Is A Lockdown Worth It?

Since January 23rd, COVID-19 has forced almost a third of the global population to remain in lockdown (Lifting lockdowns). As ambitious economists, we delved deeper to interpret whether the lockdown measures were worth the cost. To better analyze the ongoing and varying lockdown initiatives taken by countries, linear regression has been conducted in this paper. Linear regression will logically help us answer: Are lockdown measures worth the cost? Does cross-country evidence confirm the success of lockdown measures? This paper will walk through an analysis of the models and clearly conclude that the costs of stricter lockdown measures justify the benefits of that approach.

To form an accurate picture, we must look at both sides of the coin. To represent a non-strict take on lockdown measures, Sweden was fitting. Of its many EU counterparts, Sweden has both taken the most relaxed approach to lockdown (Milne), and rejected the need for masks (Steiner). In contrast to Sweden, Spain, is the most suitable choice. The Guardian recounts it to be "one of the strictest coronavirus lockdowns in Europe," functioning as the perfect opposite (Jones).

To begin, the dependant variable taken is the respective new marginal deaths for each country. From a rational viewpoint, the number of deaths is a clear indicator of whether or not the lockdown measures are protecting the country. We start by regressing new deaths with marginal cases.

. regress sweD	eathsNew sweCa	asesMargin					. regress espDe	eathsNew espCa	sesMargin				
Source	SS	df	MS	Number of of F(1, 147))bs =	149 312.34	Source	SS	df	MS	Number of ob:		148
Model Residual	1930.89798 908.767232		1930.89798 6.18209001	Prob > F R-squared Adj R-squar	= =	0.0000 0.6800 0.6778	Model Residual	4151.20795 3002.75955		4151.20795 20.5668462	F(1, 146) Prob > F R-squared	-	201.84 0.0000 0.5803 0.5774
Total	2839.66521	148	19.1869271	Root MSE	=	2.4864	Total	7153.9675	147	48.6664456	Adj R-squared Root MSE	-	4.5351
sweDeathsNew	Coef.	Std. Err	. t	P> t [9	5% Conf	. Interval]	espDeathsNew	Coef.	Std. Err	. t	P> t [95	Conf.	Interval]
sweCasesMargin _cons		.0077722			219991	.1527184 .1403033	espCasesMargin _cons	.1041315 .3559381	.0073296			96457 20163	.1186173 1.243893

Sweden Spain

From the models, we see that both Spain and Sweden have a positive relationship with new marginal cases, as shown by the coefficients. Furthermore, both models' R-squared values are preceding 0.50, affirming that there is a relatively strong relationship between marginal deaths and cases. Lastly, the P-values indicate that marginal cases are a vital variable - 0.0000 tells us with 95% confidence that the coefficients are not 0.

Our model isn't strong enough yet. To paint an accurate picture, we must add more independent variables. Another contributor to new marginal deaths is stringency.

Source	SS	df	MS	Number of ob	s =	149
	A THE STATE OF THE			F(2, 146)	-	165.15
Model	1969.21688	2	984.60844	Prob > F	-	0.0000
Residual	870.448332	146	5.96197488	R-squared		0.6935
				Adj R-square	d =	0.6893
Total	2839.66521	148	19.1869271	Root MSE	-	2.4417
sweDeathsNew	Coef.	Std. Er	r. t	P> t [95	% Conf.	Interval]
sweDeathsNew sweCasesMargin	Coef.	Std. Er:	W. AG 19090	200 PRO 1	% Conf.	Interval)
	1404000000	0.000.000.000	9.36	0.000 .14	03000000	

Source	SS	df	MS	Number of oh	os =	148
				F(2, 145)	-	106.35
Model	4253.92735	2 2	2126.96367	Prob > F	-	0.0000
Residual	2900.04015	145 2	20.0002769	R-squared	-	0.5946
				Adj R-square	ed =	0.5890
Total	7153.9675	147	18.6664456	Root MSE	=	4.4722
espDeathsNew	Coef.	Std. Err	. t	P> t [95	% Conf.	Interval]
	.0915756	.0091071	10.06	0.000 .07	735758	.1095753
espCasesMargin	.0913736					0500064
espCasesMargin espStringency		.0124769	2.27	0.025 .00	36157	.0529361

Sweden Spain

The models for both countries now experience an increase in the adjusted R-squared and

decrease in root MSE. To avoid the inflated number R-squared provides when variables increase, we will rely on adjusted R-squared. However, the R-squared value is still weak in both the models, so we must add more variables.

