

Deep Learning

3.3 Gradient Descent

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati Aug-Dec 2021

Training an ML model

Finding the parameters that minimize the training loss

$$W^*, \mathbf{b}^* = \operatorname*{argmin}_{W, \mathbf{b}} \mathcal{L}(f(\cdot; W, \mathbf{b}); \mathcal{D})$$

Training an ML model

Finding the parameters that minimize the training loss

$$W^*, \mathbf{b}^* = \operatorname*{argmin}_{W\mathbf{b}} \mathcal{L}(f(\cdot; W, \mathbf{b}); \mathcal{D})$$

- ② How do we find these optimal parameters?
 - ① Closed form solution (e.g. linear regression)
 - 2 Ad-hoc recipes (e.g. Perceptron, K-NN classifier)

Training an ML model

Finding the parameters that minimize the training loss

$$W^*, \mathbf{b}^* = \operatorname*{argmin}_{W \mathbf{b}} \mathcal{L}(f(\cdot; W, \mathbf{b}); \mathcal{D})$$

- ② How do we find these optimal parameters?
 - ① Closed form solution (e.g. linear regression)
 - 2 Ad-hoc recipes (e.g. Perceptron, K-NN classifier)
 - What if the loss function can't be minimized analytically?

3 General minimization method used in such cases is the 'Gradient Descent'.

Given a function

$$f: \mathcal{R}^D \to \mathcal{R}$$

 $x \to f(x_1, x_2, \dots, x_D)$

Given a function

$$f: \mathcal{R}^D \to \mathcal{R}$$

 $x \to f(x_1, x_2, \dots, x_D)$

2 Its gradient is the mapping

$$\nabla f : \mathcal{R}^D \to \mathcal{R}^D$$

 $x \to \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_D}\right)$

Given a function

$$f: \mathcal{R}^D \to \mathcal{R}$$

 $x \to f(x_1, x_2, \dots, x_D)$

2 Its gradient is the mapping

$$\nabla f : \mathcal{R}^D \to \mathcal{R}^D$$

$$x \to \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_D}\right)$$

Given a function

$$f: \mathcal{R}^D \to \mathcal{R}$$

 $x \to f(x_1, x_2, \dots, x_D)$

2 Its gradient is the mapping

$$\nabla f : \mathcal{R}^D \to \mathcal{R}^D$$

$$x \to \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_D}\right)$$

- It computes how much each input component influences the value of f locally.
- The gradient vector is interpreted as the direction and rate of fastest increase.

① Goal is to minimize the error (or loss): determine the parameters θ that minimize the loss $\mathcal{L}(\theta)$

- ① Goal is to minimize the error (or loss): determine the parameters θ that minimize the loss $\mathcal{L}(\theta)$
- ${\color{red} \textbf{2}}$ Gradient points uphill \rightarrow negative of gradient points downhill

- ① Goal is to minimize the error (or loss): determine the parameters θ that minimize the loss $\mathcal{L}(\theta)$
- f 2 Gradient points uphill ightarrow negative of gradient points downhill
- $exttt{3}$ $exttt{0}$ Start with an arbitrary initial parameter vector $heta_0$
 - Repeatedly modify it via updating in small steps
 - At each step, modify in the direction that produces steepest descent along the error surface

Figure credits: Ahmed Fawzy Gad

- f 0 Start with an arbitrary initial parameter vector $heta_0$
- Repeatedly modify it via updating in small steps
- 3 At each step, modify in the direction that produces steepest descent along the error surface

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} \mathcal{L}(\theta_t)$$

- (1) Start with an arbitrary initial parameter vector θ_0
- Repeatedly modify it via updating in small steps
- 3 At each step, modify in the direction that produces steepest descent along the error surface

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} \mathcal{L}(\theta_t)$$

4 Almost always ends in a local minimum, choice of parameters θ_0 and η are important.

Gradient descent example

Logistic regression (we will work it out on whiteboard)