日本国特許庁 JAPAN PATENT OFFICE 19.1.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年11月25日

出 願 番 号 Application Number:

特願2003-394081

[ST. 10/C]:

[JP2003-394081]

出 願 人
Applicant(s):

昭和電工株式会社

2004年11月11日

特許庁長官 Commissioner, Japan Patent Office 1) 11

BEST AVAILABLE COPY

特許願 【書類名】 【整理番号】 1034792 平成15年11月25日 【提出日】 特許庁長官 今井 康夫 殿 【あて先】 C08F126/06 【国際特許分類】 B24B 29/00 【発明者】 長野県塩尻市大字宗賀1番地 昭和電工株式会社 塩尻生産・技 【住所又は居所】 術統括部内 魚谷 信夫 【氏名】 【発明者】 昭和電工株式会社 塩尻生産・技 長野県塩尻市大字宗賀1番地 【住所又は居所】 術統括部内 高橋 浩 【氏名】 【発明者】 昭和電工株式会社 塩尻生産・技 長野県塩尻市大字宗賀1番地 【住所又は居所】 術統括部内 佐藤 孝志 【氏名】 【発明者】 長野県塩尻市大字宗賀1番地 昭和電工株式会社 塩尻生産・技 【住所又は居所】 術統括部内 佐藤 元 【氏名】 【特許出願人】 【識別番号】 000002004 昭和電工株式会社 【氏名又は名称】 【代理人】 100099759 【識別番号】 【弁理士】 青木 篤 【氏名又は名称】 03-5470-1900 【電話番号】 【選任した代理人】 100077517 【識別番号】 【弁理士】 石田 敬 【氏名又は名称】 【選任した代理人】 100087413 【識別番号】 【弁理士】 古賀 哲次 【氏名又は名称】 【選任した代理人】 100082898 【識別番号】 【弁理士】 西山 雅也 【氏名又は名称】 【手数料の表示】 209382 【予納台帳番号】 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】

【物件名】

【物件名】

図面 1 要約書 1 【包括委任状番号】 0200971

【書類名】特許請求の範囲

【請求項1】

(A)アゾール基を分子中に3個以上含む化合物、(B)酸化剤、および(C)アミノ酸、有機 酸、無機酸から選ばれた1種または2種以上、を含むことを特徴とする金属研磨組成物。 【請求項2】

アゾール基を分子中に3個以上含む化合物がビニル基を含むアゾール重合体である請求 項1に記載の金属研磨組成物。

【請求項3】

アゾール基を分子中に3個以上含む化合物が水溶性である請求項1または2に記載の金 属研磨組成物。

【請求項4】

アミノ酸が、グリシン、L-アラニン、 $\beta-$ アラニン、L-2-アミノ酪酸、L-ノル バリン、Lーバリン、Lーロイシン、Lーノルロイシン、Lーイソロイシン、Lーアロイ ソロイシン、Lーフェニルアラニン、Lープロリン、サルコシン、Lーオルニチン、Lー リシン、タウリン、Lーセリン、Lートレオニン、Lーアロトレオニン、Lーホモセリン 、 L ーチロシン、 $\mathsf{3}$, $\mathsf{5}$ ージョードー L ーチロシン、 $oldsymbol{eta}$ ー($\mathsf{3}$, $\mathsf{4}$ ージヒドロキシフェニ ル) -L-アラニン、L-チロキシン、4-ヒドロキシ-L-プロリン、L-システィン 、L-メチオニン、L-エチオニン、L-ランチオニン、L-シスタチオニン、L-シス チン、L-システィン酸、L-アスパラギン酸、L-グルタミン酸、S-(カルボキシメ チル) -L-システィン、4-アミノ酪酸、L-アスパラギン、L-グルタミン、アザセ リン、Lーアルギニン、Lーカナバニン、Lーシトルリン、δーヒドロキシーLーリシン 、クレアチン、L-キヌレニン、L-ヒスチジン、1-メチル-L-ヒスチジン、3-メ チルーL-ヒスチジン、エルゴチオネイン、L-トリプトファンから選ばれる少なくとも 1種を含有する請求項1ないし3のいずれか1項に記載の金属研磨組成物。

【請求項5】

有機酸が、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン 酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、 2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール 酸、サリチル酸、グリセリン酸、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、 ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸から選ばれる少 なくとも1種を含有する請求項1~3のいずれか1項に記載の金属研磨組成物。

【請求項6】

無機酸が硫酸、硝酸、燐酸、これらの塩である請求項1~3のいずれか1項に記載の金 属研磨組成物。

【請求項7】

酸化剤が、酸素、オゾン、過酸化水素、アルキルパーオキサイド、過酸、過マンガン酸 塩、過ヨウ素酸塩、過硫酸塩、ポリオキツ酸、次亜塩素酸塩から選ばれる少なくとも1種 を含有する請求項1~6のいずれか1項に記載の金属研磨組成物。

【請求項8】

金属研磨組成物が、界面活性剤を含有する請求項1ないし7のいずれか1項に記載の金 属研磨組成物。

【請求項9】

界面活性剤がアニオン性、カチオン性、非イオン性、両性界面活性剤から選ばれる少な くとも1種を含有する請求項8に記載の金属研磨組成物。

【請求項10】

界面活性剤がアルキル芳香族スルホン酸またはその塩である請求項9に記載の金属研磨 組成物。

【請求項11】

金属研磨組成物が、保護膜形成剤を含有する請求項1~10のいずれか1項に記載の金 属研磨組成物。

【請求項12】

保護膜形成剤が、ベンゾトリアゾール、トリルトリアゾール、ヒドロキシベンゾトリアゾール、カルボキシベンゾトリアゾール、ベンズイミダゾール、テトラゾール、キナルジン酸から選ばれる少なくとも1種を含有する請求項11に記載の金属研磨組成物。

【請求項13】

金属研磨組成物が、アルカリを含有する請求項1~12のいずれか1項に記載の金属研磨組成物。

【請求項14】

アルカリが、アンモニア、アミン、ポリアミン、アルカリ金属化合物、アルカリ土類金属化合物から選ばれる少なくとも1種を含有する請求項13に記載の金属研磨組成物。

【請求項15】

金属研磨組成物が、研磨剤を含有する請求項1~14のいずれか1項に記載の金属研磨 組成物。

【請求項16】

研磨剤がシリカ、アルミナ、セリア、チタニア、有機砥粒から選ばれる少なくとも1種を含有する請求項15に記載の金属研磨組成物。

【請求項17】

p Hが5~11である請求項1~16のいずれか1項に記載の金属研磨組成物。

【請求項18】

凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を研磨する請求項1~15 のいずれか1項に記載の金属研磨組成物。

【請求項19】

凹部を有する基板上にバリヤ金属膜を形成し、凹部を覆うように埋め込まれた金属膜を 請求項1~17のいずれか1項に記載の金属研磨組成物で研磨する研磨方法。

【請求項20】

金属膜が銅または銅を含有する合金、鉄または鉄を含有する合金からなる請求項 $1\sim 1$ 9のいずれか1項に記載の研磨方法。

【請求項21】

バリヤ金属膜がタンタル、窒化タンタルなどのタンタル系金属からなる請求項19または20に記載の研磨方法。

【請求項22】

凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を請求項1~18のいずれか1項に記載の金属研磨組成物で平坦化する基板の研磨方法。

