Lista 2 [TI8419 - Multilinear Algebra] Lucas Abdalah Professors: André Lima e Henrique Goulart

Table of Contents

Problem 1

• Problem 2

• Problem 3 Problem 4

Problem 1

By using the properties of the outer product, show that

 $\mathcal{X} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \mathbf{a}_2 \circ \mathbf{b}_2 \circ \mathbf{c}_2$

is a rank-one tensor whenever ${f b}_1={f b}_2$ and ${f c}_1={f c}_2$. Is this also true in general when ${f c}_1={f c}_2$ but ${f b}_1\neq {f b}_2$?

1.1) O tensor ${\mathcal X}$ é construido a partir do seguinte modelo:

 $\mathcal{X} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \mathbf{a}_2 \circ \mathbf{b}_2 \circ \mathbf{c}_2$

Assumindo $\mathbf{b}_1 = \mathbf{b}_2$ e $\mathbf{c}_1 = \mathbf{c}_2$

 $\mathcal{X} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \mathbf{a}_2 \circ \mathbf{b}_1 \circ \mathbf{c}_1$ $= (\mathbf{a}_1 + \mathbf{a}_2) \circ \mathbf{b}_1 \circ \mathbf{c}_1$

1.2) É conveniente observar a soma como um novo vetor: $\mathbf{v}_1 = \mathbf{a}_1 + \mathbf{a}_2$

1.3) Finalmente, esta representação torna mais evidente que apenas 1 tensor de posto-1 é suficiente para representar \mathcal{X} , i.e, tem posto R=1.

 $|\mathcal{X} = \mathbf{v}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1|$

1.4) Assumindo $\mathbf{b}_1 \neq \mathbf{b}_2$ e $\mathbf{c}_1 = \mathbf{c}_2$

 $\mathcal{X} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \mathbf{a}_2 \circ \mathbf{b}_2 \circ \mathbf{c}_1$ $= (\mathbf{a}_1 \circ \mathbf{b}_1 + \mathbf{a}_2 \circ \mathbf{b}_2) \circ \mathbf{c}_1$

1.5) Com estas premissas, apenas a reorganização não permite afirmar que $\mathcal X$ é representado por um tensor de posto 1.

1.6) Entretanto, ao assumir que existe lpha tal que ${f b}_2=lpha{f b}_1$, a equação fica mais simples.

 $\mathcal{X} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \mathbf{a}_2 \circ \alpha \mathbf{b}_1 \circ \mathbf{c}_1$ $=\mathbf{a}_1\circ\mathbf{b}_1\circ\mathbf{c}_1+\alpha\mathbf{a}_2\circ\mathbf{b}_1\circ\mathbf{c}_1$ $= (\mathbf{a}_1 + \alpha \mathbf{a}_2) \circ \mathbf{b}_1 \circ \mathbf{c}_1$

É conveniente observar a soma como um novo vetor: $\mathbf{v}_2 = \mathbf{a}_1 + \alpha \mathbf{a}_2$

1.7) Finalmente, esta representação torna mais evidente que apenas 1 tensor de posto-1 é suficiente para representar \mathcal{X} , i.e, tem posto R=1.

1.8) Entretanto, se não existe lpha, ou seja \mathbf{b}_1 e \mathbf{b}_2 não são colineares, consequentemente \mathbf{v}_2 não existe e apenas 1 tensor de posto-1 é insuficiente para representar \mathcal{X} . Sendo utilizados 2 tensores de posto-1 para representação, implica em $posto(\mathcal{X}) = 2$.

 $oxed{\mathcal{X} = (\mathbf{a}_1 \circ \mathbf{b}_1 + \mathbf{a}_2 \circ \mathbf{b}_2) \circ \mathbf{c}_1}$

Problem 2

Show that the tensor rank is indeed a tensor property: in other words, it is invariant with respect to a multilinear transformation by nonsingular matrices, that is, if $\mathcal{X} = \mathcal{S} \times_1 \mathbf{A}^{(1)} \cdots \times_N \mathbf{A}^{(N)}$

where $\mathbf{A}^{(n)} \in \mathbb{C}^{I_n \times I_n}$ is nonsingular for every n, then

(Hint: write $\mathcal S$ as a PD with a minimal number of terms, and then use the properties of the multilinear transformation to bound the rank of $\mathcal X$; similarly, use the invertibility of the multilinear transformation to bound the rank of $\mathcal S$. More generally,

 $rank(\mathcal{X}) = rank(\mathcal{S}).$

conclude that the same property holds for matrices $\mathbf{A}^{(n)} \in \mathbb{C}^{I_n \times R_n}$ having linearly independent columns (and thus $R_n \leq I_n$).

