Summary of the Previous Lecture

- Linear vector space
 - Linear (in)dependence, Dimension, Basis
- Inner product space
 - Generalized requirement for inner product
 - Ket ⇔ Bra: all the coefficient should be complex-conjugated → adjoint operation
 - Orthogonality, norm, orthonormal basis
 - Gram-Schmidt theorem
 - Schwarz inequality, triangular inequality
- Subspace
- Linear operator
 - Product of two operators
 - Commutator
 - Matrix representation

Review: Matrix Representation of Linear Operators

- Assume that the original vector $|V\rangle = \sum_i v_i |i\rangle \Leftrightarrow \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$
- The transformed vector $|V'\rangle = \Omega |V\rangle$ is expanded as

$$|V'\rangle = \sum_{j} v'_{j} |j\rangle \Leftrightarrow \begin{bmatrix} v'_{1} \\ v'_{2} \\ \vdots \\ v'_{n} \end{bmatrix}$$

•
$$v'_j = \langle j | V' \rangle = \langle j | \Omega | V \rangle = \langle j | (\sum_i v_i \Omega | i \rangle) = \sum_i v_i \langle j | \Omega | i \rangle = \sum_i \Omega_{ji} v_i$$

Matrix Representation of Linear Operators

- Identity operator I
 - $I_{ij} = \langle i|I|j\rangle = \langle i|j\rangle = \delta_{ij}$
- Projection operator \mathcal{P}_i
 - Consider the shape of expansion of vector

$$|V\rangle = \sum_{i=1}^{n} v_i |i\rangle = \sum_{i=1}^{n} \langle i|V\rangle |i\rangle = \sum_{i=1}^{n} |i\rangle \langle i|V\rangle = \left(\sum_{i=1}^{n} |i\rangle \langle i|\right) |V\rangle$$

- $\sum_{i=1}^{n} |i\rangle\langle i|$ is an identity operator and also can be written as $\sum_{i=1}^{n} \mathcal{P}_{i}$.
- $\mathcal{P}_i = |i\rangle\langle i|$ is called the projection operator for the ket $|i\rangle$
- $I = \sum_{i=1}^{n} |i\rangle\langle i| = \sum_{i=1}^{n} \mathcal{P}_i$: completeness relation \Leftrightarrow The sum of the projections of a vector along all the n directions equals the vector itself. \Rightarrow Used quite frequently in the calculation of quantum mechanics
- \mathcal{P}_i still works on bra as well: $\langle V | \mathcal{P}_i = \langle V | i \rangle \langle i | = v_i^* \langle i |$

Matrix Representation of Linear Operators

- Outer product
 - $\langle V|V'\rangle$ is a scalar
 - What about $|V\rangle\langle V'|$?
 - It is an operator
- Can we construct an operator that will map orthonormal basis $|1\rangle, |2\rangle, ..., |n\rangle$ to $|1'\rangle, |2'\rangle, ..., |n'\rangle$?
- Matrices corresponding to products of operators
 - $(\Omega \Lambda)_{ij} = \langle i | \Omega \Lambda | j \rangle = \langle i | \Omega(\sum_{k=1}^{n} |k\rangle \langle k|) \Lambda | j \rangle = \sum_{k=1}^{n} \langle i | \Omega | k \rangle \langle k| \Lambda | j \rangle = \sum_{k=1}^{n} \Omega_{ik} \Lambda_{kj}$

Linear Operators

Adjoint of an operator

- When a ket $\alpha|V\rangle$ is given, the corresponding bra is $\langle V|\alpha^*$.
- Similarly when $\Omega|V\rangle = |\Omega V\rangle$ is given, there is a corresponding bra $\langle \Omega V|$ and we define the adjoint of operator Ω as Ω^{\dagger} that can transform $\langle V|$ to $\langle \Omega V|$ when applied from right. That is, $\langle V|\Omega^{\dagger} = \langle \Omega V|$.
- Matrix component of adjoint operator
 - $(\Omega^{\dagger})_{ij} = \langle i | \Omega^{\dagger} | j \rangle = \langle \Omega i | j \rangle = \langle j | \Omega i \rangle^* = (\langle j | \Omega | i \rangle)^* = \Omega_{ji}^*$
 - Transpose conjugate of matrix representing the original operator
 - If the field is real, adjoint corresponds to transpose of matrix
- Adjoint of product of operator: $(\Omega \Lambda)^{\dagger} = \Lambda^{\dagger} \Omega^{\dagger}$

Hermitian Operators

- **Definition 13**: an operator Ω is **Hermitian** if $\Omega^{\dagger} = \Omega$
 - Equivalent to symmetric matrix for real field
- **Definition 14**: an operator Ω is **anti-Hermitian** if $\Omega^{\dagger} = -\Omega$
- Analogy between operator and number
 - Adjoint ⇔ Complex conjugation
- Any arbitrary operator Ω can be decomposed into its Hermitian part and anti-Hermitian part

$$\Omega = \frac{\Omega + \Omega^{\dagger}}{2} + \frac{\Omega - \Omega^{\dagger}}{2}$$

Unitary Operator

- **Definition 15**: an operator U is **unitary** if $UU^{\dagger} = I$
- Analogy between operator and number
 - Unitary operator \Leftrightarrow Complex number of unit modulus $u=e^{i\theta}$
- **Theorem 7**: unitary operators preserve the inner product between the vectors they act on. That is, if $|V'\rangle = U|V\rangle$, $\langle V'|V'\rangle = \langle V|V\rangle$
- Unitary operators are the generalization of rotation operator.
 - In typical 3-d vector space, unitary condition is equivalent to orthogonal matrix condition. $(O^{-1} = O^T)$
- Theorem 8: if one treats the columns of an n x n unitary matrix as components of n vectors, these vectors are orthonormal. The same for the rows.

