WISCONSIN UNIV-STEVENS POINT WISCONSIN COOPERATIVE FI--ETC F/G 8/8 INFLUENCE OF WING DAM NOTCHING ON AQUATIC MACROINVERTEBRATES IN--ETC(U) MAY 80 T J HALL AD-A096 633 NL UNCLASSIFIED 1 or 2 AD A 7:96633

INFLUENCE OF WING DAM NOTCHING
ON AQUATIC MACROINVERTEBRATES
IN POOL 13, UPPER MISSISSIPPI RIVER:
THE PRENOTCHING STUDY

LEVELI

bу

Thomas J. Hall

Wisconsin Cooperative Fishery Research Unit

SELECTE MAR 20 1981

A Thesis

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

College of Natural Resources

UNIVERSITY OF WISCONSIN Stevens Point, Wisconsin

May 1980

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

での大変のはなければからとしているとうでき

CORRECTIONS/ERRORS - HALL THESTS

Pa je

- At the end of the first paragraph add: "Their locations were marked with floats."

 Cross out: "with a grapple hook on" in the first sentence of the next paragraph and but "between" in.
- 30 Forty-nine percent...
- 40 station 2<u>6</u>-6-7...
- 66 station 26-6-7...
- 160 , bicmass (g)<u>/</u>m² 31eadcada

INFLUENCE OF WING DAM NOTCHING
ON AQUATIC MACROINVERTEBRATES
IN POOL 13, UPPER MISSISSIPPI RIVER:
THE PRENOTCHING STUDY.

by

Thomas J. Hall

Thomas J. Hall

Wisconsin Cooperative Fishery Research Unit

A Thesis

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

College of Natural Resources

UNIVERSITY OF WISCONSIN Stevens Point, Wisconsin

May 1980

4122

APPROVED BY THE GRADUATE COMMITTEE OF:

Dr. Daniel W. Coble, Committee Chairman Professor of Fisheries

Thry E. Booke

Dr. Henry E. Booke Professor of Fisheries

Dr. John R. Heaton Professor of Fisheries

Edward M Storn

Dr. Edward M. Stern Assistant Professor of Biology

ABSTRACT

Benthic and colonizing macroinvertebrates and physicochemical characteristics were studied at six wing dams and an adjacent side channel in Pool 13 of the Upper Mississippi River in June, August, September through October 1978, and June 1979 in the prenotching phase of a project to determine the effects of wing dam notching on aquatic macroinvertebrates. Three wing dams were notched in May through June 1979. Water temperature and dissolved oxygen concentration were uniform with depth in each sampling period but varied among periods. Current velocity varied with sampling period because staff gauge, i.e. discharge, varied with time. Current velocity decreased with depth. The substrate was mainly medium sand because bottom current velocities ranged from 22 to 43 cm/s during 1978.

Fifty-six taxa of macroinvertebrates were collected with a Ponar grab sampler in 1978. Oligochaeta, the most abundant class, comprised 51% of benthic invertebrate density.

Hexagenia bilineata (Say), Hexagenia limbata (Serville), and early instars of Hexagenia spp. made up 64% of the benthic biomass. Hydropsychid caddisflies dominated the macroinvertebrate aufwuchs on basket and multiple-plate samplers, which were placed on wing dams. Basket samplers were colonized by significantly greater macroinvertebrate numbers, biomass, and number of taxa than multiple-plate samplers.

Total benthic invertebrate, origochaete, Hexagenia spp., and chironomid density, and biomass and number of benthic taxa each were positively, significantly related to percent silt-clay in the substrate. All of these macroinvertebrate categories were negatively, significantly related to percent sand in the substrate. Although gravel substrate was rare, the highest benthic invertebrate density, biomass, and number of taxa occurred in gravel. Wing dam 25, on the inside of a river bend in an area of reduced current, had significantly greater benthic density and biomass than for other wing dams because of greater silt-clay deposits there. Wing dam 28 had the lowest benthic density, biomass, and number of taxa and the greatest percentage of sand. Benthlic density, biomass, and number of taxa were significantly greater at stations above wing dams than below because percentages of silt-clay were greater above than below.

Besides substrate, discharge and time of year in relation to invertebrate life cycles affected benthic invertebrate populations. Benthic invertebrates decreased in August 1978 and June 1979 partly because of peak discharges in the month before the decrease and partly because of insect emergence.

The wing dams were islands of rock in a sea of sand. Basket samplers collected 26.5 times more macroinvertebrate numbers and 14.3 times more biomass than the Ponar grab sampler in September 1978. These differences were related to habitat, i.e. basket samplers collected invertebrates from a lotic-erosional habitat, and the Ponar grab sampler sampled a lotic-depositional habitat.

ACKNOWLEDGEMENTS

The study was supported by funds and materials from the Great River Environmental Action Team II and the Wisconsin Cooperative Fishery Research Unit, University of Wisconsin, Stevens Point.

My thanks go to colleagues, Rod Pierce, Scott Corley, Dr. William LeGrande, and other members of the Wisconsin Cooperative Fishery Research Unit, who spent many hours in the field collecting data. I would also like to thank Tom Gengerke and John Pitlo of the Iowa Conservation Commission for their cooperation and assistance.

I am particularly grateful to my advisor, Dr. Daniel Coble, who gave supervision and advice on all phases of the project and critically evaluated the manuscript, and to Dr. Henry Booke for helping solve equipment problems and examining the manuscript. I am indebted to Dr. Edward Stern for confirming my bivalve mollusk identification and examining the manuscript, as well as to Dr. Jack Heaton and Dr. Stan Szczytko for examining the manuscript. I also express appreciation to Dr. Frederick Hilpert and Tom Zeisler for their help with statistical procedures and programming, and to Dr. James Bowles and Gene Tubbs for giving information on sediment analyses and equipment.

Finally, none of this would have been possible without the continual interest, support, and love by my wife,

Janette. I dedicate my thesis to my late parents, Mr. and

Mrs. Irving T. Hall, for their love and support throughout my education.

TABLE OF CONTENTS

	Page
TITLE PAGE	i
COMMITTEE SIGNATURE PAGE	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES (OR ILLUSTRATIONS)	x
LIST OF APPENDICES	хi
INTRODUCTION	1
STUDY AREA	3
METHODS AND MATERIALS	6
Aquatic Macroinvertebrates	6
Physicochemical Characteristics	11
Statistical Analyses	12
Hydrographic Relief Sediments	14
RESULTS AND DISCUSSION	15
Physicochemical Characteristics of Benthos Stations	15
Discharge	15
Current Velocity	15
Substrate	16
Dissolved Oxygen and Temperature	22
Benthos	23
Influence of Substrate on Benthos	23
Site Differences	24
Influence of Discharge and Season on Benthos	25
Taxonomic Composition	30

	Page
Macroinvertebrate Aufwuchs	39
Comparison of Stations	39
Comparison of Samplers	39
Taxonomic Composition	44
Macroinvertebrate Habitat	45
Hydrographic Relief Sediments	46
LITERATURE CITED	51
A PPENDICES	62

LIST OF TABLES

		Page
Table 1.	Proposed notches for wing dams 25, 26, and 28, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	7
Table 2.	Locations of artificial substrate transects (meters from Illinois bank), Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	9
Table 3.	Bottom current velocity (cm/s) at benthos stations in the side channel, wing dams, and stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations)	18
Table 4.	Current velocity (cm/s) at 0.6 of the depth at benthos stations (refer to Figure 1 for locations) and staff gauge readings (m) at Lock and Dam 12, Pool 13, Upper Mississippi River, 1978	19
Table 5.	Benthic invertebrate density and biomass (g) per m ² and number of taxa collected with a 252-cm ² Ponar grab from the side channel, wing dams, and from stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations)	26
Table 6.	Benthic invertebrate density and biomass (g) per m ² and number of taxa collected with a 252-cm ² Ponar grab in June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	27
Table 7.	List of macroinvertebrate taxa collected with a 252-cm ² Ponar grab sampler and artificial substrates from Pool 13, Upper Mississippi River (X = present)	31

			Page
Table {	8.	Total invertebrate density and biomass (g) per m ² and number of taxa for basket samplers and multiple-plate samplers from the wing dams, Pool 13, Upper Mississippi River, September 28, October 3, 12, 1978 (refer to Figure 1 for locations)	40
Table (9•	Bottom current velocity (cm/s) at hydrographic relief stations of the wing dams, Pool 13, Upper Mississippi River, 1978	49

LIST OF FIGURES (OR ILLUSTRATIONS)

		Page
Figure 1.	The study area showing the wing dams, side channel, past dredge disposal areas, Ponar sample sites, and artificial substrate sample sites	5
Figure 2.	Mean current velocity recorded at the surface, 0.6 of the depth, and the bottom at benthos sites for June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River	17
Figure 3.	Percent mean particle size (Phi units) from benthos stations in the side channel and wing dams, Pool 13, Upper Mississippi River, 1978	20
Figure 4.	Percent mean particle size (Phi units) from hydrographic relief stations at the wing dams, Pool 13, Upper Mississippi River, 1978	47

LIST OF APPENDICES

			Page
Appendix	Α.	Subsample counts for large catches of invertebrates collected with a 252-cm ² Ponar grab, September 29, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	62
Appendix	В.	Subsample counts for large catches of invertebrates collected with basket samplers, September 28, October 3, 12, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	. 63
Appendix	С.	Subsample counts for large catches of invertebrates collected with multiple-plate samplers, September 28, October 3, 12, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	64
Appendix	D.	Percentage error (D) ^a for mean total invertebrate numbers per m ² collected with a 252-cm ² Ponar grab, Pool 13, Upper Mississippi River, assuming a negative binomial distribution (Cummins 1975; section 8.222, Elliot 1977; section 8.22)	65
Appendix	Ε.	Percentage error (D) ^a for mean total invertebrate numbers per m ² collected with basket samplers and multiple-plate samplers, September 28, October 3, 12, 1978, Pool 13, Upper Mississippi River, assuming a negative binomial distribution (Cummins 1975: section 8.222, Elliot 1977: section 8.22)	66
Appendix	F-1.	Temperature, dissolved oxygen, velocity, and depth at benthic invertebrate study sites, June 12, 17, 18, 20, 21, 1978, Pool 13, Upper Mississippi River	
		(refer to Figure 1 for locations)	67

		Page
Appendix F-2.	Temperature, dissolved oxygen, velocity, and depth at benthic invertebrate study sites, August 2-4, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	69
Appendix F-3.	Temperature, dissolved oxygen, velocity, and depth at benthic invertebrate study sites, September 29-30, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	71
Appendix F-4.	Temperature, dissolved oxygen, velocity, and depth at benthic invertebrate study sites, June 5-6, 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	73
Appendix G.	Particle size fractions as percent total in 100-gram samples (Ingram 1971) collected with a Ponar grab, benthos sites, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	75
Appendix H-1.	Number and biomass per square meter of macroinvertebrates collected with a Ponar grab (three replicates), June 12, 17, 18, 20, 21, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 locations)	81
Appendix H-2.	Number and biomass per square meter of macroinvertebrates collected with a Ponar grab (three replicates), August 2-4, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	97
Appendix H-3.	Number and biomass per square meter of macroinvertebrates collected with a Ponar grab (three replicates), September 29-30, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	107

		Page
Appendix H-4.	Number and biomass per square meter of macroinvertebrates collected with a Ponar grab (three replicates), June 5-6, 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	125
Appendix I.	Number and biomass per square meter of macroinvertebrates collected with a basket sampler, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	136
Appendix J.	Number and biomass per square meter of macroinvertebrates collected with a multiple-plate sampler, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	146
Appendix K.	Particle size fractions as percent total in 100-gram samples (Ingram 1971) collected with a Ponar grab, hydrographic relief sites, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	155
Appendix L.	Mean yearly discharge in thousands entering Pool 13 from Lock and Dam 12, 1970-1979, Upper Mississippi River	162
Appendix M.	Mean monthly discharge in thousands entering Pool 13 from Lock and Dam 12, January 1978 to December 1979, Pool 13, Upper Mississippi River	163
Appendix N.	Results of Mann-Whitney tests of bottom current velocities (cm/s) at benthos stations in the side channel and wing dams and Wilcoxon paired-sample test of velocities at stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations)	164
Appendix 0.	Spearman's rank correlation coefficients for factors affecting benthic invertebrate density, biomass,	
	and number of taxa, 1978	165

Appendix	P.	Results of Mann-Whitney tests of benthic invertebrate density and biomass (g) per m ² and number of taxa from the side channel and wing dams and Wilcoxon paired-sample tests of invertebrate density and biomass (g) per m ² and number of taxa from stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations)	166
Appendix	Q.	Results of t-tests of square-root mean total invertebrate density per m ² and Mann-Whitney tests of total invertebrate biomass (g) per m ² and number of taxa collected with a 252-cm ² Ponar grab in June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations)	168

Page

INTRODUCTION

The U.S. Army Corps of Engineers submitted plans on June 30, 1977 to the Great River Environmental Action Team II (GREAT II) for repair of wing dams in Pools 13 and 19. The Fish and Wildlife Management Work Group of GREAT II proposed the construction of notches in some of the wing dams to help alleviate the detrimental effects of accreted sediments between wing dams. They proposed that a notch be constructed in wing dams 25, 26, and 28 (Figure 1). Wing dikes have been notched in the Missouri River to reduce accreted sediments between the dikes and in backwater areas (Kallemeyn and Novotny 1977, Reynolds 1978, Jennings 1979, Dieffenbach 1980).

The objectives of this study were to compare species composition, density, and biomass of aquatic macroinvertebrates and measure physicochemical characteristics at the wing dams and side channel before notching. This study was half of the prenotching phase of the investigation. In the other half, fish populations at the wing dams and in the side channel and physicochemical characteristics at hydrographic relief transect stations were investigated by Rod Pierce (1980), another student in the Wisconsin Cooperative Fishery Research Unit.

The post-notching study is scheduled to be completed in the fall of 1980 by Scott Corley of the Wisconsin Cooperative Fishery Research Unit.

Structures for directing current and reducing erosion in large rivers for the benefit of navigation have included revetments, pile dikes, and wing dikes. Revetments are

constructed to stabilize river banks from erosion. Wing dikes, which are often referred to as wing dams on the Upper Mississippi River and as wing dikes on the Missouri River, have been constructed to deflect current towards the center of the main channel to help reduce the need for recurrent dredging and to maintain a navigation channel.

Slack water areas often have developed behind wing dams, resulting in accretion of sediments between them and in adjacent backwaters because most wing dams were built in areas of natural deposition. Such sediment deposition results in loss of invertebrate and fishery habitat (Funk and Robinson 1974, Simons et al. 1975).

Although little is known of effects of wing dam notching on aquatic communities, it has been learned that wing dam height, location of notches in dams, discharge, and location of the dam in relation to the thalweg of a river affects the degree to which sediments are scoured (Simons et al. 1974, Reynolds 1978, Jennings 1979).

STUDY AREA

Pool 13 of the Upper Mississippi River extends from Bellevue, Iowa, 55 kilometers south to 2.4 kilometers north of Fulton, Illinois. The northern end of the pool is 2.6 kilometers wide and gradually widens to 4.8 kilometers. The pool is formed by Lock and Dam 13 at kilometer 841 (river mile 522.5), which was placed in operation by the U.S. Army Corps of Engineers on May 13, 1939. At Lock and Dam 13, the pool is maintained at an elevation of 178 meters above sea level (flat pool) creating a 2.7-meter pool for navigation. At flat pool, there are 11,778 hectares of water surface of which 2,945 hectares (25%) are classified as channel. Of the 814 kilometers of shoreline of the pool, 94% is federally owned (U.S. Army Corps of Engineers 1974).

The bedrock in the area of the pool consists of Galena dolomite and Maquoketa shale from the Ordovician age. Depth to bedrock ranges from 9 to 46 meters. There are no glacial deposits in the northern area of Pool 13, but glacial deposits in the southern area of the pool are of the Illinoian and Kansan stages. The floodplain soils are silt-clay deposited 1 to 6 meters deep overlying sand. Pool 13 drains an area of 221,445 square kilometers. Approximately 1,415,232 metric tons of sediment enters Pool 13 annually. The riverbed consists of sand with lesser amounts of silt-clay, gravel, and boulders (U.S. Army Corps of Engineers 1974).

The study area (Figure 1) included wing dams 25, 26, 28, 29, 30, and 31 between river kilometers 880.7 and 882.7 (river miles 547.4 and 548.6) and an unnamed side channel between river kilometers 880.9 and 881.9 (river miles 547.5 to 548.1). The Illinois bank was primarily open with scattered trees, whereas the islands, shorelines of the side channel, and the Iowa bank were more densely covered river bottom woodlands.

Study sites in the river channel were within an area approximately 38 meters upstream and downstream of the base of each wing dam. The study sites included main channel border (the zone between the 2.7-meter channel and the main river bank or islands) and side channel (all departures from the main channel in which there is current during normal river stages) (Rasmussen 1979).

River kilometers 878.5 to 883.0 (river miles 546.0 to 548.8) are classified by the U.S. Army Corps of Engineers (1974) as a recurrent dredging area. This area has been dredged 13 times since 1945 with 1,373,293 cubic meters of dredge spoil having been removed. Areas of past dredge spoil disposal are between the wing dams in the study area and on the Iowa bank (Figure 1). The Maquoketa River, which enters Pool 13 opposite the study area, introduces approximately 417,312 metric tons of sediments to Pool 13 annually (U.S. Army Corps of Engineers 1974).

Figure 1. The study area showing the wing dams, side channel, past dredge disposal areas, Ponar sample sites, and artificial substrate sample sites. The study area is eight miles south of Bellevue, Iowa (U.S. Army Corps of Engineers 1974).

METHODS AND MATERIALS

Aquatic Macroinvertebrates

Benthic invertebrates were collected with a 252-cm2 Ponar grab sampler on June 12, 17, 18, 20, 21; August 2-4; September 29-30, 1978; and June 5-6, 1979. Three replicate samples were taken at four sites near each wing dam and at three sites in the adjacent side channel. Sites at wing dams 25, 26, and 28 were located as follows: one site was 8 m upstream of the dams' base at the center of the proposed notch (Figure 1, Table 1). When the proximal end of the wing dam (Illinois bank) was considered to be 0° and the distal end (channel) 180°, the remaining sites radiated downstream from the center of the proposed notch at 45° -8 m, 135° -23 m, and 90° -38 m from the base of the dam (Figure 1). Sites at wing dams 29, 30, and 31 were located 8 m upstream and downstream from the base of the dam at locations 61 and 152 m from the Illinois bank (Figure 1).

Distances for transects along each dam were measured with a Rangematic range finder. Accuracy of the range finder varied from 2.2% (1.4 m) at 64 m to 1.3% (1.4 m) at 110 m.

Three Ponar grab sites in the side channel were as follows: 15 m from the west bank at river mile 548.0, 15 m from the east bank at river mile 547.8, and 15 m from the west bank at river mile 547.6 (Figure 1).

Artificial substrates included four cylindrical metal

Table 1. Proposed notches for wing dams 25, 26, and 28, Pool 13, Upper Mississippi River (refer to Figure 1 for locations).

Wing dam	Center of notch from IL bank	Depth	Width
		meters	
25	84	1.5	46
26	99	1.5	46
28	61	1.5	91

baskets with concrete spheres (Mason et al. 1967, Jacobi 1971) and four multiple-plate substrates (Hester and Dendy 1962). The artificial substrates were set August 17, 1978 at each wing dam and left for six to eight weeks to allow for optimum colonization of macroinvertebrates (Mason et al. 1973). Two basket samplers and two multiple-plate samplers were located on each of two transects (Figure 1, Table 2), with one basket and one multiple-plate sampler on the upstream and on the downstream side of the wing dam, both equidistant between the base and crown. Baskets were 28 x 18 cm, and spheres were 7.5 cm in diameter. The multiple-plate substrates were made from 2-mm tempered hardboard (masonite), with eight alternate layers of 7.5-cm squares and seven 2.5-cm squares attached to an 8-cm ring bolt. The artificial substrates were tied to a 4190 x 1-cm nylon rope that was anchored upstream from the dam by a 122 x 1.3-cm steel reinforcing rod driven into the bottom.

Artificial substrates were retrieved with a grapple hook on September 28, October 3, 12, 1978. Sixty-five percent (28) of the artificial substrates were recovered. A washtub was placed below each sampler before it was removed from the water to prevent the loss of organisms (Bull 1968, Hilsenhoff 1969, Mason et al. 1973). The substrates were dismantled in washtubs and scrubbed to remove invertebrates. Only those organisms on the spheres were used in the quantitative analysis.

Table 2. Locations of artificial substrate transects (meters from Illinois bank), Pool 13, Upper Mississippi River (refer to Figure 1 for locations).

	Transect		
Wing dam	Inside	Outside	
25	64	152	
26	79	183	
28	105	213	
29	61	213	
30	61	213	
31	61	213	

Organisms attached to the wire basket, debris, or vegetation were discarded.

All samples were sieved through a U.S. No. 35 (0.50 mm) screened wash-bucket and placed in plastic bags containing five percent formalin (Lind 1974). In the laboratory, invertebrates were sorted from debris, subsampled (Cummins 1975: section 8.23, Elliot 1977: section 8.3) (Appendix A, B, and C), identified, and counted. Identification was facilitated by use of taxonomic keys of Ross (1944), Burks (1953), Fremling (1960a, 1960b), Gooch (1967), Parmalee (1967), Burch (1972, 1973), Lewis (1974), Hilsenhoff (1975), McCafferty (1975), Edmunds et al. (1976), Wiggins (1978a), Merritt and Cummins (1978), Pennak (1978), and Schuster et al. (1978). Oligochaetes were too fragmented in screening to be identified further than class; numbers were estimated by counting prostomiums.

Invertebrate biomass was calculated from organism length (Hynes and Coleman 1968) for all but Oligochaeta, Zygoptera, and Unionidae. Hynes and Coleman (1968) assumed invertebrates to be cylinders in which volume increased by the cube of the length and with a specific gravity of 1.05. Weights for invertebrates with lengths equal to five diameters were 3.298 x 10⁻⁵g times the length cubed; Chironomidae and Ceratopogonidae with lengths equal to 7.5 diameters were 1.393 x 10⁻⁵g times the length cubed; and Gastropoda and Sphaeriidae, which were considered spheres, were 4.398 x 10⁻³g times the radius cubed.

Unionidae, with and without shell, and Zygoptera were soaked in water for 30 minutes, blotted dry, and weighed on a Mettler H54 balance to the nearest 0.001 g.

Oligochaeta were soaked for 30 minutes in water, centrifuged at 650 rpm for three minutes (Howmiller 1972, Stanford 1973), and weighed to the nearest 0.001 g.

Physicochemical Characteristics

Water temperature, dissolved oxygen concentration, and current velocity were measured, and sediments were collected at each sampling site at the time of the benthic invertebrate samples. Water temperature and dissolved oxygen concentration were determined at each meter of the water column with a YSI Model 54 Oxygen Meter. The oxygen meter was air-calibrated and checked against a Hach kit at the beginning of each sampling day. Current velocity was recorded at the water surface; at 0.2, 0.6, and 0.8 X depth; and 10 cm from the bottom with a cable-suspended Price Current Meter (Hynes 1970).

One sediment sample was collected with a 252-cm²

Ponar grab at each benthos sampling site. Sediments were analyzed for particle size by the procedure of Ingram (1971) and divided into 10 particle size fractions based on the modified Wentworth Scale (Wentworth 1922, Cummins 1962).

No attempt was made to separate fine sediments into silt and clay.

Statistical Analyses

Large variation is usually encountered in sampling benthic populations, and small samples are often statistically inaccurate because distribution of macroinvertebrates is usually contagious (Mottley et al. 1938; Needham and Usinger 1958, cited by Resh 1979; Allen 1959; Taylor 1965; Egglishaw 1969; Sugimoto 1969; Cummins 1975; DeMarch 1976; Elliot 1977; Minshall and Minshall 1977; Taylor et al. 1978; Resh 1979; Downing 1979). Parametric statistical methods should be applied to invertebrate data only if the data are normally distributed, the variance of the sample is independent of the mean, and the components of variance are additive (Elliot 1977).

I fitted log-log regressions of variances on means for benthos samples to find out if the variances were independent of the means. If they were not, I used a transformation based on the slope of the regression line (Taylor's Power Law) on invertebrate replicate counts or biomass (Downing 1979). Transformations that removed correlation between variances and means often normalize frequency distributions and ensure that the components of variance are additive (Bartlett 1947; Anscombe 1948; Quenouille 1950; Tukey 1957, 1968; Bliss and Owen 1958; Taylor 1961; Healy and Taylor 1962; Box and Cox 1964; Southwood 1966; Snedecor and Cochran 1967; Thöni 1967; Zar 1974; Cummins 1975; Elliot 1977; Downing 1979).

Parametric statistics were used on the transformed

counts or biomass. The arithmetic means of the transformed data plus an adjustment factor were transformed back to the original scale giving derived means (Quenouille 1950, Elliot 1977). Quenouille (1950) stated that derived means are usually in good agreement with means obtained by direct averaging, and that differences in derived means and arithmetic means can be considered adjustments that eliminate effects of extreme observations.

Cummins (1975), Elliot (1977), Resh (1979), and Downing (1979) felt that a tolerable error for bottom samples was a percentage error of precision of 20% calculated as (SE)(100)/X=20%. I calculated the sample size required for a 20% error for mean total invertebrate counts and biomass collected with a Ponar grab and artificial substrates (Cummins 1975: section 8.222, Elliot 1977: section 8.22). Data were pooled during analysis to reduce the large variation associated with invertebrate sampling. The percentage error for mean total invertebrate counts was approximately 20% (Appendix D and E). Whenever my transformations did not remove the correlation between the variances and means, or whenever the percentage error was greater than 20%, I used nonparametric statistics (Conover 1971, Elliot 1977, Downing 1979).

Guidelines of Sutcliffe (1979) were used for measurements of quantitative data.

Appendices F, G, H, I, J, and K are copies of computer printouts.

Hydrographic Relief Sediments

One sediment sample was collected with a 252-cm²

Ponar grab from six sites at each wing dam. Sites at the wing dams were located 30 m upstream and downstream from the base of the dam at the following locations from the Illinois bank:

Wing dam 25 - 91, 152, and 213 m

Wing dam 26 - 107, 168, and 259 m

Wing dam 28 - 61, 122, and 244 m

Wing dams 29, 30, and 31 - 61, 137, and 213 m.

Sediments were analyzed for particle size by the procedure of Ingram (1971). No attempt was made to separate fine sediments into silt and clay.

Data on current velocity, depth, dissolved oxygen concentration, hydrographic relief, and temperature for the hydrographic relief transects, as opposed to the benthos sampling sites, are in Pierce (1980).

RESULTS AND DISCUSSION

Physicochemical Characteristics of Benthos Stations

Discharge

The mean yearly discharge for 1979 was the second highest discharge recorded in the past decade, whereas the discharge for 1978 was slightly below average (Appendix L). Monthly discharges in 1978 were erratic with three peaks occurring (Appendix M), similar to discharge found in the Mississippi River by Dorris and Copeland (1963). The maximum monthly discharge in 1978 occurred in July, and in 1979, in April and May (Appendix M). The maximum monthly discharge for July 1978 was atypical because the maximum normally occurs in spring (Dorris and Copeland 1963; Hynes 1970; Fremling et al. 1978, 1979). The mean monthly discharge for May 1979 was 131% greater than in May 1978 (Appendix M). These differences in discharge between years should be considered in any comparisons of the environment through time. Leopold (1962), Leopold et al. (1964), Hynes (1970), Maddock (1972), Beaumont (1975), and Simons et al. (1975) concluded that discharge was the most important factor influencing biological, and physicochemical factors of a stream.

Current Velocity

Current velocity varied with depth, sampling location, and sampling period. The range of current velocities from bottom to surface was 8 to 105 cm/s during the study (Appendix F-1 to F-4). Current velocities became

progressively smaller with increasing depth (Figure 2). Hubault (1927, cited by Hynes 1970) and Ambühl (1959, 1961, 1962; cited by Hynes 1970) reported this aspect of flow with reference to benthic animals.

Bottom current velocity increased downstream from wing dams 25 to 31 in 1978 (Table 3). Current velocities were significantly greater for downstream wing dams (29, 30, and 31) than upstream wing dams (25, 26, and 28) and the side channel in 1978 (Appendix N) because the upstream wing dams were located on the inside of a river bend.

There was no difference in bottom current velocity above and below the wing dams (Table 3). Wing dams 26 and 28 were partly emergent in 1978, but current velocities were not lower at emergent dams than at submergent wing dam 25 (Table 3).

Mean current velocity varied with sampling period because staff gauge readings, i.e. discharge, varied with time. As staff gauge readings decreased in 1978, mean current velocity decreased (Table 4).

Substrate

Bottom current velocity determined particle size in the study area. Median particle size (0.25-0.50 mm) for the side channel and wing dams was in the medium to coarse sand range (Figure 3, Appendix G). Einsele (1960, cited by Hynes 1970) stated that bottom velocities of 20 to 40 cm/s would produce sandy substrates. Mean bottom current velocities for the benthos sites varied from 22 to 43 cm/s

Mean current velocity recorded at the surface, 0.6 of the depth, and the bottom at benthos sites for June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River. Figure 2.

Table 3. Bottom current velocity (cm/s) at benthos stations in the side channel, wing dams, and stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations). Means and standard deviations for velocities upstream and downstream of the wing dams were calculated for stations located nearest to the Illinois bank. Station 30-6-7 in August 1978 was eliminated because of an erroneous velocity value (Appendix F-2).

Site	Mean	SD	n
Side channel	25 ^a	10	9
Wing dam 25	22 ^a	9	12
Wing dam 26	22 ^a	11	12
Wing dam 28	28 ^a	9	12
Wing dam 29	40 ^b	12	12
Wing dam 30	39 ^b	10	11
Wing dam 31	43 ^b	5	12
Upstream	32	12	18
Downstream	29	12	18

a, b Significantly different (Appendix N).

Table 4. Current velocity (cm/s) at 0.6 of the depth at benthos stations (refer to Figure 1 for locations) and staff gauge readings (m) at Lock and Dam 12, Pool 13, Upper Mississippi River, 1978. Staff gauge readings were obtained from the U.S. Army Corps of Engineers, Lock and Dam 12, Bellevue, Iowa.

	Current velocity		Staff gauge	
n	Mean	SD	Mean	SD
27	54	12	2.81	0.33
27	48	15	2.62	0.10
27	38	14	2.24	0.10
23	62	17	3.08	0.10
	27 27 27	n Mean 27 54 27 48 27 38	n Mean SD 27 54 12 27 48 15 27 38 14	n Mean SD Mean 27 54 12 2.81 27 48 15 2.62 27 38 14 2.24

PARTICLE SIZE IN PHI UNITS

Figure 3. Percent mean particle size (Phi units) from benthos stations in the side channel and wing dams, Pool 13, Upper Mississippi River, 1978. Phi units, defined as the negative log to the base 2 of particle size diameter (mm), convert the geometric Wentworth classification in which each size category is twice the preceding one, into an arithmetic one with equal class intervals, i.e. 0.063 mm = 4; 0.125 mm = 3; 0.25 mm = 2; 0.50 mm = 1; 1.00 mm = 0; 2.00 mm = -1; 4.00 mm = -2; 8.00 mm = -3; and 16 mm = -4 phi units. Silt-clay, which was less than 0.063 mm, was considered to be 5 phi units. Md = median particle size (mm).

PERCENT

PARTICLE SIZE IN PHI UNITS

Figure 3. (continued)

in the 1978 samples (Table 3).

There was only a small amount of fine sand in the study area in 1978 (Figure 3) because bottom current velocities were equal to or greater than 20 to 30 cm/s (Table 3), the velocities required to transport fine sands (Schmitz 1961, Hynes 1970). Percentages of gravel and sand increased from upstream to downstream and percentages of silt-clay were less downstream (wing dams 28 to 31) than upstream (wing dams 25 to 26) in the study area (Figure 3) because current velocities increased from upstream to downstream (Table 3). However, percentages of silt-clay were higher than for very fine sands (Figure 3). Hynes (1970) stated that the packing coefficient of sediments complicates current velocity-sediment particle size dynamics. Current velocities of 30 to 50 cm/s would be required to transport sandy clay (Schmitz 1961, Hynes 1970).

Bottom current velocities and sediment composition for the side channel were similar to those for wing dams 25 and 26 in 1978 (Figure 3, Table 3).

Several investigators have found substrate composition to depend on current velocity (Butcher 1927, 1933; Nielson 1950; Schmitz 1961; Hynes 1970). Nielson (1950) and Leopold et al. (1964) stated that increasing current velocity picks up, or rolls sediment particles of increasing size along the bed, and that these are carried downstream.

Dissolved Oxygen and Temperature

There was little range in dissolved oxygen concentration

and temperature from bottom to the surface within a sampling period, but both varied greatly between sampling periods (Appendix F-1 to F-4). Hynes (1970) and Welcomme (1979) stated that because of turbulence, water in a river channel rarely stratifies. Mean dissolved oxygen concentrations varied from 4.7 to 8.6 mg/l and mean temperatures varied from 16.0 to 23.3 °C during the study (Appendix F-1 to F-4). Dissolved oxygen concentrations and temperatures were comparable to those reported by Dorris and Copeland (1963) and Schramm and Lewis (1974) for the Mississippi River.

Davis (1975) stated that insufficient evidence exists to formulate definite dissolved oxygen criteria for aquatic invertebrate communities, but a reasonable basis was to follow recommendations for fish populations. Doudoroff and Shumway (1967) and Bennett (1970) recommended a minimum dissolved oxygen level of 5 mg/l for good mixed warmwater fish populations. Dissolved oxygen concentrations probably were not limiting to benthic invertebrates during the study. However, dissolved oxygen levels were not measured just before dawn when levels might have been lower.

Benthos

Influence of Substrate on Benthos

Substrate composition was an important influence on benthic invertebrate density, biomass, and number of taxa in the study area. Total invertebrate, Oligochaeta, <u>Hexagenia spp.</u>, and Chironomidae density and biomass were positively, significantly related to percent silt-clay in substrates in 1978 (Appendix O). Total invertebrate taxa were also

positively, significantly related to percent silt-clay (Appendix 0). All of these macroinvertebrate categories were negatively, significantly related to percent sand in substrates (Appendix 0). Total invertebrate, Oligochaeta, and <u>Hexagenia</u> spp. were negatively, significantly related to bottom current velocity (Appendix 0). However, high proportions of gravel (over 30%) were found at two sites at wing dam 31 in September 1978 (31-5-7 and 31-5-8), and the greatest invertebrate density, biomass, and number of taxa in the entire study were found then (Appendix G and H-3).

Wene (1940) stated that the addition of silt to sand increased the food content (detritus) available to macroinvertebrates. Results of this investigation confirmed the conclusions of others that sand is a poor substrate for benthic invertebrates (Gersbacher 1937; Tarzwell 1937a; Denham 1938; Murray 1938; Pennak and Van Gerpen 1947; Sprules 1947; O'Connel and Campbell 1953; Cordone and Kelly 1961; Leonard 1962; Chutter 1969; Hynes 1970; Leudtke and Brusven 1976; Fremling et al. 1978, 1979; Schmal and Sanders 1978). If notching increases the percentage of sand in the substrate, it would adversely affect bottom-dwelling macroinvertebrates in the study area.

Site Differences

Benthic density, biomass, and number of taxa varied among sites according to the differences in substrate composition. Wing dam 25, on the inside of a river bend in an area of reduced current velocity, was an area of deposition (Table 3).

Benthic density and biomass were significantly greater for wing dam 25 than for other wing dams because of the greater silt-clay deposits there (Figure 3, Table 5, Appendix P). Also the number of taxa was greatest at wing dam 25 and significantly greater there than at wing dams 28, 29, 30, and 31 (Table 5, Appendix P). The average proportion of silt-clay in the side channel was similar to that of wing dam 25 (Figure 3), but there was more variation from site to site in the side channel. The second highest density and number of taxa occurred in the side channel (Table 5). Wing dam 28 had the lowest benthic density, biomass, and number of taxa and the greatest percentage of sand (Figure 3, Table 5). Swift current over soft substrates has been related to low numbers and taxa of benthic animals (Richardson 1921, Briggs 1948, Berner 1951, Milkulski 1961, Hynes 1970). Leudtke and Brusven (1976) believed that the combination of exposure to strong current and instability of sand grains was responsible for restricting recolonization by invertebrates.

