Derwent WPI (c) 2005 Thomson Derwent. All rights reserved. 015343934 WPI Acc No: 2003-404872/200339 XRAM Acc No: C03-107990 Composition for dyeing keratin-containing fibers, especially human hair, comprises heterocyclic ammonium compound and acidic methylene compound Patent Assignee: HENKEL KGAA (HENK) Inventor: GROSS W; HOFFKES H; MOLLER H; MULLER H; OBERKOBUSCH D; HOEFFKES H ; MOELLER H; MUELLER H Number of Countries: 035 Number of Patents: 004 Patent Family: Week Kind Date Kind Date Applicat No Patent No Kind Date Week Patent No A1 20030410 DE 10148844 Α 20011004 200339 DE 10148844 A1 20030417 WO 2002EP10736 A 20020925 WO 200330847 A1 20040630 EP 2002772344 A 20020925 200443 EP 1432388 WO 2002EP10736 A 20020925 AU 2002337132 A1 20030422 AU 2002337132 A 20020925 200460 DE 10148844 A1 20030410 200339 B WO 200330847 A1 20030417 200339 A1 20040630 200443 EP 1432388 AU 2002337132 A1 20030422 200460 Priority Applications (No Type Date): DE 10148844 A 20011004 Designated States (National): AU; BR; CA; CN; HU; JP; NO; PL; RU; US; VN Designated States (Regional): AT; BE; BG; CH; CY; CZ; DE; DK; EE; ES; FI; FR; GB; GR; IE; IT; LU; MC; NL; PT; SE; SK; TR; LI Abstract (Basic): DE 10148844 A1 Abstract (Basic): NOVELTY - Composition for dyeing keratin-containing fibers, especially human hair, comprises: (1) at least one heterocyclic quaternary ammonium compound (A); and (2) an acidic methylene compound (B). DETAILED DESCRIPTION - Composition for dyeing keratin-containing fibers, especially human hair, comprises: (i) at least one heterocyclic quaternary ammonium compound (A) of formulae (I) or (II) (with provisos); and (ii) an acidic methylene compound (B). R1, R2=hydrogen, halo, hydroxy, 1-4C hydroxyalkyl, 1-6C aminoalkyl, 1-4C dialkylamino(1-4C)alkyl, 1-6C alkyl, 2-6C alkenyl, optionally substituted aryl, sulfonic acid, carboxy, formyl, nitro, cyano, or NR4R5; R1+R2=a fused 5 or 6-membered aliphatic or aromatic ring which may also be substituted with R6 and R7, each as defined for R1 and R2; R4, R5=hydrogen, 1-6C alkyl, 2-6C alkenyl, aryl(1-4C)alkyl or 1-4C hvdroxvalkyl; R3=1-4C hydroxyalkyl, 1-6C aminoalkyl, 1-4C dialkylamino(1-4C)alkyl, 1-6C alkyl, 2-6C alkenyl or optionally substituted aryl; A=chloride, bromide, iodide, hexafluorophosphate, tetrachlorozincate, tetrafluoroborate, trifluoromethanesulfonate or

p-toluenesulfonate;

X1=halo, 1-4C alkoxy, 1-4C alkylthio, sulfonic acid or p-toluenesulfonyl.

Provided that when Y=optionally substituted vinylene, compounds (II) are included where one of X1 and X2=X1 as defined above and the other is hydrogen or groups as defined for R1.

Also included are inner salts that lack the anion A.

USE - The compositions are used to dye human hair in bright, deep, optionally fluorescent, shades in yellow, orange, red, violet, black and intermediate colors.

ADVANTAGE - The composition provides a dyeing at least equivalent, as regards color depth, grey covering and fastness, to conventional dyeings, without the absolute requirement for an oxidizing agent. Compositions without an oxidizing agent have little or no potential for sensitizing the skin.

pp; 24 DwgNo 0/0

Title Terms: COMPOSITION; DYE; KERATIN; CONTAIN; FIBRE; HUMAN; HAIR; COMPRISE; HETEROCYCLE; AMMONIUM; COMPOUND; ACIDIC; METHYLENE; COMPOUND

Derwent Class: B07; D21; E19; E24

International Patent Class (Main): A61K-007/13

® BUNDESREPUBLIK **DEUTSCHLAND**

® Offenlegungsschrift ₍₁₀₎ DE 101 48 844 A 1

⑤ Int. Cl.⁷: A 61 K 7/13

DEUTSCHES PATENT- UND MARKENAMT

101 48 844.0 Aktenzeichen: Anmeldetag: 4. 10. 2001 (3) Offenlegungstag: 10. 4.2003

(71) Anmelder:

Henkel KGaA, 40589 Düsseldorf, DE

② Erfinder:

Groß, Wibke, Dr., 40549 Düsseldorf, DE; Oberkobusch, Doris, Dr., 40591 Düsseldorf, DE; Müller, Helmut, 40591 Düsseldorf, DE; Höffkes, Horst, Dr., 40595 Düsseldorf, DE; Möller, Hinrich, Dr., 40789 Monheim, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (5) Mittel zum Färben von keratinhaltigen Fasern
- Es wird ein Mittel zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, beansprucht,

A. mindestens eine quaternierte heterozyklische Verbindung gemäß Formel I,

R¹ und R² stehen unabhängig voneinander für ein Wasserstoffatom, ein Halogenatom, eine Hydroxygruppe, eine C1-C4-Hydroxyalkylgruppe, eine C1-C6-Aminoalkylgruppe, eine C1-C4-Dialkylamino-C1-C4-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe, eine Sulfonsäuregruppe, eine Carboxylgruppe, eine Formylgruppe, eine Nitrogruppe, eine Cyanogruppe oder eine Gruppe -NR⁴R⁵, wobei R⁴ und R⁵ stehen unabhängig voneinander für ein Wasserstoffatom, eine C1-C6-Alkylgruppe, eine C2-C6-Alkenylgruppe, eine Aryl-C1-C4-alkylgruppe oder eine C₁-C₄-Hydroxyalkylgruppe, wobei R¹ und R² zusammen einen ankondensierten 5- oder 6-gliedrigen, aliphatischen oder aromatischen Ring bilden können, welcher wiederum mit den Resten R⁶ und R⁷ substituiert ist, wobei R6 und R7 stehen unabhängig voneinander für die Reste, die unter R1 definiert sind,

R³ steht für eine C₁-C₄-Hydroxyalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino- C_1 - C_4 -alkylgruppe, eine lineare oder verzweigte C_1 - C_6 -Alkylgruppe, eine C_2 - C_6 -Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe...

Beschreibung

[0001] Die Erfindung betrifft ein Mittel zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, das kationische heterozyklische Verbindungen und CH-acide Verbindungen enthält, die Verwendung dieser Kombination in Mitteln zum Färben von keratinhaltigen Fasern sowie ein Verfahren zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren.

[0002] Für das Färben von keratinhaltigen Fasern kommen im Allgemeinen entweder direktziehende Farbstoffe oder Oxidationsfarbstoffe, die durch oxidative Kupplung einer oder mehrerer Entwicklerkomponenten untereinander oder mit einer oder mehreren Kupplerkomponenten entstehen, zur Anwendung. Kuppler- und Entwicklerkomponenten werden auch als Oxidationsfarbstoffvorprodukte bezeichnet.

[0003] Als Entwicklerkomponenten werden üblicherweise primäre aromatische Amine mit einer weiteren, in paraoder ortho-Position befindlichen freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyridinderivate, heterocyclische Hydrazone, 4-Aminopyrazolonderivate sowie 2,4,5,6-Tetraaminopyrimidin und dessen Derivate eingesetzt. [0004] Spezielle Vertreter sind beispielsweise p-Phenylendiamin, p-Toluylendiamin, 2,4,5,6-Tetraaminopyrimidin, p-Aminophenol, N,N-Bis-(2-hydroxyethyl)-p-phenylendiamin, 2-(2,5-Diaminophenyl)-ethanol, 2-(2,5-Diaminophenoxy)-ethanol, 1-Phenyl-3-carboxyamido-4-amino-pyrazol-5-on, 4-Amino-3-methylphenol, 2-Aminomethyl-4-aminophenol, 2-Hydroxymethyl-4-aminophenol, 2-Hydroxy-4,5,6-triaminopyrimidin, 2,4-Dihydroxy-5,6-diaminopyrimidin und 2,5,6-Triamino-4-hydroxypyrimidin.

[0005] Als Kupplerkomponenten werden in der Regel m-Phenylendiaminderivate, Naphthole, Resorcin und Resorcinderivate, Pyrazolone, m-Aminophenole und substituierte Pyridinderivate verwendet. Als Kupplersubstanzen eignen sich insbesondere α-Naphthol, 1,5-, 2,7- und 1,7-Dihydroxynaphthalin, 5-Amino-2-methylphenol, m-Aminophenol, Resorcin, Resorcinmonomethylether, p-Phenylendiamin, 2,4-Diaminophenoxyethanol, 2-Amino-4-(2-hydroxyethylamino)anisol (Lehmanns Blau), 1-Phenyl-3-methylpyrazol-5-on, 2,4-Dichlor-3-aminophenol, 1,3-Bis-(2,4-diaminophenoxy)propan, 2-Chlorresorcin, 4-Chlorresorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Methylresorcin, 5-Methylresorcin, 3-Amino-6-methoxy-2-methylamino-pyridin und 3,5-Diamino-2,6-dimethoxypyridin.

[0006] Bezüglich weiterer üblicher Farbstoffkomponenten wird ausdrücklich auf die Reihe "Dermatology", herausgeben von Ch. Culnan, H. Maibach, Verlag Marcel Dekker Inc., New York, Basel, 1986, Bd. 7, Ch. Zviak, The Science of Hair Care, Kap. 7, Seiten 248–250 (Direktziehende Farbstoffe), und Kap. 8, Seiten 264–267 (Oxidationsfarbstoffe), sowie das "Europäische Inventar der Kosmetikrohstoffe", 1996, herausgegeben von der Europäischen Kommission, erhältlich in Diskettenform vom Bundesverband der deutschen Industrie- und Handelsunternehmen für Arzneimittel, Reform-

waren und Körperpflegemittel e. V., Mannheim, Bezug genommen.

[0007] Mit Oxidationsfarbstoffen lassen sich zwar intensive Färbungen mit guten Echtheitseigenschaften erzielen, die Entwicklung der Farbe geschieht jedoch im Allgemeinen unter dem Einfluss von Oxidationsmitteln wie z. B. H₂O₂, was in einigen Fällen Schädigungen der Faser zur Folge haben kann. Desweiteren können einige Oxidationsfarbstoffvorprodukte bzw. bestimmte Mischungen von Oxidationsfarbstoffvorprodukten bisweilen bei Personen mit empfindlicher Haut sensibilisierend wirken. Direktziehende Farbstoffe werden unter schonenderen Bedingungen appliziert, ihr Nachteil liegt jedoch darin, daß die Färbungen häufig nur über unzureichende Echtheitseigenschaften verfügen.

[0008] Der Verbraucher verlangt von einem Färbemittel eine lange anhaltende und gleichmäßige Färbung und eine gute physiologische Verträglichkeit. Gerade bei jungen Menschen sind zusätzlich ausgefallene Farbtöne und spezielle Effekte auf dem Haar beliebt. Einen solchen Spezialeffekt bieten beispielsweise fluoreszierende Haarfarben.

[0009] Aufgabe der vorliegenden Erfindung ist es, Färbemittel für Keratinfasern, insbesondere menschliche Haare, bereitzustellen, die eine ausgefallene und/oder eine fluoreszierende Färbung bewirken. Des weiteren sollen die Färbemittel hinsichtlich der Farbtiefe, der Grauabdeckung und den Echtheitseigenschaften qualitativ den üblichen Oxidationshaarfärbemitteln mindestens gleichwertig sein, ohne jedoch unbedingt Oxidationsmittel wie z. B. H₂O₂ zu benötigen. Darüber hinaus dürfen die Färbemittel kein oder lediglich ein sehr geringes Sensibilisierungspotential aufweisen.

[0010] Überraschenderweise wurde nun gefunden, daß sich die Kombination aus kationischen heterozyklischen Verbindungen gemäß Formel I bzw. II und CH-aciden Verbindungen auch in Abwesenheit von oxidierenden Agentien hervorragend zum Färben von keratinhaltigen Fasern eignet. Der Einsatz von oxidierenden Agentien soll jedoch nicht prinzipiell ausgeschlossen werden. Es ergeben sich Ausfärbungen mit hervorragender Brillanz und Farbtiefe in vielfältigen Farbnuancen, insbesondere über einen Nuancenbereich von gelb über gelbbraun, orange, braunorange, rot, rotbraun, violett bis hin zu blau. Die Färbungen können fluoreszieren, besonders unter der Zuhilfenahme von UV-Licht (Schwarz-

[0011] Haarfärbemittel mit einer Kombination aus CH-aciden Verbindungen und kationischen heterozyklischen Verbindungen gemäß Formel I bzw. II sind dem Fachmann nicht bekannt.

5 [0012] Gegenstand der Erfindung ist ein Mittel zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, enthaltend

A. mindestens eine quaternierte heterozyklische Verbindung gemäß Formel I,

$$\begin{array}{c|c}
R^1 & Y \\
R^2 & N+ \\
R^3 & (I)
\end{array}$$

worin

 R^1 und R^2 stehen unabhängig voneinander für ein Wasserstoffatom, ein Halogenatom, eine Hydroxygruppe, eine C_1 - C_4 -Hydroxyalkylgruppe, eine C_1 - C_6 -Aminoalkylgruppe, eine C_1 - C_4 -Dialkylamino- C_1 - C_4 -alkylgruppe, eine lineare oder verzweigte C_1 - C_6 -Alkylgruppe, eine C_2 - C_6 -Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe, eine Sulfonsäuregruppe, eine Carboxylgruppe, eine Formylgruppe, eine Nitrogruppe, eine Cyanogruppe oder eine Gruppe -NR 4 R 5 , wobei R^4 und R^5 stehen unabhängig voneinander für ein Wasserstoffatom, eine C_1 - C_6 -Alkylgruppe, eine C_2 - C_6 -Alkenylgruppe, eine Aryl- C_1 - C_4 -alkylgruppe oder eine C_1 - C_4 -Hydroxyalkylgruppe, wobei R^1 und R^2 zusammen einen ankondensierten 5- oder 6-gliedrigen, aliphatischen oder aromatischen Ring bilden können, welcher wiederum mit den Resten R^6 und R^7 substituiert ist, wobei R^6 und R^7 stehen unabhängig voneinander für die Reste, die unter R^1 definiert sind,

 R^3 steht für eine C_1 - C_4 -Hydroxyalkylgruppe, eine C_1 - C_6 -Aminoalkylgruppe, eine C_1 - C_4 -Dialkylamino- C_1 - C_4 -alkylgruppe, eine $D1(C_1$ - C_4 -hydroxyalkyl)amino- C_1 - C_4 -alkylgruppe, eine lineare oder verzweigte C_1 - C_6 -Alkylgruppe, eine C_2 - C_6 -Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe,

A steht für ein Chlorid, Bromid, Iodid, Hexafluorophosphat, Tetrachlorozinkat, Tetrafluoroborat, Trifluormethylsulfonat, Methylsulfonat oder p-Toluolsulfonat,

Y steht für ein Sauerstoffatom, ein Schwefelatom, eine Gruppe -N=CH-, eine gegebenenfalls substituierte Methylen- oder eine gegebenenfalls substituierte Vinylengruppe oder eine Gruppe NR⁸, wobei R⁸ für die gleichen Gruppen stehen kann, die unter R⁵ definiert sind,

X¹ steht für ein Halogenatom, eine C₁-C₄-Alkoxygruppe, eine C₁-C₄-Alkylmercaptogruppe, eine Sulfonsäuregruppe oder eine p-Toluolsulfonylgruppe,

mit der Maßgabe, daß wenn Y eine gegebenenfalls substituierte Vinylengruppe ist, die Verbindungen der Formel II 20

wobei

R¹, R², R³ und A⁻ wie oben definiert sind,

einer der Reste X^1 oder X^2 steht für ein Halogenatom, eine C_1 - C_4 -Alkoxygruppe, eine C_1 - C_4 -Alkylmercaptogruppe, eine Sulfonsäuregruppe oder eine p-Toluolsulfonylgruppe und der andere für ein Wasserstoffatom oder die Gruppen, die unter R^1 und R^2 definiert sind, mitumfaßt sind,

40

sowie entsprechenden inneren Salzen, wobei A- entfällt, und

B. mindestens eine CH-acide Verbindung.

[0013] Beispiele für die als Substituenten im Rahmen dieser Anmeldung genannten C₁-C₆-Alkylreste sind die Gruppen Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, sec-Butyl, tert.-Butyl, n-Pentyl, Neopentyl und Hexyl. Ethyl und Methyl sind bevorzugte Alkylreste. Beispiele für bevorzugte C₂-C₆-Alkenylreste sind Vinyl und Allyl. Erfindungsgemäß bevorzugte C₁-C₄-Alkoxyreste sind beispielsweise eine Methoxy- oder eine Ethoxygruppe. Bevorzugte C₁-C₄-Mercaptogruppen sind die Methylmercapto oder die Ethylmercaptogruppe; die Methylmercaptogruppe ist besonders bevorzugt. Weiterhin können als bevorzugte Beispiele für eine C₁-C₆-Hydroxyalkylgruppe eine Hydroxymethyleine 2-Hydroxyethyl-, eine 2-Hydroxypropyl, eine 3-Hydroxypropyl-, eine 4-Hydroxybutylgruppe, eine 1,2-Dihydroxyethylgruppe und die 2,3-Dihydroxypropylgruppe genannt werden. Eine 2-Hydroxyethylgruppe und eine 2,3-Dihydroxypropylgruppe sind besonders bevorzugt. Bevorzugte Arylgruppen sind Phenyl, Naphthyl und Biphenyl. Beispiele für Halogenatome sind F-, Cl-, oder Br-Atome, wobei Cl-Atome ganz besonders bevorzugt sind. Bevorzugte C₁-C₄-Aminoalkylgruppen sind die Aminomethyl-, die Aminoethyl und die Aminopropylgruppe. Beispiele für bevorzugte C₁-C₄-Dialkylamino-C₁-C₄-alkylgruppen sind 2-(N,N-Dimethylamino)ethyl, 2-(N,N-Diethylamino)ethyl, 3-(N,N-Dimethylamino)propyl und 3-(N,N-Diethylamino)propyl. Beispiele für eine Aryl- C₁-C₄-alkylgruppe sind Benzyl und 2-Phenylethyl. Die weiteren verwendeten Begriffe leiten sich erfindungsgemäß von den hier gegebenen Definitionen ab.

[0014] Die Verbindungen mit den Formeln I und II sind zum großen Teil literaturbekannt, im Handel erhältlich oder nach bekannten Syntheseverfahren herstellbar.

