The OpenBiomechanics Project

The Open Source Initiative for Anonymized, Elite-Level Athletic Motion Capture Data

Kyle W Wasserberger^{1,†}, Anthony C Brady¹, David M Besky¹, and Kyle J Boddy¹

 $^1 \rm Research~\&~Development;$ Driveline Baseball $^\dagger \rm Corresponding~author:~kyle.wasserberger@drivelinebaseball.com$

Keywords: open access, baseball, pitching

1 Abstract

10

11

Interest in quantifying human movement, particularly in elite sport, increases with each passing year. However, analysis of sport biomechanics data has traditionally been restricted to academic laboratories and professional sport organizations. A public sport biomechanics resource would democratize access to human movement data and accelerate progress and innovation for the sport biomechanics field as a whole. In this paper, we introduce *The OpenBiomechanics Project*, an initiative started by *Driveline Baseball Research & Development* to provide free, elite-level, research grade motion capture data to the general public for independent individual exploration and analysis. We begin by providing raw and processed data from a sample of 100 baseball pitchers. We then discuss future directions within baseball, expansion to other sports and athletic movements, and outline supporting documentation and additional resources.

₂ 1 Introduction

Open access resources exist in other biomechanics sub disciplines [3,5].

14 2 Data collection

Data collection took place at Driveline Baseball in Kent, Washington, USA as part of each athlete's motion capture assessment. After a standardized warm up consisting of static and dynamic stretching, resistance band exercises, and preparatory throwing drills, we applied between 45 and 48 reflective markers directly to the athlete's skin over relevant bony landmarks (Table ??). We then allowed athletes to complete a final warm up consisting of preparatory throws from the pitching mound. Once the athlete indicated they felt ready to throw with game-like effort, we recorded up to five fastball pitches from a pitching mound at a regulation distance (18.4 m).

Although athletes were cued to throw at the provided strike zone, we did not require athletes to throw
a strike for a trial to be considered valid. We considered a trial valid if all reflective markers remained affixed
to the athlete throughout the pitching motion. Pitch velocities were measured to the nearest tenth of a mile
per hour using a radar gun positioned behind home plate and paired with each trial prior to processing and
analysis.

Marker positions were recorded at 360 Hz by fourteen cameras (Prime 17W; Optitrack/NaturalPoint Inc., Corvallis, OR, USA) while ground reaction force data were collected at 1,080 Hz by three force plates embedded in a custom concrete mound (1 x FP4080-15-TM-2000, 2 x FP9090-15-TM-2000; Bertec Corp., Columbus, OH, USA). Kinematic and kinetic data were synchronized using Optitrack's Motive software.

Once we collected a sufficient number of pitches (typically between three and five trials), C3D files were exported for processing in Visual3D and Python.

$_{33}$ 3 Data processing

- C3D files meeting the validity criteria were exported from Motive. Where necessary, we used cubic spline and
- pattern-based gap filling techniques prior to export to interpolate occluded marker positions. C3D files were
- then fed into a custom Visual3D processing pipeline for pose estimation and inverse dynamics calculations.

3.1 Linked-Segment Model

- Our full-body skeletal model consisted of 14 body segments [bilateral feet (1-2), shanks (3-4), thighs (5-6),
- upper arms (7-8), forearms (9-10), and hands (11-12), plus a pelvis (13) and thorax (14)] separated into
- 40 four inverse dynamics linkages representing the four limbs of the body. The pelvis and thorax were left
- unconstrained (6 DOF) with respect to the linkages and with respect to each other.
- We used default Visual3D segment mass/body mass ratios, inertial parameters, and segment
- 43 geometries [4,6]. The hip joint centers and pelvis segment were modeled using Bell's CODA methods [1,2].
- Joint centers for the elbows, wrists, knees, and ankles were defined as the midpoint between the joint's
- 45 medial and lateral markers. Shoulder joint centers were offset relative to the acromion markers [7]. Complete
- model specifications may be found in the .MDH file provided in the OBP GitHub repository.

4 How to Use

- Data for the OpenBiomechanics Project may be found in our GitHub repository linked previously in this
- 49 article. Although single-use downloads are possible, we recommend familiarizing yourself with the source
- $_{50}$ control program git, if you are not already. Using git best practices ensures that your data and code remain
- ⁵¹ updated in the event of any patches, changes, or new releases. For most users, the application *GitHub*
- 52 Desktop will suffice, and comes with supporting tutorials and documentation.
- Once you have GitHub desktop (or an analogous git solution) in place, simply fork our repository
- to create your own branch from which you can customize our code and analyze our data. Any changes or
- 55 additions you commit will remain on your branch, allowing all users to perform their own analyses without
- 56 interference from other researchers.

