EUROPEAN ORGANISATION FOR THE SAFETY OF AIR NAVIGATION

EUROCONTROL EXPERIMENTAL CENTRE

USER MANUAL FOR THE BASE OF Aircraft DATA (BADA) REVISION 3.7

EEC Technical/Scientific Report No. 2009-003

Project BADA

Public Issued: March 2009

REPORT DOCUMENTATION PAGE

Reference EEC Technical/Scientific Report No. 2009/003		Security Classification Unclassified				
Originator: CND/VIF/ACP		Originator (Corporate Author) Name/Location: EUROCONTROL Experimental Centre Centre de Bois des Bordes B.P.15 F - 91222 Brétigny-sur-Orge CEDEX FRANCE Telephone: +33 (0)1 69 88 75 00 Internet: www.eurocontrol.int				
Sponsor: EUROCONTROL		Sponsor (Contract Authority) Name/Location EUROCONTROL Agency Rue de la Fusée, 96 B -1130 BRUXELLES Telephone: +32 (0)2 729 9011 Internet: www.eurocontrol.int				
TITLE: USER MANUAL	FOR THE BAS	E OF Aircra	ft Data (B <i>l</i>	ADA) REVISI	on 3.7	
Author A. Nuic	Date 03/2009	Pages xviii+84	Figures 0	Tables 1	Annexes 2	References 13
	Proj BAD		Task no.	sponsor IF/ACP	_	riod to 03/09
Distribution Statement: (a) Controlled by: Head of section (b) Distribution : Public ⊠ Restri (c) Copy to NTIS: YES / NO	cted Cor	nfidential _				
Descriptors (keywords) :						
Aircraft model, total-energy model,	BADA, user	manual.				
Abstract :						
The Base of Aircraft Data (BADA) provides a set of ASCII files containing performance and operating procedure coefficients for 294 different aircraft types. The coefficients include those used to calculate thrust, drag and fuel flow and those used to specify nominal cruise, climb and descent speeds. User Manual for Revision 3.7 of BADA provides definitions of each of the coefficients and then explains the file formats. Instructions for remotely accessing the files via Internet are also given.						

SUMMARY

The Base of Aircraft Data (BADA) provides a set of ASCII files containing performance and operating procedure coefficients for 294 different aircraft types. The coefficients include those used to calculate thrust, drag and fuel flow and those used to specify nominal cruise, climb and descent speeds. The User Manual for Revision 3.7 of BADA provides definitions of each of the coefficients and then explains the file formats. Instructions for remotely accessing the files via Internet are also given.

Page intentionally left blank

USER MANUAL MODIFICATION HISTORY

Issue Number	Release Date	Comments
Revision 2.1 Issue 1.0	31.05.94	First release of document
Revision 2.2 Issue 1.0	25.01.95	Released with BADA Revision 2.2 - 8 new aircraft models - 2 modified aircraft models - 2 modified equivalences - 6 removed equivalences - 14 new equivalences - modified file formats - additional Synonym File - corrections to formulas in previous version of document - additional description of total-energy and standard atmosphere equations
Revision 2.3 Issue 1.0	08.06.95	 Released with BADA Revision 2.3 document format modified to be consistent with EEC Technical Note standards new A/C models for B73V and D328 MD11 changed from equivalence to direct support generic military fighter model, FGTR, replaces specific fighter models maximum payload parameter added to all OPF files Performance Tables Files (*.PTF) introduced ISA equations used for TAS/CAS conversions instead of approximations (Section 3.2) use only one formula for correction of speeds at mass values different from reference mass (Section 3.3) add specification of minimum speed as function of stall speed (Section 3.4) specification of transition altitude calculated added (Section 4.1) speed schedules modified for climb (Section 4.1) and descent (Section 4.3) modify Internet address for remote access and EUROCONTROL contact person (Section 6) removed Section 7 (General Comments)

Issue Number	Release Date	Comments
Revision 2.4 Issue 1.0	04.01.96	Released with BADA Revision 2.4 - new A/C model for FK70 - C421 changed from equivalence to directly supported - 10 new equivalences - 1 modified equivalence - 3 re-developed models - introduction of dynamic maximum altitude - new temperature correction on thrust - modified max.alt for 4 models - modified minimum weight for 2 models - modified temperature coefficients for 12 models - esf calculation for constant CAS below tropopause changed from binomial approximation to exact formula - cruise Mach numbers changed for 4 models - change in altitude limit for descent speed
Revision 2.5 Issue 1.0	20.01.97	 re-developed models: EA32, B737, B73S, AT42, B767, DC9, BA46, FK10, MD80. new model: CL65, DH83 change of minimum speeds change of climb/descent speed schedules cruise fuel flow correction buffeting speed for jet a/c addition of BADA.GPF file definition of acceleration limits, bank angles and holding speeds 38 new equivalences added (SA4, SA5, SweDen 96) 1 modified equivalence (B74S) modified climb/cruise speeds (BE90, BE99, E120, PA42, FK50, B73F, B767,B747, B727, DA20) Format changes in OPF file Header changes in PTF file Temperature influence on thrust limitation changed Unit of Vstall in OPF file changed to KCAS Correction of typing errors Correction of APF file format explanation
Revision 2.6 Issue 1.0	01.09.97	 Added non-clean drag and thrust data for: EA32, B73S, MD80, B737, B747, FK10, AT42, B767 and CL65 models All models mentioned above were re-developed using new clean drag data. ND16, E120 and FK50 were re-modelled to correct the cruise speed capability.

Issue Number	Release Date	Comments
		- Change of speed schedule in the take-off / initial climb phase and approach / landing phase
		- Change in descent thrust algorithm
		Use of exact formula for density below tropopause instead of approximation.
		- Addition of formula for pressure above tropopause
		- Change of buffeting limit to 1.2g (was 1.3g)
		- Change of OPF file format
		 Buffeting coefficients for B757 and MD80 were corrected.
		- Hmo for B747 model was corrected to 45,000 ft
		- Low altitude descent behaviour corrected for: SW3, PAYE, DA50, DA10, D328, C421, BE99, BE20 and BE90 models
		- Correction of some minor typing errors
		- dynamic maximum altitude coefficients changed for B747, B74F, C130 and EA30
		- Saab 2000 (SB20) added as equivalent of D328
		- Modified algorithm for lift coefficient
Revision 3.0	01.03.98	- Climb speed law changed for jet aircraft
Issue 1.0		- Descent speed law changed for jet, turbo and piston
		- Reduced power climbs
		- B777, SB20 and B73X models were added
		- DA01 model was removed
		 Use of ICAO doc. 8643/25 standard, which resulted in the removal of 4 additional models
		- B73F and B757 remodelled
		- MD90 added as equivalence model
		Cruise and descent speeds for several turboprops changed
		- Climb thrust for several a/c changed
		- Removal of C _{m16} from drag expression
Revision 3.1	01.10.98	- Released with BADA Revision 3.1
Issue 1.0		 Descent & cruise speeds for several jet aircraft changed: DC9, BA46, CL60
		- Descent, cruise & climb speeds for several turboprops changed: D228, SH36
		 Maximum Operating speed for several a/c changed: PA42
		- Stalling speed for several a/c changed : DC8, T154
		Removed formula for air density calculation above tropopause
		Addition of Appendix D : Solutions for buffeting limit algorithm

Issue Number	Release Date	Comments
		 Removed Section 3.7.2 : Maximum Take-Off Thrust Description for Cred parameter added Correction of some minor typing errors Modified PTF File format (Flight Level): Section 6.6 Cruise CAS schedule for jet & turbo aircraft (Section 4.2)
Revision 3.3 Issue 1.0		 Released with BADA Revision 3.3 Standard atmosphere explanation added Correction of some typing errors, minor changes in the layout and equations presentation. Several aircraft types have changed ICAO's designator according to the ICAO doc.8643/27. Aircraft types affected by the RD3 are as follows: A300, ATR, B707, B727, B73A, B73B, B73C, B74A, B74B, B757, B767, B777, CARJ, DC8, DHC8, JSTA, JSTB, P31T, PA28, PA42. That resulted in: modification of the name of the OPF and APF files, addition of new models as synonyms, modification of Synonym.NEW and Synonym.LST files. B73A, B757, MD80, B73B, F100, B727, CARJ, FA20, FA50, D228, T154 aircraft models have been remodelled A319, A321, A306, AT72 models have been added Climb, cruise and descent speeds changed for several models.
Revision 3.3 Issue 1.0		 Ground TOL for B73C has been modified. MD80: Cd0 and Cd2 for IC and TO added, maximum altitude at MTOW, ISA weight gradient on maximum altitude Gw and temperature gradient Gt on maximum altitude have been changed BA46 maximum altitude at MTOW, ISA weight gradient on maximum altitude Gw have been changed E145 was added as equivalent of CRJ1 A478 was added as equivalent of AT72
Revision 3.4 Issue 1.0	June 2002	Released with BADA Revision 3.4 - correction of some typing errors - in chapter 3.5 configuration threshold altitude values replaced with Hmax,i, while the corresponding numbers are listed in chapter 5.6 - Appendix B: a new column is added to the table; providing the information on maximum altitude that an aircraft can reach at MTOW (hmax) - FGTN aircraft model added - FGTL aircraft model added

Issue Number	Release Date	Comments
		- FGTR aircraft model removed
		- DC-9 aircraft model re-modelled
		- D228 cruise and descent speed modified
		- SH36 cruise and descent speed modified
		- B738 maximum operational altitude modified
		- AT72 cruise speed corrected
		- PA34 minimum mass modified
		- B734 aircraft model added
		- B735 aircraft model added
		- E145 aircraft model added
		- B737 aircraft model added
		- AT45 aircraft model added
		- B762 aircraft model added
		- B743 aircraft model added
		- Removal of several existing OPF and APF files due to the change of ICAO aircraft designators according to RD3: A330, A340, BA46, DC9, MD80
		- Addition of several new OPF and APF files due to the change of ICAO aircraft designators according to RD3: A333, A343, B461, DC94, MD83
		 Addition of new equivalence aircraft types: A332, A342, A345, A346, B461, B462, B463, DC91, DC92, DC93, DC95, MD81, MD82, MD87, MD88, A124, AC80, AC90, AC95, AJET, AMX, AN72, ATLA, B1, B350, B739, B74D, BDOG, BE10, BE40, BE76, BER4, C17, C72R, C77R, C82R, C210, C212, C337, C526, C56X, CRJ7, E135, EUFI, F1, FT2H, F104, G222, GLF5, HAWK, H25A, H25C, IL96, JS1, JS3, JS20, LJ24, M20T, M20P, K35R, N262, P28T, P28B, PA32, PAY4, P68, PA44, SB05, T204, TBM7
		Modification of the value for Maximum bank angles for civil flight during HOLD in BADA.GPF file
		- Configuration Management of BADA files have been changed; files have been migrated from RCS to Continuus Configuration Management System. That resulted in the modification of the "identification" part of all BADA files given in the header.
Revision 3.5 Issue 1.0	July 2003	Released with BADA Revision 3.5 - correction of some typing errors
		- B712 aircraft model added
		- LJ45 aircraft model added
		- C750 aircraft model added

Issue Number	Release Date	Comments
		- RJ85 aircraft model added
		- B736 aircraft model added
		- B753 aircraft model added
		- A332 aircraft model added
		- B772 re-modelled
		- B738 re-modelled
		- B763 re-modelled
		- B703 WTC modified
		- JS41 WTC modified
		- Addition of new syn. aircraft types: P180, GLEX, C30J, J328, A7, B52, ETAR, F117, L159
		 Modification of BADA models for existing synonym aircraft types: C17, GLF3, GLF3, GLF4, GLF5
		- SYNONYM_ALL.LST file added.
Revision 3.6	July 2004	Released with BADA Revision 3.6
Issue 1.0		The following models of aircraft added in BADA 3.6: - Dash 8-100: DH8A - Boeing MD82: MD82 - Boeing B767-400: B764 - Boeing B777-300: B773 - BAE 146-200: B462
		The following models of aircraft have been re-modelled in BADA 3.6: - Airbus A300B4-203: A30B - Airbus A310: A310 - Airbus A319: A319 - Airbus A320: A320 - Airbus A321: A321 - Airbus A330-301: A333 - Airbus A340-313: A343 - Boeing B737-200: B732 - Boeing B737-300: B733 - Boeing B747-200: B742 - Boeing B747-400: B744 - Boeing B757-200: B752 Addition of new synonym aircraft types:
		A3ST, ASTR, B701, C441, GALX, J728, K35A, K35E, L29B, LJ25, LJ60, NIM, PC12, R135, RJ1H, RJ70, P32R, C208, AA5, S76, DC3, BLAS, AEST, EC35, PAY1, PA18, BE55, C170, B461.

Issue Number	Release Date	Comments
Revision 3.7 Issue 1.0	March 2009	Correction of syntax errors in BADA files: Boeing B777-200: B772 ATR42-500: AT45 Released with BADA Revision 3.7 Modification of the values for constants g and R in Section 3. New description of formula 3.1-8 to match its actual use in some models. Coefficient CVmin, TO is no longer used in climb speed schedule, only in flight envelope determination. Numbering of several equations changed due to reorganisation of related sections. Change of descent thrust computation when CTdes, app and CTdes, Id are null in Section 3.7.3. Clarification of descent fuel flow computation in Section 3.9. Additional information on climb and descent speed schedules in Section 4. Update of some Fortran format descriptions in Section 6. Additional reasons for ROCD discontinuities added in Section 6.6. Introduction of new PTD file format. Update of Section 7 to describe the new means of access to the BADA files. Remodelling of 71 a/c types from BADA 3.6 - more details in [RD8].
		,

Page intentionally left blank

TABLE OF CONTENTS

SU	MMAR	Y	V
US	ER MA	ANUAL MODIFICATION HISTORY	VII
1.	INTR	ODUCTION	1
	1.1.	IDENTIFICATION	1
	1.2.	PURPOSE	1
	1.3.	DOCUMENT ORGANISATION	1
	1.4.	REFERENCED DOCUMENTS	2
	1.5.	GLOSSARY OF ACRONYMS	3
	1.6.	GLOSSARY OF SYMBOLS	4
2.	REVI	SION SUMMARY	5
	2.1.	SUPPORTED AIRCRAFT	5
	2.2.	UPDATES FOR BADA REVISION 3.7	5
3.	OPER	RATIONS PERFORMANCE MODEL	7
	3.1.	TOTAL-ENERGY MODEL	7
	3.2.	STANDARD ATMOSPHERE	10
	3.3.	AIRCRAFT TYPE	14
	3.4.	MASS	15
	3.5.	FLIGHT ENVELOPE	15
	3.6.	AERODYNAMICS	18
	3.7.	ENGINE THRUST	20 20
	3.8.	REDUCED CLIMB POWER	22
	3.9.	FUEL CONSUMPTION	23
	3.10.	GROUND MOVEMENT	24
	3.11.	SUMMARY OF OPERATIONS PERFORMANCE PARAMETERS	25
4.	AIRLI	NE PROCEDURE MODELS	27
	4.1.	CLIMB	27

	4.2.	CRUISE	28		
	4.3.	DESCENT	29		
5.	GLO	BAL AIRCRAFT PARAMETERS			
	5.1.	INTRODUCTION	31		
	5.2.	MAXIMUM ACCELERATION	31		
	5.3.	BANK ANGLES	32		
	5.4.	EXPEDITED DESCENT	32		
	5.5.	THRUST FACTORS	32		
	5.6.	CONFIGURATION ALTITUDE THRESHOLD	33		
	5.7.	MINIMUM SPEED COEFFICIENTS	33		
	5.8.	SPEED SCHEDULES	33		
	5.9.	HOLDING SPEEDS	34		
	5.10.	GROUND SPEEDS	34		
	5.11.	REDUCED POWER COEFFICIENT	34		
6.	FILE	STRUCTURE	35		
	6.1.	FILE TYPES	35		
	6.2.	FILE CONFIGURATION MANAGEMENT	36		
		6.2.1. File Identification	37		
		6.2.2. History			
	6.3.	SYNONYM FILE FORMAT	39		
		6.3.1. SYNONYM.LST File			
		6.3.2. SYNONYM.NEW File			
	6.4.	OPF FILE FORMAT	47		
		6.4.1. File Identification Block			
		6.4.2. Aircraft Type Block			
		6.4.4. Flight Envelope Block	49		
		6.4.5. Aerodynamics Block			
		6.4.6. Engine Thrust Block			
		6.4.8. Ground Movement Block			
	6.5.	APF FILE FORMAT			
		6.5.1. File Identification Block			
	6.6.	PTF FILE FORMAT			
	6.7.	PTD FILE FORMAT			
	6.8.	BADA.GPF FILE FORMAT			
	0.0.	6.8.1. File Identification Block			

	6.8.2. 6.8.3.	Class Block	63 64
7.	REMOTE FIL	E ACCESS	65
		LIST OF APPEND	DICES
APF	PENDIX A BA	NDA 3.7 – LIST OF AVAILABLE	AIRCRAFT MODELS67
APF	PENDIX B BA	ADA 3.7 – SOLUTIONS FOR BUF	FFETING LIMIT ALGORITHM81
		LIST OF TABL	.ES
Tabl	e 3-1: BADA (Operations Performance Parameter S	Summary25
Tabl	e 7-1: List of A	Aircraft Types Supported by BADA 3.	769

Page intentionally left blank

1. INTRODUCTION

1.1. IDENTIFICATION

This document is the User Manual for the Base of Aircraft Data (BADA) Revision 3.7. This manual replaces the previous User Manual for BADA Revision 3.6 [RD1].

1.2. PURPOSE

BADA is a collection of ASCII files which specifies operation performance parameters, airline procedure parameters and performance summary tables for 294 aircraft types. This information is designed for use in trajectory simulation and prediction algorithms within the domain of Air Traffic Management (ATM). All files are maintained within a configuration management system at the EUROCONTROL Validation Infrastructure Centre of Expertise located at the EUROCONTROL Experimental Centre (EEC) in Brétigny-sur-Orge, France.

This document describes the mathematical models on which the data is based and specifies the format of the files which contain the data. In addition, this document describes how the files can be remotely accessed.

1.3. DOCUMENT ORGANISATION

This document consists of seven sections including Section 1, the Introduction. A list of referenced documents along with a glossary of acronyms and symbols are included in this section.

- **Section 2:** Revision Summary, summarises the differences between BADA 3.7 and the previous revision BADA 3.6.
- **Section 3:** Operation Performance Models, defines the set of equations, which are used to parameterise aircraft performance. This includes models of aerodynamic drag, engine thrust, and fuel consumption.
- **Section 4:** Airline Procedure Models, defines the set of parameters which is used to characterise standard airline speed procedures for climb, cruise, and descent.
- **Section 5:** Global Aircraft Parameters, defines the set of global aircraft parameters that are valid for all, or a group of, aircraft.
- **Section 6:** File Structure, describes the files in which the BADA aircraft parameters are maintained. Six types of files are identified:
 - Synonym Files listing the supported aircraft types;
 - Operations Performance Files (OPF) containing the performance parameters for a specific aircraft type;
 - Airline Procedures Files (APF) containing speed procedure parameters for a specific aircraft type;
 - Performance Table Files (PTF) containing summary performance tables of true air speed, climb/descent rates and fuel consumption at various flight levels for a specific aircraft type;
 - Performance Table Data (PTD) containing detailed performance data at various flight levels for a specific aircraft type;

• Global Parameters File (GPF) containing parameters that are valid for all aircraft or a group of aircraft, for instance all turboprops or all military aircraft.

Section 7: Remote File Access to BADA, provides instructions on how to remotely access BADA files from the EUROCONTROL computing facilities over the Internet.

Two appendices are also provided with this document. **Appendix A** provides a list of the aircraft types supported by BADA 3.7 and **Appendix B** gives solutions for a buffeting limit algorithm.

1.4. REFERENCED DOCUMENTS

RD1	User Manual for the Base of Aircraft Data (BADA) Revision 3.6; EEC Note No.
	10/04, September 2004.

RD2 Aircraft Type Designators, ICAO Document 8643/36, November 2008.

RD3 Aircraft Modelling Standards for Future ATC Systems; EUROCONTROL Division E1 Document No. 872003, July 1987.

RD4 Manual of the ICAO Standard Atmosphere; ICAO Document No. 7488, 2nd Edition, 1964.

RD5 BADA Product Management Document; EEC Technical Report No. 2009-008, April 2009.

RD6 Base of Aircraft Data (BADA) Aircraft Performance Modelling Manual: EEC Technical Report No. 2009-009, April 2009.

RD7 Memo on the Calculation of Energy Share Factor; EEC/FAS/BYR/95/50; 22 November 1995.

RD8 Revision Summary Document for the Base of Aircraft Data (BADA) Revision 3.7; EEC Technical Note 2009/004; April 2009.

RD9 Aircraft Performance Summary Tables for the Base of Aircraft Data (BADA) Revision 3.7; EEC Technical Note 2009/005; April 2009.

RD10 Aircraft Type Designators, ICAO Document 8643, Version 24-36.