[0015] Unter keratinhaltigen Fasern sind Wolle, Pelze, Federn und insbesondere menschliche Haare zu verstehen. Die erfindungsgemäßen Färbemittel können prinzipiell aber auch zum Färben anderer Naturfasern, wie z. B. Baumwolle, Jute, Sisal, Leinen oder Seide, modifizierter Naturfasern, wie z. B. Regeneratcellulose, Nitro-, Alkyl- oder Hydroxyal-kyl- oder Acetylcellulose und synthetischer Fasern, wie z. B. Polyamid-, Polyacrylnitril-, Polyurethan- und Polyesterfasern verwendet werden.

[0016] Bevorzugte Verbindungen gemäß Formel I bzw. Formel II sind Substanzen, in denen das Kation ausgewählt ist aus 2-Chlor-1-ethyl-chinolinium, 4-Chlor-1-ethyl-chinolinium, 2-Chlor-1-methyl-pyridinium, 4-Chlor-1-methyl-pyridinium, 3-Ethyl-2-methylmercapto-benzoxazolium, 2-Chlor-1,3-diethylbenzimidazolium, 2-Chlor-3-ethyl-benzoxazolium oder 2-Chlor-3-ethyl-benzothiazolium und das Gegenion PC ausgewählt ist aus Chlorid, Bromid, Iodid, Hexafluorophosphat, Tetrachlorozinkat, Tetrafluoroborat, Trifluormethylsulfonat, Me-

thylsulfonat oder p-Toluolsulfonat sowie den inneren Salzen 3-Ethyl-benzothiazolium-2-sulfonat, 1-Ethylchinolinium-4-sulfonat und 1-Ethyl-chinolinium-2-sulfonat.

[0017] Besonders bevorzugte Verbindungen gemäß Formel I bzw. II sind 4-Chlor-1-ethylchinolinium-tetrafluororborat, 3-Ethyl-2-methylmercapto-benzothiazolium-tetrafluoroborat und 3-Ethyl-benzothiazolium-2-sulfonat.

5 [0018] Die CH-acide Verbindung ist bevorzugt ausgewählt aus Verbindungen gemäß einer der Formeln C1 bis C22

 M^1 - CH_2 - M^2 (C1)

worin

M¹ eine Gruppe -COM³, COOM³, S(O)M³ oder SO₂M³ ist, worin M³ für ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe steht, oder eine Gruppe -C(M⁴)=C(C \equiv N)₂ bedeutet, worin M⁴ für ein Wasserstoffatom, eine C₁-C₄-Alkylgruppe oder eine Arylgruppe steht,

 M^2 die gleiche Bedeutung wie M^1 hat oder eine Cyanogruppe, eine substituierte oder unsubstituierte Arylgruppe oder Aryl- C_1 - C_4 -alkylgruppe, ein substituierter oder unsubstituierter, gesättigter oder ungesättigter Heterozyklus ist,

15 Verbindungen mit der Formel C2

worin

M⁵ eine Cyanogruppe, eine substituierte oder unsubstituierte Arylgruppe oder eine Aryl- C₁-C₄-alkylgruppe, ein substituierter oder unsubstituierter, gesättigter oder ungesättigter Heterozyklus oder eine Gruppe -COM⁷ oder COOM⁷ ist, worin M⁷ für ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe steht,

 M^6 eine substituierte oder unsubstituierte C_1 - C_6 -Alkylgruppe, eine Acetyloxygruppe, eine C_3 - C_6 -Cycloalkylgruppe, eine substituierte oder unsubstituierte Arylgruppe oder Aryl- C_1 - C_4 -alkylgruppe, eine substituierte oder unsubstituierte Aminoarylgruppe, ein substituierter oder unsubstituierter, gesättigter oder ungesättigter Heterozyklus ist,

30 Verbindungen mit der Formel C3

worin

M⁸ eine Cyanogruppe, eine substituierte oder unsubstituierte Arylgruppe oder Aryl-C₁-C₄-alkylgruppe, ein substituierter oder unsubstituierter, gesättigter oder ungesättigter Heterozyklus oder eine Gruppe -COM¹⁰ oder COOM¹⁰ ist, worin M¹⁰ für ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe steht,

 M^9 eine substituierte oder unsubstituierte Arylgruppe oder Aryl- C_1 - C_4 -alkylgruppe, eine substituierte oder unsubstituierte Aminoarylgruppe, ein substituierter oder unsubstituierter, gesättigter oder ungesättigter Heterozyklus ist, Pyrazolderivate (a), die ausgewählt sein können aus den folgenden Formeln C4 und C5

45
$$M^{1}$$
50 M^{1}
60 M^{1}
 M^{1}

worir

65

M¹¹ und M¹² unabhängig voneinander für eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe, eine Acetyloxygruppe, eine C₃-C₆-Cycloalkylgruppe, eine substituierte oder unsubstituierte Arylgruppe oder Aryl-C₁-C₄-alkylgruppe,

(C5)

eine substituierte oder unsubstituierte Aminoarylgruppe, einen substituierter oder unsubstituierter, gesättigten oder ungesättigten Heterozyklus stehen,

M¹³ ein Wasserstoffatom oder eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe ist,

b) zwei über M¹¹ oder M¹² gebundene Pyrazolringe mit der Formel C4 oder C5 Barbitursäurederivate mit der folgenden Formel C6

10 15 (C6)

5

20

55

M14 und M15 stehen unabhängig voneinander für eine C1-C6-Alkylgruppe, eine C2-C6-Alkenylgruppe, eine C3-C6-Cycloalkylgruppe, eine Aryl-C1-C4-alkylgruppe, eine substituierte oder unsubstituierte Arylgruppe, oder einen über die Reste M¹⁴ oder M¹⁵ gebundenen Bicyclus,

X steht für ein Sauerstoff- oder ein Schwefelatom,

Pyridinderivate mit der Formeln C7a und C7b

M¹⁶ eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe oder substituierte oder unsubstituierte Arylgruppe ist, M¹⁷ ein Wasserstoffatom, eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe oder eine substituierte oder unsubstituierte Arylgruppe ist,

M¹⁸ ein Wasserstoffatom, eine Cyanogruppe, eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe, eine Gruppe COOM¹⁹, worin M¹⁹ ein Wasserstoffatom oder eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe bedeutet, ist, Verbindungen mit der folgenden Formel C8

$$M^{20}$$
 A^{20}
 A^{20}
 A^{20}
 A^{20}
 A^{20}
 A^{20}
 A^{20}
 A^{20}
 A^{20}
 A^{20}

worin

A steht für ein Sauerstoffatom, ein Schwefelatom, eine Sulfoxylgruppe, eine Sulfonylgruppe oder eine Gruppe NM^{20a}, worin M^{20a} ein Wasserstoffatom, eine substituierte oder unsubstituierte C₁-C₆-Alkylengruppe bedeutet, M^{20} und M^{21} stehen unabhängig voneinander für ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Hydroxygruppe, eine Nitrogruppe, eine C_1 - C_6 -Alkylgruppe, eine C_1 - C_6 -Alkoxy-, eine Carboxamid-, eine Sulfonamid-, eine Carboxyl-, eine C_1 - C_4 -Acyl, eine Cyanogruppe oder eine Aminogruppe -NM²²M²³, in der M²² und M²³ unabhängig voneinander stehen

für ein Wasserstoffatom oder eine C1-C6-Alkylgruppe, Verbindungen mit den Formeln C9 und C10

A' steht für ein Sauerstoffatom, ein Schwefelatom oder eine Gruppe NM²⁵, worin M²⁵ ein Wasserstoffatom oder eine 65 substituierte oder unsubstituierte C1-C6-Alkylgruppe bedeutet,

M²⁴ steht für ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Hydroxygruppe, eine Nitrogruppe, eine C₁-C₆-Alkyl-, eine C1-C6-Alkoxy-, eine Carboxamid-, eine Sulfonamid-, eine Carboxyl-, eine C1-C4-Acyl, eine Cyanogruppe oder eine

Aminogruppe -NM²⁶M²⁷, in der M²⁶ und M²⁷ unabhängig voneinander stehen für Wasserstoff und eine C₁-C₆-Alkylgruppe

Verbindungen mit der Formel C11

15 worin

M²⁸ ein Wasserstoffatom, eine Hydroxygruppe, eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe oder eine substituierte oder unsubstituierte Aryl- oder C1-C6-Alkylarylgruppe ist;

M²⁹ steht für ein Wasserstoffatom oder eine C₁-C₄-Alkylgruppe

Indandionderivate mit der Formel C12

30 worin

35

M³⁰ ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Nitro-, eine C₁-C₆-Alkyl-, eine C₁-C₆-Alkoxy-, eine Carboxamid-, eine Sulfonamid- oder eine Cyanogruppe ist,

Verbindungen mit der Formel C13

Z steht für ein Sauerstoffatom oder eine Gruppe NM³², worin M³² ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe be-

Z' steht für ein Schwefelatom oder eine Gruppe NM³³, worin M³³ ein Wasserstoffatom oder eine C₁-C₆-Alkylgruppe be-

M³¹ steht für ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe oder eine C₁-C₄-Carboxyalkylgruppe, Dioxopyrazolverbindungen mit der Formel C14

60 worin

M³4 und M³5 stehen unabhängig voneinander für ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Hydroxygruppe, eine Nitrogruppe, eine C₁-C₆-Alkyl-, eine C₁-C₆-Alkoxy-, eine Carboxamid-, eine Sulfonamid-, eine Carboxyl-, eine C₁-C₄-Acyl, eine Cyanogruppe oder eine Aminogruppe -NM³⁶M³⁷, in der M³⁶ und M³⁷ unabhängig voneinander stehen für Wasserstoff oder eine C1-C6-Alkylgruppe,

5-Oxoimidazolderivate mit der Formel C15

5

10

15

20

25

60

65

$$M^{38}$$
 M^{39}
(C15)

worin M³⁸ und M³⁹ stehen unabhängig voneinander für ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Hydroxygruppe, eine Nitrogruppe, eine C₁-C₆-Alkoxy-, eine Carboxamid-, eine Sulfonamid-, eine Carboxyl-, eine C₁-C₄-Acyl, eine Cyanogruppe oder eine Aminogruppe -NM⁴¹M⁴², in der M⁴¹ und M⁴² unabhängig voneinander stehen für ein

Wasserstoffatom oder eine C₁-C₆-Alkylgruppe,

 $\rm M^{40}$ steht für ein Waserstoffatom oder eine $\rm C_1\text{-}C_6\text{-}Alkylgruppe}$, Derivate von Dehydrobutyrolacton mit der Formel C16

$$\begin{array}{c}
M^{43} \\
M^{44}
\end{array}$$
(C16)

worin M^{43} und M^{44} unabhängig voneinander stehen für ein Wasserstoff-, ein Chlor-, ein Bromatom, eine Hydroxygruppe, eine Nitrogruppe, eine C_1 - C_6 -Alkyl-, eine C_1 - C_6 -Alkoxy-, eine Carboxamid-, eine Sulfonamid-, eine Carboxyl-, eine C_1 - C_4 -Acyl, eine Cyanogruppe oder eine Aminogruppe -NM 45 SM 46 in der M 45 und M 46 unabhängig voneinander stehen für ein Wasserstoffatom oder eine C_1 - C_6 -Alkylgruppe

Verbindungen mit der Formel C17

30

$$D^{1} \longrightarrow D^{2}$$
(C17)

worin

D1 ist ein ankondensierter aromatischer oder heteroaromatischer Ring,

D² ist eine Carbonylgruppe, eine Gruppe C=CD¹D^{II} oder eine Gruppe CD¹D^{II}, in welchen D¹ oder D^{II} jeweils ein Substituent mit einer Hammett-Konstante zwischen 0,4 und 2,0 oder beide Substituenten in der Summe eine Hammett-Konstante zwischen 0,4 und 2,0 aufweisen;

 D^3 steht für eine Carbonylgruppe, ein Sauerstoff-, ein Schwefelatom, eine Gruppe NM^{47} , wenn D^2 nicht Sauerstoff ist, oder eine Gruppe C=S, eine Gruppe C=NR⁴⁸ eine Sulfinylgruppe, eine Sulfonylgruppe, wobei R⁴⁷ und R⁴⁸ unabhängig voneinander ein Wasserstoffatom oder einen C_1 - C_4 -Alkylrest bedeuten, Hydroxypyrimidinderivate mit der Formel C18

$$M^{49}$$
 N^{50}
 E^{2}
 E^{3}
(C18)

worin

M⁴⁹ und M⁵⁰ unabhängig voneinander ein Wasserstoffatom oder eine substituierte oder unsubstituierte C₁-C₆-Alkylgruppe sind,

E1 für ein Sauerstoff, ein Schwefelatom oder eine Gruppe NH steht,

E² für eine Gruppe NH oder ein Sauerstoffatom steht,

E³ für eine Aminogruppe oder eine Hydroxygruppe steht, mit der Maßgabe, daß

a) wenn E^1 und E^2 für ein Sauerstoffatom stehen, E^3 keine Hydroxygruppe ist, und b) wenn E^1 ein Schwefelatom und E^2 ein Sauerstoffatom ist, E^3 keine Hydroxygruppe ist,

quaternierte Stickstoffverbindungen der Formel C19

$$M^{51}$$
 M^{51} M^{51} M^{51} M^{51} M^{53} (C19)

0 worin

M⁵¹ und M⁵² stehen unabhängig voneinander für ein Wasserstoffatom, ein Halogenatom, eine Hydroxygruppe, eine C₁-C₄-Hydroxyalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino-C₁-C₄-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe, eine Sulfonsäuregruppe, eine Carboxylgruppe, eine Formylgruppe, eine Nitrogruppe, eine Cyanogruppe oder eine Gruppe - NM⁵⁴M⁵⁵, wobei M⁵⁴ und M⁵⁵ stehen unabhängig voneinander für ein Wasserstoffatom, eine C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine Aryl- C₁-C₄-alkylgruppe oder eine C₁-C₄-Hydroxyalkylgruppe, wobei M⁵¹ und M⁵² zusammen einen ankondensierten 5- oder fegliedrigen, aliphatischen oder aromatischen bzw. heteroaromatischen Ring bilden

men einen ankondensierten 5- oder 6-gliedrigen, aliphatischen oder aromatischen bzw. heteroaromatischen Ring bilden können, welcher wiederum mit den Resten M⁵⁶ und M⁵⁷ substituiert ist, wobei M⁵⁶ und M⁵⁷ stehen unabhängig voneinander für die Reste, die unter M⁵¹ definiert sind,

M⁵³ steht für ein Wasserstoffatom, eine C₁-C₄-Hydroxyalkylgruppe, eine C₁-C₆-Aminoalkylgruppe, eine C₁-C₄-Dialkylamino- C₁-C₄-alkylgruppe, eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₂-C₆-Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe, eine C₁-C₄-Sulfonylalkylgruppe, eine C₁-C₄-Carboxyalkylgruppe oder eine C₂-C₆-Polyhydroxyalkylgruppe,

Y steht für ein Sauerstoffatom, ein Schwefelatom, eine gegebenenfalls substituierte Methylengruppe oder eine Gruppe NMW, wobei MW für die gleichen Gruppen stehen kann, die unter M⁵⁵ definiert sind,

A steht für ein Chlorid, Bromid, Iodid, Hexafluorophosphat, Tetrachlorozinkat, Tetrafluoroborat, Trifluormethylsulfonat, Methylsulfonat oder p-Toluolsulfonat,

Qniumverbindungen der Formeln C20 und C21

30 Me

$$51$$
 M^{51} M^{51} M^{53} M^{53}

o wobei

M⁵¹, M⁵², M⁵³ und A⁻ aus den Gruppen ausgewählt werden, die unter Verbindung C19 definiert sind.

[0019] Unter CH-acide Verbindungen fallen ertindungsgemäß auch Enamine, die aus quaternierten N-Heterocyclen mit einer in Konjugation zum quatären Stickstoff stehenden CH-aciden Alkylgruppe durch alkalische Behandlung entstehen. Als Beispiele für geeignete Enamine können Verbindungen mit der allgemeinen Formel C22 genannt werden,

$$M^{63}$$
 $C = C$
 H
 $M^{61} = N$
 M^{62}
 M^{62}
 M^{62}
 M^{62}
 M^{63}
 M^{63}
 M^{63}
 M^{63}
 M^{63}
 M^{63}
 M^{63}
 M^{64}
 M^{65}

•

worin M^{61} steht für einen aromatischen Rest, insbesondere für einen gegebenenfalls mit einer C_1 - C_4 -Alkyl-, C_1 - C_4 -Hydroxyalkyl-, Hydroxy-, Methoxy- oder Halogengruppe substituierten 5-gliedrigen oder 6-gliedrigen Arylrest, vorzugsweise ein Phenylrest, oder einen 5-gliedrigen oder 6-gliedrigen, ankondensierten, aliphatischen oder aromatischen, carbozyklischen oder heterozyklischen Ring, vorzugsweise einen Phenylrest, einen Chinolin- oder Pyridylrest,

M⁶² steht für ein Wasserstoffatom, eine lineare oder verzweigte C₁-C₈-Alkyl-, eine lineare oder verzweigte C₁-C₈-Hydroxyalkyl- oder eine C₁-C₈-Alkoxyalkylgruppe, wobei zwischen den C-Atomen der Alkylkette ein Sauerstoffatom sitzen kann, und

M⁶³ steht für eine lineare oder verzweigte C₁-C₆-Alkylgruppe, eine C₁-C₆-Alkoxy- C₁-C₆-alkylgruppe, eine C₁-C₆-Alkylamino- C₁-C₆-alkylgruppe, eine C₁-C₆-Alkylamino- C₁-C₆-alkylgruppe, eine C₁-C₆-alkylengruppe, eine C₁-C₆-Alkylamino- C₁-C₆-alkylengruppe, eine C₁-C₆-alkylengruppe,

grundstruktur eine cyclische Verbindung bilden, wenn M⁶³ gleich einer linearen oder verzweigten C₁-C₈-Alkylengruppe, einer C_1 - C_6 -Alkoxyalkylengruppe, eine C_1 - C_6 -Alkylamino- C_1 - C_6 -alkylengruppe, eine C_1 - C_6 -Alkylmercapto- C_1 - C_6 -alkylengruppe, einem Sauerstoffatom, einem Stickstoffatom oder einem Schwefelatom ist, wobei vorzugsweise M^{63} am aromatischen Rest M⁶¹ mit dem Kohlenstoff verbunden ist, der in ortho-Stellung zum Enamin-substituierten Kohlenstoff

In einer besonders bevorzugten Ausführungsform sind die CH-aciden Verbindungen ausgewählt aus 1,2,3,3-Tetramethyl-3H-indoliumiodid, 1,2,3,3-Tetramethyl-3H-indoliump-toluolsulfonat, 1,2,3,3-Tetramethyl-3H-indoliummethansulfonat, 1,3,3-Trimethyl-2-methylenindolin (Fischersche Base), 2,3-Dimethyl-benzothiazoliumiodid, 2,3-Dimethyl-2-methylenindolin (Fischersche Base), 2,3-Dimethyl-benzothiazoliumiodid, 2,3-Dimethyl-2-methyl thylbenzothiazolium-p-toluolsulfonat, 2,3-Dimethyl-naphtho[1,2-d]thiazolium-p-toluolsulfonat, 3-Ethyl-2-methylnaphtho[1,2-d]thiazolium-p-toluolsulfonat, Rhodanin, Rhodanin-3-essigsäure, 1,4-Dimethylchinolinium-iodid, 1,2-Dimethylchinolinium-iodid, Barbitursäure, Thiobarbitursäure, 1,3-Dimethylthiobarbitursäure, 1,3-Diethylthiobarbitursäure, 1,3-Diethylbarbitursäure, Oxindol, 3-Indoxylacetat, 2-Cumaranon, 5-Hydroxy-2-cumaranon, 6-Hydroxy-2-cumaranon, 1-Methyl-3-phenyl-pyrazolin-5-on, Indan-1,2-dion, Indan-1,3-dion, Indan-1-on, Benzoylacetonitril, 3-Dicyanmethylenindan-1-on, 1,3-Diiminoisoindolin, 2-Amino-4-imino-1,3-thiazolin-hydrochlorid, 5,5-Dimethylcyclohexan-1,3-dion, 2H-1,4-Benzoxazin-4H-3-on, 3-Ethyl-2-methylbenzoxazoliumiodid, 3-Ethyl-2-methylbenzothiazoliumiodid, 1-Ethyl-4-methylchinoliniumiodid, 1-Ethyl-2-methylchinoliniumiodid, 1,2,3-Trimethylchinoxaliniumiodid, 3-Ethyl-2methylbenzoxazolium-p-toluolsulfonat, 3-Ethyl-2-methyl-benzothiazolium-p-toluolsulfonat, 1-Ethyl-4-methyl-chinolinium-p-toluolsulfonat, 1-Ethyl-2-methylchinolinium-p-toluolsulfonat, und 1,2,3-Trimethylchinoxalinium-p-toluolsulfonat.

