Versuchsprotokolle PR Anorganische Synthese

Thomas $HINTNER^1$, Florian $KLUIBENSCHEDL^2$

Bericht verfasst am: 22. November 2019

Lehrveranstaltung: PR Anorganische Synthese

Institut: Allgemeine, Anorganische

und Theoretische Chemie

eingereicht bei: Prof. Dr. Bildstein

Mail: ¹thomas.hintner@student.uibk.ac.at

 2 florian.kluibenschedl@student.uibk.ac.at

Inhaltsverzeichnis

1	Synthese	von $KAl(SO_4)_2 \cdot H_2O$	3
2	Synthese	von $\mathrm{KCr}(\mathrm{SO_4})_2\!\cdot\!12\mathrm{H_2O}$	4
3	Synthese	$\mathrm{von}\; [\mathrm{Co}(\mathrm{NH_3})_4\mathrm{CO_3}]_2\mathrm{SO_4} \cdot 3\mathrm{H_2O}$	5
4	Synthese	$\mathrm{von} \ [\mathrm{Co}(\mathrm{NH_3})_4(\mathrm{H_2O})_2]_2(\mathrm{SO_4})_3 \cdot 3\mathrm{H_2O}$	6
5	Synthese	$\mathrm{von}\ [\mathrm{Co}[(\mathrm{OH})_2\mathrm{Co}(\mathrm{NH}_3)_4]_3](\mathrm{SO}_4)_3\cdot 9\mathrm{H}_2\mathrm{O}$	7
6	Synthese	$\mathrm{von}\ [\mathrm{Ni}(\mathrm{NH}_3)_6]\mathrm{Cl}_2$	8
7	Synthese	$\mathrm{von}\ [\mathrm{Co}(\mathrm{NH_3})_6]\mathrm{Cl_3}$	9
8	Synthese	von $[Cu(H_2NCH_2CO_2)_2]$ - $Cu(II)$ -Glycinat	10
9	Synthese	von CuI	11
10	Synthese	$\mathrm{von}\ [\mathrm{Cu}(\mathrm{C}_2\mathrm{H}_4(\mathrm{NH}_2)_2)_2][\mathrm{CuI}_2]_2$	12
11	Synthese	$\mathrm{von}\;[\mathrm{NH}_4][\mathrm{BF}_4]$	13
12	Synthese	$\mathrm{von}\ [\mathrm{Zn}(\mathrm{NH_3})_4][\mathrm{BF}_4]_2$	14
13	Synthese	von $[VO(C_5H_7O_2)_2]$ - Vanadyl-Acetylacetonat	15
14	Synthese	von $[Cr(C_5H_7O_2)_3]$ - $Cr(III)$ -Acetylacetonat	16
15	Synthese	von $[\mathrm{Mn}(\mathrm{C}_5\mathrm{H}_7\mathrm{O}_2)_3]$ - $\mathrm{Mn}(\mathrm{III})\text{-}\mathrm{Acetylacetonat}$	17
16	Synthese	von $[\mathrm{Fe}(\mathrm{C}_5\mathrm{H}_7\mathrm{O}_2)_3]$ - $\mathrm{Fe}(\mathrm{III})\text{-}\mathrm{Acetylacetonat}$	18
17	Synthese	von $[Co(C_5H_7O_2)_3]$ - $Co(III)$ -Acetylacetonat	19
18	Synthese	von $[Cu(C_5H_7O_2)_2]$ - $Cu(II)$ -Acetylacetonat	20
19	Synthese	von $Ni(NCS)_2(PPh_3)_2$	21
20	Synthese	$\mathrm{von}\;\mathrm{K_{3}Cr}(\mathrm{C_{2}O_{4}})_{3}\!\cdot\!3\mathrm{H_{2}O}$	22
21	Synthese	$\text{von } K_3\text{Fe}(C_2O_4)_3 \cdot 3 H_2O$	23

1 Synthese von $KAl(SO_4)_2 \cdot H_2O$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 1: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

2 Synthese von $KCr(SO_4)_2 \cdot 12H_2O$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 2: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

3 Synthese von $[Co(NH_3)_4CO_3]_2SO_4 \cdot 3H_2O$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 3: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

4 Synthese von $[Co(NH_3)_4(H_2O)_2]_2(SO_4)_3 \cdot 3H_2O$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 4: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

5 Synthese von $[Co[(OH)_2Co(NH_3)_4]_3](SO_4)_3 \cdot 9H_2O$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 5: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

6 Synthese von $[Ni(NH_3)_6]Cl_2$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 6: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

7 Synthese von $[Co(NH_3)_6]Cl_3$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 7: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

8 Synthese von $[Cu(H_2NCH_2CO_2)_2]$ - Cu(II)-Glycinat

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 8: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

9 Synthese von CuI

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 9: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

10 Synthese von $[Cu(C_2H_4(NH_2)_2)_2][CuI_2]_2$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 10: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

11 Synthese von $[NH_4][BF_4]$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 11: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

12 Synthese von $[Zn(NH_3)_4][BF_4]_2$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 12: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

13 Synthese von $[VO(C_5H_7O_2)_2]$ - Vanadyl-Acetylacetonat

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 13: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

14 Synthese von $[Cr(C_5H_7O_2)_3]$ - Cr(III)-Acetylacetonat

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 14: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

15 Synthese von $[Mn(C_5H_7O_2)_3]$ - Mn(III)-Acetylacetonat

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 15: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

16 Synthese von $[Fe(C_5H_7O_2)_3]$ - Fe(III)-Acetylacetonat

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 16: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

17 Synthese von $[Co(C_5H_7O_2)_3]$ - Co(III)-Acetylacetonat

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 17: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

18 Synthese von $[Cu(C_5H_7O_2)_2]$ - Cu(II)-Acetylacetonat

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 18: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

19 Synthese von $Ni(NCS)_2(PPh_3)_2$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 19: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

20 Synthese von $K_3Cr(C_2O_4)_3 \cdot 3H_2O$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 20: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte:

21 Synthese von $K_3Fe(C_2O_4)_3 \cdot 3H_2O$

Geräte und Chemikalien

In der folgenden Tabelle sind alle verwendeten Geräte und Chemikalien aufgelistet.

Tabelle 21: Auflistung der verwendeten Geräte und Chemikalien

Geräte	Chemikalien
100 ml Rundkolben blabla adf	blaba asdf

Versuchsdurchführung

Reaktionsgleichungen

Im Folgenden werden alle relevanten Reaktionsgleichungen, die im Zuge der Synthese stattfinden, aufgelistet.

$$\begin{array}{c} {\rm CO_2} \longrightarrow {\rm H_2O} \\ {\rm Cu} + {\rm O_2} \longrightarrow {\rm Cu} \end{array}$$

Ausbeute

Für die Ausbeuteberechnung wurde die Analysenformel

$$m =$$

verwendet. Dementsprechend ergeben sich für die theoretische und tatsächliche Ausbeute folgende Werte: