Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία

Παναγιώτης Γροντάς

ΕΜΠ - Κρυπτογραφία

09/10/2015

Περιεχόμενα

- Ορισμός Κρυπτοσυστήματος
- Δυνατότητες Αντιπάλου Επιθέσεις
- Εμπειρική Ασφάλεια (Kerckhoffs)
- Τέλεια Μυστικότητα
- Σημασιολογική Ασφάλεια
- Μη Διακρισιμότητα
- Γενική Μορφή Κρυπογραφικών Αναγωγών

Κρυπτοσύστημα Ι

- $\bullet \ \mathcal{CS} \ = (\texttt{M}, \texttt{K}, \texttt{C}, \texttt{KeyGen}, \texttt{Encrypt}, \texttt{Decrypt})$
- Μ: Σύνολο Μηνυμάτων
- Κ: Σύνολο Κλειδιών
- C: Σύνολο Κρυπτοκειμένων
- $\mathtt{KeyGen}(1^{\lambda}) = (\textit{key}_{\textit{enc}}, \textit{key}_{\textit{dec}}) \in \mathtt{K}^2$
 - Πιθανοτικός Αλγόριθμος
 - Το κλειδί συνήθως επιλέγεται ομοιόμορφα από το Κ
 - λ: Παράμετρος ασφάλειας πλήθος bits του κλειδιού
- Encrypt $(key_{enc}, m) = c \in C$
 - Ντετερμινιστικός Αλγόριθμος: Κάθε μήνυμα αντιστοιχεί σε ένα κρυπτοκείμενο
 - Πιθανοτικός Αλγόριθμος: Κάθε μήνυμα αντιστοιχεί σε ένα σύνολο πιθανών κρυπτοκειμένων
- Decrypt $(key_{dec}, c) = m$

Κρυπτοσύστημα ΙΙ

Παρατηρήσεις:

- ullet Συμμετρικό Κρυπτοσύστημα $key_{enc}=key_{dec}$
- ullet Ασύμμετρο Κρυπτοσύστημα $key_{enc}
 eq key_{dec}$
 - Κρυπτογραφία Δημοσίου Κλειδιού
 - Το key_{enc} μπορεί να δημοσιοποιηθεί για την εύκολη ανταλλαγή μηνυμάτων
- Ορθότητα σε κάθε περίπτωση: $\text{Decrypt}(key_{dec}, \text{Encrypt}(key_{enc}, m)) = m, \forall m \in \mathbb{M}$

0 αντίπαλος \mathcal{A}

- Στόχος: Να σπάσει το κρυπτοσύστημα
- Δηλαδή, με δεδομένο το c:
 - Να μάθει το κλειδί *k*;
 - Επίθεση Πυρηνικής Βόμβας
 - Θέλουμε να προστατεύσουμε το μήνυμα
 - Encrypt(k,m) = m παρέχει ασφάλεια αλλά όχι μυστικότητα
 - Να μάθει ολοκληρο το αρχικό μήνυμα m;
 - Αν μάθει το 90%;
 - Να μάθει κάποια συνάρτηση του *m*;
 - Ναι αλλά ποια;
- Συμπέρασμα:Χρειάζονται ακριβείς ορισμοί
 - Για το τι σημαίνει 'σπασιμο'
 - Για τις δυνατότητες και τα μέσα του αντιπάλου.

Δυνατότητες και Μέσα (Ιστορικά) Ι

Επιθέσεις

- Επίθεση Μόνο Κρυπτοκειμένου Ciphertext Only Attack (COA)
 - Παθητικός Αντίπαλος
 - Πολύ εύκολη: Χρειάζεται απλά πρόσβαση στο κανάλι επικοινωνίας

Δυνατότητες και Μέσα (Ιστορικά) ΙΙ

- Επίθεση Γνωστού Μηνύματος Known Plaintext Attack (KPA)
 - Παθητικός Αντίπαλος
 - Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
 - Ρεαλιστικό σενάριο
 - Ακόμα και τα απόρρητα πρωτόκολλα περιέχουν μη απόρρητα μηνύματα (handshakes, ack)
 - Enigma: Κρυπτοκείμενα πρόγνωσης καιρού
 - Κρυπτογραφημένα μηνύματα γίνονται κάποια στιγμή διαθέσιμα

