线性代数期中试卷 (2018.11.17)

一. 简答与计算题(本题共5小题, 每小题8分, 共40分)

1. 设
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & -\lambda \end{pmatrix}$$
 经过多次初等行变换和列变换得到 $B = \begin{pmatrix} -5 & 17 & 6 \\ -7 & 0 & 5 \\ 13 & 9 & -8 \end{pmatrix}$,求参数 λ .

3. 设
$$A \in \mathbb{R}^{3\times3}$$
, $|A| \neq 0$, 且有 $A_{ij} = 2a_{ij}$ $i, j = 1, 2, 3$, 其中 A_{ij} 为矩阵元素 a_{ij} 的代数余子式,求 $|A^*|$.

4. 设矩阵 $A = MN^{\mathrm{T}}$,其中 $M, N \in \mathbb{R}^{n\times r}$ $(r \leq n)$, $|N^{\mathrm{T}}M| \neq 0$. 证明: $\mathbf{r}(A^2) = \mathbf{r}(A)$.

5. 计算行列式 $D = \begin{bmatrix} 1 & 2 & 3 & \cdots & n \\ 2 & 3 & 4 & \cdots & n-1 \\ 3 & 4 & 5 & \cdots & n-2 \\ \vdots & \vdots & \vdots & \vdots \\ n & n-1 & n-2 & \cdots & 1 \end{bmatrix}$. $(D$ 的元素 $a_{ij} = \{i+j-1, \dots , j+i+j \leq n+1, \dots \}$. $(D$ 的元素 $a_{ij} = \{i+j-1, \dots , j+i+j \leq n+1, \dots \}$. $(D$ 的元素 $a_{ij} = \{i+j-1, \dots , j+i+j \leq n+1, \dots \}$

二.(10分) 设有向量组

$$\alpha_1 = \begin{pmatrix} 2 \\ -2 \\ -1 \\ 4 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 \\ -4 \\ 1 \\ -1 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix}, \alpha_5 = \begin{pmatrix} 2 \\ 1 \\ 2 \\ 7 \end{pmatrix}.$$

是齐次线性方程组 $(A-2E)x=\theta$ 的非零解,求 A. $(C_1, 3_1, 3_2)=(d_1, 2_3_1, 2_3_2)$ 四. (15分)设下列非齐次线性方程组有3个线性无关的解向量:

 $\lambda x_1 + x_2 + 2x_3 + 7\mu x_4 = -2,$

A 的特征值和特征向量; (2) 计算矩阵 $(A^2+A^*+2E)^{-1}$ 的特征值和特征向量

六.(10分) 设矩阵 $A \in \mathbb{R}^{m \times n}$, $\mathbf{r}(A) < n$,列向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 是齐次线性方程组 $Ax = \theta$ 的基础解系,矩阵 $N=(\alpha_1,\alpha_2,\cdots,\alpha_s)\in \mathbf{R}^{n\times s}$. 证明: $\mathbf{r}(A^{\mathrm{T}},N)=n$.

证明:考虑方程组 (加) 不=日前解

了 di, dz, --, dz 是 / A X=0 前星神解季/每 图 X是 dudi, --, ds 附ば性独危

 $\chi = IN \chi$