সংখ্যা পদ্ধতি ২৩৩

৩.৬ কোড (Code)

৩.৬.১ কোডের ধারণা

কম্পিউটার সিস্টেমে ব্যবহৃত প্রতিটি বর্ণ, সংখ্যা বা বিশেষ চিহ্নকে পৃথক পৃথকভাবে সিপিইউকে বুঝানোর জন্য বাইনারি বিট অর্থাৎ 0 বা 1-এ রূপান্তর করে বিভিন্নভাবে সাজিয়ে অদ্বিতীয় সংকেত তৈরি করা হয়। এই অদ্বিতীয় সংকেতকে কোড বলা হয়। ডেটা ইনপুটের জন্য কোডিং-এর দরকার হয়। প্রসেসিং শেষে আবার আউটপুটকে ডিকোডিং করা হয়। এ পদ্ধতিতে কোডকে আবার বর্ণ, সংখ্যা বা চিহ্নে রূপান্তর করা হয়।

নিচে কতগুলো বহুল ব্যবহৃত কোডের নাম দেয়া হলো:

- ১. অক্টাল কোড (Octal Code)
- ২. হেক্সাডেসিমাল কোড (Hexadecimal Code)
- ৩. বিসিডি কোড (BCD Code)
- 8. আলফানিউমেরিক কোড (Alphanumeric Code)
- ৫. অ্যাসকি কোড (ASCII Code)

- ৬. ইবিসিডিআইসি কোড (EBCDIC Code)
- ৭. ইউনিকোড (Unicode)
- ৮. মোর্স কোড (Morse Code)
- ৯. গ্রে কোড (Gray Code)।

বর্তমানে অ্যাসকি কোড ও ইউনিকোড বেশি ব্যবহৃত হয়।

৩.৬.২ কোডের উদাহরণ

নিচে বহুল ব্যবহৃত কয়েকটি কোডের উদাহরণ দেওয়া হলো:

বিসিডি কোড (BCD Code)

দৈনন্দিন হিসাব-নিকাশে আমরা সবসময় দশমিক সংখ্যা ব্যবহার করলেও কম্পিউটার বা ইলেকট্রনিক সার্কিট দিয়ে ডিজিটাল প্রক্রিয়া করার জন্য এগুলোকে বাইনারিতে রূপান্তর করে নিতে হয়। এর আগে ডেসিমাল থেকে বাইনারিতে রূপান্তরের প্রক্রিয়াটি আমরা শিখেছি। কিন্তু এই প্রক্রিয়ায় রূপান্তরের পরে এর দশমিক রূপটি অক্ষুণ্ণ থাকে না। দশমিক সংখ্যা যেহেতু বহুলভাবে ব্যবহৃত হয়, তাই এর দশমিক রূপটি যতটুকু সম্ভব অক্ষুণ্ণ রেখে বাইনারি সংখ্যায় রূপান্তরের জন্য একটি বিশেষ ধরনের কোডিং পদ্ধতি গ্রহণ করতে হয়। এটিই বিসিডি কোড। BCD শব্দ-সংক্ষেপটির পূর্ণ অর্থ হলো Binary Coded Decimal। দশমিক

বিভিন্ন প্রকার বিসিডি কোড আছে। যেমন:

- বিসিডি 8421 কোড (বহুল ব্যবহৃত কোড)
- বিসিডি 7421 কোড
- বিসিডি 5421 কোড
- বিসিডি 2421 কোড ইত্যাদি।

সংখ্যার প্রতিটি অঙ্ককে পৃথকভাবে 4 বিট বাইনারি সংখ্যা দ্বারা প্রতিস্থাপন করার পর প্রাপ্ত কোডকে BCD কোড বলা হয়। 0 থেকে 9 এই দশটি অঙ্কের প্রতিটিকে প্রকাশের জন্য 4 বিট বাইনারি অঙ্কের প্রয়োজন। যেমন-