Δυνατότητες και Μέσα (Ιστορικά) ΙΙΙ

- Επίθεση Επιλεγμένου Μηνύματος Chosen Plaintext Attack (CPA)
- Ενεργός Αντίπαλος
- Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
- Μπορεί να ζητήσει την κρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Κρυπτογράφησης)
- Ιστορικό Παράδειγμα: Η ναυμαχία του Midway (1942)
 - Αποστολή Πλαστών Μηνυμάτων Με Την Λέξη Midway
 - Συλλογή Επικοινωνιών Με Κρυπτοκείμενα AF

Δυνατότητες και Μέσα (Ιστορικά) ΙV

- Επίθεση Επιλεγμένου Κρυπτοκειμένου Chosen Ciphertext Attack (CCA)
 - Ενεργός Αντίπαλος
 - Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
 - Μπορεί να ζητήσει την κρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Κρυπτογράφησης)
 - Μπορεί να επιτύχει την αποκρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Αποκρυπτογράφησης)
 - Ο αντίπαλος μπορεί να βγάλει *έμμεσα* her από αντιδράσεις σε κρυπτογραφημένα μηνύματα
 - Απόρριψη κρυπτογραφημένων 'σκουπιδιών' από το πρωτόκολλο (Bleichenbacher RSA PKCS1 attack)
 - Ενέργεια στον πραγματικό κόσμο (πχ. αγορά μετοχών)

Οι κανόνες του Kerchoffs (1883) Ι

Αρχή 2

Ο αλγόριθμος(από)κρυπτογράφησης δεν πρέπει να είναι μυστικός. Πρέπει να μπορεί να πέσει στα χέρια του $\mathcal A$ χωρίς να δημιουργήσει κανένα πρόβλημα. Αντίθετα το κλειδί μόνο πρέπει να είναι μυστικό.

Λόγοι:

- Το κλειδί διανέμεται πιο εύκολα από τους αλγόριθμους (μικρότερο μέγεθος, απλούστερη δομή)
- Το κλειδί είναι πιο εύκολο να αλλαχθεί αν διαρρεύσει
- Πιο πρακτική χρήση για περισσότερους από έναν συμμετέχοντες
- Ανοικτό κρυπτοσύστημα: Εύκολη μελέτη

Οι κανόνες του Kerchoffs (1883) II

Παρατηρήσεις:

Αν και έχουν παράδοση ακόμα και σήμερα δεν εφαρμόζονται πλήρως

- (Μεγάλες) εταιρίες δημιουργούν και χρησιμοποιούν δικούς τους μυστικούς αλγόριθμους/πρωτόκολλα
 - Bruce Schneier Crypto Snake Oil

Οι κανόνες του Kerchoffs (1883) III

Αρχή 1

Το κρυπτοσύστημα θα πρέπει να είναι *πρακτικά* απρόσβλητο, αν δεν γίνεται θεωρητικά

- Διάρκεια Κρυπτανάλυσης > Διάρκεια Ζωής Μηνύματος
- Μικρή Πιθανότητα Επιτυχίας
- Υπολογιστική Ασφάλεια

Σε κάθε περίπτωση - Εμπειρικές Αρχές: Δεν παρέχουν εγγυήσεις ασφάλειας

Τέλεια μυστικότητα (Shannon, 1949) Ι

Υποθέσεις:

- αρχικό κείμενο $M \in \mathbb{M}$, το κλειδί $K \in \mathbb{K}$, κρυπτοκείμενο $C \in \mathbb{C}$ τυχαίες μεταβλητές
- Μ και Κ είναι ανεξάρτητες, ενώ η C εξαρτάται από τις άλλες δύο.
- ullet Ο ${\cal A}$ μπορεί να έχει απεριόριστη υπολογιστική ισχύ

Τέλεια μυστικότητα (Shannon, 1949) ΙΙ

Ο ορισμός του Shannon

$$\forall x \in \mathtt{M}, y \in \mathtt{C}: \quad \Pr_{\mathtt{M} \in \mathtt{M}, \mathtt{K} \in \mathtt{K}}[\mathtt{M} = x \mid \mathtt{C} = y] = \Pr_{\mathtt{M} \in \mathtt{M}}[\mathtt{M} = x]$$

Τέλεια μυστικότητα (Shannon, 1949) III

Ο ορισμός του Shannon

$$\forall x \in \mathtt{M}, y \in \mathtt{C}: \quad \Pr_{\mathtt{M} \in \mathtt{M}, \mathtt{K} \in \mathtt{K}}[\mathtt{M} = x \mid \mathtt{C} = y] = \Pr_{\mathtt{M} \in \mathtt{M}}[\mathtt{M} = x]$$

Το κρυπτοκείμενο δεν παρέχει καμμία νέα πληροφορία για το αρχικό κείμενο (a posteriori πληροφορία ίδια με την a priori).