[0021] Färbungen mit noch erhöhter Brillanz und verbesserten Echtheitseigenschaften (Lichtechtheit, Waschechtheit, Reibechtheit) über einen weiten Nuancenbereich werden erzielt, wenn die erfindungsgemäß eingesetzten Verbindungen der Formeln I bzw II gemeinsam mit mindestens einer weiteren Komponente (im folgenden Komponente C genannt), ausgewählt aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden sowie (d) Verbindungen mit primärer oder sekundärer Aminogruppe oder Hydroxygruppe, ausgewählt aus primären oder sekundären aromatischen Aminen, stickstoffhaltigen heterocyclischen Verbindungen und aromatischen Hydroxyverbindungen und deren physiologisch verträglichen Salzen verwendet werden. Dies sind einerseits Verbindungen, die für sich alleine keratinhaltige Fasern nur schwach färben und erst gemeinsam mit den Verbindungen der Formeln I bzw. II brillante Färbungen ergeben.

[0022] Andererseits sind darunter aber auch Verbindungen, die bereits als Oxidationsfarbstoffvorprodukte eingesetzt werden.

[0023] In einer zweiten Ausführungsform ist es daher bevorzugt, dem Färbemittel zusätzlich eine Komponente C, enthaltend mindestens eine Verbindung ausgewählt aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden und (d) Verbindungen mit primärer oder sekundärer Amino- oder Hydroxygruppe, ausgewählt aus aromatischen Hydroxyverbindungen, primären oder sekundären aromatischen Aminen und stickstoffhaltigen heterozyklischen Verbindungen, zu addieren.

[0024] Bevorzugt enthält die Komponente C mindestens eine Verbindung ausgewählt aus aromatischen oder heteroaromatischen Aldehyden oder Ketonen.

[0025] Bevorzugt eingesetzte aromatische oder heteroaromatische Aldehyde oder Ketone sind ausgewählt aus

- 5-(4-Dimethylaminophenyl)-penta-2,4-dienal, 5-(4-Diethylaminophenyl)-penta-2,4-dienal, 5-(4-Methoxyphenyl)-penta-2,4-dienal, 5-(3,4-Dimethoxyphenyl)-penta-2,4-dienal, 5-(2,4-Dimethoxyphenyl)-penta-2,4-dienal, 5-(4-Piperidinophenyl)-penta-2,4-dienal, 5-(4-Morpholinophenyl)-penta-2,4-dienal, 5-(4-Pyrrolidinophenyl)-penta-2,4-dienal, 6-(4-Dimethylaminophenyl)-hexa-3,5-dien-2-on, 6-(4-Diethylaminophenyl)-hexa-3,5-dien-2-on, 6-(4-Diethylaminophenyl) Methoxyphenyl)-hexa-3,5-dien-2-on, 6-(3,4-Dimethoxyphenyl)-hexa-3,5-dien-2-on, 6-(2,4-Dimethoxyphenyl)hexa-3, 5-dien-2-on, 6-(4-Piperidinophenyl)-hexa-3,5-dien-2-on, 6-(4-Morpholinophenyl)-hexa-3,5-dien-2-on, 6-(4-Pyrrolidinophenyl)-hexa-3, 5-dien-2-on, 5-(4-Dimethylaminonaphth-1-yl)-penta-2,4-dienal,

2-Nitropiperonal, 5-Nitropiperonal, 6-Nitropiperonal, 5-Hydroxy-2-nitropiperonal, 2-Hydroxy-5-nitropiperonal,

2-Chlor-6-nitropiperonal, 5-Chlor-2-nitropiperonal, 2,6-Dinitropiperonal,

- 2-Nitrobenzaldehyd, 3-Nitrobenzaldehyd, 4-Nitrobenzaldehyd, 4-Methyl-3-nitrobenzaldehyd, 3-Hydroxy-4-nitrobenzaldehyd, 4-Hydroxy-3-nitrobenzaldehyd, 5-Hydroxy-2-nitrobenzaldehyd, 2-Hydroxy-5-nitrobenzaldehyd, 2-Hydroxy-3-nitrobenzaldehyd, 2-Fluor-3-nitrobenzaldehyd, 3-Methoxy-2-nitrobenzaldehyd, 4-Chlor-3-nitrobenzaldehyd, 2-Chlor-6-nitrobenzaldehyd, 5-Chlor-2-nitrobenzaldehyd, 4-Chlor-2-nitrobenzaldehyd, 2,4-Dinitrobenzaldehyd, 2,6-Dinitrobenzaldehyd, 2-Hydroxy-3-methoxy-5-nitrobenzaldehyd, 4,5-Dimethoxy-2-nitrobenzaldehyd, 5-Nitrovanillin, 3,5-Dinitrosalicylaldehyd, 5-Brom-3-nitrosalicylaldehyd, 3-Nitro-4-formylbenzolsulfonsäure, 4-Nitro-1-naphthaldehyd, 2-Nitrozimtaldehyd, 3-Nitrozimtaldehyd, 4-Nitrozimtaldehyd,

 Carbazolaldehyde oder Carbazolketone, insbesondere 9-Methyl-3-carbazolaldehyd, 9-Ethyl-3-carbazolaldehyd, 3-Acetylcarbazol, 3,6-Diacetyl-9-ethylcarbazol, 3-Acetyl-9-methylcarbazol, 1,4-Dimethyl-3-carbazolaldehyd,

1,4,9-Trimethyl-3-carbazolaldehyd,

- 4-Trimethylammoniobenzaldehyd-, 4-Benzyldimethylammoniobenzaldehyd-, 4-Trimethylammoniozimtaldehyd-, 4-Trimethylammonionaphthaldehyd-, 2-Methoxy-4-trimethylammoniobenzaldehyd-, N-(4-Acetylphenyl)trimethylammonium-, 4-(N,N-Diethyl)-N-methylammonio)-benzaldehyd-, N-(4-Benzoylphenyl)-trimethylammonium-, N-(4-Benzoylphenyl)-N,Ndiethylmethylammonium-, N-(4-Formylphenyl)-N-methylpyrrolidinium-, N-(4-Formylphenyl)-N-methylpiperidinium-, N-(4-Formylphenyl)-N-methylmorpholinium-, N-(4-Acetylphenyl)-Nmethylmorpholinium-, N-(4-Benzoylphenyl)-N-methylmorpholinium-, 3-Formyl-N-ethyl-N-methylcarbazolium-, $3-Formyl-9, 9-dimethyl carbazolium-, \ 1-(4-Acetylphenyl)-3-methyl imidazolium-, \ 1-(4-Acetylphenyl)-3-methyl-2-methyl imidazolium-, \ 1-(4-Acetylphenyl)-3-methyl imidazolium-, \ 1-(4-Acetylpheny$ imidazolinium-, 1-(4-Benzoylphenyl)-3-methylimidazolium-, 5-Acetyl-1,3-diethyl-2-methylbenzimidazolium-, 5-Trimethylammonio-1-indanon-Salze, insbesondere die Benzolsulfonate, p-Toluolfulfonate, Methansulfonate, Ethansulfonate, Propansulfonate, Perchlorate, Sulfate, Chloride, Bromide, Iodide, Tetrachlorozinkate, Methylsulfate,

Trifluormethansulfonate, Hexafluorophosphate, Tetrafluoroborate, - 4-Formyl-1-methylpyridinium-, 2-Formyl-1-methylpyridinium-, 4-Formyl-1-ethylpyridinium-, 2-Formyl-1ethylpyridinium-, 4-Formyl-1-benzylpyridinium-, 2-Formyl-1-benzylpyridinium-, 4-Formyl-1,2-dimethylpyridinium-, 4-Formyl-1,3-dimethylpyridinium-, 4-Formyl-1-methylchinolinium-, 2-Formyl-1-methylchinolinium-, 4-Acetyl-1-methylpyridinium-, 2-Acetyl-1-methylpyridinium-, 4-Acetyl-1-methylchinolinium-, 5-Formyl-1-methyl-5 chinolinium-, 6-Formyl-1-methylchinolinium-, 7-Formyl-1-methylchinolinium-, 8-Formyi-1-methylchinolinium, 5-Formyl-1-ethylchinolinium-, 6-Formyl-1-ethylchinolinium-, 7-Formyl-1-ethylchinolinium-, 8-Formyl-1-ethylchinolinium, 5-Formyl-1-benzylchinolinium-, 6-Formyl-1-benzylchinolinium-, 7-Formyl-1-benzylchinolinium-, 8-Formyl-1-benzylchinolinium, 5-Formyl-1-allylchinolinium-, 6-Formyl-1-allylchinolinium-, 7-Formyl-1-allylchinoliniumnolinium- und 8-Formyl-1-allylchinolinium-, 5-Acetyl-1-methylchinolinium-, 6-Acetyl-1-methylchinolinium-, 7-10 Acetyl-1-methylchinolinium-, 8-Acetyl-1-methylchinolinium, 5-Acetyl-1-ethylchinolinium-, 6-Acetyl-1-ethylchinoliniumnolinium-, 7-Acetyl-1-ethylchinolinium-8-Acetyl-1-ethylchinolinium, 5-Acetyl-1-benzylchinolinium-, 6-Acetyl-1benzylchinolinium-, 7-Acetyl-1-benzylchinolinium-, 8-Acetyl-1-benzylchinolinium, 5-Acetyl-1-allylchinolinium-, 6-Acetyl-1-allylchinolinium-, 7-Acetyl-1-allylchinolinium- und 8-Acetyl-1-allylchinolinium, 9-Formyl-10-methylacridinium-, 4-(2-Formylvinyl)-1-methylpyridinium-, 1,3-Dimethyl-2-(4-formyfphenyl)-benzimidazofinium-, 15 1,3-Dimethyl-2-(4-formylphenyl)-imidazolinium-, 2-(4-Formylphenyl)-3-methylbenzothiazolium-, 2-(4-Acetylphenyl)-3-methylbenzothiazolium-, 2-(4-Formylphenyl)-3-methylbenzoxazolium-, 2-(5-Formyl-2-furyl)-3-methylbenzothiazolium-, 2-(5-Formyl-2-thienyl)-3-methylbenzothiazolium-, 2-(3-Formylphenyl)-3-methylbenzothiazolium-, 2-(4-Formylnaphth-1-yl)-3-methylbenzothiazolium-, 5-Chlor-2-(4-formylphenyl)-3-methylbenzothiazolium-, 2-(4-Formylphenyl)-3,5-dimethylbenzothiazollum-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-pyridinium-, 20 1-Methyl-4-[2-(4-acetylphenyl)-ethenyl]-pyridinium, 1-Benzyl-4-[2-(4-formylphenyl)-ethenyl]-pyridinium, 1-Methyl-4-[2-(4-formylphenyl)-ethenyl]-pyridinium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-pyridinium-, Methyl-4-[2-(4-formylphenyl)-ethenyl]-chinolinium, 1-Methyl-2-[2-(4-formylphenyl)-ethenylj-chinolinium-, 1-Methyl-2-[2-(5-formyl-2-furyl)-ethenyl]-chinolinium-, 1-Methyl-2-[2-(5-formyl-2-thienyl)-ethenyl]-chinolinium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenylj-benzothiazolinium-, 1,3-Dimethyl-2-[2-(4-formylphenyi)-ethenyl]-benzothiazolinium-, 25 zimidazolinium-, 1,3-Dimethyl-2-[2-(4-formylphenyl)-ethenyl]-imidazolinium-, 1-Methyl-5-oxo-indeno[1,2-b]py-1-Ethyl-5-oxo-indeno[1,2-b]pyridinium(4-Ethyl-4-azonio-9-fluoreridinium(4-methyl-4-azonio-9-fluorenon-), non-), 1-Benzyl-5-oxo-indeno[1,2-b]pyridinium(-4-benzyl-4-azonio-9-fluorenon-), 2-Methyl-5-oxo-indeno[1,2-b] c]pyridinium-, 2-Methyl-9-oxo-indeno[2,1-c]pyridinium-, 1-Methyl-9-oxo-indeno[2,1-b]pyridinium-salze, insbesondere Benzolsulfonat, p-Toluolsulfonat, Methansulfonat, Perchlorat, Sulfat, Chlorid, Bromid, Iodid, Tetrachloro-30 zinkat, Methylsulfat, Trifluormethansulfonat, Tetrafluoroborat, Salicylaldehyd, Vanillin, 4-Hydroxy-3-methoxyzimtaldehyd (Coniferylaldehyd), 2,4-Dihydroxybenzaldehyd, 4-Dimethylaminobenzaldehyd, 4-Diethylaminobenzaldehyd, 4-Dimethylamino-2-hydroxybenzaldehyd, 4-Pyrrolidinobenzaldehyd, 4-Morpholinobenzaldehyd, 4-Piperidinobenzaldehyd, 4-Dimethylaminoacetophenon, 4-Hydroxynaphthaldehyd, 4-Dimethylaminonaphthaldehyd, 4-Dimethylaminobenzylidenaceton, 4-Dimethylaminozimtalde-35 hyd, 2-Dimethylaminobenzaldehyd, 2-Chlor-4-dimethylaminobenzaldehyd, 4-Dimethylamino-2-methylbenzaldehyd, trans-4-Diethylaminozimtaldehyd, 4-(Dibutylamino)-benzaldehyd, 4-Diphenylaminobenzaldehyd, 2,3,6,7-Tetrahydro-1H,5H-benzo[ij]chinolizin-9-carboxaldehyd, 4-Dimethylamino-2-methoxybenzaldehyd, 2,3,6,7-Tetrahydro-8-hydroxy-1H,5H-benzo[ij]chinolizin-9-carboxaldehyd, 4-(1-Imidazolyl)-benzaldehyd, 2-Morpholinobenzaldehyd, Indol-3-carboxaldehyd, 1-Methylindol-3-carboxaldehyd, N-Ethylcarbazol-3-carboxaldehyd, 2-Formylme-40 thylen-1,3,3-trimethylindolin (Tribasen Aldehyd) - 1,3-Diacetylbenzol, 1,4-Diacetylbenzol, 1,3,5-Triacetylbenzol, 2-Benzoyl-acetophenon, 2-(4-Methoxybenzoyl)acetophenon, 2-(2-Furoyl)-acetophenon, 2-(2-Pyridoyl)-acetophenon, 2-(3-Pyridoyl)-acetophenon, - 1-Phenyl-1,2-propandion, 1-Phenyl-1,2-butandion, 1-Phenyl-3,3-dimethyl-1,2-butandion, Benzil, Anisil, Salicil, 5,5'-Dibromsalicil, 2,2'-Furil, 2,2'-Thienil, 2,2'-, 4,4'-Pyridil, 6,6'-Dimethyl-4,4'-pyridil, 4-Hydroxy-, 4-Methoxy-, 45 4-Chlor-, 4-Methyl-, 4-Dimethylamino-, 4,4'-Dihydroxy-, -Dimethyl-, -Dibrom-, -Dichlor-, -Bisdimethylamino-, 2,4-Dihydroxy-, 3,3'-Dimethoxy, 2'-Chlor-3,4-dimethoxy-, 3,4,5,3',4',5'-Hexamethoxybenzil, - Isatinderivate, wie 5-Chlorisatin, 5-Methoxyisatin, 5-Nitroisatin, 6-Nitroisatin, 5-Sulfoisatin, Isatin-5-sulfonsäure, Isatin-4-carbonsäure und Isatin-5-carbonsäure, - N-substituierte Isatin-Derivate, wie N-Methylisatin, N-(2-Hydroxyalkyl)-isatin, N-(2-Hydroxypropyl)-isatin, N-50 (3-Hydroxypropyl)-isatin, N-(2,3-Dihydroxypropyl)-isatin, N-(2-Sulfoethyl)-isatin, (3-Sulfopropyl)-isatin, N-Allylisatin, N-Vinylisatin, N-Benzylisatin, N-(4-Methoxybenzyl)-isatin, N-(4-Carboxybenzyl)-isatin, N-(4-Sulfobenzyl)-isatin, N-(2-Dimethylaminoethyl)-isatin, N-(2-Pyrrolidinoethyl)-isatin, N-(2-Piperidinoethyl)-isatin, (2-Morpholinoethyl)-isatin, N-(2-Furylmethyl)-isatin, N-(Thien-2-ylmethyl)-isatin, N-(Pyrid-2-ylmethyl)-isatin, N-(Pyrid-2-ylmethyl)-isati rid-3-ylmethyl)-isatin, N-(Pyrid-4-ylmethyl)-isatin, N-Allylisatin-5-sulfonsäure, 5-Chlor-N-(2-hydroxyethyl)-isatin, 55 tin, 5-Methyl-N-(2-hydroxyethyl)-isatin, 5,7-Dichlor-N-allylisatin, 5-Nitro-N-allylisatin, N-Hydroxymethylisatin, N-Hydroxymethyl-5-methylisatin, N-Hydroxymethyl-5-chlorisatin, N-Hydroxymethyl-5-sulfoisatin, methyl-5-carboxyisatin, N-Hydroxymethyl-5-nitroisatin, N-Hydroxymethyl-5-bromisatin, N-Hydroxymethyl-5methoxyisatin, N-Hydroxymethyl-5,7-dichlorisatin, N-Dimethylaminomethylisatin, N-Diethylaminomethylisatin, N-(Bis-(2-hydroxyethyl)-aminomethyl)-isatin, N-(2-Hydroxyethylaminomethyl)-isatin, N-(Bis-(2-hydroxypro-60 pyl)-aminomethyl)-isatin, N-Pyrrolidinomethylisatin, N-Piperidinomethylisatin, N-Morpholinomethylisatin, N-(1,2,4-Triazolyl)-methylisatin, N-(1-Imidazolyl)-methylisatin, N-Carboxymethylaminomethylisatin, N-(2-Carboxyethylaminomethyl)-isatin, N-(3-Carboxypropylaminomethyl)-isatin, N-(Bis-(2-hydroxyethyl)-aminomethyl)-5-methylisatin, N-Piperidinomethyl-5-chlorisatin, N-(2-Sulfoethylamino)-isatin, sowie die Alkali- und gegebenen-