Mean benthic density, biomass, and number of taxa was significantly greater at stations above the wing dams than below (Table 5, Appendix P). These differences were probably caused by differences in substrate. Percentages of silt-clay were 33% greater for stations above than below the wing dams (Appendix G).

Influence of Discharge and Season on Benthos

Discharge and time of year in relation to invertebrate life cycles affected benthic invertebrate density, biomass, and number of taxa in the study area. Benthic populations

Benthic invertebrate density and biomass (g) per m² and number of taxa collected with a 252-cm² Ponar grab from the side channel, wing dams, and from stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations). Means and standard deviations for stations upstream and downstream of the wing dams were calculated for stations nearest to the Illinois bank. Table 5.

	1	Density	·	I	Biomass			Taxa	
Site	Mean	SD	п	Mean	SD	u	Mean	SD	r
Side channel	246	1139	27	6.18	11.03	27	6.3	4.3	0
Wing dam 25	1767	1256	36	34.20	44.67	36	7.2	3.5	12
Wing dam 26	833	1080	36	12.46	40.02	36	9.4	2.8	12
Wing dam 28	212	331	36	0.61	1.47	36	2.8	1.7	12
Wing dam 29	029	1910	36	6.42	25.68	36	4.2	2.2	12
Wing dam 30	305	413	36	1.63	09.4	36	3.0	2.1	12
Wing dam 31	224	380	30	3.14	13.25	30	3.8	1.5	10
Upstream	877	953	51	21.13	49.55	51	5.3	3.7	17
Downstream	245	1877	51	9.33	23.08	51	3.9	2.5	17

Benthic invertebrate density and biomass (g) per m² and number of taxa collected with a 252-cm² Ponar grab in June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations). Table 6.

		De	Density			Biomass	മ		Таха	
Таха	ч	Mean	SD	Derived mean ^a	и	n Mean	SD	u	Mean SD	SD
June 1978	81	606	1520	806	81	19.78	43.77	27	5.2 2.9	6.
August 1978	81	q94t	921	084	81	1.23 ^b	04.4	27	2.8 ^b 1.7	.2
September 1978	75	757	1010	761	75	7.35	15.60	25	5.6 3.5	۶.
June 1979	69	699	722	999	69	3.05	96.9	23	3.9 1.9	6.

^aDerived means are arithmetic means of transformed counts plus an adjustment factor, which is then transformed back to the original scale (Quenouille 1950, Elliot 1977) $^{
m b}$ August values were significantly lower than those in other months (Appendix Q) decreased significantly from June to August 1978 (Table 6, Appendix Q). The peak annual discharge that occurred in July 1978 probably caused part of the decrease by:

- 1) reducing percentages of productive substrate (silt-clay),
- 2) dislodging invertebrates and moving them downstream, and 3) stimulating hyporheic or lateral movement of invertebrates to avoid being dislodged (Tarzwell 1937b; Allen 1951, 1959). Benthos stations in June 1978 had 18% silt-clay substrates, and in August, 7% (Appendix G).

Part of the decline in benthic populations from June to August 1978 was probably related to emergence of insects with bivoltine life cycles and the inefficiency of the sampling gear to collect the eggs and early instars of the invertebrates. Chironomidae should emerge in late July and in August (Fremling 1960b, Coffman 1978). However, Hexagenia sp., a univoltine insect, should have been abundant in August 1978 because the adults emerge every 6 to 11 days and lay eggs from mid-June to mid-August, with peak emergences and egg-laying occurring from late June to mid-July. eggs hatch in 10 to 12 days, and several broods of nymphs should have molted several times by August (Fremling 1960a, 1964b, 1967, 1968; Thomforde and Fremling 1968; Edmunds et al. 1976). The virtual absence of <u>Hexagenia</u> nymphs in August 1978 (Appendix H-2) was probably caused by the high discharge in July 1978.

High discharge in April and May 1979 probably also decreased benthic populations from September 1978 to June 1979, although these differences were not significant

(Table 6, Appendix Q). Benthic biomass should have been much higher in June 1979 than September 1978; maximum biomass occurs in the spring in most streams (Hynes 1970).

Hexagenia nymphs should have been abundant during the early June sampling, but they were virtually absent (Appendix H-4).

The decrease in benthic populations from September 1978 to June 1979 may have been caused by: 1) dislodgement of invertebrates, and 2) hyporheic or lateral movements.

Adequate silt-clay substrate for <u>Hexagenia</u> colonization was present in spring. Silt-clay increased in the study area from 12% in September 1978 to 24% in June 1979 (Appendix G). Perhaps there had been insufficient time for recolonization of <u>Hexagenia</u> nymphs in the study area following the high discharge in April and May, and perhaps the silt-clay had only recently been deposited in the study area.

Oligochaetes, ceratopogonids, and chironomids have been found to be the first benthic colonizers following floods. In this study, oligochaetes and chironomids were numerically the dominant taxa in August 1978 and June 1979 after flooding, and ceratopogonids were also abundant in June 1979 (Appendix H-2 and H-4). Gersbacher (1937) found that chironomids and ceratopogonids were the first colonizers of Illinois streams denuded by floods, and that with deposition of silt-clay, Hexagenia sp. and Sphaerium sp. were the principal colonizers. Moffet (1936) reported that after complete removal of invertebrates in South Willow Creek, Utah, by flooding, chironomids dominated the invertebrate fauna during the recovery stages. In the River Endrick in Scotland, Maitland

(1964, cited by Hynes 1970) reported that winter flooding reduced the invertebrate fauna in sandy areas, and that substrate burrowers, such as chironomids and tubificids, managed to survive the winter. Hynes (1970) stated that invertebrates with short life cycles, such as chironomids, may dominate the fauna following high discharges.

Taxonomic Composition

With data from stations 31-5-7 and 31-5-8 in September 1978 eliminated, the classes Oligochaeta and Pelecypoda and the orders Ephemeroptera, Trichoptera, and Diptera were the dominant benthic invertebrates in the study area in 1978 (Table 7, Appendix H-1 to H-3). Those stations were eliminated because they had such atypically high chironomid and trichopteran densities and gravel (Appendix G and H-3) that their inclusion would indicate that chironomids and trichopterans dominated the benthos in the study area, whereas they did not. The remaining less common taxa of benthic invertebrates comprised less than 0.3% of total numbers and less than 6.7% of the total biomass. These groups included: Turbellaria, Nematoda, Hirudinea, Isopoda, Amphipoda, Hydracarina, Plecoptera, Odonata, Megaloptera, Lepidoptera, Coleoptera, and Gastropoda.

Oligochaeta, the most abundant class in 1978, comprised 50.8% of the benthic invertebrate density and 3.4% of the biomass (Appendix H-1 to H-3).

Ephemeroptera dominated benthic biomass in 1978, representing 21.2% of the density and 65.0% of the biomass (Appendix H-1 to H-3). The greatest ephemeropteran biomass

List of macroinvertebrate taxa collected with a 252-cm^2 Ponar grab sampler and artificial substrates from Pool 13, Upper Mississippi River (X = present). Table 7.

			- 77			· (211222 = 4
	Ponar	ar gra	grab sampler	ler	Basket sampler	Multiple-plate sampler
Таха	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
Platyhelminthes						
Turbellaria			×		×	
Tricladida			×		×	×
Nematoda			×			
Annelida						
Oligochaeta	×	×	×	×	×	×
Hirudinea						
Rhynchobdellida						
Glossiphoniidae			×			
Helobdella sp.			×			
<u>Placobdella</u> sp.	×					×
Arthropoda						
Crustacea						
Isopoda						
Asellidae						
Asellus sp.	×				×	×
Amphipoda						
Gammaridae						

Table 7. (continued)

	Por	Ponar grab sampler	b samp	ler	Basket sampler	Multiple-plate sampler
Taxa	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
Gammarus sp.						×
Talitridae <u>Hyallela azteca</u> (Saussure)	×	×	×	×	×	×
Arachnoidea Hydracarina ^a	×					
Insecta						
Plecoptera						
Perlidae						
Perlesta placida (Hagen)	×					
Ephemeroptera						
Baetidae			×		×	
Baetis sp.		×	×		×	×
Baetiscidae						
Baetisca sp.				×		
Caenidae			×			×
Brachycercus sp.	×	×	×			
Caenis sp.	×		×		×	×
Ephemeridae						
Hexagenia spp.	×	×	×	×	×	×

Table 7. (continued)

	Por	Ponar grab sampler	b samp	ler	Basket	Multiple-plate sampler
Taxa	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
H. bilineata (Say)	×	×	×	×		
H. limbata (Serville)	×			×		
Heptageniidae						
Stenacron sp.					×	
Stenonema sp.			×		×	×
Leptophlebiidae						
Paraleptophlebia sp.				×		
Polymitarcidae						
Ephoron album (Say)	×					
Odona ta						
Gomphidae						
Dromogomphus sp.			×			
Gomphus sp.				×	×	
Ophiogomphus sp.	×					
Libellulidae						
Pantala sp.					×	
Coenagrionidae					×	×
Anomalagrion hastatum (Say)			×			
Argia sp.					×	

Table 7. (continued)

	Pon	Ponar grab sampler	b samp	ler	Basket	Multiple-plate sampler
Taxa	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
Ischnura sp.					×	
Hemiptera						
Pleidae						
Neoplea striola (Fieber)					×	
Megaloptera						
Sialidae						
Sialis sp.		×			×	
Trichoptera	×	×				
Hydropsychidae (early instars)			×	×	×	×
Cheumatopsyche sp.	×	×	×		×	×
Hydropsyche sp.			×		×	×
H. orris Ross			×		×	×
Potamyia flava (Hagen)	×	×	×	×	×	×
Leptoceridae						
Oecetis sp.	×		×	×		
Polycentropodidae					×	
Neureclipsis sp.			×		×	×
Lepidoptera						
Pyralidae						

Table 7. (continued)

	Por	Ponar gra	grab sampler	ler	Basket sampler	Multiple-plate sampler
Таха	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
Acentropus sp.			×			
Coleoptera						
Elmidae						×
<u>Dubiraphia</u> sp.				×		
Stenelmis sp.	×		×	×	×	
Diptera						
Ceratopogonidae	×	×	×	×		
Chironomidae	×	×	×	×	×	×
Culicidae	×		×	×		
Chaoboridae						
Chaoborus sp.			×		×	
Empididae			×			
Muscidae	×					
Stratiomyidae			×			
Mollusca						
Gastropoda						
Basommatophora						
Lymnaeidae						
<u>Lymnaea</u> sp.	×					

Table 7. (continued)

•

1

!	į					
	Ponar	ar grab	b sampler	ler	Basket sampler	Multiple-plate sampler
Таха	Jun 1978	Aug 1978	Sep 1978	Jun 1979	Sep 1978	Sep 1978
Physidae						
Physa sp.					×	
Pelecypoda						
Heterodonta						
Corbiculidae						
Corbicula manilensis (Philippi)			×			
Sphaeriidae						
Pisidium sp.	×	×	×			
Sphaerium sp.	×	×	×	×		
Schizodonta						
Unionidae			×		×	×
Fusconaia flava (Rafinesque)	×					
Lasmigona compressa (Lea)	×	×				
Leptodea fragilis (Rafinesque)	×	×			×	
Obliquaria reflexa Rafinesque	×					
Obovaria olivaria (Rafinesque)	×	×				
lumber of taxa	30	17	37	17	31	21

Number of taxa a"Hydracarina" is not a specific taxonomic term, but a term of convenience (Pennak 1978). It is an aggregation of families in the suborder Trombidiformes.

obtained was 122.47 g/m² for <u>Hexagenia</u> spp. in June 1978 (Appendix H-1). <u>Hexagenia</u> spp. comprised 86.6% of the ephemeropteran density and 98.7% of the biomass. Of the <u>Hexagenia</u> nymphs greater than 16 mm in length (Gooch 1967), 55.1% were <u>H. limbata</u> (Serville) and 44.9% were <u>H. bilineata</u> (Say). A caenid mayfly, <u>Brachycercus</u> sp., comprised 12.6% of the ephemeropteran density and 0.9% of the biomass. The remaining ephemeropterans consisted of <u>Baetis</u> sp., Baetidae (early instars), <u>Ephoron album</u> (Say), <u>Paraleptophlebia</u> sp., and <u>Stenonema</u> sp. These taxa represented 0.6% of the ephemeropteran density and 0.4% of the biomass in 1978.

Trichoptera comprised 7.6% of benthic invertebrate density and 0.9% of the biomass (Appendix H-1 to H-3). The largest trichopteran density found was 31,810/m² in September 1978, of which 18,438/m² were Potamyia flava (Hagen) (Appendix H-3). The most abundant trichopteran was Potamyia flava, which accounted for 31.5% of the trichopteran density and 36.6% of the biomass. Cheumatopsyche sp. made up 25.9% of the trichopteran density and 42.7% of the biomass. Other trichopterans included: Hydropsychidae (early instars), Hydropsyche sp., H. orris Ross, Neureclipsis sp., and Oecetis sp. Together, they represented 42.6% of the trichopteran density and 20.7% of the biomass in 1978.

Diptera comprised 17.9% of benthic invertebrate density and 4.1% of the biomass in 1978 (Appendix H-1 to H-3). Chironomidae was the most abundant dipteran family, comprising 89.9% of the dipteran density and 81.3% of biomass. Ceratopogonidae represented 6.6% of dipteran

density and 17.6% of the biomass. The remaining dipteran families, which included Culicidae, Empididae, and Stratiomyidae, comprised 3.5% of the density and 1.1% of the dipteran biomass in 1978.

The class Pelecypoda was represented by two families, Sphaeriidae and Unionidae. These bivalve mollusks comprised 2.2% of benthic invertebrate density and 19.9% of the biomass in 1978 (Appendix H-1 to H-3). Sphaerium sp. represented 73.3% of bivalve density and 17.8% of the biomass. Pisidium sp., another sphaeriid, represented 20.0% of the density and 1.0% of the bivalve biomass. The family Unionidae comprised 6.7% of bivalve density and 81.2% of the biomass in 1978. Species within the family included: Fusconaia flava (Rafinesque), Lasmigona compressa (Lea), Leptodea fragilis (Rafinesque), Obliquaria reflexa Rafinesque, and Obovaria olivaria (Rafinesque). Lasmigona compressa, which is a small stream species, has rarely been collected in the Upper Mississippi River (Van der Shalie and Van der Shalie 1950, Perry 1979).

The invertebrates found in this study were similar to those found by others in the Mississippi River (Wiebe 1927; Johnson 1929; Johnson and Munger 1930; Van der Shalie and Van der Shalie 1950; Dorris 1958; Fremling 1960a, 1960b, 1964a, 1964b, 1967, 1968, 1970, 1973; Hoopes 1960; Dorris and Copeland 1962; Christenson and Smith 1965; Carlander et al. 1967; Thomforde and Fremling 1967; Wenke 1967; Carlson 1968; Gale 1971, 1973, 1975, 1976, 1977; Merz 1974; Schramm et al. 1974; Rogers 1976; Coon et al. 1977; Fuller 1978;

ERT/Ecological Consultants, Inc. 1979; Fremling et al. 1979; Lewis 1979; Perry 1979).

Macroinvertebrate Aufwuchs

Organisms other than aquatic macrophytes that live attached to substrate have been referred to as aufwuchs (Ruttner 1963). I studied only the macroinvertebrate aufwuchs that colonized artificial substrates placed on wing dams.

Comparison of Stations

Macroinvertebrate aufwuchs populations were similar at various locations in the study area in September 1978. There was no significant difference in macroinvertebrate numbers, biomass, or number of taxa collected on artificial substrates at upstream versus downstream stations or stations near the Illinois bank versus stations near the main channel (Table 8). Invertebrate aufwuchs populations were not compared among wing dams because of insufficient sample size (Table 8).

Comparison of Samplers

Basket samplers were colonized by significantly greater macroinvertebrate numbers, biomass, and number of taxa than multiple-plate samplers (Table 8). Basket samplers had three times more individuals and 2.6 times more biomass than multiple-plate samplers (Table 8). Thirty-one taxa were collected from basket samplers and 21 from multiple-plate samplers (Table 7). Forty-seven percent of the taxa collected by both samplers were common to both (Table 7).

Density was slightly more variable from basket samplers than from multiple-plate samplers; the percentage error of

Total invertebrate density and biomass (g) per m² and number of taxa for basket samplers and multiple-plate samplers from the wing dams, Pool 13, Upper Mississippi River, September 28, October 3, 12 1978 (refer to Figure for locations). Artificial substrates from station 29-6-7 were eliminated because they were embedded in mud (Appendix I and J). Table 8.

because they were embeaued in mud (Appendix I and J).	דנו ווור	d (Append	ilx i and	٠/ ١			
		Density	1	Biomass	388	Taxa	
Sampler	ц	Mean	SD	Mean	SD	Mean	SD
Basket sampler							
Study area	13	20029 ^a	14103	104.96 ^b	40.89	11.7 ^c	3.8
Stations upstream of wing dams	2	18838	14189	99.02	75.17	12.6	5.1
Stations downstream of wing dams	∞	20774	14976	108.67	68.31	11.1	2.9
Stations near IL bank	8	18023	12805	93.89	42.99	11.6	4.8
Stations near main channel	2	23240	16994	122.66	74.65	11.8	1.6
Wing dam 25	pπ	11425	89917	77.23	99.44	14.8	1.5
Wing dam 26	~	20037	0486	130.80	62.44	13.3	3.2
Wing dam 28	₩	2982	1	36.39	ı	11.0	ı
Wing dam 29	8	13808	13444	51.21	32.07	10.5	3.5
Wing dam 30	٣	36968	11516	174.77	89.48	2.0	3.0
Multiple-plate sampler							
Study area	13	6739 ^a	4485	39.83 ^b	26.37	10.6 ^c	2.7
Stations upstream of wing dams	2	7592	5249	43.80	30.51	12.0	2.7
Stations downstream of wing dams	∞	6206	4230	37.34	25.33	8.6	2.5
Stations near IL bank	∞	6851	4717	39.52	28.08	11.0	3.3
Stations near main channel	2	6561	0794	40.33	26.56	10.0	1.6

The Contract of

Table 8. (continued)

		Density		Bion	Biomass	Taxa	æ
Sampler	ч	Mean	SD	Mean	SD	Mean	SD
Wing dam 25	p [†]	3578	2566	25.70	21.98	12.5	2.1
Wing dam 26	3	12122	2822	75.95	14.20	8.3	9.0
Wing dam 28	₩	10746	ı	50.11	ı	11.0	ι
Wing dam 29	7	1985	2129	13.95	16.00	11.5	4.9
Wing dam 30	8	2405	2413	36.37	4.41	6.5	9.0

absket sampler density was significantly greater than multiple-plate density (Wilcoxon paired-sample test: T = 6, n = 13, p<0.01).

basket sampler biomass was significantly greater than multiple-plate biomass (Wilcoxon paired-sample test: T = 6, n = 13, p < 0.01).

Chasket sampler taxa was significantly greater than multiple-plate taxa (Wilcoxon paired-sample test: T = 15, n = 13, p<0.05).

dInvertebrate aufwuchs populations were not compared among wing dams because of insufficient sample size, e.g. Mann-Whitney tests would require a minimum of four samples for each wing dam (Zar 1974).

precision for density was 19.9% for basket samplers and 18.8% for multiple-plate samplers (Appendix E). The number of samplers required for a percentage error of precision of 20%, a tolerable error for invertebrate samples (Cummins 1975, Elliot 1977), was 12 for basket samplers and 11 for multiple-plate samplers (Appendix E).

Variability of biomass estimates was approximately equal in both samplers; the percentage error of precision for biomass was 18.3% for basket samplers and 18.7% for multiple-plate samplers (Table 8). Eleven basket samplers and 11 multiple-plate samplers would be required for a percentage error of precision of 20% for biomass estimates (Table 8).

The percentage error of precision for invertebrate taxa collected by basket samplers was 9.0%, and for multiple-plate samplers, 7.1% (Table 8). Only two basket samplers and two multiple-plate samplers would be required for a percentage error of precision of 20% for invertebrate taxa collected by each sampler (Table 8). Dickson et al. (1971) found that four baskets filled with limestone were required to estimate the true mean number of taxa with a percentage error of precision of 25%.

The high level of precision obtained for number of taxa did not allow statistical comparisons among wing dams, however. Even with an acceptable level of precision, I could not find a transformation for the data that would make the variance independent of the mean. Therefore, parametric statistics should not be used for analysis of

the data (Downing 1979). The number of samples was also insufficient for nonparametric statistical comparisons among wing dams (Zar 1974) (Table 8).

I recommend basket samplers over multiple-plate samplers on the basis of these data. The small loss in precision of basket samplers compared to multiple-plate samplers (1.1% for numbers and 1.9% for taxa) should be more than compensated by the greater numbers, biomass, and number of taxa collected by basket samplers. Basket samplers with cement spheres probably provide more stability, sheltered and variety of crevices, available living space, and areas of reduced current velocity than multiple-plate samplers.

Fullner (1971) preferred multiple-plate samplers to basket samplers because multiple-plate samplers are light, easily installed and serviced, and the materials and construction are simple. However, opponents of multiple-plate samplers have contended that the hardboard (masonite) used to construct them often warps or swells in water and nearly closes the space available for habitation (Mason et al. 1973). Proponents of basket samplers have favored their stability in large bodies of water and thought that the rough texture of the substrate used to fill the baskets provided more niches for colonization and that it more closely approximated natural substrate (Mason et al. 1973).

In this study, the cement spheres in the basket samplers were more like the substrate of the wing dams than the hardboard of the multiple-plate samplers. They

were somewhat smaller but similar in surface roughness to the rock of the wing dams; they represented a cobble substrate, whereas the wing dams were constructed of cobbles and boulders.

Taxonomic Composition

Hydropsychidae (Trichoptera) dominated the macroinvertebrate aufwuchs in both samplers. Hydropsychid caddisflies made up 91.1 and 87.7% of the total numbers and 86.4 and 91.3% of the total biomass in basket and multiple-plate samplers, respectively (Appendix I and J).

Potamyia flava was the most important colonizer of basket samplers, constituting 34.5% of the total numbers and 37.8% of the biomass (Appendix I). However, high density and biomass of Potamyia flava on wing dam 30 greatly increased these estimates. Cheumatopsyche sp. was the dominant colonizer on 63% of the basket samplers (Appendix I). Cheumatopsyche sp., Hydropsyche sp., Hydropsychidae (early instars), and Hydropsychidae pupae comprised 21.8, 17.6, 15.8, and 1.3%, respectively of the total numbers and 31.3, 13.2, 2.0, and 2.0%, respectively of total biomass collected by basket samplers (Appendix I). Cheumatopsyche sp. was the primary colonizer of multiple-plate samplers, constituting 35.1% of the numbers and 43.4% of the biomass, but Potamyia flava was the principal colonizer on wing dam 30 (Appendix J). Fremling (1960b) reported that Potamyia flava favored rocks in sandy, silt-free areas of the river bottom where current is strong. Wing dam 30

fulfilled these requirements, whereas the other wing dams had lower current velocity and higher percentages of silt-clay (Figure 3, Table 3). The remaining hydropsychid caddisflies colonizing multiple-plate samplers were Potamyia flava, Hydropsyche sp., Hydropsychidae (early instars), and Hydropsychidae pupae, each comprising 23.0, 20.8, 6.7, and 2.1%, respectively of total numbers and 26.8, 15.8, 1.0, and 4.3%, respectively of the biomass (Appendix J). Density and biomass of the remaining taxa on artificial substrates was minor (Appendix I and J). Dominance of artificial substrates by a few taxa has been common in artificial substrate sampling of large rivers (Mason et al. 1973).

Macroinvertebrate Habitat

Wing dams in the study area were islands of rocks in a sea of sand, which were colonized by epilithic organisms, especially Hydropsychidae. Habitats sampled by the Ponar grab and basket samplers were different. The Ponar grab sampled a lotic-depositional habitat composed mainly of sand containing a fauna of collector-gatherers that were adapted for burrowing, e.g. Oligochaeta, Ephemeridae, and Chironomidae, or sprawling, e.g. Caenidae (Moon 1939, Coffman 1978, Edmunds et al. 1978, Pennak 1978). Basket samplers represented a lotic-erosional habitat composed of rock (wing dams), with a fauna of collector-filterers that were adapted for clinging, e.g. Hydropsychidae (Moon 1939; Wiggins 1978a, 1978b).

In September 1978, the only month that artificial

substrates were present, the basket samplers collected 26.5 times more macrainvertebrate numbers and 14.3 times more biomass than the Ponar grab (Table 6 and 8). The Ponar grab collected 37 taxa, and the basket sampler collected 31 taxa (Table 7); however, 81 replicate grabs were taken in September and only 14 basket samplers were recovered then. Forty-two percent of the taxa collected in September 1978 were common to both (Table 7). Mikulski (1961) stated that rock or rubble added to sandy areas served as concentration points for colonization by lithophilic animals. Wene and Wickliff (1940) showed experimently that the addition of rubble to sandy areas increased invertebrate density by a factor of 3 and 5.

Hydrographic Relief Sediments

As at benthos sites, bottom current velocity determined particle size distribution at hydrographic relief sites (see Physicochemical Characteristics of Benthos Stations).

Sediment curves at hydrographic relief sites (Figure 4) were similar to those at benthos sites (Figure 3).

Median particle size (0.25 mm) for the hydrographic relief sites at the wing dams corresponded to medium sand (Figure 4). Einsele (1960, cited by Hynes 1970) stated that bottom current velocities of 20 to 40 cm/s would produce sandy substrates. Mean bottom current velocities for hydrographic relief sites varied from 23 to 42 cm/s in the 1978 samples (Table 9).

Bottom current velocity increased from inside to outside hydrographic relief transects, but the differences

PARTICLE SIZE IN PHI UNITS

Figure 4. Percent mean particle size (Phi units) from hydrographic relief stations at the wing dams, Pool 13, Upper Mississippi River, 1978. Phi units, defined as the negative log to the base 2 of particle size diameter (mm), convert the geometric Wentworth classification in which each size category is twice the preceding one, into an arithmetic one with equal class intervals, i.e. 0.063 mm = 4; 0.125 mm = 3; 0.25 mm = 2; 0.50 mm = 1; 1.00 mm = 0; 2.00 mm = -1; 4.00 mm = -2; 8.00 mm = -3; and 16 mm = -4 phi units. Silt-clay, which was less than 0.063 mm, was considered to be 5 phi units. Md = median particle size (mm).

PERCENT

PARTICLE SIZE IN PHI UNITS

Figure 4. (continued)

Table 9. Bottom current velocity (cm/s) at hydrographic relief stations of the wing dams, Pool 13, Upper Mississippi River, 1978. Means and standard deviations were calculated from the data of Pierce (1980).

Site	Mann	an an	
21.06	Mean		n
Wing dam 25	30	15	18
Wing dam 26	26	21	18
Wing dam 28	23	11	18
Wing dam 29	39	11	18
Wing dam 30	42	10	18
Wing dam 31	42	6	18
Inside transect	31	12	36
Middle transect	32	14	36
Outside transect	38	18	36
Above wing dams	34	15	54
Below wing dams	34	15	54

were not significant (Table 9). There were greater silt-clay deposits at the middle hydrographic relief transects than other transects, but these differences were not significant; the inside transect had 19.9% silt-clay, the middle transect 26.5% silt-clay, and the outside transect 19.7% silt-clay (Appendix K).

There was no difference in bottom current velocity above and below the wing dams (Table 9). This result might be unexpected because some reduction in bottom current velocity downstream of the dam might be presumed. The reason that no difference was found may be that the sampling stations, on the ends of the transects (see METHODS AND MATERIALS), were 30 m from the wing dams. There was more silt-clay deposited above than below the wing dams, but the differences were not significant; upstream stations had 26.5% silt-clay, and downstream stations had 17.2% silt-clay (Appendix K).

LITERATURE CITED

- Allen, K.R. 1951. The Horokiwi stream. A study of a trout population. New Zealand Mar. Dep. Fish. Bull. 10: 238 pp.
- . 1959. The distribution of stream bottom fauna.

 Proc. New Zealand Ecol. Soc. 6: 5-8.
- Ambühl, H. 1959. Die Bedeutung der Strömung als ökologischer Faktor. Schweiz. Z. Hydrol. 21: 133-264 (cited by Hynes 1970).
- . 1961. Die Strömung als physiologischer und Ökologischer Faktor. Experimentelle Untersuchungen an Bachtieren. Verh. int. Verein. theor. angew. Limnol. 14: 390-395 (cited by Hynes 1970).
- . 1962. Die Besonderheiten der Wasserströmung in physikalischer, chemischer und biologischer Hinsicht. Schweiz. Z. Hydrol. 24: 367-382 (cited by Hynes 1970).
- Anscombe, F.J. 1948. The transformation of Poisson, binomial, and negative binomial data. Biometrika 35: 246-254.
- Bartlett, M.S. 1947. The use of transformations. Biometrics 3: 39-52.
- Beaumont, P. 1975. Hydrology, p. 1-38. <u>In</u> B.A. Whitton (Ed.) River Ecology. Studies in Ecology, Vol. 2. Blackwell Scientific Publications, London. 727 pp.
- Bennett, G.W. 1970. Management of lakes and ponds, 2nd ed. Van Nostrand Reinhold Company, New York. 375 pp.
- Berner, L.M. 1951. Limnology of the lower Missouri River. Ecol. 32(1): 1-12.
- Bliss, C.I. and A.R.G. Owen. 1958. Negative binomial distributions with a common k. Biometrika 45: 37-58.
- Box, G.E.P. and D.R. Cox. 1964. An analysis of transformations. J. Royal Statist. Soc. B26: 211-243.
- Briggs, J.C. 1948. The quantitative effects of a dam upon the bottom fauna of a small California stream. Trans. Amer. Fish. Soc. 78: 70-81.
- Bull, C.J. 1968. A bottom fauna sampler for use in stony streams. Prog. Fish. Cult. 30(2): 119-120.
- Burch, J.B. 1972. Freshwater sphaeriacean clams (Mollusca: Pelecypoda) of North America. Biota of Freshwater Ecosystems. Identification Manual 3: 1-31.

- Burch, J.B. 1973. Freshwater Unionacean clams (Mollusca: Pelecypoda) of North America. Biota of Freshwater Ecosystems. Identification Manual 11: 1-176.
- Burks, B.D. 1953. The mayflies or Ephemeroptera of Illinois. Ill. Natur. Hist. Surv. Bull. 26(1): 1-216.
- Butcher, R.W. 1927. A preliminary account of the vegetation of the River Itchen. J. Ecol. 15: 55.
- . 1933. Studies on the ecology of rivers. I. On the distribution of macrophytic vegetation in the rivers of Britain. J. Ecol. 21: 58-91.
- Carlander, K.D., C.A. Carlson, V. Gooch, and T.L. Wenke. 1967. Populations of <u>Hexagenia</u> mayfly naiads in Pool 19, Mississippi River, 1959-1963. Ecol. 48: 873-878.
- Carlson, C.A. 1968. Summer bottom fauna of the Mississippi River, above Dam 19, Keokuk, Iowa. Ecol. 49: 162-169.
- Christenson, L.M. and L.L. Smith. 1965. Characteristics of fish populations in Upper Mississippi River backwater areas. U.S. Fish and Wildlife Service Circular 212. 53 pp.
- Chutter, F.M. 1969. The effects of silt and sand on the invertebrate fauna of streams and rivers. Hydrobiologica 34: 57-76.
- Coffman, W.P. 1978. Chironomidae, p. 345-376. <u>In</u> R.W. Merrit and K.W. Cummins (Eds.) An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque. 441 pp.
- Conover, W.J. 1971. Practical nonparametric statistics. John Wiley and Sons, New York. 462 pp.
- Coon, T.G., J.W. Eckblad, and P.M. Trygstad. 1977. Relative abundance and growth of mussels (Mollusca: Eulamellibranchia) in Pools 8, 9, and 10 of the Mississippi River. Freshw. Biol. 7(3): 279-286.
- Cordone, A.J. and D.W. Kelley. 1961. The influence of inorganic sediment on the aquatic life of streams. Calif. Fish Game 47: 189-228.
- Cummins, K.W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Amer. Midl. Nat. 67: 477-504.
- . 1975. Macroinvertebrates, p. 170-198. <u>In</u> B.A. Whitton (Ed.) River Ecology. Studies in Ecology, Vol. 2. Blackwell Scientific Publications, London. 727 pp.

- Davis, J.C. 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. J. Fish. Res. Board Can. 32(12): 2295-2332.
- De March, B.G.E. 1976. Spatial and temporal patterns in macrobenthic stream diversity. J. Fish. Res. Board Can. 33(6): 1261-1270.
- Denham, S.C. 1938. A limnological investigation of the West Fork and Common Branch of White River. Invest. Indiana Lakes Streams. I: 17-71.
- Dickson, K.L., J. Cairns, Jr., and J.C. Arnold. 1971. An evaluation of the use of a basket-type artificial substrate for sampling macroinvertebrate organisms. Trans. Amer. Fish. Soc. 100(3): 553-559.
- Dieffenbach, B. 1980. Mitigating the wide Missouri. Missouri Conservationist 41(1): 22-25.
- Dorris, T.C. 1958. Limnology of the middle Mississippi River and adjacent waters. Lakes on the leveed floodplain. Amer. Midl. Nat. 59: 82-110.
- and B.J. Copeland. 1962. Limnology of the middle Mississippi River. III. Mayfly populations in relation to navigation water-level control. Limnol. Oceanogr. 7: 240-247.
- . 1963. Idem IV. Physical and chemical limnology of river and chute. Limnol. Oceanogr. 8: 79-88.
- Doudoroff, P. and D.L. Shumway. 1967. Dissolved oxygen criteria for the protection of fish, p. 13-19.

 <u>In</u> E.L. Cooper (Ed.) A symposium on water quality criteria to protect aquatic life. American Fisheries Society Special Publication No. 4. 38 pp.
- Downing, J.A. 1979. Aggregation, transformation, and the design of benthos sampling programs. J. Fish. Res. Bcard Can. 36(12): 1454-1463.
- Ecblad, J.W., N.L. Peterson, K. Ostlie, and A. Temte. 1977. The morphometry, benthos, and sedimentation rates of a floodplain lake in Pool 9 of the Upper Mississippi River. Amer. Midl. Nat. 97(2): 433-443.
- Edmunds, G.F., Jr., S.L. Jensen, and L. Berner. 1976.

 The mayflies of North and Central America. University of Minnesota Press, Minneapolis. 330 pp.
- Egglishaw, H.J. 1969. The distribution of benthic invertebrates on substrate in fast-flowing streams. J. Anim. Ecol. 38: 19-33.

- Elliot, J.M. 1977. Some methods for the statistical analysis of samples of benthic invertebrates, 2nd ed. Freshw. Biol. Assoc. Sci. Publ. 25. 160 pp.
- Elstad, C.A. 1977. Macrobenthic survey of navigation Pool No. 8 of the Upper Mississippi River, with special reference to ecological relationships. M.S. thesis. Univ. of Wis., LaCrosse.
- ERT/Ecological Consultants, Inc. 1979. Evaluation of navigation on the biological components of the Upper Mississippi River aquatic ecosystem. Upper Mississippi River Basin Commission. Twin Cities, Minnesota. 37 pp.
- Fremling, C.R. 1960a. Biology of a large mayfly, <u>Hexagenia</u> bilineata (Say), of the Upper Mississippi River.

 Agr. and Home Ec. Exp. Sta., Iowa State Univ., Ames.

 Res. Bull. 482: 842-852.
- . 1960b. Biology and possible control of nuisance caddisflies of the Upper Mississippi River. Agr. and Home Ec. Exp. Sta. Iowa State Univ., Ames. Res. Bull. 483: 856-879.
- . 1964a. Rhythmic <u>Hexagenia</u> mayfly emergences and the environmental factors which influence them. Verh. Internat. Verein. Limnol. 15: 912-916.
- quality on the Upper Mississippi River. Science 146: 1164-1166.
- . 1967. Methods for mass-rearing <u>Hexagenia</u> mayflies (Ephemeroptera: Ephemeridae). Trans. Amer. Fish. Soc. 96(4): 407-410.
- . 1968. Documentation of a mass emergence of <u>Hexagenia</u> mayflies from the Upper Mississippi River. Trans. Amer. Fish. Soc. 97(3): 278-280.
- . 1970. Mayfly distribution as a water quality index. Water Pollut. Control Res. Ser., 16030 DQH 11/70. 40 pp.
- . 1973. Environmental synchronization of mass <u>Hexagenia bilineata</u> (Ephemeroptera) emergences from the Mississippi River. Verh. Internat. Verein. Limnol. 18(3): 1521-1526.
- ., D.R. McConville, D.N. Nielsen, and R.N. Vose. 1978. Phase I study of the Weaver-Belvidere area, Upper Mississippi River. U.S. Fish and Wildlife Service, Fort Snelling, Twin Cities, Minnesota. Contract No. 14-16-0003-77-060.