RD11 BADA User Support Tool – User Guide, April 2009.

RD12 Synonym Aircraft Report for the Base of Aircraft Data (BADA) - Revision 3.7: EEC Technical Report No. 2009-007, April 2009.

RD13 Model Accuracy Summary Report for the Base of Aircraft Data (BADA) - Revision 3.7: EEC Technical Report No. 2009-006, April 2009.

1.5. GLOSSARY OF ACRONYMS

AGL	Above Ground Level
APF	Airlines Procedures File
ASCII	American Standard Code for the Interchange of Information
ATM	Air Traffic Management
BADA	Base of Aircraft Data
CAS	Calibrated Airspeed
EEC	EUROCONTROL Experimental Centre
ESF	Energy Share Factor
ICAO	International Civil Aviation Organisation
ISA	International Standard Atmosphere
MASS	Multi-Aircraft Simplified Simulator
MLW	Maximum Landing Weight
MTOW	Maximum Take-off Weight
OPF	Operations Performance File
PTD	Performance Table Data
PTF	Performance Table File
RCS	Revision Control System
ROCD	Rate of Climb or Descent
TAS	True Airspeed
TEM	Total-Energy Model

1.6. GLOSSARY OF SYMBOLS

A list of the symbols used in equations throughout this document is given below along with a description. Where appropriate, the engineering units typically associated with the symbol are also given.

а	speed of sound	[m/s]
d	distance	[nautical miles]
f	fuel flow	[kg/min]
g	gravitational acceleration	$[m/s^2]$
$\frac{dh}{dt}$	rate of climb or descent	[m/s] or [ft/min]
h	altitude above sea level	[metres] or [ft]
С	general coefficient	
D	drag force	[Newtons]
m	aircraft mass	[tonnes] or [kg]
M	Mach number	
Р	Actual pressure	[Pa]
P_0	Pressure at Sea level	[Pa]
R	real gas constant for air	$[\text{m}^2/\text{Ks}^2]$
S	reference wing surface area	$[m^2]$
Т	thrust temperature	[N] [Kelvin]
V	speed	[m/s] or [knots]
ΔT	temperature difference	[Kelvin]
W	weight	[N]
η	thrust specific fuel flow	[kg/(min*kN)]
ρ	air density	[kg/m ³]

2. REVISION SUMMARY

This section summarises the aircraft types that are supported in BADA Revision 3.7 along with the updates that have been made from the previous release, BADA Revision 3.6.

2.1. SUPPORTED AIRCRAFT

BADA 3.7 provides operations and procedures data for a total of 294 aircraft types. For 103 of these aircraft types, data is provided directly in files. These aircraft types are referred to as being directly supported and referred to as aircraft original models. The way they have been identified is described in [RD6]. For the other 191 aircraft types, the data is specified to be the same as one of the directly supported 103 aircraft types. These aircraft types have been identified as being 'equivalent' to original aircraft models. They are referred to as synonym aircraft. More details on the way they have been identified is given in [RD12].

With three exceptions, each supported aircraft type is identified by a 4-character designation code assigned by the International Civil Aviation Organisation (ICAO) [RD2]. The exceptions are the models representing generic military fighters, which use the designators: FGTH, FGTL, FGTN.

The list of aircraft types supported by BADA 3.7 is given in Appendix A. In this Appendix the supported aircraft types are listed alphabetically by their designation code. For each aircraft type the aircraft name and type of BADA support (either original or synonym) is specified. Also, for each synonym aircraft, which is supported through equivalence, the corresponding equivalent aircraft type is specified.

2.2. UPDATES FOR BADA REVISION 3.7

Updates made to BADA Revision 3.7 from the previous revision 3.6 are listed below:

- (a) Development of new documents.
- (b) Editing changes in existing documentation.
- (c) Re-modelling of 71 aircraft models.
- (d) Addition of 12 new aircraft models.
- (e) Re-evaluation of all synonym aircraft.
- (f) Correction of syntax error in some BADA files.
- (g) Implementation of new ICAO aircraft designators according to the ICAO doc. 8643/36.
- (h) Deployment of BADA Support Application.

A more complete overview of all changes can be found in [RD8].

Page intentionally left blank

3. OPERATIONS PERFORMANCE MODEL

This section defines the various equations and coefficients used by the BADA operations performance model.

The first two subsections describe the Total-Energy Model (TEM) equations and standard atmosphere equations respectively.

The remaining eight subsections define the aircraft model in terms of the eight categories listed below.

- · aircraft type,
- mass,
- flight envelope,
- · aerodynamics,
- engine thrust,
- reduced power,
- fuel consumption and
- ground movement

3.1. TOTAL-ENERGY MODEL

The Total-Energy Model equates the rate of work done by forces acting on the aircraft to the rate of increase in potential and kinetic energy, that is:

$$(T-D)V_{TAS} = mg\frac{dh}{dt} + mV_{TAS}\frac{dV_{TAS}}{dt}$$
 (3.1-1)

The symbols are defined below with metric units specified:

Т	-	thrust acting parallel to the aircraft velocity vector	[Newtons]
D	-	aerodynamic drag	[Newtons]
m	-	aircraft mass	[kilograms]
h	-	altitude	[m]
g	-	gravitational acceleration	[9.80665 m/s ²]
V_{TAS}	-	true airspeed	[m/s]
$\frac{d}{dt}$	-	time derivative	[s ⁻¹]

Note that true airspeed is often calculated in knots and altitude calculated in feet thus requiring the appropriate conversion factors.

Without considering the use of devices such as spoilers, leading-edge slats or trailing-edge flaps, there are two independent control inputs available for affecting the aircraft trajectory in the vertical plane. These are the throttle and the elevator.

These inputs allow any two of the three variables of thrust, speed, or ROCD to be controlled. The other variable is then determined by equation 3.1-1. The three resulting control possibilities are elaborated on below.

(a) Speed and Throttle Controlled

- Calculation of Rate of Climb or Descent

Assuming that velocity and thrust are independently controlled, then equation 3.1-1 is used to calculate the resulting rate of climb or descent (ROCD). This is a fairly common case for climbs and descents in which the throttle is set to some fixed position (maximum climb thrust or idle for descent) and the speed is maintained at some constant value of calibrated airspeed (CAS) or Mach number.

- (b) ROCD and Throttle Controlled
- Calculation of Speed

Assuming that the ROCD and thrust are independently controlled, then equation 3.1-1 is used to calculate the resulting speed.

- (c) Speed and ROCD Controlled
- Calculation of Thrust

Assuming that both ROCD and speed are controlled, then equation 3.1-1 can be used to calculate the necessary thrust. This thrust must be within the available limits for the desired ROCD and speed to be maintained.

Case (a), above, is the most common such that equation 3.1-1 is most often used to calculate the rate of climb or descent. To facilitate this calculation, equation 3.1-1 can be rearranged as follows:

$$(T - D) \times V_{TAS} = mg \frac{dh}{dt} + m V_{TAS} \left(\frac{dV_{TAS}}{dh}\right) \left(\frac{dh}{dt}\right)$$
(3.1-2)

Isolating the rate of climb or descent on the left hand side gives:

$$\frac{dh}{dt} = \frac{(T-D)V_{TAS}}{mg} \left[1 + \left(\frac{V_{TAS}}{g} \right) \left(\frac{dV_{TAS}}{dh} \right) \right]^{-1}$$
(3.1-3)

It has been shown by Renteux [RD3] that the last term can be replaced by an energy share factor as a function of Mach number, f {M}.

$$f \{ M \} = \left[1 + \left(\frac{V_{TAS}}{g} \right) \cdot \left(\frac{dV_{TAS}}{dh} \right) \right]^{-1}$$

This leads to:

$$\frac{dh}{dt} = \left[\frac{(T-D)V_{TAS}}{mg} \right] f \{ M \}$$
 (3.1-4)

This energy share factor f {M} specifies how much of the available power is allocated to climb as opposed to acceleration while following a selected speed profile during climb.

For several common flight conditions equation 3.1-4 can be rewritten as is done below. A more comprehensive description of this process can be found in RD7:

(a) Constant Mach number in stratosphere (i.e. above tropopause)

$$f(M) = 1.0$$
 (3.1-5)

Note that above the tropopause (approximately 11000 metres under ISA conditions) the air temperature and the speed of sound are constant. Maintaining a constant Mach number therefore requires no acceleration and all available power can be allocated to a change in altitude.

(b) Constant Mach number below tropopause:

$$f\{M\} = \left[1 + \frac{\gamma R k_T}{2 g} M^2\right]^{-1}$$
 (3.1-6)

where.

R is the real gas constant for air, $R = 287.05287 \text{ m}^2/\text{Ks}^2$

g is the gravitational acceleration, $g = 9.80665 \text{ m/s}^2$

 k_T is the ISA temperature gradient with altitude below the tropopause, $k_T = -0.0065$ °K/m

M is the Mach number

 γ is the isentropic expansion coefficient for air, $\gamma = 1.4$

In this case, for a typical Mach number of 0.8 the energy share factor allocated to climb is 1.09.

This number is greater than 1 because below the tropopause, the temperature and thus, speed of sound decreases with altitude. Maintaining a constant Mach number during climb thus means that the true air speed decreases with altitude. Consequently, the rate of climb benefits from not only all the available power but also a transfer of kinetic energy to potential energy.

(c) Constant Calibrated Airspeed (CAS) below tropopause

$$f\{M\} = \left\{1 + \frac{\gamma R k_T}{2 g} M^2 + \left(1 + \frac{\gamma - 1}{2} M^2\right)^{\frac{-1}{\gamma - 1}} \left\{ \left(1 + \frac{\gamma - 1}{2} M^2\right)^{\frac{\gamma}{\gamma - 1}} - 1\right\} \right\}^{-1}$$
(3.1-7)

In this case the energy share factor is less than one. A Mach number of 0.6 for example yields an energy share factor of 0.85.

This number is less than 1 because as density decreases with altitude, maintaining a constant CAS during climb requires maintaining a continual increase in true air speed. Thus, some of the available power needs to be allocated to acceleration leaving the remainder for climb.

(d) Constant Calibrated Airspeed (CAS) above tropopause.

$$f\{M\} = \left\{1 + \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{-1}{\gamma - 1}} \left[\left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{\gamma}{\gamma - 1}} - 1 \right] \right\}^{-1}$$
 (3.1-8)

This formula is similar to (3.1-7), except that k_T is null since we are above the tropopause.

The energy share factors given above apply equally well to descent as to climb. The difference being that the available power is negative for descent.

In cases where neither constant Mach number nor constant CAS is maintained, the following energy share factors are used.

acceleration in climb deceleration in descent	$f\{M\} = 0.3$ $f\{M\} = 0.3$
deceleration in climb acceleration in descent	$f\{M\} = 1.7$ $f\{M\} = 1.7$

Note, for the cases of acceleration in climb or deceleration in descent, the majority of the available power is devoted to a change in speed.

For the cases of deceleration in climb or acceleration in descent, the energy share factor is greater than 1 since the change of altitude benefits from a transfer of kinetic energy.

3.2. STANDARD ATMOSPHERE

Calculations for lift, drag, and conversions from CAS to TAS and Mach number require the determination of several atmospheric properties as a function of altitude.

The equations used by BADA for the standard atmosphere and CAS/TAS conversion are summarised below. These equations are based on the International Standard Atmosphere (ISA) [RD4].

(a) Determination of the Tropopause

$$h_{\text{trop}} = 11000 + 1000 \Delta T_{\text{ISA}} / 6.5$$
 (3.2-1)

Here the tropopause altitude, h_{trop}, is specified in metres.

 ΔT_{ISA} is the temperature difference from the International Standard Atmosphere (ISA). That is, the temperature at sea level, T_0 , would be:

$$T_0 = (T_0)_{ISA} + \Delta T_{ISA}$$
 (3.2-2)

with

$$(T_0)_{ISA} = 288.15 \text{ K}$$
 (3.2-3)

For standard atmosphere conditions, ($\Delta T_{ISA} = 0$) the tropopause is at 11000 metres altitude.

(b) Determination of Temperature

Above the tropopause, the temperature is a constant, that is,

$$T_{\text{trop}} = 216.65 \text{ K}$$
 (3.2-4)

Below the tropopause, the temperature is calculated as a function of altitude as follows:

$$T = T_0 - 6.5 \text{h}/1000 \tag{3.2-5}$$

Here the altitude, h, is specified in metres.

(c) <u>Determination of Air Density</u>

Below the tropopause, the air density, ρ , in kg/m3 is calculated as function of temperature as follows:

$$\rho = \rho_0 \left[\frac{T}{T_0} \right]^{-\frac{g}{K_T R} - 1} - \frac{g}{K_T R} - 1 \approx 4.25583$$
 (3.2-6)

where,

R is the real gas constant for air, $R = 287.05287 \text{ m}^2/\text{Ks}^2$

g is the gravitational acceleration, $g = 9.80665 \text{ m/s}^2$

 k_T is the ISA temperature gradient with altitude below the tropopause, $k_T = -0.0065$ °K/m

Here ρ_0 is the air density at sea level:

$$\rho_0 = (\rho_0)_{ISA} (T_0)_{ISA} / T_0$$
 (3.2-7)

and $(\rho_0)_{ISA}$ is the standard atmosphere air density at sea level:

$$(\rho_0)_{\rm ISA} = 1.225 \, \text{kg/m}^3$$
 (3.2-8)

Above the tropopause, the air density, ρ , in kg/m³ is calculated as follows [RD4]:

$$\rho = \rho_{Trop} \cdot e^{-\left(\frac{g}{R \cdot T_{Trop}}\right) \cdot (h - h_{trop})}$$
(3.2-9)

Here h represents the altitude in metres.

(d) <u>Determination of Speed of Sound</u>

Above the tropopause the speed of sound, a, is a constant:

$$a_{trop} = \sqrt{\gamma R T_{trop}}$$

where:

$$\gamma$$
 = 1.4
R = 287.05287 m² / Ks²
T_{trop} = 216.65 °K

leads to

$$a_{trop} = 295.07 \text{ m/s}$$
 (3.2-10)

Below the tropopause, the speed of sound is calculated as a function of temperature:

$$a = 340.29 \sqrt{\frac{T}{(T_0)_{ISA}}}$$
 (3.2-11)

(e) CAS/TAS Conversion

The true air speed, V_{TAS} , is calculated as a function of the calibrated air speed, V_{CAS} , as follows:

$$V_{\text{TAS}} = \left[\frac{2}{\mu} \frac{P}{\rho} \left\{ \left(1 + \frac{(P_0)_{\text{ISA}}}{P} \left[\left(1 + \frac{\mu}{2} \frac{(\rho_0)_{\text{ISA}}}{(P_0)_{\text{ISA}}} V_{\text{CAS}}^2 \right)^{1/\mu} - 1 \right] \right)^{\mu} - 1 \right\}^{1/2}$$
(3.2-12)

Similarly, V_{CAS} is calculated as a function of V_{TAS} as follows:

$$V_{\text{CAS}} = \left[\frac{2}{\mu} \frac{(P_0)_{\text{ISA}}}{(\rho_0)_{\text{ISA}}} \left\{ \left(1 + \frac{P}{(P_0)_{\text{ISA}}} \left[\left(1 + \frac{\mu}{2} \frac{\rho}{P} V_{\text{TAS}}^2 \right)^{1/\mu} - 1 \right] \right)^{\mu} - 1 \right\}^{1/2}$$
(3.2-13)

where symbols not previously defined are explained below:

$$\mu = \frac{(\gamma - 1)}{\gamma}$$
 ($\mu = 1/3.5$ if $\gamma = 1.4$) (3.2-14)

 γ is the isentropic expansion coefficient for air = 1.4 [dimensionless]

P is the pressure at altitude [Pa]

 $(P_0)_{ISA}$ is the ISA pressure at sea level = 101325 Pa

Also note that for these conversion formulas above, the speeds V_{TAS} and V_{CAS} must be specified in m/s.

The pressure at altitude, P, can be determined from the temperature at altitude, T, by the following formula, which is valid for altitudes below the tropopause:

$$P = \left(P_0\right)_{ISA} \cdot \left(\frac{T}{T_0}\right)^{-\frac{g}{K_T R}} - \frac{g}{K_T \cdot R} \approx 5.25583$$
 (3.2-15)

where,

R is the real gas constant for air, $R = 287.05287 \text{ m}^2/\text{Ks}^2$

g is the gravitational acceleration, $g = 9.80665 \text{ m/s}^2$

 k_T is the ISA temperature gradient with altitude below the tropopause, $k_T = -0.0065$ °k/m

For altitudes above the tropopause, the following formula should be used:

$$P = P_{\text{Trop}} \cdot e^{-\left(\frac{g}{R \cdot T_{\text{Trop}}}\right) \cdot (h - h_{\text{trop}})}$$
(3.2-16)

where h represents the altitude in metres.

(f) Mach/TAS conversion

$$V_{\text{TAS}} = M \times \sqrt{\gamma \cdot R \cdot T}$$
 (3.2-17)

where,

M is the Mach number,

T is the local temperature at altitude,

R is the universal gas constant for air = $287.05287 \text{ [m}^2/\text{Ks}^2\text{]}$

 γ is the isentropic expansion coefficient for air = 1.4

(g) Mach/CAS transition altitude

The <u>transition altitude</u> (also called crossover altitude), h_{trans} (feet), between a given CAS, V_{CAS} (m/s) and a Mach number, M, is defined to be the altitude at which V_{CAS} and M represent the same TAS value, and can be calculated as follows:

$$h_{\text{trans}} = \left(\frac{1000}{(.3048) \cdot (6.5)}\right) \cdot \left[T_0 \cdot (1 - \theta_{\text{trans}})\right]$$
(3.2-18)

where,

T₀ is the temperature at sea level in Kelvin,

 $(T_0)_{ISA}$ is the ISA temperature at sea level = 288.15 K, θ_{trans} is the temperature ratio at the transition altitude,

$$\theta_{\text{trans}} = \left(\delta_{\text{trans}}\right)^{-\frac{K_{\text{T}} \cdot R}{g}} \tag{3.2-19}$$

where,

R is the real gas constant for air, $R = 287.05287 \text{ m}^2/\text{Ks}^2$ g is the gravitational acceleration, $g = 9.80665 \text{ m/s}^2$

k_T is the ISA temperature gradient with altitude below the tropopause,

 $k_T = -0.0065 \, {}^{\circ}\text{K/m}$

 δ_{trans} is the pressure ratio at the transition altitude,

$$\delta_{trans} = \frac{\left[1 + \left(\frac{\gamma - 1}{2}\right) \left(\frac{V_{CAS}}{(a_0)_{ISA}}\right)^2\right]^{\frac{\gamma}{\gamma - 1}} - 1}{\left[1 + \frac{\gamma - 1}{2}M^2\right]^{\frac{\gamma}{\gamma - 1}} - 1}$$
(3.2-20)

where $(a_0)_{ISA}$ is the ISA speed of sound at sea level = 340.29 m.s⁻¹

3.3. AIRCRAFT TYPE

Three values are specified for aircraft type, these being the number of engines, n_{eng} , the engine type and the wake category.

The engine type can be one of three values:

- Jet
- Turboprop, or,
- Piston.

The wake category can also be one of three values:

H - heavyM - mediumL - light

Note that ICAO associates a wake category with each aircraft type designator [RD2].

3.4. MASS

Four mass values are specified for each aircraft in tonnes:

 m_{min} - minimum mass m_{max} - maximum mass m_{ref} - reference mass

m_{pvld} - maximum payload mass

Note that the specified mass limits are taken from aircraft performance reference data which is available in the BADA library. In function of specific aircraft certified limitations, a particular aircraft version of a given aircraft type (model) may have different limits. More details on the way the mass limits are selected in BADA is provided in [RD6].

Aircraft operating speeds vary with the aircraft mass. This variation is calculated according to the formula below:

$$V = V_{\text{ref}} \times \sqrt{\frac{m}{m_{\text{ref}}}}$$
 (3.4-1)

In this formula, the aircraft reference speed V_{ref} is given for the reference mass m_{ref} . The speed at another mass, m, is then calculated as V.

An example of an aircraft speed, which can be calculated via this formula is the stall speed, V_{stall}.

3.5. FLIGHT ENVELOPE

(a) Maximum Speed and Altitude

The maximum speed and altitude for the aircraft are expressed in terms of the following six parameters:

V_{MO} - maximum operating speed (CAS), in knots

M_{MO} - maximum operational Mach number

h_{MO} - maximum operational height, in feet above sea level

h_{max} - maximum altitude at MTOW under ISA conditions (allowing about 300 fpm

of residual ROC), in feet above sea level

G_w - mass gradient on maximum altitude, in feet/kg

Gt - temperature gradient on maximum altitude, in feet/degree Celsius

The maximum altitude for any given mass is:

$$\left| h_{\text{max/act}} = \text{MIN} \left[h_{\text{MO}}, h_{\text{max}} + G_{\text{t}} \times (\Delta T_{\text{ISA}} - C_{\text{Tc,4}}) + G_{\text{w}} \times (m_{\text{max}} - m_{\text{act}}) \right] \right|$$
(3.5-1)

with: $G_W \ge 0$;

 $G_t \leq 0$;

if $(\Delta T_{ISA} - C_{T_{C,4}}) < 0$, then : $(\Delta T_{ISA} - C_{T_{C,4}}) = 0$;

(V_{stall})_{TO}

with ΔT_{ISA} being the temperature deviation from ISA and m_{act} being the actual aircraft mass (kg). Formula 3.5-1 should not be executed when the h_{max} value in the OPF file is set to 0 (zero). In that case the maximum altitude is always h_{MO}.

