We claim:

1. A process for the extractive removal of optionally substituted phenol, 3-hydroxypyrazole, 2-hydroxypyridine, hydroquinone, resorcinol, catechol; C₁-C₂₀-alcohol, glycol, glycerol, optionally substituted aniline, N-C₁-C₂₀-alkylamine, N,N-di-C₁-C₂₀-alkylamine, P-C₁-C₂₀-alkylphosphine, P,P-di-C₁-C₂₀-alkylphosphine, phenylphosphine, diphenylphosphine, hydrazine, hydroxylamine, sulfonic acid, sulfinic acid, phosphoric acid, carboxylic acid or amino acid from aprotic solvents by means of ionic liquids of the formula [K]_n+[A]ⁿ-,

10 where

5

15

20

25

30

n is 1, 2 or 3;

[K]+ is selected from the group consisting of:

- quaternary ammonium cations of the formula [NR¹, R²,R³,R⁴]⁺ (Ia),
- quaternary phosphonium cations of the formula [PR¹, R²,R³,R⁴]⁺ (lb),
 where

R¹, R², R³, R⁴ are each C₁-C₁₂-alkyl or phenyl-C₁-C₄-alkyl, where the aliphatic radicals may bear from 1 to 4 substituents selected from the group consisting of halogen, amino, cyano, C₁-C₄-alkoxy and the phenyl ring may bear the abovementioned

substituents and also C₁-C₆-alkyl, carboxylate.

and sulfonate groups;

R¹ and R² may together form a C₄-C₅-alkenylene radical

which may be substituted by C₁-C₄-alkyl,

halogen, cyano or C₁-C₄-alkoxy;

imidazolium cations of the formula,

pyridinium cations of the formula,

pyrazolium cations of the formula,

$$(R^{x})_{n} \xrightarrow{(+)} N^{-R}$$
 (le),

• quinolinium cations of the formula,

thiazolium cations of the formula,

triazinium cations of the formula,

$$(R^{x})_{n}$$
 $N-R$ $(Ih)_{n}$

5

where the index n and the substituents R and R^x have the following meanings:

n is 0, 1, 2, 3 or 4;

10

R is hydrogen, C₁-C₁₂-alkyl or phenyl-C₁-C₄-alkyl, where the aliphatic radicals may bear from 1 to 4 substituents selected from the group consisting of halogen, amino, cyano, C₁-C₄-alkoxy and the phenyl ring may bear the abovementioned substituents and also C₁-C₆-alkyl, carboxylate and sulfonate groups;

15

 R^x is C_1 - C_6 -alkyl, halogen, amino, cyano, C_1 - C_4 -alkoxy, carboxylate or sulfonate;

20

- [A]ⁿ⁻ is the partly or fully deprotonated anion of an inorganic or organic protic acid H_nA (III), where n is a positive integer and indicates the charge on the anion.
- 25 2. The process according to claim 1, wherein the organic compound to be extracted is a phenol or alcohol.
 - 3. The process according to claim 1 or 2, wherein the aprotic solvent is a hydrocarbon.

30

- 4. The process according to any of claims 1 to 3, wherein the hydrocarbon is an alkane or halogenated alkane.
- 5. The process according to any of claims 1 to 3, wherein the hydrocarbon is an AMENDED SHEET

15

arene which is optionally substituted by halogen, nitro, cyano, C_1 - C_3 -alkyl, C_1 - C_3 -alkoxy or methoxycarbonyl.

- 6. The process according to any of claims 1 to 5, wherein the ionic liquid is an ammonium or imidazolium salt or a mixture of these salts.
 - 7. The process according to any of claims 1 to 6, wherein the ionic liquid is a sulfate or hydrogensulfate.
- 10 8. The process according to claim 1, 6 or 7, wherein a phenol is removed from chlorobenzene.
 - 9. The process according to any of claims 1 to 8, wherein the extracted impurity is separated off from the ionic liquid by distillation.
 - 10. The process according to any of claims 1 to 8, wherein the extracted impurity is separated off from the ionic liquid by reextraction.