Part I

Introduction

Introduction & Basic Terms

- Motivation
- 2 Applications
- 3 Distinction
- Term: Data Warehouse
- Subjects
- Benchmarks

Motivation

Scenario: Beverage Market

Motivation

DB-Schema

DB-Usage

Queries:

- How many bottles of coke were sold in the last months?
- How did the sales of red wine develop in the last year?
- Who are our top clients?
- From which supplier do we source most of the boxes?

Problems

- Use of external sources (customer database, supplier database, ...)
- Data with temporal reference

Advanced Scenario

Saxony-Anhalt

Thuringia

DB-Usage (2)

- Queries
 - Do we sell more beer in Ilmenau than in Erfurt?
 - How much coke was sold in Thuringia in summer?
 - More than water?
- Problem
 - Queries over multiple databases

Solutions

- Variant 1: "Distributed DB"
 - ► Global query over multiple DBs → View with Union
 - Disadvantage: expensive distributed query execution
- Variant 2: "Central DB"
 - Changes on a central DB
 - Disadvantage: long response times in productive settings

Data Warehouse-Solution

Subject of the Lecture

- Data Warehouse: Collection of data and technologies to support decision making
- Challenge for database technologies
 - Data volume (efficient storage and management, query processing)
 - Data modeling (Time reference, multiple dimensions)
 - Integration of heterogeneous data sources
- Focus
 - Database techniques of Data Warehouses

Overview

[nach Chaudhuri&Dayal 1997]

Applications

Business applications

- Information provisioning
 - Data and information as a basis for decisions (e.g., metrics)
 - Influence on a future operating result and on the handling of business processes
 - User: Manager, head of department, professionals
 - Types of provisioning:
 - Query Approaches: free definable queries and reports (individual solution strategy)
 - Reporting: Access to pre-defined reports (fixed range of solutions)
 - Editorially prepared, personalized information
 - ★ Domain-specific data views
 - ★ Pre-calculated metrics (e.g., by Data Mining Algorithms)

Business applications (2)

- Analyse
 - Detailed Analysis of the data to detect changes
 - Scenario techniques (What-If-Analyzes)
 - Users: Specialists (e.g., Controlling, Marketing)
- Planning
 - Support through explorative data analysis
 - Aggregation of individual plans
 - Forecasting methods (e.g., statistical seasonal models)
- Campaign Management
 - Support of strategic campaigns
 - Customer analysis, portfolio- and risk analysis

Scientific and Technical Applications

- Scientific Applications
 - Statistical and Scientific Databases → technical roots of the DW
 - Example: Projekt Earth Observing System (Climate- and Environmental Research)
 - ★ Approx. 1,9 TB meteorological data
 - ★ Preprocessing and Analysis (statistical, Data Mining)
- Technical Applications
 - Public sector: DW with environmental or geopgraphical data (e.g., water analyzes)

Example Use Case

- Wal-Mart (www.wal-mart.com)
- Market leader in American retail
- Business-wide Data Warehouse
 - Size: approx. 300 TB (2003), 480 TB (2004), today: approx. 12 PB
 - Daily around 25.000 DW-Queries
 - High level of detail (daily evaluation of article sales, warehouse stock, customer behavior)
 - Basis for customer basket analysis, customer classification . . .

Questions and Tasks (Example)

- Checking the assortment of goods to identify slow sellers or bestsellers
- Location analysis to estimate the profitability of branch offices
- Investigation and prognosis of marketing actions
- Evaluation of customer surveys, complaints regarding certain products etc.
- analysis of the stock
- Shopping cart analysis with the help of cash register data (financial transactions)

Example of a Query

Which sales have been made in the years 2009 and 2010 in the product segments beer and red wine in the federal states Saxony-Anhalt und Thuringia?

