

Automatic Text Evaluation through the Lens of Wasserstein Barycenters

Oral Presentation at EMNLP 2021

Pierre Colombo, Guillaume Staerman, Chloé Clavel, Pablo Piantanida

What is automatic evaluation?

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

R: I like those cats.

C: It is freezing today

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

R: I like those cats.

C: It is freezing today

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

R: I like those cats.

C: It is freezing today

Why is automatic evaluation popular?

1. Cheap: compared to human evaluation

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

R: I like those cats.

C: It is freezing today

- 1. Cheap: compared to human evaluation
- 2. Fast: you can label "instantaneously"

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

R: I like those cats.

C: It is freezing today

- 1. Cheap: compared to human evaluation
- 2. Fast: you can label "instantaneously"
- 3. Reproductible: two sentence always get the same score

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

R: I like those cats.

C: It is freezing today

- 1. Cheap: compared to human evaluation
- 2. Fast: you can label "instantaneously"
- 3. Reproductible: two sentence always get the same score
- 4. Easy to use: don't need to train anotators, ask the right questions

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

R: I like those cats.

C: It is freezing today

Why is automatic evaluation popular?

- 1. Cheap: compared to human evaluation
- 2. Fast: you can label "instantaneously"
- 3. Reproductible: two sentence always get the same score
- 4. Easy to use: don't need to train anotators, ask the right questions

Why do we need evaluation of NLG?

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

R: I like those cats.

C: It is freezing today

Why is automatic evaluation popular?

- 1. Cheap: compared to human evaluation
- 2. Fast: you can label "instantaneously"
- 3. Reproductible: two sentence always get the same score
- 4. Easy to use: don't need to train anotators, ask the right questions

Why do we need evaluation of NLG?

1. Debug NLG systems without annotators

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

R: I like those cats.

C: It is freezing today

Why is automatic evaluation popular?

- 1. Cheap: compared to human evaluation
- 2. Fast: you can label "instantaneously"
- 3. Reproductible: two sentence always get the same score
- 4. Easy to use: don't need to train anotators, ask the right questions

Why do we need evaluation of NLG?

- 1. Debug NLG systems without annotators
- 2. Improve learning of systems by deriving new loss

What is automatic evaluation?

R: The weather is cold today.

C: It is freezing today

R: I like those cats.

C: It is freezing today

Why is automatic evaluation popular?

- 1. Cheap: compared to human evaluation
- 2. Fast: you can label "instantaneously"
- 3. Reproductible: two sentence always get the same score
- 4. Easy to use: don't need to train anotators, ask the right questions

Why do we need evaluation of NLG?

- 1. Debug NLG systems without annotators
- 2. Improve learning of systems by deriving new loss
- 3. Compare different systems

Edit Based

Edit Based

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailin (S)
sailin -> sailing (I)
```

Edit Based

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailin (I)
```

Distance is 4!

Edit Based

N-gram Based

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailing (I)
```

Distance is 4!

Edit Based

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailin (S)
sailin -> sailing (I)
```

N-gram Based

C: I like these very nice pies!

R: I like those cakes!

Unigrams

C: I like these very nice pies!

R: I like those cakes!

Distance is 4!

Edit Based

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailin (I)
```

Distance is 4!

N-gram Based

C: I like these very nice pies!

R: I like those cakes!

Unigrams

C: I like these very nice pies!

R: I like those cakes!

Bigrams

C: I like these very nice pies!

R: I like those cakes!

Edit Based

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailing (I)
```

Distance is 4!

N-gram Based

C: I like these very nice pies!

R: I like those cakes!

Unigrams

C: I like these very nice pies!

R: I like those cakes!

Bigrams

C: I like these very nice pies!

R: I like those cakes!

Embedding Based

Edit Based

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailin (S)
sailin -> sailing (I)
```

Distance is 4!

N-gram Based

C: I like these very nice pies!

R: I like those cakes!

Unigrams

C: I like these very nice pies!

R: I like those cakes!

Bigrams

C: I like these very nice pies!

R: I like those cakes!

Embedding Based

Word Mover distance

BertScore

MoverScore

Sentence Mover

Edit Based

Operations

- Insertion (I)
- Deletion (D)
- Substitution (S).