- Fremling, C.R., D.R. McConville, D.N. Nielsen, R.N. Vose, and R.A. Faber. 1979. The feasibility and environmental effects of opening side channels in five areas of the Mississippi River (West Newton Chute, Fountain City Bay, San Gordy's Slough, Kruger Slough and Island 42), vol. I and II. U.S. Fish and Wildlife Service, Fort Snelling, Twin Cities, Minnesota. Contract No. 14-16-0008-949.
- Fuller, S.L.H. 1978. Final report on freshwater mussels (Mollusca: Bivalvia: Unionidae) of the Upper Mississippi River: observations at selected sites within the 9-foot navigation channel. Academy of Natural Sciences of Philadelphia, Philadelphia.
- Fullner, R.W. 1971. A comparison of macroinvertebrates collected by basket and modified multiple-plate samplers. J. Wat. Pollut. Control Fed. 43: 494-499.
- Funk, J.L. and J.W. Robinson. 1974. Changes in the channel of the lower Missouri River and effects on Fish and Wildlife. Missouri Department of Conservation, Jefferson City. Aquatic series No. 11. 52 pp.
- Gale, W.F. 1971. An experiment to determine substrate preference of the fingernail clam, Sphaerium transversum (Say). Ecol. 52(2): 367-370.
- . 1973. Predation and parasitism as factors affecting Sphaerium transversum (Say) populations in Pool 19, Mississippi River. Research in Population Ecology 14: 169-187.
- . 1975. Bottom fauna of a segment of Pool 19, Mississippi River, near Fort Madison, Iowa, 1967-1968. Iowa State J. Res. 49(4): 353-372.
- . 1976. Vertical distribution and burrowing behavior of the fingernail clam, Sphaerium transversum.

 Malacologia 15(2): 401-409.
- . 1977. Growth of the fingernail clam, Sphaerium transversum (Say) in field and laboratory experiments. Nautilus 91(1): 8-12.
- Gersbacher, W.E. 1937. Development of stream bottom communities in Illinois. Ecol. 18(3): 359-390.
- Gooch, V.K. 1967. Identification of <u>Hexagenia</u> <u>bilineata</u> and <u>H. limbata</u> nymphs. Entomol. News 28(4): 101-103.
- Healy, M.J.R. and L.R. Taylor. 1962. Tables for power-law transformations. Biometrika 49: 557-559.

- Hester, F.E. and J.S. Dendy. 1962. A multiple-plate sampler for aquatic macroinvertebrates. Trans. Amer. Fish. Soc. 91(4): 420-421.
- Hilsenhoff, W.L. 1969. An artificial substrate device for sampling stream invertebrates. Limnol. Oceanogr. 14: 465-471.
- . 1975. Aquatic insects of Wisconsin: generic keys and notes on biology, ecology, and distribution. Wisconsin Dep. Nat. Resour., Madison, WI. Tech. Bull. No. 89. 54 pp.
- Hoopes, D.T. 1960. Utilization of mayflies and caddisflies by some Mississippi River fishes. Trans. Amer. Fish. Soc. 89(1): 32-34.
- Howmiller, R.P. 1972. Effects of preservatives on weights of some common macrobenthic invertebrates. Trans. Amer. Fish. Soc. 101(4): 743-746.
- Hubault, E. 1927. Contribution à l'étude des invertébrés torrenticoles. Bull. Biol. Fr. Belg. Suppl. 9. 390 pp. (cited by Hynes 1970).
- Hynes, H.B.N. and M.J. Coleman. 1968. A simple method of assessing the annual production of stream benthos. Limnol. Oceanogr. 13: 569-573.
- Hynes, H.B.N. 1970. The ecology of running waters. Univ. of Toronto Press, Toronto. 555 pp.
- Ingram, R.L. 1971. Sieve analysis, p. 49-67. <u>In</u> R.E. Carver (Ed.) Procedure in Sedimentary Petrology. Wiley-Interscience, New York. 653 pp.
- Jacobi, G.Z. 1971. A quantitative artificial substrate sampler for benthic macroinvertebrates. Trans. Amer. Fish. Soc. 100(1): 136-138.
- Jennings, D.K. 1979. An evaluation of aquatic habitat associated with notched dikes on the Missouri River, Missouri. M.S. thesis. Univ. of Missouri, Columbia. 262 pp.
- Johnson, M.S. 1929. Some observations on chironomid larvae and their usefulness as fish food. Trans. Amer. Fish. Soc. 59: 153-157.
- and F. Munger. 1930. Observations on excessive abundance of the midge <u>Chironomus</u> plumosus at Lake Pepin. Ecol. 11(1): 110-126.
- Kallemeyn, L.W. and J.F. Novotny. 1977. Fish and fish food organisms in various habitats of the Missouri River in South Dakota, Nebraska, and Iowa. U.S. Fish and Wildlife Service. FWS/OBS-77/25. 100pp.

- Leopold, L.B. 1962. Rivers. Am. Scient. 50: 511-537.
- ., M.G. Wolman, and J.P. Miller. 1964. Fluvial processes in Geomorphology. W.H. Freeman and Company, San Francisco. 522 pp.
- Leonard, J.W. 1962. Environmental requirements of Ephemeroptera, p. 110-117. In C.M. Tarzwell (Ed.)
 Third Seminar in Biological Problems in Water Pollution.
 U.S. Public Health Service, Publ. No. 999-WP-25. 424 pp.
- Leudtke, R.J. and M.A. Brusven. 1976. Effects of sand sedimentation on colonization of stream insects. J. Fish. Res. Board Can. 33(9): 1881-1886.
- Lewis, P.A. 1974. Taxonomy and ecology of <u>Stenonema</u> mayflies (Heptageniidae: Ephemeroptera). Environmental Monitoring Series, U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA-670/4-74-006. 81 pp.
- Lewis, R.B. 1979. Benthic macroinvertebrates collected with a Ponar grab sampler in the Mississippi River near Quad-Cities Station, May 1976-January 1977. Unpublished Tables. Hazleton Environmental Sciences, 1500 Frontage Road, Northbrook, Illinois.
- Lind, O.T. 1974. Handbook of common methods in limnology. C.V. Mosby Co., St. Louis. 154 pp.
- Maddock, T., Jr. 1972. Hydrologic behavior of stream channels. Trans. 37th North Amer. Wildl. and Nat. Res. Conf. 37: 366-374.
- Maitland, P.S. 1964. Quantitative studies on the invertebrate fauna of sandy and stoney substrates in the River Endrick, Scotland. Proc. R. Soc. Edinb. 33: 109-133 (cited by Hynes 1970).
- Mason, W.T., Jr., J.B. Anderson, and G.E. Morrison. 1967.

 A limestone-filled, artificial substrate sampler-float unit for collecting macroinvertebrates in large streams. Prog. Fish Cult. 29(2): 74.
- ., C.I. Weber, P.A. Lewis, and E.C. Julian. 1973. Factors affecting the performance of basket and multiplate macroinvertebrate samplers. Freshwat. Biol. 3: 409-436.
- McCafferty, W.P. 1975. The burrowing mayflies (Ephemeroptera: Ephemeroidea) of the United States. Trans. Amer. Entomol. Soc. 101: 447-504.
- Merrit, R.W. and K.W. Cummins, eds. 1978. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Co., Dubuque. 441 pp.

- Merz, E.A. 1974. Importance of aquatic invertebrates as fish food in selected areas of the Upper Mississippi River. M.S. thesis. Univ. of Wis., LaCrosse. 50 pp.
- Mikulski, J.S. 1961. Ecological studies upon bottom communities in the River Wisla (Vistula). Verh. Internat. Verein. Limnol. 14: 372-375.
- Minshall, G.W. and J.N. Minshall. 1977. Microdistribution of benthic invertebrates in a Rocky Mountain (USA) stream. Hydrobiologia 55: 231-249.
- Moffett, J.W. 1936. A quantitative study of the bottom fauna in some Utah streams variously affected by erosion.
 Bull. Univ. Utah Biol. Ser. vol. III, No. 3 26(9): 1-32.
- Moon, H.P. 1939. Aspects of the ecology of aquatic insects. Trans. Soc. Br. Ent. 6: 39-49.
- Mottley, C.M. H.J. Rayner, and R.H. Rainwater. 1938. The determination of food grade of streams. Trans. Amer. Fish. Soc. 68: 336-343.
- Murray, M.J. 1938. An ecological study of the invertebrate fauna of some northern Indiana streams. Invest. Indiana Lakes Streams. I: 101-110.
- Needham, P.R. and R.L. Usinger. 1956. Variability in the macrofauna of a single riffle in Prosser Creek, California as indicated by the Surber sampler. Hilgardia 24: 383-409.
- Nielsen, A. 1950. The torrential invertebrate fauna. Oikos 2: 177-196.
- O'Connell, T.R. and R.S. Campbell. 1953. The benthos of the Black River and Clearwater Lake, Missouri. Univ. Missouri Stud. 26(2): 25-41.
- Parmalee, P.W. 1967. The fresh-water mussels of Illinois. Illinois State Museum, Popular Science Series VIII. 108 pp.
- Pennak, R.W. and E.D. Van Gerpen. 1947. Bottom fauna production and physical nature of the substrate in northern Colorado trout stream. Ecol. 28: 42-48.
- Pennak, R.W. 1978. Freshwater invertebrates of the United States, 2nd ed. John Wiley and Sons, New York. 803 pp.
- Perry, P.W. 1979. A survey of Upper Mississippi River mussels, p. 118-139. <u>In</u> J.L. Rasmussen (Ed.) A Compendium of Fishery Information on the Upper Mississippi River, 2nd ed. A contribution of the Upper Mississippi Conservation Committee. 373 pp.

- Pierce, R.B. 1980. Upper Mississippi River wing dam notching: the prenotching fish study. M.S. thesis. Univ. of Wis., Stevens Point. 267 pp.
- Quenouille, M.H. 1950. Introductory statistics. Butterworth-Springer, London.
- Rasmussen, J.L., ed. 1979. A compendium of fishery information on the Upper Mississippi River, 2nd ed. A Contribution of the Upper Mississippi River Conservation Committee. 373 pp.
- Resh, V.H. 1979. Sampling variability and life history features: basic considerations in the design of aquatic insect studies. J. Fish. Res. Board Can. 36(3): 290-311.
- Reynolds, J.B. 1977. Missouri River Notched Dike Study: annual composite report-1977. U.S. Fish and Wildlife Service, National Stream Alteration Team, Columbia, Missouri. 15 pp.
- Richardson, R.E. 1921. The small bottom and shore fauna of the middle and lower Illinois River and its connecting lakes, Chillicothe to Grafton; its evaluation; its sources of food supply; and its relation to the fishery. Ill. Nat. Hist. Surv. Bull. 13: 363-524.
- Rogers, G.E. 1976. Vertical burrowing and survival of sphaeriid clams under added substrates in Pool 19, Mississippi River. Iowa State J. Res. 51(1): 1-12.
- Ross, H.H. 1944. The caddisflies or Trichoptera of Illinois. Ill. Nat. Hist. Sur. Bull. 23: 326 pp.
- Ruttner, F. 1963. Fundamentals of limnology. Univ. Toronto Press, Toronto. 295 pp.
- Schmal, R.N. and D.F. Sanders. 1978. Effects of stream channelization on aquatic macroinvertebrates, Buena Vista Marsh, Portage County, Wisconsin. U.S. Fish and Wildlife Service. FWS/OBS-78/92. 80 pp.
- Sprules, W.M. 1947. An ecological investigation of stream insects in Algonquin Park, Ontario. Univ. Toronto Studies, Biol. Ser. 56: 1-81.
- Schmitz, W. 1961. Fliesswässerforschung-Hydrographie und Botanik. Verh. int. Verein. theor. angew. Limnol. 14: 541-586 (cited by Hynes 1970).
- Schramm, H.L., Jr. and W.M. Lewis. 1974. Study of importance of backwater chutes to a riverine fishery. U.S. Army Engineer Water Ways Experiment Station, Vicksburg, Mississippi. 145 pp.

- Schuster, G.A. and D.A. Etnier. 1978. A manual for the identification of the larvae of the caddisfly, genera <u>Hydropsyche</u> Pictet and <u>Symphitopsyche</u> Ulmer in eastern and central North America (Trichoptera: Hydropsychidae). Environmental Monitoring Services Report, U.S. Environmental Protection Agency, EPA-600/4-78-060. 129 pp.
- Simons, D.B., S.A. Schumm, and M.A. Stevens. 1974.

 Geomorphology of the middle Mississippi River.

 Contract Report Y-74-2, U.S. Army Engineer Waterways

 Experiment Station, Vicksburg, Mississippi. 110 pp.
- environment-a reference document. U.S. Fish and Wildlife Service, Fort Snelling, Twin Cities, Minnesota. 494 pp.
- Snedecor, G.W. and W.G. Cochran. 1967. Statistical methods, 6th ed. Iowa State Univ. Press, Ames. 593 pp.
- Southwood, T.R.E. 1966. Ecological methods with particular reference to the study of insect populations. Chapman and Hall, London. 391 pp.
- Stanford, J.A. 1973. A centrifuge method for determining live weights of aquatic insect larvae, with a note on weight loss in preservative. Ecol. 54(2): 449-451.
- Sugimoto, T. 1969. Preliminary studies on the estimation of the population density of an aquatic midge, <u>Tendipes dorsalis</u> Meigen (Tendipedidae: Diptera) in brooks.

 Japan J. Ecol. 19: 1-8.
- Sutcliffe, D.W. 1979. Some notes to authors on the presentation of accurate and precise measurements in quantitative studies. Freshwat. Biol. 9: 397-402.
- Tarzwell, C.M. 1937a. Experimental evidence on the values of stream improvement in Michigan. Trans. Amer. Fish. Soc. 66: 177-187.
- . 1937b. Factors influencing fish food and fish production in southwestern streams. Trans. Amer. Fish. Soc. 67: 246-255.
- Taylor, L.R. 1961. Aggregation, variance, and the mean. Nature 189: 732-735.
- . 1965. A natural law for the spatial disposition of insects. Proc. XII International Congress Entomology: 396-397.
- ., I.P. Woiwod, and J. Perry. 1978. The density-dependence of spatial behaviour and the rarity of randomness. J. Anim. Ecol. 47: 383-406.

- Thomforde, L.L. and C.R. Fremling. 1968. Synchronous emergence of <u>Hexagenia bilineata</u> mayflies in the laboratory. Annals Entomol. Soc. Amer. 61(5): 1235-1239.
- Thoni, H. 1967. Transformations of variables used in the analysis of experimental and observational data. A review. Tech. Rep. No. 7, Statistical Laboratory, Iowa State Univ., Ames. 61 pp.
- Tukey, J.W. 1957. On the comparative anatomy of transformations. Ann. Math. Statist. 28: 602-632.
- . 1968. The true purpose of transformation. Biometrics 24: 1041.
- U.S. Army Corps of Engineers. 1974. Final environmental impact statement, Pool 13 supplement. U.S. Army Corps of Engineers, Rock Island District, Illinois.
- Van der Shalie, H. and A. Van Der Shalie. 1950. The mussels of the Mississippi River. Amer. Midl. Nat. 44: 448-466.
- Welcomme, R.L. 1979. Fisheries ecology of floodplain rivers. Richard Clay (The Chaucer Press) Ltd., Bungay, Suffolk, Great Britain. 317 pp.
- Wene, G. 1940. The soil as an ecological factor in the abundance of aquatic chironomid larvae. Ohio J. Sci. 40: 193-199.
- and E.L. Wickliff. 1940. Modification of a stream bottom and its effect on the insect fauna. Can. Entomol. 72: 131-135.
- Wenke, T.L. 1967. Caddisfly (Trichoptera) collections from the Mississippi River at Lock and Dam 19. Iowa State J. Sci. 42(1): 43-46.
- Wiebe, A.H. 1927. Biological survey of the Upper Mississippi River, with special reference to pollution. Bull. U.S. Bur. Fish. 43: 137-167.
- Wentworth, C.H. 1922. A scale of grade and class terms for clastic sediments. J. Geology 30: 377-392.
- Wiggins, G.B. 1978a. Larvae of the North American caddisfly genera (Trichoptera). Univ. Toronto Press, Toronto. 401 pp.
- . 1978b. Trichoptera, p. 147-185. <u>In</u> R.W. Merrit and K.W. Cummins (Eds.) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Co., Dubuque. 441 pp.
- Zar, J.H. 1974. Biostatistical analysis. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 620 pp.

Subsample counts for large catches of invertebrates collected with a 252-cm4 Ponar grab, September 29, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations). The counts were found to be random when tested for a poisson distribution (Cummins 1975: section 8.23, Elliot 1977: section 8.3). Appendix A.

1. 女人

;				Water 1	Water volume (ml)	4 · · · · · · · · · · · · · · · · · · ·
Wing	Sample sitea	Urlentation ${f to}$ wing ${f dam}^{f b}$	Replicate	Total	Subsample	organisms
31	2	2	1	00017	200	38, 35, 19, 28, 28
31	2	2	8	10000	200	8, 21, 22, 12, 13
31	~	∞	₽	0007	200	18, 21, 32, 18, 27
31	ν.	ω	8	0004	200	28, 16, 23, 30, 25
31	· ~	80	2	0004	200	40, 26, 36, 24, 40

asample site 5 = inside transect.borientation to wing dam 7 = upstream and 8 = downstream.

Appendix B. Subsample counts for large catches of invertebrates collected with basket samplers, September 28, October 3, 12, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations). The counts were found to be random when tested for a poisson distribution (Cummins 1975: section 8.23, Elliot 1977: section 8.3).

#1ng	2				
dama	siteb	to wing dam ^c	Total	Subsample	organisms
25	5	7	10000	200	30, 27, 31, 23, 27
25	\	8	10000	200	25, 23,
25	6	7	10000	200	
25	6	8	14000	100	22, 18,
26	Ŋ	7	12000	200	22, 29, 23,
26	<i>ب</i>	8	14000	100	43, 29,
26	6	7	4000	400	14, 25, 16,
26	6	∞	14000	100	
28	6	8	10000	200	28, 39, 32,
29	5	7	14000	100	34, 29, 28,
29	5	œ	10000	200	14, 23, 15,
30	<i>ح</i>	7	14000	50	34, 23,
30	_ر	∞	14000	100	34,
30	6	œ	16000	50	-

awing dam 25, 26, 28, 29, or 30.
bSample site 5 = inside transect and 6 = outside transect.
corientation to wing dam 7 = upstream and 8 = downstream.

Subsample counts for large catches of invertebrates collected with multiple-plate samplers, September 28, October 3, 12, 1978, Pool 13, Upper Mississippi River (refer to Figure 1 for locations). The counts were found to be random when tested for a poisson distribution (Cummins 1975; section 8.23, Elliot 1977; section 8.3). Appendix C.

	1 -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Water v	Water volume (ml)	
ving dama	site ^b	Urlentation to wing damc	Total	Subsample	counts of no. of organisms
25	5	2	0004	200	21, 27, 23, 16, 25
25	у.	∞	4000	400	26, 20, 30, 21, 16
25	9	2	0007	300	33, 23, 31, 24, 32
25	9	80	4000	300	21, 19, 20, 15, 21
56	7	2	10000	200	24,
56	У.	80	10000	200	21, 16,
56	9	8	12000	200	21,
28	9	80	10000	200	24, 20,
59	ν.	2	8000	400	24, 16, 20, 22, 12
30	7	2	8000	200	26, 23, 23, 28, 16
30	2	80	8000	200	26, 25, 16, 18, 20
30	9	ω	8000	200	17, 26, 17, 21, 16

awing dam 25, 26, 28, 29, or 30. bsample site 5 = inside transect and 6 = outside transect. corientation to wing dam 7 = upstream and 8 = downstream.

Appendix D. Percentage error (D)^a for mean total invertebrate numbers per m² collected with a 252-cm² Ponar grab, Pool 13, Upper Mississippi River, assuming a negative binomial distribution (Cummins 1975: section 8.222, Elliot 1977: section 8.22). Stations 31-5-7 and 31-5-8 in September 1978 were eliminated because of atypically high chironomid and trichopteran densities and gravel (Appendix G and H-3). Those data were also eliminated in Table 5 and 6 and Appendix 0, P, and Q. Four stations at wing dam 26 were not sampled in June 1979 because the U.S. Army Corps of Engineers were notching the dam. These four stations were also eliminated in mahla h and formalized. in Table 4 and 6 and Appendix Q.

Date or location	Ħ	Mean	SD	k b	Da	No. of samples required for D = 20%
June 1978	81	903	1520	0.34	19.0	71
August 1978	81	476	921	0.25	22.0	94
September 1978	75	757	1010	0.55	15.6	54
June 1979	69	663	722	0.83	13.2	30

is the percentage error expressed as (SE)(100)/ \bar{X} . from the negative binomial distribution was estimated from total invertebrates counts.

Sampler	ч	Mean	SD	^Ж р	Dа	No. of samples required for $D = 20\%$
Basket	13	20029	14103	1.94	19.9	12
Multiple-plate	13	6239	4485	2.18	18.8	11
aD is the percentage		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(HU) 00 PO.	(400) /5		

 $^{2}_{\mathbf{b}}$ is the percentage error expressed as (SE)(100)/ $\bar{\chi}$. K from the negative binomial distribution was estimated from total invertebrates counts.

WING DAM OR SAMPLE ORITHITION SIDE CHANNEL 1/ SITE 2/ TO AING DAM 3/ 25 23 3 3 3 2,7 25 25 õ = 23 25 5 75(1755) NJSAND 75(1) CAATUSSIG TENTMATENTA 21.3 21.1 (21.0-25.3) 21.0.21.01 21.1 (21.9-21.3) 22.0 (21.6-22.5) 22.1 (22.3) 27.0 (27.0-27.0) (4.9- 6.4) 21.7 (21.9-21.6) (4.3-4.4) 21.5-21.4) 21.6 (21.7-21.8) 21.3 21.9 21.0 21.7 5.9 (5.7- 6.1) (6.3 -6.4) (4.5-4.9) (4.3-4.7) (4.9- 5.0) 5.0 (4.4- 5.2) (4.9- 5.0) (4.9- 4.0) (5.4- 5.5) (5.0- 5.2) 5.1 (5.0- 5.3) 6.2 (8.1= 6.3) SURFACE HEAV SZ HEAV 67 J. 20 0.45 0.58 3. 36 0.53 7.45 9. 51 0.60 0.50 J. 54 0.56 3.45 n. 50 0.57 0.43 0.54 3.34 0.55 0. . 7 0.50 0.42 0.23 0.44). ¢3 0.59 9.49 J. 50 3.50 0.50 2.39 2.52 0.4.0 23.6 0.51 0.49 0.49 0.47 0.44 94.0 0.15 2.45 0.48 12 -61109 0.42 0.14 0.43 0.35 0.43 0.29 0.30 0.33 ?.40 0.26 0.32 0.03 12.0 0.34 3507H 3 r; 2.3 ., 2.7 ٠, ٠. د 3.5 ... 3.5 3.5 . 1.5 3.5 : CHRCC HASIFAT CLASSIFICATION CHANNEL SOFTER CHANNEL SCODER BECAGE TENNED BECEDE TENRAFE PERSONAL PROPERTY OF STATEMENT SICC CHANNEL CHAUNEL BORDER BEGBOR JARAHA PROBLE TONNAHA PECACE TENSARE CHANNEL BCHIES CHARNEL BERRER CHANNEL BIRDER SIDE CHANGEL

APPENDIX F-1. TEMPERATURE: DISSOLVED OXYGEN, VELOCITY AND DEPTH AT BENTHIC INVERTEBRATE STUDY SITES "JUME 12" 17, 18, 20, 21, 1978.
POGE 13, HAPEN MISSISSIPPI RIVER (PREER TO FIGURE 1 FOR LOCATIONS).

APPENTIUS, UIUSOLVED SKYGFUN WFLOCIFY IND DEPTH IT BENTHIC INVERTERRATE STURY SITES NUME 12, 17, 18, 20, 21, 1973, PODL 13, JORES "ISSISSIPPI SIVER (PERSON).

i

:

1116 244 03 1126 CHANNEL 17	SANGLE 21 SITE 21	ONTENTATION TO WINE DAM 37	TEMPERATURE 1212	OXYCTN CHOKLOGY	SUPFACE	VELECITY(W/S)	TYCH/S) MESH S/	12 HOLLOS	9E97H (H)	UMBCC HABITAT CLASSIFICATION
	•	en.	21.9	5.0			6.57	0.35	2.5	SECES TERNIHO
62	•	•	(2121.3)	(4.7-4.7)	9.55	9.57	9.54	0.39	<u>٠</u>	CHANGE BOODER
62	•	€0	21.9	6.4 (4.7-5.2)	9.65	0.54	0.57	0.41	ý•ý	CHANNEL BURDER
٤,	ø		21.3	4.9 (4.9-5.1)	9.93	0.71	0.73	0.65	٠. د	CHANNEL SCATER
62	ĸ	€	21.2 (21.2*21.3)	(4.7-5.0)	0.71	09.60	0.51	0.41	٨.٩	CHANNEL BORDER
30	ur.		21.0 (21.0-21.))	5.2 (6.9- 5.5)	0.77	3.67	٠ د و و	0.43		CHANNEL BORDER
22	•	40	21.1 (21.7-21.2)	6.2 (5.0- 6.5)	0.32	0.67	0.66	0.38	4.5	CHANNEL BORDER
30	æ	~	21.0 121.1-21.31	6.2 (6.1 - 6.4)	3.36	0.67	9.71	0.64	\$. \$	CHANNEL BORDER
3.9	٠	6 0	(20.4-21.)	(7.1- 7.4)	0.36	29.5	0.51	72.0	5.0	CHANNEL 909358
31	•	~	21.0 (21.0-21.3)	1.5- 7.53	0.77	9.58	9.59	25.0	2.0	CHANNEL BORDER
31	•	•	21.3	8.4 8.7)	0.10	0.67	3.61	0.42	5.5	CHANNEL BORDER
31	φ	•	21.7	7.0	0.71	0.52	0.00	0.49	÷	CHANNEL 33RJER
31	vo	∉ t•	(22-1-22-1)	4.5.4.5.5	3. 62	29.0	د.03	0.43	2.	CHANNEL BORDER

1/ #346 DA4 25# 26# 27# 23# 19# 30# 31 DP STOL CHANGE 9# UPSTOCKH# 10 # NICOLCT 11 # 504NSTOCK#.
2/ SAMPLE STEE IF # 90 JUST F # 135 DEG. # 22*86N#
3/ SAMPLE STEE IF # 90 JUST F # 135 DEG. # 22*86N#
3/ ORIENTALOW TO WING DAY IF # UPSTOCK# 410 # 0.5 JUNNSTERM.
3/ ORIENTALOW TO WING DAY IF # UPSTOCK# 410 # 0.5 JUNNSTERM.
3/ ORIENTALOW TO WING DAY IF # UPSTOCK# 410 # 0.5 JUNNSTERM.
3/ ORIENTALOW TO WING DAY IF # 10 JUNNSTER # 10 JUNNSTEE # 10 JUNNSTER # 10 JUNNST

ATHE CHANGEL 1/		SAMPLE GRIENTATION SITE Z/ TO AING DAM 3/	2501Velen31	COATURE DISSELUCIÓN CONTRACTOR CALCULAN	SURF ACT	ASTREE ASTREET	ALTECTACANON	72 na1168	(E) T	CLASSITICATION
ý	0 0 0 0 0 0	6 6 6 6 8 9 8 8 8 8	23, J (23, 0+23, 9)	7.1	0.35	0. 51	6.33	0.24	;	SIDE CHANNEL
10			23.j (23.6-23.0)	7.9	0. 5.	0.35	0.36	0.25	2.4	STOR CHIVARL
34 20			27.0	7.3 1.7.3-7.3)	c. 50	0 • 60	٠>	J. 63	•	PIDE CHANNET
25		•	22.5	5.7 (5.5=7)	, u,	0. 57	0.37	0.22	2.7	CHENNOL BORDER
25	23	æ	27.5	7.0	3.42	2. 37	0.36	0.10	2.1	CHANNEL BODDER
25	u	œ	27.6 (22.5-23.0)	5.6 1 5.5- 5.7)	3. 19	0.33	9.33	0.19	3.	CHANNEL SORDER
25	~	æ	22.5 (22.5-22.5)	(5.5-5.9)	0.38	0. 15	0.13	0.23	3.0	CHANEL BUPAHS
25	140	7	23.0 (23.3-23.0)	5.4 7.4.3+ 5.9)). 4)	9.29	0.35	0.24	21.3	BECSER TERMAN
26	2	œ.	22.3	(6.7- 7.0)	9. 5 g	9. 15	C.30	0.13	3.5	CHANNEL SOCIET
26	سا	•	22.5 (20.5-22.5)	6 0.7- F. 0)	0.47	9.30	0.36	0.25	3.4	CHARNEL SCROER
25	•		22.5	5.3 7 5.7- 5.3)	00	0.27	0.25	12.0	3. 1	CHARNEL AGOSER
~	-	₹.	23.0	(5.9- 5.3)	0 + 13	0.39	0.70	0.21	2.1	CHANNEL SGROER
62	~	æ	21.0 (23.0~23.0)	6.2	3.60	0.52	•	0.24	2.5	CHANNEL HORDER
23		•	27.0	6.0	3.5	0.39	0.39	0.32	2.3	CHANTEL BORDER

APPENDIX F-2. TEPPERATURE, DISSOLVED DYFCEY, VELOCITY AND DYPTY AT GENTHIC INVERTIBERATE STUCY SITES ,AUGUST 2-4, 1978.

O'OLL 18. 19755 WISSISSIPPI OLVER COFFER TO FIGURE 1 FOR LOCATIONS).

•

APPINDES. COUTINUES. SINGENE FELDETTE AND DEPTH AT HENTHIC INVERTIPANTE KIDDY FITES FAUGUST 2-4, 1974; POOL 13, UPPER HISCISSIPPI RIVIE (FFFER TO FIGURE) FOR LOCATIONS).

:

SIDE CHANGE	DAM OR SAMPLE Channil 17 Site 27	ONTENTATION TO MINE AND AN		COATUSSEC BEGLEVIOUS COATUSSEC BEGLEVIOUS	<.08 F 4CE	75 77 J	AT THE TOTAL AND	/2 ROLLUE	0697E	URACO MASITATA OLACSTATOMETAN
	•	ъ	(23,7-23,0)	(5.3-5.3)	£6.0	à 5 . O	0.38	0.25	۲.3	reported and acceptance
•	^	~	(53.9-23.3)	6.3 (6.0- 5.4)	3.55	0.51	0.52	3 9 . 0	3.5	CHANNEL BCP254
62	ur.	·	(23.3.3.3)	(5.7" 6.5)	e 0 0	9.55	09*0	0.35	3.3	BICCOC TINNERT
62	•		11.0	6.2 (5.3- 6.5)	0.77	0.68	6.45	0.50	3.8	CHANNEL BORDER
62	æ	e.	13.0 (23.0-23.0)	6.3	0.72	29.0	65.0	0.51	6:	PACSE SOSSE
30	r	~	(21,0-23,3)	6.7 (5.47 5.4)	9.75	5.73	0.67	24.0	3.6	CHANNEL BORDER
92	in.	۵	(23.5-23.9)	6.3	0.30	0.56	0 4.0	0.40	3.5	CHANGE BORDER
30	•		(0°£2=±°22)	5.2 (5.7- 6.4)	9. 36	0.71	0.72	98.0	6.3	CHANNEL BORDER
30	•	•	22.5 (22.5-2.5)	5.9 (5.2-6.4)	0.40	0.75	25.0	0.32	5.5	CHANNEL BOSTES
11	•		25.2	6.0-6.4)	9.79	0.54	0.61	9.4.0	3.0	CHANVEL BORDER
=	w.	•	23.3	6.3 (5.0- 6.5)	5.74	0.62	0.65	0.39	2.4	CMANNEL 3007ER
:	٠	•	(3.53-0.15)	6.2	· · · · · · · · · · · · · · · · · · ·	1.11	5.0	0.33	3.0	CHANNEL BORDED
15	\$	٠	(54.)-24.0)	6.2 (4.0- 6.5)	3. 36	9.12	0.17	57.0	5.5	CHANACL SORDER

APPENDIX F-3. TERMERATURA, DISSILVO OKRGEN, VELDOTIF AND DEMFH AF BENTHIC INVERTEBBATE STUDY SITES "SERFEMBER 29-30. 1979. POCL 15. UPPER AISSISSIPPI RIVED KREFER TO FIGURE 1 FOR LECATIONS).

28	28	2.5	25	25	25	25	25	25	3	3	Ξ	10	**	WING DAN OR SIDE CHANNEL
			•											
Ç4	N		٠	tus.	Fà	,	•	` ~	ra	u				STILE 2/
COS.	•3	7	3	•	ŭ	~	ű	3-	Œ.	•				SAMPLE CATCHINITION AND SAMPLE CATCHING CAMES
16.3	15.3 (16.5-15.7)	16.3-14.33	15.1	15.0 (16.0-15.0)	15.1 (16.3-16.1)	15.3	15.3	15.1 (15.0-15.1)	1:.3 (16.3-15.0)	11.3 (15.0-15.1)	1:.3	13	11.3	XO ZPCD
7.6	(7.5-7.7)	7.5 (7.3-7.7)	7.5 (7.3-7.9)	7.6 (7.6- 3.7)	7.4	(7.3-7.4)	7.4 (7.3- 7.4)	7.4	(7.3-7.4)	7.4. 7.5)	17.5-7.6)	7.3	7.5	/\$(1/0+) h30AX0 /\$(1) (3A7ussiu 3ohiavs
0.37	7.37	0.32	ن د ه	0.35	3 ° c	J. 25	7.26	ĵ. 3j	0.23	0.30	0.37	0. 37	63 63	SURFACE
0.39	3.24	0.35	3.26	0.15	3.72	0.19	9.80	0.24	0.25	3.75	0.30	0.32	9.15	VOLCOTTYCH/S)
0.34	C.29	7.29	0.24	0.25	0.22	0.20	0.22	0.24	0.25	0.26	0.00	0.34	0.15	TYCH/S)
0.24	45.0	0.22	0.00	0.17	0.:0	0.10	0.15	0.15	0.19	0.15	0.29	J. 30	0.15	/2 MOLLOE
2.0	?	1.9	3.0	2.4	3.0	2.6	2.5	2.5	2.5	3. o	0.4	.,	:	25
CHANNEL BOPDER	CHANNEL BORDER	CHANNEL BORDER	CHANNEL BORDER	CHANNEL BORDER	CHANNEL SCROES	CHANNEL BERDER	BACEGS TENNYHO	CHANNEL BORDER	CHANNEL BORDER	CHANNEL BORDER	SIDE CHANNEL	SICO GHANNIL	SIDE CHANNEL	URRCC HABITAT CLASSIFICATION

APPENTURE, DISSOLVED DAVSEN, VILDETY AND DEPTH AT BENTHEL INVERTERATE (TUDY SITES -SEPTEMBER 29-30, 1978, Pool 13, UPPER HISSISSIPPI RIVER FEGURE I FOR LOCATIONS).

SIDE CHANNEL 1/	٠,	SAMPLE GALLSTATION SATE 2/ TO ATTR DAM 3/	COATESTE TOTAL	SUSFACE	VELECTIFICA 6/		/2 kattes	0;P1#	CLASSIFICATION
l .	•	.ro	16.3 [16.1-16.1] (7.0-7.9)	0.37	3.35 G.	C.37 0	0.28	v	CHANGE SORDER
62	•	•	15.6 (16.5-15.5) (7.5-7.4)	7.35	0 25 6	0.31 0	92.0	٠ ۲•	ABCADO MORRERO
٤2	•	۵	136.5-15.53 (7.5-7.9)	1.35	9.39	0 2.37 0	0.22	80° 80	CHANNEL BOPDER
₹:	٠	ł~	(14.7-15.3) (7.7-7.3)	0.63	3.43 6.	0 94.0	0.29	3.0	CHANNEL BOHOSE
62	ŵ	۵	15.3 7.4 (14.3-16.5) (7.3-7.9)	3.72	0.50 6.	0.57 0	0.41	3.9	CHANNEL SCHOES
30	•		16.2 7.3 (16.7-16.5)	24.52	3.50 0.	0.51 0	0.39	5.5	CHANNEL BORDER
8	14	•	15.2 7.9. (14.7-16.5)	9.56	0.50	0.53 0	0.43	۲. د.	930808 JZMAHJ
8	. n	•	16.1 (16.1-16.1) (7.7- 7.4)	11	0.50	0.52 0	0.35	4.3	CHANYEL BORDER
30	•	•	15.2 7.4	1.53	0.55 0.	0 95.0	0.39	5.0	CHANKEL BOFOER
31	•	•	14.5 15.51 (7.6-7.7)	3.55	0.45 0.	0 87.0	0.39	2.3	באינור המאמור במאמנ
31	•	ه.	14.6 7.5 [16.5-16.9] (7.6-7.5)	0.70	3.61 0.	0 65.0	0.45	6.5	CHAINEL BERDER
33	•	•	14.2 7.9 (7.9-7.9)	î. 63	·0 25·0	0 65.0	0.37	;	CHANNEL BORDER
31	i.	40	15.2 7.9 (15.2-15.5) (7.3- 3.0)	0.61	7.56 0.	0.59 0	0.45	*.	CHANNEL BORDER

AING DAM OR		STREET OFFICE STREET	7	STRATUSE PRESIDENT COLLECT	SUPFACT		ALLESTATA		CE JE	CHY CLASSIFICATION
9		8 0 2 1 4 8 8 8 9 6	13.7	6.5	J. 46	9. 3°	2,42	2.25	5.7	5.2 SEUM CHANGE
16			21.0	6.2	0.45	0.37	0.	0.35	2.5	SIDE CHANNEL
11			2).3	5.5	3.24	7.41	c.90	2.24	1.6	SIDE CHANKEL
Ö	*	7	17.5	5.4	• • • • • • • • • • • • • • • • • • •	3.45	0.47	0.29	3.7	ESCROE TINKERS
3	re	æ	19.6	5.3~ 5.7)	9.46	0.43	J 9	0.37	3.5	ESCEDA TINNEMS
25	t.;	Φ.	19.5	5.0° 5.0° 5.1)	9.49	0.46	6.47	0.35	بر ?• ؟	CHANNEL GOPTER
25	٠	o	17.6	5.2 (6.2- 5.3)	C. 50	9. %	0.44	0.35	3.	CHARNEL BORDER
26.8/	-	7	(0.0+ 9.0)	0.0-0.73	3.	0.00	0.00	o.	0.0	CHANNEL SORDER
24.3/	'n	Œ	(0.1- 0.0)	(0.7- 0.9)		a. eo	0.00	3.30	0.0	CHANNEL BORDER
26.8/	, u	9	0.0-0.03	(0.0- 0.0)	3.00	3.03	0.06	9.00	• •	CHANAEL BORDER
258	•	۵	(0.7 - 0.0)	0.0	0.00	0.00	0.00	0.00	0.0	CHANNEL BORDER
28	مب	7	25.0	5.3	3,59	e. 52	0.11	0.37	3.0	CHANNEL BORDER
23	~	œ	23+3 (20-1-20+0)	6.7 6.5- 5.93	9.63	0	0.54	0.76	3.0	CHANNEL BORDER
25		œ	27.0	5.7	0.68	C. 57	0.58	0.54	2.5	CHANNEL BORDER

APPENDIX F-4. TEMBERATURE, DISCOLVED DRYGEN VELOCITY AND DISTRIK T GENTHIC INVESTRANTE STUDY SITES VUNKE 5-6, 1975, POOL 13, UPBER VISSIESIPPI RIVER TO FIGURE 1 FOR ISCATIONED.

APPRATURE, DISSOLUTE DAVOING FILDRITY AND DESTAIN TO SEATAIN TAKESTEFRATE STUDY SITES FUUNE 5-6+ 1979+ 1979- PIGESTERMING TO FIREDER TO FIRE TO FIREDER TO

i

;

The same of the sa

Still Still

	•									0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SIJE CHANGL 1/ S	3 2 2 1 2 7	0410474108 7 73 #145 044 27	CAUTANT BOLLS CONTRACTORS	78(7/9m3 N_9)	Syafact	MEAN SZ	VELFORTYCE/SO HEAN SA MEAN EA	401104 2/	DEPTH (H)	UMACC HABITAT CLASSIFICATION
٤2	•	•	5	()	3.54	3.31	0.40	0.4	2.5	CAATURE SOPRES
62	•	•	(20,05-20,05)	(7.2-7.5)	0.50	9.5.	0.51	0.35	5	CHANNEL SCREET
6	~	•	(0°42-0°62)	(7.3- 7.1)	3.54	25.6	6.53	0.43	5.0	CHANNEL BORDER
\$2	٠	•	(20,7-27.03)	(7.7 - 7.7)	31.	5.31	5.73	65.0	3.0	CMANACL BOSDER
62	•	•	(0*62+6702)	(7.6- 7.9)	0.50	9.54	05°5	92.0	\$	CHANNEL BCPTER
30	^	•	(0°62-0°62) (°07	(7.2-7.3)	9.76	67.6	6.75	0.57		636608 7388767
33	*	••	(20°02)	(7.3-7.5)	65.۲	0.61	0.79	64.0	c. ,	FENNSE BORNES
30	•		(0*02-0762)	(7.7- 7.4)	3.33	0.91	0.95	0.50	5.0	CHANYEL BORDER
30	٠	15	120.02-0.051	(7.7 - 7.9)	9.69	19.0	0.30	0.52	5.0	GHANNEL BORDER
15	•		29.0 (20.0=20.03)	7.1	٠. 9 م	0.83	9.34	0.65	3.0	CHANNEL BURDER
31	•	•	"F.9 (20.9=20.03)	(6.9 - 6.9)	0° 30	9.49	9.44	9.46	3.0	CHANNEL BORDER
33	•		60*62+3*623 6*93	7.3 (7.2-7.5)	3. 60	0.81	0.97	9.57	0.0	CHANNEL BCPDER
	•	~	(50.0=50.03)	7.0	1.05	96.0	76-0	9.49	0.0	CHANNEL BORDER

SEDE CHANNEL 1	SAMPLE 1/ SITE 2/	DRESTATION TO WING CAM 3/	3475	50.055 50.055	.0623	125	555.	5	1 0	2.0	4-328 KEL	8.3	16.0
9	, , , , ,	d 6 8 8 8 8 8 8	6-19-79	76.7	5.1	9.6	4.6	2.9	0.6	c. 4	3.1	e. 0	0.0
10			6-13-75	3, 3	9.2	5.9	53.3	24.9	1.0	0.3	1.1	0.0	0.0
=======================================			6-19-73	5 • 0 ء	0.:	2.6	35.6	15.5	2.2	c.3	0.0	0.0	0.0
25	-	7	6-21-73	62,3	2.2	بر د در	13.9	16	0.9	0.7	0.0	٠ •	9. 0
25	2	o	6-21-78	50-1	1.0	2.5	29.8	16.1	0.5	0.1	٥. ٦	0.0	0.0
&		œ	6-21-78	25.7	0.5	2.4	33.5	28.1	1.9	2.5	3.0	2.4	ပ
25	•	•	5-21-78	5 . E &	1.	8.7	28.7	11.1	0	3. ?	C- 3		0.0
~ \$	-	7	5-27-13	47.3		6. 5	25.2	15.0	2.3	1.3	0.0	3. 3	J. 0
2.5	ru .	٠	5-23-18	₹.6	0.	5.7		30.5	6.4	2.4	0.5	0.3	ن. 0
26	-	Œ	6-20-14	0. 3	3.2	7.7	63.5	22.2	3.3	1.6	0.	0.0	0.0
26	•	¢.	5-20-13	21.7	0.4	13.7	\$5.3	ن د • ن	c.5	0.3	0.0	9 9	3.3
2.9		7	6-29-19	15.0	0.3	9.2	51.9	15.9	3.2	2.0	2.5	3.3	0.0
23	ra	œ	6-25-78	J. 9	0	9.7	62.5	23.2	2.9	0.1	0.1	C. 3	3.0
28	Ç.	3	5-25-7). 4	0.1	6.1	80-1	12.3	0.6	0.0	0.0	0.0	0.0
2.9	•	•	5-20-7 6	5	9.1	6.7	92.1	9.7	0.2	0.1	0.0	0.0	o.
24	ų.	7	5-27-78	<u>:</u>	0.5	14.2	69.6	6.5	o	0.	0.0	0.0	o •
29		œ	5-29-78	4 n. 9	0.3	6.9	39	9.2	0.7	0.0	::	0.0	٥. ٥
9 5	•	~	3-20-18	5.2	0.2	2.6	21.2	37.2	15.7	7.	0.0	0.2	0.0
29	•	us	7-20-7 B	1.1	•	34.4	51.3	10.5	1.5	0.	0.3	0.0	0.0
50	u	7	5-14-75	1.5	3 · C	5.2		25.5	11.3	6.0	0.2	0.0	0.0

PALCHACAT FARTICLE SIZE FRICTIONS AS MERCENT TOTAL IN 100 GRAM CAMMLES (INSMAN 1971) COLLECTED WITH A MONAR GRADA BENTADS SIZES, MOOL 13, UMMER MICSIESIAMI RIVER (METER TO FIGURE 1 FOR LOCATIONS).

					; ; ; ;			487176	SI 7E (HH)		1 4		
SIDE CHANGE IN	^	TO MINE DAY EV	JATE	4.0525	.0625	.125	.25	5.	1.0	2.0	4.0 C - 4.	9.0	16.9
20	·		6-15-78	1.4	0.0	2.5	34.6	50.2	9.1	1.9	1.5	0.0	0.0
80	æ	•	6-17-3	ć. 0.	••	19.2	53.3	16.0	a:	7.0	6.3	6 0	3.6
2	.0	٠	6-17-13	3.3	1.3	16.1	6-04	23.7	\$.0	1.5	0.0	1.6	0.0
:	v		6-17-14	0.0	0.1	4.3	34.2	29.3	a. 6	9.0	13.3	0.0	0
11	'n	40	6-11-9	1.7.7	0.1	1.8	59.3	17.3	3.6	4.0	6.0	0.0	0.0
31	g	~	6-12-13	٥.	0.1	4.5	46.3	54.0	10.0	W. •	0.1	0.2	9.0
ĸ	٠	ಶು	6-12-3	2.7	0.1	3.0	13.7	54.5	16.1	7.3	10.0	15.2	3.0
•			69 -6	7 3.8	1.6	15.1	7.7	1.6	₹.0	0.1	0.0	6 6	0.3
10			84.17	2.2	7.0	8.2	10.4	17.3	0.2	.0.0	0.0	6.0	0.0
::			6	1.7	3.0	5.1	67.0	35.2	8.5	1.5	0.0	0.0	0.0
\$2		4	f + 7 + 4	ea M	9.9	9.4	\$6.0	\$0.5	1.1	2.3	0. 0	6 6	c.
8	~	•	8 7 - 6	3. 2	6.0	12.6	6.6.5	29.8	0.1	0.0	0.0	0.0	0.0
52	M	6	3- 6-78	e.	1.0	•	16.9	53.5	6.6	2.1	1.7	3.1	0.0
\$2	4	•	9.1-7 -6	4.5	2.0	14.8	63.0	3 • 6	0.5	0.3	0.3	0.0	3.6
28	.4		3- 3-"3	2 7.9	3.4	19.9	35.9	11.9	7.2	1.4	0.0	0.0	0.0
58	~	£	8- 3-7.5	3.0	0.5	12.3	33.4	25.6	r:	16.1	2.0	7.2	0.0
92	m	•	9- 3-19	9 .	0.2	13.0	73.9	13.1	2.0	0.0	0.0	0.0	0.0
58	•	••	9- 3-78	5:	9.5	34.8	55.5	£ • \$	0.5	0.3	0.0	o•0	0.0
કર			9-1-6	1.9	0.€	12.3	79.3		0.5	2.0	4.5	3.7	9.0
2.9	~	•	5- 3B	7.7	0.3	6.6	57.3	2.92	•;	5.6	3.2	0.0	0.0
62	-1	20	9- 3-78	7.7	9.2	9.9	76.7	12.9	7.0	0.1	0.0	0.0	0.0

and the second s

0.0	c. 0	0.0	1.,	. 3	7.5	19.8	19.3	۴.۶	- 1 - 4	9-30-74	7		26
0.0	0.0	0.0	0.1	0.3	• • •	39.9	23.5	3.5	5 4. 5	9-30-75	œ	•	25
3.0	3.3	1.4	5.1	4.6	13.3	16.0	12.6	3.1	4.4	9-37-73	39		25
1.0	0.0	0.3	•	2.4	23.3	24.2	• . 9	:.	4 2. 1	9-30-73	Œ	~	25
5.3	ۍ • ¥	1.5	3.1	••	15.4	36.0	10.6	1.1	15.4	9-30-73	~	**	~
?.0	0.0	0.0	0.2	:	11.7	31.7	 7	6.0	64.2	9-39-76			=
ن •	0. 0	0.0	0.0	9.2	16.9	76.0	4.3	0.2	1.9	5-30-73			10
ပ စ	0.0	0.0	0	0.2	9.5	31.7	15.2	2.0	11.5	9-30-78			•
0 • 0	0.0	3 • 6	3. 1	11.3	41.7	40.9	2.5	0.0	0.3	9- 2-78	u	7	31
J. C	0.0	0.1	1.2	7.5	49.5	34.9	2.9	C. 5	₹. 0	5- 2-73	~	ø.	31
:	10.4	0.7	2.3	2.9	18.5	27.9	7	1.4	15.1	4- 2-7 à	a	5	11
0.0	0.0	0.0	0.4	2.1	34.3	59.2	3.7	3. 3	1.3	9- 7-7 9	~	vя	31
0.0	c. ,	0.0	0.	0.2	13.3	69.1	15.3	0.4	0.9	K- 3-78	Q.	5	3 0
0.0	0.3	0.0	2.3	.0	24.3	59.2	9.1	0.2	1.0	e= 3-78	7	σ	30
3.0	0.0	c. 3	1.1	3.3	29.5	5 ± • 9	3.7	J. 2	2.6	** 3-7 ô	9	VЛ	3
0.0	0.0	1.1	1.1	3.5	32.5	., .,	5 • •	0.3	1.5	8- 1-78	•	J.	CE
0.0	9.0	0.1	0.3	2.1	22.9	64.7		0.1	c.7	6- 3-79	٠	đ	29
o. 0	0.0	0.0	0.	2.0	20.5	52.6	5.6	0-3	17.2	F= 3+7.8	7	5	29
ن ن	0.0	0. 3	~.*	• 0	17.4	54.9	14.9	٠ ٠	ي. دو	c= 3.47.8	J.	L#	29
3.0	0.0	0.9	2.1	2.5	12.1	52.3	16.3	ŋ . 6	4 • £	5- 5-78	7	5	29
9.0	1.1	5. 3	3.0	0.2	10.1	66.5	12.1	0.3	11 . 3	9- 3-73	œ	•	25
51		2-1 -0 in -0 in -0 in -0 in	N	2E (4H)	ARTICLE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.125	0 0 0 0 0 0	FLAY-SILT <-0675	JATE:	ORIENTATION TO WING DAT 3/	SARPLE 3/ SITE 2/	SIDE CHANNEL

APPENCIX G. CONTINULL. PARTICLE SIZE FRYCTIONS AS PERCENT TOTAL IN 100 GPAM SAMPLES (INSPAM 1971) COLLECTED WITH A FONAR GRABA Benthos Sitter Post is upper wississippl river (refer to figure 1 for locations).

13.3 0:0

24.0

15.2

9.7

3.5 9.6 ٠<u>٠</u> 0.0

•••

23.1

5.6

.. 0.1 .. 9.0 0.1

0.0

4-50-4

2 3 31

31.9

46.6

9.0

0.7 :

6-5-6

9-59-18

6- 5-19

9.12

15.9

75.7

:

6- 6-1)

2

٥,

5.29

10.3

:

0.0

0.0

0.7

0.0

PARTICLE SIZE FRACTIONS AS PERCENT TOTAL IN 100 GRAH SAMPLES (INSPAM 1971) COLLECTED WITH A PONAM GRAM. Bentads sites, Dool 13, Upptr Mississippoi river (Refer to Figure 1 for Locations). 4.0 5.0 15.0 5.4 0.0 9.0 0.0 0:0 0.0 0.0 0.0 .0 °.0 0.0 0.0 .. 0.0 0.0 0.0 0.0 0.0 0.0 0:0 0:0 0.0 0.0 0.0 0.0 0:0 0.0 0.0 ٠ د £:3 0:0 0.3 0.0 : 0.0 0.9 0.0 0.0 . 0.0 0:0 ... 0:0 1.2 7.7 2.9 0.0 ., 0.0 15.4 4.6 ŝ .. 6.0 2.1 • 0.2 0 0.2 1.0 (NA) 3/13 37311576 1.0 16.3 1.9 0.3 9.7 9.0 2.7 ... 4... 1:0 3.0 .. 5.0 4.2 1.5 .. 2.1 0.1 23.2 5.6 17.4 23.7 26.3 15.9 13.7 27.9 19.9 17.8 33.1 13.2 13.3 13.5 F . 2. . 69.8 50.3 57.7 4.29 76.2 7.54 9.99 63.8 51.2 52.59 19.0 69.5 62.7 66.2 47.7 72.7 2.4 15.5 69.3 21.3 9.3 7.1 5.5 7.1 3.5 3.3 ν. υ. 12.5 23.4 5.6 ۳. 9.2 .3525 0.1 0.2 0.1 : 0.1 : 3.1 1.5 6 1.9 9.1 0.1 0.1 0.3 9.0 \$147-51LF <*0.25 1, 3 . B :: 1.5 3 9.6 5 % 2 .; . 6.0 5.5 ... 7.4 5 ۲. ; 9-20-13 6-50-6 64-62-0 £ 2-c 2-6 6-56-6 9-29-14 9-29-7 3 -39-73 9-20-7 9-29-73 0-20-13 6-62-6 9-20-13 9-29-73 9-51-74 DAZGNTATION TO MINS DAM 37 DATE S18365 \$176 2/ SIDE CHANNEL 1/ 97 \$ 52 8 23 **\$** 3 5 50 53 53 20 2 33 20 33

CONTINUED.

. D X I ON East

The state of the state of

						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		* 2 4 4 7 7 7 7 4 4 4 4 4 4 4 4 4 4 4 4 4	C175 (KW)				;
SIDE CHANNEL	1/ SILE S/	DATENTATION	31 2475	0LAY-51LT	01 01 01 01 01	125	/35/- /35/- 10	55	01	2. 6	12 8 8 8 8 E	100	5-1 5-1 5-1
11			6- 5-79	12.4	0.2	5.9	51.3	17.5	6.9	2.9	2.9	0.0	0.0
25		7	5- 1-79	67.8	1.5	5.6	16.6	5.6	2.6	0.2	0.0	0.0	o. 9
25	íu	us.	61-2 -9	1.7	J. 1	0.5	67.0	43.4	1.5	0.1	0.3	0.0	0.0
3	~	œ	6- (-79	27.9	0	f. •	13.2	38.4	9.1	1.3	0.2	0.0	٥ • •
25	£	Ca.	6 19	51.5	0.1	o.,	5.0	30.3	5.5	0.9	0 • 2	0	0.0
254/	_	7	6- 6-79	0.0	o. o	0.0	0.0	o.	0.0	0.0	0.0	0.0	o.c
250/	~	OL.	6- 1-19	e.0	0.0	0.0	0.0	٥. ٥	0.0	0.3	0. 0	?.	0.0
254/	~	بع	6- 5-79	o. •	0.0	0.0	0.5	0.0	J.0	0.0	:5	0.0	0.0
ک ر 4/	•	œ	6- 6-79	o. o	3.0	0.0	0.0	0.0	0.0	0.9	0.0	o. 6	0.0
2.5	-	~	6- 1-79	1. 3	0.1	13.1	65.6	14.5	3.0	1.5	0.2	0.0	0.0
£ 3	/ •	o -	6- 5-79	39.9	0.2	٥.0	34.6	15.2	1.7	0.4	0::	c. ₀	٥ . ٥
23	•	6	6- 1-19	4 3. 1	0.2	6.0	36.4	14.7	*.*	0.4	6.3	0.0	3.0
23	s.	CE	679	1.0	0.1	5.4	55.0	13.4	3.6	••	0.3	C	0.0
29	S.	7	5- 1-19	69.6	1.4	8.7	16.1	3.7	0.9	۰. ۲	0.2	3. 0	9.0
29	J.	a	5- 5-79	ŷ . 3	0.2	10.7	51.4	15.8	7.1	<u>;</u>	1.3	0.0	o. c
ß	σ	7	5- 1-19	93.0	1.3	• •	1.7	9	0.1	0.1	0.0	0	0.0
39	æ	•	69	1. 2	0.6	27.7	54.5	16.6	1.,	0.2	C.3	0.0	0.0
3	Us.	~	6- 5-79	22.6	0.2	2.1	15.9	39.0	12.0	2.5	0.9	C. 3	0
30	Js.	•	5- 5-79	1.9	0.2	1.3	13.4	22.8	a •	5.3	••2	6.0	31.1
53	3	~	6- 5-79	20.5	ن د د	6 • 5	57.5	15.7	7.6	2.7	0.1		?.0
30	•	•	5- 5-19	1. 6	3.2	5.9	50.3	33.0	7.1	1.5	0.	0.0	0.9

APPENDIC G. COMTINUED. PARTICLE SIZE FRACTICNS AS PERCENT TOTAL IN 100 GRAM SAMPLES CINGRAM 1971) COLLECTED WITH A PONAR GRAB, SERVER OF FORE I FOR EDCATIONS).

n n
3
20
a.
⋖ ፓ
Ξ:
₹ E
3
55
38
25
6
3 5
9 1
÷ 0
or ac
1.1
7 6
<u>.,</u>
4 >
0 0
INUED. »ARTICLE SIZE FRACTIONS AS PERCINT TOTAL IN 100 GRAN CANTES (INSPAN 1971) COLLECTED WITH A PONAN GRABA Bening Sites, pool is upper hississipal pince (refer to figure i for locations).
200
551
C 25
<u> </u>
7 0
27
۲.
25
Ë.
1
ŭ.
2:2
T C
5
i G
E .
ň
<i>'</i> 5
≟'
Ë
2
J
Ų
.51
C.1.3c
3

		1917 1919 11314 11314 11314 11314 11314 11314 11314 11314 11314 11314 11314 11314 11314 11314 11314 11314 11314					•		THE 1777			į	
1146 DAM OR	SAMPLE	PRACTICAL CR. SAMPLE CARLATATION		CLAY-SILT	2625	.125	25		1.9	2.0	K 69 5	9.0	16.0
	3176												
31	10		64-, -4	37.2	37.2 0.3 1.3 15.6 15.0 6.3 2.6 4.5 14.3	1.3	15.6	15.0	F. 6	7° 5	2.5	4.5	14.3
11	ın	5 0	64-1-9	2.1	2.1 0.4 1.0 15.2 44.3 75.6	1.0	15.2	64.3	3.55	8. 8.	9.6 1.2 0.6 0.6	9•0	0.0
31	æ		61-2-9	2 3, 3	23,3 0.2 5.0 34.4 15.5 6.2	6.0	34.4	15.5	6.2	5.0	5.0 1.9 3.6 0.0	3.6	0.0
33	·c	10	64-2 -4	1.3	1.3 0.1 2.2 31.3 44.4 14.7	2.2	31.3	4. 11	1.4.7	5.5	0.0 0.0 0.0 6.5	0.0	0.0
まんつ カアルム 人・	23, 26, 28	7 MAYS DIM 250 260 200 300 31 19 5135 CHANNEL 9 = UPSTRESHY 10 = MIDDLEY 11 = 30 MSTREKY.	SIDE CLANK	en = 6 3	*** SATE	CI# = 01	3.57.11	HOWA COLL	SE 14.				

I/ MIND DIM COM FOR COM DIA DI DI DIDICI NINTE NI CONTROL DI NINTE DI SAMBETTA E DI CINCOLT TANDECT. 3 = DUTSIOL TANDECT. 3 = DUTSIOL TANDECT. 3 = DUTSIOL TANDECT. 3 = DUTSIOL TANDECT. 4 | NO Sample

WISCONSIN UNIV-STEVENS POINT WISCONSIN COOPERATIVE FI--ETC F/G 8/8 INFLUENCE OF WING DAM NOTCHING ON AGUATIC MACROINVERTEBRATES IN--ETC(U) MAY 80 T J HALL AD-A096 633 NL. UNCLASSIFIED 2002 AD A 096633 END PILMED 4-81 DTIC

	10 5-1,-73									9 5-17-79	03 STHPLE :
EPACTRY SO.	5-15-73 CLIS OCHASTA	TOTAL INVERTERBATES	CHIRONOMIJAE PUPAE	CHTR CHOMT : AZ	CERA TOPOGRATORE	STENTLMTS SO.	CHE JERTOUR WILT RD.	HEXAGINER SP.	HAND HADERLOS SP.	OLI300HAETA	TAKON TAKON PERC
13 23 0 - 40 9•3	119 40 79 - 159 75.0	2196 1849 0 - 3449 100-0	13 23 0 - 40	238 221 0 - 436 10.9	0 - 40 0-40	13 23 0 - 40 0.6	0 + 40 0 + 40	0 - 23 0 - 40	4.7 95 - 04 26 - 16	179: 1:	NUMBERS OF TOTAL
0.53 1.01 0.00 1.75 31.5	0.04 - 0.12	4.56 3.24 0.00 - 5.04 100.0	0.03 9.05 0.03 9.09	1.14 1.22 0.07 - 2.42 24.9	0.00 - 0.23	0.05 0.09	0.22 0.39 0.07 0.67	0.07 0.16 0.07 0.28	0.91 0.97 0.99 1.98 20.0	2.02 1.77 0.15 - 3.69	BIOMAKS (6) HEAN, SO HEAN, SO RAVSE RAVSE TOTAL

ROPENDIX H=1.

NUMBER AND RIDMASS HER ESUARE WETER OF MACROINVERTERRATTS COLLECTED WITH A POMAR GRAB (THREE REPLICATES).

JUNE 12. 13. 70. 21. 1978.

POSC 13. UPPER MISSISSIPPI RIVIN CREFER TO FIGURE 1 FOR COCKTIONS).

APPENDIX HID SIUMASS BER SOUARE METER OF WACPOINVERTERS COLLECTED WITH À POVAR GRAG (THREE PPPLICATES). JUNE 17 18, 20, 21, 1978, BOOL 13, UPPER WISSIERIPOPI RIVER (PPFER TO FIGHE I FOR LOCATIONS).

13	AN OR SAMPLE GATER HANNEL 1/ SITE 2/ TO MI	5 4 C	נוגסא	NUMAGRA Mean. So Range Peocent of tetal	SO TCTAL	SIDMACS (G) MEAN SD RANG RANGE PERCENT OF *DIAL	53 53 7374U
13		5-13-79	CHIRONOMIDAE	13 9 - 8 - 5	:	0.07	9-33
139			LYMMAEA SP.	13 0 = 8 = 3		0000	0.00
198			FOTAL ENVENTERRATES	159	7.9 23.8	0.41 10.0	1.17
106 100 3.51 3.51	11	6-11-9	OLIGOTHAETA	198 79 - 34.9	143	1.47 3.48 -	2.26
13 23 0001 2.3 0.002 2.5 0.003 2.5 0			LOND STAIN SO.	106 0 _ 19.6		3.51 6.00 - 61.9	5.39
THE CHIPDSCHIPSE CHIPGROWINE			POTANYZA FLAVA (MAGEW)	13		0.62	9.02 0.04
CMIRGYCWIDAE Type 150 11.2 13.5 14.5 14.5 15.5			Stellipgenitate	13		* 00 ° 0	0.97
13			CMIRGYCMIJAE	225 79 ~ 39 . 5	160	0.63	6.0
10°-L INVERTEGRATES 569 533 5-66 0 652 0.00 - 100.0 100.0 100.0 - 62 0.00 - 100.0 - 63 0.00 -			LVAN 200.	13 0 2.3	204	0 0 ° C	0.00
1 5-21-79 OLICCANUTA 516 - 635 0.32 - 21.4 24.3 1.4			TO**L SAVEPTEBEARCS	569 0 - 100.		3.00 -	6.36
	. 1	5-21-18	OLIC CCHAETA	592 516 - 24.3		1.95	3.37

* I 45	
E GMVS	B CNY BIEKAR
THE TAX OR SAMPLY GAT: NIGHTON CT. C.	SUNSER AND BIDMASS PER SQUART METER OF MACROTAVERTERATES COLLECTED WITH A PONTA GRAB (THREE REPLICATES). JUNE 17, 17, 18, 70, 71, 1973, PODI 13, JAMES MISSISSIPAL OLVER (REFER TO FIGURE 1 FOR LOCATIONS).
11:11:11:11:11:11:11:11:11:11:11:11:11:	E REPLICATES)
TARTER BETTER STORE STOR	•

										25 1 1	HING DAN OR SAMPLE GRICHTATION SIDE CAN BY
isaliatide M. SHELL	H1501036H	CHICIDAE PUPAE	3YCIMONJ41+3	CEPATOPOSCHOAS	STEVILATS SP.	HEXAGENTA OF.	CAENIC SO.	SEAR PYCEROUS SP.	ドインボ ふこねやれべね	5-21-73 AYALELA AZTZCA (SAUSSUEC)	TAYON SAMPLE GRENTATION TAYON
40 40 0 - 79 2.7	0.6 23	0 - 40 0 - 40	833 721 635 - 1071 34.5	53 46 0 - 79 2.2	0 - 40 0 - 40	701 196 476 - A33 29.1	13 23 0 - 40 0.5	106 46 79 - 159	13 23 0 - 40 0.5	· .	NUMBER OF TOTAL PROPERTY OF TOTAL P
4.26 3.95 0.00 - 7.50 3.2	0.00 - 0.02	0.00 - 0.44 0.11	3.32 0.26 3.02 - 3.49 2.5	0.39 0.35 0.00 0.67	0.03 9.95 0.00 0.09	127-47 58-98 83-72 - 190-34 92-0	0.05 0.09	0.52 0.23 0.56 - 0.79	0.00 0.00 0.00 - 0.00 0.0	0.05 0.09	BIOVASS (G)

ACSDIADILARIS BERTA GARS PER SCUPEN ACTION OF VCADINOURING COLLECTED COLLECTED AND BIGASS PER SCHOOL ACTION OF VCADINOURING CONTINUED.

	LOCATIONS).
	ٽ ب
4616	TO FIGURE 1
3, 21, 1	(AEF.20)
19.	6.A18
JUNE 12 17 19 20 21 21 1973	I DAUGIA OF SECRETAINED STATE OF CREEZE TO FIGURE I
	300 F +5
	1 7:04

NING DAY OR SAMPLE OFT	SANP.E.	TIPO ZE MAD SUIN CT NG :	347		A STANDARD COMMENT OF THE STAN	50	NUMBER SI MICHAES (G) PEAN. SI MICHAES CO RANGE SAVOR	195
25			6-11-78	6-71-78 TOTAL INVERTENDANCS	2394	160	133.11 57.00 C.09 - 201.93	1.00
23:	^,	æ	6-51-76	6-31-78 GLIGNC4AETA	165	922	0 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0	0.30
				GPACHYCERTUS SP.	25 0 = 3.3	m 0 :v 4	0.00 ± 0.2	0.16
				- 4.00 mm - 0.00	238 119 ~ 29.5	105	65-23 37-22 39-5g = 107-97 95-5	7.22
				*as snrdwcculudc	8 t C 2 t 4 t 5 t	23	0.22	0.39
				CESA TG POGJWIJAT	0,	7 6 7	0.03 -	09.0
				CHERCHOMIDAS	304 159 37.7	139	1.35	2.50
				TOTAL INVERTERRATES	130.3	356	67.27 36.40 0.25 - 109.72 105.0	9.72
52	,n	ъ	6-11-73	6-21-79 CLIGICAACTA	350 193 ~ 75.0	1011	0.33 0.83 ±	1.08
				AACHYCFRIUS CP.	119	105 236	0.04 -	9.47
				* d S ମ ମଧ୍ୟ ପ୍ରମ d ସ	13	50 70 70 70	**.0 **.0 **.0	0.76

:			NC XC TO		TREE BILLIANS (G)
SIDE CHANGE 1/ SITE Z/ TO NING DAW 3/	3t	AGNUT		7CTAL	HEAVE SO MEAVE SO TOTAL SCRIENT OF TOTAL SCRIENT OF TOTAL
25 3 3 5	5=2:-78	5-01-78 HEXKEENIK SP.	3 · f	119	69 3.15 14.11 119 0.00 - 24.44 57.1
		CECETIS 59.	13 0 -	23	0.15 0.25
		COPA TOPOSOUR SACINOSOROT APS	13 0 1.1	£ 23	0.07
		34 C1 x 3 x 0 e1 H 3	93 7. °	£3 159	0.21 0.20
		Code Color Sp. D/ SHELL	26 2 - 2	79	1.77 5.07 0.00 - 5.32 14.6
		TOTAL INVESTEBRATES	1177	1352 2738	12.14 20.00 0.00 - 35.24 130.0
	5-21-78	SETO TEMASTA	701 436 - 48.2	729	0.57 0.24 0.71 0.71
		HYALLELA BZTESA (SAUSSURE)	0.0	23	0.03 0.05 0.07 0.08
		REACHYCERTUS SP.	60 0 - 2.7	119	0.11 0.18 0.00 - 9.32 0.1
		HSXAGENTA SP.	397 159 - 27.3	536 535	59.69 29.32 45.65 - 102.65 96.7
		STEVELMIS SP.	0.	60	0.09 0.16 0.00 0.28

A 188	SAMPLE 991 SITE 2/ 79	AND PARTERS OF THE PARTER OF T	24.2			•	1 1	. 97.A.C.
23	•	2)	100	CERATO-233410AE	13	23	0.12 0.23 0.09 0.40	0,40
				IFCIMON: AIF 3	255 159 = 13+2	121	0.55 * 2	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
				TTUE ZA "OS KOIKUWES	13	£ 2	50 F 60 F 60	0.09 0.16
				TITAL INVERTEBRATES	1455 9 = 170-8	637	72.09 Z8.84 3.00 - 104.24 100.0	4.5
8	•		5+2.3+ 7 3	CCIGOCHRETA	1918 1349 - 61.4	524 2381	2 2 4 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.45
				ITALLELA AZTECA (SAUSSURE)	53 40 * 1.7	2 C	0.12	0.07
				#9ACHYCERUS 5P.	106 4.2 **	19 S	0.42 0.15 ° 0	0 . 7 3
				. 42 SINZE)	13 0 -	4 0 4 0	0.0 20.0 0.00 0.00	3.05
				HEXA GENTA SP.	119 = 119 = 14.4	337	59.83 51.07 1.43 - 107.99 52.2	. 49
				CKCE T15 50.	1.3	0 %	0.00 - 0.00 - 0.00	0.31
				Arona reliculist	40 3 -	119	0.45 0.00 + 1	1.35

APPENDIX H-1. CONTINUED.

NUMBER AND BIGHASK REA SQUARE METER OF MACROINVERTEBRATES COLLECTED WITH A POLAT GRAB (THREE REPLICATES).

JUNE 12. 13. 13. 23. 21. 1973.

POUL 13. URREN RESICCIPRI RIVER (POPER TO FIGURE 1 FOR LOCATIONS).

			26 2 8	·						26 1 ,	HING DAP OF SAMPLE ORIENTATION SIDE CHANNEL LY SITE ZY TO HING DAM 1/
			6-2)-73							5-27-78	31.6
TOTAL INVESTERANT DATES	SUMMERIUM SO. WY SMELL	C - I P C P P P P P P P P P P P P P P P P P	3. ZGPCHAETA	TOTAL INVERTERRATES	FUSCOVATA FLYVA (BARNES) W/7 CHELL	FUSCINATA FLAVA (SARNES) W/ SHELL	LYHVEFA SO.	CATRONOMIDAT	CERATRPOGNITAE	STENELMIS SP.	NUMBER BIGMASS (C) NEAD DAP OF SAMPLE ORIENTATION PERCENT OF TETAL PERCENT OF TETAL PERCENT OF TETAL SIDE CHANNEL 1/ SITE 2/ TJ HING DAM 1/ OKTE TAXON PERCENT OF TETAL PERCENT OF TETAL
198	26 0 - 13.3	26 0 - 13.3	145 40 - 73.3	3121	0.4	0.4	0-4	394 79 - 12-3	53 0 - 1.7		77 X X X X X X X X X X X X X X X X X X
159 357	* 2 0	796	238	\$12 3590	4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 R	40	556	61 119	79	141.31 0
0.50	0.07 -	0.05	0.09 -	96.21 39.99 9.90 - 157.25 100.0	27.49 47.61 3.30 - 52.46 29.5	42.99 76.46 0.00 - 123.96	0.03 -	4.36 9.35 - 4.2	1.59 0.00 - 1.6	• I N	BIOVASS (C) MEANASS ARIGE PERIOR OF TOTAL
0.45	0.60	0. C9 0. 15	0.12	30.99 57.25	47.61 32.46	746 23.96	0.28	3. 3. 9.	1.32	0.21 3.36	SS (C)

A DONTINUED. MUMBER AND BICHASK PER SQUAFE PETF: OF WICROLOVERTEBRATES COLLECTED WITH A PONRY GARB (THREE REPLINATES). Jung 12, 13, 20, 21, 1975, POOL 13, UPPER MISSISKIPPI PIVER (REFER TO FIGURE 1 FOR LOSATIONS).

