

DRAM

MT4LC4M4E8, MT4C4M4E8 MT4LC4M4E9, MT4C4M4E9

FEATURES

Voltages

3.3V

5V

- Industry-standard x4 pinout, timing, functions and packages
- State-of-the-art, high-performance, low-power CMOS silicon-gate process
- Single power supply $(+3.3V \pm 0.3V \text{ or } +5V \pm 10\%)$
- All inputs, outputs and clocks are TTL-compatible
- Refresh modes: RAS#-ONLY, HIDDEN and CAS#-BEFORE-RAS# (CBR)
- Optional Self Refresh (S) for low-power data retention
- 11 row, 11 column addresses (2K refresh) or 12 row, 10 column addresses (4K refresh)
- Extended Data-Out (EDO) PAGE MODE access cycle
- 5V-tolerant inputs and I/Os on 3.3V devices

OPTIONS MARKING

LC

C

S

0 v	O
• Refresh Addressing 2,048 (i.e. 2K) Rows	E8
4,096 (i.e. 4K) Rows	E9
• Packages Plastic SOJ (300 mil) Plastic TSOP (300 mil)	DJ TG
• Timing 50ns access	-5

Timing	
50ns access	-5
60ns access	-6
• Refresh Rates	
Standard Refresh	None

• Part Number Example: MT4LC4M4E8DJ-6

Note: The 4 Meg x 4 EDO DRAM base number differentiates the offerings in two places - $MT4\underline{LC}4M4\underline{E8}$. The third field distinguishes the low voltage offering: LC designates Vcc = 3.3V and C designates Vcc = 5V. The fifth field distinguishes various options: E8 designates a 2K refresh and E9 designates a 4K refresh for EDO DRAMs.

KEY TIMING PARAMETERS

Self Refresh (128ms period)

SPEED	^t RC	^t RAC	^t PC	^t AA	tCAC	tCAS
-5	84ns	50ns	20ns	25ns	13ns	8ns
-6	104ns	60ns	25ns	30ns	15ns	10ns

PIN ASSIGNMENT (Top View) 24/26-Pin SOJ **24/26-Pin TSOP** (DA-2) (DB-2) Vcc Ⅲ 1• 26 m Vss ☐ Vss 25 DQ4 24 DQ3 23 CAS# DO2 TH 3 WE# 🖂 4 RAS# ITI 5 22 OE# 21 A9 RAS# 4 *NC/A11 🖽 6 *NC/A11 6 A10 🖽 8 19 □ A8 A10 8 19 □ A8 A0 III 9 A1 III 10 9 10 11 18 A7 17 A6 16 A5 A0 A2 III 11 A3 III 12 Α1 16 🞞 A5 A2 15 □ A4 A4 14 TVss АЗ 12 Vcc 🎞 13 15 * NC on 2K refresh and A11 on 4K refresh options. Note: The "#" symbol indicates signal is active LOW.

4 MEG x 4 EDO DRAM PART NUMBERS

PART NUMBER	Vcc	REFRESH	PACKAGE	REFRESH
MT4LC4M4E8DJ	3.3V	2K	SOJ	Standard
MT4LC4M4E8DJS	3.3V	2K	SOJ	Self
MT4LC4M4E8TG	3.3V	2K	TSOP	Standard
MT4LC4M4E8TGS	3.3V	2K	TSOP	Self
MT4LC4M4E9DJ	3.3V	4K	SOJ	Standard
MT4LC4M4E9DJS	3.3V	4K	SOJ	Self
MT4LC4M4E9TG	3.3V	4K	TSOP	Standard
MT4LC4M4E9TGS	3.3V	4K	TSOP	Self
MT4C4M4E8DJ	5V	2K	SOJ	Standard
MT4C4M4E8DJS	5V	2K	SOJ	Self
MT4C4M4E8TG	5V	2K	TSOP	Standard
MT4C4M4E8TGS	5V	2K	TSOP	Self
MT4C4M4E9DJ	5V	4K	SOJ	Standard
MT4C4M4E9DJS	5V	4K	SOJ	Self
MT4C4M4E9TG	5V	4K	TSOP	Standard
MT4C4M4E9TGS	5V	4K	TSOP	Self

