Transitions to Higher Mathematics Portfolio Draft

October 30, 2024

Mustafa Rashid Fall 2024

1 Chapter 4

Problem 8

Proposition. Suppose a is an integer. If $5 \mid 2a$ then $5 \mid a$

Proof. Suppose $a \in \mathbb{Z}$ and $5 \mid 2a$.

Because $5 \mid 2a$ then by definition of divisibility 2a = 5k for some $k \in \mathbb{Z}$. Because 5k = 2a then 5k is even by definition. This means k is even and so by definition k can be written as k = 2c for some $c \in \mathbb{Z}$. We now have $2a = 5k = 5 \cdot (2c)$ which then becomes 2a = 10c. Dividing both sides by 2 gives a = 5c and thus we have written a as c multiples of 5 where $c \in \mathbb{Z}$. Therefore, $5 \mid a$ by definition.

Problem 18

Proposition. Suppose x and y are positive real numbers. If x < y, then $x^2 < y^2$.

Proof. Suppose $x, y \in \mathbb{R}^+$ and x < y.

Consider the inequality x < y. Multiplying both sides by x gives $x^2 < xy$. The sign of the inequality does not change as x > 0. Taking x < y again and multiplying both sides by y gives $xy < y^2$. The sign of the inequality does not change as y > 0. We can combine the two inequalities to get $x^2 < xy < y^2$. Therefore, $x^2 < y^2$.

2 Chapter 5

Problem 10

Proposition. Suppose $x, y, z \in \mathbb{Z}$ and $x \neq 0$. If $x \nmid yz$, then $x \nmid y$ and $x \nmid z$.

Proof. Suppose it is not true that $x \not\mid y$ and $x \not\mid z$. That is, by DeMorgan's law through negating the "and", suppose $x \mid y$ or $x \mid z$.

Case 1: Suppose $x \mid y$. Then y = ax for some $a \in \mathbb{Z}$. Multiplying both sides by z gives yz = axz or yz = (az)x. Therefore $x \mid yz$.

Case 2: Suppose $x \mid z$. Then z = bx for some $b \in \mathbb{Z}$. Multiplying both sides by y gives yz = bxz or yz = (bz)x. Therefore $x \mid yz$.

Case 1 and Case 2 show that $x \mid yz$. Therefore it is not true that $x \not\mid yz$.

Problem 22

Proposition. Let $a \in \mathbb{Z}$, $n \in \mathbb{N}$. If a has a remainder r when divided by n, then $a \equiv r \pmod{n}$.

Proof. Suppose $a \in \mathbb{Z}$, $n \in \mathbb{N}$ and that a has a remainder r when divided by n. By the division algorithm we have a = qn + r where $q \in \mathbb{Z}$ and $0 \le r < n$. We can rearrange this to get a - r = qn. Therefore $n \mid (a - r)$. Hence $a \equiv r \pmod{n}$ by definition.

3 Chapter 6

Problem 4

Proposition. $\sqrt{6}$ is irrational

Proof. Suppose, for the sake of contradiction, that $\sqrt{6}$ is rational. Therefore by definition $\sqrt{6} = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ and that a and b have no common divisiors. Squaring both sides gives $6 = \frac{a^2}{b^2}$. This then gives $6b^2 = a^2$. The left-handside of this equation is even because 6 is even the product of an even integer with any integer is even.

Lemma. The product of an even integer a and any other integer b is even

Case 1: Suppose $a, b \in \mathbb{Z}$ and that a is even and b is odd. Therefore by definition $a = 2k, k \in \mathbb{Z}$ and $b = 2q + 1, q \in \mathbb{Z}$. The product ab is equal to $2k \cdot (2q + 1) = 4kq + 2k = 2(2kq + k)$ and is thus even by definition.

Case 2: Suppose $a, b \in \mathbb{Z}$ and that both a and b are even. Therefore by definition $a = 2r, r \in \mathbb{Z}$ and $b = 2s, s \in \mathbb{Z}$. The product ab is equal to $2r \cdot 2s = 4rs = 2(2rs)$ and is thus even by definition.

This means that a^2 is even and so by the previous lemma a is also even so $a=2l, l\in\mathbb{Z}$. We can substitute this in $6b^2=a^2$ to get $6b^2=4l^2$. Dividing both sides by 2 gives $3b^2=2l^2$. Here the right-hand side is even and so the left-hand side must also be even. Because $3b^2$ is even then either 3 or b^2 is even. We know that 3 is odd and so b^2 must be even. Therefore by our previous lemma, b must also be even and so $b=2w, w\in\mathbb{Z}$. So we have shown that both a and b are even. This means that they have a common factor of 2 but this contradicts our initial supposition that a and b have no common divisors. Therefore, $\sqrt{6}$ must be irrational.

Problem 8

Proposition. Suppose $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$ then a or b is even.

Proof. Suppose, for the sake of contradiction, that $a^2+b^2=c^2$ and that a and b are odd. Therefore by definition $a=2d+1, d\in\mathbb{Z}$ and $b=2e+1, e\in\mathbb{Z}$. Substituting this into $a^2+b^2=c^2$ gives $c^2=(2d+1)^2+(2e+1)^2=4d^2+4d+1+4e^2+4e+1=4(d^2+d+e^2+e)+2$ The integer c is either odd or even.

Case 1: c is odd, and so by definition $c=2q+1, q\in\mathbb{Z}$. Thus $c^2=4q^2+4q+1=4(d^2+d+e^2+e)+2$. This means that $4q^2+4q=4(d^2+d+e^2+e)+1=2(2(d^2+d+e^2+e))+1$. Which is a contradiction because the left-hand side is even and the right-hand side is odd.

4 Chapter 7

Problem 6

Proposition. Suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y = -x

Proof. Suppose $x, y \in \mathbb{R}$ and that $x^3 + x^2y = y^2 + xy$. We then have $x^2(x+y) = y(x+y)$. If $x+y \neq 0$, dividing both sides gives $x^2 = y$. If x+y=0 we then get y=-x. Therefore if $x^3 + x^2 + y = y^2 + xy$ then $y = x^2$ or y = -x.

Suppose $x, y \in \mathbb{R}$ and either $x = y^2$ or y = -x. If $y = x^2$ then $x^3 + x^2y = x^3 + x^2(x^2) = x^3 + x^4$. and $y^2 + xy = x^4 + x^3$. If y = -x then $x^3 + x^2(-x) = x^3 - x^3 = 0$ and $y^2 + xy = x^2 - x^2 = 0$. Therefore if $y = x^2$ or y = -x then $x^3 + x^2 + y = y^2 + xy$.

5 Chapter 8

Problem 2

Proposition. $\{6n : n \in \mathbb{Z}\} = \{2n : n \in \mathbb{Z}\} \cap \{3n : n \in \mathbb{Z}\}$

Proof. Every element in $\{6n : n \in \mathbb{Z}\}$ can be written as $3n \cdot 2$ or $2n \cdot 3$ therefore it must also exist in $\{2n : n \in \mathbb{Z}\} \cap \{3n : n \in \mathbb{Z}\}$