

← Go Back to Deep Learning

E Course Content

Functions & Derivatives

Functions

Functions in mathematics help define a relationship between an independent variable (x) and a dependent variable (y).

Functions are represented as y=f(x), where the function f takes some value x and gives the output y.

For example, f(x) = x, or $f(x) = x^2$

Derivatives

Derivatives are very important to understand the working of Neural Networks, which we will be studying this week.

A derivative is defined as the rate of change in y = f(x) with respect to a very small change in x.

To find the derivative of a function y = f(x) we use the slope formula:

Slope = Change in y/Change in $x = \Delta y/\Delta x$

Image source

From the above diagram, we see that:

x changes from x to $x+\Delta x$ and y changes from f(x) to $f(x+\Delta x)$

Now follow these steps:

- Putting Δy and Δx in slope formula: $\Delta y/\Delta x = (f(x+\Delta x) f(x))/\Delta x$
- Make Δx tend towards zero.

We write dx instead of "Δx tends towards 0" and "the derivative of" is commonly written as d/dx.

Let's say we are given a function $y=f(x)=x^2$ So, $d(x^2)/dx=2x$

"The derivative of x² equals 2x"

This means that, for the function x^2 , the slope or "rate of change" at any point is 2x.

To learn more about derivatives, check out the video given in the additional reference material.

Proprietary content.©Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

© 2023 All rights reserved.

Help