1. Let  $A = \{1, 2, 3, 4, 5\}$  and  $B = \{1, 4, 9, 16\}$ .

(i) Write down  $(\mathbb{Z} \setminus A) \cap B$  in roster notation.

[1 mark]

Solution.  $\{9, 16\}.$ 

**Explanation.**  $(\mathbb{Z} \setminus A) \cap B = \{\dots, -2, -1, 0, 6, 7, 8, \dots\} \cap \{1, 4, 9, 16\} = \{9, 16\}.$ 

(ii) Write down  $\{x+y:x,y\in A\}$  in roster notation.

[1 mark]

Solution.  $\{2, 3, 4, 5, 6, 7, 8, 9, 10\}.$ 

 $\{2, 3, 4, \ldots, 10\}.$ 

- (iii) Write down  $\{x + y : x, y \in A\} \setminus \{6, 7, 8, 9, 10, 11, 12, 13, 14\}$  in roster notation. **Solution.**  $\{2, 3, 4, 5\}.$
- (iv) Is  $\{x^2 : x \in A\} \subseteq B$ ? Explain your answer.

[2 marks]

[1 mark]

**Solution.** No, because  $25 \in \{x^2 : x \in A\}$  but  $25 \notin B$ .

(v) Write down all partitions of A that contains  $\{1, 3, 5\}$ .

[2 marks]

 $\{\{1,3,5\},\{2,4\}\}\$  and  $\{\{1,3,5\},\{2\},\{4\}\}.$ Solution.

Comments. Many did not get this part right; cf. Tutorial Exercise 4.7.

2. Let A and B be sets. Prove that, if  $\mathcal{P}(A) = \mathcal{P}(B)$ , then A = B.

[4 marks]

**Solution.** Assume  $\mathcal{P}(A) = \mathcal{P}(B)$ . Recall from Remark 4.2.4(3) that  $A \subseteq A$  and  $B \subseteq B$ . So  $A \in \mathcal{P}(A)$ and  $B \in \mathcal{P}(B)$  by the definition of  $\mathcal{P}$ . It then follows from our assumption that  $A \in \mathcal{P}(B)$  and  $B \in \mathcal{P}(A)$ . Unravelling the definition of  $\mathcal{P}$ , these give  $A \subseteq B$  and  $B \subseteq A$ . Hence A = B by Remark 4.2.4(2).

**Alternative solution.** Let us prove the contrapositive. Assume  $A \neq B$ . Use the definition of set equality to find z such that the biconditional  $z \in A \Leftrightarrow z \in B$  is false. There are two cases.

Case 1: suppose  $z \in A$  but  $z \notin B$ . Then  $\{z\} \subseteq A$  and  $\{z\} \not\subseteq B$  by the definition of  $\subseteq$ . According to the definition of  $\mathcal{P}$ , these mean  $\{z\} \in \mathcal{P}(A)$  and  $\{z\} \notin \mathcal{P}(B)$ , implying that  $\mathcal{P}(A) \neq \mathcal{P}(B)$ .

Case 2: suppose  $z \in B$  but  $z \notin A$ . Then  $\{z\} \not\subseteq A$  and  $\{z\} \subseteq B$  by the definition of  $\subseteq$ . According to the definition of  $\mathcal{P}$ , these mean  $\{z\} \notin \mathcal{P}(A)$  and  $\{z\} \in \mathcal{P}(B)$ , implying that  $\mathcal{P}(A) \neq \mathcal{P}(B)$ .

So  $\mathcal{P}(A) \neq \mathcal{P}(B)$  in all cases.

Comments. Many only rewrote the proposition to be proved, and did not make any progress.

- Many mixed up elements  $(\in)$  and subsets  $(\subseteq)$ . These may be different. For example, elements of  $\mathcal{P}(\mathbb{N})$  are subsets of  $\mathbb{N}$ , not elements of  $\mathbb{N}$ ; subsets of  $\mathcal{P}(\mathbb{N})$  are neither elements nor subsets of  $\mathbb{N}$ .
- Many deduced from  $A \neq B$  that some element of A is not an element of B. There is actually another case when some element of B is not an element of A, which cannot be ignored.

3. Let  $A = \{a, b, c, d\}$  and  $B = \{1, 2, 3, 4\}$ . The following are arrow diagrams of a relation R from A to B, and a relation S from B to A.





(i) Write down  $R^{-1}$  is roster notation.

[1 mark]

**Solution.**  $R^{-1} = \{(1, a), (1, c), (2, a), (3, b), (4, d)\}.$ 

(ii) Write down  $R \circ S$  in roster notation.

[1 mark]

**Solution.**  $R \circ S = \{(1,1), (1,2), (2,3), (3,1), (4,4)\}.$ 

(iii) Is  $R \circ S$  antisymmetric as a relation on B? Explain your answer.

[2 marks]

**Solution.** Yes, because the only  $x, y \in B$  that make  $(x, y), (y, x) \in R \circ S$  are when x and y are both 1 or both 4.

(iv) Write down  $S \circ R$  in roster notation.

[1 mark]

**Solution.**  $S \circ R = \{(a, a), (a, b), (a, c), (b, c), (c, a), (c, c), (d, d)\}.$ 

(v) Is  $S \circ R$  reflexive as relation on A? Explain your answer.

[2 marks]

**Solution.** No, because  $(b, b) \notin S \circ R$ .

4. Let  $A = \{(x, y) \in \mathbb{R}^2 : x \geqslant 12 \text{ and } y > 31\}$ . Define a relation R on A by setting, for all  $(x_1, y_1), (x_2, y_2) \in A$ ,

$$(x_1, y_1) R(x_2, y_2) \Leftrightarrow (x_1 - 12)(y_2 - 31) = (x_2 - 12)(y_1 - 31).$$

(i) Prove that R is an equivalence relation.

