Simulation of Apriori Algorithm on Groceries Dataset

Ashishkumar Rana 09

2022-07-21

Simulation of Apriori Algorithm on Groceries Dataset

```
#install.packages("arules")
#install.packages("arulesViz")
```

library(arules)

```
## Warning: package 'arules' was built under R version 4.2.1
## Loading required package: Matrix
##
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
## abbreviate, write
```

library(arulesViz)

Warning: package 'arulesViz' was built under R version 4.2.1

- In R Programming language for the application of Apriori Algorithms arules is used.
- This library provides inbuilt datset and also many function that are suitable for Apriori processes.
- ArulesViz is another libaray that is used for visualization of apriori model.

```
data("Groceries")

Groceries
```

```
## transactions in sparse format with
## 9835 transactions (rows) and
## 169 items (columns)
```

- The dataset that we use in this practical is a groceries dataset.
- This dataset is provided by the arules package of R programming language. This dataset is collected from 30 days of transaction of a groceries store.
- The dataset contain 9835 transactions and the item are aggregated into 169 categories.
- Summary of above dataset will give the information about most frequent item.

```
summary(Groceries)
## transactions as itemMatrix in sparse format with
    9835 rows (elements/itemsets/transactions) and
##
    169 columns (items) and a density of 0.02609146
##
## most frequent items:
##
         whole milk other vegetables
                                             rolls/buns
                                                                      soda
##
               2513
                                  1903
                                                    1809
                                                                      1715
##
             yogurt
                               (Other)
##
               1372
                                 34055
##
## element (itemset/transaction) length distribution:
## sizes
           2
                 3
                           5
                                 6
                                                9
##
      1
                                                     10
                                                          11
                                                               12
                                                                     13
                                                                          14
                                                                               15
16
## 2159 1643 1299 1005
                         855
                                                    246
                                                                     78
                                                                               55
                              645
                                    545
                                         438
                                              350
                                                         182
                                                              117
                                                                          77
46
##
     17
               19
                     20
                          21
                               22
                                     23
                                          24
                                               26
                                                     27
                                                          28
                                                               29
                                                                     32
          18
##
     29
          14
               14
                      9
                          11
                                4
                                      6
                                           1
                                                1
                                                     1
                                                           1
                                                                3
                                                                     1
##
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
##
     1.000
             2.000
                      3.000
                              4.409
                                       6.000
                                              32.000
##
## includes extended item information - examples:
##
          labels level2
                                     level1
## 1 frankfurter sausage meat and sausage
         sausage sausage meat and sausage
## 3 liver loaf sausage meat and sausage
```

Frequent itemsets generation

```
## Apriori
##
```

```
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
##
                 0.1
                         1 none FALSE
                                                 TRUE
                                                            5
                                                                 0.02
##
   maxlen
                      target ext
##
         1 frequent itemsets TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
       0.1 TRUE TRUE FALSE TRUE
##
## Absolute minimum support count: 196
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [59 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1
## Warning in apriori(Groceries, parameter = list(minlen = 1, maxlen = 1, sup
port
## = 0.02, : Mining stopped (maxlen reached). Only patterns up to a length of
## returned!
## done [0.00s].
## sorting transactions ... done [0.00s].
## writing ... [59 set(s)] done [0.00s].
## creating S4 object ... done [0.00s].
inspect(head(sort(itemsets, by = "support"), 10))
##
        items
                           support
                                      count
## [1] {whole milk}
                           0.25551601 2513
## [2] {other vegetables} 0.19349263 1903
      {rolls/buns}
                          0.18393493 1809
## [3]
## [4] {soda}
                           0.17437722 1715
## [5]
      {yogurt}
                           0.13950178 1372
## [6] {bottled water}
                          0.11052364 1087
## [7]
      {root vegetables} 0.10899847 1072
## [8] {tropical fruit}
                          0.10493137 1032
## [9] {shopping bags}
                           0.09852567 969
## [10] {sausage}
                          0.09395018 924
itemsets=apriori(Groceries,
              parameter = list(minlen = 1, maxlen = 1, support = 0.02, target
= "frequent itemsets"))
## Apriori
## Parameter specification:
```

confidence minval smax arem aval originalSupport maxtime support minlen

```
##
                  0.1
                                                             5
            NA
                         1 none FALSE
                                                 TRUE
                                                                  0.02
##
   maxlen
                      target ext
##
         1 frequent itemsets TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
##
       0.1 TRUE TRUE FALSE TRUE
                                         TRUE
                                    2
##
## Absolute minimum support count: 196
##
## set item appearances \dots[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [59 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1
## Warning in apriori(Groceries, parameter = list(minlen = 1, maxlen = 1, sup
port
## = 0.02, : Mining stopped (maxlen reached). Only patterns up to a length of
1
## returned!
## done [0.00s].
## sorting transactions ... done [0.00s].
## writing ... [59 set(s)] done [0.00s].
## creating S4 object ... done [0.00s].
```

inspect(head(sort(itemsets, by = "support"), 10))

```
##
        items
                           support
                                      count
## [1]
       {whole milk}
                           0.25551601 2513
## [2]
       {other vegetables} 0.19349263 1903
## [3]
      {rolls/buns}
                          0.18393493 1809
## [4]
                          0.17437722 1715
       {soda}
## [5]
       {yogurt}
                          0.13950178 1372
## [6] {bottled water}
                          0.11052364 1087
## [7]
      {root vegetables} 0.10899847 1072
## [8] {tropical fruit}
                          0.10493137 1032
## [9] {shopping bags}
                          0.09852567
                                      969
## [10] {sausage}
                          0.09395018 924
```

- The apriori algorithm from the arules package impliments apriori algorithms to create frequent itemsets.
- In the parameter list we have set the support thresold to 0.02 which means that for an item to be considered as frequent it must appear at least 198 times.
- Display the first top 10 frequent itemsets arranged in the descending order of support.

```
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
##
                         1 none FALSE
                                                 TRUE
##
  maxlen
                      target ext
##
         2 frequent itemsets TRUE
##
## Algorithmic control:
  filter tree heap memopt load sort verbose
       0.1 TRUE TRUE FALSE TRUE
##
                                    2
                                         TRUE
## Absolute minimum support count: 196
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [59 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2
## Warning in apriori(Groceries, parameter = list(minlen = 2, maxlen = 2, sup
## = 0.02, : Mining stopped (maxlen reached). Only patterns up to a length of
2
## returned!
## done [0.00s].
## sorting transactions ... done [0.00s].
## writing ... [61 set(s)] done [0.00s].
## creating S4 object ... done [0.00s].
```

