

Picture 14.1 Duty factor plot

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Table 15.1: SAR Measurement Variability for Body WCDMA1700 (1g)

Freq	uency	Toet	Spacing	Original Firs		The	Second
Ch.	MHz	Test Position	(mm)	SAR (W/kg)	Repeated SAR (W/kg)	Ratio	Repeated SAR (W/kg)
1513	1752.6	Bottom	10	0.961	0.943	1.02	1

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

	Weasurement on		,		, ,,,			<u> </u>		
No.	Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Meas	surement system									
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	N	1	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
		I	Test	sample related	1		I			
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521

Combined standard uncertainty	$u_{c}^{'} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$			9.55	9.43	257
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$			19.1	18.9	

No.	Measurement Un Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
			value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Mea	surement system			I	I	l	l			
1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. restrictions	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
12	Probe positioning with respect to phantom shell	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	8
13	Post-processing	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
			Test	sample related	l					
14	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
15	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phan	tom and set-u	p					
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8

21	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$					10.7	10.6	257
_	anded uncertainty fidence interval of	i	$u_e = 2u_c$					21.4	21.1	

No.	Measurement Un Error Description	Type	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
	r sas p	JI	value	Distribution		1g	10g	Unc.	Unc.	of
								(1g)	(10g)	freedom
Mea	surement system				ı	I		· · ·	, C)	
1	Probe calibration	В	6.0	N	1	1	1	6.0	6.0	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RFambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	8
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
14	Fast SAR z- Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	8
			Test	sample related	i				•	
15	Test sample positioning	A	3.3	N	1	1	1	3.3	3.3	71
16	Device holder uncertainty	A	3.4	N	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
			Phan	tom and set-u	р					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8

20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty	$u_c^{'} =$	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.4	10.3	257
_	inded uncertainty fidence interval of	i	$u_e = 2u_c$					20.8	20.6	

