

程序代写代做 CS编程辅导

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导 From BCNF to 3NF

Facts

- (1) There exists an apprilm that can generate a lossless decomposition into BCNF.

 Assignment Project Exam Help

 (2) However, a BCNF-decomposition that is both lossless
- and dependency preserving coes not always exist.

00.740380476

https://tutorcs.com

3NF is a less restrictive normal form such that a lossless and dependency preserving decomposition can always be found.

程序代写代做 CS编程辅导 3NF - Definition

• A relation schema R \times in (3) if whenever a non-trivial FD $X \to A$ holds in R, then X is a **superkey** or A is a **prime attribute**.

Assignment Project Exam Help

 3NF allows data redundancy but excludes relation schemas with certain kinds of FDs (i.e., partial FDs and transitive FDs).

QQ: 749389476

程序代写代做 CS编程辅导 Normalisation to 3NF

- Consider the followir
 - {StudentID, ContinuedBy_ID, StaffName};

WeChat: cstetnescs								
StudentID	<u>CourseNo</u>	Semester	ConfirmedBy_ID	StaffName				
123456	COMPENSION	nearly page	ct Examp Help	Jane				
123458	COMP2400	2008 S2	u13	Linda				
123458	COMPREDO t	ut2008s32 T	63.com3	Linda				

• Is ENROL in 3NF? QQ: 749389476

- {StudentID, CohrspNg/Samester bishthe only key.
- ENROL is not in 3NF because {ConfirmedBy_ID} → {StaffName}, {ConfirmedBy_ID} is not a superkey and {StaffName} is not prime attribute.

程序代写代做 CS编程辅导 Normalisation to 3NF

Algorithm for a depet to esserving and lossless 3NF-decomposition

Input: a relation schema R and a set Σ of FDs on R.

Output: a set S of relation schemas in 3NF, each having a set of FDs

- Compute a **minimal cover** Σ' for Σ and start with $\mathcal{S} = \phi$ Group FDs in Σ' by their left-hand-side attribue sets
- For each distinct test than deside Xαοί (FDs in Σ' that includes) $X_i \to A_1, X_i \to A_2, \dots, X_i \to A_k$:
 - Add $R_i = 0.0$: $\{74938947.6 \cdot \cup \{A_k\} \text{ to } S\}$
- Remove all redundant ones from S (i.e., remove R_i if $R_i \subseteq R_j$)
- if S does not contain a superkey of R, add a key of R as R_0 into S.
- Project the FDs in Σ' onto each relation schema in S

程序代写代做 CS编程辅导 Normalisation to 3NF

WeChat: cstutorcs

Assignment Project Exam Help

Peman: turdres@163.com

 $\mathbf{R}_{n} = \mathbf{X}_{n}\mathbf{A}$

QQ<u>:</u> <u>7</u>49389476

https://tutorcs.comcover

 $X_n \rightarrow A$

程序代写代做 CS编程辅导 Minimal Cover – The Hard Part!

- Let Σ be a set of FD Σ all cover Σ_m of Σ is a set of FDs such that
 - **1** Σ_m is equivalent to Σ_m , start with $\Sigma_m = \Sigma$;
 - **Dependent:** each FD in Σ_m has only a single attribute on its right hand side, i.e., replace each FD $X \mapsto \{A_1, \dots, A_k\}$ in Σ_m with $X \to A_1, \dots, X \mapsto A_k$: tutorcs@163.com
 - **3 Determinant:** each FD has as few attributes on the left hand side as possible, i.e., for each 7493894766 Σ_m , check each attribute B of X to see if we can replace $X \to A$ with $(X B) \to A$ in Σ_m ; https://tutorcs.com
 - 4 Remove a FD from Σ_m if it is redundant.

