şi

$$y(t) = (-t + e^{-t}\cos t)\sigma(t).$$

b) Aplicăm transformata Laplace sistemului diferențial

$$\begin{cases} \mathcal{L}\left[x'\right] = \mathcal{L}\left[y\right] - 7\mathcal{L}\left[x\right], \\ \mathcal{L}\left[y'\right] = -\mathcal{L}\left[x\right] - 5\mathcal{L}\left[y\right], \end{cases}$$

Cu derivarea originalului avem:

$$\mathcal{L}[x'] = sX(s) - x(0) = sX(s) - 2$$

$$\mathcal{L}[y'] = sY(s) - y(0) = sY(s) - 1.$$

Transformata Laplace a sistemului este

$$\begin{cases} (s+7)X(s) - Y(s) = 2, \\ X(s) + (s+5)Y(s) = 1. \end{cases}$$

Cu regula lui Cramer avem:

$$\triangle = (s+6)^2, \triangle_x = 2s+11, \triangle_y = s+5.$$

$$X(s) = \frac{\triangle_x}{\triangle} = \frac{2s+11}{(s+6)^2} = \frac{2}{s+6} - \frac{1}{(s+6)^2}$$

Dar

$$Y(s) = \frac{\triangle_y}{\triangle} = \frac{p+5}{(s+6)^2} = \frac{1}{s+6} - \frac{1}{(s+6)^2}.$$

$$\frac{1}{p-\lambda} \stackrel{L^{-1}}{\longleftrightarrow} e^{\lambda t} \sigma(t)$$

$$\frac{1}{(p-\lambda)^2} \stackrel{L^{-1}}{\longleftrightarrow} t e^{\lambda t} \sigma(t).$$

În acest caz $\lambda = -6$, deci

$$\begin{cases} x(t) = (2e^{-6t} - te^{-6t})\sigma(t), \\ y(t) = (e^{-6t} - te^{-6t})\sigma(t). \end{cases}$$

Exercițiul 1.17 a) Dacă f este originalul Laplace și este de perioadă T atunci:

$$\mathcal{L}\left[f(t)\right](s) = \frac{\int_{0}^{T} f(t)e^{-st}dt}{1 - e^{-sT}}.$$

Să se exemplifice pentru

$$f(t) = \begin{cases} \sin t, & t \in [0, \pi] \\ 0, & t \in (\pi, 2\pi], \end{cases}$$

periodică de perioadă 2π pe $[0, +\infty)$.

$$= \sin t \frac{e^{-st}}{-s} \Big|_0^{\pi} - \int_0^{\pi} \cos t \frac{e^{-st}}{-s} dt =$$

$$= -\int_0^{\pi} \cos t \left(\frac{e^{-st}}{s^2} \right)' dt = -\cos t \frac{e^{-st}}{s^2} \Big|_0^{\pi} - \frac{1}{s^2} I =$$

$$= \frac{1}{s^2} \left(e^{-\pi s} + 1 \right) - \frac{1}{s^2} I \Rightarrow$$

$$\left(\frac{1}{s^2} + 1 \right) I = \frac{1}{s^2} \left(e^{-\pi s} + 1 \right) \Rightarrow$$

$$I = \frac{1}{1 + s^2} \left(e^{-\pi s} + 1 \right).$$

Deci

$$\mathcal{L}[f(t)](s) = \frac{1 + e^{-\pi s}}{(1 + s^2)(1 + e^{-\pi s})(1 - e^{-\pi s})} \Leftrightarrow \mathcal{L}[f(t)](s) = \frac{1}{(1 + s^2)(1 - e^{-\pi s})}.$$

b) Ecuație diferențială cu argument întârziat:

$$x''(t) - 2x'(t-1) = t\sigma(t),$$

$$x(0_+) = x'(0) = 0.$$

Folosind derivarea originalului avem:

$$\mathcal{L}[x''(t)](s) = s^2 X(s) - sX(0) - X'(0) = s^2 X(s).$$

Folosind întârzierea:

$$\mathcal{L}\left[x'(t-1)\right](s) = e^{-s}\mathcal{L}\left[x'(t)\right](s)$$

Folosind din nou derivarea originalului:

$$e^{-s}\mathcal{L}\left[x'(t)\right](s) = se^{-s}X(s).$$

Ecuația operațională:

$$s^{2}X(s) - 2se^{-s}X(s) = \frac{1}{s^{2}}$$

$$X(s)(s^{2} - 2se^{-s}) = \frac{1}{s^{2}}$$

$$X(s) = \frac{1}{s^{2}s^{2}\left(1 - \frac{2e^{-s}}{s}\right)} = \frac{1}{s^{4}} \cdot \frac{1}{1 - \frac{2e^{-s}}{s}}.$$
Pentru $\left|\frac{2e^{-s}}{s}\right| < 1$ aplicăm seria geometrică:
$$\frac{1}{1 - \frac{2e^{-s}}{s}} = 1 + \frac{2e^{-s}}{s} + 2^{2}\frac{e^{-2s}}{s^{2}} + \dots + 2^{n}\frac{e^{-ns}}{s^{n}} + \dots$$

$$X(s) = \frac{1}{s^{4}} + \frac{2}{s^{4}}e^{-s} + \frac{2^{2}}{s^{6}}e^{-2s} + \dots + \frac{2^{n}}{s^{n+4}}e^{-ns} + \dots$$

$$\mathcal{L}^{-1}\left[\frac{1}{s^{n+1}}\right](s) = \frac{t^{n}}{n!}\sigma(t), n \in \mathbb{N}.$$

Aplicăm transformata Laplace inversă - recuperarea originalului, folosind întârzierea:

$$x(t) = \frac{t^3}{3!}\sigma(t) + \frac{2}{4!}(t-1)^4\sigma(t-1) + \frac{2^2}{5!}(t-2)^5\sigma(t-2) + \dots + \frac{2^n}{(n+3)!}(t-n)^{n+3}\sigma(t-n) + \dots =$$

$$= \frac{t^3}{3!}\sigma(t) + \sum_{n\geq 1} \frac{2^n}{(n+3)!}(t-n)^{n+3}\sigma(t-n) =$$

$$= \frac{t^3}{3!}\sigma(t) + \sum_{n=1}^{[t]} \frac{2^n}{(n+3)!}(t-n)^{n+3} =$$

$$= \sum_{n=0}^{[t]} \frac{2^n}{(n+3)!}(t-n)^{n+3}.$$

c) Ecuație diferențială:

$$x'' + 2x' + x = \frac{1}{(t+1)e^t}\sigma(t),$$

$$x(0) = x'(0) = 0.$$

$$\mathcal{L}\left[x''(t)\right](s) = sX(s);$$

$$\mathcal{L}\left[x'(t)\right](s) = X(s).$$

$$\mathcal{L}\left[x''(t)\right](s) + 2\mathcal{L}\left[x'(t)\right](s) + \mathcal{L}\left[x(t)\right](s) =$$

$$= \mathcal{L}\left[\frac{1}{(t+1)e^t}\sigma(t)\right](s) \Rightarrow$$

$$+2sX(s) + X(s) = \mathcal{L}\left[\frac{1}{(t+1)e^t}\sigma(t)\right](s) \Rightarrow$$

$$(s+1)^2X(s) = \mathcal{L}\left[\frac{1}{(t+1)e^t}\sigma(t)\right](s) \Rightarrow$$

$$X(s) = \frac{1}{(s+1)^2}\mathcal{L}\left[\frac{1}{(t+1)e^t}\sigma(t)\right](s) =$$

$$= \mathcal{L}\left[te^{-t}\sigma(t)\right](s)\mathcal{L}\left[\frac{1}{(t+1)e^t}\sigma(t)\right](s) \Rightarrow$$

$$X(s) = \mathcal{L}\left[te^{-t}\sigma(t) * \frac{1}{(t+1)e^t}\sigma(t)\right](s) \Rightarrow$$

$$x(t) = te^{-t}\sigma(t) * \frac{1}{(t+1)e^t}\sigma(t) = \int_0^t \frac{\tau e^{-\tau}}{(t-\tau+1)e^{t-\tau}}d\tau =$$

$$= e^{-t}\int_0^t \frac{\tau}{t-\tau+1}d\tau = e^{-t}\int_0^t \left(-1 + \frac{t+1}{t-\tau+1}\right)d\tau =$$

$$= e^{-t} \left[-t - (t+1) \ln|t - \tau + 1||_0^t \right] =$$

$$= e^{-t} \left[-t + (t+1) \ln(t+1) \right] \sigma(t).$$

Deci

$$x(t) = e^{-t} [(t+1) \ln(t+1) - t] \sigma(t).$$

d) Ecuație diferențială:

$$x''(t-1) + 2x'(t-1) + x(t-1) = \cos t\sigma(t-1),$$

$$x(0) = x'(0) = 0.$$

Aplicăm derivarea originalului și întârzierea:

$$\mathcal{L}[x''(t-1)](s) = e^{-s}\mathcal{L}[x''](s) = s^{2}e^{-s}X(s);$$

$$\mathcal{L}[x'(t-1)](s) = e^{-s}\mathcal{L}[x'](s) = se^{-s}X(s);$$

$$\mathcal{L}[x(t-1)](s) = e^{-s}X(s).$$

Astfel,

$$(s^{2} + 2s + 1)e^{-s}X(s) = \mathcal{L}\left[\cos t\sigma(t - 1)\right](s),$$

$$\mathcal{L}\left[\cos t \cdot \sigma(t - 1)\right](s) = e^{-s}\mathcal{L}\left[\cos(t + 1)\sigma(t)\right](s) =$$

$$= e^{-s}\mathcal{L}\left[\cos t \cos 1 \cdot \sigma(t) - \sin t \sin 1 \cdot \sigma(t)\right](s) =$$

$$= e^{-s}\left(\cos 1\frac{s}{s^{2} + 1} - \sin 1\frac{1}{s^{2} + 1}\right) \Rightarrow$$

$$X(s) = \frac{1}{(s + 1)^{2}}\left(\cos 1\frac{s}{s^{2} + 1} - \sin 1\frac{1}{s^{2} + 1}\right) =$$

$$= \cos 1\frac{s}{(s + 1)^{2}(s^{2} + 1)} - \sin 1\frac{1}{(s + 1)^{2}(s^{2} + 1)}.$$
Dar

 $\frac{s}{(s+1)^2(s^2+1)} =$

$$=\frac{1}{2}\left[\frac{1}{s^2+1}-\frac{1}{(s+1)^2}\right] \overset{L^{-1}}{\longleftrightarrow} \frac{1}{2}\left(\sin t - te^{-t}\right)\sigma(t)$$

şi

$$\frac{-1}{(s+1)^2(s^2+1)} = \frac{1}{2} \left[\frac{1}{s^2+1} - \frac{1}{(s+1)^2} - \frac{1}{s+1} \right]$$

$$\stackrel{L^{-1}}{\longleftrightarrow} \frac{1}{2} \left(\cos t - t e^{-t} - e^{-t} \right) \sigma(t).$$

Obţinem:

$$x(t) =$$

$$= \left[\frac{1}{2} \left(\sin t - t e^{-t} \right) \cos 1 + \frac{1}{2} \left(\cos t - t e^{-t} - e^{-t} \right) \sin 1 \right] \sigma(t).$$

e) Ecuație diferențială cu argument întârziat:

$$x''(t) + 2x'(t-2) + x(t-4) = t\sigma(t),$$

$$x(0) = x'(0) = 0.$$

Aplicăm derivarea originalului și întârzierea:

$$\mathcal{L}[x''(t)](s) = s^2 X(s);$$

 $\mathcal{L}[x'(t-2)](s) = e^{-2s} s X(s);$

 $\mathcal{L}[x(t-4)](s) = e^{-4s} X(s).$

Astfel,

$$(s^{2} + 2se^{-2s} + e^{-4s})X(s) = \frac{1}{s^{2}}$$
$$X(s) = \frac{1}{s^{2}(s + e^{-2s})^{2}} = \frac{1}{s^{4}} \frac{1}{\left(1 + \frac{e^{-2s}}{s}\right)^{2}}.$$

Pentru $\left|\frac{e^{-2s}}{s}\right|<1$ aplicăm seria binomială:

$$\left(1 + \frac{e^{-2s}}{s}\right)^{-2} = 1 + \sum_{n=1}^{\infty} \frac{(-2)(-3)\cdots(-1-n)}{n!} \cdot \frac{e^{-2ns}}{s^n} =$$

$$= 1 + \sum_{n=1}^{\infty} (-1)^n \frac{(n+1)!}{n!} \cdot \frac{e^{-2ns}}{s^n} =$$

$$= 1 + \sum_{n=1}^{\infty} (-1)^n (n+1) \cdot \frac{e^{-2ns}}{s^n}.$$

$$X(s) = \frac{1}{s^4} + \sum_{n>1} (-1)^n (n+1) \cdot \frac{e^{-2ns}}{s^{n+4}}.$$

Aplicăm întârzierea:

$$x(t) = \frac{t^3}{3!}\sigma(t) + \sum_{n \ge 1} (-1)^n (n+1) \cdot \frac{(t-2n)^{n+3}}{(n+3)!}\sigma(t-2n) \Rightarrow$$

$$x(t) = \sum_{n=0}^{[t]} (-1)^n \frac{(n+1)}{(n+3)!} \cdot (t-2n)^{n+3}.$$

1.3 Exerciții propuse.

Exemplul 1.18 Calculați transformata Laplace pentru:

a)
$$f(t) = (t^2 - 2)^2 \sigma(t);$$

b)
$$f(t) = \cos^2 4t\sigma(t);$$

c)
$$f(t) = e^{-3t} \sin 2t\sigma(t);$$

d)
$$f(t) = t^2 \cos t \sigma(t);$$

e)
$$f(t) = \begin{cases} 1, & t \in (0,1) \\ 2-t, & t \in (1,2) \\ 0, & t > 2. \end{cases}$$
$$= \sigma(t) - \sigma(t-1) + (2-t)(\sigma(t-1) - \sigma(t-2)) =$$
$$= \sigma(t) - (t-1)\sigma(t-1) + (t-2)\sigma(t-2).$$

$$\mathcal{L}(f(t))(s) = F(s) = \frac{1}{s} - e^{-s} \frac{1}{s^2} + e^{-2s} \frac{1}{s^2}.$$

Exercițiul 1.19 Calculați transformatele Laplace pentru următoarele funcții:

(a)
$$f(t) = \frac{e^{bt} - e^{at}}{t} \sigma(t)$$
;

(b)
$$f(t) = \frac{2}{t}(\cos bt - \cos at)\sigma(t)$$
;

(c)
$$f(t) = \frac{e^{-2t}-1}{t}\sin 3t \cdot \sigma(t)$$
;

(d)
$$f(t) = \int_0^t (t - s) \sin s ds$$
.

Exercițiul 1.20 Folosind transformata Laplace calculați integralele improprii:

(a)
$$\int_0^\infty \frac{e^{-at}\sin bt}{t} dt;$$

(b)
$$\int_0^\infty \frac{\cos bt - \cos at}{t} dt;$$

(c)
$$\int_0^\infty \frac{\sin at - \sin bt}{t} dt$$
;

(d)
$$\int_0^\infty \frac{\sin at - \sin bt}{t^2} dt;$$

(e)
$$\int_0^\infty \frac{\sin^3 tx}{x^2} dx;$$

(f)
$$\int_0^\infty \frac{\sin^3 x}{x^2} dx.$$

Exercițiul 1.21 Folosind transformata Laplace rezolvați următoarele probleme Cauchy:

(a)
$$y'' + 4y = \sigma(t-1), y(0) = y'(0) = 0;$$

(b)
$$y'' - y = \cos(t - 1)\sigma(t - 1), y(0) = y'(0) = 0;$$

(c)
$$y'' + 9y = \sinh(t-1)\sigma(t-1)$$
, $y(0) = y'(0) = 0$;

(d)
$$y'' - 3y' + 2y = e^{-2(t-1)}\sigma(t-1), y(0) = y'(0) = 0;$$

(e)
$$y'' + 2y = \sigma(t-2) - \sigma(t-5)$$
, $y(0) = y'(0) = 0$:

(f)
$$y'' - 5y' + 6y = e^t \sigma(t), y(0) = -1, y'(0) = 1;$$

(g)
$$y'' - 2y' + 2y = t\sigma(t)$$
, $y(0) = -2$, $y'(0) = 0$;

(h)
$$y(t) = t \cos 3t \cdot \sigma(t) + \int_0^t (t-s)y(s)ds;$$

(i)
$$y(t) = t \sin 2t \cdot \sigma(t) + \int_0^t \cos 3(t-s)y(s)ds;$$

(j)
$$y(t) - \int_0^t \cosh 2(t-s)y(s)ds = (4-4t-8t^2)\sigma(t);$$

(k)
$$y(t) + 3 \int_0^t y(s)ds = t\sigma(t) - (t-2)\sigma(t-2);$$

(1)
$$y(t) - 2 \int_0^t y(s) ds = \frac{1}{9} (1 - \cos 3t) \sigma(t);$$

(m)
$$y'' + 3y' + 2y = e^{-3t}\sigma(t)$$
, $y(0) = -1$, $y'(0) = 2$.

Capitolul 2

Funcţii analitice. Condiţiile Cauchy-Riemann.

- 2.1 Numere complexe. Funcţii analitice (olomorfe).
- 2.1.1 Numere complexe.

$$z = a + ib = r(\cos\theta + i\sin\theta) = re^{i\theta},$$

$$(x_1, y_1)(x_2, y_2) = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1).$$

$$r = |z| = \sqrt{a^2 + b^2}; \ \theta = \arg z = \arctan\frac{b}{a} + k\pi.$$

$$z^n = r^n e^{in\theta}; \ \sqrt[n]{z} = \sqrt[n]{r}e^{i\frac{\theta + 2k\pi}{n}}, k \in \{0, 1, ..., n - 1\}.$$

$$D_r(z_0) = \{z \in \mathbb{C} | |z - z_0| < r\}.$$

Definiția 2.1 Mulțimea V se numește $vecinătate a lui <math>z_0$ dacă $\exists D_r(z_0) \subset V$.

Definiția 2.2 G se numește $mulțime deschisă dacă <math>\forall z_0 \in G$, $\exists D_r(z_0) \subset G$ (vecinătate pentru orice punct al ei).

Definiția 2.3 A se numește mulțime închisă dacă complementara CA = este mulțime deschisă.

Definiția 2.4 G se numește $mulțime \ convexă \ dacă \ \forall z_1, z_2 \in G, [z_1, z_2] \subset G$, unde

$$[z_1, z_2] = \{z \in \mathbb{C} | z = tz_1 + (1 - t)z_2, t \in [0, 1] \}.$$

Definiția 2.5 $D \in \mathbb{C}$ se numește domeniu dacă D este mulțime deschisă și convexă.

Definiția 2.6 D domeniu se numește simplu conex dacă $FrD = \partial D$ este formată dintr-o singură curbă închisă, simplă, fără autointersecții.

2.1.2 Funcții analitice (olomorfe).

Fie funcția

$$f: D \subset \mathbb{C} \to \mathbb{C}, \ f(z) = f(x+iy) = u(x,y) + iv(x,y),$$

unde $u, v : D \subset \mathbb{R}^2 \to \mathbb{R}$, Ref(z) = u(x, y), Im f(z) = v(x, y).

Definiția 2.7 Funcția $f:D\to\mathbb{C},\,z_0\in D$ se numește funcție derivabilă (monogenă) în z_0 dacă există

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$$

și este finită.

Definiția 2.8 Funcția f se numește funcție analitică (olomorfă) în z_0 dacă există V_δ vecinătate a lui z_0 astfel încât există f'(z), în orice $z \in V_\delta$.

Definiția 2.9 Funcția f se numește funcție analitică pe D dacă este analitică în orice punct din D (putem spune și derivabilă).

Teorema 2.10 (Cauchy-Riemann) Funcția $f: D \subseteq \mathbb{C} \to \mathbb{C}$, $z_0 \in D$, $z_0 = x_0 + iy_0$ este derivabilă în (x_0, y_0) dacă și numai dacă u, v sunt diferențiabile în (x_0, y_0) și sunt îndeplinite condițiile

$$\begin{cases} u_x(x_0, y_0) = v_y(x_0, y_0) \\ u_y(x_0, y_0) = -v_x(x_0, y_0). \end{cases}$$
 (2.1)

Relațiile (2.1) se numesc condițiile Cauchy-Riemann.

Teorema 2.11 (Generalizare Cauchy-Riemann)

- i) Funcția f(z) = u + iv analitică rezultă:
 - 1. u, v sunt diferențiabile pe $D \subseteq \mathbb{C}$ și

$$2. \begin{cases} u_x = v_y \\ u_y = -v_x. \end{cases}$$

ii) Există u_x , u_y , v_x , v_y continue și $\begin{cases} u_x = v_y \\ u_y = -v_x, \end{cases}$ atuncă funcția f(z) = u + iv este analitică.

Definiția 2.12 Funcția $g(x,y) \in C^1(D)$ admite conjugată armonică pe D dacă există $h(x,y) \in C^1(D)$ astfel încât

$$\begin{cases} g_x = h_y \\ g_y = -h_x. \end{cases}$$

Proprietatea 2.13 Dacă funcția f(z) = u + iv este analitică, atunci $u, v \in C^2(D)$ sunt armonice adică $\Delta u = \Delta v = 0$.

Proprietatea 2.14 Fie $D \subseteq \mathbb{C}$ domeniu simplu conex $(\forall \Gamma \subset D \text{ curbă închisă}, \triangle \text{ domeniul delimitat de } \Gamma \Rightarrow \triangle \subset D)$. Fie funcția $g \in C^2(D)$ armonică, atunci ea admite conjugată armonică unic determinată până la o constantă, determinată prin condițiile Cauchy-Riemann.

Definiția 2.15 Perechea (g,h) poartă numele de pereche de funcții conjugate armonic.

Teorema 2.16 O pereche (g,h) de funcții conjugate armonic determină o funcție analitică f = h+ih unic determinată până la o constantă.

Observația 2.17 Regulile de derivare pentru funcțiile analitice: sumă, produs, raport, compunere sunt ca în \mathbb{R} .

2.2 Funcții elementare complexe.

2.2.1 Funcția polinomială.

$$(z^n)' = nz^{n-1}, \forall \in \mathbb{N}^*.$$

Se aplică produsului $(z \cdot z \cdots z)$ regula de derivare de la produs. Polinomul

$$P(z) = a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n$$

cu coeficienți complecși este sumă de funcții analitice, deci este funcție analitică și

$$P'(z) = na_0 z^{n-1} + (n-1)a_1 z^{n-2} + \dots + a_{n-1}.$$

2.2.2 Funcţia exponenţială.

$$f(z) = e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x(\cos y + i\sin y) =$$
$$= e^x \cos y + ie^x \sin y,$$

unde

$$\operatorname{Re}^z = e^x \cos y = u(x, y)$$
 și $\operatorname{Im} e^z = e^x \sin y = v(x, y)$.

- 1. $f'(z) = u_x + iv_x = e^x \cos y + ie^x \sin y = e^x \cdot e^{iy} = e^{x+iy} = e^z;$
- 2. $(e^z)' = e^z, \forall z \in \mathbb{C};$
- 3. $|e^z| = |e^x \cdot e^{iy}| = e^x |\cos y + i \sin y| = e^x \sqrt{\cos^2 y + \sin^2 y} = e^x;$
- 4. $\arg e^z = y$;
- 5. $e^{z+2\pi i} = e^z \cdot e^{2\pi i} = e^z \cdot (\cos 2\pi + i \sin 2\pi) = e^z, \forall z \in \mathbb{C} \Leftrightarrow f(z) = e^z$ este funcție periodică de perioadă 2π ;
- 6. $e^{z_1+z_2} = e^{x_1+x_2+i(y_1+y_2)} = e^{x_1+x_2} \cdot e^{i(y_1+y_2)} =$ $= e^{x_1} \cdot e^{x_2} \left[\cos y_1 \cos y_2 - \sin y_1 \sin y_2 +$ $+i(\sin y_1 \cos y_2 + \sin y_2 \cos y_1)\right] =$ $= e^{x_1}(\cos y_1 + i \sin y_1) \cdot e^{x_2}(\cos y_2 + i \sin y_2) = e^{z_1} \cdot e^{z_2},$ $\forall z_1, z_2 \in \mathbb{C};$
- 7. funcțiile trigonometrice reale în funcție de e^{ix} și e^{-ix} sunt

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \ \sin x = \frac{e^{ix} - e^{-ix}}{2i}, x \in \mathbb{R}.$$

2.2.3 Funcția rațională.

Funcția

$$f(z) = \frac{P(z)}{Q(z)}$$

este raport de polinoame (care sunt funcții analitice), deci este funcție analitică și

$$f'(z) = \frac{P'(z)Q(z) - P(z)Q'(z)}{Q^{2}(z)},$$

cu z diferit de rădăcinile lui Q(z).

2.2.4 Funcția multivocă.

Definiția 2.18 Funcția multivocă este funcția care ia cel puțin două valori distincte pentru un singur z din domeniul de definiție.

Exemplu de funcție multivocă este funcția logaritm dintr-un număr complex. Fie $z\in\mathbb{C}^*$, definim

$$\operatorname{Ln} z = \{ \ln |z| + i(\arg z + 2k\pi) | k \in \mathbb{Z} \}.$$

Dacă îl fixăm pe $k \in \mathbb{Z}$ avem ramura uniformă sau determinată notată \ln_k și definită pe domeniul $D = \mathbb{C} \setminus \{z \in \mathbb{C} | \text{Re}z \leq 0, \text{Im}z = 0\}$ dată de

$$\ln_k z = \ln|z| + i(\arg z + 2k\pi).$$

Dacă avem k = 0, obținem ramura principală

$$\ln z = \ln|z| + i\arg z.$$

Pentru orice $k \in \mathbb{Z}$ avem $\ln_k z$ analitică: cu condițiile Cauchy-Riemann. Pentru k=0 avem

$$\ln z = \ln |z| + i \arg z.$$

$$z = x + iy \Rightarrow |z| = \sqrt{x^2 + y^2}, \arg z = \arctan \frac{y}{x}.$$

$$\operatorname{Re}(\ln z) = u(x, y) = \frac{1}{2} \ln(x^2 + y^2); v(x, y) = \arctan \frac{y}{x}.$$
Obtinem
$$u_x = \frac{x}{x^2 + y^2}; u_y = \frac{y}{x^2 + y^2};$$

$$v_x = \frac{-\frac{y}{x^2}}{1 + \frac{x^2}{y^2}} = \frac{-y}{x^2 + y^2}; v_y = \frac{\frac{1}{x}}{1 + \frac{x^2}{y^2}}.$$

$$f'(z) = (\ln z)' = u_x + iv_x = \frac{x - iy}{(x + iy)(x - iy)} = \frac{1}{z}.$$

$$\operatorname{Ln} z = \{\ln z + i2k\pi | k \in \mathbb{Z} \}.$$

2.2.5 Funcția putere complexă (aplicație multivocă).

$$f(z) = z^{\alpha} = e^{\alpha \operatorname{Ln} z} = \{e^{\alpha [\ln|z| + i(\arg z + 2k\pi)]} | k \in \mathbb{Z}.\}$$

$$\alpha \in \mathbb{C}^* \setminus \mathbb{Z}.$$

$$f_k(z) = e^{\alpha [\ln|z| + i(\arg z + 2k\pi)]}, k \in \mathbb{Z}.$$

$$f'_k(z) = \frac{\alpha}{z} e^{\alpha [\ln|z| + i(\arg z + 2k\pi)]}, z \in \mathbb{C} \setminus \{z | \operatorname{Re} z \le 0, \operatorname{Im} z = 0\}.$$

$$f_k(z) = e^{i\alpha 2k\pi} \cdot e^{[\ln|z| + i\arg z]} = e^{i\alpha 2k\pi} \cdot e^{\alpha \ln z} \Rightarrow$$

$$f'_k(z) = e^{i\alpha 2k\pi} \cdot \left(e^{\alpha \ln z}\right)' = \frac{\alpha}{z} e^{i\alpha 2k\pi} \cdot e^{\alpha [\ln|z| + i\arg z]} =$$

$$= \frac{\alpha}{z} e^{\alpha [\ln|z| + i(\arg z + 2k\pi)]} = \frac{\alpha}{z} z^{\alpha} = \alpha z^{\alpha - 1}.$$

 $f_k(z) = z^{\frac{1}{n}} = \sqrt[n]{z} = \sqrt[n]{|z|} \cdot e^{i\frac{\arg z + 2k\pi}{n}}, k \in \{0, 1, ..., n-1\}.$

Pentru $\alpha = \frac{1}{n}, n \in \mathbb{N}^*$ avem ramura uniformă

Funcția

$$f_k(z) = \sqrt[n]{z} = \{\sqrt[n]{|z|} \cdot e^{i\frac{\arg z + 2k\pi}{n}} | k \in \{0, 1, ..., n-1\} \}$$

are n ramuri (determinări).

2.2.6 Funcţiile trigonometrice complexe (circulare).

- 1. $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} e^{-iz}}{2i}$, $x \in \mathbb{R}$, $z \in \mathbb{C} \Rightarrow e^{iz} = \cos z + i \sin z$, $z \in \mathbb{C}$
- 2. $(\cos z)' = i\frac{e^{iz} e^{-iz}}{2} = -\sin z; (\sin z)' = \cos z;$
- 3. Sunt periodice, de perioadă $T = 2k\pi$, $k \in \mathbb{Z}$, deoarece e^{iz} este periodică de perioadă $2k\pi$;
- 4. $e^{i(z_1 \pm z_2)} = \cos(z_1 \pm z_2) + i\sin(z_1 \pm z_2) = e^{iz_1} \cdot e^{\pm iz_2} =$ = $(\cos z_1 + i\sin z_1)(\cos z_2 \pm i\sin z_2) \Rightarrow$

$$\begin{cases}
\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2, \\
\sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \sin z_2 \cos z_1, \\
\sin ix = \frac{e^{-x} - e^x}{2i} = i \sinh x, \\
\cos ix = \frac{e^x + e^{-x}}{2} = \cosh x, \\
\cosh^2 y - \sinh^2 y = 1, \\
\cosh^2 y + \sinh^2 y = \cosh 2y.
\end{cases}$$

- 5. $\cos z = \cos(x + iy) = \cos x \cos iy \sin x \sin iy =$ = $\cos x \cosh y - i \sin x \sinh y$;
- 6. $\sin z = \sin(x + iy) = \sin x \cosh y + i \cos x \sinh y$;

7.
$$|\cos z| = \sqrt{\cos^2 x \cosh^2 y + \sin^2 x \sinh^2 y} = = \frac{\cosh^2 y = \sinh^2 y + 1}{2} = =$$

$$= \sqrt{\cos^2 x + \sinh^2 y}. \text{ Cu relaţiile}$$

$$\begin{cases} \cos^2 x = \frac{1 + \cos 2x}{2}, \\ \sinh^2 y = \frac{\cosh 2y - 1}{2}, \end{cases}$$

obţinem

- 8. $|\cos z|^2 = \frac{1}{2}(\cos 2x + \cosh 2y) \xrightarrow{y \to \infty} +\infty$. Deci $\cos z$ pentru $y \to \infty$ este nemărginită.
- 10. Zerourile pentru $\sin z$ şi $\cos z$:

$$\begin{cases} \sin z = 0 \Leftrightarrow e^{2iz} = 1 \\ \Rightarrow 2iz_k \in \text{Ln}1 = \{i2k\pi | k \in \mathbb{Z}\} \Rightarrow z_k = k\pi, \\ \cos z = 0 \Leftrightarrow e^{2iz} = -1 \\ \Rightarrow 2iz_k \in \text{Ln}(-1) = \{i(\pi + 2k\pi) | k \in \mathbb{Z}\} \Rightarrow z_k = \frac{\pi}{2} + k\pi. \end{cases}$$

2.2.7 Funcțiile hiperbolice complexe.

- 1. $\sinh z = \frac{e^z e^{-z}}{2}$, $\cosh z = \frac{e^z + e^{-z}}{2}$, $z \in \mathbb{C} \Rightarrow e^{-z} = \cosh z \sinh z$, $e^z = \cosh z + \sinh z$;
- 2. $(\sinh z)' = \cosh z; (\cosh z)' = \sinh z;$
- 3. $e^{z+2\pi i} = e^z \Rightarrow \sinh(z+2\pi i) = \sinh z$, $\cosh(z+2\pi i) = \cosh z$, $\forall z \in \mathbb{C}$ $T = 2\pi i$ perioada pricipală pentru sinh, cosh;

4.
$$e^{z_1+z_2} = \cosh(z_1+z_2) + \sinh(z_1+z_2) = e^{z_1} \cdot e^{z_2} =$$
 $= (\cosh z_1 + \sinh z_1)(\cosh z_1 + \sinh z_2)$

$$\begin{cases}
\sin iz = \frac{e^{-z} - e^z}{2} = i \sinh z, \\
\cos iz = \frac{e^z + e^{-z}}{2} = \cosh z, \\
\cosh(z_1+z_2) = \cos i(z_1+z_2) = \\
= \cos iz_1 \cos iz_2 - \sin iz_1 \sin iz_2 = \\
= \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2, \\
\cosh(z_1-z_2) = \cosh z_1 \cosh z_2 - \sinh z_1 \sinh z_2, \\
\sinh(z_1 \pm z_2) = \sinh z_1 \cosh z_2 \pm \sinh z_2 \cosh z_1, \\
\sinh 2z = 2 \sinh z \cosh z, \\
\cosh 2z = \cosh^2 z + \sinh^2 z.
\end{cases}$$

- 5. $\cosh z = \cosh(x + iy) = \cosh x \cosh iy + \sinh x \sinh iy =$ $= \cosh x \cos y + i \sinh x \sin y;$
- 6. $\sinh z = \sinh(x + iy) = \sinh x \cosh y + \cosh x \sinh iy = \sinh x \cos y + i \cosh x \sin y;$

- 9. Zerourile pentru $\sinh z$ şi $\cosh z$:

$$\begin{cases} \sinh z = 0 \Leftrightarrow e^{2z} = 1 \\ \Rightarrow 2z_k \in \text{Ln1} = \{2k\pi i | k \in \mathbb{Z}\} \Rightarrow z_k = k\pi i, \\ \cosh z = 0 \Leftrightarrow e^{2z} = -1 \\ \Rightarrow 2z_k \in \text{Ln}(-1) = \{(\pi + 2k\pi)i | k \in \mathbb{Z}\} \Rightarrow z_k = (\frac{\pi}{2} + k\pi)i. \end{cases}$$

- 1. $\sinh z = \frac{e^z e^{-z}}{2}$, $\cosh z = \frac{e^z + e^{-z}}{2}$, $z \in \mathbb{C} \Rightarrow e^{-z} = \cosh z \sinh z$, $e^z = \cosh z + \sinh z$;
- 2. $(\sinh z)' = \cosh z; (\cosh z)' = \sinh z;$
- 3. $e^{z+2\pi i} = e^z \Rightarrow \sinh(z+2\pi i) = \sinh z$, $\cosh(z+2\pi i) = \cosh z$, $\forall z \in \mathbb{C}$ $T = 2\pi i$ perioada pricipală pentru sinh, cosh;
- 4. $e^{z_1+z_2} = \cosh(z_1+z_2) + \sinh(z_1+z_2) = e^{z_1} \cdot e^{z_2} = (\cosh z_1 + \sinh z_1)(\cosh z_1 + \sinh z_2)$

$$\begin{cases} \sin iz = \frac{e^{-z} - e^z}{2i} = i \sinh z, \\ \cos iz = \frac{e^z + e^{-z}}{2} = \cosh z, \\ \cosh(z_1 + z_2) = \cos i(z_1 + z_2) = \\ = \cos iz_1 \cos iz_2 - \sin iz_1 \sin iz_2 = \\ = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2, \\ \cosh(z_1 - z_2) = \cosh z_1 \cosh z_2 - \sinh z_1 \sinh z_2, \\ \sinh(z_1 \pm z_2) = \sinh z_1 \cosh z_2 \pm \sinh z_2 \cosh z_1, \\ \sinh 2z = 2 \sinh z \cosh z, \\ \cosh 2z = \cosh^2 z + \sinh^2 z. \end{cases}$$

- 5. $\cosh z = \cosh(x + iy) = \cosh x \cosh iy + \sinh x \sinh iy =$ $= \cosh x \cos y + i \sinh x \sin y;$
- 6. $\sinh z = \sinh(x + iy) = \sinh x \cosh y + \cosh x \sinh iy = \sinh x \cos y + i \cosh x \sin y;$

Tabela 2.1: Formule. $e^{iz} = \cos z + i \sin z, z \in \mathbb{C}; \qquad e^z = \cosh z + \sinh z;$ $(\cos z)' = -\sin z;$ $(\cosh z)' = \sinh z;$ $T=2k\pi$: $T=2k\pi i$: $e^{i(z_1+z_2)} =$ $e^{z_1+z_2} =$ $=e^{iz_1}\cdot e^{iz_2}$: $=e^{z_1}\cdot e^{z_2}$: $\cos(z_1 \pm z_2) =$ $\cosh(z_1 \pm z_2) =$ $= \cosh z_1 \cosh z_2 \pm \sinh z_1 \sinh z_2;$ $=\cos z_1\cos z_2\mp\sin z_1\sin z_2;$ $\sin(z_1 \pm z_2) =$ $\sinh(z_1 \pm z_2) =$ $= \sin z_1 \cos z_2 \pm \sin z_2 \cos z_1;$ $= \sinh z_1 \cosh z_2 \pm \sinh z_2 \cosh z_1;$ $\cosh z =$ $\cos z =$ $=\cos x \cosh y - i \sin x \sinh y;$ $= \cosh x \cos y + i \sinh x \sin y;$ $\sin z =$ $\sinh z =$ $= \sin x \cosh y + i \cos x \sinh y;$ $= \sinh x \cos y + i \cosh x \sin y;$ $|\cos z| =$ $|\cosh z| =$ $= \sqrt{\frac{1}{2}(\cosh 2x + \cos 2y)};$ $=\sqrt{\cos^2 x + \sinh^2 y}$ $|\sinh z| =$ $|\sin z| =$ $= \sqrt{\frac{1}{2}(\cosh 2y - \cos 2x)};$ $=\frac{1}{2}(\sinh 2x - \cos 2y);$ Zerourile: Zerourile: $z_k = k\pi i, z_k = \left(\frac{\pi}{2} + k\pi\right)i;$ $z_k = k\pi, z_k = \frac{\pi}{2} + k\pi;$ $\sin 2z = 2\sin z\cos z;$ $\sinh 2z = 2 \sinh z \cosh z;$ $\cosh 2z = \cosh^2 z + \sinh^2 z;$ $\cos 2z = \cos^2 z - \sin^2 z$: Domeniul pentru $\tanh z$: Domeniul pentru $\tan z$: $\mathbb{C}\setminus\{\frac{\pi}{2}+k\pi|k\in\mathbb{Z}\};$ $\mathbb{C}\backslash\{\left(\frac{\pi}{2}+k\pi\right)i|k\in\mathbb{Z}\};$ $\coth z: \mathbb{C}\backslash\{k\pi i|k\in\mathbb{Z}\}\to\mathbb{C};$ $\cot z: \mathbb{C}\backslash\{k\pi|k\in\mathbb{Z}\}\to\mathbb{C};$ $\tan z = \frac{\sin z}{\cos z};$ $\cot z = \frac{\cos z}{\sin z};$ $(\tan z)' = \frac{1}{\cos^2 z};$ $(\cot z)' = \frac{-1}{\sin^2 z}.$ $\tanh = \frac{\sinh z}{\cosh z};$ $\coth = \frac{\cosh z}{\cosh z};$ (tagain z) $(\tanh z)' = \frac{1}{\cosh^2 z};$ $(\coth z)' = \frac{1}{\sinh^2 z}.$

Deci sin z pentru $y \to \infty$ este nemărginită. Pentru y suficient de mare avem $|\sin z|^2 \simeq \frac{e^{2y}}{4}$.

9. Zerourile pentru $\sinh z$ şi $\cosh z$:

$$\begin{cases} \sinh z = 0 \Leftrightarrow e^{2z} = 1 \\ \Rightarrow 2z_k \in \text{Ln1} = \{2k\pi i | k \in \mathbb{Z}\} \Rightarrow z_k = k\pi i, \\ \cosh z = 0 \Leftrightarrow e^{2z} = -1 \\ \Rightarrow 2z_k \in \text{Ln}(-1) = \{(\pi + 2k\pi)i | k \in \mathbb{Z}\} \Rightarrow z_k = \left(\frac{\pi}{2} + k\pi\right)i. \end{cases}$$

2.3 Exerciții rezolvate.

Exercițiul 2.19 Aflați funcția analitică f = u + iv dacă

$$u(x,y) = e^{x^2 - y^2} \cos 2xy.$$

Soluţie. Arătăm că $\Delta u = u_{xx} + u_{yy} = 0$.

$$u_x = 2xe^{x^2 - y^2}\cos 2xy - 2ye^{x^2 - y^2}\sin 2xy;$$

$$u_y = -2ye^{x^2 - y^2}\cos 2xy - 2xe^{x^2 - y^2}\sin 2xy;$$

$$u_{xx} = (4x^2 + 2)e^{x^2 - y^2}\cos 2xy - 8xye^{x^2 - y^2}\sin 2xy - 4y^2e^{x^2 - y^2}\cos 2xy =$$

$$= (4x^2 - 4y^2 + 2)e^{x^2 - y^2}\cos 2xy - 8xye^{x^2 - y^2}\sin 2xy.$$

$$u_{yy} = (-4x^2 + 4y^2 - 2)e^{x^2 - y^2}\cos 2xy + 8xye^{x^2 - y^2}\sin 2xy.$$

Cum $\triangle u = 0 \Rightarrow u$ este armonică, rezultă că există v conjugată armonică a lui u, adică:

$$\begin{cases} u_x = v_y \\ u_y = -v_x. \end{cases}$$

Deci

$$v_x = -u_y = 2ye^{x^2 - y^2}\cos 2xy + 2xe^{x^2 - y^2}\sin 2xy$$

și integrăm în raport cu x:

$$v(x,y) = \int v_x dx =$$

$$= \int 2y e^{x^2 - y^2} \cos 2xy dx + \int 2x e^{x^2 - y^2} \sin 2xy dx =$$

$$= \int e^{x^2 - y^2} (\sin 2xy)_x dx + \int 2x e^{x^2 - y^2} \sin 2xy dx \stackrel{\text{int.părți}}{=}$$

$$= e^{x^2 - y^2} \sin 2xy dx - \int 2x e^{x^2 - y^2} \sin 2xy dx +$$

$$+ \int 2x e^{x^2 - y^2} \sin 2xy dx + K(y) =$$

$$= e^{x^2 - y^2} \sin 2xy dx + K(y).$$

$$v_y = u_x \Leftrightarrow (e^{x^2 - y^2} \sin 2xy)_y + K'(y) =$$

$$= 2x e^{x^2 - y^2} \cos 2xy - 2y e^{x^2 - y^2} \sin 2xy$$

$$\Leftrightarrow -2y e^{x^2 - y^2} \sin 2xy + 2x e^{x^2 - y^2} \cos 2xy + K'(y) =$$

$$= 2x e^{x^2 - y^2} \cos 2xy - 2y e^{x^2 - y^2} \sin 2xy \Leftrightarrow$$

$$K'(y) = 0 \Rightarrow K(y) = k.$$

Deci

$$v(x,y) = e^{x^2 - y^2} \sin 2xy + k,$$

de unde obținem funcția f:

$$f(x,y) = u(x,y) + iv(x,y) =$$

$$= e^{x^2 - y^2} \cos 2xy + ie^{x^2 - y^2} \sin 2xy + ik =$$

$$= e^{x^2 - y^2} (\cos 2xy + i\sin 2xy) + ik = e^{x^2 - y^2} e^{i2xy} + ik =$$

$$= e^{x^2 - y^2 + i2xy} + ik = e^{(x+iy)^2} + ik \stackrel{z=x+iy}{=} e^{z^2} + ik.$$

Exercițiul 2.20 Aflați funcția analitică f = u + iv dacă

$$v(x,y) = 3\cosh x \sin y + \cos x \sinh y.$$

Soluţie. Avem:

$$v_x = 3 \sinh x \sin y - \sin x \sinh y;$$

$$v_y = 3 \cosh x \cos y + \cos x \cosh y;$$

$$v_{xx} = 3 \cosh x \sin y - \cos x \sinh y;$$

$$v_{yy} = -3 \cosh x \sin y + \cos x \sinh y;$$

Cum $\triangle v = v_{xx} + v_{yy} = 0 \Rightarrow v$ este armonică, rezultă că există u conjugată armonică a lui v, adică:

$$\begin{cases} u_x = v_y \\ u_y = -v_x. \end{cases}$$

Deci

$$u_x = 3\cosh x \cos y + \cos x \cosh y$$

și integrăm în raport cu x:

$$u(x,y) = \int u_x dx = 3\cos y \int \cosh x dx + \cosh y \int \cos x dx =$$

$$= 3\sinh x \cos y + \sin x \cosh y + K(y) \Rightarrow$$

$$u_y = -3\sinh x \sin y + \sin x \sinh y + K'(y) =$$

$$= -v_x = -3\sinh x \sin y + \sin x \sinh y \Rightarrow$$
$$K'(y) = 0 \Rightarrow K(y) = k.$$

Deci

$$u(x,y) = 3\sinh x \cos y + \sin x \cosh y + k,$$

şi

$$v(x, y) = 3\cosh x \sin y + \cos x \sinh y,$$

de unde obţinem funcţia f:

$$f(x,y) = u(x,y) + iv(x,y) =$$

 $= 3(\sinh x \cos y + i \cosh x \sin y) + (\sin x \cosh y + i \cos x \sinh y) + k =$ $= 3 \sinh z + \sin z + k.$

Exercițiul 2.21 Aflați funcția analitică f = u + iv dacă

$$u(x,y) = 2\sinh x \cos y + 3\sin x \cosh y.$$

Soluție. Avem:

$$u_x = 2 \cosh x \cos y + 3 \cos x \cosh y;$$

$$u_y = -2 \sinh x \sin y + 3 \sin x \sinh y;$$

$$u_{xx} = 2 \sinh x \cos y - 3 \sin x \cosh y;$$

$$u_{yy} = -2 \sinh x \cos y + 3 \sin x \cosh y;$$

Cum $\triangle u = u_{xx} + u_{yy} = 0 \Rightarrow u$ este armonică, rezultă că există v conjugată armonică a lui u, adică:

$$\begin{cases} u_x = v_y \\ u_y = -v_x. \end{cases}$$

Deci

$$v_y = 2\cosh x \cos y + 3\cos x \cosh y$$

și integrăm în raport cu y:

$$v(x,y) = \int v_y dy = 2 \cosh x \int \cos y dy + 3 \cos x \int \cosh y dy =$$
$$= 2 \cosh x \sin y + 3 \cos x \sinh y + K(x).$$

$$v_x = 2\sinh x \sin y - 3\sin x \sinh y + K'(x),$$

Dar

$$K'(y) = 0 \Rightarrow K(y) = k \Rightarrow$$

$$v_x = 2\sinh x \sin y - 3\sin x \sinh y + k$$

Deci

$$v(x,y) = 2\cosh x \sin y + 3\cos x \sinh y + k$$

şi

$$u(x,y) = 2\sinh x \cos y + 3\sin x \cosh y,$$

de unde obținem funcția f:

$$f(x,y) = u(x,y) + iv(x,y) =$$

 $= 2(\sinh x \cos y + i \cosh x \sin y) + 3(\sin x \cosh y + i \cos x \sinh y) + ik =$ $= 2 \sinh z + 3 \sin z + ik.$

Exercițiul 2.22 Să se găsească funcția f=u+iv analitică dacă se cunoaște

a)
$$u(x,y) = \frac{1-x^2-y^2}{(1+x)^2+y^2}$$
;

b)
$$v(x, y) = e^{-y} \sin x$$
;

c)
$$u(x,y) = \cosh x \cos y$$
.

Solutie.

a) Avem:

$$u_x = \frac{-2x[(1+x)^2 + y^2] - 2(1+x)(1-x^2 - y^2)}{[(1+x)^2 + y^2]^2} =$$

$$= \frac{-2x(1+x)^2 - 2xy^2 - 2(1-x^2 - y^2 + x - x^3 - xy^2)}{[(1+x)^2 + y^2]^2} =$$

$$= \frac{-2x(1+2x+x^2) - 2xy^2 - 2 + 2x^2 + 2y^2 - 2x + 2x^3 + 2xy^2)}{[(1+x)^2 + y^2]^2} =$$

$$= \frac{-2x^2 - 4x - 2 + 2y^2}{[(1+x)^2 + y^2]^2} = -2\frac{(1+x)^2 - y^2}{[(1+x)^2 + y^2]^2}.$$

$$u_y = \frac{-2y(1+x)^2 - 2y^3 - 2y(1-x^2 - y^2)}{[(1+x)^2 + y^2]^2} =$$

$$= \frac{-2y - 4xy - 2yx^2 - 2y^3 - 2y + x^2y + 3y^3}{[(1+x)^2 + y^2]^2} =$$

$$= -4\frac{y(x+1)}{[(1+x)^2 + y^2]^2}.$$

La fel se calculează u_{xx} , $u_{yy} \Rightarrow \triangle u = u_{xx} + u_{yy} = 0 \Rightarrow v$ este armonică, rezultă că există v conjugată armonică a lui u, adică:

$$\begin{cases} u_x = v_y \\ u_y = -v_x. \end{cases}$$

Folosim o altă metodă

$$f'(z) = u_x + iv_x = u_x - iu_y = -2\frac{(1+x)^2 - y^2 - 2iy(x+1)}{[(1+x)^2 + y^2]^2} =$$

$$= -2\frac{(x+1-iy)^2}{(x+1-iy)^2(x+1+iy)^2} = \frac{-2}{(x+iy+1)^2} \stackrel{z=x+iy}{=} \frac{-2}{(z+1)^2}.$$

Integrăm, ținând cont că în complex avem aceleași primitive ca în real, și obținem

$$f(z) = -2 \int \frac{dz}{(z+1)^2} = \frac{2}{(z+1)} + C.$$

b) Ştim că: $v(x,y) = e^{-y} \sin x$. Atunci

$$v_x = e^{-y}\cos x \Rightarrow v_{xx} = -e^{-y}\sin x$$

şi

$$v_y = -e^{-y}\sin x \Rightarrow v_{yy} = e^{-y}\sin x$$

deci $\triangle v = v_{xx} + v_{yy} = 0 \Rightarrow v$ este armonică, rezultă că există u conjugată armonică a lui v, adică:

$$\begin{cases} u_x = v_y = -e^{-y}\sin x \\ u_y = -v_x = -e^{-y}\cos x. \end{cases}$$

Integrăm în raport cu x:

$$u(x,y) = -e^{-y} \int \sin x dx = e^{-y} \cos x + K(y) \Rightarrow$$

$$u_y = -e^{-y} \cos x + K'(y) = -v_x = -e^{-y} \cos x \Rightarrow$$

$$K'(y) = 0 \Rightarrow K(y) = k \Rightarrow u(x,y) = e^{-y} \cos x + k \Rightarrow$$

$$f(z) = u + iv = e^{-y} (\cos x + i \sin x) + k = e^{-y} e^{ix} + k =$$

$$= e^{ix + i^2 y} + k = e^{i(x + iy)} + k \Rightarrow$$

$$f(z) = e^{iz} + k.$$

c) Avem: $u(x, y) = \cosh x \cos y$. Atunci

$$u_x = \sinh x \cos y \Rightarrow u_{xx} = \cosh x \cos y$$

şi

$$u_y = -\cosh x \sin y \Rightarrow u_{yy} = -\cosh x \cos y$$

deci $\triangle u = u_{xx} + u_{yy} = 0 \Rightarrow u$ este armonică, rezultă că există v conjugată armonică a lui u, adică:

$$\begin{cases} u_x = v_y = \sinh x \cos y \\ u_y = -v_x = -\cosh x \sin y. \end{cases}$$

Integrăm în raport cu y:

$$v(x,y) = \int v_y dy = \sinh x \int \cos y dy = \sinh x \sin y + K(x) \Rightarrow$$

$$v_x = \cosh x \sin y + K'(x) = -u_y = \cosh x \sin y \Rightarrow$$

$$K'(x) = 0 \Rightarrow K(x) = k \Rightarrow v(x,y) = \sinh x \sin y + k \Rightarrow$$

$$f(z) = u + iv = \cosh x \cos y + i \sinh x \sin y + ik =$$

$$= \cosh x \cosh iy + \sinh x \sinh iy + ik = \cosh(x + iy) + ik \Rightarrow$$

$$f(z) = \cosh z + ik.$$

Exercițiul 2.23 (funcții elementare complexe) Rezolvați ecuația

$$\sin z = 1 + i.$$

Soluţie.

$$e^{iz} - e^{-iz} = 2i(1+i) = -2 + 2i = -2(1-i)$$

Înmulțim relația cu e^{iz} și găsim

$$(e^{iz})^2 - 1 = -2(1-i)e^{-iz} \Leftrightarrow (e^{iz})^2 - 1 + 2(1-i)e^{-iz} = 0 \Leftrightarrow$$

$$e^{iz} = \frac{-2(1-i) \pm \sqrt{4(1-i)^2 + 4}}{2} = -1 + i \mp \sqrt{1-2i} \Rightarrow$$

$$iz_k \in Ln(-1 + i \pm \sqrt{1-2i}).$$

Calculăm $\sqrt{1-2i}$. Avem

$$\sqrt{1-2i} = a+ib \Leftrightarrow 1-2i = a^2-b^2+i2ab \Rightarrow$$

$$\left\{ \begin{array}{c} a^2-b^2 = 1 \\ ab = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} b = -\frac{1}{a} \\ a^2-\frac{1}{a^2} = 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} a^4-a^2-1 = 0 \\ a^2 = t \end{array} \right.$$

Rezultă ecuația în necunoscuta t:

$$t^2 - t - 1 = 0$$

cu soluțiile:

$$t_{1,2} = \frac{1 \pm \sqrt{5}}{2},$$

de unde obţinem

$$a^2 = t_1 = \frac{1 + \sqrt{5}}{2} > 0,$$

soluția $t_2 < 0$ și nu corespunde. Astfel

$$a_{1,2} = \pm \sqrt{\frac{1+\sqrt{5}}{2}}$$
 şi $b_{1,2} = \mp \frac{1}{\sqrt{\frac{1+\sqrt{5}}{2}}} = \mp \sqrt{\frac{\sqrt{5}-1}{2}}.$

Deci

$$\sqrt{1-2i} = \left\{ \begin{array}{l} \sqrt{\frac{1+\sqrt{5}}{2}} - i\sqrt{\frac{\sqrt{5}-1}{2}} \\ -\sqrt{\frac{1+\sqrt{5}}{2}} + i\sqrt{\frac{\sqrt{5}-1}{2}} \end{array} \right\} \Rightarrow \\
\operatorname{Ln}z = \left\{ \ln|z| + i(\arg z + 2k\pi)|k \in \mathbb{Z} \right\} \\ \Rightarrow \operatorname{Ln}z = \left\{ \ln z + i2k\pi|k \in \mathbb{Z} \right\}.$$

$$z_k = -i\operatorname{Ln}\left[\left(-1 + i \mp \sqrt{1 - 2i}\right)\right] =$$

$$= -i\operatorname{Ln}\left[\left(-1 \pm \sqrt{\frac{1 + \sqrt{5}}{2}}\right) + i\left(1 \mp \sqrt{\frac{\sqrt{5} - 1}{2}}\right)\right] =$$

$$= -i\left\{\operatorname{ln}\left(\left(-1 \pm \sqrt{\frac{1 + \sqrt{5}}{2}}\right) + i\left(1 \mp \sqrt{\frac{\sqrt{5} - 1}{2}}\right)\right) + i\left(1 + 2k\pi i | k \in \mathbb{Z}\right)\right\}$$

$$\Rightarrow z_k = -i\operatorname{ln}\left(\left(-1 \pm \sqrt{\frac{1 + \sqrt{5}}{2}}\right) + i\left(1 \mp \sqrt{\frac{\sqrt{5} - 1}{2}}\right)\right) + i\left(1 + 2k\pi i | k \in \mathbb{Z}\right)$$

Exercițiul 2.24 (funcții elementare complexe) Să se determine mulțimea de definiție pentru funcția

$$f(z) = \ln \frac{z + 1 + i}{z + 1 - 2i}.$$

Soluție. Funcția

$$\ln z : \mathbb{C} \setminus \{z \in \mathbb{C} | \operatorname{Re} z \leq 0, \operatorname{Im} z = 0\} \to \mathbb{R};$$

Deci

$$f(z) = \ln \frac{z+1+i}{z+1-2i}$$

este definită pe mulțimea

$$\mathbb{C}\setminus\{z\in\mathbb{C}|\text{Re}\frac{z+1+i}{z+1-2i}\leq 0,\ \text{Im}\frac{z+1+i}{z+1-2i}=0\}.$$

Determinăm partea reală:

$$\operatorname{Re} \frac{z+1+i}{z+1-2i} = \operatorname{Re} \frac{(x+1)+i(y+1)}{(x+1)+i(y-2)} =$$

$$= \operatorname{Re} \frac{[(x+1)+i(y+1)][(x+1)-i(y-2)]}{(x+1)^2+(y-2)^2} =$$

$$= \frac{(x+1)^2+(y+1)(y-2)}{(x+1)^2+(y-2)^2} \le 0 \Leftrightarrow$$

$$x^{2} + 2x + 1 + y^{2} - y - 2 \le 0 \Leftrightarrow (x+1)^{2} + \left(y - \frac{1}{2}\right)^{2} \le \left(\frac{3}{2}\right)^{2}$$

ecuație ce reprezintă interiorul cercului centrat în $\left(-1,\frac{1}{2}\right)$ și de rază $\frac{3}{2}$ care în complex se scrie

$$\left|z + 1 - \frac{i}{2}\right| \le \frac{3}{2}.$$

Determinăm partea imaginară:

$$\operatorname{Im} \frac{z+1+i}{z+1-2i} = 0 \Leftrightarrow (x+1)(y+1) - (x+1)(y-2) = 0 \Leftrightarrow (x+1)(y+1-y+2) = 0 \Leftrightarrow 3(x+1) = 0 \Rightarrow x = -1 \Leftrightarrow \operatorname{Re} z = -1.$$

Deci, domeniul de definiție pentru funcția

$$f(z) = \ln \frac{z+1+i}{z+1-2i}$$

este domeniul

$$D = \mathbb{C} \setminus \left\{ \left| z + 1 - \frac{i}{2} \right| \le \frac{3}{2}, \operatorname{Re} z = -1 \right\}.$$

Exercițiul 2.25 (funcții elementare complexe) Calculați $e^{\sqrt{i}}$. Soluție.

$$\sqrt{i} = \sqrt{e^{i\frac{\pi}{2}}} = e^{i\frac{\frac{\pi}{2} + 2k\pi}{2}}, k \in \{0, 1\} \Rightarrow$$

$$\sqrt{i} = \begin{cases} e^{i\frac{\pi}{4}} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}} \\ e^{i\frac{5\pi}{4}} = -\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}. \end{cases}$$

Deci

$$e^{\sqrt{i}} = \left\{ \begin{array}{l} e^{\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}} \\ e^{-\frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}} \end{array} \right. = \left\{ \begin{array}{l} e^{\frac{1}{\sqrt{2}}} \left(\cos\frac{1}{\sqrt{2}} + i\sin\frac{1}{\sqrt{2}}\right), \\ e^{-\frac{1}{\sqrt{2}}} \left(\cos\frac{1}{\sqrt{2}} - i\sin\frac{1}{\sqrt{2}}\right). \end{array} \right.$$

Exercițiul 2.26 (funcții elementare complexe) Demonstrați egalitățile următoare

a)
$$\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2, \forall z_1, z_2 \in \mathbb{C};$$

b)
$$\sinh^2 z = \frac{\cosh 2z - 1}{2}, \forall z \in \mathbb{C};$$

Soluție.

a) Avem:

$$e^{i(z_1 \pm z_2)} = e^{iz_1} e^{\pm iz_2} \stackrel{Euler}{=}$$

$$\cos(z_1 \pm z_2) + i \sin(z_1 \pm z_2) = (\cos z_1 + i \sin z_1)(\cos z_2 \mp i \sin z_2) \Leftrightarrow$$

$$\begin{cases} \cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2 \\ \sin(z_1 \pm z_2) = \sin z_1 \cos z_2 \pm \cos z_1 \sin z_2. \end{cases}$$

b) Calculăm:

$$\frac{\cosh 2z - 1}{2} = \frac{\frac{e^{2z} + e^{-2z}}{2} - 1}{2} =$$

$$= \frac{(e^z)^2 + (e^{-z})^2 - 2e^z e^{-z}}{4} =$$

$$= \left(\frac{e^z - e^{-z}}{2}\right)^2 = \sinh^2 z, \forall z \in \mathbb{C}.$$

Exercițiul 2.27 (funcții elementare complexe) Găsiți mulțimea de definiție pentru funcția

$$f(z) = \ln \frac{z+i}{iz-1}.$$

Notăm Ln prin ln.

Soluție.

$$D = \mathbb{C} \setminus \left\{ \operatorname{Re} \frac{z+i}{iz-1} \le 0, \operatorname{Im} \frac{z+i}{iz-1} = 0 \right\}.$$

Deci

$$\frac{z+i}{iz-1} = \frac{x+1+iy}{i(x+iy)-1} = \frac{(x+1+iy)(-y-1-ix)}{(-y-1)^2+x^2}.$$

Determinăm partea reală:

$$\operatorname{Re}\frac{z+i}{iz-1} = (x+1)(-y-1) + xy \le 0 \Leftrightarrow -x-y-1 \le 0 \Leftrightarrow x+y+1 \ge 0.$$

Determinăm partea imaginară:

$$\operatorname{Im} \frac{z+i}{iz-1} = 0 \Leftrightarrow -y(y+1) - x(x+1) = 0 \Leftrightarrow x^2 + x + y^2 + y = 0 \Rightarrow$$
$$\left(x + \frac{1}{2}\right)^2 + \left(y + \frac{1}{2}\right)^2 = \frac{1}{2}.$$

Adică domeniul de definiție este

$$D = \mathbb{C} \setminus \left\{ \operatorname{Re}z + \operatorname{Im}z + 1 \ge 0, \left| z - \left(-\frac{1}{2} - \frac{i}{2} \right) \right| = \frac{1}{\sqrt{2}} \right\}.$$

Exercițiul 2.28 (funcții elementare complexe) Găsiți soluțiile ecuației:

$$\cos z = i$$
.

Soluţie. Avem:

$$e^{iz} + e^{-iz} = 2i \stackrel{e^{iz}=t}{=} t^2 - 2it + 1 = 0 \Rightarrow$$

 $t_{1,2} = \frac{2i \mp \sqrt{-8}}{2} = i \mp \sqrt{2}i = i(1 \pm \sqrt{2}).$

$$e^{iz} = i(1+\sqrt{2}) \Rightarrow iz_k \in \left\{ \ln(1+\sqrt{2}) + i\left(\frac{\pi}{2} + 2k\pi\right) | k \in \mathbb{Z} \right\} \Rightarrow$$

$$z_k = \frac{\pi}{2} + 2k\pi - i\ln(1+\sqrt{2}), k \in \mathbb{Z}$$

şi

$$e^{iz} = i(1-\sqrt{2}) \Rightarrow iz_k \in \left\{ \ln(\sqrt{2}-1) + i\left(\frac{3\pi}{2} + 2k\pi\right) | k \in \mathbb{Z} \right\} \Rightarrow$$

$$z_k = \frac{3\pi}{2} + 2k\pi - i\ln(\sqrt{2}-1), k \in \mathbb{Z}.$$

2.4 Exerciții propuse.

Exercițiul 2.29 Determinați în fiecare din următoarele cazuri Rez, Imz, |z| și arg z:

a)
$$z = \frac{1}{i};$$

b)
$$z = \frac{1-i}{1+i};$$

c)
$$z = \frac{2}{1-3i}$$
;

d)
$$z = (1 + i\sqrt{3})^3$$
;

e)
$$z = (1 + i\sqrt{3})^n$$
.

Exercițiul 2.30 Determinați în fiecare din următoarele cazuri toți $z \in \mathbb{C}$ pentru care:

a)
$$z^3 = 1$$
;

b)
$$z^3 = i$$
:

c)
$$z^4 = -1$$
;

d)
$$z^8 = 1$$
;

e)
$$z^2 = 1 - i$$
;

f)
$$z^2 = 3 + 4i$$
;

g)
$$z^3 = -2 + 2i$$
;

h)
$$z^5 = -4 + 3i$$
.

Exercițiul 2.31 Explicați de ce pentru orice $z \in \mathbb{C}$ au loc relațiile:

a)
$$|z_1 + z_2| \le |z_1| + |z_2|$$
;

b)
$$|z_1 - z_2| > ||z_1| - |z_2||$$
.

Exercițiul 2.32 Verificați prin calcul identitatea

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2)$$

și descoperiți semnificația ei geometrică.