```
tailor -> sailor (S)
sailor -> sailir (S)
sailir -> sailin (S)
sailin -> sailin (S)
sailin -> sailing (I)
```

Distance is 4

N-gram Based

C: I like these very nice pies!

R: I like those cakes!

Unigrams

C: I like these very nice pies!

R: I like those cakes!

Bigrams

C: I like these very nice pies!

R: I like those cakes!

Embedding Based

Word Mover distance

BertScore

MoverScore

Sentence Mover

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"

Limitations

- 1. Use only one layer
- 2. Use arbitrary sequence of operation

Goal Compute distance between probability measures (μ, ν)

Goal Compute distance between probability measures (μ, ν)

Input Discret Measures

Goal Compute distance between probability measures (μ, ν)

Input Discret Measures

$$\nu = \sum_{j=1}^{M} \beta_j \delta_{x_j} \qquad \mu = \sum_{i=1}^{N} \alpha_i \delta_{x_i}$$

Goal Compute distance between probability measures (μ,ν)

Input Discret Measures

$$\nu = \sum_{j=1}^{M} \beta_j \delta_{x_j} \qquad \mu = \sum_{i=1}^{N} \alpha_i \delta_{x_i}$$

Cost Matrix

Goal Compute distance between probability measures (μ,ν)

Input Discret Measures

$$\nu = \sum_{j=1}^{M} \beta_j \delta_{x_j} \qquad \mu = \sum_{i=1}^{N} \alpha_i \delta_{x_i}$$

$$i=1$$

$$C = \begin{pmatrix} d(x_1, y_1) & \cdots & d(x_1, y_M) \\ \cdots & \cdots & \cdots \\ d(x_N, y_1) & \cdots & d(x_N, y_M) \end{pmatrix}$$

Goal Compute distance between probability measures (μ,ν)

Input Discret Measures

$$\nu = \sum_{j=1}^{M} \beta_j \delta_{x_j} \qquad \mu = \sum_{i=1}^{N} \alpha_i \delta_{x_i}$$

$$C = \begin{pmatrix} d(x_1, y_1) & \cdots & d(x_1, y_M) \\ \cdots & \cdots & \cdots \\ d(x_N, y_1) & \cdots & d(x_N, y_M) \end{pmatrix}$$

Transport Plan
$$\Pi = \begin{pmatrix} \pi_{11} & \cdots & \pi_{1M} \\ \cdots & \cdots & \cdots \\ \pi_{N1} & \cdots & \pi_{NM} \end{pmatrix} \xrightarrow{\beta_N} \beta_N$$

Goal Compute distance between probability measures (μ,ν)

Input Discret Measures

$$\nu = \sum_{j=1}^{M} \beta_j \delta_{x_j} \qquad \mu = \sum_{i=1}^{N} \alpha_i \delta_{x_i}$$

$$C = \begin{pmatrix} d(x_1, y_1) & \cdots & d(x_1, y_M) \\ \cdots & \cdots & \cdots \\ d(x_N, y_1) & \cdots & d(x_N, y_M) \end{pmatrix}$$

Transport Plan
$$\Pi = \begin{pmatrix} \pi_{11} & \cdots & \pi_{1M} \\ \cdots & \cdots & \cdots \\ \pi_{N1} & \cdots & \pi_{NM} \end{pmatrix} \xrightarrow{\mathcal{P}} \beta_{N}$$

Wasserstein Distance

$$OT(\nu, \mu) = \min_{\Pi} \sum_{ij} C_{i,j} \times \Pi_{i,j}$$

$$\Pi 1 = \alpha, \Pi^{T} 1 = \beta$$

R: The weather is cold today.

C: It's freezing today.

R: The weather is cold today.

C: It's freezing today.

Advantage

- 1. Deal with paraphrases
- 2. Include "semantic"
- 3. Use several layers

Advantage

1. Deal with paraphrases

R: The weather is cold today.

- 2. Include "semantic"
- 3. Use several layers

Limitations

Use arbitrary sequence of operation
 (euclidean aggregation function
 Wasserstein distance)

