Math 3336 Homework Assignment 4

Instructions

- Record your answers to the following 10 questions. Show your work when a question requires you to do so.
- Scan your work and save the file as a .pdf (make sure your work and answers are legible)
- Upload your scanned work to CASA CourseWare using the "Assignments" tab. (<u>Click this link</u> for instructions on how to do this).
- Homework submitted after 11:59pm on the indicated due date will be assigned a grade of 0.
- Also, **DON'T FORGET THAT** $0 \in \mathbb{N}$.
- 1. Is it possible to have a function $f: A \to B$ where the domain satisfies |A| = 3 and the codomain satisfies |B| = 2? If you think this is possible, provide an explicit example (make up your own sets A and B, and make up your own function f). If you think this is impossible explain why.

2. Consider the set $S = \{0,1\}$. How many different functions $f: S \to S$ are there? List them out by making a diagram for each one.

3. Consider the function $g: \mathbb{R} \to \mathbb{R}$ given by

$$g(x) = \lceil x \rceil - x$$

(a) Is there an element a in the domain that satisfies g(a) = 0.5? If you think there is write down such an element and explain why it works. If you think there is not, explain why not.

(b) Is there an element a in the domain that satisfies g(a) = 1.5? If you think there is write down such an element and explain why it works. If you think there is not, explain why not.

(c) Which, if any, inputs $a \in \mathbb{R}$ result in the output g(a) = 0?

4. Consider the function $g:\mathbb{Q}\to B$ defined by the rule

$$g\left(\frac{a}{b}\right) = a$$

where the input $a/b \in \mathbb{Q}$ is written as a fully reduced fraction. What is the smallest codomain, B, one can use for this function?

5. Given two real numbers, $a \in \mathbb{R}$ and $r \in \mathbb{R}$, one can form the sequence

$$a_n = a r^n$$
.

This type of sequence is called a **Geometric Sequence** (and the number r is called the **common ratio**). Check that every Geometric Sequence satisfies the recurrence equation (and initial condition)

$$a_n = r \cdot a_{n-1}$$
 and $a_0 = a$.

6. Given two real numbers, $a \in \mathbb{R}$ and $d \in \mathbb{R}$, one can form the sequence

$$a_n = d \cdot n + a$$
.

This type of sequence is called an **Arithmetic Sequence** (and the number d is called the **common difference**). Check that every Arithmetic Sequence satisfies the recurrence equation (and initial condition)

$$a_n = d + a_{n-1}$$
 and $a_0 = a$.

7. Consider the recursively defined sequence a_n that satisfies the following recurrence equation:

$$a_n = \frac{4}{a_{n-1}}.$$

(a) Suppose we also use the initial condition $a_0 = 2$. Use the recurrence relation to write out the terms a_1, a_2, a_3 and a_4 (you can write out more if you like). What pattern do you notice about these terms? Do you think the pattern continues?

(b) Suppose we now use the initial condition $a_0 = 1$. Use the recurrence relation to write out the terms a_1, a_2, a_3 and a_4 (you can write out more if you like). What pattern do you notice about these terms? Do you think the pattern continues?

- 8. Invent your own recursively defined sequence a_n , but make sure it satisfies the following properties:
 - a_n must depend on the *three* previous terms a_{n-1}, a_{n-2} and a_{n-3} .
 - You must use the initial conditions $a_0 = 1, a_1 = -1$, and $a_2 = 1/2$

Calculate the term a_8 .

9. Recall the famous Fibonacci numbers F_n defined by the recurrence relation and initial conditions

$$F_n = F_{n-1} + F_{n-2}$$
 and $F_0 = F_1 = 1$.

If we use the recurrence relation to extend the sequence *backwards*, we can compute terms like F_{-1} and F_{-2} , etc. Continuing this process, one would find that the value of F_{-4} is

- (a) $F_{-4} = -1$
- (b) $F_{-4} = 1$
- (c) $F_{-4} = -2$
- (d) $F_{-4} = 2$
- (e) $F_{-4} = 0$

10. What did you learn (or re-learn) by working through this assignment? Which questions, if any, were particularly helpful? Which ones, if any, were unhelpful?