www.xiremepabers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0625 PHYSICS

0625/62

Paper 6 (Alternative to Practical), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

P	age 2	Mark Scheme: Teachers' version		per
		IGCSE – October/November 2011	0625 6	2
1 (a)	x = 1.9 (c)	cm), $19 \text{ (mm) } 0.019 \text{ (m)}, y = 2.1 \text{ (cm)}, 21 \text{ (mm)}, 0.021 \text{ (mm)}$	m)	[1]
(b)	evidence $m_1 = 124$) seen at least once and correct, matching both figure of <i>x</i> and <i>y</i> values from (a) × 10 looks of the control of the contr	es	[1] [1] [1] [1]
(c)	$m_2 + m_3$	= 99.4 (g)		[1]
(d)	more diff more rea rounding difficult t	: g clay remaining on knife/rule/fingers/lost in cutting ficult to balance with smaller pieces adings so more inaccuracies errors in extra calculations of find centre of misshapen cube g clay might not have uniform density		[2]
(e)) mark cei	ntre of bottom of cube OR take readings at either side		[1] Fotal: 9]
2 (a)	$\theta_{\rm h} = 86$ (°C)		[1]
(b)) cm³, °C 10, 20, 3	0, 40, 50, 60		[1] [1]
(c)	plots to t all plots well-judg	elled and scales suitable ake up half grid correct to nearest ½ small square led best-fit line and small plots		[1] [1] [1] [1]
(d)	constant constant same an	from: t water temperature / initial temperature, room/surrounding temperature / other suitable name cold water temperature nount/rate of stirring en for transfer w.t.t.e. / poured at same time interval	ed environmental condition	on [2]

Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
		IGCSE – October/November 2011	0625	62	
(e)	wait for to	from: be of parallax explained (thermometer or measuring emperature to stabilise table suggestion related to measurement	g cylinder)	[1] [Total: 10]	
3 (a)	V= 0.8 (\	V)		[1]	
(b)	statemer	= 1.4 + candidate's value for V _A , expect 2.2 V nt matching results, expect YES referring to results		[1] [1] [1]	
(c)	R = 7.78	, to 2 or 3 significant figures and unit Ω		[1]	
(d)	voltmete	r correctly shown		[1]	
(e)		i <u>son,</u> e.g. e better as V _A less than 1V' OR '10V scale accepta / _c larger than 1V'	able to avoid chanç	[1] ging since	
				[Total: 7]	
4 (a)		t 90° in correct position cm to left of L		[1] [1]	
(b)	(i) & (ii)	all lines neatly drawn in correct position		[1]	
	(iii) table cm, i			[1] [1]	
(c)				[2]	
(d)		from: ins vertical / view bases of pins / increase pin sepa n lines / use sharp pencil	ration		
	view prot	tractor / rule perpendicularly o.w.t.t.e.		[1]	
				[Total: 8]	

		IGCSE – October/November 2011	0625	62	
5	(a) l/mm, e	/mm or in words		[1]	
	(b) 1, 3, 5, 7	7, 11, 17		[1]	
	(c) no			[1]	

Mark Scheme: Teachers' version

Page 4

larger loads produce bigger increases in extension OR increase between (successive) extensions not the same OR ratio W/e not the same

[1]

(d) clamp, spring and weight sensibly shown ruler close to spring or with suitable horizontal pointer or equivalent [1]

[Total: 6]

Paper

Syllabus