## CMOS 8-BIT SINGLE-CHIP MICROCOMPUTER (TLCS-48C)

TMP80C49AP/TMP80C49AP-6 TMP80C39AP/TMP80C39AP-6 TMP80C49AU/TMP80C49AU-6

## 1. GENERAL DESCRIPTION AND FEATURES

The TMP80C49A is a single chip microcomputer fabricated in Silicon Gate CMOS technology which provides internal 8-bit parallel architecture.

The following basic architectural functions of a computer have been included in a single chip; an 8-bit CPU, 128×8 RAM data memory, 2K×8 ROM program memory, 27 I/O lines and an 8-bit timer/event counter.

The TMP80C49A is particularly efficient as a controller. It has extensive bit handling capability as well as facilities for both binary and BCD arithmetic.

The TMP80C39A/-6 is the equivalent of a TMP80C49A/-6 without ROM program memory on chip. By using this device with external EPROM or RAM, software debugging becomes easy.

The TMP80C49AP/-6 and TMP80C39AP/-6 are in a standard Dual Inline Package. The TMP80C49AU/-6 is in a 44-pin Micro Flat Package.

#### **FEATURES**

TMP80C49AP/TMP80C39AP/TMP80C49AU

1.36µs Instruction Cycle Time  $-40^{\circ}$ C to 85°C, 5V  $\pm 10\%$ 

TMP80C49AP-6/TMP80C39AP-6/TMP80C49AU-6

2.5 us Instruction Cycle Time  $-40^{\circ}$ C to 85°C. 5V  $\pm 20\%$ 

- Software Upward Compatible with TMP8049AP/INTEL's 8049
- 2K×8 masked ROM / 128×8 RAM
- Low Power

10mA MAX. in Normal Operation  $(V_{CC}=5V, f_{XTAL}=6MHz)$ 10µA MAX. in Power Down Mode  $(V_{CC}=5V, f_{XTAL}:DC)$ 

- Power Down Mode (Stand-by Mode)
- Halt Mode (Idle Mode)

## 2. PIN CONNECTIONS AND PIN FUNCTIONS

#### 2.1 Pin Connections (Top View)



Figure 2.1 (1) DIP Pin Connections



Figure 2.1 (2) Micro Flat Package Pin Connections

#### 2.2 Pin Names And Pin Description

• V<sub>SS</sub> (Power Supply)

Circuit GND potential

• V<sub>CC</sub> (Power Supply)

+5V during operation

•  $\overline{PS}$  (Input)

The control signal for the power saving at the power down mode (Active Low)

• PROG (Output)

Output strobe for the TMP82C43P I/O expander.

• P<sub>10</sub>-P<sub>17</sub> (Input/Output) Port 1

8-bit quasi-bidirectional port (Internal Pullup  $\approx 50 \text{K}\Omega$ ).

• P<sub>20</sub>-P<sub>27</sub> (Input/Output) Port 2

8-bit quasi-bidirectional port (Internal Pullup  $\approx 50 \text{K}\Omega$ ).

P<sub>20</sub>-P<sub>23</sub> contain the four high order program counter bits during an external program memory fetch and serve as a 4-bit I/O expander bus for the TMP82C43P.

DB<sub>0</sub>-DB<sub>7</sub> (Input/Output, Tri-State)

True bidirectional port which can be written or read synchronously using the  $\overline{RD}$ ,  $\overline{WR}$  strobes. The port can also be statically latched. Contains the 8 low order program counter bits during an external program memory fetch, and receives the addressed instruction under the control of  $\overline{PSEN}$ .

Also contains the address and data during an external RAM data store instruction, under control of ALE,  $\overline{RD}$ , and  $\overline{WR}$ .

T<sub>0</sub> (Input/Output)

Input pin testable using the conditional transfer instructions JT0 and JNT0. To can be designated as a clock output using ENT0 CLK instruction.

• T<sub>1</sub> (Input)

Input pin testable using the JT1 and JNT1 instruction. Can be designated the event counter input using the timer/STRT CNT instruction.

• INT (Input)

External interrupt input. Initiates an interrupt if interrupt is enabled. Interrupt is disabled after a reset. Also testable with conditional jump instruction. (Active low)

## • RD (Output)

Output strobe activated during a Bus read. Can be used to enable data onto the Bus from an external device. Used as a Read Strobe to External Data Memory (Active Low).

## • WR (Output)

Output strobe during a Bus write (Active Low). Used as a Write Strobe to External Data Memory.

## • RESET (Input)

Active Low signal which is used to initialize the Processor. Also used during the power down mode.

## ALE (Output)

Address Latch Enable. This signal occurs once during each cycle and is useful as a clock output. The negative edge of ALE strobes address into external data and program memory.

## PSEN (Output)

Program Store Enable. This output occurs only during a fetch to external program memory (Active Low).

## • $\overline{SS}$ (Input)

Single step input can be used in conjunction with ALE to "single step" processor through each instruction when  $\overline{SS}$  is low the CPU is placed into a wait state after it has completed the instruction being executed. Also used during the power down mode.

## • EA (Input)

External Access input which forces all program memory fetches to reference external memory. Useful for emulation and debug and essential for testing and program verification. (Active High)

## • XTAL 1 (Input)

One side of crystal input for internal oscillator. Also input for external source.

## • XTAL 2 (Input)

Other side of crystal input.

#### 2.3 Block Diagram



 $Note \ 1: \qquad The \ lower \ order \ 4 \ bit \ of \ port \ 2 \ output \ latch \ are \ used \ also \ for \ input/output \ operations$ 

with the I/O expander.

Note 2: The output latch of port 0 is also used for address output.

Figure 2.3 Block Diagram

## 3. MACHINE INSTRUCTION

The following symbols and codes are used in the list of machine instruction.

| Symbol        | Meaning                                                          |
|---------------|------------------------------------------------------------------|
| Rr            | Working register (0 < r < 7)                                     |
| Pp            | I/O port address P; (0 < p < 7)                                  |
| JВb           | Branch instruction in accordance with bit content (b) of operand |
| aН            | Higher order 3 bits of a                                         |
| аМ            | Medium order 4 bits of a                                         |
| aL            | Lower order 4 bits of a                                          |
| aML           | Medium order or lower order 8 bits of a                          |
| (a)           | Content of a                                                     |
| [ (a) ]       | Content of RAM addressed by a                                    |
| EXT[ (a) ]    | Content of external RAM addressed by a                           |
| PRO[ (a) ]    | Content of ROM addressed by a                                    |
| a <m></m>     | Value at bit position m of a                                     |
| a <m:n></m:n> | Value at bit position m to n of a                                |
| a←b           | Store a into b                                                   |
| a↔b           | Exchange a for b                                                 |
| •             | Connection                                                       |
| ā             | 1 complement of a                                                |
| a+b           | a plus b (Addition)                                              |
| a-b           | a minus b (Subtraction)                                          |
| a∧b           | Logical AND for a and b                                          |
| a∨b           | Logical OR for a and b                                           |
| a∀b           | Exclusive OR for a and b                                         |
| a=b           | a is equal to b                                                  |
| a<>b          | a is not equal to b                                              |
| (a) BCD       | Converted value of accumulator                                   |

