Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound having the formula:

$$(R^1)_m$$
 O L^1 —HAr Ar^1 N

or a pharmaceutically acceptable salt or N-oxide thereof, wherein

the subscript n is 1;

the subscript m is an integer of from 0 to 2;

each R¹ is a substituent independently selected from the group consisting of -CO₂H, C₁₋₄ alkyl and C₁₋₄ haloalkyl, wherein the aliphatic portions of each of said R¹ substituents is optionally substituted with from one to three members selected from the group consisting of -OH, -OR^m, -OC(O)NHR^m, -OC(O)N(R^m)₂, -S(O)R^m, and -S(O)₂R^m, -SO₂NH₂, -S(O)₂NHR^m, -S(O)₂N(R^m)₂, -NHS(O)₂R^m, -NR^mS(O)₂R^m, -C(O)NH₂, -C(O)NH₂, -C(O)NHR^m, -NHC(O)R^m, -NR^mC(O)R^m, -NHC(O)NH₂, -NR^mC(O)NH₂, -NR^mC(O)NHR^m, -NHC(O)NHR^m, -NR^mC(O)N(R^m)₂, -CO₂H, -CO₂R^m, -NHCO₂R^m, -NR^mCO₂R^m, -CN, -NH₂, -NHR^m, -N(R^m)₂, -NR^mS(O)NH₂ and -NR^mS(O)₂NHR^m, wherein each R^m is independently an unsubstituted C₁₋₆ alkyl;

Ar¹ is phenyl, optionally substituted with from one to five three R² substituents independently selected from the group consisting of halogen, -OR^c, -NR^cR^d, -SR^c, -R^e, -CN, -NO₂, -CO₂R^c, -CONR^cR^d, -C(O)R^c, -OC(O)NR^cR^d, -NR^dC(O)R^c, -NR^dC(O)R^c, -NR^cC(O)NR^cR^d, -S(O)R^e, -S(O)₂R^e, -NR^cS(O)₂R^e, -S(O)₂NR^cR^d, -N₃, -X²OR^c, -O-X²OR^c, -X²OC(O)R^e, -X²NR^cR^d, -O-X²NR^cR^d, -X²SR^e, -X²CN, -X²NO₂, -X²CO₂R^e, -O-X²CONR^eR^d, -O-X²CONR^eR^d, -X²COOR^e,

 $-X^2OC(O)NR^6R^d$, $-X^2NR^dC(O)R^6$, $-X^2NR^dC(O)_2R^d$, $-X^2NR^6C(O)NR^6R^d$, $-X^2S(O)R^d$, $-X^2NR^dC(O)_2R^d$, $-X^2NR^dC(O)NR^d$ $X^{2}S(O)_{2}R^{e}$, $X^{2}NR^{e}S(O)_{2}R^{e}$, $X^{2}S(O)_{2}NR^{e}R^{d}$, $X^{2}N_{3}$, $NR^{d}X^{2}OR^{e}$, $NR^{d}X^{2}NR^{e}R^{d}$ $-NR^d-X^2CO_2R^6$, and $-NR^d-X^2CONR^6R^d$, wherein X^2 is C_{1-4} alkylene, and each R^c and R^d is independently selected from hydrogen, C_{1-8} alkyl, C_{1-8} haloalkyl, and C_{3-6} cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, aryl- C_{1-4} alkyl, and aryloxy C_{1-4} 4 alkyl, or optionally Rc and Rd when attached to the same nitrogen atom can be combined with the nitrogen atom to form a five or six-membered ring having from 0 to 2 1 additional heteroatoms selected from N and O as ring members; and each Re is independently selected from the group consisting of C₁₋₈ alkyl, C₁₋₈ haloalkyl, and C_{3-6} cycloalkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, aryl, heteroaryl, aryl- C_{1} -4 alkyl, and aryloxy-C1-4alkyl, and each of R6, Rd and Re is optionally further substituted with from one to three members selected from the group consisting of OH, OR", $-OC(O)NHR^{n}$, $-OC(O)N(R^{n})_{2}$, SH, $-SR^{n}$, $-S(O)R^{n}$, $-S(O)_{2}R^{n}$, $-SO_{2}NH_{2}$, $-S(O)_{2}NHR^{n}$, $-S(O)_2N(R^n)_2$, $-NHS(O)_2R^n$, $-NR^nS(O)_2R^n$, $-C(O)NH_2$, $-C(O)NHR^n$, $-C(O)N(R^n)_2$, $-C(O)R^{n}$, $-NHC(O)R^{n}$, $-NR^{n}C(O)R^{n}$, $-NHC(O)NH_{2}$, $-NR^{n}C(O)NH_{2}$, $-NR^{n}C(O)NH_{R}^{n}$. -NHC(O)NHRⁿ, NRⁿC(O)N(Rⁿ)₂, -NHC(O)N(Rⁿ)₂, -CO₂H, -CO₂Rⁿ, NHCO₂Rⁿ₂ -NRⁿCO₂Rⁿ, -CN, NO₂, NH₂, -NHRⁿ, -N(Rⁿ)₂, -NRⁿS(O)NH₂-and -NRⁿS(O)₂NHRⁿ, wherein each Rⁿ is independently an unsubstituted C₁₋₆ alkyl:

