

Technical Reference Manual

Revision 1.0 August 6, 1999

Integrated 2D/3D Graphics Core and North Bridge for Socket-7
Notebook PC

66 / 100 MHz
Single-Chip Socket-7 / Super-7 North Bridge
with PCI System Bus,
Integrated AGP 2D / 3D Graphics Accelerator
and Advanced ECC Memory Controller
Virtual Channel SDRAM, EDO, and FPG DRAM
supporting PC100 SDRAM,

Rev. 1.0 8/6/99

NOTICE

The information in this document is subject to change, as the Company may make changes to product in order to improve reliability, design, or function, without prior written notice. No part of this manual may be reproduced or transmitted in any form or by any means without the written permission of the company.

IN NO EVENT WILL THE COMPANY BE LIABLE FOR SPECIAL INCIDENTAL OR CONSEQUENTIAL DAMAGES, WHETHER ARISING DIRECTLY OR INDIRECTLY, SUCH AS LOSS OF PROFIT OR GOOD WILL, THAT MAY BE SUFFERED IN CONNECTION WITH THE PURCHASE OF THIS PRODUCT OR FROM THE BREACH OF ANY REPRESENTATION OR WARRANTY.

June, 1998

LIMITED WARRANTY

This product is warranted against defects in materials and workmanship for a period of one year from the date of purchase. During the warranty period, product which the Company determines fails to meet warrant will be repaired or, at the Company's option, replaced at no charge. To be eligible for warranty service, product must be returned to the Company or to a Company authorized service center, costs of shipping prepaid. This warranty does not cover results of accident, abuse, neglect, use contrary to specifications or instructions, or repair or modification by anyone other than the Company.

THE COMPANY SPECIFICALLY DISCLAIMS ALL OTHER EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE AND MERCHANTABILITY. IF SUCH DISCLAIMER OF ANY IMPLIED WARRANTY IS NOT PERMITTED BY LAW, THE DURATION OF ANY SUCH IMPLIED WARRANTIES IS LIMITED TO 90 DAYS FROM THE DATE OF DELIVERY. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES OR LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY MAY LAST, OR THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO SUCH LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO HAVE OTHER RIGHTS, WHICH VARY FROM JURISDICTION TO JURISDICTION.

LICENSE

The Company grants the customer a non-exclusive, non-transferable license to use the software, if any, accompanying this product for internal use on a single computer system. The end user may make a single copy of the software solely for backup purposes; otherwise, no copies may be made of the software or any part thereof. No other license of any kind is granted to any part of the product or any of the intellectual property therein.

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL

TRADEMARK ACKNOWLEDGMENTS

Trident Microsystems, Inc. CyberBlade i7[™] Technical Reference Manual, Trident Microsystems, Inc. 1999. All rights reserved. Trident Microsystems, Inc® and TrueVideo® are registered trademarks of Trident Microsystems, Inc.

VT82C586B, VT82C596A, VT82C686A, VT8501, Mobile South, Super South, Apollo MVP3, Apollo MVP4, Apollo P6, Apollo Pro, and Apollo ProMedia may only be used to identify products of VIA Technologies.

DirectDraw and DirectVideo are trademarks and Microsoft, Microsoft Windows, and Microsoft NT are registered trademarks of Microsoft Corp. Pentium is a trademark of Intel Corp.

RAMDAC is a trademark of Brooktree Corporation.

VESA is a trademark of Video Electronics Standards Association.

PanelLink is a trademark of Silicon Image, Inc.

Pentium[™], P54C[™], P55C[™], and MMX[™] are registered trademarks of Intel Corp.

Cyrix6x86[™] is a registered trademark of Cyrix Corp.

AMD6_K86[™], AMD-K6[™], and AMD-K6-2[™] are registered trademarks of Advanced Micro Devices Corp.

Windows 95[™] and Plug and Play[™] are registered trademarks of Microsoft Corp.

PCI[™] is a registered trademark of the PCI Special Interest Group.

All trademarks are the properties of their respective owners.

Copyright protection claimed includes all forms and matters of copyright table material and information now allowed by statutory or judicial law or hereinafter granted, including without limitation, material generated from the software programs which are displayed on the screen such as icons, screen display looks, etc. Reproduction or disassembly of embedded computer programs or algorithms prohibited.

Trident Microsystems, Inc. assumes no responsibility for the use of any circuit other than circuits embodied in a Trident Microsystems, Inc. product.

Rev. 1.0 8/6/99

REVISION HISTORY

Document Release	Date	Revision
0.1	1/20/99	Initial release of preliminary draft
0.2	3/24/99	Added mode tables in chapter 5 Added description of LCD timing registers (3C5.BF-CD) and flat panel control registers (3CF.30-59) Made correction to some minor printing errors and inaccurate information
1.0	8/6/99	Updated mode tables in chapter 5. Added reference schematics for TVXpress digital TV encoder module in chapter 7. Added note regarding L39 and L41 in reference schematics sheet 3 in chapter 7.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

1	INTE	RODUCTION	1-1
		Purpose	
		General Information	
2	FEA	TURES	2-1
	2.1	General	2-1
	2.2	Socket 7 Host Interface	2-2
		Advanced L2 Cache	
		Internal Accelerated Graphics Port (AGP) Controller	
		Concurrent PCI Bus Controller	
		High-performance DRAM Controller	
		Sophisticated Power Management Features	
	2.8	General Graphic Capabilities	2-3
		High Performance rCADE3D™ Accelerator	
		DVD	
		Video Processor	
		Flat Panel Interface	
_		Testability	
3		STEM OVERVIEW	
		CyberBlade i7 Core Logic Overview	
		CyberBlade i7 Graphics Controller Overview	
	3.2.		
	3.2.2	J	
	3.2.3	J	
	3.2.4		
	3.2.		
	3.2.0		
	3.2.	I .	
	3.2.8		
	3.2.° 3.2.°		
	3.2. ²		
	3.2. 3.2.	·	
		Advanced Power Management	
	3.3. ²		
	3.3.2		
	3.3.		
	3.3.4		
4		CTRICAL SPECIFICATIONS	
7		Absolute Maximum Ratings	
		DC Characteristics	
		AC Timing Specifications	
	4.3.		
	4.3.2	I J J	
	4.3.	J	
5		DE TABLES	
_		BIOS Modes.	
		Windows Modes	
	5.2.		
	5.2.2		
		LCD Panel Centering and Expansion	
6		IP Specifications	
	6.1	Mechanical Specifications	6-2

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL ### Trident

6.2	.2 Pin Descriptions	6-{
7	System Design	7
7.1	.1 Power-up Configuration	7
7.2		
7.3	.3 Schematics Example	7-{
8	Drawerse	0.5
	REGISTERS	
8.1 8.2		
	.2 Register Summary	
	8.2.2 Device 0 Registers - Host Bridge	
	8.2.3 Device 1 - PCI-to-PCI Bridge	
	8.2.4 2D / 3D Graphics Accelerator	
	8.2.5 3D Graphics Acceleration	
8.3	1 3 3	
8.4		
8.5		
	8.5.1 Device 0 Header Registers - Host Bridge	
	8.5.2 Device 0 Configuration Registers - Host Bridge	
8.6		
8.7		
8.8		
8.9	· ·	
	8.9.1 Device 1 Header Registers - PCI-to-PCI Bridge	
	8.9.2 Device 1 Configuration Registers - PCI-to-PCI Bridge	
8.1	.10 2D / 3D Graphics Accelerator Registers	
	8.10.1 PCI Configuration Registers – Graphics Accelerator	8-35
	8.10.2 PCI Device-Specific Config Regs – Graphics Accelerator	8-38
	8.10.3 Graphics Accelerator PCI Bus Master Registers	
	8.10.4 3D Graphics Engine Registers	8-90
	8.10.5 Span Engine	8-98
	8 10 6 Graphics Engine Core	8-90

Rev. 1.0 8/6/99

1 Introduction

The information contained in this Manual is intended to give in-depth technical assistance to design engineers in the development of system boards utilizing the Trident's CyberBlade i7 Integrated 2D/3D Graphics Core and North Bridge for Socket-7 Notebook PC.

This document includes a technically detailed yet comprehensive reference guide to all aspects of the design specifications and considerations in the development cycle.

This document contains information on the following topics:

- Product Information
- Architectural and functional descriptions
- Electrical Specification
- AC timings
- Configuration (Mode Tables)
- Pin diagrams and descriptions
- Schematic samples
- Register set

1.1 Purpose

This manual is a reference to guide design engineers in applications development. The material provided in this document provides the engineer with information for designing and laying out system boards, configuring the device, detailed pin signal information, and all other technical tasks required for success with the CyberBlade i7.

1.2 General Information

The CyberBlade i7 is an Integrated 2D/3D Graphics Core and North Bridge for Socket-7 Notebook PC. The CyberBlade i7 is a 66/100 MHz Single-Chip Socket-7 / Super-7 North Bridge with PCI System Bus, Integrated AGP 2D / 3D Graphics Accelerator, and Advanced ECC Memory Controller supporting PC100 SDRAM, Virtual Channel SDRAM, EDO, and FPG DRAM.

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL ### Trident

THIS PAGE INTENTIONALLY LEFT BLANK

Rev. 1.0 8/6/99

2 FEATURES

2.1 General

- 492 BGA Package (35mm x 35mm)
- 2.5 Volt +/- 0.2V Core
- Supports separately powered 3.3V tolerant interface to CPU and memory.
- Supports separately powered 5.0V tolerant interface to PCI bus and Video interface
- 2.5V, 0.25um, high speed / low power CMOS process
- PC-98/99 compatible
- 66 / 100 MHz Operation

CPU	Internal AGP	DRAM/ VGC	PCI	Comments
100 MHz	66 MHz	100 MHz	33 MHz	Synchronous (DRAM uses CPU clock)
66 MHz	66 MHz	66 MHz	33 MHz	Synchronous (DRAM uses CPU clock)
66 MHz	66 MHz	100 MHz	33 MHz	Up pseudo-synchronous (DRAM uses MEM clock)

2.2 Socket 7 Host Interface

- Supports all Socket-7 / Super-7 processors including 64-bit Intel Pentium™ / Pentium™ with MMX™ , AMD 6K86™ (K6™ and K6-2™), Cyrix/IBM 6x86™ / 6x86MX™ , IDT/Centaur C6, and Rise MP6 CPUs
- 66 / 100 MHz CPU "Front Side Bus"
- Supports 3.3V interface to CPU
- Built-in de-skew PLL (Phase Lock Loop) circuitry for optimal skew control within and between clocking regions
- Cyrix/IBM 6x86™ linear burst support
- AMD K6[™] and K6-2[™] write allocation support
- Supports CPU-to-DRAM write combining
- System management interrupt, memory remap and stop clock mechanisms

2.3 Advanced L2 Cache

- Direct map write-back or write-through secondary cache
- Pipelined burst synchronous SRAM (PBSRAM) cache support
- Flexible cache size: 0K / 256K / 512K / 1M / 2MB
- 32 byte line size to match the primary cache
- Integrated 8-bit tag comparator
- 3-1-1-1-1-1 back to back read timing for PBSRAM accesses up to 100 MHz
- Tag timing optimized (less than 4ns setup time) to allow external tag SRAM implementation for most flexible cache organization
- Sustained 3 cycle write access for PBSRAM access or CPU to DRAM & PCI bus post write buffers up to 100 MHz
- Supports CPU single read cycle L2 allocation
- System and video BIOS cacheable and writeprotect
- Programmable cacheable region

2.4 Internal Accelerated Graphics Port (AGP) Controller

- AGP v2.0 compliant for 1x and 2x transfer modes
- Pipelined split-transaction long-burst transfers up to 533 MB/sec
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quadwords) read data FIFO (128 bytes)

- Sixteen level (quadwords) write data FIFO (64 bytes)
- Intelligent request reordering for maximum AGP bus utilization
- Supports Flush/Fence commands
- Graphics Address Relocation Table (GART)
- One level TLB structure
- Sixteen entry fully associative page table
- LRU replacement scheme
- Independent GART lookup control for host / AGP / PCI master accesses
- Windows 95 OSR-2 VXD and integrated Windows 98 / NT5 miniport driver support

2.5 Concurrent PCI Bus Controller

- PCI bus is synchronous / pseudo-synchronous to host CPU bus
- 33 MHz operation on the primary PCI bus
- Supports up to five PCI masters
- Peer concurrency
- Concurrent multiple PCI master transactions; i.e., allow PCI masters from both PCI buses active at the same time
- Zero wait state PCI master and slave burst transfer rate
- PCI to system memory data streaming up to 132Mbyte/sec
- PCI master snoop ahead and snoop filtering
- Six levels (double-words) of CPU to PCI posted write buffers
- Byte merging in the write buffers to reduce the number of PCI cycles and to create further PCI bursting possibilities
- Enhanced PCI command optimization (MRL, MRM, MWI, etc.)
- Forty-eight levels (double-words) of post write buffers from PCI masters to DRAM
- Sixteen levels (double-words) of prefetch buffers from DRAM for access by PCI masters
- Supports L1/L2 write-back forward to PCI master read to minimize PCI read latency
- Supports L1/L2 write-back merged with PCI master post-write to minimize DRAM utilization
- Delay transaction from PCI master reading DRAM
- Read caching for PCI master reading DRAM

Rev. 1.0 8/6/99

- Transaction timer for fair arbitration between PCI masters (granularity of two PCI clocks)
- Symmetric arbitration between Host/PCI bus for optimized system performance
- Complete steerable PCI interrupts
- PCI-2.2 compliant, 32 bit 3.3V PCI interface with 5V tolerant inputs

2.6 High-performance DRAM Controller

- 64-bit DRAM interface synchronous with host CPU (66//100 MHz) or internal Memory Clock (100 MHz)
- Concurrent CPU and AGP access
- Supports both standard PC100 and "Virtual Channel" PC100 SDRAMs as well as FPG and EDO DRAMs
- Different DRAM types (FPG, EDO, and SDRAM) may be used in mixed combinations
- Different DRAM timing for each bank
- Dynamic Clock Enable (CKE) control for SDRAM power reduction
- Mixed 1M / 2M / 4M / 8M / 16MxN DRAMs
- 6 banks up to 768MB DRAMs
- Flexible row and column addresses
- 64-bit data width only
- 3.3V DRAM interface
- Programmable I/O drive capability for MA, command, and MD signals
- Optional bank-by-bank ECC (single-bit error correction and multi-bit error detection) or EC (error checking only) for DRAM integrity
- Two-bank interleaving for 16Mbit SDRAM support
- Two-bank and four bank interleaving for 64Mbit SDRAM support
- Supports maximum 8-bank interleave (i.e., 8 pages open simultaneously); banks are allocated based on LRU
- Seamless DRAM command scheduling for maximum DRAM bus utilization (e.g., precharge other banks while accessing the current bank)
- Four cache lines (16 quadwords) of CPU/cache to DRAM write buffers
- Four quadwords of CPU/cache to DRAM read prefetch buffers
- Concurrent DRAM writeback
- Read around write capability for non-stalled CPU read
- Burst read and write operation

- 5-2-2-2-2-2 back-to-back accesses for EDO DRAM
- 6-1-1-1-2-1-1-1 back-to-back accesses for SDRAM
- BIOS shadow at 16KB increment
- Decoupled and burst DRAM refresh with staggered RAS timing
- Programmable refresh rate and refresh on populated banks only
- CAS before RAS or self refresh

2.7 Sophisticated Power Management Features

- Independent clock stop controls for CPU / SDRAM, Internal AGP and PCI bus
- PCI and AGP bus clock run and clock generator control
- Suspend power plane preserves memory data
- Suspend-to-DRAM and Self-Refresh operation
- Dynamic clock gating for internal functional blocks for power reduction during normal operation
- Low-leakage I/O pads

2.8 General Graphic Capabilities

- 64-bit Single Cycle 2D/3D Graphics Engine
- Supports 2 to 8 Mbytes of Frame Buffer located in System Memory
- Real Time DVD MPEG-2 and AC-3 Playback
- Video Processor
- I²C Serial Interface
- Integrated 24-bit 230MHz True Color DAC
- Extended Screen Resolutions up to 1600x1200
- Extended Text Modes 80 or 132 columns by 25/30/43/60 rows
- DirectX 6 and OpenGL ICD API

2.9 High Performance rCADE3D™ Accelerator

- 32 entry command queue, 32 entry data queue
- 4Kbyte texture cache with over 90% hit rates
- Pipelined Setup/Texturing/Rendering Engines
- DirectDraw[™] acceleration
- Multiple buffering and page flipping

Trident Microsystems, Inc. 2-3

Setup Engine

- 32-bit IEEE floating point input data
- Slope and vertex calculations
- Back facing triangle culling
- 1/16 sub-pixel positioning

Rendering Engine

- High performance single pass execution
- Diffused and specula lighting
- Gouraud and flat shading
- Anti-aliasing including edge, scene, and supersampling
- OpenGL compliant blending for fog and depthcueing
- 16-bit Z-buffer
- 8/16/32 bit per pixel color formats

Texturing Engine

- D3D compressed texture formats DXT1 and DXT2
- Anisotropic texture filtering
- 1/2/4/8-bits per pixel compact palletized textures
- 16/32-bits per pixel quality non-palletized textures
- Pallet formats in ARGB 565, 1555, or 4444
- Tri-linear, bi-linear, and point-sampled filtering
- Mip-mapping with multiple Level-Of-Detail (LOD) calculations and perspective correction
- Color keying for translucency

2D GUI Engine

- 8/15/16/24/32-bits per pixel color formats
- 256 Raster Operations (ROPs)
- Accelerated drawing: BitBLTs, lines, polygons, fills, patterns, clipping, bit masking
- Panning, scrolling, clipping, color expansion, sprites
- 32x32 and 64x64 Hardware Cursor
- DOS graphics and text modes

2.10 DVD

- Hardware-Assisted MPEG-2 Architecture for DVD with AC-3
- Simultaneous motion compensation and front-end processing (parsing, decryption and decode)
- Supports full DVD 1.0, VCD 2.0 and CD-Karaoke
- Microsoft DirectShow 2.x native support, backward compatible to MCI
- No additional frame buffer requirements

- Dynamic frame and field de-interlace filtering for high quality playback on VGA monitors (Bob and Weave)
- Tamper-proof software CSS implementation
- Freeze, Fast-Forward, Slow Motion, Reverse
- Pan-and-Scan support for 16:9 sequence

2.11 Video Processor

- On-chip Color Space Converter (CSC)
- Anti-tearing via two frame buffer based capture surfaces
- Minifier for video stream compression and filtering
- Horizontal/vertical interpolation with edge recovery
- Dual frame buffer apertures for independent memory access for graphics and video
- YUV 4:2:2/4:1:1/4:2:0 and RGB formats
- Capture / ZV Port to MPEG and video decoder
- Vertical Blank Interval for Intercast™
- Overlay differing video and graphic color depths
- Display two simultaneous video streams from both internal AGP and Capture / ZV Port
- Two scalers and Color Space Converters (CSC) for independent windows

2.12 Flat Panel Interface

- 65MHz DFP interface supports 1024x768 panels
- Frame rate modulation and spatial dithering for increased color depth
- Gamma correction for color enhancement
- Auto expansion and centering
- 16/24-bit interface to DSTNs
- Straight or double pixel/clock interface for up to 1024x768 XGA TFT panels
- Allows external TMDS transmitter for advanced panel interfaces

2.13 Testability

Build-in NAND-tree pin scan test capability

THIS PAGE INTENTIONALLY LEFT BLANK

Trident Microsystems, Inc. 2-5

3 System Overview

The CyberBlade i7 is a PC Socket-7 system logic North Bridge with integrated 2D/3D Graphics accelerator. The core logic portion of the chip is based on the popular 100MHz VIA Apollo MVP3 chipset with enhanced features and graphics accelerator based on the CyberBlade™ 3D from Trident Microsystems, Inc. The combination of the two leading edge technologies provides a stable, cost-effective, and high performance solution for personal computers, embedded systems, set-top boxes and others. As shown in Figure 3-1 below, the CyberBlade i7 will interface to:

- Socket 7 CPU (66 100 MHz)
- L2 Cache RAM & Tag
- SDRAM Memory Interface
- PCI Bus (30 33 MHz)
- Analog RGB Monitor with DDC
- LVDS/TMDS
- TFT/DSTN Panels
- Video Capture / Playback CODECs

Figure 3-1. CyberBlade i7 High Level System Diagram

Trident Microsystems, Inc. 3-1

3.1 CyberBlade i7 Core Logic Overview

The CyberBlade i7 – System Media Accelerated North Bridge (SMA) is a high performance, cost-effective and energy efficient solution for the implementation of Integrated 2D/3D Graphics - PCI - ISA personal computer systems from 66 MHz to 100 MHz based on 64-bit Socket-7 (Intel Pentium and Pentium MMX; AMD K6 and K6-2; Cyrix / National 6x86 / 6x86MX, IDT / Centaur C6/WinChip), and Rise MP6 processors.

The CyberBlade i7 controller provides superior performance between the integrated 2D/3D Graphics Engine, CPU, optional synchronous cache, DRAM, and PCI bus with pipelined, burst, and concurrent operation. For L2-Cache solutions using pipelined burst synchronous SRAMs, 3-1-1-1-1-1-1 timing can be achieved for both read and write transactions at 100 MHz. Tag timing is specially optimized internally (less than 4 nsec setup time) to allow implementation of L2 cache using an external tag for the most flexible cache organization (0K / 256K / 512K / 1M / 2M). Four cache lines (16 quadwords) of CPU/cache to DRAM write buffers with concurrent write-back capability are included on chip to speed up cache read and write miss cycles.

The CyberBlade i7 supports six banks of DRAMs up to 768MB. The DRAM controller supports standard Fast Page Mode (FP) DRAM, EDO-DRAM, Synchronous DRAM (SDRAM), and Virtual Channel Synchronous DRAM in a flexible mix / match manner. The Synchronous DRAM interface allows zero wait state bursting between the DRAM and the data buffers at 100 MHz. The six banks of DRAM can be composed of an arbitrary mixture of 1M / 2M / 4M / 8M / 16MxN DRAMs. The DRAM controller also supports optional ECC (single-bit error correction and multi-bit detection) or EC (error checking) capability separately selectable on a bank-by-bank basis. The DRAM Controller can run at either the host CPU bus frequency (66 / 100 MHz) or at the PC100 memory frequency (100 MHz) with built-in deskew PLL timing control. With the advanced DRAM controller, the CyberBlade i7 allows implementation of the most flexible, reliable, and highperformance DRAM interface.

The CyberBlade i7 also supports full AGP v2.0 capability with the internal 2D/3D Graphics Engine for maximum software compatibility. An eight level request queue plus a four level post-write request queue with thirty-two and sixteen quadwords of read and write data FIFO's respectively are included for deep pipelined and split AGP transactions. A single-level GART TLB with 16 full associative entries and flexible CPU/AGP/PCI remapping control is also provided for operation under protected mode operating environments. Both Windows-95 VXD and Windows-98 / NT5 miniport drivers are supported.

The CyberBlade i7 supports one 32-bit 3.3 / 5V system bus (PCI) that is synchronous / pseudo-synchronous to the CPU bus. The chip also contains a built-in AGP bus -to-PCI bus bridge to allow simultaneous concurrent operations on each bus. Six levels (doublewords) of posted write buffers are included to allow for concurrent CPU and PCI operation. For PCI master operation, forty-eight levels (doublewords) of posted write buffers and sixteen levels (doublewords) of prefetch buffers are included for concurrent PCI bus and DRAM/cache accesses. The chip also supports enhanced PCI bus commands such as Memory-Read-Line, Memory-Read-Multiple, and Memory-Write-Invalid commands to minimize snoop overhead. In addition, advanced features are supported such as snoop ahead, snoop filtering, L1 write-back forward to PCI master, and L1 write-back merged with PCI post write buffers to minimize PCI master read latency and DRAM utilization. Delayed transaction and read caching mechanisms are also implemented for further improvement of overall system performance.

The CyberBlade i7 provides independent clock stop control for the CPU / SDRAM, PCI, and AGP buses and Dynamic CKE control for powering down of the SDRAM. A separate suspend-well plane is implemented for the SDRAM control signals for Suspend-to-DRAM operation.

3.2 CyberBlade i7 Graphics Controller Overview

The CyberBlade i7 Graphics Controller is a highly integrated display control device that incorporates a 64-bit 3D/2D graphic engine and video accelerator with advanced DVD video and optional TV output capability. It provides a flexible and high performance solution for graphics and video playback acceleration for various color depth and resolution modes.

The CyberBlade i7 Graphics Controller supports a video capture port to import captured live MPEG 1 or MPEG 2 video streams, or DVD decompressed video streams to be overlaid with a graphics stream of mixed color depth displays. In supporting dual live videos, the CyberBlade i7 Graphics Controller offers independent dual video windows ready for videoconferencing and with linear scaling capability.

Integrating the programmable phase lock loop with high speed LUT DACs, the CyberBlade i7 Graphics Controller is a true price/performance solution for the modern multimedia based entertainment PC.

3.2.1 Capability Overview

The CyberBlade i7 Graphics Controller is a fully integrated LCD/CRT TV capable 64-bit 2D/3D Accelerator. The high performance graphics engine offers high speed 3D image

Rev. 1.0 8/6/99

processing in full compliance and compatibility with IBM® VGA and VESA™ extended VGA. As an integrated controller, it allows unprecedented cost and performance advantages by eliminating the need for an external frame buffer while at the same time gaining local access to a larger amount of memory. Many functions can now be eliminated that previously consumed large amounts of bandwidth.

The CyberBlade i7 Graphics Controller, equipped with a single-cycle 3D GUI Engine, pipelines 3D rendering process architecture in hardware, providing real-time interactions with solid 3D models in CAD/CAM, 3D modeling, and 3D games. It supports all key 3D rendering operations, including: Gouraud shading for smooth object surfaces, texture mapping for realistic object textures, 16-bit hardware Z-buffering for fast 3D depth calculations, and Alpha Blending for transparency effects.

The CyberBlade i7 Graphics Controller's highly innovative design, a full 64-bit memory interface with a high performance graphics engine which can support a RAMDAC $^{\text{TM}}$ running up to 230MHz, dramatically improves GUI functions and significantly promotes overall system operation.

The CyberBlade i7 Graphics Controller supports a full AGP implementation internally to remain compatible with existing software and programming models. However, since the engine is integrated it enjoys a higher bandwidth and lower latency than is possible with discrete solutions. AGP operations can include direct access of the system memory by the 2D/3D engine to provide increased texture memory.

To meet the requirements of a PC98/PC99 graphics adapter in a multimedia PC, the CyberBlade i7 Graphics Controller supports planar video format for MPEG-1, MPEG-2, and DVD-video playback. The dual video playback is capable of overlaying windows for videoconferencing and multimedia displays. Advanced features of the CyberBlade i7 Graphics Controller, such as color space conversion, video scaling, dual video windows, dual-view display, video capture / ZV port, Vertical Blanking Interleave (VBI), a 24-bit True Color DAC, and dual clock synthesizers allow performance at peak levels.

By using an extended 16-bit capture / ZV port the CyberBlade i7 Graphics Controller can support DTV resolution. This port can operate as either an input for video capture or as an output for video display

The CyberBlade i7 integrated graphics controller can drive an external TMDS transmitter. This allows an external flat panel monitor to be interfaced through the industry standard DFP interface. Many different panel types can be supported through this standard.

3.2.2 System Capabilities

The CyberBlade i7 Graphics Controller's main system features include:

- High Performance single cycle 3D/2D GUI Graphics Engine
- DVD Motion Compensation Hardware
- High speed internal AGP Bus Mastering data bus supporting DVD video playback & 3D
- Highly Integrated RAMDAC™ and Triple Clock Synthesizer
- Dual Video Windows for Videoconferencing
- TrueVideo® Processor
- DirectDraw[™] and DirectVideo[™] Hardware Support
- Versatile Motion Video Capture/Overlay/Playback Support
- Flexible Frame Buffer Memory Interface
- Advanced Power Management Features
- CRT Power Management (VESA™ DPMS)
- PC98/99 Hardware Support

3.2.3 High Performance 64-bit 2D GUI

The 64-bit graphics engine of the CyberBlade i7 Graphics Controller significantly improves graphics performance through specialized hardware that accelerates the most frequently used GUI operations and matches the highspeed requirements of CPUs. Functions directly supported in hardware include: BitBLTs, image and text transfer, line draw, short stroke vector draw, rectangle fills, and clipping. The graphics engine supports 256 Raster Operations (ROPs) for up to 32-bit packed pixel graphic modes. The ROP3 Processor in the CyberBlade i7 Graphics Controller is able to perform Boolean functions which allow many additional operations, including transparency, pattern masking, color expansion alignment, and pattern enhancement. Additionally, the graphics engine features linear display memory addressing (up to 4GB memory space), accelerated color expansion modes for graphics text procession, and memory-mapped I/O registers on the graphics engine for faster access time.

Graphic functions are optimized by a 64-bit internal data bus and a four-color hardware cursor/pop-up icon, operating up to a 128x128x2 pixel image, which offloads the CPU. The hardware cursor mechanism can also be used to display patterns stored in the system memory. This pop-up icon is very useful to display user friendly information instantly through simple hot key operations. This advanced function combination allows significant performance increases over standard Super VGA designs and provides outstanding graphics acceleration on GUIs, such as Microsoft® Windows 95®/98®.

3.2.4 Highly Integrated RAMDAC™ & Clock Synthesizer

The highly integrated design of the CyberBlade i7 Graphics Controller offers a "no TTL" solution for cost-effective, high-performance PC multimedia subsystem designs. The CyberBlade i7 Graphics Controller has a built-in, high speed RAMDAC™. The RAMDAC™ is composed of one 256x24 and one 256x18 color lookup table and a triple loop frequency synthesizer, providing the read/write timing control for the Frame Buffer Memory and the refresh of the TV/CRT display.

The integrated frequency synthesizer provides a 100MHz memory clock for high speed DRAM access and a 230MHz video clock which supports various refresh rates up to 85Hz at 1280x1024.

3.2.5 Full Feature High Performance 3D Engine

The CyberBlade i7 Graphics Controller is equipped with an advanced Graphics Drawing, Single Cycle 3D Graphics Engine that performs premium 3D functions at a high level of more than 2M triangles per second. The 3D engine supports Microsoft® Direct3D. The 3D Engine is set up to off-load the CPU from major 3D tasks including slope calculation, sub-pixel positioning, and Tri-striping. By balancing the 3D pipeline and reducing parameter passing, the CyberBlade i7 Graphics Controller provides very high levels of performance. The 3D engine is integrated with a triangle set-up engine that sets up triangles according to vertex input data and accomplishes various functions for 3D rendering. Gouraud shading provides smooth shading for colors across surfaces, perspective corrected texture mapping to correct texture data based on the perspective, bi-linear texture filtering for interpolating, alpha blending to compensate colors for the opacity of two colors blended, Zbuffering (16-bit/24-bit), video texturing to overlay 2D video play-back onto 3D images, fogging to simulate weather effects, palletized texture mapping (1-, 4-, or 8-bit) for memory and bandwidth reduction, and anti-aliasing to reduce or eliminate jaggies resulted from alias rendering. The 3D engine also works with the APM system, conserving power while 3D operations are suspended.

3.2.6 Video Processor

Video processor features include: on-chip hardware Color Space Conversion (CSC) for faster data conversion on the fly, Horizontal/Vertical (H/V) scaling with interpolation, edge recovery algorithm logic, gamma correction, and overlay control with different color depths from graphics. The CyberBlade i7 Graphics Controller also includes a fully integrated GUI accelerator, read cache, and command FIFO that optimize memory bandwidth and maximize graphics performance.

The CyberBlade i7 Graphics Controller, with an integrated Video Display and a Capture Engine, supports dual apertures on the PCI bus which enables independent graphic and video data to be transported simultaneously to and from different memory areas and greatly accelerates the performance of both DirectDraw™ and DirectVideo™. The CyberBlade i7 Graphics Controller can provide dual video windows that display different images from different video sources (from the PCI bus and from the capture port) on the same screen. The video image is stored in offscreen memory and is retrieved by the Video Display Processing block for video processing. With the help of DirectDraw[™] acceleration for sprites, page flipping, double buffering, and color keying, video processing is performed by utilizing a proprietary edge recovery algorithm for sharper line visibility, de-interlacing, anti-tearing, multitap horizontal filtering, dithering, and scaling operations with bilinear interpolation in both horizontal and vertical directions. Linear scaling permits zoom in/out to any size without any restrictions. In addition, the on-chip hardware Color Space Conversion (CSC) accelerates conversion for 16 bit YUV pixels into linear true color 24 bit RGB pixels on the fly. The additional X and Y minifiers are capable of shrinking video images to any linear fractions, which saves bus bandwidth and memory space. The YUV planar logic of the CyberBlade i7 Graphics Controller supports a YUV 420 format that can eliminate redundant video stream decoding procedures. The load of the CPU is reduced while performing software MPEG or software video conferencing. The color and luminance control provided by the CyberBlade i7 Graphics Controller offers color compensations to prevent color distortion for display devices such as a CRT or TV with Gamma correction and hue adjustment control.

The Video Conferencing feature allows remote and local video images to be displayed simultaneously on the same screen.

3.2.7 Video Capture and DVD

The CyberBlade i7 Graphics Controller has a video capture / ZV port and advanced hardware interface logic allowing it to be directly connected to many MPEG and video decoders.

The CyberBlade i7 Graphics Controller, integrated with a DVD video hardware block for motion compensation, gives existing PCs the ability to play DVD video in MPEG-2 format at high bandwidths with very good video quality.

A new industry standard is being set for transmission of non-video data over a TV broadcast signal during vertical blanking dead time. This technology is referred to as Intercast. The CyberBlade i7 Graphics Controller has the ability to take the entire video stream over the video port, sending the visible video stream to the display memory for

Rev. 1.0 8/6/99

display in a window, stripping the VBI data from the stream, and then sending this data to the CPU for processing using PCI Bus Mastering.

3.2.8 Versatile Frame Buffer Interface

The CyberBlade i7 Graphics Controller features a versatile frame buffer interface aperture into main system memory. Optimized performance can be achieved with the single cycle memory bus interface using programmable DRAM timing. The display queue has been increased to reduce the frequency of memory bus requests, optimizing memory bus efficiency for the graphic controller.

With the support of the internal AGP aperture, the CyberBlade i7 Graphics Controller has access to system memory through the GART. In the execute mode, the CyberBlade i7 Graphics Controller is able to use both the dedicated graphics portion and the general portion of system memory for graphics operations. As a result, DVD and 3D rendering performance and quality are greatly enhanced.

3.2.9 Hi-Res and Hi-Ref Display Support

CyberBlade i7 Graphics Controller display enhancements dramatically improve CRT resolution. These enhancements include support of non-interlaced 1280x1024x64K, 1024x768x16M, 800x600x16M, and 640x480x16M colors for "full spectrum" color. Extended text modes of 80 or 132 columns by 25, 30, 43, or 60 rows provide an extended graphics area frequently used in many spreadsheet and database applications. Extended graphics and text modes are supported by software drivers that provide a "ready-togo" solution, minimizing the need for additional driver development.

A virtual screen can be created with the CyberBlade i7 Graphics Controller. When this function is enabled, a selected portion of a large image can be shown on a smaller display. The image can also be moved across the whole screen, either up or down.

The CyberBlade i7 Graphics Controller is able to automatically detect DDC monitors with I²C signaling.

3.2.10 CRT Power Management (VESA DPMS)

The CyberBlade i7 Graphics Controller conforms to the standard power management schemes defined by VESA™ for CRTs. The CyberBlade i7 Graphics Controller supports four states of VESA™ Display Power Management Signaling (DPMS), which decrease monitor power consumption after timeout periods. VESA™ DPMS power down states (ready, standby, suspend, and off) specify HSYNC and VSYNC signals to control the monitor power down state.

3.2.11 Flat Panel Interface

The CyberBlade i7 flat panel interface is designed to support industry standard TFT and DSTN panels. The Flat Panel interface can also be used to drive external LVDS or PanelLinkTM transmitters.

The high performance VGA Controller provides full hardware level VGA compatibility. At reset, the CyberBlade i7 is in hardware level VGA mode and all of the standard VGA subsections (Display Controller, VGA Graphics Controller, and Attribute Controller) are enabled. The CyberBlade i7 supports LVDS and PanelLink™, providing a low voltage, high speed, low EMI, serial DC-balanced differential data to the LCD panel.

The flat panel interface provides or supports the following functions for various panels:

- Generates flat panel interface signals like FLM, LP, SCLK, and DE
- Generates different video data formats to directly drive different types of panels
- Vertical and horizontal expansion of video displays to LCD panel resolution
- Vertical and horizontal centering
- Panel power sequence

3.2.12 Video Capture Interface / ZV Port

A video capture / ZV port is supported for video devices such as MPEG1 and MPEG2. Additionally, a zero-wait state host write buffer, read cache, and memory mapped I/O increase operating speeds and contribute to peak performance levels. All I/O interfaces are 5V tolerant, capable of interfacing with external devices operating at 5V, even though the CyberBlade i7 Graphics Controller runs at 2.5V internally. Graphics system throughput is further enhanced by a command FIFO, allowing maximum bus transfer speed for applications such as Windows™ or AutoCAD™ that directly access video memory.

3.2.13 Complete Hardware Compatibility

The CyberBlade i7 Graphics Controller is fully compliant with the VESA™ DDC and VAFC standards. The CyberBlade i7 Graphics Controller is VGA compatible at both the BIOS and Driver level, allowing full compatibility with virtually any VGA application software. The CyberBlade i7 Graphics Controller provides hardware support to DirectDraw™, offering high-speed game graphics on Windows 98®. The CyberBlade i7 Graphics Controller meets the requirements of PC99 as well, supporting a unique ID for each customer and a unique ID for each model

Trident Microsystems, Inc. 3-5

3.3 Advanced Power Management

The CyberBlade i7 provides flexible and extensive Advanced Power Management (APM) capabilities. Power down modes may be activated by hardware pins, hardware timers, or software control bits. DPMS is provided in either software control mode or hardware timer mode. All APM functions are easily controlled using registers for MCLK, VCLK, Oscillator, LUT/DAC, Panel, Standby, and Suspend. The entire CyberBlade i7 graphics system may be shut down and restored because of the complete read/write capability of all registers.

3.3.1 Power States

The CyberBlade i7 provides multiple states of power management. The power states, or modes, are defined as ready, standby, suspend, and off (Table 3-1 and Table 3-2). Through dedicated pins, register programming, and/or activity timers, power states can be set as follows:

Ready Mode

Ready mode is the state where the CyberBlade i7 is in normal operation. Functional blocks, such as DAC, can be disabled in this mode through register programming to save power.

Standby Mode

During this mode, the panel power off sequence is activated, the video clock is stopped and the video display is inactive. The CPU can still access I/O registers and the LUT/DAC. The standby state can be entered or exited through register programming and keyboard access. When in simultaneous display mode, the chip activates DPMS off mode with Standby Mode.

Suspend Mode

This mode is the lowest power consumption state in the CyberBlade i7 before losing main power. During this state, the panel power off sequence will be activated and the video clock will be shut off. The CPU can no longer access the display memory and the LUT/DAC is in power-down mode.

This mode can be activated through a pin or register. When activated by a register, the software will continue to have access to all internal registers. When activated by a pin, the host interface is also powered down. Only the pin can bring it out of the pin-suspend mode. Before the suspend pin can activate the suspend mode, there is a delay of 0 to 15 seconds based on a software-programmed suspend timer register. When deactivated, the suspend pin is not delayed by the suspend timer.

When in simultaneous display mode, the chip will activate DPMS off mode with suspend mode.

Off Mode

Also known as zero-volt suspend mode or machine powered off mode, this mode allows maximum power savings for long periods. The system can save the complete state of the video subsystem and restore the state later during warm up. The CyberBlade i7 allows all registers to be read and written to support this mode.

3.3.2 Activating and Deactivating Power Modes

This section describes the major activating and deactivating power modes.

Controlling Standby Mode

Standby mode is activated by any combination by either register bit or timer settings, depending on which triggering mechanisms are enabled. Deactivating the standby mode is achieved by deactivating all sources that activate standby.

Controlling Suspend Mode

Suspend mode is activated by of pin or register bit settings, depending on which triggering mechanisms are software enabled. If suspend mode was caused by the pin, a deactivated suspend pin will deactivate suspend mode or the software can disable use of the suspend pin by registers to deactivate suspend mode. If suspend mode was caused by the suspend register bit, only clearing this bit will deactivate suspend mode.

3-6 Trident Microsystems, Inc.

Table 3-1. Power State Summary

State	Display	I/O Access	Mem Access	DRAM Refresh	Chip VCC	VCLK	MCLK	DAC
Ready	on	on	on	on	on	on	on	on
Standby	off	on	on	on	on	on	on	off
Software Suspend	off	on	off	on	on	off	off	off
Hardware Suspend	off	off	off	on	on	off	off	off
Off	off	off	off	off	off	off	off	off

Table 3-2. DPMS State Summary with CRT Only and Hardware Timers

State	HSYNC	VSYNC	DAC
Ready	on	on	on
Standby	off	on	off
Suspend	on	off	off
Off	off	off	off

3.3.3 Power Management Clock Control

If the system "South Bridge" sends a request to the CyberBlade i7 to power down the memory controller, the CyberBlade i7 first uses CLKRUN# (the same signal appearing external to the CyberBlade i7) to check to see if the internal graphics controller needs to access main memory. The graphics controller logic will detect CLKRUN# high for 2 or 3 PCICLK's and check if there are any:

Internal buffers not emptied

PCI Master or AGP Master actions pending

If either condition exists, the graphics controller logic will assert CLKRUN# low for 2 PCICLK's to signal the clock generator to keep PCICLK running.

PME# is not implemented since there are no wake-up conditions.

3.3.4 Power Management Registers

Power management control for the CyberBlade i7 Graphics Controller is provided by extended registers SR24 (Power Management Control), GR20 (Standby Timer Control), GR21 (Power Management Control 1), GR22 (Power Management Control 2), GR23 (Power Status), GR24 (Soft Power Control), GR25 (Power Control Select), GR26 (DPMS Control), GR27-28 (GPIO Control), GR2A (Suspend Pin Timer), GR2C (Miscellaneous Pin Control), GR2F (Miscellaneous Internal Control), and Graphics Controller PCI Configuration Indices 90-97 (PCI Power Management Registers 1 and 2).

Trident Microsystems, Inc. 3-7

CyberBlade™ i7 TECHNICAL REFERENCE MANUAL ### Trident

THIS PAGE INTENTIONALLY LEFT BLANK

4 ELECTRICAL SPECIFICATIONS

4.1 Absolute Maximum Ratings

Table 4-1. Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes
T _A	Ambient operating temperature	0	70	oC	1
Ts	Storage temperature	-55	125	оС	1
V _{IN}	Input voltage	-0.5	V _{RAIL} + 10%	Volts	1, 2
Vout	Output voltage	-0.5	V _{RAIL} + 10%	Volts	1, 2

Note 1: Stress above the conditions listed may cause permanent damage to the device. Functional operation of this device should be restricted to the conditions described under operating conditions.

4.2 DC Characteristics

 $T_A = 0.70^{0}C$, $V_{RAIL} = V_{CC}$ +/- 5%, $V_{CORE} = 2.5V$ +/- 5%, GND=0V

Table 4-2. DC Characteristics

Symbol	Parameter	Min	Max	Unit	Condition
V _{IL}	Input Low Voltage	-0.50	0.8	V	
V _{IH}	Input High Voltage	2.0	V _{CC} +0.5	V	
VoL	Output Low Voltage	-	0.55	V	I _{OL} =4.0mA
Vон	Output High Voltage	2.4	-	V	I _{OH} =-1.0mA
I _{IL}	Input Leakage Current	-	+/-10	uA	0 <vin<vcc< td=""></vin<vcc<>
loz	Tristate Leakage Current	-	+/-20	uA	0.55 <v<sub>OUT<v<sub>CC</v<sub></v<sub>
Icc	Power Supply Current	-	TBD	mA	

Table 4-3. Recommended Operating Conditions

Parameter	Min	Max	Unit
5.0V Power	4.75	5.25	Volts
3.3V Power	3.135	3.465	Volts
2.5V Power	2.375	2.625	Volts
Temperature	0	70	оС

Drive strength for selected output pins is programmable. See Rx6D for details.

4.3 AC Timing Specifications

Trident Microsystems, Inc. 4-1

Note 2. V_{RAIL} is defined as the V_{CC} level of the respective rail. The CPU interface can be 3.3V or 2.5V. Memory can be 3.3V only. PCI can be 3.3V or 5.0V. Video can be 3.3V or 5.0V. Flat Panel can be 3.3V or 5.0 V.

Table 4-4. AC Characteristics – Clock Timing

Parameter		N	/lin	Max	Unit	Notes
HCLK	Cycle Time	1	10		ns	
HCLK	High Time	3	3.0		ns	
HCLK	Low Time	3	3.0		ns	
HCLK	Rise Time	0.	.15	1.5	ns	
HCLK	Fall Time	0.	.15	1.5	ns	
HCLK	Period Stability			+/- 250	ps	1
PCLK	Cycle Time	3	30		ns	
PCLK	High Time	1	11		ns	
PCLK	Low Time	1	11		ns	
PCLK	Rise Time	C	0.3	1.2	ns	2
PCLK	Fall Time	C	0.3	1.2	ns	2

Note 1: Jitter frequency power spectrum peaking must occur at frequencies greater than HCLK/3 or less than 500 KHz.

Note 2. Edge rate = 1-4 V/ns

Table 4-5. AC Characteristics – Reset Timing

Parameter				Min	Max	Unit	Notes
RESET#	Low Time	after	Power Stable	1		ms	
RESET#	Low Time	after	HCLK and PCLK Stable	100		us	

Rev. 1.0 8/6/99

Table 4-6. AC Characteristics – Host CPU Timing

D				n.c.		11.2	NI - I -
Parameter				Min	Max	Unit	Notes
ADS#	Setup Time	to	HCLK Rising	3.5		ns	0pf
WR#	Setup Time	to	HCLK Rising	3.3		ns	
M/IO#	Setup Time	to	HCLK Rising	1.7		ns	
D/C#	Setup Time	to	HCLK Rising	1.0		ns	
HITM#	Setup Time	to	HCLK Rising	3.6		ns	
CACHE#	Setup Time	to	HCLK Rising	1.6		ns	
LOCK#	Setup Time	to	HCLK Rising	3.1		ns	
BE[7:0]#	Setup Time	to	HCLK Rising	2.8		ns	
HA[31:3]	Setup Time	to	HCLK Rising	2.5		ns	
HD[63:0]	Setup Time	to	HCLK Rising	1.6		ns	
ADS#	Hold Time	from	HCLK Rising	0		ns	
WR#	Hold Time	from	HCLK Rising	0		ns	
MIO#	Hold Time	from	HCLK Rising	0		ns	
DC#	Hold Time	from	HCLK Rising	0		ns	
HITM#	Hold Time	from	HCLK Rising	0		ns	
CACHE#	Hold Time	from	HCLK Rising	0		ns	
BE[7:0]#	Hold Time	from	HCLK Rising	0		ns	
HA[31:3]	Hold Time	from	HCLK Rising	0		ns	
HD[63:0]	Hold Time	from	HCLK Rising	0		ns	
BRDY#	Valid Delay	from	HCLK Rising	0.9	1.7	ns	
NA#	Valid Delay	from	HCLK Rising	0.9	1.7	ns	
AHOLD	Valid Delay	from	HCLK Rising	0.8	1.7	ns	
BOFF#	Valid Delay	from	HCLK Rising	1.0	2.0	ns	
EADS#	Valid Delay	from	HCLK Rising	1.2	2.5	ns	
KEN# / INV#	Valid Delay	from	HCLK Rising	1.0	1.9	ns	
BE[7:0]#	Valid Delay	from	HCLK Rising	2.9	3.6	ns	
HA[31:3]	Valid Delay	from	HCLK Rising	1.2	3.8	ns	
HD[63:0]	Valid Delay	from	HCLK Rising	0.9	2.2	ns	

Table 4-7. AC Characteristics – L2 Cache Timing

Parameter				Min	Max	Unit	Notes
COE#	Valid Delay	from	HCLK Rising	1.8	3.6	ns	0pf
TA[7:0]	Valid Delay	from	HCLK Rising	1.7	4.3	ns	
TWE#	Valid Delay	from	HCLK Rising	1.0	2.2	ns	
GWE#	Valid Delay	from	HCLK Rising	0.8	1.6	ns	
BWE#	Valid Delay	from	HCLK Rising	0.8	1.6	ns	
CADS#	Valid Delay	from	HCLK Rising	0.9	1.8	ns	
CADV#	Valid Delay	from	HCLK Rising	0.9	1.8	ns	
TA[7:0]	Setup Time	to	HCLK Rising	3.7		ns	
TA[7:0]	Hold Time	from	HCLK Rising	0.0		ns	

Trident Microsystems, Inc. 4-3

Table 4-8. AC Characteristics – Memory Interface Timing

Parameter				Min	Max	Unit	Notes
RAS[5:0]#	Valid Delay	from	Clock † Rising (EDO)		4.3	ns	0pf
CS[5:0]#	Valid Delay	from	Clock † Rising (SDRAM)		1.6	ns	
CAS[7:0]#	Valid Delay	from	Clock † Rising (EDO)		1.8	ns	
DQM[7:0]#	Valid Delay	from	Clock † Rising (SDRAM)		1.8	ns	
SRAS[A,B,C]#	Valid Delay	from	Clock † Rising (SDRAM)		7.4	ns	
SCAS[A,B,C]#	Valid Delay	from	Clock † Rising (SDRAM)		8.2	ns	
SWE[A,B,C]#	Valid Delay	from	Clock † Rising (SDRAM)		8.9	ns	
SWE[A,B,C]#	Valid Delay	from	Clock † Rising (EDO)		5.6	ns	
MA[13:2]	Valid Delay	from	Clock † Rising (first clock after RAS#		5.8	ns	
			asserts)				
MA[1:0]	Valid Delay	from	Clock † Rising (Burst)		4.2	ns	
MD[63:0]	Valid Delay	from	Clock † Rising (EDO / SDRAM Write)		2.8	ns	
MD[63:0]	Setup Time	before	Clock † Rising (SDRAM Read)	1.7		ns	
MD[63:0]	Hold Time	after	Clock † Rising (SDRAM Read)	0.4		ns	

[†] Note: Memory system timing may be programmed to be synchronous with either the CPU (66 / 100 MHz) or the internal AGP bus (66 MHz).

Rev. 1.0 8/6/99

Table 4-9. AC Characteristics - PCI Bus Cycle Timing

Parameter				Min	Max	Unit	Notes
AD[31:0]	Setup Time	to	PCLK Rising	7		ns	50pf
CBE[3:0]#	Setup Time	to	PCLK Rising	7		ns	
FRAME#	Setup Time	to	PCLK Rising	7		ns	
TRDY#	Setup Time	to	PCLK Rising	7		ns	
IRDY#	Setup Time	to	PCLK Rising	7		ns	
STOP#	Setup Time	to	PCLK Rising	7		ns	
DEVSEL#	Setup Time	to	PCLK Rising	7		ns	
REQ[3:0]#	Setup Time	to	PCLK Rising	12		ns	
AD[31:0]	Hold Time	from	PCLK Rising	1		ns	
CBE[3:0]#	Hold Time	from	PCLK Rising	1		ns	
FRAME#	Hold Time	from	PCLK Rising	1		ns	
TRDY#	Hold Time	from	PCLK Rising	1		ns	
IRDY#	Hold Time	from	PCLK Rising	1		ns	
STOP#	Hold Time	from	PCLK Rising	1		ns	
DEVSEL#	Hold Time	from	PCLK Rising	1		ns	
REQ[3:0]#	Hold Time	from	PCLK Rising	1		ns	
AD[31:0]	Valid Delay	from	PCLK Rising (Address Phase)	2	11	ns	
AD[31:0]	Valid Delay	from	PCLK Rising (Data Phase)	2	11	ns	
CBE[3:0]#	Valid Delay	from	PCLK Rising	2	11	ns	
FRAME#	Valid Delay	from	PCLK Rising	2	11	ns	
TRDY#	Valid Delay	from	PCLK Rising	2	11	ns	
IRDY#	Valid Delay	from	PCLK Rising	2	11	ns	
STOP#	Valid Delay	from	PCLK Rising	2	11	ns	
DEVSEL#	Valid Delay	from	PCLK Rising	2	11	ns	
GNT[3:0]#	Valid Delay	from	PCLK Rising	2	11	ns	
CBE[3:0]#	Float Delay	from	PCLK Rising	2	11	ns	
FRAME#	Float Delay	from	PCLK Rising	2	11	ns	
TRDY#	Float Delay	from	PCLK Rising	2	11	ns	
IRDY#	Float Delay	from	PCLK Rising	2	11	ns	
STOP#	Float Delay	from	PCLK Rising	2	11	ns	
DEVSEL#	Float Delay	from	PCLK Rising	2	11	ns	

Trident Microsystems, Inc. 4-5

Table 4-10. AC Characteristics - Video Interface Timing

Parameter				Min	Max	Unit
VIDD[15-0]	Valid Delay	from	VIDCLK Rising	0.5	10.0	ns
VIDHS	Valid Delay	from	VIDCLK Rising	5.0	10.0	ns
VIDVS	Valid Delay	from	VIDCLK Rising	5.0	10.0	ns
VIDCLK	Cycle Time			35		ns
VIDD[15-0]	Setup Time	before	VIDCLK Rising	5.0		ns
VIDHS	Setup Time	before	VIDCLK Rising	5.0		ns
VIDVS	Setup Time	before	VIDCLK Rising	5.0		ns
VIDD[15-0]	Hold Time	after	VIDCLK Rising	0.0		ns
VIDHS	Hold Time	after	VIDCLK Rising	0.0		ns
VIDVS	Hold Time	after	VIDCLK Rising	0.0		ns

Table 4-11. AC Characteristics – TV Interface Timing

Parameter				Min	Max	Unit
TVD[7-0]	Valid Delay	from	TVCLK Rising	0.5	10.0	ns
TVHS	Valid Delay	from	TVCLK Rising	5.0	10.0	ns
TVVS	Valid Delay	from	TVCLK Rising	5.0	10.0	ns
TVCLK	Cycle Time			35		ns

4.3.1 Panel Power Sequencing Timing

Figure 4-1. Panel Power On/Off Sequence

Table 4-12 Panel Power On/Off Sequence

Symbol	Description	Default	Unit
t _{PDON}	ENPVDD active to panel interface signals active	1	Frame (one vertical refresh period) or 4ms ^{1,2}
^t PDOFF	Panel interface signals inactive to ENPVDD inactive	1	Frame (one vertical refresh period) or 4ms ^{1,2}
^t VEEON	Panel interface signals active to ENPVEE active	3	Frame (one vertical refresh period) or 4ms ^{1,2}
^t VEEOFF	ENPVEE inactive to panel interface signals inactive	3	Frame (one vertical refresh period) or 4ms ^{1,2}
^t ENBKLT	ENPVEE active to VBKLIT active	2	Frame (one vertical refresh period) or 4ms ^{1,2}
[†] OFFBKLT	VBKLIT inactive to ENPVEE inactive	1	Frame (one vertical refresh period) or 4ms ^{1,2}

Note:

- 1. This unit (frame or 4ms) is programmable through 3CF.23.3
- 2. All signals in this table are programmable to toggle at any one time through 3CF.24[3:0] and 3CF.25[3:0]

Trident Microsystems, Inc. 4-7

4.3.2 Flat Panel Interface Timing

Figure 4-2. Flat Panel Interface Timing

Table 4-13 Flat Panel Interface Timing

Symbol	Min	Max	Description
t _{CH} /t _{CYCLE}	40%	55%	Duty cycle
tcl/tcycle	45%	60%	Duty cycle
t _{DD}	-1ns	3ns	Data delay time
t _{ED}	-1ns	3ns	Data enable delay time
t _{HD}	-1ns	3ns	LP (Hsync) delay time
t _{VD}	-1ns	3ns	FLM (Vsync) delay time

Rev. 1.0 8/6/99

4.3.3 DDC Interface Timing

Figure 4-3. DDC Interface Timing Diagram

Table 4-14 DDC Interface Timing

Symbol	Min (μs)	Max (µs)	Comment					
tSU.STA	4.7		Start set-up time					
tHD.STA	4.0		Start hold time					
tAA	0.1	3.5	Clock low to data out valid					
tDH	0.1		Data out hold time					
tHD.DAT	0		Data in hold time					
tSU.DAT	0.05		Data in set-up time					
tLOW	4.7		Clock pulse width low					
tHIGH	4.0		Clock pulse width high					

Trident Microsystems, Inc. 4-9

THIS PAGE INTENTIONALLY LEFT BLANK

Rev. 1.0 8/6/99

5 Mode Tables

This Chapter defines every possible graphics mode and features supported by the CyberBlade i7. These features include graphics acceleration, MPEG1 and MPEG2 playback, Video capture, and motion compensation for DVD.

5.1 BIOS Modes

The video modes listed in this section show supported video BIOS modes. The support for these modes is strictly from the video BIOS. No support from a software driver is needed to display one of these modes. For *Standard VGA Modes*, see Table 5-1. For *Low Resolution modes*, see Table 5-2. For Extended Modes, see Table 5-3.

