

EE171 Project: Single-phase SPWM Modulation Inverter

梁家伟

2019.06.11

Contents

- Design an inverter using bipolar modulation.
- Design an inverter using unipolar modulation.
- Design an inverter to eliminate 5th and 7th order harmonics of Uo and present your results.
- Have a brief discussion or comparison about the simulation results.

Parameter

Parameter	Value	
DC input U_d	400V	
Fundamental wave RMS $U_{o1,rms}$	220 <i>V</i>	
Modulation wave Frequency f_r	50 <i>Hz</i>	
Carrier wave Frequency f_c	2000Hz	
Amplitude Modulation Index	$m_a = \frac{A_r}{A_c} = \frac{U_{01}}{U_d} \approx 0.778$	
Frequency Modulation Index	$m_f = \frac{f_c}{f_r} = \frac{2000}{50} = 40$	

Bipolar PWM Simulation Model

- $V_r > V_c$, turn on Q_1, Q_4 and turn off Q_2, Q_3 .
- $V_r < V_c$, turn on Q_2, Q_3 and turn off Q_1, Q_4 .

Bipolar PWM Simulation Results

Output PWM wave

Bipolar PWM Simulation Results

FFT analysis

•
$$U_{o1}=303V$$
, $RMS=\frac{303}{\sqrt{2}}\approx 214.25V$ ©2019 Jiawei Liang EE171 Project: Single-phase SPWM Modulation Inverter

Bipolar PWM Simulation Results

Output current I_o

$$THD = 4.38\%$$

Unipolar PWM Simulation Model

- $V_r > 0$, keep Q_1 on and Q_2 off.
 - When $V_r > V_c$, turn on Q_4 and turn off Q_3 , $U_0 = U_d$.
 - When $V_r < V_c$, turn on Q_3 and turn off Q_4 , $U_0 = 0$.
- $V_r < 0$, keep Q_2 on and Q_1 off.
 - When $V_r > V_c$, turn on Q_4 and turn off Q_3 , $U_0 = 0$.
 - When $V_r < V_c$, turn on Q_3 and turn off Q_4 , $U_0 = U_d$.

©2019 Jiawei Liang

EE171 Project: Single

Unipolar PWM Simulation Results

Output PWM wave

Unipolar PWM Simulation Results

FFT analysis

•
$$U_{o1} = 303V$$
, $RMS = \frac{303}{\sqrt{2}} \approx 214.25V$

Unipolar PWM Simulation Results

Output current I_o

THD = 2.42%

Selected Harmonics Elimination PWM

 In a half cycle, each device is turned on or off for three times

• When $m_a = 0.778$, $\alpha_1 = 20^{\circ}$, $\alpha_2 = 35^{\circ}$, $\alpha_3 = 50^{\circ}$.

SHEPWM Modulation Model

- Gating1=1, Q_1 and Q_4 on, $U_o = U_d$
- Gating2=1, Q_2 and Q_3 on, $U_o = -U_d$

SHEPWM Simualtion Result

Output PWM voltage and current

SHEPWM Simulation Result

FFT analysis

	Frequency	Vo
1	50	268.79
3	150	206.38
5	250	5.79
7	350	20.24
9	450	248.29
11	550	292.22
13	650	20.02
15	750	125.42
17	850	23.62

• The 5^{th} and 7^{th} order harmonics of U_o are almost zero. (read the switch angle inaccurately)

Conclusion

- Bipolar PWM :
 - The modulation circuit is easy to implement
- Unipolar PWM :
 - Lower THD
 - Lower amplitude of the minimum order harmonic
- SHE PWM
 - Lower switch frequency
 - Elimination selected harmonics
 - Three-phase can eliminate 3th order harmonics

Thanks for your kind attention!

Jiawei Liang
ShanghaiTech University, July 11th,2019