【請求項23】

凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を請求項19~22のいず れか1項に記載の研磨方法で研磨する工程を含む基板の製造方法。

【書類名】明細書

【発明の名称】金属研磨組成物および研磨方法

【技術分野】

[0001]

本発明は、基板を研磨する金属研磨組成物、研磨方法、基板の製造方法に関する。 【背景技術】

[0002]

IC(Integrated circuit;集積回路)やLSI(Large Scale Integration;大規模 集積回路)における技術の進歩により、それらの動作速度や集積規模が向上し、例えばマ イクロプロセッサの高性能化やメモリチップの大容量化が急速に達成されている。これら 高性能化には微細加工技術が大きく寄与をしている。この微細加工技術のひとつとして平 坦化技術である、化学機械研磨法がある。多層配線工程における、層間絶縁膜、金属プラ グ、配線金属の平坦化に使用されている。

[0003]

このうち配線金属は、近年、配線遅延の問題などから銅または銅合金を使用する試みが なされている。銅または銅合金を用いた配線の製造方法としては層間絶縁膜にあらかじめ 溝を形成しておき、必要があれば、タンタル、窒化タンタルなどのバリヤ膜を薄く形成し 、ダマシン法などにより銅または銅合金を堆積する。この時銅または銅合金は層間絶縁膜 上部に余分に堆積しているために平坦化を行いながら余分な銅または銅合金を除去してい く研磨を行うことにより配線を形成する。

[0004]

また、磁気記録媒体として注目を浴びている磁気記憶装置(MRAM)がある。MRA M では、素子アレイのうち、特定のビットに情報を記録するために、アレイを縦横に横 切るビット書き込み線とワード書き込み線とを設け、その交差領域に位置する素子のみを 使用して選択書き込みを行う方法 (例えば特許文献1参照) が知られている。この中に金 属配線が形成されるが、金属配線はアルミニウムまたはアルミニウム合金、銅または銅合 金から成る導体層とこれを囲むようにニッケルー鉄(パーマロイ)などの強磁性層からな る。必要があれば、タンタル、窒化タンタルなどのバリヤ膜を強磁性層を挟むように薄く 形成する。この金属配線はダマシン法で形成されるが、余分な導体層、強磁性層およびバ リヤ膜は、研磨を行いながら平坦化し除去される。

[0005]

このような研磨を行いながら平坦化する方法として、砥粒を含有する研磨剤で処理する 方法が考えられるが、研磨剤のみで処理した場合には、銅または銅合金は一般的に柔らか いのでスクラッチと呼ばれる傷がつきやすく歩留まりが非常に低くなる。また、銅はエッ チング剤により溶解することからエッチング剤を添加した研磨剤が考えられ得るが、凸部 ばかりではなく凹部もエッチングし、平坦化が出来ないばかりか金属配線部が削れたディ ッシングという現象が発生してしまう。

[0006]

このような現象を防止する銅または銅合金から成る金属膜を研磨する金属研磨組成物と して、過酸化水素、ベンゾトリアゾール、アミノ酢酸を含有し、必要があれば砥粒を含有 している組成物が特許文献2に開示されている。ここでベンゾトリアゾールは酸化された 金属膜と反応保護膜を形成し、凸部を優先的に機械研磨し平坦性が高まると共に低ディッ シングに寄与していると記述されている。

[0007]

さらに、特許文献3には、銅と反応して水に難溶性で、かつ銅よりも機械的に脆弱な銅 錯体を生成する、2ーキノリンカルボン酸、を添加する金属研磨組成物を開示している。

[0008]

特許文献4には、セリアとビニルピロリドン/ビニルイミダゾール共重合体のスラリー が銅などの金属研磨に用いられるとの記載がある。特許文献 4 に記載のスラリーの本質は シリカ膜の研磨であり、実際、金属膜研磨の実施例はなく、このようなスラリー組成物で はほとんど金属膜が研磨されないのは明白である。

[0009]

特許文献 2 に記載のベンゾトリアゾールを含む金属研磨組成物は平坦性やディッシングには効果があるものの、ベンゾトリアゾールの防食作用が強いため、研磨速度が著しく低下する欠点があった。また、特許文献 3 に記載の 2 ーキノリンカルボン酸を用いた金属研磨組成物では、2 ーキノリンカルボン酸が著しく高価で工業的に使用することは難しかった。

[0010]

近年、銅配線の寄生容量の関係から層間絶縁膜として $Low\kappa$ 材の使用が検討されている。 $Low\kappa$ 材としては無機系、有機系さまざまな材料が開発されているが、次世代の $Low\kappa$ 材としては、誘電率2.3未満程度のものが必要とされている。この誘電率を達成する為には $Low\kappa$ 材のポーラス化が必須と言われている。非特許文献1によれば、このような材料は機械的強度が弱く、従来用いられているようなCMP研磨圧では破壊されてしまう問題点があり、低圧での研磨が求められている。しかしながら、上記記載の従来技術では高圧研磨を想定しており、低圧での高速研磨は検討されてこなかった。

[0011]

更に、近年配線が細くなる傾向があり、細い配線が高密度で存在する場合、バリヤ膜及び相関絶縁膜が研磨されくぼみができるエロージョンと言う現象がおこる。これはディッシングと同様配線抵抗を落とすばかりか配線ショートの原因にもなり、抑制することが望まれている。

[0012]

【特許文献1】特開平10-116490号公報

【特許文献2】特開平8-83780号公報

【特許文献3】特開平9-55363号公報

【特許文献4】特開2002-13444号公報

【特許文献1】最新CMPプロセスと材料技術(技術情報協会)(2002)ページ133

【発明の開示】

【発明が解決しようとする課題】

[0013]

本発明は、エッチング、エロージョンを抑制し金属膜の平坦性を維持したまま高速に研磨できる金属研磨組成物を提供すると共にこの金属研磨組成物を用いた金属膜の研磨方法、およびこの金属研磨組成物で平坦化する工程を含む基板の製造方法を提供することを目的としたものである。

【課題を解決するための手段】

[0014]

本発明者らは、上記課題の解決について鋭意検討した結果、アゾール基を3個以上含む化合物を用いた金属研磨組成物が前記課題を解決できることを見出し、本発明を完成するに至った。

[0015]

すなわち、本発明は以下の[1]~[23]に示される。

- [1](A)アゾール基を分子中に3個以上含む化合物、(B)酸化剤、および(C)アミノ酸、有機酸、無機酸から選ばれた1種または2種以上、を含むことを特徴とする金属研磨組成物
- [2] アゾール基を分子中に3個以上含む化合物がビニル基を含むアゾール重合体である上記[1]に記載の金属研磨組成物。
- [3] アゾール基を分子中に3個以上含む化合物が水溶性である上記 [1] または [2] に記載の金属研磨組成物。
- $\begin{bmatrix} 4 \end{bmatrix}$ アミノ酸が、グリシン、 $\mathbf{L}-\mathbf{r}$ ラニン、 $eta-\mathbf{r}$ ラニン、 $\mathbf{L}-\mathbf{2}-\mathbf{r}$ ミノ酪酸、 $\mathbf{L}-\mathbf{r}$ ノルバリン、 $\mathbf{L}-\mathbf{r}$ リン、 $\mathbf{L}-\mathbf{r}$ ファイシン、 $\mathbf{L}-\mathbf{r}$

