Logică matematică CURS 6

Andrei Sipos

Facultatea de Matematică și Informatică, DL Mate, Anul I Semestrul II, 2023/2024

Axioma regularității

Ultima axiomă a sistemului ZFC este Axioma regularității.

Axioma regularității

Pentru orice mulțime nevidă a, există $b \in a$ cu $a \cap b = \emptyset$.

Pentru a oferi o intuiție asupra axiomei, vom prezenta anumite consecințe imediate.

Propoziție

Nu există x cu $x \in x$.

Demonstrație

Presupunem că există x cu $x \in x$. Fie $a := \{x\}$, deci $x \in a \cap x$. Din Axioma regularității, avem că există $b \in a$ cu $a \cap b = \emptyset$. Dar, cum $a = \{x\}$, avem b = x, deci $a \cap x = \emptyset$. Contradicție!

Cicli de lungime 2 sau 3

Raționamentul se poate extinde ușor la cicli de lungime scurtă.

Propoziție

Nu există x, y cu $x \in y \in x$.

Demonstrație

Presupunem că există x, y cu $x \in y \in x$. Fie $a := \{x, y\}$, deci $x \in a \cap y$ și $y \in a \cap x$. Din Axioma regularității, avem $a \cap x = \emptyset$ sau $a \cap y = \emptyset$, contradicție.

Propoziție

Nu există x, y, z cu $x \in y \in z \in x$.

Demonstrație

Presupunem că există x, y, z cu $x \in y \in z \in x$. Fie $a := \{x, y, z\}$, deci $x \in a \cap y$, $y \in a \cap z$ și $z \in a \cap x$. Din Axioma regularității, avem $a \cap x = \emptyset$, $a \cap y = \emptyset$ sau $a \cap z = \emptyset$, contradicție.

Cicli de lungime arbitrară

Putem arăta acum că nu există cicli de lungime arbitrară.

Propoziție

Nu există $n \in \mathbb{N}$ și $(x_i)_{i < n^+}$ astfel încât $x_0 \in x_n$, iar, pentru orice i < n, să avem $x_{i^+} \in x_i$.

Demonstrație

Presupunem că am avea $n \in \mathbb{N}$ și $(x_i)_{i < n^+}$ astfel încât $x_0 \in x_n$, iar, pentru orice i < n, avem $x_{i^+} \in x_i$. Notăm

$$a := \{x_i \mid i < n^+\}.$$

Atunci, din Axioma regularității, există $i < n^+$, deci $i \le n$, cu $a \cap x_i = \emptyset$. Dacă i < n, avem $x_{i^+} \in a \cap x_i$, contradicție. Dacă i = n, avem $x_0 \in a \cap x_n = a \cap x_i$, contradicție.

Şiruri infinite

Mai mult, putem arăta că nu există nici șiruri descendente infinit de lungi.

Propoziție (Principiul șirului)

Nu există $(x_i)_{i\in\mathbb{N}}$ astfel încât pentru orice $i\in\mathbb{N}$ să avem $x_{i^+}\in x_i$.

Demonstrație

Presupunem că am avea $(x_i)_{i\in\mathbb{N}}$ astfel încât pentru orice $i\in\mathbb{N}$ avem $x_{i^+}\in x_i$. Notăm

$$a := \{x_i \mid i \in \mathbb{N}\}.$$

Atunci, din Axioma regularității, există $i \in \mathbb{N}$ cu $a \cap x_i = \emptyset$. Dar atunci $x_{i^+} \in a \cap x_i$, contradicție.

Acest principiu are o formă mai intuitivă ca Axioma regularității, dar este echivalent cu ea, după cum vom vedea imediat.

Înapoi la Axioma regularității

Propoziție

Principiul șirului implică Axioma regularității.

