Prodigy InfoTech Internship Task 4:

Analyse and visualize sentiment patterns in social media data to understand public opinion and attitudes towards specific topics or brands.

Sample Dataset: <u>Twitter Sentiment Analysis</u>

Analysation & Visualisation of sentiment patterns in **social media data**

Loading Libraries and Dataset:

```
[122] 1 import pandas as pd
          2 import matplotlib.pyplot as plt
          3 import seaborn as sns
          4 import warnings
          5 warnings.filterwarnings('ignore')
          6 from textblob import TextBlob
[123] 1 sns.set_theme(context='notebook', style='whitegrid', palette='muted')
[124] 1 !pip install textblob
     Requirement already satisfied: textblob in /usr/local/lib/python3.10/dist-packages (0.17.1)
     Requirement already satisfied: nltk>=3.1 in /usr/local/lib/python3.10/dist-packages (from textblob) (3.8.1)
     Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk>=3.1->textblob) (8.1.7)
     Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from nltk>=3.1->textblob) (1.4.2)
     Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.10/dist-packages (from nltk>=3.1->textblob) (2023.12.25)
     Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from nltk>=3.1->textblob) (4.66.4)
[125] 1 col_names = ['Id', 'Entity', 'Sentiment', 'Tweet']
      2 valid_data = pd.read_csv("/content/drive/MyDrive/Project_Datasets/Sentiment_Analysis/twitter_validation.csv", names=col_names)
      3 train_data = pd.read_csv("/content/drive/MyDrive/Project_Datasets/Sentiment_Analysis/twitter_training.csv", names=col_names)
```

Understanding the shape of the data:

[127] 1 valid_data.head() 丽 Id **Entity Sentiment** 0 3364 Facebook I mentioned on Facebook that I was struggling ... Irrelevant 1 352 Amazon Neutral BBC News - Amazon boss Jeff Bezos rejects clai... 2 8312 Microsoft Negative @Microsoft Why do I pay for WORD when it funct... 3 4371 CS-GO Negative CSGO matchmaking is so full of closet hacking,... 4 4433 Google Neutral Now the President is slapping Americans in the... Data Cleaning: [128] 1 # Check for missing values 2 train_data.isnull().sum() 3 valid_data.isnull().sum() Id 0 Entity 0 Sentiment Tweet dtype: int64 [129] 1 # Checking the distribution of sentiment labels 2 train_sentiment_distribution = train_data.iloc[:, 2].value_counts() 3 valid_sentiment_distribution = valid_data.iloc[:, 2].value_counts() 4 train_sentiment_distribution, valid_sentiment_distribution (Sentiment 22542 Negative Positive 20832 18318 Neutral Irrelevant 12990 Name: count, dtype: int64, Sentiment 285 Neutral Positive 277 266 Negative Irrelevant 172 Name: count, dtype: int64) 1 train_data.iloc[:, 1].nunique() [131] 1 # Remove duplicate rows from the training set 2 train_data_cleaned = train_data.drop_duplicates()

By: Aman Kumar Jha LinkedIn

1 # Drop rows with missing tweet/message values

2 train_data_cleaned.dropna(subset=[train_data.columns[3]])

Tweet	Sentiment	Entity	Id	
im getting on borderlands and i will murder yo	Positive	Borderlands	2401	0
I am coming to the borders and I will kill you	Positive	Borderlands	2401	1
im getting on borderlands and i will kill you	Positive	Borderlands	2401	2
im coming on borderlands and i will murder you	Positive	Borderlands	2401	3
im getting on borderlands 2 and i will murder	Positive	Borderlands	2401	4
Just realized that the Windows partition of my	Positive	Nvidia	9200	74677
Just realized that my Mac window partition is	Positive	Nvidia	9200	74678
Just realized the windows partition of my Mac	Positive	Nvidia	9200	74679
Just realized between the windows partition of	Positive	Nvidia	9200	74680
Just like the windows partition of my Mac is I	Positive	Nvidia	9200	74681

71656 rows × 4 columns

```
[133] 1 # Verify the cleaning
2 remaining_duplicates_train = train_data_cleaned.duplicated().sum()
3 remaining_missing_train = train_data_cleaned.isnull().sum()
4
5 remaining_duplicates_train, remaining_missing_train
```

Data Exploration:

```
1 # Set up the plots
2 fig, ax = plt.subplots(1, 2, figsize=(15, 5))
3
4 # Plot sentiment distribution for training data
5 sns.countplot(data=train_data_cleaned, x=train_data_cleaned.columns[2], order=['Positive', 'Negative', 'Neutral', 'Irrelevant'], ax=ax[0])
6 ax[0].set_title('Sentiment Distribution in Training Data')
7 ax[0].set_ylabel('Count')
8 ax[0].set_xlabel('Sentiment')
9
10 # Plot sentiment distribution for validation data
11 sns.countplot(data=valid_data, x=valid_data.columns[2], order=['Positive', 'Negative', 'Neutral', 'Irrelevant'], ax=ax[1])
12 ax[1].set_title('Sentiment Distribution in Validation Data')
13 ax[1].set_ylabel('Count')
14 ax[1].set_xlabel('Sentiment')
15
16 plt.tight_layout()
17 plt.show()
```