Since this data spans over a significant period, a useful addition would be time. This variable successfully captures an essential detail with COVID-19: with every passing day and future day to come, how can our model better predict which measures work better.

Source	SS	df	MS	Number o	f obs	-	149	
				F(3, 145)	-	109.88	
Model	1972.18642	3	657.395473	Prob > F		=	0.0000	
Residual	867.478793	145	5.98261237	R-square	d	-	0.6945	
				Adj R-sq	uared	-	0.6882	
Total	2839.66521	148	19.1869271	Root MSE		=	2.4459	
sweDeathsNew	Coef.	Std. Err	. t	P> t	[95%	Conf.	Interval	.)
sweCasesMargin	.1829538	.0195985	9.34	0.000	.1442	182	.221689	4
sweStringency	0455522	.0341005	-1.34	0.184	1129	504	.02184	6
t	0086926	.0123381	-0.70	0.482	0330	784	.015693	2
cons	.1642994	.5243007	0.31	0.754	8719	598	1.20055	9

Source	SS	df	MS	Number	of obs	=	148
				F(3, 14	14)	=	72.44
Model	4302.7895	3	1434.26317	Prob >	F	-	0.0000
Residual	2851.178	144	19.7998472	R-squar	red	=	0.6015
				Adj R-s	guared	-	0.5932
Total	7153.9675	147	48.6664456	Root MS	SE.	-	4.4497
espDeathsNew	Coef.	Std. Err	r. t	P> t	[95%	Conf.	Interval]
espCasesMargin	.0799193	.0117117	7 6.82	0.000	.056	7702	.1030684
espStringency	.0832108	.037108	3 2.24	0.026	.0098	8641	.1565575
t	042966	.0273508	-1.57	0.118	0970	0269	.0110949
_cons	.6607854	. 935321!	0.71	0.481	-1.18	7049	2.509518

Sweden Spain

With this model, we see improvements in the adjusted R-squared. Let's further examine the coefficients. With Sweden, we witness an inverse and fragile relationship between time and new deaths. The ratio outlines that with each passing day, deaths decrease, but only infinitesimally. On the contrary, Spain - the stricter counterpart - shows that deaths at a better rate. At this point, the models can reasonably demonstrate that Spain outshines Sweden with its more rigorous methods. But have we checked the soundness of our model? Two methods can assure us that our model is sound.

```
Sweden
                                                                                                          Spain
. ovtest
                                                                               . ovtest
Ramsey RESET test using powers of the fitted values of sweDeathsNew
                                                                              Ramsev RESET test using powers of the fitted values of espDeathsNew
       Ho: model has no omitted variables
                                                                                     Ho: model has no omitted variables
                 F(3, 142) =
                                  1.20
                                                                                              F(3, 141) =
                                                                                                              0.89
                  Prob > F =
                                  0.3135
                                                                                               Prob > F =
                                                                                                               0.4489
```

We first can see the soundness of both the models by testing for omitted variables. Both regression models do not reject the null hypothesis of no omitted variables, which confirms the soundness. Secondly, we can solidify that our model is sound by graphing residuals against fitted values. With the graphs we can visually confirm that our model is sound.

To conclude the findings from our model, using the health indicators available, we can see Spain's stricter approach to lockdown saves more people in the long run, and its costs justify the benefits of the path. However, we also need to run a model that looks at economic health. In the next analysis, this paper will probe the economic indicators and show that stricter lockdown measures are justified.

To begin the second model, the dependant variable we chose is inflation for each country. This variable provides us with a comprehensive picture of how a country is doing. Historically, inflation has always shone a light on a country's current standing. We begin by regressing inflation with stringency. The model will show us the direct effects of strictness on the volatility of the economy.

Sweden						Spain							
. regress swell	NF sweStringer	ncy					. regress espI	NF espStringe	ncy				
Source	SS	df	MS	Number of obs	=	121 745.25	Source	SS	df	MS	Number of obs		121 703.54
Model Residual	41.5240026 6.63047046	1 119	41.5240026 .055718239	Prob > F R-squared	-	0.0000 0.8623	Model Residual	50.63416 8.56449622	1 119	50.63416 .071970557	Prob > F R-squared Adj R-squared	-	0.0000 0.8553 0.8541
Total	48.1544731	120	.401287276	Adj R-squared Root MSE	-	0.8612 .23605	Total	59.1986563	120	.493322136	Root MSE	=	.26827
sweINF	Coef.	Std. Err	. t	P> t [95%	Conf.	Interval]	espINF	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
sweStringency _cons	0309573 1.132051	.001134		0.0000332 0.000 1.077		0287119 1.186808		0177976 .9348498	.000671		0.0000191 0.000 .8658		0164689 1.003884

From the models, we see that both Spain and Sweden have R-squared values that are preceding 0.85. These R-squared values confirm a strong relationship between stringency and inflation since stringency primarily affects how smoothly both consumers and producers can move, and thus on a grander scale, controls the flow of money. Once again, the P-values indicate that stringency is a vital variable - 0.0000 tells us with 95% confidence that the coefficients are not 0.

This model still hasn't used enough economic indicators for a definite conclusion. To strengthen the model, we add two more variables: marginal cases and unemployment.

Source	SS	df	MS	Number of ob	s =	121
				F(3, 117)	-	325.07
Model	42.9959947	3	14.3319982	Prob > F	-	0.0000
Residual	5.15847834	117	.044089558	R-squared	-	0.8929
				Adj R-square	d =	0.8901
Total	48.1544731	120	.401287276	Root MSE	-	.20998
sweINF	Coef.	Std. Err	. t	P> t [95	% Conf.	Interval]
sweStringency	0214039	.0028957	-7.39	0.00002	71387	0156692
	0068289	.0025447	-2.68	0.00801	18685	0017894
sweCasesMargin						
sweCasesMargin sweUnemp	171264	.0550475	-3.11	0.00228	02827	0622453

. regress espl	NF espStringen	cy espCa	sesMargin e	spUnemp		
Source	SS	df	MS	Number of obs	-	121
				F(3, 117)	=	371.55
Model	53.575055	3	17.8583517	Prob > F	-	0.0000
Residual	5.62360125	117	.048064968	R-squared	-	0.9050
				Adj R-squared	-	0.9026
Total 59.1986563		120	.493322136	Root MSE	-	.21924
espINE	Coef.	Std. Err	. t	P> t [95%	Conf.	Interval
		.001425	-9.90	0.000016	0047	0112804
espStringency	0141025	.001425	-9.90	0.000016	9241	
espStringency espCasesMargin		.0006015			6562	
	.0018475		3.07		6562	.0030388

Sweden Spain

Let's interpret the coefficients first. For the non-strict country, Sweden, we see a negative relationship between inflation and marginal cases. One might be quick to assume that this good, as cases rise, prices fall. Contrary to instinct, this means deflation; as good as this sounds on paper, from an economic standpoint, this can throw the country into a deflationary spiral and harm it in the long term (Pologeorgis). Whereas Spain, the stricter of the two, has a minimal positive coefficient, this indicates that more cases will bring a healthy rate of inflation, which is beneficial for the economy. Furthermore, Spain has a significant negative ratio of unemployment. In this long term, this depicts that as inflation increases, unemployment will significantly decrease, once again indicating, Spain is set to be stronger economically. Lastly, both countries' models undergo an increase in the adjusted R-squared and drop in root MSE.

For the last addition to the model, we once again add the variable of time. As mentioned earlier, this data spans over a significant period. With time, we can now see with every passing day and future day to come, how can our model better predict which measures will work in a country's favor economically.

		0	uo				
. regress swel	INF sweStringenc	y sweCas	esMargin sw	eUnemp t			
Source	SS	df	MS	Number	of obs	-	121
				F(4, 11	6)	-	467.65
Model	45.342698	4	11.3356745	Prob >	F	-	0.0000
Residual	2.81177509	116	.02423944	R-squar	ed	-	0.9416
				Adj R-s	quared	-	0.9396
Total	48.1544731	120	.401287276	Root MS	E	-	.15569
sweINI	Coef.	Std. Err	. t	P> t	[95%	Conf.	Interval]
sweStringency	0077513	.0025564	-3.03	0.003	0128	3146	002688
sweCasesMargin	0050641	.0018953	-2.67	0.009	0088	3179	0013102
sweUnemp	2390142	.0413928	-5.77	0.000	3209	9978	1570305
t		.0009242	-9.84	0.000	0109	9235	0072627
cons	3.171961	.3057998	10.37	0.000	2.56	5286	3.777636

