一、填空题

1.设集合 $A = \{a_1, a_2, a_3, a_4\}$, 若 A 中所有三元子集的三个元素之和组成的集合为 $B = \{-1,3,5,8\}$, 则集合 $A = _$ ____.

1.【答案】 { - 3,0,2,6}.

【解析】解法 1: 显然, 在 A 的所有三元子集中, 每个元素均出现了 3 次, 所以

$$3(a_1 + a_2 + a_3 + a_4) = -1 + 3 + 5 + 8 = 15$$

即 $a_1 + a_2 + a_3 + a_4 = 5$. 于是, 集合 A 的四个元素分别为 $5 - (-1) = 6,5 - 3 = 2,5 - 5 = 0,5 - 8 = -3.因此 <math>A = \{-3,0,2,6\}$.

解法 2: 不妨设 $a_1 < a_2 < a_3 < a_4$,则 $a_1 + a_2 + a_3 < a_1 + a_2 + a_4 < a_1 + a_3 + a_4 < a_2 + a_3 + a_4$. 依题意得

$$\begin{cases} a_1 + a_2 + a_3 = -1, \\ a_1 + a_2 + a_4 = 3, \\ a_1 + a_3 + a_4 = 5, \\ a_2 + a_3 + a_4 = 8. \end{cases}$$

$$\begin{cases} a_1 = -3, \\ a_2 = 0, \\ a_3 = 2, \\ a_4 = 6. \end{cases}$$

所以 $A = \{ -3,0,2,6 \}$.

评注:解法1为2011年全国高中数学联赛命题组提供的参考答案.

2.已知
$$x \in \mathbf{R}, y \in \mathbf{R}_+, A = \{x^2 + x + 1, -x, -x - 1\}, B = \{-y, -\frac{y}{2}, y + 1\}$$
. 若 $A = B$, 则 $x^2 + y^2 =$

2.【答案】5.

【解析】对集合 A,B 中元素进行排序, A 中: $x^2 + x + 1 > -x > -x - 1$, B 中: $y + 1 > -\frac{y}{2} > -y$, 所以

$$\begin{cases} x^2 + x + 1 &= y + 1, \\ -x &= -\frac{y}{2}, & \text{if } \{x = 1, \text{if } y = 2, \text{if } y = 2\} \\ -x - 1 &= -y. \end{cases}$$

3.在集合 $A = \{1,2,3,\cdots,2011\}$ 中,末位数字为 1 的元素个数为_____.

3.【答案】 202.

【解析】将集合 $A = \{0001,0002, \dots, 2011\}$ 中的每个数都截去其末位数字,会得到集合 $B = \{000,001, \dots, 199,200,201\}$ 中的数, 而 A 中形如 $\overline{abc1}$ 的数, 皆可看成在 B 中的元素 abc 后面添加数字 1 得到. 所以 A 中形如 \overline{abc} 的元素个数,等于 B 的元素个数,即 202 个.

4.设 x_1, x_2, x_3, x_4, x_5 为正整数, 任取其中四个数求和, 得到集合 {44,45,46,47}, 则这五个数 x_1, x_2, x_3, x_4, x_5 的值从小到大依次为_____.

4.【答案】 10,11,11,12,13.

【解析】从这五个数中任取四个数求和,共有 5 种取法,而 {44,45,46,47} 仅有四个元素,所以一定有两个和相等,于是将五个和相加,有

$$44 + 44 + 45 + 46 + 47 \le 4(x_1 + x_2 + x_3 + x_4 + x_5) \le 44 + 45 + 46 + 47 + 47$$

即 226 \leq 4($x_1 + x_2 + x_3 + x_4 + x_5$) \leq 229,

由于 x_1, x_2, x_3, x_4, x_5 为正整数, 且 226,227,228,229 这四个数中, 仅有 228 能够被 4 整除,

所以 $4(x_1 + x_2 + x_3 + x_4 + x_5) = 228$, 即 $x_1 + x_2 + x_3 + x_4 + x_5 = 57$.

