第十一章 频率响应

传输函数和波特图

共射放大器的频率响应

共源放大器的频率响应

11.1 传输函数和波特图

11.1.1 放大器传输函数

- 一、电路的频率响应
 - 信号频率对放大器放大倍数的影响。
 - 由于耦合电容、旁路电容、半导体器件极间电容的存在, 使放大倍数为频率的函数。
 - 在使用放大电路时,应了解其信号频率的适用范围。
 - 在设计放大电路时,应满足信号频率的范围要求。

高通电路: 信号频率越高,输出电压越接近输入电压。

 \dot{V}_{o} 超前 \dot{V}_{i} 。当 $f \rightarrow 0$ 时, $\left|\dot{V}_{o}\right| \rightarrow 0$, \dot{V}_{o} 超前 \dot{V}_{i} 90°。

低通电路:信号频率越低,输出电压越接近输入电压。

 $|\dot{V}_o|$ 滞后 \dot{V}_i 。 当 $f \to \infty$ 时, $|\dot{V}_o| \to 0$, \dot{V}_o 滞后 \dot{V}_i 90°。

- ◆ 在低频段,随着信号频率逐渐降低,耦合电容、旁路电容等的容抗 增大,使动态信号损失,放大能力下降。
- ◆ 在高频段,随着信号频率逐渐升高,晶体管极间电容和分布电容、 寄生电容等杂散电容的容抗减小,使动态信号损失,放大能力下降。

二、复频域分析法

前面章节的分析忽略了信号频率对电容、电感阻抗的影响。

电容器的容抗 $\frac{1}{j\omega C}$, 其中 $j\omega$ 称为复频率,记为 s 。

电容器的容抗可写为 $\frac{1}{sC}$

电感的感抗可写为 sL

三、传输函数,极点,零点

• 传输函数

$$T(s) = \frac{v_o(s)}{v_i(s)} = a_m \frac{(s - Z_1)(s - Z_2)...(s - Z_m)}{(s - P_1)(s - P_2)...(s - P_n)}$$

$$T(s) = 0$$
零点 $Z_1, Z_2, ..., Z_m$

$$T(s) = \infty$$
极点 $P_1, P_2, ..., P_n$

- ① 零点和极点可以是实数或复数。
- ② 因为 a_m 是实数,所以复零点或复极点一定以共轭对形式出现。

四、波特图

反映放大器传输函数与信号频率的关系。(为表示更宽的频率范围,横坐标采用对数形式)

● 幅度波特图

$$|T(s)| \sim \omega$$

● 相位波特图

$$\arg[T(s)] \sim \omega$$

五、放大器的频率响应

1、上限频率和下限频率

一般情况,放大电路只适用于放大某一个特定频率范围内的信号。

2、三分贝带宽(通频带)

$$BW = f_H - f_L \approx f_H \quad \left(-\Re f_H >> f_L \right)$$

3、增益带宽积

 $GB = |A_M| \times BW$, A_M 是放大器的中频增益。

一般,对于用于不同放大电路里的同一只晶体管,它的增益带宽积是一定的。

4、增益函数

$$A(s) = A_M F_L(s) F_H(s)$$

 $F_L(s)$ 和 $F_H(s)$ 分别表示的是当单独考虑低频段和高频段时信号频率对放大器增益的影响。

低频响应
$$A(s) = A_M F_L(s)$$

高频响应
$$A(s) = A_M F_H(s)$$

5、低频响应

低频响应函数

$$F_{L}(s) = \frac{(s + \omega_{Z1})(s + \omega_{Z2})....(s + \omega_{Zn})}{(s + \omega_{p1})(s + \omega_{p2})....(s + \omega_{pn})}$$

• 当存在主极点时(如 ω_{p1} 远高于其它极点)

一般, $\omega_{zk} << \omega_L$, 在 ω 接近中频时

$$F_L(s) \approx \frac{s}{s + \omega_{p1}} = \frac{1}{1 + \omega_{p1}/s}$$
 $|F_L(s)| = \frac{1}{\sqrt{2}}$ $\omega_L \approx \omega_{p1}$

