WHAT IS CLAIMED IS:

1	1. A method for mapping a user function for a programmable integrated
2	circuit to a plurality of lookup tables, the method comprising:
3	decomposing the user function into a first set of decomposed functions, the
4.	user function receiving input variables;
5	determining whether the first set of decomposed functions can be implemented
6 ·	by one of a set of lookup table configurations for the programmable integrated circuit; and
7	if none of the set of lookup table configurations can implement the first set of
8	decomposed functions, rotating at least two of the input variables of the user function.
1	2. The method according to claim 1 further comprising:
2	decomposing the user function into a second set of decomposed functions; and
3	determining whether the second set of decomposed functions can be
4	implemented by one of the set of lookup table configurations for the programmable
5	integrated circuit.
1	3. The method according to claim 1 further comprising:
2	if the user function is not successfully decomposed into a set of decomposed
3	functions, rotating at least two of the input variables of the user function; and
4	attempting to decompose the user function into a second set of decomposed
5	functions.
1	4. The method according to claim 1 further comprising:
2	if one of the lookup table configurations can implement the first set of
3	decomposed functions, placing lookup tables in the lookup table configuration into logic
4	blocks on the programmable integrated circuit; and
5	configuring programmable routing resources to connect the logic blocks on the
6	programmable integrated circuit.
1	5. The method according to claim 4 wherein one of the lookup table
2	configurations includes two 5-input lookup tables and one 6-input lookup table.
1	6. The method according to claim 4 wherein at least two of the input
2	variables are shared between two of the lookup tables.

1	7. The method according to claim 4 wherein one of the lookup table
2	configurations includes two 4-input lookup tables and one 6-input lookup table.
1	8. The method according to claim 1 wherein decomposing the user
2	function into the first set of decomposed functions further comprises decomposing the user
3	function into first stage functions and a second stage function,
4	outputs of the first stage functions being inputs into the second stage function.
1	9. The method according to claim 8 wherein rotating at least two of the
2	input variables of the user function further comprises swapping at least one of the input
3	variables of the first stage functions with at least one of the input variables of the second
4 .	stage function.
1	10. The method according to claim 9 further comprising:
2	attempting to decompose the user function into a second set of decomposed
3	functions based on the rotated input variables.
1	11. A computer program product stored on a computer readable medium
2	for mapping a user function for a programmable integrated circuit to lookup tables, the
3	computer program product comprising:
4	code for decomposing the user function into a first set of decomposed
5	functions, wherein the user function receives input variables;
6	code for determining whether the first set of decomposed functions can be
7	performed by a configuration of lookup tables on the programmable integrated circuit; and
8	code for rotating at least two of the input variables of the user function if none
9	of the configurations of lookup tables can implement the first set of decomposed functions.
1	12. The computer program product according to claim 11 further
2	comprising:
3	code for rotating at least two of the input variables of the user function if the
4	user function is not successfully decomposed into a set of decomposed functions; and
5	code for attempting to decompose the user function into a second set of
5	decomposed functions.

Ļ

1	13. The computer program product according to claim 11 wherein the code
2	for decomposing the user function into the first set of decomposed functions further
3	comprises code for decomposing the user function into first stage functions and a second
4	stage function, outputs of the first stage functions being inputs into the second stage function.
1	14. The computer program product according to claim 13 wherein the code
2	for decomposing further comprises:
3	code for decomposing the user function into a second set of decomposed
4	functions based on the rotated input variables, the second set of decomposed functions
5	including first stage functions and a second stage function,
6	wherein at least two input variables of the first and the second stages of the
7	second set of decomposed functions have been rotated with respect to input variables of the
8	first and the second stages of the first set of decomposed functions.
1	15. The computer program product according to claim 11 wherein the code
2	for decomposing the first function into the second functions further comprises code for
3	decomposing the first function into the second functions using a non-disjoint decomposition
4	technique.
1	16. The computer program product according to claim 11 wherein the code
2	for decomposing the first function into the second functions further comprises code for
3	decomposing the first function into the second functions using a disjoint decomposition
4	technique.
1	17. The computer program product according to claim 11 further
2	comprising:
3	code for placing lookup tables in one of the lookup table configurations into
4	logic blocks on the programmable integrated circuit, if that lookup table configurations can
5	implement the decomposed functions; and
6	code for configuring programmable routing resources to connect the logic
7	blocks on the programmable integrated circuit.
1	18. The computer program product according to claim 11 wherein one of
2	the lookup table configurations includes two 5-input lookup tables and one 6-input lookup

table.

I	19. The computer program product according to claim 11 wherein one of
2	the lookup table configurations includes two 4-input lookup tables and one 6-input lookup
3	table.
1	20. The computer program product according to claim 11 further
2	comprising:
3	code for decomposing the user function into a second set of decomposed
4	functions based on the rotated input variables, if none of the configurations of lookup tables
5	can implement the first set of decomposed functions; and
6	code for determining whether the second set of decomposed functions can be
7	implemented by one of the configurations of lookup tables for the programmable integrated
8	circuit.