উদাহরণ—১ : (395)10 কে বিসিডি কোডের মাধ্যমে দেখাও।

$$(395)_{10} = 3$$
 9 5
 \downarrow \downarrow \downarrow
0011 1001 0101

$$\therefore (395)_{10} = (001110010101)_{BCD}$$

নিম্নে দশমিক সংখ্যায় বিভিন্ন প্রকার বিসিডি কোড দেখানো হলো—

ডেসিমাল	বিসিডি কোড							
সংখ্যা	8421	7421	5421	2421				
0	0000	0000	0000	0000				
1	0001	0001	0001	0001				
2	0010	0010	0010	0010				
3	0011	0011	0011	0011				
4	0100	0100	0100	1010				
5	0101	0101	0101	0101				
6	0110	0110	0110	0110				
7	0111	0111	0111	0111				
8	1000	1001	1011	1110				
9	1001	1010	1100	1111				

আমরা জানি, বাইনারি 4টি বিট দ্বারা 2⁴ বা 16 টি ভিন্ন অবস্থা প্রকাশ করা হয়। এক্ষেত্রে 0-15 পর্যন্ত 16টি সংখ্যা প্রকাশ করা সম্ভব হলেও BCD কোডে 10-15 পর্যন্ত বাড়তি 6টি সংখ্যা কখনোই ব্যবহার করা হয় না। আবার, দশমিক 10-কে স্বাভাবিকভাবে বাইনারিতে রূপান্তর করে 1010 এই চার বিট দ্বারা লেখা গেলেও বিসিডি কোডে 10-কে প্রকাশ করার জন্য 0001 0000 এই 8 বিটের প্রয়োজন হয়। কম্পিউটারের BIOS-এর তারিখ সংরক্ষণে, IBM-এর পুরোনো সুপার কম্পিউটারে, বিভিন্ন ইলেকট্রনিক ডিসপ্লে বোর্ডে তারিখ সংরক্ষণে BCD কোড ব্যবহৃত হয়।

উদাহরণ-২: 0111010000110010 বিসিডি কোডের সমতৃল্য দশমিক সংখ্যা কত হবে?

0111001001100001 বিটগুলোকে চারটি করে বিটে ভাগ করে প্রতি চার বিটের জন্য নির্ধারিত দশমিক অঙ্কটি বসাতে হবে।

বিসিডি	0111	0100	0011	0010
দশমিক	> 7	4	3	2

EBCDIC কোড / সম্প্রসারিত BCD কোড / ৮ বিট BCD কোড

EBCDIC হলো ৪-বিটের আলফানিউমেরিক কোড, যার পূর্ণরূপ Extended Binary Coded Decimal Information Code। এটি BCD কোডের পরবর্তী সংস্করণ, যা পুরাতন IBM মেইনফ্রেম ও মিনি কম্পিউটারে ব্যবহৃত হতো। এই কোড দ্বারা 2^8 অর্থাৎ 256 টি অঙ্ক এবং বিশেষ চিহ্নু প্রকাশ করা হয়। এ কোডে 0 থেকে 9 সংখ্যার জন্য 1111, A থেকে Z বর্ণের জন্য 1100, 1101 ও 1110 এবং বিশেষ চিহ্নুর জন্য 0100, 0101, 0110 ও 0111 জোন বিট ব্যবহার করা হয়। দশমিক সংখ্যাগুলোকে বিসিডি 8421 কোডের মাধ্যমে প্রকাশ করে প্রত্যেক সংখ্যার সাথে 1111 জোন বিট যোগ করে EBCDIC কোড প্রকাশ করা হয়। যেমন : 5-এর বিসিডি (8421) কোড হলো 0101। তাই এখানে 1111 জোন বিট যোগ করে 5-এর EBCDIC কোড হবে 11110101। ১৯৬৩-৬৪ সালে প্রাচীন কাগজের কার্ডে গর্ত করে কম্পিউটারে ইনপুট দেওয়া হতো, যা EBCDIC কোডে অন্তর্ভুক্ত ছিল। তবে এখন আর এই কোডের কোনো গুরুতু নেই।

আলফানিউমেরিক কোড (Alphanumeric Code)

