	вариант	ф. номер	група	поток	курс	специалност
ſ	1					
ĺ	Име:					

Контролно по ЕАИ - Регулярни езици и Крайни автомати 17.11.2019 г.

Зад. 1. Нека $\Sigma=\{a,b\}$ и $L_1=\{\alpha\in\Sigma^*\mid$ всяко срещане на a в α се следва от $b\}$ $L_2=\{\alpha\in\Sigma^*\mid$ ако α започва с a, то тя завършва на $a\}$ $L_3=\{\alpha\in\Sigma^*\mid$ първата и последната буква в α са еднакви $\}$ $L=(L_1\cup L_2)\cap L_3^*$

- (0.5 точки) Докажете, че $L = L_1 \cup L_2$.
- ullet (0.5 точки) Напишете (без доказателство, но с кратка обосновка) регулярен израз за езика L.
- (1.5 точки) Постройте минимален тотален краен детерминиран автомат за езика L, като използвате изучаваните конструкции или докажете, че L е точно езикът на построения автомат.

Зад. 2 (1.5 точки). Нека $\Sigma = \{a,b\}$ и $L = \{\alpha \in \Sigma^* |$ ако всяко срещане на b в α се следва от a, то $N_a(\alpha) \neq (N_b(\alpha))^2\}$. Вярно ли е, че L е регулярен над Σ ? Обосновете се.

Оценката се получава по формула $\min\{2+$ получени точки, $6\}$ Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Контролно по ЕАИ - Регулярни езици и Крайни автомати 17.11.2019 г.

Зад. 1. Нека $\Sigma=\{a,b\}$ и $L_1=\{\alpha\in\Sigma^*|$ всяко срещане на a в α се следва от $b\}$ $L_2=\{\alpha\in\Sigma^*|$ ако α започва с a, то тя завършва на $a\}$ $L_3=\{\alpha\in\Sigma^*|$ първата и последната буква в α са еднакви $\}$ $L=(L_1\cup L_2)\cap L_3^*$

- (0.5 точки) Докажете, че $L = L_1 \cup L_2$.
- ullet (0.5 точки) Напишете (без доказателство, но с кратка обосновка) регулярен израз за езика L.
- ullet (1.5 точки) Постройте минимален тотален краен детерминиран автомат за езика L, като използвате изучаваните конструкции или докажете, че L е точно езикът на построения автомат.

Зад. 2 (1.5 точки). Нека $\Sigma=\{a,b\}$ и $L=\{\alpha\in\Sigma^*|$ ако всяко срещане на b в α се следва от a, то $N_a(\alpha)\neq(N_b(\alpha))^2\}$. Вярно ли е, че L е регулярен над Σ ? Обосновете се.

Оценката се получава по формула $\min\{2+$ получени точки, $6\}$ Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Контролно по ЕАИ - Регулярни езици и Крайни автомати 17.11.2019 г.

Зад. 1. Нека $\Sigma=\{a,b\}$ и $L_1=\{\alpha\in\Sigma^*|$ всяко срещане на a в α се следва от $b\}$ $L_2=\{\alpha\in\Sigma^*|$ ако α започва с a, то тя завършва на $a\}$ $L_3=\{\alpha\in\Sigma^*|$ първата и последната буква в α са еднакви $\}$ $L=(L_1\cup L_2)\cap L_3^*$

- (0.5 точки) Докажете, че $L = L_1 \cup L_2$.
- (0.5 точки) Напишете (без доказателство, но с кратка обосновка) регулярен израз за езика L.
- ullet (1.5 точки) Постройте минимален тотален краен детерминиран автомат за езика L, като използвате изучаваните конструкции или докажете, че L е точно езикът на построения автомат.

Зад. 2 (1.5 точки). Нека $\Sigma = \{a,b\}$ и $L = \{\alpha \in \Sigma^* |$ ако всяко срещане на b в α се следва от a, то $N_a(\alpha) \neq (N_b(\alpha))^2\}$. Вярно ли е, че L е регулярен над Σ ? Обосновете се.

