Statistics: Measures of Central Tendency and Dispersion

1. Introduction to Statistics

Definition

The branch of mathematics dealing with data collection, analysis, interpretation, and presentation.

Purpose

- To summarize and understand data characteristics.
- To draw conclusions and make informed decisions.

Measures of Central Tendency

1. Definition

Describe the central value or typical representation of a dataset.

2. Key Measures

Mean (Arithmetic Average)

Formula:

$$Mean = \frac{Sum \text{ of all data points}}{Number \text{ of data points}}$$

• **Example**: For data 3, 5, 7,

Mean =
$$\frac{3+5+7}{3}$$
 = 5

- Advantages: Easy to calculate and widely used.
- **Disadvantages**: Sensitive to extreme values (outliers).

Median

- **Definition**: The middle value when data is arranged in ascending or descending order.
- Steps to Calculate:
 - If *n* (number of data points) is odd: Median = Middle value.
 - If *n* is even: Median = Average of the two middle values.

· Example:

- Odd case: 2,4,6, Median = 4.
- Even case: 3,5,7,9, Median = $\frac{5+7}{2}$ =6.
- Advantages: Not affected by outliers.
- **Disadvantages**: May not fully represent the data.

Mode

- **Definition**: The most frequently occurring value in the dataset.
- **Example**: For 2, 3, 3, 4, Mode = 3.
- Advantages: Represents the most common value.
- **Disadvantages**: Not useful for datasets with no repetition or multiple modes.

Measures of Dispersion

1. Definition

Describe the spread or variability of data around the central value.

2. Key Measures

Range

- **Definition**: The difference between the maximum and minimum values in the dataset.
- Formula:

• **Example**: For 3, 5, 8, 10,

Range =
$$10 - 3 = 7$$

- Advantages: Simple to calculate.
- **Disadvantages**: Doesn't consider data distribution.

Variance

- **Definition**: Measures the average squared deviation of each data point from the mean.
- Formula:

Variance
$$(\sigma^2) = \frac{\sum (x_i - \text{Mean})^2}{n}$$

Where X_i = individual data points, n = number of data points.

- Advantages: Accounts for all data points.
- **Disadvantages**: Units are squared, making interpretation harder.

Standard Deviation (SD)

- **Definition**: The square root of variance, representing the average distance of data points from the mean.
- Formula:

$$SD = \sqrt{Variance}$$

• **Example**: If Variance = 16,

$$SD = \sqrt{16} = 4$$

- Advantages: Easy to interpret; same units as data.
- **Disadvantages**: Sensitive to outliers.

Interquartile Range (IQR)

• **Definition**: The range of the middle 50% of data, calculated as:

$$IQR = Q_3 - Q_1$$

Where Q_1 = First quartile (25th percentile), Q_3 = Third quartile (75th percentile).

- Advantages: Robust to outliers.
- **Disadvantages**: Doesn't use all data points.

Comparison of Measures

Aspect	Central Tendency	Dispersion
Focus	Central/typical value	Spread or variability
Key Metrics	Mean, Median, Mode	Range, Variance, SD, IQR
Usefulness	Summarizing data	Understanding data spread

Applications in Real Life

Central Tendency

- **Mean**: Average marks in a class, average income.
- **Median**: Determining the middle income in a population.
- **Mode**: Identifying popular products or trends.

Dispersion

- **Range**: Identifying price variation in a market.
- **Variance/SD**: Measuring consistency in test scores or performance.
- **IQR**: Understanding income inequality.

Conclusion and Summary

- Measures of **central tendency** help identify the "center" of a dataset, while measures of **dispersion** explain how data points spread around this center.
- Both are critical for summarizing and understanding data patterns.
- Choosing the right measure depends on the nature of the data and the specific analysis goal.