inspect(head(sort(itemsets, by = "support"), 10))

```
##
        items
                                            support
                                                       count
## [1]
       {other vegetables, whole milk}
                                            0.07483477 736
## [2]
       {whole milk, rolls/buns}
                                            0.05663447 557
## [3]
       {whole milk, yogurt}
                                            0.05602440 551
## [4]
       {root vegetables, whole milk}
                                            0.04890696 481
       {root vegetables, other vegetables} 0.04738180 466
## [5]
       {other vegetables, yogurt}
## [6]
                                            0.04341637 427
## [7] {other vegetables, rolls/buns}
                                            0.04260295 419
## [8]
       {tropical fruit, whole milk}
                                            0.04229792 416
## [9] {whole milk, soda}
                                            0.04006101 394
## [10] {rolls/buns, soda}
                                            0.03833249 377
```

```
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
                         1 none FALSE
                                                 TRUE
##
  maxlen
                      target ext
##
         3 frequent itemsets TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
       0.1 TRUE TRUE FALSE TRUE
                                         TRUE
##
                                    2
## Absolute minimum support count: 196
##
## set item appearances \dots[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [59 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3
## Warning in apriori(Groceries, parameter = list(minlen = 3, maxlen = 3, sup
## = 0.02, : Mining stopped (maxlen reached). Only patterns up to a length of
3
## returned!
## done [0.00s].
## sorting transactions ... done [0.00s].
## writing ... [2 set(s)] done [0.00s].
## creating S4 object ... done [0.00s].
inspect(head(sort(itemsets, by = "support"), 10))
                                                       support
## [1] {root vegetables, other vegetables, whole milk} 0.02318251 228
## [2] {other vegetables, whole milk, yogurt} 0.02226741 219
```

Rule generation

```
## Apriori
##
## Parameter specification:
```

```
confidence minval smax arem aval original Support maxtime support minlen
##
           0.6
                  0.1
                         1 none FALSE
                                                 TRUE
                                                             5
                                                                 0.001
                                                                            1
   maxlen target ext
##
        10 rules TRUE
##
##
## Algorithmic control:
  filter tree heap memopt load sort verbose
##
       0.1 TRUE TRUE FALSE TRUE
##
## Absolute minimum support count: 9
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [157 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 done [0.01s].
## writing ... [2918 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
```

inspect(head(sort(rules, by = "support"), 10))

```
##
        1hs
                                rhs
                                                  support confidence
                                                                        covera
       lift count
ge
## [1]
        {butter,
##
         yogurt}
                             => {whole milk} 0.009354347 0.6388889 0.0146415
86 2.500387
               92
## [2]
       {root vegetables,
##
                             => {whole milk} 0.008235892 0.6377953 0.0129130
         butter}
66 2.496107
               81
## [3] {root vegetables,
##
         other vegetables,
##
         yogurt}
                             => {whole milk} 0.007829181 0.6062992 0.0129130
66 2.372842
               77
## [4]
        {tropical fruit,
##
         other vegetables,
                             => {whole milk} 0.007625826 0.6198347 0.0123029
##
         yogurt}
99 2.425816
               75
## [5] {tropical fruit,
         domestic eggs}
##
                             => {whole milk} 0.006914082 0.6071429 0.0113879
00 2.376144
               68
## [6] {butter,
         whipped/sour cream} => {whole milk} 0.006710727 0.6600000 0.0101677
68 2.583008
               66
        {tropical fruit,
## [7]
##
                             => {whole milk} 0.006507372 0.6336634 0.0102694
         curd}
46 2.479936
               64
## [8]
        {tropical fruit,
                             => {whole milk} 0.006202339 0.6224490 0.0099644
##
         butter}
13 2.436047
## [9] {butter,
```

```
## domestic eggs} => {whole milk} 0.005998983 0.6210526 0.0096593
80 2.430582 59
## [10] {pip fruit,
## whipped/sour cream} => {whole milk} 0.005998983 0.6483516 0.0092526
69 2.537421 59
```

- the apriori function can also be used to generate rules.
- In the given code the minimum support thresold is taken as 0.001 and the minimum confidence thresold is taken as 0.6.
- The inspect function gives the list of top 10 association rule in the descending order of support.

```
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
##
           0.6
                  0.1
                         1 none FALSE
                                                 TRUE
                                                            5
                                                                0.001
##
  maxlen target ext
        10 rules TRUE
##
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
       0.1 TRUE TRUE FALSE TRUE
##
                                         TRUE
##
## Absolute minimum support count: 9
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
## sorting and recoding items ... [157 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 5 6 done [0.01s].
## writing ... [2918 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
```

inspect(head(sort(rules, by = "confidence"), 10))

```
##
        1hs
                                 rhs
                                                         support confidence
coverage
             lift count
## [1] {rice,
                              => {whole milk}
         sugar}
                                                    0.001220132
                                                                          1 0.
001220132 3.913649
                      12
## [2] {canned fish,
         hygiene articles}
                              => {whole milk}
                                                    0.001118454
                                                                          1 0.
001118454 3.913649
                      118 | Page
## [3] {root vegetables,
```

<pre>## butter, ## rice}</pre>	=>	{whole	milk}	0.001016777	1 0.
001016777 3.913649 10					
<pre>## [4] {root vegetables, ## whipped/sour cream,</pre>					
## flour}	=>	{whole	milk}	0.001728521	1 0.
001728521 3.913649 17		(,		
## [5] {butter,					
## soft cheese,					
<pre>## domestic eggs}</pre>	=>	{whole	milk}	0.001016777	1 0.
001016777 3.913649 10					
<pre>## [6] {citrus fruit, ## root vegetables.</pre>					
<pre>## root vegetables, ## soft cheese}</pre>	->	Sother	vegetablesl	0.001016777	1 0.
001016777 5.168156 10	-/	locher	vegetablesj	0.001010///	1 0.
## [7] {pip fruit,					
## butter,					
<pre>## hygiene articles}</pre>	=>	$\{ whole \}$	milk}	0.001016777	1 0.
001016777 3.913649 10					
## [8] {root vegetables,					
## whipped/sour cream,		(, ,b a l a	m#11c)	0.001016777	1 0
## hygiene articles} 001016777 3.913649 10	=>	{wnore	milk}	0.001016777	1 0.
## [9] {pip fruit,					
## root vegetables,					
## hygiene articles}	=>	{whole	milk}	0.001016777	1 0.
001016777 3.913649 10		-	-		
## [10] {cream cheese ,					
## domestic eggs,					
## sugar}	=>	{whole	milk}	0.001118454	1 0.
001118454 3.913649 11					

Write a python code to deal with good or bad csv file by removing that column in which all the values are missing and for others columns using average values to fill the missing values

In [1]: from google.colab import drive
 drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call d rive.mount("/content/drive", force_remount=True).