HAr is a heteroaryl group selected from the group consisting of pyrazolyl and benzopyrazolyl, each of which is linked through a ring member nitrogen atom to the remainder of the molecule and is substituted with from one to five three R³ substituents independently selected from the group consisting of halogen, -ORf, -NRfRg, -SRf, -Rh, -CN, -NO2, -CO2Rf, -CONRfRg, -C(O)Rf, -OC(O)NRfRg, -NRfRg, -NRfC(O)2Rh, -NRfRg, -X³SRf, -X³CN, -X³NO2, -X³CO2Rf, -X³CONRfRg, -X³C(O)Rf, -X³OC(O)NRfRg, -X³S(O)2Rh, -X³NRfRg, -X³S(O)2Rh, -X³NRfC(O)2Rh, -X³NRfC(O)2Rh, -X³NRfC(O)2Rh, -X³NRfRg, -X³S(O)2Rh, -X³NRfRg, -X³S(O)2Rh, -X³NRfRg, -X³S(O)2Rh, -X³NRfRg, -X³S(O)2Rh, -X³NRfRg, -X³S(O)2Rh, -X³NRfRg, -X³S(O)2Rh, -X³NRfRg, -NRfRg, -NRfR

-NR^g-X³CONR^fR^g, wherein Y is a five or six-membered aryl, heteroaryl or heterocyclic ring selected from the group consisting of phenyl, thienyl, furanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridizinyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, triazolyl, tetrazolyl and oxadiazolyl, optionally substituted with from one to three substitutents selected from the group consisting of $\text{halogen, -OR}^f, \textcolor{red}{-NR}^fR^g, \textcolor{red}{\underline{and}} - R^h, \textcolor{red}{-SR}^f, \textcolor{red}{-CN}, \textcolor{red}{-NO_2}, \textcolor{red}{-CO_2}R^f, \textcolor{red}{-CONR}^fR^g, \textcolor{red}{-C(O)}R^f, \textcolor{red}{-C(O)}R$ $NR^{g}C(O)R^{f}, -S(O)R^{h}, -S(O)_{2}R^{h}, -NR^{f}S(O)_{2}R^{h}, -S(O)_{2}NR^{f}R^{g}, -X^{3}OR^{f}, -X^{3}NR^{f}R^{g}, -X^{5}OR^{f}, -X^{$ X³NR^fS(O)₂R^h and X³S(O)₂NR^fR^g, and wherein each X³ is independently C₁₋₄ alkylene, and each Rf and Rg is independently selected from hydrogen, C1-8 alkyl, C1-8 haloalkyl, and C₃₋₆ cycloalkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, aryl, heteroaryl, aryl-C₁₋₄ alkyl, and aryloxy-C₁-4alkyl, or when attached to the same nitrogen atom can be combined with the nitrogen atom to form a five or six-membered ring having from 0 to 2 1 additional heteroatoms selected from N and O as ring members, and each R^h is independently selected from the group consisting of C₁₋₈ alkyl, C₁₋₈ haloalkyl, and C₃₋₆ cycloalkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, aryl, heteroaryl, aryl-C₁₋₄ alkyl, and aryloxy-C₁-4alkyl, wherein the aliphatic portions of R^f, R^g and R^h is optionally further substituted with from one to three-members selected from the group consisting of -OH, $-OR^{\theta}$, $-OC(O)NHR^{\theta}$, $-OC(O)N(R^{\theta})_2$, -SH, $-SR^{\theta}$, $-S(O)R^{\theta}$, $-S(O)_2R^{\theta}$, $-SO_2NH_2$ $-S(O)_2NHR^{\theta}$, $-S(O)_2N(R^{\theta})_2$, $-NHS(O)_2R^{\theta}$, $-NR^{\theta}S(O)_2R^{\theta}$, $-C(O)NH_2$, $-C(O)NHR^{\theta}$, $-C(O)N(R^{\theta})_2$, $-C(O)R^{\theta}$, $-NHC(O)R^{\theta}$, $-NR^{\theta}C(O)R^{\theta}$, $-NHC(O)NH_2$, $-NR^{\theta}C(O)NH_2$, $-NR^{\theta}C(O)NHR^{\theta}, -NHC(O)NHR^{\theta}, -NR^{\theta}C(O)N(R^{\theta})_{2}, -NHC(O)N(R^{\theta})_{2}, -CO_{2}H.$ $-CO_2R^{\theta}$, $-NHCO_2R^{\theta}$, $-NR^{\theta}CO_2R^{\theta}$, -CN, $-NO_2$, $-NH_2$, $-NHR^{\theta}$, $-N(R^{\theta})_2$, $-NR^{\theta}S(O)NH_2$ and NR°S(O)2NHR°, wherein each R° is independently an unsubstituted C₁₋₆ alkyl; L¹ is -CH₂- optionally substituted with a phenyl or C₁₋₈ alkyl; and

with the proviso that the compound is other than CAS Reg. No. 492422-98-7, 1-[[4-bromo-5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]acetyl]-4-(5-chloro-2-methylphenyl)-piperazine; CAS Reg. No. 351986-92-0, 1-[[4-chloro-5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]acetyl]-4-(4-fluorophenyl)-piperazine; CAS Reg. No. 356039-23-1, 1-[(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)acetyl]-4-(4-fluorophenyl)-piperazine; 1-(2-