Exercițiul 2.33 Precizați, pentru fiecare din următoarele cazuri, ce mulțime de puncte P(z) din planul complex verifică relația:

- a) $|z z_0| < 1$, $|z z_0| = 1$ şi $|z z_0| > 1$ pentru $z_0 \in \mathbb{C}$, fixat;
- b) 1 < |z| < 2;
- c) 1 < Rez | < 2;
- d) 1 < Im z | < 2:
- e) $\frac{\pi}{3} < \arg z < \frac{\pi}{2}$;
- f) |z+3|=5;
- g) |z+2+i| < 2;
- h) |z-1-i| > 3;
- i) $2 \le |z 2 3i| < 4$;
- j) |z-2|+|z+2|=5;
- k) |z-2|-|z+2| > 3;
- 1) |z-i| = |z+1|;
- m) |z+1| = |z-3| = |z+4i|.

Exercițiul 2.34 Determinați funcțiile $u, v : \mathbb{R}^2 \to \mathbb{R}$ pentru fiecare funcție complexă f(z) dată:

- a) $f(z) = \overline{z}$;
- b) $f(z) = z^2$;
- c) $f(z) = \frac{z-1}{z+i}$;
- d) $f(z) = e^z$;
- e) $f(z) = \frac{e^z + e^{-z}}{2}$, notată $\cosh z$;
- f) $f(z) = \frac{e^z e^{-z}}{2}$, notată sinh z;
- g) $f(z) = \frac{e^{iz} + e^{-iz}}{2}$, notată $\cos z$;
- h) $f(z) = \frac{e^{iz} e^{-iz}}{2i}$, notată $\sin z$;
- i) $f(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$, notată tanh z;
- j) $f(z) = \frac{e^{iz} e^{-iz}}{i(e^{iz} + e^{-iz})}$, notată tan z.

Exercițiul 2.35 Determinați expresia funcției f(z) atunci când se cunosc funcțiile u(x,y) și v(x,y) (unde z=x+iy):

- a) u = x, v = -y;
- b) $u = x^2 y^2$, v = 2xy;
- c) u = -2xy, $v = x^2 y^2$;
- d) $u = e^x \cos y, v = e^x \sin y;$
- e) $u = e^y \cos x$, $v = -e^y \sin x$;
- f) $u = \cos x \sinh y$, $v = \sin x \cosh y$.

Exercițiul 2.36 Calculați sub forma u + iv următoarele expresii:

- a) $e^{\pi i}$;
- b) $\cos(1+i)$;
- c) $\sin 3i$;
- d) $\cosh 3\pi i$;
- e) $\ln(1+i)$.

Exercițiul 2.37 Determinați valorile lui $z \in \mathbb{C}$ (z = x + iy) pentru care:

- a) $z^2 + (2 3i)z 5 i = 0$;
- b) $e^z = 4 3i;$
- c) $\sin z = 10;$
- d) $\cosh z = -1$.

Exercițiul 2.38 Determinați funcția analitică f(z) = u + iv în următoarele cazuri:

- a) $u = \cos x \cosh y$;
- b) $v = \cos x \sinh y$;
- c) $u = \sinh x \cos y$;
- d) $v = \sinh x \sin y$;
- e) $v = e^x \sin y$;
- f) $v = \ln(x^2 + y^2)$;

g)
$$u = x^2 - y^2 + 3x$$
;

h)
$$u = 6x - 2y$$
;

i)
$$v = 6xy - 6y + 3$$
;

i)
$$u = x^2 - y^2 - y$$
;

k)
$$u = \frac{1}{2} \ln(x^2 + y^2);$$

1)
$$u = \frac{x}{2} \ln(x^2 + y^2) - y \arctan \frac{y}{x}$$
;

m)
$$u = e^x(x\cos y - y\sin y);$$

n)
$$u = x^2 - y^2 + \frac{x}{x^2 + (y+1)^2}$$
;

o)
$$v = e^{-y}\sin x + x^2 + xy - y^2$$
;

p)
$$v = \arctan \frac{y}{x} + 2xy$$
.

Exercițiul 2.39 (funcții complexe elementare) Să se aducă la forma A+iB expresiile:

- a) e^i ;
- b) $\sinh 2i$;
- c) $\cosh(2+3i)$;
- d) $\cos(1-i)$;
- e) $\tan(1-2i)$;
- f) $\ln(-2i)$;
- g) $\ln(-3+4i)$;
- h) $\ln \frac{1-i}{\sqrt{3}+i}$.

Exercițiul 2.40 (funcții complexe elementare) Calculați:

- a) i^{1-i} ;
- b) $(1 + i\sqrt{3})^i$;
- c) 1^{-i} ;
- d) $|\sin z|$.

Exercițiul 2.41 (funcții complexe elementare) Demonstrați egalitățile:

- a) $\cos(z_1 \pm z_2) = \cos z_1 \cos z_2 \mp \sin z_1 \sin z_2$;
- b) $\sinh(z_1 \pm z_2) = \sinh z_1 \cosh z_2 \pm \cosh z_1 \sinh z_2$;
- c) $\sin 2z = 2\sin z \cos z$;
- d) $\cosh 2z = \cosh^2 z + \sinh^2 z$;
- e) $\sinh^2 z = \frac{\cosh 2z 1}{2}$;
- f) $\cosh^2 z = \frac{\cosh 2z + 1}{2}$.

Exercițiul 2.42 (funcții complexe elementare) Să se rezolve ecuațiile următoare:

- a) $e^{i3z} = -1;$
- b) $e^{\frac{1}{z^2}} = 1$;
- c) $\sin z = 10$;
- d) $\tanh z = 2$.

Capitolul 3

Reziduuri. Integrale improprii rezolvate cu reziduuri.

3.1 Considerații teoretice.

3.1.1 Integrala complexă.

Integrala complexă se notează:

$$\int_{C} f(z)dz \tag{3.1}$$

unde

- f(z) este funcție complexă;
- C este curbă (curbă de integrare, arc) în planul complex;

Reprezentarea parametrică a curbei

$$C: z(t) = x(t) + iy(t), \ a < t < b.$$
 (3.2)

- Sens pozitiv pentru C sensul de creştere al argumentului t (C este curbă orientată);
- C este netedă și simplă are derivata continuă și nenulă în orice punct:

$$\dot{z} = \frac{dz}{dt} = \dot{x}(t) + i\dot{y}(t).$$

- C este închisă - punctul terminal coincide cu cel inițial; atunci integrala complexă se notează:

$$\oint_C f(z)dz.$$

Ipoteze:

- (i) Toate curbele de integrare sunt netede pe porţiuni (sunt formate dintr-un număr finit de curbe netede "alipite");
- (ii) Funcția f(z) este continuă.

Proprietăți 3.1

1. Liniaritate:

$$\int_C [\alpha f_1(z) + \beta f_2(z)] dz = \alpha \int_C f_1(z) dz + \beta \int_C f_2(z) dz.$$

2. Schimbarea sensului (pentru o aceeași curbă C, cu z_0 punct inițial cu z_1 punct terminal):

$$\int_{z_0}^{z_1} f(z)dz = -\int_{z_1}^{z_0} f(z)dz.$$

3. Partiționarea curbei:

$$\int_{C} f(z)dz = \int_{C_1} f(z)dz + \int_{C_2} f(z)dz$$

unde curbele C_1 și C_2 formează curba C.

Teorema 3.2 Fie D un domeniu simplu conex (∂D este o curbă închisă simplă) și funcția $f: D \to \mathbb{C}$ analitică pe D, punctele z_0 , z_1 din D, atunci oricare ar fi curba C din D care leagă z_0 de z_1 , avem:

$$\int_{C} f(z)dz = \int_{z_0}^{z_1} f(z)dz = F(z_1) - F(z_0), \quad (3.3)$$

unde F'(z) = f(z).

Observația 3.3 Integrarea lui f(z) este independentă de curbă.

Definiția 3.4 Fie C o curbă netedă pe porțiuni, reprezentată prin z = z(t), $a \le t \le b$ și f(z) continuă pe C, atunci:

$$\int_C f(z)dz = \int_a^b f(z(t))\dot{z}(t)dt, \tag{3.4}$$

unde $\dot{z} = \frac{dz}{dt}$.

Observația 3.5 Dacă $f(z) = u(x,y) + iv(x,y), C: z = z(t), a \le t \le b$ atunci

$$\int_C f(z)dz = \int_a^b f(z(t))\dot{z}(t)dt =$$

$$= \int_C u(x,y)dx - v(x,y)dy + i \int_C u(x,y)dy - v(x,y)dx.$$

Teorema 3.6 (Teorema integrală a lui Cauchy: T.I.C.) Fie funcția $f: D \to \mathbb{C}$, D un domeniu simplu conex și f analitică pe D, atunci oricare ar fi curba C din D curbă închisă, simplă, avem:

$$\oint_C f(z)dz = 0. \tag{3.5}$$

Observația 3.7

- 1. T.I.C. se poate aplica funcțiilor analitice pentru orice z;
- 2. Funcțiilor cu singularități (puncte unde nu sunt definite sau nu sunt analitice) situate în afara curbei;
- 3. Există situații în care integrarea unor funcții care au singularități în interiorul curbei C va da zero (dar acest lucru se face prin calcul direct, nu prin aplicarea teoremei).

Teorema 3.8 (Formula integrală a lui Cauchy: F.I.C.) Fie funcția f(z) analitică pe D, cu D un domeniu simplu conex, atunci pentru orice punct z_0 din D și orice curbă C din D închisă (contur) ce conține în interior pe z_0 , avem:

$$\oint_C \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0). \tag{3.6}$$

Generalizare.

- 1. Dacă funcția f(z) este analitică pe D atunci ea are derivate de orice ordin pe D, care sunt la rândul lor tot funcții analitice.
- 2. Pentru f(z) analitică și C curbă simplă închisă în D, care conține punctul z_0 , avem:

$$\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0), n = 1, 2, 3, \dots$$

3.1.2 Seria Taylor.

Teorema 3.9 Fie funcția $f: D \to \mathbb{C}$, analitică pe D, cu D un domeniu simplu conex, $z_0 \in D$. Atunci $\exists \rho > 0$ astfel încât

$$f(z) = \sum_{n>0} \frac{f^{(n)}(z_0)}{n!} (z - z_0), \tag{3.7}$$

 $\forall z \in V_{\delta}(z_0)$, unde $V_{\delta}(z_0) = \{|z - z_0| < \rho\}$, adică f se dezvoltă **în serie Taylor** în jurul lui z_0 .

3.1.3 Seria Laurent.

Teorema 3.10 Fie $W_{r,\rho}(z_0) = \{z \in \mathbb{C} | r < |z - z_0| < \rho\}$ coroana circulară de rază interioară r și rază exterioară ρ , funcția $f: W_{r,\rho} \to \mathbb{C}$ analitică . Atunci

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - z_0)^n, \forall z \in W_{r,\rho}(z_0),$$
 (3.8)

unde

$$a_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{(z - z_0)^{(n+1)}} dz, \ \forall n \in \mathbb{Z},$$

cu Γ curbă închisă (contur) simplă, netedă pe porțiuni ce înconjoară z_0 în coroană.

Scrierea (7.6) reprezintă dezvoltarea funcției f în serie Laurent în jurul lui z_0 și este echivalentă cu

$$f(z) = \sum_{n=-\infty}^{-1} a_n (z - z_0)^n + \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$
 (3.9)

Serii Taylor compleze uzuale:

1)
$$\frac{1}{1-z} = 1 + z + \dots + z^n + \dots, \ |z| < 1;$$

2)
$$e^{z} = 1 + \frac{z}{1!} + \dots + \frac{z^{n}}{n!} + \dots, \ z \in \mathbb{C};$$

3)
$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots + (-1)^n \frac{z^{2n}}{(2n)!} + \dots, \ z \in \mathbb{C};$$

4)
$$\cosh z = 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \dots + \frac{z^{2n}}{(2n)!} + \dots, \ z \in \mathbb{C};$$

5)
$$\sin z = \frac{z}{1!} - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + (-1)^n \frac{z^{2n+1}}{(2n+1)!} + \dots, \ z \in \mathbb{C};$$

6)
$$\sinh z = \frac{z}{1!} + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots + \frac{z^{2n+1}}{(2n+1)!} + \dots, \ z \in \mathbb{C};$$

Aplicație:

$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!z^n} = \dots + \frac{1}{n!z^n} + \dots + \frac{1}{2!z^2} + \frac{1}{1!z} + 1.$$

3.1.4 Singularități.

Definiția 3.11 Fie funcția $f: D \to \mathbb{C}$ analitică pe $D \setminus \{z_0\}$. Punctul z_0 se numește *singularitate* (izolată) pentru f(z).

Definiția 3.12 Un punct în care funcția f nu este definită sau analitică se numește *singularitate* pentru f(z).

Tipul singularităților:

1. z_0 este punct singular eliminabil dacă:

$$\exists \lim_{z \to z_0} f(z) = ct;$$

2. z_0 se numește pol dacă:

$$\lim_{z \to z_0} |f(z)| = +\infty;$$

3. z_0 este punct singular esențial dacă:

$$\lim_{z \to z_0} f(z)$$
 nu există.

Observaţia 3.13

1. z_0 este pol de ordinul $k \ge 1$ pentru f(z) dacă și numai dacă:

$$\exists \lim_{z \to z_0} (z - z_0)^k f(z) = \text{ct, nenulă};$$

2. z_0 este pol de ordinul $k \ge 1$ pentru f(z) dacă și numai dacă partea principală a dezvoltării în serie Laurent a lui f(z) în jurul lui z_0 are k termeni nenuli (adică $a_{-k} \ne 0$, $a_{-n} = 0$, $\forall n > k$).

3. z_0 este pol de ordinul $k \geq 1$ pentru $f(z) = \frac{g(z)}{h(z)}$ dacă şi numai dacă $g(z_0) \neq 0$ şi z_0 este rădăcină de ordinul k pentru h(z).

Observația 3.14 z_0 este punct singular esențial dacă și numai dacă partea princilală a dezvoltării în serie Laurent a lui f(z) în jurul lui z_0 are o infinitate termeni nenuli.

3.1.5 Reziduul într-un pol.

Definiția 3.15 Fie z_0 un pol de ordinul $k \ge 1$ pentru funcția f(z). Atunci reziduul funcției f(z) în polul z_0 are expresia următoare

$$\operatorname{Res}_{z=z_0} = \frac{1}{(k-1)!} \lim_{z \to z_0} \left[(z - z_0)^k f(z) \right]^{k-1}. \tag{3.10}$$

Observația 3.16 Dacă z_0 este pol simplu (k=1) pentru funcția $f(z)=\frac{g(z)}{h(z)},$ atunci

$$\operatorname{Res}_{z=z_0} f(z) = \frac{g(z_0)}{h'(z_0)} = \lim_{z \to z_0} \left[(z - z_0) f(z) \right]. \tag{3.11}$$

3.1.6 Teorema reziduurilor.

Observația 3.17 Dacă z_0 este singularitate esențială, reziduul funcției f(z) se calculează cu ajutorul dezvoltării în serie Laurent.

$$\operatorname{Res}_{z=z_0} f(z) = a_{-1},$$
 (3.12)

adică este egal cu coeficientul lui $\frac{1}{z-z_0}$ din dezvoltarea în serie Laurent a lui f(z) în jurul lui z_0 .

Teorema 3.18 Fie C curbă simplă închisă, parcursă în sens trigonometric și f(z) o funcție analitică pe curba C și în interiorul lui C, cu excepția unui număr finit de puncte singulare z_1, z_2, \ldots, z_n situate în interiorul curbei C. Atunci

$$\oint_C f(z)dz = 2\pi i \sum_{k=1}^n Res_{z=z_k} f(z).$$
(3.13)

3.1.7 Aplicații ale teoremei reziduurilor în calculul unor integrale reale.

1. Integrale raționale în $\sin \theta$ și $\cos \theta$ de forma

$$J = \int_0^{2\pi} F(\cos \theta, \sin \theta) d\theta. \tag{3.14}$$

- a) Se rezolvă printr-o schimbare de variabilă "consacrată" $z=e^{i\theta}$.
- b) Deoarece $\theta \in [0, 2\pi]$, variabila $z = e^{i\theta}$ va avea ca domeniu cercul unitate (curba de ecuație |z| = 1).
- c) Formule de transformare a funcției inițiale $F(\cos \theta, \sin \theta)$ în f(z):

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2} \left(z + \frac{1}{z} \right),$$
$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{1}{2i} \left(z - \frac{1}{z} \right),$$
$$\cos 2\theta = \frac{e^{2i\theta} + e^{-2i\theta}}{2} = \frac{1}{2} \left(z^2 + \frac{1}{z^2} \right).$$

d) Diferențierea notației $z=e^{i\theta}$ conduce la

$$\frac{dz}{d\theta} = ie^{i\theta},$$

adică

$$d\theta = \frac{1}{iz}dz.$$

Deci, integrala inițială devine

$$J = \int_0^{2\pi} F(\cos\theta, \sin\theta) d\theta = \oint_{|z|=1} f(z) \frac{1}{iz} dz,$$
(3.15)

integrală care se rezolvă cu teorema reziduurilor.

2. Integrale improprii de forma

$$\int_{-\infty}^{\infty} f(x)dx. \tag{3.16}$$

- a) Funcția f(x) este o funcție reală, rațională, cu numitorul diferit de zero pentru orice $x \in \mathbb{R}$ (nu are poli pe axa reală) și gradul numitorului depășește cu cel puțin două unități gradul numărătorului.
- b) Deoarece f(x) este raţională, atunci funcţia complexă asociată f(z) are un număr finit de poli situaţi în semiplanul superior. Alegem conturul C neted şi simplu, de forma $C = [-R, R] \cup C_0^+$, unde C_0 este semicercul superior cu centrul în origine şi rază R, R suficient de mare ales asfel încât C să conţiină în interior toţi polii din semiplanul superior ai lui f. C este parcurs în sens trigonometric, $C_0: |z| = R$, $z = Re^{it}$, $t \in [0, \pi]$. Aplicăm teorema reziduurilor pentru f(z) şi conturul C:

$$\oint_C f(z)dz = \int_{-R}^R f(x)dx + \int_{G_a^+} f(z)dz =$$

$$=2\pi i \sum \operatorname{Res} f(z), \tag{3.17}$$

unde reziduurile se iau numai în polii din semiplanul superior.

$$\left| \int_{C_0^+} f(z) dz \right| = \left| \int_0^{\pi} f(Re^{it}) Rie^{it} dt \right| \le$$

$$\le R \int_0^{\pi} \left| f(Re^{it}) \right| dt \le R \sup_{t \in [0,\pi]} \left| f(Re^{it}) \right| \stackrel{R \to \infty}{---} 0$$
(3.18)

rezultă că pentru $R \to \infty$ avem

$$\int_{C_0^+} f(z)dz \to 0. \tag{3.19}$$

Trecem la limită după $R \to \infty$ în relația (3.17):

$$\oint_C f(z)dz = \lim_{R \to \infty} \int_{-R}^R f(x)dx =$$

$$= \int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{n=0}^{\infty} \operatorname{Res} f(z)$$

rezultă

$$\int_{-\infty}^{\infty} f(x)dx = \oint_{C} f(z)dz = 2\pi i \sum \text{Res} f(z) \quad (3.20)$$

unde reziduurile sunt din semiplanul superior.

3. Integrale de tip Fourier.

$$\int_{-\infty}^{\infty} f(x) \cos ax dx \tag{3.21}$$

sau

$$\int_{-\infty}^{\infty} f(x) \sin ax dx \tag{3.22}$$

 $\operatorname{cu} a > 0.$

- a) Funcţia f(x) este o funcţie reală, raţională, cu numitorul diferit de zero pentru orice $x \in \mathbb{R}$ (nu are poli pe axa reală) şi are gradul numitorului mai mare decât gradul numărătorului cu cel puţin o unitate.
- b) Se pornește de la integrala asociată

$$\int_{-\infty}^{\infty} f(x)e^{iax}dx \tag{3.23}$$

și de la integrala complexă asociată $f(x)e^{iaz}$.

c) Cu teorema reziduurilor avem

$$\int_{-\infty}^{\infty} f(x)e^{iax}dx = 2\pi i \sum \text{Res}\left[f(z)e^{iaz}\right], \quad (3.24)$$

unde reziduurile se calculează în polii situați în partea superioară a planului complex.

c) După calcularea reziduurilor avem

$$\int_{-\infty}^{\infty} f(x) \cos ax dx = -2\pi \sum \text{Im Res} \left[f(z)e^{iaz} \right],$$

$$\int_{-\infty}^{\infty} f(x) \sin ax dx = 2\pi \sum \text{Re Res} \left[f(z)e^{iaz} \right].$$
(3.26)

3.2 Exerciții rezolvate.

Exercițiul 3.19 Determinați tipul singularităților pentru:

a)
$$f(z) = \frac{z^3 + 2z - 3}{z^2}$$
, $z_0 = 0$ punct singular;

b)
$$f(z) = e^{\frac{1}{z-1}}, z_0 = 1$$
 punct singular;

c)
$$f(z) = \frac{\sin z}{z}$$
, $z = 0$ punct singular;

d)
$$f(z) = \frac{\sin z}{z^4}$$
, $z = 0$ punct singular.

Soluție.

a) $f(z) = \frac{z^3 + 2z - 3}{z^2}$, $z_0 = 0$ punct singular;

$$\lim_{z \to 0} |f(z)| = \lim_{z \to 0} \frac{3}{|z|^2} = +\infty$$

rezultă că z = 0 este pol dublu.

b) $f(z) = e^{\frac{1}{z-1}}$, $z_0 = 1$ punct singular; Considerăm restricția lui f(z) la mulțimea $A = \{z \in \mathbb{C} | \text{Im} z = 0\}$.

$$\lim_{z \to 1} f_{/A}(z) = \lim_{z \to 1} e^{\frac{1}{x-1}}$$

nu există, deoarece:

$$\lim_{x \to 1, x < 1} e^{\frac{1}{x - 1}} = e^{-\infty} = 0$$

$$\lim_{x \to 1, x > 1} e^{\frac{1}{x - 1}} = e^{+\infty} = +\infty$$

deci nu există $\lim_{z\to 1} f_{/A}(z)$ rezultă că nu există $\lim_{z\to 1} f(z)$, adică z=1 este punct singular esențial.

c) $f(z) = \frac{\sin z}{z}$, z = 0 punct singular;

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{\sin z}{z} = 1$$

adică z = 0 este punct singular aparent.

d) $f(z) = \frac{\sin z}{z^4}$, z = 0 punct singular.

$$\lim_{z \to 0} |f(z)| = \lim_{z \to 0} \left| \frac{\sin z}{z} \cdot \frac{1}{z^3} \right| = 1 \cdot \lim_{z \to 0} \frac{1}{|z|^3} = +\infty$$

rezultă că z = 0 este pol de ordinul 3.

Exercițiul 3.20 Determinați tipul singularităților pentru:

- a) $f(z) = \frac{\sin 4z}{(z-4)^3 z(z+i)}$, $z_1 = 4$, $z_2 = 0$, $z_3 = -i$ puncte singulare;
- b) $f(z) = e^{\frac{1}{z}} \frac{1}{z-1}$, $z_1 = 0$, $z_2 = 1$ puncte singulare.

Soluție.

a)
$$f(z) = \frac{\sin 4z}{(z-4)^3 z(z+i)}$$
, $z_1 = 4$, $z_2 = 0$, $z_3 = -i$ puncte singulare;

$$\lim_{z \to 4} f(z)(z-4)^3 = \lim_{z \to 4} \frac{\sin 4z}{z(z+i)} = \frac{\sin 16}{4(4+i)},$$

limita este finită, nenulă, rezultă că $z_1 = 4$ este pol de ordinul 3.

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{\sin 4z}{z} \frac{1}{(z-4)^3 (z+i)} = \frac{4}{-64i} = \frac{i}{16},$$

limita este o constantă, rezultă că $z_2 = 0$ este punct singular eliminabil.

$$\lim_{z \to -i} f(z)(z+i) = \lim_{z \to -i} \frac{\sin 4z}{(z-4)^3 z} = \frac{\sin(-4i)}{(-i)(-i-4)^3} = \frac{-i \sinh 4}{(-i)(-i-4)^3} = \frac{\sinh 4}{(-i-4)^3}$$

limita este o constantă nenulă, deci $z_3 = -i$ este pol de ordinul 1.

b)
$$f(z) = e^{\frac{1}{z}} \frac{1}{z-1}$$
, $z_1 = 0$, $z_2 = 1$ puncte singulare.

$$\lim_{z \to 0} f(z) = -\lim_{z \to 0} e^{\frac{1}{z}}.$$

$$A = \{z \in \mathbb{C} | \operatorname{Im} z = 0\} \Rightarrow \lim_{z \to 0} f_{/A}(z) = \lim_{x \to 0} e^{\frac{1}{x}}$$

limita nu există, deoarece:

$$\lim_{x \to 0, \, x < 0} e^{\frac{1}{x}} = e^{-\infty} = 0$$

$$\lim_{x \to 0, \, x > 0} e^{\frac{1}{x}} = e^{\infty} = 0,$$

deci nu există limita

$$\lim_{z \to 0} e^{\frac{1}{z}}$$

adică, nu există limita

$$\lim_{z \to 0} f(z)$$

de unde obținem că z=0 este punct singular esențial.

Acum calculăm limita următoare:

$$\lim_{z \to 1} f(z)(z-1) = \lim_{z \to 1} e^{\frac{1}{z}} = e,$$

deci limita este o constantă nenulă, rezultă că z=1 este pol de ordinul unu.

Exercițiul 3.21 Determinați tipul singularității lui z=0 pentru:

$$f(z) = \frac{\sin z}{z^5}$$

şi

$$\operatorname{Res}_{z=0} f(z).$$

Soluție.

Dezvoltăm în serie Laurent în jurul lui z=0:

$$f(z) = \frac{1}{z^5} \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2z+1)!} =$$

$$= \frac{1}{z^5} \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \cdots \right) =$$

$$= \frac{1}{z^4} - \frac{1}{3!z^2} + \frac{1}{5!} - \frac{z^2}{7!} \cdot \dots, \forall z \in \mathbb{C}$$

deci z = 0 este pol de ordinul patru.

$$\operatorname{Res}_{z=0} f(z) = a_{-1} = 0.$$

Exercițiul 3.22 Calculați folosind F.I.C. urmatoarele integrale

(a)
$$\oint_C \frac{e^{2z}}{z(z-2i)^2} dz,$$

unde C este cuprinsă între |z-i|=3 (sens trigonometric) și |z|=1 (sens invers trigonometric).

Soluţie.

 $C=C_1^+\vee AB^+\vee C_2^-\vee AB^-$ unde $C_1^+:|z-i|=3$ parcurs în sens trigonometric, $C_2^-:|z|=1$ parcurs în sens invers trigonometric, AB un segment ce leagă un punct $A\in C_1$ de $B\in C_2$ și cu F.I.C. avem:

$$\oint_C = \frac{\frac{e^{2z}}{z}}{(z-2i)^2} dz = \frac{2\pi i}{1!} \left(\frac{e^{2z}}{z}\right)'_{/z=2i} =$$

$$= 2\pi i \frac{2ze^{2z} - e^{2z}}{z^2}_{/z=2i} = \frac{2\pi i e^{4i}}{-4} (4i - 1) =$$

$$= \frac{\pi e^{4i}}{2} (4+i) = \frac{\pi}{2} (4+i) (\cos 4 + i \sin 4).$$

(b)
$$\oint_C \frac{e^z}{(z-1)^2 \cdot (z^2+4)} dz$$

Soluție.

$$C: |z - 2 + i| = \sqrt{3}$$

$$\underbrace{z = 1}_{pol}, \underbrace{z = 2i, z = -2i}_{poli}$$

$$\underbrace{dublu}_{simpli}$$

$$\begin{aligned} |1-2+i| &= |-1+i| = \sqrt{2} < \sqrt{3} \Rightarrow z = 1 \in C \\ |2i-1+i| &= |-2+3i| = \sqrt{4+9} = \sqrt{13} > \sqrt{3} \Rightarrow z = 2i \notin C \\ |-2i-2+i| &= |-2-i| = \sqrt{5} > \sqrt{3} \Rightarrow z = -2i \notin C \end{aligned}$$

Cu teorema reziduurilor avem

$$\oint_C \frac{e^z}{(z-1)^2 \cdot (z^2+4)} dz = 2\pi i \operatorname{Res}_{z=1} f(z) = 2\pi i \cdot \lim_{z \to 1} \left(\frac{e^z}{z^2+4}\right)' =$$

$$= 2\pi i \frac{e^z (z^2+4) - e^z \cdot 2z}{(z^2+4)^2} |_{z=1} = 2\pi i e^{\frac{5-2}{25}} = \frac{6\pi i e}{25}$$

(c)
$$\oint_C \frac{tg(\pi z)}{z^3} dz;$$

Soluţie.

$$\lim_{z \to 0} z^2 \cdot f(z) = \lim_{z \to 0} \frac{tg(\pi z)}{z^3} = \pi$$

 π constantă nenulă.

$$C:|z+\frac{i}{2}|=1$$

$$z=0\in C\left(|\tfrac{i}{2}|=\tfrac{1}{2}<1\right)\Rightarrow z=0 \text{ pol de ordin } 2$$

$$\oint_C \frac{tg(\pi z)}{z^3} dz = 2\pi i \mathop{Res}_{z=0} f(z) =$$

$$= 2\pi i \cdot \lim_{z \to 0} \left(\frac{tg(\pi z)}{z}\right)' = 2\pi i \lim_{z \to 0} \frac{\frac{z\pi}{\cos^2 \pi z} - tg\pi z}{z^2} =$$

$$= 2\pi i \lim_{z \to 0} \frac{\pi z - \frac{1}{2} \sin 2\pi z}{z^2} =$$

$$= 2\pi i \lim_{z \to 0} \frac{\pi z - \pi \cos 2\pi z}{2z} =$$

$$= 2\pi i \lim_{z \to 0} 2\pi^2 \frac{\sin 2\pi z}{2z} = 0.$$

Exercițiul 3.23 Calculați integralele raționale:

$$\int_{0}^{2\pi} \frac{d\theta}{\sqrt{2} - \cos \theta};$$

$$\int_{0}^{2\pi} \frac{\sin^2 \theta}{5 - 4\sin \theta} d\theta;$$

$$\int_{0}^{2\pi} \frac{\cos\theta}{13 - 12\cos 2\theta} d\theta;$$

$$\int_{0}^{2\pi} \frac{d\theta}{7 + 6\cos\theta};$$

e)
$$\int_{0}^{2\pi} \frac{d\theta}{8 - 2\sin\theta};$$

Soluție.

a)
$$\int_{0}^{2\pi} \frac{d\theta}{\sqrt{2} - \cos \theta} = \frac{1}{i} \oint_{C} \frac{1}{z \left(\sqrt{2} - \frac{z^{2} + 1}{2z}\right)} dz =$$

$$= \frac{-2}{i} \oint_{C} \frac{dz}{z^{2} - 2\sqrt{2}z + 1} = \frac{-2}{i} \cdot 2\pi i \underset{z=z_{1}}{Res} f(z) =$$

$$= -4\pi \frac{1}{2z - 2\sqrt{2}}|_{z=\sqrt{2}-1} = \frac{-4\pi}{2\sqrt{2} - 2 - 2\sqrt{2}} = 2\pi$$

Am folosit substituţia

$$z = e^{i\theta} \Rightarrow ie^{i\theta}d\theta = dz \Rightarrow d\theta = \frac{dz}{iz}; \theta \in [0, 2\pi] \Rightarrow C : |z| = 1$$

Funcția complexă asociată este:

$$f(z) = \frac{1}{z^2 - 2\sqrt{2}z + 1};$$

Aflăm polii funcției f(z):

$$z^{2} - 2\sqrt{2}z + 1 = 0 \Rightarrow$$

$$z_{1,2} = \frac{2\sqrt{2} \pm 2}{2} = \sqrt{2} \pm 1 = \begin{cases} z_{1} = \sqrt{2} - 1 \in C \\ z_{2} = \sqrt{2} + 1 \notin C. \end{cases}$$

b)
$$\int_{0}^{2\pi} \frac{\sin^{2}\theta}{5 - 4\sin\theta} d\theta = \frac{1}{i} \oint_{C} \frac{\left(\frac{z^{2} - 1}{2iz}\right)^{2}}{5 - 4\frac{(z^{2} - 1)}{2iz}} \frac{dz}{z} =$$

$$= \frac{1}{4} \oint_{C} \frac{(z^{2} - 1)^{2}}{z^{2} \cdot (2z^{2} - 5iz - 2)} dz$$

Funcția

$$f(z) = \frac{(z^2 - 1)^2}{z^2 \cdot (2z^2 - 5iz - 2)}$$

are polii

$$z_0 = 0 \in C$$
 pol dublu,
 $z_2 = 2i \notin C$ pol simplu,
 $z_3 = \frac{i}{2} \in C$ pol simplu.

Cu teorema reziduurilor avem

$$\int_{0}^{2\pi} \frac{\sin^{2}\theta}{5 - 4\sin\theta} d\theta = \frac{1}{4} \cdot 2\pi i \left(\underset{z=0}{Res} f(z) + \underset{z=\frac{i}{2}}{Res} f(z) \right) =$$

$$\cdot \underset{z=0}{Res} f(z) = \left[\frac{(z^{2} - 1)^{2}}{2z^{2} - 5iz - 2} \right]_{|z=0}^{'} = \frac{5i}{4}.$$

$$\cdot \underset{z=\frac{i}{2}}{Res} f(z) = \lim_{z \to \frac{i}{2}} \left(z - \frac{i}{2} \right) \frac{(z^{2} - 1)^{2}}{2z^{2} \left(z - \frac{i}{2} \right) (z - 2i)} = -\frac{25}{12}i.$$

$$\int_{0}^{2\pi} \frac{\sin^{2}\theta}{5 - 4\sin\theta} d\theta = \frac{\pi i}{2} \left(\frac{5i}{4} - \frac{25i}{12} \right) = \frac{5\pi}{12}.$$

$$\int_{0}^{2\pi} \frac{\cos \theta}{13 - 12\cos 2\theta} d\theta;$$

$$z = e^{i\theta}; \quad \cos 2\theta = \frac{z^2 + \frac{1}{z^2}}{2} = \frac{z^4 + 1}{2z^2}$$

$$\int_{0}^{2\pi} \frac{\cos \theta}{13 - 12\cos 2\theta} d\theta = \frac{1}{2i} \oint_{C} \frac{z^{2} + 1}{13z^{2} - 6z^{4} - 6} dz =$$
$$= -\frac{1}{2i} \oint_{C} \frac{z^{2} + 1}{6z^{4} - 13z^{2} + 6} dz.$$

Polii sunt: $z_{1,2} = \pm \sqrt{\frac{3}{2}} \notin C$ respectiv $z_{3,4} = \pm \sqrt{\frac{2}{3}} \in C$

$$\cdot \underset{z=z_3=\sqrt{\frac{2}{3}}}{Res} f(z) = \frac{z^2 + 1}{24z^3 - 13z \cdot 2} \Big|_{z=+\sqrt{\frac{2}{3}}} = \frac{1 + \frac{2}{3}}{\sqrt{\frac{2}{3}} \left(24 \cdot \frac{2}{3} - 13 \cdot 2\right)} = \frac{\sqrt{3}}{2} \cdot \frac{\frac{5}{3}}{-10} = -\frac{1}{6}\sqrt{\frac{3}{2}}$$

$$\cdot \underset{z=-\sqrt{\frac{2}{3}}}{Res} f(z) = \frac{z^2 + 1}{z \left(24z^2 - 26\right)} \Big|_{z=-\sqrt{\frac{2}{3}}} = \frac{1 + \frac{2}{3}}{-\sqrt{\frac{2}{3}} \left(24 \cdot \frac{2}{3} - 13 \cdot 2\right)} =$$

$$= \sqrt{\frac{3}{2}} \cdot \frac{5}{3 \left(16 - 6\right)} = \frac{1}{6} \sqrt{\frac{3}{2}}$$

$$\int_{0}^{2\pi} \frac{\cos \theta}{13 - 12\cos 2\theta} d\theta = \frac{-1}{2i} \cdot 2\pi i \left(-\frac{1}{6}\sqrt{\frac{3}{2}} + \frac{1}{6}\sqrt{\frac{3}{2}} \right) = 0.$$

d

$$\int_{0}^{2\pi} \frac{d\theta}{7 + 6\cos\theta} = \frac{1}{i} \oint_{C} \frac{1}{7 + 3 \cdot \frac{z^{2} + 1}{z}} \cdot \frac{dz}{z} = \frac{1}{i} \oint_{C} \frac{dz}{3z^{2} + 7z + 3} =$$

$$= \frac{1}{i} \cdot 2\pi i \operatorname{Res}_{z = -\frac{7}{6} + \frac{\sqrt{13}}{6}} f(z) = 2\pi \frac{1}{(3z^{2} + 7z + 3)'}|_{|z = -\frac{7}{6} + \frac{\sqrt{13}}{6}} =$$

$$= \frac{2\pi}{6z + 7}|_{z = \frac{-7 + \sqrt{13}}{6}} = \frac{2\pi}{-7 + \sqrt{13} + 7} = \frac{2\pi}{\sqrt{13}}$$

$$f(z) = \frac{1}{3z^{2} + 7z + 3}; C: |z| = 1$$

$$3z^{2} + 7z + 3 = 0 \Leftrightarrow z_{1,2} = \frac{-7 \pm \sqrt{13}}{6};$$

$$|\frac{-7 + \sqrt{13}}{6}| = \frac{7 - \sqrt{13}}{6}$$

$$z_{1} = \frac{-7 + \sqrt{13}}{6} \in C.$$

$$\int_{0}^{2\pi} \frac{d\theta}{8 - 2\sin\theta} = \frac{1}{i} \oint_{C} \frac{1}{8 - \frac{z^2 - 1}{iz}} \cdot \frac{dz}{z} =$$

$$= \oint_{C} \frac{dz}{8iz - z^2 + 1} = -\oint_{C} \frac{dz}{z^2 - 8iz - 1} = -2\pi i \mathop{Res}_{z = (4 - \sqrt{15})i} f(z) =$$

$$=\frac{-\pi}{-\sqrt{15}-i}=\frac{\pi}{\sqrt{15}}$$

unde

$$f(z) = \frac{1}{z^2 - 8iz - 1}, \quad C: |z| = 1$$

$$z^2 - 8iz - 10 = 0 \Leftrightarrow z_{1,2} = \frac{8i \pm 2\sqrt{15}i}{2} = \left(4 \pm \sqrt{15}\right)i$$
 poli simpli;

Doar

$$z = \left(4 - \sqrt{15}\right)i \in C.$$

Exercițiul 3.24 Calculați integralele reale improprii:

a)

$$\int_{0}^{\infty} \frac{dx}{1+x^4};$$

b)

$$\int_{-\infty}^{\infty} \frac{x^2 + 1}{x^4 + 1} dx;$$

c)

$$\int_{0}^{\infty} \frac{x+3}{(x^2-2x+2)^2} dx;$$

d)

$$\oint_C \frac{50z}{z^3 + 2z^2 - 7z + 4} dz;$$

e)
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+4)(x^2+2x+5)} dx.$$

Soluţie.

(a)

$$\int_{0}^{\infty} \frac{dx}{1+x^4} = \frac{1}{2} \int_{0}^{\infty} \frac{dx}{1+x^4} \quad \begin{cases} gr.P + 2 = 2 < 4 = gr.Q \\ Q \neq 0, \text{ pe R.} \end{cases}$$

 $f(z) = \frac{1}{1+z^4}$ funcția complexă asociată care are polii:

$$\begin{split} z^4 &= -1 = e^{i\pi} \Rightarrow z_k = e^{i\frac{\pi + 2k\pi}{4}}, k \in \{0, 1, 2, 3\} \\ z_0 &= e^{\frac{i\pi}{4}}, z_1 = e^{i\frac{3\pi}{4}} z_1, z_2 \in Ss \\ z_2 &= e^{i\frac{5\pi}{4}} = e^{-i\frac{3\pi}{4}} = e^{i\left(2\pi - \frac{3\pi}{4}\right)} = e^{-i\frac{3\pi}{4}} \\ z_3 &= e^{i\frac{7\pi}{4}} = e^{i\left(2\pi - \frac{\pi}{4}\right)} = e^{-i\frac{\pi}{4}} \end{split}$$

$$\begin{aligned} & \mathop{Res}_{z=z_0} f\left(z\right) = \frac{1}{4z^3}\big|_{z=e^{i\frac{\pi}{4}}} = e^{-i\frac{3\pi}{4}} \\ & \mathop{Res}_{z=z_1} f\left(z\right) = \frac{1}{4e^{i\frac{3\pi}{4}}} = \frac{e^{-i\frac{\pi}{4}}}{4} \end{aligned}$$

$$\int_{0}^{\infty} \frac{dx}{1+x^{4}} = \frac{1}{2} \cdot 2\pi i \left(\underset{z=z_{0}}{Res} f(z) + \underset{z=z_{1}}{Res} f(z) \right) =$$

$$= \frac{\pi i}{4} \left(e^{-i\frac{3\pi}{4}} + e^{-i\frac{\pi}{4}} \right) = \frac{\pi i}{4} \left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} \right) =$$
$$= -\pi i^2 \cdot \frac{\sqrt{2}}{4} = \frac{\pi}{2\sqrt{2}}$$

$$\int_{-\infty}^{\infty} \frac{x^2 + 1}{x^4 + 1} dx = 2\pi i \left(\underset{z=e^{i\frac{\pi}{4}}}{Res} f(z) + \underset{z=e^{i\frac{3\pi}{4}}}{Res} f(z) \right) =$$

$$= 2\pi i \left(\frac{z^2 + 1}{4z^3} \Big|_{z=e^{i\frac{\pi}{4}}} + \frac{z^2 + 1}{4z^3} \Big|_{z=e^{i\frac{3\pi}{4}}} \right) =$$

$$= \frac{2\pi i}{4} \left[(1+i) e^{-i\frac{3\pi}{4}} + (1-i) e^{-i\frac{\pi}{4}} \right] =$$

$$= \frac{\pi i}{\sqrt{2} \cdot 2} \left[(1+i) (-1-i) + (1-i) (1-i) \right] =$$

$$= \frac{\pi i}{\sqrt{2} \cdot 2} \left[-(1+i)^2 + (1-i)^2 \right] =$$

$$= \frac{\pi i}{2\sqrt{2}} \left(-2i - 2i \right) = \pi \sqrt{2} \left(-i^2 \right) = \pi \sqrt{2}$$

 $f(z) = \frac{z^2+1}{z^4+1}$ funcția complexă asociată

(c)

$$\int_{-\infty}^{\infty} \frac{x+3}{\left(x^2 - 2x + 2\right)^2} dx$$

 $f\left(z\right)=\frac{z+3}{\left(z^{2}-2z+2\right)^{2}}$ funcția complexă asociată

Gradul numărătorului +2 = 3 < 4 = gradul numitorului

Numitorul nu se anulează în \mathbb{R}

Polii lui $f\left(z\right)$ sunt $:\!z^2-2z+2=0 \Leftrightarrow z_{1,2}=\frac{2\pm\sqrt{4-8}}{2}=1\pm i$ poli dubli

Calculăm rezidul în $z = 1 + i \in Ss$ semiplanul superior

$$\operatorname{Res}_{z=1+i} f(z) = \lim_{z \to 1+i} \left[(z - 1 - i)^2 \cdot \frac{z+3}{(z-1-i)^2 (z-1+i)^2} \right]' =$$

$$= \frac{(z-1+i)^2 - 2(z+3)(z-1+i)}{(z-1+i)^4} |_{z=1+i} =$$

$$= \frac{(z-1+i) - 2(z+3)}{(z-1+i)^3} |_{z=z+i} = \frac{2i - 2(4+i)}{(2i)^3} = \frac{-8}{-8i} = \frac{1}{i}.$$

Cu teorema reziduurilor avem:

$$\int_{-\infty}^{\infty} \frac{x+3}{(x^2-2x+2)^2} dx = \oint_C f(z) dz = 2\pi i \mathop{Res}_{z=1+i} f(z) = \frac{2\pi i}{i} = 2\pi,$$

C = contur neted ce conține toți polii lui f(z) din Ss.

(d)
$$\oint_C \frac{50z}{z^3 + 2z^2 - 7z + 4} dz,$$

$$C: |z-2| = 2.$$

$$f(z) = \frac{50z}{z^3 - z^2 + 3z^2 - 3z - (4z - 4)}$$

dar

$$z^{3} - z^{2} = z^{2} (z - 1)$$

$$3z^{2} - 3z = 3z (z - 1) \Rightarrow$$

$$(4z - 4) = 4 (z - 1)$$

$$f(z) = \frac{50z}{(z - 1)(z - 1)(z + 4)} =$$

$$= \frac{50z}{\left(z-1\right)^2\left(z+4\right)} \Rightarrow$$

$$z = 1 \text{ pol dublu, } z = 1 \in C$$

$$z = -4 \text{ pol simplu, } z = -4 \notin C \Rightarrow$$

Cu teorema rezuduurilor

$$\oint_C \frac{50z}{(z-1)^2 (z+4)} dz = 2\pi i \operatorname{Res}_{z=1} f(z) =$$

$$= 2\pi i \left(\frac{50z}{z+4}\right)'|_{z=1} = 2\pi i \cdot 50 \left(1 - \frac{4}{z+4}\right)'|_{z=1} =$$

$$= 100\pi i \frac{4}{(z+4)}|_{z=1} = \frac{400\pi i}{5} = 16\pi i.$$

(e)
$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+4)(x^2+2x+5)} dx =$$

$$= 2\pi i \left(\underset{z=2i}{Res} f(z) + \underset{z=-1+2i}{Res} f(z) \right) =$$

$$= 2\pi i \left(\frac{4}{17} + \frac{i}{17} - \frac{4}{17} - \frac{13i}{4 \cdot 17} \right) =$$

$$= -\frac{\pi i^2 \cdot 9}{2 \cdot 17} = \frac{9\pi}{34}.$$

$$\cdot \underset{z=2i}{Res} f(z) = \frac{z^2}{2z(z^2+2z+5) + (z^2+4)(2z+2)}|_{z=2i} =$$

$$= \frac{-4}{4i(-4+4i+5)} = \frac{-1}{i(1+4i)} =$$

$$= \frac{-1}{-4+i} = \frac{4+i}{17} = \frac{4}{17} + \frac{i}{17}$$

$$\cdot \underset{z=-1+2i}{Res} f(z) = \frac{(-1+2i)^2}{4i(1-4i-+)} =$$

$$= \frac{1-4i-4}{4i(1-4i)} = \frac{-3-4i}{4(4+i)} = \frac{(-3-4i)(4-i)}{4\cdot 17} =$$

$$= \frac{-16-13i}{4\cdot 17} = -\frac{4}{17} - \frac{13}{4\cdot 17}i.$$

Exercițiul 3.25 Calculați următoarele integrale de tip Fourier:

a)
$$\int_{-\infty}^{\infty} \frac{\cos 3x}{k^2 + x^2} dx, \quad \int_{-\infty}^{\infty} \frac{\sin 3x}{k^2 + x^2} dx; k > 0;$$

b)
$$\int_{-\infty}^{\infty} \frac{\sin x}{x^4 + 1} dx;$$

c)
$$\int_{0}^{\infty} \frac{\cos ax}{x^4 + 4b^4} dx, \quad a, b > 0;$$

d)
$$\int_{-\infty}^{\infty} \frac{x \sin 2x}{x^2 - 2x + 5} dx.$$

Soluție.

(a)
$$\int_{-\infty}^{\infty} \frac{\cos 3x}{k^2 + x^2} dx, \int_{-\infty}^{\infty} \frac{\sin 3x}{k^2 + x^2} dx; k > 0$$

 $f(z) = \frac{e^{i3z}}{k^2 + z^2}$ funcție complexă asociată cu polii simpli $z_{1.2} = \pm ki$. Retinem $z_1 = ki \in Ss$.

$$Res_{z=ki} f(z) = \frac{e^{i3z}}{2z}|_{z=ik} = \frac{e^{-3k}}{2ik} = -\frac{e^{-3k}}{2k}i$$

$$\int_{-\infty}^{\infty} \frac{\cos 3x}{k^2 + x^2} dx = -2\pi Im \mathop{Res}_{z=ik} f(z) = -2\pi \cdot \frac{-e^{-3k}}{2k} = \frac{\pi}{k} \cdot e^{-3k}$$

$$\cdots \int_{-\infty}^{\infty} \frac{\sin 3x}{k^2 + x^2} dx = 2\pi \operatorname{Im} \operatorname{Res}_{z=ik} f(z) = 0.$$

$$\int_{0}^{\infty} \frac{\sin x}{x^4 + 1} dx;$$

 $f(z) = \frac{e^{iz}}{z^4+1}$ funcția complexă asociată Polii din Ss sunt:

$$z_1 = e^{i\frac{\pi}{4}}$$
$$z_2 = e^{i\frac{3\pi}{4}}$$

$$\begin{split} \mathop{Res}_{z=e^{i\frac{\pi}{4}}} f\left(z\right) &= \frac{e^{iz}}{4z^{3}} \big|_{z=e^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2}(1+i)} = \frac{e^{i\frac{\sqrt{2}}{2}(1+i)}}{4e^{i\frac{3\pi}{4}}} = \\ &= \frac{e^{\frac{\sqrt{2}}{2}(-1+i)}}{4} \cdot e^{-i\frac{3\pi}{4}} \stackrel{Euler}{=} \frac{1}{4} \cdot e^{-\frac{\sqrt{2}}{2}} \cdot e^{\frac{\sqrt{2}}{2}} \cdot \left(-\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right) \stackrel{Euler}{=} \end{split}$$

$$= -\frac{1}{4\sqrt{2}}e^{-\frac{\sqrt{2}}{2}}(1+i)\left(\cos\frac{\sqrt{2}}{2} + i\sin\frac{\sqrt{2}}{2}\right)$$

$$\Rightarrow \cdot Re \underset{z=e^{\frac{i\pi}{4}}}{Res} f(z) = -\frac{1}{4\sqrt{2}}e^{-\frac{\sqrt{2}}{2}}\left(\cos\frac{\sqrt{2}}{2} - \sin\frac{\sqrt{2}}{2}\right) =$$

$$= \frac{1}{4\sqrt{2}}e^{-\frac{\sqrt{2}}{2}}\left(\sin\frac{\sqrt{2}}{2} - \cos\frac{\sqrt{2}}{2}\right)$$

$$\cdot \cdot \underset{z=e^{i\frac{3\pi}{4}}}{Res} f(z) = \frac{e^{i\left(-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)}}{4e^{i\frac{\pi}{4}}} =$$

$$= \frac{e^{-\frac{\sqrt{2}}{2}}}{4\sqrt{2}}\left(\cos\frac{1}{\sqrt{2}} - i\sin\frac{1}{\sqrt{2}}\right)(1-i) \Rightarrow$$

$$\cdot \cdot Re \underset{z=e^{i\frac{3\pi}{4}}}{Res} f(z) = \frac{e^{-\frac{\sqrt{2}}{2}}}{4\sqrt{2}}\left(\cos\frac{\sqrt{2}}{2} - \sin\frac{\sqrt{2}}{2}\right) \Rightarrow$$

$$\int_{-\infty}^{\infty} \frac{\sin x}{x^4 + 1} dx = 2\pi \sum_{z=e^{i\frac{3\pi}{4}}} Ress_{z=e^{i\frac{3\pi}{4}}} f(z) =$$

$$= 2\pi \left[Re \underset{z=e^{i\frac{\pi}{4}}}{Ress_{z=e^{i\frac{\pi}{4}}}} f(z) + Re \underset{z=e^{i\frac{3\pi}{4}}}{Ress_{z=e^{i\frac{3\pi}{4}}}} f(z)\right] = 0$$

$$\cdot \cdot \int_{-\infty}^{\infty} \frac{\cos x}{x^4 + 1} dx = -2\pi \left(Im \underset{z=e^{i\frac{\pi}{4}}}{Ress_{z=e^{i\frac{\pi}{4}}}} f(z) + Im \underset{z=e^{i\frac{3\pi}{4}}}{Ress_{z=e^{i\frac{3\pi}{4}}}} f(z)\right) =$$

$$= -2\pi \left(-\frac{e^{-\frac{\sqrt{2}}{2}}}{4\sqrt{2}} \left(\cos\frac{\sqrt{2}}{2} + \sin\frac{\sqrt{2}}{2}\right) +$$

$$+\frac{e^{-\frac{\sqrt{2}}{2}}}{4\sqrt{2}}\left(-\cos\frac{\sqrt{2}}{2} - \sin\frac{\sqrt{2}}{2}\right)\right) =$$

$$= \pi e^{-\frac{\sqrt{2}}{2}}\left(\sin\frac{\pi}{4}\cos\frac{\sqrt{2}}{2} + \cos\frac{\pi}{4}\sin\frac{\sqrt{2}}{2}\right) =$$

$$= \pi e^{-\frac{\sqrt{2}}{2}} \cdot \sin\left(\frac{\pi}{4} + \frac{\sqrt{2}}{2}\right)$$

(c)
$$\int_{0}^{\infty} \frac{\cos ax}{x^4 + 4b^4} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos ax}{x^4 + 4b^4} dx$$

 $f\left(z\right)=\frac{e^{iaz}}{z^4+4b^4}$ are polii = rădăcinile ecuației binome

$$z^{4} + 4b^{4} = 0 \Leftrightarrow z^{4} = -4b^{4} = 4b^{4}e^{i\pi} \Rightarrow z_{k} = \sqrt{2}b \cdot e^{i\frac{\pi + 2k\pi}{4}}, k \in \{0, 1, 2, 3\}$$

$$z_{0} = \sqrt{2}b \cdot e^{i\frac{\pi}{4}}, z_{1} = \sqrt{2}b \cdot e^{i\frac{3\pi}{4}}, z_{2} = \sqrt{2}b \cdot e^{i\frac{5\pi}{4}}, z_{3} = \sqrt{2}b \cdot e^{i\frac{7\pi}{4}}, z_{0}, z_{1} \in Ss; z_{2}z_{3} \in Si$$

$$\int_{0}^{\infty} \frac{\cos ax}{x^4 + 4b^4} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos ax}{x^4 + 4b^4} dx =$$

$$= \frac{1}{2} (-2\pi) \left\{ Im \left(\underset{z=z_0}{Res} f(z) \right) + Im \left(\underset{z=z_1}{Res} f(z) \right) \right\} =$$

$$= -\pi Im \left\{ \left(\underset{z=z_0}{Res} f(z) \right) + \left(\underset{z=z_1}{Res} f(z) \right) \right\} =$$

$$= -\pi \left\{ Im \left(\underset{z=z_0}{Res} f(z) \right) + Im \left(\underset{z=z_1}{Res} f(z) \right) \right\}$$

$$\begin{aligned} \cdot \mathop{Res}_{z=z_0} f(z) &= \frac{e^{iaz}}{(z^4 + 4b^4)'} \Big|_{z=\sqrt{2}b \cdot e^{i\frac{\pi}{4}}} = \frac{e^{ia\sqrt{2}b\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)}}{4 \cdot 2\sqrt{2}b^3 e^{i\frac{3\pi}{4}}} = \\ &= \frac{e^{-ab}}{8\sqrt{2}b^3} \cdot e^{iab} \cdot e^{-i\frac{3\pi}{4}} = -\frac{e^{-ab}}{8\sqrt{2}b^3} \cdot e^{i\left(ab + \frac{\pi}{4}\right)} \end{aligned}$$

deoarece

$$e^{-i\frac{3\pi}{4}} = \cos\frac{3\pi}{4} - i\sin\frac{3\pi}{4} = -\cos\frac{\pi}{4} - i\sin\frac{\pi}{4} =$$
$$= -e^{i\frac{\pi}{4}}e^{-i\frac{3\pi}{4}} = -e^{i\frac{\pi}{4}}.$$

$$\begin{aligned}
& \cdot \cdot \operatorname{Res}_{z=z_{1}} f(z) = \frac{e^{iaz}}{4z^{3}} \Big|_{z=\sqrt{2}b \cdot e^{i\frac{3\pi}{4}}} = \frac{e^{ia\sqrt{2}b\left(-\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)}}{4 \cdot 2\sqrt{2}b^{3}e^{i\frac{9\pi}{4}}} = \\
& = \frac{e^{-ab}}{8\sqrt{2}b^{3}} \cdot e^{-iab} \cdot e^{-i\frac{\pi}{4}} = \frac{e^{-ab}}{8\sqrt{2}b^{3}} \cdot e^{-i\left(ab + \frac{\pi}{4}\right)}
\end{aligned}$$

deoarece

$$e^{i\frac{9\pi}{4}} = e^{i\frac{\pi}{4}}$$

(iz are perioada π .)

$$\mathop{Res}_{z=z_{0}} f(z) + \mathop{Res}_{z=z_{1}} f(z) = -\frac{e^{-ab}}{4\sqrt{2}b^{3}} \underbrace{\left(e^{i\left(ab + \frac{\pi}{4}\right)} - e^{i\left(ab + \frac{\pi}{4}\right)}\right)}_{i\sin\left(ab + \frac{\pi}{4}\right)}$$

$$\Rightarrow Im\left\{\underset{z=z_{0}}{Res} f\left(z\right) + \underset{z=z_{1}}{Res} f\left(z\right)\right\} = -\frac{e^{-ab}}{4\sqrt{2}b^{3}} \cdot \sin\left(ab + \frac{\pi}{4}\right)$$

$$\Rightarrow \int_{0}^{\infty} \frac{\cos ax}{x^{4} + 4b^{4}} dx = -\pi Im \left\{ \underset{z=z_{0}}{\operatorname{Res}} f\left(z\right) + \underset{z=z_{1}}{\operatorname{Res}} f\left(z\right) \right\} =$$

$$= -\pi \cdot \frac{e^{-ab}}{4\sqrt{2}b^{3}} \cdot \sin \left(ab + \frac{\pi}{4}\right) = \frac{\pi e^{-ab}}{4\sqrt{2}b^{3}} \cdot \sin \left(ab + \frac{\pi}{4}\right)$$

$$\cdot z_{0} \text{ punct singular aparent } \Leftrightarrow (\exists) \lim_{z \to z_{0}} f\left(z\right) = \text{constantă finită}$$

$$\cdot z_{0} \text{ pol pentru } f\left(z\right) \Leftrightarrow \lim_{z \to z_{0}} |f\left(z\right)| = +\infty, f\left(z\right) = \frac{\sin z}{z(z-i)^{3}(z+3)}$$

$$\cdot \lim_{z \to i} |f\left(z\right)| = \lim_{z \to i} \left|\frac{\sin z}{z\left(z+3\right)}\right| \cdot \lim_{z \to i} \left|\frac{1}{(z-i)^{3}}\right| =$$

$$= \left|\frac{\sin i}{i\left(i+3\right)}\right| \cdot \lim_{z \to i} \frac{1}{(z-i)^{3}} = \frac{sh1}{\sqrt{10}} \cdot \lim_{x \to 0} \frac{1}{|x+i\left(y-1\right)|^{3}} =$$

$$y \to 1$$

$$= \frac{sh1}{\sqrt{10}} \cdot \lim_{x \to 0} \frac{1}{\left[x^{2} + (y-1)^{2}\right]^{\frac{3}{2}}} = \frac{sh1}{\sqrt{10}} \cdot \frac{1}{0^{+}} = +\infty$$

 $\Rightarrow z = i \text{ pol triplu}$

$$|x + i(y - 1)|^{3} = \left[x^{2} + (y - 1)^{2}\right]^{\frac{3}{2}}$$

$$\sin i = i \cdot sh1 \Rightarrow \frac{\sin i}{i(i + 3)} = \frac{i \cdot sh1}{i(i + 3)}$$

$$\left|\frac{sh1}{i + 3}\right| = \frac{|sh1|}{\sqrt{10}} = \frac{sh1}{\sqrt{10}}$$

$$\cdot \cdot f(z) = \frac{1}{z - 2i}e^{\frac{1}{z}};$$

$$\lim_{z \to 0} f(z) = -\frac{1}{2i} \lim_{z \to 0} e^{\frac{1}{z}}$$

Facem $z \to 0$ după

$$\begin{cases} x \to 0 \\ y = 0 \end{cases} \Rightarrow \begin{cases} \lim_{x \to 0} e^{\frac{1}{x}} = e^{-\infty} = 0 \\ x > 0 \\ \lim_{x \to 0} e^{\frac{1}{x}} = e^{\infty} = \infty \end{cases} \Rightarrow \lim_{x \to 0} e^{\frac{1}{x}}$$

SAU:

Considerăm mulțimea:

$$A = \{ z \in \mathcal{C} | z = x \in \mathbb{R} \},\,$$

funcția $g\left(z\right)=e^{\frac{1}{z}}$ și restricția ei la $A,g_{/A}^{\left(z\right)}=e^{\frac{1}{x}}$

$$\lim_{x \to 0} e^{\frac{1}{x}} = e^{-\infty} = 0 \neq \infty = e^{\infty} = \lim_{x \to 0} e^{\frac{1}{x}}$$

$$x < 0 \qquad x > 0$$

$$\Rightarrow \lim_{x \to 0} e^{\frac{1}{x}} \Rightarrow \lim_{z \to 0} g_{/A}\left(z\right) \Rightarrow \lim_{z \to 0} g\left(z\right) \Rightarrow$$

 $\Rightarrow z=0,$ punct singular esențial.

$$\int_{-\infty}^{\infty} \frac{x \sin 2x}{x^2 - 2x + 5} dx$$

 $f\left(z\right)=\frac{ze^{i2z}}{z^{2}-2z+5}$ funcția complexă asociată

$$z^2 - 2z + 5 = 0 \Rightarrow z_{1,2} = \frac{2 \pm 4i}{2} = 1 \pm 2i$$
 poli ordin 1.
$$z = 1 + 2i \in Ss$$

$$\int_{-\infty}^{\infty} \frac{x \sin 2x}{x^2 - 2x + 5} dx = 2\pi Re \operatorname{Res}_{z=1+2i} f(z) =$$

$$= 2\pi \cdot Re \frac{z \cdot e^{i2z}}{2z - 2}|_{z=1+2i} = 2\pi \cdot Re \frac{(1+2i) e^{2i(1+2i)}}{2+4i - 2} \stackrel{Euler}{=}$$

$$= 2\pi \cdot Re \frac{e^{-4}}{4i} (1+2i) (\cos 2 + i \sin 2) =$$

$$= \frac{\pi}{2e^4} Re (2-i) (\cos 2 + i \sin 2) = \frac{\pi}{2e^4} (2\cos 2 + \sin 2).$$

3.3 Exerciții propuse.

Exercițiul 3.26 Determinați punctele singulare ale următoarelor funcții complexe (precizați și tipul lor) și calculați reziduurile corespunzătoare:

a)
$$f(z) = \frac{1}{4+z^2};$$

$$f(z) = \frac{z^2}{z^4 - 1};$$

c)
$$f(z) = \frac{\cos z}{z^6};$$

$$f(z) = \tan z.$$

Exercițiul 3.27 Folosind teorema reziduurilor calculați integralele:

a)
$$\oint\limits_{|z|=1} \frac{\sin z}{z^4} dz;$$

b)
$$\oint\limits_{|z|=\frac{3}{2}} \frac{9z+i}{z^3+z} dz;$$

c)
$$\oint_{|z|=1} \frac{\cosh z}{z^2 - 3iz} dz;$$

d)
$$\oint_{|z|=1} \frac{1 - 4z + 6z^2}{(z^2 + \frac{1}{4})(2-z)} dz;$$

e)
$$\oint_{|z+\frac{i}{2}|=1} \frac{\tan(\pi z)}{(z^3)} dz;$$

f)
$$\oint_{|z|=1} \frac{30z^2 - 23z + 5}{(2z-1)^2(3z-1)} dz;$$

g)
$$\oint_C f(z)dz;$$
 unde
$$f(z) = \frac{ze^{\pi z}}{(z^4-16)+ze^{\frac{\pi}{z}}}, C: 9x^2+y^2=9.$$

Exercițiul 3.28 Calculați integralele reale:

a)
$$\int_{-\infty}^{\infty} \frac{x}{x^4 + 1} dx;$$

b)
$$\int_{-\infty}^{\infty} \frac{1}{x^6 + 1} dx;$$

c)
$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 16} dx;$$

d)
$$\int_{-\infty}^{\infty} \frac{1}{(x^2 - 2x + 5)^2} dx;$$

e)
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)(x^2+9)} dx;$$

CAPITOLUL 3. REZIDUURI. INTEGRALE IMPROPRII 134 REZOLVATE CU REZIDUURI.

f)
$$\int_{0}^{2\pi} \frac{1}{37 - 12\cos\theta} d\theta;$$

g)
$$\int_{0}^{2\pi} \frac{1}{5 - 4\sin\theta} d\theta;$$

h)
$$\int_{0}^{2\pi} \frac{1 + 4\cos\theta}{17 - 8\cos\theta} d\theta;$$

i)
$$\int_{-\infty}^{\infty} \frac{\cos 4x}{x^4 + 5x^2 + 4} dx;$$

$$\int_{-\infty}^{\infty} \frac{\sin 2x}{(x^2 + 2x + 2)^2} dx.$$

Capitolul 4

Transformata Fourier (TF). Transformata Fourier discretă (TFD).