MINS DAM OR SAMPLE TREST TO SIDE CHANNEL AND SITE 27 YO	SAPES 1	TREGISTION OF TAILOR OF TAIL	0 k F S	17404	NCMBTA KUAN'A SO KAN'A SO KAN'A SO PERCENT OF TOTAL	SE F TETAL	SIDWASS (G)	SS FOTAL
	m	20	6-2(-73		212 119 -	317	0.15	0.11
				Section Section (Section 1985)	13 3 = 5	S 0 4	0.13	0.23
				CMIRONDMIDAS	66 0 - 22.7	115	0.00 0.00 59.5	0.11
				TOTAL INVERTERBATES	231	196 516	0.00 .	0.23
92	•	•	6-25-73	CLIGGCHAETA	1514 1190 - 73.0	4302	1.23 - 52.7	2.45
				ERACHYCERCUS SP.	489 79 - 23.6	355	0.75 0.20 " 20.6	1.23
				C-13 JVONTO AE	53 40 = 2.5	23	0.93 0.12 - 26.7	2.70
				TOTAL INVERTERRATES	2077	736 2775	3.65 0.00 - 100.0	0.40
56			5-23-78	D JGCC44ETA	317 193 92.3	105	0.00 -	0.20
				ETACHYCERIUS SP.	26 0 7.7	96	0.03	0.03
				SULPHINATURE TRANSPORT	344	139	0.25	0.22

			25 4 8 6-23-7				3 3 5-23-7			23 2 8 5-20-7	NOMBER PERCENT OF TOTAL NOMBER PERCENT OF TOTAL NOMBER PERCENT OF TOTAL
STEWART EFAR CHROSTA	11:507741	PALHYCEOTUS SP.	6+23+78 - CUIGCH4E7A	FRILL INVESTERRATES	CHIRONOMICAS	: ERATOPOGONI DAZ	5-23-76 DEISPOHAETA	TOTAL INVERTERRATES	DHEROVOMINAE	6-20-70 JLIGOCHACTA	TAXOV
79 137 0 - 238 33,3	13 23 0 40 5.5	13 23 0 - 40 5.5	119 69 79 - 198 50-0	235 119 0 - 357 120.0	79 40 43 - 119 33.3	33 23 5 - 40	79 = 239	304 61 0 757 100-7	13.7	265 233 - 317 67.0	# # # # # # # # # # # # # # # # # # #
0.08 9.14	0.00 0.00	0.09 0.16 0.00 - 0.29 5.5	0.13 0.02 0.10 - 0.16	0.56 0.83 0.00 - 1.51 100.0	0.00 - 0.06 0.00 - 0.06	0.19 0.32 0.07 - 7.56	3.03 F 0.46	0.00 - 1.15 100.0	0.36 0.62 0.07 - 1.07 79.4	0.09 0.62 0.03 0.12 20.6	9:04455 (6)

A SERVIK HALL BIJMASS SER TOURS: VETTR OF MACROINVERTEBRAITS COLLECTED WITH A PONKY CAJE (TWREE REPLICATES).

JUNE 17. 17. 15. 20. EL 1975.

POJL 13. JOSER MISSISSISSI PIROTO (REFER TO FIGURE 1 FOR LOCATIONS).

5136 CHANNE 37	3 + 4PL	2/ T) HING DAY \$/ 51'S	•	3, 1C	NJUSTR MEAN SS AANE PERCENT OF TOTAL	S) F TCTAL	9100465 (6) 4244 30 84496 P640241 DF 10146	(6) 3 1914L
26	•	an.	5-23-73	-15415041 COMPRESS (LSA) A7 54511	13 2.* 5.*	£ 0	3.72 0.00 = 1 219.5	6.44 11.15
				LASMIGONA COMPRESSA (LEA) -70 OHOLL	15.5.5.5	5.3	1+30 0-00 98.0	2.41
				TOTAL INVESTESSATES	238 0 - 100.0	159	0.00 - 00.0 100.0	62°2
6 2	~		6 R + C C + 5	0.16-17-4272	767 357 - 95.1	3£ 9 107.1	0.44.0 - 44.0	6) 6) 6) 6) 6) 8)
				CERATOPNGSYIARE	13 0 -	20 4	\$7*0 + 00*0 50*0	0.16 0.28
				5 A C 1 P 3 Y C M 1 3 A C	13 0 - 1.6	0.7	0.04	9.07
				GBLIGUARTA REFLIKA RAFINZSOUE W/ SMELL	13	53	64.04 75.29 0.00 - 132.13 132.5	52.23
				0361797479 PEFFERA PAFINESTUE N/O SHELL	13 0 1.4	53	32.31 55.97 3.30 - 95.94 97.3	55.91
				TOTAL INVENTERANTES	100.0	421 1190	33.21	95.86
8	w	e	6-50-59	01200544274	3439 40 - 97.9	\$419 10153	3.75 0.00 - 11.1	\$0.6 \$.09
				155. [175 5>.	53	159	0.05 0.00 -	0.09

		29 5 7								S S	FILE CHARLE TY SILT EV LY HIND END AND PACE OF THE PROPERTY OF
		6-07-78	•							6-77.74	
MYALETLA APTECA (SAUSSURE)	vasitua s.	31.13 OCHAEFA	LULT TANGOLE SALES	CHESTAGE BORNE	CHERONDWEDAE	STENTENTS SO.	HERAGINIA SP.	HAME AKEESTUS KP.	AGELISTA PLACEST (MASSE)	5-79-74 AFFLESLA 127502 (51858895)	AUH9ER WING DAM DR SAMPLE DELLYTATION MEAGE S) MING DAMAGE IN SITE OF THE AIMS DAME OF TOTAL MEAGE S) MAKEN S) MAKEN S TAME OF THE AIMS DAME OF TOTAL
26 + 5 0 - 79 4-7	13 23	79 69 40 - 159 24.5	3915 6610 0 - 11547 130.9	3 - 119	56 115 0 - 198	66 115 0 - 198 1.7	66 115 0 - 199 1.7	159 275 0 - 476 4.1	13 23 0 - 40	0. 4 0 - 40 0. 4	NUMBER MEARY S) PERCENT OF TOTAL
0.01 0.02 0.07 - 0.04	0.05 0.09 0.00 - 0.16	0.03 - 0.12 0.03 - 0.07	27.41 67.26 0.00 - 51.98 139.0	0.00 T 0.24	0.00 - 0.48 0.00 - 0.48	0.10.1 7.32	22.5± 30.11 0.00 - 57.73 92.4	0.00 + 1.15	0.53 1.01 0.50 - 1.75 2.1	3.03 - 3.04 3.15 3.27	90 00 00 00 00 00 00 00 00 00 00 00 00 0

NUMBER AND BIDHAIS DES EQUARE METER OF MICRETIROTIVE CONTINUED.

JAIL TA 19, 20, 21, 1975,
POST 1975,
POST 1975,
POST 1976,
POST

FING DAM CR	S142.E	3- EGNEATION TO MING DAM 37	31	NORTE	MUNUMAN SO MENN SO ANNO SANO SANO SO ANNO SO SANO SO SANO SO SANO SO SANO SAN	59	05 47 40 40 40 40 40 40 40 40 40 40 40 40 40	\$5 (6) (3)
94 94	ىي	٠	12.6 9	Section State #430	26.0	£ 5 8 9	0.12 0.14 0.00 - 0.28	0.12 0.14 0.00 - 0.28
				CATACVOMISAP	185	139	16.4 0.50 0.08 =	
				TUTAL INVESTED ANTES		92 436	59.1	
5 2	vo	₩.	62-13	6=13-73 FLZ567+ARTTA		*83 1766	0.03.6	5.71
				MYALLTLA 32773A (SAUCCUPT)		*E9	5,000	0.65
				#346-Y07A7U3 A.D.	M 00 11 11 11 11 11 11 11 11 11 11 11 11	F 0	\$000 \$000	0.09
				٠ ٨٤٧٢٢ ٢٠٠٠	13	23	0.00	0.05
				: H	13	53	- 60.0	0.07
ç				FOTAE ZAVTATES	105A A 0 1 10	1905 2005	0.93	1.55
•	^	•	, 37-(5-9	,1530CHA574	450 1 317 - 5 56.7	12: 556	0.33	0.15
			•	Who the conducting to	26 5.8	23	# 00°0 # 2°0	0.23

ATES DAM DR JEUS CHANGEL AV 30		SI HALE GARINGALINA BY	6415-19 6413540 6415-19 641540	STICE 78 CHIRONOMICAE FORME INVESTESSATE: CHIRONOMICAE CHIRONOMICAE CHIRONOMICAE	NUMMER MEAN, SD PERCENT OF TOTAL F ANGE 198
35	1.0	(s	5-75-74	TOTAL INVERTEBRATE: Oligephaeta	675 100. 13 13
				CIMPONDELVAL	90 30 37 • 5
				TOTAL INVENTEBRATES	106
30	ው	•	6-13-73	6-13-73 OLIGENHETA	344 195 - 95.3
				CAIRTHOMICAE	13 0 = 3,7
				TOTAL INVESTEBBITES	357 0 - 100-5
30	٥	6	6-1 1-73	5-19-79 PERGORHAZIA	291 275 - 32.5
				ASTLUS SP.	1 · · · · · · · · · · · · · · · · · · ·
				ATALLELA AZTECA (SAUSSUPE)	26 0 - 3.0

A PERVIEW HAS DER KAUARE METTO DE MAGODINVERREGRATTS ODLLEGTED EITH & PORTR GRAB (THREC REPLICATES)» Jüne 12- 17- 14- 70- 21- 1978 POUL 13- HEPER WISSE TERFER FRETER FRUERE FRUER I FOR LOCATIONS).

A ARCHINER AND AILMASS PER EQUARS METTY OF WACROTYVERTEBRATES COLLECTED MITH A PONAR GRAB (THREE RFPLICATER).

JANE 104 104 204 104 1076 WINSTILED BAYER (REFER TO FIGURE 1 FCP LOSATIONS).

STOE CHANNIL LY SITE ZV TO	SAPPLE SITE 2	DRILWIATION TO WIND DAY BY	3.40	TAKO	NOMBER NOMBER SO MERNE SO RANGE PERCENT OF TOTAL	SO STETAL	ATAN-55 CG1 MINAN-55 CG1 MINAN-55 CG1 MINAN-50 M
2		ENDATOWER RESIDE	5-: 3-78	4 0 5 80 URBANDROB 0 8 4 5 1 4 9	66 0 - 7.5	63 159	0.27 0.39 0.00 0.39 2.0
				*es Nuonha;	53 0 6	119	0.52 0.68 0.07 - 0.95 3.4
				F-EJWETOP?YCH5 KP.	13 0 - 1.5	23	0.15 0.25
				CHIRCHOMINAF	331 119 = 37°3	333	2.57 3.43 0.09 - 5.71 21.3
				SPARTTUR SP. M. SHILL	43 40 - 13.4	1.51	9.31 9.25 0.15 - 15.19 69.2
				Spine Caracasanas	1946 0 - 100.0	1587	13.43 9.56 0.09 - 19.88 109.0
	1 0		6-17-73	6m17m73	119 0 - 31.0	119 238	0.00 7.00.0
				はずの3字になった3字に	28 E	287 516	0.03 0.08 0.00 - 0.15 0.3
				Stelle St	13 0 = 3.4	23	0.01 0.02 0.00 7 0.24
				TIBES IN SET THE SHEET	13	53	0.05 2.0 0.00 - 0.16
				TILES ZA "es MEZeukres	10.1	119	3.34 6.54 0.00 - 11.51 13.7

31			35				31			31	ING DAM DR SAMPLE COSTIF CHANNEL 1/ SITE 2/ T
JS.			~				G			7	SAMPLE CATUNTATION STILL 2/ TO AING CH 3/ DATE
5- 1-79			6-1i-7d				6-17-79			6-17-73	
SELS OF HERMA	TOTAL INVERTEGRATES	CEAUTOPOSTURE	OLTG OCHAETA	TOTAL INVESTESSATES	CHIRONOMIDAE	SANCHACES. AS SO.	<u> ƏLIGOMHAETA</u>	"OFAL INVERTERRATES	THEFS UZ4 (BRESENTERE) WISWAITC WIETACED	J8JV47E AIFACEC	71 KO V
°° -	103.7	13	26 0 - 56.7	100.9	13 0 20	13 0 - 20.0	60 0 -	100.0	13 0 - 3,4		NUMBER SOLVEN
70	79	(1 A (1) (2)	79	119	# N O W	F 12 O 54	69 119	450 913	40	604	1,410.
0.00 - 0.00	0.13 0.58 0.55 0.55	0.19 0.37 0.56	0.00 0.00	0.03 - 0.04 0.03 - 0.09	0.01 0.02 0.00 - 0.04 33.3	0.03 0.05 0.00 - 0.09 55.7	0.00 0.00 0.00 0.00	23.05 35.77 0.30 - 72.30 130.0	2.07 41.69 5.55 - 72.22 95.3	231.33 409.68 0.00 - 694.00 924.6	BIGUASS (G) HEAVE SO

APPROACH AND BERGARIAN OF ALBERT TO THE TOTAL STATE ABOUT TO THE REPLICATES).

** The Total of Area of Mass Pet California of Area of the Total of Area of The Total of Area of Total of Area of

ì,

APPENDIX HILL GOVERN SELECTED OF ARCEDINVERTE COLLECTED WITH A PONAM GRAM (THREE REPLICATES).

JACTOR 17: 13: 20: 21: 19: 4.

20. 11: 1973.

20. 13: 1973.

SIDE CHANNEL IN SITE 27 TO 41NG C44 27	\$449LE 0	STATETANS CASES	i. Ca	74.0%	MUNICHESTA TO THE MANAGE OF TH	S) F TCTAL	NORSER SINGLES SINGLES (6) - ACAVA SO AAAGE RANGE RANGE PERCENT OF TOTAL PORCULT OF TOTAL	(6) S) E
E E	· 6	80	6-17-75	6-17-75 PLACG=DEL_A SP.	13 0 -	23	0.03 0.05	0.05
				4138A3A314A	13	23	0.00 - 0.00	90.0
				*as BROALacity.FBFC	13	23	# 90°0	0.15 0.28
				34CIMOUTFIH:	26 0 = 22.2	\$ f*	0.05 ± 00.0 5.6	0.09
				LEPIDIZA FRAGILIS (RAFINESOUE) NZ SYELL	13 0 -	5 2 7	2 - 2 - 0 0 - 30 - + 158 - 7	3.85
				LEPTOTEA FRAGILIS (SAFIVESOUS) NZO SHELL	13 0 - 11.1	6 % 0 %	1 - 2 - 0 0 - 0 0 - 3 - 4	3.41
				FOTAL INVESTEDRATES	119	105 198	0.00 4 0.00 4 0.00 100.00	50.4 52.5

55. 25. 28. 29. 30. 31 34 5136 2044VFL 9 = DESTREAU. 10 = 4133LE. 11 = 30649TREAU. ### 5. 544PLE SITE 1 = 90 DEG. 7.62W 2 = 45 JEG. 3. 62W 3 = 90 DEG. 53.10W 4 = 135 DEG. 22.96W 3 ORIENTATION TO HING JAM 7 = UPSTREAU AND 4 = 30.0483TREAU.

	2		11 3- c-73 :		10 4- 4-73 3			a		•	MyHSER JIOMSS (6) MEANN SO MEA
	CELATERISTNENAT	362567.10.	SEIO CO HAE TA	TETAL INVESTERRATES	20192244274	TOTAL INVESTES PATES	U-ATRONOSTO NE	STALIS 59.	AD AARTMIA 199.	AETA	TA 0 2
265 196	26 23 0 - 40 2.6	13 23 0 - 40 1.3	476 757 3 - 1349 46.4	13 23 0 40	13 23 7 40 100.0	1481 1227 0 - 2500 100-9	26 23 0 - 40	13 23 0 - 40 0.4	106 1F3 7-1 1F3	1336 1097 73 - 2103 90.2	WOMBER WEAVE SO BANGE FORA FORE FORE
0.00 0.05	0.05 0.06 0.00 - 0.12	0.00 0.00	0.12 0.21 0.00 - 0.35 3.3	0.00 - 0.00	0.00 0.00 0.00 0.00	12.43 20.68 0.00 - 35.31 100.0	0.93 1.56 0.00 - 2.79 7.4	0.05 0.09 0.00 - 0.16	10.76 13.05 0.00 - 37.42 64.0	0.52 0.00 -	AC PERCENT OF TOTAL

NUMBER AND BIOMASS PER SOUARS METS OF MACROSTRUCTURES OF ALCHOLSES OF ALL COLLECTES OF ALCHOLSES OF ALCHOLSES

FING DAW OR SAMPLE DAILY STORE TO ALL STORE	11 AT 10 W	22.70	T & Y & 4	NUMBER HEAN SO RANGE PEPCENT OF TETAL	SO F TOTAL	HEACENT TOTAL	50 50 30 70 F T014L
ı		£2	PERSONATE AND STREET	132	196	0.09 0.00 - 31.5	# 65 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			THISTORY SP. M. SHIPE	93 40 = 9-1	61 159	0.57	0.36
			LIPTOTER FRAGILTS (PAFINTSOUD) W/ SHELL	13	23	2.43 0.30 - 77.3	4.22
			LEPIDNEM FRAGILIS (PAFINISOUE) N/G SHFLL	13	50	1.32	3.29
			TOTAL INVIDIGABATES	1018	8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21.6.4
\$2		3 78	0.1000 44774	, c 600.9	119	0°00 - 00°0	00.0
			しゃつにょうごうせい	92 0 - 0 -	4 6	0.01	20.00
			TOTAL INVESTED PATES	100.0	119	0.01	20.0
52	Ŧ 2	3 73	OLIGNCHASTA	2576 754	2225 5112	1.67	1.31
			こっぱん コンコイドロネア	138 4.0 4.0 8.0	198 436	2.01	3.07 5.56
			3460c 34(1**)/55.3	13	50	0.00 -	90.0

25 4 8 3 3 4 -73 CC130FH4E74	TO AC INVESTIGATES	SPERITIN SP. WY SHELL	Section of the sectio	CHEROVOMEDAE	CASSERI STANTS TANDE	HERAGTRA TO.	えるAC 4でつきおこので ラン・	25 1 8 3- 4-73 OLIONOHAZYA	STITCH LAND LAND	EAPLE	A THE DAM OR STATE ORIGINATION AND STATE TAXON PERCON
790 047 119 - 1965 93.7	2549 453 3 - 2936 100,0	2 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	150 - 436 6.4 436	195 719 43 - 435 7.3	159 74 3 436 6.1	26 46 0 - 79	26 46 0 - 79	1901 1331 357 - 2758 74.5	2099 2444) 5793	212 115 79 - 278 7.1	NUMBER NEAN, 50 PERCENT OF TOTAL
0.00 - 2.59 93.6	3.20 1.42 0.07 5.20 100.0	0.15 0.02	0.15 0.25	0.04 - 0.57 12.0	0.15 0.21 0.90 - 0.40 5.0	1.07 1.86 0.00 - 3.21 33.5	0.00 - 0.03 0.00 - 0.03	1.27 1.60 0.12 1.85	0.20 - 3.71 100.0		VUNSER JIDHASS (G) VEANS SD HEASS SD RANCE RANCE RENT OF TOTAL PERCENT OF TOTAL

*Cândiiroch adu i duncia di elala lachia laciasifus elesta indiversión de locationes de seminos electroses?**
**Anna albania de la cando albania de lacabania de

ADMAGEM AND BIDAADS AEA SCHART MOTTO OF ALCONOTYANTES CONTROLECTED WITH A PRIKA GARB (THACE REPLICATES).

A LIST THA 1974.

CONTROLD.

CONTROLD.

CONTROLD.

CONTROLD.

0.0 3.4448 % 32.4440 3011	72 -115 /	FUG DARK BY SET OF THE STATES	3.17	70x4x	NUMBER HEAN SO RANGE PERCENT OF TOTAL	SD F TCTAL	A104165 (5) MCAN SO PANOE PERCENT OF TOTAL	50 50 50 10 10 10
\$2	•			Wednesd to the first of the fir	5.0 0	61 119	0.00.0	0 - 0 - 0 - 0 - 1 - 2
				TOTAL INVESTIGATION	933 0 " 100"0	1006	0.00 = 10.0	1.71
\$2	-	٨	62-5-4	4.134.0.751.0	317 = 94.4	1210	0.15 -	1.03
					\$-2 - 0 - 0	4 D	71 2 71 2 71 2 71 2 71 2 71 2 71 2 71 2	300 60 60
				TITERS /# "as MAIRE THES	25 0 - 2.3	4 tr	\$ * 1.7 9 * 0 0 * 0 0 * 0	#1 #1 #1 O- #1 #1
				0.01146.4.0118.1777 7410.1	939 0 - 100.0	547	0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	3.10
\$\$	N	m	3- (-75	366370 84274	0.04	63	0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 °	0.00 0.00
				TOD SOLEMOATORES	13 0 - 20.0	8.8 0.4	0.05 0.00 - 56.00 -	0.0
				Sectioned at the section	113	12 S 14 C 15 C	0.01 0.00 = 33.3	0.0 20.0
				TOTAL MAYORITRO	45 0 100.0	83 159	0.03 - 100.0	90°0
98	~	•	a K - K - 4	VERNER CONTROL OF A PARTY OF A PA	105	121 238	0°00 -0	9.00

		28 : 7								25 3	FITS DAM OR SAMPLE OFF. TATES OF IN DITT
		9- ;-7 9					9 73			9- 5-76	9 (7)
(= Eder Lubi Acetino	HEMEMYCERTUS SP.	9- 5-79 DESCRIBETA	TOTAL INVERTERPATES	CHIRCHONINAE	CEPATOPOSINIDAC	BEATHYCEROUS RO.	CLISCCHARTA	"STAL INVERFERATES	CHRONOMINAC	8- 8-76 3-4244353-US 52.	FING DAM OR SAMPLE DETINITIES OF TAKEN TAKEN PERCE
672 043 0 - 1706 31.0	26 23 7 - 40 5.4	70 69	23* 143 0 * 457 130*0	53 92 0 - 159 22.2	13 0 - 23 5.8	13 23 0 - 40 5.5	159 137 79 - 317 66.7	476 425 0 - 1071 100.0	357 619 0 - 1971 75.7	÷ 1	PERCENT OF TOTAL
0.00 - 2.70	0.03 0.02 0.00 - 7.04 2.6	0.03 0.05 0.05 0.05	0.21 0.20 0.00 - 0.40 100.0	0.04 0.07	0.09 0.16 0.03 - 0.28	0.03 0.05 0.03 - 0.08	0.05 0.09 0.05 0.16 25.0	3.74 1.11 3.03 - 2.02 103.5	0.07 1.17 0.09 - 2.02 91.1	0.00 1 0.05 0.00 1 0.05	GREAT STOTAL PERCENT OF TOTAL

APPEARANT SITUATE FER SOURTE VETTA OF MACADIMATE FOR TOUTON TO A SOURT BARREST TO THE TOUTE I FOR LECATERS).

ANTOUS 7-4, 1973.
ANTOUS FER SOURTE VETTA OF MACADIMATERIZATION OF LICET CONTINUES.

POLL 15, NAMER MISCISSION CONTINUES.

ADPENDIX HTC. CONTINUED. AUGUSTERATS COLLECTED HITH A PONAM GAAB (THREE RFPLICATES). AUGUST 7-4, 1973. FULLIS JOSER HISSITCIOOI OLVER (GEEGO I FIREUFE I FOM LOCATIONS).

POTAMYIA CLAVA KHACEND SHIRENGHINE POTAL INVERTERS (HIRNORIDAE (HI	SIDE CHANGL 3/	\$4.4PLE \$17. 27	GATINTATION TO AINS GAM 37	317:	TAKGY	NUNBER MEAN, SO RANGE PESCENT OF TOTAL	S) F TOTAL	#104455 (6) " #10445 SD #4450	\$ 651 \$9 55 57
107AL INVENTEDRATES 107AL INV	5			3.73	POTAMYIA PLAVA (HAGIN)	13	23	. 0.00	3.03
FOTAL INVENTORATES 1 ST S-75 DLISCHAETA 1 ATTAL INVENTORATES 3 ST S-75 DLISCHAETA 1 ATTAL INVENTORATES 3 ST S-72 DAE 1 ATTAL INVENTORATES 4 DAE 1 ATTAL INVENTORATES 4 DAE 1 ATTAL INVENTORATES 2 ATTAL INVENTORATES 1 ATT					CHIRCHOMINES	26 3.6 3.6	53	10.0	3°°C
3 6 5-76 DLISTORIEIA (*4137/CMIDE) (*4137/CM					FOTAL INVENTERS	767	1923	1.00 0.00 1.00 1.00 1.00	1.53
FOTAL INVESTIGANTES	6 2	•1	r	84-3-48	DLIBFOHRETA	66 0 83,*	83 159	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.10
3 9 8-5-79 JAE TAVEDETHE SP. 4 6 4 6 5-79 JAE CHEUMITOPETHE SP. 4 5-79 JAE CHEUMITOPETHE SP. 4 5-79 JAE CHEUMITOPETHE SP. 4 5-475 JAE CHEUMITOPETHE SP. 4 5-					これなっているというという。	13 0 = 16.7	53	- '00°0 00°0	00.00
4 4 3-78 CHEUMATOPSYONS CP. 1 ASATTONA CONSOISSA (LEA) W/ SHILL 1 ASATTONA CONSOISSA (LEA) W/C SHILL 1 ASATTONA CONSOISSA (LEA) W/C SHILL 1 ASATTONA CONSOINSEA					FORKE INVESTIGATES	62	159	- 00°0	0.10
4 4 4 3	59	m			3.No.		00	100°0 10°0 0°0°0	9.00
# # #	29	•	*	3. 7. ž		53 0.0	611	0.11 0.00 =	
2 2					Decirosotte o	13 2 - 16.7	n 0	0.01 0.00 -	9.05
-					ASATTONA COMPRESSA CLEAD WY SAELE	13	5 0 4 0	1.10	1.00
					775075 074 (257) 438556 (257)	13 2 - 15.7	د د د د	0.07	3 • 6 9 3 • 8 3

			29 5 7		5 6				2, 5 ,	•	NING JAH OF SAMPLE GRIENTATION OF ANY STILE 27 () WING DAW 17
			3- 3-78		9- 3-79				9 70	9. 3.73	0,
TO THE TRY THE CONSTITUTE	CHIUMATDREVCHO SP.	TYALLELA AZTECA (SAUSSURE)	STIGNOMAETA	FOTAL INVERTEBRATES	DERATTORGNUTORE	TOTAL INDIRECTATES	SYCIMUNISTED	Cush tundent (140)	0.Isrthatta	TOTAL INVERTEGRATES	147V
	2.6	2.6						5 * *		100-1	PERCENT OF TOTAL PROPERTY OF TOTAL PROPERTY SU
20 20 20 20 20 20 20 20 20 20 20 20 20 2	23	23			£ 0 2 3			60.5	162 757	105	TCTAL
0.00 -	0.00	0.03	3.3c 3.04 - 133.3	0.00 -	0.00.21	0.00.0	0.00.01	0.03 - 63.6	0.24 0.02 - 27.3	0.00.0	ATTOMACS COS
0. 32	00	0.00	0.24 2.52	0.39	0 0 0 0 0	9. :5 9. 32	7.0.0	0.15 3.75	0 0 0 0 9 6	1.03	S CG3

FORESTAINS SEA STANDED TO A STAND SEASON STAND SEASON OF A STANDED TO A STAND SEASON OF A STANDARD SEASON OF

APOCENDIC AND BIDARUS REA EQUART METER OF MACCOTINUED. CONTINUED MITH A MONEO GARD (THPEE GENLICATES).
A 16.31 THAN 1973.
A 16.31 THAN 1973.

FING DAM CA SAMPLE DOT	72 7418 7	9-fouration fo and bay 37	0.877	TakOH	REBENDY CO MENAP	;	9104435 (6)	(6)
	- 3				יבייניאו טו			
59		4 0	9- 1-73	0,2500 mg 4,574	56 0 3.*	63 159	0.00 0.00 0.00 0.004	0.14
				EVCIADALETED	15.7	8 C 4	22.60.0	00.0
				TOTAL INVESTED DATES	100.0	105 199	0.03 - 113.0	0.14
33	₩.		9- 3-74	JUIG OF MAETA	0 - 0 - 2 - 4 - 5 - 6	119	- 00°0	0.00
				CHIRCHCHOWIDAE	53 40 - 57.1	23	0.0.0	\$0.0 40.0
				SOLERCTION TO THE STATE OF THE	93 0 = 100=0	159	0.04	3.5
30	in.	€	56.2 . 6	DROVATA PLIVARIA (FAFINESQUE) N/ SHELL	13 9 - 100.9	(A 4) W ()	0.00 to 0.00 t	50.43
				DECEMBER SELVABLE CONFINESOUS) NO SHOLE	13 2 = 100.0	M O (v *	0 4 0 4 0 4 0 6	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
				SOLERGE LIBERTANE TV.	13 0 - 100-0	6.3	0.604	7-10
30	٠		÷ 2 5 6	445715 Se.	13 0 -	11 d 10 d	0.03	0.36 0.38
				SaireFSic.Anl Thill	113	23	*0 · 0 · 0	0.75 0.75

	33					31		31		32	SIDE CHAN EL 17
	J.					*		. *		<i>~</i>	
	7					Ço		~		Œ	FIRE STITLE STATES
	£ 2-, -t					642.46		3- (**)		30 1 2 3	7 747
CHEDINATOR KEHE KP.	TO THE TRA	TOTAL INVERTERRATES	CHIRCHOHITAE	CHEUMITORSYCHE SP.	SITEMACEST No. 35.	J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	OTAL INFATTABATES	. A '01 NO 422 A 2	THAT INVESTED SATES	PITANYSA FLAVA (MAUEN)	T 4 < G ',
	13									13 0 0 1	NUPRIO 310485 (6) MEAN SO MEAN SO ANNOE PERCENT OF TOTAL
60	£ ()	119	52	6 2 2	23	400	241 435	36	6.3	6.8	CT &
0.00 -	0.00	0.00 - 100.0	0.01 0.00 -	0.03 0.00 23.5	0.05 57.1	0.00 0.00 0.00 0.00	0.00.0	0.00 ±	0.03 -	0.00 -	90 34 34 50 50 50 50 50 50 50 50 50 50 50 50 50
0.00 00	9.00 9.00	0.13	0.0 0.0 0.0	9.05 9.05	0.16 0.16	0.00 3.03	0.16	9. r. 9	9.02	3.02	(6) E TOTAL

APOSYDIK HED. OCHTINUSD: KITH A PONES GEAS (THREE REPLICATES),
MUHAER FUND BIGAASS BER COULDE METER OF HAIOSTINESTEADATES COLLICETED KITH A PONES GEAS (THREE REPLICATES),
POLL 13, JUNGER HESTENDER HED. CONTINUED.
POLL 13, JUNGER HESTENDER HED. CONTINUED.

STATE CHANGE IN STEE 27 TO AING DAY	SAMPLE 71	0 4184141101 10 4146 044 17 0	31.5	TAKON	PERCENT OF TOTAL PERCENT OF TOTAL	SD TCTAL	HOMEORY SO WEALY SO RANGE RANGE RANGE RANGE RANGE RANGE RANGE RANGE PERCENT OF TOTAL	53 53 7314L
31 5	· • • • • • • • •		£ 2	Staincevality: 0 -62+, +6 -2	13 0 - 12.5	សូល្វ	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.12 0.12
				CH18-2V34I3AE	66 0 - 62.5	159	50.0 - 60.0 - 40.0	9.14
				TOTAL INVIGITABATES	106	61.	10 1 C	0.0
32	٥	•	3- 2-73	3+CImchutty 3 -84-2 -6	7.9	193	6.20 -	3.07
				THE ZM "as Milay Wes	13	2 3 0 4	0 • 0 • 0 • 0 • 0 • 0 • 0	2 3
				TOTAL INVESTED SATES	93 0 - 150•0	198	0.00.0	9.06 0.12

CTIE CHARACT IZ CITE ZZ ZO STUS DIN IZ DATZ	WING DAM OF SAMPLE DELLARATION			
THE CO				
むしどいり	HEAR SO	クにてルマカ		
0 4 7 7 7	HEAV. SO	(9) SSTAUTE		

MENS CAMEN	9-``-79										
TAKON	9+***79	2E MATOUR	1410 H 40104	3113704#ETA	HERAGTURA SP.	OFAMCCOMMANS SP.	A"OHALASRION HARTATUH SAY	CHIJHRIDPSYCHE KO.	S	POTANYIA FLAVA (HAGCV)	
PERCENT OF TOTAL	13 23 0 - 40 0.5	26 46 0 - 79 1.7	13 23 0 - 40	661 512 233 - 1233 31.1	939 737 435 - 1766 44.1	13 23 0 - 40	0.5 23 24 20 40	79 137 0 • 233 3.7	3.6 2.6	145 139 0 - 278 6-9	
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 M 0.00 M	0.50 9.87 0.09 - 1.51 2.4	0.05 0.09 0.03 - 0.16 0.3	0.43 0.24 0.20 - 0.63 2.3	17.09 19.62 5.12 - 40.55	0.44 0.76 0.00 - 1.31 2.1	0.07 0.11 0.00 - 0.20 0.3	0.25 0.44 0.00 0.75	0.07 7.74 0.03 - 7.15	0.37 0.40	

NUMBER AND BIOMASS PER SHUAFE METER OF MICESINVERREPARTES COLLECTED WITH A PONAR GRAB (THREE REPLICATES),

SERIEMBER 20-30, 1973.

POOL 13, UPPER MISSINVERREPARTE COLLECTED WITH A PONAR GRAB (THREE REPLICATES),

į

FING DAM OR SAMPLE CHECKTETON SIDE CHANNEL IN SIDE 27 TO MIND DAM 37	.470	NUMBER SO PERCENT OF TETAL) TC 1AL	MENUS 50 PERUS SANGE RANGE PERUS TO TOTAL	557-7 57 57 701AL
		13 0.5	23	9 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. Z 4
	AKENTEJOUS SO.	13	6.0	0.03 0.00 0.00 0.00	0.05
	*40 514742.2	13 0 - 0.5	23	6.00 - 00.00 - 0.00	0 · 1 · 0 · 1 · 0 · 1 · 0
	Dycaron.elec		159	0.23 0.12 +	0.21
	* 45 Shalf 54) 2	2.5	4 6 4 7	200 cm	5.63
	TUTAL ENVERTERRATES	2129 1 2 3 3 130,3	3770	20.94 0.97 = 0	21.72
10	A MARK CONTRACTOR AND THE SECOND SECO	96 - C - C 3+	90	0.6 - 0.5 -	3.93
	* GS - WHYDOWXOT	13 2 200	£ 0	0+15 0+07 91+7	2.25
	\$45#@V@#1#3	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.6	0.01 0.07 -	9°05
			119	0.01 -	44.0
11	Andrew Countries and services	9277 7 751	7.57	3,74	9.14

TOURIES WILL OF ACTIVITY OF ACCUSTONES OF THE COLLINGS OF THE SAME WELL OF ACCUSTONES OF THE COLLINGS OF THE C

I

SIJE CHANNEL IZ S TE ZZ TO HING CAM ZZ DAGI	u Ti	NUMBER BICHASS (G) MEAN, SD MEAN, SD MANOE RANSE PERCENT OF TOTAL PERCENT OF TOTAL	NUMBER NEAM SO REAMER AAMOR PERCENT OF TOTAL	HEAVE SO REAVE SO RANGE RANGE TOT TOT
Ľ	9-31-79		304 369 0 714 3947	5.40 6.70 3.07 12.90 59.5
		CHILLARISPRYCHE RD.	13 23 0 - 40	0.09 0.16 0.09 - 0.2e
		CEPATOPOSTHIJAE	13 23 3 - 40	0.03 9.05
		CHIRCNOMIDAE	79 105 0 - 198 10.3	0.90 - 0.12
		PICECION TP. WY SHILL	13 23 0 - 40	3.20 0.36 3.00 T 0.60 2.6
		tourfolds to by Sattl	66 . 53 0 . 159	1.42 2.66 0.00 - 4.48 23.5
		UNIONIONE (UUVCNICT) W/ SHELL	13 23	0.24 9.41 9.07 0.71
		TOTAL INVESTESSATES	757 757 0 - 1369 1369	7.75 4.26 0.55 18.29
25 1 7	9-17-73	9-17-73 GLIGFCHAETA	344 183 233 - 556 25.7	0.25 0.05 0.20 - 0.25 3.1
		CATHITAT	13 23	0.3 0.05
		FERT MACCOUNTS 25"	1.0 - 23	0.03 0.05 0.00 - 0.09

A POCNDIX HONGER AND GLANSS OF SOURCE REPERONDER HONGER AND SOURCE ON THE A POLAR GRASS OF SOURCE REPLICATES).

