<u>Tableau de bord</u> / Mes cours / <u>LU3IN006 - S1</u> / <u>QCM5 - Interprétation des quantificateurs</u>

/ OCM5-2 Interprétation d'une formule atomique quantifiée

Commencé le	mardi 8 décembre 2020, 15:46
	Terminé
Terminé le	mardi 8 décembre 2020, 15:57
Temps mis	11 min 4 s
Note	7,00 sur 7,00 (100 %)
Question 1 Correct Note de 1,00 sur 1,00	On considère une structure ${\bf M}$ dont le domaine d'interprétation est l'ensemble ${\mathbb N}$ des entiers naturels, munie de l'addition et d'un prédicat p d'arité 2 tel que $p^{{\bf M}}=\{(x,y)\mid y=x+2\}$. Pour une valuation v quelconque, la valeur de $[\forall x\;\exists y\;p(x,y)]^{{\bf M}}_v$ est :
Question 2 Correct Note de 1,00 sur 1,00	On considère une structure ${\bf M}$ dont le domaine d'interprétation est l'ensemble ${\mathbb N}$ des entiers naturels, munie de l'addition et d'un prédicat p d'arité 2 tel que $p^{{\bf M}}=\{(x,y)\mid y=x+2\}$. Pour une valuation v quelconque, la valeur de $[p(0,0)]_v^{{\bf M}}$ est : $ {\bf Veuillez\ choisir\ au\ moins\ une\ réponse}: $
Question 3 Correct Note de 1,00 sur 1,00	On considère une structure ${\bf M}$ dont le domaine d'interprétation est l'ensemble ${\mathbb N}$ des entiers naturels, munie de l'addition et d'un prédicat p d'arité 2 tel que $p^{\bf M}=\{(x,y)\mid y=x+2\}$. Pour une valuation v telle que $v(y)=1$, la valeur de $[\exists x\ p(y,x)]_v^{\bf M}$ est :
Question 4 Correct Note de 1,00 sur 1,00	On considère une structure ${\bf M}$ dont le domaine d'interprétation est l'ensemble $\mathbb N$ des entiers naturels, munie de l'addition et d'un prédicat p d'arité 2 tel que $p^{\bf M}=\{(x,y)\mid y=x+2\}$. Pour une valuation v telle que $v(y)=1$, la valeur de $[\exists x\ p(x,y)]^{\bf M}_v$ est :

Question **5**Correct
Note de 1,00 sur 1,00

On considère une structure ${\bf M}$ dont le domaine d'interprétation est l'ensemble $\mathbb N$ des entiers naturels, munie de l'addition et d'un prédicat p d'arité 2 tel que $p^{{\bf M}}=\{(x,y)\mid y=x+2\}$. Pour une valuation v quelconque, la valeur de $[\forall x\; \forall y\; p(x,y)]^{{\bf M}}_v$ est :

Veuillez choisir au moins une réponse :

Question **6**Correct

Note de 1,00 sur

On considère une structure ${\bf M}$ dont le domaine d'interprétation est l'ensemble $\mathbb N$ des entiers naturels, munie de l'addition et d'un prédicat p d'arité 2 tel que $p^{\bf M}=\{(x,y)\mid y=x+2\}$. Pour une valuation v quelconque, la valeur de $[\exists x\; \forall y\; p(x,y)]_v^{\bf M}$ est :

Veuillez choisir au moins une réponse :

Question **7**Correct
Note de 1,00 sur 1,00

On considère une structure M dont le domaine d'interprétation est l'ensemble $\mathbb N$ des entiers naturels, munie de l'addition et d'un prédicat p d'arité 2 tel que $p^M = \{(x,y)|y=x+2\}$. Pour une valuation v quelconque, la valeur de $\begin{bmatrix}\exists x \ \exists y \ p(x,y)\end{bmatrix}_v^M$ est :

Veuillez choisir au moins une réponse :

■ QCM5-1 Interprétation d'un terme avec variable

Aller à... ♦

QCM5-3 Interprétation d'une formule quantifiée ►