57 4.1 Terms of Use

- Data and code provided through the OpenBiomechanics project are protected under a Creative Commons
- 59 license and free for individual use. Researchers

60 4.2 Naming Conventions

51 ...

62	4.3	Fileshare and GitHub Repository
63		
64	4.4	Citing and Contributing
65		
66	5	Future Directions
67		
68	6	Additional Resources
69		

70 References

- [1] Bell, A. L., Brand, R. A., and Pedersen, D. R. Prediction of hip joint centre location from external landmarks. *Human movement science*, 8(1):3–16, 1989.
- [2] Bell, A. L., Pedersen, D. R., and Brand, R. A. A comparison of the accuracy of several hip center location prediction methods. *Journal of biomechanics*, 23(6):617–621, 1990.
- [3] Camargo, J., Ramanathan, A., Flanagan, W., and Young, A. A comprehensive, open-source dataset
 of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and
 transitions. Journal of Biomechanics, 119:110320, 2021.
- Dempster, W. T. Space requirements of the seated operator, geometrical, kinematic, and mechanical aspects of the body with special reference to the limbs. Technical report, University of Michigan, 1955.
- [5] Erdemir, A. Open knee: open source modeling and simulation in knee biomechanics. *The journal of knee surgery*, 29(02):107–116, 2016.
- [6] Hanavan Jr, E. P. A mathematical model of the human body. Technical report, Wright-Patterson Air
 Force Base, 1964.
- [7] Schmidt, R., Disselhorst-Klug, C., Silny, J., and Rau, G. A marker-based measurement procedure for unconstrained wrist and elbow motions. *Journal of biomechanics*, 32(6):615–621, 1999.

Description	Rigid Body	Abbreviation	
Seventh cervical vertebr	Thorax	C7	
Jugular not	Thorax	CLAV	
Left ankle lateral malleo	Left shank, left foot	LANK	
Left anterior superior iliac spi	Pelvis	LASI	
Left scapular inferior an	Thorax	$LBAK^{a}$	
Left, poster	Head	LBHD	
Left lateral humeral epicondy	Left upper arm, left forearm	LELB	
Left, anter	Head	LELB LFHD	
Third metacarpophalangeal joint	Left hand		
Left forea	Left forearm	LFIN LFRM	
Left forea: He	Left foot	LHEE	
Left iliac cr	Pelvis	$\mathrm{LIC^a}$	
Left lateral femoral cond	Left thigh, left shank	LKNE	
Left ankle medial malleol	Left shank, left foot	LMANK	
Left medial humeral epicond	Left upper arm, left forearm	LMELB	
Left medial femoral cond	Left thigh, left shank	LMKNE	
Left posterior superior iliac spi	Pelvis	LPSI	
Left acromial plate	Left upper arm	LSHO	
Left thi	Left thigh	LTHI	
Left sha	Left shank	LTIB	
Left second metatarsophalangeal joint	Left foot	LTOE	
Left upper a	Left upper arm	LUPA	
Left radial style	Left forearm, left hand	LWRA	
Left ulnar style	Left forearm, left hand	LWRB	
Right ankle lateral malleol	Right shank, right foot	RANK	
Right anterior superior iliac spi	Pelvis	RASI	
Right scapular inferior an	Thorax	RBAK	
Right, poster	Head	RBHD	
Right lateral humeral epicond	Right upper arm, right forearm	RELB	
Right, anter	Head	RFHD	
Third metacarpophalangeal joint	Right hand	RFIN	
Right forea	Right forearm	RFRM	
Right h	Right foot	RHEE	
Right iliac cre	Pelvis	RIC ^a	
Right lateral femoral cond	Right thigh, right shank	RKNE	
Right ankle medial malleol		RMANK	
S	Right shank, right foot		
Right medial humeral epicondy	Right upper arm, right forearm	RMELB	
Right medial femoral condy	Right thigh, right shank	RMKNE	
Right posterior superior iliac spi	Pelvis	RPSI	
Right acromial plate	Right upper arm	RSHO	
Right thi	Right thigh	RTHI	
Right sha	Right shank	RTIB	
Right second metatarsophalangeal jo	Right foot	RTOE	
Right upper a	Right upper arm	RUPA	
Right radial style	Right forearm, right hand	RWRA	
Right ulnar style	Right forearm, right hand	RWRB	
Xiphoid Proce	Thorax	STRN	
Tenth thoracic vertebr	Thorax	T10	