	_		
Cognome:	Nome:	Matricola:	
	='		

Università degli Studi della Calabria

Corso di Laurea in Ingegneria Informatica

Prova scritta di <i>Algoritmi e Strutture Dati</i> (durata della prova: 60 minuti)
Esercizio 1
Si consideri una classe <i>AlberoBinario</i> che rappresenta <i>alberi binari</i> in cui la parte informativa di ogni nodo è un numero intero. Si assuma che in tale classe siano implementati i seguenti metodi:
public interface AlberoBinario { /* restituisce il sottoalbero destro dell'albero corrente, la complessità temporale è $\theta(1)$ */ public AlberoBinario destro();
/* restituisce il sottoalbero sinistro dell'albero corrente, la complessità temporale è $\theta(1)^*/$ public AlberoBinario sinistro();
/* restituisce il valore memorizzato nella radice dell'albero, la complessità temporale è $\theta(1)^*$ / public int val();
Si deve realizzare un metodo ricorsivo public static boolean verifica(AlberoBinario a) {} che restituisce true se e solo se almeno una delle foglie più profonde dell'albero contiene un valore maggiore o uguale a zero.
Si caratterizzi la complessità temporale e spaziale del metodo nel caso migliore e peggiore, specificando anche quali siano il caso migliore ed il caso peggiore per la complessità temporale e spaziale.
Caso Migliore: Caso Peggiore: 1. Complessità temporale: θ() 1. Complessità temporale: θ() 2. Complessità spaziale: θ() 2. Complessità spaziale: θ()
Commenti:

Esercizio 2

Dire quali delle seguenti affermazioni sono vere e quali false.

	V	F	Affermazione
1			Può esistere un algoritmo che abbia complessità spaziale $\theta(n^2)$ e complessità temporale $\theta(n)$, dove n indica la dimensione dell'input.
2			La funzione $f(n) = n^2 \ ensuremath{\mbox{e}} \ \Omega \ (n * \lg n).$
3			L'algoritmo QuickSort ha complessità temporale $\theta(n * \lg n)$ nel caso peggiore.
4			L'inserimento di un elemento in un heap binario ha complessità temporale $\theta(\lg n)$ nel caso peggiore (dove n è il numero dei nodi).
5			Sia dato un algoritmo A risolutore del problema P. Se la complessità di A è $\Omega(f(n))$ allora la complessità intrinseca di P è $\Omega(f(n))$.
6			L'algoritmo di $Prim$, preso in input un grafo pesato G , restituisce un albero ricoprente A tale che, per ogni coppia di nodi u , v , il cammino in A tra u e v è il cammino minimo tra u e v in G .
7			Sia G un grafo non orientato ed aciclico. Il grafo G è un albero.
8			Un grafo non orientato è connesso se e solo se ogni nodo è raggiungibile da ogni altro tramite un cammino.
9			Un albero binario è bilanciato se la differenza fra l'altezza del sottoalbero sinistro della radice e l'altezza del sottoalbero destro della radice è minore o uguale ad 1.
10			Un albero binario è detto di ricerca se, per ognuno dei suoi nodi u , la radice del figlio sinistro di u contiene un valore minore di quello contenuto in u e la radice del figlio destro di u contiene un valore maggiore o uguale di quello contenuto in u .

Esercizio 3

Preso un generico algoritmo divide et impera che ad ogni passo suddivide l'istanza corrente in a sotto-istanze dello stesso problema, ciascuna di dimensione n/c (dove n é la dimensione dell'istanza in esame e c una costante), si ricavi la complessità dell'algoritmo supponendo che al netto delle							
chiamate ricorsive la singola chiamata abbia complessità $b * n^d$, dove $b \in d$ sono costanti.							