Lecture 14 — Learning Theory (Part 1 of 2)

Alex Schwing and Matus Telgarsky

March 1, 2018

Theory

CS Theory.

- Design and analysis of algorithms.
- ► Time complexity, space complexity, ...
- Often worst-case.

Theory

CS Theory.

- Design and analysis of algorithms.
- ► Time complexity, space complexity, ...
- Often worst-case.

ML Theory.

- ▶ Design and analysis of *ML* algorithms.
- ► Time complexity, space complexity, sample complexity, label complexity, . . .
- Often average-case.

Standard ML setup.

- ▶ Want to do well on some *task*; have some input/output pairs.
- ▶ We choose a performance criterion and a family of models.
- ▶ We pick a good model wrt the criterion on the data.

Standard ML setup.

- ▶ Want to do well on some *task*; have some input/output pairs.
- ▶ We choose a performance criterion and a family of models.
- We pick a good model wrt the criterion on the data.
- Examples: linear regression, logistic regression, SVM, ... sorting, protein folding, ...!
- ► Counterexamples (for now): *k*-nn, ...

Standard ML setup.

- ▶ Want to do well on some *task*; have some input/output pairs.
- ▶ We choose a performance criterion and a family of models.
- We pick a good model wrt the criterion on the data.
- Examples: linear regression, logistic regression, SVM, ... sorting, protein folding, ...!
- **▶ Counterexamples** (for now): *k*-nn, . . .

Formal questions.

- Representation/Approximation. The limitations of our model choice.
- ▶ **Optimization.** Searching for the best model.
- ► **Generalization.** Gap between training and testing errors.

▶ Helps us reason about machine learning.

- Helps us reason about machine learning.
- ► Helps us improve/make algorithms.

- ▶ Helps us reason about machine learning.
- ► Helps us improve/make algorithms.
- ▶ We are curious.

- Helps us reason about machine learning.
- ► Helps us improve/make algorithms.
- ▶ We are curious.
- Math is comfy.

Representation/Approximation.

[Questions so far?]

Representation/Approximation.

[Questions so far?]

Representation failures.

▶ Linear functions can fail on even some simple problems.

Representation successes.

Polynomial Kernel SVM, RBF Kernel SVM, 2-layer neural nets can fit any continuous function.

Linear functions do not suffice.

Theorem (Minsky-Papert, '69). Consider the 4-point dataset where the corners of the square $\{\pm 1, \pm 1\}$ are labeled with their product. On this data, every linear classifier makes at least 1 error.

Linear functions do not suffice.

Theorem (Minsky-Papert, '69). Consider the 4-point dataset where the corners of the square $\{\pm 1, \pm 1\}$ are labeled with their product. On this data, every linear classifier makes at least 1 error.

▶ Picture "proof". [Must pass between two positives and one negative, fail on other negative.]

Linear functions do not suffice.

Theorem (Minsky-Papert, '69). Consider the 4-point dataset where the corners of the square $\{\pm 1, \pm 1\}$ are labeled with their product. On this data, every linear classifier makes at least 1 error.

- ▶ Picture "proof". [Must pass between two positives and one negative, fail on other negative.]
- Algebraic proof.

Consider any halfspace $H := \{x \in R^2 : a^{\top}x + b \ge 0\}.$

▶ If $\{u, -u\} \in H$ for some u, then $b \ge 0$:

$$a^{\top}u + b \ge 0$$
 \wedge $a^{\top}(-u) + b \ge 0$ \Longrightarrow $a^{\top}(u - u) + 2b \ge 0$
 \Longrightarrow $b \ge 0$.

▶ If some $v \notin H$ and b > 0, then $-v \in H$:

$$a^{\top}v + b < 0 \Longrightarrow a^{\top}(-v) - b > 0 \Longrightarrow a^{\top}(-v) + b > 2b \ge 0.$$

So for any (a, b), at least one of the two plusses are wrong, or one of the minuses are wrong.

3-layer networks approximate continuous functions.

