PHY604 Lecture 23

November 28, 2023

Review: Steps of Markov chain Monte Carlo:

- 1. Choose random starting state
- 2. Choose a move uniformly at random from set of moves
- 3. Calculate the acceptance probability
- 4. Accept or reject the move
- 5. Measure X in current state, add to sum
- 6. Go back to step 2

Review: Ideal gas

- Consider the quantum states of a particle or atom of mass m in cubic box of length L
- Energy of one particle given by:

$$E(n_x, n_y, n_z) = \frac{\pi^2 \hbar^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)$$

Quantum numbers from

1 to infinity.

- Ideal gas: no interactions between particles
 - Energy is sum of individual particles:

$$E = \sum_{i=1}^{N} E(n_x^{(i)}, n_y^{(i)}, n_z^{(i)})$$

Review: Move set for ideal gas

- Choose set of all moves of a single atom to one of the six "neighboring" states where n_x , n_y , or n_z differ by +/- 1
- Each Monte Carlo step, choose a random particle, chose a quantum number, change it by +/- 1
- Change in total energy just the change for single particle since there are no interactions
 - E.g., increase or decrease n_x of atom i by one:

$$\Delta E = \frac{\pi^2 \hbar^2}{2mL^2} [(n_x \pm 1)^2 + n_y^2 + n_z^2] - \frac{\pi^2 \hbar^2}{2mL^2} (n_x^2 + n_y^2 + n_z^2)$$
$$= \frac{\pi^2 \hbar^2}{2mL^2} [(n_x \pm 1)^2 - n_x^2] = \frac{\pi^2 \hbar^2}{2mL^2} (\pm 2n_x + 1)$$

• Note: Reject moves that try to make *n* < 1

Review: Monte Carlo simulation of ideal gas

Review: Monte Carlo simulation of ideal gas: Dependence on T

Review: Monte Carlo simulation of ideal gas: E vs. T

Review: The Ising model

 The Ising model is a classic model in statistical physics for describing magnetic systems

- Describe a magnetic material as classical spins on a lattice
 - Spins can only point up or down
 - Energy is given by:

$$E = -J \sum_{\langle i,j \rangle} s_i s_j$$

- Where $\langle i,j \rangle$ indicate neighboring spins
- *J* is the interaction strength
 - If J > 0 aligned spins are preferred
 - If J < 0 antialigned spins are preferred

Review: Monte Carlo simulation: Ising model on square lattice

• 20 x 20 square lattice of spins

Initialized randomly

- Move set: Flip a random spin
 - If it lowers the energy, accept
 - If it raises the energy, accept with Boltzmann probability
- Can also monitor magnetization

$$M = \sum_{i} s_i$$

Review: Ising model on square lattice versus T

Ferromagnetic for J > 0, Antiferromagnetic for J < 0

Today's lecture: Simulated annealing, genetic algorithms

- Simulated Annealing
 - Travelling salesman problem

Genetic algorithms

Simulated annealing (Newman Sec. 10.4)

Monte Carlo methods can also be used for numerical optimization

Optimization methods discussed so far only give local minima

Global optimization problems are very challenging

- Simulated annealing borrows ideas from statistical physics/materials science to tackle this problem
 - Annealing: Heat treatment of materials to remove defects by allowing atoms to move to their equilibrium structure

Statistical mechanics for optimization

Recall the Boltzmann probability:

$$P(E_i) = \frac{e^{-\beta E_i}}{Z}, \qquad Z = \sum_i e^{-\beta E_i}$$

- Assume we have single, unique ground state
- Choose energy scale so that the ground state configuration is 0 energy
- If we cool the system to T = 0, then the probability distribution is:

$$P(E_i) = \begin{cases} 1 & \text{if } E_i = 0 \\ 0 & \text{if } E_i > 0 \end{cases}$$

• By cooling the system, we can find the ground state

Statistical mechanics for optimization

- We can use the same strategy (cooling the system) for finding the minimum of a function
 - Take the value of the function to be the "energy"
 - Take the values of independent variables to define a state of the system

- But how can we avoid getting trapped in a local minima?
 - Energy of all nearby states are higher in energy, will not accept moves for low

- Solution: "Anneal" by cooling slowly so system can find its way to the global minimum
 - Guaranteed to converge to global minimum if we cool slowly enough (often not possible)

Simulated annealing approach

- Choose k_BT to be significantly greater than the typical energy change from a singe Monte Carlo move
 - Then:

$$\beta(E_i - E_i) \ll 1 \implies P_a \simeq 1$$

- Most moves accepted, state of the system rapidly randomized
- Make a cooling "schedule," e.g.:

$$T = T_0 e^{-t/\tau}$$

• Choice of τ require some trial and error, slower cooling is more likely to find ground state, but simulation takes longer

Example: Travelling salesman problem

- Find the shortest route that visits a given set of locations on a map
- One of the most famous optimization problems (NP hard)