4.1 Transformata Fourier

Definiția 4.1

$$L^{1}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{C} | (L) \int_{-\infty}^{\infty} |f(t)| dt < \infty \}.$$

Observația 4.2

- 1. Dacă f este integrabilă Riemann pe \mathbb{R} atunci f este integrabilă Lebesque pe \mathbb{R} ;
- 2. Fie

$$f(t) = \begin{cases} 1, & t \in \mathbb{Q}, \\ 0, & t \notin \mathbb{Q}, \end{cases}$$

atunci f nu este integrabilă Riemann, dar este integrabilă Lebesque;

$$(L)\int_{\mathbb{R}}f(t)dt=0.$$

3.

$$\begin{cases}
f \in L^{1}(\mathbb{R}) \\
g(t) = f(t)e^{-i\omega t} \ (\omega \in \mathbb{R}) \\
|g(t)| = |f(t)|
\end{cases} \Rightarrow g \in L^{1}(\mathbb{R});$$

4. folosind criteriul comparației avem

$$\left. \begin{array}{l} f \in L^1(\mathbb{R}) \\ f(t) = u(t) + iv(t) \end{array} \right\} \Rightarrow u, v \in L^1(\mathbb{R});$$

deoarece

$$|u(t)|, |v(t)| \le \sqrt{u^2(t) + v^2(t)} = |f(t)|.$$

Definiția 4.3 Fie $f \in L^1(\mathbb{R})$. Funcția

$$F: \mathbb{R} \to \mathbb{C}, F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

se numește transformata Fourier a lui f, iar aplicația care asociază fiecărui f din $L^1(\mathbb{R})$ transformata sa Fourier se numește transformarea Fourier

$$f \stackrel{\mathcal{F}}{\leadsto} F \ (F = \mathcal{F}[f]).$$

Notație $F(\omega) = \widehat{f}(\omega)$ dacă $F = \mathcal{F}[f]$.

Observația 4.4

- 1. Funcția f se numește semnal; F se numește spectrul semnalului f sau funcția spectrală;
- 2. $f(t), t \in \mathbb{R}$ semnal continual;
- 3. $f: \mathbb{Z} \to \mathbb{C}$ semnal digital;
- 4. t timp sau spaţiu;
- 5. $e^{-i\omega t} = \cos \omega t i \sin \omega t$;
- 6. $\cos \omega (t+T) = \cos \omega t \Rightarrow \omega T = 2\pi \Rightarrow T = \frac{2\pi}{\omega} \Leftrightarrow \omega = \frac{2\pi}{T} = 2\pi \nu;$
- 7. $[\omega] = H_z \rightsquigarrow \text{freevenţă}.$

Exemplul 4.5

1) $\Pi(t) = \begin{cases} 1, & |t| \le 1, \\ 0, & |t| > 1. \end{cases}$

"top-hat", $f \leadsto$ funcția dreptunghi.

$$\Pi \in L^{1}(\mathbb{R}) \Rightarrow \exists \widehat{\Pi}(\omega) = \int_{-\infty}^{\infty} \Pi(t)e^{-i\omega t}dt =$$

$$= \int_{-1}^{1} \Pi(t)e^{-i\omega t}dt = -\frac{1}{i\omega}e^{-i\omega t}|_{-1}^{1} = \frac{e^{-i\omega} - e^{i\omega}}{-i\omega} =$$

$$= 2\frac{\sin \omega}{\omega}.$$

$$\widehat{\Pi}(0) = \int_{-\infty}^{1} dt = 2 \Rightarrow \widehat{\Pi}(\omega) = 2\operatorname{sa}(\omega),$$

unde sa reprezintă funcția sinus atenuat și este definit astfel:

$$sa(\omega) = \begin{cases} \frac{\sin \omega}{\omega}, & \omega \neq 0, \\ 1, & \omega = 0. \end{cases}$$

$$\Lambda(t) = \begin{cases} 1 - |t|, & |t| \leq 1, \\ 0, & |t| > 1, \end{cases}$$

$$\widehat{\Lambda}(\omega) = \int_{-\infty}^{\infty} \Lambda(t)e^{-i\omega t}dt = \int_{-1}^{1} (1 - |t|)e^{-i\omega t}dt =$$

$$= \int_{-1}^{1} (1 - |t|)\cos(\omega t)dt - i\int_{-1}^{1} (1 - |t|)\sin(\omega t)dt =$$

$$= 2\int_{0}^{1} (1 - |t|)\cos(\omega t)dt =$$

$$= 2(1 - t)\frac{\sin \omega t}{\omega}|_{0}^{1} + 2\int_{0}^{1} \frac{\sin \omega t}{\omega}dt =$$

$$= -\frac{2}{\omega^{2}}\cos \omega t|_{0}^{1} = \frac{2}{\omega^{2}}(1 - \cos \omega) = \frac{4}{\omega^{2}}\sin^{2}\frac{\omega}{2} =$$

$$= \left(\frac{\sin\frac{\omega}{2}}{\frac{\omega}{2}}\right)^{2}.$$

$$\widehat{\Lambda}(0) = \int_{-\infty}^{\infty} \Lambda(t)dt = \int_{-1}^{1} (1 - |t|)dt =$$

$$= 2\int_{0}^{1} (1 - t)dt = 2\left(1 - \frac{1}{2}\right) = 1.$$

$$\widehat{\Lambda}(\omega) = \begin{cases} \left(\frac{\sin\frac{\omega}{2}}{\frac{\omega}{2}}\right)^{2}, & \omega \neq 0 \\ 1, & \omega = 0 \end{cases} = \left(\sin\frac{\omega}{2}\right)^{2}.$$

3)
$$f(t) = e^{-a|t|}, \quad a > 0.$$

$$F(\omega) = \int_{-\infty}^{0} e^{at} e^{-i\omega t} dt + \int_{0}^{\infty} e^{-at} e^{-i\omega t} dt =$$

$$= \int_{-\infty}^{0} e^{(a-i\omega)t} dt + \int_{0}^{\infty} e^{-(a+i\omega)t} dt =$$

$$= \frac{1}{a-i\omega} e^{(a-i\omega)t}|_{-\infty}^{0} - \frac{1}{a+i\omega} e^{-(a+i\omega)t}|_{0}^{\infty} =$$

$$= \frac{1}{a-i\omega} + \frac{1}{a+i\omega} = \frac{2a}{a^2 + \omega^2}.$$

4)
$$f(t) = \begin{cases} 0, & t < 0 \\ e^{-at}, & t \ge 0 \end{cases} \Rightarrow \widehat{F}(\omega) = \frac{1}{a + i\omega}.$$

Proprietatea 4.6 $f \in L^1(\mathbb{R}), F = \mathcal{F}[f]$. Atunci

- 1) F mărginită;
- 2) $\lim_{\omega \to \pm \infty} F(\omega) = 0$;
- 3) F uniform continuă pe \mathbb{R} ;

Proprietatea 4.7 $f, g \in L^1(\mathbb{R}), \ \widehat{f} = \widehat{g} \Rightarrow f = g \text{ a.p.t.}$ $(f(t) = g(t), \forall t \in \mathbb{R} \backslash A, \ \text{măs}(A) = 0).$

Proprietatea 4.8 (teorema de inversare 1) $f \in L^1(\mathbb{R})$, $F = \mathcal{F}[f]$, f cu variație mărginită pe orice interval din \mathbb{R} rezultă:

$$\frac{f(t+0) + f(t-0)}{2} = \frac{1}{2\pi} (vp) \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega.$$

Explicații: Dacă f cu variație mărginită intervalul [a, b] rezultă că $\exists M > 0$ astfel încât

$$\sum_{k=1}^{n} |f(t_k) - f(t_{k-1})| < M$$

pentru orice diviziune

$$a = t_0 < t_1 < \dots < t_n = b.$$

Observația 4.9 f cu variație mărginită pe intervalul [a,b] rezultă

- a) f mărginită pe [a, b];
- b) f integrabilă pe [a, b];
- c) eventualele puncte de discontinuitate ale lui f sunt de prima speță, iar mulțimea acestora este cel mult numărabilă (finită sau numărabilă);

Proprietatea 4.10 (teorema de inversare 2) f continuă, $F \in L^1(\mathbb{R})$ rezultă

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega,$$

în particular,

$$\int_{-\infty}^{\infty} F(\omega)d\omega = 2\pi f(0).$$

Definiția 4.11 Funcțiile monotone pe porțiuni și netede pe porțiuni se numesc funcții cu variație mărginită.

Exercițiul 4.12 Să se reprezinte funcția dreptunghiulară printro integrală Fourier.

$$\Pi(t) \rightsquigarrow \widehat{\Pi}(\omega) = 2\mathrm{sa}(\omega),$$

sa $\notin L^1(\mathbb{R})$, Π monotonă pe porțiuni, rezultă din teorema de inversare 1:

$$\frac{\Pi(t+0) + \Pi(t-0)}{2} = \frac{1}{2\pi} (vp) \int_{-\infty}^{\infty} \widehat{\Pi}(\omega) e^{i\omega t} d\omega =$$

$$= \frac{1}{2\pi} \lim_{r \to \infty} \int_{-r}^{r} \widehat{\Pi}(\omega) e^{i\omega t} d\omega =$$

$$= \frac{1}{2\pi} \lim_{r \to \infty} \int_{-r}^{r} \frac{2\sin \omega}{\omega} e^{i\omega t} d\omega,$$

 $dar e^{i\omega t} = \cos \omega t + i \sin \omega t$, deci

$$= \frac{1}{\pi} \lim_{r \to \infty} \int_{-r}^{r} \frac{\sin \omega}{\omega} \cos \omega t d\omega +$$

$$+ \frac{i}{\pi} \lim_{r \to \infty} \int_{-r}^{r} \frac{\sin \omega}{\omega} \sin \omega t d\omega =$$

$$= \frac{2}{\pi} \lim_{r \to \infty} \int_{0}^{r} \frac{\sin \omega}{\omega} \cos \omega t d\omega =$$

$$= \frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \omega}{\omega} \cos \omega t d\omega,$$

adică reprezentarea lui Π printr-o integrală Fourier.

Exercițiul 4.13 Din exemplul (4.5) punctul 3) avem $f(t) = e^{-a|t|} \Rightarrow F(\omega) = \frac{2a}{\omega^2 + a^2}$, f continuă, $F \in L^1(\mathbb{R})$. Atunci cu teorema de inversare avem:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2a}{\omega^2 + a^2} (\cos \omega t + i \sin \omega t) =$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{2a}{\omega^2 + a^2} \cos \omega t d\omega +$$

$$+ \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{2a}{\omega^2 + a^2} \sin \omega t d\omega =$$

$$= \frac{1}{\pi} \lim_{r \to \infty} \int_{-r}^{r} \frac{2a}{\omega^2 + a^2} \cos \omega t d\omega +$$

$$+ \frac{i}{\pi} \lim_{r \to \infty} \int_{-r}^{r} \frac{2a}{\omega^2 + a^2} \sin \omega t d\omega =$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \frac{2a}{\omega^2 + a^2} \cos \omega t d\omega \Rightarrow$$

$$f(t) = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \omega t}{\omega^2 + a^2} d\omega \Rightarrow$$

$$f(t) = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos \omega t}{\omega^2 + a^2} d\omega \Rightarrow$$

$$\int_{0}^{\infty} \frac{\cos \omega t}{\omega^2 + a^2} d\omega = \frac{\pi}{2a} e^{-a|t|}.$$

Observația 4.14 f cu variație mărginită intervalul [a,b] rezultă

- a) $F(\omega)$ este funcția spectrală a semnalului f;
- b) ω este domeniul de frecvențe;
- c) $F(\omega) = 0$ pentru orice $|\omega| > \Omega$ (f se numește semnal cu bandă de frecvență limitată).

$$f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \leadsto (L) \int_{\mathbb{R}} |f(t)|^2 dt < \infty.$$

Rezultă $F \in L^2(\mathbb{R})$ și

$$2\pi \int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega.$$

Observația 4.16 $L^2(\mathbb{R})$ spațiu vectorial cu produsul scalar

$$\langle f, g \rangle \stackrel{def.}{=} \int_{\mathbb{R}} f(t) \overline{g(t)} dt;$$

și norma

$$||f||_{L^2(\mathbb{R})} \stackrel{def.}{=} \sqrt{\langle f, f \rangle} = \left(\int_{\mathbb{R}} |f(t)|^2 dt \right)^{1/2};$$

 $|F(\omega)|^2$ este spectrul de energie al semnalului f.

Exemplul 4.17 $f(t) = e^{-a|t|}, a > 0, f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}),$ $F(\omega) = \frac{2a}{\omega^2 + a^2}$. Cu teorema energiei avem:

$$2\pi \int_{-\infty}^{\infty} e^{-2a|t|} dt =$$

$$= \int_{-\infty}^{\infty} \left(\frac{2a}{\omega^2 + a^2}\right)^2 d\omega \Rightarrow$$

$$\int_{-\infty}^{\infty} \left(\frac{2a}{\omega^2 + a^2}\right)^2 d\omega = 4\pi \int_{0}^{\infty} e^{-2at} dt =$$

$$= -\frac{4\pi}{2a} e^{-2at}|_{0}^{\infty} = \frac{2\pi}{a} \Rightarrow$$

$$2 \cdot 4a^2 \int_0^\infty \frac{d\omega}{(\omega^2 + a^2)^2} = \frac{2\pi}{a} \Rightarrow$$
$$\int_0^\infty \frac{d\omega}{(\omega^2 + a^2)^2} = \frac{\pi}{4a^3}.$$

Proprietatea 4.18 (formula Parseval) Fie $f, g \in L^1(\mathbb{R}) \Rightarrow f \cdot \widehat{g}, \widehat{f} \cdot g \in L^1(\mathbb{R})$ şi are loc relaţia:

$$\int_{-\infty}^{+\infty} f(t) \cdot \widehat{g}(t) dt = \int_{-\infty}^{+\infty} \widehat{f}(t) \cdot g(t) dt.$$

Exercițiul 4.19 Fie $f(t) = H(t+a) - H(t-a) = \begin{cases} 1, |t| < a \\ 0, |t| \ge a \end{cases}$ și $g(t) = e^{-at}H(t)$. Avem $\widehat{f}(t) = \frac{\sin at}{t}$ și $\widehat{g}(t) = \frac{1}{a+it}$. Cu proprietatea (4.18) avem:

$$\int_0^{+\infty} \frac{\sin at}{t} \cdot e^{-at} dt = \int_{-\infty}^{+\infty} f(t) \cdot \frac{1}{a+it} dt =$$

$$= \int_{-a}^a \frac{a-it}{a^2+t^2} dt = 2a \int_0^a \frac{dt}{a^2+t^2} =$$

$$= \frac{2a}{a} \arctan \frac{t}{a} \Big|_0^a = 2\frac{\pi}{4} = \frac{\pi}{2}.$$

Definiția 4.20 Dacă f și g sunt funcții local integrabile pe $\mathbb R$ și există

$$\int_{-\infty}^{+\infty} f(t-\tau)g(\tau)d\tau \equiv (f*g)(t)$$

atunci (f * g)(t) se numește produsul de convoluție al funcțiilor f și g (f * g = g * f).

Proprietatea 4.21 (reguli de calcul)

1) \mathcal{F} aplicație liniară:

$$\mathcal{F}[\alpha f + \beta g] = \alpha \mathcal{F}[f] + \beta \mathcal{F}[g], \alpha, \beta \in \mathbb{C};$$

2) Teorema asemănării (schimbarea de scară):

$$\alpha \in \mathbb{R}^* \Rightarrow \mathcal{F}[f(\alpha t)](\omega) = \frac{1}{|\alpha|} F\left(\frac{\omega}{\alpha}\right),$$

$$f(\alpha t) \leadsto \frac{1}{|\alpha|} F\left(\frac{\omega}{\alpha}\right), F = \mathcal{F}[f];$$

3) Teorema deplasării:

$$\omega \in \mathbb{R}, \ f(t) \cdot e^{i\omega_0 t} \leadsto F(\omega - \omega_0),$$

deplasarea spectrului unui semnal cu o frecvență constantă ω_0 : (modulare);

$$\mathcal{F}[f(t) \cdot e^{i\omega_0 t}](\omega) = F(\omega - \omega_0);$$

4) Teorema întârzierii (întârziere semnal, deplasare în timp sau translație în t):

$$\tau \in \mathbb{R}, \ f_{\tau}(t) = f(t - \tau) \leadsto e^{-\tau \omega} F(\omega),$$

deviație indusă în faza spectrului;

5)
$$f, g \in L^1(\mathbb{R}) \Rightarrow \exists f * g, g * f \in L^1(\mathbb{R})$$
 şi
$$\mathcal{F}[f * g] = \mathcal{F}[f] \cdot \mathcal{F}[g]$$

6) Teorema de derivare a imaginii: dacă f funcție continuă și $tf(t) \in L^1(\mathbb{R})$ atunci:

$$F'(\omega) = -i\mathcal{F}[tf(t)](\omega);$$

7) Teorema de derivare a originalului: dacă f funcție local netedă pe porțiuni și $f' \in L^1(\mathbb{R})$ atunci:

$$\mathcal{F}[f'](\omega) = i\omega F(\omega);$$

În general,

$$\mathcal{F}[f^{(k)}](\omega) = (i\omega)^k F(\omega), \forall k \in \mathbb{N}^*;$$

8) Proprietatea de simetrie: dacă f funcție continuă și $F \in L^1(\mathbb{R})$ atunci:

$$F(t) \stackrel{F}{\leftrightarrow} 2\pi f(-\omega),$$

unde folosim şi notaţia $f(t) \stackrel{F}{\leftrightarrow} F(\omega)$ pentru $F(\omega) = \mathcal{F}[f]$.

Exercițiul 4.22

$$\Pi_a(t) = \begin{cases} 1, |t| \le a \\ 0, |t| > a. \end{cases}$$

Calculați $\Pi_a * \Pi_a(t)$ și $\mathcal{F}\{\Pi_a * \Pi_a\}$. Soluție.

$$\Pi_a * \Pi_a(t) = \int_{-\infty}^{\infty} \Pi_a(\tau) \cdot \Pi_a(t - \tau) d\tau.$$

$$\Pi_a(t-\tau) = \begin{cases} 1, t-a \le \tau \le t+a \\ 0, rest. \end{cases}$$

Cazul 1.
$$t + a < -a \rightarrow t < -2a \rightarrow$$

$$\Pi_a * \Pi_a(t) = \int_{-\infty}^{\infty} 0d\tau = 0.$$

Cazul 2.
$$t - a < -a < t + a < a \to -2a < t < 0 \to 0$$

$$\Pi_a * \Pi_a(t) = \int_{-a}^{t+a} d\tau = t + 2a.$$

Cazul 3. $-a < t - a < a < t + a \rightarrow 0 < t < 2a \rightarrow$

$$\Pi_a * \Pi_a(t) = \int_{t-a}^a d\tau = 2a - t.$$

Cazul 4. $a < t - a \rightarrow t > 2a \rightarrow \Pi_a * \Pi_a(t) = 0$.

Deci

$$\Pi_a * \Pi_a(t) = \begin{cases} 2a + t, -2a < t < 0; \\ 2a - t, 0 < t < 2a; \\ 0, rest. \end{cases} = \begin{cases} 2a - |t|, |t| < 2a; \\ 0, rest. \end{cases}$$

$$\Pi_a(t) \stackrel{F}{\leftrightarrow} 2asa(a\omega),$$

cu produsul de convoluție

$$\Pi_a * \Pi_a(t) \stackrel{F}{\leftrightarrow} 4a^2sa^2(a\omega).$$

Exercițiul 4.23 Calculați F[g*f] unde $f(t)=e^{-t^2}$ și $g(t)=e^{-t}\sigma(t)$.

Soluție.

$$F[g](\omega) = \int_{-\infty}^{\infty} g(t) \cdot e^{-i\omega t} dt =$$

$$=\int\limits_0^\infty e^{-t}\cdot e^{-i\omega t}dt=\int\limits_0^\infty e^{-(1+i\omega)t}=-\frac{1}{1+i\omega}\cdot e^{-(1+i\omega)t}|_0^\infty=\frac{1}{1+i\omega}$$

$$F[f] = ?$$

$$f'(t) = -2t \cdot e^{-t^2} = -2t f(t) \Rightarrow F[f'(t)](\omega) = -2F[t \cdot f(t)](\omega)$$

$$i\omega F(\omega) = -2iF'(\omega) \Rightarrow \omega F(\omega) = -2F'(\omega) \Rightarrow$$

$$\frac{dF}{F} = -\frac{\omega}{2}d\omega \Rightarrow |F(\omega)| = k \cdot e^{-\frac{\omega^2}{2\cdot 2}} \Rightarrow$$

$$F(\omega) = \pm k \cdot e^{-\frac{\omega^2}{4}} = C \cdot e^{-\frac{\omega^2}{4}}$$

 $F(\omega) = C \cdot e^{-\frac{\omega^2}{4}}$, C constantă reală nenulă.

$$C = F(0) = \int_{-\infty}^{\infty} e^{-t^2} e^{-i\omega t} dt = \int_{-\infty}^{\infty} e^{-t^2} dt = 2 \int_{0}^{\infty} e^{-t^2} dt = \sqrt{\pi}.$$

Deci

$$F(\omega) = F[f](\omega) = \sqrt{\pi} \cdot e^{-\frac{\omega^2}{4}} \Rightarrow$$

$$F[g * f](\omega) = F[g](\omega) \cdot F[f](\omega) = \frac{1}{1 + i\omega} \cdot \sqrt{\pi} \cdot e^{-\frac{\omega^2}{4}}.$$

Observaţia 4.24

$$F[e^{-t^2}](\omega) = \sqrt{\pi} \cdot e^{-\frac{\omega^2}{4}}$$

$$F[e^{-a^2t^2}](\omega) = F[f(at)](\omega) \stackrel{\text{asemănarea}}{===} \frac{1}{a} F\left(\frac{\omega}{a}\right) = \frac{\sqrt{\pi}}{a} \cdot e^{-\frac{\omega^2}{4a^2}}.$$

Exercițiul 4.25 (Aplicație a transformării Fourier pentru ecuația căldurii) Ecuația căldurii:

$$\begin{cases} \frac{\partial T}{\partial t} - \frac{\partial^2 T}{\partial x^2} = 0\\ T(x,0) = f(x) & T(x,t) = ?\\ x \in R, \ t > 0 \end{cases}$$

Notăm

$$F(\omega, t) = \int_{-\infty}^{\infty} T(x, t) \cdot e^{-i\omega x} dx = F(T)$$

transformata Fourier în raport cu variabila x a funcției T(x,t).

$$\frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial x^2} \Rightarrow F\left[\frac{\partial T}{\partial t}\right] = F\left[\frac{\partial^2 T}{\partial x^2}\right]$$

cu proprietatea (7) derivarea originalului avem:

$$\frac{\partial}{\partial t}F\left(\omega,t\right) = \left(i\omega\right)^{2}F[T]$$

deci $F(\omega,t)$ satisface ecuația

$$\begin{split} \frac{\partial F}{\partial t} &= -\omega^2 F \Rightarrow \\ \frac{\partial F}{F} &= -\omega^2 dt \Rightarrow \ln \mid F(\omega,t) \mid = \ln K(\omega) \cdot e^{-\omega^2 t} \Rightarrow \end{split}$$

$$\Rightarrow F(\omega, t) = \pm K(\omega) \cdot e^{-\omega^2 t} \Rightarrow F(\omega, t) = C(\omega) \cdot e^{-\omega^2 t}$$

$$F(\omega, 0) = C(\omega) = \int_{-\infty}^{\infty} f(x) \cdot e^{-i\omega x} dx = F[f(x)](\omega) = \hat{f}(\omega)$$

Deci

$$F(\omega, t) = \hat{f}(\omega) \cdot e^{-\omega^2 t}$$

Din

$$F[e^{-a^2x^2}](\omega) = \frac{\sqrt{\pi}}{a} \cdot e^{-\frac{\omega^2}{4a^2}} = F[e^{-a^2x^2}](\omega)$$

luând $a^2 = \frac{1}{4t}$ rezultă

$$e^{-\omega^2 t} = \frac{1}{2\sqrt{\pi t}} \cdot F[e^{-\frac{x^2}{4t}}](\omega).$$

Deci

$$F(\omega, t) = \hat{f}(\omega) \cdot \frac{1}{2\sqrt{\pi t}} F\left[e^{-\frac{x^2}{4t}}\right](\omega) = \frac{1}{2\sqrt{\pi t}} \mathcal{F}\left[f(x) * e^{-\frac{x^2}{4t}}\right](\omega) \Rightarrow$$

$$T(x,y) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{\infty} f(x-y) \cdot e^{-\frac{y^2}{4t}} dy.$$

adică formula Poisson.

4.2 Transformarea Fourier prin sinus şi cosinus

Proprietatea 4.26 Fie $f \in L^1(\mathbb{R})$, atunci

Definiția 4.27 Fie $f \in L^1(0,\infty)$:

$$F_c(\omega) = \int_0^\infty f(t) \cos \omega t \, dt \to$$

se numește transformata lui f prin cosinus.

$$F_s(\omega) = \int_0^\infty f(t) \sin \omega t \, dt \to$$

se numește transformata lui f prin sinus.

Proprietatea 4.28 $f \in L^1(0,\infty)$

1. Fie \tilde{f} = prelungirea lui f la $\mathbb R$ prin paritate

$$\tilde{f}(x) = \begin{cases} f(x), & x \ge 0 \\ f(-x), & x < 0 \end{cases}$$

Reprezenta
înd pe \tilde{f} printr-o integrală Fourier avem:

$$\frac{\tilde{f}(t+0) + \tilde{f}(t-0)}{2} = \frac{2}{\pi} \int_{0}^{\infty} F_c(\omega) \cos \omega t \ d\omega , \ (\forall) \ t > 0$$

de unde : $f(t) = \frac{2}{\pi} \int_{0}^{\infty} F_c(\omega) \cos \omega t d\omega$, $t \geq 0 \rightarrow$ Reprezentarea lui f printr-o integrală Fourier in cosinus.

2. Fie \tilde{f} = prelungirea lui f la R prin imparitate

$$\tilde{f}(x) = \begin{cases} f(x), & x \ge 0 \\ -f(-x), & x < 0 \end{cases}$$

$$\frac{\tilde{f}(t+0) + \tilde{f}(t-0)}{2} = \frac{2}{\pi} \int_{0}^{\infty} F_s(\omega) \sin \omega t \ d\omega , t > 0$$

 $\Rightarrow f(t) = \frac{2}{\pi} \int_{0}^{\infty} F_s(\omega) \sin \omega t d\omega$, $t \geq 0 \rightarrow$ Reprezentarea lui f printr-o integrală Fourier în sinus.

Exercițiul 4.29 Să se reprezinte printr-o integrală Fourier în sinus, funcția:

$$f(t) = \begin{cases} \sin t , t \in [0, \pi] \\ 0, t > \pi \end{cases}$$

Soluție. Avem \widetilde{f} prelungirea pe \mathbb{R} a lui f prin imparitate și găsim: \widetilde{f} este monotonă pe porțiuni pe orice interval compact din \mathbb{R} (\Rightarrow este cu variație mărginită pe orice [a, b]).

Avem

$$f(t) = \frac{2}{\pi} \int_0^\infty F_s(\omega) \cdot \sin \omega t \, d\omega, \, t \ge 0$$

$$F_s(\omega) = ?$$

$$F_s(\omega) = \int_0^\infty f(t) \sin \omega t dt = \int_0^\pi \sin t \cdot \sin \omega t dt =$$

$$= \frac{1}{2} \int_0^\infty [\cos(t - \omega t) - \cos(t + \omega t)] dt =$$

$$= \frac{1}{2} \int_0^\pi [\cos(1 - \omega)t - \cos(1 + \omega)t] dt =$$

$$\frac{1}{2} \left[\frac{\sin(1-\omega)t}{1-\omega} \Big|_0^{\pi} - \frac{\sin(1+\omega)t}{1-\omega} \Big|_0^{\pi} \right] =$$

$$= \frac{1}{2} \left(\frac{\sin \pi \omega}{1-\omega} + \frac{\sin \pi \omega}{1+\omega} \right) = \frac{\sin \pi \omega}{1-\omega^2}, \ \omega \neq \pm 1$$

$$\Rightarrow f(t) = \frac{2}{\pi} \int_0^{\infty} \frac{\sin \pi \omega}{1-\omega^2} \cdot \sin \omega t \ d\omega.$$

Teorema 4.30 (Teorema de eşantionare Shannon - Nyquist) Fie funcţia $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, f continuă şi $F(\omega) = 0$, pentru $|\omega| > \Omega$. Atunci

$$f(t) = \sum_{n=-\infty}^{\infty} f(t_n) \cdot \Omega(t - t_n), \quad t_n = n \frac{\pi}{\omega}.$$

Exercițiul 4.31

$$f(t) = \begin{cases} 1 - |t|, t \in [-1, 1] \\ 0, \text{ rest} \end{cases} F(\omega) = ?$$

Soluţie.

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot \cos \omega t \, dt - i \int_{-\infty}^{\infty} f(t) \cdot \sin \omega t \, dt =$$

$$= 2 \int_{0}^{1} (1 - t) \cos \omega t \, dt = \frac{2}{\omega} \int_{0}^{1} (1 - t) \cdot (\sin \omega t)' dt =$$

$$= \frac{2}{\omega} (1 - t) \sin \omega t |_{0}^{1} + \frac{2}{\omega} \int_{0}^{1} \sin \omega t \, dt = \frac{-2}{\omega^{2}} \cos \omega t |_{0}^{1} =$$

$$= \frac{2}{\omega^2} (1 - \cos \omega) = \left(\frac{\sin \frac{\omega}{2}}{\frac{\omega}{2}}\right)^2, \omega \neq 0.$$

$$F(0) = 2 \int_0^1 (1 - t) dt = 2 - 1 = 1 \Rightarrow$$

$$F(\omega) = sa^2 \frac{\omega}{2}, \ \omega \neq 0.$$

Exercițiul 4.32

$$f(t) = \frac{t}{t^2 + a^2}, a > 0, F(\omega) = ?$$

Soluție.

Asociem funcția complexă $f(z) = \frac{z}{z^2 + a^2} \cdot e^{-i\omega z}$

$$z^2 + a^2 = 0 \Leftrightarrow z = \pm ia$$
, poli simpli

Cu teorema reziduurilor avem:

$$\int_{-\infty}^{\infty} f(x)e^{iax}dx =$$

$$= \begin{cases} 2\pi i \sum_{k} \underset{z=z_k}{\text{Res }} f(z), \ a > 0 \\ -2\pi i \sum_{k} \underset{z=z_k}{\text{Res }} f(z), \ a < 0. \end{cases}$$

Calculăm reziduurile în cei doi poli:

Res
$$f(z) = \lim_{z \to ia} (z - ia) \cdot \frac{z}{(z - ia)(z + ia)} \cdot e^{-i\omega z} =$$

$$= \frac{ia}{2ia} \cdot e^{-i\omega \cdot ia} = \frac{1}{2} \cdot e^{\omega a}$$

$$\operatorname{Res}_{z=-ia} f(z) = \lim_{z \to -ia} (z + ia) \cdot \frac{z}{(z - ia)(z + ia)} \cdot e^{-i\omega z} =$$
$$= \frac{-ia}{-2ia} \cdot e^{i\omega \cdot ia} = \frac{1}{2} e^{-\omega a}$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-i\omega t} dt = \lim_{r \to \infty} \int_{-r}^{r} f(t) \cdot e^{-i\omega t} dt =$$

$$= \oint_{c} f(z) dz = \begin{cases} 2\pi i \operatorname{Res}_{z=ia} f(z), & \omega < 0 \\ -2\pi i \operatorname{Res}_{z=-ia} f(z), & \omega > 0 \end{cases} =$$

$$= \begin{cases} \pi i \cdot e^{\omega a}, & \omega < 0 \\ -\pi i \cdot e^{-\omega a}, & \omega > 0 \end{cases} = -\pi i sgn(\omega) \cdot e^{-|\omega|a}.$$

Exercițiul 4.33 Fie

$$f(t) = \frac{1}{(1+t^2)^2}.$$

Calculați $F(\omega) = ?$

Soluție. Asociem funcția complexă $f(z) = \frac{1}{(1+z^2)^2} \cdot e^{-i\omega z}$, $z = \pm i$ poli de ordinul doi.

$$\operatorname{Res}_{z=i} f(z) = \lim_{z \to i} \left[(z-i)^2 \frac{1}{(z-i)^2 \cdot (z+i)^2} \cdot e^{-i\omega z} \right]' =$$

$$= \lim_{z \to i} \frac{-i\omega \cdot e^{-i\omega z} \cdot (z+i)^2 - 2e^{i\omega z} \cdot (z+i)}{(z+i)^4} =$$

$$= \frac{-i\omega \cdot e^{-i\omega \cdot i} \cdot 2i - 2e^{-i\omega \cdot i}}{(2i)^3} = \frac{2}{-8i}(\omega - 1) \cdot e^{\omega} =$$
$$= \frac{1}{4i}(1 - \omega) \cdot e^{\omega}.$$

$$\operatorname{Res}_{z=-i} f(z) = \lim_{z \to -i} \left((z+i)^2 \cdot \frac{1}{(z+i)^2 (z-i)^2} \cdot e^{-i\omega z} \right)' = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i) \cdot e^{-i\omega z}}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i)^2}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2 - 2(z-i)^2}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega z} \cdot (-i\omega)(z-i)^2}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega} \cdot (-i\omega)(z-i)^2}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega} \cdot (-i\omega)(z-i)^2}{(z-i)^4} = \lim_{z \to -i} \frac{e^{-i\omega} \cdot (-i\omega)(z-i)^2}{(z-i)^4} = \lim_$$

$$=\frac{e^{-\omega}(-i\omega)(-2i)-2e^{-\omega}}{(-2i)^3}=-\frac{2(1+\omega)e^{-\omega}}{8i}=-\frac{1}{4i}(1+\omega)e^{-\omega}$$

$$F(\omega) = \int_{-\infty}^{\infty} \frac{1}{(1+t^2)^2} \cdot e^{-i\omega t} dt = \begin{cases} 2\pi i & \text{Res } f(z) , \omega < 0 \\ -2\pi i & \text{Res } f(z) , \omega > 0 \end{cases} =$$

$$= \begin{cases} \frac{\pi}{2} (1-\omega) e^{\omega} , \omega < 0 \\ \frac{\pi}{2} (1+\omega) e^{-\omega} , \omega > 0 \end{cases} = \frac{\pi}{2} (1+|\omega|) e^{-|\omega|}.$$

Exercițiul 4.34 Rezolvați ecuația intrgrală:

$$\int_{0}^{\infty} f(t) \cos \omega t \, dt = g(\omega) = \begin{cases} 1 - \omega, \, \omega \in [0, 1] \\ 0, \, \omega \in \mathbb{R} \setminus [0, 1]. \end{cases}$$

Soluție.

Prelungim prin paritate funcția f(t) pe $(-\infty, 0)$.

$$2\int_{0}^{\infty} f(t)\cos\omega t \, dt = 2g(\omega) \Rightarrow \int_{-\infty}^{\infty} f(t) \cdot \cos\omega t \, dt = 2g(\omega)$$

$$\int_{-\infty}^{\infty} f(t) \cdot e^{-i\omega t} dt = \int_{-\infty}^{\infty} f(t) \cos \omega t dt - i \int_{-\infty}^{\infty} f(t) \sin \omega t dt = 2g(\omega)$$

$$\Rightarrow F(\omega) = 2g(\omega) = \begin{cases} 2(1-\omega), \ \omega \in [0,1] \\ 0 \quad \text{rest.} \end{cases}$$

Teorema inversării:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \cdot e^{i\omega t} d\omega = \frac{1}{\pi} \int_{0}^{1} (1 - \omega) \cdot e^{i\omega t} d\omega =$$

$$= \frac{1}{\pi i t} \int_{0}^{1} (1 - \omega) \cdot (e^{i\omega t})' d\omega =$$

$$= \frac{1}{\pi i t} (1 - \omega) e^{i\omega t} \Big|_{0}^{1} + \frac{1}{\pi i t} \int_{0}^{1} e^{i\omega t} dt = \frac{-1}{\pi i t} + \frac{1}{\pi (i t)^{2}} e^{i\omega t} \Big|_{0}^{1} =$$

$$= -\frac{1}{\pi i t} - \frac{1}{\pi t^{2}} (e^{it} - 1) = \frac{1}{\pi} \left(-\frac{1}{i t} - \frac{1}{t^{2}} e^{it} + \frac{1}{t^{2}} \right).$$

Exercițiul 4.35 Să se rezolve ecuația integrală:

$$\int_{0}^{\infty} f(t) \sin \omega t dt = g(\omega) = \begin{cases} e^{\omega} &, \omega \in [0, 2] \\ 0 &, \text{in rest.} \end{cases}$$

Solutie.

Prelungim f(t) prin imparitate pe $(-\infty, 0)$.

$$2\int_{0}^{\infty} f(t) \cdot \sin \omega t \, dt = 2g(\omega) \Rightarrow$$
$$\int_{-\infty}^{\infty} f(t) \sin \omega t dt = 2g(\omega),$$

 $dar e^{-i\omega t} = \cos \omega t - i \sin \omega t \Rightarrow$

$$\int_{-\infty}^{\infty} f(t) \cos \omega t dt - i \int_{-\infty}^{\infty} f(t) \cdot \sin \omega t dt = -2ig(\omega) \Rightarrow$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-i\omega t} dt = -2ig(\omega).$$

$$F(\omega) = \begin{cases} -2ie^{\omega} &, \omega \in [0, 2] \\ 0 &, \text{in rest.} \end{cases}$$

și cu teorema inversării:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \cdot e^{i\omega t} d\omega =$$

$$= -\frac{i}{\pi} \int_{0}^{2} e^{\omega} \cdot e^{i\omega t} d\omega = \frac{-i}{\pi} \cdot \int_{0}^{2} e^{(1+it)\omega} d\omega =$$

$$= \frac{-i}{\pi (1+it)} \cdot e^{(1+it)\omega}|_{0}^{2} =$$

$$= \frac{-i}{\pi(1+it)} \cdot (e^{2(1+it)} - 1) = \frac{i}{\pi(1+it)} \cdot (1 - e^{2(1+it)}).$$

Exercițiul 4.36

$$\int_{0}^{\infty} f(t) \cos \omega t \, dt = \begin{cases} 1 - \omega, & \omega \in [0, 1] \\ 0, & \omega > 1 \end{cases} = g(\omega).$$

Soluție. Acum folosim reprezentarea lui f(t) printr-o integrală Fourier în cosinus.

$$f(t) = \frac{2}{\pi} \int_{0}^{\infty} F_c(\omega) \cdot \cos \omega t \, d\omega$$

unde

$$F_c(\omega) = \int_0^\infty f(t) \cdot \cos \omega t dt =$$

$$= g(\omega) = \begin{cases} 1 - \omega &, \omega \in [0, 1] \\ 0 &, \omega > 1. \end{cases}$$

$$\Rightarrow f(t) = \frac{2}{\pi} \int_0^1 (1 - \omega) \cos \omega t d\omega =$$

$$\frac{2}{\pi t} (1 - \omega) \sin \omega t \Big|_0^1 + \frac{2}{\pi t} \int_0^1 \sin \omega t d\omega =$$

$$= \frac{-2}{\pi t^2} \cdot \cos \omega t \Big|_0^1 = \frac{-2}{\pi t^2} \cdot (\cos t - 1) = \frac{4 \sin^2 \frac{t}{2}}{\pi t^2}.$$

Exercițiul 4.37

$$\int_{0}^{\infty} f(t) \sin \omega t \, dt = g(\omega) = \begin{cases} e^{\omega} &, \omega \in [0, 2] \\ 0 &, \omega > 2. \end{cases}$$

Soluție.

Reprezentăm f printr-o integrală Fourier in sinus:

$$f(t) = \frac{2}{\pi} \int_{0}^{\infty} F_s(\omega) \cdot \sin \omega t \, d\omega.$$

$$F_s(\omega) = \int_0^\infty f(t) \sin \omega t \, dt = g(\omega) = \begin{cases} e^{\omega}, & \omega \in [0,2] \\ 0, & \omega > 2 \end{cases}$$

$$\Rightarrow f(t) = \frac{2}{\pi} \int_{0}^{\infty} g(\omega) \sin \omega t d\omega = \frac{2}{\pi} \int_{0}^{2} e^{\omega} \cdot \sin \omega t d\omega =$$

$$= \frac{2}{\pi} \cdot Im \int_{0}^{2} e^{\omega} \cdot e^{i\omega t} d\omega = \frac{2}{\pi} Im \int_{0}^{2} e^{\omega(1+it)} d\omega =$$

$$= \frac{2}{\pi} \cdot Im \frac{1}{1+it} \cdot e^{\omega(1+it)} \Big|_{0}^{2} = \frac{2}{\pi} Im \frac{e^{2+i2t} - 1}{1+it} =$$

$$= \frac{2}{\pi(1+t^{2})} Im \frac{e^{2}(\cos 2t + i\sin 2t) - 1}{(1-it)^{-1}} =$$

$$= \frac{2}{\pi(1+t^{2})} \cdot [e^{2} \sin 2t - t(e^{2} \cos 2t - 1)].$$

4.3 Exerciții propuse

Exercițiul 4.38 Calculați transformatele Fourier ale următoarelor funcții:

(a)
$$f(t) = K[\sigma(t-a) - \sigma(t-b)], b > a > 0, K > 0;$$

(b)
$$f(t) = (1 - \frac{|t|}{a})(u(t+2a) - u(t-2a)), a > 0;$$

(c)
$$f(t) = \begin{cases} t - t^2 & \text{, } t \in (0,1) \\ 0 & \text{, rest.} \end{cases}$$

Exercițiul 4.39 Calculați transformatele Frourier prin sin și cos pentru:

(a)
$$f(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & t \ge 1; \end{cases}$$

(b)
$$f(t) = e^{-at}$$
, $t \in (0, \infty)$, $a > 0$;

Exercițiul 4.40 Rezolvați ecuațiile integrale:

(a)
$$\int_{0}^{\infty} g(u) \sin ut du = \begin{cases} 1, & 0 \le t < 1 \\ 2, & 1 \le t < 2 \\ 0, & t > 2; \end{cases}$$

(b)
$$\int_{0}^{\infty} g(u) \cos ut du \begin{cases} 1 - \frac{t^2}{2}, & 0 \le t < 1 \\ \frac{1}{4}, & 1 \le t \\ 0, & t > 1. \end{cases}$$

4.4 Transformarea Fourier discretă

Motivare:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-i\omega t} dt \approx \int_{a}^{b} f(t) \cdot e^{-i\omega t} dt \approx$$

$$\approx \sum_{k=0}^{n-1} f(a+kt) \cdot e^{-i\omega(a+kt)} t = t \cdot e^{-i\omega a} \cdot \sum_{k=0}^{n-1} z_k \cdot e^{-i\omega kt}$$

Notăm $\omega_r = r \cdot \frac{2\pi}{nt}$

$$F(\omega_r) \approx t \cdot e^{-i\omega_r a} \sum_{k=0}^{n-1} z_k \cdot e^{-i\frac{2\pi kr}{n}}.$$

Observația 4.41 $z^n=1\Rightarrow \omega_k=\cos\frac{2k\pi}{n}+i\sin\frac{2k\pi}{n}, k=\overline{0,n-1}$

$$\omega_k = e^{i\frac{2k\pi}{n}} = \left(e^{i\frac{2\pi}{n}}\right)^k$$

$$\omega_1 = e^{i\frac{2\pi}{n}} = \omega \Rightarrow \omega_k = \omega^k$$

Fie
$$\xi = \overline{\omega} \Rightarrow \xi_k = \xi^k = \overline{\omega}^k = \overline{\omega^k} = \overline{\omega_k}$$
.

 $Deci: \xi_k = \overline{\omega_k} = \xi^k.$

Observația 4.42 Fie $z \in \mathbb{C}^n$, $z = (z_0, ..., z_{n-1})$ $\omega = (\omega_0,, \omega_{n-1})$ \Rightarrow definim: $z \cdot \omega = \langle z, \omega \rangle = \sum_{k=0}^{n-1} z_k \cdot \overline{\omega_k}$.

Proprietatea 4.43 Fie

$$E_k = \frac{1}{\sqrt{n}}(1, \omega_k, \omega_k^2, \dots, \omega_k^{n-1}),$$

 $k = \overline{0, n - 1}$, atunci

$$\{E_0, E_1, \dots, E_{n-1}\}$$

formează bază ortonormală în \mathbb{C}^n .

Definiția 4.44

$$F_k = (1, \omega_k, \omega_k^2,, \omega_k^r,, \omega_k^{n-1}), k = \overline{0, n-1}$$

şi

$$\hat{z}_k = z \cdot F_k, k = \overline{0, n - 1}.$$

Atunci

$$\hat{z} = (\hat{z}_0, \hat{z}_1, \dots, \hat{z}_{n-1})$$

reprezintă trasformata Fourier discretă a lui z (DFT)(Discret Fourier Transform).

Observaţia 4.45

$$\hat{z}_k = z \cdot F_k = (z_0, z_1,, z_{n-1}) \cdot (1, \omega_k, \omega_k^2, ..., \omega_k^{n-1}) =$$

$$= \sum_{r=0}^{n-1} z_r \cdot \overline{\omega_k}^r = \sum_{r=0}^{n-1} z_r \cdot \xi^{kr}.$$

$$\hat{z}_k = \sum_{r=0}^{n-1} \xi^{kr} \cdot z_r, k = \overline{0, n-1}.$$

Introducem matricea $n \times n$ cu componentele $(\xi^{kr})_{k,r=\overline{0,n-1}}$ și o notăm:

$$\mathbb{F}_n = [\xi^{kr}] \quad k = 0, n - 1$$
$$r = 0, n - 1$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & \xi & \xi^2 & \xi^3 & \xi^{n-1} \\ 1 & \xi^2 & \xi^4 & \xi^6 & \xi^{2(n-1)} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & \xi^{n-1} & \xi^{2(n-1)} & \xi^{3(n-1)} & \xi^{(n-1)^2} \end{bmatrix}.$$

Atunci transformata Fourier discretă pentru $z \in \mathbb{C}^n$ este dată de:

$$\begin{bmatrix} \hat{z}_0 \\ \cdot \\ \cdot \\ \cdot \\ \hat{z}_{n-1} \end{bmatrix} = \begin{bmatrix} \xi^{kr} \end{bmatrix} \cdot \begin{bmatrix} z_0 \\ \cdot \\ \cdot \\ \cdot \\ z_{n-1} \end{bmatrix}$$

$$\hat{z} = \mathbb{F}_n \cdot z$$

Exercitiul 4.46 \mathbb{C}^2 , $\mathbb{F}_2 = ?$

Soluţie.

$$z^2=1\Rightarrow z=\pm 1\Rightarrow$$

$$\Rightarrow \omega=e^{i\frac{2\pi}{2}}=e^{i\pi}=-1 \text{ si } \xi=\overline{\omega}=-1.$$

$$\mathbb{F}_2 = \left[\begin{array}{cc} 1 & 1 \\ 1 & \xi \end{array} \right] = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right].$$

Exercițiul 4.47 \mathbb{C}^4 , $\mathbb{F}_4 =$? Calculați DFT pentru z = (1, -i, 2, 3i + 5).

Soluţie.

$$z^4 = 1 \Rightarrow \pm 1, \pm i; \ \omega = e^{i\frac{2\pi}{4}} = e^{i\frac{\pi}{2}} = i$$

$$\Rightarrow \xi = -i.$$

$$\mathbb{F}_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \xi & \xi^2 & \xi^3 \\ 1 & \xi^2 & \xi^4 & \xi^6 \\ 1 & \xi^3 & \xi^6 & \xi^9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$$

$$\hat{z} = \mathbb{F}_4 \cdot z =$$

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix} \begin{bmatrix} 1 \\ -i \\ 2 \\ 3i + 5 \end{bmatrix} = \begin{bmatrix} 8+2i \\ -5+5i \\ -2-2i \\ 3-5i \end{bmatrix}$$

Exercițiul 4.48 $f(t) = \sin t, t \in [0, 2\pi]$. Calculați DTF pentru f(t).

Soluţie.
$$\triangle t = \frac{2\pi}{n}, \xi = \overline{\omega} = e^{-i\frac{2\pi}{n}}$$
.

$$f(k\triangle t) = \sin\frac{k2\pi}{n} = z_k, k = \overline{0, n-1}.$$

$$\hat{z}_k = \sum_{r=0}^{n-1} z_r \cdot \xi^{kr} = \sum_{r=0}^{n-1} \sin \frac{2\pi r}{n} \cdot e^{-i\frac{2\pi kr}{n}} =$$

$$= \sum_{r=0}^{n-1} e^{-i\frac{2kr\pi}{n}} \cdot \frac{e^{i\frac{2\pi r}{n}} - e^{-i\frac{2\pi r}{n}}}{2i} =$$

$$= \frac{1}{2i} \sum_{r=0}^{n-1} \left[e^{i(1-k)\frac{2\pi r}{n}} - e^{-i(1+k)\frac{2\pi r}{n}} \right] =$$

$$= \frac{1}{2i} \left[\sum_{r=0}^{n-1} \left(e^{i(1-k)\frac{2\pi}{n}} \right)^r - \sum_{r=0}^{n-1} \left(e^{-i(1+k)\cdot \frac{2\pi}{n}} \right)^r \right] \stackrel{k \neq 1, n-1}{==}$$

$$= \frac{1}{2i} \left[\frac{1 - e^{i(1-k)2\pi}}{1 - e^{i(1-k)\frac{2\pi}{n}}} - \frac{1 - e^{-i(1+k)2\pi}}{1 - e^{-i(1+k)\frac{2\pi}{n}}} \right] = \frac{1}{2i} \cdot 0 = 0.$$

$$e^{i(1-k)2\pi} = e^{i0} = 1.$$

$$\hat{z}_k = 0$$
 pentru $k \neq 1, n-1$.

Pentru k = 1 rezultă

$$z_1 = \frac{1}{2i} \left[\sum_{r=0}^{n-1} 1 - \sum_{r=0}^{n-1} \left(e^{-i\frac{4\pi}{n}} \right)^r \right] = \frac{1}{2i} \left(n - \frac{1-1}{1 - e^{\frac{-i4\pi}{n}}} \right) = \frac{1}{2i} \cdot n.$$

Pentru k = n - 1 rezultă

$$z_{n-1} = \frac{1}{2i} \left[\frac{1 - e^{-i(n-2) \cdot 2\pi}}{1 - e^{-i(n-2) \cdot \frac{2\pi}{n}}} - \sum_{r=0}^{n-1} 1 \right] = -\frac{1}{2i} \cdot n.$$

Definiția 4.49 \mathbb{F}_n inversabilă și $\mathbb{F}_n^{-1}=\frac{1}{n}\overline{\mathbb{F}_n}$. Atunci avem:

$$\hat{z} = \mathbb{F}_n \cdot z \Leftrightarrow$$

$$z = \mathbb{F}_n^{-1} \cdot \hat{z} = \frac{1}{n} \overline{\mathbb{F}_n} \cdot \hat{z}$$

inversa transformatei Fourier discrete (IDFT).

Capitolul 5

Transformata Z (Laplace discretă). Transformata Laplace în timp discret (TLTD).

Definiția 5.1 Fie $x : \mathbb{Z} \to \mathbb{C}$ un semnal discret (şir) şi $x(n) = x_n, x \equiv (x_n)_{n \in \mathbb{Z}}$; valorile lui x, x_n se numesc *eşantioane*.

Notăm cu S_d mulțimea semnalelor discrete și cu S_d^+ mulțimea semnalelor cu suport pozitiv, adică $x_n = 0$ pentru n < 0.

Definiția 5.2 Convoluție: $x, y \in S_d$ pentru orice $n \in \mathbb{Z}$ avem

$$\{z_n\}_{n\in\mathbb{Z}} = x * y = \sum_{k\in\mathbb{Z}} x_{n-k} \cdot y_k$$

convergentă.

Proprietăți 5.3 1.
$$(\forall)\alpha,\beta\in\mathbb{C}\Rightarrow x*(\alpha y+\beta z)=\alpha(x*y)+\beta(x*z).$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 168 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

- 2. Pentru $x, y \in S_d^+ \Rightarrow x * y = y * x$.
- 3. Semnalul impuls unitate la momentul k: $\delta_k(n)$

$$\delta_k(n) = \begin{cases} 1, k = n \\ 0, k \neq n \end{cases} = \begin{cases} 1, n = k \\ 0, n \neq k. \end{cases}$$

$$\delta_0(n) = \left\{ \begin{array}{l} 1, \ n = 0 \\ 0, \ n \neq 0 \end{array} \right. \stackrel{not.}{=} \delta.$$

4. Semnalul unitate (unitar): $H(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0. \end{cases}$

5.

$$(x * \delta_k)_n = x_{n-k}, \forall n, k \in \mathbb{Z}$$

 $x * \delta_k$ se numește întârziatul lui x cu k momente.

5.1 Transformata Z. Definiţie. Proprietăţi. Exemple.

Definiția 5.4 $D_x \equiv$ mulțimea deschisă maximă de convergență a seriei $\sum_{n \in \mathbb{Z}} x_n \cdot z^{-n}$. Fie $x \in S_d, D_x \neq \emptyset$. Atunci

$$X(z) = L(x) = \sum_{n = -\infty}^{\infty} x_n \cdot z^{-n}, z \in D_x$$

se numește $transformata\ Z\ a\ semnalului\ discret\ x\ sau\ transformata\ Laplace\ discret\ a\ lui\ x.$

Observația 5.5 Aproximarea transformatei Laplace a lui f -funcție original cu ajutorul transformării Z.

$$f \in \mathcal{O} \Rightarrow L[f](s) = \int_{0}^{\infty} f(t) \cdot e^{-st} dt =$$

$$= \lim_{n \to \infty} \int_{0}^{nT} f(t) \cdot e^{-st} dt \overset{T \text{ suficient } de \text{ mic}}{\approx}$$

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} f(kT) \cdot e^{-skT} \cdot T \overset{not. x_k = f(kT)}{-----}$$

$$= T \cdot \lim_{n \to \infty} \sum_{k=0}^{n-1} x_k \cdot (e^{sT})^{-k} =$$

$$T \cdot \sum_{k=0}^{\infty} x_k \cdot (e^{sT})^{-k} = T \cdot X(e^{sT}),$$

unde X este transformata Z a lui x:

$$X = \mathcal{L}(x)$$

 $f \in \mathcal{O} \to x \in S_d^+$.

$$\mathcal{L}[f](s) = T \cdot X(e^{sT})$$

$$X(x) = \mathcal{L}(x); x \equiv (x_k)_{k \in \mathbb{Z}} \in S_d^+, x_k = f(kT).$$

Proprietăți 5.6 (Proprietăți ale transformatei Z)

- 1. $x \in S_d \Rightarrow D_x = \emptyset$ sau $D_x =$ disc deschis centrat în 0 sau $D_x =$ coroană circulară deschisă centrată în 0.
- 2. $x \in S_d^+ \Rightarrow D_x = \emptyset$ sau $D_x =$ exteriorul unui disc centrat în 0.
- 3. Transformata Z este liniară:

$$x, y \in S_d, D_x \cap D_y \neq \emptyset \Rightarrow \mathcal{L}(\alpha x + \beta y) = \alpha \mathcal{L}(x) + \beta \mathcal{L}(y)$$

 $\forall \alpha, \beta \in \mathbb{C}$, scalari.

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 170 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

4. $x, y \in S_d \\ D_x \cap D_y \neq \emptyset \\ \exists x * y$ \Rightarrow $\mathcal{L}(x * y) = \mathcal{L}(x) \cdot \mathcal{L}(y) \\ \Rightarrow$ Vom nota şi astfel: " $\mathcal{L}[x] = \mathcal{L}(x)$ ".

5. $\mathcal{L}[nx_n] = -z \cdot X'(z),$ unde $X(z) = \mathcal{L}[x].$

6. X funcție olomorfă pe $B(0;r,R), X=\mathcal{L}[x]\Rightarrow$

$$x_n = \frac{1}{2\pi i} \oint_{|z| = \rho \in (r,R)} z^{n-1} \cdot X(z) dz, \, \forall n \in \mathbb{Z}.$$

7. $X(z) = \frac{A(z)}{B(z)}, \operatorname{grad} A < \operatorname{grad} B$ $z_1, \dots, z_n \text{ toate rădăcinile lui } B$ $R = \max \{ |z_1|, \dots, |z_n| \}$

X(z),pentru |z| > R este transformata Z a unui semnal $x \in S_d^+$.

Exemplul 5.7 Fie funcția unitate $H(n) \to \mathcal{L}[H(n)](z) =$

$$= \sum_{n \in \mathbb{Z}} H(n) \cdot z^{-n} = \sum_{n=0}^{\infty} z^{-n} = 1 + \frac{1}{z} + \frac{1}{z^2} + \dots = \frac{1}{1 - \frac{1}{z}} = \frac{z}{z - 1}$$

convergentă $\Leftrightarrow \left|\frac{1}{z}\right| < 1 \Leftrightarrow |z| > 1 \Rightarrow D_x = \{z/\left|z\right| > 1\}$

$$X(z) = \frac{z}{z - 1}.$$

Exemplul 5.8

$$x_n = H(n) \cdot a^n, \ a \in \mathbb{C}^* \to \sum_{n \in \mathbb{Z}} x_n \cdot z^{-n} = \sum_{n \in \mathbb{N}} a^n \cdot z^{-n} = \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^n$$

convergentă pentru $\left|\frac{a}{z}\right| < 1 \Leftrightarrow |z| > |a| \Rightarrow$

$$X(z) = \frac{\frac{z}{a}}{\frac{z}{a} - 1} = \frac{z}{z - a}, \ |z| > |a|.$$

$$\mathcal{L}[H(n) \cdot a^n](z) = \frac{z}{z - a}.$$

Exemplul 5.9

$$x_n = nH(n), n \in \mathbb{Z} \to X(z) = \sum_{n \in \mathbb{N}} n \cdot z^{-n}$$

Considerăm seria

$$\sum_{n \in \mathbb{N}} ny^n = y \sum_{n \in \mathbb{N}} ny^{n-1} = y \sum_{n \ge 0} (y^n)' = y \left(\sum_{n \ge 0} y^n \right)'$$

convergentă pentru $|y| < 1 \Rightarrow$

$$\sum_{n \in \mathbb{N}} n \cdot z^{-n}$$

convergentă pentru |z| > 1.

Fie

$$S(y) = \sum_{n=1}^{\infty} ny^n = y \left(\sum_{n=0}^{\infty} y^n\right)' = y \left(\frac{1}{1-y}\right)' = \frac{y}{(1-y)^2} \Rightarrow$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 172 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$\Rightarrow X(z) = S\left(\frac{1}{z}\right) = \frac{\frac{1}{z}}{\left(1 - \frac{1}{z}\right)^2} = \frac{z}{(z - 1)^2}, |z| > 1.$$
$$\mathcal{L}[nH(n)](z) = \frac{z}{(z - 1)^2}.$$

Exemplul 5.10

$$x = \delta_k \to \sum_{n \in \mathbb{Z}} (\delta_k)_n \cdot z^{-n} = z^{-k} \Rightarrow$$

$$D_{\delta_k} = \begin{cases} \mathbb{C}, & k \le 0 \\ \mathbb{C}^*, & k > 0. \end{cases}$$

$$\mathcal{L}[\delta_k](z) = z^{-k}.$$

Exemplul 5.11

$$\left. \begin{array}{l} \mathcal{L}[x * \delta_k](z) = \mathcal{L}[x_{n-k}](z) \\ \mathcal{L}[x] = X(z) \end{array} \right\} \Rightarrow$$

$$\mathcal{L}[x * \delta_{-k}] = z^{-k} \cdot X(z)$$
 convoluția.

Altfel:

$$\mathcal{L}[x * \delta_k](z) = \sum_{n \in \mathbb{Z}} (x * \delta_k)_n \cdot z^{-n} =$$

$$\sum_{n \in \mathbb{Z}} x_{n-k} \cdot z^{-n} =$$

$$= z^{-k} \sum_{n \in \mathbb{Z}} x_{n-k} \cdot z^{-(n-k)} = z^{-k} \cdot \sum_{l \in \mathbb{Z}} x_l \cdot z^{-l} = z^{-k} \cdot X(z)$$

Exemplul 5.12

$$x_n = H(n) \cdot \cos(\omega n), n \in \mathbb{Z}, \omega \in \mathbb{R}^*$$

$$x_n = H(n) \cdot \frac{e^{i\omega n} + e^{-i\omega n}}{2} = \frac{1}{2}H(n) \cdot (e^{i\omega})^n + \frac{1}{2}H(n) \cdot (e^{-i\omega})^n$$

$$\Rightarrow \mathcal{L}[x_n](z) \stackrel{liniaritatea}{=====}$$

$$= \frac{1}{2}\mathcal{L}[H(n) \cdot (e^{i\omega})^n](z) + \frac{1}{2}\mathcal{L}[H(n) \cdot (e^{-i\omega})^n](z) =$$

$$= \frac{1}{2}\left(\frac{z}{z - e^{i\omega}} + \frac{z}{z - e^{-i\omega}}\right) =$$

$$= \frac{z(z - \cos\omega)}{z^2 - 2z\cos\omega + 1}, |z| > |e^{\pm i\omega}| = 1.$$

Exemplul 5.13 Analof avem:

$$x_n = H(n) \cdot \sin(\omega n), \omega \neq 0 \Rightarrow$$

$$\mathcal{L}[x_n](z) = \frac{2z \sin \omega}{z^2 - 2z \cos \omega + 1}, |z| > 1.$$

Exercițiul 5.14 Aflați semnalul $(x_n)_{n\in\mathbb{Z}} = x$ dacă se cunoaște transformata sa Z:

(i)
$$X(z)=\frac{z}{(z-2)(z^2+1)}, |z|>2;$$
 (ii)
$$X(z)=\frac{2z+3}{z^2-5z+6}, |z|>3;$$
 (iii)
$$X(z)=\frac{z}{(z-1)^2(z^2+z-6)}, |z|>3.$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 174 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

Soluţie:

i)

$$X(z) = \frac{A(z)}{B(z)} \stackrel{P_7}{\Rightarrow} x \in S_d^+ \Rightarrow x_n = 0, n \le -1.$$

Pentru $n \geq 0$ rezultă

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>2} \frac{z^n}{(z-2)(z+i)(z-i)} dz =$$

$$\stackrel{teorema\,reziduurilor}{========} \operatorname{Res}_{z=z} f(z) + 2Re \operatorname{Res}_{z=i} f(z).$$

Dar

$$\operatorname{Res}_{z=2} f(z) = \frac{z^n}{(z^2+1)}|_{z=2} = \frac{2^n}{5}$$

şi

$$\operatorname{Res}_{z=i} f(z) = \frac{z^n}{(z-2)(z+i)}|_{z=i} = \frac{i^n}{(i-2)\cdot 2i} = \frac{1}{2} \cdot \frac{i^n}{-1-2i} = \frac{1}{2} \cdot \frac{i^n}{1+2i} = -\frac{1}{2} \cdot \frac{i^n}{5} (1-2i) = \frac{1}{10} \cdot i^n (-1+2i) = \frac{1}{10} \cdot i^n (-1+2$$

$$= \left\{ \begin{array}{l} \frac{-1+2i}{10}, n=4k \\ \frac{-2-i}{10}, n=4k+1 \\ \frac{1-2i}{10}, n=4k+2 \\ \frac{2+i}{10}, n=4k+2 \end{array} \right. \Rightarrow 2Re \mathop{\rm Res}_{z=i} f(z) = \left\{ \begin{array}{l} \frac{-1}{5}, n=4k \\ \frac{-2}{5}, n=4k+1 \\ \frac{1}{5}, n=4k+2 \\ \frac{2}{5}, n=4k+3. \end{array} \right.$$

$$x_n = \frac{2^n}{5} + \begin{cases} -\frac{1}{5}, n = 4k \\ -\frac{2}{5}, n = 4k + 1 \\ \frac{1}{5}, n = 4k + 2 \\ \frac{2}{5}, n = 4k + 3 \end{cases}, n \ge 0.$$

ii)
$$P_7 \Rightarrow x_n = 0, n < 0.$$

Pentru $n \geq 0$ rezultă

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>3} \frac{z^{n-1}(2z+3)}{(z-2)(z-3)} dz = \operatorname{Res}_{z=2} f(z) + \operatorname{Res}_{z=3} f(z).$$

Avem

$$\operatorname{Res}_{z=2} f(z) = \frac{z^{n-1} \cdot (2z+3)}{z-3} |_{z=2} = -7 \cdot 2^{n-1}$$

şi

Res_{z=3}
$$f(z) = \frac{z^{n-1}(2z+3)}{z-2}|_{z=3} = 9 \cdot 3^{n-1} = 3^{n+1}.$$

Deci

$$x_n = 3^{n+1} - 7 \cdot 2^{n-1}, n \ge 0.$$

iii)

$$X(z) = \frac{A(z)}{B(z)} \stackrel{P7}{\Rightarrow} x_n = 0, n \le -1.$$

Pentru $n \ge 0$ rezultă

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>3} \frac{z^n}{(z-1)^2(z+3)(z-2)} dz =$$

$$= \operatorname{Res}_{z=1} f(z) + \operatorname{Res}_{z=-3} f(z) + \operatorname{Res}_{z=2} f(z).$$

$$\operatorname{Res}_{z=1} f(z) = \left[\frac{z^n}{(z+3)(z-2)} \right]'_{|z=1} =$$

$$= \frac{n \cdot z^{n-1}(z+3)(z-2) - z^n(2z+1)}{(z+3)^2 \cdot (z-2)^2} |_{z=1} = \frac{-4n-3}{16}.$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 176 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$\operatorname{Res}_{z=-3} f(z) = \frac{z^n}{(z-1)^2 \cdot (z-2)^2} |_{z=-3} = -\frac{1}{80} \cdot (-3)^n.$$

$$\operatorname{Res}_{z=2} f(z) = \frac{z^n}{(z-1)^2 (z+3)} |_{z=2} = \frac{2^n}{5}.$$

Deci

$$x_n = -\frac{4n+3}{16} + \frac{2^n}{5} - \frac{1}{80} \cdot (-3)^n, n \ge 0.$$

Exercițiul 5.15 Rezolvații ecuațiile de forma a * x = b cu $x \in S_d^+$, unde:

(i)
$$a = \delta_{-2} + \delta_{-1} - 6\delta, b_n = nH(n), n \in \mathbb{Z};$$

(ii)
$$a = \delta_{-2} - 3\delta_{-1} + 2\delta, \ b_n = 5 \cdot 3^n H(n), \ n \in \mathbb{Z};$$

(iii)
$$a = \delta_{-2} - \frac{5}{2}\delta_{-1} + \delta, b_n = \cos(n+1)H(n+1).$$

Soluție:

i)Folosim convoluția și

$$\mathcal{L}(a) \cdot x(z) = \mathcal{L}(b) \Rightarrow$$

$$(z^2 + z - 6)x(z) = \frac{z}{(z - 1)^2} \Rightarrow$$

$$x(z) = \frac{z}{(z - 1)^2(z - 2)(z + 3)}, |z| > 3 \Rightarrow$$

$$\Rightarrow x_n = 0, \forall n \le -1.$$

Pentru $n \geq 0$ rezultă

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>3} \frac{z^n}{(z-1)^2(z-2)(z+3)} dz =$$

$$= \operatorname{Res}_{z=1} f(z) + \operatorname{Res}_{z=2} f(z) + \operatorname{Res}_{z=-3} f(z).$$

Avem

$$\operatorname{Res}_{z=1} f(z) = \left[\frac{z^n}{(z-2)(z+3)} \right]_{|z=1}' =$$

$$= \frac{n \cdot z^{n-1}(z-2)(z+3) - z^n(2z+1)}{(z-2)^2(z+3)^2} |_{z=1} =$$

$$= \frac{-4n-3}{4^2} = \frac{-n}{4} + \frac{-3}{4^2} = -\frac{4n+3}{16}.$$

$$\operatorname{Res}_{z=2} f(z) = \frac{z^n}{(z-1)^2(z+3)} |_{z=2} = \frac{2^n}{5}.$$

$$\operatorname{Res}_{z=-3} f(z) = \frac{z^n}{(z-1)^2(z-2)}|_{z=-3} = \frac{(-3)^n}{-80} = -\frac{1}{80} \cdot (-3)^n.$$

Deci

$$x_n = -\frac{4n+3}{16} + \frac{2^n}{5} - \frac{1}{80} \cdot (-3)^n, n \ge 0.$$

ii)

$$\mathcal{L}(a)x(z) = \mathcal{L}(b) \Rightarrow (z^2 - 3z + 2)x(z) = \frac{5z}{z - 3} \Rightarrow$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 178 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$X(z) = \frac{5z}{(z-1)(z-2)(z-3)}, |z| > 3 \stackrel{P_7}{\Rightarrow} x_n = 0$$

pentru $n \leq -1$.

