Recitation Session 3

Problem

- 1. Calculus.
 - a. Calculate the derivative of $y = (\log(x))^{\log(x)}$
 - b. Calculate $\int_0^\infty e^{\frac{-x^2}{2}} dx$
- 2. Change of variables.
 - a. Let X be uniformly distributed over [0,1], and $Y = -\lambda^{-1} \log(X)$ where λ is positive. Find the distribution of Y
 - b. Let $X \sim N(0,1)$ and $Y = e^X$. Find the pdf of Y
- 3. Inverse transform: discrete RV. Figure 1 shows the cdf of a Binomial(2, 0.5) random variable.
 - a. How would you obtain this cdf as a function g(U) from the uniform (0,1) variable U?
 - b. How would you obtain $Y \sim \text{Binomial}(10, 0.5)$ from (a)?
 - c. How would you simulate it using fair coin flips?

Figure 1: cdf of a binomial (2, 0.5) random variable.

4. Laplace Distribution. A continuous random variable X is said to have a Laplace distribution with parameter λ if its pdf is given by:

$$f(x) = A \exp(-\lambda |x|), \quad -\infty < x < \infty$$

for some constant A.

- a. Can the parameter λ be negative or zero
- b. Compute the constant A in terms of λ
- c. Compute the cdf of X
- d. For s, t > 0, compute p(X > s + t | X > s)
- e. Compute the pdf of Y = |X|

Page 2 of 2 DS-GA 1002, Fall 2019