Supplementary Information

Self-supervised learning of physical principles of a metal oxide semiconductor capacitor

Tejas Govind Indani,¹ Sirsha Guha,² Kunal Narayan Chaudhury,¹* and Santanu Mahapatra²*

*Corresponding authors: <u>kunal@iisc.ac.in</u>, <u>santanu@iisc.ac.in</u>

¹ Department of Electrical Engineering, Indian Institute of Science Bangalore, Bangalore 560012

² Nano-Scale Device Research Laboratory, Department of Electronic Systems
Engineering, Indian Institute of Science Bangalore,
Bangalore 560012

Figure S1: Model and numerical predictions after 50k Epochs for PINN model with 50 neurons per layer and 3 hidden layers for N_A =1x10²⁴ m⁻³ and t_{ox} =1.5 nm with different set of λ_1 and λ_2 . Lines represent model predictions and circles are the numerical simulations.

Figure S2: In left column: Model and numerical predictions for N_A =2x10²³ m⁻³ and t_{ox} =1.5 nm. Lines represent model predictions and circles are the numerical simulations. In right column: corresponding error

Figure S3: Model and numerical predictions for different values of N_A and t_{ox} . Lines represent model predictions and circles are the numerical simulations. In left column: electrostatic potential inside the bulk, In right column: corresponding surface potential.

Figure S4: Model and numerical predictions for $N_A=10^{23}~\text{m}^{-3}$ and $t_{ox}=1.5~\text{nm}$ along with absolute error in between them. Lines represent model predictions and circles are the numerical simulations.

Figure S5: In left column: Model and numerical predictions after 140k Epochs for model with different neurons per layer and 3 hidden layers, for $N_A=2x10^{23}$ m⁻³ and $t_{ox}=1.5$ nm. Lines represent model predictions and circles are the numerical simulations. In right column: absolute error in between model and numerical simulations.