北京科技大学 2015-2016 学年第一学期

高等数学 AI 模拟 (A) 试卷

院 (系)	班级	学号	姓名	考试教室

试卷卷面	成绩					占课程考核成 绩 70%	平时成绩占30%	课程考核成绩
题号		11	三	四	小计		/	
得分								. / (
评阅				7	138	1 / /		111

- 说明: 1、要求正确的写出主要的计算或推倒过程,过程有错或只写答案者不得分;
 - 2、考场、学院、班级、学号、姓名均需全写,不写全的试卷为废卷;
 - 3、涂改学号以及姓名的试卷为废卷;
 - 4、请在试卷上作答,在其它纸上解答一律无效.

得分		
	一、	填空题

- 1. 下列各题可供选择的四种结果是:
 - A. 必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 无关条件
 - (1) "f(x) 在 x_0 处有定义"是" $\lim_{x \to x_0} f(x)$ 存在"的_
 - (2) "f(x)在[a,b]上连续是"f(x)在[a,b]上可积"的_
 - (3) "f(x) 在[a,b] 上连续是"f(x) 在[a,b] 上原函数存在"的______.

- 3. $\sum_{n=2}^{\infty} \frac{1}{2^n n(n+1)} = \underline{\hspace{1cm}}.$
- 4. 若不恒为常数的函数 f(x) 满足 $f^{2}(x) = \int_{0}^{x} f(t)(t+1)dt$,则 f(x) =______
- 5. 试求下列极限:

(1)
$$\lim_{n \to \infty} \frac{1}{n} \sqrt[n]{n(n+1)(n+2)\cdots(2n-1)} = \underline{\hspace{1cm}}$$

(2)
$$\lim_{x \to 0} \frac{\int_0^x t e^{t^2 - x^2} dt}{x^2} = \underline{\hspace{1cm}}.$$

(3) $\lim_{n\to\infty} n^2 \left[\arctan(n+1) - \arctan n\right] =$

得分

二、选择题

6.
$$f(x) = \begin{cases} \frac{1}{1+x}, & x \ge 0 \\ \frac{1}{1+e^x}, & x < 0 \end{cases}$$
, $\iiint_0^2 f(x-1) dx = \underline{\qquad}$

- A. $\ln 2$ B. $\ln(e+1) + \ln 2$ C. $\ln(e+1)$ D. $\ln(e+1) \ln 2$
- 7. $\frac{\pi}{2}M = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{1+x^2} \cos^6 x dx, N = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin^3 x + \cos^4 x) dx$

$$P = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 \sin^2 x - \cos^4 x) dx$$
 ,则有 ______.

A. $N < P < M$ _ B. $M < P < N$ C. $N < M < P$ D. $P < M < N$

A.
$$N < P < M$$
 B. $M < P < N$ C. $N < M < P$ D. $P < M < N$

8. 已知
$$f(x) = \int_0^x \frac{\sin t}{\pi - t} dt$$
 ,则 $\int_0^\pi f(x) dx =$ ______.

B.
$$-2$$
 C. π

- 9. 若 $[x_0, f(x_0)]$ 为连续函数 y = f(x)上凹弧和凸弧的分界点,则_
 - A. $f'(x_0)$ 必为0
- B. $[x_0, f(x_0)]$ 必为拐点
- C. x_0 必为 f(x) 极值点 D. x_0 必为驻点
- 10. 下列广义积分收敛的是_

A.
$$\int_{2}^{+\infty} \frac{\ln x}{x} dx$$
 B. $\int_{2}^{+\infty} \frac{1}{x \ln x} dx$ C. $\int_{2}^{+\infty} \frac{1}{x (\ln x)^{2}} dx$ D. $\int_{2}^{+\infty} \frac{1}{x \sqrt{\ln x}} dx$

11. 积分
$$I = \int_0^{+\infty} \frac{\sin(x + \frac{1}{x})}{x^a} dx$$
 条件收敛的充要条件是______.

A.
$$a \in (0,1)$$
 B. $a \in (0,\frac{3}{2})$ C. $a \in (0,2)$ D. $a \in (0,3)$

得分

三、解答题

12.
$$\int_{-\pi}^{\pi} \frac{x \sin x}{(|\cos x| + 2)^2} dx$$
.

15

$$(1) \int \frac{1}{x^6(x+1)} dx$$

$$(2) \int \frac{x^2 + 1}{x^4 + 1} dx$$

 $16. \ \ \forall a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$

(1)
$$\vec{x} \sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$$

得分

四、证明题

17. 若 f(x) 在 [a,b] 上连续,且 $\int_a^b f(x) dx = 0$.

(1) 若 $\int_a^b e^x f(x) dx = 0$, 试证 f(x) 在(a,b) 内至少有两个零点。

(2) 试证明: $\exists \varepsilon \in (a,b)$, 使得 $\int_a^\varepsilon f(x)dx = \varepsilon f(\varepsilon)$

18. 若 f(x) 在 [a,b] 上有连续的二阶导,且 f'(a) = f'(b).

试证明: $\exists \varepsilon \in (a,b)$, 使得 $\int_a^b f(x)dx = \frac{1}{2} [f(a) + f(b)](b-a) + \frac{1}{24} f''(\varepsilon)(b-a)^3$.

