期中考试模拟题(五)参考答案

二. 填空题 1.
$$y' = \left[\frac{1}{2\sqrt{x}}f'(\sqrt{x}) - f(\sqrt{x})f'(-x)\right]e^{f(-x)};$$
 2. $\frac{1}{2};$

3. -6; 4.
$$y(-2) = -\frac{2}{e^2}$$
; 5. $dy = \frac{1-y}{x+e^y} dx$.

三.
$$1.\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \frac{x^2-4}{\sin \pi x} = -\frac{4}{\pi},$$
 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x(x-1)}{x^2-1} = 0,$; $x=0$ 为跳跃间断点;

2.
$$\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{x(x^2 - 4)}{\sin \pi x} = \frac{8}{\pi}$$
, $x = -2$ 为可去间断点;

3.
$$\lim_{x\to 1} f(x) = \lim_{x\to -2} \frac{x}{x+1} = \frac{1}{2}$$
, $x=1$ 为可去间断点;

4.
$$\lim_{x \to -k} f(x) = \infty$$
, $k = 1, 3, 4, 5, \cdots$ $x = -k, (k = 1, 3, 4, 5, \cdots)$ 为无穷间断点;

四. 1. 原式=
$$\lim_{x\to 0} e^{\frac{\ln(\cos 2x + 2x \sin x)}{x^4}} = e^{\frac{\lim_{x\to 0} \ln(\cos 2x + 2x \sin x)}{x^4}}$$

$$\overrightarrow{\text{III}} \quad \lim_{x \to 0} \frac{\ln(\cos 2x + 2x \sin x)}{x^4} = \lim_{x \to 0} \frac{\frac{-2\sin 2x + 2\sin x + 2x \cos x}{\cos 2x + 2x \sin x}}{4x^3} \stackrel{3'}{=} \lim_{x \to 0} \frac{1}{\cos 2x + 2x \sin x} \lim_{x \to 0} \frac{-2\sin 2x + 2\sin x + 2x \cos x}{4x^3}$$

$$= \lim_{x \to 0} \frac{-4\cos 2x + 2\cos x + 2\cos x - 2x\sin x}{12x^2} = \lim_{x \to 0} \frac{8\sin 2x - 4\sin x - 2\sin x - 2x\cos x}{24x} = \frac{1}{3}$$

$$\therefore \lim_{x \to 0} (\cos 2x + 2x \sin x)^{\frac{1}{x^4}} = e^{\frac{1}{3}}.$$

2.
$$\ln y = \frac{1}{2} \left[\sin \frac{1}{x} + \frac{1}{2} \ln \left(e^{-x^2} + \sin \sqrt{5} \cos x \right) \right]$$
,

两边对
$$x$$
 求导得: $\frac{y'}{y} = \frac{1}{2} \left[-\frac{1}{x^2} \cos \frac{1}{x} + \frac{-2xe^{-x^2} - \sin \sqrt{5} \sin x}{2(e^{-x^2} + \sin \sqrt{5} \cos x)} \right],$

$$\text{FF } \text{U} \quad y' = \frac{1}{2} \sqrt{e^{\frac{\sin^{\frac{1}{x}}} \sqrt{e^{-x^2} + \sin\sqrt{5}\cos x}}} \left[-\frac{1}{x^2} \cos \frac{1}{x} + \frac{-2xe^{-x^2} - \sin\sqrt{5}\sin x}{2\left(e^{-x^2} + \sin\sqrt{5}\cos x\right)} \right].$$

3.
$$\frac{dy}{dt} = -3 + \frac{2t}{1+t^2}$$
, $\frac{dx}{dt} = 2 + \frac{1}{1+t^2}$, $\frac{dy}{dx} = \frac{-3 + \frac{2t}{1+t^2}}{2 + \frac{1}{1+t^2}}$, $k = \frac{dy}{dx}\Big|_{t=0} = -1$,

4.
$$f'(x) = -x^{\frac{2}{3}} + \frac{2}{3}(5-x)x^{-\frac{1}{3}} = \frac{5(2-x)}{3\sqrt[3]{x}}$$
, $(x \neq 0)$; $x = 0$ 为不可导点;

所以, 极小值
$$f(0)=0$$
 , 极大值 $f(2)=3\sqrt[3]{4}$.

5.
$$y' = -(x-1)^2 e^{-x}$$
, $y'' = (x-1)(x-3)e^{-x}$,

所以 ,凹 (上凹) 区间为:
$$(-\infty,1)\cup(3,+\infty)$$
 , ; 凸 (下凹) 区间为: $(1,3)$.

拐点为:
$$\left(1,\frac{2}{e}\right)$$
 和 $\left(3,\frac{10}{e^3}\right)$.

6. (1)
$$\lim_{x\to 0^-} f(x) = 2$$
, ; $\lim_{x\to 0^+} f(x) = a$, 若函数 $f(x)$ 连续,则 $a = 2$,

(2)
$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{\sin bx}{x} = b$$
, $; f'_{-}(0) = \lim_{x \to 0^{-}} \frac{e^{2x} - 1}{x} - 2$ 若函数 $f(x)$ 可导,则 $b = 2$,

$$f(x) = \begin{cases} \frac{2xe^{2x} - e^{2x} + 1}{x^2}, & x < 0; \\ 2, & x = 0; \\ 2\cos 2x, & x > 0. \end{cases}$$

$$\exists i. 1. \quad x_{n+1} > 1 \quad (n \in N_+) \quad , \quad |x_{n+1} - \sqrt{2}| = \frac{\sqrt{2} - 1}{1 + x_n} |x_n - \sqrt{2}| \quad ,$$

所以
$$\left|x_{n+1} - \sqrt{2}\right| < \frac{\sqrt{2} - 1}{2} \left|x_n - \sqrt{2}\right| < \cdots < \left(\frac{\sqrt{2} - 1}{2}\right)^n \left|x_1 - \sqrt{2}\right| < \left(\frac{\sqrt{2} - 1}{2}\right)^n$$
,

所以
$$\lim_{n\to\infty} (x_{n+1} - \sqrt{2}) = 0$$
, $\lim_{n\to\infty} x_{n+1} = \sqrt{2}$.

2.
$$f(x) - f(0) = f'(0)x + \frac{1}{2}f''(\xi_1)x^2$$
, $f(x) = \frac{1}{2}f''(\xi_1)x^2$,

$$f'(x) - f'(0) = f''(\xi_2)x$$
, 得 $f'(x) = f''(\xi_2)x$, ;因 $f(x)$ 在 $(-1,1)$ 内二阶可导,则 $f(x)$, $f'(x)$ 在

$$(-1,1) 内连续,则在 $x \in \left[-\frac{1}{2}, \frac{1}{2} \right]$ 上必有最大值,设 $M = \max_{x \in \left[-\frac{1}{2}, \frac{1}{2} \right]} \left(|f(x)| + |f'(x)| \right) = \left(|f(\eta)| + |f'(\eta)| \right)$,$$

则
$$M = \frac{1}{2} |f''(\xi_1)| \eta^2 + |f''(\xi_2)| |\eta| \le M \left(\frac{1}{2} \eta^2 + |\eta|\right) \le \frac{5}{8} M$$
,故 $M = 0$.

从而
$$\exists \delta = \frac{1}{2}$$
, 当 $x \in (-\delta, \delta)$ 时, $f(x) \equiv 0$.