

RAD1509 - Estatística Aplicada à Administração II

Tópicos:

- Introdução à Análise Multivariada
- Regressão Linear Múltipla
- Álgebra Matricial: Autovalores e Autovetores
- Estatística Descritiva, Covariância, Correlação

Bibliografia:

- R.A. Johnson, Applied Multivariate Statistical Analysis, Prentice Hall, 1992
- N.K. Malhotra, Pesquisa de marketing, 4a ed., Bookman, 2006

RAD1509 - Estatística Aplicada à Administração II

Introdução à Análise Multivariada

Análise multivariada: De um modo geral, refere-se a todos os métodos estatísticos que simultaneamente analisam múltiplas medidas sobre cada indivíduo ou objeto sob investigação. Qualquer análise simultânea de mais de duas variáveis de certo modo pode ser considerada análise

multivariada

Introdução: Organização de dados, matrizes, vetores

Utilização de computação

- Possibilita a análise de grande quantidade de dados
- "Pacotes estatísticos" são acessíveis a não-especialistas
- A organização dos dados para acesso deve ser feita de forma apropriada. Neste contexto os dados devem ser organizados na forma matricial:

Observação	variável 1	variável 2	variável 3		variável k
Obs ₁	<i>x</i> ₁₁	x_{12}	<i>x</i> ₁₃		x_{1k}
Obs_2	x_{21}	x_{22}	x_{23}		x_{2k}
:	÷	÷	÷	٠.,	÷
Obs_n	x_{n1}	x_{n2}	x_{n3}		x_{nk}

 x_{ij} é a medida da **variável** \boldsymbol{j} sobre o item ou **indivíduo** \boldsymbol{i}

federal Introdução: Organização de dados, matrizes, vetores

A álgebra matricial é fundamental para desenvolver métodos de estatística multivariada.

As observações x_{ij} podem ser tratadas como uma matriz \mathbf{X} :

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1k} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2k} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ x_{j1} & x_{j2} & \cdots & x_{jk} & \cdots & x_{jp} \\ \vdots & \vdots & & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nk} & \cdots & x_{np} \end{bmatrix}$$

Matrizes e vetores: Autovetor e Autovalor

A matriz quadrada A tem autovalor λ , com autovetor correspondente não nulo $\mathbf{x} \neq \mathbf{0}$, se

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
 ou $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$

onde **0** é o **vetor** nulo.

Os **autovalores** λ são determinados resolvendo-se a equação

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \quad \text{ou} \quad \det(\mathbf{A} - \lambda \mathbf{I})$$

denominada: polinômio característico.

Autovalores

Exemplo: Vamos determinar os autovalores e autovetores da matriz $\begin{bmatrix} 1 & n \end{bmatrix}$

tovetores da matriz
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{vmatrix} 1 - \lambda & 0 \\ 1 & 3 - \lambda \end{vmatrix} = (1 - \lambda)(3 - \lambda) = 0$$

Os autovalores são $\lambda_1 = 1$ e $\lambda_2 = 3$

Cada autovalor corresponde a um autovetor. Para encontrar o autovetor substitua o autovalor na expressão $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ e encontre \mathbf{x} .

Autovetores: determinação de x₁

De acordo com o exemplo temos $\lambda_1 = 1$ e $\lambda_2 = 3$, ou seja dois autovalores. Vamos determinar os dois autovetores correspondentes \mathbf{x}_1 e \mathbf{x}_2 tal que:

$$\mathbf{A}\mathbf{x}_1 = \lambda_1 \mathbf{x}_1$$
 e $\mathbf{A}\mathbf{x}_2 = \lambda_2 \mathbf{x}_2$

Autovetor x_1 :

$$\mathbf{x}_{1} = \begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix} \quad \text{então:} \quad \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix} = 1 \begin{bmatrix} x_{11} \\ x_{21} \end{bmatrix}$$

Desenvolvendo o produto:

$$x_{11} = x_{11}$$
$$x_{11} + 3x_{21} = x_{21}$$

Existem muitas soluções. Se escolhermos x_{21} = 1, temos:

$$\mathbf{x}_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Autovetores: determinação de x₂

Autovetor \mathbf{x}_2 : Vamos determinar o autovetor $\mathbf{x}_2 = \begin{vmatrix} x_{12} \\ x_{23} \end{vmatrix}$ tal que $\mathbf{A}\mathbf{x}_2 = \lambda_2 \mathbf{x}_2$ ou seja:

$$\begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_{12} \\ x_{22} \end{bmatrix} = 3 \begin{bmatrix} x_{12} \\ x_{22} \end{bmatrix}$$
 Desenvolvendo o produto:
$$x_{12} = 3x_{12}$$

$$x_{12} = 3x_{12}$$

$$x_{12} + 3x_{22} = 3x_{22}$$

Vemos que x_{12} = 0, e que x_{22} pode ter qualquer valor. Assim, o autovetor x_2 pode ser dado por:

$$\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Um resumo com os autovetores normalizados

Considerando a matriz

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix}$$
, foi determinado $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ es: Autovetores:

Autovalores:

$$\lambda_1 = 1 e \lambda_2 = 3$$

$$\mathbf{x}_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \qquad \mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Os autovetores podem ser normalizados, ou seja ter módulo igual a $1.x_2$ já é normalizado.

Como $|\mathbf{x}_1| = \sqrt{5}$ os autovetores normalizados são:

$$\mathbf{e}_1 = \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \qquad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\mathbf{e}_1 = \begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \qquad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Matriz de correlação

$$\mathbf{R} = \begin{bmatrix} 1 & r_{12} & r_{13} & \dots & r_{1k} \\ r_{21} & 1 & r_{23} & \dots & r_{2k} \\ r_{31} & r_{32} & 1 & \dots & r_{3k} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ r_{k1} & r_{k2} & r_{k3} & \dots & 1 \end{bmatrix}$$

A matriz de covariâncias

S é uma matriz simétrica

$$\mathbf{s}_{ij} = \mathbf{r}_{ij} \mathbf{s}_i \mathbf{s}_j$$