因为任取其中四个数求和,得到集合(44,45,46,47),于是这五个正整数中一定含有

$$57 - 44 = 13.57 - 45 = 12.57 - 46 = 11.57 - 47 = 10$$

又因为 $x_1 + x_2 + x_3 + x_4 + x_5 = 57$,所以另外一个数为 11,因此这五个数为 10.11.11.12.13 或其任意排列. 所以从小到大依次为 10.11.11.12.13.

5.如果集合 A,B 同时满足 $A \cup B = \{1,2,3,4\}, A \cap B = \{1\}, A \neq \{1\}, B \neq \{1\},$ 就称有序集对 (A,B) 为"好集对". 这里有序集对 (A,B) 意指, 当 $A \neq B$ 时, (A,B) 和 (B,A) 是不同的集对.那么"好集对"一共有______ 个.

5.【答案】6.

【解析】逐个元素考虑归属的选择. 元素 1 必须同时属于 A 和 B. 元素 2 必须至少属于 A, B 中的一个,但不能同时属于 A 和 B,有两种选择:属于 A 但不属于 B,属于 B 但不属于 A. 同理,元素 3 和 4 也有两种选择.但元素 2,3,4 不能同时不属于 A,也不能同时不属于 B. 所以四个元素满足条件的选择共有 $2 \times 2 \times 2 - 2 = 6$ 种.换句话说,"好集对"一共有 6 个.6.设 S 为 $\{1,2,3,\cdots,30\}$ 的一个子集,且 S 中任意两个不同元素的和都不能被 5 整除.请问:集合 S 中最多能有______个元素.

6.【答案】13.

【解析】对于 $1 \le j \le 5$,有 $S_j = \{5n + j | 0 \le n \le 5\}$. 因为 S 中任意两个元素的和都不能被 S 整除. 所以集合 $S \cap S_1$ 和 $S \cap S_4$ 至少有一个必须为空. 同理, 集合 $S \cap S_2$ 和 $S \cap S_3$ 至少有一个必须为空, 最多只能含有 $S \cap S_5$ 中的一个元素. 因此 S 最多可以包含 30 - 6 - 6 - 5 = 13个元素. 例如, $S = \{1,2,6,7,11,12,16,17,21,22,26,27,30\}$,是满足要求的一个集合. 评理 由前面解法可知,集合 S 内有 S 内有 S 内有 S 内有 S (S) 也有 S (S) 也

 $\{26,29\}$, $\{27,28\}$. 这一划分有 13 个集合,每个集合内的两个元素的和都是 5 的倍数. 因此, 根据抽展原理可知, 如果任意集合 S 至少含有 14 个元素, 那么至少有两个元素的和能被 5 整除. 因此 S 内最多有 13 个元素.

7.设 a_1, a_2, a_3, a_4 是四个有理数,使得 $\{a_i a_j | 1 \le i < j \le 4\} = \{-24, -2, -\frac{3}{2}, -\frac{1}{8}, 1, 3\}$,则 $a_1 + a_2 + a_3 + a_4$ 的值为_____.

7.【答案】 $\pm \frac{9}{4}$.

【解析】 $a_i a_j (1 \le i < j \le 4)$ 是六个互不相同的数,且其中没有两个互为相反数,由此可知 a_1, a_2, a_3, a_4 的绝对值互不相等,不妨设 $|a_1| < |a_2| < |a_3| < |a_4|$,则 $|a_i| |a_j| (1 \le i < j \le 4)$ 中最小的与次小的两个数分别是 $|a_1| |a_2|$, $|a_1| |a_3|$,最大的与次大的两个数分别是

由此易知,
$$a_1 = \frac{1}{4}$$
, $a_2 = -\frac{1}{2}$, $a_3 = 4$, $a_4 = -6$, 或者 $a_1 = -\frac{1}{4}$, $a_2 = \frac{1}{2}$, $a_3 = -4$, $a_4 = 6$, 经检验,

这两组解均满足条件. 所以 $a_1 + a_2 + a_3 + a_4 = \pm \frac{9}{4}$.

8.【答案】66.

【解析】先证 $|A \cup B| \le 66$, 只需要证 $|A| \le 33$, 为此只需要证若 $A \in \{1,2,\dots,49\}$ 的任一个 34元子集.则必存在 $n \in A$, 使得 $2n + 2 \in B$. 证明如下:

将 {1,2,···,49} 分成如下 33 个集合: {1,4},{3,8},{5,12},···,{23,48} 共 12 个; {2,6},{10,22},{14,30}, {18,38} 共 4 个; {25},{27},{29},···,(49} 共 13 个; {26},{34},{42},{46} 共 4 个.

