INE5403 - Fundamentos de Matemática Discreta para a Computação

- 2) Fundamentos
 - 2.1) Conjuntos e Sub-conjuntos
 - 2.2) Números Inteiros
 - 2.3) Funções
 - 2.4) Seqüências e Somas
 - 2.5) Crescimento de Funções

 Uma seqüência é uma estrutura ordenada usada para representar lista ordenada de elementos.

<u>Def.</u>: uma **seqüência** é uma função de um subconjunto dos inteiros, {0,1,2,...} ou {1,2,3,...} para um conjunto S.

- a_n é a imagem do inteiro n
- a_n é um termo da seqüência
- Usamos a notação {a_n} para denotar a seqüência
- Note que a_n representa um termo da seqüência {a_n}

- Descrevemos seqüências listando os seus termos em ordem crescente do índice.
- <u>Exemplo</u>: considere a sequência $\{a_n\}$, onde:

$$a_n = 1/n$$

A lista dos termos desta seqüência, ou seja:

$$a_1, a_2, a_3, a_4, \dots$$

– Começa com:

- <u>Exemplo</u>: uma progressão aritmétrica é uma sequência da forma:
 - a, a+d, a+2d,..., a+nd
 - Ex.: $\{s_n\}$, onde $s_n = -1 + 4n$
 - a lista de termos s₀, s₁, s₂, s₃,... começa com:

- <u>Exemplo</u>: uma progressão geométrica é uma sequência da forma:
 - a, ar, ar²,..., arⁿ
 - Ex.: $\{c_n\}$, onde $c_n=343$
 - a lista de termos c₁, c₂, c₃, c₄,... começa com:
 10,50,250,1250,...

- Seqüências finitas do tipo a₁,a₂,...,a_n são muito usadas na Ciência da Computação
 - Também são chamadas de strings
 - O comprimento de uma string é o seu nro de termos
- <u>Exemplo</u>: a sequência abcd é uma string de comprimento 4.

- Problema: encontrar uma fórmula (regra geral) para a construção dos termos de uma seqüência.
 - Às vezes, apenas alguns termos são conhecidos (são solução de algum problema).
 - Como identificar a seqüência?
- Os primeiros termos não definem a sequência inteira:
 - existem infinitas seqüências que começam com os mesmos termos iniciais
 - mas eles podem ajudar a montar uma conjectura sobre a identidade da sequência

 Ao tentar deduzir uma regra de formação, busca-se um padrão nos primeiros termos.

 Pode-se também tentar determinar como um termo é produzido a partir dos que o precedem.

- Algumas questões úteis:
 - O mesmo valor reaparece?
 - Há termos obtidos a partir dos anteriores pela adição de uma qtde fixa?
 - ou de uma qtde que dependa da posição?
 - Há termos obtidos a partir dos anteriores pela multiplicação por um valor fixo?
 - Há termos obtidos a partir de uma combinação dos anteriores?
 - Há algum termo que se repete?

 Exemplo: encontre fórmulas para a seqüência cujos 1ros termos são dados por: 1,1/2,1/4,1/8,1/16

- os denominadores são potências de 2
- opção possível: a_n=1/2ⁿ⁻¹
- ou: PG com a=1 e r=1/2

 Exemplo: encontre fórmulas para as seqüências cujos 1ros termos são dados por: 1,3,5,7,9

- cada termo obtido pela adição de 2 ao anterior
- opção possível: a_n=2n-1
- ou: PA com a=1 e d=2

Exemplo: encontre fórmulas para as seqüências cujos
 1ros termos são dados por: 1,-1,1,-1,1

- os termos alternam entre 1 e -1
- opção possível: $a_n = (-1)^{n+1}$
- ou: PG com a=1 e r=-1

- **Exemplo**: como se pode produzir uma seqüência cujos 10 primeiros termos são dados por 1,2,2,3,3,3,4,4,4,4?
 - o 1 aparece uma vez
 - o 2 aparece duas vezes,...
 - Possível regra de formação: "o inteiro n aparece exatamente n vezes"

• Exemplo: como se pode produzir uma seqüência cujos 10 primeiros termos são dados por 5,11,17,23,29,35,41,47,53,59?

- cada um dos 10 primeiros termos é obtido pela adição de 6 ao anterior
- possível regra de formação: "o n-ésimo termo pode ser produzido começando-se com 5 e adicionando-se 6 por n-1 vezes"
- ou seja: o n-ésimo termo é 5+6(n-1)=6n-1

- Outra técnica: comparar os termos da sequência de interesse com os termos de uma sequência bem conhecida, como:
 - termos de uma PA, PG
 - quadrados perfeitos
 - cubos perfeitos

Seqüências úteis

n-ésimo termo	primeiros 10 termos
n ²	1,4,9,16,25,36,49,64,81,100,
n ³	1,8,27,64,125,216,343,512,729,1000,
n ⁴	1,16,81,256,625,1296,2401,4096,6561,10000,
2 ⁿ	2,4,8,16,32,64,128,256,512,1024,
3 ⁿ	3,9,27,81,243,729,2187,6561,19683,59049,
n!	1,2,6,24,120,720,5040,40320,362880,3628800