Pentru $n \geq 0$ rezultă

$$x_n = \frac{1}{2\pi i} \oint_{|z|=a>3} \frac{5z^n}{(z-1)(z-2)(z-3)} dz =$$

$$= \operatorname{Res}_{z=1} f(z) + \operatorname{Res}_{z=2} f(z) + \operatorname{Res}_{z=3} f(z) = \frac{5}{2} - 5 \cdot 2^{n} + \frac{5}{2} \cdot 3^{n} \Rightarrow$$

$$\Rightarrow x_n = \frac{5}{2}(1 - 2^{n+1} + 3^n), n \ge 0, x_n = 0, \forall n \le -1$$

Ecuația x * a = b se mai scrie:

$$(x * \delta_{-2})_n - 3(x * \delta_{-1})_n + 2(x * \delta)_n = 5 \cdot 3^n H(n), \forall n \in \mathbb{Z} \Rightarrow$$

$$\Rightarrow x_{n+2} - 3x_{n+1} + 2x_n = 5 \cdot 3^n H(n), \forall n \in \mathbf{Z}$$

Calcularea primilor termeni ai şirului:

$$n = -2 \Rightarrow x_0 - 3x_{-1} + 2x_{-2} = 5 \cdot 3^{-2}H(-2), x_0 = 0$$

$$n = -1 \Rightarrow x_1 - 3x_0 + 2x_{-1} = 5 \cdot 3^{-1}H(-1), x_1 = 0$$
iii)
$$\mathcal{L}(a)x(z) = \mathcal{L}(b) \Rightarrow (z^2 - \frac{5}{2}z + 1)x(z) = \mathcal{L}(b).$$

$$b = (b_n)_{n \in \mathbb{Z}}, b_n = \cos(n+1)H(n+1) = \cos(n)H(n) * \delta_{-1} \Rightarrow$$

$$\mathcal{L}(b) = \mathcal{L}(b_n) = \mathcal{L}(\cos(n)H(n)) \cdot \mathcal{L}(\delta_{-1}) =$$

$$= \frac{z(z - \cos 1)}{z^2 - 2z\cos 1 + 1} \cdot z = \frac{z^2(z - \cos 1)}{(z - e^i)(z - e^{-i})}$$

$$\Rightarrow X(z) = \frac{z^2(z - \cos 1)}{\left(z - \frac{1}{2}\right)(z - 2)(z - e^i)(z - e^{-i})}, |z| > 2$$

$$\stackrel{P_7(x \in S_d^+)}{\Rightarrow} x_n = 0, \forall n < 0.$$

Pentru $n \geq 0$ rezultă

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>2} \frac{z^{n+1}(z-\cos 1)}{\left(z-\frac{1}{2}\right)(z-2)(z-e^i)(z-e^{-i})} dz =$$

$$= \operatorname{Res}_{z=\frac{1}{2}} f(z) + \operatorname{Res}_{z=2} f(z) + 2\operatorname{Re}_{z=e^i} f(z).$$

Avem

$$\operatorname{Res}_{z=\frac{1}{2}} f(z) = \frac{z^{n+1}(z - \cos 1)}{(z - 2)(z^2 - 2z\cos 1 + 1)}|_{z=\frac{1}{2}} = \frac{\frac{1}{2} \cdot \frac{1}{2^n} \left(\frac{1}{2} - \cos 1\right)}{\frac{-3}{2} \left(\frac{1}{4} - \cos 1 + 1\right)} = -\frac{1}{2^{n-1}} \cdot \frac{1 - 2\cos 1}{5 - 4\cos 1}.$$

$$\operatorname{Res}_{z=2} f(z) = \frac{z^{n+1}(z - \cos 1)}{\left(z - \frac{1}{2}\right) \left(z^2 - 2z\cos 1 + 1\right)}|_{z=2} =$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 180 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$=\frac{2^{n+1}(2-\cos 1)}{\frac{3}{2}(4-4\cos 1+1)}=\frac{2^{n+2}(2-\cos 1)}{3(5-4\cos 1)}.$$

$$\operatorname{Res} f(z)=\frac{z^{n+1}(z-\cos 1)}{\left(z-\frac{1}{2}\right)(z-2)(z-e^{-i})}|_{z=e^{i}}=$$

$$=\frac{e^{i(n+1)}(e^{i}-\cos 1)}{\left(e^{i}-\frac{1}{2}\right)(e^{i}-2)2i\sin 1}=\frac{e^{i(n+1)}}{(2e^{i}-1)(e^{i}-2)}=$$

$$=\frac{e^{i(n+1)}}{(2\cos 1-i\sin 1)(\cos 1-2+i\sin 1)}=$$

$$=\frac{e^{i(n+1)}(2\cos 1+i2\sin 1)(\cos 1-2-i\sin 1)}{\left[(2\cos 1-1)^{2}+4\sin^{2}1\right]\left[(\cos 1-2)^{2}+\sin^{2}1\right]}=$$

$$=\frac{\left[\cos(n+1)+i\sin(n+1)\right]}{(5-4\cos 1)}.$$

$$\cdot\left[(2\cos 1-1)(\cos 1-2)+2\sin^{2}1++i(2\sin 1(\cos 1-2)-\sin 1(2\cos 1-1))\right]\Rightarrow$$

$$\Rightarrow Re\operatorname{Res}_{z=e^{i}}f(z)=$$

$$=\left[\cos(n+1)\cdot(4-5\cos 1)-\sin(n+1)\cdot(-3\sin 1)\right].$$

$$\cdot\frac{1}{(5-4\cos 1)^{2}}=$$

$$=\frac{(4-5\cos 1)\cos(n+1)+3\sin(n+1)\sin 1}{(5-4\cos 1)^{2}}.$$

$$x_{n}=-\frac{1}{2^{n-1}}\cdot\frac{1-2\cos 1}{5-4\cos 1}+\frac{2^{n+2}}{3}\cdot\frac{2-\cos 1}{5-4\cos 1}+$$

$$+\frac{(4-5\cos 1)\cos(n+1)+3\sin(n+1)\sin 1}{(5-4\cos 1)^{2}}, n\geq 0.$$

Exercițiul 5.16 Să se găsească termenul general al șirului:

$$x_{n+2} - 4x_{n+1} + 3x_n = 2H(n),$$

$$n \in \mathcal{Z}, x_n \in S_d^+$$
.

Soluție: Aplicăm peste relația de recurență transformata Laplace discretă (transformata Z):

$$(x * \delta_{-2})_n - 4(x * \delta_{-1})_n + 3(x * \delta)_n = 2H(n), \forall n \in \mathbb{Z} \Rightarrow$$
$$x * (\delta_{-2} - 4\delta_{-1} + 3\delta) = 2H(n) \Rightarrow$$

$$\mathcal{L}(x) \cdot (z^2 - 4z + 3) = \frac{2z}{z - 1}$$

$$\Rightarrow X(z) = \frac{2z}{(z - 1)^2 (z - 3)} \stackrel{P_7}{\Rightarrow} x \in S_d^+ \Rightarrow x_n = 0, \forall n \le -1.$$

Pentru $n \ge 0$ rezultă

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>3} \frac{2z^n}{(z-1)^2(z-3)} dz = \operatorname{Res}_{z=1} f(z) + \operatorname{Res}_{z=3} f(z).$$

$$\operatorname{Res}_{z=1} f(z) = \left(\frac{2z^n}{z-3}\right)'_{|z=1} = \frac{2n \cdot z^{n-1}(z-3) - 2z^n}{(z-3)^2}|_{z=1} = \frac{-n \cdot 4 - 2}{4} = -n - \frac{1}{2}.$$

$$\operatorname{Res}_{z=3} f(z) = \frac{2z^n}{(z-1)^2}|_{z=3} = \frac{2 \cdot 3^n}{4} = \frac{1}{2} \cdot 3^n.$$

Deci

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 182 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$x_n = -n - \frac{1}{2} + \frac{1}{2} \cdot 3^n, n \ge 0, x_n = 0$$

pentru $n \leq -1$.

Calcularea primilor termeni ai şirului:

$$x_{n+2} - 4x_{n+1} + 3x_n = 2H(n)$$

$$n = -2 \Rightarrow x_0 - 4x_{-1} + 3x_{-2} = 2H(-2) \Rightarrow x_0 = 0$$
$$n = -1 \Rightarrow x_1 - 4x_0 + 3x_{-1} = 2H(-1) \Rightarrow x_1 = 1.$$

Exercițiul 5.17 Rezolvați următoarele ecuații E.D.F.(ecuații cu diferențe finite) (găsiți șirurile următoare):

(a)

$$x_{n+2} - 7x_{n+1} + 12x_n = 2 \cdot 5^n, x_0 = 2, x_1 = 1, n \ge 0.$$

Soluţie.

Extindem şirul x_n prin $x_n = 0$ pentru $n \le -1$. Atunci:

$$x_{n+2} - 7x_{n+1} + 12x_n = \left\{ \begin{array}{l} 2 \cdot 5^n, n \geq 0 \\ -13, n = -1 \\ 2, n = -2 \\ 0, n \leq -3 \end{array} \right. =$$

$$= 2 \cdot 5^{n} H(n) - 13(\delta_{-1})_{n} + 2(\delta_{-2})_{n} = b_{n}, \forall n \in \mathbb{Z}.$$

Ecuația se mai scrie:

$$(x * \delta_{-2})_n - 7 (x * \delta_{-1})_n + 12 (x * \delta)_n = b_n, \forall n \in \mathbb{Z} \Rightarrow$$

$$x * (\delta_{-2} - 7\delta_{-1} + 12\delta) = b,$$

unde $b \equiv (b_n)_{n \in \mathbb{Z}}$ și aplicăm ultimei ecuații transformata Z.

$$X(z)(z^{2} - 7z + 12) = \mathcal{L}(b) = \mathcal{L}(b_{n}) =$$

$$= 2\mathcal{L}(5^{n}H(n)) - 13\mathcal{L}(\delta_{-1}) + 2\mathcal{L}(\delta_{-2}) \Rightarrow$$

$$X(z)(z - 3)(z - 4) = 2\frac{z}{z - 5} - 13z + 2z^{2} =$$

$$= \frac{2z - 13z(z - 5) + 2z^{2}(z - 5)}{z - 5} =$$

$$= \frac{2z - 13z^{2} + 65z + 2z^{3} - 10z^{2}}{z - 5} = \frac{2z^{3} - 23z^{2} + 67z}{z - 5} \Rightarrow$$

$$X(z) = \frac{2z^{3} - 23z^{2} + 67z}{(z - 3)(z - 4)(z - 5)}, |z| > 5 \stackrel{P_{\zeta}}{\Rightarrow}$$

 $x_n = 0$ pentru n < 0.

Pentru $n \geq 0$ rezultă

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>5} z^{n-1}x(z)dz =$$

$$= \frac{1}{2\pi i} \oint_{|z|=\rho>5} \frac{z^n(2z^2 - 23z + 67)}{(z-3)(z-4)(z-5)}dz =$$

$$= \operatorname{Res}_{z=3} f(z) + \operatorname{Res}_{z=4} f(z) + \operatorname{Res}_{z=5} f(z) =$$

$$= \frac{z^n(2z^2 - 23z + 67)}{(z-4)(z-5)}|_{z=3} + \frac{z^n(2z^2 - 23z + 67)}{(z-3)(z-5)}|_{z=4} +$$

$$+ \frac{z^n(2z^2 - 23z + 67)}{(z-3)(z-4)}|_{z=5} =$$

$$= \frac{3^n(18 - 69 + 67)}{(-1)(-1)} + \frac{4^n(32 - 92 + 67)}{1(-1)} +$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 184 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$+\frac{5^{n}(50-115+67)}{2(-1)} = 8 \cdot 3^{n} - 7 \cdot 4^{n} - 5^{n}$$

$$\Rightarrow x_{n} = 8 \cdot 3^{n} - 7 \cdot 4^{n} - 5^{n}, n \ge 0.$$
(b)
$$x_{n+2} - 4x_{n+1} + 3x_{n} = (n+1) \cdot 4^{n}, n \ge 0, x_{0} = 0, x_{1} = 1.$$
Extindem x_{n} cu $x_{n} = 0$ pentru $n \le -1$

$$x_{n+2} - 4x_{n+1} + 3x_n = \begin{cases} (n+1) \cdot 4^n, & n \ge 0 \\ 1, & n = -1 \\ 0, & n \le -2 \end{cases}$$
$$= (n+1) \cdot 4^n \cdot H(n) + (\delta_{-1})_n = b_n, \forall n \in \mathbb{Z}.$$

$$(x * \delta_{-2})_n - 4(x * \delta_{-1})_n + 3(x * \delta)_n = (b)_n, \forall n \in \mathbb{Z}, b \equiv (b_n)_{n \in \mathbb{Z}}$$

$$x * (\delta_{-2} - 4\delta_{-1} + 3\delta) = b \Rightarrow$$

$$X(z) (\mathcal{L}(\delta_{-2}) - 4\mathcal{L}(\delta_{-1}) + 3\mathcal{L}(\delta)) =$$

$$= \mathcal{L}(b) = \mathcal{L} ((n+1) \cdot 4^n \cdot H(n)) + \mathcal{L}(\delta_{-1}) \Rightarrow$$

$$\Rightarrow (z^2 - 4z + 3)X(z) = \frac{4z}{(z-4)^2} + \frac{z}{z-4} + z =$$

$$= z \cdot \frac{4 + z - 4 + z^2 - 8z + 16}{(z-4)^2} =$$

$$= \frac{z(z^2 - 7z + 16)}{(z-4)^2}.$$

$$X(z) = \frac{z(z^2 - 7z + 16)}{(z - 1)(z - 3)(z - 4)^2} \stackrel{P_7}{\Rightarrow} x_n = 0, n \le -1.$$

Pentru $n \geq 0$ rezultă

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>4} z^{n-1}X(z)dz =$$

$$= \frac{1}{2\pi i} \oint_{|z|=\rho>4} \frac{z^n(z^2 - 7z + 16)}{(z-1)(z-3)(z-4)^2} dz =$$

$$= \mathop{\rm Res}_{z=1} f(z) + \mathop{\rm Res}_{z=3} f(z) + \mathop{\rm Res}_{z=4} f(z).$$

Calculăm reziduurile:

$$\operatorname{Res}_{z=1} f(z) = \frac{z^n(z^2 - 7z + 16)}{(z-3)(z-4)^2}|_{z=1} = \frac{10}{-2 \cdot 9} = -\frac{5}{9};$$

$$\operatorname{Res}_{z=3} f(z) = \frac{z^n (z^2 - 7z + 16)}{(z - 1)(z - 4)^2} \Big|_{z=3} = \frac{3^n}{2 \cdot 1} (9 - 21 + 16) = 2 \cdot 3^n;$$

$$\operatorname{Res}_{z=4} f(z) = \left[\frac{z^n (z^2 - 7z + 16)}{(z - 1)(z - 3)} \right]'_{|z=4} =$$

$$= \frac{[n \cdot z^n (z^2 - 7z + 16) + z^n (2z - 7)] (z - 1)(z - 3)}{(z - 1)^2 \cdot (z - 3)^2} \Big|_{z=4} -$$

$$-\frac{z^n (z^2 - 7z + 16)(z - 3 + z - 1)}{(z - 1)^2 \cdot (z - 3)^2} \Big|_{z=4} =$$

$$= \frac{(n \cdot 4^{n-1}(16 - 28 + 16) + 4^n)(4 - 1)(4 - 3)}{3^2 \cdot 1^2} - \frac{4^n(16 - 28 + 16)(8 - 4)}{3^2 \cdot 1^2} = \frac{(n \cdot 4^n + 4^n) \cdot 3 - 4^{n+2}}{9} = \frac{n}{3} \cdot 4^n - \frac{13}{9} \cdot 4^n.$$

Deci

$$x_n = -\frac{5}{9} + 2 \cdot 3^n - \frac{n}{3} \cdot 4^n - \frac{13}{9} \cdot 4^n, n \ge 0.$$

Exercițiul 5.18 Şirul lui Fibonacci:

$$\begin{cases} x_{n+2} = x_{n+1} + x_n, n \ge 0 \\ x_0 = 0, x_1 = 1. \end{cases}$$

Soluție.

Extindem şirul x_n la $x_n = 0, \forall n \le -1$.

$$x_{n+2} - x_{n+1} - x_n = \begin{cases} 0, n \ge 0 \\ x_1 - x_0 - x_{-1} = 1, n = -1 \\ x_0 - x_{-1} - x_{-2} = 0, n = -2 \\ 0, n \le -3 \end{cases} = \begin{cases} 0, n \ne -1 \\ 1, n = -1 \end{cases} = (\delta_{-1})_n, \forall n \in \mathbb{Z}.$$

 $x * (\delta_{-2} - \delta_{-1} - \delta) = \delta_{-1} \Rightarrow X(z)(z^2 - z - 1) = z \Rightarrow$

$$X(z) = \frac{z}{\left(z - \frac{1+\sqrt{5}}{2}\right) \left(z - \frac{1-\sqrt{5}}{2}\right)}, |z| > \frac{1+\sqrt{5}}{2} \stackrel{P_7}{\Rightarrow} x_n = 0, n \le -1$$

$$n \ge 0 \Rightarrow x_n = \frac{1}{2\pi i} \oint_{|z| = \rho > \frac{1+\sqrt{5}}{2}} z^{n-1} X(z) dz =$$

$$= \frac{1}{2\pi i} \oint_{|z| = \rho > \frac{1+\sqrt{5}}{2}} \frac{z^n}{\left(z - \frac{1+\sqrt{5}}{2}\right) \left(z - \frac{1-\sqrt{5}}{2}\right) dz} =$$

$$= \underset{z = \frac{1+\sqrt{5}}{2}}{\text{Res}} f(z) + \underset{z = \frac{1-\sqrt{5}}{2}}{\text{Res}} f(z) =$$

$$= \frac{z^n}{z - \frac{1-\sqrt{5}}{2}}|_{z = \frac{1+\sqrt{5}}{2}} + \frac{z^n}{z - \frac{1+\sqrt{5}}{2}}|_{z = \frac{1-\sqrt{5}}{2}} \Rightarrow$$

$$x_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n \right], \forall n \ge 0.$$

Exercițiul 5.19

$$x_{n+2} + x_{n+1} - 6x_n = n, n \ge 0, x_0 = 0, x_1 = -1$$

Extindem x_n pe \mathbb{Z}^* cu $x_n = 0, \forall n \leq -1$

$$x_{n+2} + x_{n+1} - 6x_n = \begin{cases} n, & n \ge 0 \\ x_1 + x_0 - 6x_{-1}, n = -1 \\ 0, & n \le -2 \end{cases} = \begin{cases} n, n \ge 0 \\ -1, n = -1 \\ 0, n \le -2 \end{cases}$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 188 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

 $= n \cdot H(n) - \delta_{-1} = b_n, \forall n \in \mathbb{Z}$

$$x * (\delta_{-2} + \delta_{-1} - 6\delta) = b, b \equiv (b_n)_{n \in \mathbb{Z}} \Rightarrow$$
$$\Rightarrow X(z)(z^2 + z - 6) = L(b) = L(n \cdot H(n)) - L(\delta_{-1})$$

$$=\frac{z}{(z-1)^2}-z=z\cdot\frac{1-z^2+2z-1}{(z-1)^2}=\frac{z^2(2-z)}{(z-1)^2},|z|>1\Rightarrow$$

$$X(z) = \frac{z^2(2-z)}{(z-1)^2(z+3)(z-2)} = -\frac{z^2}{(z-1)^2(z+3)}, |z| > 3$$

$$\stackrel{P_7}{\Rightarrow} x_n = 0, \forall n \le -1.$$

Pentru $n \geq 0$ avem

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>3} z^n \frac{-z^2}{(z-1)^2(z+3)} dz =$$

$$= -\frac{1}{2\pi i} \oint_{|z|=\rho>3} \frac{z^{n+1}}{(z-1)^2(z+3)} dz =$$

$$= -\operatorname{Res}_{z=1} f(z) - \operatorname{Res}_{z=-3} f(z)$$

$$\operatorname{Res}_{z=1} f(z) = \left(\frac{z^{n+1}}{z+3}\right)'_{|z=1} = \frac{(n+1) \cdot z^n (z+3) - z^{n+1}}{(z+3)^2}|_{z=1} = \frac{4n+3}{16}$$

$$\operatorname{Res}_{z=-3} f(z) = \frac{z^{n+1}}{(z-1)^2} \Big|_{z=-3} = \frac{(-3)^{n+1}}{16} = -\frac{3}{16} \cdot (-3)^n$$
$$x_n = \frac{3}{16} \cdot (-3)^n - \frac{4n+3}{16}, n \ge 0.$$

Exercițiul 5.20

$$x_{n+4} + 2x_{n+3} + 3x_{n+2} + 2x_{n+1} + x_n = 0, \forall n \ge 0$$
$$x_0 = x_1 = 0, x_2 = -1, x_3 = 0.$$

Extindem şirul x_n la $x_n = 0, \forall n \leq -1$

$$x_{n+4} + 2x_{n+3} + 3x_{n+2} + 2x_{n+1} + x_n =$$

$$= \begin{cases} 0, n \ge 0 \\ x_3 + 2x_2 + 3x_1 + 2x_0 + x_{-1}, n = -1 \\ x_2 + 2x_1 + 3x_0, n = -2 \\ x_1 + 2x_0, n = -3 \\ x_0, n = -4 \\ 0, n \le -5 \end{cases} =$$

$$= \begin{cases} -2, n = -1 \\ -1, n = -2 \\ 0, rest \end{cases} = -2\delta_{-1} - \delta_{-2} = b_n, \forall n \in \mathbb{Z}$$

$$x * (\delta_{-4} + 2\delta_{-3} + 3\delta_{-2} + 2\delta_{-1} + \delta) = b, b \equiv (b_n)_{n \in \mathbb{Z}}$$

$$X(z) = \frac{-z(z+2)}{(z^2+z+1)^2}, |z| > 1 \stackrel{P_7}{\Rightarrow} x_n = 0, \forall n \le -1$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 190 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

Pentru n > 0 avem

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>1} \frac{-z(z+2)}{(z^2+z+1)^2} dz = -2Re \operatorname{Res}_{z=\varepsilon} \frac{z^n(z+2)}{(z-\varepsilon)^2(z-\overline{\varepsilon})^2},$$

unde ε este rădăcina de ordinul trei a unității din Ssup. $\varepsilon = \frac{-1}{2} + \frac{i\sqrt{3}}{2}$ pol de ordin 2.

$$\operatorname{Res}_{z=\varepsilon} \frac{z^n(z+2)}{(z-\varepsilon)^2(z-\overline{\varepsilon})^2} = \left[\frac{z^n(z+2)}{(z-\overline{\varepsilon})^2}\right]_{|z=\varepsilon}' =$$

$$=\frac{\left[n\cdot z^{n-1}(z+2)+z^n\right](z-\overline{\varepsilon})^2-2z^n(z+2)(z-\overline{\varepsilon})}{(z-\overline{\varepsilon})^4}|_{z=\varepsilon}=$$

$$=\frac{1}{(\varepsilon-\overline{\varepsilon})^3}\left[n\cdot\varepsilon^{n-1}(\varepsilon+2)(\varepsilon-\overline{\varepsilon})+\varepsilon^n(\varepsilon-\overline{\varepsilon})-2\varepsilon^n(\varepsilon+2)\right]=$$

$$= \frac{\varepsilon^{n-1}}{(\varepsilon - \overline{\varepsilon})^3} \left[n(\varepsilon + 2)(\varepsilon - \overline{\varepsilon}) + \varepsilon(\varepsilon - \overline{\varepsilon}) - 2\varepsilon(\varepsilon + 2) \right]$$

$$\begin{cases} \varepsilon \cdot i\sqrt{3} + n \cdot i\sqrt{3} \cdot (\varepsilon + 2) - 2\varepsilon^2 - 4\varepsilon = \\ = i\sqrt{3} \left((n+1)\varepsilon + 2n \right) + 2\varepsilon + 2 - 4\varepsilon = \\ = i\sqrt{3} \left[(n+1)\varepsilon + 2n \right] + 2(1-\varepsilon) \\ -\varepsilon^2 = \varepsilon + 1 \text{ si } \varepsilon - \overline{\varepsilon} = i\sqrt{3}. \end{cases}$$

$$\Rightarrow x_n = -2Re\left\{\frac{\varepsilon^{n-1}}{-3} \cdot \left[(n+1)\varepsilon + 2n\right] + \frac{2(1-\varepsilon)}{-i3\sqrt{3}} \cdot \varepsilon^{n-1}\right\}, n \ge 0.$$

Exercițiul 5.21 Exemplu exercițiu examen:

a) Cu ajutorul transformatei Z aflaţi şirul: $(x_n)_{n\geq 0}$ definit prin:

$$x_n = x_{n-3} - 3x_{n-2} + 3x_{n-1}, n \ge 3, x_0 = x_1 = 0, x_2 = 1$$

Soluție: Prelungim șirul x_n cu zero pentru n < 0. Avem:

$$x_n - 3x_{n-1} + 3x_{n-2} - x_{n-3} = \begin{cases} 0, n \ge 3 \\ 1, n = 2 \\ 0, n \le 1 \end{cases} = \begin{cases} 1, n = 2 \\ 0, n \ne 2 \end{cases} = (\delta_2)_n, \forall n \in \mathbb{Z}$$

Ecuația se mai scrie cu ajutorul produsului de convoluție:

$$\begin{split} (x*\delta_0)_n - 3 & (x*\delta_1)_n + 3 & (x*\delta_2)_n - (x*\delta_3)_n = (\delta_2)_n \,, \forall n \in \mathbb{Z} \Rightarrow \\ & x*(\delta_0 - 3\delta_1 + 3\delta_2 - \delta_3) = \delta_2. \end{split}$$

Aplicăm transformata Z pentru produsul de convoluție și $\mathcal{L}(\delta_k)=z^{-k}$. Avem:

$$X(z)\left(1 - \frac{3}{z} + \frac{3}{z^2} - \frac{1}{z^3}\right) = \frac{1}{z^2} \Rightarrow$$

$$\Rightarrow X(z) = \frac{z}{(z-1)^3} \stackrel{P_7}{\Rightarrow} x_n = 0, \forall n < 0.$$

Pentru $n \ge 0$ avem

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>1} z^{n-1} X(z) dz = \frac{1}{2\pi i} \oint_{|z|=\rho>1} \frac{z^n}{(z-1)^3} dz = \frac{1}{2\pi i} \int_{|z|=\rho>1} \frac{z^n}{(z-1)^3} dz$$

$$z = 1$$
 pol triplu $\frac{1}{2\pi i} \cdot 2\pi i \operatorname{Res}_{z=1} f(z) = 1$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 192 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$= \frac{1}{2!} \lim_{z \to 1} \left[(z - 1)^3 \cdot \frac{z^n}{(z - 1)^3} \right]'' =$$

$$= \frac{1}{2} n(n - 1) \cdot z^{n-2}|_{z=1} = \frac{1}{2} (n^2 - n) \Rightarrow$$

$$\Rightarrow x_n = \frac{n^2 - n}{2}, n \ge 0.$$

b) Aflați transformata Z a semnalului:

$$x_n = 2 \cdot 3^n H(n), H(n) = \begin{cases} 1, n \ge 0\\ 0, n < 0 \end{cases}$$

$$\mathcal{L}(x_n) = Z\{x_n\} = \sum_{n \in \mathbb{Z}} \frac{2 \cdot 3^n H(n)}{z^n} = 2\sum_{n=0}^{\infty} \frac{3^n}{z^n} = 2\sum_{n \ge 0} \left(\frac{3}{z}\right)^n = 2 \cdot \frac{1}{1 - \frac{3}{z}} = \frac{2z}{z - 3}, |z| > 3.$$

Exercițiul 5.22 Rezolvați următoarele E.D.F. sau aflați șirurile $(x_n)_{n>0}$ definite pe următoarele relații de recurență:

a.

$$10x_n - 3x_{n-1} - x_{n-2} = 4, n \ge 2, x_0 = 2, x_1 = -1;$$

b.

$$6x_n - 5x_{n-1} + x_{n-2} = (0, 25)^n, n \ge 2, x_0 = 0, x_1 = 1;$$

c.

$$x_n - 3x_{n-1} + 2x_{n-2} = 4, n \ge 2, x_0 = 5, x_1 = -3;$$

d.

$$x_n - 2x_{n-1} + x_{n-2} = 0, n \ge 2, x_0 = -1, x_1 = 2.$$

Soluție:

a. Prelungim pe x_n cu 0 pentru n < 0.

$$10x_n - 3x_{n-1} - x_{n-2} = \begin{cases} 4, n \ge 2\\ 10x_1 - 3x_0, n = 1\\ 10x_0, n = 0\\ 0, n \le -1 \end{cases} = \begin{cases} 4, n \ge 2\\ -16, n = 1\\ 20, n = 0\\ 0, n \le -1 \end{cases} = \begin{cases} 0, n \le 2\\ -16, n = 1\\ 0, n \le -1 \end{cases}$$

$$\Leftrightarrow 10 (x * \delta_0)_n - 3 (x * \delta_1)_n - (x * \delta_2)_n = b_n \equiv (b_n)_n, \forall n \in \mathbb{Z} \Leftrightarrow$$

$$\Leftrightarrow x * (10\delta_0 - 3\delta_1 - \delta_2) = b$$

 $=4H(n-2)-16(\delta_1)_n+20(\delta_0)_n, \forall n\in\mathbb{Z}\Leftrightarrow$

aplicăm transformata Z:

$$X(z) \cdot \left(10 - \frac{3}{z} - \frac{1}{z^2}\right) =$$

$$= 4L(H(n-2))(z) - \frac{16}{z} + 20 = \frac{4}{z^2} \cdot \frac{z}{z-1} - \frac{16}{z} + 20 \Leftrightarrow$$

$$\Leftrightarrow X(z) \cdot \frac{10z^2 - 3z - 1}{z^2} =$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 194 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$= \frac{4z - 16z^{2} + 16z + 20z^{2} - 20z}{z^{2}(z - 1)} \Rightarrow$$

$$\Rightarrow X(z) = \frac{-16z^{2} + 20z^{2}}{(z - 1)(5z + 1)(2z - 1)} =$$

$$= \frac{4z^{2}}{(z - 1)(5z + 1)(2z - 1)}, |z| > 1 \stackrel{P_{7}}{\Rightarrow}$$

$$\Rightarrow x_{n} = 0, n < 0.$$

Pentru $n \ge 0$ avem

$$x_{n} = \frac{1}{2\pi i} \oint_{|z|=\rho>1} \frac{4z^{n+1}}{(z-1)(5z+1)(2z-1)} dz =$$

$$= \frac{4}{20\pi i} \oint_{|z|=\rho>1} \frac{z^{n+1}}{(z-1)\left(z+\frac{1}{5}\right)\left(z-\frac{1}{2}\right)} dz =$$

$$= \frac{2\pi i}{5\pi i} \left(\operatorname{Res}_{z=1} f(z) + \operatorname{Res}_{z=\frac{-1}{5}} f(z) + \operatorname{Res}_{z=\frac{1}{2}} f(z) \right) =$$

$$= \frac{2}{5} \left(\frac{1}{\frac{6}{5} \cdot \frac{1}{2}} + \frac{\left(\frac{-1}{5}\right)^{n+1}}{\left(\frac{-6}{5}\right)\left(\frac{-7}{10}\right)} + \frac{\left(\frac{1}{2}\right)^{n+1}}{\left(\frac{-1}{2}\right) \cdot \frac{7}{10}} \right) =$$

$$= \frac{2}{3} + \frac{10}{21} \cdot \left(\frac{-1}{5}\right)^{n+1} - \frac{4}{7} \cdot \frac{1}{2^{n}}$$

b. $x_n = 0$ pentru n < 0.

$$6x_n - 5x_{n-1} + x_{n-2} = \begin{cases} \left(\frac{1}{4}\right)^n, n \ge 2\\ 6, n = 1\\ 0, n = 0\\ 0, n \le -1 \end{cases} =$$

$$= \begin{cases} \left(\frac{1}{4}\right)^n, n \ge 2\\ 6, n = 1 \\ 0, n \le -1 \end{cases} =$$
$$= \left(\frac{1}{4}\right)^n H(n-2) + 6(\delta_1)_n = b_n, \forall n \in \mathbb{Z}.$$

$$6(x * \delta_0)_n - 5(x * \delta_1)_n + (x * \delta_2)_n = (b)_n \equiv b_n, \forall n \in \mathbb{Z} \Leftrightarrow$$
$$\Leftrightarrow x * (6\delta_0 - 5\delta_1 + \delta_2) = b_n$$

aplicăm transformata Z:

$$(*) \mathcal{L}(x) \cdot \left(6 - \frac{5}{z} + \frac{1}{z^2}\right) = \mathcal{L}(b)$$

$$\mathcal{L}(b) = \mathcal{L}\left(\left(\frac{1}{4}\right)^n H(n-2)\right) + 6\mathcal{L}(\delta_1) =$$

$$\stackrel{\underline{\hat{\text{int arzierea}}}}{=} \left(\frac{1}{4}\right)^2 \cdot z^{-2} \cdot \mathcal{L}\left(\left(\frac{1}{4}\right)^n H(n)\right) - \frac{6}{z} =$$

$$= \frac{1}{16z^2} \cdot \frac{z}{z - \frac{1}{4}} + \frac{6}{z} =$$

$$= \frac{1}{4z(4z - 1)} + \frac{6}{z} = \frac{24(4z - 1) + 1}{4z(4z - 1)}$$

$$(*) \Rightarrow X(z) \cdot \frac{6z^2 - 5z + 1}{z^2} = \frac{96z - 23}{4z(4z - 1)} \Rightarrow$$

$$\Rightarrow X(z) = \frac{z(96z - 23)}{4(4z - 1)(2z - 1)(3z - 1)} =$$

$$= \frac{1}{96} \cdot \frac{96z(z - \frac{23}{96})}{(z - \frac{1}{4})(z - \frac{1}{2})(z - \frac{1}{2})}$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 196 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$\Rightarrow X(z) = \frac{z\left(z - \frac{23}{96}\right)}{\left(z - \frac{1}{4}\right)\left(z - \frac{1}{3}\right)\left(z - \frac{1}{2}\right)} \stackrel{P_7}{\Rightarrow} x_n = 0, n < 0.$$

Pentru $n \ge 0$ avem

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>1} \frac{z^n \left(z - \frac{23}{96}\right)}{\left(z - \frac{1}{4}\right) \left(z - \frac{1}{3}\right) \left(z - \frac{1}{2}\right)} dz =$$

$$= \operatorname{Res}_{z = \frac{1}{4}} f(z) + \operatorname{Res}_{z = \frac{1}{2}} f(z) + \operatorname{Res}_{z = \frac{1}{2}} f(z) =$$

$$=\frac{1}{4^n}\left(\frac{1}{4}-\frac{23}{96}\right)\cdot\frac{1}{\left(\frac{1}{4}-\frac{1}{3}\right)\left(\frac{1}{4}-\frac{1}{2}\right)}+\frac{1}{3^n}\cdot\frac{\frac{1}{3}-\frac{23}{96}}{\left(\frac{1}{3}-\frac{1}{4}\right)\left(\frac{1}{3}-\frac{1}{2}\right)}+$$

$$+\frac{1}{2^n}\left(\frac{1}{2}-\frac{23}{96}\right)\cdot\frac{1}{\left(\frac{1}{2}-\frac{1}{4}\right)\left(\frac{1}{2}-\frac{1}{3}\right)}=\frac{1}{4^{n+1}}-\frac{27}{4}\cdot\frac{1}{3^n}+\frac{25}{2^{n+3}}.$$

c. $x_n = 0, n < 0$

$$x_n - 3x_{n-1} + 2x_{n-2} = \begin{cases} 4, n \ge 2 \\ x_1 - 3x_0, n = 1 \\ x_0, n = 0 \\ 0, n \le -1 \end{cases} = \begin{cases} 4, n \ge 2 \\ -18, n = 1 \\ 5, n = 0 \\ 0, n \le -1 \end{cases} = 4H(n-2) - 18(\delta_1)_n + 5(\delta_0)_n = b_n, \forall n \in \mathbb{Z}.$$

$$(x * \delta_0)_n - 3(x * \delta_1)_n + 2(x * \delta_2)_n = (b)_n, (b)_n \equiv (b)_n \forall n \in \mathbb{Z} \Leftrightarrow$$
$$\Leftrightarrow x * (\delta_0 - 3\delta_1 + 2\delta_2) = b$$

$$X(z) \cdot \left(1 - \frac{3}{z} = \frac{2}{z^2}\right) = 4z^{-2}\mathcal{L}(H(n)) - 18z^{-1} + 5 \Leftrightarrow$$
$$\Leftrightarrow X(z) \cdot \frac{z^2 - 3z + 2}{z^2} = \frac{4}{z^2} \cdot \frac{z}{z - 1} - \frac{18}{z} + 5$$

$$X(z) \cdot \frac{z^2 - 3z + 2}{z^2} = \frac{4 - 18z + 18 + z^2 - 5z}{z(z - 1)}, |z| > 2.$$

Pentru $n \geq 0$ avem

$$x_n = \frac{1}{2\pi i} \int_{|z|=\rho>2} \frac{z^n (5z^2 - 23z + 22)}{(z-1)^2 (z-2)} dz =$$

$$= \operatorname{Res}_{z=1} f(z) + \operatorname{Res}_{z=2} f(z) =$$

$$= \lim_{z \to 1} \left[\frac{z^n (5z^2 - 23z + 22)}{z - 2} \right]' + \frac{z^n (5z^2 - 23z + 22)}{(z - 1)^2} |_{z=2} =$$

$$= \frac{\left[n \cdot z^{n-1} (5z^2 - 23z + 22) + z^n (10z - 23)\right] (z - 2)}{(z - 2)^2} \Big|_{z=1} - \frac{z^n (5z^2 - 23z + 22)}{(z - 2)^2} \Big|_{z=1} +$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 198 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$+2^{n}(20 - 46 + 22) =$$

$$= \frac{(4n - 13)(-1) - 4}{(-1)^{2}} - 2^{n+2} = 9 - 4n - 2^{n+2}.$$

Deci:

$$x_n = 9 - 4n - 2^{n+2}, n \ge 0.$$

d. $x_n = 0, n < 0$.

$$x_{n} - 2x_{n-1} + x_{n-2} = \begin{cases} 0, n \ge 2 \\ x_{1} - 2x_{0}, n = 1 \\ x_{0}, n = 0 \end{cases} = \begin{cases} 4, n = 1 \\ -1, n = 0 \\ 0, \text{rest} \end{cases} = \begin{cases} 4, n = 1 \\ -1, n = 0 \\ 0, \text{rest} \end{cases} = \begin{cases} x * (\delta_{0} - 2\delta_{-1} + \delta_{-2}) = 4\delta_{1} - \delta_{0} \\ 0 \end{cases}$$

$$\mathcal{L}(x) \cdot \left(1 - \frac{2}{z} + \frac{1}{z^{2}}\right) = \frac{4}{z} - 1 \Leftrightarrow X(z) \cdot \frac{(z - 1)^{2}}{z^{2}} = \frac{4 - z}{z} \Rightarrow 3z \end{cases}$$

$$\mathcal{L}(x) \cdot \left(1 - \frac{1}{z} + \frac{1}{z^2}\right) = \frac{1}{z} - 1 \Leftrightarrow X(z) \cdot \frac{1}{z^2} = -1$$

$$\Rightarrow X(z) = \frac{z(4-z)}{(z-1)^2}, |z| > 1 \stackrel{P7}{\Rightarrow} x_n = 0, n < 0.$$

Pentru $n \ge 0$ avem

$$x_n = \frac{1}{2\pi i} \oint_{|z|=\rho>1} \frac{z^n (4-z)}{(z-1)^2} dz = \operatorname{Res}_{z=1} f(z) =$$

$$= \lim_{z \to 1} \left[z^n (4-z) \right]' = \left[n \cdot z^{n-1} (4-z) - z^n \right] |_{z=1} = 3n - 1.$$

$$x_n = 3n - 1, n \ge 0.$$

Observația 5.23 Cele patru ecuații se pot scrie translatat, adică:

$$10x_{n+2} - 3x_{n+1} - x_n = 4, \ n \ge 0, \ x_0 = 2, \ x_1 = 1$$

și procedăm ca la exercițiile (5.17)-(5.21).

5.2 Transformata Laplace discretă pentru fruncția original discretă

Definiția 5.24 Funcția

$$f: \mathbb{Z} \to \mathbb{C}$$

se numește funcția original discretă dacă:

- i) f(n) = 0 pentru n < 0;
- ii) Există M>0 și $\alpha>0$ astfel încât

$$|f(n)| \le M \cdot e^{\alpha n}, \forall n \ge 0.$$

Definiția 5.25 Se numește transformata Laplace discretă a funcției original discretă f, funcția de variabilă complexă, notată

$$F^*(q) = \sum_{n=0}^{\infty} f(n) \cdot e^{-nq}.$$

Observația 5.26 $F^*(q)$ există \Leftrightarrow conform criteriului comparației:

$$|e^{-nq}| \cdot e^{\alpha n} < 1 \Leftrightarrow e^{(\alpha - Req)n} < 1 \Leftrightarrow$$

 $\Rightarrow Req > \alpha.$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 200 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

Observația 5.27 Altă notație:

$$F^*(q) = D[f(n)](q).$$

 $F^*(q)$ se mai numește *imaginea* original discretă.

Formula de inversiune:

$$f(n) = \sum Res\left(F^*(q) \cdot e^{nq}\right)$$

în singularitățile q_k ale lui $F^*(q)$.

Exemplul 5.28

$$f(n) = \begin{cases} a^n, n \ge 0 \\ 0, n < 0 \end{cases} \Rightarrow$$

$$\Rightarrow F^*(q) = \sum_{n=0}^{\infty} a^n \cdot e^{-nq} = \sum_{n \ge 0} \left(\frac{a}{e^q}\right)^n =$$

$$= \frac{1}{1 - \frac{a}{e^q}} = \frac{e^q}{e^q - a}, \left|\frac{a}{e^q}\right| < 1 \Leftrightarrow |a| < e^{Req}.$$

Deci:

$$D\left[a^{n}\right]\left(q\right) = \frac{e^{q}}{e^{q} - a}$$

pentru $e^{Req} > |a|$.

Exemplul 5.29

$$\eta(n) = \left\{ \begin{array}{l} 1, n \ge 0 \\ 0, n < 0 \end{array} \right.$$

funcția lui Heaviside discretă.

Aici: a = 1 rezultă

$$D[\eta(n)](q) = \frac{e^q}{e^q - 1}, e^{Re q} > 1.$$

Deci:

$$D[\eta(n)](q) = \frac{e^q}{e^q - 1}, e^{Re q} > 1.$$

Proprietăți 5.30 Proprietăți ale transformatei Laplace discretă cu original discret. Reguli de calcul.

1) Liniaritatea

$$F^*(q) = D[f_1(n) + \dots + f_k(n)](q) = F_1^*(q) + \dots + F_k^*(q).$$

2) Deplasarea

$$D[f(n) \cdot e^{an}](q) = \sum_{n \ge 0} f(n) \cdot e^{-(q-a)n} = D[f(n)](q-a)$$

Exemplul 5.31

$$D\left[\sin\alpha n\right](q) = \frac{1}{2i} \left(D\left[e^{i\alpha n}\right](q) - D\left[e^{-i\alpha n}\right](q)\right) =$$

$$= \frac{1}{2i} \left(D\left[1\right](q - i\alpha) - D\left[1\right](q + i\alpha)\right) =$$

$$= \frac{1}{2i} \left(\frac{e^{q - i\alpha}}{e^{q - i\alpha} - 1} - \frac{e^{q + i\alpha}}{e^{q + i\alpha} - 1}\right) =$$

$$= \frac{1}{2i} \cdot \frac{e^{2q} - e^{q - i\alpha} - e^{2q} + e^{q + i\alpha}}{e^{q - i\alpha} - e^{q - i\alpha} + 1} =$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 202 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$= \frac{e^q}{2i} \cdot \frac{e^{i\alpha} - e^{-i\alpha}}{e^{2q} - e^q(e^{i\alpha} + e^{-i\alpha}) + 1} = \frac{e^q \sin \alpha}{e^{2q} - 2e^q \cos \alpha + 1}.$$

Analog:

$$D\left[\cos\alpha n\right](q) = \frac{e^{q}(e^{q} - \cos\alpha)}{e^{2q} - 2e^{q}\cos\alpha + 1}, e^{Req} > 1.$$

3) Teorema întârzierii

$$k \in \mathbb{N}^*, D[f(n-k)](q) = \sum_{n=0}^{\infty} f(n-k) \cdot e^{-nq} =$$

$$= e^{-kq} \sum_{n=0}^{\infty} f(n-k) \cdot e^{-q(n-k)} =$$

$$= e^{-kq} \sum_{n=0}^{\infty} f(n) \cdot e^{-qn} = e^{-nq} D[f(n)](q) \Rightarrow$$

$$\Rightarrow D[f(n-k)](q) = e^{-kq} D[f(n)](q).$$

$$D[f(n+k)](q) = \sum_{n=0}^{\infty} f(n+k) \cdot e^{-nq} =$$

$$= e^{kq} \sum_{n=0}^{\infty} f(n+k) \cdot e^{-q(n+k)} =$$

$$= e^{kq} \left[F^*(q) - \sum_{m=0}^{k-1} f(m) \cdot e^{-qm} \right] \Rightarrow$$

$$\Rightarrow D\left[f(n+k)\right](q) = e^{kq} \left(F^*(q) - \sum_{m=0}^{k-1} f(m) \cdot e^{-qm}\right).$$

4) Derivarea în raport cu un parametru

$$F^*(q,x) = \sum_{n=0}^{\infty} f(n,x) \cdot e^{-qn}$$

și există $\frac{\partial f}{\partial x}(n,x)$ astfel încât $\sum_{n>0} \frac{\partial f}{\partial x}(n,x) \cdot e^{-qn}$ converge

$$\Rightarrow \frac{\partial F^*}{\partial x}(q,x) = \sum_{n \ge 0} \frac{\partial f}{\partial x}(n,x) \cdot e^{-qn}.$$

5) Derivarea imaginii

$$F^*(q) = \sum_{n=0}^{\infty} f(n)e^{-nq}, k \in \mathbb{N}^* \Rightarrow$$

$$\frac{d^k F^*}{dq^k}(q) = \sum_{n=0}^{\infty} (-1)^k n^k f(n)e^{-nq}.$$

$$\Rightarrow D\left[n^k f(n)\right](q) = (-1)^k \frac{d^k F^*}{dq^k}(q).$$

Exemplul 5.32 Calculați transformata Laplace discretă pentru funcția original discretă:

$$f(n) = n^2$$
.

$$F^*(q) = D \left[n^2 \cdot 1 \right] (q) =$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 204 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$= (-1)^{2} (D[1](q))_{q}^{"} = \left(\frac{e^{q}}{e^{q} - 1}\right)^{"} =$$

$$= \left(1 + \frac{1}{e^{q} - 1}\right)^{"} = \left(\frac{-e^{q}}{(e^{q} - 1)^{2}}\right)^{'} =$$

$$= -\frac{e^{q}(e^{q} + 1)}{(e^{q} - 1)^{3}}, e^{Req} > 1.$$

6) Teorema de integrare a transformatei Laplace discrete pentru original discret

$$F^*(s) - f(0) = \sum_{n=1}^{\infty} f(n)e^{-ns}$$

integrăm în raport cu s pe $[q, \infty)$

$$\Rightarrow \int_{q}^{\infty} \left[F^{*}(s) - f(0) \right] ds = \sum_{n=1}^{\infty} f(n) \int_{q}^{\infty} e^{-ns} ds \Rightarrow$$

$$\Rightarrow D\left[\frac{f(n)}{n}\right](q) = \int_{q}^{\infty} \left(F^{*}(s) - f(0)\right) ds, n \ge 1.$$

7) Transformata Laplace discretă a diferențelor divizate de ordinul k ale originalului

Definiția 5.33 Funcția

$$f: \mathbb{N} \to \mathbb{C}$$
,

definește diferențele divizate ale lui f. recursiv:

$$\Delta^{0} f(n) = f(n)$$

$$\Delta^{1} f(n) = \Delta f(n) = f(n+1) - f(n)$$

$$\vdots$$

$$\Delta^{k} f(n) = \Delta^{k-1} f(n+1) - \Delta^{k-1} f(n)$$

Observația 5.34

$$\Delta^{k} f(n) = \sum_{m=1}^{k} (-1)^{m} C_{k}^{m} f(n+k-m).$$

$$F^*(\Delta^k f(n))(q) =$$

$$= (e^q - 1)^k \cdot F^*(q) - e^q \sum_{m=0}^{k-1} (e^q - 1)^{k-m-1} \Delta^m f(n).$$

8) Transformata Laplace discretă pentru un număr finit de funcții original

$$g(n) = \sum_{k=0}^{n-1} f(k) \Rightarrow$$

$$D[g(n)](q) = \frac{F^*(q)}{e^q - 1},$$

unde

$$F^*(q) = D[f(n)](q).$$

9) Transformata Laplace discretă a produsului de convoluție

$$(f * q)(n) = f(n) * q(n) =$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 206 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$= \sum_{m=0}^{n} f(n-m)g(m) = g(n) * f(n) = (g * f)(n)$$

produsul de convoluție discret pentru $f,g:\mathbb{N}\to\mathbb{C},$ funcții original discrete.

$$D[(f * g)(n)](q) = F^*(q) \cdot G^*(q).$$

Transformate Laplace discrete uzuale

$$D[a^{n}](q) = \frac{e^{q}}{e^{q} - a};$$

$$D[e^{\alpha n}](q) = \frac{e^{q}}{e^{q} - e^{\alpha}};$$

$$D[n](q) = \frac{e^{q}}{(e^{q} - 1)^{2}};$$

$$D[n^{2}](q) = \frac{e^{q}(e^{q} + 1)}{(e^{q} - 1)^{3}};$$

$$D[\sin \beta n](q) = \frac{e^{q} \sin \beta}{e^{2q} - 2e^{q} \cos \beta + 1};$$

$$D[\cos \beta n](q) = \frac{e^{q}(e^{q} - \cos \beta)}{e^{2q} - 2e^{q} \cos \beta + 1};$$

$$D[sh\beta n](q) = \frac{e^{q}sh\beta}{e^{2q} - 2e^{q}ch\beta + 1};$$

$$D[ch\beta n](q) = \frac{e^{q}(e^{q} - ch\beta)}{e^{2q} - 2e^{q}ch\beta + 1};$$

$$D\left[C_k^n e^{\alpha n}\right](q) = \frac{e^{q-\alpha}}{(e^{q-\alpha}-1)^{k+1}} = \frac{e^{q-\alpha}e^{\alpha(k+1)}}{(e^q-e^{\alpha})^{k+1}} = \frac{e^{q+\alpha k}}{(e^q-e^{\alpha})^{k+1}};$$

$$D\left[C_k^n\right](q) = \frac{e^q}{(e^q-1)^{k+1}};$$

$$D\left[C_k^n a^n\right](q) = \frac{a^k e^q}{(e^q-q)^{k+1}}.$$

Observația 5.35 Transformata Laplace discretă pentru un oriqinal discret se obține din transformata Z, înlocuind z prin e^{-q} .

5.3 Exerciții rezolvate

Exercițiul 5.36 Calculați transformata Z a semnalului

$$f_n = \frac{n^2 \cdot 2^n}{n^2 + 4n + 3}, n \ge 0, f_n \in S_d^+.$$

Solutie:

$$\frac{n^2}{n^2 + 4n + 3} = 1 - \frac{4n + 3}{n^2 + 4n + 3} = 1 - \frac{4n + 3}{(n+1)(n+3)}$$
$$\frac{4n + 3}{(n+1)(n+3)} = \frac{a}{n+1} + \frac{b}{n+3} \Rightarrow$$
$$a = \frac{4n + 3}{n+3} \Big|_{n=-1} = -\frac{1}{2}$$
$$b = \frac{4n + 3}{n+1} \Big|_{n=-3} = \frac{9}{2}$$

$$f_n = \left(1 + \frac{1}{2} \cdot \frac{1}{n+1} - \frac{9}{2} \cdot \frac{1}{n+3}\right) \cdot 2^n + \frac{1}{2} \cdot \frac{2^n}{n+1} - \frac{9}{2} \cdot \frac{2^n}{n+3}.$$

Aplicăm liniaritatea transformatei Z și avem:

$$Z\{f_n\} = Z\{2^n\} + \frac{1}{2}Z\left\{\frac{2^n}{n+1}\right\} - \frac{9}{2}Z\left\{\frac{2^n}{n+3}\right\}$$
$$Z\{a^n\} = \frac{z}{z-a}, |z| > |a|;$$

pentru a=2 avem:

$$Z\left\{2^n\right\} = \frac{z}{z-2},$$

pentru |z| > 2

$$Z\left\{\frac{2^{n}}{n+1}\right\} = \sum_{n=0}^{\infty} \frac{\frac{2^{n}}{n+1}}{z^{n}} = \sum_{n=0}^{\infty} \frac{\left(\frac{2}{z}\right)^{n}}{n+1} =$$

$$= \frac{z}{2} \sum_{n=0}^{\infty} \frac{\left(\frac{z}{z}\right)^{n+1}}{n+1} = \frac{z}{2} \sum_{n=0}^{\infty} \left(\int_{0}^{\frac{z}{z}} t^{n} dt \right) = \frac{z}{2} \int_{0}^{\frac{z}{z}} \left(\sum_{n=0}^{\infty} t^{n} \right) dt =$$

$$= \frac{z}{2} \int_{0}^{\frac{z}{z}} \frac{1}{1-t} dt = -\frac{z}{2} \ln \frac{z}{z-2} \text{ pentru } |z| > 2.$$

Observație: Seria $\sum_{n=0}^{\infty} \frac{\frac{2^n}{n+1}}{z^n}$ este convergentă în baza criteriului raportului.

$$\Leftrightarrow \lim_{n \to \infty} \frac{\frac{2^{n+1}}{n+2}}{|z|^{n+1}} \cdot \frac{|z|^n}{\frac{2^n}{n+1}} \Leftrightarrow \frac{2}{|z|} < 1 \Leftrightarrow |z| > 2.$$

$$Z\left\{\frac{2^n}{n+3}\right\} = \frac{1}{8} Z\left\{\frac{2^{n+3}}{n+3}\right\} = \frac{1}{8} \sum_{n=0}^{\infty} \frac{\frac{2^{n+3}}{n+3}}{z^n} =$$

$$= \frac{z^3}{8} \sum_{n=0}^{\infty} \frac{\left(\frac{2}{z}\right)^{n+3}}{n+3} = \frac{z^3}{8} \sum_{n=0}^{\infty} \left(\int_0^{\frac{2}{z}} t^{n+2} dt\right) =$$

$$= \frac{z^3}{8} \int_0^{\frac{2}{z}} \left(\sum_{n=0}^{\infty} t^{n+2}\right) dt =$$

$$= \frac{z^3}{8} \int_0^{\frac{2}{z}} \frac{t^2}{1-t} dt = \frac{z^3}{8} \int_0^{\frac{2}{z}} \left(-t-1+\frac{1}{1-t}\right) dt =$$

$$= \frac{z^3}{8} \left[-\frac{t^2}{2}|_0^{\frac{2}{z}} - t|_0^{\frac{2}{z}} - \ln(1-t)|_0^{\frac{2}{z}}\right] =$$

$$= -\frac{z^2}{4} - \frac{z}{4} + \frac{z^3}{8} \ln \frac{z}{z-2}.$$

Deci:

$$Z\{f_n\} = Z\left\{\frac{n^2 \cdot 2^n}{n^2 + 4n + 3}\right\} =$$

$$= \frac{z}{z - 2} + \frac{z}{4} \ln \frac{z}{z - 2} + \frac{9}{8}z^2 + \frac{9}{8}z - \frac{9}{16}z^3 \ln \frac{z}{z - 2}.$$

Metoda a II-a de calcul pentru $Z\left\{\frac{2^n}{n+3}\right\}$ aplicând translația la stânga. Mai întai stabilim formula:

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 210 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$Z\{f_{n+p}\} = \sum_{n=0}^{\infty} \frac{f_{n+p}}{z^n} = z^p \sum_{n=0}^{\infty} \frac{f_{n+p}}{z^{n+p}} = z^p \sum_{n=p}^{\infty} \frac{f_n}{z^n} =$$

$$= z^{p} \left(\sum_{n=0}^{\infty} \frac{f_{n}}{z^{n}} - \sum_{n=0}^{p-1} \frac{f_{n}}{z^{n}} \right) = z^{p} Z \left\{ f_{n} \right\} - \sum_{n=0}^{p-1} f_{n} z^{p-n} \Rightarrow$$

 $Z\left\{f_{n+p}\right\}=z^pZ\left\{f_n\right\}-f_0z^p-f_1z^{p-1}-.....-f_{p-2}z^2-f_{p-1}z\to \text{translația la stanga}.$

$$Z\left\{\frac{2^n}{n+3}\right\} = \frac{1}{4}Z\left\{\frac{2^{n+2}}{(n+2)+1}\right\} =$$

$$= \frac{1}{4}z^2 Z\left\{\frac{2^n}{n+1}\right\} - \frac{f_0 z^2}{4} - \frac{f_1 z}{4} = \frac{1}{4}z^2 \left(\ln\frac{z}{z-2}\right) \frac{z}{2} - \frac{1}{4}z^2 - \frac{1}{4}z =$$

$$= \frac{z^3}{8} \ln\frac{z}{z-2} - \frac{z^2}{4} - \frac{z}{4} \text{ pentru } |z| > 2.$$

Observație. Translația la dreapta:

$$Z\left\{f_{n-p}\right\} = \sum_{n=0}^{\infty} \frac{f_{n-p}}{z^n} = z^{-p} \sum_{n=0}^{\infty} \frac{f_{n-p}}{z^{n-p}} =$$

$$= z^{-p} \left(\sum_{n=0}^{p-1} \frac{f_{n-p}}{z^{n-p}} + \sum_{n=p}^{\infty} \frac{f_{n-p}}{z^{n-p}}\right) = z^{-p} Z\left\{f_n\right\} + \sum_{n=0}^{p-1} \frac{f_{n-p}}{z^n} =$$

$$= z^{-p} Z\left\{f_n\right\} + \sum_{n=0}^{p-1} f_{n-p} \cdot z^{-n} =$$

$$= z^{-p} Z\left\{f_n\right\} + f_{-p} + f_{1-p} z^{-1} + f_{2-p} z^{-2} + \dots + f_{-1} z^{1-p},$$

$$f_{-p}, f_{1-p}, \dots, f_{-1} \to \text{condițiile inițiale ale semnalului.}$$

Exercițiul 5.37 Fie

$$F(z) = \frac{1}{(z-1)^2(z+2)}, |z| > 2.$$

Aflați semnalul discret $x_n \in S_d^+$, $n \in \mathbb{Z}$, $x_n = 0$ pentru n < 0 care are pe F(z) ca transformata Z.

Metoda I:

Fie $u_n = 1, \forall n \in \mathbb{N}$ şi $u_n = 0, \forall n \in \mathbb{Z} \setminus \mathbb{N}$.

$$u_{n-p} = \begin{cases} 1 & , & n \ge p \\ 0 & , & n$$

cu $p \in \mathbb{N}$, fixat.

