Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

основные

ДКА и НКА эквивалент-

Произведени

лка.

Регулярные выражения

Лекция A3 Конечные автоматы, эквивалентность

Вадим Пузаренко

13 сентября 2024 г.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалент-

Произведени

ДКА: миними зация

Регулярные выражения

Теорема АЗ.1.

Если язык L распознаваем некоторым НКА, то и L^* распознаваем некоторым НКА.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов

ДКА: минимизация

Регулярные выражения

Теорема АЗ.1.

Если язык L распознаваем некоторым НКА, то и L^* распознаваем некоторым НКА.

Доказательство.

Пусть язык L распознаётся НКА $\mathfrak{A}=(Q;\Sigma;\delta,\{q_0\},F)$ (по теореме A2.5 можно предполагать, что автомат \mathfrak{A} удовлетворяет свойству вахтера). По теореме A2.1, достаточно построить ε -НКА \mathfrak{A}' , распознающий язык L^* . Определим автомат $\mathfrak{A}'=(Q;\Sigma;\delta',\{q_0\},\{q_0\})$ так, что $\delta'=\delta\cup\{((q,\varepsilon),\{q_0\})\mid q\in F\setminus\{q_0\}\}\cup\{((q,\varepsilon),\varnothing)\mid q\in (Q\setminus F)\cup\{q_0\}\};$ докажем, что $L^*=\mathrm{L}(\mathfrak{A}')$.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

Произведени автоматов

ДКА: минимизация

Регулярные выражения

Теорема АЗ.1.

Если язык L распознаваем некоторым НКА, то и L^* распознаваем некоторым НКА.

Доказательство.

Пусть язык L распознаётся НКА $\mathfrak{A}=(Q;\Sigma;\delta,\{q_0\},F)$ (по теореме A2.5 можно предполагать, что автомат \mathfrak{A} удовлетворяет свойству вахтера). По теореме A2.1, достаточно построить ε -НКА \mathfrak{A}' , распознающий язык L^* . Определим автомат $\mathfrak{A}'=(Q;\Sigma;\delta',\{q_0\},\{q_0\})$ так, что $\delta'=\delta\cup\{((q,\varepsilon),\{q_0\})\mid q\in F\setminus\{q_0\}\}\cup\{((q,\varepsilon),\varnothing)\mid q\in Q\setminus F)\cup\{q_0\}\};$ докажем, что $L^*=\mathrm{L}(\mathfrak{A}')$.

 $L^*\subseteq L(\mathfrak{A}')$. Пусть $\alpha\in L^*$; если $\alpha=\varepsilon$, то $\alpha\in L(\mathfrak{A}')$, поскольку $q_0\in\{q_0\}$; перейдём к рассмотрению случая, когда $\alpha=\beta_0\hat{\ }\beta_1\hat{\ }\ldots\hat{\ }\beta_n$, где $\varepsilon\neq\beta_i\in L,\ 0\leqslant i\leqslant n$. Тогда существуют последовательности $r_0^i=q_0,\ r_1^i,\ \ldots,\ r_{k_i}^i\in F$ состояний, подтверждающие $\beta_i\in L(\mathfrak{A})$ $(\mathrm{lh}(\beta_i)=k_i,\ 0\leqslant i\leqslant n)$.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

Произведени

ДКА: минимизаци:

Регулярные выражения

′Доказательство (окончание).

Тем самым, последовательность $q_0=r_0^0,\ r_1^0,\ \dots,\ r_{k_0}^0,\ r_0^1,\ r_1^1,\ \dots,\ r_{k_1}^1,\ r_0^2,\ \dots,\ r_0^n,\ r_1^n,\ \dots,\ r_{k_n}^n,\ q_0$ свидетельствует о том, что $\alpha\in\mathrm{L}(\mathfrak{A}')$, поскольку $q_0\in\delta'(r_{k_i}^i,\varepsilon)$ $(0\leqslant i\leqslant n)$ и q_0 — конечное состояние автомата \mathfrak{A}' .

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

Произведения автоматов

минимизация

Регулярные выражения

🛚 Доказательство (окончание).

Тем самым, последовательность $q_0 = r_0^0, r_1^0, \ldots, r_{k_0}^0, r_0^1, r_1^1, \ldots$ $r_{k_1}^1, r_0^2, \ldots, r_0^n, r_1^n, \ldots, r_{k_n}^n, q_0$ свидетельствует о том, что $\alpha \in \mathrm{L}(\mathfrak{A}')$, поскольку $q_0 \in \delta'(r_k^i, \varepsilon)$ $(0 \leqslant i \leqslant n)$ и q_0 — конечное состояние автомата \mathfrak{A}' . $L(\mathfrak{A}')\subseteq L^*$. Пусть $\varepsilon\neq\alpha\in L(\mathfrak{A}')$; тогда существует последовательность $q_0 = s_0, s_1, \ldots, s_m = q_0$ состояний, свидетельствующая о том, что $\alpha \in \mathrm{L}(\mathfrak{A}')$. Пусть также $0 = i_0 < i_1 < \ldots < i_{k+1} = m$ — возрастающая последовательность всех номеров состояния q_0 . Рассмотрим пару $i_i < i_{i+1}$ ближайших таких номеров. Так как 🎗 удовлетворяет свойству вахтёра, имеем $i_i < i_i + 1 < i_{i+1}$, и единственный способ попасть из $s_{i_{i+1}-1}$ в q_0 только по arepsilon-переходу; следовательно, $s_{i_{i+1}-1} \in \mathcal{F} \setminus \{q_0\}$. Таким образом, $\alpha=\alpha_1\hat{\alpha}_2\hat{\ldots}\hat{\alpha}_k$, где последовательность $s_{i_i}=q_0$, s_{i_i+1} , \ldots , s_{i+1} свидетельствует о том, что $\alpha_i \in L(\mathfrak{A}) = L$, т. е. $\alpha \in L^*$.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НК*А* эквивалент-

Произведени

автоматов

Регулярные

Замечание АЗ.1.

Трансформация, описанная в теореме АЗ.1, сначала осуществляет переход от произвольного НКА к НКА, удовлетворяющему свойству вахтёра $(n(Q'') = n(Q) + 1, n'' \leqslant 2 \cdot n_1)$, а затем уже к НКА, распознающему звёздочку Клини $(n(Q') = n(Q'') = n(Q) + 1, n' \leqslant 2 \cdot n_1^2)$.

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведен

ДКА:

Регулярные выражения

Теорема А3.2.

Для любого недетерминированного конечного автомата $\mathfrak A$ существует детерминированный конечный автомат $\mathfrak A'$, для которого имеет место равенство $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A')$.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основны

ДКА и НКА: эквивалентность

Произведения автоматов

ДКА: минимизация

Регулярные выражения

Теорема А3.2.

Для любого недетерминированного конечного автомата $\mathfrak A$ существует детерминированный конечный автомат $\mathfrak A'$, для которого имеет место равенство $\mathrm L(\mathfrak A)=\mathrm L(\mathfrak A')$.

Доказательство.

Пусть $\mathfrak{A}=(Q;\Sigma;\delta,Q_0,F)$ — НКА. Определим ДКА $\mathfrak{A}'=(\mathcal{P}(Q);\Sigma;\tau,Q_0,F')$ так, что $F'=\{S\subseteq Q\mid S\cap F\neq\varnothing\}$ и $\tau(S,a)=\bigcup\limits_{s\in S}\delta(s,a)$ для всех $a\in\Sigma$ и $S\subseteq Q$; докажем, что $L(\mathfrak{A})=L(\mathfrak{A}').$

Лекция АЗ Конечные автоматы. эквивалентность

Вадим Пузаренко

ДКА и НКА: эквивалентность

Теорема А3.2.

Для любого недетерминированного конечного автомата ${\mathfrak A}$ существует детерминированный конечный автомат \mathfrak{A}' , для которого имеет место равенство $L(\mathfrak{A}) = L(\mathfrak{A}')$.

Доказательство.

Пусть $\mathfrak{A} = (Q; \Sigma; \delta, Q_0, F)$ — HKA. Определим ДКА $\mathfrak{A}'=(\mathcal{P}(Q);\Sigma; au,Q_0,F')$ так, что $F'=\{S\subseteq Q\mid S\cap F
eq\varnothing\}$ и $au(S,a) = \bigcup \ \delta(s,a)$ для всех $a \in \Sigma$ и $S \subseteq Q$; докажем, что $L(\mathfrak{A}) = L(\mathfrak{A}')$

 $L(\mathfrak{A})\subseteq L(\mathfrak{A}')$. Пусть $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A})$; тогда существует последовательность $q_0 \in Q_0, q_1, \ldots, q_n \in F$ состояний из Qтакая, что $q_{i+1} \in \delta(q_i, w_{i+1}) \ (0 \leqslant i < n)$. Индукцией по i < nдокажем, что $q_i \in \tau^*(Q_0, w_1 w_2 \dots w_i)$.

ДКА: минимизаци:

Регулярные выражения

Доказательство (окончание).

В самом деле, имеем $q_0 \in \tau^*(Q_0, \varepsilon) = Q_0$. Далее, предположим, что $q_i \in \tau^*(Q_0, w_1w_2 \dots w_i)$; тогда $q_{i+1} \in \delta(q_i, w_{i+1}) \subseteq \bigcup_{s \in \tau^*(Q_0, w_1w_2 \dots w_i)} \delta(s, w_{i+1}) = \tau(\tau^*(Q_0, w_1w_2 \dots w_i), w_{i+1}) = \tau^*(Q_0, w_1w_2 \dots w_{i+1})$. В конечном итоге, получаем $q_n \in \tau^*(Q_0, \alpha) \cap F$; тем самым, $\tau^*(Q_0, \alpha) \in F'$ и $\alpha \in \mathrm{L}(\mathfrak{A}')$.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведени« автоматов

ДКА: минимизация

Регулярные выражения

Доказательство (окончание).

В самом деле, имеем $q_0 \in \tau^*(Q_0, \varepsilon) = Q_0$. Далее, предположим, что $q_i \in \tau^*(Q_0, w_1 w_2 \dots w_i)$; тогда $q_{i+1} \in \delta(q_i, w_{i+1}) \subseteq \bigcup_{s \in au^*(Q_0, w_1 w_2 ... w_i)} \delta(s, w_{i+1}) =$ $\tau(\tau^*(Q_0, w_1w_2...w_i), w_{i+1}) = \tau^*(Q_0, w_1w_2...w_{i+1})$. B конечном итоге, получаем $q_n \in \tau^*(Q_0, \alpha) \cap F$; тем самым, $\tau^*(Q_0, \alpha) \in F'$ и $\alpha \in L(\mathfrak{A}')$. $L(\mathfrak{A}')\subseteq L(\mathfrak{A})$. Пусть $\alpha=w_1w_2\ldots w_n\in L(\mathfrak{A}')$; тогда $\tau^*(Q_0,\alpha)\in F'$. Состояния r_0, r_1, \ldots, r_n из Q будем находить обратной индукцией по $i \leq n$ так, чтобы $r_i \in \tau^*(Q_0, w_1 w_2 \dots w_i)$ и $r_{i+1} \in \delta(r_i, w_{i+1})$. Возьмём $r_n \in \tau^*(Q_0, \alpha) \cap F$. Предположим, что r_{i+1}, \ldots, r_n уже выбраны. Так $\mathsf{kak}\ r_{i+1} \in \tau^*(Q_0, w_1w_2 \dots w_iw_{i+1}) = \tau(\tau^*(Q_0, w_1w_2 \dots w_i), w_{i+1}) =$ $\delta(s,w_{i+1})$, найдётся $r_i\in au^*(Q_0,w_1w_2\ldots,w_i)$ такое, что $s \in \tau^*(Q_0, w_1 w_2 \dots w_i)$ $r_{i+1} \in \delta(r_i, w_{i+1})$. В конечном итоге, $r_0 \in \tau^*(Q_0, \varepsilon) = Q_0$. Таким образом, $\alpha \in L(\mathfrak{A})$.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренк

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведение автоматов

ДКА: минимизация

Регулярные выражения

Замечание А3.2.

Трансформация, описанная в теореме А3.2, имеет сложность $2^{n(Q)}$ по количеству состояний и $2^{n(Q)} \cdot n(\Sigma)$ по количеству стрелок. Данная оценка является точной (см. пример ниже). Тем самым, при рассмотрении детерминированных конечных автоматов основным показателем является количество состояний, а количество стрелок задаётся однозначно по числу состояний.

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренк

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведение автоматов

ДКА: Минимизация

Регулярные выражения

Замечание АЗ.2.

Трансформация, описанная в теореме А3.2, имеет сложность $2^{n(Q)}$ по количеству состояний и $2^{n(Q)} \cdot n(\Sigma)$ по количеству стрелок. Данная оценка является точной (см. пример ниже). Тем самым, при рассмотрении детерминированных конечных автоматов основным показателем является количество состояний, а количество стрелок задаётся однозначно по числу состояний.

Пример А3.1.

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренко

НКА: основны

ДКА и НКА: эквивалентность

Произведен

автоматов

Регулярные

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведени автоматов

ДКА: минимизация

Регулярные выражения Класс языков, распознаваемых ДКА, замкнут относительно следующих операций:

lack объединения $L_1, L_2 \mapsto L_1 \cup L_2$ (теоремы A1.3, A2.1, A3.2, A2.2; трансформация имеет сложность $2^{n(Q_1)+n(Q_2)}$);

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА: эквивалентность

произведен автоматов

ДКА: минимизация

Регулярные выражения

- ullet объединения $L_1, L_2 \mapsto L_1 \cup L_2$ (теоремы A1.3, A2.1, A3.2, A2.2; трансформация имеет сложность $2^{n(Q_1)+n(Q_2)}$);
- ② дополнения $L \mapsto \Sigma^* \setminus L$ (теорема A1.1; трансформация имеет сложность n(Q));

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведение автоматов

ДКА: минимизация

Регулярные выражения

- ullet объединения $L_1, L_2 \mapsto L_1 \cup L_2$ (теоремы A1.3, A2.1, A3.2, A2.2; трансформация имеет сложность $2^{n(Q_1)+n(Q_2)}$);
- ② дополнения $L\mapsto \Sigma^*\setminus L$ (теорема A1.1; трансформация имеет сложность n(Q));
- ullet конкатенации $L_1, L_2 \mapsto L_1 L_2$ (теоремы A1.3, A2.1, A3.2, A2.4; трансформация имеет сложность $2^{n(Q_1)+n(Q_2)}$);

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА: эквивалентность

произведение автоматов

ДКА: минимизация

Регулярные выражения

- ullet объединения $L_1, L_2 \mapsto L_1 \cup L_2$ (теоремы A1.3, A2.1, A3.2, A2.2; трансформация имеет сложность $2^{n(Q_1)+n(Q_2)}$);
- ② дополнения $L\mapsto \Sigma^*\setminus L$ (теорема A1.1; трансформация имеет сложность n(Q));
- ullet конкатенации $L_1, L_2 \mapsto L_1 L_2$ (теоремы A1.3, A2.1, A3.2, A2.4; трансформация имеет сложность $2^{n(Q_1)+n(Q_2)}$);
- lack звёздочки Клини $L\mapsto L^*$ (теоремы A1.3, A2.1, A2.5, A3.2, A3.1; трансформация имеет сложность $2^{n(Q)+1}$);