Note that the given speed and altitude limits are taken from available reference data: depending upon specific certifications, a particular aircraft of a given type may present different limits.

(b) Minimum Speed

The minimum speed for the aircraft is specified as follows:

TO - take-off configuration

$$\begin{aligned} & V_{\text{min}} = C_{V_{\text{min},TO}} \times V_{\text{stall}} & \text{if in take-off} \\ & \\ & V_{\text{min}} = C_{V_{\text{min}}} \times V_{\text{stall}} & \text{otherwise} \end{aligned}$$

$$V_{\min} = C_{V_{\min}} \times V_{\text{stall}}$$
 otherwise (3.5-3)

Note: See 3.6.2 for minimum speed at high altitude for jet aircraft and Section 5.7 for the values of the minimum speed coefficients.

Here the speeds are specified in terms of CAS. The stall speed depends upon the configuration.

Specifically, five different configurations are specified with a stall speed [(V_{stall})_i] and configuration threshold altitude [H_{max, i}] given for each:

(in climb up to
$$H_{max, TO}$$
 AGL)

IC - initial climb configuration (V_{stall})_{IC}
(in climb between $H_{max, TO}$ and $H_{max, IC}$ AGL)

CR - cruise (clean) configuration (V_{stall})_{CR}
(in climb above $H_{max, IC}$ AGL,
in descent above $H_{max, AP}$,
in descent below $H_{max, AP}$ as long as
$$V \ge V_{minCruise} + 10 \text{ kts })$$

AP - approach configuration
$$(V_{stall})_{AP}$$
 (in descent between $H_{max,\ AP}$ and $H_{max,\ LD}$ when
$$V < V_{min}_{Cruise} + 10 \text{ kts},$$
 in descent below $H_{max,\ LD}$ as long as
$$V \geq V_{min}_{Approach} + 10 \text{ kts})$$

 $(V_{stall})_{LD}$ LD - landing configuration (in descent below H_{max, LD} when

The values of the configuration threshold altitudes $[H_{max,i}]$ are listed in Section 5.6. The speeds [V] used during the descent, approach and landing phases are defined in Section 4.3.

Note that these stall speeds correspond to a minimum stall speed and not a 1-g stall speed. Also, the BADA model assumes that for any aircraft these stall speeds have the following relationship:

$$\left(V_{\text{stall}}\right)_{\text{CR}} \geq \left(V_{\text{stall}}\right)_{\text{IC}} \geq \left(V_{\text{stall}}\right)_{\text{TO}} \geq \left(V_{\text{stall}}\right)_{\text{AP}} \geq \left(V_{\text{stall}}\right)_{\text{LD}}$$

3.6. AERODYNAMICS

3.6.1. Aerodynamic Drag

The lift coefficient, C_L , is determined assuming that the flight path angle is zero. However, a correction for a bank angle is made.

$$C_L = \frac{2 \cdot m \cdot g}{\rho \cdot V_{TAS}^2 \cdot S \cdot \cos \phi}$$
 (3.6-1)

Under nominal conditions, the drag coefficient, C_D is specified as a function of the lift coefficient C_L as follows:

$$C_{\rm D} = C_{\rm D0,CR} + C_{\rm D2,CR} \times (C_{\rm L})^2$$
 (3.6-2)

Formula 3.6-2 is valid for all situations except for the approach and landing where other drag coefficients are to be used.

In the approach configuration (as defined in Section 3.5) a different flap setting is used, and formula 3.6-3 should be applied:

$$C_{\rm D} = C_{\rm D0,AP} + C_{\rm D2,AP} \times (C_{\rm L})^2$$
 (3.6-3)

In the landing configuration (as defined in Section 3.5) a different flap setting is used, and formula 3.6-4 should be applied:

$$C_{\rm D} = C_{\rm D0,LDG} + C_{\rm D0,\Delta LDG} + C_{\rm D2,LDG} \times (C_{\rm L})^2$$
(3.6-4)

The value of $C_{D0, \Delta LDG}$ represents drag increase due to the landing gear. The values of $C_{D0, LD}$ in the OPF files were all determined for the landing flap setting mentioned in the OPF file.

The drag force (in Newtons) is then determined from the drag coefficient in the standard manner:

$$D = \frac{C_D \cdot \rho \cdot V_{TAS}^2 \cdot S}{2}$$
 (3.6-5)

Where:

 ρ is the air density (kg/m³)

S is the wing reference area (m²)

V_{TAS} is the true airspeed (m/s).

Note that the air density is a function of altitude as described in subsection 3.2.

The above equations thus result in eight coefficients for the specification of drag:

 $\begin{array}{ll} \text{S} & & & \\ \text{C}_{\text{D0,CR}} & & \text{C}_{\text{D2,CR}} \\ \text{C}_{\text{D0,AP}} & & \text{C}_{\text{D2,AP}} \\ \text{C}_{\text{D0,LD}} & & \text{C}_{\text{D2,LD}} \end{array}$

C_{D0.}ALDG

In case the CD0,AP , CD2,AP , CD0,LD , CD2,LD and CD0, Δ LDG coefficients (referred to as "nonclean" data in this document) are set to 0 (zero) in the OPF file, expression 3.6-2 will be used in all cases.

3.6.2. Low Speed Buffeting Limit (jet aircraft only)

For jet aircraft a low speed buffeting limit has been introduced. This buffeting limit is expressed as a Mach number and can be determined using the following equation:

$$k \times M^3 - C_{\text{Lbo}(M=0)} \times M^2 + \frac{W}{S \cdot P \cdot 0.583} = 0$$
 (3.6-6)

where:

k is lift coefficient gradient

C_{Lbo (M=0)} is initial buffet onset lift coefficient for M=0

P is actual pressure (Pa)

M is Mach number

S is the wing reference area (m²)

W is aircraft weight (N)

Note that the factor of 0.583 gives a 0.2 g margin.

The k and $C_{Lbo\ (M=0)}$ parameters have been determined for nearly all jet aircraft in BADA 3.7. If the k and $C_{Lbo\ (M=0)}$ parameters in the OPF file are set to 0 (zero), the minimum speed is given by expressions 3.5-2 and 3.5-3. Otherwise, the solution for M in Formula 3.6-6 can be obtained using the method given in Appendix B. The buffeting limit should be applied as a minimum speed in the following way:

- If (Altitude > 15,000 ft) then: $V_{min} = MAX(V_{min,stall}, M_b)$

- If (Altitude < 15,000 ft) then: $V_{min} = V_{min,stall}$

where: M_b is the lowest positive solution of expression 3.6-6,

 $V_{min.stall}$ is given by expressions 3.5-2 and 3.5-3

Note that the units of the two values ($V_{min,stall}$ and M_b) inside the MAX() expression should be the same.

3.7. ENGINE THRUST

The BADA model provides coefficients that allow the calculation of the following thrust levels:

- · maximum climb and take-off,
- maximum cruise.
- · descent.

The thrust is calculated in Newtons and includes the contribution from all engines. The subsections below provide the equations for each of the thrust conditions.

3.7.1. Maximum Climb and Take-Off Thrust

The maximum climb thrust at standard atmosphere conditions, $(T_{max\ climb})_{ISA}$, is calculated in Newtons as a function of the following information:

- engine type: either Jet, Turboprop or Piston;
- altitude above sea level, h, in feet;
- true air speed, V_{TAS}, in knots;
- temperature deviation from standard atmosphere, ΔT_{ISA}, in degrees Celsius.

The equations corresponding to the three engine types are given below.

Jet:
$$\left(T_{\text{max climb}}\right)_{\text{ISA}} = C_{\text{Tc,1}} \times \left(1 - \frac{h}{C_{\text{Tc,2}}} + C_{\text{Tc,3}} \times h^2\right)$$
 (3.7-1)

Turboprop:
$$\overline{\left(T_{\text{max climb}}\right)_{\text{ISA}} = C_{\text{Tc},1} \times \left(1 - \frac{h}{C_{\text{Tc},2}}\right) / V_{TAS} + C_{\text{Tc},3} }$$
 (3.7-2)

Piston:
$$\left(T_{\text{max climb}}\right)_{\text{ISA}} = C_{\text{Tc},1} \times \left(1 - \frac{h}{C_{\text{Tc},2}}\right) + \frac{C_{\text{Tc},3}}{V_{TAS}}$$
 (3.7-3)

For all engine types, the maximum climb thrust is corrected for temperature deviations from standard atmosphere, ΔT_{ISA} , in the following manner:

$$T_{\text{max climb}} = (T_{\text{max climb}})_{\text{ISA}} \times (1 - C_{\text{Tc,5}} \cdot (\Delta T_{\text{ISA}})_{\text{eff}})$$
(3.7-4)

Where:

$$(\Delta T_{ISA})_{eff} = \Delta T_{ISA} - C_{Tc.4}$$
 (3.7-5)

with the limits:

$$0.0 \le (\Delta T_{ISA})_{eff} \times C_{Tc.5} \le 0.4$$
 (3.7-6)

and:

$$C_{Tc.5} \ge 0.0$$
 (3.7-7)

This maximum climb thrust is used for both take-off and climb phases.

3.7.2. Maximum Cruise Thrust

The normal cruise thrust is by definition set equal to drag (T = D). However, the maximum amount of thrust available in cruise situation is limited. The maximum cruise thrust is calculated as a ratio of the maximum climb thrust given by expression 3.7-4, that is:

$$(T_{\text{cruise}})_{\text{MAX}} = C_{\text{Tcr}} \times T_{\text{max climb}}$$
 (3.7-8)

The coefficient C_{Tcr} is currently uniformly set for all aircraft (see Global Aircraft Parameters section 5.5).

3.7.3. Descent Thrust

Descent thrust is calculated as a ratio of the maximum climb thrust given by expression 3.7-4, with different correction factors used for high and low altitudes, and approach and landing configurations (see Section 3.5), that is:

if h > h_des:
$$\boxed{T_{\rm des,high} = C_{\rm Tdes,high} \times T_{\rm max\,climb}} \eqno(3.7-9)$$

if $h \le h_{des}$:

Cruise configuration:
$$T_{\text{des,low}} = C_{\text{Tdes,low}} \times T_{\text{max climb}}$$
 (3.7-10)

Landing configuration:
$$T_{\text{des,ld}} = C_{\text{Tdes,ld}} \times T_{\text{max climb}}$$
 (3.7-12)

Note that for those models where "non-clean" data (see Section 3.6.1) is available, h_{des} cannot be below $H_{max, AP}$.

3.8. REDUCED CLIMB POWER

The reduced climb power has been introduced to allow the simulation of climbs using less than the maximum climb setting. In day-to-day operations, many aircraft use a reduced setting during climb in order to extend engine life and save cost. The correction factors that are used to calculate the reduction in power have been obtained in an empirical way and have been validated with the help of air traffic controllers.

In BADA, climbs that are performed using the full climb power will result in profiles that match the reference data that is found in the Flight Manual of the aircraft. Climbs with reduced power will give a realistic profile.

$$C_{\text{pow, red}} = 1 - C_{\text{red}} \times \frac{m_{\text{max}} - m_{\text{act}}}{m_{\text{max}} - m_{\text{min}}}$$
 (3.8-1)

The value of C_{red} is a function of the aircraft type and is given in Section 5.11.

Nevertheless:

If h < (0.8*h_{max}):
$$C_{\text{red}} = \text{f (aircraft type)} \qquad \text{(see Section 5.11)}$$
 Else
$$C_{\text{red}} = 0 \qquad \qquad \text{[dimensionless]}$$

where h_{max} is given by expression 3.5-1.

The power reduction $C_{\text{pow,red}}$ is to be applied during the climb phase in expression 3.1-4, which becomes:

$$\frac{dh}{dt} = \left[\frac{(T_{\text{max,climb}} - D) \times V_{\text{TAS}} \times C_{\text{pow,red}}}{mg} \right] f \{ M \}$$
 (in climb) (3.8-2)

3.9. FUEL CONSUMPTION

3.9.1. Jet and Turboprop Engines

For the jet and turboprop engines, the <u>thrust specific fuel consumption</u>, η (kg/(min*kN)), is specified as a function of true airspeed, V_{TAS} (knots):

jet:
$$\eta = C_{f1} \times \left(1 + \frac{V_{TAS}}{C_{f2}}\right)$$
 (3.9-1)

turboprop:
$$\eta = C_{f1} \times \left(1 - \frac{V_{TAS}}{C_{f2}}\right) \times \left(V_{TAS} / 1000\right)$$
 (3.9-2)

The <u>nominal fuel flow</u>, f_{nom} (kg/min), can then be calculated using the thrust, T:

jet/turboprop:
$$f_{\text{nom}} = \eta \times T$$
 (3.9-3)

These expressions are used in all flight phases except during idle descent and cruise, where the following expressions are to be used.

Minimum fuel flow, f_{min} (kg/min), corresponding to idle thrust descent conditions for both jet and turboprop engines, is specified as a function of altitude above sea level, h (ft), that is:

jet/turboprop:
$$f_{min} = C_{f3} \left(1 - \frac{h}{C_{f4}} \right)$$
 (3.9-4)

Note that for both jet and turboprop engines, the idle thrust part of the descent stops when the aircraft switches to approach and landing configuration (see Section 3.5). Hence, the expressions 3.7-11, 3.7-12 and 3.9-3 are used for calculation of fuel flow during approach and landing phases.

<u>Cruise fuel flow</u>, f_{cr} (kg/min), is calculated using the thrust specific fuel consumption η , the thrust T, and a cruise fuel flow factor, C_{fcr} :

jet/turboprop:
$$f_{cr} = \eta \times T \times C_{fcr}$$
 (3.9-5)

For the moment the cruise fuel flow correction factor has been established for a number of aircraft types whenever the reference data for cruise fuel consumption is available. This factor has been set to 1 (one) for all the other aircraft models.

3.9.2. Piston Engines

For piston engines, the <u>nominal fuel flow</u>, f_{nom} (kg/min), is specified to be a constant, that is:

$$f_{\text{nom}} = C_{\text{fl}} \tag{3.9-6}$$

This expression is used in all flight phases except during descent and cruise, where the following expressions are to be used.

Minimum fuel flow, f_{min} (kg/min), corresponding to descent conditions for piston engines, is specified to be a constant:

$$f_{\min} = C_{f3} \tag{3.9-7}$$

Cruise fuel flow, f_{cr} (kg/min), is calculated using a cruise fuel flow factor, C_{fcr}:

$$f_{cr} = C_{fl} \times C_{fcr}$$
(3.9-8)

For the moment the cruise fuel flow correction factor has been established for a number of aircraft types whenever the reference data for cruise fuel consumption is available. This factor has been set to 1 (one) for all the other aircraft models.

3.10. GROUND MOVEMENT

Four values are specified that can be of use when simulating ground movements. These parameters are:

- TOL: FAR Take-Off Length with MTOW on a dry, hard, level runway under ISA conditions and no wind [m].
- LDL: FAR Landing Length with MLW on a dry, hard, level runway under ISA conditions and no wind [m].
- span: Aircraft wingspan [m]
- length: Aircraft length [m]

Note that currently the value of the MLW is not provided in BADA. Apart from these model specific parameters, there are also a number of ground speeds defined as general parameters in Section 5.10.

3.11. SUMMARY OF OPERATIONS PERFORMANCE PARAMETERS

A summary of the parameters specified by the BADA operations performance model is supplied in Table 3.11-1 below. This table excludes those parameters that have been set to zero.

Detailed information on how these parameters have been obtained during the process of BADA aircraft model identification using the aircraft performance reference documents is provided in [RD6].

Important notice: Parameters listed in bold in the Table 3-1 below should not be modified by the user as such modifications may impact the validity of the data provided in [RD13].

Table 3-1: BADA Operations Performance Parameter Summary

Model Category	Symbols	Units	Description
aircraft type (3 values)	n _{eng} engine type wake category	dimensionless string string	number of engines either Jet, Turboprop or Piston either H (heavy), M (medium) or L (light)
mass (4 values) see def. P25	m _{ref} m _{min} m _{max} m _{pyld}	tonnes tonnes tonnes tonnes	reference mass minimum mass maximum mass maximum payload mass
flight envelope (6 values)	V _{MO} M _{MO} h _{MO} h _{max} G _w G _t	knots (CAS) dimensionless feet feet feet/kg feet/C	maximum operating speed maximum operating Mach number maximum operating altitude max. altitude at MTOW and ISA weight gradient on max. altitude temperature gradient on max. altitude
Aerodynamics (14 values) (16 values for jet aircraft)	S C _{D0,CR} C _{D2,CR} C _{D0,AP} C _{D2,AP}	m2 dimensionless dimensionless dimensionless dimensionless dimensionless	reference wing surface area parasitic drag coefficient (cruise) induced drag coefficient (cruise) parasitic drag coefficient (approach) induced drag coefficient (approach) parasitic drag coefficient (landing)
	C _{D0,LD} C _{D2,LD} C _{D0,ALDG}	dimensionless dimensionless knots (CAS)	induced drag coefficient (landing) parasite drag coef. (landing gear) stall speed [TO, IC, CR, AP, LD]

Model Category	Symbols	Units	Description
	(V _{stall})i C _{Lbo(M=0)} K	Dimensionless [1/M]	Buffet onset lift coef. (jet only) Buffeting gradient (jet only)
engine thrust (12 values)	C _{Tc,1}	Newton (jet/piston) knot-Newton (turboprop)	1st max. climb thrust coefficient
(12 values)	C _{Tc,2}	feet	2nd max climb thrust coefficient
	C _{Tc,3}	1/feet2 (jet) Newton (turboprop) knot-Newton (piston)	3rd max. climb thrust coefficient
	C _{Tc,4}	deg. C	1st thrust temperature coefficient
	C _{Tc,5}	1/ deg. C	2nd thrust temperature coefficient
	C _{Tdes,low}	dimensionless	low altitude descent thrust coefficient
	C _{Tdes,high}	dimensionless	high altitude descent thrust coefficient
	h _{des}	feet	transition altitude for calculation of
	C _{Tdes, app}	dimensionless	descent thrust
	C _{Tdes,Id}	dimensionless	approach thrust coefficient landing thrust coefficient
	$V_{des,ref}$	knots	landing thrust coefficient
	M _{des,ref}	Dimensionless	reference descent speed (CAS)
			reference descent Mach number
fuel flow (5 values)	C _{f1}	kg/(min*kN) (jet) kg/(min*kN*knot) (turboprop) kg/min (piston)	1st thrust specific fuel consumption coefficient
	C _{f2}	knots	2nd thrust specific fuel consumption coefficient
	C _{f3}	kg/min	1st descent fuel flow coefficient
	C _{f4}	feet	2nd descent fuel flow coefficient
	C _{fcr}	dimensionless	Cruise fuel flow correction coefficient
Ground movement	TOL	m	take-off length
(4 values)	LDL	m	landing length
	span	m	wingspan
	length	m	Length

4. AIRLINE PROCEDURE MODELS

This section defines the standard airline procedures, which are parameterised by the BADA airline procedure models. Definition of the standard airline procedures in BADA is driven by a requirement to provide means of simulating standard or nominal aircraft operations using different simulation and modelling tools for various ATM applications.

The BADA airline procedure model is provided for three separate flight phases: climb, cruise and descent. For each of these phases and each aircraft model, the BADA airline procedure model requires the following information to determine aircraft speed schedule:

- 1. BADA airline procedure default speeds provided in Airline Procedure File (APF):
 - V₁ standard CAS (knots) below 10,000 ft;
 - V₂ standard CAS (knots) between 10,000 ft and Mach transition altitude;
 - M standard Mach number above Mach transition altitude:

where the Mach transition altitude is defined in Section 3.2 (g).

- 2. Stall speeds for take-off and landing configurations provided in Operations Performance File (OPF)
- 3. Coefficients provided in the Section 5.7 and 5.8

The process of definition of the BADA airline procedure default speeds and choice of aircraft configurations in function of flight phase is described in [RD6]. The airline procedure model below 10,000 ft with corresponding coefficients (mentioned under item 3 above) have been defined taking into account aircraft manufacturer's performance reference data and aircraft operational data available at EUROCONTROL.

The fact that the way aircraft is operated varies significantly in function of specific airspace procedures and operating policies of locally dominant airlines is widely recognised. It is for that reason that the resulting speed schedules of the BADA standard airline procedure model may differ from a geographical location or of an aerospace's specific aircraft operation.

To account for the local aircraft operation characteristics and improve conformance of the simulated aircraft behaviour with real operations, the user of BADA is given a possibility to modify the BADA default speeds (as provided in APF file). The change of speed related APF parameters should be done in accordance with the BADA modelling procedure described in the Chapter 2.2.3 of [RD6].

