ECA706 - Sistemas de Controle Digital

Universidade Federal de Itajubá - Campus Itajubá Engenharia Elétrica

Aula 02

Amostragem e Reconstrução

Prof. Jeremias B. Machado jeremias@unifei.edu.br

13 de abril de 2020

- Nas aulas anteriores os conceitos de sistemas de controle a dados amostrados (ou sistemas de controle a tempo discreto) foram vistos;
- Vimos que tais sistemas podem ser modelados por equações à diferenças e que os sinais envolvidos são descritos por sequências numéricas;
- Algumas dessas sequências são geradas amostrando-se um sinal contínuo com um intervalo de tempo T;
- Veremos agora como modelar um sistema contínuo numa malha de controle discreta, isto é, o comportamento do sistema em face de um circuito de sample-hold (S/H).

Considere um sinal contínuo que alimenta um circuito S/H como mostrado abaixo:

Assumindo-se que o sinal é amostrado com um período fixo T, tem-se o seguinte gráfico:

Tomando como exemplo o intervalo $0 \le t \le T$, vemos que o retângulo pode ser expresso como um somatório de dois degraus, sendo um de amplitude e(0) em t=0 e o outro de amplitude -e(0) em t=T. Sendo assim, o sinal $\overline{e}(t)$, que é a saída do circuito S/H, pode ser expresso da seguinte forma:

$$\overline{e}(t) = e(0) [u(t) - u(t - T)] + e(T) [u(t - T) - u(t - 2T)] + e(2T) [u(t - 2T) - u(t - 3T)] + \dots$$

Tomando-se a Transformada de Laplace da função acima, tem-se:

$$\overline{E}(s) = e(0) \left[\frac{1}{s} - \frac{\epsilon^{-Ts}}{s} \right] + e(T) \left[\frac{\epsilon^{-Ts}}{s} - \frac{\epsilon^{-2Ts}}{s} \right] + e(2T) \left[\frac{\epsilon^{-2Ts}}{s} - \frac{\epsilon^{-3Ts}}{s} \right] + \dots$$

$$\overline{E}(s) = \left[\frac{1 - \epsilon^{-Ts}}{s} \right] \left[e(0) + e(T)\epsilon^{-Ts} + e(2T)\epsilon^{-2Ts} + \dots \right]$$

$$\overline{E}(s) = \left[\frac{1 - \epsilon^{-Ts}}{s} \right] \left[\sum_{n=0}^{+\infty} e(nT)\epsilon^{-nTs} \right] .$$

Observando-se $\overline{E}(s)$ anteriormente, pode-se notar que esta função é composta de outras duas funções:

- A primeira parcela é função apenas de T e não depende de e(t). Portanto, pode ser expressa através de uma função de transferência independente;
- A segunda parcela é função de T e de e(t). Em geral, representamos esta função como $E^*(s)$, chamada de transformada "estrela" (starred transform):

$$E^*(s) = \sum_{n=0}^{+\infty} e(nT)\epsilon^{-nTs} .$$

Desta forma, o circuito de S/H pode ser expresso da seguinte forma:

- Na figura anterior, a operação denotada pela chave é chamada de amostrador ideal e a operação denotada pela função de transferência é chamada de retentor de ordem zero;
- É importante observar que E*(s) não aparece no sistema físico, a chave não modela fisicamente um amostrador e o bloco da FT não modela fisicamente um retentor de ordem zero. No entanto, a combinação de todos modela matematicamente com precisão a característica de entrada e saída de um circuito S/H;
- A operação simbolizada pelo amostrador na figura anterior não pode ser representada através de uma função de transferência, uma vez que a saída do amostrador é função de e(t) somente para t=kT, onde k=0,1,2. Desta forma, muitos sinais físicos diferentes podem ter o mesmo $E^*(s)$.

O Amostrador Ideal

Relembrando-se $E^*(s)$:

$$E^*(s) = e(0) + e(T)e^{-Ts} + e(2T)e^{-2Ts} + \dots$$

Aplicando-se a Transformada Inversa de Laplace, tem-se:

$$e^*(t) = e(0)\delta(t) + e(T)\delta(t-T) + e(2T)\delta(t-2T) + \dots$$

onde $\delta(t)$ é a função impulso unitário para t=0. Vemos então que $e^*(t)$ é uma sequência de impulsos cujos pesos são iguais aos valores de e(t) em cada instante de amostragem. Denotando a função "trem de impulsos" por:

$$\delta_T(t) = \sum_{n=0}^{\infty} \delta(t - nT) = \delta(t) + \delta(t - T) + \dots ,$$

