实验一、二——常用电子仪器使用及基本开关电路 实验报告

姓名:	王祚滨	专业:信息	息安全	学号:	3180104933	
课程名称:	逻辑与计算机	几设计基础实验	<u> </u>	学生姓名:	_王国朝	
指导老师:	洪奇军	实验地点:	浙江大学	学紫金港校	区东四教学楼	509
实验日期.	2019年 9月1	I1/18 ∃				

一、实验目的和要求

1.常用电子仪器使用

- 1)认识常用电子器件
- 2) 学会数字示波器、数字信号发生器(函数信号发生器)、直流稳压电源、 万用表等常用电子仪器的使用
- 3) 掌握用数字示波器来测量脉冲波形及幅度和频率的参数
- 4) 掌握用数字示波器测量脉冲时序的上升沿和下降沿、延时等参数
- 5) 掌握万用表测量电压、电阻及二极管的通断的判别

2. 基本开关电路

- 1) 掌握逻辑开关电路的基本结构
- 2) 掌握二极管导通和截止的概念
- 3) 用二极管、三极管构成简单逻辑门电路
- 4) 掌握最简单的逻辑门电路构成

二、实验内容和原理

1. 常用电子仪器使用

1)用数字示波器来测量函数信号发生器发出来的频率(周期)和幅度。通过选择频率范围按键和频率调节旋钮,使函数信号发生器发出频率分别为

100Hz、10KHz 和 100KHz 的正弦波,用数字示波器测出上述信号的周期和频率,验证函数信号发生器发生信号正确率。

- 2) 让信号发生器输出频率为 1KHz、1-3V 任意有效值的正弦波(用数字万用表交流档测量有效值),用示波器测量其幅值,并进行有效电压值的计算与比较。
- 3) 用示波器测量正弦波信号
- 4)测量二极管两端电压降

2. 基本开关电路

原理:通过二极管以及三极管的特性来组成门电路,从而实现基本的逻辑开 关电路。

逻辑电平	<i>V</i> _{cc} / <i>V</i>	V _{OH} / V	V _{ot.} / V	V _{IH} / V	<i>V_{11.} / V</i>	说明
TTL	5. 0	≥ 2.4	≤ 0.4	≥ 2.0	≤ 0.8	
LVTTL	3. 3	≥ 2.4	≤ 0.4	≥ 2.0	≤ 0.8	制 输入脚悬空时默认为高 电平
LVTTL	2. 5	≥ 2.0	≤ 0.2	≥ 1.7	≤ 0.7	
CMOS	5. 0	≥ 4.45	≤ 0.5	≥ 3.5	≤ 1.5	
LVCMOS	3. 3	≥ 3.2	≤ 0.1	≥ 2.0V	≤ 0.7	 输入阻抗非常大
LVCMOS	2. 5	≥ 2.0	≤ 0.1	≥ 1.7	≤ 0.7	
RS232	12 [~] 15	-3 [~] -15	3 ~ 15	-3 ~ -15	3 ~ 15	负逻辑

实验内容:

- 1) 用二极管实现正逻辑与门,并测量输入输出电压参数,分析其逻辑功能
- 2) 用二极管实现正逻辑或门,并测量输入输出电压参数,分析其逻辑功能
- 3) 三极管极性测量,并测量电流放大倍数
- 4) 用三极管反向特性实现正逻辑非门,测量输入输出电压参数,分析其逻辑功能
- 5)采用前面的与门和非门实现与非门,测量输入输出电压参数,分析其逻辑功能

三、主要仪器设备

- 1. 数字示波器 RIGOL- DS162 1 台
- 2. 函数发生器 YB1638 1 台
- 3. 数字万用表 1 只
- 4. 示波器 1 台
- 5. 三用表 1 只
- 6. 低频信号发生器 1 台
- 7. 逻辑电路实验箱 1 台

四、操作方法与实验步骤

1. 常用电子仪器使用

1) 用示波器测量正弦波信号

将信号发生器的频率通过频率波段开关、和微调旋钮调到 100 Hz、10 kHz 和 100 kHz。信号发生器的输出信号线与示波器的信号连在一起,地线与地线连在一起。

2) 测量 YB1638 型函数信号发生器输出电压

将信号发生器输出接入万用表,红接正,负接负,万用表在 AC 档,并选用适当量程,通过调节幅度旋钮,使万用表显示 3V 有效值。 随后将信号发生器输出接入到示波器中,读取峰峰值,有效值为读数的 1/2 √2。

