

Agenda

- 1. Introduction: activity background and objectives
- 2. Context of the reverse engineering activity
- 3. Initial approach to support reverse engineering with MBSE
- 4. Improvement proposal to reach digital continuity faster
- 5. Conclusion

1. Introduction

- First CubeSat mission designed and operated by ESA since 2019
- Low-cost, open, and flexible flying 'laboratory' powerful platform for in-orbit demonstration (IOD)
- Large and diverse team mixing academic and industrial stakeholders
- some challenges and pain points...

– To which extent ?

Scope of this presentation

Goal #2: can we provide a reference model for future IOD missions?

Not addressed today but presented at "ESA MBSE 2022" conference in Toulouse

2. Context of the reverse engineering activity

1st challenge – build a model from various documents

design, implementation,

* TU Graz was the prime (ESA contractor in charge of the satellite)

2nd challenge – select an efficient MBSE framework

A key decision: select the Airbus MBSE Framework (MOFLT)

Mission Analysis: WHAT is the problem that we need to solve, and WHAT are the potential ways of solving it?

- Definition of SoS Mission : Objectives / Effects
- Determine and characterize potential ways of realizing a Mission (Mission Concept)

CONOPS - Concept of Operation

Operational Analysis:

WHAT the System of Interest will do to contribute to the mission ? What is the context of the SOI ?

- Definition of Operational Concept focusing on a Entity : Context / Constraint / SOI
- Definition of Operational Scenarios consistent with Mission Concept

OPSCON - Operational Concepts

Functional Architecture:

HOW the System of Interest will work to meet expectations

- ?
- Definition of execution sequence
 between functions to realize operations
- Definition of structural arrangement of functions & interfaces

Logical Architecture : HOW

the System of Interest is organized ? (Abstract

Component)

- Definition of logical components + logical interfaces
- Allocation of functions to logical components

Technical Architecture

HOW the System of Interest will be implemented?

- Definition of technical components & Interfaces
- Realization of logical Components / Interfaces by technical Components / Interfaces

Architecture Dossier / System Interface Document

Foundations of Airbus MBSE framework

MOFLT framework derived from strong foundations

SysML tool used to build the MBSE framework

 MBSE framework implemented on top of Cameo Systems Modeler

3. Initial approach for reverse engineering

Model structure – 2 models to match 2 levels of systems

2 levels of systems:

- OPS-SAT global system at Level 0 (L0) mainly focused on the mission and operations (needs)
- OPS-SAT flight segment system at level 1 (L1), mainly focused on reflecting the satellite technical architecture

A strategy into 2 main steps: translate and complete

Step 1 – translate operational concept in operational tasks

The operational concepts

Step 1 – translate experiment usage into operational tasks

 The operational procedure is made of an arrangement of operational tasks allocated to different parts

Step 1 – translate technical views of the satellite

3 different views of the same technical architecture => consistency

Step 2 – the strategy: refinement and abstraction

Step 2 – abstract logical components and functions from technical architecture

Logical Component| Soi - Flight Segment Component | Soi - Logical Architecture Diagram |)

Very difficult exercise: logical items tend to align on the technical information => too low-level granularity...

Step 2 - From Operational Tasks to functions

• Duplicate, refactor, trace functions

• Then move L0 functions to L1 Flight and L1 Ground

Functions remain close (semantics) to the operational concept => too specific...

Reverse engineering modeling approach – not easy !!!

4. Improvement proposal to ease the digital continuity

Reverse engineering modeling approach – V2

A larger set of models to better reflect all systems

- 5 related models:
 - One for the intended global system
 - One for each segment (flight and ground)
 - One for the integrated system
 - One for an experiment of the system (usage)

Functions can be introduced at the right abstraction level in any of those models

With the introduction of "domain" functions, digital continuity was easier to achieve...

5. Conclusion

Lessons learned about reverse engineering with MBSE

- 1. Choose the right level for the technical/physical architecture
 - The formalization of physical products from their datasheets is very time consuming and does not help in building the digital continuity → not the 1st target
- 2. Mechanical and electrical views have low value if done in SysML or require a lot of efforts for useful concepts, not needed with dedicated tools
- 3. System functions are key to bridge the gap between mission and the technical architecture, but it is very hard to identify the "good" ones
 - 1. When refined from mission/operations (top-down), they are too "mission" specific
 - 2. When abstracted from equipments, they remain too "technical"
 - 3. The best approach seems to use "space domain knowledge" as input for those functions and then adapt those functions to meet in the middle...

Thank you for your attention!

Q&A