ロイソロイシン、L-7ェニルアラニン、L-7ロリン、サルコシン、L-3ルニチン、L-1リシン、タウリン、L-2リン、L-1リン、L-1リン、L-2リン、L-1リン、L-2リン、L-2リン、L-3リン、L-4リン L-4リン L-4リン

- [5] 有機酸が、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2ーメチル酪酸、nーヘキサン酸、3,3ージメチル酪酸、2ーエチル酪酸、4ーメチルペンタン酸、nーヘプタン酸、2ーメチルヘキサン酸、nーオクタン酸、2ーエチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸から選ばれる少なくとも1種を含有する請求項1~3のいずれか1項に記載の金属研磨組成物。
- [6]無機酸が硫酸、硝酸、燐酸、これらの塩である上記〔1〕ないし〔3〕のいずれか 1項に記載の金属研磨組成物。
- [7]酸化剤が、酸素、オゾン、過酸化水素、アルキルパーオキサイド、過酸、過マンガン酸塩、過ヨウ素酸塩、過硫酸塩、ポリオキソ酸、次亜塩素酸塩から選ばれる少なくとも1種を含有する上記[1]ないし[6]のいずれか1項に記載の金属研磨組成物。
- [8] 金属研磨組成物が、界面活性剤を含有する上記〔1〕ないし〔7〕のいずれか1項 に記載の金属研磨組成物。
- [9] 界面活性剤がアニオン性、カチオン性、非イオン性、両性界面活性剤から選ばれる少なくとも1種を含有する上記[8]に記載の金属研磨組成物。
- [10] 界面活性剤がアルキル芳香族スルホン酸またはその塩である上記[9] に記載の 金属研磨組成物。
- [11] 金属研磨組成物が、保護膜形成剤を含有する上記[1]ないし[10]のいずれか1項に記載の金属研磨組成物。
- [12] 保護膜形成剤が、ベンゾトリアゾール、トリルトリアゾール、ヒドロキシベンゾトリアゾール、カルボキシベンゾトリアゾール、ベンズイミダゾール、テトラゾール、キナルジン酸から選ばれる少なくとも1種を含有する上記〔11〕に記載の金属研磨組成物
- 。 〔13〕金属研磨組成物が、アルカリを含有する上記〔1〕ないし〔12〕のいずれか1 項に記載の金属研磨組成物。
- [14] アルカリが、アンモニア、アミン、ポリアミン、アルカリ金属化合物、アルカリ 土類金属化合物から選ばれる少なくとも1種を含有する上記[13]に記載の金属研磨組 成物。
- [15] 金属研磨組成物が、研磨剤を含有する上記[1]ないし[14]のいずれか1項に記載の金属研磨組成物。
- [16] 研磨剤がシリカ、アルミナ、セリア、チタニア、有機砥粒から選ばれる少なくとも1種を含有する上記[15]に記載の金属研磨組成物。
- [17] pHが $5\sim11$ である上記[1] ないし[16] のいずれか1項に記載の金属研磨組成物。
- [18] 凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を研磨する上記 [1] ないし [17] のいずれか 1 項に記載の金属研磨組成物。
- [19] 凹部を有する基板上にバリヤ金属膜を形成し、凹部を覆うように埋め込まれた金属膜を上記[1] ないし[17] のいずれか1項に記載の金属研磨組成物で研磨する研磨方法。

- [20]金属膜が銅または銅を含有する合金、鉄または鉄を含有する合金からなる上記〔 1]ないし〔19〕のいずれか1項に記載の研磨方法。
- [21] バリヤ金属膜がタンタル、窒化タンタルなどのタンタル系金属からなる上記[19] または[20] に記載の研磨方法。
- [22] 凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を上記〔1〕ないし
- [18] のいずれか1項に記載の金属研磨組成物で平坦化する基板の研磨方法。
- [23] 凹部を有する基板上に凹部を覆うように埋め込まれた金属膜を上記〔19〕ないし〔22〕のいずれか1項に記載の研磨方法で研磨する工程を含む基板の製造方法。

【発明の効果】

[0016]

金属膜、特に銅膜の研磨においてアゾール基を3個以上含有する化合物はディッシングを低減すことが可能になる。また、アゾール基を3個以上含有する化合物はバリヤ膜の研磨レートを制御することが可能であり、エロージョン抑制が可能となる。これらアゾール基を3個以上含有する化合物、特に、ビニルイミダゾール重合物は、防食材、界面活性剤と組み合わせることによって、よりディッシングを低減することができる。

[0017]

さらに、本発明のアゾール基を3個以上含有する化合物を用いた研磨組成物を用いる研磨方法および基板の製造方法により平坦性の優れた基板を製造することが容易になる。

【発明を実施するための最良の形態】

[0018]

以下、本発明の実施の形態について詳細に説明する。

[0019]

本発明は金属膜の研磨において、アゾール基を3個以上含む化合物、酸化剤およびアミノ酸、有機酸、無機酸から選ばれた1種または2種以上を含む金属研磨組成物である。

[0020]

本発明におけるアゾール基を 3 個以上含む化合物は、 1 分子中にアゾール基を 3 個以上含む化合物であり、種々の方法で製造できる。アゾールにはイミダゾール、トリアゾール、テトラゾール、チアゾールがあるが、この中にヒドロキシル基、カルボキシル基、アミノ基などの反応性置換基を含んでいるものがある。例えば、 4 ーカルボキシルー 1 Hーベンゾトリアゾール、 4 ーヒドロキシベンゾトリアゾール、 2 ーアミノイミダゾールなどが挙げられる。この内カルボキシル基は、多価アルコール、多価アミンと反応して、それぞれエステル、アミドを生成する。この時多価アルコール、多価アミンとして 3 価以上の化合物を用いることによって、 3 個以上のアゾールを有する化合物を製造することができる。同様にヒドロキシル基、アミノ基を有するアゾールからそれらと反応する部位を有する化合物と反応することにより、 3 個以上のアゾール基を有する化合物を製造することもできる。

[0021]

また ビニル基を有するアゾールを重合することによって、3個以上のアゾール基を有する化合物を製造することもできる。ビニル基を有するアゾールとしては、1-ビニルイミダゾール、2-[3-(2H-ベンゾトリアゾール-1-イル)-4-ヒドロキシフェニル]エチルメタクリレートなどが挙げられる。

[0022]

これら3個以上のアゾール基を有する化合物のうち、ビニル基を有するアゾールを重合して得られた化合物が好ましい。これらは単独で重合しても構わないし、その他のビニル化合物と共重合しても構わない。

[0023]

ビニル基を有するアゾールと共重合できるビニル化合物としては、次の化合物を例示することができる。アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリルアミド、Nービニルアセトアミド、Nービニルホルムアミド、アクリロイルモルホリン、Nービニルピロリドン、酢酸ビニル、スチレンなどが挙げられる。

[0024]

このようなビニル化合物の重合方法としては、水溶液、有機溶媒中でのラジカル重合が一般的である。アゾビスイソブチロニトリルなどのラジカル開始剤を用いて重合するが、ドデシルメルカプタン、トリメチロールプロパントリス(3-メルカプトプロピオネート)、αーメチルスチレンダイマーなどの連鎖移動剤で分子量を調整することもできる。