GENERAL DESCRIPTION

The 4 Meg x 4 DRAM is a randomly accessed, solid-state memory containing 16,777,216 bits organized in a x4 configuration. RAS# is used to latch the row address (first 11 bits for 2K and first 12 bits for 4K). Once the page has been opened by RAS#, CAS# is used to latch the column address

GENERAL DESCRIPTION (continued)

(the latter 11 bits for 2K and the latter 10 bits for 4K, address pins A10 and A11 are "don't care"). READ and WRITE cycles are selected with the WE# input.

A logic HIGH on WE# dictates READ mode, while a logic LOW on WE# dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE# or CAS#, whichever occurs last. An EARLY WRITE occurs when WE# is taken LOW prior to CAS# falling. A LATE WRITE or READ-MODIFY-WRITE occurs when WE# falls after CAS# is taken LOW. During EARLY WRITE cycles, the data outputs (Q) will remain High-Z regardless of the state of OE#. During LATE WRITE or READ-MODIFY-WRITE cycles, OE# must be taken HIGH to disable the data outputs prior to applying input data. If a LATE WRITE or READ-MODIFY-WRITE is attempted while keeping OE# LOW, no write will occur, and the data outputs will drive read data from the accessed location.

The four data inputs and the four data outputs are routed through four pins using common I/O, and pin direction is controlled by WE# and OE#.

PAGE ACCESS

PAGE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address-defined page boundary. The PAGE cycle is always initiated

with a row address strobed-in by RAS#, followed by a column address strobed-in by CAS#. CAS# may be toggled-in by holding RAS# LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS# HIGH terminates the PAGE MODE of operation, i.e., closes the page.

EDO PAGE MODE

The 4 Meg x 4 EDO DRAM provides EDO PAGE MODE, which is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after CAS# returns HIGH. EDO allows CAS# precharge time (^tCP) to occur without the output data going invalid. This elimination of CAS# output control allows pipeline READs.

FAST PAGE MODE DRAMs have traditionally turned the output buffers off (High-Z) with the rising edge of CAS#. EDO PAGE MODE DRAMs operate like FAST PAGE MODE DRAMs, except data will remain valid or become valid after CAS# goes HIGH during READs, provided RAS# and OE# are held LOW. If OE# is pulsed while RAS# and CAS# are LOW, data will toggle from valid data to High-Z and back to the same valid data. If OE# is toggled or pulsed after CAS# goes HIGH while RAS# remains LOW, data will transition to and remain High-Z (refer to

Figure 1
OE# CONTROL OF DQs

Figure 1). WE# can also perform the function of disabling the output devices under certain conditions, as shown in Figure 2.

During an application, if the DQ outputs are wire OR'd, OE# must be used to disable idle banks of DRAMs. Alternatively, pulsing WE# to the idle banks during CAS# high time will also High-Z the outputs. Independent of OE# control, the outputs will disable after ^tOFF, which is referenced from the rising edge of RAS# or CAS#, whichever occurs last.

REFRESH

Preserve correct memory cell data by maintaining power and executing any RAS# cycle (READ, WRITE) or RAS# refresh cycle (RAS#-ONLY, CBR or HIDDEN) so that all combinations of RAS# addresses (2,048 for 2K and 4,096 for 4K) are executed within [†]REF (MAX), regardless of sequence. The CBR and Self Refresh cycles will invoke the internal refresh counter for automatic RAS# addressing.

An optional Self Refresh mode is also available on the S version. The "S" option allows the user the choice of a fully static, low-power data retention mode or a dynamic refresh mode at the extended refresh period of 128ms. The optional Self Refresh feature is initiated by performing a CBR Re-

fresh cycle and holding RAS# LOW for the specified tRASS . Additionally, the "S" option allows for an extended refresh period of 128ms, or 31.25 μ s per row for a 4K refresh and 62.5 μ s per row for a 2K refresh if using distributed CBR Refresh. This refresh rate can be applied during normal operation, as well as during a standby or BATTERY BACKUP mode

The Self Refresh mode is terminated by driving RAS# HIGH for a minimum time of ^tRPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the RAS# LOW-to-HIGH transition. If the DRAM controller uses a distributed refresh sequence, a burst refresh is not required upon exiting Self Refresh. However, if the DRAM controller utilizes a RAS#-ONLY or burst refresh sequence, all rows must be refreshed within the average internal refresh rate, prior to the resumption of normal operation.

