

# PyTorch Tutorial

07. Multiple Dimension Input

#### Revision

| x (hours) | y (points) |
|-----------|------------|
| 1         | 2          |
| 2         | 4          |
| 3         | 6          |
| 4         | ?          |

| x (hours) | y (pass/fail) |  |  |  |  |
|-----------|---------------|--|--|--|--|
| 1         | 0 (fail)      |  |  |  |  |
| 2         | 0 (fail)      |  |  |  |  |
| 3         | 1 (pass)      |  |  |  |  |
| 4         | ?             |  |  |  |  |

#### **Diabetes Dataset**

| X1    | X2    | X3    | X4    | X5    | X6    | X7    | X8    | Υ |        |
|-------|-------|-------|-------|-------|-------|-------|-------|---|--------|
| -0.29 | 0.49  | 0.18  | -0.29 | 0.00  | 0.00  | -0.53 | -0.03 | 0 |        |
| -0.88 | -0.15 | 0.08  | -0.41 | 0.00  | -0.21 | -0.77 | -0.67 | 1 | Sample |
| -0.06 | 0.84  | 0.05  | 0.00  | 0.00  | -0.31 | -0.49 | -0.63 | 0 |        |
| -0.88 | -0.11 | 0.08  | -0.54 | -0.78 | -0.16 | -0.92 | 0.00  | 1 |        |
| 0.00  | 0.38  | -0.34 | -0.29 | -0.60 | 0.28  | 0.89  | -0.60 | 0 |        |
| -0.41 | 0.17  | 0.21  | 0.00  | 0.00  | -0.24 | -0.89 | -0.70 | 1 |        |
| -0.65 | -0.22 | -0.18 | -0.35 | -0.79 | -0.08 | -0.85 | -0.83 | 0 |        |
| 0.18  | 0.16  | 0.00  | 0.00  | 0.00  | 0.05  | -0.95 | -0.73 | 1 |        |
| -0.76 | 0.98  | 0.15  | -0.09 | 0.28  | -0.09 | -0.93 | 0.07  | 0 |        |
| -0.06 | 0.26  | 0.57  | 0.00  | 0.00  | 0.00  | -0.87 | 0.10  | 0 |        |

#### **Diabetes Dataset**

| X1    | X2    | X3    | Х4    | X5    | Х6    | X7    | X8    | Υ |
|-------|-------|-------|-------|-------|-------|-------|-------|---|
| -0.29 | 0.49  | 0.18  | -0.29 | 0.00  | 0.00  | -0.53 | -0.03 | 0 |
| -0.88 | -0.15 | 0.08  | -0.41 | 0.00  | -0.21 | -0.77 | -0.67 | 1 |
| -0.06 | 0.84  | 0.05  | 0.00  | 0.00  | -0.31 | -0.49 | -0.63 | 0 |
| -0.88 | -0.11 | 0.08  | -0.54 | -0.78 | -0.16 | -0.92 | 0.00  | 1 |
| 0.00  | 0.38  | -0.34 | -0.29 | -0.60 | 0.28  | 0.89  | -0.60 | 0 |
| -0.41 | 0.17  | 0.21  | 0.00  | 0.00  | -0.24 | -0.89 | -0.70 | 1 |
| -0.65 | -0.22 | -0.18 | -0.35 | -0.79 | -0.08 | -0.85 | -0.83 | 0 |
| 0.18  | 0.16  | 0.00  | 0.00  | 0.00  | 0.05  | -0.95 | -0.73 | 1 |
| -0.76 | 0.98  | 0.15  | -0.09 | 0.28  | -0.09 | -0.93 | 0.07  | 0 |
| -0.06 | 0.26  | 0.57  | 0.00  | 0.00  | 0.00  | -0.87 | 0.10  | 0 |

Feature

# Multiple Dimension Logistic Regression Model

#### Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(x^{(i)} * \omega + b)$$



#### Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n + b)$$

# Multiple Dimension Logistic Regression Model

#### Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(x^{(i)} * \omega + b)$$



#### Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n + b)$$

$$\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n = \begin{bmatrix} x_1^{(i)} & \cdots & x_8^{(i)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix}$$



# Multiple Dimension Logistic Regression Model

#### Logistic Regression Model

$$\hat{y}^{(i)} = \sigma(x^{(i)} * \omega + b)$$







#### **Logistic Regression Model**

$$\hat{y}^{(i)} = \sigma(\begin{bmatrix} x_1^{(i)} & \cdots & x_8^{(i)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b)$$
$$= \sigma(z^{(i)})$$

#### **Logistic Regression Model**

$$\hat{y}^{(i)} = \sigma(\sum_{n=1}^{8} x_n^{(i)} \cdot \omega_n + b)$$

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$
 Sigmoid function is in an element-wise fashion.

