AIP The Journal of Chemical Physics

Special Topic on the Glass Transition

This Special Topic presents a timely discussion of modern developments in our understanding of the behavior of supercooled liquids and amorphous materials. In spite of decades of intense theoretical and experimental study, the fundamental causes of vitrification are still debated. Further, a deeper understanding of the behavior of supercooled liquids and glasses will have implications in diverse fields ranging from biology (e.g., the passive transport of cellular cargo which occurs in a dense, disordered environment) to materials science (e.g., the design of amorphous materials with unique mechanical properties). We thus believe that the Special Topic on the Glass Transition will be instrumental in focusing attention on this important problem.

The Journal of Chemical Physics has made the articles in the Special Topic on the Glass Transition FREELY AVAILABLE for 30 days beginning on July 21, 2013. <u>Click here</u> to visit the section online and access these important articles!

Perspective: The glass transition

Giulio Biroli and Juan P. Garrahan J. Chem. Phys. **138**, 12A301 (2013); DOI: 10.1063/1.4795539

Are the dynamics of a glass embedded in its elastic properties?

Marcel Potuzak, Xiaoju Guo, Morten M. Smedskjaer, and John C. Mauro J. Chem. Phys. **138**, 12A501 (2013);

DOI: 10.1063/1.4730525

Are polar liquids less simple?

D. Fragiadakis and C. M. Roland J. Chem. Phys. **138**, 12A502 (2013); DOI: 10.1063/1.4769262

Glass transition of poly(ethylmethacrylate) admixed and bound to nanoparticles

Cornelius Friedrichs, Sebastian Emmerling, Gunnar Kircher, Robert Graf, and Hans Wolfgang Spiess

J. Chem. Phys. **138**, 12A503 (2013);

DOI: 10.1063/1.4769252

Modeling the relaxation of polymer glasses under shear and elongational loads

S. M. Fielding, R. L. Moorcroft, R. G. Larson, and M. E. Cates
J. Chem. Phys. **138**, 12A504 (2013);

DOI: 10.1063/1.4769253

Higher-order correlation functions and nonlinear response functions in a Gaussian trap model

Gregor Diezemann
J. Chem. Phys. **138**, 12A505 (2013);
DOI: 10.1063/1.4769254

Multiple length and time scales of dynamic heterogeneities in model glassforming liquids: A systematic analysis of multi-point and multi-time correlations

Kang Kim and Shinji Saito J. Chem. Phys. **138**, 12A506 (2013); **DOI:** 10.1063/1.4769256

Dynamic criticality at the jamming transition

Atsushi Ikeda, Ludovic Berthier, and Giulio Biroli

J. Chem. Phys. **138**, 12A507 (2013); **DOI:** 10.1063/1.4769251

Nonequilibrium static growing length scales in supercooled liquids on approaching the glass transition

Étienne Marcotte, Frank H. Stillinger, and Salvatore Torquato J. Chem. Phys. **138**, 12A508 (2013);

DOI: 10.1063/1.4769422

Static correlations functions and domain walls in glass-forming liquids: The case of a sandwich geometry

Giacomo Gradenigo, Roberto Trozzo, Andrea Cavagna, Tomás S. Grigera, and Paolo Verrocchio J. Chem. Phys. **138**, 12A509 (2013); **DOI: 10.1063/1.4771973**

Evolution of the dynamic susceptibility in molecular glass formers: Results from light scattering, dielectric spectroscopy, and NMR

N. Petzold, B. Schmidtke, R. Kahlau, D. Bock, R. Meier, B. Micko, D. Kruk, and E. A. Rössler

J. Chem. Phys. **138**, 12A510 (2013); **DOI:** 10.1063/1.4770055

jcp.aip.org

Non-exponential nature of calorimetric and other relaxations: Effects of 2 nm-size solutes, loss of translational diffusion, isomer specificity, and sample size

G. P. Johari and J. Khouri J. Chem. Phys. **138**, 12A511 (2013); **DOI: 10.1063/1.4770056**

Nonlinear active micro-rheology in a glass-forming soft-sphere mixture

D. Winter¹ and J. Horbach J. Chem. Phys. **138**, 12A512 (2013); **DOI: 10.1063/1.4770335**

On the Bauschinger effect in supercooled melts under shear: Results from mode coupling theory and molecular dynamics simulations

Fabian Frahsa, Amit Kumar Bhattacharjee, Jürgen Horbach, Matthias Fuchs, and Thomas Voigtmann J. Chem. Phys. **138**, 12A513 (2013); **DOI:** 10.1063/1.4770336

