Network Segmentation

Reasons for Subnetting

Large networks need to be segmented into smaller sub-networks, creating smaller groups of devices and services in order to:

- Control traffic by containing broadcast traffic within subnetwork
- Reduce overall network traffic and improve network performance

Subnetting - process of segmenting a network into multiple smaller network spaces called subnetworks or **Subnets.**

Network Segmentation

Reasons for Subnetting

Communication Between Subnets

- A router is necessary for devices on different networks and subnets to communicate.
- Each router interface must have an IPv4 host address that belongs to the network or subnet that the router interface is connected to.
- Devices on a network and subnet use the router interface attached to their LAN as their default gateway.

IP Subnetting is FUNdamental

Planning requires decisions on each subnet in terms of size, the number of hosts per subnet, and how host addresses will be assigned.

Basic Subnetting

- Borrowing Bits to Create Subnets
- Borrowing 1 bit $2^1 = 2$ subnets

Borrowing 1 Bit from the host portion creates 2 subnets with the same subnet mask

Subnet 0

Network 192.168.1.0-127/25

Mask: 255.255.255.128

Subnet 1

Network 192.168.1.128-255/25

Mask: 255.255.255.128

Subnetting an IPv4 Network Subnets in Use

Subnet 0
Network 192.168.1.0-127/25

192.168.1.0/25
PC1 G0/0
PC2 G0/1
192.168.1.128/25

Subnet 1
Network 192.168.1.128-255/25

Address Range for 192.168.1.0/25 Subnet

Network Address

192. 168. 1. 0 000 0000 = 192.168.1.0

First Host Address

192. 168. 1. 0 000 0001 = 192.168.1.1

Last Host Address

192. 168. 1. 0 111 1110 = 192.168.1.126

Broadcast Address

192. 168. 1. 0 111 1111 = 192.168.1.127

Address Range for 192.168.1.128/25 Subnet

Network Address

192. 168. 1. 1 000 0000 = 192.168.1.128

First Host Address

192. 168. 1. 1 000 0001 = 192.168.1.129

Last Host Address

192. 168. 1. 1 111 1110 = 192.168.1.254

Broadcast Address

192. 168. 1. 1 111 1111 = 192.168.1.255

Subnetting Formulas

Calculate Number of Subnets

Calculate Number of Hosts

```
Hosts = 2^n (where n = host bits remaining)

192. 168. 1. 0 000 0000

7 bits remain in host field

2^7 = 128 hosts per subnet
```

Creating 4 Subnets

Borrowing 2 bits to create 4 subnets. 2² = 4 subnets

Creating 8 Subnets

■Borrowing 3 bits to Create 8 Subnets. **2**³ = **8 subnets**

Net 0	Network	192.	168.	1.	000	0 0000	192.168.1.1
	Fist	192.	168.	1.	000	0 0001	192.168.1.1
	Last	192.	168.	1.	000	1 1110	192.168.1.30
	Broadcast	192.	168.	1.	000	1 1111	192.168.1.31
Net 1	Network	192.	168.	1.	001	0 0000	192.168.1.32
	Fist	192.	168.	1.	001	0 0001	192.168.1.33
	Last	192.	168.	1.	001	1 1110	192.168.1.62
	Broadcast	192.	168.	1.	001	1 1111	192.168.1.63
	Network	192.	168.	1.	010	0 0000	192.168.1.64
Net 2	Network Fist	192. 192.	168. 168.	1.	010 010	0 0000 0 0001	192.168.1.64 192.168.1.65
Net 2							
Net 2	Fist	192.	168.	1.	010	0 0001	192.168.1.65
Net 2	Fist Last	192.	168.	1.	010 010	0 0001 1 1110	192.168.1.65 192.168.1.94
Net 2	Fist Last Broadcast	192. 192. 192.	168. 168. 168.	1.	010 010 010	0 0001 1 1110 1 1111	192.168.1.65 192.168.1.94 192.168.1.95
	Fist Last Broadcast Network	192. 192. 192.	168. 168. 168.	1. 1. 1.	010 010 010 010	0 0001 1 1110 1 1111 0 0000	192.168.1.65 192.168.1.94 192.168.1.95 192.168.1.96
	Fist Last Broadcast Network Fist	192. 192. 192. 192.	168. 168. 168. 168.	1. 1. 1.	010 010 010 010 010	0 0001 1 1110 1 1111 0 0000 0 0001	192.168.1.65 192.168.1.94 192.168.1.95 192.168.1.96 192.168.1.97

Creating 8 Subnets(continued)

