Provable and Efficient Nonconvex Procedures for Multi-Channel Sparse Blind Deconvolution

Laixi Shi

April 16, 2020

Motivation

Understanding neural recordings

How to recover these temporal sparse/spike trains which indicate when the neuron is activated?

Image superresolution/deblurring

How to find the high-resolution original image and the blurring kernels simultaneously?

Formulation

Multi-channel sparse blind deconvolution (MSBD)

Problem Formulation: the *i*-th observed signal $y_i \in \mathbb{R}^n$ can be expressed as:

$$y_i = g \circledast x_i = \mathcal{C}(g)x_i, \quad i = 1, \dots, p,$$

- ullet g is a filter, and $x_i \in \mathbb{R}^n$ is a sparse input signal.
- p is the total number of observations, and ® denote the circulant convolution.
- $\mathbf{g} = [g_1, g_2, \cdots, g_n]^{\top}$ and circulant matrix $\mathcal{C}(\mathbf{g}) \in \mathbb{R}^{n \times n}$:

$$C(\boldsymbol{g}) = \begin{bmatrix} g_1 & g_n & \cdots & g_2 \\ g_2 & g_1 & \cdots & g_3 \\ \vdots & \vdots & \ddots & \vdots \\ g_n & g_{n-1} & \cdots & g_1 \end{bmatrix}.$$

5

Multi-channel sparse blind deconvolution (MSBD)

ullet $oldsymbol{Y}=[oldsymbol{y}_1,\ldots,oldsymbol{y}_p]\in\mathbb{R}^{n imes p}$, $oldsymbol{X}=[oldsymbol{x}_1,\ldots,oldsymbol{x}_p]\in\mathbb{R}^{n imes p}$:

$$Y = C(g)X$$
.

• Goal: recover both the unknown signals $\{x_i\}_{i=1}^p$ and the kernel g from multiple observations $\{y_i\}_{i=1}^p$

Ambiguities

• The bilinear form of the observations:

$$\boldsymbol{y}_i = (\beta \cdot \mathcal{S}_j(\boldsymbol{g})) \circledast \frac{\mathcal{S}_{-j}(\boldsymbol{x}_i)}{\beta},$$

where $S_j(z)$ is the *j*-th circulant shift of the vector z, $\beta \neq 0$ is an arbitrary scalar.

- Challenge: Scaling and shift ambiguities o g and $\{x_i\}_{i=1}^p$ are not uniquely identifiable.
- Goal: recover filter g and sparse inputs $\{x_i\}_{i=1}^p$, up to scaling and shift ambiguity.

7

Bilinear to linear

• C(g) is invertible \rightarrow a unique inverse filter g_{inv} :

$$\mathcal{C}(\boldsymbol{g}_{\mathrm{inv}})\mathcal{C}(\boldsymbol{g}) = \mathcal{C}(\boldsymbol{g})\mathcal{C}(\boldsymbol{g}_{\mathrm{inv}}) = \boldsymbol{I}.$$

• Bilinear to linear: multiply $\mathcal{C}(\boldsymbol{g}_{\mathrm{inv}})$ on both side,

$$egin{aligned} oldsymbol{y}_i &= \mathcal{C}(oldsymbol{g}) oldsymbol{x}_i
ightarrow \ \mathcal{C}(oldsymbol{g}_{ ext{inv}}) oldsymbol{y}_i &= \mathcal{C}(oldsymbol{g}_{ ext{inv}}) \mathcal{C}(oldsymbol{g}) oldsymbol{x}_i = \underbrace{oldsymbol{x}_i}_{ ext{sparse}} & i = 1, \dots, p. \end{aligned}$$

8

A natural formulation

• Exploiting the sparsity of $\{x_i\}_{i=1}^p$: seek h that minimize the cardinality of $C(h)y_i = C(y_i)h$:

$$\min_{\boldsymbol{h} \in \mathbb{R}^n} \frac{1}{p} \sum_{i=1}^p \| \mathcal{C}(\boldsymbol{y}_i) \boldsymbol{h} \|_0.$$

- $\|\cdot\|_0$ is the pseudo- ℓ_0 norm: counts the cardinality of the nonzero entries of the input vector.
- Problematic for two reasons:
 - 1. has a trivial solution h = 0.
 - 2. the cardinality minimization is computationally intractable.