বর্ণ, অঙ্ক এবং বিভিন্ন গাণিতিক চিহ্নসহ $(+, -, \times, \div)$ আরও কতগুলো বিশেষ চিহ্নের (!, @, #, %, &, \$) জন্য ব্যবহৃত কোডকে আলফানিউমেরিক কোড বলে। কতগুলো জনপ্রিয় আলফানিউমেরিক কোড হলো অ্যাসকি কোড (ASCII Code), ইবিসিডিআইসি কোড (EBCDIC Code), ইউনিকোড (Uni Code) ইত্যাদি। যেমন : ASCII–7 একটি আলফানিউমেরিক কোড। এ কোডের মাধ্যমে 2^7 বা 128 টি চিহ্নকে নির্দিষ্ট করা যায়। অনুরূপভাবে, ASCII–8 কোডের মাধ্যমে 2^8 বা 256 টি চিহ্নকে নির্দিষ্ট করা যায়।

আসকি কোড (ASCII Code)

ASCII আধুনিক কম্পিউটারে বহুল ব্যবহৃত 7/৪ বিটের আলফানিউমেরিক কোড, যার পূর্ণরূপ American Standard Code for Information Interchange। কম্পিউটার ও ইনপুট/আউটপুট ডিভাইস (যেমন কীবোর্ড, মাউস, মনিটর, প্রিন্টার)-এর মধ্যে তথ্য স্থানান্তরের জন্য এই কোড ব্যবহৃত হয়। সর্বপ্রথম ১৯৬৩ সালে ANSI (American National Standard Institute) কর্তৃক আসকি কোড উদ্ভাবিত হয়, পরবর্তীতে ১৯৬৫ সালে রবার্ট উইলিয়াম বিমার 7 বিটের আসকি কোড উদ্ভাবন করেন। এটি প্রথম টেলিপ্রিন্টারে ব্যবহারের জন্য তৈরি হলেও পরে তা কম্পিউটারের জন্য সমন্বয় করা হয়। এ কোডের মাধ্যমে 2^7 বা 128 টি চিহ্নকে নির্দিষ্ট করা যায়, যার মধ্যে প্রথম 32টি কোড যান্ত্রিক নিয়ন্ত্রণের জন্য এবং বাকি 96টি কোড ছোট হাতের, বড় হাতের ইংরেজি অক্ষর, সংখ্যা, যতিচিহ্ন, গাণিতিক চিহ্ন ইত্যাদির জন্য ব্যবহার করা হয়। যেমন: $Z = (01011010)_{ASCII}$

আসকি কোড ২ ধরনের হয়ে থাকে যথা- ১। ASCII-7 এবং ২। ASCII-8

১. ASCII—7: এটি মোট 7 টি বিট দ্বারা তৈরি হয়। বামদিকের তিনটি বিটকে জোন বিট এবং ডানদিকের চারটি বিটকে সংখ্যাসূচক বিট বলা হয়। মোট বিট 7 হওয়াতে এ কোডের মাধ্যমে 2⁷ বা 128টি অদ্বিতীয় চিহ্নকে নির্দিষ্ট করা যায়।

২. ASCII-8 : ইদানীং 16, 32 কিংবা 64 বিট কম্পিউটারের জন্য প্রচলন করা হয়েছে Exteded ASCII কোড। এটি মোট ৪টি বিট দ্বারা তৈরি হয়। সর্ব-বামদিকের বিটটিকে প্যারিটি বিট এবং সর্ব-ডানদিকের চারটি বিটকে সংখ্যাসূচক বিট বলা হয় এবং মাঝের তিনটি বিটকে জোন বিট বলা হয়। মোট বিট 8 হওয়াতে এ কোডের মাধ্যমে 2^8 বা 256টি অদ্বিতীয় চিহ্নকে নির্দিষ্ট করা যায়। প্রকৃত আসকি কোড বলতে এখনও মূল 128 টি চিহ্নকেই বুঝানো হয়ে থাকে।

প্যারিটি বিট: বাইনারি ডেটা বা কোডকে এক স্থান থেকে অন্য স্থানে বা ডিভাইসে সঠিকভাবে প্রেরণের জন্য এর সাথে যে অতিরিক্ত বিট যুক্ত করা হয়, তাকে প্যারিটি বিট বলা হয়। মূলত ভুল নির্ণয়ের জন্য প্যারিটি বিট ব্যবহার করা হয়।

