Enunciado

Dado un conjunto finito S de intervalos de $\mathbb R$ decimos que un conjunto $P\subset \mathbb R$ es transversal a S si para todo intervalo $[a,b]\in S$ existe un punto $p\in P$ tal que $a\leq p\leq b$. Consideremos el problema de, dado un conjunto S, encontrar un conjunto P transversal a S de menor tamaño. Para ello, dado $x\in \mathbb R$, llamemos $S_x=\{[a,b]\in S: a\leq x\leq b\}$ al conjunto de intervalos de S que son atravesados por el punto x.

Para resolver este problema se propone el siguiente esquema de estrategia greedy: se elegirá un punto $x \in \mathbb{R}$ que atraviese algunos intervalos S_x de S, y luego se hará recursión buscando un conjunto mínimo P transversal a $S \setminus S_x$, para luego devolver como respuesta final al conjunto $P \cup \{x\}$. Como caso base, cuando $S = \emptyset$, se devolverá el conjunto vacío.

Demostrar que si elegimos x de acuerdo a la regla $x=\min\{b\mid [a,b]\in S\}$, obtenemos un algoritmo que devuelve un conjunto transversal a S de tamaño mínimo.

Demostración

Vamos a demostrar esto como se demuestran todos los algoritmos greedy, por inducción. Sea entonces $\mathcal I$ el conjunto de conjuntos de intervalos en $\mathbb R$, y notemos por $2^{\mathbb R}$ al conjunto de subconjuntos de $\mathbb R$. Llamemos entonces al algoritmo $A:\mathcal I\to 2^{\mathbb R}$. Dado un conjunto de intervalos $S\in\mathcal I$, decimos que A es correcto para S, cuando A(S) es un conjunto transversal a S de tamaño mínimo entre todos los conjuntos transversales a S. La proposición que vamos a probar por inducción es:

P(n): Para todo conjunto de intervalos $S \in \mathcal{I}$, con $|S| \leq n$, A es correcto para S.

Como toda demostración por inducción, vamos a tener algunos casos base, y un paso inductivo. En este caso, nos basta con usar 0 como caso base.

• P(0). Queremos probar que si tenemos un conjunto de intervalos S, con $|S| \leq 0$, entonces P = A(S) es un conjunto transversal a S de tamaño mínimo entre todos los conjuntos transversales a S. Como $|S| \leq 0$, entonces |S| = 0, y $S = \emptyset$. Luego, $P = A(S) = A(\emptyset) = \emptyset$. Para ver que P es transversal a S, tenemos que er que para todo intervalo $[a,b] \in S$, existe un punto $p \in P$ tal que $a \leq p \leq b$. Como $S = \emptyset$, esto es

un "para todo" de un conjunto vacío, y por lo tanto trivialmente cierto. Para ver que P tiene tamaño mínimo entre todos los conjuntos transversales a S, basta ver que P tiene tamaño cero, y no puede haber un conjunto X transversal a S de menor tamaño que P, puesto que X necesitaría tener un número negativo de elementos.

■ $P(n) \Rightarrow P(n+1)$. Sabemos que A es correcto para todos los conjuntos de a lo sumo n intervalos, y queremos ver que es correcto para todos los conjuntos de a lo sumo n+1 intervalos. Sea S, entonces, un conjunto de n+1 intervalos. Por como definimos A, tenemos que si P=A(S), entonces $P=\{x\}\cup A(S\setminus S_x)$, con $x=\min\{b\mid [a,b]\in S\}$. Sea $[a,b]\in S$ el conjunto de donde sale ese x, donde en particular, x=b. Como $a\leq x\leq b$, entonces $[a,b]\in S_x$, y luego $|S_x|>0$.

Como $|S_x|>0$, entonces $|S\setminus S_x|<|S|=n+1$, y luego $|S\setminus S_x|\le n$. Por hipótesis inductiva, A es correcto para $S\setminus S_x$, y si $A(S\setminus S_x)$ es transversal a $S\setminus S_x$, entonces $A(S)=\{x\}\cup A(S\setminus S_x)$ es transversal a S. Falta ver que A(S) es de tamaño mínimo entre todos los conjuntos transversales de S.

Como x no toca a nadie en $S\setminus S_x$, si $x\in A(S\setminus S_x)$, podríamos simplemente eliminarlo, obteniendo un conjunto transversal a $S\setminus S_x$ de menor tamaño, y eso no puede suceder porque A es correcto para $S\setminus S_x$. Luego sabemos que $x\not\in A(S\setminus S_x)$, y luego $|A(S)|=|\{x\}\cup A(S\setminus S_x)|=1+|A(S\setminus S_x)|$.

Sea Q una solución óptima para S. Es decir, Q es un conjunto transversal a S, con el mínimo tamaño entre todos los conjuntos transversales a S.

Tenemos dos opciones:

• $x \in Q$. Luego, $Q \setminus \{x\}$ es un conjunto transversal a $S \setminus S_x$. Como A es correcto para $S \setminus S_x$, y $Q \setminus \{x\}$ es transversal a $S \setminus S_x$, tenemos que $|A(S \setminus S_x)| \leq |Q \setminus \{x\}|$. Luego, $|A(S)| = |\{x\} \cup A(S \setminus S_x)| = 1 + |A(S \setminus S_x)| \leq 1 + |Q \setminus \{x\}| = |Q|$. Como Q es un conjunto transversal a S de mínimo tamaño entre todos los conjuntos transversales a S, y S0 es al menos tan pequeño como él, entonces S1 es correcto para S2.

• x
otin Q. Como Q es transversal a S, y $[a,b] \in S$, existe un $q \in Q$ tal que $a \le q \le b$. Consideremos el conjunto de intervalos en S que q interseca, S_q . Tenemos que para todo $[a',b'] \in S_q$, $a' \le q \le b \le b'$, puesto que b es el mínimo extremo derecho entre todos los intervalos en S. Luego, todos los intervalos que q interseca, b también interseca, y por lo tanto, $S_q \subseteq S_b = S_x$. Luego, como $Q \setminus \{q\}$ es transversal a $S \setminus S_q$, y $(S \setminus S_x) \subseteq (S \setminus S_q)$, tenemos que $Q \setminus \{q\}$ es transversal a $S \setminus S_x$. Por hipótesis inductiva, entonces, $|A(S \setminus S_x)| \le |Q \setminus \{q\}|$, y por lo tanto

 $|A(S)|=|\{x\}\cup A(S\setminus S_x)|=1+A(S\setminus S_x)|\leq 1+|Q\setminus \{q\}|=|Q|$, con Q un conjunto transversal a S de mínimo tamaño. Luego, A es correcto para S.

En ambos casos encontramos que A es correcto para S, que es lo que queríamos demostrar.