How to recover g_{inv} provably and efficiently ?

Our nonconvex formulation

• We propose a nonconvex optimization formulation (following [Sun, et al, 2017]¹, [Li and Bresler, 2019]²):

$$\min_{\boldsymbol{h} \in \mathbb{R}^n} \ f_o(\boldsymbol{h}) = \frac{1}{p} \sum_{i=1}^p \underbrace{\psi_{\mu}(\mathcal{C}(\boldsymbol{y}_i)\boldsymbol{h})}_{\text{convex surrogate}} \quad \text{s.t.} \quad \underbrace{\|\boldsymbol{h}\|_2 = 1}_{\text{nonconvex}}$$

- Add a spherical constraint.
- Relax to a convex smooth surrogate: $\psi_{\mu}(z) = \mu \log \cosh(z/\mu)$, where μ controls the smoothness of the surrogate.

¹Ju Sun, Qing Qu, and John Wright. "Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture". In: *IEEE Transactions on Information Theory* 63.2 (2017), pp. 853–884.

²Yanjun Li and Yoram Bresler. "Multichannel sparse blind deconvolution on the sphere". In: *IEEE Transactions on Information Theory* 65.11 (2019), pp. 7415–7436.

Optimization Geometry

Convex vs nonconvex: optimization geometry

Convex vs nonconvex: optimization geometry

Convex vs nonconvex: optimization geometry

Is our objective landscape geometry of MSBD bad?

Our Optimization Geometry

Benign geometry in the orthogonal case

$$\min_{\boldsymbol{h} \in \mathbb{R}^n} f_o(\boldsymbol{h}) = \frac{1}{p} \sum_{i=1}^p \psi_{\mu}(\mathcal{C}(\boldsymbol{y}_i)\boldsymbol{h}) \quad \text{s.t.} \quad \|\boldsymbol{h}\|_2 = 1$$

- The landscape of the loss value $f_o(\mathbf{h})$ with respect to \mathbf{h} :
 - C(g) = I.
 - n = 3, p = 30.

Benign geometry in the orthogonal case

- The landscape of the loss value $f_o(\mathbf{h})$ with respect to \mathbf{h} :
 - C(g) = I.
 - 2n=6 ground truth $\{\pm e_i\}_{i=1}^3$

• Benign geometry: 2n local minimizers are approximately all shift and signed variants of the ground truth $(\{\pm e_i\}_{i=1}^3)$, and symmetrically distributed over the sphere.

Manifold gradient descent (MGD)

• Manifold gradient descent:

$$\boldsymbol{h}_{t+1} := \frac{\boldsymbol{h}_t - \eta_t \partial f_o(\boldsymbol{h}_t)}{\|\boldsymbol{h}_t - \eta_t \partial f_o(\boldsymbol{h}_t)\|_2},$$

where η_t is the stepsize, $\partial f_o(\mathbf{h}) = (\mathbf{I} - \mathbf{h} \mathbf{h}^\top) \nabla f_o(\mathbf{h})$, and $\nabla f_o(\mathbf{h})$ is the Euclidean gradient of $f_o(\mathbf{h})$.

• With random initialization, n = 128, p = 16.

Surprising success of nonconvex optimization

Theoretical guarantee

Can we establish theoretical guarantee for the simple and efficient MGD based on nonconvex optimization formulation?

Yes. The statistical model will help!

Main Theoretical Results

Assumptions

- Inputs are sparse: the inputs $X = [x_1, x_2, \cdots, x_p]$ is under Bernoulli-Gaussian³ model $\mathrm{BG}(\theta)$.
 - Each entry x in X is an i.i.d variable satisfing $x = \Omega \cdot z$, where Ω is a Bernoulli variable with parameter θ and $z \sim \mathcal{N}(0,1)$.
- C(g) is invertible⁴: ensure the identifiability of the filter g.
 - The condition number of C(g) is κ , i.e.

$$\kappa = \sigma_1(\mathcal{C}(\boldsymbol{g}))/\sigma_n(\mathcal{C}(\boldsymbol{g}))$$

³Qing Qu et al. "Analysis of the Optimization Landscapes for Overcomplete Representation Learning". In: arXiv preprint arXiv:1912.02427 (2019).

