Direct Sums

Theorem 1 (Direct Sum). Given rings R and S, we define "componentwise" operations on the cartesian product $R \times S$ as follows.

$$(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$$

 $(r_1, s_1) \cdot (r_2, s_2) = (r_1 \cdot r_2, s_1 \cdot s_2)$

Then we have the following.

- These operations make $R \times S$ into a ring, which we call the direct sum of R and S and denote by $R \oplus S$.
- ullet $R \oplus S$ is commutative iff R and S are commutative.
- $R \oplus S$ is unital iff R and S are unital, and in this case $1_{R \oplus S} = (1_R, 1_S)$.
- The coordinate projections $\pi_1: R \oplus S \to R$ and $\pi_2: R \oplus S \to S$, given by $\pi_1(r,s) = r$ and $\pi_2(r,s) = s$, are surjective ring homomorphisms. If R and S are unital, then π_1 and π_2 are unital.

Proposition 2.

- 1. If $R_1 \cong R_2$ and $S_1 \cong S_2$, then $R_1 \oplus S_1 \cong R_2 \oplus S_2$.
- 2. $R \oplus 0 \cong R$
- 3. $R \oplus S \cong S \oplus R$
- 4. $(R \oplus S) \oplus T \cong R \oplus (S \oplus T)$