STA2001 Probability and Statistics (I)

Lecture 11

Tianshi Chen

The Chinese University of Hong Kong, Shenzhen

Key concepts and/or techniques:

- ▶ Bivariate RV: (X, Y) or X and Y with range $\overline{S} \subseteq \overline{S_X} \times \overline{S_Y} \subseteq \mathbb{R}^2$
- ▶ Joint pmf $f(x,y): \overline{S} \to (0,1]$
- ► How to derive Marginal pmf from the joint pmf

$$f_X(x) = P_X(X = x) \stackrel{\Delta}{=} P\left(\left\{X = x, Y \in \overline{S_Y}(x)\right\}\right) = \sum_{y \in \overline{S_Y}(x)} f(x, y)$$

▶ Trinomial distribution: $(X, Y) \sim \text{Trinomial}(n, p_X, p_Y)$

$$f(x,y) = \frac{n!}{x!y!(n-x-y)!} p_X^x p_Y^y (1 - p_X - p_Y)^{n-x-y}, (x,y) \in \overline{S},$$
$$\overline{S} = \{(x,y)|x+y \le n, x = 0, 1, \dots, n, y = 0, 1, \dots, n\}$$

ightharpoonup X and Y are independent if $f(x,y) = f_X(x)f_Y(y)$

Definition[Joint pmf]

The function $f(x,y): \overline{S} \to (0,1]$ is called the joint probability mass function (joint pmf) of X and Y or (X,Y), if

- 1. f(x,y) > 0 for $(x,y) \in \overline{S}$,
- $2. \sum_{(x,y)\in\overline{S}} f(x,y) = 1,$
- 3. For $A \subseteq \overline{S}$,

$$P[(X,Y) \in A] \stackrel{\Delta}{=} P(\{(X,Y) \in A\}) = \sum_{(x,y) \in A} f(x,y)$$

which defines the probability function for a set A. In particular, taking $A = \{(x, y)\}$ yields the probability of X = x and Y = y, i.e.,

$$P(X = x, Y = y) = f(x, y)$$

Definition[Marginal pmf]

Let (X,Y) be a bivariate RV, or X and Y be two RVs, and have the joint pmf $f(x,y):\overline{S}\to (0,1]$. Sometimes, we are interested in the pmf of X or Y alone, which is called the marginal pmf of X or Y and described by

For $x \in \overline{S_X}$,

$$f_X(x) = P_X(X = x) \stackrel{\Delta}{=} P\left(\left\{X = x, Y \in \overline{S_Y}(x)\right\}\right)$$
$$= \sum_{y \in \overline{S_Y}(x)} f(x, y)$$

where

$$\overline{S_Y}(x) = \{y | (x, y) \in \overline{S}\}$$
 for the given $x \in \overline{S_X}$.

It is crucial to understand the following definitions

$$\overline{S}, \overline{S_X}, \overline{S_Y}, \overline{S_X}(y), \overline{S_Y}(x)$$

$$\overline{S} = \{\text{all possible values of } (X, Y)\}$$

$$\overline{S_X} = \{\text{all possible values of } X\} = \{x | (x, y) \in \overline{S}\}$$

$$\overline{S_Y} = \{\text{all possible values of } Y\} = \{y | (x, y) \in \overline{S}\}$$

$$\overline{S_X}(y) = \{x | (x, y) \in \overline{S}\} \text{ for a given } y \in \overline{S_Y}$$

$$\overline{S_Y}(x) = \{y | (x, y) \in \overline{S}\} \text{ for a given } x \in \overline{S_X}$$

Definition

The random variables X and Y are said to be independent if for every $x \in \overline{S_X}$ and $y \in \overline{S_Y}$

$$f(x,y) = f_X(x)f_Y(y)$$

or equivalently,

$$P(X = x, Y = y) = P_X(X = x)P_Y(Y = y).$$

X and Y are said to be dependent if otherwise.