"CARLES PROVED STATES OF STATES OF LIBRORY OF THE STATES OF THE A POLAR OF A BOTH ISSUED AT STATES."

"CARLES TO SOURCE AND THE STEEL OF THE STATES OF THE S

HING DAN OR SARPLE DRICHTATION FINE GHANNEL IZ SITE ZZ 73 HING EAH ZZ	O. 8.7.5	Taxon	AUMBER MEAN SE RANG PERCENT OF TOTAL	5.2 16 7074L	STORES CONTROL SO PERCENT OF TOTAL	57 (61) 50 51 131AL
	*60 %1150%13H - 62-01-6	1	423 159 - 31.7	340	2.30 -	5.10
	ANDMALASRIDS	ANDMALAGRIDY HASTATUM SOY	13	М 0 С ф	3.03	0.57
	HYDAGACH	HYDROPSYDWINAE (FAGLY INSTAN)	0,000	119	0.03	0 ° 0 8
	CHZUMSTODEYCHE SP.	المن الم	132	165 317	0 4 0 0 0 4 0 0 0 0 0	3.59 1.67
	es Broksevecky	• مۍ	13	2.3 5.3	0.05 - 00.0 7.7	0.09 0.16
	FOTA-WITH FLAVE CHASTV)	Vt (HASTV)	172 119 -	198	3,10	59.0 22.0
	ov SISelficenth	٥	13	M C (4 1)	5.0 5.0 5.0 5.0	0.0. 0.0.
	SVCINC SGOJI VO SO	340	13	0.4 0.0	- 00°C	0.00
	id clading elko		119 79 -	941	0.21	0.17
	SPARSON SP. N. SWELL	. 1 3476	2.0	() 4 () 0	0.11 0.00 -	3.09 3.16
	STACESTRANT PETER	SCHEERS	1336	456 1788	3.05 5.55 0.00 - 14.44	5.55

CHANNEL IX SILE S TO MING CAN SELECT STORY	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	NUMBER SO	9 00 00 00 00 00 00 00 00 00 00 00 00 00
25 2	73 TRICHLADIDA		r)
	CCISCEMBRYA	503 385 79 - 933 19.3	0.33 0.30 0.00 - 0.60 1.2
	HENNGENIA 30.	1402 219 1190 - 1627 53.**	75.33 5.04 21.10 - 32.14 03.2
	STENOVEN SO.	40 k9	0.00 - 0.02
	CHIJERTTOS VOLE (P.	66 83 0 - 159 2.5	0.32 0.42 0.79 - 0.79
	POTAMETE FLAVA (HAGEN)	397 587 0 - 1071 15.2	0.79 1.22 3.07 - 2.19
	C) sa ternsonicas	13 23 0 - 40 0.5	0.07 0.12
	CHRCCOMIONS	132 61 79 - 199 5-1	7.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	CHAUHERUS SP.	13 23 0 - 40 0.5	0.04 0.07 0.00 - 0.12 0.1
	SPHARETHE SO. W/ SWILL	26 23 0 - 40 1.5	2.07 0.08 0.00 - 0.18
	FORLE TANDUSTO - SATES	2506 17c4 0 - 4127 100.0	27.1% 5.43 0.00 - 33.29 190.9

*(SASTACA) OF TANDER OF TANDER OF TANDER OF THE SCALASSING PROPERTY OF THE STAND OF

10.00	5135 CHANNEL 2: 511. 27 73	SAND. 2		945.	1011	NUMBER HEAN, SJ SANG PEPCENT OF TOTAL	SD F TGTAL	######################################	(6) 53 E TOTAL
100 10 10 10 10 10 10 1	55	ST.		9-17-75		423 357 - 14.0	v	0.37 0.13 -	0.31
1.6					-65 VIVICATE	2434 2182 = 80.1	282 2739	53.43 23.17 -	04.46 26.98
13					OUTQUVIA FLAVA FHAGFN)	53 0 -		0°0 - 00°0 - 00°0	0.05
### ##################################) ECETTS 50.	13 0 -	5 S S	MC *0 *0	0.05
10.0					: 4140700HDV	60 0 **	0 6	5.13 3.30 -	0.17
STAL INVESTGATES					C-14.7-PellS SP.		() J	10.00 c	9.07
STAL INVERTIBATES SO16 221 S4.23 S016 S					ibatically SP. W SHILL		N 0	3.25 0.00 -	0.50
4 9 9 1 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					"GTAL INVESTESSATES	3016 7 130•n	721 3∂54	54-23 5-00 - 500-6	35.43
13	\$2	•	100	9-11-9	G. TG(TARSTA	476 397 = 298 23.8	958	0.37	0.10
13 23 0,51 0 40 0,50 1 0,7 40 0,50 1					31 13 to	13 - 0 - 0 - 0 - 7 - 0 - 7 - 0 - 7 - 0	8 G G	2.0 - 00.0 50.0	0.03
					Tes Sheachester		M 0	0.01	20.0

STATE CHANNEL IX STRE IX TO AIRG DAG IX SICHASS TO THE SAME STATE STATE OF THE CHANGE IN STATE OF THE CHANGE OF THE 20 7.284.35236 B. 462.40 J-T1-79 HE CAGENIA SO. 0 H 1 H 0 V 0 H 1 A 0 ACCULTATE SP. CAENTS CO. HYJLLELA AZTECA (SAUSSUPE) STEVIINCHAISSONE TOTAL INVESTESSATES SECIMENJAI-S 11C1N-564011e30 CNEDBER BARD BEANDERS 1997 1615 1270 -70.9 PERCENT OF TETAL PERCENT OF TOTAL 357 239 -17-1 0.6 139 819 2143 2222 5 6 s 119 27.59 17.35 12.50 - 46.54 93.2 26.47 13.09 -72.0 0.15 0.03 0.05 0.15 -27.01 0.00-05 0.00 -0.00 -3.31 3.6 3.9 7.09 33.73 0.02 9.06 9.12 0.10

NUMBER AND BIOAKSK BEA SCUKRI METRY OF MARBURINGERIES FOR CONTINUED.

SPORM ARBURINGE 25-30: 1975;

FOR AISSINGE AISSINGE REFERENCE OF LECTED WITH A PONZA GAMB (THREE REPLICATES).

BOLL 13: 1952R AISSINGER AISSINGER FOR CONTINUED.

APPENDERAND GLOMASS PER SQUAPE PETGE OF PAGPOLYCTEGRANTER COLLECTED WITH A POWAR GAAB (THREE REPLICATES).
FORTHANT 27-30- 1975FORTHANT 37-30- 1975FORT

40 A	Sample SITE 27	NO PEG SULF	37 0 04.5	Takët	NUMBER PENCE SANCE PECCET OF TETAL	i	18464 2. 263752 3.533 65 5572 69 5272 7.5375	(6) 53 7974L
5. 2. 2.	7 7 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fh 2 = 6	THE AMERICAN	25 0 1 1 3	6.3	0.0 0.00 0.00	80.0
				TOTAL INVESTEMENTES	2000 0 - 100.0	27.5 27.38	7 E 40 0 00 0 00 0 00 0 00 0 00 0 00	17.18
દ	~	•	9-313	GLIBCCHRETA	106 79 - 72.7	23	0.04 0.00 7.00	0.07
				eS 502E30AF366	13 0 • 9•1	23	N 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.00
				STEEDING SALVE SATEL	13 0 ** 9.1	£ 0 3	0.01 0.00 -	0.02
				Thurs In this holosthes	13.5 0 0 1.0 1.0	N 0	0.00 0.00 1.00 0.00	9.89
				TOTAL INVESTESSATES	145	198	0.00 - 1.55 100.0	0.45
2 .	m	r	84-01-6	T+IC+L4312A	26 0 12.5	96	0.10 0.00 - 00.0	9.21
				76.735646272	26 - 0 - 12.5	97	- 00*0	0.00
				e du la production de la companya de	26 0 - 12.5	96	0.004	0-11
				* CAROTHIA CO.	13	5.4 10.0	0.05 0.00 0.00 14.3	0.00 0.15

		26 1 7				2 b				65	SAPE ONLY TO START OF THE SAFE ONLY TO THE SAFE ONLY THE SAFE OF T
		34-1-75				9-37-7H				9-37-73	94.7.
Colonia de la composición del composición de la	TO THE SALE OF THE	(1) (2) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	TOTAL INVESTERANTES	SOMATORIUM SP. W/ SHTLL	CALCACT TO SECTION OF	\$115004E78	1374 TANALOTS SATES	DAIDAINE CHOMADAINED MA SHUTT	(oatiside 39. M/ Saiff	3+03+74 (0419) WESTERS	37 0457 74404
13	ра С (лг Г (лг Г (лг)	159 79 - 7	53 0 - 1				212 ° 5 120.7	13 0 - 6-2	26 0 - 12.5	93 1 0 = 2	AJHARE GJ MEAN, SD WEAV, SD RAWCE PERCENT DE TOTAL PERCENT DE TOTAL
\$ C U	9 M	105	11 6	E (1)	\$ N	746	516 516	100	79	160 27 8	74.5
0.09 0.16 0.00 0.78	0.03 - 0.05	0.03 0.16 0.03 0.16	1.57 7.73	1.57 2.73	0.00 0.00 0.00 0.00	0.00 0.00	0.77 0.51 0.03 - 0.95 100.0	0.09 0.16 0.07 - 0.25 75.0	0.20 - 0.21 0.20 - 0.36 32.1	17	P

Ĭ.

-

ACHURIA SE SELECTOR SELECTOR OF VARIANCE OF VARIANCE OF VARIANCE OF VARIANCE OF A PRIM A PONTAN GRADING REPLIENTES). VARIANCEO.

AUGMONTAN A PONTAN GRADING REPLIENTES. CONTINUED.

Control of the Contro	•	N. 11011			07 LC246	: : : : : : : : : : : : : : : : : : :	CO - 27 - 2	350
13			-		PEPCENT OF	TOTAL	PURCEUT OF TOTA	TOTAL
<u>.</u>		Note factore & 1 fi	9-3-6	u di ya	13	8 O 9	0.05 0.09 23.5	9.03
				SCHRORDE DEGLARI TERCT.	102.0	9.40	0.00 t 0.00 t	93.0
£	~	er.	3-1-13	01.1317.44274	÷05 0,	69	\$ 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.05
				Canal Young the Constitution	13 0 = 16.7	11.4	\$ 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9.03 7.03
				CCR# TCP05741045	13 0 = 16.7	23	0°0° 0°0° 0°0°	0.07
				27.017.07.0 21.7.0	13 0 - 16.7	503	0 ° 0 ° 0	۶. د د د د د د د د د د د د د د د د د د د
				TOTAL INVESTESSATES	100-0	159	0.00 -	0.09
62	₩	T	61.c 6	All Me Co.	500	6 0	0.00 0.00 0.00	00°°
\$ 2	•	₩.	22.0.06	GscINcooperate)	26 0 - 13.3	9 6 4 6	0.05	0.79
				いていけたのでいかけてい	159	241 636	0.00.0	90.0
				The /4 (Icalline) List little wifiless:	13	23	62.53	4.33

2.3

NUMBERS NEANSE PERCENT OF TOTAL PERCE 198 275 27 198 275 27 199 276 27 199 276 20 199 279 20 1199 279 279 20 1199 279 279 20 1199 279 279 20 1199 279 279 20 1199 279 279 279 279 279 279 279 279 279 2
\$ "S"
2.59 4.25 2.59 4.25

*(Shilled to the terminal of aller and the partice the terminal of the terminal of the form of the terminal of terminal of terminal of the terminal of terminal of

A CELLY OF THE STANDS THAT COLLECTED WITH A DOWN SOME THREE REPLICATES DO

	C STATE STATE OF STAT	70 V 70 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10			MU4STR MEAN, 50 RANCE PROCENT OF TOTAL	53 F 707±L	# # # # # # # # # # # # # # # # # # #	(5) S) TOTAL
	· ·	*	5 & 10 , 10 e	E 4 C E 5 C F C F C F C F C F C F C F C F C F C		310	0.17 0.04 = 34.6	0.07
				DAPT TOOKS	13 0 -	0 4 0 0	0.00.0	00.0
				FOTAL INVESTESBATES	476 0 _ 130.0	286	0 * 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	9.29
6 2	ø	٠.	9-11-19	*45 50.223#QWar	13 0 0.0 0.0	23	0.03	0 • 0 0 • 0 0 • 0
				POTANTA FLAVA CHAGEN)	13 0 50 50 50 50 50 50 50 50 50 50 50 50 5	2 4	0 0 0 0 0 0 € 0 0 0 0 0 0 0 0 0 0 0 0 0	0.39
				"GTAL INVERTERANTES	26 0 - 100.0	46	0.75 0.00 100.0	0.75
62	w	d)	81-52-6	HEXAGEVIA SP.	13 0 - 10.0	53	0.15 0.00 + 57.3	0.25
				CHEUM110857545 48.	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.5	0.03 0.00 * 0.03	9.05
				CERA TOPOGONIOAR	53	119	0.15 0.00 = 0.3.8	0.19
				C HIR CADAID AE	- 0 20°5	7.9	0°C - 00°C - 00°C	0.00
				SIRATIONYIDAE (ACULT)	13 0 0 0 10.0	23	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00

		30 5							32 5 7	(2-) Gr	CHANGEL IV SITE ZV TO AZNO DA
		9-19 76							81-t t	9-29-73	0 A 7
34 (14.2) (4.2) (4.2)	CIA TOPOGRADAS	CICUMITOSYCHE SP.	TOTAL INVESTED BATES	O F (R DNORIDAD	CERT TOROUGH DAT	HYDROSYCHE So.	CHELIPETCHE KP.	HEREPSECHIDAE (EASLE INSTAD)	OL (010+10**	TOTAL INVERTERGATES	
516 0 - 95-1	73 0 2 +	13 2 - 4 2 - 4	100	53 to 6 to 75	\$3 6 • 7	0 -	13 9 - 1•7	13 0 - 1.7	13 0 - 1-7		
459 1508	# A) O W	20	102	179 973	703	40	40	53	W 0	19 g	NAME OF STATE OF STAT
0.00 1 0.24 60.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00 F 0.15	0.00 - 0.13	0.13 0.02 0.12 - 0.16	0.00 - 0.15 0.00 - 0.26 3.68	0.07 - 0.02	3.00 t 9.15	0.00 - 0.00	0.00 1 0.00	0.32 0.22 0.00 - 0.52 100.0	RUMPER REACENT OF TOTAL PERCENT OF TOTAL

APPENDIK H-3. COUTINUED.

AUMBER AND BIGMASS PER SQUARE METER OF MACKDINVERTEBRAITS COLLECTED WITH A PONAR GABB (THREE REPLICATES).

NING DAM GR SAPLE 09 SIDE CHANNEL 1/2 SITE Z/ TO	SA 49.E 38	OSIDNIATION TO AING DAY 27	547	7.03× q.	NU48FR NU48FR SANSE PEPCENT OF TOTAL	S) F TOTAL	#109485 (6) #14. SP #49E PERCENT OF TOTAL	(6) S2 E2 T374L
30	٠٠	•	92.62=6	TOTAL INVESTESSATES	542	436 1509	0.00 0.00 1.00.0	0.10
30	æ		9-39-13)L13704A27A	15 0 - 10.0	2.2	0.0 - 0.0 - 0.0	00.00
				CHEJURTOPEYOUT SP.	13 0 - 10.0	£ 0 4	0.02 0.03 0.03 0.03	0.03 0.03
				POTAMIZE FLAVA CHAGENI	13 0 - 0 10.0	204	0.00 -	30.0
				G M LA CHOM LO ME	93	159	0.01 0.00 25.0	0.02
				TOTAL INVESTESSATES	132	61 198	0.05 0.00 100.0	3.06
33	νρ	m.	9-10-13	CHEUMATOPOTCHE SP.	13	504	0.03	0.09
				• • • • • • • • • • • • • • • • • • • •	13 0 ~ 33.3	K 0	0.00 - 84.6	9.55
				SACIPOVOFILO	13	7 O 7	0.00	0.00
				TCIAL INVESTIGATED	100.0	7 6 0	0.17	0.23
ĸ	'n	٠.	96.00	OLIDECHARTA	251 40 - 0.7	188 397	2000 2000	00.0

CHANNEL 1/ SITE 2/ TO WING DAM 1/ DAFT TAXON	9-2:-73 (AETE So.	ERACHYCEROYS SP.	PEXAGENTA SP.	STENCTION OP.	telladolla	PROBLESSED TO A CEARLY INSTART	CHEUNITOPYTHE CP.	*CO PFIASSURGAR	POTANYTA FLAVA (MACEN)	talicotca, milake	
RUMBER MEAN, SO RANGE RANGE TO TO TO	13 0 - 0. 0	132	53 0 - 0-1	53 0 - 0.1	535 0 - 1.7	11970 6150 - 1 31.7	476	53 0 -	18438 3333 -	239	53 0 -
EAN SO	# P) O U	397	1 9 2 1 5 9	92 159	1100	6064 15253	829 452 8	# 9 9 2	16793 35712	210 397	92 159
	3	0.26 3.45	0.90 1.56	0.00 0.00	0.00 - 0.00	4.02 2.64 1.90 - 6.98	2.43 4.22 0.00 - 7.39	0.90 - 0.32 0.11	55.62 S2.75 9.83 - 113.33		

TOMBER AND HIGH ER HIGH ER HISSISSITE (FRANCE).

SECTEMBER 1875 - 1875 - 1875 - 1876 - 1876 - 1876 - 1877 -

*CONTINUO *E-H XICNGO*

1.5 1.5	STOE CHANEL 1	SAMPLE DOLUTATION L'EITE 27 FINGUAN 37	9413	TAYOY	IN NO	NUMERS MEAN, 30 RANGE PERCENT OF TOTAL	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7074L
1116	31		2	じゃくじょうじゅうし まんほう				5.53
## 17				CAERCHOWIDAE	4312 475 - 11•4			5.16
115, 115,				CATROMOMIDAE PURAE	135			0 - 20
112				COLICIDAE OUPAE	53			28.0
1115				WYCAC ACT	145 0.5			0.45
STAL INVENTES				TITE /4 °c. APILIDIc	145			3.28
\$ 3=7:-76 47347 (CASEV 14574P) \$714 \$197 2.01 0 = 10159 0.30 - 250				COTAL INVERTERANTES	37902 0 - 100-1	26488 62253	74.14 5 0.00 - 13 100.0	2.93
53 92 0.05 0.2 159 0.03 - (1.1.4.4.4.4.7.1.4.4.4.4.4.4.4.4.4.4.4.4.	31		34.70.76	ANDRONS VEHINAT (EASEY INSTAN)	5714 0 - 25.9			3.97
4295 726 1.44 0 12598 3.03 - 19.6 19.6 2.7 (-4478) 11769 1580 13.17 9364 12539 25.51 3				1-23-4-13-2-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	53			0.09
11269 1680 33.17 9364 - 12439 25.51 - 51.1				*es PROADELEUR	4295 0 - 13.4			2.00
				THATA TEAM (MANTH)	11269 9364 = 51.1		-	4. 4. €. 4. €. (1)

ING DAM OR SAMPLE OPENTATIN	31 S 6 Jerseffe Fallystese Answer	UNCINCALATE.	CHIROMORITAE SUSAE	Castillat	PATE PATESPATES		31 6 7 9+2+-73 B4ETEDAE	6 7 9-21-73	6 7 9-21-73	6 7 9-7:73	6 7 9-7:73
NOTES REPORT OF TERMS	212	370 154 -	106	530-		13 0 - 2•1	8.3 G =	13 - 2-1	542 0 = 95•4	13 0 - 2•1	5 3 5
SD F TETAL	742 475	535	183	159	2914 25395	23	76	62	905 1567	60	
PEACEUT O	2.70 2.70 0.00 - 5.40	0.53 0.19 0.32 0.63	0.00 - 0.18 0.00 - 0.32	0.00 0.00	40.05 2.95 0.07 42.85	0.03 - 0.16 0.03 - 0.28	25.6 9.58 0.20 0.28	0.00 - 0.20	0.25 0.44 0.00 - 0.75		0.0.0

THE DANCE TO THE TOTAL TO THE TOTAL TO THE THE TOTAL TO THE	2442. E. 112. Z. 1	FING DAM CR. SAMALE DICTIVITATE OF THE STATE	17	homer alless (6) MEAN SO MEAN	RCM PR STANDS CO REALDS RAIDS RAIDS PERCENT OF T	.5 TCTAL	ACHARA SINEAN SO MEAN SO MEAN SO MEANS SO MEANS SHORT BENEST CITAL PERCENT OF TOTAL	(6) 53 791AL
		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	62-1-6	CONTRACTOR OF A STANDARD STAND	13 23 3.00 0.00 0 40 0.00 - 3.00 2.4 50 0.00	23	00°0 00°0 00°0 00°0	00.00
				Tationofia: over	2, t 2, t	50	2.25 0.25 0.00 - 0.44 17.6	0.00 44.0
				24C17C9Cect4e13	238 159 - 42.°	317	D + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	0.12
				いるいなさらではあることできなっている。	201 40 m 52.4	6 4 4 14 4 14	0.63 0.13	0.14
				TOTAL INVIDICABATES	556	379	0.78 0 0.00 + 0	0.10

A CARANTED TO A 16 DAY OF 10 TO 10 T

		10 5- 5-79								9 6- :-70	AING DAM IR SIMELE ORTENTATION CAM 37 OFTE TAXON
TOTAL INVESTORATE	Smithisters	5- 5-79 OLISTANETA	TOTAL INVESTED STEE	48871884 79.	CHIR COURT NET	STENTLHIS SP.	DECETTS 57.	Stefa StCIPOAScobia	BOTAPER FLAVA (HAGER)	PLIGNEWARTA	NJEGRA SCREEN STATES CAMBY OFF TEACH STATES CONTRACTOR TAXON PERCENT OF TOTAL PERCENT OF TOTAL PERCENT OF TOTAL
291 160 0 - 176 100-0	712 126 119 ~ 357 7247	79 40 49 - 119 27.3	926 495 9 - 1270 130.7	13 0 - 40	145 160 0 - 317 15.7	26 23 0 - 40 2.0	40	119 278	463 233 198 - 635 50-0	92 150	PERCENT OF TOTAL
0.03 - 0.32	0.04 0.12 0.04 0.29 57.9	0.11 0.15 0.20 - 0.29	7.82 4.97 0.00 - 11.40 100.0	0.63 - 1.31 0.63 - 1.31	0.56 0.43 0.00 - 1.51 7.1		0.00 - 0.15 0.20 - 0.29	2.53 1.03 3.67 - 4.52	1 07 4 5 46 40 49	0.0015 0.16	STOPASS (G)

NUMBER THE RECOMMENDATE WELL OF MACHOLANDIAL LABORATES COLLECIED WITH TO STAND GAME GLAREE REALICYLES).

AND PART PART OF MACHOLANDIAL CELECIED FIGURE TO BE CONTONED.

AND THE REALICYLES OF MACHOLANDIAL COLLECTED WITH TO LOCATIONS).

AUMAER ALD BID-635 PER SOURY METTY OF MICHDIFFERMAN COLLEGIED WITH A PONRA GARR (THPRE RFPLICATES).

JUNE 3-4-1 1079 - 1070FL A FORDING A FORDING COLLEGIED.

AUMAER AND BID-635 PER SOURY METTY OF MICHDIFFERMAN COLLEGIED.

AUMAER AND BID-635 PER AND FORDING COLLEGIED.

AUMAER AND BID-635 PER AND FORDING COLLEGIED.

AUMAER AND BID-635 PER SOURY METTY OF AND FORDING COLLEGIED.

	SETT. 27 TO SETT.	•		NUPBER NEAV. SD RANGE PEPCENT OF TETAL	SD F TCTAL	810*485 (6) MARA: SD 94%5 PERCENT OF TOTAL	(6) SD E TOTAL
		6 2 - 1 - 10	0.1609.44874	0. 3	581 1190		0.00
			HEXAGTNIA SP.	119 0 - 13.8	173	10.73	19.55
			CHIBOVOMIDAE	119 42 – 13.*	105 738	12.00	0.53
			CPARENTUM CP. # SMOLL	6 C4 C4	13	1.72	1.63
			84011504 30.	13	63	0.03 - 0.03 -	0.95 0.95
			13fal zvvzategrafes	960 0 - 100.0	578 1508	12.7d 16.83 0.00 - 32.14 16.0	16.63
5.5	٠. 4	62+1 +6	CLIGOTABETA	185	219	0.2# 0.00 - 16.0	0.52
			CSC4 F0PT3SV1342	9.0	119	0.00 21.5	0.34
			CHIRTHDMIDAT	529 239 - 59.7	1201	0.32 - 34.0	1.07
			Stabe Storage to	56 	159	0.03	0.05

0.00 0.00

23

Brene Bressing

FING DAM OR SAMPLE OFFICIATION OF 37 DETE	1 7 6- 5-79	70	25 2 8 6-5-75 11	**	CE	0 1	C) X	(c) 10	76	25 3 3 7 5-79 DE	
NONT	Rew ains 25° 5/ SAILL	TOTAL INVESTERRITES	OLEGOPHAETA	Stefa 31617245enb64h	CE34T203514T345	CHIRCYDAINE	CATECHONIDAD SUBAE	EDMANDEDM CON PX SAUCE	TOTAL INVESTERORTES	DETE THACTA	61.349.740.340.740.
PERCENT OF TOTAL	13 0 - 1•5		2 · · · · · · · · · · · · · · · · · · ·	53 0 - 5.7	53 0 • 5.7	727 275 - 1 76.6	60	10 CO 10 P P P P P P P P P P P P P P P P P P	926	(2.5 () * 4. *	
PEACENT OF TOTAL	23 0.46 0.83 40 0.30 - 1.30	915 1.73 1.23 1925 0.00 - 2.54 100.0	140 0.30 3.00 74 0.33 - 3.00	51 0.67 9.87 119 0.00 1.50 20.7	79 3.03 - 0.55 15.3	1428 0.44 2.42 48.8	69 0.07 0.11 119 0.20 0.20	23 2.05 3.3e 40 0.09 0.15 2.3	737 2.27 1.62 1746 3.00 - 3.61	79 0.00 - 0.00	

APPENDIX HAG. CONTINUED.

NUMBER AND BIOMALS BER SOULRE METTO OF MACHOLYMERTEBRAITS CHLEECTED WITH A DOMAD GRAB (THREE REPLICATES).

JUNE 5-4, 1879,

POJE 13, 19922 MISSELSETON OF CHIFTE TO FECURE I FUR EQUATIONS).

m m - 4

A DOBADIK H44, CANINUSD. NUMBER AND BEDMASS HETT: OF MACKOINVTOTEBRATTS CALLECTED WITH A DONAP GRAB (THREE RPRICATES), USAL 3-4, 1979. DDL 13, UPPER HISSISSIPPI RIVOP (RTFLR TO FIGURE 1 FOR LOCATIONS).

NING DAM GF SAMPLE NRT SIDE CHANKL 1/ SITE 2/ 70	SAMPLE 17 SITE 27	0410 0514 05 7	91.15	YCXY	NUMBER MIAN, SD MANNE PERCENT OF TETAL	SD F TCTAL	#104/53 (9) #64/1 SO #44/36 #44/36 PERCENT OF TOTAL	5 (5) \$3 \$1 TOT46
25	~	٠	3 - 1 - 7 9	TOTAL TAVEOTERS	556 0 - 160•n	463	0.03 - 160.0	1.15
5 3	•	T)	62 5	OLISOFHATTA	1.3	53	9*6 * 00*6	0.00 0.00
				3 4 C 1 N D D D D D D D D D D D D D D D D D D	53	61 119	0.00 +	0.35
				CAIROVOKIDAR	1071 278 - 38.0	715	1+40 0+20 75+2	2.26
				SAINCYONIDAGE SACINCYONING	13	07 £2	0.00	000
				きゃんじゅ じゅうじつぶつ じ	53 40 = 6 • 4	223	€*3 • €0*0 • • • • • • • • • • • • • • • • • • •	0.00 0.00
				SPAROLUM SP. N/ SHTLL	13	53	0.20 0.00 10.5	9.60
				TOTAL INVESTS SENTES	1217	173	0.00 ± 0.	3.52
17 52	-	~	5- i-79	GG アンフ	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	00	0.00	0.00
17.52	N I	s.	64 : -4	A. F	; · · · · · · · · · · · · · · · · · · ·	00	0°00 0°00 0°00	00.0
2,4/	<u>.</u>		64 6	何えいえ	·	00	0°0 0°0°0 0°0°0	0.00

26			28				23		:23	>5 <u>4/</u>	FING DAM CR SAMPLE DESTAINED AND CAPTURE LY SITE ZV TO AING CAPTURE DAMESTE DAMESTE DAMESTE DAMESTE DESTAINED DAMESTE DESTAINED DAMESTE DESTAINED DAMESTE DAME
•			u				~		12	•	2115 S. (
Q.			æ				œ		~		TO ATMEDIA
5= :-79			6- 5-79				5- j-79		6- 5-79	5" 5"79 VENE) .:
CLISHTHATTA	SETAL INVESTES PATES	CATRONOAIDAI	CERATOROGONEDAS	TOTAL INVESTAGES	CHECHURINO	CERATIPOSTREDAZ	5- 3-79 SLIG OF HEETA	TOTAL INVESTERATES	CATRONSMINE	NEVE	NOMBER 31 TO ALIO DATE 1 DATE
13 23 0 - 40 5.0	609 478 0 - 1111 100-0	592 437 159 - 1032 95.7	26 45 0 - 79	410 83 0 - 476 100-0	278 105 150 - 357 67•7	93 23 79 119 22.5	40 40 0 - 79 9.7	119 119 0 - 238 130.7	119 119 235	00	ADABER SO STANDORD OF TOTAL
0.03 3.00 0.00 - 0.00	0.00 - 1.30 170.0	0.53 0.50 C.05 - 1.07 93.3	0.00 + 0.32 16.7	0.56 0.47 0.00 - 0.95 100.0	0.17 0.12 3.34 - 3.29 31.0	0.33 0.35 0.00 - 0.67 69.0	0.03 - 0.00	0.07 0.05 0.09 9.12 100.0	0.07 0.06 0.00 - 0.12 190.0	0.00 J.CO	310445 (6) 4844-55 48491 1 PERCENT OF TOTAL

AUHELR AND BLAND PURE SOUTHER DE MISSIMMENTE LEGISMINGER AND STATES ONLE GRANDS AND SAME SEMINATES).

JUNE 2-4 1970

JUNE STATES AND A MILA CITEDATINED SATTEBRANTED AND A MEN AND SAME SAME AND SAME AND AND A MILA CITEDATINED.

A DREWDIK AND BLUMADS PER SQUER: METER OF MAGROLVERISKANTER COLLECTO WITH A PONER GREG (THPEE RFPLICATES).

JOHN END BLUMADS PER SQUER: JOHN BROWNERS AND COLLECTO WITH A PONER GREG (THPEE RFPLICATES).

۶۶		A TAO ONTA OF	04.	TAKON	はひ たステー Cマア U つ い し a			70:AL
	æ	۴	52 :: +9		212	160 397	0.05 0.08	0.09
				OTAL INVESTERRATES	100	183 135	0.05	0.03 0.03
6 2	s	~	64 5	CL/6/00 HAE*A	575 0 - 49.5	695 1389	1.2e 3.39 * 3.7	1.36
				. CO. AINTRANGA	60 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 7 6 2	12, 17 0,00 - 30 59.1	15.22
				i,⊕aP HUS S>.	13 M 10 m 11 m	23	0.00 1.5	0.67
				L.SPA TOPOST VIOLE	13.5 0 = 1 1 = 9	53	9 4 0 6 00 40 0 00 40	0.16
				CHIROVOVIOAS OUBAL	13	23	20.00	0.00
				OTAL INVERTERANTOS	100.0	1548	14+41 0+50 100+0 100+0	17.32 33.65
6	v	r.	£2 • 9	SLIGNCHAETA	13	87 CJ 87 CJ 87 CJ	00.00	0.00
				C D.A. TOWNS YES DAG	66 0 - 0 - 5 - 1	119	2 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 * 0 *	0.41
				GREAT CONTRACTOR CONTR	172	47.7	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.16

		PARALTOTJOHLEGIA 50.	Se-MESTUR Se. W/ SHTLL	CHIRONDED DURACE	CHIRONDADAD	SOFE AND SOFE	ACT MACTINES (SP.	6 7 6- 5-79 DLIGOCHAETA	-79 TOTAL INV ⁻ 9TE3	FING DAMINE AV SITE &V TO AINS CAM BV DAY" TAXON
#5A#* SJ #5A	9,	34 3 4 4	\$ 0 - 1	; ;;		Ę,`.	· · ·			
		0.4 0 0.4 23 23 24 2 24 2 24 2 24 2 2 2 2 2 2 2	13 23 0.4 0.4 2.5 0.4 13 23 0.4 0.4	79 69 40 - 159 3 1 23 7 40 7 40 7 40 7 40 7 40 7 40 7 40 7 40	7, 6, 6, 6, 1, 6,	17LL 79 69 69 69 69 69 69 69 69 69 69 69 69 69	1711	17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	7 6- 5-79 DLIGOCHASTA 4EAAGCMIA SP. 4EAAGCMIA SP. 4EAAGCMIA SP. 4AGCMIA SP. 4A	### SE SE SE FOR TOTAL INVESTIGATERS ###################################

A PORTO TO A TOUR STATES OF MACED TOUR CONTROLS OF LOCATIONS).

NUMBER AND BINNASS DER SOUKRE METER OF MACEDITYPERTEBRITTS COLLECTZY MITH A PONAD GARB (THREE REPLICATES).

POIL 13, 19DEN MISSIONEN CONTROLS OF MACEDITY MITH A PONAD GARB (THREE REPLICATES).