আসকি কোড চার্ট

সংখ্যা	প্রতীক	সংখ্যা	প্রতীক
32	Sp	56	8
33	!	57	9
34	"	58	:
35	#	59	;
36	\$	60	>
37	%	61	=
38	&	62	>
39	'	63	?
40	(64	@
41)	65	A
42	*	66	В
43	+	67	С
44	,	68	D
45	-	69	Е
46	•	70	F
47	/	71	G
48	0	72	Н
49	1	73	I
50	2	74	J
51	3	75	K
52	4	76	L
53	5	77	M
54	6	78	N
55	7	79	О

সংখ্যা	প্রতীক
56	8
57	9
58	:
59	;
60	<
61	: ; < = > ? @ A B
62	>
63	?
64	@
65	A
66	В
67	С
68	C D
69	Е
70	F
71	G
72	Н
72 73	I
74	J
75	K
76	L
77	M
78	N
70	0

সংখ্যা	প্রতীক
80	P
81	Q
82	R
83	S
84	Т
85	Q R S T U V W X Y Z
86	V
87	W
88	X
89	Y
90	Z
91	[
92	\
93]
94	^
95	_
96	``
97	a
98	ь
99	с
100	d
101	e
102	f
103	g

সংখ্যা	প্রতীক
104	h
105	i
106	j
107	k
108	1
109	m
110	n
111	o
112	p
113	q
114	r
115	S
116	t
117	u
118	v
119	W
120	x
121	У
122	z
123	{
124	I
125	}
126	~
127	Del

বিসিডি কোড ও বাইনারি সংখ্যার মধ্যে পার্থক্য

বিসিডি কোড (BCD Code)	বাইনারি সংখ্যা (Binary Number)
১. বিসিডি কোড কোন সংখ্যা পদ্ধতি নয়।	১. বাইনারি কোড একটি সংখ্যা পদ্ধতি।
২. এটা দশমিক সংখ্যার দশমিক রূপ যতটুকু সম্ভব অক্ষুণ্ণ রেখে, তা চার বিট বাইনারি দ্বারা প্রকাশের জন্য ব্যবহৃত হয়।	২. এ সংখ্যা পদ্ধতিতে কেবল দু'টি সংখ্যা (0, 1) ব্যবস্থত হয়।
৩. দশমিক সংখ্যাকে বিসিডি কোডে প্রকাশ করা খুব সহজ।	৩. দশমিক সংখ্যাকে বাইনারি সংখ্যায় প্রকাশ করা কঠিন।
 ৪. শুধুমাত্র 0 থেকে 9 পর্যন্ত দশমিক সংখ্যার বাইনারি মান মনে রাখলেই যে কোন হিসাব সম্পন্ন করা যায়। 	 বাইনারি সংখ্যায় প্রকাশের জন্য গাণিতিক হিসাবের প্রয়োজন হয়।
 ৫. কোনো সংখ্যাকে বিসিডি কোডে প্রকাশের জন্য বেশি বিট প্রয়োজন। 	 ৫. কোনো সংখ্যাকে বাইনারিতে প্রকাশের জন্য বিসিডি কোডের চেয়ে কম বিট প্রয়োজন।
৬. উদাহরণ : (137) ₁₀ = (000100110111) _{BCD}	৬. উদাহরণ : $(137)_{10} = (10001001)_2$

ASCII কোড ও BCD কোডের মধ্যে পার্থক্য

ASCII কোড	BCD কোড
১. ASCII শব্দ-সংক্ষেপটির পূর্ণরূপ হলো American Standard	১. BCD শব্দ-সংক্ষেপটির পূর্ণরূপ হলো Binary Coded
Code for Information Interchange.	Decimal.
২. ASCII–7, 7 টি বিট নিয়ে গঠিত। এ কোডের মাধ্যমে 2 ⁷ বা 128	২. BCD কোড 4টি বিট নিয়ে গঠিত। এ কোডের মাধ্যমে 2 ⁴
টি অদ্বিতীয় চিহ্নকে নির্দিষ্ট করা যায়। তবে ASCII–7 কোডের	বা 16 টি ভিন্ন অবস্থা নির্দেশ করা গেলেও এক্ষেত্রে
বামে একটি প্যারিটি বিট যোগ করে ASCII—8 গঠন করা হয়। এ	কেবল 10টি সংখ্যা প্রকাশ করা হয়।
কোডের মাধ্যমে 2^8 বা 256 টি অদ্বিতীয় চিহ্নকে নির্দিষ্ট করা যায়।	
৩. বর্ণ, সংখ্যা, বিশেষ চিহ্ন ও প্রতীককে কোডিং করতে মাইক্রো	৩. দশমিক পদ্ধতির সংখ্যাকে বাইনারিতে রূপান্তরের জন্যই
কম্পিউটারে ASCII কোডের ব্যাপক প্রচলন আছে।	BCD কোডের ব্যবহার হয়।