{4-nitro-3,5-dimethyl-1H-pyrazol-1-yl}propanoyl)-4-phenylpiperazine; 2-(2,4-Dinitro-imidazol-1-yl)-1-[4-(4-fluorophenyl)-piperazin-1-yl]-ethanone; 2-(2,4-Dinitro-imidazol-1-yl)-1-(4-phenyl-piperazin-1-yl)-ethanone; 2-(4-Nitro-imidazol-1-yl)-1-(4-phenyl-piperazin-1-yl)-ethanone; and CAS Reg. No. 492992-15-1, 3-[3-Fluoro-4-[4-[(1-pyrazolyl)acetyl]piperazine-1-yl]phenyl]-5-[[(isoxazol-3-yl)amino]methyl]isoxazole.

- 2. (Canceled)
- 3. (Canceled)
- 4. (Currently Amended) A compound of claim 1, wherein Ar^1 is phenyl substituted with from 1 to $3 2 R^2$ groups.
 - 5. (Canceled)
- 6. (Currently Amended) A compound of claim 4, wherein HAr is pyrazolyl, which is optionally substituted with from one to three R³ groups independently selected from the group consisting of halogen, ORf, NRfRg, SRf, Rh, CN, CO2Rf, CONRfRg, -C(O)Rf, $-OC(O)NR^fR^g$, $NR^gC(O)R^f$, $NR^gC(O)R^h$, $NR^fC(O)R^h$, NR^fR^g , $S(O)R^h$, $S(O)R^h$, $NR^fS(O)R^h$ -S(O)2NR^fR^g, NR^fS(O)2R^h, NR^fS(O)2NR^fR^g, N3, X³OR^f, X³OC(O)R^f, X³NR^fR^g, X³SR^f $X^{3}CN, -X^{3}NO_{2}, -X^{3}CO_{2}R^{f}, -X^{3}CONR^{f}R^{g}, -X^{3}C(O)R^{f}, -X^{3}OC(O)NR^{f}R^{g}, -X^{3}NR^{g}C(O)R^{f}, -X^{5}OC(O)NR^{f}R^{g}$ $X^{3}NR^{6}C(O)_{2}R^{h}, X^{3}NR^{f}-C(O)NR^{f}R^{g}, X^{3}S(O)R^{h}, X^{3}S(O)_{2}R^{h}, X^{3}NR^{f}S(O)_{2}R^{h}, X^{3}S(O)_{2}NR^{f}R^{g}, X^{3}S(O)_{2}NR^{g}, X^{3}S(O)_{2}NR^{g}, X^{3}S(O)_{2}NR^{g}, X^{3}S(O)_{2}NR^{g$ -Y. X³Yand X³N₃ wherein Y is a five or six-membered aryl, heteroaryl or heterocyclic ring, optionally substituted with from one to three substitutents selected from the group consisting of halogen, ORf, NRfRg, Rh, SRf, CN, NO2, CO2Rf, CONRfRg, C(O)Rf, NRgC(O)Rf, $S(O)R^{h}$, $S(O)_{2}R^{h}$, $-NR^{f}S(O)_{2}R^{h}$, $-S(O)_{2}NR^{f}R^{g}$, $X^{3}OR^{f}$, $X^{3}NR^{f}R^{g}$, $-X^{3}NR^{f}S(O)_{2}R^{h}$ and -X³S(O)₂NR^fR^g, and wherein each X³ is independently C₁₋₄ alkylene, and each R^f and R^g is independently selected from hydrogen, C₁₋₈ alkyl, C₁₋₈ haloalkyl, C₃₋₆ cycloalkyl, C₂₋₈ alkenyl, C₂₋₈ &alkynyl, aryl, heteroaryl, aryl-C₁-4alkyl, and aryloxy-C₁-4alkyl, or when attached to the same nitrogen atom can be combined with the nitrogen atom to form a five or six-membered-ring

having from 0 to 2 additional heteroatoms as ring members, and each R^h is independently selected from the group consisting of $C_{1.8}$ alkyl, $C_{1.8}$ haloalkyl, $C_{3.6}$ cycloalkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkynyl, aryl, heteroaryl, aryl- C_{1-4} alkyl, and aryloxy- C_{1-4} alkyl, wherein the aliphatic portions of R^f , R^g and R^h are optionally further substituted with from one to three members selected from the group consisting of OH, OR^{θ} , $OC(O)NHR^{\theta}$, $OC(O)N(R^{\theta})_2$, SH, SR^{θ} , $S(O)R^{\theta}$, $S(O)_2R^{\theta}$, SO_2NH_2 , $S(O)_2NHR^{\theta}$, $S(O)_2N(R^{\theta})_2$, $SO_2NHS(O)_2R^{\theta}$