⁴Yanjun Li, Kiryung Lee, and Yoram Bresler. "A unified framework for identifiability analysis in bilinear inverse problems with applications to subspace and sparsity models". In: arXiv preprint arXiv:1501.06120 (2015).

Main results

Distance metric to measure the success recovery:

$$\operatorname{dist}(\boldsymbol{h}, \boldsymbol{g}_{\operatorname{inv}}) = \min_{j \in [n]} \|\boldsymbol{g}_{\operatorname{inv}} \pm \mathcal{S}_j(\boldsymbol{h})\|_2.$$

Theorem (Shi and Chi, 2019)

Instate the assumptions above, for $\theta \in (0, \frac{1}{3})$, when μ is small enough, with $O(\log n)$ random initializations, the output $\hat{\boldsymbol{h}}$ of MGD with a proper step size will satisfy:

$$\operatorname{dist}(\hat{\boldsymbol{h}}, \boldsymbol{g}_{\operatorname{inv}}) \lesssim \frac{\kappa^4}{\theta^2} \sqrt{\frac{n}{p}}$$

in polynomial iterations, provided $p \gtrsim rac{\kappa^8 n^{4.5} \log^4 p \log^2 n}{ heta^4}$

Prior work

Table: Comparison with existing methods for solving MSBD

Methods	[Wang and Chi, 2016]	[Li and Bresler, 2019]	Ours
Assumptions	filter g spiky $\&\ \mathcal{C}(g)$ invertible,	$\mathcal{C}(oldsymbol{g})$ invertible,	$\mathcal{C}(oldsymbol{g})$ invertible,
	$\boldsymbol{X} \sim \mathrm{BG}(\boldsymbol{\theta})$	$\boldsymbol{X} \sim \mathrm{BR}(\boldsymbol{\theta})$	$m{X} \sim \mathrm{BG}(heta)$
Formulation	Convex	Nonconvex	Nonconvex
	$\min_{oldsymbol{e}_1^{ op}oldsymbol{h}=1}\ \mathcal{C}(oldsymbol{h})oldsymbol{Y}\ _1$	$\max_{\ \boldsymbol{h}\ _2=1} \ \mathcal{C}(\boldsymbol{h})\boldsymbol{R}\boldsymbol{Y}\ _4^4$	$\min_{\ \boldsymbol{h}\ _2=1} \psi_{\mu}(\mathcal{C}(\boldsymbol{h})\boldsymbol{R}\boldsymbol{Y})$
Algorithm	linear programming	noisy MGD	vanilla MGD
Recovery	$ heta \in O(1/\sqrt{n}),$	$\theta \in O(1)$,	$ heta \in O(1)$,
Condition	$p \geq O(n)$	$p \geq O(n^9)$	$p \geq O(n^{4.5})$

• For order of p, assuming θ, κ are constants, the order of sample complexity p is shown up to logarithmic factors.

Practical Experiment Results

Numerical experiments: synthetic data

- Success rate of recovering the filter g:
 - 10 Monte Carlo for success rate $\in [0, 1]$.
 - Fix sparsity $\theta = 0.3$.

Figure: Requirement of sample complexity p with respect to n.

Numerical experiments: synthetic data

- Success rate of recovering the filter g:
 - 10 Monte Carlo for success rate $\in [0,1]$.
 - Fix n = 64.

Figure: Requirement of sample complexity p with respect to θ .

Numerical experiments: blind image deconvolution

- Experimental setting:
 - The filter size is $n = 128 \times 128$.
 - The number of observations is p = 1000.
 - Sparsity level $\theta = 0.1$: $X \in BG(\theta)$

(a) Observation (RGB) (b) Observation (R)

(c) Sparse input

Numerical experiments: blind image deconvolution

Comparisons of the recovered filter g:

(d) True image

(e) Recovery via ours

(f) Recovery via [Li, et al., 2019]

Summary so far

- Introduction of our nonconvex approach for MSBD.
- Main results with comparisons to prior work.
 - Theoretical improvement on sample complexity p.
 - Practical much better performance.

