Normalizing flows for discrete data

Emiel Hoogeboom, Jorn Peters, Rianne van den Berg* & Max Welling.

Integer discrete flows and lossless compression Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, Max Welling

Normalizing flows

Quantized RV's

Images

Compression

Discrete Flows: Invertible Generative Models of Discrete Data

Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, Ben Poole

Normalizing flows

Quantized RV's

Text

Fast generation

Compression with Flows via Local Bits-Back Coding Jonathan Ho, Evan Lohn, Pieter Abbeel

Normalizing flows

Continuous RV's

Images

Compression

Integer discrete flows and lossless compression

Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, Max Welling

Normalizing flows

Quantized RV's

Images

Compression

Discrete Flows: Invertible Generative Models of Discrete Data

Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, Ben Poole

Normalizing flows

Quantized RV's

Text

Fast generation

Compression with Flows via Local Bits-Back Coding Jonathan Ho, Evan Lohn, Pieter Abbeel

Normalizing flows

Continuous RV's

Images

Compression

Probable inputs map to shorter codes and improbable inputs are mapped to longer codes.

Minimum code length for a symbol x is close to

$$-\log D(x)$$

a_i	$c(a_i)$	p_i	$h(p_i)$	l_i
a	0	$1/_{2}$	1.0	1
b	10	$1/_{4}$	2.0	2
С	110	$1/_{8}$	3.0	3
d	111	$1/_{8}$	3.0	3

Minimum expected code length:

$$\mathbb{E}_{x \sim D}[|c(x)|] \ge \mathbb{E}_{x \sim \mathcal{D}}[-\log p_{\theta}(x)] \ge \mathcal{H}(\mathcal{D}) = \mathbb{E}_{x \sim \mathcal{D}}[-\log \mathcal{D}(x)]$$

NORMALIZING FLOWS: CONTINUOUS RANDOM VARIABLES

Idea: Apply a sequence of invertible transformations to a random variable.

$$p(z_1|z_0) = \delta(z_1 - f_1(z_0))$$

$$p(z_1) = \int p(z_1|z_0) p(z_0) \; \mathrm{d}z_0 = p(f_1^{-1}(z_1)) \left| rac{\partial z_1}{\partial z_0}
ight|^{-1}$$

NAIVE LOSSLESS COMPRESSION FOR NORMALIZING FLOWS

Entropy encoders require as input:

- Input in the form of symbols
- The distribution of the symbols

Quantize latent distribution

Leads to reconstruction error \rightarrow needs to be encoded too for lossless compression.

NORMALIZING FLOWS FOR INTEGER VALUED DATA

Problem formulation: Define invertible

$$f_{ heta}: \mathbb{Z}^d \mapsto \mathbb{Z}^d$$

Simplest solution: Take RealNVP and make suitable for integers.

$$z = egin{bmatrix} z_1 \ z_2 \end{bmatrix} \leftarrow egin{bmatrix} x_1 \ s^{ heta}(x_1) \odot x_2 + t^{ heta}(x_1) \end{bmatrix}$$

$$x = egin{bmatrix} x_1 \ x_2 \end{bmatrix} \leftarrow egin{bmatrix} z_1 \ (z_2 - t^{ heta}(z_1)) igorims s^{ heta}(z_1) \end{bmatrix}$$

NORMALIZING FLOWS FOR INTEGER VALUED DATA

Problem formulation: Define invertible

$$f_{ heta}: \mathbb{Z}^d \mapsto \mathbb{Z}^d$$

Simplest solution: Take RealNVP and make suitable for integers.

