Matrizes

Definição

Uma tabela de $m \times n$ números reais dispostos em m linhas (filas horizontais) e n colunas (filas verticais) é uma matriz do tipo (ou formato) $m \times n$, ou simplesmente matriz $m \times n$.

a)
$$A = \left(5 - 2 \frac{1}{2}\right)$$
 é uma matriz 1×3 .

b) B =
$$\begin{pmatrix} 3 & -7 \\ \frac{1}{2} & 0 \\ -1 & 4 \end{pmatrix}$$
 é uma matriz 3 × 2.

c)
$$C = \begin{bmatrix} 6 & 2 \\ 3 & -1 \end{bmatrix}$$
 é uma matriz 2×2 .

d) D =
$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 2 & 1 & 3 \\ -1 & 0 & 0 & 9 \end{bmatrix}$$
 é uma matriz 3 × 4.

e)
$$E = \begin{pmatrix} 4 \\ -1 \\ 0 \end{pmatrix}$$
 é uma matriz 3×1 .

- f) Escreva a matriz $A = (a_{ij})_{2\times 3}$, em que $a_{ij} = i j$.
- g) Qual é o elemento \mathbf{a}_{46} da matriz $A = (a_{ij})_{8\times8}$, em que $a_{ij} = (-1)^{i+j} \cdot \frac{2j}{i}$?

Definição

Duas matrizes $A_{m \times n} = \left[a_{ij}\right]_{m \times n}$ e $B_{r \times s} = \left[b_{ij}\right]_{r \times s}$ são iguais, isto é, A = B, se elas tem o mesmo número de linhas (m = r) e colunas (n = s), e todos os seus elementos correspondentes são iguais $(a_{ij} = b_{ij})$.

Tipos Especiais de Matrizes

Matriz Quadrada

Matriz Quadrada é aquela cujo número de linhas é igual ao número de colunas (m = n).

$$B = \begin{pmatrix} 5 & 3 & 10 \\ -1 & -4 & 6 \\ \sqrt{2} & 0 & -\frac{1}{2} \end{pmatrix}$$
 é uma matriz quadrada 3 × 3. Dizemos que **B** é quadrada de ordem 3.

Matriz Nula

Matriz Nula é aquela em que $a_{ij} = 0$, para todo $i \in j$.

Exemplos

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{\'e a matriz nula 2} \times 3.$$

$$B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{\'e a matriz nula 2} \times 2.$$

Matriz Coluna

Matriz Coluna é aquela matriz que possui uma única coluna (n = 1).

$$A = \begin{bmatrix} 3 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$
 é uma matriz coluna 4×1 .

$$B = \begin{pmatrix} 1 \\ 6 \\ 2 \end{pmatrix} \text{ é uma matriz coluna } 3 \times 1.$$

Matriz Linha

Matriz Linha é aquela matriz que possui uma única linha (m = 1).

Exemplos

 $A = (0 \ 2 \ 4)$ é uma matriz linha 1×3 .

 $B = \begin{bmatrix} 0 & -3 \end{bmatrix}$ é uma matriz linha 1×2 .

Matriz Diagonal

Matriz Diagonal é uma matriz quadrada (m=n) onde $a_{ij}=0$, para $i\neq j$, isto é, os elementos que não estão na "diagonal" são nulos.

$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 - 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

Matriz Identidade

Matriz Identidade é uma matriz Diagonal em que $a_{ij} = 1$ para i = j e $a_{ij} = 0$ para $i \neq j$.

Exemplos

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matriz Triangular Superior

Matriz Triangular Superior é uma matriz quadrada onde todos os elementos abaixo da diagonal são nulos, isto é, m=n e $a_{ij}=0$ para i>j.

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

$$B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$

Matriz Triangular Inferior

Matriz Triangular Superior é uma matriz quadrada onde todos os elementos acima da diagonal são nulos, isto é, m=n e $a_{ij}=0$ para i< j.

Exemplos

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 6 & 0 \\ 3 & 4 & 1 \end{pmatrix}$$

$$B = \begin{bmatrix} 2 & 0 \\ 5 & -1 \end{bmatrix}$$

Matriz Simétrica

Matriz Simétrica é uma matriz quadrada onde m = n e $a_{ij} = a_{ji}$.

$$D = \begin{bmatrix} 3 & 5 & 7 \\ 5 & 1 & 9 \\ 7 & 9 & 6 \end{bmatrix}$$

$$Q = \left(\begin{array}{cccc} 7 & 1 & 2 & 6 \\ 1 & -1 & 3 & 2 \\ 2 & 3 & 5 & 0 \\ 6 & 2 & 0 & 0 \end{array}\right)$$

Operações com Matrizes

Adição de Matrizes

A soma de duas matrizes de mesma ordem $A_{m\times n}=\left[a_{ij}\right]$ e $B_{m\times n}=\left[b_{ij}\right]$, é uma matriz $m\times n$ que denotamos por A+B, cujos elementos são somas dos elementos correspondentes de A e B. Isto é.

$$A + B = \left[a_{ij} + b_{ij} \right]_{m \times n}$$

$$\begin{pmatrix} 3 & 5 & -2 \\ 2 & 8 & -6 \\ 1 & 4 & 2 \end{pmatrix} + \begin{pmatrix} 1 & -4 & -1 \\ 7 & 0 & 2 \\ 3 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 1 & -3 \\ 9 & 8 & -4 \\ 4 & 5 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 & -2 & 5 \\ 10 & 0 & -1 \end{pmatrix} - \begin{pmatrix} 2 & -3 & 6 \\ -4 & 5 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 14 & -5 & -2 \end{pmatrix}$$