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА: эквивалентность

Произведение автоматов

ДКА: минимизация

Регулярные выражения

- ullet объединения $L_1, L_2 \mapsto L_1 \cup L_2$ (теоремы A1.3, A2.1, A3.2, A2.2; трансформация имеет сложность $2^{n(Q_1)+n(Q_2)}$);
- ② дополнения $L\mapsto \Sigma^*\setminus L$ (теорема A1.1; трансформация имеет сложность n(Q));
- ullet конкатенации $L_1, L_2 \mapsto L_1 L_2$ (теоремы A1.3, A2.1, A3.2, A2.4; трансформация имеет сложность $2^{n(Q_1)+n(Q_2)}$);
- ullet звёздочки Клини $L\mapsto L^*$ (теоремы A1.3, A2.1, A2.5, A3.2, A3.1; трансформация имеет сложность $2^{n(Q)+1}$);
- ullet обращения $L\mapsto L^R$ (теоремы A1.3, A2.1, A3.2, A2.3; трансформация имеет сложность $2^{n(Q)}$);

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА: эквивалентность

автоматов

ДКА: минимизация

Регулярные выражения

- ullet объединения $L_1, L_2 \mapsto L_1 \cup L_2$ (теоремы A1.3, A2.1, A3.2, A2.2; трансформация имеет сложность $2^{n(Q_1)+n(Q_2)}$);
- ② дополнения $L\mapsto \Sigma^*\setminus L$ (теорема A1.1; трансформация имеет сложность n(Q));
- ullet конкатенации $L_1, L_2 \mapsto L_1 L_2$ (теоремы A1.3, A2.1, A3.2, A2.4; трансформация имеет сложность $2^{n(Q_1)+n(Q_2)}$);
- lacktriangle звёздочки Клини $L\mapsto L^*$ (теоремы A1.3, A2.1, A2.5, A3.2, A3.1; трансформация имеет сложность $2^{n(Q)+1}$);
- \bullet обращения $L \mapsto L^R$ (теоремы A1.3, A2.1, A3.2, A2.3; трансформация имеет сложность $2^{n(Q)}$);
- ullet инверсии $L\mapsto \overline{L}$ при $\Sigma=\{0;1\}$ (теорема A1.2; трансформация имеет сложность n(Q)).

ДКА: пересечение

Лекция АЗ Конечные автоматы, эквивалент-

Вадим Пузаренко

НКА: основны

ДКА и НКА: эквивалентность

Произведен

ДКА:

Регулярные выражения

Теорема АЗ.З.

Если L_1 , L_2 распознаваемы некоторыми ДКА, то и их пересечение $L_1 \cap L_2$ также распознаваемо некоторым ДКА.

ДКА: пересечение

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основны

ДКА и НКА: эквивалентность

Произведение

дка:

Регулярные выражения

Теорема АЗ.З.

Если L_1 , L_2 распознаваемы некоторыми ДКА, то и их пересечение $L_1 \cap L_2$ также распознаваемо некоторым ДКА.

Доказательство.

Непосредственно следует из того, что языки, распознаваемые ДКА, замкнуты относительно операций объединения и дополнения, а также тождества де Моргана $L_1 \cap L_2 = \Sigma^* \setminus ((\Sigma^* \setminus L_1) \cup (\Sigma^* \setminus L_2)).$

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренко

нка: основны

ДКА и НКА эквивалент-

Произведение автоматов

ДКА: Минимизаци

Регулярные выражения

Определение А3.1.

Пусть $\mathfrak{A}_1=(Q_1;\Sigma;\delta_1,q_0^1,F_1)$ и $\mathfrak{A}_2=(Q_2;\Sigma;\delta_2,q_0^2,F_2)$ — ДКА. Определим их **произведение** как автомат $(\mathfrak{A}_1\times\mathfrak{A}_2)(F)==(Q_1\times Q_2;\Sigma;\delta_1\times\delta_2,(q_0^1,q_0^2),F)$, для которого имеют место соотношения $(\delta_1\times\delta_2)((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$ для всех $(q_1,q_2)\in Q_1\times Q_2$ и $a\in\Sigma$, а также $F\subseteq Q_1\times Q_2$.

Лекция АЗ Конечные автоматы, эквивалент-

Вадим Пузаренко

основны

ДКА и НКА эквивалент-

Произведение автоматов

ДКА: минимизац

Регулярные выражения

Определение А3.1.

Пусть $\mathfrak{A}_1=(Q_1;\Sigma;\delta_1,q_0^1,F_1)$ и $\mathfrak{A}_2=(Q_2;\Sigma;\delta_2,q_0^2,F_2)$ — ДКА. Определим их **произведение** как автомат $(\mathfrak{A}_1\times\mathfrak{A}_2)(F)==(Q_1\times Q_2;\Sigma;\delta_1\times\delta_2,(q_0^1,q_0^2),F)$, для которого имеют место соотношения $(\delta_1\times\delta_2)((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$ для всех $(q_1,q_2)\in Q_1\times Q_2$ и $a\in\Sigma$, а также $F\subseteq Q_1\times Q_2$.

Лемма АЗ.1.

Выполняется равенство $(\delta_1 \times \delta_2)^*((q_1, q_2), \alpha) = (\delta_1^*(q_1, \alpha), \delta_2^*(q_2, \alpha))$ для всех $\alpha \in \Sigma^*$ и $(q_1, q_2) \in Q_1 \times Q_2$.

Лекция АЗ Конечные автоматы, эквивалент-

Вадим Пузаренко

НКА: основны

ДКА и НКА

Произведение автоматов

... минимиза Определение А3.1.

Пусть $\mathfrak{A}_1=(Q_1;\Sigma;\delta_1,q_0^1,F_1)$ и $\mathfrak{A}_2=(Q_2;\Sigma;\delta_2,q_0^2,F_2)$ — ДКА. Определим их **произведение** как автомат $(\mathfrak{A}_1\times\mathfrak{A}_2)(F)==(Q_1\times Q_2;\Sigma;\delta_1\times\delta_2,(q_0^1,q_0^2),F)$, для которого имеют место соотношения $(\delta_1\times\delta_2)((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$ для всех $(q_1,q_2)\in Q_1\times Q_2$ и $a\in\Sigma$, а также $F\subseteq Q_1\times Q_2$.

Лемма АЗ.1.

Выполняется равенство $(\delta_1 \times \delta_2)^*((q_1, q_2), \alpha) = (\delta_1^*(q_1, \alpha), \delta_2^*(q_2, \alpha))$ для всех $\alpha \in \Sigma^*$ и $(q_1, q_2) \in Q_1 \times Q_2$.

Доказательство.

Индукцией по $\mathrm{lh}(\alpha)$. В самом деле, $(\delta_1 \times \delta_2)^*((q_1,q_2),\varepsilon) = = (q_1,q_2) = (\delta_1^*(q_1,\varepsilon),\delta_2^*(q_2,\varepsilon));$ далее, $(\delta_1 \times \delta_2)^*((q_1,q_2),\alpha^*a) = = (\delta_1 \times \delta_2)((\delta_1 \times \delta_2)^*((q_1,q_2),\alpha),a) = (\delta_1 \times \delta_2)((\delta_1^*(q_1,\alpha),\delta_2^*(q_2,\alpha)),a) = (\delta_1(\delta_1^*(q_1,\alpha),a),\delta_2(\delta_2^*(q_2,\alpha),a)) = (\delta_1^*(q_1,\alpha^*a),\delta_2^*(q_2,\alpha^*a)).$

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные

ДКА и НКА эквивалентность

Произведение автоматов

. минимизаци

Регулярные выражения

Второе доказательство теоремы АЗ.3.

