UTN-FRT TÉCNICAS DIGITALES II ING. ELECTRÓNICA

SISTEMA DE SEGURIDAD ALARMA CON COMUNICACIÓN BLUETO OTH

GRUPO 8

Alumnos: Gao, Luciano

Jorrat, Tomás

Mitre, Emilio

Profesor: Ing. Mansilla Ruben Dario

STM32-F413ZH

Teclado Matricial 4x3 Modulo Bluetooth HC-05 Pantalla LCD 16x2 - PCF8574 Sensor PIR HC-SR501 Sensor Magnético MS-14-BL

PCB:

Sensores Magneticos Sensor PIR Buzzer Leds de estado

CONFIGURACIÓN DE PINES I/O

PA6	n/a	n/a	Input mode	No pull-up and no	n/a	Sensor_PIR
PA7	n/a	n/a	Input mode	No pull-up and no	n/a	Sensor_Magnetico_1
PD14	n/a	n/a	Input mode	No pull-up and no	n/a	Sensor_Magnetico_2
PE2	n/a	n/a	Input mode	Pull-up	n/a	C1
PE4	n/a	n/a	Input mode	Pull-up	n/a	C2
PE5	n/a	n/a	Input mode	Pull-up	n/a	C3
PB0	n/a	Low	Output Push Pull	No pull-up and no	Low	LD1 [Green]
PB7	n/a	Low	Output Push Pull	No pull-up and no	Low	LD2 [Blue]
PB14	n/a	Low	Output Push Pull	No pull-up and no	Low	LD3 [Red]
PE9	n/a	Low	Output Push Pull	No pull-up and no	Low	Led_Alerta [Red]
PF13	n/a	Low	Output Push Pull	No pull-up and no	Low	Led_Encendido [Green]
PE11	n/a	Low	Output Push Pull	No pull-up and no	Low	Led_Estado [Blue]
PE6	n/a	High	Output Push Pull	No pull-up and no	Low	R1
PE3	n/a	High	Output Push Pull	No pull-up and no	Low	R2
PF8	n/a	High	Output Push Pull	No pull-up and no	Low	R3
PF7	n/a	High	Output Push Pull	No pull-up and no	Low	R4
PA5	n/a	Low	Output Push Pull	Pull-down	Low	Sirena

CONFIGURACIÓN DE MÓDULOS – USART2 - 12C2

Data Direction

Over Sampling

I2C2_SDA I2C2_SCL

PD7 _USART2 RX VDD VSS PD5 USART2_TX IPD4

Mode Asynchronous Hardware Flow Control (RS232) Disable Master Features I2C Speed Mode Standard Mode I2C Clock Speed (Hz) 100000 Slave Features Clock No Stretch Mode Disabled Primary Address Length selection 7-bit Dual Address Acknowledged Disabled Primary slave address General Call address detection Disabled

Receive and Transmit

16 Samples

→ Basic Parameters				
Baud Rate	9600 Bits/s			
Word Length	8 Bits (including Parity)			
Parity	None			
Stop Bits	1			
✓ Advanced Parameters				

SOFTWARE - MAIN.C

```
void DisplayMainMenu();
void HandleMainMenuInput(char key);
void DisplayAlarmMenu();
void HandleAlarmMenuInput(char key);
void RequestPassword(void (*onSuccess)(void), void (*onFailure)(void));
void ActivateAlarm();
void DeactivateAlarm();
void DisplayChangePassMenu();
void ConfirmNewPassword();
void HandleSubMenu();
void TestAlarm();
extern void AlarmTriggered();
void IncorrectPassword();
void HandleActiveAlarm(char key);
void CheckSensors();
void CheckAlarmDeactivation(char key);
```

1.Activar *.Mas 2.Cambiar Pass

1.Sist. Completo 2.Sin sensor mov

API_BT

```
BT_SendMessage(" Alarma activada! \r\n");
```

API_KEYPAD

```
char keypad getkey()
   for (int i = 0; i < ROWS; i++) {</pre>
        for (int k = 0; k < ROWS; k++) {
            HAL GPIO WritePin(rowPorts[k], rowPins[k], (i == k) ? GPIO PIN RESET : GPIO PIN SET);
        for (int j = 0; j < COLS; j++) {</pre>
            if (HAL GPIO ReadPin(colPorts[j], colPins[j]) == GPIO PIN RESET) {
                HAL Delay(50); // Anti-rebote
                while (HAL GPIO ReadPin(colPorts[j], colPins[j]) == GPIO PIN RESET);
                return keymap[i][j];
   return '\0'; // No se presionó ninguna tecla
```

```
key = keypad getkey();
if (key != '\0') {
    if (key == '*') {
        lcd clear();
        lcd set cursor(0, 0);
        lcd print("Operacion");
        lcd set cursor(1, 0);
        lcd print("Cancelada");
        while(!delayRead(&LCD Muestro)){
        DisplayMainMenu();
        return;
    if (key >= '0' && key <= '9' && inputIndex < 4) {
        inputBuffer[inputIndex++] = key;
        lcd set cursor(1, 10 + inputIndex - 1);
        lcd print("*");
    }else if (key == '#') {
```

FIN

Repositorio GRUPO 8:https://github.com/TomasJorrat/AFP_5 GRUPO 8 2024

https://github.com/emiliomitre/Grupo 8 TDII 2024