Visualizing Data using t-SNE

Laurens van der Maaten and Geoffrey Hinton, JMLR 2008

Kevin Zhao

kevinzhaio@gmail.com

October 30, 2014

Overview

- Overview
- 2 t-Distributed Stochastic Neighbor Embedding
- 3 Experiment Setup and Results
- Code and Web Resources

Overview

- We are given a collection of N high-dimensional objects $x_1, ... x_N$
- How can we get a feel for how these objects are arranged in the data space?

Principal Components Analysis

Principal Components Analysis

Swiss Roll

 PCA is mainly concerned dimensionality, with preserving when large pairwise distances in the map

- Distance Perservation
- Neighbor Perservation

Preserve the neighborhood

Measure pairwise similarities between high-dimensional and low-dimensional objects

$$p_{j|i} = \frac{exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

Stochastic Neighbor Embedding

Converting the high-dimensional Euclidean distances into conditional probabilities that represent similarities

Similarity of datapoints in High Dimension

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2 / 2\sigma_i^2)}$$

Similarity of datapoints in Low Dimension

$$q_{j|i} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq i} \exp(-||y_i - y_k||^2)}$$

Cost function

$$C = \sum_{i} \mathit{KL}(P_i||Q_i) = \sum_{i} \sum_{j} \mathit{p}_{j|i} log rac{p_{j|i}}{q_{j|i}}$$

Minimize the cost function using gradient descent

Stochastic Neighbor Embedding

Gradient has a surprisingly simple form

$$\frac{\partial C}{\partial y_i} = \sum_{j \neq i} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

The gradient update with momentum term is given by

$$Y^{(t)} = Y^{(t-1)} + \eta \frac{\partial C}{\partial v_i} + \beta(t) (Y^{(t-1)} - Y^{(t-2)})$$

Symmetric SNE

Minimize the sum of the KL divergences between the conditional probabilities

$$C = \sum_{i} \mathit{KL}(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} log rac{p_{j|i}}{q_{j|i}}$$

Minimize a single KL divergence between a joint probability distribution

$$C = KL(P||Q) = \sum_{i} \sum_{j \neq i} p_{ij} log \frac{p_{ij}}{q_{ij}}$$

The obvious way to redefine the pairwise similarities is

$$p_{ij} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma^2)}{\sum_{k \neq l} \exp(-||x_l - x_k||^2 / 2\sigma^2)}$$
$$q_{ij} = \frac{\exp(-||y_i - y_j||^2)}{\sum_{k \neq l} \exp(-||y_l - y_k||^2)}$$

Symmetric SNE

Such that $p_{ii} = p_{ii}$, $q_{ii} = q_{ii}$, the main advantage is simplifying the gradient

$$\frac{\partial C}{\partial y_i} = 2\sum_j (p_{ij} - q_{ij})(y_i - y_j)$$

However, in practice we symmetrize (or average) the conditionals

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$

Set the bandwidth σ_i such that the conditional has a fixed perplexity (effective number of neighbors) $Perp(P_i) = 2^{H(P_i)}$, typical value is about 5 to 50

t-Distribution

Use heavier tail distribution than Gaussian in low-dim space, we choose

$$q_{ij} \propto (1 + ||y_i - y_j||^2)^{-1}$$

Then the gradient could be

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) (1 + ||y_i - y_j||^2)^{-1} (y_i - y_j)$$

t-Distributed Stochastic Neighbor Embedding

Similarity of datapoints in High Dimension

$$p_{ij} = \frac{\exp(-||x_i - x_j||^2 / 2\sigma^2)}{\sum_{k \neq l} \exp(-||x_l - x_k||^2 / 2\sigma^2)}$$

Similarity of datapoints in Low Dimension

$$q_{ij} = \frac{(1 + ||y_i - y_j||^2)^{-1}}{\sum_{k \neq l} (1 + ||y_k - y_l||^2)^{-1}}$$

t-Distributed Stochastic Neighbor Embedding

Cost function

$$C = KL(P||Q) = \sum_{i} \sum_{j} p_{ij} log \frac{p_{ij}}{q_{ij}}$$

- Large p_{ij} modeled by small q_{ij} : Large penalty
- Small p_{ij} modeled by large q_{ij} : Small penalty
- t-SNE mainly preserves local similarity structure of the data
- Gradient

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) (1 + ||y_i - y_j||^2)^{-1} (y_i - y_j)$$

Pairwise Euclidean distance between two points in the high-dim and in low-dim data representation

Figure: Gradient of SNE and t-SNE

We can interpret the t-SNE gradient as a simulation of an N-body system

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) (1 + ||y_i - y_j||^2)^{-1} (y_i - y_j)$$

We can interpret the t-SNE gradient as a simulation of an N-body system

Displacement

$$(y_i - y_j)$$

We can interpret the t-SNE gradient as a simulation of an N-body system

Exertion / Compression

$$(p_{ij}-q_{ij})(1+||y_i-y_j||^2)^{-1}$$

We can interpret the t-SNE gradient as a simulation of an N-body system

N-Body, summation

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij}) (1 + ||y_i - y_j||^2)^{-1} (y_i - y_j)$$

Reduce Complexity from $O(N^2)$ to $O(N \log N)$ via Barnes Hut (tree-based) algorithm

Experiment & Results

MNIST

- Randomly selected 6,000 images
- $28 \times 28 = 784$ pixels

Olivetti faces

- 400 images (10 per individual)
- $92 \times 112 = 10,304$ pixels

COIL-20

- 20 different objects and 72 equally spaced orientations, yielding a total of 1,440 images
- $32 \times 32 = 1024$ pixels

Start by using PCA to reduce the dimensionality of the data to 30

Experiment & Results

Technique	Cost function parameters
t-SNE	Perp = 40
Sammon mapping	none
Isomap	k = 12
LLE	k = 12

Table 1: Cost function parameter settings for the experiments.

MNIST t-SNE

MNIST Sammon

MNIST Isomap

MNIST LLE

Olivetti faces

COIL-20

Web Resources

Google: t-sne

Link: http://homepage.tudelft.nl/19j49/t-SNE.html

Source Codes

- t-SNE (Matlab, CUDA, Binary, Python, Torch, Julia, R and JavaScript)
- Parametric t-SNE (Matlab)
- Barnes-Hut-SNE (with C++, Matlab, Python, Torch, and R wrappers)

Thanks for your patience