PARTIAL Differentiation

- Derivative of a function
 - Derivative partially

Homogeneous Polynomial/Function

A Polynomial is said to be homogeneous if degree of each term is **same**.

How do you calculate the degree of a term?

Term	Degree		
x^2	2		
$-x^3y^6$	3+6 = 9		

How do you calculate the degree of a polynomial?

Polynomial	Degree of first term	Degree of second term	Degree of third term	Degree of the terms are same/different	Homogeneous/ Nonhomogeneous
$x^2y^3 - 2xy^4 + x^3y$	2+3 = 5	1+4 = 5	3+1 = 4	Different	Nonhomogeneous
$x^2 + \frac{1}{3}xy$	2	1+1 = 2	1	Same	Homogeneous of degree 2
$x^2yz + 6y^4 - yz^3$	2+1+1 = 4	4	1+3 = 4	Same	Homogeneous of degree 4

Homogeneous polynomials are also known as homogeneous function.

Euler's Theorem

If u is a homogeneous function of degree n, it must satisfy the condition:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = nu$$

Practice Problems

Determine whether the following(s) is/are a homogeneous function. If yes, then prove Euler's Theorem for u.

a)
$$u = x^{3} + y^{3} + 3xy^{2}$$

b) $u = x^{5} - 2x^{3}y^{2} + y^{5}$
c) $u = -y^{6} + 5x^{4}y$
d) $u = 3x^{4} - x^{2}y^{2} + 2xy^{3}$
e) $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{y}{x}\right)$
f) $u = \frac{x(x^{3} - y^{3})}{x^{3} + y^{3}}$
g) $u = \frac{x^{\frac{1}{4} + y^{\frac{1}{4}}}}{x^{\frac{1}{5} + y^{\frac{1}{5}}}}$

Sample Answer

Solution of (a):

Let us compute u(tx, ty):

$$egin{align} u(tx,ty) &= (tx)^3 + (ty)^3 + 3(tx)(ty)^2 \ & \ u(tx,ty) &= t^3x^3 + t^3y^3 + 3t^3xy^2 \ & \ u(tx,ty) &= t^3(x^3 + y^3 + 3xy^2) \ \end{gathered}$$

Thus, we see that:

$$u(tx, ty) = t^3 u(x, y)$$

This shows that the function $u(x,y)=x^3+y^3+3xy^2$ is homogeneous of degree 3.

Sample Answer

Solution of (a):

Since u(x,y) is homogeneous of degree 3, Euler's Theorem should hold, i.e., we should have:

$$xrac{\partial u}{\partial x}+yrac{\partial u}{\partial y}=3u(x,y)$$

Now, let's compute the partial derivatives of u(x,y):

- $\frac{\partial u}{\partial x} = 3x^2 + 3y^2$
- $\frac{\partial u}{\partial y} = 3y^2 + 6xy$

Now, compute $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$:

$$xrac{\partial u}{\partial x}=x(3x^2+3y^2)=3x^3+3xy^2$$

$$yrac{\partial u}{\partial y}=y(3y^2+6xy)=3y^3+6xy^2$$

Sample Answer

Solution of (a):

Now, add them together:

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = (3x^3 + 3xy^2) + (3y^3 + 6xy^2)$$

 $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 3x^3 + 3y^3 + 9xy^2$

We observe that:

$$3x^3 + 3y^3 + 9xy^2 = 3(x^3 + y^3 + 3xy^2) = 3u(x,y)$$

Thus, we have verified that Euler's Theorem holds for u(x,y).