由于 A 是 {1,2,…,49} 的 34 元子集,从而由抽屎原理可知上述 33 个集合中至少有一个二元集合中的数均属于 A, 即存在 $n \in A$, 使得 $2n + 2 \in B$.

如 取 $A = \{1,3,5,\cdots,23,2,10,14,18,25,27,29,\cdots,49,26,34,42,46\}, B = \{2n+2|n\in A\}$,则 A,B 满足题设且 $|A \cup B| \leq 66$.

二、解答题

9.判断下面命题是否正确:

设 A,B 是坐标平面上两个点集, $C_r=\{(x,y)|x^2+y^2\leqslant r^2\}$. 若对任何 $r\geqslant 0$ 都有 $C_r\cup A\subseteq C_r\cup B$,则必有 $A\subseteq B$.

- 10.设 a, b, c, d > 0, 求证: $a^2 + b^2 + c^2 + d^2 + e^2 \geqslant ae + be + ce + de$.
- 10. 【解析】由算术 几何平均不等式,得

$$\begin{split} a^2 + b^2 + c^2 + d^2 + e^2 \\ &= \left(a^2 + \frac{e^2}{4}\right) + \left(b^2 + \frac{e^2}{4}\right) + \left(c^2 + \frac{e^2}{4}\right) + \left(d^2 + \frac{e^2}{4}\right) \geqslant ae + be + ce + de \end{split}$$

- 11.设 a, b 是正数, 求证: $\left(\frac{a}{b} + \frac{b}{a}\right)^3 \geqslant 3\left(\frac{a}{b} + \frac{b}{a}\right) + 2$.
- 11. 【解析】设 $x = \frac{a}{b} + \frac{b}{a}$, 则本题中只有 $x = \frac{a}{b} + \frac{b}{a}$ 起作用. 由算术 几何平均不等式得 $x \ge 2$. 因此,只要证明当 $x \ge 2$ 时, $x^3 \ge 3x + 2$ 即可. 即证 $x^3 3x 2 \ge 0$. 事实上, $x^3 3x 2 = x^3 4x + x 2 = x(x^2 4) + x 2 = (x 2)[x(x + 2) + 1] = (x 2)(x + 1)^2 \ge 0$.
- 12.已知正数 a, b, c 满足 $a^2 + ab + ac + bc = 6 + 2\sqrt{5}$, 求 3a + b + 2c 的最小值.
- 12. 【解析】由题意知 $(a+b)(a+c) = 6 + 2\sqrt{5}$, 则

$$3a + b + 2c = (a + b) + 2(a + c) \ge 2\sqrt{2(a + b)(a + c)}$$
$$= 2\sqrt{2} \times (\sqrt{5} + 1) = 2\sqrt{10} + 2\sqrt{2}$$

当 a+b=2(a+c) 时取等号. 即所求的最小值为 $2\sqrt{10}+2\sqrt{2}$.

13.
$$\forall x, y, z > 0$$
, \vec{x} $:: \frac{x^2}{y^2} + \frac{y^2}{z^2} + \frac{z^2}{x^2} \ge \frac{y}{x} + \frac{z}{y} + \frac{z}{z}$.

13.【解析】简单变形后可以看出所给不等式等价于

$$\left(\frac{x}{y} - \frac{y}{z}\right)^2 + \left(\frac{y}{z} - \frac{z}{x}\right)^2 + \left(\frac{z}{x} - \frac{x}{y}\right)^2 \geqslant 0$$

该不等式显然成立. 当且仅当 x = y = z 时,等号成立.

14. 设 $a, b, c \in \mathbb{R}_+$, 且 a + b + c = 1, 求证:

$$(1+a)(1+b)(1+c) \ge 8(1-a)(1-b)(1-c)$$

14. 【解析】利用已知不等式 a+b+c=1 和算术 - 几何平均不等式 $x+y \ge 2\sqrt{xy}$,

可 得
$$1+a=(1-b)+(1-c)\geqslant 2\sqrt{(1-b)(1-c)}$$
 同理 $1+b\geqslant 2\sqrt{(1-c)(1-a)}$, $1+c\geqslant 2\sqrt{(1-a)(1-b)}$.