- 7. (Previously Presented) A compound of claim 6, wherein HAr is pyrazolyl which is substituted with three R³ groups and L¹ is -CH₂-.
 - 8. (Canceled)
 - 9. (Canceled)
- groups is selected from the group consisting of -Y and - X^3 -Y, wherein Y is selected from the group consisting of phenyl, thienyl, furanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridizinyl, pyrazolyl, imidazolyl, thiazolyl, oxazolyl, isoxazolyl, isothiazolyl, triazolyl, tetrazolyl and oxadiazolyl, which is optionally substituted with from one to three substituents independently selected from the group consisting of halogen, -OR f , -NR f R g , -COR f , -CO2R f , -CONR f R g , NO2, and -R h , -CN, -X 3 -OR f , -X 3 -NR f R g and -X 3 -NR f S(O)2R h , wherein each R f and R g -are each is independently selected from the group consisting of H, C₁₋₈ alkyl, C₃₋₆ cycloalkyl and C₁₋₈ haloalkyl, and each R h is independently selected from the group consisting of C₁₋₈ alkyl, C₃₋₆ cycloalkyl and C₁₋₈ haloalkyl.
- 11. (Currently Amended) A compound of claim 10, wherein Y is selected from the group consisting of phenyl and thienyl, each of which is optionally substituted with

Appl. No. 10/732,897 Amdt. dated May 29, 2007 Reply to Office Action of January 29, 2007

from one to three substituents independently selected from the group consisting of halogen, $-OR^f$, $-NR^fR^g$, $-COR^f$, $-CO_2R^f$, $-CONR^fR^g$, $-NO_2$, and $-R^h$, -CN, $-X^3$ - OR^f , $-X^3$ - NR^fR^g and $-X^3$ - $NR^fS(O)_2R^h$, wherein each R^f and R^g are each is independently selected from the group consisting of H, C_{1-8} alkyl, C_{3-6} cycloalkyl and C_{1-8} haloalkyl, and each R^h is independently selected from the group consisting of C_{1-8} alkyl, C_{3-6} cycloalkyl and C_{1-8} haloalkyl.

- 12. (Canceled)
- 13. (Canceled)
- 14. (Canceled)
- 15. (Canceled)
- 16. (Canceled)
- 17. (Canceled)
- 18. (Currently Amended) A compound of claim 1, having the formula:

$$\begin{array}{c|c} R^{3a} \\ R^{2e} \\ R^{2c} \\ R^{2b} \\ R^{2a} \end{array}$$

wherein the subscript m is 0 or 1;

R¹ is C₁₋₄ alkyl, optionally substituted with -OH, -OR^m or -S(O)₂R^m;

R^{2a}, R^{2b}, R^{2c}, R^{2d} and R^{2e} are each members independently selected from the group consisting of hydrogen, halogen, -OR^c, -OC(O)R^e, -NR^cR^d, -SR^c, -R^e, -CN, -NO₂, -CO₂R^c, -CONR^cR^d, -C(O)R^c, -OC(O)NR^cR^d, -NR^dC(O)R^c, -NR^dC(O)₂R^e, -NR^c-C(O)NR^cR^d, -S(O)₂R^e, -S(O)₂R^e, -S(O)₂NR^cR^d, -N₃, -X²OR^c, -O-X²OR^c, -X²OC(O)R^e, -X²NR^cR^d, -O-X²NR^cR^d, -X²SR^e, -X²CN, -X²NO₂, -X²CO₂R^e,

 $-O-X^2CO_2R^6$, $-X^2CONR^6R^d$, $-O-X^2CONR^6R^d$, $-X^2C(O)R^6$, $-X^2OC(O)NR^6R^d$, $X^{2}NR^{d}C(O)R^{e}$, $X^{2}NR^{d}C(O)_{2}R^{e}$, $X^{2}NR^{e}C(O)NR^{e}R^{d}$, $X^{2}S(O)R^{e}$, $X^{2}S(O)_{2}R^{e}$ $X^{2}NR^{6}S(O)_{2}R^{6}$, $X^{2}S(O)_{2}NR^{6}R^{d}$, $X^{2}N_{2}$, NR^{d} , $X^{2}OR^{6}$, NR^{d} , $X^{2}NR^{6}R^{d}$. -NR^d-X²CO₂R⁶, and -NR^d-X²CONR⁶R^d, wherein X² is C₁₋₄ alkylene, and each R^c and R^d is independently selected from hydrogen, C_{1-8} alkyl, C_{1-8} haloalkyl, and C_{3-6} cycloalkyl, or optionally R^c and R^d when attached to the same nitrogen atom can be combined with the nitrogen atom to form a five or six-membered ring having from 0 to 2 1 additional heteroatoms selected from N and O as ring members; and each Re is independently selected from the group consisting of C₁₋₈ alkyl, C₁₋₈ haloalkyl, and C₃₋₆ cycloalkyl, and each of Re, Re and Re is optionally further substituted with from one to three members selected from the group consisting of OH, OR", OC(O)NHR", $-\frac{OC(O)N(R^{n})_{2},-SH,-SR^{n},-S(O)R^{n},-S(O)_{2}R^{n},-SO_{2}NH_{2},-S(O)_{2}NHR^{n},-S(O)_{2}N(R^{n})_{2},-S(O)_{2}N(R^{n})_$ $-NHS(O)_2R^{\dagger}$, $-NR^{\dagger}S(O)_2R^{\dagger}$, $-C(O)NH_2$, $-C(O)NHR^{\dagger}$, $-C(O)N(R^{\dagger})_2$, $-C(O)R^{\dagger}$ -NHC(O)Rⁿ, -NRⁿC(O)Rⁿ, -NHC(O)NH₂, -NRⁿC(O)NH₂, -NRⁿC(O)NHRⁿ, -NHC(O)NHR[#], -NR[#]C(O)N(R[#])₂, -NHC(O)N(R[#])₂, -CO₂H, -CO₂R[#], -NHCO₂R[#]. -NRⁿCO₂Rⁿ, -CN, -NO₂, NH₂, -NHRⁿ, -N(Rⁿ)₂, -NRⁿS(O)NH₂ and -NRⁿS(O)₂NHRⁿ, wherein each Rⁿ is independently an unsubstituted C₁₋₆ alkyl, such that at least one two of R^{2a}, R^{2b}, R^{2c}, R^{2d} and R^{2e} are is other than H;

