Confluenza

Dal momento che, data una β -redex, esistono **più modi** per ridurla allora:

Teorema (confluenza)

Se $M \Rightarrow N_1$ e $M \Rightarrow N_2$ allora esiste N tale che $N_1 \Rightarrow N$ e $N_2 \Rightarrow N$.

Esempio

Aritmetica

Forma normale

Definizione (forma normale)

Diciamo che M è in **forma normale** se non può più essere ridotto, ovvero se **non** esiste N tale che M \rightarrow N. In tal caso scriviamo M \rightarrow .

Corollario

La forma normale di M, se esiste, è unica (a meno di α -conversioni).

Dimostrazione.

Supponiamo che M abbia due forme normali N_1 ed N_2 , ovvero $M \Rightarrow N_1 \rightarrow e M \Rightarrow N_2 \rightarrow .$ Per il teorema di confluenza esiste N tale che $N_1 \Rightarrow N \in N_2 \Rightarrow N$. Siccome N_1 ed N_2 sono in forma normale, deve essere $N_1 = N = N_2$ (a meno di α -conversioni).

Strategie di riduzione

Due principali strategie:

1. Ordine applicativo:

- Redex più a sinistra e più interno
- $\bullet \ \ (\lambda x.\, x)((\lambda y.\, y)z) \to (\lambda x.\, x)z \to z$
 - In questo caso, riduciamo prima la redex più interna, quindi riduciamo $(\lambda y.\,y)z$ che diventa z, e poi applico z alla redex più esterna, ottendendo z

2. Ordine normale:

- Redex più a sinistra e più esterno
- $\bullet \ \ \underline{(\lambda x.\,x)((\lambda y.\,y)z)} \to \underline{(\lambda y.\,y)z} \to z$
 - In questo caso, riduciamo la redex più esterna, quindi riduco tutta la lambda espressione.

Applico $((\lambda y.\,y)z)$ a $(\lambda x.\,x)$ ottendendo $(\lambda y.\,y)z$, infine ci applico z

Eager evaluation e Lazy evaluation

Quasi tutti i linguaggi di programmazione, specialmente quelli **imperativi**, usano l'**ordine applicativo**, ovvero quando passiamo un parametro ad una funzione, prima riducono il parametro ad una **forma normale**, e solo **poi** lo applicano alla funzione. Questi linguaggi sono detti **zelanti** o **eager.**

Al contrario, alcuni linguaggi, tra cui **Haskell**, prima sostituiscono il parametro nel corpo della funzione, e solo poi, **quando serve**, lo riducono ad una **forma normale**.

Questi linguaggi sono detti pigri o lazy

Entrambe le strategie, a causa del **Teorema della confluenza**, confluiscono verso lo stesso risultato, tuttavia **non sono equivalenti.**

Esempio in cui conviene essere pigri

Ordine applicativo

$$(\lambda x.y) ((\lambda z.z) (\lambda z.z)) \rightarrow (\lambda x.y) (\lambda z.z) \rightarrow y$$

Ordine normale

$$(\lambda x.y)((\lambda z.z)(\lambda z.z)) \rightarrow y$$

Osservazioni

- ▶ l'argomento x non è mai usato
- l'ordine normale è più efficiente perché non lo valuta

Esempio in cui conviene essere zelanti

Ordine applicativo

$$(\lambda x.x x) (\underline{(\lambda y.y) (\lambda z.z)}) \rightarrow \underline{(\lambda x.x x) (\lambda z.z)} \\ \rightarrow \underline{(\lambda z.z) (\lambda z.z)} \\ \rightarrow \lambda z.z$$

Ordine normale

$$\frac{(\lambda x.x x) ((\lambda y.y) (\lambda z.z))}{\rightarrow \frac{(\lambda z.z) ((\lambda y.y) (\lambda z.z))}{(\lambda z.z) ((\lambda y.y) (\lambda z.z))}} \rightarrow \frac{(\lambda z.z) ((\lambda y.y) (\lambda z.z))}{(\lambda y.y) (\lambda z.z)} \rightarrow \frac{(\lambda y.y) (\lambda z.z)}{\lambda z.z}$$

Osservazioni

- ► l'argomento x è usato due volte
- l'ordine applicativo è più efficiente perché lo valuta una volta sola
- ottimizzare l'ordine normale: salvare il risultato della prima valutazione dell'argomento e riusarlo per le valutazioni successive

Normalizzazione ![[teorema_normalizzazione.png]] Ciò implica che: - Se esiste una **forma normale** di una espressione, posso ottenerla riducendo l'espressione in **ordine normale** - Questa proprietà **non vale** per l'**ordine applicativo** ! [[ordine_applicativo_loop.png]] \$\omega \space \omega\$ è la funzione **autoapplicazione**