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$
 Sigmoid function is in an element-wise fashion.

$$z^{(1)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$
 Sigmoid function is in an element-wise fashion.

$$z^{(1)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$z^{(1)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$N \times 1$$

$$z^{(N)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(N)} \\ \vdots \\ x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + \begin{bmatrix} b \\ \vdots \\ b \end{bmatrix}$$

$$\begin{bmatrix} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(N)} \end{bmatrix} = \begin{bmatrix} \sigma(z^{(1)}) \\ \vdots \\ \sigma(z^{(N)}) \end{bmatrix} = \sigma(\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix})$$

$$z^{(1)} = \begin{bmatrix} x_1^{(1)} & \cdots & x_8^{(1)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

$$\vdots$$

$$z^{(N)} = \begin{bmatrix} x_1^{(N)} & \cdots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + b$$

```
class Model(torch.nn. Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear = torch.nn. Linear(8, 1)
        self.sigmoid = torch.nn. Sigmoid()

def forward(self, x):
        x = self.sigmoid(self.linear(x))
        return x

model = Model()
```

$$\begin{bmatrix} z^{(1)} \\ \vdots \\ z^{(N)} \end{bmatrix} = \begin{bmatrix} x_1^{(1)} & \dots & x_8^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_8^{(N)} \end{bmatrix} \begin{bmatrix} \omega_1 \\ \vdots \\ \omega_8 \end{bmatrix} + \begin{bmatrix} b \\ \vdots \\ b \end{bmatrix}$$

$$N \times 1$$

$$N \times 8$$

$$8 \times 1$$

$$N \times 1$$

### Linear Layer



### Linear Layer

$$X = \begin{bmatrix} x_1^{(1)} & \dots & x_8^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_8^{(N)} \end{bmatrix} \qquad X \longrightarrow 0 = \begin{bmatrix} o_1^{(1)} & o_2^{(1)} \\ \vdots & \vdots \\ o_1^{(N)} & o_2^{(N)} \end{bmatrix}$$

# Linear Layer

$$X = \begin{bmatrix} x_1^{(1)} & \dots & x_8^{(1)} \\ \vdots & \ddots & \vdots \\ x_1^{(N)} & \dots & x_8^{(N)} \end{bmatrix} \qquad X \longrightarrow 0 = \begin{bmatrix} o_1^{(1)} & \dots & o_6^{(1)} \\ \vdots & \ddots & \vdots \\ o_1^{(N)} & \dots & o_6^{(N)} \end{bmatrix}$$

$$8 \times 6 \quad W \qquad b$$

#### **Neural Network**



#### Example: Artificial Neural Network



# **Example: Diabetes Prediction**

| X1    | X2    | X3    | X4    | X5    | Х6    | X7    | X8    | Υ |
|-------|-------|-------|-------|-------|-------|-------|-------|---|
| -0.29 | 0.49  | 0.18  | -0.29 | 0.00  | 0.00  | -0.53 | -0.03 | 0 |
| -0.88 | -0.15 | 0.08  | -0.41 | 0.00  | -0.21 | -0.77 | -0.67 | 1 |
| -0.06 | 0.84  | 0.05  | 0.00  | 0.00  | -0.31 | -0.49 | -0.63 | 0 |
| -0.88 | -0.11 | 0.08  | -0.54 | -0.78 | -0.16 | -0.92 | 0.00  | 1 |
| 0.00  | 0.38  | -0.34 | -0.29 | -0.60 | 0.28  | 0.89  | -0.60 | 0 |
| -0.41 | 0.17  | 0.21  | 0.00  | 0.00  | -0.24 | -0.89 | -0.70 | 1 |
| -0.65 | -0.22 | -0.18 | -0.35 | -0.79 | -0.08 | -0.85 | -0.83 | 0 |
| 0.18  | 0.16  | 0.00  | 0.00  | 0.00  | 0.05  | -0.95 | -0.73 | 1 |
| -0.76 | 0.98  | 0.15  | -0.09 | 0.28  | -0.09 | -0.93 | 0.07  | 0 |
| -0.06 | 0.26  | 0.57  | 0.00  | 0.00  | 0.00  | -0.87 | 0.10  | 0 |