Table 5-1. Standard VGA Modes

Mode #	Resolution	Box Size	Pixel Clock (MHz)	Horizontal Frequency (kHz)	Vertical Frequency (Hz)
0,1	320x200	8x8	25.175	31.4	70
2,3	640x200	8x8	25.175	31.4	70
0*,1*	320x350	8x14	25.175	31.4	70
2*,3*	640x350	8x14	25.175	31.4	70
0+,1+	360x400	9x16	28.322	31.5	70
2+,3+	720x400	9x16	28.322	31.5	70
4,5	320x200	8x8	25.175	31.4	70
6	640x200	8x8	25.175	31.4	70
7	720x350	9x14	28.322	31.5	70
7+	720x400	9x16	28.322	31.5	70
D	320x200	8x8	25.175	31.4	70
E	640x200	8x8	25.175	31.4	70
F	640x350	8x14	25.175	31.4	70
10	640x350	8x14	25.175	31.4	70
11	640x480	8x16	25.175	31.4	60
12	640x480	8x16	25.175	31.4	60
13	320x200	8x8	25.175	31.4	70

Trident Microsystems, Inc. 5-1

Table 5-2. Low Resolution Modes

Resolution	bpp	LC	CD	(CRT Refres	sh Rate (Hz	<u>v</u>)	T	V
		SVGA	XGA	87i	60	75	85	PAL	NTSC
320x200	8	✓	✓	×	×	×	×	✓	✓
320x200	16	✓	✓	×	×	×	×	✓	✓
320x240	8	✓	✓	×	✓	✓	✓	✓	✓
320x240	16	✓	✓	×	✓	✓	✓	✓	✓
320x240	32	×	×	×	✓	✓	✓	×	×
400x300	8	✓	✓	×	✓	✓	✓	✓	✓
400x300	16	✓	✓	×	✓	✓	✓	✓	✓
400x300	32	×	×	×	✓	✓	✓	×	×
512x384	8	×	✓	✓	✓	✓	✓	×	×
512x384	16	×	✓	√	✓	✓	✓	×	×
512x384	32	×	×	1	1	✓	1	×	×

Note:

- ✓ × Mode supported (For LCD, only expansion is available, not centering) Mode not supported

Table 5-3. Extended Modes

Resolution	bpp	Mode	VESA	LC	D		CRT R	efresh	rate (Hz))	-	TV	
		#	Mode #	SVGA	XGA	87i	961	60	75	85	PAL	NTSC	
800x600	4	5b	102	✓	✓	×	×	✓	✓	✓	✓	✓	
1024x768	4	5f	104	×	✓	✓	×	✓	✓	✓	×	×	
1280x1024	4	63	106	×	×	✓	×	✓	×	×	×	×	
1600x1200	4	65		×	×	×	✓	✓	×	×	×	×	
640x400	8	5c	100	✓	✓	×	×	×	×	×	✓	✓	
640x480	8	5d	101	✓	✓	×	×	✓	✓	✓	✓	✓	
800x600	8	5e	103	✓	✓	×	×	✓	✓	✓	✓	✓	
1024x768	8	62	105	×	✓	✓	×	✓	✓	✓	×	×	
1280x1024	8	64		×	×	✓	×	✓	✓	✓	×	×	
1600x1200	8	66		×	×	×	✓	✓	×	×	×	×	
640x400	15/16	72/73		✓	✓	×	×	×	×	×	✓	✓	
640x480	15/16	74/75	110/111	✓	✓	×	×	✓	✓	✓	✓	✓	
800x600	15/16	76/77	113/114	✓	✓	×	×	✓	✓	✓	✓	✓	
1024x768	15/16	78/79	116/117	×	✓	✓	×	✓	✓	✓	×	×	
1280x1024	15/16	7a/7b		×	×	✓	×	✓	✓	✓	×	×	
1600x1200	15/16	7c/7d		×	×	×	✓	✓	×	×	×	×	
640x400	32	6b		+	+	×	×	×	×	×	✓	✓	
640x480	32	6c	112	+	+	×	×	✓	✓	✓	✓	✓	
800x600	32	6d	115	✓	+	×	×	✓	✓	✓	✓	✓	
1024x768	32	6e		×	X	✓	×	✓	✓	✓	×	×	

Note:

- X Mode not supported
- ✓ Mode supported
- Expansion not supported but centering is supported

Rev. 1.0 8/6/99

5.2 Windows Modes

Table 5-4 through Table 5-17 shows supported Windows modes. Single View and Simultaneous displays are supported in both Windows 98 and Windows 95. Multiple view display is supported in the Windows 98 operating environment through Multi-Head Support (MHS).

5.2.1 Single View & Simultaneous Modes

Table 5-4 shows supported hardware features for *Single View* and *Simultaneous* modes. The supported features are *graphics acceleration*, *MPEG1* and *MPEG2* playback, *video capture*, and hardware assist *DVD playback* (motion compensation). *Simultaneous modes* support the same modes and features as *single view modes*. See Table below.

For *Simultaneous* modes only the combination of LCD and CRT is supported. In addition, the two display devices have the same resolution, color depths, and refresh rate. Since LCD panels have fixed resolutions, panning is necessary when the resolution is larger than the panel resolution.

Table 5-4. Single View Modes (4MB Video Memory)

Display			CRT				LCD		Т	V
Device		R	efresh Rat	е		T	FT	DSTN		
Resolution & Color Depth	60	75	85	871	96i	SVGA	XGA	SVGA	NTSC	PAL
640x480x8	GM ₁ C	GM ₁ C	GM ₁ C	NA	NA	GM ₁ C	GM ₁ C	GM ₁ C	GM ₁ C	GM ₁ CD
640x480x16	GM ₁ C	GM ₁ C	GM ₁ C	NA	NA	GM ₁ C	GM ₁ C	GM ₁ C	GM ₁ C	GM ₁ CD
640x480x32	GM ₁ C	GM ₁ C	GM ₁ C	NA	NA	GM ₁ C	GC	GM ₁ C	GM ₁ C	GM ₁ CD
800x600x8	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD	NA	NA	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD P	GM ₁ M ₂ CD
800x600x16	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD	NA	NA	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD P	GM ₁ M ₂ CD
800x600x32	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ D	NA	NA	GM ₁ M ₂ CD	GCD	GM ₁ M ₂ CD	GM ₁ M ₂ CD P	GM ₁ M ₂ C
1024x768x8	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD	NA	NA	GM ₁ M ₂ CD P	GM ₁ M ₂ CD	GM₁M₂CD P	GM₁M₂CD P	GM₁M₂CD P
1024x768x16	GM ₁ M ₂ CD	GM ₁ M ₂ CD	G	NA	NA	GM ₁ M ₂ CD P	GM ₁ M ₂ CD	GM ₁ M ₂ CD P	GM1M2CD P	GM ₁ M ₂ CD P
1024x768x32	G	G	NA	NA	NA	GM ₁ M ₂ CP	GC	GM ₁ M ₂ CP	GCP	GCP
1280x1024x8	GM ₁ M ₂ CD	G	G	NA	NA	GM ₁ M ₂ CD P	GM ₁ M ₂ CD P	GM ₁ M ₂ CP	GM ₁ M ₂ CD P	GM ₁ M ₂ CD P
1280x1024x16	G	G	G	NA	NA	GM ₁ M ₂ CP	GM ₁ M ₂ CP	GM ₁ M ₂ CP	GCP	GCP
1600x1200x8	G	NA	NA	NA	G	GP	GP	GP	GP	GP
1600x1200x16	G	NA	NA	NA	G	GP	GP	GP	GP	GP

Note:

G: Graphics acceleration supported.

M₁: MPEG1/AVI video playback supported.M₂: MPEG2 video playback supported.

C: Video Capture supported.

D: Hardware-assisted (Motion Compensation) DVD playback supported.

P Panning mode (applies only to LCD and TV)

NA: Mode not supported.

Trident Microsystems, Inc. 5-3

Table 5-5. Single View Modes (8MB Video Memory)

Display	CRT					LCD			TV	
Device	Refresh Rate					TFT		DSTN		
Resolution & Color Depth	60	75	85	87I	96i	SVGA	XGA	SVGA	NTSC	PAL
640x480x8	GM ₁ C	GM ₁ C	GM ₁ C	NA	NA	GM ₁ C	GM ₁ C	GM ₁ C	GM ₁ C	GM ₁ CD
640x480x16	GM ₁ C	GM ₁ C	GM ₁ C	NA	NA	GM ₁ C	GM ₁ C	GM ₁ C	GM ₁ C	GM ₁ CD
640x480x32	GM ₁ C	GM ₁ C	GM ₁ C	NA	NA	GM ₁ C	GC	GM ₁ C	GM ₁ C	GM ₁ CD
800x600x8	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD	NA	NA	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD P	GM ₁ M ₂ CD
800x600x16	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD	NA	NA	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM1M2CD P	GM ₁ M ₂ CD
800x600x32	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ D	NA	NA	GM ₁ M ₂ CD	GCD	GM ₁ M ₂ CD	GM ₁ M ₂ CD P	GM ₁ M ₂ CD
1024x768x8	GM ₁ M ₂ CD	GM ₁ M ₂ CD	GM ₁ M ₂ CD	NA	NA	GM ₁ M ₂ CD P	GM ₁ M ₂ CD	GM ₁ M ₂ CD P	GM ₁ M ₂ CD P	GM ₁ M ₂ CD P
1024x768x16	GM ₁ M ₂ CD	GM ₁ M ₂ CD	G	NA	NA	GM₁M₂CD P	GM ₁ M ₂ CD	GM ₁ M ₂ CD P	GM₁M₂CD P	GM₁M₂CD P
1024x768x32	G	G	NA	NA	NA	GM ₁ M ₂ CD P	GCD	GM ₁ M ₂ CD P	GCP	GCP
1280x1024x8	GM ₁ M ₂ CD	G	G	NA	NA	GM ₁ M ₂ CD P	GM ₁ M ₂ CD P	GM ₁ M ₂ CP	GM ₁ M ₂ CD P	GM ₁ M ₂ CD P
1280x1024x16	G	G	G	NA	NA	GM ₁ M ₂ CD P	GM ₁ M ₂ CD P	GM ₁ M ₂ CP	GCP	GCP
1600x1200x8	G	NA	NA	NA	G	GP	GP	GP	GP	GP
1600x1200x16	G	NA	NA	NA	G	GP	GP	GP	GP	GP

Note:

G: Graphics acceleration supported.
 M1: MPEG1/AVI video playback supported.
 M2: MPEG2 video playback supported.

C: Video Capture supported.

D: Hardware-assisted (Motion Compensation) DVD playback supported.

P Panning mode (applies only to LCD and TV)

NA: Mode not supported.

Rev. 1.0 8/6/99

5.2.2 MHS Modes for Windows 98

The Windows[™] 98 operating environment provides support for two display devices. The two display devices can be display combinations of LCD and CRT or LCD and TV. Microsoft labels this MHS or Multi-head Support. MHS is very versatile, because the two display devices can have different resolutions, color depths, and refresh rates. There are many combinations. The Tables listed in this section show supported MHS modes, and which hardware features are supported for each mode.

Table 5-6. MHS Modes for CRT with SVGA TFT Panel (4MB Video Memory)

	CRT						L	CD (800x	600 TFT)				
Resolution	Color	Refresh	(540x480			800x600	,	1	024x768] 1	1	280x102	4 1
Resolution	Depth	Rate	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp
640x480	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	32	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
640x480	32	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
640x480	32	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
800x600	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	16	75	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA
800x600	16	85	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA
800x600	32	60	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
800x600	32	75	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
800x600	32	85	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
1024x768	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
1024x768	8	75	GMC	G	G	GMC	G	G	GMC	G	G	GMC	G	NA
1024x768	8	85	GM	G	G	GM	G	G	GM	G	G	GM	G	NA
1024x768	16	60	GMC	G	NA	GMC	G	NA	GMC	G	NA	GMC	NA	NA
1024x768	16	75	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
1024x768	16	85	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
1024x768	32	60	G	NA	NA	G	NA	NA	G	NA	NA	NA	NA	NA
1280x1024	8	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	8	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	8	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	16	60	G	G	NA	G	G	NA	G	NA	NA	G	NA	NA
1280x1024	16	75	G	NA	NA	G	NA	NA	G	NA	NA	G	NA	NA

Note:

G: Graphics acceleration supported.M: MPEG1/AVI video playback supported.

C: Video Capture supported. NA: Mode not supported.

1: Virtual Desktop (panning) is enabled for this resolution.

Trident Microsystems, Inc. 5-5

Table 5-7. MHS Modes for CRT with SVGA TFT Panel (8MB Video Memory)

	CRT						L	CD (800x	600 TFT)				
Dooglestion	Color	Refresh		540x480			800x600	,	1	1024x768	} 1	1	280x102	4 1
Resolution	Depth	Rate	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp
640x480	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	32	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
640x480	32	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
640x480	32	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
800x600	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	16	75	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA
800x600	16	85	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA
800x600	32	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
800x600	32	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
800x600	32	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1024x768	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
1024x768	8	75	GMC	G	G	GMC	G	G	GMC	G	G	GMC	G	NA
1024x768	8	85	GM	G	G	GM	G	G	GM	G	G	GM	G	NA
1024x768	16	60	GMC	G	NA	GMC	G	NA	GMC	G	NA	GMC	G	NA
1024x768	16	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1024x768	16	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1024x768	32	60	G	NA	NA	G	NA	NA	G	NA	NA	G	NA	NA
1280x1024	8	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	8	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	8	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	16	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	16	75	G	NA	NA	G	NA	NA	G	NA	NA	G	NA	NA

Note:

G: Graphics acceleration supported.M: MPEG1/AVI video playback supported.

C: Video Capture supported. NA: Mode not supported.

1: Virtual desktop (panning) is enabled for this resolution.

Rev. 1.0 8/6/99

Table 5-8. MHS Modes for CRT with XGA TFT Panel (4MB Video Memory)

	CRT						L	CD (102	4x768 T	FT)				
Resolution	Color	Refresh		640x480)		800x600			1024x768	3	1	280x102	4 1
Resolution	Depth	Rate	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp
640x480	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	32	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
640x480	32	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
640x480	32	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
800x600	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	16	75	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA
800x600	16	85	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA
800x600	32	60	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
800x600	32	75	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
800x600	32	85	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
1024x768	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
1024x768	8	75	GMC	G	G	GMC	G	G	GMC	G	G	GMC	G	NA
1024x768	8	85	GM	G	G	GM	G	G	GM	G	G	GM	G	NA
1024x768	16	60	GMC	G	NA	GMC	G	NA	GMC	G	NA	GMC	NA	NA
1024x768	16	75	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
1024x768	16	85	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
1024x768	32	60	G	NA	NA	G	NA	NA	G	NA	NA	NA	NA	NA
1280x1024	8	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	8	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	8	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	16	60	G	G	NA	G	G	NA	G	NA	NA	G	NA	NA
1280x1024	16	75	G	NA	NA	G	NA	NA	G	NA	NA	G	NA	NA

Note:

G: Graphics acceleration supported.

MREC1/AVI video playback supports

M: MPEG1/AVI video playback supported.

C: Video Capture supported. NA: Mode not supported.

1: Virtual desktop (panning) is enabled for this resolution.

Trident Microsystems, Inc. 5-7

Table 5-9. MHS Modes for CRT with XGA TFT Panel (8MB Video Memory)

	CRT						Ĺ	CD (102	4x768 T	FT)				
Resolution	Color	Refresh		640x480)		800x600	•		1024x768	3	1	280x102	4 1
Resolution	Depth	Rate	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp
640x480	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	16	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480	32	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
640x480	32	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
640x480	32	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
800x600	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600	16	75	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA
800x600	16	85	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA	GMC	GM	NA
800x600	32	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
800x600	32	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
800x600	32	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1024x768	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
1024x768	8	75	GMC	G	G	GMC	G	G	GMC	G	G	GMC	G	NA
1024x768	8	85	GM	G	G	GM	G	G	GM	G	G	GM	G	NA
1024x768	16	60	GMC	G	NA	GMC	G	NA	GMC	G	NA	GMC	G	NA
1024x768	16	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1024x768	16	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1024x768	32	60	G	NA	NA	G	NA	NA	G	NA	NA	G	NA	NA
1280x1024	8	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	8	75	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	8	85	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	16	60	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024	16 No	75	G	NA	NA	G	NA	NA	G	NA	NA	G	NA	NA

Note:

G: Graphics acceleration supported.

M: MPEG1/AVI video playback supported.

C: Video Capture supported.

NA: Mode not supported.

1: Virtual desktop (panning) is enabled for this resolution.

Rev. 1.0 8/6/99

Table 5-10. MHS Modes for CRT with SVGA DSTN Panel (4MB Video Memory)

	CRT						LCD (800x600	DSTN)				
Resolution	Color	Refresh		640x480			800x600		1	024x768	1	1280	(1024 ¹
Resolution	Depth	Rate	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp
640x480	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	16	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	16	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM
640x480	32	60	G	G	G	G	G	G	G	G	NA	G	G
640x480	32	75	G	G	G	G	G	G	G	G	NA	G	G
640x480	32	85	G	G	G	G	G	G	G	G	NA	G	G
800x600	8	60	GMC	GMC	G	GMC	GM	G	GMC	GMC	G	GMC	GM
800x600	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM
800x600	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM
800x600	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA	GMC	GM
800x600	16	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA	GMC	GM
800x600	16	85	GMC	GM	G	GMC	GM	G	GMC	GM	NA	GMC	GM
800x600	32	60	G	G	NA	G	G	NA	G	G	NA	G	NA
800x600	32	75	G	G	NA	G	G	NA	G	G	NA	G	NA
800x600	32	85	G	G	NA	G	G	NA	G	G	NA	G	NA
1024x768	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA	GMC	GM
1024x768	8	75	GMC	GM	G	GMC	GM	G	GMC	GM	NA	GMC	GM
1024x768	8	85	G	G	G	G	G	G	G	G	NA	G	G
1024x768	16	60	GM	G	G	GM	G	G	GM	G	NA	GM	NA
1024x768	16	75	G	G	G	G	G	G	G	G	NA	G	NA
1024x768	16	85	G	G	NA	G	G	NA	G	G	NA	G	NA
1024x768	32	60	G	NA	NA	G	NA	NA	NA	NA	NA	NA	NA
1280x1024	8	60	G	G	G	G	G	G	G	G	NA	G	NA
1280x1024	8	75	G	G	G	G	G	G	G	G	NA	G	NA
1280x1024	8	85	G	G	G	G	G	G	G	G	NA	G	NA
1280x1024	16	60	G	G	NA	G	G	NA	G	NA	NA	NA	NA
1280x1024	16	75	G	NA	NA	G	NA	NA	G	NA	NA	NA	NA

Note:

G: Graphics acceleration supported.

M: MDEC1/AVI video playback supported.

M: MPEG1/AVI video playback supported.

C: Video Capture supported. NA: Mode not supported.

1: Virtual desktop (panning) is enabled for this resolution.

Trident Microsystems, Inc. 5-9

Table 5-11. MHS Modes for CRT with SVGA DSTN Panel (8MB Video Memory)

	CRT						LCD (300x600	DSTN)				
Resolution	Color	Refresh		640x480)		800x600			024x768	3 1	1280x	1024 ¹
Resolution	Depth	Rate	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp
640x480	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	16	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	16	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
640x480	32	60	G	G	G	G	G	G	G	G	G	GMC	GMC
640x480	32	75	G	G	G	G	G	G	G	G	G	GMC	GMC
640x480	32	85	G	G	G	G	G	G	G	G	G	GMC	GM
800x600	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
800x600	8	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
800x600	8	85	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
800x600	16	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
800x600	16	75	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
800x600	16	85	GMC	GM	G	GMC	GM	G	GMC	GM	G	GMC	GM
800x600	32	60	G	G	NA	G	G	NA	G	G	NA	G	G
800x600	32	75	G	G	NA	G	G	NA	G	G	NA	G	G
800x600	32	85	G	G	NA	G	G	NA	G	G	NA	G	G
1024x768	8	60	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC
1024x768	8	75	GMC	GM	G	GMC	GM	G	GMC	GM	G	GMC	GM
1024x768	8	85	G	G	G	G	G	G	G	G	G	G	G
1024x768	16	60	GM	G	G	GM	G	G	GM	G	G	GM	G
1024x768	16	75	G	G	G	G	G	G	G	G	G	G	G
1024x768	16	85	G	G	NA	G	G	NA	G	G	NA	G	G
1024x768	32	60	G	NA	NA	G	NA	NA	G	NA	NA	G	NA
1280x1024	8	60	G	G	G	G	G	G	G	G	G	G	G
1280x1024	8	75	G	G	G	G	G	G	G	G	G	G	G
1280x1024	8	85	G	G	G	G	G	G	G	G	G	G	G
1280x1024	16	60	G	G	NA	G	G	NA	G	G	NA	G	G
1280x1024	16	75	G	NA	NA	G	NA	NA	G	NA	NA	G	NA

Note:

G: Graphics acceleration supported.

M: MPEG1/AVI video playback supported.

C: Video Capture supported. NA: Mode not supported.

1: Virtual desktop (panning) is enabled for this resolution.

Rev. 1.0 8/6/99

Table 5-12. MHS Modes for TV with SVGA TFT Panel (4MB Video Memory)

TV View					LC	D (TFT,	SVGA)	View				
NTSC & PAL	•	640x480)		800x600)	1	1024x76	B 1	1	280x102	241
NISC & PAL	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp
640x480x8	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
640x480x16	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
640x480x32	G	G	G	G	G	G	G	G	NA	G	G	NA
800x600x8 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
800x600x16 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600x32 ²	G	G	G	G	G	G	G	G	NA	G	NA	NA
1024x768x8 ^{2,3}	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
1024x768x16 ^{2,3}	GMC	GM	G	GMC	GM	G	GMC	GM	NA	GMC	NA	NA
1024x768x32 ^{2,3}	G	G	NA	G	G	NA	G	NA	NA	NA	NA	NA
1280x1024x8 ^{2,3}	G	G	G	G	G	G	G	G	NA	G	G	NA
1280x1024x16 ^{2,3}	G	G	NA	G	G	NA	G	NA	NA	G	NA	NA

Note:

- 1: Virtual Desktop (panning) is enabled for this resolution on LCD.
- 2: Virtual Desktop (panning) is enabled for this resolution on NTSC TV.
- 3: Virtual Desktop (panning) is enabled for this resolution on PAL TV.
- G: Graphics acceleration supported.
- M: MPEG1/AVI video playback supported.
- C: Video Capture supported.
- NA: Mode not supported.

Table 5-13. MHS Modes for TV with SVGA TFT Panel (8MB Video Memory)

								`			<i>31</i>	
TVView					LC	D (TFT,	SVGA)	View				
TV View NTSC & PAL		640x480)		800x600)	1	024x76	B 1	1	280x102	.4 1
NISC & PAL	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp
640x480x8	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G
640x480x16	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G
640x480x32	G	G	G	G	G	G	G	G	G	G	G	G
800x600x8 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G
800x600x16 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G
800x600x32 ²	G	G	G	G	G	G	G	G	G	G	G	G
1024x768x8 ^{2,3}	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G
1024x768x16 ^{2,3}	GMC	GM	G	GMC	GM	G	GMC	GM	G	GMC	GM	G
1024x768x32 ^{2,3}	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024x8 ^{2,3}	G	G	G	G	G	G	G	G	G	G	G	G
1280x1024x16 ^{2,3}	G	G	NA	G	G	NA	G	G	NA	G	G	NA

Note:

- 1: Virtual Desktop (panning) is enabled for this resolution on LCD
- 2: Virtual Desktop (panning) is enabled for this resolution on NTSC TV
- 3: Virtual Desktop (panning) is enabled for this resolution on PAL TV
- G: Graphics acceleration supported.
- M: MPEG1/AVI video playback supported.
- C: Video Capture supported.
- NA: Mode not supported.

Trident Microsystems, Inc. 5-11

Table 5-14. MHS Modes for TV with XGA TFT Panel (4MB Video Memory)

TV View					LC	D (TFT	, XGA) \	/iew				
NTSC & PAL	•	640x480)		800x600)		1024x76	8	1	280x102	241
NI 30 & PAL	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp
640x480x8	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480x16	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480x32	G	G	NA	G	G	NA	G	G	NA	G	G	NA
800x600x8 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600x16 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600x32 ²	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
1024x768x8 ^{2,3}	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
1024x768x16 ^{2,3}	GMC	G	NA	GMC	G	NA	GMC	G	NA	GM	NA	NA
1024x768x32 ^{2,3}	G	NA	NA	G	NA	NA	G	NA	NA	NA	NA	NA
1280x1024x8 ^{2,3}	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024x16 ^{2,3}	G	G	NA	G	G	NA	G	NA	NA	G	NA	NA

Note:

- 1: Virtual Desktop (panning) is enabled for this resolution on LCD
- 2: Virtual Desktop (panning) is enabled for this resolution on NTSC TV
- 3: Virtual Desktop (panning) is enabled for this resolution on PAL TV
- G: Graphics acceleration supported.
- M: MPEG1/AVI video playback supported.
- C: Video Capture supported.
- NA: Mode not supported.

Table 5-15. MHS Modes for TV with XGA TFT Panel (8MB Video Memory)

TVViou					LC	D (TFT	, XGA) \	/iew				
TV View NTSC & PAL		640x480)	-	800x600)		1024x76	8	1	280x102	24 1
NISC & PAL	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp
640x480x8	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
640x480x16	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
640x480x32	G	G	NA	G	G	NA	G	G	NA	G	G	NA
800x600x8 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
800x600x16 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
800x600x32 ²	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1024x768x8 ^{2,3}	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
1024x768x16 ^{2,3}	GMC	G	NA	GMC	G	NA	GMC	G	NA	GMC	G	NA
1024x768x32 ^{2,3}	G	NA	NA	G	NA	NA	G	NA	NA	G	NA	NA
1280x1024x8 ^{2,3}	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1280x1024x16 ^{2,3}	G	G	NA	G	G	NA	G	G	NA	G	G	NA

Note:

- 1: Virtual Desktop (panning) is enabled for this resolution on LCD
- 2: Virtual Desktop (panning) is enabled for this resolution on NTSC TV
- 3: Virtual Desktop (panning) is enabled for this resolution on PAL TV
- G: Graphics acceleration supported.
- M: MPEG1/AVI video playback supported.
- C: Video Capture supported.
- NA: Mode not supported.

Rev. 1.0 8/6/99

Table 5-16. MHS Modes for TV with SVGA DSTN Panel (4MB Video Memory)

TV View					LCE	(DSTN	, SVGA) View				
NTSC & PAL		640x480)		800x600)	1	024x76	3 1	1	280x102	24 1
NI 3C & PAL	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp
640x480x8	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
640x480x16	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
640x480x32	G	G	G	G	G	G	G	G	NA	G	G	NA
800x600x8 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600x16 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA	GMC	GM	NA
800x600x32 ²	G	G	NA	G	G	NA	G	G	NA	G	NA	NA
1024x768x8 ^{2,3}	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
1024x768x16 ^{2,3}	GM	G	G	GM	G	G	GM	G	NA	GM	NA	NA
1024x768x32 ^{2,3}	G	NA	NA	G	NA	NA	NA	NA	NA	NA	NA	NA
1280x1024x8 ^{2,3}	G	G	G	G	G	G	G	G	NA	G	NA	NA
1280x1024x16 ^{2,3}	G	G	NA	G	G	NA	G	NA	NA	NA	NA	NA

Note:

- 1: Virtual Desktop (panning) is enabled for this resolution on LCD
- 2: Virtual Desktop (panning) is enabled for this resolution on NTSC TV
- 3: Virtual Desktop (panning) is enabled for this resolution on PAL TV
- G: Graphics acceleration supported.
- M: MPEG1/AVI video playback supported.
- C: Video Capture supported.
- NA: Mode not supported.

Table 5-17. MHS Modes for TV with SVGA DSTN Panel (8MB Video Memory)

TV View					LCD	(DSTN	, SVGA) View				
NTSC & PAL		640x480)		800x600)	1	024x768	B 1	1	280x102	241
NISC & PAL	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp	8bpp	16bpp	32bpp
640x480x8	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
640x480x16	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
640x480x32	G	G	G	G	G	G	G	G	G	G	G	NA
800x600x8 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
800x600x16 ²	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GM	NA
800x600x32 ²	G	G	NA	G	G	NA	G	G	NA	G	G	NA
1024x768x8 ^{2,3}	GMC	GMC	G	GMC	GMC	G	GMC	GMC	G	GMC	GMC	NA
1024x768x16 ^{2,3}	GM	G	G	GM	G	G	GM	G	G	GM	G	NA
1024x768x32 ^{2,3}	G	NA	NA	G	NA	NA	G	NA	NA	G	NA	NA
1280x1024x8 ^{2,3}	G	G	G	G	G	G	G	G	G	G	G	NA
1280x1024x16 ^{2,3}	G	G	NA	G	G	NA	G	G	NA	G	G	NA

Note:

- 1: Virtual Desktop (panning) is enabled for this resolution on LCD
- 2: Virtual Desktop (panning) is enabled for this resolution on NTSC TV
- 3: Virtual Desktop (panning) is enabled for this resolution on PAL TV
- G: Graphics acceleration supported.
- M: MPEG1/AVI video playback supported.
- C: Video Capture supported.
- NA: Mode not supported

Trident Microsystems, Inc. 5-13

5.3 LCD Panel Centering and Expansion

Tables 5-18 and 5-19 show the centering and expansion for LCD panels. As an example if the panel type is 800 x 600 and the vertical resolution of the video mode is 480, the vertical display can be centered or expanded to fill the panel. See Tables below. In the cases where the panel resolution matches the video mode resolution, centering and expansion do not apply, because the display will fill the whole panel.

Note that when applicable all modes can be centered.

Table 5-18. Panel Vertical Expansion

Panel Resolution	DISPLAY MODE (VERTICAL LINES)												
Parier Resolution	350G	350T	350T 400G		480	600G	768G						
LCD 800x600	c, 525*	c, 525*	c,e	c,e	c,e	Match	N/A						
LCD 1024x768**	c,700*	c,700*	c, 600*	c, 600*	c, 720*	N/A	Match						

Table 5-19. Panel Horizontal Expansion

Panel Resolution	DISPLAY MODE (HORIZONTAL PIXELS)											
Parier Resolution	640,320 G	640,320 T	720	360TG	800	1024						
LCD 800x600	c,e	c,e	•	c,e	Match	N/A						
LCD 1024x768**	c, 960*	c, 960*	•	c, 960*	c, 1000*	Match						

Table codes: c =centered, e =expanded to fill panel, **Match** = display resolution matches panel resolution; no centering or expansion is necessary, and **N/A** = not applicable.

Note:

5-14 Trident Microsystems, Inc.

^{*}This number indicates the maximum display resolution after expansion.

^{**}Due to memory bandwidth limitations, all centered modes on 1024x768 150Hz DSTN LCD panels are not supported.

[•]Graphics modes that have 720 for the horizontal resolution do not support centering or expansion. As a result, the image will display in the upper left corner of the LCD panel.

THIS PAGE INTENTIONALLY LEFT BLANK

Trident Microsystems, Inc. 5-15 THIS PAGE INTENTIONALLY LEFT BLANK

Rev. 1.0 8/6/99

6 CHIP SPECIFICATIONS

Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Α	GND RGB	HA4	HA7	HA10	HA15	HD0	HD5	HD8	HD14	HD19	HD23	HD28	GND	HD35	HD40	HD44	HD51	HD56	HD59	BWE#	CCS#	BE3#	BE6#	TA0	TA2	GND
В	GND S	HA3	HA6	HA9	HA14	HA19	HD4	HD9	HD13	HD18	HD24	HD29	HD32	HD36	HD39	HD43	HD50	HD57	HD58	GWE#	COE#	BE4#	BE7#	TA1	TA3	TA4
С	VCC S	RED	HA5	HA8	HA13	HA18	HD3	VCC3	HD12	HD17	HD25	HD30	HD33	GND	HD38	HD42	HD49	HD54	VCC3	CADV#	CADS#	BE5#	TWE#	TA5	TA6	TA7
D	VCC R	BLUE	GRN	GND	HA12	HA17	HD2	HD7	HD11	HD16	HD22	HD27	HD31	HD34	HD37	HD45	HD47	HD53	HD60	HD62	BE0#	BE2#	GND	HA20	HA21	HA22
Ε	VSYNC	HSYNC	IRSET	COMP	HA11	HA16	HD1	HD6	HD10	HD15	HD21	HD26	GND	GND	HD41	HD46	HD48	HD55	HD61	HD63	BE1#	HA24	HA23	HA25	HA26	HA27
F	ENP VDD	SDA	SCL	ENA TST#	SUSP#	GND	VCC3	VCC3	VCCI	HD20	11	12	13	14	15	16	HD52	VCCI	VCC3	VCC3	GND	M/IO#	HA28	HA29	HA30	HA31
G	ENP VEE	PD0	ENP BLT	LP	FLM	ACC3	G7	8	9	10	=		<u> </u>		-	-	17	18	19	G20	VCC3	KEN#	CACH#	AHOLD	NA#	BRDY#
Н	PD2	PD1	VCC3	DE	SHF CLK	VCC3	Н	CRT					CPU	Pins						Н	VCC3	HLCK#	ADS#	VCC3	BOFF#	SMI ACT#
J	PD5	PD4	PD3	PD7	PD6	VCCI	J	Pins				•			•					J	VCCI	W/R#	EADS#	D/C#	HITM#	MD0
K	PD11	PD10	PD8	PD12	PD14	PD9	К		- 1	K10	11	12	13	14	15	16	K17			K	MD2	MD3	MD34	MD32	MD1	MD33
L	PD16	PD15	PD13	PD17	PD19	L		Panel		L	GND	VCC3	GND	GND	VCC3	GND	L			_	L	MD37	MD5	MD35	MD4	MD36
M	PD21	PD20	PD18	PD22	PD23	М		Pins	<u>]</u>	M	VCC3	GND	GND	GND	GND	VCC3	M				М	MD8	MD39	MD6	MD38	MD7
N	D15	IMIO	GND	IMIIN	GND	N	Ī		1	N	GND	GND	GND	GND	GND	GND	N				N	GND	MD41	MD40	MD9	GND
Р	GND	VID D13	VID D14 VID	VID D12 VID	GND	Р		Video		Р	GND	GND	GND	GND	GND	GND	Р				Р	GND	MD43	MD10	MD42	MD11
R	VID D9 VID	VID D10 VID	D11 VID	D7	VID D8	R		Pins		R	ACC3	GND	GND	GND	GND	VCC3	R				R	MD14 SCAS	MD12	MD44	MD13	MD45 SCAS
T	D4	D5	D6	VID D2	VID D3	T	Ī			T	GND	VCC3	GND	GND	VCC3	GND	T	ı		1 1	T	B#	MD46	MD15	MD47	A#
U	VID D0	VID D1	VID VS	VID HS	D6	VCC5	U		1	U10	11	12	13	14	15	16	U17		Mem	U	VSUS3	SRAS C#	MECC0	SCAS C#	SRAS A#	SRAS B#
V	D5	TV D7	VID CLK	TV D3	TV D4	VCCI	V	TV	١,			7							Pins	V	VCCI	CAS4#		MECC1	CAS0#	MECC5
W	D0 D0	TV D1	VCC3	TV HS	TV D2	VCC3	W	Pins		PCI	Pins									W	VCC3	SWE B#	SWE A#	VCC3	CAS1#	CAS5#
Υ	VCC D	VCC V1	TV VS	CLK	INTA#	VCC3	Y7	8	9	10						Ī	17	18	19	Y20	VCC3	SWE C#	RAS3#	RAS2#	RAS1#	RAS0#
AA	GND V1	VCC V2	VLF1	XLTI	XLTO	GND	VCC3	VCC3	VCCI	AD7	11	12	13	14	15	16	GNDA	VCCI	VCC3	VCC3	GND	VSUS2	MA1	MA0	RAS5#	RAS4#
AB	GND V2	VLF2	GNTX#	REQX#	GNT3#	AD16	TRDY#	SERR#	AD13	CBE0#	AD3	PCLK	GND	GND	MD28	VCCA	GNDA	MD22	VSUS3	MD19	MCLK O	MD48	MA5	MA4	MA3	MA2
AC	REQ3#	GNT2#	REQ2#	GND	CBE3#	AD17	DEV SEL#	PAR	AD12	AD8	AD2	PGNT#	PCK RUN#	MD62	MD60	VCCA	MD56	MD54	MD52	MD17	HCLK	SUST#	GND	MA8	MA7	MA6
AD	GNT1#	REQ1#	GNT0#	AD26	AD23	AD20	CBE2#	VCC3	CBE1#	AD11	AD6	AD1	GND	MD31	MD29	MD58	MD25	MD23	VCC3	MD51	MD49	MECC3	CAS7#	CAS2#	MA10	MA9
AE	REQ0#	AD30	AD28	AD25	AD22	AD19	IRDY#	STOP#	AD15	AD10	AD5	AD0	PWR OK	MD63	MD61	MD27	MD57	MD55	MD21	MD20	MD50	MECC7	MECC2	CAS6#	MA12	MA11
AF	AD31	AD29	AD27	AD24	AD21	AD18	FRM#	LOCK#	AD14	AD9	AD4		RESET#	GND	MD30	MD59	MD26	MD24	MD53	MD18	MD16	MCLK I	MECC6	CAS3#	MA13	GND
Key	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Figure 6-1. CyberBlade i7 Ball Diagram (Top View)

Trident Microsystems, Inc.

6.1 Mechanical Specifications

Figure 6-4. Mechanical Specifications - 492-Pin Ball Grid Array Package

8/6/99

Table 6-1. CyberBlade i7 Pin List (Numerical Order)

Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Names	Pin#		Pin Name
A01	Р	GNDRGB	D05	10	HA12	H03	Р	VCC3	P01	Р	GND	W25	0	CAS1# / DQM1#	AC23	Р	GND
A02	10	HA04	D06	10	HA17	H04	0	DE	P02	10	VIDD13	W26	0	CAS5# / DQM5#	AC24	0	MA08
A03	10	HA07	D07	10	HD02	H05	0	SHFCLK	P03	10	VIDD14	Y01	P	VCCD	AC25	0	MA07
A04 A05	10	HA10 HA15	D08 D09	10 10	HD07 HD11	H06 H21	P P	VCC3	P04 P05	10 P	VIDD12 GND	Y02 Y03	P	VCCV1 TVVS	AC26 AD01	0	MA06 GNT1#
A06	10	HD00	D10	10	HD16	H22		HLOCK#	P11	P	GND	Y04	0	TVCLK	AD01 AD02	ī	REQ1#
A07	10	HD05	D11	10	HD22	H23	10	ADS#	P12	P	GND	Y05	0	INTA#	AD03	0	GNT0#
A08	10	HD08	D12	10	HD27	H24	Р	VCC3	P13	Р	GND	Y06	Р	VCC3	AD04	10	AD26
A09	10	HD14	D13	10	HD31	H25	0	BOFF#	P14	Р	GND	Y21	P	VCC3	AD05	10	AD23
A10 A11	10	HD19 HD23	D14 D15	10 10	HD34 HD37	H26 J01	0	SMIACT# PD05	P15 P16	P P	GND GND	Y22 Y23	0	SWEC# / RAS3# / CS3#	AD06 AD07	10	AD20 CBE2#
A11	10	HD28	D16	10	HD45	J02	0	PD04	P22	P	GND	Y24	0	RAS2# / CS2#	AD07	P	VCC3
A13	P	GND	D17	10	HD47	J03	0	PD03	P23	10	MD43	Y25	0	RAS1# / CS1#	AD09	10	CBE1#
A14	10	HD35	D18	10	HD53	J04	0	PD07	P24	10	MD10	Y26	0	RAS0# / CS0#	AD10	10	AD11
A15	10	HD40	D19	10	HD60	J05	0	PD06	P25	10	MD42	AA01	P	GNDV1	AD11	10	AD06
A16 A17	10	HD44 HD51	D20 D21	10	HD62 BE0#	J06 J21	P P	VCCI	P26 R01	10	MD11 VIDD09	AA02 AA03	P A	VCCV2 VLF1	AD12 AD13	10 P	AD01 GND
A18	10	HD56	D22	10	BE2#	J22	10	W/R#	R02	10	VIDD10	AA04	ī	XLTI	AD13	10	MD31
A19	Ю	HD59	D23	Р	GND	J23	0	EADS#	R03	10	VIDD11	AA05	0	XLTO	AD15	Ю	MD29
A20	0	BWE#	D24	10	HA20	J24	10	D/C#	R04	10	VIDD07	AA06	Р	GND	AD16	10	MD58
A21	0	CCS#	D25	10	HA21	J25	10	HITM#	R05	10	VIDD08	AA07	P	VCC3	AD17	10	MD25
A22 A23	10	BE3# BE6#	D26 E01	0	HA22 VSYNC	J26 K01	0	MD00 PD11	R11 R12	P P	VCC3 GND	AA08 AA09	P P	VCC3	AD18 AD19	10 P	MD23 VCC3
A24	10	TA0	E02	0	HSYNC	K02	0	PD10	R13	P	GND	AA10	10	AD07	AD17	10	MD51
A25	10	TA2	E03	A	IRSET	K03	0	PD08	R14	P	GND	AA17	P	GNDA	AD21	10	MD49
A26	Р	GND	E04	Α	COMP	K04	0	PD12	R15	Р	GND	AA18	Р	VCCI	AD22	10	MECC3
B01	P	GNDS	E05	10	HA11	K05	0	PD14	R16	P	VCC3	AA19	Р	VCC3	AD23	0	CAS7# / DQM7#
B02 B03	10	HA03 HA06	E06 E07	10	HA16 HD01	K06 K21	0	PD09 MD02	R22 R23	10	MD14 MD12	AA20 AA21	P P	VCC3 GND	AD24 AD25	0	CAS2# / DQM2# MA10
B03	10	HA09	E08	10	HD06	K21	10	MD03	R23	10	MD44	AA21	P	VSUS2	AD25	0	MA09
B05	10	HA14	E09	10	HD10	K23	10	MD34	R25	10	MD13	AA23	0	MA01	AE01	Ī	REQ0#
B06	10	HA19	E10	10	HD15	K24	10	MD32	R26	10	MD45	AA24	0	MA00	AE02	10	AD30
B07	10	HD04	E11	10	HD21	K25	10	MD01	T01	10	VIDD04	AA25	0	RAS5# / CS5# /	AE03	10	AD28
B08 B09	10	HD09 HD13	E12 E13	10 P	HD26 GND	K26 L01	0	MD33 PD16	T02 T03	10	VIDD05 VIDD06	AA26 AB01	0 P	RAS4# / CS4# / GNDV2	AE04 AE05	10	AD25 AD22
B10	10	HD18	E14	P	GND	L02	0	PD15	T04	10	VIDD02	AB02	A	VLF2	AE06	10	AD19
B11	10	HD24	E15	10	HD41	L03	0	PD13	T05	10	VIDD03	AB03	0	GNTX#	AE07	10	IRDY#
B12	10	HD29	E16	10	HD46	L04	0	PD17	T11	Р	GND	AB04		REQX#	AE08	10	STOP#
B13	10	HD32	E17	10	HD48	L05	0	PD19	T12	Р	VCC3	AB05	0	GNT3#	AE09	10	AD15
B14 B15	10	HD36 HD39	E18 E19	10 10	HD55 HD61	L11 L12	P P	VCC3	T13 T14	P P	GND GND	AB06 AB07	10	AD16 TRDY#	AE10 AE11	10	AD10 AD05
B16	10	HD43	E20	10	HD63	L13	P	GND	T15	P	VCC3	AB08	10	SERR# / PWRGD	AE12	10	AD00
B17	Ю	HD50	E21	Ю	BE1#	L14	Р	GND	T16	Р	GND	AB09	Ю	AD13	AE13	ı	PWROK
B18	10	HD57	E22	10	HA24	L15	Р	VCC3	T22	0	SCASB#	AB10	10	CBE0#	AE14	10	MD63
B19	10	HD58	E23	10	HA23	L16	P	GND	T23	10	MD46	AB11	10	AD03	AE15	10	MD61
B20 B21	0	GWE# COE#	E24 E25	10	HA25 HA26	L22 L23	10	MD37 MD05	T24 T25	10	MD15 MD47	AB12 AB13	P	PCLK GND	AE16 AE17	10	MD27 MD57
B22	10	BE4#	E26	10	HA27	L24	10	MD35	T26	0	SCASA#	AB14	P	GND	AE18	10	MD55
B23	Ю	BE7#	F01	0	ENPVDD	L25	10	MD04	U01	10	VIDD00	AB15	10	MD28	AE19	10	MD21
B24	10	TA1	F02	10	SDA	L26	10	MD36	U02	10	VIDD01	AB16	Р	VCCA	AE20	10	MD20
B25	10	TA3 TA4	F03	10	SCL ENATST#	M01	0	PD21 PD20	U03 U04	10	VIDVS	AB17	P IO	MD22	AE21	10	MD50
B26 C01	P	VCCS	F04 F05	-	SUSP#	M02 M03	0	PD20	U05	10	TVD6	AB18 AB19	P	VSUS3	AE22 AE23	10	MECC7 MECC2
C02	Α	RED	F06	P	GND	M04	0	PD22	U06	P	VCC5	AB20	10	MD19	AE24	0	CAS6# / DQM6#
C03	10	HA05	F07	Р	VCC3	M05	0	PD23	U21	Р	VSUS3	AB21	0	MCLKO	AE25	0	MA12
C04	10	HA08	F08	Р	VCC3	M11	Р	VCC3	U22	0	SRASC#//	AB22	10	MD48	AE26	0	MA11
C05 C06	10	HA13 HA18	F09 F10	P IO	HD20	M12 M13	P P	GND GND	U23 U24	0	MECC0 SCASC# / CKE2#	AB23 AB24	0	MA05 MA04	AF01 AF02	10	AD31 AD29
C07	10	HD03	F17		HD52	M14	P	GND	U25	0	SRASA#	AB24 AB25	0	MA03	AF02 AF03	10	AD27
C08	P	VCC3	F18	P	VCCI	M15	P	GND	U26	0	SRASB#	AB26	0	MA02	AF04	10	AD24
C09	10	HD12	F19		VCC3	M16	Р	VCC3	V01	0	TVD5	AC01		REQ3#	AF05	10	AD21
C10	10	HD17	F20	Р	VCC3	M22	10	MD08	V02	0	TVD7	AC02	0	GNT2#	AF06	10	AD18
C11 C12	10	HD25 HD30	F21 F22	P IO	M/IO#	M23 M24	10	MD39 MD06	V03 V04	0	VIDCLK TVD3	AC03 AC04	P	REQ2# GND	AF07 AF08	10	FRAME# LOCK#
C12	10	HD33	F23		HA28	M25	10	MD38	V04 V05	0	TVD3	AC04 AC05	10	CBE3#	AF09	10	AD14
C14	P	GND	F24		HA29	M26	10	MD07	V06	P	VCCI	AC06	10	AD17	AF10	10	AD09
C15	10	HD38	F25	10	HA30	N01	10	VIDD15	V21	Р	VCCI	AC07	10	DEVSEL#	AF11	10	AD04
C16	10	HD42	F26		HA31	NO2	0	IMIO	V22	0	CAS4# / DQM4#	AC08	10	PAR	AF12		PREQ#
C17 C18	10	HD49 HD54	G01 G02		ENPVEE PD00	N03 N04	P	IMIIN	V23 V24	10	MECC4 MECC1	AC09 AC10	10	AD12 AD08	AF13 AF14	P	RESET# GND
C19	P	VCC3	G02		ENPBLT	N05	P	GND	V24 V25	0	CAS0# / DQM0#	AC10	10	AD02	AF14 AF15	10	MD30
C20	0	CADV#	G04		LP	N11	P	GND	V26	10	MECC5	AC12	0	PGNT#	AF16	10	MD59
C21	0	CADS#	G05		FLM	N12	Р	GND	W01	0	TVD0	AC13	10	PCKRUN#	AF17	10	MD26
C22	10	BE5#	G06		VCC3	N13	Р	GND	W02	0	TVD1	AC14	10	MD62	AF18	10	MD24
C23 C24	0	TWE# TA5	G21 G22		VCC3 KEN#	N14 N15	P P	GND GND	W03 W04	P	TVHS	AC15 AC16	10 P	WD60 VCCA	AF19 AF20	10	MD53 MD18
C24	10	TA6	G23	-	CACHE#	N16	P	GND	W05	0	TVD2	AC16 AC17	10	MD56	AF20 AF21	10	MD16
C26	10	TA7	G24	0	AHOLD	N22	P	GND	W06	P	VCC3	AC18	10	MD54	AF22	I	MCLKI
D01	Р	VCCR	G25		NA#	N23	10	MD41	W21	Р	VCC3	AC19	10	MD52	AF23	10	MECC6
D02	A	BLUE	G26	0	BRDY#	N24	5 0	MD40	W22	0	SWEB# / MWEB#	AC20	10	MD17	AF24	0	CAS3# / DQM3#
D03 D04	A P	GRN GND	H01 H02		PD02 PD01	N25 N26	10 P	MD09 GND	W23 W24	0 P	SWEA# / MWEA# VCC3	AC21 AC22	1	HCLK SUST#	AF25 AF26	0 P	MA13 GND
D04	-	CHD	TIUZ	U	1 201	1420	•	CHD	VVZ4		*000	NUZZ		JJJ 11	A1 20	- "	CIAD

6-4

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL

Table 6-2. CyberBlade i7 Pin List (Alphabetical Order)

Pin #		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin#		Pin Name	Pin #		Pin Names	Pin#		Pin Name
AE12	10	AD00	F21	Р	GND	E26	10	HA27	AA24	0	MA00	AE23	10	MECC2	V01	0	TVD5
AD12	Ю	AD01	L11	Р	GND	F23	10	HA28	AA23	0	MA01	AD22	10	MECC3	U05	0	TVD6
AC11		AD02	L13	Р	GND	F24	10	HA29	AB26	0	MA02	V23	10	MECC4	V02	0	TVD7
AB11	10	AD03	L14	P	GND	F25	10	HA30	AB25	0	MA03	V26	10	MECC5	W04	0	TVHS
AF11 AE11		AD04 AD05	L16 M12	P P	GND GND	F26 AC21	10	HA31 HCLK	AB24 AB23	0	MA04 MA05	AF23 AE22	10	MECC6 MECC7	Y03 C23	0	TVVS TWE#
AD11		AD05 AD06	M13	P	GND	A06	10	HD00	AC26	0	MA06	G25	0	NA#	C08	P	VCC3
AA10		AD07	M14	P	GND	E07	10	HD01	AC25	0	MA07	AC08	10	PAR	C19	P	VCC3
AC10		AD08	M15	Р	GND	D07	10	HD02	AC24	0	MA08	AC13	10	PCKRUN#	F07	Р	VCC3
AF10		AD09	N03	P	GND	C07	10	HD03	AD26	0	MA09	AB12	1	PCLK	F08	P	VCC3
AE10 AD10	10 10	AD10 AD11	N05 N11	P P	GND GND	B07	10	HD04 HD05	AD25	0	MA10	G02 H02	0	PD00 PD01	F19 F20	P P	VCC3
AC09		AD11 AD12	N12	P	GND	A07 E08	10	HD06	AE26 AE25	0	MA11 MA12	H01	0	PD02	G06	P	VCC3
AB09		AD13	N13	P	GND	D08	10	HD07	AF25	0	MA13	J03	0	PD03	G21	P	VCC3
AF09	Ю	AD14	N14	Р	GND	A08	10	HD08	AF22	-	MCLKI	J02	0	PD04	H03	Р	VCC3
AE09		AD15	N15	Р	GND	B08	10	HD09	AB21	0	MCLKO	J01	0	PD05	H06	Р	VCC3
AB06 AC06	10 10	AD16 AD17	N16 N22	P P	GND GND	E09 D09	10	HD10 HD11	J26 K25	10	MD00 MD01	J05 J04	0	PD06 PD07	H21 H24	P P	VCC3
AF06		AD17 AD18	N26	P	GND	C09	10	HD12	K25	10	MD02	K03	0	PD07 PD08	L12	P	VCC3
AE06		AD19	P01	P	GND	B09	10	HD13	K22	10	MD03	K06	0	PD09	L15	P	VCC3
AD06	Ю	AD20	P05	Р	GND	A09	10	HD14	L25	Ю	MD04	K02	0	PD10	M11	Р	VCC3
AF05		AD21	P11	Р	GND	E10	10	HD15	L23	10	MD05	K01	0	PD11	M16	Р	VCC3
AE05		AD22	P12	P	GND	D10	10	HD16	M24	10	MD06	K04	0	PD12	R11	Р	VCC3
AD05 AF04	10 10	AD23 AD24	P13 P14	P P	GND GND	C10 B10	10	HD17 HD18	M26 M22	10	MD07 MD08	L03 K05	0	PD13 PD14	R16 T12	P P	VCC3
AE04		AD24 AD25	P14	P	GND	A10	10	HD19	N25	10	MD09	L02	0	PD15	T15	P	VCC3
AD04		AD26	P16	P	GND	F10	10	HD20	P24	10	MD10	L01	0	PD16	W03	P	VCC3
AF03	10	AD27	P22	Р	GND	E11	10	HD21	P26	10	MD11	L04	0	PD17	W06	Р	VCC3
AE03		AD28	R12	Р	GND	D11	10	HD22	R23	10	MD12	M03	0	PD18	W21	Р	VCC3
AF02		AD20	R13	P	GND	A11	10	HD23	R25	10	MD13	L05 M02	0	PD19 PD20	W24 Y06	P	VCC3
AE02 AF01		AD30 AD31	R14 R15	P P	GND GND	B11 C11	10	HD24 HD25	R22 T24	10	MD14 MD15	M01	0	PD20 PD21	Y06 Y21	P P	VCC3
H23		ADS#	T11	P	GND	E12	10	HD26	AF21	10	MD16	M04	0	PD22	AA07	P	VCC3
G24		AHOLD	T13	Р	GND	D12	10	HD27	AC20	Ю	MD17	M05	0	PD23	AA08	Р	VCC3
D21		BE0#	T14	Р	GND	A12	10	HD28	AF20	10	MD18	AC12	0	PGNT#	AA19	Р	VCC3
E21	10	BE1#	T16	P	GND	B12	10	HD29	AB20	10	MD19	AF12		PREQ#	AA20	P	VCC3
D22 A22	10 10	BE2# BE3#	AA06 AA21	P P	GND GND	C12 D13	10	HD30 HD31	AE20 AE19	10	MD20 MD21	AE13 Y26	0	PWROK RAS0# / CS0#	AD08 AD19	P P	VCC3
B22	10	BE4#	AB13	P	GND	B13	10	HD32	AB18	10	MD22	Y25	0	RAS1# / CS1#	U06	P	VCC5
C22	10	BE5#	AB14	P	GND	C13	10	HD33	AD18	Ю	MD23	Y24	0	RAS2# / CS2#	AB16	P	VCCA
A23	10	BE6#	AC04	Р	GND	D14	10	HD34	AF18	10	MD24	Y23	0	RAS3# / CS3#	AC16	P	VCCA
B23		BE7#	AC23	P	GND	A14	10	HD35	AD17	10	MD25	AA26	0	RAS4#/CS4#/CK	Y01	Р	VCCD
D02 H25	A O	BLUE BOFF#	AD13 AF14	P P	GND GND	B14 D15	10	HD36 HD37	AF17 AE16	10	MD26 MD27	AA25 C02	O A	RAS5#/CS5#/CK RED	F09 F18	P P	VCCI
G26	10	BRDY#	AF26	P	GND	C15	10	HD38	AB15	10	MD28	AE01	T	REQ0#	J06	P	VCCI
A20	0	BWE#	AA17	Р	GNDA	B15	10	HD39	AD15	Ю	MD29	AD02	-	REQ1#	J21	Р	VCCI
G23	-	CACHE#	AB17	Р	GNDA	A15	10	HD40	AF15	10	MD30	AC03		REQ2#	V06	Р	VCCI
C21	0	CADS#	A01	P	GNDRGB	E15	10	HD41	AD14	10	MD31	AC01		REQ3#	V21	P	VCCI
C20 V25	0	CADV# CAS0# /	B01 AA01	P P	GNDS GNDV1	C16 B16	10	HD42 HD43	K24 K26	10	MD32 MD33	AB04 AF13	_	REQX# RESET#	AA09 AA18	P P	VCCI
W25	0	CAS1# /	AB01	P	GNDV1	A16	10	HD44	K23	10	MD34	T26	0	SCASA#	D01	P	VCCR
AD24	0	CAS2# /	AD03	0	GNT0#	D16	10	HD45	L24	10	MD35	T22	0	SCASB#	C01	P	VCCS
AF24	0	CAS3# /	AD01	0	GNT1#	E16	10	HD46	L26	10	MD36	U24	0	SCASC# / CKE2#	Y02	Р	VCCV1
V22	0	CAS4# /	AC02	0	GNT2#	D17	10	HD47	L22	10	MD37	F03	10	SCL	AA02	P	VCCV2
W26 AE24	0	CAS5# / CAS6# /	AB05 AB03	0	GNT3# GNTX#	E17 C17	10	HD48 HD49	M25 M23	10 10	MD38 MD39	F02 AB08	10	SDA SERR# / PWRGD	V03 U01	10	VIDCLK VIDD00
AD23	0	CAS6# /	D03	A	GRN GRN	B17	10	HD50	N24	10	MD40	H05	0	SHFCLK	U02	10	VIDD00 VIDD01
AB10		CBE0#	B20	0	GWE#	A17	10	HD51	N23	10	MD41	H26	Ī	SMIACT#	T04	10	VIDD02
AD09		CBE1#	B02	10	HA03	F17	10	HD52	P25	10	MD42	U25	0	SRASA#	T05	10	VIDD03
AD07		CBE2#	A02	10	HA04	D18	10	HD53	P23	10	MD43	U26	0	SRASB#	T01	10	VIDD04
AC05 A21		CBE3# CCS#	C03 B03	10	HA05 HA06	C18 E18	10	HD54 HD55	R24 R26	10	MD44 MD45	U22 AE08	0	SRASC# / CKE3# STOP#	T02 T03	10	VIDD05 VIDD06
B21		COE#	A03	10	HA07	A18	10	HD56	T23	10	MD46	F05	I I	SUSP	R04	10	VIDD06 VIDD07
E04	А	COMP	C04	10	HA08	B18	10	HD57	T25	10	MD47	AC22	Ī	SUST#	R05	10	VIDD08
J24	10	D/C#	B04	10	HA09	B19	10	HD58	AB22	10	MD48	W23	0	SWEA# / MWEA#	R01	10	VIDD09
H04		DE DE	A04	10	HA10	A19	10	HD59	AD21	10	MD49	W22	0	SWEB# / MWEB#	R02	10	VIDD10
AC07		DEVSEL# EADS#	E05	10	HA11	D19	10	HD60	AE21 AD20	10	MD50 MD51	Y22	0	SWEC# / TA0	R03	10	VIDD11
J23 F04		ENATST#	D05 C05	10	HA12 HA13	E19 D20	10	HD61 HD62	AC19	10	MD51	A24 B24	10	TA1	P04 P02	10	VIDD12 VIDD13
G03		ENPBLT	B05	10	HA14	E20	10	HD63	AF19	10	MD53	A25	10	TA2	P03	10	VIDD14
F01	0	ENPVDD	A05	10	HA15	J25	1	HITM#	AC18	10	MD54	B25	10	TA3	N01	10	VIDD15
G01		ENPVEE	E06	10	HA16	H22	1	HLOCK#	AE18	10	MD55	B26	10	TA4	U04	10	VIDHS
G05		FLM FDAME#	D06	10	HA17	E02	0	HSYNC	AC17	10	MD56	C24	10	TA5	U03	10	VIDVS
AF07 A13		FRAME# GND	C06 B06	10	HA18 HA19	N02 N04	0	IMIO IMIIN	AE17 AD16	10	MD57 MD58	C25 C26	10	TA6 TA7	AA03 AB02	A	VLF1 VLF2
A13		GND	D24	10	HA20	Y05	0	INTA#	AF16	10	MD59	AB07	10	TRDY#	AA22	P	VSUS2
C14	Р	GND	D25	10	HA21	AE07	10	IRDY#	AC15	10	MD60	Y04	0	TVCLK	U21	Р	VSUS3
D04	Р	GND	D26	10	HA22	E03	Α	IRSET	AE15	10	MD61	W01	0	TVD0	AB19	Р	VSUS3
D23		GND	E23	10	HA23	G22	0	KEN#	AC14	10	MD62	W02	0	TVD1	E01	0	VSYNC
E13 E14		GND GND	E22 E24	10	HA24 HA25	AF08 G04	0	LOCK#	AE14 U23	10	MD63 MECC0	W05 V04	0	TVD2 TVD3	J22 AA04	10	W/R# XLTI
F06		GND	E25	10	HA26	F22		M/IO#	V24		MECC1	V04 V05	0	TVD3	AA04 AA05	0	XLTO
. 50				?	20				127				J	1	, , , , , ,	J	

8/6/99

6.2 Pin Descriptions

Table 6-3. CPU Interface

Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
HD[63:0]	(see pinout tables)	10	Host CPU Data. These signals are connected to the CPU data bus.
BE[7:0]#	B23, A23, C22, B22, A22, D22, E21, D21		Byte Enables. The CPU byte enables indicate which byte lane the current CPU cycle is accessing.
HA[31:3]	(see pinout tables)	10	Host Address Bus. HA[31:3] connect to the address bus of the host CPU. During CPU cycles HA[31:3] are inputs. These signals are driven by the CyberBlade i7 during cache snooping operations.
ADS#	H23	l	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle to initiate a command
M/IO#	F22		Memory / IO Command Indicator
W/R#	J22		Write / Read Command Indicator
D/C#	J24		Data / Control Command Indicator
BRDY#	G26	0	Bus Ready . The CyberBlade I7 asserts BRDY# to indicate to the CPU that data is available on reads or has been received on writes.
EADS#	J23	0	External Address Strobe . Asserted by the CyberBlade I7 to inquire the L1 cache when serving PCI master accesses to main memory.
KEN# / INV	G22	0	Cache Enable / Invalidate. KEN# / INV functions as both the KEN# signal during CPU read cycles and the INV signal during L1 cache snoop cycles.
HITM#	J25	I	Hit Modified. Asserted by the CPU to indicate that the address presented with the last assertion of EADS# is modified in the L1 cache and needs to be written back.
HLOCK#	H22	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.
CACHE#	G23	I	Cacheable Indicator. Asserted by the CPU during a read cycle to indicate the CPU can perform a burst line fill. Asserted by the CPU during a write cycle to indicate that the CPU will perform a burst write-back cycle.
AHOLD	G24	0	Address Hold. The CyberBlade I7 asserts AHOLD when a PCI master is accessing main memory. AHOLD is held for the duration of the PCI burst transfer.
NA#	G25	0	Next Address Indicator.
BOFF#	H25	0	Back Off. Asserted by the CyberBlade I7 when required to terminate a CPU cycle that was in progress.
SMIACT#	H26	I	System Management Interrupt Active. This is asserted by the CPU when it is in system management mode as a result of SMI.

