Blatt 2 Abgabe Mittwoch 30.10.2013 bis 16:00 im Sekretariat, Zimmer 3505, Ernst-Abbe-Platz 2

(1) (a) Geben Sie eine endliche Menge N mit einem augezeichneten Element e und einer injektiven Abbildung $s:N\longrightarrow N$ an, so dass gilt:

Ist M eine Teilmenge von N mit $e \in M$ und $s(n) \in M$ falls $n \in M$, so gilt M = N.

- (b) Geben Sie noch eine solche Menge an.
- (2) Es genüge (N, e, ν) den Peano Axiomen. Seien $A_n, n \in N$, die eindeutig bestimmten Teilmengen von N für die gilt $A_e = \{e\}$ und $A_{\nu(n)} = A_n \cup \{\nu(n)\}$. Zeigen Sie:
 - (a) Durch

$$x \leq y : \iff A_x \subseteq A_y$$

ist eine Ordnungsrelation auf N definiert.

- (b) $A_x = \{ n \in N \mid n \le x \}.$
- (c) N ist total geordnet bezüglich \leq .

Tipp: Zeigen Sie zunächst, dass die Menge

$$L := \{ n \in N \mid \text{das einzige } x \in A_n \text{ mit } \nu(x) \not\in A_n \text{ ist } n \}$$

induktiv ist. Verwenden Sie dies zum Beweis der Aussage.

Für die folgenden Aufgaben dürfen Sie die Rechenregeln der natürlichen Zahlen als bekannt voraussetzen.

(3) Beweisen Sie induktiv, dass für alle $n \in \mathbb{N}$ folgende Beziehungen gelten:

$$\sum_{k=1}^{n} k(k+1) = \frac{1}{3}n(n+1)(n+2)$$
$$\sum_{k=1}^{n} k(k+1)(k+2) = \frac{1}{4}n(n+1)(n+2)(n+3).$$

Was vermuten Sie allgemein für

$$\sum_{k=1}^{n} k(k+1) \dots (k+m-1), \quad \text{wobei } m \in \mathbb{N}?$$

Beweisen Sie Ihre Vermutung wieder durch Induktion.

(4) Beweisen Sie, dass $11^{n+1} + 12^{2n-1}$ für alle $n \in \mathbb{N}$ durch 133 teilbar ist.

Zusatzaufgaben:

(Z1) Lernen Sie das griechische Alphabet auswendig.

A	α	Alpha	N	ν	Ny
В	β	Beta	Ξ	ξ	Xi
Γ	γ	Gamma	O	O	Omikron
Δ	δ	Delta	П	π	Pi
E	ε	Epsilon	P	ρ	Rho
\mathbf{Z}	ζ	Zeta	Σ	σ , ς	Sigma
Н	η	Eta	T	τ	Tau
Θ	θ , ϑ	Theta	Y	υ	Ypsilon
Ī	ι	Jota	Φ	φ	Phi
K	κ	Kappa	X	χ	Chi
Λ	λ	Lambda	Ψ	Ψ	Psi
M	μ	Му	Ω	ω	Omega

Verinnerlichen Sie insbesondere den Unterschied von ϕ und ψ bzw. χ und ξ . Schreiben Sie den folgenden Sätze mit griechischen Buchstaben: "Max gibt Fips aus Flachs einen Klapps."

Für Teil (b) der Zusatzaufgabe gibt es einmalig 3 Punkte.

- (Z2) Es genüge (N, e, ν) den Peano Axiomen. Seien $A_n, n \in N$, die eindeutig bestimmten Teilmengen von N, für die gilt $A_e = \{e\}$ und $A_{\nu(n)} = A_n \cup \{\nu(n)\}$. Seien $n \in N$ und $f: A_n \longrightarrow A_n$ gegeben. Zeigen Sie die Äquivalenz der folgenden beiden Aussagen:
 - (i) Es ist $f: A_n \longrightarrow A_n$ injektiv.
 - (ii) Es ist $f: A_n \longrightarrow A_n$ surjektiv.