Proof of our theoretical results.

Proof Pipeline

Proof pipeline

• C(g) is orthogonal:

- 1. one good subset of interest: benign geometry in the subset around one signed and shifted ground truth.
- 2. 2n good subsets: Symmetry \rightarrow benign geometry in 2n subsets of interest.
- 3. Success recovery guarantee: convergence guarantee of MGD to the ground truth when initialized in these subsets.
- 4. Random initialization: Subsets of interest are large enough.
- Extend to C(g) is invertible: by pre-conditioning R.

Proof pipeline

- C(g) is orthogonal:
 - 1. one good subset of interest: benign geometry in the subset around one signed and shifted ground truth.
 - 2. 2n good subsets: Symmetry \rightarrow benign geometry in 2n subsets of interest.
 - 3. Success recovery guarantee: convergence guarantee of MGD to the ground truth when initialized in these subsets.
 - 4. Random initialization: Subsets of interest are large enough.
- Extend to C(g) is invertible: by pre-conditioning R.

Subsets of Interest

Subsets of interest

 $\mathcal{C}(g)=I$ o shifted and sign-permuted copies of the ground truth $\{\pm e_i\}_{i=1}^n.$

• 2n subsets of interest: around copies of the ground truth $\{\pm e_i\}_{i=1}^n$:

$$\mathcal{S}_{\xi}^{(i\pm)} = \left\{ \boldsymbol{h} : h_i \geq 0, \frac{h_i^2}{\|\boldsymbol{h}_{\setminus \{i\}}\|_{\infty}^2} \geqslant 1 + \xi \right\}, \quad i \in [n], \xi > 0.$$

Subsets of interest

 $\mathcal{C}(g) = I$: shifted and sign-permuted copies of the ground truth $\{\pm e_i\}_{i=1}^n$.

• 2n subsets of interest: around copies of the ground truth $\{\pm e_i\}_{i=1}^n$:

$$S_{\xi}^{(i\pm)} = \left\{ \boldsymbol{h} : h_i \geq 0, \frac{h_i^2}{\|\boldsymbol{h}_{\setminus \{i\}}\|_{\infty}^2} \geqslant 1 + \xi \right\}, \quad i \in [n], \xi > 0.$$

Subsets of interest

 $\mathcal{C}(g) = I$: shifted and sign-permuted copies of the ground truth $\{\pm e_i\}_{i=1}^n$.

• 2n subsets of interest: around copies of the ground truth $\{\pm e_i\}_{i=1}^n$:

$$S_{\xi}^{(i\pm)} = \left\{ \boldsymbol{h} : h_i \geq 0, \frac{h_i^2}{\|\boldsymbol{h}_{\setminus \{i\}}\|_{\infty}^2} \geq 1 + \xi \right\}, \quad i \in [n], \xi > 0.$$

• Focus on $\mathcal{S}_{\xi}^{(n+)}$:

Geometry in $\mathcal{S}_{\xi}^{(n+)}$

Geometry of the population loss

Population loss:
$$\mathbb{E}(f_o(\boldsymbol{h})) = \mathbb{E}\Big[\frac{1}{p}\sum_{i=1}^p \psi_{\mu}(\mathcal{C}(\boldsymbol{y}_i)\boldsymbol{h})\Big]$$

Theorem (Shi and Chi, 2019)

WLOG, suppose C(g) = I. When μ is small enough, for $h \in S_{\xi}^{(n+)}$, the population loss satisfies:

(large directional gradient) $h \in \mathcal{Q}_1$, (strong convexity) $h \in \mathcal{Q}_2$.

Statistical model helps: population loss is smooth and good!

Geometry: population loss to empirical loss

• Similar geometry of population and empirical loss:

How can we relate the properties of empirical loss to those of the population loss?

Uniform convergence of gradients and Hessians

- Good geometry of empirical loss:
 - Reparametrization: $\phi_o(\mathbf{w}) = f_o(\mathbf{h})$, where $\mathbf{w} = \mathbf{h}_{1:n-1}$.

