MATH 2031 Introduction to Real Analysis

October 21, 2012

Tutorial Note 6

Real Numbers

(I) **Definition:**

A supremum (least upper bound) of a non-empty bounded above set S, denoted by $\sup S$, is an upper bound \widetilde{M} of S such that $\widetilde{M} \leq M$ for any upper bound of S

A infimum (greatest lower bound) of a non-empty bounded below set S, denoted by inf S, is an lower bound \tilde{m} of S such that $\tilde{m} \geq m$ for any lower bound of S

(II) Infinitesimal Principle:

Let $x, y \in \mathbb{R}$, $x < y + \varepsilon$ for all $\varepsilon > 0 \iff x \le y$.

(III) Supremum Property:

If a set S has a supremum in \mathbb{R} and $\varepsilon > 0$, then $\exists x \in S$ such that

$$\sup S - \varepsilon < x \le \sup S$$

Infimum Property:

If a set S has a infimum in \mathbb{R} and $\varepsilon > 0$, then $\exists x \in S$ such that

$$\inf S \le x < \inf S + \varepsilon$$

(IV) Archimedean Principle:

 $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \text{ such that } n > x$

(V) Density of \mathbb{Q} :

If x < y, then $\exists \frac{m}{n} \in \mathbb{Q}$ such that $x < \frac{m}{n} < y$.

Density of $\mathbb{R} \setminus \mathbb{Q}$:

If x < y, then $\exists w \in \mathbb{R} \setminus \mathbb{Q}$ such that x < w < y.

(VI) **Definition:**

A sequence x_1, x_2, \cdots converges to a number x, written as $\lim_{n \to \infty} x_n = x$, iff $\forall \varepsilon > 0, \exists K \in \mathbb{N} (\text{depends on } \varepsilon)$ such that $n \geq K \Rightarrow |x_n - x| < \varepsilon$.

(VII) Supremum Limit Theorem:

Let c be an upper bound of S, then

$$\left(\exists w_n \in S \text{ such that } \lim_{n \to \infty} w_n = c\right) \iff c = \sup S.$$

Infimum Limit Theorem:

Let c be an lower bound of S, then

$$\left(\exists w_n \in S \text{ such that } \lim_{n \to \infty} w_n = c\right) \iff c = \inf S.$$

Problem 1 Find the sup and inf of each of the following sets of real numbers.

- (i) $S = \{x + y | x, y \in \left[\frac{1}{2}, 1\right)\} \setminus \{2 \frac{1}{n} | n \in \mathbb{N}\}$
- (ii) $S = \{ \frac{k}{n!} | k, n \in \mathbb{N}, \frac{k}{n!} < \sqrt{2} \}$

Solution:

(i) First we find the upper bound and lower bound of S, $1 = \frac{1}{2} + \frac{1}{2} \le x + y < 1 + 1 = 2$, so $S \subseteq [1, 2)$. Then we try to find a sequence in S converges to the upper bound 2 and a sequence in S converges to the lower bound 1.

Here we should beware that $\{2-\frac{1}{n}|n\in\mathbb{N}\}$ is not in S, so we could not simply take $x_n=y_n=1-\frac{1}{2n}$, which gives $x_n+y_n=2-\frac{1}{n}$. Instead, we could take $x_n=y_n=1-\frac{1}{2n\pi}$, since π is irrational, $w_n = x_n + y_n = 2 - \frac{1}{n\pi}$ which is not in $\{2 - \frac{1}{n} | n \in \mathbb{N}\}$, so $w_n \in S$. And $\lim_{n \to \infty} w_n = \lim_{n \to \infty} \left(2 - \frac{1}{n\pi}\right) = 2$.

Also by similar argument, we could take $x_n=y_n=\frac{1}{2}+\frac{1}{2n\pi}$, so $w_n=x_n+y_n=1+\frac{1}{n\pi}\in S$ and $\lim_{n \to \infty} w_n = \lim_{n \to \infty} \left(1 + \frac{1}{n\pi} \right) = 1.$

Therefore the sup S=2 and inf S=1.