3) 万用表测量实验箱中的直流电源

将红表笔插入 V Ω mA 插孔,黑表笔插入 COM 插孔。然后将功能开关量程置于直流量程,将测试笔连接到待测电路上,红表笔所接端的极性将同时显示在显示器上。最后用示波器和万用表来测量实验台上的三组直流稳压电源的输出,并记录测量结果。

4) 用万用表测量二极管的单向导电(通断)特性

将表笔插入 COM 插孔,红表插入 V Ω 插孔,此时红表笔极性为 + 。 将万用表功能量程开关置于二极管极性判断位置,把红黑表笔分别接到二极管的两极,如果显示屏上显示 0.6-0.7 的数字,此时二极管正向导通,显示的数

字是 PN 结的电压,红表笔接的极是二极管的正极,黑表笔接的是负极。如果显示屏上显示的数字是 1,此时二极管反向截止,红表笔接的是二极管负极,黑表笔接的是正极。

2. 基本开关电路

对于用实验箱来实现基本开关电路——逻辑"门"的实验,基本使用同样的操作步骤:

- 1) 关闭电源, 断开开关
- 2) 按照电路图连接电路
- 3) 检查连接无误后,接通电源,打开开关
- 4) 测量电压值, 计算逻辑值
- 5) 检验是否满足各个逻辑"门"的关系式

五、实验结果与分析

1. 常用电子仪器使用

1. 测量实验箱中的直流电源

如下图,用万用表测量直流电压结果如图,4.95V,电压偏小。造成电压偏小的原因可能是板子的电压偏小或者万用表不够精确。

但是连接到示波器上如图,显示的是 5.03V 附近,最高甚至到 5.24V。因此 我推断应该是万用表不够精确造成的万用表示数为 4.95V。

直流稳压电源输出	示波器读数	灵敏度	示波器折算值	万用表读数
+5V	5.03DIV	1V/Div	5.03V	4.95V

2. 用示波器测量正弦波信号

测量结果如下图所示

结果如下表所示:

	函数发生器输出	示波器读数	灵敏度	实测值	
幅度		3.7Div	1.00V/Div	3.68V	
周期/频率	100Hz	5Div	2.00ms/Div	10.00ms	100Hz
幅度		4.00Div	1.00V/Div	4.00V	
周期/频率	10KHz	2Div	50.00μs/Div	100.0μs	10KHz
幅度		5.00Div	1.00V/Div	4.96V	
周期/频率	100KHz	1Div	10.00μs/Div	10.00µs	100KHz

3. 如图所示测量 YB1638 信号发生器输出电压

结果如下图:

分析:根据上面的经验知万用表示数比实际示数小,结果不出所料,万用表示数偏低,同时验证 1MHz 时万用表测量值不准确

函数发生器输出频率	示波器读取值		折算有效值	万用表读取值
1KHz	5.64div	1.00V/div	1.99V	1.85V
53Hz	5.64div	1.00V/div	1.99V	1.91V
1MHz	6div	1.00V/div	2.12V	-0

4. 用万用表测二极管的单向导通特性

如图所示:

将黑红表笔正向连接二极管后显示示数为 0.595, 不为 0.6—0.7 之间的数, 但考虑万用表误差, 确定此时正向连接。

互换红黑表笔显示示数为1

二极管正向导通时万用表读数	二极管反向截止时万用表读数
0.595	1

2. 基本开关电路

1..二极管构成"与"门电路:

如图所示,在实验箱中设计如下电路,并判断最终是否满足 F=AB。图中所示为仅打开 A 开关的图片。经测量,实验数据结果记录如下表:

V _A /V	$V_{ m B}/{ m V}$	$V_{ m F}/{ m V}$	F 逻辑值
0	0	0.3	L
4.7	0	0.3	L
0	4.7	0.3	L
4.7	4.7	4.7	Н

2. 用二极管实现正逻辑"或门"

将所连电阻分别改为 20k 和无穷大(即直接测 F 处电压),分别记录,如下图所示,

实验证明,电阻为无穷大时效果更好 经过如图所示(图中电路为 A 开 B 闭合情况)的电路连接后所得结果如下表:

表 1: 20KΩ

$V_{ m A}/{ m V}$	$V_{ m B}/{ m V}$	$V_{ m F}/{ m V}$	F 逻辑值
0.00	0.00	0.00	L
3.7	0.00	3.4	Н
0	3.7	3.3	Н
4.2	4.2	3.8	Н

表 2: 无穷大

$V_{ m A}/{ m V}$	$V_{ m B}/{ m V}$	$V_{ m F}/{ m V}$	F 逻辑值
0.00	0.00	0.00	L
4.6	0.00	4.3	Н
0	4.6	4.3	Н
4.7	4.7	4.4	Н

