Практичне заняття

Частково-рекурсивні функції, рекурсивні функції, примітивнорекурсивні функції

Приклад 5. Знайти функцію $f(x_1, x_2)$, яку отримано із функцій $g(x_1) = 2^{x_1}$ і $h(x_1, x_2, x_3) = 2^{x_2} \cdot x_3$ за схемою примітивної рекурсії.

Схема примітивної рекурсії для функції двох змінних:

$$\begin{cases} f(x_1, 0) = g(x_1), \\ f(x_1, y + 1) = h(x_1, y, f(x_1, y)). \end{cases}$$

Знайдемо кілька значень функції f:

$$f(x_{1},0) = g(x_{1}) = 2^{x_{1}},$$

$$f(x_{1},1) = h(x_{1},0,f(x_{1},0)) = h(x_{1},0,2^{x_{1}}) = 2^{0} \cdot 2^{x_{1}} = 2^{x_{1}+0},$$

$$f(x_{1},2) = h(x_{1},1,f(x_{1},1)) = h(x_{1},1,2^{x_{1}}) = 2^{1} \cdot 2^{x_{1}} = 2^{x_{1}+1},$$

$$f(x_{1},3) = h(x_{1},2,f(x_{1},2)) = h(x_{1},2,2^{x_{1}+1}) = 2^{2} \cdot 2^{x_{1}+1} = 2^{x_{1}+3},$$

$$f(x_{1},4) = h(x_{1},3,f(x_{1},3)) = 2^{3} \cdot 2^{x_{1}+3} = 2^{x_{1}+6},$$

$$f(x_{1},5) = h(x_{1},4,f(x_{1},4)) = 2^{4} \cdot 2^{x_{1}+6} = 2^{x_{1}+10},$$

$$f(x_{1},6) = h(x_{1},5,f(x_{1},5)) = 2^{5} \cdot 2^{x_{1}+10} = 2^{x_{1}+15},$$

$$f(x_{1},7) = h(x_{1},6,f(x_{1},6)) = 2^{6} \cdot 2^{x_{1}+15} = 2^{x_{1}+21}$$

Маємо таку послідовність доданків в показнику 2:

$$0, 0, 1, 3, 6, 10, 15, 21, 28, \dots$$

Можна записати, що члени цієї послідовності виражаються так:

$$\left\lceil \frac{y(y-1)}{2} \right\rceil.$$

Виникає припущення, що

$$f(x_1, x_2) = 2^{x_1 + \left[\frac{x_2(x_2-1)}{2}\right]}$$
.

Операція мінімізації

Операція мінімізації M(n+1) – арній функції g ставить у відповідність n – арну функцію f , яка задається співвідношенням:

$$f(x_1,...,x_n) = \mu_y(g(x_1,...,x_n,y) = 0).$$

Будемо позначати f = M(g).

Для всіх значень $x_1,...,x_n$, значення функції $f(x_1,...,x_n)$ визначається так. Послідовно обчислюємо значення $g(x_1,...,x_n,y)$ для y=0,1,2,.... Перше

таке значення y, для якого $g(x_1,...,x_n,y)=0$ буде шуканим значенням функції $f(x_1,...,x_n)$. При цьому для всіх t < y значення $g(x_1,...,x_n,t)$ визначено і не дорівнює нулю.

Процес знаходження значення $f(x_1,...,x_n)$ ніколи не закінчиться в таких випадках:

- для всіх значень y значення $g(x_1,...,x_n,y)$ визначено і не дорівнює нулю,
- для всіх t < y значення $g(x_1, ..., x_n, t)$ визначено і не дорівнює нулю, а значення $g(x_1,...,x_n,y)$ невизначено,
- значення $g(x_1,...,x_n,0)$ невизначено.

Функцію, яку можна отримати з базисних функцій за допомогою скінченного числа застосувань операцій суперпозиції, примітивної рекурсії і мінімізації, називають частково-рекурсивної функцією (скорочено ЧРФ).

Усюди визначену ЧРФ називають рекурсивної функцією (скорочено РΦ).

Завдання. Знайти значення частково-рекурсивної функції, заданої з використанням оператора мінімізації.

f(x,y) = M(g)Нехай Приклад розв'язання задачі. де $g(x, y, z) = x - y^z$. Знайти f(10,3).

$$g(10,3,0) = 9$$
, $g(10,3,1) = 7$, $g(10,3,2) = 1$, $g(10,3,3) = 0$.
 $f(10,3) = 3$.

