## **Tutorial 9**

## ECSE104L

## Flip Flop conversion

## D to JK flip flop

Excitation table of D flip flop

Characteristic table of J-K flip flop

| Qt | Q(t+<br>1) | D |
|----|------------|---|
| 0  | 0          | 0 |
| 0  | 1          | 1 |
| 1  | 0          | 0 |
| 1  | 1          | 1 |

| Qt | J | K | Q(t+<br>1) | D |
|----|---|---|------------|---|
| 0  | 0 | 0 | 0          | 0 |
| 0  | 0 | 1 | 0          | 0 |
| 0  | 1 | 0 | 1          | 1 |
| 0  | 1 | 1 | 1          | 1 |
| 1  | 0 | 0 | 1          | 1 |
| 1  | 0 | 1 | 0          | 0 |
| 1  | 1 | 0 | 1          | 1 |
| 1  | 1 | 1 | 0          | 0 |

Then using K map where inputs are Qt, J, K and output D we will find Boolean equation for D.

$$\mathsf{D} = \mathsf{Qt'}\,\mathsf{J} + \mathsf{QtK'}$$

Then we draw the circuit.



Question 1- Convert SR to JK flip flop

Question 2- Design T flip flop using D flip flop.

Question 2- Design the circuit for following state table table using D flip flop

| Qt(<br>A) | Qt(<br>B) | Q(t+1)<br>(A) | Q(t+1)<br>(B) | D(A) | D(B) |
|-----------|-----------|---------------|---------------|------|------|
| 0         | 0         | 1             | 0             |      |      |
| 0         | 1         | 1             | 1             |      |      |
| 1         | 0         | 0             | 0             |      |      |
| 1         | 1         | 0             | 1             |      |      |