However, the stall speeds (as provided in OPF file) and coefficients detailed in Section 5.7 and 5.8 are not subject to modification. The BADA User should not modify them.

4.1. CLIMB

The following parameters are defined for each aircraft type to characterise the climb phase:

- V_{cl.1} standard climb CAS (knots) between 1,500 / 6,000 and 10,000 ft.
- V_{cl.2} standard climb CAS (knots) between 10,000 ft and Mach transition altitude.
- M_{cl} standard climb Mach number above Mach transition altitude.

Note that the climb speed schedule shall determine an increasing speed from takeoff to $V_{\text{cl},1}$. To ensure that monotony, it is recommended to determine the speed schedule from the highest altitude to the lowest one, and to use at each step the speed of the higher altitude range as a ceiling value for the lower altitude range.

• For jet aircraft the following CAS schedule is assumed, based on the parameters mentioned above and the take-off stall speed:

from 0 to 1,499 ft	C_{Vmin}^* (V_{stall}) $_{TO}$ + $Vd_{CL, 1}$	(4.1-1)
from 1,500 to 2,999 ft	C_{Vmin}^* (V_{stall}) $_{TO}$ + $Vd_{CL, 2}$	(4.1-2)
from 3,000 to 3,999 ft	C_{Vmin}^* (V_{stall}) $_{TO}$ + $Vd_{CL, 3}$	(4.1-3)
from 4,000 to 4,999 ft	C_{Vmin}^* (V_{stall}) $_{TO}$ + $Vd_{CL, 4}$	(4.1-4)
from 5,000 to 5,999 ft	C_{Vmin}^* (V_{stall}) $_{TO}$ + $Vd_{CL, 5}$	(4.1-5)
from 6,000 to 9,999 ft	min (V _{cl,1} , 250 kt)	
from 10,000 ft to Mach transition altitude	$V_{cl,2}$	
above Mach transition altitude	M _{cl}	

• For turboprop and piston aircraft the following CAS schedule is assumed:

from 0 to 499 ft	C _{Vmin} * (V _{stall}) _{TO} + Vd _{CL, 6}	(4.1-6)
from 500 to 999 ft	$C_{Vmin}^* (V_{stall})_{TO} + Vd_{CL, 7}$	(4.1-7)
from 1,000 to 1,499 ft	${\rm C_{Vmin}}^*$ (${\rm V_{stall}}$) $_{\rm TO}$ + ${\rm Vd_{CL,~8}}$	(4.1-8)
from 1,500 to 9,999 ft	min (V _{cl,1} , 250 kt)	
from 10,000 ft to Mach transition altitude	$V_{cl,2}$	
above Mach transition altitude	M _{cl}	

The take-off stall speed, $(V_{stall})_{TO}$, must be corrected for the difference in aircraft mass from the reference mass using formula 3.4-1. The values for $Vd_{CL,i}$ can be found in Section 5.

4.2. CRUISE

The following parameters are defined for each aircraft type to characterise the cruise phase:

V_{cr,1} - standard cruise CAS (knots) between 3,000 and 10,000 ft

V_{cr,2} - standard cruise CAS (knots) between 10,000 ft and Mach transition altitude

M_{cr} - standard cruise Mach number above Mach transition altitude

For jet aircraft the following CAS schedule is assumed:

from 0 to 2,999 ft 170 kt from 3,000 to 5,999 ft min $(V_{cr,1}, 220 \text{ kt})$ from 6,000 to 13,999 ft min $(V_{cr,1}, 250 \text{ kt})$

from 14,000 ft to Mach transition altitude $V_{cr,2}$ above Mach transition altitude M_{cr}

For turboprop aircraft the following CAS schedule is assumed:

from 0 to 2,999 ft 150 kt from 3,000 to 5,999 ft min ($V_{cr,1}$, 180 kt)

from 6,000 to 9,999 ft min (V_{cr,1} , 250 kt)

from 10,000 ft to Mach transition altitude $V_{cr,2}$ above Mach transition altitude M_{cr}

4.3. DESCENT

The following parameters are defined for each aircraft type to characterise the descent phase:

V_{des,1} - standard descent CAS (knots) between 3,000 / 6,000 and 10,000 ft.

V_{des,2} - standard descent CAS (knots) between 10,000 ft and Mach transition

altitude.

M_{des} - standard descent Mach number above Mach transition altitude.

Note that the descent speed schedule shall determine a decreasing speed from $V_{des,1}$ to landing. To ensure that monotony, it is recommended to evaluate the speed schedule from the highest altitude to the lowest one, and to use at each step the speed of the higher altitude range as a ceiling value for the lower altitude range.

For jet and turboprop aircraft the following CAS schedule is assumed, based on the above parameters and the landing stall speed:

from 0 to 999 ft $C_{Vmin}^* (V_{stall})_{LD} + Vd_{DES, 1}$ (4.3-1)

from 1,000 to 1,499 ft $C_{Vmin}^* (V_{stall})_{LD} + Vd_{DES, 2}$ (4.3-2)

from 1,500 to 1,999 ft $C_{Vmin}^* (V_{stall})_{LD} + Vd_{DES, 3}$ (4.3-3)

from 2,000 to 2,999 ft $C_{Vmin}^* (V_{stall})_{LD} + Vd_{DES, 4}$ (4.3-4)

from 3,000 to 5,999 ft min $(V_{des,1}, 220)$ from 6,000 to 9,999 ft min $(V_{des,1}, 250)$

from 10,000 ft to Mach transition altitude $V_{des,2}$

above Mach transition altitude M_{des}

For piston aircraft the following CAS schedule is assumed:

from 0 to 499 ft $C_{Vmin}^* (V_{stall})_{LD} + Vd_{DES, 5}$ (4.3-5)

from 500 to 999 ft $C_{Vmin}^* (V_{stall})_{LD} + Vd_{DES, 6}$ (4.3-6)

from 1000 to 1,499 ft $C_{Vmin}^* (V_{stall})_{LD} + Vd_{DES, 7}$ (4.3-7)

from 1,500 to 9,999 ft $V_{des,1}$ from 10,000 ft to Mach transition altitude $V_{des,2}$ above Mach transition altitude $V_{des,2}$

The landing stall speed, $(V_{stall})_{LD}$, must be corrected for the difference in aircraft mass from the reference mass using formula 3.4-1. The values for $Vd_{DES,i}$ can be found in Section 5.

Page intentionally left blank

5. GLOBAL AIRCRAFT PARAMETERS

5.1. INTRODUCTION

A number of parameters that have been described in Section 3 (Operations Performance Model) and Section 4 (Airline Procedure Model) have values that are independent of the aircraft type or model for which they are used. The values of these and other parameters that up to BADA 2.4 were hard-coded in the aircraft navigator (MASS at the EEC), have been put in the General Parameters File (BADA.GPF). This increases the flexibility and allows an easier evaluation of the values that are used.

The next section gives an overview of the parameters that are defined in the Global Parameters File. If relevant, it also indicates the formula in which the parameter should be used.

5.2. MAXIMUM ACCELERATION

Maximum acceleration parameters are used to limit the increment in TAS (longitudinal) or ROCD (normal). 2 parameters are defined:

Name:	Description:	Value [fps ²]:
a _{I, max (civ)}	maximum longitudinal acceleration for civil flights	2.0
a _{n, max (civ)}	maximum normal acceleration for civil flights	5.0

The two acceleration limits are to be used in the following way:

• longitudinal acceleration:
$$|V_k - V_{k-1}| \le a_{1 \max{(civ)}} \Delta t$$
 (5.2-1)

normal acceleration:
$$\left| \gamma_{k} - \gamma_{k-1} \right| \leq \frac{a_{n \max{(civ)}}}{V}$$
 (5.2-2)

where,

$$\gamma = \sin^{-1} \left(\frac{\dot{\mathbf{h}}}{\mathbf{V}} \right) \tag{5.2-3}$$

and.

 $\begin{array}{ll} \gamma & \text{is the climb/descent angle,} \\ V & \text{is the True Air Speed,} \end{array}$

k, k-1 indicates values at update intervals k and k-1, and,

 Δt is the time interval between k and k-1

The values for $a_{l, max (mil)}$ (maximum longitudinal acceleration for military flights) and $a_{n, max (mil)}$ (maximum normal acceleration for military flights) are currently undefined.

5.3. BANK ANGLES

Nominal and maximum bank angles are defined separately for military and civil flights. These bank angles can be used to calculate nominal and maximum rate of turns.

Name:	Description:	Value [degr.]:
ϕ nom, civ (TO, LD)	Nominal bank angles for civil flight during TO and LD	15
ϕ nom, civ (OTHERS)	Nominal bank angles for civil flight during all other phases	35
φnom, mil	Nominal bank angles for military flight (all phases)	50
φmax, civ (TO, LD)	Maximum bank angles for civil flight during TO and LD	25
φmax, civ (HOLD)	Maximum bank angles for civil flight during HOLD	35
ϕ_{max} , civ (OTHERS)	Maximum bank angles for civil flight during all other phase	es 45
φ _{max} , mil	Maximum bank angles for military flight (all phases)	70

The rate of turn (φ) is calculated as a function of bank angle:

$$\dot{\varphi} = \frac{g}{V_{TAS}} \times \tan(\phi) \tag{5.3-1}$$

5.4. EXPEDITED DESCENT

The expedited descent factor is to be used as a drag multiplication factor during expedited descents in order to simulate use of spoilers:

Name:	Description:	Value [-]:
C _{des, exp}	Expedited descent factor	1.6

The drag during an expedited descent is calculated using the nominal drag (see 3.6.1):

$$D_{des, exp} = C_{des, exp} * D_{nom}$$
 (5.4-1)

5.5. THRUST FACTORS

Maximum take-off and maximum cruise thrust factors have been specified. The $C_{Th,TO}$ factor is no longer used since BADA 3.0. The C_{Tcr} factor is to be used in expression 3.7-8.

Name:	Description:	Value [-]:
$C_{Th,TO}$	Take-off thrust coefficient	1.2
C_{Tcr}	Maximum cruise thrust coefficient	0.95

5.6. CONFIGURATION ALTITUDE THRESHOLD

For 4 configurations, altitude thresholds have been specified in BADA: take-off (TO), initial climb (IC), approach (AP) and landing (LD). Note that the selection of the take-off and initial climb configurations is defined only with the altitude. The selection of the approach and landing configurations is done through the use of air speed and altitude (see Section 3.5), while the altitudes at which the configuration change takes place should not be higher than the ones given below.

Name:	Description:	Value [ft]:
H _{max, TO}	Maximum altitude threshold for take-off	400
H _{max, IC}	Maximum altitude threshold for initial climb	2,000
H _{max, AP}	Maximum altitude threshold for approach	8,000
H _{max, LD}	Maximum altitude threshold for landing	3,000

5.7. MINIMUM SPEED COEFFICIENTS

Two minimum speed coefficients are specified, which are to be used in expressions 3.5-2 and 3.5-3 and (for C_{Vmin} only) in Section 4.1 and 4.3:

Name:	Description:	Value [-]:
$C_{Vmin,TO}$	Minimum speed coefficient for take-off	1.2
C_{Vmin}	Minimum speed coefficient (all other phases)	1.3

5.8. SPEED SCHEDULES

The speed schedules applicable below FL100 for climb and descent are based on a factored stall speed plus increment valid for a specified altitude range:

Name:	Description:	Value[KCAS]:
Vd _{CL, 1}	Climb speed increment below 1500 ft (jet)	5
$Vd_{CL,2}$	Climb speed increment below 3000 ft (jet)	10
$Vd_{CL, 3}$	Climb speed increment below 4000 ft (jet)	30
$Vd_{CL,\ 4}$	Climb speed increment below 5000 ft (jet)	60
$Vd_{CL,5}$	Climb speed increment below 6000 ft (jet)	80
$Vd_{CL,6}$	Climb speed increment below 500 ft (turbo/piston)	20
Vd _{CL, 7}	Climb speed increment below 1000 ft (turbo/piston)	30
$Vd_{CL,8}$	Climb speed increment below 1500 ft (turbo/piston)	35
Vd _{DES, 1}	Descent speed increment below 1000 ft (jet/turboprop)	5
Vd _{DES, 2}	Descent speed increment below 1500 ft (jet/turboprop)	10
Vd _{DES, 3}	Descent speed increment below 2000 ft (jet/turboprop)	20
Vd _{DES, 4}	Descent speed increment below 3000 ft (jet/turboprop)	50
Vd _{DES, 5}	Descent speed increment below 500 ft (piston)	5

Vd _{DES, 6}	Descent speed increment below 1000 ft (piston)	10
Vd _{DES. 7}	Descent speed increment below 1500 ft (piston)	20

These values are to be used in the expressions in Section 4.1 and 4.3.

5.9. HOLDING SPEEDS

The holding speeds that are to be used to calculate holding areas are defined according to the ICAO standards:

Name:	Description:	Value[KCAS]:
V _{hold, 1}	Holding speed below FL140	230
V _{hold, 2}	Holding speed between FL140 and FL200	240
V _{hold, 3}	Holding speed between FL200 and FL340	265
V _{hold, 4}	Holding speed above FL340 [Mach]	0.83

Note that the holding speeds that are used by individual aircraft may vary between types.

5.10. GROUND SPEEDS

A number of ground speeds are defined for the simulation of ground movement. For the moment, no distinction between aircraft type or engine type is made. The following speeds have been defined:

Name:	Description:	Value[KCAS		
$V_{\text{backtrack}}$	Runway backtrack speed	35		
V_{taxi}	Taxi speed	15		
V_{apron}	Apron speed	10		
V_{aate}	Gate speed	5		

The runway backtrack speed is the speed the aircraft will maintain when it backtracks across the runway. The taxi speed is used anywhere between the runway and the apron area. The apron speed is used in the apron area while the gate speed is used for all manoeuvring between the gate position and the apron.

5.11. REDUCED POWER COEFFICIENT

The reduced power coefficients are defined for the three different engine types. It is stressed that the values given below where found in an empirical way and have been validated with the help of air traffic controllers:

Name:	Description:	Value[-] :
$C_{\text{red,turbo}}$	Maximum reduction in power for turboprops	0.25
$C_{\text{red,piston}}$	Maximum reduction in power for pistons	0.0
$C_{red,jet}$	Maximum reduction in power for jets	0.15

The coefficients should be used in Formula 3.8-1.

6. FILE STRUCTURE

6.1. FILE TYPES

All data provided by BADA Revision 3.7 is organised into six types of files:

- · three Synonym Files,
- a set of Operations Performance Files,
- a set of Airline Procedure Files.
- a set of Performance Table Files.
- a set of Performance Table Data,
- a Global Parameter File.
- Three Synonym Files have the names:

SYNONYM.LST SYNONYM.NEW SYNONYM ALL.LST

The files provide a list of all the aircraft types which are supported by BADA and indicate whether the aircraft type is supported directly (through provision of parameters in other files) or supported by equivalence (through indicating an equivalent aircraft type that is supported directly). In addition to that, SYNONYM_ALL.LST file provides the information on history and evolution of the ICAO aircraft designators over the years. The format of the files is described in Section 6.3.

- There is one Operations Performance File (OPF) provided for each aircraft type which is directly supported. This file specifies parameter values for the mass, flight envelope, drag, engine thrust and fuel consumption that are described in Section 3. Details on the format of the OPF file are given in Section 6.4.
- There is one Airline Procedures File (APF) for each directly supported aircraft type. This file specifies the nominal manoeuvre speeds that are described in Section 4. Details on the format of the APF file are given in Section 6.5.
- There is one Performance Table File (PTF) for each directly supported aircraft type. This file contains a summary table of speeds, climb/descent rates and fuel consumption at various flight levels. Details on the format of the PTF file are given in Section 6.6.
- There is one Performance Table Data (PTD) file for each directly supported aircraft type. This file contains a detailed table of computed performance values at various flight levels. Details on the format of the PTD file are given in Section 6.7.
- Finally there is one Global Parameter File which is named BADA.GPF. This file contains parameters that are described in Section 5 and are valid for all aircraft or a group of aircraft (for instance all civil flights or all jet aircraft). Details on the format of the GPF file are given in Section 6.7.

The names of the OPF, APF, PTF and PTD files are based on the ICAO designation code for the aircraft type. With only the exception of the generic military fighter aircraft types (FGTH, FGTL, FGTN), this code is the same as the International Civil Aviation Organisation (ICAO) designator code for the aircraft type [RD2]. That is:

Operations Performance File name: <ICAO_code>__.OPF

Airline Procedures File name: <ICAO_code>__.APF

Performance Table File name: <ICAO_code>__.PTF

Performance Table Data name: <ICAO_code>__.PTD

Note that there are at least two underscore characters between the ICAO code and the file extension such that the length of the file name without the extension is six characters. Most ICAO codes are four characters in length and thus have two underscore characters. Some ICAO codes, however, can be shorter (e.g. F50) and thus require more underscore characters. For example, an Airbus 310 which has the ICAO code of A310 is represented in BADA 3.7 by the following files:

Operations Performance File: A310__.OPF
Airline Procedures File: A310__.APF
Performance Table File: A310__.PTF
Performance Table Data: A310__.PTD

The Fokker F50, which has the ICAO code of F50, is represented in BADA 3.7 by the following files:

Operations Performance File: F50____.OPF
Airline Procedures File: F50____.APF
Performance Table File: F50____.PTF
Performance Table Data: F50____.PTD

All files belonging to BADA Revision 3.7, that is the Synonym Files, the GPF file and all APF, OPF, PTF and PTD files are controlled within a configuration management system. This system is described in Section 6.2.

6.2. FILE CONFIGURATION MANAGEMENT

Starting with the BADA 3.4 release, the BADA Synonym Files, GPF and all APF, OPF, PTF and PTD files are placed and managed under the Change Management Synergy (CM Synergy) tool at EUROCONTROL.

This section briefly describes some of the CM Synergy features that will be used for the management of the BADA files.

CM Synergy provides a complete change management environment in which development and management of the files can be done easily, quickly, and securely. It maintains control of file versions and allows management of project releases with some of the benefits listed below:

• workflow management, which enables easy identification of the files modified to implement the change, and review of the reason for a change,

- project reproducibility by accurately creating baseline configurations,
- role-based security,
- Distributed Change Management (DCM) which allows files sharing among any number of CM Synergy databases. With DCM transfer of an entire database or a subset of a database can be done, either automatically or manually.

The CM Synergy automated migration facilities feature complete version history migration from RCS system archives. This has enabled to bring successfully all the BADA files with their history under the CM Synergy control. A CM Synergy database is created for BADA project. Such a database represents a data repository that stores all controlled data, including data files, their properties and relationships to one another.

The following BADA files are placed in the CM Synergy database:

- the Synonym Files
- the GPF file
- all APF, OPF, PTF and PTD files

Within the CM Synergy, different methodologies in the way the files are managed are used. For BADA database, the task-based methodology is chosen which enables the tracking of the changes by using tasks, rather than individual files, as the basic unit of work.

The specific procedures used for configuration management are specified in the BADA Configuration Management Manual [RD5].

6.2.1. File Identification

Any file managed in a CM Synergy database is uniquely identified by the following attributes: *name*, *version*, *type*, *and instance*. By default, the four-part name (also called full name) is written like this: *name-version:type:instanc*.

A file name can be up to 151 characters long, and the version can be any 32-character combination. The type can be any of the default types (e.g., *csrc*, *ascii*, etc.), or any BADA type that is created (APF, OPF, PTF, PTD, GPF).

The name, version, and type are designated by the user, but the instance is calculated by CM Synergy.

The version of a file corresponds to the evolution of the file in time. By default, CM Synergy creates version numbers, starting with 1, for each file that is created in the CM Synergy database. Each time the object is modified, CM Synergy increments the version.

The instance is used to distinguish between multiple objects with the same name and type, but that are not versions of each other.

It is important to notice that, following the CM Synergy approach of the file identification, no information on the file version is provided in the BADA file itself.

A new layout of the header of BADA files has been developed and it will be described in more details in the following sections.

6.2.2. History

The history of a file shows all the existing versions and the relationships between the versions. By history, CM Synergy means all of the file versions created before the current file version (called predecessors) and all of the file versions created after the current file version (called successors). This functionality allows for the tracking of all modifications to a file.

6.2.3. Release

The release is a label that indicates the version of the project, in this case the release of BADA files. BADA Releases are usually identified by a two digit number, e.g. 3.3 or 3.4. However, the name of release in CM Synergy can be made out of any combination of alphabetic and numerical characters.

Like in the case of the file version, no information on the current BADA release is given in the BADA files.

6.3. SYNONYM FILE FORMAT

6.3.1. SYNONYM.LST File

The SYNONYM.LST file is an ASCII file which lists all aircraft types which are supported by the BADA revision. An example of the SYNONYM.LST file is given below (partial listing).

CCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC							
CC	BADA SYNONYM FILE							
CC	Fi	le_name: SYNONYM.LS	Γ			/		
CC	Cr	eation_date: Mar 26	2002			/		
CC	Мо	dification_date: Mar	26 2002			/		
CC=	===== A	ircraft List ======		:=======		====/		
CC	- /					/		
CC	A/C CODE	NAME OR MODEL	FILE	SYN	NONYMS	/		
CC						/		
		AIRBUS A300B4-600		A30				
		AIRBUS A300B4-200	A30B	A30				
		AIRBUS A310	A310	A31				
		AIRBUS A319	A319	A31				
		AIRBUS A320	A320	A32				
		AIRBUS A321	A321	A32				
		AIRBUS A330-300	A333	A33		- 0.45		
-	A343	AIRBUS A340-300	A343	A34		A345		
	3 m 4 3	3 mp 3 mp 40 200	3.07.4.3	3.00	A346	CT TT III		
_	AT43	ATR ATR 42-300	AT43	AT4		CVLT		
	3 m 4 F	3 MD 3 MD 42 E00	AT45	AT4				
		ATR ATR 42-500	AT72	AT2				
		ATR ATR 72		AT				
		ADVANCED TURBOPROP BAE 146-100/RJ	B461	B46	_	В463		
_	P401	BAE 146-100/R0	B401	YK4		D403		
	D702	BOEING 707-300	В703	B70		K35R		
	Б/03	BOEING 707-300	Б/03	E37		C135		
				VC1		CISS		
	פרסם	BOEING 727-100	В722	B72		BER4		
		BOEING 727-100 BOEING 737-228	B732	B73		A124		
		BOEING 737-228	В733	В73 В73		AIZT		
		BOEING 737-300 BOEING 737-400	в733 <u></u> В734	В73 В73				
		BOEING 737-400 BOEING 737-500	B735	B73				
		BOEING 737-700	В737	В73 В73				
	2,3,—	DOLLING 131 100	5/5/	Б7.	, ,			

There are three types of lines in the SYNONYM.LST file with the line type identified by the first two characters in the line. These line types with their associated leading characters are listed below.

- CC comment line
- CD data line
 - synonym line

The data is organised into two blocks separated by a comment line consisting of the block name and equal signs "=":

- · file identification block
- aircraft list block

Each of these blocks is described in the subsections below.

6.3.1.1. File Identification Block

The file identification block provides information on the file name, creation and modification date. The block consists of 12 comment lines.

The comment lines specify the file name along with the creation and the modification date. The creation date indicates the date when the file was created for the first time. The modification date indicates when the contents of the file were last modified.

6.3.1.2. Aircraft Listing Block

The aircraft listing block consists of 5 comment lines with additional synonym lines for each aircraft supported by the BADA Revision. A partial listing of this block is shown below.

CC=	===== ;	Aircraft List ======			=====	====/
CC CC	A/C CODE	NAME OR MODEL	FILE	SYNON	YMS	, , ,
- -	A30B A310	AIRBUS A300B4-600 AIRBUS A300B4-200 AIRBUS A310 AIRBUS A319	A30B A310	A30B A310	IL76	
- - -	A321 A333 A343	AIRBUS A320 AIRBUS A321 AIRBUS A330-300 AIRBUS A340-300	A321 A333 A343	A321 A333 A343	A332 A342	
 	AT45 AT72 ATP	ATR ATR 42-300 ATR ATR 42-500 ATR ATR 72 ADVANCED TURBOPROP BAE 146-100/RJ	AT45 AT72 ATP	AT44 AT45 AT72	A748 G222	
-	в703	BOEING 707-300	В703	B703 E3TF	B720 E3CF IL62	
- - -	B732 B733 B734 B735	BOEING 727-100 BOEING 737-228 BOEING 737-300 BOEING 737-400 BOEING 737-500 BOEING 737-700	B732 B733 B734 B735	В733 В734	В731	

There is one synonym line for each of the directly supported aircraft within the BADA release. Each such line consists of 4 fields as described below:

(a) Aircraft Code Field

This field identifies the aircraft type. It consists of a three or four-character ICAO code followed by two or more underscore characters.

- (b) Name or Model Field
 - This field identifies the manufacturer and model of the aircraft.
- (c) File Name Field

This field identifies the file name for the APF, OPF, PTF or PTD files associated with the aircraft (minus the file extension). For each aircraft this is the same as the A/C code.

(d) Equivalence Field

This field lists any equivalences associated with the aircraft. By default, each aircraft has at least one equivalence to itself.

Note that in some cases the name or model or equivalence fields may be continued onto the next line as it is the case with the B703 model.

6.3.2. SYNONYM.NEW File

The SYNONYM.NEW file is an ASCII file, which lists all aircraft types, which are supported by the BADA revision. Its format differs from the SYNONYM.LST file in that all supported aircraft are listed alphabetically in the file whether they are supported directly or by equivalence. An example of the SYNONYM.NEW file is given below (partial listing).

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC									
CC CC BADA SYNONYM FILE									
CC									
CC									
CC				/					
	eation_date: Mar 26 2	2002		/					
CC				/					
CC Mod	dification_date: Mar	26 2002		/					
CC				/					
CC				/					
	rcraft List ======		=======	:=====/					
CC CC A/C	MARKINA CITTID ED	NAME OF MODEL	D.T. D.	01.0					
CC A/C CC CODE	MANUFACTURER	NAME OR MODEL	FILE	OLD / CODE /					
CC CODE				(CODE /					
CD * A10	FATRCHILD	THUNDERBOLT II	FGTN						
CD * A124		ANTONOV AN-124	B732						
CD - A306	AIRBUS	A300B4-600		A306 /					
CD - A30B	AIRBUS	A300B4-200	A30B	A300 /					
CD - A310	AIRBUS	A310	A310	A310 /					
CD - A319	AIRBUS	A319	A319	A319 /					
CD - A320	AIRBUS	A320	A320	EA32 /					
CD - A321	AIRBUS	A321	A321	- ,					
CD * A332	AIRBUS	A330-200	A333						
	AIRBUS	A330-300	A333						
CD * A342	AIRBUS AIRBUS	A340-200		A342 /					
		A340-300		A340 /					
	AIRBUS	A340-500	A343						
CD * A346 CD * A4	AIRBUS MCDONNELL-DOUGLAS	A340-600 SKYHAWK	A343 FGTN						
CD * A4	GRUMMAN	INTRUDER	FGTN	EA6B /					
	BAE	BAE 748	AT72						
	ROCKWELL	TURBO COMMANDER	BE20						
CD * AC90	ROCKWELL	TURBO COMMANDER	BE20						
CD * AC95	ROCKWELL	TURBO COMMANDER	BE20						
CD * AJET	DASSAULT	ALPHA JET	FGTN						
CD * AMX	EMBRAER	AMX	FGTN	AMX /					
CD * AN12	ANTONOV	AN-12	C130	AN12 /					
CD * AN24	ANTONOV	AN-124		AN24 /					
CD * AN26	ANTONOV	AN-26	F27	AN26 /					

There are three types of lines in the SYNONYM.NEW file with the line type identified by the first two characters in the line. These line types with their associated two leading characters are listed below.

CC comment line
CD data line
FI end-of-file line

The data is organised into two blocks separated by a comment line consisting of the block name and equal signs "=":

- file identification block
- aircraft list block

Each of these blocks is described in the subsections below.

6.3.2.1. File Identification Block

The file identification block provides information on the file name, creation and modification date. The block consists of 12 comment lines as shown below.

The comment lines specify the file name along with the creation and last modification date. The creation date indicates the date when the file was created for the first time. The modification date indicates when the contents of the file were last modified.

6.3.2.2. Aircraft Listing Block

The aircraft listing block consists of 5 comment lines and at least one data line for each aircraft supported by the BADA Revision. Some aircraft have more than one data line, see under (f). A partial listing of this block is shown below.

```
CD * A10
            FAIRCHILD
                                THUNDERBOLT II
                                                         FGTN
                                                                  A10A /
CD * A124
                                                         В732___
                                ANTONOV AN-124
           VONOTIVA
                                                                  AN4R /
CD - A306
                                A300B4-600
                                                         A306__
           ATRBUS
                                                                  A306 /
CD - A30B
          AIRBUS
                                A300B4-200
                                                          A30B___
                                                                 A300 /
```

Each data line consists of 6 fields as described below:

(a) Support Type Field

This field is one character in length being one of the following two values:

- "-" to indicate an aircraft type directly supported, and,
- to indicate an aircraft type supported by equivalence with another directly supported aircraft

(b) Aircraft Code Field

This field identifies the aircraft type. It consists of a three or four-character ICAO code.

(c) Manufacturer Field

This field identifies the manufacturer of the aircraft. Examples are Boeing, Airbus or Fokker.

(d) Name or Model Field

This field identifies the name or model for the aircraft type. Examples are the 747-400 series or Learjet 35.

(e) File Field

This field indicates the name of the OPF, APF, PTF or PTD file, which contains the parameters for the aircraft type (minus the file extension).

For an aircraft type which is directly supported this file name will be the same as the ICAO code with an additional two or more underscore characters to form a string of six characters in length. For example, the file name corresponding to the A333 will be A333__. This indicates an OPF file A333__.OPF, an APF file A333__.APF, a PTF file A333__.PTF and a PTD file A333__.PTD. For the Fokker F-27 with an ICAO code of F27, the file names include three underscore characters, that is, F27___.OPF, F27___.APF, F27___.PTF and F27___.PTD.

For an aircraft type which is supported through equivalence the file name will indicate the file for the equivalent aircraft type which should be used. As an example, the Antonov 12 (AN12) is equivalent to the Lockheed C-130 Hercules (C130). Thus the files C130__.OPF, C130 .PTF and C130 .PTD should be used.

(f) Old Code field

The old code field gives the name of the aircraft that refers to the formerly known aircraft designator as published in one of the previous editions of the ICAO document 8643 [RD10]. This allows the BADA 3.7 user to continue to use the old ICAO standard and to establish a link between the old and the new aircraft designators.

The above fields are specified in the following fixed format (Fortran notation):

'CD', 1X, A1, 1X, A4, 3X, A18, 1X, A25, 1X, A6, 2X, A4

6.3.3. SYNONYM_ALL.LST File

The SYNONYM_ALL.LST file is an ASCII file, which lists all aircraft types, which are supported by the BADA revision. Like in the SYNONYM.NEW file, all supported aircraft are listed alphabetically in the file whether they are supported directly or by equivalence. An example of the SYNONYM_ALL.LST file is given below (partial listing).

CCCCCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC										
CC							/				
CC	BADA SYNONYM ALL FILE						/				
CC							/				
CC							/				
CC	File	e_name: SYNONYM_A	ALL.LST				/				
CC							/				
CC	Crea	ation_date: May 2	22 2003				/				
CC							/				
CC	Mod:	ification_date: N	May 22 2003				/				
CC							/				
CC							/				
CC							/				
CC====		===========	:=======:	========	======	=======	/				
CC							/				
CC							/				
CC					ICAO	ICAO	ICAO	ICAO	ICAO	ICAO	ICAO
	A/C	NAME OR MODEL	MANUFACTURER		CODE	CODE	CODE	CODE	CODE	CODE	CODE
CC				BADA 3.5	V24	V25	V26	V27	V28	V29	V30
CC											
CD * A		THUNDERBOLT II	FAIRCHILD	FGTN	A10A	A10	A10	A10	A10	A10	A10
CD * A		ANTONOV AN-124	ANTONOV	в732		A124	A124	A124	A124	A124	A124
CD - A		A300B4-600	AIRBUS	A306		A306	A306	A306	A306	A306	A306
CD - A		A300B4-200	AIRBUS	A30B		A300	A30B	A30B	A30B	A30B	A30B
CD - A		A310	AIRBUS	A310	EA31	A310	A310	A310	A310	A310	A310
CD * A		A318	AIRBUS	A319	A318	A318	A318	A318	A318	A318	A318
CD - A		A319	AIRBUS	A319	A319	A319	A319	A319	A319	A319	A319
CD - A		A320	AIRBUS	A320	EA32	A320	A320	A320	A320	A320	A320
CD - A		A321	AIRBUS	A321	A321	A321	A321	A321	A321	A321	A321
CD - A		A330-200	AIRBUS	A332	A332	A332	A332	A332	A332	A332	A332
CD - A		A330-300	AIRBUS	A333	EA33	EA33	EA33	A330	A333	A333	A333
CD * A		A340-200	AIRBUS	A343		A342	A342	A342	A342	A342	A342
CD - A		A340-300	AIRBUS	A343		EA34	EA34	A340	A343	A343	A343
CD * A		A340-500	AIRBUS	A343		A345	A345	A345	A345	A345	A345
CD * A	A346	A340-600	AIRBUS	A343	A346	A346	A346	A346	A346	A346	A346

There are three types of lines in the SYNONYM_ALL.LST file with the line type identified by the first two characters in the line. These line types with their associated two leading characters are listed below.

CC comment line
CD data line
FI end-of-file line

The data is organised into two blocks separated by a comment line consisting of equal signs "=":

- file identification block
- · aircraft list block

Each of these blocks is described in the subsections below.

6.3.3.1. File Identification Block

The file identification block provides information on the file name, creation and modification date. The block consists of 13 comment lines as shown below.

The comment lines specify the file name along with the creation and last modification date. The creation date indicates the date when the file was created for the first time. The modification date indicates when the contents of the file were last modified.

6.3.3.2. Aircraft Listing Block

The aircraft listing block consists of 7 comment lines and at least one data line for each aircraft supported by the BADA Revision. Some aircraft have more than one data line, see under (f). A partial listing of this block is shown below.

*	A10	THUNDERBOLT II	FAIRCHILD	FGTN	A10A	A10	A10	A10	A10	A10	A10
*	A124	ANTONOV AN-124	ANTONOV	B732	AN4R	A124	A124	A124	A124	A124	A124
-	A306	A300B4-600	AIRBUS	A306							
-	A30B	A300B4-200	AIRBUS	A30B	EA30	A300	A30B	A30B	A30B	A30B	A30B

Each data line consists of 5 fields describing the aircraft type and number of additional fields providing the history of ICAO aircraft type designators. Detailed description is given below:

(a) Support Type Field

This field is one character in length being one of the following two values:

- "-" to indicate an aircraft type directly supported, and,
- to indicate an aircraft type supported by equivalence with another directly supported aircraft

(b) Aircraft Code Field

This field identifies the aircraft type. It consists of a three or four-character ICAO code.

(c) Manufacturer Field

This field identifies the manufacturer of the aircraft. Examples are Boeing, Airbus or Fokker.

(d) Name or Model Field

This field identifies the name or model for the aircraft type. Examples are the 747-400 series or Learjet 35.

(e) File Field

This field indicates the name of the OPF, APF, PTF or PTD file, which contains the parameters for the aircraft type (minus the file extension).

For an aircraft type which is directly supported this file name will be the same as the ICAO code with an additional two or more underscore characters to form a string of six characters in length. For example, the file name corresponding to the A333 will be A333__. This indicates an OPF file A333__.OPF, an APF file A333__.APF, a PTF file A333__.PTF and a PTD file A333__.PTD. For the Fokker F-27 with an ICAO code of F27, the file names include three underscore characters, that is, F27___.OPF, F27___.APF, F27___.PTF and F27___.PTD.

For an aircraft type which is supported through equivalence the file name will indicate the file for the equivalent aircraft type which should be used. As an example, the Antonov 12 (AN12) is equivalent to the Lockheed C-130 Hercules (C130). Thus the files C130__.OPF, C130__.APF, C130__.PTD should be used.

(f) Old Code fields

The old code fields give the name of the aircraft that refers to the formerly known aircraft designator as published in one of the previous editions (versions, i.e. V24 to V36) of the ICAO document 8643 [RD10]. This allows the BADA 3.7 user to continue to use the old ICAO standard and to establish a link between the old and the new aircraft designators, as well as the corresponding BADA aircraft file name.

6.4. OPF FILE FORMAT

The Operations Performance File (OPF) is an ASCII file, which for a particular aircraft type specifies the operations performance parameters described in Section 3. An example of an OPF file for the A306 (Airbus 300B4-600) aircraft is shown below.

```
CC
              AIRCRAFT PERFORMANCE OPERATIONAL FILE
CC
CC
     File_name: A306___.OPF
CC
      Creation_date: Mar 26 2002
CC
CC
CC
      Modification_date: Mar 26 2002
2 engines Jet
                                              H
   Airbus A300-B4-622 with PW4158 engines
reference minimum maximum max payload mass grad .14000E+03 .87000E+02 .17170E+03 .39000E+02 .14100E+00
  reference
CC===== Flight envelope ==========/
   VMO(KCAS) MMO Max.Alt Hmax temp grad /
.33500E+03 .82000E+00 .41000E+05 .31600E+05 -.67000E+02 /
CC Wing Area and Buffet coefficients (SIM)
CCndrst Surf(m2) Clbo(M=0) k CM16
CD 5 .26000E+03 .15300E+01 .10290E+01 .00000E+00
   Configuration characteristics
                                              unused
CC n Phase Name Vstall(KCAS)
                           CD0
                                      CD2
               .15100E+03 .19000E-01 .53000E-01
.11700E+03 .33057E-01 .45362E-01
CD 1 CR
       Clean
                                              .00000E+00
       S15F00
CD 2 IC
                                              .00000E+00
       S15F00 .11700E+03 .33057E-01 .45362E-01
S15F15 .10900E+03 .38031E-01 .44822E-01
                                              .00000E+00
CD 3 TO
                          .38031E-01
                                    .44932E-01
                                              .00000E+00
CD 4 AP
       S15F15
               .10900E+03
CD 5 LD S30F40
               .97000E+02 .78935E-01
                                    .44822E-01
   Spoiler
CC
CD 1
       RET
CD 2
       EXT
                                    .00000E+00 .00000E+00
CC
CD 1
CD 2
                          .22500E-01
                                              .00000E+00 /
       DOWN
                                    .00000E+00
CC
   Brakes
CD 1
                                    .00000E+00
Max climb thrust coefficients (SIM)
                                   .67500E+01
     .30400E+06 .44800E+05 .11600E-09
               Desc(high) Desc level Desc(app) Desc(ld)
     Desc(low)
     .73000E-02 .20600E-01 .80000E+04 .12000E+00
Desc CAS Desc Mach unused unused
                                              .36000E+00 /
CC
                                               unused
     .28000E+03 .79000E+00 .00000E+00 .00000E+00 .00000E+00
Thrust Specific Fuel Consumption Coefficients
     .88100E+00
              .16900E+05
CD
   Descent Fuel Flow Coefficients
CC
     .26805E+02 .45700E+05
   Cruise Corr. unused unused unused unused / .10380E+01 .00000E+00 .00000E+00 .00000E+00 .00000E+00 /
TOL LDL span length unused / .23620E+04 .15550E+04 .44840E+02 .54080E+02 .00000E+00 /
```

There are three types of lines in the OPF file with the line type identified by the first two characters in the line. These line types with their associated two leading characters are listed below.

CC comment line

CD data line

FI end-of-file line

The comment lines are provided solely for the purpose of improving the readability of the file. All coefficients are contained within the CD lines in a fixed format. The end-of-file line is included as the last line in the file in order to facilitate the reading of the file in certain computing environments.

The data is organised into a total of eight blocks with each block separated by a comment line containing the block name and equal signs "=". These blocks are listed below and are described in further detail in the subsections below.

- file identification block
- aircraft type block
- mass block
- flight envelope block
- aerodynamics block
- · engine thrust block,
- fuel consumption block
- ground movements block

6.4.1. File Identification Block

The file identification block provides information on the file name, creation date and modification date. The block consists of 11 comment lines. An example of the file identification block for the A306__.OPF file is shown below.

The comment lines specify the file name along with the creation date and last modification date. The creation date indicates the date when the file was created for the first time. The modification date indicates when the contents of the file were last modified.

6.4.2. Aircraft Type Block

The OPF aircraft type block consists of 1 data line with 3 comment lines for a total of 4 lines. An example of the aircraft type block is given below.

The data line specifies the following aircraft type parameters:

- ICAO aircraft code (followed by 2 or more underscore characters as required to form a six character string),
- number of engines, n_{eng},
- engine type, and,
- · wake category

The engine type can be one of the following three values: Jet, Turboprop or Piston. The wake category can be one of the three values H (heavy), M (medium) or L (light).

The four values are specified in the following fixed format (Fortran notation)

The comment lines typically indicate the engine manufacturer's designation and the source of the performance coefficients.

6.4.3. Mass Block

The OPF mass block consists of 1 data line with 2 comment lines for a total of 3 lines.

An example of the mass block is given below.

The data line specifies the following BADA mass model parameters:

```
m_{ref} m_{min} m_{max} m_{pvld} G_{W}
```

These parameters are specified in the following fixed format (Fortran notation)

6.4.4. Flight Envelope Block

The OPF flight envelope block consists of 1 data line with 2 comment lines for a total of 3 lines. An example of the flight envelope block is given below.

The date line specifies the following BADA speed envelope parameters:

$$V_{MO}$$
 M_{MO} h_{MO} h_{max} G_t

Note that all altitudes are expressed in feet.