STANDBY

Returning RAS# and CAS# HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is preconditioned for the next cycle during the RAS# HIGH time.

Figure 2
WE# CONTROL OF DQs

FUNCTIONAL BLOCK DIAGRAM - 2K REFRESH

FUNCTIONAL BLOCK DIAGRAM - 4K REFRESH

TRUTH TABLE

						ADDRESSES		DATA-IN/OUT
FUNCTION		RAS#	CAS#	WE#	OE#	^t R	^t C	DQ1-DQ4
Standby		Н	Н→Х	Х	Х	Х	Χ	High-Z
READ		L	L	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	L	X	ROW	COL	Data-In
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In
EDO-PAGE-MODE	1st Cycle	L	$H{ ightarrow} L$	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out
EDO-PAGE-MODE	1st Cycle	L	$H{\to}L$	L	Х	ROW	COL	Data-In
EARLY WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
	Any Cycle	L	L→H	Н	L	n/a	n/a	Data-Out
EDO-PAGE-MODE	1st Cycle	L	$H{\to}L$	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Data-In
RAS#-ONLY REFRESH	AS#-ONLY REFRESH		Н	X	X	ROW	n/a	High-Z
CBR REFRESH		H→L	L	Н	X	X X		High-Z
SELF REFRESH		H→L	L	Н	X	X	Χ	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Pin Relative to Vss:	
3.3V	1V to +4.6V
5V	1V to +7V
Voltage on NC, Inputs or I/O Pins Relative	to Vss:
3.3V	1V to +5.5V
5V	1V to +7V
Operating Temperature, T _A (ambient)	. 0°C to +70°C
Storage Temperature (plastic)5	
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS

(Notes: 1)

		3.3V		5V			
PARAMETER/CONDITION	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	3.0	3.6	4.5	5.5	V	
Input High Voltage: Valid Logic 1; all inputs, I/Os and any NC	Vih	2.0	5.5	2.4	Vcc +1	V	
Input Low Voltage: Valid Logic 0; all inputs, I/Os and any NC	VIL	-1.0	0.8	-0.5	0.8	V	
Input Leakage Current: Any input at V_{IN} (0V \leq $V_{IN} \leq$ V_{IH} [MAX]); all other pins not under test = 0V	lı	-2	2	-2	2	μΑ	4
Output High Voltage: IOUT = -2mA (3.3V), -5mA (5V)	Vон	2.4	-	2.4	-	V	
Output Low Voltage: IOUT = 2mA (3.3V), 4.2mA (5V)	Vol	-	0.4	-	0.4	V	
Output Leakage Current: Any output at Vo∪⊤ (0V ≤ Vo∪⊤ ≤ 5.5V); DQ is disabled and in High-Z state	loz	-5	5	-5	5	μА	

ICC OPERATING CONDITIONS AND MAXIMUM LIMITS

(Notes: 1, 2, 3)

