- 1. Про законы распределения:
 - а) Василий спроецировал n-мерный стандартный нормальный вектор u на линейную оболочку независимых векторов a, b и c. Квадрат длины проекции назовём буквой Z. Как распределена величина Z?
 - б) Далее Василий спроецировал u на линейную оболочку векторов a и b. Квадрат длины проекции назовём буквой W. Как распределена величина W?
 - в) Неугомонный Василий спроецировал u на линейную оболочку векторов d и e. Вектора d и e независимы и ортогональны a,b и c. Квадрат длины проекции назовём буквой Q. Как распределена величина Q?
 - г) Какое известное распределение можно получить из Q/Z? Как конкретно его получить?
 - д) Какое известное распределение можно получить из W/Z? Как конкретно его получить?
- 2. Рассмотрим модель множественной регрессии, $y = X\beta + u$, где регрессоры детерминистические, а $u \sim \mathcal{N}(0; \sigma^2 \cdot I)$. Величина σ^2 известна. Мы хотим проверить гипотезу H_0 : $\beta = 0$.
 - а) Выведите формулы для статистик W, LR, LM.
 - б) Сравните эти статистики между собой.
- 3. Рассмотрим модель множественной регрессии, $y = X\beta + u$, где регрессоры детерминистические, а $u \sim \mathcal{N}(0; \sigma^2 \cdot I)$. Величина σ^2 неизвестна и тоже оценивается. Мы хотим проверить гипотезу H_0 : $\beta = 0$.
 - а) Выведите формулы для статистик W, LR, LM.
 - б) Сравните эти статистики между собой.
- 4. Сэр Томас Байес в 18 веке решил задачу, которая на современном языке формулируется так: Величина R имеет равномерное распределение на отрезке [0;1]. Мы изготавливаем монетку, выпадающую орлом с вероятностью R. Затем подбрасываем её n раз. Из этих n раз оказывается X орлов и Y решек.
 - а) Как выглядит условная плотность величины R при известных X и Y с точностью до константы?
 - б) Какова условная вероятность того, что монетка выпадет орлом, при известных X и Y?

Хинт: какое там есть распределение-то на отрезке [0;1]? А тут ещё две известных величины, X и Y завалялись :)

5. Вспомнив Матрицу-Мать-Всех-Регрессий, докажите, что в регрессии

$$\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_x x_i + \hat{\beta}_z z_i + \hat{\beta}_w w_i$$

величину R^2 можно разложить в сумму:

$$R^{2} = \hat{\beta}_{x} \frac{sCov(y, x)}{sVar(y)} + \hat{\beta}_{z} \frac{sCov(y, z)}{sVar(y)} + \hat{\beta}_{w} \frac{sCov(y, w)}{sVar(y)}$$

6. Посмотрим, кто прорешал первую кр :)

Докажите, что в методе главных компонент с масштабированием переменных средняя величина R^2 по всем парным регрессиям исходных переменных на первую главную компоненту равна наибольшему сингулярному значению матрицы исходных переменных.

- 7. Величины U_1 и U_2 независимы и равномерны U[0;1]. Рассмотрим пару величин $Y_1=R\cdot\cos\alpha$, $Y_2=R\cdot\sin\alpha$, где $R=\sqrt{-2\ln U_1}$, а $\alpha=2\pi U_2$.
 - а) Выпишите дифференциальную форму для пары $U_1, U_2;$
 - б) Выпишите дифференциальную форму для пары Y_1, Y_2 ;
 - в) Найдите совместный закон распределения Y_1 и Y_2 ;
 - г) Верно ли, что Y_1 и Y_2 независимы?
 - д) Как распределены Y_1 и Y_2 по отдельности?
- 8. Эта задача посвящена доказательству неравенства Крамера-Рао. Суть его в том, что если мы возьмём любую несмещённую оценку, то её дисперсия будет не меньше некоторой границы. А именно, если \hat{a} любая несмещённая оценка вектора a, то матрица M,

$$M = \operatorname{Var}(s(a)) \cdot \operatorname{Var}(\hat{a}) - I_{k \times k}$$

неотрицательно определена. В этой задаче \hat{a} — произвольная несмещённая оценка, не обязательно равная \hat{a}_{ML} ! Как обычно, s(a) — градиент функции правдоподобия в истинной точке.

- а) Вспомните, чему равно E(s(a)).
- б) Найдите скаляры Cov $\left(\hat{a}_1, \frac{\partial \ell}{\partial a_1}\right)$, Cov $\left(\hat{a}_1, \frac{\partial \ell}{\partial a_2}\right)$ и матрицу Cov $(\hat{a}, s(a))$.
- в) Рассмотрим два произвольных случайных вектора r и s и два вектора констант подходящей длины α и β . Найдите минимум функции $f(\alpha,\beta) = \mathrm{Var}(\alpha^T r + \beta^T s)$ по β . Выпишите явно $\beta^*(\alpha)$ и $f^*(\alpha)$.
- г) Докажите, что для произвольных случайных векторов положительно определена матрица

$$\mathrm{Var}(r) - \mathrm{Cov}(r,s)\,\mathrm{Var}^{-1}(s)\,\mathrm{Cov}(s,r)$$

д) Завершите доказательство векторного неравенства Крамера-Рао.