

WWI 2022 – grupa 3 Dzień 3

Dostępna pamięć: 256MB

Piaskowy obrazek

Pewnie każdy kojarzy obrazki piaskowe, w których po obróceniu przesypuje się piasek. Nie są zbyt skomplikowane, ale wyglądają bardzo efektownie. Jednak tym razem obrazek nie ma typowej formy ramki, a ukorzenionego w wierzchołku 1 drzewa! Nasz piaskowy obrazek jest również nietypowy, ponieważ możemy do niego dowolnie dosypywać i odsypywać piasek. W wierzchołku 1 znajduje się otwór do wsypywania/odsypywania piasku.

Piasek możemy wsypać do pewnego poddrzewa - jeśli decydujemy, że do jakiegoś wierzchołka wsypujemy piasek, to wszystkie wierzchołki z jego poddrzewa włącznie z nim zostaną zasypane piaskiem.

Jeśli chcemy wysypać piasek z jakiegoś wierzchołka, to musimy pozbyć się piasku również ze wszystkich przodków danego wierzchołka.

Oczywiście chcemy również wiedzieć jak w danej chwili wygląda nasz obrazek, dlatego w każdym momencie powinniśmy móc powiedzieć, czy dany wierzchołek jest pusty, czy zapełniony piaskiem. Początkowo obrazek jest zupełnie pusty.

Wejście

Pierwsza linia wejścia zawiera jedną liczbę całkowitą n ($1 \le n \le 500\,000$) oznaczającą liczbę wierzchołków w drzewie. W kolejnych n-1 wierszach wejścia znajduje się opis drzewa w postaci par liczb a_i, b_i ($1 \le a_i, b_i \le n$, $a_i \ne b_i$), gdzie a_i, b_i oznaczają wierzchołki między którymi znajduje się krawędź. W kolejnym wierszu wejścia znajduje się jedna liczba całkowita m ($1 \le m \le 500\,000$) oznaczająca liczbę operacji wykonanych na piaskowym obrazku.

Kolejne m wierszy zawiera opisy kolejnych operacji wykonanych na drzewie.

j-ty z tych wierszy zawiera dwie liczby całkowite p_j, v_j ($1 \le p_j \le 3, 1 \le v_j \le n$), gdzie $p_j = 1$ oznacza wsypanie do poddrzewa wierzchołka v_j piasku, $p_j = 2$ wysypanie z wierzchołka v_j oraz wszystkich jego przodków piasku, a $p_j = 3$ jest pytaniem czy przy aktualnie wykonanych operacjach na drzewie wierzchołek v_j jest pełny

Wyjście

Na wyjście należy wypisać dla każdego zapytania typu $p_j=3$ odpowiedź TAK jeśli wierzchołek jest aktualnie pełny lub NIE jeśli wierzchołek jest aktualnie pusty.

Przykład

Wejście	Wyjście
10	NIE
	NIE
1 2	
2 3	NIE
2 4	TAK
1 5	TAK
4 6	TAK
3 7	
6 8	
6 9	
2 10	
10	
3 8	
3 6	
3 4	
1 2	
1 5	
3 10	
3 3	
2 8	
2 4	
3 9	

Wejście	Wyjście
	NTE
5	NIE
1 2	TAK
1 3	TAK
1 4	TAK
1 5	TAK
16	NIE
1 1	TAK
2 2	TAK
1 2	NIE
3 1	TAK
3 2	
3 3	
3 4	
3 5	
2 2	
1 1	
2 4	
3 1	
3 2	
3 3	
3 4	
3 5	

WWI 2022 – grupa 3 Dzień 3

Ocenianie

Podzadanie	Ograniczenia	Limity czasowe	Punkty
1	$n, m \leqslant 1000$	4 s	10
2	graf jest "linią" ukorzenioną w jednym z końców	4 s	10
3	graf jest "linią"	4 s	5
4	zapytań typu 2 jest maksymalnie 10	4 s	25
5	zapytań typu 3 jest maksymalnie 10	4 s	25
6	brak dodatkowych ograniczeń	4 s	25