System identification methods

Database for system identification DAISY

Simulation results

Conclusions

System identification methods

Outline

Comparison of identification algorithms on the database DAISY

Ivan Markovsky, Jan C. Willems, and Bart De Moor

K.U.Leuven, ESAT-SISTA

SISTA

SISTA

SIST/

SISTA

System identification methods

Database for system identification DAISY

Simulation results

Conclusion

System identification: $w_d \mapsto \widehat{\mathscr{B}} \in \mathscr{M}$

Notation:

- $\mathbf{w}_{d} = (\mathbf{u}_{d}, \mathbf{y}_{d})$ given data, in this talk a vector time series
- $\widehat{\mathscr{B}}$ to be found model for w_d , in this talk an LTI system
- \mathcal{M} model class, in this talk $\mathcal{L}_{m,n}$, *i.e.*, LTI systems of bounded complexity: $\leq m$ inputs and order $\leq n$

System identification

- defines a mapping $w_d \mapsto \mathscr{B}$
- · derives effective algorithms that realize the mapping, and
- develops efficient software that implements the algorithms

System identification methods

Database for system identification DAISY

Simulation results

Conclusions

0 1 .

System identification methods

Database for system identification

Certificates for the methods

The methods are consistent and efficient under certain specified conditions.

Typical assumptions:

- data generated by an ARMAX system
- · stationary, white, Gaussian noise

The assumptions imply:

- there is a true system $\bar{\mathscr{B}}$ in the model class,
- the modeling error $\widetilde{y} := y_d \widehat{y}$, $\widehat{w} \in \widehat{\mathscr{B}}$ is stationary, *etc*, stochastic process.

tnere is a true sy

Approximation point of view

- w_d can be anything, e.g., generated by a nonlinear time-varying system
- $\widetilde{w} := w_d \widehat{w}$, where $\widehat{w} \in \mathcal{B}$, is (most probably) not a stationary stochastic process

The issue is how to best approximate w_d instead of how to best estimate $\bar{\mathcal{B}} \in \mathcal{M}$.

SISTA

SISTA

ystem identification methods

Database for system identification DAISY

Simulation results

Conclusion

Database for system identification DAISY

#	Data set name	T	m	р	1
1	Lake Erie	57	5	2	1
2	Distillation column	90	5	3	1
3	Heating system	801	1	1	2
4	Industrial dryer	867	3	3	1
5	Hair dryer	1000	1	1	5
6	Ball-and-beam setup	1000	1	1	2
7	Wing flutter	1024	1	1	5
8	Flexible robot arm	1024	1	1	4
9	Glass furnace	1247	3	6	1
10	Heat flow density	1680	2	1	2
11	pH process	2001	2	1	6
12	CD-player arm	2048	2	2	1
13	Winding process	2500	5	2	2
14	Heat exchanger	4000	1	1	2
15	Industrial evaporator	6305	3	3	1
16	Stirred tank reactor	7500	1	2	1
17	Steam generator	9600	4	4	1

T—# of samplesm—# of inputsp—# of outputs

1—lag

Considered identification methods

- subid: robust combined subspace algorithm
- w2x2ss: N4SID-type algorithm
- cva: canonical variate analysis method
- moesp: multivariable output-error state space
- pem: output error identification in the PEM setting
- gtls: output error identification using STLS

The first 4 are subspace methods.

The last 2 are optimization based methods.

Database for system identification DAISY

Simulation results

Conclusions

Simulation setup

 $w_{\rm d}$ in all examples is split into identification and validation parts.

"70i/30v" is a short notation for "first 70% of the data is used for identification and the remaining 30% for validation"

A model $\widehat{\mathscr{B}}$ is identified from w_{idt} and is validated on w_{val} by the validation criterion defined next.

system identification methods

Database for system identification DAISY

Simulation results

nclusions

Validation criterion: "simulation fit"

Let \overline{y} be the mean of y

$$\overline{y} := \frac{1}{T} \sum_{t=1}^{T} y(t)$$

and define

$$\widehat{y}\big((u,y),\mathscr{B}\big) := \min_{\widehat{y}} \|y - \widehat{y}\| \quad \text{subject to} \quad \operatorname{col}(u,\widehat{y}) \in \mathscr{B}.$$

The simulation fit of w by \mathcal{B} is

$$F(w,\mathscr{B}) := 100 \max \left(0, 1 - \|y - \widehat{y}(w,\mathscr{B})\| / \|y - \overline{y}\|\right).$$

SISTA

System identification methods

Database for system identification DAISY

Simulation result

Conclusions

Conclusions

- gtls achieves the best fit
- among the subspace methods, moesp achieves the best fit
- fastest (and perhaps most efficient) is w2x2ss
- pem achieves worse performance than gtls (mainly) due to the imposed stability constraint
- a good fit on w_{idt} does not guarantee a good fit on w_{val}

System identification method:

Database for system identification DAISY

Simulation results

Conclusions

Average fit in % on all datasets

Experiment		subid	w2x2ss	moesp	cva	pem	gtls
	idt	51.18	46.39	55.52	49.79	57.43	68.46
70i/30v	val	32.14	32.34	38.97	33.38	37.77	48.40
	idt	46.34	48.83	53.86	50.78	59.13	68.87
30v/70i	val	36.96	38.15	40.43	37.10	45.17	53.72
	idt	49.14	45.56	55.13	50.88	56.84	68.36
80i/20v	val	30.01	29.75	33.01	31.75	36.17	44.14
	idt	49.47	48.07	54.48	51.90	58.93	68.48
20v/80i	val	46.09	40.81	39.79	39.81	45.28	56.88
	idt	50.92	47.61	54.79	51.25	58.39	68.95
90i/10v	val	40.47	31.46	37.06	35.07	39.48	48.55
	idt	48.16	48.46	53.93	50.71	58.78	69.06
10v/90i	val	45.58	45.13	44.12	39.71	43.62	56.28
Exec. time		0.11	0.05	4.45	5.03	14.79	25.14

The best fits and smallest execution times obtained by subspace and optimization methods are in red.

SISTA

System identification methods

Database for system identification DAIS

Simulation results

Conclusions

Thank you

SISTA

SISTA