Result (Cube)

Result (2-dim. Cube Illustration)

Sales		Beer	Red Wine	Sum
2009	Saxony-Anhalt	45	32	77
	Thuringia	52	21	73
	Sum	97	53	150
2010	Saxony-Anhalt	60	37	97
	Thuringia	58	20	78
	Sum	118	57	175

Distinction

Aspects of Data Warehouses

Integration

- Unification of data from different, mostly heterogeneous sources
- Overcoming heterogeneity on different levels (system, schema, data)

Analysis

- Provision of data in a form desired by the user (related to decision area)
- Requires preselection, time reference, aggregation

Short Transaction (OLTP)

Customer					
ID	name	first name	postal code	city	street
4711	Saake	Gunter	01234	Somewhere	On the Hill 3
42	Sattler	K.	12345	Here	Route 18
0800	Köppen	Veit	60701	There	Pathway 9A

SELECT first name,	last name	Result	
FROM Customer		First Name	Last Name
WHERE id = 0800		Veit	Köppen

Long-running Transaction (OLAP)

SELECT DISTINCT ROW Time. Dimension AS Year.

```
Product.dimension AS Articles,
                     AVG (Fact. Turnover) AS Average turnover,
                     Place.Dimension AS Sales area
FROM (Product group INNER JOIN Product ON Product group.
      [Group No] = Product. [Group ID]) INNER JOIN
      ((((Product INNER JOIN [Fact.Turnover] ON Product.[Item no.]
      = [Fact.Turnover].[Article no.]) INNER JOIN Order ON
      [Fact.Turnover].[Order-No] = Order.[Order-ID]) INNER JOIN
      Time.Dimension ON Orders.[Order-ID] =
      Time.Dimension [Order-ID]) INNER JOIN Place.Dimension ON
      Order.[Order-ID] = Place.Dimension.[Order-ID]) ON
      Product group.[Group No.] = Product.[Group ID]
GROUP BY Product . Dimension . Group . Name . Place . Dimension . State .
         Time.Dimension.Year;
```

Distinction to OLTP

- Classical operational information systems
 - → Online Transactional Processing (OLTP)
 - Data collection and management
 - Processing under responsibility of the respective department
 - Transactional processing: short read/write accesses to few data records
- Data Warehouse
 - → Online Analytical Processing (OLAP)
 - Analysis in the center
 - Long-running read transactions on many data sets
 - Integration, consolidation and aggregation of data

Distinction to OLTP: Queries

	OLTP	OLAP
Focus	read, write, modify, delete	read, periodic insert
Transaction duration	short read/write trans-	long-lasting read
and type	actions	transactions
Query structure	simple structured	complex
Volume of a query	few records	many records
Data model	query flexible	analysis-oriented

Distinction to OLTP: Data

	OLTP	OLAP
Data sources	usually one	more
Properties	non-derivative, cur- rent, autonomous, dynamic	derived / consolidated, historicized, integrated, stable
Data volume	MByte GByte	GByte TByte PByte
Accesses	single tuple access	table access (column by column)

Distinction to OLTP: Users

	OLTP	OLAP
User type	Input/Output by employee or application software	Manager, Controller, Analyst
User number	many	few (up to a few hundred)
Response time	msecs secs	secs min

Definition: DBMS Techniques

- Parallel Databases
 - Technique for the implementation of a DWH
- Distributed databases
 - Usually no redundant data management
 - Distribution as a means of load distribution
 - No content integration/consolidation of data
- Federated Databases
 - Greater autonomy and heterogeneity
 - No specific analytical purpose
 - No read access optimization

Term: Data Warehouse

Data Warehouse: Definition

A Data Warehouse is a **subject-oriented**, **integrated**, **non-volatile**, and **time variant** collection of data in support of managements decisions.

(W.H. Inmon 1996)

Data Warehouse: Characteristics

- Subject-oriented:
 - Purpose is to support cross-divisional evaluation possibilities for different domains
 - Centralized provision of data on business objects (topics)
- Integrated database:
 - Processing of data from several different (internal and external) data sources (e.g., operational DB or web)
- Non-volatile database:
 - Stable, persistent database
 - Data in the DW are generally no longer removed or changed
- Time-related data (time-variant):
 - Comparison of data over time possible (time series analysis)
 - Storage over a longer period of time