[0025]

このような重合物の分子量としては、重量平均分子量として $300\sim500000$ 0 ものが使用することができる。好ましくは、 $1000\sim10000$ 0 であり、更に好ましくは $2000\sim20000$ 0 である。

[0026]

本発明で使用されるアゾール基を3個以上含む化合物の金属研磨組成物への添加量としては、 $0.001\sim1$ 質量%である。好ましくは、 $0.002\sim0.5$ 質量%であり、更に好ましくは、 $0.003\sim0.1$ 質量%である。少量ではエッチング抑制、研磨速度向上の効果が少なく、多量に添加しても効果は少なく、場合によっては、添加した砥粒の凝集を促進することにもなりかねない。

[0027]

本発明の組成物は、有機溶剤組成物、有機溶剤/水混合組成物、水溶性組成物いずれでも使用することができるが、安全性、コスト、使い勝手などを考慮すると金属研磨組成物は水溶液であることが望ましい。その為、アゾール基を3個以上含む化合物も水溶性であることが望ましい。アゾール基を3個以上含む化合物は濃度の濃い原液を調整し、希釈して組成物を調整することが多いので、水への溶解度は、0.01質量%以上が好ましく、更に好ましくは、0.03質量%以上である。

[0028]

本発明に用いられるアゾール基は銅などの金属と相互作用することは知られており、これが段差緩和性、ディッシングを向上したものと考えられる。また、アゾール基を3個以上含む化合物は、タンタルなどのバリヤ膜の研磨レートを制御することが可能であり、これがエロージョン向上に効いたものと考えられる。しかし、一般的にエタノールアミンなどの塩基性化合物はタンタルなどのバリヤ膜研磨を制御し、エロージョンを向上させるが、段差緩和性、ディッシングはむしろ悪化させる。本発明は、アゾール基を3個以上の複数個存在する化合物を用いたことにより、複雑な作用を起こし、段差緩和性、ディッシング、エロージョン向上と相反する機能を一度に持ちえたものと考えている。

[0029]

本発明の金属研磨組成物の無機酸、有機酸やアミノ酸は、エッチング剤として研磨を促 進すると共に安定した研磨を行うために添加することが出来る。このような無機酸、有機 酸やアミノ酸としては、硫酸、燐酸、ホスホン酸、硝酸などの無機酸、ギ酸、酢酸、プロ ピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2 -エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オ クタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸 、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタ ル酸、リンゴ酸、酒石酸、クエン酸、乳酸などのカルボン酸及びそれらの塩、グリシン、 $L-アラニン、<math>\beta-アラニン、L-2-アミノ$ 酪酸、L-ノルバリン、L-バリン、L-ロイシン、Lーノルロイシン、Lーイソロイシン、Lーアロイソロイシン、Lーフェニル アラニン、Lープロリン、サルコシン、Lーオルニチン、Lーリシン、タウリン、Lーセ リン、L-トレオニン、L-アロトレオニン、L-ホモセリン、L-チロシン、3,5-ジョードーLーチロシン、etaー(3, 4ージヒドロキシフェニル)ーLーアラニン、Lー チロキシン、4-ヒドロキシーL-プロリン、L-システィン、L-メチオニン、L-エ チオニン、Lーランチオニン、Lーシスタチオニン、Lーシスチン、Lーシスティン酸、 Lーアスパラギン酸、Lーグルタミン酸、Sー(カルボキシメチル)-Lーシスティン、 4-アミノ酪酸、L-アスパラギン、L-グルタミン、アザセリン、L-アルギニン、L ーカナバニン、Lーシトルリン、δーヒドロキシーLーリシン、クレアチン、Lーキヌレ ニン、L-ヒスチジン、1-メチルーL-ヒスチジン、3-メチルーL-ヒスチジン、エルゴチオネイン、L-トリプトファンなどのアミノ酸が挙げられる。

[0030]

これらの無機酸、有機酸やアミノ酸は、一種を添加しても良いし、二種以上を混合して添加しても良い。添加量としては、金属研磨組成物に対して $0.01\sim10$ 質量%である。好ましくは、 $0.02\sim5$ 質量%であり、更に好ましくは、 $0.05\sim2$ 質量%である。少ないと適切な研磨速度がでず、多いと金属または金属合金のエッチング速度が速く、平坦化ができずディッシングも抑制することができない。

[0031]

本発明の金属研磨組成物に用いられる酸化剤は、金属または金属合金を酸化し、研磨速度向上に寄与する。酸化剤としては、酸素、オゾン、過酸化水素、 t ーブチルハイドロパーオキサイド、エチルベンゼンハイドロパーオキサイドなどのアルキルパーオキサイド、過酢酸、過安息香酸などの過酸、過マンガン酸カリウムなどの過マンガン酸塩、過ヨウ素酸カリウムなどの過ヨウ素酸塩、過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩、次亜塩素酸カリウムなどの次亜塩素酸塩、ポリオキソ酸などが挙げられる。これらの酸化剤のうち、取り扱いやすい過酸化水素、過硫酸塩が好ましい。

[0032]

酸化剤の添加量としては、金属研磨組成物に対して $0.01\sim30$ 質量%である。好ましくは、 $0.05\sim20$ 質量%であり、更に好ましくは、 $0.1\sim10$ 質量%である。少ないと研磨速度が小さく十分な添加効果が得られず、多いと無駄であるばかりか逆に研磨速度を抑制する場合もある。

[0033]

本発明の金属研磨組成物には、更に、必要に応じて本発明で用いられるアゾール基を3 個以上含む化合物以外の水溶性ポリマーや界面活性剤を添加することが出来る。水溶性ポ リマーとしては、ポリアクリル酸、ポリメタクリル酸やそのアンモニウム塩、ポリイソプ ロピルアクリルアミド、ポリジメチルアクリルアミド、ポリメタクリルアミド、ポリメト キシエチレン、ポリビニルアルコール、ヒドロキシエチルセルロース、カルボキシメチル セルロース、カルボキシエチルセルロース、ポリビニルピロリドンが挙げられる。界面活 性剤としては、カチオン性、アニオン性及び非イオン性のいずれも使用することができる 。カチオン性界面活性剤としては、脂肪族アミンまたはその塩、脂肪族アンモニウム塩な どが挙げられる。また、アニオン性界面活性剤としては、脂肪酸石鹸、アルキルエーテル カルボン酸またはその塩、アルキルベンゼンスルホン酸またはその塩、アルキルナフタレ ンスルホン酸またはその塩などのスルホン酸化合物、高級アルコール硫酸エステル、アル キルエーテル硫酸またはその塩などの硫酸エステル化合物、アルキルリン酸エステル、ア ルキルリン酸またはその塩などのリン酸化合物などが挙げられる。非イオン性界面活性剤 としては、ポリオキシエチレンアルキルエーテルなどのエーテル型、グリセリンエステル のポリオキシエチレンエーテルなどのエーテルエステル型、ポリエチレングリコール脂肪 酸エステル、グリセリンエステル、ソルビタンエステルなどのエステル型が挙げられる。 これら水溶性高分子、界面活性剤の内、スルホン酸化合物界面活性剤が好ましい。更に好 ましくは、炭素数が8以上のアルキル基を有するアルキルベンゼンスルホン酸またはその 塩である。これら水溶性高分子、界面活性剤の添加量は、金属研磨組成物に対してそれぞ れ5質量%以下である。好ましくは1質量%以下であり、更に好ましくは0.5質量%以 下である。

