CHAPTER 5: PAIRWISE SEQUENCE ALIGNMENT AND DATABASE SEARCHING

Dr. Garrett Dancik

Alignment algorithms (preview)

- Needleman-Wunsch (1970) and variations:
 - for aligning two sequences
 - uses dynamic programming to "consider" all possible alignments (10⁶⁰⁰ for two sequences of length 1000!)
- FASTA: uses a heuristic method for efficient searches (though not guaranteed to find the optimal solution)
 - Creates dictionary of k-tuples for the query sequence which is checked against sequences in the database
 - A local alignment algorithm is used to complete the alignment
- BLAST (Basic Local Alignment Search Tool): also fast and uses a heuristic
 - Finds short matches (which do not have to be perfect)
 - Then uses local alignment to complete the alignment

Needleman and Wunsch Dynamic Programming method

- Dynamic programming method
 - The problem can be divided into smaller parts
- Consider the following alignment of the sequences

$$x = THISLINE$$
 and $y = ISALIGNED$

Dynamic Programming Concept

The alignment below is the optimal global alignment, with BLOSUM-62 matrix, and linear gap penalty of 4:

A key observation is that the total alignment score is the sum of partial alignment scores:

For any part of the alignment: The score of the optimal global alignment from positions $1 \rightarrow L$ is the sum of the partial alignment scores from positions $1 \rightarrow u$, $u+1 \rightarrow v$, and $v+1 \rightarrow L$

Dynamic programming, key idea

The optimal alignment between sequences **x** and **y** can end in 3 possible ways (example for alignment between THIS and IS is shown):

1. A pair between the last character of **x** and last character of **y**

2. A gap at the end of **x** aligned to the last character of **y**

3. A gap at the end of **y** aligned to the last character of **x**

Optimal alignment between THIS and IS has 3 possibilities:

Dynamic Programming Algorithm

Let $S_{i,j}$ be the score of the optimal alignment of all characters up to x_i of sequence \mathbf{x} and \mathbf{y}_i of sequence \mathbf{y} .

Then there are three possibilities for the end of this alignment

$$\begin{array}{c}
\cdots \ \mathsf{X}_{i-1} \\
\cdots \ \mathsf{y}_{j-1}
\end{array}
\mathsf{y}_{j}$$

$$\mathsf{S}_{i-1,j-1}$$

$$\begin{bmatrix} \cdots & X_{i-1} \\ \cdots & Y_j \end{bmatrix} X_i$$

$$S_{i-1,j}$$

The optimal alignment score $S_{i,i}$ is the maximum of the following

$$S_{i-1, j-1} + s(x_i, y_i)$$
 $S_{i, j-1} + g$ $S_{i-1, j} + g$

$$S_{i-1,j} + g$$

where $s(x_i, y_i)$ is the substitution (or match/mismatch score) for character x_i aligned with y_i , and g is a constant gap penalty

Example:

$$x = THISLINE and $y = ISALIGNED$

T H I S - L I - N E - - - I S A L I G N E D$$

Assume a constant (linear) gap penalty g = 4, and $s(x_i, y_j)$ calculated using the BLOSUM-62 scoring matrix.

 $S_{4,2}$ is the optimal score for aligning THIS with IS and is the maximum of

 $S_{i,j}$ is the score of the optimal alignment of all characters up to x_i of sequence \mathbf{x} and y_i of sequence \mathbf{y} .

The score of the optimal alignment of THIS with IS is $S_{4,2} = 0$.

Dynamic programming matrix illustrating possible optimal alignments for subsequences $x_1, \ldots x_i$ and $y_1, \ldots y_i$

Algorithm for finding the optimal global alignment

- For two sequences, $x_1, \ldots x_m$ and $y_1, \ldots y_n$
- Construct an (m+1) by (n+1) matrix (starting with element $S_{0,0}$ at the top left)
- For each i, the element $S_{i,0}$ corresponds to the alignment

$$X_1 \quad X_2 \quad ... \quad X_1 \\ - \quad - \quad ... \quad -$$

For each j, the element $S_{0,j}$ corresponds to the alignment

$$- - ... - y_1 y_2 ... y_i$$

Fill in the matrix for all $S_{i,0}$ and $S_{0,j}$ appropriately

Assignment of $S_{i,0}$ and $S_{0,j}$ when a linear gap penalty of 4 is used

Algorithm for finding the optimal global alignment (con't)

• For i = 1, ..., m and j = 1, ..., n

$$\operatorname{set} S_{i,j} = \max \begin{cases}
S_{i-1,j-1} + s(x_i, x_j) \\
S_{i-1,j} + g
\end{cases}$$

$$S_{i,j-1} + g$$

and draw an arrow to $S_{i,j}$ from the cell where the score was derived $(S_{i-1,j-1}, S_{i-1,j}, or S_{i,j-1})$

Dynamic programming matrix for global alignment (A) Α $20 \rightarrow -24 \rightarrow -28 \rightarrow -32 \rightarrow -36$ THI-17 -18 -22 -26

 $S_{i,j}$ is the score of the optimal alignment of all characters up to x_i of sequence \mathbf{x} and \mathbf{y}_i of sequence \mathbf{y} .

The score of the optimal alignment of THIS with IS is $S_{4,2} = 0$.

-16

Algorithm for finding the optimal global alignment (con't)

- After the dynamic programming matrix is filled in, $S_{m,n}$ contains the score of the optimal global alignment
- A process called *traceback* is then used to recover the alignment itself, based on the path used to generate the optimal alignment score (based on the arrows), starting with $S_{m,n}$ and working backwards to $S_{0,0}$
- If the score $S_{i,j}$ was derived
 - diagonally from $S_{i-1,j-1}$, then align x_i with y_j
 - vertically from $S_{i-1,j}$, then align a gap with y_i
 - horizontally from $S_{i,j-1}$, then align x_i with a gap

Global alignment: Dynamic programming matrix using linear gap penalty of 4

y

Global alignment: Dynamic programming matrix using linear gap penalty of 4

У

Global alignment: Dynamic Programming Matrix using linear gap penalty of 8

(B) THISLINE-|-| ISALIGNED

Modification of algorithm for semiglobal alignments

- A semiglobal alignment does not penalize for gaps at the beginning and end of an alignment
- Appropriate for global alignments of sequences that are not the same length
- Modifications to algorithm for semiglobal alignment:
 - Set S_{i,0} and S_{0,i} to 0 for all i and j
 - Start the traceback from the highest scoring element in the bottom row or last column

Semiglobal alignment: Dynamic Programming Matrix using a linear gap penalty of 8

S G N Ε Н Ι Ι N Ε

(A)

Modification of algorithm for local alignments (1st proposed by Smith-Watterman)

- A local alignment aligns regions of two sequences, and will not necessarily span the length of each sequence
- Appropriate for identifying functional domains of a protein
- Modifications to algorithm for local alignment:

$$S_{i-1,j-1} + s(x_i, x_j)$$
• set $S_{i,j} = \max$

$$S_{i,j-1} + g$$

$$0$$

- Assumes that the expected alignment score is negative for random sequences and is positive for similar sequences
- Traceback starts from highest scoring matrix element anywhere in the matrix and ends at 0

Local alignment: Dynamic Programming Matrix using a linear gap penalty of 8