podemos denotar $e^*(t)$ como:

$$e^*(t) = e(t)\delta_T(t) = e(t)\delta(t) + e(t)\delta(t-T) + \dots$$

- O amostrador que aparece nos circuitos S/H é chamado de amostrador ideal, uma vez que sinais não fisicamente realizáveis (impulsos) aparecem em sua saída;
- A amostragem também pode ser compreendida como um processo de modulação, na qual o trem de pulsos $\delta_T(s)$ é o sinal da portadora (carrier signal) e a entrada e(t) é o sinal modulante (modulating signal). Neste caso, o amostrador é um modulador de impulsos;
- Observe novamente que $e^*(t)$ não é um sinal físico!

O Amostrador Ideal

O Amostrador Ideal

Exemplo 2.1

Determine $E^*(s)$ para e(t) = u(t), o degrau unitário.

Resolução Exemplo 2.1

Aplicando a definição de $E^*(s)$, tem-se:

$$E^*(s) = \sum_{n=0}^{\infty} e(nT)e^{-nTs}$$

$$E^*(s) = e(0) + e(T)e^{-Ts} + e(2T)e^{-2Ts} + \dots$$

$$E^*(s) = 1 + e^{-Ts} + e^{-2Ts} + \dots$$

$$E^*(s) = 1 + e^{-Ts} + \left(e^{-Ts}\right)^2 + \dots$$

$$E^*(s) = \frac{1}{1 - e^{-Ts}}.$$

Avaliando $E^*(s)$

• Encontrar $E^*(s)$ através da definição nem sempre é possível, pois é necessário encontrar uma forma fechada para a série infinita. Entretanto, há uma outra forma para encontrar $E^*(s)$. Utilizando-se a integral de convolução complexa para encontrar $E^*(s)$ a partir de $e^*(t)$, é possível chegar a seguinte fórmula:

$$E^*(s) = \sum_{\text{nos p\'olos de } E(\lambda)} \left[\text{res\'iduos de } E(\lambda) \frac{1}{1 - \epsilon^{-T(s - \lambda)}} \right] \ .$$

• Utilizando-se a integral de convolução complexa para encontrar $E^*(s)$ a partir de $e^*(t)$ chega-se também na seguinte expressão:

$$E^*(s) = \frac{1}{T} \sum_{n=-\infty}^{\infty} E(s + jn\omega_s) + \frac{e(0)}{2}$$
,

na qual ω_s é a frequência de amostragem (em rad/s). Este resultado será útil numa análise posterior.

Propriedade 1 - Periodicidade

A função $E^*(s)$ é periódica em s com período $j\omega_s.$ Isso pode ser visto da seguinte maneira:

$$E^*(s+jm\omega_s) = \sum_{n=0}^{\infty} e(nT)\epsilon^{-nT(s+jm\omega_s)}$$

$$E^*(s+jm\omega_s) = \sum_{s=0}^{\infty} e(nT)\epsilon^{-nTs}\epsilon^{-jnm\omega_sT}$$

$$E^*(s+jm\omega_s) = \sum_{n=0}^{\infty} e(nT)\epsilon^{-nTs} \left(\epsilon^{-j\omega_s T}\right)^{nm}$$

Dado que $\omega_s T=2\pi$, e utilizando a relação de Euler $\epsilon^{-j\theta}=\cos\theta-j\sin\theta$, pode-se reescrever a expressão acima como:

$$E^*(s+jm\omega_s) = \sum_{n=0}^{\infty} e(nT)\epsilon^{-nTs} \left(\cos(2\pi) - j\sin(2\pi)\right)^{nm}$$

$$E^*(s+jm\omega_s) = \sum_{n=0}^{\infty} e(nT)\epsilon^{-nTs}$$

Propriedade 2 - Multiplicação dos Pólos

Se E(s) possui um pólo em $s=s_1$, então $E^*(s)$ deverá ter pólos em $s=s_1\pm jm\omega_s$, onde $m=0,\ 1,\ 2,\ldots$ Considerando e(t) sendo contínua em todos os instantes de amostragem e partindo de:

$$E^*(s) = \frac{1}{T} \sum_{n=-\infty}^{\infty} E(s + jn\omega_s) + \frac{e(0)}{2} .$$

Desenvolvendo a expressão acima:

$$E^*(s) = \frac{1}{T} \left(E(s) + E(s + j\omega_s) + E(s + j2\omega_s) + \dots + E(s - j\omega_s) + \dots + E(s - j2\omega_s) + \dots \right)$$

Desta forma, vemos que se E(s) possui um pólo em $s=s_1$, cada termo adicional na equação acima vai contribuir com um pólo adicional em $s=s_1\pm jm\omega_s$, onde m é inteiro. É importante notar que nada pode ser dito em relação aos zeros de $E^*(s)$, isto é, a localização dos zeros de E(s) não determinam unicamente a localização dos zeros de $E^*(s)$. Entretanto, conforme a primeira propriedade mostrou, os zeros de $E^*(s)$ são periódicos com período $j\omega_s$.