			3.3V		5V			
PARAMETER/CONDITION	SYM	SPEED	2K Refresh	4K Refresh	2K Refresh	4K Refresh	UNITS	NOTES
STANDBY CURRENT: TTL (RAS# = CAS# = VIH)	Icc1	ALL	1	1	1	1	mA	
STANDBY CURRENT: CMOS (non-S version only) (RAS# = CAS# = other inputs = Vcc -0.2V)	lcc2	ALL	500	500	500	500	μΑ	
STANDBY CURRENT: CMOS (S version only) (RAS# = CAS# = other inputs = Vcc -0.2V)	Icc2	ALL	150	150	150	150	μΑ	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS#, CAS#, address cycling: ^t RC = ^t RC [MIN])	Іссз	-5 -6	110 100	90 80	140 130	120 110	mA	5, 6
OPERATING CURRENT: EDO PAGE MODE Average power supply current (RAS# = VIL, CAS#, address cycling: ^t PC = ^t PC [MIN])	Icc4	-5 -6	110 100	100 90	110 100	100 90	mA	5, 6
REFRESH CURRENT: RAS#-ONLY Average power supply current (RAS# cycling, CAS# = V _{IH} : ^t RC = ^t RC [MIN])	lcc5	-5 -6	110 100	90 80	140 130	120 110	mA	5, 6
REFRESH CURRENT: CBR Average power supply current (RAS#, CAS#, address cycling: ^t RC = ^t RC [MIN])	Icc6	-5 -6	110 100	90 80	140 130	120 110	mA	5, 7
REFRESH CURRENT: Extended (S version only) Average power supply current: CAS# = 0.2V or CBR cycling; RAS# = ^t RAS (MIN); WE# =	lcc7	ALL	300	300	300	300	μΑ	5, 7
Vcc -0.2V; A0-A11,OE# and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	1007	^t RC	62.5	31.25	62.5	31.25	μs	25
REFRESH CURRENT: Self (S version only) Average power supply current: CBR with RAS# ≥ ^t RASS (MIN) and CAS# held LOW; WE# = Vcc -0.2V; A0-A11, OE# and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	Icc8	ALL	300	300	300	300	μΑ	5, 7

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Address pins	C _{I1}	5	pF	8
Input Capacitance: RAS#, CAS#, WE#, OE#	C ₁₂	7	pF	8
Input/Output Capacitance: DQ	Сю	7	рF	8

AC ELECTRICAL CHARACTERISTICS

(Notes: 2, 3, 9, 10, 11, 12, 17) ($Vcc [MIN] \le Vcc \le Vcc [MAX]$)

AC CHARACTERISTICS			-5	-6			
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column address	^t AA		25		30	ns	
Column address setup to CAS# precharge	tACH	12		15		ns	
Column address hold time (referenced to RAS#)	^t AR	38		45		ns	
Column address setup time	tASC	0		0		ns	
Row address setup time	tASR	0		0		ns	
Column address to WE# delay time	^t AWD	42		49		ns	13
Access time from CAS#	tCAC		13		15	ns	14
Column address hold time	^t CAH	8		10		ns	
CAS# pulse width	tCAS	8	10,000	10	10,000	ns	
CAS# LOW to "don't care" during Self Refresh	^t CHD	15		15		ns	
CAS# hold time (CBR Refresh)	^t CHR	8		10		ns	7
CAS# to output in Low-Z	^t CLZ	0		0		ns	
Data output hold after next CAS# LOW	^t COH	3		3		ns	
CAS# precharge time	^t CP	8		10		ns	15
Access time from CAS# precharge	^t CPA		28		35	ns	
CAS# to RAS# precharge time	^t CRP	5		5		ns	
CAS# hold time	^t CSH	38		45		ns	
CAS# setup time (CBR Refresh)	tCSR	5		5		ns	
CAS# to WE# delay time	tCWD	28		35		ns	13
Write command to CAS# lead time	^t CWL	8		10		ns	
Data-in hold time	^t DH	8		10		ns	16
Data-in setup time	^t DS	0		0		ns	16
Output disable	^t OD	0	12	0	15	ns	
Output Enable	^t OE		12		15	ns	17
OE# hold time from WE# during READ-MODIFY-WRITE cycle	^t OEH	8		10		ns	18
OE# HIGH hold from CAS# HIGH	tOEHC	5		10		ns	18
OE# HIGH pulse width	^t OEP	5		5		ns	
OE# LOW to CAS# HIGH setup time	^t OES	4		5		ns	
Output buffer turn-off delay	^t OFF	0	12	0	15	ns	20

AC ELECTRICAL CHARACTERISTICS

(Notes: 2, 3, 9, 10, 11, 12, 17) ($Vcc [MIN] \le Vcc \le Vcc [MAX]$)