Demonstrație

Fie a o mulțime nevidă și presupunem că, pentru orice $b \in a$, $a \cap b \neq \emptyset$. Notăm $I := \mathcal{P}(a) \setminus \{\emptyset\}$. Atunci, aplicând Axioma alegerii, există $(g_i)_{i \in I}$ astfel încât, pentru orice $i \in I$, $g_i \in i$. Definim $h : \mathbb{N} \to a$ punând $h(0) := g_a$, iar, pentru orice $n \in \mathbb{N}$, $h(n^+) := g_{a \cap h(n)}$. Așadar, am construit un șir $h(0) \ni h(1) \ni h(2) \ni \ldots$, contradicție!

lerarhia cumulativă von Neumann

Axioma regularității ne permite să descriem, oarecum, modul cum sunt "formate" mulțimile. Definim recursiv un șir de mulțimi, indexat de ordinali, care se numește **ierarhia von Neumann**: $V_0:=\emptyset$, pentru orice ordinal β , punem $V_{\beta^+}:=\mathcal{P}(V_\beta)$, iar pentru orice ordinal limită α , punem

$$V_{\alpha} := \bigcup \{V_{\gamma} \mid \gamma < \alpha\} = \bigcup_{\gamma < \alpha} V_{\gamma}.$$

Fie x o mulţime astfel încât există α cu $x \in V_{\alpha}$ și alegem α minim cu această proprietate. Atunci $\alpha \neq 0$ (fiindcă $V_0 = \emptyset$) și α nu poate fi limită, fiindcă atunci ar exista $\gamma < \alpha$ cu $x \in V_{\gamma}$, contrazicând minimalitatea lui α . Rezultă că există β cu $\alpha = \beta^+$, iar pe acest β îl numim **rangul** lui x. Îl notăm cu $\operatorname{rg}(x)$. Mai spunem, deci, pentru orice x, că x are rang dacă există α cu $x \in V_{\alpha}$.

Rangul și apartenența

Propoziție

Fie α un ordinal, $x \in V_{\alpha}$, $y \in x$. Atunci există $\delta < \alpha$ astfel încât $y \in V_{\delta}$.

Demonstrație

Demonstrăm prin inducție după α . Dacă $\alpha=0$, $V_{\alpha}=\emptyset$ și nu avem ce demonstra. Dacă α este limită, atunci există $\gamma<\alpha$ cu $x\in V_{\gamma}$ și aplic ipoteza de inducție pentru γ . Rămâne cazul când există β cu $\alpha=\beta^+$. Atunci $x\in V_{\beta^+}=\mathcal{P}(V_{\beta})$, deci $x\subseteq V_{\beta}$. Cum $y\in x$, avem $y\in V_{\beta}$, deci putem lua $\delta:=\beta$.

Aşadar, dacă x și y sunt astfel încât $y \in x$ și x are rang, atunci y are rang și $\operatorname{rg}(y) < \operatorname{rg}(x)$.

Incluziunea mulțimilor din ierarhie

Următoarea propoziție arată faptul că ierarhia mulțimilor este **cumulativă**.

Propoziție

Fie α un ordinal. Atunci:

- Dacă $\gamma < \alpha$, atunci $V_{\gamma} \subseteq V_{\alpha}$.
- Avem că V_{α} este tranzitivă.

Demonstrație

- Din nou, demonstrăm prin inducție după α , iar cazul succesor este cel netrivial. Fie β cu $\alpha=\beta^+$. Fie $x\in V_\gamma$. Atunci, ori $\gamma<\beta$, iar din ipoteza de inducție avem $x\in V_\beta$, ori $\gamma=\beta$, deci $x\in V_\beta$. Fie $y\in x$. Atunci există $\delta<\beta$ cu $y\in V_\delta$, iar, din nou din ipoteza de inducție, avem $y\in V_\beta$. Am demonstrat că $x\subseteq V_\beta$, deci $x\in \mathcal{P}(V_\beta)=V_{\beta^+}=V_\alpha$.
- Fie $x \in V_{\alpha}$ și $y \in x$. Atunci există $\delta < \alpha$ cu $y \in V_{\delta}$, și avem $V_{\delta} \subseteq V_{\alpha}$, deci $y \in V_{\alpha}$.

Dacă toate elementele au rang

Propoziție

Fie x o mulțime ale cărei elemente au toate rang. Atunci x are rang.