R^{3a}, R^{3b} and R^{3c} are each members independently selected from the group consisting of hydrogen, halogen, -OR^f, -NR^fR^g, -SR^f, -R^h, -CN, -NO₂, -CO₂R^f, -CONR^fR^g, -C(O)R^f, -OC(O)NR^fR^g, -NR^gC(O)R^f, -NR^gC(O)₂R^h, -NR^f-C(O)NR^fR^g, -S(O)₂R^h, -S(O)₂R^h, -NR^fS(O)₂NR^fR^g, -NR^fS(O)₂NR^fR^g, -N3, -X3OR^f, -X3OC(O)R^f, -X3NR^fR^g, -X3SR^f, -X3CN, -X3NO₂, -X3CO₂R^f, -X3CONR^fR^g, -X3C(O)R^f, -X3OC(O)NR^fR^g, -X3NR^gC(O)R^f, -X3NR^gC(O)₂R^h, -X3NR^f-C(O)NR^fR^g, -X3S(O)R^h, -X3S(O)₂R^h, -X3NR^fS(O)₂R^h, -X3S(O)₂R^h, -X3NR^fS(O)₂R^h, -X3S(O)₂NR^fR^g, -Y, -X3Y, and -X3N3, -O-X3OR^f, -O-X3NR^fR^g, -O-X3CO₂R^f, -O-X3CO₂R^f, -NR^g-X3OR^f, -NR^g-X3NR^fR^g, -O-X3CO₂R^f, -O-X3CO₂R^f, -NR^g-X3OR^f, -NR^g-X3NR^fR^g, -NR^g-X3CO₂R^f, and -NR^g-X3CONR^fR^g, wherein Y is a five or six membered aryl, heteroaryl or heterocyclic ring, selected from the group consisting of phenyl, thienyl, furanyl, pyridyl, pyrimidinyl, pyrazinyl, pyridizinyl, pyrazolyl, imidazolyl, thiazolyl,

oxazolyl, isoxazolyl, isothiazolyl, triazolyl, tetrazolyl and oxadiazolyl, optionally substituted with from one to three substitutents selected from the group consisting of halogen, $-OR^f$, $-NR^fR^g$, and $-R^h$, $-SR^f$, -CN, $-NO_2$, $-CO_2R^f$, $-CONR^fR^g$, $-C(O)R^f$, $NR^{g}C(O)R^{f}, -S(O)R^{h}, -S(O)_{2}R^{h}, -NR^{f}S(O)_{2}R^{h}, -S(O)_{2}NR^{f}R^{g}, -X^{3}OR^{f}, -X^{3}NR^{f}R^{g}, -X^{5}OR^{f}, -X^{5}NR^{f}R^{g}, -X^{5}OR^{f}, -X^{5}NR^{f}R^{g}, -X^{5}OR^{f}, -X^{5}OR$ X³NR^fS(O)₂R^h and -X³S(O)₂NR^fR^g, and wherein each X³ is independently C₁₋₄ alkylene, and each Rf and Rg is independently selected from hydrogen, C1-8 alkyl, C1-8 haloalkyl, and C₃₋₆ cycloalkyl, or when attached to the same nitrogen atom can be combined with the nitrogen atom to form a five or six-membered ring having from 0 to 2 1 additional heteroatoms selected from N and O as ring members, and each Rh is independently selected from the group consisting of C_{1-8} alkyl, C_{1-8} haloalkyl, and C_{3-6} cycloalkyl, wherein the aliphatic portions of Rf, Rg and Rh is optionally further substituted with from one to three members selected from the group consisting of -OH, $-OR^{\theta}$, $-OC(O)NHR^{\theta}$, $-OC(O)N(R^{\theta})_2$, -SH, $-SR^{\theta}$, $-S(O)R^{\theta}$, $-S(O)_2R^{\theta}$, $-SO_2NH_2$ $-S(O)_2NHR^{\theta}$, $-S(O)_2N(R^{\theta})_2$, $-NHS(O)_2R^{\theta}$, $-NR^{\theta}S(O)_2R^{\theta}$, $-C(O)NH_2$, $-C(O)NHR^{\theta}$. $-C(O)N(R^{\theta})_{2}$, $-C(O)R^{\theta}$, $-NHC(O)R^{\theta}$, $-NR^{\theta}C(O)R^{\theta}$, $-NHC(O)NH_{2}$, $-NR^{\theta}C(O)NH_{2}$ $-NR^{\theta}C(O)NHR^{\theta}$, $-NHC(O)NHR^{\theta}$, $-NR^{\theta}C(O)N(R^{\theta})_2$, $-NHC(O)N(R^{\theta})_2$, $-CO_2H$. $-CO_2R^{\theta}$, $-NHCO_2R^{\theta}$, $-NR^{\theta}CO_2R^{\theta}$, -CN, $-NO_2$, $-NH_2$, $-NHR^{\theta}$, $-N(R^{\theta})_2$, $-NR^{\theta}S(O)NH_2$ and NR^oS(O)₂NHR^o, wherein each R^o is independently an unsubstituted C_{1.6} alkyl. such that at least one of R^{3a}, R^{3b} and R^{3c} is other than H.