将以上三式相乘,即得所证.

评注: 我们知道,在 \triangle ABC 中, $\tan\frac{A}{2} \cdot \tan\frac{B}{2} + \tan\frac{B}{2} \cdot \tan\frac{C}{2} + \tan\frac{C}{2} \cdot \tan\frac{A}{2} = 1$ 。此题可等价变为: 在 \triangle ABC 中,求证: $\left(1 + \tan\frac{A}{2} \cdot \tan\frac{B}{2}\right) \left(1 + \tan\frac{C}{2} \cdot \tan\frac{C}{2}\right) \left(1 + \tan\frac{C}{2} \cdot \tan\frac{A}{2}\right)$

$$\geqslant 8\left(1-\tan\frac{A}{2}\cdot\tan\frac{B}{2}\right)\left(1-\tan\frac{B}{2}\cdot\tan\frac{C}{2}\right)\left(1-\tan\frac{C}{2}\cdot\tan\frac{A}{2}\right)$$

15. 已知 a_1, a_2, \dots, a_n 都是正数且 $a_1 a_2 \dots a_n = 1$, 求证: $(2 + a_1)(2 + a_2) \dots (2 + a_n) \ge 3^n$.

15. 【解析】因 a_1 是正数,根据三个正数的算术 - 几何平均不等式,有 $2 + a_1 = 1 + 1 + a_1 \geqslant 3\sqrt[3]{a_1}$.

同理 $2 + a_j \geqslant 3\sqrt[3]{a_j} (j = 2, 3, \dots, n)$.

将上述各不等式两边分别相乘即得

$$(2+a_1)(2+a_2)\cdots(2+a_n) \geqslant (3\sqrt[3]{a_1})(3\sqrt[3]{a_2})\cdots(3\sqrt[3]{a_n}) = 3^n \cdot \sqrt[3]{a_1a_2\cdots a_n}$$

因为 $a_1a_2\cdots a_n=1$, 所以 $(2+a_1)(2+a_2)\cdots (2+a_n)\geqslant 3^n$.

- 16.正数 x, y, z 满足 9xyz + xy + yz + zx = 4, 求证:
- (1) $xy + yz + zx \ge \frac{4}{3}$
- (2) $x + y + z \ge 2$.
- 16. 【解析】(1) 记 $t = \sqrt{\frac{xy+yz+zx}{3}}$,由算术 几何平均不等式得 $xyz = (\sqrt[3]{(xy)(yz)(zx)})^{\frac{3}{2}} \leqslant \left(\frac{xy+yz+zx}{3}\right)^{\frac{3}{2}}$. 所以 $4 = 9xyz + xy + yz + zx \leqslant 9t^3 + 3t^2$, 因此 $(3t-2)(3t^2+3t+2) \geqslant 0$.

而 $3t^2 + 3t + 2 > 0$, 所以 $3t - 2 \ge 0$, 即 $t \ge \frac{2}{3}$, 从而 $xy + yz + zx \ge \frac{4}{3}$.

(2) 因为 $(x + y + z)^2 \ge 3(xy + yz + zx) = 4$, 且 x, y, z > 0, 因此 $x + y + z \ge 2$.

17.设 u, v, w 为正实数,满足条件 $u\sqrt{vw} + v\sqrt{wu} + w\sqrt{uv} \ge 1$, 试求 u + v + w 的最小值

17. 【解析】由于 $\frac{u+v}{2} \geqslant \sqrt{uv}$,所以由已知条件可得 $uv + vw + wu \geqslant 1$,又 $(u+v+w)^2 = u^2 + v^2 + w^2 + 2uv + 2vw + 2wu \geqslant uv + vw + wu + 2uv + 2vw + 2wu = 3(uv + vw + wu) \geqslant 3$,

因此 $u + v + w \gg \sqrt{3}$. 另一方面, 显然 $u = v = w = \frac{\sqrt{3}}{3}$ 时满足题中条件, 所以 u + v + w 的最小值为 $\sqrt{3}$.