List of TLCS-48 Machine Instruction (1/4)

| TEM       |          | ssembler | Object (<br>(1st<br>(2nd | )    | Function                    |       | Flag  | Cycle    |
|-----------|----------|----------|--------------------------|------|-----------------------------|-------|-------|----------|
| _         | Mnemonic |          | Bin                      | Hex  |                             |       | C, AC |          |
|           | ADD      | A , Rr   | 01101rrr                 | 68+r | (A)+(Rr)                    | r=0~7 | 11    | 1        |
|           | ADD      | A ,@Rr   | 0110000r                 | 60+r | (A)←(A)+[(Rr)]              | r=0,1 | 1.7   | 2        |
|           | ADD      | A ,#i    | 00000011                 | 03   | (A)←(A)+i                   |       | 11    | 2        |
|           | [        |          | iiiiiiii                 | ii   |                             |       |       |          |
|           | ADDC     | A , Rr   | 01111rrr                 | 78+r | (A)←(A)+(Rr)+(c)            | r=0~7 | 11    | 1        |
|           | ADDC     | Α ,@Rr   | 0111000r                 | 70+r | (A)←(A)+[(Rr)]+(c)          | r=0,1 | Į Į   | 1        |
|           | ADDC     | A ,#i    | 00010011                 | 13   | (A)←(A)+i+(c)               |       | 1 1   | 2        |
|           | 1        |          | 11111111                 | ii   |                             |       |       |          |
|           | ANL      | A , Rr   | 01011rrr                 | 58+r | (A)←(A) ∧(Rr)               | r=0~7 |       | 1        |
| _         | ANL      | A ,@Rr   | 0101000r                 | 50+r | (A)←(A) ∧[(Rr)]             | r=0,1 |       | 1        |
| 0         | ANL      | A ,#i    | 01010011                 | 53   | (A)←(A) ∧i                  |       |       | 2        |
| 1.        | <u> </u> | ,        | 11111111                 | ii   |                             |       |       |          |
| 2         | ORL      | A , Rr   | 01001rrr                 | 48+r | (A)←(A) ∨(Rr)               | r=0~7 |       | 1        |
| struction | ORL      | A ,@Rr   | 0100000r                 | 40+r | (A)←(A) ∨[(Rr)]             | r=0,1 |       | 1        |
| st        | ORL      | A ,#i    | 01000011                 | 43   | (A)←(A) ∨i                  |       |       | 2        |
|           |          |          | 11111111                 | ii   |                             |       |       |          |
| 1         | XRL      | A , Rr   | 11011rrr                 | D8+r | (A)←(A) ∀(Rr)               | r=0~7 |       | 1        |
| -         | XRL      | A ,@Rr   | 1101000r                 | D0+r | (A)←(A) ∀[(Rr)]             | r=0,1 |       | 1        |
| ato       | XRL      | A ,#i    | 11010011                 | D3   | (A)←(A) ∀i                  |       |       | 2        |
| e         |          |          | iiiiiiiii                | ii   |                             |       |       |          |
| c u m u l | INC      | Α        | 00010111                 | 17   | (A)←(A)+1                   |       |       | 1        |
| ] 5       | DEC      | Α        | 00000111                 | 07   | (A)←(A)~1                   |       |       | 1        |
| Acc       | CLR      | Α        | 00100111                 | 27   | (A)←0                       |       |       | 1        |
| ⋖         | CPL      | Α        | 00110111                 | 37   | (A)←NOT(A)                  |       |       | 1        |
|           | DA       | Α        | 01010111                 | 57   | (A)←(A)BCD                  |       | 1     | 1        |
|           | SWAP     | Α        | 01000111                 | 47   | (A)<7:4> ↔(A)<3:0>          |       |       | 1        |
|           | RL       | Α        | 11100111                 | E7   | (A) <n+1> ←(A)<n></n></n+1> |       |       | 1        |
|           |          |          |                          |      | (A)<0> ←(A)<7>              | n=0~6 |       |          |
|           | RLC      | Α        | 11110111                 | F7   | (A) <n+1> ←(A)<n></n></n+1> |       | Į.    | 1        |
|           |          |          |                          |      | (C)←(A)<7>                  |       |       |          |
|           |          |          |                          |      | (A)<0> ←(C)                 | n=0~6 |       | <u> </u> |
|           | RR       | Α        | 01110111                 | 77   | (A) <n> ←(A)<n+1></n+1></n> | n=0~6 |       | 1        |
|           |          |          |                          |      | (A)<7> ←(A)<0>              |       |       |          |
|           | RRC      | Α        | 01100111                 | 67   | (A) <n> ←(A)<n+1></n+1></n> |       | 1     | 1        |
|           |          |          | 1                        |      | (C)←(A)<0>                  |       |       |          |
|           |          |          |                          |      | (A)<7> ←(C)                 | n=0~6 |       |          |
|           | IN       | A , Pp   | 000010pp                 | 08+p | (A)←(Pp)                    | P=1,2 |       | 2        |
|           | OUTL     | Pp, A    | 001110рр                 | 38+p | (Pp) ←(A)                   | P=1,2 |       |          |
| 0         | ANL      | Pp,#i    | 100110pp                 | 98+p | (Pp) ←(Pp)∧i                | P=1,2 |       | 2        |
| -         |          |          | iiiiiiii                 | ii   |                             |       |       |          |
|           | ORL      | Pp,#i    | 100010pp                 | 88+p | (Pp) ←(Pp)√i                | P=1,2 |       | 2        |
|           | <u></u>  |          | 111111111                | ii   | 1                           |       |       |          |

List of TLCS-48 Machine Instruction (2/4)