Acetophenon, Propiophenon, 2-Hydroxyacetophenon, 3-Hydroxyacetophenon, 4-Hydroxyacetophenon, 2-Hydroxypropiophenon, 3-Hydroxypropiophenon, 2-Hydroxybutyrophenon, 3-Hydroxybutyrophenon, 2,4-Dihydroxyacetophenon, 2,5-Dihydroxyacetophenon, 2,6-Dihydroxyacetophenon, 2,

falls Ammoniumsalze der sauren Verbindungen, Chinisatin und deren Derivate, wie N-Methylchinisatin,

65

tophenon, 2,3,4-Trihydroxyacetophenon, 3,4,5-Trihydroxyacetophenon, 2,4,6-Trihydroxyacetophenon, 2,4,6-Trimethoxyacetophenon, 3,4,5-Trimethoxyacetophenon, 3,4,5-Trimethoxy-acetophenon, 3,5-Dimethoxy-acetophenon, 4-Amino-acetophenon, 4-Dimethylamino-acetophenon, 4-Morpholino-acetophenon, 4-Piperidinoacetophenon, 4-Imidazolino-acetophenon, 2-Hydroxy-5-bromacetophenon, 4-Hydroxy-3-nitroacetophenon, Acetophenon-2-carbonsäure, Acetophenon-4-carbonsäure, Benzophenon, 4-Hydroxy-benzophenon, 2-Amino-benzophenon, 4,4'-Dihydroxy-benzophenon, 2,4-Dihydroxy-benzophenon, 2,4,4'-Trihydroxybenzophenon, 2,3,4-Trihydroxybenzophenon, 2-Hydroxy-1-acetonaphthon, 1-Hydroxy-2-acetonaphthon, Chromon, Chromon-2-carbonsäure, Flavon, 3-Hydroxyflavon, 3,5,7-Trihydroxyflavon, 4',5,7-Trihydroxyflavon, 5,6,7-Trihydroxyflavon, Quercetin, Indanon, 9-Fluorenon, 3-Hydroxyfluorenon, Anthron, 1,8-Dihydroxyanthron,

- heterocyclische Carbonylverbindungen, wie 2-Indolaldehyd, 3-Indolaldehyd, 1-Methylindol-3-aldehyd, 2-Methylindol-3-aldehyd, 1-Acetylindol-3-aldehyd, 3-Acetylindol, 1-Methyl-3-acetylindol, 2-(1,3,3-Trimethyl-2-indolinyliden)-acetaldehyd, 1-Methylpyrrol-2-aldehyd, 1-Methyl-2-acetylpyrrol, 1-Pyridinaldehyd, 2-Pyridinaldehyd, 3-Pyridinaldehyd, 4-Acetylpyridin, 2-Acetylpyridin, 3-Acetylpyridin, Pyridoxal, Chinolin-3-aldehyd, Chinolin-4-aldehyd, Antipyrin-4-aldehyd, Furfural, 5-Nitrofurfural, 2-Thenoyl-trifluor-aceton, Chromon-3-aldehyd, 3-(5-Nitro-2-furyl)-acrolein, 3-(2-Furyl)-acrolein, Imidazol-2-aldehyd,

15

20

- Indanon-Derivate, wie z. B. 1,2-Indandion, 2-Oximo-1-indanon, Indan-1,2,3-trion-2-oxim, 5-Methoxy-indan-1,2,3-trion-2-oxim, 2-Nitro-1,3-indandion

sowie physiologisch verträgliche Salze der voranstehenden Verbindungen.

[0026] Die primären und sekundären aromatischen Amine der Komponente C sind bevorzugt ausgewählt aus N,N-Dimethyl-p-phenylendiamin, N,N-Diethyl-p-phenylendiamin, N-(2-Hydroxyethyl)-N-ethyl-p-phenylendiamin, N,N-Bis-(2-hydroxyethyl)-p-phenylendiamin, N-(2-Methoxyethyl)-p-phenylendiamin, 2,3-Dichlor-p-phenylendiamin, 2,4-Dichior-pphenylendiamin, 2,5-Dichlor-p-phenylendiamin, 2-Chlor-p-phenylendiamin, 2,5-Dihydroxy-4-morpholinoanilin, 2-Aminophenol, 3-Aminophenol, 4-Aminophenol, 2-Aminomethyl-4-aminophenol, 2-Hydroxymethyl-4-aminophenol, o-Phenylendiamin, m-Phenylendiamin, p-Phenylendiamin, 2,5-Diaminotoluol, 2,5-Diaminophenol, 2,5-Diaminoanisol, 2,5,Diaminophenethol, 4-Amino-3-methylphenol, 2-(2,5-Diaminophenyl)-ethanol, 2,4-Diaminophenoxyethanol, 2-(2,5-Diaminophenoxy)-ethanol, 3-Amino-4-(2-hydroxyethyloxy)phenol, 3,4-Methylendioxyphenol, 3,4-Methylendioxyanilin, 3-Amino-2,4-dichlorphenol, 4-Methylaminophenol, 2-Methyl-5-aminophenol, 3-Methyl-4-aminophenol, 2-Methyl-5-(2-hydroxyethylamino)phenol, 3-Amino-2-chlor-6-methylphenol, 2-Methyl-5-amino-4-chlorphenol, 5-(2-Hydroxyethylamino)-4-methoxy-2-methylphenol, 4-Amino-2-hydroxymethylphenol, 2-(Diethylaminomethyl)-4-aminophenol, 4-Amino-1-hydroxy-2-(2-hydroxyethylaminomethyl)-benzol, 1-Hydroxy-2-amino-5-methyl-benzol, 1-Hydroxy-2-amino-6-methyl-benzol, 2-Amino-5-acetamido-phenol, 1,3-Dimethyl-2, 5-diaminobenzol, 5-(3-Hydroxypropylamino-)2-methylphenol, 5-Amino-4-methoxy-2-methylphenol, N,N-Dimethyl-3-aminophenol, N-Cyclopentyl-3aminophenol, 5-Amino-4-fluor-2-methylphenol, 2,4-Diamino-5-fluortoluol, 2,4-Diamino-5-(2-hydroxyethoxy)-toluol, 2,4-Diamino-5-methylphenetol, 3, 5-Diamino-2-methoxy-1-methylbenzol, 2-Amino-4-(2-hydroxyethylamino)-anisol, 2,6-Bis-(2-hydroxyethylamino)-1-methylbenzol, 1,3-Diamino-2,4-dimethoxybenzol, 3,5-Diamino-2-methoxy-toluol, 2-Aminobenzoesäure, 3-Aminobenzoesäure, 4-Aminobenzoesäure, 2-Aminophenylessigsäure, 3-Aminophenylessigsäure, 4-Aminophenylessigsäure, 2,3-Diaminobenzoesäure, 2,4-Diaminobenzoesäure, 2,5-Diaminobenzoesäure, 3,4-Diaminobenzoesäure, 2,5-Diaminobenzoesäure, 3,4-Diaminobenzoesäure, 2,5-Diaminobenzoesäure, 3,4-Diaminobenzoesäure, 2,5-Diaminobenzoesäure, 3,4-Diaminobenzoesäure, 3,4-Diaminobenzoesaure, 3,4-D obenzoesäure 3,5-Diaminobenzoesäure, 4-Aminosalicylsäure, 5-Aminosalicylsäure, 3-Amino-4-hydroxy-benzoesäure, 4-Amino-3-hydroxy-benzoesäure, 2-Aminobenzolsulfonsäure, 3-Aminobenzolsulfonsäure, 4-Aminobenzolsulfonsäure, 3-Amino-4-hydroxybenzolsulfonsäure, 4-Amino-3-hydroxynaphthalin-1-sulfonsäure, 6-Amino-7-hydroxynaphthalin-2-sulfonsäure, 7-Amino-4-hydroxynaphthalin-2-suifonsäure, 4-Amino-5-hydroxynaphthalin-2,7-disulfonsäure, 3-Amino-2-naphthoesäure, 3-Aminophthalsäure, 5-Aminoisophthalsäure, 1,3,5-Triaminobenzol, 1,2,4-Triaminobenzol, 1,2,4,5-Tetraaminobenzol, 2,4,5-Triaminophenol, Pentaaminobenzol, Hexaaminobenzol, 2,4,6-Triaminoresorcin, 4,5-Diaminobrenzcatechin, 4,6-Diaminopyrogallol, 1-(2-Hydroxy-5-aminobenzyl)-2-imidazolidinon, 4-Amino-2-((4-[(5amino-2-hydroxyphenyl)methyl]-piperazinyl)methyl)phenol, 3,5-Diamino-4-hydroxybrenzcatechin, 1,4-Bis-(4-aminophenyl)-1,4-diazacycloheptan, aromatische Nitrile, wie 2-Amino-4-hydroxybenzonitril, 4-Amino-2-hydroxybenzonitril, 4-Aminobenzonitril, 2,4-Diaminobenzonitril, Nitrogruppen-haltige Aminoverbindungen, wie 3-Amino-6-methylamino-2-nitro-pyridin, Pikraminsäure, [8-[(4-Amino-2-nitrophenyl)-azo]-7-hydroxy-naphth-2-yl]-trimethylammoniumchlorid, [8-((4-Amino-3-nitrophenyl)-azo)-7-hydroxy-naphth-2-yl]-trimethylammoniumchlorid (Basic Brown 17), 1-Hydroxy-1-Amino-2-nitro-4-[bis-(2-hydroxyethyl)amino]-benzol, 1-Amino-2-[(2-hydroxy-2-amino-4,6-dinitrobenzol, ethyl)amino]-5-nitrobenzol (HC Yellow Nr. 5), 1-Amino-2-nitro-4-[(2-hydroxyethyl)amino]-benzol (HC Red Nr. 7), 2-Chlor-5-nitro-N-2-hydroxyethyl-1,4-phenylendiamin, 1-[(2-Hydroxyethyl)amino]-2-nitro-4-amino-benzol (HC Red Nr. 3), 4-Amino-3-nitrophenol, 4-Amino-2-nitrophenol, 6-Nitro-o-toluidin, 1-Amino-3-methyl-4-[(2-hydroxyethyl)aminoj-6-nitrobenzol (HC Violet Nr. 1), 1-Amino-2-nitro-4-[(2,3-dihydroxypropyl)amino]-5-chlorbenzol (HC Red Nr. 10), 2-(4-Amino-2-nitroanilino)-benzoesäure, 6-Nitro-2,5-diaminopyridin, 2-Amino-6-chlor-4-nitrophenol, 1-Amino-2-(3-nitrophenylazo)-7-phenylazo-8-naphthol-3, 6-disulfonsäure Dinatriumsalz (Acid blue Nr. 29), 1-Amino-2-(2-hydroxy-4nitrophenylazo)-8-naphthol-3,6-disulfonsäure Dinatriumsalz (Palatinchrome green), 1-Amino-2-(3-chlor-2-hydroxy-5nitrophenylazo)-8-naphthol-3,6-disulfonsäure Dinatriumsalz (Gallion), 4-Amino-4'-nitrostilben-2,2'-disulfonsäure Dinatriumsalz, 2,4-Diamino-3',5'-dinitro-2'-hydroxy-5-methyl-azobenzol (Mordant brown 4), 4'-Amino-4-nitrodiphenylamin-2-sulfonsäure, 4'-Amino-3'-nitrobenzophenon-2-carbonsäure, 1-Amino-4-nitro-2-(2-nitrobenzylidenamino)-benzol, 2-[2-(Diethylamino)ethylamino]-5-nitroanilin, 3-Amino-4-hydroxy-5-nitrobenzolsulfonsäure, 3-Amino-3'-nitrobiphenyl, 3-Amino-4-nitro-acenaphthen, 2-Amino-1-nitronaphthalin, 5-Amino-6-nitrobenzo-1,3-dioxol, Aniline, insbesondere Nitrogruppen-haltige Aniline, wie 4-Nitroanilin, 2-Nitroanilin, 1,4-Diamino-2-nitrobenzol, 1, 2-Diamino-4-nitrobenzol, 1-Amino-2-methyl-6-nitrobenzol, 4-Nitro-1,3-phenylendiamin, 2-Nitro-4-amino-1-(2-hydroxyethylamino)benzol, 2-Nitro-1-amino-4-[bis-(2-hydroxyethyl)-amino]-benzol, 4-Amino-2-nitrodiphenylamin-2'-carbonsäure, Amino-5-chlor-4-(2-hydroyethylamino)-2-nitrobenzol, aromatische Aniline bzw. Phenole mit einem weiteren aromatischen Rest, wie sie in der Formel III dargestellt sind

in der

R9 für eine Hydroxy- oder eine Aminogruppe, die durch C1-4-Alkyl-, C1-4-Hydroxyalkyl-, C1-4-Alkoxy- oder C1-4-Al-

koxy-C₁₋₄-alkylgruppen substituiert sein kann, steht, R¹⁰, R¹¹, R¹², R¹³ und R¹⁴ unabhängig voneinander für ein Wasserstoffatom, eine Hydroxy- oder eine Aminogruppe, die $durch\ C_{1-4}-Alkyl-,\ C_{1-4}-Hydroxyalkyl,\ C_{1-4}-Alkoxy-,\ C_{1-4}-Aminoalkyl-\ oder\ C_{1-4}-Alkoxy-C_{1-4}-alkylgruppen\ substitution and the control of the cont$ iert sein kann, stehen, und

P für eine direkte Bindung, eine gesättigte oder ungesättigte, ggf. durch Hydroxygruppen substituierte Kohlenstoffkette mit 1 bis 4 Kohlenstoffatomen, eine Carbonyl-, Sulfonyl- oder Iminogruppe, ein Sauerstoff- oder Schwefelatom, oder eine Gruppe mit der Formel IV

in der

Q eine direkte Bindung, eine CH2- oder CHOH-Gruppe bedeutet, \vec{Q}' und \vec{Q}'' unabhängig voneinander für ein Sauerstoffatom, eine \vec{NR}^{15} -Gruppe, worin \vec{R}^{15} ein Wasserstoffatom, eine \vec{C}_{14} -Alkyl- oder eine Hydroxy- C1-4-alkylgruppe, wobei auch beide Gruppen zusammen mit dem Restmolekül einen 5-, 6oder 7-Ring bilden können, bedeutet, die Gruppe O-(CH₂)_p-NH oder NH-(CH₂)_p'-O, worin p und p' 2 oder 3 sind, stehen

o eine Zahl von 1 bis 4 bedeutet, wie beispielsweise 4,4'-Diaminostilben und dessen Hydrochlorid, 4,4'-Diaminostilben-2,2'-disulfonsäure-mono- oder di-Na-Salz, 4-Amino-4'-dimethylaminostilben und dessen Hydrochlorid, 4,4'-Diaminodiphenylmethan, 4,4'-Diaminodiphenylsulfid, 4,4'-Diaminodiphenylsulfoxid, 4,4'-Diaminodiphenylamin, 4,4'-Diaminodiphenylamin-2-sulfonsäure, 4,4'-Diaminobenzophenon, 4,4'-Diaminodiphenylether, 3,3',4,4'-Tetraaminodiphenyl, 3,3',4,4'-Tetraamino-benzophenon, 1,3-Bis-(2,4-diaminophenoxy)-propan, 1,8-Bis-(2,5-diaminophenoxy)-3,6-dioxaoctan, 1,3-Bis-(4-aminophenylamino)propan, 1,3-Bis-(4-aminophenylamino)-2-propanol, 1,3-Bis-[N-(4-aminophenyl)-2-hydroxyethylamino]-2-propanol, N,N-Bis-[2-(4-aminophenoxy)-ethyl]-methylamin, N-Phenyl-1,4-phenylendiamin und Bis-(5-amino-2-hydroxy-

[0027] Die stickstoffhaltigen heterocyclischen Verbindungen der Komponente C sind bevorzugt ausgewählt aus der Gruppe bestehend aus 2-Aminopyridin, 3-Aminopyridin, 4-Aminopyridin, 2-Amino-3-hydroxy-pyridin, 2,6-Diaminopyridin, 2,5-Diamino-pyridin, 2-(Aminoethylamino)-5-aminopyridin, 2,3-Diamino-pyridin, 2-Dimethylamino-5-aminopyridin, 2-Methylamino-3-amino-6-methoxy-pyridin, 2,3-Diamino-6-methoxy-pyridin, 2,6-Dimethoxy-3,5-diaminopyridin, 2,4,5-Triamino-pyridin, 2,6-Dihydroxy-3,4-dimethylpyridin, N-[2-(2,4-Diaminophenyl)aminoethyl]-N-(5amino-2-pyridyl)-amin, N-[2-(4-Aminophenyl)aminoethyl]-N-(5-amino-2-pyridyl)-amin, 2,4-Dihydroxy-5,6-diaminopyrimidin, 4,5,6-Triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 2,4,5,6-Tetraaminopyrimidin, 2-Methylamino-4,5,6-triaminopyrimidin, 2,4-Diaminopyrimidin, 4,5-Diaminopyrimidin, 2-Amino-4-methoxy-6-methylpyrimidin, 3,5-Diaminopyrazol, 3,5-Diamino-1,2,4-triazol, 3-Aminopyrazol, 3-Amino-5hydroxypyrazol, 1-Phenyl-4,5-diaminopyrazol, 1-(2-Hydroxyethyl)-4, 5-diaminopyrazol, 1-Phenyl-3-methyl-4,5-diaminopyrazol, 1-Phenyl-3-methyl-3minopyrazol, 4-Amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-on (4-Aminoantipyrin), 1-Phenyl-3-methylpyrazol-5-on, 2-Aminochinolin, 3-Aminochinolin, 8-Aminochinolin, 4-Aminochinaldin, 2-Aminonicotinsäure, 6-Aminonicotinsäure, 5-Aminoisochinolin, 5-Aminoindazol, 6-Aminoindazol, 5-Aminobenzimidazol, 7-Aminobenzimidazol, 5-Aminobenzothiazol, 7-Aminobenzothiazol, 2,5-Dihydroxy-4-morpholino-anilin sowie Indol- und Indolinderivaten, wie 4-Aminoindol, 5-Aminoindol, 6-Aminoindol, 7-Aminoindol, 5,6-Dihydroxyindol, 5,6-Dihydroxyindolin und 4-Hydroxyindolin. Weiterhin als heterocyclische Verbindungen können erfindungsgemäß die in der DE-U1-299 08 573 offenbarten Hydroxypyrimidine eingesetzt werden. Die vorgenannten Verbindungen können sowohl in freier Form als auch in Form ihrer physiologisch verträglichen Salze, z. B. als Salze anorganischer Säuren, wie Salz- oder Schwefelsäure, eingesetzt

werden. [0028] Die aromatischen Hydroxyverbindungen der Komponente C sind bevorzugt ausgewählt aus 2-, 4-, 5-Methylresorcin, 2,5-Dimethylresorcin, Resorcin, 3-Methoxyphenol, Brenzkatechin, Hydrochinon, Pyrogallol, Phloroglucin, Hydroxyhydrochinon, 2-, 3-, 4-Methoxy-, 3-Dimethylamino-, 2-(2-Hydroxyethyl)-, 3,4-Methylendioxyphenol, 2,4-, 3,4-Dihydroxybenzoesäure, -phenylessigsäure, Gallussäure, 2,4,6-Trihydroxybenzoesäure, -acetophenon, 2-, 4-Chlorresorcin, 1-Naphthol, 1,5-, 2,3-, 2,7-Dihydroxynaphthalin, 6-Dimethylamino-4-hydroxy-2-naphthalinsulfonsäure und 3,6-Dihydroxy-2,7-naphthalinsulfonsäure.