Further Terms

- Data Warehousing
 - Data Warehouse process, i.e., all steps of data retrieval (extraction, transformation, loading), saving and analysis
- Data Mart
 - External (partial) view of the data warehouse
 - By copying
 - Application-specific
- OLAP (Online Analytical Processing)
 - Explorative, interactive analysis based on the conceptual data model
- Business Intelligence
 - Data Warehousing + Reporting + Analysis (OLAP, Data Mining); also automatically generated reports in companies

Division of operative and analytical systems: Reasons

- Response time behavior: Analysis on operational source data systems → bad performance
- Historization of company data
 Long term storage of data → Time series analysis
- access to data independent of operative data sources (availability, integration problems)
- Unification of the data format in DW
- Guarantee of the data quality in DW

History: Roots

- 60s: Executive Information Systems (EIS)
 - Qualitative information supply for decision makers
 - Small, condensed extracts of the operative data stock
 - Preparation in the form of static reports
 - Mainframe
- 80s: Management Information Systems (MIS)
 - Mostly static report generators
 - Introduction of hierarchical levels for evaluation of key figures (Roll-Up, Drill-Down)
 - Client-server architectures, GUI (Windows, Apple)

History

- 1992: Introduction of the data warehouse concept by W.H. Inmon
 - Redundant storage of data, detached from source systems
 - Limitation of the data to analysis purposes
- 1993: Definition of the term OLAP by E.F. Codd
 - Dynamic, multidimensional analysis
- Other areas of influence
 - Dissemination of business process oriented transaction systems (SAP R/3) → Provision of decision relevant Information
 - Data Mining
 - WWW (Web-enabled Data Warehouse etc.)

Topics

Lecture: Objectives

- Transfer of knowledge about database techniques for building and implementing data warehouses
- Application of known DB techniques (see lecture "Database systems")
 - Data Modeling
 - Query languages and processing
- DW-specific techniques
 - Multidimensional data modeling
 - Special querying techniques
 - Index structures
 - Materialized views
 - Fields of application: business intelligence

DW Architecture

- Components of DW and their tasks
- Databases
 - Data sources: Origin of the data
 - Staging Area: temporary database for transformation
 - Data Warehouse: physical database for analysis
 - Repository: Database with metadata

DW Architecture: Components

- Data-Warehouse-Manager: central control and management
- Monitors: Monitoring sources for changes
- Extractors: Selection and transport of data from sources in Data cleansing area
- Transformers: Standardization and data cleansing
- Loading components: Loading the transformed data into the DW
- Analysis components: Analysis and presentation of data

Multidimensional Data Model

- Data model to support the analysis
 - Facts and dimensions
 - Classification scheme
 - Cube
- Operations: Pivoting, Roll-Up, Drill-Down, Drill-Across, Slice and Dice
- Notations for conceptual modeling
- Relational implementation
 - Star Scheme, Snowflake Scheme

ETL Process

- Process of extraction, transformation and loading
- Extraction of data from sources:
 - Operational databases,
 - Web,
 - Files, etc.
- Loading data into the DWH
- Aspects of data quality
 - Term
 - Problems
 - Data Cleaning

Index and Memory Structures

- Classification
- Repetition
 - B-tree and B+-tree
- Multidimensional index structures
 - R-tree
 - UB-Tree
 - Bitmap Index
 - Comparison
- Other forms
- Multidimensional Storage

Queries to Data Warehouses

- Grouping and Aggregation
- Supergroups, CUBE
- OLAP functions from SQL:2003
- Multidimensional extensions of query languages: MDX

Query processing and optimization

- Calculation of grouping and cubes
- Star-Joins
- Further optimization aspects

Materialized Views

- Materialized view: in advance calculated section from a fact table
- Use: Request substitution
- Selection: Determination of the redundant data
 - Static vs. dynamic selection procedure
 - Semantic caching
- Maintenance and updating

Applications for Data Warehouses

- Reporting
- Data Exploration
 - classification
 - shopping cart analysis
 - forecast
- Application scenarios

Big Data: 5 V's

- Volume very high data volume (doubling every 2 years)
- Variety structured and unstructured data
- Velocity from batch to real-time
- Veracity trust in data
- Value value of (business) data

