Computing k-Centers of Uncertain Points on a Real Line

Ran Hu

The k-Center Problem

Input: n points p_1, p_2, \cdots, p_n Output: k points (centers) $Q = \{q_1, \cdots, q_k\}$ to minimize

$$\max_{1 \le i \le n} w_i \cdot d(p_i, Q)$$

where

$$d(p_i, Q) = \min_{q \in Q} d(p_i, q)$$

Uncertain Data

An Uncertain Point on a Line

An uncertain point P_i is associated with a closed segment so that it could appear at any point of this segment without any specified probability density function.

Two Measures for the Distance

The segment appearance of $P_i \in P$ defines a minimum (luckiest) measure and a maximum (unluckiest) measure for distance $d(P_i, x(p))$ of P_i to any point p.

Our k-Center Problem

Input: a set P of n uncertain points $\{P_1, P_2, \cdots, P_n\}$ on a line L

Output: A set $Q = \{q_1, \dots, q_k\}$ to minimize $\max_{1 \le i \le n} w_i \cdot d(p_i, Q)$ where

 $d(p_i, Q) = \min_{q \in Q} d(p_i, q)$ under either measure.

Related Work

The deterministic one-dimensional k-center problem

Time: $O(n \log n)$ —Chen et al, 2015

No previous work for our problems

Our Results

- The weighted k-center problem:
- Our result: $O(n \log n)$
- The unweighted k-center problem:
- Our result: O(n)

Ran Hu and Jingru Zhang. Computing k-Centers of Uncertain Points on a Real Line. Operations Research Letters, vol. 50, pages 310-314, 2022.

An Observation

For any uncertain point $P_i \in P$, distance $d(P_i, x(p))$ under both the minimum and maximum measures reaches the minimum at the **midpoint** p_i of P_i 's appearance segment.

Our k-Center Problem

Input: a set P of n uncertain points $\{P_1, P_2, \dots, P_n\}$ on a line L

Output: A set $Q = \{q_1, \cdots, q_k\}$ to minimize $\max_{1 \leq i \leq n} w_i \cdot d(p_i, Q)$ where $d(p_i, Q) = \min_{q \in Q} d(p_i, q)$

under either measure.

 P_1, P_2, \dots, P_n are given sorted by the midpoints of their appearance segments.

A Key Lemma

For the k-center problem under each distance measure, there must exist an optimal solution in which the uncertain points of P served by the same facility are consecutive in their index order.

Reduction into a Min-Max Partition Problem

Input: a set P of n uncertain points P_1, P_2, \dots, P_n on a line L

Output: Computing k+1 integers $i_0=1,\ i_1,\cdots,\ i_{k-1},\ i_k=n$ in order to minimize $\max_{0\leq t\leq k-1}\alpha(i_t,i_{t+1})$

where
$$\alpha(i_t, i_{t+1}) = \min_{x \in L} \max_{i_t \le j \le i_{t+1}} w_j \cdot d(P_j, x)$$

The Candidate Set for ϵ^*

Observation: e^* is decided by the **y-coordinate** of an intersection of distance functions $w_i \cdot d(P_i, x)$ for all $1 \le i \le n$.

Our $O(n \log n)$ Algorithm for Computing ϵ^*

Determining $w_i \cdot d(P_i, x)$ for all $1 \le i \le n$

Extending half-lines on all $w_i d(P_i, x)$ into lines

Forming a line arrangement A of lines

Applying the line arrangement search technique to search e^* among vertices of A with the assistance of our decision algorithm

Our decision algorithm decides in O(n) time whether a given ϵ is feasible or not. University

The Decision Problem

Input: A set P of n uncertain points P_1, P_2, \dots, P_n on a line L and a value $\epsilon > 0$

Goal: Deciding if at most k centers $Q = \{q_1, \dots, q_k\}$ exist so that $\max_{1 \le i \le n} w_i \cdot d(p_i, Q) \le \epsilon$

Interval Piercing Problem

Input: A set of n intervals on a line

Output: The minimum points piercing all intervals

A Key Lemma

For the k-center problem under each distance measure, there must exist an optimal solution in which the uncertain points of P served by the same facility are consecutive in their index order.

Interval Piercing Problem

Input: A set of n intervals on a line

Output: The minimum points piercing all intervals

Our decision algorithm solves it in O(n) time

Our Results

- The weighted k-center problem:
- Our result: $O(n \log n)$
- The unweighted k-center problem:
- Our result: O(n)

Ran Hu and Jingru Zhang. Computing k-Centers of Uncertain Points on a Real Line. Operations Research Letters, vol. 50, pages 310-314, 2022.

The Unweighted Case

Input: a set P of n uncertain points $\{P_1, P_2, \dots, P_n\}$ on a line L

Output: A set $Q=\{q_1,\cdots,q_k\}$ to minimize $\max_{1\leq i\leq n}d(p_i,Q)$ where $d(p_i,Q)=\min_{q\in Q}d(p_i,q)$

under either measure.

Reduction into a Min-Max Partition Problem

Input: a set P of n uncertain points P_1, P_2, \dots, P_n on a line L

Output: Computing k+1 integers $i_0=1,\ i_1,\cdots,\ i_{k-1},\ i_k=n$ in order to minimize $\max_{0\leq t\leq k-1}\alpha(i_t,i_{t+1})$

where
$$\alpha(i_t, i_{t+1}) = \min_{x \in L} \max_{i_t \le j \le i_{t+1}} d(P_j, x)$$

Solving the Min-Max Partition Problem

```
Input: a set P of n uncertain points P_1, P_2, \cdots, P_n on a line L Output: Computing k+1 integers i_0=1,\ i_1,\cdots,\ i_{k-1},\ i_k=n in order to minimize \max_{0\leq t\leq k-1}\alpha(i_t,i_{t+1}) where \alpha(i_t,i_{t+1})=\min_{x\in L}\max_{i_t\leq j\leq i_{t+1}}d(P_j,x)
```

The Min-Max Partition problem can be solved in $O(n\tau)$ time where τ is the time of computing lpha(i,j) for any query $i\leq j$.

Our Data Structures

Lemma 4. With O(n) preprocessing work, for any query $i \leq j$, we can compute in constant time $\alpha(i,j)$ under each distance measure.

Our Results

- The weighted k-center problem:
- Our result: $O(n \log n)$
- The unweighted k-center problem:
- Our result: O(n)

Ran Hu and Jingru Zhang. Computing k-Centers of Uncertain Points on a Real Line. Operations Research Letters, vol. 50, pages 310-314, 2022.

Thank You! Q&A

