Theory of Industry Organization Group Presentation

Analysis on sales strategy of China Mobile Communication Corporation

CS&T 95

Yingjie Zhang Xiaoxiang Hu Chaoxiang Jia Cong Liu

> Contact Us menghbl@126.com

OUTLINE -- BACKGROUND

China Mobile Communication

Corporation has a much larger market share in the mobile market than China Unicom or China Telecom. What is its main sale strategy? How and why could it gain such a smash hit?

We try to use different models provided in TIO lectures to explore the internal economic causes.

MODEL INTRODUCTION

MODEL I

MODEL II

Bundling

Price Discrimination

BUNDLING STRATEGY

Plenty of Bundling Strategy

	月租费(元/	租费(元/ 免费短信数 赠送GPRS流 月) 單(条/月) 單(M/月)	赠送GPRS流	赠送WLAN上 网时长(分钟/ 月)	赠送业务	
套餐名称					增值 业务	数据 业务
校园套餐v1.1-15元	15	150	10			
校园套餐v1.1-25元	25	300	30	300	_	飞信
校园套餐v1.1-35元	35	400	70			

USING FACT

- Campus Package v1.1
- Price: 25 Yuan
- What it includes: 300 short messages (20yuan if single buy) + (30M of GPRS + 300Mins of WirelessLan) (5+10 Yuan if single buy)
- To start up, we first use mixed bundling strategy of 2 products:

Price (Yuan)	Product
20	Product 1(300 SMS)
15	Product 2(GPRS & Wlan)
25	Product 1 & 2

Before we start some HYPOTHESES

1. Assume x1 and x2 independent:

SMS lovers and Internet lovers have little correlation

- 2. Continuously distribution: 300 million of users
- 3. Even Distribution : Easy for analyzing
- 4. Zero Marginal Cost: the marginal cost of communication system is almost zero in fact
- .. Our model **roughly satisfies** the real situation.

★Statement:

Before our study, we had made a survey among our classmates and reached a conclusion that product1 is distributed more close to continuously distribution among the range of 0-30, while product 2 is among the range of 0-20.

Mixed Bundling Strategy

- Model it just like what we learn in class:
- $\pi B = 20*5*10$ +15*5*10 + 25*(15*20)

So for each person:

$$\pi Bp = 8000 / 600 = 13.333$$
Yuan

How about using Separate Strategy?

Separate Pricing Strategy

- According to the consumer values and what we learn:
- The best price of Separate pricing is

P1 = 15 Yuan

P2 = 10 Yuan

- $\pi S = 10*30*10+15*20*15$ = 7500 < 8000
- For Each:

$$\pi$$
Sp = 7500/600 = 12.5 < 13.33

Meaning of the GAP

- The gap of 0.83yuan might be too small to feel the benefit, then what does it means to real profit of CMCC?
- Let's count in this way:
- The user of CMCC in 2011 is 300 million.
- We assume only 5% of them pay attention to these services (SMS, GPRS etc.)
- The bundling strategy brings more profits of :

300,000,000 * 0.05 / 600 * 500 =

12.5 million of RMB

3D-version of Mixed Bundling

- Since we only learn mixed bundling strategy of 2 products in class, in the above model, we assumed that WLan and GPRS services are always bundled.
- From now, we would separate all three product and challenge for mixed bundling strategy of 3 products.
- What we still assume is:
- (1) x1,x2,x3 independent; (2) continuous and even distribution; (3) zero marginal cost.

3D-version of Mixed Bundling

Price (yuan)	Product
20	Product 1 (300 SMS)
5	Product 2 (30M GPRS)
10	Product 3 (300min of WLan)
25	Product 1&2&3

- Theoretically, in 3D bundle, user has 8 kinds of choice to buy.
- However, only 6 should be considered...
- Therefore, we could get the consumer decision:

Consumer Decision

--3D-version of Mixed Bundling

Choice	Surplus
Nothing	0
Product 1 only	x1 - p1
Product 2 only	x2 – p2
Product 3 only	x3 – p3
Product 2&3	x2 +x3 – p2 – p3
Product 1&2&3	x1+x2+x3 - p _b

- Product 1&2, Product 1&3 are not included.
- Consumer would choose the largest surplus of 6 choices above.