These parameters are specified in the following fixed format (Fortran notation):

6.4.5. Aerodynamics Block

The OPF aerodynamics block consists of 12 data lines and 8 comment lines for a total of 20 lines. An example of the aerodynamics block is given below.

```
CC Wing Area and Buffet coefficients (SIM)
      CCndrst Surf(m2)
                        Clbo(M=0)
                                                   CM16
1 ->
             .26000E+03
                         .15300E+01
                                    .10290E+01
                                                .00000E+00
      CD 5
          Configuration characteristics
      CC
                        Vstall(KCAS)
      CC n Phase Name
                                       CDO
                                                   CD2
                                                             unused
2 ->
      CD 1 CR
               Clean
                        .15100E+03
                                    .19000E-01
                                                .53000E-01
                                                            .00000E+00
                                                            .00000E+00
               S15F00
                                                .45362E-01
3 ->
      CD 2 IC
                        .11700E+03
                                    .33057E-01
                                    .33057E-01
                        .11700E+03
4 ->
      CD 3 TO
               S15F00
                                                .45362E-01
                                                            .00000E+00
                        .10900E+03
                                    .38031E-01
                                                .44932E-01
                                                            .00000E+00
5 ->
      CD 4 AP
               S15F15
6 ->
      CD 5 LD
               S30F40
                        .97000E+02
                                    .78935E-01
                                                .44822E-01
                                                            .00000E+00
      CC
          Spoiler
7 ->
      CD 1
               RET
8 ->
      CD 2
               EXT
                                                 .00000E+00
                                                            .00000E+00
      CC
         Gear
9 ->
      CD 1
               UP
10 ->
      CD 2
               DOWN
                                     .2250E-01
                                                 .00000E+00
                                                            .00000E+00
      CC
         Brakes
12 ->
      CD 1
               OFF
13 ->
      CD 2
                                                 .00000E+00
                                                            .00000E+00 /
               ON
```

The first data line specifies the following BADA aerodynamic model parameters:

S Clbo(M=0) k C_{M16}

These parameters are specified in the following fixed format (Fortran notation):

Note that the "5" under the header "ndrst" stands for the five <u>drag settings</u>. Currently this is not used but is left in for compatibility requirements.

The next line holds besides the stall speed and flap setting for cruise as well as the values for the two drag coefficients for this configuration:

 $(V_{stall})_{CR}$ C_{D0} C_{D2}

These parameters are specified in the following fixed format (Fortran notation):

The next four data lines have the same format and correspond to the other configurations. The configurations are specified in the following order, corresponding to a semi-monotonically decreasing stall speed:

IC initial climb

TO take-off

AP approach

LD landing

The stall speed, $(V_{stall})_{i}$, is specified for each configuration, and C_{D0} and C_{D2} are given if available in the following fixed format (Fortran notation):

'CD', 15X, 3 (3X, E10.5)

In case the IC configuration is equal to the CR configuration, the values for C_{D0} and C_{D2} are mentioned only in the CR dataline. Note that C_{D0} and C_{D2} coefficients for IC and TO configurations are not used but are included for the reason of compatibility with previous versions.

The data lines 7 through 9 are not used but are included for the reason of compatibility with previous versions.

Dataline 10 holds the drag increment for landing gear down:

C_{D0} ALDG

The format of this line is:

'CD', 31X, E10.5

Datalines 11 and 12 are not used but are included for the reason of compatibility with previous versions.

6.4.6. Engine Thrust Block

The OPF engine thrust block consists of 3 data lines with 4 comment lines for a total of 7 lines. An example of the engine thrust block is given below.

```
Max climb thrust coefficients (SIM)
     CD
           .30400E+06
                     .44800E+05
                                .11600E-09
                                           .67500E+01
                                                     .42600E-02
     CC
            Desc(low)
                      Desc(high)
                                Desc level
                                           Desc(app)
                                                      Desc(ld)
                      .20600E-01
                                .80000E+04
                                           .12000E+00
2 ->
     CD
           .73000E-02
                                                     .36000E+00
            Desc CAS
                       Desc Mach
                                 unused
                                            unused
                                                      unused
                      .79000E+00
           .28000E+03
                                .00000E+00
                                           .00000E+00
                                                     .00000E+00
```

The first data line specifies the following BADA parameters used to calculate the maximum climb thrust, that is:

$$C_{\text{Tc},1}$$
 $C_{\text{Tc},2}$ $C_{\text{Tc},3}$ $C_{\text{Tc},4}$ $C_{\text{Tc},5}$

These parameters are specified in the following fixed format (Fortran notation):

The second data line specifies the following BADA parameters used to calculate cruise and descent thrust, that is:

 $C_{\mathsf{Tdes},\mathsf{low}}$ $C_{\mathsf{Tdes},\mathsf{high}}$ $\mathsf{h}_{\mathsf{des}}$ $C_{\mathsf{Tdes},\mathsf{app}}$ $C_{\mathsf{Tdes},\mathsf{ld}}$

These parameters are specified in the following fixed format (Fortran notation):

Note that the $C_{\text{Tdes},\text{app}}$ and $C_{\text{Tdes},\text{Id}}$ coefficients are determined in order to obtain a 3° descent gradient during approach and landing.

The third data line specifies the reference speeds during descent, that is:

V_{des.ref} M_{des.ref}

These parameters are specified in the following fixed format (Fortran notation):

Note that these two parameters are no longer used in BADA model implementation, but are left in place only to provide information on one of the reference speeds during descent used during the model identification.

The zero values at the end of this data line are not used but are included in the file due to compatibility requirements with previous versions.

6.4.7. Fuel Consumption Block

The OPF fuel consumption block consists of 3 data lines with 4 comment lines for a total of 7 lines. An example of a fuel consumption block is shown below.

```
Thrust Specific Fuel Consumption Coefficients
              .16900E+05
     .88100E+00
CC
   Descent Fuel Flow Coefficients
    .26805E+02 .45700E+05
CC
   Cruise Corr.
               unused
                         unused
                                   unused
                                            unused
     .10380E+01
              .00000E+00 .00000E+00
                                  .00000E+00
                                            .00000E+00
```

The first data line specifies the following BADA parameters for thrust specific fuel consumption.

$$C_{f1}$$
 C_{f2}

These parameters are specified in the following fixed format (Fortran notation):

The second data line specifies the following BADA parameters for descent fuel flow.

$$C_{f3}$$
 C_{f4}

These parameters are specified in the following fixed format (Fortran notation):

The third data line specifies the cruise fuel flow correction factor.

 C_{fcr}

The parameter is specified in the following fixed format (Fortran notation):

6.4.8. Ground Movement Block

The OPF ground movement block consists of 1 data line with 3 comment lines for a total of 4 lines. An example of a ground movement block is shown below. The ground movement block is the last block in the OPF file and is thus followed by the end-of-file line as shown below.

The data line specifies the following BADA parameters for ground movements:

TOL LDL span length

These parameters are specified in the following fixed format (Fortran notation):

'CD', 2X, 4 (3X, E10.5)

6.5. APF FILE FORMAT

The Airlines Procedures File (APF) is an ASCII file which, for a particular aircraft type, specifies recommended speed procedures for climb, cruise, and descent conditions. An example of an APF file for the Airbus A306 aircraft is shown below.

```
CC
          AIRLINES PROCEDURES FILE
CC
CC
    File_name: A306___.APF
CC
CC
    Creation_date: Mar 26 2002
CC
    Modification_date: Mar 26 2002
CC
CC
CC
CC
  LO= 087.00 to ---.- / AV= ---.- to ---.- / HI= ---.- to 171.70
CC
CC
Company name -----climb----- --cruise--
CC COM CO
                                 ----descent----- --approach- model-
            mass lo hi
CC
                           lo hi
                                  hi lo
                                              (unused)
CC
   version engines ma cas cas mc xxxx xx cas cas mc mc cas cas xxxx xx xxx xxx xxx opf_
CD *** **
       Default Company
   B4_622 PW4158 LO 250 300 79
B4_622 PW4158 AV 250 300 79
                          250 310 79 79 280 250
                                              Ω
                                                Ω
CD
                                                  0 A306
                          250 310 79
                                                    A306
CD
                                 79 280 250
                                              Ω
                                                Ω
                                                  Ω
                          250 310 79 79 280 250
   B4_622 PW4158C HI 250 300 79
                                              0
                                                0
                                                  0 A306__
CC/////// THE END
```

There are two types of lines in the APF file with the line type identified by the first two characters in the line. These line types with their associated two leading characters are listed below:

CC - comment line
CD - data line

The last line in the file, as shown above, is also a comment line.

The comment lines are provided solely for the purpose of improving the readability of the file. All coefficients are contained within the CD lines in a fixed format.

The data is organised into 2 blocks separated by a comment line containing a string of equal signs, "=":

- file identification block
- speed procedures block

Each of the two blocks is described further in the subsections below.

6.5.1. File Identification Block

The file identification block provides information on the file name, creation date and modification date. The block consists of 14 comment lines. An example of a file identification block is shown below.

```
CC
            AIRLINES PROCEDURES FILE
CC
CC
     File name: A306 .APF
CC
     Creation_date: Mar 26 2002
CC
CC
CC
     Modification_date: Mar 26 2002
CC
CC
CC
CC
   LO= 087.00 to ---.- / AV= ---.- to ---.- / HI= ---.- to 171.70
```

The comment lines provide background information on the file contents. In addition, the comment lines specify the file name along with the creation and last modification date. The creation date indicates the date when the file was created for the first time. The modification date indicates when the contents of the file were last modified.

The second last comment line in the identification block specifies three mass ranges for the aircraft in tonnes. That is, a low range (LO), average range (AV) and high range (HI). The definition of these ranges is used for interpreting the information presented below in the procedures specification block. In the example given above, all three ranges are assumed equivalent.

6.5.2. Procedures Specification Block

The APF procedures specification block consists of 4 data lines with 7 comment lines for a total of 11 lines. An example of a procedures specification block is shown below.

```
CC COM CO Company name -----climb----- --cruise- ----descent----- --approach model- /
           mass lo hi
                        lo hi
                                hi lo
CC
CC
   version engines ma cas cas mc xxxx xx cas cas mc mc cas cas xxxx xx xxx xxx xxx opf_
CD *** **
      Default Company
  ** ** Delaute Company
B4_622 PW4158 LO 250 300 79
B4_622 PW4158 AV 250 300 79
                        250 310 79 79 280 250
                                         0
CD
                       250 310 79 79 280 250
                                         0 0 0 A306___ /
                        250 310 79 79 280 250
  B4_622 PW4158C HI 250 300 79
                                         0 0
                                             0 A306
CD
```


The first data line specifies the company name for which the next three datalines are valid. The company can be identified by its 3 and 2 letter code plus the company name. The dataline fomat is:

As it is, within BADA all APF files specify procedures for only one "default" company.

The next three data lines specify the following parameters corresponding to climb, cruise and descent:

$$V_{cl,1}$$
 $V_{cl,2}$ M_{cl} $V_{cr,1}$ $V_{cr,2}$ M_{cr} M_{des} $V_{des,2}$ $V_{des,1}$

Note that all Mach number values are also multiplied by a value of 100. For example, the 78 indicated for M_{cl} above corresponds to a Mach number of 0.78.

The three lines specify parameters for mass ranges of Low (LO), Average (AV) and High (HI) respectively. These parameters are specified in the following fixed format (Fortran notation):

Note that approach values are set to zero. These values are not used but are included in the file due to compatibility requirements with previous versions.

Also, each line specifies an aircraft version number, engine, and operational model. The operational model is always the same as the file name. The version number may provide some additional information on the aircraft version covered by the file while the engine states which engine is used by the aircraft.

The file format is designed such that the four data lines can be repeated for the different companies which operate the aircraft and which may have different standard procedures. If data were to be provided for more than one company then the version, engine and operational model fields may be useful since different companies could operate different versions of the aircraft with different engines and thus different associated operational models.

6.6. PTF FILE FORMAT

The Performance Table File (PTF) is an ASCII file, which for a particular aircraft type specifies cruise, climb and descent performance at different flight levels. An example of a PTF file for the Airbus A306 aircraft is shown below.

> BADA PERFORMANCE FILE Apr 23 2002

AC/Type: A306

Source OPF File: Mar 26 2002 Source APF file: Mar 26 2002

 Speeds:
 CAS(LO/HI)
 Mach

 climb
 - 250/300
 0.79

 cruise
 - 250/310
 0.79

 descent
 - 250/280
 0.79

 Mass Levels [kg] Temperature: low - 104400

nominal - 140000 Max Alt. [ft]: 41000

high - 171700

==== FL	======= 	CRUISE		CLII		======	====== 	DESCE	
	TAS	fuel [kg/min]	TAS [kts]	ROCD [fpm]		fuel [kg/min]	TAS [kts]	ROCD [fpm]	fuel [kg/min]
====	j =======	lo nom hi	'	lo nom	hi =====	nom	İ	nom	nom ======
0			157	2210 1990	1620	270.3	131	760	97.2
5	 		158	2190 1970	1600	267.3	132	780	96.1
10	 		159	2170 1950	1570	264.3	138	800	95.0
15	 		166	2290 2030	1650	261.5	149	850	94.0
20	 		167	2270 2010	1620	258.5	181	1020	31.0
30	230	61.2 81.4 104.	3 190	2750 2360	1920	253.0	230	1360	25.0
40	233	61.2 81.4 104.	4 225	3350 2780	2270	247.7	233	1380	24.5
60	 272 	65.9 81.7 99.	6 272	4210 3070	2370	236.8	240	1410	23.3
80	280	65.8 81.7 99.	7 280	4040 2930	2230	225.7	280	1550	22.1
100	 289 	65.8 81.7 99.	8 289	3860 2780	2090	214.8	289	1590	20.9
120	 297	65.7 81.7 99.	8 356	3820 2800	2170	204.8	332	1880	19.8
140	 306 	65.6 81.7 99.	9 366	3590 2610	2000	194.3	342	1920	18.6
160	 389 	82.4 93.1 105.	3 377	3360 2410	1820	184.1	353	1960	17.4
180	 401 	82.1 92.9 105.	1 388	3120 2220	1650	174.2	363	2000	16.2
200	413	81.7 92.6 104.	9 400	2880 2020	1470	164.5	375	2040	15.1
220	 425	81.3 92.3 104.	7 412	2630 1810	1290	155.0	386	2080	13.9
240	 438	80.9 91.9 104.	5 425	2380 1610	1100	145.8	398	2120	12.7
260	 452	80.4 91.6 104.	3 438	2130 1400	920	136.9	411	2160	11.6
280	 466	79.9 91.2 104.	1 452	1880 1200	730	128.1	424	2200	10.4
290	 468 	78.4 90.1 103.	4 459	1760 1090	640	123.9	431	2220	9.8
310	 464	74.3 87.0 101.	5 464	2200 1290	660	115.4	444	2250	8.6
330	 459	70.6 84.7 100.	6 459	1950 1050	420	107.2	459	2290	7.4
350	 455 	67.6 83.0 97.	9 455	1700 810	170	99.2	455	3150	6.3
370	 453 	65.1 82.0 90.	3 453	1320 510	0	91.6	453	2850	5.1
390	 453 	63.2 81.9 83.	0 453	1080 260	0	84.1	453	2850	3.9
410	 453 =======	61.9 75.9 75.		830 10	0	77.0	 453 ======	2880	2.8

The OPF and APF files are generated as a result of a modelling process using MatLab [RD6]. Once these two files are generated, the PTF can be automatically generated. A brief summary of the format of these files is given below.

The header of each PTF file contains information as described below.

file creation date: This is in the first line, at the top-right corner

aircraft type: This is in the third line.

source file dates: The last modification dates of the OPF and APF files which were used to

create the PTF file are given in the 4th and 5th lines respectively.

speeds: The speed laws for climb, cruise and descent are specified in lines 8, 9 and

10, that is:

 $\begin{array}{llll} \text{climb} & V_{\text{cl},1} \ / \ V_{\text{cl},2} & M_{\text{cl}} \\ \text{cruise} & V_{\text{cr},1} \ / \ V_{\text{cr},2} & M_{\text{cr}} \\ \text{descent} & V_{\text{des},1} \ / \ V_{\text{des},2} \ M_{\text{des}} \end{array}$

mass Levels: The performance tables provide data for three different mass levels in lines

8, 9 and 10 that is:

 $\begin{array}{lll} low & 1.2 \; m_{\text{min.}} \\ nominal & m_{\text{ref}} \\ high & m_{\text{max}} \end{array}$

Note that the low mass is not the Minimum Mass but 1.2 times the minimum mass.

Temperature data: The temperature is mentioned in line 7. All PTF files currently only provide

for ISA conditions.

Maximum altitude: The maximum altitude as specified in the OPF file, h_{MO}, is given in line 9.

The table of performance data within the file consists of 13 columns. Each of these columns is described below:

Column 1 FL

Column 2 cruise TAS (nominal mass) in knots

Column 3 cruise fuel consumption (low mass) in kg/min cruise fuel consumption (nominal mass) in kg/min cruise fuel consumption (high mass) in kg/min

Column 6 climb TAS (nominal mass) in knots

Column 7 rate of climb with reduced power (low mass) in fpm
Column 8 rate of climb with reduced power (nominal mass) in fpm
rate of climb with reduced power (high mass) in fpm
column 10 climb fuel consumption (nominal mass) in kg/min

Column 11 descent TAS (nominal mass) in knots Column 12 rate of descent (nominal mass) in fpm

Column 13 descent fuel consumption (nominal mass) in kg/min

The format for data presented in each line of the table is as follows (Fortran notation).

13, 4X, 13, 2X, 3(1X, F5.1), 5X, 13, 2X, 3(1X, 15), 3X, F5.1, 5X, 13, 2X, 15, 3X, F4.1

Further explanatory notes on the data presented in the performance tables are given below:

- (a) Cruise data is only specified for flight levels greater than or equal to 30.
- (b) Performance data is specified up to a maximum flight level of 510 or to highest level for which a positive rate of climb can be achieved at the low mass.
- (c) True Air Speed for climb, cruise and descent is determined based on the speed schedules specified in Sections 4.1, 4.2 and 4.3 respectively.
- (d) Rates of climb are calculated at each flight level assuming the energy share factors associated with constant CAS or constant Mach speed laws and using the reduced power correction as given in Section 3.8.
- (e) The fuel consumption in climb is independent of the aircraft mass and thus only one value is given. There are three different climb rates however corresponding to low, nominal and high mass conditions.
- (f) The rate of descent and fuel consumption in descent is calculated assuming the nominal mass. Values for other mass conditions are not given.
- (g) Discontinuities in climb rate can occur for the following reasons:
 - change in speed between flight levels (e.g. removal of 250 knot restriction above FL100),
 - transition from constant CAS to constant Mach (typically around FL300),
 - transition through the tropopause (FL360 for ISA),
 - end of the application scope for reduced climb power (at 80% of h_{max}).
- (h) Discontinuities in descent rate can occur for the following reasons:
 - transition through tropopause (FL360 for ISA),
 - transition from constant Mach to constant CAS,
 - change in assumed descent thrust (specified by the BADA h_{des} parameter),
 - change to approach or landing aerodynamic configuration,
 - change in speed between flight levels (e.g. application of 250 knot limit below FL100).
- (i) The PTF files are made with "non-clean" configuration data for approach and landing when such data is available (see Section 3.6.1).
- (j) The performance data presented in the table are computed by using 'point type' calculation, that is without performing integration over time: aircraft weight is constant and does not account for consumed fuel, and speed changes take place immediately.

Note that all PTF files are available in document form in [RD9].

In addition to the data provided in the PTF file, more detailed climb and descent performance data are presented in the PTD file. An example of a PTD file for the Airbus A306 aircraft is shown below (partial listing):

6.7.