By: Aman Kumar Jha

LinkedIn

```
↑ ↓ ⊖ 国
1 # Bar Chart representation of top 10 most engaged entities on tweets
 2 # Count the occurrences of each category
 3 entity_counts = valid_data['Entity'].value_counts()
 5 # Select the top 10 categories
 6 top_10_entity = entity_counts.head(10)
 8 # Define colors for the bars
9 colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
10
11 # Plot a bar graph for the top 10 categories with colors
12 plt.figure(figsize=(10, 6))
13 top_10_entity.plot(kind='bar', color=colors)
15 # Remove the annotate part to not show values on top of each bar
16
17 plt.xlabel("Entities")
18 plt.ylabel('Tweet Count')
19 plt.title('Top 10 Entities with Highest Tweet Engagement')
20 plt.xticks(rotation=45, ha='right') # Adjust rotation for better readability
23 #The highest tweet count is of RedDeadRedeemption entity which is 40, Lowest tweet count is of Fortnite.
```



```
#EXPLORATORY DATA ANALYSIS

2 #Pie Chart representation of sentiment distribution

3 # Count the occurrences of each category

4 category_counts =valid_data['Sentiment'].value_counts()

6 # Plot a pie chart

7 plt.figure(figsize=(6, 8))

8 plt.pie(category_counts, labels=category_counts.index, autopct='%1.1f%%', startangle=140)

9 plt.axis('equal')

10

11 plt.title('Distribution of Sentiments')

12 plt.show()

13

14 #There are 27.7% positive sentiment texts, 26.6% negative sentiment texts,

15 #17.1% Irrelevant sentiment texts and 28.5% neutral sentiment texts in the dataset
```



```
1 # Pie chart representation of the top three entities in each sentiment category 2 # Group the data by 'tweet_category' and 'entity' and count occurrences
 3 category_entity_counts = valid_data.groupby(['Sentiment', 'Entity']).size().unstack(fill_value=0)
 5 \# Create a list to store the top 3 entities for each category
 6 top_three_entities = []
 8 # Iterate through each category
 9 for category in category_entity_counts.index:
10 top_entities = category_entity_counts.loc[category].nlargest(3)
11
        top_three_entities.append(top_entities)
13 # Determine the number of subplots based on the number of categories
14 num_categories = len(category_entity_counts.index)
16 # Create subplots for each category
17 plt.figure(figsize=(5 * num_categories, 5))
18 for i, (category, top_entities) in enumerate(zip(category_entity_counts.index, top_three_entities), start=1):
19 plt.subplot(1, num_categories, i)
        plt.pie(top_entities, labels=top_entities.index, autopct='%1.1f%%', startangle=140)
plt.axis('equal')
        plt.title(f'Top 3 Entities in {category}')
24 plt.tight_layout()
25 plt.show()
```

Top 3 Entities in Irrelevant

Top 3 Entities in Negative

Top 3 Entities in Neutral

Top 3 Entities in Neutral

Top 3 Entities in Positive

Battlefield

FIFA

RedDeadRedemption(RDR)

31.4%

26.8%

26.8%

PlayStation5(PS5)

Fortnite

35.7%

PlayerUnknownsBattlegrounds(PUBC) MaddenNFL

35.3%

30.4% Cyberpunk2077

Building Basic Model & Testing:

```
1 train_data_cleaned['message_length'] = train_data_cleaned[train_data_cleaned.columns[3]].fillna('').apply(len)
2 valid_data['message_length'] = valid_data[valid_data.columns[3]].fillna('').apply(len)

[140] 1 fig, ax = plt.subplots(1, 2, figsize=(15, 5))
2
3 # Plot message length distribution for training data
4 sns.histplot(train_data_cleaned['message_length'], bins=50, ax=ax[0], color='skyblue')
5 ax[0].set_title('Message_length Distribution in Training Data')
6 ax[0].set_ylabel('Frequency')
7 ax[0].set_xlabel('Message_length')
8
9 # Plot message length distribution for validation data
10 sns.histplot(valid_data['message_length'], bins=50, ax=ax[1], color='salmon')
11 ax[1].set_title('Message_length')
12 ax[1].set_ylabel('Frequency')
13 ax[1].set_xlabel('Message_length')
14
15 plt.tight_layout()
16 plt.show()
```



```
1 plt.figure(figsize=(18, 10))
2
3 # Plot sentiment distribution by entity
4 sns.countplot(data-train_data_cleaned, y-train_data_cleaned.columns[1], hue-train_data_cleaned.columns[2], order-train_data_cleaned[train_data_cleaned.columns[1]].value_counts().index, palette='viridis')
5 plt.xlabel('Count')
6 plt.xlabel('Count')
7 plt.ylabel('Entity')
8 plt.legend(title='Sentiment')
9 plt.tight_layout()
10 plt.show()
```



```
1 fig, ax = plt.subplots(1, 2, figsize=(15, 5))

2

3 # Plot message length distribution by sentiment for training data
4 sns.boxplot(data=train_data_cleaned, x=train_data_cleaned,columns[2], y='message
length', ax=ax[0], palette='viridis', order=['Positive', 'Negative', 'Neutral', 'Irrelevant'])
5 ax[0].set_title('Message length Distribution by Sentiment in Training Data')
6 ax[0].set_ylabel('Sentiment')
8 ax[0].set_ylabel('Sentiment')
8 ax[0].set_ylim(0, 300)
9
10 # Plot message length distribution by sentiment for validation data
11 sns.boxplot(data=valid_data, x=valid_data.columns[2], y='message_length', ax=ax[1], palette='viridis', order=['Positive', 'Negative', 'Neutral', 'Irrelevant'])
12 ax[1].set_ylabel('Message Length')
13 ax[1].set_ylabel('Message Length')
15 ax[1].set_ylabel('Sentiment')
15 ax[1].set_ylabel('Sentiment')
16 ax[1].set_ylabel('Sentiment')
17 plt.tight_layout()
18 plt.show()
```



```
[143] 1 # Define a function to handle non-string values
   2 def analyze_sentiment(text):
   3    if isinstance(text, str):
   4        return TextBlob(text).sentiment.polarity
   5    else:
   6        return 0.0
```

