Topic: Associative Property

Question: Which of these equations best represents the Associative Property of Addition?

Answer choices:

A
$$(a+b) + c = a + (b+c)$$

$$B \qquad a+b+c=a+c+b$$

$$C \qquad a+b+c=b+a+c$$

$$D a(b+c) = ab + ac$$

Solution: A

Answer choice A is the Associative Property of Addition, (a+b)+c=a+(b+c). Order doesn't matter when adding three or more numbers. The other answer choices are properties we'll learn about later in this section.

Topic: Associative Property

Question: Which equation is true based on the Associative Property of Multiplication?

Answer choices:

$$\mathbf{A} \qquad (4 \cdot 3) \cdot 2 = 4 \cdot (3 \cdot 2)$$

$$\mathsf{B} \qquad 4 \cdot 3 \cdot 2 = 4 \cdot 2 \cdot 3$$

$$C \qquad 4 \cdot 3 \cdot 2 = 3 \cdot 4 \cdot 2$$

D
$$4(3+2) = (4)(3) + (4)(2)$$

Solution: A

Answer choice A illustrates the Associative Property of Multiplication, which tells us that, when we're doing multiplication, we can group terms together in any order we'd like, and the result remains the same.

Topic: Associative Property

Question: Which equation shows the Associative Property of Addition?

Answer choices:

A
$$(x + y) + 2z = x + y + 2z$$

B
$$x + (y + 2z) = (x + (y + 2z))$$

C
$$x + y + 2z = (x + 2z + y)$$

D
$$x + (y + 2z) = (x + y) + 2z$$

Solution: D

The Associative Property has to do with different ways of grouping terms.

Answer choice A shows no grouping on the right, so rule out A.

Answer choice B shows a parenthesis error on the right side: two left parentheses, but only one right parenthesis. Rule out B.

Answer choice C shows no grouping on the left. Also, y and 2z are in a different order on the right. Rule out C.

Answer choice D correctly shows grouping one pair of terms, (y + 2z), on the left and a different pair of terms, (x + y), on the right.