Оценката се получава по формула $\min\{2+$ получени точки, $6\}$ Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Контролно по ЕАИ - Регулярни езици и Крайни автомати 17.11.2019 г.

Зад. 1. Нека $\Sigma=\{0,1\}$ и $L_1=\{\alpha\in\Sigma^*|$ ако α започва с 1, то тя завършва на 1 $\}$ $L_2=\{\alpha\in\Sigma^*|$ всяко срещане на 1 в α се следва от 0 $\}$ $L_3=\{\alpha\in\Sigma^*|$ първата и последната буква в α са еднакви $\}$ $L=(L_1\cup L_2)\cap L_3^*$

- (0.5 точки) Докажете, че $L = L_1 \cup L_2$.
- (0.5 точки) Напишете (без доказателство, но с кратка обосновка) регулярен израз за езика *L*.
- ullet (1.5 точки) Постройте минимален тотален краен детерминиран автомат за езика L, като използвате изучаваните конструкции или докажете, че L е точно езикът на построения автомат.

Зад. 2 (1.5 точки). Нека $\Sigma=\{0,1\}$ и $L=\{\alpha\in\Sigma^*|$ ако всяко срещане на 0 в α се следва от 1, то $(N_0(\alpha))^2\neq N_1(\alpha)\}$. Вярно ли е, че L е регулярен над Σ ? Обосновете се.

Оценката се получава по формула $\min\{2+$ получени точки, $6\}$ Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Контролно по ЕАИ - Регулярни езици и Крайни автомати 17.11.2019 г.

```
Зад. 1. Нека \Sigma=\{0,1\} и L_1=\{\alpha\in\Sigma^*| ако \alpha започва с 1, то тя завършва на 1\} L_2=\{\alpha\in\Sigma^*| всяко срещане на 1 в \alpha се следва от 0\} L_3=\{\alpha\in\Sigma^*| първата и последната буква в \alpha са еднакви\} L=(L_1\cup L_2)\cap L_3^*
```

- (0.5 точки) Докажете, че $L = L_1 \cup L_2$.
- ullet (0.5 точки) Напишете (без доказателство, но с кратка обосновка) регулярен израз за езика L.
- ullet (1.5 точки) Постройте минимален тотален краен детерминиран автомат за езика L, като използвате изучаваните конструкции или докажете, че L е точно езикът на построения автомат.

Зад. 2 (1.5 точки). Нека $\Sigma=\{0,1\}$ и $L=\{\alpha\in\Sigma^*|$ ако всяко срещане на 0 в α се следва от 1, то $(N_0(\alpha))^2\neq N_1(\alpha)\}$. Вярно ли е, че L е регулярен над Σ ? Обосновете се.

Оценката се получава по формула $\min\{2+$ получени точки, $6\}$ Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Контролно по ЕАИ - Регулярни езици и Крайни автомати 17.11.2019 г.

```
Зад. 1. Нека \Sigma=\{0,1\} и L_1=\{\alpha\in\Sigma^*| ако \alpha започва с 1, то тя завършва на 1 \} L_2=\{\alpha\in\Sigma^*| всяко срещане на 1 в \alpha се следва от 0 \} L_3=\{\alpha\in\Sigma^*| първата и последната буква в \alpha са еднакви \} L=(L_1\cup L_2)\cap L_3^*
```

- (0.5 точки) Докажете, че $L = L_1 \cup L_2$.
- (0.5 точки) Напишете (без доказателство, но с кратка обосновка) регулярен израз за езика L.
- ullet (1.5 точки) Постройте минимален тотален краен детерминиран автомат за езика L, като използвате изучаваните конструкции или докажете, че L е точно езикът на построения автомат.

Зад. 2 (1.5 точки). Нека $\Sigma=\{0,1\}$ и $L=\{\alpha\in\Sigma^*|$ ако всяко срещане на 0 в α се следва от 1, то $(N_0(\alpha))^2\neq N_1(\alpha)\}$. Вярно ли е, че L е регулярен над Σ ? Обосновете се.

Оценката се получава по формула $\min\{2+$ получени точки, $6\}$ Екипът Ви пожелава успех.