

FCC Test Report

FCC ID : 2ADYF-AP20

Equipment : 802.11AC Wireless Internet Router

Model No. : AP20

Brand Name : Art2Wave

Applicant : Art2Wave Inc

Address : 1901 South Bascom Ave, Suite 1300,

Campbell, CA, 95008, USA

Standard : 47 CFR FCC Part 15.407

Received Date : Mar. 19, 2015

Tested Date : Apr. 23 ~ Sep. 03, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Ilac-MRA

Tap Testing Laboratory

Page: 1 of 127

Report No.: FR582101AN

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	10
1.5	Testing Applied Standards	11
1.6	Measurement Uncertainty	11
2	TEST CONFIGURATION	12
2.1	Testing Condition	12
2.2	The Worst Test Modes and Channel Details	13
3	TRANSMITTER TEST RESULTS	15
3.1	Conducted Emissions	15
3.2	Emission Bandwidth	32
3.3	RF Output Power	37
3.4	Peak Power Spectral Density	40
3.5	Transmitter Radiated and Band Edge Emissions	46
3.6	Frequency Stability	125
4	TEST LABORATORY INFORMATION	127

Release Record

Report No.	Version	Description	Issued Date
FR582101AN	Rev. 01	Initial issue	Sep. 15, 2015

Report No.: FR582101AN Page : 3 of 127

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.434MHz 41.61 (Margin -5.56dB) - AV	Pass
15.407(b)	Radiated Emissions	[dBuV/m at 3m]: 5715.00MHz 68.08 (Margin -0.12dB) - PK	Pass
15.209		00.00 (Margin -0.120B) - FR	
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(e)	6dB bandwidth	Meet the requirement of limit	Pass
15.407(a)	RF Output Power	Max Power [dBm]: Non-beamforming mode 5150-5250MHz: 23.72 5725-5850MHz: 25.60 Beamforming mode 5150-5250MHz: 24.04 5725-5850MHz: 25.93	Pass
15.407(a)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR582101AN Page: 4 of 127

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

	RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS	
5150-5250	а	5180-5240	36-48 [4]	1	6-54 Mbps	
5150-5250	n (HT20)	5180-5240	36-48 [4]	2	MCS 0-15	
5150-5250	n (HT40)	5190-5230	38-46 [2]	2	MCS 0-15	
5150-5250	ac (VHT20)	5180-5240	36-48 [4]	2	MCS 0-9	
5150-5250	ac (VHT40)	5190-5230	38-46 [2]	2	MCS 0-9	
5150-5250	ac (VHT80)	5210	42 [1]	2	MCS 0-9	
5725-5850	а	5745-5825	149-165 [5]	1	6-54 Mbps	
5725-5850	n (HT20)	5745-5825	149-165 [5]	2	MCS 0-15	
5725-5850	n (HT40)	5755-5795	151-159 [2]	2	MCS 0-15	
5725-5850	ac (VHT20)	5745-5825	149-165 [5]	2	MCS 0-9	
5725-5850	ac (VHT40)	5755-5795	151-159 [2]	2	MCS 0-9	
5725-5850	ac (VHT80)	5775	155 [1]	2	MCS 0-9	

Note 1: RF output power specifies that Maximum Conducted Output Power.

1.1.2 Antenna Details

Ant. No.	Time		Operating Frequencies (MHz) / Antenna Gain (dBi)		
	Туре	Connector	2400~2483.5	5150~5250	5725~5850
1	PIFA	lle!	3.5	-	-
2			3.5	-	-
3		UFL	-	5.28	5.10
4			-	5.12	5.28

Report No.: FR582101AN Page: 5 of 127

Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

Note 3: 802.11a is transmitting signal through chain 0 only.

Note 4: 802.11n/ac supports beamforming mode.

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 1	12Vdc from AC adapter
Power Supply Type 2 (support unit only)	56Vdc from POE Brand: CISCO Model: AIR-PWRINJ1500-2 Power Rating: I/P: 100-240Vac, 50/60Hz, 1.5A O/P: 56Vdc, 1.43A

1.1.4 Accessories

	Accessories				
No.	Equipment	Description			
		Brand Name: DVE			
	AC Adapter Model Name: DSA-20CA-12 Power Rating: I/P: 100-240Vac, 50/60Hz, 0.8A O/P: 12Vdc, 1.5A	Model Name: DSA-20CA-12			
1					
		Power Line: 1.5m non-shielded cable w/o core			
2	RJ45 cable	1.5m non-shielded cable without core			

1.1.5 Channel List

For Frequency band 5150-5250 MHz					
802.11 a / l	HT20 / VHT20	HT40 / VHT40			
Channel	Frequency(MHz)	Channel	Frequency(MHz)		
36	5180	38	5190		
40	5200	46	5230		
44 5220 VHT 80					
48	5240	42	5210		

For Frequency band 5725~5850 MHz					
802.11 a / H	T20 / VHT20	HT40 / VHT40			
Channel	Frequency(MHz)	Channel	Frequency(MHz)		
149	5745	151	5755		
153	5765	159	5795		
157	5785	VH.	T80		
161	5805	155	5775		
165	5825				

Report No.: FR582101AN Page: 6 of 127

1.1.6 Test Tool and Duty Cycle

Test Tool	MTool, Version: 2.0.1.0				
	Mode	Non-Beamforming		Beamforming	
	Mode	Duty cycle (%)	Duty factor (dB)	Duty cycle (%)	Duty factor (dB)
Duty Cycle and Duty Footor	11a	99.29%	0.03		
Duty Cycle and Duty Factor	VHT20	99.26%	0.03	93.75%	0.28
	VHT40	98.23%	0.08	98.47%	0.07
	VHT80	95.27%	0.21	98.07%	0.08

1.1.7 Power Setting

	For Frequency band 5150-5250 MHz						
Modulation Mode	Test Frequency (MHz)	Powe	r Set				
Wodulation Wode	Nest Frequency (MH2)	Non-Beamforming	Beamforming				
11a	5180	92					
11a	5200	92					
11a	5240	92					
HT20	5180	76	75				
HT20	5200	92	92				
HT20	5240	92	72				
HT40	5190	58	54				
HT40	5230	92	92				
VHT20	5180	76	75				
VHT20	5200	92	92				
VHT20	5240	92	72				
VHT40	5190	58	54				
VHT40	5230	92	92				
VHT80	5210	47	47				

Report No.: FR582101AN Page: 7 of 127

	For Frequency band 5725~5850 MHz					
Modulation Mode	Test Frequency (MHz)	Powe	r Set			
Widdulation Widde	rest Frequency (MH2)	Non-Beamforming	Beamforming			
11a	5745	74				
11a	5785	92				
11a	5825	76				
HT20	5745	72	68			
HT20	5785	92	92			
HT20	5825	70	70			
HT40	5755	60	60			
HT40	5795	78	78			
VHT20	5745	72	68			
VHT20	5785	92	92			
VHT20	5825	70	70			
VHT40	5755	60	60			
VHT40	5795	78	78			
VHT80	5775	50	50			

Report No.: FR582101AN Page: 8 of 127

1.2 Local Support Equipment List

Support Equipment List								
No.	Equipment	Brand	Model	FCC ID	Signal cable / Length (m)			
1	Notebook	DELL	Latitude E5420	DoC	RJ45, 8m non-shielded.			
2	POE	CISCO	AIR-PWRINJ1500-2		RJ45, 8m non-shielded.			

Note: POE is provided by applicant.

1.3 Test Setup Chart

Report No.: FR582101AN Page: 9 of 127

1.4 The Equipment List

Test Item	Conducted Emission									
Test Site	Conduction room 1 / (Conduction room 1 / (CO01-WS)								
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibration U								
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015					
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015					
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015					
Measurement Software	AUDIX	e3	6.120210k	NA	NA					
Note: Calibration Interval of instruments listed above is one year.										

Test Item	Radiated Emission							
Test Site	966 chamber 3 / (03CH03-WS)							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	Agilent	N9010A	MY53400091	Sep. 16, 2014	Sep. 15, 2015			
Receiver	Agilent	N9038A	MY53290044	Oct. 21, 2014	Oct. 20, 2015			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-562	Jan. 19, 2015	Jan. 18, 2016			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 03, 2015	Feb. 02, 2016			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015			
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015			
Preamplifier	EMC	EMC02325	980187	Sep. 26, 2014	Sep. 25, 2015			
Preamplifier	Agilent	83017A	MY53270014	Sep. 17, 2014	Sep. 16, 2015			
Pre-Amplifier	WM	TF-130N-R1	923365	Feb. 10, 2015	Feb. 09, 2016			
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 09, 2015	Feb. 08, 2016			
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22601/4	Feb. 09, 2015	Feb. 08, 2016			
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 09, 2015	Feb. 08, 2016			
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 09, 2015	Feb. 08, 2016			
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 09, 2015	Feb. 08, 2016			
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 09, 2015	Feb. 08, 2016			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Int	erval of instruments lis	sted above is one year.						

Report No.: FR582101AN Page: 10 of 127

Test Item	RF Conducted								
Test Site	(TH01-WS)								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016				
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Dec. 03, 2014	Dec. 02, 2015				
Power Meter	Anritsu	ML2495A	1241002	Sep. 29, 2014	Sep. 28, 2015				
Power Sensor	Anritsu	MA2411B	1207366	Sep. 29, 2014	Sep. 28, 2015				
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA				
Note: Calibration Interval of instruments listed above is one year.									

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.10-2013

FCC KDB 789033 D02 General UNII Test Procedures New Rules v01

FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 412172 D01 Determining ERP and EIRP v01r01

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Parameters	Uncertainty			
Bandwidth	±34.134 Hz			
Conducted power	±0.808 dB			
Frequency error	±34.134 Hz			
Power density	±0.463 dB			
Conducted emission	±2.670 dB			
AC conducted emission	±2.92 dB			
Radiated emission ≤ 1GHz	±3.99 dB			
Radiated emission > 1GHz	±5.52 dB			
Time	±0.1%			
Temperature	±0.6 °C			

Report No.: FR582101AN Page: 11 of 127

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	20°C / 66%	Kevin Ma
Radiated Emissions	03CH03-WS	21-24°C / 60-62%	Warren Lee Brad Wu
RF Conducted	TH01-WS	23°C / 62%	Felix Sung

FCC site registration No.: 390588IC site registration No.: 10807C-1

Report No.: FR582101AN Page: 12 of 127

2.2 The Worst Test Modes and Channel Details

For Frequency band 5150-5250 MHz								
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration				
Conducted Emissions	VHT40	5230	MCS 0	1, 2				
Conducted Emissions	VHT20	5200	MCS 0	3, 4				
Radiated Emissions ≤1GHz	VHT40	5230	MCS 0	1, 2				
Radiated Emissions STGHZ	VHT20	5200	MCS 0	3, 4				
	11a	5180 / 5200 / 5240	6 Mbps					
	HT20	5180 / 5200 / 5240	MCS 0					
RF Output Power	HT40	5190 / 5230	MCS 0	4.0				
Ni Output i owei	VHT20	5180 / 5200 / 5240	MCS 0	1, 3				
	VHT40	5190 / 5230	MCS 0					
	VHT80	5210	MCS 0					
	11a	5180 / 5200 / 5240	6 Mbps					
Radiated Emissions >1GHz	VHT20	5180 / 5200 / 5240	MCS 0	4				
Emission Bandwidth Peak Power Spectral Density	VHT40	5190 / 5230	MCS 0	1				
T can't ower opeonal behony	VHT80	5210	MCS 0					
Radiated Emissions >1GHz	VHT20	5180 / 5200 / 5240	MCS 0					
Emission Bandwidth	VHT40	5190 / 5230	MCS 0	3				
Peak Power Spectral Density	VHT80	5210	MCS 0					
Frequency Stability	Un-modulation	5200		1				

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
- 2. Test configurations are listed as below:
 - 1) Configuration 1: Non-beamforming mode, Adapter mode
 - 2) Configuration 2: Non-beamforming mode, PoE mode
 - 3) Configuration 3: Beamforming mode, Adapter mode
 - 4) Configuration 4: Beamforming mode, PoE mode

