МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Машинное обучение» Тема: Предобработка данных

Студент гр. 6304	Ковынев М.В.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2020

Цель

Ознакомиться с методами предобработки данных из библиотеки Scikit Learn

Ход работы

- 1. Загружен датасет по ссылке: https://www.kaggle.com/andrewmvd/heart-failure-clinical-dat. Данные представлены в виде сsv таблицы.
- 2. Создан Python скрипт. Загружен датасет в датафрейм, и исключены бинарные признаки и признак времени.

"C:\	Progra	m Files (x86)\Microsoft Vi	sual	Studio\Shared\Pyth	on37_64\python.exe"
	age	creatinine_phosphokinase		serum_creatinine	serum_sodium
0	75.0	582		1.9	130
1	55.0	7861		1.1	136
2	65.0	146		1.3	129
3	50.0	111		1.9	137
4	65.0	160		2.7	116
294	62.0	61		1.1	143
295	55.0	1820		1.2	139
296	45.0	2060		0.8	138
297	45.0	2413		1.4	140
298	50.0	196		1.6	136
[299	rows	x 6 columns]			

Рисунок 1 — Загруженный датасет

3. Построены гистограммы признаков

Рисунок 2 — Гистограммы признаков

4. На основании гистограмм определите диапазоны значений для каждого из признаков, а также возле какого значения лежит наибольшее количество наблюдений.

Таблица 1

Название признака	Наибольшее	Минимум	Максимум	
	кол-во			
	наблюдений			
age	60	40	95	
creatinine_phosphokinase	582	23	7861	
ejection_fraction	35	14	80	
platelets	263358.03	25100	850000	
serum_creatinine	1	0.5	9.4	
serum_sodium	136	113	148	

5. Подключен модуль Sklearn. Настроена стандартизацию на основе первых 150 наблюдений используя StandardScaler. Стандартизованы все данные (data scaled 150). Построены гистограммы стандартизированных данных.

Рисунок 3 — Гистограммы признаков StandardScaler 150

6. На основании гистограмм определите диапазоны значений для каждого из признаков, а также возле какого значения лежит наибольшее количество наблюдений.

Таблица 1

Название признака	Наибольшее	Минимум	Максимум
	кол-во		
	наблюдений		
age	-0.23	-1.84	2.57
creatinine_phosphokinase	-0.02	-0.49	6.09
ejection_fraction	-0.22	-1.83	3.22
platelets	-0.03	-2.51	6.06
serum_creatinine	-0.44	-0.87	6.75
serum_sodium	-0.09	-5.16	2.54

7. В виду применения преобразования стандартизации диапазон значений и наибольшее кол-во наблюдений изменились.

- 8. Проведена настройка стандартизации на всех данных (data scalled full).
- 9. Рассчитаны мат. ожидание и СКО до и после стандартизации. На основании этих значений выведены для каждого признака формулы, по которым они стандартизировались.

Таблица 2

Выборка	data		data_scaled_150		data_scalled_full	
Метрика	mean	std	mean	std	mean	std
age	60.83	11.87	-0.16	0.95	5.7e-16	0.99
creatinine_phosph	581.83	968.66	-0.02	0.81	0.0	1
okinase						
ejection_fraction	38.08	11.81	0.01	0.90	-3e-17	1
platelets	263358.02	97640.54	-0.03	1.01	7.7e-17	1
serum_creatinine	1.39	1.03	-0.10	0.88	1.4e-1	1
serum_sodium	136.62	4.40	0.03	0.97	-8e-16	0.99

10. На основании таблицы выяснено, что стандартизация имеет следующий вид:

$$Y = \frac{X - \mu(X)}{std(X)}$$

 $\mu(X)$ – mean (мат ожидание), std(X) – std (СКО).

11. Сравнены значения из формул с полями mean_ и var_ объекта scaler. mean_ - мат. ожидание, var_ - дисперсия величин, на основании которых производится стандартизация данных.

Выборка	scaller_150		scaller_full		
Метрика	mean_	var_	mean_	var_	
age	62.94	154.99	60.83	141.01	
creatinine_phospho	607.15	1415488.82	581.83	938309.88	
kinase					
ejection_fraction	37.94	170.02	38.08	139.59	
platelets	266746.74	9252860499.07	263358.02	9533676546.27	
serum_creatinine	1.52	1.36	1.39	1.06	
serum_sodium	136.45	20.60	136.62	19.40	

12.Приведены данные к диапазону используя MinMaxScaler

Рисунок 4 — Гистограммы признаков MinMaxScaler Данные приводятся к диапазону [0, 1]. Преобразование можно получить следующим образом.

$$Y = \frac{X - \min(X)}{\max(X) - \min(X)}$$

- 13. Через параметры MinMaxScaler определены минимальное и максимальное значение в данных для каждого признака. Данные совпадают с таблицей 1.
- 14. Аналогично трансформированы данные используя MaxAbsScaler и RobustScaler. Построены гистограммы. Определены к какому диапазону приводятся данные

Рисунок 5 — Гистограммы признаков MaxAbsScaler Данные приводятся к интервалу [0, 1] как и MinMaxScaler.

Рисунок 6 — Гистограммы признаков RobustScaler

RobustScaler отнимает медиану и масштабирует данные в соответствии с межквартильным размахом (диапазон между 1-м квартилем (25-й квантиль) и 3-м квартилем (75-й квантиль)).

15. Написана функция, которая приводит все данные к диапазону [-5 10]

Рисунок 6 — Гистограммы признаков [-5 10]

16.Приведите данные к равномерному и нормальному распределению используя QuantileTransformer

Рисунок 7 — Гистограммы признаков QuantileTransformer (равномерное)

Рисунок 8 — Гистограммы признаков QuantileTransformer (нормальное)

- 17.n_quantiles параметров, задающий количество квантилей, которые используются для дискретизации функции распределению. Чем больше квантилей, тем ближе функция к заданному распределению.
- 18.Самостоятельно приведите данные к нормальному распределению используя PowerTransformer

Рисунок 9 — Гистограммы признаков PowerTransformer

- 19. Проведена дискретизация признаков, используя KBinsDiscretizer, на следующее количество диапазонов:
 - age 3
 - creatinine_phosphokinase 4
 - ejection_fraction 3
 - platelets 10
 - serum creatinine 2
 - serum_sodium 4

Рисунок 9 — Гистограммы признаков KBinsDiscretizer

20. Диапазоны интервалов:

- age [40. 55. 65. 95.]
- creatinine phosphokinase [23. 116.5 250. 582. 7861.]
- ejection_fraction [14. 35. 40. 80.]
- platelets [25100. 153000. 196000. 221000. 237000. 262000. 265000.
 285200. 319800. 374600. 850000.]
- serum_creatinine [0.5 1.1 9.4]
- serum_sodium [113. 134. 137. 140. 148.]

Вывод

В ходе выполнения данной лабораторной работы было выполнено ознакомление с методами предобработки данных из библиотеки Scikit Learn. Выяснено, что приведение к диапазону не меняет форму распределению, на частичных данных происходит снижение качества результирующего набора.