Note: Clocking of the CPU and cache interfaces is performed with HCLK; see the clock pin group at the end of the pin descriptions section for descriptions of the clock input pins.

Note: All signals above require 4.7K pullups to VCC3 except EADS#, HITM#, AHOLD, HA, and HD.

Note: All signals above connect directly to the host CPU except HA and HD which connect directly to the L2 cache SRAMs and connect to the host CPU through 22 ohm series resistors (see schematics in Chapter 7 for more information).

Trident Microsystems, Inc. 6-5

Table 6-4. L2 Cache Control

Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
CADS#	C21	0	Cache Address Strobe. Assertion causes the burst SRAM to load the
			address register from address pins. Connected to all cache SRAMs.
CADV#	C20	0	Cache Advance. Assertion causes the burst SRAM to advance to the next
			Quadword in the cache line. Connected to all cache SRAMs.
COE#	B21	0	Cache Output Enable. Typically connected to all cache SRAMs.
CCS#	A21	0	Cache Chip Select. Typically connected to all cache SRAMs.
TA[7:0]	C26, C25, C24,	10	Tag Address. TA0-7 are inputs during CPU accesses and outputs during
	B26, B25, A25,		L2 cache line fills and L2 line invalidates during inquire cycles.
	B24, A24		
TWE#	C23	0	Tag Write Enable. When asserted, new state and tag addresses are written
			into the external tag. Connected to all cache SRAMs.
GWE#	B20	0	Global Write Enable. Connected to all cache SRAMs.
BWE#	A20	0	Byte Write Enable. Connected to all cache SRAMs.

Note: CyberBlade i7 pinouts were defined for optimum use with the ATX PCB form factor (shown in simplified form below). The general component layout shown may be used as a guide for ATX PCB component placement.

6-6 Trident Microsystems, Inc.

8/6/99

Table 6-5. DRAM Interface

Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
MD[63:0]	(see pinout tables)	Ю	Memory Data. These signals are connected to the DRAM data bus. Note: MD0 is internally pulled up for use in ED0 memory type detection.
MECC[7-0]	AE22, AF23, V26, V23, AD22,	10	DRAM ECC or EC Data.
BAB[40 0]	AE23, V24, U23	0/1	Note: These pins are powered by VSUS
MA[13:0] Power-up Configuration	AF25, AE25, AE26, AD25, AD26, AC24, AC25, AC26,	O/I	Memory Address. DRAM address lines. These pins are also used for power-up configuration options (sampled on the rising edge of RESET#): MA13-12 Rx68 [1-0] Host CPU Bus Frequency (0=Auto, 1=100, 2=66)
	AB23, AB24, AB25, AB26, AA23, AA24		MA11 SERR Pin Function (0=SERR, 1=PWRGD) MA10-9 North Bridge Clock Delay (0-3 Clocks) MA8 -reserved-
			MA7 Graphics Test Mode (0 =Normal, 1 = Test Mode)
			MA6 LCD Output (0 = Off, 1 = On) MA5-3 Panel Type (0-3 = TFT, 4-7 = DSTN) MA2 -reserved- MA1.0 Craphics Clack Delay (0.3 Clacks)
			MA1-0 Graphics Clock Delay (0-3 Clocks) All pins have internal pull-downs for default low (0). Strap 1 using $4.7K\Omega$.
RAS5# / CS5# / CKE1#,	AA25, AA26,	0	Multifunction Pins 1. FPG/EDO DRAM: Row Address Strobe of each bank.
RAS4# / CS4# / CKE0#, RAS3# / CS3#, RAS2# / CS2#, RAS1# / CS1#, RAS0# / CS0#	Y23, Y24, Y25, Y26		 Synchronous DRAM: Chip select of each bank. Synchronous DRAM: Chip select of each bank. Clock Enable: Clock enables 1-0 (see SCASC# & SRASC# for CKE[3-2]#). CKE[3-0]# may be connected to the DRAM modules in any order. Each DRAM module requires 2 clock enables, so CKE[3-0]# may only be used to implement Suspend to RAM with the first 2 modules. Note: These pins are powered by VSUS.
CAS#[7:0] / DQM#[7:0]	AD23, AE24, W26, V22, AF24, AD24, W25, V25	0	Multifunction Pins 1. FPG/EDO DRAM: Column Address Strobe of each byte lane. 2. Synchronous DRAM: Data mask of each byte lane. Note: These pins are powered by VSUS.
SRASA#, SRASB#, SRASC# / CKE3#	U25, U26, U22	0	Row Address Command Indicator. For support of up to three Synchronous DRAM DIMM slots (these are not copies as each DIMM slot may have separate timing). "A" controls banks 0-1 (module 0), "B" controls banks 2-3 (module 1), and "C" controls banks 4-5 (module 2). See RAS[5-4]# for an explanation of CKE3#.
SCASA#, SCASB#, SCASC# / CKE2#	T26, T22, U24	0	Column Address Command Indicator. For support of up to three Synchronous DRAM DIMM slots (these are not copies as each DIMM slot may have separate timing). "A" controls banks 0-1 (module 0), "B" controls banks 2-3 (module 1), and "C" controls banks 4-5 (module 2). See RAS[5-4]# for an explanation of CKE2#.
SWEA# / MWEA#, SWEB# / MWEB#, SWEC# / MWEC#	W23, W22, Y22	0	Write Enable Command Indicator. For support of up to three Synchronous DRAM DIMM slots (these are not copies as each DIMM slot may have separate timing). Multifunction pins, used as MWE# pins for FPG/EDO memory. "A" controls banks 0-1 (module 0), "B" controls banks 2-3 (module 1), and "C" controls banks 4-5 (module 2). Note: These pins are powered by VSUS.

Note: Clocking of the memory subsystem uses memory clock (MCLK); see the clock pin group at the end of the pin descriptions section for descriptions of the clock pins.

Note: Connect all memory interface pins except MD and MECC to the DRAM modules through 22Ω series resistors (see schematics in Chapter 7 for more information).

Table 6-6. PCI Bus Interface

Signal Name	Pin#	<u>I/O</u>	Signal Description
AD[31:0]	(see pinout tables)	10	Address/Data Bus. The standard PCI address and data lines. The address is driven with FRAME# assertion and data is driven or received in following cycles.
CBE[3:0]#	AC5, AD7, AD9, AB10	Ю	Command/Byte Enables. Commands are driven with FRAME# assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
PAR	AC8	10	Parity. A single parity bit is provided over AD[31:0] and C/BE[3:0].
FRAME#	AF7	10	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator. $10K\Omega$ pullup to VCC3.
IRDY#	AE7	Ю	Initiator Ready. Asserted when initiator is ready for data transfer. $10K\Omega$ pullup to VCC3.
TRDY#	AB7	10	Target Ready. Asserted when target is ready for data transfer. $10K\Omega$ pullup to VCC3.
STOP#	AE8	Ю	Stop. Asserted by the target to request the master to stop the current transaction. $10K\Omega$ pullup to VCC3.
DEVSEL#	AC7	10	Device Select. This signal is driven by the CyberBlade I7 when a PCI initiator is attempting to access main memory. It is an input when the CyberBlade I7 is acting as a PCI initiator. $10K\Omega$ pullup to VCC3.
LOCK#	AF8	Ю	Lock. Used to establish, maintain, and release resource lock. $10K\Omega$ pullup to VCC3.
SERR# / PWRGD	AB8	10/1	System Error. The CyberBlade I7 will pulse this signal when it detects a system error condition (10K Ω pullup to VCC3). May optionally be configured as a PWRGD input (see strapping pin MA11).
PREQ#	AF12	I	South Bridge Request. This signal comes from the South Bridge. PREQ# is the South Bridge request for the PCI bus. $10K\Omega$ pullup to VCC3.
PGNT#	AC12	0	South Bridge Grant. This signal driven by the CyberBlade i7 to grant PCI access to the South Bridge. $10K\Omega$ pullup to VCC3.
REQ[3:0]#	AC1, AC3, AD2, AE1	I	PCI Master Request. PCI master requests for use of the PCI bus. $2.2K\Omega$ pullup to VCC5.
GNT[3:0]#	AB5, AC2, AD1, AD3	0	PCI Master Grant. Permission is given to the master to use the PCI bus. $2.2K\Omega$ pullup to VCC3.
REQX#	AB4	I	High Priority PCI Master Request. CyberBlade special high priority master request for use of the PCI bus. 4.7 K Ω pullup to VCC3 if not used.
GNTX#	AB3	0	High Priority PCI Master Grant . Permission is given to the CyberBlade high priority master to use the PCI bus.
INTA#	Y5	0	PCI Interrupt Out. INTA# is an asynchronous active low output used to signal an event that requires handling. It is driven by the integrated graphics controller.

Note: Clocking of the PCI interface is performed with PCLK; see the clock pin group at the end of the pin descriptions section for descriptions of the clock input pins.

8/6/99

Table 6-7. Clock / Reset Control

Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
HCLK	AC21	I	Host Clock . This pin receives the host CPU clock. This clock is used by all logic in the host CPU domain. It is driven by the external clock synthesizer.
MCLKI	AF22	I	Memory Clock In. This clock is used by internal clock logic to maintain the proper phase relationship with MCLKO. It is driven by the external clock synthesizer.
MCLKO	AB21	0	Memory Clock Out. Created on-chip from MCLKI and used by the memory controller as a timing reference for creation of all memory timing sequences. It is connected to the external clock chip for use in maintaining proper phase relationships.
PCLK	AB12	I	PCI Clock . This clock is used by all on-chip logic in the PCI clock domain. This input must be 33 MHz maximum to comply with PCI specification requirements and must be synchronous with the host CPU clock (HCLK) with an HCLK:PCLK frequency ratio of 2:1 (66MHz CPU clock) or 3:1 (100 MHz CPU clock). The PCI clock needs to be controlled to within 1.5 \pm 0.5 nsec relative to the host CPU clock (CPU leads).
PCKRUN#	AC13	Ю	PCI Clock Run . For implementation of PCI bus clock control for low-power PCI bus operation. Refer to the "PCI Mobile Design Guidelines" for additional information.
XLTI	AA4	I	Crystal Input. 14.31818 MHz for the video clock synthesizer reference. Connect to a 14.31818 MHz clock source if a crystal not used. Connect to main ground plane GND with 10pF if using a crystal.
XLT0	AA5	0	Crystal Output. 14.31818 MHz for the video clock synthesizer reference. Leave open if a clock source is used instead of a crystal. Connect to main ground plane GND with 10pF if using a crystal.
RESET#	AF13	I	Reset. Driven from the South Bridge RESET signal through an inverter. When asserted (low), this signal resets the CyberBlade I7 and sets all register bits to the default value. This signal also connects to the PCI bus (South Bridge RESET drives the ISA bus if implemented). The rising edge of this signal is used to sample all power-up strap options (see memory interface MA pins).
PWROK	AE13	I	Power OK. Connect to South Bridge and Power Good circuitry.
SUST#	AC22	l	Suspend Status. For implementation of the Suspend-to-DRAM feature. Input logic for this pin is powered by VSUS. Connect to the South Bridge SUST# pin or to a $10K\Omega$ pullup to VSUS if not used.
SUSP#	F5	I	Suspend. For implementation of the Suspend-to-DRAM feature. Input logic for this pin is powered by VSUS. Connect to South Bridge GPO pin or to a $10 \text{K}\Omega$ pullup to VSUS if not used.

Table 6-8. Miscellaneous

Signal Name	Pin#	<u>I/O</u>	Signal Description
ENTST#	F4	I	Test Mode Enable. 4.7KΩ pullup to VCC3 for normal operation.
IMIO	N2	0	IMI Out. Leave open.
IMIIN	N4	I	IMI In. 4.7 K Ω pullup to VCC3.

Trident Microsystems, Inc. 6-9

Table 6-9. CRT Interface

Signal Name	<u> Pin #</u>	<u>I/O</u>	Signal Description
RED	C2	А	Red. Red analog output to the CRT. Connect 75Ω load resistor to GNDR (RGB Return) and connect to VGA connector through a series ferrite bead and 10pF capacitors to GNDR on both input and output sides of the bead (see schematics in chapter 7).
GRN	D3	Α	Green. Green analog output to the CRT. Connect same as RED.
BLUE	D2	Α	Blue. Blue analog output to the CRT. Connect same as RED.
HSYNC	E2	0	Horizontal Sync. Digital horizontal sync output to the CRT. Also used (with VSYNC) to signal power management state information to the CRT per the VESA TM DPMS TM standard. Connect to VGA connector through a series 47Ω resistor and 120pF capacitor to ground (see schematics in chapter 7).
VSYNC	E1	0	Vertical Sync. Digital vertical sync output to the CRT. Also used (with HSYNC) to signal power management state information to the CRT per the VESA TM DPMS TM standard. Connect to VGA connector through a series 47Ω resistor and 120pF capacitor to ground (see schematics in chapter 7).
SDA	F2	10	DDC Data/Address. Serial I ² C protocol for VESA TM DDC2B signaling to the CRT. Connect this pin to VCC5 through a 4.7K Ω pullup. Connect to the VGA connector only (pin 12 of the connector). Connect through a ferrite bead and 120pF capacitor to ground (on the output side of the bead). Refer to the schematics in chapter 7.
SCL	F3	10	DDC Clock. Serial I ² C protocol for VESA TM DDC2B signaling to the CRT. Connect this pin to VCC5 through a 4.7K Ω pullup. Connect to the VGA connector only (pin 15 of the VGA connector). Connect through a ferrite bead and 120pF capacitor to ground (on the output side of the bead). Refer to the schematics in chapter 7.

8/6/99

Table 6-10. Panel Interface

Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
PD[23-0]	(see pin list)	0	Panel Data. Digital monitor pixel data outputs.
SHFCLK	H5	0	Shift Clock. Clock for transferring digital pixel data.
DE	H4	0	Data Enable. Indicates valid data on PD[23-0].
LP	G4	0	Line Pulse. Digital monitor equivalent of HSYNC.
FLM	G5	0	First Line Marker. Digital monitor equivalent of VSYNC.
ENPVDD	F1	0	Enable Panel VDD Power.
ENPVEE	G1	0	Enable Panel VEE Power.
ENPBLT	G3	0	Enable Panel Backlight.
IMIO	N2	0	IMI Output.
IMIIN	N4	I	IMI Input.

Note: Connect SHFCLK, DE, LP, and FLM to external TMDS transmitters through series 22Ω resistors. See schematics in Chapter 7 for DFP interface design examples and additional information.

Table 6-11. TV Input / Video Interface

Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description		
VIDD[15-0]	(see pin list)	10	Video Capture / Playback Data. Connect to TV decoder if used.		
VIDHS	U4	10	Video Horizontal Sync. Connect to TV decoder if used.		
VIDVS	U3	10	Video Vertical Sync. Connect to TV decoder if used.		
VIDCLK	V3	10	Video Clock . Connect to TV decoder through a series 22Ω resistor.		

Note: Refer to the schematics in Chapter 7 for video interface design examples.

Table 6-12. TV Output Interface

Signal Name	<u>Pin #</u>	<u>I/O</u>	Signal Description
TVD[7-0]	V2, U5, V1, V5,	0	TV Output Data. Connect to TV encoder if used.
	V4, W5, W2, W1		
TVHS	W4	0	TV Horizontal Sync. Connect to TV encoder if used.
TVVS	Y3	0	TV Vertical Sync. Connect to TV encoder if used.
TVCLK	Y4	0	TV Clock. Connect to TV encoder through a series 22Ω resistor.

Note: Refer to the schematics in Chapter 7 for TV interface design examples.

6-12 Trident Microsystems, Inc.

8/6/99

Table 6-13. Digital Power and Ground

Signal Name	<u> Pin #</u>	<u>I/O</u>	Signal Description
VCC5	U6	Р	Power for Display / Video Interfaces (5V ±5%). Power for CRT H/VSYNC, DFP interface, video interface, and TV interface. Used to provide adequate output voltage swing for driving external video devices. Also used to provide 5V input tolerance from those interfaces.
VCC3	C8, C19, F7, F8, F19, F20, G6, G21, H3, H6, H21, H24, L12, L15, M11, M16, R11, R16, T12, T15, W3, W6, W21, W24, Y6, Y21, AA7, AA8, AA19, AA20, AD8, AD19	Р	Power for On-Board Interfaces (2.5V to 3.3V ±5%). Power for host CPU / L2 Cache interface, PCI bus interface, and memory interface (except pins listed below under VSUS).
VSUS3	U21, AB19	Р	Suspend Power (3.3V ±5%). Power for memory interface signals SRASC#, SCASC#, SWEC#, SWEB#, RAS[5-0]#, CAS[7-0]#, and MECC[7-0] as well as SUSTAT# and SUSCLK. Connect to VCC3 if suspend functions are not implemented.
VSUS2	AA22	Р	Suspend Power (2.5V ±5%). Connect to VCCI if suspend functions are not implemented.
VCCI	F9, F18, J6, J21, V6, V21, AA9, AA18	Р	Power for On-Chip Internal Logic (2.5V ±5%).
VCCD	Y1	Р	Power for Video Clock Synthesizer Digital Logic (2.5V ±5%). Connect to VCCI through a ferrite bead and decouple to main ground plane GND with 0.001uF and 0.1uF ceramic and 10uF tantalum capacitors (see schematics in chapter 7).
VCCR	D1	Р	Power for RAMDAC Video Output Digital Logic (2.5V ±5%). Connect to VCCI through a ferrite bead and decouple to main ground plane GND with 0.001uF and 0.1uF ceramic and 10uF tantalum capacitors (see schematics in chapter 7).
GND	A13, A26, C14, D4, D23, E13, E14, F6, F21, L11, L13, L14, L16, M12-M15, N3, N5, N11-N16, N22, N26, P1, P5, P11-P16, P22, R12-R15, T11, T13, T14, T16, AA6, AA21, AB13, AB14, AC4, AC23, AD13, AF14, AF26	Р	Ground. Connect to primary PCB ground plane.

Commonly Used Prefix / Suffix Letters in Signal Names:

I = Internal Logic

M = Memory (SDRAM) Interface

H = Host CPU Interface

P = PCI Bus Interface

G = AGP Bus Interface (internal in CyberBlade I7)

U (or USB) = USB (Universal Serial Bus)

H (or HWM) = Hardware Monitoring

SUS = Suspend Power

A = North Bridge Clock Synthesizer

V1 = Video Clock Synthesizer PLL1

V2 = Video Clock Synthesizer PLL2

D = Video Clocks Digital Data Path

R = RAMDAC Digital Data Path

S = RAMDAC Current Source

RGB = Analog Video Out Return

TV = TV Out

VID = TV In

Table 6-14. Clock Power / Ground and Filtering

Signal Name	<u> Pin #</u>	<u>I/O</u>	Signal Description
VCCA	AB16, AC16	Р	Power for North Bridge Clock Circuitry (2.5V ±5%). Connect to VCCI through a ferrite bead and decouple to GNDA with 0.001uF and 0.1uF ceramic and 10uF tantalum capacitors (see schematics in chapter 7).
GNDA	AA17, AB17	Р	Ground for North Bridge Clock Circuitry . Connect to main ground plane GND through a ferrite bead. (see schematics in chapter 7).
VCCV1	Y2	Р	Power for Video Clock Synthesizer 1 Analog Circuitry (2.5V ±5%). Connect to VCCI through a ferrite bead and decouple to GNDV1 with 0.001uF and 0.1uF ceramic and 10uF tantalum capacitors (see schematics in chapter 7).
GNDV1	AA1	Р	Ground for Video Clock Synthesizer 1 . Connect to main ground plane through a ferrite bead.
VLF1	AA3	А	Low Pass Filter Capacitor for Video Clock Synthesizer 1 . Connect to GNDV1 through a 560pF capacitor.
VCCV2	AA2	Р	Power for Video Clock Synthesizer 2 Analog Circuitry (2.5V ±5%). Connect to VCCI through a ferrite bead and decouple to GNDV2 with 0.001uF and 0.1uF ceramic and 10uF tantalum capacitors (schematics in chapter 7).
GNDV2	AB1	Р	Ground for Video Clock Synthesizer 2 . Connect to main ground plane through a ferrite bead.
VLF2	AB2	А	Low Pass Filter Capacitor for Video Clock Synthesizer 2 . Connect to GNDV2 through a 560pF capacitor.

Table 6-15. RAMDAC Output Power / Ground and Analog Control

Signal Name	Pin#	<u>I/O</u>	Signal Description
VCCS	C1	Р	Power for RAMDAC Current Source Circuitry (2.5V ±5%). Connect to
			VCCI through a ferrite bead and decouple to GNDS with 0.001uF and 0.1uF ceramic and 10uF tantalum capacitors (see schematics in chapter 7).
GNDS	B1	Р	Ground for RAMDAC Current Source Circuitry . Connect to main ground plane through a ferrite bead.
COMP	E4	А	Compensation Capacitor. RAMDAC analog control. Connect to VCCS using a 0.1 uF capacitor.
IRSET	E3	А	RAMDAC Current Set Point Resistor. RAMDAC analog control. Connect to GNDS through a 360Ω 1% resistor.
GNDRGB	A1	Р	RGB Video Output Return. Connection point for the RGB load resistors. Also used as a shield for the RGB video output traces to the VGA display connector. Connects to RGB return pins 6, 7, and 8 of the VGA connector. Connect to main ground plane through a ferrite bead.

8/6/99

6.3 Panel Signal Mapping

Table 6-16. DSTN Pins PD[0:23]

Туре	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	PD8	PD9	PD10	PD11	PD12	PD13	PD14	PD15
DSTN16	LD0	LD1	LD2	LD3	LD4	LD5	LD6	LD7	UD0	UD1	UD2	UD3	UD4	UD5	UD6	UD7
DSTN24	LD0	LD1	LD2	LD3	LD4	LD5	LD6	LD7	LD8	LD9	LD10	LD11	UD0	UD1	UD2	UD3
	PD16	PD17	PD18	PD19	PD20	PD21	PD22	PD23								
DSTN24	UD4	UD5	UD6	UD7	UD8	UD9	UD10	UD11								

Notes: 1. For 16-bit color dual scan DSTNs, LD7 or UD7 above corresponds to red column 0 for the first data of a line. 2. For 24-bit color dual scan DSTNs, LD11 or UD11 above corresponds to red column 0 for the first data of a line. UD4-UD11 are on P16-P23.

Table 6-17. TFT Pins PD[0:23]

Data	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	В3	B2	B1	B0
TFT	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	PD8	PD9	PD10	PD11	PD12	PD13	PD14	PD15	PD16	PD17	PD18	PD19	PD20	PD21	PD22	PD23
12	R3	R2	R1	R0	G3	G2	G1	G0	В3	B2	B1	B0												
12+12	Ro3	Ro2	Ro1	Ro0	Go3	Go2	Go1	Go0	Bo3	Bo2	Bo1	Bo0	Re3	Re2	Re1	Re0	Ge3	Ge2	Ge1	Ge0	Be3	Be2	Be1	Be0
18	R5	R4	R3	R2	G5	G4	G3	G2	B5	B4	В3	B2	R1	R0	G1	G0	B1	B0						
18+18	R5	R4	R3	R2	G5	G4	G3	G2	B5	B4	В3	B2	R1	R0	G1	G0	B1	B0					S1	S2
24	R7	R6	R5	R4	G7	G6	G5	G4	В7	В6	B5	B4	R3	R2	G3	G2	В3	B2	R1	R0	G1	G0	B1	В0

Table 6-18. Panel Type Abbreviation Key

Abbreviation	Description
DSTN16	Color STN dual scan panel, 16-bit data interface
DSTN24	Color STN dual scan panel, 24-bit data interface
TFTxx	TFT panel, xx bit color data or xx/3-bit mono data interface

Trident Microsystems, Inc. 6-15

Rev 1.0 8/6/99

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL ### Trident

THIS PAGE INTENTIONALLY LEFT BLANK

Rev. 1.0 8/6/99

7 System Design

7.1 Power-up Configuration

During power-on and system reset, configuration information is latched on the rising edge of the system RESET signal. This information is latched into the CyberBlade's internal configuration registers, and it is based on the status of the signals on MA0 to MA13. Note that all these pins have an internal pull-down resistor that defaults to a logic low. If a logic high is required, the signal must be strapped high using a $4.7 \text{K}\Omega$ resistor.

DRAM Address Lines		Desc	riptions					
MA[13:12]	Rx68 [1-0] Host CPU Bus Frequency (0=Auto, 1=100, 2=66)							
MA[11]	SERR Pin Funct	ion (0=SERR, 1=PWRGD)						
MA[10:9]	North Bridge Clo	ock Delay (0-3 Clocks)						
MA[8]	-reserved-							
MA[7]	Graphics Test M	ode (0 =Normal, 1 = Test Mod	e)					
MA[6]	LCD Output (0 =	Off, 1 = On)						
MA[5:3]	Panel Type (0-3	= TFT, 4-7 = DSTN)						
	LCD Type	LCD Resolution	MA[5-3]					
	TFT	1024 x 768 x 18-bit	000					
	TFT	1280 x 1024 x 18+18-bit	001					
	TFT	800 x 600 x 18-bit	010					
	TFT	1024 x 600 x 18-bit	011					
	DSTN	1024 x 768 x 16-bit	100					
	DSTN	1024 x 600 x 24-bit	101					
	DSTN	800 x 600 x 16-bit	110					
	DSTN	1024 x 768 x 24-bit	111					
MA[2]	-reserved-							
MA[1:0]	Graphics Clock I	Delay (0-3 Clocks)						

7.2 Hardware interfaces

Figure 7-1. Block Diagram for TFT Panel Interface

Figure 7-2. Block Diagram for 24-bit DSTN Panel Interface

Trident Microsystems, Inc. 7-3

Figure 7-3. TFT Panel (Double Pixel/Clk) Interface

7-4 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

7.3 Schematics Example

The material presented in this section provides schematics example for the CyberBlade i7. These schematics are for reference only.

Rev. 1.0 8/6/99

TRIDENT MICROSYSTEMS, INC. CyberBlade i7 Reference Schematic

Revision 1.0

TITLE SHEET

COVER SHEET	1
SINGLE SOCKET-7 PROCESSOR	2
NORTH BRIDGE AND GRAPHICS CONTROLLER (CyberBlade i7)	3,4
SOUTH BRIDGE VT82C686	5,6
CLOCK SYNTHESIZER	7
L2 CACHE & TAG RAM	8
DRAM	9
PCI SLOTS	10,11
ISA SLOT & SYSTEM ROM	12
IDE CONNECTORS	13
FRONT PANEL & BACK PANEL	14
LVDS & DSTN PANEL CONNECTOR	15
PANEL LINK TRANSMITTER & EMI REDUCTION	16
VIDEO, ENCODER & DECODER CONNECTOR	17
AC97 AUDIO CODEC & AUDIO PORTS	18
DC-DC CONVERTERS	19
AT & ATX POWER CONNECTORS & BYPASS CAPACITORS	20
TVXpress DIGITAL TV ENCODER MODULE	

LINK
2.SCH
3.SCH
4.SCH
5.SCH
6.SCH
7.SCH
9.SCH
10.SC
11.SC
11.SC
12.SC
14.SC
15.SCH
15.SCH
15.SCH
15.SCH
15.SCH
16.SCH
17.SCH
18.SCH

TRIDENT MICROSYSTEMS, INC ASSUMES NO RESPONSIBILITY FOR ANY ERRORS IN DRAWING THESE SCHEMATICS. THESE SCHEMATICS ARE SUBJECT TO CHANGE WITHOUT NOTICE. COPYRIGHT 1998 TRIDENT MICROSYSTEMS, INC.

TRIDENT MICROSYSTEMS, INC						
Title	COVER SHEET					
Size C	Document Number VT5177A					Rev 1.0
Date:	Friday, August 06, 1999	Sheet	1	of	20	

Rev. 1.0 8/6/99

Rev. 1.0 8/6/99

SW2 3 2 0FF OFF 0FF ON 0FF ON	OFF ON OFF ON	CPU 60 66. 8 70	2 2 2	PCI 30 33. 4
OFF ON	ON OFF	66. 8 70	2	33. 4
OFF ON	0FF	70		
FF ON			2	
	ON			35
N OFF		75	3	25
	0FF	80	3	26. 7
N OFF	ON	83. 3	3	27. 7
N ON	0FF	95. 25	3	31. 75
N ON	ON	100	3	33. 3
FF OFF	0FF	75	2	37. 5
FF OFF	ON	80	2	40
FF ON	0FF	83.3	2	41.7
FF ON	ON	105	3	35
N OFF	0FF	110	3	36. 7
N OFF	ON	115	3	38. 3
N ON	0FF	120	3	40
N ON	ON	124	3	41.3
	N ON ON ON OFF OFF ON OFF ON ON	N ON OFF N. QN QN FF OFF ON FF ON OFF FF ON ON N OFF OFF N OFF ON N OFF	N ON OFF 95.25 N ON ON 100 FF OFF OFF 75 FF OFF ON 80 FF ON OFF 83.3 FF ON ON 105 N OFF OFF 110 N OFF ON 115 N ON OFF 120	N ON OFF 95.25 3 N ON ON 100 3. FF OFF OFF 75 2 FF OFF ON 80 2 FF ON OFF 83.3 2 FF ON ON 105 3 N OFF OFF 110 3 N OFF ON 115 3 N OFF ON 115 3

CPUCLK	C72 10p
PBCLK	C71 10p
HCLK	C70 10p
USBCLK	C91 22p
REFCLKO	C73 22p
REFCLK1	C69 22p
	<u>+</u>

NPCLK	C74 22p
SPCLK	C75 22p
PCI CLKO	C80 22p
PCI CLK1	C81 22p
PCI CLK2	C84 22p
PCI CLK3	C85 1 ²² p

SDCLK9	C78 10p
SDCLK8	C79 10p
SDCLK5	C82 10p
SDCLK4	C83 10p
SDCLKO	C87 10p
SDCLK1	C88 10p
SDCLK3	C89 10p
SDCLK2	C90 10p
SDCLK6	C92 10p
SDCLK7	C93 10p
SDCLK10	C94 10p
SDCLK11	C95 10p
DCLKI	C77 10p(0PT)
DCLKO	C86 10p(0PT)

PRELI MI NARY

This is an application example. Trident Microsystems, Inc. bears no responsibility for any errors in drawing these schematics. Copyright 1998 Trident Microsystems, Inc. Schematics subject to change without notice

Rev. 1.0 8/6/99

PRELI MI NARY

This is an application example. Trident Microsystems, Inc. bears no responsibility for any errors in drawing these schematics. Copyright 1998 Trident Microsystems, Inc. Schematics subject to change without notice.

	Trident M	icrosystems l	nc.			
Title	I2 C	ACHE & TAG RAM				
Size C	Document Number	VT5177A				Rev 1.0
Date:	Wednesday, January 13, 1999	Sheet	8	of	20	

Rev. 1.0 8/6/99

PRELI MI NARY

This is an application example. Trident Microsystems, Inc. bears no responsibility for any errors in drawing these schematics. Copyright 1998 Trident Microsystems, Inc. Schematics subject to change without notice.

	Tri dent Microsystems Inc.
Title	PCI1 & PCI2 SLOTS
Size C	Document Number Rev 1. 0
Date:	Wednesday, January 13, 1999 Sheet 10 of 20

Rev. 1.0 8/6/99

	1010	2	PCI 4		lı v			
	- 12VO	V 4	- 12V TCK	TRST# +12V	$\frac{1}{3}$ ×	+12V		
		× 6	GND	TMS	5 × 4			
	Ť	$\times \frac{8}{10}$	TD0	TDI	$\frac{7}{9}$ × $\frac{7}{1}$.		
	1	12	+5V	+5V	11	- I NTR_D		
	NTR_A	. 14	+5V INTB#	I NTA# I NTC#	13	- I NTR_B		
1	NTR_C	16 18	INTD#	+5V	15			
		× 20	PRSNT#1	RESERVED	17 ×			
		♦ 22	RESERVED PRSNT#2	+5V(I/0) RESERVED	21 ×			
		24	GND	GND	23 ^			
		90	GND	GND	27 ×			
		^ 30	RESERVED GND	RESERVED RST#	29	- PCI RST		
7 PCICLK3 < <pc< th=""><th>CI CLK3</th><th>32</th><th>CLK</th><th>+5V(I/0)</th><th>31</th><th>CHERO</th><th></th><th></th></pc<>	CI CLK3	32	CLK	+5V(I/0)	31	CHERO		
4 - REQ3 <<	PF03	34 36	GND	GNT	33	- GNT3	<< - GNT3	4
		38	REQ# +5V(I/O)	GND RESERVED	37 🗸			
	D31 D29	40	AD31	AD30	39	A_D30		
A_	1029	42	AD29	+3. 3V	$\frac{41}{43} \times $	A D28		
	D27	46	GND	AD28	45	A_D26		
A_	D25	48	AD27 AD25	AD26 GND	47	1 704		
c	- BE3	$\times \frac{50}{52}$	+3. 3V	AD24	49 51	A_D24 A_D22	//	
	D23	54	C/BE#3 AD23	I DSEL +3. 3	53 🗸		<< A_D22	4, 5, 10
	D21	56	GND	+3. 3 AD22	55	A D22		
	D19	58 60	AD21	AD20	57 59	A_D20		
		V 62	AD19 +3. 3V	GND AD18	61	A_D18		
A_	D17 - BE2	66	+3. 3V AD17	AD16	63 65 V	A_D16		
	- DEZ	68	C/BE#2	+3. 3V	67 ×	- FRAME		
<u>_</u> -1	RDY	70	GND I RDY#	FRAME# GND	69			
	DEVSEL	× 72	+3. 3V	TRDY#	71 73	- TRDY		
	JEVSEL	76	DEVSEL#	GND	75	- STOP		
	LOCK	78	GND LOCK#	STOP# +3. 3V	77 🗸 📗			
I	PERR	80	PERR#	SDONE	79			
- 5	ERR	× 84	+3. 3V	SB0#	83 ×			
		× 86	SERR# +3. 3V	GND PAR	85	PAR		
	- BE1 D14	^ 88 90	C/BE#1	AD15	87 89 V	A_D15		
	D14	92	AD14	+3. 3V	91 ×	A D13		
	D12	94	GND AD12	AD13 AD11	93	A_D11		
_A	D10	96	AD10	GND	95 97	A_D9		
		1 30	GND	AD9	J'	н_Б5		
						c pro		
	D8 D7	100 102	AD8	C/BE#0	99 101 🗸	C BEO		
		v 104	AD7	+3. 3V	101 ×	A_D6		
	D5	106	+3. 3V AD5	AD6 AD4	105	A_D4		
A_	D3	108	AD3	GND	107	A D2		
A_	D1	112	GND AD1	AD2 AD0	111	A_DO		
	MACKEA	114 116	+5V(I/0)	+5V(I/0)	113	DADEOCA		
	P4ACK64	118	ACK64#	REQ64#	115	- P4RE064		
	I	120	+5V +5V	+5V +5V	119			
	-	ļ ا		+31	· <u>1</u>	-		
		_	PCI_SLOT_124		_			

PRELI MI NARY

This is an application example. Trident Microsystems, Inc. bears no responsibility for any errors in drawing these schematics. Copyright 1998 Trident Microsystems, Inc. Schematics subject to change without notice

	Trident Microsystems Inc.	
Title	PCI3 & PCI4 SLOTS	
Size C	Document Number VT5177A	Rev 1. (
Date:	Wednesday, January 13, 1999 Sheet 11 of 20	

Rev. 1.0 8/6/99

		32	SI.2		l 1	- I OCHCK
RES DRV	÷	33	B1	A1	2	SD7
	수	34	B2	A2	3	SD6
IRQ9		35	B3	A3	4	SD5
	- 5VO	36	B4 B5	A4	5	SD4
DREQ2	-310	37	B6	A5 A6	6	SD3
	- 12VO-	38	B7	AG A7	7	SD2
- OWS	- 12.40	39	B8	A7 A8	8	SD1
	+12V O	40	B9	A9	9	SD0
		41	B10	A9 A10	10	I OCHRDY
- SMEMV	=	42	B10	A11	11	AEN
- SMEMR		43	B12	A11	12	SA19
- I OW		44	B12	A12	13	SA18
- I OR		45	B14	A14	14	SA17
- DACK3		46	B15	A15	15	SA16
DREQ3		47	B16	A16	16	SA15
- DACK1		48	B17	A17	17	SA14
DREQ1		49	B18	A18	18	SA13
- REFRESH		50	B19	A19	19	SA12
SYS_CLK		51	B20	A20	20	SA11
IRQ7		52	B21	A21	21	SA10
IRQ6		53	B22	A22	22	SA9
IRQ5 IRO4		54 55	B23	A23	23	SA8 SA7
IRQ4		56	B24	A24	25	SA6
- DACK2		57	B25	A25	26	SA5
TC.		58	B26	A26	27	SA3 SA4
BALE		59	B27	A27	28	SA4 SA3
DALE	4	60	B28	A28	29	SA2
REFCLK1	-	61	B29	A29	30	SA1
REPUERI		62	B30	A30	31	SA0
	<u>+</u>	UL.	B31	A31	- 31	JAU

IN ORDER TO MAINTAIN THE BOARD SIZE FROM GROWING, SL3 (16 BIT ISA SLOT) IS REMOVED FOR TWO USB CONNECTORS (2X5 HEADER TYPE).

PRELI MI NARY

This is an application example. Trident Microsystems, Inc. bears no responsibility for any errors in drawing these schematics. Copyright 1998 Trident Microsystems, Inc. Schematics subject to change without notice.

	Trident Microsystems Inc.
Title	ISA SLOTS & SYSTEM ROM
Size C	Document Number Rev VT5177A 1.

Rev. 1.0 8/6/99

PRIMARY

SECONDARY

PRELI MI NARY

This is an application example. Trident Microsystems, Inc. bears no responsibility for any errors in drawing these schematics. Copyright 1998 Trident Microsystems, Inc. Schematics subject to change without notice

	Tri dent Microsystems Inc.	
Title	IDE1 & ICE2	
Size C	Document Number VT5177A	Rev 1.0
Date:	Wednesday, January 13, 1999 Sheet 13 of	20

Rev. 1.0 8/6/99

Note: CN1 is only used as a board to board connector for LVDS transmitter add-on card. DSTN PANEL CONNECTOR (It is not used for SGRAM module.) (FEMALE & 90 DEGREE) FEMALE 3, 16 VPD[0..23] 16 PVDD $\langle\!\langle \frac{PVDD}{}$ VSS R1I NO+ VSS VSS PDO PD1 +5V +5V R1NO+ VPD1 SFCLK 4 RINO+
 RINO+
 RINO+
 RINI+
 RINI RINI RINI RINI RINZ+
 RINZ R1I NO-VPD20 CT13 VPD2 7 9 11 13 15 17 19 21 23 25 27 R1I NO-NC VCC5 PD2 PD3 VCC5 10 × 12 × 14 × 16 × 18 R1IN1-R1IN1-R1IN2-R1IN2-CK1IN-10u PD4 PD5 PD6 PD7 VSS PD8 PD9 VCC5 R1I N1+ R1IN1+ VSS R1IN1-VSS R1IN1 CK1IN-R2I NO+ R2I NO-R2I N1+ R2I N1-R2I N2+ FLM VPD6 R1I N2+ 37 VPD8 ENPVB R1I N2+ NC VCC5 8 24 VPD10 R1I N2-VSS CK1I N+ VSS VSS 15 R2N2+ 16 R2N2+ 17 R2N2-18 CK2N+ 19 CK2N-GND GND 31 33 35 37 39 41 43 PD10 VPD11 VPD12 VPD13 32 34 36 38 40 R2IN2-CK2IN+ CK2IN-VPD17 PD11 PD12 PD13 CK1IN-VSS VADSLOW CK1IN-VPD10 CK1I N-VSS R2I NO+ PD14 PD15 PD16 R2I NO+ VPD21 DFP LVDS TRIDENT CONN 46 × VPD17 45 47 49 51 53 55 57 59 61 × 28 13 . PD17 Label "LVDS" in silk screen. 20-PIN 3M MDR(3MJ10220) connector 13 29 14 × 30 15 VPD22 VCC5 R2I NO-VSS R2I N1+ VPD18 VPD19 VPD20 VPD23 PD19 R2IN1+ PD20 VPD14 VSS R2IN1-VSS PD21 R2IN1-VSS R2I N2+ VCC5 R2I N2-VSS CK2I N+ PD22 R2I N2+ PD23 T. 1u 64 66 68 70 72 74 63 65 67 × 69 71 × 73 × 75 × 77 × 79 × 81 × 83 × 83 × 85 × 87 × 89 × 91 × 93 PANEL_CONN PD25/S2 CK2IN+ PD26 CK2IN+
VSS
CK2INVCC3
NC
PTXC1VSS
PTXC1+
VSS
PTX10VSS
PTX10VSS ENPVEE CK2I N-74 76 78 80 82 84 86 88 90 92 94 92 R27 10K PD31 VSS PD32 PD33 PD34 1-2: PVDD = 5V 2-3: PVDD = 3.3V VCC3 NC PTX11-VSS PTX11+ 93. WC3

55. PM S

99. VSS

99. VSS

99. VSS

1003 VSS

1005 VSS

1007 IP

111 NS

115 NC

1115 NC

1117 PLM

119 USS

1113 NC

1117 PLM

119 USS

1113 NC

1117 VSS

1121 VSS

1121 VSS

1123 VSS

1121 VSS

1123 VSS

1121 VSS 96 × 98 × 100 × 102 × 104 × 104 × 112 × 114 × 118 × 120 × 122 × 126 × 130 × 134 × 136 × 138 × 134 × 134 × 144 × 144 × VADSLOW R48 10K VSS PTX12-VSS 3, 16 LP <<-PTX12+ NC VCC3 G1 S2 G2 3, 16 ENPVEE < VR1 5K VR Q3 2N7002 TXC2-TXC2+ VSS TX20-VSS ST 9948DV CT25 Tiou R47 4. 7K TX20+ TX21-VCC3 3, 16 SFCLK <<-VCC3 NC TX21+ VSS TX22-VSS TX22+ VCC3 Q4 2N7002 ENPVDD A0 A1 A2 A3 A4 A5 A6 A7 <<<u>RSTDRV</u> R49 <-- IDERST 13 SODI MM_SGRAM_144P LVDS LCD TYPE 16 ENPVEE 3 ENPVDD 3 ENPBLT Label in Silkscreen PVEE PVDD PBLT 190 0E1 PRELIMI NARY Trident Microsystems Inc. This is an application example. Trident Microsystems, Inc. bears no responsibility for any errors in drawing these schematics. Copyright 1998 Trident Microsystems, Inc. Schematics subject to change without notice. LVDS & DSTN PANEL CONNECTORS Document Numbe VT5177A

Rev. 1.0 8/6/99

PANEL LINK TRANSMITTER

EMI REDUCTION CIRCUIT

PRELI MI NARY

This is an application example. Trident Microsystems, Inc. bears no responsibility for any errors in drawing these schematics. Copyright 1998 Trident Microsystems, Inc. Schematics subject to change without notice

	Trident Microsystems Inc.
Title	PANEL LINK TRANSMITTER / EMI REDUCTION
Size	Document Number Rev
С	VT5177A 1.
	Wednesday, January 13, 1999 Sheet 16 of 20

Rev. 1.0 8/6/99

VT5177A

VGA CONNECTOR

CONNECTORS FOR DIGITAL TV ENCODER MODULE.

TV DECODER CONNECTOR

Trident Microsystems, Inc. 7-22

Rev. 1.0 8/6/99

THIS PAGE INTENTIONALLY LEFT BLANK

Trident Microsystems, Inc. 7-27

8 REGISTERS

8.1 Register Overview

The following tables summarize the configuration and I/O registers of the CyberBlade i7. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions following these tables for details). All offset and default values are shown in hexadecimal unless otherwise indicated.

8.2 Register Summary

8.2.1 I/O Ports

Port #	I/O Port	Default	Acc
22	PCI / AGP Arbiter Disable	00	RW
CFB-8	Configuration Address	0000 0000	RW
CFF-C	Configuration Data	0000 0000	RW

8.2.2 Device 0 Registers - Host Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	0501	RO
5-4	Command	0006	RW
7-6	Status	0290	WC
8	Revision ID	nn	RO
9	Program Interface	00	RO
Α	Sub Class Code	00	RO
В	Base Class Code	06	RO
С	-reserved- (cache line size)	00	-
D	Latency Timer	00	RW
Е	Header Type	00	RO
F	Built In Self Test (BIST)	00	RO
13-10	Graphics Aperture Base	8000 0008	RW
14-27	-reserved- (base address registers)	00	_
28-2F	-reserved- (unassigned)	00	_
33-30	-reserved- (expan ROM base addr)	00	_
37-34	Capability Pointer	0000 00A0	RO
34-3B	-reserved- (unassigned)	00	_
3C-3D	-reserved- (interrupt line & pin)	00	_
3E-3F	-reserved- (min gnt and max latency)	00	_

Device-Specific Registers

Offset	Cache Control	Default	Acc
50	Cache Control 1	00	RW
51	Cache Control 2	00	RW
52	Non-Cacheable Control	00	RW
53	System Performance Control	00	RW
55-54	Non-Cacheable Region #1	0000	RW
57-56	Non-Cacheable Region #2	0000	RW

Offset	DRAM Control	Default	Acc
59-58	MA Map Type	0000	RW
5A-5F	DRAM Row Ending Address:		
5A	Bank 0 Ending (HA[29:22])	01	RW
5B	Bank 1 Ending (HA[29:22])	01	RW
5C	Bank 2 Ending (HA[29:22])	01	RW
5D	Bank 3 Ending (HA[29:22])	01	RW
5E	Bank 4 Ending (HA[29:22])	01	RW
5F	Bank 5 Ending (HA[29:22])	01	RW
60	DRAM Type	00	RW
61	ROM Shadow Control C0000-CFFFF	00	RW
62	ROM Shadow Control D0000-DFFFF	00	RW
63	ROM Shadow Control E0000-FFFFF	00	RW
64	DRAM Timing for Banks 0,1	EC	RW
65	DRAM Timing for Banks 2,3	EC	RW
66	DRAM Timing for Banks 4,5	EC	RW
67	-reserved- (unassigned)	00	RW
68	DRAM Control	00	RW
69	DRAM Clock Select	00	RW
6A	DRAM Refresh Counter	00	RW
6B	DRAM Arbitration Control	01	RW
6C	SDRAM Control	00	RW
6D	DRAM Control Drive Strength	00	RW
6E	ECC Control	00	RW
6F	ECC Status	00	RO

Device-Specific Registers (continued)

Offset	PCI Bus Control	Default	Acc
70	PCI Buffer Control	00	RW
71	CPU to PCI Flow Control 1	00	RW
72	CPU to PCI Flow Control 2	00	RW
73	PCI Master Control 1	00	RW
74	PCI Master Control 2	00	RW
75	PCI Arbitration 1	00	RW
76	PCI Arbitration 2	00	RW
77	Chip Test (do not program)	00	RW
78	PMU Control 1	00	RW
79	PMU Control 2	00	RW
7A-7D	-reserved-	00	_
7E-7F	DLL Test Mode (do not program)	00	RW
80-FF	-reserved-	00	_

Offset	GART/TLB Control	Default	Acc
83-80	GART/TLB Control	0000 0000	RW
84	Graphics Aperture Size	00	RW
85-87	-reserved- (unassigned)	00	_
8B-88	Gr. Aperture Translation Table Base	0000 0000	RW
8C-8F	-reserved- (unassigned)	00	_

Offset	AGP Control	Default	Acc
A0	AGP ID	02	RO
A1	AGP Next Item Pointer	00	RO
A2	AGP Specification Revision	10	RO
A3	-reserved- (unassigned)	00	_
A7-A4	AGP Status	0700 0203	RO
AB-A8	AGP Command	0000 0000	RW
AC	AGP Control	00	RW
AD	AGP Latency	00	RW
AC-EF	-reserved- (unassigned)	00	

Offset	BIOS Scratch	Default	Acc
F0-F7	BIOS Scratch	00	RW

Offset	Miscellaneous Control	Default	Acc
F8	DRAM Arbitration Timer 1	00	RW
F9	DRAM Arbitration Timer 9	00	RW
FA	CPU Direct Access FB Base Address	00	RW
FB	Frame Buffer Conrol	00	RW

Offset	Back Door Control	Default	Acc
FC	Back Door Control 1	00	RW
FD	Back Door Control 2	00	RW
FF-FE	Back Door Device ID	0000 0000	RW

8.2.3 Device 1 - PCI-to-PCI Bridge

Header Registers

Offset	Configuration Space Header	Default	Acc
1-0	Vendor ID	1106	RO
3-2	Device ID	8501	RO
5-4	Command	0007	RW
7-6	Status	0220	WC
8	Revision ID	nn	RO
9	Program Interface	00	RO
Α	Sub Class Code	04	RO
В	Base Class Code	06	RO
С	-reserved- (cache line size)	00	_
D	Latency Timer	00	RW
Е	Header Type	01	RO
F	Built In Self Test (BIST)	00	RO
10-17	-reserved- (base address registers)	00	_
18	Primary Bus Number	00	RW
19	Secondary Bus Number	00	RW
1A	Subordinate Bus Number	00	RW
1B	-reserved- (secondary latency timer)	00	_
1C	I/O Base	F0	RW
1D	I/O Limit	00	RW
1F-1E	Secondary Status	0000	RO
21-20	Memory Base	FFF0	RW
23-22	Memory Limit (Inclusive)	0000	RW
25-24	Prefetchable Memory Base	FFF0	RW
27-26	Prefetchable Memory Limit	0000	RW
28-3D	-reserved- (unassigned)	00	_
3F-3E	PCI-to-PCI Bridge Control	00	RW

Device-Specific Registers

Offset	PCI Bus #2 Control	Default	Acc
40	CPU-to-PCI Flow Control 1	00	RW
41	CPU-to-PCI Flow Control 2	00	RW
42	PCI Master Control	00	RW
43-4F	-reserved- (unassigned)	00	_

8-2 Trident Microsystems, Inc.