C: It's freezing today.

A novel metric called BaryScore

A novel metric called BaryScore

Previously

1 Take one layer

2 Do a series of operations (Wasserstein)

BertScore

A novel metric called BaryScore

1 Take one layer

1 Take several layers

2 Do a series of operations (Wasserstein)

2 Aggregate using euclidean distance

3 Do a series of Operations (Wasserstein)

BertScore

MoverScore

A novel metric called BaryScore

PreviouslyBest of all worlds

1 Take one layer

1 Take several layers

2 Do a series of operations (Wasserstein)

2 Aggregate using euclidean distance

3 Do a series of Operations (Wasserstein)

BertScore

MoverScore

A novel metric called BaryScore

Previously

1 Take several layers

Best of all worlds

1 Take one layer

2 Aggregate using euclidean distance

1 Take several layers

2 Aggregate using Wasserstein distance

2 Do a series of operations (Wasserstein)

3 Do a series of Operations (Wasserstein)

3 Do a series of operation (Wasserstein)

BertScore

MoverScore

BaryScore

Euclidean Interpolation

$$\nu = \sum_{i=1}^{N} \alpha_i l_2(\mu_i, \mu)$$

Euclidean Interpolation

$$\nu = \sum_{i=1}^{N} \alpha_i l_2(\mu_i, \mu)$$

Wasserstein Interpolation

$$\nu = \operatorname{argmin}_{\mu} \sum_{i=1}^{N} \alpha_{i} W(\mu_{i}, \mu)$$

Euclidean Interpolation

$$\nu = \sum_{i=1}^{N} \alpha_i l_2(\mu_i, \mu)$$

$$\nu = \alpha_i l_2(\mu_i, \mu) + (1 - \alpha_i) l_2(\mu_i, \mu)$$

 $lpha_i$ Varies

Wasserstein Interpolation

$$\nu = \operatorname{argmin}_{\mu} \sum_{i=1}^{N} \alpha_{i} W(\mu_{i}, \mu)$$

Euclidean Interpolation

$$\nu = \sum_{i=1}^{N} \alpha_i l_2(\mu_i, \mu)$$

$$\nu = \alpha_i l_2(\mu_i, \mu) + (1 - \alpha_i) l_2(\mu_i, \mu)$$

 $lpha_i$ Varies

Wasserstein Interpolation

$$\nu = \operatorname{argmin}_{\mu} \sum_{i=1}^{N} \alpha_{i} W(\mu_{i}, \mu)$$

Do not look like a gaussian!

Euclidean Interpolation

$$\nu = \sum_{i=1}^{N} \alpha_i l_2(\mu_i, \mu)$$

$$\nu = \alpha_i l_2(\mu_i, \mu) + (1 - \alpha_i) l_2(\mu_i, \mu)$$

 $lpha_i$ Varies

Wasserstein Interpolation

$$\nu = \operatorname{argmin}_{\mu} \sum_{i=1}^{N} \alpha_{i} W(\mu_{i}, \mu)$$

$$\nu = argmin_{\mu}\alpha_i W(\mu_i, \mu) + (1 - \alpha_i) W(\mu_i, \mu)$$

Do not look like a gaussian!

Euclidean Interpolation

$$\nu = \sum_{i=1}^{N} \alpha_i l_2(\mu_i, \mu)$$

$$\nu = \alpha_i l_2(\mu_i, \mu) + (1 - \alpha_i) l_2(\mu_i, \mu)$$

$lpha_i$ Varies

Wasserstein Interpolation

$$\nu = \operatorname{argmin}_{\mu} \sum_{i=1}^{N} \alpha_{i} W(\mu_{i}, \mu)$$

$$\nu = \operatorname{argmin}_{\mu} \alpha_i W(\mu_i, \mu) + (1 - \alpha_i) W(\mu_i, \mu)$$

Do not look like a gaussian!

Preserve the gaussian!

Reference: R

Reference: R Candidate: C

Reference: R Candidate: C

Goal: metric $m:(C,R)\mapsto m(C,R)\in\mathbb{R}_+$

Reference: R

Candidate: C

Goal: metric $m:(C,R)\mapsto m(C,R)\in\mathbb{R}_+$

Algorithm

Algorithm 1 BaryScore

