Algebra I - Matrični račun 2021/2022

3. vaje - VEKTORJI

dodatne naloge

1. Naj bosta $\vec{a}+2\vec{b}$ in $\vec{a}-\vec{b}$ pravokotna enotska vektorja. Določite kot med vektrojema \vec{a} in \vec{b} .

Rešitev: $\varphi \approx 108,43^{\circ}$

2. Poiščite vse vrednosti $\lambda \in \mathbb{R}$ za katere imata vektorja $\vec{a} = (2\lambda, \lambda, \lambda - 1)$ in $\vec{b} = (\lambda + 1, \lambda - 2, 0)$ enako normo in izračunajte kot φ med njima.

 $\begin{array}{ll} \textit{Re\'sitev:} & \lambda_1 = 1 & \varphi \approx 53,13^\circ \\ & \lambda_2 = -1 & \varphi \approx 70,53 \end{array}$

3. Dana sta vektorja $\vec{v}=t\vec{a}+17\vec{b}$ in $\vec{u}=3\vec{a}-\vec{b}$. Poiščite vse vrednosti $t\in\mathbb{R}$ za katere bosta vektorja \vec{v} in \vec{u} pravokotna, če veste, da je $|\vec{a}|=2, |\vec{b}|=5$ in $\angle(\vec{a},\vec{b})=\frac{2\pi}{3}$.

Rešitev: t = 40

4. Dane imamo vektorje $\vec{a}=(8-t,3,-1-t), \ \vec{b}=(7,1,0)$ in $\vec{c}=(7,7,0)$. Poiščite vse vrednosti $t\in\mathbb{R}$, za katere bo $\angle(\vec{a},\vec{b})=\angle(\vec{a},\vec{c})=\varphi$ in določite ta kot.

Rešitev: $t=-9, \varphi=25,92^{\circ}$

5. Točke A(1,0,-1), B(2,2,1) in C(-1,2,1) so oglišča trikotnika, CD pa je višina na stranico AB. Določite kot φ med daljicama CA in CD.

Rešitev: $\varphi = 35, 3^{\circ}$.

6. Naj bodo $\vec{a}, \vec{b} \in \mathbb{R}^3$ in $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. Izrazite ploščino paralelograma, ki ga napenjata vektorja $\vec{m} = \alpha \vec{a} + \beta \vec{b}$ in $\vec{n} = \gamma \vec{a} + \delta \vec{b}$ s ploščino paralelograma, ki ga napenjata vektorja \vec{a} in \vec{b} .

Rešitev: $|\alpha \delta - \beta \gamma| S$, kjer je $S = |\vec{a} \times \vec{b}|$.

7. Dane imamo vektorje $\vec{a}=(0,2,1), \ \vec{b}=(2,2,1)$ in $\vec{c}=(-1,-2,-1).$ Poiščite vektor $\vec{d}\in\mathbb{R}^3,$ da bo veljalo $\vec{a}\times\vec{b}=\vec{c}\times\vec{d}.$

Rešitev: $\vec{d} = (2,0,0)$

8. Natančno izračunajte ploščino paralelograma, ki ga razpenjata vektorja (2,1,1) in (-4,3,1).

Rešitev: $S = \sqrt{140}$

9. Natančno izračunajte ploščino trikotnika, ki ima oglišča v točkah A(0,3,4), B(3,2,3) in C(1,4,1).

1

Rešitev: $S = \frac{\sqrt{96}}{2}$