[0034]

本発明の金属研磨組成物には、防食材(保護膜形成剤)を添加することができる。このような成分としてはベンズイミダゾールー2ーチオール、2-[2-(ベンゾチアゾリル)] チオプロピオン酸、2-[2-(ベンゾチアゾリル) チオプロピオン酸、2-[2-(ベンゾチアゾリル)] チオプロピオン酸、2-[2-(ベンゾチアゾリル)] チオプチル酸、2-[2-(ベンゾチアゾリル)] チオプチルで、3-[2-(1-1)] カートリアゾール、1-[2-(1-1)] カートリアゾール、ベンゾトリアゾール、1-[2-(1-1)] カージカルボキシプロピルベンゾトリアゾール、1-[2-(1-1)] カージカルボキシプロピルベンゾトリアゾール、1-[2-(1-1)] カージカルボキシプロピル

ベンゾトリアゾール、4ーヒドロキシベンゾトリアゾール、4ーカルボキシルー1Hーベ ンゾトリアゾール、4ーメトキシカルボニルー1 Hーベンゾトリアゾール、4ーブトキシ カルボニルー1H-ベンゾトリアゾール、4-オクチルオキシカルボニルー1H-ベンゾ トリアゾール、5 -ヘキシルベンゾトリアゾール、N - (1, 2, 3 -ベンゾトリアゾリ ルー1ーメチル) - N - (1 , 2 , 4 - トリアゾリルー<math>1 - メチル) - 2 - エチルヘキシ ルアミン、トリルトリアゾール、ナフトトリアゾール、ビス [(1-ベンゾトリアゾリル) メチル] ホスホン酸、ベンズイミダゾール、テトラゾールなどのアゾールまたはその塩 が好ましい。更に好ましくは、ベンゾトリアゾール、トリルトリアゾール、ヒドロキシベ ンゾトリアゾール、カルボキシベンゾトリアゾール、ベンズイミダゾール、テトラゾール 、キナルジン酸である。防食材の添加量は、金属研磨組成物に対して、5質量%以下であ る。好ましくは、2質量%以下であり、更に好ましくは0.5質量%以下である。

[0035]

本発明の金属研磨組成物には性能、物性に悪影響を及ぼさない範囲で、アルカリを添加 することが出来る。安定した研磨性能を維持する目的やpH調整剤、緩衝剤として使用さ れる。このようなアルカリとしては、アンモニア、水酸化ナトリウム、水酸化カリウム、 炭酸カリウム、炭酸水素カリウム、炭酸水素アンモニウム、メチルアミン、エチルアミン 、プロピルアミン、イソプロピルアミン、ブチルアミン、イソブチルアミン、t-ブチル アミン、アミルアミン、アリルアミン、2-エチルヘキシルアミン、シクロヘキシルアミ ン、ベンジルアミン、フルフリルアミンなどのアルキルモノアミン、Oーアミノフェノー ル、エタノールアミン、3-アミノー1-プロパノール、2-アミノー1-プロパノール などのヒドロキシル基を有するモノアミン、エチレンジアミン、ジエチレントリアミン、 トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、〇一 フェニレンジアミン、トリメチレンジアミン、2,2-ジアミノジnープロピルアミン、 2-メチル-2- (2-ベンジルチオエチル) エチレンジアミン、1, 5-ジアミノ-3ーペンタノール、1,3-ジアミノ-2-プロパノール、キシレンジアミン、ビスアミノ プロピルポリアルキレンエーテルなどのジアミン、ポリアリルアミン、ポリエチレンイミ ンなどのポリアミンが挙げられる。これらアルカリのうち、好ましくは、アンモニア、水 酸化カリウムである。アルカリの添加は、金属研磨組成物に対して10質量%以下である 。好ましくは、5質量%以下であり、更に好ましくは1質量%以下である。

[0036]

本発明の金属研磨組成物は、砥粒なしで使用することも出来るが、研磨速度を十分に上 げたりする目的で添加することも出来る。砥粒としては、シリカ、アルミナ、セリア、有 機砥粒が挙げられる。これら砥粒は一種を添加しても良いし、二種以上を混合して添加し ても良い。添加量が多いと、ディッシングやスクラッチの原因になるので、添加量は金属 研磨組成物に対して30質量%以下である。好ましくは20質量%以下であり、更に好ま しくは、10質量%以下である。

[0037]

本発明で用いられる金属研磨組成物は、 p H 2 ~ 1 2 までの間で使用することが出来る 。好ましくはpH3~11であり、更に好ましくは、pH5~10である。このようにp Hを調整する試薬としては、前記無機酸、前記有機酸、前記アルカリを用いることが出来

[0038]

本発明で用いられる金属研磨組成物は、0~100℃の範囲で用いることができる。-般的には使用する室温近辺が好ましいが、研磨速度を調整するなどの目的などで研磨組成 物の温度を調節することも可能である。温度が低すぎると研磨速度が上がらず、0℃以下 であると氷ってしまうこともある。また、温度が高いと副反応が起こったりすることも考 えられる。好ましくは、10~50℃であり、更に好ましくは、15℃~40℃である。

[0039]

本発明で用いられる金属研磨組成物の研磨機への滴下量は、研磨機、ウエハの大きさに よって決定される。8インチウエハを用いた時には、10~1000m1/分で使用する

[0040]

本発明の金属研磨組成物が研磨する金属としては、アルミニウム、銅、鉄、タングステン、ニッケル、タンタル、ルテニウムや白金などの白金族金属またはこれら金属の合金が挙げられる。好ましくは多層配線部の配線部分あるいは配線部分を覆うようになる金属膜であり、凹部を有する基板上に凹部を覆うように埋めこまれる。更に好ましくは、多層配線部の配線部分になる銅または銅合金、鉄または鉄合金に使用することが出来る。なおこの配線金属膜は基板との間にバリヤ膜が形成されることがあり、その場合には金属膜と共にバリヤ膜も研磨されることができる。このようなバリヤ膜材料としては、タンタル、タンタル合金、窒化タンタル、チタン、チタン合金などが好ましく用いられる。

[0041]

本発明の金属研磨組成物を用いた研磨方法は、研磨定盤の研磨布上に本発明の金属研磨組成物を供給しながら、被研磨金属膜を有する基板を研磨布に押し当てた状態で研磨金と基板を相対的に動かすことによって被研磨金属膜を研磨する方法である。研磨する装置としては、半導体基板を保持するホルダーと研磨布を貼り付けた定盤を有する一般的なをでここで規定することは難しいが、10~500m/分で研磨が行われる。好ましくス20~300m/分であり、更に好ましくは、30~150m/分である。研磨定盤が画転することにより基板研磨の均一性を維持するために、基板を回転する必要がある。は、研磨定盤とほぼ同じ回転数にするが、均一性を得るために若干、回転数を少ななしたり多くしたりすることがある。また、基板はホルダーを通して研磨布に圧力をかけてり多くしたりすることがある。また、基板はホルダーを通して研磨布に圧力をかけてりまります。ことがあるにより多くしたりすることがある。また、基板はホルダーを通して研磨布に圧力をかけてりまります。ことがある。また、基板はホルダーを通して研磨布に圧力をかけていまままでである。である。である。であるので、規定することは難しいが、好ましくは、0.5~80KPaであり、更に好ましくは、1~50KPaである。