Teorema da Amostragem de Shannon

Uma função do tempo e(t) que não contém componentes de frequência maiores que f_0 [Hz] é unicamente determinada pelos valores de e(t) em qualquer conjunto de pontos de amostragem espaçados de $1/(2f_0)$ segundos entre si.

A demonstração visual do teorema da amostragem pode ser vista da seguinte forma. Considere que uma função e(t) possua a composição espectral como mostrado na figura abaixo.

Logo, a composição espectral de $E^*(j\omega)$ é dada pela figura abaixo:

No entanto, suponha que ω_s é diminuído a tal ponto de e(t) possuir componentes de frequência maiores que $\omega_s/2$. Desta forma, o espectro de $E^*(j\omega)$ será dado pela figura abaixo:

- A amostragem faz com que apareçam diversas "repetições" da composição espectral do sinal original $E(j\omega)$ espaçadas na frequência de $\pm j\omega_s$ uma das outras;
- No caso onde o sinal e(t) não possui componentes espectrais maiores que $j\omega_s/2$, o sinal pode ser reconstruído perfeitamente através de um filtro passabaixa ideal, pois entre $-j\omega_s/2 \le j\omega \le j\omega_s/2$ a amplitude do sinal amostrado é igual ao original;
- No caso em que ω_s é diminuído a tal ponto de e(t) possuir componentes espectrais maiores que $j\omega_s/2$, a amplitude de $E^*(s)$ será diferente entre $-j\omega_s/2 \le j\omega \le j\omega_s/2$, a ponto de em regiões próximas a $\pm j\omega_s/2$ as amplitudes se sobreporem, resultando num sinal totalmente distinto do que verificado na figura anterior. Desta forma, será impossível recuperar este sinal pois ele é completamente distorcido do original;
- Este fenômeno é conhecido na literatura como frequency foldover ou frequency aliasing, pois as componentes espectrais se sobrepoem umas as outras, tornando o sinal indistinguível;
- Em alguns casos recomenda-se a inserção de um filtro passa-baixas conhecido como filtro anti-aliasing antes do amostrador, de forma a filtrar as componentes maiores que $j\omega_s/2$. A frequência de corte do filtro não pode ser feita muito pequena para não desestabilizar o sistema de controle.

Exemplo 2.4

Dado o sinal

$$e(t) = 3\sin 4t + 2\sin 7t ,$$

- ① Liste todas as frequências menores que $\omega=50~{\rm rad/s}$ que estão presentes em e(t);
- ② Supondo que e(t) seja amostrado com $\omega_s = 22 \text{ rad/s}$, liste todas as frequências presentes em $e^*(t)$ que são menores que $\omega = 50 \text{ rad/s}$;
- 3 Qual deveria ser a frequência de amostragem mínima, em Hz, a qual este sinal deveria ser amostrado de forma a não ocorrer o fenômeno do aliasing?

Resolução Exemplo 2.4

- As frequências menores que $\omega=50$ rad/s são $\omega=4$ rad/s e $\omega=7$ rad/s;
- ② Além das duas anteriores, teremos as frequências $\omega = 4 + 22 = 26 \text{ rad/s}, \ \omega = 4 + 2.22 = 48 \text{ rad/s}, \ \omega = -4 + 22 = 18 \text{ rad/s}, \ \omega = -4 + 2.22 = 40 \text{ rad/s}, \ \omega = 7 + 22 = 29 \text{ rad/s}, \ \omega = -7 + 22 = 15 \text{ rad/s}, \ \omega = -7 + 2.22 = 37 \text{ rad/s}.$
- $\ \, \textbf{3} \,$ Dada que a máxima frequência presente em e(t) é $\omega=7$ rad/s, a frequência de amostragem mínima deve ser $\omega_{s_{\min}}=14$ rad/s. Em Hz, tem-se então $f_{s_{\min}}\approx 2,2282$ Hz.

 Na maioria dos sistemas de controle que empregam dados amostrados, um sinal contínuo é reconstruído através de um sinal amostrado, como na figura abaixo.