Theorem. For any continuous $f:[0,1]^d\to\mathbb{R}$ and any $\epsilon>0$, there exists a 3-layer network g with

$$\int_{[0,1]^d} |f(x) - g(x)| \, \mathrm{d} x \le \epsilon.$$

3-layer networks approximate continuous functions.

Theorem. For any continuous $f:[0,1]^d\to\mathbb{R}$ and any $\epsilon>0$, there exists a 3-layer network g with

$$\int_{[0,1]^d} |f(x) - g(x)| \, \mathrm{d} x \le \epsilon.$$

▶ **Proof** (sketch). First approximate *f* with a step (piecewise constant) function; then approximate each step function with a 2-layer network (details in lecture).

[The second of three analysis topics; questions so far?]

- [The second of three analysis topics; questions so far?]
 - ► The optimization question:

 How do we choose a function which fits the data?

[The second of three analysis topics; questions so far?]

- ► The optimization question: How do we choose a function which fits the data?
- In more detail, (Regularized) Emprical Risk Minimization (ERM): We have data $((x_i, y_i))_{i=1}^n$, predictors \mathcal{F} , a regularizer Reg, and a performance criterion ℓ ; We seek to optimize

$$\underset{f \in \mathcal{F}}{\arg\min} \, \widehat{\mathsf{Risk}}(f) + \mathsf{Reg}(f) \qquad \text{where} \quad \widehat{\mathsf{Risk}}(f) := \frac{1}{n} \sum_{i=1}^{n} \ell(f, x_i, y_i).$$

- [The second of three analysis topics; questions so far?]
 - ► The optimization question:

 How do we choose a function which fits the data?
 - In more detail, (Regularized) Emprical Risk Minimization (ERM): We have data $((x_i, y_i))_{i=1}^n$, predictors \mathcal{F} , a regularizer Reg, and a performance criterion ℓ ;

We seek to optimize

$$\underset{f \in \mathcal{F}}{\arg\min} \, \widehat{\mathsf{Risk}}(f) + \mathsf{Reg}(f) \qquad \text{where} \quad \widehat{\mathsf{Risk}}(f) := \frac{1}{n} \sum_{i=1}^{n} \ell(f, x_i, y_i).$$

Example: Ridge regression; $f_w(x) := w^T x$ for some w, and

$$\ell(f_w, x, y) = (w^{\top} x - y)^2 / 2, \qquad \text{Reg}(f) := \frac{\lambda}{2} ||w||^2.$$

We can find w with gradient descent (or "closed form" $(X^{\top}X + \lambda I)^{-1}X^{\top}v$).

Recall the Ridge Regression Estimator in matrix/vector form:

$$\hat{w} := \underset{w \in \mathbb{R}^d}{\arg\min} \frac{1}{2n} \|Xw - y\|_2^2 + \frac{\lambda}{2} \|w\|_2^2.$$

Let's consider our three analysis questions.

Also: what is the role of λ ?

Recall the *Ridge Regression Estimator* in matrix/vector form:

$$\hat{w} := \underset{w \in \mathbb{R}^d}{\arg \min} \frac{1}{2n} \|Xw - y\|_2^2 + \frac{\lambda}{2} \|w\|_2^2.$$

Let's consider our three analysis questions.

Also: what is the role of λ ?

▶ **Representation:** not just a linear predictor, moreover $\left\{x\mapsto w^{\top}x:\|w\|\leq\sqrt{1/\lambda}\right\}$ since

$$\|\hat{w}\|^2 \le \frac{1}{n\lambda} \|X\hat{w} - y\|^2 + \|\hat{w}\|^2 \le \frac{1}{n\lambda} \|X0 - y\|^2 + \|0\|^2 \le \frac{1}{\lambda}.$$

Recall the *Ridge Regression Estimator* in matrix/vector form:

$$\hat{w} := \underset{w \in \mathbb{R}^d}{\arg\min} \frac{1}{2n} \|Xw - y\|_2^2 + \frac{\lambda}{2} \|w\|_2^2.$$

Let's consider our three analysis questions.

Also: what is the role of λ ?

