Recent advances on an inverse problem for rational matrices

D. Steven Mackey, Richard Hollister

Western Michigan University

ICIAM 2019 Valencia Spain

Rational matrices

Rational matrices have three main types of structural data (over algebraic closure):

- 1. poles (finite and infinite),
- 2. zeros (finite and infinite),
- 3. and minimal indices (left and right).

Rational matrices

Rational matrices have three main types of structural data (over algebraic closure):

- 1. poles (finite and infinite),
- 2. zeros (finite and infinite),
- 3. and minimal indices (left and right).

These data satisfy the *rational index sum condition* [Van Dooren 1979]:

$$\sum (\mathsf{pole}\ \mathsf{mult's}) - \sum (\mathsf{zero}\ \mathsf{mult's}) = \sum (\mathsf{min}\ \mathsf{indices})$$

Given a list \mathcal{L} of poles, zeros, and minimal indices, is there a rational matrix with that data?

Given a list \mathcal{L} of poles, zeros, and minimal indices, is there a rational matrix with that data?

Fundamental Realization Theorem (Anguas, Dopico, Hollister, Mackey 2019)

There is a rational matrix with given data if and only if \mathcal{L} satisfies the index sum condition.

Given a list \mathcal{L} of poles, zeros, and minimal indices, is there a rational matrix with that data?

Fundamental Realization Theorem (Anguas, Dopico, Hollister, Mackey 2019)

There is a rational matrix with given data if and only if \mathcal{L} satisfies the index sum condition.

Matrix constructed in proof is

- more than likely dense,
- ▶ and does *not* transparently display the given data.

Given a list \mathcal{L} of poles, zeros, and minimal indices, is there a rational matrix with that data?

Fundamental Realization Theorem (Anguas, Dopico, Hollister, Mackey 2019)

There is a rational matrix with given data if and only if \mathcal{L} satisfies the index sum condition.

Matrix constructed in proof is

- more than likely dense,
- ▶ and does *not* transparently display the given data.

The solution outlined in this talk corrects these deficiencies.

Our solution takes the form of a five-fold product

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

Each term is full rank, sparse, and the original data of $\mathcal L$ is transparently revealed in the factors:

Our solution takes the form of a five-fold product

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

Each term is full rank, sparse, and the original data of \mathcal{L} is transparently revealed in the factors:

▶ Left minimal indices are stored in $Z_{\ell}(\lambda)$;

Our solution takes the form of a five-fold product

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

Each term is full rank, sparse, and the original data of \mathcal{L} is transparently revealed in the factors:

- ▶ Left minimal indices are stored in $Z_{\ell}(\lambda)$;
- ▶ Right minimal indices are stored in $Z_r(\lambda)$;

Our solution takes the form of a five-fold product

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

Each term is full rank, sparse, and the original data of \mathcal{L} is transparently revealed in the factors:

- ▶ Left minimal indices are stored in $Z_{\ell}(\lambda)$;
- ▶ Right minimal indices are stored in $Z_r(\lambda)$;
- Finite poles and zeros are in $T(\lambda)$;

Our solution takes the form of a five-fold product

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

Each term is full rank, sparse, and the original data of \mathcal{L} is transparently revealed in the factors:

- ▶ Left minimal indices are stored in $Z_{\ell}(\lambda)$;
- ▶ Right minimal indices are stored in $Z_r(\lambda)$;
- Finite poles and zeros are in $T(\lambda)$;
- Infinite poles and zeros are revealed by $D_{\ell}TD_{r}$ (D's are diagonal).

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

$$R := Z_{\ell} D_{\ell} T D_r Z_r.$$

This process has several steps:

(a) First steps build a template for $T(\lambda)$, called $\widetilde{T}(\lambda,\omega)$:

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

- (a) First steps build a template for $T(\lambda)$, called $T(\lambda, \omega)$:
 - has the correct finite poles and zeros;

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

- (a) First steps build a template for $T(\lambda)$, called $T(\lambda, \omega)$:
 - has the correct finite poles and zeros;
 - lacktriangle placeholder symbol ω related to infinite structure.

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$
.

- (a) First steps build a template for $T(\lambda)$, called $\widetilde{T}(\lambda,\omega)$:
 - has the correct finite poles and zeros;
 - ightharpoonup placeholder symbol ω related to infinite structure.
- (b) Next, Z_{ℓ} , D_{ℓ} , Z_{r} , D_{r} are constructed to realize minimal indices.

$$R:=Z_{\ell}\,D_{\ell}\,T\,D_{r}\,Z_{r}.$$

- (a) First steps build a template for $T(\lambda)$, called $T(\lambda, \omega)$:
 - has the correct finite poles and zeros;
 - lacktriangle placeholder symbol ω related to infinite structure.
- (b) Next, Z_{ℓ} , D_{ℓ} , Z_{r} , D_{r} are constructed to realize minimal indices.
- (c) Finally, adjustments are made to $\widetilde{T}(\lambda,\omega)$, and the ω 's are removed to produce $T(\lambda)$.

