0.1 H23 数学選択

 $|B|(1)\alpha^2 - 2 = \sqrt{2}$ より $\sqrt{2} \in \mathbb{Q}(\alpha)$ である. よって $\mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\alpha)$.

 $(2) \alpha^4 - 4 \alpha^2 + 2$ は $\mathbb{Q}[x]$ 上既約である.これは $2 \in \mathbb{Z}$ によってアイゼンシュタインの既約判定法によって $\mathbb{Z}[x]$ 上で既約であることからわかる.

よって $[\mathbb{Q}(\alpha):\mathbb{Q}]=4$ である. すなわち $\alpha \notin \mathbb{Q}$ である.

(3)(2) \sharp \mathfrak{h} $[\mathbb{Q}(\alpha):\mathbb{Q}]=4$.

(4)(2) より $x^4 - 4x^2 + 2$ である. \mathbb{Q} 上共役は $\pm \alpha$, $\sqrt{2-\sqrt{2}}$ である.

 $(5)\sqrt{2+\sqrt{2}}\sqrt{2-\sqrt{2}}=\sqrt{2}$ より $\mathbb{Q}(\alpha)$ ラ $\sqrt{2-\sqrt{2}}$ となる全ての共役元が $\mathbb{Q}(\alpha)$ に属すから正規拡大. \mathbb{Q} は 完全体であるから Galois 拡大.

 $(6)\mathrm{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})$ \ni σ について $\sigma(\sqrt{2+\sqrt{2}})=\sqrt{2-\sqrt{2}}$ とする. $2+\sigma(\sqrt{2})=\sigma((\sqrt{2+\sqrt{2}})^2)=(\sqrt{2-\sqrt{2}})^2=2-\sqrt{2}$ であるから $\sigma(\sqrt{2})=-\sqrt{2}$ である.

よって $\sigma^2(\sqrt{2+\sqrt{2}})=\sigma(\sqrt{2-2\sqrt{2}})=\sigma(\sqrt{2})/\sigma(\sqrt{2+\sqrt{2}})=-\sqrt{2}/(\sqrt{2-\sqrt{2}})=-\sqrt{2+\sqrt{2}}$ である. よって $\sigma^2\neq \mathrm{id}$ である.

 $[\mathbb{Q}(\alpha):\mathbb{Q}]=4$ より $\mathrm{Gal}(\mathbb{Q}(\alpha)/\mathbb{Q})\cong \mathbb{Z}/4\mathbb{Z}$ である.