- 19. (Original) A compound of claim 18, wherein at least one of R^{3a} , R^{3b} and R^{3c} is selected from the group consisting of -Y and -X³-Y.
- ${f 20}.$ (Original) A compound of claim ${f 18},$ wherein m is 0 or 1; at least one of R^{2a} and R^{2e} is hydrogen.
 - 21. (Original) A compound of claim 18, wherein R^{3b} is halogen.
 - 22. (Canceled)

- 23. (Currently Amended) A compound of claim 20, wherein at least one of R^{3a}, R^{3b} and R^{3c} is selected from the group consisting of halogen, C₁₋₄ alkyl and C₁₋₄ haloalkyl, wherein the aliphatic portions are optionally substituted with from one to three members selected from the group consisting of OH, OR⁶, OC(O)NHR⁶, OC(O)N(R⁶)₂, SH, SR⁶, S(O)R⁶, S(O)₂R⁶, SO₂NH₂, S(O)₂NHR⁶, S(O)₂N(R⁶)₂, NHS(O)₂R⁶, NR⁶S(O)₂R⁶, C(O)NH₂, C(O)NHR⁶, C(O)N(R⁶)₂, NHC(O)R⁶, NR⁶C(O)R⁶, NHC(O)NH₂, NR⁶C(O)NH₂, NR⁶C(O)NHR⁶, NHC(O)NHR⁶, NR⁶C(O)NHR⁶, NHC(O)NHR⁶, NHC(O)NHR⁶,
- 24. (Currently Amended) A compound of claim 23, wherein R^{2d} is hydrogen and at least two of R^{3a} , R^{3b} and R^{3c} are selected from the group consisting of halogen, C_{1-4} alkyl and C_{1-4} haloalkyl, wherein the aliphatic portions are optionally substituted with from one to three members selected from the group consisting of OH, OR^{θ} , $OC(O)NHR^{\theta}$, $OC(O)N(R^{\theta})_{27}$, SH, SR^{θ} , $S(O)R^{\theta}$, $S(O)_2R^{\theta}$, SO_2NH_2 , $S(O)_2NHR^{\theta}$, $S(O)_2N(R^{\theta})_2$, $S(O)_2N(R^{$
- **25**. (Original) A compound of claim **24**, wherein R^{2c} is selected from the group consisting of F, Cl, Br, CN, NO₂, CO₂CH₃, C(O)CH₃ and S(O)₂CH₃, and each of R^{3a}, R^{3b} and R^{3c} is other than hydrogen.
- 26. (Currently Amended) A compound of claim 18, wherein $\frac{1}{m}$ is 0 or 1; R^{2a} and R^{2e} are each hydrogen.
- 27. (Currently Amended) A compound of claim 26, wherein at least one of R^{3a} , R^{3b} and R^{3c} is selected from the group consisting of halogen, C_{1-4} alkyl and C_{1-4} haloalkyl,

wherein the aliphatic portions are optionally substituted with from one to three members selected from the group consisting of OH, OR^{θ} , $OC(O)NHR^{\theta}$, $OC(O)N(R^{\theta})_2$, SH, SR^{θ} , $S(O)R^{\theta}$, $S(O)_2R^{\theta}$, SO_2NH_2 , $S(O)_2NHR^{\theta}$, $S(O)_2N(R^{\theta})_2$, $S(O)_2N(R^{\theta})_$

- 28. (Canceled)
- 29. (Canceled)
- 30. (Currently Amended) A compound of claim 18, wherein $\frac{1}{m}$ is 0 or 1; R^{2b} and R^{2e} are each hydrogen.
- 31. (Original) A compound of claim 18, having a formula selected from the group consisting of:

$$(R^1)_m \xrightarrow{O} N \xrightarrow{R^{3b}} R^{3b}$$

$$R^{2c} \xrightarrow{R^{2b}} R^{2b}$$

$$R^{2c} \xrightarrow{R^{2b}} R^{2b}$$

- 32. (Original) A compound of claim 31, wherein R^{3c} and R^{3a} are each independently selected from the group consisting of C_{1-6} alkyl, C_{1-6} haloalkyl and C_{3-6} cycloalkyl; and R^{3b} is halogen.
- 33. (Currently Amended) A compound of claim 31, wherein R^{3c} and R^{3a} are each independently selected from the group consisting of halogen, $-NR^fR^g$, $-SR^f$, $-CO_2R^f$, -Y and $-R^h$, wherein R^h is C_{1-6} alkyl, C_{1-6} haloalkyl and C_{3-6} cycloalkyl, wherein the aliphatic portions are

optionally further substituted with from one to three members selected from the group consisting of OH, OR^{θ} , $OC(O)NHR^{\theta}$, $OC(O)N(R^{\theta})_2$, SH, SR^{θ} , $S(O)R^{\theta}$, $S(O)_2R^{\theta}$, SO_2NH_2 , SO_2NH_2 , SO_2NHR^{θ}