Demonstrație

Fie $H:=\{\operatorname{rg}(y)\mid y\in x\}$ și $\alpha:=\sup H$. Fie $y\in x$. Avem $\operatorname{rg}(y)\leq \alpha$, deci $\operatorname{rg}(y)^+\leq \alpha^+$ și $V_{(\operatorname{rg}(y))^+}\subseteq V_{\alpha^+}$. Cum $y\in V_{(\operatorname{rg}(y))^+}$, rezultă că $y\in V_{\alpha^+}$. Am demonstrat că $x\subseteq V_{\alpha^+}$, deci $x\in \mathcal{P}(V_{\alpha^+})=V_{\alpha^{++}}$.

Închiderea tranzitivă

Pentru orice mulțime X, definim $T_0(X) := X$ și apoi, recursiv, pentru orice $n \in \mathbb{N}$, $T_{n^+}(X) := \bigcup T_n(X)$. Punem:

$$T(X) := \bigcup_{n \in \mathbb{N}} T_n(X).$$

Mulţimea T(X) se numeşte **închiderea tranzitivă** a lui X. Este o mulţime tranzitivă care include pe X, iar pentru orice mulţime tranzitivă Y cu $X \subseteq Y$, avem $T(X) \subseteq Y$.

Pentru a demonstra că este tranzitivă (lucru de care vom avea nevoie în scurt timp), fie $b \in T(X)$ și $a \in b$. Atunci există n cu $b \in T_n(X)$, și deci $a \in \bigcup T_n(X) = T_{n^+}(X) \subseteq T(X)$. Cealaltă afirmație rămâne ca exercițiu.

Principiul rangului

Propoziție (Principiul rangului)

Orice mulțime are rang.

Demonstrație

Presupunem că există o mulțime X fără rang. Fie $A:=T(\{X\})$. Atunci A este tranzitivă și $X\in A$. Aplicăm Axioma alegerii ca să obținem o familie $(g_Y)_{Y\in\mathcal{P}(A)\setminus\{\emptyset\}}$ astfel încât, pentru orice $Y\subseteq A$ nevidă, $g_Y\in Y$. Fie $b\not\in A$. Definim, recursiv, o funcție $h:\mathbb{N}\to A\cup\{b\}$ prin h(0):=X, iar pentru orice $n\in\mathbb{N}$, dacă $h(n)\in A$ și h(n) nu are rang, atunci există $z\in h(n)$ fără rang, iar, cum A este tranzitivă, $h(n)\subseteq A$, deci putem pune

$$h(n^+) := g_{\{z \in h(n)|z \text{ nu are rang}\}} \in h(n),$$

iar în caz contrar, punem $h(n^+) := b$. Se arată prin inducție că pentru orice n, $h(n) \in A$ și h(n) nu are rang. Ca urmare, am construit un șir $h(0) \ni h(1) \ni h(2) \ni \ldots$, contradicție!

Așadar, acceptând Axioma regularității, toate mulțimile sunt cuprinse în ierarhia von Neumann:

Notația V vine atât de la numele lui von Neumann, cât și de la forma de V a ierarhiei.

Înapoi la Principiul șirului

Putem folosi și Principiul rangului pentru a demonstra Principiul șirului, în felul următor. Fie $(x_n)_{n\in\mathbb{N}}$ un șir cu

$$x_0 \ni x_1 \ni x_2 \ni \dots$$

Atunci avem

$$rg(x_0) > rg(x_1) > rg(x_2) > \dots$$

Deci, mulțimea nevidă de ordinali $\{rg(x_i) \mid i \in \mathbb{N}\}$ nu are minim, contradicție!

Am arătat, așadar, că Axioma regularității, Principiul șirului și Principiul rangului sunt enunțuri echivalente. Mare atenție, însă – în demonstrarea echivalenței am folosit Axioma alegerii!

Axioma inducției

O altă formă echivalentă – și, oarecum, mai intuitivă – a acestor principii este Axioma inducției.

Axioma inducției

Pentru orice proprietate P astfel încât, pentru orice x, avem că, dacă, pentru orice $y \in x$, avem P(y), atunci avem P(x), este adevărat că, pentru orice x, P(x).

Propoziție

Axioma inducției este echivalentă cu Principiul rangului.