3. 三极管极性测量

经过如图测量,红笔插 B 时有示数 0.706 左右,为通路。而反向连接时为 1 可知其为截至态。知实验中三极管为 NPN 型。

并且将三极管插到 hFe 中得到放大倍数 β 为 298 从而确定 C,E 端,而 C, E 接反则显示 为 011

4.用三极管实现正负逻辑"非门"

经过如图(图中分别为开关闭合与断开)测量结果如下表:

$V_{ m A}/{ m V}$	$V_{ m F}/{ m V}$	F 逻辑值
0.00	4.7	Н
3.3	0.00	L

5. 用晶体管实现正逻辑"与非门"

实验连接如下图:

如图所示连接后分别测量 A、	B.	F占的由压得加下表
如约7071年发月7171侧里 4、	D.	

V_A/V	$V_B/{ m V}$	$V_F/{ m V}$	F 逻辑值
0.0	0.0	4.6	Н
4.7	0.0	4.4	Н
0.0	4.7	4.4	Н
4.7	4.7	0.0	L

六、讨论、心得

- 1. 常用电子仪器使用
 - 1.学习到了万用表和电路板连接时的红线黑线该如何接入
- 2.示波器调节显示大小要适中,慢慢调节,如果实在难以调节使用 auto 键还是很好用的。
- 3.YB1638 信号发生器的频率调节需要先调节到相应的挡位在进行调节。如第一次我们未注意需要调挡位,其在 3K 挡位去调节到 100Hz,直到调节很久后最小也停留在 140hz 左右后我们发现需要将挡位调节到 300Hz 进行调节。并且调节过程中需要慢慢细心调节,并且等待示数稳定后进行下次调节,否则容易调整过度。

2. 基本开关电路

- 1. 通过这节课了解到如何分析电路中电压关系,特别是在电路中有二极管三极管时这种较为复杂的情况下如何分析。
- 2. 认识到了二极管三极管的使用原理,了解了二极管三极管如何用万用表测量其数据。
- 3. 第一次成功设计了几个较为基础的逻辑开关电路,实现了最基础的门电路,较为有成就感!

实验三——集成逻辑门电路的功能及参数测试实验报告

姓名:	王祚滨	专业:信息	宝安全	_学号:	31801049	33
课程名称:	逻辑与计算机	几设计基础实验	<u> </u>	1学生姓名:	: 王国朝、	赵卿云
指导老师:	_ 洪奇军	实验地点:	浙江大	学紫金港村	交区东四教	学楼 509
实验日期:	2019年 9月2	25 日				

一、 实验目的和要求

- 1. 熟悉基本逻辑门电路的功能、外部电气特性和逻辑功能的特殊用途
- 2. 熟悉TTL与非门和MOS或非门的封装及管脚功能
- 3. 掌握主要参数和静态特性的测试方法,加深对各参数意义的理解
- 4. 进一步建立信号传输有时间延时的概念
- 5. 进一步熟悉示波器、函数发生器等仪器的使用

二、实验内容和原理

- 2.1 实验内容:
- □ 验证集成电路74LS00"与非"门的逻辑功能
- □ 验证集成电路CD4001"或非"门的逻辑功能
- □ 测量集成电路74LS00逻辑门的传输延迟时间tpd

- □ 测量集成电路CD4001逻辑门的传输延迟时间tpd
- □ 测量集成电路74LS00传输特性与开关门电平VON和VOFF

2.2 实验原理:

2.2.1 电压传输特性

电压传输特性是指输出电压随输入电压而变化的关系特性。它可以充分显示出门输入输出的逻辑特征,可以反应出二值量化及门开关 跃迁是一个连续过渡的过程。

74LS00的电压传输特性曲线如图,

图表 2.2.1 74LS00传输特性

2.2.2 平均传输延迟时间 tpd

1. 传输时间是一个动态参数,是晶体管PN节电容、分布寄生电容、 负载电容等充放电时间引起的输出信号滞后于输入信号一定时间的 参数。 平均传输时间tpd由两部分构成:从高电平跃迁到低电平滞后时间 tPHL和从低电平跃迁到高电平滞后时间 tPLH。

- 2. 平均延迟时间一般把电压的最大和最小值的中间50%点作为时间参考点,测出tPHL 和tPLH后求其平均值: tpd = (tPHL+tPLH)/2。
- 3. 为提高测量精度,采用环形振荡器测量传输延迟时间:假设每个与非门延迟时间相同,则振荡器周期 T=6 tpd,一个逻辑门的延迟时间为 T / 6。