| TEM        | Assembler       | Object (1st | :)   | Function                                       | Flag     | Cycle    |
|------------|-----------------|-------------|------|------------------------------------------------|----------|----------|
| -          | Mnemonic        | Bin         | Hex  |                                                | C, AC    | 1        |
|            | INS A , BUS     | 00001000    | 08   | (A)←(BUS)                                      |          | 2        |
|            | OUTL BUS, A     | 00000010    | 02   | (BUS)←(AC)                                     |          | 2        |
|            | ANL BUS,#i      | 10011000    | 98   | (BUS)←(BUS) ∧i                                 |          | 2        |
|            |                 | 11111111    | ii   |                                                |          |          |
| ٦          | ORL BUS,#i      | 10001000    | 88   | (BUS)←(BUS) ∨i                                 |          | 2        |
| <u> </u>   |                 | 11111111    | ii   |                                                |          |          |
| _          | MOVD A , Pp     | 000011pp    | 0C+p | (A)<3:0> ←(Pp) p=4~7<br>(A)<7:4> ←0            |          | 2        |
| 1          | MOVD Pp, A      | 001111pp    | 3C+p | (Pp) ←(A)<3:0> p=4~7                           |          | 2        |
|            | ANLD Pp, A      | 1001111pp   | 9C+p | $(Pp) \leftarrow (Pp) \land (A) < 3:0 > p=4~7$ |          | 2        |
|            | ORLD Pp, A      | 100011pp    | 8C+p | (Pp) ←(Pp)√(A)<3:0> p=4~7                      |          | 2        |
| <b></b>    | INC Rr          | 00011rrr    | 18+r | (D-) (/D-) (4                                  |          | 1        |
| (1)        | INC @Rr         | 0001000r    | 10+r | [(Rr)] +[(Rr)]+1 r=0,1                         |          | 1        |
| l `''      | DEC Rr          | 11001rrr    | C8+r | (Rr) ←(Rr)-1 r=0~7                             |          | 1        |
|            | JMP a           | aH00100     | aH+4 | (PC)<10:0> ←a                                  | -        | 2        |
|            |                 | aML         | 1    | (PC)<11> ←(DBF)                                |          | -        |
|            | JMPP @A         | 10110011    | B3   | (PC)<7:0>←PRO[(PC)<11:8>·(A)]                  |          | 2        |
|            | DJNZ Rr, a      | 11101rrr    | E8+r | (Rr) ←(Rr)-1 r=0~7                             |          | 2        |
|            | 100.12 1.11 , 4 | aML         | 2011 | if(Rr) ≠0then(PC)<7:0>←aML                     |          | -        |
|            |                 |             |      | else no operation                              |          |          |
|            | JC a            | 11110110    | F6   | if(C)=1 then(PC)<7:0>←aML                      |          | 2        |
|            |                 | aML         |      | else no operation                              |          | _        |
| u          | JNC a           | 11100110    | E6   | if(C)=0 then(PC)<7:0>←aML                      |          | 2        |
| <u>.</u> ا |                 | aML         |      | else no operation                              |          | İ        |
| nstruction | JZ a            | 11000110    | C6   | if(A)=0 then(PC)<7:0>←aML                      |          | 2        |
| 1          |                 | aML         |      | else no operation                              |          | İ        |
| s t        | JNZ a           | 10010110    | 96   | if(A)≠0 then(PC)<7:0>←aML                      |          | 2        |
| и<br>—     |                 | aML         |      | else no operation                              | Ī        |          |
|            | JTO a           | 00110110    | 36   | if T0=1 then(PC)<7:0>←aML                      |          | 2        |
| l c h      |                 | aML         |      | else no operation                              |          |          |
| an         | JNTO a          | 00100110    | 26   | if T0=0 then(PC)<7:0>←aML                      |          | 2        |
| Br         |                 | aML         |      | else no operation                              |          |          |
|            | JT1 a           | 01010110    | 56   | if T1=1 then(PC)<7:0>←aML                      |          | 2        |
|            |                 | aML         |      | else no operation                              |          | }        |
|            | JNT1 a          | 01000110    | 46   | if T1=0 then(PC)<7:0>←aML                      |          | 2        |
| l          |                 | aML         |      | else no operation                              |          |          |
|            | JFO a           | 10110110    | B6   | if F0=1 then(PC)<7:0>←aML                      |          | 2        |
|            |                 | aML         |      | else no operation                              | <u> </u> | <u> </u> |
| l          | JF1 a           | 01110110    | 76   | if F1=1 then(PC)<7:0>←aML                      |          | 2        |
|            |                 | aML         |      | else no operation                              | <u> </u> | <u> </u> |
|            | JTF a           | 00010110    | 16   | if TF=1 then(PC)<7:0>←aML                      |          | 2        |
|            |                 | aML         |      | else no operation                              |          |          |

<sup>(1) ·····</sup> Register Instruction

List of TLCS-48 Machine Instruction (3/4)

| TEM  | Assembler<br>Mnemonic | Object (<br>(1st<br>(2nd | )     | Function                    | Flag<br>C, AC | Cycle   |
|------|-----------------------|--------------------------|-------|-----------------------------|---------------|---------|
| -    | ivinemonic            | Bin                      | Hex   |                             | C, AC         | <u></u> |
|      | JNI a                 | 10000110                 | 86    | if INT =0 then(PC)<7:0>←aML |               | 2       |
| l    |                       | aML                      |       | else no operation           |               |         |
| (2)  | JBb a                 | bbb10010                 | b+12  | if (A) <b>=1 then</b>       |               | 2       |
|      | ,                     | aML                      |       | (PC)<7:0>←aML               |               |         |
|      |                       |                          |       | else no operation b=0~7     |               |         |
| 1    | CALL a                | aH10100                  | aH+14 | [(SP)] ←(PSW)<7:4>·(PC)     |               | 2       |
|      |                       | aML                      |       | (SP) ←(SP)+1                |               |         |
|      |                       |                          | 1     | (PC)<10:0> ←a               |               |         |
|      |                       |                          |       | (PC)<11> ←(DBF)             |               |         |
| (3)  | RET                   | 10000011                 | 83    | (SP)←(SP)−1                 |               | 2       |
|      |                       |                          |       | (PC) ←[(SP)]<11:0>          |               |         |
|      | RETR                  | 10010011                 | 93    | (SP)←(SP)-1                 | 11            | 2       |
| 1    |                       |                          |       | (PC) ←[(SP)]<11:0>          |               |         |
|      |                       |                          |       | (PSW)<7:4> ←[(SP)]<15:12>   |               |         |
|      | CLR C                 | 10010111                 | 97    | (C)←0                       |               | 1       |
|      | CPL C                 | 10100111                 | A7    | (C)←NOT(C)                  |               | 1       |
| (4)  | CLR F0                | 10000101                 | 85    | (F0) ←0                     |               | 1       |
| ` '' | CPL F0                | 10010101                 | 95    | (F0) ←NOT(F0)               |               |         |
|      | CLR F1                | 10100101                 | A5    | (F1) ←0                     |               | 1       |
|      | CPL F1                | 10110101                 | B5    | (F1) ←NOT(F1)               |               | 1       |
|      | MOV A , Rr            | 111111                   | F8+r  | (A)←(Rr) r=0~7              |               | 1       |
|      | MOV A ,@Rr            | 1111000r                 | F0+r  | (A)←[(Rr)] r=0,1            |               | 2       |
| ļ    | MOV A ,#i             | 00100011                 | 23    | (A) ←i                      |               | 2       |
|      |                       | 11111111                 | ii    |                             |               |         |
| _    | MOV Rr, A             | 10101rrr                 | A8+r  | (Rr)←(A) r=0~7              |               | 1       |
| ion  | MOV @Rr, A            | 1010000r                 | A0+r  | [(Rr)]←(A) r=0,1            |               | 1       |
| t    | MOV Rr,#i             | 10111rrr                 | B8+r  | (Rr)←i r=0~7                |               | 2       |
| 3    |                       | iiiiiiiii                | ii    |                             |               | ļ       |
| tru  | MOV @Rr,#i            | 1011000r                 | B0+r  | [(Rr)]←i r=0,1              |               | 2       |
| s u  |                       | liiiiiiii                | ii    |                             |               | ļ       |
| -    | MOV A,PSW             | 11000111                 | C7    | (A) ←(PSW)                  |               | 1       |
| e ,  | MOV PSW,A             | 11010111                 | D7    | (PSW) ←(A)                  |               | 1       |
| > 0  | XCH A,Rr              | 00101rrr                 | 28+r  | (A) ↔(Rr) r=0~7             |               | 1       |
| Σ    | XCH A,@Rr             | 0010000r                 | 20+r  | (A) ↔[(Rr)] r=0,1           |               | 1       |
|      | XCHD A,@Rr            | 0011000r                 | 30+r  | (A)<3:0>→[(Rr)<3:0>] r=0,1  |               | 1       |
|      | MOVX @Rr,A            | 1001000r                 | 90+r  | EXT[(Rr)] ←(A) r=0,1        |               | 1 1     |
|      | MOVX A,@Rr            | 1000000r                 | 80+r  | (A) ←EXT[(Rr)] r=0,1        | .             |         |
|      | MOVP A,@A             | 10100011                 | A3    | (A) ←PRO[(PC)<11:8>·(A)]    |               | 1       |
| 1    | MOVP3 A,@A            | 11100011                 | E3    | (A) ←PRO[(PC)<11>·011·(A)]  |               | 1       |

