EXPERIMENT-7

DETERMINATION OF PLANCK'S CONSTANT

AIM: Deleverination of Planck's Constant

APPARATUS: 0-1 V power supply, a one way key, a wheostat, a digital miliammelen, a digital voltmelen, a 1k nenslon and different known wovelength LED's (light Emitting Diode).

THEORY: The significance of plancke constant is that 'quanta' (Small partiels of energy can be delenwined by Jucquency of radiation and planck's constant. It describes the behaviour of particle & waves at alowic level as well as the particle nature of light

The light energy cuitted during forward biasing is given as,

where a-velocity of light

h= plancki constant

\(\rightarrow = \text{wavelength of light} \)

If v'in the forward vollage applied across the LED where it begins to exist light (the knee vollage) the onergy given to electrone crossing the function is

E = e V (2)

equating (1) and (2) we get

eV = hc - (3)

the vollage V can be measured for IFD's with different values of & (wavelength of light)

V = hc (1) - (9)

Now from eq (4), slope of graph of Von the vertical axis

S= hc

To delerwine plancki contlaut h,

h = e s (Franvalue h = e = 5-33 × 10-28 s/m)

Alleunatively, eq (3) can be written as $h = e \times V$

OBSERVATIONS:

COLOUR	(km × 10-9)	VOLTAGE	XV	h = exv (Js)
OF LED	(mm × 10 4)	(v)	(vm)	h = exv (Js) Planck's Constant
				33(7)
			,	
Red	650 X 10-9	1.89	1228.5×10-9	6.54 X10 -34
			(1000)	
green	510×10-9	2040	1224 × 10-9	6.52 × 10 - 34
Yellow:	570 X10-9	2.14	1219.8 X10-9	6.50 X10-34
	VI			
Blue	475×10-9	2.59	1230.2 XID	6.55 X 10 -34
- O,CC				

Mean = 6.5275 × 10 -34 Js

scale: Diex i dal V 1010x 100000 X Slope 2.40-2. 1455000 - 1720000 0.3 = 235000 = 1.2760×10-6 120000 1900000 2000000 3100000 1500000 1100000 1750000

PAGE NO.

EXPT. NO.

<u> </u>	V	
1538461.638	1.89	
1960784.314	2.40	
1754 385.965	2.14	
2105263.158	2.59	

CALCULATION :

Slope = 240-2-1	h = e x slope
1455000-1720000	= 5.33×10-28×1.2760×117-6
= 0.3	= 5. 55×10 × 1.2160×16 6
235000	= 6.8010×10-34 Js.
= 1.2760×10-6.	

: Graphical Planck's Constant = 6.8010×10-34 Js.

End Euron =
$$0_1 - 0_2 = \{0 \text{ bsoived planck i constant} - graphical planck i constant}\}$$

= $6.8010 \times 10^{-34} - 8.5275 \times 10^{-34} = 2.735 \times 10^{-37}$

MERIT®

MERIT®

Expression

THATEUR POMANT TO MONTAGERS .

TO TO

CIRCUIT DIAGRAM