Theorem (Shi and Chi, 2019)

Under the setting, for $h(w) \in \mathcal{S}_{\xi}^{(n+)}$ for some small $t_1, t_2 > 0$:

$$\mathbb{P}\left[\sup_{\boldsymbol{h}(\boldsymbol{w})\in\mathcal{Q}_1}\left|\underbrace{\frac{\boldsymbol{w}^{\top}\nabla\phi_o(\boldsymbol{w})}{\|\boldsymbol{w}\|_2}}_{\text{empirical}} - \underbrace{\frac{\boldsymbol{w}^{\top}\nabla\mathbb{E}\phi_o(\boldsymbol{w})}{\|\boldsymbol{w}\|_2}}_{\text{population}}\right| \geq t_1\right] \leq 2\exp(-Cn),$$

$$\mathbb{P}\left[\sup_{\boldsymbol{h}(\boldsymbol{w})\in\mathcal{Q}_2}\|\underbrace{\nabla^2\phi_o(\boldsymbol{w})}_{\text{empirical}} - \underbrace{\nabla^2\mathbb{E}\phi_o(\boldsymbol{w})}_{\text{population}}\| \geq t_2\right] \leq \exp(-Cn),$$

provided $p \gtrsim O(n^{4.5})$.

 Proof is based on concentration inequalities and covering numbers.

Orthogonal case to general case

- ullet $\mathcal{C}(oldsymbol{g})$ is orthogonal
- Extend to C(g) that is invertible: by pre-conditioning R.

Benign geometry in general case

• The pre-conditioned problem:

$$\min_{\boldsymbol{h} \in \mathbb{R}^n} f(\boldsymbol{h}) = \frac{1}{p} \sum_{i=1}^p \psi_{\mu}(\mathcal{C}(\boldsymbol{y}_i) \boldsymbol{R} \boldsymbol{h}) \quad \text{s.t.} \quad \|\boldsymbol{h}\|_2 = 1$$

• The pre-conditioning matrix is given as:

$$\boldsymbol{R} = \left[\frac{1}{\theta np} \sum_{i=1}^{p} \mathcal{C}(\boldsymbol{y}_i)^{\top} \mathcal{C}(\boldsymbol{y}_i)\right]^{-1/2}.$$

Benign geometry in general case

• The pre-conditioned problem:

$$\min_{\boldsymbol{h} \in \mathbb{R}^n} f(\boldsymbol{h}) = \frac{1}{p} \sum_{i=1}^p \psi_{\mu}(\mathcal{C}(\boldsymbol{y}_i) \boldsymbol{R} \boldsymbol{h}) \quad \text{s.t.} \quad \|\boldsymbol{h}\|_2 = 1$$

• The pre-conditioning matrix is given as:

Conclusion

- We propose a novel nonconvex approach for MSBD problem based on MGD with random initializations.
- Under mild statistical model for sparse inputs, we provide theoretical characterizations for benign geometric landscape of the loss function → ensures the global convergence of MGD.
- Comparisons with prior work:
 - 1. significant improvement of sample complexity p: from $p \gtrsim O(n^9) \to p \gtrsim O(n^{4.5})$.
 - 2. better practical performance in a much larger range of the sparsity level.
- Future work: design a provable nonconvex procedure for self-calibrated compressive sensing.

References

- Yanjun Li and Yoram Bresler. "Multichannel sparse blind deconvolution on the sphere". In: *IEEE Transactions on Information Theory* 65.11 (2019), pp. 7415–7436.
- Framework for identifiability analysis in bilinear inverse problems with applications to subspace and sparsity models". In: arXiv preprint arXiv:1501.06120 (2015).
- Qing Qu et al. "Analysis of the Optimization Landscapes for Overcomplete Representation Learning". In: arXiv preprint arXiv:1912.02427 (2019).
- Recovery Over the Sphere I: Overview and the Geometric Picture". In: *IEEE Transactions on Information Theory* 63.2 (2017), pp. 853–884.

Thank you!

Email: laixis@andrew.cmu.edu