▶ **Representation:** not just a linear predictor, moreover $\left\{x\mapsto w^\top x: \|w\| \leq \sqrt{1/\lambda}\right\}$ since

$$\|\hat{w}\|^2 \le \frac{1}{n\lambda} \|X\hat{w} - y\|^2 + \|\hat{w}\|^2 \le \frac{1}{n\lambda} \|X0 - y\|^2 + \|0\|^2 \le \frac{1}{\lambda}.$$

▶ **Optimization:** as discussed in class, to achieve accuracy ϵ , gradient descent needs $\frac{\sigma_{\max}(X) + \lambda}{\sigma_{\min}(X) + \lambda} \ln(1/\epsilon)$ iterations.

Recall the *Ridge Regression Estimator* in matrix/vector form:

$$\hat{w} := \underset{w \in \mathbb{R}^d}{\arg\min} \frac{1}{2n} \|Xw - y\|_2^2 + \frac{\lambda}{2} \|w\|_2^2.$$

Let's consider our three analysis questions.

Also: what is the role of λ ?

▶ **Representation:** not just a linear predictor, moreover $\left\{x\mapsto w^\top x: \|w\| \leq \sqrt{1/\lambda}\right\}$ since

$$\|\hat{w}\|^2 \le \frac{1}{n\lambda} \|X\hat{w} - y\|^2 + \|\hat{w}\|^2 \le \frac{1}{n\lambda} \|X0 - y\|^2 + \|0\|^2 \le \frac{1}{\lambda}.$$

- ▶ **Optimization:** as discussed in class, to achieve accuracy ϵ , gradient descent needs $\frac{\sigma_{\max}(X) + \lambda}{\sigma_{\min}(X) + \lambda} \ln(1/\epsilon)$ iterations.
- Generalization: coming up next!

[Final analysis topic; questions so far?]

[Final analysis topic; questions so far?] We train on some data because that is what we have. But what we want is good future performance.

- ▶ **Generalizing** means similar past and future performance.
- Overfitting means (vastly) better past performance.

[Final analysis topic; questions so far?] We train on some data because that is what we have. But what we *want* is good *future* performance.

- ▶ **Generalizing** means similar past and future performance.
- Overfitting means (vastly) better past performance.

Example: Suppose data $((x_i, y_i))_{i=1}^n$, with x_i random, and

$$y_i := \bar{w}^\top x_i + \xi_i$$

with independent and zero mean $(\xi_i)_{i=1}^n$.

- Algo 1: ordinary least squares.
- ▶ Algo 2: fit an *n*-degree polynomial.

[Final analysis topic; questions so far?] We train on some data because that is what we have. But what we *want* is good *future* performance.

- ▶ **Generalizing** means similar past and future performance.
- Overfitting means (vastly) better past performance.

Example: Suppose data $((x_i, y_i))_{i=1}^n$, with x_i random, and

$$y_i := \bar{w}^\top x_i + \xi_i$$

with independent and zero mean $(\xi_i)_{i=1}^n$.

- ► Algo 1: ordinary least squares.
- ▶ Algo 2: fit an *n*-degree polynomial.

Second should overfit.

To formalize this, need a model for unseen data.

Models for data.

Learning theory provides many candidate models.

- Statistical setting: training data and future data drawn IID (idependent and identically distributed) from some distribution. (An average case setting.)
- ▶ **Online** setting: an adversary constructs examples with full knowledge of what we are doing. (A *worst case* setting.)

Which one is more realistic?

Models for data.

Learning theory provides many candidate models.

- Statistical setting: training data and future data drawn IID (idependent and identically distributed) from some distribution. (An average case setting.)
- ▶ **Online** setting: an adversary constructs examples with full knowledge of what we are doing. (A *worst case* setting.)

Which one is more realistic?

Example: spam filtering.

- ▶ On the one hand, spammers observe what google does, try to break its detection.
- On the other hand, they don't know exactly what google is doing.

Models for data.

Learning theory provides many candidate models.

- ➤ **Statistical** setting: training data and future data drawn IID (idependent and identically distributed) from some distribution. (An *average case* setting.)
- ▶ **Online** setting: an adversary constructs examples with full knowledge of what we are doing. (A *worst case* setting.)

Which one is more realistic?

