Formale Grundlagen der Informatik I 4. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Davorin Lešnik, Ph.D. Sommersemester 2013 06. 05. 2013

Carsten Rösnick

Wichtiger Hinweis: Denken Sie daran, dass der 9.5. ein Feiertag ist und somit die Übung 9 auf den 8.5. um 8:00 in S103/204 verschoben wird.

Gruppenübung

Aufgabe G7 (DEA Minimierung)

Betrachten Sie den folgenden DEA, den wir auf Minimalität prüfen wollen:

Formal ist der Automat $\mathscr A$ durch das Fünftupel (Σ,Q,q_0,δ,A) beschrieben. Weiter bezeichne $\hat{\delta}$ die *erweiterte Übergangsfunktion* (Skript, Definition 2.2.4): $\hat{\delta}(q,\epsilon) := q$ und $\hat{\delta}(q,wa) := \delta\left(\hat{\delta}(q,w),a\right)$ für alle $a \in \Sigma, w \in \Sigma^*$ und $q \in Q$.

- (a) Geben Sie die Zustände an, in denen sich der DEA ⋪ nach Ausführung der nachfolgenden Übergänge befindet:
 - i. $\delta(q_0, \epsilon)$;
 - ii. $\hat{\delta}(q_0, a)$;
 - iii. $\hat{\delta}(q_0, aa)$;
 - iv. $\hat{\delta}(q_0, abbbaa)$.
- (*) Definiere durch $\mathcal{L}_q(\mathcal{A}) := \{ w \in \Sigma^* \mid \hat{\delta}(q, w) \in A \}$ die Menge aller Worte $w \in \Sigma^*$, die akzeptiert würden, wäre q der Startzustand. (Auch: Die Menge aller w, die auf einem Pfad von q zu einem akzeptierenden Zustand akzeptiert werden.) Geben Sie die Menge $\mathcal{L}_{q_3}(\mathcal{A})$ explizit an.
- (b) Gegeben ist die folgende unvollständige Tabelle für die Relation \nsim (Skript Seite 39, *Minimierung eines DFA*). (Ein \times an der Stelle p,q in der Tabelle bedeutet, dass $p \nsim q$.) Vervollständigen Sie die Tabelle und geben Sie ggf. ein Wort an, für das diese Unterscheidung notwendig ist, d. h. ein Wort w, das zu L_q gehört, aber nicht zu $L_{q'}$ (oder umgekehrt).

%	0	1	2	3	4	5	6	7
0			×	×	×			×
1			×	×	×			×
2	×	×		×		×	×	×
3	× × ×	×	×		×	×	×	×
4	×	×		×		×	×	×
5			×	×	×		×	×
6			×	×	×	×		×
7	×	×	×	×	×	×	×	

Aufgabe G8 ((Nicht-)Regularität von Sprachen)

(a) Sei L eine reguläre Sprache über einem Alphabet Σ . Formal geschrieben lautet das Pumping-Lemma wie folgt (vgl. Skript Lemma 2.5.2):

$$\exists n \in \mathbb{N} . \forall x \in L . \Big(|x| \ge n \implies \exists u, v, w \in \Sigma^* . \Big(x = uvw \land |uv| \le n \land |v| \ge 1 \land \forall m \in \mathbb{N} . (uv^m w \in L) \Big) \Big)$$

$$(1)$$

Geben Sie die Negation von (1) an (d. h. die Aussage, dessen Korrektheit Sie beweisen müssen, wenn Sie mittels Pumping-Lemmas die *Nichtregularität* der Sprache *L* nachweisen wollen).

(b) Zeigen Sie sowohl mittels Myhill-Nerode als auch mittels Pumping-Lemmas, dass die Sprache

$$L = \{a^m b^n \mid m, n \in \mathbb{N}, \ m \ge n\}$$

nicht regulär ist.