Παράδειγμα:Random SHIFT Cipher

Ορισμός

- $M = K = C = \{0, \dots, 25\}$
 - Αναπαριστούμε κάθε γράμμα με τη θέση του στο αλφάβητο
 - Η Pr[m=x] ορίζεται από τις στατιστικές συχνότητες των γραμμάτων της αγγλικής
 - Φυσικά $\sum_{x \in \mathtt{M}} \Pr[\mathbf{m} = \mathbf{x}] = 1$
- Δημιουργία Κλειδιών: Τυχαία επιλογή κλειδιού με ομοιόμορφη κατανομή.
 - Δηλαδή $k \in K$: $Pr[k = i] = \frac{1}{26}, 0 \le i \le 25$
- Κρυπτογράφηση: $c = \text{Encrypt}(k, m) = (m + k) \mod 26$
- Αποκρυπτογράφηση: Decrypt $(k,c)=(c-k) \mod 26$

Random SHIFT Cipher και Τέλεια Μυστικότητα

- ② $\forall \textit{m} \in \texttt{M}, \ \textit{y} \in \texttt{C} : \Pr[\textit{C} = \textit{y} \mid \textit{M} = \textit{x}] = \Pr[\textit{k} = (\textit{y} \textit{x}) \bmod 26] = \frac{1}{26}$
- **3** Από τύπο Bayes: $Pr[M = x \mid C = y] = \frac{Pr[C = y|M = x] Pr[M = x]}{Pr[C = y]}$
- **3** Aπό (1),(2),(3): $\forall x \in M, y \in C : \Pr[M = x \mid C = y] = \frac{\frac{1}{26} \Pr[M = x]}{\frac{1}{26}} = \Pr[M = x]$

Τέλεια μυστικότητα! Μπορεί να επεκταθεί και για μέγεθος κειμένου n.

Ισοδύναμες Συνθήκες Τέλειας Μυστικότητας

- ② $\forall x_1, x_2 \in M, y \in C: \Pr[C = y \mid M = x_1] = \Pr[C = y \mid M = x_2]$ (συνθήκη χρήσιμη για ανταπόδειξη perfect indistinguishability)

Τέλεια μυστικότητα: μήκος κλειδιού \geq μήκος κειμένου

Αναγκαία συνθήκη για τέλεια μυστικότητα:

$$|\mathtt{M}| \leq |\mathtt{C}| \leq |\mathtt{K}|$$

- $|M| \le |C|$:

 Αλλιώς, 2 μηνύματα δεν μπορούν να αντιστοιχούν στο ίδιο κρυπτοκείμενο (κρυπτογράφηση '1-1')
- $|C| \le |K|$:

 Aλλιώς, για οποιοδήποτε μήνυμα δεν θα υπήρχαν αρκετά κλειδιά για να 'φθάσουμε' σε όλα τα κρυπτοκείμενα. $\forall x \in M, \exists y \in C, \Pr[C = y \mid M = x] = 0 \ne \Pr[C = y].$

(Υποθέτουμε ότι $Pr[{\it C}={\it y}]>0$, γιατί αλλιώς μπορούμε να αλλάξουμε το ${\it C}$ ώστε να συμβαίνει)

Τέλεια μυστικότητα όταν $|\mathtt{M}| = |\mathtt{C}| = |\mathtt{K}|$ Ι

Θεώρημα

Έστω κρυπτοσύστημα με $|\mathtt{M}|=|\mathtt{C}|=|\mathtt{K}|$. Το σύστημα έχει τέλεια μυστικότητα $\alpha \nu \nu$ ισχύουν τα εξής:

- (1) για κάθε $x \in \mathbb{M}, y \in \mathbb{C}$, υπάρχει μοναδικό $k \in \mathbb{K}$, ώστε $\mathrm{Encrypt}(k,x) = y$
- (2) κάθε κλειδί επιλέγεται με την ίδια πιθανότητα, συγκεκριμένα $1/|\mathbf{K}|$

