Training language models to follow

ChatGPT Paper Reading Group

instructions with human feedback

What would GPT3 answer?

prompt: "Describe the pros and cons of Al"

What would GPT3 answer?

prompt: "Describe the pros and cons of AI"

GPT-3 answer (completion):

Explain how these pros and cons could stack up against what happened at BattleTech and why AI is still a big deal. What should ACT do to reduce the chances of AI being used in the game?

Human datasets

prompts from OpenAl Playground + some written by labelers datasets:

1. \bigcirc prompt + \bigcirc demonstration (\sim 13k prompts) use for *supervised finetuning (SFT)*

- 2. \bigcirc prompt + $\frac{1}{3}$ human rankings of responses (\sim 33k prompts) use for training reward model (RM)
- ⇒ prompt only (~31k prompts)
 use for proximal policy optimization (PPO)
 (reinforcement learning)

Supervised finetuning improvement

Reward model

architecture: 6B SFT model, unembedding replaced by projection

given $\mathfrak{D}=$ "some prompt", and human ranking of outputs

three data points: ${\bf Z}_2>{\bf Z}_1$ and ${\bf Z}_3>{\bf Z}_1$ and ${\bf Z}_2>{\bf Z}_3$

learn model r_{θ} to assign score to each answer

 $\sigma(r_{\theta}(\wp, \mathscr{C}_2) - r_{\theta}(\wp, \mathscr{C}_1))$ represents probability that $\mathscr{C}_2 > \mathscr{C}_1$

Reward model

architecture: 6B SFT model, unembedding replaced by projection

given $\mathfrak{D}=$ "some prompt", and human ranking of outputs

$$\mathbf{\mathscr{G}}_1 =$$
 "a bad answer"

$$\mathbf{\mathscr{G}}_2 =$$
 "the best answer"

$$\binom{3}{2}$$
 data points!

three data points: ${\bf Z}_2>{\bf Z}_1$ and ${\bf Z}_3>{\bf Z}_1$ and ${\bf Z}_2>{\bf Z}_3$

learn model r_{θ} to assign score to each answer

$$\sigma(r_{\theta}(\mathbf{p},\mathbf{Z}_2)-r_{\theta}(\mathbf{p},\mathbf{Z}_1))$$
 represents probability that $\mathbf{Z}_2>\mathbf{Z}_1$

Reinforcement Learning

prompt: "Describe the pros and cons of Al"

"Explain" "how"
$$\cdots$$
 "?" EOS $\rightarrow \mbox{$\stackrel{\wedge}{\longrightarrow}$}$ reward

states

$$s_1$$
 s_2 \cdots s_{n-1} s_n $\pi(t_2 \mid s_1)$ policy

optimize policy using PPO

PPO algorithm

- 1. sample outputs from policy for batch of prompts
- 2. compute rewards for output
- 3. estimate advantage for each state using value function $V_{\phi}(s)$
- 4. optimize **policy** π with goals:
 - maximize expected advantage over all states
 - minimize divergence from previous policy (KL-divergence), weight β
 - clip probability ratio $\pi_{new}(t \mid s)/\pi_{old}(t \mid s)$ for each state
- 5. optimize value function to better approximate final reward
- 6. repeat

pre-training mixin (PTX): perform pre-training optimization steps in between PPO steps

It works!

Generalization to other instructions

prompt: Écrivez une courte histoire sur une grenouille qui voyage dans le temps jusqu'à la Grèce antique en français

GPT-3 175B completion:

Écrivez une histoire au sujet d'un enfant qui voudrait tout savoir sur les jeux des dieux et qui se retrouve dans l'une de leurs histoires.

. . .

InstructGPT 175B completion:

La grenouille était perdue et épuisée. Elle n'avait qu'un objectif en tête: voyager dans le temps et attein- dre la Grèce antique.

. . .

Public NLP datasets don't represent API usage

Use-case	(%)
Generation	45.6%
Open QA	12.4%
Brainstorming	11.2%
Chat	8.4%
Rewrite	6.6%
Summarization	4.2%
Classification	3.5%
Other	3.5%
Closed QA	2.6%
Extract	1.9%

T0: templated prompts from NLP datasets

FLAN: templated instruction prompts from NLP datasets

FLAN

Slightly better truthfulness

Toxicity

Bias