Report No.: FR582101AN Page: 13 of 127

	For Frequency band 5725-5850 MHz								
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration					
Conducted Emissions	VHT20	5785	MCS 0	1, 2					
Conducted Emissions	HT20	5785	MCS 0	3, 4					
Radiated Emissions ≤1GHz	VHT20	5785	MCS 0	1, 2					
Radiated Emissions STGHZ	HT20	5785	MCS 0	3, 4					
	11a	5745 / 5785 / 5825	6 Mbps						
	HT20	5745 / 5785 / 5825	MCS 0						
RF Output Power	HT40	5755 / 5795	MCS 0	1, 3					
The Output Fower	VHT20	5745 / 5785 / 5825	MCS 0						
	VHT40	5755 / 5795	MCS 0						
	VHT80	5775	MCS 0						
Radiated Emissions >1GHz	11a	5745 / 5785 / 5825	6 Mbps						
Emission Bandwidth	VHT20	5745 / 5785 / 5825	MCS 0	4					
6dB bandwidth	VHT40	5755 / 5795	MCS 0	1					
Peak Power Spectral Density	VHT80	5775	MCS 0						
Radiated Emissions >1GHz Emission Bandwidth 6dB bandwidth Peak Power Spectral Density	VHT20 VHT40 VHT80	5745 / 5785 / 5825 5755 / 5795 5775	MCS 0 MCS 0 MCS 0	3					
Frequency Stability	Un-modulation	5785		1					

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
- 2. Test configurations are listed as below:
 - 1) Configuration 1: Non-beamforming mode, Adapter mode
 - 2) Configuration 2: Non-beamforming mode, PoE mode
 - 3) Configuration 3: Beamforming mode, Adapter mode
 - 4) Configuration 4: Beamforming mode, PoE mode

Report No.: FR582101AN Page : 14 of 127

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30	60	50				
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR582101AN Page: 15 of 127

3.1.4 **Test Result of Conducted Emissions**

Non- beamforming mode

	MHz	dBu∀	Line dBuV	Limit dB	Level dBuV	factor dB	loss dB	Remark
1*	0.439	39.12	47.09	-7.97	38.94	0.07	0.11	Average
2	0.439	42.45	57.09	-14.64	42.27	0.07	0.11	QP
3	1.568	28.67	46.00	-17.33	28.37	0.09	0.21	Average
4	1.568	33.76	56.00	-22.24	33.46	0.09	0.21	QP
5	4.478	30.15	46.00	-15.85	29.71	0.13	0.31	Average
6	4.478	42.66	56.00	-13.34	42.22	0.13	0.31	QP
7	5.031	30.80	50.00	-19.20	30.35	0.14	0.31	Average
8	5.031	38.34	60.00	-21.66	37.89	0.14	0.31	QP
9	11.076	40.66	50.00	-9.34	40.15	0.23	0.28	Average
10	11.076	45.78	60.00	-14.22	45.27	0.23	0.28	QP
11	18.571	41.11	50.00	-8.89	40.73	0.31	0.07	Average
12	18.571	43.37	60.00	-16.63	42.99	0.31	0.07	QP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR582101AN Page: 16 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Power Phase	Neutral	Test Configuration	1

	Freq	Level	Limit	Over	Read	LISN	cable	
			Line	Limit	Level	factor	loss	Remark
	MHz	dBu∀	dBuV	dB	dBu∀	dB	dB	
1*	0.435	41.21	47.16	-5.95	41.03	0.07	0.11	Average
2	0.435	44.13	57.16	-13.03	43.95	0.07	0.11	QP
3	0.712	31.66	46.00	-14.34	31.44	0.08	0.14	Average
4	0.712	37.29	56.00	-18.71	37.07	0.08	0.14	QP
5	1.636	23.45	46.00	-22.55	23.14	0.09	0.22	Average
6	1.636	34.12	56.00	-21.88	33.81	0.09	0.22	QP
7	4.478	30.42	46.00	-15.58	29.97	0.14	0.31	Average
8	4.478	44.90	56.00	-11.10	44.45	0.14	0.31	QP
9	11.257	30.38	50.00	-19.62	29.86	0.25	0.27	Average
10	11.257	36.17	60.00	-23.83	35.65	0.25	0.27	QP
11	18.820	33.81	50.00	-16.19	33.42	0.33	0.06	Average
12	18.820	38.87	60.00	-21.13	38.48	0.33	0.06	QP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR582101AN Page: 17 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Power Phase	Line	Test Configuration	1
80 Level (dBu) 70 60 40 10 00.150.2	Line 0.5 1 Frequence Level Limit Over Read Line Limit Level dBuV dBuV dB dBuV 38.38 56.00 -17.62 37.38 49.96 66.00 -16.04 48.96 37.71 51.70 -13.99 37.38 41.39 61.70 -20.31 41.06 40.77 50.13 -9.36 40.46 41.85 60.13 -18.28 41.54 30.81 46.76 -15.95 30.52 33.96 56.76 -22.80 33.67 27.83 46.00 -18.17 27.12	Test Configuration CISPE 2 5 10 ency (MHz) LISN cable	

Report No.: FR582101AN Page: 18 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Power Phase	Neutral	Test Configuration	1
Power Phase 80	Neutral 0.5 1 Frequence Limit Over Read Line Limit Level dBuV dB	Test Configuration CISPE 2	
8 0.45 9 3.04 10 3.04 11 4.54 12 4.54	4 33.04 56.80 -23.76 32.77 L 25.31 46.00 -20.69 24.50 L 35.36 56.00 -20.64 34.55	0.15	

Report No.: FR582101AN Page: 19 of 127

Power Phase 80 70 60	vel (dBu\	Line v)				Test C	Configu	urat	ion		2	
70 60	vel (dBu\	v)										
70 60	vel (dBu\	V)										
70 60	vel (dBu)	v)								_		
60												
60												
_												
502		_								+	CISPR/CNS/	VCCI-B
50₽—	-							-		CI	SPR/CNS/VC	CI-B AV
1.1							<u> </u>			Ť		
40	ida M	-					1	2				
	(MANA) 131	May 1	8	. AM. Li	Jan Many Alfo	na kilondi Abbili	M W. 1	k .			thank dear	
30	`\\\\	MY PLV	* ***********************************	MIIIIM		14 At Maria	9 1	, TOPY YOU	MANUAL W	APP	ALL CONTRACTOR OF THE PROPERTY	M _m
20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	**************************************	I WIN) [1]	ĮΓ Ψ'	, , , , , , , , , , , , , , , , , , ,	III I		[F 1] 11		'	JANA MANA
20		l M										
10			'							+		
0 <mark>0.1</mark>	50.2		0.5	1		2		5		1	10 :	20 30
					Frequ	ency (MH	łz)					
	Freq	Level			Read	LISN	cable	_				
	MHz	dBu∀	Line dBuV	Limit dB	dBuV	factor dB	loss dB	Rei	mark			
-	0.150	21 70										
1 2	0.150 0.150	31.78 47.98		-24.22 -18.02	30.78 46.98	0.92	0.08	QP	erage	•		
3	0.247		51.87		34.69	0.23	0.10		erage	•		
4 5*	0.247		50.11	-21.09 -10.22	40.45 39.58	0.23	0.10		erage			
6	0.305		60.11		41.30	0.21	0.10	QP				
7 8	0.456 0.456		46.76 56.76		28.45 33.35	0.17 0.17			erage	•		
9	3.041	26.85	46.00	-19.15	26.16	0.41	0.28	Αve	erage	•		
10 11	3.041 4.549				35.17 26.88	0.41			erage	,		
12	4.549			-15.98		0.31						

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR582101AN Page: 20 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Power Phase	Neutral	Test Configuration	2
80 Level (d	BuV)		
70 60		CI	SPR/CNS/VCCI-B
50 40 30		CISP	R/CNS/VCCI-B AV
10			7 2744
0.150.2	0.5 1 Fre	2 5 10 equency (MHz)	20 30
	eq Level Limit Over Re Line Limit Lev Hz dBuV dBuV dB dB	el factor loss Remark	
1 0.1 2 0.1 3 0.2 4 0.2 5* 0.3 6 0.3 7 0.4	50 49.45 66.00 -16.55 48. 52 38.51 51.69 -13.18 38. 52 40.42 61.69 -21.27 40. 03 42.08 50.16 -8.08 41. 03 42.99 60.16 -17.17 42.	57 0.85 0.08 Average 52 0.85 0.08 QP 21 0.20 0.10 Average 12 0.20 0.10 QP 81 0.17 0.10 Average 72 0.17 0.10 QP	
8 0.4 9 3.0 10 3.0 11 4.5	54 33.71 56.80 -23.09 33. 90 26.50 46.00 -19.50 25. 90 35.31 56.00 -20.69 34.	44 0.15 0.12 QF 67 0.55 0.28 Average 48 0.55 0.28 QP 45 0.71 0.31 Average	

Report No.: FR582101AN Page: 21 of 127

Power Phase Line Test Configuration 80 10 10 Test Configuration Test Configuration	CISPR/CNS/VCCI-B AV
70 60 50 40 30 20	
20	9 WH 19 24 11 WALL
	100
0 0.150.2 0.5 1 2 5 Frequency (MHz)	10 20 3
Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB	
1*	

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR582101AN Page: 22 of 127

Power Phase 80 70	Level (dBu\	Neutra	าไ				req. (N	/IHZ	,		5785	
80-	Level (dBu\					Test C	onfigu	ırati	on		2	
80-	Level (dBu\											
80-		v)										
70												
60											CISPR/CNS	/VCCI-B
										CI	SPR/CNS/VO	CLB AV
50		7								Ť	.di.	557
40		ML 1	1 1	Mi A	, 6 A			all Ka	ılı	ulc.d	12	M
30	hi Av	W	/\B\W	$M M M_{\Lambda}$	ΛΛΑΛΛ	A. LANHA				W	"9 ' " 1 ₁	WMW.
30	MAN IN.	, r		A M	ייוףעש	LIMMATIN	ווייווי	"	Mala			
20						1						
10												
0	0.150.2		0.5	1	Frequ	2 ency (MH	1-1	5		1	0	20 30
	Freq	Lovel	Limit	Over	Read	LISN	cable					
	_		Line	Limit	Level	factor	loss		mark			
	MHz	dBuV 	dBuV 	dB	dBuV 	dB	dB					
1* 2	0.426 0.426		47.33 57.33		39.54 43.71	0.07	0.11		erage	•		
3	0.558	32.36	46.00	-13.64	32.16	0.07	0.13	Αv	erage	•		
4 5	0.558 1.552		56.00 46.00		37.31 30.54	0.07	0.13		erage			
6	1.552		56.00		36.21	0.09	0.21		Jruge			
7	4.574		46.00		30.41	0.14			erage	•		
8 9		41.32 33.12			40.87 32.60	0.14			erage			
10	11.257		60.00		38.27	0.25						
11		32.63				0.32			erage	•		
12	18.039	37.89	60.00	-22.11	3/.48	0.32	0.09	QP				

Report No.: FR582101AN Page: 23 of 127

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Beamforming mode

	MHz	dBu∀	Line dBuV	Limit dB	Level dBuV	factor dB	loss dB	Remark
1*	0.437	40.03	47.11	-7.08	39.85	0.07	0.11	Average
2	0.437	43.33	57.11	-13.78	43.15	0.07	0.11	QP
3	0.570	30.90	46.00	-15.10	30.70	0.07	0.13	Average
4	0.570	36.45	56.00	-19.55	36.25	0.07	0.13	QP
5	1.698	28.91	46.00	-17.09	28.59	0.10	0.22	Average
6	1.698	34.18	56.00	-21.82	33.86	0.10	0.22	QP
7	4.598	28.04	46.00	-17.96	27.60	0.13	0.31	Average
8	4.598	41.65	56.00	-14.35	41.21	0.13	0.31	QP
9	11.198	40.98	50.00	-9.02	40.48	0.23	0.27	Average
10	11.198	46.15	60.00	-13.85	45.65	0.23	0.27	QP
11	16.928	31.43	50.00	-18.57	31.01	0.29	0.13	Average
12	16.928	36.59	60.00	-23.41	36.17	0.29	0.13	QP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR582101AN Page: 24 of 127