2.2.1 验证集成电路 74LS00 "与非"门的逻辑功能

- 1. 将芯片插入实验箱的IC插座中,注意芯片的方向。
- 2. 按右图连接电路, VCC 接电压5V, 地端接地线。
- 3. 高低电平通过S14/S15/S16/S17拨位开关产生。
- 4. 以真值表顺序遍历输入A, B所有组合, 测量A, B及输出F 电压并记入 表格。

图表 2.2.1 验证集成电路74LS00"与非"门的逻辑功能电路图

2.2.2 验证 CD4001 "或非"门逻辑功能

1. 将芯片插入实验箱的IC插座中。

- 2. 按右图连接电路, VCC 接直流5V电压, 地端接地线。
- 3. 高低电平通过S14/S15/S16/S17拨位开关产生。
- 4. 以真值表顺序遍历输入A,B所有组合,测量输入端A,B及输出端F 电压值,记录在表格。
- 5. 重复步骤3[~]4,测量其他3个门的逻辑关系并判断门的好坏。

图表 2.2.2 验证集成电路CD4001 "或非"门的逻辑功能电路图

2.2.3 测量 74LS00 逻辑门的传输延迟时间 tpd

- 1. 将芯片插入实验箱的IC插座,注意芯片方向。
- 2. 按图连接电路,VCC接5V电源,地端接地线。
- 3. 将示波器接到振荡器的任何一个输入或输出端。
- 4. 调节频率旋钮,测量Vo的波形,读出周期T 并计算传输延迟时间(30-60ns)。

图表 2.2.3 测量74LS00逻辑门的传输延迟时间tpd电路图

2.2.4 测量 CD4001 逻辑门的传输延迟时间 tpd

- 1. 将芯片插入实验箱的IC插座,注意芯片方向。
- 2. 按图连接电路, VCC接5V电源, 地端接地线。
- 3. 将示波器接入到振荡器的输入或输出端。
- 4. 调节频率旋钮,测量Vo的波形,读出周期T 并计算传输延迟时间 (500-1000ns)。

图表 2.2.4 测量CD4001逻辑门的传输延迟时间tpd电路图

2.2.5 测量 74LS00 传输特性与开关门电平 VON 和 VOFF

- 1. 将芯片插入实验箱的IC插座。
- 2. 按图连接电路。
- 3. 将直流电表分别接入 A 端和与非门的输出2Y端。
- 4. 从b端往a端缓慢调节电位器W,观察Vi,Vo两电压表的读数, 并记录数据填入表格。
- 5. 根据表格数据画出曲线图,并求VON和VOFF。

图表 2.2.5 测量74LS00传输特性与开关门电平VON和VOFF电路图及记录表格

三、主要仪器设备

- 1. 数字示波器RIGOL-DS162 1台
- 2. 数字万用表 1只
- 3. 电路设计实验箱 1台
- 4. 两输入与非门74LS00 1片
- 5. 两输入或非门CD4001 1片
- 6. 电阻
- a) 4.7KΩ电位器 1只
- b) 100 Ω /1KW 1只

四、操作方法与实验步骤

4.1 验证集成电路 74LS00 "与非"门的逻辑功能

- 1. 将芯片插入实验箱的IC插座中,注意芯片的方向。
- 2. 按原理图连接电路, VCC 接电压5V, 地端接地线。

- 3. 高低电平通过S14/S15/S16/S17拨位开关产生。
- 4. 以真值表顺序遍历输入A,B所有组合,测量A,B及输出F 电压并记入表格。

4.2 验证集成电路 CD4001"或非"门的逻辑功能

- 1. 将芯片插入实验箱的IC插座中。
- 2. 按右图连接电路, VCC 接直流5V电压, 地端接地线。
- 3. 高低电平通过S14/S15/S16/S17拨位开关产生。
- 4. 以真值表顺序遍历输入A,B所有组合,测量输入端A,B及输出端F 电压值。
- 5. 重复步骤3~4,测量其他3个门的逻辑关系并判断门的好坏。

4.3 测量集成电路 74LS00 逻辑门的传输延迟时间 tpd

- 1. 将芯片插入实验箱的IC插座,注意芯片方向。
- 2. 按图连接电路, VCC接5V电源, 地端接地线。
- 3. 将示波器接到振荡器的任何一个输入或输出端。
- 4. 调节频率旋钮,测量Vo的波形,读出周期T 并计算传输延迟时间(30-60ns)。

