TP: Inductance mutuelle et coefficient de couplage

Référence: Polycopié de TP - Série 1 - Electronique de base et résonance

Courant variable i_1 dans bobine 1 induit une tension v_2 dans bobine 2 : $v_2 = M \frac{di_1}{dt}$

Il y a aussi auto-induction dans la bobine 2 : $v_2 = L_2 \frac{di_2}{dt}$

$$v_2 = L_2 \frac{di_2}{dt} + M \frac{di_1}{dt}$$

Dans le cas où $i_2 = 0$ (circuit ouvert), on aura donc

 $v_2 = M(j\omega i_1)$ alors l'inductance mutuelle : $M = \frac{|v_2|}{\omega i_1}$

Le coefficient de couplage : $\theta = \frac{M}{\sqrt{L_1 L_2}}$

Protocole:

- On mesure L des 2 bobines Leybold par LCR-mètre
- Relier GBF vers Ampèremètre (i_1) puis vers Bobine 1 puis vers GBF (Choisir $1\ kHz$ et à 5 V_{cc})
- Relier Voltmètre (v_2) aux bornes de la Bobine 2 (et coller les 2 bobines)
- Par un T, relier GBF à l'Oscillo voie1
- Relier Oscillo voie2 à la Bobine 2

Voir l'effet de la distance sur l'induction dans Bobine 2.

- Mesurer i_1 et v_2 pour différents points. Sur Qtiplot trouver la pente M

Mettre en y soit v soit i selon lequel qui a le plus d'incertitudes

- Mettre les Bobines sur un noyau de fer doux. Mesurer les nouvelles inductances propres L de chaque bobine (seule et en présence du noyau de fer).
- Faire une autre série de points i_1 et v_2 et trouver le nouveau M.

Prendre 1 point devant le Jury pour chaque cas

GBF	V2 [V]	i1 [mA]	Distance	L1 [mH]	L2 [mH]	M (à calculer)	θ (à calculer)
1kHz à 5 Vpp	0.13	23.35	Collée	8.44	8.62	0.886 mH	0.103
1kHz à 5 Vpp + barreau Fe	1.46	0.83	Collée	311.2	310.3	280mH	0.9

Mesurer L,R,Z des bobines

Mesurer L,R,Z par LCR-mètre L=8.4mH - R= 2.4Ω - Z= 54Ω

Brancher 1 à 3 : toutes les spires 1 à 2 : La moitié des spires

On branche rien dans Guard

Autre méthode (à ne pas faire)

- GBF à fréquence : f = 1kHz
- Câble vers R puis de R à L puis de L vers GBF
- Je branche oscillo:
 - · Voie 1 aux bornes de R
 - Voie 2 aux bornes de L
- $-R=5\Omega$

$$U_R = 170 \text{ mV}_{cc} \text{ donc } U_{eff,R} = \frac{U_R}{2\sqrt{2}} = 60.1 \text{ mV}$$

$$U_L = 1.45 \ V_{cc} \ \text{donc} \ U_{eff,L} = \frac{U_L}{2\sqrt{2}} = 512.7 \ \text{mV}$$

_ Alors le courant efficace
$$I = \frac{U_{eff}}{R} = \frac{60.1 \times 10^{-3}}{5} = 12 \text{ mA}$$

_ Alors impédance bobine
$$Z_L = \frac{U_L}{I} = 42.7 \ \Omega$$

_ Donc l'inductance
$$L = \frac{Z_L}{2\pi f} = 6.8 \text{ mH}$$

Inductance Mutuelle

Il faut refaire les mesures de L en présence du noyau de Fer doux.

Mais chaque bobine seule pour ne pas être affecté par l'autre

