Verifica di travi in legno

Il presente documento riporta le verifiche delle travi in legno secondo le indicazioni delle norme tecniche di cui al D.M. 17.01.2018.

Legenda

Dati di input (in ordine di inserimento)

Legno - Classe di resistenza del legno

Classe di Servizio - Classe di servizio dell'ambiente

B - Larghezza di progetto della sezione della trave

H - Altezza di progetto della sezione della trave

- Angolo di rotazione della sezione trasversale della trave

L - Luce di calcolo della trave

i - Interasse delle travi o larghezza della zona di influenza del carico

 L_{eff}/L - Rapporto tra la lunghezza efficace e la luce di calcolo della trave

 g_2 - Valore caratteristico del carico permanente non strutturale

 $q_{\,\scriptscriptstyle 1}\,$ - Valore caratteristico del carico variabile

- Coefficiente per il calcolo del momento flettente sollecitante

Durata - Classe di durata del carico

 β - Coefficiente per il calcolo del taglio sollecitante

 χ - Coefficiente per il calcolo dello spostamento verticale

 $\psi_{2,i}$ - Coefficiente di combinazione

 u_0 - Valore della controfreccia iniziale

Dati di output (in ordine di calcolo)

 γ_{M} - Coefficiente di sicurezza del materiale

 $f_{m,k}$ - Resistenza caratteristica a flessione

 $f_{v,k}$ - Resistenza caratteristica a taglio

 $ho_{\,\mathrm{m}}\,$ - Densità media del legno

E - Modulo elastico del legno

A - Area della sezione trasversale

 J_v - Modulo di inerzia rispetto all'asse y

 W_y - Modulo di resistenza rispetto all'asse y

 q_1 - Valore caratteristico del carico permanente strutturale

 $q_{\,\mathrm{G1},}\,q_{\,\mathrm{G2}},\,q_{\,\mathrm{Q1}}\,\,$ - Carichi uniformemente distribuiti sulla trave

 M_{ED} - Momento flettente sollecitante di progetto

 $k_{\rm mod}$ - Coefficiente correttivo per durata del carico e umidità dell'ambiente

 $\sigma_{\text{m.d}}$ - Tensione di progetto per flessione deviata

 $f_{\rm m,d}$ - Resistenza di progetto a flessione

FS - Fattore di sicurezza

 k_{cr} - Fattore riduttivo per presenza di fessurazioni

 $V_{\rm Ed}$ - Taglio sollecitante di progetto

 $\tau_{\rm d}$ - Tensione tangenziale massima

 $f_{v,d}$ - Resistenza di progetto a taglio

 k_{def} - Coefficiente correttivo deformabilità per temp, viscosità e umidità dell'ambiente

 $u_{1,inst}$ - Deformazione instantanea dovuta ai carichi permanenti

 $u_{21,inst}$ - Deformazione instantanea dovuta al sovraccarico

 $u_{1,\text{fin}}$ - Deformazione a lungo termine dovuta ai carichi permanenti

 $u_{21, {\rm fin}}$ - Deformazione a lungo termine dovuta al sovraccarico

 u_{fin} - Deformazione a lungo termine totale

 $u_{\text{net,fin}}$ - Deformazione finale netta

Normativa di riferimento

D.M. 17.01.2018 - Aggiornamento delle Norme tecniche per le costruzioni, Ministero Infrastrutture e Trasporti Circ. Min. n.7 del 21.01.2019 - Istruzioni per l'applicazione ... , Ministero delle Infrastrutture e Trasporti CNR-DT 206/2007 - Istruzioni per la progettazione, l'esecuzione ed il controllo delle strutture di legno (DM 17.01.2018) UNI EN 1995-1-1:2014 - Eurocodice 5: Progettazione delle strutture di legno

Versione

STW201811-Travi

Verifica di trave rettangolari in legno

Oggetto:

Caratteristiche dei materiali

Legno	C14
γ _M =	1,5
Classe di Servizio	1

 $f_{\rm m,k} = 14 \, {\rm MPa}$ $f_{\rm v,k} = 3.0 \, {\rm MPa}$ $\rho_{\rm m} = 350 \, {\rm kg/mc}$ $E = 7000 \, {\rm MPa}$