Воспользовавшись леммой АЗ.1, приходим к следующей эквивалентности для произведения автоматов $(\mathfrak{A}_1 \times \mathfrak{A}_2)(F_1 \times F_2)$ $(\alpha \in \Sigma^*)$:

$$\begin{array}{l} \overset{\cdot}{\alpha} \in \mathrm{L}(\overset{\cdot}{\mathfrak{A}_{1}} \times \mathfrak{A}_{2}) \Leftrightarrow (\delta_{1} \times \delta_{2})^{*}((q_{1}^{0}, q_{2}^{0}), \alpha) = (\delta_{1}^{*}(q_{1}^{0}, \alpha), \delta_{2}^{*}(q_{2}^{0}, \alpha)) \in \\ F_{1} \times F_{2} \Leftrightarrow [\delta_{1}^{*}(q_{1}^{0}, \alpha) \in F_{1} \text{ in } \delta_{2}^{*}(q_{2}^{0}, \alpha) \in F_{2}] \Leftrightarrow [\alpha \in \mathrm{L}(\mathfrak{A}_{1}) \text{ in } \alpha \in \mathrm{L}(\mathfrak{A}_{2})] \Leftrightarrow \alpha \in \mathrm{L}(\mathfrak{A}_{1}) \cap \mathrm{L}(\mathfrak{A}_{2}). \end{array}$$

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

ДКА: Минимизация

Регулярные выражения

Второе доказательство теоремы АЗ.3.

Воспользовавшись леммой АЗ.1, приходим к следующей эквивалентности для произведения автоматов $(\mathfrak{A}_1 \times \mathfrak{A}_2)(F_1 \times F_2)$ $(\alpha \in \Sigma^*)$:

$$\begin{array}{l} \overset{\cdot}{\alpha} \in \mathrm{L}(\overset{\cdot}{\mathfrak{A}_{1}} \times \mathfrak{A}_{2}) \Leftrightarrow (\delta_{1} \times \delta_{2})^{*}((q_{1}^{0}, q_{2}^{0}), \alpha) = (\delta_{1}^{*}(q_{1}^{0}, \alpha), \delta_{2}^{*}(q_{2}^{0}, \alpha)) \in \\ F_{1} \times F_{2} \Leftrightarrow [\delta_{1}^{*}(q_{1}^{0}, \alpha) \in F_{1} \text{ in } \delta_{2}^{*}(q_{2}^{0}, \alpha) \in F_{2}] \Leftrightarrow [\alpha \in \mathrm{L}(\mathfrak{A}_{1}) \text{ in } \alpha \in \\ \mathrm{L}(\mathfrak{A}_{2})] \Leftrightarrow \alpha \in \mathrm{L}(\mathfrak{A}_{1}) \cap \mathrm{L}(\mathfrak{A}_{2}). \end{array}$$

Замечание АЗ.3.

В первом доказательстве трансформация имеет сложность экспоненциальную по количеству состояний. Трансформация, изложенная во втором доказательстве, имеет сложность $n(Q_1) \cdot n(Q_2)$, что значительно ниже изложенной в первом доказательстве.

ДКА: объединение

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные

ДКА и НКА эквивалент-

Произведение автоматов

ДКА: минимизация

Регулярные выражения

Теорема АЗ.4.

Если L_1 , L_2 распознаваемы некоторыми ДКА, то $L_1 \cup L_2$ также распознаваем некоторым ДКА.

ДКА: объединение

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

ДКА: минимизация

Регулярные выражения

Теорема А3.4.

Если L_1 , L_2 распознаваемы некоторыми ДКА, то $L_1 \cup L_2$ также распознаваем некоторым ДКА.

Доказательство.

Здесь можно применить теоремы A1.1, A3.3 к равенству $L_1 \cup L_2 = \Sigma^* \setminus ((\Sigma^* \setminus L_1) \cap (\Sigma^* \setminus L_2))$, однако мы приведём явную конструкцию, которая соответствует данным рассуждениям. Пусть ДКА $\mathfrak{A}_1 = (Q_1; \Sigma, \delta_1, q_0^1, F_1)$ и $\mathfrak{A}_2 = (Q_2; \Sigma, \delta_2, q_0^2, F_2)$ таковы, что $L_1 = L(\mathfrak{A}_1)$ и $L_2 = L(\mathfrak{A}_2)$; докажем, что $L_1 \cup L_2 = L((\mathfrak{A}_1 \times \mathfrak{A}_2)((Q_1 \times F_2) \cup (F_1 \times Q_2)))$. В самом деле, $\alpha \in L((\mathfrak{A}_1 \times \mathfrak{A}_2)((Q_1 \times F_2) \cup (F_1 \times Q_2))) \Leftrightarrow (\delta_1 \times \delta_2)^*((q_0^1, q_0^2), \alpha) \in ((Q_1 \times F_2) \cup (F_1 \times Q_2)) \Leftrightarrow [\delta_1^*(q_0^1, \alpha) \in F_1 \vee \delta_2^*(q_0^2, \alpha) \in F_2] \Leftrightarrow [\alpha \in L_1 \vee \alpha \in L_2] \Leftrightarrow \alpha \in L_1 \cup L_2$ для любого $\alpha \in \Sigma^*$.

ДКА: разность

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренко

НКА: основные

ДКА и НКА эквивалент-

Произведение автоматов

ДКА:

Регулярные выражения

Теорема А3.5.

Если L_1 , L_2 распознаваемы некоторыми ДКА, то и их разность $L_1 \setminus L_2$ также распознаваема некоторым ДКА.

ДКА: разность

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

ДКА: минимизаци

Регулярные выражения

Теорема А3.5.

Если L_1 , L_2 распознаваемы некоторыми ДКА, то и их разность $L_1 \setminus L_2$ также распознаваема некоторым ДКА.

Доказательство.

Непосредственно следует из того, что языки, распознаваемые ДКА, замкнуты относительно операций пересечения и дополнения, а также тождества $L_1 \setminus L_2 = L_1 \cap (\Sigma^* \setminus L_2)$.

ДКА: разность

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренка

НКА: основны сведени:

ДКА и НКА эквивалентность

Произведение автоматов

ДКА: минимизация

Регулярные выражения

Теорема А3.5.

Если L_1 , L_2 распознаваемы некоторыми ДКА, то и их разность $L_1 \setminus L_2$ также распознаваема некоторым ДКА.

Доказательство.

Непосредственно следует из того, что языки, распознаваемые ДКА, замкнуты относительно операций пересечения и дополнения, а также тождества $L_1 \setminus L_2 = L_1 \cap (\Sigma^* \setminus L_2)$.

Замечание АЗ.4.

Трансформации для объединения и разности, использующие НКА, имеют сложность экспоненциальную по количеству состояний. Трансформации, изложенные в теоремах АЗ.4, АЗ.5, имеет сложность $n(Q_1) \cdot n(Q_2)$, что значительно ниже трансформаций, использующих НКА.

Эквивалентность слов 1

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренко

НКА: основные

ДКА и НКА эквивалент-

Произведени автоматов

ДКА: минимизация

Регулярные выражения

Определение А3.2.

Пусть $L\subseteq \Sigma^*$ и пусть также $\alpha,\beta\in \Sigma^*$. Будем говорить, что α и β эквивалентны относительно L (и записывать как $\alpha\approx_L\beta$), если справедливо соотношение $\alpha\hat{\ }\gamma\in L\Leftrightarrow \beta\hat{\ }\gamma\in L$ для всех $\gamma\in \Sigma^*$.