16.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

Measurement system Incompany Value Distribution Incompany Incompany Unc. (1g) Unc. (10g) of freedom Measurement system 1 Probe calibration B 6.55 N 1 1 1 6.55 6.55 ∞ 2 Isotropy B 4.7 R √3 0.7 0.7 1.9 1.9 ∞ 3 Boundary effect B 2.0 R √3 1 1 1.2 1.2 ∞ 4 Linearity B 4.7 R √3 1 1 1.2 1.2 ∞ 5 Detection limit B 1.0 R √3 1 1 0.6 <t< th=""><th>No.</th><th>Error Description</th><th>Туре</th><th>Uncertainty</th><th>Probably</th><th>Div.</th><th>(Ci)</th><th>(Ci)</th><th>Std.</th><th>Std.</th><th>Degree</th></t<>	No.	Error Description	Туре	Uncertainty	Probably	Div.	(Ci)	(Ci)	Std.	Std.	Degree
Measurement system		•		value	Distribution		1g	10g	Unc.	Unc.	of
Probe calibration B 6.55 N 1 1 1 6.55 6.55 ∞									(1g)	(10g)	freedom
Sotropy	Meas	surement system									
Boundary effect B 2.0 R √3 1 1 1.2 1.2 ∞	1	Probe calibration	В	6.55	N	1	1	1	6.55	6.55	∞
Linearity B 4.7 R √3 1 1 2.7 2.7 ∞	2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
5 Detection limit B 1.0 R √3 1 1 0.6 0.6 ∞ 6 Readout electronics B 0.3 R √3 1 1 0.3 0.3 ∞ 7 Response time B 0.8 R √3 1 1 0.5 0.5 ∞ 8 Integration time B 2.6 R √3 1 1 1.5 1.5 ∞ 9 RF ambient conditions-noise B 0 R √3 1 1 0 0 ∞ 10 RFambient conditions-reflection B 0 R √3 1 1 0 0 ∞ 11 Probe positioned mech. Restrictions B 0.8 R √3 1 1 0.5 0.5 ∞ Probe positioning meth. Restrictions B 6.7 R √3 1 1 3.9 3.9 ∞	3	Boundary effect	В	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
6 Readout electronics B 0.3 R √3 1 1 0.3 0.3 ∞ 7 Response time B 0.8 R √3 1 1 0.5 0.5 ∞ 8 Integration time B 2.6 R √3 1 1 1.5 1.5 ∞ 9 RF ambient conditions-noise B 0 R √3 1 1 0 0 ∞ 10 RFambient conditions-noise B 0 R √3 1 1 0 0 ∞ 11 Probe positioned mech. Restrictions B 0.8 R √3 1 1 0.5 0.5 ∞ Probe positioning B 6.7 R √3 1 1 3.9 3.9 ∞ 12 with respect to B phantom shell B 1.0 R √3 1 1 0.6 0.6 ∞ <td>4</td> <td>Linearity</td> <td>В</td> <td>4.7</td> <td>R</td> <td>$\sqrt{3}$</td> <td>1</td> <td>1</td> <td>2.7</td> <td>2.7</td> <td>∞</td>	4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
8 Integration time B 2.6 R $\sqrt{3}$ 1 1 1.5 1.5 ∞ 9 RF ambient conditions-noise B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 10 RFambient conditions-reflection B 0 R $\sqrt{3}$ 1 1 0 0 ∞ 11 Probe positioned mech. Restrictions B 0.8 R $\sqrt{3}$ 1 1 0.5 0.5 ∞ 12 with respect to B phantom shell B 6.7 R $\sqrt{3}$ 1 1 3.9 3.9 ∞ 13 Post-processing B 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 14 Fast SAR z-Approximation B 14.0 R $\sqrt{3}$ 1 1 8.1 8.1 ∞ 15 Test sample positioning A 3.3 N 1 1	6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
9 RF ambient conditions-noise B 0 R √3 1 1 0 0 ∞ 10 RFambient conditions-reflection B 0 R √3 1 1 0 0 ∞ 11 Probe positioned mech. Restrictions B 0.8 R √3 1 1 0.5 0.5 ∞ 12 Probe positioning with respect to phantom shell B 6.7 R √3 1 1 3.9 3.9 ∞ 13 Post-processing B 1.0 R √3 1 1 0.6 0.6 ∞ 14 Fast SAR z- Approximation B 14.0 R √3 1 1 8.1 8.1 ∞ Test sample positioning A 3.3 N 1 1 1 3.3 3.3 71 16 Device holder uncertainty A 3.4 N 1 1 1 3.4 3.4 5	7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9		В	0	R	$\sqrt{3}$	1	1	0	0	∞
11 mech. Restrictions Probe positioning with respect to B Post-processing B 12 Fast SAR z-Approximation Test sample positioning A A A B A A A A B A	10		В	0	R	$\sqrt{3}$	1	1	0	0	8
12 with respect to phantom shell B 6.7 R $\sqrt{3}$ 1 1 3.9 3.9 ∞ 13 Post-processing B 1.0 R $\sqrt{3}$ 1 1 0.6 0.6 ∞ 14 Fast SAR Z-Approximation B 14.0 R $\sqrt{3}$ 1 1 8.1 8.1 ∞ Test sample positioning A 3.3 N 1 1 1 3.3 3.3 71 16 Device holder uncertainty A 3.4 N 1 1 1 3.4 3.4 5	11	1	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
Test SAR Approximation Z- Approximation B 14.0 R $\sqrt{3}$ 1 1 8.1 8.1 ∞ Test sample positioning 15 Test sample positioning A 3.3 N 1 1 1 3.3 3.3 71 16 Device holder uncertainty A 3.4 N 1 1 1 3.4 3.4 5	12	with respect to	В	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
Test sample positioning A 3.3 N 1 1 3.4 3.3 71 16 Device holder uncertainty A 3.4 N 1 1 1 3.4 3.4 5	13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
15 Test sample positioning A 3.3 N 1 1 1 3.3 3.3 71 16 Device holder uncertainty A 3.4 N 1 1 1 3.4 3.4 5	14		В	14.0	R	$\sqrt{3}$	1	1	8.1	8.1	∞
15 positioning A 3.3 N 1 1 1 3.3 3.3 71 16 Device holder uncertainty A 3.4 N 1 1 1 3.4 3.4 5				Test	sample related	d					
16 uncertainty A 3.4 N 1 1 1 3.4 3.4 5	15	•	A	3.3	N	1	1	1	3.3	3.3	71
17 Drift of output power B 5.0 R $\sqrt{3}$ 1 1 2.9 2.9 ∞	16		A	3.4	N	1	1	1	3.4	3.4	5
	17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞

			Phan	tom and set-u	p					
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	A	2.06	N	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	A	1.6	N	1	0.6	0.49	1.0	0.8	521
(Combined standard uncertainty		$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					13.5	13.4	257
(conf	Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$					27.0	26.8	

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	N5239A	MY55491241	June 10, 2019	One year
02	Power meter	NRP2	106277	Contember 4, 2010	One year
03	Power sensor	NRP8S	104291	September 4, 2019	One year
04	Power sensor	NRP6A	101369	April 11, 2019	One Year
05	Signal Generator	MG3700A	6201052605	June 18, 2019	One Year
06	Amplifier	60S1G4	0331848	No Calibration Re	equested
07	Directional Coupler	778D	MY48220584	No Calibration Re	equested
08	Directional Coupler	772D	MY46151265	No Calibration Re	equested
09	BTS	CMW500	166370	June 27, 2019	One year
10	E-field Probe	SPEAG EX3DV4	7307	May 24, 2020	One year
11	DAE	SPEAG DAE4	777	January 8, 2020	One year
12	Dipole Validation Kit	SPEAG D750V3	1017	July 18, 2019	One year
13	Dipole Validation Kit	SPEAG D835V2	4d069	July 18, 2019	One year
14	Dipole Validation Kit	SPEAG D1750V2	1003	July 16, 2019	One year
15	Dipole Validation Kit	SPEAG D1900V2	5d101	July 17, 2019	One year
16	Dipole Validation Kit	SPEAG D2450V2	853	July 17, 2019	One year
17	Dipole Validation Kit	SPEAG D2600V2	1012	July 17, 2019	One year

END OF REPORT BODY

ANNEX A Graph Results

GSM850 CH251 Right Cheek

Date: 2/10/2020

Electronics: DAE4 SN777 Medium: head 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.897 \text{ mho/m}$; $\epsilon r = 41.43$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN7307 ConvF(10.45,10.45,10.45)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.246 W/kg

Zoom Scan (7x7x7)/**Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.52 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.266 W/kg

SAR(1 g) = 0.206 W/kg; SAR(10 g) = 0.16 W/kg

Maximum value of SAR (measured) = 0.245 W/kg

Fig A.1

GSM850 CH251 Rear

Date: 2/10/2020

Electronics: DAE4 SN777 Medium: body 835 MHz

Medium parameters used: f = 848.8 MHz; $\sigma = 0.916 \text{ mho/m}$; $\epsilon r = 41.14$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: GSM850 848.8 MHz Duty Cycle: 1:2

Probe: EX3DV4 – SN7307 ConvF(10.45,10.45,10.45)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.641 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.71 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.636 W/kg

SAR(1 g) = 0.36 W/kg; SAR(10 g) = 0.217 W/kg

Maximum value of SAR (measured) = 0.512 W/kg

Fig A.2

PCS1900 CH661 Left Cheek

Date: 2/12/2020

Electronics: DAE4 SN777 Medium: head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.363 \text{ mho/m}$; $\epsilon r = 39.35$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: PCS1900 1880 MHz Duty Cycle: 1:4

