SCforF

Finite dimensional asset markets

Introduction

In a finite dimensional asset market, we model the payoff of the market with a matrix:

$$A \in \mathbb{R}^{m imes n}$$

where n is the number of different assets in the market, and m refers to the number of different states that the market can have.

The prices are usually stored in:

$$S \in \mathbb{R}^n$$
.

When given a new asset with payoff $b \in \mathbb{R}^m$, and you are asked if this can be perfectly hedged, mathematically you just need to verify if:

$$b \in \operatorname{Span}(A)$$
,

where $\mathrm{Span}(A) := \mathrm{Span}(A_1, \ldots, A_n)$, and where A_1, \ldots, A_n are the columns of A.

Definition of arbitrage

First type:

 $\exists x \text{ such that } S \cdot x \leq 0, \ Ax \geq 0 \text{ and } Ax \neq 0.$

Second type:

 $\exists x \text{ such that } S \cdot x < 0, Ax = 0.$

Theorem: there is no type 2 arbitrage if and only if $\exists \psi$ such that $S = A^T \psi$.

Theorem: there is no type 1 or 2 if and only if $\exists \psi >> 0$ such that $S = A^T \psi$.

Remark: let us define $R_f := \frac{1}{\mathbb{I} \cdot \psi}$ where:

$$\mathbb{1} := \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathbb{1} := \begin{bmatrix} \vdots \\ 1 \end{bmatrix}$$

and define $q:=R_f\psi.$ Notice that $q\cdot\mathbb{1}=1.$

The fair price of the new asset b is then:

$$\psi \cdot b = rac{1}{R_f} q \cdot b = rac{1}{R_f} \mathbb{E}_q \left[b
ight]$$

The idea is: the price is fair when:

$$\mathbb{E}_q\left[\operatorname{price}\cdot R_f - \operatorname{payoff}\right] = 0$$

being q the risk-neutral probability.

Infinite dimensional asset markets

Random variables and conditional expectation

Definition: given (E,\mathcal{E}) and (F,\mathcal{F}) two measurable spaces, we say that $X:E\to F$ is measurable if $X^{-1}(A)\in\mathcal{E}$ for all $A\in\mathcal{F}$.

Theorem: Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Given $\mathcal{G} \subset \mathcal{F}$ another σ -algebra contained in \mathcal{F} , and given $X : \Omega \to \mathbb{R}$ a random variable with $\mathbb{E}[|X|] < +\infty$ there exists a unique random variable Y such that:

$$\mathbb{E}[XZ] = \mathbb{E}[YZ],$$

for all Z that is \mathcal{G} -measurable.

Definition: we call the random variable Y from the previous theorem $\mathbb{E}[X|\mathcal{G}]$.

Properties:

• Tower property: if $\mathcal{G} \subset \mathcal{H}$ then:

$$\mathbb{E}\left[\mathbb{E}\left[X|\mathcal{H}\right]|\mathcal{G}\right] = \mathbb{E}\left[X|\mathcal{G}\right].$$