高考数学题

狄克利雷

2024年3月27日

目录

1	二次关系式	3
	1.0.1 基本不等式	3
2	函数和导数	3
	数列 3.1 通项为奇偶分段的数列	4
4	平面向量	5
5	常用公式与定理	5
	5.0.1 圆锥曲线	
	5.1 数列	5
	5.1.1 等差、等比数列的基本性质	5

1 二次关系式

1.0.1 基本不等式

习题 1.

已知 $ab > 0, a^2 + ab + 2b^2 = 1$, 则 $a^2 + 2b^2$ 的最小值?

答案 1

我的评价是上面的这道题不是很难.

2 函数和导数

3 数列

求数列通项方法: 累加法, 累乘法, 带提示的构造法, 待定系数构造法, 等价变形. 常规数列求和方法: 错位相减法, 裂项相消法, 分组求和法, 倒序相加法.

习题 2. 2024 届浙江名校协作体高三下学期返校考试数学试题,7

己知正项数列 $\{a_n\}$ 满足 $a_2=3a_1$, S_n 为 $\{a_n\}$ 的前 n 项和, 则" $\{a_n\}$ 是等差数列" 是" S_n 为等差数列" 的 (充要条件)?

答案 2

充要条件, 需要计算.

3.1 通项为奇偶分段的数列

习题 3. 2023, 山东模拟, 一数 p49

令
$$b_n = \begin{cases} n, & n$$
为奇数 $2^n, & n$ 为偶数 3^n ,求数列 3^n ,成为 3^n ,以为 3^n $3^$

答案 3

$$n$$
 为偶数时, $S_n = \frac{n^2}{4} + \frac{4(2^n-1)}{3}; n$ 为奇数时, $S_n = \frac{(n+1)^2}{4} + \frac{2^{n+1}}{3} - \frac{4}{3}.$

4 平面向量

习题 4. 2023, 山东模拟, 一数 p49

已知在等边三角形 ABC 的边长为 1 , 动点 P 满足 $|\overrightarrow{AP}| = 1$, $|\overrightarrow{AP}| = \lambda |\overrightarrow{AB}| + \mu |\overrightarrow{AC}|$, 则 $\lambda + \mu$ 的最小值为 _____.

答案 4

 $-\frac{2\sqrt{3}}{3}$

容易发现 P 点的运动轨迹是以 A 为圆心的圆. 如果 ABC 是等腰直角三角形那么,可以以两直角边为坐标轴建立直角坐标系,然后令 $P=(\cos\theta,\sin\theta)$,则能用三角函数来表示 λ,μ ,利用辅助角公式来求解. 现在 ABC 是等边三角形,可以仿造着类似的方法来证明.

5 常用公式与定理

5.0.1 圆锥曲线

知乎: 焦点三角形面积公式

5.1 数列

5.1.1 等差、等比数列的基本性质

设 $\{a_n\}$ 是公差为 d 的等差数列, 其前 n 项和为 S_n .

- 1. 等差数列常用性质:
 - (a) 下标和性质: 若 m+n=r+s , 则 $a_m+a_n=a_r+a_s$, 其中 $m,n,r,s\in {\bf N}^*$; 特别地, 若 m+n=2r , 则 $a_m+a_n=2a_r$. 推论: $S_{2n-1}=\frac{(2n-1)(a_1+a_{2n-1})}{2}=(2n-1)a_n(n\in {\bf N}^*)$.
 - (b) 前 n 项和性质: $\{\frac{S_n}{n}\}$ 为等差数列, 公差为 $\frac{n}{2}$.
 - (c) 片段和性质: S_m , $S_{2m} S_m$, $S_{3m} S_{2m}$, … 也构成等差数列, 公差为 m^2d .
- 2. 等比数列常用性质:
 - (a) 下标和性质: 若 m+n=r+s , 则 $a_m\cdot a_n=a_r\cdot a_s$, 其中 $m,n,r,s\in \mathbf{N}^*$; 特别地, 若 m+n=2r , 则 $a_m\cdot a_n=a_r^2$.

5

(b) 片段和性质: 若 $q \neq -1$ 或 m 为奇数, 则 S_m , $S_{2m} - S_m$, $S_{3m} - S_{2m}$, … 也构成等比数列, 公差为 q^m .