Exercice 1. (Familles libres et génératrices de vecteurs)

Les familles suivantes sont-elles libres ou génératrices? Si oui le prouver, sinon donner un contre-exemple.

- 1. $\{(1,1),(1,-i)\}$ dans l'espace vectoriel \mathbb{C}^2 sur \mathbb{C}
- 1. Soit on Vecteur de C^2 $V=(z_1,Z_2)=((a_1+ib_1),(a_2+ib_2))$ Alors il peut être représenté comme combinaison linéaire de (i,i) et (i-i): $x\cdot(i,i)+\beta\cdot(i-i)=(z_1,z_2)$ avec $x_i,\beta\in C$ $x\cdot(i,i$
 - 2. $\{(1,2,2),(-2,0,2),(-2,2,-1)\}$ dans l'espace vectoriel \mathbb{R}^3 sur \mathbb{R}
 - 2. So the universal de \mathbb{R}^2 , V = (x, y, z)Alors if peut être représenté comme combinuson linéaire de (12,2), (-2,02), et (-2,2-1); $\lambda_1 \cdot (12,2) + \lambda_2 \cdot (-2,0,2) + \lambda_3 \cdot (-2,2-1)$ $\Rightarrow \begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_1 + 2\lambda_2 = y \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 4\lambda_2 + 4\lambda_3 = y \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_1 + 2\lambda_2 \lambda_3 = z \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_2 + 3\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_3 + 2\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_3 + 2\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_3 + 2\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\ 2\lambda_3 + 2\lambda_3 = \frac{1}{2} \cdot (x-2\lambda) \end{cases}$ $\begin{cases} \lambda_1 2\lambda_2 2\lambda_3 = x \\$
 - 3. $\{(1,2,2),(-2,0,2),(-2,2,-1)\}$ dans l'espace vectoriel \mathbb{C}^3 sur \mathbb{R}
 - 3. Par le même raisonnement que 2., la pamille est libre.

 En revanche, elle n'est pos génératrice: Il n'existe pas de λ_1 , λ_2 , λ_3 $\in \mathbb{R}$ tels que $\lambda_1 \cdot (1,2,2) + \lambda_2 \cdot (-2,0,2) + \lambda_3 \cdot (-2,2,-1) = (0,0,1)$, par exemple.

4. Donner une base de \mathbb{C}^2 sur \mathbb{R} . Et sur \mathbb{C} ?

Exercice 2. (Indépendance linéaire de fonctions)

Dans l'espace vectoriel des fonctions $\mathcal{F}(\mathbb{R},\mathbb{R})$, les familles ci-dessous sont-elles libres?

- 1. $\{3x^2, 2x^4\}$
- 2. $\{3^x, 3^{x+3}\}$
- 3. $\{1, \sin^2(x), \cos^2(x)\}$
- 4. $\{\cos(x), \cos(2x), \cos(4x)\}$
- 5. La famille infinie $\{1, \sin(x), \sin(2x), \sin(4x), \sin(8x), \sin(16x), \dots\}$

Exercice 3. (Sous-famille libre)

Montrer l'affirmation suivante :

Si $\{v_1, \ldots, v_n\}$ est une famille libre dans un espace vectoriel V,

Alors toute sous-famille $\{v_i\}_{i\in I}$ indexée par $I\subset\{1,\ldots,n\}$ est aussi libre.

Si $\{v_1, \ldots, v_n\}$ est libre, alors pour tout $v_k, k \in K = \{1, \ldots, n\}$, il est impossible de représenter v_k comme combinaison linéaire des vecteurs de $\{v_1, \ldots, v_n\} \setminus \{v_k\}$.

En particulier, il est impossible de représenter v_k comme combinaison linéaire des vecteurs de n'importe quelle sous-famille de $\{v_1, \ldots, v_n\} \setminus \{v_k\}$.

Ainsi, pour tout v_k , une sous-famille $\{v_i\}_{i\in I}, I\subset K$ contenant v_k est libre. Comme v_k peut être n'importe quel vecteur de $\{v_1,\ldots,v_n\}$, on en conclut que toute sous-famille de $\{v_1,\ldots,v_n\}$: $\{v_i\}_{i\in I}, I\subset\{1,\ldots,n\}$ est libre.