8.2.4 2D / 3D Graphics Accelerator

PCI Configuration Registers

011	0 % 11 1	D (!!	
Offset	Configuration Header	Default	Acc
1-0	Vendor ID	1023	R
3-2	Device ID	8420	R
5-4	PCI Command	0003	RW
7-6	PCI Status	0220	RW
8	Revision ID	nn	R
9	Register Level	00	R
Α	Sub Class Code	00	R
В	Base Class Code	03	R
F-C	-reserved-	_	_
13-10	Memory Base 0 (8MB display mem)	E000 0000	RW
17-14	Memory Base 1 (128K mem map IO)	E080 0000	RW
1B-18	Memory Base 2 (8MB video overlay)	E040 0000	RW
2B-1C	-reserved-	_	_
2D-2C	Subsystem Vendor ID	0000	RW
2F-2E	Subsystem ID	0000	RW
33-30	Expansion ROM Base	0000 0001	RW
3B-34	-reserved-	_	_
3C	Interrupt Line	0B	RW
3D	Interrupt Pin	01	R
3E-3F	-reserved-	_	_
Offset	Device-Specific Configuration	Default	Acc
40-8F	-reserved-	_	_
93-90	Power Management 1	_	RW
97-94	Power Management 2	_	RW
98-FF	-reserved-	_	_

PCI Bus Master Registers (2204, 2300, 231x, 232x)

I/O Port	PCI Bus Master Registers	Default	Acc
2207-2204	Master Status	_	R
2303-2300	Master Control	_	RW
2313-2310	System Side Start Address	_	RW
2315-2314	Master Height	_	RW
2317-2316	Master Width	_	RW
231B-2318	FB Start Address & Pitch	_	RW
231D-231C	System Side Pitch	_	RW
231F-231E	-reserved-	_	_
2323-2320	Clear Data	_	RW

AGP Registers (2300-23FF)

I/O Port	AGP Configuration Regs	<u>Default</u>	<u>Acc</u>
2303-2300	(See PCI Bus Master Regs)		
2307-2304	Capability List Implementation Indication	_	RW
230F-2308	-reserved-	_	_
2323-2310	(See PCI Bus Master Regs)		
2333-2324	-reserved-	_	_
2337-2334	Capability List Address Pointer	_	RW
233F-2338	-reserved-	_	_
I/O Port	AGP Operation Registers	<u>Default</u>	<u>Acc</u>
2343-2340	FB Command List Start Addr	_	RW
2347-2344	FB Command List Size	1	RW
234B-2348	Ch 1 FB Start Addr / Pitch	_	RW
234F-234C	Ch 1 Frame Buffer Size	_	RW
2353-2350	Ch 1 System Start Address	1	RW
2357-2354	Ch 1 & 2 System Side Pitch	_	RW
235B-2358	Ch 2 System Start Address	_	RW
235F-235C	Ch 2 FB Start Addr / Pitch	-	RW
2363-2360	Ch 2 FB Size	-	RW
2367-2364	Ch Arb Counter Threshold	_	RW
236B-2368	Channel 1/0 Control	_	RW
236F-236C	Global & Channel 2 Control	_	RW
2373-2370	Cmd List / Ch 0/1/2 Op Status	_	RW
237F-2374	-reserved-		-
I/O Port	AGP Configuration Regs	<u>Default</u>	<u>Acc</u>
2383-2380	Capability Identifier	_	RW
2387-2384	AGP Status	_	RW
238B-2388	AGP Command	_	RW
23AF-238C	-reserved-	_	-
I/O Port	AGP Command Buffer Regs	<u>Default</u>	<u>Acc</u>
23B3-23B0	Command Buffer Start Addr		RW
23B7-23B4	Command Buffer End Addr	_	RW
23FF-23B8	-reserved-	_	_

Capture Registers (2200)

I/O Port	Capture Registers	Default	Acc
2203-2200	Capture Command	_	RW

DVD Registers (2280-22FF)

I/O Port	DVD Registers	Default	Acc
2280	MC ID	_	R
2281	MC Control	_	RW
2282	MC Frame Buffer Config	_	RW
2283	-reserved-	_	_
2285-2284	MC Status	_	RW
2287-2284	MC Command Queue	1	RW
228B-2288	MC Y-Reference Address	1	RW
228F-228C	MC U-Reference Address	1	RW
2293-2290	MC V-Reference Address	1	RW
2297-2294	MC Display Y-Address Offset	1	RW
229B-2298	MC Display U-Address Offset	_	RW
229F-229C	MC Display V-Address Offset	_	RW
22A0	MC H Macroblock Count	_	RW
22A1	-reserved-	_	_
22A2	MC V Macroblock Count	1	RW
22A3	-reserved-	1	_
22A5-22A4	MC Frame Buffer Y-Length	1	RW
22A7-22A6	-reserved-	_	_
22AB-22A8	Color Palette Entries	-	RW
22AF-22AC	-reserved-	1	_
22B3-22B0	SP BUF0 Pixel Start Address	1	RW
22B7-22B4	SP BUF1 Pixel Start Address	1	RW
22BB-22B8	SP BUF0 Cmd Start Address	1	RW
22BF-22BC	SP BUF1 Cmd Start Address	_	RW
22C1-22C0	SP Y Display Offset	_	RW
22CF-22C2	-reserved-	_	_
22D0	Digital TV Encoder Control		RW
22D3-22D1	Digital TV Encoder CFC	_	RW
22FF-22D4	-reserved-	_	_

Extended Registers - Non-Indexed I/O Ports

I/O Port	I/O Port Extended Non-Indexed Regs		
3D8	Alt Destination Segment Addr	00	RW
3D9	Alt Source Segment Address	_	RW
3xB	Alt Clock Select	_	RW

Note: 3xB notation indicates that these registers are accessible at either 3BB or 3DB depending on the setting of the color / mono bit.

Standard VGA Registers

<u>Port</u>	<u>Index</u>	VGA Registers	<u>Default</u>	<u>Acc</u>
3B4/5	0-18	CRT Controller (Mono Mode)	_	RW
3BA	_	Input Status 1 (Mono Mode)	_	R
3C0/1	0-14	Attribute Controller	_	RW
3C2	_	Input Status 0	_	R
3C2	_	Miscellaneous Output (Write)	_	W
3C3	_	Video Subsystem Enable	_	RW
3C4/5	0-4	Sequencer	_	RW
3C6	_	RAMDAC Pixel Mask	_	RW
3C7	_	RAMDAC Read Index	_	W
3C8	_	RAMDAC Write Index	_	W
3C8	_	RAMDAC Index Readback	_	R
3C9	0-FF	RAMDAC Palette Data	_	RW
3CC	_	Miscellaneous Output (Read)	_	R
3CE/F	0-8	Graphics Controller	_	RW
3D4/5	0-18	CRT Controller (Color Mode)	_	RW
3DA	_	Input Status 1 (Color Mode)	_	R
46E8	_	Display Adapter Enable	_	RW

Note: CRTC registers are accessible at either $3B4\ /\ 3B5$ or $3D4\ /\ 3D5$ (shorthand notation $3x4\ /\ 3x5$) depending on the setting of the color / mono bit.

Standard VGA Registers – Attribute Controller (AR)

<u>Port</u>	<u>Index</u>	Attribute Controller Regs	<u>Default</u>	<u>Acc</u>
3C0	_	Index	_	RW
3C0/1	0-F	Color Palette	_	RW
3C0/1	10	Attribute Mode Control	-	RW
3C0/1	11	Overscan Color	-	RW
3C0/1	12	Color Plane Enable	-	RW
3C0/1	13	Horizontal Pixel Panning	_	RW
3C0/1	14	Color Select	_	RW

Standard VGA Registers - Sequencer (SR)

<u>Port</u>	<u>Index</u>	Sequencer Registers	<u>Default</u>	<u>Acc</u>
3C4	_	Index	_	RW
3C5	0	Reset	_	RW
3C5	1	Clocking Mode	_	RW
3C5	2	Map Mask	_	RW
3C5	3	Character Map Select	_	RW
3C5	4	Memory Mode	_	RW

Standard VGA Registers – Graphics Controller (GR)

<u>Port</u>	<u>Index</u>	Graphics Controller Regs	<u>Default</u>	<u>Acc</u>
3CE	_	Index	_	RW
3CF	0	Set / Reset	-	RW
3CF	1	Enable Set / Reset	_	RW
3CF	2	Color Compare	-	RW
3CF	3	Data Rotate	-	RW
3CF	4	Read Map Select	-	RW
3CF	5	Graphics Mode	00	RW
3CF	6	Miscellaneous	_	RW
3CF	7	Color Don't Care	_	RW
3CF	8	Bit Mask	_	RW

Standard VGA Registers - CRT Controller (CR)

<u>Port</u>	<u>Index</u>	CRT Controller Registers	<u>Default</u>	Acc
3x4	_	Index	_	RW
3x5	0	Horizontal Total	_	RW
3x5	1	Horizontal Display Enable End	_	RW
3x5	2	Horizontal Blanking Start	_	RW
3x5	3	Horizontal Blanking End	_	RW
3x5	4	Horizontal Retrace Start	_	RW
3x5	5	Horizontal Retrace End	_	RW
3x5	6	Vertical Total	_	RW
3x5	7	Overflow	_	RW
3x5	8	Preset Row Scan	_	RW
3x5	9	Maximum Scan Line	_	RW
3x5	Α	Cursor Start	_	RW
3x5	В	Cursor End	_	RW
3x5	С	Start Address High	_	RW
3x5	D	Start Address Low	_	RW
3x5	E	Cursor Location High	_	RW
3x5	F	Cursor Location Low	_	RW
3x5	10	Vertical Retrace Start	_	RW
3x5	11	Vertical Retrace End	_	RW
3x5	12	Vertical Display Enable End	_	RW
3x5	13	Offset		RW
3x5	14	Underline Location		RW
3x5	15	Vertical Blanking Start	_	RW
3x5	16	Vertical Blanking End	_	RW
3x5	17	CRTC Mode Control	_	RW
3x5	18	Line Compare	_	RW

Note: CRTC registers are accessible at either $3B4\ /\ 3B5$ or $3D4\ /\ 3D5$ (shorthand notation $3x4\ /\ 3x5$) depending on the setting of the color / mono bit.

Trident Microsystems, Inc. 8-5

Extended Registers – VGA Sequencer Indexed (SR)

Port	Index	Extended Sequencer Regs	Default	Acc
3C5	8	Old-New Status	00	R
3C5	9	Graphics Controller Version	58	R
3C5	Α	-reserved-	_	_
3C5	В	Version/Old-New Mode Ctrl	F3	RW
3C5	С	Configuration Port 1	В7	RW
3C5	С	Configuration Port 2	_	RW
3C5	D	Old Mode Control 2	20	RW
3C5	D	New Mode Control 2	10	RW
3C5	E	Old Mode Control 1	A8	RW
3C5	E	New Mode Control 1	40	RW
3C5	F	Power-up Mode 2	BF	RW
3C5	10	VESA™ Big BIOS Control	00	RW
3C5	11	Protection	00	RW
3C5	12	Threshold	21	RW
3C5	13-17	-reserved-	_	_
3C5	18	VCLK1 Frequency Control 0	00	RW
3C5	19	VCLK1 Frequency Control 1	00	RW
3C5	1A	VCLK2 Frequency Control 0	00	RW
3C5	1B	VCLK2 Frequency Control 1	00	RW
3C5	1C-1F	-reserved-	_	_
3C5	20	Clock Syn / RAMDAC Setup	00	RW
3C5	21	Signature Control	00	RW
3C5	23-22	Signature Data	_	R
3C5	24	Power Management Ctrl	0E	RW
3C5	25	Monitor Sense	_	R
3C5	26-36	-reserved-	_	_
3C5	37	Video Key Mode	00	RW
3C5	38	Feature Connector Control	00	RW
3C5	39-4F	-reserved-	_	_
3C5	52-50	Playback Color Key Data	_	RW
3C5	53	-reserved-	_	_
3C5	56-54	Playback Color Key Mask	_	RW
3C5	57	Playback Vid Key Mode Func	_	RW
3C5	58-59	-reserved-		
3C5	5A-5F	Scratch Pad 0-5		RW
3C5	62-60	2 nd Playback Color Key Data	_	RW
3C5	63	-reserved-		
3C5	66-64	2 nd Playback ColorKey Mask	_	RW
3C5	67-7F	-reserved-	_	_

Port	Index	New Video Display Regs	Default	Acc
3C5	82-80	W1 U FB Start Address	_	RW
3C5	85-83	W1 V FB Start Address	_	RW
3C5	88-86	W2 FB Start Address	_	RW
3C5	8A-89	W2 H Scaling Factor	_	RW
3C5	8C-8B	W2 V Scaling Factor	_	RW
3C5	90-8D	W2 Live Video Start	_	RW
3C5	94-91	W2 Live Video End	_	RW
3C5	95	W2 Live Vid Line Buf Level	_	RW
3C5	96	New Live Video Win Ctrl 0	00	RW
3C5	97	New Live Video Win Ctrl 1	00	RW
3C5	98	New Live Video Win Ctrl 2	00	RW
3C5	99	New Live Video Win Ctrl 3	00	RW
3C5	9B-9A	Vid Row Byte Off. (W1-UV)	_	RW
3C5	9D-9C	Vid Row Byte Offset (W2-Y)	_	RW
3C5	9E	Line Buf Reg Threshold	00	RW
3C5	9F	VBI Control	_	RW
3C5	A3-A0	VBI Frame Buffer Address	_	RW
3C5	A7-A4	VBI Capture Start	_	RW
3C5	AB-A8	VBI Capture End	_	RW
3C5	AD-AC	VBI V Interrupt Position	_	RW
3C5	AF-AE	Capture Row Byte Offset	_	RW
3C5	B1-B0	Window 1 HSB Control	_	RW
3C5	B3-B2	Window 2 HSB Control	_	RW
3C5	B6-B4	2 nd Display Addr Select	_	RW
3C5	B7	Video Sharpness	_	RW
3C5	BA-B8	2 nd Capture Addr Select	_	RW
3C5	BB	-reserved-	_	_
3C5	ВС	Contrast Control	_	RW
3C5	BD	Dual View MUX Control	_	RW
3C5	BE	Miscellaneous Control Bits	00	RW
3C5	BF	LCD CRTC Control	_	RW
3C5	C1-C0	LCD Vertical Total	_	RW
3C5	C3-C2	LCD Horizontal Total	_	RW
3C5	C5-C4	LCD Vertical Start	_	RW
3C5	C7-C6	LCD Vertical End	_	RW
3C5	C9-C8	LCD Horizontal Start	_	RW
3C5	CB-CA	LCD Horizontal End	_	RW
3C5	CD-CC	LCD Sync Pulse width	_	RW
3C5	CE	Window 2 Live Video Ctrl	00	RW
3C5	CF	-reserved-	 -	_
3C5	D1-D0	Row Byte Offset (W2-UV)	_	RW
3C5	D4-D2	W2 U-Frame Start Address	_	RW
3C5	D7-D5	W2 V-Frame Start Address	_	RW
3C5	D9-D8	Digital TV Interface Control	_	RW
3C5	DB-DA	W2 V Count Status	_	R
3C5	DD-DC	Dual View Control	_	RW
3C5	DF-DE	W1 V Count Status	_	R
- 50	52		<u> </u>	

Port	Index	Reserved Registers	Default	Acc
3C5	E0-FF	-reserved-	_	RW

Extended Registers – VGA Graphics Controller Indexed (GR)

3CE/F		Extd Graphics Ctrlr Regs	Default	Acc
	E	Old / New Src Segment Addr	00	RW
3CE/F	F	Misc Extended Function Ctrl	00	RW
	10-1F	-reserved-	_	_
	20-2F	Power Management Regs		
	20	Standby Timer Control	0xxx000	RW
			0b	
	21	Power Management Control 1	00	RW
	22	Power Management Control 2	00	RW
	23	Power Status	_	RW
	24	Soft Power Control	E0	RW
	25	Power Control Select	FF	RW
	26	DPMS Control	00	RW
	28-27	GPIO Control	0000	RW
	29	-reserved-	_	
	2A	Suspend Pin Timer	00	RW
	2B	-reserved-	_	_
	2C	Miscellaneous Pin Control	00	RW
	2D-2E	-reserved-	_	-
	2F	Miscellaneous Internal Ctrl	00	RW
3CE/F	30-59	Flat Panel Control Registers		
	30	Flat Panel Display Control	_	R/W
	31	Flat Panel Attribute Enhancement	_	R/W
	32	Reserved	_	R/W
	33	Flat Panel Configuration	_	R/W
	34	Flat Panel Polarity Control	_	R/W
	35	Reserved	_	R/W
	36	Reserved	_	R/W
	40	Reserved	_	R/W
	41	Flat Panel MD Configuration	_	R/W
	42	TFT Panel Type Control	_	R/W
	43	SSPM Control	_	R/W
	44	Driving Capability Control	_	R/W
	45	Flat Panel Retrace Line Pulse Control	_	R/W
	46	Flat Panel Extra Line Pulse Control	_	R/W
	47	DSTN FB R/W Threshold Adjustment	_	R/W
	48	Frame Buffer Control	_	R/W
	4A-49	DV-DSTN Position	_	R/W
	50	HSYNC Timing Adjust	_	R/W
	51	VSYNC Timing Adjust	_	R/W
	52	Flat Panel Vertical Display Control	_	R/W
	53	Horizontal Expansion/Centering	_	R/W
	54	Flat Panel Resolution Control	_	R/W
	56	Frame Buffer Starting Address 1	_	R/W
	57	Frame Buffer Starting Address 2	_	R/W
	58	Frame Buffer Starting Address 3	_	R/W
	59	Frame Buffer Row Offset	_	R/W
	5A-5F	Scratch Pad 0-5	_	RW
3CE/F	071 01			

Extended Registers – VGA CRT Controller Indexed (CR)

<u>Port</u>	<u>Index</u>	Extended CRTC Registers	<u>Default</u>	<u>Acc</u>
3x5	0E	CRT Module Test	00	RW
3x5	19	CRT Interlace Control	_	RW
3x5	1A	Arbitration Control 1	00	RW
3x5	1B	Arbitration Control 2	00	RW
3x5	1C	Arbitration Control 3	00	RW
3x5	1D-1E	-reserved-	_	_
3x5	1F	Software Programming	_	RW
3x5	20	Command FIFO	00	RW
3x5	21	Linear Addressing	00	RW
3x5	22	CPU Latch Readback	_	RO
3x5	23	-reserved-	_	_
3x5	24	VGA Attribute State Readback	_	RO
3x5	25	RAMDAC RW Timing Adjust	0F	RW
3x5	26	-reserved-	_	_
3x5	27	CRT High Order Start Address	00	RW
3x5	28	-reserved-	_	_
3x5	29	RAMDAC Mode	00	RW
3x5	2A	In terface Select	10	RW
3x5	2B	Horiz. Parameter Overflow	00	RW
3x5	2C	-reserved-	_	_
3x5	2D	GE Timing Control	00	RW
3x5	2E	-reserved-	_	-
3x5	2F	Performance Tuning	03	RW
3x5	30-33	-reserved-	-	_
3x5	35-34	GE IO Linear Address Base	0000	RW
3x5	36	Graphics / Video Engine Ctrl	00	RW
3x5	37	I ² C Control	82	RW
3x5	38	Pixel Bus Mode	00	RW
3x5	39	PCI Interface Control	0000000nb	RW
3x5	3A	Physical Address Control	00	RW
3x5	3B	Clock and Tuning	0n000001b	RW
3x5	3C	Misc Control	00	RW
3x5	3D-3F	-reserved-	_	_

3x5	<u>40-50</u>	Hardware Cursor Registers	Default	Acc
	43-40	HW Cursor Position	_	RW
	45-44	HW Cursor Pattern Location	_	RW
	47-46	HW Cursor Offset	_	RW
	4F-48	HW Cursor Color	_	RW
	50	HW Cursor Control	_	RW
3x5	51	Bus Grant Termination Ctrl	_	RW
3x5	52	Shared Frame Buffer Ctrl	000x0010b	RW
3x5	53-54	-reserved-	_	_
3x5	55	PCI Retry Control	0F	RW
3x5	56	Display Pre-end Control	00	RW
3x5	57	Display Pre-end Fetch Param.	_	RW
3x5	58-5D	-reserved-	_	_
3x5	5E	Capture / ZV Port Control	x0000000b	RW
3x5	5F	Test Control	00	RW
3x5	60-61	-reserved-	_	_
3x5	62	Enhancement 0	04	RW
3x5	63	Enhancement 1	00	RW
3x5	64	DPA Extra	_	RW
3x5	65-7F	-reserved-	_	_

Port	Index	Extended CRTC Registers	Default	Acc
3x5	80-BF	Video / Capture Engine		
	81-80	Horiz Scaling Factor (W1)	_	RW
	83-82	Vert Scaling Factor (W1)	_	RW
	85-84	-reserved-	_	_
	89-86	Video Window Start (W1)	_	RW
	8D-8A	Video Window End	_	RW
	8F-8E	Video Display Engine Flag	_	RW
	91-90	Row Byte Offset (W1, W1-Y)	_	RW
	94-92	Vid Start Addr (W1-Y or W1)	_	RW
	95	Vid Win Line Buffer Thresh	_	RW
	96	Line Buf Lev Ctl (W1-Y, W1)	_	RW
	97	Video Display Engine Flag	_	RW
	9A-98	Capture Video Start Address	_	RW
	9B	Video Display Status	_	RW
	9C	Capture Control 1	_	RW
	9D	Capture Control 2	_	RW
	9E	Capture Control 3	_	RW
	9F	Capture Control 4	_	RW
	A1-A0	Capture Vertical Total	_	RW
	A3-A2	Capture Horizontal Total	_	RW
	A5-A4	Capture Vertical Start	_	RW
	A7-A6	Capture Vertical End	_	RW
	A9-A8	Capture Horizontal Start	_	RW
	AB-AA	Capture Horizontal End	_	RW
	AC	Capture Vert Sync Pulse Width	_	RW
	AD	Capture Horiz Sync Pulse Width	_	RW
	AE	Capture CRTC Control Register 1	_	RW
	AF	Capture CRTC Control Register 2	_	RW
	B1-B0	Capture Horiz Minify Factor	_	RW
	B3-B2	Capture Vert Minify Factor	_	RW
	B5-B4	DST Pixel Width Count	_	RW
	B7-B6	DST Pixel Height Count	_	RW
	B8	Capture FIFO Control 1	_	RW
	B9	Capture FIFO Control 2	_	RW
	BB-BA	Chromakey Comp Data 0 Lo	_	RW
	BD-BC	Chromakey Comp Data 0 Hi	_	RW
	BE	Capture Control	_	RW
	BF	Display Engine Flag 4	_	RW
3x5		1 3 0 0	_	_
			_	RW
		,	_	
3x5 3x5 3x5	C0-CF D3-D0 D4-FF	-reserved- VGA / Digital TV Sync Ctrl 1 -reserved-	— —	_

Extended Registers - CRTC Shadow

<u>Port</u>	<u>Index</u>	CRTC Shadow Registers	<u>Default</u>	<u>Acc</u>
3x5	00	Horizontal Total	_	RW
3x5	03	Horizontal Blanking End	_	RW
3x5	04	Horizontal Retrace Start	_	RW
3x5	05	Horizontal Retrace End	_	RW
3x5	06	Vertical Total	_	RW
3x5	07	Overflow	_	RW
3x5	10	Vertical Retrace Start	_	RW
3x5	11	Vertical Retrace End	_	RW
3x5	16	Vertical Blanking End	_	RW

8.2.5 3D Graphics Engine RegistersThese registers are addressed at offsets from the Graphics Engine Base Address (GEbase). All registers are 32-bit.

<u>Offset</u>	Span Engine Registers	<u>Default</u>	<u>Acc</u>
3-0	Parameter Source 1	_	RW
7-4	Parameter Source 2	_	RW
B-8	Parameter Destination 1	_	RW
F-C	Parameter Destination 2	_	RW
Offset	VGA Core Registers	Default	Acc
13-10	Right View Display Base Addresses	_	RW
17-14	Left View Display Base Addresses	_	RW
1B-18	Block Write Start Address	_	RW
1F-1C	Block Write Area / End Address	_	RW
23-20	GE Status	_	R
27-24	GE Control	_	W
2B-28	GE Debug	_	R
2F-2C	Wait Mask	_	RW
<u>Offset</u>	Rasterization & Setup Engine Regs	<u>Default</u>	<u>Acc</u>
33-30	Primitive Attribute	_	RW
37-34	-reserved-	_	_
3B-38	-reserved-	_	_
3F-3C	Primitive Type	_	W
3F-3C	Setup Engine Status	_	R
<u>Offset</u>	Pixel Engine Registers	<u>Default</u>	<u>Acc</u>
43-40	-reserved-	_	_
47-44	Drawing Command		RW
	Drawing Command	_	1 \ V V
4B-48	Raster Operation (ROP)	 -	RW
		_ _ _	
4B-48	Raster Operation (ROP)	_ _ _ _	RW
4B-48 4F-4C	Raster Operation (ROP) Z-Function		RW RW
4B-48 4F-4C 53-50	Raster Operation (ROP) Z-Function Texture Function		RW RW RW
4B-48 4F-4C 53-50 57-54	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0		RW RW RW
4B-48 4F-4C 53-50 57-54 5B-58	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0		RW RW RW
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved-		RW RW RW RW
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0		RW RW RW RW RW
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1		RW RW RW RW RW RW
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key		RW RW RW RW RW RW RW RW
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68 6F-6C	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key Pattern and Style		RW RW RW RW RW
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68 6F-6C 73-70	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key Pattern and Style Pattern Color		RW RW RW RW
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68 6F-6C 73-70 77-74	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key Pattern and Style Pattern Foreground Color		RW RW RW RW RW
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68 6F-6C 73-70 77-74 7B-78	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key Pattern and Style Pattern Color Pattern Foreground Color Pattern Background Color		RW RW RW RW
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68 6F-6C 73-70 77-74 7B-78 7F-7C	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key Pattern and Style Pattern Color Pattern Foreground Color Pattern Background Color Alpha Alpha Function Bit Mask		RW R
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68 6F-6C 73-70 77-74 7B-78 7F-7C 83-80	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key Pattern and Style Pattern Color Pattern Foreground Color Pattern Background Color Alpha Alpha Function		RW R
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68 6F-6C 73-70 77-74 7B-78 7F-7C 83-80 87-84	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key Pattern and Style Pattern Color Pattern Foreground Color Pattern Background Color Alpha Alpha Function Bit Mask		RW R
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68 6F-6C 73-70 77-74 7B-78 7F-7C 83-80 87-84 8B-88	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key Pattern and Style Pattern Color Pattern Foreground Color Pattern Background Color Alpha Alpha Function Bit Mask -reserved-		RW R
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68 6F-6C 73-70 77-74 7B-78 7F-7C 83-80 87-84 8B-88 8F-8C	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key Pattern and Style Pattern Color Pattern Foreground Color Pattern Background Color Alpha Alpha Function Bit Mask -reserved-		RW R
4B-48 4F-4C 53-50 57-54 5B-58 5F-5C 63-60 67-64 6B-68 6F-6C 73-70 77-74 7B-78 7F-7C 83-80 87-84 8B-88 8F-8C 93-90	Raster Operation (ROP) Z-Function Texture Function Clipping Window 0 Clipping Window 1 -reserved- Color 0 Color 1 Color Key Pattern and Style Pattern Color Pattern Foreground Color Pattern Background Color Alpha Alpha Function Bit Mask -reservedreserved-		RW R

Offset	<u>Texture Engine Registers</u>	<u>Default</u>	<u>Acc</u>
A3-A0	Texture Control	_	RW
A7-A4	Texture Color	_	RW
AB-A8	Palette Data	_	W
AF-AC	Texture Boundary	_	RW
Offset	Command List Control Registers	<u>Default</u>	<u>Acc</u>
B3-B0	-reserved-	_	_
B7-B4	-reserved-	_	_
Offset	Memory Interface Registers	<u>Default</u>	<u>Acc</u>
BB-B8	Destination Stride & Buffer 0	_	RW
BF-BC	Destination Stride & Buffer 1	_	RW
C3-C0	Destination Stride & Buffer 2	_	RW
C7-C4	Destination Stride & Buffer 3	_	RW
CB-C8	Source Stride & Buffer 0	_	RW
CF-CC	Source Stride & Buffer 1	_	RW
D3-D0	Source Stride & Buffer 2	_	RW
D7-D4	Source Stride & Buffer 3	ı	RW
DB-D8	Z Depth & Buffer	ı	RW
DF-DC	Texture Base Level 0 (1:1 Map)	-	RW
E3-E0	Texture Base Level 1	ı	RW
E7-E4	Texture Base Level 2	I	RW
EB-E8	Texture Base Level 3	1	RW
EF-EC	Texture Base Level 4	1	RW
F3-F0	Texture Base Level 5		RW
F7-F4	Texture Base Level 6	_	RW
FB-F8	Texture Base Level 7	_	RW
FF-FC	Texture Base Level 8 (mallest)	_	RW
<u>Offset</u>	<u>Data Port Area</u>	<u>Default</u>	<u>Acc</u>
1xxxx	Data Port Area	_	

8-10 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

8.3 Miscellaneous I/O

One I/O port is defined in the CyberBlade i7: Port 22.

Port 22 -	PCI Arbiter DisableRW	
7-2	Reservedalways reads 0	
1	PCI #2 (AGP) Arbiter Disable	
	0 Respond to GREQ# signal default	
	1 Do not respond to GREQ# signal	
0	PCI #1 Arbiter Disable	
	0 Respond to all REQ# signals default	
	1 Do not respond to any REQ# signals, including	j
	PREQ#	

This port can be enabled for read/write access by setting bit-7 of Device 0 Configuration Register 78.

Configuration Space I/O 8.4

All registers in the CyberBlade i7 (listed above) are addressed via the following configuration mechanism:

Mechanism #1

These ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

Port CFB-CF8 - Configuration AddressRW
31 Configuration Space Enable
0 Disableddefault
1 Convert configuration data port writes to
configuration cycles on the PCI bus
30-24 Reserved always reads 0
23-16 PCI Bus Number
Used to choose a specific PCI bus in the system
15-11 Device Number
Used to choose a specific device in the system (devices 0 and
1 are defined)
10-8 Function Number
Used to choose a specific function if the selected device
supports multiple functions (only function 0 is defined).
7-2 Register Number (also called the "Offset")
Used to select a specific DWORD in the configuration space
1-0 Fixedalways reads 0
Port CFF-CFC - Configuration DataRW
Refer to PCI Bus Specification Version 2.1 for further details on

operation of the above configuration registers.

Register Descriptions 8.5

Device 0 Header Registers - Host 8.5.1

BridgeAll registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number, function number, and device number equal to zero

<u>uevice numi</u>	<u>ber</u> equal to <u>zero</u> .
Device 0 Of	ffset 1-0 - Vendor IDRO
15-0	ID Code (reads 1106h to identify VIA Technologies)
Device 0 Of	ffset 3-2 - Device IDRO
15-0	ID Code (reads 0501h to identify the CyberBlade i7)
Device 0 Of	ffset 5-4 - CommandRW
15-10	Reservedalways reads 0
9	Fast Back-to-Back Cycle EnableRO
	0 Fast back-to-back transactions only allowed to
	the same agentdefault
	1 Fast back-to-back transactions allowed to
	different agents
8	SERR# EnableRO
	0 SERR# driver disableddefault
(0500)	1 SERR# driver enabled
	is used to report parity errors if bit-6 is set).
7	Address / Data SteppingRO
	O Device never does stepping default
,	1 Device always does stepping
6	Parity Error Response RW
	0 Ignore parity errors & continue default 1 Take normal action on detected parity errors
5	VGA Palette SnoopRO
3	0 Treat palette accesses normally default
	1 Don't respond to palette accesses on PCI bus
4	Memory Write and Invalidate Command RO
•	Bus masters must use Mem Write default
	Bus masters may generate Mem Write & Inval
3	Special Cycle MonitoringRO
	0 Does not monitor special cycles default
	1 Monitors special cycles
2	Bus Master RO
	0 Never behaves as a bus master
	1 Can behave as a bus master default
1	Memory SpaceRO
	0 Does not respond to memory space
	1 Responds to memory space default
0	I/O SpaceRO
	O Does not respond to I/O space default
	1 Responds to I/O space

Device 0 Of	fset 7-6 - Status	RWC
15	Detected Parity Error	
	0 No parity error detected	default
	1 Error detected in either address or da	ata phase.
	This bit is set even if error response i	s disabled
	(command register bit-6)write one	to clear
14	Signaled System Error (SERR# Asserted	
10	always	reads 0
13	Signaled Master Abort	dofoult
	O No abort received Transaction aborted by the master	
	write one	
12	Received Target Abort	to cicai
12	0 No abort received	default
	1 Transaction aborted by the target	
	write 1	
11	Signaled Target Abortalways	
	0 Target Abort never signaled	
10-9	DEVSEL# Timing	
	00 Fast	
	01 Mediumalways reads 01	
	10 Slow	
	11 Reserved	
8	Data Parity Error Detected	d of oult
	No data parity error detectedFrror detected in data phase. Set or	
	1 Error detected in data phase. Set or response enabled via command bit-6	lly II ellol . – 1 and
	CyberBlade i7 was initiator of the op	
	which the error occurredwrite one	to clear
7	Fast Back-to-Back Capable always	
6	Reservedalways	reads 0
5	66MHz Capablealways	
4	Supports New Capability list always	reads 1
3-0	Reserved	
always r	eads 0	
Device 0 Of	fset 8 - Revision ID	RO
7-0 Cy	berBlade i7 Chip Revision Code	
Device 0 Of	fset 9 - Programming Interface	RO
7-0	Interface Identifieralways r	eads 00
Device 0 Of	fset A - Sub Class Code	RO
7-0	Sub Class Code . reads 00 to indicate Hos	t Bridge
Device 0 Of	fset B - Base Class Code	
7-0	Base Class Codereads 06 to indicate Brid	ge Device
	fset D - Latency Timer	RW
Specifies the I	atency timer value in PCI bus clocks.	
7-3	Guaranteed Time Slice for CPUd	
2-0	Reserved (fixed granularity of 8 clks)alway	
	are writeable but read 0 for PCI sp	
compatibi	lity. The programmed value may be rea	d back in
Offset 75	bits 5-4 (PCI Arbitration 1).	

8-12 Trident Microsystems, Inc.

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL

Rev. 1.0 8/6/99

Device 0	Host	Brid	lge H	eade	er Re	giste	rs (c	ontini	ued)	
Device 0	Offse	et E -	Hea	der 1	уре				F	<u>20</u>
7-0	Н	leade	r Typ	e Coo	de	read	ds 00	: sing	le functi	on
Device 0	Offse	et F -	Buil	t In S	Self T	est (BIST)	F	10
7									d functio	
6-0	R	eser	/ed					alway	ys reads	s 0
Device 0				-		-				
31-28									itsdef	
27-20									itsdef	
									orrespor	
Grapn	ics ap	erture	e Size	regis	ster bi	i (Dev	rice i	Oliset	84h) is	U.
	27	26	25	24	23	22	21	20	(This	
Regist										
Size)	<u>7</u>	<u>6</u>	<u>5</u>	<u>4</u>	<u>3</u>	<u>2</u>	<u>1</u>	<u>0</u>	(Gr	Aper
3120)	RW	RW	RW	RW	RW	RW	RW	RW	1M	
	RW	RW	RW	RW	RW	RW	RW	0	2M	
	RW	RW	RW	RW	RW	RW	0	0	4M	
	RW	RW	RW	RW	RW	0	0	0	8M	
	RW	RW	RW	RW	0	0	0	0	16M	
	RW	RW	RW	0	0	0	0	0	32M	
	RW		0	0	0	0	0	0	64M	
	RW	0	0	0	0	0	0	0	128M	
	0	0	0	0	0	0	0	0	256M	
19-0	R	eser	/ed				alw	ays rea	ads 000	08
Note:The I	ocatio	ns in	the a	ddres	s ran	ge de	fined	by this	registe	r are
prefeto	chable) .								
Device 0	Offse	et 37	-34 -	Capa	abilit	y Poi	nter.		F	<u> 10</u>
Contains a	n offs	et froi	m the	start	of cor	nfigura	ation s	space.		
31-0	Α	GP C	apab	ility L	ist P	ointe	ra	lways	reads A	0h

8-13 Trident Microsystems, Inc.

Device 0 Configuration Registers - Host 8.5.2 Bridge

Cache Control

Device 0 Of	fset 50 - Cache Control 1RW
7-6	Cache Enable / Initialize
	00 Cache disabledefault
	01 Cache Initialize - always does L2 fill
	10 Cache enable (normal operation)
	11 Reserved (do not use)
5	Linear Burst
	0 Disable default
	1 Enable
4-3	Tag Configuration
	00 8+0 - 8 Tag bits, no alt (dirty) bit default
	01 7+1 - 7 Tag bits + alternate (dirty) bit
	1x Reserved
2-0	Reserved always read 0
Device 0 Of	fset 51 - Cache Control 2RW
7-6	Reserved (no function)RW
5	Backoff CPU
	ne to backoff CPU when non-streaming access to f
L2 cache	. Used when register 52h bit-2 is set for "L2 fill whe
CACHE#	is inactive". This bit should normally be set to 0 for
	ormance, but performance differences are typically no
significan	tly noticeable at the system level.
	0 Defer ready return until L2 is filled default
	1 Backoff CPU until L2 is filled
4	Fast AHOLD generationalways reads 0
	0 Disable default
	1 Enable
3	SRAM Banks (default set from inverse of MA)
	0 1 Bank
	1 2 Banks
2	Reservedalways reads 0
1-0	Cache Size (bit-0 default set from inverse of MA)
	00 256K
	01 512K
	10 1M
	11 2M

<u>Device</u>	0 Offset 52 - Non-Cacheable ControlRW
7	C0000-C7FFF Cacheable & Write-Protect def=0
6	D0000-DFFFF Cacheable & Write-Protect def=0
5	E0000-EFFFF Cacheable & Write-Protect def=0
4	F0000-FFFFF Cacheable & Write-Protect def=0
3	2T DRAM Write Request
	0 Disable default
	1 Enable (RX53[2] must be enabled if this bit is
	enabled, If this bit is set, RX53[7] must be
	disabled)
	should be disable with this bit enable)
2	L2 Fill on Single Read
-	0 Normal L2 cache filldefault
	1 Force the requested data to be filled into the L2
	cache (provided that L2 cache is enabled), even
	if the CPU does a read cycle with CACHE# de-
	asserted. Setting this bit significantly improves
	performance.
1	AMD K6-3 2T Write Pipe Support
•	0 Disable default
	1 Enable
0	L2 Write Thru/Write-Back
	0 Write-Backdefault
	1 Write-Thru
Dovico	0 Offcot 52 System Performance Control DM
	0 Offset 53 - System Performance Control RW
<u>Device</u> 7	Read Around Write
	Read Around Write 0 Disabledefault
7	Read Around Write 0 Disabledefault 1 Enable
	Read Around Write 0 Disabledefault 1 Enable Cache Read Pipeline Cycle
7	Read Around Write 0 Disabledefault 1 Enable Cache Read Pipeline Cycle 0 Disabledefault
7 6	Read Around Write 0 Disabledefault 1 Enable Cache Read Pipeline Cycle 0 Disabledefault 1 Enable
7	Read Around Write 0 Disabledefault 1 Enable Cache Read Pipeline Cycle 0 Disabledefault 1 Enable Cache Write Pipeline Cycle
7 6	Read Around Write 0 Disable
7 6 5	Read Around Write 0 Disable
7 6	Read Around Write 0 Disable
7 6 5	Read Around Write 0 Disable
7 6 5 4	Read Around Write 0 Disable
7 6 5	Read Around Write 0 Disable
7 6 5 4	Read Around Write 0 Disable
7 6 5 4	Read Around Write 0 Disable
7 6 5 4	Read Around Write 0 Disable
7 6 5 4 3 Act	Read Around Write 0 Disable
7 6 5 4 3 Act	Read Around Write 0 Disable
7 6 5 4 3 Act	Read Around Write 0 Disable
7 6 5 4 3 Act	Read Around Write 0 Disable
7 6 5 4 3 Act	Read Around Write 0 Disable
7 6 5 4 3 Act	Read Around Write 0 Disable

1 Enable

8-14 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Device 0 Offset 55-54 - Non-Cacheable Region #1 ... RW

2-0 Range (Region Size)

000 Disable default

001 64K

010 128K (Base Address A16 must be 0)

011 256K (Base Address A16-17 must be 0)

100 512K (Base Address A16-18 must be 0)

101 1M (Base Address A16-19 must be 0)

110 2M (Base Address A16-20 must be 0)

111 4M (Base Address A16-21 must be 0)

Device 0 Offset 57-56 - Non-Cacheable Region #2 ... RW

15-3 Base Address MSBs - A<28:16>.....default=0 As noted below, the base address must be a multiple of the region size.

2-0 Range (Region Size)

000 Disable default

001 64K

010 128K (Base Address A16 must be 0)

011 256K (Base Address A16-17 must be 0)

100 512K (Base Address A16-18 must be 0)

101 1M (Base Address A16-19 must be 0)

110 2M (Base Address A16-20 must be 0)

111 4M (Base Address A16-21 must be 0)

Trident Microsystems, Inc. 8-15

8.6 **DRAM Control**

These registers are normally set at system initialization time and not accessed after that during normal system operation. Some of these registers, however, may need to be programmed using specific sequences during power-up initialization to properly detect the type and size of installed memory

Table 8-1. System Memory Map

Space	Start	Size	Address Range	Comment
DOS	0	640K	00000000-0009FFFF	Cacheable
VGA	640K	128K	000A0000-000BFFFF	Used for SMM
BIOS	768K	16K	000C0000-000C3FFF	Shadow Ctrl 1
BIOS	784K	16K	000C4000-000C7FFF	Shadow Ctrl 1
BIOS	800K	16K	000C8000-000CBFFF	Shadow Ctrl 1
BIOS	816K	16K	000CC000-000CFFFF	Shadow Ctrl 1
BIOS	832K	16K	000D0000-000D3FFF	Shadow Ctrl 2
BIOS	848K	16K	000D4000-000D7FFF	Shadow Ctrl 2
BIOS	864K	16K	000D8000-000DBFFF	Shadow Ctrl 2
BIOS	880K	16K	000DC000-000DFFFF	Shadow Ctrl 2
BIOS	896K	64K	000E0000-000EFFFF	Shadow Ctrl 3
BIOS	960K	64K	000F0000-000FFFFF	Shadow Ctrl 3
Sys	1MB	-	00100000-DRAM Top	Can have hole
Bus	D Top		DRAM Top-FFFEFFF	
Init	4G-64K	64K	FFFEFFFF-FFFFFFF	000Fxxxx alias

Dev

vice 0 Of	fset 59-58 - DRAM MA Map TypeRW
15-13	Bank 5/4 MA Map Type (EDO/FPG)
	000 8-bit Column Address
	001 9-bit Column Address
	010 10-bit Column Address default
	011 11-bit Column Address
	100 12-bit Column Address (64Mb)
	101 Reserved
	11x Reserved
Bank 5/4	4 MA Map Type (SDRAM)
	0xx 16Mb SDRAMdefault
	100 64/128Mb SDRAM (x4, x8, x16, 4-bank x32)
	101 64Mb VC SDRAM(x4)
	110 64/128Mb VC SDRAM (8Mx8 or 8Mx16)
	111 128Mb VC SDRAM (16Mx8)
12	Bank 5/4 Virtual Channel Enable default=0
11-8	Reservedalways reads 0

Bank 1/0 MA Map Type (see above)

Bank 3/2 MA Map Type (see above)

Bank 1/0 Virtual Channel Enable default=0

Bank 3/2 Virtual Channel Enable default=0

7-5

3-1

<u>Device 0 Offset 5A-5F – DRAM Row Ending Address:</u>

All of the registers in this group default to 01h:

Offset 5A - Bank 0 Ending (HA[30:23])RW
Offset 5B – Bank 1 Ending (HA[30:23])RW
Offset 5C – Bank 2 Ending (HA[30:23]) RW
Offset 5D – Bank 3 Ending (HA[30:23]) RW
Offset 5E – Bank 4 Ending (HA[30:23])RW
Offset 5F – Bank 5 Ending (HA[30:23])RW
Note: BIOS is required to fill the ending address register for all banks even if no memory is populated. The ending have to be in incremental order.

rs วร have to be in incremental order.

Device 0 C	Offset 60 – DRAM TypeRW
7-6	Reservedalways reads 0
5-4	DRAM Type for Bank 5/4
	00 Fast Page Mode DRAM (FPG)default
	01 EDO DRAM (EDO)
	10 Reserved
	11 SDRAM
3-2	DRAM Type for Bank 3/2 default=FPG
1-0	DRAM Type for Bank 1/0 default=FPG
	

8-16 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Table 8-2. Memory Address Mapping Table

EDO/FP DRAM

MA:	13	<u>12</u>	<u>11</u>	10	9	8	7	6	5	4	3	2	1	0	
8-bit Col		23	22	21	11	20	19	18	17	16	15	14	13	12	Row Bits
(000)							10	9	8	7	6	5	4	3	Col Bits
9-bit Col		24	23	22	21	20	19	18	17	16	15	14	13	12	Row Bits
(001)						11	10	9	8	7	6	5	4	3	Col Bits
10-bit Col		25	24	23	21	20	19	18	17	16	15	14	13	12	Row Bits
(010)					22	11	10	9	8	7	6	5	4	3	Col Bits
11-bit Col		26	25	23	21	20	19	18	17	16	15	14	13	12	Row Bits
(011)				24	22	11	10	9	8	7	6	5	4	3	Col Bits
12-bit Col		27	25	23	21	20	19	18	17	16	15	14	13	12	Row Bits
(100)			26	24	22	11	10	9	8	7	6	5	4	3	Col Bits

SDRAM

MA:	13	<u>12</u>	<u>11</u>	<u>10</u>	9	8	7	6	5	4	3	2	1	0	
16Mb (0xx)			11 <i>11</i>	22 PC	21 24	20 23	19 10	18 9	17 8	16 7	15 6	14 5	13 4	. —	Row Bits Col Bits
64Mb (100) 2/4 bank x4, x8, x16; 4-bank x32	24 <i>24</i>	13 13	12 12	22 PC	21 26	20 25	19 10	18 9	17 8	16 7	15 6	14 5	11 4	23 3	x4: 10 col x8: 9 col x16: 8 col x32: 8 col

VC SDRAM

Segment address {HA9,HA10,HA25,HA26} depends on VC SDRAM configurations.

MA:	13	12	<u>11</u>	10	9	8	7	6	5	4	3	2	1	0	
64M VC SDRAM	24	13	12	22	21	20	19	18	17	16	15	14	11	23	64M: 4Mx16 (13x6)
(101) 6-bit Cola 2-bank	24	13	12	PC	26	25	10	9	8	7	6	5	4	3	
64M/128M VC SDRAM	24	13	12	22	21	20	19	18	17	16	15	14	11	23	64M: 8Mx8 (13x7)
(110) 7-bit Cola 2-bank	24	13	12	PC	26	25	10	9	8	7	6	5	4	3	128M: 8Mx16 (13x7)
128M VC SDRAM	24	13	12	22	21	20	19	18	17	16	15	14	11	23	128M: 16Mx8 (13x8)
(111) 8-bit Cola 2-bank	24	13	12	PC	26	25	10	9	8	7	6	5	4	3	,

"PC" = "Precharge Control" (refer to SDRAM specifications)

16Mb 11x10, 11x9, and 11x8 configurations supported

64Mb x4: 12x10 4bank, 13x10 2bank

x8: 12x9 4bank, 13x9 2bank x16: 12x8 4bank, 13x8 2bank

x32: 11x8 4bank 128Mb same as 64Mb

Device 0 Offs		1 - Shadow RAM Control 1	RW
7-6		000h-CFFFFh	
	00	Read/write disable	default
	01	Write enable	
		Read enable	
	11	Read/write enable	
5-4		000h-CBFFFh	
		Read/write disable	default
		Write enable	
		Read enable	
	11	Read/write enable	
3-2		000h-C7FFFh	
		Read/write disable	default
	01	Write enable	
		Read enable	
4.0	11		
1-0		000h-C3FFFh	1.6. 0
		Read/write disable	aerault
	01	Write enable	
		Read enable	
	11	Read/write enable	
Device 0 Off	fset	62 - Shadow RAM Control 2	RW
7-6		000h-DFFFFh	
		Read/write disable	default
	01	Write enable	
	10	Read enable	
	11	Read/write enable	
5-4		000h-DBFFFh	
		Read/write disable	default
	01	Write enable	
		Read enable	
2.2	11	rtoda, mito onabio	
3-2		000h-D7FFFh	-1 - 6 14
	00 01	Read/write disable	ueraun
		Write enable Read enable	
	10		
1-0	11	Read/write enable 000h-D3FFFh	
1-0	00		dofault
		Write enable	ueidull
	10	Read enable	
	11	Read/write enable	
	1.1	TOUR WITE CHANG	

	ffset 63 - Shadow RAM Control 3RW
7-6	E0000h-EFFFFh
	00 Read/write disable default
	01 Write enable
	10 Read enable
	11 Read/write enable
5-4	F0000h-FFFFFh
	00 Read/write disable default
	01 Write enable
	10 Read enable
	11 Read/write enable
3-2	Memory Hole
	00 Nonedefault
	01 512K-640K
	10 15M-16M (1M)
	11 14M-16M (2M)
1-0	SMI Mapping Control
. •	00 Disable SMI Address Redirection default
	01 Allow access to DRAM Axxxx-Bxxxx for both
	normal and SMI cycles
	10 Reserved
	11 Allow SMI Axxxx-Bxxxx DRAM access
	11 Aliom 21/11 Axxxx-dxxxxx Drain access
Note: T	The A0000-BFFFF address range is reserved for use by
	the NOA feet a life

Note: The A0000-BFFFF address range is reserved for use by VGA controllers for system access to the VGA frame buffer. Since frame buffer accesses are normally directed to the system VGA controller (with its separate memory subsystem), system DRAM locations in the A0000-BFFFF range would normally be unused. Setting the above bits appropriately allows this block of system memory to be used by directing Axxxx-Bxxxx accesses to corresponding memory addresses in system DRAM instead of directing those accesses to the PCI bus for VGA frame buffer access.

Device 0 O	<u> Iffset 64 - D</u>	DRAM Timing for Banks 0,1 RW
Device 0.0	lffset 65 - D	DRAM Timing for Banks 2,3 RW
		•
Device 0 O	<u> Iffset 66 - D</u>	DRAM Timing for Banks 4,5 RW
FPG / EDO S	Settings for	Registers 64-66
7		charge Time
	0 3T	
	1 4T	default
6	RAS Puls	e Width
	0 4T	
	1 5T	default
5-4	CAS Read	d Pulse Width
	00 1T	
	01 2T	
	10 3T	default
	11 4T	
Note:	EDO will not	automatically reduce the CAS pulse width.
		Is, use 00 if CAS width = 1 is to be used.
3		e Pulse Width
ŭ	0 1T	or also main
	1 2T	default
2	MA-to-CA	
=	0 1T	
	1 2T	default

.....default

Reservedalways reads 0

RAS to MA Delay

0 1T

1 2T

8-18 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

SDRAM S	ettings for Registers 64-66	Device 0 Offset 68 - DRAM ControlRW
7	Precharge Command to Active Command Period O TRP = 2T TRP = 3T	7 SDRAM Open Page Control 0 Always precharge SDRAM banks whe accessing EDO/FPG DRAMsdefault 1 SDRAM banks remain active when accessin
	0 Tras = 5T 1 Tras = 6Tdefault	EDO/FPG banks
5-4	CAS Latency 00 1T	 Bank Page Control Allow only pages of the same bank active def Allow pages of different banks to be active
	01 2T 10 3Tdefault 11 Reserved	5 EDO Pipeline Burst Rate 0 X-2-2-2-2-2-2default 1 X-2-2-2-3-2-2-2
3	Reserved (Do Not Program) default = 0	4 Reserved (do not program)default = 0
2	ACTIVE Command to CMD Command Period 0 2T 1 3Tdefault	3 EDO Test Mode 0 Disable default 1 Enable
1-0	Bank Interleave	Note: MD0 is internally pulled up for EDO detection.
. •	00 No Interleavedefault 01 2-way 10 4-way 11 Reserved	2 Burst Refresh 0 Disable default 1 Enable (burst 4 times) 1-0 System Frequency DividerRO
	11 Reserved	00 Autodetect 01 CPU/PCI Frequency Ratio = 3x(100 MHz) 10 CPU/PCI Frequency Ratio = 2x(66 MHz) 11 Reserved These bits are latched from MA[13-12] at the rising edge of RESET#.
		Device 0 Offset 69 – DRAM Clock SelectRW DRAM Operating FrequencyRW Same as Host Frequency 1 100Mhz

6-0

Reservedalways reads 0

Device 0 Off	set 6A - Refresh CounterRW
7-0	Refresh Counter (in units of 16 CPUCLKs) OD DRAM Refresh Disabled
The proc	grammed value is the desired number of 16-CPUCLK
units minu	
Davisa 0 Off	icat (D. DDAM Arbitration Control DW
	Set 6B - DRAM Arbitration Control RW
7-6	Arbitration Parking Policy
	00 Park at last bus ownerdefault 01 Park at CPU side
	10 Park at AGP side
	11 Reserved
5-4	Reservedalways reads 0
3- 4 3-1	Suspend Refresh Rate
3- I	000 Refresh Disabled default
	001 15.6 usec
	010 31.2 usec
	011 64.4 usec
	100 125 usec
	101 256 usec
	11x -reserved-
	(78[5]=1, the refresh counter uses SUSCLK
0	Multi-Page Open
	O Disable (page registers marked invalid and no
	page register update which causes non page- mode operation)
	1 Enabledefault
	i Litubiouciault

Device 0 O	ffset 6C - SDRAM ControlRW
7	Disable Fast DRAM Write PipeDebug Only
	0 Normaldefault
	1 Disable Fast Write
6	DRAM Start Cycle
	Concurrent with cache hit detection
	(for 66MHz operation)default
	1 After cache hit detection
	(for 100MHz operation)
5	MD-to-HD Pop
	0 Normaldefault
	1 Add 1T latency to improve MD setup time at 100
	MHz
4	Reserved (Do Not Program)default = 0
3	Fast AGP TLB lookup
	0 Disabledefault
	1 Reduce the lookup time from 4T to 2T
2-0	SDRAM Operation Mode Select
	000 Normal SDRAM Modedefault
	001 NOP Command Enable
	010 All-Banks-Precharge Command Enable
	(CPU-to-DRAM cycles are converted
	to All-Banks-Precharge commands).
	011 MSR Enable
	CPU-to-DRAM cycles are converted to
	commands and the commands are driven on
	MA[13:0]. The BIOS selects an appropriate host
	address for each row of memory such that the
	right commands are generated on MA[13:0].
	100 CBR Cycle Enable (if this code is selected, CAS-
	before-RAS refresh is used; if it is not selected,
	RAS-Only refresh is used)
	101 Reserved
	11x Reserved

Rx6B[0]	Rx64-66[1-0]	Rx68[7-6]	Remark
0	00	00	Non-page mode, every access starts from precharge-active cmd
1	00	00	Only one page active at a time (recommended setting)
1	01 or 10	00	Only allow sub-bank of a SDRAM bank active at a time, # of subbank depends on Rx64-66<1:0>
1	01 or 10	01	Allow mutliple sub-banks across different SDRAM banks active, but if EDO is accessed, all SDRAM pages will be closed
1	01 or 10	11	Allow maximum 8 pages of SDRAM, EDO opened

8-20 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Device 0 Of	fset 6D - DRAM Drive StrengthRW
7	Reservedalways reads 0
6-5	Delay DRAM Read Latch
	00 Disable default
	01 0.5 ns
	10 1.0 ns
	11 2.0 ns
4	MD Drive
	0 6 mAdefault
	1 8 mA
3	SDRAM Command Drive (SRAS#, SCAS#, SWE#)
	0 16mAdefault
	1 24mA
2	MA[2:13] / WE# Drive
	0 16mAdefault
	1 24mA
1	CAS# Drive
	0 8 mAdefault
	1 12 mA
0	RAS# Drive
	0 16mAdefault
	1 24mA

Device 0 Of	fset 6E - ECC ControlRW
7	ECC / ECMode Select
	0 ECC Checking and Reportingdefault
	1 ECC Checking, Reporting, and Correcting
6	Reservedalways reads 0
5	Enable SERR# on ECC / EC Multi-Bit Error
	0 Don't assert SERR# for multi-bit errors def
	1 Assert SERR# for multi-bit errors
4	Enable SERR# on ECC / EC Single-Bit Error
	0 Don't assert SERR# for single-bit errors def
	1 Assert SERR# for single-bit errors
3	Reservedalways reads 0
2	ECC / EC Enable - Bank 5/4 (DIMM 2)
	0 Disable (no ECC or EC for banks 5/4) default
	1 Enable (ECC or EC per bit-7)
1	ECC / EC Enable - Bank 3/2 (DIMM 1)
	O Disable (no ECC or EC for banks 3/2)default
	1 Enable (ECC or EC per bit-7)
0	ECC / EC Enable - Bank 1/0 (DIMM 0)
	0 Disable (no ECC or EC for banks 1/0)default
	1 Enable (ECC or EC per bit-7)

Error checking / correction may be enabled bank-pair by bank-pair (DIMM by DIMM) by using bits 0-2 above. Bank pairs must be populated with 72-bit memory to enable for EC or ECC since the additional data bits must be present in either case. For this reason, if 64-bit memory is populated in a particular bank pair, the corresponding bit 0-2 should be set to 0 to disable both EC and ECC for that bank pair. For those bank pairs that have 72-bit memory available (and have the corresponding bit 0-2 set), either EC or ECC may be selected via bit-7 above (i.e., all enabled bank pairs will use ECC).

If error checking / reporting only (EC) is selected, all read and write cycles will use normal timing. Partial writes (with EC or ECC enabled) will use read-modify-write cycles to maintain correct error correction codes in the additional 8 data bits. If EC and ECC are disabled for a particular bank pair, partial writes to that bank pair will use the byte enables to write only the selected bytes (using normal write cycles and cycle timing). If error correction (ECC) is selected, the first read of a transaction will always have one additional cycle of latency.

<u>Bit-7</u>	Bits 2-0	RMW	Error CheckingError	
Correc	tion :			
0/1	0	No	No	No
0	1	Yes	Yes	No
1	1	Yes	Yes	Yes

Rev. 1.0 8/6/99

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL

Pevice 0 Offset 6F - ECC Status......RWC 7 Multi-bit Error Detected......write of '1' resets 6-4 Multi-bit Error DRAM Bank.....default=0 Encoded value of the bank with the multi-bit error. 3 Single-bit Error Detectedwrite of '1' resets 2-0 Single-bit Error DRAM Bankdefault=0 Encoded value of the bank with the single-bit error.

8-22 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

8.7 PCI Bus #1 Control

These registers are normally programmed once at system initialization time.

Device 0 Offset 71 - CPU to PCI Flow Control 1......RW

These registers are normally programmed once at system initialization time.

