NOI2017 模拟试题

ExfJoe

June 23, 2017

竞赛时长: 300min

试题名称	带权图	网格	修路
可执行文件名	graph	grid	road
输入文件名	graph.in	grid.in	road.in
输出文件名	graph.out	grid.out	road.out
时间限制	1s	2s	2s
空间限制	256M	256M	256M
测试点数目	10	20	10
测试点分数	10	5	10
是否有 SPJ	否	否	否
是否有部分分	否	否	否
题目类型	传统	传统	传统

- 认真独立完成试题,不与他人交流讨论
- 最终评测在 Win10 下使用 Lemon,默认栈空间限制为 8M, 开启 O2 优化
- 试题按英文名称字典序排序

带权图

题目描述

给定一张连通无向图 G = (V, E) 与一个素数 P,其中 V 是点集 E 为边集。

图中的每条边有三种权值 A,B,C,但同一条边的两个方向上的权值不一定相等。更具体地,它们满足以下条件:

1.

$$\forall (u, v) \in E, A(u, v) \equiv -A(v, u) \pmod{P}$$
$$\forall (u, v) \in E, B(u, v) \equiv B(v, u) \pmod{P}$$
$$\forall (u, v) \in E, C(u, v) \equiv -C(v, u) \pmod{P}$$

2. 对于任意结点 $v \in V$, 有:

$$\sum_{(v,w)\in E} C(v,w) \equiv 0 \pmod{P}$$

3. 对于图中任意一个环 $< v_0, v_1, ..., v_{n-1}, v_n >$,其中 $v_n = v_0$ 且 $(v_i, v_{i+1}) \in E$,有:

$$\sum_{i=0}^{n-1} B(v_i, v_{i+1}) \cdot C(v_i, v_{i+1}) \equiv \sum_{i=0}^{n-1} A(v_i, v_{i+1}) \pmod{P}$$

现在给定图中每条边的权值 A, B,请你求出 C 的取值。

输入格式

第一行三个正整数 n, m, P,其中 |V| = n,|E| = m。结点从 $1 \sim n$ 编号。接下来 m 行每行四个整数 x, y, a, b,表示结点 x, y 之间有一条无向边,并且:

$$A(x,y) = a$$
 $B(x,y) = b$ $A(y,x) = -a$ $B(y,x) = b$

保证图中不存在重边与自环。

输出格式

共 m 行,按照输入所给定的边的顺序,输出 $\operatorname{mod} P$ 意义下大等于零的 C(x,y) 的值。由题意可知 C(y,x) 的值,但是请注意不需要输出它。数据保证有唯一解。

样例 1

	Input	
4 5 19	-	
1 2 1 1		
2 3 0 1		
1 4 1 2		
3 1 1 1		
4 2 0 1		

Uutput
4
18 14 18
14
18
14

样例 2 与样例 3

见附加文件 sample

约定

测试点编号	n 的限制	m 的限制	P 的限制	
1	n=3	m = 3	P=5	
2				
3	$n \le 40$	$m \le 200$	$P \le 10^9$	
4				
5				
6			$P \le 10^{18}$	
7	$n \le 100$	$m \le 2000$		
8				
9				
10				

对于所有测试点: $0 \le a, b < P$, b > 0

网格

题目描述

给定一张 $n \times m$ 的网格,行从上到下依次标号为 $1 \sim n$,列从左到右依次标号为 $1 \sim m$.

网格中有 C 个格子是特殊点,现在要找两条从 (1,1) 到 (n,m) 的路径,每次路径只能向下或是向右走一格,要求两条路径经过的特殊点个数之和不超过 D,并且两条路径在起点与终点之外的格子不能相交,求路径的方案数对 mod 取模的结果。

输入格式

第一行一个正整数 T 表示数据组数。

每组数据第一行五个非负整数 n, m, C, D, mod,代表行数、列数、特殊点格数、经过的特殊点之和限制以及模数。

接下来 C 行每行包含两个正整数 x,y 表示一个特殊点。数据保证 (1,1) 与 (n,m) 不是特殊点。

输出格式

对于每组数据输出一行一个整数表示答案。

样例

	Input	
4	•	
2 3 0 0 10		
2 3 1 0 16		
2 1		
3 3 1 0 7		
2 2		
2 2 2 1 11		
1 2		
2 1		

