Give it a text prompt. It will return an image matching the text.

Contents

- Image Generation
- ☐ The old method GANs
- ☐ The new method Diffusion
- □ Diffusion Process
- Variational AutoEncoder
- Latent Representation
- Conditioning

Introduction

- Image generation is the creation of artificially generated images that look as realistic as real images.
- ☐ These images can be created by Generation Adversarial Networks(GAN) or with Variational Autoencoders, and more recently, Vector Quantized Variational Autoencoders (VQ-VAE), which create a discrete latent representation and create more variety of images and is easier to train compared to GANs.

GANs

Generative Adversarial Networks

Dataset of labelled hand-drawn numbers

1 - 1

GAN Architecture

LeewayHertz

How Diffusion Models Work?

Diliabion Modelo Work .

Forward and Reverse Diffusion

Forward diffusion

Step

Training examples are created by generating noise and adding an amount of it to the images in the training dataset (forward diffusion)

DATASET

MODEL

INPUT		OUTPUT / LABEL
Noise Amount	Noisy Image	Noise sample
3		
14		
7		
42		
2		
21		

Noise Predictor

UNet training step

Pick a training example from the training dataset

Predict the noise

Compare to actual noise (calculate loss)

(backprop)

Predicted noise sample

Reverse Diffusion (Denoising) Step 1

Image Generation by Reverse Diffusion (Denoising)

Reverse Diffusion

Reverse diffusion works by subtracting the predicted noise from the image successively.

Departure to Latent Space

Latent Space

Variational AutoEncoder (VAE)

Variational Autoencoder

Latent Space

Quick Recap

Original image

Image Encoder

Image

Decoder

Generate training examples with different amounts of noise added to their compressed/latent version

Generated image

Image Generation by Reverse Diffusion (Denoising)

Image Information Creator

OK but when does the text prompt come into the picture?

[Pun Intended]

Conditioning

paradise cosmic beach

77 tokens

Generated image

DATASET

MODEL

	INPUT		OUTPUT / LABEL
Step	Image	Text	noise sample
3			
14			
7			
42			
2			
21			

Noise Predictor (UNet) with Text Conditioning

Without Text

With Text

Text information (token embeddings)

Image-to-Image

Encoder

REFERENCES

- https://huggingface.co/blog/annotated-diffusion
- https://jalammar.github.io/illustrated-stable-diffusion/
- https://stable-diffusion-art.com/how-stable-diffusion-work/