In [2]: import numpy as np
import pandas as pd

In [3]: data = pd.read_csv("/content/drive/MyDrive/MSC_Cariculum/SEM3/Data Mining/Practic
data

Out[3]:

	ID	FieldA	FieldB	FieldC	FieldD	FieldE	FieldF	FieldG
0	1.0	Good	Better	Best	1024.0	NaN	10241.0	1
1	2.0	Good	NaN	Best	512.0	NaN	5121.0	2
2	3.0	Good	Better	NaN	256.0	NaN	256.0	3
3	4.0	Good	Better	Best	NaN	NaN	211.0	4
4	5.0	Good	Better	NaN	64.0	NaN	6411.0	5
5	6.0	Good	NaN	Best	32.0	NaN	32.0	6
6	7.0	NaN	Better	Best	16.0	NaN	1611.0	7
7	8.0	NaN	NaN	Best	8.0	NaN	8111.0	8
8	9.0	NaN	NaN	NaN	4.0	NaN	41.0	9
9	10.0	Α	В	С	2.0	NaN	21111.0	10
10	NaN	NaN	NaN	NaN	NaN	NaN	NaN	11
11	10.0	Good	Better	Best	1024.0	NaN	102411.0	12
12	10.0	Good	NaN	Best	512.0	NaN	512.0	13
13	10.0	Good	Better	NaN	256.0	NaN	1256.0	14
14	10.0	Good	Better	Best	NaN	NaN	NaN	15
15	10.0	Good	Better	NaN	64.0	NaN	164.0	16
16	10.0	Good	NaN	Best	32.0	NaN	322.0	17
17	10.0	NaN	Better	Best	16.0	NaN	163.0	18
18	10.0	NaN	NaN	Best	8.0	NaN	844.0	19
19	10.0	NaN	NaN	NaN	4.0	NaN	4555.0	20
20	10.0	Α	В	С	2.0	NaN	111.0	21

In [4]: df = data.copy()
 df.head(10)

Out[4]:

	ID	FieldA	FieldB	FieldC	FieldD	FieldE	FieldF	FieldG
0	1.0	Good	Better	Best	1024.0	NaN	10241.0	1
1	2.0	Good	NaN	Best	512.0	NaN	5121.0	2
2	3.0	Good	Better	NaN	256.0	NaN	256.0	3
3	4.0	Good	Better	Best	NaN	NaN	211.0	4
4	5.0	Good	Better	NaN	64.0	NaN	6411.0	5
5	6.0	Good	NaN	Best	32.0	NaN	32.0	6
6	7.0	NaN	Better	Best	16.0	NaN	1611.0	7
7	8.0	NaN	NaN	Best	8.0	NaN	8111.0	8
8	9.0	NaN	NaN	NaN	4.0	NaN	41.0	9
9	10.0	Α	В	С	2.0	NaN	21111.0	10

FieldA /
FieldB 9
FieldC 7
FieldD 3
FieldE 21
FieldF 2
FieldG 0
dtype: int64

In [7]: df[df.isnull().any(axis=1)] # inorder to check the row which is having the missir

Out[7]:

	ID	FieldA	FieldB	FieldC	FieldD	FieldE	FieldF	FieldG
0	1.0	Good	Better	Best	1024.0	NaN	10241.0	1
1	2.0	Good	NaN	Best	512.0	NaN	5121.0	2
2	3.0	Good	Better	NaN	256.0	NaN	256.0	3
3	4.0	Good	Better	Best	NaN	NaN	211.0	4
4	5.0	Good	Better	NaN	64.0	NaN	6411.0	5
5	6.0	Good	NaN	Best	32.0	NaN	32.0	6
6	7.0	NaN	Better	Best	16.0	NaN	1611.0	7
7	8.0	NaN	NaN	Best	8.0	NaN	8111.0	8
8	9.0	NaN	NaN	NaN	4.0	NaN	41.0	9
9	10.0	Α	В	С	2.0	NaN	21111.0	10
10	NaN	NaN	NaN	NaN	NaN	NaN	NaN	11
11	10.0	Good	Better	Best	1024.0	NaN	102411.0	12
12	10.0	Good	NaN	Best	512.0	NaN	512.0	13
13	10.0	Good	Better	NaN	256.0	NaN	1256.0	14
14	10.0	Good	Better	Best	NaN	NaN	NaN	15
15	10.0	Good	Better	NaN	64.0	NaN	164.0	16
16	10.0	Good	NaN	Best	32.0	NaN	322.0	17
17	10.0	NaN	Better	Best	16.0	NaN	163.0	18
18	10.0	NaN	NaN	Best	8.0	NaN	844.0	19
19	10.0	NaN	NaN	NaN	4.0	NaN	4555.0	20
20	10.0	Α	В	С	2.0	NaN	111.0	21

In [8]: df1 = df.dropna(axis= 1, how = "all")
df1

Out[8]:

	ID	FieldA	FieldB	FieldC	FieldD	FieldF	FieldG
0	1.0	Good	Better	Best	1024.0	10241.0	1
1	2.0	Good	NaN	Best	512.0	5121.0	2
2	3.0	Good	Better	NaN	256.0	256.0	3
3	4.0	Good	Better	Best	NaN	211.0	4
4	5.0	Good	Better	NaN	64.0	6411.0	5
5	6.0	Good	NaN	Best	32.0	32.0	6
6	7.0	NaN	Better	Best	16.0	1611.0	7
7	8.0	NaN	NaN	Best	8.0	8111.0	8
8	9.0	NaN	NaN	NaN	4.0	41.0	9
9	10.0	Α	В	С	2.0	21111.0	10
10	NaN	NaN	NaN	NaN	NaN	NaN	11
11	10.0	Good	Better	Best	1024.0	102411.0	12
12	10.0	Good	NaN	Best	512.0	512.0	13
13	10.0	Good	Better	NaN	256.0	1256.0	14
14	10.0	Good	Better	Best	NaN	NaN	15
15	10.0	Good	Better	NaN	64.0	164.0	16
16	10.0	Good	NaN	Best	32.0	322.0	17
17	10.0	NaN	Better	Best	16.0	163.0	18
18	10.0	NaN	NaN	Best	8.0	844.0	19
19	10.0	NaN	NaN	NaN	4.0	4555.0	20
20	10.0	Α	В	С	2.0	111.0	21

```
In [9]: df1.isnull().sum()
```

Out[9]: ID 1
FieldA 7
FieldB 9
FieldC 7
FieldD 3
FieldF 2
FieldG 0
dtype: int64

```
In [10]: df2 = df1.dropna(axis = 1, how = "any")
df2
```

Out[10]:		FieldG
	0	1
	1	2
	2	3
	3	4
	4	5
	5	6
	6	7
	7	8
	8	9
	9	10
	10	11
	11	12
	12	13
	13	14
	14	15
	15	16
	16	17
	17	18
	18	19
	19	20
	20	21

```
In [11]: df2.isnull().sum()
Out[11]: FieldG  0
```

dtype: int64

In [12]: df2.fillna(df2.mode(), inplace= True)

/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:5182: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

downcast=downcast,

In [13]: df2.isnull().sum()

Out[13]: FieldG 0 dtype: int64

In [13]:

```
In [ ]: from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call d rive.mount("/content/drive", force_remount=True).