When X and Y are independent,

$$\overline{S} = \overline{S_X} \times \overline{S_Y}$$
, \overline{S} is said to be rectangular

which is a necessary condition for independence of X and Y.

Section 4.2 The correlation coefficient

Motivation

Study the relation between two RVs (random phenomena)

Covariance of X and Y

Definition

Let X and Y be RVs with joint pmf $f(x,y): \overline{S} \to (0,1]$ Take

$$g(X,Y) = (X - E(X))(Y - E(Y))$$

$$Cov(X,Y) \stackrel{\triangle}{=} E[(X - E(X))(Y - E(Y))]$$

$$= \sum_{(x,y) \in \overline{S}} (x - E(X))(y - E(Y))f(x,y)$$

Moreover, we have

$$Cov(X, Y) \stackrel{\Delta}{=} E(XY) - E(X)E(Y)$$

Covariance of X and Y

- Cov(X, Y) = E(XY) − E(X)E(Y)
 When Cov(X, Y) = 0, X and Y are uncorrelated.
 When Cov(X, Y) > 0, X and Y are positively correlated.
 When Cov(X, Y) < 0, X and Y are negatively correlated.
- Interpretation: Roughly speaking, a positive or negative covariance indicate that the values of X E(X) and Y E(Y) obtained in a single experiment "tend" to have the same or the opposite sign respectively.

$$Cov(X,Y) = \sum_{(x,y)\in\overline{S}} (x - E(X))(y - E(Y))f(x,y)$$

Example 1 [Positively Correlated and Negatively Correlated RVs]

Assume that X and Y are uniformly distributed over the ellipses.

Question: which figure shows that X and Y are positively correlated?

Example 1 [Positively Correlated and Negatively Correlated RVs]

Assume that X and Y are uniformly distributed over the ellipses.

Independence ⇒ **Uncorrelation**

▶ If X and Y are independent, we have

$$f(x,y) = f_X(x)f_Y(y) \Rightarrow \overline{S} = \overline{S_X} \times \overline{S_Y}$$

$$E(XY) = \sum_{(x,y)\in\overline{S}} xyf(x,y) = \sum_{x\in\overline{S_X}} \sum_{y\in\overline{S_Y}} xyf_X(x)f_Y(y)$$

$$= \sum_{x\in\overline{S_X}} xf_X(x) \left[\sum_{y\in\overline{S_Y}} yf_Y(y) \right] = E(X)E(Y)$$

Independence ⇒ **Uncorrelation**

Therefore

$$Cov(X, Y) = E(XY) - E(X)E(Y) = 0$$

Independence of two RVs \Rightarrow uncorrelation of two RVs.

However, the converse is not true , i.e, there exist X and Y which are uncorrelated but not independent.

Example 2 [Uncorrelation ⇒ **Independence**]

Question

Let (X, Y) be a bivariate RV that takes values (1,0), (0,1), (-1,0), (0,-1), each with probability $\frac{1}{4}$, as shown in the figure below

Example 2 [Uncorrelation ⇒ **Independence**]

To find marginal pmf of X and Y, $\overline{S_X} = \overline{S_Y} = \{-1,0,1\}$

$$f_X(x) = \begin{cases} \frac{1}{4}, & x = 1 \\ \frac{1}{2}, & x = 0 \\ \frac{1}{4}, & x = -1 \end{cases} \quad f_Y(y) = \begin{cases} \frac{1}{4}, & y = 1 \\ \frac{1}{2}, & y = 0 \\ \frac{1}{4}, & y = -1 \end{cases}$$

$$Cov(X, Y) = E(XY) - E(X)E(Y) = 0 - 0 \times 0 = 0$$

which shows that X and Y are uncorrelated.

$$f_X(0)f_Y(1) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8} \neq f(0,1) = \frac{1}{4}$$

which shows that X and Y are NOT independent.