Modulation	VHT2	20			Test F	req. (I	ИHz	<u>z</u>)		5200	
Power Phase	Neuti	al			Test C	onfig	urat	ion		3	
	el (dBuV)							W4 Y W	CI	CISPR/CNS/VC	
20	M		T THE FUT	ሃም የ ማ ቹ የ	MANAMA	Mike		r Pipri	lr'		
10											
0 <mark>.150</mark>		0.5	1		2		5		Щ	0 :	20 3
0.150	1.2	0.5	'	Frequ	ency (MH	łz)	9		1		20 31
	Freq Leve	Limit Line dBuV	Over Limit dB	dBu∀	LISN factor dB	cable loss dB	Re	emark			
2	0.437 44.9	47.11 57.11 46.00		40.53	0.07	0.11	An QI				
4 (0.708 37.73 1.636 26.83	56.00 46.00	-18.28 -19.18	32.00 37.50 26.51	0.08		QI A	rerag			
7 8	1.636 37.84 4.549 29.56 4.549 41.63 1.198 33.87	46.00 3 56.00	-16.50 -14.37	37.53 29.05 41.18 33.35	0.09 0.14 0.14 0.25	0.31 0.31	Av QI	erag			
10 1: 11 1:	1.198 33.6 1.198 39.00 7.109 32.7 7.109 37.9	60.00 50.00	-20.92 -17.24	38.56 32.32	0.25	0.27 0.12	QI A	rerag			

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR582101AN Page: 25 of 127

Modulation		HT20				Test F	req. (N	/IHz)	5785
Power Phase		Line				Test C	Configu	ıration	3
_{oo} Leve	el (dBuV))							
80									
70									
60								<u> </u>	CISPR/CNS/VCCI-B
								CIS	SPR/CNS/VCCI-B AV
50		-					- 1	_	
40	A A	9	0		. 1		Mu 1		
30	W		1. h	MALIANA				Manual on Albertan and P	ylat-depoper was recorded to
30	W Y	WW	1718814	ויייתווווו	ווי ייווואוייוןן	'W' "	9 Wilkin	lad tobal Lab.	MANAGE TO STATE OF THE PARTY OF
20		th a	1 1 1 1		*				
10			1						
0 <mark>0.15</mark>	0.2		0.5	1	Fregu	2 ency (MH		5 10	0 20 3
	Freq	T.evel	Limit	Over	Read	LISN			
	_		Line	Limit	Level	factor	loss	Remark	
	MHz	dBuV 	dBu∀ 	dB	dBu∀ 	dB	dB		
	0.150 0.150	36.23 48.46	56.00 66.00		35.23 47.46	0.92	0.08	Average QP	
3	0.251	37.87	51.72	-13.85	37.54	0.23	0.10	Average	
5*	0.303	40.73	61.72 50.17	-9.44	40.57 40.42	0.23 0.21	0.10	QP Average	
			60.17 46.80		41.09 30.37	0.21		QP Average	
8	0.454	33.98	56.80	-22.82	33.69	0.17	0.12	QP	
10	3.156	32.93	46.00 56.00	-23.07		0.39	0.29		
			46.00 56.00					Average QP	
								~	

Report No.: FR582101AN Page: 26 of 127

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Modulation			HT20				Test F	req. (M	IHz)	5785	
Power Phase			Neutra	ıl		_	Test C	onfigu	ration	3	_
		and (dD)	An.								
	80 ^L	Level (dBı	17)								
	70										
	,,										
	60									CISPR/CNS/V	CCI-B
	50								CI	SPR/CNS/VCC	I-B AV
	90	li l	6	~							
	40	MMI A					м.	1/2 612			
		14 AP 41.	l. II. w I		1	e ne kritati <mark>ni</mark>	o. NAMANANAN	NAME OF THE	Madashari .	بيان يوسليل	
	30	\ \/ \/\	MIII.//./M	MAYA	MIIM	MALAMA, MA	Militari, A.	9 100	AUGATIA JI PA	Jahren and Marketine and	W
	20		<u> </u>	V V	ANALL.	M	711				WAY.
	10										
	0,	0.150.2		0.5	1		2		5 1	0 20	30
	١	0.100.2		0.5	'	Frequ	ency (MH		5 1	0 20	30
		Freq	I Level		Over		LISN	cable			
		MH2	dBuV	Line dBuV	Limit dB		factor dB	loss dB	Remark		
1 2		0.150 0.150		56.00 66.00			0.85 0.85	0.08	Average QP		
3			38.37				0.20		_		
4 5*		0.252		61.69 50.18	-8.09		0.20 0.17	0.10			
6			42.78				0.17		_		
7		0.456	29.14	46.76	-17.62	28.87	0.15	0.12	Average		
8			33.53				0.15				
9			24.07				0.56		Average		
10			32.68								
11			27.05						Average		
12		4.545	40.28	36.00	-15.72	39.26	0.71	0.31	QP		
Note 1: Level (c	dΒυ	(V) = Re	ad Leve	el (dBu)	V) + I I	SN Fact	tor (dB)	+ Cah	le Loss (dF	3).	
2: Over Li								. 540	.5 2555 (42	.,.	
2. Over Li		(UD) — I	_0 v Gi (U	_uv _/ _	I	c (ub	ων <i>j</i> .				

Report No.: FR582101AN Page: 27 of 127

Modulation			VHT2	0			Test F	req. (МН	z)		!	5200		
Power Phase			Line				Test C	Config	ura	tio	n	4	4		
	80 ^{Le}	evel (dBu	V)			I						_			_
	70														
	60				\perp					\perp		CISP	R/CNS	VCCI-	В
	-			+	+							IEDD#	CNS/VC	CLB	w
	50		-									ISFR/	CNS/VC	CI-DA	**
	40	h m 4	Ģ					1	1						
	70	W'N /L	1	8 h		والقرائد والما	a da andaldi	NV. 1	Щ.			114.			
	30		JI A N	የለበ 	MANA	MANAGEM	MAN WALL	9		Mary	Whythy	Markanita di	nythikalian in	₩	
		ון ישי	VIII / W "	TINNU"	יוווויי	Jahr, Mar II	-1,	լ դետալու	l'I			'		YAM.	de.
	20		10	Ι,Λ,	11										
	10									\perp					
	0 <mark>0.</mark>	150.2		0.5		1	2		5			10		20	30
						Frequ	ency (MF	łz)							
		Freq	Level	Limit	Ove		LISN	cable							
		MHz	dBu∀	Line dBuV	Lim	it Level dB dBuV	factor dB	loss dE		emai	rk				
									-						
1 2		0.150 0.150		56.00 66.00			0.92	0.08		vera P	age				
3		0.249	37.73	51.78	-14.	05 37.40	0.23	0.10		vera	age				
4 5*	,	0.249				09 40.36 57 40.29	0.23				age				
6		0.303	41.46	60.17	-18.	71 41.15	0.21	0.10) Q	P					
7 8				46.76 56.76		61 28.86 90 33.57	0.17 0.17				age				
9		3.090	28.59	46.00	-17.	41 27.91	0.40	0.28	3 A	vera	age				
10 11		3.090 4.478				95 36.37 05 24.33					age				
12		4.478	41.02	56.00	-14.	98 40.40	0.31	0.31	L Q	P					

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR582101AN Page: 28 of 127

Modulation	VHT20	Test Freq. (MHz) 5200						
Power Phase	Neutral	Test Configuration	4					
80 Level (dBu	ıV)							
70 60 50			SPR/CNS/VCCI-B					
40 30 20		HAMINIAN THE PROPERTY OF THE P	When when make heart the formation when					
00.150.2	0.5 1	2 5 10	20 30					
		ency (MHz) LISN cable						
MHz	Line Limit Level dBuV dBuV dB dBuV	factor loss Remark dB dB						
1 0.150 2 0.150 3 0.250 4 0.250 5* 0.302 6 0.302 7 0.456 8 0.456 9 3.090 10 3.090 11 4.508	34.57 56.00 -21.43 33.64 48.59 66.00 -17.41 47.66 38.52 51.76 -13.24 38.22 40.09 61.76 -21.67 39.79 41.68 50.20 -8.52 41.41 42.68 60.20 -17.52 42.41 27.92 46.76 -18.84 27.65 33.22 56.76 -23.54 32.95 27.67 46.00 -18.33 26.84 35.61 56.00 -20.39 34.78	0.85 0.08 Average 0.85 0.08 QP 0.20 0.10 Average 0.20 0.10 Average 0.17 0.10 Average 0.17 0.10 QP 0.15 0.12 Average 0.15 0.12 QP 0.55 0.28 Average						

Report No.: FR582101AN Page: 29 of 127

Line Test Configuration 4	lodulation	HT20	Test Freq. (MHz)	5785
Trequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dBuV dB dBu 1* 0.433 40.42 47.20 -6.78 40.24 0.07 0.11 Average 2 0.433 43.96 57.20 -13.24 43.78 0.07 0.11 QP 3 0.570 30.56 46.00 -15.44 30.36 0.07 0.13 Average 4 0.570 36.15 56.00 -19.89 35.95 0.07 0.13 QP 5 2.273 26.02 46.00 -19.98 25.67 0.10 0.25 QP 7 4.549 28.23 46.00 -17.77 27.79 0.13 0.31 Average 8 4.549 40.82 56.00 -15.18 40.38 0.13 0.31 QP 9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 QP	ower Phase	Line	Test Configuration	4
Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dB dBuV dB dB 1* 0.433 40.42 47.20 -6.78 40.24 0.07 0.11 Average 2 0.433 43.96 57.20 -13.24 43.78 0.07 0.11 QP 3 0.570 30.56 46.00 -15.44 30.36 0.07 0.13 Average 4 0.570 36.15 56.00 -19.85 35.95 0.07 0.13 QP 5 2.273 26.02 46.00 -19.98 25.67 0.10 0.25 Average 6 2.273 34.60 56.00 -21.40 34.25 0.10 0.25 QP 7 4.549 28.23 46.00 -17.77 27.79 0.13 0.31 Average 8 4.549 40.82 56.00 -15.18 40.38 0.13 0.31 QP 9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 Average 10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP	70 60 50 40 30 20			
Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB 1* 0.433 40.42 47.20 -6.78 40.24 0.07 0.11 Average 2 0.433 43.96 57.20 -13.24 43.78 0.07 0.11 QP 3 0.570 30.56 46.00 -15.44 30.36 0.07 0.13 Average 4 0.570 36.15 56.00 -19.85 35.95 0.07 0.13 QP 5 2.273 26.02 46.00 -19.98 25.67 0.10 0.25 Average 6 2.273 34.60 56.00 -21.40 34.25 0.10 0.25 QP 7 4.549 28.23 46.00 -17.77 27.79 0.13 0.31 Average 8 4.549 40.82 56.00 -15.18 40.38 0.13 0.31 QP 9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 Average 10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP	0.150.2			20 30
Line Limit Level factor loss Remark MHz dBuV dB dBuV dB dB 1* 0.433 40.42 47.20 -6.78 40.24 0.07 0.11 Average 2 0.433 43.96 57.20 -13.24 43.78 0.07 0.11 QP 3 0.570 30.56 46.00 -15.44 30.36 0.07 0.13 Average 4 0.570 36.15 56.00 -19.85 35.95 0.07 0.13 QP 5 2.273 26.02 46.00 -19.98 25.67 0.10 0.25 Average 6 2.273 34.60 56.00 -21.40 34.25 0.10 0.25 QP 7 4.549 28.23 46.00 -17.77 27.79 0.13 0.31 Average 8 4.549 40.82 56.00 -15.18 40.38 0.13 0.31 QP 9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 Average 10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP	_			
2 0.433 43.96 57.20 -13.24 43.78 0.07 0.11 QP 3 0.570 30.56 46.00 -15.44 30.36 0.07 0.13 Average 4 0.570 36.15 56.00 -19.85 35.95 0.07 0.13 QP 5 2.273 26.02 46.00 -19.98 25.67 0.10 0.25 Average 6 2.273 34.60 56.00 -21.40 34.25 0.10 0.25 QP 7 4.549 28.23 46.00 -17.77 27.79 0.13 0.31 Average 8 4.549 40.82 56.00 -15.18 40.38 0.13 0.31 QP 9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 Average 10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP		Line Limit Lev	el factor loss Remark	
3 0.570 30.56 46.00 -15.44 30.36 0.07 0.13 Average 4 0.570 36.15 56.00 -19.85 35.95 0.07 0.13 QP 5 2.273 26.02 46.00 -19.98 25.67 0.10 0.25 Average 6 2.273 34.60 56.00 -21.40 34.25 0.10 0.25 QP 7 4.549 28.23 46.00 -17.77 27.79 0.13 0.31 Average 8 4.549 40.82 56.00 -15.18 40.38 0.13 0.31 QP 9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 Average 10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP			_	
4 0.570 36.15 56.00 -19.85 35.95 0.07 0.13 QP 5 2.273 26.02 46.00 -19.98 25.67 0.10 0.25 Average 6 2.273 34.60 56.00 -21.40 34.25 0.10 0.25 QP 7 4.549 28.23 46.00 -17.77 27.79 0.13 0.31 Average 8 4.549 40.82 56.00 -15.18 40.38 0.13 0.31 QP 9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 Average 10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP				
6 2.273 34.60 56.00 -21.40 34.25 0.10 0.25 QP 7 4.549 28.23 46.00 -17.77 27.79 0.13 0.31 Average 8 4.549 40.82 56.00 -15.18 40.38 0.13 0.31 QP 9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 Average 10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP				
7 4.549 28.23 46.00 -17.77 27.79 0.13 0.31 Average 8 4.549 40.82 56.00 -15.18 40.38 0.13 0.31 QP 9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 Average 10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP				
8 4.549 40.82 56.00 -15.18 40.38 0.13 0.31 QP 9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 Average 10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP				
9 11.139 40.44 50.00 -9.56 39.94 0.23 0.27 Average 10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP				
10 11.139 45.63 60.00 -14.37 45.13 0.23 0.27 QP				
11 17.199 31.23 50.00 -18.77 30.81 0.30 0.12 Average				
12 17.199 36.41 60.00 -23.59 35.99 0.30 0.12 QP	12 17.199	36.41 60.00 -23.59 35.	99 0.30 0.12 QP	