18.设 $x, y, z \in \mathbf{R}$, 且 x + y + z = 0, 求证: $6(x^3 + y^3 + z^3)^2 \le (x^2 + y^2 + z^2)^3$.

18. 【解析】由 x + y + z = 0 得 z = -(x + y). 利用算术 - 几何平均不等式得

$$(x^{2} + y^{2} + z^{2})^{3} = [(x^{2} + y^{2}) + x(x + y) + y(x + y)]^{3} \ge [2xy + x(x + y) + y(x + y)]^{3}$$

$$\ge 54 \cdot xy \cdot x(x + y) \cdot y(x + y) = 54 \cdot xy \cdot x(-z) \cdot y \cdot (-z)$$

$$= 54(xyz)^{2} = 6(x^{3} + y^{3} + z^{3})^{2}$$

最后一步应用了等式 $x^3 + y^3 + z^3 = 3xyz$, 命题得证.

19.(本题 20 分, 第 1 小题 5 分, 第 2 小题 5 分, 第 3 小题 5 分, 第 4 小题 5 分) 对于非空实数集 A,定义 $A^* = \{z \mid$ 对任意 $x \in A, z \ge x\}$ 。设非空实数集 $C \subseteq D \subset (-\infty, 1]$ 。判断如下命题的真假, 并证明.

- (1) 对于任意给定符合题设条件的集合 C,D , 必有 $D^* \subseteq C^*$;
- (2)对于任意给定符合题设条件的集合 C,D, 必有 $C^* \cap D \neq \emptyset$;
- (3)对于任意给定符合题设条件的集合 C,D , 必有 $C \cap D^* = \emptyset$;
- (4)对于任意给定符合题设条件的集合 C,D, 必存在常数 a, 使得对任意的 $b \in C^*$, 恒有 $a + b \in D^*$ 。以上命题正确的是 (1) (4)
- 【解答】解:由 $A^* = \{z | \forall x \in A, z \ge x\}$.可知:数集 A^* 是数集 A的所有上界组成的集合。
- (1) 分别用 A_{\max} 、 A_{\min} 表示集合 A 的所有元素(数)的最大值、最小值.

由 $C \subseteq D$ 及 A^* 的定义可知: $C_{\text{max}} \leq C_{\text{min}}$, $D_{\text{max}} \leq D^*_{\text{min}}$, $C^*_{\text{min}} \leq D_{\text{max}}$,

- $:: C^*_{\min} \leq D^*_{\min}, :: 必有 D^* \subseteq C^*.$ 故(1)正确.
- (2) 若设 $C = (-\infty, 1) = D$, 满足 $C \subseteq D$, 而 $C^* = \{1\}$, 此时 $C^* \cap D = \emptyset$,故(2)不正确。 (3) 若设 $C = (-\infty, 0)$, $D = (-\infty, 1)$, 满足 $C \subseteq D$, 而 $D^* = (0,1)$, 此时 $C \cap D^* = (0,1) \neq \emptyset$, 故(3)不正确 .
- (4)由(1)可知:对于 $C \subseteq D$,必有 $D^* \subseteq C^*$;取 $a = D^*_{\min} C^*_{\min}$,则对于任意的 $b \in C^*$,必恒有 $a + b \in D^*$.故(4)正确,

故答案为: (1)(4)。

20. M 是一个有限集, 若 M 的子集 X_1, X_2, \dots, X_n 满足:

- (1) $X_i \cap X_i = \emptyset$, 对任意的 1 ≤ $i, j \le n, i \ne j$;
- (2) $X_1 \cup X_2 \cup \cdots \cup X_n = M$, 则称 $X_1, X_2, ..., X_n$ 是 M 的一个划分, 用 |M| 表示集合 M 中的元素个数.设 A_1, A_2, \cdots, A_n : B_1, B_2, \cdots, B_n : C_1, C_2, \cdots, C_n 是 M 的三个划分, 并且对任意的整数 i, j, k 当 $i, j, k \leq n$ 时, 下式成立: $|A_i \cap B_j| + |A_i \cap C_k| + |B_j \cap C_k| \geq n$, 求证: $|M| \geq \frac{n^3}{2}$.

