COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 23 JAN 2004 **WIPO** PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 55 530.3

Anmeldetag:

27. November 2002

Anmelder/Inhaber:

Hovalwerk AG, Vaduz/LI

Bezeichnung:

Verfahren und Vorrichtung zum Kühlen von Umluft

IPC:

F 24 F 5/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

> München, den 4. Dezember 2003 **Deutsches Patent- und Markenamt** Der Präsident

Im Auftrag

Letan**9**

A 9161 03/00 EDV-L

BEST AVAILABLE COPY

H 351 Hs-sb/ft

Hovalwerk AG

Austraße 70

FL-9490 Vaduz

Fürstentum Liechtenstein

Verfahren und Vorrichtung zum Kühlen von Umluft

10

5

Zusammenfassung

Das Kühlen der Umluft (4) erfolgt im Wärmeaustausch mit adiabat gekühlter Prozeßluft (6). Hierzu ist eine erste Wärmeaustauscheinrichtung (1) vorgesehen, die mit der Umluft (4) sowie mit Prozeßluft (6) beschickt wird. Sie enthält eine Befeuchtungseinrichtung (7), mit der Wasser in die Prozeßluft (6) eingesprüht wird. Dadurch kommt es zur adiabaten Kühlung der Prozeßluft und im Wärmeaustausch mit der Umluft (4) zu deren entsprechender Kühlung. Die Prozeßluft wird vor Eintritt in die erste Wärmeaustauscheinrichtung (1) und nach Austritt aus letzterer durch eine zweite Wärmeaustauscheinrichtung (12) geführt, in der die gekühlte Prozeßluft der ungekühlten Prozeßluft vorab Wärme entzieht. Dies erhöht die Kühlleistung der Vorrichtung.

25

(Fig. 1)

H 351 Hs-sb/fu

Verfahren und Vorrichtung zum Kühlen von Umluft

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Kühlen von Umluft im Wärmeaustausch mit adiabat ge-5 kühlter Prozeßluft.

Die Erfindung liegt auf dem Gebiet der sogenannten indirekten adiabaten Kühlung, da das für die adiabate Kühlung erforderliche Wasser nicht in die Umluft eingebracht wird, sondern in die Prozeßluft, bei der es sich bevorzugt um Außenluft handelt. Die adiabat gekühlte Prozeßluft tritt als Enthalpie-Senke in Wärmeaustausch mit der Umluft und senkt deren Temperatur.

Die Kühlleistung derartiger Systeme hängt von der Ausgangstemperatur und -feuchte der Prozeßluft ab. Ist z.B.

15 diese Temperatur relativ hoch, reicht die Kühlleistung nicht aus, die Umluft wirksam zu kühlen. Bisher ist man daher gezwungen, eine zusätzliche Kompressions- oder Absorptions-kälteanlage einzusetzen.

Derartige Kälteanlagen erhöhen den vorrichtungstechni20 schen Aufwand. Sie verbrauchen hochwertige Energie in Form
von elektrischem Strom oder fossilen Brennstoffen und arbeiten darüber hinaus mit umweltbelastendem Kältemitteln. Vermehrt sind gesetzliche Bestimmungen erforderlich, die den
Verbrauch von hochwertiger Energie und die Verwendung um25 weltbelastender Stoffe reglementieren.

Der Erfindung liegt die Aufgabe zugrunde, die Effizienz der indirekten adiabaten Umluftkühlung mit einfachen Mitteln zu steigern.

Zur Lösung dieser Aufgabe ist das eingangs genannte Ver-30 fahren erfindungsgemäß dadurch gekennzeichnet, daß die gekühlte Prozeßluft nach ihrem Wärmeaustausch mit der Umluft Wärme aus der ungekühlten Prozeßluft aufnimmt.

Nach ihrem Wärmeaustausch mit der Umluft weist die gekühlte Prozeßluft eine Temperatur auf, die unter der Temperatur der ungekühlten Prozeßluft liegt. Sie kann also aus der ungekühlten Prozeßluft Wärme aufnehmen, so daß deren Temperatur sinkt. Die adiabate Kühlung wirkt also auf eine Prozeßluft ein, deren Temperatur bereits abgesenkt ist. Dies kommt der Kühlung der Umluft zugute, und zwar mit dem Ergebnis, daß - bei Anwendungen, in welchen die sensible Kühlung der Umluft ausreichend ist - auf zusätzliche Kompressionsoder Absorptionskälteanlagen verzichtet werden kann. Der hierfür erforderliche apparatetechnische Aufwand ist gering.

