

Quantum-Al Enhanced Ocean Clean-up System

The project tackles ocean Micro plastic pollution by optimising routes for clean-up systems.

NCEI Marine Microplastics product provides access to aggregated global data on microplastics in marine settings.

https://www.ncei.noaa.gov/products/microplastics

MAP

:https://experience.arcgis.com/experience/b296879cc1984fda833a8acc93e31476/page /Page/?views=Display-Filters%2CMap-Viewer#data_s=id%3AdataSource_1-18cf9a8 5fdd-layer-4%3A10466

Here the image of a map points => the location of microplastic in the ocean.

Sample data extracted from above map

OBJECTI	Latitude	Longitud	Microplastic	Density	Concentratio
D		e	s	Class	n Class
			Measuremen	Range	
			t (density)		
				0.0005-0.	
8854	43.1094	3.1144	0.002	005	Low
11091	43.0966	5.9917	0.78917	0.005-1	Medium
11092	43.1132	5.9279	1.95013	1-10	High
11093	43.077	5.9792	0.97608	0.005-1	Medium
11123	43.0951	5.9821	0.638818	0.005-1	Medium
11124	43.0779	6.1997	0.171411	0.005-1	Medium
11210	43.2842	5.2766	0.676127	0.005-1	Medium
11211	43.0879	5.7908	0.352637	0.005-1	Medium
11212	43.0941	5.98	0.525459	0.005-1	Medium
11213	43.0726	6.2372	4.75602	1-10	High

Below are few haversine distances measured between points

Distance between location 1 and 2: 233.59 km Distance between location 1 and 3: 228.38 km

Note:

Haversine Distance:

- **Geolocation services**: Calculating distances between GPS coordinates.
- Navigation: Finding the shortest distance between two points on Earth's surface.
- Logistics: Optimizing delivery routes or calculating travel costs.

Microplastic location in ocean based on Latitude and Longitude

- 1. Based on the Cleaning system initial location (can be decided by the cleaning organization)
 - We will optimize the cleaning system route with help of Quantum computer , using QAOA
- 2. Using AI model we can predict and pri-inform the cleaning system about weather, ocean current

Related information.

Q&A

What is QAOA?

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-classical algorithm designed to solve combinatorial optimization problems. It works by:

- 1. **Mapping the problem** to a cost function (Hamiltonian), where the optimal solution corresponds to the lowest energy state (ground state).
- 2. Alternating between two quantum operations:
 - Cost Hamiltonian evolution (captures the problem constraints).
 - Mixing Hamiltonian evolution (explores the solution space).
- 3. Using a **classical optimizer** to fine-tune the parameters $(\gamma, \beta \setminus \beta)$ of the quantum circuit to minimize the cost function.

QAOA is particularly well-suited for problems like routing, scheduling, and resource allocation, and it is designed for near-term quantum devices due to its shallow circuit depth and robustness to noise.

Why are we using QAOA?

Problem Type: Routing is a combinatorial optimization problem, perfectly suited for QAOA.

Efficiency: Finds the shortest, most energy-efficient routes while handling constraints.

Scalability: Adapts to both small and large-scale clean-up operations.