3 Infinite Limits

Consider the function

$$f(x) = \frac{1}{x}.$$

What happens to f(x) when we take values of x to the left of 0? How about when we take values of x to the right of 0? Look at the following table of values.

x	$\frac{1}{x}$	$\parallel x$	$\frac{1}{x}$
-0.1	-10	0.1	10
-0.01	-100	0.01	100
-0.001	-1000	0.001	1000
-0.0001	-10000	0.0001	10000

The graph of the function $f(x) = \frac{1}{x}$ is shown in Figure 1.

Figure 1: Graph of f(x) = 1/x.

Definition 3.1. Let f(x) be a function that is that is defined at every number in some open interval containing a, except possibly at a itself. As x approaches a, f(x) increases

(alternately, decreases) without bound, written

$$\lim_{x \to a} f(x) = +\infty \ (-\infty)$$

if for any number N > 0 (N < 0), $\exists \delta > 0$ such that if $0 < |x - a| < \delta$, then

$$f(x) > N \quad (f(x) < N)$$

.

3.1 Limit Theorems

1. If r is any positive integer, then

(a)

$$\lim_{x \to 0+} \frac{1}{x^r} = +\infty$$

(b)

$$\lim_{x \to 0^{-}} \frac{1}{x^{r}} == \begin{cases} -\infty & \text{if } r \text{ is odd} \\ +\infty & \text{if } r \text{ is even} \end{cases}$$

- 2. If a is any real number, and if $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = c$, where c is a constant not equal to 0, then
 - (a) if c > 0 and if $f(x) \to 0$ through positive values of f(x),

$$\lim_{x \to a} \frac{g(x)}{f(x)} = +\infty$$

(b) if c > 0 and if $f(x) \to 0$ through negative values of f(x),

$$\lim_{x \to a} \frac{g(x)}{f(x)} = -\infty$$

(c) if c < 0 and if $f(x) \to 0$ through positive values of f(x),

$$\lim_{x \to a} \frac{g(x)}{f(x)} = -\infty$$

Calculus I

(d) if c < 0 and if $f(x) \to 0$ through negative values of f(x),

$$\lim_{x \to a} \frac{g(x)}{f(x)} = +\infty$$

3. (a) if $\lim_{x\to a} f(x) = +\infty$ and $\lim_{x\to a} g(x) = c$, where c is any constant, then

$$\lim_{x \to a} [f(x) \pm g(x)] = +\infty$$

(b) if $\lim_{x\to a} f(x) = -\infty$ and $\lim_{x\to a} g(x) = c$, where c is any constant, then

$$\lim_{x \to a} [f(x) \pm g(x)] = -\infty$$

4. If $\lim_{x\to a} f(x) = +\infty$ and $\lim_{x\to a} g(x) = c$, where c is any constant except 0, then

(a) if
$$c > 0$$
, $\lim_{x \to a} [f(x) \cdot g(x)] = +\infty$;

(b) if
$$c < 0$$
, $\lim_{x \to a} [f(x) \cdot g(x)] = -\infty$

5. If $\lim_{x\to a} f(x) = -\infty$ and $\lim_{x\to a} g(x) = c$, where c is any constant except 0, then

(a) if
$$c > 0$$
, $\lim_{x \to a} [f(x) \cdot g(x)] = -\infty$;

(b) if
$$c < 0$$
, $\lim_{x \to a} [f(x) \cdot g(x)] = +\infty$

Note. The above theorems are also valid if " $x \to a$ " is replaced by " $x \to a^+$ " or " $x \to a^-$ ".

Example 3.1. Find the limits of the following. State which theorem is used to determine the limits.

a.
$$\lim_{x\to -2^+} \frac{-4}{x+2} = -\infty$$

b.
$$\lim_{x\to -2^-} \frac{-4}{x+2} = +\infty$$

c.
$$\lim_{x\to -2} \frac{-4}{x+2}$$
 DOES NOT EXIST

Example 3.2. Find the limits of the following. State which theorem is used to determine the limits.

a.
$$\lim_{x\to 0^+} \frac{6}{x^2} = +\infty$$

b.
$$\lim_{x\to 0^-} \frac{6}{x^2} = -\infty$$

c.
$$\lim_{x\to 0} \frac{6}{x^2}$$
 DOES NOT EXIST

Try this. Find the limits of the following. State which theorem is used to determine the limits.

$$a. \lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{x^2}\right)$$

b.
$$\lim_{x\to 0^-} \left(\frac{1}{x} - \frac{1}{x^2}\right)$$

c.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{x^2}\right)$$

Try this. Find the limits of the following. State which theorem is used to determine the limits.

a.
$$\lim_{x\to 3^+} \left(\frac{\sqrt{x^2 - 9}}{x - 3} \right)$$

b.
$$\lim_{x\to 3^-} \left(\frac{\sqrt{x^2-9}}{x-3} \right)$$

$$c. \lim_{x\to 3} \left(\frac{\sqrt{x^2-9}}{x-3}\right)$$

Definition 3.2. The line x = a is said to be a **vertical asymptote** of the graph of the function f if **at least one** of the following statements is true:

$$i. \lim_{x \to a^+} f(x) = +\infty$$

$$ii. \lim_{x \to a^+} f(x) = -\infty$$

$$iii. \lim_{x\to a^-} f(x) = +\infty$$

$$iv. \lim_{x \to a^-} f(x) = -\infty$$

3.1 Limit Theorems

3 INFINITE LIMITS

Example 3.3. Find a vertical asymptote of the function $f(x) = \frac{x}{x^2 - 1}$. A graph of this function is shown below.

Note that the function does not cross the line x = 1.

Now, finding $\lim_{x\to 1+}\frac{x}{x^2-1}=+\infty$. Hence, the line x=1 is a vertical asymptote of f. Another vertical asymptotes of f is the line x=-1.

Calculus I