Primer parcial - 27/09/2024

Nombre y apellido: Javier Verz

- (20) 1. (20 pts.) Sean H, K y L subgrupos de un grupo G y supongamos que $K \subseteq L$. Probar que $(HK) \cap L = (H \cap L)K$.
 - (30 pts.) Sean G un grupo y sea $n \in \mathbb{N}$, $n \geq 2$. Supongamos que $a \in G$ es el único elemento de orden n. Probar que n = 2 y $a \in Z(G)$.
 - 3. (30 pts.) Determinar las clases de conjugación en S₇ y en A₇. ¿Posee A₇ elementos de orden 12?
- 4. (20 pts.) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar en cada caso la respuesta.
 3 (a) Los grupos Z₂ × Z₂ y Z₄ son isomorfos.
 - \bigcirc (b) Sean G_1, G_2 grupos y sean $H_1 \subseteq G_1, H_2 \subseteq G_2$. Si $H_1 \cong H_2$ y $G_1/H_1 \cong G_2/H_2$, entonces $G_1 \cong G_2$.
 - \longrightarrow (c) $H = \{id, (12)(34), (13)(24), (14)(23)\}$ es un subgrupo normal de S_4 .
 - O (d) Sea $f: G \to H$ un homomorfismo de grupos. Si G y H son finitos tales que (|G|, |H|) = 1, entonces f es el homomorfismo trivial.

$$(2) = |3|$$

$$939''=2$$
 (2)
 $93=93$ $36Z(6)$

3) 266 C2= 999-1/9667 (clase de conj) 3 N b b C2 = C5 b 2 y b Sou 会るころらの・1 CII = {Id} $C_{(12)} = \{ (12)(13)(14)(15)(16)(17)(21)(23) \}$ y el resto de los biaclos } = { (123) (134), ... } C(1254567) = [... - - ...) C(12)(34), (34)(S6), C (123)(45) C(12345)(67) .) son (25 forms de portir un conj de 7 elementos (recorder cicles sisj conmutan)

