* Understanding Maclaurin Series for f(x)=sin(x) and graphing

Givens

Taylor series of function
$$f(x)$$
:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 - \cdots$$

Maclaurin series is Taylor series for $a=0$

$$f(x) = f(0) + \frac{f'(0)}{1!}(x-0) + \frac{f''(0)}{2!}(x-0)^2 - \cdots$$

Finding
$$f(0)$$
, $f'(0)$, $f''(0)$...

Differential Function $(x) = a = 0$

Term $Sin(x)$ 0

1 $cos(x)$ 1

2 $-sin(x)$ 0

3 $-cos(x)$ -1

4 $sin(x)$ 0
 \vdots

Substituting into Maclaurin series form:

$$f(x) = 0 + \frac{1}{1!}(x) + \frac{0}{2!}(x-0)^2 + \frac{1}{3!}(x-0)^3 + \frac{1}{4!}(x-0)^4$$

For every other term it is 0, to simplify:

$$f(x) = \frac{1}{1!}x + \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \cdots$$

Sum Representation:
$$f(x) = \frac{2}{5} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$