Mobile Computing – Telecommunication Systems

- Digital Cellular Networks: used for mobile and wireless devices.
- DCN are the wireless extensions of traditional PSTN or ISDN networks and allows for seamless roaming.
 - Basically used for voice traffic
 - Technology for wireless data transmission using cellular systems.

Mobile phone subscribers

worldwide

GSM: Overview

- GSM
 - Formerly: Groupe Spéciale Mobile (founded 1982)
 - Now: Global System for Mobile Communication
- Today many providers all over the world use GSM
 - more than 4,2 billion subscribers
 - more than 75% of all digital mobile phones use GSM

Performance characteristics of GSM (wrt. analog sys.)

- Communication
 - mobile, wireless communication; support for voice and data services
- Total mobility
 - international access, chip-card enables use of access points of different providers
- Worldwide connectivity
 - one number, the network handles localization
- High capacity
 - better frequency efficiency, smaller cells, more customers per cell
- High transmission quality
 - high audio quality and reliability for wireless, uninterrupted phone calls at higher speeds (e.g., from cars, trains)
- Security functions
 - access control, authentication via chip-card and PIN

Disadvantages of GSM

- There is no perfect system!!
 - Security issues
 - Less bandwidth
- Electromagnetic radiation
- Abuse of private data possible
- Roaming profiles accessible
- High complexity of the system
- Several incompatibilities within the GSM standards

GSM: Mobile Services

- GSM offers
 - several types of connections
 - voice connections, data connections, short message service
 - multi-service options (combination of basic services)
- Three service domains
 - Bearer Services
 - Service that allows transmission of information signals between network interfaces
 - These services give the subscriber the capacity required to transmit appropriate signals between certain access points, i.e. user network interfaces
 - Tele Services
 - Voice calls: most basic service
 - Video text access, speech, etc
 - Supplementary Services
 - Call forwarding
 - Call hold
 - Call waiting

Bearer and Tele services Reference

Model

 MS- Mobile Station, TE- Terminal, MT – Mobile Termination, PLMN – Public Land Mobile Network, PSTN – Public Switched Telephone Network, ISDN – Integrated Services Digital Network

Bearer Services

- Telecommunication services to transfer data between access points
- Specification of services up to the terminal interface (OSI layers 1-3)
- Different data rates for voice and data (original standard)
 - **Transparent bearer service** (use only physical layer to transmit data Forward error correction (FEC) only)

constant delay and throughput

• Non transparent bearer service (use protocols of layer 2 and 3 to implement error correction and flow control)

Data rates of approx. 50 kbit/s possible – (even more with new modulation)

Tele Services I

- Telecommunication services that enable voice communication via mobile phones
- All these basic services have to obey cellular functions, security measurements etc.
- Offered services
 - Mobile Telephony primary goal of GSM was to enable mobile telephony offering the traditional bandwidth of 3.1 kHz
 - Emergency Number common number throughout Europe (112); mandatory for all service providers; free of charge; connection with the highest priority (preemption of other connections possible)
 - Multinumbering several ISDN phone numbers per user possible

Tele Services II

- Additional services
 - Non-Voice-Teleservices
 - Fax
 - Voice mailbox (implemented in the fixed network supporting the mobile terminals)
 - Electronic mail (MHS- Message Handling System, implemented in the fixed network)
 - Short Message Service (SMS)
 Alphanumeric data transmission to/from the mobile terminal (160 characters) using the signaling channel, thus allowing simultaneous use of basic services and SMS.

Supplementary services

- Services in addition to the basic services.
- Similar to ISDN services besides lower bandwidth due to the radio link
- May differ between different service providers, countries and protocol versions
- Important services
 - Identification: forwarding of caller number
 - Suppression of number forwarding
 - Automatic call-back
 - Conferencing with many participants.
 - Locking of the mobile terminal (incoming or outgoing calls)

GSM Requirements - Application

Devices

GSM Requirements - Antennas

Infrastructure (cabling & base

stations)

Base Stations

Cabling

Infrastructure (Monitoring & Switching Units)

Switching units

Management

Data bases

Architecture of the GSIVI

system

- GSM is a PLMN (Public Land Mobile Network)
 - components
 - MS (mobile station)
 - BS (base station)
 - MSC (mobile switching center)
 - LR (location register)
 - subsystems
 - RSS (radio subsystem): covers all radio aspects
 - NSS (network and switching subsystem): call forwarding, handover, switching
 - OSS (operation subsystem): management of the network

GSM System Architecture

- Radio Subsystem (RSS)
 - Mobile Station (MS)
 - Mobile Equipment (ME)
 - Subscriber Identity Module (SIM)
 - Base Station Subsystem (BSS)
 - Base Transceiver Station (BTS)
 - Base Station Controller (BSC)
- Network Switching Subsystem(NSS)
 - Mobile Switching Center (MSC)
 - Home Location Register (HLR)
 - Visitor Location Register (VLR)
- Operation Subsystem (OSS)
 - Operation and Maintenance Center (OMC)
 - Authentication Center (AUC)
 - Equipment Identity Register (EIR)

Base Station

Base Transreceiver Station

Base Station Controller

Network Switching Subsystem

Mobile Switching Center

Home Location Register (HLR)

Operation Subsystem

GSM Architecture

GSM: elements and interfaces

GSM: system Architecture

Radio Subsystem

- The Radio Subsystem (RSS) comprises the cellular mobile network up to the switching centers
- Components
 - Mobile Stations (MS)
 - Base Station Subsystem (BSS):
 - Base Transceiver Station (BTS): radio components including sender, receiver, antenna - if directed antennas are used one BTS can cover several cells
 - Base Station Controller (BSC): switching between BTSs, controlling BTSs, managing of network resources, mapping of radio channels
 - BSS = BSC + sum(BTS) + interconnection

RSS: The Mobile Station (MS)

- The mobile station consists of:
 - Mobile Equipment (ME)
 - Subscriber Identity Module (SIM)
- The SIM stores all specific data that is relevant to GSM permanent and temporary data about the mobile, the subscriber and the network, including:
 - The International Mobile Subscriber Identity (IMSI)
 - MS ISDN number of subscriber (phone number)
 - Authentication key and algorithms for authentication check
 - Charging information, list of subscribed services
 - Personal identity number (PIN), and PIN unblocking key (PUK)
 - Temporary location information while logged onto GSM system
 - Temporary mobile subscriber identity (TMSI)
 - Location area identification (LAI)

RSS: The Mobile Station (MS)

- The mobile equipment has a unique International Mobile Equipment Identity (IMEI) which is used for theft protection
- Without the SIM, only emergency calls are possible
- For GSM 900, MS transmits power of up to 2W, for GSM 1800 1W due to smaller cell-size
- MS can also have other components and services for the user (display, loudspeaker, Bluetooth interface,). These are non GSM features.

RSS: The Base Station Sub-System

(BSS)

- A GSM network comprises many BSSs.
- The BSS performs all the functions necessary to maintain radio connection to an MS (coding/decoding of voice, rate adaptation,...)
- Base Station Subsystem is composed of two parts that communicate across the standardized **Abis** interface allowing operation between components made by different suppliers:
 - Base Station Controller (BSC)
 - One or more Base Transceiver Stations (BTSs)
- BTS contains:
 - Radio Transmitter/Receiver (TRX)
 - Signal processing and control equipment
 - Antennas and feeder cables

RSS: The Base Station Sub-System

(BSS)

- The purpose of the BTS is to:
 - Provide radio access to the mobile stations
 - Manage the radio access aspects of the system
 - Encode, encrypt, multiplex, modulate and feed the RF signals to the antenna.
 - Frequency hopping
 - Communicates with Mobile station and BSC
- The BSC:
 - Allocates a channel for the duration of a call
 - Maintains the call:
 - Monitoring quality
 - Controlling the power transmitted by the BTS or MS
 - Generating a handover to another cell when required
- BTSs can be linked to parent BSC by microwave, optical fiber or cable

Network and switching subsystem (NSS)

- NSS is the main component and the heart of the GSM system
 - Connects the wireless network with standard public networks (manages communication between GSM and other networks)
 - Performs handover between different BSSs
 - Supports roaming of users between different providers in different countries
 - Performs functions for worldwide localization of users
 - Charging and billing information, accounting information

In summary switching, mobility management, interconnection to other networks, system control are the main functions of NSS

NSS- components

- Components
 - Mobile Services Switching Center (MSC)
 - Gateway Mobile Switching Center
 - Databases (important: scalability, high capacity, low delay)
 - Home Location Register (HLR)
 - Visitor Location Register (VLR)
- All components connect using the SS7 signaling system protocols (set up & tear down telephone calls)

NSS - Mobile Services Switching

Center

- MSCs are high-performance digital ISDN switches
- They set-up and control connections to other MSCs and to BSCs via the A-interface
- They form the backbone network of a GSM system
- Typically, an MSC manages several BSCs in a geographical region
- Controls all connections via a separated network to/from a mobile terminal within the domain of the MSC

NSS - Mobile Switching Centre (MSC)

- Functions of the MSC:
 - Switching calls, controlling calls and logging calls
 - specific functions for paging and call forwarding
 - mobility specific signaling
 - Mobility management over the radio network and other networks.
 - Radio Resource management handovers between BSCs
 - Billing Information
 - location registration and forwarding of location information
 - provision of new services (fax, data calls)
 - support of short message service (SMS)
 - generation and forwarding of accounting and billing information
 - Interface with PSTN, ISDN, PSPDN (Packet Switched Public Data Network) interworking functions via Gateway MSC (GMSC)

NSS-MSC Gateway Mobile Switching Centre (GMSC)

- A particular MSC can be assigned to act as a GMSC (Gateway Mobile Switching Centre)
- A GMSC is a device which routes traffic entering a mobile network to the correct destination
- The GMSC accesses the network's HLR to find the location of the required mobile subscriber
- The operator may decide to assign more than one GMSC

NSS- Home Location Register (HLR)

- Most important database in GSM system, stores all user-relevant information permanent and semi-permanent
 - Static information such as mobile subscriber ISDN number, subscribed services (e.g call forwarding, roaming restrictions), and the International mobile subscriber identity (IMSI))
 - Dynamic information such as the current location area (LA) of the MS, the mobile subscriber roaming number (MSRN), the current VLR and MSC.
 - As soon as an MS leaves its current LA, the information in the HLR is updated. This information is necessary to localize a user in the worldwide GSM network
- All these user-specific information elements only exist once for each user in a single HLR which also supports charging and accounting.

HLR Implementation

- There is logically one HLR in a Network, although it may consist of several separate computers
- May be split regionally
- HLRs can manage data for several million customers
- Contain highly specialised databases to fulfill real-time requirements and answer requests within certain time bounds.
- Stand alone computer no switching capabilities
- May be located anywhere on the SS7 (signaling system) network
- Combine with AuC

NSS – Visitor Location Register

(VLR)

- Each MSC has a VLR
- VLR is a dynamic local database which stores all important information needed for MS users currently in the LA (location area) associated to the MSC (the domain of the VLR)
- If a new MS comes into the LA of the VLR, it copies all relevant information for this user from the HLR, and stores this data temporarily.
- Information stored includes:
 - International Mobile Subscriber Identity (IMSI)
 - Mobile Station ISDN Number (MSISDN)
 - Mobile Station Roaming Number (MSRN)
 - Temporary Mobile Station Identity (TMSI)
 - Local Mobile Station Identity
 - The location area where the mobile station has been
 - Supplementary service parameters

Operation Subsystem (OSS)

- The OSS (Operation Subsystem) enables centralized operation, management, and maintenance of all GSM subsystems. It accesses other components via SS7 signaling. It consists of the following three components:
 - Operation and Maintenance Center (OMC)
 - Authentication Center (AuC)
 - Equipment Identity Register (EIR)
- Operation and Maintenance Center (OMC)
 - different control capabilities for the radio subsystem and the network subsystem via the O-interface (SS7)
 - Traffic monitoring, status reports of network entities, subscriber and security management, or accounting and billing

OSS – Authentication Center (AuC)

- Authentication Center (AuC)
 - User Identity and Data Transmission (wireless part)
 - Authentication parameters used for authentication of mobile terminals and encryption of user data on the air interface within the GSM system
 - Generates user specific authentication parameters on request of a VLR
 - Situated in a special protected part of the HLR.

OSS – Equipment Identity Register (EIR)

- EIR is a database for all IMEI (International Mobile Equipment Identity). It stores all device identifications registered for this network
- The EIR controls access to the network by returning the status of a mobile in response to an IMEI query
- Possible status levels are:
 - White-listed The terminal is allowed to connect to the network
 - Grey-listed The terminal is under observation by the network for possible problems
 - Black-listed The terminal has either been reported stolen, or is not a type approved for a GSM network. The terminal is not allowed to connect to the network.