Device 0 Off	set 70 - PCI Buffer ControlRW
7	CPU to PCI Post-Write
	0 Disable default
	1 Enable
6	PCI Master to DRAM Post-Write
	0 Disabledefault
	1 Enable
5	Reserved
4	PCI Master to DRAM Prefetch Disable
	0 Enabledefault
	1 Disable
3	Reserved (do not program) default = 0
2	PCI Master Read Caching
	0 Disabledefault
	1 Enable
1	Delay Transaction
	0 Disabledefault
	1 Enable
0	Reduce One PCI Idle Cycle when Cycle is Retried
by Slave	
	0 Disabledefault
	1 Enable

vice u	Olize	171-CPU TO POLFIOW CONTROL T KW
7	Dy	namic Burst
	0	Disabledefault
	1	Enable (see note under bit-3 below)
6	Ву	rte Merge
	0	Disabledefault
	1	Enable
5		eserved (do not program)default = 0
4	PC	CI I/O Cycle Post Write
	0	Disabledefault
	1	Enable
3		CI Burst
	0	Disabledefault
=	1	Enable (bit7=1 will override this option)
<u>bit-7</u>	<u>bit-3</u>	<u>Operation</u>
0	0	Every write goes into the write buffer and no PCI
0	1	burst operations occur.
0	1	If the write transaction is a burst transaction, the information goes into the write buffer and burst
		transfers are later performed on the PCI bus. If
		the transaction is not a burst, PCI write occurs
		immediately (after a write buffer flush).
1	Х	Every write transaction goes to the write buffer;
		burstable transactions will then burst on the PCI
		bus and non-burstable won't. This is the normal
		setting.
2	PC	CI Fast Back-to-Back Write
	0	Disabledefault
	1	Enable
1		uick Frame Generation
	0	Disabledefault
		Enable
0		Nait State PCI Cycles
	0	Disabledefault
	1	Enable

MLT timer and falling edge reloads the timer

10 Rising Edge of PCI#2 Master Request clears MLT timer and falling edge reloads the timer

11 Reserved (illegal setting)

Device 0 C	Offset 72 - CPU to PCI Flow Control 2RWC	Device 0	Offset 73 - PCI Master Control 1RW
7	Retry Status	7	Reservedalways reads 0
	Retry occurred less than retry limit default	6	PCI Master 1-Wait-State Write
	1 Retry occurred more than x times (where x is		O Zero wait state TRDY# responsedefault
	defined by bits 5-4)write 1 to clear		1 One wait state TRDY# response
6	Retry Timeout Action	5	PCI Master 1-Wait-State Read
	Řetry Forever (record status only) default		O Zero wait state TRDY# responsedefault
	1 Flush buffer for write or return all 1s for read		One wait state TRDY# response
5-4	Retry Limit	4	Disable Prefetch when Doing Delay Transaction
	00 Retry 2 times default		0 Enabledefault
	01 Retry 16 times		1 Disable
	10 Retry 4 times	3	Assert STOP# after PCI Master Write Timeout
	11 Retry 64 times		0 Disabledefault
3	Clear Failed Data and Continue Retry		1 Enable
	0 Flush the entire post-write buffer default	2	Assert STOP# after PCI Master Read Timeout
	1 When data is posting and master (or target)		0 Disabledefault
	abort fails, pop the failed data if any, and keep		1 Enable
	posting	1	LOCK# Function
2	CPU Backoff on PCI Read Retry Failure		0 Disabledefault
	0 Disabledefault		1 Enable
	1 Backoff CPU when reading data from PCI and	0	PCI Master Broken Timer Enable
	retry fails		0 Disabledefault
1	Reduce 1T for FRAME# Generation		1 Enable. Force into arbitration when there is no
	0 Disabledefault		FRAME# 16 PCICLK's after the grant. Does not
	1 Enable		apply to south bridge PREQ# input
0	Reserved (do not program) default = 0	Device 0	Offset 74 - PCI Master Control 2RW
		7	PCI Master Read Prefetch by Enhance Command
			0 Always Prefetchdefault
			1 Prefetch only if Enhance command
		6	PCI Master Write Merge
			0 Disable default
			1 Enable
		5	Reservedalways reads 0
		4	Dummy Request Handling Should be set to 1
			0 As VP3default
			1 Complete Fix
		3	PCI#1 Delay Transaction Time-Out
			0 Disabledefault
			1 Enable
		2	Backoff CPU Immediately on CPU to PCI#2 Retry
			0 Disabledefault
			1 Enable
		1-0	CPU/PCI Master Latency Timer Control
			00 PCI#2 Master Reloads MLT timerdefault
			01 Falling edge of PCI#2 Master Request reloads

8-24 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Device 0 Of	fset 75	- PCI Arbitration 1RW
7	Arbitra	tion Mechanism
	0 PC	I has prioritydefault
	1 Fai	r arbitration between PCI and CPU
6	Arbitra	tion Mode
	0 RE	Q-based (arbitrate at end of REQ#). default
	1 Fra	me-based (arbitrate at FRAME# assertion)
5-4	Latenc	y Timer read only, reads Rx0D bits 2:1
3-0	PCI Ma	ister Bus Time-Out
(force in	to arbitra	tion after a period of time)
	0000	Disabledefault
	0001	1x32 PCLKs
	0010	2x32 PCLKs
	0011	3x32 PCLKs
	0100	4x32 PCLKs
	1111	15x32 PCLKs

Device (Offset	76 - PCI Arbitration 2RW
7	PC	#2 Master Access PCI #1 Retry Disconnect
	0	Disable (PCI #2 will not be disconnected until
		access finishes)default
	1	Enable (PCI #2 will be disconnected if max
		retries are attempted without success)
6	CPU La	ntency Timer Bit-0RO
	0	CPU has at least 1 PCLK time slot when CPU
		has PCI bus
	1	CPU has no time slot
5-4	Ma	ster Priority Rotation Control
		Disabled (arbitration per Rx75 bit-7)default
		Grant to CPU after every PCI master grant
	10	Grant to CPU after every 2 PCI master grants
	11	Grant to CPU after every 3 PCI master grants

With setting 01, the CPU will always be granted access after the current bus master completes, no matter how many PCI masters are requesting. With setting 10, if other PCI masters are requesting during the current PCI master grant, the highest priority master will get the bus after the current master completes, but the CPU will be guaranteed to get the bus after that master completes. With setting 11, if other PCI masters are requesting, the highest priority will get the bus next, then the next highest priority will get the bus, then CPU will get the bus. In other words, with the above settings, even if multiple PCI masters are continuously requesting the bus, the CPU is guaranteed to get access after every master grant (01), after every other master grant (10) or after every third master grant (11).

yrani (i	I <i>)</i> .
3-2	High Priority REQ Select
	00 REQ4default
	01 REQ0
	10 REQ1
	11 REQ2
1	C2P QW High DW Read Access to PCI Slave
Allow B	ackoff
	0 Disabledefault
	1 Enable
0	High Priority Request Support
	0 Disabledefault
	1 Enable

<u> Jevice 0 (</u>	<u> Offset 77 - Chip Test Mode</u>	RW
7-6	Reserved (no function)	always reads 0
5-0	Reserved (do not use)	default=0

Device (<u> 0 Offset 78 - PMU Control 1 RW</u>
7	I/O Port 22 Access
	0 CPU access to I/O address 22h is passed on to
	the PCI busdefault
	1 CPU access to I/O address 22h is processed
	internally
6	Suspend Refresh Type
	0 CBR Refreshdefault
	1 Self Refresh
5	Reservedalways reads 0
4	Dynamic Clock Control
	O Normal (clock is always running) default
	1 Clock to various internal functional blocks is
_	disabled when those blocks are not being used
3	Reservedalways reads 0
2	AGPSTP# control
	0 Disabledefault
	1 Enable
1	Reservedalways reads 0
0	Memory Clock Enable (CKE) Function O CKE Disable (pins used as MECC[2-0])def
	0 CKE Disable (pins used as MECC[2-0])def 1 CKE Enable (pins used for CKE[2-0]#)
	Toke Litable (pills used for Cke[z-vj#)
Device 0	Offset 79 – PMU Control 2RW
Device 0	Offset 79 – PMU Control 2RW CPU Interface Controller Dynamic Clock
7	CPU Interface Controller Dynamic Clock
	CPU Interface Controller Dynamic Clock
7	CPU Interface Controller Dynamic Clock bing
7	CPU Interface Controller Dynamic Clock bing 0 Disabledefault
7 Stopp	CPU Interface Controller Dynamic Clock bing 0 Disabledefault 1 Enable
7 Stopp	CPU Interface Controller Dynamic Clock bing 0 Disable
7 Stopp	CPU Interface Controller Dynamic Clock bing 0 Disable
7 Stopp	CPU Interface Controller Dynamic Clock bing 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default
7 Stopp 6 5	CPU Interface Controller Dynamic Clock bing 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable
7 Stopp	CPU Interface Controller Dynamic Clock bing 0 Disable
7 Stopp 6 5	CPU Interface Controller Dynamic Clock bing 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default
7 Stopp 6 5	CPU Interface Controller Dynamic Clock bing 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable
7 Stopp 6 5	CPU Interface Controller Dynamic Clock bing 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable Pseudo Power Good
7 Stopp 6 5	CPU Interface Controller Dynamic Clock bing 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable PSeudo Power Good 0 Disable default
7 Stopp 6 5 4	CPU Interface Controller Dynamic Clock bing 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable Pseudo Power Good 0 Disable default 1 Enable
7 Stopp 6 5	CPU Interface Controller Dynamic Clock bing 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable Pseudo Power Good 0 Disable default 1 Enable South Bridge has High Priority
7 Stopp 6 5 4	CPU Interface Controller Dynamic Clock bing 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable Pseudo Power Good 0 Disable default 1 Enable South Bridge has High Priority 0 Disable default
7 Stopp 6 5 4 3	CPU Interface Controller Dynamic Clock bing O Disable default Enable DRAM Controller Dynamic Clock Stopping O Disable default Enable AGP Controller Dynamic Clock Stopping O Disable default Enable PCI Interface Controller Dynamic Clock Stopping O Disable default Enable PCI Interface Controller Dynamic Clock Stopping O Disable default Enable Pseudo Power Good O Disable default Enable South Bridge has High Priority O Disable default Enable
7 Stopp 6 5 4	CPU Interface Controller Dynamic Clock bing 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable Pseudo Power Good 0 Disable default 1 Enable South Bridge has High Priority 0 Disable default 1 Enable GCLKRUN# Timer
7 Stopp 6 5 4 3	CPU Interface Controller Dynamic Clock ping 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable Pseudo Power Good 0 Disable default 1 Enable South Bridge has High Priority 0 Disable default 1 Enable GCLKRUN# Timer 00 10 usec default
7 Stopp 6 5 4 3	CPU Interface Controller Dynamic Clock ping 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable Pseudo Power Good 0 Disable default 1 Enable South Bridge has High Priority 0 Disable default 1 Enable GCLKRUN# Timer 00 10 usec default 01 100 usec
7 Stopp 6 5 4 3	CPU Interface Controller Dynamic Clock ping 0 Disable default 1 Enable DRAM Controller Dynamic Clock Stopping 0 Disable default 1 Enable AGP Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable PCI Interface Controller Dynamic Clock Stopping 0 Disable default 1 Enable Pseudo Power Good 0 Disable default 1 Enable South Bridge has High Priority 0 Disable default 1 Enable GCLKRUN# Timer 00 10 usec default

Device 0	Offset 7E – DLL Test Mode.	RW
7-6	Reserved (status)	RC
5-0	Reserved (do not use)	default=0
Device 0	Offset 7F – DLL Test Mode	RW
7-0	Reserved (do not use)	default=0

8-26 Trident Microsystems, Inc.

8.8 GART / Graphics Aperture Control

The function of the Graphics Address Relocation Table (GART) is to translate virtual 32-bit addresses issued by an AGP device into 4K-page based physical addresses for system memory access. In this translation, the upper 20 bits (A31-A12) are remapped, while the lower 12 address bits (A11-A0) are used unchanged.

A one-level fully associative lookup scheme is used to implement the address translation. In this scheme, the upper 20 bits of the virtual address are used to point to an entry in a page table located in system memory. Each page table entry contains the upper 20 bits of a physical address (a "physical page" address). For simplicity, each page table entry is 4 bytes. The total size of the page table depends on the GART range (called the "aperture size") which is programmable in the CyberBlade i7.

This scheme is shown in the figure below.

Figure 8-1. Graphics Aperture Address Translation

Since address translation using the above scheme requires an access to system memory, an on-chip cache (called a "Translation Lookaside Buffer" or TLB) is utilized to enhance performance. The TLB in the CyberBlade i7 contains 16 entries. Address "misses" in the TLB require an access of system memory to retrieve translation data. Entries in the TLB are replaced using an LRU (Least Recently Used) algorithm.

Addresses are translated only for accesses within the "Graphics Aperture" (GA). The Graphics Aperture can be any power of two in size from 1MB to 256MB (i.e., 1MB, 2MB, 4MB, 8MB, etc). The base of the Graphics Aperture can be anywhere in the system virtual address space on an address boundary determined by the aperture size (e.g., if the aperture size is 4MB, the base must be on a 4MB address boundary). The Graphics Aperture Base is defined in register offset 10 of device 0. The Graphics Aperture Size and TLB Table Base are defined in the following register group (offsets 84 and 88 respectively) along with various control bits.

snoop will not be performed.

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL

Device 0 Of	ffset 83-80 - GART/TLB ControlRW
31-16	Reservedalways reads 0
15-8	Reserved (test mode status)RO
7	Flush Page TLB
	0 Disabledefault
	1 Enable
6-4	Reserved (always program to 0)RW
3	PCI#1 Master Address Translation for GA Access
	0 Addresses generated by PCI #1 Master
	accesses of the Graphics Aperture will not be
	translated default
	1 PCI #1 Master GA addresses will be translated
2	PCI#2 Master Address Translation for GA Access
	0 Addresses generated by PCI #2 Master
	accesses of the Graphics Aperture will not be
	translated default
_	1 PCI #2 Master GA addresses will be translated
1	CPU Address Translation for GA Access
	O Addresses generated by CPU accesses of the
	Graphics Aperture <u>will not</u> be translateddef
•	1 CPU GA addresses <u>will</u> be translated
0	AGP Address Translation for GA Access
	O Addresses generated by AGP accesses of the
	Graphics Aperture will not be translateddef
	1 AGP GA addresses will be translated
Note: For any	y master access to the Graphics Aperture range,

Device 0 (7-0		raphics Aperture SizeRW Aperture Size
7-0	111111111	1M
	111111110	2M
	11111110	21VI 4M
	11111100	
	11111000	
	11110000	
	11000000	
	10000000	
	0000000	
3-0	Reserved	
• •		,
ffset 8B	<u>-88 - GA Traı</u>	nslation Table Base RW
31-12		Aperture Translation Table Base
Pointa	ortatha haaa	. Calle and the control of the contr
		of the translation table in system memory
used to	map address	es in the aperture range (the pointer to the
used to	o map addressor f the "Directory	es in the aperture range (the pointer to the "table).
used to	map addressor f the "Directory Reserved	es in the aperture range (the pointer to the "table)always reads 0
used to base o	map addresse f the "Directory Reserved One Cycle	es in the aperture range (the pointer to the "table)always reads 0 TLB Flush Command
used to base o 11-3	o map addresso f the "Directory Reserved One Cycle O Disable	es in the aperture range (the pointer to the " table)always reads 0 TLB Flush Command edefault
used to base o 11-3	o map addresso f the "Directory Reserved One Cycle 0 Disable 1 Enable	es in the aperture range (the pointer to the " table).
used to base o 11-3	o map addresso f the "Directory Reserved One Cycle 0 Disable 1 Enable	es in the aperture range (the pointer to the " table)always reads 0 TLB Flush Command edefault
used to base o 11-3 2	o map addresso f the "Directory Reserved One Cycle 0 Disablo 1 Enable Graphics A	es in the aperture range (the pointer to the " table).
used to base o 11-3 2	o map addresso f the "Directory Reserved One Cycle 0 Disable 1 Enable Graphics of Disable 1 Enable	es in the aperture range (the pointer to the "table).
used to base o 11-3 2	o map addresso f the "Directory Reserved One Cycle 0 Disable 1 Enable Graphics of Disable 1 Enable To disable th	es in the aperture range (the pointer to the "table). always reads 0 TLB Flush Command a
used to base o 11-3 2 1 Note: set all	o map addresso f the "Directory Reserved One Cycle 0 Disable 1 Enable Graphics of Disable 1 Enable To disable th	es in the aperture range (the pointer to the "table).
used to base o 11-3 2 1 Note: set all Graphi	o map addresso f the "Directory Reserved One Cycle 0 Disable 1 Enable Graphics of Disable 1 Enable To disable the bits of the Gracs Aperture, so	es in the aperture range (the pointer to the "table).
used to base o 11-3 2 1 Note: set all Graphi	o map addresso f the "Directory Reserved One Cycle 0 Disable 1 Enable Graphics of Disable 1 Enable To disable the bits of the Gracs Aperture, so	es in the aperture range (the pointer to the "table).

Note: If TLB miss, the TLB table is fetched by the address:

Gr Ap Trans Table Base [31:12] + A[27:22], A[21:12], 2'b00

Rev. 1.0 8/6/99

8.9 AGP Control

Device 0 Off	set A3-A0	- AGP Capability	IdentifierRO
31-24	Reserved		always reads 00
23-20		cification Revision	
Major rev		GP spec device con	
19-16		cification Revision	
Minor rev	ision # of A	GP spec device con	forms to
15-8		Next Item always	
7-0	AGP ID	(always reads 02 t	o indicate it is AGP)
Device 0 Off	set A7-A4	- AGP Status	RO
31-24	Maximum .	AGP Requests	always reads 07
Max # of	AGP reques	sts the device can m	anage (8)
23-10			
9	Supports S	SideBand Addressi	ng always reads 1
8-2	Reserved		
always re	eads Os 1	2X Rate Supporte	d
Value ret	urned can b	e programmed by w	riting to RxAC[3]
0	1X Rate Su	inported	always reads 1

Device 0 Off	set AB-A8 - AGP CommandRW
31-24	Request Depth (reserved for target)always reads 0s
23-10	Reserved always reads 0s
9	SideBand Addressing Enable
	0 Disabledefault
	1 Enable
8	AGP Enable
	0 Disabledefault
	1 Enable
7-2	Reserved always reads 0s
1	2X Mode Enable
	0 Disabledefault
	1 Enable
0	1X Mode Enable
	0 Disabledefault
	1 Enable

Device 0	Offset AC - AGP ControlRW	Device 0 Offset F7-F0 – BIOS Scratch Register RW
7	Reservedalways reads 0s	7-0 No Hardware Function
6	AGP Read Synchronization	Device 0 Offset F8 – DRAM Arbitration Timer 1 RW
	0 Disable default	7-4 AGP Timer (units of 4 DRAM Clocks)
	1 Enable (the CPU to PCI#2 cycle will be delayed	3-0 Host Timer (units of 4 DRAM Clocks)
-	if the CMFIFO contains a GART access)	
5	AGP Read Snoop CMFIFO	<u>Device 0 Offset F9 – DRAM Arbitration Timer 2 RW</u>
	0 Disable	7-4 VGA High Priority Timer (units of 16 DRAN
	1 Enable (AGP read address will snoop the CMFIFO; if hit, AGP read will be started after the	Clocks)
	write is retired)	3-0 VGA Timer (units of 16 DRAM Clocks)
4	PCI#2 Master Request has Higher Priority if	Device 0 Offset FA – CPU Direct Access Frame Buffer
	is parking at AGP Master	Base Address A[28:21]RW
	0 Disabledefault	7-0 A[28:21]
	1 Enable	Device 0 Offset FB - Frame Buffer ControlRW
3	2X Rate Supported (read also at RxA4[1])	7 VGA Enable
	0 Not supporteddefault	0 Disabledefault
•	1 Supported	1 Enable
2	LPR In-Order Access (Force Fence) 0 Fence/Flush functions not guaranteed. AGP	6 VGA Reset(Write 1 to Reset)
	0 Fence/Flush functions not guaranteed. AGP read requests (low/normal priority and high	5-4 Frame Buffer Size
	priority) may be executed before previously	00 None default
	issued write requestsdefault	01 2M
	1 Force all requests to be executed in order	10 4M
	(automatically enables Fence/Flush functions).	11 8M
	Low (i.e., normal) priority AGP read requests will	3 CPU Direct Access Frame Buffer 0 Disabledefault
	never be executed before previously issued	1 Enable
	writes. High priority AGP read requests may still	2-0 CPU Direct Access Frame Buffer Base Address
	be executed prior to previously issued write	<31:29>
1	requests as required.	
1	AGP Arbitration Parking	Device 0 Offset FC - Back Door Control 1RW
	0 Disabledefault 1 Enable (GGNT# remains asserted until either	7-2 Reservedalways reads 0
	GREQ# de-asserts or data phase ready)	1 Back-door MAX # of AGP Request Allowed
0	2T AGP to DRAM Request Generation	0 Read RXA7 will return 7default
	0 Disable default 1 Enable	1 Read RxXA7 will have number programmed a RxFD
	i Eliabic	0 Back-Door Device ID Enable
		0 Use Rx3-2's value for Rx3-2 readdefault
Device 0	Offset AD – AGP Latency Register RW	1 Use the value in RxFE-FF
7-4	Reserved always reads 0s	Device 0 Offset FD – Back Door Control 2RW
3-0	AGP Latency Timer(units of 16 GCLKs)	7-3 Reserved
	0000 Free Rundefault	2-0 Back-Door Max # of AGP Requests the Device
		can Handle
		000 1-Requestdefault
		001 2-Requests
		111 8-Requests
		Device 0 Offset FF-FE – Back Door Device ID RW
		15-0 Back-Door Device ID default = 0

8-30 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

8.9.1 Device 1 Header Registers - PCI-to-PCI Bridge

All registers are located in PCI configuration space. They should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number of 0 and function number equal to 0 and device number equal to one.

Device 1 O	ffset 1-0 - Vendor IDRO
15-0	ID Code (reads 1106h to identify VIA Technologies)
Device 1 O	ffset 3-2 - Device IDRO
15-0	ID Code (reads 8501h to identify the CyberBlade i7
PCI-to-P	CI Bridge device)
Device 1 O	ffset 5-4 - CommandRW
15-10	Reserved
always	reads 0
9	Fast Back-to-Back Cycle Enable RO
	0 Fast back-to-back transactions only allowed to
	the same agentdefault
	1 Fast back-to-back transactions allowed to
	different agents
8	SERR# EnableRO
	0 SERR# driver disableddefault
	1 SERR# driver enabled
	# is used to report parity errors if bit-6 is set).
7	Address / Data SteppingRO
	O Device never does stepping default
	1 Device always does stepping
6	Parity Error ResponseRW
	0 Ignore parity errors & continue default
-	1 Take normal action on detected parity errors
5	VGA Palette SnoopRO
	O Treat palette accesses normally default
	1 Don't respond to palette writes on PCI bus (10-bit decode of I/O addresses 3C6-3C9 hex)
4	Memory Write and Invalidate Command RO
4	0 Bus masters must use Mem Write default
	Bus masters may generate Mem Write & Inval
3	Special Cycle MonitoringRO
Ū	Does not monitor special cycles default
	1 Monitors special cycles
2	Bus MasterRW
_	Never behaves as a bus master
	1 Enable to operate as a bus master on the
	primary interface on behalf of a master on the
	secondary interface default
1	Memory SpaceRW
	Does not respond to memory space
	1 Enable memory space access default
0	I/O SpaceRW
	0 Does not respond to I/O space
	1 Enable I/O space accessdefault

Device 1 Off	set 7-6 - Status (Primary Bus)RWC
15	Detected Parity Error always reads 0
14	Signaled System Error (SERR#) always reads 0
13	Signaled Master Abort
	0 No abort receiveddefault
	1 Transaction aborted by the master with Master
	Abort (except Special Cycles)write 1 to clear
12	Received Target Abort
12	0 No abort receiveddefault
	1 Transaction aborted by the target with Target
	Abort
	write 1 to clear
11	Signaled Target Abortalways reads 0
10-9	DEVSEL# Timing 00 Fast
	01 Mediumalways reads 01
	10 Slow
	11 Reserved
8	Data Parity Error Detectedalways reads 0
7	Fast Back-to-Back Capable always reads 0
6	User Definable Featuresalways reads 0
5	66MHz Capablealways reads 1
4 3-0	Supports New Capability list always reads 0 Reservedalways reads 0
	,
7-0	Set 8 - Revision ID
Silicon)	CyberBlade i7 Chip Revision Code (00=Firs
,	icat O. Dragramming Interface.
	set 9 - Programming InterfaceRO
	d is undefined for this type of device.
7-0	Interface Identifier always reads 00
Device 1 Off	set A - Sub Class CodeRO
7-0	Sub Class Codereads 04 to indicate PCI-PCI Bridge
Device 1 Off	set B - Base Class CodeRO
7-0	Base Class Codereads 06 to indicate Bridge Device
Device 1 Off	set D - Latency TimerRO
7-0	Reservedalways reads 0
Device 1 Off	set E - Header TypeRO
7-0	Header Type Code reads 01: PCI-PCI Bridge
Device 1 Off	set F - Built In Self Test (BIST)RO
7	BIST Supported .reads 0: no supported functions
6	Start Testwrite 1 to start but writes ignored
5-4	Reservedalways reads 0
3-0	Response Code 0 = test completed successfully

Device 1 Offset 18 - Primary Bus NumberRW	Device 1 Offset 1F-1E - Secondary StatusRO
7-0 Primary Bus Number default = 0	15-0 Reserved always reads 0000
This register is read write, but internally the chip always uses bus 0 as the primary.	
Durden 4 Office 4 40 Consequence Dura Name have	Device 1 Offset 21-20 - Memory BaseRW
Device 1 Offset 19 - Secondary Bus NumberRW 7-0 Secondary Bus Number	15-4 Memory Base AD[31:20] default = 0FFFh 3-0 Reserved always reads 0
Note: PCI#2 must use these bits to convert Type 1 to Type 0.	Device 1 Offset 23-22 - Memory Limit (Inclusive) RW
Device 1 Offset 1A - Subordinate Bus Number RW 7-0 Primary Bus Numberdefault = 0	15-4 Memory Limit AD[31:20] default = 0
Note: PCI#2 must use these bits to decide if Type 1 to Type 1	3-0 Reservedalways reads 0 Device 1 Offset 25-24 - Prefetchable Memory Base RW
command passing is allowed.	15-4 Prefetchable Memory Base AD[31:20]def = 0FFFh 3-0 Reserved
Device 1 Offset 1C - I/O BaseRW	always reads 0
7-4 I/O Base AD[15:12] default = 1111b	Device 1 Offset 27-26 - Prefetchable Memory Limit RW
3-0 I/O Addressing Capability default = 0	15-4 Prefetchable Memory Limit AD[31:20]
Device 1 Offset 1D - I/O LimitRW	default = 0
7-4 I/O Limit AD[15:12]	3-0 Reserved always reads 0

8-32 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Device 1 Offset 3F-3E - PCI-to-PCI Bridge Control .. RW

15-4 Reservedalways reads 0 3 VGA-Present on AGP

- Forward VGA accesses to PCI Bus #1 . defaultForward VGA accesses to PCI Bus #2 / AGP
- Note: VGA addresses are memory A0000-BFFFFh and I/O addresses 3B0-3BBh, 3C0-3CFh and 3D0-3DFh (10-bit decode). "Mono" text mode uses B0000-B7FFFh and "Color" Text Mode uses B8000-BFFFFh. Graphics modes use Axxxxh. Mono VGA uses I/O addresses 3Bx-3Cxh and Color VGA uses 3Cx-3Dxh. If an MDA is present, a VGA will not use the 3Bxh I/O addresses and B0000-B7FFFh memory space; if not, the VGA will use those addresses to emulate MDA modes.

2 Block / Forward ISA I/O Addresses

- O Forward all I/O accesses to the AGP bus if they are in the range defined by the I/O Base and I/O Limit registers (device 1 offset 1C-1D)
- Do not forward I/O accesses to the AGP bus that are in the 100-3FFh address range even if they are in the range defined by the I/O Base and I/O Limit registers
- 1-0 Reservedalways reads 0

8.9.2 **Device 1 Configuration Registers - PCI**to-PCI Bridge

PCI Bus #2 Control

Device 1 Offset 40 - CPU-to-PCI #2 Flow Control 1... RW

- CPU-PCI #2 Post Write
 - 0 Disable default
 - 1 Enable
- CPU-PCI #2 Dynamic Burst 6
 - 0 Disable default
 - Enable
- CPU-PCI #2 One Wait State Burst Write 5
 - 0 Disable default
- PCI #2 to DRAM Prefetch
 - 0 Disable default
 - Enable
- PCI Master Allowed Before CPU-to-PCI Post Write Buffer is not Flushed
 - 0 Disable default
 - 1 Enable

This option is always enabled for PCI #1

- MDA Present on PCI #2
 - 0 Forward MDA accesses to AGP......default
 - 1 Forward MDA accesses to PCI #1

Note: Forward despite IO / Memory Base / Limit

Note: MDA (Monochrome Display Adapter) addresses are memory addresses B0000h-B7FFFh and I/O addresses 3B4-3B5h, 3B8-3BAh, and 3BFh (10-bit decode). 3BC-3BE are reserved for printers.

Note: If Rx3E bit-3 is 0, this bit is a don't care (MDA accesses are forwarded to the PCI bus).

- PCI #2 Master Read Caching 1
 - 0 Disable default
 - 1 Enable
- PCI #2 Delay Transaction
 - 0 Disable default
 - 1 Enable

Table 8-3. VGA/MDA Memory/IO Redirection

3E[3]	40[2]	<u>VGA</u>	<u>MDA</u>	Axxxx,	B0000	3Cx,	
<u>VGA</u>	MDA	<u>is</u>	<u>is</u>	B8xxx	-B7FFF	<u>3Dx</u>	<u>3Bx</u>
Pres.	Pres.	<u>on</u>	<u>on</u>	<u>Access</u>	<u>Access</u>	<u>I/O</u>	<u>I/O</u>
0	-	PCI	PCI	PCI	PCI	PCI	PCI
1	0	AGP	AGP	AGP	AGP	AGP	AGP
1	1	AGP	PCI	AGP	PCI	AGP	PCI

Device 1 Offset 41 - CPU-to-PCI #2 Flow Control 2.RWC 7 **Retry Status** 0 No retry occurred......default

- Retry Occurred.....write 1 to clear **Retry Timeout Action** 6
 - 0 No action taken except to record status..... def
 - 1 Flush buffer for write or return all 1s for read
- **Retry Count** 5-4
 - 00 Retry 2, backoff CPU.....default
 - 01 Retry 4, backoff CPU
 - 10 Retry 16, backoff CPU
 - 11 Retry 64, backoff CPU
- 3 Post Write Data on Abort
 - 0 Flush entire post-write buffer on target-abort or master abort......default
 - Pop one data output on target-abort or master-
- CPU Backoff on PCI #2 Read Retry Timeout 2
 - 0 Disable default
- Reservedalways reads 0 1
- Read Bursting on PCI# 2 always reads 0
 - Disable default
 - 1 Enable

Device 1 Offset 42 - PCI #2 Master Control RW

- Read Prefetch for Enhance Command 7
 - 0 Always Perform Prefetchdefault
 - Prefetch only if Enhance Command
- PCI #2 Master One Wait State Write

 - 0 Disable default
 - 1 Enable
- PCI #2 Master One Wait State Read
 - 0 Disable default
 - Enable
- Extend PCI #2 Internal Master for Efficient Handling of Dummy Request Cycles
 - 0 Disable default
 - 1 Enable

This bit is normally set to 1.

- PCI #2 Delay Transaction Timeout
 - 0 Disable default
 - Enable
- **Prefetch During Delay Transaction** 2
 - 0 Enable default
 - Disable
- 1-0 Reservedalways reads 0

8-34 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

8.10 2D / 3D Graphics Accelerator Registers

8.10.1 PCI Configuration Registers – Graphics Accelerator

The CyberBlade i7 Graphics Accelerator is fully compliant with PCI bus interface protocol revision 2.1. The controller implements slave functions of PCI to accept cycles initiated by PCI masters targeted for its internal registers, RAMDAC™, frame buffer, and/or BIOS. It will accept only one data transaction for non-memory type transfers; however burst read/write transfers for frame buffer accesses are also implemented for performance enhancement. Bursting is disabled when accessing memory mapped I/O. Data parity will be generated for read cycles.

To support the PC AT architecture, palette snooping is supported. There are two different palette snooping modes: (1) snooping due to PCI retry, and (2) snooping due to master abort. Both modes are supported. The video BIOS will automatically determine the correct snooping mode in a PCI based system during power up. The CyberBlade i7 follows the PCI 2.1 specification running at 33 MHz or lower system clock frequencies. For packed pixel modes, if the first data TRDY is not generated within 16 clocks, a retry will be issued. During bursting, if successful data is not generated within 8 clocks, a retry will also be issued.

The table below lists the commands implemented by the CyberBlade i7 graphics controller PCI interface. Note that codes not listed (0000 interrupt acknowledge, 0001 special cycle, 0100, 0101, 1000, 1001 reserved, and 1101 dual address cycle) are not decoded and DEVSEL# is not generated. No action takes place inside the chip for these codes.

Table 8-4. Supported PCI Command Codes

Command Code	Command	
0010	I/O Read	
0011	I/O Write	
0110	Memory Read	
0111	Memory Write	
1010	Configuration Read	
1011	Configuration Write	
1100	Memory Read Multiple	
	(treated as simple memory read)	
1110	Memory Read Line	
	(treated as simple memory read)	
1111	Memory Write and Invalid	
	(treated as simple memory write)	

The PCI configuration space is fully implemented. Due to the second memory base register, all I/O registers can be memory mapped; which allows more than one graphics controller to be installed within a system by mapping memory and I/O to different locations.

All configuration registers are located in PCI configuration space and should be programmed using PCI configuration mechanism 1 through CF8 / CFC with bus number equal to one and function number and device number equal to zero.

There are three memory base registers. The first defines the memory base location for the graphics frame buffer. The second defines the memory base for the memory mapped I/O locations. The third defines the memory base for the second video aperture. With this second aperture, graphics data and video data can be sent to the CyberBlade i7 simultaneously.

The CyberBlade i7 supports the PCI Bus Master mode which can send captured video data directly to system memory for processing. The registers to control the PCI Bus Master are defined in following sections (they are all in PCI configuration space).

Device 0 Offset 1-0 - Vendor IDRO

15-0 ID Code (reads 1023h to identify TRIDENT MICROSYSTEMS INC.)

Device 0 Offset 3-2 - Device ID.....RO

15-0 ID Code (reads 8420h to identify the CyberBlade i7 graphics controller)

De	vice 0 Off	fset	5-4 - CommandRW	De	vice 0 Offs	set	7-6 - Status	RWC
	15-10	Re	servedalways reads 0		15	Det	tected Parity Error	
	9		st Back-to-Back Cycle EnableRO				No parity error detected	default
			default set from inverse of MA				Error detected in either addr	
		0	Fast back-to-back transactions only allowed to				This bit is set even if error re	esponse is disabled
			the same agent				(command register bit-6)	write one to clear
		1	Fast back-to-back transactions allowed to	14	Signaled S	Sys	tem Error (SERR# Asserted)	
			different agents					always reads 0
	8	SE	RR# Enable RO	13	Signaled I		ster Abort (Bus Master Only)	
		0	SERR# driver disableddefault				No abort received	
		1	SERR# driver enabled			1	Transaction aborted by the m	
			sed to report parity errors if bit-6 is set).					
7	Address		ta SteppingRO	12			get Abort (Bus Master Only)	
		0	Device never does stepping default				No abort received	
		1	Device always does stepping			1	Transaction aborted by the ta	
	6		rity Error ResponseRO			_		write 1 to clear
		0	Ignore parity errors & continue default	11	Signaled	larç	get Abort	always reads 0
_			Take normal action on detected parity errors				Target Abort never signaled	
5	VGA Pale		Snoop RW	10-			VSEL# Timing	
			Treat palette accesses normallydefault				Fast	
		1	Don't respond to palette accesses on PCI bus				Mediumalways reads 01	
4	iviemory		e and Invalidate CommandRO				Slow	
			Bus masters must use Mem Write default	_			Reserved	
2	Cnoolel C	1	Bus masters may generate Mem Write & Inval	ŏ	Data Parit	y E	rror Detected (Bus Master O	niy)
3	Special C	_	e MonitoringRO				No data parity error detected	always reads 0
		0	Does not monitor special cycles default	7		1	Error detected in data phase	
2	Bus Masi	•	Monitors special cycles RW	,	rasi dauk	-10-	Back Capabledefault set fr	om inverse of MA
2	DUS IVIAS	()	Never behaves as a bus master default			0	Not capable	UIII IIIVEISE UI IVIA
		1	Can behave as a bus master				•	
1	Memory :	। Sna		6	Reserved		always reads 0	
•	wichiol y) ()	Does not respond to memory space	5			ole always reads 1	
		1	Responds to memory spacedefault	4			N Capability list	always reads 0
0	I/O Space	•	RW				always reads 0	aiways rodus 0
Ü	"O opaci	0	Does not respond to I/O space	5 0	110301 VCU		anvays rodus o	
		1	Responds to I/O space default					
			- I - I - I - I - I - I - I - I - I - I					

8-36 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Device 0 Offset 8 - Revision IDRO
8-0 CyberBlade i7 Graphics Controller Revision Code
Device 0 Offset 9 - Programming InterfaceRO
7-0 Interface Identifieralways reads 00
Device 0 Offset A - Sub Class CodeRO
7-0 Sub Class Codealways reads 00
Device 0 Offset B - Base Class CodeRO
7-0 Base Class Code
Reads 03 to indicate Graphics Controller
Device 0 Offset 13-10 - Graphics Memory Base 0 RW
31-0 Graphics Memory Base 0default = E000 0000
Defines an 8MB space for display memory
Device 0 Offset 17-14 - Graphics Memory Base 1 RW
31-0 Graphics Memory Base 0 default = E080 0000 Defines a 128KB space for memory mapped I/O
Device 0 Offset 1B-18 - Graphics Memory Base 2 RW
31-0 Graphics Memory Base 0default = E040 0000
Defines an 8MB space for off-screen video overlay
Device 0 Offset 2D-2C - Subsystem Vendor ID RW
15-0 Subsystem Vendor IDdefault = 00
Device 0 Offset 2F-2E - Subsystem IDRW
15-0 Subsystem IDdefault = 00

Device 0 Offset 33-30 - Graphics ROM Base.....RW

Graphics ROM Base.....default = 0000 0001

31-0

Device 0 (Offset 3C - Interr	upt Line RW
7-0	Interrupt Line	default = 0Bh
Device 0 (Offset 3D - Interr	upt PinRO
7-0	Interrupt Pin	always reads 01h (INTA#)

Interrupts

There are several interrupt sources and their corresponding controls in the CyberBlade i7 as shown in the following table:

Table 8-5. Interrupt Sources and Controls

Source	Mask	Clear	Status
Capture ³	CR9B[7]	CR9B[6]1	CR9B[4]
Capture VSYNC	2		
Capture Even Field	2		
Capture Odd Field	2		
Capture Blank	2		
GE ⁴	2122[7]	2122[7]	2120[4]
VGA ⁵	CR11[5]	CR11[4]	

- Write 0 to clear.
- Selected by CR9E[7:6]
- 2) Video capture logic can generate an interrupt which is selected from one of four sources determined by CR9E.[7:6]. This interrupt is enabled by CR9B[7]. To clear this bit write 0 to CR9B[6]. Whether an interrupt is generated can be determined from CR9B[4].
- The GE interrupt is similar to the capture interrupt.
- 4) 5) The VGA interrupt is similar to the capture interrupt except that there is no status bit.

8-37

8.10.2 PCI Device-Specific Config Regs – Graphics Accelerator

Offset 93-90	0 - Power Management 1	R0
31-27	Reserved	always reads 0
PME# n	not supported	,
26	D2 State (Suspend) Supported	always reads 1
The D2	state is supported	· ·
25	D1 State (Standby) Supported	always reads 1
The D1	state is supported	
24-22	Reserved	always reads 0
21	Device Specific Initialization	always reads 1
Special	DSI is required from the video BIOS	S
20	Reserved	always reads 0
Auxiliary	y power source not supported	
19	Reserved	always reads 0
PME# g	generation not supported	-
18-16 °	PCI PM Version #a	lways reads 001b
15-8	Next Item Pointer	always reads 0
7-0	PCI PM Capable	always reads 01h
This dev	vice is PCI PM capable	

Offset 97-94 -	- Power Management 2	RW
31-24 I	Reserved	. always reads 0
Power dis	sipation reporting not supported	,
23-16 I	Reserved	
15 I	D3 Cold Supported	. always reads 0
D3 cold no	ot supported	
14-13 I	Data Scale always reads 0	
Power dis	sipation reporting not supported	
12-9 I	Power Consumed / Dissipated	. always reads 0
Power dis	sipation reporting not supported	
8 I	Reserved	. always reads 0
PME# for	D3 cold not supported	
7-2 I	Reserved	. always reads 0
1-0 I	Power State	-
(00 Fully On	default
(01 Standby	
•	10 Suspend	
•	11 D3hot, similar to suspend	

8-38 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

DW

8.10.3 Graphics Accelerator PCI Bus Master Registers

The CyberBlade i7 PCI Bus Master controller supports both read/write and scatter/gather. Software can take advantage of this feature to transfer data between system memory and the frame buffer. After software sets the proper registers and commands, the PCI master begins to transfer data automatically between system memory and the frame buffer. This allows the CPU to do other jobs at the same time, thus increasing performance.

Software should use the PCI Bus Master functionality to transfer big chunks of data such as video capture data for video conferencing applications or texture data for 3-D applications. For small chunks of data, direct CPU access to the Frame Buffer is the preferred method.

The software sequence used to control bus master operation is as follows: Software first sets registers such as the system memory starting address, page table starting address / height / width, and frame buffer starting address and line offset. Software finally sets the bus master control register where either bit 1 (for reads) or bit 2 (for writes) is set as the command bit. After the command bit is set, the hardware will begin to transfer data automatically based on the parameters specified. After the transfer is finished, the hardware will issue an interrupt. Software can then poll the status bit to get the transfer status. The hardware will clear the command bit after the transfer is finished. Software cannot issue new commands until the previous command is completed.

All Registers are memory mapped. The memory address base is defined in PCI configuration register "Memory Base 1" (offset 17h-14h).

Port 2204 -	Graphics Bus Master StatusRO
31-3	Reserved
always	reads 0
2	Bus Master Interrupt Status
1	End of Transfer
	0 Still processing default
	1 End of Transfer (Idle)
0	Bus Master Error Status

0 Normal default

1 Error Detected

This error is usually detected because the total page table size is less than the size defined in the "Graphics Bus Master Height" register at index 2314h.

raphics Bus Master ControlRW
Reservedalways reads 0
CI Master Read Data to GE SRCQ
Disable default
Enable
Sytes in DW to be Cleared
oling block transfer with clear, one bits define which
e DW will be cleared
nable Bit with Clear
Disable default
Enable
nvert C / Z Position
Hardware assumes C is located in bits 15:0 and
Z in bits 31:16default Hardware assumes C is located in bits 31:16
and Z in bits 15:0
nable Z Stripping Disable default
Enable
Reserved
ds 0
Bus Master Interrupt
Disable default
Enable
laster Latency
Disable default
Enable
Vrite Commanddefault =0
s bit to 1 will trigger the hardware to begin a write
After finishing the operation, hardware will
y clear this bit.
Read Commanddefault =0
s bit to 1 will trigger the hardware to begin a read
After finishing the operation, hardware will
y clear this bit.
catter / Gather
Disable default
Enable

Port 2310 – Graphics Bus Master System Start AddrRW

31-0 System Start Address

If scatter / gather is enabled, bits 31:12 point to the physical region translation table (the page starting address must be aligned on 4KB address boundaries) and bits 11:0 are the offset within a page.

Physical Region Descriptor Table

While system memory is allocated in a non-contiguous space, software needs to provide a physical region description table in system memory and pass the table's starting address to hardware.

The table size must less than or equal to 4K bytes and the table cannot cross the 4K boundary.

BYTE3	BYTE2	BYTE1		BYTE0
Page 0 physical address EOT		EOT		
Page 1 physical address EOT				
Page n ph	ysical address			[EOT

EOT = End of Table

Figure 8-2. Physical Region Descriptor Table Format

Each table entry is 4 bytes in length. Hardware assumes that the physical page is always 4K. Bits 31:2 indicate the physical page starting address. Bit 0 of the first byte indicates the end of the table. Bus Master operation terminates when the last descriptor has been retired.

15-10 9-0	- Graphics Bus Master HeightRW Reservedalways reads 0 Source Data Height
Port 2316 -	- Graphics Bus Master Width RW
15-12 11-0	Reservedalways reads 0 Source Data Width (in bytes)
Port 2318 - 31-22	- Graphics Bus Master FB Start Addr/PitchRW Frame Buffer Line Offset (FB pitch) in quadwords
21-20 19-0	Reservedalways reads 0 Frame Buffer Start Address (quadword aligned)
Port 231C	- Graphics Bus Master System Pitch RW
15-12 11-0	Reservedalways reads 0 System Row Byte Offset (pitch) in bytes
Port 2320 -	- Graphics Bus Master Clear DataRW
31-0	Clear Data Value
Used a	s the "clear" value for "block transfer with clear"

8-40 Trident Microsystems, Inc.

Figure 8-3. PCI Bus Master Address Translation

Graphics Accelerator AGP Registers

The default base I/O address for the AGP registers is 2300h.

The AGP control unit has 3 channels. These channels can work independently and in parallel. Each channel has its own capabilities:

Channel 0: Execution mode texture access.

Channel 1: Command List Operation. Executes command lists from AGP memory.

Channel 2: Data Move. Moves data from AGP memory to frame buffer or to the Capture/MPEG2 FIFO. Also moves data from the frame buffer to AGP memory.

Graphics AGP Configuration Registers

Port 2304 -	 Graphics AGP Capability ListRW
31-0	XX
Port 2334 -	- Graphics AGP Capability List Address RW
31-0	XX

Graphics AGP Operation Registers

Port 2340 -	Graphics I	AGP FB Command List Start RW
31-19 18-0		always reads 0 fer Command List Start Address
		AGP FB Command List Size RW
31-19	Reserved	always reads 0
18-3		fer Command List Size (in quadwords)
Value pi	rogrammed is	s the desired size minus one
2-0	Reserved	always reads 0

Command List Format

The command list is stored in AGP memory in groups. Each group has the following format:

	F	3it		E	3it
QuadWord	63	48	32	31	16 0
0	Dat	a 0		He	ader
1	Dat	a 2		Da	ıta 1
2	Dat	a 4		Da	ıta 3

n / 2 + 1 Pad/Data n-1 Data n - 1/2

The header is a 32-bit word that contains information about this group, such as the amount of useful data in the group. A group is always padded to a quadword boundary. Padding DWORDs are discarded by the channel. The format of the header is as follows:

31 Consecutive Addressing

- Disabled (all data in this group will be written to the register with the destination address specified in the "ADDR" field in bits 29-8)
- 1 Enabled (All data in this group will be written to registers ADDR, ADDR+4, ... ADDR+4 * (LEN-1) sequentially
- 30 Wait
 - O Don't Wait (send data to the Graphics Engine as long as it can receive it)
 - 1 Wait (until the GE is idle, then send data)
- 29-8 Register Address of the First Data (ADDR)
- 15-0 Number of DWORDs of Data in this Group (LEN)

8-42 Trident Microsystems, Inc.

10-0

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL

Rev. 1.0 8/6/99

Port 2348 – Graphics AGP Channel 1 FB Start/Pitch RW	Port 2364	-Channel Arbitration Counter Threshold . RW
31-22 Frame Buffer Line Offset (in quadwords)	31-28	Reservedalways reads 0
21-19 Reservedalways reads 0	26-24	Channel 2 System Arbitration Threshold
18-0 Frame Buffer Starting Address	23-20	Channel 2 System Arbitration Threshold
Port 234C – Graphics AGP Channel 1 FB Size RW	19-16	Channel 2 System Arbitration Threshold
	15-0	Reservedalways reads 0
31-13 X Direction (in quadwords minus one) 12-10 Reservedalways reads 0	Port 2368 -	- Graphics AGP Channel I/O Control RW
9-0 Y Direction (in pixels minus one)	31-27	Reservedalways reads 0
	26	Reserved (Do not Program)must be 0
	25	Reservedalways reads 0
Port 2350 – Graphics AGP Channel 1 System Start RW	24	Reserved (Do not Program)must be 0
31-3 Channel 1 System Memory Start Address	23-22	Reservedalways reads 0
(quadword aligned)	21-20	Reserved (Do not Program)must be 01
2-1 Reservedalways reads 0	19	Channel 1 Read Enable
0 Command List Operation Trigger		0 Disabledefault
This bit is the same as bit-19 of register 2368h (Channel 1		1 Enable
Read Enable). It is used to trigger command list operation and	18	Channel 1 Interrupt Enable
force bit-17 of register 2368h (Channel 1 Destination Select) to		0 Disabledefault
1 (to select the GE Command FIFO).		1 Enable
(to soloot the GE command in G).	17	Channel 1 Destination Select
		0 Frame Bufferdefault
Port 2354 – Graphics AGP Chan 1/2 System Pitch RW		1 GE Command FIFO
31-27 Reservedalways reads 0	16	Channel 1 Enable
		0 Disabledefault
26-16 Ch 2 System Memory Line Offset (in quadwords)		1 Enable
15-11 Reservedalways reads 0	15-1	Reservedalways reads 0
10-0 Ch 1 System Memory Line Offset (in quadwords)	0	Channel 0 Enable
		0 Disabledefault
Dort 2250 Cranking ACD Channel 2 Cyclem Ctart DW		1 Enable
Port 2358 – Graphics AGP Channel 2 System Start RW		
31-3 Channel 2 System Memory Start Address		
(quadword aligned)		
2-0 Reservedalways reads 0		
Port 235C - Graphics AGP Channel 2 FB Start/Pitch RW		
31-22 Frame Buffer Line Offset (in quadwords)		
21-19 Reserved always reads 0		
18-0 Frame Buffer Starting Address		
Port 2360 – Graphics AGP Channel 2 FB Size RW		
31-27 Reservedalways reads 0		
26-16 Ch 2 System Memory Line Offset (in quadwords)		
15-11 Reservedàlways reads 0		

Ch 1 System Memory Line Offset (in quadwords)

Rev. 1.0 8/6/99

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL ### Trident

Port 236C -	- Graphics AGP Global & Chan 2 Control RW	Port 2370 -	-AGP Status RW
31-26	Reservedalways reads 0	31-18	Reservedalways reads 0
25-24	Sideband Address (SBA) Standby Latency Timer	17	Channel 2 Interrupt Status
23	High Priority Command Enable		0 No interrupt pendingdefault
	0 Disable default		1 Interrupt Pending
	1 Enable	16	Channel 2 Busy Status
22	Long Read Command Enable		0 Idledefault
	0 Disabledefault		1 Busy
	1 Enable	15-10	Reservedalways reads 0
21	System Side Channel 2 Priority	9	Channel 1 Interrupt Status
20	System Side Channel 1 Priority		0 No interrupt pendingdefault
19	System Side Channel 0 Priority		1 Interrupt Pending
18	Reservedalways reads 0	8	Channel 1 Busy Status
17	Frame Buffer Channel 2 Priority		0 Idledefault
16	Frame Buffer Channel 1 Priority		1 Busy
15-5	Reservedalways reads 0	7-2	Reservedalways reads 0
4-3	Channel 2 Read Operation Select	1	Channel 0 Interrupt Status
	00 Disableddefault		0 No interrupt pendingdefault
	01 Read from Frame Buffer to AGP		1 Interrupt Pending
	10 Write from AGP to Capture / MPEG / FB	0	Channel 0 Busy Status
	11 -reserved-		0 Idledefault
2	Channel 2 Interrupt Enable		1 Busy
	0 Disabledefault		,
	1 Enable		
1-0	Channel 2 Write Target Select		
	00 Write to Frame Bufferdefault		
	01 Write to Capture / MPEG / FB		1000 6 11 5 1 1
	1x -reserved-	Graphics F	AGP Configuration Registers
		Port 2380 -	- Graphics AGP Capability Identifier RW
		31-0	XX
		Port 2384 -	- Graphics AGP StatusRW
		31-0	XX
		Port 2388 -	- Graphics AGP CommandRW
		31-0	XX
		310	AA .

Rev. 1.0 8/6/99

Command List Operation

The CyberBlade i7 implements an internal block called the "Command List Control Unit" to process command lists. Command list operation is invisible to software. After initialization of the Command List Control Unit, software can set registers as if there is no Command List Control Unit. If an engine is idle and there are no pending commands in the command buffer, data will be passed to the corresponding register directly. Otherwise, address and data will be stored into the command buffer to be processed later. When the engine is idle, the Command List Control Unit will fetch commands from the command buffer which is located in video memory and send it to the engine. There are two registers that determine the lower and upper bounds of the command buffer, the Command Buffer Start and Command Buffer End registers. The Command List Control Unit uses the command buffer in a round robin fashion, i.e., the address is wrapped around when it passes the end of the

Registers in the Setup Engine, Rasterization Engine, Pixel Engine, Memory Interface, and data from the host CPU and the drawing environment can be buffered by the Command List Control Unit. Command List Control registers and VGA extension registers cannot be buffered. Every entry in the command buffer is 64-bit with the lower 32 bits for the register address and the higher 32 bits for register data. In order to optimize memory bandwidth usage, the Command List Control Unit maintains one read and one write FIFO in its interface to memory in order to burst information from the read/write command list.

Port 23B0 -	-Command Buffer Start Address RW
31-30	Command List Mode
	00 Disable Command Bufferdefault
	01 Enable Command Buffer
	10 Flush Command Buffer Then Disable (after first
	completing any commands in the existing command buffer)
	11 -reserved-
29-24	Reservedalways reads 0
22 N	Command Buffor Start Address

23-0 Command Buffer Start Address

Starting address of the command buffer in bytes (guadword aligned). Writing to this register will set the internal buffer start and end pointers to this address.

Port 23B0 -Command Buffer End Address RW Reservedalways reads 0 31-24 23-0 **Command Buffer End Address**

End address of the command buffer in bytes (quadword aligned). This address should be programmed to one more than the address of the last byte of the command buffer.

8-45 Trident Microsystems, Inc.

VGA Standard Registers - Introduction

The standard VGA register set consists of five sets of indexed registers plus several individually addressed registers. All VGA registers are addressed at specific I/O port addresses defined by the VGA legacy standard.

The non-indexed registers (also called the "Status / Enable" registers) are:

Input Status Register 0 Read at 3C2
Input Status Register 1 Read at 3BA or 3DA
Miscellaneous Register Read at 3CC, Write at 3C2
Video Subsystem Enable
Read/Write at 3C3
Display Adapter EnableRead/Write at 46E8

The indexed register sets each control different functional blocks inside the hardware VGA logic. These register sets are:

Attribute Controller 21 registers (0-14h) at 3C0/1
Sequencer 5 registers (0-4h) at 3C4/5
Graphics Controller 9 registers (0-8h) at 3CE/F
CRT Controller 25 registers (0-18h) at 3x4/5
RAMDAC 256 24-bit registers at 3C7-3C9

Indexed registers typically require two sequential port addresses, the first of which is the index and the second of which is the data. In other words, the index is written to the first port address and then the data corresponding to that indexed register is read from or written to the second port address. The exceptions to this are the Attribute Controller and the RAMDAC. For the Attribute Controller, the index is written at 3C0 as expected. Data reads (but not writes) can be performed from port 3C1 in the standard way. However, generally most data read and all data write operations use the same 3C0 port as used for the index. Data and address are accessed on alternate operations to 3C0 with an internal flag to keep track of where the next operation is to be performed (reads from 3BA or 3DA reset the flag to point at the index register). The other exception to the 2-port index/data structure is the RAMDAC which uses three port addresses. In this case, there are two locations provided for the index, 3C7 and 3C8, with the data at 3C9. There is actually only one index register, but automatic pre / post incrementation is performed differently depending on whether the index is written at the "Read" address (3C7) or the "Write" address (3C8). The current index value may be read at 3C8. Refer to the RAMDAC register group for further explanation of the operation of the index registes and sequential access to the three data bytes of each indexed data location.

The number of registers listed above for each indexed register group is the number of registers defined by the VGA standard. The operation of these "base" registers will always be exactly the same from one vendor's implementation of the VGA to another. Typically, however, there are additional

non-standard / extended functions implemented in higher numbered index values. That is the case for this chip as well, where extended functions are provided in all indexed register groups except the Attribute Controller (due to the unusual nature of Attribute Controller indexing using a single I/O port which makes access to this register group more cumbersome). This document will detail the functions of all the standard VGA registers first. All extended functions will then be separately documented in following sections.

Regarding notation used in this document, indexed registers (including extended registers) may be referenced using a 2-letter mnemonic from the following table followed by the index number:

Attribute Controller AR
Graphics Controller GR
CRT Controller CR
Sequencer SR

For example, index register 26h of the 3CE / 3CFh indexed register group could also be referred to as GR26. Bit-7 if this register, using this notation, would be GR26[7].

Register groups, for the most part, are included in this document in order by I/O port address. Some registers are included out of order with other registers in the same functional block. Refer to the table of contents and the register summary tables at the beginning of the register section of this document for further information and help in finding descriptive information for a specific register.

For standard VGA registers, primarily only the bit definitions are provided here. Since the operation of these bits was standardized long ago, full explanation of the operation of these bits is not provided in this document. Detailed explanation of these bits is provided by many fine indiustry publications (check your local computer book store or the internet for further information).

