ELEC 5130/6130 RF Devices and Circuits

Prof. Foster Dai

Topics

Chapter 1 Introduction

Chapter 2 Basic Concepts in RF Design

Chapter 3 Transceiver Architectures

Chapter 4 Low Noise Amplifiers

Chapter 5 Mixers

Chapter 6 Oscillators

Chapter 7 Phase Locked Loops

CHAPTER 2

Basic Concepts in IC Designs

I. Device ReviewII. Linearity AnalysisIII. Noise AnalysisIV. System Analysis

Semiconductor Materials

Electronic materials fall into three categories:

Insulators Resistivity $\rho > 10^5 \,\Omega$ -cm Semiconductors Conductors

 $10^{-3} < \rho < 10^5 \Omega$ -cm $\rho < 10^{-3} \, \Omega$ -cm

Semiconductor	Bandgap Energy E _G (eV)	
Carbon (diamond)	5.47	
Silicon	1.12	
Germanium	0.66	
Tin	0.082	
Gallium arsenide	1.42	
Gallium nitride	3.49	
Indium phosphide	1.35	
Boron nitride	7.50	
Silicon carbide	3.26	
Cadmium selenide	1.70	

	IIIA	IVA	VA	VIA
	5 10.811	6 12.01115	7 14.0067	8 15.9994
	В	C	N	O
	Boron	Carbon	Nitrogen	Oxygen
	13 26.9815	14 28.086	15 30.9738	16 32.064
	Al	Si	P	S
IIB	Aluminum	Silicon	Phosphorus	Sulfur
30 65.37	31 69.72	32 72.59	33 74.922	34 78.96
Zn	Ga	Ge	As	Se
Zinc	Gallium	Germanium	Arsenic	Selenium
48 112.40	49 114.82	50 118.69	51 121.75	52 127.60
Cd	In	Sn	Sb	Te
Cadmium	Indium	Tin	Antimony	Tellurium
80 200.59	81 204.37	82 207.19	83 208.980	84 (210)
Hg	Tl	Pb	Bi	Po
Mercury	Thallium	Lead	Bismuth	Polonium

Space-Charge Region Formation at PN Junction

Chap 2, Basic Concepts, 5130/6130, FDAI

Bipolar Transistor Basics

Base positive voltage pulls electrons in the emitter to higher energy level in the base. Three things can happen: (1) electrons in the base can flow out of base as I_B ; (2) electrons can be recombined with holes in the base; (3) electrons can go across the base and b-c depletion region and flow out of collector as I_C . Since base layer is very thin, most of the electrons will flow to the collector.

NPN Bipolar Transistor

- Biasing:
- Normal Operation: V_{BE}>V_{th}, V_{CB} > 0
- Soft saturation: $V_{BE} > V_{th}$, $V_{CB} > -0.3V$

BJT Electrical Characteristics

$$I_C = I_S \left(1 + \frac{V_{CE}}{V_A} \right) e^{(V_{BE}/v_T)}$$

$$\approx I_S e^{(V_{BE}/v_T)}$$

Diffusion Intrinsic carrier constant concentration $I_S = \frac{qD_n n_i^2}{Q_B} A_E$ Emitter area No. of dopant atoms in base per unit A_E

Ratio current by scaling emitter area

$$\frac{I_{C1}}{I_{C2}} = \frac{A_{E1}}{A_{E2}}$$

BJT Small-Signal Parameters

Forward current gain

$$\beta = \underbrace{\frac{i_c}{i_b}}_{small-signal} = \underbrace{\frac{\Delta I_C}{\Delta I_B}}_{\Delta l \arg e-signal}$$

$$\beta = g_m r_{\pi}$$

Trans-conductance

$$g_m = \frac{i_c}{v_{\pi}} = \frac{I_C}{v_T} = \frac{I_c q}{kT} \qquad v_T = \frac{kT}{q}$$

$$i_c = \beta i_b = g_m v_\pi = g_m i_b r_\pi$$

$$I_C = I_S e^{(V_{BE}/v_T)}$$

$$I_C = I_S \left(1 + \frac{V_{CE}}{V_A} \right) e^{(V_{BE}/v_T)}$$

Chap 2, Basic Concepts, 5130/6130, FDAI

BJT Small-Signal Model

 $r_{\pi}, C_{\pi}, C_{\mu}, g_{m}, r_{e}, r_{0}$ depend on bias

Simplified Model

BJT β Current Dependence

β drops off at high currents due to the following three effects:

- Decrease of emitter efficiency: excess minority carriers in the base.
- Kirk effect or base pushout: the minority carrier concentration in the basecollector depletion region becomes comparable to the background donor density, leading to a dramatic increase in the effective base width.
- *Emitter crowding:* the distributed parasitic resistance at base contact causes higher current density along the edge of emitter → maximize the emitter periphery (inter-digitized layout).

BJT 3dB Corner Frequency -- f_{β}

$$\beta(\omega) = \frac{\beta_o}{1 + j \frac{\omega}{\omega_a}}$$
3-dB corner
$$f_{\beta} = \frac{1}{2\pi r_{\pi}(C_{\pi} + C_{\mu})} = \frac{1}{2\pi r_{\pi}C_{\pi}}$$
frequency

Current gain is $\beta_o = g_m r_\pi$ at low frequencies and has single pole roll-off at frequencies $> f_\beta$, crossing unity gain at ω_T .

BJT Unity-gain Frequency -- f_T

• f_{τ} is the frequency at which the short-circuit current gain β is equal to 1 \rightarrow unity current gain-bandwidth product. Useful to specify the maximum switching frequency for CML circuits and gain/bandwidth of an amplifier.

$$f_T = \beta_0 f_\beta = \frac{g_m}{2\pi (C_\pi + C_\mu)} \approx \frac{g_m}{2\pi C_\pi} = \frac{I_C}{2\pi C_\pi V_T}$$

Chap 2, Basic Concepts, 5130/6130, FDAI

NMOS Transistor: Structure

- 4 device terminals:
 Gate(G), Drain(D),
 Source(S) and Body(B).
- Source and drain regions form *pn* junctions with substrate.
- v_{SB} , v_{DS} and v_{GS} always positive during normal operation.
- v_{SB} always $< v_{DS}$ and v_{GS} to reverse bias pn junctions

NMOS Transistor: I-V Behavior

- $V_{GS} << V_{TN}$: Only small leakage current flows.
- V_{GS} < V_{TN}: Depletion region formed under gate merges with source and drain depletion regions. No current flows between source and drain.
- V_{GS} > V_{TN}: Channel formed between source and drain. If v_{DS} > 0, finite i_D flows from drain to source.
- $i_B = 0$ and $i_G = 0$.