Demonstrație

Presupunând Principiul rangului, presupunem P ca în enunțul axiomei și presupunem că avem x fără P(x). Luăm x de rang minim. Atunci, pentru orice $y \in x$, $\operatorname{rg}(y) < \operatorname{rg}(x)$, deci P(y), deci avem P(x), contradicție! Pentru implicația inversă, luăm P să fie proprietatea de a avea rang.

Mulțimi închise la intersecții finite

Pentru tot restul capitolului, fixăm / o mulțime nevidă.

Următoarea propoziție rezultă imediat prin inducție.

Propoziție-Definiție

Fie $G \subseteq \mathcal{P}(I)$. Următoarele afirmații sunt echivalente:

- pentru orice S_1 , $S_2 \in G$, $S_1 \cap S_2 \in G$;
- pentru orice $A \subseteq G$ finită nevidă, $\bigcap A \in G$.

În acest caz, spunem că G este închisă la intersecții finite.

Filtre

Definiție

Se numește **filtru** pe I o submulțime F a lui $\mathcal{P}(I)$ cu următoarele proprietăți:

- ∅ ∉ F, I ∈ F;
- F este închisă la intersecții finite;
- pentru orice S_1 , $S_2 \subseteq I$ cu $S_1 \in F$ și $S_1 \subseteq S_2$, avem $S_2 \in F$.

De exemplu, $\{I\}$ este filtru pe I (aici folosim faptul că I este nevidă). Observăm și că dacă F este un filtru, pentru niciun $S\subseteq I$ nu pot avea simultan $S\in F$ și $I\setminus S\in F$, deoarece atunci am avea $\emptyset=S\cap (I\setminus S)\in F$, contradicție.

Proprietatea intersecțiilor finite

Definiție

Fie $G \subseteq \mathcal{P}(I)$.

- Spunem că G are **proprietatea** (slabă a) **intersecțiilor finite** dacă pentru orice $A \subseteq G$ finită nevidă, $\bigcap A \neq \emptyset$.
- Spunem că G are proprietatea tare a intersecțiilor finite dacă ∅ ∉ G, iar G este închisă la intersecții finite.

Clar, proprietatea tare a intersecțiilor finite o implică pe cea slabă. Orice filtru posedă proprietatea tare a intersecțiilor finite.

Filtrul generat

Propoziție-Definiție

Fie $G \subseteq \mathcal{P}(I)$ care are proprietatea intersecțiilor finite. Dacă $G \neq \emptyset$, atunci mulțimea

$$\{S \in \mathcal{P}(I) \mid \text{există } A \subseteq G \text{ finită nevidă cu } \bigcap A \subseteq S\}$$

este filtru care include pe G și îl numim **filtrul generat** de G. Dacă $G = \emptyset$, spunem că filtrul generat de G este $\{I\}$.

Demonstrație

Notăm cu F acea mulțime. Dacă am avea $\emptyset \in F$, ar exista $A \subseteq G$ finită nevidă cu $\bigcap A \subseteq \emptyset$, deci $\bigcap A = \emptyset$, ceea ce contrazice faptul că G are proprietatea intersecțiilor finite. Cum $G \neq \emptyset$, există $X \in G$, iar $\bigcap \{X\} = X \subseteq I$, deci $I \in F$. Vedem și că, pentru orice $X \in G$, avem $\bigcap \{X\} = X \subseteq X$, deci $X \in F$.

Filtrul generat

Demonstrație (cont.)

Fie S_1 , $S_2 \in F$. Avem că există A, $B \subseteq G$ finite nevide cu $\bigcap A \subseteq S_1$ și $\bigcap B \subseteq S_2$. Atunci

$$\bigcap (A \cup B) = \left(\bigcap A\right) \cap \left(\bigcap B\right) \subseteq S_1 \cap S_2,$$

iar cum $A \cup B \subseteq G$ este finită și nevidă, avem $S_1 \cap S_2 \in F$.

Fie S_1 , $S_2 \subseteq I$ cu $S_1 \in F$ și $S_1 \subseteq S_2$. Avem că există $A \subseteq G$ finită nevidă cu $\bigcap A \subseteq S_1$, deci $\bigcap A \subseteq S_2$ și $S_2 \in F$.

De asemenea, pentru orice $G \subseteq \mathcal{P}(I)$ și orice filtru care include pe G, avem că acel filtru include filtrul generat de G (exercițiu!).