<sup>(2) ·····</sup> Branch Instruction (4) ····· Flag Instruction

<sup>(3) ·····</sup> Subroutine Instruction

List of TLCS-48 Machine Instruction (4/4)

| ITEM          |      | sembler | (2nd) Function |     | (1st)<br>(2nd)                  |                                         | Function | Flag<br>C, AC | Cycle |
|---------------|------|---------|----------------|-----|---------------------------------|-----------------------------------------|----------|---------------|-------|
|               |      |         | Bin            | Hex |                                 | C, AC                                   |          |               |       |
|               | MOV  | A,T     | 01000010       | 42  | (A) ←(TR)                       |                                         | 1        |               |       |
| t e           | MOV  | T,A     | 01100010       | 62  | (TR)←(A)                        |                                         | 1        |               |       |
| 0 0 11        | STRT | Т       | 01010101       | 55  | Start Timer                     |                                         | 1        |               |       |
| U<br>L        | STRT | CNT     | 01000101       | 45  | Start Counter                   | ••••••                                  | 1        |               |       |
| шe            | STOP | TCNT    | 01100101       | 65  | Stop Timer/Counter              | *****                                   | 1        |               |       |
| ; <u> </u>    | EN   | TCNTI   | 00100101       | 25  | Enable Timer/Counter Interrupt  |                                         | 1        |               |       |
| L             | DIS  | TCNTI   | 00110101       | 35  | Disable Timer/Counter Interrupt |                                         | 1        |               |       |
|               | EN   | I       | 00000101       | 05  | Enable External Interrupt       |                                         | 1        |               |       |
|               | DIS  | I       | 00010101       | 15  | Disable External Interrupt      |                                         | 1        |               |       |
| -             | SEL  | RB0     | 11000101       | C5  | (BS)← 0                         |                                         | 1        |               |       |
| 1             | SEL  | RB1     | 11010101       | D5  | (BS)← 1                         | ***************                         | 1        |               |       |
| <u>۔</u><br>0 | SEL  | MB0     | 11100101       | E5  | (DBF) ← 0                       | •••••                                   | 1        |               |       |
| ŭ             | SEL  | MB1     | 11110101       | F5  | (DBF) ← 1                       | • • • • • • • • • • • • • • • • • • • • | 1        |               |       |
|               | ENT0 | CLK     | 01110101       | 75  | Enable Clock Output on To       |                                         | 1        |               |       |
|               | HALT |         | 00000001       | 01  | Halt                            | • • • • • • • • • • • • • • • • • • • • | 1        |               |       |
| (5)           | NOP  |         | 00000000       | 00  | no operation                    |                                         | 1        |               |       |

<sup>(5) ----</sup> Other

**TOSHIBA** 

## 4. ELECTRICAL CHARACTERISTICS

## 4.1 Absolute Maximum Ratings

#### TMP80C49AP/C39AP/C49AU

| SYMBOL           | ITEM                                                       | RATTING              |
|------------------|------------------------------------------------------------|----------------------|
| Vcc              | V <sub>CC</sub> Supply Voltage (with respect to GND (VSS)) | - 0.5V to + 7V       |
| VINA             | Input Voltage (Except EA)                                  | - 0.5V to VCC + 0.5V |
| VINB             | Input Voltage (Only EA)                                    | - 0.5V to + 13V      |
| PD               | Power Dissipation (Ta = 85°C)                              | 250mW                |
| TSOLDER          | Soldering Temperature (Soldering Time 10 sec)              | 260°C                |
| T <sub>STG</sub> | Storage Temperature                                        | - 65°C to 150°C      |
| TOPR             | Operating Temperature                                      | - 40°C to 85°C       |

#### 4.2 DC Characteristics

TMP80C49AP/C39AP/C49AU TOPR =  $-40^{\circ}$ C to 85°C, VCC = +5V ± 10%, V<sub>SS</sub> = 0V, unless otherwise noted.

| SYMBOL | PARAME                                                                                               | TER                                 | TEST CONDITIONS                                    | MIN.                     | TYP. | MAX.  | UNIT     |
|--------|------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------|--------------------------|------|-------|----------|
| VIL    | Input Low Voltage<br>(Except XTAL <sub>1</sub> , XTAL                                                | -2, RESET)                          |                                                    | -0.5                     | _    | 0.8   | V        |
| VIL1   | input Low Voltage<br>(XTAL <sub>1</sub> , XTAL <sub>2</sub> , RESE                                   | T)                                  |                                                    | - 0.5                    | _    | 0.6   | ٧        |
| VIH    | Input High Voltage<br>(Except XTAL <sub>1</sub> , XTAL                                               | <sub>-2</sub> , RESET, PS)          |                                                    | 2.2                      | _    | Vcc   | ٧        |
| VIH1   | Input High Voltage<br>(XTAL <sub>1</sub> , XTAL <sub>2</sub> , RESE                                  |                                     |                                                    | 0.7x<br>Vcc              | _    | Vcc   | V        |
| VOL    | Output Low Voltage<br>(Except P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -                   | 9                                   | IOL = 1.6mA                                        | _                        | _    | 0.45  | ٧        |
| VOL1   | Output Low Voltage<br>(P10-P17, P20-P27)                                                             | 2                                   | IOL = 1.2mA                                        | -                        | -    | 0.45  | >        |
| VOH11  | Output High Voltage<br>(Except P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> ) |                                     | IOH = - 1.6mA                                      | 2.4                      | 1    | _     | ٧        |
| VOH12  | Output High Voltag<br>(Except P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -                   | е                                   | IOH = -400μA                                       | V <sub>CC</sub><br>- 0.8 | -    |       | <b>V</b> |
| VOH21  | Output High Voltag<br>(P <sub>1</sub> 0-P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )         |                                     | IOH = -50μA                                        | 2.4                      | -    | _     | ٧        |
| VOH22  | Output High Voltag<br>(P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )         | e                                   | IOH = - 25μA                                       | V <sub>CC</sub><br>- 0.8 | -    | _     | ٧        |
| ILI    | Input Leak Current<br>(T <sub>1</sub> , INT, EA, PS)                                                 |                                     | $V_{SS} \leq V_{IN} \leq V_{CC}$                   | _                        | _    | ± 10  | μΑ       |
| ILi1   | Input Leak Current<br>(SS, RESET)                                                                    |                                     | $V_{SS} \leq V_{IN} \leq V_C$                      |                          | -    | - 50  | μА       |
| ILI2   | Output Leak Curren                                                                                   |                                     | $V_{SS} + 0.45V \le V_{IN}$<br>$\le V_{CC}$        | _                        | _    | - 500 | μА       |
| ILO    | Output Leak Curren<br>(High impedace con                                                             | t (BUS, T <sub>O</sub> )<br>dition) | $V_{SS} + 0.45V \le V_{IN}$<br>$\le V_{CC}$        |                          |      | ± 10  | μА       |
| ICC1   | V <sub>CC</sub> Supply                                                                               | Normal<br>operation                 | $V_{CC} = 5V$ ,<br>$f_{XTAL} = 6MHz$               | _                        | _    | 10    | mA       |
| ICCH1  | Current                                                                                              | HALT Mode                           | √ VÌH = V <sub>CC</sub> − 0.2V<br>VIL = 0.2V       | _                        | _    | 2.5   | IIIA     |
| ICC2   | V <sub>CC</sub> Supply                                                                               | Normal<br>operation                 | V <sub>CC</sub> = 5V,<br>f <sub>XTAL</sub> = 11MHz |                          | _    | 15    | mA       |
| ICCH2  | Current                                                                                              | HALT Mode                           | VIH = V <sub>CC</sub> - 0.2V<br>VIL = 0.2V         |                          | _    | 4.0   | IIIA     |