Fie $x_n \in S_d^+$ un semnal discret şi $p \in \mathbb{N}$ fixat. Atunci:

$$Z\{x_{n-p}u_{n-p}\} = \sum_{n=0}^{\infty} \frac{x_{n-p}u_{n-p}}{z^n} = \sum_{n=p}^{\infty} \frac{x_{n-p}}{z^n} =$$

$$= \frac{1}{z^p} \sum_{n=p}^{\infty} \frac{f x_{n-p}}{z^{n-p}} = \frac{1}{z^p} \sum_{n=p}^{\infty} \frac{x_n}{z^n} = \frac{1}{z^p} Z\{x_n\} \Rightarrow$$

aplicăm inversa transformatei Z

$$\Rightarrow Z^{-1}\left(\frac{1}{z^p}Z\left\{x_n\right\}\right) = x_{n-p}, p \in \mathbb{N} \text{ fixat.}$$

$$\frac{1}{(z-1)^2(z+2)} = \frac{a}{(z-1)^2} + \frac{b}{z+2} + \frac{c}{z-1} \Rightarrow a = \frac{1}{z+2} \left|_{z=1} = \frac{1}{3} \right.;$$

$$b = \frac{1}{(z-1)^2} \Big|_{z=-2} = \frac{1}{9} \Rightarrow$$

$$\frac{1}{(z-1)^2(z+2)} = \frac{\frac{1}{3}}{(z-1)^2} + \frac{\frac{1}{9}}{(z+2)} + \frac{c}{(z-1)} =$$

$$= \frac{\frac{(z-1)^2}{9} + \frac{z+2}{3}}{(z-1)^2(z+2)} = \frac{c}{(z-1)} \Leftrightarrow$$

$$\Leftrightarrow \frac{9-z^2-z-7}{9(z+2)(z-1)^2} = \frac{c}{z-1} \Rightarrow \frac{c}{z-1} = -\frac{1}{9} \cdot \frac{1}{z-1} \Rightarrow$$

$$c = -\frac{1}{9}$$

deci

$$F(z) = \frac{1}{3} \cdot \frac{1}{(z-1)^2} + \frac{1}{9} \cdot \frac{1}{z+2} - \frac{1}{9} \cdot \frac{1}{z-1}$$

$$\Rightarrow x_n = \frac{1}{3} Z^{-1} \left(\frac{1}{(z-1)^2} \right) + \frac{1}{9} Z^{-1} \left(\frac{1}{z+2} \right) - \frac{1}{9} Z^{-1} \left(\frac{1}{z-1} \right).$$

$$Z^{-1} \left(\frac{1}{(z-1)^2} \right) = Z^{-1} \left(\frac{1}{z} \cdot \frac{z}{(z-1)^2} \right) =$$

$$= Z^{-1} \left(\frac{1}{z} \cdot Z \left\{ n \cdot u(n) \right\} \right) =$$

$$= (n-1)u_{n-1} = \begin{cases} n-1, & n \ge 1 \\ 0, & n = 0 \end{cases}$$

 $Z^{-1}\left(\frac{1}{z+2}\right) = Z^{-1}\left(\frac{1}{z} \cdot \frac{z}{z+2}\right) = Z^{-1}\left(\frac{1}{z} \cdot Z\left\{(-2)^n\right\}\right) =$

$$= (-2)^{n-1} u_{n-1} = \begin{cases} (-2)^{n-1}, & n \ge 1\\ 0, & n = 0 \end{cases}$$

$$Z^{-1} \left(\frac{1}{z-1} \right) = Z^{-1} \left(\frac{1}{z} \cdot \frac{z}{z-1} \right) = Z^{-1} \left(\frac{1}{z} \cdot Z \left\{ u_n \right\} \right) =$$

$$= u_{n-1} = \begin{cases} 1, & n \ge 1\\ 0, & n = 0. \end{cases}$$

Deci:

$$\begin{cases} x_n = \frac{n-1}{3} + \frac{(-2)^{n-1}}{9} - \frac{1}{9} = \frac{3n-4+(-2)^{n-1}}{9}, & n \ge 1 \\ x_n = 0, & n = 0. \end{cases}$$

Metoda a-II-a:

Aplicăm formula inversei transformatei Z cu reziduuri:

$$x_n = \frac{1}{2\pi i} \oint_{|z|=3} x^{n-1} \cdot F(z) dz = \frac{1}{2\pi i} \oint_{|z|=3} \frac{z^{n-1}}{(z-1)^2(z+2)} dz , \ n \ge 0.$$

Pentru $n \ge 1$ integrantul are 2 poli în |z| < 3: $z_1 = -2$ pol de ordin unu, $z_2 = 1$ pol de ordin doi; Notăm integrantul

$$f(z) = \frac{z^{n-1}}{(z-1)^2(z+2)} \Rightarrow$$

cu teorema reziduurilor:

$$x_n = \operatorname{Res}_{z=1} f(z) + \operatorname{Res}_{z=-2} f(z).$$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 214 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$\operatorname{Res}_{z=1} f(z) = \left(\frac{z^{n-1}}{z+2}\right)'|_{z=1} =$$

$$= \frac{(n-1)z^{n-2} \cdot (z+2) - z^{n-1}}{(z+2)^2} \Big|_{z=1} = \frac{3(n-1) - 1}{9} = \frac{3n - 4}{9}$$

$$\operatorname{Res}_{z=-2} f(z) = \frac{z^{n-1}}{(z-1)^2} \Big|_{z=-2} = \frac{(-2)^{n-1}}{9}.$$

Deci:

$$x_n = \frac{3n - 4 + (-2)^{n-1}}{9}$$
, pentru $n \ge 1$.

Pentru n=0

$$\Rightarrow x_0 = \frac{1}{2\pi i} \oint_{|z|=3} \frac{1}{z(z-1)^2(z+2)} dz =$$

$$= \operatorname{Res}_{z=0} f(z) + \operatorname{Res}_{z=1} f(z) + \operatorname{Res}_{z=-2} f(z) = \operatorname{Res}_{\xi=0} g(\xi).$$

Unde:

$$f(z) = \frac{1}{z(z-1)^2(z+2)}$$

şi

$$g(\xi) \, = -\frac{1}{\xi^2} \cdot f\left(\frac{1}{\xi}\right) = -\frac{1}{\xi^2} \cdot \frac{\xi}{\frac{(1-\xi)^2}{\xi^2} \cdot \frac{1+2\xi}{\xi}} = -\frac{\xi^2}{(1-\xi)^2(1+2\xi)}$$

Cum $g(\xi)$ este derivabilă în $\xi = 0 \Rightarrow \xi = 0$ este punct ordinar pentru $g(\xi) \Rightarrow \mathop{\mathrm{Res}}_{\xi=0} g(\xi) = 0 \Rightarrow x_0 = 0$.

S-a obținut același rezultat ca la metoda I-a.

Exercițiul 5.38 Calculați

$$Z^{-1}\left(F(z)\right)$$

unde

$$F(z) = \frac{z^2 \sin \omega}{(z-1)^2 (z^2 - 2z \cos \omega + 1)} \text{ pentru } |z| > 1.$$

Soluție:

 $\underline{\text{Metoda I}}$: descompunerea în fracții simple și folosirea transformatelor Z uzuale.

$$F(z) = z^{2} \sin \omega \frac{1}{(z^{2} - 2z \cos \omega + 1)(z^{2} - 2z + 1)} =$$

$$= \frac{z \sin \omega}{2 - 2 \cos \omega} \left(\frac{1}{z^{2} - 2z + 1} - \frac{1}{z^{2} - 2z \cos \omega + 1} \right) =$$

$$= \frac{2 \sin \frac{\omega}{2} \cos \frac{\omega}{2}}{4 \sin^{2} \frac{\omega}{2}} \cdot \frac{z}{(z - 1)^{2}} - \frac{1}{4 \sin^{2} \frac{\omega}{2}} \cdot \frac{z \sin \omega}{z^{2} - 2z \cos \omega + 1} =$$

$$= \frac{1}{2} ctg \frac{\omega}{2} \cdot \frac{z}{(z - 1)^{2}} - \frac{1}{4 \sin^{2} \frac{\omega}{2}} \cdot \frac{z \sin \omega}{z^{2} - 2z \cos \omega + 1} \Rightarrow$$

$$\Rightarrow x_{n} = Z^{-1} (F(z)) =$$

$$= \frac{1}{2} ctg \frac{\omega}{2} \cdot Z^{1} \left(\frac{z}{(z - 1)^{2}} \right) = \frac{1}{4 \sin^{2} \frac{\omega}{2}} \cdot Z^{-1} \left(\frac{z \sin \omega}{z^{2} - 2z \cos \omega + 1} \right) \Rightarrow$$

$$\Rightarrow x_{n} = \left(\frac{1}{2} ctg \frac{\omega}{2} \right) \cdot n - \frac{\sin n\omega}{4 \sin^{2} \frac{\omega}{2}} = \frac{n}{2} ctg \frac{\omega}{2} - \frac{\sin n\omega}{4 \sin^{2} \frac{\omega}{2}}, n \ge 0.$$

Metoda a II-a cu reziduuri:

$$x_{n} = \frac{1}{2\pi i} \oint_{|z|=2} \frac{z^{n+1} \sin \omega}{(z-1)^{2} (z-e^{i\omega}) (z-e^{-i\omega})} dz =$$

$$= \operatorname{Res}_{z=1} f(z) + \operatorname{Res}_{z=e^{i\omega}} f(z) + \operatorname{Res}_{z=e^{-i\omega}} f(z) =$$

$$= \left(\frac{z^{n+1}}{z^{2} - 2z \cos \omega + 1}\right)'_{z=1} \cdot \sin \omega + \frac{z^{n+1} + \sin \omega}{(z-1)^{2} (z-e^{-i\omega})}|_{z=e^{i\omega}} +$$

$$+ \frac{z^{n+1} + \sin \omega}{(z-1)^{2} (z-e^{i\omega})}|_{z=e^{-i\omega}} =$$

$$= \frac{\sin (n+1) z^{n} (z^{2} - 2z \cos \omega + 1) - z^{n+1} (2z - \cos \omega)}{(z^{2} - 2z \cos \omega + 1)^{2}}|_{z=1} +$$

$$+ \frac{e^{i(n+1)\omega} \cdot \sin \theta}{(e^{i\omega} - 1)^{2} \cdot 2i \sin \theta} + \frac{e^{-i(n+1)\omega} \cdot \sin \theta}{(e^{-i\omega} - 1)^{2} \cdot (e-2i \sin \theta)} =$$

$$= \sin \omega \frac{[(n+1) (2 - 2\cos \omega) - (2 - 2\cos \omega)]}{4 (1 - \cos \omega)^{2}} +$$

$$+ \frac{1}{2i} \cdot \frac{e^{i(n+1)\omega}}{-4 \sin^{2} \frac{\omega}{2} e^{i\omega}} + \frac{1}{2i} \cdot \frac{e^{-i(n+1)\omega}}{-4 \sin^{2} \frac{\omega}{2} e^{-i\omega}} =$$

$$= \frac{n}{2} \cdot \frac{\sin \omega}{(1 - \cos \omega)} - \frac{1}{2i} \cdot \frac{e^{in\omega} - e^{-in\omega}}{4 \sin^{2} \frac{\omega}{2}} =$$

$$= \frac{n}{2} \cdot \frac{2 \sin \frac{\omega}{2} \cos \frac{\omega}{2}}{2 \sin^{2} \frac{\omega}{2}} - \frac{\sin n\omega}{4 \sin^{2} \frac{\omega}{2}} = \frac{n}{2} ctg \frac{\omega}{2} - \frac{\sin \omega}{4 \sin^{2} \frac{\omega}{2}}, \quad n \geq 0.$$

Exercițiul 5.39 Aflați semnalul x_n , $n \ge 1$, pentru care transformata Z este:

$$F(z) = \frac{(z-1)^3 (z - \cos \omega)}{(z+1) (z^2 - 2z \cos \omega + 1)}, |z| > 1.$$

Soluție: Merge formula cu reziduuri, cea cu descompunere fiind dificilă!

$$x_{n} = \frac{1}{2\pi i} \oint_{|z|=2} z^{n-1} \cdot F(z) dz =$$

$$= \frac{1}{2\pi i} \oint_{|z|=2} \frac{z^{n-1} (z-1)^{3} (z \cos \omega)}{(z+1) (z-e^{i\omega}) (z-e^{-i\omega})} dz =$$

$$= \operatorname{Res}_{z=-1} f(z) + \operatorname{Res}_{z=e^{i\omega}} f(z) + \operatorname{Res}_{z=e^{-i\omega}} f(z) =$$

$$\operatorname{Res}_{z=-1} f(z) = \lim_{z \to -1} (z+1) \cdot f(z) = \frac{z^{-1} (z-1)^{3} (z - \cos \omega)}{z^{2} - 2z \cos \omega + 1} |_{z=-1} =$$

$$= \frac{(-1)^{n-1} \cdot (-2)^{3} (1 - \cos \omega)}{2 (1 - \cos \omega)} = 4 \cdot (-1)^{n}$$

$$\operatorname{Res}_{z=e^{i\omega}} f(z) = \frac{e^{i(n-1)\omega} (e^{i\omega} - 1)^{3} (e^{i\omega} - \cos \omega)}{(e^{i\omega} + 1) (e^{i\omega} - e^{-i\omega})} =$$

$$= \frac{e^{i(n-1)\omega} \cdot (-8i) \sin^{3} \frac{\omega}{2} \cdot e^{3i\frac{\omega}{2}}}{2 \cos \frac{\omega}{2} \cdot e^{i\frac{\omega}{2}}} = -4i \cdot e^{in\omega} \cdot \frac{\sin^{3} \frac{\omega}{2}}{\cos \frac{\omega}{2}}.$$

 $e^{i\omega} - 1 = 2i\sin\frac{\omega}{2}\left(\cos\frac{\omega}{2} + i\sin\frac{\omega}{2}\right) = 2i\sin\frac{\omega}{2} \cdot e^{i\frac{\omega}{2}}$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 218 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$e^{i\omega} + 1 = 2\cos\frac{\omega}{2}\left(\cos\frac{\omega}{2} + i\sin\frac{\omega}{2}\right) = 2\cos\frac{\omega}{2} \cdot e^{i\frac{\omega}{2}}$$

$$\underset{z=-e^{i\omega}}{\operatorname{Res}} f(z) = \underset{z=\overline{e^{i\omega}}}{\operatorname{Res}} f(z) \stackrel{f}{=} \stackrel{\text{ratională}}{=} = \overline{\underset{z=e^{i\omega}}{\operatorname{Res}}} f(z) =$$

$$= \overline{(-4i) \cdot e^{in\omega} \cdot \frac{\sin^3 \omega/2}{\cos \omega/2}} = \overline{(-4i)} \cdot \overline{e^{in\omega}} \cdot \frac{\overline{\sin^3 \omega/2}}{\cos \omega/2} =$$

$$= 4i \cdot e^{-in\omega} \cdot \frac{\sin^3 \omega/2}{\cos \omega/2}$$

$$x_n = 4 \cdot (-1)^n - 2 \cdot \sin^2\frac{\omega}{2} \cdot tg\frac{\omega}{2} \left(2i\left(e^{in\omega} - e^{-in\omega}\right)\right) \Rightarrow$$

$$x_n = 4(-1)^n - 2\sin^2\frac{\omega}{2} \cdot tg\frac{\omega}{2} \cdot \sin\omega.$$

Exercițiul 5.40 Calculații

$$Z\left\{\frac{a^n}{n+1}\right\} = ?, \ a \in \mathbb{C}$$

Soluție: Aplicăm defniniția transformatei Z pentru semnalul

$$x_n = \frac{a^n}{n+1}.$$

$$Z\left\{\frac{a^{n}}{n+1}\right\} = \sum_{n=0}^{\infty} \frac{\frac{a^{n}}{n+1}}{z^{n}} = \sum_{n=0}^{\infty} \frac{\left(\frac{a}{z}\right)^{n}}{n+1} = \frac{z}{a} \cdot \sum_{n=0}^{\infty} \frac{\left(\frac{a}{z}\right)^{n+1}}{n+1} =$$

$$= \frac{z}{a} \cdot \sum_{n=0}^{\infty} \left(\int_{0}^{\frac{z}{z}} t^{n} dt \right) = \frac{z}{a} \int_{0}^{\frac{a}{z}} \left(\sum_{n=0}^{\infty} t^{n} \right) dt = \frac{z}{a} \int_{0}^{\frac{a}{z}} \frac{1}{1-t} dt =$$

$$= -\frac{z}{a} \ln(1-t) \Big|_{0}^{\frac{a}{z}} = -\frac{z}{a} \ln\left(1-\frac{z}{a}\right) = -\frac{z}{a} \ln\frac{z-a}{z} \Rightarrow$$

$$Z\left\{\frac{a^{n}}{n+1}\right\} = \frac{z}{a} \ln\frac{z}{z-a} \text{ pentru } |z| > |a|$$

$$\Rightarrow Z^{-1} \left(z \ln\frac{z}{z-a}\right) = \frac{a^{n+1}}{n+1}.$$

pentru $|z| > |a| \rightarrow$ aici este convergentă absolut seria:

$$\sum_{n>0} \frac{\frac{a^n}{n+1}}{z^n}.$$

Notăm $y=\frac{1}{z}\Rightarrow$ seria de puteri $\sum_{n\geq 0}\frac{a^n}{n+1}\cdot y^n$; raza ei de convergență este $R=\lim_{n\to\infty}\frac{1}{\sqrt[n]{|a|^n}}=\frac{1}{|a|}\Rightarrow$ seria în y converge pe $|y|<\frac{1}{|a|}\Rightarrow$ seria în z converge pe $\frac{1}{|z|}<\frac{1}{|a|}\Leftrightarrow |z|>|a|$.

Exercițiul 5.41 Rezolvați EDF următoare care satisfac condițiile corespunzătoare:

$$y_k - 3y_{k-1} + 2y_{k-2} = 2^k, k \in \mathbb{N}, y_{-1} = -3, y_{-2} = 5.$$

Solutie:

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 220 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

$$Z\{y_{k-1}\} = z^{-1}Y(z) - 3;$$

$$Z\{y_{k-2}\} = z^{-2}Y(z) + z^{-1}y_{-1} + y_{-2} = z^{-2}Y(z) - 3z^{-1} + 5.$$

$$Y(z) - 3\left(\frac{1}{z}Y(z) - 3\right) + 2\left(\frac{1}{z^2}Y(z) - \frac{3}{z} + 5\right) = \frac{z}{z - 2} \Leftrightarrow$$

$$\Leftrightarrow \left(1 - \frac{3}{z} + \frac{2}{z^2}\right)Y(z) = -19 + \frac{z}{z - 2} = \frac{-18z + 38}{z - 2} \Leftrightarrow$$

$$\Leftrightarrow Y(z) = \frac{z^2(-18z + 38)}{(z - 1)(z - 2)^2} = 2z\frac{z(-9z + 19)}{(z - 1)(z - 2)^2} \Rightarrow$$

$$\Rightarrow \frac{-9z^2 + 19z}{(z - 1)(z - 2)^2} = \frac{a}{z - 1} + \frac{b}{(z - 2)^2} + \frac{c}{z - 2} \Rightarrow$$

$$\Rightarrow a = \frac{-9z^2 + 19z}{(z - 2)^2}|_{z=1} = \frac{10}{(-1)^2} \Rightarrow a = 10$$

$$b = \frac{-9z^2 + 19z}{z - 1}|_{z=2} = \frac{38 - 36}{2 - 1} \Rightarrow b = 2$$

$$\frac{c}{z - 2} = \frac{-9z^2 + 19z}{(z - 1)(z - 2)^2} - \frac{10}{z - 1} - \frac{2}{(z - 2)^2} =$$

$$= \frac{-9z^2 + 19z - 10z^2 + 408 - 40 - 2z + 2}{(z - 1)(z - 2)^2} =$$

$$= \frac{-19z^2(z^2 - 3z + 2)}{(z - 1)(z - 2)^2} = \frac{-19}{z - 2} \Rightarrow c = -19$$

$$\Rightarrow Y(z) = 20 \cdot \frac{z}{z - 1} + 2 \cdot \frac{2z}{(z - 2)^2} - 38 \cdot \frac{z}{z - 2} \Rightarrow$$

$$u_k = 20u_k + 2k \cdot 2^k = 20u_k + 2^{k+1} \cdot k - 19 \cdot 2^{k+1}.$$

5.4 Probleme propuse

1) Determinați semnalul $x \in S_d^+$ a cărui transformată Z este:

a)
$$\frac{z}{(z-1)(z^2+1)};$$
 b)
$$\frac{z}{(z-1)^2(z^2+z-6)};$$
 c)
$$\frac{z^2+1}{z^2-z+1}.$$

2) Determinați șirurile $\{x_n\}_{n\in\mathbb{N}}$ definite prin recurență:

a)
$$x_0 = 4$$
, $x_1 = 6$, $x_{n+2} - 3x_{n+1} + 2x_n = n$, $n \in \mathbb{N}$
b) $x_0 = 0$, $x_1 = -1$, $x_{n+2} + x_{n+1} - 6x_n = n$, $n \in \mathbb{N}$
c) $x_0 = 0$, $x_1 = 1$, $x_{n+2} - 5x_{n+1} + 6x_n = 4 \cdot 5^n$
d) $x_0 = 0$, $x_1 = 2$, $x_{n+2} - 3x_{n+1} + 2x_n = 2^n$, $n \ge 0$

3) Aflați transformata Z a semnalului $x_n = e^{-an} \cos \omega n H(n), \omega \in \mathbb{R}, a \in \mathbb{C}.$

CAPITOLUL 5. TRANSFORMATA Z (LAPLACE DISCRETĂ). 222 TRANSFORMATA LAPLACE ÎN TIMP DISCRET (TLTD).

Capitolul 6

Serii Fourier. Coarda vibrată finită.

Definiția 6.1 Seria

$$\frac{a_0}{2} + \sum_{n>1} \left(a_n \cdot \cos nx + b_n \sin nx \right)$$

se numește serie trigonometrică.

Formă complexă a seriei este:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cdot \frac{e^{inx} + e^{-inx}}{2} + b_n \cdot \frac{e^{inx} - e^{-inx}}{2i} \right) =$$

$$= \frac{a_0}{2} + \sum_{n>1} \left[\left(\frac{a_n - ib_n}{2} \right) \cdot e^{inx} + \left(\frac{a_n + ib_n}{2} \right) \cdot e^{-inx} \right] =$$

$$= \sum_{n \in \mathbb{Z}} c_n \cdot e^{inx},$$

unde
$$c_n = \begin{cases} c_0 = \frac{a_0}{2} \\ c_n = \frac{a_n - ib_n}{2}, n \ge 1 \\ c_{-n} = \frac{a_n + ib_n}{2} = \overline{c_n}, n \ge 1. \end{cases}$$

Definiția 6.2 $f: \mathbb{R} \to \mathbb{R}$, periodică $T = 2 \cdot l$, integrabilă pe [-l, l].

Se definesc coeficienții Fourier ai lui f prin relațiile:

$$a_n = \frac{1}{l} \cdot \int_{l}^{l} f(x) \cdot \cos \frac{n\pi x}{l} dx , n = 0, 1, 2....$$

$$b_n = \frac{1}{l} \cdot \int_{-l}^{l} f(x) \cdot \sin \frac{n\pi x}{l} dx, n = 1, 2, 3...$$

iar seria trigonometrică

$$\frac{a_0}{2} + \sum_{n \ge 1} \left(a_n \cdot \cos \frac{n\pi x}{l} + b_n \cdot \sin \frac{n\pi x}{l} \right), x \in \mathbb{R}$$

se numește seria Fourier asociată lui f.

Forma complexă a seriei Fourier

$$\sum_{n \in \mathbb{Z}} c_n \cdot e^{i \cdot \frac{n\pi x}{l}} \quad ,$$

unde

$$c_n = \frac{1}{2l} \cdot \int_{l}^{l} f(x) \cdot e^{-i \cdot \frac{n\pi x}{l}} dx, \ n \in \mathbb{Z}.$$

Proprietatea 6.3 (P1).

(1) Dacă funcția f este pară

$$\Rightarrow a_n = \frac{2}{l} \cdot \int_0^l f(x) \cdot \cos \frac{n\pi x}{l} dx, \quad n = 0, 1, 2...$$

$$b_n = 0$$

$$\Rightarrow f \sim \frac{a_0}{2} + \sum_{n \ge 1} a_n \cdot \cos \frac{n\pi x}{l}.$$

(2) Dacă funcția f este impară

$$\Rightarrow a_n = 0$$

$$b_n = \frac{2}{l} \cdot \int_0^l f(x) \cdot \sin \frac{n\pi x}{l} dx$$

$$\Rightarrow f \sim \sum_{n \ge 1} b_n \cdot \sin \frac{n\pi x}{l}.$$

Proprietatea 6.4 Proprietăți ale coeficienților lui Fourier (P2.):

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0;$$

$$f \in L^{2}([-l, l]) \Rightarrow \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2}) = \frac{1}{2l} \cdot \int_{l}^{l} f^{2}(x) dx$$

(Relația Parseval-Leapunov).

(2)

Proprietatea 6.5 Teorema de reprezentare în serie Fourier a unei funcții periodice (P3). Considerăm următoarele ipoteze:

(1) Funcția

$$f: \mathbb{R} \to \mathbb{R}$$

periodică de perioadă $T = 2 \cdot l$

(2) f cu variație mărginită pe [-l, l]

$$\Rightarrow \frac{f(x+0) + f(x-0)}{2} =$$

$$= \frac{a_0}{2} + \sum_{n \ge 1} \left(a_n \cdot \cos \frac{n\pi x}{l} + b_n \cdot \sin \frac{n\pi x}{l} \right), \forall x \in \mathbb{R}.$$

Atunci seria Fourier asociată lui f este convergentă și are loc relația de mai sus.

(3) Dacă, în plus (față de 1), f este continuă pe \mathbb{R} , atunci seria Fourier este uniform convergentă pe \mathbb{R} și

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cdot \cos \frac{n\pi x}{l} + b_n \cdot \sin \frac{n\pi x}{l} \right), \forall x \in \mathbb{R}.$$

Observația 6.6 1.

$$f_n \xrightarrow[pe\ Df]{UC} f \Rightarrow G_{f_n} \sim G_f$$

pentru n suficient de mare.

2.

$$a_n \cdot \cos \frac{\pi nx}{l} + b_n \cdot \sin \frac{\pi nx}{l}$$

se numește armonică de ordin n, rezultă că f este sumă de armonice.

$$x \equiv timp \equiv t \Rightarrow \nu_0 = \frac{1}{T} = \frac{1}{2l} \rightarrow \text{frecven} \xi \ddot{a};$$
 armonica $a_n \cdot \cos\left(2\pi\nu_0 nt\right) + b_n \cdot \sin\left(2\pi\nu_0 nt\right);$
$$n = 1 \rightarrow ton \ fundamental;$$

$$n \geq 2 \rightarrow overtones.$$

Observația 6.7 Avem

$$a\cos\alpha t + b\sin\alpha t = \left(\frac{a}{\sqrt{a^2 + b^2}} \cdot \cos\alpha t + \frac{b}{\sqrt{a^2 + b^2}} \cdot \sin\alpha t\right).$$

$$\sqrt{a^2 + b^2} = \sqrt{a^2 + b^2} \cdot \sin\left(\alpha t + \rho\right)$$

Deci

$$a_n \cos(2\pi\nu_0 nt) + b_n \sin(2\pi\nu_0 nt) = A_n \sin(2\pi\nu_0 nt + \rho_n), n \ge 1$$

unde

$$\rho_n = \arctan \frac{a_n}{b_n}, \ n \ge 1.$$

$$A_n = \sqrt{a_n^2 + b_n^2} \to amplitudinea;$$

 $\cdot \{A_n\}_{n \in \mathbb{N}} \longrightarrow \text{se numeşte } spectrul \ de \ energie \ al \ semnalului \ f;}$
 $\cdot \{\nu_0 n\}_{n \in \mathbb{N}} \to \text{spectrul semnalului } f;$

 $A = \cos(2\pi\nu_0 t) \longrightarrow nota A.$

Exercițiul 6.8 Să se dezvolte în serie Fourier funcția:

$$f(x) = \begin{cases} 1, & x \in \left(0, \frac{1}{2}\right] \\ -1, & x \in \left(\frac{1}{2}, 1\right] \end{cases}, T = 1.$$

Cu P3 avem:

$$\frac{f(x+0) + f(x-0)}{2} =$$

$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cdot \cos \frac{n\pi x}{l} + b_n \cdot \sin \frac{n\pi x}{l} \right), \forall x \in \mathbb{R}.$$
Cum f impară
$$\Rightarrow a_n = 0$$

$$b_n = \frac{2}{l} \cdot \int_0^l f(x) \cdot \sin \frac{n\pi x}{l} dx \stackrel{l = \frac{1}{2}}{=}$$

$$= 4 \cdot \int_0^{\frac{1}{2}} \sin 2n\pi x dx = -\frac{4 \cos 2n\pi x}{2n\pi} \Big|_0^{\frac{1}{2}} =$$

$$= -\frac{2}{n\pi} \left((-1)^n - 1 \right)$$

$$\Rightarrow b_n = \frac{2}{n\pi} \cdot \left(1 - (-1)^n \right) = \begin{cases} 0, & n = \text{par} \\ \frac{4}{n\pi}, & n = \text{impar}, \end{cases}$$
deci
$$\frac{f(x+0) + f(x-0)}{2} =$$

dezvoltarea în serie Fourier.

Exemplul 6.9 Coarda vibrantă finită fixă la capete

$$\frac{\partial^2 u}{\partial t^2}-c^2\cdot\frac{\partial^2 u}{\partial x^2}=0, \text{ ecuația coardei vibrante}$$
 $x\in(0,l)$ spațiu, $t>0$ timp, $c>0$ constantă.

$$u(x,0) = \rho(x)$$
 $\frac{\partial u}{\partial t}(x,0) = \Psi(x)$, condiții inițiale

 $= \frac{4}{\pi} \cdot \sum_{k=1}^{\infty} \frac{1}{2k+1} \cdot \sin 2\pi (2k+1) x, \ \forall x \in \mathbb{R}$

$$u(0,t) = u(l,t) = 0$$
, condiții la limită.

Cu metoda reflexiilor

$$\rho\in C^{2}\left(\left[0,l\right]\right),\ \psi\in C^{1}\left(\left[0,l\right]\right)$$

unde:

$$\left. \begin{array}{l} \rho \left(0 \right) = \rho \left(l \right) = 0 \\ \psi \left(0 \right) = \psi \left(l \right) = 0 \\ \rho'' \left(0 \right) = \rho'' \left(l \right) = 0 \end{array} \right\}$$

condiția de compatibilitate a datelor.

$$\Rightarrow \exists ! \ u \in C^2([0, l] \times [0, \infty))$$

soluție a problemei formulate.

Metoda Fourier

Căutăm funcția

$$u(x,t) = X(x) \cdot T(t) \neq 0 \Rightarrow \begin{cases} X(x) \neq 0 \\ T(t) \neq 0. \end{cases}$$

$$\begin{vmatrix} 0 = u\left(0, t\right) = X\left(0\right) \cdot T\left(t\right) \\ 0 = u\left(l, t\right) = X\left(l\right) \cdot T\left(t\right) \end{vmatrix} \Rightarrow X\left(0\right) = X\left(l\right) = 0$$

$$\frac{\partial^{2} u}{\partial t^{2}} = X(x) \cdot \ddot{T}(t) \qquad | \text{ ec. } X\ddot{T} - C^{2}X'' \cdot T = 0 \Rightarrow$$

$$\frac{\partial^{2} u}{\partial x^{2}} = X''(x) \cdot T(t) \qquad | \text{ ec. } X\ddot{T} - C^{2}X'' \cdot T = 0 \Rightarrow$$

$$\Rightarrow \frac{X''}{X} = \frac{\ddot{T}}{C^2T} = -\lambda(\text{constant}\breve{a}).$$

$$\Rightarrow \left\{ \begin{array}{l} X'' + \lambda X = 0 \\ X\left(0\right) = X\left(l\right) = 0 \end{array} \right. \text{(problema Sturm-Liouville)}$$

Se caută λ astfel încât $\exists~X$ soluție nenulă. Ecuația caracteristică este

$$r^2 + \lambda = 0 \Rightarrow r^2 = -\lambda$$
.

1. Dacă $\lambda < 0$

$$\Rightarrow r_{1,2} = \pm \sqrt{-\lambda}$$

reale distincte

$$\Rightarrow X(x) = C_1 \cdot e^{\sqrt{-\lambda}x} + C_2 \cdot e^{-\sqrt{-\lambda}x}$$

$$\xrightarrow{\text{cond.}}_{\text{initiale}} C_1 = C_2 = 0 \quad \Rightarrow X = 0$$

nu convine.

2. Dacă
$$\lambda = 0$$

$$\Rightarrow X'' = 0 \Rightarrow$$

$$X(x) = aX + b \xrightarrow{\text{cond.}} a = b = 0 \Rightarrow X = 0.$$

3. Dacă $\lambda > 0$

$$\Rightarrow r_{1,2} = \pm i\sqrt{\lambda} \Rightarrow$$

$$X(x) = C_1 \cdot \cos\sqrt{\lambda}x + C_2 \cdot \sin\sqrt{\lambda}x$$

$$X(x) = C_1 \cdot \cos\sqrt{\lambda}x + C_2 \cdot \sin\sqrt{\lambda}x$$

$$X(0) = C_1 \Rightarrow C_1 = 0.$$

$$X(l) = C_2 \cdot \sin \sqrt{\lambda} l = 0 \xrightarrow{C_2 \neq 0} \sin \sqrt{\lambda} l = 0 \Rightarrow \sqrt{\lambda} l = n\pi$$

$$\Rightarrow \lambda_n = \frac{n^2 \pi^2}{l^2}, \quad n \in \mathbb{N}^*$$
$$\Rightarrow X_n(x) = C_2 \cdot \sin \frac{n \pi x}{l}.$$

Ecuația în T devine:

$$\frac{\ddot{T}}{c^2 \cdot T} = -\lambda_n \Rightarrow \ddot{T} + c^2 \lambda_n T = 0$$

$$r^2 + c^2 \cdot \lambda_n = 0 \Rightarrow$$

$$r_{1,2} = \pm ic \sqrt{\lambda_n} = \pm ic \frac{n\pi}{l}$$

$$\Rightarrow T_n(t) = A'_n \cdot \cos c \frac{n\pi}{l} t + B'_n \cdot \sin c \frac{n\pi}{l} t.$$

Rezumat:

$$n \in \mathbb{N}^* \to u_n(x,t) = X_n(x) \cdot T_n(t) =$$

$$= \left(A_n \cdot \cos c \frac{n\pi}{l} t + B_n \cdot \sin c \frac{n\pi}{l} t \right) \cdot \sin \frac{n\pi x}{l};$$

$$u_n \text{ satisface } \left\{ \begin{array}{l} \text{ecuația undelor} \\ \text{condiții la limită} \end{array} \right.$$

$$\Rightarrow \sum_{k=1}^n u_k \text{ satisface } \left\{ \begin{array}{l} \text{ecuația undelor} \\ \text{condiții la limită.} \end{array} \right.$$

Oare $\sum_{n=1}^{\infty} u_n$ este soluție a problemei?

Presupunem $\sum\limits_{k=1}^{\infty}u_{n}\left(x,t\right)$ convergentă cu suma $\sum\limits_{n\geq1}u_{n}\left(x,t\right) =u\left(x,t\right) .$

Mai presupunem că seria $\sum_{n\geq 1} u_n(x,t)$ poate fi derivată de două ori în raport cu $x,t\Rightarrow$ funcția u satisface și condițiile la limită.

Cerem ca u să satisfacă condițiile inițiale

$$A_{n} = b_{n} = \frac{2}{l} \cdot \int_{0}^{l} \rho(x) \cdot \sin \frac{n\pi x}{l} dx,$$

pentru că

pentru ca
$$\rho\left(x\right) = u\left(x,0\right) = \sum_{n\geq 1} A_n \cdot \sin\frac{n\pi x}{l}$$
$$\rho \in C^2\left(\left[0,l\right]\right) \sim \rho\left(x\right) \xrightarrow{Fourier} \sum_{n\geq 1} b_n \cdot \sin\frac{n\pi x}{l},$$
$$\frac{\partial u}{\partial t} = \sum_{n\geq 1} \frac{\partial u_n}{\partial t} =$$
$$= \sum_{n\geq 1} \left(-A_n \cdot c\frac{n\pi}{l} \cdot \sin c\frac{n\pi}{l}t + B_n \cdot c\frac{n\pi}{l} \cdot \cos c\frac{n\pi}{l}t\right) \sin\frac{n\pi x}{l}$$
$$\frac{\partial u}{\partial t}\left(x,0\right) = \psi\left(x\right) \Leftrightarrow$$
$$\sum_{n=1}^{\infty} B_n \cdot c\frac{n\pi}{l} \cdot \sin\frac{n\pi x}{l} = \psi\left(x\right) \xrightarrow{Fourier} \sum_{n=1}^{\infty} \tilde{b}_n \cdot \sin\frac{n\pi x}{l},$$
$$\tilde{b}_n = \frac{2}{l} \cdot \int_0^l \psi\left(x\right) \cdot \sin\frac{n\pi x}{l} dx \Rightarrow \tilde{b}_n = B_n \cdot c\frac{n\pi}{l} \Rightarrow$$

$$\Rightarrow u(x,t) = \sum_{n=1}^{\infty} \left(b_n \cdot \cos c \frac{n\pi}{l} t + \frac{l}{n\pi c} \cdot \tilde{b}_n \sin c \frac{n\pi}{l} t \right) \sin \frac{n\pi x}{l}$$

Unde b_n reprezintă coeficientul Fourier în sin ai lui $\rho(x)$, iar \tilde{b}_n reprezintă coeficientul Fourier în sin ai lui $\psi(x)$. Este vorba de dezvoltarea în serie Fourier de sinusuri pentru $\rho(x)$, respectiv $\psi(x)$.

Observația 6.10 Cu condiții suplimentare față de cele de la metoda reflexiilor $(\exists \rho'', \psi'' - \text{continue pe porțiuni}) u$ dat de relația de mai sus este soluție unică a problemei formulate.

6.1 Exerciții rezolvate

Exercițiul 6.11 Reprezentați grafic folosind lungimea intervalului de definiție drept perioadă și calculați seria Fourier corespunzătoare.

 $\frac{1}{2}\left(f\left(\frac{\pi}{2}+0\right)+f\left(\frac{\pi}{2}-0\right)\right)=$

apunzatoare.
$$f(x) = \begin{cases} 0, & x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ 1, & x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \end{cases}$$

$$T = 2\pi \Rightarrow \omega = \frac{2\pi}{T} = 1 \text{ pulsaţia.}$$
Soluţie.
$$f \text{ prelungită este pară} \Rightarrow b_k = 0.$$

$$\forall x \neq \frac{\pi}{2} \Rightarrow f \text{ continua în } x \Rightarrow$$

$$\forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cdot \cos(kx).$$

$$= \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cdot \cos\left(k\frac{\pi}{2}\right).$$

$$a_0 = \frac{2}{T} \cdot \int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} f(x) \, dx = \frac{1}{\pi} \cdot \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} dx = 1$$

$$a_{k} = \frac{2}{T} \cdot \int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} f(x) \cos(k\omega x) dx = \frac{1}{\pi} \cdot \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos(kx) dx =$$

$$= \frac{1}{\pi k} \cdot \sin kx \Big|_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = \frac{1}{\pi k} \left(\sin \frac{3k\pi}{2} - \sin \frac{k\pi}{2} \right) =$$

$$= \frac{2}{\pi k} \sin \frac{k\pi}{2} \cos k\pi = \frac{2}{\pi k} (-1)^{k} \sin \frac{k\pi}{2}.$$

Dar:

$$(-1)^k \sin \frac{k\pi}{2} = \begin{cases} 0, k = \text{par} = 2n + 2\\ (-1)^{n+1}, k = \text{impar} = 2n + 1 \end{cases} \quad n \ge 0.$$

Atunci:

$$\forall \begin{cases} x \in \mathbb{R} \\ x \neq \frac{\pi}{2} \Rightarrow f(x) = \frac{1}{2} + \sum_{n=0}^{\infty} \frac{2}{\pi} \cdot \frac{(-1)^{n+1}}{2n+1} \cdot \cos(2n+1) x, \end{cases}$$
$$x = \frac{\pi}{2} \Rightarrow \frac{f(\frac{\pi}{2} - 0) + f(\frac{\pi}{2} + 0)}{2} = \frac{1}{2}.$$

Altfel scris:

$$a_k = \begin{cases} 0, \ k = 2n + 2 \\ (-1)^{\frac{k+1}{2}}, \ k = 2n + 1 \end{cases} \quad n \ge 0, k \ge 1 \Rightarrow$$

$$\Rightarrow f(x) = \begin{cases} \frac{1}{2}, k = 2n \text{ sau } x = \frac{\pi}{2} + n\pi \\ \frac{1}{2} + \frac{2}{\pi} \cdot \sum_{k=1}^{\infty} \frac{(-1)^{\frac{k+1}{2}}}{k} \cos(kx), k = 2n + 1. \end{cases}$$

Sau: f pară rezultă $b_n=0, \forall n\geq 1.$ $T=2l=2\pi \Rightarrow l=\pi.$ Pentru $n\geq 1$ avem:

$$a_n = \frac{2}{l} \cdot \int_0^l f(x) \cos(nx) dx = \frac{2}{\pi} \cdot \int_{\frac{\pi}{2}}^{\pi} \cos(nx) dx =$$

$$= \frac{2}{n\pi} \cdot \sin nx \Big|_{\frac{\pi}{2}}^{\pi} = \begin{cases} \frac{2}{n\pi} (-1)^{n+1}, & n \ge 1, \text{ n impar } \\ 0, & n \ge 1, \text{ n par.} \end{cases}$$

Metodă mai rapidă cu proprietatea (6.3).

2)

$$f\left(x\right) =\left\vert x\right\vert ,$$

-2 < x < 2. Solutie.

$$f(x) = \begin{cases} -x, -2 < x \le 0 \\ x, 0 < x < 2 \end{cases}$$

 $f \text{ pară} \Rightarrow b_k = 0.$ $T = 4, \ \omega = \frac{2\pi}{T} = \frac{\pi}{2}.$

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega x).$$

$$a_0 = \frac{2}{T} \int_0^2 |x| \, dx = \int_0^2 x \, dx = \frac{x^2}{2} \left| \begin{array}{c} 2\\ 0 \end{array} \right| = 2.$$

$$a_{k} = \frac{2}{T} \int_{-2}^{2} |x| \cos(k\omega x) dx = \int_{0}^{2} x \cos\left(\frac{k\pi}{2}x\right) dx =$$

$$= \frac{2}{k\pi} \int_{0}^{2} x \left[\sin\left(\frac{k\pi}{2}x\right)\right]' dx =$$

$$= \frac{2}{k\pi} x \sin\left(\frac{k\pi}{2}x\right) \begin{vmatrix} 2 & -\frac{2}{k\pi} \int_{0}^{2} \sin\left(\frac{k\pi}{2}x\right) dx =$$

$$= \frac{2}{k\pi} \frac{2}{k\pi} \cos\frac{k\pi}{2}x \begin{vmatrix} 2 & -\frac{4}{k^{2}\pi^{2}} \left[(-1)^{k} - 1\right] \Rightarrow$$

$$f(x) = 1 + \frac{4}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{k^{2}} \left[(-1)^{k} - 1\right] \cos\left(\frac{k\pi}{2}x\right), \forall x \in \mathbb{R}.$$
3)
$$f(x) = \begin{cases} -1 - x, & -1 < x < 0 \\ 1 - x, & 0 < x < 1. \end{cases}$$

Soluţie.

3)

$$f(-x) = \begin{cases} 1+x, & -1 < x < 0 \\ x-1, & 0 < x < 1 \end{cases} = -f(x)$$

$$\Rightarrow f \text{ impară} \Rightarrow \mathbf{a}_k = 0, \ k = 0, 1, 2, \dots$$

$$T = 2, \ \omega = \frac{2\pi}{T} = \pi.$$

$$b_k = \frac{2}{T} \int_{-1}^{1} f(x) \cdot \sin(k\omega x) dx =$$

$$= 2 \int_{0}^{1} (1 - x) \cdot \sin(k\pi x) dx =$$

$$= -\frac{2}{k\pi} \int_{0}^{1} (1 - x) (\cos k\pi x)' dx =$$

$$= \frac{2}{k\pi} \cdot (1 - x) \cdot \cos k\pi x \Big|_{-1}^{0} - \frac{2}{k\pi} \int_{0}^{1} \cos k\pi x dx =$$

$$= \frac{2}{k\pi} - \frac{2}{k\pi} \cdot \frac{1}{k\pi} \cdot \sin k\pi x \Big|_{0}^{1} = \frac{2}{k\pi}, \ k = 1, 2, \dots$$

$$f(x) = \frac{2}{\pi} \cdot \sum_{k=1}^{\infty} \frac{1}{k} \cdot \sin(k\pi x), \ (\forall) \ x \in \mathbb{R}.$$

$$f(x) = \sum_{k=1}^{\infty} \frac{2}{k\pi} \cdot \sin(k\pi x), \ (\forall) \ x \in \mathbb{R}.$$

Observația 6.12 Dacă funcția

$$f: [a, a+T] \to \mathbb{R}$$

este monotonă pe porțiuni, cu un număr finit de discontinuități de speța I a și periodică de perioadă T, atunci, $(\forall) x \in \mathbb{R}$ avem:

$$\frac{f(x+0) + f(x-0)}{2} = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \cdot \cos(k\omega x) + b_k \cdot \sin(k\omega x) \right)$$

unde seria din expresia de mai sus este serie Fourier a lui f convergentă pe \mathbb{R} .

$$a_k = \frac{2}{T} \int_a^{a+T} f(x) \cdot \cos(k\omega x) dx, \ k \ge 0$$
$$b_k = \frac{2}{T} \int_a^{a+T} f(x) \cdot \sin(k\omega x) dx, \ k \ge 1,$$

$$x \in (-\pi, \pi].$$

În plus, dacă f este continuă atunci seria Fourier este uniform convergentă pe \mathbb{R} .

Dacă f prelungită este pară $\Rightarrow b_k=0, k=1,2,3,...$ și dacă f prelungită este impară $\Rightarrow a_k=0, k=0,1,2,...$

Exercițiul 6.13 Fie

b)

$$T = 2 \cdot \pi, \ f(x) = x^2.$$

a) Determinați seria Fourier asociată lui f și arătați că

$$x^{2} = \frac{\pi^{2}}{3} + 4\sum_{n=1}^{\infty} (-1)^{n} \cdot \frac{\cos(nx)}{n^{2}}, \ x \in [-\pi, \pi].$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}; \quad \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^2}{90}.$$

Soluție.

$$f$$
 pară $\Rightarrow b_n = 0, \ n = 1, 2, \dots$

$$a_0 = \frac{2}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{\pi} \int_{0}^{\pi} x^2 dx = \frac{2}{\pi} \cdot \frac{x^3}{3} \begin{vmatrix} \pi \\ 0 \end{vmatrix} = \frac{2\pi^2}{3}.$$

$$a_n = \frac{2}{\pi} \int_{0}^{\pi} x^2 \cdot \cos \frac{n\pi x}{\pi} dx = \frac{2}{\pi n} \int_{0}^{\pi} x^2 \cdot (\sin(nx))' dx =$$

$$= \frac{2}{\pi n} \cdot x^2 \cdot \sin(nx) \left| \begin{array}{cc} \pi \\ 0 \end{array} \right| - \frac{4}{\pi n} \int_0^{\pi} x \cdot \sin(nx) dx =$$

$$= \frac{4}{\pi n^2} \cdot x \cdot \cos(nx) \left| \begin{array}{c} \pi \\ 0 \end{array} \right| -$$

$$-\frac{4}{\pi n^2} \int_{0}^{\pi} \cos(nx) dx = \frac{4}{n^2} \cdot (-1)^n - \frac{4}{\pi n^3} \cdot \sin(nx) \left| \begin{array}{c} \pi \\ 0 \end{array} \right. \Rightarrow$$

$$a_n = b_n = \frac{4}{n^2} \cdot (-1)^n, \ n = 1, 2, \dots$$

$$f(x)$$
 continuă $\Rightarrow f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cdot \cos(nx), \ (\forall) \ x \in \mathbb{R}$

si seria Fourier e uniform convergentă pe \mathbb{R} .

$$\Rightarrow x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cdot \cos(nx), \quad (\forall) \ x \in \mathbb{R} \to (\forall) \ x \in [-\pi, \pi].$$

Observație: "mai riguros" avem:

$$a_n = \frac{4}{n^2} \cdot (-1)^n, n \ge 1; \ a_0 = \frac{2 \cdot \pi^2}{3}; \ b_n = 0, \ n \ge 1.$$

seria Fourier asociată:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cdot \cos(nx) = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cdot \cos(nx)$$

$$f\left(x
ight)$$
 continuă pe $\left(-\pi,\pi\right]\Rightarrow f\left(x
ight)=rac{\pi^{2}}{3}+4\sum_{n\geq1}rac{\left(-1
ight)^{n}}{n^{2}}\cdot\cos(nx),$

 $(\forall) x \in (-\pi, \pi]$ şi din periodicitate avem

$$f(x) = x^2 = \frac{\pi^3}{3} + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cdot \cos(nx), \ \ (\forall) \ x \in \mathbb{R}.$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \ \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}; \ \sum_{n>1} \frac{1}{n^4} = \frac{\pi^2}{90}.$$

Soluție.

$$x^{2} = \frac{\pi^{2}}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cdot \cos(nx), \ \ (\forall) \ x \in \mathbb{R}.$$

$$x = \pi \Rightarrow \frac{2 \cdot \pi^2}{3} = 4 \sum_{n=1}^{\infty} \frac{1}{n^2} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

$$x = 0 \Rightarrow -\frac{\pi^2}{3} = 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}.$$

Relația Parseval-Leapunov:

$$\frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) = \frac{1}{l} \int_{-l}^{l} f^2(x) \, dx; \ l = \pi$$

$$\frac{1}{2} \cdot \left(\frac{2 \cdot \pi^2}{3}\right)^2 + \sum_{n=1}^{\infty} \frac{16}{n^4} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^4 dx = \frac{2}{\pi} \cdot \frac{x^5}{5} \left| \begin{array}{c} \pi \\ 0 \end{array} \right| = \frac{2 \cdot \pi^4}{5}.$$

$$\frac{2 \cdot \pi^4}{9} + 16 \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{2 \cdot \pi^4}{5}.$$

$$\sum_{n \ge 1} \frac{1}{n^4} = \frac{1}{16} \cdot 2 \cdot \left(\frac{\pi^4}{5} - \frac{\pi^4}{9}\right) = \frac{2 \cdot 4}{16 \cdot 5 \cdot 9} \cdot \pi^4 = \frac{\pi^4}{90}.$$

Exercițiul 6.14 Să se dezvolte în serie Fourier următoarea funcție:

$$f(t) = \left\{ \begin{array}{cc} t, & t \in \left[0, \frac{1}{2}\right] \\ 1 - t, & t \in \left[\frac{1}{2}, 1\right] \end{array} \right.$$

de perioadă T=1.

Soluţie.

Funcția f este continuă, monotonă pe porțiuni, deci este dezvoltabilă în serie Fourier și $\forall t \in [0,1]$

$$f(t) = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n \cos 2\pi nt + b_n \sin 2\pi nt)$$

uniform convergentă pe [0, 1], iar coeficienții Fourier sunt:

$$a_0 = 2 \int_0^1 f(t)dt = 2 \left(\int_0^{\frac{1}{2}} tdt + \int_{\frac{1}{2}}^1 (1-t)dt \right) =$$

$$= t^2 \left| \frac{1}{2} + 2t \right| \frac{1}{\frac{1}{2}} - t^2 \left| \frac{1}{\frac{1}{2}} \right| =$$

$$= \frac{1}{4} + 2 \left(1 - \frac{1}{2} \right) - \left(1 - \frac{1}{4} \right) = \frac{5}{4} - \frac{3}{4} = \frac{1}{2}.$$

$$a_n = 2 \int_0^1 f(t) \cos 2\pi nt dt$$

$$b_n = 2 \int_0^1 f(t) \sin 2\pi nt dt$$

$$\Rightarrow a_n + ib_n = 2 \int_0^1 f(t)e^{i2\pi nt} dt =$$

$$=2\int_{0}^{\frac{1}{2}} t \ e^{i2\pi nt} dt + 2\int_{\frac{1}{2}}^{1} (1-t)e^{i2\pi nt} dt.$$

Deci

$$a_n+ib_n=\frac{1}{i\pi n}\left[\frac{1}{2}e^{i\pi n}-\frac{1}{i2\pi n}e^{i2\pi nt}\left|\begin{array}{c}\frac{1}{2}\\0\end{array}\right.\right]+$$

$$+ \frac{1}{i\pi n} \left[-\frac{1}{2} e^{i\pi n} + \frac{1}{i2\pi n} e^{i2\pi nt} \, \middle| \, \frac{1}{\frac{1}{2}} \, \right] =$$

$$= \frac{1}{2\pi^2 n^2} (e^{i\pi n} - 1) - \frac{1}{2\pi^2 n^2} (e^{i2\pi n} - e^{i\pi}) =$$

$$= \frac{1}{\pi^2 n^2} e^{i\pi n} - \frac{1}{\pi^2 n^2} = \frac{1}{\pi^2 n^2} [(-1)^n - 1]$$

$$= \begin{cases} \frac{-2}{\pi^2 (2n-1)^2}, & n = 2n - 1, n \ge 1 \\ 0, & n = 2n. \end{cases}$$

$$a_n = \begin{cases} \frac{-2}{\pi^2 (2n-1)^2}, & n = 2n - 1, n \ge 1 \\ 0, & n = 2n. \end{cases}$$

$$b_n = 0, (\forall) n \ge 1.$$

Deci

$$f(t) = \frac{1}{4} - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{\cos 2(2n-1)\pi t}{(2n-1)^2}, (\forall) t \in [0,1].$$

Metoda a-II-a

feste pară $\Rightarrow b_n,\,\forall n\geq 1.\ T=2l=1\Rightarrow l=\frac{1}{2}$ și $\omega=2\pi$ rezultă

$$a_n = \frac{2}{l} \int_0^l f(t) \cos n\omega t dt = 4 \int_0^{1/2} t \cos 2n\pi t dt =$$

$$= 4 \int_0^{1/2} t \left(\frac{\sin 2n\pi t}{2n\pi} \right)' dt \stackrel{\text{parti}}{=} -4 \int_0^{1/2} \frac{\sin 2n\pi t}{2n\pi} dt =$$

$$= \frac{4}{(2n\pi)^2} \cos 2n\pi t \left| \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right| = \frac{1}{\pi^2 n^2} [(-1)^n - 1], \ n \ge 1.$$

Teorema 6.15 Dacă

$$f(t) = \frac{a_0}{2} + \sum_{n>1} \left(a_n \cos \frac{2\pi}{T} nt + b_n \sin \frac{2\pi}{T} nt \right), (\forall) t \in \mathbb{R},$$

f este de perioadă T și seria din dreapta este uniform convergentă pe \mathbb{R} , atunci ea este serie Fourier asociată lui f(t).

Exercițiul 6.16 Să se dezvolte în serie Fourier:

$$f(t) = \frac{a\sin t}{1 - 2a\cos t + a^2},$$

 $a \in \mathbb{C}, |a| < 1, t \in \mathbb{R}.$ Soluție.

$$1 - 2a\cos t + a^2 = 1 - a\left(e^{it} + e^{-it}\right) + a^2 e^{it} e^{-it} = \left(1 - ae^{it}\right)\left(1 - ae^{-it}\right).$$

$$f(t) = \frac{a(e^{it} - e^{-it})}{2i(1 - ae^{it})(1 - ae^{-it})} = \frac{1}{2i(1 - ae^{it})} - \frac{1}{2i(1 - ae^{-it})}.$$

$$\left| ae^{\pm it} \right| = \left| a \right| < 1 \Rightarrow \frac{\frac{1}{1 - ae^{it}}}{\frac{1}{1 - ae^{-it}}} = \sum_{n=0}^{\infty} a^n e^{int}$$

$$\frac{1}{1 - ae^{-it}} = \sum_{n=0}^{\infty} a^n e^{-int}.$$

Deci

$$f(t) = \sum_{n \ge 0} a^n \sin nt, (\forall) t \in \mathbb{R}, n \ge 1.$$

$$f(t) = \sum_{n=1}^{\infty} a^n \sin nt, (\forall) t \in \mathbb{R}; |a^n \sin nt| \le |a|^n$$

$$\sum_{n>1} |a|^n \text{convergent } \breve{a}$$

$$\Rightarrow \sum_{n=1}^{\infty} a^n \sin nt$$

este uniform convergentă pe \mathbb{R} , deci f este dezvoltată în serie Fourier.

Exercițiul 6.17 Să se dezvolte în serie Fourier

$$f(t) = ln\left(1 - 2acost + a^2\right), a \in \mathbb{R},$$

|a| < 1.

Soluție. Funcția f are perioda $T=2\pi$,

$$f'(t) = \frac{2a\sin t}{1 - 2a\cos t + a^2} = 2\sum_{n=1}^{\infty} a^n \sin nt, (\forall) t \in \mathbb{R}.$$

Integrăm termen cu termen, deoarece seria din dreapta este uniform convergentă.

$$f(t) = 2\sum_{n\geq 1} a^n \int \sin nt \, dt = -2\sum_{n\geq 1} \frac{a^n}{n} \cos nt, (\forall) \, t \in \mathbb{R}.$$

Seria obținută este o serie uniform convergentă deoarece:

$$\left| \frac{a^n}{n} \cos nt \right| \le \frac{\left| a \right|^n}{n}, (\forall) t \in \mathbb{R}, n \ge 1$$

și seria

$$\sum_{n=1}^{\infty} \frac{|a|^n}{n}$$

este convergentă cu criteriul raportului. Deoarece seria din dreapta este uniform convergentă pe \mathbb{R} , ea reprezintă seria Fourier a lui f(t) pe \mathbb{R} .

Exercițiul 6.18 Să se dezvolte în serie Fourier:

$$f(t) = e^{\cos x} \cos(\sin x) g(x) = e^{\cos x} \sin(\sin x).$$

Soluție. Funcțiile f, g au perioada $T=2\pi$.

$$f(x) + iq(x) = e^{\cos x} \cdot e^{i\sin x} = e^{\cos x + i\sin x} =$$

$$=\sum_{n=0}^{\infty}\frac{\left(\cos x+i\sin x\right)^n}{n!}=\sum_{n=0}^{\infty}\frac{\cos nx}{n!}+i\sum_{n=0}^{\infty}\frac{\sin nx}{n!}, (\forall)\,x\in\mathbb{R}.$$

Seriile $\sum_{n=0}^{\infty} \frac{\cos nx}{n!}$, $\sum_{n=0}^{\infty} \frac{\sin nx}{n!}$ sunt uniform convergente pe \mathbb{R} , deoarece $\left|\frac{\cos nx}{n!}\right| \leq \frac{1}{n!}$, $\left|\frac{\sin nx}{n!}\right| \leq \frac{1}{n!}$, $\sum_{n=0}^{\infty} \frac{1}{n!} = e$ este convergentă $\forall x \in \mathbb{R}$, deci reprezintă seriile Fourier pentru f(x) și g(x).

$$f(x) = \sum_{n=0}^{\infty} \frac{\cos nx}{n!}, \, \forall x \in \mathbb{R}$$

$$g(x) = \sum_{n=0}^{\infty} \frac{\sin nx}{n!}, \, \forall x \in \mathbb{R}.$$

Dacă f(t) continuă pe [0,T], monotonă pe porțiuni, periodică de perioadă T, atunci:

$$f(t) = \frac{a_0}{2} + \sum_{n>1} (a_n \cos nt + b_n \sin nt), (\forall)t \in \mathbb{R}.$$

Exercițiul 6.19 Să se dezvolte în serie Fourier:

$$f(t) = \frac{1}{\cos t} = \sec t = \sec t, t \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right],$$

f este monotonă pe porțiuni, continuă pe $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$, este dezvoltabilă în serie Fourier și de perioadă $T = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}$, f este pară, deci

$$b_n = 0, n > 1.$$

$$a_{0} = \frac{2}{T} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} f(t)dt = \frac{2}{\frac{\pi}{2}} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dt}{\cos t} = \frac{8}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{dt}{\cos t} =$$

$$= \frac{8}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{dt}{\sqrt{1 + tg^{2}t}} dt =$$

$$= \frac{8}{\pi} \int_{0}^{\frac{\pi}{4}} \sqrt{1 + tg^{2}t} dt = \frac{8}{tgt = y} \frac{8}{\pi} \int_{0}^{1} \frac{dy}{\sqrt{1 + y^{2}}} =$$

$$= \frac{8}{\pi} \ln\left(y + \sqrt{1 + y^{2}}\right) \left| \begin{array}{c} 1 \\ 0 \end{array} \right| = \frac{8}{\pi} \ln\left(1 + \sqrt{2}\right);$$

$$a_{n} = \frac{8}{\pi} \int_{0}^{\frac{\pi}{4}} \frac{\cos 4nt}{\cos t} dt;$$

Dar

$$\frac{\cos 4nt}{\cos t} - \frac{\cos 4(n-1)t}{\cos t} = 2\cos(4n-1)t - 2\cos(4n-3)t.$$

$$a_n - a_{n-1} = \frac{16}{\pi} \left[\int_0^{\frac{\pi}{4}} \cos(4n - 1) t \, dt - \int_0^{\frac{\pi}{4}} \cos(4n - 3) t \, dt \right] =$$

$$= \frac{16}{\pi} \left[\frac{1}{4n-1} \sin \frac{\pi}{4} (4n-1) - \frac{1}{4n-3} \sin (4n-3) \frac{\pi}{4} \right]$$

$$a_n - a_0 =$$

$$= \frac{16}{\pi} \sum_{k=1}^n \left[\frac{1}{4k-1} \sin \frac{\pi}{4} (4k-1) - \frac{1}{4k-3} \sin (4k-3) \frac{\pi}{4} \right] =$$

$$= \frac{16}{\pi} \sum_{k=1}^n (-1)^{k+1} \left(\frac{1}{4k-1} - \frac{1}{4k-3} \right) \sin \left(k\pi - \frac{\pi}{4} \right)$$

deci

dar

$$a_n - a_0 = \frac{16}{\pi\sqrt{2}} \sum_{k=1}^n (-1)^{k+1} \left(\frac{1}{4k-1} - \frac{1}{3k-2} - \frac{1}{4k-3} \right) =$$

$$= \frac{16}{\pi\sqrt{2}} \left(\frac{(-1)^{n+1}}{4n-1} - \frac{1}{2} + \frac{(-1)^{n+1}}{4n-3} + \frac{1}{2} \right) =$$

$$= \frac{16}{\pi\sqrt{2}} (-1)^{n+1} \left(\frac{1}{4n-1} - \frac{1}{4n-3} \right)$$

$$\Rightarrow a_n = a_0 + \frac{16}{\pi\sqrt{2}} (-1)^{n+1} \left(\frac{1}{4n-1} - \frac{1}{4n-3} \right), n \ge 1.$$

 $\sin\left(k\pi - \frac{3\pi}{4}\right) = \frac{(-1)^{k+1}}{\sqrt{2}}$

Exercițiul 6.20 Să se dezvolte în serie Fourier

$$f\left(t\right) = \frac{1}{2 + \cos t}.$$

Soluție. Funcția f are perioada $T=2\pi$, continuă pe \mathbb{R} și monotonă pe porțiuni, deci f este dezvoltabilă în serie Fourier uniform convergentă pe \mathbb{R} și cum f este pară avem:

$$b_n = 0, (\forall) \ n \ge 1 \Rightarrow f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos nt,$$

unde:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{dt}{2 + \cos t} = \frac{1}{\pi} \oint_C \frac{1}{2 + \frac{z^2 + 1}{2z}} \frac{dz}{iz} =$$
$$= \frac{2}{\pi i} \oint_C \frac{dz}{z^2 + 4z + 1} = \frac{2}{\pi i} \cdot 2\pi i \operatorname{Res}_{z=z_1} f(z),$$

unde

$$f(z) = \frac{1}{z^2 + 4z + 1}$$

$$z^{2} + 4z + 1 = 0 \Rightarrow z_{1,2} = \frac{-4 \pm 2\sqrt{3}}{2} = -2 \pm \sqrt{3},$$

poli simpli

$$z_1 = -2 + \sqrt{3} \in C, z_2 \notin C.$$

$$\operatorname{Res}_{z=z_1} f(z) = \frac{1}{2z+4} \left| z = -2 + \sqrt{3} \right| = \frac{1}{2\sqrt{3}}.$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\cos nt}{2 + \cos t} dt = \frac{1}{\pi} Re \int_{-\pi}^{\pi} \frac{(e^{it})^n}{2 + \cos t} dt =$$

$$= \frac{1}{\pi} Re \oint\limits_{C} \frac{z^n}{2 + \frac{z^2 + 1}{2z}} \frac{dz}{iz} = \frac{2}{\pi} Re \frac{1}{i} \cdot \oint\limits_{C} \frac{z^n}{z^2 + 4z + 1} =$$

$$= \frac{2}{\pi} Re \frac{1}{i} \cdot 2\pi i \operatorname{Res}_{z=z_1} \frac{z^n}{z^2 + 4z + 1} = 4 \cdot \frac{z^n}{2z + 4} \left| z = -2 + \sqrt{3} \right|.$$

Deci

$$f(t) = \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}} \sum_{n=1}^{\infty} \left(-2 + \sqrt{3}\right)^n \cos nt, (\forall) t \in \mathbb{R}.$$

Exercițiul 6.21 Să se dezvolte în serie Fourier:

$$f\left(t\right) = \ln\left(2 + \cos t\right)$$

$$f\left(t\right) = \frac{\sin t}{5 + 3\cos t}.$$

Soluţie.

$$f'(t) = \frac{-\sin t}{2 + \cos t}, |f'(t)| \le 1, (\forall) t \in \mathbb{R}$$

f este periodică cu $T=2\pi \Rightarrow f'$ este dezvoltată în serie Fourier uniform convergentă pe $\mathbb R$ și cum f' este impară rezultă:

$$f'(t) = \sum_{n=1}^{\infty} b_n \sin nt, (\forall) \ t \in \mathbb{R},$$

unde

$$b_n = \frac{-1}{\pi} \int_{-\pi}^{\pi} \frac{\sin t \cdot \sin nt}{2 + \cos t} dt$$

cu teorema reziduurilor avem

$$= \frac{-1}{\pi} \int_{-\pi}^{\pi} \frac{\sin t}{2 + \cos t} Im \cdot e^{int} dt = \frac{-1}{\pi} Im \int_{-\pi}^{\pi} \frac{(e^{it})^n \sin t}{2 + \cos t} dt =$$

$$= \frac{-1}{\pi} Im \left(\oint_c \frac{\frac{z^2 - 1}{2iz} \cdot z^n}{2 + \frac{z^2 + 1}{2z}} \frac{dz}{iz} \right) = \frac{+1}{\pi} Im \left(\oint_c \frac{(z^2 - 1) z^{n-1}}{z^2 + 4z + 1} dz \right) =$$

$$= \frac{1}{\pi} Im \left(2\pi i Res \ f(z) \right) =$$

$$= 2Im \left(i \cdot \frac{(z^2 - 1) z^{n-1}}{2z + 4} \middle| z = -2 + \sqrt{3} \right) =$$

$$= \frac{1}{\sqrt{3}} (-1)^{n-1} \left(2 - \sqrt{3}\right)^{n-1} = \frac{\left(\sqrt{3} - 2\right)^{n-1}}{\sqrt{3} \left(6 - 4\sqrt{3}\right)} =$$

$$=\frac{\left(\sqrt{3}-2\right)^{n-1}}{2\left(3-2\sqrt{3}\right)\sqrt{3}}=\frac{\left(\sqrt{3}-2\right)^{n-1}}{6\left(\sqrt{3}-2\right)}=\frac{\left(\sqrt{3}-2\right)^{n-1}}{6}, n \ge 1.$$

Deci

$$f'(t) = \frac{1}{6} \sum_{n \ge 1} \left(\sqrt{3} - 2\right)^{n-1} \sin nt, (\forall) t \in \mathbb{R}.$$

Seria Fourier e uniform, convergentă \Rightarrow se poate intergra termen cu termen obținând:

$$f(t) = -\frac{1}{6} \sum_{n \ge 1} \frac{\left(\sqrt{3} - 2\right)^{n-2}}{n} \cos nt, (\forall) t \in \mathbb{R}.$$

Seria Fourier a lui f(t) în baza teoremei (6.17) este uniform convergentă pentru că

$$\left| \frac{\left(\sqrt{3} - 2\right)^{n-2}}{n} \cos nt \right| \le \left| \frac{\sqrt{3} - 2}{n} \right|^{n-2},$$

iar seria $\sum_{n\geq 1}\frac{(2-\sqrt{3})^(n-2)}{n}$ este convergentă cu criteriul raportului.