Caracterizarea proprietății intersecțiilor finite

Dacă avem $T\subseteq I$ nevidă, atunci $\{T\}$ are proprietatea (chiar tare a) intersecțiilor finite. Notez filtrul generat de $\{T\}$ cu [T), i.e.

$$[T) := \{S \subseteq I \mid T \subseteq S\}.$$

Un asemenea filtru se numește filtru principal.

Corolar

Fie $G \subseteq \mathcal{P}(I)$. Următoarele afirmații sunt echivalente:

- G are proprietatea intersecțiilor finite.
- Există un filtru pe I care include pe G.

Demonstrație

Dacă G are proprietatea a intersecțiilor finite, atunci filtrul generat de G este un filtru pe I care include pe G. Invers, dacă există un filtru F care include pe G, atunci pentru orice $A\subseteq G$ finită nevidă, $A\subseteq F$ și deci $\bigcap A\in F$ și $\bigcap A\neq\emptyset$.

Ultrafiltre

Propoziție-Definiție

Fie *U* un filtru pe *I*. Următoarele afirmații sunt echivalente:

- pentru orice filtru F cu $U \subseteq F$, avem U = F (adică U este filtru **maximal**);
- pentru orice S_1 , $S_2 \subseteq I$ cu $S_1 \cup S_2 \in U$, avem $S_1 \in U$ sau $S_2 \in U$;
- pentru orice $S \subseteq I$, avem (exact una dintre) $S \in U$ sau $I \setminus S \in U$.

În acest caz, U se numește **ultrafiltru**.

Demonstrație

Începem prin a arăta echivalența ultimelor două proprietăți. Dacă avem $S\subseteq I$, atunci $S\cup (I\setminus S)=I\in U$ și deci $S\in U$ sau $I\setminus S\in U$. Invers, dacă avem $S_1,\ S_2\subseteq I$ cu $S_1\cup S_2\in U$, presupunem $S_1\not\in U$ și atunci $I\setminus S_1\in U$, deci $(S_1\cup S_2)\cap (I\setminus S_1)\in U$. Dar $(S_1\cup S_2)\cap (I\setminus S_1)\subseteq S_2$, deci $S_2\in U$.

Ultrafiltre

Demonstrație (cont.)

Arătăm acum echivalența dintre prima și a treia proprietate. Presupunem că există F cu $U \subsetneq F$. Fie $S \in F \setminus U$. Cum $S \notin U$, avem $I \setminus S \in U$, deci $I \setminus S \in F$, contradicție cu $S \in F$.

În sfârșit, presupunând că U este maximal, fie $S \subseteq I$ cu $S \not\in U$. Vrem $I \setminus S \in U$. Dacă $S = \emptyset$, atunci $I \setminus S = I \in U$. Presupunem $S \neq \emptyset$. Fie $G := U \cup \{S\}$. Dacă ar exista un filtru F cu $G \subseteq F$, atunci $U \subsetneq F$, contradicție cu maximalitatea lui U. Deci G nu are proprietatea intersecțiilor finite, i.e. există $A \subseteq G$ finită nevidă cu $\bigcap A = \emptyset$. Cum U este filtru, $A \not\subseteq U$, deci $S \in A$. Dacă $A = \{S\}$, atunci $\bigcap A = S \neq \emptyset$, contradicție. Deci există $B \subseteq U$ finită nevidă cu $A = B \cup \{S\}$. Avem $\bigcap B \in U$ și $\emptyset = \bigcap A = (\bigcap B) \cap S$. Așadar, $\bigcap B \subseteq I \setminus S$ și cum $\bigcap B \in U$, avem $I \setminus S \in U$.

Probabilități finit aditive

Propoziție

Fie $U \subseteq \mathcal{P}(I)$. Atunci U este ultrafiltru dacă și numai dacă $\chi_U : \mathcal{P}(I) \to 2$ satisface următoarele proprietăți (care o fac să fie o **probabilitate finit aditivă**):

- $\chi_U(\emptyset) = 0, \chi_U(I) = 1;$
- pentru orice $n \in \mathbb{N}$ și orice familie $(A_i)_{i < n}$ de submulțimi ale lui I, astfel încât, pentru orice i, j < n cu $i \neq j$, $A_i \cap A_j = \emptyset$, avem

$$\chi_U\left(\bigcup_{i < n} A_i\right) = \sum_{i < n} \chi_U\left(A_i\right).$$

Demonstrație

Exercițiu.