- We will assume the salesman can travel between the N points on the map in straight lines (i.e., the world is flat)
 - N cities are chosen at random in a 2D square of unit length
- Want to minimize total distance travelled over the tour:

$$D = \sum_{i=0}^{N-1} |\mathbf{r}_{i+1} - \mathbf{r}_i|$$

Markov chain Monte Carlo for traveling salesman N-1

$$D = \sum_{i=0}^{N-1} |\mathbf{r}_{i+1} - \mathbf{r}_i|$$

Minimize D over set of all possible tours

- First set up an initial tour
- Then choose from set of moves: Swap pairs of cities
 - Accept if swap shortens the tour
 - If it lengthens the tour, accept with Boltzmann probability, energy replaced by distance D

Simulated annealing for traveling salesman

Simulated annealing for traveling salesman: Different starting temperatures

Simulated annealing for traveling salesman: Different cooling rates temperatures

Today's lecture: Simulated annealing, Genetic algorithms

- Simulated Annealing
 - Travelling salesman problem

Genetic algorithms

Genetic Algorithms (Pang Ch. 11)

- We saw in the case of simulated annealing:
 - Finding global minima is difficult
 - We can use inspiration from physics in solving unrelated problems in optimization
- Genetic algorithms are techniques for optimization inspired by biology
 - Create "organisms" that store a set of chromosomes
 - Create new organisms by mixing the genes of parents, and allowing for mutations

Steps for the genetic algorithm

- The problem: find the global minimum of multi-variable function $g(r_1,r_2,...,r_n)$
- 1. Create a gene pool, i.e., an initial population of configurations
 - Configurations are values of variables
 - Can be binary or continuous
- 2. Selection: Choose members to be parents
- 3. Crossover: Produce offspring by mixing their genes
 - Parent chromosomes are cut into segments, exchanged, and joined together
- 4. Mutation: Create random changes to the chromosomes
- 5. In all of the steps above, make sure the configurations with lowest cost (evaluation of g) survive

Example: the Thomson problem

- Consider placing like charges on a unit sphere
- What is the optimal arrangement to reduce the electrostatic energy:

$$U = \frac{q^2}{4\pi\epsilon_0} \sum_{i>j=1}^{N} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$

• Inspired by J.J. Thomson's "plum pudding model" for atoms

Solutions to the Thomson problem

N	E_1	Symmetry	$\left \sum \mathbf{r}_i ight $	v_3	v_4	v_5	v_6	v_7	v_8	e	f_3	f_4	$ heta_1$	Equivalent polyhedron
2	0.500000000	$D_{\infty h}$	0	-	-	-	_	-	-	2	_	-	180.000°	digon
3	1.732050808	D_{3h}	0	_	-	-	_	_	_	3	2	-	120.000°	triangle
4	3.674234614	T_d	0	4	0	0	0	0	0	6	4	0	109.471°	tetrahedron
5	6.474691495	D_{3h}	0	2	3	0	0	0	0	9	6	0	90.000°	triangular dipyramid
6	9.985281374	O_h	0	0	6	0	0	0	0	12	8	0	90.000°	octahedron
7	14.452977414	D_{5h}	0	0	5	2	0	0	0	15	10	0	72.000°	pentagonal dipyramid
8	19.675287861	D_{4d}	0	0	8	0	0	0	0	16	8	2	71.694°	square antiprism
9	25.759986531	D_{3h}	0	0	3	6	0	0	0	21	14	0	69.190°	triaugmented triangular prism
10	32.716949460	D_{4d}	0	0	2	8	0	0	0	24	16	0	64.996°	gyroelongated square dipyramid
11	40.596450510	C_{2v}	0.013219635	0	2	8	1	0	0	27	18	0	58.540°	edge-contracted icosahedron
12	49.165253058	I_h	0	0	0	12	0	0	0	30	20	0	63.435°	icosahedron (geodesic sphere {3,5+} _{1,0})
13	58.853230612	C_{2v}	0.008820367	0	1	10	2	0	0	33	22	0	52.317°	
14	69.306363297	D_{6d}	0	0	0	12	2	0	0	36	24	0	52.866°	gyroelongated hexagonal dipyramid
15	80.670244114	D_3	0	0	0	12	3	0	0	39	26	0	49.225°	
16	92.911655302	T	0	0	0	12	4	0	0	42	28	0	48.936°	
17	106.050404829	D_{5h}	0	0	0	12	5	0	0	45	30	0	50.108°	double-gyroelongated pentagonal dipyramid
18	120.084467447	D_{4d}	0	0	2	8	8	0	0	48	32	0	47.534°	
19	135.089467557	C_{2v}	0.000135163	0	0	14	5	0	0	50	32	1	44.910°	
20	150.881568334	D_{3h}	0	0	0	12	8	0	0	54	36	0	46.093°	
21	167.641622399	C_{2v}	0.001406124	0	1	10	10	0	0	57	38	0	44.321°	
22	185.287536149	T_d	0	0	0	12	10	0	0	60	40	0	43.302°	

Solutions to the Thomson problem

After class tasks

- Homework 5 due today
- Homework 4 graded
- Final project presentations Dec 12 11:15am-1:45pm
- Readings:
 - Simulated annealing: Newman Sec. 10.4
 - Genetic algorithms:
 - https://en.wikipedia.org/wiki/Thomson_problem
 - Pang Ch. 11