8. Turbulence Modelling

Objective

Model the Reynolds stresses

$$-\rho \overline{uv}, -\rho \overline{uu},$$
 etc.

in order to close the **mean-flow** equations.

Eddy-Viscosity Models

Total stress (in simple shear):
$$\tau = \mu \frac{\partial U}{\partial y} - \rho \overline{uv}$$
 viscous turbulent

Eddy-viscosity model: $-\rho \frac{1}{uv} = \mu_t \frac{\partial U}{\partial y}$

Total stress:
$$\tau = (\mu + \mu_t) \frac{\partial U}{\partial \nu}$$

Effective viscosity: $\mu_{\mathit{eff}} = \mu + \mu_{\mathit{t}}$

Eddy-Viscosity Models

$$-\rho \overline{uv} = \mu_t \frac{\partial U}{\partial y}$$

- This is a model!
- μ is a **physical** property of the **fluid** μ_r is a **hypothetical** property of the **flow**
- μ_t varies with position
- At high Reynolds numbers, $\mu_t >> \mu$

Eddy-Viscosity Models

For

- Easy to implement
- Extra viscosity aids stability
- Theoretical basis in simple flows

Against

- Little foundation in complex flows
- Turbulence modelling reduced to a single scalar, μ,

Consistency With the Log Law

Logarithmic velocity profile: $\frac{\partial U}{\partial y} = \frac{u_{\tau}}{\kappa y}$

Total stress constant and dominated by turbulent stress:

$$\tau^{(turb)} = \tau_w \equiv \rho u_\tau^2$$

Definition of eddy viscosity: $\mu_{\scriptscriptstyle I} \equiv \frac{\tau^{\scriptscriptstyle (nurb)}}{\partial U/\partial y} = \frac{\rho u_{\scriptscriptstyle \tau}^2}{u_{\scriptscriptstyle \tau}/\kappa y} = \rho(\kappa u_{\scriptscriptstyle \tau} y)$

 $\mu_{\tau} = \rho(\kappa u_{\tau} y)$

 $v_{\tau} = \kappa u_{\tau} y$

General Stress-Strain Relationship

In simple shear (U(y),0,0):

$$-\rho \overline{uv} = \mu_t \frac{\partial U}{\partial y}$$

In arbitrary flow:

$$-\rho \overline{uv} = \mu_t \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right)$$

$$-\rho \overline{uu} = 2\mu_t \frac{\partial U}{\partial x} - \frac{2}{3}\rho$$

$$-\rho \overline{uv} = \mu_{t} \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right)$$

$$-\rho \overline{uu} = 2\mu_{t} \frac{\partial U}{\partial x} - \frac{2}{3}\rho k$$

$$-\rho \overline{uu} = \mu_{t} \left(\frac{\partial U_{t}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}}\right) - \frac{2}{3}\rho k \delta_{ij}$$

Reynolds' Analogy

Similar gradient-diffusion model for other turbulent fluxes

eddy diffusivity

$$-\rho \overline{\nu \phi} = \Gamma_t \frac{\partial \Phi}{\partial y}$$

turbulent Prandtl number

The Eddy Viscosity

Kinematic eddy viscosity $v_t = \frac{\mu_t}{\rho}$

 u_0 is a typical turbulent **velocity** $v_t = u_0 l_0$ l_0 is a typical turbulent eddy size

e.g. In the log layer: $v_t = \kappa u_\tau y = u_\tau \times (\kappa y)$

Types of Eddy-Viscosity Model

Based on the number of additional scalar-transport equations.

- Zero-equation models:
 - constant eddy-viscosity models
 - mixing-length models
- One-equation models:
 - l₀ specified algebraically; transport equation for u₀
- Two-equation models:
 - transport equations for 2 scales (k-ε, k-ω, ...)