[0042]

研磨布としては、一般的な不織布、発泡ポリウレタンなどが使用できる。研磨布には、 研磨速度を上げたり、スラリーの排出を良くしたりする目的でグループをつけているもの が多い。XYグループ、Kグループなどがあるが、本発明の研磨組成物はいずれのグルー ブも用いることができる。また、研磨布は目詰まりを防止し、安定した研磨を行うために 、ダイヤモンドなどが付いたドレッサーでドレスするが、一般的に知られている方法を使 用することができる。

[0043]

研磨定盤の研磨布上に本発明の金属研磨組成物を供給する方法としては、ポンプなどで連続的に供給する。この時金属研磨組成物は全ての成分を含んだ1液で供給されてもよく、更には、液の安定性を考慮して過酸化水素の溶液とその他の溶液を別ラインで供給することもできる。別ラインで2液以上を供給する場合には、研磨布直前に1液にして供給することも出来るし、別ラインでそのまま研磨布上に供給することも可能である。

[0044]

このような研磨方法により金属膜が平坦化された基板を製造することができる。この工程を素子上に配線を形成する方法として更に説明する。まず、基板上の層間絶縁膜に配線を形成する溝および開口部を開け、絶縁膜上に薄くバリヤ膜を形成する。更に、前記溝および開口部を埋め込むようにメッキなどの方法により銅などの金属配線用の金属膜を形成させる。この金属膜を研磨し、必要があればバリヤ膜および層間絶縁膜をさらに研磨平坦化を行うことにより金属膜が平坦化された基板を製造することが出来る。次に、MRAMにおける配線形成方法について説明する。金属配線はアルミニウムまたはアルミニウム合金、銅または銅合金から成る導体層とこれを囲むようにニッケル一鉄(パーマロイ)などの強磁性層からなる。必要があれば、タンタル、窒化タンタルなどのバリヤ膜を強磁性層を挟むように薄く形成する。この金属配線はダマシン法で形成されるが、余分な導体層、強磁性層およびバリヤ膜は、研磨を行いながら平坦化し除去される。

[0045]

ここでいう層間絶縁膜とは、酸化ケイ素膜、ヒドロキシシルセスキオキサン(HSQ)、メチルシルセスキオキサン(MSQ)などのケイ素を多量に含む無機系の層間絶縁膜やベンゾシクロプテンからなる膜のような有機系層間絶縁膜であり、また、これらに空孔を持たせた低誘電率層間絶縁膜も用いることが出来る。

【実施例】

[0046]

以下、実施例をあげて本発明をさらに詳細に説明するが、本発明はこれら実施例になん ら限定されるものではない。

[合成例]

以下、アゾール基を3個以上含む化合物の合成例を示すが、本発明はこれら合成例になんら限定されるものではない。

[0047]

〈化合物A〉

攪拌翼、温度計、冷却管を装着した100m1三口フラスコに冷却管から窒素を封入し、攪拌しながら、1-プロパノール42g、アゾ系開始剤V-601(和光純薬製)4. 61g、1-ビニルイミダゾール9.41g、連鎖移動剤n-ドデシルメルカプタン4.05gを溶解させた。30分室温で攪拌後、温度を<math>80℃に上昇させ、5時間反応させた。更に、90℃で2時間攪拌した後、室温に冷却した。この溶液を500m1のn-へキサン中に滴下して沈殿させ、ろ過した。得られた化合物を50℃、24時間真空して化合物 A を得た。

[0048]

〈化合物 B〉

提拌翼、温度計、冷却管を装着した200m1三口フラスコに冷却管から窒素を封入し、攪拌しながら、1-プロパノール58.3g、アゾ系開始剤V-601(和光純薬製)1g、1-ビニルイミダゾール<math>25g、連鎖移動剤 $\alpha-メチルスチレンダイマー1.04g$ を溶解させた。30分室温で攪拌後、温度を<math>80℃に上昇させ、5時間反応させた。更に、90℃で2時間攪拌した後、室温に冷却した。この溶液を1000m1のn-へキサン中に滴下して沈殿させ、ろ過した。得られた化合物を50℃、24時間真空して化合物 8

[0049]

〈化合物 C 〉

[0050]

く化合物 D >

攪拌翼、温度計、冷却管を装着した1000ml三口フラスコに冷却管から窒素を封入し、攪拌しながら、水400g、アゾ系開始剤VA-086(和光純薬製)5g、1-ビニルイミダゾール100gを溶解させた。30分室温で攪拌後、温度を100℃に上昇させ、3時間反応させた。更に、5gのVA086を10gの水に溶解した溶液を滴下し、100℃で3時間攪拌した。室温に冷却した後、固形分濃度を測定したところ21.4%であった。化合物Dは単離することなく、そのまま用いた。

[0051]

〈分子量測定〉

合成した化合物の分子量は、ゲルパーミッションクロマトグラフィー (GPC) を用い 出証特2004-3102250 、ポリエチレングリコール換算で測定した。尚、本発明では市販の化合物も用いたのでこれらも合わせて測定した。市販の化合物としては1ービニルイミダゾールと1ービニルビロリドンとの1:1共重合体、VPI55K18P(18Pと略す。BASF社製)を用いた。

[0052]

化合物 A, B, C, D, 18Pの分子量を測定した結果はそれぞれ下記のとおりであった。

[0053]

化合物 A: 2600 化合物 B: 5200 化合物 C: 9700 化合物 D: 89000 化合物 1 8 P: 5000

〈ウエハ〉

プランケット:銅膜及びタンタル膜(バリヤ膜)が均一に付いたシリコンウエハ

パターン:溝深さが 500nmで、 25nmの厚さでタンタルがバリヤ膜として形成され、 1000nmの銅膜が付いたシリコンウエハ(図 1の上図参照)。

[0054]

〈4×4cmに切断したウエハの研磨〉

基板と研磨定盤との相対速度:54 m/分

研磨パッド:ロデールニッタ社製 IC1000/SUBA400

研磨組成物供給速度:13ml/分

〈8インチウエハの研磨〉

基板と研磨定盤との相対速度: 70 m/分

研磨パッド:ロデールニッタ社製 IC1000/SUBA400

研磨組成物供給速度:200m1/分

〈エッチングテスト〉

2 c m×2 c mの銅板を金属研磨組成物に浸け、銅板の減少量から、1分間当たりのエッチング速度を計算した。

[0055]

〈研磨特性評価〉

段差の測定:触診式の段差測定計を用いた。

[0056]

プランケット銅、タンタル膜厚測定:シート抵抗から測定した。

[0057]

パターン銅膜厚測定:評価する部位近傍のパターンのない銅膜のシート抵抗から測定した。

[0058]

研磨速度の測定:研磨前後の電気抵抗値から銅膜、バリヤ膜厚を測定し、研磨時間から 換算した。

[0059]

