1. 符号说明

默认符号:

x: 标量

x: n 维列向量**y**: m 维列向量

• $X: m \times n$ 矩阵 • $Y: p \times q$ 矩阵

2. 矩阵向量求导布局

自变量\因变量	标量 y	向量y	矩阵Y
标量 x	/	$\frac{\partial \mathbf{y}}{\partial x}$ 分子布局:m维列向量(默 认) 分母布局: m 维行向量	$\frac{\partial \mathbf{Y}}{\partial x}$ 分子布局: $\mathbf{p} \times \mathbf{q}$ 矩阵 (默认) 分母布局: $q \times p$ 矩阵
向量x	② 次 分子布局: n维行向量 分母布局: n维列向量 (默认)	$\frac{\partial y}{\partial x}$ 分子布局: $m \times n$ 雅克比矩 阵(默认) 分母布局: $n \times m$ 梯度矩阵	/
矩阵 X	$rac{\partial y}{\partial \mathbf{X}}$ 分子布局: $n imes m$ 矩阵 今母布局: $\mathbf{m} imes \mathbf{n}$ 矩阵(默认)	/	<u>∂Y</u> ∂x 分母布局:mn×pq 矩阵

3. 矩阵向量求导大全

自变量\因 变量	标量 y	向量y	矩阵Y
标量 x	$rac{\partial y}{\partial x}$ 大学微积分知识	$rac{\partial \mathbf{y}}{\partial x}$ 定义法求导	$rac{\partial \mathbf{Y}}{\partial x}$ 定义法求导
向量x	$\frac{\partial y}{\partial \mathbf{x}}$ 1. 定义法求导 2. 基本法则: 线性法则、乘法法则、除法法则 3. 矩阵微分: $df = tr\left(\left(\frac{\partial f}{\partial \mathbf{x}}\right)^T d\mathbf{x}\right)$ 4. 链式法则: $\frac{\partial z}{\partial \mathbf{x}} = \left(\frac{\partial y}{\partial \mathbf{x}}\right)^T \frac{\partial z}{\partial \mathbf{y}}$	$rac{\partial \mathbf{y}}{\partial \mathbf{x}}$ 1. 定义法求导 2. 链式法则: $rac{\partial \mathbf{z}}{\partial \mathbf{x}} = rac{\partial \mathbf{z}}{\partial \mathbf{y}} rac{\partial \mathbf{y}}{\partial \mathbf{x}}$	
矩阵 X	$rac{\partial y}{\partial \mathbf{X}}$ 1. 定义法求导 2. 矩阵微分: $df = tr\left(\left(rac{\partial f}{\partial \mathbf{X}} ight)^T d\mathbf{X}\right)$ 3. 矩阵微分性质 4. 迹技巧 5. 链式求导法则: $rac{\partial z}{\partial x_{ij}} = \sum_{k,l} rac{\partial z}{\partial \mathbf{Y}_{kl}} rac{\partial \mathbf{Y}_{kl}}{\partial \mathbf{X}_{ij}} = tr\left(\left(rac{\partial z}{\partial \mathbf{Y}} ight)^T rac{\partial \mathbf{Y}}{\partial \mathbf{X}_{ij}}\right)$		$rac{\partial \mathbf{Y}}{\partial \mathbf{X}}$ 1. 定义: $rac{\partial \mathbf{Y}}{\partial \mathbf{X}} = rac{\partial vec(\mathbf{Y})}{\partial vec(\mathbf{X})}$ 2. 微分法: $vec(d\mathbf{Y}) = rac{\partial \mathbf{Y}}{\partial \mathbf{X}}^T vec(d\mathbf{X})$ 3. 运算法则

4. 标量对向量求导

已知:

$$y = f(\mathbf{x})$$

求:

$$\frac{\partial y}{\partial \mathbf{x}} = ?$$

4.1 定义法求导

所谓标量对向量的求导,其实就是标量对向量里的每个分量分别求导,最后把求导的结果排列在一起,按一个向量表示而已。那么我们可以将实值函数对向量的每一个分量来求导,最后找到规律,得到求导的结果向量。

例1: $y = \mathbf{a}^T \mathbf{x}$

$$rac{\partial \mathbf{a}^T \mathbf{x}}{\partial x_i} = rac{\partial \sum_{j=1}^n a_j x_j}{\partial x_i} = rac{\partial a_i x_i}{\partial x_i} = a_i$$