Dynamics of thermal vibrational motions and stringlike jump motions in threedimensional glass-forming liquids

Takeshi Kawasaki and Akira Onuki J. Chem. Phys. **138**, 12A514 (2013); **DOI:** 10.1063/1.4770337

Geometrical frustration and static correlations in hard-sphere glass formers

Benoit Charbonneau, Patrick Charbonneau, and Gilles Tarjus

J. Chem. Phys. **138**, 12A515 (2013); DOI: 10.1063/1.4770498

Can a stable glass be superheated? Modelling the kinetic stability of coated glassy films

Ian Douglass and Peter Harrowell J. Chem. Phys. **138**, 12A516 (2013); DOI: 10.1063/1.4772480

Manipulating the properties of stable organic glasses using kinetic facilitation

Chemical Physics

A. Sepúlveda, Stephen F. Swallen, and M. D. Ediger J. Chem. Phys. **138**, 12A517 (2013);

DOI: 10.1063/1.4772594

Microrheology of supercooled liquids in terms of a continuous time random walk

Carsten F. E. Schroer and Andreas Heuer J. Chem. Phys. **138**, 12A518 (2013); DOI: 10.1063/1.4772627

Dynamics of glass-forming liquids. XVI. Observation of ultrastable glass transformation via dielectric spectroscopy

Z. Chen, A. Sepúlveda, M. D. Ediger, and R. Richert
J. Chem. Phys. **138**, 12A519 (2013);
DOI: 10.1063/1.4771695

Local elastic response measured near the colloidal glass transition

D. Anderson, D. Schaar, H. G. E. Hentschel, J. Hay, Piotr Habdas, and Eric R. Weeks J. Chem. Phys. **138**, 12A520 (2013); DOI: 10.1063/1.4773220

Microscopic theory of the glassy dynamics of passive and active network materials

Shenshen Wang and Peter G. Wolynes J. Chem. Phys. **138**, 12A521 (2013); DOI: 10.1063/1.4773349

Statistics of modifier distributions in mixed network glasses

John C. Mauro J. Chem. Phys. **138**, 12A522 (2013); **DOI:** 10.1063/1.4773356

Dynamic heterogeneities above and below the mode-coupling temperature: Evidence of a dynamic crossover

Elijah Flenner and Grzegorz Szamel J. Chem. Phys. **138**, 12A523 (2013);

DOI: 10.1063/1.4773321

Single molecule probe reports of dynamic heterogeneity in supercooled *ortho*-terphenyl

Lindsay M. Leone and Laura J. Kaufman J. Chem. Phys. **138**, 12A524 (2013);

DOI: 10.1063/1.4773889

Relationship between neighbor number and vibrational spectra in disordered colloidal clusters with attractive interactions

Peter J. Yunker, Zexin Zhang, Matthew Gratale, Ke Chen, and A. G. Yodh J. Chem. Phys. **138**, 12A525 (2013); DOI: 10.1063/1.4774076

Relaxation processes in liquids: Variations on a theme by Stokes and Einstein

Zane Shi, Pablo G. Debenedetti, and Frank H. Stillinger J. Chem. Phys. **138**, 12A526 (2013); **DOI:** 10.1063/1.4775741

Are rare, long waiting times between rearrangement events responsible for the slowdown of the dynamics at the glass transition?

Ji Won Ahn, Bryn Falahee, Chiara Del Piccolo, Michael Vogel, and Dieter Bingemann J. Chem. Phys. **138**, 12A527 (2013); **DOI:** 10.1063/1.4775740

Evolution of collective motion in a model glass-forming liquid during physical aging

Amit Shavit, Jack F. Douglas, and Robert A. Riggleman J. Chem. Phys. **138**, 12A528 (2013); **DOI: 10.1063/1.4775781**

The first jamming crossover: Geometric and mechanical features

Massimo Pica Ciamarra and Peter Sollich J. Chem. Phys. **138**, 12A529 (2013); DOI: 10.1063/1.4779181

Evaluation of heterogeneity measures and their relation to the glass transition

Xiaojun Di and Gregory B. McKenna J. Chem. Phys. **138**, 12A530 (2013); **DOI: 10.1063/1.477905**

Space-time phase transitions in the East model with a softened kinetic constraint

Yael S. Elmatad and Robert L. Jack J. Chem. Phys. **138**, 12A531 (2013); DOI: 10.1063/1.4779110

Scaling between relaxation, transport and caged dynamics in a binary mixture on a per-component basis