Caratteristiche geometriche

В	7 cm
Н	7 cm
L	100 cm
i	50 cm
$L_{\rm eff}/L$	0,9

<i>A</i> =	49 cm
$J_y =$	200 cm4
$W_y =$	57 cm3
h/b =	1,00

Analisi dei carichi

$$q_{G1} = 2 \text{ kg/m}$$
 $q_{G2} = 100 \text{ kg/m}$
 $q_{Q1} = 100 \text{ kg/m}$
Tot = 202 kg/m

a 8

β 2

0,0130

Verifica a flessione SLU ($M_{Ed} = q_{SLU} L^2/a$)

	M_{Ed} (kg m)	Durata
Flessione Max (G)	19	Permanente
Flessione Max $(G+Q)$	38	Media

k_{mod}	$\sigma_{\sf m,d}$ (MPa)	$f_{m,d}$ (MPa)	$E_{\rm d}/R_{\rm d}$	FS
0,60	3,34	5,60	0,60	1,68
0,80	6,62	7,47	0,89	1,13

Verifica a taglio SLU ($V_{Ed} = q_{SLU} L/\beta$)

	$V_{\rm Ed}$ (kg)	Durata
Taglio $Max(G)$	76	Permanente
Taglio Max $(G+Q)$	151	Media

$$au_{
m d}$$
 (MPa) $f_{
m v,d}$ (MPa) $E_{
m d}/R_{
m d}$ FS 0,35 1,20 0,29 **3,43** 0,69 1,60 0,43 **2,30**

0,67

Verifica deformazione SLE $(u = \chi \ q \ l^4/\ (EJ))$

	Tipo	$oldsymbol{\psi}_{2,i}$	$k_{ m def}$	<i>E</i> (GPa)	<i>u</i> (cm)	
$U_{1, inst}$	perm. ist.			7,00	0,09	
$u_{21, \rm inst}$	var. ist.			7,00	0,09	L/1077
u_{inst}	tot. ist.		и	$u_{1,inst} + u_{21,inst} =$	0,19	_
$u_{1, \text{fin}}$	perm. fin.		0,60	4,38	0,15	
<i>u</i> _{21,fin}	var. fin.	0,6	0,60	5,15	0,13	L/792
$u_{\rm fin}$	tot. fin.			$u_{1,\text{fin}} + u_{21,\text{fin}} =$	0,28	_
u_0	controfrec	cia iniziale		ļ	0	
$u_{\rm net,fin}$	fin. netta			u_{fin} - u_0 =	0,28	L/360

k_{mod} 0,60

0,80

Note:

Per i carichi sono stati utilizzati i seguenti coefficienti parziali: $\gamma_{\rm G1}=1,3;\ \gamma_{\rm G2}=1,5;\ \gamma_{\rm Q}=1,5.$ Data la geometria della trave la verifica di instabilità è implicitamente soddisfatta.

Tab. 4.4.I - Classi di durata del carico

Classe di durata del carico	Durata del carico
Permanente	più di 10 anni
Lunga durata	6 mesi - 10 anni
Media durata	1 settimana - 6 mesi
Breve durata	meno di 1 settimana
Istantaneo	

Tab. 4.4.III - Coefficienti parziali $\gamma_{\rm M}$ per le proprietà dei materiali

Materiale	Colonna A
Legno massiccio	1,50
Legno lamelalre incollato	1,45
Pannelli di tavole incollate a strati	1,45
Pannelli di particelle o di fibre	1,50
LVL, compensato, pannelli di scaglie orientate	1,40
Unioni	1,50

