

FIG. 1

FIG. 2

FIG. 3A

FIG. 3B

FIG. 3C

Overlap Area S_{AB} =

= 1

FIG. 4

FIG. 5

FIG. 6

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 8A

FIG. 8B

String A Offset
String B Offset

FIG. 8C

FIG. 9A

FIG. 9B

FIG. 10A

FIG. 10B

FIG. 11

FIG. 12

Bin-Based Overlap

- Do a series of fast overlap calculations using “bins” with integer occupation numbers ($0 \rightarrow 255$) for each atom:

- Multiply occupation numbers for matching atom types across aligned bins to get a good estimate of overlap area
- Fast, but there are numerous bin-based offsets that must be considered

FIG. 13

Speeding Up Bin-Based Overlap Calculations

- 21 unique bin offsets, 10 matching atom type pairs
- There are only 6 different bin offsets wherein matching atom types are approximately aligned:

FIG. 14

Approximate Bin-Based Overlaps → Upper Bounds

- Process offsets in order of decreasing upper bound
- Do standard bin-based overlap calculations (with occupation numbers), keeping track of the largest overlap value
- Stop when remaining upper bounds are lower than this largest bin-based overlap

FIG. 15