```
In [ ]: import numpy as np
import pandas as pd
```

Out[3]:

	Country	Place Name	Latitude	Longitude
0	US	New York	40.7528	-73.9725
1	US	New York	40.7528	-73.9725
2	US	New York	40.7528	-73.9725
3	US	New York	40.7528	-73.9725
4	US	New York	40.7528	-73.9725
3557	DE	Munich	48.0915	11.5392
3558	DE	Munich	48.1833	11.7500
3559	DE	Munich	48.1000	11.4667
3560	DE	Munich	48.1480	11.7434
3561	DE	Munich	48.1480	11.7434

3562 rows × 4 columns

```
In [ ]: df = data.copy()
    df.head(10)
```

Out[4]:

	Country	Place Name	Latitude	Longitude
0	US	New York	40.7528	- 73.9725
1	US	New York	40.7528	-73.9725
2	US	New York	40.7528	- 73.9725
3	US	New York	40.7528	- 73.9725
4	US	New York	40.7528	- 73.9725
5	US	New York	40.7528	- 73.9725
6	US	New York	40.7528	- 73.9725
7	US	New York	40.7528	- 73.9725
8	US	New York	40.7528	- 73.9725
9	US	New York	40.7528	- 73.9725

```
In [ ]: df.rename(columns= {"Place Name":"Place_Name"}, inplace= True)
```

```
In [ ]: df1 = df[["Country", "Place_Name","Latitude"]]
df1
```

Out[6]:

	Country	Place_Name	Latitude
0	US	New York	40.7528
1	US	New York	40.7528
2	US	New York	40.7528
3	US	New York	40.7528
4	US	New York	40.7528
3557	DE	Munich	48.0915
3558	DE	Munich	48.1833
3559	DE	Munich	48.1000
3560	DE	Munich	48.1480
3561	DE	Munich	48.1480

3562 rows × 3 columns

```
In [ ]: mean_data = df1.groupby(["Country", "Place_Name"])[ "Latitude"].mean()
        mean_data
Out[7]: Country
                  Place_Name
        DE
                  Munich
                                48.143223
        GB
                  London
                                 51.509406
                  New York
        US
                                40.747044
        Name: Latitude, dtype: float64
In [ ]: final_df = pd.DataFrame(mean_data)
        final_df
Out[8]:
                              Latitude
         Country Place_Name
             DΕ
                     Munich 48.143223
             GB
                     London 51.509406
             US
                   New York 40.747044
In [ ]: final_df.to_csv("/content/drive/MyDrive/MSC_Cariculum/SEM3/Data Mining/Practical4
In [ ]:
```

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.tree import DecisionTreeClassifier
```

Out[2]: Temprature FFMC DMC DC ISI Class fire fire fire fire 0 notfire

Out[3]:						
ouc[5].		Temprature	FFMC	DMC	DC	ISI
	0	0	0	0	0	0
	1	0	0	0	0	0
	2	0	0	0	0	0
	3	0	0	0	0	0
	4	0	0	0	0	0
	5	0	0	0	0	0
	6	0	0	0	0	0
	7	0	0	0	0	0
	8	0	0	0	0	0
	a	0	Λ	Λ	Ο	Λ

```
In [4]: |y = df.iloc[:,-1]
Out[4]: 0
                 fire
                 fire
        1
                 fire
                 fire
             notfire
        5
                 fire
        6
                 fire
        7
             notfire
                 fire
                 fire
        Name: Class, dtype: object
In [5]: | Decisiontree = DecisionTreeClassifier()
In [6]: Decisiontree.fit(X,y)
Out[6]: DecisionTreeClassifier()
In [7]: from sklearn import tree
        plt.figure(figsize = (10,5))
        tree.plot tree(Decisiontree,filled = True)
        plt.show()
```

gini = 0.32 samples = 10 value = [8, 2]

```
In [ ]:
```

In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline
 from sklearn.tree import DecisionTreeClassifier

In [2]: df = pd.read_csv("same_data.csv")
 df.head()

Out[2]: Temprature FFMC DMC DC ISI Class fire fire fire fire 66 72 fire

Out[3]:		Temprature	FFMC	DMC	DC	ISI	
	0	72	48	64	66	47	
	1	45	56	68	29	30	
	2	73	76	71	36	24	
	3	57	66	77	49	46	
	4	51	50	40	66	72	
	5	80	61	75	58	27	
	6	71	44	24	29	54	
	7	66	77	35	61	73	
	8	76	39	23	65	79	
	9	73	24	65	53	22	

```
In [4]: |y = df.iloc[:,-1]
Out[4]: 0
             fire
             fire
        1
        2
             fire
             fire
             fire
        5
             fire
             fire
        7
             fire
             fire
             fire
        Name: Class, dtype: object
In [5]: Decisiontree = DecisionTreeClassifier()
In [6]: Decisiontree.fit(X,y)
Out[6]: DecisionTreeClassifier()
In [7]: from sklearn import tree
        plt.figure(figsize = (10,5))
        tree.plot tree(Decisiontree,filled = True)
        plt.show()
```