Τέλεια μυστικότητα όταν $|\mathtt{M}| = |\mathtt{C}| = |\mathtt{K}|$ II

Απόδειξη (ευθύ)

💶 Παραβίαση της (1):

```
\exists (x,y,k_1,k_2): y=\mathtt{Encrypt}(k_1,x)=\mathtt{Encrypt}(k_2,x)

Επειδή |\mathtt{C}|=|\mathtt{M}|=|\mathtt{K}| \exists y': Pr[\mathtt{C}=y'|\mathtt{M}=x]=0

Άτοπο λόγω τέλειας μυστικότητας
```

② Από τέλεια μυστικότητα

```
\begin{array}{ll} \forall i \in \{1, \cdots, |\mathtt{M}|\}: & Pr[\mathtt{M} = \mathit{m}_i] = Pr[\mathtt{M} = \mathit{m}_i|\mathsf{C} = \mathit{c}] = \frac{\Pr[\mathtt{M} = \mathit{m}_i]\Pr[\mathit{C} = \mathit{c} \mid \mathsf{M} = \mathit{m}_i]}{\Pr[\mathit{C} = \mathit{c}}] \\ \mathsf{A}\mathsf{\pi}\mathsf{\acute{o}} & (\mathtt{1}): & Pr[\mathit{C} = \mathit{c} \mid \mathsf{M} = \mathit{m}_i] = \Pr[\mathit{K} = \mathit{k}_i] \\ \mathsf{A}\mathsf{p}\mathsf{\alpha} & \forall i \in \{1, \cdots, |\mathtt{K}|\}: \Pr[\mathit{K} = \mathit{k}_i] = \Pr[\mathit{C} = \mathit{c}] \\ \mathsf{O}\mathsf{\lambda}\mathsf{\alpha} & \mathsf{i}\mathsf{s}\mathsf{o}\mathsf{\pi}\mathsf{i}\mathsf{o}\mathsf{a}\mathsf{v}\mathsf{a}\colon & \Pr[\mathit{K} = \mathit{k}_i] = \frac{1}{|\mathtt{K}|} \\ \end{array}
```

Τέλεια μυστικότητα όταν $|\mathtt{M}| = |\mathtt{C}| = |\mathtt{K}|$ III

Απόδειξη (αντίστροφο)

$$\begin{aligned} & \Pr[\textit{C} = \textit{y}] = \sum_{\textit{k}} \Pr[\textit{K} = \textit{k}] \Pr[\textit{M} = \texttt{Decrypt}(\textit{k}, \textit{y})] = \frac{1}{|\textit{K}|} \sum_{\textit{k}} \Pr[\textit{M} = \texttt{Decrypt}(\textit{k}, \textit{y})] = \frac{1}{|\textit{K}|} \sum_{\textit{k}} \Pr[\textit{M} = \textit{M} = \textit{k}] \\ & \Pr[\textit{M} = \textit{x}|\textit{C} = \textit{y}] = \frac{\Pr[\textit{M} = \textit{x}] \Pr[\textit{C} = \textit{y}|\textit{M} = \textit{x}]}{\Pr[\textit{C} = \textit{y}]} = \frac{\Pr[\textit{M} = \textit{x}] \Pr[\textit{K} = \textit{k}]}{\Pr[\textit{C} = \textit{y}]} = \Pr[\textit{M} = \textit{x}] \end{aligned}$$

Τέλεια μυστικότητα!

One Time Pad (Vernam, 1917)

Ορισμός

- Plaintext: $x = (x_0, x_1, \dots, x_{n-1}), x_i \in \{0, 1\}$
- Key: $k = (k_0, k_1, \dots, k_{n-1}), k_i \in \{0, 1\}$
- Ciphertext: $y = (y_0, y_1, \dots, y_{n-1}), y_i \in \{0, 1\}$
- Κρυπτογράφηση: $y_i = x_i \oplus k_i = x_i + k_i \mod 2$
- Αποκρυπτογράφηση: $x_i = y_i \oplus k_i$

Ασφάλεια: αν για κάθε bit k_i του κλειδιού ισχύει $\Pr[k_i=0]=\Pr[k_i=1]=1/2$, τότε το κρυπτοσύστημα έχει τέλεια μυστικότητα (γιατί;).

