Capacitors

May 23rd 2025

Max McGinley

Today's lecture

- What is a capacitor?
- 'Capacitance' C
- What are capacitors used for

Image: Washington University Physics

Connecting to a battery

Connecting to a battery

Charge imbalance ∞ potential difference

$$Q = CV$$

C = Capacitance

[Coulomb] [Volt]⁻¹ = [Farad]

The field inside a capacitor

The field inside a capacitor

Gauss' law

Electric flux through surface = Charge enclosed $/\epsilon_0$

$$EA = Q/\epsilon_0$$

The ideal parallel-plate capacitor

Using a capacitor

Using a capacitor

Time-varying signals

Further reading

Knight Physics for Scientists and Engineers, Sec. 23.5 &
Ch. 28

'The Engineering Mindset' - Capacitors (YouTube)

• Notes for this lecture (and these slides):

https://github.com/maxmcginley/capacitors_lectures