段差緩和性評価:上記パターンウエハ $(100 \mu m/100 \mu mのライン/スペース;$ 図1の上図参照)をウェハ上に約300 n mの銅が残るように研磨したとき、発生する段差を測定した。200 n m以上の段差が残っている場合には \times 、200~100 n mで \triangle 、100~50 n mで \bigcirc 、50 n m未満で \bigcirc とした。

[0060]

ディッシング評価:上記パターンウエハ($100\mu m/100\mu m$ のライン/スペース;図1の上図参照)を約300nmの銅が残るように研磨した時の研磨速度を基準にして、初期銅膜厚に対して50%オーバーポリッシュ(図1の中図からさらに50%研磨)になるように研磨した時の $100\mu m/100\mu m$ のライン/スペースの銅パターンに発生

した段差(図2のd)をディッシングとして評価した。

[0061]

エロージョン測定:上記と同様のパターンウエハ($9\,\mu$ m/ $1\,\mu$ mのライン/スペース)を約 $3\,0\,0$ n mの銅が残るように研磨した時の研磨速度を基準にし、初期銅膜厚に対して $5\,0\,\%$ オーバーポリッシュになるように研磨した時の $9\,\mu$ m/ $1\,\mu$ mライン/スペースのスペース部のバリヤ膜および相関絶縁膜の目減り(図 $3\,0\,e$)をエロージョンとして測定した。

[0062]

実施例1~3、比較例1

アゾール、酸、アミノ酸、酸化剤、防食材および砥粒を表1のように添加し、アルカリでpHを調整した。表1以外の添加物は水であり、添加量は質量%で示した。ウエハは4×4cmに切断したものを用いた。研磨圧力は10KPaで行った。

[0063]

ここで、APSは過硫酸アンモニウム、BTAはベンゾトリアゾール、コロイダルシリカは一次粒子径30~40nm、二次粒子径70nmのものを用いた。

[0064]

【表1】

実施例 アゾール 下轄図				-					
2	1/-	翻	7ミ/酸	酸化剤	界面活性剤	防食材	アルカリ	研	На
╫┈	化合物B	乳酸		APS		BTA	77.5-7	तर्भ के प्रत	8.5
0.002	902	1.5		2.0		0.03		0.1	
実施例2 18	8 p	乳酸		APS		ВТА	775.7	1049 IV/J	ထ သ
	0.005	0.75		1.0		0.03		1.0	
実施例3 1.8	8 P	乳酸	1.150	APS		BTA	72.7	מולאו לאחב	တ ပ
	0.005	0.75	0.1	1.0		0.03		1.0	
比較例1		乳酸		APS		BTA	775-7	11/4 1/5/11	ထ ည
		1.5		2.0		0.03		1.0	

[0065]

結果を表 2 に示す。いずれの実施例でもほとんどエッチングが起こっておらず、ディッ シング、エロージョンは著しく良いことが分かる。これに比較してアゾールを添加しない 比較例1ではディッシングが全くストップしておらず、エロージョンも満足するものでは ない。本発明のアゾールは防食材と組み合わせることにより、段差緩和性に大きな効果は ないが、ディッシング、エロージョンに効果のあることが分かった。また、実施例2にグ リシンを少量添加した実施例3では、エッチング、ディッシングはやや悪くなるものの、 研磨レートが高くなり、エロージョンも向上する結果が得られた。

[0066] 【表 2】

表2		1					44.4.4
	Cu (7° 72791)	Cn (v, 4-2)	Ta (7° 32/17/1-)	段差緩和性	7 1977	를 살다.	エッナンツ 11王
比較例	田勝い	研磨レート	研磨い				
1	384	412		0	72nm	22nm	Onm/min
	nm/min	nm/min					
実施例2	219	212		0	45nm	23nm	Onm/min
	nm/min	nm/min					
実施例3	311	335		0	98nm	13nm	Snm/min
-	nm/min	nm/min					
比較例一	463	512		0	330nm	51nm	Onm/min
	nm/min	nm/min					

[0067]

実施例 $4\sim8$ 、比較例 2 各種アゾールを表 3 のように変化させ、研磨液を調整した。 p H はアルカリで調整した 出証特2004-3102250

。ウエハは4×4cmに切断したものを用いた。研磨圧力は20KPaで行った。ここで、 DBSはドデシルベンゼンスルホン酸、コロイダルシリカは一次粒子径30~40nm、 二次粒子径70nmのものを用いた。尚、添加量は質量%で示した。

[0068]

【表3】

_		_								_		_		-
7	<u>E</u>	į	_ 		9. -				9.1		9. 1		. ფ	
福出	45.不过	111 42 434	מויאו פאמב	0.5	口4多。16沙山	0.5	2049 11沙りカ	0.5	四个 砂塘	0.5	1049.167月	0.5	コロイタ・ルシリカ	0.5
1 1	アルカリ		72.57		72527		77.5-7		725.7		72.57		7.4.7	
11 4 15	防箕柄													
	界面活性剂		DBS	0.05	DBS	0.02	DBS	0.05	DBS	0.05	SBO	0.05	SBO	0.05
	酸化剤		過酸化水素	0.5	過酸化水素	0.5	過酸化水素	0.5	過酸化水素	0.5	過酸化水素	0.5	過酸化水素	0.5
	7 = / 酸													
	緻		蓚酸	0.5	蓚酸	0.5	蓚酸	0.5	榛酸	0.57	藤酸	0.5	を破り	0.5
	アゾール		18P	0.015	化合物 A	0.015	化合物 B	0 015	→ 小 替 C	0.015	化合物 D	0.015		
液な	実施例	比較例	班格@4		研格@ 5		HT M G G		中按图7		田格室の	Sask	子物室の	1 52 4

[0069]

研磨結果を表4に示す。実施例4ではビニルイミダゾールとビニルピロリドンの共重合体を用いたが、ディッシング191nmであった。エロージョンは著しく抑えられ5nmと非常によかった。実施例5~8はビニルイミダゾールのホモポリマーの分子量を変化させて研磨した。研磨レートはそれほど大きな変化はなかったが、ディッシング、エロジョンは分子量が大きくなるほどに向上する傾向が見られた。一方、比較例2のアゾールを添加しない系では、段差緩和性がなく、ディッシング、エロージョンが止まらない結果となった。本発明のアゾールは界面活性剤と組み合わせることにより、より段差緩和性、ディッシング、エロージョンに効果のあることが分かった。また、エロージョンが向上するのはタンタルの研磨レートが減少するためと考えられる。

[0070]

【表4】

表4							L
実施例	Gu (7° 72791)	Cn (1, 4-1)	Ta (プランケット)	段差緩和性	7 47/29	110. 37.	19729 1至
比較例	研磨1	年齢アー	研磨レート				
実施例4	273	429	3	0	191nm	Snm	Onm/min
	nm/mn	nm/min	nm/min				
実施例5	347	475		0	176nm	7nm	Onm/min
	nm/min	nm/min					
実施例6	327	483		©	167nm	19nm	Onm/min
	nm/mi	nm/min					
実施例7	354	480		0	144nm	13nm	Onm/min
	nm/min	nm/min					
実施例8	337	488		© 	128rm	mu/	Onm/min
	nm/min	nm/min					
比較例2	312	433	32	0	362nm	31nm	Onm/min
	nm/min	nm/min	nm/min				