• 当不存在主极点时

$$\omega_L \approx \sqrt{\omega_{p1}^2 + \omega_{p2}^2 + \dots - 2\omega_{Z1}^2 - 2\omega_{Z2}^2 - \dots}$$

6、高频响应

高频响应函数

$$F_{H}(s) = \frac{(1 + s/\omega_{Z1})(1 + s/\omega_{Z2})....(1 + s/\omega_{Zn})}{(1 + s/\omega_{p1})(1 + s/\omega_{p2})....(1 + s/\omega_{pn})}$$

- 当存在主极点时(如 ω_{p1} 远低于其它极点)
 - 一般,零点为无穷大或极高的频率。

$$F_H(s) \approx \frac{1}{1 + s/\omega_{p1}}$$
 $|F_H(s)| = \frac{1}{\sqrt{2}}$
 $\omega_H \approx \omega_{p1}$

• 当不存在主极点时

$$\omega_{H} \approx \frac{1}{\sqrt{1/\omega_{p1}^{2} + 1/\omega_{p2}^{2} + \dots - 2/\omega_{Z1}^{2} - 2/\omega_{Z2}^{2} \dots}}$$

7、用短路和开路的时间常数近似计算 ω_L 和 ω_H

→ 求 ω_L

依次单独考虑低频等效电路中一个电容的作用,把其它 所有的电容设为无穷大。

$$\omega_L \approx \sum_i \frac{1}{C_i R_{is}}$$

 \bullet \star ω_{H}

依次单独考虑高频等效电路中一个电容的作用,把其它 所有的电容设为零。

$$\omega_H \approx \frac{1}{\sum_i C_i R_{io}}$$

11.1.2 幅度和相位波特图的绘制

$$T(s) = a_m \frac{(s - Z_1)(s - Z_2)...(s - Z_m)}{(s - P_1)(s - P_2)...(s - P_n)}$$

● 幅度波特图

$$20\log |T(s)|$$

包括多项之和,其中每项均可表示为 $|a+j\omega|$ 的形式,即

$$t_n = 20\log\sqrt{a^2 + \omega^2} = 20\log\left[a\sqrt{1 + (\omega/a)^2}\right]$$

$$= 20\log a + 20\log\sqrt{1 + (\omega/a)^2}$$
若 $\omega << a$,则 $20\log\sqrt{1 + (\omega/a)^2} \approx 0$
若 $\omega >> a$,则 $20\log\sqrt{1 + (\omega/a)^2} \approx 20\log(\omega/a)$

• 相位波特图

T(s) 中每项的相角之和,其中每项可表示为

$$\theta_n = \tan^{-1}(\omega/a)$$

若
$$\omega \ll a$$
,则 $\theta_n \approx 0^\circ$

若
$$\omega = a$$
 , 则 $\theta_n = 45^\circ$

若
$$\omega >> a$$
 , 则 $\theta_n \approx 90^\circ$

幅度波特图

$$T(s) = \frac{10^5}{\left(1 + \frac{s}{10^2}\right)\left(1 + \frac{s}{10^3}\right)\left(1 + \frac{s}{10^5}\right)}$$

相位波特图
$$T(s) = \frac{10^5}{\left(1 + \frac{s}{10^2}\right)\left(1 + \frac{s}{10^3}\right)\left(1 + \frac{s}{10^5}\right)}$$

11.2 共射和共源放大器的频率响应

11.2.1 共射和共源放大器的低频响应

一、共射放大器的低频响应

解题步骤:

- 1) 求解中频增益。
- 2) 求解一个电容单独作用时的增益(其它电容短路)。
- 3) 确定低频截止频率。

1) 求解中频增益。

$$A_{M} = \frac{v_{o}}{v_{i}} = \frac{R_{i}}{R + R_{i}} \left[-g_{m} \left(R_{C} / / R_{L} \right) \right]$$

