

Théorie des graphes et optimisation combinatoire

Projet 2017-2018

D. Tuyttens & M. Mezmaz

Objectifs

> Principe

Si possible un nouveau projet chaque année

> Challenge

Challenge (oui) ⇔recherche (diversité des méthodes)

Compétition (non)

Présentation « **orale** » = **échange** d'informations envers les autres

Projet

Utilisation d'une méthode vue au cours

Langage de programmation au choix

Temps de résolution limité à 1 minute

The "ring-star" problem

Let G = (V, E) be a **complete undirected graph** with set V containing n vertices and set E containing m edges.

A **ring-star** in G is a subgraph that is decomposed into a cycle (or ring) and a set of vertices each of them not belonging to the cycle but assigned to it through a single edge. Each edge (i,j) in E has two non-negative costs: a ring cost c_{ij}^r and an assignment cost c_{ij}^a .

In the **minimum ring-star problem**, the goal is to find a ring-star subgraph minimizing the sum of all ring and assignment costs. Vertex 1, named the depot, mut belong to the ring.

A "ring-star" solution

Exemple de jeu de données

9			\rightarrow	SOI	mm	ets		
0	1	6	1	2	9	6	9	12
1	0	3	2	1	3	9	6	9
6	3	0	9	6	3	12	9	6
1	2	9	0	1	6	3	6	9
2	1	6	1	0	3	6	3	6
9	3	3	6	3	0	9	6	3
6	9	12	3	6	9	0	3	6
9	6	9	6	3	6	3	0	3
12	9	6	9	6	3	6	3	0
0	4	8	4	8	12	8	12	16
4	0	1	8	4	1	12	8	12
8	1	0	12	8	4	16	12	8
4	8	12	0	4	8	1	8	12
8	4	8	4	0	4	8	1	1
12	1	4	8	4	0	12	8	4
8	12	16	1	8	12	0	4	8
12	8	12	8	1	8	4	0	4
16	12	8	12	1	4	8	4	0

 c_{ij}^a

Ring-star solution

Exemple de jeu de données

OUTPUT:

RING 4

1452

STAR

7 4

85

95

62

3 2

COST 9

Ring-star solution

Ensemble de jeux de données test

DATA (.dat)	Sommets	Coût total	Ring %	
data1	51	1278	100,00	
data2	51	2113	33,33	
data3	51	1244	11,76	
data4	76	1614	100,00	
data5	76	2504	42,11	
data6	76	1710	15,79	
data7	100	63846	100,00	
data8	100	115388	55,00	
data9	100	94265	21,00	

Fichiers disponibles sur Moodle « Optimisation combinatoire » Challenge 2017-2018

Projet - TGOC

Groupes:

G1: Bol, Dehasseleer, Deruelle, Lémond

G2:Delbrouck, Rommes, De Handschutter

G3:Baazizi, Baghouz, Ngassa

G4:Fattahi, Honoré, Gauthier, Dumont

G5:Jospin, Raneri, Manderlier

G6: Haupert, Ricciolini, Rivière

G7: Briffoteaux, Gobert

G8: Labeeuw, Joertz, Brouillard, Tulippe-Hecq

G9: Decocq, Boosko, Tondeur

G10:Libert, Zielinski, Mattens, Maazouz

G11: Willeme, Mostefaoui, **Nshimiyimana**, **Zouhair**

G12:

Planning

<u>Jeudi 7/12</u>: TP1 Aud. 01

Lundi 11/12: TP2 Aud. 21

Mercredi 13/12: TP3 IG-LAB

Lundi 18/12: TP4 – Présentation orale + challenge IG-LAB

Date, heure et local →
Lundi 18 décembre 2017 de 14h30 – 18h30 IG-LAB

Présentation

Challenge sur trois jeux de données non connus

Planning:

Présentation orale +- 5 minutes

Challenge 10 minutes (3x1 minute temps exécution)

Questions 5 minutes

12 groupes = 12 X 20 minutes = 4h00

14h30 + 4h00 → FIN 18h30.

Délivrables

- ➤ Rapport = <u>slides</u>
- Code source
- Résultats = <u>OUTPUT des 3 challenges</u>
- Les trois délivrables seront envoyés par mail après la présentation

Cotation

Fiche ECTS: Examen écrit 80% Projet (oral) 20 %

Examen écrit (importance sur la cohérence des réponses)

<u>Cotation du projet</u>:

Présentation orale (peu de directives)
Réponses (individuelles) aux questions
Démarche et intérêt pour le projet
Originalité (méthode choisie, implémentation, tests effectués, argumentations, ...)
Challenge (valeurs obtenues, respect des contraintes, ...)

→ « Un jugement pas uniquement basé sur la résolution finale »

Echecs rares