Dacă f(t) este egală cu o serie trigonometrică uniform convergentă pe \mathbb{R} , atunci această este serie Fourier a lui f(t).

Exercițiul 6.22 Să se dezvolte în serie Fourier:

$$f(t) = sqnt,$$

definită pe $(-\pi,\pi)$ de perioadă $T=2\pi$. Apoi să se calculeze

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n+1}.$$

Soluție. Funcția

$$f(t) = sqt = sqnt$$

definită pe $(-\pi,\pi)$ de perioadă $T=2\pi$:

$$f(t) = \begin{cases} -1, & t \in (-\pi, 0) \\ 0, & t = 0 \\ 1, & t \in (0, \pi). \end{cases}$$

Monotonă pe porțiuni și continuă pe $(-\pi,\pi)/\{0\}$ discontinuitate de speța I-a, rezultă că f se dezvoltă în serie Fourier pe $(-\pi,\pi)$ și

$$f\left(t\right) = \frac{a_0}{2} + \sum_{n>1} \left(a_n \cos nt + b_n \sin nt\right), (\forall) t \in (-\pi, \pi) \setminus \{0\}$$

În t=0 suma seriei Fourier este egală cu

$$\frac{f(0-0) + f(0+0)}{2} = \frac{-1+1}{2} = 0.$$

În extremități suma seriei Fourier este:

$$S(-\pi) = S(\pi) = \frac{f(\pi+0) + f(\pi-0)}{2} = \frac{-1+1}{2} = 0$$

$$a_0 = \frac{1}{\pi} \left(\int_{-\pi}^{0} dt + \int_{0}^{\pi} dt \right) = \frac{1}{\pi} \left(-t \mid 0 + \pi \right) = 0$$

Funcția f este impară.

$$\Rightarrow a_n = 0, (\forall) n \ge 0.$$

Deci
$$(\forall) t \neq 0$$

$$f(t) = \sum_{n=1}^{\infty} b_n \sin nt;$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} \sin nt dt = \frac{-2}{\pi n} \cos nt \left| \begin{array}{c} \pi \\ 0 \end{array} \right| =$$

$$= \frac{2}{\pi n} \left(1 - (-1)^n \right) = \begin{cases} 0, & n = 2n \\ \frac{4}{\pi (2n-1)}, & n = 2n-1, n \ge 1. \end{cases}$$

$$\begin{cases} f(t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2n-1)}{2n-1}, (\forall) t \in (-\pi, \pi) \setminus \{0\} \\ S(0) = 0; & S(-\pi) = S(\pi) = 0 \end{cases}$$

$$t = \frac{\pi}{2} \Rightarrow 1 = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin\left(n\pi - \frac{\pi}{2}\right)}{2n-1} = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \Rightarrow$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} = \frac{\pi}{4}.$$

Exercițiul 6.23 Să se dezvolte în serie Fourier:

$$f\left(t\right) =t^{2},$$

definită pe $(-\pi,\pi)$ de perioadă $T=2\pi$. Apoi să se calculeze

$$\sum_{n=1}^{\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2},$$

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4}, \quad \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}.$$

Soluție. Funcția f este continuă și monotonă pe porțiuni \Rightarrow (\forall) $t \in [-\pi,\pi]$ avem

$$f(t) = t^2 = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2\pi}{T} nt + b_n \sin \frac{2\pi}{T} nt \right),$$

iar seria Fourier este uniform convergentă pe $[-\pi, \pi]$.

Cum

$$f(t) = t^2$$

ea este pară, deci $\Rightarrow b_n = 0$, astfel

$$f(t) = t^2 = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{2\pi}{T} nt = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt$$

$$a_n = \frac{2}{T} \int_{-\pi}^{\pi} f(t) \cos nt \ dt = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt \ dt =$$

$$= \frac{2}{T} \int_{0}^{\pi} t^2 \cos nt \ dt =$$

$$= \frac{2}{\pi n} \int_{0}^{\pi} t^{2} (\sin nt)' dt = \frac{2}{\pi n} \left[t^{2} \sin nt \, \middle| \, \frac{\pi}{0} - 2 \int_{0}^{\pi} t \sin nt \, dt \right] =$$

$$= \frac{-4}{\pi n} \int_{0}^{\pi} t \sin nt \, dt = \frac{4}{\pi n^2} \int_{0}^{\pi} t (\cos nt), \, dt =$$

$$= \frac{4}{\pi n^2} \left[t \cos nt \, \middle| \, \frac{\pi}{0} - \int_{0}^{\pi} \cos nt \, dt \, \middle| = \right]$$

$$= \frac{4}{\pi n} \cos n\pi = \frac{4(-1)^n}{n^2}, n \ge 1.$$

$$a_0 = \frac{2}{\pi} \int_{-\pi}^{\pi} t^2 dt = \frac{2}{\pi} \int_{0}^{\pi} t^2 dt = \frac{2}{3\pi} t^3 \begin{vmatrix} \pi \\ 0 \end{vmatrix} = \frac{2\pi^2}{3};$$

$$f(t) = t^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \cos nt, (\forall) t \in [-\pi, \pi].$$

Dezvoltare în serie Fourier pe $[-\pi, \pi]$.

- Facem $t = \pi \Rightarrow$

$$\pi^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{1}{n^2} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6};$$

- Facem $t = 0 \Rightarrow$

$$0 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \Rightarrow \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12};$$

- Adăugăm cele 2 serii:

$$\sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{2}{(2n-1)^2} = \frac{\pi^2}{6} \cdot \frac{3}{2} = \frac{\pi^2}{4} \Rightarrow$$

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

$$t^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nt \mid t \Rightarrow$$

uniform convergenta se pastrează

$$t^{3} = \frac{\pi^{2}}{3}t + 4\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}t\cos nt$$

și integrăm pe $[0,\pi] \Rightarrow$ uniform convergența se integrează termen cu termen

$$\int_{0}^{\pi} t^{3} dt = \frac{\pi^{2}}{3} \int_{0}^{\pi} t dt + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \int_{0}^{\pi} t \cos nt \, dt =$$

$$= \frac{\pi^{2}}{3} \cdot \frac{\pi^{2}}{2} + 4 \sum_{n\geq 1} \frac{(-1)^{n}}{n^{3}} \cdot \int_{0}^{\pi} t \left(\sin nt\right)' dt \stackrel{*}{=}$$

$$\left[t \sin nt \, \middle| \, \frac{\pi}{0} \, - \int_{0}^{\pi} \sin nt dt \, \right] = \frac{1}{n} \cdot \cos nt \, \middle| \, \frac{\pi}{0} \, = \frac{(-1)^{n} - 1}{n}$$

$$\stackrel{*}{=} \frac{\pi^{4}}{6} + 4 \sum_{n=1}^{\infty} \frac{2}{(2n-1)^{4}} = \frac{\pi^{4}}{4} \Leftrightarrow 2 \cdot 4 \sum_{n\geq 1} \frac{1}{(2n-1)^{4}} =$$

$$= \frac{\pi^{4}}{2} \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{\pi^{4}}{12} \Rightarrow$$

$$\sum_{n=1}^{\infty} \frac{2}{(2n-1)^{4}} = \frac{\pi^{4}}{96}.$$

Exercițiul 6.24 Să se dezvolte în serie Fourier:

$$f(t) = \left|\cos t\right|, t \in \left[-\pi, \pi\right]$$

Soluție. Avem

$$T = 2\pi, \ \omega = \frac{2\pi}{T}, \quad b_n = 0, (\forall) \ n \ge 1.$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |\cos t| \, dt = \frac{2}{\pi} \int_{0}^{\pi} |\cos t| \, dt =$$

$$= \frac{2}{\pi} \left(\int_{0}^{\frac{\pi}{2}} \cos t dt - \int_{\frac{\pi}{2}}^{\pi} \cos t dt \right) =$$

$$= \frac{2}{\pi} \left(\sin t \left| \frac{\pi}{2} \right| - \sin t \left| \frac{\pi}{2} \right| \right) = \frac{2}{\pi} (1+1) = \frac{4}{\pi}.$$

$$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} |\cos t| \cos nt dt =$$

$$= \frac{2}{\pi} \left(\int_{0}^{\frac{\pi}{2}} \cos t \cos nt dt - \int_{\frac{\pi}{2}}^{\pi} \cos t \cos nt dt \right) =$$

$$= \frac{1}{\pi} \left[\int_{0}^{\frac{\pi}{2}} [\cos (n+1)t + \cos (n-1)t] dt \right] -$$

$$- \frac{1}{\pi} \int_{\frac{\pi}{2}}^{\pi} [\cos (n+1)t + \cos (n-1)t] dt =$$

$$\frac{1}{\pi} \left[\frac{\sin (n+1)t}{n+1} \left| \frac{\pi}{2} \right| + \frac{\sin (n-1)t}{n-1} \left| \frac{\pi}{2} \right| -$$

$$- \frac{\sin (n+1)t}{n+1} \left| \frac{\pi}{2} \right| - \frac{\sin (n-1)t}{n-1} \left| \frac{\pi}{2} \right| =$$

$$- \frac{2}{\pi} \left[\frac{\sin (n+1)\frac{\pi}{2}}{n+1} + \frac{\sin (n-1)\frac{\pi}{2}}{n-1} \right]$$

$$\sin(n+1)\frac{\pi}{2} = \sin\left(n\frac{\pi}{2} + \frac{\pi}{2}\right) = \cos\frac{n\pi}{2} = \begin{cases} (-1)^n, & n = 2n\\ 0, & n = 2n+1 \end{cases}$$

$$\sin(n-1)\frac{\pi}{2} = \sin\left(n\frac{\pi}{2} - \frac{\pi}{2}\right) =$$

$$= -\cos\frac{n\pi}{2} \left\{ \begin{array}{c} -(-1)^n, & n = 2n \\ 0, & n = 2n + 1 \end{array} \right.$$

$$a_{2n} = \frac{2}{\pi} \left[\frac{(-1)^n}{2n+1} - \frac{(-1)^n}{2n-1} \right] = \frac{2}{\pi} (-1)^n \frac{-2}{4n^2 - 1} \Rightarrow$$

$$a_{2n} = -\frac{4}{\pi} \frac{(-1)^n}{4n^2 - 1}, n \ge 1, \ a_{2n+1} = 0$$

f continuă pe $[-\pi, \pi] \Rightarrow (\forall) t \in (-\pi, \pi)$, avem:

$$f(t) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n \ge 1} \frac{(-1)^n}{4n^2 - 1} \cos 2nt.$$

Exercițiul 6.25 Să se dezvolte în serie Fourier:

$$f(t) = \frac{\sin t}{5 + 3\cos t}, t \in [-\pi, \pi], T = 2, \omega = 1.$$

Soluție. Funcția f este impară $\Rightarrow a_n = 0, (\forall) n \geq 0$.

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin t}{5 + 3\cos t} \sin nt dt =$$

$$= \frac{1}{\pi} Im \int_{-\pi}^{\pi} \frac{\sin t}{5 + 3\cos t} e^{int} dt = \frac{1}{\pi} Im \oint_{C} \frac{\frac{z^2 - 1}{2iz} z^{n - 1}}{5 + \frac{3(z^2 + 1)}{2z}} \frac{1}{iz} dz =$$

$$= -\frac{1}{\pi} Im \oint_{C} \frac{(z^2 - 1)z^{n - 1}}{3z^2 + 10z + 3} dz = -\frac{1}{\pi} Im 2\pi i \operatorname{Res}_{z = -\frac{1}{3}} \frac{(z^2 - 1)z^{n - 1}}{3z^2 + 10z + 3} =$$

$$= -2Imi \frac{(z^2 - 1)z^{n - 1}}{6z + 10} |_{z = -\frac{1}{3}} = -2Imi \frac{-\frac{8}{9} \left(-\frac{1}{3}\right)^{n - 1}}{8} =$$

$$=\frac{2}{3}\cdot\frac{(-1)^{n-1}}{3^n}, n\geq 1$$

f este continuă pe $[-\pi,\pi] \Rightarrow$

$$= -2Res \ f(z) = -2\frac{z^{n-1}(z^2 - 1)}{6z + 10} \Big|_{z=-\frac{1}{3}} =$$
$$= -2\frac{(-1)^{n-1}\frac{1}{3^{n-1}}\cdot\frac{-8}{9}}{10 - 2} = \frac{2}{3}\frac{(-1)^{n-1}}{3n} = b_n,$$

 $(\forall) n \geq 1$, f este continuă şi cu teorema de reprezentare în serie Fourier avem:

$$f(t) = \frac{2}{3} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3^n} \sin nt, (\forall) t \in (\pi, -\pi).$$

6.2 Probleme propuse

Exercițiul 6.26 Să se găsească seria Fourier a funcției periodice:

$$f\left(t\right) = \frac{\pi}{2sh\pi}e^{t}$$

definită pe intervalul $(\pi, -\pi)$ de perioadă $T = 2\pi$.

Exercițiul 6.27 Dezvoltați în serie Fourier funcția

$$f\left(t\right) = t^2:$$

- a) pe intervalul $(-\pi, \pi]$, de perioadă T = 2l;
- b) pe perioada (l, 3l], de perioadă T = 2l.

Exercițiul 6.28 Scrieți seria Fourier pentru funcția periodică

$$f\left(t\right) = \frac{1}{5 - 4\cos t},$$

definită pe intervalul $(0, 2\pi]$, de perioadă $T = 2\pi$.

Exercițiul 6.29 Scrieți seria Fourier pentru funcția :

a)
$$f(t) = \frac{1}{5+3\cos t},$$
 pe $(0, 2\pi], T = 2\pi;$ b)
$$f(t) = \frac{1}{5+3\sin t},$$
 pe $(0, 2\pi], T = 2\pi;$

pe $(0, 2\pi], T = 2\pi;$

Exercițiul 6.30 Dezvoltați în serie Fourier pe intervalele indicate, următoarele serii periodice:

a)
$$f(t) = t$$
 pe $(-\pi, \pi), T = 2\pi$;

b)
$$f(t) = \pi^2 - t^2$$
 pe $(-\pi, \pi), T = 2\pi$;

(c)
$$f(t) = \begin{cases} at, t \in (-\pi, 0) \\ bt, t \in [0, \pi) \end{cases}$$
, $T = 2\pi$;

d)
$$f(t) = |t|$$
 pe $(-\pi, \pi), T = 2\pi$;

e)
$$f(t) = e^{at}, a \neq 0$$
, pe $(-\pi, \pi), T = 2\pi$;

f)
$$f(t) = |\sin t|$$
, pe $(-\pi, \pi)$, $T = 2\pi$;

g)
$$f(t) = 10 - t$$
, pe $(5, 15), T = 10$;

h)
$$f(t) = \begin{cases} -t - \pi, t \in (-\pi, -\frac{\pi}{2}) \\ t, t \in (-\frac{\pi}{2}, \frac{\pi}{2}) \\ -t + \pi, t \in [\frac{\pi}{2}, \pi) \end{cases}$$
, $T = 2\pi$
i) $f(t) = \frac{1}{2 + \cos t}$ pe $[-\pi, \pi]$;

Exercițiul 6.31 Să se dezvolte în serie Forier pe $[0, \pi]$ funcția periodică f(t), de perioadă $T = \pi$:

$$f\left(t\right) = \left\{ \begin{array}{l} \frac{\pi}{3}, t \in \left[0, \frac{\pi}{3}\right] \\ 0, t \in \left[\frac{\pi}{3}, \frac{2\pi}{3}\right] \\ -\frac{\pi}{3}, t \in \left[\frac{2\pi}{3}, \pi\right]. \end{array} \right.$$

Capitolul 7

Ecuațiile fizicii matematice

7.1 Reducerea la forma canonică a ecuațiilor cu derivate parțiale de ordinul doi. Problema Cauchy. Ecuația coardei vibrante.

Prezentăm acum o metodă de reducere la forma canonică a E.D.P de ordinul al II-lea

Noțiuni teoretice

Fie următoarea E.D.P. de ordinul doi:

$$a\left(x,y\right)\frac{\partial^{2}u}{\partial x^{2}}+b\left(x,y\right)\frac{\partial^{2}u}{\partial x\partial y}+c\left(x,y\right)\frac{\partial^{2}u}{\partial y^{2}}+f\left(x,y,u,\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}\right)=0,$$

u(x,y) de clasă C^2 , coeficienții sunt funcții continue; Considerăm ecuația caracteristică asociată E.D.P.

$$a(x,y)r^{2} - b(x,y)r + c(x,y) = 0, (r = y'(x))$$

 $\Delta = b^{2} - 4ac.$

(1) $\Delta > 0 \Rightarrow$ ecuația este de tip hiperbolic.

Avem două soluții: $r_2(x,y) \neq r_2(x,y)$.

$$y'(x) = r_1(x, y) \Rightarrow$$

 $\xi(x,y) = C_1$ integrală primă

$$y'(x) = r_2(x, y) \Rightarrow$$

 $\eta(x,y) = C_2$ integrală primă

Se face schimbarea de funcție:

$$u(x,y) = \widetilde{u}(\xi,\eta).$$

Rezultă forma canonică

$$\frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + f_1 \left(\xi, \eta, \widetilde{u}, \frac{\partial \widetilde{u}}{\partial \xi}, \frac{\partial \widetilde{u}}{\partial \eta} \right) = 0.$$

(2) $\Delta = 0$ Ecuația este de tip parabolic.

$$r_2(x,y) = r_2(x,y)$$

$$\frac{dy}{dx} = y' = r_1(x, y) \Rightarrow$$

 $\xi(x,y) = C_1$ integrală primă.

Notăm $\eta = x$

$$u(x,y) = \widetilde{u}(\xi,\eta)$$

și avem forma canonică:

$$\frac{\partial^2 \widetilde{u}}{\partial \eta^2} + f_1 \left(\xi, \eta, \widetilde{u}, \frac{\partial \widetilde{u}}{\partial \xi}, \frac{\partial \widetilde{u}}{\partial \eta} \right) = 0.$$

(3) $\Delta < 0$ Ecuația este de tip *eliptic* și rădăcinile complex conjugate ale ecuației caracteristice

$$r_{1,2}(x,y) = \alpha(x,y) \pm i\beta(x,y) \Rightarrow$$

integralele prime

$$r_{1,2}(x,y) = \xi(x,y) \pm i\eta(x,y) = c_1 \pm c_2 \Rightarrow$$

forma canonică:

$$\frac{\partial^2 \widetilde{u}}{\partial \xi^2} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} + f_1 \left(\xi, \eta, \widetilde{u}, \frac{\partial \widetilde{u}}{\partial \xi}, \frac{\partial \widetilde{u}}{\partial \eta} \right) = 0.$$

Formule de derivare:

(1)
$$\frac{\partial u}{\partial x} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x}.$$

(2)
$$\frac{\partial u}{\partial y} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial y}.$$

(3)
$$\frac{\partial^2 u}{\partial x^2} = \left(\frac{\partial^2 \widetilde{u}}{\partial \xi^2} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial^2 \widetilde{u}}{\partial \eta \partial \xi} \cdot \frac{\partial \eta}{\partial x}\right) \cdot \frac{\partial \xi}{\partial x}$$

$$+ \left(\frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \cdot \frac{\partial \eta}{\partial x} \right) \cdot \frac{\partial \eta}{\partial x} +$$

$$+ \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial^2 \xi}{\partial x^2} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial^2 \eta}{\partial x^2}.$$

$$\frac{\partial^{2} u}{\partial x \partial y} = \left(\frac{\partial^{2} \widetilde{u}}{\partial \xi^{2}} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial^{2} \widetilde{u}}{\partial \eta \partial \xi} \cdot \frac{\partial \eta}{\partial x}\right) \cdot \frac{\partial \xi}{\partial y} + \left(\frac{\partial^{2} \widetilde{u}}{\partial \xi \partial \eta} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial^{2} \widetilde{u}}{\partial \eta^{2}} \cdot \frac{\partial \eta}{\partial x}\right) \cdot \frac{\partial \eta}{\partial y} + \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial^{2} \xi}{\partial x \partial y} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial^{2} \eta}{\partial x \partial y}.$$

(5)
$$\frac{\partial^{2} u}{\partial y^{2}} = \left(\frac{\partial^{2} \widetilde{u}}{\partial \xi^{2}} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial^{2} \widetilde{u}}{\partial \eta \partial \xi} \cdot \frac{\partial \eta}{\partial y}\right) \cdot \frac{\partial \xi}{\partial y} + \left(\frac{\partial^{2} \widetilde{u}}{\partial \xi \partial \eta} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial^{2} \widetilde{u}}{\partial \eta^{2}} \cdot \frac{\partial \eta}{\partial y}\right) \cdot \frac{\partial \eta}{\partial y} + \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial^{2} \xi}{\partial y^{2}} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial^{2} \eta}{\partial y^{2}}.$$

7.1.1 Exerciții rezolvate

Exercițiul 7.1

$$\frac{\partial^2 u}{\partial x^2} + 3 \frac{\partial^2 u}{\partial x \partial y} + 2 \frac{\partial^2 u}{\partial y^2} = 0$$

 $u: \mathbb{R}^2 \to \mathbb{R}$, de clasă C^2 . Să se determine:

(i) Forma canonică, tipul ecuației;

(ii) Soluţia generală;

(iii)
$$\begin{cases} u(0,y) = y \\ \frac{\partial u}{\partial x}(0,y) = 3y^2. \end{cases}$$

Soluție.

(i)
$$r^2 - 3r + 2 = 0 \Rightarrow r_1 = 1, r_2 = 2.$$

 $\Delta > 0$ ecuație de tip hiperbolic.

$$y' = 1 \Rightarrow y = x + C_1 \Rightarrow y - x = C_1$$

$$y' = 2 \Rightarrow y = 2x + C_2 \Rightarrow y - 2x = C_2$$

$$\Rightarrow \begin{cases} \xi(x, y) = y - x \\ \eta(x, y) = y - 2x. \end{cases}$$

Calculăm derivatele parțiale de ordinul doi folosind derivarea funcțiilor compuse de două variabile:

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot (-1) + \frac{\partial \widetilde{u}}{\partial \eta} \cdot (-2) \Rightarrow \\ \frac{\partial^2 u}{\partial x^2} &= -\left(\frac{\partial^2 \widetilde{u}}{\partial \xi^2} \cdot (-1) + \frac{\partial^2 \widetilde{u}}{\partial \eta \partial \xi} \cdot (-2)\right) + \\ &+ (-2)\left(\frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \cdot (-1) + \frac{\partial^2 \widetilde{u}}{\partial \eta} \cdot (-2)\right) \\ \frac{\partial u}{\partial y} &= \frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \Rightarrow \\ \frac{\partial^2 u}{\partial x \partial y} &= \frac{\partial^2 \widetilde{u}}{\partial \xi^2} \cdot (-1) + \frac{\partial^2 \widetilde{u}}{\partial \eta \partial \xi} \cdot (-2) + \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \cdot (-1) + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \cdot (-2) \end{split}$$

$$\begin{split} \frac{\partial^2 u}{\partial y^2} &= \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + \frac{\partial^2 \widetilde{u}}{\partial \eta \partial \xi} + \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \\ \frac{\partial^2 u}{\partial x^2} &= \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 4 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + 4 \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \\ 3 \cdot \left| \frac{\partial^2 u}{\partial x \partial y} \right| &= -\frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \\ 2 \cdot \left| \frac{\partial^2 u}{\partial y^2} \right| &= \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \\ &- \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} = 0 \Rightarrow \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} = 0 \end{split}$$

este forma canonică.

(ii) Soluţia generală;

$$\frac{\partial}{\partial \xi} \left(\frac{\partial \widetilde{u}}{\partial \eta} \right) = 0 \Rightarrow \frac{\partial \widetilde{u}}{\partial \eta} = f_1(\eta) \Rightarrow$$

$$\widetilde{u} = \int f_1(\eta) d\eta = f(\eta) + g(\xi)$$

$$\widetilde{u}(\xi, \eta) = f(\eta) + g(\xi)$$

unde $f,g:\mathbb{R}\to\mathbb{R}$ de clasă C^2

$$\Rightarrow u(x,y) = f(y-2x) + g(y-x)$$
 este soluția generală.

(iii) $\begin{cases} u(0,y) = y \\ \frac{\partial u}{\partial x}(0,y) = 3y^2 \end{cases} \Rightarrow$

$$\begin{cases} f(y) + g(y) = y \\ -2f'(y) - g'(y) = 3y^2 \end{cases} \Rightarrow$$

$$\begin{cases} f'(y) + g'(y) = 1 \\ -2f'(y) - g'(y) = 3y^2 \end{cases}$$

$$-f'(y) = 1 + 3y^2 \Rightarrow \begin{cases} f(y) = -y - y^3 + C \\ g(y) = 2y + y^3 - C \end{cases}$$

$$\Rightarrow u(x, y) = -(y - 2x) - (y - 2x)^3 + C +$$

$$+2(y - x) + (y - x)^3 - C =$$

$$= y + (y - x - y + 2x) \cdot$$

$$\cdot (y^2 - 2xy + x^2 + y^2 + 2x^2 - 3xy + y^2 + 4x^2 - 4xy) =$$

$$= y + x(3y^2 - 9xy + 6x^2) \Rightarrow$$

$$u(x, y) = y + 3x(y^2 - 3xy + 2x^2) = y + 3x(x - y)(2x - y).$$

Exercițiul 7.2

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} - 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} + 2y \frac{\partial u}{\partial y} = x^{5} y^{2}.$$

- (i) Forma canonică, tipul ecuației;
- (ii) Soluţia generală;

Soluţie.

(i) Ecuația caracteristică

$$x^2 \cdot r^2 + 2xyr + y^2 = 0$$

 $\Delta = 0 \Rightarrow$ ecuatie de tip parabolic.

$$(xr+y)^2 = 0 \Rightarrow r = -\frac{y}{x}$$
$$y' = -\frac{y}{x} < \Rightarrow \frac{dy}{y} = -\frac{dx}{x} \Rightarrow |xy| = K_0 \Rightarrow$$
$$xy = \pm K_0 = C \Rightarrow xy = C$$

$$\left\{ \begin{array}{ll} \xi = xy \\ \eta = x \end{array} \right. \quad u(x,y) = \widetilde{u}(\xi,\eta) \sim \text{ schimbarea de funcție.}$$

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot y + \frac{\partial \widetilde{u}}{\partial \eta} \\ &\frac{\partial u}{\partial y} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot x \\ \frac{\partial^2 u}{\partial x^2} &= \left(\frac{\partial^2 \widetilde{u}}{\partial \xi^2} \cdot y + \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \right) \cdot y + \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \cdot y + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \cdot y \\ &\cdot \frac{\partial^2 u}{\partial x \partial y} = \left(\frac{\partial^2 \widetilde{u}}{\partial \xi^2} \cdot y + \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \right) \cdot x + \frac{\partial \widetilde{u}}{\partial \xi} \\ &\frac{\partial^2 u}{\partial y^2} &= \left(\frac{\partial^2 \widetilde{u}}{\partial \xi^2} \cdot x \right) \cdot x \\ &\frac{\partial^2 u}{\partial y^2} &= x^2 \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} . \end{split}$$

Deci:

$$x^{2} \cdot \left| \frac{\partial^{2} \widetilde{u}}{\partial x^{2}} \right| = \frac{\partial^{2} \widetilde{u}}{\partial \xi^{2}} \cdot y^{2} + 2 \frac{\partial^{2} \widetilde{u}}{\partial \xi \partial \eta} \cdot y + \frac{\partial^{2} \widetilde{u}}{\partial \eta^{2}}$$

$$(-2xy) \cdot \left| \frac{\partial^2 u}{\partial x \partial y} \right| = \frac{\partial^2 \widetilde{u}}{\partial \xi^2} \cdot xy + \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \cdot x + \frac{\partial^2 \widetilde{u}}{\partial \xi}$$

$$y^2 \cdot \left| \frac{\partial^2 u}{\partial y^2} \right| = \frac{\partial^2 \widetilde{u}}{\partial \xi^2} \cdot x^2$$

$$(2y) \cdot \frac{\partial u}{\partial y} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot x$$

$$x^5 y^2 = \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \cdot x^2 \Leftrightarrow \frac{\partial^2 \widetilde{u}}{\partial \eta^2} = x^3 y^2;$$

$$\xi = xy, \eta = x \Rightarrow$$

$$x^3 y^2 = \xi^2 \cdot \eta \Rightarrow$$

$$\Rightarrow \frac{\partial^2 \widetilde{u}}{\partial \eta^2} = \xi^2 \cdot \eta$$

este forma canonică.

(ii) Integrăm forma canonică:

$$\frac{\partial}{\partial \eta} \left(\frac{\partial \widetilde{u}}{\partial \eta} \right) = \xi^2 \eta \Rightarrow \frac{\partial \widetilde{u}}{\partial \eta} = \xi^2 \cdot \frac{\eta^2}{2} + f(\xi) \Rightarrow$$
$$\widetilde{u}(\xi, \eta) = \frac{1}{6} \xi^2 \cdot \eta^3 + \eta f(\xi) + g(\xi)$$

Înlocuim

$$\begin{cases} \xi = xy \\ \eta = x \end{cases} \Rightarrow$$

soluția generală

$$u(x,y) = \frac{1}{6}x^5y^2 + xf(xy) + g(xy),$$

unde $f, g : \mathbb{R} \to \mathbb{R}$ de clasă C^2 .

Exercițiul 7.3

$$\frac{\partial^2 u}{\partial x^2} + 4x \frac{\partial^2 u}{\partial x \partial y} + 4x^2 \frac{\partial^2 u}{\partial y^2} + 2 \frac{\partial u}{\partial y} = 6y$$

- (i) Forma canonică, tipul ecuației;
- (ii) Soluţia generală;

(iii)

$$\begin{cases} u(2,y) = \frac{3}{2}y^2\\ \frac{\partial u}{\partial x}(2,y) = -24. \end{cases}$$

Soluție:

(i) Ecuația caracterisitcă

$$r^2 - 4xr + 4x^2 = 0 \Rightarrow$$

 $\Delta = 0 \Rightarrow$ ecuația este de tip parabolic.

$$(r - 2x)^{2} = 0 \Rightarrow r = y'(x) = 2x \Rightarrow dy = 2xdx$$

$$\Rightarrow y - x^{2} = c \Rightarrow \begin{cases} \xi = y - x^{2} \\ \eta = x. \end{cases}$$

$$\Rightarrow u(x, y) = \widetilde{u}(\xi, \eta).$$

Calculăm derivatele parțiale

$$\frac{\partial u}{\partial x} = \frac{\partial \tilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \tilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{\partial \tilde{u}}{\partial \xi} \cdot (-2x) + \frac{\partial \tilde{u}}{\partial \eta}$$
$$\frac{\partial u}{\partial y} = \frac{\partial \tilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial \tilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = \frac{\partial \tilde{u}}{\partial \xi}$$

Reducerea la forma canonică a ecuațiilor cu derivate parțiale de ordinul doi. Problema Cauchy. Ecuația coardei vibrante. 273

$$\frac{\partial^2 u}{\partial x^2} = \left[\frac{\partial^2 \tilde{u}}{\partial \xi^2} \cdot (-2x) + \frac{\partial^2 \tilde{u}}{\partial \eta \partial \xi} \right] \cdot (-2x) + \frac{\partial^2 \tilde{u}}{\partial \xi^2} + \frac{\partial^2 \tilde{u}}{\partial \xi^2} \cdot (-2x) + \frac{\partial^2 \tilde{u}}{\partial \eta^2} - 2\frac{\partial \tilde{u}}{\partial \xi}$$

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial \xi^2} \cdot (-2x) + \frac{\partial^2 u}{\partial \eta \partial \xi}$$

$$\frac{\partial u}{\partial y} = \frac{\partial^2 \tilde{u}}{\partial \xi^2}$$

Deci:

$$1 \cdot \left| \frac{\partial^2 u}{\partial x^2} \right| = 4x^2 \frac{\partial^2 \tilde{u}}{\partial \xi^2} - 4x \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2} - 2 \frac{\partial \tilde{u}}{\partial \xi}$$

$$4x \cdot \left| \frac{\partial^2 u}{\partial x \partial y} \right| = (-2x) \cdot \frac{\partial^2 \tilde{u}}{\partial \xi^2} + \frac{\partial^2 \tilde{u}}{\partial \xi^2 \partial \eta}$$

$$4x^2 \cdot \left| \frac{\partial^2 u}{\partial y^2} \right| = \frac{\partial^2 \tilde{u}}{\partial \xi^2}$$

$$2 \cdot \left| \frac{\partial u}{\partial y} \right| = \frac{\partial \tilde{u}}{\partial \xi}$$

$$6y = \frac{\partial^2 \tilde{u}}{\partial \eta^2} \Rightarrow \frac{\partial^2 \tilde{u}}{\partial \eta^2} = 6y$$

$$\xi = y - x^2$$

$$\eta = x \Rightarrow y = \xi + \eta^2$$

$$\frac{\partial^2 \tilde{u}}{\partial \eta^2} = 6\xi + 6\eta^2$$

adică forma canonică.

(ii) Integrăm în raport cu η

$$\frac{\partial}{\partial \eta} \left(\frac{\partial \tilde{u}}{\partial \eta} \right) = 6\xi + 6\eta^2 \Rightarrow$$

$$\frac{\partial \tilde{u}}{\partial \eta} = 6\xi\eta + 2\eta^3 + f(\xi) \Rightarrow$$

$$\tilde{u}(\xi, \eta) = 3\xi\eta^2 + \frac{\eta^4}{2} + \eta f(\xi) + g(\xi)$$

$$u(x,y) = 3x^{2}(y-x^{2}) + \frac{x^{4}}{2} + xf(y-x^{2}) + g(y-x^{2}) \Rightarrow$$

$$u(x,y) = 3x^{2}y + \frac{5}{2}x^{4} + xf(y - x^{2}) + g(y - x^{2})$$

cu $f, g \in C^2, f, g : \mathbb{R} \to \mathbb{R}$.

Avem

$$\frac{\partial u}{\partial x} = 6xy - 10x^3 + f(y - x^2) - 2x^2 f'(y - x^2) - 2x \cdot g'(y - x^2).$$

(iii)

$$\begin{cases} u(2,y) = 12y - 40 + 2f(y-4) + \\ +g(y-4) = \frac{3}{2}y^{2} \\ \frac{\partial u}{\partial x}(2,y) = 12y - 80 + f(y-4) - 8f'(y-4) - \\ -4g'(y-4) = -24 \end{cases} \Leftrightarrow$$

$$\begin{cases} 2f'(y-4) + g'(y-4) = 3y - 12 \\ f(y-4) - 4(2f'(y-4) + g'(y-4)) = 56 - 12y \end{cases}$$

$$\begin{cases} f(y-4) = 4(3y-12) - 12y + 56 = 8\\ g(y-4) = \frac{3}{2}y^2 - 12y + 40 - 16 = \frac{3}{2}y^2 - 12y + 24 = \\ = \frac{3}{2}(y^2 - 8y + 16) = \frac{3}{2}(y - 4)^2. \end{cases}$$

Fie $t = y - 4 \Rightarrow \begin{cases} f(t) = 8 \\ g(t) = \frac{3}{2}t^2 \end{cases} \Rightarrow u(x,y) = 3x^2y - \frac{5}{2}x^4 + 8x + \frac{3}{2}(y - x^2)^2 = 0$

$$u(x,y) = 3x^{2}y - \frac{1}{2}x^{4} + 8x + \frac{1}{2}(y - x^{2}) =$$

$$= 3x^{2}y - \frac{5}{2}x^{4} + 8x + \frac{3}{2}y^{2} - 3x^{2}y + \frac{3}{2}x^{4} \Rightarrow$$

 $u(x,y) = \frac{3}{2}y^2 - x^4 + 8x.$

Observația 7.4 Pentru a calcula mai ușor derivatele parțiale de ordinul doi introducem operatorii

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial}{\partial \eta} \cdot \frac{\partial \eta}{\partial x};$$

$$\frac{\partial}{\partial y} = \frac{\partial}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial}{\partial \eta} \cdot \frac{\partial \eta}{\partial y}.$$

Exercițiul 7.5 Să se reducă la forma canonică ecuația:

$$4y^2 \frac{\partial^2 u}{\partial x^2} - e^{2x} \frac{\partial^2 u}{\partial y^2} = 0.$$

Soluţie:

$$\begin{cases} a = 4y^2 \\ b = 0 \\ c = -e^{2x} \end{cases} \Rightarrow \triangle = b^2 - 4ac = 4y^2e^{2x} > 0 \text{ tip parabolic.}$$

$$4y^2 \left(\frac{dy}{dx}\right)^2 - e^{2x} = 0 \Leftrightarrow \frac{dy}{dx} = \pm \sqrt{\frac{e^{2x}}{4y^2}} \Rightarrow$$

$$\begin{cases} \frac{dy}{dx} = \sqrt{\frac{e^{2x}}{4y^2}} \\ \frac{dy}{dx} = -\sqrt{\frac{e^{2x}}{4x^2}} \end{cases} \Leftrightarrow \begin{cases} \frac{dy}{dx} = \frac{e^x}{2y} \\ \frac{dy}{dx} = -\frac{e^x}{2y} \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \left\{ \begin{array}{l} 2ydy = e^x dx \\ 2ydy = -e^x dx \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} e^x - y^2 = c_1 \\ e^x + y^2 = c_2 \end{array} \right. - \text{integralele prime.}$$

Facem schimbarea de variabile și de funcție:

$$\begin{cases} \xi = \xi(x,y) = e^{x} - y^{2} \\ \eta = \eta(x,y) = e^{x} + y^{2} \end{cases} \qquad \widetilde{u}(\xi,\eta) = u(x,y) \,. \\ \begin{cases} \frac{\partial u}{\partial x} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = e^{x} \left(\frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \right) \\ \frac{\partial u}{\partial y} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = (-2y) \left(\frac{\partial \widetilde{u}}{\partial \xi} - \frac{\partial \widetilde{u}}{\partial \eta} \right) \end{cases} \Rightarrow \\ \begin{cases} \frac{\partial}{\partial x} = e^{x} \left(\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} \right) \\ \frac{\partial}{\partial y} = (-2y) \left(\frac{\partial}{\partial \xi} - \frac{\partial}{\partial \eta} \right) \end{cases} \\ \frac{\partial^{2}u}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left[e^{x} \left(\frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \right) \right] = \\ = e^{x} \cdot \frac{\partial}{\partial x} \left(\frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \right) + e^{x} \left(\frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \right) = \\ = e^{x} \left[e^{x} \left(\frac{\partial}{\partial \xi} \left(\frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \right) + \frac{\partial}{\partial \eta} \left(\frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \right) \right) \right] + \end{aligned}$$

 $\frac{\partial^2 u}{\partial u^2} = \frac{\partial}{\partial u} \left(\frac{\partial u}{\partial u} \right) = \frac{\partial}{\partial u} \left[(-2y) \left(\frac{\partial \widetilde{u}}{\partial \varepsilon} - \frac{\partial \widetilde{u}}{\partial n} \right) \right] =$

 $+e^{x}\left(\frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial n}\right) =$

 $=e^{2x}\left(\frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2\frac{\partial^2 \widetilde{u}}{\partial \xi \partial n} + \frac{\partial^2 \widetilde{u}}{\partial n^2}\right) + e^x\left(\frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial n}\right).$

$$\begin{split} &= (-2y)\,\frac{\partial}{\partial y}\left(\frac{\partial \widetilde{u}}{\partial \xi} - \frac{\partial \widetilde{u}}{\partial \eta}\right) - 2\left(\frac{\partial \widetilde{u}}{\partial \xi} - \frac{\partial \widetilde{u}}{\partial \eta}\right) = \\ &= (-2y)\cdot(-2y)\left[\frac{\partial}{\partial \xi}\left(\frac{\partial \widetilde{u}}{\partial \xi} - \frac{\partial \widetilde{u}}{\partial \eta}\right) - \frac{\partial}{\partial \eta}\left(\frac{\partial \widetilde{u}}{\partial \xi} - \frac{\partial \widetilde{u}}{\partial \eta}\right)\right] - \\ &\qquad \qquad - 2\left(\frac{\partial \widetilde{u}}{\partial \xi} - \frac{\partial \widetilde{u}}{\partial \eta}\right) = \\ &= 4y^2\left(\frac{\partial^2 \widetilde{u}}{\partial \xi^2} - 2\frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2}\right) - 2\left(\frac{\partial \widetilde{u}}{\partial \xi} - \frac{\partial \widetilde{u}}{\partial \eta}\right). \end{split}$$

Ecuatia devine:

$$4y^{2}e^{2x}\left(\frac{\partial^{2}\widetilde{u}}{\partial\xi^{2}}+2\frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta}+\frac{\partial^{2}\widetilde{u}}{\partial\eta^{2}}\right)+4y^{2}e^{x}\left(\frac{\partial\widetilde{u}}{\partial\xi}+\frac{\partial\widetilde{u}}{\partial\eta}\right)-$$

$$-4y^{2}e^{2x}\left(\frac{\partial^{2}\widetilde{u}}{\partial\xi^{2}}-2\frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta}+\frac{\partial^{2}\widetilde{u}}{\partial\eta^{2}}\right)+2e^{2x}\left(\frac{\partial\widetilde{u}}{\partial\xi}-\frac{\partial\widetilde{u}}{\partial\eta}\right)=0\Leftrightarrow$$

$$8y^{2}e^{2x}\frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta}+\left(2y^{2}-e^{x}\right)e^{x}\frac{\partial\widetilde{u}}{\partial\eta}+\left(2y^{2}+e^{x}\right)e^{x}\frac{\partial\widetilde{u}}{\partial\xi}=0\mid:e^{x}\Leftrightarrow$$

$$8y^{2}e^{x}\frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta}+\left(2y^{2}+e^{x}\right)\frac{\partial\widetilde{u}}{\partial\xi}+\left(2y^{2}-e^{x}\right)\frac{\partial\widetilde{u}}{\partial\eta}=0.$$

$$\left\{\begin{array}{c}\xi=e^{x}-y^{2}\\\eta=e^{x}+y^{2}\end{array}\right.\Rightarrow\left\{\begin{array}{c}e^{x}=\frac{\xi+\eta}{2}\\y^{2}=\frac{\eta-\xi}{2}\end{array}\right.\Rightarrow\text{ ecuația devine:}$$

$$2\left(\eta^{2}-\xi^{2}\right)\frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta}+\left(\eta-\xi+\frac{\xi+\eta}{2}\right)\cdot\frac{\partial\widetilde{u}}{\partial\xi}+$$

$$+\left(\eta-\xi-\frac{\xi+\eta}{2}\right)\cdot\frac{\partial\widetilde{u}}{\partial\eta}=0\Leftrightarrow$$

$$2\left(\eta^{2}-\xi^{2}\right)\frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta}+\frac{3\eta-\xi}{2}\cdot\frac{\partial\widetilde{u}}{\partial\xi}+\frac{\eta-3\xi}{2}\cdot\frac{\partial\widetilde{u}}{\partial\eta}=0.$$

Facem schimbare de variabilă și de funcție:

$$\begin{cases} \rho = \xi + \eta \\ \sigma = \xi - \eta \end{cases} \qquad u_1(\rho, \sigma) = \widetilde{u}(\xi, \eta) \Rightarrow$$

$$\begin{cases} \frac{\partial \widetilde{u}}{\partial \xi} = \frac{\partial u_1}{\partial \rho} \cdot \frac{\partial \rho}{\partial \xi} + \frac{\partial u_1}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial \xi} = \frac{\partial u_1}{\partial \rho} + \frac{\partial u_1}{\partial \sigma} \\ \frac{\partial \widetilde{u}}{\partial \eta} = \frac{\partial u_1}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial \eta} + \frac{\partial u_1}{\partial \rho} \cdot \frac{\partial \rho}{\partial \eta} = \frac{\partial u_1}{\partial \rho} - \frac{\partial u_1}{\partial \sigma} \end{cases} \Rightarrow$$

$$\begin{cases} \frac{\partial}{\partial \xi} = \frac{\partial}{\partial \rho} + \frac{\partial}{\partial \sigma} \\ \frac{\partial}{\partial \eta} = \frac{\partial}{\partial \rho} - \frac{\partial u}{\partial \sigma} \end{cases}$$

$$\frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} = \frac{\partial}{\partial \xi} \left(\frac{\partial \widetilde{u}}{\partial \eta} \right) = \frac{\partial}{\partial \xi} \left(\frac{\partial u_1}{\partial \rho} - \frac{\partial u_1}{\partial \sigma} \right) =$$

$$= \frac{\partial}{\partial \rho} \left(\frac{\partial u_1}{\partial \rho} - \frac{\partial u_1}{\partial \sigma} \right) + \frac{\partial}{\partial \sigma} \left(\frac{\partial u_1}{\partial \rho} - \frac{\partial u_1}{\partial \sigma} \right) =$$

$$= \frac{\partial^2 u_1}{\partial \rho^2} - \frac{\partial^2 u_1}{\partial \rho \partial \sigma} + \frac{\partial^2 u_1}{\partial \rho \partial \sigma} - \frac{\partial^2 u_1}{\partial \sigma^2} = \frac{\partial^2 u_1}{\partial \rho^2} - \frac{\partial^2 u_1}{\partial \sigma^2}.$$

Ecuaţia devine:

$$(-2) \rho \cdot \sigma \left(\frac{\partial^2 u_1}{\partial \rho^2} - \frac{\partial^2 u_1}{\partial \sigma^2} \right) + \left(\frac{3\eta - \xi}{2} + \frac{\eta - 3\xi}{2} \right) \frac{\partial u_1}{\partial \rho} +$$

$$+ \left(\frac{-\eta + 3\xi}{2} + \frac{3\eta - \xi}{2} \right) \frac{\partial u_1}{\partial \sigma} = 0$$

$$(-2) \rho \cdot \sigma \left(\frac{\partial^2 u_1}{\partial \rho^2} - \frac{\partial^2 u_1}{\partial \sigma^2} \right) - 2\sigma \cdot \frac{\partial u_1}{\partial \rho} + \rho \cdot \frac{\partial u_1}{\partial \sigma} = 0.$$

Exercițiul 7.6 Să se rezolve ecuația:

$$4\frac{\partial^2 u}{\partial x^2} - 4\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} - 6\frac{\partial u}{\partial x} + 3\frac{\partial u}{\partial y} - 4u = 2e^{x-y}.$$

Soluţie:

$$\begin{cases} a = 4 \\ b = -4 \Rightarrow \triangle = b^2 - 4ac = 16 - 16 = 0 \\ c = 1 \end{cases}$$

⇒ ecuație de tip parabolic. Ecuația caracteristicilor este:

$$4\left(\frac{\partial y}{\partial x}\right)^2 + 4\frac{\partial y}{\partial x} + 1 = 0 \Rightarrow \frac{\partial y}{\partial x} = \frac{-1}{2} \Leftrightarrow 2dy = -dx \Leftrightarrow 2y^2 + x = c \text{ integral a primă}.$$

Facem schimbarea de variabilă:

$$\begin{cases} \xi = x + 2y \\ \eta = x \end{cases}$$

și schimbarea de funcție:

$$\widetilde{u}\left(\xi,\eta\right) =u\left(x,y\right) \Rightarrow$$

$$\frac{\partial u}{\partial x} = \frac{\partial \tilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \tilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{\partial \tilde{u}}{\partial \xi} + \frac{\partial \tilde{u}}{\partial \eta}$$

$$\frac{\partial u}{\partial y} = \frac{\partial \tilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial \tilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = 2\frac{\partial \tilde{u}}{\partial \xi}$$

$$\begin{cases} \frac{\partial}{\partial x} = \frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial y} = 2\frac{\partial}{\partial \xi} \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} \frac{\partial^2}{\partial x^2} = \left(\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta}\right)^2 = \frac{\partial^2}{\partial \xi^2} + 2\frac{\partial^2}{\partial \xi \partial \eta} + \frac{\partial^2}{\partial \eta^2} \\ \frac{\partial^2}{\partial x \partial y} = 2\left(\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta}\right) \cdot \frac{\partial}{\partial \xi} = 2\frac{\partial^2}{\partial \xi^2} + 2\frac{\partial^2}{\partial \xi \partial \eta} \\ \frac{\partial^2}{\partial x^2} = 4\frac{\partial^2}{\partial \xi^2}. \end{cases}$$

Atunci ecuația devine:

$$\begin{split} 4\left(\frac{\partial^2}{\partial \xi^2} + 2\frac{\partial^2}{\partial \xi \partial \eta} + \frac{\partial^2}{\partial \eta^2}\right) \cdot \widetilde{u} - 8\left(\frac{\partial^2}{\partial \xi^2} + \frac{\partial^2}{\partial \xi \partial \eta}\right) \cdot \widetilde{u} + 4\frac{\partial^2 \widetilde{u}}{\partial \xi^2} - \\ -6\left(\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta}\right) \cdot \widetilde{u} + 6\frac{\partial \widetilde{u}}{\partial \xi} - 4\widetilde{u} = 2e^{\frac{3\eta - \xi}{2}} \Leftrightarrow \\ 4\frac{\partial^2 \widetilde{u}}{\partial \eta^2} - 6\frac{\partial \widetilde{u}}{\partial \eta} - 4\widetilde{u} = 2e^{\frac{3\eta - \xi}{2}} \mid : 2 \quad \Leftrightarrow \\ 2\frac{\partial^2 \widetilde{u}}{\partial \eta^2} - 3\frac{\partial \widetilde{u}}{\partial \eta} - 2\widetilde{u} = e^{\frac{3\eta - \xi}{2}}. \end{split}$$

Pentru a simplifica ecuația facem schimbarea de funcție:

$$\widetilde{u}(\xi,\eta) = v(\xi,\eta) \cdot e^{\alpha\xi + \beta\eta} \implies \text{ecuația devine:}$$

$$\begin{split} \frac{\partial \tilde{u}}{\partial \eta} &= \frac{\partial v}{\partial \eta} \cdot e^{\alpha \xi + \beta \eta} + \beta \cdot v \left(\xi, \eta \right) \cdot e^{\alpha \xi + \beta \eta} \\ \frac{\partial^2 \tilde{u}}{\partial \eta^2} &= \frac{\partial^2 v}{\partial \eta^2} \cdot e^{\alpha \xi + \beta \eta} + 2\beta \frac{\partial v}{\partial \eta} \cdot e^{\alpha \xi + \beta \eta} + \beta^2 \cdot v \left(\xi, \eta \right) \cdot e^{\alpha \xi + \beta \eta} \\ 2 \frac{\partial^2 v}{\partial \eta^2} \cdot e^{\alpha \xi + \beta \eta} + 4\beta \frac{\partial v}{\partial \eta} \cdot e^{\alpha \xi + \beta \eta} + 2\beta^2 \cdot v \left(\xi, \eta \right) \cdot e^{\alpha \xi + \beta \eta} - \\ -3 \frac{\partial v}{\partial \eta} \cdot e^{\alpha \xi + \beta \eta} - 3\beta \cdot v \left(\xi, \eta \right) \cdot e^{\alpha \xi + \beta \eta} - 2v \left(\xi, \eta \right) \cdot e^{\alpha \xi + \beta \eta} = e^{\frac{3\eta - \xi}{2}} \\ 2 \frac{\partial^2 v}{\partial \eta^2} \cdot e^{\alpha \xi + \beta \eta} + \left(4\beta - 3 \right) \cdot \frac{\partial v}{\partial \eta} \cdot e^{\alpha \xi + \beta \eta} + \\ + \left(2\beta^2 - 3\beta - 2 \right) v \left(\xi, \eta \right) \cdot e^{\alpha \xi + \beta \eta} = e^{\frac{3\eta - \xi}{2}} \end{split}$$

Pentru a simplifica ecuația impunem: $2\beta^2 - 3\beta - 2 = 0$

$$\Rightarrow \beta_{1,2} = \frac{3 \mp \sqrt{9 + 16}}{4} = \frac{3 \mp 5}{4} \Rightarrow \begin{cases} \beta_1 = \frac{-1}{2}, \\ \beta_2 = 2. \end{cases}$$

Alegem $\alpha = 0$, $\beta = \frac{-1}{2} \Rightarrow$ ecuația devine:

$$2\frac{\partial^{2} v}{\partial \eta^{2}} \cdot e^{\frac{-\eta}{2}} - 5\frac{\partial v}{\partial \eta} \cdot e^{\frac{-\eta}{2}} = e^{\frac{3\eta - \xi}{2}} \Leftrightarrow$$

$$2\frac{\partial^{2} v}{\partial \eta^{2}} - 5\frac{\partial v}{\partial \eta} = e^{2\eta - \frac{\xi}{2}} \Leftrightarrow$$

$$\frac{\partial}{\partial \eta} \left(2\frac{\partial v}{\partial \eta} - 5v \right) = e^{2\eta - \frac{\xi}{2}} \Rightarrow$$

$$\Rightarrow 2\frac{\partial v}{\partial \eta} - 5v = \frac{1}{2}e^{2\eta - \frac{\xi}{2}} + \phi_{1}(\xi)$$

- ecuație afină (ecuație liniară neomogenă). Îi asociem ecuația liniară omogenă.

$$2\frac{\partial \overline{v}}{\partial \eta} - 5\overline{v} = 0 \Leftrightarrow 2\frac{d\overline{v}}{\overline{v}} = 5 \cdot d\eta \Leftrightarrow \ln \overline{v} = \frac{5}{2}\eta + \ln \phi_2(\xi) \Rightarrow$$
$$\Rightarrow \ln \overline{v}(\xi, \eta) = \frac{5}{2}\eta + \ln \phi_2(\xi) \Leftrightarrow \overline{v}(\xi, \eta) = e^{\frac{5\eta}{2}} \cdot \phi_2(\xi).$$

Căutăm (efectuând metoda variației constantelor) soluție de forma:

$$v\left(\xi,\eta\right) = e^{\frac{5\eta}{2}} \cdot \phi_2\left(\xi,\eta\right)$$

și ecuația devine:

$$2 \cdot \frac{5}{2} \cdot e^{\frac{5\eta}{2}} \cdot \phi_2(\xi, \eta) + 2 \cdot e^{\frac{5\eta}{2}} \cdot \frac{\partial \phi_2}{\partial \eta} - 5 \cdot e^{\frac{5\eta}{2}} \cdot \phi_2(\xi, \eta) =$$

$$= \frac{1}{2} \cdot e^{2\eta - \frac{\xi}{2}} + \phi_1(\xi) \Leftrightarrow$$

$$2 \cdot \frac{\partial \phi_2}{\partial \eta} = \frac{1}{2} \cdot e^{\frac{-\xi + \eta}{2}} + \phi_1(\xi) \cdot e^{\frac{-5\eta}{2}} \Rightarrow$$

$$\phi_{2}(\xi,\eta) = \frac{-1}{2} \cdot e^{\frac{-\xi+\eta}{2}} - \frac{1}{5} \cdot \phi_{1}(\xi) \cdot e^{\frac{-5\eta}{2}} + \phi_{3}(\xi) \Rightarrow$$

$$v(\xi,\eta) = e^{\frac{5\eta}{2}} \left(\frac{-1}{2} \cdot e^{\frac{-\xi}{2} - \frac{\eta}{2}} - \frac{1}{5} \cdot \phi_{1}(\xi) \cdot e^{\frac{-5\eta}{2}} + \phi_{3}(\xi) \right) =$$

$$= \frac{-1}{2} \cdot e^{2\eta - \frac{\xi}{2}} - \frac{1}{5} \cdot \phi_{1}(\xi) + e^{\frac{5\eta}{2}} \cdot \phi_{3}(\xi)$$

$$\widetilde{u}(\xi,\eta) = v(\xi,\eta) \cdot e^{\frac{-\eta}{2}} = \frac{-1}{2} \cdot e^{\frac{3\eta}{2} - \frac{\xi}{2}} - \frac{1}{5} \cdot e^{\frac{-\eta}{2}} \phi_{1}(\xi) + e^{2\eta} \cdot \phi_{3}(\xi).$$
Notăm: $\Phi(\xi) = \phi_{1}(\xi)$ și $\Psi(\xi) = \phi_{3}(\xi) \Rightarrow$

Revenim la notații:

$$\left\{ \begin{array}{l} x=\eta \\ 2y+x=\xi \end{array} \right. \Rightarrow \frac{3\eta-\xi}{2} = \frac{3x-x-2y}{2} = x-y \Rightarrow$$

 $\widetilde{u}\left(\xi,\eta\right) = \frac{-1}{2} \cdot e^{\frac{3\eta}{2} - \frac{\xi}{2}} - \frac{1}{\xi} \cdot e^{\frac{-\eta}{2}} \cdot \Phi\left(\xi\right) + e^{2\eta} \cdot \Psi\left(\xi\right)$

soluția generală a ecuației este:

$$u\left(x,y\right) = \frac{-1}{2} \cdot e^{x-y} - \frac{1}{5} \cdot e^{\frac{-x}{2}} \cdot \Phi\left(x+2y\right) + e^{2x} \cdot \Psi\left(x+2y\right).$$

Exercițiul 7.7 Să se rezolve problema:

$$\begin{cases} 4y^{2} \frac{\partial^{2} u}{\partial x^{2}} - y^{2} \frac{\partial^{2} u}{\partial y^{2}} + 2x \frac{\partial u}{\partial x} = 0\\ u(x, 1) = f(x)\\ \frac{\partial u}{\partial y}(x, 1) = g(x). \end{cases}$$

Soluţie:

$$\begin{vmatrix}
 a = 4x^{2} \\
 b = 0 \\
 c = -y^{2}
\end{vmatrix} \Rightarrow \triangle = b^{2} - 4ac = 16x^{2}y^{2} > 0$$

⇒ ecuație de tip hiperbolic. Ecuația caracteristicilor este:

$$4x^2\left(\frac{dy}{dx}\right)^2 - y^2 = 0 \Rightarrow \frac{dy}{dx} = \pm \frac{y}{2x} \Rightarrow \frac{dy}{dx} = \frac{y}{2x} \text{ si } \frac{dy}{dx} = \frac{-y}{2x} \Rightarrow$$

integralele prime sunt:

$$\frac{dy}{dx} = \frac{y}{2x} \Rightarrow 2 \ln y = \ln x + \ln C_0 \Leftrightarrow \ln y^2 = \ln C_0 \cdot x \Rightarrow$$
$$\Rightarrow y^2 = C_0 \cdot x \Rightarrow \frac{y^2}{x} = C_0 \Rightarrow$$

prima integrală primă este:

$$\frac{y^2}{x} = C_0 \operatorname{sau} \frac{x}{y^2} = C_1$$

$$\frac{dy}{y} = \frac{-dx}{2x} \Leftrightarrow 2\ln y = \ln\frac{1}{x} + \ln C_2 \Rightarrow xy^2 = C_2.$$

Facem schimbarea de variabilă:

$$\begin{cases} \xi(x,y) = \frac{x}{y^2} \\ \eta(x,y) = xy^2 \end{cases}$$

și schimbarea de funcție:

$$\widetilde{u}\left(\xi,\eta\right) = u\left(x,y\right) \Rightarrow$$

$$\left\{ \begin{array}{l} \frac{\partial u}{\partial x} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \frac{1}{y^2} \cdot \frac{\partial \widetilde{u}}{\partial \xi} + y^2 \frac{\partial \widetilde{u}}{\partial \eta} \\ \\ \frac{\partial u}{\partial y} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = \frac{-2x}{y^3} \cdot \frac{\partial \widetilde{u}}{\partial \xi} + 2xy \frac{\partial \widetilde{u}}{\partial \eta} \end{array} \right. \xrightarrow{operatorii}$$

$$\begin{cases} \frac{\partial}{\partial x} = \frac{1}{y^2} \cdot \frac{\partial}{\partial \xi} + y^2 \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial y} = \frac{-2x}{y^3} \cdot \frac{\partial}{\partial \xi} + 2xy \frac{\partial}{\partial \eta}. \end{cases}$$

$$\begin{split} \frac{\partial^2 u}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{1}{y^2} \cdot \frac{\partial \widetilde{u}}{\partial \xi} + y^2 \frac{\partial \widetilde{u}}{\partial \eta} \right) = \\ &= \frac{1}{y^2} \cdot \frac{\partial}{\partial x} \left(\frac{\partial \widetilde{u}}{\partial \xi} \right) + y^2 \frac{\partial}{\partial x} \left(\frac{\partial \widetilde{u}}{\partial \eta} \right) = \\ &= \frac{1}{y^2} \left(\frac{1}{y^2} \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + y^2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \right) + y^2 \left(\frac{1}{y^2} \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + y^2 \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \right) \\ &= \frac{1}{y^4} \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + y^4 \frac{\partial^2 \widetilde{u}}{\partial \eta^2}. \end{split}$$

$$\begin{split} \frac{\partial^2 u}{\partial y^2} &= \frac{\partial}{\partial y} \left(\frac{\partial u}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{-2x}{y^3} \cdot \frac{\partial \widetilde{u}}{\partial \xi} + 2xy \frac{\partial \widetilde{u}}{\partial \eta} \right) = \\ &= \frac{-2x}{y^3} \cdot \frac{\partial}{\partial y} \left(\frac{\partial \widetilde{u}}{\partial \xi} \right) + \frac{6x}{y^4} \cdot \frac{\partial \widetilde{u}}{\partial \xi} + 2xy \frac{\partial}{\partial y} \left(\frac{\partial \widetilde{u}}{\partial \eta} \right) + 2x \frac{\partial \widetilde{u}}{\partial \eta} = \\ &= \frac{-2x}{y^3} \left(\frac{-2x}{y^3} \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2xy \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \right) + \\ &\quad + 2xy \left(\frac{-2x}{y^3} \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + 2xy \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \right) + \\ &\quad + \frac{6x}{y^4} \cdot \frac{\partial \widetilde{u}}{\partial \xi} + 2x \frac{\partial \widetilde{u}}{\partial \eta} = \\ &= \frac{4x^2}{y^6} \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} - \frac{8x^2}{y^2} \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + 4x^2 y^2 \frac{\partial^2 \widetilde{u}}{\partial \eta^2} + \frac{6x}{y^4} \cdot \frac{\partial \widetilde{u}}{\partial \xi} + 2x \frac{\partial \widetilde{u}}{\partial \eta}. \end{split}$$

Ecuația devine:

$$\frac{4x^{2}}{y^{4}} \cdot \frac{\partial^{2}\widetilde{u}}{\partial \xi^{2}} + 8x^{2} \frac{\partial^{2}\widetilde{u}}{\partial \xi \partial \eta} + 4x^{2}y^{4} \frac{\partial^{2}\widetilde{u}}{\partial \eta^{2}} - \frac{4x^{2}}{y^{4}} \cdot \frac{\partial^{2}\widetilde{u}}{\partial \xi^{2}} + 8x^{2} \frac{\partial^{2}\widetilde{u}}{\partial \xi \partial \eta} - 4x^{2}y^{4} \frac{\partial^{2}\widetilde{u}}{\partial \eta^{2}} - \frac{6x}{y^{2}} \cdot \frac{\partial\widetilde{u}}{\partial \xi} - 2xy^{2} \frac{\partial\widetilde{u}}{\partial \eta} + \frac{2x}{y^{2}} \cdot \frac{\partial\widetilde{u}}{\partial \xi} + 2xy^{2} \frac{\partial\widetilde{u}}{\partial \eta} = 0$$

$$16x^{2} \frac{\partial^{2}\widetilde{u}}{\partial \xi \partial \eta} - 4\frac{x}{y^{2}} \cdot \frac{\partial\widetilde{u}}{\partial \xi} = 0 \mid : 4x^{2} \Rightarrow 4\frac{\partial^{2}\widetilde{u}}{\partial \xi \partial \eta} - \frac{1}{xy^{2}} \cdot \frac{\partial\widetilde{u}}{\partial \xi} = 0 \Leftrightarrow \frac{\partial^{2}\widetilde{u}}{\partial \xi \partial \eta} - \frac{1}{4\eta} \cdot \frac{\partial\widetilde{u}}{\partial \xi} = 0 \Leftrightarrow \frac{\partial}{\partial \xi} \left(\frac{\partial\widetilde{u}}{\partial \eta} - \frac{1}{4\eta} \cdot \widetilde{u} \right) = 0 \Rightarrow \frac{\partial\widetilde{u}}{\partial \eta} - \frac{1}{4\eta} \cdot \widetilde{u} = \phi(\eta) \Leftrightarrow \frac{\partial\widetilde{u}}{\partial \eta} - \frac{1}{4\eta} \cdot \widetilde{u} = \phi(\eta) \Leftrightarrow \frac{\partial\widetilde{u}}{\partial \eta} - \frac{\partial\widetilde{u}}{\partial \eta} - \frac{1}{4\eta} \cdot \widetilde{u} = \phi(\eta) \Leftrightarrow \frac{\partial\widetilde{u}}{\partial \eta} - \frac{\partial\widetilde{u}}{\partial \eta$$

- ecuație afină, căreia îi atașăm ecuația liniară:

$$\begin{split} \frac{\partial \overline{u}}{\partial \eta} - \frac{1}{4\eta} \cdot \overline{u} &= 0 - \text{ecuație cu variabile separabile} \Rightarrow \\ \frac{\partial \overline{u}}{\overline{u}} &= \frac{1}{4\eta} \partial \eta \Rightarrow \ln \overline{u} = \frac{1}{4} \ln \eta + \ln \Phi \left(\xi \right) \Rightarrow \\ \overline{u} \left(\xi, \eta \right) &= \sqrt[4]{\eta} \cdot \Phi \left(\xi \right). \end{split}$$

Căutăm soluție de forma:

$$\widetilde{u}(\xi,\eta) = \sqrt[4]{\eta} \cdot \Phi(\xi,\eta);$$

Introducând în ecuație avem:

$$\frac{1}{4\sqrt[4]{\eta^3}}\Phi\left(\xi,\eta\right) + \sqrt[4]{\eta} \cdot \frac{\partial\Phi}{\partial\eta} - \frac{1}{4\sqrt[4]{\eta^3}}\Phi\left(\xi,\eta\right) = \phi\left(\eta\right) \Rightarrow$$

$$\frac{\partial\Phi}{\partial\eta} = \frac{1}{\sqrt[4]{\eta}} \cdot \phi\left(\eta\right) \Rightarrow \Phi\left(\xi,\eta\right) = \int \frac{1}{\sqrt[4]{\eta}} \cdot \phi\left(\eta\right) d\eta + \psi\left(\xi\right) \Rightarrow$$

$$\widetilde{u}(\xi,\eta) = \sqrt[4]{\eta} \cdot \Phi(\xi,\eta) = \sqrt[4]{\eta} \left(\psi(\xi) + \int \frac{1}{\sqrt[4]{\eta}} \cdot \phi(\eta) \, d\eta \right) =$$

$$= \sqrt[4]{\eta} \cdot \psi(\xi) + \phi_0(\eta), \ \phi_0(\eta) = \sqrt[4]{\eta} \cdot \int \frac{1}{\sqrt[4]{\eta}} \cdot \phi(\eta) \, d\eta$$

Deci:

$$\widetilde{u}(\xi, \eta) = \sqrt[4]{\eta} \cdot \psi(\xi) + \phi_0(\eta) \Rightarrow u(x, y) =$$

$$= \sqrt[4]{xy^2} \cdot \psi\left(\frac{x}{y^2}\right) + \phi_0(xy^2).$$

Condițiile inițiale sunt:

$$\begin{cases} u(x,1) = f(x) \\ \frac{\partial u}{\partial y}(x,1) = g(x). \end{cases}$$

Ele devin:

$$\begin{cases} \sqrt[4]{x} \cdot \psi(x) + \phi_0(x) = f(x) \\ \left[\sqrt[4]{xy^2} \cdot \psi'\left(\frac{x}{y^2}\right) \cdot \frac{-2x}{y^3} + \right] \\ + \frac{1}{4} \cdot \frac{2xy}{\sqrt[4]{x^3y^6}} \cdot \psi\left(\frac{x}{y^2}\right) + 2xy\phi'_0(xy^2) \right] |_{y=1} = g(x) \end{cases} \Leftrightarrow$$

$$\begin{cases} \sqrt[4]{x} \cdot \psi(x) + \phi_0(x) = f(x) \\ -2x\sqrt[4]{x} \cdot \psi'(x) + \frac{\sqrt[4]{x}}{2} \cdot \psi(x) + 2x\phi'_0(x) = g(x) \end{cases} \Rightarrow$$

$$\begin{cases} \phi_0(x) = f(x) - \sqrt[4]{x} \cdot \psi(x) \\ \phi'_0(x) = f'(x) - \frac{1}{4\sqrt[4]{x^3}} \psi(x) - \sqrt[4]{x} \cdot \psi'(x) \end{cases} \Rightarrow$$

$$-2x\sqrt[4]{x} \cdot \psi'(x) + \frac{\sqrt[4]{x}}{2} \cdot \psi(x) +$$

$$+2x \cdot f'(x) - \frac{\sqrt[4]{x}}{2} \cdot \psi(x) - 2x\sqrt[4]{x} \cdot \psi'(x) = g(x) \Rightarrow$$

$$-4x\sqrt[4]{x} \cdot \psi'(x) = g(x) - 2x \cdot f'(x) \Rightarrow$$

$$\psi'(x) = \frac{-1}{4x\frac{5}{4}}g(x) + \frac{1}{2x\frac{1}{4}}f'(x) = \frac{x^{\frac{-5}{4}}}{4}\left(2x \cdot f'(x) - g(x)\right) \Rightarrow$$

$$\begin{cases} \psi(x) = \int_{x_0}^x \frac{t^{\frac{-5}{4}}}{4}\left(2t \cdot f'(t) - g(t)\right) dt + C \\ \phi_0(x) = f(x) - \sqrt[4]{x} \left[\int_{x_0}^x \frac{t^{\frac{-5}{4}}}{4}\left(2t \cdot f'(t) - g(t)\right) dt + C \right]. \end{cases}$$

Soluția ecuației este:

$$\begin{split} u\left(x,y\right) &= \sqrt[4]{xy^2} \left[\int_{x_0}^{\frac{x}{y^2}} \frac{t^{\frac{-5}{4}}}{4} \left(2t \cdot f^{'}\left(t\right) - g\left(t\right) \right) dt + C \right] + f\left(xy^2\right) - \\ &- \sqrt[4]{xy^2} \left[\int_{x_0}^{xy^2} \frac{t^{\frac{-5}{4}}}{4} \left(2t \cdot f^{'}\left(t\right) - g\left(t\right) \right) dt + C \right] = \\ &= \sqrt[4]{xy^2} \cdot \int_{x_0}^{\frac{x}{y^2}} \frac{t^{\frac{-5}{4}}}{4} \left(2t \cdot f^{'}\left(t\right) - g\left(t\right) \right) dt + \\ &+ \sqrt[4]{xy^2} \cdot \int_{xy^2}^{x_0} \frac{t^{\frac{-5}{4}}}{4} \left(2t \cdot f^{'}\left(t\right) - g\left(t\right) \right) dt + f\left(xy^2\right) \Rightarrow \\ u\left(x,y\right) &= \sqrt[4]{xy^2} \cdot \int_{xy^2}^{\frac{x}{y^2}} \frac{t^{\frac{-5}{4}}}{4} \left(2t \cdot f^{'}\left(t\right) - g\left(t\right) \right) dt + f\left(xy^2\right) \Leftrightarrow \\ u\left(x,y\right) &= \frac{\sqrt[4]{xy^2}}{4} \cdot \int_{xy^2}^{\frac{x}{y^2}} t^{\frac{-5}{4}} \cdot \left(2t \cdot f^{'}\left(t\right) - g\left(t\right) \right) dt + f\left(xy^2\right). \end{split}$$

Exercițiul 7.8 Să se aducă la forma canonică ecuația:

$$\frac{\partial^2 u}{\partial x^2} - 2\sin x \cdot \frac{\partial^2 u}{\partial x \partial y} + \left(2 - \cos^2 x\right) \frac{\partial^2 u}{\partial y^2} = 0.$$

Soluție:

$$\begin{cases} a = 1 \\ b = -2\sin x \\ c = 2 - \cos^2 x \end{cases}$$

şi

$$\triangle = b^2 - 4ac = 4\sin^2 x - 8 + 4\cos^2 x = -4 < 0 \Rightarrow$$

ecuația este de tip eliptic.