$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 \\ x_2 + t^{\theta}(x_1) \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} z_1 \\ z_2 - t^{\theta}(z_1) \end{bmatrix}$$

NORMALIZING FLOWS FOR INTEGER VALUED DATA

Problem formulation: Define invertible

$$f_{ heta}: \mathbb{Z}^d \mapsto \mathbb{Z}^d$$

Simplest solution: Take RealNVP and make suitable for integers.

$$z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 \\ x_2 + [t^{\theta}(x_1)] \end{bmatrix}$$

Use straight-through estimator to backprop gradients

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} z_1 \\ z_2 - \lfloor t^{\theta}(z_1) \rfloor \end{bmatrix}$$

OBTAINING THE DENSITY

Continuous random variables:

$$p(x) = \int p(x|z)p(z) dz = \int \delta(x - f(z))p(z) dz = p(f^{-1}(x)) \left| \frac{\partial x}{\partial z} \right|^{-1}$$

Discrete random variables:

$$p(x) = \sum_{z} p(x|z)p(z) = \sum_{z} \delta_{z,f^{-1}(x)}p(z) = p(f^{-1}(x))$$

$p(z_a|z_b)$ $p(z_b)$ z_a z_b Integer flows Squeeze z_a y_b Factor out **Integer Flows** Squeeze

$p(z_a|z_b)$ $p(z_b)$ z_a z_b Integer flows Squeeze z_a y_b Factor out **Integer Flows** Squeeze

$p(z_a|z_b)$ $p(z_b)$ z_a z_b Integer flows Squeeze z_a y_b Factor out

$p(z_a|z_b)$ $p(z_b)$ z_a z_b Integer flows Squeeze z_a y_b Factor out **Integer Flows** Squeeze

$p(z_a|z_b)$ $p(z_b)$ z_a z_b Integer flows Squeeze z_a y_b Factor out **Integer Flows** Squeeze \boldsymbol{x}

High-probability $z \rightarrow Short code$

Low-probability $z \rightarrow Long code$

High-probability $z \rightarrow Short code$

Low-probability $z \rightarrow Long code$

RESULTS

Table 1: Compression performance of IDFs on CIFAR10, ImageNet32 and ImageNet64 in bits per dimension, and compression rate (shown in parentheses). The Bit-Swap results are retrieved from [23]. The column marked IDF[†] denotes an IDF trained on ImageNet32 and evaluated on the other datasets.

Dataset	IDF	${ m IDF}^{\dagger}$	Bit-Swap	FLIF [34]	PNG	JPEG2000
CIFAR10	3.34 (2.40×)	3.60 (2.22×)	$3.82(2.09\times)$	4.37 (1.83×)	5.89 (1.36×)	5.20 (1.54×)
ImageNet32	$4.18 (1.91 \times)$	$4.18 (1.91 \times)$	$4.50 (1.78 \times)$	$5.09(1.57\times)$	$6.42 (1.25 \times)$	$6.48 (1.23 \times)$
ImageNet64	$3.90 (2.05 \times)$	$3.94 (2.03 \times)$	_	$4.55 (1.76 \times)$	$5.74 (1.39 \times)$	$5.10 (1.56 \times)$

Table 3: Generative modeling performance of IDFs and comparable flow-based methods in bits per dimension (negative log₂-likelihood).

Dataset	IDF	Continuous	RealNVP	Glow	Flow++
CIFAR10	3.32	3.31	3.49	3.35	3.08
ImageNet32	4.16	4.13	4.28	4.09	3.86
ImageNet64	3.90	3.85	3.98	3.81	3.69

MEDICAL DATA: HISTOLOGY DATA

Resolution: 2000 x 2000 pixels

IDF trained on 80 x 80 px patches

patch-wise compression (each patch is considered independent)

Sampled patches: 80 x 80 pixels

Dataset	IDF	JP2-WSI	FLIF [34]	JPEG2000
Histology	2.42 (3.19×)	3.04 (2.63×)	4.00 (2.00×)	4.26 (1.88×)

$p(z_a|z_b)$ $p(z_b)$ z_b Integer flows Squeeze z_a y_b Factor out **Integer Flows** Squeeze \boldsymbol{x}

$p(z_a|z_b)$ $p(z_b)$ z_b Integer flows Squeeze z_a y_b Factor out **Integer Flows** Squeeze \boldsymbol{x}