#### 4.3 AC Charactristics

TMP80C49AP/C39AP/C49AU TOPR =  $-40^{\circ}$ C to 85°C, V<sub>CC</sub> = +5V  $\pm$  10%, V<sub>SS</sub> = 0V, unless otherwise noted.

|                    |                                       | . 33 .         | 7          | 1    |      | ·    |
|--------------------|---------------------------------------|----------------|------------|------|------|------|
| SYMBOL             | PARAMETER                             | TEST CONDITION | f (t)      | 110  | ЛHz  | UNIT |
|                    |                                       |                |            | MIN. | MAX. |      |
| t                  | Clock Period                          | Note 2         | 1/xtal f   | 90.9 | 1000 | ns   |
| t <sub>LL</sub>    | ALE Pulse Width                       |                | 3.5t – 170 | 150  |      | ns   |
| t <sub>AL</sub>    | Address Setup Time (ALE)              |                | 2t – 110   | 70   | _ `  | ns   |
| t <sub>LA</sub>    | Address Hold Time (ALE)               | CL = 20pF      | t – 40     | 50   | _    | ns   |
| t <sub>CC1</sub>   | Control Pulse Width<br>(RD, WR)       |                | 7.5t – 200 | 480  | -    | ns   |
| t <sub>CC2</sub>   | Control Pulse Width<br>(PSEN)         |                | 6t – 200   | 350  | _    | ns   |
| $t_{DW}$           | Data Setup Time<br>(WR)               |                | 6.5t – 200 | 390  | -    | ns   |
| t <sub>WD</sub>    | Data Hold Time<br>(WR)                | CL = 20pF      | t – 50     | 40   | _    | ns   |
| t <sub>DR</sub>    | Data Hold Time<br>(RD, PSEN)          | CL = 20pF      | 1.5t – 30  | 0    | 110  | ns   |
| t <sub>RD1</sub>   | Data Input Read Time<br>(RD)          |                | 5.5t – 120 | -    | 375  | ns   |
| t <sub>RD2</sub>   | Data Input Read Time<br>(PSEN)        |                | 4t – 120   | -    | 240  | ns   |
| t <sub>AW</sub>    | Address Setup Time<br>(WR)            |                | 5t – 150   | 300  | _    | ns   |
| t <sub>AD1</sub>   | Address Setup Time<br>(RD)            |                | 10t - 170  | -    | 730  | ns   |
| t <sub>AD2</sub>   | Address Setup Time<br>(PSEN)          |                | 7t 170     | _    | 460  | ns   |
| t <sub>AFC1</sub>  | Address Float Time<br>(RD, WR)        | CL = 20pF      | 2t – 40    | 140  | _    | ns   |
| t <sub>AFC2</sub>  | Address Float Time<br>(PSEN)          | CL = 20pF      | 0.5t - 40  | 10   | -    | ns   |
| t <sub>LAFC1</sub> | ALE to Control Time<br>(RD, WR)       |                | 3t – 75    | 200  | -    | ns   |
| t <sub>LAFC2</sub> | ALE to Control Time<br>(PSEN)         |                | 1.5t – 75  | 60   | -    | ns   |
| t <sub>CA1</sub>   | Control to ALE Time<br>(RD, WR, PROG) |                | t – 65     | 25   | _    | ns   |
| t <sub>CA2</sub>   | Control to ALE Time<br>(PSEN)         |                | 4t – 70    | 290  | -    | ns   |

AC Charactristics (Continue)  $T_{OPR} = -40^{\circ}\text{C}$  to 85°C,  $V_{CC} = +5\text{V} \pm 10\%$ ,  $V_{SS} = 0\text{V}$ , unless otherwise noted.

| C) (1 4 D O )   | DADAMETED                               | TEST CONDITION | £ (4)       | 11MHz       |      | UNIT |  |
|-----------------|-----------------------------------------|----------------|-------------|-------------|------|------|--|
| SYMBOL          | PARAMETER                               | TEST CONDITION | f (t)       | MIN.        | MAX. |      |  |
| t <sub>CP</sub> | Port Control Setup Time<br>(PROG)       |                | 1.5t - 80   | 50          | -    | ns   |  |
| t <sub>PC</sub> | Port Control Hold Time<br>(PROG)        |                | 4t – 260    | 100         | -    | ns   |  |
| t <sub>PR</sub> | Port 2 Input Data Setup Time<br>(PROG)  |                | 8.5t – 120  | <del></del> | 650  | ns   |  |
| t <sub>PF</sub> | Port 2 Input Data Hold Time<br>(PROG)   |                | 1.5t        | 0           | 140  | ns   |  |
| t <sub>DP</sub> | Port 2 Output Data Setup Time<br>(PROG) |                | 6t – 290    | 250         | _    | ns   |  |
| t <sub>PD</sub> | Port 2 Output Data Hold Time<br>(PROG)  |                | 1.5t – 90   | 40          | -    | ns   |  |
| tpp             | PROG Pulse Width                        |                | 10.5t – 250 | 700         | -    | ns   |  |
| t <sub>PL</sub> | Port 2 I/O Data Setup Time<br>(ALE)     |                | 4t – 200    | 160         | _    | ns   |  |
| t <sub>LP</sub> | Port 2 I/O Data Hold Time (ALE)         |                | 0.5t - 30   | 15          |      | ns   |  |
| t <sub>PV</sub> | Port Output Delay Time (ALE)            |                | 4.5t + 100  | -           | 510  | ns   |  |
| toper           | T <sub>0</sub> Clock Period             |                | 3t          | 270         | _    | ns   |  |
| tcY             | Cycle Time                              |                | 15t         | 1.36        | 15.0 | μs   |  |

Note: 1. Control Output CL=80pF. BUS Output CL=150pF.

The f(t) assumes 50% duty cycle on XTAL<sub>1</sub> and XTAL<sub>2</sub>.
 The Max. Clock frequency is 11MHz. and the Min. Clock frequency is 1MHz.

## 4.4 Absolute Maximum Ratings

## TMP80C49AP-6/TMP80C39AP-6/TMP80C49AU-6

| SYMBOL              | ITEM                                                                    | RATTING             |
|---------------------|-------------------------------------------------------------------------|---------------------|
| Vcc                 | V <sub>CC</sub> Supply Voltage (with respect to GND (V <sub>SS</sub> )) | -0.5V to +7V        |
| VINA                | Input Voltage (Except EA)                                               | -0.5V to VCC + 0.5V |
| V <sub>INB</sub>    | Input Voltage (Only EA)                                                 | - 0.5V to + 13V     |
| P <sub>D</sub>      | Power Dissipation (Ta = 85°C)                                           | 250mW               |
| T <sub>SOLDER</sub> | Soldering Temperature (Soldering Time 10 sec)                           | 260°C               |
| T <sub>STG</sub>    | Storage Temperature                                                     | − 65°C to 150°C     |
| T <sub>OPR</sub>    | Operating Temperature                                                   | - 40°C to 85°C      |