- Se um sinal contínuo é amostrado é novamente reconstruído, qual a utilizade de todo o processo? Mais a frente veremos que existirá um bloco entre o amostrador e o retentor, sendo este bloco efetivamente o compensador discreto, que será utilizado para melhorar o desempenho e/ou estabilizar o sistema;
- Um método costumeiramente utilizado para a reconstrução de dados é a extrapolação polinomial em série de Taylor em t=nT, da seguinte forma:

$$e(t) = e(nT) + e'(nT)(t - nT) + \frac{e''(nT)}{2!}(t - nT)^2 + \dots;$$

• Neste curso, atentaremos apenas ao retentor de ordem-zero, ou seja, $e_n(t) = e(nT)$. Desta forma:

$$e_n(t) = e(nT)$$
 para $nT \le t \le (n+1)T$.

• Na nossa análise, o sinal de entrada $e_i(t)$ do retentor de ordem zero é sempre uma função impulso de amplitude A. O sinal de saída $e_o(t)$ então é um pulso de amplitude A e duração T segundos, como pode ser visto na figura abaixo:

 O sinal de saída pode ser visto como um somatório de dois degraus de amplitude A:

$$e_o(t) = A \left(u(t) - u(t - T) \right) ,$$

cuja transformada de Laplace é:

$$E_o(s) = A\left(\frac{1}{s} - \frac{\epsilon^{-Ts}}{s}\right) ;$$

ullet Sabendo que a transformada de Laplace do sinal de entrada é A, a função de transferência do retentor de ordem zero é:

$$G_{\mathrm{zoh}}(s) = \frac{E_o(s)}{E_i(s)} = \frac{1 - \epsilon^{-Ts}}{s}$$
.

Tomando a resposta em frequência do retentor de ordem zero, tem-se:

$$G_{\text{zoh}}(j\omega) = \frac{1 - \epsilon^{-j\omega T}}{j\omega} = \frac{1 - \epsilon^{-j\omega T}}{j\omega} \epsilon^{j\omega \frac{T}{2}} \epsilon^{-j\omega \frac{T}{2}}$$

$$G_{\text{zoh}}(j\omega) = \frac{2\epsilon^{-j\omega \frac{T}{2}}}{\omega} \left(\frac{\epsilon^{j\omega \frac{T}{2}} - \epsilon^{-j\omega \frac{T}{2}}}{j2}\right) = \frac{2\epsilon^{-j\omega \frac{T}{2}}}{\omega} \sin\left(\omega \frac{T}{2}\right)$$

$$G_{\text{zoh}}(j\omega) = T\epsilon^{-j\omega \frac{T}{2}} \frac{\sin\left(\omega \frac{T}{2}\right)}{\omega \frac{T}{2}} = T\epsilon^{-j\omega \frac{T}{2}} \operatorname{sinc}\left(\omega \frac{T}{2}\right)$$

Tomando módulo e fase de $G_{zoh}(j\omega)$, tem-se:

$$\begin{split} |G_{\rm zoh}(j\omega)| &= T \Big| {\rm sinc} \left(\omega \frac{T}{2} \right) \Big| & \qquad \angle G_{\rm zoh}(j\omega) = -\omega \frac{T}{2} \ . \\ |G_{\rm zoh}(j\omega)| &= T \Big| {\rm sinc} \left(\pi \frac{\omega}{\omega_s} \right) \Big| & \qquad \angle G_{\rm zoh}(j\omega) = -\pi \frac{\omega}{\omega_s} \ . \end{split}$$

- Desta forma, vemos que o retentor de ordem zero não altera as frequências que possuem componentes do sinal amostrado, mas apenas "modula" a amplitude das componentes espectrais de acordo com o módulo de $G_{\rm zoh}(j\omega)$;
- A fase do sinal amostrado sofre um atraso de até $-\pi$ rad.

Modelos do ADC e DAC

Modelando o ADC

Iremos assumir que:

- As saídas do ADC são iguais às entradas em magnitude, ou seja, o erro de quantização é desprezível;
- O ADC fornece uma saída digital instantaneamente;
- ullet A amostragem é síncrona, ou seja, T é constante.

Desta forma, o ADC pode ser considerado como um amostrador ideal.

Modelando o DAC

Iremos assumir que:

- As saídas do DAC são iguais às entradas em magnitude, ou seja, o erro de quantização é desprezível;
- O ADC fornece uma saída analógica instantaneamente;
- A saída analógica do DAC é constante durante o período de amostragem.

Desta forma, o DAC pode ser considerado como um retentor de ordem zero ideal.