RESULT

--3D-version of Mixed Bundling

- Solve the probler sint main() to must change the long land for (d) every volume of
- So we took the a

• And finally, we go is: 13.523 Yuan

```
#include <iostream>
using namespace std;
    long long profit = 0;
    int p1 = 20, p2 = 5, p3 = 10, p = 25;
    for (double x1 = 0; x1 <= 30; x1 += 0.01)
        for (double x2 = 0; x2 <= 7; x2 += 0.01)
                for (double x3 = 0; x3 <= 13; x3 += 0.01)
                     double s[] = \{0,x1-p1,x2-p2,x3-p3,x2+x3-p2-p3,x1+x2+x3-p\};
                     double max = -1:
                     int i = 0:
                     for (int ii=0; ii<6; ii++)
                         if (s[ii]>max)
                             max = s[ii]:
                             i = ii;
                     if (i==1) profit+=p1;
                     if (i==2) profit+=p2;
                     if (i==3) profit+=p3;
                     if (i==4) profit+=p2+p3;
                     if (i==5) profit+=p;
    cout << "The profit from every user is: "(double)profit/3000/700/1300 << endl;
    system("pause");
```


COMPARISON

3D-version of Mixed Bundling & Separate Pricing

- Still, the optimal average profit of separate pricing is
 12.5 Yuan/user
- We get 1.02yuan/user profit from the change of strategy.
- Again, by assuming 5% of users of CMCC is affected:
- The total profit is:

15.3 million of RMB

PRICING DISCRIMINATION

Statement: take the MZONE se

Background

- Consumers differ in SMS deman types of consumers --indire
- Mobile phone operators are olig
- MZONE set-meal has 6 price qua

-- use the price quantity bundle

1		日和弗(元/	/ 免费短信数	爬 译GPRS流	赠送WLAN上	赠送业务	
	套餐名称	月)	里(条/月)	里(M/月)	网时长(分钟/ 月)	増值 业务	数据 业务
	11元音乐套餐	11	60	_	_	彩	
	16元音乐套餐	16	120			铃、 无限	_
	21元音乐套餐	21	240			音乐 俱乐	
	26元音乐套餐	26	320			部高级会	
2	36元音乐套餐	36	500			员、 音乐	
	56元音乐套餐	56	1000			益	
a	11元阿聊套餐	11	60	20			
•	16元阿聊套餐	16	120				7
	21元阿聊套餐	21	240				信、 5元
	26元阿聊套餐	26	320		_	_	版 139
	36元阿聊套餐	36	500				邮箱
	56元阿聊套餐	56	1000				

Before we start

some HYPOTHESES

- 1, simplify our model to focus on the demand of SMS and price. (SMS is the major product)
- 2, Marginal cost is **zero**. (only the power cost of signal station)

PQ bundle Price	SMS capacity
11	60
16	120
21	240
26	320
36	500
56	1000

MODEL CONSTRUCTION

ASSUME:

CONTINUOUS

- there are 6 different types of consumers
- Demand Curve : Di(P) = A k P

different consumer have same k in the equation above.

Coefficient A determines the type of consumer.

The surplus of consumer with coefficient

$$CS(i, c)=(Ai*Qc-Qc*Qc/2)/k-Tc$$

OPTIMAL:

IR:
$$CS(i, i) >= 0, i = 1..6$$

IC:
$$CS(i, i) >= CS(i, j), i != j$$

36 equations

$$CS(i, i) >= CS(i, i+1)$$

$$CS(i, i) >= CS(i, i-1)$$

12equations

MODEL CONSTRUCTION

ACTUALY:

- distribution of consumers is continuous
- coefficient A is continuous.
- $CS(A, c) = (Ac c^2/2)/k T(c)$
- FOC => CS(A, c) / c=0 => (A-c)/k = T(c)/c => A = c + k T(c)/c

$$:$$
 CS(A, optimal_c(A)) >= 0 $:$ c^2/(2k) + T(c)/ c * c - T(c) >= 0

To maximize pi, which **pi = Sigma{T(optimal_c(A))}.**

So let
$$c^2/(2k) + T(c)/c * c - T(c) == 0$$
.

We could get $T(c) = -1/(2k) c^2 + alpha*c$

MODEL REVISE

- actual T(c) contains some additional service such as 139mail
- T(c) = alpha c^2 + beta * c + gamma alpha == 1/(2k)

Source	SS	df	MS		Number of obs = 6 F(2, 3) = 849.43
Model Residual	1330.98298 2.35035773		491488 452575		Prob > F = 0.0001 R-squared = 0.9982 Adj R-squared = 0.9971
Total	1333.33333	5 266.	666667		Root MSE = .88513
price	dolef.	Std. Err.	t	P> t	[95% Conf. Interval]
c cca _cons	.0630039 0000145 7.60692	.0047321 4.24e-06 .9005855	13.31 -3.43 8.45	0.001 0.042 0.003	.0479443 .0780635 000028 -1.05e-06 4.740855 10.47298

• $T(c) = -0.0000145 c^2 + 0.0630039 c + 7.60692$

MODEL REVISE

 the additional services like 139 mail worth 7.60692 Yuan in our model

• k = 1/(2 * 0.0000145) = 34482

• Demand Curve : D(p) = A - 50

SUPPOSE of k:

I, demand of SMS has comparat

II, linear assumption is not effect

.....FOR FUTURE STUDY

100

500

THANK YOU

Contact Us menghbl@126.com