AC CHARACTERISTICS			-5	-6			
PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	UNITS	NOTES
OE# setup prior to RAS# during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	20		25		ns	
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	47		56		ns	
Access time from RAS#	^t RAC		50		60	ns	19
RAS# to column address delay time	^t RAD	9		12		ns	21
Row address hold time	^t RAH	9		10		ns	
RAS# pulse width	tRAS	50	10,000	60	10,000	ns	
RAS# pulse width (EDO PAGE MODE)	tRASP	50	125,000	60	125,000	ns	
RAS# pulse width during Self Refresh	tRASS	100		100		μs	
Random READ or WRITE cycle time	^t RC	84		104		ns	
RAS# to CAS# delay time	^t RCD	11		14		ns	22
Read command hold time (referenced to CAS#)	^t RCH	0		0		ns	23
Read command setup time	tRCS	0		0		ns	
Refresh period (2,048 cycles)	tREF.		32		32	ms	
Refresh period (4,096 cycles)	tREF.		64		64	ms	
Refresh period S version	tREF.		128		128	ms	
RAS# precharge time	^t RP	30		40		ns	
RAS# to CAS# precharge time	tRPC	5		5		ns	
RAS# precharge time exiting Self Refresh	t _{RPS}	90		105		ns	
Read command hold time (referenced to RAS#)	^t RRH	0		0		ns	23
RAS# hold time	^t RSH	13		15		ns	
READ WRITE cycle time	^t RWC	116		140		ns	
RAS# to WE# delay time	^t RWD	67		79		ns	13
Write command to RAS# lead time	^t RWL	13		15		ns	
Transition time (rise or fall)	t _T	2	50	2	50	ns	
Write command hold time	tWCH	8		10		ns	
Write command hold time (referenced to RAS#)	tWCR	38		45		ns	
WE# command setup time	tWCS	0		0		ns	13
Output disable delay from WE#	^t WHZ	0	12	0	15	ns	
Write command pulse width	tWP	5		5		ns	
WE# pulse to disable at CAS# HIGH	^t WPZ	10		10		ns	
WE# hold time (CBR Refresh)	tWRH	8		10		ns	
WE# setup time (CBR Refresh)	tWRP	8		10		ns	

NOTES

- 1. All voltages referenced to Vss.
- 2. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C \leq TA \leq 70°C) is ensured.
- 3. An initial pause of 100µs is required after power-up, followed by eight RAS# refresh cycles (RAS#-ONLY or CBR with WE# HIGH), before proper device operation is ensured. The eight RAS# cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 4. NC pins are assumed to be left floating and are not tested for leakage.
- 5. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 6. Column address changed once each cycle.
- 7. Enables on-chip refresh and address counters.
- 8. This parameter is sampled. $Vcc = Vcc_{MIN}$; f = 1 MHz.
- 9. AC characteristics assume ${}^{t}T = 2.5$ ns.
- 10. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 11. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 12. Measured with a load equivalent to two TTL gates and 100pF; and Vol = 0.8V and Voh = 2V.
- 13. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. ^tRWD, ^tAWD and ^tCWD apply to READ-MODIFY-WRITE cycles. If ${}^{t}WCS \ge {}^{t}WCS$ (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tWCS < ^tWCS (MIN) and ^tRWD ≥ ${}^{t}RWD$ (MIN), ${}^{t}AWD \ge {}^{t}AWD$ (MIN) and ${}^{t}CWD \ge$ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE# held HIGH and WE# taken LOW after CAS# goes LOW results in a LATE WRITE (OE#-controlled) cycle. tWCS, tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.
- 14. Requires that ^tAA and ^tRAC are not violated.
- 15. If CAS# is LOW at the falling edge of RAS#, Q will be maintained from the previous cycle. To initiate a new

