Polio Vaccine Schedules: IPV-only and IPV-containing wP Hexavalent

H. Verma, E. Akiki
22nd SAGE Polio WG Meeting
Aug 31 - Sept 2, 2021

Member States using different polio vaccination schedules, 2021

shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization of any country, territory, city or area nor of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate may not yet be full agreement.

WHO, 2021 All rights reserved

of countries using polio vaccination schedules by region, 2021

[bOPV+IPV (1 or 2 IPV doses), IPV-only (standalone & in combo Hexa-aP)]

WHO Region (# of Member States)	OPV+IPV	IPV- only	IPV Combo
AMR (35)	28 (80%)	2 (6%)	5 (14%)
EUR (53)	18 (34%)	3 (6%)	32 (60%)
WPR (27)	16 (59%)	1 (4%)	10 (37%)
EMR (21)	21 (100%)	0	0
AFR (47)	47 (100%)	0	0
SEAR (11)	11 (100%)	0	0
TOTAL (n= 194)	141	6	47

Question #1 to SAGE WG: IPV-only schedules

Among the currently recommended schedules, what is the preferred IPV-only schedule(s) for polio free regions/countries, if they want to stop OPV <u>before</u> global cessation? What are the pros and cons of different schedules in the present epidemiological context?

Background

- There are existing WHO schedule recommendations for:
 - ▶ bOPV+IPV (3 doses +2 doses) (pre-eradication era)
 - > IPV (3 dose primary series with a booster if 1st dose given "early" <2 months of age)
 - > IPV 2 doses (for OPV cessation/post eradication era)
- There is a renewed request from polio free regions of PAHO, EURO and WPRO for guidance as some countries indicate intention to stop using OPV
- This is a continuation of discussions at March 2020 meeting

Presenting

Data on various schedules to revisit the evidence and reaffirm the recommendations

Polio Vaccines: Current WHO Recommendations

т	Table 2: Summary of WHO Position Papers - Recommended Routine Immunizations for Children												
Ant	tigen	Age of 1st Dose	Doses in Primary	Inte	rval Between Doses		Booster Dose	Considerations (see footnotes for details)					
AIII	ilgeli	Age of 13t Dose	Series	1st to 2nd	2 nd to 3 rd	3 rd to 4 th	Dooster Dose	(see footnotes for details)					
Recommend	ations for all chi	ldren											
	PODA + IDA	bOPV 6 weeks (min) IPV 14 weeks (min)	5 (3 bOPV and 2 IPV)	bOPV 4 weeks (min) with DTPCV2 IPV 4 months (min)	bOPV 4 weeks min with DTPCV3			bOPV birth dose Type of vaccine Fractional dose IPV Alternative early IPV schedule					
Polio ³	IPV / bOPV Sequential	8 weeks (IPV 1st)	1-2 IPV 2 bopv	4-8 weeks	4-8 weeks	4-8 weeks		Transmission and importation risk					
	IPV	8 weeks	3	4-8 weeks	4-8 weeks		(see footnote)	IPV booster needed for early schedule (i.e. first dose given <8 weeks)					

- Polio Vaccine Position paper: Weekly Epid. Record (2016, 9:145-68)
 (A revised Polio Vaccine Position Paper is forthcoming in 2022)
- SAGE Meetings Conclusions & Recommendations: <u>March 2021 SAGE Meeting: Weekly Epid. Record (2021, 96:133-144)</u>; <u>October 2020 SAGE Meeting: Weekly Epid. Record (2020, 95: 585 607)</u>; <u>March 2020 Meeting: Weekly Epid. Record (2020, 95: 241-256)</u>

Question #1: IPV-only Schedule Evidence Review

Reminders:

- Polio Vaccine Position Paper (2016): An IPV-only schedule may be considered in countries
 with sustained high vaccination coverage and very low risk of both WPV importation and
 transmission. IM IPV may be included as a component of combination vaccines
- SAGE Meeting March 2020: In the current epidemiological context and as a general principle, SAGE expressed the need for regions or countries to be cautious about moving from bOPV + IPV schedule to an IPV-only schedule in their routine immunization programmes and recommended that instead they take a gradual approach, by first introducing a second dose of IPV into their routine immunization schedules.
 - > The following series of slides summarize a WHO meta-analysis of IPV immunogenicity data for different primary immunizations schedules and the booster
 - > Risk and benefits of OPV cessation in the current epidemiological context

Meta-analysis findings of 2 full doses of IPV (no OPV) by different schedules (SALK)

Meta-analysis findings of 3 IPV only (full) doses by different schedules (SALK)

Meta-analysis findings comparing two dose IPV only and three dose IPV only schedules (SABIN)

Type 1 immuno	24-07-4221	Type 2 immi		Type 3 immunogenicity		
Study	ES (95% CI)	Study	ES (95% CI)	Study	ES (95% CI)	
4, 8 months Yamin et al. (China) (Lancet Western Pacific, April 2021)	■ 1.00 (0.99, 1.00)	4, 8 months Yamin et al. (China) (Lancet Western Pacific, April 2021)	■ 0.99 (0.97, 1.00)	4, 8 months Yamin et al. (China) (Lancet Western Pacific, April 2021)	■ 0.98 (0.96, 0.99)	
2, 3, 4 months Yamin et al. (China) (Lancet Western Pacific, April 2021)	■ 1.00 (0.98, 1.00)	2, 3, 4 months Yamin et al. (China) (Lancet Western Pacific, April 2021)	■ 0.97 (0.94, 0.99)	2, 3, 4 months Yamin et al. (China) (Lancet Western Pacific, April 2021)	■ 1.00 (0.99, 1.00)	
Yuemei Hu et al. (China) (JID 2019) Hanqing He et al. (China) (Lancet Inf Dis 2020)	■ 0.99 (0.98, 1.00) ■ 1.00 (0.98, 1.00)	Yuemei Hu et al. (China) (JID 2019) Hanqing He et al. (China) (Lancet Inf Dis 2020)	■ 0.99 (0.97, 0.99) ■ 0.99 (0.96, 1.00)	Yuemei Hu et al. (China) (JID 2019) Hanqing He et al. (China) (Lancet Inf Dis 2020)	■ 1.00 (0.99, 1.00) ■ 1.00 (0.98, 1.00)	
Chu kai et al. (China) (Vaccine 2018) Guoyang Liao et al. (China) (JID 2016)	1 1.00 (0.96, 1.00) ■ 1.00 (0.99, 1.00)	Chu kai et al. (China) (Vaccine 2018) Guoyang Liao et al. (China) (JID 2016)	-■ 0.97 (0.92, 0.99) ■ 0.95 (0.93, 0.96)	Chu kai et al. (China) (Vaccine 2018) Guoyang Liao et al. (China) (JID 2016)	■ 0.99 (0.95, 1.00)	
Subtotal	1.00 (1.00, 1.00)	Subtotal	0.97 (0.96, 0.99)	Subtotal	1.00 (0.99, 1.00)	

.3 .4 .5 .6 .7 .8 .9 1

Seroconversion (Proportion)

Meta-analysis findings comparing three dose fIPV only schedules (SALK)

Type 1 immunogenicity		Type 2 immunogenicity		Type 3 immunogenicity		
* Study	ES (95% CI)	Study	ES (95% CI)	Study	ES (95% CI)	
6, 10, 14 weeks Josefina Cadoma-Carlos et al. (Philippines) (Int J Inf Dis 2012) Sonia Resik et al. (Cuba) (JID 2010) Subtotal	-■ 0.94 (0.89, 0.97) -■ 0.85 (0.79, 0.89)	6, 10, 14 weeks Josefina Cadorna-Carlos et al. (Philippines) (Int J Inf Dis 2012) Sonia Resik et al. (Cuba) (JID 2010) Subtotal	-■ 0.94 (0.89, 0.97) -■ 0.85 (0.79, 0.89) ◇ 0.89 (0.85, 0.92)	6, 10, 14 weeks Josefina Cadorna-Carlos et al. (Philippines) (Int J Inf Dis 2012) Sonia Resik et al. (Cuba) (JID 2010) Subtotal	-■ 0.95 (0.90, 0.98) -■- 0.69 (0.62, 0.75) ○ 0.81 (0.76, 0.85)	
6, 14, 22 weeks Snider Cynthia et al. (Bangladesh) (Lancet 2019)	0.98 (0.95, 0.99)	6, 14, 22 weeks Snider Cynthia et al. (Bangladesh) (Lancet 2019)	0.96 (0.93, 0.98)	6, 14, 22 weeks Snider Cynthia et al. (Bangladesh) (Lancet 2019)	■ 0.99 (0.96, 0.99)	
2, 4, 6 months Ali Jafer Mohammed et al. (Oman) (NEJM 2010)	■ 0.96 (0.92, 0.98)	2, 4, 6 months Ali Jafer Mohammed et al. (Oman) (NEJM 2010)	1 0.96 (0.92, 0.98)	2, 4, 6 months Ali Jafer Mohammed et al. (Oman) (NEJM 2010)	■ 0.98 (0.95, 0.99)	
10, 14, 36 weeks Ananda et al. (Panama and Dominican Rep) (Lancet 2020)	1 0.99 (0.96, 1.00)	10, 14, 36 weeks Ananda et al. (Panama and Dominican Rep) (Lancet 2020)	■ 1.00 (0.98, 1.00)	10, 14, 36 weeks Ananda et al. (Panama and Dominican Rep) (Lancet 2020)	-■ 0.94 (0.89, 0.97)	
	5 .6 .7 .8 .9 1		I I I I I I .5 .6 .7 .8 .9 1	Seroconversion (Proportion		

Impact of IPV booster dose on antibody titres

Author, Journal	Schedule		fII	PV		IPV	sl	PV
			Pre-booster titers (95% CI)	Post-booster titers (95% CI)	Pre-booster titer (95% CI)	Post-booster titers (95% CI)	Pre-booster titers (95% CI)	Post-booster titers (95% CI)
Josefina Cadorna- Carlos et al; Int J Inf Dis 2012	6, 10, 14 weeks, 18 months	Type 1	48.2 (38.7-59.9)	2833 (2392-3356)	109.8 (84.3-143.2)	6666 (5540-7678)		
Josefina Cadorna- Carlos et al; Int J Inf Dis 2012	6, 10, 14 weeks, 18 months	Type 2	94 (65.8-134.2)	3210 (2672-3857)	132.5 (98.4-178.3)	6522 (5540-7678)		
Josefina Cadorna- Carlos et al Int J Inf Dis 2012	6, 10, 14 weeks, 18 months	Type 3	50.3 (37.8-87.4)	4498 (3608-5607)	136 (103-181)	11952 (10046-14220)		
Guoyang Liao et al; JID 2016	2, 3, 4, 18 months	Type 1			92.1 (83.6-101.4)	4012.4 (3762.1-4283)	729.3 (661.2-804.4)	11935 (11485-12403)
Guoyang Liao et al; JID 2016	2, 3, 4, 18 months	Type 2			79.7 (71.9-88.5)	3017.6 (8210.1-3240.4)	114.8 (101.2-130.2)	6616.2 (6195.1-7066)
Guoyang Liao et al; JID 2016	2, 3, 4, 18 months	Type 3			79.3 (69.5-90.4)	5516.4 (5122.8-5940.2)	219.6 (195.5-246.7)	6795.3 (6372.2-7246.4)

Summary Findings: IPV-only Schedule

- 2 IPV doses (full/fractional) starting at 14 weeks with an interval of at least 4 months provide high sero-protection against all three polio types (reconfirms current recommendation)
- 3 IPV full doses (Salk/Sabin) provide high seroprotection when starting from 8 weeks of age with benefit of early protection (reconfirms current recommendation)
- 3 IVP full doses (Salk/Sabin) using «early schedule» starting at 6 weeks of age (6,10, 14 weeks) showed lesser immunogenicity. Justifying the need for a booster?
- 3 fIPV doses in «early schedule» (6, 10, 14 weeks) do not provide equivalent/high seroconversion as compared to 2 fIPV starting at 14 weeks of age with longer interval between the doses
- Affordable fIPV schedule options with benefits of early protection and higher immunity being explored: 10,14,36 weeks fIPV data available; 6,14,36 weeks fIPV data being generated. Moreover, fIPV IM study in Cuba showed equivalence to fIPV ID; Follow up study is in progress in Mozambique, no data yet on fIPV Sabin

Early Cessation of OPV in bOPV+IPV Countries: Risks & Benefits of moving to IPV-only schedule

PROS

- Excellent humoral immunity: No paralytic cases of polio in IPV only using countries (caveat: cVDPV1 cases and VDPV1 and 2 in ES in Malaysia in 2019-2020)
- ✓ No vaccine-associated paralytic polio (VAPP) reported from IPV only using countries
- No seeding of Sabin strains and no resultant emergence of VDPV or cVDPV outbreaks in IPV only using countries

CONS

- Poor to non-existent mucosal immunity:
 - Spread of WPV1 in Israel in 2012 was stopped only with reintroduction of OPV;
 - VDPV in Malaysia required OPV response
- No secondary spread of OPV virus
- Early protection requires a 3-4-dose IPV schedule (because of interference with maternal antibodies)
- IPV supply situation? Improved enough for 2 doses or more, but may create an imbalance if many more countries move to a 3-4-dose schedule

Question #1 to SAGE WG: IPV-only schedules

Among the currently recommended schedules, what is the preferred IPV-only schedule(s) for polio free regions/countries, if they want to stop OPV before global cessation?

What are the pros and cons of different schedules in the present epidemiological context?

- 2 dose IPV, full/fractional, starting ≥14 weeks and 2nd dose at an interval of ≥ 4 months
- 3 dose IPV primary series, starting ≥8 weeks of age with 4–8-week interval between doses. If 1st dose given <8 weeks of age, then a booster is required ≥ 6 months after the 3rd dose. Early protection is an obvious advantage in the preeradication phase to avoid risk of infection/importation
- Should fractional-dose IPV be recommended for early schedules? For IPV affordability /availability reasons
- Besides high immunogenicity and early protection, are there other criteria that should be considered, such as operational ease, coverage/compliance benefits, need for additional logistics/training and smooth transitioning to hexavalent schedule in future?
- Is there any need for new recommendations for IPV-only schedules, or for revision of the current recommendations?
- Should the current caution about moving from bOPV+IPV to IPV-only schedules be retained?

IPV-containing wP Hexavalent vaccine (DTwP-Hib-HepB-IPV)

Currently no country is using wP Hexa in EPI schedule, but some products are in development and Gavi is considering support to the eligible countries

Requesting SAGE WG to reflect on schedule(s)

Gavi's perspectives about Hexa support (1/2)

- In the last 3 years, Gavi worked on **several strategic assessments** about Hexa, and the **Board approved in principle support of Hexa**¹ (Nov 2018)
- Gavi considers Hexa as a potentially attractive immunization option and targets a gradual market evolution towards a choice of 1) Penta + IPV, and 2) Hexa based options for vaccination
 - Hexa-based schedules (3+1 or 3+DTP/Penta) are expected to provide programmatic advantages by reducing the total number of injections and delivery costs and potentially improving IPV coverage
 - Hexavalent vaccines for Gavi support should achieve SAGE defined IPV immunogenicity targets with the least number of doses
 - Mixed schedule Penta/IPV/Hexa in primary series is not considered as programmatically suitable for Gavi-supported countries
 - Some countries are expected to stay on [Penta+IPV] for cost-related reasons or if they are currently using fIPV
- The delay of polio eradication timelines and subsequently longer use of IPV increase attractiveness of Hexa that can reduce the risk of premature discontinuation of IPV
 - bOPV cessation is not considered as a prerequisite to introduce Hexa

^{(1):} The "in principle decision" expresses Gavi's interest to support Hexa vaccine, while acknowledging that a prequalified product is not yet available and that some conditions need to be met before Gavi's support is made available.

Gavi's perspectives about Hexa support (2/2)

- Gavi considers the 2019-2022 period as a **critical window of opportunity for market shaping** to improve Hexa market attributes and ensure such developments are not detrimental to the Penta and IPV standalone markets.
- SAGE's recommendation about Hexa schedule will support planning efforts ahead of a potential Gavi Board decision to open a funding window for Hexa in 2022.
 - If a funding window is opened for Hexa, earliest country introduction is expected in 2023 (best case)
 - Uncertainties remain about whether the necessary conditions to open a funding window would be met, including the availability of Hexa vaccines at an acceptable price

IPV-containing wP Hexavalent Pipeline update

Sanofi / Shantha	LicensedSubmitted PQ applicationExpected PQ in Q1 2022
Panacea	LicensedNo clear timelines for PQ
Supplier 3	Licensure expected end of 2021PQ submission in 2022
Supplier 4	- In development with targeted PQ in H2 2025
Supplier 5	- In development with targeted PQ in H2 2025

One of the suppliers uses Sabin IPV in its Hexa development program

Available data on IPV wP Hexa products*

sno	Product	Trial design/Schedule	Results (seroprotection, GMTs)	Inference	Conclusion
1	Easy 6 (Panecea Biotech Ltd product) vs Pentavac SD and Imovax Polio	Phase III; 6, 10, 14 weeks (In India)	Anti-polio type 1: 89.7 (83.3-94.3) vs 91.9 (86-96) Anti-polio type 2: 93.4 (87.8-96.8) vs 94.1 (88.7-97.4) Anti-polio type 3: 88.2 (81.6-93.1) vs 90.4 (84.2-94.8)	High immunogenicity to all penta antigens, around 90% seroconversion to all three poliovirus serotypes	NI for immunogenicity to Penta + IPV
2	Shan6 (Sanofi product) vs Shan5 + Shan IPV and a booster at 12-24 months	Phase III; 6, 10, 14 weeks and 12 months (In India)	Anti-polio type 1: 100 (99.6-100) vs 100 (98.7-100) Anti-polio type 2: 99.7 (99-99.9) vs 100 (98.7-100) Anti-polio type 3: 100 (99.6-100) vs 100 (98.7-100)	High immunogenicity to all penta antigens, almost 100% seroconversion to all three poliovirus serotypes	NI for immunogenicity to Penta + IPV

NI – Non-inferior

References:

- 1. Mohanty L, Sharma S, Behera B, Panwar S, Paliwal C, Gupta A, Chilkoti DC, Singh A. A randomized, open label trial to evaluate and compare the immunogenicity and safety of a novel liquid hexavalent DTwP-Hib/Hep B-IPV (EasySix™) to licensed combination vaccines in healthy infants. Vaccine. 2018 Apr 19;36(17):2378-2384. doi: 10.1016/j.vaccine.2017.09.029. Epub 2018 Mar 23. PMID: 29580640.
- 2. Unpublished/Personal communication

Ab Persistence and Booster responses (early data)

GMTs: Transition from Pre-Dose 1 to Post-dose 4

Antigen		SH601 Study	(Cohort 2)	SH602 Study		
	Primary series	Pre-Dose 1	Post-Dose 3	Ab persistence	Post-Dose 4 (Shan6 Booster)	
Anti-Polio-1	Shan6	34.6 (24.6;48.5)	1327 (1031;1708)	1307 (930;1837)	4240 (3359;5353)	
1/dil	Shan5+IPV	19.2 (12.3;30.1)	587 (430;803)	965 (640;1454)	2448 (1795;3338)	
Anti-Polio-2	Shan6	13.4 (10.3;17.4)	724 (547;959)	218 (158;301)	3898 (3116;4876)	
1/dil	Shan5+IPV	13.6 (9.25;20.1)	334 (248;452)	181 (118;277)	3262 (2350;4527)	
Anti-Polio-3	Shan6	18.7 (13.0;27.0)	1599 (1330;1966)	924 (667;1281)	5458 (4256;7001)	
1/dil	Shan5+IPV	24.1 (14.6;39.7)	424 (322;558)	710 (452;1114)	5144 (3591;7368)	

Shan6 Clinical Development Program: second wave (ongoing)

Study	Sample Size	No of SHAN6 recipients	Design
SH600004 India (Booster of SH600003) (Phase III)	676 toddlers (12-24 months)	676	 Descriptive, open-label SHAN6 booster (10-d vial) in 2nd year of life (12-24 mos) SHAN6 vs SHAN6 + MMR (2nd dose)
SH600008 Kenya (Phase III)	690 infants (6-8 weeks)	460	 Randomized, active control (vs SHAN5 & bOPV/IPV) Safety, immunogenicity 3 doses at 6 / 10 / 14 weeks of age Sequential infant schedule in one arm Hexa-Penta-Hexa Concomitant: ORV and PCV Toddler booster at 18 months
SH600009 Thailand (Phase III)	460 infants (8-10 weeks)	230	 Randomized, active control (vs SHAN5 & bOPV/IPV) Safety, immunogenicity 3 doses at 2 / 4 / 6 months of age Concomitant: ORV and PCV Toddler booster at 18 months
SH600007 Vietnam (Phase III)	500 infants (8-10 weeks)	250 FVFS Q2-22	 Randomized, active control (vs wP pentavalent + bOPV & IPV) Safety, immunogenicity 3 doses at 2 / 3 / 4 months of age

Summary: Polio immunogenicity of IPV-containing wP Hexavalent schedules

- Non-inferiority demonstrated (Hexa vs Penta+IPV) in «early schedule» weeks (6,10,14 weeks) with high immunogenicity (~90%) against all three poliovirus serotypes (also confirmed NI for other antigens see additional slides for data)
- We can expect/assume similar/higher immunogenicity with schedules starting from 8 weeks of age (e.g. 2, 3 & 4 months or 2, 4 & 6 months); Studies are in pipeline to confirm
- Can we conclude there should be no major concerns about IPV immunogenicity in IPVcontaining wP Hexavalent products in different primary schedules
- Is a Hexa booster needed for polio immunogenicity in early schedule or DTPCV booster should continue?*

^{*} WHO Recommends DTP-containing vaccine booster at 12-23 months of age following 3 primary doses starting from 6 weeks of age (min) with 4 week interval between doses.

Schedule Options for Discussion

	Primary im	munization s	chedule		DTPCV booster	Number of injections
Schedule options	6 weeks	10 weeks	14 weeks	9 months	12-24 months	
Penta + IPV (with/without bOPV)	Penta1	Penta2	Penta3 + IPV1 (full or fIPV*)	IPV2 (full or fIPV*)	Penta4 or DTwP	6
Penta-Hexa mixed +IPV	Penta1	Penta2	Hexa1	IPV1	Penta or DTwP	5
3 dose Hexa (Penta or DTWP booster)	Hexa1	Hexa2	Hexa3		Penta1 or DTwP	4
Full Hexa (3+1 booster)	Hexa1	Hexa2	Hexa3		Hexa4	4

Pros and Cons of Different Schedules

Schedule	Pros	Cons	other considerations
Penta (3) + IPV (2) (with/without bOPV)	 High affordabilty/cost saving from IPV point of view Dose/supply sparing with fIPV 	 Missing early IPV protection in high risk countries 	 Countries are transitioning to this schedule now
Penta-Hexa mixed (2 Penta + 1 Hexa + 1 IPV) (with Penta or DTwP booster)	Some affordability and cost savings retained	 Programmatically complex? Confusion for HWs when child delayed for vaccination, missed doses and off schedule, what booster? 	 Vaccine wastage for Hexa > than Penta? Management of multiple products in cold chain
3 dose Hexavalent (with Penta or DTwP booster)	 Easy to do - replace penta+IPV with Hexa (and reduce 1 injection and associated costs) Presumed good polio immunogenicity if 1st dose starts at 8 weeks age 	 Higher cost versus Penta + IPV schedule There might be concerns for polio immunity for countries using early schedule starting from 6 weeks (i.e. most Gavi countries) unless a booster is provided 	 Very practical (less injections) Higher vaccine procurement costs will be offset by programmatic ease
Full Hexa (3+1 booster)	 Ideal situation if more products, favourable data, enough supplies and affordable 	 Possibly none except the Cost? As combo vaccine will never stop using IPV 	 Advantageous to have one product for the primary series and the booster, from the supply and cold chain perspectives

Question #2 to SAGE WG:

Considering the pre and post eradication contexts and the available licensed products, data, supply pipeline and the timeline of IPV-containing wP Hexavalent and in support of Gavi's planning efforts:

- Is it possible to offer a perspective on preferred schedule(s) if some countries wish to introduce IPV-containing wP Hexavalent (replacing Penta/DTP and standalone IPV)?
- Is a Hexa booster (4th dose) recommended for early schedule starting from 6 weeks of age?

Thanks

Additional slides

IMMUNOGENICITY RESULTS

Shan6™

Primary Objective: Non-inferiority vs Shan5 + ShanIPV (1/3)

Anti-D, Anti-T, Anti-HBs and Anti-PRP: Seroprotection (SP) rates

	Results (N=1149) Non-Inferiority Comparison								
Antigen/Criteria Post- dose 3	Group	n/M	%	(95% CI)	Comparison	Difference	(95%CI)	Delta (%)	Non- inferiority
Anti-D	All Shan6	864/864	100.0	(99.6; 100.0)	Shan6 Vs	0.00	(0 44, 4 22)	-10%	Voc
SP (≥ 0.01 IU/mL)	Shan5+IPV	285/285	100.0	(98.7; 100.0)	Shan5+IPV	0.00	(-0.44; 1.33)	-10%	Yes
Anti-T	All Shan6	864/864	100.0	(99.6; 100.0)	Shan6 Vs	0.00	(0 44: 1 22)	100/	Voc
SP(≥ 0.01 IU/mL)	Shan5+IPV	285/285	100.0	(98.7; 100.0)	Shan5+IPV	0.00	(-0.44; 1.33)	-10%	Yes
Anti-HBs	All Shan6	860/863	99.7	(99.0; 99.9)	Shan6 Vs	0.25	(1 02: 1 01)	100/	Voc
SP (≥ 10 mIU/mL)	Shan5+IPV	283/283	100.0	(98.7; 100.0)	Shan5+IPV	-0.35	(-1.02; 1.01)	-10%	Yes
Anti-PRP	All Shan6	864/864	100.0	(99.6; 100.0)	Shan6 Vs	0.00	(0 44, 4 99)	4.00/	Vaa
SP (≥ 0.15 μg/mL)	Shan5+IPV	285/285	100.0	(98.7; 100.0)	Shan5+IPV	0.00	(-0.44; 1.33)	-10%	Yes

Non-inferiority concluded if the lower limit of 2-sided 95% CI of difference between batches is greater than -10%

Primary Objective: Non-inferiority vs Shan5 + ShanIPV (3/3)

Anti-PT and anti-FIM: Adjusted GMCs (aGMCs)

	Results (N=1149)				Non-Inferiority Comparison				
Antigen/Criteria Post- dose 3	Group	M	aGMC	(95% CI)	Comparison	Ratio	(95%CI)	Delta (%)	Non- inferiority
Anti-PT	All Shan6	864	86.2	(77.3; 96.1)	Shan6 Vs	1.33	(1.07; 1.66)	0.5	Yes
	Shan5+IPV	285	64.6	(53.4; 78.1)	Shan5+IPV				
Anti-FIM	All Shan6	864	1251	(1148; 1365)	Shan6 Vs	0.994	(0.83; 1.18)	0.5	Yes
	Shan5+IPV	285	1260	(1083; 1465)	Shan5+IPV				

Non-inferiority concluded if the lower limit of 2-sided 95% CI of ratio between 2 batches is greater than 0.5

Secondary Endpoints: Vaccine Response Rate for Pertussis 💦 Post-dose 3

VRR Definition:

- If the pre-primary vaccination concentration is <4xLLOQ, then the post-Primary vaccination concentration is ≥ 4x LLOQ.
- If the pre-primary vaccination concentration is ≥4xLLOQ, then the post-Primary vaccination concentration is ≥ the pre-primary vaccination concentration.

Ab Persistence and Booster responses (1/3)

GMCs: Transition from Pre-Dose 1 to Post-dose 4

		SH601 Study ((Cohort 2)	SH602 Study		
Antigen	Primary series	Pre-Dose 1	Post-Dose 3	Ab persistence at 18 months	Post-Dose 4 (Shan6 Booster)	
Anti-D IU/mL	Shan6	0.016 (0.013;0.020)	2.39 (1.94;2.69)	0.237 (0.181;0.310)	6.34 (4.93;8.15)	
	Shan5 + IPV	0.022 (0.015;0.033)	2.46 (1.76;3.44)	0.263 (0.165;0.419)	7.57 (4.96;11.6)	
Anti-T IU/mL	Shan6	2.50 (2.06;3.04)	2.26 (1.89;2.71)	0.762 (0.561;1.03)	15.4 (12.6;18.9)	
	Shan5 + IPV	2.30 (1.65;3.21)	3.20 (2.42;4.24)	1.34 (0.813;2.21)	21.2 (15.4;29.3)	
Anti-HBs mIU/mL	Shan6	4.18 (3.08;5.67)	1219 (912;1629)	384 (247;597)	12020 (8313;17380)	
	Shan5 + IPV	4.03 (2.72;5.98)	974 (746;1271)	293 (193;445)	17769 (12375;25513)	
Anti-PRP µg/mL	Shan6	0.240 (0.177;0.325)	21.1 (17.8;25.0)	15.5 (10.9;22.0)	186 (147;237)	
	Shan5 + IPV	0.247 (0.160;0.382)	19.0 (14.8;24.6)	8.46 (5.56;13.3)	203 (146;282)	

Ab Persistence and Booster responses (3/3)

Anti-PT and Anti-FIM: Transition from Pre-Dose 1 to Post-dose 4

Antigen		SH601 Study	(Cohort 2)	SH602 study		
	Primary series	Pre-Dose 1	Post-Dose 3	Ab persistence	Post-Dose 4 (Shan6 Booster)	
Anti- PT EU/mL	Shan6	3.87 (3.24;4.63)	96.9 (66.3;142)	20.9 (14.5;30.1)	163 (122;217)	
	Shan5+IPV	4.65 (3.63;5.95)	52.6 (30.4;91.1)	14.2 (8.71;23.2)	121 (79.9;183)	
Anti-FIM EU/mL	Shan6	7.35 (5.38;10.0)	1080 (832;1404)	116 (85.6;157)	1687 (1421;2001)	
	Shan5+IPV	8.86 (6.26;12.5)	1001 (681;1472)	119 (69.9;203)	1419 (858;2347)	