Propriedades:

Dadas as matrizes A, B e C de mesma ordem $m \times n$, temos:

- i) A + B = B + A (Comutativa)
- ii) A + (B + C) = (A + B) + C (Associativa)
- iii) $A + \mathbf{0} = A$, onde $\mathbf{0}$ denota a matriz nula $m \times n$ (Elemento neutro)

Multiplicação de uma Matriz por um escalar

Seja $A = \left[a_{ij}\right]_{m \times n}$ e k um número real, então definimos uma nova matriz:

$$k.A = \left[ka_{ij}\right]_{m \times n}$$

Propriedades:

Dadas matrizes A e B de mesma ordem $m \times n$ e números k, k_1 e k_2 , temos:

- i) k(A+B)=kA+kB
- ii) $(k_1 + k_2)A = k_1A + k_2A$
- iii) $\mathbf{0}.A = \mathbf{0}$, isto é, se multiplicarmos o número zero por qualquer matriz A, teremos a matriz nula.
- iv) $k_1(k_2A) = (k_1k_2)A$

Matriz Transposta

Dada uma matriz $A=\left[a_{ij}\right]_{m\times n}$, podemos obter uma matriz $A^t=A'=\left[b_{ij}\right]_{m\times n}$, cujas linhas são colunas de A, isto é, $b_{ij}=a_{ji}$. $A^t=A'$ é denominada de transposta de A.

A transposta de
$$A = \begin{pmatrix} 6 & -2 \\ 4 & 5 \end{pmatrix}$$
 é $A^t = \begin{pmatrix} 6 & 4 \\ -2 & 5 \end{pmatrix}$

A transposta de B =
$$\begin{pmatrix} 3 & 10 & -1 \\ 0 & -2 & 6 \end{pmatrix}$$
 é B^t = $\begin{pmatrix} 3 & 0 \\ 10 & -2 \\ -1 & 6 \end{pmatrix}$

A transposta de C =
$$\begin{bmatrix} 4 & 2 & 1 \\ 0 & 5 & 8 \\ -3 & 2 & 10 \end{bmatrix}$$
 é C^t =
$$\begin{bmatrix} 4 & 0 & -3 \\ 2 & 5 & 2 \\ 1 & 8 & 10 \end{bmatrix}$$

Propriedades:

- i) Uma matriz é simétrica se, e somente se ela é igual a sua transposta, isto é, se, e somente se $A = A^t$.
- ii) $(A^t)^t = A$. Isto é, a transposta da transposta de uma matriz é ela mesma.
- iii) $(A + B)^t = A^t + B^t$. A transposta de uma soma é igual a soma das transpostas.
- iv) $(kA)^t = kA^t$, onde k é qualquer escalar.

Multiplicação de Matrizes

Sejam $A=\left[a_{ij}\right]_{m\times n}$ e $B=\left[b_{rs}\right]_{n\times p}$. Definimos $C=AB=\left[c_{uv}\right]_{m\times p}$, onde

$$c_{uv} = \sum_{k=1}^{n} a_{uk} b_{kv} = a_{u1} b_{1v} + \dots + a_{un} b_{nv}$$

Observações:

- i) Só podemos efetuar o produto de duas matrizes $A_{m \times n}$ e $B_{r \times p}$ se o número de colunas da primeira for igual ao número de linhas da segunda, isto é, n=r. Alem disso, a matriz resultado C=AB será de ordem $m \times p$.
- ii) O elemento c_{ij} (i-ésima linha e j-ésima coluna da matriz produto) é obtido, multiplicando os elementos da i-ésima linha da primeira matriz pelos elementos da j-ésima coluna da segunda matriz, e somando esses produtos.

Exemplo 1

Dadas as matrizes
$$A = \begin{pmatrix} 2 & 3 & 1 \\ -1 & 0 & 2 \end{pmatrix} e B = \begin{pmatrix} 1 - 2 \\ 0 & 5 \\ 4 & 1 \end{pmatrix}$$
, vamos determinar, se existirem, $A \cdot B e B \cdot A$.

Exemplo 2

Dadas as matrizes
$$A = \begin{bmatrix} -1 & 2 \\ 0 & 5 \end{bmatrix} e B = \begin{bmatrix} 1 - 3 \\ 1 & 2 \end{bmatrix}$$
 vamos determinar, se existirem, $A \cdot B e B \cdot A$.

Exemplo 3

Sejam as matrizes $A = (a_{ij})_{6\times3}$, em que $a_{ij} = i - j$, e $B = (b_{ik})_{3\times8}$, em que $b_{ik} = j + k$. Sendo $C = A \cdot B = (b_{ik})_{3\times8}$ = $(c_{ik})_{6\times8}$, qual é o valor do elemento c_{35} ?

Propriedades:

- i) Em geral $AB \neq BA$ (Podendo um dos membros estar definido e o outro não).
- ii) AI = IA = A (Isso justifica o nome da matriz identidade)
- iii) A(B+C) = AB + AC (Distributiva a esquerda)
- *iv*) (A + B)C = AC + BC (Distributiva a direita)
- v) (AB)C = A(BC) (Associativa)
- vi) $(AB)^t = B^t A^t$ (Observe a ordem)
- *vii*) 0.A = 0 e A.0 = 0.