Correlation Coefficient

Definition

The correlation coefficient of X and Y that have nonzero variance is defined as

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

Interpretation : $\rho > 0$ (or $\rho < 0$) indicate the values of X - E[X] and Y - E[Y] "tend" to have the same (or negative, respectively) sign.

Properties of the Correlation Coefficient

▶ It is a normalized version of Cov(X, Y) and in fact $-1 \le \rho(X, Y) \le 1$.

ho=1 (resp. ho=-1) if and only if there exists a positive (resp. negative) constant c such that

$$Y - E(Y) = c(X - E(X)),$$

and the size of $|\rho|$ provides a normalized measure of the extent to which this is true.

Proof for Properties of Correlation Coefficient (1/3)

To prove $|\rho(X, Y)| \leq 1$ is equivalent to prove that

$$Cov(X, Y)^2 \leq Var(X)Var(Y)$$

Proof for Properties of Correlation Coefficient (1/3)

To prove $|\rho(X, Y)| \le 1$ is equivalent to prove that

$$Cov(X, Y)^2 \le Var(X)Var(Y)$$

To this goal, we consider

$$E((V+tW)^2)\geq 0,$$

where $t \in \mathbb{R}$, V = X - E(X), W = Y - E(Y). Then we have

$$E((V + tW)^{2}) = E(V^{2} + 2tVW + W^{2})$$

= $E(V^{2}) + 2tE(VW) + t^{2}E(W^{2}) \ge 0$

Proof for Properties of Correlation Coefficient (2/3)

Noting that

$$E(V^2) = Var(X), E(W^2) = Var(Y), E(VW) = Cov(X, Y)$$

yields that for $t \in \mathbb{R}$,

$$E((V+tW)^2) = Var(X) + 2Cov(X,Y)t + Var(Y)t^2 \ge 0$$

Since the above equation is true for any $t \in \mathbb{R}$, it must hold that

$$4\operatorname{Cov}(X,Y)^2 - 4\operatorname{Var}(X)\operatorname{Var}(Y) \le 0$$
, i.e., $\operatorname{Cov}(X,Y)^2 \le \operatorname{Var}(X)\operatorname{Var}(Y)$

which implies that $|\rho(X, Y)| \leq 1$.

Proof for Properties of Correlation Coefficient (3/3)

When
$$Cov(X, Y)^2 - Var(X)Var(Y) = 0$$
, $|\rho(X, Y)| = 1$ implying

$$E((V + tW)^{2}) = Var(X) + 2Cov(X, Y)t + Var(Y)t^{2} = 0$$

$$= Var(X) \pm 2\sqrt{Var(X)}\sqrt{Var(Y)}t + Var(Y)t^{2} = 0$$

$$= (\sqrt{Var(X)} \pm \sqrt{Var(Y)}t)^{2} = 0$$

$$t^* = \mp \frac{\sqrt{Var(X)}}{\sqrt{Var(Y)}}.$$

Inserting the above t^* back in $E((V + tW)^2)$ yields

$$E((V + t^*W)^2) = 0 \implies V = -t^*W$$

$$X - E(X) = \pm \frac{\sqrt{Var(X)}}{\sqrt{Var(Y)}}(Y - E(Y)),$$

where $\rho = 1$ (resp. $\rho = -1$) corresponds to + (resp. -).

Question

Consider n independent tosses of a coin with probability of a head equal to p. Let X and Y be the number of heads and of tails in the n tosses, respectively. Calculate the correlation coefficient of X and Y.