$p(z_a|z_b)$ $p(z_b)$ z_b Integer flows Squeeze z_a y_b Factor out **Integer Flows** Squeeze \boldsymbol{x}

$p(z_b)$ $p(z_a|z_b)$ z_b Integer flows Squeeze z_a y_b Factor out **Integer Flows** Squeeze \boldsymbol{x}

$p(z_b)$ $p(z_a|z_b)$ z_b Integer flows Squeeze z_a y_b Factor out **Integer Flows** Squeeze \boldsymbol{x}

DIRECTIONS FOR IMPROVEMENT

Problem: discrete flows don't always benefit from more flow layers.

Hypothesis: gradient bias in straight through estimator is the cause.

Integer discrete flows and lossless compression

Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, Max Welling

Normalizing flows

Quantized RV's

Images

Compression

Discrete Flows: Invertible Generative Models of Discrete Data

Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, Ben Poole

Normalizing flows

Quantized RV's

Text

Fast generation

Compression with Flows via Local Bits-Back Coding Jonathan Ho, Evan Lohn, Pieter Abbeel

Normalizing flows

Continuous RV's

Images

Compression

DISCRETE FLOWS

Discrete but not ordinal data with finite number of classes

Focus: generative modeling for text (character level)

Architecture variants:

- Autoregressive layers
- Coupling layer/bi-partite layers

INTEGER DISCRETE FLOWS

Ordinal discrete data with possibly infinite number of classes

Focus: lossless source compression for images

Architecture variants:

Coupling layer/bi-partite layers

DISCRETE FLOWS

Bipartite bijector

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 \\ [s(x_1) \odot x_2 + t(x_1)] \bmod K \end{bmatrix}$$

Autoregressive bijector

$$z_d = [s_d(x_{1:d-1}) \odot x_d + t_d(x_{1:d-1})] \mod K$$

$$t: \{0, 1, ..., K-1\} \mapsto \{0, 1, ..., K-1\}$$

 $s: \{0, 1, ..., K-1\} \mapsto \{1, ..., K-1\}$

Only invertible if s and K are coprime

$$t_d = \text{one_hot}(\arg\max(\theta_d))$$

$$\frac{\partial t_d}{\partial \theta_d} \approx \frac{\partial}{\partial \theta_d} \operatorname{softmax} \left(\frac{\theta_d}{\tau} \right)$$

RESULTS

	Test NLL (bpc)	Generation
3-layer LSTM (Merity et al., 2018)	1.18 ³	3.8 min
Ziegler and Rush (2019) (AF/SCF)	1.46	-
Ziegler and Rush (2019) (IAF/SCF)	1.63	=
Bipartite flow	1.38	0.17 sec

Table 3: Character-level language modeling results on Penn Tree Bank.

RESULTS

	bpc	Gen.
LSTM (Coojimans+2016)	1.43	19.8s
64-layer Transformer (Al-Rfou+2018)	1.13	35.5s
Bipartite flow (4 flows, w/ σ)	1.60	0.15s
Bipartite flow (8 flows, w/o σ)	1.29	0.16s
Bipartite flow (8 flows, w/ σ)	1.23	0.16s

Figure 3: Character-level language modeling results on text8. The test bits per character decreases as the number of flows increases. More hidden units H and layers L in the Transformer per flow, and applying a scale transformation instead of only location, also improves performance.

Integer discrete flows and lossless compression Emiel Hoogeboom, Jorn Peters, Rianne van den Berg, Max Welling

Normalizing flows

Quantized RV's

Images

Compression

Discrete Flows: Invertible Generative Models of Discrete Data

Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, Ben Poole

Normalizing flows

Quantized RV's

Text

Fast generation

Compression with Flows via Local Bits-Back Coding

Jonathan Ho, Evan Lohn, Pieter Abbeel

Normalizing flows

Continuous RV's

Images

Compression