EE359 Big Data Mining

Streaming Algorithms

Jiaxin Ding John Hopcroft Center

Data Streams

- A data stream is a sequence of signals used to transmit or receive information that is in the process of being transmitted. In many situations, we do not know the entire data set in advance.
 - Infinite
 - Non-stationary

```
... 1, 5, 2, 7, 0, 9, 3
... a, r, v, t, y, h, b
... 0, 0, 1, 0, 1, 1, 0
```

The Stream Model

- Input elements enter at a rapid rate, at one or more input ports
 - We call elements of the stream tuples
- The system cannot store the entire stream

• Q: How do you make critical calculations about the stream using a limited amount of memory?

General Stream Processing Model

It is better to use a crude approximation and know the truth, plus or minus 10 percent, than demand an exact solution and know nothing at all.

——Arthur Bloch, The Complete Murphy's Law

Applications: Networks

Mining network streams

- Finding abnormal patterns in sensor reading streams
- Filtering out spam calls in phone call streams
- Detect denial-of-service attacks in IP packet streams

Applications: Internet

Mining query streams

 Google wants to know what queries are more frequent today than yesterday

Mining click streams

 Bytedance wants to know which of its pages are getting an unusual number of hits in the past hour

Mining social network news feeds

• E.g., look for trending topics on Weibo

Problems on Data Streams

- Types of queries one wants on answer on a data stream (element):
 - Sampling data from a stream
 - Construct a random sample
 - Filtering a data stream
 - Select elements with property **x** from the stream

Problems on Data Streams

- Types of queries one wants on answer on a data stream (statistics):
 - Queries over sliding windows
 - Number of items of type x in the last k elements of the stream
 - Counting distinct elements
 - Number of distinct elements in the last k elements of the stream
 - Finding frequent elements
 - Estimate the most frequent elements of the last k elements
 - Estimating moments
 - Estimate avg./std. dev. of last k elements

Sampling from a Data Stream: Sampling a fixed-size sample

Maintaining a fixed-size sample

- Suppose we need to maintain a random sample S of size exactly s tuples
 - E.g., main memory size constraint
- Suppose at time *n* we have seen *n* items
 - Each item is in the sample S with equal prob. s/n

```
How to think about the problem: say s = 2
Stream: a x c y z k q d e g...
```

At **n= 5**, each of the first 5 tuples is included in the sample **S** with equal prob. At **n= 7**, each of the first 7 tuples is included in the sample **S** with equal prob.

Solution: Fixed Size Sample

Algorithm

Store all the first s elements of the stream to s

- Suppose we have seen n-1 elements, and now the n^{th} element arrives (n > s)
 - With probability s/n, keep the n^{th} element, else discard it
 - If we picked the n^{th} element, then it replaces one of the s elements in the sample s, picked uniformly at random
- This algorithm maintains a sample S
 with the desired property:
 - After *n* elements, the sample contains each element seen so far with probability *s/n*

Proof: By Induction

We prove this by induction:

- Assume that after *n* elements, the sample contains each element seen so far with probability *s/n*
- We need to show that after seeing element n+1 the sample maintains the property
 - Sample contains each element seen so far with probability s/(n+1)

Base case:

- After we see **n=s** elements the sample **S** has the desired property
 - Each out of n=s elements is in the sample with probability s/s = 1

Proof: By Induction

- Inductive hypothesis: After n elements, the sample S contains each element seen so far with prob. s/n
- Now element *n+1* arrives
- Inductive step: For elements already in S, probability that the algorithm keeps it in S is:

$$\left(1 - \frac{S}{n+1}\right) + \left(\frac{S}{n+1}\right) \left(\frac{S-1}{S}\right) = \frac{n}{n+1}$$
Element **n+1** discarded sample not picked

- So, at time n, tuples in s were there with prob. s/n
- Time $n \rightarrow n+1$, tuple stayed in S with prob. n/(n+1)
- So prob. tuple is in S at time $n+1=\frac{s}{n}\cdot\frac{n}{n+1}=\frac{s}{n+1}$

Filtering Data Streams

Applications

- Email spam filtering
 - We know 1 billion "good" email addresses
 - If an email comes from one of these, it is **NOT** spam
- Publish-subscribe systems
 - You are collecting lots of messages
 - People express interest in certain sets of keywords
 - Determine whether each message matches user's interest

Filtering Data Streams

- Each element of data stream is a tuple
- Given a list of keys $S=[key_1, key_2, \cdots]$
- Determine which tuples of stream are in $\mathcal S$
- Obvious solution: store and compare
 - But suppose we **do not have enough memory** to store all of ${\cal S}$
 - The **complexity** is O(S), which can be big.