程序代写代做 CS编程辅导 Minimal Cover

Theorem:

The minimal cover of a set of functional dependencies Σ always exists but is not necessarily unique torcs

Assignment Project Exam Help

• Examples: Conside Etheribliowing rest of Infational dependencies:

$$\Sigma = ABCBAAC \rightarrow ABB$$

 Σ has two different minimal/covers:cs.com

$$\bullet \ \Sigma_1 = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$$

•
$$\Sigma_2 = \{A \rightarrow C, C \rightarrow B, B \rightarrow A\}$$

程序代写代做 CS编程辅导 Minimal Cover - Examples

- The set $\{A \to B, B \to B, B \to C\}$, because $\{A \to C\}$ is $\{A \to C\}$.
- Given the set of FDs $\Sigma = \{B \to A, D \to A, AB \to D\}$, we can compute the minimal cover of Σ as **Valouet: cstutores**
 - start from Σ; Assignment Project Exam Help
 - check whether all the FDs in Σ have only one attribute on the right hand side (look **Good)**: tutorcs @ 163.com
 - determine if $AB \rightarrow D$ has any redundant attribute on the left hand side $(AB \rightarrow D)$ can be replaced by $B \neq D$;
 - look for a redundant FD tint $\{B \rightarrow A, B \rightarrow D\}$ ($B \rightarrow A$ is redundant);

Therefore, the minimal cover of Σ is $\{D \to A, B \to D\}$.

程序代写代做 CS编程辅导 Normalisation to 3NF – Example

Consider ENROL age

 $\qquad \qquad \{ \text{StudentID, Collection} \ \text{L-mester} \} \rightarrow \{ \text{ConfirmedBy_ID, StaffName} \}$

• {ConfirmedBy_ Property (ConfirmedBy_ Property)

StudentID	<u>coursenba</u>	t: <u>sestatio</u> rc	SConfirmedBy ₋ ID	StaffName
	Assign	nent Proje	ect Exam Help	

• Can we normalise Enrol into 3NF by a lossless and dependency preserving decomposition at tutores @ 163.com

QQ: 749389476

程序代写代做 CS编程辅导 Normalisation to 3NF – Example

- Consider Enrol aga
 - $\qquad \qquad \{ \text{StudentID, Collection} \ \text{L-mester} \} \rightarrow \{ \text{ConfirmedBy_ID, StaffName} \}$

StudentID Coursenbat: Sentester CS Confirmed By ID Staff Na					
	Assigni	nent Proj	ect Exam Help		

- A minimal cover is {{StudentID, CourseNo, Semester} → {ConfirmedBy_ID}, {CONFIRMED (CONFIRMED)}.
- Hence, we have: QQ: 749389476
 - R₁={StudentID, CourseNo, Semester, ConfirmedBy_ID} with {StudentID, CourseNo, Semester, ConfirmedBy_ID}
 - R₂={ConfirmedBy₋ID, StaffName} with {ConfirmedBy₋ID} → {StaffName}
 - Omit R₀ because R₁ is a superkey of ENROL.

程序代写代做 CS编程辅导 3NF - Exercises

- Let us do some exer

 3NF-decomposition algorithm.
 - Exercise 1: $R = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$:

WeChat: cstutorcs

Assignment Project Exam Help

• Exercise 2: $R = \{A, B, C, B\}$ and $\Sigma = \{AD \to B, AB \to C, C \to B\}$:

QQ: 749389476

程序代写代做 CS编程辅导 3NF - Exercises

- Exercise 1: $R = \{P, P, P\}$ and $\Sigma = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$:
 - {A → B, BWeChAt: Offuicorminimal cover.
 - $R_1 = ABD$, $R_2 = BC$ (omit R_0 because R_1 is a superkey of R)
 - The 3NF-decomposition is ABD, BC
- Exercise 2: $R = \{A, B, C, D\}$ and $\Sigma = \{AD \rightarrow B, AB \rightarrow C, C \rightarrow B\}$:
 - Σ is its own Printle 389476
 - $R_1 = ABD$, $R_2 = ABC$, $R_3 = CB$ (omit R_3 because $R_3 \subseteq R_2$ and omit R_0 because R_1 is a superkey of R)
 - The 3NF-decomposition is {ABD, ABC}.