ইউনিকোড (Unicode)

ইউনিকোড 16 বিটের আলফানিউমেরিক কোড, যার পূর্ণনাম Universal Code (সর্বজনীন কোড)। পৃথিবীর সকল ভাষার বর্ণ, সংখ্যা ও চিহ্নসমূহ ডিজিটাল ডিভাইসে ব্যবহার করার জন্য ইউনিকোড ব্যবহৃত হয়। ১৯৯১ সালে অ্যাপল কম্পিউটার কর্পোরেশন এবং Xerox Corporation-এর একদল কম্পিউটার প্রকৌশলী যৌথভাবে ইউনিকোড উদ্ভাবন করেন। বর্তমানে বিশ্বব্যাপী প্রচলিত আসকি কোডের পাশাপাশি ইউনিকোড সিস্টেম চালু হয়েছে। সর্বশেষ ইউনিকোডের Standard-এ প্রত্যেকটা বর্ণের জন্য 0000_{16} থেকে শুরু করে $10FFFF_{16}$ এর ভেতর একটি সংখ্যা নির্দিষ্ট করে দেওয়া আছে। ফলে ইউনিকোডের মাধ্যমে $2^{16}=65536$ টি অদ্বিতীয় চিহ্নকে নির্দিষ্ট করা যায়। অর্থাৎ, এখানে প্রতিটি ভাষার জন্য 4 বাইট পর্যন্ত স্থান সংরক্ষণ করা আছে। যেমন: 'A' = 0041_{16} , 'a' = 0061_{16} , 'ক' = 0995_{16} , 'খ' = 0996_{16} ইত্যাদি কোডগুলো নির্ধারিত।

Unicode Consortium নামে একটি সংগঠন ইউনিকোডের রক্ষণাবেক্ষণ করে, যার সদস্য হয়ে বাংলা ভাষাও ইউনিকোডভুক্ত হয়েছে। ১৯৯১ সালে ২৪টি ভাষা নিয়ে ইউনিকোডের প্রথম সংস্করণ 1.0.0 প্রকাশিত হয়, যার মধ্যে বাংলা ভাষাও অন্তর্ভুক্ত ছিল। ২০২০ সালে ইউনিকোডের 13 সংস্করণে ১৫৪টি ভাষা স্থান পেয়েছে। নিচে বাংলা ইউনিকোডের ছকটি প্রদর্শিত হলো:

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
U+098x		ै	ং	ಂ		অ	আ	Ŋo∕	<u> </u>	উ	J	₩	৯			ত
U+099x	ঐ			છ	Ø	ক	খ	গ	ঘ	ષ્ઠ	চ	ছ	জ	ঝ	এঃ	ট
U+09Ax	र्ठ	ঙ	ঢ	ণ	6	থ	দ	ধ	ন		প	ফ	ব	ভ	ম	য
U+09Bx	র		ল				*	ষ	স	হ			ં.	ર	া	િ
U+09Cx	ी	ૂ	ૃ	્ય	ୁ			ে	ৈ			ো	ৌ	্	ৎ	
U+09Dx								ী					ড়	ঢ়		য়
U+09Ex	¥	જ્	್ಮ	್ಶ			0	۵	২	9	8	¢	৬	٩	ъ	৯
U+09Fx	₹	ৱ	`	ծ	/	N	ಶ	ı	Ь	0	S					

ইউনিকোড কয়েক হাজার চিত্রকল্প দিয়ে লিখিত ভাষা (চীনা, জাপানি কিংবা কোরিয়ান) ছাড়াও প্রাচীন মিশরীয় হায়ারোগ্লিফিক্স ভাষা থেকে শুরু করে বর্তমানের ইমোজিকেও উপস্থাপন করতে পারে।

