Редукция и неподвижная точка

А.Н. Непейвода *2023 г*.

Редексы

Определение

Терм $(\lambda x.M[x])$ N — редекс.

Замена редекса на M[x := N] — сокращение редекса.

Редексы

Определение

Терм $(\lambda x.M[x])$ N — редекс. Замена редекса на M[x := N] — сокращение редекса.

- Сколько редексов может быть в терме (один или...)?
- Всегда ли сокращение редекса приводит к сокращению терма?

Редексы

Определение

Терм $(\lambda x.M[x])$ N — редекс.

Замена редекса на M[x := N] — сокращение редекса.

Одношаговая β-редукция

 $M \to_{\beta} N$ определяется следующим образом:

- $(\lambda x.M) N \rightarrow_{\beta} M[x := N]$
- $\bullet \ M \to_{\beta} N \Rightarrow M \ Z \to_{\beta} N \ Z$
- $\bullet \ M \to_{\beta} N \Rightarrow Z \ M \to_{\beta} Z \ N$
- $M \rightarrow_{\beta} N \Rightarrow \lambda x. M \rightarrow_{\beta} \lambda x. N$

β-редукция

Определение

- β -редукция транзитивное рефлексивное замыкание \rightarrow_{β} .
- β -эквивалентность $=_{\beta}$ симметричное транзитивное замыкание β -редукции.
- Терм находится в β-нормальной форме (NF), если он не содержит редексов.
- Терм M имеет β -нормальную форму, если существует N: $M =_{\beta} N$ и N находится в β -NF.

Все ли λ-термы имеют нормальную форму?

Термы без нормальной формы

Термы вида $\lambda x_1, \dots x_n.x_i$ Q, где Q произвольно (в том числе может содержать редексы), называются термами в головной нормальной форме.

- Если для терма T выполняется условие: $\exists N_1 \dots N_k (T \ N_1 \dots N_k = I)$, он называется разрешимым.

Неразрешимые термы (вроде $(\lambda x. x. x)$ $(\lambda x. x. x)$) понимаются как всегда зацикливающиеся и условно отождествляются друг с другом. Разрешимые термы без нормальной формы — частично определенные функции.

Противоречивость \(\lambda\)-исчисления

Чистое (без логических операторов) λ -исчисление непротиворечиво.

Пример

 $\mathbf{K}=\lambda x$ у.х, $\mathbf{K}_*=\lambda x$ у.у. Если $\mathbf{K}=\mathbf{K}_*$, то $\forall x$, у(x=y), поэтому $\mathbf{K}\neq\mathbf{K}_*$ в чистом λ -исчислении.

A как насчет K = I?

Понятие неподвижной точки

Рассмотрим понятие из математики α : $f(\alpha) = \alpha$. Можно понимать как стабилизацию $(f(f(...(f(\alpha)))) = \alpha)$, а можно как доступ к развёртке $(\alpha \to f(\alpha) \to f(f(\alpha)) \to \ldots)$.

Понятие неподвижной точки

Рассмотрим понятие из математики α : $f(\alpha) = \alpha$. Можно понимать как стабилизацию $(f(f(...(f(\alpha)))) = \alpha)$, а можно как доступ к развёртке $(\alpha \to f(\alpha) \to f(f(\alpha)) \to \ldots)$.

Неформальное утверждение

Если понимать функции как возможно зацикливающиеся (на расширенной области определения, содержащей \bot), тогда у каждой функции есть HT.

Понятие неподвижной точки

Рассмотрим понятие из математики α : $f(\alpha)=\alpha$. Можно понимать как стабилизацию $(f(f(...(f(\alpha))))=\alpha)$, а можно как доступ к развёртке $(\alpha \to f(\alpha) \to f(f(\alpha)) \to \ldots)$.

Неформальное утверждение

Если понимать функции как возможно зацикливающиеся (на расширенной области определения, содержащей \bot), тогда у каждой функции есть HT.

Доказательство: Пусть значение функции f зависит от её аргумента x. Возьмём в качестве x зацикливание (\bot). Тогда f(\bot) тоже зациклится, значит, \bot неподвижная точка.

Теперь пусть значение f от x не зависит. Тогда это константа k. Имеем f(k)=k.

Дан λ -терм F. Как найти такой λ -терм A, что F A=A?

Дан λ -терм F. Как найти такой λ -терм A, что F A=A?

Рассмотрим $W = \lambda x$. F (x x), X = W W.

7/22

Дан λ -терм F. Как найти такой λ -терм A, что F A=A?

Рассмотрим $W = \lambda x$. F (x x), X = W W.

Тогда $X = W \ W = (\lambda x. \mathsf{F} \ (x \ x)) \ W = \mathsf{F} \ (W \ W) = \mathsf{F} \ X.$

7/22

Дан λ -терм F. Как найти такой λ -терм A, что F A=A?

Теорема

У каждого λ-терма существует неподвижная точка.

Д-во: Рассмотрим $W = \lambda x$. F(x x), X = W W.

Тогда $X = W W = (\lambda x. F (x x)) W = F (W W) = F X.$

Чему равны неподвижные точки следующих λ-термов?

- λxy.y
- λχ.χ
- λx y.x

Как найти неподвижную точку произвольного терма F?

$$F = \lambda x. M[x]$$

Как найти неподвижную точку произвольного терма F?

$$F = \lambda x. M[x]$$

Пробная попытка: (F F) = $M[\lambda x.M[x]]$

Как найти неподвижную точку произвольного терма F?

$$F = \lambda x. M[x]$$

Пробная попытка: (F F) = $M[\lambda x.M[x]]$

Вместо х подставлена λ -абстракция \to нужно добавить для нее дополнительный аргумент.

Положим $M' = \lambda F.(\lambda x. M[x])$ (F F). И добавим абстракцию по M.

$$Y = \lambda m.(\lambda f.m (f f)) (\lambda f.m (f f))$$

Работает?

Как найти неподвижную точку произвольного терма F?

$$F = \lambda x.M[x]$$

Пробная попытка: (F F) = $M[\lambda x.M[x]]$

Вместо х подставлена λ -абстракция \to нужно добавить для нее дополнительный аргумент.

Положим $M' = \lambda F.(\lambda x. M[x])$ (F F). И добавим абстракцию по M.

$$Y = \lambda m.(\lambda f.m~(f~f))~(\lambda f.m~(f~f))$$

Работает?

$$\mathsf{Y}\;\mathsf{F} = (\lambda z.\mathsf{F}\;(z\;z))\;\lambda z.\mathsf{F}\;(z\;z) = \mathsf{F}(\underline{(\lambda z.\mathsf{F}(z\;z))\;\lambda z.\mathsf{F}(z\;z)}) = \mathsf{F}\;(\mathsf{Y}\;\mathsf{F})$$

Пример применения

Рекурсивное определение факториала:

$$(F x) = (IF (ISO x) 1 (MUL x (F (PRED x)))).$$

Вернемся к числам и стандартным операциям.

$$f x = if x == 0 then 1 else x * (f (x - 1))$$

```
fact x =  if x == 0 then 1 else x * (fact (x - 1))
```


Пример применения

Рекурсивное определение факториала:

$$(F x) = (IF (ISO x) 1 (MUL x (F (PRED x)))).$$

Вернемся к числам и стандартным операциям.

$$f x = if x == 0 then 1 else x * (f (x - 1))$$

```
fact x = if x == 0 then 1 else x * (fact (x - 1))
F = \lambda \text{ f.} \lambda \text{ x.} (\text{if x == 0 then 1 else (x * (f (x - 1))).}
Y F 2 = F (Y F) 2 = (\text{if false then 1 else (2 * (Y F 1))})
= 2 * (\text{if false then 1 else (1 * (Y F 0))})
= 2 * (1 * (\text{if true then 1} \text{ else (Y F ...)})) = 2 * (1 * 1)
```


Теорема Чёрча-Россера

Теорема (конфлюэнтность)

Если терм M β -редуцируется к термам N и N', то существует терм L такой, что N и N' оба β -редуцируются к L.

Единственность β-NF

 λ -терм имеет не больше одной β -NF.

Стратегии редукции

- **Нормальная** сокращается самый левый внешний редекс.
- **Аппликативная** сокращается самый левый внутренний редекс.

Теорема о нормализации

Если терм имеет β -NF, то к ней гарантированно приводит нормальная стратегия редукции.

Контекст вычислений

Контекст — окружение λ -терма (терм с дырой). С ::= [] | t C | C t | λx . С Контексты вычислений — подмножество контекстов, зависящее от порядка редукции.

Контекст вычислений

Контекст — окружение λ -терма (терм с дырой).

$$C ::= [] | t C | C t | \lambda x.C$$

Контексты вычислений — подмножество контекстов, зависящее от порядка редукции.

Call-by-value

v — переменная или абстракция.

Контекст Е ::= [] | Е $e \mid v$ Е

Правила редукции:

$$\frac{e_1 \twoheadrightarrow_\beta e_2}{\mathsf{E}[e_1] \twoheadrightarrow_\beta \mathsf{E}[e_2]} \quad \overline{(\lambda x.e) \ \nu \twoheadrightarrow_\beta e\{x := \nu\}}$$

12/22

Контекст вычислений

Контекст — окружение λ -терма (терм с дырой). С ::= [] | t C | C t | λ x. С

Контексты вычислений — подмножество контекстов, зависящее от порядка редукции.

Call-by-name

Контекст E ::= [] | E e Правила редукции:

$$\frac{e_1 \twoheadrightarrow_\beta e_2}{\mathsf{E}[e_1] \twoheadrightarrow_\beta \mathsf{E}[e_2]} \quad \overline{(\lambda x.e_1) \ e_2 \twoheadrightarrow_\beta e_1 \{x := e_2\}}$$

12 / 22

Лемма о генеричности

Лемма

Пусть M, N — термы λ -исчисления, причем M неразрешим, а N имеет н.ф. Тогда для любого контекста C[]

$$C[M] =_{\beta} N \Rightarrow \forall L(C[L] =_{\beta} N)$$

Лемма о генеричности

Лемма

Пусть M, N — термы λ -исчисления, причем M неразрешим, а N имеет н.ф. Тогда для любого контекста C[]

$$C[M] =_{\beta} N \Rightarrow \forall L(C[L] =_{\beta} N)$$

Неформально: чтобы отличить терм от других, его нужно (частично) вычислить.

Следствие леммы о генеричности

Возможно ли сравнивать текстовые представления термов в чистом λ-исчислении?

Следствие леммы о генеричности

Возможно ли сравнивать *текстовые представления термов в чистом* λ-исчислении?

Пусть существует комбинатор λx у. Е, который возвращает T, если буквальные представления x и у совпадают (в каком-либо смысле), и F иначе.

Тогда Е Ω I = F, E I I = T, но лемма о генеричности влечет, что \forall N(E N I) = F.

Следовательно, Е не определим в чистом λ-исчислении.

Другие применения

С помощью леммы о генеричности можно доказывать невозможность реализации комбинатора, определённого логической формулой.

Предположим, существует такой M, что $\forall x,y(M\ (x\ y)=y)$. По определению, $M\ (\Omega\ I)=I$, значит, по лемме о генеричности $\forall x(M\ (x\ I))=I$. В частности, $M\ (K\ I)=I$. С другой стороны, $K\ I=I\ (K\ I)$, и по определению M получаем $M\ (I\ (K\ I))=K\ I$, что невозможно.

Данную задачу можно было решить и без применения леммы о генеричности, используя сходные идеи (это подсказка к ДЗ от 18.09).

Вариант Ү-комбинатора

```
Y' = \lambda f.(\lambda t.(t t)) \lambda x.f (\lambda y.(x x) y)
```

```
\f -> (\t -> (t t))
(\x -> f (\y -> x x y))
```

Редукция может быть как конечной, так и не завершающейся. Как верифицировать корректное применение операторов, подобных **Y**?

Возникновение понятия типа

Изначально возник в трудах Б.Рассела, который заметил, что в наивной теории множеств существует парадокс:

Парадокс Рассела

$$\Omega = \{A \mid A \notin A\} \Rightarrow (\Omega \in \Omega \Leftrightarrow \Omega \notin \Omega)$$

Понятие типа ограничивает возможные операции над его сущностями \Rightarrow исключает парадоксы (неверное поведение программ).

Определение типа

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Б.Пирс

В λ-исчислении типы — синтаксические конструкции, приписываемые термам по определенным правилам:

 $M:\sigma$

Свойства типизации

- Статические vs динамические
- Явные vs неявные
- Сильные vs слабые

Сильные статические типы в функциональном языке ограничивают его синтаксические конструкции, но позволяют строить программы, которые уже частично верифицированы с помощью проверки типов.

Простые типы λ-исчисления

Определение

Множество типов \mathbb{T} в λ_{\rightarrow} определяется индуктивно.

- Переменные типа (α , β , γ etc) принадлежат \mathbb{T} .
- Если $\sigma \in \mathbb{T}$, $\phi \in \mathbb{T}$, то $(\sigma \to \phi) \in \mathbb{T}$.

Стрелка — правоассоциативна: $\sigma_1 \to \sigma_2 \to \dots \sigma_n$ — сокращение для $\sigma_1 \to (\sigma_2 \to (\dots \sigma_n) \dots)$). В силу наличия частичных вычислений тип $\sigma_1 \to \sigma_2 \dots \to \sigma_n$ можно понимать как тип функции с n-1 аргументами типов $\sigma_1, \dots, \sigma_{n-1}$ и типом результата σ_n ; а можно как тип функции с одним аргументом σ_1 и типом результата — функцией с типом $\sigma_2 \to \dots \to \sigma_n$ (а также все промежуточные варианты).

Полуформальный алгоритм типизации λ -функций

- Если M[x] имеет тип σ в контексте $x:\tau$, тогда естественно, что $\lambda x.M$ имеет тип $\tau \to \sigma$;
- **2** Если (M N) имеет тип σ , а N имеет тип τ , тогда естественно, что M имеет тип $\sigma \to \tau$.

Полуформальный алгоритм типизации λ -функций

- Если M[x] имеет тип σ в контексте $x : \tau$, тогда естественно, что $\lambda x. M$ имеет тип $\tau \to \sigma$;
- **2** Если (M N) имеет тип σ , а N имеет тип τ , тогда естественно, что M имеет тип $\sigma \to \tau$.

Логическая спецификация

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x . M : \tau \to \sigma}$$

$$\frac{\Gamma \vdash M : \tau \to \sigma, \Gamma \vdash N : \tau}{\Gamma \vdash (M \ N) : \sigma}$$

Проблема типизации λ -функций

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть (x x)) — это σ . Тогда $\tau = \tau \to \sigma$. Ничего не напоминает?

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть (x x)) — это σ . Тогда $\tau = \tau \to \sigma$. Ничего не напоминает?

Уравнение $\tau = \tau \to \sigma$ — это предложение Карри! Оно не имеет неподвижной точки, отличной от \bot .

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть (x x)) — это σ . Тогла $\tau = \tau \to \sigma$. Ничего не напоминает?

Уравнение $\tau = \tau \to \sigma$ — это предложение Карри! Оно не имеет неподвижной точки, отличной от \bot .

Зацикливается не только унификация: см. $(\lambda x.(x\ x))\ (\lambda x.(x\ x)).$ Иногда успешно вычисляется: напр. $(\lambda x.(x\ x))\ (\lambda x.(\lambda y.(y\ x))).$

Рассмотрим терм $\lambda x.(x x)$. Какой у него тип?

• Пусть тип аргумента применения (то есть x) — это τ , а тип результата применения (то есть (x x)) — это σ . Тогда $\tau = \tau \to \sigma$. Ничего не напоминает?

Уравнение $\tau = \tau \to \sigma$ — это предложение Карри! Оно не имеет неподвижной точки, отличной от \bot .

Зацикливается не только унификация: см. $(\lambda x.(x \ x)) \ (\lambda x.(x \ x))$. Иногда успешно вычисляется: напр. $(\lambda x.(x \ x)) \ (\lambda x.(\lambda y.(y \ x)))$.

 $\lambda x.(x \ x)$ — частичная функция и не может быть конечным образом определена на всех полиморфных типах.

Просто типизированное λ-исчисление

Ограничим множество λ -термов только такими, типы которых всегда выводимы по описанным выше правилам.

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x. M : \tau \rightarrow \sigma} \quad \frac{\Gamma \vdash M : \tau \rightarrow \sigma, \Gamma \vdash N : \tau}{\Gamma \vdash (M \ N) : \sigma}$$

Просто типизированное λ-исчисление

Ограничим множество λ -термов только такими, типы которых всегда выводимы по описанным выше правилам.

$$\frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x . M : \tau \to \sigma} \quad \frac{\Gamma \vdash M : \tau \to \sigma, \Gamma \vdash N : \tau}{\Gamma \vdash (M \ N) : \sigma}$$

...а теперь забудем про термы и посмотрим только на типы. Что получилось?

$$\frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \to \sigma} \qquad \text{(правило введения импликации)}$$

$$\frac{\Gamma \vdash \tau \to \sigma, \Gamma \vdash \tau}{\Gamma \vdash \sigma} \qquad \text{(правило удаления импликации aka modus ponens)}$$