

<u>Gameboard</u>

Maths

Differentiation: Products 3ii

Differentiation: Products 3ii

Find the exact value of the x-coordinate of the stationary point of the curve $y = x \ln x$.

The following symbols may be useful: e, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Differentiation: Quotients 3ii

Differentiation: Quotients 3ii

Part A Differentiate

A curve has equation $y=rac{2x+1}{3x-1}$. Find an expression for $rac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B Tangent

Hence find the equation of the tangent to this curve at the point $(1, \frac{3}{2})$, giving your answer in the form ax + by + c = 0, where a, b, and c are integers.

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

<u>Gameboard</u>

Maths

Integration by Substitution 1ii

Integration by Substitution 1ii

Use the substitution $x=rac{1}{3}\sin heta$ to find the exact value of

$$\int_0^{rac{1}{6}} rac{1}{(1-9x^2)^{rac{3}{2}}} \mathrm{d}x$$

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

<u>Gameboard</u>

Maths

Area Between Two Curves 1ii

Area Between Two Curves 1ii

Figure 1 shows the curve $y = e^{3x} - 6e^{2x} + 32$.

Figure 1: The curve $y = e^{3x} - 6e^{2x} + 32$.

Part A x-coordinate

Give the exact x-coordinate of the minimum point and verify that the y-coordinate of the minimum point is 0.

The following symbols may be useful: x

Part B Area of shaded region

Find the exact area of the shaded region enclosed by the curve and the coordinate axes.

The following symbols may be useful: ln(), log()

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

Home

Gameboard

Maths

Differentiation: Chain Rule 4i

Differentiation: Chain Rule 4i

Earth is being added to a pile so that, when the height of the pile is h metres, its volume is V cubic metres, where

$$V=(h^6+16)^{rac{1}{2}}-4.$$

Part A Rate of change of volume

Find the value of $\frac{\mathrm{d}V}{\mathrm{d}h}$ when h=2, to three significant figures.

Part B Rate of change of height

The volume of the pile is increasing at a constant rate of 8 cubic metres per hour. Find the rate in metres per hour, at which the height of the pile is increasing at the instant when h=2. Give your answer correct to 2 significant figures.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

Gameboard

Maths

Modelling - Advanced 2ii

Modelling - Advanced 2ii

At time t seconds, the radius of a spherical balloon is r cm. The balloon is being inflated so that the rate of increase of its radius is inversely proportional to the square root of its radius. When t=5, r=9 and, at this instant, the radius is increasing at $1.08 \, \mathrm{cm \, s^{-1}}$.

Part A Differential equation

Write down a differential equation to model this situation. Your answer should include a constant k, whose value you do not need to determine yet.

The following symbols may be useful: Derivative(r, t), k, r, t

Part B Solution

Solve the differential equation to express r in terms of t. Your answer should include some numerical constants, which should be converted to exact fractions.

The following symbols may be useful: r, t

Part C Initial condition

How much air (in cm^3) is in the balloon initially? Write your answer as an exact expression.

The following symbols may be useful: pi

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

<u>Gameboard</u>

Maths

Differentiation: Implicit 4i

Differentiation: Implicit 4i

Find the equation of the normal to the curve $x^3 + 2x^2y = y^3 + 15$ at the point (2,1), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

The following symbols may be useful: x, y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

<u>Gameboard</u>

Maths

Parametric Equations 4ii

Parametric Equations 4ii

A curve has parametric equations $x=rac{1}{t}-1$ and $y=2t+rac{1}{t^2}$

Part A Gradient function

Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of t, simplifying your answer.

The following symbols may be useful: Derivative(y, x), t, x, y

Part B Stationary point
Find the x -coordinate of the stationary point.
The following symbols may be useful: x
Find the y -coordinate of the stationary point.
The following symbols may be useful: y
By considering the gradient of the curve on either side of this point, determine its nature.
Point of inflection Minimum
Minimum Maximum
Part C Cartesian equation
Find the cartesian equation of the curve.
The following symbols may be useful: x, y
The lengthing dynibole may be decide to y

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 48 - Calculus Revision

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}},$ unless stated otherwise.

<u>Gameboard</u>

Maths

Integration by Parts 3i

Integration by Parts 3i

Find
$$\int_0^\pi \left(x^2+5x+7\right)\sin x\,\mathrm{d}x.$$

The following symbols may be useful: pi

Used with permission from UCLES A-level Maths papers, 2003-2017.