[5 marks]

**Solution.** (Reflexivity) Let  $(x,y) \in A$ . Then (x-12)(y-31) = (x-12)(y-31). So (x,y) R (x,y) by the definition of R.

(Symmetry) Let  $(x_1, y_1), (x_2, y_2) \in A$  such that  $(x_1, y_1) R (x_2, y_2)$ . Then  $(x_1 - 12)(y_2 - 31) = (x_2 - 12)(y_1 - 31)$  by the definition of R. This implies  $(x_2 - 12)(y_1 - 31) = (x_1 - 12)(y_2 - 31)$ . So  $(x_2, y_2) R (x_1, y_1)$  by the definition of R.

(Transitivity) Let  $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in A$  such that  $(x_1, y_1) R (x_2, y_2)$  and  $(x_2, y_2) R (x_3, y_3)$ . Then, by the definition of R,

$$(x_1 - 12)(y_2 - 31) = (x_2 - 12)(y_1 - 31),$$
 and (1)

$$(x_2 - 12)(y_3 - 31) = (x_3 - 12)(y_2 - 31). (2)$$

Case 1: suppose  $x_2 \neq 12$ . As  $(x_3, y_3) \in A$ , we know also  $y_3 \neq 31$ . So  $0 \neq (x_2 - 12)(y_3 - 31) = (x_3 - 12)(y_2 - 31)$  by (2). Cross-dividing (1) by (2) then gives

$$\frac{x_1 - 12}{x_3 - 12} = \frac{(x_1 - 12)(y_2 - 31)}{(x_3 - 12)(y_2 - 31)} = \frac{(x_2 - 12)(y_1 - 31)}{(x_2 - 12)(y_3 - 31)} = \frac{y_1 - 31}{y_3 - 31}.$$

Hence  $(x_1 - 12)(y_3 - 31) = (x_3 - 12)(y_1 - 31)$ .

Case 2: suppose  $x_2 = 12$ . Then, from (1) and (2), we have respectively

$$(x_1 - 12)(y_2 - 31) = (x_2 - 12)(y_1 - 31) = 0 \cdot (y_1 - 31) = 0$$
, and  $(x_3 - 12)(y_2 - 31) = (x_2 - 12)(y_3 - 31) = 0 \cdot (y_3 - 31) = 0$ .

However, as  $(x_2, y_2) \in A$ , we know  $y_2 \neq 31$ . So  $x_1 - 12 = 0$  and  $x_3 - 12 = 0$ . Hence

$$(x_1 - 12)(y_3 - 31) = 0 \cdot (y_3 - 31) = 0 = 0 \cdot (y_1 - 31) = (x_3 - 12)(y_1 - 31).$$

It follows from the definition of R that  $(x_1, y_1) R (x_3, y_3)$  in all cases.

Alternative proof of transitivity. Let  $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in A$  such that  $(x_1, y_1) R (x_2, y_2)$  and  $(x_2, y_2) R (x_3, y_3)$ . Then, by the definition of R,

$$(x_1 - 12)(y_2 - 31) = (x_2 - 12)(y_1 - 31)$$
 and  $(x_2 - 12)(y_3 - 31) = (x_3 - 12)(y_2 - 31)$ .

It follows that

$$\frac{(x_1-12)(y_2-31)}{y_1-31}=x_2-12=\frac{(x_3-12)(y_2-31)}{y_3-31}.$$

$$\therefore \qquad \frac{x_1-12}{y_1-31}=\frac{x_3-12}{y_3-31} \qquad \text{as } (x_2,y_2)\in A \text{ implies } y_2\neq 31.$$

$$\therefore \qquad (x_1-12)(y_3-31)=(x_3-12)(y_1-31).$$

$$\therefore \qquad (x_1,y_1)\ R\ (x_3,y_3) \qquad \text{by the definition of } R.$$

Yet another proof of transitivity. Let  $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in A$  such that  $(x_1, y_1) R (x_2, y_2)$  and  $(x_2, y_2) R (x_3, y_3)$ . Then, by the definition of R,

$$(x_1 - 12)(y_2 - 31) = (x_2 - 12)(y_1 - 31)$$
 and  $(x_2 - 12)(y_3 - 31) = (x_3 - 12)(y_2 - 31)$ .

As  $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in A$ , we know that none of  $y_1, y_2, y_3$  equals 31. Thus the equations above imply

$$\frac{x_1 - 12}{y_1 - 31} = \frac{x_2 - 12}{y_2 - 31} = \frac{x_3 - 12}{y_3 - 31}.$$

Hence  $(x_1 - 12)(y_3 - 31) = (x_3 - 12)(y_1 - 31)$ . It follows that  $(x_1, y_1) R(x_3, y_3)$ .

**Comments.** • Quite a number of students misread  $(x_1 - 12)(y_2 - 31) = (x_2 - 12)(y_1 - 31)$  as  $(x_1 - 12)(y_1 - 31) = (x_2 - 12)(y_2 - 31)$ .

- Some did not realize that some  $(x,y) \in A$  makes x-12=0, and thus divided by zero.
- (ii) Prove that there exists  $y \in \mathbb{R}$  such that  $(24, y) \in [(36, 49)]$ . [2 marks]

**Solution.** Let y = 40. Then

$$(36-12)(y-31) = (36-12)(40-31) = 24 \times 9 = 12 \times 9 \times 2 = 12 \times 18 = (24-12)(49-31).$$

So (36,49) R (24,y) by the definition of R. This means  $(24,y) \in [(36,49)]$  according to the definition of [(36,49)].

**Comments.** Some only showed  $(24, y) \in [(36, 49)]$  implies y = 40. This does not prove the proposition given; see Tutorial Exercise 3.2.