1st paper: OPEN-VOCABULARY SPOKEN UTTERANCE RETRIEVAL USING CONFUSION NETWORKS

- Spoken utterance retrieval (SUR): retrieving short segments containing specific spoken terms or phrases from audio materials.
- Query: keywords or phrases
- Naïve approach: Using ASR (1-best-path) to index the audio to the text and then retrieving the terms from the text.
- Issue with 1-best-path ASR: recognition errors more seriously affect the retrieval performance. It can't work for OOV words.

• Alternatives:

- retrieving from N-best path ASR.
- using phonetic lattices specially for OOV terms. However, it dramatically increases the search space.
- Representing lattices in most compact representation, which is called confusion network (CN).
- Combining the word and phonetic lattices for both IV and OOV.

Mangu's algorithm

(b) Confusion network

Weights are normalized

- Word-phone-combined indexing:
 - Phone-based indexing is effective for OOV, however yields lower precision for IV words. Also, the search space is an issue.
 - Combining word and sub-word indexing is effective for both IV and OOV.
 - Combining word and phone confusion networks using WFST to align two networks.
 - Pruning phone arcs that are overlapping high confidence words to reduce the table size.

- (a) Word confusion network
- (b) Phone confusion network

(c) Word-phone combined network

• Utterance search:

- Representing the query in a automaton sequence.
- Given a query, finding set of utts which probably contain the query in two steps:
 - 1. Finding the utts and arcs which have the label in query ignoring the proximity.
 - 2. Checking the proximity of arcs for each utt found in the first step. It is done by doing automaton intersection between query and utts.

Experiments

- MIT lecture corpus (computer science), 300 hours, language models are constructed from textbooks.
- SUMMIT speech recognizer, vocabulary size: 16k words
- 1st experiment: 6 hours from 4 lectures, WER = 37.2 %
- 115 test queries (2.3 words per query in average), 13% OOV. Table 1. Index table size and retrieval performance for the small data collection.

	1-best	WLAT	WCN	PLAT	PCN
Table size [MB]	0.8	6.7	2.4	14.0	5.0
F-score [%]	70.3	77.1	77.6	78.5	80.2
IV queries	73.1	80.0	80.4	79.8	81.0
OOV queries	0	0	0	54.1	66.7

Experiments

- MIT lecture corpus, 300 hours, language models are constructed from textbooks.
- SUMMIT speech recognizer, vocabulary size: 16k words
- 2st experiment: 15 hours from 4 lectures, WER = 43.9 %
- 185 test queries (1.8 words per query in average), 13% OOV.

Table 2. Index table size and retrieval performance for the middle-size data collection.

	1-best	WLAT	WCN	PLAT	PCN
Table size [MB]	3.0	26.7	9.5	59.4	20.8
Max F-score [%]	82.5	83.8	83.8	74.9	74.5
IV queries	85.0	86.3	86.2	76.4	75.9
OOV queries	0	0	0	27.9	38.4

Combined word-phone indexing

Table 3. Index table size and retrieval performance with word-phone combined indexing for the middle-size data collection.

Threshold	-	0.95	0.8
Table size [MB]	51.6	36.1	29.2
Max F-score [%]	85.1	85.0	84.8
IV queries	86.2	86.2	86.2
OOV queries	52.0	51.7	48.4

2nd paper:

BALANCING FALSE ALARMS AND HITS IN SPOKEN TERM DETECTION

• Finding a good operational point for spoken term detection (SPD) is always challenging, specially when the queries are OOV terms.

query	GAVLAK					
reference pron	G	AE	V	L	AA	K
L2S 6 best prons	G	AE	V	L	AA	K
	Y	AA			AY	
		AX				
		EY				
index	Candidate Hits					
word decode	GET LIKE					
hybrid decode	G_AE_V L_EH_K			ζ		
phonetic lattice from hyb	G	AE	V	L	EH	K
					AE	

• WFST based indexing is used to model phonetic confusability.

- The paper addresses reducing the false alarm rate (FAR) while increasing true hits in a STD system.
- 2 approaches for reducing the FAR by panelizing the confidence score.
- 2 approaches for increasing the hits by incorporating cache features and using phonetic confusion transducer in query representation.

Reducing the FAR

- OOV-detection:
 - It's used to panelize the score of an occurrence of a query-term at a time int.
 - Combination of the entropy and posterior probabilities of the sub-word unit in CN are used to provide the confidence score:

$$OOV_{scr}(\lbrace t_j \rbrace) = \sum_{f \in \lbrace t_j \rbrace} p(f|t_j)$$

• Updating the score:

$$score_{Q}(\Delta_{t}, \gamma_{o}) = \begin{cases} score_{Q}(\Delta_{t}) & OOV_{scr}(\Delta_{t}) > 0 \\ score_{Q}(\Delta_{t}) \times \gamma_{o} & o/w \end{cases}$$

- Reducing the FAR
 - Query Length Normalization:
 - Incorporating a penalty term based on the length of the query term.
 - Hits with a longer duration are less likely to be false alarm.

$$score_q(\Delta_t, \gamma_L) = score_q(\Delta_t)^{\frac{\gamma_L}{\Delta_{avg}(q)}}$$

$$\gamma_L \in [0, 1]$$

Increasing hits

- Cache features
 - Assumption: rare words tend to appear in bursts.

$$score_Q(\Delta_t, \delta) = score_Q(\Delta_t)^{1/\#hits \in \Delta_{t\pm \delta}}$$

$$\delta \in [0, 1000]$$

- Increasing hits
 - Incorporating phonetic confusions
 - Query is represented using composition of following WFST:

$$qfst = bestpathN(I(q) \circ L2S \circ P2P)$$

- I(q): character transducer
- L2S: letter to sound transducer
- P2P: phonetic confusion transducer