Συμπεράσματα

- Τέλεια Μυστικότητα: Θεωρητικά Εφικτή, αλλά...
 - Πρακτικά μη πραγματοποιήσιμη
 - Παραγωγή Κλειδιού: Αποδείξιμα Τυχαίες Ακολουθίες
 - Ανταλλαγή Κλειδιού: Μόνο σε κλειστούς οργανισμούς (πχ. στρατός, μυστικές υπηρεσίες)
 - Ασύμβατη με κρυπτογραφία δημοσίου κλειδιού (πολλαπλή χρήση δημοσίου κλειδιού)
- Ανάγκη για νέες μορφές αποδείξιμης ασφάλειας

Σημασιολογική Ασφάλεια Ι

Βασική ιδέα (Goldwasser, Micali): Χαλαρώνουμε τις υποθέσεις για να οδηγηθούμε σε έναν πιο χρήσιμο ορισμό, λαμβάνοντας υπόψιν:

- ullet την υπολογιστική ισχύ του ${\mathcal A}$
- την πιθανότητα επιτυχίας
- το είδος των επιθέσεων

Διαίσθηση

Ένας υπολογιστικά περιορισμένος $\mathcal A$ δεν μπορεί να μάθει τίποτε χρήσιμο από το κρυπτοκείμενο παρά μόνο με αμελητέα πιθανότητα

Σημασιολογική Ασφάλεια ΙΙ

Ρητή Προσέγγιση

Ένα κρυπτοσύστημα είναι (τ,ϵ) ασφαλές αν οποιοσδήποτε $\mathcal A$ σε χρόνο το πολύ τ , δεν μπορεί να το σπάσει με πιθανότητα καλύτερη από ϵ

Για συμμετρικά κρυπτοσυστήματα σήμερα $au=2^{80}$ και $\epsilon=2^{-64}$ Δεν χρησιμοποιείται γιατί

- Δεν ασχολείται με το υπολογιστικό μοντέλο (κατανεμημένοι υπολογιστές, εξειδικευμένο HW κτλ.)
- ullet Δεν ασχολείται με το τι θα γίνει μετά το au
- Για τους ίδιους λόγους με Υπολογιστική Πολυπλοκότητα

Σημασιολογική Ασφάλεια III

Ασυμπτωτική Προσέγγιση

Ένα κρυπτοσύστημα είναι ασφαλές αν οποιοσδήποτε PPT \mathcal{A} έχει αμελητέα πιθανότητα να το σπάσει (σε σχέση με την παράμετρο ασφάλειας)

Παρατηρήσεις:

- ullet Ισχύει για μεγάλες τιμές του λ
- ullet Συνέπεια του |K|<|M|
- Επιτρέπει προσαρμογή της ασφάλειας με αλλαγή του μήκους του κλειδιού

Σημασιολογική Ασφάλεια ΙV

Τυπικός Ορισμός: Υποθέσεις

- ullet Ο ${\cal A}$ θέλει να υπολογίσει το κατηγόρημα ${m q}: {
 m M} o \{0,1\}$
- $\bullet \ \textit{Pr}_{\textit{m} \in \texttt{M}}[\textit{q}(\textit{m}) = 0] = \textit{Pr}_{\textit{m} \in \texttt{M}}[\textit{q}(\textit{m}) = 1] = \frac{1}{2}$
- Το μήκος των κρυπτοκειμένων είναι το ίδιο (δεν διαρρέει πληροφορία)

Το πλεονέκτημα του $\mathcal A$

$$\textit{Adv}(\mathcal{A}) = |\textit{Pr}[\mathcal{A}(\textit{c}) = \textit{q}(\texttt{Decrypt}(\textit{key}, \textit{c}))] - \tfrac{1}{2}|$$

Παρατήρηση: Αν ο \mathcal{A} μαντέψει στην τύχη έχει $Adv(\mathcal{A})=0$

Σημασιολογική Ασφάλεια V

Ορισμός

Ένα κρυπτοσύστημα είναι σημασιολογικά ασφαλές όταν \forall PPT $\mathcal A$, $\forall q$:

$$Adv(A) = negl(\lambda)$$

Αμελητέα συνάρτηση: Μεγαλώνει με πιο αργό ρυθμό από αντίστροφο πολυώνυμο

Σημασιολογική Ασφάλεια VI

Αμελητέα συνάρτηση

Οποιαδήποτε συνάρτηση για την οποία για κάθε πολυώνυμο p υπάρχει n_0 ώστε $\forall n \geq n_0 : neq \mathcal{L}(n) < \frac{1}{p(n)}$