2.1) O tensor $core \mathcal{S}$ reescrito em função de fatores da decomposição CP resulta em:

$$\mathcal{S} = \sum_{r=1}^{R} \mathbf{s}_r^{(1)} \circ \cdots \circ \mathbf{s}_r^{(N)}$$

2.2) Também é possível reorganizar a equação em função $\mathcal S$ de acordo com as equações (11) e (17) das notas de aula, utilizando as propriedades do operador transposto ${\mathsf T}$, caso ${\mathbf A}^{(n)} \in \mathbb R$, e operador hermitiano/autoadjunto ${\mathsf T}$ $\mathcal{S} = \mathcal{X} \times_1 \mathbf{A}^{(1)^H} \cdots \times_N \mathbf{A}^{(N)^H}$

2.3) Desenvolvendo $\mathcal X$ em função de 2.1, obtém-se a representação em função do somatório ponderado pelas matrizes de mudança de base $\mathbf A^{(n)}$.

 $\mathcal{X} = \left(\sum_{r=1}^R \mathbf{s}_r^{(1)} \circ \cdots \circ \mathbf{s}_r^{(N)} \right) imes_1 \mathbf{A}^{(1)} \cdots imes_N \mathbf{A}^{(N)}$

$$\mathcal{X} = \left(\sum_{r=1}^{\mathbf{S}_r^{r}} \circ \cdots \circ \mathbf{S}_r^{r}\right) \times_1 \mathbf{A}^{(r)} \cdots \times_N \mathbf{A}^{(r)}$$

$$\mathcal{X} = \sum_{r=1}^{R} \mathbf{A}^{(1)} \mathbf{s}_r^{(1)} \circ \cdots \circ \mathbf{A}^{(N)} \mathbf{s}_r^{(N)}$$
 2.4) Dado as considerações anteriores para \mathcal{S} , o tensor *core* \mathcal{S} também pode ser reescrito como:

$$\mathcal{S} = \left(\sum_{r=1}^{R} \mathbf{A}^{(1)} \mathbf{s}_r^{(1)} \circ \cdots \circ \mathbf{A}^{(N)} \mathbf{s}_r^{(N)}\right) imes_1 \mathbf{A}^{(1)^H} \cdots imes_N \mathbf{A}^{(N)^H}$$

2.5) Dado as propriedas que relacionam os produtos de modo-N, o tensor \mathcal{S} , convenientemente é reorganizado de modo que as matrizes hermitianas multiplicam a matriz de transformação original de mesmo modo. E dado que $\mathbf{A}^{(n)}^H \mathbf{A}^{(n)} = \mathbf{I}$, finalmente

 $\mathcal{S} = \sum_{r=1}^{R} \mathbf{A}^{(1)}{}^{H} \mathbf{A}^{(1)} \mathbf{s}_{r}^{(1)} \circ \cdots \circ \mathbf{A}^{(N)}{}^{H} \mathbf{A}^{(N)} \mathbf{s}_{r}^{(N)}$

2.6)

$$\mathcal{S} = \sum_{r=1}^R \mathbf{s}_r^{(1)} \circ \cdots \circ \mathbf{s}_r^{(N)} \ rank(\mathcal{X}) = rank(\mathcal{S}).$$

2.) Ao assumir que as matrizes $\mathbb{A}^{(n)} \in \mathbb{R}$ Pseudo inversa $\mathbf{A}^{(n)}^{\dagger}\mathbf{A}^{(n)}=\mathbf{I}$

Problem 3

Let $\mathcal{X} \in \mathbb{C}^{I_1 imes I_2 imes I_3}$ be given by

 $\mathcal{X} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \mathbf{a}_2 \circ \mathbf{b}_2 \circ \mathbf{c}_1 + \mathbf{a}_1 \circ \mathbf{b}_2 \circ \mathbf{c}_2$

where the vectors are assumed to satisfy the following: • a1 is not collinear with a2;

• b1 is not collinear with b2; • c1 is not collinear with c2.

The goal of this exercise is to show that any such tensor has rank three, that is, it cannot be expressed as a sum of fewer terms. We will proceed by steps. (i) First, show that

(iii) Now, use the fact that $\mathbf{X}_{..1} = \mathbf{I}$ to show that (2) implies that $\mathbf{S}_{..2}$ can be diagonalized by \mathbf{U} , that is, there exists a diagonal matrix $\mathbf{X}_{..1} = \mathbf{I}$ to show that (2) implies that $\mathbf{S}_{..2}$ can be diagonalized by \mathbf{U} , that is, there exists a diagonal matrix $\mathbf{X}_{..1} = \mathbf{I}$ to show that (2) implies that $\mathbf{S}_{..2}$ can be diagonalized by \mathbf{U} , that is, there exists a diagonal matrix $\mathbf{X}_{..1} = \mathbf{I}$ to show that (2) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (2) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (3) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (4) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (5) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (6) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (7) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (8) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (9) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (9) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (10) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (11) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (12) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (13) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (13) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (13) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (14) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (15) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (15) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (15) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (15) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (15) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (15) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (15) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (15) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (15) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that (15) implies that $\mathbf{S}_{..2} = \mathbf{I}$ to show that $\mathbf{S}_{..2} = \mathbf{$

