Response to Feedback

Joseph Blubaugh 24 January 2017

Why not use ROC curves to graphically compare model performance?

I did not think about this at all, but I think its a great idea.

Area Under Curve 100 Iteration Models 100% -Model — Model 12 Model 08 75% -Model 02 True Positive Rate Model 11 Model 07 Model 01 50% Model 10 Model 09 Model 04 25% -Model 06 Model 03 Model 05 25% 50% 75% 100% False Positive Rate

Model Performance

Model	Data Processing	Data Split	MaxItr	Size	Decay	Training	Testing	AUC
Model 1:	Original	365 Split	100	50	.20	.760	.676	.734
Model 2:	Original	Entire Sim	100	50	.20	.754	.754	.847
Model 3:	Differencing	365 Split	100	10	.00	.518	.516	.526
Model 4:	Differencing	Entire Sim	100	25	.10	.572	.571	.637
Model 5:	Moving Avg	365 Split	100	10	.00	.503	.502	.527
Model 6:	Moving Avg	Entire Sim	100	10	.00	.528	.528	.544
Model 7:	1/2 Sec Cut	365 Split	100	50	.10	.820	.698	.761
Model 8:	1/2 Sec Cut	Entire Sim	100	50	.20	.788	.779	.868
Model 9:	1/2 Sec Diff	365 Split	100	50	.10	.633	.602	.650
Model 10:	1/2 Sec Diff	Entire Sim	100	50	.20	.682	.622	.681
Model 11:	1/2 Sec Cut Stat	365 Split	100	50	.10	.846	.716	.781
Model 12:	1/2 Sec Cut Stat	Entire Sim	100	50	.20	.820	.803	.891

Further Training Best Models

Model	Data Processing	Data Split	MaxItr	Size	Decay	Training	Testing	AUC
Model 8:	1/2 Sec Cut	Entire Sim	250	50	. 10	.816	.804	.893
Model 8:	1/2 Sec Cut	Entire Sim	500	50	. 10	.828	.810	.899
Model 8:	1/2 Sec Cut	Entire Sim	1000	50	. 10	.842	.820	.906
Model 12:	1/2 Sec Cut Stat	Entire Sim	250	50	. 10	.858	.823	.906
Model 12:	1/2 Sec Cut Stat	Entire Sim	500	50	.20	.864	.823	.907
Model 12:	1/2 Sec Cut Stat	Entire Sim	1000	50	.10	.871	.824	.908

Are you trying to detect whether texting occurred during a given interval or a single observation?

Initially I was looking at individual observations, but as I tried different approaches I ended up aggregating the data and found those models to be the best performing.

Baselining: What is the purpose?

My goal was to remove the effect of the simulation from the texting trial. The simulations involved active traffic and a detour which each driver had to navigate. Since trial 4 was identical to trials 5, 6, and 7 minus the events that took place, it seemed like the natural choice.

Why do you say there was evidence that one size fits all model will not work?

At this stage I was aggregating data at the subject level by event and I think the range of values were all over the place which prevented the models I tried from being any good. I proposed that adding a factor variable for subject would allow me to model individuals driving behavior that might be more successful at detecting texting.

On Time omission - why not include lagged variables?

In retrospect this probably would have been a good thing to try. The farthest I went looking into time series was trying differencing which ended up being the worst of all of the methods I experimented with.

Does including age and gender as well as Subject in the model cause problems due to collinerity?

I mainly included included age and gender so that there were parameters availble to account for universal age and gender effects, if there were any. I don't think there is an issue with collinerity because Im not inferring anything about the weights (coefficients).

Exmplain (sens+spec)/2

I presented this in a more complicated way than was neccessary. It turns out that the formula is equivalent to the "total percentage correct". I initially set it up that way incase I wanted to penalize false positives or negatives more. I had a multivariate course last year that did this. I never ended up doing that so I will eliminate that metric and just represent it as percentage correct.

Why move 60/40 to 50/50?

Only because the initial aggregate data I created had very few observations so I was just trying to have more data to train on. There was no real scientific reason for this. I may cut this exploratory section out entirely.

Less on interpreting nnet weights

Agreed. I have pretty much concluded that trying to extract and interpret weights on large nueral nets is very tricky and not very helpful.

Reduce or cut material on initial analysis and aggregated data?

Agreed.