```
In [1]: # importing all the necessary libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

```
In [2]: # Loading of Data

url = "http://bit.ly/w-data"
data = pd.read_csv("http://bit.ly/w-data")
data
```

Out[2]:		Hours	Scores
	0	2.5	21
	1	5.1	47
	2	3.2	27
	3	8.5	75
	4	3.5	30
	5	1.5	20
	6	9.2	88
	7	5.5	60
	8	8.3	81
	9	2.7	25
	10	7.7	85
	11	5.9	62
	12	4.5	41
	13	3.3	42
	14	1.1	17
	15	8.9	95
	16	2.5	30
	17	1.9	24
	18	6.1	67
	19	7.4	69
	20	2.7	30
	21	4.8	54
	22	3.8	35
	23	6.9	76
	24	7.8	86

Visualization of Data

In [6]: data.describe()

Out[6]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

```
In [12]: # scatter plot graph between hours of study and score

plt.scatter(x=data.Hours, y=data.Scores)
plt.xlabel(" Hours")
plt.ylabel("Scores ")
plt.title("study Hours VS Students Scores",color="blue")
plt.show()
```



```
In [9]: # shape of data data.shape
```

Out[9]: (25, 2)

Prepare the Data for Machine Learning Algorithm

```
In [13]: # checking for any null values
data.isnull().sum()
```

Out[13]: Hours 0
Scores 0
dtype: int64

In [14]: data.mean()

Out[14]: Hours 5.012 Scores 51.480 dtype: float64

```
In [16]: # fill null values with mean (if any null values)
         data2=data.fillna(data.mean())
         data2.isnull().sum()
Out[16]: Hours
                    0
          Scores
                    0
          dtype: int64
In [20]: data2.head(5)
Out[20]:
             Hours Scores
          0
               2.5
                       21
               5.1
                       47
          1
          2
               3.2
                       27
          3
               8.5
                       75
           4
               3.5
                       30
In [21]: data2.tail(5)
Out[21]:
              Hours Scores
           20
                2.7
                        30
           21
                4.8
                        54
           22
                3.8
                        35
           23
                6.9
                        76
           24
                7.8
                        86
In [22]: # split dataset for training
         x=data2.drop("Scores",axis="columns")
         y=data2.drop("Hours",axis="columns")
          print("shape of x",x.shape)
          print("shape of y",y.shape)
```

shape of x (25, 1) shape of y (25, 1)

```
In [23]: # importing sklearn model
         from sklearn.model_selection import train_test_split
         X_train, X_test, Y_train, Y_test = train_test_split(x,y,test_size=0.2, random_sta
         # defining test size
         print("shape of X Train ", X_train.shape)
         print("shape of Y Train ", Y_train.shape)
         print("shape of X Test ", X_test.shape)
         print("shape of Y Test ", Y_test.shape)
         shape of X Train (20, 1)
         shape of Y Train (20, 1)
         shape of X Test (5, 1)
         shape of Y Test (5, 1)
         # Select a model and train it
In [24]: # Linear Regression model
         from sklearn.linear model import LinearRegression
         lr= LinearRegression()
         lr.fit(X_train,Y_train)
Out[24]: LinearRegression()
In [27]: # coeffecient
         lr.coef
Out[27]: array([[10.46110829]])
In [28]: # intercept
         lr.intercept
Out[28]: array([-1.53695733])
In [29]: | lr.predict([[9.25]])[0][0].round(2)
Out[29]: 95.23
In [30]: y_pred = lr.predict(X_test)
         y_pred
Out[30]: array([[ 9.97026179],
                [32.98470004],
                [18.33914843],
                [87.38246316],
                [48.67636248]])
```

In [31]: # Score of my model
lr.score(x,y)*100

Out[31]: 94.77059220582453

THANK YOU