 $\mathbf{A} = [\mathbf{a}_1 \quad \mathbf{a}_2], \quad \mathbf{B} = [\mathbf{b}_1 \quad \mathbf{b}_2], \quad \mathbf{C} = [\mathbf{c}_1 \quad \mathbf{c}_2],$

 $\mathcal{X} = \mathcal{S} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C}$

and

where

 $\mathbf{S}_{..1} = \mathbf{I}_2 = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \quad \mathbf{S}_{..2} = egin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix}.$

Then, using the result of Exercise 2), conclude that ${\mathcal X}$ and ${\mathcal S}$ have the same rank.

(ii) Hence, it suffices to show that $\mathrm{rank}(\mathcal{S})=3$. Suppose, for a contradiction, that $\mathrm{rank}(\mathcal{S})=2$. Using the properties of the PARAFAC decomposition, show that this implies the existence of matrices $\mathbf{U},\mathbf{V},\mathbf{D}_1,\mathbf{D}_2\in\mathbb{C}^{2 imes 2}$ such that $\mathbf{D}_1,\mathbf{D}_2$ are diagonal and $\mathbf{S}_{..1} = \mathbf{U} \mathbf{D}_1 \mathbf{V}^{ op}, \quad \mathbf{S}_{..2} = \mathbf{U} \mathbf{D}_2 \mathbf{V}^{ op}$

 $\mathbf{S} = \mathbf{U}\mathbf{D}\mathbf{U}^{-1}.$

(iv) Conclude that this leads to a contradiction, by taking into account the Jordan form of $S_{...2}$.

3.1) *Unfoldings* do core do tensor ${\cal S}$

$$[\mathbf{S}]_{(1)} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$[\mathbf{S}]_{(2)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$[\mathbf{S}]_{(2)} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$[\mathbf{X}]_{(1)} = \mathbf{A}[\mathbf{S}]_{(1)}(\mathbf{C} \otimes \mathbf{B})^{\top}$$

$$[\mathbf{X}]_{(1)} = [\mathbf{a}_1 \quad \mathbf{a}_2] \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} [(\mathbf{c}_1 \otimes \mathbf{b}_1)^{\top} \quad (\mathbf{c}_1 \otimes \mathbf{b}_2)^{\top} \quad (\mathbf{c}_2 \otimes \mathbf{b}_1)^{\top} \quad (\mathbf{c}_2 \otimes \mathbf{b}_2)^{\top}]$$

$$[\mathbf{X}]_{(1)} = [\mathbf{a}_1 \quad \mathbf{a}_2] \begin{bmatrix} 1(\mathbf{c}_1 \otimes \mathbf{b}_1)^{\top} + 0(\mathbf{c}_1 \otimes \mathbf{b}_2)^{\top} + 0(\mathbf{c}_2 \otimes \mathbf{b}_1)^{\top} + 1(\mathbf{c}_2 \otimes \mathbf{b}_2)^{\top} \\ 0(\mathbf{c}_1 \otimes \mathbf{b}_1)^{\top} + 1(\mathbf{c}_1 \otimes \mathbf{b}_2)^{\top} + 0(\mathbf{c}_2 \otimes \mathbf{b}_1)^{\top} + 0(\mathbf{c}_2 \otimes \mathbf{b}_2)^{\top} \end{bmatrix}$$

$$[\mathbf{X}]_{(1)} = [\mathbf{a}_1 \quad \mathbf{a}_2] \begin{bmatrix} (\mathbf{c}_1 \otimes \mathbf{b}_1)^{\top} + (\mathbf{c}_2 \otimes \mathbf{b}_2)^{\top} \\ (\mathbf{c}_1 \otimes \mathbf{b}_2)^{\top} \end{bmatrix}$$

$$[\mathbf{X}]_{(1)} = \mathbf{a}_1 [(\mathbf{c}_1 \otimes \mathbf{b}_1)^{\top} + (\mathbf{c}_2 \otimes \mathbf{b}_2)^{\top}] + \mathbf{a}_2 [(\mathbf{c}_1 \otimes \mathbf{b}_2)^{\top}]$$

$$[\mathbf{X}]_{(1)} = \mathbf{a}_1 (\mathbf{c}_1 \otimes \mathbf{b}_1)^{\top} + \mathbf{a}_1 (\mathbf{c}_2 \otimes \mathbf{b}_2)^{\top} + \mathbf{a}_2 (\mathbf{c}_1 \otimes \mathbf{b}_2)^{\top}$$

$$[\mathbf{X}]_{(1)} = \mathbf{a}_1 (\mathbf{c}_1 \otimes \mathbf{b}_1)^{\top} + \mathbf{a}_1 (\mathbf{c}_2 \otimes \mathbf{b}_2)^{\top} + \mathbf{a}_2 (\mathbf{c}_1 \otimes \mathbf{b}_2)^{\top}$$

3.)