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB).

2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR582101AN Page: 30 of 127

Report No.: FR582101AN Page: 31 of 127

3.2 Emission Bandwidth

3.2.1 Limit of Emission bandwidth

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.2.2 Test Procedures

26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW
- 2. Set VBW ≥ 3 RBW
- 3. Sample detection and single sweep mode shall be used
- 4. Use the 99 % power bandwidth function of the instrument

6dB Bandwidth

- 1. Set RBW = 100kHz, VBW = 300kHz
- 2. Detector = Peak, Trace mode = max hold.
- 3. Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

3.2.3 Test Setup

Report No.: FR582101AN Page: 32 of 127

3.2.4 Test Result of Emission Bandwidth

Non-beamforming mode - Test Configuration 1

	For Frequency band 5150-5250 MHz												
	Emission Bandwidth												
		Freq.	2	26dB Band	width (MHz)	99% Bandwidth (MHz)						
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3			
11a	1	5180	43.62				19.86						
11a	1	5200	43.77				19.58						
11a	1	5240	43.62				19.62						
VHT20	2	5180	41.74	42.10			18.16	18.08					
VHT20	2	5200	48.70	43.99			19.61	19.41					
VHT20	2	5240	47.90	43.99			19.50	19.42					
VHT40	2	5190	41.04	41.16			36.52	36.52					
VHT40	2	5230	97.83	93.48			38.56	38.34					
VHT80	2	5210	82.78	82.32			76.20	76.12					

Report No.: FR582101AN Page: 33 of 127

	For Frequency band 5725-5850 MHz												
	Emission Bandwidth												
			OBW Bandwidth (MHz)				6dB Bandwidth (MHz)						
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	6dB BW Limit (MHz)		
11a	1	5745	17.15				16.35				0.5		
11a	1	5785	19.92				16.35				0.5		
11a	1	5825	17.27				16.35				0.5		
VHT20	2	5745	18.04	17.89			17.57	17.57			0.5		
VHT20	2	5785	24.70	24.06			17.57	17.62			0.5		
VHT20	2	5825	18.00	17.88			17.57	17.57			0.5		
VHT40	2	5755	36.54	36.48			36.29	36.29			0.5		
VHT40	2	5795	36.88	36.76			36.29	36.29			0.5		
VHT80	2	5775	76.08	76.08			75.13	76.06			0.5		

Report No.: FR582101AN Page: 34 of 127

Beamforming mode - Test Configuration 3

	For Frequency band 5150-5250 MHz												
	Emission Bandwidth												
Mada		Freq.	2	26dB Band	width (MHz)	99% Bandwidth (MHz)						
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3			
VHT20	2	5180	40.48	34.31			18.11	17.93					
VHT20	2	5200	46.53	40.58			19.91	18.65					
VHT20	2	5240	29.00	26.92			17.97	17.84					
VHT40	2	5190	41.00	40.71			36.52	36.56					
VHT40	2	5230	95.63	88.83			38.04	37.26					
VHT80	2	5210	82.85	82.64			76.12	76.16					

Report No.: FR582101AN Page: 35 of 127

	For Frequency band 5725-5850 MHz											
Emission Bandwidth												
			O	BW Band	width (MH	z)	6dB Bandwidth (MHz)					
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	6dB BW Limit (MHz)	
VHT20	2	5745	17.94	17.84			17.57	17.57			0.5	
VHT20	2	5785	19.30	19.22			17.57	17.62			0.5	
VHT20	2	5825	17.96	17.83			17.57	17.57			0.5	
VHT40	2	5755	36.52	36.50			36.33	36.33			0.5	
VHT40	2	5795	36.80	36.78			36.31	36.33			0.5	
VHT80	2	5775	76.16	76.08			75.55	76.29			0.5	

Report No.: FR582101AN Page: 36 of 127

3.3 RF Output Power

3.3.1 Limit of RF Output Power

	Frequency band 5150-5250 MHz							
Оре	rating Mode	Limit						
	Outdoor access point	Conducted Power: 1 W The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)						
	Indoor access point	Conducted Power: 1 W						
	Fixed point-to-point access points	Conducted Power: 1 W						
	Mobile and portable client devices	Conducted Power: 250 mW						

Fred	quency Band (MHz)	Limit					
	5250 ~ 5350	250mW or 11dBm+10 log B					
	5470 ~ 5725	250mW or 11dBm+10 log B					
Note	Note: "B" is the 26dB emission bandwidth in MHz.						

3.3.2 Test Procedures

Method PM-G (Measurement using a gated RF average power meter)

Measurements is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.3.3 Test Setup

Report No.: FR582101AN Page: 37 of 127

3.3.4 Test Result of Maximum Conducted Output Power

Non-beamforming mode - Test Configuration 1

	For Frequency band 5150-5250 MHz										
			Conducted Power (dBm)				Total	Total	Limit		
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)		
11a	1	5180	21.03				126.765	21.03	30.00		
11a	1	5200	21.37				137.088	21.37	30.00		
11a	1	5240	21.52				141.906	21.52	30.00		
HT20	2	5180	18.91	18.86			154.717	21.90	30.00		
HT20	2	5200	20.50	20.38			221.346	23.45	30.00		
HT20	2	5240	20.70	20.51			229.950	23.62	30.00		
HT40	2	5190	14.30	14.12			52.738	17.22	30.00		
HT40	2	5230	20.63	20.57			229.636	23.61	30.00		
VHT20	2	5180	19.05	18.99			159.603	22.03	30.00		
VHT20	2	5200	20.58	20.46			225.461	23.53	30.00		
VHT20	2	5240	20.73	20.55			231.805	23.65	30.00		
VHT40	2	5190	14.36	14.22			53.714	17.30	30.00		
VHT40	2	5230	20.79	20.62			235.295	23.72	30.00		
VHT80	2	5210	12.10	12.06			32.288	15.09	30.00		

	For Frequency band 5725-5850 MHz										
			Conducted Power (dBm)				Total	Total	Limit		
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)		
11a	1	5745	19.45				88.105	19.45	30.00		
11a	1	5785	22.76				188.799	22.76	30.00		
11a	1	5825	19.52				89.536	19.52	30.00		
HT20	2	5745	18.36	18.24			135.229	21.31	30.00		
HT20	2	5785	22.64	22.41			357.835	25.54	30.00		
HT20	2	5825	18.10	18.11			129.280	21.12	30.00		
HT40	2	5755	15.01	15.08			63.906	18.06	30.00		
HT40	2	5795	19.12	19.03			161.642	22.09	30.00		
VHT20	2	5745	18.55	18.56			143.394	21.57	30.00		
VHT20	2	5785	22.72	22.45			362.861	25.60	30.00		
VHT20	2	5825	18.31	18.26			134.753	21.30	30.00		
VHT40	2	5755	15.12	15.18			65.470	18.16	30.00		
VHT40	2	5795	19.28	19.22			168.283	22.26	30.00		
VHT80	2	5775	13.12	13.26			41.695	16.20	30.00		

Report No.: FR582101AN Page: 38 of 127

Beamforming mode - Test Configuration 3

			For Freq	uency band	5150-5250	MHz			
			Conducted Power (dBm)				Total	Total	Limit
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
HT20	2	5180	18.79	18.73			150.328	21.77	27.79
HT20	2	5200	21.02	20.77			245.872	23.91	27.79
HT20	2	5240	18.03	17.87			124.768	20.96	27.79
HT40	2	5190	13.48	13.35			43.912	16.43	27.79
HT40	2	5230	21.01	20.42			236.337	23.74	27.79
VHT20	2	5180	18.88	18.82			153.476	21.86	27.79
VHT20	2	5200	21.16	20.89			253.361	24.04	27.79
VHT20	2	5240	18.11	17.97			127.376	21.05	27.79
VHT40	2	5190	13.55	13.47			44.880	16.52	27.79
VHT40	2	5230	21.12	20.58			243.707	23.87	27.79
VHT80	2	5210	11.92	11.83			30.800	14.89	27.79

Note:

1. Directional gain = $10 * \log((10^{5.28/20} + 10^{5.12/20})^2/2) = 8.21 \text{ dBi} > 6 \text{ dBi}$. Limit shall be reduced to 30 dBm - (8.21 dBi - 6 dBi) = 27.79 dBm

	For Frequency band 5725-5850 MHz										
			Conducted Power (dBm)				Total	Total	Limit		
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)		
HT20	2	5745	17.12	17.03			101.989	20.09	27.80		
HT20	2	5785	23.14	22.68			391.416	25.93	27.80		
HT20	2	5825	18.35	18.15			133.704	21.26	27.80		
HT40	2	5755	15.15	14.79			62.864	17.98	27.80		
HT40	2	5795	19.23	19.02			163.552	22.14	27.80		
VHT20	2	5745	17.18	17.09			103.408	20.15	27.80		
VHT20	2	5785	22.91	22.69			381.214	25.81	27.80		
VHT20	2	5825	18.34	18.16			133.697	21.26	27.80		
VHT40	2	5755	15.26	14.88			64.335	18.08	27.80		
VHT40	2	5795	19.22	19.01			163.176	22.13	27.80		
VHT80	2	5775	12.99	12.79			38.918	15.90	27.80		

Note:

1. Directional gain = $10 * log((10^{5.1/20}+10^{5.28/20})^2/2)=8.2 dBi > 6 dBi$. Limit shall be reduced to 30 dBm - (8.2 dBi - 6 dBi) = 27.80 dBm

Report No.: FR582101AN Page: 39 of 127

3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density

	Frequency band 5150-5250 MHz						
Оре	Operating Mode Limit						
	Outdoor access point	17 dBm / MHz					
\boxtimes	Indoor access point	17 dBm / MHz					
	Fixed point-to-point access points	17 dBm / MHz					
	Mobile and portable client devices	11 dBm / MHz					

Free	quency Band (MHz)	Limit
	5250 ~ 5350	11 dBm / MHz
	5470 ~ 5725	11 dBm / MHz
	5725 ~ 5850	30 dBm /500 kHz

Report No.: FR582101AN Page: 40 of 127

3.4.2 Test Procedures

For 5150 ~ 5250 MHz

- Method SA-1 (Non- Beamforming: 802.11a/VHT20/VHT40 / Beamforming: 11ac VHT40 / VHT80)
 - Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative (Non- Beamforming: VHT80 / Beamforming: 11ac VHT20)
 - Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add $10 \log(1/x)$, where x is the duty cycle.

For 5725 ~ 5850 MHz

- Method SA-1 (Non- Beamforming: 802.11a/VHT20/VHT40 / Beamforming: 11ac VHT40 / VHT80)
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative (Non- Beamforming: VHT80 / Beamforming: 11ac VHT20)
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 log(1/x), where x is the duty cycle.

3.4.3 Test Setup

Report No.: FR582101AN Page: 41 of 127

3.4.4 Test Result of Peak Power Spectral Density

Non-beamforming mode - Test Configuration 1

	For Frequency band 5150-5250 MHz									
Co	Condition Peak Power Spectral Density (dBm/MHz)									
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/MHz)	Duty Factor (dB)	PPSD with D.F (dBm/MHz)	PPSD Limit (dBm/MHz)				
11a	1	5180	8.49	0.00	8.49	17				
11a	1	5200	8.69	0.00	8.69	17				
11a	1	5240	9.07	0.00	9.07	17				
VHT20	2	5180	8.97	0.00	8.97	14.79				
VHT20	2	5200	10.93	0.00	10.93	14.79				
VHT20	2	5240	11.02	0.00	11.02	14.79				
VHT40	2	5190	1.15	0.00	1.15	14.79				
VHT40	2	5230	8.03	0.00	8.03	14.79				
VHT80	2	5210	-4.33	0.21	-4.12	14.79				

Note:

- 1. D.F is duty factor.
- Test result of 2TX mode is bin-by-bin summing measured value of each TX port. Directional gain = $10 * \log((10^{5.28/20} + 10^{5.12/20})^2/2) = 8.21 \text{ dBi} > 6 \text{ dBi}$. Limit shall be reduced to 17 dBm (8.21 dBi 6 dBi) = 14.79 dBm.

Report No.: FR582101AN Page: 42 of 127

	For Frequency band 5725-5850 MHz									
Co	ndition		F	Peak Power Spectral	Density (dBm/500kl	Hz)				
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/500kHz)	Duty Factor (dB)	PPSD with D.F (dBm/500kHz)	PPSD Limit (dBm/500kHz)				
11a	1	5745	5.90	0.00	5.90	30.00				
11a	1	5785	7.42	0.00	7.42	30.00				
11a	1	5825	6.20	0.00	6.20	30.00				
VHT20	2	5745	7.40	0.00	7.40	27.80				
VHT20	2	5785	11.39	0.00	11.39	27.80				
VHT20	2	5825	7.18	0.00	7.18	27.80				
VHT40	2	5755	0.84	0.00	0.84	27.80				
VHT40	2	5795	5.00	0.00	5.00	27.80				
VHT80	2	5775	-4.70	0.21	-4.49	27.80				

Note:

- 1. D.F is duty factor.
- 2.
- Test result of 2TX mode is bin-by-bin summing measured value of each TX port. Directional gain = $10 * \log((10^{5.1720} + 10^{5.28/20})^2/2) = 8.2 \text{ dBi} > 6 \text{ dBi}$. Limit shall be reduced to 30 dBm (8.2 dBi 6 dBi) = 27.8 dBm.

Report No.: FR582101AN Page: 43 of 127

Beamforming mode - Test Configuration 3

	For Frequency band 5150-5250 MHz									
Co	ondition	1		Peak Power Spectra	al Density (dBm/MH	z)				
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/MHz)	Duty Factor (dB)	PPSD with D.F (dBm/MHz)	PPSD Limit (dBm/MHz)				
VHT20	2	5180	8.94	0.28	9.22	14.79				
VHT20	2	5200	11.14	0.28	11.42	14.79				
VHT20	2	5240	8.40	0.28	8.68	14.79				
VHT40	2	5190	0.49	0.00	0.49	14.79				
VHT40	2	5230	8.22	0.00	8.22	14.79				
VHT80	2	5210	-4.31	0.00	-4.31	14.79				

Note:

- 1. D.F is duty factor.
- Test result is bin-by-bin summing measured value of each TX port.
 Directional gain = 10 * log((10^{5.28/20}+10^{5.12/20})²/2) = 8.21 dBi > 6 dBi. Limit shall be reduced to 17 dBm (8.21 dBi 6 dBi) = 14.79 dBm.

Note: The plot without duty factor.

Report No.: FR582101AN Page: 44 of 127

	For Frequency band 5725-5850 MHz									
Co	ndition		F	Peak Power Spectral	Density (dBm/500kl	Hz)				
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm/500kHz)	Duty Factor (dB)	PPSD with D.F (dBm/500kHz)	PPSD Limit (dBm/500kHz)				
VHT20	2	5745	6.20	0.28	6.48	27.80				
VHT20	2	5785	11.71	0.28	11.99	27.80				
VHT20	2	5825	6.84	0.28	7.12	27.80				
VHT40	2	5755	0.83	0.00	0.83	27.80				
VHT40	2	5795	5.00	0.00	5.00	27.80				
VHT80	2	5775	-4.39	0.00	-4.39	27.80				

Note:

- 1. D.F is duty factor.
- 2.
- Test result is bin-by-bin summing measured value of each TX port. Directional gain = $10 * log((10^{5.1720}+10^{5.28/20})^2/2) = 8.2 dBi > 6 dBi$. Limit shall be reduced to 30 dBm (8.2 dBi 6 dBi) = 27.8 dBm.

Note: The plot without duty factor.

Report No.: FR582101AN Page: 45 of 127

3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

Restricted Band Emissions Limit									
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)						
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300						
0.490~1.705	24000/F(kHz)	33.8 - 23	30						
1.705~30.0	30	29	30						
30~88	100	40	3						
88~216	150	43.5	3						
216~960	200	46	3						
Above 960	500	54	3						

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

Un-restricted band emissions above 1GHz Limit						
Operating Band	Limit					
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.725 - 5.850 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.85 5.86 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]					

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Report No.: FR582101AN Page : 46 of 127

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR582101AN Page: 47 of 127

3.5.3 Test Setup

Report No.: FR582101AN Page: 48 of 127

Non- beamforming mode

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Report Version: Rev. 01

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	47.46	36.21	40.00	-3.79	49.09	-12.88	QP		
2	54.97	36.17	40.00	-3.83	49.79	-13.62	QP		
3	305.48	36.74	46.00	-9.26	49.25	-12.51	Peak		
4	494.63	37.25	46.00	-8.75	45.02	-7.77	Peak		
5	800.18	39.16	46.00	-6.84	41.72	-2.56	Peak		
6	885.54	40.25	46.00	-5.75	41.22	-0.97	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 50 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	307.42	38.25	46.00	-7.75	50.71	-12.46	Peak		
2	345.25	32.45	46.00	-13.55	44.02	-11.57	Peak		
3	528.58	40.53	46.00	-5.47	47.84	-7.31	Peak		
4	600.36	42.34	46.00	-3.66	48.06	-5.72	Peak		
5	800.18	37.50	46.00	-8.50	40.06	-2.56	Peak		
6	900.09	41.76	46.00	-4.24	42.43	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 51 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/n	n dB	dBuV	dB		cm	deg
1	54.25	36.85	40.00	-3.15	50.37	-13.52	QP		
2	218.18	34.17	46.00	-11.83	50.23	-16.06	Peak		
3	307.42	33.59	46.00	-12.41	46.05	-12.46	Peak		
4	515.97	36.09	46.00	-9.91	43.54	-7.45	Peak		
5	800.18	38.48	46.00	-7.52	41.04	-2.56	Peak		
6	899.12	41.28	46.00	-4.72	41.96	-0.68	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 52 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Horizontal	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1	148.34	34.95	43.50	-8.55	48.42	-13.47	Peak		
2	305.48	34.06	46.00	-11.94	46.57	-12.51	Peak		
3	456.80	35.97	46.00	-10.03	44.59	-8.62	Peak		
4	600.36	38.28	46.00	-7.72	44.00	-5.72	Peak		
5	800.18	37.02	46.00	-8.98	39.58	-2.56	Peak		
6	899.12	37.25	46.00	-8.75	37.93	-0.68	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 53 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	2

	Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
		level			reading			High	Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1	49.40	36.46	40.00	-3.54	49.40	-12.94	QP		
2	53.28	36.50	40.00	-3.50	49.90	-13.40	QP		
3	148.34	33.04	43.50	-10.46	46.51	-13.47	Peak		
4	473.29	36.86	46.00	-9.14	45.10	-8.24	Peak		
5	533.43	39.83	46.00	-6.17	47.09	-7.26	Peak		
6	900.09	39.34	46.00	-6.66	40.01	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 54 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1	105.66	34.95	43.50	-8.55	52.35	-17.40	Peak		
2	156.10	33.79	43.50	-9.71	47.33	-13.54	Peak		
3	217.21	34.60	46.00	-11.40	50.71	-16.11	Peak		
4	533.43	41.92	46.00	-4.08	49.18	-7.26	Peak		
5	600.36	42.11	46.00	-3.89	47.83	-5.72	Peak		
6	900.09	41.83	46.00	-4.17	42.50	-0.67	Peak		

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page : 55 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	2

	Freq.	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV		Remark	ANT High cm	Turn Table deg
	11112	ubuv/III	ubuv/iii	ub	ubuv	ub		CIII	ueg
1	55.22	36.91	40.00	-3.09	50.56	-13.65	QP		
2	150.28	33.87	43.50	-9.63	47.30	-13.43	Peak		
3	533.43	42.87	46.00	-3.13	50.13	-7.26	QP		
4	600.36	38.36	46.00	-7.64	44.08	-5.72	Peak		
5	800.18	38.48	46.00	-7.52	41.04	-2.56	Peak		
6	900.09	39.87	46.00	-6.13	40.54	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 56 of 127

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 57 of 127

Polarization Vertical	Test Conf	iguration 1	

	Freq.	Emission level		Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5150.00	52.75	54.00	-1.25	46.56	6.19	Average	256	286
2	5150.00	72.45	74.00	-1.55	66.26	6.19	Peak	256	286
3	6906.00	53.15	68.20	-15.05	43.50	9.65	Peak	200	265
4	10360.00	55.85	68.20	-12.35	39.61	16.24	Peak	210	350

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 58 of 127

Modulation	11a	Test Freq. (MHz)	5200
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m		SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5150.00	45.88	54.00	-8.12	39.69	6.19	Average	363	232
2	5150.00	58.49	74.00	-15.51	52.30	6.19	Peak	363	232
3	5350.00	43.96	54.00	-10.04	37.45	6.51	Average	363	232
4	5350.00	56.27	74.00	-17.73	49.76	6.51	Peak	363	232
5	5360.00	50.28	54.00	-3.72	43.75	6.53	Average	323	234
6	5360.00	60.53	74.00	-13.47	54.00	6.53	Peak	323	234
7	10400.00	54.79	68.20	-13.41	38.48	16.31	Peak	221	56

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 59 of 127

Modulation	11a	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	1

		Emission level		Ū	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
_									
1	5150.00	46.53	54.00	-7.47	40.34	6.19	Average	263	272
2	5150.00	65.62	74.00	-8.38	59.43	6.19	Peak	263	272
3	5350.00	43.67	54.00	-10.33	37.16	6.51	Average	263	272
4	5350.00	53.67	74.00	-20.33	47.16	6.51	Peak	263	272
5	5360.00	53.27	54.00	-0.73	46.74	6.53	Average	263	272
6	5360.00	63.90	74.00	-10.10	57.37	6.53	Peak	263	272
7	10400.00	55.48	68.20	-12.72	39.17	16.31	Peak	261	285