Эквивалентность слов 1

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренка

НКА: основны

ДКА и НКА эквивалент-

Произведени автоматов

ДКА: минимизация

Регулярные выражения

Определение А3.2.

Пусть $L\subseteq \Sigma^*$ и пусть также $\alpha,\beta\in \Sigma^*$. Будем говорить, что α и β эквивалентны относительно L (и записывать как $\alpha\approx_L\beta$), если справедливо соотношение $\alpha\hat{\ }\gamma\in L\Leftrightarrow \beta\hat{\ }\gamma\in L$ для всех $\gamma\in \Sigma^*$.

Замечание А3.5.

Заметим, что отношение \approx_L на Σ^* действительно будет отношением эквивалентности.

Эквивалентность слов І

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основны

ДКА и НКА эквивалент-

Произведени автоматов

ДКА: минимизация

Регулярные выражения

Определение А3.2.

Пусть $L\subseteq \Sigma^*$ и пусть также $\alpha,\beta\in \Sigma^*$. Будем говорить, что α и β эквивалентны относительно L (и записывать как $\alpha\approx_L\beta$), если справедливо соотношение $\alpha\hat{\ }\gamma\in L\Leftrightarrow \beta\hat{\ }\gamma\in L$ для всех $\gamma\in \Sigma^*$.

Замечание А3.5.

Заметим, что отношение \approx_L на Σ^* действительно будет отношением эквивалентности.

Пример А3.2.

Пусть $\Sigma=\{a,b\}$ и $L=(\{ab\}\cup\{ba\})^*$; тогда Σ^* имеет четыре класса относительно $pprox_L$:

(1)
$$[\varepsilon]_{\approx_L} = L$$
; (3) $[b]_{\approx_L} = Lb$;

(2)
$$[a]_{\approx_L} = La;$$
 (4) $[aa]_{\approx_L} = L(\{aa\} \cup \{bb\})\Sigma^*.$

Эквивалентность слов II

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренка

НКА: основны

ДКА и НКА эквивалент-

Произведени

ДКА: минимизация

Регулярные выражения

Определение А3.6.

Пусть $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$ — ДКА и пусть также $\alpha,\beta\in\Sigma^*$. Будем говорить, что α и β эквивалентны относительно \mathfrak{A} (и записывать как $\alpha\sim_{\mathfrak{A}}\beta$), если справедливо соотношение $\delta^*(q_0,\alpha)=\delta^*(q_0,\beta)$.

Эквивалентность слов ІІ

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренк

НКА:

ДКА и НКА

эквивалентность

произведени автоматов

ДКА: минимизация

Регулярные выражения

Определение А3.6.

Пусть $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$ — ДКА и пусть также $\alpha,\beta\in\Sigma^*$. Будем говорить, что α и β эквивалентны относительно \mathfrak{A} (и записывать как $\alpha\sim_{\mathfrak{A}}\beta$), если справедливо соотношение $\delta^*(q_0,\alpha)=\delta^*(q_0,\beta)$.

Замечание А3.6.

Как и в предыдущем случае, отношение $\sim_{\mathfrak{A}}$ будет отношением эквивалентности.

Эквивалентность слов ІІ

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренк

НКА: основны

ДКА и НКА эквивалент-

Произведени

ДКА: минимизация

Регулярные выражения

Определение А3.6.

Пусть $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$ — ДКА и пусть также $\alpha,\beta\in\Sigma^*$. Будем говорить, что α и β эквивалентны относительно \mathfrak{A} (и записывать как $\alpha\sim_{\mathfrak{A}}\beta$), если справедливо соотношение $\delta^*(q_0,\alpha)=\delta^*(q_0,\beta)$.

Замечание А3.6.

Как и в предыдущем случае, отношение $\sim_{\mathfrak{A}}$ будет отношением эквивалентности.

Пример А3.3.

НКА: основные

сведения

ДКА и НК. эквивалент ность

Произведен: автоматов

ДКА: минимизация

Регулярные выражения

Предложение А3.1.

Пусть $\mathfrak{A}=(\mathit{Q};\Sigma;\delta,\mathit{q}_0,\mathit{F})$ — ДКА и пусть $\alpha,\beta\in\Sigma^*$. Если $\alpha\sim_{\mathfrak{A}}\beta$, то $\alpha\approx_{\mathrm{L}(\mathfrak{A})}\beta$.

Регулярные выражения

Предложение А3.1.

Пусть $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$ — ДКА и пусть $\alpha,\beta\in\Sigma^*$. Если $\alpha\sim_{\mathfrak{A}}\beta$, то $\alpha\approx_{\mathrm{L}(\mathfrak{A})}\beta$.

Доказательство.

Пусть $\gamma \in \Sigma^*$; тогда выполняется следующее:

$$\delta^*(q_0,\alpha^{\hat{}}\gamma)=\delta^*(\delta^*(q_0,\alpha),\gamma)=\delta^*(\delta^*(q_0,\beta),\gamma)=\delta^*(q_0,\beta^{\hat{}}\gamma);$$
 тем самым, $\alpha^{\hat{}}\gamma\in L(\mathfrak{A})\Leftrightarrow \delta^*(q_0,\alpha^{\hat{}}\gamma)\in F\Leftrightarrow \delta^*(q_0,\beta^{\hat{}}\gamma)\in F\Leftrightarrow \beta^{\hat{}}\gamma\in L(\mathfrak{A}).$

Вадим Пузаренко

НКА: основны

ДКА и НКА эквивалент-

Произведени автоматов

ДКА: минимизация

Регулярные выражения

Предложение А3.1.

Пусть $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$ — ДКА и пусть $\alpha,\beta\in\Sigma^*$. Если $\alpha\sim_{\mathfrak{A}}\beta$, то $\alpha\approx_{\mathrm{L}(\mathfrak{A})}\beta$.

Доказательство.

Пусть $\gamma \in \Sigma^*$; тогда выполняется следующее: $\delta^*(q_0, \alpha^{\hat{}}\gamma) = \delta^*(\delta^*(q_0, \alpha), \gamma) = \delta^*(\delta^*(q_0, \beta), \gamma) = \delta^*(q_0, \beta^{\hat{}}\gamma)$; тем самым, $\alpha^{\hat{}}\gamma \in L(\mathfrak{A}) \Leftrightarrow \delta^*(q_0, \alpha^{\hat{}}\gamma) \in F \Leftrightarrow \delta^*(q_0, \beta^{\hat{}}\gamma) \in F \Leftrightarrow \beta^{\hat{}}\gamma \in L(\mathfrak{A})$.

Следствие А3.1.

Пусть $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$ — ДКА и пусть n_\sim , n_\approx — количество классов эквивалентности относительно $\sim_{\mathfrak{A}},\approx_{\mathbb{L}(\mathfrak{A})}$ соответственно. Тогда справедливо неравенство $n_\approx\leqslant n_\sim\leqslant n(Q)$, где n(Q) — число состояний автомата \mathfrak{A} .

НКА: основны сведени

ДКА и НКА эквивалентность

Произведени автоматов

ДКА: минимизация

Регулярные выражения

Доказательство.

Из предложения А3.1 вытекает справедливость неравенства $n_{pprox}\leqslant n_{\sim}$ (в самом деле, каждый класс эквивалентности относительно $\approx_{\mathrm{L}(\mathfrak{A})}$ в общем случае является объединением нескольких классов эквивалентности относительно $\sim_{\mathfrak{A}}$). Далее, непустые множества семейства $\{\{\alpha\in\Sigma^*\mid \delta^*(q_0,\alpha)=q\}\mid q\in Q\}$ служат разбиением множества Σ^* относительно $\sim_{\mathfrak{A}}$, поэтому имеет место $n_{\sim}\leqslant n(Q)$.

