中国科学院大学

2013 年招收攻读硕士学位研究生入学统一考试试题 科目名称:信号与系统

考生须知:

- 1. 本试卷满分为 150 分,全部考试时间总计 180 分钟。
- 2. 所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。

			₩
一、选择(每空3分	·, 共30分)	Ý	
1. [2sin(200πt)] ² 的直(a) 2	流分量为: (b)1	(c) 0.5	(d) 0.25
2. 对连续系统建立状(a) 积分器的输λ		什么作为状态变量 (c) 时延器的输入	
3. 实偶周期函数的傅	 厚里叶级数中不会含	有	5次谐波的余弦分量
4. 双边序列 <i>x</i> (<i>n</i>)的 Z (a)圆环		为 (c) 某圆的外部	(d) 某圆的内部
5. 若 <i>x</i> (<i>n</i>)为系统激励变性为	1, y(n)为系统响应,	且 $y(n)=[x(n)]^2$,该刻	系统的线性性和时不
	(b) 线性时不变	(c) 非线性时不变	(d) 非线性时变
6. 若 $\mathscr{L}[f(t)] = F(t)$	$oldsymbol{\mathcal{L}} \left[f\left(at ight) \right] =$		
(a) $aF(as)$	(b) $\frac{1}{a}F\left(\frac{s}{a}\right)$	(c) $\frac{1}{a}F(s)$	(d) $aF(s)$

7. 若
$$f(t)$$
的傅里叶变换为 $F(\omega)$, $\mathscr{F}^{-1}\left[\frac{d^n F(\omega)}{d\omega^n}\right] =$

(a)
$$t^n f(t)$$
 (b) $(jt)^n f(t)$ (c) $\frac{1}{(-jt)^n} f(t)$ (d) $(-jt)^n f(t)$

8. $\sin\left(\frac{3\pi}{7}n - \frac{\pi}{8}\right)$ 的最小周期是

- (a) 14 (b) 7
- (c) $\frac{14}{3}$
- (d) 非周期

9. 当 $t \to \infty$ 时,响应趋于零的那部分系统响应分量称为

- (a) 瞬时响应 (b) 稳态响应 (c) 自由响应 (d) 强迫响应

10. 激励信号的功率谱与响应信号功率谱之间的加权因子为

- (a) h(t) (b) $|h(t)|^2$ (c) $H(\omega)$ (d) $|H(\omega)|^2$

二、填空(每题4分,共40分)

1.利用图 1 所示的连续信号正反馈系统产生振荡的条件是 A(s)F(s)的模量 为______,辐角为_____

图 1

对角元素为

3. $\left(\frac{1}{3}\right)^{-n}u(n)$ 的 **Z** 变换为

4. $r(t) = \frac{d}{dt} e(t)$,则系统______(可逆/不可逆);若可逆,则其逆系统为______, 若不可逆, 理由是

5. 物理可实现系统的冲激响应应满足__________; 幅度函数应满足的必要 条件是_____。

6. $x(n) = \delta(n) + 2\delta(n-1) + \delta(n-2)$, $h(n) = \delta(n) + \delta(n-1) + \delta(n-2)$, \mathbb{N} $x(n)*h(n) = \underline{\hspace{1cm}}_{\circ}$

7. 连续时间全通系统的零极点分布为_______,幅频响应为_____。

8.
$$\int_{-\infty}^{\infty} \delta(t-2)u(t-1)dt = \underline{\hspace{1cm}}$$

9. $\sin(\omega_0 t + \theta)$ 的希尔伯特变换为_____。

- 三、简单计算(每题5分,共35分)
- 1. 求 $t^2\cos 2t$ 的拉氏变换。
- 2. 求 $u(t)*e^{-at}u(t)$ 。

3. 求
$$X(z) = \frac{1 - az^{-1}}{z^{-1} - a}, \left(|z| > \frac{1}{a} \right)$$
 的逆变换。

4. 求 tu(t)的傅里叶变换。

5. 求
$$\frac{(s+3)}{(s+2)(s+1)^3}$$
的逆变换。

- 6. 求 $sgn(\omega)$ 的逆傅里叶变换。
- 7. 求 $E\cos(\omega_t)$ 的自相关函数。

四、(10 分)系统如图 2 所示,-1< b< 1,建立该系统的状态方程并判断系统的稳定性。

图 2

五、(15 分) 已知图 3(a)所示网络的入端阻抗为 $Z(s) = \frac{K(s-z_1)}{(s-p_1)(s-p_2)}$, (1) 写

出以元件参数 R, L, C 表示的零极点位置; (2) 若 Z(s)零极点分布如图 3(b)所示,且 Z(j0)=1,求 R, L, C 的值。

六、(20 分)图 4(a)所示系统的输入信号 e(t)为限带实时间信号,带宽为 f_m ; s(t)为周期性冲激序列如图 4(b)所示; $H(j\omega)$ 为理想低通滤波器,带宽为 $3f_m$,如图 4(c)所示。试:(1)画出 A、B、C 三点的频谱示意图;(2)求系统输出;(3)说明系统所完成的是什么调制,并确定载波频率。

