

CoreEval: Automatically Building Contamination-Resilient Datasets with Real-World Knowledge toward Reliable LLM Evaluation

Jingqian Zhao^{1*}, Bingbing Wang^{1*}, Geng Tu¹, Yice Zhang¹, Qianlong Wang¹, Bin Liang^{4†}, Jing Li⁵, Ruifeng Xu^{1,2,3†}

¹ Harbin Institute of Technology, Shenzhen, China ² Peng Cheng Laboratory, Shenzhen, China ³ Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies

The Chinese University of Hong Kong, Hong Kong, China

⁵ The Hong Kong Polytechnic University, Hong Kong, China

Introduction

Task Definition: The task is to address data contamination in Large Language Model (LLM) evaluation. The static nature of public benchmarks leads to test data being inadvertently included in training sets, which artificially inflates performance and compromises the reliability and fairness of evaluations.

Motivation: Current automated methods to create new datasets are insufficient. Data rewriting risks producing inconsistent labels and re-introducing contamination from the model's own biases, while data generation often fails to preserve the original dataset's semantic complexity, leading to information loss.

Contribution

- We propose CoreEval, an automatic contamination-resilient evaluation strategy that integrates real-world knowledge to update datasets.
- We design a structured workflow inspired by cognitive learning theory to ensure reliable and timely LLM evaluation.
- Extensive experiments across multiple tasks and a series of LLMs demonstrate the effectiveness of CoreEval in mitigating data contamination.

CoreEval Framework

1. Real-World Knowledge Attainment:

- Entity Extraction: $E_i \leftarrow \mathcal{M}(d_i)$
 - M: Large Language Model
 - d_i : source data
 - E_i : set of extracted entities
- Knowledge Retrieval: $\mathcal{K}_i \leftarrow \mathcal{G}(E_i, t_{\text{start}}, t_{\text{end}})$
 - G: GDELT Database
 - \mathcal{K}_i : retrieved knowledge
- Knowledge Summary: $\hat{\mathcal{K}}_i \leftarrow \mathcal{M}(\mathcal{K}_i)$
 - $\hat{\mathcal{K}}_i$: summarized knowledge

2. Knowledge Recontextualization

- Triple Update:
 - Extract original triples T_i from d_i .
 - Generate updated triples: $\hat{T}_i \leftarrow \mathcal{M}(T_i, \hat{\mathcal{K}}_i)$.
- Text Synthesis:
 - Create content-updated text: $d_i^u \leftarrow f(d_i, T_i)$.
 - Create style-preserving text: $d_i^s \leftarrow \mathcal{M}(d_i, T_i)$.
- Final Integration: $\hat{d}_i \leftarrow \mathcal{M}(d_i, d_i^u, \hat{T}_i, d_i^s)$.

Input Data Time Start Time End Time @user This is a deliberate act of 1) Real-World Knowledge 2024 2023 2025 provocation. AKP announcing their intention to abolish TSK, which has been their goal since day one. [Military Organization] The ruling Justice The AKP A center should - GDELT and Development... be established.. planned the... Call to action by TV host **John Oliver**. who urged viewers to leave comments expressing their displeasure at the **FCC**'s policies. The article from Hürriyet Daily News discusses the ruling Justice and [Government Agency] Development Party (AKP) in Turkey, which has initiated the (3) Data Reflection Semantic Text & Replaced Relation This intentional provocation Updated Text ["AKP","initiated","the process for an ordinary congress"]... emerges as AKP reiterates ["AKP","announcing","their intention to abolish TSK"]... its long-standing ambition ... Label (*) Updated Text 2 Knowledge This deliberate provocation emerges as AKP initiates Recontextualization Output its long-standing process for an ordinary congress, ...

3. Data Reflection

An agent evaluates \hat{d}_i via prompting. Iteratively re-generate \hat{d}_i if checks fail.

Experimental Results & Conclusion | Emotion | Demotion_ours | Irony | Dirony_ours | Stance | Distance_ours | MRPC | DMRPC_ours | RTE | DRTE_ours | Emotion | Demotion_ours |

Performace Test

Main Experimental Results:

