Solow-Swan Growth Model

ECON8069 - Lecture Nine

Australian National University

Solow-Swan Growth Model

- Modelling Economic Growth
- Solow-Swan Growth Model
- Policies for Economic Growth

Textbook: Chapter 21, Appendix to Chapter 21, Chapter 22

(ECON8069) Lecture Nine 2 / 35

Modelling Economic Growth

• Recall the Aggregate Production Function from last week:

$$Y = A \times F(K, H)$$

- Y Income, or GDP
- A Technology
- K Physical Capital
- H Effective Labour (combining labour hours L and average human capital h)

(ECON8069) Lecture Nine 3 / 35

Modelling Economic Growth

 For economic growth, we care about rates of growth; i.e. percentage changes

$$\mathsf{Growth}_t = \frac{x_t - x_{t-1}}{x_{t-1}}$$

 Where x is the 'variable of interest'. This will usually be Income Y, or Income per capita y.

Modelling Economic Growth

 For economic growth, we care about rates of growth; i.e. percentage changes

$$\mathsf{Growth}_t = \frac{x_t - x_{t-1}}{x_{t-1}}$$

- Where x is the 'variable of interest'. This will usually be Income Y, or Income per capita y.
- Note on notation: Usually we use upper case letters (Y, K, etc.) for nominal amounts, and lower case letters (y, k, h, etc.) for per capita amounts.

(ECON8069) Lecture Nine 4/35

Solow-Swan Model

The Solow-Swan model is a dynamic macroeconomic model utilising three key components

- 1. Aggregate Production $Y_t = A_t K_t^{1/3} H_t^{2/3}$
- 2. A closed economy with no government, so $Y_t = C_t + I_t$
- 3. Capital Accumulates from Investment, but also depreciates, so $K_t = K_{t-1} \delta K_{t-1} + I_t$

(ECON8069) Lecture Nine 5 / 35

Solow-Swan Model

The Solow-Swan model is a dynamic macroeconomic model utilising three key components

- 1. Aggregate Production $Y_t = A_t K_t^{1/3} H_t^{2/3}$
- 2. A closed economy with no government, so $Y_t = C_t + I_t$
- 3. Capital Accumulates from Investment, but also depreciates, so $K_t = K_{t-1} \delta K_{t-1} + I_t$

Let's look at these in more detail.

(ECON8069) Lecture Nine 5/35

Extra simplifying assumption

- \bullet We will also here assume that H does not change between periods
- The model can be extended to allow for this, but we won't do so here
- Also, we really want to work with per capita values

Solow-Swan Production Function

The Solow model uses the Cobb-Douglass production function

$$Y_t = A_t K_t^{1/3} H^{2/3}$$

- The t subscripts are because we have a dynamic model, so Y_t is income (or GDP) at time t.
- This production function satisfies the desired properties from last lecture.

(ECON8069) Lecture Nine 7 / 35

ullet As noted, we want everything to be *per capita*. So divide by H.

$$Y_t/H = \frac{A_t K_t^{1/3} H^{2/3}}{H}$$

(ECON8069) Lecture Nine 8 / 35

• As noted, we want everything to be per capita. So divide by H.

$$Y_t/H = \frac{A_t K_t^{1/3} H^{2/3}}{H}$$

$$\implies y_t = A_t \left(\frac{K_t}{H}\right)^{1/3}$$

8 / 35

(ECON8069) Lecture Nine

• As noted, we want everything to be *per capita*. So divide by *H*.

$$Y_t/H = \frac{A_t K_t^{1/3} H^{2/3}}{H}$$

$$\implies y_t = A_t \left(\frac{K_t}{H}\right)^{1/3}$$

$$\implies y_t = A_t k_t^{1/3}$$

(ECON8069) Lecture Nine 8/35

• As noted, we want everything to be *per capita*. So divide by *H*.

$$Y_t/H = \frac{A_t K_t^{1/3} H^{2/3}}{H}$$

$$\implies y_t = A_t \left(\frac{K_t}{H}\right)^{1/3}$$

$$\implies y_t = A_t k_t^{1/3}$$

(ECON8069)

ullet As noted, we want everything to be per capita. So divide by H.

$$Y_t/H = \frac{A_t K_t^{1/3} H^{2/3}}{H}$$

$$\implies y_t = A_t \left(\frac{K_t}{H}\right)^{1/3}$$

$$\implies y_t = A_t k_t^{1/3}$$

- Now we have output per capita (or per effective capita) in terms of technology, and capital per capita.
- This has a nice graph