INPUT: $C = \{\omega_1^c, \dots, \omega_{n_c}^c\}, R = \{\omega_1^r, \dots, \omega_{n_r}^r\},$ (ϕ_1, \dots, ϕ_L) pre-trained layers from BERT or ELMo.

Compute layers embeddings:

 $\phi_{\ell}(C)$ and $\phi_{\ell}(R)$ for every $1 \leq \ell \leq L$.

Compute measures: $\{\hat{\mu}_{C,\ell}, \hat{\mu}_{R,\ell}\}_{\ell=1}^L$.

Compute Wasserstein barycenters:

$$\hat{\mu}_C = \operatorname*{argmin}_{\hat{\mu}} \ \sum_{\ell=1}^L \mathcal{W}(\hat{\mu}_{C,\ell},\hat{\mu}),$$

$$\hat{\mu}_R = \underset{\hat{\mu}}{\operatorname{argmin}} \sum_{\ell=1}^L \mathcal{W}(\hat{\mu}_{R,\ell}.\hat{\mu}),$$

OUTPUT: $\mathcal{W}(\hat{\mu}_R, \hat{\mu}_C)$.

Reference: R

Candidate: C

Goal: metric
$$m:(C,R)\mapsto m(C,R)\in\mathbb{R}_+$$

Algorithm

1. Find the Wasserstein barycentric distributions of BERT layers for ${\cal C}$ and R

Algorithm 1 BaryScore

INPUT: $C = \{\omega_1^c, \dots, \omega_{n_c}^c\}, R = \{\omega_1^r, \dots, \omega_{n_r}^r\},$ (ϕ_1, \dots, ϕ_L) pre-trained layers from BERT or ELMo.

Compute layers embeddings:

 $\phi_{\ell}(C)$ and $\phi_{\ell}(R)$ for every $1 \leq \ell \leq L$.

Compute measures: $\{\hat{\mu}_{C,\ell}, \hat{\mu}_{R,\ell}\}_{\ell=1}^{L}$.

Compute Wasserstein barycenters:

$$\hat{\mu}_C = \operatorname*{argmin}_{\hat{\mu}} \ \sum_{\ell=1}^L \mathcal{W}(\hat{\mu}_{C,\ell},\hat{\mu}),$$

$$\hat{\mu}_R = \underset{\hat{\mu}}{\operatorname{argmin}} \ \sum_{\ell=1}^L \mathcal{W}(\hat{\mu}_{R,\ell}.\hat{\mu}),$$

OUTPUT: $\mathcal{W}(\hat{\mu}_R, \hat{\mu}_C)$.

Reference: R

Candidate: C

Goal: metric $m:(C,R)\mapsto m(C,R)\in\mathbb{R}_+$

Algorithm

1. Find the Wasserstein barycentric distributions of BERT layers for ${\cal C}$ and R

Algorithm 1 BaryScore

INPUT: $C = \{\omega_1^c, \dots, \omega_{n_c}^c\}, R = \{\omega_1^r, \dots, \omega_{n_r}^r\},$ (ϕ_1, \dots, ϕ_L) pre-trained layers from BERT or ELMo.

Compute layers embeddings:

 $\phi_{\ell}(C)$ and $\phi_{\ell}(R)$ for every $1 \leq \ell \leq L$.

Compute measures: $\{\hat{\mu}_{C,\ell}, \hat{\mu}_{R,\ell}\}_{\ell=1}^L$.

Compute Wasserstein barycenters:

$$\hat{\mu}_C = \underset{\hat{\mu}}{\operatorname{argmin}} \ \sum_{\ell=1}^L \mathcal{W}(\hat{\mu}_{C,\ell},\hat{\mu}),$$

$$\hat{\mu}_R = \underset{\hat{\mu}}{\operatorname{argmin}} \ \sum_{\ell=1}^L \mathcal{W}(\hat{\mu}_{R,\ell}.\hat{\mu}),$$

OUTPUT: $W(\hat{\mu}_R, \hat{\mu}_C)$.

Reference: R

Candidate: C

Goal: metric $m:(C,R)\mapsto m(C,R)\in\mathbb{R}_+$

Algorithm

- 1. Find the Wasserstein barycentric distributions of BERT layers for ${\cal C}$ and R
- 2. Evaluate these barycentric distributions using the Wasserstein distance.

Algorithm 1 BaryScore

INPUT: $C = \{\omega_1^c, \dots, \omega_{n_c}^c\}, R = \{\omega_1^r, \dots, \omega_{n_r}^r\},$ (ϕ_1, \dots, ϕ_L) pre-trained layers from BERT or ELMo.

Compute layers embeddings:

 $\phi_{\ell}(C)$ and $\phi_{\ell}(R)$ for every $1 \leq \ell \leq L$.

Compute measures: $\{\hat{\mu}_{C,\ell}, \hat{\mu}_{R,\ell}\}_{\ell=1}^L$.