PTD FILE FORMAT

EUROCONTROL

BADA PERFORMANCE DATA Feb 16 2009 AC/Type: A306

Source OPF File: Sep 05 2008
Source APF file: Sep 05 2008

Speeds: CAS(LO/HI) Mach Mass Levels [kg] Temperature: ISA

climb - 250/300 0.79 low - 104400 cruise - 250/310 0.79 nominal - 140000 Max Alt. [ft]: 41000

descent - 250/280 0.79 high - 171700

Low mass CLIMBS

r 1	m [rr]	[70 - 1	1 [1 / 2]	- [/]	ma G[1-+ 1	G2 G [1-+]	245 1		m1	D[37]	B 1 [] 1	DOD[]	DOG[5]	mp a [11]	DESCE 1
		_	rho[kg/m3]			CAS[kt]		mass[kg]		_	Fuel[kgm]		ROC[fpm]		PWC[-]
		101325	1.225	340	136.35	136.35		104400	297160	85670	215.8	0.98	2452	186284	0.88
	287	99508	1.207	340	137.34	136.35		104400	294268	85680	213.9	0.98	2435	183727	0.88
	286	97717	1.190	339	138.34	136.35		104400	291385	85691	212.0	0.98	2417	181179	0.88
	285	95952	1.172	339	144.45	141.35		104400	288510	82072	211.0	0.97	2527	181833	0.88
	284	94213	1.155	338	145.51	141.35		104400	285643	82082	209.1	0.97	2509	179299	0.88
	282	90812	1.121	337	168.52	161.35		104400	279935	72295	209.0	0.96	2937	182892	0.88
	280	87511	1.088	336	202.72	191.35		104400	274260	67093	210.7	0.95	3470	182476	0.88
60	276	81200	1.024	333	272.30	250.00	0.42	104400	263011	74643	213.7	0.91	4075	165917	0.88
80	272	75262	0.963	331	280.34	250.00	0.44	104400	251895	74535	206.0	0.91	3925	156222	0.88
100	268	69682	0.905	328	345.37	300.00	0.54	104400	240914	91120	207.0	0.87	3905	131941	0.88
120	264	64441	0.849	326	355.51	300.00	0.56	104400	230066	90785	199.1	0.86	3703	122681	0.88
140	260	59524	0.796	324	366.04	300.00	0.58	104400	219352	90425	191.3	0.85	3495	113561	0.88
160	256	54915	0.746	321	376.97	300.00	0.60	104400	208772	90038	183.6	0.84	3281	104583	0.88
180	252	50600	0.698	319	388.32	300.00	0.63	104400	198326	89622	175.8	0.83	3060	95748	0.88
200	249	46563	0.653	316	400.10	300.00	0.65	104400	188013	89175	168.1	0.82	2834	87059	0.88
220	245	42791	0.610	314	412.32	300.00	0.68	104400	177835	88694	160.4	0.81	2601	78516	0.88
240	241	39271	0.569	311	425.00	300.00	0.70	104400	167790	88179	152.7	0.80	2364	70123	0.88
260	237	35989	0.530	308	438.16	300.00	0.73	104400	157879	87627	145.0	0.79	2122	61879	0.88
280	233	32932	0.493	306	451.80	300.00	0.76	104400	148102	87036	137.3	0.78	1875	53788	0.88
290	231	31485	0.475	304	458.81	300.00	0.78	104400	143263	86725	133.4	0.78	1749	49800	0.88
310	227	28745	0.442	302	463.54	293.28	0.79	104400	133687	83916	124.9	1.09	2184	43839	0.88
330	223	26201	0.410	299	459.48	280.58	0.79	104400	124245	79587	115.8	1.09	2205	44658	1.00
350	219	23842	0.380	297	455.37	268.17	0.79	104400	114936	75881	106.8	1.09	1911	39055	1.00
370	217	21663	0.348	295	453.12	256.08	0.79	104400	105761	72808	98.1	1.00	1470	32953	1.00
390		19677	0.316	295	453.12	244.46		104400	96720	70398	89.7	1.00	1174	26322	1.00
410	217	17874	0.287	295	453.12	233.34	0.79	104400	87813	68640	81.5	1.00	855	19173	1.00
110	21	1,011	0.207	200	155.12	255.51	0.75	101100	0,013	00010	01.5	1.00	000	1717	1.00

The performance values presented in the PTF file. They are generated in the same conditions as the corresponding PTF file: same aircraft, same source OPF and APF files, same speed laws, same mass levels, same temperature and same flight levels. The purpose of this file is mainly to provide the user with a greater number of computed parameters, especially intermediate parameters used to compute the final TAS and ROCD, which may be useful to validate an implementation of the BADA model.

The files consists of a header, conforming to the same format as the PTF file header described in Section 6.6, followed by performance data consisting of 4 sections:

- low mass climb performance
- nominal mass climb performance
- high mass climb performance
- nominal mass descent performance

Each section contains a table that presents, for several flight levels, a set of performance parameters spread across 16 columns. Each of these columns is described below:

```
Column 1
              Flight level [FL]
Column 2
              Temperature [K]
Column 3
              Pressure [Pa]
Column 4
              Air density [kg/m<sup>3</sup>]
Column 5
              Speed of sound [m/s]
Column 6
              TAS [kt]
Column 7
              CAS [kt]
Column 8
              Mach [dimensionless]
Column 9
              Mass [kg]
Column 10
              Thrust [N]
Column 11
              Drag [N]
Column 12
              Fuel flow [kg/min]
              Energy share factor [dimensionless]
Column 13
Column 14
              Rate of climb/descent [ft/min]
Column 15
              (T - D) * C_{pow,red} [kg/min] (see section 3.8)
              - climb tables: Power reduction coefficient Cpow,red [dimensionless]
Column 16
              - descent table: Descent gradient [degree]
```

The format for data presented in each line of the table is as follows (Fortran notation):

Climb tables:

```
I6, 1X, I3, 1X, I6, 1X, F7.3, 1X, I7, 2(1X, F8.2), 1X, F7.2, 1X, I6, 2(1X, I9), 1X, F7.1, 1X, F7.2, 1X, I7, 1X, I8, 1X, F7.2
```

Descent tables:

```
16,\ 1X,\ 13,\ 1X,\ 16,\ 1X,\ F7.3,\ 1X,\ 17,\ 2(1X,\ F8.2),\ 1X,\ F7.2,\ 1X,\ 16,\ 2(1X,\ 19),\ 1X,\ F7.1,\ 1X,\ F7.2,\ 1X,\ 17,\ 1X,\ 18,\ 1X,\ F8.2
```


6.8. BADA.GPF FILE FORMAT

The BADA.GPF file is an ASCII file which specifies the values of the global aircraft parameters (see Section 5). The complete BADA.GPF file is shown below:

```
CC
                GLOBAL PARAMETERS FILE
      File_name: BADA.GPF
CC
CC
CC
     Creation_date: Mar 26 2002
CC
CC
      Modification_date: Mar 26 2002
CC
CC
CC Flight = civ.mil
CC Engine = jet,turbo,piston
CC Phase = to,ic,cl,cr,des,hold,app,lnd,gnd
CC
CC Name
                 Unit
CC Parameter
                Flight Engine
                                                                 Value
CC
CC max. long. acc. [fps2]
                        jet,turbo,piston to,ic,cl,cr,des,hold,app,lnd .20000E+01
CD acc_long_max
                civ
CC max. norm. acc. [fps2]
CD acc_norm_max
                        jet,turbo,piston to,ic,cl,cr,des,hold,app,lnd .50000E+01
               civ
CC nom. bank angle [deg]
                                                                  .15000E+02
CD ang_bank_nom
                civ
                        jet, turbo, piston to, lnd
CC nom. bank angle [deg]
CD ang_bank_nom
                        jet,turbo,piston ic,cl,cr,des,hold,app
               civ
CC nom. bank angle [deg]
                        jet,turbo,piston to,ic,cl,cr,des,hold,app,lnd .50000E+02
CD ang_bank_nom mil
CC max. bank angle [deg]
CD ang_bank_max
                        jet,turbo,piston to,lnd
                                                                  .25000E+02
CC max. bank angle [deg]
                        jet,turbo,piston hold
                                                                  .35000E+02
CD ang_bank_max
               civ
CC max. bank angle [deg]
CD ang_bank_max
                        jet,turbo,piston ic,cl,cr,des,app
                                                                  .45000E+02
               civ
CC max. bank angle [deg]
                        jet, turbo, piston to, ic, cl, cr, des, hold, app, lnd .70000E+02
CD and bank max mil
CC exp. desc. fact. [-]
CD C_des_exp
               civ, mil jet, turbo, piston des
                                                                  .16000E+01
CC to thrust factor [-]
CD C th to
             mil,civ jet,turbo,piston to
                                                                  .12000E+01
CC cr thrust factor [-]
CD C_th_cr
               mil,civ jet,turbo,piston cr
                                                                  .95000E+00
CC max alt for to [ft]
CD H_max_to mil,civ jet,turbo,piston to
                                                                  .40000E+03
CC max alt for ic [ft]
                                                                  .20000E+04
CD H_max_ic
                mil,civ jet,turbo,piston ic
CC max alt for app [ft]
CD H_max_app mil,civ jet,turbo,piston app CC max alt for ld [ft]
                                                                  .80000E+04
                mil,civ jet,turbo,piston lnd
                                                                  .30000E+04
CD H_max_ld
CC min speed coef. [-]
               mil,civ jet,turbo,piston cr,ic,cl,des,hold,app,lnd
CD C_v_min
                                                                  .13000E+01
CC min speed coef. [-]
CD C_v_min_to
                mil, civ jet, turbo, piston to
                                                                  12000E+01
CC spd incr FL < 15 [KCAS]
CD V_cl_1
                                       cl
                                                                  .50000E+01
                mil,civ jet
CC spd incr FL < 30 [KCAS]
                                                                  .10000E+02
CD V_cl_2
                                       cl
                mil,civ jet
CC spd incr FL < 40 [KCAS]
CD V_c1_3
                                       cl
                                                                  .30000E+02
                mil,civ jet
CC spd incr FL < 50 [KCAS]
                                       cl
                                                                  .60000E+02 /
CD V cl 4
                mil,civ jet
CC spd incr FL < 60 [KCAS]
CD V_c1_5
                mil,civ jet
                                       cl
                                                                  .80000E+02 /
```


CC spd incr FL < 5 [KCAS] CD V_cl_6 mil,civ turbo,piston	cl	20000=102 /
CC spd incr FL < 10 [KCAS]	CI	.20000E+02 /
CD V_cl_7 mil,civ turbo,piston	cl	.30000E+02 /
CC spd incr FL < 15 [KCAS]	CI	.30000E102 /
CD V_cl_8 mil,civ turbo,piston	cl	.35000E+02 /
CC spd incr FL < 10 [KCAS]	61	/
CD V_des_1 mil,civ jet,turbo	des	.50000E+01 /
CC spd incr FL < 15 [KCAS]	465	/
CD V_des_2 mil,civ jet,turbo	des	.10000E+02 /
CC spd incr FL < 20 [KCAS]		/
CD V_des_3 mil,civ jet,turbo	des	.20000E+02 /
CC spd incr FL < 30 [KCAS]		/
CD V_des_4 mil,civ jet,turbo	des	.50000E+02 /
CC spd incr FL < 5 [KCAS]		/
CD V_des_5 mil,civ piston	des	.50000E+01 /
CC spd incr FL < 10 [KCAS]		/
CD V_des_6 mil,civ piston	des	.10000E+02 /
CC spd incr FL < 15 [KCAS]		/
CD V_des_7 mil,civ piston	des	.20000E+02 /
CC hold. spd FL < 140 [KCAS]		/
CD V_hold_1 mil,civ jet,turbo,piston	hold	.23000E+03 /
CC hold. spd FL < 200 [KCAS]		/
CD V_hold_2 mil,civ jet,turbo,piston	hold	.24000E+03 /
CC hold. spd FL < 340 [KCAS]		/
CD V_hold_3 mil,civ jet,turbo,piston	hold	.26500E+03 /
CC hold. spd FL > 340 [M]		/
CD V_hold_4 mil,civ jet,turbo,piston	hold	.83000E+00 /
CC backtrack spd [KCAS]		/
CD V_backtrack mil,civ jet,turbo,piston CC taxi spd [KCAS]	gnd	.35000E+02 /
CC taxi spd [KCAS]		/
CD V_taxi mil,civ jet,turbo,piston	gnd	.15000E+02 /
CC apron spd [KCAS]		10000- 00 /
CD V_apron mil,civ jet,turbo,piston	gnd	.10000E+02 /
CC gate spd [KCAS]	•	
CD V_gate mil,civ jet,turbo,piston	gna	.50000E+01 /
CC Piston pow. red. [-]	4 m m3	000000.00
CD C_red_piston mil,civ piston	ic,cl	.000000+00 /
CC Turbo pow. red. [-] CD C_red_turbo mil,civ turbo	ia al	250000.00 /
CC Jet power red. [-]	ic,cl	.250000+00 /
CD C_red_jet mil,civ jet	ic,cl	.150000+00 /
FI====================================	·	
CC/////// THE END		,
CC,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

There are three types of lines in the BADA.GPF file with the line type identified by the first two characters in the line. These line types with their associated two leading characters are listed below.

CC comment line

CD data line

FI end-of-file line

The data is organised into three blocks separated by a comment line consisting of the block name and equal signs "=":

- file identification block
- class block
- parameter block

Each of these blocks is described in the subsections below.

6.8.1. File Identification Block

The file identification block provides information on the file name, creation and modification date. The block consists of 12 comment lines.

The comment lines specify the file name along with the creation date and last modification date. The creation date indicates the date when the file was created for the first time. The modification date indicates when the contents of the file were last modified.

6.8.2. Class Block

The class block consists of 6 comment lines and defines the three classes (Flight, Engine and Phase) and their instances that are used in the BADA.GPF file.

```
CC Flight = civ, mil
     CC Engine = jet,turbo,piston
     CC Phase = to,ic,cl,cr,des,hold,app,lnd,gnd
With: civ
                 civil flight
           =
     mil
                 military flight
                 jet engine
     jet
     turbo =
                 turboprop engine
                 piston engine
     piston =
                 take off
     to
     ic
                 initial climb
                 climb
     cl
     cr
                 cruise
           =
                 descent
     des
     hold
                 holding
           =
     app
                 approach
     Ind
                 landing
           =
                 ground
     gnd
```


6.8.3. Parameter Block

The parameter block contains the values of the global aircraft parameters. This block has 5 comment lines plus a comment line and a dataline for each parameter.

	CC====== Paramete	ers List	=======================================			= /
	CC Name	Unit				/
	CC Parameter	Flight	Engine	Phase	Value	/
	CC					/
	CC max. long. acc.	[fps2]				/
1 ->	CD acc_long_max	civ	jet,turbo,piston	to,ic,cl,cr,des,hold,app,lnd	.20000E+01	/
	CC max. norm. acc.	[fps2]				/
2 ->	CD acc_norm_max	civ	jet,turbo,piston	to,ic,cl,cr,des,hold,app,lnd	.50000E+01	/
	CC nom. bank angle	[deg]				/
3 ->	CD ang_bank_nom	civ	jet,turbo,piston	to,lnd	.15000E+02	/

The parameter comment line contains the parameter name and its unit.

The parameter data line contains five fields:

(a) Parameter Field: This field identifies the parameter.

(b) Flight Field: This field identifies whether the parameter is valid for a civil flight, a

military flight or both.

(c) Engine Field: This field identifies the engine type (jet, turboprop or piston) for

which the parameter is valid.

(d) Phase Field: This field identifies for which flight phase the parameter is valid. 8

different flight phases are currently defined

(e) Value Field: The value field gives the value of the parameter.

The fields above are specified in the following fixed format (Fortran notation):

The parameter list continues until 'FI' (end of file) is reached.

7. REMOTE FILE ACCESS

The files associated with BADA Revision 3.7 are accessible through the BADA Support Application (BSA). The BSA is a Web application that provides BADA users with the ability to exchange requests, as well as data files and documents, with the BADA team members. It is also used for data repository of the BADA release files and documents.

The right to use the BSA is granted to the licensed user of BADA. The application can be accessed by using a dedicated login and password as provided from the BADA team.

Once granted the access right to BSA, the user can access the application at this address:

https://remedyweb.eurocontrol.fr

by using the **BADA Support Application** link and logging in with the provided login/password.

Once logged in, the user can access BADA releases through the Librairies→Releases item located in the main menu:

Then the release library page opens up, from where the user can download the BADA releases files:

This process, as well as the general usage of the BSA application, is described in detail in [RD11].

Note that enquiries can be addressed to the following addresses:

E-mail: eec.bada@eurocontrol.int

Fax: + 33 1 69 88 73 33

BADA web page: http://www.eurocontrol.int/eec/public/standard_page/proj_BADA.html

APPENDIX A

BADA 3.7 – LIST OF AVAILABLE AIRCRAFT MODELS

Page intentionally left blank

Table 7-1: List of Aircraft Types Supported by BADA 3.7

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
A10	equiv.	FAIRCHILD	THUNDERBOLT II	FGTN	50000		М
A124	equiv.	ANTONOV	AN-124 RUSLAN	A346	41500	33613	Н
A306	direct	AIRBUS	A300B4-600	A306	41000	32378	Н
A30B	direct	AIRBUS	A300B4-200	A30B	39000	31967	Н
A310	direct	AIRBUS	A310	A310	41000	35719	Н
A318	equiv.	AIRBUS	A318	A319	39000	36365	М
A319	direct	AIRBUS	A319	A319	39000	36365	М
A320	direct	AIRBUS	A320	A320	39000	33965	М
A321	direct	AIRBUS	A321	A321	39100	35396	М
A332	direct	AIRBUS	A330-200	A332	41000	36211	Н
A333	direct	AIRBUS	A330-300	A333	41000	36392	Н
A342	equiv.	AIRBUS	A340-200	A343	41000	32325	Н
A343	direct	AIRBUS	A340-300	A343	41000	32325	Н
A345	equiv.	AIRBUS	A340-500	A346	41500	33613	Н
A346	direct	AIRBUS	A340-600	A346	41000	32325	Н
A388	direct	AIRBUS	A380-800	A388	43100	34330	Н
A3ST	equiv.	AIRBUS	A-300ST Beluga	A321	39100	35396	М
A4	equiv.	DOUGLAS	SUPER SKYHAWK	FGTN	50000		М
A6	equiv.	GRUMMAN	INTRUDER	FGTN	50000		М
A7	equiv.	VOUGHT	CORSAIR II A7	FGTN	50000		М
A748	equiv.	AVRO	AVRO 748	ATP_	25000	21628	М
AA5	equiv.	GULFSTREAM AMERICAN	Cheetah AA-5	P28A	12000		L
AC90	equiv.	ROCKWELL	TURBO COMMANDER 690B	PAY3	33000		L
AC95	equiv.	GULFSTREAM AEROSPACE	Jetprop Commander 980	PAY3	33000		L

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
AEST	equiv.	TED SMITH	AEROSTAR	MU2_	28000		L
AJET	equiv.	DASSAULT	ALPHA JET	FGTN	50000		М
AMX	equiv.	EMBRAER	AMX	FGTN	50000		М
AN12	equiv.	ANTONOV	AN-12	C130	32000	21892	М
AN24	equiv.	ANTONOV	AN-124	F27_	25000	22778	М
AN26	equiv.	ANTONOV	AN-26	AT72	25000	20943	М
AN72	equiv.	ANTONOV	AN-72	F28_	35000		М
ASTR	equiv.	IAI	1125 Astra	FA10	45000		М
AT43	direct	ATR	ATR 42-300	AT43	25000	22700	М
AT44	equiv.	ATR	ATR 42-400	AT45	25000	23592	М
AT45	direct	ATR	ATR 42-500	AT45	25000	23592	М
AT72	direct	ATR	ATR 72	AT72	25000	20943	М
ATLA	equiv.	DASSAULT	1150 ATLANTIC	E120	32000		М
ATP	direct	BAE	ADVANCED TURBOPROP	ATP_	25000	21628	М
B1	equiv.	ROCKWELL	B1 LANCER	FGTL	41000		Н
B190	equiv.	BEECH	1900	JS32	25000		L
B350	equiv.	BEECH	SUPER KING AIR 350	PAY3	33000		L
B461	equiv.	BAE	146-100/RJ	B462	31000	30350	М
B462	direct	BAE	146-200/RJ	B462	31000	30350	М
B463	equiv.	BAE	146-300/RJ	B462	31000	30350	М
B52	equiv.	BOEING	B-52 Stratofortress	FGTL	41000		Н
B701	equiv.	BOEING	707-100	B752	42000	35478	М
B703	direct	BOEING	707-300	B703	42000		Н
B712	direct	BOEING	717-200	B712	37000	35188	М
B720	equiv.	BOEING	B720B	B752	42000	35478	М

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
B721	equiv.	BOEING	727-100	B752	42000	35478	М
B722	direct	BOEING	727-200	B722	37000	33845	М
B731	equiv.	BOEING	737-100	T134	39000	34765	М
B732	direct	BOEING	737-200	B732	37000	34508	М
B733	direct	BOEING	737-300	B733	37000	33637	М
B734	direct	BOEING	737-400	B734	37000	33448	М
B735	direct	BOEING	737-500	B735	37000	34340	М
B736	direct	BOEING	737-600	B736	41000	39276	М
B737	direct	BOEING	737-700	B737	41000	37333	М
B738	direct	BOEING	737-800	B738	41000	34983	М
B739	equiv.	BOEING	737-900	B738	41000	34983	М
B741	equiv.	BOEING	747-100	B743	45000	30944	Н
B742	direct	BOEING	747-200	B742	45000	33180	Н
B743	direct	BOEING	747-300	B743	45000	30944	Н
B744	direct	BOEING	747-400	B744	45000	32727	Н
B74D	equiv.	BOEING	747-400 DOMESTIC	B744	45000	32727	Н
B74S	equiv.	BOEING	747-SP	B742	45000	33180	Н
B752	direct	BOEING	757-200	B752	42000	35478	М
B753	direct	BOEING	757-300	B753	43000	33340	М
B762	direct	BOEING	767-200	B762	43000	35861	Н
B763	direct	BOEING	767-300	B763	43000	35177	Н
B764	direct	BOEING	767-400	B764	45000	33210	Н
B772	direct	BOEING	777-200 ER	B772	43100	34643	Н
B773	direct	BOEING	777-300	B773	43100	31858	Н
B77L	equiv.	BOEING	777-200 LRF, LR	B744	45000	32727	Н
B77W	equiv.	BOEING	777-300 ER	B744	45000	32727	Н

