

MOSFET – Power, Single N-Channel, STD Gate, SO8FL

80 V, 1.9 mΩ, 201 A

NTMFS2D1N08X

Features

- Low QRR, Soft Recovery Body Diode
- Low R_{DS(on)} to Minimize Conduction Losses
- Low QG and Capacitance to Minimize Driver Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Synchronous Rectification (SR) in DC-DC and AC-DC
- Primary Switch in Isolated DC-DC Converter
- Motor Drives

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage	V_{DSS}	80	V	
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current			201	Α
(Note 1)	T _C = 100°C		142	
Power Dissipation (Note 1)	T _C = 25°C	P_{D}	164	W
Pulsed Drain Current	T _C = 25°C,	I _{DM}	866	Α
Pulsed Source Current (Body Diode)	t _p = 100 μs	I _{SM}	866	
Operating Junction and Storage Range	T _J , T _{STG}	-55 to +175	°C	
Source Current (Body Diode)	Is	248	Α	
Single Pulse Avalanche I _{PK} = 58 A (Note 3)		E _{AS}	168	mJ
Lead Temperature for Soldering (1/8" from case for 10 s)	T _L	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- The entire application environment impacts the thermal resistance values shown. They are not constants and are only valid for the particular conditions noted.
- Actual continuous current will be limited by thermal and electromechanical application board design.
- 3. EAS of 168 mJ is based on started $T_J=25^{\circ}C$, $I_{AS}=58$ A, $V_{DD}=64$ V, $V_{GS}=10$ V, 100% avalanche tested.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	1.9 mΩ @ 10 V	201 A

MARKING

DFN5 (SO-8FL) CASE 488AA DFN5 (SO-8FL) S 2D1N08 AYWZZ G D

2D1N08 = Specific Device Code

A = Assembly Location

Y = Year W = Work Week

ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS2D1N08XT1G	DFN5	1500 / Tape &
	(Pb-Free)	Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.91	°C/W
Thermal Resistance, Junction-to-Ambient (Notes 4 and 5)	$R_{ heta JA}$	39	

^{4.} Surface–mounted on FR4 board using 1 sq-in pad, 1 oz Cu. 5. $R_{\theta JA}$ is determined by the user's board design.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OFF CHARACTERISTICS	ı.						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$		80			V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•		I _D = 1 mA, Referenced to 25C			31.6		mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 80 V				1	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				T _J = 125°C			250	1
$ \begin{array}{ c c c c c c } \hline \text{Drain-to-Source On Resistance} & R_{DS(on)} & V_{GS} = 10 \text{ V, } I_D = 50 \text{ A} & 1.7 & 1.9 \\ \hline V_{GS} = 6 \text{ V } I_D = 25 \text{ A} & 2.5 & 3.8 \\ \hline \text{Gate Threshold Voltage} & V_{GS(TH)} & V_{GS} = V_{DS}, I_D = 252 \mu\text{A} & 2.4 & 3.6 & V \\ \hline \text{Negative Threshold Temperature Coefficient} & \Delta V_{GS(TH)} & V_{GS} = V_{DS}, I_D = 252 \mu\text{A} & -7.5 & mV/r \\ \hline \text{Forward Transconductance} & g_{FS} & V_{DS} = 5 \text{ V, } I_D = 50 \text{ A} & 158 & S \\ \hline \textbf{CHARGES AND CAPACITANCES} & & & & & & & & & & & & & & & & & & &$	Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = 20 \text{ V}, V_{D}$	_S = 0 V			100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ON CHARACTERISTICS							
Gate Threshold Voltage $V_{GS(TH)}$ $V_{GS} = V_{DS}$, $I_D = 252 \mu A$ 2.4 3.6 V Negative Threshold Temperature Coefficient $\Delta V_{GS(TH)}$ $V_{GS} = V_{DS}$, $I_D = 252 \mu A$, -7.5 mV/ Forward Transconductance g_{FS} $V_{DS} = 5 \text{ V}$, $I_D = 50 \text{ A}$ 158 S CHARGES AND CAPACITANCES Input Capacitance C_{ISS} $V_{DS} = 40 \text{ V}$, $V_{GS} = 0 \text{ V}$, $f = 1 \text{ MHz}$ 1290 $V_{DS} = 40 \text{ V}$ $V_{DS} = 40 $	Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	= 50 A		1.7	1.9	mΩ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V _{GS} = 6 V I _D	= 25 A		2.5	3.8	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 252 μA	2.4		3.6	V
CHARGES AND CAPACITANCES Input Capacitance C _{ISS} Output Capacitance C _{OSS} Reverse Transfer Capacitance C _{RSS} Output Charge Q _{OSS} Total Gate Charge Q _{G(TOT)} V _{DD} = 40 V, I _D = 50 A, V _{GS} = 6 V 39 Input Capacitance Q _{G(TOT)} V _{DD} = 40 V, I _D = 50 A, V _{GS} = 6 V 39 Input Capacitance Q _{OS} V _{DD} = 40 V, I _D = 50 A, V _{GS} = 6 V 39 Input Capacitance Q _{OS} V _{DD} = 40 V, I _D = 50 A, V _{GS} = 6 V 39 Input Capacitance Q _{OS} V _{DD} = 40 V, I _D = 50 A, V _{GS} = 10 V 21 Input Capacitance Q _{OS} Input Capacitance Q _{OS} Input Capacitance Q _{OS} V _{DD} = 40 V, I _D = 50 A, V _{GS} = 10 V 21 Input Capacitance Q _{OS}	Negative Threshold Temperature Coefficient	$\Delta V_{GS(TH)}/ \Delta T_J$	$V_{GS} = V_{DS}, I_D = 252 \mu A,$			-7.5		mV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Forward Transconductance	9FS	V _{DS} = 5 V, I _D = 50 A			158		S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHARGES AND CAPACITANCES	•						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance	C _{ISS}	V _{DS} = 40 V, V _{GS} = 0 V, f = 1 MHz			4470		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance	C _{OSS}				1290		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	C _{RSS}				20		
Threshold Gate Charge $Q_{G(TH)}$ Q_{GS} Q_{GD} $Q_{$	Output Charge	Q _{OSS}				93		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Gate Charge	Q _{G(TOT)}	V _{DD} = 40 V, I _D = 50	A, V _{GS} = 6 V		39		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						63		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Threshold Gate Charge	Q _{G(TH)}				14		
	Gate-to-Source Charge	Q_{GS}	V _{DD} = 40 V, I _D = 50 /	A, V _{GS} = 10 V		21		nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate-to-Drain Charge	Q_{GD}				10		
	Gate Plateau Voltage	V_{GP}				4.7		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Resistance	R_{G}	f = 1 MHz			0.8		Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHING CHARACTERISTICS							
Turn–Off Delay Time $t_{d(OFF)} = 40 \text{ V, } I_D = 50 \text{ A, } R_G = 2.5 \Omega$	Turn-On Delay Time	t _{d(ON)}	Resistive Load, V_{GS} = 0/10 V, V_{DD} = 40 V, I_D = 50 A, R_G = 2.5 Ω			29		
Turn–Off Delay Time $t_{d(OFF)} \qquad V_{DD} = 40 \text{ V}, I_D = 50 \text{ A}, R_G = 2.5 \Omega $	Rise Time	t _r				9		1
Fall Time t _f 7	Turn-Off Delay Time	t _{d(OFF)}				42		ns
	Fall Time	t _f				7		1

