

Art of Problem Solving 2016 ISI Entrance Examination

ISI Entrance Examination 2016

1	In a sports tournament of n players, each pair of players plays against each other exactly one match and there are no draws. Show that the players can be arranged in an order $P_1, P_2,, P_n$ such that P_i defeats P_{i+1} for all $1 \le i \le n-1$.
2	Consider the polynomial $ax^3 + bx^2 + cx + d$ where a, b, c, d are integers such that ad is odd and bc is even. Prove that not all of its roots are rational
3	If $P(x) = x^n + a_1 x^{n-1} + + a_{n-1}$ be a polynomial with real coefficients and $a_1^2 < a_2$ then prove that not all roots of $P(x)$ are real.
4	Given a square $ABCD$ with two consecutive vertices, say A and B on the positive x -axis and positive y -axis respectively. Suppose the other vertice C lying in the first quadrant has coordinates (u, v) . Then find the area of the square $ABCD$ in terms of u and v .
5	Prove that there exists a right angle triangle with rational sides and area d if and only if x^2, y^2 and z^2 are squares of rational numbers and are in Arithmetic Progression Here d is an integer.
6	Suppose in a triangle $\triangle ABC$, A , B , C are the three angles and a , b , c are the lengths of the sides opposite to the angles respectively. Then prove that if $sin(A-B)=\frac{a}{a+b}\sin A\cos B-\frac{b}{a+b}\sin B\cos A$ then the triangle $\triangle ABC$ is isoscelos.
7	f is a differentiable function such that $f(f(x)) = x$ where $x \in [0, 1]$. Also $f(0) = 1$. Find the value of
	$\int_0^1 (x - f(x))^{2016} dx$
8	Suppose that $(a_n)_{n\geq 1}$ is a sequence of real numbers satisfying $a_{n+1} = \frac{3a_n}{2+a_n}$. (i) Suppose $0 < a_1 < 1$, then prove that the sequence a_n is increasing and hence show that $\lim_{n\to\infty} a_n = 1$.
	(ii) Suppose $a_1 > 1$, then prove that the sequence a_n is decreasing and hence

www.artofproblemsolving.com/community/c267351

show that $\lim_{n\to\infty} a_n = 1$.

Contributors: zizou10, Mathzoo