2-3 January 2019

Classwork & homework review. Due Friday at the beginning of class.

1a. [2 marks]

Let
$$f(x)=3x-2$$
 and $g(x)=rac{5}{3x}$, for $x
eq 0$

$$_{\text{Find}} f^{-1}(x)$$

1b. [2 marks]

Show that
$$\left(g\circ f^{-1}
ight)(x)=rac{5}{x+2}$$
 .

1c. [2 marks]

Let
$$h(x)=rac{5}{x+2}$$
 , for $x\geqslant 0$. The graph of h has a horizontal asymptote at $y=0$.

Find the y-intercept of the graph of h.

1d. [3 marks]

Hence, sketch the graph of h.

1e. [1 mark]

For the graph of h^{-1} , write down the x-intercept;

1f. [1 mark]

For the graph of h^{-1} , write down the equation of the vertical asymptote.

1g. [3 marks]

Given that
$$h^{-1}(a) = 3$$
, find the value of a .

2a. [3 marks]

Let
$$f(x) = \sqrt{x-5}$$
 , for $x \geq 5$.

$$_{\rm Find}\,f^{-1}(2)$$
 .

2b. [3 marks]

Let g be a function such that g^{-1} exists for all real numbers. Given that g(30)=3 , find $(f\circ g^{-1})(3)$.

BECA / Huson / IB Math SL 2-3 January 2019

Name:

3a. [3 marks]

Let
$$f(x) = 4x - 2$$
 and $g(x) = -2x^2 + 8$.

Find
$$f^{-1}(x)$$
.

3b. [3 marks]

Find
$$(f \circ g)(1)$$
.

4a. The diagram below shows the graph of a function f , for $-1 \leq x \leq 2$.

[1 mark]

Write down the value of f(2).

4b. Write down the value of $f^{-1}(-1)$.

[2 marks]

 ${\bf 4c.}$ Sketch the graph of f^{-1} on the grid below.

[3 marks]

BECA / Huson / IB Math SL 2-3 January 2019 **5a.** [6 marks]

Name:

Let f and g be functions such that g(x)=2f(x+1)+5 .

(a) The graph of f is mapped to the graph of g under the following transformations:

vertical stretch by a factor of k , followed by a translation $\begin{pmatrix} p \\ q \end{pmatrix}$

Write down the value of

- (i) k;
- (ii) p;
- (iii) q.
- (b) Let h(x)=-g(3x) . The point A(6, 5) on the graph of g is mapped to the point ${f A}'$ on the graph of h . Find ${f A}'$.

5b. [3 marks]

The graph of \boldsymbol{f} is mapped to the graph of \boldsymbol{g} under the following transformations:

vertical stretch by a factor of k , followed by a translation $\begin{pmatrix} p \\ q \end{pmatrix}$.

Write down the value of

- (i) k;
- (ii) p;
- (iii) q.

 ${f 5c.}$ Let h(x)=-g(3x) . The point A(6, 5) on the graph of g is mapped to the point ${f A}'$ on the graph of h . Find ${f A}'$.

BECA / Huson / IB Math SL

2-3 January 2019 **6a.** [4 marks]

Name:

The following diagram shows the graph of a quadratic function f, for $0 \le x \le 4$.

The graph passes through the point P(0, 13), and its vertex is the point V(2, 1).

The function can be written in the form $f(x)=a(x-h)^2+k$.

- (i) Write down the value of h and of k.
- (ii) Show that a=3.

6b. [3 marks]

Find f(x) , giving your answer in the form Ax^2+Bx+C .

6c. [8 marks]

Calculate the area enclosed by the graph of f , the x-axis, and the lines x=2 and x=4 .

7a. [5 marks]

Consider $f(x)=2kx^2-4kx+1$, for k
eq 0 . The equation f(x)=0 has two equal roots.

Find the value of k.

7b. [2 marks]

The line y=p intersects the graph of f . Find all possible values of p .

8a. [2 marks]

The following diagram shows part of the graph of a quadratic function f.

The x-intercepts are at (-4,0) and (6,0), and the y-intercept is at (0,240).

Write down f(x) in the form f(x) = -10(x-p)(x-q) .

8b. [4 marks]

Find another expression for f(x) in the form $f(x) = -10(x-h)^2 + k$.

8c. [2 marks]

Show that f(x) can also be written in the form $f(x) = 240 + 20x - 10x^2$.

8d. [7 marks]

A particle moves along a straight line so that its velocity, $v~{
m ms}^{-1}$, at time t seconds is given by $v=240+20t-10t^2$, for $0\leq t\leq 6$.

- (i) Find the value of *t* when the speed of the particle is greatest.
- (ii) Find the acceleration of the particle when its speed is zero.

BECA / Huson / IB Math SL

2-3 January 2019

Name:

$$\mathbf{g_{a.\,Let}}f(x) = \log_3 \frac{x}{2} + \log_3 16 - \log_3 4$$
 , for $x>0$.

Show that
$$f(x) = \log_3 2x$$
 .

[2 marks]

9b. Find the value of
$$f(0.5)$$
 and of $f(4.5)$.

[3 marks]

9c. [6 marks]

The function f can also be written in the form $f(x) = rac{\ln ax}{\ln b}$.

- (i) Write down the value of a and of b.
- (ii) Hence on graph paper, **sketch** the graph of f , for $-5 \le x \le 5$, $-5 \le y \le 5$, using a scale of 1 cm to 1 unit on each axis.
- (iii) Write down the equation of the asymptote.

9d. [1 mark]

Write down the value of $f^{-1}(0)$.

9e. [4 marks]

The point A lies on the graph of f . At A, x=4.5 .

On your diagram, sketch the graph of f^{-1} , noting clearly the image of point A.

10a. [2 marks]

Let $f(x)=3x^2$. The graph of f is translated 1 unit to the right and 2 units down. The graph of g is the image of the graph of f after this translation.

Write down the coordinates of the vertex of the graph of \boldsymbol{g} .

10b. Express
$$g$$
 in the form $g(x)=3(x-p)^2+q$.

[2 marks]

10c. The graph of h is the reflection of the graph of g in the x-axis.

Write down the coordinates of the vertex of the graph of h.

[2 marks]

BECA / Huson / IB Math SL

2-3 January 2019

11a. [2 marks]

Let
$$f(x) = log_3 \sqrt{x}$$
 , for $x > 0$.

Show that $f^{-1}(x)=3^{2x}$.

11b. [1 mark]

Write down the range of f^{-1} .

11c. [4 marks]

Let
$$g(x) = \log_3 x$$
 for $x > 0$.

Find the value of $(f^{-1} \circ g)(2)$, giving your answer as an integer.

12. [7 marks]

$$\log_2 x + \log_2 (x-2) = 3$$
, for $x > 2$.

13a. [3 marks]

Let
$$f(x) = k \log_2 x$$
.

Given that $f^{-1}(1) = 8$, find the value of k.

13b. [4 marks]

Find
$$f^{-1}\left(rac{2}{3}
ight)$$
 .

14a. [3 marks]

Let
$$f(x) = \mathrm{e}^{x+3}$$
 .

- (i) Show that $f^{-1}(x) = \ln x 3$.
- (ii) Write down the domain of f^{-1} .

14b. [4 marks]

Solve the equation $f^{-1}(x) = \ln rac{1}{x}$.

Name:

BECA / Huson / IB Math SL 2-3 January 2019

Name:

15a. [1 mark]

 $_{\rm Find}\log_2 32$

15b. [4 marks]

Given that $\log_2\left(rac{32^x}{8^y}
ight)$ can be written as px+qy , find the value of p and of q.

16a. Expand $(x-2)^4$ and simplify your result.

[3 marks]

16b. Find the term in x^3 in $(3x+4)(x-2)^4$.

[3 marks]

17a. Let $f(x) = 3(x+1)^2 - 12$.

Show that $f(x) = 3x^2 + 6x - 9$.

[2 marks]

17b. [8 marks]

For the graph of f

- (i) write down the coordinates of the vertex;
- (ii) write down the **equation** of the axis of symmetry;
- (iii) write down the *y*-intercept;
- (iv) find both *x*-intercepts.

17c. Hence sketch the graph of f.

[2 marks]

17d. [3 marks]

Let $g(x)=x^2$. The graph of f may be obtained from the graph of g by the two transformations:

a stretch of scale factor t in the y-direction

followed by a translation of $\begin{pmatrix} p \\ q \end{pmatrix}$

Find $\begin{pmatrix} p \\ q \end{pmatrix}$ and the value of t.