Reuniuni disjuncte

Propoziție (Galvin & Horn, 1970)

Fie $U\subseteq \mathcal{P}(I)$. Atunci U este ultrafiltru dacă și numai dacă, pentru orice familie $(A_i)_{i<3}$ de submulțimi ale lui I, astfel încât, pentru orice i,j<3 cu $i\neq j,\ A_i\cap A_j=\emptyset$, iar $A_0\cup A_1\cup A_2=I$, avem că există și este unic i<3 cu $A_i\in U$.

Demonstrație

Cum $I = I \cup \emptyset \cup \emptyset$, avem $I \in U$ și $\emptyset \notin U$. Mai departe, pentru orice $S \subseteq I$, $I = S \cup (I \setminus S) \cup \emptyset$, de unde scoatem că exact una dintre S și $I \setminus S$ e în U. Apoi, dacă $S_1 \in U$ și $S_2 \subseteq I$ cu $S_1 \subseteq S_2$, scriem $I = S_1 \cup (S_2 \setminus S_1) \cup (I \setminus S_2)$, iar cum $S_1 \in U$, avem $I \setminus S_2 \notin U$, deci, din cele dinainte, $S_2 \in U$.

Reuniuni disjuncte

Demonstrație (cont.)

Pentru orice X, $Y \in U$, cum $I \setminus Y \notin U$ și $X \in U$, avem $X \not\subseteq I \setminus Y$, deci $X \cap Y \neq \emptyset$.

Acum, fie S_1 , $S_2 \in U$ și vrem $S_1 \cap S_2 \in U$. Scriem

$$I = (S_1 \cap S_2) \cup (S_1 \setminus S_2) \cup (I \setminus S_1).$$

Presupunem $I \setminus S_1 \in U$. Cum $S_1 \in U$, avem $(I \setminus S_1) \cap S_1 \neq \emptyset$, contradicție. Analog, folosind că $S_2 \in U$, avem că $S_1 \setminus S_2 \notin U$. Rezultă că $S_1 \cap S_2 \in U$.

Se observă și că acel 3 din enunț nu se poate reduce la 2, așadar există I și $U\subseteq \mathcal{P}(I)$ care nu este ultrafiltru, dar avem că, pentru orice $X\subseteq I$, fie $X\in U$, fie $I\setminus X\in U$. De exemplu, putem lua I:=3 și $U:=\{\{0,1\},\{1,2\},\{0,2\},\{0,1,2\}\}.$

Teorema de existență a ultrafiltrului

Teorema de existență a ultrafiltrului

Fie F un filtru. Atunci există un ultrafiltru U cu $F \subseteq U$.

Demonstrație

Notăm

$$\mathcal{F} := \{ H \subseteq \mathcal{P}(I) \mid H \text{ este filtru și } F \subseteq H \}.$$

Atunci (\mathcal{F},\subseteq) este mulțime parțial ordonată (exercițiu!) și $F\in\mathcal{F}$. Arătăm că (\mathcal{F},\subseteq) este inductiv ordonată. Fie $L\subseteq\mathcal{F}$ un lanț. Dacă $L=\emptyset$, atunci F majorează pe L. Dacă $L\ne\emptyset$, atunci $\bigcup L$ este un filtru din \mathcal{F} care majorează pe L (exercițiu!). Așadar, din Lema lui Zorn, există un element maximal U în \mathcal{F} . Mai trebuie arătat că U este maximal ca filtru. Dacă avem un filtru J cu $U\subseteq J$, atunci, cum $F\subseteq U$, avem $F\subseteq J$ și deci $J\in\mathcal{F}$ și avem U=J din maximalitatea lui U în \mathcal{F} .

Teorema de existență a ultrafiltrului nu se poate arăta fără Axioma alegerii, dar se stie că este **strict** mai slabă decât ea.