Big Data and Data Warehouse

Benchmarks

TPC Benchmarks

- Comparison of the performance of databases (www.tpc.org)
 - TPC-C: OLTP Benchmark
 - ► TPC-H: Ad-hoc Decision Support (variable parts)
 - ▶ TPC-R: Reporting Decision Support (fixed requests)
 - ▶ TPC-W: eCommerce transaction processing
- Predefined schemas (supply chain)
- Schema, query and data generators
- Different DB sizes
 - TPC-H: 100 GB 300 GB 1 TB 3 TB 10 TB

TPC-H: Schema

TPC-H: Queries

```
SELECT c name, c custkey,
   o orderkey, o orderdate,
   o total price, SUM (l_quantity)
FROM customer, orders, lineitem
WHERE o_orderkey IN (SELECT l_orderkey
      FROM lineitem
      GROUP BY 1 orderkey
      HAVING SUM (1 quantity) > :1)
  AND c_custkey = o_custkey
   AND o orderkey = 1 orderkey
GROUP BY c name, c custkey, o orderkey,
   o orderdate, o totalprice
ORDER BY o totalprice desc, o orderdate
```

TPC-H: Numbers (10,000 GB) - 2011

10,000 GB Results										
Rank			QphH	Price/QphH	Watts/KQphH	System Availability			Date Submitted	Cluste
1	DØLL	Dell PowerEdge R710 using EXASolution 4.0	7,128,255	.53 USD	NR	10/01/11	EXASOL EXASolution 4.0	EXASOL EXACtuater OS 4.0	04/05/11	Y
2	IBM	IBM System p 570	343,551	32.89 USD	NR	04/15/08	IBM DB2 Warehouse 9.5	IBM AIX 5L V5.3	10/15/07	٧
3	49	HP Integrity Superdome/Dual-Core Itanium/1.6 GHz	208,457	27.97 USD	NR	09/10/08	Oracle Database 11g Enterprise Edition	HP-UX 11.i v3 64 bit	03/10/08	N
4	IBM	IBM System p5 575 with DB2 UDB 8.2	180,108	47.00 USD	NR	08/30/06	IBM DB2 UDB 8.2	IBM AIX 5L V5.3	07/14/06	Y
5	49	HP Integrity Superdome-DC Itanium2/1.6GHz /64p/128c	171,380	32.91 USD	NR	04/01/07	Oracle Database 10g R2 Enterprise Edt w/Partitioning	HP-UX 11i v3 64 bit	11/30/06	N
6	49	HP Integrity Superdome - Itanium2/1.5 GHz-128p/128	86,282	161.24 USD	NR	04/06/05	Oracle Database 10g Enterprise Edition	HP UX 11.i V2 64 bit	10/07/04	Y
7	unisys	Unisys ES7000 Model 7600R Enterprise Server(16s)	80,172	18.95 USD	NR	02/17/09	Microsoft SQL Server 2008 Enterprise x64 Edition	Microsoft Windows Server 2008 Datacenter x64 Edition	02/17/09	N
8	49	HP Integrity Superdome	63,650	38.54 USD	NR	08/30/08	Microsoft SQL Server 2008 Enterprise Edition	Microsoft Windows Server 2008 Intanium based Systems	02/27/08	N
9	49	HP Integrity Superdome - Itanium2/1.5 GHz-64p/64c	49,104	118.13 USD	NR	03/25/04	Oracle Database 10g Enterprise Edition	HP-UX 11.i 64-bit Base OS	01/05/04	N

Products

- OLAP-Tools/Server
 - MS Analysis Services, Hyperion, Cognos
- DW Extensions for RDBMS
 - Oracle11g, IBM DB2, MS SQL Server: SQL extensions, index structures, mat. Views, Bulk-Load/Insert, . . .
- BI Accelerator
 - read-optimized DBS solutions: Main memory processing, column oriented data organization, MapReduce techniques, cluster architectures
 - e.g. SAP TREX, Greenplum, Vertica, EXASOL, ...
- ETL-Tools
 - MS Integration Services, Oracle Warehouse Builder, . . .