- Exemplo: Deduza uma fórmula simples para a_n se os 10 1ros termos da seqüência {a_n} são
 1,7,25,79,241,727,2185,6559,19681,59047.
- Resposta: as diferenças entre termos consecutivos não indicam nenhum padrão...
 - Razão entre termos consecutivos:
 - embora variável, fica próxima de 3
 - suspeita: fórmula envolvendo 3ⁿ
 - comparando com a seqüência {3ⁿ}:
 - n-ésimo termo = 2 a menos do correspondente
 - ou seja: $a_n = 3^n 2$

Neil Sloane:

- Enciclopédia da Seqüências de inteiros
- Coleção de mais de 8000 seqüências na Internet
- Também tem um programa que busca na enciclopédia quais as seqüências que combinam com termos iniciais fornecidos..

• Exercício (seleção para a google): encontre a próxima linha da sequência abaixo:

```
1
1 1
2 1
1 2 1 1
```

Somas

Notação usada para expressar a soma dos termos:

$$a_m, a_{m+1}, \dots, a_n$$

a partir da seqüência {a_n}:

$$\sum_{j=m}^{n} a_{j}$$

Note que a escolha da letra "j" como índice é arbitrária

Somas

 <u>Exemplo</u>: A soma dos 100 primeiros termos da seqüência {a_n}, onde a_n=1/n, para n=1,2,3,.... é dada por:

$$\sum_{j=1}^{100} \frac{1}{j}$$

Somas

- Exemplo: qual o valor de $\sum_{j=1}^{5} j^2$?
 - Solução: temos

$$\sum_{j=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

Deslocamento do índice

- Útil quando duas somas precisam ser adicionadas, mas os seus índices não combinam.
- Importante fazer as mudanças apropriadas no somando.
- **Exemplo**: Suponha que tenhamos a soma: $\sum_{j=1}^{5} j^2$
 - mas precisamos que o índice vá de 0 a 4, em vez de 1 a 5
 - para isto, fazemos k=j-1
 - o termo j^2 se torna $(k+1)^2$

$$\sum_{j=1}^{5} j^2 = \sum_{k=0}^{4} (k+1)^2 = 55$$

Somas duplas

- Aparecem em muitos contextos.
 - Por exemplo: na análise de loops "aninhados" em programas
- Exemplo: $\sum_{i=1}^{4} \sum_{j=1}^{3} ij$
- Para <u>avaliar</u> a soma dupla, expanda a soma interna e então compute a externa:

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i+2i+3i) =$$

$$= \sum_{i=1}^{4} 6i =$$

$$= 6+12+18+24=60$$

Somas completas

- Pode-se usar esta notação para adicionar todos os valores de uma função ou termos de um conjunto indexado.
- Ou seja, escreve-se:

$$\sum_{s \in S} f(s)$$

 para representar a soma dos valores f(s), para todos os membros s de S.

Somas completas

- Exemplo: qual o valor de $\sum_{s \in \{0,2,4\}} s$?
 - Solução:

$$\sum_{s \in \{0,2,4\}} s = 0 + 2 + 4 = 6$$

Somas conhecidas

- Certas somas aparecem repetidamente ao longo da matemática discreta.
- Útil ter uma coleção de fórmulas para estas somas.
- Há muitas maneiras de provar/obter estas somas.
 - Mas note que todas elas podem ser provadas por indução matemática.

Algumas fórmulas de somas úteis

<u>Soma</u>	Forma fechada
$\sum_{k=0}^{n} ar^{k}, (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, (r \neq 1)$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$

Uso das somas conhecidas

• Exemplo: Encontre
$$\sum_{k=50}^{100} k^2$$

- Solução:
 - primeiro note que: $\sum_{k=50}^{100} k^2 = \sum_{k=1}^{100} k^2 \sum_{k=1}^{49} k^2$
 - então, usando a fórmula para Σ (k²) da tabela, obtemos:

$$\sum_{k=50}^{100} k^2 = \frac{100 \cdot 101 \cdot 201}{6} - \frac{49 \cdot 50 \cdot 99}{6} = 297925$$

Uso das somas conhecidas

- Exemplo: Seja x um nro real com |x| < 1. Ache $\sum_{n=0}^{\infty} x^n$
- <u>Solução</u>: pela primeira fórmula da tabela, com a=1 e
 r=x, obtemos:

$$\sum_{n=0}^{k} x^{n} = \frac{x^{k+1} - 1}{x - 1}$$

- Então, já que |x|<1, x^{k+1} se aproxima de zero quando k tende a infinito.
 - portanto: $\sum_{n=0}^{\infty} x^n = \lim_{k \to \infty} \frac{x^{k+1} 1}{x 1} = \frac{-1}{x 1} = \frac{1}{1 x}$