① C_1 作用,其它电容短路。

$$A_{v} = A_{M} \frac{1}{1 + \omega_{LC1}/s}$$

$$\omega_{LC1} = \frac{1}{\left(R + R_i\right)C_1}$$

其中 $(R+R_i)$ 其实就是电容 C_1 两端看进去的电阻。

② C2作用,其它电容短路。

$$A_{v} = A_{M} \frac{1}{1 + \omega_{LC2}/s}$$

$$\omega_{LC2} = \frac{1}{\left(R_c + R_L\right)C_2}$$

其中 $(R_c + R_L)$ 其实就是电容 C_2 两端 看进去的电阻。 C_e 作用,其它电容短路。

$$A_{v} = A_{M} \frac{1}{1 + \omega_{LCe}/s}$$

$$\omega_{LCe} = \frac{1}{R_E' C_e}$$

$$R_E' = R_E / \frac{r_\pi + R_1 / / R_2 / / R}{\beta_0 + 1} \approx R_E / \frac{r_\pi}{\beta_0 + 1} \approx \frac{r_\pi}{\beta_0 + 1}$$

$$v_x = -i_b (r_\pi + R_1 / / R_2 / / R)$$

$$i_b = -\frac{v_x}{r_\pi + R_1 / / R_2 / / R}$$

$$i_e = (\beta_0 + 1)i_b + i_x$$

$$v_x = R_E i_e = R_E \left[\left(\beta_0 + 1 \right) i_b + i_x \right]$$

$$R_{E}' = \frac{v_{x}}{ix} = \frac{1}{1/R_{E} + 1/\left(\frac{r_{\pi} + R_{1}//R_{2}//R}{\beta_{0} + 1}\right)} = R_{E}//\frac{r_{\pi} + R_{1}//R_{2}//R}{\beta_{0} + 1}$$

$$R_E' = R_E / \frac{r_\pi + R_1 / R_2 / R}{\beta_0 + 1}$$

 R_{E} 就是电容 C_{e} 两端看进去的电阻。

二、共源放大器的低频响应

解题步骤:

- 1) 求解中频增益。
- 2) 求解一个电容单独作用时的增益(其它电容短路)。
- 3) 确定低频截止频率。

1) 求解中频增益。

$$A_{M} = \frac{v_{o}}{v_{i}} = \frac{R_{i}}{R + R_{i}} \left[-g_{m} \left(R_{D} / / R_{L} \right) \right]$$

① C_1 作用,其它电容短路。

$$A_{v} = A_{M} \frac{1}{1 + \omega_{LC1}/s}$$

$$\omega_{LC1} = \frac{1}{\left(R + R_i\right)C_1}$$

其中 $(R+R_i)$ 其实就是电容 C_1 两端 看进去的电阻。 ② C2作用,其它电容短路。

$$A_{v} = A_{M} \frac{1}{1 + \omega_{LC2}/s}$$

$$\omega_{LC2} = \frac{1}{\left(R_D + R_L\right)C_2}$$

其中 $(R_D + R_L)$ 其实就是电容 C_2 两端看进去的电阻。

③ C_s作用,其它电容短路。

$$A_{v} = A_{M} \frac{1}{1 + \omega_{LCs}/s}$$

$$\omega_{LCe} = \frac{1}{R_S' C_e}, \ {R_S'} = R_S / / \frac{1}{g_m}$$

其中 R_S 其实就是电容 C_S 两端看进去的电阻。

低频截止频率 f_L 的确定

- 如果每个电容单独作用时计算得到的频率分得很开,其中 某个频率占主要地位,则低频截止频率近似为该占主要地 位的频率。
 - 一般,从 C_e 或 C_s 看进去的电阻相对较小,选择合适的 C_e 或 C_s 使它对 f_L 的贡献占主要地位,可以使总电容最小。
- 2. 若上述条件不满足,则手工计算一般用所有频率的和作为 低频截止频率,即