Mixing-Length Models

Eddy viscosity: $v_t = u_0 l_m$

Mixing length l_m specified algebraically

Velocity scale $u_0 = l_m \left| \frac{\partial U}{\partial y} \right|$ from the **mean velocity gradient**

 $\text{Turbulent shear stress:} \quad \tau^{\text{\tiny (nurb)}} = \mu_{\text{\tiny t}} \frac{\partial U}{\partial y} \quad = \rho u_0 l_{\text{\tiny m}} \frac{\partial U}{\partial y} \quad = \rho l_{\text{\tiny m}}^2 \! \left(\frac{\partial U}{\partial y} \right)^2$

Consistency With the Log Law

$$\tau^{(urb)} = \rho l_m^2 \left(\frac{\partial U}{\partial y} \right)^2$$

Log-law region:

$$\tau^{(turb)} = \tau_w = \rho u_\tau^2$$

$$\rho u_{\tau}^{2} = \rho l_{m}^{2} \left(\frac{u_{\tau}}{\kappa y} \right)^{2}$$

Mixing Length

Wall-bounded flows

$$l_{\scriptscriptstyle m}$$
 related to distance from the wall

 $l_m = \min(\kappa y, 0.09\delta)$

mixing layer $l_m = 0.071\delta$

 l_m =0.080 δ (round)

The k-ε Model

- $\tau^{(\mathit{turb})} = \mu_{\mathit{t}} \, \frac{\partial \mathit{U}}{\partial \mathit{y}}$ 1. Eddy-viscosity model:
- 2. Formula for the eddy viscosity:
- 3. Scalar-transport equations for:
 - k turbulent kinetic energy
 - ϵ rate of dissipation of k

The k and ϵ Transport Equations

$$\mbox{Diffusivities:} \qquad \Gamma^{(\it k)} = \mu + \frac{\mu_{\it t}}{\sigma_{\it k}} \; , \qquad \quad \Gamma^{(\it \epsilon)} = \mu + \frac{\mu_{\it i}}{\sigma_{\it k}} \; . \label{eq:gamma_fit}$$

Production:
$$P^{(k)} = -\overline{u_i u_j} \frac{\partial U_i}{\partial x_j}$$

Constants:
$$C_{\mu} = 0.09$$
, $C_{\rm cl} = 1.44$, $C_{\rm c2} = 1.92$, $\sigma_k = 1.0$, $\sigma_{\rm c} = 1.3$

The k and ϵ Transport Equations

- Heavily modelled (especially the ε equation)
- Source-dominated, with a balance between:

production by mean flow:
$$P^{(k)} = -\overline{u_i u_j} \frac{\partial U_i}{\partial x_i}$$

dissipation by viscosity:
$$\varepsilon = v \sum_{i} \overline{\left(\frac{\partial u_i}{\partial x_i}\right)}$$

- Turbulence said to be in **local equilibrium** if $P^{(k)} = \varepsilon$
- · Many variants, including low-Reynolds-number models
- Other choices of dimensional scales (e.g k-ω)

Consistency With the Log Law

(Constant) stress:

$$\tau \equiv -\rho uv$$

$$\approx \tau_w = \rho u_\tau^2$$

 $-\frac{1}{uv} = u^2$

Production of k:

$$D^{(k)} = -\overline{u}v\frac{\partial U}{\partial v} = u_{\tau}^2 \times \frac{u_{\tau}}{v_{\tau}}$$

Local equilibrium:

$$\frac{1}{\partial y} = -u_{\tau} \wedge \frac{1}{\kappa y}$$

Eddy viscosity:

k-ε model:

$$v_{t} = \frac{u_{t}}{\varepsilon}$$

$$C_{\mu} = \left(\frac{-uv}{k}\right)^{2}$$

$$C_{\mu} = \left(\frac{-uv}{k}\right)^{2}$$

$$V_{\mu} = \left(\frac{-uv}{k}\right)^{2}$$

$$V_{\mu} = \left(\frac{-uv}{k}\right)^{2}$$

Example

In the $\textit{k-}\epsilon$ turbulence model, k is turbulent kinetic energy and ϵ is its dissipation rate. A (kinematic) eddy viscosity is defined by

