Notes on Real Analysis

1 Foundations

1.1 Postulates

1.1.1 Numbers

1. Real Numbers as a Field

(a) Associativity

 $\forall a, b, c \in \Re : a + (b + c) = (a + b) + c$

Exercise 1:

Prove that the sums of an arbitrary number of equivalent variables in an immutable sequence are equal up to the placement of parentheses.

Exercise 2:

Let the immutable sequence written in such a form that there are no two elements not parenthesised be called a *nested* sequence.

For example, ((a + b) + c) + d and (a + b) + (c + d) are both nested sequences.

How many different nested sequences can be written from a sequence of n letters?

(b) Commutativity of Addition

 $\forall \ a, b \in \Re: a + b = b + a$

(c) Commutativity of Multiplication

 $\forall a, b \in \Re: a \times b = b \times a$

(d) Existence of an Additive Identity

 $\exists\ 0\in\Re\ \forall a\in\Re: a+0=a$

(e) Existence of a Multiplicative Identity

 $\exists \ 1 \in \Re \ \forall a \in \Re : a \times 1 = a$

(f) Existence of an Additive Inverse

 $\forall \ a \in \Re \ \exists -a : a + (-a) = 0$

(g) Existence of a Multiplicative Inverse

 $\forall \ a \in \Re \ \exists \ a^{-1} : a \times a^{-1} = 1$

(h) Distributivity

 $\forall a, b, c \in \Re: a \times (b+c) = a \times b + a \times c$

2. Real Numbers as an Ordered Field

Let P be the set of positive numbers.

Let the binary operator > be defined so that $\forall a, b \in \Re : a > b \iff a - b \in P$.

Similarly, $\forall a, b \in \Re : a < b \iff b - a \in P$.

(a) Trichotomy Law

 $\forall a \in \Re$ one and only one of the following holds:

- a = 0
- \bullet $a \in P$
- $a \notin P$

(b)