F. Puosi, C. De Michele, and D. Leporini J. Chem. Phys. **138**, 12A532 (2013);

DOI: 10.1063/1.4789943

Shear modulus of simulated glassforming model systems: Effects of boundary condition, temperature, and sampling time

J. P. Wittmer, H. Xu, P. Polińska, F. Weysser, and J. Baschnagel

J. Chem. Phys. 138, 12A533 (2013);

DOI: 10.1063/1.4790137

Microscopic calculation of the free energy cost for activated transport in glass-forming liquids

Pyotr Rabochiy and Vassiliy Lubchenko J. Chem. Phys. 138, 12A534 (2013):

DOI: 10.1063/1.4790399

Identification of long-lived clusters and their link to slow dynamics in a model glass former

Alex Malins, Jens Eggers, C. Patrick Royall, Stephen R. Williams, and Hajime Tanaka

J. Chem. Phys. 138, 12A535 (2013);

DOI: 10.1063/1.4790515

Importance of many-body correlations in glass transition: An example from polydisperse hard spheres

Mathieu Leocmach, John Russo, and Hajime Tanaka

J. Chem. Phys. 138, 12A536 (2013);

DOI: 10.1063/1.4769981

A small subset of normal modes mimics the properties of dynamical heterogeneity in a model supercooled liquid

Glen M. Hocky and David R. Reichman J. Chem. Phys. 138, 12A537 (2013);

DOI: 10.1063/1.4790799

String-like cooperative motion in homogeneous melting

Hao Zhang, Mohammad Khalkhali, Qingxia Liu, and Jack F. Douglas J. Chem. Phys. 138, 12A538 (2013);

DOI: 10.1063/1.4769267

Static triplet correlations in glass-forming liquids: A molecular dynamics study

Daniele Coslovich

J. Chem. Phys. 138, 12A539 (2013);

DOI: 10.1063/1.4773355

Static replica approach to critical correlations in glassy systems

Silvio Franz, Hugo Jacquin, Giorgio Parisi, Pierfrancesco Urbani, and Francesco Zamponi

J. Chem. Phys. 138, 12A540 (2013);

DOI: 10.1063/1.4776213

The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation

Francis W. Starr, Jack F. Douglas, and Srikanth Sastry J. Chem. Phys. **138**, 12A541 (2013);

DOI: 10.1063/1.4790138

Systematic expansion in the order parameter for replica theory of the dynamical glass transition

Hugo Jacquin and Francesco Zamponi J. Chem. Phys. 138, 12A542 (2013);

DOI: 10.1063/1.4792641

Mechanical spectra of glass-forming liquids. I. Low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers

Tina Hecksher, Niels Boye Olsen, Keith A. Nelson, Jeppe C. Dyre, and Tage Christensen

J. Chem. Phys. 138, 12A543 (2013);

DOI: 10.1063/1.4789946

Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and DC704 studied by timedomain Brillouin scattering

Christoph Klieber, Tina Hecksher, Thomas Pezeril, Darius H. Torchinsky, Jeppe C. Dyre, and Keith A. Nelson

J. Chem. Phys. 138, 12A544 (2013);

DOI: 10.1063/1.4789948

Temporal disconnectivity of the energy landscape in glassy systems

Nikolaos Lempesis, Georgios C. Boulougouris, and Doros N. Theodorou J. Chem. Phys. 138, 12A545 (2013); DOI: 10.1063/1.4792363

Theoretical reconstruction of realistic dynamics of highly coarse-grained cis-1,4-polybutadiene melts

I. Y. Lyubimov and M. G. Guenza J. Chem. Phys. 138, 12A546 (2013); DOI: 10.1063/1.4792367

Random pinning glass transition: Hallmarks, mean-field theory and renormalization group analysis

Chiara Cammarota and Giulio Biroli J. Chem. Phys. 138, 12A547 (2013); DOI: 10.1063/1.4790400

Breakdown of the Stokes-Einstein relation in two, three, and four dimensions

Shiladitya Sengupta, Smarajit Karmakar, Chandan Dasgupta, and Srikanth Sastry J. Chem. Phys. 138, 12A548 (2013);

DOI: 10.1063/1.4792356

"Ideal glassformers" vs "ideal glasses": Studies of crystal-free routes to the glassy state by "potential tuning" molecular dynamics, and laboratory calorimetry

Vitaliy Kapko, Zuofeng Zhao, Dmitry V. Matyushov, and C. Austen Angell J. Chem. Phys. 138, 12A549 (2013);

DOI: 10.1063/1.4794787