[0029] Als Aminosäuren kommen bevorzugt alle natürlich vorkommenden und synthetischena-Aminosäuren in Frage, z. B. die durch Hydrolyse aus pflanzlichen oder tierischen Proteinen, z. B. Kollagen, Keratin, Casein, Elastin, Sojaprotein, Weizengluten oder Mandelprotein zugänglichen Aminosäuren. Dabei können sowohl sauer als auch alkalisch reagierende Aminosäuren eingesetzt werden. Bevorzugte Aminosäuren sind Arginin, Histidin, Tyrosin, Phenylalanin, DOPA (Dihydroxyphenylalanin), Ornithin, Prolin, Lysin und Tryptophan. Aber auch andere Aminosäuren, wie z. B. 6-

Aminocapronsäure und β-Alanin, können eingesetzt werden.

[0030] Die Oligopeptide können dabei natürlich vorkommende oder synthetische Oligopeptide, aber auch die in Polypeptid- oder Proteinhydrolysaten enthaltenen Oligopeptide sein, sofern sie über eine für die Anwendung in den erfindungsgemäßen Färbemitteln ausreichende Wasserlöslichkeit verfügen. Als Beispiele sind z. B. Glutathion oder die in den Hydrolysaten von Kollagen, Keratin, Casein, Elastin, Sojaprotein, Weizengluten oder Mandelprotein enthaltenen Oligopeptide zu nennen. Bevorzugt ist dabei die Verwendung gemeinsam mit Verbindungen mit primärer oder sekundärer Aminogruppe oder mit aromatischen Hydroxyverbindungen.

[0031] Die Verbindungen der Komponente C werden besonders bevorzugt ausgewählt aus 4-Formyl-1-ethylpyridinium-p-toluolsulfonat, 4-Formyl-1-methylchinolinium-p-toluolsulfonat, 2-Formyl-1-methylchinolinium-p-toluolsulfonat, Salicylaldehyd, Vanillin, 4-Hydroxy-3-methoxy-zimtaldehyd, 4-Dimethylaminobenzaldehyd, 4-Dimethylamino-2-hydroxybenzaldehyd, 4-Hydroxynaphthaldehyd, Indol-3-carboxaldehyd und Isatin, sowie jeweils aus den vorzugsweise mit anorganischen Säuren gebildeten physiologisch verträglichen Salzen dieser Verbindungen.

[0032] Die vorgenannten Verbindungen können sowohl in freier Form als auch in Form ihrer physiologisch verträglichen Salze, insbesondere als Salze anorganischer Säuren, wie Salz- oder Schwefelsäure, eingesetzt werden.

[0033] Die Verbindungen mit der Formel I bzw. II sowie die Verbindungen der Komponenten B bzw. C werden vorzugsweise in den erfindungsgemäßen Mitteln jeweils in einer Menge von 0,03 bis 65 mmol, insbesondere von 1 bis 40 mmol, bezogen auf 100 g des gesamten Färbemittels, verwendet. Sie können als direktziehende Färbemittel oder in Gegenwart von üblichen Oxidationsfarbstoffvorprodukten eingesetzt werden.

[0034] Unter die voranstehend beschriebene Ausführungsform fällt ebenfalls die Verwendung von solchen Substanzen, die Reaktionsprodukte der kationischen heterozyklischen Verbindungen und der CH-aciden Verbindungen als direktziehende Färbemittel. Derartige Reaktionsprodukte können z. B. durch kurzes Erwärmen der beiden Komponenten in stöchiometrischen Mengen in wässrigem neutralen bis schwach alkalischen Milieu erhalten werden, wobei sie entweder als Feststoff aus der Lösung ausfallen oder durch Eindampfen der Lösung daraus isoliert werden. Die Reaktionsprodukte können auch in Kombination mit anderen Farbstoffen oder Farbstoffvorprodukten eingesetzt werden.

[0035] In allen Färbemitteln können auch mehrere verschiedene Verbindungen mit der Formel I bzw. Formel II und verschiedene CH-acide Verbindungen gemeinsam zum Einsatz kommen.

[0036] Zur Erlangung weiterer und intensiverer Ausfärbungen können die erfindungsgemäßen Mittel zusätzlich Farbverstärker enthalten. Die Farbverstärker sind vorzugsweise ausgewählt aus der Gruppe bestehend aus Piperidin, Piperidin-2-carbonsäure, Piperidin-3-carbonsäure, Piperidin-4-carbonsäure, Pyridin, 2-Hydroxypyridin, 3-Hydroxypyridin, 4-Hydroxypyridin, Imidazol, 1-Methylimidazol, Histidin, Pyrrolidin, Pyrrolidon, Pyrrolidon-5-carbonsäure, Pyrazol, 1,2,4-Triazol, Piperazidin, deren Derivate sowie deren physiologisch verträglichen Salzen.

[0037] Die voranstehend genannten Farbverstärker können in einer Menge von jeweils 0,03 bis 65 mmol, insbesondere 1 bis 40 mmol, jeweils bezogen auf 100 g des gesamten Färbemittels, eingesetzt werden.

[0038] Auf die Anwesenheit von Oxidationsmitteln, z. B. H₂O₂, kann dabei verzichtet werden. Es kann jedoch unter Umständen wünschenswert sein, den erfindungsgemäßen Mitteln zur Erzielung der Nuancen, die heller als die zu färbende keratinhaltige Faser sind, Wasserstoffperoxid oder andere Oxidationsmittel zuzusetzen. Oxidationsmittel werden in der Regel in einer Menge von 0,01 bis 6 Gew.-%, bezogen auf die Anwendungslösung, eingesetzt. Ein für menschliches Haar bevorzugtes Oxidationsmittel ist H₂O₂. Auch Gemische von mehreren Oxidationsmitteln, wie beispielsweise eine Kombination aus Wasserstoffperoxid und Peroxodisulfaten der Alkail- und Erdalkalimetalle oder aus lodidionenquellen, wie z. B. Alkalimetalliodiden und Wasserstoffperoxid oder den vorgenannten Peroxodisulfaten, können verwendet werden. Das Oxidationsmittel bzw. die Oxidationsmittelkombination können erfindungsgemäß in Verbindung mit Oxidationskatalysatoren in dem Haarfärbemittel zur Anwendung kommen.

[0039] Oxidationskatalysatoren sind beispielsweise Metallsalze oder Metalloxide, die einen leichten Wechsel zwischen zwei Oxidationsstufen der Metallionen ermöglichen. Beispiele sind Salze oder Oxide von Eisen, Ruthenium, Mangen und Kunfer

[0040] In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Färbemittel zur weiteren Modifizierung der Farbnuancen neben den erfindungsgemäß enthaltenen Verbindungen zusätzlich übliche direktziehende Farbstoffe, z. B. aus der Gruppe der Nitrophenylendiamine, Nitroaminophenole, Anthrachinone oder Indophenole, wie z. B. die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 6, Basic Yellow 57, Disperse Orange 3, HC Red BN, Basic Red 76, HC Blue 2, Disperse Blue 3, Basic Blue 99, Disperse Violet 1, Disperse Violet 4, Disperse Black 9, Basic Brown 16 und Basic Brown 17 bekannten Verbindungen sowie 6-Nitro-1,2,3,4-tetrahydrochinoxalin, 4-N-Ethyl-1,4-bis-(2-hydroxyethylamino)-2-nitrobenzolhydrochlorid und 1-Methyl-3-nitro-4-(2-hydroxyethyl)-aminobenzol. Die erfindungsgemäßen Mittel gemäß dieser Ausführungsform enthalten die direktziehenden Farbstoffe bevorzugt in einer Menge von 0,01 bis 20 Gew.-%, bezogen auf das gesamte Färbemittel.

[0041] Weiterhin können die erfindungsgemäßen Zubereitungen auch in der Natur vorkommende Farbstoffe, wie sie beispielsweise in Henna rot, Henna neutral, Henna schwarz, Kamillenblüte, Sandelholz, schwarzen Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkannawurzel enthalten sind, enthalten.

[0042] Es ist nicht erforderlich, daß die Oxidationsfarbstoffvorprodukte oder die fakultativ enthaltenen direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den erfindungsgemäßen Färbemitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Färbeergebnis nachteilig beeinflussen oder aus anderen Gründen, z. B. toxikologischen, ausgeschlossen werden müssen.

[0043] Die erfindungsgemäßen Färbemittel ergeben bereits bei physiologisch verträglichen Temperaturen von unter 45°C intensive Färbungen. Sie eignen sich deshalb besonders zum Färben von menschlichen Haaren. Zur Anwendung auf dem menschlichen Haar können die Färbemittel üblicherweise in einen wasserhaltigen kosmetischen Träger eingearbeitet werden. Geeignete wasserhaltige kosmetische Träger sind z. B. Cremes, Emulsionen, Gele oder auch tensidhaltige schäumende Lösungen wie z. B. Shampoos oder andere Zubereitungen, die für die Anwendung auf den keratinhaltigen Fasern geeignet sind. Falls erforderlich ist es auch möglich, die Färbemittel in wasserfreie Träger einzuarbeiten.

[0044] Weiterhin können die erfindungsgemäßen Färbemittel alle in solchen Zubereitungen bekannten Wirk-, Zusatzund Hilfsstoffe enthalten. In vielen Fällen enthalten die Färbemittel mindestens ein Tensid, wobei prinzipiell sowohl
anionische als auch zwitterionische, ampholytische, nichtionische und kationische Tenside geeignet sind. In vielen Fällen hat es sich aber als vorteilhaft erwiesen, die Tenside aus anionischen, zwitterionischen oder nichtionischen Tensiden
auszuwählen.

[0045] Als anionische Tenside eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 10 bis 22 C-Atomen. Zusätzlich können im MolekülGlykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Natrium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 oder 3 C-Atomen in der Alkanolgruppe,

- lineare Fettsäuren mit 10 bis 22 C-Atomen (Seifen),

15

30

55

60

- Ethercarbonsäuren der Formel R-O- $(CH_2-CH_2O)_x$ - CH_2 -COOH, in der R eine lineare Alkylgruppe mit 10 bis 22 C-Atomen und x = 0 oder 1 bis 16 ist,
 - Acylsarcoside mit 10 bis 18 C-Atomen in der Acylgruppe,
- Acyltauride mit 10 bis 18 C-Atomen in der Acylgruppe,

- Acylisethionate mit 10 bis 18 C-Atomen in der Acylgruppe,

Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,

- lineare Alkansulfonate mit 12 bis 18 C-Atomen,

- lineare Alpha-Olefinsulfonate mit 12 bis 18 C-Atomen,

- Alpha-Sulfofettsäuremethylester von Fettsäuren mit 12 bis 18 C-Atomen,

Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH₂-CH₂O)_x-SO₃H, in der R eine bevorzugt lineare Alkylgruppe mit 10 bis 18 C-Atomen und x = 0 oder 1 bis 12 ist,

- Gemische oberflächenaktiver Hydroxysulfonate gemäß DE-A-37 25 030,

- sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether gemäß DE-A-37 23 354,
- Sulfonate ungesättigter Fettsäuren mit 12 bis 24 C-Atomen und 1 bis 6 Doppelbindungen gemäß DE-A-39 26 344.
- Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2 bis 15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen.

[0046] Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ethercarbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolethergruppen im Molekül sowie insbesondere Salze von gesättigten und insbesondere ungesättigten C₈-C₂₂-Carbonsäuren, wie Ölsäure, Stearinsäure, Isostearinsäure und Palmitinsäure.

[0047] Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO(-) oder -SO₃(-)-Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl-aminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl-dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3-hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitterionisches Tensid ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.

[0048] Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C₈₋₁₈-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO₃H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C₁₂₋₁₈-Acylsarcosin.

[0049] Nichtionische Tenside enthalten als hydrophile Gruppe z.B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolethergruppe. Solche Verbindungen sind beispielsweise

- Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe,

- C₁₂₋₂₂-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,

- C₈₋₂₂-Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga,

- Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizinusöl,
- Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester
- Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide.

[0050] Beispiele für die in den erfindungsgemäßen Haarbehandlungsmitteln verwendbaren kationischen Tenside sind insbesondere quartäre Ammoniumverbindungen. Bevorzugt sind Ammoniumhalogenide wie Alkyltrimethylammonium-chloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammonium-chlorid, Stearyltrimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammoniumchlorid,

Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlorid. Weitere erfindungsgemäß verwendbare kationische Tenside stellen die quaternisierten Proteinhydrolysate dar.

[0051] Erfindungsgemäß ebenfalls geeignet sind kationische Silikonöle wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning 929 Emulsion (enthaltend ein hydroxyl-aminomodifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquaternäre Polydimethylsiloxane, Quaternium-80). Alkylamidoamine, insbesondere Fettsäureamidoamine wie das unter der Bezeichnung Tego Amid®S 18 erhältliche Stearylamidopropyldimethylamin, zeichnen sich neben einer guten konditionierenden Wirkung speziell durch ihre gute biologische Abbaubarkeit aus.

[0052] Ebenfalls sehr gut biologisch abbaubar sind quaternäre Esterverbindungen, sogenannte "Esterquats", wie die unter dem Warenzeichen Stepantex® vertriebenen Methylhydroxyalkyldialkoyloxyalkylammoniummethosulfate.

[0053] Ein Beispiel für ein als kationisches Tensid einsetzbares quaternäres Zuckerderivat stellt das Handelsprodukt Glucquat®100 dar, gemäß CTFA-Nomenklatur ein "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride".

[0054] Bei den als Tenside eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszugehen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff abhängigen Alkylkettenlängen erhält.

[0055] Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Produkte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhydroxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homologenverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkalimetallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.

[0056] Weitere Wirk-, Hilfs- und Zusatzstoffe sind beispielsweise

- nichtionische Polymere wie beispielsweise VinylpyrrolidonNinylacrylat-Copolymere, Polyvinylpyrrolidon und Vinylpyrrolidon/Vinylacetat-Copolymere und Polysiloxane,

25

50

60

- kationische Polymere wie quaternisierte Celluloseether, Polysiloxane mit quaternären Gruppen, Dimethyldiallylammoniumchlorid-Polymere, Acrylamid-Dimethyldiallylammoniumchlorid-Copolymere, mit Diethylsulfat quatemierte Dimethylaminoethylmethacrylat-Vinylpyrrolidon-Copolymere, Vinylpyrrolidon-Imidazoliniummethochlorid-Copolymere und quaternierter Polyvinylalkohol,

- zwitterionische und amphotere Polymere wie beispielsweise Acrylamidopropyl-trimethylammoniumchlorid/ Acrylat-Copolymere und Octylacrylamid/Methylmethacrylat/tert.-Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere,

anionische Polymere wie beispielsweise Polyacrylsäuren, vernetzte Polyacrylsäuren, Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und Acrylsäure/Ethylacrylat/N-tert.-Butylacrylamid-Terpoly-

 Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi arabicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, CelluloseDerivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellulose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z. B. Polyvinylalkohol,

Strukturanten wie Glucose und Maleinsäure,

- haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin, Ei-Lecitin und Kephaline,

- Proteinhydrolysate, insbesondere Elastin-, Kollagen-, Keratin-, Milcheiweiß-, Sojaprotein- und Weizenproteinhydrolysate, deren Kondensationsprodukte mit Fettsäuren sowie quaternisierte Proteinhydrolysate,

Parfümöle, Dimethylisosorbid und Cyclodextrine,

- Lösungsvermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylenglykol, Glycerin und Diethylenglykol,

- Antischuppenwirkstoffe wie Piroctone Olamine und Zink Omadine,

weitere Substanzen zur Einstellung des pH-Wertes,

Wirkstoffe wie Panthenol, Pantothensäure, Allantoin, Pyrrolidoncarbonsäuren und deren Salze, Pflanzenextrakte und Vitamine,

Cholesterin,

- Lichtschutzmittel,

- Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,

- Fette und Wachse wie Walrat, Bienenwachs, Montanwachs, Paraffine, Fettalkohole und Fettsäureester,

Fettsäurealkanolamide,

Komplexbildner wie EDTA, NTA und Phosphonsäuren,

Quell- und Penetrationsstoffe wie Glycerin, Propylenglykolmonoethylether, Carbonate, Hydrogencarbonate, Guanidine, Harnstoffe sowie primäre, sekundäre und tertiäre Phosphate, Imidazole, Tannine, Pyrrol,

- Trübungsmittel wie Latex,

Perlglanzmittel wie Ethylenglykolmono- und -distearat,

- Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft sowie

- Antioxidantien.

[0057] Die Bestandteile des wasserhaltigen Trägers werden zur Herstellung der erfindungsgemäßen Färbemittel in für diesen Zweck üblichen Mengen eingesetzt; z.B. werden Emulgiermittel in Konzentrationen von 0,5 bis 30 Gew.-% und Verdickungsmittel in Konzentrationen von 0,1 bis 25 Gew.-% des gesamten Färbemittels eingesetzt.

[0058] Für das Färbeergebnis kann es vorteilhaft sein, den Färbemitteln Ammonium- oder Metallsalze zuzugeben. Geeignete Metallsalze sind z. B. Formiate, Carbonate, Halogenide, Sulfate, Butyrate, Valemate, Capronate, Acetate, Lactate, Glykolate, Tartrate, Citrate, Gluconate, Propionate, Phosphate und Phosphonate von Alkalimetallen, wie Kalium, Natrium oder Lithium, Erdalkalimetallen, wie Magnesium, Calcium, Strontium oder Barium, oder von Aluminium, Mangan, Eisen, Kobalt, Kupfer oder Zink, wobei Natriumacetat, Lithiumbromid, Calciumbromid, Calciumgluconat, Zinkchlorid, Zinksulfat, Magnesiumchlorid, Magnesiumsulfat, Ammoniumcarbonat, -chlorid und -acetat bevorzugt sind. Diese Salze sind vorzugsweise in einer Menge von 0,03 bis 65 mmol, insbesondere von 1 bis 40 mmol bezogen auf 100 g des gesamten Färbemittels, enthalten.

[0059] Der pH-Wert der gebrauchsfertigen Färbezubereitungen liegt üblicherweise zwischen 2 und 11, vorzugsweise zwischen 5 und 10.

[0060] Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die Verwendung einer Kombination aus

A. mindestens einer quaternierien heterozyklischen Verbindung gemäß Formel I,

$$\begin{array}{c|c}
R^1 & Y \\
R^2 & X^1 \\
R^3 & A^{-1}
\end{array}$$
(I)

15

20

25

30

35

40

45

50

55

60

worin R^1 , R^2 , R^3 , X^1 und A^- wie oben definiert sind, mit der Maßgabe, daß wenn Y eine gegebenenfalls substituierte Vinylengruppe ist, die Verbindungen der Formel II

wobei R^1 , R^2 , R^3 , X^1 , X^2 und A^- wie oben definiert sind, mitumfaßt sind, sowie entsprechenden inneren Salzen, wobei A^- entfällt, und B. mindestens einer CH-aciden Verbindung,

sowie gegebenenfalls

C. mindestens einer Verbindung ausgewählt aus der Gruppe, die gebildet wird aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden und (d) Verbindungen mit primärer oder sekundärer Amino- oder Hydroxygruppe, ausgewählt aus aromatischen Hydroxyverbindungen, primären oder sekundären aromatischen Aminen und stickstoffhaltigen heterozyklischen Verbindungen

als färbende Komponenten in Oxidationshaarfärbemitteln.
[0061] Noch ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, worin ein Färbemittel, enthaltend

A. mindestens eine quaternierte heterozyklische Verbindung gemäß Formel I,

worin R¹, R², R³, X¹ und A⁻ wie oben definiert sind, mit der Maßgabe, daß wenn Y eine gegebenenfalls substituierte Vinylengruppe ist, die Verbindungen der Formel II

wobei R1, R2, R3, X1, X2 und A wie oben definiert sind, mitumfaßt sind, sowie entsprechenden inneren Salzen, wobei A- entfällt, und B. mindestens einer CH-aciden Verbindung,

sowie gegebenenfalls

C. mindestens einer Verbindung ausgewählt aus der Gruppe, die gebildet wird aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden und (d) Verbindungen mit primärer oder sekundärer Amino- oder Hydroxygruppe, ausgewählt aus aromatischen Hydroxyverbindungen, primären oder sekundären aromatischen Aminen und stickstoffhaltigen heterozyklischen Verbindungen

auf die keratinhaltigen Fasern aufgebracht, einige Zeit, üblicherweise ca. 30 Minuten, auf der Faser belassen und anschließend wieder ausgespült oder mit einem Shampoo ausgewaschen wird.

[0062] Die Kombination der Verbindungen gemäß Formel I bzw. II und die Verbindungen der Komponente B bzw. C können entweder gleichzeitig auf das Haar aufgebracht werden oder aber auch nacheinander, d. h. in einem mehrstufigen Verfahren, wobei es unerheblich ist, welche der Komponenten zuerst aufgetragen wird. Die fakultativ enthaltenen Ammonium- oder Metallsalze können dabei den Verbindungen mit der Formel I bzw. II oder den Verbindungen der Komponente B zugesetzt werden. Zwischen dem Auftragen der einzelnen Komponenten in einem mehrstufigen Verfahren können bis zu 30 Minuten Zeitabstand liegen. Auch eine Vorbehandlung der Fasern mit der Salzlösung ist möglich.

[0063] In einer Variante dieser Ausführungsform des erfindungsgemäßen Verfahrens werden die Verbindungen gemäß Formel I bzw. II und die Verbindungen der Komponente B zuerst auf das Haar aufgetragen. Nach einem Zeitraum von bis zu 30 Minuten wird anschließend die Komponente C auf das Haar aufgebracht.

[0064] Die Verbindungen mit der Formel I bzw. II, die Verbindungen mit der Komponente B und die Verbindungen der Komponente C können entweder getrennt oder zusammen gelagert werden, entweder in einer flüssigen bis pastösen Zubereitung (wässrig oderwasserfrei) oder als trockenes Pulver. Werden die Komponenten in einer flüssigen Zubereitung zusammen gelagert, so sollte diese zur Verminderung einer Reaktion der Komponenten weitgehend wasserfrei sein. Bei der getrennten Lagerung werden die reaktiven Komponenten erst unmittelbar vor der Anwendung miteinander innig vermischt. Bei der trockenen Lagerung wird vor der Anwendung üblicherweise eine definierte Menge warmen (30°C bis 80°C) Wassers hinzugefügt und eine homogene Mischung hergestellt.

Beispiele

1. Herstellung der kationischen heterozyklischen Verbindungen (erfindungsgemäß)

[0065] 4-Chlor-1-ethylchinolinium-tetrafluoroborat wird gemäß Liebigs Ann. Chem., 1967, 708, 158-209, 3-Ethyl-2-methylmercapto-benzothiazolium-tetrafluoroborat wird gemäß Liebigs Ann. Chem., 1971, 752, 182-195 und 3-Ethyl-benzothiazolium-2-sulfonat wird gemäß Chem. Ber., 1968, 101, 1137-1139 und der Patentschrift CH 473121 synthetisiert.

2. Herstellung einer Färbelösung

[0066] Es wurde eine Aufschlämmung bzw. Lösung der Komponente B (3 mmol) und 0,41 g Natriumacetat in 30 ml Wasser hergestellt. Unmittelbar vor der Anwendung auf dem Haar werden 3 mmol der Verbindung gemäß Formel I bzw. II zugemischt und der pH-Wert des resultierenden Färbemittels mit 10%-iger wäßriger NaOH oder Salzsäure der pH-Wert gemäß Tabelle 1 eingestellt.

[0067] In diese Färbemischung wurde bei 30°C 30 Minuten lang eine Strähne Menschenhaar (naturweiß, Firma Kerling) eingebracht. Die Strähne wurde dann 30 Sek. mit lauwarmem Wasser gespült, mit warmer Luft (30°C bis 40°C) getrocknet und anschließend ausgekämmt.

[0068] Die jeweiligen Farbnuancen und Fluoreszenzstärke im UV-Licht sind in der nachfolgenden Tabelle 1 wiedergegeben. Die Stärke der Fluoreszenz wird mit folgender Skala bewertet:

- (+) stark
- (o) mittel

(-) schwach

65

60

45

50

5

15

Färbebeispiele

Tabelle 1

5	kationische heterozyklische	Komponente B	рН	Farbe	Fluoreszenz
	Verbindung gemäß I bzw. II		1		(stärke)
	(Menge in Gramm)				
10	4-Chlor-1-ethylchinolinium-	1,2,3,3-	9	rot	(-)
	tetrafluoroborat	Tetramethylindolium-iodid		:	
	4-Chlor-1-ethylchinolinium-	2-Amino-4-imino-thiazolin-	9	rot-violett	(-)
15	tetrafluoroborat	hydrochlorid			
	4-Chlor-1-ethylchinolinium-	1-Ethyl-4-methyl-	9	türkisblau	(-)
	tetrafluoroborat	chinolinium-iodid			
20	4-Chlor-1-ethylchinolinium-	1,3-	9	orange	(-)
	tetrafluoroborat	Diethylthiobarbitursäure			
	4-Chlor-1-ethylchinolinium-	Benzoylacetonitril	9	gelb-	(-)
25	tetrafluoroborat			orange	
30	3-Ethyl-2-methylmercapto-	1,2,3,3-	9	gelb	gelb
	benzothiazolium-tetrafluoroborat	Tetramethylindolium-iodid			(o)
	3-Ethyl-2-methylmercapto-	3-Ethyl-2-methyl-	9	heilgeib	hellgelb
	benzothiazolium-tetrafluoroborat	benzothiazolium-iodid			(+)
35	3-Ethyl-2-methylmercapto-	1,3-Indandion	9	voilett-	(-)
	benzothiazolium-tetrafluoroborat			braun	
40	3-Ethyl-2-methylmercapto-	2-Amino-4-imino-thiazolin-	9	orange	orange
	benzothiazolium-tetrafluoroborat	hydrochlorid			(+)
	3-Ethyl-2-methylmercapto-	1-Ethyl-4-methyl-	9	orangerot	(-)
	benzothiazolium-tetrafluoroborat	chinolinium-iodid			
45	3-Ethyl-2-methyl-	3-Ethyl-2-methyl-	6	intensiv	grüngelb
	benzothiazolium-2-sulfonat	benzothiazolium-iodid		gelb	(+)
	3-Ethyl-2-methyl-	3-Ethyl-2-methyl-	6	heilgelb	blau
50	benzothiazolium-2-sulfonat	benzoxazolium-iodid			(+)
	3-Ethyl-2-methyl-	1,2,3,3-Tetramethyl-	6	gelb	gelbgrün
	benzothiazolium-2-sulfonat	indolium-iodid			(+)
55	3-Ethyl-2-methyl-	1,3-Indandion	6	orange	orange
	benzothiazolium-2-sulfonat				(+)
60	2-Chlor-1-ethyl-chinolinium-	1-Ethyl-4-methyl-	6	rot	(-)
	tetrafluoroborat	chinolinium-iodid			
	2-Chlor-1-ethyl-chinolinium-	1,2,3,3,-Tetramethyl-	6	violett	(-)
	tetrafluoroborat	indolium-iodid			

Patentansprüche

65

^{1.} Mittel zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, enthaltend

A. mindestens eine quaternierte heterozyklische Verbindung gemäß Formel I,

10

45

50

worin

 R^1 und R^2 stehen unabhängig voneinander für ein Wasserstoffatom, ein Halogenatom, eine Hydroxygruppe, eine C_1 - C_4 -Hydroxyalkylgruppe, eine C_1 - C_6 -Aminoalkylgruppe, eine C_1 - C_4 -Dialkylamino- C_1 - C_4 -alkylgruppe, eine lineare oder verzweigte C_1 - C_6 -Alkylgruppe, eine C_2 - C_6 -Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe, eine Sulfonsäuregruppe, eine Carboxylgruppe, eine Formylgruppe, eine Nitrogruppe, eine Cyanogruppe oder eine Gruppe -NR 4 R 3 , wobei R^4 und R^5 stehen unabhängig voneinander für ein Wasserstoffatom, eine C_1 - C_6 -Alkylgruppe, eine C_2 - C_6 -Alkenylgruppe, eine Aryl- C_1 - C_4 -alkylgruppe oder eine C_1 - C_4 -Hydroxyalkylgruppe, wobei R^1 und R^2 zusammen einen ankondensierten 5- oder 6-gliedrigen, aliphatischen oder aromatischen Ring bilden können, welcher wiederum mit den Resten R^6 und R^7 substituiert ist, wobei R^6 und R^7 stehen unabhängig voneinander für die Reste, die unter R^1 definiert sind,

 R^3 steht für eine C_1 - C_4 -Hydroxyalkylgruppe, eine C_1 - C_6 -Aminoalkylgruppe, eine C_1 - C_4 -Dialkylamino- C_1 - C_4 -alkylgruppe, eine Di(C_1 - C_4 -hydroxyalkyl)amino- C_1 - C_4 -alkylgruppe, eine lineare oder verzweigte C_1 - C_6 -Alkylgruppe, eine C_2 - C_6 -Alkenylgruppe, eine gegebenenfalls substituierte Arylgruppe,

A steht für ein Chlorid, Bromid, Iodid, Hexafluorophosphat, Tetrachlorozinkat, Tetrafluoroborat, Trifluormethylsulfonat, Methylsulfonat oder p-Toluolsulfonat,

Y steht für ein Sauerstoffatom, ein Schwefelatom, eine Gruppe -N=CH-, eine gegebenenfalls substituierte Methylen- oder eine gegebenenfalls substituierte Vinylengruppe oder eine Gruppe NR⁸, wobei R⁸ für die gleichen Gruppen stehen kann, die unter R⁵ definiert sind,

 X^1 steht für ein Halogenatom, eine C_1 - C_4 -Alkoxygruppe, eine C_1 - C_4 -Alkylmercaptogruppe, eine Sulfonsäuregruppe oder eine p-Toluolsulfonylgruppe,

mit der Maßgabe, daß wenn Y eine gegebenenfalls substituierteVinylengruppe ist, die Verbindungen der Formel II

wobei

R1, R2, R3 und A wie oben definiert sind,

einer der Reste X¹ oder X² steht für ein Halogenatom, eine C₁-C₄-Alkoxygruppe, eine C₁-C₄-Alkylmercaptogruppe, eine Sulfonsäuregruppe oder eine p-Toluolsulfonylgruppe und der andere für ein Wasserstoffatom oder die Gruppen, die unter R¹ und R² definiert sind, mitumfaßt sind,

sowie entsprechenden inneren Salzen, wobei A- entfällt, und

B. mindestens eine CH-acide Verbindung.

2. Mittel gemäß Anspruch 1, dadurch gekennzeichnet, daß die Verbindungen mit der Formel I bzw. Formel II ausgewählt sind aus Substanzen, in denen das Kation ausgewählt ist aus 2-Chlor-1-ethyl-chinolinium, 4-Chlor-1-ethyl-chinolinium, 2-Chlor-1-methyl-pyridinium, 3-Ethyl-2-methylmercaptobenzothiazolium, 3-Ethyl-2-methylmercapto-benzoxazolium, 2-Chlor-1,3-diethylbenzimidazolium, 2-Chlor-3-ethyl-benzoxazolium, 2-Chlor-3-ethyl-benzothiazolium, 2-Chlor-3-ethyl-benzothiazolium, 2-Chlor-3-ethyl-benzothiazolium, 2-Chlor-3-ethyl-benzothiazolium, 2-Chlor-3-ethyl-benzothiazolium, 2-Chlor-3-ethyl-benzothiazolium, 2-Chlor-3-ethyl-benzothiazolium und das Gegenion A- ausgewählt ist aus Chlorid, Bromid, Iodid, Hexafluorophosphat, Tetrachlorozinkat, Tetrafluoroborat, Trifluormethylsulfonat, Methylsulfonat oder p-Toluolsulfonat und 3-Ethyl-benzothiazolium-2-sulfonat, 1-Ethyl-chinolinium-4-sulfonat und 1-Ethyl-chinolinium-2-sulfonat.
3. Mittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die CHacide Verbindung ausgewählt ist aus 1,2,3,3-Tetramethyl-3H-indoliummethansulfonat, 1,3,3-Trimethyl-2-methyl-3H-indoliummp-toluolsulfonat, 1,2,3,3-Tetramethyl-3H-indoliummethansulfonat, 1,3,3-Trimethyl-2-methylenindolin (Fischersche Base), 2,3-Dimethyl-benzothiazolium-p-toluolsulfonat, 2,3-Dimethyl-benzothiazolium-p-toluolsulfonat, 3-Ethyl-2-methyl-inaphtho[1,2-d]thiazolium-p-toluolsulfonat, Rhodanin, Rhodanin-3-essigsäure, 1,4-Dimethylchinolinium-iodid, 1,2-Dimethylchinolinium-iodid, Barbitursäure, Thiobarbitursäure, 1,3-Dimethylthiobarbitursäure, 1,3-Diethylthiobarbitursäure, 0xindol, 3-Indoxylacetat, 2-Cumaranon, 5-Hydroxy-2-cumaranon, 6-Hydroxy-2-cumaranon, 1-Methyl-3-phenyl-pyrazolin-5-on, Indan-1,2-dion, Indan-1,3-dion,

Indan-1-on, Benzoylacetonitril, 3-Dicyanmethylenindan-1-on, 1,3-Diiminoisoindolin, 2-Amino-4-imino-1,3-thia-zolin-hydrochlorid, 5,5-Dimethylcyclohexan-1,3-dion, 2H-1,4-Benzoxazin-4H-3-on, 3-Ethyl-2-methylbenzoxazo-

liumiodid, 3-Ethyl-2-methyl-benzothiazoliumiodid, 1-Ethyl-4-methylchinoliniumiodid, 1-Ethyl-2-methylchinoliniumiodid, 1,2,3-Trimethylchinoxaliniumiodid, 3-Ethyl-2-methylbenzoxazolium-p-toluolsulfonat, 3-Ethyl-2-methyl-benzothiazolium-p-toluolsulfonat, 1-Ethyl-4-methyl-chinolinium-ptoluolsulfonat, 1-Ethyl-2-methylchinoxalinium-p-toluolsulfonat, 1-Ethyl-2-methylchinoxalinium-p-toluolsulfonat, 1-Ethyl-2-methylchinoxalinium-p-toluolsulfonat.

- 4. Mittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es zusätzlich eine Komponente C, enthaltend mindestens eine Verbindung ausgewählt aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden und (d) Verbindungen mit primärer oder sekundärer Amino- oder Hydroxygruppe, ausgewählt aus aromatischen Hydroxyverbindungen, primären oder sekundären aromatischen Aminen und stickstoffhaltigen heterozyklischen Verbindungen, enthält.
- 5. Mittel gemäß Anspruch 4, dadurch gekennzeichnet, daß es als Komponente C mindestens eine Verbindung ausgewählt aus aromatischen oder heteroaromatischen Aldehyden oder Ketonen enthält.

