B.Sc Part-I Honours Examination 2020

PHSA

PAPER-2B

F.M.-50

UNIT-I (F.M.-20)

Answer any one question

Question 1. Moment of Inertia and Modulus of Rigidity

- (a)Write down the relevent theory of the experiment -
- (b) Calculate the value of moment of Inertia and modulus of rigidity from the following data:-

(5)

Oscillating Body	Time period	Dimension of the body	Mass of the body	
EMPTY CRADLE	2.42 secs			
CRADLE + SQUARE BODY	2.58 secs	LENGTH=BREA DTH= 5.08cm	486 gm	
CRADLE + CYLINDER	2.71 secs	DIAMETER OF CYLINDER=5.73 2cm	1016 gm	
Suspension wire		Length= 62 cm Diameter of wire=0.98mm		

Determine the moment of inertia of a metallic cylinder about an axis passing through its C.G. and perpendicular to its length from the above data. SQUARE BODY IS THE REFERENCE BODY (10+5)

UNIT-II (F.M.-30)

Answer any one question

Question 1.

- (a) Construct a half –adder using basic gates and verify the truth table, (theoretically)
- (b) Construct a full –adder using basic gates and verify its truth table. (theoretically)

Distribution of marks:

(I)PIN configuration of the IC's containing basic gates

2+2+2

(ii) Theory +Truth Table+Circuit (Half adder)

4+4+4

(iii) Theory +Truth Table+Circuit (Full adder)

4+4+4

Question 2

Studying nature of dipolar field using a short bar magnet by magnetometer.

(a) Working formula of the above experiment to be written.

5

- (b) Calculate the moment of inertia of the magnet from the given data 5
- (c) Draw $\tan\Theta$ versus $1/d^3$ from the given data
- (d) Calculate the horizontal component B_{H} of the earth's magnetic field from the given data

5

(e) What are TAN A and TAN B position of magnets.

5

DATA FOR CALCULATION:MASS OF MAGNET-48 gm

DIMENSIONS OF THE MAGNET:- LENGTH=4.96cm, BREADTH=1.50cm

TIME PERIOD OF OSCILLATION OF MAGNET-5.04secs DEPENDENCE OF DIPOLAR FIELD

d in	θ	
m	degr	
	ee	
0.20 9	35	
0.19 7	40	
0.18 5	45	
0.17 5	50	
0.16 5	55	