Tab. 4.4.IV - Valori di k_{mod} per legno e prodotti strutturali a base di legno

Tab. 4.4.IV - Valori di K _{mod} per legn				Classe di durata del carico						
			Classe		iasse ui	uurata	uei cario	.0		
Materiale Riferi		mento	di servizio	Perm.	Lunga	Media	Breve	Istan.		
Legno massiccio	UNI EN 1408-	-1	1	0,60	0,70	0,80	0,90	1,10		
Legno lamellare incollato (*)	UNI EN 1408	0	2	0,60	0,70	0,80	0,90	1,10		
LVL	UNI EN 14374 14279	4, UNI EN	3	0,50	0,55	0,65	0,70	0,90		
	UNI EN		1	0,60	0,70	0,80	0,90	1,10		
Compensato	636:2015		2	0,60	0,70	0,80	0,90	1,10		
	050.2015		3	0,50	0,55	0,65	0,70	0,90		
	UNI EN	OSB/2	1	0,30	0,45	0,65	0,85	1,10		
Pannello di scaglie orientate (OSB)	300:2006	OSB/3 -	1	0,40	0,50	0,70	0,90	1,10		
		OSB/4	2	0,30	0,40	0,55	0,70	0,90		
		Parti 4, 5	1	0,30	0,45	0,65	0,85	1,10		
Dannelle di narticelle (trucialare)	UNI EN	Parte 5	2	0,20	0,30	0,45	0,60	0,80		
rannello di particelle (truciolare)	312:2010	Parti 6,7	1	0,40	0,50	0,70	0,90	1,10		
		Parte 7	2	0,30	0,40	0,55	0,70	0,90		
Pannello di fibre, pannelli duri	UNI EN 622- 2:2005	HB.LA, HB.HLA 1 o 2	1	0,30	0,45	0,65	0,85	1,10		
	2.2003	HB.HLA 1 o 2	2	0,20	0,30	0,45	0,60	0,80		
		MBH.LA1 o 2	1	0,20	0,40	0,60	0,80	1,10		
Pannello di fibre, pannelli semiduri	UNI EN 622- 3:2005	MBH.HLS1 o	1	0,20	0,40	0,60	0,80	1,10		
		2	2	-	-		0,45	0,80		
Pannello di fibra di legno, ottenuto per via secca (MDF)	UNI EN 622- 5:2010	MDF.LA, MDF.HLS	1	0,20	0,40	0,60	0,80	1,10		
(11D1)	3.2010	MDF.HLS	2	-	-	-	0,45	0,80		

Per i materiali non compresi nella Tabella si potrà fare riferimento ai pertinenti valori riportati nei riferimenti tecnici di comprovata validità indicati nel Capitolo 12 nel rispetto dei livelli di sicurezza delle presenti norme.

^(*) I valori indicati si possono adottare anche per i pannelli di tavole incollate a strati incrociati, ma limitatamente alle classi di servizio 1 e 2.

Tab. 4.4.V - Valori di k_{def} per legno e prodotti strutturali a base di legno

		Classe di servizio				
Materiale	Riferi	mento	1	2	3	
Legno massiccio	UNI EN 1408-	-1	0,60	0,80	2,00	
Legno lamellare incollato (*)	UNI EN 1408	0	0,60	0,80	2,00	
LVL	UNI EN 1437 14279	0,60	0,80	2,00		
	UNI EN 0,8		0,80	-	-	
Compensato	636:2015		0,80	1,00	-	
	030.2013		0,80	1,00	2,50	
Pannello di scaglie orientate (OSB)	UNI EN	OSB/2	2,25	-	-	
Taimello di scaglie orientate (OSB)	300:2006	OSB/3 OSB/4	1,50	2,25	-	
	UNI EN 312:2010	Parte 4	2,25	=.	-	
Pannello di particelle		Parte 5	2,25	3,00	-	
		Parte 6	1,50	-	_	
		Parte 7	1,50	2,25	-	
	UNI EN 622- HB.LA 2,25 -		-	-		
Pannello di fibre, pannelli duri	2:2005	HB.HLA1, HB.HLA2	2,25	3,00	-	
Dannella di Cibra pannelli corriduri	UNI EN 622-	MBH.LA1, MBH.LA2	3,00	-	-	
Pannello di fibre, pannelli semiduri	3:2005	MBH.HLS1, MBH.HLS2	3,00	4,00	-	
Pannello di fibra di legno, ottenuto per		MDF.LA	2,25	-	-	
via secca (MDF)	5:2010	MDF.HLS	2,25	3,00	-	

Per materiale posto in opera con umidità prossima al punto di saturazione delle fibre, e che possa essere soggetto a essiccazione sotto carico, il valore di k_{def} dovrà, in assenza di idonei provvedimenti, essere aumentato a seguito di opportune valutazioni, sommando ai termini della tabella un valore comunque non inferiore a 2,0. Per i materiali non compresi nella Tabella si potrà fare riferimento ai pertinenti valori riportati nei riferimenti tecnici di comprovata validità indicati nel Capitolo 12 nel rispetto dei livelli di sicurezza delle presenti norme.

^(*) I valori indicati si possono adottare anche per i pannelli di tavole incollate a strati incrociati, ma limitatamente alle classi di servizio 1 e 2.