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

(ECON8069) Lecture Nine 8 / 35

Closed Economy with no Government

- The usual GDP is $Y_t = C_t + I_t + G_t + NX_t$
- To keep things simple, we ignore Government, and other countries to give

$$Y_t = C_t + I_t$$

(ECON8069) Lecture Nine 9 / 35

Closed Economy with no Government

- The usual GDP is $Y_t = C_t + I_t + G_t + NX_t$
- To keep things simple, we ignore Government, and other countries to give

$$Y_t = C_t + I_t$$

• Since Investment = Savings, we define the savings rate s by

$$I_t = sY_t$$
 or $s = I_t/Y_t$

(ECON8069) Lecture Nine 9 / 35

Closed Economy with no Government

- The usual GDP is $Y_t = C_t + I_t + G_t + NX_t$
- To keep things simple, we ignore Government, and other countries to give

$$Y_t = C_t + I_t$$

• Since Investment = Savings, we define the savings rate s by

$$I_t = sY_t$$
 or $s = I_t/Y_t$

We will fix the savings rate s over time

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ り Q ○

(ECON8069) Lecture Nine 9/35

Closed Economy with no Government per capita

• Using $Y_t = C_t + I_t$ and divide by H to give

$$y_t = c_t + I_t/H$$

(ECON8069) Lecture Nine 10 / 35

Closed Economy with no Government per capita

• Using $Y_t = C_t + I_t$ and divide by H to give

$$y_t = c_t + I_t/H$$

• Since Investment = Savings, we define the savings rate s by

$$I_t/H = (sY_t)/H = sy_t$$

(ECON8069) Lecture Nine 10 / 35

Closed Economy with no Government per capita

• Using $Y_t = C_t + I_t$ and divide by H to give

$$y_t = c_t + I_t/H$$

• Since Investment = Savings, we define the savings rate s by

$$I_t/H = (sY_t)/H = sy_t$$

Combining these gives

$$y_t = c_t + sy_t$$
, or $c_t = (1 - s)y_t$

Lecture Nine

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ か Q (^*)

10/35

Capital Deprecation

- Not all capital lasts forever; each period some proportion of existing capital will depreciate
- ullet Let δ be the proportion of capital that depreciates each period

(ECON8069) Lecture Nine 11/35

Capital Deprecation

- Not all capital lasts forever; each period some proportion of existing capital will depreciate
- ullet Let δ be the proportion of capital that depreciates each period
- How much capital we have today depends on what we had yesterday, how much depreciated, and how much investment there was

$$K_t = K_{t-1} - \delta K_{t-1} + I_t$$

11/35

• We want everything to be *per capita*. So divide by *H*.

$$K_t/H = K_{t-1}/H - \delta K_{t-1}/H + I_t/H$$

(ECON8069) Lecture Nine 12 / 35

• We want everything to be *per capita*. So divide by *H*.

$$K_t/H = K_{t-1}/H - \delta K_{t-1}/H + I_t/H$$

$$\implies k_t = k_{t-1} - \delta k_{t-1} + sy_t$$

(ECON8069) Lecture Nine 12/35

• We want everything to be per capita. So divide by H.

$$K_{t}/H = K_{t-1}/H - \delta K_{t-1}/H + I_{t}/H$$

$$\implies k_{t} = k_{t-1} - \delta k_{t-1} + sy_{t}$$

$$\implies k_{t} = (1 - \delta)k_{t-1} + sy_{t}$$

(ECON8069) Lecture Nine 12/35

• We want everything to be per capita. So divide by H.

$$K_{t}/H = K_{t-1}/H - \delta K_{t-1}/H + I_{t}/H$$

$$\implies k_{t} = k_{t-1} - \delta k_{t-1} + sy_{t}$$

$$\implies k_{t} = (1 - \delta)k_{t-1} + sy_{t}$$

(ECON8069) Lecture Nine 12/35

We want everything to be per capita. So divide by H.

$$K_t/H = K_{t-1}/H - \delta K_{t-1}/H + I_t/H$$

$$\implies k_t = k_{t-1} - \delta k_{t-1} + sy_t$$

$$\implies k_t = (1 - \delta)k_{t-1} + sy_t$$

• Now we have capital per capita in terms of capital per capita last period, and savings per capita (sy_t) this period