		Emotion		Irony		Stance		MRPC		RTE		AVG	
		$\delta_1 \downarrow$	$\delta_2 \downarrow$	$\delta_1 \downarrow$	$\delta_2\downarrow$	$\delta_1 \downarrow$	$\delta_2 \downarrow$						
	orig	9.37	4.47	30.09	7.07	23.41	6.80	10.98	7.05	20.88	8.79	18.95	6.84
Llama3-8B	semt	4.86	1.34	9.66	3.05	20.00	3.14	6.37	2.78	12.20	0.12	10.62	2.09
	ours	3.27	1.33	2.00	1.89	11.66	2.57	0.75	0.53	4.21	0.13	4.38	1.29
Llama2-13B	orig	11.83	4.55	52.46	7.97	38.26	6.98	26.98	6.83	26.24	9.02	31.16	7.07
	semt	7.69	1.60	23.15	2.42	32.70	3.26	18.44	2.50	22.63	2.15	20.92	2.38
	ours	7.4 1	0.57	18.23	1.12	24.50	2.56	10.09	-0.31	21.12	1.10	16.27	1.01
Ministral-8B	orig	12.65	6.85	39.66	7.58	30.80	8.51	25.64	8.91	17.08	6.64	25.17	7.70
	semt	6.77	1.58	10.53	1.98	28.47	3.38	11.94	2.84	6.50	-0.72	12.84	1.81
	ours	4.41	0.15	2.54	0.58	20.97	2.36	3.86	0.32	4.03	-1.46	7.16	0.39
Mistral-12B	orig	17.41	7.59	40.43	10.59	34.69	9.35	26.51	9.30	13.43	7.49	26.50	8.86
	semt	10.83	1.44	8.46	4.27	30.49	3.69	10.54	2.28	2.74	0.11	12.61	2.36
	ours	7.64	1.54	2.92	3.40	23.35	3.19	0.61	0.43	1.45	-0.62	7.19	1.59
Yi1.5-6B	orig	11.42	4.65	39.78	8.45	31.75	8.64	14.96	7.71	19.64	8.80	23.51	7.69
	semt	4.76	0.60	20.47	2.62	24.70	2.46	6.92	1.39	11.16	0.36	13.60	1.49
	ours	3.50	0.84	16.35	0.75	18.79	2.45	-1.00	0.21	6.76	1.69	8.88	1.19
Yi1.5-9B	orig	15.03	9.04	44.34	14.13	33.67	11.60	23.87	10.41	9.21	8.08	25.22	10.65
	semt	6.17	1.94	12.86	2.31	25.50	3.79	6.48	1.89	2.53	1.71	10.71	2.33
	ours	4.50	0.51	7.59	0.55	19.66	2.00	-3.50	0.27	0.45	-0.37	5.74	0.59
Qwen2.5-7B	orig	6.65	3.44	19.77	4.86	18.51	5.24	8.06	4.16	7.08	6.03	12.01	4.74
	semt	4.93	1.06	10.37	2.77	18.06	2.87	3.21	2.32	1.74	0.72	7.66	1.95
	ours	4.72	0.61	6.82	2.31	15.25	2.32	0.04	-0.39	2.31	1.08	5.83	1.19
Qwen2.5-14B	orig	11.53	5.71	27.75	9.78	20.83	8.10	19.95	6.94	7.21	5.43	17.45	7.19
	semt	5.79	1.46	1.46	2.76	17.03	2.87	5.49	1.42	0.52	0.12	6.06	1.72
	ours	4.57	0.99	-3.57	0.93	13.98	1.20	-4.73	0.37	4.38	0.00	2.93	0.70

Impact of Contamination Proportion

Dataset Statistics & Quality Evaluation:

Dataset	Train	Test	Label Space	Dataset	Fluency	Coherence	Factuality	Accuracy	κ
Emotion	3,257	1,421	joy, optimism, sadness, anger	Emotion	2.99	2.55	0.98	0.94	0.73
Irony	2,862	784	irony, not irony	Irony	2.97	2.74	0.99	0.97	0.78
Stance	2,620	1,249	favor, against, neutral	Stance	2.99	2.56	0.98	0.96	0.73
MRPC	4,076	1,587	equivalent, not equivalent	MRPC	2.98	2.92	0.98	0.96	0.86
RTF	2 490	277	entailment not entailment	RTE	2 99	2.86	0.96	0.96	0.80

Performance on Updated Data

- LLM performance drops significantly on the updated datasets, especially for subjective tasks like stance detection, suggesting original benchmarks are contaminated.
- Proprietary models show a larger performance drop than open-source models (5.42% vs 3.62%), implying more severe contamination.

Contamination Resistance

- In simulated contamination scenarios, CoreEval's updated dataset shows significantly stronger resistance to performance overestimation than original and rewritten datasets.
- The framework effectively mitigates the impact of contamination across different model sizes and varying contamination proportions (20%-100%).

Contact Us

Authors

Jingqian Zhao: zhaojingqian@stu.hit.edu.cn Bingbing Wang: bingbing.wang@stu.hit.edu.cn

About

Jingqian Zhao: https://zhaojingqian.top/about For collaboration or opportunities, feel free to contact me.