Варіанти завдань.

1.
$$f(x,y) = M(g), g(x,y,z) = 3x - yz^2$$
. Знайти $f(50,3)$.

2.
$$f(x) = M(g), g(x, y) = x - y^3$$
. Знайти $f(100)$.

3.
$$f(x,y) = M(g), g(x,y,z) = x^2 + y^2 \div xyz$$
. Знайти $f(15,2)$. $g(15,2,0) = 15^2 + 2^2 \div (15 \cdot 2 \cdot 0) = 229$ $g(15,2,1) = 15^2 + 2^2 \div (15 \cdot 2 \cdot 1) = 229 \div 30 = 199$ $g(15,2,2) = 15^2 + 2^2 \div (15 \cdot 2 \cdot 2) = 229 \div 60 = 169$ $g(15,2,3) = 15^2 + 2^2 \div (15 \cdot 2 \cdot 3) = 229 \div 90 = 139$ $g(15,2,4) = 15^2 + 2^2 \div (15 \cdot 2 \cdot 4) = 229 \div 120 = 109$ $g(15,2,5) = 15^2 + 2^2 \div (15 \cdot 2 \cdot 5) = 229 \div 150 = 79$ $g(15,2,6) = 15^2 + 2^2 \div (15 \cdot 2 \cdot 6) = 229 \div 180 = 49$

$$g(15,2,6) = 15^2 + 2^2 \div (15 \cdot 2 \cdot 6) = 229 \div 180 = 49$$

$$g(15,2,7) = 15^2 + 2^2 \div (15 \cdot 2 \cdot 7) = 229 \div 210 = 19$$

$$g(15,2,8) = 15^2 + 2^2 \div (15 \cdot 2 \cdot 8) = 229 \div 240 = 0$$

$$f(15,2) = 8$$

4.
$$f(x,y) = M(g), g(x,y,z) = x^2 + y^2 - z^2$$
. Знайти $f(8,6)$.

5.
$$f(x) = M(g), g(x,y) = x \div 2^y$$
. Знайти $f(20)$.

6.
$$f(x,y) = M(g), g(x,y,z) = x - yz$$
. Знайти $f(20,5)$.

7.
$$f(x) = M(g), g(x, y) = 5x - y^3$$
. Знайти $f(20)$.

8.
$$f(x,y) = M(g), g(x,y,z) = x \div (y+3)(z \div 3)$$
. Знайти $f(20,2)$.

9.
$$f(x) = M(g), g(x,y) = 5x - 3^y$$
. Знайти $f(20)$.

10.
$$f(x,y) = M(g), g(x,y,z) = x - yz^2$$
. Знайти $f(50,2)$.

11.
$$f(x) = M(g), g(x, y) = x - y^y$$
. Знайти $f(300)$.

12.
$$f(x,y) = M(g), g(x,y,z) = x - z^y$$
. Знайти $f(200,4)$.

Завдання. Застосувати операцію мінімізації до функції $\tilde{g}(x_1, x_2)$ за змінною x_2 . Результуючу функцію $f(x_1, x_2)$ записати в аналітичній формі.

Приклад 1.
$$g(x_1, x_2) = nsg(x_2) = \begin{cases} 1, x_2 = 0 \\ 0, x_2 > 0 \end{cases}$$
.
$$f(x_1, x_2) = \mu_y (\tilde{g}(x_1, y) = x_2) = \mu_y (g(x_1, x_2, y) = 0).$$

1) Hexaй $x_2 = 0$: маємо nsg(y) = 0

$$y=0, 1\neq 0,$$

$$y = 1, 0 = 0$$

2) Нехай $x_2 = 1$: маємо nsg(y) = 1 y = 0, 1 = 1.