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}C \ unless \ otherwise \ specified) \ (continued)$

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERISTICS							
Forward Diode Voltage	V_{SD}	I _S = 50 A, V _{GS} = 0 V	$T_J = 25^{\circ}C$		0.82	1.2	V
		V _{GS} = 0 V	T _J = 125°C		0.66		V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } I_{S} = 50 \text{ A,}$ dIS/dt = 1000 A/ μ s, $V_{DD} = 40 \text{ V}$			26		
Charge Time	ta				15		ns
Discharge Time	t _b				11		
Reverse Recovery Charge	Q_{RR}				202		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

Figure 3. On-Resistance vs. Gate Voltage

Figure 4. On-Resistance vs. Drain Current

Figure 5. Normalized ON Resistance vs. Junction Temperature

Figure 6. Drain Leakage Current vs Drain Voltage

TYPICAL CHARACTERISTICS

Figure 7. Capacitance Characteristics

Figure 8. Gate Charge Characteristics

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Characteristics

Figure 11. Safe Operating Area (SOA)

Figure 12. Avalanche Current vs Pulse Time (UIS)

TYPICAL CHARACTERISTICS

250 200 200 200 200 200 100 25 50 75 100 125 150 175 T_C, Case Temperature (°C)

Figure 13. Gate Threshold Voltage vs Junction Temperature

Figure 14. Maximum Current vs. Case Temperature

Figure 15. Transient Thermal Response

DFN5 5x6, 1.27P (SO-8FL) CASE 488AA ISSUE N

DATE 25 JUN 2018

NOTES:

- DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETER. DIMENSION D1 AND E1 DO NOT INCLUDE
- MOLD FLASH PROTRUSIONS OR GATE BURRS

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.90	1.00	1.10		
A1	0.00		0.05		
b	0.33	0.41	0.51		
С	0.23	0.28	0.33		
D	5.00	5.15	5.30		
D1	4.70	4.90	5.10		
D2	3.80	4.00	4.20		
E	6.00	6.15	6.30		
E1	5.70	5.90	6.10		
E2	3.45	3.65	3.85		
е		1.27 BSC			
G	0.51	0.575	0.71		
K	1.20	1.35	1.50		
L	0.51	0.575	0.71		
L1	0.125 REF				
M	3.00	3.40	3.80		
θ	0 °		12 °		

GENERIC MARKING DIAGRAM*

XXXXXX = Specific Device Code

= Assembly Location Α

Υ = Year W = Work Week = Lot Traceability ZZ

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DETAIL A

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON14036D	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN5 5x6, 1.27P (SO-8FL)		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales