Pflichtenheft Organisatorischer Teil

«DJ» EMI Filter für Netzteil

Pro2E - Team 5

Auftraggeber: Luca Dalessandro

Dozierende: Anita Gertiser

Pascal Buchschacher

Peter Niklaus

Sebastian Gaulocher

Richard Gut

Projektteam: Marina Taborda, Projektleiterin

Michel Alt, Stv. Projektleiter

Frank Imhof

Luca Krummenacher

Richard Britt

Fady Hanna

Windisch, 22.03.2019

Inhaltsverzeichnis

1	Projektorganisation	3
	1.1 Projektverantwortliche	3
	1.2 Auftraggeber	3
	1.3 Teammitglieder	3
	1.4 Organigramm	4
2	Planung	5
	2.1 Projektstrukturplan	5
	2.2 Terminplan	7
3	Budget	8
4	Kommunikationskonzept	9
5	Risikomanagement	10
	5.1 Risikoanalyse	10
	5.2 Risikotabelle	10
	5.3 Risikomatrix	12
6	Projektvereinbarung	13
7	Literaturverzeichnis	14
8	Abbildungsverzeichnis	14
9	Tabellenverzeichnis	14

1 Projektorganisation

1.1 Projektverantwortliche

Für das Modul Pro2E im Studiengang Elektro- und Informationstechnik an der Fachhochschule Nordwestschweiz werden die Studierenden von vier Dozierenden unterstützt.

Verantwortung	Dozent
Kommunikation/ Sozialkompetenz	Anita Gertiser
Projektmanagement	Pascal Buchschacher
Software	Richard Gut
Elektrotechnik	Peter Niklaus und
	Sebastian Gaulocher

Tabelle 1: Projektverantwortliche

1.2 Auftraggeber

Der Auftraggeber ist Dr. Luca Dalessandro von der Firma Schaffner Group

1.3 Teammitglieder

Das Team 5 des Projekts 2 setzt sich aus sechs Studenten zusammen. Die Projektleitung übernimmt Marina Taborda, für die Elektrotechnik ist Luca Krummenacher und für die Software ist Frank Imhof verantwortlich. Unterstützt werden sie von Michel Alt, Richard Britt und Fady Hanna.

1.4 Organigramm

Abbildung 1: Organigramm Team 5

2 Planung

Die Projektplanung wurde gemäss Jakoby [1] strukturiert. Für die Realisierung mit Dokumentationen, Präsentationen und Validierung wurde ein Stundenanteil von 70% des Gesamten Aufwands angestrebt. Das Projektmanagement, die Analyse und der Entwurf sollen in dieser Arbeit die restlichen 30% beanspruchen. Für das Modul pro2E im Studiengang Elektro- und Informationstechnik an der Fachhochschule Nordwestschweiz werden 6 ECTS erteilt. Dies entspricht eines Stundenaufwands von 180 Stunden (±50%) pro Teammitglied.

Um den Überblick über die Arbeitspakete zu garantieren, wurden die Verantwortungen der Arbeitspakete zwischen der Projektleiterin und den Verantwortlichen für die Elektrotechnik bzw. Software aufgeteilt. Die Unterpakete werden dann intern im Laufe des Projekts aufgeteilt, je nach Belastung der einzelnen Mitglieder.

2.1 Projektstrukturplan

Verantwortung Aufwand in

Aufwand in ersonenstunder

1.Projektmanagement		65
1.1 Planung	MT	10
1.2 Sitzungen	MT	32
1.3 Organisatorisches Pflichtenheft	MT	10
1.4 Statusbericht 1	MT	2
1.5 Statusbericht 2	MT	2
1.6 Statusbericht 3	MT	2
1.7 Statusbericht 4	MT	4
1.8 Projektabschluss	MT	3

2. Analyse		75
2.1 Fachbereich Software	FI	43
2.1.1 Recherche nützlicher Java-Bibliotheken		12
2.1.2 GUI Anfroderungen		15
2.1.3 GUI Möglichkeiten ausarbeiten		10
2.1.4 Optionale Ziele ausarbeiten		6
2.2 Fachbereich Elektrotechnik	LK	32
2.2.1 Problembeschrieb		10
2.2.2 Mathematischer Lösungsansatz erarbeiten		10
2.2.3 Schaltungsberechnung erarbeiten		12