Sweden

		S	pain				
. regress espIN	NF espStringeno	y espCas	sesMargin e	spUnemp	t		
Source	SS	df	MS	Number	of obs	-	121
				F(4, 1	16)	-	812.60
Model	57.1587794	4 :	14.2896948	Prob >	F	-	0.0000
Residual	2.0398769	116	.017585146	R-squared		-	0.9655
				Adj R-	squared	-	0.9644
Total	59.1986563	120	.493322136	Root M	SE	-	.13261
espINF	Coef.	Std. Err	. t	P> t	[95%	Conf.	Interval]
espStringency	.0008467	.0013563	0.62	0.534	0018	3396	.003533
espCasesMargin	0001915	.0003909	-0.49	0.625	0009	9657	.0005827
espUnemp	586584	.0550107	-10.66	0.000	6955	5396	4776284
t	0138799	.0009723	-14.28	0.000	0158	3056	0119542
_cons	9.397747	.7567917	12.42	0.000	7.898	3825	10.89667

We see the adjusted R-squared values with this model have both headed 0.90, indicating a reliable model. With Sweden, we witness an inverse and frail relationship between time and inflation. The ratio outlines that inflation barely falls with each day. On the contrary, Spain - the

stricter counterpart - describes that inflation will decrease at a more reserved rate with each passing day. At this point, the models can persuasively demonstrate that even from an economic standpoint, Spain transcends Sweden with its more rigorous methods. However, once again, we must confirm the soundness of our models.

Beginning with the test for omitted variables. Both regression models accept the null hypothesis of no omitted variables, which confirms the soundness.

```
Sweden
                                                                                                 Spain
. ovtest
                                                                         . ovtest
Ramsey RESET test using powers of the fitted values of sweINF
       Ho: model has no omitted variables
                                                                         Ramsey RESET test using powers of the fitted values of espINF
                  F(3, 113) =
                                   35.29
                                                                               Ho: model has no omitted variables
                                                                                        F(3, 113) =
                                    0.0000
                                                                                                       38.87
                   Prob > F =
                                                                                          Prob > F =
                                                                                                        0.0000
```

Secondly, we can solidify that our model is sound by graphing residuals against fitted values. However, in this case, we are faced with an awkward graph, but it seems like to be evenly plotted with no specific trends or curves to show it being biased. So, to better confirm the soundness, we test for heteroskedasticity. We want constant variance between residuals, which is homoskedasticity. By the visuals below, it is clear the P-values lie outside the rejection region and so it is safe to assume homoskedasticity.


```
. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
    Ho: Constant variance
    Variables: fitted values of sweINF

Chi2(1) = 0.89
    Prob > chi2 = 0.3452

Sweden

. estat hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of espINF

Chi2(1) = 1.71
Prob > chi2 = 0.1904

Spain
```

Therefore, the data provided, alongside the rigorous use of linear regression and supporting articles based on Sweden and Spain; the evidence is ample to conclude that stricter restrictions, like Spain's, are worth the cost.

References

Brown, C. (2020, June 20). With India's lockdown lifting, rising COVID-19 cases overwhelm hospitals | CBC News. Retrieved 24 Aug. 2020, from https://www.cbc.ca/news/world/india-coronavirus-reopening-1.5619518

Jones, S. (2020, May 05). Spain's path out of Covid lockdown complicated by polarised politics. Retrieved 24 Aug. 2020, from https://www.theguardian.com/world/2020/may/05/spain-path-out-of-covid-lockdown-complicated-by-polarised-politics

Lifting lockdowns: The when, why and how. (n.d.). Retrieved 24 Aug. 2020, from https://www.economist.com/leaders/2020/05/23/lifting-lockdowns-the-when-why-and-how

Milne, R. (2020, May 08). Architect of Sweden's no-lockdown strategy insists it will pay off. Retrieved 24 Aug. 2020, from https://www.ft.com/content/a2b4c18c-a5e8-4edc-8047-ade4a82a548d

Pologeorgis, Nicolas A. "Do Deflationary Shocks Help or Hurt The Economy?" *Investopedia*, Investopedia, 29 Jan. 2020, Retrieved 24 Aug. 2020, from, www.investopedia.com/articles/economics/09/deflationary-shocks-economy.asp.

Steiner, Rupert. "Sweden Has Developed Herd Immunity after Refusing to Lock down, Some Health Experts Claim, with Coronavirus Infection Rate Falling." Retrieved 24 Aug. 2020, from, www.marketwatch.com/story/sweden-has-developed-herd-immunity-after-refusing-to-lock-down-experts-claim-its-coronavirus-infection-rate-is-falling-2020-08-24.

Group Information

- 1. Saakshi Shah 1005200676
 - 2. Yuci Ma 1005218541