

Kernel Density Estimates and Mean Shift Clustering

Jonas Spinner | February 4, 2019

ANALYTICS AND STATISTICS AT THE INSTITUTE OF OPERATIONS RESEARCH

Outline

- Introduction
- 2 Kernel Density Estimates
 - Definition
 - Kernel functions
- Mean Shift Clustering
 - Convergence
 - Bandwidth effects
- 4 Application

Density estimation

■ **Task**: Given samples $x_1, ..., x_n \in \mathbb{R}^d$, estimate the underlying density.

The kernel density estimate

The kernel density estimate is defined as:

$$\hat{f}(\mathbf{x}) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

- K is a kernel function.
- h is a bandwidth parameter.
- When $\int_{\mathbb{R}^d} K(\mathbf{x}) d\mathbf{x} = 1$ and $K(\mathbf{x}) \geq 0$ for all \mathbf{x} then $\hat{f}(\mathbf{x})$ is a valid probability density function.

Popular kernel functions

Radially symmetric kernel functions are kernel functions which can be represented as

$$K(\mathbf{x}) = c_{k,d} k \left(\|\mathbf{x}\|^2 \right)$$

- $k(u): [0,\infty) \to [0,\infty)$ is called the profile of K.
- For example the gaussian kernel has the profile $k(u) = \exp(-\frac{1}{2}u)$.
- Nearly all popular kernel belong to this class of kernels.

Popular kernel functions

Name	Profile support	k(u)	-k'(u)	K(x)
Uniform	$u \in [0, 1]$	1	0	$\operatorname{vol}(S_d)^{-1}$
Epanechnikov	$u \in [0, 1]$	1-u	1	$\frac{1}{2} \text{vol}(S_d)^{-1} (d+2) \left(1 - \ \mathbf{x}\ ^2\right)$
Biweight	$u \in [0, 1]$	$(1-u)^2$	2(1-u)	$\propto \left(1 - \ \mathbf{x}\ ^2\right)^2$
Triweight	$u \in [0, 1]$	$(1-u)^3$	$3(1-u)^2$	$\propto \left(1-\ \mathbf{x}\ ^2\right)^3$
Gaussian	$u\in [0,\infty)$	$\exp\left(-\frac{1}{2}u\right)$	$\frac{1}{2} \exp\left(-\frac{1}{2}u\right)$	$(2\pi)^{-d/2} \exp\left(-\frac{1}{2} \ \mathbf{x}\ ^2\right)$

February 4, 2019

Bandwidth

Abbildung: Gaussian kernel, n = 50.

- The choice of bandwidth is a bias-variance tradeoff for the estimate $\hat{f}(x)$.
- A small bandwidth results in high variance, a large bandwidth introduces a bias.

Bandwidth

- The choice of bandwidth is a bias-variance tradeoff for the estimate $\hat{f}(\mathbf{x})$.
- A small bandwidth results in high variance, a large bandwidth introduces a bias.

Bandwidth

Abbildung: Epanechnikov kernel, n = 50.

- The choice of bandwidth is a bias-variance tradeoff for the estimate $\hat{f}(\mathbf{x})$.
- A small bandwidth results in high variance, a large bandwidth introduces a bias.

History

- Introduced by Fukunaga & Hostetler (1975)
- Popularized for computer vision tasks Comaniciu & Meer (2002) and Comaniciu et al. (2003). Image segmentation, image filtering and object tracking

Locally weighted mean

The weighted mean

$$\mu^* = \frac{\sum_{i=1}^n \mathbf{x}_i w_i}{\sum_{i=1}^n w_i}$$

The locally weighted mean has weights depending on the distance to a data point \boldsymbol{x}

$$\mu^*(\mathbf{x}) = \frac{\sum_{i=1}^n \mathbf{x}_i \ g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)}{\sum_{i=1}^n g\left(\left\|\frac{\mathbf{x} - \mathbf{x}_i}{h}\right\|^2\right)}$$

0000000000

$$\mathbf{x}^{(t+1)} = \frac{\sum_{i=1}^{n} \mathbf{x}_{i} \ g\left(\left\|(\mathbf{x}^{(t)} - \mathbf{x}_{i})/h\right\|^{2}\right)}{\sum_{i=1}^{n} g\left(\left\|(\mathbf{x}^{(t)} - \mathbf{x}_{i})/h\right\|^{2}\right)} \quad \text{for } i = 1, 2, ...$$

$$= \mathbf{x}^{(t)} + \mathbf{m} \left(\mathbf{x}^{(t)} \right)$$

◆ロト ◆ 部 ト ◆ 注 ト 美 | 章 グ Q ○

hift Clustering Application

February 4, 2019

10/26

IntroductionKernel Density EstimatesMean Shift ClusteringAppl0000000●0000000000

Jonas Spinner – Kernel Density Estimates and Mean Shift Clustering

Connecting the mean shift vector and kernel density estimation

Result: the mean shift vector m(x) points into the gradient direction of a kernel density estimate.

$$m(\mathbf{x}) = \mu^*(\mathbf{x}) - \mathbf{x} = \frac{h^2 c_{g,d}}{2 c_{k,d}} \frac{\nabla \hat{f}_{h,K}(\mathbf{x})}{\hat{f}_{h,G}(\mathbf{x})}$$

Convergence - Gaussian kernel

Jonas Spinner - Kernel Density Estimates and Mean Shift Clustering

Convergence - Uniform kernel

Jonas Spinner - Kernel Density Estimates and Mean Shift Clustering

Bandwidth effects

- The choice of bandwidth influences the density estimation and therefore the clustering outcome
- Small bandwidth ⇒ many density peaks / clusters
- Large bandwidth ⇒ few peaks / clusters

Small bandwidth

Middle bandwidth

Large bandwidth

Discussion

Advantages

- No prior assumption on cluster shapes. Complex and non-convex shapes are possible
- Only has one tuning parameter, the bandwidth
- No restriction on number of clusters
- Outliers do not affect the clustering

Disadvantages

- Density estimation fails for high dimensions ($\approx d > 5$)
- Bad computational complexity $\mathcal{O}(Tn^2)$
- Finding a good bandwidth is hard

00000000000

Application – Image segmentation

• Image data can be represented as data points. The pixels can be clustered and the clustering results in a segmentation of the original image.

←□ → ←□ → ← □ → □ | □ → ○ へ()

Image segmentation – Gaussian kernel

(c) h = 0.3

(d) h = 0.4

Image segmentation – Gaussian kernel

Abbildung: caption

Image segmentation – Uniform kernel

(a) h = 0.1

(c) h = 0.3

Image segmentation – Uniform kernel

References I

- Comaniciu, D. & Meer, P. (2002), 'Mean shift: a robust approach toward feature space analysis', *IEEE Transactions on Pattern Analysis and Machine Intelligence* **24**(5), 603–619.
- Comaniciu, D., Ramesh, V. & Meer, P. (2003), 'Kernel-based object tracking', *IEEE Transactions on Pattern Analysis and Machine Intelligence* **25**(5), 564–577.
- Fukunaga, K. & Hostetler, L. (1975), 'The estimation of the gradient of a density function, with applications in pattern recognition', *IEEE Transactions on Information Theory* **21**(1), 32–40.