Exercice 4. (Dimension d'un espace vectoriel sur \mathbb{R} et sur \mathbb{C})

On note $\dim_{\mathbb{K}}(E)$ la dimension de l'espace vectoriel E sur le corps \mathbb{K} .

- (a) Montrer que $\dim_{\mathbb{R}}(\mathbb{R}) = 1$ et $\dim_{\mathbb{R}}(\mathbb{C}) = 2$.
- (b) En déduire $\dim_{\mathbb{R}}(\mathbb{R}^n)$ et $\dim_{\mathbb{R}}(\mathbb{C}^n)$.
- (c) Montrer que $\dim_{\mathbb{C}}(\mathbb{C}) = 1$. En déduire $\dim_{\mathbb{C}}(\mathbb{C}^n)$.
 - (a) {1} est une base de \mathbb{R} sur \mathbb{R} , car $\forall v \in \mathbb{R}, \exists! \lambda \in \mathbb{R}, v = \lambda \cdot 1$. Comme {1} possède 1 élément, $\dim_{\mathbb{R}}(\mathbb{R}) = \operatorname{card}(\{1\}) = 1$
 - $\{1,i\}$ est une base de \mathbb{C} sur \mathbb{R} , car $\forall v \in \mathbb{C}, \exists ! a \in \mathbb{R}, \exists ! b \in \mathbb{R}, v = a \cdot 1 + b \cdot i$. Comme $\{1,i\}$ possède 2 éléments, $\dim_{\mathbb{R}}(\mathbb{C}) = \operatorname{card}(\{1,i\}) = 2$
 - (b) Puisqu'un vecteur de \mathbb{R}^n est un n-uplet de vecteurs de \mathbb{R} , il peut être représenté comme n vecteurs de \mathbb{R} indépendants, et donc $\dim_{\mathbb{R}}(\mathbb{R}^n) = n \cdot \dim_{\mathbb{R}}(\mathbb{R}) = n \cdot 1 = n$.
 - Par le même raisonnement, $\dim_{\mathbb{R}}(\mathbb{C}^n) = n \cdot \dim_{\mathbb{R}}(\mathbb{C}) = n \cdot 2 = 2n$.
 - (c) {1} est une base de \mathbb{C} sur \mathbb{C} , car $\forall v \in \mathbb{C}$, $\exists ! z \in \mathbb{C}$, $v = z \cdot 1$. Donc, $\dim_{\mathbb{C}}(\mathbb{C}) = 1$ et $\dim_{\mathbb{C}}(\mathbb{C}^n) = n \cdot \dim_{\mathbb{C}}(\mathbb{C}^n) = n \cdot 1 = n$.

Exercice 5. (Base, famille libre maximale et famille génératrice minimale) Soit V un espace vectoriel sur \mathbb{K} et une famille de vecteurs $\mathcal{F} = \{v_1, \dots, v_n\} \subset V$.

- (a) En cours, nous avons vu que les conditions suivantes sont équivalentes :
 - (i) \mathcal{F} est une base de V
 - (ii) \mathcal{F} est une famille libre maximale de V
 - (iii) \mathcal{F} est une famille génératrice minimale de V

L'équivalence (i) \iff (ii) a été montrée en cours. Montrer l'équivalence (i) \iff (iii).

Exercice 5

(i) Montrons "P est une base" \iff "P est une camille génératrice minimale de V" \implies Comme P est une base, elle est génératrice de V et libre.

Puisqu'elle est libre Vk e {\vec{v}...n\vec{v}} v...ne peut pas être exprimé comme combinaison inéaire des vectours de P\vec{v}...\

(b) Montrer que

 \mathcal{F} est une base de $V \iff \mathcal{F}$ est génératrice et $\operatorname{card}(\mathcal{F}) = \dim_{\mathbb{K}}(V)$

Indication : $card(\mathcal{F})$ est le nombre d'éléments de la famille \mathcal{F} .