#### Example: Diabetes Prediction

Prepare dataset
we shall talk about this later

Design model using Class inherit from nn.Module

Construct loss and optimizer using PyTorch API

Training cycle forward, backward, update

#### Example: 1. Prepare Dataset

```
import numpy as np
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:,:-1])
y_data = torch.from_numpy(xy[:, [-1]])
```

#### Example: 2. Define Model



```
import torch
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self). __init__()
        self. linear1 = torch. nn. Linear (8, 6)
        self. linear2 = torch. nn. Linear (6, 4)
        self. linear3 = torch. nn. Linear (4, 1)
        self. sigmoid = torch. nn. Sigmoid()
    def forward(self, x):
        x = self. sigmoid(self. linear1(x))
        x = self. sigmoid(self. linear2(x))
        x = self. sigmoid(self. linear3(x))
        return x
model = Model()
```

# Example: 3. Construct Loss and Optimizer

#### Mini-Batch Loss Function for Binary Classification

$$loss = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n)$$

$$\omega = \omega - \alpha \frac{\partial cost}{\partial \omega}$$

#### Update

$$\omega = \omega - \alpha \frac{\partial cost}{\partial \omega}$$

```
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), 1r=0.1)
```

### Example: 4. Training Cycle

```
for epoch in range (100):
    # Forward
    y_pred = model(x_data) <--</pre>
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
    # Backward
    optimizer.zero_grad()
    loss. backward()
    # Update
    optimizer. step()
```

#### **NOTICE:**

This program has not use **Mini-Batch** for training.

We shall talk about **DataLoader** later.

| Activation function                                                                   | Equation                                                                                                                                        | Example                                   | 1D Graph |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|
| Unit step<br>(Heaviside)                                                              | $\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$                                                               | Perceptron<br>variant                     |          |
| Sign (Signum)                                                                         | $\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$                                                                | Perceptron<br>variant                     |          |
| Linear                                                                                | $\phi(z)=z$                                                                                                                                     | Adaline, linear regression                |          |
| Piece-wise linear                                                                     | $\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$ | Support vector machine                    |          |
| Logistic (sigmoid)                                                                    | $\phi(z) = \frac{1}{1 + e^{-z}}$                                                                                                                | Logistic<br>regression,<br>Multi-layer NN |          |
| Hyperbolic tangent                                                                    | $\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$                                                                                                   | Multi-layer<br>Neural<br>Networks         | -        |
| Rectifier, ReLU<br>(Rectified Linear<br>Unit)                                         | $\phi(z) = \max(0, z)$                                                                                                                          | Multi-layer<br>Neural<br>Networks         |          |
| Rectifier, softplus  Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com) | $\phi(z) = \ln(1 + e^z)$                                                                                                                        | Multi-layer<br>Neural<br>Networks         |          |

http://rasbt.github.io/mlxtend/user\_guide/general\_concepts/activation-functions/#activation-functions-for-artificial-neural-networks



https://dashee87.github.io/data%20science/deep%20learning/visualising-activation-functions-in-neural-networks/



https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

```
import torch
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self). __init__()
        self. linear1 = torch. nn. Linear (8, 6)
        self. linear2 = torch. nn. Linear (6, 4)
        self. linear3 = torch. nn. Linear (4, 1)
        self.activate = torch.nn.ReLU()
    def forward(self, x):
        x = self. activate(self. linearl(x))
        x = self. activate(self. linear2(x))
        x = self. activate(self. linear3(x))
        return x
model = Model()
```



# PyTorch Tutorial

07. Multiple Dimension Input