Legno - Proprietà di resistenza													
								E 0,m	E 0,05	E _{90,m}			
Classe di		$f_{m,k}$	$f_{\rm t,0,k}$	$f_{t,90,k}$	$f_{c,0,k}$	f _{c,90,k}	$f_{\rm v,k}$	E _{m,0,mean}	E _{m,0,k}	E m,90,mea	G_{m}	$ ho_{k}$	$ ho_{m}$
resistenza	Tipo	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(GPa)	(GPa)	n (GPa)	(GPa)	(kg/mc)	(kg/mc)
AC-S1	Abete/Centro Sud	32	19	0,3	24	2,1	3,2	11	7,4	3,7	6,9	280	305
AC-S2	Abete/Centro Sud	28	17	0,3	22	2,1	2,9	10	6,7	3,3	6,3	280	305
AC-S3	Abete/Centro Sud	21	13	0,3	20	2,1	2,3	9,5	6,4	3,2	5,9	280	305
AN-S1	Abete/Nord	29	17	0,4	23	2,9	3	12	8	4	7,5	380	415
AN-S2	Abete/Nord	23	14	0,4	20	2,9	2,5	10,5	7	3,5	6,6	380	415
AN-S3 C14	Abete/Nord Conifere (UNI EN 338:2016)	17 14	7,2	0,4	18 16	2,9 2	1,9 3	9,5 7	6,4 4,7	3,2 0,23	5,9 0,44	380 290	415 350
C14	Conifere (UNI EN 338:2016)	16	8,5	0,4	17	2,2	3,2	8	5,4	0,23	0,44	310	370
C18	Conifere (UNI EN 338:2016)	18	10	0,4	18	2,2	3,4	9	6	0,3	0,56	320	380
C20	Conifere (UNI EN 338:2016)	20	11,5	0,4	19	2,3	3,6	9,5	6,4	0,32	0,59	330	390
C22	Conifere (UNI EN 338:2016)	22	13	0,4	20	2,4	3,8	10	6,7	0,33	0,63	340	410
C24	Conifere (UNI EN 338:2016)	24	14,5	0,4	21	2,5	4	11	7,4	0,37	0,69	350	420
C27	Conifere (UNI EN 338:2016)	27	16,5	0,4	22	2,6	4	11,5	7,7	0,38	0,72	360	430
C30	Conifere (UNI EN 338:2016)	30	19	0,4	24	2,7	4	12	8	0,4	0,75	380	460
C35	Conifere (UNI EN 338:2016)	35	22,5	0,4	25	2,7	4	13	8,7	0,43	0,81	390	470
C40	Conifere (UNI EN 338:2016)	40	26	0,4	27	2,8	4	14	9,4	0,47	0,88	400	480
C45	Conifere (UNI EN 338:2016)	45	30	0,4	29	2,9	4	15	10	0,5	0,94	410	490
C50	Conifere (UNI EN 338:2016)	50	33,5	0,4	30	3	4	16	10,7	0,53	1	430	520
CA-S	Castagno/Italia	28	17	0,5	22	3,8	2	11	8	7,3	9,5	465	550
C-S1	Altre conifere	33	20	0,5	24	4	3,3	12,3	8,2	4,1	7,7	530	575
C-S2	Altre conifere	26	16	0,5	22	4	2,7	11,4	7,6	3,8	7,1	530	575
C-S3 D18	Altre conifere Latifoglie (UNI EN 338:2016)	22 18	13 11	0,5 0,6	20 18	4 4,8	2,4 3,5	10,5 9,5	7	3,5 0,63	6,6 0,59	530 475	575 570
D18	Latifoglie (UNI EN 338:2016)	24	14	0,6	21	4,9	3,7	10	8,4	0,63	0,63	485	580
D27	Latifoglie (UNI EN 338:2016)	27	16	0,6	22	5,1	3,8	10,5	8,8	0,7	0,66	510	610
D30	Latifoglie (UNI EN 338:2016)	30	18	0,6	24	5,3	3,9	11	9,2	0,73	0,69	530	640
D35	Latifoglie (UNI EN 338:2016)	35	21	0,6	25	5,4	4,1	12	10,1	0,8	0,75	540	650
D40	Latifoglie (UNI EN 338:2016)	40	24	0,6	27	5,5	4,2	13	10,9	0,87	0,81	550	660
D45	Latifoglie (UNI EN 338:2016)	45	27	0,6	29	5,8	4,4	13,5	11,3	0,9	0,84	580	700
