HW 12: Physics 545

Ben Rosemeyer

May 1, 2015

1a

FIGURE ATTACHED

The density of states $D(\epsilon)$ for this 2D dispersion of graphene is:

$$D(\epsilon) = \sum_{\mathbf{k}s} \delta(\epsilon - \epsilon_{\mathbf{k}s}) \tag{1}$$

$$= 2\pi V/(2\pi\hbar)^2 \int dk \quad k(\delta(\epsilon - v_f k) + \delta(\epsilon + v_f k))$$
 (2)

$$= D_0|\epsilon| \tag{3}$$

with $D_0 = \frac{V}{2\pi\hbar^2 v_f^2}$, and we note that it is independent of spin s

Also, it's kind of "gapped" in that there are no states at zero energy.

1b

At zero temperature, with $\mu(0) = 0$, the contribution to number of electrons is only from s = -1 because the Fermi distribution function $f_{\mathbf{k}1} = 0$ and $f_{\mathbf{k}-1} = 1$

$$N_0 = D_0 \int_0^\infty d\epsilon \quad \epsilon \tag{4}$$

The above is divergent, but we can still compare with the electron number for finite temperature:

$$N(T) = \sum_{\mathbf{k}s} (e^{\beta(\epsilon_{\mathbf{k}s} - \mu)} + 1)^{-1}$$
(5)

$$= D_0 \int_{-\infty}^{\infty} d\epsilon \ |\epsilon| (e^{\beta(\epsilon-\mu)} + 1)^{-1}$$
 (6)

$$= D_0 \int_0^\infty d\epsilon \ \epsilon \left[1 + (e^{\beta(\epsilon - \mu)} + 1)^{-1} - (e^{\beta(\epsilon + \mu)} + 1)^{-1} \right]$$
 (7)

$$= N_0 + D_0 \int_0^\infty d\epsilon \ \epsilon \left[(e^{\beta(\epsilon - \mu)} + 1)^{-1} - (e^{\beta(\epsilon + \mu)} + 1)^{-1} \right]$$
 (8)

$$= N_0 + D_0 \left[\int_{-\mu}^{\mu} dx \frac{x+\mu}{e^{\beta x} + 1} + 2\mu \int_{\mu}^{\infty} dx \frac{1}{e^{\beta x} + 1} \right]$$
 (9)

For conservation of particles we require $N(T) = N_0$. Therefore, the term in brackets (8) must be zero, so $\mu = 0$

1c

To calculate the specific heat we use the form $C = \frac{dU}{dT}$, U is the internal energy.

$$U = D_0 \int_{-\infty}^{\infty} d\epsilon \ |\epsilon| \epsilon f(\epsilon)$$
 (10)

$$= D_0 \int_0^\infty d\epsilon \ \epsilon^2 (f(\epsilon) - f(-\epsilon))$$
 (11)

$$= D_0 \int_0^\infty d\epsilon \ \epsilon^2 \left(2f(\epsilon) - 1\right) \tag{12}$$

$$= 2T^{3}D_{0}\int_{0}^{\infty} dx \frac{x^{2}}{e^{x}+1} - D_{0}\int_{0}^{\infty} d\epsilon \epsilon^{2}$$
 (13)

The second term is the ground state energy E_0 and does not contribute to the specific heat because there is no temperature dependence there.

The integral in the first term can be found in tables and the result is

$$\delta U = 3T^3 D_0 \zeta(3) + E_0 \tag{14}$$

$$C = 9T^2 D_0 \zeta(3) \tag{15}$$

The equation for minimum of energy is:

$$\frac{\partial F}{\partial \boldsymbol{\eta}} = 0 = \sum_{i=1,2} \alpha \eta_i + \beta_1 (\boldsymbol{\eta} \cdot \boldsymbol{\eta}^*) \eta_i + \beta_2 (\boldsymbol{\eta} \cdot \boldsymbol{\eta}) \eta_i^* + \beta_3 |\eta_i|^2 \eta_i$$
 (16)

for the 4 orientation cases to consider we can write the above as a function of magnitude η_{01} , η_{10} , η_{11} , η_{1i} , noting that η_{01} and η_{10} are the same.