◆ロト ◆団ト ◆恵ト ◆恵ト 恵 めへ○

Solow-Swan Model per capita

- 1. Aggregate Production $y_t = A_t k_t^{1/3}$
- 2. A closed economy with no government $y_t = c_t + sy_t$
- 3. Capital Accumulation $k_t = (1-\delta)k_{t-1} + sy_t$

(ECON8069) Lecture Nine 13 / 35

--- Output: y_t --- Savings: $s * y_t$ --- Depreciation: $\delta * k_t$

(ECON8069) Lecture Nine 14/35

(ECON8069) Lecture Nine 14/35

--- Output: y_t --- Savings: $s * y_t$ --- Depreciation: $\delta * k_t$

(ECON8069) Lecture Nine 14 / 35

Solow-Swan Model Dynamics

- The Solow-Swan model is in a steady state when capital does not change over time
- That is, when $k_t = k_{t-1}$, or Depreciation = Savings

$$\delta k_{t-1} = s y_t$$

- This is shown on the Solow-Swan diagram
- (Outside this course): Some algebra gives $k^* = (sA/\delta)^{3/2}$

(ECON8069) Lecture Nine 15 / 35

Solow-Swan Model Dynamics

- The Solow-Swan model is in a steady state when capital does not change over time
- That is, when $k_t = k_{t-1}$, or Depreciation = Savings

$$\delta k_{t-1} = s y_t$$

- This is shown on the Solow-Swan diagram
- (Outside this course): Some algebra gives $k^* = (sA/\delta)^{3/2}$
- If Depreciation < Savings, capital will grow over time

(ECON8069) Lecture Nine 15 / 35

Solow-Swan Model Dynamics

- The Solow-Swan model is in a steady state when capital does not change over time
- That is, when $k_t = k_{t-1}$, or Depreciation = Savings

$$\delta k_{t-1} = s y_t$$

This is shown on the Solow-Swan diagram

(ECON8069)

- (Outside this course): Some algebra gives $k^* = (sA/\delta)^{3/2}$
- If Depreciation < Savings, capital will grow over time
- If Depreciation > Savings, capital will shrink over time

4□ ▶ 4월 ▶ 4월 ▶ 4월 ▶ 3월 ♥ 9

(ECON8069) Lecture Nine 16 / 35

16/35

 k_L

k

16/35

17/35

(ECON8069) Lecture Nine 17 / 35

18 / 35

k

18/35

(ECON8069) Lecture Nine 18 / 35

Long-run Economic Growth in Solow Model

- We want to increase the *steady-state* output level
- MAIN MESSAGE: Capital Accumulation will not work

(ECON8069) Lecture Nine 19 / 35

Long-run Economic Growth in Solow Model

- We want to increase the steady-state output level
- MAIN MESSAGE: Capital Accumulation will not work
- Other options:
 - Technological Progress Success
 - Decrease Depreciation Works if it could be implemented
 - Increasing the Savings Rate Partial Success, interesting

Technology Growth and the Steady-State

(ECON8069) Lecture Nine 20 / 35

Technology Growth and the Steady-State

(ECON8069) Lecture Nine 20 / 35

Depreciation Rate and the Steady-State

(ECON8069) Lecture Nine 21 / 35

Depreciation Rate and the Steady-State

(ECON8069) Lecture Nine 21/35

Savings Rate and the Steady-State

Low Savings Rate s = 0.05

High Savings Rate s = 0.95

(ECON8069) Lecture Nine 22 / 35

Savings Rate and the Steady-State

Low Savings Rate s = 0.05

High Savings Rate s = 0.95

(ECON8069) Lecture Nine 22 / 35

Golden Rate of Savings

- However, we don't even really care (that much) about production
- We care about consumption per person $c_t = C_t/H_t$
- ullet Graphically, c_t is the gap between y_t and sy_t
- There is a level of savings which maximises this gap
- Call this level of savings the Golden Rate of Savings

(ECON8069) Lecture Nine 23 / 35

Choosing Savings to Maximise Consumption

Golden Rate of Savings

Choosing Savings to Maximise Consumption

Golden Rate of Savings

Choosing Savings to Maximise Consumption

Golden Rate of Savings

Choosing Savings to Maximise Consumption

Golden Rate of Savings

Extensions to this model

There is a huge literature extending this model

- The original model was in continuous time, allowed (exogenous)
 changes in H_t, and did not have technology A
- The Romer model works with human capital in a more substantial way
- The Ramsey-Cass-Koopmans model endogenises the savings rate, and allows it to change over time
- Many many others use Solow-Swan as the starting point

Economic Growth and Public Policy

Various government policies can encourage economic growth:

- encourage savings (and investment)
- encourage investment from overseas
- encourage education, health, and nutrition
- maintain political stability
- promote research and development

Growth - Encourage Savings

- As we saw earlier, this will increase steady-state production, but may fail to increase well-being
- Also, there is definitely a short-run reduction in well-being
- Savings are encouraged by the government changing the interest rate,
 more on this later

Growth - Overseas Investment

- Investment funds may also come from external investors
- This is outside of our (simplified) Solow model
- Investment might be in physical capital (foreign direct investment), or financial capital (foreign portfolio investment)
- Foreign countries invest because they expect a return (or profit) on their investment

Growth - Education

- In our Solow model, increasing education increases human capital h
- It's a little hard to analyse, but this will increase well-being in the steady-state
- Still has diminishing returns
- But, there may be positive externalities associated with higher education (outside our model)

Growth - Education

- In our Solow model, increasing education increases human capital h
- It's a little hard to analyse, but this will increase well-being in the steady-state
- Still has diminishing returns
- But, there may be positive externalities associated with higher education (outside our model)
- The 'brain drain' effect may be significant, especially for poorer countries

Growth - Health and Nutrition

- All else equal, a healthier workforce is more productive
- This could be modelled either as part of Technology A, or more likely human capital h
- Health is a 'virtuous cycle', healthier workers are more productive, which gives more production, which can be used to further increase health

Growth - Health and Nutrition

- All else equal, a healthier workforce is more productive
- This could be modelled either as part of Technology A, or more likely human capital h
- Health is a 'virtuous cycle', healthier workers are more productive, which gives more production, which can be used to further increase health
- Obesity issues are starting to break this virtuous cycle

Rule of Law and Enforceable Contracts

- Rule of Law and Enforceable Contracts
- Economic Certainty for Investing

- Rule of Law and Enforceable Contracts
- Economic Certainty for Investing
- Lack of Corruption

- Rule of Law and Enforceable Contracts
- Economic Certainty for Investing
- Lack of Corruption
- Property Rights for Innovation

- Rule of Law and Enforceable Contracts
- Economic Certainty for Investing
- Lack of Corruption
- Property Rights for Innovation
- Rule of Law allows Market Formation

- Rule of Law and Enforceable Contracts
- Economic Certainty for Investing
- Lack of Corruption
- Property Rights for Innovation
- Rule of Law allows Market Formation
- These are all institutions

Growth - Research and Development

- Technology growth is the main (only?) factor driving long-run growth
- Research and Development is a major source of technology (though strong institutions also play a role
- R & D includes both public and private expenditure
- Given large positive externalities, many economists suggest government should subsidise R & D
- Patent systems to encourage innovation are important, but tricky
 - It has been suggested that current intellectual property settings are so restrictive, that they are worse than nothing at all

Growth - Geography Hypothesis

- A (very) old hypothesis for the difference in well-being between countries is the geography hypothesis
- This claims that differences in geography, climate, and ecology are responsible for the differences in economic outcomes

Growth - Geography Hypothesis

- A (very) old hypothesis for the difference in well-being between countries is the geography hypothesis
- This claims that differences in geography, climate, and ecology are responsible for the differences in economic outcomes
- Was originally somewhat racist, but does have non-race-based arguments
- Notably, agriculture is just easier in wet temperate areas

Growth - Geography Hypothesis

- A (very) old hypothesis for the difference in well-being between countries is the geography hypothesis
- This claims that differences in geography, climate, and ecology are responsible for the differences in economic outcomes
- Was originally somewhat racist, but does have non-race-based arguments
- Notably, agriculture is just easier in wet temperate areas
- Even so, this hypothesis is not common, and leaves much to be explained, e.g. Singapore

Growth - Culture Hypothesis

- A (very) old hypothesis for the difference in well-being between countries is the culture hypothesis
- This claims that different values and cultural beliefs drive differences in prosperity

Growth - Culture Hypothesis

- A (very) old hypothesis for the difference in well-being between countries is the culture hypothesis
- This claims that different values and cultural beliefs drive differences in prosperity
- Tends to be more overtly bigoted or racist than the geography argument
- Rarely considered a strong argument

Growth - Poverty

- Economic growth does not always mean everyone becomes better off
- Rapid increases in GDP are often (though not always) associated with increases in inequality

Source: Economics by Acemoglu et. al.

<ロ > ∢御 > ∢ ≧ > ∢ ≧ > ○ ♀ ♡ ♀ ♡