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 60 of 127

Modulation	11a	Test Freq. (MHz)	5240
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	45.20	54.00	-8.80	38.69	6.51	Average	361	224
2	5350.00	58.60	74.00	-15.40	52.09	6.51	Peak	361	224
3	5400.00	50.37	54.00	-3.63	43.79	6.58	Average	378	219
4	5400.00	62.88	74.00	-11.12	56.30	6.58	Peak	378	219
5	10480.00	56.07	68.20	-12.13	39.62	16.45	Peak	265	134

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 61 of 127

Polarization Vertical Test Configuration 4	
PolarizationVerticalTest Configuration1	

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	46.19	54.00	-7.81	39.68	6.51	Average	225	298
2	5350.00	58.43	74.00	-15.57	51.92	6.51	Peak	225	298
3	5400.00	53.19	54.00	-0.81	46.61	6.58	Average	280	332
4	5400.00	65.21	74.00	-8.79	58.63	6.58	Peak	280	333
5	10480.00	59.65	68.20	-8.55	43.20	16.45	Peak	266	277

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 62 of 127

Modulation	11a	Test Freq. (MHz)	5745
Polarization	Horizontal	Test Configuration	1
Level (dBu	//m)		

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	66.60	68.20	-1.60	59.51	7.09	Peak	309	207
2	5725.00	75.53	78.20	-2.67	68.40	7.13	Peak	309	207
3	11490.00	43.11	54.00	-10.89	26.31	16.80	Average	274	72
4	11490.00	52.60	74.00	-21.40	35.80	16.80	Peak	274	72

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 63 of 127

Polarization	Vertic	al			Т									
						est (Conf	igura	tion		1			
											•			
90 Level	(dBuV/m)													
80	2													
70			Ш			4	\mathbb{T}			\Box	FC	PAR	15E	_B4
60											F00 F	N DT 4	/	
50		4									FCC F	ART1	5E (#	AVG)
30		3												
40														
30														
20														
10														
0 1000	6000.	10000.	14000.	1800		2200		6000.	300		340			4000

Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
	level			reading			High	Table
MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg

Frequency (MHz)

1	5715.00								315
2	5725.00	78.05	78.20	-0.15	70.92	7.13	Peak	307	315
3	11490.00	44.15	54.00	-9.85	27.35	16.80	Average	296	105
4	11490.00	51.37	74.00	-22.63	34.57	16.80	Peak	296	105

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Page: 64 of 127 Report No.: FR582101AN

Modulation	11a	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
			•						
1	5715.00	63.68	68.20	-4.52	56.59	7.09	Peak	234	198
2	5725.00	65.62	78.20	-12.58	58.49	7.13	Peak	234	198
3	5850.00	62.29	78.20	-15.91	54.90	7.39	Peak	234	198
4	5860.00	61.51	68.20	-6.69	54.11	7.40	Peak	234	198
5	5945.00	61.29	68.20	-6.91	53.76	7.53	Peak	286	228
6	11570.00	45.79	54.00	-8.21	29.10	16.69	Average	221	135
7	11570.00	59.88	74.00	-14.12	43.19	16.69	Peak	221	135

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 65 of 127

Modulation	11a Test Freq. (MHz)		5785
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	64.76	68.20	-3.44	57.67	7.09	Peak	307	311
2	5725.00	69.76	78.20	-8.44	62.63	7.13	Peak	307	311
3	5850.00	65.61	78.20	-12.59	58.22	7.39	Peak	307	311
4	5860.00	63.96	68.20	-4.24	56.56	7.40	Peak	307	311
5	5945.00	63.82	68.20	-4.38	56.29	7.53	Peak	233	273
6	11570.00	46.40	54.00	-7.60	29.71	16.69	Average	248	239
7	11570.00	60.06	74.00	-13.94	43.37	16.69	Peak	248	239

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 66 of 127

Modulation	11a	Test Freq. (MHz)	5825
Polarization	Horizontal	Test Configuration	1

		Emission level			reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		CM	deg
1	5850.00	70.61	78.20	-7.59	63.22	7.39	Peak	259	203
2	5860.00	48.61	54.00	-5.39	41.21	7.40	Average	259	203
3	5860.00	66.00	74.00	-8.00	58.60	7.40	Peak	259	203
4	11650.00	46.32	54.00	-7.68	29.78	16.54	Average	227	315
5	11650.00	61.24	74.00	-12.76	44.70	16.54	Peak	227	315

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 67 of 127

Modulation	11a	Test Freq. (MHz)	5825
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5850.00	76.54	78.20	-1.66	69.15	7.39	Peak	305	314
2	5860.00	52.85	54.00	-1.15	45.45	7.40	Average	305	314
3	5860.00	70.72	74.00	-3.28	63.32	7.40	Peak	305	314
4	11650.00	46.57	54.00	-7.43	30.03	16.54	Average	244	209
5	11650.00	61.03	74.00	-12.97	44.49	16.54	Peak	244	209

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 68 of 127

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR582101AN Page: 69 of 127

Modulation	VHT20	Test Freq. (MHz)	5180
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5150.00	53.12	54.00	-0.88	46.93	6.19	Average	256	286
2	5150.00	72.94	74.00	-1.06	66.75	6.19	Peak	256	286
3	10360.00	55.32	68.20	-12.88	39.08	16.24	Peak	530	341
4	15540.00	44.50	54.00	-9.50	27.11	17.39	Average	270	236
5	15540.00	56.17	74.00	-17.83	38.78	17.39	Peak	270	236

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 70 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m		SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5150.00	45.54	54.00	-8.46	39.35	6.19	Average	325	240
2	5150.00	59.39	74.00	-14.61	53.20	6.19	Peak	325	240
3	5350.00	44.89	54.00	-9.11	38.38	6.51	Average	325	240
4	5350.00	57.69	74.00	-16.31	51.18	6.51	Peak	325	240
5	5360.00	50.41	54.00	-3.59	43.88	6.53	Average	351	202
6	5360.00	61.38	74.00	-12.62	54.85	6.53	Peak	351	202
7	10400.00	55.48	68.20	-12.72	39.17	16.31	Peak	351	202

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 71 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5150.00	47.87	54.00	-6.13	41.68	6.19	Average	250	286
2	5150.00	66.56	74.00	-7.44	60.37	6.19	Peak	250	286
3	5350.00	44.44	54.00	-9.56	37.93	6.51	Average	250	286
4	5350.00	50.92	74.00	-23.08	44.41	6.51	Peak	250	286
5	5360.00	53.45	54.00	-0.55	46.92	6.53	Average	247	270
6	5360.00	64.92	74.00	-9.08	58.39	6.53	Peak	247	270
7	10400.00	56.31	68.20	-11.89	40.00	16.31	Peak	265	44

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 72 of 127

Modulation	VHT20	Test Freq. (MHz)	5240
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	43.99	54.00	-10.01	37.48	6.51	Average	349	204
2	5350.00	53.72	74.00	-20.28	47.21	6.51	Peak	349	204
3	5400.00	50.64	54.00	-3.36	44.06	6.58	Average	358	203
4	5400.00	60.69	74.00	-13.31	54.11	6.58	Peak	358	203
5	10480.00	56.25	68.20	-11.95	39.80	16.45	Peak	287	174

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 73 of 127

	Test Freq. (MHz)	5240
Polarization Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	46.34	54.00	-7.66	39.83	6.51	Average	237	287
2	5350.00	58.70	74.00	-15.30	52.19	6.51	Peak	237	287
3	5400.00	53.75	54.00	-0.25	47.17	6.58	Average	285	345
4	5400.00	65.32	74.00	-8.68	58.74	6.58	Peak	285	345
5	10480.00	59.25	68.20	-8.95	42.80	16.45	Peak	257	261

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 74 of 127

Modulation	VHT20	Test Freq. (MHz)	5745
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	50.59	54.00	-3.41	43.50	7.09	Average	326	198
2	5715.00	71.46	74.00	-2.54	64.37	7.09	Peak	326	198
3	5725.00	77.12	78.20	-1.08	69.99	7.13	Peak	326	198
4	11490.00	43.12	54.00	-10.88	26.32	16.80	Average	299	156
5	11490.00	56.31	74.00	-17.69	39.51	16.80	Peak	299	156

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 75 of 127

Modulation	VHT20	Test Freq. (MHz)	5745
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	53.58	54.00	-0.42	46.49	7.09	Average	248	251
2	5715.00	71.36	74.00	-2.64	64.27	7.09	Peak	248	251
3	5725.00	77.98	78.20	-0.22	70.85	7.13	Peak	253	261
4	11490.00	46.42	54.00	-7.58	29.62	16.80	Average	277	275
5	11490.00	59.41	74.00	-14.59	42.61	16.80	Peak	277	275

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 76 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	45.60	54.00	-8.40	38.51	7.09	Average	300	219
2	5715.00	61.91	74.00	-12.09	54.82	7.09	Peak	300	219
3	5725.00	62.48	78.20	-15.72	55.35	7.13	Peak	300	219
4	5850.00	61.38	78.20	-16.82	53.99	7.39	Peak	300	219
5	5860.00	46.21	54.00	-7.79	38.81	7.40	Average	300	219
6	5860.00	59.02	74.00	-14.98	51.62	7.40	Peak	300	219
7	5945.00	63.55	68.20	-4.65	56.02	7.53	Peak	252	10
8	11570.00	47.35	54.00	-6.65	30.66	16.69	Average	221	227
9	11570.00	62.26	74.00	-11.74	45.57	16.69	Peak	221	227

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 77 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	50.75	54.00	-3.25	43.66	7.09	Average	258	113
2	5715.00	69.64	74.00	-4.36	62.55	7.09	Peak	258	113
3	5725.00	71.78	78.20	-6.42	64.65	7.13	Peak	258	113
4	5850.00	70.38	78.20	-7.82	62.99	7.39	Peak	258	113
5	5860.00	49.69	54.00	-4.31	42.29	7.40	Average	258	113
6	5860.00	66.89	74.00	-7.11	59.49	7.40	Peak	258	113
7	5945.00	67.54	68.20	-0.66	60.01	7.53	Peak	252	258
8	11570.00	52.84	54.00	-1.16	36.15	16.69	Average	258	113
9	11570.00	66.21	74.00	-7.79	49.52	16.69	Peak	258	113

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 78 of 127

Modulation	VHT20	Test Freq. (MHz)	5825
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
4	<u> </u>		70. 20	0.65					202
1	5850.00	68.55	/8.20	-9.65	61.16	7.39	Peak	318	202
2	5860.00	46.61	54.00	-7.39	39.21	7.40	Average	318	202
3	5860.00	64.43	74.00	-9.57	57.03	7.40	Peak	318	202
4	5985.00	61.48	68.20	-6.72	53.89	7.59	Peak	376	25
5	11650.00	44.26	54.00	-9.74	27.72	16.54	Average	217	56
6	11650.00	58.59	74.00	-15.41	42.05	16.54	Peak	217	56

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 79 of 127

Modulation	VHT20	Test Freq. (MHz)	5825
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1	5850.00	77.51	78.20	-0.69	70.12	7.39	Peak	238	248
2	5860.00	49.53	54.00	-4.47	42.13	7.40	Average	238	248
3	5860.00	72.23	74.00	-1.77	64.83	7.40	Peak	238	248
4	5985.00	65.34	68.20	-2.86	57.75	7.59	Peak	238	248
5	11650.00	48.43	54.00	-5.57	31.89	16.54	Average	274	112
6	11650.00	60.12	74.00	-13.88	43.58	16.54	Peak	274	112

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 80 of 127

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 81 of 127

Modulation	VHT40	Test Freq. (MHz)	5190
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5150.00	53.75	54.00	-0.25	47.56	6.19	Average	255	256
2	5150.00	72.08	74.00	-1.92	65.89	6.19	Peak	255	256
3	10380.00	53.83	68.20	-14.37	37.57	16.26	Peak	225	126
4	15570.00	43.82	54.00	-10.18	26.50	17.32	Average	225	126
5	15570.00	56.82	74.00	-17.18	39.50	17.32	Peak	225	126