Question

Consider n independent tosses of a coin with probability of a head equal to p. Let X and Y be the number of heads and of tails in the n tosses, respectively. Calculate the correlation coefficient of X and Y.

$$X + Y = n$$
 $\Rightarrow E[X] + E[Y] = n \Rightarrow X - E(X) = -[Y - E(Y)]$

Question

Consider n independent tosses of a coin with probability of a head equal to p. Let X and Y be the number of heads and of tails in the n tosses, respectively. Calculate the correlation coefficient of X and Y.

$$X + Y = n \quad \Rightarrow E[X] + E[Y] = n \Rightarrow X - E(X) = -[Y - E(Y)]$$

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))]$$

$$= -E[(Y - E(Y))^{2}] = -Var(Y)$$

$$Var(X) = E[(X - E(X))^{2}] = E[(Y - E(Y))^{2}] = Var(Y)$$

$$\rho(X, Y) = \frac{-Var(Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} = \frac{-Var(Y)}{\sqrt{Var(Y)}\sqrt{Var(Y)}} = -1$$

Section 4.3 Conditional distribution

Conditional Distribution

Motivation: the conditional probability distribution is a probability distribution that describes the distribution of probability of events of a RV given the occurrence of a particular event

Assume that X and Y have a joint pmf $f(x,y): \overline{S} \to (0,1]$. The marginal pmf of X and Y are

$$f_X(x): \overline{S_X} \to (0,1]$$
 $f_Y(y): \overline{S_Y} \to (0,1]$

$$\overline{S_X} = \{\text{all possible values of } X \text{ in } \overline{S}\}$$

$$\overline{S_X}(y) = \{x | (x, y) \in \overline{S}\} \text{ for } y \in \overline{S_Y}$$

$$\overline{S_Y} = \{\text{all possible values of } Y \text{ in } \overline{S}\}$$

$$\overline{S_Y}(x) = \{y | (x, y) \in \overline{S}\} \text{ for } x \in \overline{S_X}$$

Conditional Distribution

By definition,

$$f(x,y) = P(X = x, Y = y)$$

$$\stackrel{\triangle}{=} P(\{X = x, Y = y\}), (x,y) \in \overline{S}$$

$$f_X(x) = P_X(X = x)$$

$$\stackrel{\triangle}{=} P(\{X = x, Y \in \overline{S_Y}(x)\}) = \sum_{y \in \overline{S_Y}(x)} f(x,y)$$

$$f_Y(y) = P_Y(Y = y)$$

$$\stackrel{\triangle}{=} P(\{X \in \overline{S_X}(y), Y = y\}) = \sum_{x \in \overline{S_Y}(y)} f(x,y)$$

Conditional Distribution

Let

$$A = \{X = x, Y \in \overline{S_Y}(x)\}$$

$$B = \{X \in \overline{S_X}(y), Y = y\}$$

Then for $(x, y) \in \overline{S}$,

$$A \cap B = \{X = x, Y = y\}$$

and recall the conditional probability of event A given event B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{f(x,y)}{f_Y(y)}$$

under the assumption P(B) > 0, i.e., $f_Y(y) > 0$.

Conditional pmf

Definition

Conditional pmf of X given Y = y is defined by

$$g(x|y) = \frac{f(x,y)}{f_Y(y)}, \quad x \in \overline{S_X}(y)$$

provided that $f_Y(y) > 0$.

Similarly, the conditional pmf of Y given that X=x is defined by

$$h(y|x) = \frac{f(x,y)}{f_X(x)}, \quad y \in \overline{S_Y}(x)$$

provided that $f_X(x) > 0$.

- ▶ What is the interpretation of the conditional pmf g(x|y)?
- ▶ What if X and Y are independent?

Some Remarks

Conditional pmf is a well-defined pmf:

- 1. h(y|x) > 0
- $2. \sum_{y \in \overline{S_Y}(x)} h(y|x) = 1$

$$\sum_{y \in \overline{S_Y}(x)} h(y|x) = \sum_{y \in \overline{S_Y}(x)} \frac{f(x,y)}{f_X(x)} = \frac{\sum_{y \in \overline{S_Y}(x)} f(x,y)}{f_X(x)} = \frac{f_X(x)}{f_X(x)} = 1$$

3. for $A \subseteq \overline{S_Y}(x)$

$$P(Y \in A|X = x) = \frac{P(X = x, Y \in A)}{P(X = x)}$$
$$= \frac{\sum_{y \in A} f(x, y)}{f_X(x)} = \sum_{y \in A} h(y|x)$$

Therefore, h(y|x) (resp. g(x|y)) determines the distribution of probability of events of Y (resp. X) given X = x (resp. Y = y).