10 Auch sinken neben den Investitionskosten die Betriebskosten, da weniger Energie und weniger Wasser verbraucht wird.

Hervorzuheben ist ferner, daß für den Betrieb der Kühlanlage kein Bewilligungsverfahren erforderlich ist. Die Wartung vereinfacht sich, weil kein Kältespezialist hinzugezogen werden muß. Auch entfällt jegliche auf den Einsatz von Kältemitteln zurückzuführende Umweltbelastung.

Die adiabate Kühlung der Prozeßluft kann erfolgen, bevor die Prozeßluft in Wärmeaustausch mit der Umluft tritt. Man kann dann von einer zweistufigen Verdunstung sprechen. Vorzeilhafter kann eine einstufige Verdunstung sein, wobei die adiabate Kühlung der Prozeßluft beim Wärmeaustausch mit der Umluft erfolgt. Im Gegensatz zur zweistufigen Verdunstung kommt es hierbei zu einer Benetzung der Wärmeaustauschflächen mit dem eingespritzten Wasser.

Je nach Betriebszustand kann sich die Wassertemperatur während der einstufigen adiabaten Kühlung ändern. Überraschenderweise wurde gefunden, daß hieraus wesentliche Auswirkungen auf die Verfahrensführung resultieren. Sinkt die Wassertemperatur, ist es vorteilhaft, die Umluft und die Prozeßluft bei ihrem Wärmeaustausch in Gleichstromschaltung zu führen. Anderenfalls ist die Gegenstromschaltung günstiger. In Weiterbildung der Erfindung wird daher vorgeschlagen, die Umluft und die Prozeßluft bei ihrem Wärmeaustausch entweder in Gleich- oder Gegenstromschaltung bzw. in Kreuzgleich- oder -gegenstromschaltung zu führen.

Die Kühlleistung ist vorzugsweise durch Variation der Massenstromverhältnisse Umluft/Prozeßluft und/oder durch Variation der in die Prozeßluft eingebrachten Wassermenge regelbar.

Die Vorrichtung zur Lösung der gestellten Aufgabe weist eine erste Wärmeaustauscheinrichtung, die mit der Umluft und mit Prozeßluft beschickbar ist, sowie eine Befeuchtungseinrichtung zum Einbringen von Wasser in die Prozeßluft auf und ist erfindungsgemäß gekennzeichnet durch eine zweite Wärmeaustauscheinrichtung, die prozeßluftseitig der ersten Wärmeaustauscheinrichtung vor- und nachgeschaltet ist. Die Prozeßluft durchströmt also erst die zweite Wärmeaustauscheinrichtung, woraufhin sie durch die erste Wärmeaustauscheinrichtung, woraufhin sie durch die zweite Wärmeaustauscheinrichtung abgleitet wird. In der zweiten Wärmeaustauscheinrichtung nimmt die gekühlte Prozeßluft Wärme aus der ungekühlten Prozeßluft auf und senkt dadurch deren Temperatur.

Vorteilhafterweise ist die zweite Wärmeaustauscheinrichtung mindestens auf der Eintrittsseite der ungekühlten Prozeßluft über einen Bypass umgehbar, und zwar für den Fall, daß die Temperatur der ungekühlten Prozeßluft deren Vorab-Kühlung in der zweiten Wärmeaustauscheinrichtung überflüssig macht. Unter diesem Gesichtspunkt ist auch die Befeuchtungseinrichtung vorteilhafterweise abschaltbar. Schließlich besteht eine bevorzugte Möglichkeit darin, mit sogenannter freier Kühlung zu arbeiten, wobei die Außenluft zur direkten Raumkühlung eingesetzt wird.

Die Befeuchtungseinrichtung kann als Wäscher, Kontaktbefeuchter, Hochdruckbefeuchter oder dergleichen ausgebildet
30 sein. Sie kann sich zwischen der ersten und der zweiten Wärmeaustauscheinrichtung befinden. Diese Art der Anordnung
kann, wie erwähnt, als zweistufige Verdunstung bezeichnet
werden. Vorteilhafter ist unter Umständen die einstufige
Verdunstung, bei der die Befeuchtungseinrichtung in die er35 ste Wärmeaustauscheinrichtung integriert ist. Das Wasser

wird also direkt in die erste Wärmeaustauscheinrichtung eingespritzt und benetzt deren Wärmeaustauschflächen.

Vorzugsweise ist die erste Wärmeaustauscheinrichtung dabei im Gegen- oder Gleichstrom betreibbar, je nachdem, ob 5 sich die Temperatur des Wassers bei der adiabaten Kühlung erhöht oder vermindert.

In wesentlicher Weiterbildung der Erfindung wird vorgeschlagen, daß die erste Wärmeaustauscheinrichtung mindestens zwei Kreuzstromwärmeaustauscher aufweist, wobei auch diese 10 bevorzugt im Kreuzgegen- oder -gleichstrom betreibbar sind.