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 82 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	44.12	54.00	-9.88	37.61	6.51	Average	310	236
2	5350.00	53.86	74.00	-20.14	47.35	6.51	Peak	310	236
3	5400.00	50.69	54.00	-3.31	44.11	6.58	Average	310	236
4	5400.00	62.95	74.00	-11.05	56.37	6.58	Peak	310	236
5	10460.00	54.86	68.20	-13.34	38.44	16.42	Peak	251	196

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 83 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	44.77	54.00	-9.23	38.26	6.51	Average	229	286
2	5350.00	54.99	74.00	-19.01	48.48	6.51	Peak	229	286
3	5400.00	52.17	54.00	-1.83	45.59	6.58	Average	229	286
4	5400.00	63.62	74.00	-10.38	57.04	6.58	Peak	229	286
5	10460.00	58.45	68.20	-9.75	42.03	16.42	Peak	210	145

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 84 of 127

Modulation	VHT40	Test Freq. (MHz)	5755
Polarization	Horizontal	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	51.36	54.00	-2.64	44.27	7.09	Average	309	200
2	5715.00	66.95	74.00	-7.05	59.86	7.09	Peak	309	200
3	5725.00	68.92	78.20	-9.28	61.79	7.13	Peak	309	200
4	11510.00	43.39	54.00	-10.61	26.60	16.79	Average	265	282
5	11510.00	55.59	74.00	-18.41	38.80	16.79	Peak	265	282

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 85 of 127

Modulation	VHT40	Test Freq. (MHz)	5755
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	52.55	54.00	-1.45	45.46	7.09	Average	236	254
2	5715.00	71.03	74.00	-2.97	63.94	7.09	Peak	236	254
3	5725.00	77.07	78.20	-1.13	69.94	7.13	Peak	236	254
4	11510.00	43.17	54.00	-10.83	26.38	16.79	Average	284	254
5	11510.00	55.57	74.00	-18.43	38.78	16.79	Peak	284	254

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 86 of 127

Polarization Horizontal	Test Configuration	1

	Freq. 1	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	46.85	54.00	-7.15	39.76	7.09	Average	346	20
2	5715.00	62.30	74.00	-11.70	55.21	7.09	Peak	346	20
3	5725.00	65.24	78.20	-12.96	58.11	7.13	Peak	346	20
4	5850.00	67.08	78.20	-11.12	59.69	7.39	Peak	346	20
5	5860.00	48.67	54.00	-5.33	41.27	7.40	Average	346	20
6	5860.00	64.35	74.00	-9.65	56.95	7.40	Peak	346	20
7	5955.00	47.56	54.00	-6.44	40.02	7.54	Average	302	265
8	5955.00	64.79	68.20	-3.41	57.25	7.54	Peak	302	265
9	11590.00	43.24	54.00	-10.76	26.59	16.65	Average	267	225
10	11590.00	56.01	74.00	-17.99	39.36	16.65	Peak	267	225

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 87 of 127

Modulation	VHT40	Test Freq. (MHz)	5795
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	46.78	54.00	-7.22	39.69	7.09	Average	233	255
2	5715.00	65.71	74.00	-8.29	58.62	7.09	Peak	233	255
3	5725.00	69.64	78.20	-8.56	62.51	7.13	Peak	233	255
4	5850.00	77.10	78.20	-1.10	69.71	7.39	Peak	240	256
5	5860.00	53.11	54.00	-0.89	45.71	7.40	Average	240	256
6	5860.00	69.85	74.00	-4.15	62.45	7.40	Peak	240	256
7	5955.00	49.66	54.00	-4.34	42.12	7.54	Average	233	255
8	5955.00	66.62	74.00	-7.38	59.08	7.54	Peak	233	255
9	11590.00	43.00	54.00	-11.00	26.35	16.65	Average	278	174
10	11590.00	55.13	74.00	-18.87	38.48	16.65	Peak	278	174

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 88 of 127

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR582101AN Page: 89 of 127

^{*}Factor includes antenna factor, cable loss and amplifier gain

Modulation	VHT80	Test Freq. (MHz)	5210
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
_									
1	5150.00	53.84	54.00	-0.16	47.65	6.19	Average	238	274
2	5150.00	69.54	74.00	-4.46	63.35	6.19	Peak	238	274
3	5350.00	46.89	54.00	-7.11	40.38	6.51	Average	274	257
4	5350.00	58.89	74.00	-15.11	52.38	6.51	Peak	274	257
5	10420.00	56.89	68.20	-11.31	40.55	16.34	Peak	226	267
6	15630.00	45.26	54.00	-8.74	28.06	17.20	Average	287	52
7	15630.00	58.50	74.00	-15.50	41.30	17.20	Peak	287	52

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 90 of 127

Modulation	VHT80	Test Freq. (MHz)	5775
Polarization	Horizontal	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	64.04	68.20	1 16	56.95	7.00	Peak	37	
1	3/13.00	04.04	00.20	-4.10	30.93	7.09	reak	37	Ø
2	5725.00	62.93	78.20	-15.27	55.80	7.13	Peak	37	0
3	11550.00	44.21	54.00	-9.79	27.49	16.72	Average	246	235
4	11550.00	55.36	74.00	-18.64	38.64	16.72	Peak	246	235
5	17325.00	45.32	54.00	-8.68	26.02	19.30	Average	217	78
6	17325.00	57.57	68.20	-10.63	38.27	19.30	Peak	217	78

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 91 of 127

Modulation	VHT80	Test Freq. (MHz)	5775
Polarization	Vertical	Test Configuration	1

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m		SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
_									
1	5715.00	67.34	68.20	-0.86	60.25	7.09	Peak	231	253
2	5725.00	70.88	78.20	-7.32	63.75	7.13	Peak	231	253
3	11550.00	43.87	54.00	-10.13	27.15	16.72	Average	291	264
4	11550.00	55.77	74.00	-18.23	39.05	16.72	Peak	291	264
5	17325.00	45.87	54.00	-8.13	26.57	19.30	Average	232	247
6	17325.00	57.56	68.20	-10.64	38.26	19.30	Peak	232	247

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 92 of 127

Beamforming mode

3.5.9 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 93 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	47.52	36.64	40.00	-3.36	49.53	-12.89	OP		
2	55.21	36.18	40.00	-3.82	49.83	-13.65	Q̈́Ρ		
3	305.24	37.11	46.00	-8.89	49.63	-12.52	Peak		
4	494.85	37.25	46.00	-8.75	45.01	-7.76	Peak		
5	800.25	39.09	46.00	-6.91	41.65	-2.56	Peak		
6	885.96	40.48	46.00	-5.52	41.44	-0.96	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 94 of 127

Modulation	HT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m		Ü	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	307.51	37.97	46.00	-8.03	50.42	-12.45	Peak		
2	345.41	32.99	46.00	-13.01	44.55	-11.56	Peak		
3	527.35	40.64	46.00	-5.36	47.97	-7.33	Peak		
4	600.27	42.71	46.00	-3.29	48.43	-5.72	Peak		
5	800.18	38.79	46.00	-7.21	41.35	-2.56	Peak		
6	900.09	41.29	46.00	-4.71	41.96	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 95 of 127

Modulation	HT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	54.33	36.92	40.00	-3.08	50.45	-13.53	QP		
2	218.16	34.39	46.00	-11.61	50.45	-16.06	Peak		
3	307.38	34.28	46.00	-11.72	46.74	-12.46	Peak		
4	515.56	36.16	46.00	-9.84	43.61	-7.45	Peak		
5	800.18	39.77	46.00	-6.23	42.33	-2.56	Peak		
6	899.65	40.98	46.00	-5.02	41.66	-0.68	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 96 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Horizontal	Test Configuration	4

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1	148.52	35.18	43.50	-8.32	48.64	-13.46	Peak		
2	305.65	34.65	46.00	-11.35	47.16	-12.51	Peak		
3	456.27	36.70	46.00	-9.30	45.33	-8.63	Peak		
4	600.27	38.59	46.00	-7.41	44.31	-5.72	Peak		
5	800.24	37.87	46.00	-8.13	40.43	-2.56	Peak		
6	899.56	37.86	46.00	-8.14	38.54	-0.68	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 97 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	4

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	49.51	36.71	40.00	-3.29	49.66	-12.95	QP		
2	53.45	36.23	40.00	-3.77	49.65	-13.42	QP		
3	148.42	33.84	43.50	-9.66	47.31	-13.47	Peak		
4	473.35	37.22	46.00	-8.78	45.46	-8.24	Peak		
5	533.62	40.60	46.00	-5.40	47.85	-7.25	Peak		
6	899.36	39.87	46.00	-6.13	40.55	-0.68	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 98 of 127

Modulation	HT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	4

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1	105.53	35.22	43.50	-8.28	52.64	-17.42	Peak		
2	156.24	34.79	43.50	-8.71	48.33	-13.54	Peak		
3	217.42	35.14	46.00	-10.86	51.24	-16.10	Peak		
4	533.62	42.23	46.00	-3.77	49.48	-7.25	Peak		
5	600.24	42.38	46.00	-3.62	48.10	-5.72	Peak		
6	899.86	42.63	46.00	-3.37	43.30	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 99 of 127

Modulation	HT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	4

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	55.38	36.75	40.00	-3.25	50.42	-13.67	QP		
2	150.43	34.89	43.50	-8.61	48.32	-13.43	Peak		
3	533.36	42.81	46.00	-3.19	50.07	-7.26	QP		
4	600.16	38.73	46.00	-7.27	44.45	-5.72	Peak		
5	800.18	38.97	46.00	-7.03	41.53	-2.56	Peak		
6	899.96	39.75	46.00	-6.25	40.42	-0.67	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR582101AN Page: 100 of 127

3.5.10 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 101 of 127

Modulation	VHT20	Test Freq. (MHz)	5180
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5150.00	53.21	54.00	-0.79	46.63	6.58	Average	230	232
2	5150.00	72.83	74.00	-1.17	66.25	6.58	Peak	230	232
3	10360.00	58.62	68.20	-9.58	42.21	16.41	Peak	303	266
4	15540.00	44.37	54.00	-9.63	26.45	17.92	Average	167	114
5	15540.00	57.20	74.00	-16.80	39.28	17.92	Peak	167	114

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 102 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Margin dB	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5040.00	47.36	54.00	-6.64	41.35	6.01	Average	224	30
2	5040.00	58.22	74.00	-15.78	52.21	6.01	Peak	224	30
3	5150.00	45.49	54.00	-8.51	38.91	6.58	Average	224	30
4	5150.00	63.85	74.00	-10.15	57.27	6.58	Peak	224	30
5	5350.00	44.79	54.00	-9.21	37.76	7.03	Average	224	29
6	5350.00	57.66	74.00	-16.34	50.63	7.03	Peak	224	29
7	5360.00	50.28	54.00	-3.72	43.22	7.06	Average	224	29
8	5360.00	61.64	74.00	-12.36	54.58	7.06	Peak	224	29
9	10400.00	56.25	68.20	-11.95	39.76	16.49	Peak	231	355

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 103 of 127

Modulation	VHT20	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5040.00	49.90	54.00	-4.10	43.52	6.38	Average	248	249
2	5040.00	61.68	74.00	-12.32	55.30	6.38	Peak	248	249
3	5150.00	47.03	54.00	-6.97	40.45	6.58	Average	233	270
4	5150.00	61.77	74.00	-12.23	55.19	6.58	Peak	233	270
5	5350.00	45.81	54.00	-8.19	38.78	7.03	Average	233	270
6	5350.00	60.03	74.00	-13.97	53.00	7.03	Peak	233	270
7	5360.00	53.80	54.00	-0.20	46.74	7.06	Average	233	270
8	5360.00	64.80	74.00	-9.20	57.74	7.06	Peak	233	270
9	10400.00	59.24	68.20	-8.96	42.75	16.49	Peak	275	204

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 104 of 127

Modulation	VHT20	Test Freq. (MHz)	5240
Polarization	Horizontal	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	44.55	54.00	-9.45	37.52	7.03	Average	231	25
2	5350.00	58.92	74.00	-15.08	51.89	7.03	Peak	231	25
3	5400.00	50.61	54.00	-3.39	43.47	7.14	Average	258	74
4	5400.00	60.70	74.00	-13.30	53.56	7.14	Peak	258	74
5	10480.00	56.24	68.20	-11.96	39.58	16.66	Peak	234	113