4.4 测量集成电路 CD4001 逻辑门的传输延迟时间 tpd

- 1. 将芯片插入实验箱的IC插座,注意芯片方向。
- 2. 按图连接电路, VCC接5V电源, 地端接地线。
- 3. 将示波器接入到振荡器的输入或输出端。

4. 调节频率旋钮,测量Vo的波形,读出周期T 并计算传输延迟时间。(500-1000ns)

4.5 测量集成电路 74LS00 传输特性与开关门电平 VON 和 VOFF

- 1. 将芯片插入实验箱的IC插座。
- 2. 按图连接电路(见下页)。
- 3. 将直流电表分别接入 A 端和与非门的输出2Y端。
- 4. 从b端往a端缓慢调节电位器W,观察Vi,Vo两电压表的读数, 并记录数据填入表格。
- 5. 根据表格数据画出曲线图,并求VON和VOFF。

五、实验结果与分析

5.1 验证集成电路74LS00"与非"门的逻辑功能

$V_{\scriptscriptstyle \mathrm{B}}(\mathrm{V})$	$V_{\scriptscriptstyle A}(V)$	$V_{\scriptscriptstyle m F}({ m V})$
0	0	4.9
0	4. 7	4.8
4. 7	0	4.8
4. 7	4. 7	0

图表 5.1 74LS00数据记录

观察上表可知, 当输入 A, B 均为高电平时, 输出 F 为低电平; 只要A, B 中有一个接地, 输出F 即为高电平, 符合与非门的逻辑关系。

5.2验证集成电路CD4001"或非"门的逻辑功能

$V_{\scriptscriptstyle \mathrm{B}}(\mathrm{V})$	$V_{\scriptscriptstyle A}(V)$	<i>V</i> _F (V)
0	0	4.8
0	4. 7	0
4.7	0	0
4. 7	4.7	0

图表 5.2 CD4001数据记录

由实验数据可知,输入 A,B 都接地时,输出F 为低电平;只要 A,B 中有高电平,输出F为高电平,符合或门逻辑关系。

5. 3测量集成电路74LS00逻辑门的传输延迟时间tpd

图表 5.3 集成电路74LS00逻辑门延迟时间

由示波器读出T=105.6ns, 所以集成电路74LS00逻辑门中一个逻辑门的延迟时间为tpd = 17.6ns (tpd =T/6)。

由于此次芯片存在一些问题导致测量值超出预定范围。

5.4 测量集成电路CD4001逻辑门的传输延迟时间tpd

图表 5.4 集成电路CD4001逻辑门延迟时间

由示波器读出T=380.00ns, 所以集成电路CD4001逻辑门中一个逻辑门的延迟时间为tpd = 63.33ns(tpd = T/6)。

由于此次芯片存在一些问题导致测量值超出预定范围,误差较大。

5.5 测量集成电路74LS00传输特性与开关门电平VON和VOFF

Vi / V	VO / V	Vi / V	VO / V
0.00	4. 92	3.00	2. 93
1.00	4. 92	3.30	2. 74
1.50	4. 92	3.60	2. 47
2.00	4. 92	3.70	2. 35
2. 50	4. 92	3.80	2. 20
2. 52	4. 92	3. 82	2. 14
2. 54	3. 18	3.85	2. 14
2. 58	3. 15	3.86	2. 12
2. 63	3. 12	3. 87	0. 01
2. 64	3.11	3.90	0.01
2. 66	3. 10	3.95	0. 01
2. 81	3.03	4.00	0. 01

折线图

图表 5.5.1 和 5.5.2 集成电路74LS00传输特性数据记录

74LS00的V0FF是当输入电压由零逐渐上升、输出电压逐渐下降,当 输出电压刚好降到额定最低高电平2.4V时的最高输入低电平电压。

在74LS00中是当输入电压由VOFF继续上升,输出电压急剧下降,当输出电压刚好降到额定低电平0.4V时的最低输入高电平电压称VON

由于本此实验芯片原因实验与基准值误差较大,但可以很明显的看到两次急剧下降过程。

由图表易得, 关门电平VOFF = 2.53 V, 开门电平VON = 3.86V

六、讨论、心得

该实验的最后一个小实验对数据记录要求较高,调整时需精确慢速。并记录多组数据以便制表。

虽然此次实验比较顺利,但是实验数据的误差明显比之前的要大,实验数据难以确保准确性,仪器本身有可能存在较大误差,更加大了实验结果的误差。但我通过此次实验更加直观的感受到了集成逻辑门电路的内部构成,也亲自动手搭电路测量,有很大成就感。