Лекция АЗ Конечные автоматы, эквиваленты ность

Вадим Пузаренк

НКА: основны сведения

ДКА и НКА эквивалент-

Произведени

ДКА: минимизация

Регулярные выражения

Теорема А3.6.

Пусть L — язык, распознаваемый некоторым ДКА. Тогда существует ДКА \mathfrak{A} , $\mathrm{L}(\mathfrak{A})=L$, числом состояний которого является количество классов эквивалентности относительно \approx_L .

Регулярные выражения

Теорема А3.6.

Пусть L — язык, распознаваемый некоторым ДКА. Тогда существует ДКА \mathfrak{A} , $\mathrm{L}(\mathfrak{A})=L$, числом состояний которого является количество классов эквивалентности относительно \approx_L .

Доказательство.

Определим ДКА $\mathfrak{A}=(Q;\Sigma;\delta,q_0,F)$, удовлетворяющий следующим условиям:

- $Q = \{ [\alpha]_{\approx_I} \mid \alpha \in \Sigma^* \};$
- $q_0 = [\varepsilon]_{\approx_L}$;
- $F = \{ [\alpha]_{\approx_L} \mid \alpha \in L \};$
- $\delta([\alpha]_{\approx_L}, a) = [\alpha \hat{a}]_{\approx_L}$

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основны сведения

ДКА и НКА эквивалентность

Произведени автоматов

ДКА: минимизация

Регулярные выражения

Доказательство (продолжение).

Множество Q непусто, а по следствию A3.1, оно конечно. Соответствие δ действительно является функцией. Для доказательства корректности необходимо проверить соотношение $\alpha \approx_L \alpha' \Rightarrow \alpha \hat{\ } a \approx_L \alpha' \hat{\ } a$ для всех $\alpha, \alpha' \in \Sigma^*$ и $a \in \Sigma$. В самом деле, пусть $\alpha \approx_L \alpha'$; тогда $(\alpha \hat{\ } a) \hat{\ } \gamma = \alpha \hat{\ } (a \hat{\ } \gamma) \in L \Leftrightarrow (\alpha' \hat{\ } a) \hat{\ } \gamma = \alpha' (a \hat{\ } \gamma) \in L$ и, следовательно,

$$(lpha\hat{}a)^\gamma = lpha\hat{}(a^\gamma) \in L \Leftrightarrow (lpha'\hat{}a)^\gamma = lpha'\hat{}(a^\gamma) \in L$$
 и, следовательно $lpha\hat{}a pprox_L lpha'\hat{}a$.

Докажем индукцией по длине слова β , что для всех $\alpha \in \Sigma^*$ имеет место $\delta^*([\alpha]_{\approx_L},\beta) = [\alpha^{\hat{}}\beta]_{\approx_L}$. Действительно, имеем $\delta^*([\alpha]_{\approx_L},\varepsilon) = [\alpha]_{\approx_L} = [\alpha^{\hat{}}\varepsilon]_{\approx_L}$. Далее, предположим, что $\delta^*([\alpha]_{\approx_L},\beta) = [\alpha^{\hat{}}\beta]_{\approx_L}$; тогда выполняется соотношение $\delta^*([\alpha]_{\approx_L},\beta^{\hat{}}b) = \delta(\delta^*([\alpha]_{\approx_L},\beta),b) = \delta([\alpha^{\hat{}}\beta]_{\approx_L},b) = [(\alpha^{\hat{}}\beta)^{\hat{}}b]_{\approx_L} = [\alpha^{\hat{}}(\beta^{\hat{}}b)]_{\approx_L}$ для всех $b \in \Sigma$.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основны

ДКА и НКА эквивалентность

Произведения автоматов

ДКА: минимизация

Регулярные выражения Доказательство (окончание).

 $L\subseteq L(\mathfrak{A})$. Пусть $\alpha\in L$; тогда $\delta^*([arepsilon]_{pprox_L}, lpha)=[arepsilon^*lpha]_{pprox_L}=[lpha]_{pprox_L};$ таким образом, $\delta^*([arepsilon]_{pprox_L}, lpha)\in F$ и $lpha\in L(\mathfrak{A})$. $L(\mathfrak{A})\subseteq L$. Пусть $lpha\in L(\mathfrak{A})$; тогда $\delta^*([arepsilon]_{pprox_L}, lpha)=[arepsilon^*lpha]_{pprox_L}=[lpha]_{pprox_L}\in F$ и, следовательно, $lphapprox_L lpha'$ для некоторого $lpha'\in L$. Так как $lpha'^*arepsilon=lpha'\in L$, имеем $lpha=lpha^*arepsilon\in L$. \square

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основны сведени:

ДКА и НКА эквивалентность

Произведени« автоматов

ДКА: минимизация

Регулярные выражения

Доказательство (окончание).

 $L\subseteq \mathrm{L}(\mathfrak{A})$. Пусть $\alpha\in L$; тогда $\delta^*([arepsilon]_{pprox_L}, lpha)=[arepsilon^*lpha]_{pprox_L}=[lpha]_{pprox_L};$ таким образом, $\delta^*([arepsilon]_{pprox_L}, lpha)\in F$ и $lpha\in \mathrm{L}(\mathfrak{A})$. $\mathrm{L}(\mathfrak{A})\subseteq L$. Пусть $lpha\in \mathrm{L}(\mathfrak{A})$; тогда $\delta^*([arepsilon]_{pprox_L}, lpha)=[arepsilon^*lpha]_{pprox_L}=[lpha]_{pprox_L}\in F$ и, следовательно, $lphapprox_L lpha'$ для некоторого $lpha'\in L$. Так как $lpha'^*arepsilon=lpha'\in L$, имеем $lpha=lpha^*arepsilon\in L$. \square

Следствие А3.2.

Язык L распознаваем некоторым ДКА, если и только если количество классов эквиалентности относительно \approx_L конечно.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основны сведени:

ДКА и НКА эквивалентность

Произведения автоматов

ДКА: минимизация

Регулярные выражения

Доказательство (окончание).

 $L\subseteq L(\mathfrak{A})$. Пусть $\alpha\in L$; тогда $\delta^*([arepsilon]_{pprox_L}, lpha)=[arepsilon^*lpha]_{pprox_L}=[lpha]_{pprox_L};$ таким образом, $\delta^*([arepsilon]_{pprox_L}, lpha)\in F$ и $lpha\in L(\mathfrak{A})$. $L(\mathfrak{A})\subseteq L$. Пусть $lpha\in L(\mathfrak{A})$; тогда $\delta^*([arepsilon]_{pprox_L}=[arepsilon^*lpha]_{pprox_L}\in F$ и, следовательно, $lphapprox_L lpha'$ для некоторого $lpha'\in L$. Так как $lpha'^*arepsilon=lpha'\in L$, имеем $lpha=lpha^*arepsilon\in L$.

Следствие А3.2.

Язык L распознаваем некоторым ДКА, если и только если количество классов эквиалентности относительно \approx_L конечно.

Доказательство.

 (\Rightarrow) Вытекает из следствия АЗ.1. (\Leftarrow) Следует из доказательства теоремы АЗ.6 Майхилла-Нероуда.

Основное понятие

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренк

НКА: основны сведения

ДКА и НКА эквивалентность

Произведение автоматов

ДКА: минимизация

Регулярные выражения

Определение А3.7.