Example: spam filtering.

- ► On the one hand, spammers observe what google does, try to break its detection.
- On the other hand, they don't know exactly what google is doing.

If each morning google re-trains on the last 30 days of data, assuming it is IID, is it so bad? (Mixture of both settings.)

The Statistical Learning Theory setting.

- ▶ We receive *n* examples IID from some underlying distribution.
- We would like to do well according to some performance criterion in expectation.

Example. Least squares: we receive $((x_i, y_i))_{i=1}^n$, we select \hat{w} , and the quantity we want to minimize is

$$\mathbb{E}(\hat{w}^{\top}x - y)^2$$
,

but we can't compute this! (We only have a finite sample.)

Empirical Risk Minimization and generalization.

We have advocated

(Regularized) Empirical Risk Minimization (ERM):

We choose a function class \mathcal{F} , a loss function ℓ , a regularization scheme Reg, and approximately optimize

$$\operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f, x_i, y_i) + \operatorname{Reg}(f).$$

Why should this work?

Empirical Risk Minimization and generalization.

We have advocated

(Regularized) Empirical Risk Minimization (ERM):

We choose a function class \mathcal{F} , a loss function ℓ , a regularization scheme Reg, and approximately optimize

$$\operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f, x_i, y_i) + \operatorname{Reg}(f).$$

Why should this work?

- Vague intuition: law of large numbers (LLN).
- ▶ Rigorous version: suppose \hat{f} selected without using $((x_i, y_i))_{i=1}^n$. If $((x_i, y_i))_{i=1}^n$ are IID, then so are $(\ell(\hat{f}, x_i, y_i))_{i=1}^n$, and by LLN

$$\frac{1}{n}\sum_{i=1}^n\ell(\hat{f},x_i,y_i)\to\mathbb{E}(\ell(\hat{f},X,Y))\qquad\text{as }n\to\infty.$$

Empirical Risk Minimization and generalization.

We have advocated

(Regularized) Empirical Risk Minimization (ERM):

We choose a function class \mathcal{F} , a loss function ℓ , a regularization scheme Reg, and approximately optimize

$$\operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f, x_i, y_i) + \operatorname{Reg}(f).$$

Why should this work?

- Vague intuition: law of large numbers (LLN).
- Rigorous version: suppose \hat{f} selected without using $((x_i, y_i))_{i=1}^n$. If $((x_i, y_i))_{i=1}^n$ are IID, then so are $(\ell(\hat{f}, x_i, y_i))_{i=1}^n$, and by LLN

$$\frac{1}{n}\sum_{i=1}^{n}\ell(\hat{f},x_{i},y_{i})\to\mathbb{E}(\ell(\hat{f},X,Y))\qquad\text{as }n\to\infty.$$

Two issues.

- ▶ We want a bound for finite *n*.
- We used $((x_i, y_i))_{i=1}^n$ to select $\hat{f}!$

Issue #1: bounds for finite samples.

The easiest tool here is **Hoeffding's inequality**.

Theorem (Hoeffding's inequality). Suppose each draw from the distribution lies in the interval [a, b]. With probability at least $1 - \delta$ over an iid draw of $(z_i)_{i=1}^n$,

$$\mathbb{E}Z \leq \frac{1}{n}\sum_{i=1}^{n}z_{i}+(b-a)\sqrt{\frac{\ln(1/\delta)}{2n}}.$$

Remark (on terminology). This is sometimes called a concentration inequality, or a deviation bound.

Issue #1: bounds for finite samples.

interval scales with $d\sqrt{\ln(1/\delta)/2n}$.

The easiest tool here is **Hoeffding's inequality**.