 $\mathcal{X} = \mathbf{a}_1 \circ \mathbf{b}_1 \circ \mathbf{c}_1 + \mathbf{a}_1 \circ \mathbf{b}_2 \circ \mathbf{c}_2 + \mathbf{a}_2 \circ \mathbf{b}_2 \circ \mathbf{c}_1$ 3.) Dado a demonstração do problema 2, o posto do tensor é uma propriedade.

$$\mathcal{S} = \sum_{r=1}^{2} \mathbf{s}_{r}^{(1)} \circ \mathbf{s}_{r}^{(2)} \circ \mathbf{s}_{r}^{(3)}$$
 $\mathcal{S}_{..1} = \sum_{r=1}^{2} \mathbf{s}_{1,r}^{(3)} \circ \mathbf{s}_{r}^{(1)} \circ \mathbf{s}_{r}^{(2)^{\top}} = \mathbf{S}^{(1)} \mathbf{D}_{1} \left(\mathbf{S}^{(3)} \right) \mathbf{S}^{(2)^{\top}}$ $\mathcal{S}_{..2} = \sum_{r=1}^{2} \mathbf{s}_{2,r}^{(3)} \circ \mathbf{s}_{r}^{(1)} \circ \mathbf{s}_{r}^{(2)^{\top}} = \mathbf{S}^{(1)} \mathbf{D}_{2} \left(\mathbf{S}^{(3)} \right) \mathbf{S}^{(2)^{\top}}$

3.) Identidade e SVD

$$\mathbf{S}^{(1)} = \mathbf{D}_1 \left(\mathbf{S}^{(3)}
ight) = \mathbf{S}^{(2)} = \mathbf{U} = \mathbf{\Sigma} = \mathbf{V}^ op = \mathbf{I}$$

 $\mathcal{S}_{..1} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^ op = \mathbf{S}^{(1)} \mathbf{D}_1 \left(\mathbf{S}^{(3)}
ight) \mathbf{S}^{(2)}^ op = \mathbf{I}$

 $\mathcal{S}_{..2} = \mathbf{S}^{(1)} \mathbf{D}_2 \left(\mathbf{S}^{(3)}
ight) \mathbf{S}^{(2)^ op}$

3.) Rescrevendo $\mathbb{S}_{...}$ a partir dos resultados obtidos em função de $\mathbb{S}_{...}$

 $\mathcal{S}_{..2} = \mathbf{S}^{(1)} \left[\mathbf{S}^{(1)} \mathbf{D}_2 \left(\mathbf{S}^{(3)}
ight) \mathbf{S}^{(2)}^ op
ight] \mathbf{S}^{(1)^{-1}}$

3.) Multiplicando

$$\mathcal{S}_{..2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{D}_2 \left(\mathbf{S}^{(3)} \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 3.) Dado que a identidade é o elemento neutro na multiplicação de matrizes, podemos reescrever a equação omitindo-as.

 $\mathcal{S}_{..2} = \mathbf{D}_2\left(\mathbf{S}^{(3)}
ight)$

$$\mathcal{S}_{..2} = egin{bmatrix} \mathbf{s}_{21} & 0 \ 0 & \mathbf{s}_{22} \end{bmatrix}$$

In this last exercise, we will show that, although the tensors of the form considered in the last exercise have rank 3, they are limits of sequences of rank-2 tensors. Thus, unlike happens for matrices, a sequence of rank-R tensors can converge

to a rank-S tensor with S > R.

Problem 4

(i) First, show that the rank-1 tensor $\mathcal{Y}_m = m(\mathbf{a}_1 + m^{-1}\mathbf{b}_2) \circ (\mathbf{b}_2 + m^{-1}\mathbf{b}_1) \circ (\mathbf{c}_1 \circ m^{-1}\mathbf{c}_2)$

(ii) Subtract the O(m) term to get:

is equal to \mathcal{X} (as given by (1)) plus an O(m) term \mathcal{Z}_m and an O(1/m) term.

What is the rank of \mathcal{X}_m ? (iii) Use the expression obtained for \mathcal{X}_m to conclude that $\lim_{m o \infty} \mathcal{X}_m = \mathcal{X}.$ $\mathcal{X}_m = \mathcal{Y}_m - \mathcal{Z}_m$.