International Rectifier

IRG4PH50KDPbF

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

- High short circuit rating optimized for motor control, t_{sc} =10 $\mu s,\ V_{CC}$ = 720 V , T_J = 125 °C, V_{GE} = 15 V
- Combines low conduction losses with high switching speed
- Tighter parameter distribution and higher efficiency than previous generations
- IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes
- Lead-Free

Features

Benefits

- Latest generation 4 IGBT's offer highest power density motor controls possible
- HEXFREDTM diodes optimized for performance with IGBTs.
 Minimized recovery characteristics reduce noise, EMI and switching losses
- This part replaces the IRGPH50KD2 and IRGPH50MD2 products
- For hints see design tip 97003
 Absolute Maximum Ratings

Short Circuit Rated UltraFast IGBT

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	45	
I _C @ T _C = 100°C	Continuous Collector Current	24	
I _{CM}	Pulsed Collector Current ①	90	Α
I _{LM}	Clamped Inductive Load Current ②	90	
I _F @ T _C = 100°C	Diode Continuous Forward Current	16	
I _{FM}	Diode Maximum Forward Current	90	
t _{sc}	Short Circuit Withstand Time	10	μs
V_{GE}	Gate-to-Emitter Voltage	± 20	V
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	200	w
P _D @ T _C = 100°C	Maximum Power Dissipation	78	_ vv
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)	

Thermal Resistance

Thormal Hoolotanoo							
	Parameter	Min.	Тур.	Max.	Units		
$R_{\theta JC}$	Junction-to-Case - IGBT			0.64			
$R_{\theta JC}$	Junction-to-Case - Diode			0.83	°C/W		
$R_{\theta CS}$	Case-to-Sink, flat, greased surface		0.24				
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount			40			
Wt	Weight		6 (0.21)		g (oz)		

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

						. ,	
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage3	1200	_	_	V	$V_{GE} = 0V, I_{C} = 250\mu A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.91	_	V/°C	$V_{GE} = 0V$, $I_C = 1.0mA$	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.77	3.5		I _C = 24A	$V_{GE} = 15V$
		_	3.28	_	V	$I_C = 45A$	See Fig. 2, 5
		_	2.54	_		I _C = 24A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	_	6.0		$V_{CE} = V_{GE}, I_C = 250 \mu A$	
$\Delta V_{GE(th)}\!/\!\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-10	_	mV/°C	$V_{CE}=V_{GE},\ I_{C}=250\mu A$	
9 fe	Forward Transconductance 4	13	19	_	S	$V_{CE} = 100V, I_{C} = 24A$	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μA	$V_{GE} = 0V, V_{CE} = 1200V$	
		_	_	6500		$V_{GE} = 0V, V_{CE} = 1200V$, T _J = 150°C
V _{FM}	Diode Forward Voltage Drop	_	2.5	3.5	V	I _C = 16A	See Fig. 13
		_	2.1	3.0		I _C = 16A, T _J = 150°C	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge (turn-on)	_	180	270		I _C = 24A
Q _{ge}	Gate - Emitter Charge (turn-on)	_	25	38	nC	V _{CC} = 400V See Fig.8
Q _{gc}	Gate - Collector Charge (turn-on)	_	70	110		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	_	87	_		
t _r	Rise Time	_	100	_	ns	T _J = 25°C
t _{d(off)}	Turn-Off Delay Time	_	140	300	113	$I_C = 24A, V_{CC} = 800V$
t _f	Fall Time	_	200	300		$V_{GE} = 15V, R_{G} = 5.0\Omega$
E _{on}	Turn-On Switching Loss	_	3.83	_		Energy losses include "tail"
E _{off}	Turn-Off Switching Loss	_	1.90	_	mJ	and diode reverse recovery
E_ts	Total Switching Loss	_	5.73	7.9		See Fig. 9,10,18
t _{sc}	Short Circuit Withstand Time	10	_	_	μs	$V_{CC} = 720V, T_J = 125^{\circ}C$ $V_{GE} = 15V, R_G = 5.0\Omega$
t _{d(on)}	Turn-On Delay Time	_	67	_		T _J = 150°C, See Fig. 10,11,18
t _r	Rise Time	_	72	_		$I_C = 24A, V_{CC} = 800V$
t _{d(off)}	Turn-Off Delay Time	_	310	_	ns	$V_{GE} = 15V, R_{G} = 5.0\Omega,$
t _f	Fall Time	_	390	_		Energy losses include "tail"
E _{ts}	Total Switching Loss	_	8.36	_	mJ	and diode reverse recovery
LE	Internal Emitter Inductance	_	13	_	nH	Measured 5mm from package
C _{ies}	Input Capacitance	_	2800	_		$V_{GE} = 0V$
C _{oes}	Output Capacitance	_	140	_	pF	V _{CC} = 30V See Fig. 7
C _{res}	Reverse Transfer Capacitance	_	53	_		f = 1.0MHz
t _{rr}	Diode Reverse Recovery Time	_	90	135	ns	T _J = 25°C See Fig.
		_	164	245		T _J = 125°C 14 I _F = 16A
I _{rr}	Diode Peak Reverse Recovery Current	_	5.8	10	Α	T _J = 25°C See Fig.
		_	8.3	15		T _J = 125°C 15 V _R = 200V
Q _{rr}	Diode Reverse Recovery Charge		260	675	nC	T _J = 25°C See Fig.
		_	680	1838		T _J = 125°C 16 di/dt = 200A/µs
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	120		A/µs	T _J = 25°C See Fig.
•	During t _b	_	76	_		T _J = 125°C 17

Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

Fig. 2 - Typical Output Characteristics

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

$\begin{array}{c} 4000 \\ \hline \\ V_{GE} = 0V, \quad f = 1 MHz \\ C_{ies} = C_{ge} + C_{gc}, \quad C_{ce} \quad SHORTED \\ C_{res} = C_{ge} \\ C_{oes} = C_{ce} + C_{gc} \\ \hline \\ C_{ies} = C_{ge} \\ C_{oes} = C_{ce} \\ C_$

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

Fig. 9 - Typical Switching Losses vs. Gate Resistance

IRG4PH50KDPbF

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 10 - Typical Switching Losses vs. Junction Temperature

International TOR Rectifier

Fig. 11 - Typical Switching Losses vs.
Collector Current

Fig. 12 - Turn-Off SOA

Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current

International

Fig. 14 - Typical Reverse Recovery vs. dif/dt

Fig. 16 - Typical Stored Charge vs. di_f/dt www.irf.com

Fig. 15 - Typical Recovery Current vs. di_f/dt

Fig. 17 - Typical $di_{(rec)M}/dt$ vs. di_f/dt

7

 $\label{eq:Fig. 18a} \textbf{Fig. 18a} \textbf{ -} \textbf{ Test Circuit for Measurement of } I_{LM}, \, E_{on}, \, E_{off(diode)}, \, t_{rr}, \, Q_{rr}, \, I_{rr}, \, t_{d(on)}, \, t_r, \, t_{d(off)}, \, t_f$

Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{off}},\,t_{\text{d(off)}},\,t_{\text{f}}$

 $\label{eq:Fig. 18c} \textbf{Fig. 18c} \textbf{ -} \ \text{Test Waveforms for Circuit of } \ \text{Fig. 18a}, \\ \text{Defining E}_{on}, \ t_{d(on)}, \ t_{r}$

Figure 18e. Macro Waveforms for Figure 18a's Test Circuit

Figure 19. Clamped Inductive Load Test Circuit

Figure 20. Pulsed Collector Current Test Circuit

Notes:

- \odot Repetitive rating: V_{GE} =20V; pulse width limited by maximum junction temperature (figure 20)
- $2 V_{CC} = 80\% (V_{CES}), V_{GE} = 20V, L = 10\mu H, R_G = 5.0\Omega (figure 19)$
- ③ Pulse width ≤80µs; duty factor ≤0.1%.
- 4 Pulse width 5.0 µs, single shot.

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information

ASSEMBLED ON WW 35, 2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 04/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/