Cargar los datos

df = po	pandas as d.read_csv /(df.head)	/(' <u>/conte</u>	nt/diabetes.csv	')					
Pre	gnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

Seleccionar variables

```
df_selected_vars = df[['Pregnancies', 'Glucose', 'BloodPressure']]
display(df_selected_vars.head())
   Pregnancies Glucose BloodPressure
                    148
                                    72
             1
                     85
                                    66
2
             8
                    183
                                    64
3
             1
                     89
                                    66
                                    40
                    137
```

Análisis exploratorio inicial

```
display(df_selected_vars.head())
df_selected_vars.info()
display(df_selected_vars.describe())
```

Pre	gnancies Glu	ıcose BloodPı	ressure
0	6	148	72
1	1	85	66
2	8	183	64
3	1	89	66
4	0	137	40
RangeIn Oata co # Co		frame.DataFrries, 0 to 76 3 columns): Non-Null Cou	ont Dtype
0 Pr 1 Gl 2 Bl dtypes:	egnancies ucose	768 non-null 768 non-null 768 non-null KB	int64 int64
count		768.000000	768.000000
mean	3.845052	120.894531	69.105469
std	3.369578	31.972618	19.355807
min	0.000000	0.000000	0.000000
25%	1.000000	99.000000	62.000000
50%	3.000000	117.000000	72.000000
75%	6.000000	140.250000	80.000000
max	17.000000	199.000000	122.000000

Visualización

```
import matplotlib.pyplot as plt
import seaborn as sns
fig, axes = plt.subplots(1, 3, figsize=(18, 5))
sns.histplot(data=df_selected_vars, x='Pregnancies', kde=True, ax=axes[0])
axes[0].set_title('Distribution of Pregnancies')
axes[0].set_xlabel('Number of Pregnancies')
axes[0].set_ylabel('Frequency')
sns.histplot(data=df_selected_vars, x='Glucose', kde=True, ax=axes[1])
axes[1].set_title('Distribution of Glucose')
axes[1].set_xlabel('Glucose Level')
axes[1].set_ylabel('Frequency')
sns.histplot(data=df_selected_vars, x='BloodPressure', kde=True, ax=axes[2])
axes[2].set_title('Distribution of Blood Pressure')
axes[2].set_xlabel('Blood Pressure')
axes[2].set_ylabel('Frequency')
plt.tight_layout()
plt.show()
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df_selected_vars, x='Glucose', y='BloodPressure')
plt.title('Glucose vs. Blood Pressure')
plt.xlabel('Glucose Level')
plt.ylabel('Blood Pressure')
plt.show()
```


Explicación de los Histogramas

- **Histograma de Pregnancies:** Este gráfico muestra la distribución del número de embarazos reportados. Podemos observar cómo se agrupan los datos y si hay algún patrón o valores inusualmente altos o bajos.
- **Histograma de Glucose:** Este histograma ilustra la distribución de los niveles de glucosa. Es útil para ver el rango típico de los niveles de glucosa en este conjunto de datos y si hay concentraciones en ciertos rangos.
- **Histograma de Blood Pressure:** Este gráfico presenta la distribución de la presión arterial. Nos ayuda a entender los valores comunes de presión arterial y la dispersión de los datos.

Análisis Mapas de calor

```
import matplotlib.pyplot as plt
import seaborn as sns

correlation_matrix = df_selected_vars.corr()
display(correlation_matrix)

plt.figure(figsize=(8, 6))
```

```
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix of Selected Variables')
plt.show()
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
sns.boxplot(y=df_selected_vars['Pregnancies'], ax=axes[0])
axes[0].set_title('Box Plot of Pregnancies')
axes[0].set_ylabel('Number of Pregnancies')
sns.boxplot(y=df_selected_vars['Glucose'], ax=axes[1])
axes[1].set_title('Box Plot of Glucose')
axes[1].set_ylabel('Glucose Level')
sns.boxplot(y=df_selected_vars['BloodPressure'], ax=axes[2])
axes[2].set_title('Box Plot of Blood Pressure')
axes[2].set_ylabel('Blood Pressure')
plt.tight_layout()
plt.show()
# Add boxplots with outcome
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
sns.boxplot(x=df['Outcome'], y=df['Pregnancies'], ax=axes[0])
axes[0].set_title('Pregnancies by Outcome')
axes[0].set_xlabel('Outcome (0: Non-Diabetic, 1: Diabetic)')
axes[0].set_ylabel('Number of Pregnancies')
sns.boxplot(x=df['Outcome'], y=df['Glucose'], ax=axes[1])
axes[1].set_title('Glucose by Outcome')
axes[1].set xlabel('Outcome (0: Non-Diabetic, 1: Diabetic)')
axes[1].set_ylabel('Glucose Level')
sns.boxplot(x=df['Outcome'], y=df['BloodPressure'], ax=axes[2])
axes[2].set_title('Blood Pressure by Outcome')
axes[2].set_xlabel('Outcome (0: Non-Diabetic, 1: Diabetic)')
axes[2].set_ylabel('Blood Pressure')
plt.tight_layout()
plt.show()
```


Box Plots

Los box plots (diagramas de caja) nos ayudan a visualizar la distribución de cada variable y a identificar posibles valores atípicos (outliers).

• Box Plots Individuales: Muestran la distribución general de 'Pregnancies', 'Glucose', y 'BloodPressure'. La caja central representa el rango intercuartílico, la línea dentro de la caja es la mediana, y los "bigotes" se extienden a los valores mínimo y máximo dentro de

1.5 veces el IQR desde los cuartiles. Los puntos fuera de los bigotes se consideran posibles valores atípicos.

- Pay Plate per Outcome: Estas gráficos comparen la distribución de cada variable ('Prognancias' 'Glucosa' 'PlacedProssura') para