SDCA-Powered Inexact Dual Augmented Lagrangian Method for Fast CRF Learning

École des Ponts ParisTech

Shell Xu Hu (hus@imagine.enpc.fr) and Guillaume Obozinski (guillaume.obozinski@enpc.fr) IMAGINE group, Laboratoire d'Informatique Gaspard Monge, École des Ponts ParisTech

1. Introduction

- **Problem:** Maximum likelihood estimation of discrete conditional random fields with variational relaxation of the dual problem.
- Method: Dual augmented Lagrangian method with inexact inner-loop updates by SDCA.

2. Conditional Random Fields

$$T = \{\tau \mid \tau = V \text{ or } E\}, \ \mathcal{C} = \mathcal{C}_V \cup \mathcal{C}_E \}$$

 $V = \{1, 2, 3\}, \ E = \{\{1, 2\}, \{1, 3\}\}\}$
 $y_{12} = y_1 \otimes y_2 \text{ (one-hot vectors)}$

► Given $\{(x^{(n)}, y^{(n)})\}_{1 \le n \le N}$, a CRF reads as

$$p(y^{(n)} \mid x^{(n)}; w) := \frac{1}{Z(x^{(n)}, w)} \prod_{\tau \in \mathcal{T}} \prod_{c \in \mathcal{C}_{\tau}} \exp\left(\langle w_{\tau}, \phi_{c}(x^{(n)}, y_{c}^{(n)}) \rangle\right).$$

Abstract CRF by using $\theta^{(n)}(w) := [\theta_c^{(n)}(w) := \Psi_c^{(n)^{\mathsf{T}}} w_{\tau_c}]_{c \in \mathcal{C}} = \Psi^{(n)^{\mathsf{T}}} w$ and $T(y) := [y_c]_{c \in \mathcal{C}}$ defined below:

$$-\log p(y^{(n)} \mid x^{(n)}; w) = \log \sum_{y} \exp \left[\sum_{\tau \in \mathcal{T}} \sum_{c \in \mathcal{C}_{\tau}} \langle w_{\tau}, \phi_{c}(x^{(n)}, y_{c}) - \phi_{c}(x^{(n)}, y_{c}^{(n)}) \rangle \right]$$

$$= \log \sum_{y} \exp \left[\sum_{\tau \in \mathcal{T}} \sum_{c \in \mathcal{C}_{\tau}} \langle \Psi_{c}^{(n)^{\mathsf{T}}} w_{\tau}, y_{c} \rangle \right]$$

$$= \log \sum_{y} \exp \left[\langle \theta^{(n)}(w), T(y) \rangle \right] =: F(\theta^{(n)}(w))$$

3. Maximum Likelihood Estimation

- ▶ We assume N = 1: $\max_{w} \log p(y \mid x; w) \Leftrightarrow \min_{w} F(\theta(w))$.
- ► Computational issue: $\nabla_{w_{\tau}}F(\theta(w)) = \sum_{c \in C_{\tau}} \Psi_{c}\mathbb{E}_{\theta}[y_{c}]$ requires performing approximate marginal inference.

4. Variational Relaxation

Fenchel conjugate form of $F^{[4]}$:

$$F(\theta) = \max_{\mu} \left[\langle \mu, \theta \rangle - F^*(\mu) \right] \text{ with } F^*(\mu) = -H_{\text{Shannon}}(\mu) + \iota_{\mathcal{M}}(\mu).$$
 where $\mathcal{M} := \{ \mu \mid \mu = \mathbb{E}_{\theta}[T(Y)] \text{ for some } \theta \}$ is the marginal polytope.

- ▶ Relax $F \to F_{\mathcal{L}}$ by $\mathcal{M} \to \mathcal{L}$ and $H_{\text{Shannon}} \to H_{\text{Approx}}$:
 - \triangleright $F_{\mathcal{L}}$ is defined similarly as F with $F_{\mathcal{L}}^*(\mu) := -H_{\mathrm{Approx}}(\mu) + \iota_{\mathcal{I}}(\mu) + \iota_{A\mu=0}$.

$$\mathcal{L} := \underbrace{\{\mu \mid \forall c, i \in c : \mu_i(y_i) = \sum_{y_{c \setminus i}} \mu_c(y_c)\}}_{\equiv \{\mathcal{U} \mid \forall c : \mu_c \geq 0, \mu_c^{\mathsf{T}} \mathbf{1} = 1\}}$$

 \triangleright H_{Approx} is block-separable, concave on \mathcal{I} and strongly concave on \mathcal{L} .

5. "Inference-Free" Formulation

The primal and dual of relaxed MLE:

MLE:
$$\min_{w} P(w) := F_{\mathcal{L}} \left(\theta(w) \right) + \frac{\lambda}{2} \|w\|_2^2$$
MaxEnt: $\max_{\mu} D(\mu) := -F_{\mathcal{L}}^*(\mu) - \frac{1}{2\lambda} \|\Psi\mu\|_2^2$

▶ Augmented Lagrangian formulation for $A\mu = 0$ in the dual:

$$\min_{\xi} \max_{\mu} \left[D_{\rho}(\mu, \xi) := \underbrace{H_{\mathrm{Approx}}(\mu) - \iota_{\mathcal{I}}(\mu) + \langle \xi, A\mu \rangle}_{\text{block-separable \& concave}} \underbrace{-\frac{1}{2\rho} \|A\mu\|_2^2 - \frac{1}{2\lambda} \|\Psi\mu\|_2^2}_{\text{smooth}} \right].$$

For fixed ξ , it is natural to optimize $D_{\rho}(\mu, \xi)$ by stochastic coordinate ascent (e.g. SDCA^[3]), so only clique-wise updates are needed.

