Comprehensive Roadmap of Machine Learning for Computer Vision, organized by Learning Priority and Necessary Prerequisites.

This guide moves from fundamentals to advanced, so it can build layer by layer.

Complete Study Path for Computer Vision

This roadmap is structured into progressive phases from foundation to frontier.

Phase 1: Prerequisites & Core Knowledge (Foundational Concepts)

These are must-know concepts before diving into computer vision:

Goal: Build mathematical and programming fluency.

- **Mathematics:**
 - ✓ **III** Linear Algebra & Calculus: Vectors, matrices, derivatives
 - ✓ **Probability & Statistics**: Distributions, Bayes' theorem, evaluation metrics
- **Core ML Principles**: Supervised vs. unsupervised learning, overfitting, biasvariance tradeoff, loss functions
- **Q** Programming: Python mastery (NumPy, Matplotlib, Pandas)
- Evaluation Metrics: Accuracy, precision, recall, F1-score

Priority Level: **K** Essential

Prerequisite for: All models and architectures

Phase 2: ML Model Fundamentals

Before working with images, understand basic model types:

Goal: Being familiar with Machine Learning.

- Regression and Classification Models: Logistic regression, decision trees, k-NN
- **Example 2 Feature Engineering**: Scaling, normalization, data splitting
- Evaluation: Accuracy, precision, recall, F1-score, confusion matrix

Priority Level: High

Prerequisite for: Neural networks, CNNs

Nase 3: Classical Computer Vision

Before using ML and DL, Interacting with the image.

Goal: Understand rule-based image processing and feature detection.

- **Introduction** to Computer Vision and image types (RGB, grayscale, etc.)
- **Image manipulation** with OpenCV (resize, crop, filters)
- Image Filters: Edge detection (Sobel, Canny), blurring
- **Q Feature Extraction:** SIFT, SURF, ORB
- **Image Geometry:** Homographies, Camera Calibration
- **<u>ia Libraries:</u>** OpenCV, PIL

Priority Level: **K** Essential

Prerequisite for: Neural networks, CNNs

Phase 4: Deep Learning Foundations

Start exploring computer vision with these essentials:

Goal: Learn to train neural networks from scratch.

- Neural Networks: Feedforward networks, activation functions, backpropagation, training
- **Convolutional Neural Networks (CNNs)**: Convolutions, Filters, pooling, feature maps (activation maps)
- **Frameworks**: PyTorch or TensorFlow for building models

Projects:

- Build a handwritten digit classifier (MNIST)
- Create a custom image classifier

Priority Level: **Critical**

Prerequisite for: Image classification, object detection, segmentation

© Phase 5: Core CV (Computer Vision) Tasks

Now ready to tackle real-world visual challenges:

Goal: Master practical computer vision applications.

Task	Goal - Implement	Example Models/Techniques
Image Classification	Label whole image (TorchVision or Keras)	CNNs, ResNet, EfficientNet, ViT
6 Object Detection	Detect and localize objects in image (Detectron2)	YOLO, SSD, Faster R-CNN
Segmentation	Pixel-level class labeling (MMDetection)	U-Net, DeepLab
Instance Segmentation	Segment individual objects	Mask R-CNN
Pose Estimation	OpenPose, HRNet (MediaPipe)	MediaPipe
♣ Face Recognition	FaceNet, ArcFace (InsightFace)	InsightFace
Image Captioning	Generate descriptive text	CNN+RNN, Vision Transformers
Image Generation	Synthesize new images	GANs, Diffusion Models

Projects:

- Detect objects in street scenes
- Segment medical images

Priority Level: Advanced

Prerequisite for: Application-specific CV systems

⋄ Phase 6: Advanced & Generative Models & Architectures

Once fluent with vision tasks, expand into cutting-edge systems:

Goal: Explore emerging architectures and creative AI.

- Vision Transformers (ViT, Swin Transformer): Attention-based models for image data
- Multimodal Learning: Combine vision with language (e.g., CLIP, BLIP, Flamingo)
- Generative Models: GANs, VAEs, Diffusion-based Synthesis Models
- Self-Supervised Learning: Learn representations without labels

Projects:

- Train StyleGAN to generate portraits
- Build an image captioning system with BLIP

Priority Level: Separate

Prerequisite for: Research, AI applications, multimodal systems

Phase 7: Applications Deployment & Optimization

Finally, bring it all into practice:

Goal: Productionize and refine vision systems.

- Model Evaluation & Tuning: Cross-Validation, Hyperparameter Search
- **Model Acceleration:** Quantization, Pruning
- **Edge Deployment**: Using Models on Mobile or Embedded Devices (ONNX, TensorRT,
- Explainability & Ethics: Bias detection, model transparency (Grad-CAM, SHAP)
- / Hyperparameter Tuning: Optuna, Ray Tune
- **Toolkits**: OpenCV, Detectron2, MMDetection, HuggingFace

Projects:

- Deploy models to mobile
- Create interpretable vision systems

Priority Level: * Practical

Prerequisite for: Production-level ML systems