Trace

- Trace of a matrix
 - Definition: $\operatorname{Tr}(\Omega) = \sum_{i=1}^n \Omega_{ii}$
 - $\operatorname{Tr}(\Omega\Lambda) = \operatorname{Tr}(\Lambda\Omega)$
 - Tr($\Omega\Lambda\Theta$) = Tr($\Lambda\Theta\Omega$) = Tr($\Theta\Omega\Lambda$) (cyclic permutation)
 - Trace of an operator is preserved even when the basis set is changed under unitary transformation

Eigenvalue Problem

- Generally for $\Omega|V\rangle = |V'\rangle$, $|V'\rangle$ won't be parallel to $|V\rangle$.
- However, each operator has certain kets of its own, called as its **eigenkets**, on which the action of the operator is simply a rescaling of the ket: $\Omega|V\rangle = \omega|V\rangle$. In this case, $|V\rangle$ is called as an eigenket of operator Ω with eigenvalue ω .
- How to solve the eigenvalue problem?
 - We need to find eigenvalue ω and eigenvector $|V\rangle$ satisfying $(\Omega \omega I)|V\rangle = |0\rangle$.
 - Re-write the above equation in terms of components by applying a basis bra $\langle i|$ to both sides: $\langle i|(\Omega-\omega I)|V\rangle=0$
 - $|\langle i|(\Omega \omega I)\sum_{j=1}^{n}|j\rangle\langle j||V\rangle = \sum_{j=1}^{n}\langle i|(\Omega \omega I)|j\rangle v_{j} = \sum_{j=1}^{n}(\Omega_{ij} \omega \delta_{ij})v_{j} = 0$
 - $\text{In matrix form, } \begin{bmatrix} \Omega_{11} \omega & \Omega_{12} & \dots \\ \Omega_{21} & \Omega_{22} \omega & \dots \\ \vdots & & \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix}$
 - For a non-trivial solution to exist, determinant of the above matrix should be zero.

Eigenvalue Problem

- (Continued) How to solve the eigenvalue problem?
 - $\text{In matrix form, } \begin{bmatrix} \Omega_{11} \omega & \Omega_{12} & \dots \\ \Omega_{21} & \Omega_{22} \omega & \dots \\ \vdots & & \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix}$
 - For a non-trivial solution to exist, determinant of the above matrix should be zero.
- Recall how to calculate determinant of a matrix
 - In the case of 2x2 matrix, $det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc$
 - For the case of 3x3 matrix,

$$\det(A) = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} \Box & C & C \\ D & e & f \\ D & h & i \end{vmatrix} - b \begin{vmatrix} D & C & C \\ d & D & f \\ g & D & i \end{vmatrix} + c \begin{vmatrix} D & C & C \\ d & e & C \\ g & h & C \end{vmatrix}$$
$$= a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg)$$

It continues recursively for larger matrices

The Characteristic Equation

(Continued) How to solve the eigenvalue problem?

$$\det(\mathbf{A}) = \begin{vmatrix} \Omega_{11} - \omega & \Omega_{12} & \Omega_{13} \\ \Omega_{21} & \Omega_{22} - \omega & \Omega_{23} \\ \Omega_{31} & \Omega_{32} & \Omega_{33} - \omega \end{vmatrix}$$
$$= (\Omega_{11} - \boldsymbol{\omega})\{(\Omega_{22} - \boldsymbol{\omega})(\Omega_{22} - \boldsymbol{\omega}) - \Omega_{23}\Omega_{32}\}$$
$$-\Omega_{12}\{\Omega_{21}(\Omega_{33} - \boldsymbol{\omega}) - \Omega_{23}\Omega_{31}\}$$
$$+\Omega_{13}\{\Omega_{21}\Omega_{32} - (\Omega_{22} - \boldsymbol{\omega})\Omega_{31}\}$$

- $\det \left(\Omega_{ij} \omega \delta_{ij}\right) = 0 \implies \sum_{m=0}^{n} c_m \omega^m = 0$: characteristic equation
- Every *n*th-order polynomial has *n* roots, not necessarily distinct and not necessarily real. \rightarrow There exist n pairs of $(\omega, |V\rangle)$
- Note that even though the above equation is written in terms of specific basis, the eigenvalue is independent of the basis choice.

Eigenvalue Problem

- Example: find out the eigenvalues & eigenvectors for $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$
 - $\det(A \omega I) = \begin{vmatrix} 1 \omega & 0 & 0 \\ 0 & -\omega & -1 \\ 0 & 1 & -\omega \end{vmatrix} = (1 \omega)(\omega^2 + 1) = 0$
 - For $\omega = 1$, find corresponding eigenvector

$$\begin{bmatrix} 1-1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \xrightarrow{0} \begin{bmatrix} 0 & 0 \\ -x_2 - x_3 & 0 \end{bmatrix} \xrightarrow{x_2 = x_3 = 0}$$

- Notation: $|\omega = 1\rangle = |1\rangle = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
- For other eigenvalues $\omega = \pm i$, verify that $|\omega = i\rangle = |i\rangle = \frac{1}{2^{1/2}} \begin{bmatrix} 0 \\ i \\ 1 \end{bmatrix}$ and $|\omega = -i\rangle = |-i\rangle = \frac{1}{2^{1/2}} \begin{bmatrix} 0 \\ -i \\ 1 \end{bmatrix}$
- When there are more than one eigenvector corresponding to a single eigenvalue, it is called degeneracy.
- The eigenvectors with the same eigenvalue form a subspace. \Rightarrow eigenspace of Ω with eigenvalue ω