Probe: EX3DV4 – SN7307 ConvF(8.56,8.56,8.56)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.133 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.919 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.15 W/kg

SAR(1 g) = 0.094 W/kg; SAR(10 g) = 0.06 W/kg

Maximum value of SAR (measured) = 0.129 W/kg

Fig A.3

PCS1900 CH512 Bottom

Date: 2/12/2020

Electronics: DAE4 SN777 Medium: body 1900 MHz

Medium parameters used: f = 1850.2 MHz; $\sigma = 1.358 \text{ mho/m}$; $\epsilon r = 39.99$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: PCS1900 1850.2 MHz Duty Cycle: 1:4

Probe: EX3DV4 – SN7307 ConvF(8.56,8.56,8.56)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.796 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.915 W/kg

SAR(1 g) = 0.505 W/kg; SAR(10 g) = 0.275 W/kg

Maximum value of SAR (measured) = 0.746 W/kg

Fig A.4

WCDMA1900-BII_CH9400 Left Cheek

Date: 2/12/2020

Electronics: DAE4 SN777 Medium: head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.363 \text{ mho/m}$; $\epsilon r = 39.35$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: WCDMA1900-BII 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.56,8.56,8.56)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.109 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.571 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.08 W/kg; SAR(10 g) = 0.05 W/kg

Maximum value of SAR (measured) = 0.108 W/kg

Fig A.5

WCDMA1900-BII_CH9262 Bottom

Date: 2/12/2020

Electronics: DAE4 SN777 Medium: body 1900 MHz

Medium parameters used: f = 1852.4 MHz; $\sigma = 1.359 \text{ mho/m}$; $\epsilon r = 39.99$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: WCDMA1900-BII 1852.4 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.56,8.56,8.56)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.12 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.14 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.735 W/kg; SAR(10 g) = 0.399 W/kg

Maximum value of SAR (measured) = 1.11 W/kg

Fig A.6

WCDMA1700-BIV_CH1513 Right Cheek

Date: 2/11/2020

Electronics: DAE4 SN777 Medium: head 1750 MHz

Medium parameters used: f = 1752.6 MHz; $\sigma = 1.377 \text{ mho/m}$; $\epsilon r = 39.44$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: WCDMA1700-BIV 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.86,8.86,8.86)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.276 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.169 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.287 W/kg

SAR(1 g) = 0.19 W/kg; SAR(10 g) = 0.121 W/kg

Maximum value of SAR (measured) = 0.252 W/kg

Fig A.7

WCDMA1700-BIV_CH1513 Bottom

Date: 2/11/2020

Electronics: DAE4 SN777 Medium: body 1750 MHz

Medium parameters used: f = 1752.6 MHz; $\sigma = 1.351 \text{ mho/m}$; $\epsilon r = 40.56$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: WCDMA1700-BIV 1752.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.86,8.86,8.86)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.5 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 26.72 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.74 W/kg

SAR(1 g) = 0.961 W/kg; SAR(10 g) = 0.524 W/kg

Maximum value of SAR (measured) = 1.44 W/kg

Fig A.8

WCDMA850-BV_CH4233 Right Cheek

Date: 2/10/2020

Electronics: DAE4 SN777 Medium: head 835 MHz

Medium parameters used: f = 846.6 MHz; $\sigma = 0.895 \text{ mho/m}$; $\epsilon r = 41.44$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.45,10.45,10.45)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.135 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.703 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 0.145 W/kg

SAR(1 g) = 0.109 W/kg; SAR(10 g) = 0.083 W/kgMaximum value of SAR (measured) = 0.132 W/kg

Fig A.9

WCDMA850-BV_CH4233 Rear

Date: 2/10/2020

Electronics: DAE4 SN777 Medium: body 835 MHz

Medium parameters used: f = 846.6 MHz; $\sigma = 0.914 \text{ mho/m}$; $\epsilon r = 41.15$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: WCDMA850-BV 846.6 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.45,10.45,10.45)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.223 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.96 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.262 W/kg