Some Remarks

If X and Y are independent, then $f(x, y) = f_X(x)f_Y(y)$ and thus

$$g(x|y) = f_X(x)$$
, and $h(y|x) = f_Y(y)$,

which implies

- ▶ the occurrence of the event Y = y does not change the probability of the occurrence of events of X
- ▶ the occurrence of the event X = x does not change the probability of the occurrence of events of Y

Now, the implication of independent RVs becomes clear.

Question

Let X and Y have the joint pmf

$$f(x,y) = \frac{x+y}{21}$$
, $x = 1,2,3$; $y = 1,2$.

We have showed

$$f_X(x) = \frac{2x+3}{21}, \quad x = 1, 2, 3$$

 $f_Y(y) = \frac{y+2}{7}, \quad y = 1, 2.$

- Q1: What is the conditional pmf of X given Y = y?
- Q2: What is the conditional pmf of Y given X = x?
- Q3: What is $P(1 \le X \le 2 | Y = 1)$?

Q1: The conditional pmf of X given Y = y is

$$g(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{x+y}{21} / (\frac{y+2}{7}) = \frac{x+y}{3(y+2)},$$

 $x = 1, 2, 3;$ $y = 1, 2.$

Q2: The conditional pmf of Y given X = x is

$$h(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{x+y}{21} / (\frac{2x+3}{21}) = \frac{x+y}{2x+3}$$

 $x = 1, 2, 3;$ $y = 1, 2.$

Q3:

$$P(1 \le X \le 2|Y=1) = \sum_{x=1}^{2} g(x|1) = \sum_{x=1}^{2} \frac{x+1}{3(1+2)} = \frac{5}{9}$$

Conditional Mathematical Expectation

ightharpoonup Let g(Y) be a function of Y.

Then the conditional expectation of g(Y) given X = x

$$E(g(Y)|X = x) = \sum_{y \in \overline{S_Y}(x)} g(y)h(y|x)$$

 $\blacktriangleright \text{ When } g(Y) = Y,$

$$E(Y|X=x) = \sum_{y \in \overline{S_Y}(x)} yh(y|x) \rightarrow \text{conditional mean}$$

Conditional Mathematical Expectation

When
$$g(Y) = [Y - E(Y|X = x)]^2$$

$$Var(Y|X = x) \stackrel{\triangle}{=} E\{[Y - E(Y|X = x)]^2 | X = x\}$$

$$= \sum_{y \in \overline{S_Y}(x)} [y - E(Y|X = x)]^2 h(y|x)$$

$$= E(Y^2|X = x) - [E(Y|X = x)]^2$$

$$\rightarrow \text{conditional variance}$$

Example 1, continued

Question

Let X and Y have the joint pmf

$$f(x,y) = \frac{x+y}{21}, \quad x = 1,2,3; \quad y = 1,2.$$

We have showed

$$f_X(x) = \frac{2x+3}{21}, \quad x = 1, 2, 3$$

 $f_Y(y) = \frac{y+2}{7}, \quad y = 1, 2.$

- Q1: What is the expectation of Y given X = 3?
- Q2: What is the variance of Y given X = 3?

Example 1, continued

$$Q1: E(Y|X=3) = \sum_{y \in \overline{S_Y}(3)} yh(y|3) = \sum_{y=1}^{2} y(\frac{3+y}{9}) = \frac{14}{9}$$

$$Q2: Var(Y|X=3) = \sum_{y \in \overline{S_Y}(3)} [y - E(Y|X=3)]^2 h(y|3)$$

$$= \sum_{y=1}^{2} (y - \frac{14}{9})^2 \frac{3+y}{9} = \frac{20}{81}$$