Recommender Systems || Lecture 7 Summer 2022

Dr. Karthik Mohan

Univ. of Washington, Seattle

July 21, 2022

SGD Review

- SGD Review
- 2 Auto differentation

- SGD Review
- Auto differentation

- SGD Review
- Auto differentation
- 4 Auto Encoders for Recommendation Systems

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

• Initialize $w = w_0$ (randomize) $(\bigcup^{\circ})^{\circ}$

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

1 Initialize $w = w_0$ (randomize) Pick a batch of k data points at random between 1 and N: i_1, i_2, \ldots, i_k !

Dr. Karthik Mohan (Univ. of Washington, Se Recommender Systems | Lecture 7

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

- **1 Initialize** $w = w_0$ (randomize) Pick a batch of k data points at random between 1 and N: i_1, i_2, \ldots, i_k !
- 2 Gradient Descent $w^{k+1} \leftarrow w^k Ir * \sum_{j=1}^k \nabla_w L_{i_j}(w^k)$ 5 Addignment 2 pool 2 Fill this in

mini-batch SGD

Let $L(w) = \sum_{i=1}^{N} L_i(w)$ where L_i is a function of only the *ith* data point (x_i, y_i) and parameter w. Let B be the number of batches and k be the batch size.

- **1 Initialize** $w = w_0$ (randomize) Pick a batch of k data points at random between 1 and N: i_1, i_2, \ldots, i_k !
- **2** Gradient Descent $w^{k+1} \leftarrow w^k lr * \sum_{j=1}^k \nabla_w L_{i_j}(w^k)$
- 3 Iterate Repeat step 2 and 3 until w converges, i.e.

$$||w^{k+1} - w^k|| / ||w^k|| \le 10^{-3}$$

GD vs Mini-batch convergence behavior

Batch gradient descent

Mini-batch gradient descent

GD vs mini-batch SGD

Factor	GD	Mini-batch SGD		
Data	All per iteration	Mini-batch (usually 128 or 256)		
Randomness	Deterministic	Stochastic		
Error reduction	Monotonic	Stochastic		
Computation	High	Low		
Memory big data	Intractable	Tractable		
Convergence	Low relative error	Few "passes" on data		
Local Minima traps	Yes	No		

ICE #1

The correct loss function based on user factors (V) and movie factors (U) for this problem is given by:

- $L(X; U, V) = (u_1^T v_1 1)^2 + (u_1^T v_3)^2 + (u_2^T v_2 1)^2 + (u_2^T v_4)^2 + (u_3^T v_1)^2 + (u_3^T v_2 1)^2 + (u_4^T v_1)^2 + (u_4^T v_2)^2 + (u_4^T V_3 1)^2$
- 2 $L(X; U, V) = (v_1^T u_1 1)^2 + (v_1^T u_3)^2 + (v_2^T u_2 1)^2 + (v_2^T u_4)^2 + (v_3^T u_1)^2 + (v_3^T u_2 1)^2 + (v_4^T u_1)^2 + (v_4^T u_2)^2 + (v_4^T u_3 1)^2$
- None of the above
- Both are valid

Automatic Differentiation in Torch

Notebook Example

Programming 2, Part 2

Notebook Walkthrough

Auto Encoders for Recommendation Systems

- Natural extension of matrix factorization
- 2 Matrix Factorization methods are "bi-linear" (linear in U, V) and linear models have limitations in learning power
- Auto Encoders can have non-linearity

Model 1: AutoRec

Model 1: AutoRec

$f(\cdot)$	$g(\cdot)$	RMSE
Identity	Identity	0.872
Sigmoid	Identity	0.852
Identity	Sigmoid	0.831
Sigmoid	Sigmoid	0.836

ML-1M ML-10M Netflix BiasedMF 0.845 0.803 0.844 I-RBM 0.8540.825U-RBM 0.823 0.8450.881 LLORMA 0.833 0.7820.834 I-AutoRec 0.8310.7820.823

movieles

Reference: AutoRec

Training Deep Auto Encoders for collaborative filtering

Training Deep Auto Encoders for collaborative filtering

	Number of layers	Evaluation RMSE	params	_	
- 1	2	1.146	4,566,504	_	
	4	0.9615	4,599,528		Think
١.	6	0.9378	4,632,552	- Point of Dimin	ردانا
V	8	0.9364	4,665,576		span
	10	0.9340	4,698,600	\sim	.'
	12	0.9328	4,731,624		
				0 .	
			<u> </u>	u peromoters	
			ζιν		

Figure 4: Effects of dropout. Y-axis: evaluation RMSE, X-axis: epoch number. Model with no dropout (Drop Prob 0.0) clearly over-fits. Model with drop probability of 0.5 over-fits as well (but much slowly). Models with drop probabilities of 0.65 and 0.8 result in RMSEs of 0.9192 and 0.9183 correspondingly.

DataSet	I-AR	U-AR	RRN	DeepRec
Netflix 3 months	0.9778	0.9836	0.9427	0.9373
Netfix Full	0.9364	0.9647	0.9224	0.9099

Model 3: Collaborative De-noising AuotEncoder

Sunnarize

1. MF model-Bi-Linear

by. Bi-linear models Limitations (RMSE limitations)

3. Auto-Encoders work well for Recogn

4. Non-Linear & trey conte deep

51. Attain SOTA on many benchmark datasets

6. Scalability inner! (E.S. output layer becomes too by). DSSM | Sianese Networks } In nent lecture!

