Worksheet 8 Solution

March 17, 2020

Question 1

a. $P(n): \forall n \in \mathbb{N}, n \leq 2^n$. $\forall k \in \mathbb{N}, P(0) \land P(k) \Rightarrow P(k+1)$

Or, with P fully expanded, $\forall k \in \mathbb{N}, \ 0 \leq 2^0 \land k \leq 2^k \Rightarrow k+1 \leq 2^{k+1}$

b. Base Case:

Let n = 0.

Then,

$$(0) \le 2^0$$
 (1)
 $0 \le 1$ (2)

Since, $n \leq 2^n$ is true for n = 0, the base case holds.

Inductive Case:

Let $k \in \mathbb{N}$, and assume that P(k) is true.

Then,

$$2^{k+1} = 2^k + 2^k \tag{1}$$

$$\geq k + k$$
 (2)

(3)

Then,

$$2^{k+1} \ge k + k \tag{4}$$
$$\ge k + 1 \tag{5}$$

$$\geq k+1\tag{5}$$

by the fact that $k \in \mathbb{N}$ and $k \ge 1$.

Then, it follows from proof by induction that the statement $k \leq 2^k$ is true.

Question 2

• Base Case:

Let n = 0.

Then,

$$\sum_{j=0}^{0} T_j = \frac{(0)(0+1)(0+2)}{6} \tag{1}$$

$$=0 (2)$$

Since $T_0 = 0$, the base case holds.

Inductive Case:

Let $k \in \mathbb{N}$, and assume that $\sum_{j=0}^{k} T_j = \frac{k(k+1)(k+2)}{6}$ is true.

Then,

$$\sum_{i=0}^{k} T_j + T_{k+1} = \frac{k(k+1)(k+2)}{6} + \frac{(k+1)(k+2)}{2}$$
 (1)

$$=\frac{k(k+1)(k+2)}{6} + \frac{3(k+1)(k+2)}{6} \tag{2}$$

$$=\frac{(k+1)(k+2)(k+3)}{6} \tag{3}$$

Then, it follows from proof by induction that the statement $\forall n \in \mathbb{N}, \sum_{j=0}^{k} T_j = \frac{k(k+1)(k+2)}{6}$ is true.

Question 3

a. Let $x \in \mathbb{R}^+$, and let $n \in \mathbb{N}$. Assume $(1+x)^n \ge 1 + nx$.

Question 4