gini = 0.0 samples = 10.0 value = 10.0

```
In [ ]:
```

Naive Bayes

2022-09-15

Name:- Ashishkumar Rana

Roll No:- 903

Subject:- Data Mining

Practical:- Naive Bayes

Question 1

```
df = read.csv("C:\\Users\\User39\\Desktop\\Data Minig\\Naive Bayes.csv")
df
           Age Income JobSatisfaction
##
                                           Desire Enrolls
## 1
          <=30
                 High
                                    No
                                             Fair
                                                       No
## 2
          <=30
                 High
                                    No Exceelent
                                                       No
## 3 31 to 40
                 High
                                    No
                                             Fair
                                                      Yes
## 4
           >40 Medium
                                    No
                                             Fair
                                                      Yes
## 5
                                   Yes Excellent
           >40
                   Low
                                                      Yes
## 6
                                   Yes Excellent
           >40
                   Low
                                                       No
## 7 31 to 40
                  Low
                                   Yes Excellent
                                                      Yes
## 8
          <=30 Medium
                                    No
                                             Fair
                                                       No
## 9
          <=30
                   Low
                                   Yes
                                             Fair
                                                      Yes
## 10
           >40 Medium
                                   Yes
                                             Fair
                                                      Yes
## 11
          <=30 Medium
                                   Yes Excellent
                                                      Yes
## 12 31 to 40 Medium
                                    No Excellent
                                                      Yes
## 13 31 to 40
                                                      Yes
                 High
                                             Fair
## 14
           >40 Medium
                                    No Excellent
                                                       No
## 15
          <=30 Medium
                                             Fair
                                   Yes
head(df)
##
          Age Income JobSatisfaction
                                          Desire Enrolls
## 1
                High
                                            Fair
         <=30
                                                      No
                                   No Exceelent
## 2
         <=30
                High
                                                      No
```

```
## 3 31 to 40
                High
                                    No
                                                      Yes
                                            Fair
## 4
          >40 Medium
                                    No
                                            Fair
                                                      Yes
          >40
## 5
                  Low
                                   Yes Excellent
                                                      Yes
## 6
          >40
                                   Yes Excellent
                  Low
                                                       No
traindata = as.data.frame(df[1:14,])
traindata
##
           Age Income JobSatisfaction
                                           Desire Enrolls
## 1
          <=30
                 High
                                             Fair
                                                        No
                                     No
## 2
          <=30
                 High
                                     No Exceelent
                                                        No
## 3
      31 to 40
                 High
                                     No
                                             Fair
                                                       Yes
## 4
           >40 Medium
                                     No
                                             Fair
                                                       Yes
## 5
           >40
                   Low
                                   Yes Excellent
                                                       Yes
## 6
           >40
                   Low
                                    Yes Excellent
                                                        No
## 7
     31 to 40
                                   Yes Excellent
                   Low
                                                       Yes
## 8
          <=30 Medium
                                    No
                                             Fair
                                                        No
## 9
          <=30
                   Low
                                   Yes
                                             Fair
                                                       Yes
## 10
           >40 Medium
                                   Yes
                                             Fair
                                                       Yes
                                   Yes Excellent
## 11
          <=30 Medium
                                                       Yes
## 12 31 to 40 Medium
                                    No Excellent
                                                       Yes
## 13 31 to 40
                  High
                                    Yes
                                             Fair
                                                       Yes
           >40 Medium
                                     No Excellent
                                                        No
testdata = as.data.frame(df[15,])
testdata
       Age Income JobSatisfaction Desire Enrolls
## 15 <=30 Medium
                               Yes
                                      Fair
library(e1071) # Packge for Naive Bayes
model = naiveBayes(Enrolls~Age+Income+JobSatisfaction+Desire, data=
traindata)
model
## Naive Bayes Classifier for Discrete Predictors
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
##
          No
                    Yes
## 0.3571429 0.6428571
## Conditional probabilities:
##
        Age
## Y
                          >40 31 to 40
               <=30
         0.6000000 0.4000000 0.0000000
##
     Yes 0.2222222 0.3333333 0.4444444
##
```

```
##
##
        Income
## Y
              High
                         Low
                                 Medium
##
     No 0.4000000 0.2000000 0.4000000
     Yes 0.2222222 0.3333333 0.4444444
##
##
##
        JobSatisfaction
## Y
                No
                         Yes
##
     No 0.8000000 0.2000000
     Yes 0.3333333 0.6666667
##
##
##
        Desire
## Y
         Exceelent Excellent
                                   Fair
##
     No 0.2000000 0.4000000 0.4000000
##
     Yes 0.0000000 0.4444444 0.5555556
model2 = naiveBayes(Enrolls~Age+Income+JobSatisfaction+Desire, data=
traindata, laplace = 0.01)
model2
##
## Naive Bayes Classifier for Discrete Predictors
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
##
## A-priori probabilities:
## Y
##
          No
                   Yes
## 0.3571429 0.6428571
##
## Conditional probabilities:
##
        Age
## Y
              <=30
                         >40 31 to 40
##
     No 0.6020000 0.4020000 0.0020000
     Yes 0.2233333 0.3344444 0.4455556
##
##
##
        Income
## Y
              High
                         Low
                                 Medium
     No 0.4020000 0.2020000 0.4020000
##
##
     Yes 0.2233333 0.3344444 0.4455556
##
        JobSatisfaction
##
## Y
                         Yes
                No
##
     No 0.8020000 0.2020000
##
     Yes 0.3344444 0.6677778
##
##
        Desire
## Y
           Exceelent Excellent
                                         Fair
```

```
## No 0.202000000 0.402000000 0.402000000
## Yes 0.00111111 0.445555556 0.556666667
```