Ecuația caracteristicilor este:

$$\left(\frac{dy}{dx}\right)^{2} + 2\sin x \frac{dy}{dx} + \left(2 - \cos^{2} x\right) = 0 \Rightarrow$$

$$\frac{dy}{dx} = \frac{-2\sin x \mp 2i}{2} \Rightarrow \frac{dy}{dx} = -\sin x \mp i \Leftrightarrow$$

$$dy = \left(-\sin x \mp i\right) dx \Rightarrow \int dy = \int \left(-\sin x \mp i\right) dx \Leftrightarrow$$

$$\Leftrightarrow y = \cos x \pm ix + C \Leftrightarrow \left(y - \cos x\right) \mp ix = C \Rightarrow$$

$$\left\{ \begin{array}{c} \xi = y - \cos x \\ \eta = x \end{array} \right. \quad \text{si } \widetilde{u}\left(\xi, \eta\right) = u\left(x, y\right) \Rightarrow$$

$$\Rightarrow \left\{ \begin{array}{c} \frac{\partial u}{\partial x} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = \sin x \cdot \frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \\ \frac{\partial u}{\partial y} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = \frac{\partial \widetilde{u}}{\partial \xi} \\ \frac{\partial}{\partial y} = \frac{\partial}{\partial \xi} \end{array} \right.$$

$$\Rightarrow \left\{ \begin{array}{c} \frac{\partial}{\partial x} = \sin x \cdot \frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial y} = \frac{\partial}{\partial \xi} \end{array} \right.$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\sin x \cdot \frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \right) =$$

$$\begin{split} &= \sin x \cdot \frac{\partial}{\partial x} \left(\frac{\partial \widetilde{u}}{\partial \xi} \right) + \frac{\partial}{\partial x} \left(\frac{\partial \widetilde{u}}{\partial \eta} \right) + \cos x \cdot \frac{\partial \widetilde{u}}{\partial \xi} = \\ &\quad \sin x \left(\sin x \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \right) + \\ &\quad + \sin x \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} + \cos x \cdot \frac{\partial \widetilde{u}}{\partial \xi} = \\ &\quad = \sin^2 x \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2 \sin x \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} + \cos x \cdot \frac{\partial \widetilde{u}}{\partial \xi} \end{split}$$

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial \widetilde{u}}{\partial \xi} \right) = \sin x \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta}$$

$$\frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial \widetilde{u}}{\partial \xi} \right) = \frac{\partial^2 \widetilde{u}}{\partial \xi^2}$$

Ecuația devine:

$$\begin{split} \sin^2 x \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2 \sin x \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} + \cos x \cdot \frac{\partial \widetilde{u}}{\partial \xi} - \\ -2 \sin^2 x \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} - 2 \sin x \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \\ +2 \frac{\partial^2 \widetilde{u}}{\partial \xi^2} - \cos^2 x \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} = 0 \\ \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} + \cos x \cdot \frac{\partial \widetilde{u}}{\partial \xi} = 0. \end{split}$$

Exercițiul 7.9 Să se aducă la forma canonică ecuația și să se rezolve problema Cauchy:

$$\begin{cases} x^2 \frac{\partial^2 u}{\partial x^2} - y^2 \frac{\partial^2 u}{\partial y^2} = 0 \\ u|_{y=1} = x^2, \frac{\partial u}{\partial y}|_{y=1} = 2x. \end{cases}$$

Soluție:

$$\begin{cases} a = x^2 \\ b = 0 \\ c = -y^2 \end{cases}$$

şi

$$\triangle = b^2 - 4ac = 4x^2y^2 > 0 \Rightarrow$$

ecuația este de tip hiperbolic.

Ecuația caracteristicilor:

$$x^{2} \left(\frac{dy}{dx}\right)^{2} - y^{2} = 0 \Rightarrow \frac{dy}{dx} = \pm \frac{y}{x} \Leftrightarrow$$

$$\begin{cases} \frac{dy}{dx} = \frac{-y}{x} \\ \frac{dy}{dx} = \frac{y}{x} \end{cases} \Leftrightarrow \begin{cases} \int \frac{dy}{y} = \int \frac{-dx}{x} \\ \int \frac{dy}{y} = \int \frac{dx}{x} \end{cases} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} \ln y = \ln \frac{1}{x} + \ln C_{1} \\ \ln y + \ln C_{2} = \ln x \end{cases} \Leftrightarrow \begin{cases} \ln xy = \ln C_{1} \\ \ln \frac{x}{y} = \ln C_{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} xy = C_{1} \\ \frac{x}{y} = C_{2} \end{cases} - \text{integrale prime.}$$

Facem schimbarea de variabilă:

$$\begin{cases} \xi = \xi(x, y) = xy \\ \eta = \eta(x, y) = \frac{x}{y} \end{cases}$$

și schimbarea de funcție:

$$\widetilde{u}\left(\xi\left(x,y\right),\eta\left(x,y\right)\right)=u\left(x,y\right).$$

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = y \cdot \frac{\partial \widetilde{u}}{\partial \xi} + \frac{1}{y} \cdot \frac{\partial \widetilde{u}}{\partial \eta} \\ \frac{\partial u}{\partial y} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = x \cdot \frac{\partial \widetilde{u}}{\partial \xi} - \frac{x}{y^2} \cdot \frac{\partial \widetilde{u}}{\partial \eta} \\ \Rightarrow \begin{cases} \frac{\partial}{\partial x} = y \cdot \frac{\partial}{\partial \xi} + \frac{1}{y} \cdot \frac{\partial}{\partial \eta} \\ \frac{\partial}{\partial y} = x \cdot \frac{\partial}{\partial \xi} - \frac{x}{y^2} \cdot \frac{\partial}{\partial \eta} \end{cases} \\ \begin{cases} \frac{\partial^2 u}{\partial x^2} = y^2 \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2 \frac{\partial^2 \widetilde{u}}{\partial \xi^2 \eta} + \frac{1}{y^2} \cdot \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \middle| \cdot x^2 \\ \\ \frac{\partial^2 u}{\partial y^2} = x^2 \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} - 2 \frac{x^2}{y^2} \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{x^2}{y^4} \cdot \frac{\partial^2 \widetilde{u}}{\partial \eta^2} + 2 \frac{x}{y^3} \cdot \frac{\partial \widetilde{u}}{\partial \eta} \middle| \cdot y^2 \end{cases} \\ \Rightarrow 0 = x^2 \cdot \frac{\partial^2 u}{\partial x^2} - y^2 \cdot \frac{\partial^2 u}{\partial y^2} = \\ = x^2 y^2 \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2 x^2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{x^2}{y^2} \cdot \frac{\partial^2 \widetilde{u}}{\partial \eta^2} - x^2 y^2 \cdot \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + \\ + 2 x^2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} - \frac{x^2}{y^2} \cdot \frac{\partial^2 \widetilde{u}}{\partial \eta^2} - 2 \frac{x}{y} \cdot \frac{\partial \widetilde{u}}{\partial \eta} \Leftrightarrow \\ 4 x^2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} - 2 \frac{x}{y} \cdot \frac{\partial \widetilde{u}}{\partial \eta} = 0 \middle| : 4 x^2 \Rightarrow \\ \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} - \frac{1}{2 \underbrace{xy}} \cdot \frac{\partial \widetilde{u}}{\partial \eta} = 0 \Leftrightarrow \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} - \frac{1}{2\xi} \cdot \frac{\partial \widetilde{u}}{\partial \eta} = 0 \Leftrightarrow \\ \frac{\partial}{\partial \eta} \left(\frac{\partial \widetilde{u}}{\partial \xi} - \frac{1}{2\xi} \cdot \widetilde{u} \right) = 0 \Rightarrow \\ \frac{\partial \widetilde{u}}{\partial \xi} - \frac{1}{2\xi} \cdot \widetilde{u} = \phi_0 \left(\xi \right). \end{cases}$$

Rezolvăm ecuația omogenă atașată:

$$\frac{\partial \overline{u}}{\partial \xi} = \frac{1}{2\xi} \overline{u} \Leftrightarrow \frac{\partial \overline{u}}{\overline{u}} = \frac{\partial \xi}{\xi} \Rightarrow \overline{u}(\xi, \eta) = \phi_1(\eta) \cdot \sqrt{\xi} \Rightarrow$$

căutăm \widetilde{u} de forma:

$$\widetilde{u}(\xi,\eta) = \phi_1(\xi,\eta) \cdot \sqrt{\xi}.$$

Înlocuim în ecuația neomogenă:

$$\frac{\partial \widetilde{u}}{\partial \xi} = \frac{\partial \phi_1}{\partial \xi} \cdot \sqrt{\xi} + \frac{1}{2\sqrt{\xi}} \cdot \phi_1(\xi, \eta)$$

și ecuația devine:

$$\frac{\partial \phi_{1}}{\partial \xi} \cdot \sqrt{\xi} + \frac{1}{2\sqrt{\xi}} \cdot \phi_{1}(\xi, \eta) - \frac{1}{2\sqrt{\xi}} \cdot \phi_{1}(\xi, \eta) = \phi_{0}(\xi) \Rightarrow$$

$$\frac{\partial \phi_{1}}{\partial \xi} = \frac{1}{\sqrt{\xi}} \cdot \phi_{0}(\xi) \Rightarrow \phi_{1}(\xi, \eta) = \phi_{2}(\xi) + \phi_{3}(\eta),$$

unde am notat:

$$\phi_2(\xi) = \int \phi_0(\xi) \cdot \frac{1}{\sqrt{\xi}} d\xi.$$

$$\phi_{1}\left(\xi,\eta\right)=\phi_{2}\left(\xi\right)+\phi_{3}\left(\eta\right)\Rightarrow\widetilde{u}\left(\xi,\eta\right)=\sqrt{\xi}\cdot\phi_{2}\left(\xi\right)+\sqrt{\xi}\cdot\phi_{3}\left(\eta\right).$$

Revenim la notaţiile:

$$\begin{cases} \xi = xy \\ \eta = \frac{x}{y} \end{cases} \Rightarrow$$

$$\begin{cases} u(x,y) = \sqrt{xy} \cdot \phi_2(xy) + \sqrt{xy} \cdot \phi_3\left(\frac{x}{y}\right) \\ \frac{\partial u}{\partial y} = \frac{1}{2}\sqrt{\frac{x}{y}} \cdot \phi_2(xy) + x\sqrt{xy} \cdot \phi_2'(xy) + \\ +\frac{1}{2}\sqrt{\frac{x}{y}} \cdot \phi_3\left(\frac{x}{y}\right) - \frac{x\sqrt{xy}}{y^2} \cdot \phi_3'\left(\frac{x}{y}\right). \end{cases}$$

Impunem lui u condițiile inițiale:

$$\begin{cases} u\left(x,1\right) = \sqrt{x} \left[\phi_{2}\left(x\right) + \phi_{3}\left(x\right)\right] = x^{2} \\ \frac{\partial u}{\partial y}\left(x,1\right) = \frac{1}{2}\sqrt{x} \cdot \phi_{2}\left(x\right) + x\sqrt{x} \cdot \phi_{2}^{'}\left(x\right) + \\ + \frac{1}{2}\sqrt{x} \cdot \phi_{3}\left(x\right) - x\sqrt{x} \cdot \phi_{3}^{'}\left(x\right) = 2x \right| : \frac{\sqrt{x}}{2} \end{cases} \\ \begin{cases} \phi_{2}\left(x\right) + \phi_{3}\left(x\right) = x^{\frac{3}{2}} \\ \phi_{2}\left(x\right) + 2x \cdot \phi_{2}^{'}\left(x\right) + \phi_{3}\left(x\right) - 2x \cdot \phi_{3}^{'}\left(x\right) = 4\sqrt{x} \end{cases} \\ \Rightarrow \begin{cases} \begin{cases} \phi_{2}\left(x\right) + \phi_{3}\left(x\right) = x^{\frac{3}{2}} \\ 2x\left(\phi_{2}^{'}\left(x\right) - \phi_{3}^{'}\left(x\right)\right) = 4\sqrt{x} - x\sqrt{x} \end{cases} \\ \begin{cases} \phi_{2}\left(x\right) + \phi_{3}\left(x\right) = x^{\frac{3}{2}} \\ \phi_{2}^{'}\left(x\right) - \phi_{3}^{'}\left(x\right) = \frac{3}{2}x^{\frac{1}{2}} \end{cases} \\ \begin{cases} \phi_{2}^{'}\left(x\right) + \phi_{3}^{'}\left(x\right) = \frac{3}{2}x^{\frac{1}{2}} \\ \phi_{2}^{'}\left(x\right) - \phi_{3}^{'}\left(x\right) = \frac{2}{\sqrt{x}} - \frac{\sqrt{x}}{2} \end{cases} \Rightarrow \end{cases} \\ \begin{cases} \phi_{2}^{'}\left(x\right) + \phi_{3}^{'}\left(x\right) = \frac{3}{2}x^{\frac{1}{2}} \\ \phi_{2}^{'}\left(x\right) - \phi_{3}^{'}\left(x\right) = 2\sqrt{x} - \frac{1}{\sqrt{x}} \Rightarrow \end{cases} \\ \phi_{2}^{'}\left(x\right) = 2\sqrt{x} + \frac{1}{2} \cdot \frac{2}{3}x^{\frac{3}{2}} + C_{0} = 2\sqrt{x} + \frac{1}{3}x\sqrt{x} + C_{0} \end{cases} \\ 2\phi_{3}^{'}\left(x\right) = 2\sqrt{x} - \frac{2}{\sqrt{x}} \Rightarrow \end{cases} \\ \phi_{3}^{'}\left(x\right) = \sqrt{x} - \frac{1}{\sqrt{x}} \Rightarrow \phi_{3}\left(x\right) = \frac{2}{3}x^{\frac{3}{2}} - 2\sqrt{x} + C_{1}. \end{cases}$$
Din egalitatea: $\phi_{2}\left(x\right) + \phi_{3}\left(x\right) = x^{\frac{3}{2}} \Rightarrow x^{\frac{3}{2}} + C_{0} + C_{1} = \frac{2}{3}x^{\frac{3}{2}} + C_{0} + C_{1} = \frac{2}{3}x^{\frac{3}{2}} + C_{0} + C_{1} \end{cases}$

Deci:

 $x^{\frac{3}{2}} \Rightarrow C_0 + C_1 = 0.$

$$u(x,y) = \sqrt{xy} \left| \phi_2(xy) + \phi_3\left(\frac{x}{y}\right) \right| =$$

$$= \sqrt{xy} \left[2\sqrt{xy} + \frac{1}{3}xy\sqrt{xy} + C_0 + \frac{2}{3}\left(\frac{x}{y}\right)^{\frac{3}{2}} - 2\sqrt{\frac{x}{y}} + C_1 \right] =$$

$$= 2xy + \frac{x^2y^2}{3} + \frac{2}{3} \cdot \frac{x^2}{y} - 2x$$

$$u(x,y) = \frac{x^2y^2}{3} + \frac{2}{3} \cdot \frac{x^2}{y} + 2xy - 2x.$$

Exercițiul 7.10 Să se aducă la forma canonică ecuația:

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} - 3 \frac{\partial^2 u}{\partial y^2} = 0 \\ u|_{x=0} = y^2, & \frac{\partial u}{\partial x}|_{x=0} = 1. \end{cases}$$

Soluţie:

$$\begin{cases} a = 1 \\ b = 2 \\ c = -3 \end{cases}$$

şi

$$\triangle = b^2 - 4ac = 16 > 0 \Rightarrow$$

ecuația este de tip hiperbolic.

Ecuația caracteristicilor este:

$$\left(\frac{dy}{dx}\right)^2 - 2\frac{dy}{dx} - 3 = 0 \Rightarrow \begin{cases} \frac{dy}{dx} = 3 \\ \frac{dy}{dx} = -1 \end{cases} \Rightarrow \begin{cases} 3x - y = C_1 \\ x + y = C_2 \end{cases} \Rightarrow$$

facem schimbarea de variabilă

$$\begin{cases} \xi = 3x - y \\ \eta = x + y \end{cases}$$

și de funcție

$$u(x,y) = \widetilde{u}(\xi(x,y), \eta(x,y)) \Rightarrow$$

$$\begin{cases}
\frac{\partial u}{\partial x} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial x} + \frac{\partial \widetilde{u}}{\partial \eta} \cdot \frac{\partial \eta}{\partial x} = 3\frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \\
\frac{\partial u}{\partial y} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot \frac{\partial \xi}{\partial y} + \frac{\partial u}{\partial \eta} \cdot \frac{\partial \eta}{\partial y} = -\frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta}
\end{cases} \Rightarrow \begin{cases}
\frac{\partial}{\partial x} = 3\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} \\
\frac{\partial}{\partial y} = -\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta}
\end{cases} \Rightarrow \\
\begin{cases}
\frac{\partial^{2} u}{\partial x^{2}} = 9\frac{\partial^{2} \widetilde{u}}{\partial \xi^{2}} + 6\frac{\partial^{2} \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^{2} \widetilde{u}}{\partial \eta^{2}} \\
\frac{\partial^{2} u}{\partial x \partial y} = -3\frac{\partial^{2} \widetilde{u}}{\partial \xi^{2}} + 2\frac{\partial^{2} \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^{2} \widetilde{u}}{\partial \eta^{2}} \\
\frac{\partial^{2} u}{\partial y^{2}} = \frac{\partial^{2} \widetilde{u}}{\partial \xi^{2}} - 2\frac{\partial^{2} \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^{2} \widetilde{u}}{\partial \eta^{2}}
\end{cases}$$

Ecuaţia devine:

$$9\frac{\partial^{2}\widetilde{u}}{\partial\xi^{2}} + 6\frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta} + \frac{\partial^{2}\widetilde{u}}{\partial\eta^{2}} - 6\frac{\partial^{2}\widetilde{u}}{\partial\xi^{2}} + 4\frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta} + 2\frac{\partial^{2}\widetilde{u}}{\partial\eta^{2}} - \frac{\partial^{2}\widetilde{u}}{\partial\xi^{2}} + 6\frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta} - 3\frac{\partial^{2}\widetilde{u}}{\partial\eta^{2}} = 0 \Leftrightarrow$$

$$16\frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta} = 0 \Rightarrow \frac{\partial^{2}\widetilde{u}}{\partial\xi\partial\eta} = 0 \Rightarrow \frac{\partial}{\partial\xi} \left(\frac{\partial\widetilde{u}}{\partial\eta}\right) = 0 \Rightarrow \frac{\partial\widetilde{u}}{\partial\eta} = \phi_{0}(\eta) \Rightarrow$$

$$\widetilde{u}(\xi,\eta) = \int \phi_{0}(\eta) d\eta = \phi_{1}(\eta) + \phi_{2}(\xi)$$

$$\Leftrightarrow \begin{cases} u(x,y) = \phi_{2}(3x - y) + \phi_{1}(x + y) \\ \frac{\partial u}{\partial x}(x,y) = 3\phi'_{2}(3x - y) + \phi'_{1}(x + y) \end{cases}.$$

Condițiile inițiale devin:

$$\begin{cases} \phi_2\left(-y\right) + \phi_1\left(y\right) = y^2 & \text{derivăm prima ecuație} \\ 3\phi_2^{'}\left(-y\right) + \phi_1^{'}\left(y\right) = 1 \end{cases} \Rightarrow \\ \begin{cases} -\phi_2^{'}\left(-y\right) + \phi_1^{'}\left(y\right) = 2y| \cdot 3 \\ 3\phi_2^{'}\left(-y\right) + \phi_1^{'}\left(y\right) = 1 \end{cases} \Rightarrow \\ 4\phi_1^{'}\left(y\right) = 1 + 6y \Rightarrow \phi_1^{'}\left(y\right) = \frac{1}{4} + \frac{3}{2}y \Rightarrow \phi_1\left(y\right) = \frac{y}{4} + \frac{3}{4}y^2 + C_0 \\ 4\phi_2^{'}\left(-y\right) = 1 - 2y \Rightarrow \phi_2^{'}\left(-y\right) = \frac{1}{4} - \frac{y}{2} \xrightarrow{\text{facem } y \to -y} \end{cases}$$

$$\phi_{2}'(y) = \frac{1}{4} + \frac{y}{2} \Rightarrow \phi_{2}(y) = \frac{y}{4} + \frac{y^{2}}{4} + C_{1}.$$
Ecuația $\phi_{2}(-y) + \phi_{1}(y) = y^{2}$ devine:
$$-\frac{y}{4} + \frac{(-y)^{2}}{4} + C_{1} + \frac{y}{4} + \frac{3y^{2}}{4} + C_{0} = y^{2} \Leftrightarrow$$

$$y^{2} + C_{1} + C_{0} = y^{2} \Rightarrow C_{1} + C_{0} = 0 \Rightarrow$$

$$u(x, y) = \frac{1}{4}(3x - y) + \frac{(3x - y)^{2}}{4} + C_{1} + \frac{x + y}{4} + \frac{(x + y)^{2}}{2} + C_{0} =$$

$$= x + \frac{1}{4}\left[(3x - y)^{2} + (x + y)^{2}\right] =$$

$$= x + \frac{1}{4}\left(9x^{2} - 6xy + y^{2} + 3x^{2} + 6xy + 3y^{2}\right) =$$

$$= x + \frac{1}{4}\left(12x^{2} + 4y^{2}\right) = 3x^{2} + y^{2} + x$$

$$u(x, y) = 3x^{2} + y^{2} + x.$$

Observația 7.11 Ca aplicație la reducerea la forma canonică prezentăm problema Cauchy pentru ecuația undelor.

Exercițiul 7.12 Rezolvați următoarea P.C. pentru ecuația undelor cu reducerea la forma canonică:

$$\left\{ \begin{array}{l} \frac{\partial^2 u}{\partial t^2} - 4 \frac{\partial^2 u}{\partial x^2} = 0, x \in \mathbb{R}, t \geq 0 \\ u(x,0) = e^{2x} \to \text{ forma iniţială a coardei} \\ \frac{\partial u}{\partial t}(x,0) = \sin x \to \text{ viteza coardei la t} = 0. \end{array} \right.$$

Ecuația undelor P.C.

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t), & a > 0\\ u(x, 0) = u_0(x)\\ \frac{\partial u}{\partial t}(x, 0) = u_1(x). \end{cases}$$

Soluție.

u(x,t) funcția necunoscută

$$r^2 - 4 = 0 \Rightarrow r_1 = 2, r_2 = -2 \Rightarrow$$

 $x' = 2 \text{ si } x' = -2 \Rightarrow$
 $C_1 = x - 2t = \xi \text{ si } C_2 = x + 2t = \eta.$

Deci:

$$\begin{cases} \xi = x - 2t \\ \eta = x + 2t \end{cases} \quad u(x,t) = \widetilde{u}(\xi,\eta).$$

Derivatele parțiale ale lui u(x,t) sunt:

$$\frac{\partial u}{\partial t} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot (-2) + \frac{\partial \widetilde{u}}{\partial \eta} \cdot 2 \Rightarrow$$

$$\frac{\partial^2 u}{\partial t^2} = \left[\frac{\partial \widetilde{u}}{\partial \xi^2} \cdot (-2) + \frac{\partial^2 \widetilde{u}}{\partial \eta \partial \xi} \cdot 2 \right] \cdot (-2) + \left[\frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \cdot (-2) + \frac{\partial \widetilde{u}}{\partial \eta^2} \right] \cdot 2$$

$$\frac{\partial u}{\partial x} = \frac{\partial \widetilde{u}}{\partial \xi} \cdot 1 + \frac{\partial \widetilde{u}}{\partial \eta} \cdot 1$$

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2 \frac{\partial^2 \widetilde{u}}{\partial \eta \partial \xi} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2}.$$
Deci:
$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 \widetilde{u}}{\partial \xi^2} - 8 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + 4 \frac{\partial^2 \widetilde{u}}{\partial \eta^2}$$

$$(-4) \cdot \left| \frac{\partial^2 u}{\partial x^2} \right| = \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2}$$

$$-16 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} = 0 \Rightarrow$$

$$\frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} = 0 \text{ forma canonică.}$$

Integrăm ecuația obținută

$$\frac{\partial}{\partial \xi} \left(\frac{\partial \widetilde{u}}{\partial \eta} \right) = 0 \Rightarrow \frac{\partial \widetilde{u}}{\partial \eta} = f_1(\eta) \Rightarrow$$
$$\widetilde{u}(\xi, \eta) = \int f_1(\eta) d\eta + g(\xi) \Rightarrow$$

$$\widetilde{u}(\xi,\eta) = f(\eta) + g(\xi) \Rightarrow u(x,t) = f(x+2t) + g(x-2t),$$

unde $f, g : \mathbb{R} \to \mathbb{R}$ de clasă C^2 .

Din condițiile inițiale aflăm f și g.

Avem

$$\frac{\partial u}{\partial t} = 2f'(x+2t) - 2g'(x-2t).$$

Condițiile inițiale

$$\begin{cases} u(x,0) = f(x) + g(x) = e^{2x}(*) \\ \frac{\partial u}{\partial t}(x,0) = 2f'(x) - 2g'(x) = \sin x \end{cases}$$

Derivăm relația (*):

$$\Rightarrow \begin{cases} f'(x) + g'(x) = 2e^{2x} \\ f'(x) - g'(x) = \frac{1}{2}\sin x \end{cases} \Rightarrow$$

$$f'(x) = e^{2x} + \frac{1}{4}\sin x \Rightarrow$$

$$\begin{cases} f(x) = \frac{1}{2}e^{2x} - \frac{1}{4}\cos x + C_1 \\ g(x) = \frac{1}{2}e^{2x} + \frac{1}{4}\cos x - C_1 \end{cases} \Rightarrow$$

$$u(x,t) = \frac{1}{2}\left(e^{2x+4t} + e^{2x-4t}\right) + \frac{1}{4}\left[\cos(x-2t) - \cos(x+2t)\right] =$$

$$= e^{2x} \cdot \frac{e^{4t} + e^{-4t}}{2} + \frac{1}{4} \cdot 2\sin(2t) \cdot \sin x = e^{2x} \cdot ch(4t) + \frac{1}{2} \cdot \sin x \cdot \sin(2t).$$

$$u(x,t) = e^{2x} \cdot ch(4t) + \frac{1}{2} \cdot \sin x \cdot \sin(2t)$$

unde s-a folosit relația

$$\cos \alpha - \cos \beta = 2 \sin \frac{\beta - \alpha}{2} \cdot \sin \frac{\beta + \alpha}{2}.$$

Exercițiul 7.13 Rezolvați următoarea P.C. pentru ecuația undelor cu reducerea la forma canonică:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - 4 \frac{\partial^2 u}{\partial x^2} = x \cdot t \\ u(x,0) = x \\ \frac{\partial u}{\partial t}(x,0) = x^3. \end{cases}$$

Soluție. Procedăm la fel

$$\begin{cases} \xi = x - 2t \\ \eta = x + 2t \end{cases}$$

$$u(x,t)=\widetilde{u}(\xi,\eta)$$

și forma canonică este

$$-16 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} = x \cdot t
 x = \frac{\xi - \eta}{2}; t = \frac{\eta - \xi}{4}$$

$$\Rightarrow \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} = \frac{\xi^2 - \eta^2}{27}$$

o integrăm

$$\frac{\partial}{\partial \xi} \left(\frac{\partial \widetilde{u}}{\partial \eta} \right) = \frac{1}{2^7} \left(\xi^2 - \eta^2 \right) \Rightarrow$$

$$\widetilde{u} = \frac{1}{2^7} \left(\frac{\xi^3 \eta - \xi \eta^3}{3} \right) + f(\eta) + g(\xi) =$$

$$= \frac{1}{3 \cdot 2^7} \xi \eta \cdot \left(\xi^2 - \eta^2 \right) + f(\eta) + g(\xi) \Rightarrow$$

$$\Rightarrow u(x,t) = \frac{1}{3 \cdot 2^7} \left(x^2 - 4t^2 \right) \cdot (-4t) \cdot 2x + f(x+2t) + g(x-2t) \Rightarrow$$

$$\Rightarrow u(x,t) = f(x+2t) + g(x-2t) + \frac{1}{3 \cdot 2^4} (4xt^3 - tx^3), \ f, g \in C^2(\mathbb{R}).$$

$$\frac{\partial u}{\partial t} = 2f'(x+2t) - 2g'(x-2t) + \frac{1}{3 \cdot 2^4} (4x \cdot t^2 - x^3) =$$

$$= 2f'(x+2t) - 2g'(x-2t) + \frac{x \cdot t^2}{12} - \frac{x^3}{48}$$

$$\begin{cases} u(x,0) = x \\ \frac{\partial u}{\partial t}(x,0) = x^3 \end{cases} \Rightarrow \begin{cases} f(x) + g(x) = x \\ 2f'(x) - 2g'(x) - \frac{x^3}{48} = x^3 \end{cases}$$

$$\Rightarrow \begin{cases} f(x) = \frac{x}{2} + \frac{49}{8.96} \cdot x^4 + C \\ g(x) = \frac{x}{2} - \frac{49}{8.96} \cdot x^4 - C \end{cases} \Rightarrow$$

$$u(x,t) = \frac{x+2t}{2} + \frac{x-2t}{2} +$$

$$+\frac{49}{8 \cdot 96} \left[(x+2t)^4 - (x-2t)^4 \right] + \frac{1}{48} (4xt^3 - tx^3) \Rightarrow$$

$$u(x,t) = x + x^3t + \frac{25}{6}xt^3.$$

Observație: Dacă ecuația undelor este:

$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0,$$

avem:

$$r^{2} - a^{2} = 0 \Rightarrow r_{1} = a, r_{2} = -a$$

$$x'(t) = a \Rightarrow x - at = C_{1}$$

$$x'(t) = -a \Rightarrow x + at = C_{2}.$$

$$\begin{cases} \xi = x - at \\ x - x + at \end{cases} \quad u(x, t) = \widetilde{u}(\xi, \eta)$$

$$\begin{split} \frac{\partial u}{\partial t} &= \frac{\partial \widetilde{u}}{\partial \xi} \cdot (-a) + \frac{\partial \widetilde{u}}{\partial \eta} \cdot a \\ \frac{\partial^2 u}{\partial t^2} &= \left[\frac{\partial^2 \widetilde{u}}{\partial \xi^2} \cdot (-a) + \frac{\partial^2 \widetilde{u}}{\partial \eta \partial \xi} \cdot a \right] \cdot (-a) + \\ &+ \left[\frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} \cdot (-a) + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \cdot a \right] \cdot a = \\ &= a^2 \frac{\partial^2 \widetilde{u}}{\partial \xi^2} - 2a^2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + a^2 \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \\ &\qquad \qquad \frac{\partial u}{\partial x} &= \frac{\partial \widetilde{u}}{\partial \xi} + \frac{\partial \widetilde{u}}{\partial \eta} \\ &- (a^2) \cdot |\frac{\partial^2 u}{\partial x^2} &= \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + \frac{\partial^2 \widetilde{u}}{\partial \eta \partial \xi} + \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} &= \frac{\partial^2 \widetilde{u}}{\partial \xi^2} + 2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \widetilde{u}}{\partial \eta^2} \\ \Si &\qquad \qquad -4a^2 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} &= 0 \end{split}$$

este forma canonică.

Exercițiul 7.14

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 2(x+t)e^{x-t}, x \in \mathbb{R}, t \ge 0\\ u(x,0) = 2x^2 - \frac{x^2}{4}e^x\\ \frac{\partial u}{\partial t}(x,0) = \left(\frac{x^2}{4} - \frac{x}{2} + 2\right)e^x. \end{cases}$$

Soluţie.

$$a = 1 \Rightarrow \begin{cases} \xi = x - t \\ \eta = x + t \end{cases} \quad u(x, t) = \widetilde{u}(\xi, \eta)$$
$$x = \frac{\xi + \eta}{2}, \quad t = \frac{\eta - \xi}{2}$$

Forma canonică este:

$$-4\frac{\partial^2 \tilde{u}}{\partial \xi \partial \eta} = 2\eta e^{\xi}.$$

$$\frac{\partial^2 \tilde{u}}{\partial \xi \partial \eta} = -\frac{\eta}{2} e^{\xi} \Rightarrow \frac{\partial}{\partial \xi} \left(\frac{\partial \tilde{u}}{\partial \eta}\right) = -\frac{\eta}{2} e^{\xi} \Rightarrow$$

$$\left(\frac{\partial \tilde{u}}{\partial \eta}\right) = -\frac{\eta}{2} e^{\xi} + f_1(\eta) \Rightarrow$$

$$\tilde{u}(\xi, \eta) = -\frac{\eta^2}{4} e^{\xi} + f(\xi) + g(\eta) \Rightarrow$$

$$u(x, t) = \frac{-(x+t)^2}{4} e^{x-t} + f(x-t) + g(x+t),$$
unde $f, g \in C^2(\mathbb{R}).$

$$\frac{\partial u}{\partial t} = -\frac{x+t}{2} e^{x-t} + \frac{(x+t)^2}{4} e^{x-t} - f'(x-t) + g'(x+t)$$

$$\begin{cases} u(x, 0) = -\frac{x^2}{4} e^x + f(x) + g(x) = 2x^2 - \frac{x^2}{4} e^x \\ \frac{\partial u}{\partial t}(x, 0) = -\frac{x}{2} e^x + \frac{x^2}{4} e^x - f'(x) + g'(x) = \left(\frac{x^2}{4} - \frac{x}{2} + 2\right) e^x \end{cases}$$

$$\Rightarrow \begin{cases} f'(x) + g'(x) = 4x \\ -f'(x) + g'(x) = 2e^x \end{cases} \Rightarrow g'(x) = 2x + e^x \Rightarrow$$

$$\begin{cases} g(x) = x^2 + e^x + C_1 \\ f(x) = x^2 - e^x - C_1 \end{cases} \Rightarrow$$

$$u(x,t) = -\frac{(x+t)^2}{4}e^{x-t} + (x-t)^2 - e^{x-t} - C_1 + (x+t)^2 + e^{x+t} + C_1 \Rightarrow$$

$$u(x,t) = -\frac{(x+t)^2}{4}e^{x-t} + 2e^x sht + 2(x^2 + t^2).$$

Exercițiul 7.15

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 2xt, \ x \in \mathbb{R}, t \ge 0\\ u(x,0) = \ln(1+x^2)\\ \frac{\partial u}{\partial t}(x,0) = 2e^x. \end{cases}$$

Soluție.

$$a = 1 \Rightarrow \begin{cases} \xi = x - t \\ \eta = x + t \end{cases} \quad u(x, t) = \widetilde{u}(\xi, \eta).$$

$$-4 \frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} = \frac{\eta^2 - \xi^2}{2} \Rightarrow$$

$$\frac{\partial^2 \widetilde{u}}{\partial \xi \partial \eta} = \frac{\xi^2 - \eta^2}{8} \Rightarrow \text{ forma canonică.}$$

$$\frac{\partial}{\partial \xi} \left(\frac{\partial \widetilde{u}}{\partial \eta} \right) = \frac{1}{8} (\xi^2 - \eta^2) \text{ prin integrare}$$

$$u(\xi, \eta) = \frac{\xi \eta}{24} (\xi^2 - \eta^2) + f(\xi) + g(\eta) f, g \in C^2(\mathbb{R})$$

$$u(x, t) = \frac{xt}{6} (t^2 - x^2) + f(x - t) + g(x + t)$$

$$\frac{\partial u}{\partial t} = \frac{xt^2}{2} - \frac{x^3}{6} - f'(x - t) + g'(x + t)$$

$$\begin{cases} u(x, 0) = f(x) + g(x) = \ln(1 + x^2) \\ \frac{\partial u}{\partial t}(x, 0) = -\frac{x^3}{6} - f'(x) + g'(x) = 2e^x \end{cases} \Rightarrow$$

$$\begin{cases} f'(x) + g'(x) = \frac{2x}{1 + x^2} \\ -f'(x) + g'(x) = \frac{x^3}{6} + 2e^x \end{cases} \Rightarrow$$

$$\Rightarrow g'(x) = \frac{x}{1 + x^2} + \frac{x^3}{12} + e^x \Rightarrow$$

$$\begin{cases} g(x) = \frac{1}{2}\ln(1+x^2) + \frac{x^4}{48} + e^x + C \\ f(x) = \frac{1}{2}\ln(1+x^2) - \frac{x^4}{48} - e^x - C \end{cases} \Rightarrow$$

$$\Rightarrow u(x,t) = \frac{1}{2}\ln\left[1 + (x-t)^2\right] - \frac{(x-t)^4}{48} - e^{x-t} - C +$$

$$+ \frac{1}{2}\ln\left[1 + (x+t)^2\right] + \frac{(x+t)^4}{48} + e^{x+t} + C =$$

$$= \frac{xt}{6}\left(t^2 - x^2\right) + \frac{xt}{6}\left(t^2 + x^2\right) +$$

$$+ \frac{1}{2}\ln\left(1 + x^4 + t^4 + 2x^2 + 2t^2 - 2x^2 \cdot t^2\right) + e^x(e^t - e^{-t}) =$$

$$= \frac{xt^3}{3} + 2e^x sht + \frac{1}{2}\ln(1 + x^4 + t^4 + 2x^2 + 2t^2 - 2x^2 \cdot t^2).$$

Exercițiul 7.16 Rezolvați E.D.P. cu date pe curbe incluse în D:

$$\begin{cases} 4\frac{\partial^2 u}{\partial x^2} + 12\frac{\partial^2 u}{\partial x \partial y} + 9\frac{\partial^2 u}{\partial y^2} = 0\\ u|_{y+x=0} = 1, \frac{\partial u}{\partial y}|_{y+x=0} = x \end{cases}$$

Soluție.

 $a=4,\,b=12,\,c=9\Rightarrow\delta=b^2-4ac=144-4\cdot36=0$ tip parabolic

Ecuația caracteristică : $4r^2 - 12r + 9 = 0 \Rightarrow r_{1,2} = +\frac{3}{2}$ rădăcina dublă

$$y' = \frac{dy}{dx} = +\frac{3}{2} \Rightarrow 3x - 2y = c \text{ integrală primă}$$

$$\begin{cases} \xi = 3x - 2y \\ \eta = x, \end{cases} \qquad u(x,y) = \tilde{u}(\xi,\eta) \Rightarrow$$

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial \tilde{u}}{\partial \xi} \cdot 3 + \frac{\partial \tilde{u}}{\partial \eta} \\ \frac{\partial u}{\partial x} = \frac{\partial \tilde{u}}{\partial x} \cdot 2 \end{cases}$$

$$\begin{array}{l} \frac{4}{\partial^2 u} = 9 \cdot \frac{\partial^2 \tilde{u}}{\partial \xi} + 6 \cdot \frac{\partial^2 \tilde{u}}{\partial \xi \partial \eta} + \frac{\partial^2 \tilde{u}}{\partial \eta^2} \\ \frac{12}{\partial x \partial y} = -6 \cdot \frac{\partial^2 \tilde{u}}{\partial \xi^2} - 2 \cdot \frac{\partial^2 \tilde{u}}{\partial \xi \partial \eta} \\ \frac{9}{\partial y^2} = 4 \cdot \frac{\partial^2 \tilde{u}}{\partial \xi^2} \end{array}$$

Adunăm membru cu membru

$$0 = 4\frac{\partial^2 \tilde{u}}{\partial \eta^2} \Rightarrow \frac{\partial^2 \tilde{u}}{\partial \eta^2} = 0 \Rightarrow$$

$$\frac{\partial}{\partial \eta} (\frac{\partial \tilde{u}}{\partial \eta}) = 0 \Rightarrow \frac{\partial \tilde{u}}{\partial \eta} = f(\xi) \Rightarrow$$

$$\tilde{u}(\xi, \eta) = \eta f(\xi) + g(\xi) \Rightarrow$$

$$\begin{cases} u(x, y) = x \cdot f(3x - 2y) + g(3x - 2y) \\ \frac{\partial u}{\partial y} = -2xf'(3x - 2y) - 2g'(3x - 2y) \end{cases}$$

cu $f, g \in C^1(\mathbb{R})$

Datele pe curba $x + y = 0 \Leftrightarrow y = -x$ se scriu:

$$\begin{cases} u(x,-x) = x \cdot f(5x) + g(5x) = 1\\ \frac{\partial u}{\partial y}(x,-x) = -2xf'(5x) - 2g'(5x) = x \end{cases}$$

Prin derivare

$$\begin{cases} f(5x) + 5(x \cdot f'(5x) + g'(5x)) = 1 \\ x \cdot f'(5x) + g'(5x) = -\frac{x}{2} \end{cases} \Rightarrow$$

$$\begin{cases} f(5x) = 1 + \frac{5x}{2} \Rightarrow f(t) = 1 + \frac{t}{2} \\ g(5x) = 1 - x(1 + \frac{5x}{2}) = 1 - \frac{1}{5} \cdot 5x(1 + \frac{5x}{2}) \end{cases}$$
$$\Rightarrow g(t) = 1 - \frac{t}{5}(1 + t)$$

$$u(x,y) = x(1 + \frac{3x - 2y}{2}) + 1 - \frac{3x - 2y}{5} \cdot (1 + 3x - 2y) =$$

$$= x + \frac{3x^2 - 2xy}{2} + 1 - \frac{3x - 2y}{5} - \frac{(3x - 2y)^2}{5} =$$

$$= \frac{1}{10} [10(x+1) + 5(3x^2 - 2xy) - 2(3x - 2y) - 2(3x - 2y)^2] =$$

$$= \frac{1}{10} [10x + 10 + 15x^2 - 10xy - 6x + 4x - 18x^2 + 24xy - 8y^2] =$$

$$= \frac{1}{10} (14xy - 3x^2 - 8y^2 + 4x + 4y + 10).$$

7.1.2 Exerciții propuse.

Exercițiul 7.17 Rezolvați PC pentru ecuația coardei vibrante:

(1)
$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - 4 \frac{\partial^2 u}{\partial x^2} = 2(x^2 + 4t^2), & x \in \mathbb{R}, t \ge 0 \\ u(x,0) = 24x^2 \\ \frac{\partial u}{\partial t}(x,0) = 2x^3 - x; \end{cases}$$

(2)
$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = \sin 2x, & x \in \mathbb{R}, t \ge 0\\ u(x,0) = e^x\\ \frac{\partial u}{\partial t}(x,0) = -x^2; \end{cases}$$

(3)
$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = x^2 - t^2, x \in \mathbb{R}, t \ge 0\\ u(x, 0) = 12x\\ \frac{\partial u}{\partial t}(x, 0) = x^3; \end{cases}$$

(4)
$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = e^x, x \in \mathbb{R}, t \ge 0\\ u(x, 0) = \sin x\\ \frac{\partial u}{\partial t}(x, 0) = x + \cos x; \end{cases}$$

(5)
$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = e^{-x} + t \cdot \cos(x \cdot t), x \in \mathbb{R}, t \ge 0 \\ u(x, 0) = \sin x \\ \frac{\partial u}{\partial t}(x, 0) = \cos x; \end{cases}$$

(6)
$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = e^{x^2 - t^2} \cdot (x^2 - t^2) + x^2 + xt + t^2, x \in \mathbb{R}, t \ge 0\\ u(x, 0) = \frac{x^4}{24} + \sin x + \frac{1}{4}e^{x^2}(\ln|x| - 1)\\ \frac{\partial u}{\partial t}(x, 0) = \frac{1}{4}e^{x^2} + 2x + 1 + e^{-x}; \end{cases}$$

(7)
$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - 4 \frac{\partial^2 u}{\partial x^2} = x^2 - t^2 \ x \in \mathbb{R}, t \ge 0 \\ u(x,0) = \cos x \\ \frac{\partial u}{\partial t}(x,0) = x^2. \end{cases}$$

Exercițiul 7.18 Determinați forma canonică pentru:

$$\frac{\partial^2 u}{\partial x^2} - 2e^x \cdot \frac{\partial^2 u}{\partial x \partial y} + (e^{2x} - 1) \cdot \frac{\partial^2 u}{\partial y^2} - e^x \cdot \frac{\partial u}{\partial y} = 0.$$

Exercițiul 7.19 P.Cauchy pentru E.D.P.:

(1)
$$\begin{cases} y^2 \frac{\partial^2 u}{\partial x^2} - 2y \cdot \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} - \frac{1}{y} \cdot \frac{\partial u}{\partial y} = 0 \\ u(x, -1) = 2, \frac{\partial u}{\partial y}(x, -1) = x \end{cases}$$

(2)
$$\begin{cases} \frac{\partial^2 u}{\partial x^2} - 2e^x \cdot \frac{\partial^2 u}{\partial x \partial y} + (e^{2x} - 1) \cdot \frac{\partial^2 u}{\partial y^2} - e^x \cdot \frac{\partial u}{\partial y} = 0\\ u(0, y) = \cos y, \frac{\partial u}{\partial x}(0, y) = \sin y \end{cases}$$

(3)
$$\begin{cases} 2\frac{\partial^2 u}{\partial x^2} - 7\frac{\partial^2 u}{\partial x \partial y} + 3\frac{\partial^2 u}{\partial y^2} = 0\\ u|_{y+3x=0} = \cos x, u|_{2y+x=0} = 1 + 5x. \end{cases}$$

7.2 Problema Cauchy pentru ecuația căldurii. Formula lui Poisson.

Ecuația căldurii este

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{a^2} \frac{\partial u}{\partial t}$$

cu condiția inițială u(x,0) = f(x).

MSV:

$$\begin{cases} u(x,t) = X(x)T(t) \to \frac{X''(x)}{X(x)} = \frac{1}{a^2} \frac{T'(t)}{T(t)} = k \\ T'(t) - ka^2T(t) = 0 \to T(t) = ce^{ka^2t} \\ X''(x) - kX(x) = 0 \to X(x) = c_1 \cos \lambda x + c_2 \sin \lambda x, \\ k < 0 \text{ convine }, k = -\lambda^2, \lambda > 0. \end{cases}$$

$$u(x,t,\lambda) = [A(\lambda)\cos \lambda x + B(\lambda)\sin \lambda x]e^{-\lambda^2 a^2 t}$$

$$u(x,t) = \int_{0}^{\infty} u(x,t,\lambda)d\lambda.$$

Condiția inițială:

$$\int_0^\infty u(x,0,\lambda)d\lambda = f(x) \to$$
$$\int_0^\infty \left[A(\lambda)\cos\lambda x + B(\lambda)\sin\lambda x \right] d\lambda = f(x)$$

Integrala Fourier care o reprezintă pe f(x):

$$f(x) = \frac{1}{\pi} \int_0^\infty d\lambda \int_{-\infty}^\infty f(\tau) \cos \lambda (x - \tau) d\tau =$$

$$= \frac{1}{\pi} \int_0^\infty \left[\cos \lambda x \int_{-\infty}^\infty f(\tau) \cos \lambda \tau d\tau + \right.$$

$$+ \sin \lambda x \int_{-\infty}^\infty f(\tau) \sin \lambda \tau d\tau \right] d\lambda \Rightarrow$$

$$A(\lambda) = \frac{1}{\pi} \int_{-\infty}^\infty f(\tau) \cos \lambda \tau d\tau$$

$$B(\lambda) = \frac{1}{\pi} \int_{-\infty}^\infty f(\tau) \sin \lambda \tau d\tau$$

Deci

$$u(x,t,\lambda) = \frac{1}{\pi} \left[\int_{-\infty}^{\infty} f(\tau) \cos \lambda(x-\tau) d\tau \right] e^{-\lambda^2 a^2 t} \Rightarrow$$

$$u(x,t) = \frac{1}{\pi} \int_{0}^{\infty} d\lambda \int_{-\infty}^{\infty} f(\tau) \cos \lambda(x-\tau) e^{-\lambda^2 a^2 t} d\tau =$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} f(\tau) \left[\int_{0}^{\infty} e^{-\lambda^2 a^2 t} \cos \lambda(x-\tau) d\lambda \right] d\tau.$$

$$\int_0^\infty e^{-ax^2}\cos bx dx = \frac{1}{2} \frac{\sqrt{\pi}}{\sqrt{a}} e^{-\frac{b^2}{4a}} \to \text{ Poisson}$$

de unde obținem

$$b = x - \tau$$
 și $a = a^2 t$

şi avem

$$\int_0^\infty e^{-\lambda^2 a^2 t} \cos \lambda (x - \tau) d\lambda = \frac{1}{2} \cdot \frac{\sqrt{\pi}}{a\sqrt{t}} \cdot e^{-\frac{(x - \tau)^2}{4a^2 t}} \to$$

$$u(x, t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^\infty f(\tau) \cdot e^{-\frac{(x - \tau)^2}{4a^2 t}} d\tau \leftarrow \text{ formula Poisson.}$$

Cazul neomogen

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + g(x, t) \\ u(x, 0) = f(x) \end{cases}$$

$$u_h(x, t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} f(\tau) \cdot e^{-\frac{(x-\tau)^2}{4a^2t}} d\tau.$$

$$\begin{cases} \frac{\partial \widetilde{u}}{\partial t}(x, t, s) = a^2 \frac{\partial^2 \widetilde{u}}{\partial x^2}(x, t, s) \\ \widetilde{u}(x, 0, s) = g(x, s) \end{cases}$$

$$\Rightarrow \widetilde{u}(x, t, s) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} g(\tau, s) \cdot e^{-\frac{(x-\tau)^2}{4a^2t}} d\tau$$

$$u_p(x, t) = \int_0^t \widetilde{u}(x, t - s, s) ds =$$

$$= \int_0^t \frac{1}{2a\sqrt{\pi (t - s)}} \left[\int_{-\infty}^{\infty} g(\tau, s) \cdot e^{-\frac{(x-\tau)^2}{4a^2(t - s)}} d\tau \right] ds.$$

$$u(x, t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} f(\tau) \cdot e^{-\frac{(x-\tau)^2}{4a^2t}} d\tau +$$

$$+ \int_0^t \frac{1}{2a\sqrt{\pi(t-s)}} \left[\int_{-\infty}^{\infty} g(\tau,s) \cdot e^{-\frac{(x-\tau)^2}{4a^2(t-s)}} d\tau \right] ds.$$

Relația

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} f(\tau) \cdot e^{-\frac{(x-\tau)^2}{4a^2t}} d\tau + \int_{0}^{t} \frac{1}{2a\sqrt{\pi(t-s)}} \left[\int_{-\infty}^{\infty} g(\tau,s) \cdot e^{-\frac{(x-\tau)^2}{4a^2(t-s)}} d\tau \right] ds$$

este formula Poisson din principiul lui Duhamel.

7.2.1 Exerciții rezolvate

În cele ce urmează vom folosi formula lui Poisson pentru PC a ecuației căldurii

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} u_0(y) \cdot e^{-\frac{(x-y)^2}{4a^2t}} dy + \int_{0}^{t} \int_{-\infty}^{\infty} \frac{1}{2a\sqrt{\pi(t-s)}} f(y,s) \cdot e^{-\frac{(x-y)^2}{4a^2(t-s)}} dy ds.$$

Exercițiul 7.20 Să se rezolve problema Cauchy:

$$u_t = 4u_{xx} + t + e^t$$
, $u|_{t=0} = 2$.

Soluție.

$$a = 2, u_0(y) = 2, f(x,t) = t + e^t.$$

$$\int_{-\infty}^{\infty} 2e^{-\frac{(x-y)^2}{4a^2t}} dy = 4a\sqrt{t} \int_{-\infty}^{\infty} e^{-\tau^2} d\tau = 4a\sqrt{\pi t},$$

din substituția

$$\tau = \frac{x - y}{2a\sqrt{t}} \Rightarrow \frac{-dy}{2a\sqrt{t}} = d\tau \Rightarrow dy = -2a\sqrt{t}d\tau.$$

Deci

$$\frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} 2e^{-\frac{(x-y)^2}{4a^2t}} dy = 2.$$

Acum

Astfel,

$$u(x,t) = \frac{t^2}{2} + e^t + 1.$$

Exercițiul 7.21 Să se rezolve problema Cauchy:

$$u_t = u_{xx} + 3t^2, \ u|_{t=0} = \sin x.$$

Soluţie.

$$a = 1$$
, $u_0(x) = \sin x$, $f(x, t) = 3t^2$.

$$I_{1} = \int_{-\infty}^{\infty} \sin y e^{-\frac{(x-y)^{2}}{4a^{2}t}} dy = \int_{-\infty}^{\infty} 2a\sqrt{t} \sin(x - 2a\sqrt{t}\tau) e^{-\tau^{2}} d\tau$$

Stim că

$$\sin(x - 2a\sqrt{t}\tau) = \sin x \cos(2a\sqrt{t}\tau) - \sin(2a\sqrt{t}\tau)\cos x.$$

Avem

$$\int_{-\infty}^{\infty} \sin(2a\sqrt{t}\tau)e^{-\tau^2}d\tau = 0.$$

Deci

$$I_{1} = 4a\sqrt{t}\sin x \int_{0}^{\infty} \cos(2a\sqrt{t}\tau)e^{-\tau^{2}}d\tau.$$

$$F(\alpha) = \int_{0}^{\infty} \cos(2\alpha\tau)e^{-\tau^{2}}d\tau \Rightarrow$$

$$F'(\alpha) = \int_{0}^{\infty} -2\tau\sin(2\alpha\tau)e^{-\tau^{2}}d\tau =$$

$$= \int_{0}^{\infty} \sin(2\alpha\tau) \left(e^{-\tau^{2}}\right)' d\tau =$$

$$= \sin(2\alpha\tau)e^{-\tau^{2}}\Big|_{0}^{\infty} - \int_{0}^{\infty} 2\alpha\cos(2\alpha\tau)e^{-\tau^{2}}d\tau \Rightarrow$$

$$F'(\alpha) = -2\alpha F(\alpha) \Rightarrow \frac{dF}{F} = -2\alpha d\alpha \Rightarrow$$

$$F(\alpha) = Ce^{-\alpha^{2}}, F(0) = \int_{0}^{\infty} e^{-\tau^{2}}d\tau = \frac{\sqrt{\pi}}{2} \Rightarrow$$

$$\int_{0}^{\infty} \cos(2\alpha\tau)e^{-\tau^{2}}d\tau = \frac{\sqrt{\pi}}{2}e^{-\alpha^{2}}.$$

$$\alpha = a\sqrt{t} \Rightarrow I_{1} = 4a\sqrt{t}\sin x \frac{\sqrt{\pi}}{2}e^{-a^{2}t} =$$

$$= 2a\sqrt{t\pi}e^{-a^{2}t}\sin x \frac{1}{2\sqrt{\pi t}}\int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4a^{2}t}}\sin y dy \stackrel{a=1}{=} e^{-t}\sin x.$$

Astfel,

$$u(x,t) = e^{-t}\sin x + t^3.$$

Exercițiul 7.22 Să se rezolve problema Cauchy:

$$u_t = u_{xx} + e^{-t} \cos x, \ u|_{t=0} = \cos x.$$

Soluție.

$$a = 1, u_0(x) = \cos x, f(x,t) = e^{-t} \cos x.$$

$$u(x,t) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4t}} \cos y dy + \int_{0}^{t} \int_{-\infty}^{\infty} \frac{1}{2\sqrt{\pi (t-s)}} e^{-s} e^{-\frac{(x-y)^2}{4(t-s)}} \cos y dy ds.$$

Calculăm

$$\int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4t}} \cos y \, dy = \stackrel{\frac{x-y}{2\sqrt{t}} = \tau}{=} =$$

$$\int_{-\infty}^{\infty} e^{-\tau^2} 2\sqrt{t} \cos(x - 2\sqrt{t}\tau) \, d\tau =$$

$$= 2\sqrt{t} \int_{-\infty}^{\infty} e^{-\tau^2} \cos x \cos(2\sqrt{t}\tau) d\tau = 2\sqrt{t}(\cos x) \cdot 2F(\sqrt{t}) =$$
$$= 4\sqrt{t} \frac{\sqrt{\pi}}{2} e^{-t} \cos x = 2\sqrt{\pi t} e^{-t} \cos x.$$

deoarece am folosit integrala Poisson:

$$F(\alpha) = \int_{-\infty}^{\infty} e^{-\tau^2} \cos(2\alpha\tau) d\tau = \sqrt{\pi} e^{-\alpha^2}.$$

Deci

$$\frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4t}} \cos y dy = e^{-t} \cos x.$$

Analog

$$\int_0^t \int_{-\infty}^\infty \frac{1}{2\sqrt{\pi(t-s)}} e^{-s} e^{-\frac{(x-y)^2}{4(t-s)}} \cos y dy ds =$$

$$\stackrel{\frac{x-y}{2\sqrt{t-s}}=\tau}{=} \int_0^t \int_{-\infty}^\infty \frac{e^{-s}}{\sqrt{\pi}} e^{-\tau^2} \cos(x-2\sqrt{t-s}\tau) d\tau ds =$$

$$\frac{1}{\sqrt{\pi}} \int_0^t e^{-s} \cos x \int_{-\infty}^\infty e^{-\tau^2} \cos(2\sqrt{t-s}\tau) d\tau ds =$$

$$\frac{1}{\sqrt{\pi}} \sqrt{\pi} \cos x \int_0^t e^{-s} e^{-(t-s)} ds = e^{-t} \cos x \int_0^t ds = t e^{-t} \cos x.$$
Astfel,
$$u(x,t) = (t+1)e^{-t} \cos x.$$

7.2.2 Exerciţii propuse

Exercițiul 7.23 Să se rezolve problema Cauchy:

$$u_t = u_{xx} + e^t \sin x, \ u|_{t=0} = \sin x.$$

Exercițiul 7.24 Să se rezolve problema Cauchy:

$$u_t = u_{xx} + \sin t, \ u|_{t=0} = e^{-x^2}.$$

7.3 Problema mixtă pentru ecuația coardei vibrante și ecuația căldurii. Metoda separării variabilelor

7.3.1 Problema mixtă la ecuația coardei vibrante

Cazul vibraţiilor forţate (întreţinute de o forţă care acţionează în fiecare punct al coardei).

