1 De Morgan's Laws

The De Morgan's Laws allow the expression of conjunctions and disjunctions purely in terms of each other via negation.

The laws can be verbalized as:

- The negation of a conjunction is the disjunction of the negations.
- The negation of a disjunction is the conjunction of the negations.

The Rules can be verbalized as

- (i) "not (A and B)" is the same as "(not A) or (not B)"
- (ii) "not (A or B)" is the same as "(not A) and (not B)"

Use Truth Tables to prove De Morgan's Laws (see page 40).

$$\neg(p \lor q) = \neg p \land \neg q$$

p	q	$p \lor q$	$p \wedge q$	$\neg (p \lor q)$	$\neg (p \land q)$
		(1)	(2)	(3)	(4)
0	0	0	0	1	1
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	1	0	0

Γ	р	q	¬р	$\neg q$	$\neg p \land \neg q$	$\neg p \lor \neg q$
			(5)	(6)	(7)	(8)
ſ	0	0	1	1	1	1
	0	1	1	0	0	1
	1	0	0	1	0	1
	1	1	0	0	0	0