Getting started

Using poles and zeros (finite and infinite), construct an *extended Smith-McMillan form*.

Getting started

Using poles and zeros (finite and infinite), construct an *extended Smith-McMillan form*.

Example

 \mathcal{L} contains poles and zeros involving $a = \lambda - \alpha$, $b = \lambda - \beta$, and ω :

$$\left(\begin{array}{c} \mathsf{partial} \\ \mathsf{mult's} \end{array} \right) \quad \begin{array}{c} a: \quad -5, \quad -5, \quad -4, \quad -4, \quad -1, \quad -1 \\ b: \quad -1, \quad -1, \quad -1, \quad -1, \quad 1, \quad 5 \\ \omega: \quad -1, \quad -1, \quad -1, \quad 0, \quad 1, \quad 4 \end{array}$$

Getting started

Using poles and zeros (finite and infinite), construct an *extended Smith-McMillan form*.

Example

 \mathcal{L} contains poles and zeros involving $a = \lambda - \alpha$, $b = \lambda - \beta$, and ω :

$$\left(\begin{array}{c} \mathsf{partial} \\ \mathsf{mult's} \end{array} \right) \quad \begin{array}{c} a: \quad -5, \quad -5, \quad -4, \quad -4, \quad -1, \quad -1 \\ b: \quad -1, \quad -1, \quad -1, \quad -1, \quad 1, \quad 5 \\ \omega: \quad -1, \quad -1, \quad -1, \quad 0, \quad 1, \quad 4 \end{array}$$

producing extended S-M form

$$\operatorname{diag}\left\{\frac{1}{a^5b\omega}, \frac{1}{a^5b\omega}, \frac{1}{a^4b\omega}, \frac{1}{a^4b}, \frac{b\omega}{a}, \frac{b^5\omega^4}{a}\right\}.$$

Constructing the template

Using techniques developed for polynomial realizations...

Extended SM form \longrightarrow template $\widetilde{T}(\lambda, \omega)$

Constructing the template

Using techniques developed for polynomial realizations...

Extended SM form \longrightarrow template $\widetilde{T}(\lambda,\omega)$

Example

$$\widetilde{T}(\lambda,\omega) = \begin{bmatrix} \frac{b}{a^3} & \frac{1}{a^5} & \frac{1}{a^5b\omega} \\ \frac{\omega}{a^3} & \frac{1}{a^3b} \\ \frac{1}{a^3} & \frac{1}{a^4b} \\ \frac{\omega}{a^3b} & \frac{1}{a^4b\omega} \\ \frac{b}{a^3\omega} & \frac{1}{a^5b\omega} \\ \frac{b\omega}{a^5} \end{bmatrix}$$

Incorporating minimal indices

Using direct sums of *zig-zag matrices* [De Teran, Dopico, Mackey, Van Dooren 2016].

Incorporating minimal indices

Using direct sums of *zig-zag matrices* [De Teran, Dopico, Mackey, Van Dooren 2016].

Example

Suppose \mathcal{L} contains right min indices 6, 3. Row degs 1, 1, 2, 2, 2, 1, are forced (up to ordering).

$$\widetilde{Z}_r = \left[\begin{array}{ccccc} \lambda & 1 & & & & & \\ & \lambda & 1 & & & & \\ & & \lambda^2 & 1 & & & \\ & & & \lambda^2 & 1 & & \\ & & & & 0 & \lambda^2 & 1 \\ & & & & & \lambda & 1 \end{array} \right].$$

Incorporating minimal indices

Using direct sums of *zig-zag matrices* [De Teran, Dopico, Mackey, Van Dooren 2016].

Example

Suppose $\mathcal L$ contains right min indices 6, 3.

Row degs 1, 1, 2, 2, 1, are forced (up to ordering).

$$\widetilde{Z}_r = \left[egin{array}{cccccc} \lambda & 1 & & & & & & \\ & \lambda & 1 & & & & & & \\ & & \lambda^2 & 1 & & & & & \\ & & & \lambda^2 & 1 & & & & \\ & & & & 0 & \lambda^2 & 1 & & \\ & & & & & \lambda & 1 \end{array}
ight].$$

 $ightharpoonup \widetilde{Z}_r$ is full rank with \sum (right min indices) = \sum (row degs).

Left minimal indices

Similarly...