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
BA11	direct	BAE	111, ALL SERIES	BA11	35000		М
BDOG	equiv.	BAE	SA-3 BULLDOG	PA34	25000		L
BE10	equiv.	BEECH	KING AIR 100	D228	28000		L
BE20	direct	BEECH	SUPER KING AIR 200	BE20	32000		L
BE30	equiv.	BEECH	SUPER KING AIR 300	PAY3	33000		L
BE33	equiv.	BEECH	BONANZA 33	TRIN	20000		L
BE36	equiv.	BEECH	BONANZA 36	DA42	18000		L
BE40	equiv.	BEECH	BEECHJET 400	C560	45000	41083	М
BE55	equiv.	BEECH	BARON 55	BE58	20688		L
BE58	direct	BEECH	BARON 58	PA27	20000		L
BE60	equiv.	BEECH	DUKE 60	PA31	23000		L
BE76	equiv.	BEECH	DUCHESSE 76	DA42	18000		L
BE95	equiv.	BEECH	TRAVEL AIR 95	TRIN	20000		L
BE99	direct	BEECH	AIRLINER C99	BE99	15000		L
BE9L	direct	BEECH	KING AIR 90	BE9L	31000		L
BN2P	equiv.	BRITTEN NORMAN	BN-2A MARITIME DEFENDER	PA34	25000		L
C130	direct	LOCKHEED	HERCULES	C130	32000	21892	М
C135	equiv.	BOEING	STRATOLIFTER C-135C	B703	42000		Н
C141	equiv.	LOCKHEED	STARLIFTER C-141	A310	41000	35719	Н
C160	direct	TRANSALL	C160	C160	30000	25500	М
C17	equiv.	BOEING	GLOBEMASTER 3	B764	45000	33210	Н
C170	equiv.	CESSNA	170	P28A	12000		L
C172	equiv.	CESSNA	SKYHAWK 172	P28A	12000		L
C177	equiv.	CESSNA	CARDINAL 177	P28A	12000		L
C182	equiv.	CESSNA	SKYLANE 182	TRIN	20000		L

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
C208	equiv.	CESSNA	CARAVAN	PA27	20000		L
C210	equiv.	CESSNA	CENTURION	TRIN	20000		L
C212	equiv.	CASA	T-12 AVIOCAR	D228	28000		L
C303	equiv.	CESSNA	CRUSADER 303	PA31	23000		L
C30J	equiv.	LOCKHEED MARTIN	C130J HERCULES	C130	32000	21892	М
C310	equiv.	CESSNA	310	PA34	25000		L
C337	equiv.	CESSNA	SUPER SKYMASTER	PA27	20000		L
C340	equiv.	CESSNA	C-340/340A	PA31	23000		L
C402	equiv.	CESSNA	402	PA34	25000		L
C414	equiv.	CESSNA	CHANCELLOR 414	PA31	23000		L
C421	direct	CESSNA	GOLDEN EAGLE 421	C421	23500		L
C425	equiv.	CESSNA	CORSAIR	PAY2	29000		L
C441	equiv.	CESSNA	Conquest	PAY3	33000		L
C5	equiv.	LOCKHEED	L-500 GALAXY	A346	41500	33613	Н
C500	equiv.	CESSNA	CITATION 1	C550	43000		L
C501	equiv.	CESSNA	CITATION 1SP	C550	43000		L
C510	direct	CESSNA	CITATION MUSTANG	C510	41000		L
C525	equiv.	CESSNA	CITATION JET	C550	43000		L
C550	direct	CESSNA	CITATION II-S2	C550	43000		L
C551	equiv.	CESSNA	CITATION 2SP	C550	43000		L
C560	direct	CESSNA	CITATION V	C560	45000	41083	М
C56X	equiv.	CESSNA	CITATION Excel	C560	45000	41083	М
C650	equiv.	CESSNA	CITATION VII	H25A	40000		М
C72R	equiv.	CESSNA	CUTLASS RG	TRIN	20000		L
C750	direct	CESSNA	CITATION 10	C750	51000	45181	М
C77R	equiv.	CESSNA	CARDINAL 177RG	P28A	12000		L

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
C82R	equiv.	CESSNA	SKYLANE R182 RG	TRIN	20000		L
CL60	direct	CANADAIR	CHALLENGER 600/601	CL60	41000	39223	М
CN35	equiv.	CASA	CN-235	AT43	25000	22700	М
CRJ1	direct	CANADAIR	REGIONAL JET CRJ-100	CRJ1	41000	34334	М
CRJ2	direct	CANADAIR	REGIONAL JET CRJ-200	CRJ2	41000	36856	М
CRJ7	equiv.	CANADAIR	REGIONAL JET CRJ-700	CRJ9	41000	36458	М
CRJ9	direct	CANADAIR	REGIONAL JET CRJ-900	CRJ9	41000	36458	М
CVLT	equiv.	CANADAIR	CC-109 COSMOPOLITAN	DH8C	25000	24805	L
D228	direct	DORNIER	228	D228	28000		L
D328	direct	DORNIER	328	D328	32800	29051	М
DA42	direct	DIAMOND	TWIN STAR	DA42	18000		L
DC10	direct	MCDONNELL DOUGLAS	DC-10	DC10	39000		Н
DC3	equiv.	DOUGLAS	DC-3	C421	23500		L
DC85	equiv.	MCDONNELL DOUGLAS	DC-8-50	A310	41000	35719	Н
DC86	equiv.	MCDONNELL DOUGLAS	DC-8-60	DC87	42000		Н
DC87	direct	MCDONNELL DOUGLAS	DC-8-70	DC87	42000		Н
DC91	equiv.	MCDONNELL DOUGLAS	DC-9-10	B712	37000	35188	М
DC92	equiv.	MCDONNELL DOUGLAS	DC-9-20	DC94	35000		М
DC93	equiv.	MCDONNELL DOUGLAS	DC-9-30	DC94	35000		М
DC94	direct	MCDONNELL DOUGLAS	DC-9-40	DC94	35000		М
DC95	equiv.	MCDONNELL DOUGLAS	DC-9-50	DC94	35000		М
DH8A	direct	DE HAVILLAND	DASH 8-100	DH8A	25000	25000	М
DH8B	equiv.	DE HAVILLAND	DASH 8-200	DH8C	25000	24805	L
DH8C	direct	DE HAVILLAND	DASH 8-300	DH8C	25000	24805	L
DH8D	direct	DE HAVILLAND	DASH 8-400	DH8D	25000		М

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
E110	equiv.	EMBRAER	BANDEIRANTE	SW4_	25000	25000	L
E120	direct	EMBRAER	EMB-120 BRASILIA	E120	32000		М
E135	direct	EMBRAER	EMB-135	FA50	45000	37363	М
E145	direct	EMBRAER	EMB-145	E145	37000		М
E170	direct	EMBRAER	EMB-175	E170	41000		М
E190	direct	EMBRAER	EMB-190	E190	41000		М
E3CF	equiv.	BOEING	E-3 SENTRY	B762	43000	35861	Н
E3TF	equiv.	BOEING	E-3A SENTRY	B762	43000	35861	Н
EA50	direct	ECLIPSE	ECLIPSE 500	EA50	41000		L
ETAR	equiv.	DASSAULT	ETENDARD 4	FGTN	50000		М
EUFI	equiv.	EUROFIGHTER	2000	FGTN	50000		М
F1	equiv.	MITSUBISHI	F1	FGTN	50000		М
F100	direct	FOKKER	100	F100	35000	35000	М
F104	equiv.	LOCKHEED	STARFIGHTER	FGTN	50000		М
F117	equiv.	LOCKHEED	NIGHTHAWK	FGTN	50000		М
F14	equiv.	GRUMMAN	TOMCAT	FGTN	50000		М
F15	equiv.	MCDONNELL DOUGLAS	EAGLE	FGTN	50000		М
F16	equiv.	GENERAL DYNAMICS	FIGHTING FALCON	FGTN	50000		М
F18	equiv.	MCDONNELL DOUGLAS	HORNET	FGTN	50000		М
F27	direct	FOKKER	FRIENDSHIP	F27_	25000	22778	М
F28	direct	FOKKER	FOLLOWSHIP	F28_	35000		М
F2TH	equiv.	DASSAULT	FALCON 2000	F900	49000	37967	М
F4	equiv.	MCDONNELL DOUGLAS	PHANTOM	FGTN	50000		М
F5	equiv.	NORTHROP	F-5	FGTN	50000		М
F50	direct	FOKKER	50	F50_	25000	21331	М
F70	direct	FOKKER	70	F70_	37000	36565	М

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
F900	direct	DASSAULT	FALCON 900	F900	49000	37967	М
FA10	direct	DASSAULT	FALCON 10	FA10	45000		М
FA20	direct	DASSAULT	FALCON 20	FA20	42000		М
FA50	direct	DASSAULT	FALCON 50	FA50	45000	37363	М
FGTH	direct	GENERIC	MIL FIGHTER HEAVY	FGTH	50000		М
FGTL	direct	GENERIC	MIL FIGHTER LIGHT	FGTL	41000		Н
FGTN	direct	GENERIC	MIL FIGHTER NORMAL	FGTN	50000		М
G222	equiv.	ALENIA	SPARTAN C-27A	ATP_	25000	21628	М
GALX	equiv.	IAI	1126 GALAXY	C750	51000	45181	М
GLAS	equiv.	STODDARD- HAMILTON	GLASAIR	BE58	20688		L
GLEX	equiv.	BOMBARDIER	BD-700 Global Express	CRJ9	41000	36458	М
GLF2	equiv.	GULFSTREAM	GULFSTREAM II	CRJ2	41000	36856	М
GLF3	equiv.	GULFSTREAM	GULFSTREAM III	CRJ2	41000	36856	М
GLF4	equiv.	GULFSTREAM	GULFSTREAM IV	CRJ9	41000	36458	М
GLF5	equiv.	GULFSTREAM	GULFSTREAM V C37	CRJ9	41000	36458	М
H25A	direct	HAWKER SIDDELEY	DOMINE HS 125	H25A	40000		М
H25B	equiv.	HAWKER SIDDELEY	HS 125-700/800	H25A	40000		М
H25C	equiv.	RAYTHEON	HAWKER 1000	FA20	42000		М
HAR	equiv.	HAWKER SIDDELEY	HARRIER	FGTN	50000		М
HAWK	equiv.	HAWKER SIDDELEY	HAWK	FGTN	50000		М
HELI	equiv.	GENERIC	HELICOPTER	P28A	12000		L
IL18	equiv.	ILYUSHIN	IL-18	C160	30000	25500	М
IL62	equiv.	ILYUSHIN	IL-62 /-62M / MK	A30B	39000	31967	Н
IL76	equiv.	ILYUSHIN	IL-76	B764	45000	33210	Н
IL86	equiv.	ILYUSHIN	IL-86	B763	43000	35177	Н

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
IL96	equiv.	ILYUSHIN	IL-96	A343	41000	32325	Н
J328	equiv.	FAIRCHILD DORNIER	328 Jet	E135	37000		М
JAGR	equiv.	SEPECAT	JAGUAR	FGTN	50000		М
JS1	equiv.	JETSTREAM	JETSTREAM 1	BE20	32000		L
JS20	equiv.	JETSTREAM	JETSTREAM 200	D228	28000		L
JS31	equiv.	BAE	JETSTREAM 31	JS32	25000		L
JS32	direct	JETSTREAM	JETSTREAM Super 31	JS32	25000		L
JS41	direct	JETSTREAM	JETSTREAM 41	JS41	26000	24685	М
K35A	equiv.	BOEING	STRATOTANKER KC-135A	B703	42000		Н
K35E	equiv.	BOEING	STRATOTANKER KC-135D/E	B703	42000		Н
K35R	equiv.	BOEING	STRATOTANKER K35R	B703	42000		Н
L101	direct	LOCKHEED	TRISTAR L-1011	L101	42000		Н
L159	equiv.	AERO (2)	L-159	FGTN	50000		М
L188	equiv.	LOCKHEED	ELECTRA L-188	C160	30000	25500	М
L29A	equiv.	LOCKHEED	JETSTART	CL60	41000	39223	М
L29B	equiv.	LOCKHEED	L1329 JETSTAR	CL60	41000	39223	М
L410	equiv.	LET	TURBOLET 410	D228	28000		L
LJ24	equiv.	LEARJET	24	C560	45000	41083	М
LJ25	equiv.	LEARJET	25	LJ45	51000	44100	М
LJ31	equiv.	LEARJET	31	LJ45	51000	44100	М
LJ35	direct	LEARJET	35	LJ35	45000	40288	М
LJ45	direct	LEARJET	45	LJ45	51000	44100	М
LJ55	equiv.	LEARJET	55	LJ45	51000	44100	М
LJ60	equiv.	LEARJET	60	LJ45	51000	44100	М
M20P	equiv.	MOONEY	MARK 201	TRIN	20000		L
M20T	equiv.	MOONEY	MARK 20T	TRIN	20000		L

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
MD11	direct	MCDONNELL DOUGLAS	MD-11	MD11	43000	31838	Н
MD81	equiv.	MCDONNELL DOUGLAS	MD-81	MD82	37000	34448	М
MD82	direct	MCDONNELL DOUGLAS	MD-82	MD82	37000	34448	М
MD83	direct	MCDONNELL DOUGLAS	MD-83	MD83	37000	33513	М
MD87	equiv.	MCDONNELL DOUGLAS	MD-87	MD82	37000	34448	М
MD88	equiv.	MCDONNELL DOUGLAS	MD-88	MD82	37000	34448	М
MD90	equiv.	MCDONNELL DOUGLAS	MD-90	MD83	37000	33513	М
MG21	equiv.	MIKOYAN	MIG-21	FGTN	50000		М
MG23	equiv.	MIKOYAN	MIG-23	FGTN	50000		М
MG25	equiv.	MIKOYAN	MIG-25	FGTN	50000		М
MG29	equiv.	MIKOYAN	MIG-29	FGTN	50000		М
MIR2	equiv.	DASSAULT	MIRAGE 2000	FGTN	50000		М
MIR4	equiv.	DASSAULT	MIRAGE IV	FGTN	50000		М
MRF1	equiv.	DASSAULT	MIRAGE F1	FGTN	50000		М
MU2	direct	MITSUBISHI	MARQUISE / SOLITAIRE	MU2_	28000		L
MU30	equiv.	MITSUBISHI	MU-300	C560	45000	41083	М
N262	equiv.	NORD	262	JS41	26000	24685	М
NIM	equiv.	HAWKER SIDDELEY	NIMROD	B738	41000	34983	М
P180	equiv.	PIAGGIO	P180 AVANTI	C550	43000		L
P28A	direct	PIPER	PA-28-140 CHEROKEE	P28A	12000		L
P28B	equiv.	PIPER	PA-28-236 DAKOTA	TRIN	20000		L
P28R	equiv.	PIPER	PA-28R-201 ARROW	DA42	18000		L
P28T	equiv.	PIPER	PA-28RT TURBO ARROW 4	DA42	18000		L
P3	equiv.	LOCKHEED	ORION P-3	C130	32000	21892	М
P32R	equiv.	PIPER	PA-32R-301 SARATOGA SP	TRIN	20000		L

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
P68	equiv.	PARTENAVIA	P-68 Observer	PA27	20000		L
PA18	equiv.	PIPER	PA-18 SUPER CUB	PA34	25000		L
PA23	equiv.	PIPER	APACHE PA23-150/160	PA27	20000		L
PA27	direct	PIPER	AZTEC PA23-235/250	PA27	20000		L
PA31	direct	PIPER	CHIEFTAIN	PA31	23000		L
PA32	equiv.	PIPER	PA-32 CHEROKEE SIX	TRIN	20000		L
PA34	direct	PIPER	PA34-200T SENECA-	PA34	25000		L
PA44	equiv.	PIPER	PA-44 SEMINOLE	TRIN	20000		L
PAY1	equiv.	PIPER	PA-A-31T1-500 CHEYENNE I	PAY2	29000		L
PAY2	direct	PIPER	PA-31T-620 CHEYENNE II	PAY2	29000		L
PAY3	direct	PIPER	PA-42-720 CHEYENNE III	PAY3	33000		L
PAY4	equiv.	PIPER	PA-42-1000 CHEYENNE 400	C510	41000		L
PC12	equiv.	PILATUS	PC-12 SPECTRE	BE9L	31000		L
RJ1H	equiv.	AI(R)	RJ-100 Avroliner	RJ85	35000	31688	М
RJ70	equiv.	AI(R)	RJ-70 Avroliner	RJ85	35000	31688	М
RJ85	direct	AI(R)	RJ-85 Avroliner	RJ85	35000	31688	М
S601	equiv.	AEROSPATIAL	SB 601 CORVETTE	C550	43000		L
SB05	equiv.	SAAB	SAAB 105	C510	41000		L
SB20	direct	SAAB	SAAB 2000	SB20	31000		М
SB32	equiv.	SAAB	LANSEN	FGTN	50000		М
SB35	equiv.	SAAB	DRAKEN	FGTN	50000		М
SB37	equiv.	SAAB	VIGGEN	FGTN	50000		М
SB39	equiv.	SAAB	GRIPEN	FGTN	50000		М
SBR1	equiv.	ROCKWELL	SABRELINER	FA10	45000		М
SF34	direct	SAAB	SF 340	SF34	25000	24369	М
SH33	equiv.	SHORTS	SH3-330	SH36	20000		М

A/C Code	Model Type	Aircraft manufacturer	Aircraft model	Synonym aircraft	h _{MO} [ft]	h _{max} [ft]	WTC
SH36	direct	SHORTS	SH3-360	SH36	20000		М
SW2	equiv.	SWEARINGEN	MERLIN II	SW4_	25000	25000	L
SW3	equiv.	SWEARINGEN	MERLIN III	PAY3	33000		L
SW4	direct	SWEARINGEN	MERLIN IV	SW4_	25000	25000	L
T134	direct	TUPOLEV	TU134A-3	T134	39000	34765	М
T154	direct	TUPOLEV	TU154M	T154	41000	37285	М
T204	equiv.	TUPOLEV	TU 204	T154	41000	37285	М
TBM7	equiv.	ТВМ	TBM-700	PAY3	33000		L
TOBA	equiv.	SOCATA	TOBAGO TB-10	TRIN	20000		L
TOR	equiv.	PANAVIA	TORNADO	FGTN	50000		М
TRIN	direct	SOCATA	TRINIDAD TB-20	TRIN	20000		L
VC10	equiv.	VICKERS	VC10	B762	43000	35861	Н
WW24	equiv.	IAI	1124 WESTWIND	FA10	45000		М
YK40	equiv.	YAKOLEV	YAK-40	AT43	25000	22700	М
YK42	equiv.	YAKOLEV	YAK-42	DC94	35000		М

APPENDIX B

BADA 3.7 – SOLUTIONS FOR BUFFETING LIMIT ALGORITHM

Page intentionally left blank

A general solution for finding the roots of a cubic expression can be found in Ref. 1. If we take expression 3.6-6, we can rewrite it to:

$$\mathbf{M}^3 - \frac{C_{Lbo(M=0)}}{k} \cdot \mathbf{M}^2 + \frac{\frac{W}{S}}{0.583 \cdot P \cdot k} = 0$$

Therefore:

$$a_1 = \frac{C_{Lbo(M=0)}}{k}$$

$$a_2 = 0$$

$$a_3 = \frac{\frac{W}{S}}{0.583 \cdot P \cdot k}$$

Now let:

$$Q = \frac{\left(3 \cdot a_2 - a_1^2\right)}{9} \qquad R = \frac{\left(9 \cdot a_1 \cdot a_2 - 27 \cdot a_3 - 2 \cdot a_1^3\right)}{54}$$

The discriminant D is equal to: $Q^3 + R^2$. In our case D is always < 0 that means that all roots are unequal and real. A simplified computation method with the help of trigonometry is given below:

$$X_1 = 2 \cdot \sqrt{-Q} \cdot \cos\left(\frac{\theta}{3}\right) - \frac{a_1}{3}$$

$$X_2 = 2 \cdot \sqrt{-Q} \cdot \cos\left(\frac{\theta}{3} + 120^{\circ}\right) - \frac{a_1}{3}$$

$$X_3 = 2 \cdot \sqrt{-Q} \cdot \cos\left(\frac{\theta}{3} + 240^{\circ}\right) - \frac{a_1}{3}$$

$$\cos \theta = \frac{R}{\sqrt{-Q^3}}$$
 With:

The solutions x1, x2 and x3 now give the possible values of M. One solution (in our case usually x1) is always negative. The others are positive with the lower one (usually x2) being the low speed buffeting limit we are looking for.

Ref. 1 Mathematical Handbook; M.R. Spiegel; 1968; McGraw-Hill book company

Page intentionally left blank