NMOS Transistor: Saturation Region

- If v_{DS} increases above triode region limit, the channel region disappears and is said to be pinched-off.
- Current saturates at constant value, independent of v_{DS}.
- Saturation region operation mostly used for analog amplification.

8/24-Channel-Length Modulation

- As v_{DS} increases above v_{DSAT}, the length of the depleted channel beyond the pinch-off point, ΔL, increases and the actual L decreases.
- i_D increases slightly with v_{DS} instead of being constant.

$$i_D = \frac{K_n'}{2} \frac{W}{L} \left(v_{GS} - V_{TN} \right)^2 \left(1 + \lambda v_{DS} \right)$$

 λ = channel length modulation parameter

CMOS Transistors

 CMOS is necessary to implement baseband digital or DSP functions. For low cost applications, CMOS-only process is desired to implement both digital and RF functions on the same chip – system on chip (SOC).

Chap 2, Basic Concepts, 5130/6130, FDAI

CMOS Transistor Parameters

• In triode region:

$$i_{DS}^{triode} = \mu C_{ox} \left(\frac{W}{L} \right) \left(v_{GS} - V_T - \frac{v_{DS}}{2} \right) v_{DS}$$

Transconductance Parameters:

$$K_n = \mu_n C_{ox} W/L$$
, $K_p = \mu_p C_{ox} W/L$

On-resistance R_{on} , the resistance of the FET in the triode region near the origin:

$$R_{\text{on}} = \left[\frac{\partial i_D}{\partial v_{DS}} \Big|_{v_{DS} \to 0} \right]_{Q-pt}^{-1} = \frac{1}{K'_n \frac{W}{L} (V_{GS} - V_{TN})}$$

CMOS Transistor Parameters

• In saturation region: $i_{DS}^{sat} = \frac{\mu C_{ox}}{2} \left(\frac{W}{L}\right) \frac{(v_{GS} - V_T)^2}{1 + \alpha(v_{GS} - V_T)} (1 + \lambda v_{DS}) \approx \frac{\mu C_{ox}}{2} \left(\frac{W}{L}\right) (v_{GS} - V_T)^2$

 $\alpha = \theta + \frac{\mu}{2v_{scl}}$ models the mobility degradation θ and velocity saturation effects v_{scl} .

 $g_m = \frac{di_{DS}}{dv} = \mu C_{ox} \left(\frac{W}{I} \right) (v_{GS} - V_T) (1 + \lambda v_{DS})$

• Transconductance:

$$v_{DS} = v_{GS} - V_{T}$$

$$v_{DS} < (v_{GS} - V_{T})$$

$$v_{DS} > (v_{GS} - V_{T})$$

$$v_$$

High-frequency Model of MOSFET

At dc, the current gain is infinite but falls at a rate of 20 dB/decade as frequency increases. The unity current gain-bandwidth product ω_T is defined as

$$\omega_{T} = \frac{g_{m}}{C_{GS} + C_{GD}} \qquad \omega_{T} = \frac{\mu_{n} C_{\text{ox}}'' \frac{W}{L} (V_{GS} - V_{TN})}{\frac{2}{3} C_{\text{ox}}'' W L} = \frac{3}{2} \frac{\mu_{n} (V_{GS} - V_{TN})}{L^{2}}$$

Effect of velocity saturation on FET f_T

Impedance transform through transistors

$$R_{in} = R_B + r_b + r_{\pi} + (1 + \beta_o)R_E$$

$$R_o = R_C || r_o [1 + g_m (R_E || r_{\pi})]|$$

$$\approx R_C || r_o (1 + g_m R_E) \text{ for } r_{\pi} >> R_E$$

$$R_e = R_E || (r_e + \frac{R_B}{1 + \beta_o} + \frac{R_c}{g_m r_o})|$$

Comparison of BJT and MOS Operational Regions

<u> </u>	<u> </u>	
Trans- conductance	$g_m = \frac{I_C}{v_T} = \frac{I_c q}{kT} \propto I_C$	$g_{m} = \mu C_{ox} \left(\frac{W}{L} \right) (v_{GS} - V_{T}) (1 + \lambda v_{DS})$
		$= \frac{2I_{DS}}{v_{GS} - V_T} \approx \sqrt{2\mu C_{ox} \left(\frac{W}{L}\right)} I_{DS} \propto \sqrt{I_{DS}}$
	$\xrightarrow{E_C \to 0} WC_{ox} v_{scl}, \text{w.v.s.}$	
		$g_{msat} = WC_{ox}v_{sat}$ $ms \perp v_{sat} = 10^7 \text{ cm/s}$
		6 V _T G _{msat} VS
		2 - Wi 0.2 0.5 V _{GS} -V _T
		0 0.5 1 1.5 V V _{GS}
Gm to Current Ratio	$\frac{g_m}{I_C} = \frac{1}{v_T} = \frac{1}{26mV}$	$\frac{g_m}{I_{DS}} = \sqrt{2\mu C_{ox} \left(\frac{W}{L}\right) \frac{1}{I_{DS}}} = \frac{2}{V_{GS} - V_t}$
	$\frac{g_{m}}{I_{DS}}$ $\frac{1}{kT/q}$	$\xrightarrow{E_C \to 0} (V_{GS} - V_t)^{-1}, \text{w.v.s.}$
	V-1 20 - 1 / nkT/g	$\frac{g_{\rm m}}{I_{\rm DS}} - \frac{1}{KT/q}$
	10	$\frac{g_{\text{m}}}{I_{\text{DS}}} = \frac{2}{V_{\text{GS}} \cdot V_{\text{T}}}$
	0 0.01 0.1 1 10 100 j	10
		0 I _{DS} I _{DSt}
	Ob O D'- O [400)	, , , , , , , , , , , , , , , , , , ,