[0071]

実施例9~11、比較例3

アゾールP18を表5のように変化させ、研磨液を調整した。pHはアルカリで調整した。表以外の組成物は水であり、添加量は質量%で示した。ウエハは4×4に切断したも出証特2004-3102250

のを用いた。研磨圧力は15KPaで行った。ここで、DBSはドデシルベンゼンスルホン酸、コロイダルシリカは一次粒子径30~40nm、二次粒子径70nmのものを用いた

【0072】 【表5】

数の								100	:
実施例	アゾール	翻	7三/酸	酸化剤	界面活性剤	防食材	アルカリ	电 和	 E
比較例								1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4]
実施例9	18P	蓚酸		過數化水幣	DBS		72.4:7	1019 NYJD	
	0.03	1.0		0.5	0.05			1.0	
宇施例10	18 P	傣酸		過酸化水素	DBS		72.57	コロイタ・ルシリカ	9. 1
	0.02	1,0		0.5	0.05			1.0	
审格例11	18 P	蘇聯		過酸化水素	DBS		774:7	コロイタ・ルシリカ	9.1
	0.0	1,0		0.5	0.05			1.0	
下数鱼3		強酸		過酸化水素	SBO		725-7	コロイタ・ルシリカ	9. 1
Š		1 0		0.5	0.05			0.5	
		, -		> :>					

[0073]

結果を表6に示す。アゾールP18を添加するほどに、バリヤ膜タンタルの研磨速度は減少し、エロージョンがなくなってくることが分かる。ただし、P18を多く添加すると銅の研磨レートが上がる傾向にあり、添加しない比較例3に比べると良いが、段差緩和性、ディッシングも悪化する傾向にあるので、組成によってはうまくバランスをとることが重要になる。

[0074]

表6				20 44 AN TO LO	-4.5.4	10% 1%	エッエンル・体
ĺ	Cu (7° 72/1914)	ರ	Ta (7,7)/1/1)	段是緩和性	T 49777	7F /HT	T ////-
比較例	研磨ケー	研磨レート	研磨ルート				
l	785	555	16	©	380nm	10nm	0nm/m1n
	nm/min	nm/min	nm/min				
実施例10	805	766	10	0	406nm	4nm	Onm/min
	nm/min	nm/min	nm/min				
宝饰倒11	856	1110	2	0	455nm	Onm O	Onm/min
	nm/min	nm/min	nm/min				
比較例3	608	700	41	0	494	51mm	Onm/min
	nm/min	nm/min	nm/min				

【0075】 実施例12~17 8インチウエハを用いて評価した。圧力は15Kpaで行った。 【0076】 組成は表7に示した。表以外の添加物は水であり、添加量は質量%で示した。ここで、 TTAはトリルトリアゾール、コロイダルシリカは一次粒子径30~40nm、二次粒子径70nmのものを用いた。

【0077】 【表7】

	コロイタ・ルシリカ 9.1	╅	1 .9 תויקון 19.1	╅	コロイタールシリカ 9.1	0.5	ጋ በ / የ ነን ነ ነ	0.5	10 .4 ∮	0.5	+	コロイタ・ルシリカ 9.1			
アルカリ	72.4.7		77.57		77.5-7		7:4:7		7>=-7			77.5.7			
防食材			ВТА	0.01	BTA	0, 005	TTA	0.005	TTA	0.003		TTA	0.003	村が、破	1
界面活性剤	DBS	0.0/	DBS	0.07	DBS	0.07	SBO	0.07	DBS	0.07		SBO	0.07		
酸化剤	過酸化水素	0.5	過酸化水素	0.5	過酸化水素	0.5	過酸化水素	0.5	過酸化水素	0.5		過酸化水素	0.5		
アミノ酸						ĺ									•
翻		0.5	蓚酸	0.5	蓚酸	0.5	蓚酸	0.2	蓚酸	0.5		蓚酸	0.5		
アゾール	18P	0.05	18 P	0.05	18 P	0.02	18 P	0.05	18 P	0.05		18 P	0.05		
実施例比較例	実施例12		実施例13		実施例14		財格例15		実施例16			宇施伽17			

[0078]

結果を表8に示した。実施例12はアゾールと界面活性剤の組み合わせであるが、これに防食材を組み合わせた実施例13ではよりディッシングが小さくなっていた。また、防食材をTTAに換えた実施例15では防食材BTAよりもディッシングが向上していた。更に、防食材をBTAとキナルジン酸の組み合わせで用いた場合にもディッシングが向上した。界面活性剤、防食材と同時に組み合わせることにより、更に、性能が向上することが分かった。

[0079]

実施例 Cu (プラケット) 比較例 研磨レート 実施例 1 2 nm/min 実施例 1 3 24 nm/min 実施例 1 4 nm/min	Cn (x, 4-v) (開展)-t					
研磨し 57C 24 24 166 167 17m/m	はない。	Ta (7 アカゲト)	段丟摋和性	T 47777	/F ///	T) ////
ω 4 m	WINEV	研磨ケート				
ω 4 m	640		©	215nm	mu ₀	Onm/min
3 3	nm/min					
	. 503		© 	161nm	ECO ECO	
4 ro	nm/min					
വ	524	•	©	160nm	8um	Onm/mu
ഗ	nm/min					
	535		©	92nm	21m	Onm/min
	nm/min				,	
実施例16 267	511		©	161nm	and S	Cum/muo
nm/min	nm/min				3	
実施例17 195	534		o	115nm	20nm	0m/mn0
nm/min	nm/min					

【図面の簡単な説明】

[0800]

【図1】パターンウェハの研磨工程を説明する横断面図である。

【図2】ディッシィングを説明する横断面図である。

【図3】エロージョンを説明する横断面図である。

【符号の説明】

[0081]

1…ウェハ

2 …溝

2'、2"…ライン(銅)

3、3'…スペース

5 …銅膜

d…ディッシィング

e…エロージョン

【書類名】図面【図1】

図 1

【図3】

【要約】

【課題】 エッチング、エロージョンを抑制し金属膜の平坦性を維持したまま高速に研磨できる金属研磨組成物を提供すると共にこの金属研磨組成物を用いた金属膜の研磨方法、およびこの金属研磨組成物で平坦化する工程を含む基板の製造方法を提供すること。

【解決手段】 (A)アゾール基を3個以上含む化合物、(B)酸化剤、および(C)アミノ酸、有機酸、無機酸から選ばれた1種または2種以上、を含むことを特徴とする金属研磨組成物。凹部を有する基板上にバリヤ金属膜を形成し、凹部を覆うように埋め込まれた金属膜を該金属研磨組成物で研磨する研磨方法。

【選択図】 なし

特願2003-394081

出願人履歴情報

識別番号

[000002004]

1. 変更年月日

1990年 8月27日

[変更理由]

新規登録

住 所

東京都港区芝大門1丁目13番9号

氏 名

昭和電工株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017318

International filing date:

15 November 2004 (15.11.2004)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2003-394081

Filing date: 25 November 2003 (25.11.2003)

Date of receipt at the International Bureau: 10 February 2005 (10.02.2005)

Priority document submitted or transmitted to the International Bureau in Remark:

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
\square blurred or illegible text or drawing
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

AMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.