所以,将求导结果组成向量:

$$rac{\partial \mathbf{a}^T \mathbf{x}}{\partial \mathbf{x}} = \mathbf{a}$$

4.2 标量对向量求导基本法则

在我们寻找一些简单的方法前,我们简单看下标量对向量求导的一些基本法则,这些法则和标量对标量求导的过程类似。

1) 常量对向量的求导结果为0。

2) 线性法则: 如果 f, g都是实值函数, c_1 , c_2 为常数, 则:

$$\frac{\partial (c_1 f(\mathbf{x}) + c_2 g(\mathbf{x}))}{\partial \mathbf{x}} = c_1 \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} + c_2 \frac{\partial g(\mathbf{x})}{\partial \mathbf{x}}$$

3) 乘法法则: 如果 f, g都是实值函数, 则:

$$\frac{\partial f(\mathbf{x})g(\mathbf{x})}{\partial \mathbf{x}} = f(\mathbf{x})\frac{\partial g(\mathbf{x})}{\partial \mathbf{x}} + \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}g(\mathbf{x})$$

要注意的是如果不是实值函数,则不能这么使用乘法法则。

4) 除法法则: 如果f, g都是实值函数, 且 $g(\mathbf{x}) \neq 0$, 则:

$$\frac{\partial f(\mathbf{x})/g(\mathbf{x})}{\partial \mathbf{x}} = \frac{1}{g^2(\mathbf{x})} (g(\mathbf{x}) \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} - f(\mathbf{x}) \frac{\partial g(\mathbf{x})}{\partial \mathbf{x}})$$

4.3 通过向量微分求导

利用导数和微分之间的关系:

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i = \left(\frac{\partial f}{\partial \mathbf{x}}\right)^T d\mathbf{x}$$

例: $y = \mathbf{x}^T \mathbf{x}$

$$dy = d(\mathbf{x}^T) \mathbf{x} + \mathbf{x}^T d\mathbf{x}$$

$$= (d\mathbf{x})^T \mathbf{x} + \mathbf{x}^T d\mathbf{x}$$

$$= \mathbf{x}^T d\mathbf{x} + \mathbf{x}^T d\mathbf{x}$$

$$= 2\mathbf{x}^T d\mathbf{x}$$

所以,根据导数与微分的联系:

$$rac{\partial \mathbf{x}^T\mathbf{x}}{\partial \mathbf{x}} = 2\mathbf{x}$$

4.4 标量对多个向量的链式求导法则

若标量z 和向量 \mathbf{x}, \mathbf{y} 之间的依赖关系为: $\mathbf{x} \to \mathbf{y} \to z$,则:

$$\frac{\partial z}{\partial \mathbf{x}} = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^T \frac{\partial z}{\partial \mathbf{y}}$$

推广到多个向量的情况, $\mathbf{y}_1 \to \mathbf{y}_2 \to \cdots \mathbf{y}_n \to z$,则有:

$$\frac{\partial z}{\partial \mathbf{y}_1} = \left(\frac{\partial \mathbf{y}_n}{\partial \mathbf{y}_{n-1}} \frac{\partial \mathbf{y}_{n-1}}{\partial \mathbf{y}_{n-2}} \cdots \frac{\partial \mathbf{y}_2}{\partial \mathbf{y}_1}\right)^T \frac{\partial z}{\partial \mathbf{y}_n}$$

5. 标量对矩阵求导

已知:

$$y = f(X)$$

求:

$$\frac{\partial y}{\partial X} = ?$$

5.1 定义法求导

与标量对向量求导类似,标量对矩阵里的每个分量分别求导,最后把求导的结果排列在一起,用一个矩阵表示而已。

例: $y = \mathbf{a}^T X \mathbf{b}$,求 $\frac{\partial y}{\partial X}$

先对矩阵X的任意一个位置的 X_{ij} 求导:

$$rac{\partial \mathbf{a}^T X \mathbf{b}}{\partial X_{ij}} = rac{\partial \sum_{p=1}^m \sum_q^n a_p X_{pq} b_q}{\partial X_{ij}} = rac{\partial a_i X_{ij} b_j}{\partial X_{ij}} = a_i b_j$$