Vorteilhafterweise wird die Prozeßluft von einem Gebläse gefördert, welches im Wege der gekühlten Prozeßluft stromab der zweiten Wärmeaustauscheinrichtung angeordnet ist. Das Gebläse saugt also die Prozeßluft durch die Vorrichtung hin-15 durch. Dabei ist die Anordnung so getroffen, daß die durch das Gebläse zwangsläufig erzeugte Erwärmung der Prozeßluft die Kühlleistung nicht beeinträchtigt.

·Die Erfindung wird im folgenden anhand eines bevorzugten Ausführungsbeispiels im Zusammenhang mit der beiliegenden 20 Zeichnung näher erläutert. Die Zeichnung zeigt in:

Figur 1 eine erfindungsgemäße Vorrichtung in schematischer Darstellung;

Figur 2 die Zustandsänderungen der Umluft und der Prozeßluft im h,x-Diagramm.

25

Nach Figur 1 ist eine erste Wärmeaustauscheinrichtung 1 vorgesehen, die zwei Kreuzstromwärmeaustauscher 2 und 3 enthålt. Die erste Wärmeaustauscheinrichtung 1 wird mit Umluft 4 beaufschlagt, und zwar durchströmt diese erst den Kreuzstromwärmeaustauscher 2 und sodann den Kreuzstromwärmeaus-30 tauscher 3. Ein Gebläse 5 sorgt für den Transport der Umluft

Die erste Wärmeaustauscheinrichtung 1 wird ferner mit Prozeßluft 6 beaufschlagt, bei der es sich im vorliegenden Fall um Außenluft handelt. Auch die Prozeßluft 6 durchströmt 35 erst den Kreuzstromwärmeaustauscher 2 und sodann den Kreuzstromwärmeaustauscher 3. Die erste Wärmeaustauscheinrichtung 1 arbeitet also in Kreuzgleichstromschaltung, was deshalb vorteilhaft ist, weil der Betriebszustand der Vorrichtung zu einer Abkühlung des in die erste Wärmeaustauscheinrichtung 1 5 eingespritzten Wassers führt.

Die erste Wärmeaustauscheinrichtung 1 ist hierzu mit einer Befeuchtungseinrichtung 7 versehen, die das Wasser in die Prozeßluft 6 einsprüht und auf diese Weise deren adiabate Kühlung bewirkt. Das Wasser sammelt sich in einem Sumpf 8 und wird von einer Pumpe 9 der Befeuchtungseinrichtung 7 zugeführt. Der Sumpf 8 ist mit einem Wasserzulauf 10 und einem Wasserablauf 11 versehen.

Vor Eintritt in die erste Wärmeaustauscheinrichtung 1
und nach Austritt aus dieser durchströmt die Prozeßluft 6
15 eine zweite Wärmeaustauscheinrichtung 12, und zwar unter der
Wirkung eines Gebläses 13, das, bezogen auf die gekühlte
Prozeßluft, stromab der zweiten Wärmeaustauscheinrichtung 12
angeordnet ist. Die vom Gebläse 13 erzeugte Wärme kann die
Kühlleistung nicht beeinträchtigen. Da die Temperatur der
20 gekühlten Prozeßluft 6 nach Austritt aus der ersten Wärmeaustauscheinrichtung 1 niedriger ist als die Temperatur der
Prozeßluft 6 vor Eintritt in die zweite Wärmeaustauscheinrichtung 12, kann in letzterer ein Wärmeaustausch zwischen
den beiden Strömen der Prozeßluft 6 erfolgen, und zwar mit
25 dem Ergebnis, daß die Prozeßluft 6 bereits mit erniedrigter
Temperatur der adiabaten Kühlung unterworfen wird. Eine entsprechende Erhöhung der Kühlleistung ist die Folge.

Figur 2 zeigt im h,x-Diagramm ein Beispiel für eine einstufige adiabate Kühlung, wie sie mit der Vorrichtung nach
30 Figur 1 durchführbar ist, wobei eine Linie a die Temperatursenkung der Umluft 4 in der ersten Wärmeaustauscheinrichtung
1 wiedergibt. Eine Linie b zeigt diejenige Temperatursenkung, die die Prozeßluft 6 in der zweiten Wärmeaustauscheinrichtung 12 erfährt. Eine Linie c gibt die Temperatursenkung
35 der Prozeßluft 6 durch die adiabate Kühlung in der ersten

Wärmeaustauscheinrichtung 1 wieder, und eine Linie d zeigt die Temperaturerhöhung der Prozeßluft 6 in der zweiten Wärmeaustauscheinrichtung 12.