$$0 = \alpha \eta_{10} + \beta_1 |\eta_{10}|^2 \eta_{10} + \beta_2 \eta_{10}^2 \eta_{10}^* + \beta_3 |\eta_{10}|^2 \eta_{10}$$
(17)

$$\Rightarrow |\eta_{10}|^2 = \frac{-\alpha}{\beta_1 + \beta_2 + \beta_3} \tag{18}$$

$$0 = \alpha \eta_{11} + 2\beta_1 |\eta_{11}|^2 \eta_{11} + 2\beta_2 \eta_{11}^2 \eta_{11}^* + \beta_3 |\eta_{10}|^2 \eta_{11}$$
(19)

$$\Rightarrow |\eta_{11}|^2 = \frac{-\alpha}{2\beta_1 + 2\beta_2 + \beta_3} \tag{20}$$

$$0 = \alpha \eta_{1i} + 2\beta_1 |\eta_{1i}|^2 \eta_{1i} + \beta_3 |\eta_{1i}|^2 \eta_{1i}$$
(21)

$$\Rightarrow |\eta_{1i}|^2 = \frac{-\alpha}{2\beta_1 + \beta_3} \tag{22}$$

The free energy of these states is:

$$F[\eta_{10}] = \frac{-\alpha^2/(2\beta_1)}{1 + \beta_2/\beta_1 + \beta_3/\beta_1}$$
 (23)

$$F[\eta_{11}] = \frac{-\alpha^2/(\beta_1)}{2 + 2\beta_2/\beta_1 + \beta_3/\beta_1}$$
 (24)

$$F[\eta_{1i}] = \frac{-\alpha^2/(\beta_1)}{2 + \beta_3/\beta_1} \tag{25}$$

For each possible value of $x = \beta_2/\beta_1$ and $y = \beta_3/\beta_1$ the system will choose the state with lowest free energy. The conditions on this choice are

choose 10 over 11: y < 0choose 10 over 1i: y < -2xchoose 11 over 1i: x < 0

The regions are mapped out in the figure

3a

The diagonalized Hamiltonian is:

$$\mathcal{H} = \sum_{\mathbf{k},s} E_{\mathbf{k}s} b_{\mathbf{k}s}^{\dagger} b_{-\mathbf{k}s} \tag{26}$$

and the b operators are defined through the Bogolioubov transformation:

$$a_{\mathbf{k}s} = u_{\mathbf{k}}b_{\mathbf{k}s} - (i\sigma_y)_{ss'}v_{\mathbf{k}}b_{-\mathbf{k}s'}$$
(27)

which results in the Bogolioubov-de Gennes equations

$$E_{\mathbf{k}s} \begin{pmatrix} u_{\mathbf{k}} \\ v_{\mathbf{k}} \end{pmatrix} = \begin{pmatrix} \xi_{\mathbf{k}} & \Delta^* \\ \Delta & \xi_{\mathbf{k}\bar{s}} \end{pmatrix} \begin{pmatrix} u_{vk} \\ v_{\mathbf{k}} \end{pmatrix}$$
 (28)

In the above definition for b operators I omitted spin indices on the amplitudes in anticipation of the final result which is

$$u_{\mathbf{k}} = \sqrt{\frac{\Delta}{E}} e^{\theta_E/2} \tag{29}$$

$$v_{\mathbf{k}} = \sqrt{\frac{\Delta}{E}} e^{-\theta_E/2} \tag{30}$$

The eigenvalues are

$$E_{\mathbf{k}s} = \sqrt{\xi_{\mathbf{k}}^2 + |\Delta|^2} - \mu_B H s \tag{31}$$

with $\theta_E = \cosh^{-1}(E/\Delta)$.

3b

After using the form of a operators in terms of the diagonal b's, the spin magnetisation reduces to

$$M = \mu_B \sum_{\mathbf{k}} f_{\mathbf{k}\uparrow} - f_{\mathbf{k}\downarrow} \tag{32}$$

where $f_{\mathbf{k}s} = (e^{\beta E_{\mathbf{k}s}} + 1)^{-1}$ and $\beta = 1/T$. This is good! We can preform the sum over states by using the density of states for a superconductor $N = N_0 |E|/\sqrt{E^2 - \Delta^2}$ and N_0 is the normal DOS at the Fermi level.

$$M = \mu_B N_0 \int_{\Lambda}^{\infty} dE \frac{E}{\sqrt{E^2 - \Delta^2}} (f_{\mathbf{k}\uparrow} - f_{\mathbf{k}\downarrow})$$
 (33)