- 34. (Original) A compound of claim 33, wherein R^{3b} is halogen.
- 35. (Original) A compound of claim 31, wherein m is 0.
- **36**. (Canceled)
- 37. (Currently Amended) A compound of claim 31, wherein R^{2b} is selected from the group consisting of $-SR^c$, $-O-X^2-OR^c$, $-X^2-OR^c$, $-R^e$, $-OR^c$, $-NR^cR^d$, and $-NR^eSO_2R^d$.
 - 38. (Original) A compound of claim 18, having the formula:

$$R^{2c} \xrightarrow{R^{2b}} R^{3a}$$

wherein R^{2c} is halogen, cyano or nitro; R^{2b} is selected from -SR^c, -O-X²-OR^c, -X²-OR^c, -R^e, -OR^c, -NR^cR^d, -NR^cS(O)₂R^e and -NR^dC(O)R^c; R^{3a} is selected from the group consisting of NH₂, CF₃, SCH₃ and Y; R^{3b} is chloro or bromo; and R^{3c} is selected from the group consisting of C₁₋₆ alkyl, C₁₋₆ haloalkyl and C₃₋₆ cycloalkyl.

39. (Original) A compound of claim 18, having the formula:

Appl. No. 10/732,897 Amdt. dated May 29, 2007 Reply to Office Action of January 29, 2007

wherein R^{2c} is halogen, cyano or nitro; R^{2b} is selected from -SR^c, -O-X²-OR^c, -X²-OR^c, -R^e, -OR^c, -NR^cR^d, -NR^cS(O)₂R^e and -NR^dC(O)R^c; R^{3a} is selected from the group consisting of C_{1-6} alkyl, C_{1-6} haloalkyl and C_{3-6} cycloalkyl; R^{3c} is selected from the group consisting of NH₂, CF₃, SCH₃ and Y; and R^{3b} is chloro or bromo.

40. (Currently Amended) A compound of claim 18, having the formula:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ R^{2c} & & \\ & & & \\ & & & \\ R^{2b} & & \\ \end{array}$$

wherein R^{2c} is halogen, cyano or nitro; R^{2b} is selected from $-SR^c$, $-O-X^2-OR^c$, $-X^2-OR^c$, $-R^e$, $-OR^c$, $-NR^cR^d$, $-NR^cS(O)_2R^e$ and $-NR^dC(O)R^c$; R^{3a} is selected from the group consisting of NH_2 , CF_3 , SCH_3 and Y; R^{3b} is chloro or bromo; and R^{3c} is selected from the group consisting of C_{1-6} alkyl, C_{1-6} haloalkyl and C_{3-6} cycloalkyl wherein the aliphatic portions of R^{3e} are optionally substituted with a member selected from the group consisting of -OH, $-OR^e$, $-OC(O)NHR^e$, $-OC(O)NHR^e$, $-S(O)_2R^e$, $-S(O)_2R^e$, $-SO_2NH_2$, $-S(O)_2NHR^e$, $-S(O)_2N(R^e)_{25}$, $-NHS(O)_2R^e$, $-NR^eS(O)_2R^e$, $-C(O)NH_2$, $-C(O)NHR^e$, $-C(O)N(R^e)_2$, $-C(O)R^e$, $-NHC(O)NH_2$, $-NR^eC(O)NH_2$,

- 41. (Currently Amended) A compound of claim 40, wherein each R¹, when present, is methyl selected from the group consisting of -CO₂H and C₁₋₄-alkyl, optionally substituted with a member selected from the group consisting of -OH, -OR^m, and -S(O)₂R^m, -CO₂H and -CO₂R^m.
 - 42. (Currently Amended) A compound of claim 18, having the formula:

$$\mathbb{R}^{2c} \xrightarrow{\mathbb{R}^{2b}} \mathbb{R}^{3a}$$

wherein R^{2c} is halogen, cyano or nitro; R^{2b} is selected from $-SR^c$, $-O-X^2-OR^c$, $-X^2-OR^c$, $-R^e$, $-OR^c$, $-NR^cR^d$, $-NR^cS(O)_2R^e$ and $-NR^dC(O)R^c$; R^{3a} is selected from the group consisting of C_{1-6} alkyl, C_{1-6} haloalkyl and C_{3-6} cycloalkyl, wherein the aliphatic portions of R^{3a} are optionally substituted with a member selected from the group consisting of -OH, $-OR^e$, $-OC(O)NHR^e$; $-OC(O)N(R^e)_2$, -SH, $-SR^e$, $-S(O)R^e$, $-S(O)_2R^e$, $-SO_2NH_2$, $-S(O)_2NHR^e$, $-S(O)_2N(R^e)_2$, $-NHS(O)_2R^e$, $-NR^eS(O)_2R^e$, $-C(O)NH_2$, $-C(O)NHR^e$, $-C(O)N(R^e)_2$, $-C(O)R^e$, $-NHC(O)R^e$, $-NHC(O)R^e$, $-NHC(O)NH_2$, $-NR^eC(O)NH_2$, $-NR^eC(O)NH_2$, $-NR^eC(O)NH_2$, $-NR^eCO_2R^e$, $-NHC(O)NH_2$, $-NHCO_2R^e$, $-NHCO_2$

