Feuille 3: Groupes

Exercice 1. Résoudre dans \mathbb{Z} les systèmes de congruences suivants :

$$\begin{cases} x \equiv 2 \pmod{7} \\ x \equiv 3 \pmod{11} \end{cases}, \begin{cases} x \equiv 4 \pmod{21} \\ x \equiv 10 \pmod{33} \end{cases} \text{ et } \begin{cases} x \equiv 3 \pmod{17} \\ x \equiv 4 \pmod{11} \\ x \equiv 5 \pmod{6} \end{cases}.$$

Exercice 2. Soit $G = \{e, x, y, z, t\}$ un ensemble muni d'une loi de composition interne \star , dont la table de multiplication est donnée par

La loi ★ est-elle commutative? Est-ce une loi de groupe?

Exercice 3. Soit G un groupe d'ordre 2. Ecrire sa table de multiplication.

Exercice 4. Quelles sont les structures de groupes possibles sur un ensemble à 3 éléments? Et à 4 éléments?

Exercice 5. Soit G un groupe tel que $g^2=1$ pour tout $g\in G$. Montrer que G est abélien.

Exercice 6. Soit G un groupe. Soit $x, y \in G$ tels que $yx = xy^2$ et $xy = yx^2$. Montrer que x = y = 1.

Exercice 7. Soit $n \in \mathbb{N}^*$. On note $\mathcal{U}_n = \{z \in \mathbb{C} \mid z^n = 1\}$.

- 1. Montrer que \mathcal{U}_n est un sous-groupe de (\mathbb{C}^*, \times) .
- 2. Montrer que \mathcal{U}_n est un groupe cyclique d'ordre n.
- 3. Montrer que m divise n si et seulement si $\mathcal{U}_m \subseteq \mathcal{U}_n$.

Exercice 8. Trouver tous les ordres des éléments des groupes $(\mathbb{Z}/12\mathbb{Z}, +)$ et $((\mathbb{Z}/12\mathbb{Z})^*, \cdot)$.

Exercice 9. Soit G un groupe abélien. Montrer que l'ensemble $H = \{x \in G \mid \operatorname{ord}(x) \text{ est fini}\}$ est un sous-groupe de G.

Exercice 10. Montrer que $\{e^{2ir\pi} \mid r \in \mathbb{Q}\}$ muni de la multiplication est un groupe infini dans lequel tout élément est d'ordre fini.

Exercice 11. Soit G un groupe d'ordre 35. Montrer que G possède un élément d'ordre 5 et un élément d'ordre 7.

Exercice 12. On note $\mathcal{M}_2(\mathbb{Z})$ et $SL_2(\mathbb{Z})$ respectivement l'ensemble des matrices 2×2 à coefficients entiers et l'ensemble de celles qui sont de déterminant 1.

- 1. Montrer que $SL_2(\mathbb{Z})$ est un groupe multiplicatif d'ordre infini. Est-il commutatif?
- 2. Soient $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$. Déterminer l'ordre de A, B et AB.

Exercice 13. Soit G un groupe. Montrer que si deux éléments x et y de G commutent et sont d'ordre a et b premier entre eux, alors l'ordre de xy est ab.

Exercice 14. Montrer que le groupe multiplicatif de $\mathbb{Z}/13\mathbb{Z}$ est cyclique.