Fast arithmetics for Artin-Schreier extensions

L. De Feo joint work with Éric Schost

École Polytechnique, Paris, France

December 7, 2008 CMS Winter Meeting, Ottawa

Artin-Schreier

Definition (Artin-Schreier polynomial)

 \mathbb{K} a field of characteristic p, $\alpha \in \mathbb{K}$

$$X^p - X - \alpha$$

is an Artin-Schreier polynomial.

Theorem

 \mathbb{K} finite. $X^p - X - \alpha$ irreducible $\Leftrightarrow \operatorname{Tr}_{\mathbb{K}/\mathbb{F}_p}(\alpha) \neq 0$. If $\eta \in \mathbb{K}$ is a root, then $\eta + 1, \ldots, \eta + (p-1)$ are roots.

Definition (Artin-Schreier extension)

 \mathcal{P} an irreducible Artin-Schreier polynomial.

$$\mathbb{L} = \mathbb{K}[X]/\mathcal{P}(X).$$

 \mathbb{L}/\mathbb{K} is called an Artin-Schreier extension.

Our context

$$\mathbb{U}_{k} = \frac{\mathbb{U}_{k-1}[X_{k}]}{P_{k-1}(X_{k})}$$

$$\downarrow^{p}$$

$$\mathbb{U}_{k-1}$$

$$\downarrow^{l}$$

$$\mathbb{U}_{1} = \frac{\mathbb{U}_{0}[X_{1}]}{P_{0}(X_{1})}$$

$$\downarrow^{p}$$

$$\mathbb{U}_{0} = \mathbb{F}_{p^{d}} = \frac{\mathbb{F}_{p}[X_{0}]}{Q(X_{0})}$$

Towers over finite fields

$$P_i = X^p - X - \alpha_i$$

We say that $(\mathbb{U}_0,\ldots,\mathbb{U}_k)$ is defined by $(\alpha_0,\ldots,\alpha_{k-1})$ over $\mathbb{U}_0.$

 ${\color{red}\mathsf{ANY}}$ extension of degree p can be expressed this way

Motivations

- p-torsion points of abelian varieties;
- Isogeny computation [Couveignes '96].

Plan

Representation

2 Arithmetics

3 Applications and implementation

Representation matters!

Multivariate representation of $v \in \mathbb{U}_i$

$$v = X_0^{d-1} X_1^{p-1} \cdots X_i^{p-1} + 2X_0^{d-1} X_1^{p-1} \cdots X_i^{p-2} + \cdots$$

Univariate representation of $v \in \mathbb{U}_i$

- $\bullet \ \mathbb{U}_i = \mathbb{F}_p[x_i]$,

How much does it cost to...

- Multiply?
- ullet Express the embedding $\mathbb{U}_{i-1}\subset\mathbb{U}_i$?
- Express the vector space isomorphism $\mathbb{U}_i = \mathbb{U}_{i-1}^p$?
- Switch between the representations?

A primitive tower

Definition (Primitive tower)

A tower is primitive if $\mathbb{U}_i = \mathbb{F}_p[X_i]$.

In general this is not the case. Think of $P_0 = X^p - X - 1$.

Theorem (extends a result in [Cantor '89])

Let $x_0 = X_0$ such that $\mathrm{Tr}_{\mathbb{U}_0/\mathbb{F}_p}(x_0) \neq 0$, let

$$P_0 = X^p - X - x_0$$

 $P_i = X^p - X - x_i^{2p-1}$

with x_{i+1} a root of P_i in \mathbb{U}_{i+1} .

Then, the tower defined by (P_0, \ldots, P_{k-1}) is primitive.

Proof (...kind of)

Lemma

Let x be the generator of an Artin-Schreier extension \mathbb{L}/\mathbb{K} , then for 0 < j < 2p - 1

$$\operatorname{Tr}_{\mathbb{L}/\mathbb{K}}(x^j) = egin{cases} -1 & \textit{if } j = p-1 \textit{ or } j = 2p-2. \\ 0 & \textit{elsewhere.} \end{cases}$$

Irreducibility

- $x_i^{2p-1} = x_i^p x_i^{p-1} = (x_i + x_{i-1}^{2p-1}) x_i^{p-1} = x_i + x_{i-1}^{2p-1} + x_i^{p-1} x_{i-1}^{2p-1}$
- $\operatorname{Tr}_{\text{II}}(x_i^{2p-1}) = -x_{i-1}^{2p-1}$,
- conclude by composition of traces.

Primitivity

Same idea but use a linear application extending the trace beyond \mathbb{U}_i .

Some tricks to play when p=2.

Computing the minimal polynomials

We look for Q_i , the minimal polynomial of x_i over \mathbb{F}_p

Algorithm [Cantor '89]

•
$$Q_0 = Q$$

•
$$Q_1 = Q_0(X^p - X)$$

easy,

Let ω be a 2p-1-th root of unity,

•
$$q_{i+1} = \prod_{j=0}^{2p-2} Q_i(\omega^j X)$$

not too hard¹,

•
$$Q_{i+1} = q_{i+1}(X^p - X)$$

easy.

Complexity

$$O\left(\mathsf{M}(p^{i+2}d)\log p\right)$$

¹No need to factor Φ_{2p-1} , one can simply work modulo it.

Plan

Representation

2 Arithmetics

3 Applications and implementation

Level embedding

Push-down

Input $v \dashv \mathbb{U}_i$, Output $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ such that $v = v_0 + \cdots + v_{p-1}x_i^{p-1}$.

Lift-up

Input
$$v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$$
,
Output $v \dashv \mathbb{U}_i$ such that $v = v_0 + \cdots + v_{p-1}x_i^{p-1}$.