将所有位置求导结果排成 $m \times n$ 矩阵, 得:

$$\frac{\partial \mathbf{a}^T X \mathbf{b}}{\partial X} = \mathbf{a} \mathbf{b}^T$$

5.2 通过矩阵微分求导

一元微积分中的导数(标量对标量的导数)与微分之间的关系:

$$df = f'(x)dx$$

多元微积分中的梯度(标量对向量的导数)与微分之间的关系:

$$df = \sum_{i=1}^{n} rac{\partial f}{\partial x_i} dx_i = rac{\partial f}{\partial \mathbf{x}}^T d\mathbf{x}$$

矩阵导数与微分之间的关系:

$$df = \sum_{i=1}^{m} \sum_{j=1}^{n} rac{\partial f}{\partial X_{ij}} dX_{ij} = \mathrm{tr}\left(rac{\partial f}{\partial X}^{T} dX
ight)$$

利用导数与微分,以及迹技巧,可以求得标量函数 f 对于矩阵 X 的导数:

- 对标量函数 f 求微分,需用到矩阵微分运算法则;
- 使用迹技巧, 对 df 套上迹, 再将其它项移至dX 左侧;

• 对照导数与微分之间的联系,可求得 $\frac{\partial f}{\partial X}$

注: 标量对矩阵的求导不能随意沿用标量的链式求导法则。

5.3 矩阵微分运算法则

矩阵加减法	法则	示例
矩阵加减法	$d(X\pm Y)=dX\pm dY$	
矩阵乘法	d(XY) = (dX)Y + X(dY)	
矩阵转置	$d(X^T)=(dX)^T$	
矩阵的迹	$d\mathrm{tr}(X)=\mathrm{tr}(dX)$	
矩阵的逆	$dX^{-1} = -X^{-1}dXX^{-1}$	
行列式	$d X =\operatorname{tr}(X^\# dX)$	$X^\#$ 是 X 的伴随矩阵
逐元素相乘	$d(X\odot Y)=dX\odot Y+X\odot dY$	
逐元素函数	$d\sigma(X) = \sigma'(X) \odot dX$	$d\mathrm{sin}(X) = \mathrm{cos}(X) \odot dX$

5.4 迹技巧(trace trick)

运算	法则	备注
标量套上迹	$a=\mathrm{tr}(a)$	
转置	$\mathrm{tr}(A^T)=\mathrm{tr}(A)$	
线性	$\operatorname{tr}(A\pm B)=\operatorname{tr}(A)\pm \mathrm{B}$	
矩阵乘法交换	$\mathrm{tr}(AB)=\mathrm{tr}(BA)$	A 与 B^T 维度相同,两侧都等于 $\sum_{ij}A_{ij}B_{ji}$
矩阵乘法/逐元乘法 交换	$\operatorname{tr}(A^T(B\odot C))=\operatorname{tr}((A\odot B)^TC)$	A,B,C 尺寸相同,两侧都等于 $\sum_{ij}A_{ij}B_{ij}C_{ij}$

5.5 标量对多个矩阵的链式求导法则

假设有这样的依赖关系: $X \to Y \to z$,很难给出矩阵基于矩阵整体的链式求导法则,可以给出关于X中某一标量的链式求导:

$$rac{\partial z}{\partial X_{ij}} = \sum_{k.l} rac{\partial z}{\partial Y_{kl}} rac{\partial Y_{kl}}{\partial X_{ij}} = tr \left(\left(rac{\partial z}{\partial \mathbf{Y}}
ight)^T rac{\partial \mathbf{Y}}{\partial \mathbf{X}_{ij}}
ight)$$

5.6 计算示例

例1: $f=\mathbf{a}^TX\mathbf{b}$,求 $\frac{\partial f}{\partial X}$ 。其中 \mathbf{a} 是 $m\times 1$ 列向量,X是 $m\times n$ 矩阵, \mathbf{b} 是 $n\times 1$ 列向量。

Step1: 使用矩阵乘法法则求微分:

$$df = d\mathbf{a}^T X \mathbf{b} + \mathbf{a}^T dX \mathbf{b} + \mathbf{a}^T X d\mathbf{b} = \mathbf{a}^T dX \mathbf{b}$$

