

BRAC UNIVERSITY MAT 110

Assignment-04

Submission Date: December 20, 2022

1. Calculate the following limits. If a limit is ∞ or $-\infty$, please say so. Make sure you show all your work—and justify all your answers.

(a)
$$\lim_{x\to\infty} \sqrt{\frac{-2x+1}{3-7x}}$$

1 Answer:

$$= \lim_{x \to \infty} \left(\sqrt{\frac{-2 + \frac{1}{x}}{\frac{3}{x} - 7}} \right)$$

$$= \sqrt{\frac{\lim_{x \to \infty} (-2 + \frac{1}{x})}{\lim_{x \to \infty} (\frac{3}{x} - 7)}}$$

$$= \sqrt{\frac{-2}{-7}}$$

$$= \sqrt{\frac{2}{7}} \qquad (Ans.)$$

(b) $\lim_{x\to\infty} x \ln x$ with L'Hopital's rule

Answer: Given, $\lim_{x\to 0} x \ln x$ $= \lim_{x\to 0} x \frac{1}{x} + \ln x \quad [By using L'hospital's rule]$ $= \lim_{x\to 0} 1 + \ln x$ $= 0 \quad (Ans.)$

(c)
$$\lim_{x\to\infty} \frac{1-\cos(4x)}{8x^2}$$

$$\underline{\text{Answer: }} \lim_{x\to\infty} \frac{1-\cos(4x)}{8x^2}$$

$$= \frac{1}{8} \cdot \lim_{x\to0} \left(\frac{1-\cos(4x)}{x^2}\right)$$

$$= \frac{1}{8} \cdot \lim_{x\to0} \left(\frac{4\sin(4x)}{2x}\right)$$

$$= \frac{1}{8} \cdot \lim_{x\to0} \left(\frac{16\cos(4x)}{2}\right)$$

$$= \frac{1}{8} \cdot \frac{16\cos(4.0)}{2} \quad \left[\cdot \right]$$

$$= 1$$
(Ans.)

2. Find the derivative of the function $f(x) = \ln(\tan^{-1}(\sqrt{\frac{1-x}{1+x}}))$. Simplify your answers as much as possible. Show all your work.

Answer: Given,

$$f(x) = \ln \left(\tan^{-1} \left(\sqrt{\frac{1-x}{1+x}} \right) \right)$$

Here,
$$f(x) = \ln \left(\tan^{-1} \left(\sqrt{\frac{1-x}{1+x}} \right) \right)$$

$$= \ln \left(\tan^{-1} \left(\sqrt{\frac{1-\cos\theta}{1+\cos\theta}} \right) \right)$$

$$= \ln \left(\tan^{-1} \left(\sqrt{\frac{2\sin^2 \frac{\theta}{2}}{2\cos^2 \frac{\theta}{2}}} \right) \right)$$

$$= \ln \left(\tan^{-1} \left(\tan \frac{\theta}{2} \right) \right)$$

$$= \ln \frac{\theta}{2}$$

$$= \ln \theta - \ln 2$$

Now , y= $f(x) = \ln(\cos^{-1} x) - \ln 2$

$$\therefore \frac{dy}{dx} = \frac{d}{dx} \left\{ \ln(\cos^{-1} x) - \ln 2 \right\}$$

$$= \frac{1}{\cos^{-1} x} \cdot - \frac{1}{\sqrt{1 - x^2}}$$

$$= -\frac{1}{\cos^{-1} x \sqrt{1 - x^2}}$$
(Ans.)

3. Test the differentiability of the function f(x) = |x - 3| at x = 3.

Answer:

The given function,

$$\begin{array}{c} f(x){=}x\text{-}3\\ {\Rightarrow} f(x){=}x\text{-}3 \text{ if } x{\geq}3\\ {=}3\text{-}x \quad (\text{if } x<3) \end{array}$$

Now, checking the differentiability at x = 3

L.H.S. =
$$\lim_{x\to 3} \frac{f(x)-f(3)}{x-3}$$

= $\lim_{x\to 3} \frac{f(3-x)-f(0)}{x-3}$
= $\lim_{x\to 3} (-1)$
= -1

R.H.S. =
$$\lim_{x\to 3} \frac{f(x)-f(3)}{x-3}$$

= $\lim_{x\to 3} \frac{f(3-x)-f(0)}{x-3}$
= 1

... L.H. S. \neq R.H.S. Therefore, f(x) is not differentiable.

(Ans.)

4. Validate the continuity of the function $f(x) = \frac{x^2-9}{x-3}$ at x=3.

Answer:

Given,
$$f(x) = \frac{x^2 - 9}{x - 3}$$

At x=3, the limiting value of f(x) is,

L.H.L. =
$$\lim_{x \to 3^{-}} \frac{x^{2}-9}{x-3}$$

= 6

R.H.L. =
$$\lim_{x \to 3^+} \frac{x^2 - 9}{x - 3}$$

= 6

Functional value, $f(x) = \frac{x^2-9}{x-3}$

$$\begin{array}{ll} \therefore & f(0) = \frac{0}{0} \\ & = undefined \end{array}$$

∴ limiting value≠functional value

$$f(x) = \frac{x^2 - 9}{x - 3}$$
 is not continuous at x=3. (Ans.)

5. Find the relative maxima and minima from the function $f(x) = 4x^3$ - 3x - 1. Locate all the extrema as x_0, x_1, \dots, x_n

4

Answer:

Given,
$$f(x) = 4x^3 - 3x - 1$$

1st derivative , f'(x) = $12x^2 - 3$

Again, 2nd derivative, f''(x) = 24x

Let,
$$f'(x)=0$$

 $\Rightarrow 12x^2 - 3=0$
 $\Rightarrow 3(2x+1)(2x-1) = 0$
 $\Rightarrow (2x+1)(2x-1) = 0$

so,
$$x = \frac{1}{2}, -\frac{1}{2}$$

... the limiting points are $x = \frac{1}{2}$, and $x = -\frac{1}{2}$

Now, implementing the values of x into f''(x),

$$f''(x) = f''(0.5) = 24 \times \frac{1}{2} = 12$$

$$f''(x) = f''(-0.5) = 24 \times (-\frac{1}{2}) = -12$$

Interval	Test x value	f'(x)	conclusion
$\left(-\infty, -\frac{1}{2}\right)$	-1	9 > 0	increasing
$\left(-\frac{1}{2},+\frac{1}{2}\right)$	0	-3 < 0	decreasing
$\left(+ \frac{1}{2}, -\infty \right)$	1	9 > 0	increasing

It can be seen from the table that , f (x) is increasing before $x=-\frac{1}{2}$, After decreasing and defined at $x=-\frac{1}{2}$. So, f (x) has a minimum relative point at $x=-\frac{1}{2}$.

Again, f(x) is decreasing before $x=+\frac{1}{2}$. increasing and defined at $x=+\frac{1}{2}$. So, f(x) has a maximum relative point at $x=+\frac{1}{2}$.

- ... relative maxima at x= + $\frac{1}{2}$ = 12
- \therefore relative minima at x= $\frac{1}{2} = +$ 12

(Ans.)