CS3353: Data Structures and Algorithm Analysis I Spring 2024

Homework #6 - Reference #2

I. Assume that the graph G represents the daily flights between different cities, and we want to fly from city A to I with minimum stops. Find the minimum path P from A to I using a **queue** given that every edge has a length of one. Show all your work.

Adjacency Lists			
A:	В	С	D
B:	Е		
C:	В	G	
D:	С	G	
E:	С	F	
F:	С	Н	
G:	F	Н	I
H:	Ε	- 1	
l:	F		

- Use two arrays: QUEUE and ORIG. While QUEUE is used to hold the nodes that have to be processed, ORIG is used to keep track of the origin of each edge.
- Add A to QUEUE and add NULL to ORIG.
 - o FRONT = 0; QUEUE = A
 - \circ REAR = 0; ORIG = $\setminus 0$
- Dequeue a node by setting FRONT++ and enqueue the neighbor of A. Also add A as the ORIG
 of its neighbor.
 - o FRONT = I; QUEUE = A B C D
 - \circ REAR = 3; ORIG = \circ A A A
- Dequeue a node by setting FRONT++ and enqueue the neighbor of B. Also add B as the ORIG
 of its neighbor.
 - o FRONT = 2; QUEUE = A B C D E
 - \circ REAR = 4; ORIG = $\setminus 0$ A A A B
- Dequeue a node by setting FRONT++ and enqueue the neighbor of C. Also add C as the ORIG of its neighbor.
 - o FRONT = 3; QUEUE = A B C D E G
 - O REAR = 5; ORIG = \0 A A A B C
- Dequeue a node by setting FRONT++ and enqueue the neighbor of D. Also add D as the ORIG of its neighbor.
 - o FRONT = 4; QUEUE = A B C D E G
 - O REAR = 5; ORIG = \0 A A A B C
- Dequeue a node by setting FRONT++ and enqueue the neighbor of E. Also add E as the ORIG
 of its neighbor.
 - o FRONT = 5; QUEUE = A B C D E G F
 - O REAR = 6; ORIG = \0 A A A B C E
- Dequeue a node by setting FRONT++ and enqueue the neighbor of G. Also add G as the ORIG
 of its neighbor.
 - o FRONT = I; QUEUE = A B C D E G F H I
 - \circ REAR = 3; ORIG = \circ A A A B C E G G
- As I is our final destination, we stop the execution. Now backtrack from I using ORIG to find the minimum path P,
 - \circ $A \rightarrow C \rightarrow G \rightarrow I$