Compute Wasserstein barycenters:

$$\hat{\mu}_C = \underset{\hat{\mu}}{\operatorname{argmin}} \ \sum_{\ell=1}^L \mathcal{W}(\hat{\mu}_{C,\ell}, \hat{\mu}),$$

$$\hat{\mu}_R = \underset{\hat{\mu}}{\operatorname{argmin}} \ \sum_{\ell=1}^L \mathcal{W}(\hat{\mu}_{R,\ell}.\hat{\mu}),$$

OUTPUT: $W(\hat{\mu}_R, \hat{\mu}_C)$.

Reference: R

Candidate: C

Goal: metric $m:(C,R)\mapsto m(C,R)\in\mathbb{R}_+$

Algorithm

- 1. Find the Wasserstein barycentric distributions of BERT layers for ${\cal C}$ and R
- 2. Evaluate these barycentric distributions using the Wasserstein distance.

Algorithm 1 BaryScore

INPUT: $C = \{\omega_1^c, \dots, \omega_{n_c}^c\}, R = \{\omega_1^r, \dots, \omega_{n_r}^r\},$ (ϕ_1, \dots, ϕ_L) pre-trained layers from BERT or ELMo.

Compute layers embeddings:

 $\phi_{\ell}(C)$ and $\phi_{\ell}(R)$ for every $1 \leq \ell \leq L$.

Compute measures: $\{\hat{\mu}_{C,\ell}, \hat{\mu}_{R,\ell}\}_{\ell=1}^L$.

Compute Wasserstein barycenters:

$$\hat{\mu}_C = \operatorname*{argmin}_{\hat{\mu}} \ \sum_{\ell=1}^L \mathcal{W}(\hat{\mu}_{C,\ell},\hat{\mu}),$$

$$\hat{\mu}_R = \underset{\hat{\mu}}{\operatorname{argmin}} \ \sum_{\ell=1}^L \mathcal{W}(\hat{\mu}_{R,\ell}.\hat{\mu}),$$

OUTPUT: $\mathcal{W}(\hat{\mu}_R,\hat{\mu}_C)$

BaryScore vs BertScore vs MoverScore

BaryScore vs BertScore vs MoverScore

Comparison between aggregation functions

BaryScore vs BertScore vs MoverScore

Comparison between aggregation functions

BaryScore

MoverScore

BertScore

Notations

S systems

N texts

 R_i

i-th reference

 C_i^j

i-th text candidate generated by j-th system $h(C_i^j)$

human score

 R_i

i-th reference

Notations

S systems

N texts

 C_i^j

i-th text candidate generated by j-th system $h(C_i^j)$

human score

Can the metric be used to compare the performance of two systems?

$$K_{sys} = K(M^{sy}, H^{sy})$$

$$M^{sy} = \left[\frac{1}{N} \sum_{i=1}^{N} m(R_i, C_i^1), \dots, \frac{1}{N} \sum_{i=1}^{n} m(R_i, C_i^s)\right]$$

$$H^{sy} = \left[\frac{1}{N} \sum_{i=1}^{N} h(C_i^1), \dots, \frac{1}{N} \sum_{i=1}^{N} h(C_i^S) \right]$$

 R_i

i-th reference

Notations

S systems

N texts

 C_i^j

i-th text candidate generated by j-th system $h(C_i^j)$

human score

Can the metric be used to compare the performance of two systems?

$$K_{sys} = K(M^{sy}, H^{sy})$$

$$M^{sy} = \left[\frac{1}{N} \sum_{i=1}^{N} m(R_i, C_i^1), \dots, \frac{1}{N} \sum_{i=1}^{n} m(R_i, C_i^s)\right]$$

$$H^{sy} = \left[\frac{1}{N} \sum_{i=1}^{N} h(C_i^1), \dots, \frac{1}{N} \sum_{i=1}^{N} h(C_i^S) \right]$$

System Aggregation!
Compare vector of length S

i-th reference

Notations

S systems

N texts

i-th text candidate generated by j-th

 $h(C_i)$

Can the metric be used to compare the performance of two systems?

$$K_{sys} = K(M^{sy}, H^{sy})$$

$$M^{sy} = \left[\frac{1}{N} \sum_{i=1}^{N} m(R_i, C_i^1), \dots, \frac{1}{N} \sum_{i=1}^{n} m(R_i, C_i^s)\right]$$