First Cut Solution

- Given a set of keys S that we want to filter
- Create a bit array B of n bits, initially all Os
- Choose a **hash function** *h* with range [0,n)
- Hash each member of s∈ S to one of n buckets, and set that bit to 1, i.e., B[h(s)]=1
- Hash each element a of the stream and output only those that hash to bit that was set to 1
 - Output a if B[h(a)] = 1

First Cut Solution

- Creates false positives but no false negatives
 - If the item is in S we surely output it, if not we may still output it

First Cut Solution

- |S| = 1 billion email addresses |B|= 1GB = 8 billion bits, for the hash values
- If the email address is in *S*, then it surely hashes to a bucket that has the big set to **1**, so it always gets through (*no false negatives*)
- Approximately **1/8** of the bits are set to **1**, so about **1/8** of the addresses not in *S* get through to the output (*false positives*)

Analysis: Throwing Darts

- More accurate analysis for the number of false positives
- Consider: If we throw *m* darts into *n* equally likely targets, what is the probability that a target gets at least one dart?
- In our case:
 - Targets = bits/buckets
 - **Darts** = hash values of items

Analysis: Throwing Darts

- We have *m* darts, *n* targets
- What is the probability that a target gets at least one dart?

Analysis: Throwing Darts

- Fraction of 1s in the array B
- = probability of false positive = $1 e^{-m/n}$
- Example: 10⁹ darts, 8*10⁹ targets
 - Fraction of 1s in $B = 1 e^{-1/8} = 0.1175$
 - Compare with our earlier estimate: 1/8 = 0.125
- How to further improve this false positive probability?
- Similar to LSH: Bloom Filter.

Bloom Filter

- Consider: |S| = m, |B| = n
- Use k independent hash functions h_1, \dots, h_k
- Initialization:
 - Set B to all Os
 - Hash each element $s \in S$ using each hash function h_i , set $B[h_i(s)] = 1$ (for each i = 1,..., k)

• Run-time:

- When a stream element with key x arrives
 - If $B[h_i(x)] = 1$ for all i = 1,..., k then declare that x is in S
 - That is, x hashes to a bucket set to $\mathbf{1}$ for every hash function $h_i(x)$
 - Otherwise discard the element x

Bloom Filter — Analysis

- What fraction of the bit vector B are 1s?
 - Throwing *k·m* darts at *n* targets
 - So fraction of 1s is $(1 e^{-km/n})$ (false positive of 1 hash function)
- But we have k independent hash functions and we only let the element x through if all k hash element x to a bucket of value 1
- So, false positive probability = $(1 e^{-km/n})^k$

Bloom Filter – Analysis

- m = 1 billion, n = 8 billion
 - k = 1: $(1 e^{-1/8}) = 0.1175$
 - k = 2: $(1 e^{-1/4})^2 = 0.0493$

 What happens as we keep increasing *k*?

Number of hash functions, k

- "Optimal" value of *k*: *n/m* In(2)
 - In our case: Optimal $k = 8 \ln(2) = 5.54 \approx 6$
 - Error at k = 6: $(1 e^{-1/6})^2 = 0.0235$

Bloom Filter: Wrap-up

- Bloom filters guarantee no false negatives, and use limited memory
 - Great for pre-processing before more expensive checks
- Suitable for hardware implementation
 - Hash function computations can be parallelized
- Is it better to have 1 big B or k small Bs?
 - It is the same: $(1 e^{-km/n})^k$ vs. $(1 e^{-m/(n/k)})^k$
 - But keeping 1 big B is simpler
- Disadvantage: only insertion, no deletion from Bloom Filter.

Count-Min Sketch

Count Element Frequency

• Faced with big data streams, storing all elements and corresponding frequencies is **impossible**.

- Approximate counts are acceptable.
- We can use hashing again.

Approximate Counts with Hashing

- Initialization: count[i] = 0, for $i \in [1, w]$
- Increment count of element a: count[h(a)] += 1
- Retrieve count of element a: count[h(a)]

Improvement: More Hash Functions

- We use **d** pairwise independent hash functions
- Increment count of element a: $count[i, h_i(a)] += 1$ for $i \in [1, d]$
- Retrieve count of element a: $\min_{i \in [1,d]} count[i,h_i(a)]$

Guarantees

• Theorem[1]: with probability $1 - \delta$, the error is at most $\varepsilon * count$. Concrete values for these error bounds can be chosen by setting $w = \left[\frac{e}{\varepsilon}\right]$ and $d = \left[\ln(\frac{1}{\delta})\right]$, $e \approx 2.718$.

