BUFN402: Portfolio Management

James Zhang*

February 19, 2024

These are my notes for UMD's BUFN402: Portfolio Management, which is an elective ("live- T_EX "-ed). This course is taught by Professor Seokwoo Lee.

Contents

1	Probability Theory	2
2	Portfolio Theory	2
	2.1 Review of Two Asset Case	2

^{*}Email: jzhang72@terpmail.umd.edu

§1 Probability Theory

See Professor Lee's comprehensive slideshow on the probability theory concepts that we need to know.

§2 Portfolio Theory

§2.1 Review of Two Asset Case

Suppose we have two assets denoted as random variables R_1, R_2 and $E(R_1) = \mu_1, E(R_2) = \mu_2$. We also have $SD(R_1) = \sigma_1, SD(R_2) = \sigma_2$. Then we have the portfolio R_p as

$$R_p = w_1 R_1 + w_2 R_2 = w_1 R_1 + (1 - w_1) R_2$$

Now constucting a mean variance optimization,

$$\mathbb{E}(R_p) = w_1 \mu_1 + w_2 \mu_2$$

$$\sigma_p^2 = w_1^2 \sigma_1^2 + (1 - w_1)^2 \sigma_2^2 + 2w_1 (1 - w_1) \rho_{12} \sigma_1 \sigma_2$$

$$\sigma_p = \sqrt{\sigma_p^2}$$

We wish to maximize $\max(\mathbb{E}(R_p) - \operatorname{Var}(R_p))$ which we can doing by taking the derivative with respect to w_1 and setting this to zero.

$$w_1\mu_1 + (1 - w_1)\mu_2 - w_1^2\sigma_1^2 + (1 - w_1)^2\sigma_2^2 + 2w_1(1 - w_1)\rho_{12}\sigma_1\sigma_2$$

$$w_1\mu_1 + \mu_2 - w_1\mu_2 - w_1^2\sigma_1^2 + (1 - 2w_1 + w_1^2)\sigma_2^2 + 2w_1(1 - w_1)\rho_{12}\sigma_1\sigma_2$$

$$w_1\mu_1 + \mu_2 - w_1\mu_2 - w_1^2\sigma_1^2 + (1 - 2w_1 + w_1^2)\sigma_2^2 + (2w_1 - 2w_1^2)\rho_{12}\sigma_1\sigma_2$$

Taking partial derivative we get

$$\mu_1 - \mu_2 - 2\sigma_1^2 w_1 - 2\sigma_2^2 + 2w_1\sigma_2^2 + (2 - 4w_1)\rho_{12}\sigma_1\sigma_2 = 0$$

. . .

Example 2.1

We want to maximize variance of two assets such that $X \sim N(\mu_x, 1), Y \sim N(\mu_y, 1), \rho > 0$. Maximize the variance given that $w_1^2 + w_1^2 = 1$. Note that maximizing this variance is the same thing as minimizing the negative value of this function.

$$Var(R_p) = w_1^2 + w_2^2 + 2w_1w_2\rho$$
$$-Var(R_p) = -w_1^2 - w_2^2 - 2w_1w_2\rho$$

Rearranging the constraint yields

$$1 - w_1^2 - w_1^2$$

$$\mathcal{L}(w_1, w_2, \lambda) = -w_1^2 - w_2^2 - 2w_1w_2\rho + \lambda(1 - w_1^2 - w_2^2)$$

The first order conditions are therefore

$$\frac{\partial \mathcal{L}}{\partial w_1} = -2w_1 - 2w_2\rho - 2\lambda w_1 = 0 \implies w_1 + w_2\rho + \lambda w_1 = 0$$

$$\frac{\partial \mathcal{L}}{\partial w_2} = -2w_2 - 2w_1\rho - 2\lambda w_2 = 0 \implies w_2 + w_1\rho + \lambda w_2 = 0$$

We want to solve for w_1, w_2 in terms of λ . Recall that the constraint enforces $w_1^2 + w_2^2 = 1 \implies w_1 = \sqrt{1 - w_2^2}$ and $w_2 = \sqrt{1 - w_1^2}$. Plugging these in yield

$$w_1 + \rho \sqrt{1 - w_1^2} + \lambda w_1 = 0 \implies w_1^2 + \rho^2 (1 - w_1^2) + \lambda^2 w_1^2 = 0$$

$$w_1^2 - \rho^2 w_1^2 + \lambda^2 w_1^2 = -\rho^2$$

$$w_1^2 (1 - \rho^2 + \lambda^2) = -\rho^2$$

$$w_1 = \pm \sqrt{\frac{-\rho^2}{1 - \rho^2 + \lambda^2}} = w_2$$