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 105 of 127

Modulation	VHT20	Test Freq. (MHz)	5240
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	46.83	54.00	-7.17	39.80	7.03	Average	250	288
2	5350.00	59.53	74.00	-14.47	52.50	7.03	Peak	250	288
3	5400.00	53.84	54.00	-0.16	46.70	7.14	Average	250	288
4	5400.00	65.37	74.00	-8.63	58.23	7.14	Peak	250	288
5	10480.00	56.87	68.20	-11.33	40.21	16.66	Peak	271	356

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 106 of 127

Modulation	VHT20	Test Freq. (MHz)	5745
Polarization	Horizontal	Test Configuration	3

	Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
		level			reading			High	Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	63.39	68.20	-4.81	55.86	7.53	Peak	153	222
2	5725.00	76.73	78.20	-1.47	69.16	7.57	Peak	153	222
3	11490.00	45.06	54.00	-8.94	27.79	17.27	Average	160	229
4	11490.00	58.15	74.00	-15.85	40.88	17.27	Peak	160	229

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 107 of 127

Modulation	VHT20	Test Freq. (MHz)	5745
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1	5715.00	66.08	68.20	-2.12	58.55	7.53	Peak	272	199
2	5725.00	78.05	78.20	-0.15	38.42	39.63	Peak	272	199
3	11490.00	48.31	54.00	-5.69	31.04	17.27	Average	265	208
4	11490.00	61.24	74.00	-12.76	43.97	17.27	Peak	265	208

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 108 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	64.61	68.20	-3.59	57.08	7.53	Peak	240	251
2	5725.00	66.68	78.20	-11.52	59.11	7.57	Peak	240	251
3	5850.00	62.69	78.20	-15.51	54.80	7.89	Peak	240	251
4	5860.00	60.23	68.20	-7.97	52.32	7.91	Peak	240	251
5	5945.00	63.95	68.20	-4.25	55.87	8.08	Peak	240	251
6	11570.00	43.89	54.00	-10.11	26.71	17.18	Average	159	142
7	11570.00	56.27	74.00	-17.73	39.09	17.18	Peak	159	142

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 109 of 127

Modulation	VHT20	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	67.10	68.20	-1.10	59.57	7.53	Peak	249	252
2	5725.00	69.38	78.20	-8.82	61.81	7.57	Peak	249	252
3	5850.00	68.65	78.20	-9.55	60.76	7.89	Peak	249	252
4	5860.00	64.59	68.20	-3.61	56.68	7.91	Peak	249	252
5	5945.00	67.04	68.20	-1.16	58.96	8.08	Peak	252	273
6	11570.00	51.18	54.00	-2.82	34.00	17.18	Average	311	311
7	11570.00	65.16	74.00	-8.84	47.98	17.18	Peak	311	311

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 110 of 127

Modulation	VHT20	Test Freq. (MHz)	5825
Polarization	Horizontal	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5850.00	68.99	78.20	-9.21	61.10	7.89	Peak	246	192
2	5860.00	63.49	68.20	-4.71	55.58	7.91	Peak	246	192
3	5980.00	62.19	68.20	-6.01	54.05	8.14	Peak	311	58
4	11650.00	44.15	54.00	-9.85	27.08	17.07	Average	251	236
5	11650.00	58.36	74.00	-15.64	41.29	17.07	Peak	251	236

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 111 of 127

Modulation	VHT20	Test Freq. (MHz)	5825
Polarization	Vertical	Test Configuration	3
			•

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5850.00	77.49	78.20	-0.71	69.60	7.89	Peak	224	333
2	5860.00	63.34	68.20	-4.86	55.43	7.91	Peak	224	333
3	5980.00	65.26	68.20	-2.94	57.12	8.14	Peak	225	250
4	11650.00	48.25	54.00	-5.75	31.18	17.07	Average	259	118
5	11650.00	59.96	74.00	-14.04	42.89	17.07	Peak	259	118

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 112 of 127

3.5.11 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR582101AN Page: 113 of 127

Modulation	VHT40	Test Freq. (MHz)	5190
Polarization	Vertical	Test Configuration	3

	Freq. 1	Emission level dBuV/m		Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5150.00	52.70	54.00	-1.30	46.12	6.58	Average	240	236
2	5150.00	72.19	74.00	-1.81	65.61	6.58	Peak	240	236
3	10380.00	55.36	68.20	-12.84	38.92	16.44	Peak	226	135
4	15570.00	43.86	54.00	-10.14	26.04	17.82	Average	226	149
5	15570.00	56.95	74.00	-17.05	39.13	17.82	Peak	226	149

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 114 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Horizontal	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	44.35	54.00	-9.65	37.32	7.03	Average	231	49
2	5350.00	54.21	74.00	-19.79	47.18	7.03	Peak	231	49
3	5390.00	50.49	54.00	-3.51	43.38	7.11	Average	219	102
4	5390.00	62.81	74.00	-11.19	55.70	7.11	Peak	219	102
5	10460.00	55.62	68.20	-12.58	38.99	16.63	Peak	234	251

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 115 of 127

Modulation	VHT40	Test Freq. (MHz)	5230
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5350.00	44.86	54.00	-9.14	37.83	7.03	Average	224	235
2	5350.00	55.01	74.00	-18.99	47.98	7.03	Peak	224	235
3	5390.00	51.98	54.00	-2.02	44.87	7.11	Average	224	235
4	5390.00	62.94	74.00	-11.06	55.83	7.11	Peak	224	235
5	10460.00	58.61	68.20	-9.59	41.98	16.63	Peak	216	203

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 116 of 127

Modulation	VHT40	Test Freq. (MHz)	5755
Polarization	Horizontal	Test Configuration	3

	•	level	Limit dBuV/m	Ü	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	5715.00	50.83	54.00	-3.17	43.30	7.53	Average	254	252
2	5715.00	66.51	74.00	-7.49	58.98	7.53	Peak	254	252
3	5725.00	70.79	78.20	-7.41	63.22	7.57	Peak	254	252
4	11510.00	43.99	54.00	-10.01	26.72	17.27	Average	271	345
5	11510.00	57.33	74.00	-16.67	40.06	17.27	Peak	271	345

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 117 of 127

Modulation	VHT40	Test Freq. (MHz)	5755
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5715.00	53.85	54.00	-0.15	46.32	7.53	Average	239	254
2	5715.00	70.76	74.00	-3.24	63.23	7.53	Peak	239	254
3	5725.00	72.88	78.20	-5.32	65.31	7.57	Peak	239	254
4	11510.00	44.08	54.00	-9.92	26.81	17.27	Average	227	103
5	11510.00	58.53	74.00	-15.47	41.26	17.27	Peak	227	103

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 118 of 127

Modulation	VHT40	Test Freq. (MHz)	5795
Polarization	Horizontal	Test Configuration	3

	Freq. E	Emission level dBuV/m		Ū	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	5850.00	67.71	78.20	-10.49	59.82	7.89	Peak	243	221
2	5860.00	49.66	54.00	-4.34	41.75	7.91	Average	243	221
3	5860.00	64.74	74.00	-9.26	56.83	7.91	Peak	243	221
4	11590.00	43.48	54.00	-10.52	26.33	17.15	Average	215	177
5	11590.00	55.95	74.00	-18.05	38.80	17.15	Peak	215	177

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 119 of 127

Modulation	VHT40	Test Freq. (MHz)	5795
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5850.00	70.03	78.20	-8.17	62.14	7.89	Peak	278	96
2	5860.00	52.94	54.00	-1.06	45.03	7.91	Average	278	96
3	5860.00	68.86	74.00	-5.14	60.95	7.91	Peak	278	96
4	11590.00	46.45	54.00	-7.55	29.30	17.15	Average	335	317
5	11590.00	59.45	74.00	-14.55	42.30	17.15	Peak	335	317

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 120 of 127

3.5.12 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 121 of 127

^{*}Factor includes antenna factor, cable loss and amplifier gain

Modulation	VHT80	Test Freq. (MHz)	5210
Polarization	Vertical	Test Configuration	3

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	5150.00	53.09	54.00	-0.91	46.51	6.58	Average	217	233
2	5150.00	67.64	74.00	-6.36	61.06	6.58	Peak	217	233
3	5350.00	45.79	54.00	-8.21	38.76	7.03	Average	258	274
4	5350.00	57.15	74.00	-16.85	50.12	7.03	Peak	258	274
5	10420.00	55.45	68.20	-12.75	38.92	16.53	Peak	217	332

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 122 of 127

Modulation	VHT80	Test Freq. (MHz)	5775
Polarization	Horizontal	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	63.26	68.20	-4.94	55.73	7.53	Peak	214	60
2	5725.00	67.45	78.20	-10.75	59.88	7.57	Peak	214	60
3	5850.00	61.19	78.20	-17.01	53.30	7.89	Peak	305	201
4	5860.00	57.47	68.20	-10.73	49.56	7.91	Peak	305	201
5	11550.00	43.41	54.00	-10.59	26.20	17.21	Average	254	35
6	11550.00	55.83	74.00	-18.17	38.62	17.21	Peak	254	35

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 123 of 127

Modulation	VHT80	Test Freq. (MHz)	5775
Polarization	Vertical	Test Configuration	3

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ū	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1	5715.00	67.65	68.20	-0.55	60.12	7.53	Peak	229	250
2	5725.00	70.45	78.20	-7.75	62.88	7.57	Peak	229	250
3	5850.00	66.66	78.20	-11.54	58.77	7.89	Peak	255	253
4	5860.00	63.17	68.20	-5.03	55.26	7.91	Peak	255	253
5	11550.00	43.91	54.00	-10.09	26.70	17.21	Average	208	2
6	11550.00	55.34	74.00	-18.66	38.13	17.21	Peak	208	2

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR582101AN Page: 124 of 127

3.6 Frequency Stability

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- 2. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.6.3 Test Setup

Report No.: FR582101AN Page: 125 of 127

3.6.4 Test Result of Frequency Stability

Frequency: 5200 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	4.93	5.47	4.87	5.75	
T20°CVmin	4.04	4.52	4.84	4.06	
T50°CVnom	3.31	3.21	2.84	3.10	
T40°CVnom	3.84	4.01	4.38	4.46	
T30°CVnom	3.78	4.13	4.22	4.49	
T20°CVnom	3.21	3.55	3.46	2.96	
T10°CVnom	3.39	3.60	3.68	3.57	
T0°CVnom	3.21	2.89	2.95	2.92	
T-10°CVnom	2.40	2.26	2.66	2.44	
T-20°CVnom	1.96	1.18	1.23	0.88	
T-30°CVnom	1.63	1.24	1.32	1.32 1.30	
Vnom [Vac]: 120	VI	max [Vac]: 138	Vmin [Vac]: 1	Vmin [Vac]: 102	
Tnom [°C]: 20	Tmax [°C]: 50)	

Frequency: 5785 MHz	Frequency Drift (ppm)					
Temperature (°C)	0 minute	2 minutes	5 minutes		10 minutes	
T20°CVmax	5.89	5.96	:	5.88	5.86	
T20°CVmin	4.77	4.83		4.87	4.80	
T50°CVnom	4.67	4.72		4.79	4.70	
T40°CVnom	3.92	3.93	:	3.99	4.03	
T30°CVnom	4.51	4.49		4.42	4.43	
T20°CVnom	3.44	3.44		3.53	3.57	
T10°CVnom	3.50	3.55		3.48	3.56	
T0°CVnom	3.16	3.19		3.20	3.30	
T-10°CVnom	1.42	1.44		1.52	1.61	
T-20°CVnom	1.55	1.69 1.7		1.76	1.77	
T-30°CVnom	2.50	2.49 2		2.52	2.64	
Vnom [Vac]: 120	V	/max [Vac]: 138		Vmin [Vac]: 102		
Tnom [°C]: 20	Т	Tmax [°C]: 50 Tmin [°C]: -30)	

Report No.: FR582101AN Page: 126 of 127

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan

Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

<u>==END</u>==

Report No.: FR582101AN Page: 127 of 127