8-46 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Capture / ZV Port Registers

Port 2200 -	- Capture / Z	V Port CommandRW
31-28	Reserved	always reads 0
27-24	Address 1	
23-20	Reserved	always reads 0
19-16	Address 0	•
15-8	Data 1	
7-0	Data 0	

Rev. 1.0 8/6/99

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL

DVD Registers

Port 2280 -	- MC Version IDR	<u>0</u>
7-0	Version ID	
Port 2281 -	- MC Control RY	N
7	Debug Mode	
	0 Disabledefau	ılt
	1 Enable	
6	MC Completion Interrupt	
	0 Disabledefau	ılt
	1 Enable	
5	VO Completion Interrupt	
	0 Disabledefau	ılt
	1 Enable	
4	Host Bus Identification	
	0 AGPdefau	ılt
	1 PCI	
3	Decode Overwrite	
	0 Enabledefau	ılt
	1 Disable	
2-1	IDCT Data Format	
	00 -reserveddefau	ılt
	01 9 bits	
	10 8 bits	
	11 16 bits	
0	MC Mode	
	0 Disabledefau	ılt
	1 Enable	

Port 2282 -	MC Frame Buffer ConfigurationRW
7	Interlaced Display
6	TV Flicker Filter Bypass
	0 Use TV CRTCdefault
	1 Use VGA CRTC
5	Request Threshold of Display Command Queue
4	Request Threshold of PBF
3	Request Threshold of PFF
2	Hardware SP RL-Decode Disable
	0 Enabledefault
	1 Disable
1-0	Frame Buffer Configuration
	00 4-framedefault
	01 3.5-frame
	10 3.5-frame HHR
	11 3-frame

Rev. 1.0 8/6/99

Port 2287-	2284 – MC Command QueueRW	Port 2285-2	2284 – MC Status RW
31-12	Page Table Address	15	Task Pop Out Done Status
		14-12	FIFO Status
11	SP Command Present 0 SP Command is Absentdefault	11	MC Decode Done Status
10-9	1 SP Command is Present Video Output Display Fields 00 -reserveddefault 01 Top 10 Bottom 11 Both	10-9	Video Output Display Fields 00 -reserveddefault 01 Top 10 Bottom 11 Both
8-6	Video Output Display Buffer 000 F0 default 001 F1 010 F2 011 F3 100 H0 101 H1 110 H2	8-6	Video Output Display Buffer 000 F0 default 001 F1 010 F2 011 F3 100 H0 101 H1 110 H2
5-4	111-reserved- MC Buffer 2 Bit-1 = 1 Bit-1 = 0 00 H0 top 01 H1 bottom 10 H2 both 11 No Buf 2 n/a	5-4	111 -reserved- MC Buffer 2 Bit-1 = 1 Bit-1 = 0 00 H0 top 01 H1 bottom 10 H2 both 11 No Buf 2 n/a
3-2	MC Buffer 1 Bit-1 = 1 00 H0 F0 01 H1 F1 10 H2 F2 11 n/a F3	3-2	MC Buffer 1 Bit-1 = 1 00 H0 F0 01 H1 F1 10 H2 F2 11 n/a F3
1	MC Buffer is Field O Not Fielddefault	1	MC Buffer is Field O Not Fielddefault
0	1 Field MC Command in Queue 0 Disabledefault 1 Enable	0 The bit defe	1 Field MC Status 0 Not in progressdefault 1 In Progress

This register changes definition when written with bit-0 = 1. This address then becomes "MC Status" with the definition of the bits matching the following bit definitions until MC-Status bit-0 is cleared by hardware.

The bit definitions above are valid only when bit-0 is equal to 1. When hardware clears bit-0, bit definitions revert to those defined by the "MC Command Queue" register defined in the left hand column of this page.

Port 228B-2	2288 – MC Y-Reference AddressRW	Port 22AB-22A8 – Color Palette Entries	RW
31-20 19-0	Reservedalways reads 0 Y-Reference Start Address (quadword aligned)	Dest 00D0 00D0 CD DUFO Divid Chart Address	DW
Port 228F-2	228C – MC U-Reference Address RW	Port 22B3-22B0 – SP BUF0 Pixel Start Address	
31-20 19-0	Reservedalways reads 0 U-Reference Start Address (quadword aligned)	Port 22B7-22B4 – SP BUF1 Pixel Start Address	<u>RW</u>
Port 2293-2	2290 – MC V-Reference Address RW	Dest 200D 2000 CD DUE2 Comment Cleat Address	- DV4
31-20	Reservedalways reads 0	Port 22BB-22B8 – SP BUF0 Command Start Address	
19-0	V-Reference Start Address (quadword aligned)	Port 22BF-22BC – SP BUF1 Command Start Address	<u>sRW</u>
	2294 – MC Display Y-Address OffsetRW	Port 22C1-22C0 – SP Y Display Offset	RW
31-20 19-0	Reservedalways reads 0 Y Address Offset		
	ress offset (quadword aligned) of first display pixel to the first pixel (top left hand corner) of the picture.	Port 22D0 - Digital TV Encoder Control	RW
	2298 – MC Display U-Address Offset RW	Port 22D3-22D1 - Digital TV Encoder CFC	RW
31-20	Reservedalways reads 0	•	
19-0	U Address Offset		
	ress offset (quadword aligned) of first display pixel to the first pixel (top left hand corner) of the picture.		
	229C – MC Display V-Address Offset RW		
31-20	Reservedalways reads 0		
19-0	V Address Offset		
	ress offset (quadword aligned) of first display pixel to the first pixel (top left hand corner) of the picture.		
Totative	to the first pixel (top left hand corner) of the picture.		
Port 22A0 -	- MC H Macroblock CountRW		
7-0	Number of Horizontal Macroblocks		
Port 22A2 -	- MC V Macroblock CountRW		
7-0	Number of Vertical Macroblocks		
Port 22A5-2	22A4 – MC Frame Buffer Y LengthRW		
15-0	Number of Pixels in a Y Frame		

8-50 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Attribute Controller Registers (AR)

For this indexed register group, the index is accessed at 3C0 as expected. However, although data operations can be performed using port 3C1 in the standard way, data is generally accessed at 3C0 as well. In other words, data and address are accessed on alternate operations to 3C0 with an internal flag to keep track of where the next operation is to be performed. The state of the internal flag may be read back in the extended registers (see CR24). To set the internal flag to select the index (i.e., to set the flag so that the next access to port 3C0h points to the index register), read port 3BAh or 3DAh (depending on the state of the color / mono bit in the Miscellaneous Output Register at 3C2[0]). Attribute Controller register data may be read at 3C1 (the internal flag is not toggled) but must be written at 3C0.

00	
Port 3C0 - \	/GA Attribute Controller Index RW
7-6	
5	Palette Address Source
4-0	Attribute Controller Index
	e lower 5 bits are implemented to allow access to
Attribute (Controller registers 0-14h.
Port 3C0/3C	1 Index 0-F – Attr Ctrlr Color Palette RW
7-6	Reservedalways reads 0
5-0	Color Value
Port 3C0/3C	1 Index 10 – Attr Ctrlr Mode Control RW
7	P5 / P4 Select
6	Pixel Width
5	Pixel Panning Compatibility
4	Reservedalways reads 0
3	Select Background Intensity or Enable Blink
2	Enable Line Graphics Character Mode
1	Display Type
0	Graphics / Text Mode
Port 3C0/3C	1 Index 11 – Attr Ctrlr Overscan Color RW
7-0	Overscan Color
Port 3C0/3C	1 Index 12 - Attr Ctrlr Color Plane Ena RW
7-6	Reservedalways reads 0
5-4	Video Status Mux
3-0	Color Plane Enable for Color Planes 3-0
Port 3C0/3C	1 Index 13 - Attr Ctrlr H Pixel Panning RW
7-4	
3-0	Horizontal Pixel Pan
Port 3C0/3C	1 Index 14 – Attr Ctrlr Color Select RW

Reservedalways reads 0

Color Select Bits 7-4

7-4

3-0

VGA Status / Enable Registers

Port 3C2 -	- VGA Input Status 0RO
7	Vertical Retrace Interrupt Pending
6-5	Reservedalways reads 0
4	Switch Sense
3-0	Reservedalways reads 0
Port 3xA -	- VGA Input Status 1RO
This regist	er is accessible at either 3BA or 3DA (shorthand
notation 3	xA) depending on the setting of Miscellaneous
Output Re	gister at 3C2[0].
7-6 5-4	Reservedalways reads 0
5-4	Diagnostic
3	Vertical Retrace
2-1	Reservedalways reads 0
0	Display Enable (Inverted)
Dort 3C2	- VGA Miscellaneous Output Register (Write)
FUIL 3CZ -	WO
	WO
Port 3CC	 VGA Miscellaneous Output Register (Read)
	RO
7	Vertical Sync Polarity
6	Horizontal Sync Polarity
5	Page Bit for Odd / Even
4	Reservedalways reads 0
3-2	Clock Select
1	Enable RAM
0	I/O Address Select
	0 CRTC registers at 3Bx, Input Status 1 at 3BA
	1 CRTC registers at 3Dx, Input Status 1 at 3DA
Port 3C3 -	- VGA Video Subsystem Enable RW
7-1	Reservedalways reads 0
0	Video Subsystem Enable
Port 46E8	h – VGA Display Adapter EnableRW
7-4	Reservedalways reads 0
3	Display Adapter Enable
2-0	Reservedalways reads 0

VGA Sequencer Registers (SR)

Port 3C4 – VGA Sequencer Index RW Sequencer Index Only the lower 3 bits are implemented in a standard VGA to point to Sequencer registers 0-4. However, all 8 bits are implemented here to allow for extended registers up to index Port 3C5 Index 0 - Sequencer Reset.....RW 7-2 Reservedalways reads 0 Synchronous Reset 1 0 **Asynchronous Reset** Port 3C5 Index 1 - Sequencer Clocking Mode...... RW 7-6 Reservedalways reads 0 5 Screen Off Shift 4 4 3 **Dot Clock** Shift Load 2 Reservedalways reads 0 1 0 8/9 Dot Clocks Port 3C5 Index 2 – Sequencer Map Mask......RW 7-4 Reservedalways reads 0 Enable Map 3 3 2 Enable Map 2 Enable Map 1 1 0 Enable Map 0 Port 3C5 Index 3 - Sequencer Character Map Select RW Reservedalways reads 0 7-6 5 Character Map Select A 4 Character Map Select B 3-2 Character Map Select A Character Map Select B 1-0 Port 3C5 Index 4 - Sequencer Memory Mode...... RW Reservedalways reads 0 7-4 3 Chain 4 Odd / Even 2 1 **Extended Memory**

Reservedalways reads 0

VGA RAMDAC Registers

Port 3C6 -	- VGA RAMDAC Pixel Mask	RW
7-0	Palette Address Mask	

Port 3C6 – VGA RAMDAC Command.....RW

This register is a non-standard VGA register ("extension register") located at the same port address as the VGA RAMDAC Pixel Mask register. In order to maintain compatibility with standard VGA operations, access to this register is restricted: access is enabled by performing four successive accesses to the Pixel Mask register at 3C6 (i.e., read 3C6 four times).

7-4	Color Mode Select		
	0000 Pseudo-Color Modedefault		
	0001 Hi-Color Mode (15-bit direct interface)		
	0010 Muxed Pseudo-Color Mode (16-bit pixel bus)		
	0011 XGA Color Mode (16-bit direct interface)		
	01xx -reserved-		
	10xx -reserved-		
	1100 -reserved-		
	1101 True Color Mode (24-bit direct interface)		
	111x -reserved-		
3	Reservedalways reads 0		
2	DAC Disable		
	0 DAC On (if SR20[0] = 1)default		
	1 DAC Off		
1	Reservedalways reads 0		
0	RAMDAC Enable		
	O Disable (Bypass) RAMDACdefault		
	1 Enable RAMDAC		
10rt 207	VCA DAMDAC Dood Indox		

Port 3C7	- VGA RAMDAC Read Index	WO
Port 3C8	- VGA RAMDAC Write Index	WO
Port 3C8	- VGA RAMDAC Index Readback	RO
7-0	RAMDAC Index	

Port 3C9 Index 0-FF - RAMDAC Color Palette...... RW

7-0 RAMDAC Color Data

There are 768 data entries in the palette consisting of 256 threebyte entries. R, G, and B 8-bit values are accessed on successive operations to this port with the index autoincremented after every 3 accesses. Refer to a VGA programmers guide for further information.

8-52 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

VGA Graphics Controller Registers (GR)

Port 3CE -	VGA Graphics Controller IndexRW
7 6-0 Only th allow ac	Reservedalways reads 0 Graphics Controller Index ne lower 4 bits are implemented in a standard VGA to ccess to Graphics Controller registers 0-8. However, implemented here to allow for extended registers up to
Port 3CF I	ndex 0 - Graphics Controller Set / Reset RW
7-4 3-0	Reservedalways reads 0 Set / Reset Planes 3-0
Port 3CF I	ndex 1 – Graphics Controller Set / Reset Ena RW
7-4 3-0	Reservedalways reads 0 Enable Set / Reset Planes 3-0
Port 3CF I	ndex 2 – Graphics Controller Color Compare RW
7-4 3-0	Reservedalways reads 0 Color Compare Planes 3-0
Port 3CF I	ndex 3 - Graphics Controller Data Rotate RW
7-4 3 2-0	Reservedalways reads 0 Function Select
Port 3CF I	ndex 4 - Graphics Ctrlr Read Map Select . RW
7-2 1-0	Reservedalways reads 0

Port 3CF	Index 5 – Graphics Co	ntroller Mode RW
7	Reserved	always reads 0
6	256 Color Mode	default = 0
5	Shift Register	default = 0
4	Odd / Even	default = 0
3	Read Mode	default = 0
2	Reserved	always reads 0
1-0	Write Mode	default = 0
Port 3CF	Index 6 - Graphics Co	ntroller MiscellaneousRV
7-4	Reserved	always reads 0
3-2	Memory Map	,
1	Chain Odd Maps to E	en
0	Graphics Mode	
Port 3CF	Index 7 - Graphics Cti	rlr Color Don't Care. RW
7-4	Reserved	always reads 0
3-0	Color Don't Care Pla	nes 3-0
Port 3CF	Index 8 - Graphics Co	ntroller Bit Mask RW
7-0	Bit Mask	

VGA CRT Controller Registers (CR)

CRTC registers are accessible at either 3B4 / 3B5 or 3D4 / 3D5 (shorthand notation 3x4 / 3x5) depending on the setting of Miscellaneous Output Register 3C2 bit-0

	3
Port 3x4 – \	/GA CRT Controller Index RW
allow acc	CRT Controller Index e lower 5 bits are implemented in a standard VGA to exess to CRTC registers 0-18h. However, all 8 bits are nted here to allow for extended registers up to index
Port 3x5 Inc	dex 0 - VGA CRTC - H TotalRW
7-0	Horizontal Total
Port 3x5 Inc	dex 1 – VGA CRTC – H Display Ena End . RW
7-0	Horizontal Display Enable End
Port 3x5 Inc	dex 2 – VGA CRTC – H Blank StartRW
7-0	Horizontal Blanking Start
Port 3x5 Inc	dex 3 - VGA CRTC - H Blank EndRW
7	Reservedalways reads 0
6-5 4-0	Display Enable Skew
	Horizontal Blanking End
7-0	dex 4 – VGA CRTC – H Retrace Start RW Horizontal Retrace Pulse Start
. •	
	dex 5 - VGA CRTC - H Retrace End RW
7 6-5	Horizontal Blanking End Horizontal Retrace Delay
4-0	Horizontal Retrace Pulse End
Port 3x5 Inc	dex 6 – VGA CRTC – V TotalRW
7-0	Vertical Totaldefault = 0
Port 3x5 Inc	dex 7 - VGA CRTC - OverflowRW
7	Vertical Retrace Start Bit-9
6	Vertical Display Enable End Bit-9
5	Vertical Total Bit-9
4	Line Compare Bit-8
3 2	Vertical Blank Start Bit-8 Vertical Retrace Start Bit-8
1	Vertical Display Enable End Bit-8
0	Vertical Total Bit-8
Port 3x5 Inc	dex 8 - VGA CRTC - Preset Row Scan RW
7	Reservedalways reads 0
6-5	Byte Panning
4-0	Preset Row Scan
Port 3x5 Inc	dex 9 - VGA CRTC - Max Scan Line RW
7	200 to 400 Line Conversion
6	Line Compare Bit-9
5	Vertical Blank Start Bit-9
4-0	Maximum Scan Line
Port 3x5 Inc	dex A – VGA CRTC – Cursor StartRW
7-6	Reservedalways reads 0
5	Cursor On/Off
4-0	Cursor Row Scan Start

Port 3x5 Index B - VGA CRTC - Cursor EndRW

Reservedalways reads 0

- **Cursor Skew** 6-5
- 4-0 **Cursor Row Scan End**

Port 3x5 Index C / D - VGA CRTC Start Addr Hi/Lo.. RW

Port 3x5 Index E / F - VGA CRTC Cursor Loc Hi/Lo . RW

Port 3x5	Index 10 - VGA CRTC - V Retrace Start RW
7-0	Vertical Retrace Pulse Start
Port 3x5	Index 11 - VGA CRTC - V Retrace End RW
7	CR0-7 Write Protect

- 6 Reservedalways reads 0
- 5 **Vertical Interrupt Enable**
- **Vertical Interrupt Clear** 4
- 3-0 Vertical Retrace Pulse End

Port 3x5 Index 12 – VGA CRTC – V Display Ena End RW

7-0 Vertical Display Enable End

Port 3x5 Index 13 – VGA CRTC – Offset.....RW

Display Screen Logical Line Width

Port 3x5 Index 14 - VGA CRTC - Underline LocationRW

- 7 Reservedalways reads 0
- 6 **Double Word Mode**
- Count By 4
- 4-0 **Underline Location**

Port 3x5 Index 15 - VGA CRTC - V Blank Start RW

Vertical Blanking Start

Port 3x5 Index 16 - VGA CRTC - V Blank End RW

7-0 Vertical Blanking End

Port 3x5 Index 17 - VGA CRTC - Mode Control RW

- 7 Hardware Rese
- Word / Byte Mode 6
- 5 Address Wrap
- VSYNC Update Select (VGA Extended Capability) 0 Base may only be updated during Vsync.... def 1 Base address may be updated during <u>Hsync</u>
- 3 **Count By 2**default = 0 Horizzontal Retrace Selectdefault = 0 2
- Select Row Scan Counter.....default = 0 1
- 0 Compatibility Mode Support.....default = 0

Port 3x5 Index 18 - VGA CRTC - Line Compare...... RW

7-0 Line Compare

Rev. 1.0 8/6/99

Extended Registers - Non-Indexed I/O Ports

Port 3D8 - Alternate Destination Segment Addr RW	Port 3xB - Alternate Clock SelectRW
7 Reservedalways reads 0 6-0 Alternative Destination Segment Addressdef = 00 Read / write of this register is enabled by GRF[2]. This register becomes active when GR6[3-2] are not 00.	3xB notation indicates that this register is accessible at either 3BB or 3DB depending on the setting of the color / mono bit. 7-5 New Mode Control Register Bits 3-1 def = 00 These bits have the same function as SRD[3-1]
Port 3D9 – Alternate Source Segment Address RW	4-2 Reservedalways reads 0
7 Reservedalways reads 0	1-0 Video Clock Select def = 00
6-0 Alternative Source Segment Address def = 00	
Read / write of this register is enabled by GRF[2].	
This register becomes active when GR6[3-2] are not 00.	

Extended Registers - VGA Sequencer Indexed

	3
<u>SR8 – Old /</u>	New StatusRO
7	Old / New Status (see SRB, SRC, SRD, SRE, GRE)
•	0 Olddefault
	1 New
	1 11011
6	Interlace Scan Field
	0 Odddefault
	1 Even
5	Reservedalways reads 0
4	Command FIFO Empty
	0 Emptydefault
	1 Not Empty
3-0	Reservedalways reads 0
3-0	Nescrivedaways reads o
CDO Crop	hias Cantrollar Varsian DO
<u> 389 - Grap</u>	hics Controller VersionRO
7-0	Version Numberalways reads 58h
SDR _ Vars	ion / Old-New Mode ControlRW
7-0	Graphics Controller Version # .always reads F3h
	register will change the Old / New Mode Control
registers (SRI	D, SRE, and GRE) to the "old" definition. A read from
	ill change the Old / New Mode Control registers to the
"new" definition	
new deminie	41.
SRC - Conf	iguration Port 1RW
	register is enabled by SRE_Old[5] = 1 ("Select
Configuration	Port 1") and writes are enabled by SRE_New[7] = 1
("Configuration	n Dort Write Enabled by SRL_New[/] = 1
("Configuratio	n Port Write Enable").
7	Reservedalways reads 1
6	Memory Bus Width
-	0 32-bit Memory Busdefault
	1 64-bit Memory Bus
Note:	Although the CyberBlade i7 integrated graphics
	does not control memory directly (the system memory
controller	is used to access graphics memory as a portion of
	memory), some functional blocks in the graphics
controller	(such as video) use this bit to manage their data bus
widths.	
5	Reserved always reads 1
4	Video Subsystem Enable
-	0 46E8
	1 3C3default
2	
3	Video BIOS Size
	0 64K default
	1 32K
2-0	Reserved always reads 111b
SRC - Conf	iguration Port 2RW
Access to this	register is enabled by SRE_Old[5] = 0 ("Select
	Port 2") and writes are enabled by SRE_New[7] = 1
("Configuration	n Port Write Enable")

("Configuration Port Write Enable").

Reserved for BIOS

7-0

SRD - Mod	e Control 2 (Old)RW					
7-6	Reservedalways reads 0					
5	Reservedalways reads 1					
4	Reservedalways reads 0					
3	CPU Bandwidth Select					
	0 Normaldefault					
	1 Non-interrupted CPU access during VBLANK					
2-0	Reservedalways reads 0					
SRD - Mod	e Control 2 (New)RW					
7-4	Display FIFO Memory Request Threshold Ctrl					
	0000 Empty 0 level					
	0001 Empty 4 leveldefault					
	0010 Empty 8 Irevel					
	0011 Empty 12 level					
	0100 Empty 16 level					
	0101 Empty 20 level					
	0110 Empty 24 level					
	0111 Empty 28 level					
	1000 Empty 32 level					
	1001 Empty 36 level					
	1010 Empty 40 level					
	1011 Empty 44 level					
	1100 Empty 48 level					
	1101 Empty 52 level					
	1110 Empty 56 level					
	1111 Empty 60 level					
3	Reservedalways reads 0					
2-1	Video Clock Divide					
	00 Divide by 1default					
	01 Divide by 2					
	10 Divide by 4					
0	11 Divide by 1.5 Reservedalways reads 0					
U	Nesciveuaiways leaus 0					

8-56 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

SRE -	Mode Control 1 (Old)RW	SRF - Po	wer-up Mode 2RW
7	Reserved always reads 1	This registe	er is write protected by SRE_New[7].
6	IRQ Polarity Select	7	Reservedalways reads 1
	0 Active Highdefault	6	BIOS Control
	1 Active Low		0 Disableddefault
5	Configuration Port (SR0C) Select		1 Enabled
_	0 Select Port 2	5	Palette Mode
	1 Select Port 1default	-	Master Abort Mode
4	Reservedalways reads 0		1 Intel Retry Modedefault
3	Memory BusRO	4	Linear / Bank Addressing Control
•	0 8-bit	•	0 Linear Only
	1 16-bit always reads 1		1 Linear / Bankdefault
2-1	256K Bank Select	3-0	Reserved for BIOSdefault = 1111
	00 Bank 0default		
	01 Bank 1		
	10 Bank 2	<u>SR10 – V</u>	ESA™ Big BIOS ControlRW
	11 Bank 3	7	Extended VESA™ Big BIOS Enable
	Note: an inverted value will be written to bit-1		0 Disableddefault
Th	nese bits (and 3C2[5]) are write enabled when GR06[3-2] =		1 Enabled
	3C2[5] is used as a page select to select one of the two	6-5	Video Address SelectRO
	KB pages.		00 A0000-A7FFFdefault
0	RAMDAC Pixel Clock Invert		01 -reserved-
	0 Normaldefault		10 B0000-B7FFF
	1 Invert pixel clock to RAMDAC		11 B8000-BFFFF
		These	e bits are decoded from GR6[3-2]
		4-1	Reservedalways reads 0
SRE -	Mode Control 1 (New)RW	0	Page Select
7	Configuration Port Write Enable default = 0		0 Select the original C0000-C7FFF access def
•	0 Write Protect		1 Select extended access defined by bits 6-5
	1 Write Enable	Bit-0 of this	register is write protected by SRE_New[7].
Po	orts effected: SRC, SRF, CR28-2A, SRE_New[6-4] (this		
	ister), and SR10[0]		
6	Reserved	<u>SR11 – P</u>	rotection RW
·	110001104	7-0	Register Protection Enabledefault = 00
5-0	64K Bank Select default = 0		87 Unprotect all extended registers except those
	Bit-1 should be inverted when performing writes		which may still be protected by SRE_New[7]
Tł	lese bits are enabled when GR06[3-2] are written with any		92 Unprotect all extended registers independent of
	ue other than 00.		SRE_New[7]
			value other than the ones listed above is programmed
		into thi	s register, all extended registers will be write protected.

SR12 - Threshold RW

7-4 Queue Threshold Playback and **Capture** def = 2 Threshold of the display queue when both playback and capture are enabled (for definition see SRD.new).

3-0 Queue Threshold Playback or Capture ... def = 1
Threshold of the display queue when either playback or capture are enabled (for definition see SRD.new)

The old threshold is used when neither playback nor capture is enabled. All three thresholds cannot be set to 0. Other definitions are the same as the original.

Graphics Clock Synthesizer Control

<u>SR18 – VCI</u>	LK1 Frequency Control 0	RW
7-0	VCLK1 Frequency Generator Numerate	or def=0
SR19 - VCI	LK1 Frequency Control 1	RW
7-6 5-0	VCLK1 Frequency Generator K-Factor VCLK1 Frequency Generator Denomin	
SR1A - VC	LK2 Frequency Control 0	RW
7-0	VCLK2 Frequency Generator Numerate	or def=0
SR1B - VC	LK2 Frequency Control 1	RW
7-6 5-0	VCLK2 Frequency Generator K-Factor VCLK2 Frequency Generator Denomin	

SR20 - Cloc	ck Synthesizer / RAMDAC SetupRW
7	Reservedalways reads 0
6	Multiplex Mode Sync Mechanism
	0 Normal Modedefault
	1 Enable synchronization in multiplexed mode fo
	high VCLK tracking
5	Simultaneous VAFC and Playback
	O Simultaneous VAFC / playback display .default
	1 Playback only
4	VAFC and Playback Display Overlay
	0 VAFC is on topdefault
	1 Playback is on top
3	DAC Test Mode
	0 Disabledefault
	1 Enable
2	Video Mode
	0 Disabledefault
	1 Enable
1-0	Video Mode Select
	x0 5-5-5 Hi-colordefault = 0
	x1 5-6-5 XGA-color
	0x Video Playback, True-color
	1x Video Playback, 256-color

8-58 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Table 8-6. Graphics Clock Frequencies – 14.31818 MHz Reference

<u>Denominator</u>	<u>Numerator</u>	<u>N</u>	M	<u>K</u>	Actual	Expected	Frequency
<u>Value</u>	<u>Value</u>				<u>Frequency</u>	<u>Frequency</u>	Error %
88	3E	62	8	2	25.057	25.175	-0.0047
89	4F	79	9	2	28.311	28.322	-0.0004
88	5D	93	8	2	36.153	36.000	0.0043
83	30	48	3	2	40.091	40.000	0.0023
85	4A	74	5	2	41.932	42.000	-0.0016
84	42	66	4	2	44.148	44.000	0.0034
84	43	67	4	2	44.744	44.900	-0.0035
84	48	72	4	2	47.727	48.000	-0.0057
43	1B	27	3	1	50.114	50.350	-0.0047
46	33	51	6	1	52.798	52.800	0.0000
42	18	24	2	1	57.273	57.270	0.0000
43	21	33	3	1	58.705	58.800	-0.0016
43	23	35	3	1	61.568	61.600	-0.0005
4A	63	99	10	1	63.835	64.000	-0.0026
48	53	83	8	1	65.148	65.000	0.0023
46	43	67	6	1	67.116	67.200	-0.0012
44	33	51	4	1	70.398	70.400	0.0000
44	34	52	4	1	71.591	72.000	-0.0057
42	22	34	2	1	75.170	75.000	0.0023
44	39	57	4	1	77.557	77.000	0.0072
44	3B	59	4	1	79.943	80.000	-0.0007
44	42	66	4	1	88.295	88.000	0.0034
44	44	68	4	1	90.682	90.000	0.0076
44	4A	74	4	1	97.841	98.000	-0.0016
04	22	34	4	0	100.227	100.000	0.0023
4A	AD	163	10	1	108.182	108.000	0.0017
02	19	25	2	0	118.125	118.000	0.0011
03	22	34	3	0	120.273	120.000	0.0023
05	3A	58	5	0	135.000	135.000	0.0000
05	4B	75	5	0	169.773	170.000	-0.0013
05	5A	90	5	0	200.455	200.000	0.0023

Note: The clock frequency can be derived by multiplying the reference frequency times (N+8) / [(M+2) x 2^K]

0 Disable Output Drivedefault1 Disable drive only when EVIDEO# is low

Graphics Signature Analyzer Registers Graphics Connector Control Registers SR21 - Signature Control.....RW SR25 - Monitor Sense RO Signature Generator Enable 7-3 7 **Reserved**always reads 0 0 Disable (readback 0 indicates done)..... default 2-0 Monitor Sense Result: [red, green, blue] Enable (readback 1 indicates busy) SR37 – Video Key Mode RW Signature Source Select 6 **Feature Connector Input Clock Polarity** 7 0 TV / CRT.....default 0 Normal.....default LCD 1 Inverted Bit Select default = 0 5-0 Signal Output (AFC Processing) 6 SR23-22 – Signature Data.....RO Signal output is sent before AFC processingdef 15-0 Signature Data Signal output is sent after AFC processing 5-4 Feature Connector Input Pixel Clock Tuning 00 0 nsdefault 01 4 ns **Graphics Power Management Control Registers** 10 8 ns 11 12 ns delay of pixel clock with respect to data SR24 – Power Management ControlRW 3-0 Overlay Key Type RAMDAC Clock During RAMDAC Powerdown 7 VGA Port Onlydefault 0000 0 14.318 MHzdefault Color Key & Video Key 0001 1 14.31818 MHz divided by 2 Color Key & not Video Key 0010 6 **Enable VCLK2 VCO Directly** Color Key 0011 (without warmup sequence) 0100 Not Color Key & Video Key 0 Enable Don't Enable......default 0101 Video Key Color Key XOR Video Key 0110 Clock Input Divisor 5-4 Divisor for 14.318 MHz clock input to MCLK to drive DRAM 0111 Color Key | Video Key 1000 Not Color Key & Not Video Key refresh cycles in power managed modes. 1001 Color Key XNOR Video Key 00 1 default Not Video Key 1010 01 2 Color Key | Not Video Key 1011 10 4 1100 Not Color Key 11 8 1101 Not Color Key | Video Key 3 **Power Management Slow MCLK** 1110 Not Color Key | Not Video Key 0 Use divided MCLK during standby & suspend 1111 Video Port Only 1 Use MCLK during standby & suspend def Enable MCLK VCO Directly 2 SR38 - Advanced Feature Connector (AFC) Control RW (without warmup sequence) Reserved always reads 0 7 0 Enable 6 **DCLK Rate** (set after other bits for syncronization) 1 Don't Enable......default 0 PCLK.....default **Enable MCLK VCO Directly** 1 (without warmup sequence) DCLK Phase Select (if bit-6 = 1) 5 0 Enable 0 180 degree phase shift.....default Don't Enable......default 1 In phase **DAC Power** 4 DCLK Output Polarity 0 Offdefault 0 Normal when bit-6 = 0.....default On Inverted VCLK Input Polarity 3 0 Normal default Inverted 2-1 **Reserved**always reads 0 Pixel Data Bus Output Enable Control

8-60 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Graphics Playback Control Registers

SR52-50 - F	Playback Color Key Data	RW
23-16	Playback Color Key for True Color Mode	
15-8	Playback Color Key for High Color Mode	
7-0	Playback Color Key for 256 Color Mode	
<u>SR56-54 – F</u>	Playback Color Key Mask	RW
23-16	Playback Color Key Mask for True Color Mo	ode
15-8	Playback Color Key Mask for High Color Me	ode
7-0	Playback Color Key Mask for 256 Color Mod	de
SR57 – Play	back Video Key Mode Function	RW
7.0	Overlay Key Type	

7-0 Overlay Key TypeDefines all 256 defferent types of mixing among VGA Color Key, Playback Window Key, and Video Chroma Key (very similar to ROP3 code). Below are some common combinations:

- 00 VGA Port Only
- F0 Color Key Only
- CC Playback Key Only
- AA Chromakey Only
- 88 Playback Key & Chromakey
- C0 Colorkey & Playback Key
- 80 Colorkey & Playback key & Chromakey
- FF Video Port Only

Graphics BIOS Scratch Pad Registers

SR5A - Scratch Pad 0 RW

SR5B - Scratch Pad 1 RW

SR5C - Scratch Pad 2 RW

SR5D - Scratch Pad 3 RW

SR5E - Scratch Pad 4 RW

SR5F - Scratch Pad 5 RW

Graphics Second Playback Control Registers

SR62-60 - 2	2 nd Playback Color Key Data	. RW
23-16 15-8	Playback Color Key for True Color Mode Playback Color Key for High Color Mode	
7-0	Playback Color Key for 256 Color Mode	
SR66-64 - 2	2 nd Playback Color Key Mask	.RW
23-16	Playback Color Key Mask for True Color M	
15-8	Playback Color Key Mask for High Color M	
7-0	Playback Color Key Mask for 256 Color Mo	de

Graphics Video Display Registers
SR82-80 – Window 1 U-Plane FB Start Address RW
23-20 Reservedalways reads 0 19-0 W1 U-Plane FB Start Address
When operating in planar mode, this field defines the frame
buffer starting address for the U-plane for the first live video window
SR85-83 – Window 1 V-Plane FB Start Address RW
23-20 Reservedalways reads 0 19-0 W1 V-Plane FB Start Address
When operating in planar mode, this field defines the frame buffer starting address for the V-plane for the first live video
window
SR88-86 – Window 2 Frame Buffer Start Address RW
23-20 Reservedalways reads 0
19-0 Window 2 Frame Buffer Start Address Frame buffer starting address for the second live video

SR8A-89 -	Window 2	2 Horizontal	Scaling	Factor.	RW

15	W2	/2 Horizontal Minify / Zoom Select		
	0	Zoomdefault		
	1	Minify		

Zoom Selected (Bit-15 = 0)

window (packed YUV format only)

Reserved 14

13-0 W2 Horizontal Zoom Factor

Same format as for the first live video window as defined in CR80 and CR81

Minify Selected (Bit-15 = 1)

14-13 W2 Tap

W2 Horizontal Minify Integer (Inverter) W2 Horizontal Minify Factor 12-10

9-0

CD00 0D	Window O Vestinal Cooting Footon
3R8C-8B -	Window 2 Vertical Scaling Factor RW
10	W2 Vertical Minify / Zoom Select 0 Zoomdefault
	1 Minify
14	W2 Vertical Filtering
	0 Offdefault
	1 On
Zoom :	Selected (Bit-15 = 0)
13-0	112 10.1.04. 200 4010.
	format as for the first live video window as defined in
CR82 ar	nd CR83
	Selected (Bit-15 = 1)
	Reserved
9-0	W2 Vertical Minify Factor
SR90-8D -	Window 2 Live Video Start RW
31-28	
27-16	3
15-12	
11-0	W2 Horizontal Starting Point
SR94-91 -	Window 2 Live Video EndRW
31-30	W2 Line Buffer Level Bits 8-7 (see SR95)
29-28	Reserved always reads 0
27-16	W2 Vertical Ending Point
15-12	Reservedalways reads 0
11-0	W2 Horizontal Ending Point
<u>SR95 – Wi</u>	ndow 2 Live Video Line Buffer Level RW
7	Reservedalways reads 0
6-0	W2 Line Buffer Level Bits 6-0 (see SR91[31-30])

8-62 Trident Microsystems, Inc.

CyberBlade™ i7 Trident TECHNICAL REFERENCE MANUAL

Rev. 1.0 8/6/99

3R96 - Ne	w Live Video Window Control 0RW	SR98 - Ne	w Live Video Window Control 2 RW
7	W2 Horizontal Interpolation	7-6	Two Live Window Chroma Key Select
	0 Interpolation default		00 Chroma key onlydefault
	1 Duplication		01 Window 1 & chroma key
6	W1 Vertical Interpolation U and V Components		10 Window 2 & chroma key
	0 Enabledefault		11 (Window 1 Window 2) & chroma key
	1 Disable	5-4	W1 Anti-Flicker Removal
This bi	t is effective only if window 1 vertical Y interpolation is		00 Disabledefault
	$(CR8E[12] = 1)^{3}$		01 One field is shifted up 1 line
5	Reservedalways reads 0		10 One field is shifted up 2 lines
4	656		11 One field is shifted up 3 lines
	0 Disabledefault	3	W1 Anti-Flicker Removal Field Selection
	1 Enable		0 Odd field is shifted updefault
3	W2 Color Space Converter (CSC) Bypass		1 Even field is shifted up
	0 Disabledefault	2-1	W2 Anti-Flicker Removal
	1 Enable		00 Disabledefault
2	Reserved		01 One field is shifted up 1 line
always	reads 0		10 One field is shifted up 2 lines
1	MC Even / Odd Inverter		11 One field is shifted up 3 lines
	0 Disabledefault	0	W2 Anti-Flicker Removal Field Selection
	1 Enable		0 Odd field is shifted updefault
0	MC Interlace Display		 Even field is shifted up
	0 Disabledefault		
	1 Enable		
		<u>SR99 – Ne</u>	w Live Video Window Control 3 RW
		7	Reserved
<u> 5R97 – Ne</u>	w Live Video Window Control 1 RW	always	reads 0
7	Reservedalways reads 0	6	Capture Addres Swap Enable
6	Planar Mode X (Horizontal) Y/UV Ratio		0 Disabledefault
	0 2xdefault		1 Enable
	1 4x	5	Capture Address Swap
5-4	Planar Mode Y (Vertical) Y/UV Ratio		0 No swapdefault
	00 2x (Yp420)default		1 Swap
	01 4x (Yp410)	4-2	W2 HDE Delay Adjust default = 0
	1x 1x (Yp422)	1-0	Reserved always reads 0
3	Reservedalways reads 0		
2-0	Window Modedefault = 000b		
	Format InterpolationLine Buffers 000 YUV422 H-V (96+48) x 64 001 Planar H-V (96+48) x 64	<u>SR9B-9A -</u>	- Window 1 UV Video Row Byte Offset RW
	000 YUV422 H-V (96+48) x 64	15-14	Reserved always reads 0
	001 Planar H-V (96+48) x 64	13-0	W1 UV Plane Video Row Byte Offset (the bytes in
	01x YUV FIFO H 96 x 64	a row)	
	01x YUV FIFO H 96 x 64 100 MPEG2 YUV422 H-V2x(96+48)x64 101 MPEG2 Planar H-V2x(96+48)x64	SR9D-9C -	- Window 2 Y Video Row Byte Offset RW
	101 MPEG2 Planar H-V2x(96+48)x64	<u>-</u>	
	11x YUV422 H-V (V-YUV)	15-14	Reserved
_	2x(96+48)x64	13-0	W2 Y Plane Video Row Byte Offset (the bytes in a
F	or 1xx, only one h/w overlay window is supported	row)	
		SR9E – Lir	ne Buffer Request ThresholdRW
		7	Reserved always reads 0
		,	Reservedalways reads 0

Rev. 1.0 8/6/99

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL

SR9F - VBI	Control RW	SRAD-AC -	- VBI Vertical Interrupt PositionRW
7	VBI Interrupt StatusRO	15	Reservedalways reads 0
6	Reservedalways reads 0	14-12	Dithering Mode
5	VBI Bit-8		000 Bypass ditheringdefault
4	VBI IV Bit-8		001 -reserved-
3	VBI Interrupt		010 24 bpp dither to 16 bpp
	0 Disable default		011 24 bpp chop to 16 bpp
	1 Enable		100 24 bpp dither to 15 bpp
2	VBI Enable		101 24 bpp chop to 15 bpp
	0 Disabledefault		110 24 bpp dither to RGB8
	1 Enable		111 24 bpp chop to RGB8
1-0	VBI Data Format in Frame Buffer	11	Capture CSC
	00 Every field data overwritedefault		0 Disabledefault
	01 Data in even/odd format		1 Enable
	10 Every two field data write contiguous	10-0	VINST[10-0]
	11 -reserved-		
SRA3-A0 - 31-20 19-0	VBI Frame Buffer AddressRW VBI Row Byte Offset VBI Start Address		
SRA7-A4 -	VBI Capture StartRW		
31-27	Reservedalways reads 0		
26-16	VBI Vertical Start		
15-11	Reservedalways reads 0		
10-0	VBI Horizontal Start		
SRAB-A8 -	VBI Capture EndRW		
31-27	Reservedalways reads 0		
26-16	VBI Vertical End		
15-11	Reservedalways reads 0		
10-0	VBI Horizontal End		

Rev. 1.0 8/6/99

SRAF-AE	- Capture Row Byte OffsetRW	SRBD - D	Qual View Mux Control	RW
15 14 13-0	Reservedalways reads 0 Capture Address Initial Control Capture Row Byte	7-3 2-0	Reserved CRT / TV View Multiplexing 00x Color key 1 determines to 010 Video window 1 overlay 011 Video window 2 overlay	Control
SRB1-B0 -	- <u>Window 1 HSB ControlRW</u> Brightness		10x Window key defines wind 11x Window key defines wind	
9-5 4-0	Sin(Hue) * Saturation * 8 (bit-9 is the sign bit) Cos(Hue) * Saturation * 8 (bit-4 is the sign bit) 6 0-360 degrees (default = 0)	SRRF – M	liscellaneous Control Bits	RW
	ange is 0-1.875 (default = 1)	7	Planar Capture	
		,	0 Off	default
	- Window 2 HSB ControlRW		1 On	asiaan
15-10 9-5 4-0 Hue range is	Brightness Sin(Hue) * Saturation * 8 (bit-9 is the sign bit) Cos(Hue) * Saturation * 8 (bit-4 is the sign bit) s 0-360 degrees (default = 0)	6-5	Capture Start Address W/R 0x W/R Y address 10 W/R U address 11 W/R V address	
Saturation ra	ange is 0-1.875 (default = 1)	4	Video Engine Power Saving	ı Mode
CDD/ D4	Casand Display Address Calast DW	•	0 On1 On	
	- Second Display Address SelectRW	3	Reserved	always reads 0
23-20 19-0	Reservedalways reads 0 Second Display Address for Double Buffering d display address for double buffering instead of	2	Interpolation Bypass O Interpolation	default
	address	1	1 Bypass Window 2 HSCB Enable 0 Bypass	dofault
			1 Enable	dciauit
<u>SRB7 – Vi</u> 7-0	deo SharpnessRW Video Sharpness Factor	0	Window 1 HSCB Enable 0 Bypass 1 Enable	default
SRBA-B8	- Second Capture Address Select RW		i Enable	
23-20	Reservedalways reads 0	SRBF - L	CD CRTC Control	RW
19-0 Second	Second Capture Address for Double Buffering d capture address for double buffering instead of	7	External Hsync Polarity 1 invert	
display	address	6	External Vsync	
SRBC - Co	ontrast ControlRW	5	Video Clock Divided by 2 0 CRTC CLK = Video Clock	k 2
7-4	Window 2 Contrast		1 CRTC CLK = Video Clock	
3-0	Window 1 Contrast	4	Interlaced/Non-interlaced M 0 Interlaced	
			1 Non-interlaced	
		3	CRTC Hsync Load 1 Enabled	
		2	CRTC Vsync Load 1 Enabled	
		1	Horizontal Counter Reset by 1 Enabled	,
		0	Vertical Counter Reset by e 1 Enabled	xternal Vsync
		SRC1-C0	- LCD Vertical Total	RW
		11-0	LCD vertical total	
		110	_ob vortious total	

SRC3-C2 – LCD Horizontal TotalRW			
11-0	LCD horizontal total		
<u>SRC5-C4 - I</u>	_CD Vertical StartRW		
11-0	LCD vertical start		
<u>SRC7-C6 – I</u>	_CD Vertical EndRW		
11-0	LCD vertical end		
<u>SRC9-C8 - I</u>	_CD Horizontal StartRW		
11-0	LCD horizontal start		
SRCB-CA -	LCD Horizontal EndRW		
11-0	LCD horizontal end		
SRCD-CC -	LCD Sync Pulse WidthRW		
10-4	LCD Hsync pulse width		
3-0	LCD Vsync pulse width		
	dow 2 Live Video ControlRW		
7	Reservedalways reads 0		
6	W2 Vertical Interpolation		
	0 Disabledefault		
	1 Enable		
5	Planar Mode X (Horizontal) Y/UV Ratio		
	0 2x		
	default		
	1 4x		
4-3	Planar Mode Y (Vertical) Y/UV Ratio		
	00 2x (Yp420)default		
	01 4x (Yp410)		
2.0	1x 1x (Yp422)		
2-0	Window Modedefault = 000b		
	Format InterpolationLine Buffers 000 YUV422 H-V (96+48) x 64		
	001 Planar H-V (96+48) x 64 01x YUV FIFO H 96 x 64		
	100 MPEG2 YUV422 H-V2x(96+48)x64 101 MPEG2 Planar H-V2x(96+48)x64		
	11x YUV422 H-V (V-YUV)		
	2x(96+48)x64		
Eor	1xx, only one h/w overlay window is supported		
1 01	TAA, Only one have overlay will downs supported		

15-14	Reservedalways reads 0
13-0	W2 UV Plane Video Row Byte Offset (the bytes in
a row)	
SRD4-D2 -	- Window 2 U-Frame Start Address RW
23-20	Reserved always reads 0
19-0	W2 U-Frame Start Address
<u> RD7-D5 -</u>	- Window 2 V-Frame Start Address RW
23-20	Reserved always reads 0
19-0	W2 V-Frame Start Address
RD9-D8 -	- Digital TV Interface ControlRW
	RD0, VGA / Digital TV Sync Control)
	,
15-14	Reserved always reads 0
15-14 13	Reserved always reads 0 DIVS I/O Control
	DIVS I/O Control
13	
13 12	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync)
13 12 11	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control
13 12 11 10 9	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control
13 12 11 10 9 8 7	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control DIHS Inversion Control
13 12 11 10 9 8 7 6-5	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control DIHS Inversion Control YUV Order Inversion Control
13 12 11 10 9 8 7	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control DIHS Inversion Control YUV Order Inversion Control Data Out Control
13 12 11 10 9 8 7 6-5	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control DIHS Inversion Control YUV Order Inversion Control Data Out Control 00 VGA / Video Overlay Data
13 12 11 10 9 8 7 6-5	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control DIHS Inversion Control YUV Order Inversion Control Data Out Control 00 VGA / Video Overlay Data x1 TV Data
13 12 11 10 9 8 7 6-5 4, 1	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control DIHS Inversion Control YUV Order Inversion Control Data Out Control 00 VGA / Video Overlay Data x1 TV Data 10 Data Direct from Video Engine
13 12 11 10 9 8 7 6-5	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control DIHS Inversion Control YUV Order Inversion Control Data Out Control 00 VGA / Video Overlay Data x1 TV Data 10 Data Direct from Video Engine HS / VS / CLK Control
13 12 11 10 9 8 7 6-5 4, 1	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control DIHS Inversion Control YUV Order Inversion Control Data Out Control 00 VGA / Video Overlay Data x1 TV Data 10 Data Direct from Video Engine HS / VS / CLK Control 0000 VGAHS, VGAVS, and PCLK
13 12 11 10 9 8 7 6-5 4, 1	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control DIHS Inversion Control YUV Order Inversion Control Data Out Control 00 VGA / Video Overlay Data x1 TV Data 10 Data Direct from Video Engine HS / VS / CLK Control 0000 VGAHS, VGAVS, and PCLK x100 VGAHS, VGAVS, and SPKTV
13 12 11 10 9 8 7 6-5 4, 1	DIVS I/O Control DTVI Signal Output Control, except DIVS (Vsync) Dual View Clock Inversion Control Dual View Clock Control for DTVI DICLK Inversion Control DIVS Inversion Control DIHS Inversion Control YUV Order Inversion Control Data Out Control 00 VGA / Video Overlay Data x1 TV Data 10 Data Direct from Video Engine HS / VS / CLK Control 0000 VGAHS, VGAVS, and PCLK

8-66 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

SRDB-DA -	Window 2 V-Count StatusRO
15-0	W2 V Count Status
SRDD-DC -	Dual View ControlRW
15-11	Reservedalways reads 0
10-9	Dual View Control - SHIF
8	Dual View Control – G Window Enable
7	Dual View Control – W2 Double Buffer Enable
6	Dual View Control – W1 Double Buffer Enable
5	Dual View Control – W2 Address Trans Enable
4	Dual View Control – W1 Address Trans Enable
3	Dual View Control - Digital TV Enable
2	Dual View Control – Digital Video LUT Write
1	Dual View Control – Digital Video LUT Read
0	Dual View Control – Digital Video CRT
	· ·
SRDF-DE -	Window 1 V-Count StatusRO
15-13	Reservedalways reads 0
12	DVV Sync
11-0	W1 V Count Status

Extended Registers – VGA Graphics Controller Indexed

<u> GRE – C</u>	Old Source Segment Ac	ldressRW
7-3	Reserved	always reads 0
2-1	Source Segment Ad	dress Select default = 0
0	Reserved	always reads 0
GRE - N	lew Source Segment A	ddressRW
7	Reserved	always reads 0
6-0	Source Segment Ad	dress Select default = 0
	Bit-1 is written inverted	

GRF - Misc	ellaneous Extended Function Control RW
7	Reservedalways reads 0
6	Character Clock Division Control Bit-1 (see bit-3)
	00 No divisiondefault
	01 Divide by 2
	10 Divide by 3
	11 -reserved-
5	Symmetric / Asymmetric DRAM Address
	0 Symmetricdefault
	1 Asymmetric
4	Compressed Chain 4 Mode for CPU Path
	0 Disabledefault
	1 Enable
3	Character Clock Division Control Bit-0 (see bit-6)
2	Alternate Bank & Clock Select
	O Disable 3D8, 3D9, and 3xBdefault
	1 Enable 3D8, 3D9, and 3xB
1	Compressed Chain 4 Mode Display Path
	0 Disabledefault
	1 Enable
0	Source Segment Address Register Enable
	0 Disable GREdefault
	1 Enable GRE
All bits except	2 and 0 are write protected by SRE_New[7]

8-68 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Power Management Registers

to allow software coherency

GR20 - S	Standby Timer ControlRW	<u>GR22 – P</u>	ower Management Control 2 RW
7	Timer Initialize & Enable	7	Timer Test Mode
	0 Enable Timerdefault		0 Disabledefault
	1 Initialize and hold standby and DPMS timer		1 Enable
6-4	Timer Testing RO	6	Refresh Clock Select
3-0	Reserved		0 Crystal input or external clock (XMCLK)
alwa	ys reads 0		provides refresh clock during suspend default
GR21 – F	Power Management Control 1RW		1 REFCLK is used as refresh clock during
7	Power Management Pin Polarity		suspend for 64ms refresh (ignore "Suspend
,	0 Active Highdefault		DRAM Refresh Mode" bits 5-4 below)
	1 Active Low	5-4	Suspend DRAM Refresh Mode
6	PCI Power Management		00 No refreshdefault
·	0 Disabledefault		01 Self refresh
	1 Enable		10 Crystal clock provides rate for 8ms refresh
5	Suspend Mode	•	11 Crystal clock provides rate for 64ms refresh
-	0 Normal modedefault	3	Disable GPIO
	1 Enter Suspend Mode		0 Allow GPIO 7-0 pins to drive data indefault
4	Suspend Input Pin		1 Disable GPIO 7-0 pins (and their shared
	0 Disable default		functions) from driving data. Tristates input
	1 Enable		buffers on pins so no power is consumed if
3	D3 to D0 Reset	2	GPIO pins are set to input mode. Reservedalways reads 0
	0 Disabledefault	2 1	Hardware / Software Oscillator Select
	1 Enable	Į.	O Software controls oscillator off with bit-0
2	Standby Input Pin		(prevents automatic oscillator shutdown without
	0 Disabledefault		direct software control of the "Oscillator Disable"
	1 Enable		bit) def
1	CLKRUN# Mechanism		1 Hardware controls oscillator off (allow oscillator
	0 Disabledefault		shutdown when power states are entered using
	1 Enable		hardware mechanisms)
0	Consistent Standby / Suspend	0	Oscillator Disable
	O The bits in the PCI PM configuration registers	ŭ	0 Enable normal functiondefault
	will be OR'ed with bits 5 and 3 of this register		1 Disable (oscillator off)
	for connection to the internal PM state machine		2.22.20 (000
	default		
	1 The bits in the PCI PM configuration registers		
	will be the same as bits 5 and 3 of this register		

er Status RW
Power Management Pin Polarity (see GR21[7])
Chip Power Status
00 Ready
01 Standby
10 Suspend
11 -reserved-
LCD Power Sequence Status
0 LCD power sequencing is not occurring at this
time
1 LCD power sequencing is occurring at this time
Panel Power Sequencing
00 Fast panel power sequencing default
01 -reserved-
10 -reserved-
11 Slow panel power sequencing
DPMS Power Status
00 On Mode (CRT interface is active and RAMDAC
is full on)default
01 Standby Mode (Hsync disabled, Vsync active
DAC off, RAMDAC color palette lookup table
(LUT) video data path is off but LUT I/O is
allowed)
10 Suspend Mode (Vsync disabled, Hsync active
RAMDAC is off but contents are retained)
11 Off Mode (Hsync and Vsync disabled, DAC LUT
is full off)

In <u>hardware</u> mode, these bits indicate the status of CRT Hsync and Vsync as well as the internal RAMDAC power state (the "off" mode state can be read only in CRT only mode). In <u>software</u> mode, these bits control the state of the CRT Hsync and Vsync signals but <u>not</u> the power state of the internal RAMDAC. In <u>simultaneous display</u> modes, the power state of the RAMDAC is not controlled by the DPMS Power State (bits 1-0), but by the Chip Power State (bits 6-5).

<u> GR24 – S</u>	oftware Power ControlRW	
7	VCLK	
	0 Disable	
	1 Enabledefault	
6	MCLK	
	0 Disable	
	1 Enabledefault	
5	CPU & DRAM Data Bus	
	0 Disable	
	1 Enabledefault	
4	Reserved	
	s reads 0	
3	ENPBLT (Panel and/or Backlight Enable) Contro)I
	Software Power Control	
	0 Drive ENPBLT Lowdefault	
	1 Drive ENPBLT High	
	Hardware Power Control (timers, pin, register bit)	
	0 ENPBLT is active lowdefault 1 ENPBLT is active high	
2	1 ENPBLT is active high Panel VDD	
2	0 Disabledefault	
	1 Enable	
1	Panel Interface Signals	
	0 Disabledefault	
	1 Enable	
0	Panel VEE	
•	0 Disabledefault	
	1 Enable	
GR25 – P	ower Control SelectRW	
	of bits 7-6 or 3-0 are set to 1, the corresponding power	
	eads back the logic state of the internal power	
	ent engine. For all bits below, 0 selects hardware power	
	1 selects software power control.	
7	Power Control for VCLKdef = 1	
6	Power Control for MCLK def = 1	
5	Power Control for the Data Bus def = 1	
4	Power Control for the RAMDAC def = 1	
The F	RAMDAC is software enabled in GR26[7-6]	
•	Decree October Decret Fred Let / Decline Let	

Power Control for Panel Enable / Backlight def =

Power Control for Panel VDD def = 1

Power Control for Panel Interface Signals def = 1

Power Control for Panel VEEdef = 1

8-70 Trident Microsystems, Inc.

1

2

1

0

(see GR24[3])

Rev. 1.0 8/6/99

GR26 - DPMS Control RW

7-6	RAMDAC Internal Power Control
	00 Normal default
	01 DAC off (used in LCD only mode)
	10 Standby (DAC off, LUT in low power mode, I/C allowed to LUT). May be used in LUT bypass mode.
	11 Suspend (DAC off, LUT access disallowed but LUT contents are preserved)
5-4	Reservedalways reads 0
3	DPMS Control
	O Software Control Mode: DPMS controlled by GR23[1-0] in simultaneous display and CRT-only modes (may be used to decouple the power modes of the CRT and LCD during simultaneous display)
	 Hardware Control Mode: DPMS controlled by internal power states.
2-0	Reservedalways reads 0

DPMS Control Modes

DPMS Software Control Mode

In simultaneous display mode, the software control mode can be used to control DPMS low power states independent of the chip power states. In CRT display mode, software mode gives total DPMS control to software. Pseudostandby may be controlled by bits 7 and 6, as well as BLANK# timing.

DPMS Hardware Control Mode

Table8-7. DPMS Sequence - Hardware Timer Mode

Power Level	DPMS Mode
High - Activity detected	On
Moderate - 16 min inactivity	Standby
Low - 32 min inactivity	Suspend
Lowest - 64 min inactivity	Off

DPMS hardware timer mode is defined as CRT only mode with the DPMS control mode bit set to hardware (bit 3 =1). Activity detection is set by register GR21[2:0]. Status is indicated in bits 1 and 0. The timer may be controlled by software from GR20[7].