ইউনিকোডের বাইটগুলো প্রক্রিয়া করার পদ্ধতিগুলোর মধ্যে UTF-8 ও UTF-19 (UTF: Unicode Transformation Format) হচ্ছে সবচেয়ে প্রচলিত পদ্ধতি। ওয়েবসাইটের জন্য UTF-8 হলো Standard, কারণ ব্যবহার করার সময় UTF-8 শুধু যে কয়টি বিটের প্রয়োজন, ততগুলো ব্যবহার করে।

সংখ্যা পদ্ধতি ২৩৭

ইউনিকোডের বৈশিষ্ট্য বা সুবিধা (Advantages of Unicode)

- এটি 16 বিট বিশিষ্ট কোড, ফলে 65,536 টি অদ্বিতীয় চিহ্নকে নির্দিষ্ট করা যায়।
- ২. বিশ্বের ছোট বড় সকল ভাষাকে কম্পিউটারে কোডভুক্ত করা যায়।
- ৩. ক্যারেক্টারকে কোড করার জন্য 16 বিটই ব্যবহার করা হয়।
- 8. ইউনিকোড ASCII কোডের সাথে কম্প্যাটিবল। অর্থাৎ ইউনিকোডের প্রথম 256 টি কোড অ্যাসকি 256 টি কোডের অনুরূপ।
- ৫. ইউনিকোড থেকে অন্যান্য স্ট্যান্ডার্ড কোডে পরিবর্তন করা যায়।

ASCII কোড ও ইউনিকোড-এর মধ্যে পার্থক্য

আসকি (ASCII) কোড	ইউনিকোড (Unicode)
১. ASCII শব্দ—সংক্ষেপটির পূর্ণরূপ হলো American Standard Code for Information Interchange.	১. Unicode শব্দ—সংক্ষেপটির পূর্ণরূপ হলো Universal Code.
২. ASCII কোডের মাধ্যমে 2^8 বা 256 টি অদ্বিতীয় চিহ্নকে নির্দিষ্ট করা যায়।	২. Unicode এর মাধ্যমে 2 ¹⁶ বা 65,536টি অদ্বিতীয় চিহ্নকে নির্দিষ্ট করা যায়।
৩. American Standards Association এর অধীনে X3 নামক কমিটির পৃষ্ঠপোষকতায় এই কোড উন্নয়ন করা হয়।	 ইউনিকোডের দায়িত্বে রয়েছে ইউনিকোড কনসোর্টিয়াম নামক একটি অলাভজনক প্রতিষ্ঠান।
৪. কম মেমোরির প্রয়োজন হয়।	৪. বেশি মেমোরির প্রয়োজন হয়।
 ৫. শুধুমাত্র আমেরিকান ইংলিশ বর্ণ চিহ্নের এনকোডের জন্য ব্যবহৃত হয়। যেমন, আসকি কোডে পাউন্ডের চিহ্ন ব্যবহৃত হয় না। 	 ৫. বিশ্বের শত শত ভাষার হাজার হাজার বর্ণ, চিহ্নের জন্য এ কোড ব্যবহৃত হয়।
৬. সব সফটওয়্যার ও ইমেইল আসকি কোড বুঝতে পারে।	৬. কিছু কিছু সফটওয়্যার ও ইমেইল ইউনিকোড ক্যারেক্টার সেট বুঝতে পারে না।
৭. আসকি হলো 7 বিট/৪ বিট কোড।	 ৭. বিভিন্ন উপস্থাপনায় ইউনিকোড 8, 16 অথবা 32 বিট ক্যারেক্টার বেজ ব্যবহার করে।
৮. উদাহরণ : A = 65 = 01000001	৮. উদাহরণ : A = U+0041

