Branch: CSE & IT

Batch: Hinglish

WEEKLY TEST - 02

Subject: Computer Networks

Maximum Marks 15

Q.1 to 5 Carry ONE Mark Each

[MCQ]

Consider a class C network 203.219.230.19 and subnet mask 255.255.255.128 which of the following is possible DBA for first subnet?

SID	Subnet number
0	2 nd Subnet
1	First Subnet

- (a) 203.219.230.255
- (b) 203.219.230.127
- (c) 203.219.230.0
- (d) 203.217.230.128

[NAT]

Suppose, a class B network with subnet mask 255.255.224.0 the number of hosts per subnet is ____.

[NAT]

Consider an IP address of block is 196.197.198.78 and subnet mask 255.255.255.240. The subnet number for given IP address is _____.

[MCQ]

- 4. Consider an IP address in a block is 149.160.170.15 and subnet mask is 255.255.224.0. After finding subnet ID, what is the first host?
 - (a) 149.160.161.0
 - (b) 149.160.161.1
 - (c) 149.160.160.1
 - (d) 149.160.170.1

[MCQ]

- A subneted class C network has the following broadcast address 203,205,196,159. Which of the following is possible subnet mask is for given DBA?
 - (a) 255.255.255.128
 - (b) 255.255.255.224
 - (c) 255.255.255.192
 - (d) Both (b) and (c)

Q.6 to 10 Carry TWO Mark Each

[NAT]

Classless inter-domain routing (CIDR) receives a packet with the address 139.46.38.98. The router's routing table has the following entries:

Prefix	Output Interface
139.30.0.0/12	1
139.32.0.0/11	2
139.44.0.0/14	3
Default	4

The identifier of the output interface on which this packet will be forwarded is _____.

[MCQ]

- 7. Consider an IP address in a block is 120. 126.212.59 and subnet mask is 255.240.0.0. To represent the 3rd subnet, SID bits are 0110 then, what is the last host of 3rd subnet?
 - (a) 120.32.255.254 (b) 120.116.255.254
 - (c) 120.111.255.254 (d) None of these

[NAT]

8. Consider the following configuration given below:

Host A	180.169.68.15
Router R ₁	180.169.147.13 and 180.169.153.29
Router R ₂	180.169.81.14 and 180.169.99.77
Host D	180.169.81.88

Suppose, Host A is connected through two router R_1 and R_2 to another host D with given IP addresses. The netmask is used in the network is 255.255.240.0. How many total distinct subnets are guaranteed to already exist in the network?

[MCQ]

- **9.** Consider an IP address in a block is 21.69.28.26 and subnet mask contain 10 ones continuously then what is the DBA of last subnet?
 - (a) 255.255.225.255
 - (b) 21.255.255.255
 - (c) 21.127.255.255
 - (d) None of these

[NAT]

10. Consider an IP address in a block is 200. 200. 250.113 and subnet mask is 255.255.255.224. if subnet ID of IP address is X.Y.Z.P and subnet number is Q. Then, the

value of
$$\frac{P}{Q}$$
 is _____.

Answer Key

(a) 1.

(8190) 2.

3. **(5)**

4. **(c)**

5. **(b)**

(3) 6.

(c) 7.

8. (4) 9. (b) 10. (24)

Hints and Solutions

1. (a)

$$SM = 255.255.255.\underline{1}00000000$$

SID

Network = 203.219.230.19

First Subnet ID = 203.219.230.128

DBA for 1^{st} subnet = 203.219.230.255

Hence option (a) is correct.

2. (8190)

Class B =

Subnet mask = 255.255.224.0

= 11111111.111111111.11100000.00000000

Number of subnet bits

= number of 1's in subnet mask – NID bits

$$= 21 - 16 = 5$$

Number of hosts = Number of 0's in subnet mask

= 13

Number of hosts = $2^{13} - 2$

$$= 8 * 1024 - 2$$

 $= 8192 - 2 = 8190$

3. (5)

196.197.198.64

SID bits = 4

 $SID = 196.197.198.\underline{0100}0000$

Subnet number = 0100

$$=4+1$$

= 5

4. (c)

IP address = 149.160.170.15

Subnet mask = 255.255.224.0

SID = 149.160.160.0

First host = 149.160.160.1

Hence, option (c) is correct.

5. (b)

HID bits

HID bits ≤ 5

(a) 255.255.255.1<u>0000000</u>

HID bits = 7 (invalid)

(b) 255.255.255.111<u>00000</u>

HID bits = 5(valid)

(c) 255.255.255.11000000

HID bits = 6 (invalid)

Hence option (b) is correct.

6. (3)

For interface – 1:

= 255.240.0.0

139.46.38.98

255.240.0.0

139.32.0.0

(Not Matched)

Router will not forward this packet to interface -1.

For - interface -2:

SM = 111111111.11100000.000000000.000000000

= 255.224.0.0

139.46.38.98

255.224.0.0

139.32.0.0

(Matched)

Router will forward this packet to interface -2 **For interface** -3:

$$SM = 255.252.0.0$$

Router will forward this packet to interface -3. If more than 1 interface matched then router will forward the packet to longest subnet mask. Hence, (3) is correct.

7. (c)

$$IP = 120.126.212.59$$

$$SM = 255.240.0.0$$

$$SID = 120.112.0.0$$

$$3^{rd}$$
 subnet bits = 0110

$$= 120.96.0.0$$

Last host of 3rd Subnet

Hence, option (c) is correct.

8. (4)

180.169.68.15 180.169.147.13 180.169.81.14 180.169.87.88 180.169.153.29 180.169.99.77

Netmask = 255.255.240.0

$$= 1111111.1111111111.11110000.000000000$$

Find the SID of each IP address if first 4 bits of 3rd octet are same then they belong to same subnet.

Host A SID =
$$180.169.68.15$$

• Router R₁ SID with IP address 180.169.147.13.

$$SID = 180.169.144.0$$

• Router R₁ SID with IP address 180.169.153.29

$$SID = 180.169.144.0$$

• Router R₂ SID with IP address 180.169.81.14

$$SID = 180.169.80.0$$

• Router R₂ SID with IP address 180.169.99.77

$$SID = 180.169.96.0$$

• Host D SID with IP address 180.169.87.88

$$SID = 180.169.87.88$$

255.255.240.0

Total different SID are 4.

9. (b)

$$IP = 21.69.28.26$$

$$SM = 111111111.11000000.000000000.000000000$$

SID of last host =
$$21.192.0.0$$

DBA of last host =
$$21.255.255.255$$

Hence, option (b) is correct.

10. (24)

$$SID = 200.200.250.113$$

$$P = 96$$

$$SID = 200.200.200.01100000$$

Subnet number
$$(Q) = 011$$

$$= 3 + 1$$

$$=4$$

$$\frac{P}{O} = \frac{96}{4} = 24$$