Design Problem 1

(a) Create the LTSpice Schematic of the astable multivibrator circuit.

Figure 1. Circuit schematics of the astable multivibrator

(b) Amplitude of Output Waveform

- Conduct transient analysis to observe the circuit's output waveform and measure its peak-topeak amplitude.
- Implementing in LTSpice:

.tran 3 startup

.meas out PP V(out)

- Result:

peak to peak amplitude: 8.52396(V) from 0 to 10

- Utilize the .MEASURE directive to reliably identify maxima and minima of the waveform.
- Implementing in LTSpice

.meas maxOut MAX V(out)

.meas minOut MIN V(out)

- Result:

maxima of the waveform: 8.52396(V)

minima of the waveform: 0(V)

• Plot a trace of the output waveform over a time duration of 3 s.

Figure 2. Output waveform over a time duration of 3s

- Discuss the relationship between the output signal and the LEDs in the circuit.
- Discussing:

Comparing Figure 2 and Figure 3 (below), in stabilization period, we noticed that the voltage output signal and current LED 1 are in the same phase, nevertheless, voltage output signal and current LED 2 are different phase.

Looking at Figure 3, when LED 1 turns on, LED 2 turns off and otherwise. Therefore, at the specific time (in stabilization period), only 1 LED activates.

Figure 3. LED 1 current (green line) vs LED 2 current (blue line) over a time duration of 3s

(c) Frequency of Oscillation

- Determine the period and the frequency of the output waveform. Use the .MEASURE directive to analyze the output waveform.
- Implementing in LTSpice:
 - .tran 0 3 0.3 startup
 - .meas TRAN t1 FIND time WHEN V(out)=7 TD=0 RISE=1
 - .meas TRAN t2 FIND time WHEN V(out)=7 TD=0 RISE=2
 - .meas TRAN period PARAM (t2-t1)
 - .meas TRAN frequency PARAM 1/(t2-t1)
- Explanation:

When observing Figure 2, we recognize that waveform starts to stabilize and appear periodically from time = 0.3s. Then, we measure voltage output signal when >=7(V) first time, and when <=7(V) first time. Next, we find period that is the interval time between 2 measurements, and frequency is 1/period.

• Simulate the multivibrator circuit with different capacitor values for C1 and C2. What are the frequencies of the oscillations with both capacitors being 4.7 μ F and 20 μ F, respectively?

Figure 4. Output waveform with C1=4.7 μ F and C2 = 20 μ F

• Simulate the multivibrator circuit with different resistor values for R1 and R2. What are the frequencies of the oscillations with both resistors R1 and R2 being 22 k Ω and 100 k Ω , respectively?

Figure 5. Output waveform with R1=22k and R2 = 100k

• Discuss the relationship between frequency, resistance, and capacitance.

Result:

Number.	R1(Ω)	R2(Ω)	R3(Ω)	R4(Ω)	C1(F)	C2(F)	Period(s)	Frequency(Hz)
1	47k	47k	470	470	10μ	10μ	0.637797	1.5679
2	47k	47k	470	470	4.7μ	20μ	0.784898	1.27405
3	22k	100k	470	470	10μ	10μ	0.829781	1.20514

Table 1. Relationship between frequency, resistance and capacitance

- Dicussing:

Observing table 1 (above), C1xR1+C2xR2 (at 1st measurement) < C1xR1+C2xR2 (at 2nd measurement) < C1xR1+C2xR2 (at 3rd measurement) and period (at 1st measurement) < period (at 2nd measurement) < period (at 3rd measurement). Hence, period is proportional to (C1xR1+C2xR2).

(d) Duty cycle

- Simulate the multivibrator circuit and measure the duty cycle of the output waveform. Use the .MEASURE directive to determine the duty cycle.
- Implementing in LTSpice:

```
.tran 0 3 0.3 startup
```

.meas TRAN t1 FIND time WHEN V(out)=7 TD=0 RISE=1

.meas TRAN t2 FIND time WHEN V(out)=7 TD=0 RISE=2

.meas TRAN t1_down FIND time WHEN V(out)=7 TD=0 FALL=1

.meas TRAN period PARAM (t2-t1)

.meas TRAN duty_cycle PARAM ((t1_down-t1)/(t2-t1))*100

• Vary the component value of C2 and observe the effect on the duty cycle. What are the duty cycles and the frequencies of the oscillations with C2 being 4.7 μ F and 15 μ F, respectively (keeping the value of C1 = 10 μ F)?