Theorem (Hoeffding's inequality). Suppose each draw from the distribution lies in the interval [a, b]. With probability at least $1 - \delta$ over an iid draw of $(z_i)_{i=1}^n$,

$$\mathbb{E}Z \leq \frac{1}{n}\sum_{i=1}^{n}z_{i}+(b-a)\sqrt{\frac{\ln(1/\delta)}{2n}}.$$

- ▶ **Remark** (on terminology). This is sometimes called a concentration inequality, or a deviation bound.
 - **Example.** Consider fixed \hat{f} , and binary loss $\frac{f(f(x,y))}{f(f(x))} = \frac{1}{f(f(x))} \frac{f(f(x))}{f(f(x))} = \frac{1}{f(f(x))} \frac{f(f(x))}{$

$$\ell(f,x,y) := \mathbf{1}[f(x) \neq y] \in [0,1]$$
. Then, with probability at least $(1-\delta)$ over an IID draw $((x_i,y_i))_{i=1}^n$,

$$\Pr\left[\hat{f}(X) \neq Y\right] = \mathbb{E}\mathbb{1}\left[\hat{f}(X) \neq Y\right] \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left[\hat{f}(x_i) \neq y_i\right] + \sqrt{\frac{\ln(1/\delta)}{2n}}$$
• Remark (scaling): Randomly receive $n \$ d$ bills; confidence

Previous bounds were for a fixed function \hat{f} . Let's take a step back and use our intuition.

Previous bounds were for a fixed function \hat{f} . Let's take a step back and use our intuition.

Intuition: larger function classes overfit more.

Previous bounds were for a fixed function \hat{f} .

Let's take a step back and use our intuition.

Intuition: larger function classes overfit more.

Rigorous bound: Suppose we select f from functions \mathcal{F} using data $((x_i, y_i))_{i=1}^n$. Then (with probability at least $1 - \delta$),

$$\mathbb{E}\ell(f,X,Y) \leq \frac{1}{n} \sum_{i=1}^{n} \ell(f,x_{i},y_{i}) + \widetilde{\mathcal{O}}\left(\sqrt{\frac{\mathsf{Complexity}(\mathcal{F}) + \mathsf{ln}(1/\delta)}{n}}\right).$$

Previous bounds were for a fixed function \hat{f} .

Let's take a step back and use our intuition.

Intuition: larger function classes overfit more.

Rigorous bound: Suppose we select f from functions \mathcal{F} using data $((x_i, y_i))_{i=1}^n$. Then (with probability at least $1 - \delta$),

$$\mathbb{E}\ell(f,X,Y) \leq \frac{1}{n} \sum_{i=1}^n \ell(f,x_i,y_i) + \widetilde{\mathcal{O}}\left(\sqrt{\frac{\mathsf{Complexity}(\mathcal{F}) + \mathsf{In}(1/\delta)}{n}}\right).$$

Example.

▶ Linear classification $w \mapsto \operatorname{sgn}(w^{\top}x)$ with $w \in R^d$ has

$$\Pr\left[\operatorname{sgn}(w^{\top}x) \neq y)\right] \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left[\operatorname{sgn}(w^{\top}x_i) \neq y_i\right] + \widetilde{\mathcal{O}}\left(\sqrt{d + \ln(1/\delta)}n\right).$$

Previous bounds were for a fixed function \hat{f} .

Let's take a step back and use our intuition.

Intuition: larger function classes overfit more.

Rigorous bound: Suppose we select f from functions \mathcal{F} using data $((x_i, y_i))_{i=1}^n$. Then (with probability at least $1 - \delta$),

$$\mathbb{E}\ell(f,X,Y) \leq \frac{1}{n} \sum_{i=1}^{n} \ell(f,x_{i},y_{i}) + \widetilde{\mathcal{O}}\left(\sqrt{\frac{\mathsf{Complexity}(\mathcal{F}) + \mathsf{In}(1/\delta)}{n}}\right).$$

Example.

▶ Linear classification $w \mapsto \operatorname{sgn}(w^\top x)$ with $w \in R^d$ has

$$\Pr\left[\operatorname{sgn}(w^{\top}x) \neq y)\right] \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left[\operatorname{sgn}(w^{\top}x_i) \neq y_i\right] + \widetilde{\mathcal{O}}\left(\sqrt{d + \ln(1/\delta)}n\right).$$

Remark: How to minimize rhs?

Previous bounds were for a fixed function \hat{f} .

Let's take a step back and use our intuition.

Intuition: larger function classes overfit more.