Principiul lui Duhamel combinat cu metoda separării variabilelor.

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x,t), 0 < x < l, t \ge 0\\ u(x,0) = f(x), \frac{\partial u}{\partial t}(x,0) = g(x), 0 \le x \le l\\ u(0,t) = u(l,t) = 0, t \ge 0 \end{cases}$$
(7.1)

 $u(x,t) = u_h(x,t) + u_p(x,t)$ unde:

$$\begin{cases} \frac{\partial^{2} u_{h}}{\partial t^{2}} - a^{2} \frac{\partial^{2} u_{h}}{\partial x^{2}} = 0, 0 < x < l, t \ge 0 \\ u_{h}(x, 0) = f(x), \frac{\partial u_{h}}{\partial t}(x, 0) = g(x) \\ u_{h}(0, t) = u_{h}(l, t) = 0 \end{cases}$$
(7.2)

Relaţia (7.2) reprezintă problema vibraţiior libere şi cu metoda separării variabilelor avem:

$$u_h(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi at}{l} + B_n \sin \frac{n\pi at}{l} \right) \cdot \sin \frac{n\pi x}{l}$$
unde:

$$A_n = \frac{2}{l} \int_0^l f(x) \cdot \sin \frac{n\pi x}{l} dx$$

$$B_n = \frac{2}{n\pi a} \int_0^l g(x) \cdot \sin \frac{n\pi x}{l} dx, n \ge 1$$

$$\begin{cases} \frac{\partial^{2} u_{p}}{\partial t^{2}} - a^{2} \frac{\partial^{2} u_{p}}{\partial x^{2}} = f(x, t), 0 < x < l \\ u_{p}(x, 0) = 0, \frac{\partial u_{p}}{\partial t}(x, 0) = 0 \\ u_{p}(0, t) = u_{p}(l, t) = 0. \end{cases}$$
(7.3)

Rezolvarea lui (7.3) se face cu principiul lui Duhamel. Considerăm problema vibrațiilor libere:

$$\begin{cases} \frac{\partial^2 \tilde{u}}{\partial t^2}(x,t,s) - a^2 \frac{\partial^2 \tilde{u}}{\partial x^2}(x,t,s) = 0, 0 \le x \le l\\ \tilde{u}(x,0,s) = 0, \frac{\partial \tilde{u}}{\partial t}(x,0,s) = f(x,s)\\ \tilde{u}(0,t,s) = \tilde{u}(l,t,s) = 0 \end{cases}$$
(7.4)

pe care o rezolvăm cu metoda separării variabilelor căutând soluție de forma:

$$\tilde{u}(x,t,s) = \sum_{n=1}^{\infty} B_n(s) \cdot \sin \frac{n\pi at}{l} \cdot \sin \frac{n\pi x}{l}$$
 (7.5)

(deoarece $\tilde{u}(x,0,s) = 0$, coeficientul lui $\cos \frac{n\pi at}{l}$ este nul) Folosim a doua condiție inițială pentru găsirea lui $B_n(s)$.

$$\frac{\partial \tilde{u}}{\partial t}(x,0,s) = \sum_{n=1}^{\infty} \frac{n\pi a}{l} B_n(s) \cdot \sin \frac{n\pi x}{l} = f(x,s) =$$
$$= \sum_{n>1} C_n(s) \cdot \sin \frac{n\pi x}{l}$$

serie Fourier de sinusuri pentru f(x,s) unde:

$$C_n(s) = \frac{2}{l} \int_0^l f(x,s) \cdot \sin \frac{n\pi x}{l} dx, n \ge 1.$$

Din identificare avem:

$$B_n(s) = \frac{2}{n\pi a} \int_0^l f(x,s) \cdot \sin\frac{n\pi x}{l} dx, n \ge 1.$$
 (7.6)

Folosind principiul lui Duhamel avem:

$$u_p(x,t) = \int_0^t \tilde{u}(x,t-s,s)ds.$$

7.3.2 Problema mixtă la ecuația căldurii

Metoda separării variabilelor și principiul lui Duhamel.

$$\begin{cases}
\frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t), 0 \le x \le l \\
u(x, 0) = f(x) \\
u(0, t) = u(l, t) = 0
\end{cases}$$
(7.7)

$$u(x,t) = u_h(x,t) + u_p(x,t)$$

$$\begin{cases} \frac{\partial u_h}{\partial t} - a^2 \frac{\partial^2 u_h}{\partial x^2} = 0\\ u_h(x,0) = f(x)\\ u_h(0,t) = u_h(l,t) = 0 \end{cases}$$
 (7.8)

 $Cu M.S.V. \Rightarrow$

$$u_h(x,t) = \sum_{n=1}^{\infty} A_n e^{-\left(\frac{n\pi a}{l}\right)^2 t} \sin\frac{n\pi x}{l},$$

$$A_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx, n \ge 1$$

$$\begin{cases} \frac{\partial u_p}{\partial t} - a^2 \frac{\partial^2 u_p}{\partial x^2} = f(x, t) \\ u_p(x, 0) = 0 \\ u_n(0, t) = u_n(l, t) = 0. \end{cases}$$

Fie

$$\left\{ \begin{array}{l} \frac{\partial \tilde{u}}{\partial t}(x,t,s) - a^2 \frac{\partial^2 \tilde{u}}{\partial x^2}(x,t,s) = 0 \\ \tilde{u}(x,0,s) = f(x,s) \\ \tilde{u}(0,t,s) = \tilde{u}(l,t,s) = 0 \end{array} \right.$$

și cu M.S.V. avem: $\tilde{u}(x,t,s)=\sum_{n=1}^{\infty}A_n(s)e^{-(\frac{n\pi a}{l})^2t}\sin\frac{n\pi x}{l}$, unde

$$\tilde{u}(x,0,s) = \sum_{n=1}^{\infty} A_n(s) \sin \frac{n\pi x}{l} = f(x,s) = \sum_{n=1}^{\infty} a_n(s) \sin \frac{n\pi x}{l}$$

seria Fourier trunchiată

$$a_n(s) = \frac{2}{l} \int_0^l f(x,s) \cdot \sin \frac{n\pi x}{l} dx$$

iar

$$A_n(s) = \frac{2}{l} \int_0^l f(x, s) \cdot \sin \frac{n\pi x}{l} dx, n \ge 1$$

din identificarea coeficienților.

Cu principiul lui Duhamel:

$$u_p(x,t) = \int_0^t \tilde{u}(x,t-s,s)ds$$

Observaţia 7.25

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t), t \ge 0\\ u(x, 0) = f(x),\\ \frac{\partial u}{\partial t}(x, 0) = g(x) \end{cases}$$

$$u(x,t) = u_h(x,t) + u_p(x,t)$$

Cu formula lui D'Alembert (se deduce din forma canoică):

$$u_h(x,t) = \frac{1}{2}[f(x+at) + f(x-at)] + \frac{1}{2a} \int_{x=at}^{x+at} g(\tau)d\tau.$$

Fie

$$\begin{cases} \frac{\partial^2 \tilde{u}}{\partial t^2}(x,t,s) - a^2 \frac{\partial^2 \tilde{u}}{\partial x^2}(x,t,s) = 0\\ \tilde{u}(x,0,s) = 0, \frac{\partial \tilde{u}}{\partial t}(x,0,s) = f(x,s). \end{cases}$$

Cu D'Alembert

$$\tilde{u}(x,t,s) = \frac{1}{2a} \int_{-\infty}^{x+at} f(\tau,s) d\tau.$$

Cu principiul lui Duhamel

$$u_p(x,t) = \int_0^t u(x,t-s,s)ds \Rightarrow$$

$$u_p(x,t) = \frac{1}{2a} \int_0^t \left[\int_{x-a(t-s)}^{x+a(t-s)} f(\tau,s) d\tau \right] ds.$$

Deci, formula lui D'Alembert (n = 1):

$$u(x,t) = \frac{1}{2}[f(x+at) + f(x-at)] +$$

$$+\frac{1}{2a}\int_{x-at}^{x+at}g(\tau)d\tau + \frac{1}{2a}\int_{0}^{t}\left[\int_{x-a(t-s)}^{x+a(t-s)}f(\tau,s)d\tau\right]ds$$

pentru ecuația neomogenă.

(**) Problema Cauchy unidimensională pentru ecuația căldurii neomogene

$$\begin{cases} \frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t), x \in \mathbb{R}, t \ge 0 \\ u(x, 0) = f(x) \end{cases}$$

$$u(x,t) = u_h(x,t) + u_p(x,t)$$

Soluția ecuației omogene

$$u_h(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} f(\tau)e^{-\frac{(x-\tau)^2}{4a^2t}} d\tau,$$

formula lui Poisson stabilită la Transformata Fourier

$$\left\{ \begin{array}{l} \frac{\partial \tilde{u}}{\partial t}(x,t,s) - a^2 \frac{\partial^2 \tilde{u}}{\partial x^2}(x,t,s) = 0 \\ \tilde{u}(x,0,s) = f(x,s) \end{array} \right. \text{ Poisson}$$

$$\tilde{u}(x,t,s) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} f(\tau,s)e^{-\frac{(x-\tau)^2}{4a^2t}} d\tau$$

și cu principiul lui Duhamel obținem soluția particulară:

$$u_p(x,t) = \int_0^t \tilde{u}(x,t-s,s)ds =$$

$$= \int_{0}^{t} \frac{1}{2a\sqrt{\pi(t-s)}} \left[\int_{-\infty}^{\infty} f(\tau,s)e^{-\frac{(x-\tau)^{2}}{4a^{2}(t-s)}} d\tau \right] ds$$

Atunci, formula lui Poisson (n = 1)

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} f(\tau) \cdot e^{-\frac{(x-\tau)^2}{4a^2t}} d\tau + \int_{0}^{t} \frac{1}{2a\sqrt{\pi(t-s)}} \left[\int_{0}^{\infty} f(\tau,s) \cdot e^{-\frac{(x-\tau)^2}{4a^2(t-s)}} d\tau \right] ds.$$

7.3.3 Coarda vibrantă finită (oscilații libere)

$$\left\{ \begin{array}{l} \frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0, \ x \in (0,l), \ t>0, \ c>0 \ \text{constantă} \\ u(x,0) = \varphi(x) \text{ - forma inițială a coardei} \\ \frac{\partial u}{\partial t}(x,0) = \psi(x) \text{ - viteza inițială} \\ u(0,t) = u(l,t) \text{ - încastrarea la capete} \end{array} \right.$$

$$\varphi \in C^2([0,l]), \ \psi \in C^1([0,l]).$$

$$\begin{array}{l} \varphi(0) = \varphi(l) = 0 \\ \varphi(0) = \psi(l) = 0 \\ \varphi''(0) = \varphi''(l) = 0 \end{array} \right\} \ \mbox{condițiile de compatibilitate a datelor}$$

rezultă ca $\exists ! u \in C^2([0,l] \times [0,\infty))$ soluție a problemei. Soluție. Metoda Fourier-Bernoulli:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = X(x)\ddot{T}(t) & \stackrel{\text{ecuatia}}{\Rightarrow} X(x)\ddot{T}(t) - c^2 X''(x)T(t) = 0 \Rightarrow \\ \frac{\partial^2 u}{\partial x^2} = X''(x)T(t) & \stackrel{\text{ecuatia}}{\Rightarrow} X(x)\ddot{T}(t) - c^2 X''(x)T(t) = 0 \Rightarrow \end{cases}$$

$$\frac{X''(x)}{X(x)} = \frac{\ddot{T}(t)}{c^2 T(t)} = -\lambda (\text{ constant} \breve{a}) \Rightarrow$$

$$\left\{ \begin{array}{l} X''(x) + \lambda X(x) = 0 \\ X(0) = X(l) = 0 \end{array} \right. \Rightarrow \begin{array}{l} \text{Problema Sturm - Liouville} \\ \text{se caută } \lambda \text{ astfel încât} \\ \text{există soluție nenulă.} \end{array}$$

Ecuația caracteristică: $r^2 + \lambda = 0$ rezultă

1. $\lambda < 0 \rightarrow r_{1,2} = \pm \sqrt{-\lambda} \in \mathbb{R}$, distincte

$$\Rightarrow \begin{array}{l} X(x) = C_1 e^{\sqrt{-\lambda}x} + C_2 e^{-\sqrt{-\lambda}x} \\ X(0) = X(l) = 0 \end{array} \right\} \Rightarrow$$
$$\Rightarrow C_1 = C_2 = 0 \Rightarrow X \equiv 0.$$

- 2. $\lambda = 0 \rightarrow X''(x) = 0 \rightarrow X(x) = ax + b \stackrel{\text{condiții inițiale}}{\Rightarrow} X \equiv 0.$
- 3. $\lambda > 0 \rightarrow r_{1,2} = \pm i\sqrt{\lambda} \rightarrow$

$$X(x) = C_1 \cos \sqrt{\lambda}x + C_2 \sin \sqrt{\lambda}x$$

$$\to X(0) = 0 \to C_1 = 0$$

$$X(l) = 0 \to \sin \sqrt{\lambda}l = 0 \to \sqrt{\lambda}l = n\pi, \ n \in \mathbb{Z}^* \to \lambda_n = \left(\frac{n\pi}{l}\right)^2, \ n \ge 1 \to X_n(x) = C_2 \sin \frac{n\pi x}{l}.$$

$$\ddot{T}_n(t) + \left(\frac{n\pi C}{l}\right)^2 T_n(t) = 0 \rightarrow$$

$$T_n(t) = a_n \cos \frac{n\pi Ct}{l} + b_n \sin \frac{n\pi Ct}{l}$$
$$u_n(x,t) = \left(A_n \cos \frac{n\pi Ct}{l} + B_n \sin \frac{n\pi Ct}{l} \right) \sin \frac{n\pi x}{l}, \ n \ge 1.$$

Cu metoda suprapunerii

$$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi Ct}{l} + B_n \sin \frac{n\pi Ct}{l} \right) \sin \frac{n\pi x}{l}$$

$$u(x,0) = \sum_{n\geq 1} A_n \sin \frac{n\pi x}{l} = \varphi(x) \to A_n = \frac{2}{l} \int_0^l \varphi(x) \sin \frac{n\pi x}{l} dx$$

$$\frac{\partial u}{\partial t}(x,0) = \sum_{n\geq 1} B_n \frac{n\pi C}{l} \sin \frac{n\pi x}{l} = \psi(x) \to$$

$$\to B_n = \frac{2}{n\pi C} \int_0^l \psi(x) \sin \frac{n\pi x}{l} dx.$$

Aplicație:

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = 0, \ t \ge 0, \ x \in [0, 1], \ a > 0 \\ u(0, t) = u(1, t) = 0, \ \forall t \ge 0 \\ u(x, 0) = x^4 - 2x^3 + x \\ \frac{\partial u}{\partial t}(x, 0) = \sin^3(\pi x) \end{cases}$$

Ecuația căldurii (difuzia)

$$\begin{cases} \frac{\partial u}{\partial t} - c^2 \frac{\partial^2 u}{\partial x^2} = 0, \ x \in [0, l], \ t > 0 \\ u(0, t) = u(l, t) = 0 \\ u(x, 0) = \varphi(x) \end{cases}$$

$$\varphi \in C^2([0,l]), \, \psi \in C^1([0,l]).$$

$$\varphi(0) = \varphi(l) = 0$$
 $\varphi \in C^2([0, l])$ problema are soluție unică $\varphi''(0) = \varphi''(l) = 0$ $u \in C^2([0, l] \times [0, \infty))$

Analog:

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{-\left(\frac{n\pi C}{l}\right)^2 t} \sin\frac{n\pi x}{l}$$
$$A_n = \frac{2}{l} \int_0^l \varphi(x) \sin\frac{n\pi x}{l} dx.$$

Coarda vibrantă (cazul neomogen)

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x,t), & 0 \le x \le l, t > 0 \\ u(x,0) = f(x) \\ \frac{\partial u}{\partial t}(x,0) = g(x) \\ u(0,t) = u(l,t) = 0. \end{cases}$$

$$u(x,t) = u_h(x,t) + u_p(x,t)$$

$$u_h(x,t) = \sum_{n\geq 1} \left(A_n \cos \frac{n\pi at}{l} + B_n \frac{n\pi at}{l} \right) \sin \frac{n\pi x}{l}$$

$$A_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx;$$

$$B_n = \frac{2}{n\pi a} \int_0^l g(x) \sin \frac{n\pi x}{l} dx.$$

Conform principiului lui Duhamel:

$$u_p(x,t) = \int_0^t \widetilde{u}(x,t-s,s)ds.$$

$$\widetilde{u}(x,t,s) = \sum_0^\infty B_n(s) \sin \frac{n\pi at}{l} \sin \frac{n\pi x}{l}$$

$$B_n(s) = \frac{2}{n\pi a} \int_0^l f(x,s) \sin \frac{n\pi x}{l} dx.$$

$$u(x,t) = \sum_{n\geq 1} \left(A_n \cos \frac{n\pi at}{l} + B_n \sin \frac{n\pi at}{l} \right) \sin \frac{n\pi x}{l} +$$

$$+ \sum_{n\geq 1} \left[\int_0^t B_n(s) \sin \frac{n\pi a}{l} (t-s) ds \right] \sin \frac{n\pi x}{l}.$$

$$u(x,t) =$$

$$= \sum_{n\geq 1} \left\{ \int_0^l \left[\frac{2}{l} f(\xi) \cos \frac{n\pi at}{l} + \frac{2}{n\pi a} g(\xi) \sin \frac{n\pi at}{l} \right] \sin \frac{n\pi \xi}{l} d\xi \right\}.$$

$$\cdot \sin \frac{n\pi x}{l} +$$

$$+\sum_{n\geq 1} \frac{2}{n\pi a} \left\{ \int_0^t \left[\int_0^l f(\xi, s) \sin \frac{n\pi \xi}{l} d\xi \right] \sin \frac{n\pi a}{l} (t - s) ds \right\} \cdot \sin \frac{n\pi x}{l}.$$

Ecuația căldurii (cazul neomogen)

$$\begin{cases} \frac{\partial u}{\partial t} - a^2 \frac{\partial^2 u}{\partial x^2} = f(x, t), & 0 < x < l, t > 0 \\ u(x, 0) = f(x) \\ u(0, t) = u(l, t) = 0 \end{cases}$$
$$u(x, t) = \sum_{n=1}^{\infty} A_n e^{-\left(\frac{n\pi a}{l}\right)^2 t} \sin\frac{n\pi x}{l} + \sum_{n=1}^{\infty} \left[\int_0^t B_n(s) e^{-\left(\frac{n\pi a}{l}\right)^2 (t-s)} ds \right] \sin\frac{n\pi x}{l};$$

$$A_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx.$$
$$B_n(s) = \frac{2}{l} \int_0^l f(x, s) \sin \frac{n\pi x}{l} dx.$$

7.3.4 Exerciții rezolvate

Exercițiul 7.26

$$\left\{ \begin{array}{l} \frac{\partial^2 u}{\partial x^2} - 4\frac{\partial^2 u}{\partial x^2} = 0, \ 0 \leq x \leq 1, \ t \geq 0 \\ u(x,0) = x(1-x), \ \frac{\partial u}{\partial t}(x,0) = 0 \\ u(0,t) = u(1,t) = 0, \ t \geq 0. \end{array} \right.$$

$$u(x,t) = \sum_{n=2}^{\infty} \frac{4}{(n\pi)^3} \cdot (1 - (-1)^n) \cdot \cos(2n\pi t) \cdot \sin(n\pi x).$$

Solutie.

$$a = 2, L = 1 \Rightarrow$$

$$u(x,t) = \sum_{n=1}^{\infty} (A_n \cos 2n\pi t + B_n \sin 2n\pi t) \cdot \sin n\pi x$$

$$f(x) = x(1-x) = x - x^2 = \sum_{n=1}^{\infty} b_n \sin n\pi x \Rightarrow$$

$$b_n = 2 \int_0^1 (x - x^2) \sin n\pi x dx =$$

$$= -\frac{2}{n\pi} (\cos n\pi x) \cdot (x - x^2) |_0^1 + \frac{2}{n\pi} \int_0^1 (\cos n\pi x) \cdot (1 - 2x) dx =$$

$$= \frac{2\sin n\pi x}{n^2\pi^2} \cdot (1 - 2x)|_0^1 + \frac{4}{n^2\pi^2} \int_0^1 \sin n\pi x dx =$$

$$= \frac{-4}{n^3\pi^3} \cdot \cos n\pi x|_0^1 = \frac{4}{n^3\pi^3} [1 - (-1)^n] =$$

$$= \begin{cases} 0, & n = 2k \\ \frac{8}{\pi^3(2k+1)^3}, & n = 2k+1, k \ge 0 \end{cases}$$

$$u(x,0) = \sum_{n=1}^{\infty} A_n \sin n\pi x \Rightarrow A_n = b_n, \forall n \ge 1$$

$$f(x) = u(x,0)$$

$$g(x) = 0 \Rightarrow \beta_n = 0 \Rightarrow B_n = 0$$

$$u(x,t) = \frac{8}{\pi^3} \sum_{k=0}^{\infty} \frac{\cos(4k+2)\pi t}{(2k+1)^3} \cdot \sin(2k+1)\pi x.$$

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - 9 \frac{\partial^2 u}{\partial x^2} = 0, 0 < x < \pi, t \ge 0 \\ u(0,t) = u(\pi,t) = 0, t \ge 0 \\ u(x,0) = \sin x - 2 \sin 2x + \sin 3x \\ \frac{\partial u}{\partial t}(x,0) = 6 \sin 3x - 7 \sin 5x. \end{cases}$$

Soluţie.

$$a = 3, L = \pi$$

$$u(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos \frac{3n\pi t}{\pi} + B_n \sin \frac{3n\pi t}{\pi}\right) \sin nx =$$

$$= \sum_{n=1}^{\infty} (A_n \cos 3nt + B_n \sin 3nt) \sin nx$$

$$u(x,0) = \sum_{n=1}^{\infty} A_n \sin nx = \sin x - 2\sin 2x + \sin 3x$$

$$A_1 = 1, A_2 = -2, A_3 = 1, A_n = 0, n \ge 4$$

$$\frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} 3nB_n \sin nx = 6\sin 3x - 7\sin 5x \Rightarrow$$

$$9B_3 = 6 \Rightarrow 15B_5 = -7$$

$$B_3 = \frac{2}{3}, B_5 = -\frac{7}{15}, B_n = 0, n \ne 3, 5$$

$$u(x,t) = \cos 3t \cdot \sin x - 2\cos 6t \cdot \sin 2x +$$

$$+(\cos 9t + \frac{2}{3}\sin 9t)\sin 3x - \frac{7}{15}\sin 15t \cdot \sin 5x.$$

$$\begin{cases} \frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \ 0 < x < \pi, \ , t \ge 0 \\ u(0,t) = u(\pi,t) = 0 \\ u(x,0) = x^2 - \pi x. \end{cases}$$

Soluţie.

$$a = 1, L = \pi \Rightarrow$$

$$u(x,t) = \sum_{n=1}^{\infty} A_n \cdot e^{-n^2 t} \cdot \sin \frac{n\pi x}{\pi} =$$

$$= \sum_{n=1}^{\infty} A_n \cdot e^{-n^2 t} \cdot \sin nx$$

$$u(x,0) = f(x) = x^{2} - \pi x \Rightarrow$$

$$A_{n} = \frac{2}{\pi} \int_{0}^{\pi} (x^{2} - \pi x) \sin n dx =$$

$$= \frac{-2 \cos nx}{n\pi} \cdot (x^{2} - \pi x)|_{0}^{\pi} + \frac{2}{n\pi} \int_{0}^{\pi} \cos nx \cdot (2x - \pi) dx =$$

$$= \frac{2 \sin nx}{\pi n^{2}} \cdot (2x - \pi)|_{0}^{\pi} - \frac{2}{\pi n^{2}} \int_{0}^{\pi} \sin nx \cdot 2 dx =$$

$$= \frac{4}{\pi n^{3}} \cos nx|_{0}^{\pi} = \frac{-4}{\pi n^{3}} [1 - (-1)^{n}] =$$

$$= \begin{cases} \frac{-8}{\pi (2k+1)^{3}}, k \ge 0 \\ 0, n = 2k \end{cases}$$

$$u(x,t) = \frac{-8}{\pi} \sum_{k=0}^{\infty} e^{-(2k+1)^{2}t} \cdot \frac{\sin(2k+1)x}{(2k+1)^{3}}.$$

$$\left\{ \begin{array}{l} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - 2x + 1 + \sinh t, 0 < x < 1, \\ u(x,0) = 0, \\ u(0,t) = u(1,t) = 0. \end{array} \right.$$

Soluţie.

$$u(x,t) = \sum_{n=1}^{\infty} \left[\int_0^t B_n(s) e^{-(n\pi)^2 (t-s)} ds \right] \sin n\pi x$$
$$B_n(s) = 2 \int_0^1 (-2x + 1 + \sinh s) \sin n\pi x dx =$$

$$= -2(-2x+1+\sinh s)\frac{\cos n\pi x}{n\pi}\Big|_{0}^{1} - 4\int_{0}^{1}\frac{\cos n\pi x}{n\pi}dx =$$

$$= \frac{-2}{n\pi}\Big[1 - (-1)^{n}\Big]\sinh s + \frac{2}{n\pi}\Big[1 + (-1)^{n}\Big].$$

$$\int_{0}^{t}B_{n}(s)e^{-(n\pi)^{2}t+(n\pi)^{2}s}ds =$$

$$= \frac{2}{n\pi}e^{-(n\pi)^{2}t}\Big[1 - (-1)^{n}\Big]\frac{1}{2}\int_{0}^{t}\Big[e^{[(n\pi)^{2}+1]s} - e^{[(n\pi)^{2}+1]s}\Big]ds +$$

$$+\frac{2}{n\pi}e^{-(n\pi)^{2}t}\Big[1 + (-1)^{n}\Big]\int_{0}^{t}\Big[e^{(n\pi)^{2}+1]s} - e^{[(n\pi)^{2}-1]s}\Big]ds =$$

$$= \frac{1 - (-1)^{n}}{n\pi}e^{-(n\pi)^{2}t}\left\{\frac{e^{[(n\pi)^{2}+1]s}}{(n\pi)^{2}+1}\Big|_{0}^{t} - \frac{e^{[(n\pi)^{2}-1]s}}{(n\pi)^{2}-1}\Big|_{0}^{t}\right\} +$$

$$+\frac{2}{(n\pi)^{3}}\Big[1 + (-1)^{n}\Big]e^{-(n\pi)^{2}t}\Big[e^{(n\pi)^{2}t} - 1\Big] =$$

$$= \frac{1 - (-1)^{n}}{n\pi}\left[\frac{e^{t} - e^{-(n\pi)^{2}t}}{(n\pi)^{2}+1} - \frac{e^{-t} - e^{-(n\pi)^{2}t}}{(n\pi)^{2}-1}\Big] +$$

$$+\frac{2}{(n\pi)^{3}}\Big[1 + (-1)^{n}\Big]\Big[1 - e^{-(n\pi)^{2}t}\Big] \Rightarrow$$

$$\int_{0}^{t}B_{n}(s)e^{-(n\pi)^{2}(t-s)}ds =$$

$$= \begin{cases} \frac{1}{(n\pi)^{3}}\Big[1 - e^{-(2n\pi)^{2}t}\Big], & n = 2, n \geq 1, \\ \frac{2}{(2n+1)\pi}\Big[\frac{e^{t}}{((2n+1)\pi)^{2}+1} - \frac{e^{-t}}{((2n+1)\pi)^{2}-1} - \frac{2((2n+1)\pi)^{2}e^{-((2n+1)\pi)^{2}t}}{((2n+1)\pi)^{4}-1} \\ n = 2n + 1, n \geq 0. \end{cases}$$

$$u(x,t) = \frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{(n\pi)^{3}}\Big[1 - e^{-(2n\pi)^{2}t}\Big]\sin 2n\pi x +$$

$$+2\sum_{n=0}^{\infty} \frac{1}{(2n+1)\pi} \left[\frac{e^t}{((2n+1)\pi)^2 + 1} - \frac{e^{-t}}{((2n+1)\pi)^2 - 1} - \frac{2((2n+1)\pi)^2 e^{-((2n+1)\pi)^2 t}}{((2n+1)\pi)^4 - 1} \right] \sin(2n+1)\pi x.$$

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = 9\frac{\partial^2 u}{\partial x^2} + e^{-2t}\sin \pi x, & 0 < x < 1, \\ u(x,0) = \sin 2\pi x + 3\sin 3\pi x, \\ \frac{\partial u}{\partial t}(x,0) = 2\sin 2\pi x + \sin 3\pi x, \\ u(0,t) = u(1,t) = 0. \end{cases}$$

Soluție. Determinăm $u_h(x,t)$:

$$u_h(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos 3n\pi t + B_n \sin 3n\pi t \right) \sin n\pi x$$

$$u_h(x,0) = \sum_{n\geq 1} A_n \sin n\pi x = \sin 2\pi x + 3\sin 3\pi x \Rightarrow$$

$$A_2 = 1, \ A_3 = 3, \ A_n = 0, \ \text{ în rest.}$$

$$\frac{\partial u_h}{\partial t}(x,0) = \sum_{n\geq 1} 3n\pi B_n \cdot \sin n\pi x = 2\sin 2\pi x + \sin 3\pi x \Rightarrow$$

$$3 \cdot 2\pi B_2 = 2 \Rightarrow B_2 = \frac{1}{3\pi},$$

$$9\pi B_3 = 1 \Rightarrow B_3 = \frac{1}{9\pi},$$

$$B_n = 0, \ \text{ în rest.}$$

$$u_h(x,t) = \left(\cos 6\pi t + \frac{1}{3\pi} \sin 6\pi t\right) \sin 2\pi x +$$

$$+\left(3\cos 9\pi t + \frac{1}{9\pi}\sin 9\pi t\right)\sin 3\pi x.$$

Determinăm $u_p(x,t)$:

$$u_p(x,t) = \sum_{n\geq 1} \left\{ \int_0^t B_n(s) \sin 3n\pi(t-s) ds \right\} \sin n\pi x.$$

$$B_n(s) = \frac{2}{3n\pi} \int_0^1 e^{-2s} \sin \pi x \sin n\pi x dx = \left\{ \begin{array}{l} \frac{e^{-2s}}{3\pi}, \ n=1, \\ 0, n\geq 2. \end{array} \right.$$

$$\int_0^t B_1(s) \sin 3\pi(t-s) ds = \frac{1}{3\pi} \int_0^t e^{-2s} \sin 3\pi(t-s) ds.$$

$$I = \int_0^t e^{-2s} \sin 3\pi(t-s) ds =$$

$$= e^{-2s} \frac{\cos 3\pi(t-s)}{3\pi} \Big|_0^t + 2 \int_0^t e^{-2s} \frac{\cos 3\pi(t-s)}{3\pi} ds =$$

$$= \frac{1}{3\pi} (e^{-2t} - \cos 3\pi t) + 2 \int_0^t e^{-2s} \left(\frac{-\sin 3\pi(t-s)}{9\pi^2} \right)' ds =$$

$$= \frac{1}{3\pi} (e^{-2t} - \cos 3\pi t) + \frac{2}{9\pi^2} \sin 3\pi t - \frac{4}{9\pi^2} I \Rightarrow$$

$$\left(1 + \frac{4}{9\pi^2} \right) I = \frac{1}{9\pi^2} \left[3\pi e^{-2t} - 3\pi \cos 3\pi t + 2\sin 3\pi t \right]$$
Deci
$$\int_0^t B_1(s) \sin 3\pi(t-s) ds =$$

$$= \frac{1}{3\pi(4+9\pi^2)} (3\pi e^{-2t} - 3\pi \cos 3\pi t + 2\sin 3\pi t).$$

Astfel, $u_p(x,t)$ este:

$$u_p(x,t) = \frac{1}{3\pi(4+9\pi^2)} (3\pi e^{-2t} - 3\pi\cos 3\pi t + 2\sin 3\pi t)\sin \pi x,$$

iar u(x,t) este:

$$u(x,t) = \left(\cos 6\pi t + \frac{1}{3\pi}\sin 6\pi t\right)\sin 2\pi x +$$

$$+ \left(3\cos 9\pi t + \frac{1}{9\pi}\sin 9\pi t\right)\sin 3\pi x +$$

$$+ \frac{1}{3\pi(4+9\pi^2)}(3\pi e^{-2t} - 3\pi\cos 3\pi t + 2\sin 3\pi t)\sin \pi x.$$

Exercițiul 7.31

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = 9 \frac{\partial^2 u}{\partial x^2} + t^2 + t + 1, \ 0 < x < 1, \\ u(x,0) = \sin 2\pi x, \\ \frac{\partial u}{\partial t}(x,0) = x - x^2, \\ u(0,t) = u(1,t) = 0. \end{cases}$$

Soluție. Determinăm $u_h(x,t)$:

$$u_h(x,t) = \sum_{n=1}^{\infty} \left(A_n \cos 3n\pi t + B_n \sin 3n\pi t \right) \sin n\pi x$$

$$u_h(x,0) = \sum_{n\geq 1} A_n \sin n\pi x = \sin 2\pi x \Rightarrow A_2 = 1.$$

$$B_n = \frac{2}{3n\pi} \int_0^1 (x - x^2) \sin n\pi x dx =$$

$$= \frac{2}{3n\pi} (x - x^2) \left(-\frac{\cos n\pi x}{n\pi} \right) \Big|_0^1 - \frac{2}{3n\pi} \int_0^1 (1 - 2x) \left(-\frac{\cos n\pi x}{n\pi} \right) dx =$$

$$= -\frac{2}{3n\pi} \int_0^1 (1 - 2x) \left(-\frac{\sin n\pi x}{n^2\pi^2} \right)' dx =$$

$$= \frac{2}{3n\pi} \int_0^1 \frac{2\sin n\pi x}{n^2\pi^2} dx = \frac{-4}{3n^3\pi^3} \frac{\cos n\pi x}{n\pi} \Big|_0^1 = \frac{4(1 - (-1)^n)}{3n^4\pi^4}.$$

$$u_h(x,t) = \cos 6\pi t \sin 2\pi x + \frac{4}{3\pi^4} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n^4} \sin 3n\pi t \sin n\pi x.$$

Determinăm $u_p(x,t)$:

$$u_p(x,t) = \sum_{n\geq 1} \left\{ \int_0^t B_n(s) \sin 3n\pi (t-s) ds \right\} \sin n\pi x.$$

$$B_n(s) = \frac{2}{3n\pi} \int_0^1 (s^2 + s + 1) \sin n\pi x dx =$$

$$= \frac{-2}{3n^2\pi^2} (s^2 + s + 1) \cos n\pi x \Big|_0^1 = \frac{2}{3n^2\pi^2} (1 - (-1)^n) (s^2 + s + 1).$$

$$\int_0^t \frac{2}{3n^2\pi^2} (1 - (-1)^n) (s^2 + s + 1) \sin 3n\pi (t - s) ds =$$

$$= \frac{2(1 - (-1)^n)}{3n^2\pi^2} \int_0^t (s^2 + s + 1) \sin 3n\pi (t - s) ds.$$

Calculăm integrala

$$I = \int_0^t (s^2 + s + 1) \sin 3n\pi (t - s) ds.$$

$$I = \int_0^t (s^2 + s + 1) \left[\frac{\cos 3n\pi (t - s)}{3n\pi} \right]' ds =$$

$$= (s^2 + s + 1) \frac{\cos 3n\pi (t - s)}{3n\pi} \Big|_0^t - \int_0^t (2s + 1) \frac{\cos 3n\pi (t - s)}{3n\pi} ds =$$

$$= \frac{1}{3n\pi} (t^2 + t + 1 - \cos 3n\pi t) - \int_0^t (2s + 1) \left[\frac{-\sin 3n\pi (t - s)}{(3n\pi)^2} \right]' ds =$$

$$= \frac{1}{3n\pi} (t^2 + t + 1 - \cos 3n\pi t) - (2s + 1) \left[\frac{-\sin 3n\pi (t - s)}{(3n\pi)^2} \right] \Big|_0^t +$$

$$+2\int_0^t \left[\frac{-\sin 3n\pi(t-s)}{(3n\pi)^2} \right] ds =$$

$$= \frac{1}{3n\pi} (t^2 + t + 1 - \cos 3n\pi t) - \frac{\sin 3n\pi t}{(3n\pi)^2} - \frac{2\cos 3n\pi(t-s)}{(3n\pi)^3} \Big|_0^t =$$

$$= \frac{1}{3n\pi} (t^2 + t + 1 - \cos 3n\pi t) - \frac{\sin 3n\pi t}{(3n\pi)^2} - \frac{2(1 - \cos 3n\pi t)}{(3n\pi)^3}.$$

Deci

$$\int_0^t B_n(s) \sin 3n\pi (t-s) ds = \frac{2(1-(-1)^n)}{(3n\pi)^3}.$$

$$\cdot \left[t^2 + t + 1 - \cos 3n\pi t - \frac{\sin 3n\pi t}{3n\pi} - \frac{2(1-\cos 3n\pi t)}{(3n\pi)^2} \right].$$

Astfel, $u_p(x,t)$ este:

$$u_p(x,t) = \frac{2}{9\pi^3} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n^3}$$
.

$$\cdot \left[t^2 + t - \frac{\sin 3n\pi t}{3n\pi} + (1 - \frac{2}{(3n\pi)^2})(1 - \cos 3n\pi t) \right] \sin n\pi x.$$

7.3.5 Exerciții propuse

Exercițiul 7.32 Rezolvați problema mixtă:

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, x \ge 0, 0 \le y \le l \\ u(x,0) = 0, u(x,l) = 0 \\ \lim_{x \to \infty} u(x,y) = 0, u(0,y) = y(y-l). \end{cases}$$

Exercițiul 7.33 Integrați ecuațiile coardei vibrante:

a)
$$\begin{cases} \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t^2} = 0, x \in (0, l) \\ u(0, t) = u(l, t) = 0 \\ u(x, 0) = (x - l)\sin x \\ \frac{\partial u}{\partial t}(x, 0) = 0 \end{cases}$$

b)
$$\begin{cases} \frac{\partial^2 u}{\partial t^2} - 9 \frac{\partial^2 u}{\partial x^2} = x + t, x \in (0, 2), t > 0 \\ u(0, t) = u(2, t) = 0, t > 0 \\ u(x, 0) = 2x - x^2 \\ \frac{\partial u}{\partial t}(x, 0) = \sin \frac{\pi x}{2}. \end{cases}$$

7.4 Problema Dirichlet interioară pentru cerc. Metoda separării variabilelor.

Problema Dirichlet pentru interiorul cercului

$$\left\{ \begin{array}{l} \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \ \ \text{in} \ \ x^2 + y^2 < R^2 \to \text{ec. lui Laplace} \\ u(x,y) = f(x,y) \ \text{pe} \ x^2 + y^2 = R^2. \end{array} \right.$$

Se trece la coordonate polare:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \Rightarrow u(x, y) = u(\rho \cos \theta, \rho \sin \theta) = \widetilde{u}(\rho, \theta)$$

Ecuația lui Laplace în coordonate polare:

$$\frac{1}{\rho} \cdot \frac{\partial}{\partial \rho} (\rho \frac{\partial \tilde{u}}{\partial \rho}) + \frac{1}{\rho^2} \frac{\partial \tilde{u}^2}{\partial \theta^2} = 0 \Leftrightarrow \frac{\partial \tilde{u}^2}{\partial \rho^2} + \frac{1}{\rho^2} \cdot \frac{\partial \tilde{u}^2}{\partial \theta^2} + \frac{1}{\rho} \cdot \frac{\partial \tilde{u}}{\partial \rho} = 0$$

Cu M.S.V. căutăm soluție de forma:

$$u = Z(\rho)\Phi(\theta) \Rightarrow \begin{cases} \Phi''(\theta) + \lambda\Phi(\theta) = 0\\ \rho \cdot \frac{d}{d\rho}(\rho\frac{dZ}{d\rho}) - \lambda Z = 0 \end{cases}$$
$$\tilde{u}(\rho, \theta + 2\pi) = \tilde{u}(\rho, \theta) \Rightarrow \Phi(\theta + 2\pi) = \Phi(\theta) \Rightarrow$$
$$\Rightarrow \sqrt{\lambda} = n \in \mathbb{Z} \Rightarrow \lambda_n = n^2, n \in \mathbb{N} \Rightarrow$$

$$\Rightarrow \Phi_n(\theta) = A_n \cos n\theta + B_n \sin n\theta, n \ge 0.$$

Pentru $\lambda = n^2$ ecuația în $Z(\rho)$ devine:

$$\rho^2 \frac{d^2 \mathbf{Z}}{d\rho^2} + \rho \frac{d\mathbf{Z}}{d\rho} - n^2 \mathbf{Z} = 0$$

ecuația Euler.

Facem substituția $\rho=e^t$ pentru că $\rho>0$ și substituția de funcție $\tilde{Z}(t)=\mathrm{Z}(\rho)\Rightarrow \rho\frac{d\mathrm{Z}}{d\rho}=\tilde{\mathrm{Z}}'(t).$

Analog

$$\rho^2 \frac{d^2 \mathbf{Z}}{d\rho^2} = \tilde{\mathbf{Z}}''(t) - \tilde{\mathbf{Z}}'(t)$$

ecuația devenind:

$$\tilde{Z}''(t) - \tilde{Z}'(t) + \tilde{Z}'(t) - n^2 \tilde{Z}(t) = 0$$

 $\tilde{Z}''(t) - n^2 \tilde{Z}(t) = 0$.

Ecuația caracteristică:

$$r^{2} - n^{2} = 0 \Rightarrow r_{1,2} = \pm n \Rightarrow \tilde{Z}_{n}(t) = ae^{nt} + be^{-nt} \Rightarrow$$
$$Z_{n}(\rho) = a\rho^{n} + b\rho^{-n}, n \ge 1$$

pentru

$$n=0 \Rightarrow Z_0(\rho) = C_0 \ln \rho + C_1$$

Pentru că

$$\lim_{\rho \to 0} \ln \rho = -\infty, \ \lim_{\rho \to 0} \rho^{-n} = \infty,$$

pentru problema Dirichlet interioară luăm:

$$Z_n(\rho) = a\rho^n, n \ge 1, Z_0(\rho) = C_1 \Rightarrow$$

$$\tilde{u}(\rho,\theta) = \sum_{n=0}^{\infty} \rho^n (A_n \cos n\theta + B_n \sin \theta).$$

Condiția pe frontieră este:

$$u(R,\theta) = \sum_{n=0}^{\infty} R^n (A_n \cos n\theta + B_n \sin n\theta) =$$

$$= f(R \cos \theta, R \sin \theta) = \tilde{f}(\theta)$$
(7.9)

dezvoltăm pe $\tilde{f}(\theta)$ în serie Fourier pe $[0,2\pi],$ funcție de perioadă $T=2\pi_{.}$

$$\tilde{f}(\theta) = \sum_{n>0} (a_n \cos n\theta + b_n \sin n\theta),$$

unde

$$a_n = \frac{1}{\pi} \int_{0}^{2\pi} \tilde{f}(\theta) \cdot \cos n\theta d\theta, n \ge 1,$$

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} \tilde{f}(\theta) d\theta,$$

şi

$$b_n = \frac{1}{\pi} \int_{0}^{2\pi} \tilde{f}(\theta) \cdot \sin n\theta d\theta, n \ge 1$$

Din relația(7.9) avem:

$$\sum_{n>0} R^n (A_n \cos n\theta + B_n \sin n\theta) = \sum_{n>0} (a_n \cos n\theta + b_n \sin n\theta)$$

și din identificare avem:

$$\begin{cases} A_n = \frac{1}{\pi R^n} \int\limits_0^{2\pi} \tilde{f}(\theta) \cdot \cos n\theta d\theta, n \ge 1, \ A_0 = \frac{1}{2\pi} \int\limits_0^{2\pi} \tilde{f}(\theta) d\theta, \\ B_n = \frac{1}{\pi R^n} \int\limits_0^{2\pi} \tilde{f}(\theta) \cdot \sin n\theta d\theta, n \ge 1. \end{cases}$$

Observația 7.34 Dacă membrul drept al condiției pe frontieră se poate "liniariza"- adică se poate scrie în termenii $\sin n\theta$, $\cos n\theta$, coeficienții A_n , B_n se deduc prin identificare.

Altfel, se calculează integralele.

Se revine la notaţiile:
$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \Rightarrow u(x, y).$$

7.4.1 Exerciții rezolvate

Exercițiul 7.35

$$\begin{cases} \Delta u(x,y) = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \text{ in } x^2 + y^2 < 4\\ u(x,y) = x^3 + 3x^2y + x + y^2 \text{ pe } x^2 + y^2 = 4 \end{cases}$$

Soluție.

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \Rightarrow u(x, y) = u(\rho \cos \theta, \rho \sin \theta) = \tilde{u}(\rho, \theta)$$
$$\tilde{u}(\rho, \theta) = \sum_{n \ge 0} \rho^n (A_n \cos n\theta + B_n \sin n\theta)$$

$$u(2\cos\theta, 2\sin\theta) = \tilde{u}(2,\theta) = \sum_{n=0}^{\infty} 2^n (A_n \cos n\theta + B_n \sin n\theta) =$$
$$= 8\cos^3\theta + 24\cos^2\theta \sin\theta + 2\cos\theta + 4\sin^2\theta$$

"Liniarizăm" membrul drept:

$$\cos^3 \theta = \frac{3}{4} \cos \theta + \frac{1}{4} \cos 3\theta;$$
$$\sin^3 \theta = \frac{3}{4} \sin \theta - \frac{1}{4} \sin 3\theta$$
$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

$$8\cos^{3}\theta + 24\sin\theta - 24\sin^{3}\theta + 2\cos\theta + 4\sin^{2}\theta =$$

$$= 6\cos\theta + 2\cos3\theta + 24\sin\theta - 18\sin\theta + 6\sin3\theta + 2\cos\theta + 2-2\cos2\theta =$$

$$= 2 + 8\cos\theta + 6\sin\theta - 2\cos2\theta + 2\cos3\theta + 6\sin3\theta$$

Identificarea:

$$2^{0}(A_{0}\cos 0 + B_{0}\cdot 0) = 2 \Rightarrow A_{0} = 2$$

$$2^{1}(A_{1}\cos \theta + B_{1}\sin \theta) = 8\cos \theta + 6\sin \theta \Rightarrow A_{1} = 4, B_{1} = 3$$

$$2^{2}(A_{2}\cos 2\theta + B_{2}\sin 2\theta) = -2\cos 2\theta \Rightarrow A_{2} = -\frac{1}{2}, B_{2} = 0$$

$$2^{3}(A_{3}\cos 3\theta + B_{3}\sin 3\theta) = 2\cos 3\theta + 6\sin 3\theta \Rightarrow A_{3} = \frac{1}{4}, B_{3} = \frac{3}{4}$$

$$A_{n} = B_{n} = 0, n \geq 4$$

$$\tilde{u}(\rho,\theta) = 2 + 4\rho\cos\theta + 3\sin\theta - \frac{\rho^2}{2}\cdot\cos 2\theta + \frac{1}{4}\rho^3\cos 3\theta + \frac{3}{4}\rho^3\sin 3\theta$$

dar

$$\rho^{2} \cos^{2} \theta - \rho^{2} \sin^{2} \theta = x^{2} - y^{2}$$

$$(x+iy)^{3} = \rho^{3} \cos 3\theta + i\rho^{3} \sin 3\theta \Rightarrow \begin{cases} \rho^{3} \cos 3\theta = x^{3} - 3xy^{2} \\ \rho^{3} \sin 3\theta = -y^{3} + 3x^{2}y \end{cases}$$

$$u(x,y) = 2 + 4x + 3y - \frac{1}{2}(x^{2} - y^{2}) + \frac{1}{4}(x^{3} - 3xy^{2} + 9x^{2}y - 3y^{3}).$$

$$\begin{cases} \Delta u(x,y) = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \text{ in } x^2 + y^2 < 9\\ u(x,y) = y^3 + x^2 - y^2 + x \text{ pe } x^2 + y^2 = 9. \end{cases}$$

Soluție.

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \Rightarrow$$

$$\begin{cases} u(x,y) = u(\rho \cos \theta, \rho \sin \theta) = \tilde{u}(\rho,0), \ R = 3 \\ \tilde{u}(\rho,\theta) = \sum_{n=0}^{\infty} \rho^n (A_n \cos n\theta + B_n \sin n\theta) \end{cases}$$

 $\tilde{u}(3,\theta) = 27\sin^3\theta + 9\cos^2\theta - 9\sin^2\theta + 3\cos\theta \leftarrow \text{liniarizăm}$ condiția pe frontieră în coordonate polare

$$\sin^3 \theta = \frac{3}{4} \sin \theta - \frac{1}{4} \sin 3\theta$$
$$\cos^2 \theta - \sin^2 \theta = \cos 2\theta$$
$$\sum_{n=0}^{\infty} 3^n (A_n \cos n\theta + B_n \sin n\theta) =$$
$$= \tilde{u}(3, \theta) = \frac{81}{4} \sin \theta - \frac{27}{4} \sin 3\theta + 9 \cos 2\theta + 3 \cos \theta$$

Identificare:

$$A_0 = 0$$

 $3A_1 = 3 \Rightarrow A_1 = 1$
 $3B_1 = \frac{81}{4} \Rightarrow B_1 = \frac{27}{4}$
 $9A_2 = 9 \Rightarrow A_2 = 1, B_2 = 0$
 $27A_3 = 0 \Rightarrow A_3 = 0$
 $27B_3 = \frac{-27}{4} \Rightarrow B_3 = \frac{-1}{4}$
 $A_n = B_n = 0, n \ge 4$

$$\tilde{u}(\rho,\theta) = \rho \cos \theta + \frac{27}{4} \rho \sin \theta + \rho^2 \cos 2\theta - \frac{1}{4} \rho^3 \sin 3\theta.$$

$$Dar \rho^2 \cos^2 \theta - \rho^2 \sin \theta = x^2 - y^2$$

$$(x+iy)^3 = \rho^3 \cos 3\theta + i\rho^3 \sin 3\theta \Rightarrow \rho^3 \sin 3\theta = 3x^2y - y^3$$

$$u(x,y) = x + \frac{27}{4}y + x^2 - y^2 - \frac{3}{4}x^2y + \frac{1}{4}y^3.$$

Exercițiul 7.37 Aplicație P.Dirichlet

$$\begin{cases} \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \text{ in } x^2 + y^2 < 4\\ u(x, y) = x^3 + xy + y^2 \text{ pe } x^2 + y^2 = 4. \end{cases}$$

Soluție.

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \Rightarrow$$

$$\begin{cases} u(x,y) = u(\rho \cos \theta, \rho \sin \theta) = \tilde{u}(\rho,\theta) \\ \tilde{u}(\rho,\theta) = \sum_{n \ge 0} \rho^n (A_n \cos n\theta + B_n \sin n\theta) \end{cases}$$

$$u(2\cos\theta, 2\sin\theta) = \sum_{n=0}^{\infty} 2^{n} (A_n \cos n\theta + B_n \sin n\theta) =$$

$$= 8\cos^3\theta + 4\sin\theta\sin\theta + 4\sin^2\theta \leftarrow \text{liniarizăm}.$$

$$Dar \ u(2\cos\theta, 2\sin\theta) = \tilde{u}(2,\theta)$$

$$\sum_{n=0}^{\infty} 2^n (A_n \cos n\theta + B_n \sin n\theta) = 2 - 2\cos 2\theta + 2\sin 2\theta + 6\cos \theta + 2\cos 3\theta$$

$$\cos^3 \theta = \frac{3}{4} \cos \theta + \frac{1}{4} \cos 3\theta$$
$$\sin^3 \theta = \frac{3}{4} \sin \theta - \frac{1}{4} \sin 3\theta$$

$$\sum_{n=0}^{\infty} 2^n (A_n \cos n\theta + B_n \sin n\theta) = 2 + 6\cos\theta - 2\cos\theta + 2\sin 2\theta + 2\cos 3\theta$$

Identificarea:

$$2^{0}(A_{0} + B_{0}0) = 2 \Rightarrow A_{0} = 2$$

$$2^{1}(A_{1}\cos\theta + B_{1}\sin\theta) = 6\cos\theta \Rightarrow A_{1} = 3, B_{1} = 0$$

$$2^{2}(A_{2}\cos2\theta + B_{2}\sin2\theta) = -2\cos2\theta + 2\sin2\theta \Rightarrow A_{2} = -\frac{1}{2}, B_{2} = \frac{1}{2}$$

$$2^{3}(A_{3}\cos3\theta + B_{3}\sin3\theta) = 2\cos3 \Rightarrow A_{3} = \frac{1}{4}, B_{3} = 0$$

$$A_{n} = 0, B_{n} = 0, n \geq 4$$

$$\tilde{u}(\rho,\theta) = 2 + 3\rho\cos\theta - \frac{\rho^2}{2}\cos 2\theta + \frac{\rho^2}{2}\sin 2\theta + \frac{1}{4}\rho^3\cos 3\theta.$$

Dar

$$\rho\cos\theta = x$$

$$\cos 2\theta = \cos^2\theta - \sin^2\theta$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 3\theta = 4\cos^3\theta - 3\cos\theta$$

$$\rho^2 = x^2 + y^2$$

$$u(x,y) = 2 + 3x - \frac{x^2}{2} + \frac{y^2}{2} + xy + x^3 - \frac{3}{4}x(x^2 + y^2).$$

Exercițiul 7.38 Să se rezolve problema Dirichlet pe

$$D = \{(x, y)/0 \le x \le 1, 0 \le y \le 1\}$$

dată astfel:

$$\Delta u = 0, \ u(x,0) = 0, \ u(x,1) = x, \ u(0,y) = 0$$

şi

$$u(1,y) = \sin \frac{\pi y}{2}.$$

Soluție.

Facem substituția $u(x,y) = u_1(x,y) + u_2(x,y)$ unde

$$\begin{cases} \Delta u_1 = 0, \text{ pe } [0,1] \times [0,1] \\ u_1(x,0) = 0, u_1(x,1) = x \\ u_1(0,y) = u_1(1,y) = 0 \end{cases}$$

рe

$$\begin{cases} \Delta u_2 = 0, \text{ pe } [0,1] \times [0,1] \\ u_2(x,0) = u_2(x,1) = 0 \\ u_2(0,y) = 0, u_2(1,y) = \sin \frac{\pi y}{2} \end{cases}$$

Aplicăm M.S.V. pentru cele 2 probleme. $u_1(x,y) = X(x) \cdot T(y)$ a.î.

$$X''(x) \cdot T(y) + X(x) \cdot T''(y) = 0 \Rightarrow$$

$$\frac{X''(x)}{X(x)} = -\frac{T''(y)}{T(y)} = -\lambda \Rightarrow$$

$$\begin{cases} X''(x) + \lambda X(x) = 0 \\ T''(y) - \lambda T(y) = 0 \\ X(0) = X(1) = 0. \end{cases}$$

Din:

$$\begin{cases} X''(x) + \lambda X(x) = 0 \\ X(0) = X(1) = 0 \end{cases} \Rightarrow$$
$$T(0) = 0.$$
$$\begin{cases} \lambda_k = +(k\pi)^2, k = 1, 2, \dots \\ X_k(x) = a_k \cdot \sin(k\pi x), k \ge 1. \end{cases}$$

Apoi:

$$\begin{cases} T_k''(y) - (k\pi)^2 T_k(y) = 0 \\ T_k(0) = 0, k = 1, 2, \dots \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} T_k(y) = c_k \cdot e^{k\pi y} + d_k \cdot e^{-k\pi y} \\ T_k(0) = 0 = c_k + d_k \end{cases}$$

$$\Rightarrow T_k(y) = 2c_k \cdot \operatorname{sh}(k\pi y) = d_k \operatorname{sh}(k\pi y), k \ge 1$$

Deci

Deci:

$$u_1^k(x,y) = A_k \cdot \sin(k\pi x) \cdot \operatorname{sh}(k\pi y)$$

$$u_1(x,y) = \sum_{k=1}^{\infty} A_k \cdot \sin(k\pi x) \cdot \operatorname{sh}(k\pi y)$$

Aflăm A_k din condiția $u_1(x,1) = x \Rightarrow$

$$\sum_{k=1}^{\infty} A_k \cdot \sin k\pi x \cdot \sinh k\pi = x \Rightarrow$$

$$A_k \cdot \sinh k\pi = \frac{2}{1} \int_0^1 x \cdot \sin k\pi x dx =$$

$$= -2x \cdot \frac{\cos k\pi x}{k\pi} \Big|_0^1 + 2 \int_0^1 \frac{\cos k\pi x}{k\pi} dx =$$

$$= -\frac{2}{k\pi} [(-1)^k - 1] = \frac{2}{k\pi} [1 - (-1)^k].$$

 $A_n = \frac{2}{\pi} \cdot \frac{1 - (-1)^n}{n} \cdot \frac{1}{\sinh \pi},$

deci soluția pentru prima problemă Dirichlet este

$$u_1(x,y) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} \cdot \frac{\sinh \pi y}{\sinh \pi} \cdot \sin(n\pi x)$$

Aplicăm tot M.S.V. pentru cea de-a doua problemă:

$$u_2(x,y) = X(x) \cdot Y(y)$$

unde:
$$-\frac{X''(x)}{X(x)} = \frac{Y''(y)}{Y(y)} = -\lambda$$

Unde din conditii:

$$\begin{cases} Y''(y) + \lambda Y(y) = 0 \\ Y(0) = Y(1) = 0 \end{cases}$$

respectiv

$$\begin{cases} X''(x) - \lambda X(x) = 0 \\ X(0) = 0. \end{cases}$$

Din problema lui Y(y) obţinem

$$\lambda_n = (n\pi)^2, n = 1, 2, \dots$$

și deci

$$Y_n(y) = \alpha_n \cdot \sin(n\pi y), n = 1, 2, \dots$$

Din problema lui $X_n(x) \Rightarrow$

$$X_n(x) = \beta_n e^{n\pi x} + \gamma_n e^{-n\pi x}$$

$$X_n(0) = 0 \Rightarrow -\beta_n = \gamma_n \Rightarrow X_n(x) = \sigma_n \operatorname{sh}(n\pi x)$$

 $u_2^n(x,y) = B_n \cdot \sin(n\pi x) \cdot \sin(n\pi y)$ și căutăm soluția de forma:

$$u_2(x,y) = \sum_{n=1}^{\infty} B_n \cdot \operatorname{sh}(n\pi x) \cdot \sin(n\pi y).$$

Din condiția $u_2(1,y) = \sin \frac{\pi y}{2}$ găsim:

$$\sum_{n=1}^{\infty} B_n \cdot \sinh(n\pi) \cdot \sin n\pi y = \sin \frac{\pi y}{2}$$

$$B_n \cdot \sinh \pi = 2 \int_0^1 \sin n\pi y \cdot \sin \frac{\pi y}{2} dy =$$

$$= \int_0^1 \left[\cos(n - \frac{1}{2})\pi y - \cos(n + \frac{1}{2})\pi y\right] dy =$$

$$= \frac{1}{n - \frac{1}{2}} \cdot \sin(n - \frac{1}{2})\pi y \Big|_0^1 - \frac{1}{n + \frac{1}{2}} \cdot \sin(n + \frac{1}{2})\pi y \Big|_0^1 =$$

$$= \frac{2\sin(n\pi - \frac{\pi}{2})}{2n - 1} - \frac{2\sin(n\pi + \frac{\pi}{2})}{2n + 1} =$$

$$= 2(-1)^{n+1} \left(\frac{1}{2n - 1} + \frac{1}{2n + 1}\right) = \frac{4n(-1)^{n+1}}{4n^2 - 1} \Rightarrow$$

$$B_n = \frac{4n(-1)^{n-1}}{4n^2 - 1} \cdot \frac{1}{\sinh \pi}, n = 1, 2, \dots$$

$$u_2(x, y) = 2 \sum_{n=1}^{\infty} \frac{2n(-1)^{n-1}}{4n^2 - 1} \cdot \frac{\sinh(n\pi x)}{\sinh \pi} \cdot \sin(n\pi y).$$

Deci:

$$u(x,y) = \frac{2}{\pi} \left(\sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n} \cdot \frac{\sinh \pi y}{\sinh \pi} \cdot \sin n\pi x \right) +$$

$$+2\sum_{n=1}^{\infty}\frac{2n(-1)^{n-1}}{4n^2-1}\cdot\frac{\sinh(n\pi x)}{\sinh\pi}\cdot\sin n\pi y.$$

7.4.2 Exerciții propuse

Exercițiul 7.39 Rezolvați următoarele P.D.

$$\begin{cases} \Delta u = 0 \text{ în } x^2 + y^2 < 1\\ u(x,y) = \frac{1}{10+6x} \text{ pe } x^2 + y^2 = 1 \end{cases}$$

$$\begin{cases} \Delta u(x,y) = 0 \text{ în } x^2 + y^2 < 1\\ u(x,y) = x^3 + y^3 \text{ pe } x^2 + y^2 = 1. \end{cases}$$

Bibliografie

- [1] Gh. Barbu, *Matematici speciale*, Editura Universității din Pitești, 1993.
- [2] C. Bercia, R. Bercia *Matematici speciale: teorie și aplicații*, Editura Printech, București, 2010.
- [3] N. Boboc, *Funcții complexe*, Editura Didactică și Pedagogică, București, 1969.
- [4] Brînzănescu, Vasile, Stănăşilă, Octavian, *Matematici speciale*, Editura All, Bucureşti, 1998.
- [5] V. Banţă, Ecuaţii cu derivate parţiale Culegere de probleme, Editura Universităţii Bucureşti, 1984.
- [6] S. Chiriță, *Probleme de matematici superioare*, Editura Didactică și Pedagogică, București, 1989.
- [7] T. L. Costache, Gh. Oprişan, *Transformări integrale*, Editura Printech, Bucureşti, 2004.
- [8] A. Halanay, *Ecuații diferențiale*, Editura Didactică și Pedagogică, București, 1972.
- [9] V. Iftimie, V. Olariu, *Ecuații cu derivate parțiale*, București, 1980.

- [10] Ş. Mirică, Ecuații diferențiale, București, 1979.
- [11] Gh. Mocanu, Gh. Stoian, Ec. Vişinescu, Teoria funcțiilor de o variabilă complexă, Culegere de probleme, Editura Didactică și Pedagogică, București, 1970.
- [12] A. Niţă, T. L. Costache, R. Dumitrache, *Matematici speciale. Noţiuni teoretice. Aplicaţii*, Editura Printech, Bucureşti, 2007.
- [13] V. Olariu, V. Prepeliţă, *Matematici speciale*, Editura Didactică și Pedagogică, București, 1985.
- [14] Marin Nicolae Popescu, *Matematici speciale*, Editura Universității din Pitești, 2002.
- [15] V. Rudner, C. Nicolescu *Probleme de matematici speciale*, Editura Didactică și Pedagogică, București, 1982.
- [16] G. Şabac, *Matematici speciale*, Editura Didactică și Pedagogică, București, 1980.
- [17] A.N. Tihonov, A.A. Samarski *Ecuațiile fizicii matematice*, Editura Didactică Tehnică, București, 1956.
- [18] N. Teodorescu, V. Olariu, *Ecuații diferențiale și cu derivate parțiale*, Editura Tehnică, București, 1977-1979 (vol I, II, III).
- [19] V. S. Vladimirov, Culegere de probleme de ecuațiile fizicii matematice, Editura Științică și Enciclopedică, București, 1981.