Chap 2, Basic Concepts, 5130/6130, FDAI

Page 26

Forward Current Gain	$\beta = \frac{i_c}{i_b} = g_m r_{\pi}$ $\beta_0 \approx 100, \text{ finite}$	$\beta = \frac{g_m}{S(C_{gs} + C_{gd} + C_{gb})}$ $\beta_0 \to \infty, \text{ infinite}$
Input Impedance	$Z_b \approx r_b + r_\pi // C_\pi // C_\mu$	$Z_G \approx C_{gs} //C_{gd} //C_{gb}$
	$\approx r_b \text{(high freq)}$	≈ 0(high freq)
	$\approx r_b + r_\pi = r_b + \frac{\beta_0}{g_m} (\text{low freq})$	≈∞(low freq)
Output Impedance	$r_0 = \frac{V_A}{I_C}$	$r_0 = \frac{V_A}{I_D} = \frac{1}{\lambda I_D}$
Impedance at Emitter	$r_e = \frac{V_T}{I_C} = \frac{1}{g_m}$	$\frac{1}{g_m}$
Maximum Gain	$g_m r_o = \frac{V_A}{V_T}$	$g_m r_o = \frac{2V_A}{V_{GS} - V_t} = \frac{1}{\lambda} \frac{2}{V_{GS} - V_t}$

C_{π}	$C_{\pi} = C_D + C_{je}$ $= \tau_F g_m + C_{je}$	@triode, $C_{gs} = C_{gd} = \frac{WLC_{ox}}{2}$ @sat, $C_{gs} = \frac{2}{3}WLC_{ox}$
Effective Transit Time	$\tau_T = \frac{1}{2\pi f_T} = \tau_F + \frac{C_{je}}{g_m} + \frac{C_{\mu}}{g_m}$ $\approx \tau_F + C_{je} \frac{1}{g_m}$	
Unity Current Gain- BW Product	$f_T = \frac{g_m}{2\pi (C_\pi + C_\mu)}$ $\begin{cases} = \frac{\mu}{\pi W_B^2} V_T, \text{ w.o. velocity sat} \\ \approx \frac{V_{sat}}{2\pi W_B}, \text{ with velocity sat} \end{cases}$	$f_T = \frac{g_m}{2\pi (C_{gs} + C_{gd} + C_{gb})}$ $\begin{cases} = \frac{3\mu}{4\pi nL^2} (V_{GS} - V_t), \text{ w.o. velocity sat} \\ \approx \frac{V_{scl}}{2\pi L}, \text{ with velocity sat} \end{cases}$
Unity Power Gain- BW Product	$f_{\text{max}} = \sqrt{\frac{f_T}{8\pi \cdot r_b C_{\mu}}}$	$f_{\rm max} = \sqrt{\frac{f_{\scriptscriptstyle T}}{8\pi \cdot r_{\scriptscriptstyle G} C_{\scriptscriptstyle GD}}}$

CHAPTER 2

Basic Concepts in IC Designs

I. Device ReviewII. Linearity AnalysisIII. Noise AnalysisIV. System Analysis

Units for Microwave and RFIC Design

Peak-to-peak voltage: V_{pp} Root-mean-square voltage:

$$V_{rms} = \frac{V_{pp}}{2\sqrt{2}}$$

Power in Watt:

$$Pwatt = \frac{V^2_{rms}}{R} = \frac{V_{pp}^2}{8R}$$

Power in dBm:

$$P_{dBm} = 10\log_{10}\left(\frac{Pwatt [mW]}{1mW}\right)$$

dBm Conversion Table

[dBm]	[Watts]	[Volts]rms	[Volts]p	[Volts]pp
-30	0.100E-05	7.071 mV	9.998 mV	19.997 mV
-29	0.126E-05	7.934 mV	11.218 mV	22.437 mV
-28	0.158E-05	8.902 mV	12.587 mV	25.175 mV
-27	0.200E-05	9.988 mV	14.123 mV	28.246 mV
-26	0.251E-05	11.207 mV	15.847 mV	31.693 mV
-25	0.316E-05	12.574 mV	17.780 mV	35.560 mV
0	0.100E-02	223.607 mV	316.180 mV	632.360 mV
1	0.126E-02	250.891 mV	354.760 mV	709.520 mV
2	0.158E-02	281.504 mV	398.047 mV	796.094 mV
3	0.200E-02	315.853 mV	446.616 mV	893.232 mV
4	0.251E-02	0.354 V	0.501 V	1.002 V
5	0.316E-02	0.398 V	0.562 V	1.125 V
6	0.398E-02	0.446 V	0.631 V	1.262 V
7	0.501E-02	0.501 V	0.708 V	1.416 V
8	0.631E-02	0.562 V	0.794 V	1.588 V
9	0.794E-02	0.630 V	0.891 V	1.782 V

Linear vs. Nonlinear Systems

• A system is linear if for any inputs $x_1(t)$ and $x_2(t)$, $x_1(t) \rightarrow y_2(t)$, $x_2(t) \rightarrow y_2(t)$ and for all values of constants a and b, it satisfies

$$ax_1(t)+bx_2(t) \rightarrow ay_1(t)+by_2(t)$$

 A system is nonlinear if it does not satisfy the superposition law.

Output of Bipolar Differential Pair

$$\frac{V_{od}}{V_{id}} = \alpha_F I_{EE} R_C \tanh\left(\frac{-V_{id}}{2V_T}\right)$$

$$\tanh(x) = x - \frac{1}{3}x^3 + \frac{2}{15}x^5 - \frac{7}{315}x^7 + \dots$$

Output of MOS Differential Pair

For square-law MOS diff transistors operating in saturation, the characteristic

above can be expresse $V_{out} = -\frac{1}{2}\mu_n C_{ox} \frac{W}{L} V_{in} \sqrt{\frac{4I_S}{C}}$

$$V_{out} = -\frac{1}{2}\mu_n C_{ox} \frac{W}{L} V_{in} \sqrt{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}}} - V_{in}^2 R_D$$

If the differential input is small, approximate the characteristic by a polynomial.