Aufgabe G9 (Grammatiken)

Gegeben sei die Grammatik $G = (\Sigma, V, P, X_0)$ mit $\Sigma := \{a, b\}, V := \{X_0, X_1, X_2, X_3\}$ und

$$\begin{array}{cccc} P\colon & X_0 & \to & aX_1 \mid bX_0 \\ & X_1 & \to & aX_0 \mid bX_2 \\ & X_2 & \to & aX_3 \mid bX_0 \\ & X_3 & \to & aX_0 \mid bX_3 \mid \varepsilon \end{array}$$

Welche der nachfolgenden Worte sind in der Grammatik G ableitbar?

aaabbba, bbaaaba, bbababb

Bonus: Ist die von der Grammatik *G* beschriebene Sprache regulär?

Hausübung

- Abgabe am 15.5.-17.5. 2013 in der Übung. Denken Sie daran Ihre Antworten zu begründen. -

Aufgabe H8 (NEA zu DEA)

Betrachten Sie den NEA A:

(5 Punkte)

$$\mathscr{A}: \longrightarrow 0 \xrightarrow{a} 1 \xrightarrow{a,b} 2$$

- (a) Konstruieren Sie mittels Potenzmengenkonstruktion (Skript, Abschnitt 2.2.3) einen DEA \mathcal{B} , der die gleiche Sprache wie \mathcal{A} erkennt (d. h. $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{B})$).
- (b) Konstruieren Sie aus \mathcal{B} einen *minimalen* DEA \mathcal{C} , der die gleiche Sprache erkennt. Geben Sie dazu (wie in **Aufgabe G7**) die Relationen \nsim_i in tabellarischer Form an.

Aufgabe H9 (Regularität von Sprachen)

(5 Punkte)

Sei Σ ein Alphabet und L eine nicht-leere reguläre Σ -Sprache. Beweisen oder widerlegen Sie die Regularität jeder nachfolgenden Sprache.

- (a) $L_1 := \{ u \in \Sigma^* \mid \exists v \in \Sigma^* . u \cdot v \in L \}$
- (b) $L_2 := \{ w \in L \mid \exists u \in \Sigma^* \setminus L . \exists v \in \Sigma^+ . u \cdot v = w \}$
- (c) $L_3 := \{x^p y \mid y \in L, \text{ Primzahl } p \in \mathbb{N}\},$ wo $x \notin \Sigma$ ein festes Element ist (und so L_3 eine Sprache über das Alphabet $\Sigma \cup \{x\}$ ist).

Minitest

Aufgabe M10

Sei $L \subseteq \Sigma^*$ eine beliebige Sprache. Bestimmen Sie die korrekten Implikationen:

L ist regulär

\rightleftharpoons	L ist	end	lich

L wird von einem DFA akzeptiert

L wird von einem NFA akzeptiert

L enthält eine reguläre Sprache, d.h. es gibt eine reguläre

 $= \qquad \text{Sprache } L_1 \subseteq \Sigma^* \text{ mit } L_1 \subseteq L$

L ist Teilmenge einer regulären Sprache, d.h. es gibt eine

 \leftarrow reguläre Sprache $L_2 \subseteq \Sigma^*$ mit $L \subseteq L_2$

Aufgabe M11

Kennzeichen Sie diejenige der folgenden Sprachen, die regulär sind.

 \Box L(aaaaa a* bbbbb b*)

 $\square \{(ab)^n \mid n \in \mathbb{N}, n \ge 5\}$

 $\Box \{a^n b^n \mid n \in \mathbb{N}, n \ge 5\}$

 $\square \{a^m b^n \mid m, n \in \mathbb{N}, m, n \geq 5\}$

Aufgabe M12

Sei L die Sprache, beschrieben durch die Grammatik $G=(\Sigma,V,P,X_0)$ mit $\Sigma=\{a,b\},\ V=\{X_0\}$ und $P:\ X_0\to aX_0b\mid \varepsilon.$ Für welche Wortpaare w,w' gilt $w\sim_L w'$?

 \Box a, b

 \Box aabb, aabb

 \Box abab, baba

 \Box ab, ba

 \Box aab, aabb