The linear response to a field will be $M_{lr} = \chi(T)H$ and we can Taylor expand the Fermi functions in H $f_{\mathbf{k}s} \approx f_{\mathbf{k}} + \frac{s\beta}{4cosh^2(\beta E/2)}H$ to get the desired result

$$\chi(T) = (1/2)\mu_B N_0 \beta \int_{\Delta}^{\infty} dE \frac{E}{\sqrt{E^2 - \Delta^2}} \frac{1}{\cosh^2(\beta E/2)}$$
(34)

$$= (1/2)\mu_B N_0 \int_{\beta\Delta}^{\infty} dx \frac{x}{\sqrt{x^2 - (\beta\Delta)^2}} \frac{1}{\cosh^2(x/2)}$$
 (35)

$$= (1/2)\mu_B N_0 \int_{\beta\Delta}^{\infty} dx \sqrt{x^2 - (\beta\Delta)^2} \frac{\tanh(x/2)}{\cosh^2(x/2)}$$
 (36)

and we integrated by parts in the last step

3c

The two limits of interest are $\beta\Delta >> 1$, and $\Delta = \Delta_0 = constant$ for low temperature and $\beta\Delta << 1$ for near T_c when self consistent solution $\Delta(T)$ is first appearing as a second order phase transition. The limit near T_c would not apply if it was a first order transition.

$\beta \Delta_0 >> 1$, Low Temperature

The low T limit allows write $tanh(x/2) \approx 1$ and $cosh(x/2) \approx \frac{1}{2}e^{x/2}$

$$\chi(T) = 2\mu_B N_0 \int_{\beta\Delta}^{\infty} dx \sqrt{x^2 - (\beta\Delta)^2} e^{-x}$$
 (37)

$$= 2\mu_B N_0 (\beta \Delta)^2 \int_1^\infty dy \sqrt{y^2 - 1} e^{-\beta \Delta y}$$
 (38)

The integral is equivalent to the n=1 modified Bessel function of the second kind.

$$K_1(z) = z \int_{1}^{\infty} dy \sqrt{y^2 - 1} e^{-zy}$$
 (39)

$$\chi(T) = 2\mu_B N_0 \frac{\Delta_0}{T} K_1(\Delta_0/T) \tag{40}$$

 $\beta\Delta << 1$, Near T_c Here we employ Leibniz rule to Taylor expand the

integral

$$\int_{\beta\Delta}^{\infty} dx \sqrt{x^2 - (\beta\Delta)^2} \frac{\tanh(x/2)}{\cosh^2(x/2)} \approx \int_{0}^{\infty} dx \quad x \frac{\tanh(x/2)}{\cosh^2(x/2)}$$
(41)

$$- (\beta \Delta)^2 / 2 \int_0^\infty dx \frac{1}{x} \frac{\tanh(x/2)}{\cosh^2(x/2)}$$
 (42)

The first integral is easy and evaluates to 2.

The second integral is not easy, but mathematica can do it and the result is $-28\zeta'(-2) \approx .852557$. At this point we can also use the limiting expression for $\Delta(T)$ near T_c which was written in class.

$$\Delta(T) = \sqrt{\frac{2}{7|\zeta'(-2)|}} T_c \sqrt{1 - T/T_c} \tag{43}$$

Now we can finally write the two limits using normal state susceptibility $\chi_N = \mu_B N_0$

$$\frac{\chi^{T_c}(T)}{\chi_N} = 1 - 2\frac{1 - T/T_c}{(T/T_c)^2} \tag{44}$$

$$\frac{\chi^0(T)}{\chi_N} = 2\frac{\Delta_0}{T} K_1(\Delta_0/T) \tag{45}$$

The zero temperature expansion is a very slow growing function of T, and plots show that $\frac{\chi^0(T)}{\chi_0} < 0.04$ for $T < 0.2\Delta_0$. This is expected from the form of the magnetisation in the beginning of part 3b combined with the gapped density of states.

Near T_c the normal state χ_N is recovered and the temperature dependence of the decrease in χ is due to the onset of the order parameter $\Delta(T)$. Looking at plots, one can see that the χ is quickly reduced to near zero for $T/T_c \approx 0.75$

FIGURES ATTACHED