

®® R°, con V1 ⊕ V2 = V1-V2 y el producto usual	
no cumple la conmutative da é +	
6 Br con lo suma usual y a OV = -av	
Es un espacio vectoral	
\bigcirc \mathbb{R}^2 , \bigcirc on \mathbb{R} suma usual y \mathbb{R} \bigcirc $(x,y) = (ax,y)$	
No cumple dist respecto suma de escalares	
(3) \mathbb{R}^{2} con $(x_{1},y_{1}) \oplus (x_{2},y_{2}) = (x_{1} + x_{2},0), \ 0 \odot (x_{1},y) = (0x_{1},0)$	
and existe elemento neutro 4	
no existe elemento neutro:	
@ El conjunto de polinomios con coeficientes reales, con el producto por reales usual,	y con sωπα θ(λ) Φ Q(x) = φ'(x) + Q'(x)
el neutro de lo suma no es un co	
MR+R=R	
R·Q = h	
Como Q es un subconjunto Th, Th.Q va a ser una experación cerroda en Th	
1 Es un espacio vectorial	
	1 6 lk => du = (-1,0,,0) & S=> S no es un Sobespavo vectoral de An
(b) Es un subespacio	
(U1, U2,, U0), V=(V1, V2,, V0) ES => U1+ U2= V4+ U2=0 => (U1+ V1)+((12+V2) = 0
por otro lab v+v= (u,+v,,, un+vn) 65	
ii Sea a GS y de D=7 u1+ u2=0=> d(u1+ u2)=0=> du1+du2=0=>	du=(du, du,,du) 65
© No so cercusto en la suma (0,11) + (1,0) = (1,1) ≠ 0	
(i) No es carado en la semo	
(a) Es un subespacio	
(N-24 a. + JA7 a. + 41 a.)	
(TI-24 V4 + VAA V2 + 41 · V3)	
TT-21 (V4+U4) + VA> (V2+U2) + 47(U3+V3)	
(E) SI A Stimimos que son numeros fisos.	
es igual al exercico anterior, par lo	
gue seria un subesparo vectorial	
Si no son fijos, no es co subespacio ya que	
no se podna sacer factor al somarlos, pora	
determinar los coeficientes que acompenan	
(A9) Si Wa y Wz son SEV de V, probor que WaUWz es SEV=>Wa	Con- CHI Con
Supergames que existe well y w/W1 (Wx / W1)	0 02 0 02
	L ARCURDO => W-46112 (1000 W-101-W16W1 => (1) 6 (1)
υ ε W ₄ y w ε W ₂ => α, ω ε W ₄ U ω ₂ => ω-υ ε ω ₄ U ω ₂ . Si ω-υ ε ω ₄ => (ω-υ)+υ ε ω ω+(-α)	, , , , , , , , , , , , , , , , , , ,
Si We CWa, ya esta	

