

Summenbäume

Gegeben ist ein Array mit N Zahlen, nummeriert von 1 bist N. Am Anfan sind alle diese Zahlen 0. Du sollst zwei Operationen auf diesem Array ausführen können.

- update(i, v) du musst die Zahl v zu dem Element mit Index i addieren.
- query(p, q) du musst die Summe aller Elemente in Intervall [p, q] berechnen.

Aufgabenstellung:

Du musst in einem File die Funktionen **init(N), update(i, v) und query(p, q)** implementieren.

```
init(N) ... wird am Beginn der Ausführung genau einmal aufgerufen.update(i, v) ... soll die oben beschriebenen Auswirkungen auf das Array haben.query(p, q) ... muss den Wert der oben beschriebenen Abfrage zurückgeben.
```

Implementierungsdetails:

Du musst genau eine Datei einreichen. Diese Datei muss BIT.c, BIT.cpp benannt sein. Diese Datei muss die oben beschriebenen Funktionen implementieren und die folgenden Signaturen respektieren:

```
void init(int N);
void update(int i, int v);
long long query(int p, int q);
```

Beispielgrader

Der Beispielgrader liest die Eingabe im folgenden Format:

Zeile 1: die Zahl N und die Anzahl der Kommandos Q. In jeder der folgenden Q Zeilen befindet sich entweder:

- 0 gefolgt von einem Leerzeichen und zwei durch Leerzeichen getrennte Integer, i und v entspricht einem update.
- ullet 1 gefolgt von zwei durch Leerzeichen getrente Integer p, q
 - entspricht einem query.

Der Beispielgrader wird die, vom query Befehl zurückgegebenen Zahlen ausgeben. Eine Zahl pro Zeile.

Beispiel:

init(8)	[0, 0, 0, 0, 0, 0, 0]
update(4, 26)	[0, 0, 0, 26, 0, 0, 0, 0]
update(5, 80)	[0, 0, 0, 26, 80, 0, 0, 0]
update(7, 20)	[0, 0, 0, 26, 80, 0, 20, 0]
query(8, 8)	Ergebnis: 0
update(1, 14)	[14, 0, 0, 26, 80, 0, 20, 0]
Query(1, 6)	Ergebnis: 120

Grading:

Für alle Subtasks gilt folgende Annahme: $|v| \le 1000000$.

Subtask 1(20 P):

Du kannst annehmen, dass $1 \le N \le 1000$ und $1 \le Q \le 1000$ gilt.

Subtask 1(80 P):

Du kannst annehmen, dass $1 \le N \le 100\,000$ und $1 \le Q \le 100\,000$ gilt.