- cycle and clear the data-out buffer, CAS# must be pulsed HIGH for ^tCP.
- 16. These parameters are referenced to CAS# leading edge in EARLY WRITE cycles and WE# leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 17. If OE# is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted. Additionally, WE# must be pulsed during CAS# HIGH time in order to place I/O buffers in High-Z.
- 18. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE# HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS# remains LOW and OE# is taken back LOW after ^tOEH is met. If CAS# goes HIGH prior to OE# going back LOW, the DQs will remain open.
- 19. Requires that ^tAA and ^tCAC are not violated.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol. It is referenced from the rising edge of RAS# or CAS#, whichever occurs last.
- 21. The ^tRAD (MAX) limit is no longer specified. ^tRAD (MAX) was specified as a reference point only. If ^tRAD was greater than the specified ^tRAD (MAX) limit, then access time was controlled exclusively by ^tAA (^tRAC and ^tCAC no longer applied). With or without the ^tRAD (MAX) limit, ^tAA, ^tRAC and ^tCAC must always be met.
- 22. The ^tRCD (MAX) limit is no longer specified. ^tRCD (MAX) was specified as a reference point only. If ^tRCD was greater than the specified ^tRCD (MAX) limit, then access time was controlled exclusively by ^tCAC (^tRAC [MIN] no longer applied). With or without the ^tRCD limit, ^tAA and ^tCAC must always be met.
- 23. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE# is LOW and OE# is HIGH.
- 25. The refresh period is extended from 32ms (2K refresh) or 64ms (4K refresh) to 128ms (both 2K and 4K refreshes). For 4K refresh, $^{t}RC = 31.25\mu s$ (128ms/4,096 rows = 31.25 μs) and for 2K refresh, $^{t}RC = 62.5\mu s$ (128ms/2,048 rows = 62.5 μs).

READ CYCLE

		-5		-6	
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t AA		25		30	ns
^t ACH	12		15		ns
^t AR	38		45		ns
tASC	0		0		ns
^t ASR	0		0		ns
^t CAC		13		15	ns
^t CAH	8		10		ns
^t CAS	8	10,000	10	10,000	ns
^t CLZ	0		0		ns
^t CRP	5		5		ns
^t CSH	38		45		ns
^t OD	0	12	0	15	ns
^t OE		12		15	ns

	-	5	-	6	
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t OFF	0	12	0	15	ns
tRAC		50		60	ns
^t RAD	9		12		ns
^t RAH	9		10		ns
tRAS	50	10,000	60	10,000	ns
tRC	84		104		ns
tRCD	11		14		ns
tRCH	0		0		ns
tRCS	0		0		ns
^t RP	30		40		ns
tRRH	0		0		ns
tRSH	13		15		ns

NOTE: 1. ^tOFF is referenced from rising edge of RAS# or CAS#, whichever occurs last.

EARLY WRITE CYCLE

	-	5	-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
tACH	12		15		ns
^t AR	38		45		ns
tASC	0		0		ns
^t ASR	0		0		ns
^t CAH	8		10		ns
tCAS	8	10,000	10	10,000	ns
^t CRP	5		5		ns
tCSH	38		45		ns
tCWL	8		10		ns
^t DH	8		10		ns
^t DS	0		0		ns
tRAD	9		12		ns

	-5		-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t RAH	9		10		ns
tRAS	50	10,000	60	10,000	ns
^t RC	84		104		ns
tRCD	11		14		ns
^t RP	30		40		ns
tRSH	13		15		ns
^t RWL	13		15		ns
tWCH	8		10		ns
tWCR	38		45		ns
tWCS	0		0		ns
tWP	5		5		ns

READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

		-5	-	-6	
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t AA		25		30	ns
^t ACH	12		15		ns
^t AR	38		45		ns
tASC	0		0		ns
^t AWD	42		49		ns
^t ASR	0		0		ns
^t CAC		13		15	ns
^t CAH	8		10		ns
tCAS	8	10,000	10	10,000	ns
^t CLZ	0		0		ns
^t CRP	5		5		ns
^t CSH	38		45		ns
tCWD	28		35		ns
^t CWL	8		10		ns
^t DH	8		10		ns
^t DS	0		0		ns

		5		6	
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t OD	0	12	0	15	ns
^t OE		12		15	ns
^t OEH	8		10		ns
tRAC		50		60	ns
^t RAD	9		12		ns
^t RAH	9		10		ns
^t RAS	50	10,000	60	10,000	ns
^t RCD	11		14		ns
^t RCS	0		0		ns
^t RP	30		40		ns
tRSH	13		15		ns
^t RWC	116		140		ns
^t RWD	67		79		ns
^t RWL	13		15		ns
tWP	5		5		ns