• 1st Experiment

- 100 hours, 1290 OOVs, 5 hours DEV set
- IBM Hybrid LVCSR, 300hours of HUB4, voc size: 83k
- ATWV: average term weighted value

P2P-Nbest	none	10best	20best	100best
ATWV	0.342	0.368	0.384	0.398
%rel improv	-	7.6%	12.3%	16.4%

oovdet	length-norm	cache	Hits	FAs	ATWV
			9027	28472	0.398
X			8611	24378	0.399
	X		10053	25630	0.412
		X	9027	28472	0.398
	X	X	10053	25630	0.412
X	X	X	10320	35811	0.415

Table 4. OOVCORP Results using Automatic OOV-detector, Length-normalization, and Cache Features.

• 2nd Experiment

- NIST 2006 STD Dev06, 3 hours, 16 OOV
- 1107 query

oovdet	length-norm	cache	Hits	FAs	ATWV
			4752	388	0.849
X			4752	383	0.8497
	X		4845	427	0.8520
		X	4907	400	0.8551
X	X	X	5011	452	0.8597

Table 2. DEV06 Results using Automatic OOV-detector

Question

Vocabulary Independent Spoken Term Detection

Maider Lehr

November 8, 2012

1/12

Spoken Document Retrieval vs. Spoken Term Detection

Spoken Document Retrieval (SDR):

- Find spoken documents that are relevant to a given query
- Retrieval performance is quite flat with ASR WER variations in the range of 10-35%
- SDR of BN speech has been thought of as a solved problem Spoken Term Detection (STD):
 - Queries are usually short (1-3 words)
 - Find the occurrence positions of a queried term in the spoken document

(A survey on spoken document indexing and retrieval. Berlin Chen, 2008)

4□ > 4□ > 4 = > 4 = > = 90

2/12

Spoken Term Detection (Keyword spotting)

Usually 2 phases:

- Indexing:
 The speech data is automatically transcribed with an ASR and the index is created
- Searching

(CSLU/ OHSU)

Automatic Speech Recognition system

ASR output in the form of:

- 1-best transcript
- lattice: acyclic directed graph
- WCN; compact representation of a lattice

The last 2 options improve the recall of the term detection

4/12

ASR transcription granularity

Word-level transcripts

- More accurate audio indexing
- Issues with the OOV terms
- Lower recall

Phone-level transcripts

- No issues with the OOV terms
- Higher recall but lower precision
- not appropriate for IV terms

Combination of word and phone level transcripts

- Word-level transcripts for IV terms in the form of WCN
- Phone-level transcripts for OOV terms in the form of 1-best transcripts

(CSLU/ OHSU)

Proposed approach:

- Phrase queries with only IV terms use the word index created from the word-level transcripts
- Phrase queries with only OOV terms phone index created from the phone-level transcripts
- Phrase queries with IV and OOV terms:
 - Posting lists of the IV terms retrieved from the word index are merged with the posting lists of the OOV terms retrieved from the phonetic index.
 - ► The merging is done based on the timestamps stored in the posting lists.

6/12

Indexing

The index contains the following information for each unit u in a transcript D:

- begin time t of the occurrence u
- duration d of the occurrence u
 For the WCN-based indexing add:
- confidence level of occurrence u given by the posterior probability
- rank of the occurrence u w.r.t. the other candidates beginning at the same time

(CSLU/OHSU) November 8, 2012 7 / 12

Search

- If the query term in ASR vocabulary:
 Use the word index to extract the posting list of the term
- If the query term not in the ASR vocabulary:
 - map the query term into phone sequence
 - extract the posting lists for each phone
 - merge the results for each phone based on the timestamps
- merge results for the IV and OOV terms based on timestamps

(CSLU/ OHSU)

Ranking

Score of the IV terms:

$$score(k, t, D) = B_{rank(k|t,D)}xPr(k|t, D)$$

Score of the OOV terms:

$$score(k, t_0^k, D) = 1 - \frac{\sum_{i=1}^{I} 5x(t_i^k - (t_{i-1}^k + d_{i-1}^k))}{I}$$

Combination of scores:

$$score(Q, t_0, D) = \prod_{i=0}^{n} score(k_i, t_i, D)^{\gamma_n}$$

9/12

Experimental results: Data

Evaluation set: NIST set for STD 2006 evaluation (3hrs each set)

Corpus	BNEWS	CTS	CONFMTG
WER 1-best (WCN)	12.7	19.6	47.4

- word WCN + phone 1-best combination is only used for the BNEWS and CTS system
- phonetic transcripts too high error rates on CONFMTG
 Does it mean that precision/recall will be =0 for queries with OOV?

10 / 12

Experimental results

WCN vs 1-best

- Using WCN instead of 1-best improves the recall without significantly degrading the precision.
- WCN output does not bring any benefit for the CONFMTG corpus
 Length of the query:
 - Better performance for longer queries
 - ASR is more accurate on long words

OOV vs. IV query processing

- Including the phonetic-level indexing helps with the detection of queries with OOV terms
- For queries with only OOV terms high false alarm rate

11 / 12

Discussion

- The timestamp information is included in the indexing
- Using the phonetic indexing only helpful for domains where the performance of the ASR is acceptable.
- Phonetic deletions should be taken into account for conversational speech
- They do not propose any solution for the OOV terms in domain with high WERs
- Their approach requires tuning several parameters

12 / 12