Faculté des arts et des sciences Département d'informatique et de recherche opérationnelle

IFT 2125/6001 – Introduction to Algorithmics Midterm Exam, Winter 2017

Tick here if you are taking IFT600 Directives: 1. READ THE INSTRUCTIONS! 2. No documentation allowed; no computer, no cell phone, no calculator.	1 2	/2
 READ THE INSTRUCTIONS! No documentation allowed; no computer, no cell phone, 		,
2. No documentation allowed; no computer, no cell phone,		,
	2	/1
ı		,
3. Write your answers on the questionnaire in the	3	/2
free space following each question. (Use versos if you	4	/1
need more space, but if you do so, please mark it clearly on the recto of the corresponding page.)	5	/1
4. If a question asks you to construct an object with a	6	/1
given property but you cannot do so, you can nevertheless, in <i>subsequent</i> questions (or subquestions), assume	7	+
that you have an object with the stated property.		

SOME REMINDERS

- \diamond The symbol $\ll \lg \gg$ is used to denote the base 2 logarithm. Therefore, $\lg n = \log_2 n$ by definition.
- \diamond For any real numbers b > 1 and x > 0, $\log_b x = \frac{\lg x}{\lg b}$.
- \Diamond Let t_n be characterized by the following order-k recurrence:

$$a_0 t_n + a_1 t_{n-1} + \cdots + a_k t_{n-k} = b_1^n p_1(n) + b_2^n p_2(n) + \cdots$$

where the a_i 's are arbitrary constants subject to $a_0 \neq 0$, the b_i 's are distinct constants, and each p_i is a degree- d_i polynomial in n. Then, the characteristic polynomial of this recurrence is:

$$(a_0 x^k + a_1 x^{k-1} + \dots + a_k) (x - b_1)^{d_1+1} (x - b_2)^{d_2+1} \dots$$

 \diamond If the roots (zeroes) of the characteristic polynomial for some order-k recurrence are r_1, r_2, \ldots, r_ℓ , de multiplicité m_1, m_2, \ldots, m_ℓ , respectively, where the sum of the m_i 's is equal to the degree of the polynomial, then all the solutions to the recurrence are of the form

$$t_n = \sum_{i=1}^{\ell} \sum_{j=0}^{m_i - 1} c_{ij} \, n^j r_i^n \,,$$

where k of the constants c_{ij} , $1 \le i \le \ell$, $0 \le j \le m_i - 1$, are determined by the k initial conditions, whereas all the other constants are determined by the recurrence itself, independently of the initial conditions.

 \diamond Let $\ell \geq 1$, $b \geq 2$ and $k \geq 0$ be integers and consider some function T characterized by recurrence $T(n) = \ell T(|n/b|) + g(n)$, where $g(n) \in \Theta(n^k)$, then

$$T(n) \in \begin{cases} \Theta(n^k) & \text{si } \ell < b^k \\ \Theta(n^k \log n) & \text{si } \ell = b^k \\ \Theta(n^{\log_b \ell}) & \text{si } \ell > b^k \end{cases}.$$

This conclusion remains valid even if the ℓ occurrences of $\langle n/b \rangle$ in the recurrence are replaced by integer value that are within an additive constant of n/b, provided they are strictly smaller than n.