## 4.5 DC Characteristics (I)

TMP80C49AP-6/TMP80C39AP-6/TMP80C49AU-6 TOPR =  $-40^{\circ}$ C to 85°C, V<sub>CC</sub> = +5V ± 10%, V<sub>SS</sub> = 0V, unless otherwise noted

| SYMBOL | PARAMI                                                                                               | TER                                                                                           | TEST CONDITIONS                                                           | MIN.                     | TYP.         | MAX.  | UNIT |
|--------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------|--------------|-------|------|
| VIL    | Input Low Voltage                                                                                    |                                                                                               |                                                                           | -0.5                     | -            | 0.8   | V    |
| VIH    | Input High Voltage<br>(Except XTAL <sub>1</sub> , XTA                                                |                                                                                               |                                                                           | 2.2                      | _            | Vcc   | V    |
| VIH1   | Input High Voltage<br>(XTAL <sub>1</sub> , XTAL <sub>2</sub> , RES                                   |                                                                                               |                                                                           | 0.7<br>x V <sub>CC</sub> | _            | Vcc   | V    |
| VOL    | Output Low Voltag<br>(Except P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub>                      | e<br>-P <sub>27</sub> )                                                                       | IOL = 1.6mA                                                               | -                        | _            | 0.45  | ٧    |
| VOL1   | Output Low Voltag<br>(P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )          | e                                                                                             | IOL = 1.2mA                                                               | -                        | _            | 0.45  | V    |
| VOH11  | Output High Voltage<br>(Except P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> ) |                                                                                               | IOH = - 1.6mA                                                             | 2.4                      | _            | _     | ٧    |
| VOH12  | Output High Voltag<br>(P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )         | Output High Voltage<br>(P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> ) |                                                                           | V <sub>CC</sub><br>-0.8  | _            |       | ٧    |
| VOH21  | Output High Voltag<br>(P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )         | je                                                                                            | IOH = - 50μA                                                              | 2.4                      | _            | _     | ٧    |
| VOH22  | Output High Voltag<br>(P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )         | e                                                                                             | IOH = - 25μA                                                              | V <sub>CC</sub><br>-0.8  | _            | _     | ٧    |
| ILI    | Input Leak Current<br>(T <sub>1</sub> , INT, EA, PS)                                                 |                                                                                               | $V_{SS} \leq V_{IN} \leq V_{CC}$                                          | _                        | _            | ± 10  | μА   |
| ILI1   | Input Leak Current<br>(SS, RESET)                                                                    |                                                                                               | $V_{SS} \le V_{IN} \le V_{CC}$                                            | -                        |              | - 50  | μΑ   |
| ILI2   | Input Leak Current<br>(P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )         |                                                                                               | $V_{SS} + 0.45V \le V_{IN}$<br>$\le V_{CC}$                               | -                        | _            | - 500 | μΑ   |
| ILO    | Output Leak Current (BUS, T <sub>0</sub> )<br>(High impedance condition)                             |                                                                                               | $\begin{array}{l} V_{SS} + 0.45 V \leq V_{IN} \\ \leq V_{CC} \end{array}$ | -                        | <del>-</del> | ± 10  | μА   |
| ICC1   | V <sub>CC</sub> Supply Normal operation                                                              |                                                                                               | $V_{CC} = 5V$ ,<br>$f_{XTAL} = 6MHz$                                      | _                        | _            | 10    | mA   |
| ICCH1  | Current                                                                                              | HALT Mode                                                                                     | VIH = V <sub>CC</sub> - 0.2V<br>VIL = 0.2V                                | _                        | _            | 2.5   | 1167 |

## 4.6 DC Characteristics (II)

TMP80C49AP-6/TMP80C39AP-6/TMP80C49AU-6 TOPR =  $-40^{\circ}$ C to 85°C, V<sub>CC</sub> = +5V ± 20%, V<sub>SS</sub> = 0V, unless otherwise noted

| SYMBOL      | PARAMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ER                  | TEST CONDITIONS                            | MIN.                     | TYP. | MAX.                      | UNIT |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------|--------------------------|------|---------------------------|------|
| VIL         | Input Low Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                                            | - 0.5                    | _    | 0.15 x<br>V <sub>CC</sub> | V    |
| VIH         | Input High Voltage<br>(Except XTAL <sub>1</sub> , XTAL <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , RESET, PS)        |                                            | 0.5 x<br>V <sub>CC</sub> | _    | Vcc                       | V    |
| VIH1        | Input High Voltage<br>(XTAL <sub>1</sub> , XTAL <sub>2</sub> , RESET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , PS)               |                                            | 0.7 x<br>V <sub>CC</sub> | _    | Vcc                       | ٧    |
| <b>NO</b> L | Output Low Voltage<br>(Except P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub></sub> | 27)                 | IOL = 1.6mA                                | _                        | +    | 0.45                      | >    |
| VOL1        | Output Low Voltage<br>(P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IOL = 1.2mA         | _                                          | _                        | 0.45 | >                         |      |
| VOH12       | Output High Voltage<br>(Except P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | IOH = -400μA                               | V <sub>CC</sub> –<br>0.8 | _    | _                         | >    |
| VOH22       | Output High Voltage<br>(P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | IOH = - 25μA                               | V <sub>CC</sub> – 0.8    | _    | -                         | >    |
| ILI         | input Leak Current<br>(T1, INT, EA, PS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | V <sub>SS</sub> ≤ VIN≤ V <sub>CC</sub>     | _                        | _    | ± 10                      | μА   |
| ILi1        | Input Leak Current (SS, RESET)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | $V_{SS} \le VIN \le V_{CC}$                | _                        | _    | - V <sub>CC</sub>         | μА   |
| ILI2        | Input Leak Current<br>(P <sub>10</sub> -P <sub>17</sub> , P <sub>20</sub> -P <sub>27</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | $V_{SS} + 0.45V \le VIN$<br>$\le V_{CC}$   | -                        | _    | - V <sub>CC</sub>         | μА   |
| ILO         | Output Leak Current (BUS, T <sub>0</sub> ) (High impedance condition)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | $V_{SS} + 0.45V \le VIN$<br>$\le V_{CC}$   | _                        | _    | ± 10                      | μA   |
| ICC1        | V 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Normal<br>operation | $V_{CC} = 5V$ ,<br>$f_{XTAL} = 6MHz$       | _                        | _    | 10                        | mA   |
| ICCH1       | V <sub>CC</sub> Supply Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HALT Mode           | VIH = V <sub>CC</sub> - 0.2V<br>VIL = 0.2V |                          | _    | 2.5                       |      |

## 4.7 AC Charactristics

TMP80C49AP-6/TMP80C39AP-6/TMP80C49AU-6 TOPR =  $-40^{\circ}$ C to 85°C, V<sub>CC</sub> = +5V ± 20%, V<sub>SS</sub> = 0V, unless otherwise noted.