3. Entwurf		147
3.1 Fachbereich Software	FI	45
3.1.1 GUI entwerfen		20
3.1.2 Programmablauf definieren		15
3.1.3 Klassendiagramm erstellen		10
3.2 Fachbereich Elektrotechnik	LK	40
3.2.1 Schaltungsberechnung mit Matlab		18
3.2.2 Schaltungsberechnung überprüfen		12
3.2.3 Lösungskonzept besprechen/überarbeiten		10
3.3 Testkonzept	LK	10
3.3.1 Testkonzept erstellen		10
3.4 Fachliches Pflichtenheft		52

4. Realisierung		495
4.1 Fachbereich Software	FI	260
4.1.1 View		35
4.1.2 Controller		60
4.1.3 Model		75
4.1.4 Import und Export		30
4.1.5 Look And Feel		30
4.1.6 Anpassungen Klassendiagramm		15
4.1.7 Bedienungsanleitung schreiben		15
4.2 Fachbereich Elektrotechnik	LK	55
4.2.1 Berechnungen für Java-Code anpassen		15
4.2.2 Validieren der Berechnungen im Code		25
4.2.3 Auswertung der Daten der Software		15
4.3 Fachbericht	MT	180

5. Validierung		192
5.1 Validierung GUI	FI	60
5.2 Validierung Plots	LK	40
5.3 Validierung Elektrotechnik	LK	50
5.4 Lösungsprüfung mit Auftraggeber	MT	42

6. Präsentationen		24
6.1 Zwischenpräsentation	MT	6
6.2 Schlusspräsentation	MT	18

7. Reserve		48
8.1 Reserve		48
	Total	1046

Tabelle 2: Projektstrukturplan

7. Reserve

8.1 Reserve

2.2 **Terminplan** Jahr Verantwortung Arbeitsstunden KW 8 9 10 11 12 13 14 15 16 17 18 19 (Projektwoche) 20 21 22 23 24 18.03 25.03 11.03 10.05 20.05 Datum 18.02 15.04 22.04 29.04 13.05 05 .05 03 9. 4 02 90 02 05 05 Meilensteine Auftragserteilung durch Auftraggeber Х Abgabe KIS Χ Abgabe Pflichtenhefter (Version 1) Χ Statusbericht 1 Abgabe Pflichtenhefter (Endversion) Zwischenpräsentation Statusbericht 2 Χ Statusbericht 3 Х Abgabe Fachbericht Statusbericht 4 Χ Präsentation Terminplanung 1.Projektmanagement 65 1.1 Planung MT 10 1.2 Sitzungen ΜT 32 1.3 Organisatorisches Pflichtenheft ΜT 10 1.4 Statusbericht 1 MΤ 2 1.5 Statusbericht 2 ΜT 2 1.6 Statusbericht 3 ΜT 2 1.7 Statusbericht 4 ΜT 4 3 1.8 Projektabschluss MT 2. Analyse 75 2.1 Fachbereich Software FI 43 2.1.1 Recherche nützlicher Java-Bibliotheken 12 2.1.2 GUI Anfroderungen 15 2.1.3 GUI Möglichkeiten ausarbeiten 10 2.1.4 Optionale Ziele ausarbeiten 6 2.2 Fachbereich Elektrotechnik 32 2.2.1 Problembeschrieb 10 2.2.2 Mathematischer Lösungsansatz erarbeiten 10 2.2.3 Schaltungsberechnung erarbeiten 12 3. Entwurf 147 3.1 Fachbereich Software FI 45 3.1.1 GUI entwerfen 20 3.1.2 Programmablauf definieren 15 3.1.3 Klassendiagramm erstellen 10 3.2 Fachbereich Elektrotechnik 40 3.2.1 Schaltungsberechnung mit Matlab 18 3.2.2 Schaltungsberechnung überprüfen 12 3.2.3 Lösungskonzept besprechen/überarbeiten 10 3.3 Testkonzept 10 3.3.1 Testkonzept erstellen 10 3.4 Fachliches Pflichtenheft 52 4. Realisierung 495 FI 4.1 Fachbereich Software 260 4.1.1 View 35 4.1.2 Controller 60 4.1.3 Model 75 30 4.1.4 Import und Export 4.1.5 Look And Feel 30 15 4.1.6 Anpassungen Klassendiagramm 4.1.7 Bedienungsanleitung schreiben 15 4.2 Fachbereich Elektrotechnik Ιk 55 4.2.1 Berechnungen für Javacode anpassen 15 4.2.2 Validieren der Berechnungen im Code 25 4.2.3 Auswertung der Daten von der Software 15 4.3 Fachbericht МТ 180 5. Vaildierung 192 5.1 Validierung GUI FI 60 5.2 Validierung Plots LK 40 5.3 Validierung Elektrotechnik 50 LK 5.4 Lösungsprüfung mit Auftraggeber MT 42 6. Präsentationen 24 6.1 Zwischenpräsentation МТ 6 6.2 Schlusspräsentation MT 18

48

48

Tabelle 3: Meilensteine und Terminplan

3 Budget

Beim Projektbudget wurde für die Projektleitung mit einem Stundenlohn von CHF 119.- und für die weiteren Teammitglieder CHF 68.- geplant.