- Adding another hash function exponentially decreases the chance of hash conflicts
- Increasing the width helps spread up the counts with a linear effect

[1]Graham Cormode and S. Muthukrishnan. 2005. An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms 55, 1 (2005), 58–75

Queries over a Sliding Window

Sliding Windows

- A useful model of stream processing is that queries are within a window of length N the N most recent elements received
 - Amazon example: For every product **X** we keep 0/1 stream of whether that product was sold in the **n**-th transaction.

We want answer queries, how many times we sold X in the last k sales.

Suppose we keep a window with length N=6, we can query on the last k transactions, for $k \le N$.

Counting Bits over a Sliding Window

- Problem:
 - Given a stream of **0**s and **1**s
 - How many 1s are in the last k bits? where $k \leq N$
- Obvious solution: Store the most recent N bits
 - When new bit comes in, discard the **N+1**st bit
 - Not feasible when N is so large that the data cannot be stored in memory and cannot answer in short time
- Approximation solution?
 - Without any assumptions on the data distribution

DGIM Method

DGIM(Datar-Gionis-Indyk-Motwani) Algorithm

- Does not have assumptions on data distribution
- Only stores $O(log^2N)$ bits per stream
- Solution gives approximate answer, never off by more than 50%
 - Error factor can be reduced to any fraction > 0, with more complicated algorithm and proportionally more stored bits

Idea: Exponential Windows

• First trial:

- Summarize exponentially increasing regions of the stream, looking backward, to answer queries over last k items $(k \le N)$.
- Drop small regions if there are more than two on the same level(keep the leftmost)

We can reconstruct the count of the last **N** bits, except we are not sure how many of the last **6** 1s are included in the **N**

1. when a bit comes in, create a bucket of length 1 with the proper count (0 or 1).

b) delete the leftmost two buckets, keeping only the rightmost of the three.

a) add the rightmost two and create a bucket at the next higher

Repeat (2) recursively for progressively higher levels.

If any level has 3 buckets:

level (twice the length) with that sum.

What's Good?

- Stores only O(log²N) bits
 - $O(\log N)$ counts of $\log_2 N$ bits each
- Easy update as more bits enter
- Error in count no greater than the number of 1s in the "unknown" area

What's Not So Good?

- The relative error could be unbounded!
 - Relative error=error/true count
 - Consider the case that all the **1s** are in the unknown area(? part) and the rest are all 0s. Here the relative error is infinite.

Fixup: DGIM method

- Idea: Instead of summarizing fixed-length blocks, summarize blocks with specific number of **1s**:
 - Let the block sizes (number of 1s) increase exponentially
 - Data dependent
- When there are few 1s in the window, block sizes stay small, so errors are small

DGIM: Timestamps

- Each bit in the stream has a *timestamp*, starting 1, 2, ...
- Record timestamps modulo N (the window size), so we can represent any relevant timestamp in $O(log_2N)$ bits

DGIM: Buckets

- A bucket in the DGIM method is a record consisting of:
 - The timestamp of its end [O(log ∧) bits]
 - The number of 1s between its beginning and end [O(log log ∧) bits]
- Constraint on buckets:

Number of 1s must be a power of 2

That explains the O(log log N)

E.g. In this window, if the timestamp of the last timestamp is 105, we actually store (104, 1) here, or (104, 0) for $2^0 = 1$.

Representing a Stream by Buckets

- Either one or two buckets with the same power-of-2 number of 1s
- Buckets do not overlap in timestamps
- Buckets are sorted by size
 - Earlier buckets are not smaller than later buckets.
- Buckets disappear when their end-time is > N time units in the past

Updating Buckets

 When a new bit comes in, drop the last (oldest) bucket if its endtime is prior to N time units before the current time

• 2 cases: Current bit is 0 or 1

If the current bit is 0:
 no other changes are needed

Updating Buckets

If the current bit is 1:

- (1) Create a new bucket of size 1, for just this bit
 - End timestamp = current time
- (2) If there are now three buckets of size 1, combine the oldest two into a bucket of size 2
- (3) If there are now three buckets of size 2, combine the oldest two into a bucket of size 4
- (4) Continue until there are at most two buckets of size 2i

Example: Updating Buckets

Current state of the stream:

Bit of value 1 arrives

Two smallest buckets get merged into a size-2 bucket

Next bit 1 arrives, new size-1 bucket is created, then 0 comes, then 1:

Buckets get merged...

