Examen du mercredi 17/01/2024

Enigma I

Exercice 1

Montrer que $\sqrt{2}$ est irrationnel.

Exercice 2

Soit a et b deux réels. On considère la proposition suivante : si a+b est irrationnel, alors a ou b sont irrationnels.

- 1. Quelle est la contraposée de cette proposition ?
- 2. Démontrer la proposition.
- 3. Est-ce que la réciproque de cette proposition est toujours vraie ?

Exercice 3

Pour $n \in \mathbb{N}$, on considère la propriété suivante :

$$P_n: 2^n > n^2$$
.

- 1. Montrer que l'implication $P_n \Longrightarrow P_{n+1}$ est vraie pour $n \ge 3$.
- 2. Pour quelles valeurs de n la propriété P_n est vraie ?

Exercice 4

Résoudre dans \mathbb{R} l'équation suivante :

$$|-3x + 4| + |x - 5| = 10$$

Exercice 5

Soit
$$z_1 = 2 + 2i$$
 $z_2 = 1 - i\sqrt{3}$

- a) Déterminer la forme exponentielle complexe de z_1 et celle de z_2 .
- b) Donner la forme exponentielle complexe de $Z = \frac{z_1}{z_2}$

Exercice 6

Soit

$$f(x) = \frac{3x^2 - 2}{x^2 + 1}$$

- a) Donner D_f
- b) Etudier les variations de f (tableau)

Exercice 7

Soit
$$n_1 = 78$$
 $n_2 = 356$

a) Donner tous les diviseurs de n_1 et n_2 .

- b) En déduire le pgcd de n_1 et n_2 .
- c) Donner la décomposition sous forme de nombres premiers de n_1 et n_2 . Retrouver le pgcd de n_1 et n_2 .
- d) Donner le ppcm de n_1 et n_2 .

Exercice 8

Calculer

$$\log_7 49$$
; $\log 0.01$; $\log_8 \frac{1}{8}$; $\log_{11} 121$