Пусть $\Sigma \neq \varnothing$ — конечный алфавит. Определим **регулярное выражение** как слово алфавита $\Sigma \cup \{(,),\varnothing,+,^*,\cdot\}$, которое задаётся индукцией по построению следующим образом:

- $oldsymbol{0}$ и $a\in\Sigma$ является регулярным выражением, для всех $a\in\Sigma$;
- ullet если α и β регулярные выражения, то и $(\alpha \cdot \beta)$ также является регулярным выражением;
- ullet если lpha и eta регулярные выражения, то и (lpha+eta) также является регулярным выражением;
- ullet если lpha регулярное выражение, то и $lpha^*$ также является регулярным выражением;
- других регулярных выражений, кроме описанных в (1)-(4), нет.

Регулярное выражение и язык

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

Произве дение автоматов

ДКА: минимизация

Регулярные выражения

Определение А3.8.

Пусть $\Sigma \neq \varnothing$ — конечный алфавит. Определим язык $\mathcal{L}(\alpha)$, представимый регулярным выражением α , как слово алфавита $\Sigma \cup \{(,),\varnothing,+,^*,\cdot\}$, которое задаётся индукцией по построению следующим образом:

- $oldsymbol{\mathbb{Q}}$ $\mathcal{L}(\varnothing)=\varnothing$ и $\mathcal{L}(a)=\{a\}$, для всех $a\in\Sigma$;
- ② если lpha и eta регулярные выражения, то $\mathcal{L}((lpha \cdot eta)) = \mathcal{L}(lpha)\mathcal{L}(eta)$;
- ullet если lpha и eta регулярные выражения, то $\mathcal{L}((lpha+eta))=\mathcal{L}(lpha)\cup\mathcal{L}(eta);$
- lacktriangle если lpha регулярное выражение, то $\mathcal{L}(lpha^*) = \mathcal{L}(lpha)^*$.

Регулярное выражение и язык

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НК*!* эквивалентность

Произведению автоматов

ДКА: минимизация

Регулярные выражения

Определение А3.8.

Пусть $\Sigma \neq \varnothing$ — конечный алфавит. Определим **язык** $\mathcal{L}(\alpha)$, **представимый регулярным выражением** α , как слово алфавита $\Sigma \cup \{(,),\varnothing,+,^*,\cdot\}$, которое задаётся индукцией по построению следующим образом:

- $oldsymbol{0} \ \mathcal{L}(arnothing) = arnothing$ и $\mathcal{L}(a) = \{a\}$, для всех $a \in \Sigma$;
- $oldsymbol{0}$ если lpha и eta регулярные выражения, то $\mathcal{L}((lpha \cdot eta)) = \mathcal{L}(lpha)\mathcal{L}(eta);$
- ullet если lpha и eta регулярные выражения, то $\mathcal{L}((lpha+eta))=\mathcal{L}(lpha)\cup\mathcal{L}(eta);$
- lacktriangle если lpha регулярное выражение, то $\mathcal{L}(lpha^*) = \mathcal{L}(lpha)^*$.

Определение А3.9.

Язык, задаваемый некоторым регулярным выражением, называется регулярным.

Регулярные выражения и языки: примеры

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основны сведени

ДКА и НКА эквивалентность

Произведени: автоматов

ДКА: минимизаци

Регулярные выражения

Примеры А3.4.

Следующие слова являются регулярными выражениями, задающими регулярные языки ($\Sigma = \{a, b\}$):

Регулярные выражения и языки: примеры

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренка

НКА: основны сведени

ДКА и НКи эквивалентность

Произведени автоматов

ДКА: минимизаци:

Регулярные выражения

Примеры А3.4.

Следующие слова являются регулярными выражениями, задающими регулярные языки ($\Sigma = \{a, b\}$):

Примеры А3.5.

Следующие слова не являются регулярными выражениями $(\Sigma = \{a, b\})$:

$$\mathbf{0}$$
 $a+a$;

$$()a + b.$$

Регулярные языки \Rightarrow ДКА

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренко

НКА:

ДКА и НКА эквивалент-

Произведень автоматов

ДКА: минимизаци

Регулярные выражения

Замечание АЗ.7.

Заметим, что язык $\{\varepsilon\}$ регулярен, поскольку он представляется регулярным выражением \varnothing^* .

Регулярные языки $\Rightarrow \Delta KA$

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

пка: основные сведения

ДКА и НКА эквивалент-

Произведение

ДКА:

Регулярные выражения

Замечание АЗ.7.

Заметим, что язык $\{\varepsilon\}$ регулярен, поскольку он представляется регулярным выражением \varnothing^* .

Следствие А3.3.

Любой регулярный язык распознаваем некоторым ДКА.

Регулярные языки \Rightarrow ДКА

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренк

НКА: основны сведени:

ДКА и НКА эквивалентность

Произведение автоматов

ДКА: минимизация

Регулярные выражения

Замечание АЗ.7.

Заметим, что язык $\{\varepsilon\}$ регулярен, поскольку он представляется регулярным выражением \varnothing^* .

Следствие А3.3.

Любой регулярный язык распознаваем некоторым ДКА.

Доказательство.

По предложениям A1.1(1) и A1.2(2), пустой язык и $\{a\}$ распознаваемы некоторыми ДКА, для всех $a \in \Sigma$. Кроме того, языки, распознаваемые некоторыми ДКА, замкнуты относительно операций объединения, конкатенации и звёздочки Клини, по теоремам A3.4, A3.2, A2.4 и A3.1.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

основные

ДКА и НКА эквивалент-

Произведени автоматов

ДКА:

Регулярные выражения

Теорема А3.7.

Любой язык, распознаваемый ДКА, является регулярным.

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренко

НКА:

ДКА и НКА эквивалентность

Произведени автоматов

ДКА: минимизация

Регулярные выражения

Теорема А3.7.

Любой язык, распознаваемый ДКА, является регулярным.

Доказательство.

Пусть $\mathfrak{A}=(\{0,1,2,\dots,n\};\Sigma;\delta,0,F)$ — ДКА; положим $R(i,j,k)=\{\alpha\in\Sigma^*\mid \delta^*(i,\alpha)=j,\,\delta^*(i,\beta)< k$ для всех $\varepsilon\neq\beta$ $\sqsubseteq_{\mathrm{beg}}\alpha\}$ $(i,j,k\leqslant n+1)$; докажем индукцией по $k\leqslant n+1$, что R(i,j,k) регулярен для всех $i,j,k\leqslant n+1$.

База. Докажем, что R(i,j,0) регулярен для всех $i,j\leqslant n$.

- 1) Если $i \neq j$ и a_1, a_2, \ldots, a_l все символы из Σ таковы, что $\delta(i, a_p) = j, \ 1 \leqslant p \leqslant l, \ \text{то} \ R(i, j, 0) = \{a_1\} \cup \{a_2\} \cup \ldots \cup \{a_l\}.$
- 2) Если $i \neq j$ и l = 0 в п. 1, то $R(i, j, 0) = \emptyset$.
- 3) Если i=j и a_1,a_2,\ldots,a_l все символы из Σ таковы, что $\delta(i,a_p)=j,\ 1\leqslant p\leqslant l$, то $R(i,j,0)=\{\varepsilon\}\cup\{a_1\}\cup\{a_2\}\cup\ldots\cup\{a_l\}.$
- 4) Если i = j и l = 0 в п. 3, то $R(i, j, 0) = \{\varepsilon\}$.

ДКА ⇒ Регулярные языки

Лекция АЗ Конечные автоматы, эквивалент-

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

Произведение автоматов

минимизаци

Регулярные выражения

Доказательство (продолжение).