SAR(1 g) = 0.149 W/kg; SAR(10 g) = 0.09 W/kg

Maximum value of SAR (measured) = 0.213 W/kg

Fig A.10

LTE1900-FDD2_CH18900 Left Cheek

Date: 2/12/2020

Electronics: DAE4 SN777 Medium: head 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.363 \text{ mho/m}$; $\epsilon r = 39.35$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE1900-FDD2 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.56,8.56,8.56)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.115 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.309 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.124 W/kg

SAR(1 g) = 0.078 W/kg; SAR(10 g) = 0.05 W/kg

Maximum value of SAR (measured) = 0.107 W/kg

Fig A.11

LTE1900-FDD2_CH18900 Bottom

Date: 2/12/2020

Electronics: DAE4 SN777 Medium: body 1900 MHz

Medium parameters used: f = 1880 MHz; $\sigma = 1.386 \text{ mho/m}$; $\epsilon r = 39.95$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE1900-FDD2 1880 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.56,8.56,8.56)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.941 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 21.77 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.604 W/kg; SAR(10 g) = 0.326 W/kg

Maximum value of SAR (measured) = 0.925 W/kg

Fig A.12

LTE1700-FDD4_CH20300 Right Cheek

Date: 2/11/2020

Electronics: DAE4 SN777 Medium: head 1750 MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.369 \text{ mho/m}$; $\epsilon r = 39.45$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE1700-FDD4 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.86,8.86,8.86)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.128 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.005 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.134 W/kg

SAR(1 g) = 0.089 W/kg; SAR(10 g) = 0.057 W/kg

Maximum value of SAR (measured) = 0.118 W/kg

Fig A.13

LTE1700-FDD4_CH20300 Bottom

Date: 2/11/2020

Electronics: DAE4 SN777 Medium: body 1750 MHz

Medium parameters used: f = 1745 MHz; $\sigma = 1.343 \text{ mho/m}$; $\epsilon r = 40.57$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE1700-FDD4 1745 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(8.86,8.86,8.86)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.1 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.95 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.728 W/kg; SAR(10 g) = 0.393 W/kg

Maximum value of SAR (measured) = 1.1 W/kg

Fig A.14

LTE850-FDD5_CH20600 Right Cheek

Date: 2/10/2020

Electronics: DAE4 SN777 Medium: head 835 MHz

Medium parameters used: f = 844 MHz; $\sigma = 0.893$ mho/m; $\epsilon r = 41.44$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.45,10.45,10.45)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.144 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.992 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.156 W/kg

SAR(1 g) = 0.12 W/kg; SAR(10 g) = 0.093 W/kg

Maximum value of SAR (measured) = 0.143 W/kg

Fig A.15

LTE850-FDD5 CH20600 Rear

Date: 2/10/2020

Electronics: DAE4 SN777 Medium: body 835 MHz

Medium parameters used: f = 844 MHz; $\sigma = 0.912$ mho/m; $\epsilon r = 41.15$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE850-FDD5 844 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.45,10.45,10.45)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.196 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.01 V/m; Power Drift = 0.1 dB

Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.159 W/kg; SAR(10 g) = 0.121 W/kg

Maximum value of SAR (measured) = 0.196 W/kg

Fig A.16

LTE2500-FDD7_CH21100 Left Cheek

Date: 2/14/2020

Electronics: DAE4 SN777 Medium: head 2600 MHz

Medium parameters used: f = 2535 MHz; $\sigma = 1.898 \text{ mho/m}$; $\epsilon r = 38.48$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE2500-FDD7 2535 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.203 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.572 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.24 W/kg