EDO-PAGE-MODE READ CYCLE

		-5	-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t AA		25		30	ns
tACH	12		15		ns
^t AR	38		45		ns
tASC	0		0		ns
tASR	0		0		ns
tCAC		13		15	ns
tCAH	8		10		ns
tCAS	8	10,000	10	10,000	ns
^t CLZ	0		0		ns
^t COH	3		3		ns
^t CP	8		10		ns
^t CPA		28		35	ns
^t CRP	5		5		ns
tCSH	38		45		ns
^t OD	0	12	0	15	ns
^t OE		12		15	ns

	-	5	-	6	
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t OEHC	5		10		ns
^t OEP	5		5		ns
^t OES	4		5		ns
^t OFF	0	12	0	15	ns
^t PC	20		25		ns
^t RAC		50		60	ns
^t RAD	9		12		ns
^t RAH	9		10		ns
^t RASP	50	125,000	60	125,000	ns
^t RCD	11		14		ns
tRCH	0		0		ns
tRCS	0		0		ns
^t RP	30		40		ns
^t RRH	0		0		ns
^t RSH	13		15		ns

EDO-PAGE-MODE EARLY WRITE CYCLE

DON'T CARE

₩ UNDEFINED

	-	5	-	6	
SYMBOL	MIN	MAX	MIN	MAX	UNITS
tACH	12		15		ns
^t AR	38		45		ns
tASC	0		0		ns
tASR	0		0		ns
^t CAH	8		10		ns
^t CAS	8	10,000	10	10,000	ns
^t CP	8		10		ns
^t CRP	5		5		ns
^t CSH	38		45		ns
^t CWL	8		10		ns
^t DH	8		10		ns
^t DS	0		0		ns

	-	5	-	6	
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t PC	20		25		ns
^t RAD	9		12		ns
^t RAH	9		10		ns
tRASP	50	125,000	60	125,000	ns
tRCD	11		14		ns
^t RP	30		40		ns
tRSH	13		15		ns
^t RWL	13		15		ns
tWCH	8		10		ns
tWCR	38		45		ns
tWCS	0		0		ns
tWP	5		5		ns

EDO-PAGE-MODE READ-WRITE CYCLE

(LATE WRITE and READ-MODIFY-WRITE cycles)

	-	5	-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t AA		25		30	ns
^t AR	38		45		ns
tASC	0		0		ns
^t ASR	0		0		ns
^t AWD	42		49		ns
tCAC		13		15	ns
^t CAH	8		10		ns
tCAS	8	10,000	10	10,000	ns
^t CLZ	0		0		ns
^t CP	8		10		ns
^t CPA		28		35	ns
^t CRP	5		5		ns
^t CSH	38		45		ns
tCWD	28		35		ns
^t CWL	8		10		ns
^t DH	8		10		ns
^t DS	0		0		ns

	-	·5	-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t OD	0	12	0	15	ns
^t OE		12		15	ns
^t OEH	8		10		ns
^t PC	20		25		ns
^t PRWC	47		56		ns
tRAC		50		60	ns
^t RAD	9		12		ns
^t RAH	9		10		ns
^t RASP	50	125,000	60	125,000	ns
^t RCD	11		14		ns
tRCS	0		0		ns
tRP	30		40		ns
tRSH	13		15		ns
tRWD	67		79		ns
^t RWL	13		15		ns
tWP	5		5		ns

NOTE: 1. ^tPC is for LATE WRITE cycles only.