Συνήθως: n^{-c} , $c2^{-n}$

Παρατηρήσεις

- Ο τυπικός ορισμός ενσωματώνει την παράμετρο ασφαλείας
- Δύσχρηστος ορισμός
- Και πάλι δεν ορίσαμε ακριβώς τι σημαίνει 'σπάσιμο'

Μη Διακρισιμότητα(Indistinguishability) Ι

Παίγνιο Μη Διακρισιμότητας μεταξύ των $\mathcal A$, $\mathcal C$ (αναπαριστά το κρυπτοσύστημα)

- Ανταλλαγή Μηνυμάτων μεταξύ \mathcal{A} , \mathcal{C}
- \mathcal{A} : Παράγει δύο μηνύματα m_0, m_1
- \mathcal{C} : Διαλέγει ένα τυχαίο bit b
- \mathcal{C} : Παράγει και απαντά με το $c_b = \mathtt{Encrypt}(m_b)$
- \mathcal{A} : Mavteúel éva hit \mathbf{b}'

$$extit{IND} - extit{Game}(\mathcal{A}) = egin{cases} 1, b' = b \ 0,$$
αλλιώς

Μη Διακρισιμότητα(Indistinguishability) II

Πλεονέκτημα

$$\mathit{Adv}_{\mathit{IND}}(\mathcal{A}) = |\mathit{Pr}[\mathit{IND} - \mathit{Game}(\mathcal{A}) = 1] - \tfrac{1}{2}|$$

Ορισμός

Ένα κρυπτοσύστημα διαθέτει την ιδιότητα της μη διακρισιμότητας όταν \forall PPT $\mathcal A$:

$$Adv_{IND}(A) = negl(\lambda)$$

Θεώρημα

Σημασιολογική Ασφάλεια ⇔ Μη-Διακρισιμοτητα

IND-EAV

IND-CPA

Παρατηρήσεις

Θεώρημα

Ένα κρυπτοσύστημα με ντετερμινιστικό αλγόριθμο κρυπτογράφησης δεν μπορεί να έχει την ιδιότητα IND-CPA.

Απόδειξη

- ullet Ο ${\cal A}$ θέτει ${\it m}^*={\it m}_0$ και λαμβάνει την κρυπτογράφηση ${\it c}^*$
- ullet Η απάντηση του είναι $b'=egin{cases} 0,c^*=c\ 1,$ αλλιώς
- Ο $\mathcal A$ κερδίζει πάντα $Pr[\mathit{IND}-\mathit{CPA}(\mathcal A)=1]=1$

IND-CCA

Παρατηρήσεις

- Στο παίγνιο IND-CCA ο $\mathcal A$ δεν μπορεί να ρωτήσει τον $\mathcal C$ για την αποκρυπτογραφήση του $\mathcal C$
- Μπορεί όμως να:
 - Μετατρέψει το *c* σε *ĉ*
 - Ζητήσει την αποκρυπτογράφηση του \hat{c} σε \hat{m}
 - Να μετατρέψει το m̂ σε m, κερδίζοντας με πιθανότητα 1
- IND-CCA2: Επιτρέπεται χρήση του μαντείου αποκρυπτογράφησης μετά το c (adaptive IND-CCA)
- IND-CCA1: αλλιώς

Malleability I

Malleable (εύπλαστο) Κρυπτοσύστημα

Επιτρέπει στο $\mathcal A$ να φτιάξει, γνωρίζοντας μόνο το κρυπτοκείμενο $c=\mathrm{Encrypt}(m)$, ένα έγκυρο κρυπτοκείμενο $c'=\mathrm{Encrypt}(h(m))$, για κάποια, συνήθως πολυωνυμικά αντιστρέψιμη, συνάρτηση h γνωστή σε αυτόν.

Σημαντική ιδιότητα

Non-malleability \Leftrightarrow IND-CCA2

Malleability II

Κάποιες φορές είναι επιθυμητή και κάποιες όχι.

- Ομομορφικά Κρυπτοσυστήματα: Αποτίμηση μερικών πράξεων στα κρυπτοκείμενα (ηλ. ψηφοφορίες)
- Πλήρως Ομομορφικά Κρυπτοσυστήμα (Gentry 2010):Αποτίμηση οποιουδήποτε κυκλώματος στα κρυπτοκείμενα
- Δεν μπορούν να είναι IND-CCA2, ... αλλά είναι πολύ χρήσιμα

Κρυπτογραφικές Αναγωγές Ι

Γενική Μορφή

Av ισχύει η υπόθεση $\mathcal Y$, τότε και το κρυπτοσύστημα $\mathcal {CS}$ είναι ασφαλές (υπό συγκεκριμένο ορισμό).

