Some group theoretical aspects of block cipher security

Roberto Civino

roberto.civino@univaq.it

∂cifris meets Rome October 4, 2018

Block ciphers

Parameters

block size n

 $\text{key size } \kappa$

Spaces

- $ightharpoonup V\stackrel{ ext{ iny def}}{=} (\mathbb{F}_2)^n$ the message space
- lacksquare $\mathcal{K} pprox (\mathbb{F}_2)^\kappa$ the key space

An injective correspondence

$$\Phi: \begin{array}{ccc} \mathcal{K} & \to & \operatorname{\mathsf{Sym}}(V) \\ \mathcal{K} & \mapsto & \varphi_{\mathcal{K}} \end{array}$$

The permutations induced by the 2^{κ} keys should look like being chosen uniformly from the set of all the permutations on V

representation of the cipher in Sym(V)

Pick them at random?

$$2^{64} \times 2^{64}$$
 bit $\,\sim 2^{85}$ TB

gotta find a more clever way

Shannon's principles

Idea

Iterate simple functions!

Two necessary properties to guarantee security against cryptanalysis:

confusion

 $123123123_x \mapsto f5bb0c8de146c67b44babbf4e6584cc0_x$

diffusion

 $123113123_{x} \mapsto a335ab839b7164e878d9eae58a015ede_{x}$

Substitution-Permutation Networks

Non-linearity of a harmless 3-bit S-box

 \sim 7000000 leaves after 10 round, for a single and small S-Box

Another operation

If T_+ is the translation group on V, $T_+\stackrel{\text{def}}{=} \{\sigma_b \mid b \in V, x \mapsto x+b\}$, then

$$a+b=\sigma_b(a)$$

Analogously, if $T_{\circ} < \mathrm{Sym}(V)$ is a 2-elementary abelian regular group isomorphic to T,

$$T_{\circ} = \{ \tau_b \mid b \in V \} \,,$$

where τ_b is the unique element in T which maps 0 into b, then another operation is defined as

$$a \circ b \stackrel{\text{\tiny def}}{=} \tau_b(a)$$

People and things they've done

Crypto Team @ UnivAq...

... is R. Aragona, R. Civino, N. Gavioli and C. Scoppola

- ightharpoonup properties of T_{\circ} as a permutation group
- lacktriangleright measuring non-linearity with respect to T_\circ

Crypto Team @ UnivAq...

... is R. Aragona, R. Civino, N. Gavioli and C. Scoppola

- ightharpoonup properties of T_{\circ} as a permutation group
- ightharpoonup measuring non-linearity with respect to T_\circ
- the BIG alternative-operation problem:

$$\mathsf{AGL}(V,+) \cap \mathsf{AGL}(V,\circ)$$

The Big Problem: $\#AGL_+ \cap AGL_{\circ}$

¿Questions?