Question 2

```
library(readxl)
Data <- read excel("C:/Users/User39/Desktop/Data Minig/Naive Bayes
Data.xlsx")
Data
## # A tibble: 11 × 5
      Play Outlook Temperature Humidity Wind
##
##
      <chr> <chr>
                     <chr>
                                 <chr>
                                          <lgl>
## 1 yes
            rainy
                     cool
                                 normal
                                          FALSE
## 2 no
                     cool
                                 normal
            rainy
                                          TRUE
## 3 yes
            overcast hot
                                 high
                                          FALSE
## 4 no
            sunny
                     mild
                                 high
                                          FALSE
## 5 yes
            rainy
                     cool
                                 normal
                                          FALSE
## 6 yes
                     cool
                                 normal
            sunny
                                          FALSE
##
  7 yes
            rainy
                     cool
                                 normal
                                          FALSE
## 8 yes
                     hot
                                 normal
                                          FALSE
            sunny
## 9 yes
           overcast mild
                                 high
                                          TRUE
## 10 no
            sunny
                     mild
                                 high
                                          TRUE
                     hot
                                 normal
## 11 yes
            rainy
                                          NA
traindata = as.data.frame(Data[1:10,])
traindata
      Play
##
           Outlook Temperature Humidity Wind
## 1
                                  normal FALSE
       yes
              rainv
                           cool
## 2
                           cool
                                  normal TRUE
       no
              rainy
## 3
                           hot
                                    high FALSE
      yes overcast
                                    high FALSE
## 4
       no
                           mild
              sunny
## 5
                                  normal FALSE
       yes
              rainy
                           cool
## 6
      yes
              sunny
                           cool
                                  normal FALSE
      yes
## 7
                           cool
                                  normal FALSE
              rainy
## 8
                            hot
                                  normal FALSE
      yes
              sunny
## 9
       yes overcast
                           mild
                                    high TRUE
## 10
                           mild
       no
              sunny
                                    high TRUE
testdata = as.data.frame(Data[11,])
testdata
##
     Play Outlook Temperature Humidity Wind
                                normal
## 1 yes
            rainv
                          hot
                                         NA
model = naiveBayes(Wind ~ Play+Outlook+Temperature+Humidity, data = Data)
model
##
## Naive Bayes Classifier for Discrete Predictors
```

```
##
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## A-priori probabilities:
## Y
## FALSE TRUE
##
     0.7
           0.3
##
## Conditional probabilities:
##
          Play
## Y
                            yes
                  no
     FALSE 0.1428571 0.8571429
##
##
     TRUE 0.6666667 0.3333333
##
          Outlook
##
## Y
            overcast
                         rainy
                                    sunny
     FALSE 0.1428571 0.4285714 0.4285714
##
     TRUE 0.3333333 0.3333333 0.3333333
##
##
##
          Temperature
## Y
                cool
                           hot
                                     mild
##
     FALSE 0.5714286 0.2857143 0.1428571
##
     TRUE 0.3333333 0.0000000 0.6666667
##
##
          Humidity
## Y
                high
                        normal
##
     FALSE 0.2857143 0.7142857
##
     TRUE 0.6666667 0.3333333
model = naiveBayes(Wind ~ Play+Outlook+Temperature+Humidity, data = Data,
laplace = 0.01)
model
## Naive Bayes Classifier for Discrete Predictors
## Call:
## naiveBayes.default(x = X, y = Y, laplace = laplace)
## A-priori probabilities:
## Y
## FALSE TRUE
##
     0.7
           0.3
##
## Conditional probabilities:
##
          Play
## Y
                  no
                            yes
##
     FALSE 0.1442857 0.8585714
##
     TRUE 0.6700000 0.3366667
```

```
##
##
        Outlook
          overcast rainy sunny
## Y
## FALSE 0.1442857 0.4300000 0.4300000
##
    TRUE 0.3366667 0.3366667
##
##
        Temperature
## Y
                           hot
                cool
                                     mild
##
   FALSE 0.572857143 0.287142857 0.144285714
    TRUE 0.336666667 0.003333333 0.670000000
##
##
##
        Humidity
## Y
              high
                    normal
## FALSE 0.2871429 0.7157143
## TRUE 0.6700000 0.3366667
```

Name: Ashishkumar Rana

Roll no: 903

Subject: Data Mining

Practical: Support Vector Machine

```
In [1]: from google.colab import drive
        drive.mount('/content/drive')
        Drive already mounted at /content/drive; to attempt to forcibly remount, call d
        rive.mount("/content/drive", force_remount=True).
In [2]: from sklearn import datasets
In [3]: | cancer data = datasets.load breast cancer()
        print(cancer_data.feature_names)
        print(cancer data.target names)
         ['mean radius' 'mean texture' 'mean perimeter' 'mean area'
          'mean smoothness' 'mean compactness' 'mean concavity'
          'mean concave points' 'mean symmetry' 'mean fractal dimension'
          'radius error' 'texture error' 'perimeter error' 'area error'
          'smoothness error' 'compactness error' 'concavity error'
          'concave points error' 'symmetry error' 'fractal dimension error'
          'worst radius' 'worst texture' 'worst perimeter' 'worst area'
         'worst smoothness' 'worst compactness' 'worst concavity'
          'worst concave points' 'worst symmetry' 'worst fractal dimension']
         ['malignant' 'benign']
In [4]: cancer_data.data.shape
Out[4]: (569, 30)
In [5]: cancer data.data[0]
Out[5]: array([1.799e+01, 1.038e+01, 1.228e+02, 1.001e+03, 1.184e-01, 2.776e-01,
               3.001e-01, 1.471e-01, 2.419e-01, 7.871e-02, 1.095e+00, 9.053e-01,
               8.589e+00, 1.534e+02, 6.399e-03, 4.904e-02, 5.373e-02, 1.587e-02,
               3.003e-02, 6.193e-03, 2.538e+01, 1.733e+01, 1.846e+02, 2.019e+03,
               1.622e-01, 6.656e-01, 7.119e-01, 2.654e-01, 4.601e-01, 1.189e-01])
In [6]: | cancer_data.target[0]
Out[6]: 0
In [7]: | x = cancer_data.data
        y = cancer_data.target
In [8]: | from sklearn.model selection import train test split
        x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.3, random_st
```

```
In [9]: x_train.shape
 Out[9]: (398, 30)
In [10]: x_test.shape
Out[10]: (171, 30)
In [11]: from sklearn.svm import SVC
         Classifier = SVC(kernel = "linear")
         Classifier.fit(x_train,y_train)
Out[11]: SVC(kernel='linear')
In [12]: y_pred = Classifier.predict(x_test)
In [13]: import pandas as pd
         df = pd.DataFrame({"Actual Value":y_test, "Predicted_value":y_pred})
         df.head(10)
Out[13]:
             Actual Value Predicted_value
          0
                                    1
                     1
          1
                     0
                                   0
          3
                     0
                                   0
                                   0
                                   0
                                   0
                                    1
          9
In [14]: from sklearn import metrics
         from sklearn.metrics import confusion matrix, classification report, accuracy sco
In [15]: print(confusion_matrix(y_test, y_pred))
         [[ 57
                  6]
          [ 2 106]]
In [16]: | accuracy_score(y_test, y_pred)
Out[16]: 0.9532163742690059
In [17]: | metrics.precision_score(y_test, y_pred)
Out[17]: 0.9464285714285714
```

```
In [18]: metrics.recall_score(y_test, y_pred)
```

Out[18]: 0.9814814814814815

In [19]: print(metrics.classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.97	0.90	0.93	63
1	0.95	0.98	0.96	108
accuracy			0.95	171
macro avg	0.96	0.94	0.95	171
weighted avg	0.95	0.95	0.95	171

Name: Ashishkumar Rana

Roll no: 903

Subject: Data Mining

Practical: Confusion Matrix

```
In [1]: from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call d rive.mount("/content/drive", force_remount=True).

Import the library for ignorning the warnings

```
In [2]: import warnings as warnings
warnings.filterwarnings("ignore")
```

Out[5]:		y_actual	y_pred
	0	1	1
	1	0	1
	2	0	0
	3	1	1
	4	0	0

Creating Confusion matrix using pandas library

Out[6]: Predicted 0 1

Actual						
	0	5	2			

1 1 4

Creating Confusion matrix with marginal