D50	Latifoglie (UNI EN 338:2016)	50	30	0,6	30	6,2	4,5	14	11,8	0,93	0,88	620	740
D55	Latifoglie (UNI EN 338:2016)	55	33	0,6	32	6,6	4,7	15,5	13	1,03	0,97	660	790
D60	Latifoglie (UNI EN 338:2016)	60	36	0,6	33	10,5	4,8	17	14,3	1,13	1,06	700	840
D65	Latifoglie (UNI EN 338:2016)	65	39	0,6	35	11,3	5	18,5	15,5	1,23	1,16	750	900
D70	Latifoglie (UNI EN 338:2016)	70	42	0,6	36	12	5	20	16,8	1,33	1,25	800	960
D75	Latifoglie (UNI EN 338:2016)	75 80	45 48	0,6	37 38	12,8	5 5	22 24	18,5 20,2	1,47	1,38	850 900	1020
D80 DI-S1	Latifoglie (UNI EN 338:2016) Douglasia/Italia	40	24	0,6 0,4	26	13,5 2,6	4	14	9,4	1,6 4,7	1,5 8,8	400	1080 435
DI-S2-S3	Douglasia/Italia	23	14	0,4	20	2,6	3,4	12,5	8,4	4,7	7,8	420	455
GL20h	Lamellare omogeneo (EN 14080:2013)	20	16	0,5	20	2,5	3,5	8,4	7	0,3	0,65	340	370
GL22h	Lamellare omogeneo (EN 14080:2013)	22	17,6	0,5	22	2,5	3,5	10,5	8,8	0,3	0,65	370	410
GL24h	Lamellare omogeneo (EN 14080:2013)	24	19,2	0,5	24	2,5	3,5	11,5	9,6	0,3	0,65	385	420
GL26h	Lamellare omogeneo (EN 14080:2013)	26	20,8	0,5	26	2,5	3,5	12,1	10,1	0,3	0,65	405	445
GL28h	Lamellare omogeneo (EN 14080:2013)	28	22,3	0,5	28	2,5	3,5	12,6	10,5	0,3	0,65	425	460
GL30h	Lamellare omogeneo (EN 14080:2013)	30	24	0,5	30	2,5	3,5	13,6	11,3	0,3	0,65	430	480
GL32h	Lamellare omogeneo (EN 14080:2013)	32	25,6	0,5	32	2,5	3,5	14,2	11,8	0,3	0,65	440	490
GL20c	Lamellare combinato (EN 14080:2013)	20	15	0,5	18,5	2,5	3,5	10,4	8,6	0,3	0,65	355	390
GL22c	Lamellare combinato (EN 14080:2013)	22	16	0,5	20	2,5	3,5	10,4	8,6	0,3	0,65	355	390
GL24c	Lamellare combinato (EN 14080:2013)	24	17	0,5	21,5	2,5	3,5	11	9,1	0,3	0,65	365	400
GL26c GL28c	Lamellare combinato (EN 14080:2013) Lamellare combinato (EN 14080:2013)	26 28	19 19,5	0,5 0,5	23,5 24	2,5 2,5	3,5 3,5	12 12,5	10	0,3	0,65 0,65	385 390	420 420
GL28C GL30c	Lamellare combinato (EN 14080:2013)	30	19,5	0,5	24,5	2,5	3,5	12,5	10,4	0,3	0,65	390	420
GL30c GL32c	Lamellare combinato (EN 14080:2013)	32	19,5	0,5	24,5	2,5	3,5	13,5	11,2	0,3	0,65	400	440
LI-S	Altre latifoglie/Italia	27	16	0,5	22	3,9	2	11,5	8,4	7,7	7,2	515	560
LN-S1	Larice/Nord	42	25	0,6	27	4	4	13	8,7	4,3	8,1	550	600
LN-S2	Larice/Nord	32	19	0,6	24	4	3,2	12	8	4	7,5	550	600
LN-S3	Larice/Nord	26	16	0,6	22	4	2,7	11,5	7,7	3,8	7,2	550	600
POI-S	Pioppo e Ontano/Italia	26	16	0,4	22	3,2	2,7	8	6,7	5,3	5	420	460
QI-S	Querce caducifoglie/Italia	42	25	0,8	27	5,7	4	12	10,1	800	750	760	825
USR	Personale	0	0	0	0	0	0	0	0	0	0	100	100

Note: Le classi di resistenza più comunemente utilizzate in Europa sono evidenziate in grassetto