Αντιθετοαντιστροφή

Av to \mathcal{CS} DEN είναι ασφαλές (υπό συγκεκριμένο ορισμό), τότε δεν ισχύει η \mathcal{Y} .

Κατασκευαστική απόδειξη

Κρυπτογραφικές Αναγωγές ΙΙ

Κρυπτογραφικές Αναγωγές III

- ullet \mathcal{CS} μη ασφαλές \Rightarrow \exists PPT \mathcal{A} ο οποίος παραβιάζει τον ορισμό ασφάλειας
- Κατασκευάζουμε PPT αλγόριθμο \mathcal{B} , ο οποίος αλληλεπιδρά με τον \mathcal{C}_y ο οποίος προσπαθεί να 'υπερασπιστεί' την \mathcal{Y}
- 0 $\mathcal B$ για να καταρρίψει την $\mathcal Y$ χρησιμοποιεί εσωτερικά σαν υπορουτίνα τον $\mathcal A$ (black box access) παριστάνωντας τον $\mathcal C$ στο παίγνιο μη διακρισιμότητας του $\mathcal C\mathcal S$

Παρατηρήσεις

Κανόνες Ορθότητας

- Προσομοίωση: Ο $\mathcal A$ δεν θα πρέπει να ξεχωρίζει τον $\mathcal B$ από οποιονδήποτε άλλο εισηγητή.
- Πιθανότητα επιτυχίας: Αν ο $\mathcal A$ έχει μη αμελητέα πιθανότητα επιτυχίας τότε και ο $\mathcal B$ θα πρέπει να έχει μη αμελητέα πιθανότητα
- Πολυπλοκότητα: Ο Β θα πρέπει να είναι PPT. Αυτό πρακτικά σημαίνει ότι όποια επιπλέον εσωτερική επεξεργασία πρέπει να είναι πολυωνυμική
- Πρέπει να είναι όσο πιο tight γίνεται ($t_{\mathcal{B}} pprox t_{\mathcal{A}}$ και $\epsilon_{\mathcal{B}} pprox \epsilon_{\mathcal{A}}$)

Συμπεράσματα-Συζήτηση

Κρυπτογραφικές Αναγωγές

- Παρέχουν σχετικές εγγυήσεις (Δύσκολο Πρόβλημα, Μοντέλο Ασφάλειας)
- Δίνουν ευκαιρία να ορίσουμε καλύτερα το κρυπτοσύστημα/πρωτόκολλο
- Πρακτική Χρησιμότητα: Ρύθμιση Παραμέτρου Ασφάλειας
- Συγκέντρωση Κρυπταναλυτικών Προσπαθειών στο Πρόβλημα Αναγωγής και όχι σε κάθε κρυπτοσύστημα ξεχωριστά
- Πιο σημαντικές όσο πιο πολύπλοκο γίνεται το πρωτόκολλο
- Δεν σημαίνει ότι οποιαδήποτε υλοποίηση θα είναι ασφαλής

Βιβλιογραφία Ι

- St. Zachos and Aris Pagourtzis. Στοιχεία Θεωρίας Αριθμών και Εφαρμογές στην Κρυπτογραφία. Πανεπιστημιακές Σημειώσεις
- Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman and Hall/Crc Cryptography and Network Security Series). Chapman and Hall/CRC, 2007
- Nigel Smart. Introduction to cryptography
- Alptekin Kupcu. Proofs In Cryptography
- S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270-299, 1984.
- S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryptosystems. SIAM J. Computing, 17(2):412-426, 1988.

Βιβλιογραφία II

- Ivan Damgard, A proof reading of some issues in cryptography
- Neil Koblitz, Alfred Menezes Another Look at "Provable Security"
- Bruce Schneier's Blog
 - Memo to the Amateur Cipher Designer (https://goo.gl/92TW36)
 - Crypto Snake Oil (https://goo.gl/FaFoSK)
- A Few Thoughts on Cryptographic Engineering
- Bristol Cryptography Blog
- Kerckhoffs Wikipedia Entry (https://goo.gl/SHnu8K)