For airport applications, the typical AERMOD input requirements and their corresponding data parameters are listed in **Table 7-1** (*AERMOD Model Inputs and Data Requirements*).

Table 7-1. AERMOD Model Inputs and Data Requirements

Data Parameters
aging time tants n versus rural
tion coordinates dimensions way link length and width theight diameter demperature velocity
ce/upper air conditions I speed and direction ient temperature ng height ce roughness, albedo, Bowen ratio
way coordinates way utilization ways and taxipaths assignments ort capacity and configuration
ter hour hly
ce and receptor elevations
ling height and dimensions onary source locations
tion coordinates pole height
nck emission ratio e concentrations l ozone concentration
by ambient monitoring data
n

When dispersion modeling is conducted at airports for the EPA criteria pollutants, CO, NO₂, PM₁₀, and PM_{2.5} are most commonly evaluated. Characteristically, CO levels are typically elevated in areas of high motor vehicle traffic such as the main terminal area access/egress roadways, curbsides and parking facilities. By comparison, NO₂ concentrations are also more likely to be highest near the runway ends where aircraft engine thrust settings are at their highest.