Net 4	Network	192.	168.	1.	100	0 0000	192.168.1.128
	Fist	192.	168.	1.	100	0 0001	192.168.1.129
	Last	192.	168.	1.	100	1 1110	192.168.1.158
	Broadcast	192.	168.	1.	100	1 1111	192.168.1.159
	Network	192.	168.	1.	101	0 0000	192.168.1.160
Net 5	Fist	192.	168.	1.	101	0 0001	192.168.1.161
11010	Last	192.	168.	1.	101	1 1110	192.168.1.190
	Broadcast	192.	168.	1.	101	1 1111	192.168.1.191
	Network	192.	168.	1.	110	0 0000	192.168.1.192
Net 6	Network Fist	192. 192.	168. 168.	1.	110 110	0 0000 0 0001	192.168.1.192 192.168.1.193
Net 6							
Net 6	Fist	192.	168.	1.	110	0 0001	192.168.1.193
Net 6	Fist Last	192.	168. 168.	1.	110 110	0 0001 1 1110	192.168.1.193 192.168.1.222
Net 6	Fist Last Broadcast	192. 192.	168. 168. 168.	1.	110 110 110	0 0001 1 1110 1 1111	192.168.1.193 192.168.1.222 192.168.1.223
	Fist Last Broadcast Network	192. 192. 192.	168. 168. 168.	1.	110 110 110 111	0 0001 1 1110 1 1111 0 0000	192.168.1.193 192.168.1.222 192.168.1.223 192.168.1.224
	Fist Last Broadcast Network Fist Last	192. 192. 192. 192. 192.	168. 168. 168. 168. 168.	1. 1. 1. 1.	110 110 110 111 111 111	0 0001 1 1110 1 1111 0 0000 0 0001 1 1110	192.168.1.193 192.168.1.222 192.168.1.223 192.168.1.224 192.168.1.225 192.168.1.254
	Fist Last Broadcast Network Fist	192. 192. 192. 192.	168. 168. 168. 168.	1. 1. 1.	110 110 110 111 111	0 0001 1 1110 1 1111 0 0000 0 0001	192.168.1.193 192.168.1.222 192.168.1.223 192.168.1.224 192.168.1.225

Subnet Allocation

Determining the Subnet Mask

Subnetting Based on Host Requirements

There are two considerations when planning subnets:

- Number of Subnets required
- Number of Host addresses required
- Formula to determine number of useable hosts

- 2ⁿ (where n is the number the number of host bits remaining) is used to calculate the number of hosts
- Subnetwork ID and broadcast address cannot be used on each subnet

Subnetting Network-Based Requirements

Calculate number of subnets

- Formula 2ⁿ (where n is the number of bits borrowed)
- Subnet needed for each department in graphic

Subnetting To Meet Network Requirements

- It is important to balance the number of subnets needed and the number of hosts required for the largest subnet.
- Design the addressing scheme to accommodate the maximum number of hosts for each subnet.
- •Allow for growth in each subnet.

Determining the Subnet Mask Subnetting To Meet Network Requirements (cont)

Subnets and Addresses

```
10101100.00010000.000000000.01000000 172.16.0.64/26
  10101100.00010000.000000000.10000000 172.16.0.128/26
  10101100.00010000.000000000.110000000 172.16.0.192/26
  10101100.00010000.000000001.00000000 172.16.1.0/26
  10101100.00010000.000000001.010000000 172.16.1.64/26
  10101100.00010000.000000<mark>01.10000000</mark> 172.16.1.128/26
                 Nets 7 – 14 not shown
15 10101100.00010000.00000011.10000000 172.16.3.128/26
16 10101100.00010000.000000 11.11 000000 172.16.3.192/26
                     2^4 = 16 2^6 - 2 = 62
                     subnets
                             Hosts per
                             subnet
```

Benefits of Variable Length Subnet Masking Traditional Subnetting Wastes Addresses

- Traditional subnetting same number of addresses is allocated for each subnet.
- Subnets that require fewer addresses have unused (wasted) addresses. For example, WAN links only need 2 addresses.
- Variable Length Subnet Mask (VLSM) or subnetting a subnet provides more efficient use of addresses.

Traditional Subnetting Creates Equal Sized Subnets

Variable Length Subnet Masking Variable Length Subnet Masks (VLSM)

- •VLSM allows a network space to be divided in unequal parts.
- Subnet mask will vary depending on how many bits have been borrowed for a particular subnet.
- Network is first subnetted, and then the subnets are subnetted again.
- Process repeated as necessary to create subnets of various sizes.