SAR(1 g) = 0.128 W/kg; SAR(10 g) = 0.068 W/kg

Maximum value of SAR (measured) = 0.192 W/kg

Fig A.17

LTE2500-FDD7_CH21100 Bottom

Date: 2/14/2020

Electronics: DAE4 SN777 Medium: body 2600 MHz

Medium parameters used: f = 2535 MHz; $\sigma = 1.889$ mho/m; $\epsilon r = 39.53$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE2500-FDD7 2535 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.65,7.65,7.65)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.833 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.66 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.55 W/kg; SAR(10 g) = 0.273 W/kg

Maximum value of SAR (measured) = 0.87 W/kg

Fig A.18

LTE700-FDD12_CH23130 Right Cheek

Date: 2/9/2020

Electronics: DAE4 SN777 Medium: head 750 MHz

Medium parameters used: f = 711 MHz; $\sigma = 0.86$ mho/m; $\varepsilon r = 42.12$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE700-FDD12 711 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.58,10.58,10.58)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0996 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.396 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.082 W/kg; SAR(10 g) = 0.064 W/kg

Maximum value of SAR (measured) = 0.0963 W/kg

Fig A.19

LTE700-FDD12_CH23130 Rear

Date: 2/9/2020

Electronics: DAE4 SN777 Medium: body 750 MHz

Medium parameters used: f = 711 MHz; $\sigma = 0.854$ mho/m; $\epsilon r = 41.64$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE700-FDD12 711 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.58,10.58,10.58)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.138 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.99 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.152 W/kg

SAR(1 g) = 0.113 W/kg; SAR(10 g) = 0.086 W/kg

Maximum value of SAR (measured) = 0.137 W/kg

Fig A.20

LTE700-FDD28_CH27460 Right Cheek

Date: 2/9/2020

Electronics: DAE4 SN777 Medium: head 750 MHz

Medium parameters used: f = 728 MHz; $\sigma = \text{mho/m}$; $\epsilon r = 0.00 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE700-FDD28 728 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.58,10.58,10.58)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0777 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.288 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.082 W/kg

SAR(1 g) = 0.064 W/kg; SAR(10 g) = 0.049 W/kg

Maximum value of SAR (measured) = 0.0756 W/kg

Fig A.21

LTE700-FDD28_CH27460 Rear

Date: 2/9/2020

Electronics: DAE4 SN777 Medium: body 750 MHz

Medium parameters used: f = 728 MHz; $\sigma = \text{mho/m}$; $\epsilon r = r = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C

Communication System: LTE700-FDD28 728 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(10.58,10.58,10.58)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.136 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.84 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.15 W/kg

SAR(1 g) = 0.112 W/kg; SAR(10 g) = 0.085 W/kg

Maximum value of SAR (measured) = 0.135 W/kg

Fig A.22

WLAN2450_CH11 Left Cheek

Date: 2/13/2020

Electronics: DAE4 SN777 Medium: head 2450 MHz

Medium parameters used: f = 2462 MHz; $\sigma = 1.824 \text{ mho/m}$; $\epsilon r = 39.21$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WLAN2450 2462 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.83,7.83,7.83)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mmMaximum value of SAR (interpolated) = 1.08 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.83 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.623 W/kg; SAR(10 g) = 0.32 W/kg

Maximum value of SAR (measured) = 0.948 W/kg

Fig A.23

WLAN2450_CH11 Rear

Date: 2/13/2020

Electronics: DAE4 SN777 Medium: body 2450 MHz

Medium parameters used: f = 2462 MHz; $\sigma = 1.811 \text{ mho/m}$; $\epsilon r = 39.13$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9°C, Liquid Temperature: 22.5°C Communication System: WLAN2450 2462 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7307 ConvF(7.83,7.83,7.83)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.268 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.455 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.316 W/kg

SAR(1 g) = 0.151 W/kg; SAR(10 g) = 0.075 W/kg

Maximum value of SAR (measured) = 0.247 W/kg

Fig A.24

Fig. 1-1 Z-Scan at power reference point (850 MHz Head)

Fig. 1-2 Z-Scan at power reference point (850 MHz Body)

Fig. 1-3 Z-Scan at power reference point (1900 MHz Head)