$$f_L = f_{L1} + f_{L2} + f_{L3} + \dots$$

11.2.2 共射和共源放大器的高频响应

一、晶体管的高频等效电路

FET 高频等效电路

二、BJT的特征频率 f_T

将C、E短路,求晶体管的共射短路电流放大系数 β 。

$$\beta = \frac{i_c}{i_b} \bigg|_{I_C}$$

$$i_c = g_m v_\pi - s \underline{C}_\mu v_\pi \approx g_m v_\pi$$

$$\beta = \frac{i_c}{i_b} = \frac{g_m v_\pi}{i_b} = \frac{g_m i_b \left[r_\pi / / \frac{1}{j\omega \left(C_\pi + C_\mu \right)} \right]}{i_b}$$

$$= \frac{g_m r_\pi}{1 + j\omega r_\pi \left(C_\pi + C_\mu \right)} = \frac{\beta_0}{1 + j\omega / \omega_\beta}$$

$$\begin{array}{c|c}
 & r_{x} & C \\
\hline
 & i_{b} & r_{\pi} & C_{\pi} & C_{\mu} \\
\hline
 & r_{\pi} & C_{\pi} & C_{\mu}
\end{array}$$

$$\omega_{\beta} = \frac{1}{r_{\pi} \left(C_{\pi} + C_{\mu} \right)}$$

$$\begin{cases} 20 \lg |\dot{\beta}| = 20 \lg \frac{\beta_0}{\sqrt{1 + (\omega/\omega_\beta)^2}} \\ \varphi = tg^{-1}(\omega/\omega_\beta) \end{cases}$$

截止频率
$$f_{\beta}$$

$$20\lg\left|\dot{\beta}\right| = 0$$

特征频率 f_T

$$20 \lg |\dot{\beta}| = 0$$
 $|\dot{\beta}| = 1$

$$\frac{\beta_0}{\sqrt{1+(\omega_T/\omega_\beta)^2}} = 1 \qquad \Longrightarrow \qquad \frac{\beta_0}{\omega_T/\omega_\beta} \approx 1$$

$$f_T = \beta_0 f_\beta$$
 增益帶宽积

$$f_{T} = \frac{\beta_{0}}{2\pi r_{\pi} \left(C_{\pi} + C_{\mu}\right)} = \frac{g_{m}}{2\pi \left(C_{\pi} + C_{\mu}\right)}$$

三、FET的特征频率 f_T

将D、S短路,求FET的共源短路电流放大系数。

$$I_{o} = g_{m}V_{gs} - sC_{gd}V_{gs} \simeq g_{m}V_{gs}$$

$$V_{gs} = \frac{I_{i}}{s(C_{gs} + C_{gd})}$$

$$\frac{I_{o}}{I_{i}} = \frac{g_{m}}{s(C_{gs} + C_{gd})}$$

$$\frac{I_o}{I_i} = \frac{g_m}{s(C_{gs} + C_{gd})} \qquad \Longrightarrow \qquad \left| \frac{I_o}{I_i} \right| = \frac{g_m}{\omega(C_{gs} + C_{gd})}$$

$$\left|\frac{I_o}{I_i}\right| = 1 \qquad \Longrightarrow \quad \omega_T = g_m / (C_{gs} + C_{gd})$$

$$f_T = \frac{g_m}{2\pi \left(C_{gs} + C_{gd}\right)}$$

四、米勒定理

$$i = \frac{v_i - v_o}{Z} = \frac{v_i - Av_i}{Z} = \frac{v_i}{Z/(1 - A)} = \frac{v_i}{Z_1}$$