43. (Currently Amended) A compound of claim 42, wherein each R^1 , when present, is <u>methyl</u> selected from the group consisting of -CO₂H and C₁₋₄-alkyl, optionally substituted with a member selected from the group consisting of -OH, -OR^m, and -S(O)₂R^m, -CO₂H and -CO₂R^m.

44. (Currently Amended) A compound of claim 18, having the formula:

$$\begin{array}{c|c}
(R^1)_m & O & N \\
\hline
 & N & N \\
\hline
 & N & R^{3a} \\
R^{2d} & N & R^{3b} \\
R^{2c} & R^{2a}
\end{array}$$

wherein R^{2a} is other than hydrogen; R^{2c} is halogen, cyano or nitro; R^{2d} is selected from -SR^c, -O-X²-OR^c, -X²-OR^c, -R^e, -OR^c, -NR^cR^d, -NR^cS(O)₂R^e and -NR^dC(O)R^c; R^{3a} is selected from the group consisting of C_{1-6} alkyl, C_{1-6} haloalkyl and C_{3-6} cycloalkyl, optionally substituted with a member selected from the group consisting of -OH, -OR^e, -OC(O)NHR^e, -OC(O)N(R^e)₂, -SH, -SR^e, -S(O)₂R^e, -SO₂NH₂, -S(O)₂NHR^e, -S(O)₂N(R^e)₂, -NHS(O)₂R^e, -NR^eS(O)₂R^e, -C(O)NH₂, -C(O)NHR^e, -C(O)N(R^e)₂, -C(O)R^e, -NHC(O)R^e, -NR^eC(O)R^e, -NHC(O)NH₂, -NHC(O)NH₂, -NHC(O)NH₂, -NHC(O)NHR^e, -NHC(O)NHR^e, -NR^eC(O)N(R^e)₂, -NHC(O)N(R^e)₂, -CO₂H, -CO₂R^e, -NHCO₂R^e, -NR^eCO₂R^e, -CN, -NO₂, -NH₂, -NHR^e, -N(R^e)₂, -NR^eS(O)NH₂ and -NR^eS(O)₂NHR^e; R^{3b} is chloro or bromo; and R^{3c} is selected from the group consisting of NH₂, CF₃, SCH₃ and Y.

- 45. (Currently Amended) A compound of claim 44, wherein each R¹, when present, is methyl selected from the group consisting of -CO₂H and C₁₋₄-alkyl, optionally substituted with a member selected from the group consisting of -OH, -OR^m, and -S(O)₂R^m, -CO₂H and -CO₂R^m.
 - 46. (Currently Amended) A compound of claim 18, having the formula:

$$\begin{array}{c|c}
(R^1)_m & O & N \\
\hline
R^{2d} & N & R^{3c} \\
R^{2c} & R^{2a}
\end{array}$$

wherein R^{2a} is other than hydrogen; R^{2c} is halogen, cyano or nitro; R^{2d} is $-SR^c$, $-O-X^2-OR^c$, $-X^2-OR^c$, $-R^e$, $-OR^c$, $-NR^cR^d$, $-NR^cS(O)_2R^e$ and $-NR^dC(O)R^c$; R^{3a} is selected from the group consisting of NH_2 , CF_3 , SCH_3 and Y; R^{3b} is chloro or bromo; and R^{3c} is selected from the group consisting of C_{1-6} alkyl, C_{1-6} haloalkyl and C_{3-6} cycloalkyl, optionally substituted with a member selected from the group consisting of -OH, $-OR^e$, $-OC(O)NHR^e$, $-OC(O)N(R^e)_2$, -SH, $-SR^e$, $-S(O)_2R^e$, $-SO_2NH_2$, $-S(O)_2NHR^e$, $-S(O)_2N(R^e)_2$, $-NHS(O)_2R^e$, $-NR^eS(O)_2R^e$, $-CO_2NH_2$, $-CO_2NH_2$, $-CO_2NH_2$, $-CO_2NH_2$, $-CO_2NH_2$, $-CO_2NH_2$, $-NHC(O)NH_2$, -NH

- 47. (Currently Amended) A compound of claim 46, wherein each R^1 , when present, is <u>methyl</u> selected from the group consisting of -CO₂H and C₁₋₄ alkyl, optionally substituted with a member selected from the group consisting of -OH, -OR^m, <u>and</u> -S(O)₂R^m, -CO₂H and -CO₂R^m.
 - 48. (Canceled)
 - 49. (Canceled)
 - **50**. (Canceled)
 - 51. (Canceled)
 - 52. (Canceled)
- 53. (Original) A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound of claim 1.