Factoring $4I_{ss}/(\mu_n C_{ox}W/L)$ out of the square root and assuming

$$V_{in}^2 \ll \frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}}$$

Approximation gives us:

$$V_{out} \approx -\sqrt{\mu_{n}C_{ox}\frac{W}{L}I_{SS}}V_{in}\left(1 - \frac{\mu_{n}C_{ox}\frac{W}{L}}{8I_{SS}}V_{in}^{2}\right)R_{D} \approx -\sqrt{\mu_{n}C_{ox}\frac{W}{L}I_{SS}}R_{D}V_{in} + \frac{\left(\mu_{n}C_{ox}\frac{W}{L}\right)^{3/2}}{8\sqrt{I_{SS}}}R_{D}V_{in}^{3}$$

Linearity of MOS Diff-Pair

$$I_d = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} \left(V_{gs} - V_t \right)^2$$

$$\Delta V_{in} = V_{in1} - V_{in2} = V_{gs1} - V_{gs2}$$

$$\Delta V_{out} = -\left(I_{d1} - I_{d2}\right) R_d$$

$$\Delta V_{out} = -\frac{1}{2}\mu_n C_{ox} \frac{W}{L} R_d \Delta V_{in} \sqrt{\frac{4I_{bias}}{\mu_n C_{ox} \frac{W}{L}} - \Delta V_{in}^2}$$

$$V_{out} = a_1 V_{in} + a_2 V_{in}^2 + a_3 V_{in}^3$$

Linear gain

$$A_v = \frac{\delta V_{out}}{\delta V_{in}} = -R_d \sqrt{\mu_n C_{ox} \frac{W}{L} I_{bias}} = -R_d G_m \qquad a_1 = \frac{\partial V_{out}}{\partial V_{in}} \mid_{vin=0} = -R_d \sqrt{\mu_n C_{ox} \frac{W}{L} I_{bias}}$$

$$a_1 = \frac{\partial V_{out}}{\partial V_{in}} |_{vin=0} = -Rd\sqrt{\mu_n C_{ox} \frac{W}{L} I_{bias}}$$

Symmetry due to diff circuit

$$a_2 = \frac{\partial^2 V_{out}}{\partial V_{in}^2} |_{vin=0} = 0$$

Increasing
$$I_{\text{bias}}$$
 improves the linearity $a_3 = \frac{\partial^3 V_{out}}{\partial V_{in}^3} |_{vin=0} = \frac{3}{4} R_d \frac{\left(\mu_n C_{ox} \frac{W}{L}\right)^{\frac{7}{2}}}{\sqrt{I_{bias}}}$

Effects of Nonlinearity

- Harmonic Distortion
- Gain Compression
- Desensitization
- Intermodulation

 For simplicity, we limit our analysis to memoryless, time invariant system. Thus,

$$y(t) = \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t) + \dots$$
 (3.1)

Effects of Nonlinearity -- Harmonics

If a single tone signal is applied to a nonlinear system, the output generally exhibits fundamental and harmonic frequencies with respect to the input frequency. In Eq. (3.1), if $x(t) = A\cos\omega t$, then

$$y(t) = \alpha_1 A \cos \omega t + \alpha_2 A^2 \cos^2 \omega t + \alpha_3 A^3 \cos^3 \omega t$$

$$= \alpha_1 A \cos \omega t + \frac{\alpha_2 A^2}{2} (1 + \cos 2\omega t) + \frac{\alpha_3 A^3}{4} (3\cos \omega t + \cos 3\omega t)$$

$$= \frac{\alpha_2 A^2}{2} + (\alpha_1 A + \frac{3\alpha_3 A^3}{4})\cos \omega t + \frac{\alpha_2 A^2}{2}\cos 2\omega t + \frac{\alpha_3 A^3}{4}\cos 3\omega t$$

Observations:

- 1. even order harmonics result from α_j with even j and vanish if the system has odd symmetry, i.e., differential circuits.
- 2. For large A, the nth harmonic grows approximately in proportion to A^n .

Effects of Nonlinearity -- Gain Compression

$$y(t) = \frac{\alpha_2 A^2}{2} + (\alpha_1 A + \frac{3\alpha_3 A^3}{4})\cos \omega t + \frac{\alpha_2 A^2}{2}\cos 2\omega t + \frac{\alpha_3 A^3}{4}\cos 3\omega t \quad (3.2)$$

- Under small-signal assumption, the system is normally linear and harmonics are negligible. Thus, α₁A dominates → small-signal gain = α₁.
- For large signal, nonlinearity becomes evident. large-signal gain = $\alpha_1 + 3\alpha_3 A^3/4$. The gain varies when input level changes.
- If $\alpha_3 < 0$, the output is a "compressive" or "saturating" function of the input \rightarrow the gain is compressed when A increases.

Gain Compression – Sign of α_1 , α_3

Most RF circuit of interest are compressive, we focus on this type.

Effects of Nonlinearity – 1dB Compression Point

$$20\log \left| \frac{\alpha_{1}A_{1-dB}}{\alpha_{1}A_{1-dB} + \frac{3}{4}\alpha_{3}A_{1-dB}^{3}} \right| = 1dB$$

$$A_{1-dB} = \sqrt{0.145 \left| \frac{\alpha_{1}}{\alpha_{3}} \right|} = 0.3808 \sqrt{\frac{\alpha_{1}}{\alpha_{3}}}$$

$$dBm = 10\log \frac{V_{pp}^{2}/8}{50\Omega \times 1mW}$$

- 1-dB compression point is defined as the input signal level that causes small-signal gain to drop 1 dB. It's a measure of the maximum input range.
- •1-dB compression point occurs around -20 to -25 dBm (63.2 to 35.6mVpp in a 50- Ω system) in typical frond-end RF amplifiers.

Effects of Nonlinearity – Desensitization (Blocking)

• Desensitization -- small signal experiences a vanishingly small gain when coexists with a large signal, even if the small signal itself does not drive the system into nonlinear range.

Applying two-tone inputs $x(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t$ to Eq.(3.1), we have

$$y(t) = \left(\alpha_1 A_1 + \frac{3}{4} \alpha_3 A_1^3 + \frac{3}{2} \alpha_3 A_1 A_2^2\right) \cos \omega_1 t + \cdots, \qquad \text{gain of desired signal}$$
 For $A_1 << A_2$, it reduces to
$$y(t) = \left(\alpha_1 + \frac{3}{2} \alpha_3 A_2^2\right) A_1 \cos \omega_1 t + \cdots,$$

Observations:

- Weak signal's gain decreases as a function of A_2 if $\alpha_3 < 0$. For sufficiently large A_2 , the gain drops to zero \rightarrow the weak signal is "blocked" by the strong signal. (the same reason that we cannot see stars during day)
- Many RF receivers must be able to withstand blocking signals 60 to 70 dB greater than the wanted signals.

Gain Compression: Desensitization

Desensitization: the receiver gain is reduced by the large excursions produced by the interferer even though the desired signal itself is small.

Example of Gain Compression

A 900-MHz GSM transmitter delivers a power of 1 W to the antenna. By how much must the second harmonic of the signal be suppressed (filtered) so that it does not desensitize a 1.8-GHz receiver having $P_{1dB} = -25$ dBm? Assume the receiver is 1 m away and the 1.8-GHz signal is attenuated by 10 dB as it propagates across this distance.

Solution:

The output power at 900 MHz is equal to +30 dBm. With an attenuation of 10 dB, the second harmonic must not exceed -15 dBm at the transmitter antenna so that it is below P_{1dB} of the receiver. Thus, the second harmonic must remain at least 45 dB below the fundamental at the TX output. In practice, this interference must be another several dB lower to ensure the RX does not compress.

- Harmonic distortion is due to self-mixing of a singletone signal. It can be suppressed by low-pass filtering the higher order harmonics.
- However, there is another type of nonlinearity -- intermodulation (IM) distortion, which is normally determined by a "two tone test".
- When two signals with different frequencies applied to a nonlinear system, the output in general exhibits some components that are not harmonics of the input frequencies. This phenomenon arises from crossmixing (multiplication) of the two signals.

• assume $x(t) = A_1 \cos \omega_1 t + A_2 \cos \omega_2 t \rightarrow two tone test$

$$y(t) = \alpha_1 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t) + \alpha_2 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)^2$$

+ $\alpha_3 (A_1 \cos \omega_1 t + A_2 \cos \omega_2 t)^3$

 Expanding the right side and disregarding dc terms and harmonics, we obtain the following intermodulation products:

$$\omega = \omega_1 \pm \omega_2 : \alpha_2 A_1 A_2 \cos(\omega_1 + \omega_2) t + \alpha_2 A_1 A_2 \cos(\omega_1 - \omega_2) t$$

$$= 2\omega_1 \pm \omega_2 : \frac{3\alpha_3 A_1^2 A_2}{4} \cos(2\omega_1 + \omega_2) t + \frac{3\alpha_3 A_1^2 A_2}{4} \cos(2\omega_1 - \omega_2) t$$

$$= 2\omega_2 \pm \omega_1 : \frac{3\alpha_3 A_2^2 A_1}{4} \cos(2\omega_2 + \omega_1) t + \frac{3\alpha_3 A_2^2 A_1}{4} \cos(2\omega_2 - \omega_1) t$$

And these fundamental components:

$$\omega = \omega_1, \omega_2 : \left(\alpha_1 A_1 + \frac{3}{4} \alpha_3 A_1^3 + \frac{3}{2} \alpha_3 A_1 A_2^2\right) \cos \omega_1 t + \left(\alpha_1 A_2 + \frac{3}{4} \alpha_3 A_2^3 + \frac{3}{2} \alpha_3 A_2 A_1^2\right) \cos \omega_2 t$$

$$\begin{aligned} x(t) &= A_1 \cos \omega_1 t + A_2 \cos \omega_2 \\ y(t) &= \frac{1}{2} \alpha_2 (A_1^{\ 2} + A_2^{\ 2}) + \\ & \left[\alpha_1 A_1 + \frac{3}{4} \alpha_3 A_1 (A_1^2 + 2 A_2^2) \right] \cos \omega_1 t + \\ & \left[\alpha_1 A_2 + \frac{3}{4} \alpha_3 A_2 (2 A_1^2 + A_2^2) \right] \cos \omega_2 t + \\ & \frac{1}{2} \alpha_2 \left[A_1^{\ 2} \cos 2 \omega_1 t + A_2^{\ 2} \cos 2 \omega_2 t \right] + \\ & \alpha_2 A_1 A_2 \left[\cos(\omega_1 + \omega_2) t + \cos(\omega_1 - \omega_2) t \right] + \\ & \frac{1}{4} \alpha_3 \left[A_1^{\ 3} \cos 3 \omega_1 t + A_2^{\ 3} \cos 3 \omega_2 t \right] + \\ & \frac{3}{4} \alpha_3 \left\{ A_1^{\ 2} A_2 \left[\cos(2 \omega_1 + \omega_2) t + \cos(2 \omega_1 - \omega_2) t \right] + \\ & \frac{3}{4} \alpha_3 \left\{ A_1^{\ 2} A_2 \left[\cos(2 \omega_2 + \omega_1) t + \cos(2 \omega_2 - \omega_1) t \right] \right\} \end{aligned}$$

• Of particular interest are the third-order IM products at $2\omega_1-\omega_2$ and $2\omega_2-\omega_1$. The key point here is that if the difference between ω_1 and ω_2 is small, $2\omega_1-\omega_2$ and $2\omega_2-\omega_1$ appear in the vicinity of ω_1 and ω_2 .

IM3 falls in the vicinity of foundamentals

In wireless communication system such as cellular handsets with narrow-band operating frequencies (i.e., a few tens of MHz), only the IM3 spurious signals (2w1 - w2) and (2w2 - w1) fall within the filter passband.

Effects of Nonlinearity – Corruption of signal due to intermodulation

 If a weak signal accompanied by two strong interferes having third-order nonlinearity, one of the IM products falls in the band of interest, corrupting the desired component.