Rigorous bound: Suppose we select f from functions \mathcal{F} using data $((x_i, y_i))_{i=1}^n$. Then (with probability at least $1 - \delta$),

$$\mathbb{E}\ell(f,X,Y) \leq \frac{1}{n} \sum_{i=1}^{n} \ell(f,x_{i},y_{i}) + \widetilde{\mathcal{O}}\left(\sqrt{\frac{\mathsf{Complexity}(\mathcal{F}) + \mathsf{ln}(1/\delta)}{n}}\right).$$

Example.

▶ Linear classification $w \mapsto \operatorname{sgn}(w^\top x)$ with $w \in R^d$ has

$$\Pr\left[\operatorname{sgn}(w^{\top}x) \neq y\right] \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left[\operatorname{sgn}(w^{\top}x_i) \neq y_i\right] + \widetilde{\mathcal{O}}\left(\sqrt{d + \ln(1/\delta)}n\right).$$

Remark: How to minimize rhs? Logistic upper bounds...

Simple example: finite classes

When $|\mathcal{F}| < \infty$, can do Complexity $(\mathcal{F}) \leq \ln |\mathcal{F}|$.

Theorem. With probability at least $1 - \delta$,

$$\Pr[f(X) \neq Y] \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}[f(x_i) \neq y_i] + \sqrt{\frac{\ln(|\mathcal{F}|) + \ln(1/\delta)}{2n}}.$$

Simple example: finite classes

When $|\mathcal{F}| < \infty$, can do Complexity $(\mathcal{F}) \leq \ln |\mathcal{F}|$.

Theorem. With probability at least $1 - \delta$,

$$\Pr[f(X) \neq Y] \leq \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}[f(x_i) \neq y_i] + \sqrt{\frac{\ln(|\mathcal{F}|) + \ln(1/\delta)}{2n}}.$$

Proof. Define $\epsilon := \sqrt{\frac{\ln |F|}{\delta/2n}}$ and events

$$E_j := \left[\Pr[f_j(X) \neq Y] > \epsilon + \frac{1}{n} \sum_{i=1}^n \mathbb{1}[f_j(x_i) \neq y_i] \right].$$

By Hoeffding, $\Pr[E_j] \leq \delta/|F|$, and by union bound

$$\Pr[\cup_j E_j] \le \sum_i \Pr[E_j] \le \delta.$$

Where to go from here?

Have much more sophisticated bounds of the form

$$\mathsf{Risk}(f) \leq \widehat{\mathsf{Risk}}(f) + \widetilde{\mathcal{O}}\left(\sqrt{\frac{\mathsf{Complexity}(\mathcal{F}) + \mathsf{In}(1/\delta)}{n}}\right),$$

where:

- ▶ Risk(f) = Pr[$f(X) \neq Y$], \mathcal{F} is ReLU networks with p parameters and L layers, Complexity(\mathcal{F}) = $\mathcal{\tilde{O}}(pL)$.
- ▶ Risk(f) is least squares risk, $\mathcal{F} := \left\{ w \in \mathbb{R}^d : \|w\| \le \sqrt{1/\lambda} \right\}$ (as in Ridge regression), Complexity(\mathcal{F}) = $1/\lambda$.

Summary

▶ ML Theory is design and analysis of ML algorithms.

Summary

- ▶ ML Theory is design and analysis of ML algorithms.
- Standard setup: we fit a model to data according to some performance criterion.
 - ▶ **Representation:** is our model powerful enough to capture this phenomenon?
 - Optimization: can we (efficiently?) fit our model to data?
 - ► Generalization: does our model perform well on unseen data?

Summary

- ▶ ML Theory is design and analysis of ML algorithms.
- Standard setup: we fit a model to data according to some performance criterion.
 - ▶ **Representation:** is our model powerful enough to capture this phenomenon?
 - ▶ **Optimization:** can we (efficiently?) fit our model to data?
 - ▶ **Generalization:** does our model perform well on unseen data?
- ► **Generalization/overfitting** requires a model of *unseen* data.
 - ▶ **Today** we sketched the *statistical learning theory setting*.
 - Next time we'll go into it in more detail.