VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VSSUT), ODISHA			
Even Mid Semester Examination for Academic Session 2023-24			
COURSE NAME: B.TECH SEMESTER: SE			
BRANCH NAME: Chemical Engg., Civil Engg., Mechanical Engg, Metallurgy & Material Eng			ngg
Production Engg. SUBJECT NAME:ENGG.PHYSICS			
TOTE MAKKS, SU			
Answer All Questions. The figures in the right hand margin indicate Marks. Symbols carry usual meaning.			
		The figures in the right hand margin indicate warks. Symbols carry usual meaning.	
Q1.	-	Answer all Questions.	[2 × 3]
Q1.		What is electrical oscillation? Why LC circuit executes oscillation?	- COI
	a)	What is electrical oscillation? Why EC circuit executes oscillation? With a schematic diagram represents the interference through thin film and write the	- CO2
	b)	type of coherent sources produced in this case.	
	c)	Show that curl of position vector is always an irrotational vector.	- CO3
Q2.	()	onew that carry or pro-	[8]
	2)	Give a suitable comparison between mechanical oscillator and electrical oscillator.	[3+5]
	a) b)	Set up the differential equation for a damped harmonic oscillator and write the	- CO1
		general solution of the differential equation	
		OR	52 (2)
	a)	Set up the differential equation for forced oscillation in LCR circuit and obtain its	[2+6] - CO1
		general solution.	- 001
7	67	Define quality factor and obtain its expression.	
			[8]
Q3.		the made dead?	[2+6]
	a)	What is coherent source and how can it be produced?. Draw a schematic diagram for experimental arrangement of Newton's ring. Show	- CO2
	b)	that Newton's dark ring are proportional to square root of natural number.	
•	-	OR	55.07
	(a)	With a suitable description obtain the expression for intensity due to Fraunhoffer	[5+3] - CO2
		differentian at single slit	- 002
	b)	In a diffraction grating with 5000 rulings/cm, the first order maximum occurs at an angle 16°. Calculate grating element and find the wavelength of light used.	
	-	angle 16°. Calculate grating element and find the wavelength of figure	
Q4	-		[8]
Q4	<u>a)</u>	What do mean by solenoidal vector field? Show that the position of a point	[5+3]
		described by resition vector is not solenoidal.	- CO3
23	b)	spherical body described the position of point with position vector r .	
		OR to a Credient divergence and auril described in scalar	[5+3]
	a)	Briefly mention the concept of Gradient, divergence and curl described in scalar	- CO3
	b	field and vector field. A vector field is given by $\vec{A} = \hat{i} 2xy + \hat{j}x^2y + \hat{k}xyz$. Find divergence and the curl of	
	b)	the vector at the point $(1,1,-1)$	
		the vector at the point (3,3,3, 3)	