NOCIONES BÁSICAS DE LÓGICA PROPOSICIONAL

En esta unidad trabajaremos con la siguiente bibliografía:

- 1. "Introducción al simbolismo lógico" de Jorge Bosch.
- 2. "Algebra I" de Armando Rojo.

DEFINICIÓN: Proposición

Una **proposición** es toda sucesión de palabras de la cual tiene sentido afirmar que sea verdadera o que sea falsa.

Ejemplo 1:

Ejercicio 1.- de la ejercitación propuesta en este apunte.

I) Decida si las siguientes sucesiones de palabras son o no proposiciones. En caso afirmativo, indique su valor de verdad:

c) "¡Bienvenidos a la Universidad!", (no es proposición)

f) "El triángulo es un polígono", (proposición verdadera)

g) "6 es impar", (proposición falsa)

OPERACIONES CON PROPOSICIONES

NEGACIÓN:

Dada una proposición **p**, su **negación** se obtiene anteponiendo la palabra **no** a la misma. Se lee **"no** p", "no es cierto que p" y se simboliza ~ p.

El valor de verdad ~ p es **falso** si el valor de verdad de p es verdadero y es **verdadero** si el valor de verdad de p es falso.

Estos resultados pueden volcarse en una tabla llamada **tabla de verdad** para la negación:

р	~ p	
V	F	
F	V	

Ejemplo 2:

II) Escriba la negación de las proposiciones del apartado I)

Consideremos las proposiciones dadas en el ejemplo 1

- f) p: El triángulo es un polígono,
 - ~ p: El triángulo no es un polígono (proposición falsa) su negación es:
- g) q: 6 es impar,

su negación es: **~ q**: 6 no es impar (proposición verdadera)

CONJUNCIÓN:

Dadas dos proposiciones **p** y **q**, se llama **conjunción de p y q**, a la proposición que se obtiene enunciando ${\bf q}$ a continuación de ${\bf p}$, unidas ambas por la palabra ${\bf y}$. Se designa con ${\bf p} \wedge {\bf q}$ y se lee "p y q".

Una conjunción es verdadera si son verdaderas ambas proposiciones componentes y es falsa en cualquier otro caso.

Estos resultados pueden agruparse en una tabla de verdad para la conjunción:

P	q	p ∧ q	
V	V	V	
V	F	F	
F	V	F	
F	F	F	

Ejemplo 3: volviendo a las proposiciones que usamos en el ejemplo 1:

 $\mathbf{p} \wedge \mathbf{q}$: El triángulo es un polígono y 6 es impar. (proposición falsa)

DISYUNCIÓN:

Dadas dos proposiciones **p** y **q**, se llama **disyunción de p** y **q**, a la proposición que se obtiene enunciando \mathbf{q} a continuación de \mathbf{p} , unidas ambas por la palabra \mathbf{o} . Se designa con $\mathbf{p} \vee \mathbf{q}$ y se lee "p o q".

Una disyunción es verdadera si una cualquiera o ambas proposiciones lo son, y es falsa cuando son falsas ambas proposiciones.

Estos resultados pueden agruparse en la siguiente tabla de verdad para la disyunción:

р	q	$\mathbf{p} \vee \mathbf{q}$	
V	V	V	
V	F	V	
F	V	V	
F	F	F	

Ejemplo 4: volviendo a las proposiciones p y q dadas en el ejemplo 1:

 $\mathbf{p} \vee \mathbf{q}$: El triángulo es un polígono o 6 es impar. (proposición verdadera)

IMPLICACIÓN LÓGICA:

Dadas las proposiciones p y q la implicación lógica o condicional es la proposición que se obtiene anteponiendo la palabra si a la proposición p seguida de la palabra entonces y de la proposición q. El condicional puede leerse "si p entonces q", "p implica q", "q si p". Se simboliza $p \Rightarrow q$. La proposición p se llama **antecedente** y la proposición q se llama **consecuente**. El único caso en que un condicional es **falso** es cuando el antecedente es verdadero y el consecuente es falso.

La tabla de verdad para la implicación es:

p	q	p⇒q	
V	V	V	
V	F	F	
F	V	V	
F	F	V	

Ejemplo 5: Si apruebo el examen entonces te presto el libro.

p: apruebo el examen

q: te presto el libro

La afirmación dada "Si apruebo el examen entonces te presto el libro" es falsa sólo si apruebo el examen y no te presto el libro.

Si es falsa significa que no se cumple la afirmación que se hizo.

Observación:

La implicación aparece frecuentemente en los enunciados de los teoremas de Cálculo donde denominamos al antecedente como hipótesis y al consecuente como tesis.

Implicación recíproca:

La implicación recíproca de $p \Rightarrow q$ es $q \Rightarrow p$.

Cabe aclarar que del hecho que $p \Rightarrow q$ sea válida, no permite deducir que necesariamente su recíproca también lo sea.

Implicación contrarrecíproca:

La implicación contrarrecíproca de $p \Rightarrow q$ es $\sim q \Rightarrow \sim p$.

Se puede deducir de la validez de $p \Rightarrow q$, la validez de $\sim q \Rightarrow \sim p$.

Ésto se verá más adelante en la resolución del ejercicio 8.b)

EQUIVALENCIA LÓGICA:

Dadas las proposiciones **p** y **q** , se llama **equivalencia lógica o doble implicación o bicondicional** a la conjunción de las implicaciones $p \Rightarrow q \ y \ q \Rightarrow p$, se escribe " $p \Leftrightarrow q$ " y se lee " $p \ si \ y \ sólo \ si \ q$ ". Decimos también que p y q son proposiciones equivalentes y se escribe $\mathbf{p} \equiv \mathbf{q}$ si se verifica la proposición $[(p \Rightarrow q) \land (q \Rightarrow p)].$

La proposición $p \Leftrightarrow q$ es **verdadera** cuando los valores de verdad de p y q coinciden.

La tabla de verdad para la doble implicación es:

P	q	p⇔q	
V	V	V	
V	F	F	
F	V	F	
F	F	V	

Ejemplo 6

Ejercicio 7.- de la ejercitación propuesta en este apunte.

b) Mediante el uso de tablas de verdad, pruebe la siguiente equivalencia: $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$. Para ello construiremos las tablas de verdad de las proposiciones $(\mathbf{p} \Rightarrow \mathbf{q})$ y $(\sim \mathbf{q} \Rightarrow \sim \mathbf{p})$:

р	q	$(\mathbf{p} \Rightarrow \mathbf{q})$	~ q	~ p	(~ q ⇒ ~ p)
V	V	V	F	F	V
V	F	F	V	F	F
F	V	V	F	V	V
F	F	V	V	V	V

Queda probado que $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$ pues las proposiciones $(p \Rightarrow q)$ y $(\neg q \Rightarrow \neg p)$ tienen simultáneamente los mismos valores de verdad.

DEFINICIÓN: Función Proposicional

Se llama función proposicional en la indeterminada x, a toda expresión que contiene a x y que posee la siguiente propiedad: existe por lo menos una asignación de x tal que la expresión obtenida al sustituir la indeterminada x por dicha asignación, es una proposición.

Ejemplo 7:

" x es par " no es una proposición ya que no podemos decir nada acerca de su verdad o falsedad. Sin embargo, para cada asignación dada a x, dicho enunciado es una proposición. Así "x es par" es una función proposicional.

- " -3 es par " es una proposición falsa
- " 18 es par " es una proposición verdadera

DEFINICIÓN: Función Proposicional en dos Variables

Se llama función proposicional en las indeterminadas x e y , a toda expresión que contiene las variables x e y, que posee la siguiente propiedad: existen por lo menos una asignación para x y otra para y, tal que la expresión obtenida al reemplazar dichas indeterminadas por sus respectivas asignaciones, es una proposición.

Ejemplo 8:

- a) $x < 0 \land y < 0 \implies xy > 0$ Función proposicional en las variables x e y.
- b) $\sqrt[3]{a+b} = \sqrt[3]{a} + \sqrt[3]{b}$ Función proposicional en las variables a y b.

PROPOSICIONES DEFINIDAS MEDIANTE CUANTIFICADORES

El símbolo ∀ se denomina cuantificador universal y el símbolo ∃ se denomina cuantificador existencial.

Dada una función proposicional P(x), a partir de ella se puede obtener una proposición mediante la adjudicación de un cuantificador universal o de un cuantificador existencial, esto es:

se lee : " Para todo x, se verifica P(x) " $\forall x, P(x)$

 $\exists x : P(x)$ se lee : "Existe x, tal que se cumple P(x) "

Ejemplo 9:

Volviendo al ejemplo 7, si cuantificamos universalmente la función proposicional "x es par", se obtiene: " $\forall x, x \text{ es par}$ ". Siendo ésta una proposición relativa a todos los números enteros, su valor de verdad es falso.

En cambio, si cuantificamos existencialmente la misma función proposicional, obtenemos:

" $\exists x : x \text{ es par }$ ". El valor de verdad de esta proposición es **verdadero**.

NEGACIÓN DE PROPOSICIONES DEFINIDAS MEDIANTE CUANTIFICADORES

Sea P(x) una función proposicional, entonces:

La negación de la proposición $\ \forall \ x$, P(x) es $\ \exists \ x: \sim P(x)$

La negación de la proposición $\exists x : P(x)$ es $\forall x, \sim P(x)$

Es decir:

$$\sim (\forall x , P(x)) \equiv (\exists x : \sim P(x))$$
$$\sim (\exists x : P(x)) \equiv (\forall x , \sim P(x))$$

METODOS DE DEMOSTRACION

Existen diferentes métodos de demostración. Los más conocidos son:

método directo,

método indirecto.

método por el absurdo.

El método de demostración que más utilizaremos en nuestro curso de Cálculo es el de "demostración directa".

METODO DE DEMOSTRACION DIRECTA:

Dado un teorema de la forma "Si p entonces q" o sea de la forma $p \Rightarrow q$. Queremos probar que esta implicación es verdadera; no consideraremos la posibilidad cuando **p** es falso, pues en este caso la implicación es siempre verdadera.

Supongamos entonces que **p** es verdadera y construyamos una cadena de proposiciones de la forma: $(p \Rightarrow p_1)$, $(p_1 \Rightarrow p_2)$, ..., $(p_n \Rightarrow q)$ cada una de las cuales sabemos que es verdadera por teoremas ya demostrados, definiciones, etc. Sabemos que \mathbf{p} es verdadera y que $\mathbf{p} \Rightarrow \mathbf{p_1}$ es verdadera, entonces p₁ es verdadera por tabla de verdad de la implicación. Usando esta idea se concluye que q es verdadera. Como p es verdadera y la proposición q también es verdadera, entonces la proposición $\mathbf{p} \Rightarrow \mathbf{q}$ es verdadera.

Por lo tanto, el método directo consiste en partir de la verdad del antecedente y establecer la verdad del consecuente.

Ejemplo 10

Ejercicio 10.- de los ejercicios propuestos en este apunte.

- b) Exprese las siguientes proposiciones en forma simbólica. Pruebe que son verdaderas, usando el método de demostración directa.
 - i) La suma de dos números racionales es un racional.

Resolución:

Es una proposición para la cual usaremos para expresarla el cuantificador universal y como habla de dos números racionales (cualesquiera) deben aparecer dos variables:

$$\forall x, y, (x, y \in Q \Rightarrow x + y \in Q)$$

Hipótesis: $x, y \in Q$

(recordemos que en una implicación lógica el antecedente equivale a la hipótesis)

Tesis: $x + y \in Q$

(recordemos que en una implicación lógica el consecuente equivale a la tesis)

Demostración:

Queremos probar que la suma de dos números racionales cualesquiera da como resultado un número racional:

Recordemos que: un número racional es aquel que puede escribirse como una fracción en la que el numerador es un número entero y el denominador es un número entero diferente de cero.

Sean x e y dos números racionales arbitrarios:

$$\begin{array}{c} \text{pordef.} \\ x \in Q \quad \Longrightarrow \quad x = \frac{a}{b} \,, \quad a, \ b \in Z \, \land \, b \neq 0 \\ \land \quad \qquad \qquad \land \quad \qquad \qquad \land \\ \text{pordef.} \\ \text{num.rac.} \\ y \in Q \quad \Longrightarrow \quad y = \frac{c}{d} \,, \quad c, \ d \in Z \, \land \, d \neq 0 \end{array} \right\} \, \stackrel{\text{pordef.}}{\rightleftharpoons} \, x + y = \frac{a}{b} + \frac{c}{d} \quad , a, b, c, d \in Z \, \land \, b, d \neq 0$$

Por otro lado:

- **a.d** y **b.c** son números enteros por ser producto de números enteros.
- En consecuencia, $\mathbf{a} \cdot \mathbf{d} + \mathbf{b} \cdot \mathbf{c}$ también es un número entero por ser suma de números enteros.
- **b** . **d** también es un número entero por ser producto de números enteros.
- b. $d \neq 0$ pues $b \neq 0$ y $d \neq 0$

Es decir que $\mathbf{x} + \mathbf{y}$ se puede escribir como una fracción en la que el numerador $\mathbf{a} \cdot \mathbf{d} + \mathbf{d} \cdot \mathbf{c}$ es un número entero al que llamamos k_1 y el denominador $\mathbf{b} \cdot \mathbf{d}$ es un número entero y es distinto de cero al que llamamos k₂:

$$\Rightarrow x + y = \frac{k_1}{k_2}$$
, $k_1, k_2 \in \mathbb{Z} \land k_2 \neq 0 \Rightarrow x + y \in \mathbb{Q}$

(queda así demostrado ya que partimos de dos números racionales cualesquiera y llegamos a probar que su suma da como resultado un número racional).-

EJERCITACIÓN PROPUESTA

- 1- I) Decida si las siguientes sucesiones de palabras son o no proposiciones. En caso afirmativo, indique el valor de verdad:
 - a) El conjunto solución de la ecuación $x^2 5x = 0$ es $\{5\}$.
 - **b)** El número $\frac{-10}{(-1)^7}$ es positivo.
- c) ¡Bienvenidos a la Universidad!

d) El opuesto de -5 no es 5.

e) Sean dos números.

f) El triángulo es un polígono.

- g) 6 es impar.
- II) Escriba la negación de todas las proposiciones del apartado I).
- 2- Escriba simbólicamente las siguientes proposiciones y luego indique, su valor de verdad.
 - a) 0,99 es mayor que $\frac{1}{2}$ y menor que 1.
 - **b)** $\sqrt{2}$ es irracional y 8 múltiplo de 2.
 - c) Si 12 es divisible en 3 entonces π es irracional.
 - d) 5 no es un número natural si y solo si 3 es igual a 4 menos 1.
- **3-** Dadas las siguientes implicaciones lógicas:
 - p: Si 2+3=5 entonces un triángulo no tiene tres lados.
 - q: Si 7 es irracional entonces los rectángulos tienen cuatro ángulos.
 - a) Indique el antecedente y el consecuente.
 - **b**) Enuncie la proposición recíproca.
 - c) Exprese la proposición contrarrecíproca.
 - d) En los apartados anteriores, dé el valor de verdad de la proposición resultante.
- **4-** Dadas las siguientes proposiciones:

$$\mathbf{p}: -2 \in \mathbb{N}$$

$$\mathbf{q}: \frac{2}{3} \le 7$$

$$\mathbf{r}:\sqrt[3]{64} \notin I$$

$$\mathbf{s}: 6=2$$

Escriba en lenguaje coloquial, las siguientes operaciones entre proposiciones y luego determine el valor de verdad de las mismas:

a)
$$p \vee \sim q$$

b)
$$r \wedge s$$

c)
$$q \Rightarrow \sim p$$

d)
$$r \Leftrightarrow s$$

CÁLCULO – Curso de Ambientación y Articulación 2022

5- Construya la tabla de verdad de las siguientes proposiciones:

$$a) \sim p \vee q$$

b)
$$(p \land q) \Rightarrow q$$

6- Dé un ejemplo de una proposición tal que:

- a) Sea una conjunción verdadera.
- b) Sea una disyunción falsa
- c) Sea una implicación lógica con antecedente verdadero y consecuente falso.

7- Mediante el uso de tablas de verdad, pruebe las siguientes equivalencias:

$$\mathbf{a}$$
) $\sim (\mathbf{p} \Rightarrow \mathbf{q}) \equiv (\mathbf{p} \land \sim \mathbf{q})$

b)
$$(p \Rightarrow q) \equiv (\sim q \Rightarrow \sim p)$$

8- Dadas las siguientes proposiciones:

p: Todo número real no nulo tiene su correspondiente inverso.

q: El cociente entre dos números reales es siempre positivo.

- a) Escriba dichas proposiciones en lenguaje simbólico y dar el valor de verdad.
- b) Escriba la negación en lenguaje simbólico y coloquial (tenga en cuenta ej. 8.-a)

9- En cada uno de los siguientes apartados, complete con un cuantificador apropiado para que la proposición sea verdadera, teniendo en cuenta que el universo es el conjunto de los números reales (\mathfrak{R}) .

a)
$$\sqrt[4]{x-y} = \sqrt[4]{x} - \sqrt[4]{y}$$

a)
$$\sqrt[4]{x-y} = \sqrt[4]{x} - \sqrt[4]{y}$$
 b) $(a \ge 0 \land b \le 0) \Rightarrow (ab \le 0)$

c)
$$(-a)(-b) = ab$$

d)
$$u+v>0 \implies (u>0 \land v>0)$$

- 10- a) Escriba las siguientes proposiciones en forma simbólica. Muestre que son falsas, haciendo uso de un ejemplo adecuado (llamado contraejemplo).
 - i) La diferencia de dos números irracionales es un irracional.
 - ii) La potencia de una suma es igual a la suma de las potencias.
 - b) Exprese las siguientes proposiciones en forma simbólica. Pruebe que son verdaderas, usando el método de demostración directa.
 - i) La suma de dos números racionales es un racional.

ii) Si
$$a = \log 7$$
 y $b = \log 28 + \log 15 - \log 6$ entonces $b = a + 1$.