$$v_t = C_\mu \frac{k^2}{\varepsilon}$$

where C_{μ} is a constant. A modeled scalar-transport equation for ϵ is

$$\frac{\mathrm{D}\varepsilon}{\mathrm{D}t} = \frac{\partial}{\partial x_i} \left(\frac{\mathrm{v}_t}{\mathrm{\sigma}_{\varepsilon}} \frac{\partial \varepsilon}{\partial x_i} \right) + (C_{\varepsilon 1} P^{(k)} - C_{\varepsilon 2} \varepsilon) \frac{\varepsilon}{k}$$

where D/Dr is the derivative following the flow, $P^{(k)}$ is the rate of production of k and the summation convention is implied by the repeated index i. σ_{c} , C_{c1} and C_{c2} are constants.

In the log-law region of a turbulent boundary layer,

$$P^{(k)} = \varepsilon = \frac{u_{\tau}^3}{\kappa y}$$

$$k = C_{\mu}^{-1/2} u_{\tau}^2$$

where κ is von Karman's constant, u_t is the friction velocity and y is the distance from the boundary. Using the scalar-transport equation for ϵ and the eddy-viscosity formulation, show that this implies the following relationship between coefficients:

$$(C_{\varepsilon^2}-C_{\varepsilon^1})\sigma_\varepsilon\sqrt{C_\mu}=\kappa^2$$

Limitations of Eddy-Viscosity Models

For

- Simple to code
- Extra viscosity aids stability
- Supported theoretically in some simple but common types of flow
- Effective in many engineering flows

Against

- Only capable of predicting one Reynolds-stress component accurately
- Lack justification in complex flows
- Fail to predict common properties such as anisotropy

Turbulence Anisotropy

Experiment:

$$\overline{u^2}$$
: $\overline{v^2}$: $\overline{w^2}$ = 1.0: 0.4: 0.6

Eddy-viscosity model: $\overline{u^2} = \overline{v^2}$

$$\overline{u^2} = \overline{v^2} = \overline{w^2} = \frac{2}{3}k$$

Advanced Turbulence Models

Reynolds-Stress Transport Models

Solve individual transport equations for each Reynolds stress

$$-\rho \overline{uv}$$
, $-\rho \overline{uu}$, etc.

- "Source" is a balance between:
 - production by mean-velocity gradients
 - redistribution by pressure fluctuations
 - dissipation by viscous action.

For

Advection and production are exact and don't need modelling

Against

- Very complex: many terms need modelling
- Computational expense:
 - 6 extra transport equations
 - lack of a stabilising diffusion term

Non-Linear Eddy-Viscosity Models

Simple eddy-viscosity model:

stress
$$\infty$$
 velocity gradient $\tau_{turb} = \mu_t \frac{\partial U}{\partial v}$

Non-linear eddy-viscosity model:

stress = C_1 (velocity gradient) + C_2 (velocity gradient)² +...

For

- Qualitatively correct response of turbulence to certain types of strain
- Little more computationally expensive than linear models

Agains

- Doesn't accurately reflect the real physical processes
- Little justification in complex geometries

Wall Boundary Conditions

- Near a solid boundary:
 - there are very large flow gradients
 - wall-normal fluctuations are selectively damped
 - viscous and turbulent stresses are comparable
- Alternative approaches:
 - low-Reynolds-number turbulence models
 - wall functions

Summary (1)

- A turbulence model or turbulence closure is a means of specifying Reynolds stresses (and other turbulent fluxes)
- The most popular type is an eddy-viscosity model
 - The eddy viscosity may be specified:
 - geometrically (e.g. mixing-length models)
 - by solving transport equations (e.g. k-ε model)

Summary (2)

- Advanced turbulence models include:
 - Reynolds-stress transport models (RSTM)
 - non-linear eddy-viscosity models (NLEVM)
 - large-eddy simulation (LES)
- Wall boundary conditions require either:
 - low-Reynolds-number modifications (fine grid)
 - wall functions (coarse grid)