বিভিন্ন প্রকার কোডের তুলনামূলক ছক

কোড ও পূর্ণনাম	আবিষ্কারক	সাল	বিট সংখ্যা	ব্যবহার	উদাহরণ
বাইনারি কোড	গটফ্রিড লিবনিজ	১৬৭৯	2(0/1)	১. কম্পিউটার ও অন্যান্য ইলেকট্রনিক্স ডিভাইসে ব্যবহৃত হয়।	$(7)_{10} = (111)_2$
অক্ট্রাল কোড	রাজা ৭ম চার্লস (সুইডেন)	১৭১৬	3 বিট = 2 ³ = 8(0-7)	বড় বাইনারি সংখ্যাকে ছোট করার জন্য ব্যবহৃত হয়। উজিটাল কম্পিউটার ও মাইক্রোপ্রসেসরে সংযোগ স্থাপনেও ব্যবহৃত হয়।	$(34)_{10} = (42)_8$
ডেসিমাল কোড	হিন্দু-অ্যারাবিক	_	10(0-9)	১. সাধারণ সকল কর্মকাণ্ডে ব্যবহৃত হয়।	(34)10
হেক্সাডেসিমাল কোড	জন উইলিয়াম নাইস্ট্রম	አ৮৫৯	4 বিট = 2 ⁴ = 16 (0–9, A–F)	১. অক্টাল কোডের মতো ব্যবহার।	$(34)_{10} = (22)_{16}$

বিভিন্ন প্রকার কোডের তুলনামূলক ছক

কোড ও পূৰ্ণনাম	আবিষ্কারক	সাল	বিট সংখ্যা	ব্যবহার	উদাহরণ
BCD Code (বাইনারি কোডেড ডেসিমাল কোড)	আইবিএম (IBM)	১৯২৮	4 বিট	বায়োস-এ ডেটা সংরক্ষণে ব্যবহৃত হয়। ২. যে কোন ইলেকট্রনিক্স ডিভাইসে ডেটা সংরক্ষণে ব্যবহৃত হয়।	(34) ₁₀ = (<u>0011</u> <u>0100</u>) বিসিডি
আলফানিউমেরিক কোড/ অ্যালফাবেটিক ও নিউমেরিক কোড (আসকি+মোর্স+ইউনিকোড+ ইবিসিডিআইসি)	আইবিএম (IBM)	১৮৩৭ মোর্স কোড		ডেটা কমিউনিকেশন ও ডেটা ট্রাপফারের ক্ষেত্রে নিয়মনীতি নির্ধারণ করে।	$A = (65)_{10}$ $= 01000001$
ASCII Code (অ্যামেরিকান স্ট্যান্ডার্ড কোড ফর ইনফরমেশন ইন্টারচেঞ্জ)	ANSI (আসকি কোড) ASCII–7 (রবার্ট উইলিয়াম বিমার)	১৯৬৩	7/8 বিট = 128/256	বিভিন্ন ধরনের বর্ণ প্রকাশে ব্যবহৃত হয়।	$A = (65)_{10}$ $= 01000001$
EBCDIC Code (এক্সটেন্ডেড বাইনারি ইনফরমেশন কোড)	আইবিএম (IBM)	\$\$€0 -\\$8	8 বিট = ২৫৬	আইবিএম মেইনফ্রেম মিডরেঞ্জ কম্পিউটারের অপারেটিং সিস্টেম তৈরিতে ব্যবহৃত হয়। আইবিএম মিডরেঞ্জ কম্পিউটারের অপারেটিং সিস্টেম তৈরিতে ব্যবহৃত হয়।	A = <u>1100</u> <u>0001</u>
ইউনিকোড/ ইউনিভার্সাল কোড/ সর্বজনীন কোড	অ্যাপল (মার্ক ডেভিস) + জেরক্স (জো বেকার) কর্পোরেশন	১৯৮৭	16 বিট= 65,536	বিভিন্ন ধরনের বর্ণ ও লেখা প্রকাশে ব্যবহৃত হয়। সকল ভাষার কোড তৈরিতেও ব্যবহৃত হয়।	A = U+0041
মোর্স কোড	স্যামুয়েল এফবি মোর্স	১৮৩৭	অন-অফ /লাইট সিগন্যাল/ক্লিক	সাধারণ রেডিও চালাতে ব্যবহৃত হয়। ২. পাইলট ও এয়ার ট্রাফিক কন্ট্রোলে ব্যবহৃত হয়।	
গ্রে কোড/ বাইনারি সিস্টেমের প্রতিচ্ছবি বা বাইনারি নিউমেরিক্যাল সিস্টেম	ফ্রাংক গ্রে	\$৯৪৭		 ডিজিটাল কমিউনিকেশনের ক্ষেত্রে ভুল সংশোধনে ব্যবহৃত হয়। 	(34) ₈ = (<u>011 100</u>) ₂ = (011100) প্লে কোড