Intermodulation -- Third Order Intercept Point (IP3)

- Two-tone test: $A_1=A_2=A$ and A is sufficiently small so that higher-order nonlinear terms are negligible, and the gain is relatively constant and equal to α_1 .
- As A increases, the fundamentals increases in proportion to A, whereas IM3 products increases in proportion to A³.

$$x(t) = A\cos\omega_{1}t + A\cos\omega_{2}$$

$$y(t) = \alpha_{2}A^{2} +$$

$$A\left[\alpha_{1} + \frac{9}{4}\alpha_{3}A^{2}\right]\cos\omega_{1}t + A\left[\alpha_{1} + \frac{9}{4}\alpha_{3}A^{2}\right]\cos\omega_{2}t + \frac{A_{1dB}}{A_{IP3}} = \sqrt{\frac{0.145}{4/3}} \approx -9.6dB$$

$$\frac{1}{2}\alpha_{2}A^{2}\left[\cos 2\omega_{1}t + \cos 2\omega_{2}t\right] + \alpha_{2}A^{2}\left[\cos(\omega_{1} + \omega_{2})t + \cos(\omega_{1} - \omega_{2})t\right] +$$

$$\frac{1}{4}\alpha_{3}A^{3}\left[\cos 3\omega_{1}t + \cos 3\omega_{2}t\right] + \frac{3}{4}\alpha_{3}A^{3}\left[\cos(2\omega_{1} + \omega_{2})t + \cos(2\omega_{1} - \omega_{2})t\right] +$$

$$\left[\cos(2\omega_{1} + \omega_{2})t + \cos(2\omega_{1} - \omega_{2})t\right] +$$

Intermodulation -- Third Order Intercept Point (IP3)

 Plotted on a log scale, the intersection of the two lines is defined as the third order intercept point. The horizontal coordinate of this point is called the input referred IP₃(IIP₃), and the vertical coordinate is called the output referred IP₃(OIP₃).

Chap 2, Basic Concepts, 5130/6130, FDAI

Calculate IIP3 without Extrapolation

$$IIP_3[dBm] = \frac{\Delta P[dB]}{2} + P_{in}[dBm]$$

Relationship Between 1-dB Compression and IP3

1-dB compression point with single tone applied:

$$A_{IP3} = \sqrt{\frac{4}{3} \left| \frac{\alpha_1}{\alpha_3} \right|}$$
 $A_{1-dB} = \sqrt{0.145 \left| \frac{\alpha_1}{\alpha_3} \right|}$ $\frac{A_{IP3}}{A_{1dB}} = 3.04 = 9.66dB$

1-dB compression point with two tones applied:

$$\frac{A_{IP3}}{A_{1dB}} = \frac{2\sqrt{\frac{\alpha_1}{3\alpha_3}}}{0.22\sqrt{\frac{\alpha_1}{\alpha_3}}} = 5.25 = 14.4dB$$

Intermodulation – IP2 vs. IP3

Chap 2, Basic Concepts, 5130/6130, FDAI

Determine IIP3 and 1-dB Compression Point from Measurement

- An amplifier operates at 2 GHz with a gain of 10dB. Two-tone test with equal power applied at the input, one is at 2.01 GHz. At the output, four tones are observed at 1.99, 2.0, 2.01, and 2.02GHz. The power levels of the tones are -70,-20,-20, and -70dBm. Determine the IIP3 and 1-dB compression point for this amplifier.
- Solution: 1.99 and 2.02 GHz are the IP3 tones.

$$IIP3 = (P_1 - G) + \frac{1}{2}[P_1 - P_3] = -20 - 10 + \frac{1}{2}[-20 + 70] = -5dBm$$

$$P_{1dB} = -5 - 9.66 = -14.66dBm$$

$$IIP_3[dBm] = \frac{\Delta P[dB]}{2} + P_{in}[dBm]$$

Image Signals and Image Reject Filters

Superheterodyne receiver front end with an LNA, an image filter, a mixer:

Intermodulation of Cascade Nonlinear Stages

$$y_1(t) = \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t) + \dots$$
$$y_2(t) = \beta_1 y_1(t) + \beta_2 y_1^2(t) + \beta_3 y_1^3(t) + \dots$$
$$\dots$$

Linearity is more important for back-end stages.

$$\frac{1}{A_{IP3}^2} \approx \frac{1}{A_{IP3,1}^2} + \frac{\alpha_1^2}{A_{IP3,2}^2} + \frac{\alpha_1^2 \beta_1^2}{A_{IP3,3}^2} + \dots$$

Design Example: SiGe Double-Balanced Downconverter

IP3 is characterized with a -25dBm signal consisting of two tones at 1950MHz and 1951MHz. The typical operating conditions: $PRF_{IN} = -25dBm$, IIP3 = 0.5dBm, and conversion gain = 8.4dB, current consumption = 8.7mA. P1dB=? Back off=?

Chap 2, Basic Concepts, 5130/6130, FDAI

CHAPTER 2

Basic Concepts in IC Designs

- Device Review
- II. Linearity Analysis
 - III. Noise Analysis
 - IV. System Analysis

Noise Figure

- In RF design, most of the front-end receiver blocks are characterized in terms of "noise figure" rather than input referred noise.
- Noise factor F is defined as

$$F = \frac{SNR_{in}}{SNR_{out}} = \frac{S_i/N_i}{S_o/N_o} = \frac{N_o}{GN_i} = \frac{N_{o(total)}}{N_{o(source)}} = \frac{N_{o(source)} + N_{o(added)}}{N_{o(source)}} = 1 + \frac{N_{o(added)}}{N_{o(source)}}$$
Noise Figure, NF = $10\log_{10}F$

- Noise figure measures how much the SNR degrades as the signal passes through a system.
- For a noiseless system, SNRin = SNRout, namely, F=1, NF=0dB, regardless of the gain. This is because both the input signal and the input noise are amplified (or attenuated) by the same factor and no additional noise is introduced.

Thermal Noise

- Thermal noise (Johnson noise) due to random thermal motion of electrons and is generated by resistors, base and emitter resistance r_b , r_E , and r_c . of bipolar devices, and channel resistance of MOSFETs. Thermal noise is a white noise with Gaussian amplitude distribution.
- Thermal noise floor: $10\log\left(\frac{kT}{1mW}\right) = -174dBm/Hz \text{ at } 290^{\circ}K$

Thermal Noise of MOSFET

Channel thermal noise of a MOSFET can be modeled as a noise current source at the output given by $4kT\gamma gm$. This current noise source can be referred to the gate as a voltage noise source given by $4kT\gamma/gm$.

Thermal Noise Floor

- Thermal noise power spectral density (PSD): $N_{resistor} = 4kTR$
- The rms noise voltage v_n in the bandwidth Δf : $v_n^2 = 4kTR\Delta f$
- The equivalent noise current: $i_n^2 = \frac{4kT\Delta f}{R}$
- For power matching $R_{LOAD} = R$, $v_0 = v_n/2$, Output power spectral density: $P_0 = \frac{v_0^2}{R} = \frac{v_n^2}{4R} = kT$

 $i_n = \sqrt{\frac{4kT}{R}}$ R R R R R R

Resistor Model

 The noise from an antenna (R) under matching condition at T=290K:

$$P_{available} = kT = 4 \times 10^{-21} W / Hz$$

= -174dBm/Hz
 $k=1.38 \times 10^{-23} \text{ J/K}$

Independent of resistor value!!

