Parallel Connections

Equivalent Representations

Systems can have multiple inputs and multiple outputs Linearity means that we can decouple the input-output pairs

ELEC 207 Part B

Control Theory Lecture 3: Control System Modelling (2)

Prof Simon Maskell CHAD-G68 s.maskell@liverpool.ac.uk 0151 794 4573

ELEC 207 Part B

Control Theory Lecture 3: Control System Modelling (2)

Prof Simon Maskell CHAD-G68 s.maskell@liverpool.ac.uk 0151 794 4573

- Single-input single-output and multi-input multi-output systems
- Components and the underpinning mathematics of block diagrams
- Block diagram manipulation and reduction
- Closed-loop transfer function of a negative feedback system

- (Introduction to part B of ELEC207 module)
- Function, architecture, history and applications of a control system
- Open-loop and closed-loop systems
- Mathematical model of a control system

Proble Class

Lecture 2

- Laplace Transforms
- Transfer Function
- Characteristic Equations
- · Poles and zeros
- State-space model
- Transformation between transfer function and state-space model

- Laplace Transforms
- · Transfer Function
- Characteristic Equations
- Poles and zeros
- Poles and zeros
 State-space model
- · Transformation between transfer function and state-space model

- Single-input single-output and multi-input multi-output systems
- Components and the underpinning mathematics of block diagrams
- Block diagram manipulation and reduction
- Closed-loop transfer function of a negative feedback system

Closed Loop Control System (recap)

Equivalent Representations

Systems can have multiple inputs and multiple outputs
Linearity means that we can decouple the input-output pairs

Multi-Input System

Multi-Output System

Multi-Input Multi-Output System

Equivalent Representations

Systems can have multiple inputs and multiple outputs
Linearity means that we can decouple the input-output pairs

Series Connection

Example

$$A(s)+B(s)-(A(s) \times C(s))$$

Closed-loop Transfer Function of a Negative Feedback Control System

$$A(s)(X(s) - B(s)Y(s)) = Y(s)$$

 $A(s)X(s) - A(s)B(s)Y(s) = Y(s)$
 $A(s)X(s) = (A(s)B(s) + 1)Y(s)$

$$\frac{Y(s)}{X(s)} = \frac{A(s)}{A(s)B(s) + 1}$$

- Single-input single-output and multi-input multi-output systems
- Components and the underpinning mathematics of block diagrams
- Block diagram manipulation and reduction
- Closed-loop transfer function of a negative feedback system