| SEMBOL             | PARAMETER                           | TEST      | £ (4)      | 6 MHz |      | UNIT |  |
|--------------------|-------------------------------------|-----------|------------|-------|------|------|--|
| SEIVIBUL           | PARAMETER                           | CONDITION | f (t)      | MIN.  | MAX. | UNII |  |
| t                  | Clock Period                        | Note 2    | 1 / xtal f | 166.6 | 1000 | ns   |  |
| t <sub>LL</sub>    | ALE Pulse Width                     |           | 3.5t – 170 | 410   | _    | ns   |  |
| t <sub>AL</sub>    | Address Setup Time (ALE)            |           | 2t – 110   | 220   | _    | ns   |  |
| t <sub>LA</sub>    | Address Hold Time (ALE)             | CL = 20pF | t – 40     | 120   | _    | ns   |  |
| t <sub>CC1</sub>   | Control Pulse Width<br>(RD,WR)      |           | 7.5t – 200 | 1050  | _    | ns   |  |
| t <sub>CC2</sub>   | Control Pulse Width<br>(PSEN)       |           | 6t – 200   | 800   | _    | ns   |  |
| t <sub>DW</sub>    | Data Setup Time<br>(WR)             |           | 6.5t – 200 | 880   | -    | ns   |  |
| t <sub>WD</sub>    | Data Hold Time<br>(WR)              | CL = 20pF | t – 50     | 120   | -    | ns   |  |
| t <sub>DR</sub>    | Data Hold Time<br>(RD,PSEN)         | CL = 20pF | 1.5t – 30  | 0     | 220  | ns   |  |
| t <sub>RD1</sub>   | Data Input Read Time<br>(RD)        |           | 5.5t – 120 | _     | 880  | ns   |  |
| t <sub>RD2</sub>   | Data Input Read Time<br>(PSEN)      |           | 4t – 120   | _     | 550  | ns   |  |
| t <sub>AW</sub>    | Address Setup Time<br>(WR)          |           | 5t – 150   | 680   | _    | ns   |  |
| t <sub>AD1</sub>   | Address Setup Time<br>(RD)          |           | 10t – 170  | _     | 1500 | ns   |  |
| t <sub>AD2</sub>   | Address Setup Time<br>(PSEN)        |           | 7t – 170   | _     | 1000 | ns   |  |
| t <sub>AFC1</sub>  | Address Float Time<br>(RD, WR))     | CL = 20pF | 2t - 40    | 290   | -    | ns   |  |
| t <sub>AFC2</sub>  | Address Float Time<br>(PSEN)        | CL = 20pF | 0.5t - 40  | 40    |      | ns   |  |
| t <sub>LAFC1</sub> | ALE to Control Time<br>(RD,WR)      |           | 3t – 75    | 420   | _    | ns   |  |
| t <sub>LAFC2</sub> | ALE to Control Time<br>(PSEN)       |           | 1.5t – 75  | 175   | _    | ns   |  |
| t <sub>CA1</sub>   | Control to ALE Time<br>(RD,WR,PROG) |           | t – 65     | 100   | _    | ns   |  |
| t <sub>CA2</sub>   | Control to ALE Time<br>(PSEN)       |           | 4t – 70    | 590   | _    | ns   |  |

AC Charactristics (Continue)  $T_{OPR} = -40^{\circ}\text{C}$  to 85°C,  $V_{CC} = +5\text{V} \pm 10\%$ ,  $V_{SS} = 0\text{V}$ , unless otherwise noted.

| SYMBOL          | PARAMETER                               | TEST CONDITION | £ (4)       | 111  | ЛHz  | UNIT  |  |
|-----------------|-----------------------------------------|----------------|-------------|------|------|-------|--|
| STIVIBUL        | PARAIVIETER                             | LESI CONDITION | f (t)       | MIN. | MAX. | 0.411 |  |
| t <sub>CP</sub> | Port Control Setup Time<br>(PROG)       |                | 1.5t - 80   | 170  | -    | ns    |  |
| t <sub>PC</sub> | Port Control Hold Time<br>(PROG)        |                | 4t – 260    | 400  | -    | ns    |  |
| t <sub>PR</sub> | Port 2 Input Data Setup Time<br>(PROG)  |                | 8.5t – 120  | -    | 1290 | ns    |  |
| tpF             | Port 2 Input Data Hold Time<br>(PROG)   |                | 1.5t        | 0    | 250  | ns    |  |
| t <sub>DP</sub> | Port 2 Output Data Setup<br>Time (PROG) | ·              | 6t – 290    | 710  | _    | ns    |  |
| tP <sub>D</sub> | Port 2 Output Data Hold Time<br>(PROG)  |                | 1.5t – 90   | 160  | _    | ns    |  |
| tpp             | PROG Pulse Width                        |                | 10.5t – 250 | 1500 | -    | ns    |  |
| t <sub>PL</sub> | Port 2 I/O Data Setup Time<br>(ALE)     |                | 4t – 200    | 460  | _    | ns    |  |
| t <sub>LP</sub> | Port 2 I/O Data Hold Time<br>(ALE)      |                | 0.5t - 30   | 130  | -    | ns    |  |
| t <sub>PV</sub> | Port Output Delay Time (ALE)            |                | 4.5t + 100  | _    | 850  | ns    |  |
| toprr           | T <sub>0</sub> Clock Period             |                | 3t          | 500  | -    | ns    |  |
| t <sub>CY</sub> | Cycle Time                              |                | 15t         | 2.5  | 15.0 | μs    |  |

- Note : 1. Control Output CL = 80pF. BUS Output CL = 150pF.
  - 2. The f(t) assumes 50% duty cycle on XTAL1 and XTAL2.

The Max. Clock frequency is 6MHz. and the Min. Clock frequency is 1MHz.

## 4.8 Timing Waveform

# A. Instruction Fetch from External Program Memory



## B. Read from External Data Memory



## C. Write into External Data Memotry



# D. Timing of Port 2 during Expandar Instruction Execution



## 4.9 Stand-By Function

## 4.9.1 PoweR Down Mode (I) ..... Data Hold Mode in RAM

The operation of oscillation circuit is suspended by setting  $\overline{PS}$  terminal to low level after  $\overline{RESET}$  terminal has been set to low level. Consequently, all the data in RAM area can be held in low power consumption.

The minimum hold voltage of VCC in this mode is 2V.

 $\overline{PS}$  terminal is set to high level to resume oscillation after  $V_{CC}$  has been reset to 5V, and then  $\overline{RESET}$  terminal is set to high level, thus, the normal mode is restarted from the initialize operation (address 0).

#### (1) DC Characteristics

TMP80C49AP/C39AP/C49AU TMP80C49AP-6/C39AP-6/C49AU-6

:  $T_{OPR} = -40^{\circ}C$  to  $85^{\circ}C$ ,  $V_{SS} = 0V$ 

| SYMBOL | PARAMETER           | TEST CONDITION                                                    | MIN. | TYP. | MAX. | UNIT |
|--------|---------------------|-------------------------------------------------------------------|------|------|------|------|
| VSB1   | Standby Voltage (1) |                                                                   | 2.0  |      | 6.0  | ٧    |
| ISB1   | Standby Current (1) | V <sub>CC</sub> = 5V, VIH = V <sub>CC</sub><br>- 0.2V, VIL = 0.2V | _    | 0.5  | 10   | μА   |

#### (2) AC Characteristics

TMP80C49AP/C39AP/C49AU TMP80C49AP-6/C39AP-6/C50AU-6 :  $V_{CC} = +5V \pm 10\%$ ,  $V_{SS} = 0V$ :  $V_{CC} = +5V \pm 20\%$ ,  $V_{SS} = 0V$ 

| SYMBOL | PARAMETER                       | TEST CONDITION | MIN. | TYP. | MAX. | UNIT |
|--------|---------------------------------|----------------|------|------|------|------|
| tpshr  | Power Save Hold Time (RESET)    |                | 10   | _    | _    | μς   |
| tpssr  | Power Save Setup Time (RESET)   |                | 10   | _    | _    | ms   |
| t∨H    | V <sub>CC</sub> Hold Time (PS)  |                | 5    | _    | _    | μs   |
| tvs    | V <sub>CC</sub> Setup Time (PS) |                | 5    | _    | _    | μs   |

Note:  $t_{CY} = 2.5 \mu s (f_{XTAL} = 6MHz)$ 

#### (3) Timing Waveform



#### 4.9.2 Power Down Mode (II) ..... ALL Data Hold Mode

The operation of oscillation circuit is suspended by setting  $\overline{PS}$  terminal to low level after  $\overline{SS}$  terminal has been set to low level. Consequently, all data can be held in low power consumption.