Complexity function L(i)

It turns out that the two operations lie in the same complexity class, we note $\mathsf{L}(i)$ for it:

$$\mathsf{L}(i) \ = \ O\left(p\mathsf{M}(p^id) + p^{i+1}d\log_p(p^id)^2\right)$$

Push-down

Push-down

Input $v \dashv \mathbb{U}_i$, Output $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ s.t. $v = v_0 + \cdots + v_{p-1}x_i^{p-1}$.

- Reduce v modulo $x_i^p x_i T^{2p-1}$ by a divide-and-conquer approach,
- ullet each of the coefficients of x_i has degree in x_{i-1} less than $2\deg(v)$,
- reduce each of the coefficients.

Lift-up

Power projection

Let x be fixed. An algorithm that takes a linear form ℓ as input and outputs

$$\ell(1)$$
, $\ell(x)$, ..., $\ell(x^n)$

is said to solve power projection problem ([Shoup '99]).

Trace formulas [Pascal, Schost '06, Rouillier '99]

- Given $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$,
- $ullet v = v_0 + \dots + v_{p-1} x_i^{p-1}$ can be recovered using suitable trace formulas.
- \bullet Solving them is the power projection problem on inputs ${\rm Tr}$ and $v\cdot {\rm Tr}.$

Transposed algorithms (see [Bürgisser, Clausen, Shokrollahi])

- Linear algorithms can be transposed much like linear applications;
- Computing $v \cdot \text{Tr}$ is transposed multiplication.
- Computing the power projection for x_i is transposed push-down.

Other operations, Isomorphism

Other operations

Using divide and conquer, we can give efficient routines for most operations in \mathbb{U}_i :

- push-down the operands;
- recursively solve the p instances in \mathbb{U}_{i-1} ;
- combine the results;
- lift-up.

It works fairly well for

- inversion,
- traces,
- iterated frobenius,
- square roots? (work in progess)
- ...

Isomorphism [Couveignes '00]

- Let $(\alpha_0,\ldots,\alpha_{k-1})$ define another tower over \mathbb{U}_0 ,
- factoring $X^p X \alpha_i$ in \mathbb{U}_{i+1} gives an isomorphism.
- Couveignes gives a fast factoring algorithm for this case,
- this way fast arithmetics can be brought to this new tower.

Plan

Representation

2 Arithmetics

3 Applications and implementation

p^k -torsion

p-division

- In ordinary elliptic curves $E[p^k] \simeq \mathbb{Z}/p^k\mathbb{Z}$.
- ullet Knowing a p^i -torsion point,
- ullet factorise the p-division polynomial to find a p^{i+1} -torsion point.

Make it Artin-Schreier [Voloch '90]

- By a change of variables we can factor an Artin-Schreier polynomial instead,
- using Couveignes' algorithm for the isomorphism, we can do it efficiently.

Isogeny interpolation

Computing an isogeny of degree ℓ between two curves E and F

The idea [Couveignes '96, '00]

- Compute enough $(p^k \sim \ell)$ torsion points in E and F,
- since the curves are isogenous, the towers are isomorphic,
- use the isomorphism algorithm to bring them to the same primitive tower,
- interpolate the isogeny over the points.

Fast interpolation [D.F. '07]

- ullet Use the same divide-and-conquer approach as for the arithmetics in \mathbb{U}_k ,
- throw some Galois-theory in,
- ullet the interpolation step can be done in $\tilde{O}(\ell^2)$.

Implementation

- Implementation in NTL for p = 2 (no FFT).
- ullet Benchmarks on two fields: $\mathbb{F}_{2^{101}}$ and $\mathbb{F}_{2^{1999}}$.
- Up to 15 levels on a Intel Core 2 @2GHz, 4GB ram.

	$\mathbb{F}_{2^{101}}$	$\mathbb{F}_{2^{1999}}$	levels
Construction of Q_i	0:42	42:00	15
Push-down, lift-up	0:30	20:00	15
Couveignes '00	3:40:00		15
Couveignes '00	1:30:00	76:40:00	13

- ullet We are working on a new, faster, NTL implementation for any p;
- porting to a computer algebra platform is in study.

Benchmarks on isogenies

Over $\mathbb{F}_{2^{101}}$, on an AMD Athlon 64 X2 Dual Core Processor 4000+, 5GB ram

Benchmarks on isogenies

Over $\mathbb{F}_{2^{101}}$, on an AMD Athlon 64 X2 Dual Core Processor 4000+, 5GB ram

Bibliography

P. Bürgisser, M. Clausen, and A. Shokrollahi.

Algebraic complexity theory, volume 315 of Grundlehren Math. Wiss. Springer-Verlag, 1997.

D. G. Cantor.

On arithmetical algorithms over finite fields. Journal of Combinatorial Theory, Series A 50, 285-300, 1989.

J.-M. Couveignes.

Computing ℓ -isogenies with the p-torsion.

Lecture Notes in Computer Science vol. 1122, pages 59-65, Springer-Verlag, 1996

J.-M. Couveignes.

Isomorphisms between Artin-Schreier tower.

Math. Comp. 69(232): 1625-1631, 2000.

L. De Feo.

Calcul d'isogénies.

Master thesis. http://www.lix.polytechnique.fr/~defeo

Bibliography

C. Pascal and É. Schost.

Change of order for bivariate triangular sets. In *ISSAC'06*, pages 277–284. ACM, 2006.

F. Rouillier.

Solving zero-dimensional systems through the Rational Univariate Representation.

Appl. Alg. in Eng. Comm. Comput., 9(5):433-461, 1999.

V. Shoup.

Efficient computation of minimal polynomials in algebraic extensions of finite fields.

In ISSAC'99, ACM Press, 1999.

J.F. Voloch.

Explicit p-descent for Elliptic Curves in Characteristic p.

Compositio Mathematica 74, pages 247-58, 1990.