State of the buckets after merging

How to Query?

- To estimate the number of 1s in the most recent N bits:
 - 1. Sum the sizes of all buckets but the last partially overlapping with the query
 - 2. Add half the size of the last bucket
- Remember: We do not know how many 1s of the last bucket are still within the wanted window

Error Bound: Proof

- Why is error 50%? Let's prove it!
- Suppose the last bucket has size 2^r
- Then by assuming 2^{r-1} (i.e., half) of its 1s are still within the window, we make an error of at most 2^{r-1}
- Since there is at least one bucket of each of the sizes less than **2**^r, the true sum is at least

$$1 + 2 + 4 + ... + 2^{r-1} = 2^r - 1$$

• Thus, relative error at most 50%

Further Reducing the Error

- Instead of maintaining 1 or 2 of each size bucket, we allow either
 s-1 or s buckets (s > 2)
 - Except for the largest size buckets, where we can have any number between **1** and **s** of those.

- Error is at most $\frac{2^{r-1}}{(s-1)(2^r-1)} = O(1/s)$
- By picking s appropriately, we can tradeoff between number of bits we store and the error

Extensions

- Can we handle the case where the stream is not bits, but integers, and we want the sum of the last *k* elements?
- We want the sum of the last k elements
 - Amazon: Avg. price of last k sales
- Solution:
 - If you know all have at most *m* bits
 - Treat *m* bits of each integer as a separate stream
 - Use DGIM to count 1s in each integer
 - The sum is $=\sum_{i=0}^{m-1} c_i 2^i$

Two streams represent 1

Counting Distinct Elements

Counting Distinct Elements

We often ask questions like:

- How many distinct people visit the website?
- How many distinct products have we sold in the last week?

• Problem:

- Data stream consists of a universe of elements chosen from a set of size N
- Maintain a count of the number of distinct elements seen so far

Using Small Storage

- Obvious approach:
 Maintain the set of elements seen so far
- Real problem: What if we do not have space to maintain the set of elements seen so far?

- Same philosophy as previous:
 - Estimate the count in an unbiased way
 - Accept that the count may have a little error, but limit the probability that the error is large

Flajolet-Martin Approach

- Pick a hash function h that maps each of the N elements to at least log₂ N bits
- For each stream element a, let r(a) be the number of trailing 0s in h(a)
 - **r(a)** = position of first 1 counting from the right
 - E.g., say h(a) = 12, then 12 is 1100 in binary, so r(a) = 2
- Record R = the maximum r(a) seen
 - $R = max_a r(a)$, over all the items a seen so far
- Estimated number of distinct elements = 2^R

Why It Works: Intuition

- Rough and heuristic intuition:
 - h(a) hashes a with equal prob. to any of N values
 - Then *h(a)* is a sequence of $log_2 N$ bits, where 2^{-r} fraction of all *a*s have a tail of *r* zeros
 - About 50% of **a**s hash to *****0**
 - About 25% of *a*s hash to ****00**
 - So, if we saw the longest tail of r=2 (i.e., item hash ending *100) then we have probably seen
 about 4 distinct items so far
 - So, it takes to hash about 2^r items before we see one with zero-suffix of length r

Why It Works: More formally

- Now we show why Flajolet-Martin works
- Formally, we will show that probability of finding a tail of r zeros:
 - Goes to 1 if $m \gg 2^r$
 - Goes to 0 if $m \ll 2^r$

where m is the number of distinct elements seen so far in the stream

• Thus, 2^R will almost always be around m!

Why It Works: More formally

- What is the probability that a given h(a) ends in at least r zeros is 2-r
 - h(a) hashes elements uniformly at random
 - Probability that a random number ends in at least r zeros is 2^{-r}
- Then, the probability of **NOT** seeing a tail of length *r* among *m* elements:

Why It Works: More formally

- Note: $(1-2^{-r})^m = (1-2^{-r})^{2^r(m2^{-r})} \approx e^{-m2^{-r}}$
- Prob. of NOT finding a tail of length r is:

 - If $m << 2^r$, then prob. tends to 1 $(1-2^{-r})^m \approx e^{-m2^{-r}} = 1$ as $m/2^r \rightarrow 0$
 - So, the probability of finding a tail of length r tends to 0
 - If $m >> 2^r$, then prob. tends to 0
 - $(1-2^{-r})^m \approx e^{-m2^{-r}} = 0$ as $m/2^r \to \infty$
 - So, the probability of finding a tail of length r tends to 1
- Thus, 2^R will almost always be around m!