```
In [7]: Confusion_matrix_marginal = pd.crosstab(df["y_actual"],df["y_pred"], rownames=["A
Confusion_matrix_marginal
```

Out[7]: Predicted 0 1 All

Actual

0 5 2 7

1 1 4 5

All 6 6 12

Using seaborn libraray to create Confusion matrix

```
In [8]: import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

```
In [9]: sns.heatmap(Confusion_matrix_marginal,annot = True, cmap = "Paired")
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7f19ab27ed50>

Creating Confusion matrix using sklearn library

```
In [10]: from sklearn import metrics
from sklearn.metrics import confusion_matrix, classification_report
```

```
In [11]: print("::::::::Confusion Matrix::::::")
    print(confusion_matrix(df["y_actual"],df["y_pred"]))
    ::::::::Confusion Matrix::::::
    [[5 2]
        [1 4]]
```

```
print(":::::Classification Report::::")
In [12]:
         print(classification_report(df["y_actual"],df["y_pred"]))
         :::::::Classification Report::::::
                      precision
                                   recall f1-score
                                                     support
                   0
                           0.83
                                     0.71
                                               0.77
                                                           7
                   1
                           0.67
                                     0.80
                                              0.73
                                                           5
                                                          12
            accuracy
                                              0.75
            macro avg
                           0.75
                                     0.76
                                              0.75
                                                          12
         weighted avg
                           0.76
                                     0.75
                                              0.75
                                                          12
```

In [12]:

```
KNN_Regressor_StandardSclar - Jupyter Notebook
In [1]: from google.colab import drive
        drive.mount('/content/drive')
        Drive already mounted at /content/drive; to attempt to forcibly remount, call d
        rive.mount("/content/drive", force_remount=True).
In [2]: import os
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        from sklearn.model selection import train test split
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
        from sklearn import metrics
        from sklearn.metrics import mean squared error, mean absolute error, mean absolute
In [3]: from sklearn.datasets import fetch_california_housing
In [4]: data = fetch california housing(as frame = True)
```

In [5]: df = data.frame

In [6]: df.head(10)

Out[6]:		Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHo
	0	8.3252	41.0	6.984127	1.023810	322.0	2.55556	37.88	-122.23	
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	
	5	4.0368	52.0	4.761658	1.103627	413.0	2.139896	37.85	-122.25	
	6	3.6591	52.0	4.931907	0.951362	1094.0	2.128405	37.84	-122.25	
	7	3.1200	52.0	4.797527	1.061824	1157.0	1.788253	37.84	-122.25	
	8	2.0804	42.0	4.294118	1.117647	1206.0	2.026891	37.84	-122.26	
	9	3.6912	52.0	4.970588	0.990196	1551.0	2.172269	37.84	-122.25	
	4									•

In [7]: df.tail(10)

Out[7]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	Мє
20630	3.5673	11.0	5.932584	1.134831	1257.0	2.824719	39.29	-121.32	
20631	3.5179	15.0	6.145833	1.141204	1200.0	2.777778	39.33	-121.40	
20632	3.1250	15.0	6.023377	1.080519	1047.0	2.719481	39.26	-121.45	
20633	2.5495	27.0	5.445026	1.078534	1082.0	2.832461	39.19	-121.53	
20634	3.7125	28.0	6.779070	1.148256	1041.0	3.026163	39.27	-121.56	
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09	
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21	
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22	
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32	
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24	

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	MedInc	20640 non-null	float64
1	HouseAge	20640 non-null	float64
2	AveRooms	20640 non-null	float64
3	AveBedrms	20640 non-null	float64
4	Population	20640 non-null	float64
5	Ave0ccup	20640 non-null	float64
6	Latitude	20640 non-null	float64
7	Longitude	20640 non-null	float64
8	MedHouseVal	20640 non-null	float64

dtypes: float64(9)
memory usage: 1.4 MB

In [9]: df.shape

Out[9]: (20640, 9)

In [10]: df.size

Out[10]: 185760

\cap	04	Г11	п.
U	uс	[11	ч,

	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24

20640 rows × 8 columns

```
In [12]: x.shape
Out[12]: (20640, 8)
In [13]: y = df.iloc[:,-1]
          У
Out[13]: 0
                   4.526
          1
                   3.585
          2
                   3.521
          3
                   3.413
                   3.422
                   . . .
          20635
                   0.781
          20636
                   0.771
          20637
                   0.923
          20638
                   0.847
          20639
                   0.894
          Name: MedHouseVal, Length: 20640, dtype: float64
In [14]: | y.shape
Out[14]: (20640,)
```

```
In [15]: from sklearn.preprocessing import StandardScaler
         sc = StandardScaler()
         X = sc.fit transform(x)
In [16]: # separate dataset into train and test
         X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.25,random_state)
         X_train.shape, X_test.shape
Out[16]: ((15480, 8), (5160, 8))
In [17]: print(X train.shape)
         print(X_test.shape)
         print(y train.shape)
         print(y_test.shape)
         (15480, 8)
         (5160, 8)
         (15480,)
         (5160,)
In [18]: KNN Regressor = KNeighborsRegressor(n neighbors=5)
         KNN_Regressor.fit(X_train,y_train)
Out[18]: KNeighborsRegressor()
In [19]: print("Training Score:",KNN_Regressor.score(X_train, y_train))
         print("Test Score:",KNN_Regressor.score(X_test,y_test))
         Training Score: 0.7964929714092259
         Test Score: 0.6737730861932387
In [20]: KNN Regressor Prediction = KNN Regressor.predict(X test)
         KNN_Regressor_Prediction
Out[20]: array([3.5354, 0.6036, 2.5062, ..., 0.737, 2.3528, 1.0536])
```

In [21]: Actual_predicted = pd.DataFrame({'Actual Values': y_test, 'Predicted Values': KNN
Actual_predicted.head(10)

Out[21]:

	Actual Values	Predicted Values
4712	3.550	3.535400
2151	0.707	0.603600
15927	2.294	2.506200
82	1.125	0.991400
8161	2.254	2.336800
6636	2.630	3.835404
17333	2.268	2.396400
19081	1.662	1.290800
13298	1.180	1.639200
7157	1.563	2.222000

```
In [22]: meanAbErr = metrics.mean_absolute_error(y_test, KNN_Regressor_Prediction)
    meanSqErr = metrics.mean_squared_error(y_test, KNN_Regressor_Prediction)
    rootMeanSqErr = np.sqrt(metrics.mean_squared_error(y_test, KNN_Regressor_Predicti

    print('Mean Absolute Error:', meanAbErr)
    print('Mean Square Error:', meanSqErr)
    print('Root Mean Square Error:', rootMeanSqErr)
```

Mean Absolute Error: 0.4443545546511627 Mean Square Error: 0.42933392108343804 Root Mean Square Error: 0.6552357751858777

In [22]:

