Exercises 7.6.3 — Problem 2

Problem. If $|f_n(x) - f_n(y)| \le M|x - y|^{\alpha}$ for some fixed M and $\alpha > 0$ and all x, y in a compact interval, show that $\{f_n\}$ is uniformly equicontinuous.

Proof. A sequence is uniformly equicontinuous if for all 1/m there exists a 1/k such that |x-y| < 1/k implies $|f_n(x) - f_n(y)| < 1/m$ for every f_n in the sequence. If we are given 1/m, choose $1/k = (1/Mm)^{1/\alpha}$, then we have $|f_n(x) - f_n(y)| \le M|x-y|^{\alpha} \le M1/k^{\alpha} = M((1/Mm)^{1/\alpha})^{\alpha} = M/Mm = 1/m$ for |x-y| < 1/k as desired.