FMRI analysis using GNN

Members:

- 1. Manishkumar Alagumalai
- 2. Rishit Puri
- 3. Aathirai Senthilkumar Thamaraiselvi
- 4. Aravind Sivakumar
- 5. Aaditya Dharne

Overview

- 1. Project explanation.
- 2. Dataset overview.
- 3. Dataset preparation.
- 4. Models run:
 - i. GCN
 - ii. Edge Conv Layers
 - iii. GAT
 - iv. Graph Sage
 - v. Graph Neural ODE
- 5. Result comparison

Project explanation

- The brain can be conceptualized as a complex network where each brain region is a node and connections between regions represent functional interactions.
- MRI data of 3–12 year old children and adults during viewing of a short animated film, Pixar "Partly Cloudy".
- Binary prediction problem.

Goal:

 To predict if the participant watching the animated film is adult or a child.

Dataset

- Dataset is taken from a open platform OpenNeuro.
- An atlas that parcellates the brain into ROIs is used.
- This 155-subject dataset has already had a popular preprocessing pipeline run on it known as fMRIPrep.
- A confounds file is used to regress out noise. This confounds file, is generated by fMRIPrep.

Plots of images in the dataset

Image converted to Time series data

- BOLD measurements give us information about how active each ROI is within the brain over time.
- ROIs are clusters of brain cells, and our bodies send more oxygen-rich blood to these cells when they become active.
- These local changes in blood-oxygen levels are measured by the MRI machine

Compute partial correlation matrix.

- Visualisation of the graph of connection.
- Visualisation of the graph of connection with hemispheric projections.

Default Mode Network Connectivity

Connectivity projected on hemispheres

Correlation calculation using Power Atlas

Edge Strength visualisation

Positive and negative structure of the Edge strength

0.26

K means clustering analysis

- 30 clusters.
- Standardization and smoothing performed before clustering analysis.

Dataset preparation

NiLearn is a Python package that performs machine learning on neuroimaging data.

Step 1: Download dataset and Atlas from OpenNeuro. (Preprocessing pipeline fMRIPrep already run on the dataset)

Step 2: Get brain signal time series data from the ROIs defined by the atlas. Regress out noise using confonds file generated by fMRIPrep.

Step 3: Calculate correlation matrices using the time series data.

Step 3: Correlation Graph samples

How train and test dataset is created

- We create graph matrix using the correlated features and pass that matrix to networkx function to create a dataset format that can be used in GNN algorithms.
- We split the entire dataset by 80% for training and 20% for test.
- We also maintain a label list with values 1(child) and 0(adult). We use the list to compare the prediction from the model with the original label list.

Models trained

Hyperparameters

- Epochs trained: 30
- Activation function Relu, Softmax(last layer)
- Optimizer Adam
- Learning rate 0.005, 0.01
- Loss function NLLLoss

Models

- 1. GCN Conv Layers
- 2. EDGE Conv Layers
- 3. GAT
- 4. Graph Sage
- 5. Graph Neural ODE

GCN Conv layers

Train: 100.00%,

Test: 77.42%

EDGE Conv layers

Train: 100.00%

Test: 87.10%

GAT

Train Acc: 98.39%

Test Acc: 93.55 %

Graph Sage

Train Acc: 100%

Test Acc: 96.77%

Graph Neural ODE

Train Acc: 100%

Test Acc: 93%

Comparison table

Model	No of epochs trained	Test accuracy(%)
GCN Conv Layers	30	77.42
EDGE Conv Layers	30	87.10
GAT	30	93.55
Graph Neural ODE	30	93.55
Graph Sage	30	96.77

Summary

References

[1] Richardson, H., Lisandrelli, G., Riobueno-Naylor, A. et al. Development of the social brain from age three to twelve years. Nat Commun 9, 1027 (2018). https://doi.org/10.1038/s41467-018-03399-2

[2]https://medium.com/stanford-cs224w/gnns-in-neuroscience-graph-convolutional-networks-for-fmri-analysis-8a2e933 bd802

[3][3]https://nilearn.github.io/stable/auto_examples/03_connectivity/plot_multi_subject_connectome.html#sphx-glr-auto-examples-03-connectivity-plot-multi-subject-connectome-py

[4] https://nilearn.github.io/dev/auto_examples/03_connectivity/plot_sphere_based_connectome.html

[5] https://nilearn.github.io/stable/auto_examples/03_connectivity/plot_data_driven_parcellations.html