EDO-PAGE-MODE READ EARLY WRITE CYCLE

(Pseudo READ-MODIFY-WRITE)

DON'T CARE

₩ UNDEFINED

		-5		-6	
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t AA		25		30	ns
^t ACH	12		15		ns
^t AR	38		45		ns
^t ASC	0		0		ns
^t ASR	0		0		ns
^t CAC		13		15	ns
^t CAH	8		10		ns
^t CAS	8	10,000	10	10,000	ns
^t COH	3		3		ns
^t CP	8		10		ns
^t CPA		28		35	ns
^t CRP	5		5		ns
^t CSH	38		45		ns
^t DH	8		10		ns
^t DS	0		0		ns

	-5		-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t OE		12		15	ns
^t PC	20		25		ns
tRAC		50		60	ns
^t RAD	9		12		ns
^t RAH	9		10		ns
^t RASP	50	125,000	60	125,000	ns
^t RCD	11		14		ns
tRCH	0		0		ns
tRCS	0		0		ns
^t RP	30		40		ns
^t RSH	13		15		ns
tWCH	8		10		ns
tWCS	0		0		ns
tWHZ	0	12	0	15	ns

READ CYCLE

(With WE#-controlled disable)

	-5		-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t AA		25		30	ns
^t AR	38		45		ns
tASC	0		0		ns
tASR	0		0		ns
^t CAC		13		15	ns
^t CAH	8		10		ns
tCAS	8	10,000	10	10,000	ns
^t CLZ	0		0		ns
^t CP	8		10		ns
^t CRP	5		5		ns
^t CSH	38		45		ns

	-5		-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
tOD	0	12	0	15	ns
^t OE		12		15	ns
^t RAC		50		60	ns
^t RAD	9		12		ns
^t RAH	9		10		ns
tRCD	11		14		ns
^t RCH	0		0		ns
^t RCS	0		0		ns
^t WHZ	0	12	0	15	ns
^t WPZ	10		10		ns

RAS#-ONLY REFRESH CYCLE

(OE# and WE# = DON'T CARE)

CBR REFRESH CYCLE

(Addresses and OE# = DON'T CARE)

	-	-5		-6	
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t ASR	0		0		ns
^t CHR	8		10		ns
^t CP	8		10		ns
^t CRP	5		5		ns
^t CSR	5		5		ns
^t RAH	9		10		ns

	-5		-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t RAS	50	10,000	60	10,000	ns
^t RC	84		104		ns
^t RP	30		40		ns
^t RPC	5		5		ns
^t WRH	8		10		ns
tWRP	8		10		ns

HIDDEN REFRESH CYCLE 24

(WE# = HIGH; OE# = LOW)

W UNDEFINED

	-5		-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t AA		25		30	ns
^t AR	38		45		ns
tASC	0		0		ns
tASR	0		0		ns
tCAC		13		15	ns
^t CAH	8		10		ns
^t CHR	8		10		ns
^t CLZ	0		0		ns
^t CRP	5		5		ns
tOD	0	12	0	15	ns

	-5		-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
^t OE		12		15	ns
^t OFF	0	12	0	15	ns
tORD	0		0		ns
^t RAC		50		60	ns
^t RAD	9		12		ns
^t RAH	9		10		ns
^t RAS	50	10,000	60	10,000	ns
tRCD	11		14		ns
^t RP	30		40		ns
^t RSH	13		15		ns

SELF REFRESH CYCLE

(Addresses and OE# = DON'T CARE)

TIMING PARAMETERS

	-5		-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
tCHD	15		15		ns
^t CP	8		10		ns
tCSR	5		5		ns
tRASS	100		100		μs
tRP	30		40	·	ns

	-5		-6		
SYMBOL	MIN	MAX	MIN	MAX	UNITS
tRPC	5		5		ns
tRPS	90		105		ns
tWRH	8		10		ns
tWRP	8		10		ns

NOTE: 1. Once ^tRASS (MIN) is met and RAS# remains LOW, the DRAM will enter Self Refresh mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

24/26-PIN PLASTIC SOJ (300 mil)

DA-2

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

24/26-PIN PLASTIC TSOP (300 mil)

DB-2

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900, Micron DataFax: 208-368-5800 E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992

This datasheet has been downloaded from:

www.EEworld.com.cn

Free Download
Daily Updated Database
100% Free Datasheet Search Site
100% Free IC Replacement Search Site
Convenient Electronic Dictionary
Fast Search System

www.EEworld.com.cn