Issues to fix

- E[2^R] is actually infinite
 - Probability halves when $R \rightarrow R+1$, but value doubles
 - Limit the bits of hashing values to L
- The estimation is biased
 - Estimated with $2^R/\Phi$, where $\Phi = 0.77351$ is a correction factor.
- Problems of high variance. Improve accuracy.
 - Use many hash functions with samples of R
 - Partition your samples into small groups
 - Take the median of groups
 - Then take the average of the medians

Computing Moments

Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values (say 1 to N)
- Let m_i be the number of times value i occurs in the stream
- The kth moment is

$$\sum_{i\in A} (m_i)^k$$

Special Cases

$$\sum_{i\in A} (m_i)^k$$

- Othmoment = number of distinct elements(Flajolet-Martin Approach)
- 1st moment = count of the numbers of elements = length of the stream
- 2nd moment = surprise number S = a measure of how uneven the distribution is

E.g. Stream of length 100, 11 distinct values

- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 Surprise S = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 Surprise S = 8,110

AMS(Alon-Matias-Szegedy) Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We pick and keep track of some variables X:
 - For each variable X we store X.el and X.val
 - X.el corresponds to the item i
 - X.val corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$

One Random Variable (X)

- How to set X.val and X.el?
 - Assume stream has length n
 - Pick some random time t (t<n) to start, so that any time is equally likely
 - Let at time t the stream have item i. We set X.e/ = i
 - Then we maintain count c(X.val = c) of the number of is in the stream starting from the chosen time t
- Then the estimate of the 2nd moment $(\sum_i m_i^2)$ is:

$$S = f(X) = n (2 \cdot c - 1)$$

• Note, we will keep track of multiple Xs, $(X_1, X_2, \cdots X_k)$ and our final estimate will be $S = 1/k \sum_{i}^{k} f(X_i)$

Expectation Analysis

seen $(c_t=1)$

• 2nd moment is $S = \sum_i m_i^2$

by the value

seen

• c_t ··· number of times item at time t appears from time t onwards ($c_1 = m_a$, $c_2 = m_a - 1$, $c_3 = m_b$)

i is seen (c_t =2)

m_i ... total count of item i in the stream (we are assuming stream has length n)

Expectation Analysis

- $E[f(X)] = \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i 1)$
 - calculation: $(1+3+5+\cdots+2m_i-1)=\sum_{i=1}^{m_i}(2i-1)=2\frac{m_i(m_i+1)}{2}-m_i=(m_i)^2$
- Then $\mathbf{E}[\mathbf{f}(\mathbf{X})] = \frac{1}{n} \sum_{i} n (m_i)^2$
- So, $E[f(X)] = \sum_{i} (m_i)^2 = S$
- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n(2\cdot c-1)$
 - For k=3 we use: $n(3\cdot c^2 3c + 1)$ (where c=X.val)
- Why?
 - For k=2: Remember we had $(1+3+5+\cdots+2m_i-1)$ and we showed terms 2c-1 (for c=1,···,m) sum to m^2
 - $\sum_{c=1}^{m} 2c 1 = \sum_{c=1}^{m} c^2 \sum_{c=1}^{m} (c-1)^2 = m^2$
 - So: $2c 1 = c^2 (c 1)^2$
 - For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate = $n(c^k (c-1)^k)$

Combining Samples

• In practice:

- Compute f(X) = n(2c 1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

Problem: Streams never end

- We assumed there was a number *n*, the number of positions in the stream
- But real streams go on forever, so *n* is
 a variable the number of inputs seen so far

Streams Never End: Fixups

- (1) The variables X have n as a factor keep n separately; just hold the count in X
- (2) Suppose we can only store k counts. We must throw some Xs out as time goes on:
 - Objective: Each starting time t is selected with probability k/n
 - Solution: (fixed-size (Reservoir) sampling!)
 - Choose the first **k** times for **k** variables
 - When the n^{th} element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables **X** out, with equal probability

Summary of Streaming Algorithms

- Queries
 - Filtering a data stream
 - Queries over a sliding window
 - Counting distinct elements
 - Estimating moments
- Key techniques
 - Hashing functions
 - Approximation with sketch/summarization
 - Theoretical analysis