Figure 6. Output waveform with C2 = $4.7 \mu F$

Figure 7. Output waveform with C2 = 15 μ F

- Discuss how to achieve a desired duty cycle and the trade-offs involved.
- Results:

Number.	R1(Ω)	R2(Ω)	R3(Ω)	R4(Ω)	C1(F)	C2(F)	Frequency(Hz)	Duty cycle(%)
1	47k	47k	470	470	10μ	10μ	1.5679	48.5939
2	47k	47k	470	470	10μ	4.7μ	2.13493	30.1282
3	47k	47k	470	470	10μ	15μ	1.25452	58.833

Table 2. Relationship between duty cycle, resistance and capacitance

- Discussing:

Observing table 2 (above), we can conclude that duty cycle increases when the value capacitor increases. If we want to achieve a desired duty cycle, we vary the value of capacitor C2 and keep the value of other components unchanged.

(e) Rise- and Fall- Time Analysis

- Analyze the rise- and fall-time of the circuit's output waveform.
- Implementing in LTSpice:

```
.tran 0 3.3 0.3 startup
.meas TRAN low_value_trans PARAM (maxOut/100*10)
.meas TRAN high_value_trans PARAM (maxOut/100*90)
.meas TRAN rise_t_low FIND time WHEN V(out)=low_value_trans TD=1.5 RISE=1
.meas TRAN rise_t_high FIND time WHEN V(out)=high_value_trans TD=1.5 RISE=1
.meas TRAN fall_t_low FIND time WHEN V(out)=low_value_trans TD=1.5 FALL=1
.meas TRAN fall_t_high FIND time WHEN V(out)=high_value_trans TD=1.5 FALL=1
.meas TRAN rise_time PARAM (rise_t_high-rise_t_low)*1000
.meas TRAN fall_time PARAM (fall_t_low-fall_t_high)*1000
```

• Simulate the multivibrator circuit with different resistor values for R3 and R4. What are the riseand fall-times of the square wave with both resistors R3 and R4 being 220 Ω , 470 Ω , 2.2 k Ω , and 4.7 k Ω , respectively?

Figure 8. Output waveform with R3 = R4 = 220 Ω

Figure 9. Output waveform with R3 = R4 = 470 Ω

Figure 10. Output waveform with R3 = R4 = $2.2k\ \Omega$

Figure 11. Output waveform with R3 = R4 = $4.7k \Omega$

Number.	R1(Ω)	R2(Ω)	R3(Ω)	R4(Ω)	C1(F)	C2(F)	Rise-time(ms)	Fall-time(ms)
1	47k	47k	220	220	10μ	10μ	5.80581	1.96274e-06
2	47k	47k	470	470	10μ	10μ	12.1365	2.63428e-06
3	47k	47k	2.2k	2.2k	10μ	10μ	52.6257	7.9217e-06
4	47k	47k	4.7k	4.7k	10μ	10μ	108.061	1.51519e-05

Table 3. Relationship between rise-time, fall-time, resistance and capacitance

- Discuss your observations regarding rise- and fall-times of the multivibrator circuit.
- Discussing:

Observing Table 3 (above) The value of resistor is proportional to rise-time and is inversely proportional to fall-time.

Rise-time is many times as large as fall-time.

(f) Design

Figure 12. Circuit schematics of the astable multivibrator

Figure 13. Output waveform over a time duration of 3(s)

R1(Ω)	R2(Ω)	R3(Ω)	R4(Ω)	C1(F)	C2(F)	Rise-time(ms)	Duty cycle(%)	Frequency(Hz)
56k	18k	220	220	10μ	10μ	5.58809	21.4593	2.04754

Table 4. values calculated by LTSpice with specific resistors and capacitors