ИШ. Предположим, что язык R(i,j,m) регулярный $(i,j\leqslant n,m< k+1)$. Докажем, что

$$R(i,j,k+1) = R(i,j,k) \cup R(i,k,k)R(k,k,k)^*R(k,j,k).$$
 (1)

(Неформально, для того, чтобы попасть из состояния i в состояние j, используя состояния < k+1, либо попадаем без использования состояния k (и тогда такие слова учтены в R(i,j,k)), либо осуществляется переход с использованием по меньшей мере один раз состояния k (и тогда прочитывается сначала слово из R(i,k,k) (первый раз встретили состояние k), затем слово из $R(k,k,k)^*$ (до тех пор, пока последний раз не встретили состояние k), и, наконец, слово из R(k,j,k) (последний раз встречаем состояние k)).)

Лекция АЗ Конечные автоматы, эквивалент-

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

произведение автоматов

ДКА: минимизация

Регулярные выражения

Доказательство (продолжение).

 \supseteq . Пусть $\alpha \in R(i,j,k)$; тогда $\alpha \in R(i,j,k+1)$, поскольку $\delta^*(i,\beta) < k < k+1$ для всех $\varepsilon \neq \beta \sqsubseteq_{\mathrm{beg}} \alpha$. Пусть теперь $\alpha \in R(i,k,k)R(k,k,k)^*R(k,j,k)$; тогда найдутся слова $\alpha_1 \in R(i,k,k)$, $\alpha_2 \in R(k,k,k)^*$ и $\alpha_3 \in R(k,j,k)$ такие, что $\alpha = \alpha_1 \hat{\alpha}_2 \hat{\alpha}_3$. Далее, имеем $\delta^*(i,\alpha) = \delta^*(\delta^*(i,\alpha_1),\alpha_2 \hat{\alpha}_3) = \delta^*(k,\alpha_2 \hat{\alpha}_3) = \delta^*(\delta^*(k,\alpha_2),\alpha_3) = \delta^*(k,\alpha_3) = j$. Остаётся доказать, что $\delta^*(i,\beta) < k+1$ для всех $\varepsilon \neq \beta \sqsubseteq_{\mathrm{beg}} \alpha$. Пусть $\alpha_2 = \gamma_1 \hat{\gamma}_2 \hat{\ldots} \hat{\gamma}_n$, $\gamma_l \in R(k,k,k)$ $(1 \leqslant l \leqslant n, n \in \omega)$. Разберем несколько случаев.

 $eta \sqsubseteq_{\mathrm{beg}} lpha_1$. Тогда $\delta^*(i, eta) < k < k+1$, поскольку $lpha_1 \in R(i, k, k)$. $eta = lpha_1$. Тогда $\delta^*(i, eta) = \delta^*(i, lpha_1) = k < k+1$. $eta = lpha_1 \widehat{} lpha_2 \widehat{} eta_3$, где $\varepsilon \neq \beta_3 \sqsubseteq_{\mathrm{beg}} lpha_3$. Тогда $\delta^*(i, lpha_1 \widehat{} lpha_2 \widehat{} eta_3) = \delta^*(\delta^*(i, lpha_1), lpha_2 \widehat{} eta_3) = \delta^*(k, lpha_2 \widehat{} eta_3) = \delta^*(\delta^*(k, lpha_2), eta_3) = \delta^*(k, eta_3) < k < k+1$.

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалентность

Произведени автоматов

дка: минимизаци:

Регулярные выражения Доказательство (продолжение).

 $\begin{array}{l} \beta = \alpha_1 \hat{\ } \gamma_1 \hat{\ } \gamma_2 \hat{\ } \dots \hat{\ } \gamma_{l-1} \hat{\ } \beta_2, \ \text{где} \ \beta_2 \sqsubseteq_{\mathrm{beg}} \ \gamma_l \ (1 \leqslant l \leqslant n). \ \text{Тогда} \\ \delta^*(i,\beta) = \delta^*(i,\alpha_1 \hat{\ } \gamma_1 \hat{\ } \gamma_2 \hat{\ } \dots \hat{\ } \gamma_{l-1} \hat{\ } \beta_2) = \\ \delta^*(\delta^*(i,\alpha_1),\gamma_1 \hat{\ } \gamma_2 \hat{\ } \dots \hat{\ } \gamma_{l-1} \hat{\ } \beta_2) = \delta^*(k,\gamma_1 \hat{\ } \gamma_2 \hat{\ } \dots \hat{\ } \gamma_{l-1} \hat{\ } \beta_2) = \\ \delta^*(\delta^*(k,\gamma_1),\gamma_2 \hat{\ } \dots \hat{\ } \gamma_{l-1} \hat{\ } \beta_2) = \delta^*(k,\gamma_2 \hat{\ } \dots \hat{\ } \gamma_{l-1} \hat{\ } \beta_2) = \\ \delta^*(\delta^*(k,\gamma_2),\gamma_3 \hat{\ } \dots \hat{\ } \gamma_{l-1} \hat{\ } \beta_2) = \delta^*(k,\gamma_3 \hat{\ } \dots \hat{\ } \gamma_{l-1} \hat{\ } \beta_2) = \dots = \\ \delta^*(k,\gamma_{l-1} \hat{\ } \beta_2) = \delta^*(\delta^*(k,\gamma_{l-1}),\beta_2) = \delta^*(k,\beta_2). \ \text{Далее, если} \\ \beta_2 \in \{\varepsilon,\gamma_l\}, \ \text{то} \ \delta^*(k,\beta_2) = k < k+1; \ \text{если} \ \text{жe} \ \varepsilon \neq \beta_2 \sqsubseteq_{\mathrm{beg}} \gamma_l, \ \text{то} \\ \delta^*(k,\beta_2) < k < k+1. \end{array}$

 \subseteq . Обозначим правую часть равенства (1) через $S_{i,j}$; докажем, что $R(i,j,k+1)\subseteq S_{i,j}$ для всех $i,j\leqslant n$. Пусть $\alpha\in R(i,j,k+1)$; доказывать будем индукцией по количеству $t(\alpha,k)$ слов $\varepsilon\neq\beta$ $\sqsubseteq_{\mathrm{beg}}\alpha$, для которых имеет место $\delta^*(i,\beta)=k$. Если $t(\alpha,k)=0$, то $\alpha\in R(i,j,k)\subseteq S_{i,j}$. Предположим, что для $t(\alpha,k)=t$ утверждение выполняется; докажем, что оно выполняется и для t+1.

ДКА ⇒ Регулярные языки

Лекция АЗ Конечные автоматы, эквивалентность

Вадим Пузаренко

НКА: основнь

ДКА и НКА эквивалентность

Произведение автоматов

ДКА:

Регулярные выражения

Доказательство (окончание).

Возьмём наименьшее по длине $\varepsilon \neq \alpha_0 \sqsubset_{\mathrm{beg}} \alpha$ такое, что $\delta^*(i,\alpha_0) = k$ (пусть $\alpha = \alpha_0 \hat{\ } \alpha_1$). Тогда $j = \delta^*(i,\alpha) = \delta^*(\delta^*(i,\alpha_0),\alpha_1) = \delta^*(k,\alpha_1)$ и, следовательно, $\alpha_1 \in R(k,j,k+1)$ и $t(\alpha_1,k) = t$. По индукционному предположению, $\alpha = \alpha_0 \hat{\ } \alpha_1 \in R(i,k,k) S_{k,j} = R(i,k,k)(R(k,j,k)) \cup R(k,k,k)R(k,k,k)^*R(k,j,k)) \subseteq R(i,k,k)R(k,k,k)^*R(k,j,k) \subset S_{i,i}$.

Лекция АЗ
Конечные
автоматы,
эквивалентность

Вадим Пузаренко

НКА: основные сведения

ДКА и НКА эквивалент-

Произведени ввтоматов

ДКА:

Регулярные выражения

Спасибо за внимание.