References

- M. Hong and Z.-Q. Luo. "On the linear convergence of the alternating direction method of multipliers". In: Mathematical Programming 162.1-2 (2017), pp. 165-199.
- O. Meshi, N. Srebro, and T. Hazan. "Efficient Training of Structured SVMs via Soft Constraints". In: AIS-TATS. 2015, pp. 699-707.
- S. Shalev-Shwartz and T. Zhang. "Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization". In: ICML. 2014, pp. 64-72.
- M. J. Wainwright. "Graphical models, exponential families, and variational inference". In: Foundations and Trends in Machine Learning 1.1–2 (2008), pp. 1–305.
- I. H. Yen et al. "Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain". In: NIPS. 2016, pp. 5024-5032.

6. Algorithm

- ▶ Optimization problem: $\min_{\xi} d(\xi)$ with $d(\xi) := \max_{\mu} D_{\rho}(\mu, \xi)$.
- \blacktriangleright $d(\xi)$ is L_d -smooth, τ -restricted-strongly-convex^[1].
- ▶ IDAL: The idea is to solve min_{\(\xi\)} $d(\xi)$ by an inexact gradient descent with warm restarts.

1 for
$$t = 1, ..., T_{ex}$$
:

2
$$\xi^t = \xi^{t-1} - \frac{1}{L_d} A \hat{\mu}^{t-1}; \quad \mu^{t,0} = \hat{\mu}^{t-1}$$

- for $s = 1, \ldots, T_{in}$:
 - Draw a clique *c* uniformly at random

$$u_{c} = \text{prox_block_update}(c, \mu^{t,s-1})$$

6
$$\mu_c^{t,s} = \nu_c; \quad \mu_{-c}^{t,s} = \mu_{-c}^{t,s-1}; \quad \hat{\mu}^t = \mu^{t,s} \text{ if } s = T_{\text{in}}$$

ightharpoonup prox_block_update(c, μ) approximately max $_{\mu_c} D_{\rho}([\mu_c, \mu_{-c}], \xi)$.

7. Analysis

Theorem 1 (Linear Convergence of the Outer Iteration)

- Suboptimalities: $\Gamma_t = d(\xi^t) \min_{\xi} d(\xi)$, $\hat{\Delta}_t := \max_{\mu} D_{\rho}(\mu, \xi^t) D_{\rho}(\hat{\mu}^t, \xi^t)$.
- ► SDCA on μ ensure $\mathbb{E}\hat{\Delta}_t \leq (1-\pi)^{T_{\text{in}}}\mathbb{E}\Delta_t^0$.
- If we run $T_{\text{in}} > \frac{\log(\beta)}{\log(1-\pi)}$ iterations on μ for $\beta \in (0,1)$ with $\lambda_{\max}(\beta) < 1$, where $\lambda_{\text{max}}(\beta)$ is the largest eigenvalue of $M(\beta)$ defined below, then after $T_{\rm ex}$ iterations on ξ we have

$$\left\| \frac{\mathbb{E}\hat{\Delta}_{T_{\text{ex}}}}{\mathbb{E}\Gamma_{T_{\text{ex}}}} \right\| \leq \text{const } \lambda_{\max}(\beta)^{T_{\text{ex}}} \left\| \frac{\mathbb{E}\hat{\Delta}_{0}}{\mathbb{E}\Gamma_{0}} \right\|, \text{ where } M(\beta) = \begin{bmatrix} 6\beta & 3\beta \\ 1 & 1 - \frac{\tau}{L_{d}} \end{bmatrix}.$$

Therefore, it is almost surely that $\hat{\Delta}_t$, Γ_t converge linearly.

Corollary 1 (Bound on Total Inner Iterations)

To ensure that $\mathbb{E}\hat{\Delta}_t \leq \epsilon$ and $\mathbb{E}\Gamma_t \leq \epsilon$ it is enough to run $T_{\text{tot}} := T_{\text{in}}T_{\text{ex}}$ inner iterations such that $T_{\text{tot}} \geq \frac{\log(\beta)}{\log \lambda_{\max}(\beta) \log(1-\pi)} \log(\epsilon)$.

Corollary 2 (Linear Convergence in the Primal)

Let $\hat{w}^t = -\frac{1}{\lambda} \Psi \hat{\mu}^t$. If we use SDCA on μ , then

$$\mathbb{E}[P(\hat{w}^t) - P(w^*)] \leq \frac{1}{\pi} \mathbb{E} \hat{\Delta}_t + \mathbb{E} \Gamma_t.$$

Hence, if $\mathbb{E}[\hat{\Delta}_t + \Gamma_t]$ converges to 0 linearly, then so does $\mathbb{E}[P(\hat{w}^t) - P(w^*)]$.

8. Experiments

- Baselines using clique-wise updates:
 - ▶ SoftBCFW^[2]/SoftSDCA: For a special case $\max_{\mu} D_{\rho}(\mu, \xi = 0)$.
 - □ GDMM^[5]: Active-set ADMM-like algorithm.