Benefits of Variable Length Subnet Masking Basic VLSM

VLSM Subnetting Scheme

```
11000000.10101000.00010100.00000000 192.168.20.0/24
0 11000000.10101000.00010100 .000 00000 192.168.20.0/27
1 11000000.10101000.00010100.00100000 192.168.20.32/27
                                                                   LANs
2 11000000.10101000.00010100 .010 00000 192.168.20.64/27
                                                                   A, B, C, D
3 11000000.10101000.00010100 .011 00000 192.168.20.96/27
4 11000000.10101000.00010100 .100 00000 192.168.20.128/27
                                                                  Unused/
5 11000000.10101000.00010100 .101 00000 192.168.20.160/27
                                                                  Available
6 11000000.10101000.00010100 .110 00000 192.168.20.192/27_
   11000000.10101000.00010100 .111 00000 192.168.20.224/27
  3 more bits borrowed from subnet 7:
7:0 11000000.10101000.00010100 .11100000 192.168.20.224/30
7:1 11000000.10101000.00010100 .111001 00 192.168.20.228/30
                                                                  WANs
7:2 11000000.10101000.00010100 .111010 00 192.168.20.232/30
7:3 11000000.10101000.00010100 .111011 00 192.168.20.236/30 10000000.1010101000.00010100 .111011 00 192.168.20.236/30
7:4 11000000.10101000.00010100 .111100 00 192.168.20.240/30
                                                                  Unused/
7:5 11000000.10101000.00010100 .111101 00 192.168.20.244/30
                                                                  Available
7:6 11000000.10101000.00010100 .111110 00 192.168.20.248/30
7:7 11000000.10101000.00010100 .111111 00 192.168.20.252/30_
```

Benefits of Variable Length Subnet Masking VLSM in Practice

- Using VLSM subnets, the LAN and WAN segments in example below can be addressed with minimum waste.
- Each LANs will be assigned a subnet with /27 mask.
- Each WAN link will be assigned a subnet with /30 mask.

Network Topology: VLSM Subnets

Benefits of Variable Length Subnet Masking VLSM Chart

VLSM Subnetting of 192.168.20.0 /24

	/27 Network	Hosts
Bldg A	.0	.130
Bldg B	.32	.3362
Bldg C	.64	.6594
Bldg D	.96	.97126
Unused	.128	.129158
Unused	.160	.161190
Unused	.192	.193222
	.224	.225254

	/30 Network	Hosts
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Unused	.236	.237238
Unused	.240	.241242
Unused	.244	.245246
Unused	.248	.249250
Unused	.252	.253254

Structured Design

Planning to Address the Network

Allocation of network addresses should be planned and documented for the purposes of:

- Preventing duplication of addresses
- Providing and controlling access
- Monitoring security and performance

Addresses for Clients - usually dynamically assigned using Dynamic Host Configuration Protocol (DHCP)

Network: 192.168.1.0/24

Sample Network Addressing Plan

Use	First	Last
Host Devices	.1	.229
Servers	.230	.239
Printers	.240	.249
Intermediary Devices	.250	.253
Gateway (router LAN interface)	.254	

Subnetting an IPv6 Network Subnetting Using the Subnet ID

An IPv6 Network Space is subnetted to support hierarchical, logical design of the network


```
Address Block: 2001:0DB8:ACAD::/48
             2001:0DB8:ACAD:0000::/64
Increment
             2001:0DB8:ACAD:0001::/64
subnet ID to
             2001:0DB8:ACAD:0002::/64
create 65,536
             2001:0DB8:ACAD:0003::/64
subnets
             2001:0DB8:ACAD:0004::/64
             2001:0DB8:ACAD:0005::/64
             2001:0DB8:ACAD:0006::/64
             2001:0DB8:ACAD:0007::/64
             2001:0DB8:ACAD:0008::/64
             2001:0DB8:ACAD:0009::/64
             2001:0DB8:ACAD:000A::/64
             2001:0DB8:ACAD:000B::/64
             2001:0DB8:ACAD:000C::/64
                  Subnets 13 - 65.534 not shown
             2001:0DB8:ACAD:FFFF::/64
```

Subnetting an IPv6 Network IPV6 Subnet Allocation

IPv6 Subnetting

Address Block: 2001:0DB8:ACAD::/48

5 subnets allocated from 65,536 available subnets

2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64

2001:0DB8:ACAD:FFFF::/64

2001:0DB8:ACAD:0000::/64

IPv6 Subnet Allocation

Subnetting into the Interface ID

IPv6 bits can be borrowed from the interface ID to create additional IPv6 subnets

Subnetting on a Nibble Boundary