$$H^{sy} = \left[\frac{1}{N} \sum_{i=1}^{N} h(C_i^1), \dots, \frac{1}{N} \sum_{i=1}^{N} h(C_i^S) \right]$$

System Aggregation! Compare vector of length S

Can the metric be used as a loss or reward of a system?

$$K_{text} = \frac{1}{N} \sum_{i=1}^{N} K(M_i^{text}, H_i^{text})$$

$$H_i^{text} = \left[h(C_i^1), \dots, h(C_i^S)\right]$$

$$M_i^{text} = [m(R_i, C_i^1), \dots, m(R_i, C_i^S)]$$

 R_i

i-th reference

Notations

S systems

N texts

 C_i^j

i-th text candidate generated by j-th system $h(C_i^j)$ human score

Can the metric be used to compare the performance of two systems?

$$K_{sys} = K(M^{sy}, H^{sy})$$

$$M^{sy} = \left[\frac{1}{N} \sum_{i=1}^{N} m(R_i, C_i^1), \dots, \frac{1}{N} \sum_{i=1}^{n} m(R_i, C_i^s)\right]$$

$$H^{sy} = \left[\frac{1}{N} \sum_{i=1}^{N} h(C_i^1), \dots, \frac{1}{N} \sum_{i=1}^{N} h(C_i^S) \right]$$

System Aggregation!
Compare vector of length S

Can the metric be used as a loss or reward of a system?

$$K_{text} = \frac{1}{N} \sum_{i=1}^{N} K(M_i^{text}, H_i^{text})$$

$$H_i^{text} = \left[h(C_i^1), \dots, h(C_i^S)\right]$$

$$M_i^{text} = [m(R_i, C_i^1), \dots, m(R_i, C_i^S)]$$

Text Aggregation!
Averaged correlation

Experimental Setting

Machine Translation

- Results on WMT17/WMT18
- All metrics are measures on en only
- Pairs includes cs-en de-en ru-en fi-en ro-en tr-en

Machine Translation

- Results on WMT17/WMT18
- All metrics are measures on en only
- Pairs includes cs-en de-en ru-en fi-en ro-en tr-en

Data2text Generation

- Results on WebNLG 2020
- Correctness / Data Coverage / Relevance
- Results on English only

Machine Translation

- Results on WMT17/WMT18
- All metrics are measures on en only
- Pairs includes cs-en de-en ru-en fi-en ro-en tr-en

Data2text Generation

- Results on WebNLG 2020
- Correctness / Data Coverage / Relevance
- Results on English only

Image Captioning

- Results on MSCOCO
- Results on English only

Machine Translation

- Results on WMT17/WMT18
- All metrics are measures on en only
- Pairs includes cs-en de-en ru-en fi-en ro-en tr-en

Data2text Generation

- Results on WebNLG 2020
- Correctness / Data Coverage / Relevance
- Results on English only

Image Captioning

- Results on MSCOCO
- Results on English only

Summary Generation

- Results on SummEval
- Correlation with pyramid score
- Results on English only

Machine Translation

- Results on WMT17/WMT18
- All metrics are measures on en only
- Pairs includes cs-en de-en ru-en fi-en ro-en tr-en

Data2text Generation

- Results on WebNLG 2020
- Correctness / Data Coverage / Relevance
- Results on English only

Image Captioning

- Results on MSCOCO
- Results on English only

Summary Generation

- Results on SummEval
- Correlation with pyramid score
- Results on English only

Task

Task

(John_Blaha birthDate 1942_08_26)
(John_Blaha birthPlace San_Antonio)
(John_E_Blaha job Pilot)

John Blaha, born in San Antonio on 1942-08-26, worked as a pilot

Task

```
(John\_Blaha birthDate 1942\_08\_26)
(John\_Blaha birthPlace San\_Antonio)
(John\_E\_Blaha job Pilot)
```


John Blaha, born in San Antonio on 1942-08-26, worked as a pilot

Criterion

Correctness

Data coverage

Relevance

Task

(John_Blaha birthDate 1942_08_26)
(John_Blaha birthPlace San_Antonio)
(John_E_Blaha job Pilot)

John Blaha, born in San Antonio on 1942-08-26, worked as a pilot

Criterion

Correctness

Data coverage

Relevance

	Correctness			Data Coverage			Relevance		
Metric	r	ρ	au	r	ρ	au	r	ρ	au
Correct	100.0	100.0	100.0	97.6	85.2	73.3	99.1	89.7	75.0
DataC	85.2	97.6	73.3	100.0	100.0	100.0	96.0	93.8	81.6
Relev	89.7	99.1	75.0	96.0	93.8	81.6	100.0	100.0	100.0
BaryS	91.7	90.0	78.3	87.8	78.2	61.6	89.4	82.6	70.0
BaryS ⁺	90.5	89.5	76.6	87.7	85.0	70.0	89.2	86.4	71.6
BertS	85.5	83.4	73.3	74.7	68.2	53.3	83.3	79.4	65.0
MoverS	84.1	84.1	73.3	78.7	66.2	53.3	82.1	77.4	65.0
BLEU	77.6	66.3	60.0	55.7	50.2	36.6	63.0	65.2	51.6
R-1	80.6	65.0	65.0	76.5	76.3	60.3	64.3	69.2	56.7
R-2	73.6	63.3	58.3	54.7	43.1	35.0	62.0	60.8	46.7
R-WE	60.9	73.4	60.0	40.2	58.2	40.1	49.9	64.1	48.3
METEOR	86.5	66.3	70.0	77.3	50.2	46.6	82.1	65.2	58.6
TER	79.6	78.3	58.0	69.7	58.2	38.0	75.0	70.2	77.6

Correlation score for different coefficient Pearson r, Spearman ρ and Kendall τ

Task

(John_Blaha birthDate 1942_08_26)
(John_Blaha birthPlace San_Antonio)
(John_E_Blaha job Pilot)

John Blaha, born in San Antonio on 1942-08-26, worked as a pilot

Criterion

Correctness

Data coverage

Relevance

	Correctness			Data Coverage			F	Relevance		
Metric	\overline{r}	ρ	$\overline{ au}$	\overline{r}	ρ	au	\overline{r}	ρ	au	
Correct	100.0	100.0	100.0	97.6	85.2	73.3	99.1	89.7	75.0	
DataC	85.2	97.6	73.3	100.0	100.0	100.0	96.0	93.8	81.6	
Relev	89 7	99 1	75.0	96.0	93 8	81.6	100.0	100 0	100.0	
BaryS	91.7	90.0	78.3	87.8	78.2	61.6	89.4	82.6	70.0	
BaryS ⁺	90.5	89.5	76.6	87.7	85.0	70.0	89.2	86.4	71.6	
BertS	85.5	83.4	13.3	/4./	68.2	53.3	83.3	/9.4	65.0	
MoverS	84.1	84.1	73.3	78.7	66.2	53.3	82.1	77.4	65.0	
BLEU	77.6	66.3	60.0	55.7	50.2	36.6	63.0	65.2	51.6	
R-1	80.6	65.0	65.0	76.5	76.3	60.3	64.3	69.2	56.7	
R-2	73.6	63.3	58.3	54.7	43.1	35.0	62.0	60.8	46.7	
R-WE	60.9	73.4	60.0	40.2	58.2	40.1	49.9	64.1	48.3	
METEOR	86.5	66.3	70.0	77.3	50.2	46.6	82.1	65.2	58.6	
TER	79.6	78.3	58.0	69.7	58.2	38.0	75.0	70.2	77.6	

Correlation score for different coefficient Pearson r, Spearman ho and Kendall au

Thanks for listening

Title: Automatic Text Evaluation through the Lens of Wasserstein Barycenters

Corresponding Authors:

Pierre Colombo

Link to Paper