5

35

40

- 6. Mittel nach einem der Anspruch 5, dadurch gekennzeichnet, daß die in Komponente C enthaltenen aromatischen und/oder heteroaromatischen Aldehyde und/oder Ketone ausgewählt sind aus
- 5-(4-Dimethylaminophenyl)-penta-2,4-dienal, 5-(4-Diethylaminophenyl)-penta-2,4-dienal, 5-(4-Methoxyphenyl)-penta-2,4-dienal, 5-(3,4-Dimethoxyphenyl)-penta-2,4-dienal, 5-(4-Pi-peridinophenyl)-penta-2,4-dienal, 5-(4-Pi-peridinophenyl)-penta-2,4-dienal, 5-(4-Pyrrolidinophenyl)-penta-2,4-dienal, 5-(4-Pyrrolidinophenyl)-penta-2,4-dienal, 6-(4-Dimethytaminophenyl)-hexa-3,5-dien-2-on, 6-(4-Diethylaminophenyl)-hexa-3,5-dien-2-on, 6-(4-Methoxyphenyl)-hexa-3,5-dien-2-on, 6-(3,4-Dimethoxyphenyl)-hexa-3,5-dien-2-on, 6-(4-Dimethoxyphenyl)-hexa-3,5-dien-2-on, 6-(4-Morpholinophenyl)-hexa-3,5-dien-2-on, 6-(4-Pyrrolidinophenyl)-hexa-3,5-dien-2-on, 6-(4-Dimethylaminonaphth-1-yl)-penta-2,4-dienal,
- 20 Pyrrolidinophenyl)-hexa-3,5-dien-2-on, 5-(4-Dimethylaminonaphth-1-yl)-penta-2,4-dienal, 2-Nitropiperonal, 5-Nitropiperonal, 6-Nitropiperonal, 5-Hydroxy-2-nitropiperonal, 2-Hydroxy-5-nitropiperonal, 2-Chlor-6-nitropiperonal, 5-Chlor-2-nitropiperonal, 2,6-Dinitropiperonal,
- 2-Nitrobenzaldehyd, 3-Nitrobenzaldehyd, 4-Nitrobenzaldehyd, 4-Methyl-3-nitrobenzaldehyd, 3-Hydroxy-4-nitrobenzaldehyd, 4-Hydroxy-3-nitrobenzaldehyd, 5-Hydroxy-2-nitrobenzaldehyd, 2-Hydroxy-5-nitrobenzaldehyd, 2-Hydroxy-3-nitrobenzaldehyd, 3-Methoxy-2-nitrobenzaldehyd, 4-Chlor-3-nitrobenzaldehyd, 2-Chlor-6-nitrobenzaldehyd, 5-Chlor-2-nitrobenzaldehyd, 4-Chlor-2-nitrobenzaldehyd, 2,4-Dinitrobenzaldehyd, 2,6-Dinitrobenzaldehyd, 2-Hydroxy-3-methoxy-5-nitrobenzaldehyd, 4,5-Dimethoxy-2-nitrobenzaldehyd, 5-Nitrovanillin, 3,5-Dinitrosalicylaldehyd, 5-Brom-3-nitrosalicylaldehyd, 3-Nitro-4-formylbenzolsulfonsäure, 4-Nitro-1-naphthaldehyd, 2-Nitrozimtaldehyd, 3-Nitrozimtaldehyd, 4-Nitrozimtaldehyd,
- Carbazolaldehyde oder Carbazolketone, insbesondere 9-Methyl-3-carbazolaldehyd, 9-Ethyl-3-carbazolaldehyd, 3-Acetylcarbazol, 3,6-Diacetyl-9-ethylcarbazol, 3-Acetyl-9-methylcarbazol, 1,4-Dimethyl-3-carbazolaldehyd, 1,4,9-Trimethyl-3-carbazolaldehyd,
 - 4-Trimethylammoniobenzaldehyd-, 4-Benzyldimethylammoniobenzaldehyd-, 4-Trimethylammoniozimtaldehyd-, 4-Trimethylammonionaphthaldehyd-, 2-Methoxy-4-trimethylammoniobenzaldehyd-, N-(4-Acetylphenyl)-trimethylammonium-, 4-(N,N-Diethyl)-N-methylammonio)-benzaldehyd-, N-(4-Benzoylphenyl)-trimethylammonium-, N-(4-Benzoylphenyl)-N,Ndiethylmethylammonium-, N-(4-Formylphenyl)-N-methylpyrrolidinium-, N-(4-Formylphenyl)-N-methylmorpholinium-, N-(4-Acetylphenyl)-N-methylmorpholinium-, N-(4-Acetylphenyl)-N-methylmorpholinium-, 3-Formyl-9,9-dimethylcarbazolium-, 1-(4-Acetylphenyl)-3-methylmidazolium-, 1-(4-Acetylphenyl)-3-methylmidazolium-, 1-(4-Acetylphenyl)-3-methyl-2-imidazolium-, 1-(4-Benzoylphenyl)-3-methylimidazolium-, 5-Acetyl-1,3-diethyl-2-methylbenzimidazolium-, 5-Trimethylammonio-1-indanon-Salze inshesondere die Benzolsulfonate, p-Toluolfulfonate, Methansulfonate, Et-
- Trimethylammonio-1-indanon-Salze, insbesondere die Benzolsulfonate, p-Toluolfulfonate, Methansulfonate, Ethansulfonate, Propansulfonate, Perchlorate, Sulfate, Chloride, Bromide, Iodide, Tetrachlorozinkate, Methylsulfate, Trifluormethansulfonate, Hexafluorophosphate, Tetrafluoroborate, 4-Formyl-1-methylpyridinium-, 2-Formyl-1-methylpyridinium-, 4-Formyl-1-ethylpyridinium-, 2-Formyl-1-ethylpyridinium-, 4-Formyl-1-ethylpyridinium-, 4-Formyl-1-ethylpy
- pyridinium-, 4-Formyl-1-benzylpyridinium-, 2-Formyl-1-benzylpyridinium-, 4-Formyl-1,2-dimethylpyridinium-, 4-Formyl-1,3-dimethylpyridinium-, 4-Formyl-1-methylchinolinium-, 2-Formyl-1 -methylchinolinium-, 4-Acetyl-1-methylpyridinium-, 2-Acetyl-1-methylpyridinium-, 5-Formyl-1-methylchinolinium-, 5-Formyl-1-methylchinolinium-, 5-Formyl-1-methylchinolinium-, 8-Formyl-1-ethylchinolinium-, 8-Formyl-1-ethylchinolinium-, 8-Formyl-1-ethylchinolinium-, 7-Formyl-1-benzylchinolinium-, 8-Formyl-1-benzylchinolinium-, 5-Formyl-1-allylchinolinium-, 7-Formyl-1-allylchinolinium-, 7-Formyl-1-allylchinolinium-, 8-Formyl-1-allylchinolinium-, 8-Formy
- nium- und 8-Formyl-1-allylchinolinium-, 5-Acetyl-1-methylchinolinium-, 6-Acetyl-1-methylchinolinium-, 7-Acetyl-1-methylchinolinium-, 8-Acetyl-1-methylchinolinium, 5-Acetyl-1-ethylchinolinium-, 6-Acetyl-1-ethylchinolinium-, 7-Acetyl-1-ethylchinolinium, 5-Acetyl-1-benzylchinolinium-, 6-Acetyl-1-benzylchinolinium-, 7-Acetyl-1-benzylchinolinium-, 8-Acetyl-1-benzylchinolinium, 5-Acetyl-1-allylchinolinium-, 6-Acetyl-1-allylchinolinium-, 6-Acetyl-1-allylchino
- Dimethyl-2-(4-formylphenyl)-imidazolinium-, 2-(4-Formylphenyl)-3-methylbenzothiazolium-, 2-(4-Acetylphenyl)-3-methylbenzothiazolium-, 2-(4-Formylphenyl)-3-methylbenzoxazolium-, 2-(5-Formyl-2-furyl)-3-methylbenzothiazolium-, 2-(3-Formylphenyl)-3-methylbenzothiazolium-, 2-(4-Formylphenyl)-3-methylbenzothiazolium-, 5-Chlor-2-(4-formylphenyl)-3-methylbenzothiazolium-, 2-(4-Formylphenyl)-3,5-dimethylbenzothiazolium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-pyridinium-,
- 1-Methyl-4-[2-(4-acetylphenyl)-ethenyl]-pyridinium-, 1-Benzyl-4-[2-(4-formylphenyl)-ethenyl]-pyridinium, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-pyridinium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-pyridinium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-chinolinium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-chinolinium-, 1-Methyl-2-[2-(5-formyl-2-thinol)-ethenyl]-chinolinium-, 1-Methyl-2-[2-(4-formylphenyl)-ethenyl]-benzothiazolinium-, 1,3-Dimethyl-2-[2-(4-formylphenyl)-ethenyl]-benzothiazolinium-, 1,3-Dimethyl-2-[2-(4-formylphenyl)-ethenyl]-benzothiazolinium-, 1,3-Dimethyl-2-[2-(4-formylphenyl)-ethenyl]-benzothiazolinium-, 1-Methyl-5-oxo-indeno[1,2-

b]pyridinium(4-methyl-4-azonio-9-fluorenon-), 1-Ethyl-5-oxo-indeno[1,2-b]pyridinium(4-Ethyl-4-azonio-9-fluo-

renon-), 1-Benzyl-5-oxo-indeno[1,2-b]pyridinium(-4-benzyl-4-azonio-9-fluorenon-), 2-Methyl-5-oxo-indeno[1,2-b] c]pyridinium-, 2-Methyl-9-oxo-indeno[2,1-c]pyridinium-, 1-Methyl-9-oxo-indeno[2,1-b]pyridinium-salze, insbesondere Benzolsulfonat, p-Toluolsulfonat, Methansulfonat, Perchlorat, Sulfat, Chlorid, Bromid, Iodid, Tetrachlorozinkat, Methylsulfat, Trifluormethansulfonat, Tetrafluoroborat, Salicylaldehyd, Vanillin, 4-Hydroxy-3-methoxyzimtaldehyd (Coniferylaldehyd), 2,4-Dihydroxybenzaldehyd, 4-Dimethylaminobenzaldehyd, 4-Diethylaminobenzaldehyd, 4-Dimethylamino-2-hydroxybenzaldehyd, 4-Pyrrolidinobenzafdehyd, 4-Morpholinobenzaldehyd, 4-Piperidinobenzaldehyd, 4-Dimethylaminoacetophenon, 4-Hydroxynaphthaldehyd, 4-Dimethylaminonaphthaldehyd, 4-Dimethylaminobenzylidenaceton, 4-Dimethylaminozimtaldehyd, 2-Dimethylaminobenzaldehyd, 2-Chlor-4-dimethylaminobenzaldehyd, 4-Dimethylamino-2-methylbenzaldehyd, trans-4-Diethylaminozimtaldehyd, 4-(Dibutylamino)-benzaldehyd, 4-Diphenylaminobenzaldehyd, 2,3,6,7-Tetrahydro-1H,5H-benzo[ij]chinolizin-9-carboxaldehyd, 4-Dimethylamino-2-methoxybenzaldehyd, 2,3,6,7-Tetrahydro-8-hydroxy-1H,5Hbenzo[ij]chinolizin-9-carboxaldehyd, 4-(1-Imidazolyl)-benzaldehyd, 2-Morpholinobenzaldehyd, Indol-3-carboxaldehyd, 1-Methylindol-3-carboxaldehyd, N-Ethylcarbazol-3-carboxaldehyd, 2-Formylmethylen-1,3,3-trimethylindolin (Tribasen Aldehyd) 1,3-Diacetylbenzol, 1,4-Diacetylbenzol, 1,3,5-Triacetylbenzol, 2-Benzoylacetophenon, 2-(4-Methoxybenzoyl)acetophenon, 2-(2-Furoyl)-acetophenon, 2-(2-Pyridoyl)-acetophenon, 2-(3-Pyridoyl)-acetophenon, 1-Phenyl-1,2-propandion, 1-Phenyl-1,2-butandion, 1-Phenyl-3,3-dimethyl-1,2-butandion, Benzil, Anisil, Salicil, 5,5'-Dibromsalicil, 2,2'-Furil, 2,2'-Thienil, 2,2'-, 4,4'-Pyridil, 6,6'-Dimethyl-4,4'-pyridil, 4-Hydroxy-, 4-Methoxy-, 4-Chlor-, 4-Methyl-, 4-Dimethylamino-, 4,4'-Dihydroxy-, -Dimethyl-, -Dibrom-, -Dichlor-, -Bisdimethylamino-, 2,4-Dihydroxy-, 3,3'-Dimethoxy, 2'-Chlor-3,4-dimethoxy-, 3,4,5,3',4',5'-Hexamethoxybenzil, Isatinderivate, wie 5-Chlorisatin, 5-Methoxyisatin, 5-Nitroisatin, 6-Nitroisatin, 5-Sulfoisatin, Isatin-5-sulfonsäure, Isatin-4-carbonsäure und Isatin-5-carbonsäure, N-substituierte Isatin-Derivate, wie N-Methylisatin, N-(2-Hydroxyalkyl)-isatin, N-(2-Hydroxypropyl)-isatin, N-(3-Hydroxypropyl)-isatin, N-(2,3-Dihydroxypropyl)-isatin, N-(2-Sulfoethyi)-isatin, (3-Sulfopropyl)-isatin, N-Allylisatin, N-Vinylisatin, N-Benzylisatin, N-(4-Methoxybenzyl)-isatin, N-(4-Carboxybenzyl)-isatin, N-(4-Sulfobenzyl)-isatin, N-(2-Dimethylaminoethyl)-isatin, N-(2-Pyrrolidinoethyl)-isatin, N-(2-Piperidinoethyl)-isatin, (2-Morpholinoethyl)-isatin, N-(2-Furylmethyl)-isatin, N-(Thien-2-ylmethyl)-isatin, N-(Pyrid-2-ylmethyl)-isatin, N-(Pyrid-2-ylmethyl)-isati rid-3-ylmethyl)-isatin, N-(Pyrid-4-ylmethyl)-isatin, N-Allylisatin-5-sulfonsäure, 5-Chlor-N-(2-hydroxyethyl)-isatin, 5-Methyl-N-(2-hydroxyethyl)-isatin, 5,7-Dichlor-N-allylisatin, 5-Nitro-N-allylisatin, N-Hydroxymethylisatin, N-Hydroxymethyl-5-methylisatin, N-Hydroxymethyl-5-chlorisatin, N-Hydroxymethyl-5-sulfoisatin, methyl-5-carboxyisatin, N-Hydroxymethyl-5-nitroisatin, N-Hydroxymethyl-5-bromisatin, N-Hydroxymethyl-5methoxyisatin, N-Hydroxymethyl-5, 7-dichlorisatin, N-Dimethylaminomethylisatin, N-Diethylaminomethylisatin, N-(Bis-(2-hydroxyethyl)-aminomethyl)-isatin, N-(2-Hydroxyethylaminomethyl)-isatin, N-(Bis-(2-hydroxypropyl)-aminomethyl)-isatin, N-Pyrrolidinomethylisatin, N-Piperidinomethylisatin, N-Morpholinomethylisatin, N-(1,2,4-Triazolyl)-methylisatin, N-(1-Imidazolyl)-methylisatin, N-Carboxymethylaminomethylisatin, N-(2-Carboxyethylaminomethyl)-isatin, N-(3-Carboxypropylaminomethyl)-isatin, N-(Bis-(2'-hydroxyethyl)-aminomethyl)-5-methylisatin, N-Piperidinomethyl-5-chlorisatin, N-(2-Sulfoethylamino)-isatin, sowie die Alkali- und gegebenenfalls Ammoniumsalze der sauren Verbindungen, Chinisatin und deren Derivate, wie N-Methylchinisatin, Acetophenon, Propiophenon, 2-Hydroxyacetophenon, 3-Hydroxyacetophenon, 4-Hydroxyacetophenon, 2-Hydroxypropiophenon, 3-Hydroxypropiophenon, 4-Hydroxypropiophenon, 2-Hydroxybutyrophenon, 3-Hydroxybutyrophenon, 4-Hydroxybutyrophenon, 2,4-Dihydroxyacetophenon, 2,5-Dihydroxyacetophenon, 2,6-Dihydroxyacetophenon, 2,3,4-Trihydroxyacetophenon, 3,4,5-Trihydroxyacetophenon, 2,4,6-Trihydroxyacetophenon, 2,4,6-Trimethoxyacetophenon, 3,4,5-Trimethoxyacetophenon, 3,4,5-Trimethoxy-acetophenon-diethylketal, 4-Hydroxy-3-methoxyacetophenon, 3,5-Dimethoxy-4-hydroxy-acetophenon, 4-Amino-acetophenon, 4-Dimethylamino-acetophenon, 4-Morpholino-acetophenon, 4-Piperidinoacetophenon, 4-Imidazolino-acetophenon, 2-Hydroxy-5-brom-acetophenon, 4-Hydroxy-3-nitroacetophenon, Acetophenon-2-carbonsäure, Acetophenon-4-carbonsäure, Benzophenon, 4-Hydroxy-benzophenon, 2-Amino-benzophenon, 4,4'-Dihydroxy-benzophenon, 2,4-Dihydroxy-benzophenon non, 2,4,4'-Trihydroxybenzophenon, 2,3,4-Trihydroxybenzophenon, 2-Hydroxy-1-acetonaphthon, 1-Hydroxy-2acetonaphthon, Chromon, Chromon-2-carbonsäure, Flavon, 3-Hydroxyflavon, 3,5,7-Trihydroxyflavon, 4',5,7-Trihydroxyflavon, 5,6,7-Trihydroxyflavon, Quercetin, Indanon, 9-Fluorenon, 3-Hydroxyfluorenon, Anthron, 1,8-Dihydroxyanthron, heterocyclische Carbonylverbindungen, wie 2-Indolaldehyd, 3-Indolaldehyd, 1-Methylindol-3-aldehyd, 2-Methylindol-3-aldehyd, 1-Acetylindol-3-aldehyd, 3-Acetylindol, 1-Methyl-3-acetylindol, 2-(1,3,3-Trimethyl-2-indolinyliden)-acetaldehyd, 1-Methylpyrrol-2-aldehyd, 1-Methyl-2-acetylpyrrol, 1-Pyridinaldehyd, 2-Pyridinaldehyd, 3-Pyridinaldehyd, 4-Acetylpyridin, 2-Acetylpyridin, 3-Acetylpyridin, Pyridoxal, Chinolin-3-aldehyd, Chinolin-4-aldehyd, Antipyrin-4-aldehyd, Furfural, 5-Nitrofurfural, 2-Thenoyl-trifluor-aceton, Chromon-3-aldehyd, 3-(5-Nitro-2-furyl)-acrolein, 3-(2-Furyl)-acrolein, Imidazol-2-aldehyd, Indanon-Derivate, wie z. B. 1,2-Indandion, 2-Oximo-1-indanon, Indan-1,2,3-trion-2-oxim, 5-Methoxy-indan-1,2,3-trion-2-oxim, 2-Nitro-1,3-indandion sowie physiologisch verträglichen Salzen der voranstehenden Verbindungen. 7. Mittel gemäß einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die primären und sekundären aromatischen Amine der Komponente C ausgewählt sind aus N,N-Dimethyl-p-phenylendiamin, N,N-Diethyl-p-phenylendiamin, N-(2-Hydroxyethyl)-N-ethyl-p-phenylendiamin, N,N-Bis-(2-hydroxyethyl)-p-phenylendiamin, N-(2-Methoxyethyl)-p-phenylendiamin, 2, 3-Dichlor-p-phenylendiamin, 2,4-Dichlor-p-phenylendiamin, 2,5-Dichlor-p-phenylendiamin, 2,5-D nylendiamin, 2-Chlor-p-phenylendiamin, 2,5-Dihydroxy-4-morpholinoanilin, 2-Aminophenol, 3-Aminophenol, 4-Aminophenol, 2-Aminomethyl-4-aminophenol, 2-Hydroxymethyl-4-aminophenol, o-Phenylendiamin, m-Phenylendiamin, m-Phenylend

lendiamin, p-Phenylendiamin, 2,5-Diaminotoluol, 2,5,-Diaminophenol, 2,5-Diaminoanisol, 2, 5,Diaminophenethol, 4-Amino-3-methylphenol, 2-(2,5-Diaminophenyl)-ethanol, 2,4-Diaminophenoxyethanol, 2-(2,5-Diaminophenyl)-ethanol, noxy)-ethanol, 3-Amino-4-(2-hydroxyethyloxy)phenol, 3,4-Methylendioxyphenol, 3,4-Methylendioxyanilin, 3-Amino-2,4-dichlorphenol, 4-Methylaminophenol, 2-Methyl-5-aminophenol, 3-Methyl-4-aminophenol, 2-Methyl-5-(2-hydroxyethylamino)phenol, 3-Amino-2-chlor-6-methylphenol, 2-Methyl-5-amino-4-chlorphenol, 5-(2-Hydroxyethylamino)-4-methoxy-2-methylphenol, 4-Amino-2-hydroxymethylphenol, 2-(Diethylaminomethyl)-4-aminophenol, 4-Amino-1-hydroxy-2-(2-hydroxyethylaminomethyl)-benzol, 1-Hydroxy-2-amino-5-methyl-benzol, 1-Hydroxy-2-amino-6-methyl-benzol, 2-Amino-5-acetamido-phenol, 1,3-Dimethyl-2,5-diaminobenzol, 5-(3-Hydroxypropylamino-)2-methylphenol, 5-Amino-4-methoxy-2-methylphenol, N,N-Dimethyl-3-aminophenol, N-Cyclopentyl-3-aminophenol, 5-Amino-4-fluor-2-methylphenol, 2,4-Diamino-5-fluortoluol, 2,4-Diamino-5-(2-hy-10 droxyethoxy)-toluol, 2,4-Diamino-5-methylphenetol, 3, 5-Diamino-2-methoxy-1-methylbenzol, 2-Amino-4-(2-hydroxyethylamino)-anisol, 2,6-Bis-(2-hydroxyethylamino)-1-methylbenzol, 1,3-Diamino-2,4-dimethoxybenzol, 3,5-Diamino-2-methoxy-toluol, 2-Aminobenzoesäure, 3-Aminobenzoesäure, 4-Aminobenzoesäure, 2-Aminophenylessigsäure, 3-Aminophenylessigsäure, 4-Aminophenylessigsäure, 2,3-Diaminobenzoesäure, 2,4-Diaminobenzoesäure, 2,5-Diaminobenzoesäure, 3,4-Diaminobenzoesäure 3,5-Diaminobenzoesäure, 4-Aminosalicylsäure, 5-15 Aminosalicylsäure, 3-Amino-4-hydroxy-benzoesäure, 4-Amino-3-hydroxy-benzoesäure, 2-Aminobenzolsulfonsäure, 3-Aminobenzolsulfonsäure, 4-Aminobenzolsulfonsäure, 3-Amino-4-hydroxybenzolsulfonsäure, 4-Amino-3-hydroxynaphthalin-1-sulfonsäure, 6-Amino-7-hydroxynaphthalin-2-sulfonsäure, 7-Amino-4-hydroxynaphthalin-2-sulfonsäure, 4-Amino-5-hydroxynaphthalin-2,7-disulfonsäure, 3-Amino-2-naphthoesäure, 3-Aminophthalsäure, 5-Aminoisophthalsäure, 1,3,5-Triaminobenzol, 1,2,4-Triaminobenzol, 1,2,4,5-Tetraaminobenzol, 2,4,5-Triamino-20 phenol, Pentaaminobenzol, Hexaaminobenzol, 2,4,6-Triaminoresorcin, 4,5-Diaminobrenzcatechin, 4,6-Diaminopyrogallol, 1-(2-Hydroxy-5-aminobenzyl)-2-imidazofidinon, 4-Amino-2-((4-[(5-amino-2-hydroxyphenyl)methyl]piperazinyl)methyl)phenol, 3,5-Diamino-4-hydroxybrenzcatechin, 1,4-Bis-(4-aminophenyl)-1,4-diazacycloheptan, aromatische Nitrile, wie 2-Amino-4-hydroxybenzonitril, 4-Amino-2-hydroxybenzonitril, 4-Aminobenzonitril, 2,4-Diaminobenzonitril, Nitrogruppen-haltige Aminoverbindungen, wie 3-Amino-6-methylamino-2-nitro-pyridin, Pi-25 [8-[(4-Amino-2-nitrophenyl)-azo]-7-hydroxy-naphth-2-yl]-trimethylammoniumchlorid, kraminsäure. Amino-3-nitrophenyl)-azo)-7-hydroxy-naphth-2-yl]-trimethylammoniumchlorid (Basic Brown 17), 1-Hydroxy-2-1-Amino-2-nitro-4-[bis-(2-hydroxyethyl)amino]-benzol, 1-Amino-2-[(2-hydroxyamino-4,6-dinitrobenzol, ethyl)amino]-5-nitrobenzol (HC Yellow Nr. 5), 1-Amino-2-nitro-4-[(2-hydroxyethyl)amino]-benzol (HC Red Nr. 7), 2-Chlor-5-nitro-N-2-hydroxyethyl-1,4-phenylendiamin, 1-[(2-Hydroxyethyl)amino]-2-nitro-4-amino-benzol 30 (HC Red Nr. 3), 4-Amino-3-nitrophenol, 4-Amino-2-nitrophenol, 6-Nitro-o-toluidin, 1-Amino-3-methyl-4-[(2-hydroxyethyl)amino]-6-nitrobenzol (HC Violet Nr. 1), 1-Amino-2-nitro-4-[(2, 3-dihydroxypropyl)amino]-5-chlorbenzol (HC Red Nr. 10), 2-(4-Amino-2-nitroanilino)-benzoesäure, 6-Nitro-2,5-diaminopyridin, 2-Amino-6-chlor-4-nitrophenol, 1-Amino-2-(3-nitrophenylazo)-7-phenylazo-8-naphthol-3,6-disulfonsäure Dinatriumsalz (Acid blue Nr. 29), 1-Amino-2-(2-hydroxy-4-nitrophenylazo)-8-naphthol-3,6-disulfonsäure Dinatriumsalz (Palatinchrome 35 green), 1-Amino-2-(3-chlor-2-hydroxy-5-nitrophenylazo)-8-naphthol-3,6-disulfonsäure Dinatriumsalz (Gallion), 4-Amino-4'-nitrostilben-2,2'-disulfonsäure Dinatriumsalz, 2,4-Diamino-3',5'-dinitro-2'-hydroxy-5-methyl-azobenzol (Mordant brown 4), 4'-Amino-4-nitrodiphenylamin-2-sulfonsäure, 4'-Amino-3'-nitrobenzophenon-2-carbonsäure, 1-Amino-4-nitro-2-(2-nitrobenzylidenamino)-benzol, 2-[2-(Diethylamino)ethylamino]-5-nitroanilin, 3-Amino-4-hydroxy-5-nitrobenzolsulfonsäure, 3-Amino-3'-nitrobiphenyl, 3-Amino-4-nitro-acenaphthen, 2-Amino-40 1-nitronaphthalin, 5-Amino-6-nitrobenzo-1,3-dioxol, Aniline, insbesondere Nitrogruppen-haltige Aniline, wie 4-Nitroanilin, 2-Nitroanilin, 1,4-Diamino-2-nitrobenzol, 1,2-Diamino-4-nitrobenzol, 1-Amino-2-methyl-6-nitrobenzol, 4-Nitro-1,3-phenylendiamin, 2-Nitro-4-amino-1-(2-hydroxyethylamino)-benzol, 2-Nitro-1-amino-4-[bis-(2hydroxyethyl)-amino]-benzol, 4-Amino-2-nitrodiphenylamin-2'-carbonsäure, 1-Amino-5-chlor-4-(2-hydroyethylamino)-2-nitrobenzol, 4,4'-Diaminostilben und dessen Hydrochlorid, 4,4'-Diaminostilben-2,2'-disulfonsäure-mono-45 oder -di-Na-Salz, 4-Amino-4'-dimethylaminostilben und dessen Hydrochlorid, 4,4'-Diaminodiphenylmethan, 4,4'-Diaminodiphenylsulfid, 4,4'-Diaminodiphenylsulfoxid, 4,4'-Diaminodiphenylamin, 4,4'-Diaminodiphenylamin-2sulfonsäure, 4,4'-Diaminobenzophenon, 4,4'-Diaminodiphenylether, 3,3',4,4'-Tetraaminodiphenyl, 3,3',4,4'-Tetraamino-benzophenon, 1,3-Bis-(2,4-diaminophenoxy)-propan, 1,8-Bis-(2,5-diaminophenoxy)-3,6-dioxaoctan, 1,3-Bis-(4-aminophenylamino)propan, 1,3-Bis-(4-aminophenylamino)-2-propanol, 1,3-Bis-[N-(4-aminophenyl)-2-hy-50 droxyethylamino]-2-propanol, N,N-Bis-[2-(4-aminophenoxy)-ethyl]-methylamin, N-Phenyl-1,4-phenylendiamin und Bis-(5-amino-2-hydroxyphenyl)-methan. 8. Mittel gemäß einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die stickstoffhaltigen heterocyclischen Verbindungen der Komponente C ausgewählt sind aus der Gruppe bestehend aus 2-Aminopyridin, 3-Aminopyridin, 4-Aminopyridin, 2-Amino-3-hydroxy-pyridin, 2,6-Diamino-pyridin, 2,5-Diamino-pyridin, 2-(Aminoethyfamino)-55 5-aminopyridin, 2,3-Diamino-pyridin, 2-Dimethylamino-5-amino-pyridin, 2-Methylamino-3-amino-6-methoxypyridin, 2,3-Diamino-6-methoxypyridin, 2,6-Dimethoxy-3,5-diamino-pyridin, 2,4,5-Triamino-pyridin, 2,6-Dihydroxy-3,4-dimethylpyridin, N-[2-(2,4-Diaminophenyl)aminoethyl]-N-(5-amino-2-pyridyl)-amin, N-[2-(4-Aminophenyl)aminoethyl]-N-(5-amino-2-pyridyl)-amin, 2,4-Dihydroxy-5,6-diaminopyrimidin, 4,5,6-Triaminopyrimidin, 4-Hydroxy-2,5,6-triaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 2,4,5,6-Tetraaminopyrimidin, 2-Methyl-60 amino-4,5,6-triaminopyrimidin, 2,4-Diaminopyrimidin, 4,5-Diaminopyrimidin, 2-Amino-4-methoxy-6-methylpyrimidin, 3,5-Diaminopyrazol, 3,5-Diamino-1,2,4-triazol, 3-Aminopyrazol, 3-Amino-5-hydroxypyrazol, 1-Phenyl-4,5-diaminopyrazol, 1-(2-Hydroxyethyl)-4,5-diaminopyrazol, 1-Phenyl-3-methyl-4,5-diaminopyrazol, 4-Amino-2, 3-dimethyl-1-phenyl-3-pyrazolin-5-on (4-Aminoantipyrin), 1-Phenyl-3-methylpyrazol-5-on, 2-Aminochinolin, 3-Aminochinolin, 8-Aminochinolin, 4-Aminochinaldin, 2-Aminonicotinsäure, 6-Aminonicotinsäure, 5-Aminoiso-65 chinolin, 5-Aminoindazol, 6-Aminoindazol, 5-Aminobenzimidazol, 7-Aminobenzimidazol, 5-Aminobenzothiazol, 7-Aminobenzothiazol, 2, 5-Dihydroxy-4-morpholino-anilin sowie Indol- und Indolinderivaten, wie 4-Aminoindol, 5-Aminoindol, 6-Aminoindol, 7-Aminoindol, 5,6-Dihydroxyindol, 5,6-Dihydroxyindolin, 4-Hydroxyindolin und

Hydroxypyrimidin-Derivate und die physiologisch verträglichen Salze der vorgenannten Verbindungen.

- 9. Mittel gemäß einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die aromatischen Hydroxyverbindungen der Komponente C ausgewählt sind aus 2-, 4-, 5-Methylresorcin, 2,5-Dimethylresorcin, Resorcin, 3-Methoxyphenol, Brenzkatechin, Hydrochinon, Pyrogallol, Phloroglucin, Hydroxyhydrochinon, 2-, 3-, 4-Methoxy-, 3-Dimethylamino-, 2-(2-Hydroxyethyl)-, 3,4-Methylendioxyphenol, 2,4-, 3,4-Dihydroxybenzoesäure, -phenylessigsäure, Gallussäure, 2,4,6-Trihydroxybenzoesäure, -acetophenon, 2-, 4-Chlorresorcin, 1-Naphthol, 1,5-, 2,3-, 2, 7-Dihydroxynaphthalin, 6-Dimethylamino-4-hydroxy-2-naphthalinsulfonsäure und 3,6-Dihydroxy-2,7-naphthalinsulfonsäure.
- 10. Mittel gemäß einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß die Aminosäuren der Komponente C ausgewählt sind aus Arginin, Histidin, Tyrosin, Phenylalanin, DOPA (Dihydroxyphenylalanin), Ornithin, Prolin, Lysin, Tryptophan, 6-Aminocapronsäure und β-Alanin.
- 11. Mittel gemäß einem der Ansprüche 4 bis 10, dadurch gekennzeichnet, daß die Oligopeptide der Komponente C ausgewählt sind aus Glutathion oder den in den Hydrolysaten von Kollagen, Keratin, Casein, Elastin, Sojaprotein, Weizengluten oder Mandelprotein enthaltenen Oligopeptide.
- 12. Mittel gemäß einem der Ansprüche 4 bis 11, dadurch gekennzeichnet, daß die in Komponente C enthaltenen Verbindungen ausgewählt sind aus 4-Formyl-1-ethylpyridinium-p-toluolsulfonat, 4-Formyl-1-methylchinolinium-p-toluolsulfonat, 2-Formyl-1-methylchinolinium-p-toluolsulfonat, Salicylaldehyd, Vanillin, 4-Hydroxy-3-methoxy-zimtaldehyd, 4-Dimethylaminobenzaldehyd, 4-Dimethylamino-2-hydroxybenzaldehyd, 4-Hydroxynaphthaldehyd, Indol-3-carboxaldehyd und Isatin, sowie jeweils aus den vorzugsweise mit anorganischen Säuren gebildeten physiologisch verträglichen Salzen dieser Verbindungen.
- 13. Mittel gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Verbindungen der Formel I in einer Menge von 0,03 bis 65 mmol, insbesondere von 1 bis 40 mmol, bezogen auf 100 g des gesamten Färbemittels, enthalten sind.
- 14. Mittel nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß es Farbverstärker ausgewählt aus der Gruppe bestehend aus Piperidin, Piperidin-2-carbonsäure, Piperidin-3-carbonsäure, Piperidin-4-carbonsäure, Pyridin, 2-Hydroxypyridin, 3-Hydroxypyridin, 4-Hydroxypyridin, Imidazol, 1-Methylimidazol, Histidin, Pyrrolidin, Prolin, Pyrrolidon, Pyrrolidon-5-carbonsäure, Pyrazol, 1, 2,4-Triazol, Piperazidin oder deren beliebigen Gemischen
- 15. Mittel nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß es direkt ziehende Farbstoffe aus der Gruppe der Nitrophenylendiamine, Nitroaminophenole, Anthrachinone oder Indophenole vorzugsweise in einer Menge von 0,01 bis 20 Gew.-%, bezogen auf das gesamte Färbemittel, enthält.
- 16. Mittel nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß Ammonium- oder Metallsalze ausgewählt aus der Gruppe der Formiate, Carbonate, Halogenide, Sulfate, Butyrate, Valemate, Capronate, Acetate, Lactate, Glykolate, Tartrate, Citrate, Gluconate, Propionate, Phosphate und Phosphonate von Alkalimetallen, wie Kalium, Natrium oder Lithium, Erdalkalimetallen, wie Magnesium, Calcium, Strontium oder Barium, oder von Aluminium, Mangan, Eisen, Kobalt, Kupfier oder Zink, zugegeben werden.
- 17. Mittel nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß es Oxidationsmittel, insbesondere H_2O_2 , in einer Menge von 0,01 bis 6 Gew.-%, bezogen auf die Anwendungslösung, enthält.
- 18. Mittel nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß es anionische, zwitterionische oder nichtionische Tenside enthält.
- 19. Verwendung einer Kombination aus
 - A. mindestens einer quaternierten heterozyklischen Verbindung gemäß Formel I,

worin R¹, R², R³, X¹ und A⁻ wie oben definiert sind, mit der Maßgabe, daß wenn Y eine gegebenenfalls substituierte Vinylengruppe ist, die Verbindungen der Formel II

wobei R^1 , R^2 , R^3 , X^1 , X^2 und A^- wie oben definiert sind, mitumfaßt sind,

sowie entsprechenden inneren Salzen, wobei A- entfällt, und

B. mindestens einer CH-aciden Verbindung,

sowie gegebenenfalls

C. mindestens einer Verbindung ausgewählt aus der Gruppe, die gebildet wird aus (a) aromatischen oder heteroaromatischen Aldehyden oder Ketonen, (b) Aminosäuren, (c) aus 2 bis 9 Aminosäuren aufgebauten Oligopeptiden (e) quartären Ammoniumverbindungen und (f) Verbindungen mit primärer oder sekundärer Aminooder Hydroxygruppe, ausgewählt aus aromatischen Hydroxyverbindungen, primären oder sekundären aromatischen Aminen und stickstoffhaltigen heterozyklischen Verbindungen

als eine färbende Komponente in Oxidationshaarfärbemitteln.

20. Verfahren zum Färben von keratinhaltigen Fasern, insbesondere menschlichen Haaren, worin ein Färbemittel gemäß den Ansprüchen 1 bis 18 auf die keratinhaltigen Fasern aufgebracht, einige Zeit, üblicherweise ca. 30 Minuten, auf der Faser belassen und anschließend wieder ausgespült oder mit einem Shampoo ausgewaschen wird.