20.证明:对任意的 i,j,k,有 $|A_i \cap B_j| + |A_i \cap C_k| + |B_j \cap C_k| \ge n$. 令 i,j 不动,对 k 从 1 到 n 求和,有 $n|A_i \cap B_j| + |A_i| + |B_j| \ge n^2$;令 i 不动,对 j 从 1 到 n 求和,有 $n|A_i| + n|A_i| + |M| \ge n^3$.现对 i 从 1 到 n 求和,有 $n|M| + n|M| + n|M| \ge n^4$. 所以 $|M| \ge \frac{n^3}{3}$.

(注: 这里用到: 对 M 的一个划分 X_1, X_2, \dots, X_n , 有 $|M| = |X_1| + |X_2| + \dots + |X_n|$)

21.已知 a,b,c 为正实数,记 $S = \frac{(a^2+2c^2)(b^2+4c^2)}{(a+b)c^3}$,求 S 的最小值题 目出处:2024年9月14日微信公众号《数学趣题推荐官》推文(十一月)解:令 $\frac{a}{c} = x, \frac{b}{c} = y$,由基本不等式可知

$$S = \frac{(x^2+2)(y^2+4)}{x+y} = (y^2+4)\left(x+y+\frac{y^2+2}{x+y}-2y\right) \geqslant 2(y^2+4)\left(\sqrt{y^2+2}-y\right)$$

 $\Rightarrow f(y) = (y^2 + 4)(\sqrt{y^2 + 2} - y), \text{ }$

$$f'(y) = \frac{\left(\sqrt{y^2 + 2} - y\right)\left(2y\sqrt{y^2 + 2} - y^2 - 4\right)}{\sqrt{y^2 + 2}}$$

此时

$$y \in \left(0, \frac{2}{\sqrt{\sqrt{3}}}\right), f'(y) < 0, f(y)$$
 单调递增
$$y \in \left(\frac{2}{\sqrt{\sqrt{3}}}, +\infty\right), f'(y) > 0; f(y)$$
 单调递减

于是

$$f(y)_{\min} = f\left(\frac{2}{\sqrt{\sqrt{3}}}\right) = \frac{16 \cdot 3^{\frac{1}{4}}}{3}$$

22. 已知 x,y > 0, (x + y + xy)(x + y - xy) = xy, 求 x + y + xy 和 x + y - xy 的最小值解: 由题意可知

$$(x + y)^2 = x^2y^2 + xy \Rightarrow x + y = \sqrt{x^2y^2 + xy}$$

由基本不等式可知

$$x + y = \sqrt{x^2y^2 + xy} \ge 2\sqrt{xy} \Rightarrow xy \ge 3$$

此时

$$x + y + xy = \sqrt{x^2y^2 + xy} + xy \ge 2\sqrt{3} + 3$$

而

$$x + y - xy = \sqrt{x^2y^2 + xy} - xy$$

$$= \frac{\left(\sqrt{x^2y^2 + xy} - xy\right)\left(\sqrt{x^2y^2 + xy} + xy\right)}{\sqrt{x^2y^2 + xy} + xy}$$

$$= \frac{1}{\sqrt{1 + \frac{1}{xy} + 1}} \ge \frac{1}{\sqrt{1 + \frac{1}{3} + 1}} = 2\sqrt{3} - 3$$

当且仅当 $x = y = \sqrt{3}$ 时,等号成立

23.设 S 是一些互不相同的四元数组 (a_1, a_2, a_3, a_4) 的集合, 其中 $a_i = 0$ 或 1, i = 1,2,3,已知 S 的元素个数不超过 15 , 且满足: 若 (a_1, a_2, a_3, a_4) , $(b_1, b_2, b_3, b_4) \in S$, 则

$$(\max\{a_1, b_1\}, \max\{a_2, b_2\}, \max\{a_3, b_3\}, \max\{a_4, b_4\}) \in S$$

且

$$(\min\{a_1, b_1\}, \min\{a_2, b_2\}, \min\{a_3, b_3\}, \min\{a_4, b_4\}) \in S$$

求S的元素个数的最大值.

23. 【解析】显然所有可能的四元数组有 16 种. 因为至少有一个四元数组不在 S 中, 所以 (1,0,0,0), (0,1,0,0), (0,0,1,0) 和 (0,0,0,1) 中至少有一个不在 S 中, 否则由题中条件可推出所有这样的四元数组都在 S中, 不妨设 (1,0,0,0) $\notin S$. 此时由题中条件又知 (1,1,0,0), (1,0,1,0) 和 (1,0,0,1) 中至少有两个不能在 S 中, 不妨设 (1,1,0,0) 和 (1,0,1,0) 不在 S 中. 此时又可知 (1,1,1,0) 和 (1,0,0,1) 不能同时在 S 中,不妨设 (1,1,1,0) 不在 S 中. 于是 S 的元素个数不超过 16-4=12 个.

现在设 S 是所有可能的 16 个四元数组中去掉 (1,0,0,0), (1,1,0,0), (1,0,1,0) 和 (1,1,1,0) 后所成的集合,我们要证 S 满足题中条件,从而 S 的元素个数的最大值为 12 。 任取 (a_1,a_2,a_3,a_4) , $(b_1,b_2,b_3,b_4) \in S$.

(1) 若
$$a_1 = b_1 = 0$$
 或 $a_4 = 1$ 或 $b_4 = 1$, 则显然

 $(\max\{a_1,b_1\},\max\{a_2,b_2\},\max\{a_3,b_3\},\max\{a_4,b_4\})$ 不等于上述去掉的 4 个四元数组中任何一个,从而属于 S. 同理 $(\min\{a_1,b_1\},\min\{a_2,b_2\},\min\{a_3,b_3\},\min\{a_4,b_4\})$ 属于 S. (2) 若 $a_1=1$ 或 $b_1=1$ 且 $a_4=b_4=0$,则

 $(\max\{a_1,b_1\},\max\{a_2,b_2\},\max\{a_3,b_3\},\max\{a_4,b_4\})=(1,\max\{a_2,b_2\},\max\{a_3,b_3\},0)$ 由此推出 (a_1,a_2,a_3,a_4) 或 (b_1,b_2,b_3,b_4) 不属于 S, 这种情况不会出现.

 $(\min\langle a_1,b_1\rangle,\min\langle a_2,b_2\},\min\langle a_3,b_3\rangle,\min\langle a_4,b_4\rangle)$ 不等于上述去掉的 4 个四元数组中任何一个,从而属于 S 。

(4) 若 $a_1 = b_1 = 1$ 且 $a_4 = 0$ 或 $b_4 = 0$, 则

 $(\min\langle a_1, b_1 \rangle, \min\langle a_2, b_2 \rangle, \min\langle a_3, b_3 \rangle, \min\langle a_4, b_4 \rangle) = (1, \min\{a_2, b_2 \rangle, \min\langle a_3, b_3 \rangle, 0),$

由此推出 (a_1,a_2,a_3,a_4) 或 (b_1,b_2,b_3,b_4) 不用于 S,这种情况也不会出现. 综上所述,S 是满足题目要求的,所以S的元素个数的最大值就是 12.

另解:

解: |S|_{max} =12: 全 S= { (a1, a2, a3, a4) | ai=0 或 | , i=1)2/3,4 且 (93, a4) ‡(0,1)} 引足 |S|=12 且 足児 満足率件 、 下腿 iz |S| 三12:

因 $a: \sqrt{3} \sqrt{3}$ 支有 1 种情况 ,而 $|3| \leq 1$, : 必有 (a_1, a_2, a_3, a_4) $\in S$,记为 A $a: \sqrt{3}$, i=1,2,3 , 电对称 i , 义思考虑 A 中有 0,1/2 f'' 。 i 阳情况 .

- ① 0 7 "0": 33 ∀ (bi, bi, bi, bi) \$ (1-bi, 1-bi, 1-bi) 至 3 至 能有 17 產 5 中 以后 (5) ⊆ 8;
- ②.15": 不好沒了=0,j=1,2,3,4. 冷T={(b),b2,b,b4)|j=0,真练0或1]. :,|T|=2=8, 曲四的讨论可知|S|≤16-2=12;
- ②. 工"。":将A中区町(0,0) 湖 放为 (0,1) 和(1,0), 他西丁之中巴到项 14在8之中、它表明有一个只含一个"0"的四元数阻不在5中,问题程化为了②. 1、182:151=12 ,即 151max=12.