Example

If \mathcal{L} has left minimal indices 5, 1, 1. Col degs 1, 1, 1, 1, 1, 2, are forced.

Left minimal indices

Similarly...

Example

If \mathcal{L} has left minimal indices 5, 1, 1.

Col degs 1, 1, 1, 1, 1, 2, are forced.

$$\widetilde{Z}_{\ell} = \left[egin{array}{ccccc} \lambda & & & & & \ 1 & 0 & & & & \ & \lambda & & & & \ & 1 & \lambda & & & \ & & 1 & \lambda & & \ & & & 1 & \lambda^2 \ & & & & \lambda \ & & & & 1 \end{array}
ight]$$

Multiplying on the left by \widetilde{Z}_{ℓ} or on the right by \widetilde{Z}_{r} does not change finite spectral structure (truncated unimodular).

Factoring out D_{ℓ} and D_r

Now factor

$$\widetilde{Z}_r = D_r Z_r = \left[egin{array}{cccc} \lambda & & & & & \\ & \lambda & & & & \\ & & \lambda^2 & & & \\ & & & \lambda^2 & & & \\ & & & & \lambda \end{array}
ight] \left[egin{array}{cccc} 1 & 1/\lambda & & & & & \\ & 1 & 1/\lambda & & & & \\ & & & 1 & 1/\lambda^2 & & & \\ & & & & 1 & 1/\lambda^2 & & \\ & & & & & 1 & 1/\lambda^2 & & \\ & & & & & 1 & 1/\lambda^2 & & \\ & & & & & 1 & 1/\lambda^2 & & \\ & & & & & & 1 & 1/\lambda^2 & \\ & & & & & & 1 & 1/\lambda \end{array}
ight]$$

Factoring out D_{ℓ} and D_r

Now factor

$$\widetilde{Z}_r = D_r Z_r = \begin{bmatrix} \lambda & & & & \\ & \lambda & & & \\ & & \lambda^2 & & \\ & & & \lambda^2 & \\ & & & \lambda^2 & \\ & & & & \lambda \end{bmatrix} \begin{bmatrix} 1 & \frac{1}{\lambda} & & & \\ & 1 & \frac{1}{\lambda} & & & \\ & & & 1 & \frac{1}{\lambda^2} & & \\ & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & & & & & 1 & \frac{1}{\lambda^2} & \\ & &$$

Factoring out D_{ℓ} and D_r

Now factor

Multiplying $Z_{\ell} Q Z_r$ does not change infinite spectral structure.

Recall the form of our product realization $Z_{\ell} D_{\ell} T D_r Z_r$.

Recall the form of our product realization $Z_{\ell} D_{\ell} T D_r Z_r$.

▶ When parsed as

$$(Z_{\ell} D_{\ell}) T (D_r Z_r) = \widetilde{Z}_{\ell} T \widetilde{Z}_r$$

middle factor reveals finite spectral structure.

Recall the form of our product realization $Z_{\ell} D_{\ell} T D_r Z_r$.

▶ When parsed as

$$(Z_{\ell} D_{\ell}) T (D_r Z_r) = \widetilde{Z}_{\ell} T \widetilde{Z}_r$$

middle factor reveals finite spectral structure.

▶ When parsed as

$$Z_{\ell}(D_{\ell} T D_r) Z_r$$

middle factor reveals infinite spectral structure.

Recall the form of our product realization $Z_{\ell} D_{\ell} T D_r Z_r$.

▶ When parsed as

$$(Z_{\ell} D_{\ell}) T (D_r Z_r) = \widetilde{Z}_{\ell} T \widetilde{Z}_r$$

middle factor reveals finite spectral structure.

When parsed as

$$Z_{\ell}(D_{\ell} T D_r) Z_r$$

middle factor reveals infinite spectral structure.

We now use the template $\widetilde{T}(\lambda,\omega)$ to build $T(\lambda)$

Updating $\widetilde{T}(\lambda,\omega)$

Use *neutral factors* to update $\widetilde{T}(\lambda,\omega)$ so that...

Updating $\widetilde{T}(\lambda,\omega)$

Use *neutral factors* to update $\widetilde{T}(\lambda, \omega)$ so that... every nonzero entry of $D_{\ell}\widetilde{T}$ D_r has rat deg 0.

Updating $\widetilde{T}(\lambda,\omega)$

Use neutral factors to update $\widetilde{T}(\lambda, \omega)$ so that... every nonzero entry of $D_{\ell}\widetilde{T}$ D_r has rat deg 0.