The minimum hold voltage of  $V_{CC}$  in this mode is 3V.

 $\overline{PS}$  terminal is set to high level to resume oscillation after  $V_{CC}$  has been reset to 5V, and then  $\overline{SS}$  terminal is set to high level, thus, the normal mode is restarted continuously from the state just before the power down mode (II).

#### (1) AC Characteristics

TMP80C49AP/C39AP/C49AU TMP80C49AP-6/C39AP-6/C49AU-6

 $: T_{OPR} = -40^{\circ}C \text{ to } 85^{\circ}C, V_{SS} = 0V$ 

| SYMBOL           | PARAMETER           | TEST CONDITION                                                    | MIN. | TYP. | MAX. | UNIT |
|------------------|---------------------|-------------------------------------------------------------------|------|------|------|------|
| VSB <sub>2</sub> | Standby Voltage (2) |                                                                   | 3.0  | _    | 6.0  | ٧    |
| ISB <sub>2</sub> | Standby Current (2) | V <sub>CC</sub> = 5V, VIH = V <sub>CC</sub><br>- 0.2V, VIL = 0.2V |      | 0.5  | 10   | μΑ   |

#### (2) AC Characteristics

TMP80C49AP/C39AP/C49AU TMP80C49AP-6/C39AP-6/C49AU-6 :  $V_{CC} = +5V \pm 10\%$ ,  $V_{SS} = 0V$ :  $V_{CC} = +5V \pm 20\%$ ,  $V_{SS} = 0V$ 

| SYMBOL            | PARAMETER                       | TEST CONDITION | MIN. | TYP.     | MAX. | UNIT |
|-------------------|---------------------------------|----------------|------|----------|------|------|
| t <sub>PSHR</sub> | Power Save Hold Time (SS)       |                | 10   | <u> </u> | _    | μs   |
| tpssr             | Power Save Setup Time (SS)      |                | 10   | _        | _    | ms   |
| tvH               | V <sub>CC</sub> Hold Time (PS)  |                | 5    | _        | _    | μs   |
| t <sub>VS</sub>   | V <sub>CC</sub> Setup Time (PS) |                | 5    | _        | _    | μs   |

Note:  $t_{CY} = 2.5 \mu s (f_{XTAL} = 6MHz)$ 

## (3) Timing Waveform



#### 4.9.3 HALT MODE

#### (1) HALT INSTRUCTION

OP code is "01H". HALT INSTRUCTION is an additional instruction to the standard 8048/8049 instruction set.

#### (2) Entry to HALT MODE

On the execution of HALT INSTRUCTION, TMP80C49A/TMP80C39A enter HALT MODE.

#### (3) Status in HALT MODE

The oscillator continues its operation, however, the internal clocks and internal logic values just prior to the execution of HALT INSTRUCTION are maintained. Power consumption in HALT MODE is less than 50% of normal operation. The status of each pins are described in the following table.

#### (4) Release from HALT MODE

HALT MODE is released by either of two signals (RESET, INT).

- (4.1) RESET Release Mode: An active RESET input signal causes the normal reset function. TMP80C49A/TMP80C39A start the program at address "000H".
- (4.2) INT Release Mode : An active INT input signal causes the normal operation.
  - In case of interrupt enable mode (EI MODE), TMP80C49A/TMP80C39A execute the interrupt service routine, after the execution of one instruction which is located at the next address after HALT INSTRUCTION.
  - In case of interrupt disable mode (DI MODE), TMP80C49A/TMP80C39A execute normal operation from the next address after HALT INSTRUCTION.

## (5) Supply Voltage Range in HALT MODE

The operating supply voltage range and the operating temperature range are same as in normal operation.

TMP80C49AP/C39AP/C49AU :  $V_{CC} = 5V \pm 10\%$ TMP80C49AP-6/C39AP-6/C49AU-6 :  $V_{CC} = 5V \pm 20\%$ 

## 4.9.4 Pin Status In Power Down Mode (I) (II)

| PIN NAME                         | STATUS                                                                   |  |  |  |
|----------------------------------|--------------------------------------------------------------------------|--|--|--|
| DB <sub>0</sub> ~DB <sub>7</sub> |                                                                          |  |  |  |
| P <sub>10</sub> ~P <sub>17</sub> | ☐ High impedance<br>☐ Input disabled                                     |  |  |  |
| P <sub>20</sub> ~P <sub>27</sub> |                                                                          |  |  |  |
| Т0                               | High impedance, input disabled                                           |  |  |  |
| T <sub>1</sub>                   | Input disabled                                                           |  |  |  |
| XTAL <sub>1</sub>                | High impedance                                                           |  |  |  |
| XTAL <sub>2</sub>                | Output "High" Level                                                      |  |  |  |
| RESET, SS                        | Input disabled when oscillator is stopped. Pull-up transistors turn off. |  |  |  |
| ĪNT, EA                          | Input disabled when oscilltor is stopped.                                |  |  |  |
| RD, WR, ALE<br>PROG, PSEN        | High impedance                                                           |  |  |  |

## 4.9.5 Pin Status In HALT MODE

| PIN NAME                              | STATUS                                                            |
|---------------------------------------|-------------------------------------------------------------------|
| DB <sub>0</sub> ~DB <sub>7</sub>      |                                                                   |
| P <sub>10</sub> ~P <sub>17</sub>      | Values prior to the execution of HALT INSTRUCTION are maintained. |
| P <sub>20</sub> ~P <sub>27</sub>      |                                                                   |
| Т0                                    | Status prior to the execution of HALT INSTRUCTION is maintained.  |
| T <sub>1</sub>                        | Input disabled                                                    |
| XTAL <sub>1</sub> , XTAL <sub>2</sub> | Continue oscillation                                              |
| RESET, INT                            | Input enabled                                                     |
| SS, EA                                | Input disabled                                                    |
| RD, WR<br>PROG, PSEN                  | Output "High" level                                               |
| ALE                                   | Output "Low" level                                                |

#### 5. **OSCILLATOR**

#### **QUARTZ CRYSTAL**

f = 1MHz to 4MHz : C1 = C2 = 30pF

f = 4MHz to 11MHz : C1 = C2 = 20pF

**CERAMIC RESONATOR** 

f = 1MHz to 3MHz: C1 = C2 = 100pF

f = 3MHz to 11MHz : C1 = C2 = 30PF



#### TYPICAL CHARACTERISTICS 6.

: Vcc = 5V,Ta = 25°C, unless Otherwise noted.













V<sub>OUT</sub> – I<sub>OH</sub> TYPICAL CURVE (DB, CONTROL)

## 7. OUTLINE DRAWING

7.1 Outline Drawing For TMP80C49AP/-6,TMP80C39AP/-6 (DIP: Dual Inline Package)

DIP40-P-600



Note: 1. This dimension is measured at the center of bending point of leads.

2. Each lead pitch is 2.54mm, and all the leads are located within  $\pm 0.25$ mm from their theoritical positions with respect to No.1 and No.40 leads.

# 7.2 Outline Drawing For TMP80C49AU/-6 (Micro Flat Package)

QFP44-P-1010A

13.8 ± 0.3 10.0 ± 0.2 33 23 24 22 27 80 90 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.2 10 Unit: mm



Note: 1. The above dimensions don't include the burr of package and the residue of tie-bar cut.

The burr of package and the residure of tie-bar cut should be 0.15 mm (Max.).

2. Applied ti the lead flat porttion.