By: Aman Kumar Jha

```
[144] 1 # Perform sentiment analysis
    2 train_data['Polarity'] = train_data['Tweet'].apply(analyze_sentiment)
    3
    4 # Categorize sentiment
    5 train_data['Sentiment_Label'] = train_data['Polarity'].apply(lambda x: 'Positive' if x > 0 else 'Negative' if x < 0 else 'Neutral')

[145] 1 # Perform sentiment analysis
    2 valid_data['Polarity'] = valid_data['Tweet'].apply(analyze_sentiment)
    3
    4 # Categorize sentiment
    5 valid_data['Sentiment_Label'] = valid_data['Polarity'].apply(lambda x: 'Positive' if x > 0 else 'Negative' if x < 0 else 'Neutral')</pre>
```

```
1 # Analyze sentiment distribution
2 plt.figure(figsize=(10, 6))
3 sns.countplot(train_data['Sentiment_Label'])
4 plt.title('Sentiment Analysis')
5 plt.xlabel('Sentiment')
6 plt.ylabel('Count')
7 plt.show()
```



```
1 # Analyze sentiment by topic
2 plt.figure(figsize=(15,8))
3 sentiment_by_topic = train_data.groupby(['Entity', 'Sentiment_Label']).size().unstack(fill_value=0)
4 sentiment_by_topic.plot(kind='bar', stacked=True)
5 plt.title('Sentiment by Entity')
6 plt.xlabel('Entity')
7 plt.ylabel('Count')
8 plt.show()
```


By: Aman Kumar Jha

LinkedIn

```
1 plt.figure(figsize=(10, 6))
2 plt.hist(train_data['Polarity'], bins=20, edgecolor='k')
3 plt.title('Polarity Score Distribution')
4 plt.xlabel('Polarity Score')
5 plt.ylabel('Count')
6 plt.show()
```



```
1 plt.figure(figsize=(10, 6))
2 average_polarity_by_topic = train_data.groupby('Entity')['Polarity'].mean()
3 average_polarity_by_topic.plot(kind='bar')
4 plt.title('Average Sentiment by Entity')
5 plt.xlabel('Entity')
6 plt.ylabel('Average Polarity Score')
7 plt.show()
```



```
1 # Visualize the most positive and negative tweets
2 most_positive_tweet = train_data[train_data['Polarity'] == train_data['Polarity'].max()]['Tweet'].values[0]
3 most_negative_tweet = train_data[train_data['Polarity'] == train_data['Polarity'].min()]['Tweet'].values[0]
4
          5 print('Most Positive Tweet:')
6 print(most_positive_tweet)
          8 print('\nMost Negative Tweet:')
9 print(most_negative_tweet)
Most Positive Tweet:
Platinum is the best loot @Borderlands
         Most Negative Tweet:
"What terrible bitch!"
1 # Visualize the most positive and negative tweets
2 most_positive_tweet = valid_data[valid_data['Polarity'] == valid_data['Polarity'].max()]['Tweet'].values[0]
3 most_negative_tweet = valid_data[valid_data['Polarity'] == valid_data['Polarity'].min()]['Tweet'].values[0]
           5 print('Most Positive Tweet:')
6 print(most_positive_tweet)
      8 print('\nMost Negative Tweet:')
9 print(most_negative_tweet)
        Most Positive Tweet:
Best squad yet#pubg #pubgmobile #pubgkenya instagram.com/p/B-Obt_eAA4f/...
        Most Negative Tweet:
@EAMaddenNFL franchise and face of the franchise are both terrible. @NFL #NFLdropEA #NFLDROPSEA
```