3) Нехай $x_2 = 2$: маємо nsg(y) = 2, немає розв'язків.

$$f\left(x_{1},x_{2}\right)=\begin{cases} 1,x_{2}=0\\ 0,x_{2}=1\\ \text{невизн., якщо }x_{2}\geq2 \end{cases}$$

Приклад 2.
$$g(x_1,x_2) = \left[\frac{1}{x_1}\right] + x_2$$
.
$$f(x_1,x_2) = \mu_y \left(g(x_1,y) = x_2\right).$$
 1) Нехай $x_2 = 0$: маємо $\left[\frac{1}{x_1}\right] + y = 0$

$$y = 0$$
, $\left[\frac{1}{x_1}\right] = 0 \implies x_1 = 0$, невизн. $x_1 = 0$, $1 \neq 0$ $x_1 \geq 0$, $x_1 \geq 0$

2) Нехай
$$x_2 = 1$$
: маємо $\left[\frac{1}{x_1} \right] + y = 1$

$$y = 0$$
, $\left[\frac{1}{x_1}\right] = 1 \implies x_1 = 1$.

3) Нехай
$$x_2 = 2$$
: маємо $\left[\frac{1}{x_1}\right] + y = 2$

$$y = 0, \left[\frac{1}{x_1}\right] + 0 \neq 2$$

$$y=1$$
, $\left\lceil \frac{1}{x_1} \right\rceil + 1 = 2 \implies x_1 = 1$.

4) Нехай
$$x_2 = 3$$
: маємо $\left[\frac{1}{x_1}\right] + y = 3$

$$y = 0, \left[\frac{1}{x_1}\right] + 0 \neq 3$$

$$y = 1, \left\lceil \frac{1}{x_1} \right\rceil + 1 \neq 3$$

$$y = 2, \left[\frac{1}{x_1} \right] + 2 = 3 \implies x_1 = 1.$$

Отримали:

$$f(x_1, x_2) = \begin{cases} 0, x_2 = 0, x_1 \ge 2, \\ 0, x_2 = 1, x_1 = 1, \\ 1, x_2 = 2, x_1 = 1, \\ 2, x_2 = 3, x_1 = 1. \end{cases}$$

або

$$f(x_1,x_2) = (x_2 - 1) nsg(x_1 - 1).$$

1. В алфавите $T = \{0,1\}$ построить машину Тьюринга *правильно* вычисляющую функцию $f(x) = [2^{3-2x}]$.

2. Написать МНР-программу для функции из задания 1.

3	MED SEXY
3	1) f(0,1,6) x=0?
3	2) S(1) 3) f(0,1,12) x=1
3	4) \$(0) 5) \$(0,0,14) beexog \$20
3	6) S(0) 4) S(0)
3	8/ S(0) 9/ S(0)
3	10/ S(0) 11/ S(0)
	13) S(0)

3. Построить нормальный алгоритм Маркова, применимый ко всем словам $x_1x_2...x_n$ в алфавите $\{a,b\}$ и переводящий их в слово $\alpha=b^nx_1...x_n$.

1 2 n	1 (")) 1	<u> </u>	1	n
1) Ticos	pour 6 1ee	nealblebe	a ko bee		39.4
21,00	Xn 8 a.	egociocerc	[[]	-	100
0 0 0000	COLX	6 Celato	6 X1 LOSKI	# crab	eru
2) #6	→ 16# → 16#	b ceoble	2 8 mpabo 1, koub 2 # 6 ko	nue cu	Bora
3) # 4) al 5) 61 -	710] copi upos	Bra (bee raen b re	cullbor araso cu	es [
61 11a -	>61a)		rece I cre-e		
7) 116 8) 16 9) 10	7 · 66 → · 6a → #±	- crobuse	+ 40,000	1000 000 11	
1		Cuilbou	# nepeg	k1 X	h

Знайти функцію f(x), яку отримано за схемою примітивної рекурсії

4)
$$g(x_1) = x_1$$
, $h(x_1, x_2, x_3) = (x_3 + 1) nsg(1 + \frac{x_3}{3})$
 $nsg(1 + \frac{x_3}{3}) = 0$ $gall(x_3 \ge 0)$
 $f(x_1, 0) = x_1$
 $f(x_1, 1) = h(x_1, 0, f(x_1, 0)) = (x_1 + 1) nsg(1 + \frac{x_1}{3}) = 0$
 $f(x_1, x_2) = h(x_1, 1, f(x_1, 1)) = (0 + 1) nsg(1 + \frac{0}{3}) = 0$
 $f(x_1, x_2) = x_1 \cdot nsg(x_2)$