Thermal Noise Dominated Receiver Sensitivity

Thermal noise floor for 200kHz BW:

$$-174dBm/Hz+10\log_{10}(200k)=-121dBm$$

signal-to-noise ratio:

$$SNR = \frac{S}{Noise \quad floor}$$

- For BW=200kHz and BER=10⁻³, SNR and receiver sensitivity required by various modulations are given by
- QPSK, SNR=7dB, receiver sensitivity= -114dBm
- 16QAM, SNR=12dB, receiver sensitivity= -109dBm
- 64QAM, SNR=17dB, receiver sensitivity= -104dBm

Thermal Noise Calculation

rms thermal noise voltage from a 50Ω source is

$$\sqrt{4kTR} \approx 0.9nV / \sqrt{Hz}$$

$$v_0 = 0.45nV / \sqrt{Hz}$$

For maximum power transfer, $R_L = R_S = 50 \Omega$,

$$P_{in(available)} = \frac{v_0^2}{4R_L} = \frac{4kTR_S}{4R_L} = kT = 4 \times 10^{-21}$$

- R_L is noiseless, F=1, NF=0dB
- R_L is noisy, $N_{o(total)}$ =2kT, F=2, NF=3dB
- Total output noise voltage (uncorrelated)

$$v_0 = \sqrt{2} \, 0.45 \, nV / \sqrt{Hz} = 0.636 \, nV / \sqrt{Hz}$$

Sample-and-Hold Thermal (kT/C) Noise

Sampled capacitor circuit with the switch modeled as an on-resistance R

- Sampler thermal noise kT/C places a fundamental limit on holding capacitor size.
- kT/C noise is independent of switch on-resistance R and is inversely proportional to C.
- To achieve fine resolution, capacitor value needs to be sufficiently large → trade-off with power and speed.

LPF Transfer Function:

$$V_n(s) = V_{in}(s) \frac{1}{1 + sRC}$$

Output Noise Power Spectral Density:

$$S_n(f) = S_r(f) \left| \frac{1}{1 + j2\pi fRC} \right|^2$$

Output noise power:

$$v_n^2 = 4kTR \int_0^\infty \frac{1}{1 + (2\pi fRC)^2} df$$

$$=\frac{2kT}{\pi C}\int_0^{\frac{\pi}{2}} d\theta = \frac{kT}{C}$$

 $k=1.38 \times 10^{-23} \text{ J/K}$

Shot Noise

• Shot noise (Schottky noise) – due to the particle-like nature of charge carriers. Only the time-average flow of electrons and holes appears as constant current. Any fluctuation in the number of charge carriers produces a random noise current at that instant. Shot noise is a Gaussian white process associated with the transfer of charge across an energy barrier (e.g., a p-n junction). This random process is called shot noise and is expressed in amperes per root hertz.

$$\overline{I_n^2} = 2qI\Delta f$$

Base Shot Noise

- Base shot noise can be related to thermal noise in the resistor r_{π} (but is off by a factor of 2) \rightarrow the diffusion resistance is generating noise half thermally.
- Resistors under thermal equilibrium generates noise voltage of $\sqrt{4kTR}$
- Conducting PN junction is active with power added, not under thermal equilibrium.

$$v_{bn} = i_{bn} \cdot r_{\pi} = \sqrt{2qI_B} \cdot r_{\pi} = \sqrt{2q\frac{I_C}{\beta}} \cdot r_{\pi} = \sqrt{2q\frac{I_C}{g_m r_{\pi}}} \cdot r_{\pi}$$

$$= \sqrt{2q\frac{I_C}{g_m r_{\pi}}} \cdot r_{\pi} = \sqrt{2kTr_{\pi}}$$

$$\sqrt{\frac{I_C q}{kT} r_{\pi}}$$

Flicker noise

• Flicker noise (1/f noise) – found in all active devices. In bipolar transistors, it is caused by traps associated with contamination and crystal defects in the emitter-base depletion layer. These traps capture and release carriers in a random fashion with noise energy concentrated in low frequency. K depends on processing and may vary by order of magnitude.

$$\overline{I_n^2} = K \frac{I_C^a}{f} \Delta f, \ a \approx 0.5 \sim 2$$

• In MOSFETs, 1/f noise arises from random trapping of charge at the oxide-silicon interfaces. Represented as a voltage source in series with the gate, the noise spectral density is given by

$$\overline{V_n^2} = \frac{K}{WLCox} \frac{1}{f}$$

Noise Power Spectral Density

The 1/f corner frequency can be significantly higher for MOSFET

BJT Model with Noise Sources

Chap 2, Basic Concepts, 5130/6130, FDAI

CMOS Model with Noise Sources

 Gate resistance can be added to the noise model with gate resistivity p

$$R_{GATE} = \frac{1}{3} \rho \frac{W}{L}$$

Input-referred noise

Use either V_n or I_n for MOS thermal noise:

Noise Figure of Cascaded Stages

$$\begin{split} F &= \frac{N_{o(total)}}{N_{o(source)}} = 1 + \frac{N_{o1(added)}}{N_{i(source)}G_1} + \frac{N_{o2(added)}}{N_{i(source)}G_1G_2} + \frac{N_{o3(added)}}{N_{i(source)}G_1G_2} \\ &= F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1G_2} \end{split}$$
 Effective F is reduced by G of previous stages!

Noise Figure of Cascade Stages

$$NF_{tot} = 1 + (NF_1 - 1) + \frac{NF_2 - 1}{G_{p1}} + \frac{NF_3 - 1}{G_{p1}G_{p1}} + \dots + \frac{NF_m - 1}{G_{p1}G_{p2....}G_{p(m-1)}}$$

NF_{tot} – total equivalent Noise Figure

NF_m – Noise Figure of mth stage

G_{pm} – Available power gain of mth stage

Noise figure is more important for front-end stages.