_	Output	_
1	1	
1		

样例 2

见附加文件 sample

约定

15% 的数据: $n, m \leq 5$

30% 的数据: $n, m, C \leq 50$

另有 20% 的数据: C=0

另有 20% 的数据: D=0

100% 的数据: $1 \le T \le 5$, $2 \le n, m \le 10^5$, $0 \le D \le C \le \min(200, n \times m - 2)$, $1 \le mod \le 10^9$ 编号为奇数的测试点中 mod 一定为质数

修路

题目描述

C 国有 n 座城市,城市从 $1 \sim n$ 编号,其中城市 s 为 C 国首都。C 国内共有 m 条双向道路,每条道路连接着两座城市,并且保证任意两座城市可以通过这些道路相互到达。

每座城市有一个优先级 p_i ,不同的城市优先级也不相等,并且 $1 \le p_i \le n$ 。优先级越小意味着这座城市越重要,保证首都 s 的优先级一定是 1。

现在 C 国总统想要在这 m 条道路中选择若干条,并将它们修建为高速公路。这些道路可以按如下方式确定:

- 令已考虑的城市集合为 M,当前正在考虑的城市为 c。初始时 $M = \{s\}$ 且 c = s。
- 接下来每次会选择一个与城市 c 有道路直接相连的城市 u, 并且 u 需要满足以下几个条件:
 - 1. $u \notin M$
 - 2. 存在一条从首都 s 到 u 的最短路径经过道路 (c,u)
 - 3. u 是满足上述两个条件中优先级最小的
- 选出城市 u 后,将 u 添加进集合 M 中,并将 (c,u) 确定为高速公路。接着令 $t_u=c$,最后将 c 改为 u 即 c=u。
- 若找不到满足上述条件的城市 u,则将 c 改为 t_c 即 $c = t_c$ 。
- 重复上述操作直到所有城市都属于集合 M 时即可停止,所有高速公路已经确定。

容易看出由高速公路组成的高速公路网中,任意两座城市间有且仅有一条路径。而修建高速公路 时必然要封锁正在修建的道路,因此若同时修建所有高速公路,这会导致 C 国交通瘫痪。

为了研究最优的修建方案,我们称城市 t_u 直接管辖城市 u,并认为一座城市 u 所管辖的城市为: u 直接管辖的城市以及被 u 直接管辖的城市所管辖的所有城市。

接下来总统会有 q 次询问,每次询问给出两座城市 u,v,并且保证城市 u 管辖城市 v。接着总统想选择一个管辖着城市 v 且被城市 u 管辖的城市 w,然后修建高速公路网中城市 u 与城市 w 路径间所有的高速公路 (此时这些路都将被封锁,不可通过)。为了保持交通顺畅,总统希望修建过程中从首都 s 到城市 v 的最短路径距离没有改变 (可以经过普通道路)。在此基础上请你告诉总统,每次对于某对城市 (u,v) 的询问,最多能修建多少条高速公路。

输入格式

第一行四个非负整数 n, m, s, ty, 其中 ty 为数据类型, 且 $ty \in \{0, 1\}$ 。

第二行 n 个整数 p_i 表示优先级。

接下来 m 行每行三个正整数 u,v,l 表示城市 u,v 之间有一条长为 l 的道路。保证没有重边。

接下来一行一个整数 q 表示询问数。

下来 q 行每行两个正整数 u,v 表示一次询问。若 ty=1,设上一次询问的答案为 ans,则真正的询问为 $u'=u\oplus ans,v'=v\oplus ans$, \oplus 为二进制异或运算。

输出格式

共 q 行,每行一个整数表示对应询问的答案。

样例 1

	Input
4 4 1 0	
1 2 3 4	
1 2 1	
2 3 1	
1 4 1	
4 3 1	
2	
1 4	
2 3	

Oı	ıtput
0	•
1	

样例 2

见附加文件 sample

约定

测试点编号	n	m	q	ty
1	≤ 100	≤ 200	≤ 200	= 1
2	≤ 500	≤ 1000	≤ 1000	= 0
3				= 1
4	≤ 3000	≤ 5000	≤ 5000	= 0
5	≤ 2000	<u>></u> 5000	<u> ></u> 5000	
6		= n		= 1
7	$\leq 10^5$	= n + 1		
8			$\leq 2 \times 10^5$	= 0
9		$\leq 2 \times 10^5$		= 1
10				— 1

对于所有测试点: $1 \le l \le 10^8$