$$Z_1 = \frac{1}{1-A}Z \qquad \qquad \qquad 同理可得 \quad Z_2 = \frac{A}{A-1}Z$$

若跨接的元件为电容 C, 很容易可得

$$C_1 = (1 - A)C$$

$$C_2 = \frac{A - 1}{A}C \approx C$$

五、共射放大器的高频响应

电容 C_{μ} 的存在,增加了电路分析的难度,可采用米勒定理简化电路。

将高频等效电路简化为

利用米勒定理,等效电路可简化为

由于 C_{μ} 相对 C_{in} 小得多, C_{in} 对高频截止频率的贡献占主要地位。

$$\frac{V_o}{V_{sig}} = A_M \frac{1}{1 + s/\omega_H}$$

求得 C_{in} 两端看进去的电阻 R'_{sig} , 就可确定 ω_{H} 。

$$\omega_H = \frac{1}{R'_{sig}C_{in}}$$

六、共源放大器的高频响应

将高频等效电路简化为

$$V'_{sig} = \frac{R_G}{R_G + R_{sig}} V_{sig} \qquad \qquad R'_L = r_o / / R_D / / R_L$$

当 R_{sig} 较大时,利用米勒定理,电路等效为(忽略输出端等效电容 C_{gd})

$$C_{eq} = C_{gd} (1 + g_m R_L')$$
 $C_{in} = C_{gs} + C_{gd} (1 + g_m R_L')$

$$f_H = \frac{1}{2\pi C_{in} R'_{sig}}$$

- ightharpoonup 上述模型在 R_{sig} 较大时适用。
- \triangleright 高频响应由 R'_{sig} 和 C_{in} 形成的极点决定。

当 $R_{sig} = 0$ 或较小时

 C_L 是负载端的等效电容,引入该电容是因为其对高频截止频率有很大贡献。而当 R_{sig} 较大时,该电容对高频截止频率的贡献则很小。

$$\begin{cases} I_{gd} = sC_{gd} \left(V_{gs} - V_o \right) \\ I_{gd} = g_m V_{gs} + \frac{V_o}{R'_L} + sC_L V_o \end{cases} \implies \frac{V_o}{V_{sig}} = -g_m R'_L \frac{1 - s\left(C_{gd} / g_m \right)}{1 + s\left(C_L + C_{gd} \right) R'_L} \\ V_{sig} = V_{gs} \end{cases}$$

$$\frac{V_o}{V_{sig}} = -g_m R_L' \frac{1 - s\left(C_{gd}/g_m\right)}{1 + s\left(C_L + C_{gd}\right)R_L'}$$

传输函数零点对应的频率

$$f_Z = \frac{g_m}{2\pi C_{gd}}$$

传输函数极点对应的频率

$$f_P = \frac{1}{2\pi \left(C_L + C_{gd}\right) R_L'}$$

求传输函数极点相当于设 $V_{sig}=0$,等效电路如右, 其谐振频率即为传输函数 极点对应的频率。

$$f_Z = \frac{g_m}{2\pi C_{gd}}$$

传输函数极点对应的频率

$$f_P = \frac{1}{2\pi \left(C_L + C_{gd}\right) R_L'}$$

$$f_Z >> f_P$$

$$\frac{V_o}{V_{sig}} = -g_m R_L' \frac{1 - s(C_{gd}/g_m)}{1 + s(C_L + C_{gd})R_L'} \approx -g_m R_L' \frac{1}{1 + s(C_L + C_{gd})R_L'}$$

$$f_{H} = f_{P} = \frac{1}{2\pi \left(C_{L} + C_{gd}\right)R_{L}'}$$

$$f_H = f_P = \frac{1}{2\pi \left(C_L + C_{gd}\right)R_L'}$$

可见,当 $R_{sig} = 0$ 或很小时

- 高频响应受制于放大器的输出端。
- 为提高高频截止频率,必须减小栅极和漏极间的等效电容。

高频截止频率 ƒн 的确定

 如果每个电容单独作用时计算得到的频率分得很开,其中 某个频率占主要地位,则高频截止频率近似为该占主要地 位的频率(最小频率)。

2. 若上述条件不满足,则手工计算一般采用以下方法

$$f_H = \frac{1}{\frac{1}{f_{H1}} + \frac{1}{f_{H2}} + \frac{1}{f_{H3}} + \dots}$$