```
In [1]: from google.colab import drive
    drive.mount('/content/drive')

    Drive already mounted at /content/drive; to attempt to forcibly remount, call d
    rive.mount("/content/drive", force_remount=True).
```

In [2]: import os
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 %matplotlib inline
 import seaborn as sns

from sklearn.model_selection import train_test_split
 from sklearn.preprocessing import StandardScaler
 from sklearn.preprocessing import MinMaxScaler
 from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
 from sklearn import metrics
 from sklearn.metrics import mean_squared_error, mean_absolute_error,mean_absolute

In [3]: from sklearn.datasets import fetch_california_housing

In [4]: data = fetch_california_housing(as_frame = True)

In [5]: df = data.frame

In [6]: df.head(10)

Out[6]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	MedHo
	0	8.3252	41.0	6.984127	1.023810	322.0	2.55556	37.88	-122.23	
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	
	5	4.0368	52.0	4.761658	1.103627	413.0	2.139896	37.85	-122.25	
	6	3.6591	52.0	4.931907	0.951362	1094.0	2.128405	37.84	-122.25	
	7	3.1200	52.0	4.797527	1.061824	1157.0	1.788253	37.84	-122.25	
	8	2.0804	42.0	4.294118	1.117647	1206.0	2.026891	37.84	-122.26	
	9	3.6912	52.0	4.970588	0.990196	1551.0	2.172269	37.84	-122.25	
	4									•

In [7]: df.tail(10)

Out[7]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	M€
20630	3.5673	11.0	5.932584	1.134831	1257.0	2.824719	39.29	-121.32	
20631	3.5179	15.0	6.145833	1.141204	1200.0	2.777778	39.33	-121.40	
20632	3.1250	15.0	6.023377	1.080519	1047.0	2.719481	39.26	-121.45	
20633	2.5495	27.0	5.445026	1.078534	1082.0	2.832461	39.19	-121.53	
20634	3.7125	28.0	6.779070	1.148256	1041.0	3.026163	39.27	-121.56	
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09	
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21	
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22	
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32	
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24	

←

In [8]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 9 columns):

Column Non-Null Count Dtype _____ MedInc float64 0 20640 non-null 20640 non-null float64 1 HouseAge AveRooms 2 20640 non-null float64 3 AveBedrms 20640 non-null float64 4 Population 20640 non-null float64 5 Ave0ccup 20640 non-null float64 6 Latitude 20640 non-null float64 7 Longitude 20640 non-null float64 MedHouseVal 20640 non-null float64

dtypes: float64(9)
memory usage: 1.4 MB

In [9]: df.shape

Out[9]: (20640, 9)

In [10]: df.size

Out[10]: 185760

```
In [11]: x = df.iloc[:,:-1]
x
```

Λ.	.40	Гα	4.7	Ι.
UI	ıτ	ΙТ	. Д. Т	1

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32
20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24

20640 rows × 8 columns

```
In [12]: x.shape
Out[12]: (20640, 8)
In [13]: y = df.iloc[:,-1]
         У
Out[13]: 0
                   4.526
         1
                   3.585
         2
                   3.521
                   3.413
         3
                   3.422
                   . . .
         20635
                   0.781
         20636
                   0.771
         20637
                   0.923
         20638
                   0.847
         20639
                   0.894
         Name: MedHouseVal, Length: 20640, dtype: float64
In [14]: | y.shape
Out[14]: (20640,)
```

```
In [15]: from sklearn.preprocessing import MinMaxScaler
    min_max=MinMaxScaler()
    df_minmax=pd.DataFrame(min_max.fit_transform(x),columns=x.columns)
    df_minmax.head()
```

Out[15]: MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Longitude 0 0.539668 0.784314 0.043512 0.008941 0.001499 0.567481 0.211155 0.020469 1 0.538027 0.392157 0.018929 0.038224 0.067210 0.001141 0.565356 0.212151 2 0.466028 1.000000 0.052756 0.021940 0.013818 0.001698 0.564293 0.210159 0.354699 1.000000 0.035241 0.021929 0.015555 0.001493 0.564293 0.209163 4 0.230776 1.000000 0.038534 0.022166 0.015752 0.001198 0.564293 0.209163

```
In [16]: # separate dataset into train and test
         X_train, X_test, y_train, y_test = train_test_split(df_minmax,y,test_size=0.25,ra
         X train.shape, X test.shape
Out[16]: ((15480, 8), (5160, 8))
In [17]: print(X train.shape)
         print(X_test.shape)
         print(y train.shape)
         print(y_test.shape)
         (15480, 8)
         (5160, 8)
         (15480,)
         (5160,)
         KNN_Regressor = KNeighborsRegressor(n_neighbors=5)
In [18]:
         KNN Regressor.fit(X train,y train)
Out[18]: KNeighborsRegressor()
In [19]: print("Training Score:",KNN Regressor.score(X train, y train))
         print("Test Score:",KNN_Regressor.score(X_test,y_test))
         Training Score: 0.8041397300295833
         Test Score: 0.6976447422494866
In [20]: KNN Regressor Prediction = KNN Regressor.predict(X test)
         KNN Regressor Prediction
```

Out[20]: array([2.201, 0.6466, 2.5836, ..., 0.977, 2.2138, 1.0994])

In [21]: Actual_predicted = pd.DataFrame({'Actual Values': y_test, 'Predicted Values': KNN
Actual_predicted.head(10)

Out[21]:

	Actual Values	Predicted Values
4712	3.550	2.201000
2151	0.707	0.646600
15927	2.294	2.583600
82	1.125	1.832800
8161	2.254	2.311000
6636	2.630	3.777002
17333	2.268	2.733400
19081	1.662	1.391400
13298	1.180	1.489200
7157	1.563	1.931600

```
In [22]: meanAbErr = metrics.mean_absolute_error(y_test, KNN_Regressor_Prediction)
    meanSqErr = metrics.mean_squared_error(y_test, KNN_Regressor_Prediction)
    rootMeanSqErr = np.sqrt(metrics.mean_squared_error(y_test, KNN_Regressor_Predicti

    print('Mean Absolute Error:', meanAbErr)
    print('Mean Square Error:', meanSqErr)
    print('Root Mean Square Error:', rootMeanSqErr)
```

Mean Absolute Error: 0.4225393023255814 Mean Square Error: 0.3979174092518759 Root Mean Square Error: 0.6308069508588788

In [22]: