

计算机组成原理

第五章:存储器层次结构

中山大学计算机学院 陈刚

2022年秋季

- 1. 假定8位计算机具有24 位地址A23-A0,按其最大寻址能力配置主存储器,采用字节编址方式,请回答下列问题:
 - 存储器的容量是多少?
 - 如果用2M×1 位的存储器芯片构造该存储器, 共需多少个芯片?
 - 该存储器需要多少个片选信号? 用哪几位地址信号生成这些片选信号?
- 2、某CPU地址线 $A_{15} \sim A_0$,数据线 $D_7 \sim D_0$,WR为读/写信号,MREQ为访存请求信号。0000H ~ 3FFFH为系统程序区,4000H ~ FFFFH为用户程序区。请用8K×4位ROM芯片和16K×8位RAM芯片构成该存储器,要求说明地址译码方案,并画出ROM芯片、RAM芯片与CPU的连接。

假定8位计算机具有24 位地址A23-A0,按其最大寻址能力配置主存储器,采用字节编址方式,请回答下列问题:

- □存储器的容量是多少?
 - □ 24位地址->地址空间是2^24 Byte->16MB;
- □如果用2M×1 位的存储器芯片构造该存储器, 共需多少个芯片?
 - □ 字扩展: 16/2=8
 - □ 位扩展: 8/1=8
 - **8*8=64**
- □ 该存储器需要多少个片选信号? 用哪几位地址信号生成这些片选信号?
 - □ 字扩展: 8列, 每一列需要并接8个芯片的CS
 - □ 2M需要连接A20-A0, 高3位用于编码生成片选信号: A23-A21

 \square 2、某CPU地址线A₁₅~A₀,数据线D₇~D₀,WR为读/写信号,MREQ为访存请求信号。0000H~3FFFH为系统程序区,4000H~FFFFH为用户程序区。请用8K×4位R0M芯片和16K×8位RAM芯片构成该存储器,要求说明地址译码方案,并画出ROM芯片、RAM芯片与CPU的连接。

A15-A12 A11-A8 A7-A4 A3-A0

系统: 00 00 0000 0000 0000

00 11 1111 1111 1111

系统容量: 2^{14=16KB->16/8} * 8/2 =4片8K×4位ROM

用户: 01 00 0000 0000 0000

用户容量: 64KB-16KB=48KB 48/16=3片16K×8位RAM

A15-A12 A11-A8 A7-A4 A3-A0

系统: 0000 0000 0000 0000

0011 1111 1111 系统容量: 2^{14=16KB-}>16/8 * 8/2 =4片8K×4位ROM

用户: 0100 0000 0000 0000

1111 1111 1111 用户容量: 64KB-16KB=48KB 48/16=3片16K×8位RAM

课堂练习

- □某计算机的主存地址空间中,从地址0000₁₆到3FFF₁₆为ROM存储区域,从4000₁₆到7FFF₁₆为保留地址区域,暂时不用,从8000₁₆到FFFF₁₆为RAM地址区域。RAM的控制信号为CS#和WE#,CPU的地址线为A15[~]A0,数据线为8位的线路D7[~]D0,控制信号有读写控制R/W#和访存请求MREQ#,要求:
 - (1) 画出地址译码方案
 - (2) 如果ROM和RAM存储器芯片都采用8K×1的芯片, 试画出存储器与CPU的连接图。
 - (3) 如果ROM存储器芯片采用8K×8的芯片,RAM存储器芯片采用4K×8的芯片,试画出存储器与CPU的连接图。
 - (4) 如果ROM存储器芯片采用16K×8的芯片,RAM存储器芯片采用8K×8的芯片,试画出存储器与CPU的连接图。

确定地址分配

考虑地址连续,设计ROM占用前16KB,地址范围0 ~ 3FFFH; RAM占用后32KB,地址范围8000 ~ 0FFFFH。

画出地址分配表和地址位图

芯片编号	类型与容量	地址范围
0	ROM 8KB	0000H \sim 1FFFH
1	ROM 8KB	2000H∼3FFFH
4	RAM 8KB	8000H∼9FFFH
5	RAM 8KB	A000H~BFFFH
6	RAM 8KB	C000H∼DFFFH
7	RAM 8KB	E000H~FFFFH

片间地址线		线	片内地址线
A ₁₅	A ₁₄	A ₁₃	A_{12} \sim A_0
0	0	0	0号ROM芯片
0	0	1	1号
0	1	0	2号
0	1	1	3号
1	0	0	4号RAM芯片
1	0	1	5号
1	1	0	6号
1	1	1	7号

(1) 画出地址译码方案

(2) 如果ROM和RAM存储器芯片都采用8K×1的芯片, 试画出存储器与CPU的连接图。

解: (2) 8KB的存储区域可以用8片存储器芯片构成一组实现。8K×1的存储器芯片的地址线需要13条,即A12~0。

(3) 如果ROM存储器芯片采用8K×8的芯片,RAM存储器芯片采用4K×8的芯片,试画出存储器与CPU的连接图。

解: (3)

(4) 如果ROM存储器芯片采用16K×8的芯片,RAM存储器芯片采用8K×8的芯片,试画出存储器与CPU的连接图。

解: (4)

联系方式

- □Acknowledgements:
- ■This slides contains materials from following lectures:
- Computer Architecture (ETH, NUDT, USTC, SYSU)

□Research Area:

- 计算机视觉与机器人应用计算加速,
- 人工智能和深度学习芯片及智能计算机

□Contact:

- 中山大学计算机学院
- ➤ 管理学院D101 (图书馆右侧)
- ▶ 机器人与智能计算实验室
- cheng83@mail.sysu.edu.cn