Din nou caracterizarea proprietății intersecțiilor finite

Corolar

Fie $G \subseteq \mathcal{P}(I)$. Următoarele afirmații sunt echivalente:

- *G* are proprietatea intersecțiilor finite.
- Există un filtru pe I care include pe G.
- Există un ultrafiltru pe I care include pe G.

Ultrafiltre principale

Fie $x \in I$. Atunci se poate vedea că $[\{x\}] = \{S \subseteq I \mid x \in S\}$ este ultrafiltru: anume, dacă am avea un filtru F cu $[\{x\}] \subsetneq F$, atunci am avea $S \in F$ cu $x \notin S$, și atunci $\emptyset = \{x\} \cap S \in F$, contradicție!

Putem arăta și că orice ultrafiltru principal este de această formă. Fie T nevidă astfel încât U:=[T) este ultrafiltru. Fie $x\in T$ și presupunem $T\neq \{x\}$. Avem și că $T\neq T\setminus \{x\}$, iar $\{x\}\cup (T\setminus \{x\})=T\in U$. Deci $\{x\}\in U$ sau $T\setminus \{x\}\in U$, adică $T\subseteq \{x\}$ sau $T\subseteq T\setminus \{x\}$. Niciuna dintre aceste posibilități nu este adevărată, deci am ajuns la o contradicție.

Mai mult, putem arăta și că un ultrafiltru este principal dacă și numai dacă el conține o mulțime finită. Un sens este arătat de raționamentul anterior, așadar rămâne să îl arătăm pe celălalt, i.e. pentru orice ultrafiltru U care conține o mulțime finită (nevidă) S, avem că U este principal.

Ultrafiltre principale

Demonstrăm prin inducție după cardinalul nenul al lui S.

Dacă el este 1, există x cu $S = \{x\}$, deci $[\{x\}] \subseteq U$. Dar $[\{x\}]$ este ultrafiltru, deci maximal, așadar $U = [\{x\}]$.

Fie n cu $1 \le n$ astfel încât S are cardinalul n^+ . Atunci există $x \in S$ și T de cardinal n astfel încât $\{x\} \cup T = S \in U$. Atunci $\{x\} \in U$ sau $T \in U$ și putem aplica ipoteza de inducție.

În particular, pe o mulțime finită, orice ultrafiltru este principal.

Ultrafiltre neprincipale

Dacă I este infinită, atunci mulțimea

$$\{T \subseteq I \mid I \setminus T \text{ este finită}\}$$

este filtru pe / (exercițiu!), numit filtrul Fréchet pe /.

Dacă U este un ultrafiltru neprincipal pe I, atunci el include filtrul Fréchet. Dacă nu ar fi așa, atunci ar exista $T \subseteq I$ cu $I \setminus T$ finită și $T \not\in U$. Dar atunci $I \setminus T \in U$ și deci U conține o mulțime finită și este principal, contradicție.

Invers, dacă U include filtrul Fréchet, presupunând că U este principal, avem că există $S \in U$ finită. Notând $T := I \setminus S$, avem $I \setminus T = S$ și deci T este în filtrul Fréchet, deci și în U. Dar atunci $\emptyset = T \cap S \in U$, contradicție.

Am demonstrat că, pe o mulțime infinită, un ultrafiltru este neprincipal dacă și numai dacă el include filtrul Fréchet. Ca urmare, pe orice mulțime infinită există un ultrafiltru neprincipal.

Aplicație: idealele lui $2^{\mathbb{N}}$

Mulțimea 2 are o structură naturală de inel (izomorfă cu \mathbb{Z}_2), și de aceea și $2^{\mathbb{N}}$ are. Pentru orice ideal propriu I al lui $2^{\mathbb{N}}$, construim

$$F_I := \{ A \in \mathcal{P}(\mathbb{N}) \mid \chi_{\mathbb{N} \setminus A} \in I \},$$

care este filtru pe ℕ (exercițiu!).

Despre aplicația $I \mapsto F_I$, de la idealele proprii ale lui $2^{\mathbb{N}}$ la filtrele pe \mathbb{N} , se poate arăta:

- că este bijectivă;
- idealele principale corespund filtrelor principale;
- idealele maximale corespund ultrafiltrelor.