Всюду в этом листке, где упоминается пространство \mathbb{R}^n , имеется в виду, что оно снабжено евклидовой метрикой d_2 .

Под словом «функция» подразумевается отображение в \mathbb{R} .

Определение 1. Точка a метрического пространства M называется $npedenbhoй точкой множества <math>X \subset M$, если в любой ε -окрестности точки a найдётся точка из X.

Определение 2. Подмножество U метрического пространства M называется $\mathit{открытым}$, если вместе с каждой своей точкой оно содержит какую-нибудь её ε -окрестность.

Определение 3. Подмножество B метрического пространства M называется $\mathit{замкнутым}$, если оно содержит все свои предельные точки.

Задача 1°. Докажите, что $U \subset M$ открыто тогда и только тогда, когда $M \setminus U$ замкнуто.

Задача 2. Пусть M снабжено дискретной метрикой. Опишите все его открытые подмножества.

Задача 3. Множество X на плоскости обладает таким свойством, что его пересечение с любой прямой есть открытое подмножество этой прямой. Обязательно ли X открытое? Тот же вопрос, если все слова «открытое» заменить на «замкнутое».

Определение 4. Отображение $f: M \to N$ непрерывно в точке $m \in M$, если для любой последовательности (x_i) , сходящейся к m, последовательность $(f(x_i))$ сходится к f(m). Если f непрерывно во всех точках множества M, то говорят, что f непрерывно на M.

Определение 5. Отображение $f: M \to N$ непрерывно на M (или просто непрерывно), если прообраз любого открытого множества открыт.

Задача 4°. Докажите эквивалентность определений 4 и 5.

Задача 5. Рассмотрим на \mathbb{R}^2 функции вычисления суммы, разности, произведения и частного координат. Докажите, что они непрерывны на своей области определения.

Задача 6°. Докажите, что композиция непрерывных отображений непрерывна.

Задача 7. Докажите, что сумма и произведение непрерывных функций непрерывны.

Задача 8. Докажите, что отображение непрерывно тогда и только тогда, когда прообраз любого замкнутого множества замкнут.

Задача 9. Верно ли, что при непрерывном отображении открытые множества переходят в открытые? А замкнутые в замкнутые?

Задача 10. Пусть пространство M таково, что для любого метрического пространства N любое отображение $f \colon M \to N$ непрерывно. Что можно сказать об M?

Задача 11. Пусть пространство N таково, что для любого метрического пространства M любое отображение $f \colon M \to N$ непрерывно. Что можно сказать об N?

1	2	3	4	5	6	7	8	9	10	11

Листок №MS-3 Страница 2

Определение 6. Множество X называется csashum, если из того, что X принадлежит объединению двух открытых непересекающихся множеств, следует, что оно принадлежит одному из этих множеств.

Определение 7. Множество X называется *линейно-связным*, если для любых двух его точек x_0 и x_1 существует путь из x_0 в x_1 (то есть непрерывное отображение $f: [0,1] \to X$ такое, что $f(0) = x_0$ и $f(1) = x_1$).

Задача 12°. Докажите, что образ связного множества при непрерывном отображении связен.

Задача 13°. Докажите, что образ линейно-связного множества при непрерывном отображении линейно-связен.

Задача 14. Верно ли, что прообраз связного множества при непрерывном отображении связен?

Задача 15. Докажите, что если множество линейно-связно, то оно связно.

Задача 16. Пусть $U \subset \mathbb{R}^n$ открыто и связно. Докажите, что оно линейно-связно.

Задача 17. (задача-wymка) Множество X делит плоскость на две части (то есть его дополнение является несвязным объединением двух связных множеств). Обязательно ли X связно?

Задача 18*. Приведите пример связного, но не линейно-связного подмножества в \mathbb{R}^n для какогонибудь n.

Задача 19. Пусть $f: M \to N$ непрерывное взаимно-однозначное отображение. Верно ли, что f^{-1} тоже непрерывно?

Определение 8. Непрерывное взаимно-однозначное отображение $f: M \to N$ называется гомеоморфизмом, если отображение f^{-1} непрерывно. В этом случае говорят, что M гомеоморфио N (обозначение: $M \cong N$).

Задача 20. Какие из следующих пар множеств гомеоморфны между собой:

- а) прямая и парабола; б) прямая и гипербола; в) прямая и интервал;
- г) открытый круг и плоскость; д) сфера с выколотой точкой и плоскость;
- е) интервал и отрезок; ж) прямая и окружность; з) прямая и плоскость?

Задача 21*. Пусть множества M и N таковы, что существуют непрерывное взаимно-однозначное отображение $f \colon M \to N$ и непрерывное взаимно-однозначное отображение $g \colon N \to M$. Верно ли, что $M \cong N$?

Определение 9. Множество называется *компактным* (или просто *компактном*), если из любого его покрытия открытыми множествами можно выделить конечное подпокрытие.

Задача 22°. Докажите, что компактное множество замкнуто и ограничено. Верно ли обратное?

Задача 23°. Докажите, что образ компакта при непрерывном отображении — компакт.

Задача 24. Докажите, что непрерывная функция достигает на компакте своего максимума и минимума.

Задача 25. Выполняется ли принцип вложенных компактов для произвольного метрического пространства?

Задача 26. Известно, что $f \colon [0,1] \to M$ непрерывно и взаимно-однозначно. Докажите, что f — гомеоморфизм.

12	13	14	15	16	17	18	19	20 a	20 6	20 B	20 Г	20 д	20 e	20 ж	20 3	21	22	23	24	25	26