这里因为 \mathbf{a} , \mathbf{b} 是常量,所以 $d\mathbf{a} = 0$, $d\mathbf{b} = 0$

Step2: 套上迹,并做矩阵乘法交换:

$$df = \operatorname{tr}(\mathbf{a}^T dX \mathbf{b}) = \operatorname{tr}(\mathbf{b} \mathbf{a}^T dX) = \operatorname{tr}\left((\mathbf{a} \mathbf{b}^T)^T dX\right)$$

Step3:对照导数与微分之间的联系:

$$rac{\partial f}{\partial X} = \mathbf{a}\mathbf{b}^T$$

例2: $f = \mathbf{a}^T \exp(X\mathbf{b})$,求 $\frac{\partial f}{\partial X}$ 。

Step1: 使用矩阵乘法法则求微分:

$$df = \mathbf{a}^T \left(\exp(X\mathbf{b}) \odot (dX\mathbf{b}) \right)$$

Step2: 套上迹,并做矩阵乘法交换:

$$egin{aligned} df &= \operatorname{tr} \left(\mathbf{a}^T \left(\exp(X \mathbf{b}) \odot (dX \mathbf{b})
ight)
ight) \ &= \operatorname{tr} \left(\left(\mathbf{a} \odot \exp(X \mathbf{b})
ight)^T dX \mathbf{b}
ight) \ &= \operatorname{tr} \left(\left(\left(\mathbf{a} \odot \exp(X \mathbf{b})
ight) \mathbf{b}^T
ight)^T dX
ight) \ &= \operatorname{tr} \left(\left(\left(\mathbf{a} \odot \exp(X \mathbf{b})
ight) \mathbf{b}^T
ight)^T dX
ight) \end{aligned}$$

Step3:对照导数与微分之间的联系:

$$rac{\partial f}{\partial X} = (\mathbf{a} \odot \exp(X\mathbf{b})) \, \mathbf{b}^T$$

例3【线性回归】 $l=\|X\mathbf{w}-\mathbf{y}\|^2$,求**w** 的最小二乘估计。其中**y**是 $m\times 1$ 列向量,X 是 $m\times n$ 矩阵,**w** 是 $n\times 1$ 列向量,l是标量。

Step1: 将向量模平方改成向量与内积形式:

$$l = \left(X\mathbf{w} - \mathbf{y}\right)^T \left(X\mathbf{w} - \mathbf{y}\right)$$

Step1: 使用矩阵乘法法则求微分:

$$dl = (Xd\mathbf{w})^{T} (X\mathbf{w} - \mathbf{y}) + (X\mathbf{w} - \mathbf{y})^{T} (Xd\mathbf{w})$$
$$= 2(X\mathbf{w} - \mathbf{y})^{T} (Xd\mathbf{w})$$

$$\therefore Xd\mathbf{w} X\mathbf{w} - \mathbf{y}$$
 are coloum vector $\therefore (Xd\mathbf{w})^T (X\mathbf{w} - \mathbf{y}) = (X\mathbf{w} - \mathbf{y})^T (Xd\mathbf{w})$

Step2: 套上迹,并做矩阵乘法交换:

$$dl = \operatorname{tr}\left(\left(2X^{T}\left(X\mathbf{w} - \mathbf{y}
ight)
ight)^{T}d\mathbf{w}
ight)$$

Step3:对照导数与微分之间的联系:

$$\frac{\partial l}{\partial \mathbf{w}} = 2X^T \left(X\mathbf{w} - \mathbf{y} \right)$$

Step3: 求w的最小二乘估计

$$\frac{\partial l}{\partial \mathbf{w}} = 2X^T (X\mathbf{w} - \mathbf{y}) = 0$$
$$\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$$

6. 向量对向量求导

向量对向量的求导比较麻烦,m 为列向量 \mathbf{y} 对n 维列向量 \mathbf{x} 求导,那么一共有mn 个标量对标量的求导。

分子布局(numerator layout):

求导结果矩阵的第一个维度以分子为准,结果是一个m imes n矩阵,一般叫作**雅克比矩阵**。

分母布局(denominator layout):