Table 8-8. DPMS Sequence - Hardware Mode in Simultaneous Display Mode

Power Level	DPMS Mode
High - Chip on state	On
Moderate - Chip standby	Off
Low - Chip suspend	Off
Lowest - Chip off state	Off

In simultaneous display mode with hardware DPMS set, DPMS states are sequenced by the timer, pin, and register bits that control the chip power states.

Rev. 1.0 8/6/99

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL ### Trident

GR28-27 -	GPIO ControlRW		0010 0 pixel clock delay
15-8 7-0	GPIO Direction 7-0 0 Read default 1 Write GPIO Data 7-0 default = 0		0011 -1 pixel clock delay 0100 -2 pixel clock delay 0101 -3 pixel clock delay 0110 -4 pixel clock delay 0111 -5 pixel clock delay
		1	Reserved
GR2A - Si	uspend Pin TimerRW	0	Enable LCD Horizontal Shadow Registers
7	Motion Video Port Suspend		
,	0 Disabledefault	GD31 _ F	lat Panel Attribute EnhancementRW
	1 Enable	<u> </u>	720x480 Mode Select
6-0	Reservedalways reads 0	,	0 deselect 1 select
GR2C – M	iscellaneous Pin ControlRW	6-4	Number of lines 000 480 lines and less
7	Reserved		000 480 lines and less 001 600 lines
always	reads 0		010 768 lines
6	Use PDINV pin as GPIO5		011 1024 lines
	0 Disable default	3	Disable Background Display
5-4	1 Enable	2	Select Alternate VSYNC, HSYNC for TFT Panels
3	Reservedalways reads 0 Use INT# pin as PSTATUS	1-0	Reserved
·	0 Disabledefault		
	1 Enable	CD22 D	locomical DW
2	Tristate P35-0, DE, SFCLK, LP, FLM	<u>GR32 – R</u>	
	0 Tristatedefault 1 Enable	7-0	Reserved
1	Tristate ENPVEE, ENPVDD, ENPBLT		
	0 Tristatedefault		lat Panel ConfigurationRW
0	1 Enable Reservedalways reads 0	7-6	Reserved
U	Reservedaiways reaus 0	5 4	Enable CRT Display Enable Flat Panel Display
GR2F – Mi	scellaneous Internal ControlRW	3-0	Reserved
7	PCLK Control		
•	0 VGA Compatibledefault	OD24 E	let Devial Delegite Occident
	1 PCLK equals VCLK		lat Panel Polarity ControlRW
6	Reservedalways reads 0	7	Panel MOD Polarity
5	Hsync Skew Control		0 Normal 1 Inverted
	One skew in graphics, two skew in text. default No skew	6	Panel LP Polarity
4-3	Reservedalways reads 0		0 Normal
2	Double Logical Line Width		1 Inverted
	0 Disabledefault	5	Panel FLM Polarity
	1 Enable		0 Normal 1 Inverted
1	Text Mode Display FIFO Prefetch Cycles Select	4	1 Inverted Reserved
	0 Multiple of 8default 1 Multiple of 4	3	Panel SCLK Polarity
0	Enable Display FIFO Threshold Control		0 Normal
Ü	0 Disable default		1 Inverted
	1 Enable (can also be enabled by AR10[0])	2	Reserved
		1	Vsync Polarity
כרוים בי	et Denel Dienley Central	0	0 Positive Hsync Polarity
	at Panel Display ControlRW	U	0 Positive
7	Enable LCD Vertical Shadow Registers		
6 5	Enable R/W Shadow Registers Reserved		
4-2	Flat Panel Control Signal Adjust	GR35 – R	eservedRW
	0000 2 pixel clock delay 0001 1 pixel clock delay	7-0	Reserved

Rev. 1.0 8/6/99

		<u> GR45 – Fla</u>	at Panel Retrace Line Pulse Control RW
<u>GR36 – R</u>	eservedRW	7-6	Reserved
7-0 Reserved		5-0	Number of Retrace Line Pulse
GR41 – F	lat Panel MA ConfigurationRW	<u>GR46 – Fla</u>	at Panel Extra Line Pulse ControlRW
7-3	Reserved for LCD Controller	7	Line Pulse Width Select
2-0	Panel Type Select		0 8 pixel clock
	TFT:		1 4 pixel clock
	000 1024x768 – 18 bit	6	Enable Wide Line Pulse
	001 1280x1024 – 18+18 bit	5-4	Reserved
	010 800x600 – 18 bit	3-0	Number of Extra Line Pulse
	011 1024x600 – 18 bit		
		<u>GR47 – DS</u>	STN FB R/W Threshold Adjustment RW
	DSTN:	7-6	Reserved
	100 1024x768 - 16 bit	5-3	Read FIFO Threshold
	101 1024x600 – 24 bit	2-0	Write FIFO Threshold
	110 800x600 – 16 bit 111 1024x768 – 24 bit		
	111 1024x768 – 24 bit Reset: MA[5:3]	GR48 – Fr	ame Buffer Control RW
	Reset. MA[5.5]	7-2	Reserved
0040 -		1	Frame Counter Increment Control
	FT Panel Type ControlRW	0	Half/Full FB Enable
7	Enable TFT/DSTN		0 Half FB selected
	0 DSTN		1 Full FB selected
	1 TFT		
6 5-4	Dual Data	GR4A-49 -	- DV-DSTN PositionRW
5-4	TFT or STN Panel Data Interface Select TFT:	15-10	Reserved
	00 12 bits	9-0	DV-DSTN Second Up Position (STNPSTART)
	01 18 bits	7-0	DV DOTA Second Op 1 ostalon (STAI STAICT)
	10 24 bits	CDEU HO	SYNC Timing Adjust RW
	10 21010		
	DSTN:	7	Enable Refined Expansion Scheme
	00 Not applicable	6-3	Reserved
	01 16 bits	2-0	Adjust HSYNC
	10 24 bits		Adjust in terms of pixel clock
3	Enable Dithering		
2	Reserved	<u>GR51 – VS</u>	SYNC Timing AdjustRW
1	Select VESA Data Mapping	7	Sign Bit for Adjustment
0	Shift Clock Select	6-0	Adjust VSYNC
	0 Dual shift clock un-selected		Adjust in terms of scan line
	O Dual shift clock selected (shift clock S1 and S2		
	will be output by pins PD22 and PD23)	<u>GR52 – Fla</u>	at Panel Vertical Display Control RW
CD42 C	CDM Combrol	7	Enable Vertical Centering
·	SPM ControlRW		1 Enabled
7	Reserved	6	ENEXTVDE
6	W/R Counter	5-4	Flat Panel Physical Resolution
	0 Select LCDVD		00 1280x1024
гэ	1 Select FLM to start W/R counter		01 640x480
5-3	Reserved		10 1024x768
2-0	SSPM FIFO Counter Latency	2.2	11 800x600
		3-2	Select Text Mode Expansion Scheme
<u>GR44 – D</u>	riving Capability ControlRW	1	Enable Vertical Expansion (Text Mode) 1 Enabled
7-3	Reserved	0	Enable Vertical Expansion (Graphics Mode)
2-0	Panel Signal Driving Capability Control	U	1 Enabled
	Bit 2 0=half driving; 1=full driving (PD23-0)		i Litabica
	Bit 1 0=half driving; 1=full driving (LP, FLM, DE)	CDE2 III	primantal Europaian/Contains
	Bit 0 0=half driving; 1=full driving (SCLK)		orizontal Expansion/Centering RW
		7	Enable Horizontal Centering

Rev. 1.0 8/6/99

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL ### Trident

	1 Enabled
6	Reserved
5	Compress Text Mode
	9 dot font to 8 dot font (active high)
4	Reserved
3-2	Select Wide Flat Panel
	00 reserved
	01 800x480
	10 1024x600
	11 1280x768
1	Enable Horizontal Expansion (Text Mode) 1 Enabled
0	Enable Horizontal Expansion (Graphics Mode)
	1 Enabled
GR54 - Flat	Panel Resolution ControlRW
7-0	Reserved for Panel Resolution Control
7-0	Reserved for Pariet Resolution Control
GR56 - Fran	ne Buffer Starting Address 1RW
7-0	Frame Buffer Starting Address Bits [7:0]
0DF7 F	D. (C. C.)
	ne Buffer Starting Address 2RW
7-0	Frame Buffer Starting Address Bits [15:8]
GR58 – Fran	ne Buffer Starting Address 3RW
7	Frame Buffer Row Offset Bit 8
6-4	Reserved
3-0	Frame Buffer Starting Address Bits [19:16]
GR59 - Fran	ne Buffer Row OffsetRW
7-0	Frame Buffer Row Offset Bits [7:0]
Scratch Pad	Registers
	ers are reserved for use by software.
GR5A - Scra	atch Pad 0 RW
GR5B - Scra	atch Pad 1 RW
GR5C - Scra	atch Pad 2 RW
GR5D - Scra	atch Pad 3 RW
GR5E – Scra	atch Pad 4 RW
GR5F - Scra	atch Pad 5 RW

8-74 Trident Microsystems, Inc.

7-0

CyberBlade[™] i7 TECHNICAL REFERENCE MANUAL

Rev. 1.0 8/6/99

Extended Registers – VGA CRT Controller Indexed

CRE - CRT	Module TestRW	I
7	Extended Memory Access Above 256KB	
	0 Disabledefaul	t
	1 Enable	
6	VGA Misc Output Register (3C2) Write Protect	
	0 Writes to 3C2 Alloweddefaul	t
	1 Write Protect 3C2	
5	CRT Start Address Bit-16	
4-3	Reservedalwatys reads ()
2	Interlaced Mode	
	0 Disabledefaul	t
	1 Enable	
1-0	Reserved for Test (Do Not Program) default = 0)
	•	
CR19 - CR	T Interlace Control RM	ı

Interlaced Vsync Adjust Value

<u>CR1A – <i>I</i></u>	Arbitration Control 1	RW
7-0	Display Queue Kill Counter	default = 0
Cont	rols how many requests can be accep	oted by the arbite
before count	e changing the owner to another agen er).	it (00 disables the
<u>CR1B - /</u>	Arbitration Control 2	RW
	High Priority Arbiter Kill Counterols how many requests can be accept changing the owner to another agenter).	oted by the arbite
<u>CR1C - /</u>	Arbitration Control 3	RW
7-0	Low Priority Arbiter Kill Counter	
	rols how many requests can be accept changing the owner to another agen er)	

CR1F - Sof	tware ProgrammingRW
7-4	Reserved
always i	
3-0	Display Memory Size
	0011 1MB
	0111 2MB 1111 4MB
	0100 8MB
	other codes are reserved
Memory	size is automatically detected during system setup.
CR20 - Cor	mmand FIFORW
7-6	Reserved
always i	
5	Write Buffer
	0 Disable default
	1 Enable
4	16-Bit Planar Mode
	0 Disable default
	1 Enable
3-0	Reservedalways reads 0
CR21 - Line	ear AddressingRW
7	CPU Bandwidth Select for Text Mode
•	0 132 column text default
	1 Other text
6	Reservedalways reads 0
5	Linear Memory Access
-	0 Disable default
	1 Enable
4-0	Reservedalways reads 0
This register i	s write protected by SRE_New[7].
CR22 - CPI	J Latch ReadbackRO
7-0	Latched Data
	to by GR4 (VGA Read Map Select Register)
	A Attribute StateRO
7	VGA Attribute State
	0 Indexdefault
	1 Data
6-0	Reservedalways reads 0
<u>CR25 – RAI</u>	MDAC Read/Write TimingRW
7	PCLK / P[7-0] BufferTristate Control
	0 Enabledefault
	1 Disable
6-4	Reservedalways reads 0
3-0	RAMDAC Read / Write Wait States def =1111b
CR27 - CR	T High Order Start AddressRW
7	Vertical Total Bit-10default = 0
6	Vertical Blanking Start Bit-10 default = 0
5	Vertical Retrace Start Bit-10 default = 0
4	Vertical Display Enable End Bit-10 default = 0
3	Line Compare Bit-10 default = 0
2.0	Start Address Rits 10.17 default = 0

CR29 - RA	AMDAC Mode	. RW
7	External DAC	
•	0 Disabled	efault
	1 Fnable	oraurt
6	Reserved	
•	s reads 0	
5-4	CRTC Offset[9:8] for High or True Color Mo	ndes
3	GF I/O Decode	Jucs
3	0 Disabled	مfault
	1 Enable	Clauit
2	RAMDAC	
2	0 Externald	ofoult
	1 Internal	erauri
1-0	· internal	finitio
. •	RS[3-2] for RAMDAC (if register access de	HIHHHO
is selec	,	
i nis register	r is write protected by SRE_New[7]	
CR2A - In	terface Select	. RW
7	Reserved	
always	reads 0	
6	Internal Data Path Width	
	0 8/16-bitd	efault
	1 32-bit	
5	Reservedalways re	ads 1
4	Power Down Mode Using ROMCS#	
•	0 Enabled	efault
	1 Disable	2.2.011
3-0	Reserved always re	ads 0
	Reservedalways re	ads 0

Rev. 1.0 8/6/99

CR2B – Horizontal Parameter OverflowRW	<u>CR35-34 -</u>	 Graphics Engine I/O Linear Address BaseRW
7-5 Reservedalways reads 0 4 Horizontal Blank Start Bit-8default = 0	15-0	Graphics Engine Linear Address Basedefault = 0
3 Horizontal Retrace Start Bit-8 default = 0		
2 Horizontal Interlace Parameter Bit-8 . default = 0	<u> CR36 – Gr</u>	raphics Engine / Video Engine Control RW
1 Horizontal Display Enable Bit-8 default = 0	7	Graphics Engine
O Horizontal Total Bit-8 default = 0		0 Disabledefault
CR2D – GE Timing ControlRW		1 Enable
7-5 Reservedalways reads 0	6	PCI Video Minifier
4-3 GE Sample Clock Delay Selection default = 0		0 Bypassdefault
2-0 GE Frame Buffer Read Delay Cycles . default = 0		1 Go through minifier
	5	Video Aperture
CR2F – Performance TuningRW		0 Disabledefault
7 Display FIFO Depth Control		1 Enable
Used together with bit 4 for FIFO depth control	4	Graphics Engine Software Reset
6 DRAM Refresh Cycle Control Bit-1		Writing a one to this bit resets the graphics engine
(Bit-0 is CR11[6])	3	Graphics Engine I/O
00 3 refresh cycles per horizontal line		0 Disabledefault
01 5 refresh cycles per horizontal line		1 Enable
10 1 refresh cycles per horizontal line	2	String Write
11 2 refresh cycles per horizontal line		0 Disabledefault
5 Blank TimingSelect		1 Enable
0 Normal blank default	1-0	Graphics Engine Register Mapping
 Blank is the inverse of display enable 		00 I/O mapped at 21xxhdefault
4 Display FIFO Depth Control		01 Memory mapped at B7Fxxh
bit7 bit4 FIFO depth		10 Memory mapped at BFFxxh
0 0 16 (default)		11 Memory mapped using the GE base register
0 1 32		
1 0 48		
1 1 64	<u>CR37 – I²C</u>	C / SMB Control RW
3-2 Memory Read Ready Control	7	SMBCLK Buffer is Open Drain always reads 1
00 -reserveddefault	6	I ² C SMBCLK StatusRO
01 Fast read cycle (same as 10)	5-4	Reserved always reads 0
10 Fast read cycle (same as 01)	3	I ² C Operation
11 Normal read cycle		0 Readdefault
1 Clock Source		1 Write
0 VCLK2	2	Reservedalways reads 0
1 VCLK1default	1	I ² C SMBCLK Signal
O Pin Scan (Test Only) default = 1		0 Low
		1 Highdefault
	0	I ² C SMBDAT Signal
		0 Lowdefault
		1 High

	ixel Bus ModeRW	·	Physical Address ControlRW
7-6	Reservedalways reads 0	7	Reserved always reads 0
5	Packed 24-Bit True-Color Mode	6	AGP / PCI Select
	0 Disabledefault		0 PCIdefault
	1 Enable		1 AGP
4	Standard VGA Mode in 64-Bit Configuration	5	Both IO
	0 Disable default		0 Disabledefault
	1 Enable		1 Enable
3	True Color Mode	4	Memory Address Linearization
	0 Disable default		0 Disabledefault
	1 Enable		1 Enable
2	High Color Mode	3	Reservedalways reads 0
	0 Disable default	2	AGP Software Reset
	1 Enable		0 Normaldefault
1	Reservedalways reads 0		1 Reset
0	16-Bit Pixel Bus	1	PCI Configuration Subsystem ID Write
	0 Disabledefault		0 Disabledefault
	1 Enable		1 Enable
This registe	er is protected by SRE_New[7]	0	Enhanced Register I/O Scheme
			0 Disabledefault
			1 Enable
<u>CR39 – P</u>	CI Interface ControlRW	CR3B - 0	Clock and TuningRW
7	Pixel Data Format	7	Observe Clock Source
	0 Little Endiandefault	,	0 VCLK1default
	1 Big Endian		1 VCLK2
6-5	Memory Data with Big Endian Format	6-4	Clock Source Mode Select
	00 Pass Through (PT) default	0 4	Oxx Internal Clock Chip
	01 Word Swap (WS)		000 V/MCLK test mode, observe MCLK
	10 Half Swap (HS)		001 V/MCLK test mode, observe VCLK1
	11 Full Swap (FS)		010 V/MCLK test mode, observe VCLK2
4-3	BE[3-0]# With Big Endian Format		011 Normal operation
	00 Pass Through (PT) default		1xx External Clock Chip
	01 Word Swap (WS)		Bit 6 default is set from MA inverted
	10 Half Swap (HS)		Bits 5-4 default to 00
	11 Full Swap (FS)	3	Clock Control
2	PCI Burst Write	3	0 When bits 6-4 = 00x, clock is normaldefault
	0 Disable default		1 When bits 6-4 = 00x, clock is divided by 2
	1 Enable	2-1	Reservedalways reads 0
1	PCI Burst Read	0	Vertical Retrace Memory Refresh
	0 Disabledefault	U	0 Disable
	1 Enable		1 Enabledefault
0	MMIO Control default set from Inverted MA	This regist	er is protected by SRE_New[7]
	0 Disable	J	
	1 Enable (64KB VGA I/O space can be memory	<u> CR3C – N</u>	Miscellaneous ControlRW
	mapped within the 4GB memory space)	7-3	Same Definition as GRF[7-3] default = 0
This registe	er is protected by SRE_New[7]	2	Reserved always reads 0
		1	Same Definition as GRF[1]default = 0
		0	Mode Select 1 default = 0
			0 This register has no functiondefault
			The original GRF[7-0] bits are used
			1 GRF[7-3, 1] accessed via this register only
			GRF[2, 0] accessed at original register only
			Original GRF[3] is R/W but has no function
		This regist	er is protected by SRE_New[7]
		11.13 TOGIST	5. 15 p. 5.55000 by GIVE_INON[1]

Rev. 1.0 8/6/99

Hardware Cursor Registers

The CyberBlade i7 supports a Windows® compatible hardware cursor. The hardware cursor operates only in extended planar and packed pixel modes. The cursor size can be selected between 32x32 and 64x64. Two 2-bits-perpixel images define the cursor shape. The table below shows how these two bits operate on each pixel. The hardware cursor pattern is stored in off-screen memory.

Table 8-9. Hardware Cursor Pixel Operation

Plane 0	Plane 1	Pixel Operation	Pixel Operation
(AND)	(XOR)	(Windows®)	(X11)
1	0	Transparent	Cursor BG Color
1	1	VGA Data Inversion	Cursor FG Color
0	1	Cursor FG Color	Transparent
0	0	Cursor BG Color	Transparent

0	0	Cursor BG Color	Transparent
CR43-40 -	- Hardware	Cursor Position	RW
31-28	Reserved	i	always reads 0
27-16		e Cursor Position Y D	
15-12		i	always reads 0
11-0	Hardware	e Cursor Position X D	imension
CR45-44 -	- Hardware	Cursor Pattern Loc	cationRW
15-12		i	always reads 0
11-0	Hardware	Cursor Map Mask S	torage Location
1KB a	ligned in the t	frame buffer	
CR47-46 -	- Hardware	Cursor Offset	RW
15	Reserved	i	always reads 0
14-8	Hardware	Cursor Position Y-C	Offset
7		i	
6-0	Hardware	e Cursor Position X-C	Offset
CR4F-48 -	- Hardware	Cursor Color	RW
63-56	Reserved	i	always reads 0
55-32		Cursor Background	
31-24		i	
23-0	Hardware	e Cursor Foreground	Color

CR50 - Hard	dware Cursor Control	RW
7	Hardware Cursor Enable	
-	0 Disable	default
	1 Fnable	madiaan
6	Hardware Cursor Mode	
	0 MS Windows™ Compatible	default
	1 X11 Compatible	
5	Hardware Cursor Color Control 3	
	0 Disable	default
	1 Enable	
4	Hardware Cursor Color Control 2	
	0 Disable	default
	1 Enable	
3-2	Reservedalway	s reads 0
1-0	Hardware Cursor Size	
	00 128x128	default
	01 64x64	
	10 32x32	
	11 -reserved-	

Additional CRTC Extended Registers

<u>CR51 – Bu</u>	s Grant Termination ControlRW	CR5E - Capt	ure / ZV Port Control
7-0	Bus Grant Termination Position	7	Capture Idle
This re	giester is active if CR52[6] = 1		Capture Command Port
CR52 - Sh	ared Frame Buffer ControlRW	(Disable
7, 5	Shared Frame Buffer (SFB)		1 Enable new command por
7, 3	00 Disabledefault		erved
	01 Enable SFB slave mode 1 (8ma I/O buffer)		PCI I/O Write Retry
	10 Enable SFB master mode		Disable default
	11 Enable SFB slave mode 2 (16ma I/O buffer)		1 Enable
6	Bus Grant Termination Position Control		PCI I/O Read Retry
	0 Disable default		0 Disable default 1 Enable
	1 Enable		Capture Interface
4	Reservedalways reads 0		O Disable default
3-0	Bus Grant Low Pulse (MCLKs)def = 0010b		1 Enable
<u>CR55 - PC</u>	CI Retry ControlRW		protected by SRE_New[7]
7	PCI Retry in Memory Write Command	CR5F - Test	Control
	0 Disable default		Internal Control Test Output
	1 Enable		O Normal
6	PCI Retry in Memory Read Command		1 Internal control signals are
	0 Disable default		P15
F 0	1 Enable		P14
5-0	Number of PCICLKs * 2 for STOP# def = 0Fh		P13
	er of PCICLKs, multiplied by 2, for generating STOP#		P12
Ü	he first data phase		P11
<u>CR56 – Dis</u>	splay Pre-end Fetch ControlRW		P10
7-2	Reservedalways reads 0		P9
1	Display Queue Pre-end Fetch		P8
	O Disable default		P7
_	1 Enable		P6
0	Display Queue Pre-end Fetch Parameter Bit-8		P5 P4
Used v	vith CR57 default = 0		P3
CR57 - Dis	splay Pre-end Fetch ParameterRW		P2
7-0	Display Queue Pre-end Fetch Parameter Bit-8		P1
Used v	vith CR56[0] default n/a		P0
			Capture Input Interrupt Polar
			O Normal default Test data is output to pixel
			i i coi uaia io uuipui iu pixei

<u>CR5E - </u>	Capture / ZV Port ControlRW
7	Capture IdleRO
6	Capture Command Port
	0 Disabledefault
	1 Enable new command port (2203-2200h)
5-3	
2	PCI I/O Write Retry
	Disable default
	1 Enable
1	PCI I/O Read Retry
	0 Disable default
	1 Enable
0	Capture Interface
	0 Disable default
	1 Enable
This	bit is protected by SRE_New[7]
<u>CR5F - </u>	Test ControlRW
7	Internal Control Test Output
	0 Normaldefault
	1 Internal control signals are output to P15-0
	P15GEREQ
	P14GEBUSY
	P13CMDIN
	P12GEWAIT
	P11 CMATCH
	P10KGECYC
	P9WBMT
	P8GERTRY
	P7 BLANKTV
	P6WRSTY
	P5WRSTU
	P4WRSTV
	P3WRST1
	P2Y0EN
	P1UEN
_	P0YUVEN
6	Capture Input Interrupt Polarity Select
	0 Normal default
E 1	1 Test data is output to pixel bus P15-0
5-1 0	
0	Stop DISPQ REQ Test
	Normal default Stop DISPO REO
	1 Stop DISPQ REQ

Rev. 1.0 8/6/99

<u>CR62 – </u>	Enhancement 0RW	CR63 - Enhancement 1	RW
7	Pause GE Operation (GEPAUSE) 0 Normal GE Operation default 1 Pause GE Operation	7-6 Reserved5-4 Memory Folding Control 00 Normal default	always reads 0
6	PCI Retry for GE (ENGERTRY) 0 Disable default 1 Enable	01 FOLD6 10 FOLD7 11 -reserved-	
5	Short Command (ENSHRT) 0 Disable default 1 Enable	3-2 Reserved	always reads 0 Control (LATV[5-4])
4	Direct Read Even if GE is Busy (ENDIRRD) 0 Disable default 1 Enable	CR64 – DPA Extra RW	
3 2	Reservedalways reads 0 Low Priority Arbitration Policy 0 Fixed Priority	7 DPA On/Off 0 On 1 Off	default
1	1 Round Robin	6 DPA Bypass 0 Normal default 1 Bypass	adı Dalavı
0	Frame Buffer Memory Size Select 0 8MBdefault 1 4MB	5-3 Reference Feedback Clo Maximum 2ns default = 0 2-0 Reference Internal Clock Maximum 2ns default = 0	,

Video Display and Capture Engine Registers

The CyberBlade i7 integrates video display and capture engines, which support YUV 4:2:2, YUV12 (planar) or YUV 4:1:1 data formats to accelerate software playback and video capture functions. Video images can be captured through a special video capture port or the PCI bus. Dual apertures on the PCI bus enable graphics and video data to be transported simultaneously without any software involvement. The video image can be smoothed through a programmable multi-tap filter to reduce the jig-jag effect after minification. The video data can be minified to save bus bandwidth or memory space and written into offscreen memory. The video display engine fetches YUV 4:2:2 or planar video data from offscreen memory and can be scaled up with linear interpolation in both X and Y directions. The video data stream is converted into a True Color RGB24 data stream and multiplexed with the graphics data. Two live video windows can be supported. The graphics data and video data can be handled smoothly in different color depths with color key support. A hardware anti-tear mechanism prevents the tearing effect due to frame buffer update and eases the burden of software to flip the page. Since the hardware synchronizes the capture or PCI video address pointer with the playback VSYNC, the built-in algorithm ensures the playback frame buffer is free from the frame update. For the parameters defined here, refer to the following figures.

Note that W1' is defined for the anti-tearing function. W1 is the first live video storage area and W2 is the second live video storage area. W1 could be in either packed pixel or planar format, while W2 can only be packed pixel mode. If W1 is in packed pixel mode, then W1-U and W1-V are not used. If W1 is in planar mode, then W1-Y is the first live video Y-component storage area, and W1-U (V) is the first live video U (V) -component storage area. In

the following register definitions, a register with W1 (W2) indicates that this parameter is applicable to the first (second) live video window only.

Figure 8-4. Frame Buffer Parameters

1: CR92-CR91, 2: 3X58E-CR8D, 3: CR8B-CR8A, 4: CR87-CR86, 5: CR89-CR88, 6: CR8D-CR8C, 7: SR90-SR8F, 8: SR94-SR93

Figure 8-5. Live Video Display Parameters

8-82 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

<u>CR81-80 –</u>	Window 1 Horizontal Scaling Factor RW	CR89-86 - Window 1 Vid
15	Horizontal Minify / Zoom Enable 0 Horizontal Zoom Enabledefault 1 Horizontal Minify Enable	31-28 Reserved . 27-16 Video Windo In pixel delays fro
Minify	Enabled:	15-12 Reserved .
		11-0 Video Windo
14-13 12-10 1	Tap 1 Horizontal Minify Integer (Inverter), Hsrc/Hdst –	In pixel delays from
9-0	Horizontal Minify Factor, (Hdst/Hsrc) * 1024	CR8D-8A - Video Windo
7	Turn de la si	31-28 Reserved
13-0	Enabled: Horizontal Zoom Factor, (Hdst/(Hsrc-2)-1) * 1024	27-16 Video Windo In pixel delays froi
		15-12 Reserved
CR83-82 -	Window 1 Vertical Scaling FactorRW	11-0 Video Windo
15	Vertical Minify / Zoom Enable	In pixel delays from
	0 Vertical Zoom Enabledefault	,
	1 Vertical Minify Enable	
14	Vertical Filtering	
• • •	0 Disabledefault	
	1 Enable	
13-10	Reservedalways reads 0	
9-0	Vertical Minify / Zoom Factor (Vdst/Vsrc) * 1024	
7-11		

<u>CR89-86</u>	<u>– Window 1 Video Window Star</u>	<u>t RW</u>
31-28	Reserved	always reads 0
27-16	Video Window Vertical Start	
	In pixel delays from the edge of VSY	
15-12	110001100	always reads 0
11-0	Tiaco Timacii Ticicinai Ciait	
	In pixel delays from the rising edge of	f HSYNC
CR8D-8A	A – Video Window End	RW
31-28	Reserved	always reads 0
27-16	Video Window Vertical End	,
	In pixel delays from the edge of VSY	NC
15-12	Reserved	always reads 0
11-0	Video Window Horontal End	
	In pixel delays from the rising edge o	f HSYNC

CR8F-8E	- Video Display Engine FlagsRW	<u>CR95 – Vic</u>	deo Window Line Buffer ThresholdRW
15	Planar Capture Mode 0 Planar 420 Capturedefault 1 Planar 422 Capture	7 6-0 When	Line Buffer Level Bit-8 (used with CR96) W1 / W2 Line Buffer Request Threshold Value the line buffer is less than this value, a memory
14	VSYNC Test / Graphics Engine Reset 0 Disabledefault 1 Enable	request must be	will be issued. The value programmed in this register less than the line buffer level (see bit-7 and CR96).
13	Edge Recovery Algorithm Control O Disable default 1 Enable	7-0 RGB8:	ndow 1 / W1-Y Line Buffer Level Control . RW Line Buffer Levels (bit-8 is in CR95[7]) (pixel # + 2) / 8 rounded up
12	Window 1 Vertical Interpolation 0 Disabledefault 1 Enable	For W1	2:2: (Pixel # + 2) / 4 rounded up I-U or W1-V, the level is this value divided by 4 or 16, ng on the panar format (YUV12 or YUV9)
11	Window 1 Horizontal Interpolation	<u>CR97 – Vic</u>	deo Display Engine FlagsRW
10	Disabledefault Enable CSC / Bypass Select	7	Start Address Reload Control O CR94[4]=0 address can be reloaded any time CR94[4]=0 only reloaded during Vsync
9	0 CSC default 1 Bypass Line Toggle for Line Buffer	6	x CR94[4]=1 address not reloaded Video Start Reference Select 0 HSYNC / VSYNCdefault
8	0 Normaldefault 1 Toggle (Reversed) Reservedalways reads 0	r	1 Use fixed signals (fixed relationship with HDE and VDE) as video start reference
7-5	Window 1 HDEO Delay Adjust default = 4	5	Address Point Invert 0 Normaldefault
4	Video Window 1		1 Invert
3	0 Disable default1 EnableCCIR-/ DTV Input Video Data Control	4	Odd / Even Invert (Anti-tearing) 0 Normaldefault 1 Invert
	0 CCIR Format default	3	Playback Test Mode Select (RGB Data Select)
2-1	DTV Format W1 / W2 Line Buffer Page Break Level Control	2	Playback Test Mode 0 Disabledefault
2 '	00 8 levelsdefault		1 Enable
0	01 16 levels 1x 32 levels Video Window 2	1	Anti-tearing Sync Select 0 VGA Vsyncdefault 1 Playback Vsync
•	0 Disable default 1 Enable	0	Anti-tearing O Disabledefault
CR91-90	– Window 1 / W1-Y Row Byte Offset RW	T U: U	1 Enable
	Reservedalways reads 0 Video Row Byte Offset Programmed with the number of bytes in a row	stream a the ever	t is automatically disabled if there is only one video and dual live video mode is enabled. In this mode, n field is used for one live video stream and the odd ised for the other live video stream.
	- Window 1 / W1-Y Video Start Address RW	<u>CR9A-98 –</u>	Capture Video Start Address RW
23-21 20	Reservedalways reads 0 Used with CR97 bit-7	23-20	Reserved always reads 0
19-0	Video Start Addres (in bytes)	19-0 Control	Capture Video Start Address lled by SRBE (3C5 index BE).

8-84 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

CR9B - 1	Video Display Status	RWC
7	Capture Interrupt	
	0 Disable	default
	1 Enable	
6	Capture Interrupt Clear\	Write 1 to Clear
5	VGA Vertical Blank	RO
4	Capture Interrupt Status	RO
3	Display Double Buffer Status	RO
2	VDQ (Capture FIFO) Empty	RO
1	Capture VSYNC Status	
0	Capture Video Display Enable (VE	DE) Status . RO

CR9C - Capture Control 1RW			
7-6		me Capture Control	
		Interlace Capture	default
	01	Even/odd 60fps capture	
	10	Even field 30fps capture	
	11	Odd field 30fps capture	
5	Ext	ternal HDE Select	
	0	Use Internal HDE	default
	1	Use External HDE	
4	Ca	pture Enable	
	0	Disable	default
	1	Enable	
3	Ge	nlock Enable	
	0	Disable	default
	1	Enable	
2	Mo	tion Effect Algorithm	
	0	Skip 2 lines	default
	1	Skip 1 line	
1	Ca	pture Hsync Polarity	
	0	Normal	default
	1	Invert	
0	Ca	pture Vsync Polarity	
	0	Normal	default
	1	Invert	

CR9D – Capture Control 2RW			
7	Capture DTV / CCIR Format Select		
	0 CCIRdefault		
	1 DTV		
6-4	Horizontal Filter Tap		
	0xx Bypassdefault		
	100 2 Tap		
	101 3Tap		
	110 5 Tap		
	111 9 Tap		
3	UV Swap		
	0 Normal default		
	1 Swap		
2	YUV Swap		
	0 Normal default		
	1 Swap		
1	Philips 9051 Format Select		
	0 Normal default		
	1 UV9051 Format		
0	TV 8-Bit Control		
	0 16-bit capture input default		
	1 8-bit capture input		
CR9E – Cap	oture Control 3RW		
7-6	Capture Input Data Mode		
	00 YUV 4:2:2 default		
	01 YUV 4:1:1		
	10 RGB 565		
_	11 -reserved-		
5	CGS Clock Double		
	0 Normal default		
4	1 Double		
4	Capture Clock Polarity O Normal default		
	1 Invert		
3-2	Capture Clock Delay Select		
3-2	00 No delaydefault		
	01 3 ns		
	10 6 ns		
	11 9 ns		
1	Hsync Delay		
·	0 Normal default		
	1 Delay		
0	PCI Frame Start and Busy		
	0 PCI Video Not Busydefault		
	1 PCI Video Busy		

CR9F - Capture Control 4RW		
7-6	Capture Interrupt Source	
	00 Capture vsyncdefault	
	01 Capture even field	
	10 Capture odd field	
	11 Capture blank	
5	IBM MPEG2 Mode Enable	
	0 Normaldefault	
	1 IBM MPEG2 Mode	
4	Production Test Mode for Capture	
	0 Normaldefault	
	1 For test purposes, the ESYNC# pin is used	
	instead of capture Vsync and EDCLK# is used	
	instead of external CLK	
3-1	Capture Clock Divide Factor Select	
	clock divide factor when the internal pixel clock is	
source:	000 Divide but	
	000 Divide by 1default	
	001 Divide by 2	
	010 Divide by 3	
	011 Divide by 4	
	100 Divide by 5	
	101 Divide by 6 110 Select 14.318 MHz Clock	
	111 Select 28.636 MHz Clock	
0	Capture Clock Select	
U	0 Use external capture clockdefault	
	1 Use internal pixel clock divided by the factor	
	above	

Rev. 1.0 8/6/99

CRAT-AU	- Capture Vertical Total RW
15-11	Reservedalways reads 0
10-0	Capture Vertical Total
CRA3-A2	- Capture Horizontal TotalRW
15-9	Reservedalways reads 0
8-0	Capture Horizontal Total
CRA5-A4	- Capture Vertical StartRW
15-11	Reservedalways reads 0
10-0	Capture Vertical Start
CRA7-A6	- Capture Vertical EndRW
15-11	
10-0	Capture Vertical End
CRA9-A8	- Capture Horizontal Start RW
	- Capture Horizontal StartRW Reserved always reads 0
CRA9-A8 15-10 9-0	- Capture Horizontal StartRW Reservedalways reads 0 Capture Horizontal Start
15-10 9-0	Reservedalways reads 0 Capture Horizontal Start
15-10 9-0	Reservedalways reads 0 Capture Horizontal Start - Capture Horizontal EndRW
15-10 9-0 <u>CRAB-AA</u>	Reservedalways reads 0 Capture Horizontal Start - Capture Horizontal EndRW
15-10 9-0 <u>CRAB-AA</u> 15-10	Reservedalways reads 0 Capture Horizontal Start - Capture Horizontal EndRW Reservedalways reads 0
15-10 9-0 <u>CRAB-AA</u> 15-10 9-0	Reservedalways reads 0 Capture Horizontal Start - Capture Horizontal EndRW Reservedalways reads 0 Capture Horizontal End
15-10 9-0 CRAB-AA 15-10 9-0	Reservedalways reads 0 Capture Horizontal Start - Capture Horizontal EndRW Reservedalways reads 0 Capture Horizontal End apture Vertical Sync Pulse WidthRW
15-10 9-0 CRAB-AA 15-10 9-0 CRAC - C	Reservedalways reads 0 Capture Horizontal Start - Capture Horizontal EndRW Reservedalways reads 0 Capture Horizontal End apture Vertical Sync Pulse WidthRW Reservedalways reads 0
15-10 9-0 CRAB-AA 15-10 9-0 CRAC - C 7-4 3-0	Reservedalways reads 0 Capture Horizontal Start - Capture Horizontal EndRW Reservedalways reads 0 Capture Horizontal End apture Vertical Sync Pulse WidthRW Reservedalways reads 0 Capture Vertical Sync Pulse Width
15-10 9-0 CRAB-AA 15-10 9-0 CRAC - C 7-4 3-0 CRAD - C	Reservedalways reads 0 Capture Horizontal Start - Capture Horizontal EndRW Reservedalways reads 0 Capture Horizontal End apture Vertical Sync Pulse WidthRW Reservedalways reads 0 Capture Vertical Sync Pulse WidthRW apture Horizontal Sync Pulse WidthRW
15-10 9-0 CRAB-AA 15-10 9-0 CRAC - C 7-4 3-0	Reservedalways reads 0 Capture Horizontal Start - Capture Horizontal EndRW Reservedalways reads 0 Capture Horizontal End apture Vertical Sync Pulse WidthRW Reservedalways reads 0 Capture Vertical Sync Pulse Width

CRAE -	Capture CRTC ControlR	W
7	Time Base	
	0 One Time Basedefau	ult
	1 Two Time Base	
6	Frame Reset	
•	0 Field resetdefau	ılt
	1 Frame reset	ait
5	Capture Clock Divide by 2	
3	Select original capture clockdefau	ılt
	1 Select inverted capture clock before divide I	hv
	two	Jy
4	Odd / Even Field Invert	
4	0 Normaldefa	ılŧ
		uit
3		
3	CRTC Hsync Load	.14
	0 Enable defau	JIL
2	1 Disable	
2	CRTC Vsync Load	
	0 Enabledefau	Jlt
_	1 Disable	
1	CRTC Horizontal Reset	
	0 Enabledefau	ult
	1 Disable	
0	CRTC Vertical Reset	
	0 Enabledefau	ult
	1 Disable	
CRAF -	Capture CRTC ControlR	W
7	Video Exist Select	
	0 Video exist capturedefau	ult
	1 Always capture	
6	Capture Sync and Direct	
_	0 Inputdefa	ult
	1 Output	ait
5	Reserved always reads	0
4	Capture CRTC Input Clock Mode	
•	0 Normaldefau	ılt
	1 Clock divided by 2 when in 8-bit pixel but	
	mode	us
3	External CRTC Input Clock Mode	
3	0 Clock devided by 1defat	ılŧ
	1 Clock devided by 2	uit
2	External Pixel Clock Mode	
2		-1+
	0 Clock devided by 1defat	JII
4	1 Clock devided by 2	
1	CRTC Mode	
	0 Targa Modedefau	JIT
_	1 XPCV Mode	
0	MPEG2 Vsync Select	,.
	0 Original Vsyncdefau	ult
	1 Field ID	

CK	<u>B1-B0 – </u>	Capture Horizontal Minify FactorRW
	15	Reservedalways reads 0
	14-10	Planar Capture FIFO Level (for both U and V)
	9-0	Capture Horizontal Minify Factor
<u>CR</u>	B3-B2 –	Capture Vertical Minify FactorRW
	15	Reservedalways reads 0
	14-10	Planar Capture FIFO Threshold (for both U & V)
	9-0	Capture Vertical Minify Factor
		•
CR	B5-B4 –	DST Pixel Width CountRW
	15-12	Reservedalways reads 0
	11-0	DST Pixel Width Count
CR	B7-B6 –	DST Pixel Height CountRW
	15-11	Reservedalways reads 0
	10-0	DST Pixel Height Count
	.00	Don't Morningth Count
<u>CR</u>	<u> 188 – Cap</u>	ture FIFO Control 1RW
	7-6	Capture FIFO Page Break
	7-6	Capture FIFO Page Break 00 8 leveldefault
	7-6	Capture FIFO Page Break 00 8 leveldefault 01 16 level
	. •	Capture FIFO Page Break 00 8 level
	7-6 5	Capture FIFO Page Break 00 8 level
	. •	Capture FIFO Page Break 00 8 level
	5	Capture FIFO Page Break 00 8 level
	. •	Capture FIFO Page Break 00 8 level
	5	Capture FIFO Page Break 00 8 level
	5	Capture FIFO Page Break 00 8 level
<u>CR</u>	5 4-0	Capture FIFO Page Break 00 8 level default 01 16 level 1x 32 level Interlace Double Buffering 0 Disable default 1 Enable Capture FIFO Level Control 0 Targa Mode default 1 XPCV Mode oture FIFO Control 2 RW
<u>CR</u>	5 4-0 <u>B9 – Cap</u> 7	Capture FIFO Page Break 00 8 level default 01 16 level 1x 32 level Interlace Double Buffering 0 Disable default 1 Enable Capture FIFO Level Control 0 Targa Mode default 1 XPCV Mode Sture FIFO Control 2 RW ENNENZOOM
<u>CR</u>	5 4-0 <u>B9 – Cap</u>	Capture FIFO Page Break 00 8 level default 01 16 level 1x 32 level Interlace Double Buffering 0 Disable default 1 Enable Capture FIFO Level Control 0 Targa Mode default 1 XPCV Mode cuture FIFO Control 2 RW ENNENZOOM Planar 422 Display
<u>CR</u>	5 4-0 <u>B9 – Cap</u> 7	Capture FIFO Page Break 00 8 level default 01 16 level 1x 32 level Interlace Double Buffering 0 Disable default 1 Enable Capture FIFO Level Control 0 Targa Mode default 1 XPCV Mode cture FIFO Control 2 RW ENNENZOOM Planar 422 Display 0 Disable default
CR	5 4-0 <u>B9 – Cap</u> 7 6	Capture FIFO Page Break 00 8 level default 01 16 level 1x 32 level Interlace Double Buffering 0 Disable default 1 Enable Capture FIFO Level Control 0 Targa Mode default 1 XPCV Mode cture FIFO Control 2 RW ENNENZOOM Planar 422 Display 0 Disable default 1 Enable
CR	5 4-0 <u>B9 – Cap</u> 7 6	Capture FIFO Page Break 00 8 level default 01 16 level 1x 32 level Interlace Double Buffering 0 Disable default 1 Enable Capture FIFO Level Control 0 Targa Mode default 1 XPCV Mode Oture FIFO Control 2 RW ENNENZOOM Planar 422 Display 0 Disable default 1 Enable Planar Mode Window Indicator
<u>CR</u>	5 4-0 B9 – Cap 7 6 5 Indicate	Capture FIFO Page Break 00 8 level default 01 16 level 1x 32 level Interlace Double Buffering 0 Disable default 1 Enable Capture FIFO Level Control 0 Targa Mode default 1 XPCV Mode Sture FIFO Control 2 RW ENNENZOOM Planar 422 Display 0 Disable default 1 Enable Planar Mode Window Indicator which window is in planar mode
CR	5 4-0 <u>B9 – Cap</u> 7 6	Capture FIFO Page Break 00 8 level
CR	5 4-0 B9 – Cap 7 6 5 Indicate	Capture FIFO Page Break 00 8 level default 01 16 level 1x 32 level Interlace Double Buffering 0 Disable default 1 Enable Capture FIFO Level Control 0 Targa Mode default 1 XPCV Mode Cuture FIFO Control 2 RW ENNENZOOM Planar 422 Display 0 Disable default 1 Enable Planar Mode Window Indicator which window is in planar mode

CRBB-BA -	Chromakey Comp Data 0 LowRW
15-0	Chromakey Compare Data 0 (Lower Threshold
CRBD-BC -	Chromakey Comp Data 0 HighRW
15-0	Chromakey Compare Data 0 (Higher Threshold
CRBE – Caj	oture ControlRW
7-6	Reserved always reads 0
5	Video WBUF StatusRO
	0 Emptydefault
	1 Not empty
4	Second Aperture Direct Access (bypass video
capture) 3	Interpolation Control
3 2	Video Engine Clock Enable
2	0 Offdefault
	1 On
1	Flicker-Free Function
	0 Disabledefault
	1 Flicker-free when input is in interlace mode
0	Reserved always reads 0
CRBF - Dis	play Engine Flags 4RW
7	Video Line Buffer Read Reset Select . default = 0
6-4	Window 2 Video Data Format
	000 YUV 422default
	001 -reserved-
	010 RGB 16
	011 -reserved-
	1xx -reserved-
3 2-0	Interpolation Bypass 1default = 0 Window 1 Video Data Format
2-0	000 YUV 422default
	001 -reserved-
	010 RGB 16
	011 -reserved-
	1xx -reserved-

Rev. 1.0 8/6/99

Digital TV Control Registers

<u> CRD3-D0 –</u>	VGA / Digital TV Sync Control 1 RV	V
31-27	Reservedalways reads	
26-16	Vertical Data Load	
15	VGA Slave Mode for DTV	
	0 Disabledefau	lt
	1 Enable	
14	H/V Data Load	
	0 Disabledefau	lt
	1 Enable	
13	Digital Hsync Direction	
	0 Inputdefau	lt
	1 Output	
12-9	Reservedalways reads	0
8-0	Horizontal Data Load	

(see also CRD8, Digital TV Interface Control)

Extended Registers - CRTC Shadow

Read/Write of Shadow registers is controlled by extended register GR30[6] (port 3CE/3CF index 30h). If GR30[6]=1, read/write operations to CRTC indices 0, 3-7, 10-11, and 16 are performed to the shadow registers instead of to the normal registers. Bit definitions for these registers are identical to the standard CRTC register set.

CR00 – Shadow Horizontal Total	RW
CR03 – Shadow Horizontal Blank End	RW
CR04 – Shadow Horizontal Retrace Start	RW
CR05 - Shadow Horizontal Retrace End	RW
CR06 - Shadow Vertical Total	RW
CR07 – Shadow Overflow	RW
CR10 - Shadow Vertical Retrace Start	RW
CR11 - Shadow Vertical Retrace End	RW
CR16 – Shadow Vertical Blanking End	RW

8.10.4 3D Graphics Engine Registers

This section describes how to program the CyberBlade i7 graphics engine for different operations. When the Setup Engine is to be used, the following steps should be taken to perform the drawing functions:

- Software sets up the drawing environment.
- Software issues a drawing command.
- Software continuously sends triangles to Setup engine.
- Software sends a triangle with last flag set or a null triangle to Setup engine to signal end of operation.

Operational Concept

From a programmer's point of view, operations that can be applied to the CyberBlade i7 fall into the following categories:

- Reset: This operation resets the GE to default status.
- Status: This operation returns the GE status.
- Drawing Environment: The operations set environment for drawing.
- Frame Buffer Control: The operations set control for the frame buffer.
- Drawing: Draw an object.
- Geometry Primitives: Describe a geometry primitive.

Drawing Environment defines a set of conditions that decide the operations to be applied to each pixel. Drawing Environment operations are straight-forward. There is a group of registers that defines the drawing environment. By directly setting these registers, a program can control the drawing environment.

Frame Buffer Control decides how to access the frame buffer. Like the Drawing Environment, there is a group of registers that define the frame buffer access. By directly setting these registers, a program can control frame buffer access.

8-90 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Drawing

Bitblt - Frame Buffer to Frame Buffer

Blt operation may involve a pattern. If it does, and the pattern is stored in the frame buffer, the pattern parameters (P1, P2, P3) must also be set. The following registers must be set to provide the source and destination rectangles of blt: Ps1, Pd1, Ps2, and Pd2. These registers can be set in any order. If a register is set several times, only the last one is effective. After all the registers are set, the program starts blting by writing a blt command to Command Register.

Bitblt - CPU to Frame Buffer

The operation for blting from the CPU is similar to the blting from the frame buffer except that Ps1 and Ps2 are not needed and the data from the CPU must immediately follow the setting of the Command Register.

For all commands that require data from the CPU, the command and data are considered atomic; i.e., the data should follow the command immediately and no other command or parameter can be placed in between. The data can be written to Data Register III and IV. Alternatively, it can be written to a memory-mapped space designated by CyberBlade i7 apertures. The same rule applies to drawing text from the CPU to the frame buffer.

Text

Text glyph can be from the CPU or the frame buffer. When the glyph is from the CPU, the registers to be set are Pd1 and Pd2 for text location. When the glyph is stored in the frame buffer, the registers to be set are Ps1, Ps2, Pd1, and Pd2 to provide both the glyph and text locations. These registers can be set in any order. If a register is set several times, only the last one is effective. After all the registers are set, the program starts blting by writing a text command to Command Register.

The major difference between text and Blt is that a text source data is 8-bit aligned while the bitblt is 64-bit aligned. That is, for text, each new line starts at the byte boundary, while for a bitblt, at the 64-bit boundary.

A Note on CPU as the Source of Operation

Any operation that uses the CPU as the source of operation (such as the Blt shown in section x) requires the host CPU to feed data into data registers III and IV (BA+56 and 60). Since the CyberBlade i7 is using the 64-bit internal data path, any data (32-bit) from the CPU will be packed into 64-bit before use. Therefore, there are two registers for the CPU to write. These two registers are arranged as shown in the following diagram.

Writing to Data Register IV triggers data in both registers to be sent to the engine for processing. However, the hardware may expose the two registers as a mapped space to save software from toggling between the two registers.

Geometry Primitive

To draw a geometry primitive, the host must issue a drawing command by writing to the Command Register first and then set up the geometry as described in later in this document.

Geometry Primitives

The CyberBlade i7 supports the following geometry primitives: line, and polygon. Each geometry primitive can be further modified for 3D, shading, and texture mapping. A different mechanism, called sequential loading, performs the geometry primitive set up operation.

Loading Mechanism

There are two ways to set up a geometry primitive, random loading and sequential loading. Like the random access, the order is not important in random loading, but the address is. Writing to a certain address in the register space causes a certain pre-determined action. On the other hand, like sequential access, the order decides the data semantics in sequential loading. The CyberBlade i7 uses sequential loading in the Rasterization Engine and the Setup Engine.

In the CyberBlade i7, parameters don't have to be the fixed addresses. CyberBlade i7 parameters are treated as a data stream and interpreted based on the type of primitive. Parameters must be set in a stream as follows:

Stream Bytes	0	4	4+P1	4+P2	 4+Pn
Data	Stream Head	Parameter 1	Parameter 2	Parameter 3	 Parameter n+1

P1 is the number of bytes for parameter 1, P2-P1 for parameter 2, etc.

For the Rasterization Engine, there are 9 kinds of parameters: Bresenham Edge, DDA Edge, Z, Texture, Perspective, Color, Specular/fog Start, Specular, and Fog. Parameters must appear in the following order:

Edge(Major), Texture, Perspective, Color, Specular/fog Start, Specular, Fog, Z, Edge(Minor)

There are two kinds of edges and only one kind can appear in a parameter stream. Bresenham Edge can only appear in 2D primitives (without values for iterators).

For the Setup Engine, there is only one kind of parameter: vertex. However, each primitive could have one or three vertices. The size of each vertex is variable depending on triangle attribute.

Only polygon and line primitives can use this sequential loading feature. In the following sections, each primitive is addressed in detail.

8-92 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Polygon

General polygons can only be drawn by directly using the Rasterization Engine. In the CyberBlade i7, all polygons must be Y-monolithic, meaning, when walking from the vertex with minimal Y to the vertex with maximum Y, the Y coordinates of the vertices are monolithically increased. A polygon is drawn by drawing a series of segments:

Sequenc e	Content
0	Drawing Command (Polygon)
1	Full Polygon Segment
2	Polygon Segment (Full or Partial)
3	Polygon Segment (Full or Partial)
n	Polygon Segment (Full or Partial) or a Null Primitive

A partial segment consists of only one primitive type and one minor edge parameter. A full segment consists of one primitive type, edge parameter(s), and interpolation parameters (Z, color, texture, etc.). The rule is whenever a new major edge is in the segment a full segment must be used, otherwise a partial segment has to be used.

Most bit fields in primitive type define the data to be loaded to Rasterization Engine. If the "Re-load" bit is set, they also define the data set to be passed to Pixel Engine. The primitive type of the first and only the first segment must have the "Re-load" bit set to signal Rasterization Engine the data set to be passed to Pixel Engine. The primitive type of the last and only the last segment must have the "Last" bit set to signal the end of the sequence. The last of the primitive can be a Null primitive (others must be polygon). Null primitive has no parameter.

This mechanism can be used to draw a single polygon, as well as multiple polygons with the same attributes (e.g. 3D texture mapped). All that is required is that somewhere in the sequence we pass a full segment with starting edges of a new polygon.

The following example shows how to draw two shaded polygons.

Sequence	Content		
0	Drawing Command		
1	Full Segment including		
	Primitive Type: Re-loading, Major & minor edge, color		
	Major edge L1		
	Color Parameter for L1		
	Minor edge L2		
2	Partial Segment including		
	Primitive Type: minor edge		
	Minor Edge L3		
3	Full Segment including		
	Primitive Type: Major edge, color		
	Major Edge L4		
	Color for L4		
4	Partial Segment including		
	Primitive Type: Minor edge		
-	Minor Edge L5		
5	Full Segment including:		
	Primitive Type: Major & minor edge, color, negative scan direction		
	Major edge L6 Color Parameter for L6		
	Minor edge L7		
6	Partial Segment including:		
0	Primitive Type: Minor edge, "Last"		
	Minor Edge L8		
	IVIIIIOI Lugo Lu		

The following sections are about complete segments (a full segment with both major and minor edges) with different attributes. A normal full segment may not have the minor edge parameter. A partial segment has no other parameters except the minor edge.

2-D

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Minor Edge Parameter

3-D

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Minor Edge Parameter

Texture Mapped

Without perspective correction:

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Texture Coordinate Parameter
3	Optional Auxiliary Texture Data Parameter for linear interpolation
4	Minor Edge Parameter

With perspective correction:

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Texture Coordinate Parameter
3	Auxiliary Texture Data Parameter
4	Perspective Factor Parameter
5	Minor Edge Parameter

Shaded

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Color Parameter
3	Alpha Parameter
4	Minor Edge Parameter

3-D Texture Mapped

Without perspective correction:

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Z Parameter
3	Texture Coordinate Parameter
4	Optional Auxiliary Texture Data Parameter for linear interpolation
5	Minor Edge Parameter

With perspective correction:

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Z Parameter
3	Texture Coordinate Parameter
4	Auxiliary Texture Data Parameter
5	Minor Edge Parameter

8-94 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

3-D Shaded

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Z Parameter
3	Color Parameter
4	Alpha Parameter (optional)
5	Minor Edge Parameter

Texture Mapped Shaded

Without perspective correction:

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Texture Coordinate Parameter
3	Optional Auxiliary Texture Data Parameter for linear interpolation
4	Color Parameter
5	Minor Edge Parameter

With perspective correction:

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Texture Coordinate Parameter
3	Auxiliary Texture Data Parameter
4	Perspective Factor Parameter
5	Color Parameter
6	Alpha Parameter (optional)
7	Minor Edge Parameter

3-D Texture Mapped Shaded

Without perspective correction:

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Z Parameter
3	Texture Coordinate Parameter
4	Optional Auxiliary Texture Data Parameter for linear interpolation
5	Color Parameter
6	Alpha Parameter (optional)
7	Minor Edge Parameter

With perspective correction:

Sequence	Content
0	Primitive Type
1	Major Edge Parameter
2	Z Parameter
3	Texture Coordinate Parameter
4	Auxiliary Texture Data Parameter
5	Perspective Factor Parameter
6	Color Parameter
7	Alpha Parameter (optional)

Triangle

Triangles can be drawn using the Polygon Mechanism described above. Additionally, triangles can also be drawn by using the Setup Engine if they meet certain criteria. Triangles and polygons can also be freely mixed in a drawing sequence. The CyberBlade i7 supports standalone triangles as well as a triangle list in a sequence as follows:

Sequence	Content
0	Drawing Command (Polygon)
1	Triangle primitive
2	Triangle primitive
3	Triangle primitive
1	Triangle primitive

Each primitive consists of a triangle attribute and one or three vertices. The order of the data in each primitive is: Triangle Attribute, Vertex 0, Vertex 1 (optional), Vertex 2 (optional). Whether vertices 1 and 2 are to be loaded depends on the Triangle Attribute. Writing to BA+192 triggers a loading sequence in the Setup Engine. The order of the data in a vertex is: Z, RGBA, UV, W, XY. Not every one has to appear in every vertex. Whether a particular item is present in a vertex is decided by the Triangle Attribute. For example, the Data in a stream for a texture mapped triangle strip may look like: Triangle Attribute, UOVO, XOYO.