Im Rahmen der Erfindung sind durchaus Abwandlungsmög-5 lichkeiten gegeben. So kann die Förderrichtung des Gebläses 5 umgekehrt werden. Die erste Wärmeaustauscheinrichtung 1 arbeitet dann in Kreuzgegenstromschaltung. Diese Arbeitsweise wird man wählen, wenn die Wassertemperatur zwischen dem Prozeßluftein- und -austritt nicht sinkt. Ferner besteht 10 die Möglichkeit, die Befeuchtungseinrichtung von der ersten Wärmeaustauscheinrichtung abzukoppeln und zwischen den beiden Wärmeaustauscheinrichtungen arbeiten zu lassen. Die Integration der Befeuchtungseinrichtung in die erste Wärmeaustauscheinrichtung ist allerdings besonders vorteilhaft. Die 15 erste Wärmeaustauscheinrichtung kann einstufig ausgebildet sein, wie auch die zweite Wärmeaustauscheinrichtung einen mehrstufigen Aufbau aufweisen kann. Im übrigen besteht die Möglichkeit, die zweite Wärmeaustauscheinrichtung mit einem Bypass zu umgehen, wodurch im Diagramm nach Figur 2 die Li-20 nien b und d in Fortfall kommen. Schaltet man außerdem, was ebenfalls möglich ist, die Befeuchtungseinrichtung 7 ab, so entfällt auch noch die Linie c. Der Kühleffekt resultiert dann lediglich aus der Temperaturdifferenz zwischen Umluft und Prozeßluft. Schließlich kann auch noch die erste Wärme-25 austauscheinrichtung abgekoppelt werden. Die Prozeßluft wird sodann in den zu kühlenden Raum direkt eingeblasen.

H 351 Hs-sb/fu

<u>Patentansprüche</u>

- 1. Verfahren zum Kühlen von Umluft im Wärmeaustausch mit adiabat gekühlter Prozeßluft,
- dadurch gekennzeichnet,
 daß die gekühlte Prozeßluft nach ihrem Wärmeaustausch
 mit der Umluft Wärme aus der ungekühlten Prozeßluft aufnimmt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die adiabate Kühlung der Prozeßluft einstufig beim Wärmeaustausch mit der Umluft erfolgt.
 - 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Umluft und die Prozeßluft bei ihrem Wärmeaustausch in Gleich- oder Gegenstromschaltung geführt werden.
 - 4. Verfahren nach Anspruch 2, dadurch gekennzeichnet,

15

20

- daß die Umluft und die Prozeßluft bei ihrem Wärmeaustausch wahlweise in Kreuzgleich- oder -gegenstromschaltung geführt werden.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Kühlleistung durch Variation des Massenstromverhältnisses Umluft/Prozeßluft regelbar ist.
- 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch 30 gekennzeichnet, daß die Kühlleistung durch Variation der in die Prozeßluft eingebrachten Wassermenge regelbar ist.
 - 7. Vorrichtung zum Kühlen von Umluft (4), mit einer ersten Wärmeaustauscheinrichtung (1), die mit der Umluft (4)

und mit Prozeßluft (6) beschickbar ist, und mit einer Befeuchtungseinrichtung (7) zum Einbringen von Wasser in die Prozeßluft (6),

gekennzeichnet durch

- eine zweite Wärmeaustauscheinrichtung (12), die prozeßluftseitig der ersten Wärmeaustauscheinrichtung (1) vor- und nachgeschaltet ist.
- 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet,
 10 daß die zweite Wärmeaustauscheinrichtung (12) mindestens auf
 der Eintrittsseite der ungekühlten Prozeßluft (6) über einen
 Bypass umgehbar ist.
- Vorrichtung nach Anspruch 7 oder 8, dadurch gekenn zeichnet, daß die Befeuchtungseinrichtung (7) abschaltbar ist.
- 10. Vorrichtung nach einem der Ansprüche 7 bis 9, da-durch gekennzeichnet, daß die Befeuchtungseinrichtung (7) in20 die erste Wärmeaustauscheinrichtung (1) integriert ist.
 - 11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die erste Wärmeaustauscheinrichtung (1) im Gegenoder Gleichstrom betreibbar ist.
 - 12. Vorrichtung nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, daß die erste Wärmeaustauscheinrichtung (1) mindestens zwei Kreuzstromwärmeaustauscher (2,3) aufweist.
 - 13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß die erste Wärmeaustauscheinrichtung (1) im Kreuzgegen- oder -gleichstrom betreibbar ist.

25

30

14. Vorrichtung nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, daß die Prozeßluft (6) von einem Gebläse (13) gefördert wird, welches im Wege der gekühlten Prozeßluft stromab der zweiten Wärmeaustauscheinrichtung 5 (12) angeordnet ist.

Figur 2