99 6- 5-79 CERATPOSCHITAE CHIRCHINAE So 5- 5-79 CHIRCHINAE CHIRCHINAE So 5- 5-77 CHIRCHINAE CHIRCHINAE CHIRCHINAE SO 5- 5-77 CHIRCHINAE CHIRCHINAE CHIRCHINAE SO 5- 5-77 CHIRCHINAE CHIRCHINAE SO 5- 5-77 CHIRCHINAE CHIRCHINAE SO 5- 5-77 CHIRCHINAE CHIRCHINAE CHIRCHINAE SO 5- 5-77 CHIRCHINAE CHIRCH	E ONESTRATION EX DATE TAKO	NUMPER SOLVER SO	BIO4485 (6) MCAN SO PANOE PERCENT OF TOTAL	5 (6) 5) SE F TOTAL
64.59 4 5	8 5-7-7	2.4	0.30 -	0.32 0.56
6 2 2 3 4 5	SACIMONOSTAD	79 69 40 - 159 30.0	0.04 0.00 13.0	0.07
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	State StateOnceino	132 115 0 - 193 50.0	0.0± 3.00 - 25.1	3.07
64.59	Thand Brototho	13 23	0°0 - 00°0 - 00°0	0.00
6 5 5 5 6 8	COTAL INVESTESPANCE	265 179 0 - 435 100,0	0 10 10 10 10 10 10 10 10 10 10 10 10 10	0.03
6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 5-79 JLIGOTHAET	13 23 0 40 2.1	0.00	0 0 0 0 0 0
62-1-5	Dec Incodadi esto	93 61 40 - 159 14.º	0.21 0.04 = 29.6	0.15
62-1-25	SACTMOVOWING.	516 221 275 - 714 83.0	0.5¢ 0.24 = 70.4	9.28
62-1-5	TOTAL INVESTIBENTES	622 233 0 - 794 130.0	0.71 3.03 - 133.0	0.39
Steam.stacates?	8- 1-73	265 458 0 - 794 45.5	0.03	0.05
	2.63.47.013.423.2	53 61 0 - 1:9 9.1	0.00 0.00 0.43 0.43	0.63

FINC DAM 0: SIDE DAMNUL 1/	: 0:	SITE Z. T. MING CAM AZ	24-5	94.28 6- 14.59 CHEVENEARAS	PERNESS PERCENT OF TOTAL PERSONS OF TOTAL	BIDMASS (G) FEARENT OF TOTAL OLUS O.54 O.03 O.55 O.03 O.55 O.03 O.55
				SELEGEANNI TALO.	542 471 0 - 1567 12040	0.00 1
7	ø	**	6= 3=73	6- 9-79 CERATORISONIDAS	14.5 7 - 79 10 - 40	0 0 0 0 0 0 1
				C41808041345	238	0.00-26 71.4
				13.44 TANEELLBANT 19.51	278 748 0 - 556 170-0	0.37
ຽ	<i>5</i> -	Ç.	6- ,-79	679 COLATOROSONIDAC	53 23 47 - 79 8.9	0.4°C
				CHIROMETHE	542 905 5 = 1587 91.1	0.00
				TOTAL INVESTERATES	505 928 0 - 1567 100-7	0.00.0
31	υı	`	\$ - ; - ? ?	0.1.0004887A	3 * 23 5 40 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.00
				(alishi alter) efficasadesa-	13 23 0 - 40 8.5	0.0
				C (CA *CEGGNAC)A)	25.0 0 - 119 040 - 69	0.3c - 00.4c

*(SNG11807) oud 1 udhold C. aldeb) arkla lectolog's eBarh 401 Uffor *elet 49-5 1906 *(SBLW1021) beed arkey exide Colodingo SLIMBERIALARALDED OF LIDA GARRES EBA SEWMIG ONW HOFFOR

LPPINDIX H-4, CONTINUED.

VUMBER B-10 BIDFASS PER SQUARCHETT- OF MICHINVERFORATTS COLLECTED WITH A PONAM GARB (THREE REPLICATES).

JUNE 5-6, 1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1070.

1

	1 7 1 6 6 1			T \$ 0 0 2 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NUMBER		SECHOLASS (G)	(9)
MING DAN GR SAMPLE ORI SIDE CHANNEL LY SUTE EX TO	SA42, E		2 2 5	TAXON	PEANS SO RANSE PERCENT OF TOTAL	SS F TGTAL	MCANA SO RANGE PERCENT OF TOTAL	53 E TÖTAL
12	# # # # # # # # # # # # # # # # # # #		62-1-9		79 - 67 - 50.0	211	50 00 0 - 60 0	0.02
				Stable StolkOkokite	13	23	0*00 0*00 0*0	00.00
				CILERREILEIAN: TVIC.	159	137	0.06:	3.54 0.95
Ξ.	~	n	62 -1 -9	0L(G?C44274	40 43 = 2.4	00	0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°	00.00
				HANDLETA NZTECA (SAUSSURE)	56 0 =	115	2000 2000 2000 2000	0.14
				HYDROPSYCHIDAG (SARLY INSTAR)	172	179	0.00	0.10
				CERATOPOGONTOAC	40 0 - 5	4 6	0.00	0.13
•				SACTHDWGG1+3	1190 575 - 78.0	516 1706	1.01	0.46
				137AL INVESTEDBATES	1508 0 T 100.7	735	# 5 # 0 0 * 0 0 1 0 0 0 0	1.79
12	٠	~	62-5-8	A 13 5.0 C 4 6.0 C 4	13	£ 0 4 0	00°0 - 00°0	00 ° 0
				3v618656eu. vg20	26 0 5.5	6.4 E 0	0.02 0.00 -	07.0

FOUL ISE THE TAIL OF THE THE TOTAL TOTAL TOTAL TO THE TOTAL	NUMBER AND BIDMALS PER SOUNCE WETTER OF MACCOUNTERPAINTS COLLECTED WITH A POWAR GRAD GRAD GRADE REPLICATES). JUNE 5-4-1079.	
7	9 6.	
311) (() () () () () () ()	
210	ر د ن د	5
	107	
A	10 E	
3		
L 4 1	LT NOT	
: •	g: •	
1.3P.	11,	
1 FU2 1	0 0 A A D	
11100	65 A t	
28.	(1485	
	PLICA	
	1755)	
	•	

0 U. R. T. C. A. I. N. S. U. I. N. S. U. A. I. N. S. U. A. I. N. S. U. A. I. N. S	34FC 5- 3-79	TAKON MIRONGMIDAE DITAL INVERTIARATES SLISTIMENA EPATRONOMIDAE	PEPCENT OF 199 - 30.3 199 - 30.3 100 - 30.3 100 - 30.3 100 - 30.3 115
		3ACINESSAS, NES	1.0 1.0 1.0
		HER DISHER AE	145 150 40 - 317 55.0
		JV60 TVCIMDNOVIK	13 0 - 23 5.0 40
		OFAL TWYTOTE ARREC	255 287 0 - 595
	TERY TO AIMS DAM SY	12 27 12 43 NS 34 NS 3479 3479 3479 3479 3479 3479 3479 3479	TOTAL TATOS SACINGUIANDA PERIOR SACINGUIANDA PERIOR SACINGUIANDA PERIOR A SACINGUIANDA

APPEVILK 1.

TO STATE OF CONTRACTORS	2 5115 / 5 8115 /	ORIGITATION TO WENS DAY 37	315:	удук	ないのすのア	PERCENT OF TOTAL	610485	٥
25	**	7	81-62-6	TURBELLARIA	75	0.0	0.17	5.6
				TPICHLADIDA	57	0.7	0.11	9.2
				HYALLELA AZTEGA (SAUSSURE)	113	1.4	3.11	9.2
				CAENIC SP.	113	1.4	90.0	9.1
				* CO FINISTED	57	0.7	29*6	1.2
				*6の **まいといればいの	57	0.7	3.:1	0.2
				ISCHARATE OF	15	0.1	90.0	9.1
				3 \ CI\81\807\800	52	0.7	3.79	1.5
				HYDAGASYCHIDAS CEARLY INSTARD	240	,	0.17	0.3
				CHEUMATOPSYCHE SP.	5320	64.4	35.51	9.69
				HYDROPSYCHE SP.	340	1:1	1.58	N . 0
				POTAMYIA FLAVA CHAGIN)	906	11.9	0: •7 •	15.9
				INADA BYCIFOACAURCAR	113	1.4	1.02	1.9
				NEURECLIPSIS SP.	396		3.63	5.4
				CHIRCHOMICA	226	2.7	0.11	2.0
				5 4 5 4 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5	25	0.1	0.05	0.1
				TOTAL INVESTESPATES	8264	100.0	53.37	100.0
52	ī.	ML)	9-23-13	TRICHLADIDA	25	0.7	0.34	0.7
				91396084874	M H	1.6	3.00	0.0
					6	•		

RESERVED FOR AND BIOMASS PER SOURCE METER OF MACROTYPERFERANTS COLLECTED WITH A BASKET SAMPLER, ROBBER AND BIOMASS PER SOURCE WITHOUTH OF MACROTYPERFERANTS COLLECTED WITH A BASKET SAMPLER,

--

--

SEDE CHANNEL T	1/ SITE 2/	SIMPLE DEFENTATION	0 A 7 E	ACKWA ACKWA OZEWONE	としょうじゅ	ANTOL SO SOSSESSES	SECHASE	17101 36 833e3e
?5	S	-	9-24-73	9+23+73 STEVECOUN SP.	113		1.02	٥٥
				STENDER SO.	170	2.1	C3 0 1/3 1/4	٦.
				ISCANDA TO.	57	0.7	3. 35	o.
				VERVIEW STATOLA (FINERA)	57	0.7	3 •₽:	0.
				HYJRUPSYCHIDAE (EARLY INSTAR)	306	11.3	0.51	1.0
				CHELMATORIYOHE "P.	3566	***	27.95	54.5
				HYDROPSYCHE 50.	326	, n	٠,٠٠	
				CASSES ETTA CHECK)	1528	19.9	3 3	16.5
				EVEND SYCIFCASOURCAM	243	3. 5.	3.23	5.3
				POLYCENTEDPODIDAC (EARLY INSTAR)	170	2.1	7.05	٥ . ١
				AEOSIGITACIS CA.	340	4.2	1.42	2
				DACINON) SIND	226	2.3	0.29	J. 6
				UNIDATE (JUNENILE) W/ SHELL	57	0.7	3.69	7.2
				TOTAL INVENTESPATES	5037	100.9	51.22	100.0
25	6	7	9-24-78	4 C1 C # D # C1 C # C1	170	.,	0.3.	٠,٥
				HYMLLELA VZTECA (\$485050)	57		2.05	0.1
				要素質はは7条例	113	1.0	3.43	0.7
				SECONDAND SO.	283	2.5	J. 63	0.7
				# # * * * * * * * * * * * * * * * * * *	57	0.5	1.42	2.5
				HYDERSYCHIDAE CTARLY INSTAUL	2400	22.1	1.55	2.8

APPENDINGER AND BIGHASS PER SOUARE HITEP OF MATROINVERTERATTS COLECTTO MITH A HASAET SAMPLER. ** AND BIGHASS PER SOUARE HISSISSIEP PINVERTERATING (REFERENCE I FOR LOCATIONS).**

SIDE CHANNEL 1/	\$115°, 27°, 27°	78 YES 0854 14 7	0.475	NDX+1		1910 F P P P P P P P P P P P P P P P P P P	rc.	PERCENT OF TOTAL
	s.		0-78-78		4471	39.7	54.47	61.6
				# # # # # # # # # # # # # # # # # # #	340	3.0	2.43	4.4
				CRUSTRU TREAL TORSETTION	2297	19.5	12.06	22.6
				HYDAOFSYC (1041 Public	15	v • 0	79.0	1.1
				POLYCENIAPPOSIONE (SARLY INSTAN)	283	2.5	95.0	9.0
				*65 SISaITUDENBW	283	2.5	1.25	2.2
				ニケベ まのこし せばて ひ	453	0.4	0.76	7.3
				SBArabbauant TWLCA	11253	100.0	56.43	100.0
\$2		ъ	82-60-6	ALT MAJORET	317	1.3	0.63	9.5
				⊕ # 2 4 4 € 5 5 5 °	317	1.9	0.63	0.5
				HEXAGTUIN SP.	6.34	3.5	23.63	23.7
				**************************************	534	3,5	1.63	1.6
				**************************************	634	3.4	0.70	7.0
				COEVAGRICATION	158	0.0	3.63	6.5
				AYDOGOSYCAIDAS (EADLY INSTAN)	3011	15.7	1.54	1.3
				CHEJVATOPTYCHE RP.	4913	2.15	30.56	41.9
				* CO DECASORDER	1268	7.3	3.01	2.5
				CLEANIE CLAVE CHAGFIE	5071	1.82	30.55	25.3

1.4

1.74

3.5

.# Y

BYCINUM EIMD

FRANCE OF CHANGE IN	APPLE SITE 2/	SAPPE DELICATION STARTS	1	NUMBER P SIDE CHANNEL Z SITE Z/ TO FING CAN Z/ DATE TAKON	VUMBER R	PERCENT TOTAL	BIOMASS	PEPORNT OF AL
~ 5 4 4 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	5	# 4 4 4 4 4 4 4	i.1-62-6	Drank Larenda Stranski	317	1.	o. 33	o.c
				LEPTOCCA FRAGILIS (PAFINESOUC) N/ SHELL	11	0.1	23.26	19.2
				SHINGELLAND SHINGE	18067	100.0	120.52	100.0
2 5	u	7	9-7:-7:	4-53-78 TRICHLADION	204	2.1	3.4.	0.6
				CBENSONES VOSEZ + PITTARE	136	1.6	0.14	9.2
				4340 MIS 1870	50	0.7	9.49	0.6
				CAEVIS 50.	136	1.4	5.52	A . 3
				STOLOGORA OP.	136	:	0.14	9.2
				GC+34US 50.	6.5	0.	6.15	7.9
				TSCHRUPA OP.	6.8	0.7	0.41	3. 5
				(PATENI YJAKE) EACTHOYSADECYH	3 3 3	9.1	0.34	0.4
				CHOUSE TODAYCE AP.	2453	30.7	31.92	£0. £
				-cs 3+04Sedecth	2196	22.1	0.24	11.7
				POTANTA FLAVA (HAGEN)	1562	16.4	19.65	13.5
				SYANG BYCTTOASOUBCAR	272	2.9	2.51	3.2
				POLYCENTROPODIONE (CARLY INSTAR)	272	2.0	0.41	0.5
				At Jantelles 15 Se.	272	2.0	4.27	10.4
				STOUTEMES SOL	gr. Ca	0.7	0.75	٥ .
				CHERCHOLICAN	340	3.5	0.40	0.6
				SYADO SYLINGNORIHS	6.8	0.7	0.07	0.1

NUMBER AND BIDMASS BER SEGNAS METER DE MERCESTERATES COLLECTED WITH A PASKET SAMPLER, PURCHER AND BIDMASS BER SEGNASS METER DE MERCESTERATES COLLECTED WITH A PASKET SAMPLER,

APPENDIX IN SID-ASS PER SAUARE ACTED OF ALCADINCERTORATOR COLLECTED WITH A GASKET SAMPLER, OUNDERTORN ON STORES IN POST SAMPLER,

5	VIND CAM SV	3472	NCXAT		NUMPER PTRUENT OF TOTAL	BICHASS PERCENT (6) 3F TOTAL	PERCENT OF TOTAL
ın •		3-35-73	TOTAL IMVERTEMBATES	6056	100.0	74.92	100.0
	•	62-62-6	TP10 HLADIDA	158	5.0	0.16	0.1
			HYALLELA SZYEGA (SAUSSURE)	158	7.0	3.15	9.1
			BAETIS SP.	475	2.2	2.00	1.4
			STEWNSHA SP.	317	1.5	0.32	0.2
			HYDROPEYCHIDAE (CAPLY INSTAR)	3323	15.4	1.30	1.3
			*ev EMOAcedianDOPO	17.89	8.3	52.14	34.4
			HYDROBYCHE SP.	1132	33.0	20.52	19.4
			PO"ALYIR FLAVA (HAGEN)	8679	30.1	.3.25	9.52
			irena svetroksachetk	117	3.5	3.65	2.4
			POLYTENTATOSOIDAS (SARLY INSTAR)	929	5.9	0.32	2.6
			NEURGOLIPSIS SP.	634	5.0	19.49	12.9
			37606 0101066061611006	158	0	1.74	3.2
			TOTAL LAVIOTEGRATES	51286	100.7	151.51	100.0
		32-62-6	Y61647-3354	99	10.0	0.11	3.4
			in the state of th	11	1.7	**************************************	1.2
			* 40 *1760 700 F	82	2.4	1.40	41.7
			Caristi Aleksa 2kcincibornica	• + •-1	1.1	0.01	0.3
			HAID DE YOUR CARLY INSTART	26	2.4	0.01	5.0

3.65

27.5

187

CHOLIALTOPSYCHE PP.

NUMBER AND BIGHASS PER SAUARE HTTES OF HISSINFRIER OF STEED TO FIGURE I FOR LOCATIONS).

NUMBER AND BIGHASS PER SAUARE HTTES COLLECTED AND FIRM A MASKET SAMPLER, NUMBER AND BIGHAS AND THE CONTINUED.

2.5

· ! 2.

.

SIDE CHARNEL	72 71:5 /1 31e445	SIDE CHANGE IN STHEE ORLINFAFION STHEET STREET ORLINFAFION	DATE.	SAMPLE ORICHTATION SAME SAME TAKEN	21 01 01 70	PERCENT UF TOTAL	(S) SSMCIR	TOTAL TOTAL
2 6	Ţ	**	9-24-75	6-5-4-18 HAJS 12ACAE 80*	125	18.3	0.40	111.0
				POTTUTTA FLAVA CHASEVI	1.98	29.7	0.62	15.6
				MEGALITIASIS Sb.	11	1.7	0.13	.
				C+(R-10081)45	11	1.7	0.0:	٥.
				TOTAL INVESTEBRATES	679	100.0	3.36	100.
25	3 1.	a.	£ 2-63-6	ゼルコロ ドエトンエント	676	2.2	1.74	:
				ATTLUS SO.	159	0.5	0.15	•
				BARTIC SP.	175	1.6	2.06	:•
				WINGONSA VA	158	0.5	0.16	9
				CATION ATEND BY CHOASHOACAH	1992	σ 	0.63	· ·
				CHECKATORYCHE SP.	11569	39.0	74.53	4.5
				E YOR OPOYOLE RO.	4437	15.3	19.13	11.
				PITAMYIA FLAVA (HAGEW)	7766	26.5	47.07	29.0
				TYONG BYCIPOASOLECAN	317	1.:	2.22	
				NEGRECOLISTS SP.	1109	3.9	13.47	.a.
				CHERONOMER	475	1.6	0.63	·
				TOTAL INVERTERRATES	29002	100.0	162.13	100.0
204/	u	•	9-7:-73	NOVE.	0	0.3	0.00	0.0
214/	U I	¢.	25.0% P.2-62-6	NONE	O	0.0	ວະຄາ	· · ·
2.4/	œ	٠,	9-7-73 4045	NOVE	:	ن	,	,

bing dam (q side chamiel 1,	3148 71 3148 71	OSTUTACTON N TO HING DAM 3V	7 t t	AFICS G DAW 37 DATE	# B& # O#	PERCENT GF TOTAL	8104A55 PERCEUT (G) OF TOTAL	7374L
2.5	ø	n	9-53-78	TAICHLADIDA	113	3.6	0.11	0.3
				HYALLELA 127EGA (SAUSSUPE)	922	5.0	0.11	0.3
				BAETIT to.	226	5*6	0.35	2.3
				ISCHIJAA SP.	57	7.0	0.57	1.6
				CARINIATE (EMBER INSTAN)	453	ر. و.	0.28	e) •
				* 03 12 12 14 14 17 17 17 17 17 17 17 17 17 17 17 17 17	3679	£ 9 \$	13.11	49.8
				HYDACESKOTU So.	556	7.2	1.37	5.1
				POSTANTIA STANDED	500	26.K	9.79	55.9
				HYDRORYCHIDAE BURAE	57	0.7	0, 0	1:1
				*=== SI:=I73.26724	283	3.6	4.19	11.5
				LTCATONCETTO	113	1.6	3.11	5.4
				TOTAL TAVERTLANATES	1867	100.0	35.39	100.0
59	in		9-53-6	TRIO 414710A	159	0.7	67.0	9.6
				HYALLELA AZISTA (SAUSSURE)	158	0.7	3.16	0.5
				***************************************	634	2.7	1.11	1.5
				*65 617.000	158	0.7	0.32	••
				**ログ・マネルアにからして	317	1.6	30.05	0.1
				*cf 5f*e*()	11	0.0	6.07	3.2
				CO 7 11 17 4	7	ć		•

1.33

23.1

HEDRIPSYCHIDAS (CAPLY INSTAR)

POWERS AND BITTAKSS BUT SOUTHER HITTER OF WASCENTRY RETENDED TO FIGURE 1 FOR ECCATIONES. PARPLES, POWER AND APPEARAGE TO CONTINUED.

-

·.

1

•

TO DAM OF	\$149LE	STEATATION	3117	Tax5//	20 SE	PERCENT TOTAL	0 H O & A (1)	PERCENT TOTAL
24	5	7	9-25-73	9+05-73 OXOLEATON/KOEM AN.	6022	25.8	27.73	37.6
				TASAURSAURSA	6754	20.4	14.42	19.
				CHESSAN LLANT CHESSAS	3904	16.5	15.00	22.
				ASS STORESTEENING	1109	;	3.05	y.
				CHAJ JORUS SA.	792	3.4	0. 3.9	Ş
				TOTAL INVESTERATES	23314	100.0	73.52	100.
29	J5	G 5	9-73-73	HERRGENIA SP.	57	1.3	0.49	<u>,-</u>
				SIACIS SP.	. 57	1.3	3.23	=
				HYDRIPSYCHIDAE CEARLY INSTARY	113	φ (·)	o. ::	٥
				CHEMINACION OF THURSDAY OF THE STREET	1109	27.5	7.11	31.
				HYDROSYDAE SA.	1541	30.7	3.21	23.
				ENBOWIG BANDS WILACH	1019	23.7	6.05	21.
				Stena ItCitibas bCAH	113	2.5	0.52	2
				BOLYCEURESONDERS PUBLICATION	113	2.5	0.79	~
				TOTAL INVESTEADATES	4302	100.0	23.53	100.
1462	s.	~	9-24-73	NO VE	0	0.0	o_ 00	•
79 ⁴ /	Ŧ	⊕	7-23-73	4375	0	0.0	3. oc	•
ະ	5	7	10-12-14	COVESNE Albeil avithizasoubcah 12-21-01	3170	7.5	1.00	0.
				CACCEMPADO FOAD SE	3904	9.1	15.49	7.1
				*es Shoasal Boah	13629	32.6	60.56	24.2

MING DAM OR SIDE CHANNEL 17	S. 1 . 1 . 2 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	PERSONAL CONTRACTOR	G .	1463	a de exercis	PERCENT OF TOTAL	810445S	PURCERT OF TOTAL
33	٠,	•	10-17-73	POTAVIL FLAVA (H15"4)	21236	\$005	152.77	65.8
				TOTAL INVERTERRATES	41939	100.0	232,01	100.0
30	'n	٣	13-12-73	0 T C C C C C C C C C C C C C C C C C C	475	1.7	3.49	0.5
				HYDROPSYCHIDAE (SAFLY INSTAR)	8716	32.0	7.43	9 • 6
				CHEJ-4179PFYCHE RP.	1902	7.0	12.20	15.7
				*eS BEDAScièCAH	296£	14.5	8.67	11.5
				POTANTA FLAVA CHAGEN)	11411	41.9	45.17	53.3
				NEGRECLIPATS 52.	158	0.5	1.11	1.4
				SYCIMONORMO	634	2.3	2.22	2.9
				TOTAL INVIRATIONALIS	27259	100.0	77.50	100.0
33.47	÷		13- 3-74	20.0%	0	0.0	00*0	0.0
30	·c	10	10- 3-73	Springer of a	362	7.0	1.45	0.1
				*40 #F0707040	362	0.7	0.36	2.0
				*60 Vef. +251	342	0.7	0.36	9.2
				COTACHIA CERTS LACTION	10505	21.0	30.6	4 . 2
				CHSUWATTOPYYCHE < 0.	5736	11.6	35,14	16.4
				"ab UrukSececkAH	36.35	10.0	21.01	6
				or luyin Flays (Magew)	24632	n	127.51	\$0.4
				HADE SACTHOAVE FORM	1181	3.5	13.40	5.5
				いせいコテロアントルエン	362	0.7	1.36	8.6

A constant design of

the second second

IDE CHANNEL	1/ SITC 2/	OFFICE OF STATES OF THE STATES	3/ 0:17	NCAFI	i i	TOTAL	(6)	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3	σ	o	17- 3-75	\$9 6 17-3-78 CHIPCUOMIDAE PUPAE	362	0.7	0.7 5.43 7.4	2.5
				TOTAL INVERTERRATES	68667	100.0	214 . 81	
3: 4/	Ų.	7	3-24-78 MOVE	NOVE	.	•	· ·	, ;
31.4/	.		3-34-74 LOUT	YOU.	,	•	•	•
		•			o	0.0	00 • د	0.0
314/	ų.	~	9-21-78 2012	NOVE	s	0.3	0. 00	ت ع
{1 <u>4</u> /	ۍ.	œ	9-73-73 NONE	NORE	0	0.0	0	3
AVERAGE AND	**********							•

APPENIX I. CONTINUED. ATTA SANGE ATTER OF MICHELIVE TERBAITS COLLECTED WITH A BASKET CAMPLER, COCKTONED I FOR LOCATIONS).

12,3

1.51

4.5

106

HEKKIZYIA SP.

MUMBER AND BITAASS PER SGUARE FITTO OF MERCIAVERTORFATOS COLLECTED WITH A MULTPLE-PLATE SAMPLES.
PODI 13: GODE 13: JOSEP MISSIFFEDI PIZED (ACTION TO FIGURE I FCH LOCATIONS). .L XICHBOOK

MING DAM OR SAMPLE DRI SIDE CHANNIL 1/ SITE G/ "D	SAMPLE 1/ SITC 2/	VE MAD ENTH OF	1. 10	TAKON	a Gar	70TaL	00 A & CO)	737.AL
5.2	ភ	•	84-62-6	TPICHLADIDA	4.3	0.5	60.0	
				城村田市工厂的	£ 9	9.6	0.00	0.0
				es tolking a	F 9	٥.	12.2	3.9
				CAENTS SO.	57	9.0	9.04	0.1
				TOWNSTANCE OF THE PROPERTY OF	128	1.7	2.51	6.3
				*cs endnesses	128	1.7	C: * c	0.5
				HYDRUPSYCHIDAE (EARLY INSTAR)	759	5.7	3.26	4.0
				GREGUAATTOPYTONE SP.	4757	9.49	43.28	75.9
				*68 11*02860202	426	7.5	1.02	•
				PSTANYIR FLAVE CHAGTU)	1234	1.91	60.9	10.7
				*ロン じまるとりしょきのきん	4.3	9. 6	3.47	0.0
				TATEGORISTS OF THE TATE OF THE	43	0.5	0.0	0.3
				UR CMFORUSEED	£ 7	0.6	96.0	0.1
				TOTAL ENVIATES	7405	123.3	57.07	100.0
۲,	•	ą	3-7-1-13	\$61047 JEL	ur. ur.	3.5	0.23	2.0
				110	1.2	0.0	0:0	0.0
				ASZ. LUS SP.	21	0.0	3.09	7.0
				· 化 · · · · · · · · · · · · · · · · · ·	21	٥.	o c	5.7
				C S TOAR (EARLY INSTAR)	21	0.0	9.02	2.0

NOTABLE DATE DATE DATE DATE DATE DATE DATE DAT	N JMBLR AND BLOARSS BER SUJFRE AFFE POLL 13, JUSER
Taxon	NIMBLA AND BIDAASS BEP SIJIAR AFTER OF ALFORMATERIOPER CONTINUED. ADEL 13, JUNEA MISSISSIER STREET OF ALFORMATERIOPER FOR FIGURE I FOR LOCATIONS).
21 21 20 21 20 21	TIPLE-PLAT
RCENT OF	C StupLTF,
ROERT 6134ASC PERCENT OF (5) TOTAL	
PERCENT OF TOTAL	

MING DAM OR		SAMPLE DELIVERIEDY ST. E. ST. E. ST. TO AIM ST.	345	NOX4.1	20 4 50 PM	PERCENT OF TOTAL	GIDMASS PERCENT OF TOTAL	900 AC 37 AC 3 AC 3 AC 3
?	ъ	عد	6.1-6E	9+13+73 (TO 4075146 (10)	261	4-1	3.40	٠.1
				CAVISNI ATAYS) INCINCASCURCAM	,0,	17.1	0.19	1.6
				CHENHALOSKOHO KOT	702	29.7	4.60	2 9 · 8
				HYDRORSHOHE SO.	2,5	3.5	J. 36	3.1
				POTENTA FLAVE CHASSN)	511	21.6	3 . 1 5	26.6
				NEURICIPOIS SP.	6.4	2.7	J. 94	7.9
				ELMI 74E	21	0.0	0.02	? . 2
				CHIRCUCHIPAT	106	4.5	0.15	1.3
				ONIONIONE CHURANILE NY SHELL	21	0.0	J. ; 1	,,
				TOTAL INVERTEBRATES	2362	100.0	11.93	100.0
25	¢.	•	9-24-73	9-23-73 TRICHCADIDA	117	6. 0	0.34	3.7
				OLIGOTHABILA	32	· 5	0.00	0.0
				HYALLELA KZTECA (SAUSSUGE)	32	1.6	J. 05	J. 5
				B # # # # # # # # # # # # # # # # # # #	32	1.6	o. 00	J.6
				CACHIC SP.	53	2.7	0.07	J. 3
				HUKAGENIA SP.	117	o	0. %	10.2
				STEROVERA SO.	5.3	2.7	9.14	1.5
				HYDROPSYCHIDAD (EAPLY INSTAR)	170	O- -	0.16	1.5
				Pes arcación	511	26.4	1.77	10.3
				PTIANTA FLAVA CHAGEN)	596	30.3	3.79	41.3

33.5

34.05

2002

3937

CHITATION YORK SP.

*CONTINGO *C X1CNGes*

MING DAM GR SAMPLE DE SIDE CHANNEL 1/ SITE 2/ TO	SA 42LE SITE 27	1 2 5	3 T F		NUMBER PERCENT	PFRCENT OF TOTAL	810448S PERCENT (0) (0) 1707AL	PERCENT 36 10TAL
25	9	^	9-52-6	+CI+DASaJEJAH	170	9.0	1.32	13.0
				WTUSTOLISTS SP.	53	2.7	3.39	6.0
				forki Ivvigrepants	1936	100.0	9.14	100.0
25	g	3 0	3-23-73	7+32 -(A)23)A	32	1.2	00.0	0.0
				AYELLTER AZTICA (SAUSSURE)	117	, ,	3.17	7.0
				*もい しいフロイロ	53	2.1	0.05	0.2
				*es warded # for	35	3.3	2.67	11.7
				* 6 V WHINIPERS	32	1.2	0.03	0.1
				HYDROPSYCHIDAE (GAPLY INSTAR)	552	o•6	22.0	6.0
				CHELIANTON YOUR SO.	706	35.7	\$ F * e	1.07
				4404F0884C48	564	21.8	3.10	32.9
				POTANYIA FLAVA (MASEN)	511	19.9	3.19	12.9
				Sheno Sycamoasuscam	32	1.2	0.12	5.0
				TOTAL TAVESTERRIES	9852	100.0	24.51	100.0
52	\$	*	9-273	4CIC+TFCIb1	958	9.6	1.23	1.6
				CAEVIS 50.	106	0.7	0.11	9.1
				* G (2) - (4) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	213	1.4	0.43	9.5
				COSTINUED SECTION OF THE COSTAGE	5 3 2	3.5	1.23	1.4
				Carolacycathy (Capely 1157am)	1064	7.1	:-17	1.3
							•	

AING DAM OR SAMME DATENTATION SIDE CHANNEL IZ SITE ZZ TO WIND NAV 3Z	0 4 7 7	NOWER SANDE DETENTATION SIDE CHANNET 1/ SITE 2/ TO AND DATE		95 005 VT	(6)	7 00 00 00 00 00 00 00 00 00 00 00 00 00
26 5	7-73-78	*es Broasaucah Birsa	7022	4 0 •	305	() () ()
		POTEMYTE FLAVE (MAGEN)	1064	7.1	13.41	15.2
		STAFF STORYSTONE	106	3.7	2.55	2.9
		TOTAL INVESTESSATES	15002	130.0	5 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100.0
25	3-22-18	のままはりしの いち・	195	1.1	3.11	7.2
		BASTIS SP.	106	:-	3,43	3.7
		G MINT SECTION OF A SECTION OF	136	1.1	J. 11	0.2
		CANADACACTIVE ASPARA SPECTORSCAN	351	9.:	0.64	, • •
		CHERMITOSCICHE SP.	3192	34.1	13.51	30.6
		*es Broaseuecat	2234	23.9	3.30	13.7
		SOTAMETA SEAVA CHAGGS)	2360	28.4	29.79	6.3
		Itala Italiana	106	1.1	F9 - 01 - 01	4.2
		SpineEleital Talei	9363	100.0	62.44	100.0
2× 5 7	81-6-6	TRICHLADIDA	32	5.1	0.15	1.9
		ASELLIS SP.	11	1.7	0.07	٦ . د
		HYACUSTA (SEUSSUAS)	12	5.1	3.64	 .h
		BARTIC SO.	11	1.7	0.02	0.3
		HUNROPILE 50.	192	30.₹	5. 9%	72.1
		STENERISE.	11	1.7	3. 31	9.1
		ADSTALLAR (DARLY INSTAR)	43	6.3	0.13	1.5

APPRES AND SITMADS PER SOCARE MITTO OF THORSTRAPESTABLES COLLIGITY WITH A MULTIPLE-PLATE SAMPLER, AUGUSTEAN SITMADS PER SOCATIONS).

MING DAM BR	SAMPLE 19	DATENTALIDA 7 TO MIND DAM \$7 DATE	0410	TAKON	x36HOV	PERCENT OF TOTAL	91044S (6)	7 20 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3.8	9	~	3-23-73	GYCI:CIEU4NG/O			3.43	3:
				*c\$ 17 425	11	1.7	0.19	2.2
				HYDRIDSKELLDAR (TABLE 1851APP)	32	5.1	3.0:	0.1
				CHILKATOPYYCHS SP.	53	e.	3,36	4.4
				* FO DECADACTOAR	53	8.	0.17	2.1
				POSTANZA SLAVA (HAREU)	S	8.5	0.18	2.2
				HYDROPSYCHIDAG PUPAE	11	1.7	0.12	4 - 4
				VEUTTCLIPTIS SP.	53	8 . 5	0.35	7.9
				DATEMONOSTRO	21	3.4	0.13	1.5
				TOTAL BUVECTERORITOR	628	155.7	C) * 60)	100.0
5.5	vo.	τ	82-12-6	TAICHLADIA	255	2.1	0.51	9 • 6
				40× 60× 40× 60×	128	1.1	14.17	17.8
				- GO TENANCINE	393	3.2	3.51	9.6
				CHYSON AREVED DECEMBED FOR	383	3.2	0.13	2.0
				* ou STOKEOBERTSFO	6129	51.1	a.	52.5
				HADEGESACHE SO*	2937	24.5	15.63	50.9
				CRECKE FLAVOR (MAGEN)	1532	12.8	. 9	2.5
				MYCHTCNUalia	\$ \$2	2.1	1.02	F • 1
				TOTAL INVESTIBABILES	12002	100.0	73.30	103.0
2.4V	•	,	9-23-18	1407	G	J *0	0.03	9.3

NUMBER AND BIOMASS PER SOUARE MITER OF MERCAPINATES COLLECTED FOR A MULTIPLE-PLATE SAMPLER, NUMBER AND BIOMASS PER SOUARE MITER OF MERCAPINATES COLLECTED FOR A MULTIPLE-PLATE SAMPLER,

	24 <u>4</u> / 5	2+4/	21 6												2:					
SAMPLE CRICHTATION STANS	C 4	į	, es.												4					
0 77	3-73-79 GDV5	9-23-78 NOVE	3-7-78												9-23-78					
P & X G V	ADM	4545	TRECHLADIDA	ASTLLUS So.	HYRLLELA 17TECA (SAUSSURE)	STERENEWA 60.	COSTACREDUITAE	CENTSNI ALCEST EFCITOSCOLOCAR	CHELVATORIYONE TO.	*a5 EFOASENECAR	POTAMYIA SLAVE CHASENS	NEURECLIPEIS SP.	CHITANOVIDAE	TOTAL INVOCEDABLES	TAICHLADINA	*251 LUS 3P.	HYALLELA AZTEGA KGAUSUME)	885775 50.	CARVES ER.	
201	0	0	106	319	426	636	106	1064	5214	106	1702	319	745	10746	F IN	*3	43	170	85	
PEACENT TOTAL	ů, o	٥, ٥	;	3.0	. 0	5. 9	1.0	9.9	49.5	1.0	15.9	3.0	•	100.7	1.7	1.2	1.7	•••	2.4	
(6) SSWECTE	ວ. ຄວ	2.00	0.11	1.17	0.32	0.32	0.53	1.05	37.45	1.17	5.75	9.95	1.23	50.11	3.34	0.04	0.00	3.60	ə.: <i>*</i>	
70 P P P P P P P P P P P P P P P P P P P	3.0	0 • 0	7.2	2.3	0.6	J. 6	1.1	7.1	74.7	2.3	111.5	1.9	2.5	100.0	1.3	0.2	0.3	2.4	0.7	

513E CHANNOL 1/ SAMPLE 2/	SA1012 1:	DAT, NYATION 'S MING DAM 37 DATE	JATE	1446,	A PROPERTY OF THE PROPERTY OF	PERCENT CF TOTAL	3104855	PERCENT OF TOTAL
62	\$		9-24-75	*d\$ Vm2hutils	95	2.6	0.13	3.5
				Coctagn Transplant Cantracture Control	£ 4	1.2	0.21	J. A
				CERTOST FLAGRED FACTHORSCHICH	27	1.2	00.0	M . C
				*ds InSkieDlatfills	1575	45.1	14.51	57.4
				**************************************	511	14.5	2.25	4.0
				(NUSTR) ENETS ELLA VALLO	393	11.0	11.	10° M
				Execut SVC1HDV8eg/CYH	213	6.1	2.43	3.6
				BANTA SA	4.3	1.2	3.39	9.3
				おその日本のアライド・ウ	4.3	1.2	3.13	0.5
				Great Pacification	£ 7	1.2	10.01	0.0
				COLMORDLA DATA DELOS	3496	100.0	25.29	100.0
6.5	10	Ψ.	+2-40-6	P. I.I. ST. C. C.	11	2.5	J0.0	9.0
				ASC. L35 50.	11	2.2	0.02	9.9
				CONSON ABURGA DECITOASCUUCAT	85	17.4	3.05	3.3
				C455 441305 YC45 50.	96	20.0	0.27	10.2
				*60 2HCA561 5AAH	160	33.1	1.54	62.5
				POTE-YIE FLAVA CHAGEN)	7.4	15.6	3.20	7.7
				DYANG BYCIMOASCUSCAR	£ 7	e.	3.44	16.7
				SELVE INVESTE TATES	619	150.0	2.52	100.0
ž.	۰6		9-5-6	NOV.	ပ	ن• ن	0.03	0.0

			/ 94**	NOABER 3 TEAUTH TON	20 40 n	07 PL TO T PL	910HA55	7 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2,4/	5 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	;- 1 0 0 0 0 0 0	9-21-75	NORM	0	0.0	3. CJ	0
33	J		19-12-78	TRICHLADIDA	.340	3.4	0.60	1.
				CLTICOHAETA	95	0	0.20	٢
				SIENGNEMY SE.	95	J. 3	J. 39	y.
				(AVISAL ATSV3) SVCIPOASGLEGAH	511	5.0	0.17	•
				CHELYATIONY BHO KO.	1532	:5.1	5.47	16.
				*eS 3F3A3G2CAF	2468	24.4	1.19	u
				POTLUYIA FLAVA CHARRY)	6341	42.9	25.22	67.
				SYRPE SYCIPSISSOCION	426	4.2	3.75	۰
				明广 第二日》时	95	·•	0.17	္
				O FRE TOUR NAME	255	2.5	0.51	-
				TOTAL INVESTESSION	10129	100.0	39.16	100.
30	u	÷.	10-12-73	OLT/OCHAETA	95	1.3	0.00	٥
				STERIOVERA SP.	626	6.5	0.43	-
				CAVISTI ATSVER TYCTY DASAGEDA	255	3.7	3.17	٥
				CHECOSTOPATCHE SP.	2213	33.4	9.19	26.
				HADACABAGAG RA"	. 596	9.1	2.21	5.
				POTAXYIA CLAVA CHAGEN)	7468	37.7	14.13	•0•
				STORE STOLESTON	255	3.9	4.34	12.4

ACCEPTION SP.