Example

$$\begin{bmatrix} \frac{b}{a^3} & \frac{1}{a^5} & \frac{1}{a^5b\omega} \\ & \frac{\omega}{a^3} & \frac{1}{a^3b} \\ & & \frac{1}{a^3} & \frac{1}{a^4b} \\ & & \frac{\omega}{a^3b} & \frac{1}{a^4b\omega} \\ & & & \frac{b}{a^3\omega} & \frac{1}{a^5b\omega} \\ & & & \frac{b\omega}{a^5} \end{bmatrix}$$

Updating $\widetilde{T}(\lambda,\omega)$

Use neutral factors to update $\widetilde{T}(\lambda,\omega)$ so that... every nonzero entry of $D_{\ell}\widetilde{T}$ D_r has rat deg 0.

Example

$$\begin{bmatrix} \frac{b}{a^3} & \frac{c^3}{a^5} & \frac{c^4}{a^5b\omega} \\ & \frac{\omega}{a^3} & \frac{c}{a^3b} \\ & & \frac{1}{a^3} & \frac{c^2}{a^4b} \\ & & \frac{\omega}{a^3b} & \frac{c^3}{a^4b\omega} \\ & & & \frac{b}{a^3\omega} & \frac{c^5}{a^5b\omega} \\ & & & \frac{b\omega}{a^3} \end{bmatrix}$$

Final middle factor

Erase the ω 's from updated $\widetilde{T}(\lambda, \omega)$ to produce $T(\lambda)$:

se the
$$\omega$$
's from updated $\widetilde{T}(\lambda,\omega)$ to produce $T(\lambda)$:
$$\widetilde{T}(\lambda,\omega) = \begin{bmatrix} \frac{b}{a^3} & \frac{c^3}{a^5} & \frac{c^4}{a^5b\omega} \\ \frac{\omega}{a^3} & \frac{c}{a^3b} \\ & \frac{1}{a^3} & \frac{c^2}{a^4b} \\ & \frac{\omega}{a^3b} & \frac{c^3}{a^4b\omega} \\ & \frac{b}{a^3\omega} & \frac{c^5}{a^5b\omega} \\ & \frac{b\omega}{a^5} \end{bmatrix}$$

Final middle factor

Erase the ω 's from updated $\widetilde{T}(\lambda,\omega)$ to produce $T(\lambda)$:

the
$$\omega$$
's from updated $\widetilde{T}(\lambda,\omega)$ to produce $T(\lambda)$:
$$T(\lambda) = \begin{bmatrix} \frac{b}{a^3} & \frac{c^3}{a^5} & \frac{c^4}{a^5b} \\ \frac{1}{a^3} & \frac{c}{a^3b} \\ & \frac{1}{a^3} & \frac{c^2}{a^4b} \\ & & \frac{1}{a^3b} & \frac{c^3}{a^4b} \\ & & \frac{b}{a^3} & \frac{c^5}{a^5b} \\ & & \frac{b}{a^5} \end{bmatrix}$$

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$

Recall

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$

Recall

the finite poles and zeros are recovered from T,

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$

Recall

- the finite poles and zeros are recovered from T,
- ▶ the infinite poles and zeros are recovered from $D_{\ell}TD_r$ (easy to compute product),

$$R := Z_{\ell} D_{\ell} T D_r Z_r$$

Recall

- the finite poles and zeros are recovered from T,
- ▶ the infinite poles and zeros are recovered from $D_{\ell}TD_r$ (easy to compute product),
- ▶ and the minimal indices are recovered from Z_{ℓ} and Z_r

$$R:=Z_{\ell}\,D_{\ell}\,T\,D_{r}\,Z_{r}$$

Recall

- the finite poles and zeros are recovered from T,
- ▶ the infinite poles and zeros are recovered from $D_\ell TD_r$ (easy to compute product),
- ▶ and the minimal indices are recovered from Z_{ℓ} and Z_r without doing any numerical computations.

The purely combinatorial manipulations are straightforward once you know the techniques, and only require $\mathcal{O}(n)$ work.

Thank you!

References

L. M. Anguas, F. M. Dopico, R. Hollister, D. S. Mackey. Van Dooren's index sum theorem and rational matrices with perscribed structural data.

SIAM J. Matrix Anal. & Apps., 40, no.2:720-738, 2019.

F. De Terán, F. M. Dopico, and P. Van Dooren.

Matrix polynomials with completely prescribed eigenstructure.

SIAM J. Matrix Anal. & Apps., 36:302–328, 2015.

F. De Teran, F. Dopico, D. S. Mackey, and P. Van Dooren. Polynomial zigzag matrices, dual minimal bases, and the realization of completely singular polynomials. *Linear Algebra Appl.*, 488:460–504, 2016.

P. Van Dooren.
Eigenstructuur Van Polynome en Rationale Matrices
Toepassingen in de Systeemtheorie.
PhD Thesis, KU Leuven, May 1979.