Processing 20 Million Rows Using Spark in Microsoft Fabric

Data Storage Strategy

- **Parquet**: Used for storing the large volume of log data due to its space efficiency and support for schema evolution.
- **CSV**: Selected for processed output because it is more analytics-friendly and widely supported by tools.
- **S3 Bucket**: Used as the storage location for log files, ensuring scalable and cost-efficient storage.

Pre-Requisites

- 1. Set Up S3 Bucket:
 - Create an S3 bucket named task-log-storage.
 - o Inside the bucket, create a folder named task_logs_2024.

2. Configure AWS CLI:

- o Download and install the AWS CLI.
- Configure user access with get0bject and put0bject permissions:
 Json

```
V{
    "Version": "2012-10-17",

"Statement": [
    {
        "Effect": "Allow",
        "Principal": {
            "AWS": "arn:aws:iam::47*******55:user/<your_name>Admin"
        },
        "Action": "s3:PutObject",
        "Resource": "arn:aws:s3:::task-log-storage/*"
      }
    ]
}
```

3. Run the synthetic_data_generation.py script. The result is written to the task_logs folder as shown below:

Name	Date modified	Туре	Size
ask_log_2024-12-01_file_1.parquet	12/19/2024 12:12 AM	PARQUET File	100,792 KB
ask_log_2024-12-02_file_2.parquet	12/19/2024 12:15 AM	PARQUET File	100,775 KB
ask_log_2024-12-03_file_3.parquet	12/19/2024 12:18 AM	PARQUET File	100,812 KB
task_log_2024-12-04_file_4.parquet	12/19/2024 12:20 AM	PARQUET File	100,765 KB
task_log_2024-12-05_file_5.parquet	12/19/2024 12:22 AM	PARQUET File	100,766 KB
task_log_2024-12-06_file_6.parquet	12/19/2024 12:25 AM	PARQUET File	100,793 KB
task_log_2024-12-07_file_7.parquet	12/19/2024 12:27 AM	PARQUET File	100,752 KB
task_log_2024-12-08_file_8.parquet	12/19/2024 12:29 AM	PARQUET File	100,784 KB
task_log_2024-12-09_file_9.parquet	12/19/2024 12:31 AM	PARQUET File	100,778 KB
task_log_2024-12-10_file_10.parquet	12/19/2024 12:33 AM	PARQUET File	100,797 KB
task_log_2024-12-11_file_11.parquet	12/19/2024 12:35 AM	PARQUET File	100,774 KB
task_log_2024-12-12_file_12.parquet	12/19/2024 12:38 AM	PARQUET File	100,774 KB
ask_log_2024-12-13_file_13.parquet	12/19/2024 12:40 AM	PARQUET File	100,795 KB
ask_log_2024-12-14_file_14.parquet	12/19/2024 12:42 AM	PARQUET File	100,788 KB
task_log_2024-12-15_file_15.parquet	12/19/2024 12:44 AM	PARQUET File	100,804 KB

4. Test permissions by uploading log files:

Run: aws s3 cp task_logs/ s3://task-log-storage/task_logs_2024/ --recursive **Result:**

```
C:\Users\olanr\Desktop\data_science\sora_union\Question_3>dir
Volume in drive C is Windows
Volume Serial Number is C6C0-1322
 Directory of C:\Users\olanr\Desktop\data_science\sora_union\Question_3
                        <DIR>
12/19/2024 12:09 AM
12/18/2024 12:08 PM
12/18/2024 09:56 PM
                                     92 aws_credentials.env
12/18/2024 11:30 PM <DIR>
12/19/2024 12:09 AM
12/18/2024 08:03 PM <DIR>
                                          images
                                    2,053 synthetic_data_generation.py
                                         task_logs
                C:\Users\olanr\Desktop\data_science\sora_union\Question_3>aws s3 cp task_logs/ s3://task-log-storage/task_logs_2024/ --
ecursive
upload: task_logs\task_log_2024-12-04_file_4.parquet to s3://task-log-storage/task_logs_2024/task_log_2024-12-04_file_4
parquet
upload: task_logs\task_log_2024-12-06_file_6.parquet to s3://task-log-storage/task_logs_2024/task_log_2024-12-06_file_6
upload: task_logs\task_log_2024-12-07_file_7.parquet to s3://task-log-storage/task_logs_2024/task_log_2024-12-07_file_7
```


Data Processing Workflow

1. Set Up Microsoft Fabric

- Navigate to Microsoft Fabric and create a new workspace.
- Within the workspace, create a **new data pipeline**. This pipeline will be used to load data from the S3 bucket to a Fabric Lakehouse.

2. Create a Data Pipeline

- Follow the instructions in the official <u>Microsoft Fabric Guide</u> to create and configure the pipeline.
- Connect to the Data Source:

- Select the S3 bucket as the source.
- Enable schema-agnostic mode (binary copy) since the input format is Parquet.

Set Up the Destination:

 Under the New Fabric Item tab, create a new lakehouse and configure it as the destination.

• Run the pipeline to load the Parquet data into the Fabric Lakehouse.

3. Set Up a Spark Notebook

- Create a new Spark Notebook in Fabric.
- Grant the notebook access to the Fabric Lakehouse for seamless data access.

4. Process Data Using Spark

- Write Spark code to:
 - Load the Parquet data from the Lakehouse.
 - o Perform transformations, aggregations, or filtering as required.
 - Save the processed data as a CSV file back to the Lakehouse or another destination.