How Well Does GPT-40 Understand Vision? Evaluating Multimodal Foundation Models on Standard Computer Vision Tasks (arxiv)

Key Highlights

問題

- 本論文旨在通過在標準計算機視覺任務上的基準測試,評估多模態基礎模型 (MFMs) 如 GPT-4o 在視覺理解方面的效果
- 現有方法主要在基於文本的任務(VQA)或與文本密切相關的任務上評估 MFMs,這可能無法真實測量視覺理解,並可能忽視視覺組件而偏向語言能力
- 當前的基準測試未能評估其他如 3D 幾何、分組或分割等較少文本導向的視覺理解 方面,也無法與視覺專家模型進行直接比較

解決方案

- 本論文提出一種提示鏈(prompt-chaining)框架,通過將標準計算機視覺任務轉 化為文本可提示和 API 兼容的任務,將其分解成多個分類子任務
- 這種方法受到觀察啟發,即大多數 MFMs 在圖像分類方面相對較強,因此將複雜 的視覺任務分解成更簡單的分類問題
- 理論基礎在於利用 MFMs 現有的分類能力,同時通過遞歸方法和基於超像素(superpixel)的策略解決其直接坐標預測和細粒度定位的局限性

實驗

- 在非推理模型中,GPT-4o 表現最佳,在 6 個任務中取得 4 個頂尖位置,隨後是 Gemini 模型、o4-mini、Claude 3.5 Sonnet、Qwen2-VL 和 Llama 3.2
- 所有 MFMs 在所有任務中均顯著落後於特定任務的最先進視覺模型,在語義任務 上表現明顯優於幾何任務
- 該方法假設超像素的一致性並使用粗略的網格解析度,這可能限制了性能,但對照 基準顯示這些限制並未完全解釋性能差距

創新

- 首個基準測試使 MFMs 能夠通過原生輸出格式在標準計算機視覺任務上與視覺專家模型直接比較
- 發現 MFMs 在語義任務上顯著優於幾何任務,推理模型在幾何任務上顯示出特別的改進
- 開發了一個標準化框架,可以觀測具備文本介面的各種視覺能力的任何 MFM

評論/批判

- 提示鏈方法每個樣本計算成本高且不適合作為生產方法,限制了實際應用
- 提到所提出的提示鍊的最優性可能並非最佳,雖然它們一致地超越了直接提示
- 評估受到 API 成本限制,導致某些任務的子集較小,並且該方法依賴於超像素化可能引入偏差,儘管對照基準已經考慮了這些因素

Comprehensive Analysis

No section notes.

References

No references found.