

Prueba Intrasemestral Algebra I Ciencia de la Computación (sesión de la tarde) Nombre:

2017-2018

Grupo:

- **1.** Determine $a,b \in \mathbb{R}$ para que $x^4 + 2x^3 + ax + b$ tenga como raíz a z = 1 + i.
 - **1.1** Descomponga en factores irreducibles de $\mathbb{R}[x]$.
 - **1.2** Descomponga en factores irreducibles de $\mathbb{C}[x]$.
- **2.** Demuestre que el $x^{2n} nx^{n+1} + nx^{n-1} 1$ polinomio es divisible por $(x-1)^3$.
- **3.** Investigue el grado mínimo del polinomio $p(x) \in \mathbb{R}[x]$ que tiene como raíces, a las raíces de n-ésimas de la unidad.
- **4.** Investigue si en $M_3(\mathbb{R})$, el subconjunto de las matrices que conmutan con una matriz fija $T \in M_3(\mathbb{R})$ es un subespacio vectorial.
- **5. (opcional)** Demuestre que si $p(x) \in \mathbb{Z}[x]$ tal que p(0) y p(1) son impares, entonces p(x) no posee raíces enteras.

Éxitos!!!

Prueba Intrasemestral Algebra I Ciencia de la Computación (sesión de la mañana) Nombre:

2017-2018

Grupo:

- **1.** Demuestre que el $(x-2)^{2n} + (x-1)^{n+1} 1$ polinomio es divisible por $x^2 3x + 2$.
- **2.** Sea $bi, b \ne 0$ raíz de $p(x) = x^4 3x^3 + 5x^2 27x 36$ determinar, todas sus raíces complejas.
 - **2.1** Descomponga en factores irreducibles de $\mathbb{R}[x]$.
 - **2.2** Descomponga en factores irreducibles de $\mathbb{C}[x]$.
- 3. Verifique que el polinomio $\frac{x^n}{n!} + \frac{x^{n-1}}{(n-1)!} + ... + \frac{x^2}{2} + x + 1$ no posee raíces múltiples.
- **4.** Investigue si en $M_3(\mathbb{C})$, el subconjunto de las matrices hermíticas es un subespacio vectorial.
- **5. (opcional)** Sea $f(x) \in \mathbb{R}[x]$, no nulo, tal que $f(x) = f'(x) \cdot f''(x)$, encuentre el(los) posible(s) valor(es) del coeficiente principal de f(x).

Éxitos!!!