```
In [1]: #import numpy ,pandas ,matplotlib,seaborn
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [3]: # read csv file
df = pd.read_csv('Train.csv')
df
```

Out[3]:

use_block	Mode_of_Shipment	Customer_care_calls	Customer_rating	Cost_of_the_Product	Pric
D	Flight	4	2	177	
F	Flight	4	5	216	
А	Flight	2	2	183	
В	Flight	3	3	176	
С	Flight	2	2	184	
А	Ship	4	1	252	
В	Ship	4	1	232	
С	Ship	5	4	242	
F	Ship	5	2	223	
D	Ship	2	5	155	
ıns					
4					

Out[4]:

	ID	Warehouse_block	Mode_of_Shipment	Customer_care_calls	Customer_rating	C
0	1	D	Flight	4	2	
1	2	F	Flight	4	5	
2	3	Α	Flight	2	2	
3	4	В	Flight	3	3	
4	5	С	Flight	2	2	
10994	10995	Α	Ship	4	1	
10995	10996	В	Ship	4	1	
10996	10997	С	Ship	5	4	
10997	10998	F	Ship	5	2	
10998	10999	D	Ship	2	5	

10999 rows × 12 columns

In [5]: # drop duplicates
 df.drop_duplicates()

Out[5]:

lode_of_Shipment	Customer_care_calls	Customer_rating	Cost_of_the_Product	Prior_purchases
Flight	4	2	177	3
Flight	4	5	216	2
Flight	2	2	183	4
Flight	3	3	176	4
Flight	2	2	184	3
Ship	4	1	252	5
Ship	4	1	232	5
Ship	5	4	242	5
Ship	5	2	223	6
Ship	2	5	155	5

Warehouse_block Mode_of_Shipment Customer_care_calls Customer_rating Cost_of_

```
In [6]: # set index as id
df.set_index('ID')
```

Out[6]:

	-	'	– –		_
ID					
1	D	Flight	4	2	
2	F	Flight	4	5	
3	Α	Flight	2	2	
4	В	Flight	3	3	
5	С	Flight	2	2	
10995	Α	Ship	4	1	
10996	В	Ship	4	1	
10997	С	Ship	5	4	
10998	F	Ship	5	2	
10999	D	Ship	2	5	

10999 rows × 11 columns

memory usage: 1.0+ MB

In [7]: # info of the data set df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10999 entries, 0 to 10998
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype		
0	ID	10999 non-null	int64		
1	Warehouse_block	10999 non-null	object		
2	Mode_of_Shipment	10999 non-null	object		
3	Customer_care_calls	10999 non-null	int64		
4	Customer_rating	10999 non-null	int64		
5	Cost_of_the_Product	10999 non-null	int64		
6	Prior_purchases	10999 non-null	int64		
7	Product_importance	10999 non-null	object		
8	Gender	10999 non-null	object		
9	Discount_offered	10999 non-null	int64		
10	Weight_in_gms	10999 non-null	int64		
11	Reached.on.Time_Y.N	10999 non-null	int64		
<pre>dtypes: int64(8), object(4)</pre>					

Out[8]:

Prior_purcha	Cost_of_the_Product	Customer_rating	Customer_care_calls	ID	
10999.000	10999.000000	10999.000000	10999.000000	10999.00000	count
3.567	210.196836	2.990545	4.054459	5500.00000	mean
1.522	48.063272	1.413603	1.141490	3175.28214	std
2.000	96.000000	1.000000	2.000000	1.00000	min
3.000	169.000000	2.000000	3.000000	2750.50000	25%
3.000	214.000000	3.000000	4.000000	5500.00000	50%
4.000	251.000000	4.000000	5.000000	8249.50000	75%
10.000	310.000000	5.000000	7.000000	10999.00000	max
					4

```
In [23]: # pie chart for on time delivery
    ontime_counts = df['Reached.on.Time_Y.N'].value_counts()
    plt.figure(figsize = (8,8))
    plt.pie(ontime_counts, labels=['Not on time','on time'] ,explode=(0,.2))
    plt.legend(loc = 'upper right', fontsize = '20')
    plt.title('Reached on time Distribution')
    plt.show()
```

Reached on time Distribution

In [46]: # select dtypes only numerical values
noobj = df.select_dtypes(exclude='object')

In [49]: # correlation between individual data
 cor = noobj.corr()
 cor

Out[49]:

	ID	Customer_care_calls	Customer_rating	Cost_of_the_Product
ID	1.000000	0.188998	-0.005722	0.196791
Customer_care_calls	0.188998	1.000000	0.012209	0.323182
Customer_rating	-0.005722	0.012209	1.000000	0.009270
Cost_of_the_Product	0.196791	0.323182	0.009270	1.000000
Prior_purchases	0.145369	0.180771	0.013179	0.123676
Discount_offered	-0.598278	-0.130750	-0.003124	-0.138312
Weight_in_gms	0.278312	-0.276615	-0.001897	-0.132604
Reached.on.Time_Y.N	-0.411822	-0.067126	0.013119	-0.073587
4				

In [50]: # heat map for correlation data
sns.heatmap(cor, annot=True,linewidth=.5)

Out[50]: <Axes: >


```
In [42]: # scatter plot for cost of each product
   data= df.head(n=30)
   plt.scatter(data.index, data['Cost_of_the_Product'])
   plt.title('Scatter plot of cost of product by id ')
   plt.xlabel('Index')
   plt.ylabel('cost of product')
   plt.show()
```