(ii) Since $k, n \in \mathbb{N}$, both k, n are positive and $\frac{k}{n!} < \sqrt{2}$, we get that the lower bound of S is 0 and upper

For infimum, we could take $w_n = \frac{1}{n!}$, since $n! \ge 1!$ for all $n \in \mathbb{N}$, we get $w_n = \frac{1}{n!} \le \frac{1}{1!} = 1 < \sqrt{2}$, so $w_n \in S$ and $\lim_{n \to \infty} w_n = \lim_{n \to \infty} \frac{1}{n!} = 0$. Thus inf S = 0.

For supremum, as the upper bound is irrational while elements in S are rational, it would be hard to take a sequence in S converges to $\sqrt{2}$. So we would claim $\sup S = \sqrt{2}$ and prove it by contradiction. Suppose $\sup S \neq \sqrt{2}$, then by definition of supremum $\sup S < \sqrt{2}$, by the density of \mathbb{Q} , there exist

 $\frac{m}{n} \in \mathbb{Q}$ such that $\sup S < \frac{m}{n} < \sqrt{2}$. However, $\frac{m}{n} = \frac{m(n-1)!}{n!} \in S$ contradict the fact that $\sup S$ is the least upper bound of S.

Thus we get $\sup S = \sqrt{2}$.

Problem 2 Let $A, B \subset \mathbb{R}$ be bounded sets and $\inf A = -2$, $\sup A = 4$, $\inf B = 0$, $\sup B = 1$. Then find the sup and inf of the following set.

$$S = \{x + e^y | x \in A, y \in B\}$$

Solution:

Since $\inf A = -2$, $\sup A = 4$, $\inf B = -1$, $\sup B = 1$, we get that $x \in A$, $-2 \le x \le 4$ and $y \in B$, $0 \le y \le 1$. Also e^y is an increasing function, we get $1 = e^0 \le e^y \le e^1 = e$. Then the upper bound of S = -2 + 1 = -1and lower bound of S = 4 + e

Here we should beware that -2 and 4 may not in A and 0 and 1 may not in B.

Since inf A = -2 and inf B = 0, we get that there is a sequence $x_n \in A$ converges to -2 and a sequence $y_n \in B$ converges to 0.

Since e^y is continuous, then e^{y_n} is sequence converge to $e^0 = 1$.

Then we get $w_n = x_n + e^{y_n}$ which is in S and $\lim_{n \to \infty} w_n = \lim_{n \to \infty} (x_n + e^{y_n}) = -2 + 1 = -1$.

By similar argument, $\sup A=4$ and $\sup B=1$ give us the sequences $x_n'\in A$ converges to 4 and $y_n'\in B$ converges to 1, and take $w_n'=x_n'+e^{y_n'}$ which is in S and $\lim_{n\to\infty}w_n'=\lim_{n\to\infty}(x_n'+e^{y_n'})=4+e$. So the $\sup S = 4 + e$.

Problem 3 Let $A, B \subset \mathbb{R}$ be bounded sets such that $\inf B < \inf A < \sup A < \sup B$, then

$$\inf(B \setminus A) = \inf B \text{ and } \sup(B \setminus A) = \sup B$$

Solution:

Here I would prove $\inf(B \setminus A) = \inf B$, the other part is essentially the same.

Since we have $\inf B < \inf A$, then let $k = \inf A - \inf B > 0$, then by infimum property, we have for each $n \in \mathbb{N}$, there exists $x_n \in B$ such that

$$\inf B \le x_n < \inf B + \frac{k}{n} \le \inf B + k < \inf B + \inf A - \inf B = \inf A$$

By definition, inf A is the greatest lower bound, so $x_n \in B \setminus A$ for each $n \in \mathbb{N}$.

Also, by sandwich theorem, $\inf B \le x_n < \inf B + \frac{k}{n}$ implies that $\lim_{n \to \infty} \inf B \le \lim_{n \to \infty} x_n \le \lim_{n \to \infty} \left(\inf B + \frac{k}{n}\right)$. As $\lim_{n \to \infty} \inf B = \inf B$ and $\lim_{n \to \infty} \left(\inf B + \frac{k}{n}\right) = \inf B$, we get $\lim_{n \to \infty} x_n = \inf B$.