Arbeitspaket	Stunden [h]	Stundenanteil [%]	Kosten [CHF]	Kostenanteil [%]
1. Projektmanagement	65	6.5	7'735.00	10.9
2. Analyse	75	7.5	5'100.00	7.2
3. Entwurf	147	14.7	9'996.00	14.0
4. Realisierung	495	49.6	33'660.00	47.3
5. Validierung	192	19.2	13'056.00	18.3
6. Präsentation	24	2.4	1'632.00	2.3
Total	998	100.0	71'179.00	100.0

Tabelle 4: Übersicht Budget

Somit betragen die Gesamtkosten des Projekts mit sechs Projektmitgliedern und einer Projektleiterin CHF 71'179.-.

4 Kommunikationskonzept

	Form	Übertragungsmittel	Zweck	Verantwortung	Terminfrequenz	Zielgruppe
Sitzungen	Mündlich (Hochdeutsch)	Mündlich	Koordination des Projekts	Projektleiterin	Wöchentlich	Projektteam
Sitzungseinladungen	Schriftlich	E-Mail	Vorbereitung und Information zur Sitzung	Projektleiterin	Wöchentlich	Projektteam
Protokoll	Schriftlich	GitHub	Dokumentation der Sitzung	Protokollführer	Wöchentlich	Projektteam
Kommunikation im Team	Mündlich/ schriftlich	Discord	Koordination und Informationsfluss	Projektteam	Täglich	Projektteam
Interne Dokumente	Schriftlich	GitHub	Dokumentation	Projektteam	Bei Bedarf	Projektteam
Besprechung mit Auftraggeber	Mündlich/ schriftlich	E-Mail	Auftragsklärung und Lösungsfindung	Projektleiterin	Bei Bedarf	Projektteam und Auftraggeber
Lieferobjekte	Schriftlich	E-Mail/ USB-Stick	Abgabe der Lieferobjekte	Projektleiterin	Gemäss Terminplan	Auftraggeber und Fachdozenten

Tabelle 5: Kommunikationskonzept

5 Risikomanagement

Im Riskmanagement wollen wir mögliche Gefahren für die termingerechte Abgabe des Projekts identifizieren, bewerten und Gegenmassnahmen beschliessen, um deren negativen Einfluss möglichst gering zu halten. Dabei geben wir allen identifizierten Risiken eine Ursache und Auswirkung und gewichten diese. Für jedes Risiko bestimmen wir Präventionen, um Schaden zu begrenzen und einen termingerechten Ablauf des Projekts zu gewährleisten.

5.1 Risikoanalyse

	Schaden			
Projektziele	Gering (1)	Mässig (1)	Hoch (3)	
Budgetüberschreitung	< 10%	10% - 25%	> 25%	
Terminverzug	< 10%	10% - 25%	> 25%	

	Eintrittswahrscheinlichkeit				
	Gering (1)	Mässig (1)	Hoch (3)		
Eintritt des Risikos	Kaum < 30%	Halb-halb 30% - 70%	(fast) sicher > 70%		

Tabelle 6: Risikoanalyse

5.2 Risikotabelle

Um auf Risiken vorbereitet zu sein, haben wir nachfolgende Risikotabelle erstellt. In dieser listen wir die möglichen Gefahren auf und nennen Präventionsmassnahmen, um sowohl die Eintrittswahrscheinlichkeit (Pi), als auch die Auswirkungen (Si) zu minimieren.

	Legende				
Si	Schadensausmass ohne Gegenmassnahme				
Pi	Eintrittswahrscheinlichkeit ohne Gegenmassnahme				
R	Risikofaktor ohne Gegenmassnahme [Si*Pi]				
Si'	Schadensausmass mit Gegenmassnahme				
Pi'	Eintrittswahrscheinlichkeit mit Gegenmassnahme				
R'	Risikofaktor mit Gegenmassnahme [Si'*Pi']				

Tabelle 7: Legende zur Riskotabelle

Risiko					Prävention							
Nr.	Beschreibung	Ursache	Auswirkung	Si	Pi	R	Beschreibung	Auswirkung	Si'	Pi'	R'	Wer
A	Auftrag ist unklar definiert	Lastenheft falsch/nicht vollständig	Auftrag kann nicht zufriedenstellend ausgeführt werden	3	2	6	Frühzeitig abklären & nachfragen	Unklarheiten werden verhindert	3	1	3	Alle
В	Mitarbeiter fällt aus (temporär)	Krankheit	Zeitplan fällt zurück	3	1	3	Pufferzeiten & bereits bekannte Abwesenheit einplanen	Zeitplan kann eingehalten werden	1	1	1	PL
С	Mitarbeiter fällt aus (permanent)	Kündigung/Unfall	Verlust von Fachwissen & Fachkraft	3	1	3	Arbeit genau dokumentieren, Austausch unter den Mitarbeitern	Fachwissen bleibt erhalten	1	1	1	Alle
D	PL fällt aus (temporär)	Krankheit	Koordination fehlt	3	1	3	PM StV. Einsetzen, Pufferzeit einplanen	Projekt bleibt koordiniert	1	1	1	PL
E	PL fällt aus (permanent)	Kündigung/Unfall	Projekt kann nicht beendet werden	2	2	4	PM StV. Instruieren	Projekt kann fortgeführt werden	2	1	2	PL
F	Datenverlust	Datenträger defekt	Verlorene Daten müssen erneut gesammelt, erstellt werden	3	2	6	Mehrere Datenträger/ Cloud, regelmässig Backups erstellen	Datenverlust wird minimiert, kann nicht entstehen	1	1	1	Alle
G	Ziele ändern sich	Auftraggeber will etwas Neues, Realisierung nicht möglich	Projekt kommt in grössere Dimension	2	2	4	Zielvorgaben werden zu Beginn klar definiert	Keine unvorhergesehenen Änderungen	1	1	1	Alle
н	Strukturplan unvollständig	APs kommen unerwartet hinzu	Zeitplan fällt zurück	2	2	4	Alle Beteiligten kontrollieren und ergänzen Projektplan	Wahrscheinlichkeit vergessener APs minimiert	2	1	2	Alle
ı	Zeit für ein AP zu knapp	Ungenaue Planung	Zeitplan fällt zurück	1	3	3	Pufferzeiten einplanen	Zeitplan kann eingehalten werden	1	1	1	РМ
J	Spannungen im Team	Arbeitsteilung/-qualität, Meinungsdifferenzen	Moral & Qualität sinken	3	2	6	Faire Arbeitsaufteilung, Meinungsunterschiede besprechen	Differenzen werden stark reduziert	2	1	2	PL

Tabelle 8: Risikotabelle

5.3 Risikomatrix

Auf der folgenden Risikomatrix sind alle Gefahren mit und ohne Prävention graphisch dargestellt.

- A. Auftrag ist unklar definiert
- B. Mitarbeiter fällt aus (temporär)
- C. Mitarbeiter fällt aus (permanent)
- D. PM fällt aus (temporär)
- E. PM fällt aus (permanent)
- F. Datenverlust
- G. Ziele ändern sich
- H. Strukturplan unvollständig
- I. Zeit für ein AP zu knapp
- J. Spannungen im Team

Tabelle 9: Risikomatrix

6 Projektvereinbarung

Auftraggeber	
Dr. Luca Dalessandor	
Ort, Datum	Unterschrift
Projektleiterin	
Marina Taborda	
Ort, Datum	Unterschrift

7 Literaturverzeichnis

[1] W. Jakoby, Projektmanagement für Ingenieure, Trier: Springer Fachmedien Wiesbaden , 2015.

8	Abbildungsverzeichnis	
	Abbildung 1: Organigramm Team 5	4
9	Tabellenverzeichnis	
	Tabelle 1: Projektverantwortliche	3
	Tabelle 2: Projektstrukturplan	6
	Tabelle 3: Meilensteine und Terminplan	8
	Tabelle 4: Übersicht Budget	8
	Tabelle 5: Kommunikationskonzept	
	Tabelle 6: Risikoanalyse	10
	Tabelle 7: Legende zur Riskotabelle	
	Tabelle 8: Risikotabelle	11
	Tahelle 9. Risikomatriy	12