Documentação TP3

Marcel Henrique S. Mendes

¹Departamento de Ciência da Computação (DCC) - Universidade Federal de Minas Gerais

marcelmendes@dcc.ufmg.br

1. Descrição geral

O terceiro trabalho prático da disciplina de redes consiste na implementação de um par cliente-servidor para recuperação de dados. A implementação é realizada utilizando chamadas de procedimento remoto (RPC). Foi usado o framework flask para a criação dos endpoints no servidor de acesso. A chamada de procedimento remoto é usada normalmente em ambientes de rede distribuídos, com a intenção de repassar a carga de processamento para um servidor remoto. A chamada normalmente é implementada por mensagens bem definidas entre as duas partes (cliente-servidor), no caso do trabalho implementado ela é realizada a partir do protocolo da camada de aplicação HTTP.

2. Decisões de implementação

No código do servidor foi implementado somente três endpoints, como pedido na especificação, cada um recuperando um tipo específico de dado. O primeiro endpoint recupera todos os dados dos Ixp's, o segundo recupera a lista de todas as redes associadas a um determinado Ixp e o terceiro o nome da rede identificada por net-id.

O desenvolvimento do código do cliente foi mais trabalhoso. A partir de uma requisição http ele recupera os dados dos endpoints. Foi criado um módulo chamado send-request que faz a requisição em todos os casos, basicamente passamos o cabeçalho de requisição GET como parâmetro e obtemos os dados desejados. Para cada requisição o cliente inicia uma nova conexão, apesar de não ser eficiente foi uma decisão tomada para facilitar o projeto.

Para cada endpoint foi criado um módulo para lidar com o recebimento das mensagens com o intuito de tratá-las adequadamente. Cada tipo de requisição tem suas peculiaridades em questão de deixar o dado preparado para a análise posterior. Após os dados estarem de forma organizada as funções de geração dos arquivos podem ser chamadas. Todo o dado necessário pode ser acessado através de três variáveis globais, definidas dessa forma para favorecer a simplicidade da implementação.

3. Análise

Figure 1. CDF- Análise zero

Figure 2. CDF- Análise um

Como podemos perceber no gráfico da análise 0 a probabilidade de uma rede qualquer (escolhida aleatoriamente do conjunto) não estar relacionada a nenhum Ixp é relativamente alta já que está próximo de 65% de chance. Podemos ver também que o número de redes relacionadas com menos de 20 IXP's também é alto. Uma quantidade pequena de IXP's concentram grande parte das redes.

O gráfico da análise 1 é um pouco mais uniforme, mas também nos mostra que a chance de escolhermos um IXP associado a somente uma rede é alta, próxima a 55%.

Como pode ser visto nos aquivos gerados pelo pelo programa, o número de redes é maior que o número de IXP's por esse motivo os gráficos gerados são fiéis ao dados recolhidos. E como já previsto no primeiro gráfico, muitas redes estão associadas a um número pequeno de Pontos de troca de tráfego.

4. Execução

python3 server.py net.json ix.json netixlan.json python3 client.py ip:port (0 ou 1)

References

1. Distribution and Quantile Functions, site www.math.uah.edu, do Department of Mathematical Sciences da University of Alabama in Huntsville