Artificial Intelligence and Machine Learning

Exercises – Principal Component Analysis

Question 1 (Eigendecomposition of a symmetric matrix)

Let the square (and symmetric) matrix

$$\mathbf{A} := \begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

be given. Please answer the following questions:

- 1. What are the eigenvalues of A?
- 2. Compute the eigenspace for each eigenvalue. What do you observe?
- 3. Write down the eigendecomposition of A, i.e. find the matrices $U \in \mathbb{R}^{3\times3}$ and $\Lambda \in \mathbb{R}^{3\times3}$ such that $A = U\Lambda U^{\top}$.

Question 2 🕸

Which statements concerning PCA are false?

- ☐ The algorithm belongs to the category of supervised learning.
- ☐ The goal of PCA is to reduce the variance in the data as much as possible.
- ☐ The data is transformed linearly.
- ☐ All principal components are orthogonal.

Question 3 (Covariance matrix) ③

Let Σ be a covariance matrix. Which statements are correct?

- \square Σ is symmetric (i. e. $\Sigma^{\top} = \Sigma$).
- $\square \ \Sigma \in \mathbb{R}^{M \times N}, M \neq N.$
- \square Σ is a square matrix.
- \square All entries on the main diagonal of Σ are non-negative.

Question 4 (Number of principal components) *

Explain in up to three sentences how you can choose the number of principal components for dimensionality reduction. Name at least two different strategies!

Question 5 (PCA by hand) **③**

You are presented with a 4-dimensional dataset. Your task is to reduce the dimensionality of the dataset as much as possible, while preserving at least 80 % of the original variance.

You have already computed the covariance matrix Σ and its eigendecomposition $\Sigma = U\Lambda U^{\top}$ in a previous step. You have found:

$$\begin{pmatrix} 4 & -2 & 3 & -1 \\ -2 & 4 & -3 & 1 \\ 3 & -3 & 5 & 0 \\ -1 & 1 & 0 & 5 \end{pmatrix} \approx \begin{pmatrix} -0.5 & 0.7 & -0.5 & 0 \\ 0.5 & 0.7 & 0.5 & 0 \\ -0.6 & 0 & 0.7 & -0.3 \\ 0.2 & 0 & -0.2 & -1 \end{pmatrix} \begin{pmatrix} 10 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 5 \end{pmatrix} \begin{pmatrix} -0.5 & 0.5 & -0.6 & 0.2 \\ 0.7 & 0.7 & 0 & 0 \\ -0.5 & 0.5 & 0.7 & -0.2 \\ 0 & 0 & -0.3 & -1 \end{pmatrix}$$

Let *D* be the dimensionality of the reduced dataset. Determine *D* such that the constraint above is satisfied. Which vectors represent the principal components? *Please justify your answer.*

Question 6 (Eigenfaces)

Sklearn provides the *Labeled Faces in the Wild (LFW)* people dataset which comprises images of well known people's faces. Each image has a resolution of 50×37 pixels. The data can be loaded using the following commands:

Remark: Each image is labeled with the name of the person shown. The labels can be loaded with the command $y = 1 \text{fw_people.images.target}$. However, we are not going to use these in this exercise. Figure 1 shows some sample images.

Work through the following tasks:

• Compute the mean face and the eigenfaces by performing an eigendecomposition of the covariance matrix of the data. For this you may want to use the function np.linalg.eig().

• Plot the first thirty eigenfaces.

Figure 1: Some sample images from the LFW dataset.

Question 7 (FLDA)

Compute the derivative of the Fisher criterion

$$\mathfrak{J}_F(\boldsymbol{w}) = \frac{\boldsymbol{w}^{\top} \boldsymbol{S}_B \boldsymbol{w}}{\boldsymbol{w}^{\top} \boldsymbol{S}_W \boldsymbol{w}}$$

with respect to \boldsymbol{w} and derive the generalized eigenvalue problem given in the lecture slides

$$S_B w = \lambda S_W w$$
 where $\lambda := \frac{w^\top S_B w}{w^\top S_W w}$.