

Taller 2: Respuesta de frecuencia y diagramas de BODE.

OBJETIVOS

- 1. Utilizar datos, indicios e información para formular las ecuaciones de un sistema (CDIO 2.1.1).
- 2. Describir las abstracciones necesarias para definir y modelar un sistema. (CDIO 2.3.2)
- 3. Describir propiedades funcionales y de comportamiento que surgen de un sis tema (CDIO 2.3.2)
- 4. Identificar sistemas propios según una disciplina y sistemas con interacción entre áreas (CDIO 2.3.2)

CONTENIDO:

- 1. Plantear funciones de transferencia.
- 2. Graficar la respuesta de frecuencia empleando MATLAB

Funciones de MATLAB (Nota 1)

En Matlab existe un conjunto de funciones para resolver las ecuaciones de estado de sistemas lineales e invariantes con el tiempo.

Función	Descripción	
<u>tf</u>	Construye un modelo de función de transferencia desde un polinomio <i>N</i> y <i>D</i> del numerador y denominador de la función de transferencia	sys = tf(N, D)
ss2tf	Convierte la representación de estado a función de transferencia.	[b,a] = ss2tf(A,B,C,D)
<u>zpk</u>	Crear el mapa de polos y ceros. Es una representación de la función de transferencia en su forma factorizada. Se puede ingresar un sistema en variables de estado como en términos de los valores de cero, polos y la ganancia	sys = zpk(sys) sys = zpk(ceros, polos, ganancia)
bode	Respuesta de frecuencia grafica o datos de magnitud y fase vs frecuencia	<pre>bode(sys); bode(,w) [mag,phase,wout] = bode(sys) [mag,phase,wout] = bode(sys,w)</pre>

Problemas de aplicación

1. Un sistema de segundo orden tiene la función de transferencia (Nota 2)

$$H(s) = \frac{1}{s^2 + 0.5S + 1}$$

- a. ¿Cuáles son los parámetros del sistema, ω_0 y ζ ?
- b. Del diagrama de Bode de magnitud obtener el ancho de banda 3 dB.
- c. Graficar la respuesta del sistema si la entrada es de la forma:

$$u(t) = sen(\omega t)$$

La frecuencia de la entrada tiene tres valores de interés:

$$\omega = 0.2\omega_0$$
; $\omega = \omega_0$; $\omega = 2\omega_0$

Para cada caso graficar la señal de salida, compararla con la entrada en términos de amplitud y fase de la señal seno de salida.

2. Un sensor de presión tiene una función de transferencia de la forma (Nota 3)

$$H(s) = \frac{\omega_o^2}{s^2 + (2\zeta\omega_o)s + \omega_o^2}$$

Medidas de laboratorio dan como resultado:

$$f_o = 5000 Hz \ y \ \zeta = 0.4$$

- a. Calcular la frecuencia de resonancia.
- b. Graficar el diagrama de Bode de magnitud y fase
- c. ¿Si la entrada es una señal seno de amplitud unitaria y frecuencia 2000 Hz cual es la amplitud y corrimiento de fase de la señal de salida? Calcularlo
- d. Obtener la respuesta a partir del diagrama de Bode. Comparar resultados.
- e. ¿Cuál es el porcentaje de error en la salida?

$$e(\%) = \frac{Valor_{medido} - Valor_{ideal}}{Valor_{ideal}} x 100\%$$

- f. Si el máximo error permitido es del $\pm 1\%$, cual es la máxima frecuencia de entrada aceptable?
- 3. De datos experimentales a función de transferencia propuesta (Nota 4)

La respuesta de frecuencia de un circuito, tomada en el laboratorio es:

173		
Frequence	ev res	ponse

f [Hz]	In [V]	Out [V]	Out/In [dB]	time lag [ms]	phase [deg]
100	9.938	0.75	-22.44475458	2.1	75.6
200	9.812	1.369	-17.10708183	0.94	67.68
400	9.812	2.328	-12.49549127	0.38	54.72
800	9.812	3.422	-9.149550687	0.128	36.864
1000	9.75	3.703	-8.409018073	0.09	32.4
1200	9.688	3.906	-7.890037824	0.066	28.512
1400	9.688	4.062	-7.549884221	0.049	24.696
1600	9.688	4.156	-7.351171825	0.038	21.888
1800	9.75	4.25	-7.212313713	0.03	19.44
2000	9.75	4.281	-7.149187757	0.0232	16.704
2400	9.75	4.438	-6.836346356	0.016	13.824
3000	9.812	4.5	-6.770900515	0.0092	9.936
4000	9.812	4.56	-6.655853937	0.0032	4.608
5000	9.812	4.562	-6.652045172	0	0
8000	9.812	4.5	-6.770900515	-0.0022	-6.336
12000	9.812	4.406	-6.954260934	-0.0035	-15.12
16000	9.688	4.188	-7.284549143	-0.0035	-20.16
20000	9.688	4	-7.683482776	-0.0035	-25.2
24000	9.688	3.812	-8.101624763	-0.0035	-30.24
30000	9.688	3.5	-8.843321716	-0.0035	-37.8
40000	9.625	3.062	-9.947911036	-0.0032	-46.08
80000	9.625	1.875	-14.20798932	-0.0022	-63.36
160000	9.688	1.037	-19.40910747	-0.0013	-74.88

Observar las unidades de las variables.

- a. Graficar BODE de magnitud y fase. Emplear MATLAB
- b. Proponer la mejor función de transferencia y graficar el Bode.
- c. Comparar los resultados de la función propuesta vs los datos experimentales, medir el error cuadrático medio de la aproximación

4. Respuesta filtro "Butterworth" (Nota 5)

La función de transferencia de un filtro LP tipo Butterworth (Respuesta máximamente plana en banda de paso) es de la forma:

$$H(s) = \frac{1}{s^5 + 3,236s^4 + 5,236s^3 + 5,236s^2 + 3,236s + 1}$$

Esta función esta normalizada para una frecuencia de corte de $\omega_o=1$.

Si se desea calcular el filtro para otra frecuencia de corte simplemente se "desnormaliza" reemplazando:

$$s \to \frac{s}{\omega_{onueva}}$$

Donde ω_{onueva} es la frecuencia de corte deseada, en rps.

- a. Calcular la función de transferencia para un filtro LP con corte en 4000 Hz.
- b. Graficar el diagrama de Bode. Verificar la frecuencia de corte
- c. ¿Cuál es la salida para una señal seno de amplitud unitaria y frecuencia 2000Hz? ¿Para frecuencia 5000Hz?
- d. Graficar la respuesta para entrada paso.

NOTAS

- 1. https://www.mathworks.com/help/control/referencelist.html?type=function &category=response-plots-and-data&s tid=CRUX topnav
- 2. http://www.engin.umich.edu/group/ctm/freq/freq.html
- 3. J.P.Holman. Experimental methods for engineers. 7th edition. McGraw Hill International Edition 2001
- 4. http://www.eecis.udel.edu/~murakows/eleg309/report.pdf
- 5. Lacanette K. A Basic Introduction to filters. NS. Application Note 779. 2010
- 6. Talleres: mismos grupos de laboratorio
- 7. COPIA DETECTADA DURANTE LA CALIFICACIÓN SE SANCIONARÁ CON LA ANULACIÓN DEL EXPERIMENTO Y LA CORRESPONDIENTE SANCIÓN ESTABLECIDA EN EL REGLAMENTO.
- 8. Realización: semana 4
- 9. Entrega: semana 5. 24 febrero antes de la 11.59 PM. Después de esta hora no se recibe. Subir a BS

REVISIONES

Revisión 1	Febrero 2023	CCB /CCS/