

Face Recognition In Harsh Conditions: An Acoustic Based Approach With Commercial Device

Yanbo Zhang, Panrong Tong, Songfan Li, Yaxiong Xie, Mo Li

MOBISYS '24, Minato-ku, Tokyo, Japan

4 June, 2024

Background

- > The accuracy of vision-based face recognition reduces under harsh environment.
- > Vision based face recognition causes privacy concern.

Mask blockage

Low/Unbalanced lighting

Privacy concern

Background

> Facial recognition using facial reflected wireless signal

EchoPrint – MobiCom 2018

RFace - INFOCOM 2021

mmFace - MobiCom 2022

- Cannot resolve masked faces
- Requires visual assistance
- Relies on heavy hardware infrastructure

Motivation

> Leveraging the special physical properties of acoustic signal for better sensing resolution and obstacle penetration capability.

Feature

> We exploit the spatial characteristics of human face for recognition.

Reflection from all facial areas collectively forms a unique representation of the human face.

Idea

> Representing the spatial characteristic with *Facial spectrum*.

System overview

Challenge

> 1. How to resolve the reflected signals from different facial areas by using the received signals that are in a state of superposition?

> Basic idea: reversing the process from facial reflection to multipath superposition.

> Multipath Re-combining

Identifying the multipath components that are reflected from the same facial area.

> Multipath Re-combining

Identifying the multipath components that are reflected from the same facial area.

Criterion for multipath selection

For the *i*-th facial reflecting area at the position $C_{F_i} = (x_{F_i}, y_{F_i}, z_{F_i})$, we select the *k*-th path from the profile of the *j*-th microphone

$$k = arg \min_{k \in \mathbb{Z}^+} |c\tau_k - D_{F_iM_j} - D_{F_iS}|$$

where

$$D_{F_iM_j} = ||C_{F_i} - C_{M_j}||$$

$$D_{F_iS} = ||C_{F_i} - C_{S}||$$

 C_{M_j} and C_S denote the position of the j-th mic. and the speaker, respectively

> Multipath Re-combining

Criterion for multipath selection

For the *i*-th facial scattering area at the position $C_{F_i} = (x_{F_i}, y_{F_i}, z_{F_i})$, we select the *k*-th path from the profile of the *j*-th microphone

$$k = arg \min_{k \in \mathbb{Z}^+} |c\tau_k - D_{F_iM_j} - D_{F_iS}|$$

where

$$D_{F_iM_j} = ||C_{F_i} - C_{M_j}||$$

$$D_{F_iS} = ||C_{F_i} - C_{S}||$$

 C_{M_j} and C_S denote the position of the j-th mic. and the speaker, respectively

> Locating the Space-of-Interest

Locating the Space-of-Interest

> Showcase of the derived facial spectrum

2D spectrum of User B (at different depth)

Challenge

> 2. How to avoid the impact of factors unrelated to identity?

1) Facial mask blockage

2) Facial – array distance

Design – Spectrum recognition

Facial mask varies the facial spectrum.

2D spectrum of User A, without mask

2D spectrum of User A, with mask

Design – Spectrum recognition

> We design a RD-Net to provide accurate recognition even with facial mask blockage.

Loss function:

$$L=L_R-rac{lpha L_M+eta L_D}{2}$$
 , $0\leqlpha$, $eta\leq1$

Implementation

➤ We implement AcFace with commercial low-cost acoustic hardware.

> Facial spectrum validation

How effective does the spectrum represent essential facial features when compared with a facial image?

- > Facial spectrum validation
 - How effective does the spectrum represent essential facial features when compared with a facial image?

- > Facial spectrum validation
 - How effective does the spectrum represent essential facial features when compared with a facial image?

- > Facial spectrum validation
 - How effective does the spectrum represent essential facial features when compared with a facial image?

> End-to-end evaluation

Comparative evaluation

Test setting	VGG-Face	FaceNet	SRT	AcFace	
Without mask	98.05/97.73	98.86 / 98.79	98.81/97.06	95.88/96.12	
With mask	83.16/83.25	85.63/86.66	95.61 / 95.82	95.77 / 96.07	
With mask (dim)	77.67/77.32	78.11/79.67	81.57/83.79	95.71 / 96.19	

Different environments

Environment	Precision (%)	Recall (%)	F1-score (%)	AA (%)
Meeting room	95.66/96.53	95.51/95.49	95.76/96.33	95.88/-
Lab	96.79/95.99	95.67/95.87	95.82/95.87	95.81/-
Office	95.29/95.90	94.82/95.83	94.66/95.86	95.45/-

Different number of users

Number of users	4	6	8	10	12	14	15
Ave. Accuracy (%)	98.81	98.67	96.72	95.88	95.97	96.13	95.67
Inference delay (ms)	16.62	21.54	26.92	31.36	34.80	39.96	43.39

Conclusion

- > We propose acoustic facial spectrum, which can provide an accurate representing essential facial features of human faces.
- ➤ We devise a recognizer-discriminator network model to provide accurate and robust feature extraction/identification
- > We prototype the system and conduct comprehensive real-world evaluation.

Thanks