求导结果矩阵的第一个维度以分母为准、结果是一个 $n \times m$ 矩阵、一般叫作**梯度矩阵**。

对于机器学习算法原理中的推导,究竟是采用什么布局一般是隐含的,需自己推导。本文以分子布局的 雅克比矩阵为主。

6.1 定义法求导

例: $\mathbf{y} = A\mathbf{x}$, 其中 $A \ge n \times m$ 的矩阵, \mathbf{x}, \mathbf{y} 分别是m, n 维例向量。

Step1: 先求y 的第i 个分量对x 的第j 个分量的导数:

$$rac{\partial A_i \mathbf{x}}{\partial \mathbf{x}_j} = rac{\partial A_{ij} x_j}{\partial \mathbf{x}_j} = A_{ij}$$

Step2: 将每个标量求导结果排列成矩阵,这里用分子布局:

$$\frac{\partial A\mathbf{x}}{\partial \mathbf{x}_j} = A$$

6.2 向量对向量求导的链式法则

若向量之间有这样的依赖关系: $\mathbf{x} \to \mathbf{y} \to \mathbf{z}$,则有下面的链式求导法则:

$$\frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \frac{\partial \mathbf{z}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$$

7. 矩阵对矩阵求导

7.1 矩阵对矩阵求导定义

 $\frac{\partial F}{\partial X}$, F:p imes q , X:m imes n 矩阵F中的pq 个元素要分别对矩阵 X 中的mn 个元素求导,那么求导结果一共会有mnpq 个元素。求导结果的排列有很多种。这里只介绍目前主流的做法。

目前主流的矩阵对矩阵求导定义是对矩阵先做向量化,然后再使用向量对向量的求导。而这里的向量化 一般是使用列向量化。也就是说,现在我们的矩阵对矩阵求导可以表示为:

$$\frac{\partial F}{\partial X} = \frac{\partial vec(F)}{\partial vec(X)}$$

vec(F) 的维度是 $pq \times 1$ 列向量,vec(X)的维度是 $mn \times 1$ 列向量。结果使用分母布局,得到一个 $mn \times pq$ 的矩阵。

7.2 微分求导法

利用导数与微分的联系:

$$vec(dF) = \frac{\partial F}{\partial X}^T vec(dX)$$

求解步骤:

- 1. 使用矩阵微分运算法则对矩阵F 求微分;
- 2. 做向量化并使用迹技巧将其它项交换至vec(dX)的左侧;
- 3. 根据导数与微分关系,得到矩阵对矩阵的微分结果。

7.3 矩阵向量化的运算法则

性质	法则
线性性质	vec(A+B) = vec(A) + vec(B)
矩阵乘法	$vec(AXB) = ig(B^T \otimes Aig)vec(X)$
矩阵转置	$vec(A^T) = K_{mn}vce(A)$
逐元素乘法	$vec(A\odot X)=diag(A)vec(X)$

注:

- 1. \otimes : 克罗内克(Kronecker)积, $A(m \times n)$ 与 $B(p \times q)$ 的克罗内克积是 $A \otimes B = [A_{ij}B](mp \times nq)$;
- 2. K_{mn} : 交换矩阵。若vec(A)是 $mn \times 1$ 的列向量,则 $K_{mn}(mn \times mn)$,将按列优先的向量化变为按行优先的向量化;
- 3. $diag(A)(mn \times mn)$ 是用A的元素(列优先)排成的对角阵。

7.4 克罗内克积运算法则

- 1. $(A \otimes B)^T = A^T \otimes B^T$
- 2. $vec(\mathbf{ab}^T) = \mathbf{b} \otimes \mathbf{a}$
- 3. $(A \otimes B) (C \otimes D) = AC \otimes BD$
- 4. $K_{mn} = K_{nm}^T, \quad K_{mn}K_{nm} = I$

7.5 计算实例

参见矩阵求导术 (下)

参考

- 1. 机器学习中的矩阵向量求导(一) 求导定义与求导布局
- 2. 机器学习中的矩阵向量求导(二)矩阵向量求导之定义法
- 3. 机器学习中的矩阵向量求导(三)矩阵向量求导之微分法
- 4. 机器学习中的矩阵向量求导(四)矩阵向量求导链式法则
- 5. 机器学习中的矩阵向量求导(五)矩阵对矩阵的求导
- 6. 矩阵求导术 (上)
- 7. <u>矩阵求导术(下)</u>