9.5

1.3

6.34

12.4

APPENDIX J. CONTINUED. VUMBUR AND BITAKS PER SUDIRE HETER OF HECOTIVERTEBRATES COLLECTED WITH A MULTIPLE-PLATE SAMPLER/ POOL 13, UPPER MISSISSIPPI BIVER (PERES TO FIGURE I FOR LOCATIONE).

J

7

Parage 1

Press.

7

.

-

_

.

•

7

A MPENDIA.
NUMBER AND BIDARS PER SOURE HITER OF MEROINVERTEPRATIS COLLECTED MITH A MULTIFLE-PLATE SAMPLER.
POUL 13. UPPER MISSIFFED RAYER CARFER TO FIGURE I FOR LOCATIONS).

The state of the s

515E CHANNEL 17 SITE 27	51.2 21.2 73 17 ETE 27 T2	13. 17.	345	. C. Y. L.	or 네 연 연 구	17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00 (0)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CŁ	5	~	10-12-73	1	38	1.3	0.17	0
				SACIMINGFILE	85	1.1	0.00	0.0
				TOTAL INVESTEBUATES	7529	100.0	34.59	100.0
2	νο		10- 3-73	2×6.7	0	0.0	0.00	3°C
ន	w	•	13- 5-78	OLISHMAETA	35	1.5	0.00	٥. ،
				ANETIS SP.	95	1.5	0.34	0.0
				H734CPSYCHIDAE (EAFLY INSTAR)	340	6.2	0.60	1.5
				• av 3x2> - actan (3+0	511	2.0	4.17	12.3
				HTGREPSYCHE SP.	39.2	# · O ;	5.69	7.5
				POTANYIA FLAVA (HAGEN)	3064	55.4	24.35	64.3
				HYDROPSYCHIDAE OUPAS	511	×.2	6.43	11.5
				34C1#72	ðS	1.1	0.50	1.5
				いずのはずのないできませ	552	10	0.17	••0
				SELECTIVE TARGETS	5533	100.0	33.04	100.0
114/	v	•	9-23-73	Tron	O	0.0	0.30	0.0
314/	•	n	9-73-73	3 vab	O	0.0	3.33	0.0
114/	ø		9-54-73	: , C R	0	6.0	0.30	0 - 0
13/4/	٠	3 0	TNCH 82-62-6	TNOR	υ	0.0	0.00	0.0

4 = 135 555.ª 22.86MF

		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		8 1 1 2 1 1 1 1 1 1 1				1373 CLE 1	(HH) 32.15				
SIDE CHANNEL	1/ SITE 2/	JEILNE DAY I/	3442	CLAY-57LT	0525	.125	28.5	J.	1-	2.0	2 S S K E E	3.0	15.0
25	٢	•	P 2-12-5	24.5	1.4	10.3	30.0	20.8	3.3	2.7	 	2,	· · ·
25	-	Ui.	21-78	56.7	3.7	15.3	17.5	3.5	14 . 1	ن د	0.0	C. 0	· · ·
25	~	•		2 4. 5	1.9	72.9	35.d	9.7	1.1	0.1	0. 7	°.	0.0
25	^,	J.	5-21-78	5	0.1	5.4	52.3	30.3	7.5	1.5	0.3	0.0	ئ. 0
25	us.	٠	×=21-78	2.5	٠ <u>٠</u>	3.9	52.1	31.5	ა. და	2.6	0 • 4	6.3	3.0
3 *		JI	F-23-78	12.0	J.	14.9	59.5	J.5	ပ္ ဖ	o.	,.	3.3	?
25	-	•	5-21-73	£3.	o. 1	4.7	78.3	13.9	0.6	0.?	C. 5	c.3	() ()
25		vs	6-21-78	23-1	0.	11.4	47.3	11.6	0.1	o. 3	0.0	0. j	9. 9
26	1/3	•	6-21-78	96	1.7	2.0	1.1	0.3	0.2	0.0	0.0	0.0	9.0
9.5	ru	us.	6-21-73	32.2	F2	7.7	13.3	15.4	sal # .D	0,1	0.3	;; •	د. د.
26	u	•	6-21-78	5 D. 3	2.9	ن ن ن	•••	24.3	\$. U	*.5	0.2	0.0	0.0
25	نيا	u	1-21-73	31.0	o.	2.3	10.9	5.5	0.6	0.0	0.0	o. o	0.0
28			6-21-75	13.5	9.1	5.1	55.3	13.3	0.7	0. 4	0. 3	0.0	3.0
29	p.a	5	6-21-79	1.0	0.1	4.6	50.2	25.0	4.0	2.9	٠ • ,		3.0
53	23	•	+-21-7 #	i 7. t	0.5	3.1	76.3	18.5	0.6	0.1	0.0	0.0	c • 0
2.3	2	vs	6-21-79	5 9. 9	1.3	8.5	25.0	2.7	0.4	o. ''	0. 0	3. 3	0.0
2.	u	•	121-73	12.9	1.2	4.6	a.0	12.7	0.,	0.1	0.0	0.0	0.0
23	u	u;	6-21-7 d	0		13.2	43.2	2.5	0.1	,	0.0	0.3	J. 0
6.3		r	5-27-73	57.:	1.7	13.7	24.5	r ;	o.5	0-0	0.0	3	
23		Ç1	8-23-73	. 2. 7	0.3	4	* * * *	7.9	0.7	0.0	0.0	0.0	0.0

APPENDIK M. PARTICLE SIZE FRACTIONS AS PERCENT TOTAL IN 100 GRAM (AMPLES (INGRAM 1971) COLLECTED WITH A PONAR GRAS. Hyundurenic relice sites. Fool 13, Upper Myssissippi Rivon.

APPENDIX M. CONTINULU. FARIFLE SIZE FRIGIOSS AS RESCONT TOTAL IN 100 GRAM CAMPLEO (INJUAM 1971) COLLECTED WITH A PONAR SPARE.
HYDRISCHRAME WELLEF SITTER FOOL IS UPPTRAINED STAFF.

24.00 A C 0.00	F 107 4 9			• •		,	G	ARTICLE	(ME) 3Z IS				
T TENNY D 3CIS	1/ CITE 2/	A HAG GAM A	3475	., 1425 ., 1425	.0525	.125	7 S S S S S S S S S S S S S S S S S S S	in.	0	5.9	A	0	14
62	N	~9	6-23-73	12.5	2.5	5.4	7.7	ac.	9.4	6.0	O.0	6.5	0.0
62	2	îV.	6-21-13	2.9	0.1	80	55.5	50.9	1.9	7.0	0.0	° ° °	9.0
62	m	u r	6-23-78	13.4	1.2	1.1	3.2	1.1	0.1	0.0	0.0	0.0	3.0
62	r	•	6.423-13	***	0.3	7.0	37.7	20.5	2.5	2.7	3.3	10.9	0 • 6
30 4/			6-22-9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.3	0.0	0.0
3.7	-	es.	6-52-19	4 . 4	5.0	1.0	10.5	39.5	76.5	11.0	1.1	3.3	0.0
30	2	4	6-23-73	3.1	0.2	8.1	50.5	22.3	5.4	1.4	0.2	0.0	0.0
30	2	r	6-52-4	i.	0.1	5 • 5	65.3	10.7	8*2	1.5	0.1	0 *0	3.3
3.0	•	•	1-23-73	e.	2.0	5 . 4	73.4	13.2	7.0	2.0	č*0	0 • :	0.0
30	•	r	6-23-3	6.5	0.1	5.5	66.0	6*55	1.3	0.5	0.0	0.0	J.6
31		,	6-23-18	3.0	6.3	2.1	6.82	34.6	ii.	10.9	2.2	5.5	12.0
31	-	**	6-23-3	11.2	2.0	C • 4	55.3	15.5	2.5	0.1	0.0	6.0	9.0
5.1	2	•	6-23-13	£.	9.1	3.1	29.5	45.4	11.3	3.5	¥ *0	1.3	0.0
51	e)	\$	6-23-3	3.1	0.3	5.4	22.0	51.4	15.5	2.4	1.1	0.0	9.0
31	₩	.	6-53-18	», «	1.2	6.9	1.09	6.92	# · · · · · · · · · · · · · · · · · · ·	0.3	0.0	0.0	0.0
22	₩	\$	6-53-3		9.2	12.3	73.2	13.4	9.°C	0.0	0.2	0.0	0.0
35		•	K- 7-73	*	3.5	9.6	30.0	2.67	2.3	2.0	0.0	0.0	6
25	1	×	82-6 -4	ř.	of Co	16.0	0.07	24.1	S• S	2.0	0.0	0.0	0.0
52	۲۷	,	8- 7-7 3	*	15	55.9	3.68	1.6	1.1	0.1	6.0	0.0	0.0
25	~	.c.	8- 7-78	13.7	2.1	12.7	6.25	.d * *)	2.0	0.0	0.0	0.0	0.0
\$2	•	•	8-1-1 8	4 ()	0.1	9.0	16.7	4.03	17.4	3.1	6-0	5.5	0.0

A LO DY A DA	216618			D1 42-53-4	•			375.122	S 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		in .		
SIDS OH-WELL IN	5 (12 / 2 /	TJ FENG CAM BY) A T :		. 35 25 5	.125	79 V	51		2.7	\$	3. 3	
ં	1.00	, ,	y- 7-7 B	. i	3•:	10.1	55.4	21.9	5.6	3.1	0.3	0.3	3.0
25	p.4	*	3- 5-78	59.2	۲.,	15 15 14	17.5		2.5	C_ ?	0.0	J. J	;;
26		J	4-7 d	1. 3	٠ • •	19.1	50.0	ув. У	0.3	0.5	0.2	0.0	o. o
2	~	å r	5-7 d	75.3	. F	13.1	(O)	o . :	0.2	0.7	C.0	ů. 3	٠ •
⊖ F	2	Ų.	3- 5-7 d	₹.0	3.5	6.	64.5	64.8	1.4	0.0	0.3	0.0	0.0
3,5	.	ć	3 · 5 - 7 3	3. 2	0 • 6	14.3	54.4	25.1	1.5	0.0	: :	≎.0	J. 0
2.5		Œ	4. 5-/3	9:. 5	•	7.4	ó.	e. • •		ö • 5	: :	3.3	o o
2.9		•	F - 5-78	(2) (4)	0.1	5.2	70.8	19.5	1.5	0_1	C. J	0.0	ə. o
ò	-	v.	5-7-9	19.9	0.2	3.3	51.4	17-0	2.1	0.1	9.)	c. 3	3. 6
2.9	13	£	r - 5-73	1.1	0.7	7.2	70.5	:5.2	3.4	1. •	0. 3	3.3	3.0
29	ru	U.	P.2-5	1.0	9.1	. 0	50 · 23	20.5	(w) (g)	.,	c. 3	0.9	J. J
2 9	w	ė.	F 4-5	7.2	3.3	8.7	71.0	15.7	9.3	o •	a. 3	0	3.0
24	~	J.	N= 5-78	3.0	9.3	29.0	67.0	5.6	0.1	o • o	C. 3	0	0.0
رم <u>ه/</u>	٠,	•	7. 5-73	2.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	6	0.0
29	1	u,	6-7-8-7 d	15.1	J. 1	3 • 6	72.9	0.1	7.8	3.4	c. 3	ij	J.)
23	rs	•	€- <-7 d	35_0	1.1	5.4	6.7	٥. ٩	c.2	6. 7	c. 3	٠ <u>.</u>	0.0
29	ra	J	7- 5-73	2.4	3.	•	51.2	₹9.9	4.5	2.1	0.3	0.0	0.0
29	u	•	F- 3-7 9	52.4	3.6	3.3	19.2	••5	2.4	2.4	0.2	0.0	0
29	u	v	F - 5-7-3	3.6	<u>ن</u> ن	16.8	56.4	13.0	 	0.7	3.3	3.3	9.5
30	-	•	:- 5-7 d	1.7	0.1	3.7	53.3	37.0	3.2	1.5	0.1	0-3	0.0
30	-	U i	5- 5-73	3,6	0.11	3.9	50.9	31.4		۰.	o • o	c. •	0.0

APPERVIX K. CONTINUED. 'ARTICLE SIZE PENTIENS AS PERCTYT TETAL IN 100 GRAM EAMPLES (INSPAN 1971) COLLECTED WITH A PENNA GRAM. HYDREN MYSKELEN BELLT SIZES, PEEL IS, WYRE WYSKISSIRFI RIVTY.

- Treatment

;; ;

		•				 	0	FIICL	(MH) 32 IS				
CITE CHANGE IV	2 I T C	G To wind Dad 3/) ATT	<.3425 <.3425	5690	.125	36		1.6	2.9		C	15.0
30	~	.y	5 6-7 -4	56.3	e:	16.7	5.61	u` 	9.0	0.1	0.0	5	6
80	63	'n	82-5 -4	1.5	3.5	34.1	54.	4.7	0.5	0.1	0.0	0.8	1.2
30	m	•	5-6-13	?• o	0.0	2.2	45.2	Ti • 4	47	0.0	0.1	0.0	6.0
3.0	•	'n	4- 5-75	r.*	5.1	6.1	70.0	28.5	6::	7.0	٥٠3	6.0	0.0
51	_	.3	3- 4-78	1.7	3.1	10.1	40.7	21.4	3.7	2.0	2.0	o•c	6.9
51		ıΩ	5-5-5	2.5	9.0	2.2	57.4	1 2 1	4.6	7.2		0.0	0.0
31	ы	•	\$ 1-7 ·i	2.7	0.2	7.2	47.2	36.5	5.1	1.0	0.1	0.0	0.0
51	ru	'n	4-7-4	8	5.1	5.9	6.48	33.4	#1 * pre	1.,	Ú.,	0.0	0.0
ï	,-	•	9 4-1 -+	2.1	0.2	6.1	0.94	34 . 2	ж. Ж.	2.5	2.0	0.0	0.0
31	٣٦	10	8 - 7 - 8	7.5	3.1	1.7	0 * F	69.3	7.1	1.2	2*0	0.0	0.0
25	-	•	4-30-73	24.6	1.4	10.2	30.9	29.4	3.3	2.7	3.4	2.9	3.0
25	-	í	1-30-1 B	1.5	5.0	4.5	61.1	4.0.1	\$° t	€.0	C. 3	0.0	0.0
25	t u	a	3-33-78	30.0	r •	21.1	30.3	3.1	0.2	0.1	0.0	0.0	0.0
52	•••	'n	1-30-73	13.7	2.1	12.7	6.28	8 . 4	2.0	0.0	0.0	0.0	0.0
52	-1		4-37-76	3.4	٥٠٠	6.5	75.1	2.65	4.4	2.2	5.5	0.0	0.0
25	 .	••	3-37-73	2.5	3.1	10.1	4.6	51.9	5.7	3.1	C. 3	٥.	0.0
92	-	4	1-37-73	J .,	61	12.9	Di Di Fo	.1.0	r • r	.0	0.0	0.0	0
25	-	; ^	62-38-0	ę.,	0 5	17.6	6.05	10.5	4.00	₩. 0	0.0	0.0	0.0
55	~	•	6 2-12-6	1 1	5.7	٠.	1.7	M)	2.0	0.1	6.3	٥ ٠ ٥	0.0
92	<i>c</i> ,	'n	82-11-1	1.4	3.5	11.1	6.74	13.	9.5	0.1	Ç: 3	3.3	0.0
\$2	•	•	£ 2-65-0	5 4.3	0.0	14.6	16.0	€.1 €.1	9.2	0.1	6.3	n :	٥.

FING DAY 03 SIDE CHANNEL AV BASE CA	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7	υ 1 le j	2		7 0 9 141 7 1 7 3 1 1 1	7 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34 STECK	3 0 6 2 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		2 0 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 0 U	
23	ra		1:- 1-19	?7.3	0.6	5.6	51.3	13.5	0.9	0.1	0.3	٥ . ن	3.0
2.9	~	Ŀ	11- 7-7 5	? n. ɔ	0.7	2) • 9	56.5	• •	0.1	0.0	c	C.9	o.c
(3 3	ъ	•	£ 4+ . + 1.1	11.2	1	\$2.7	52.2		0.0	o. 1	:.	o •	?.3
j. Ju		J.	11- 7-13	?1.1	(1) (2)	15.3	47.5	12.0	0.4	9.1	6.9	° .	ŋ. ŋ
29	-	•	F4-2 +31	17.1	, • .0	9.9	46.3	J • •	0.3	0.5	0.0	0.0	o.c
29		•	10- 7-75	? 4. 3	1.5	10.6	64.0	6.9	3.8	W .4	1.1	1.0	9.0
62	2	4-	10- 2-73	٠. ۵		52.4	1.04	2.3	0.1	٠,	0.3	0.5	; ;
27	1.0	v	10- 7-74	21.9	4.0	1.7	1.5	0.5	0.2	0.0	0.0	≎•0	J. 0
18 30	(4	•	10- 3-7d	. 3. 5	1.1	11.0	2.3	3.4	2.1	20.4	20.4	°°•\$	J. 5
29	w	Q S	10- 2-78	r o	0.3	•	59.7	14.7	2.1	2.4	2.0	(10 4 Ug	J. 0
\$0	-	•	10- 2-7d	2.9	C	4.6	52.9	34.3	4.4	۰,	9.1	o.	۰,
37		Us.	10- 2-13	1.2	3.0	2.2	65.3	29.4	2.0	O .	6.2	0.0	9. 9
30	2	r	16. 2-19	54 51	9.1	12.5	57.5	23.1	?? •	0.4	0.0	• •	3.0
30	~	J	13- 7-78	?. 3	0 - 2	10.4	55.3	10.4	C • 10	2.5	•	10.5	2.3
30	w	•	10- 2-78		0.2	1.6	37.0	33.6	10.3	2.4	0.3	2.5	0.0
30	<u>~</u>	Us	10- 7-73	5. 3	,, ,,	04 0 04	51.3	33.4	5.1	0	0.:	0.0	0.0
31	-	£	10- 3-78	:.	0.3	5°5	19.5	3.6		9.3	11.2	23.5	11.7
51.4/	**	u.	10- 3-7 d	0,0	9. 9	0.0	0.5	0.0	0.0	0.5	0.0	• • •	0.0

LOUIS IN N. CONTINULU. PARTICUE SIZ: FENCTIONS AS RESCRIT TOTAL IN 100 GRAM ENABLES (INCRAM 1071) COULECTED WITH A PONAE GRASH ENVIRONMENTO PHIC RELITE SITUEM ROUGH IN URBER MISSISSIPPI RIVER.

		NORTH STREET		111111111111111111111111111111111111111			U 	SOLICE:	\$17E (MK)		1 7 5	÷	
12.00 C-44-2E 2.00	1 I I	F 7 7 7 7 7 7 1 1 1	37 347	< 0.425	. 3625.	.125			1.0	2.3	0		15.
31	2	.*	17- 1-75	ज ं	င်	5	1.22	9 - 4 - 6	9.6	12.5	5.3	g- 4 70	ĵ.
::	£0	'n	12- 5-78	4.0	9.1	6.5	C • 1.	16.3	5.5	0.0	6.0	3.0	o•c
51	14	•	10- 1-78	1.3	3,1	12.1	30.1	2002	\$5.0	4	0.1	0.0	0.0
51	75	v	13+ 3-78	2 4.3	2.0	5.2	36.9	17.5	6.4	6.1	1.2	8.0	0.3
52		a	61-7 -:	57.3	1.1	5.0	15.0	15,3	9.6	6°	n 6	ę,	0.0
52	-	ın	62 mg as	0.1	0.1	7.3	2.45	1.25	1.1	2.3	61	6.3	0.3
\$7	Α,	.*	94-4 -6	5.7	0.0	26.3	5.86	1 • 5	ei 0	0.0	0.0	o•0	6.0
52	٨	ורי	97-7-6	3.3	9.4	9.2	17.4	5	2.0	9.7	0.1	0.5	Ċ
57	~7	•	64-7 -0	₩. •	3.2	2.4	45.9	56.1	13.5	5.4	1.7	0 6	3.3
٤, ،	ur.	í,	62-5 -5	10.2	7.5	12.3	57.3	3 · 44	1.2	c 	0.3	c. t)	0
254.	•••	. •	62-4 -+	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
25.4/		•	64-3		0.0	0.0	0.0	o•0	0.0	0.0	0.0	٥. ن	9.3
1282	€√		42-4 -4	3.9	3.3	0.3	0.0	0.0	ن ن	0.0	0.0	6.0	0.0
25.4/	÷2	w	8- F-79	3.3	7.0	6.7	0.0	0.0	0.0	0.0	6.5	6.5	6
78.41		•	91-3-4	0.0	0.0	0.0	0.0	0	0.0	o.0	6.3	6.0	0.0
/ § 42	pri	v	6- 4-19	0.0	0.0	0.0	0.0	0	0.0	0.0	6.0	0.0	J.C
5.3		4	97-5-6	¥ *5	3.5	15.8	62.1	7.1	1.5	1+2	1.2	5.5	φ. ()
24		u ⁿ	62-4-4	6.5	2.1	.,	# # #0	15.3	2.5	1.1	0.3	0	0.0
5.8	tv.	7	62-5 -4	2 3. 5	9.1	10.3	1.04	7. 	1.1	•	· •	3.3	0.0
29	2	u,	52-5-14	7.0	0.1	3.0	۶۶. ۰	3.45	2.4		C • 3	0.0	0.0
2.3		. •	6 7 4 4 4	r.						r	e c	,	,

CONTINUODA PARTIFULO SIZO FRANTITANS AS RORGINT TOTAL IN 100 GRAN SAMPLES (INGRAM 1971) COULECTED AJIH A PONAR GRARA. Hydrourhhid nouter bitter Pool It. Grre Missiosiari Pinoa.

THE CHANGE	7/ 5115 Z/	AND SELF CAL	37 34F2	01.50 - 01.50 0.50 - 0.50 0.50 - 0.50	31 21 21		25.5	55	2.0	100		*	157 0
2.8	يون		5- 5-79	# 7. T	-	:4.3	33.1	1.3	9.3	0.3	9. 7	0.3	9
23		•	7- 7-79	£	J. ¥	:1.0	21.5	10 . 2	2.7	ŧ.,	a f	13.9	:6.1
77	_	u•	Se 4-19	7.7		: 7. 9	3	24.4	19.7	ن ۸	17	3.3	3.3
29	ixi		3- 7-79	75.	·,	15 • (3)	رب • انه	3.7	9.3	9.1	a.)	0.3	3.0
20	^,	u.	379	21.	ĵ . •	22.5	46.0	7.7	6.5	0. 3	0.2	3.0	ن. ن
۲3	-	۵۰	7-7-79	17.1	1.5	*	53.0	21.4	11.5	0.0	0.0	0.5	? •
ເາ		J,	62-1 -0	.v.	э ,,	7.5	\$7.4	3.5	3.6	0.	3	0.3	.°.
30	-	•	S. 7-7.9	ċ. 3	a. o	0.0	0 - 2	o.c	၁. ၁	0,0	0.0	3.0	3.0
33	1	y.	h- 7-79	0.0	c. 0	0.0	0.0	0.0	J. O	0.0	ງ. ງ	0-0	3.0
30	2	•	5- 7-79	:	o. 1	7.5	80.4	25.4	3.5	:,	0	c.3	٥ . ٥
5.9	63	U.	1- 7-79	:,	٠ •	4.5	57.7	30.:	5.5	1. :	9	:. 3	•
30		Δ-	n= 7-79	0.7	0.1	σ· •	32.7		0.,	c. •	٠		0 0
30	-	J.	3 - 3 - 7 9	17.1	9. 3	· · · ·	5.2	15.2		0.7	0 - 7	?.0	5 •
31	_	٠	h= 7-79	10.6	0.2	2.4	41.2	35.7	5.1	2.5	;;	::0	0.0
31	,	JI	6- 7-79) i 0	o.,9	7.0	63 60 •	12.1	1.4	0.	0.0	0	
3:	۲,	~	{- 7-79	4.3	ن ب	11.0	4.62	15.2	6.3	.	6	7.0	ن •
31	:\4	ū	£ 7-7 3	٤.2	a . 2	J. ś	22.3	13.7	49.3	* . 3	6.3	3.3	٠ ن ن
3,1	~	6-	6- 7-79	3. 5	0.2	• •	55.3	23.1	· • 2	1. 7	:.	ن د د	9
31	Ļ	v,	60 7-74	25.0	ن در	7.	د. ت ن	. D		ن • ،	က (၁	0	•

Appendix L. Mean yearly discharge in thousands entering Pool 13 from Lock and Dam 12, 1970-1979, Upper Mississippi River. Data were obtained from G.E. Johnson, Chief of Hydraulics, U.S. Army Corps of Engineers, Rock Island, Illinois.

м ³ /s	Ft ³ /s
1.1	38.9
1.4	49.6
1.7	58.9
1.9	65.5
1.3	46.4
1.4	50.1
0.9	33.2
0.8	27.3
1.3	46.7
1.7	61.6
1.4	47.8
	1.1 1.4 1.7 1.9 1.3 1.4 0.9 0.8 1.3

Appendix M. Mean monthly discharge in thousands entering Pool 13 from Lock and Dam 12, January 1978 to December 1979, Pool 13, Upper Mississippi River. Data were obtained from G.E. Johnson, Chief of Hydraulics, U.S. Army Corps of Engineers, Rock Island, Illinois.

	1	978	1	979
	M ³ /s	Ft ³ /s	M ³ /s	Ft ³ /s
January	0.9	32.4	0.6	22.0
February	0.7	24.1	0.7	24.0
March	1.0	34.9	1.9	66.0
April	2.6	92.5	3.9	136.3
May	1.7	58.8	3.8	135.7
June	1.8	63.2	2.3	80.5
July	2.7	94.2	1.8	65.0
August	1.3	45.4	1.6	56.1
September	1.8	63.0	1.4	49.7
October	1.1	39•9	1.0	34.8
November	0.9	32.1	1.6	54.8
December	0.7	25.1	1.0	34.2

Appendix N. Results of Mann-Whitney tests of bottom current velocities (cm/s) at benthos stations in the side channel and wing dams and Wilcoxon paired-sample test of velocities at stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations). Only stations located nearest to the Illinois bank were used for comparison of velocities upstream vs. downstream of the wing dams. Station 30-6-7 in August 1978 was eliminated because of an erroneous velocity value (Appendix F-2).

		Site			Ū	n ₁ ,	n ₂
Side	channel	a vs. wing	dam	25	67.0	9,	12
		a vs. wing	dam	26	63.0	9,	12
		vs. wing	dam	28 ^a	60.0	9,	12
		vs. wing	dam	29 ^a	91.5**	9,	12
		vs. wing	dam	30 ^a	85.0**	9,	11
		vs. wing	dam	31 ^a	103.0**	9,	12
Wing	dam 25 ^a	vs. wing	dam	26	75.0	12,	12
		vs. wing	dam	28 ^a	105.5	12,	12
		vs. wing			130.0**	12,	12
		vs. wing			119.0**	12,	11
		vs. wing			139.5**	12,	12
Wing	dam 26	vs. wing			93.0	12,	12
		vs. wing			122.5**	12,	12
		vs. wing			115.0*	12,	11
		vs. wing			137.5**	12,	12
Wing	dam 28	vs. wing			112.5*	12,	12
		vs. wing			105.5*	12,	11
		vs. wing			133.0**	12,	12
Wing	dam 29 ^a	vs. wing	dam	30	73.0	12,	11
		vs. wing	dam	31 ^a	87.5	12,	12
Wing	dam 30	vs. wing			94.5	11,	12
		Downstrea			T 49.0	<u>n</u> 18	

alarger U statistic of the pair (Zar 1974) *p∠0.05

^{**}p∠0.01

Appendix 0. Spearman's rank correlation coefficients for factors affecting benthic invertebrate density, biomass, and number of taxa, 1978. Dependent variables were; density/m², biomass(g)m², and number of taxa. Independent variables were; % silt-clay, % sand, % gravel, median particle size, and bottom current velocity (cm/s). Only invertebrates with densities greater than 25 individuals/m² in 1978 were included in the analysis. Independent

	% silt-clay	% sand	% gravel	Median particle size	Velocity
Total Invertebrates					
Density	0.557**	-0.485**	-0.085	-0.352**	-0.215
Biomass	0.578**	-0.538**	-0.018	-0.393**	-0.243*
Taxa	0.613**	-0.551**	0.063	-0.284*	-0.292*
Ologochaeta					
Density	0.657**	-0.515**	-0.053	-0.283*	-0.227*
Biomass	0.625**	**084.0-	-0.164	-0.390**	-0.224*
Hexagenia sp.					
Density	0.701**	-0.620**	-0.165	-0.528**	-0.362**
Biomass	0.706**	-0.625**	-0.173	-0.541**	-0.329**
Chironomidae					
Density	0.293**	-0.248*	-0.004	-0.074	-0.049
Biomass	0.502**	-0.441**	-0.002	-0.164	-0.144

^{*}p<0.05, 77 df **p<0.01, 77 df

Results of Mann-Whitney tests of benthic invertebrate density and biomass (g) per m^2 and number of taxa from the side channel and wing dams and Wilcoxon paired-sample tests of invertebrate density and biomass (g) per m2 and number of taxa from stations upstream and downstream of the wing dams, Pool 13, Upper Mississippi River, 1978 (refer to Figure 1 for locations). Only stations located nearest to the Illinois bank were used for comparisons of density, biomass, and number of taxa. Appendix P.

			Dens	Density	Bion	Biomass	Та	Таха	
S	Site		ਰ	n, n ₂	q	n, n	Ω	n, n ₂	n ₂
Side channel vs. wing	vs.	wing dam 25	-2.92**	27, 36	-3.03**	27, 36	0.49	6	12ª
	vs.	vs. wing dam 26	0.27	27, 36	1.02	27, 36	72.5	9a	12
	vs.	vs. wing dam 28	2.69**	27, 36	2.99**	27, 36	*6.5*	9a	12
	VS.	vs. wing dam 29	1.46	27, 36	2.24*	27, 36	71.0	g6;	12
	vs.	wing dam 30	2.59**	27, 36	2.74**	27, 36	84.5*	^с в	12
	vs.	wing dam 31	2.95**	27, 30	2.75**	27, 30	63.5	9a	10
Wing dam 25	vs.	wing dam 26	3.53**	36, 36	3.74**	36, 36	103.5	12ª,	12
	vs.	wing dam 28	5.92**	36, 36	5.55**		124.0**	12ª,	12
	vs.	wing dam 29	**66.7	36, 36	4.72**	36, 36	111.0*	12ª,	12
	vs.	wing dam 30	5.61**	36, 36	5.30**	36, 36	121.0**	12ª,	12
	۲ ا	vs. wing dam 31	2.64**	36, 30	4.95**	36, 30	97.5*	12^{a}	10
Wing dam 26	vs.	vs. wing dam 28	2.61**	_	2.34*		5.66	12ª,	12
	vs.	vs. wing dam 29	1.16	36, 36	1.23		73.0	12ª,	12
	vs.	wing dam 30	2.42*	36, 36	2.07*	36, 36	105.5	12 ^a ,	12
	vs.	vs. wing dam 31	2.95**	36, 30	2.11*	36, 30	65.5	12ª,	10

Appendix P. (continued)

	Der	Density	Bic	Biomass	1:	Taxa
Site	a	n ₁ , n ₂	Ø.	n ₁ , n ₂	u	n ₁ , n ₂
Wing dam 28 vs. wing dam 29	-1.85	36, 36	-1.70	36, 36	99.0	12, 12 ^a
vs. wing dam 30	-0.40	36, 36	-0.28	36, 36		12 ^a , 12
vs. wing dam 31	0.58	36, 30	0.06	36, 30		12, 10 ^a
Wing dam 29 vs. wing dam 30	1.23	36, 36	1.47	36, 36	97.5	12 ^a , 12
vs. wing dam 31	1.92	36, 30	1.54	36, 30	64.5	12 ^a , 10
Wing dam 30 vs. wing dam 31	-2.00*	36, 30	0.21	36, 30	80.5	12, 10 ^a
	Н	n	Ħ	n	H	n
Upstream vs. downstream	316**	51	377**	51	33*	17

[&]quot;Larger statistic of the pair (Zar 1974)
*pz0.05

**p_0.01

Results of t-tests of square-root mean total invertebrate density per mand Mann-Whitney tests of total invertebrate biomass (g) per m2 and number of taxa collected with a 252-cm2 Ponar grab in June, August, September 1978, and June 1979, Pool 13, Upper Mississippi River (refer to Figure 1 for locations). Derived means (Quenouille 1950, Elliot 1977) for transformed counts are in Table 6. Appendix Q.

	Density	ç3	Bior	Biomass	Taxa	Ха
Months	ct.	đf	ರ	$z_{\rm u}$, $t_{\rm u}$	q	zu 'ru
June 1978 vs. August 1978	3.52**	160	5.16**	81, 81	3.24**	27, 27
vs. September 1978	1.09	154	1.53	81, 75	-0.47	27, 25
vs. June 1979	92.0	148	1,41	81, 69	1.46	27, 23
August 1978 vs. September 1978	-2.33*	154	-3.71**	81, 75	-3.59**	27, 25
vs. June 1979	-3.09**	148	-4.61**	81, 69	-2.05*	27, 23
September 1978 vs. June 1979	0.43	142	0.31	75, 69	1.85	25, 23

*p<0.05 -**p<0.01