Noise Figure of Cascaded Stages (I)

Noise Figure of Cascaded Stages (II)

$$NF_{2} = 1 + \frac{\overline{V_{n2}^{2}}}{\frac{R_{in2}^{2}}{(R_{in2} + R_{out1})^{2}} A_{v2}^{2}} \frac{1}{4kTR_{out1}} \quad NF_{tot} = NF_{1} + \frac{NF_{2} - 1}{\frac{R_{in1}^{2}}{(R_{in1} + R_{S})^{2}} A_{v1}^{2} \frac{R_{S}}{R_{out1}}}$$

Denominator is the "available power gain" of the 1st stage, defined as "available power" at its output, $P_{out,av}$ (the power delivered to a matched load $R_{out1}=R_{in2}$), divided by available source power, $P_{s,av}$ (the power delivered to a matched load $R_s=R_{in1}$).

$$P_{out,av} = V_{in}^{2} \frac{R_{in1}^{2}}{(R_{S} + R_{in1})^{2}} A_{v1}^{2} \cdot \frac{1}{4R_{out1}} \qquad P_{S,av} = \frac{V_{in}^{2}}{4R_{S}}$$

$$NF_{tot} = NF_{1} + \frac{NF_{2} - 1}{A_{P1}}$$

$$NF_{tot} = 1 + (NF_{1} - 1) + \frac{NF_{2} - 1}{A_{P1}} + \dots + \frac{NF_{m} - 1}{A_{P1} \cdot \dots \cdot A_{P(m-1)}}.$$

Called "Friis' equation", this result suggests that the noise contributed by each stage decreases as the total available power gain preceding that stage increases, implying that the first few stages in a cascade are the most critical to the overall NF.

Design Example: Typical RF front end circuitry

What is the total G, NF and IIP3 for a two-stage reiver front end with LAN and mixer?

CHAPTER 2

Basic Concepts in IC Designs

- I. Device Review
- II. Linearity Analysis
 - III. Noise Analysis
 - IV. System Analysis

Effects of Nonlinearity: Intermodulation— Recall Previous Discussion

So far we have considered the case of:

Single Signal

Signal + one large interferer

Signal + two large interferers

Sensitivity

 Sensitivity -- defined as the minimum signal level that the system can detect with acceptable SNR.

$$NF = \frac{SNR_{in}}{SNR_{OUT}} = \frac{P_{sig} / P_{RS}}{SNR_{OUT}}$$

 The overall signal power is distributed across the channel bandwidth, B, integrating over the bandwidth to obtain total mean square power

$$P_{sig,tot} = P_{RS} \bullet NF \bullet SNR_{OUT} \bullet B$$

$$P_{in,\min}\Big|_{dBm} = P_{RS}\Big|_{dBm/Hz} + NF\Big|_{dB} + SNR_{\min}\Big|_{dB} + 10\log B$$

where P_{RS} is the source resistance noise power.

Sensitivity

 Assuming conjugate matching at input, we obtain P_{RS} as the noise power that source resistance delivers to the receiver

$$P_{RS} = \frac{4kTRs}{4} \frac{1}{R_{in}} = kT$$
$$= -174 \frac{dBm}{Hz} \text{ (thermal noise floor)}$$

At room temperature, we obtain receiver sensitivity as

$$P_{in,\text{min}} = F + SNR_{\text{min}} = -174dBm + NF + 10\log B + SNR_{\text{min}}$$

Maximum Input Power

$$P_{IIP3} = P_{in} + \frac{P_{out} - P_{IM,out}}{2}$$

$$= P_{in} + \frac{P_{in} - P_{IM,in}}{2} = \frac{3P_{in} - P_{IM,in}}{2}$$

$$P_{in} = \frac{2P_{IIP3} + P_{IM,in}}{3}$$

where $P_{IM,out}$ denotes output-referred power of IM₃ products, $P_{out}=P_{in}+G$, $P_{IM,OUT}=P_{IM,in}+G$. The input level for which the IM products become equal to the noise floor F is thus given by

$$P_{in} = \frac{2P_{IIP3} + F}{3} = \frac{2P_{IIP3} - 174dBm + NF + 10\log B}{3}$$

Dynamic Range

- Dynamic Range (DR) -- defined as the ratio of the maximum to minimum input levels that the circuit provides a reasonable signal quality.
- Spurious-Free Dynamic Range (SFDR) -- determine the upper end of dynamic range on the intermodulation behavior and the lower end on sensitivity.
- The upper bound of the dynamic range is defined as the maximum input power in a two-tone test for which the 3rd IM products do not exceed the noise floor F=-174dBm+NF+10logB.
- The SFDR is thus given by

$$SFDR = P_{in, \max} - P_{in, \min} = \left(\frac{2P_{IIP3} + F}{3}\right) - (F + SNR_{\min}) = \frac{2(P_{IIP3} - F)}{3} - SNR_{\min}$$

• Example: NF=9dB, P_{IIP3} =-15dBm, B=100kHz, SNR_{min}=12dB \rightarrow SFDR=(-15-(-174+9+50))/1.5-12=54.7dB.

Homework 1

Submit your HW 1 to Canvas. Solutions to HW1 will be posted after the submission deadline.

HW 1: 2.2, 2.3, 2.7, 2.8, 2.11 (use Eq. (2.122) and (2.132)), 2.15.

- 2.2. Repeat Example 2.11 if one interferer has a level of -3 dBm and the other, -35 dBm.
- 2.3. If cascaded, stages having only *second-order* nonlinearity can yield a finite IP_3 . For example, consider the cascade identical common-source stages shown in Fig. 2.75.

Figure 2.75 Cascade of CS stages.

Homework 1

HW 1: 2.2, 2.3, 2.7, 2.8, 2.11 (use Eq. (2.122) and (2.132)), 2.15.

- 2.7. A broadband circuit sensing an input $V_0 \cos \omega_0 t$ produces a third harmonic $V_3 \cos(3\omega_0 t)$. Determine the 1-dB compression point in terms of V_0 and V_3 .
- 2.8. Prove that in Fig. 2.36, the noise power delivered by R_1 to R_2 is equal to that delivered by R_2 to R_1 if the resistors reside at the same temperature. What happens if they do not?
- 2.11. Determine the NF of the circuit shown in Fig. 2.52 using Friis' equation.
- 2.15. The input/output characteristic of a bipolar differential pair is given by $V_{out} = -2R_C I_{EE} \tanh[V_{in}/(2V_T)]$, where R_C denotes the load resistance, I_{EE} is the tail current, and $V_T = kT/q$. Determine the IP_3 of the circuit.