Due to the limited precision of the setup engine, only triangles smaller than a certain size will be passed. Software will only pass triangles smaller than 64x128 or 128x64 to the hardware. Also, delta values of RGBAUVZ across a triangle will be less than 128. There is no limitation on the delta of W since it is impossible to exceed 1.

Line

Parameters for line primitives are very similar to their polygon counter-parts. The differences are as follows:

There are only major edge parameters.

All the dXm values (dRm, dUm, etc.) are ignored.

The following example shows these differences for a texture mapped primitive:

Sequence	Polygon Content	Line Content
0	Drawing Command	Drawing Command
1	Primitive Type	Primitive Type
2	Major Edge	Major Edge
3	Texture Parameter	Texture Parameter
4	Minor Edge	

Using the same mechanism for multiple polygons, multiple lines can also be drawn by issuing one drawing command.

8-96 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Synchronization

Reset and status operations can be performed in any order and at any time including in the middle of another operation. However, be aware of the consequence (reset) and what to expect (status).

Generally, Drawing Environment and Frame Buffer Control operations should be performed before the drawing operation to take effect.

The primitive operation is considered atomic; i.e., no other operation (except for status and reset) can be performed inside a Geometry Primitive operation.

Functional Blocks

The Cyberblade i7 hardware is divided into 6 major functional blocks. They are:

- Bus Interface (BI)
- VGA core (VGA)
- Setup Engine (SE)
- Rasterization Engine (RE)
- Pixel Engine (PE)
- Memory Interface (MI)

Each functional block conceptually works independently of other blocks. The term "Graphics Engine (GE)" indicates the combination of the Setup Engine, the Rasterization Engine, and the Pixel Engine.

Bus Interface

The bus interface block connects the AGP bus on one side and the GE and VGA on the other side.

coordinate

8.10.5 Span Engine PS1, PS2, PD1, and PD2 are used in bit and text

operations to define source and destination rectangles.		
GEbase + 0 - Parameter Source 1	RW	
31-28 Reservedalways rea	ads 0	
27-16 Y-coordinate Parameter Source 1 Start		
High 12 bits of parameter source 1 starting address	in Y	
coordinate		
15-12 Reservedalways rea	ads 0	
11-0 X-coordinate Parameter Source 1 Start		
Low 12 bits of parameter source 1 starting address	in X	
coordinate		
GEbase + 4 - Parameter Source 2RW		
31-28 Reservedalways rea	ads 0	
27-16 Y-coordinate Parameter Source 2 Start		
High 12 bits of parameter source 2 starting address	in Y	
coordinate		
15-12 Reserved always rea	ads 0	
11-0 X-coordinate Parameter Source 2 Start		
Low 12 bits of parameter source 2 starting address		

GEbase + 8	- Parameter Destination 1 RW
31-28	Reservedalways reads 0
27-16	Y-coordinate Parameter Destination 1 Start
High 12	bits of parameter destination 1 starting address in Y
coordinat	e
15-12	Reserved always reads 0
11-0	X-coordinate Parameter Destination 1 Start
Low 12	bits of parameter destination 1 starting address in X
coordinat	e
GEbase + C	: - Parameter Destination 2RW
GEbase + C 31-28	
	_
31-28 27-16 High 12	Reserved always reads 0 Y-coordinate Parameter Destination 2 Start bits of parameter destination 2 starting address in Y
31-28 27-16 High 12 coordinat	Reserved always reads 0 Y-coordinate Parameter Destination 2 Start bits of parameter destination 2 starting address in Y e
31-28 27-16 High 12	Reserved always reads 0 Y-coordinate Parameter Destination 2 Start bits of parameter destination 2 starting address in Y

8-98 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

8.10.6 Graphics Engine Core

GEbase + 1	10 - I	Right View Display Base Address RW
31	Rig	ght View Active
	0	Inactive (use VGA style for display start
		address) default
	1	Active (use the base register address in this
		register for the display starting address)
30-24		servedalways reads 0
23-0	Riç	ght View Display Starting Address

Writing to this register sets Status Register bit-21 to 0. Later when the address is used to display a frame, the status bit is changed to 1.

GEbase +	14 - L	eft View Display Base Address RW
31	Lef	t View Active
	0	Disable (only Right View Display Starting Address is used)default
	1	Enable (Right View Display Starting Address is used for the right view and this register for

is used for the right view and this register for the left view; hardware will use these two addresses alternately)

30-24 Reservedalways reads 0 23-0 Left View Display Starting Address

Writing to this register sets Status Register bit-20 to 0. Later when the address is used to display a frame, the status bit is changed to 1.

GEbase + 1	8 – Block Write Start AddressRW
31	Linear Mode
	0 Fill a rectangle areadefault
	1 Fill a linear area
30-24	Reserved always reads 0
23-0	Starting Address (in multiples of 64 bytes)

GEbase + 1C - Block Write Area / End Address RW

ectangle A	<u>rea Fill Mode</u>	
31-28	Reserved	always reads 0
27-16	Height of th	e Area
15-12	Reserved	always reads 0
11-0	Width of the	e Area (in bytes)
Stride is Destination Stride in port 21C0h		

Linear Area Fill Mode

31-0 End Address (in multiples of 64 bytes inclusive)

Writing to this register triggers a Memory Set operation. Color for this operation is specified in the Foreground register.

GEbase + 20 - Graphics Engine StatusRO

Writing to this register resets the GE.

- 31 Bresenham Engine Status
 - 0 Idle
 - 1 Busy
- 30 Setup Engine Status
 - 0 Idle
 - 1 Busy
- 29 SP / DPÉ Status
 - 0 Idle
 - 1 Busy
- 28 Memory Interface Status
 - 0 Idle
 - 1 Busy (access for screen refresh doesn't count)
- 27 Command List Processing Status
 - 0 Idle
 - 1 Busy
- 26 Block Write Status
 - 0 Idle
 - 1 Busy
- 25 Command Buffer Status
 - 0 Not full
 - 1 Full
- 24 Reservedalways reads 0
- 23 PCI Write Buffer Status
 - 0 Empty
 - 1 Not empty
- 22 Z Check Status
 - O Engine busy: All Z tests performed so far have failed in the command being executed. Engine idle: All Z tests performed in the last command have failed.
 - 1 Otherwise

Logically, this bit is the OR of all Z test results performed in the latest command

- 21 Effective Status
 - O Current display base register is not yet effective (the frame is not displayed)
 - 1 It is effective
- 20 Left View Status
 - O Current display base register is not yet effective (the frame is not displayed)
 - 1 It is effective
- 19 Last View Displayed / Being Displayed
 - 0 Right View
 - 1 Left View
- **18-11 Reserved**always reads 0
- 10-0 Scan Line Currently Being Displayed

There are two input FIFOs to buffer data and commands from the host, the Command FIFO (8 levels deep) and the Bresenham FIFO (2 levels deep). Drawing commands, Drawing Environment, and Frame Buffer Control are routed through the Command FIFO. Primitive Type and Geometry Primitives are routed through the Bresenham FIFO. Commands in the Command FIFO don't take effect until a prior command is executed or the task in progress is finished. Parameters in the Bresenham FIFO don't take effect until a prior parameter is phased out (reaches the end of an edge).

8-100 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

<u>GEbase</u>	+ 24 - Graphics Engine Contro	IWO
7	Reset	
	0 Normal operation	default
	1 Reset all internal regist	
	Reset is performed by setti	ng this bit to 1 and
	then back to 0.	
6-4	Reserved	
3-0	Debug Module Select	
	Module to Debug	GE Register 28
	000 None	undefined
	001 Setup Engine	SE Status
	010 Rasterization Engine	RE Status
	011 Pixel Engine	PE Status
	100 Memory Interface	MI Status
	101 Cmd List Ctrl Unit	Cmd List Start Address
	110 Cmd List Ctrl Unit	Cmd List End Address
	111 -reserved-	n/a
GEbase	+ 28 - Graphics Engine Debug	RO
31-0	Engine Module Status	
	(See register 24 bits 3-0 above)	

GEbase + 2C - Graphics Engine Wait MaskRW

31-0 Wait Mask

When writing to this register, hardware will monitor the value of M (Wait Mask & Status). If M is not 0, the Graphics Engine (including the RE, SE, PE, and MI) will not accept new registers from the host CPU or AGP bus. This register is cleared by the hardware when M=0. Only bits 31-28, 26, 23, and 21-20 are effective (all other bits are ignored).

Graphics Engine Organization

The CyberBlade i7 Graphics Engine consists of the following units: Setup Engine, Rasterization Engine, and Pixel Engine. These units are organized as follows:

Memory Interface

The interfaces among the components are:

- AGP to Pixel Engine: Set drawing environment registers.
- AGP to Rasterization Engine: Set primitives: edge walking, slopes.
- AGP or Setup Engine: Set vertices, culling info.
- Setup Engine to Rasterization Engine: Set primitives: edge walking, slopes.
- Rasterization Engine to Pixel Engine: Pixel Data, addresses and coordinates.
- Pixel Engine to Memory Interface: Addresses and coordinates, pixel data.

Each unit performs the following functions:

- Setup Engine: Back face culling, slope calculation.
- Rasterization Engine: Edge walking, color interpolation, Z, texture coordinates, perform perspective correction.
- Pixel Engine: Generate addresses and coordinate for all memory accesses: read/write Z, read texture, read source/destination, write destination (draw buffer), 2-D functions, bi/tri-linear interpolation, blending and modulation, ROP, Z test, alpha test, transparency, etc.

When the Setup Engine is to be used, the following steps should be taken to perform drawing functions:

- S/W sets up the drawing environment.
- S/W issues a drawing command.
- S/W continuously sends triangles to the Setup Engine (or primitives to the Rasterization Engine).
- S/W sends a triangle with last flag set or a null triangle to the Setup Engine to signal the end of the operation (or its equivalent to the Rasterization Engine).

Triangles sent to the Setup Engine can be interleaved with primitives sent to the Rasterization Engine in step 3 above.

The Setup Engine uses the same sequential loading mechanism as in the Rasterization Engine. The order of loading is: Triangle Attribute, Vertex 0, Vertex 1 (optional), Vertex 2 (optional). Whether vertex 1 and 2 are to be loaded depends on the Primitive Type. Writing to BA+4Ch triggers a loading sequence to the Setup Engine. The order of data in a vertex is: RGBA, SrgbF, W, UV, Z, XY. Not every one will appear in every vertex. Whether a particular item will be present in a vertex is decided by the Triangle Attribute. For example, the data in a stream for a texture mapped triangle strip may look like: Triangle Attribute, UOVO, XOYO.

GEbase + 2C - Setup Engine StatusRO

31-0 Overflow Status

This register records setup engine overflow status. For every triangle, the entire register is shifted left one bit with bit-0 then set to reflect whether the triangle has slope overflow. This register is useful for debugging purposes. This register resides in the VGA address space and is not decoded by the setup engine.

8-102 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Setup Engine Registers

GEbase + 3	0 – Setup Engine Primitive Attribute RW
31	Z Parameter
	0 Absentdefault
	1 Present (Setup Engine calculates Z slope)
30	Texture Parameter
	0 Absentdefault
	1 Present (SE calculates Z slope)
29	Perspective Factor Parameter
	0 Absentdefault
	1 Present (SE calculates W slope)
28	Color Parameter
	0 Absentdefault
	1 Present (SE calculates color slope)
27	Specular Color Parameter
	0 Absentdefault
	 Present (SE calculates specular slope)
26	Fog Parameter
	0 Absentdefault
	 Present (SE calculates fog slope)
25	Step Mode
	0 Disabledefault
	1 Enable (SE will process the next primitive only
	when it finishes the current primitive. There is
	no parallelism between primitives)
24-20	Reservedalways reads 0
19-15	LOD Adjustdefault = 0
•	ed # to be added to calculate the LOD value
14-7	Reservedalways reads 0

6	Z Normalization (Setup Engine Only) 0 Disabledefau
	1 Enable
5	Flat Mode (applies to diffuse color, alpha
specular	olor, and fog)
	Smooth color or no colordefau Flat color. SE sends only starting values to RF
4	Full Vertex Info
•	0 Disabledefau
	1 Enable. Indicates that all vertex data are
	needed for the triangle. Software still needs to
	set bits 31-25. However in this case, the data
	order in a vertex is: X, Y, Z, W, RGBA, SrgbF
	U, V. Even though the vertex actually
	contains all the data, software doesn necessarily set this bit. When this bit is no
	set, hardware decodes vertex data a
	described in the Vertex Register descriptions.
_	
3	Sub-Pixel Precision (Rasterization Engine
3 Only)	Sub-Pixel Precision (Rasterization Engine
	0 Disabledefau
Only)	0 Disabledefau 1 Enable
	0 Disabledefau 1 Enable Anti-Aliasing (RE Only)
Only)	0 Disabledefau 1 Enable Anti-Aliasing (RE Only) 0 Disable (walk at pixel precision)defau
Only)	0 Disable
Only) 2 1	0 Disable
Only)	0 Disable
Only) 2 1	0 Disable
Only) 2 1	0 Disable

This register is decoded by the Setup Engine and passed to the Rasterization Engine by the Setup Engine. This register and its equivalent part in the Rasterization Engine are "partially" pipelined in the sense that there are only two levels of pipe for this register in both engines while there are many levels for other data. The two levels are the decoding level and the execution level. Both the Rasterization Engine and the Setup Engine use this register to decide what kind of operation to perform and what kind of data stream to expect. It must be set before any parameter can be loaded.

GEbase + 3C - Setup Engine Primitive Type......WO

Writing to this register signals the Graphics Engine to begin sequential loading. The engine will interpret the contents of this register and the Primitive Attribute register to decide the amount and types of parameters to expect. Like vertices, there is a FIFO for Triangle Attributes. The queue has three entries. Writing to this register adds it to the queue. The Setup Engine starts working whenever a triangle attribute is received and stops after it is finished processing a triangle with L=1.

31-30	Loading Target
	00 Rasterization Engine. Send bits 19-0 to the
	RE. Sequential loading data will also be sent
	to the REdefault
	01 Setup Engine. Send bits 29-0 to the SE.
	Sequential loading data will also be sent to the
	SE. Internally, a flag is set to prevent the SE
	from decoding the data and sending it to the
	RE. The SE will clear this flag when it is idle.
	1x -reserved-
29	Null Primitive
	0 Regular Primitivedefault
20	1 Null Primitive
28	Last Primitive
	0 Regular Primitive
27-26	
21-20	Culling Attribute (Setup Engine Target Only) 00 No cullingdefault
	01 Clockwise culling
	10 Counter-clockwise culling
	11 No culling
25	Reservedalways reads 0
24	(V2, V0) Edge Anti-Aliasing Flag default = 0
23	(V1, V2) Edge Anti-Aliasing Flag default = 0
22	(V1, V1) Edge Anti-Aliasing Flag default = 0
21	Full Vertices Information
	0 Partial Vertices Information. Two of the
	vertices are from the previous triangle. Only
	one vertex is to be loaded from the vertex
	queue to the working registers default
	1 All vertices are new. All three working
	registers are to be loaded from the vertex
	queue.
20-19	Working Vertex Index
	the working vertex that is to be replaced. This field
is always	0 if F = 1.

Vertex index for flat color (Index of vertex whose color is

18-3

2

Reserved

Debug Control

passed to the RE as the starting color)

.....always reads 0

Vertex Registers

Inside the setup engine, one set of registers is provided to store the three vertices is is currently working on and an additional set is provided to store three pending vertices. Note that it doesn't always require 3 vertices to define a triangle (depending on the Triangle Attribute Register, it may be either 1 or 3 vertices).

Vertex information includes coordinate, texture, color, and depth. Some may be absent in a data stream. If any appear in a vertex, they must be present in the following order: Color, Specular Color, W, U, V, Z, X, Y. The formats are shown below:

Vertex Register 1 - Color Value

31-24 Alpha Value 23-16 Red Value 15-8 Green Value 7-0 Blue Value

Vertex Register 2 - Specular Color Value

31-24 Fog Value
23-16 Specular Red Value
15-8 Specular Green Value
7-0 Specular Blue Value

Vertex Register 3 - W Value

31-0 Texture W Coordinate. 32-bit floating # in (0, 1.0)

Vertex Register 4 - U Value

31-0 Texture U Coordinate. 32-bit floating number

Vertex Register 5 - V Value

31-0 Texture V Coordinate. 32-bit floating number

Vertex Register 6 - Z Value

31-0 Z Coordinate. 32-bit floating number

Vertex Register 7 - X Value

31-0 X Coordinate. 32-bit floating number

Vertex Register 8 - Y Value

31-0 Y Coordinate. 32-bit floating number

Floating Point Number Format

All floating point numbers are converted by on-chip hardware into internal fixed point integer format. All floating point numbers are specified in IEEE 32-bit floating point number format (shown below):

31 Sign

30-23 Exponent (excess-127 format)

22-0 Mantissa (fractional part of a number in "1.nn" format where the integer part is always 1)

8-104 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Rasterization Engine Registers

The major responsibilities of the Rasterization Engine are:

- Receive data from host: Set registers, sequential loading of parameters.
- Edge walking: Generate end points of polygon edges or pixels on a line.
- Interpolation: Calculate values such as texture coordinates on a polygon / line.
- Perspective correction: Perform perspective correction.

In the CyberBlade i7, the Rasterization Engine performs color (including alpha) interpolation, texture coordinate (perspective corrected) generation, Z coordinate interpolation, and texture gradient (perspective corrected) calculations.

Host access to the Rasterization Engine is by sequential writes to minimize AGP bandwidth requirements. This is not needed for the Setup Engine to access the Rasterization Engine. In addition, if sequential parameters were used to interface between the Setup Engine and the Rasterization Engine, it would incur extra cost for the Setup Engine to pack data and would also reduce performance. Therefore, the Setup Engine accesses working registers in the Rasterization Engine directly. To synchronize operation, hardware must wait until the Setup Engine becomes idle to accept data from the host to the Rasterization Engine.

Both Rasterization and Setup Engines share one interface to the AGP Write Buffer. The first reason is that both Rasterization Engine and Setup Engine use stream decoding to receive data from the host. Once they are inside a stream, they must act quickly to grab data to prevent other components from taking the data. Having two stream decoders in the graphics engine is a potential source for problems. The second reason is that both the Rasterization Engine and Setup Engine handle the same types of data. Coupling them tightly makes the design easier and reduces problems that arise from synchronization. The third reason is for better synchronization between the two engines.

The engine interfaces to the host through both random access registers and sequential loading. There are two random access registers: Primitive Attribute and Primitive Type. The Primitive Attribute register consists of most parameter information from the Rasterization Engine's Primitive Type and the Setup Engine's Triangle Attribute register.

The address space that can be used by sequential loading parameters is from Base Address + 40h to Base Address + FFh. Software should not use addresses outside this space for parameters. Sequential loading must use the address in this space starting at 0x40H in ascending order. For example, the first address must be 40h, the next must be 44h, etc. In order to give time to notify the other component to stop decoding, address 40h is exclusively reserved for sequential loading.

GEbase + 30	0 – RE Primitive AttributeRW
31	Z Parameter
	0 Absentdefault
	1 Present (Rasterization Engine calculates Z
	slope)
30	Texture Parameter
	0 Absentdefault
	1 Present (RE calculates texture info)
29	Perspective Factor Parameter
	0 Absentdefault
	1 Present (RE performs perspective correction)
28	Color Parameter
	0 Absentdefault
	1 Present (RE calculates Gouraud color
27	(RGBA))
27	Specular Color Parameter 0 Absentdefault
	1 Present (RE calculates specular color)
26	Fog Parameter
20	0 Absentdefault
	1 Present (RE calculates fog)
25	Step Mode
20	0 Disabledefault
	1 Enable (RE will process the next primitive only
	when it finishes the current primitive. No
	parallelism exists between primitives)
24-20	Reservedalways reads 0
19-15	LOD Adjustdefault = 0
3.2 signe	ed # to be added to calculate the LOD value
14-7	Reserved always reads 0

						dofault
-						uerauit
Fla	Mode	(applies	to	diffuse	color,	alpha,
		olor or no	colo	nr		default
1						acidan
Ful			JO 41		•	
0	Disable					default
	needed fo	r the triar	igle.	Softwar	e still n	eeds to
	set bits 31	1-25. Hov	weve	er in this	case, th	ne data
	order in a	vertex is:	Χ,	Y, Z, W,	RGBA,	SrgbF,
	U, V.	Even th	ough	n the v	ertex a	actually
CI	aescribea	ın the ve	пех.	Register	aescrip	otions.
Sui	o-Pixei P	recision	(K	tasteriza	ition	Engine
Λ	Dicable					dofoult
•						ueraun
		(PF Only	Λ			
				ecision)		default
-						uciduit
-						nlv)
0						
1						
	passed to	the Pi	xel	Engine	based	on the
					polygo	ns with
Bre						
0						
1	Use Bres edges	senham a	algor	ithm to	walk 1	nrough
	0 1 Flat color, 0 1 Full 0 1 Ant 0 1 Aut 0 1	0 Disable 1 Enable Flat Mode color, and fog) 0 Smooth color 1 Flat color. 1 Flat color. 1 Flat color. 1 Enable 1 Enable 1 Enable 1 Enable 2 Contains necessaril set, hard described Sub-Pixel P 0 Disable 1 Enable 1 Enable 1 Enable (w Auto Directio 0 Disable 1 Enable 1 Enable 1 Enable 1 Enable for comparisor the bit in the should on Bresenham E 0 Use DDA 1 Use Bres	O Disable	O Disable	O Disable	Flat Mode (applies to diffuse color, color, and fog) Smooth color or no color Full Vertex Info Disable I Enable. Indicates that all vertex da needed for the triangle. Software still not set bits 31-25. However in this case, the order in a vertex is: X, Y, Z, W, RGBA, U, V. Even though the vertex a contains all the data, software necessarily set this bit. When this bit set, hardware decodes vertex da described in the Vertex Register description. Disable Precision (Rasterization) Disable (walk at pixel precision) Enable (walk at sub-pixel precision) Auto Direction for Scan Line Ends (RE O) Disable

This register is decoded by the Setup Engine and passed to the Rasterization Engine by the Setup Engine. This register and its equivalent part in the Rasterization Engine are "partially" pipelined in the sense that there are only two levels of pipe for this register in both engines while there are many levels for other data. The two levels are the decoding level and the execution level. Both the Rasterization Engine and the Setup Engine use this register to decide what kind of operation to perform and what kind of data stream to expect. It must be set before any parameter can be loaded.

Rev. 1.0 8/6/99

GEbase + 3C - RE Primitive TypeWO

Writing to this register signals the Graphics Engine to begin sequential loading, but doesn't cause anything to be drawn. The engine will interpret the contents of this register and decide the amount and types of parameters to expect.

Target Our Rasterization Engine. Send bits 19-0 to the RE. Sequential loading data will also be sent to the RE. Sequential loading data will also be sent to the RE. Sequential loading data will also be sent to the RE. Internally, a flag is set to prevent the SE. Internally, a flag is set to prevent the SE from decoding the data and sending it to the RE. The SE will clear this flag when it is idle. 1x -reserved- Vall Primitive Regular Primitive Refault Refault Refault Regular Primitive Refault Regular Primitive Refault Refault Refault Regular Primitive Refault Re	gine will inte	erpret the contents of this register and decide the
00 Rasterization Engine. Send bits 19-0 to the RE. Sequential loading data will also be sent to the RE	ount and ty	pes of parameters to expect.
RE. Sequential loading data will also be sent to the RE	31-30	Loading Target
to the RE		
01 Setup Engine. Send bits 29-0 to the SE. Sequential loading data will also be sent to the SE. Internally, a flag is set to prevent the SE from decoding the data and sending it to the RE. The SE will clear this flag when it is idle. 1x -reserved- 29 Null Primitive 0 Regular Primitive		
Sequential loading data will also be sent to the SE. Internally, a flag is set to prevent the SE from decoding the data and sending it to the RE. The SE will clear this flag when it is idle. 1x -reserved- Null Primitive 0 Regular Primitive		to the REdefault
SE. Internally, a flag is set to prevent the SE from decoding the data and sending it to the RE. The SE will clear this flag when it is idle. 1x -reserved- Null Primitive 0 Regular Primitive		
from decoding the data and sending it to the RE. The SE will clear this flag when it is idle. 1x -reserved- Null Primitive 0 Regular Primitive		
RE. The SE will clear this flag when it is idle. 1x -reserved- Null Primitive 0 Regular Primitive		
1x -reserved- Null Primitive 0 Regular Primitive		
0 Regular Primitive		•
1 Null Primitive Last Primitive 0 Regular Primitive	29	Null Primitive
28 Last Primitive 0 Regular Primitive		
0 Regular Primitive		
1 Last Primitive Operation Code (RE Target Only) 00 Line	28	
27-26 Operation Code (RE Target Only) 00 Line		
00 Line	27.26	. 2401.1
01 Polygon 1x -reserved- Major Edge Parameter 0 Parameter is Absent (parameter stream doesn't include values for the iterators). default 1 Parameter is Present (parameter stream also includes values for the iterators) Major Edge Anti-Aliasing 0 Don't anti-alias major edge	27-20	
1x -reserved- Major Edge Parameter 0 Parameter is Absent (parameter stream doesn't include values for the iterators). default 1 Parameter is Present (parameter stream also includes values for the iterators) 24 Major Edge Anti-Aliasing 0 Don't anti-alias major edge		
0 Parameter is Absent (parameter stream doesn't include values for the iterators). default 1 Parameter is Present (parameter stream also includes values for the iterators) 24 Major Edge Anti-Aliasing 0 Don't anti-alias major edge		, ,
doesn't include values for the iterators). default 1 Parameter is Present (parameter stream also includes values for the iterators) 24 Major Edge Anti-Aliasing 0 Don't anti-alias major edge	25	Major Edge Parameter
1 Parameter is Present (parameter stream also includes values for the iterators) 24 Major Edge Anti-Aliasing 0 Don't anti-alias major edge		
includes values for the iterators) Major Edge Anti-Aliasing Don't anti-alias major edge		
24 Major Edge Anti-Aliasing 0 Don't anti-alias major edge		
0 Don't anti-alias major edge	24	
1 Anti-alias major edge (effective only if E = 1) 23 Minor Edge Parameter 0 Absent	24	
23 Minor Edge Parameter 0 Absent		
0 Absent	23	
 Minor Edge Anti-Aliasing Don't anti-alias minor edge		
0 Don't anti-alias minor edge		
1 Anti-alias minor edge (effective only if M = 1) 21 Scan Direction 0 Positive (Major edge = left edge) default 1 Negative (Major edge = right edge)	22	
21 Scan Direction 0 Positive (Major edge = left edge) default 1 Negative (Major edge = right edge)		
 Positive (Major edge = left edge) default Negative (Major edge = right edge) 	21	
1 Negative (Major edge = right edge)	21	
	20-16	
15-0 End Coordinate default -= 0		
End coordinate of the primitive (inclusive). 12.4 signed	End cod	ordinate of the primitive (inclusive). 12.4 signed
integer.	integer.	

Bresenham Edge Parameters

Bresenham Edge parameters describe an edge of a primitive or a line.

DoubleWord 0 - Start Coordinates

31-16 Start YS1

Starting coordinate of the line in the Y direction (signed 12.4 number). The fractional part must be 0. This parameter is ignored in minor edges.

15-0 Start XS1

Starting coordinate of the line in the X direction (signed 12.4 number). The fractional part must be 0.

<u>DoubleWord 1 – Drawing Direction / Bresenham</u> Constant

Constant	
31	YS Drawing Direction
	0 Positive
	1 Negative
30	XS Drawing Direction
	0 Positive
	1 Negative
29	Swap
	0 Normal (X / Y not swapped)
	1 X/Y swapped
28-16	Bresenham (or Modified) Constant
15-13	Reservedignored
12-0	Bresenham (or Modified) Constant
<u>DoubleWord</u>	d 2 – Error Term / Strip Length
31-29	Reserved must be written as zero
28-16	Initial Error Term
15-12	Reserved must be written as zero
11-0	Strip Length
Strip len	gth of modified Bresenham line.

DDA Edge Parameters

DDA Edge parameters describe an edge of a primitive or a line.

DoubleWord 0 - Start Coordinates

31-16 Start YS1

Starting coordinate of the line in the Y direction (signed 12.4 number). The fractional part must be 0. This parameter is ignored in minor edges.

15-0 Start XS1

Starting coordinate of the line in the X direction (signed 12.4 number). The fractional part must be 0.

DoubleWord 1 - Drawing Direction / Edge Slope

31	YS Drawing Direction
	0 Positive
	1 Negative
30	XS Drawing Direction
	0 Positive
	1 Negative
29	Swap
	0 Normal (X / Y not swapped)
	1 X/Y swapped
28-26	Reservedignored
25-0	Edge Slope
12.14 si	gned number

When a DDA edge is used as a polygon boundary, the fractional bits should round up to the next integer. Interpolation values should be adjusted accordingly. DDA edge walking shares the same logic as Bresenham edge walking by using an error advance method. In DDA walking, fractional bits should be rounded up to the next integer. Rounding up is performed by changing drawing convention according to whether the fractional parts are 0 as follows:

- Left fractional is 0: Left inclusive.
- Left fractional is not 0: Left exclusive.
- Right fractional is 0: Right exclusive.
- Right fractional is not 0: Right inclusive.

Because the error advance method is used for DDA walking, the fractional part is always one step ahead of the coordinate. For the starting point of a line, the fractional part is assumed to be 0.

8-108 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

Color Parameters

Color parameters are used for Gouraud shading. They consist of starting values, incremental along the X and Y axis. In flat color mode, this parameter only has the starting value.

DoubleWord 0 - Initial Values

31-24 Initial Alpha Value

Initial Alpha value on main edge (left edge of trapezoid or long edge of triangle). Unsigned integer.

23-16 Initial Red Value

Initial Red value on main edge (left edge of trapezoid or long edge of triangle). Unsigned integer.

15-8 Initial Green Value

Initial Green value on main edge (left edge of trapezoid or long edge of triangle). Unsigned integer.

7-0 Initial Blue Value

Initial Blue value on main edge (left edge of trapezoid or long edge of triangle). Unsigned integer.

DoubleWord 1 - X-Axis Blue Gradient

31-0 X-Axis Blue Gradient

Gradient of Blue along the X axis over the primitive surface. Signed 20.12 number.

DoubleWord 2 - Y-Axis Blue Gradient

31-0 Y-Axis Blue Gradient

Gradient of Blue along the Y axis over the primitive surface. Signed 20.12 number.

DoubleWord 3 - X-Axis Green Gradient

31-0 X-Axis Green Gradient

Gradient of Green along the $\rm X$ axis over the primitive surface. Signed 20.12 number.

DoubleWord 4 - Y-Axis Green Gradient

31-0 Y-Axis Green Gradient

Gradient of Green along the Y axis over the primitive surface. Signed 20.12 number.

DoubleWord 5 - X-Axis Red Gradient

31-0 X-Axis Red Gradient

Gradient of Red along the X axis over the primitive surface. Signed 20.12 number.

DoubleWord 6 - Y-Axis Red Gradient

31-0 Y-Axis Red Gradient

Gradient of Red along the Y axis over the primitive surface. Signed 20.12 number.

DoubleWord 7 - X-Axis Alpha Gradient

31-0 X-Axis Alpha Gradient

Gradient of Alpha along the X axis over the primitive surface. Signed 20.12 number.

DoubleWord 8 – Y-Axis Alpha Gradient

31-0 Y-Axis Alpha Gradient

Gradient of Alpha along the Y axis over the primitive surface. Signed 20.12 number.

Z Value Parameters

To the Rasterization Engine, the Z value is always a 25.8 signed integer internally regardless of Z buffer depth. It always passes a 24-bit unsigned integer to the Pixel Engine. It is the Pixel Engine's responsibility to scale Z to the depth of the Z buffer. Z parameters are used to calculate depth information. Z values consist of starting values, incremental along the X and Y axis.

DoubleWord 0 - Initial Z Value

31-0 Initial Z Value

Initial Z value on main edge (left edge of trapezoid or long edge of triangle). Signed 25.7 integer.

DoubleWord 1 - X-Axis Z Gradient

31-0 X-Axis Z Gradient

Gradient of Z along the X axis over the primitive surface. Signed 25.7 number.

DoubleWord 2 - Y-Axis Z Gradient

31-0 Y-Axis Z Gradient

Gradient of Z along the Y axis over the primitive surface. Signed 25.7 number.

DoubleWord 3 - Minimum Z Threshold

31-24	Reservedignored
23-0	Minimum Z Threshold
Minimu	m of 7 throchold . Uncigned 24 bit integer

Minimum of Z threshold. Unsigned 24-bit integer.

DoubleWord 4 - Maximum Z Threshold

31-24	Reservedignored
23-0	Maximum 7 Threshold

Maximum of Z threshold. Unsigned 24-bit integer.

Texture Coordinate Parameters

Texture parameters are used for texture mapping. They consist of starting values, incremental along the X and Y axis.

DoubleWord 0 - Initial U Value

31-0 Initial U Value

Initial U value on main edge (left edge of trapezoid or long edge of triangle). Signed 16.16 integer.

DoubleWord 1 - Initial U Value

31-0 Initial U Value

Initial U value on main edge (left edge of trapezoid or long edge of triangle). Signed 16.16 integer.

DoubleWord 2 - X-Axis U Gradient

31-0 X-Axis U Gradient

Gradient of U along the X axis over the primitive surface. Signed 16.16 number.

DoubleWord 3 - Y-Axis U Gradient

31-0 Y-Axis U Gradient

Gradient of U along the Y axis over the primitive surface. Signed 16.16 number.

DoubleWord 4 - X-Axis V Gradient

31-0 X-Axis V Gradient

Gradient of V along the X axis over the primitive surface. Signed 16.16 number.

DoubleWord 5 - Y-Axis V Gradient

31-0 Y-Axis V Gradient

Gradient of V along the Y axis over the primitive surface. Signed 16.16 number.

Perspective Factor Parameters

Perspective factor parameters are used for perspective corrected texture mapping. They consist of W starting values incremental along the X and Y axis.

DoubleWord 0 - Initial W Value

31-0 Initial W Value

Initial W value on main edge (left edge of trapezoid or long edge of triangle). Signed 4.28 integer.

DoubleWord 1 - X-Axis W Gradient

31-0 X-Axis W Gradient

Gradient of W along the X axis over the primitive surface. Signed 4.28 number.

DoubleWord 2 - Y-Axis W Gradient

31-0 Y-Axis W Gradient

Gradient of W along the Y axis over the primitive surface. Signed 4.28 number.

Rev. 1.0 8/6/99

Specular / Fog Start Value

The specular / fog start value is used for specular shading or fogging.

DoubleWord 0 - Start Value

31-24 Initial Fog Value

Initial Fog value on main edge (left edge of trapezoid or long edge of triangle). Unsigned integer.

23-16 Initial Red Value

Initial Red value on main edge (left edge of trapezoid or long edge of triangle). Unsigned integer.

15-8 Initial Green Value

Initial Green value on main edge (left edge of trapezoid or long edge of triangle). Unsigned integer.

7-0 Initial Blue Value

Initial Blue value on main edge (left edge of trapezoid or long edge of triangle). Unsigned integer.

Specular Parameters

Specular parameters are used for specular shading. These parameters are not present in flat color mode and consist of starting values incremental along the main direction ((dx, dy) = (M1, 1)), and incremental along the X axis.

DoubleWord 0 - X-Axis Blue Gradient

31-0 X-Axis Blue Gradient

Gradient of Blue along the X axis over the primitive surface. Signed 20.12 number.

DoubleWord 1 - Y-Axis Blue Gradient

31-0 Y-Axis Blue Gradient

Gradient of Blue along the Y axis over the primitive surface. Signed 20.12 number.

DoubleWord 2 - X-Axis Green Gradient

31-0 X-Axis Green Gradient

Gradient of Green along the X axis over the primitive surface. Signed 20.12 number.

DoubleWord 3 - Y-Axis Green Gradient

31-0 Y-Axis Green Gradient

Gradient of Green along the Y axis over the primitive surface. Signed 20.12 number.

DoubleWord 4 – X-Axis Red Gradient

31-0 X-Axis Red Gradient

Gradient of Red along the X axis over the primitive surface. Signed 20.12 number.

DoubleWord 5 - Y-Axis Red Gradient

31-0 Y-Axis Red Gradient

Gradient of Red along the Y axis over the primitive surface. Signed 20.12 number.

Fog Parameters

Fog parameters are used for fogging. These parameters are not present in flat color mode and consist of starting values incremental along the X and Y axis.

DoubleWord 0 - X-Axis Fog Gradient

31-0 X-Axis Fog Gradient

Gradient of Fog along the X axis over the primitive surface. Signed 20.12 number.

DoubleWord 1 - Y-Axis Fog Gradient

31-0 Y-Axis Fog Gradient

Gradient of Fog along the Y axis over the primitive surface. Signed 20.12 number.

Pixel Engine Registers

The major responsibilities of the Pixel Engine are to perform per-pixel operations and to control data flow and its sequence.

The Pixel engine interfaces to the Rasterization Engine and the host to accept data. It also interfaces to the Memory Interface to access video memory. Inside the Pixel Engine, there are several blocks: the Span Engine, the Data Path, and the Texture Engine. Operation of the Data Path and the Texture Engine are under control of the Span Engine. The Memory Interface accepts memory access requests from the Pixel Engine, translates the address into a linear address, and executes the requests.

Memory Interface

The 0 - FFh "Engine" register address space is partitioned into six sections:

0 - 0Fh Span Engine

10 - 2Fh VGA core

30 - 3Fh Unified Rasterization and Setup

Engines

44 - 9Fh Pixel Engine
A0 – AFh Texture Engine

B0 – BFh Command List Control Unit

C0 – FFh Memory Interface

Addresses 40h - FFh are also used for sequential loading overlapping with other registers in this space. Addresses 10000 - 1FFFFh are used as a data port area.

Data from the Host

The Pixel Engine can accept data from the host through either the 32-bit data port register at 9Ch or data in the 1xxxh address space. Software passes only enough DWORDs to hardware. Software doesn't pack data to 64-bit boundaries. It only packs to 32-bit boundaries. For bitblts, packing is done per-scanline. I.e., for every scanline, the host will send just enough DWORDs to the engine. For text, packing is done per-command. I.e., the scanline may be broken inside a DWORD. For a string of texts, the number of DWORDs of data passed to the Graphic Engine can be odd numbers except for the last character. For the last character, software should pass either an even number of DWORDs (by padding a garbage DWORD as necessary) or by setting a drawing environment register after all data is sent.

8-112 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

GEbase + 44 - Drawing Command.....RW

Writing to the Drawing Command register starts a drawing operation. When this register is set, the drawing environment registers and memory interface registers are locked in. Any change to these registers will not affect this drawing operation. Furthermore, the Pixel Engine will not accept any data from the host or from the Rasterization Engine without a drawing command. After a drawing command is issued, the Pixel Engine will selectively accept data from the host or Rasterization Engine depending on the command. Specifically, the Pixel Engine only accepts data from the host if the command is text or blt and the BS field indicates the source is from the host. The Pixel Engine only accepts data (scanlines, Z, color, etc.) from the Rasterization Engine if the command is line or polygon.

31-28	Operation	Code
31-20	ODELATION	Couc

0000 Null Command default 0001 -reserved-0010 Line 0011 -reserved-01xx -reserved-1000 Bit-Blt (see note below) 1001 Text (see note below) 1010 (See BitBlt) 1011 Trapezoid / Polygon 1100 (See Bit Blt) (See Text) 1101 Trapezoid / Polygon 1110 1111 -reserved-

Note: for Text and BitBlt opcodes, bit 29 indicates whether the PE can accept data from the host while bit-30 indicates whether the PE can accept data from the RE.

27 Line Style

- No style, solid line, or other operation (blt, polygon, text)
- 1 Style line
- 26 Z Operations
 - O Disable Z operations (must be 0 for text, blt)
 - 1 Enable Z operations

25 Alpha Test

- 0 Disable (must be 0 for text)
- 1 Enable

24 Texture Function

- 0 Disable (must be 0 for blt, text)
- Enable

23 Alpha Blending

- 0 Disable (must be 0 for text)
- 1 Enable

22 Specular Color

- O Disable (must be 0 for blt, text)
- 1 Enable
- 21 Fog
 - 0 Disable (must be 0 for blt, text)
 - 1 Enable

20 Source Color Expansion

- 0 Disable
- 1 Enable (bits 26-21 must be 0)

19 Source Color

- O Transparent (applies to mono source and constant color line)
- 1 Opaque (should be enabled for any operation with a "solid Source", such as Gouraud shading, constant color fill, color to screen blt, texture mapping, etc.)
- 18-17 Source Surface ID
- 16-15 Destination Surface ID
- 14-12 Source Offset

Mono source pixel offset. Bit-19 must be 1.

11 Double Specular Color

- 0 Disable
- 1 Enable. Specular color (RGB) is doubled before being added to diffuse color.

10 Texture Transparency

- 0 Disable texture color key
- 1 Enable texture color key

9 Lit-Texture

- 0 Disable
- 1 Enable

8 Dither

- 0 Disable
- Enable. Use 4x4 dither matrix (including fog and alpha)

7 Source Color Key

- 0 Disable
- 1 Enable (Key is FG)

6 Destination Color Key

- 0 Disable
- 1 Enable

5 Bit Mask

- 0 Disable
- 1 Enable

ROP

4

- 0 Disable
- 1 Enable

3-2 Blt Source or Constant Color Line or Polygon

- 00 Source from host (bits 26-20 must be 0 for blt)
- 01 Source from frame buffer
- 10 Source is constant (FG). Includes constand line and constant polygon.
- 11 Block write fill

This field must be set to 00 for text / line / polygon.

1 Blt Direction (BLT Only)

- 0 Positive direction in X and Y
- 1 Negative direction in X and Y

Must be set to 0 for polygons, lines, and text.

0 Clipping

- 0 Disable
- 1 Enable

GEbase +	48 - Raster Operation (ROP)RW	GEbase +	4C – Z FunctionRW
31-8 7-0	ReservedROP3 Code	always rea 3 9 0	Z-Bias 0 Disable
			1 Enable
		30-17	Reserved always reads 0
		16-7	Z-Bias Value
		6	Test Alpha
			0 Disable
			1 Enable
		5	Z-Buffer Write
			0 Disable
			1 Enable
		4-3	Reserved always reads 0
		2-0	Z-Buffer Compare
			000 Compare False. Z and RGB values will not be written to memory.
			001 Compare Less Than. Z and RGB values will
			be written to memory if the current Z value is
			less than the Z value in memory.
			010 Compare Equal. Z and RGB values will be
			written to memory if the current Z value is
			equal to the Z value in memory.
			011 Compare Less Than or Equal. Z and RGB
			values will be written to memory if the current
			Z value is less than the Z value in memory.
			100 Compare Greater Than. Z and RGB values
			will be written to memory if the current Z value
			is greater than the Z value in memory.
			101 Compare Not Equal. Z and RGB values will
			be written to memory if the current Z value is
			not equal to the Z value in memory.
			110 Compare Greater Than or Equal. Z and RGB
			values will be written to memory if the current
			Z value is greater than or equal to the Z value
			in memory.
			111 Compare True. Z and RGB values will be
			written to memory.

Rev. 1.0 8/6/99

GEbase + 50 – Texture FunctionRW			
31-22	Maximum U		
21-12	Minimum U		
11-5	Reservedalways reads 0		
4	Mask		
	0 Disable		
	1 Enable		
3-2	Texture Alpha		
	00 Texel alpha		
	01 Source alpha		
	10 Modulated alpha: texel alpha x source alpha		
4.0	11 -reserved-		
1-0	Texture Color		
	00 Texel color		
	01 Source color 10 Modulated color: texel color x source color		
	11 -reserved-		
	11 -leserveu-		
GEbase + 5	4 - Clipping Window 0RW		
31-28	Reservedalways reads 0		
27-16	Clipping Window Topdefault = 0		
15-12	Reservedalways reads 0		
11-0	Clipping Window Left default = 0		
GEbase + 58 - Clipping Window 1RW			
31-28	Reservedalways reads 0		
27-16	Clipping Window Bottom default = 0		
15-12	Reservedalways reads 0		
11-0	Clipping Window Right default = 0		

GEbase +	60 – Color 0 (Foreground)RW		
31-0	Foreground Color Value		
GEbase +	64 - Color 1 (Background)RW		
31-0 Background Color Value Note: In 16- and 8- bit modes, the color must be duplicated to fill an entire 32-bit word. 32-bit color is in ARGB format (i.e., Alpha, Red, Green, and Blue in bytes 3-0 respectively) and 16-bit color is in RGB 565 format (5 bits of Creen and 15 bits of Planck Colors and 15 bits of Creen and 15			
of Red, 6 bits of Green, and 5 bits of Blue).			
GEbase +	58 – Color KeyRW		
31-26	Reserved always reads 0		
25	Destination Polarity		
	0 Draw on Equal		
	1		
24	Source Polarity		
	0 Draw on Equal		
22.0	Postination Calar Kay Calar		
23-0	Destination Color Key Color		

Unlike foreground and background, the color is not

replicated in 16-bit or 8-bit modes.

GEbase +	6C – Pattern and StyleRW
31	Pattern Color Expansion
	0 Disable default
	1 Enable
30	Pattern Transparency
	0 Opaque default
	1 Transparent
29	Pattern Size
	0 8 x 8 pixelsdefault
	1 32 x 32 pixels (mono only)
28	Pattern Register Segment
	0 Low Segment default
	1 High Segment
	The pattern cache is divided into two segments for
	pattern purposes. This bit serves two purposes: First
	tarting segment for loading a pattern into the pattern
	he corresponding address is latched into an internal
	which will automatically increase by one when data is
	Second as the segment base of the current pattern
	oplying a pattern.
27-24	· · · · · · · · · · · · · · · · · · ·
	Pattern Style Step
The # o	of pixels each mask bit should be mapped to:
	00 1 Pixel per mask bit default
	01 2 pixels per mask bit
	02 3 pixels per mask bit

Pattern Style Mask Determines the line drawing style (e.g., dotted line). Bit-0 maps to the first pixel. Writing to the low byte of ths register (GEbase + 6C) causes the internal style count to be reset to 0. When 3D operations are enabled (smooth shading, texture, Z), style line must be transparent and style applies to color as well as Z.

FF 256 pixels per mask bit

GEbase + 70 - Pattern Color RW

31-0 Pattern Color Value

15-0

Must follow the command. The pattern data could be repeated up to 64 times to fill out the pattern register file.

GEbase + 7	74 - Pattern Foreground Color	RW
31-0	Foreground Color Value	default = 0
GEbase +	78 - Pattern Background Color	RW
Note: In 16 to fill an en (i.e., Alpha respectively	Background Color Value	be duplicated ARGB format bytes 3-0

8-116 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

GEbase + 7C - Alpha RW	GEbase +	80 – Alpha FunctionRW
31-16 Reservedalways reads 0	31-24	Reserved always reads 0
15-8 Source Constant Alpha	23	Alpha Write
7-0 Destination Constant Alpha		0 Disabledefault
•		1 Enable. Draw each pixel with a blended alpha
		value if alpha blending is enabled. Otherwise
		draw with source alpha (the upper byte of the
		Foreground Color register if not available).
		his bit should be set in 8-bit and 16-bit color modes.
	22	Constant Source Alpha
		0 Disabledefault
	21	1 Enable
	21	Constant Destination Alpha 0 Disabledefault
GEbase + 84 – Bit MaskRW		1 Enable
31-0 Bit Mask	20	Result Alpha
	20	0 The result of blendingdefault
One bits indicate that the corresponding color bit will not be written to the frame buffer.		1 Source alpha
willen to the name build.	19-16	Alpha Test Function
		0000 Never accept the pixel
		0001 Accept if alpha < reference alpha
		0010 Accept if alpha == reference alpha
		0011 Accept if alpha <= reference alpha
		0100 Accept if alpha > reference alpha
		0101 Accept if alpha != reference alpha
		0110 Accept if alpha >= reference alpha
		0111 Always accept the pixel
	15.0	1xxx -reserved-
	15-8 7-4	Reference Alpha Value
	7-4	Destination Blending Factor 0000 (0,0,0,0)
		0001 (1,1,1,1)
		0010 (RS,GS,BS,AS)
		0011 (1,1,1,1) - (RS,GS,BS,AS)
		0100 (AS,AS,AS,AS)
		0101 (1,1,1,1) – (AS,AS,AS,AS)
		0110 (AD,AD,AD)
		0111 (1,1,1,1) – (AD,AD,AD,AD)
		1xxx -reserved-
	3-0	Source Blending Factor
		0000 (0,0,0,0)
		0001 (1,1,1,1)
		001x -reserved- 0100 (AS,AS,AS,AS)
		0100 (A3,A3,A3,A3) 0101 (1,1,1,1) – (AS,AS,AS,AS)
		0101 (1,1,1,1) = (A3,A3,A3,A3) 0110 (AD,AD,AD,AD)
		0110 (AD,AD,AD) 0111 (1,1,1,1) – (AD,AD,AD,AD)
		1000 (RD,GD,BD,AD)
		1001 (1,1,1,1) - (RD,GD,BD,AD)
		1010 $(F,F,F,1)$; $F = min(AS, 1-AD)$
		1011 -reserved-
		11xx -reserved-

Texture Engine Registers

The texture Engine handles texture access and filtering. It is controlled by the Span Engine. It accepts texture coordinates from the Rasterization Engine, generates and passes addresses to the Memory Interface, accepts raw texel data from the Memory Interface, does filtering, and passes the results to the Data Path.

GEbase + A0 - Texture Control.....RV

Textures are aligned to 64-bit boundaries on a scanline basis.

31	Texture	Λοσοςς	Control
3 I	rexture	ACCESS	COHILION

- 0 Disable (use cache)
- 1 Enable (bypass cache)

30 Filtering Control

- O Filter with color key. Treat alpha value for keyed texels as 0
- 1 Downgrade filtering function based on fractional bits of UV and key test result. Set alpha to 0 for keyed texels.

29-28 Texture U Boundary Checking Function

- 00 Texture U wraparound
- 01 Texture U mirroring
- 10 Texture U clamping
- 11 -reserved-

27-26 Texture V Boundary

- 00 Texture V wraparound
- 01 Texture V mirroring
- 10 Texture V clamping
- 11 -reserved-

25 Texture in System Memory

- 0 Texture is stored in graphics memory
- 1 Texture is stored in system memory

24 Reserved (must be 0)

- 23 MipMap
 - 0 Disable
 - 1 Enable

22 Intra-map Filter

- 0 Disable
- 1 Enable (do filtering inside a LOD level)

21 Inter-map Filter

- 0 Disable
- I Enable (do filtering inside a LOD level)
 M must be 1.

20 Magnify Filter (when LOD < 0)

- 0 Point Sample
- 1 Bi-linear

19 Tiling

- 0 Texture is not tiled
- 1 Texture is tiled.

Tile size is determined by texel depth:

Texel Depth (bpp)	Tile Siz
1	16 x 16
2	8 x 16
4	8 x 8
8	4 x 8
16	4 x 4
32	2 x 4

Inside each tile, texels are organized into 2x2 subtiles in row major

18 Texture Color Key

- 0 Disable
- 1 Enable

17 Texture Anisotropy

- 0 Disable
- 1 Enable

16-15 Palette Data Format

- 00 565 RGB
- 01 1555 ARGB
- 10 4444 ARGB
- 11 -reserved-

14-12 Texel Depth

000 1-bpp palettized

001 2-bpp palettized

010 4-bpp palettized

011 8-bpp palettized

100 16-bpp 565 RGB

101 16-bpp 1555 ARGB

110 16-bpp 4444 ARGB

111 32-bpp ARGB

11-8 Texture Map Levels (TML) (Range 0-8)

The number of maps in the MipMap (0 = 1 map)

4 Y-Axis Texture Memory Size (TRY) (Range 0-8)

This field determines the number of Isb's (2**TRY) of parameter V to be used in the Y axis. Any bit higher than this will be ignored (wraparound).

3-0 X-Axis Texture Memory Size (TRX) (Range 0-8)

This field determines the number of lsb's (2**TRX) of parameter U to be used in the X axis. Any bit higher than this will be ignored (wraparound).

Note: For MipMap textures, TRX/TRY is the size of the original texture (1:1 map)

Rev. 1.0 8/6/99

GEbase + A4 - Texture Color.....RW

31-24 Alpha

Constant alpha value when there is no alpha in the texture format

23-0 Texture Color Key

Texture transparency color (888 RGB)

GEbase + A8 – Texture Palette DataWO

31-16 Texel n+1 15-0 Texel n

An internal counter is used in loading the texture palette. Writing to the Texture register (GEbase+A0) resets the counter to 0. Writing to the Texture Palette Data register writes the data to the place pointed to by the counter then increments the counter by 1. Each write writes two entries into the palette.

GEbase + AC - Texture Boundary RW

31-22 Maximum V 21-12 Minimum V

11-8 Reservedalways reads 0

7 Reverse Texture Format

0 Disable

1 Enable

6 Texture Cache

0 Disable

1 Enable

5 Texture Map Shift

0 Disable

1 Enable

4-3 Compressed Texture Format

00 No compression

01 DXT1 format

10 DXT2 format

11 -reserved-

2-0 Dither Shift

000 Disable LOD dithering

001 100% LOD dithering

010 80% LOD dithering

011 60% LOD dithering

100 40% LOD dithering

101 20% LOD dithering

11x -reserved-

Texture Filtering

Texture data read back from the Memory Interface first goes through palette translation if the texture is palettized. The texture is then converted into common internal 8888 ARGB format. If the texture doesn't have alpha data, then a constant alpha value is used. If the texture color key is enabled and the texture color matches the key, set alpha to 0. Bi-linear or tri-linear filtering is then performed on RGB and alpha. If the color key is enabled and the result alpha is 0, the corresponding pixel should be discarded. This is done by attaching a validity bit with texture data passed from the Texture Engine to the Data Path. It should be noted that filtering depends on the LOD value. When LOD < 0, a different filter may be applied. In bi-linear filtering, if the texel nearest to the texture coordinate is masked by the color key, then the texel is considered as masked. Otherwise, the texel is considered not masked.

Memory Interface Registers

The registers in this group include stride and buffer base address registers for frame buffer control. There are three base addresses: source base address (added to blt source), destination base address (added to color destination), and Z base address (added to Z addresses).

GEbase + B8 – Destination Stride / Buffer Base 0 RW
GEbase + BC – Destination Stride / Buffer Base 1 RW
<u>GEbase + C0 – Destination Stride / Buffer Base 2 RW</u>
<u>GEbase + C4 – Destination Stride / Buffer Base 3 RW</u>
GEbase + C8 - Source Stride / Buffer Base 0RW
GEbase + CC - Source Stride / Buffer Base 1RW
GEbase + D0 - Source Stride / Buffer Base 2RW
GEbase + D4 - Source Stride / Buffer Base 3RW

All eight of the above registers have the same bit definitions:

31-29 Bits Per Pixel

000 8 bits per pixel

001 16 bits per pixel (565 format)

010 32 bits per pixel

011 -reserved-

100 -reserved-

101 16 bits per pixel (555 format)

11x -reserved-

28-20 Stride (pixels divided by 8)

19-0 Buffer Base Address (in quadwords)

GEbase + D8 - Z Depth / Z Buffer Base RW

31-30 Z Depth

00 16 bits

01 24 bits (32 bits are allocated in the frame buffer with the MSB not used)

1x -reserved-

29 Reservedalways reads 0

28-20 Z Stride

19-0 Z Buffer Base Address (in quadwords)

There are 9 texture base registers for up to 9 levels of MipMaps: level 0 (1:1 map) up to level 8 (smallest). The texture may be in the frame buffer or in system memory.

GEbase+DC - Texture Base MipMap Level 0 (1:1 Map)RV	V
GEbase + E0 – Texture Base MipMap Level 1RW	
GEbase + E4 – Texture Base MipMap Level 2RW	
GEbase + E8 – Texture Base MipMap Level 3RW	
GEbase + EC - Texture Base MipMap Level 4RW	
GEbase + F0 – Texture Base MipMap Level 5RW	
GEbase + F4 – Texture Base MipMap Level 6RW	
GEbase + F8 – Texture Base MipMap Level 7RW	
GEbase+FC - Texture Base MipMap Level 8 (Smallest)R	W

All nine of the above registers have the same bit definitions:

31-0 Texture Base Address (in bytes)

Base addresses always start on QWORD boundaries so bits 2-0 are always 0.

Data Port Area

GEbase + 10000-1FFFFh - Data Port Area.....RW

8-120 Trident Microsystems, Inc.

Rev. 1.0 8/6/99

THIS PAGE INTENTIONALLY LEFT BLANK