Question 1a (0.5 pts). Write down the CID Schrödinger equation.

Question 1b (1.5 pts). Project the CID Schrödinger equation on the left by $\langle \Phi |$ and $\langle \Phi_{ij}^{ab} |$ to obtain expressions for E_c and c_{ab}^{ij} .

Question 1c (5 pts). Use Wick's theorem to evaluate each matrix element obtained in part b. You do not have to convert the KM contraction dots into η 's and γ 's, nor do you have to expand the index antisymmetrizers \hat{P} . For example, an acceptable place to stop for your answer would be something like

$$\langle \Phi | \tilde{a}_b^j \tilde{a}_{rs}^{pq} \tilde{a}_i^a | \Phi \rangle = \hat{P}_{(r/s)}^{(p/q)} \tilde{a}_{a \bullet}^{j \circ \circ} \tilde{a}_{r \bullet \bullet s \circ \circ}^{p \circ q \bullet} \tilde{a}_{i \circ}^{a \bullet \bullet}$$

Question 2 (3 pts). Explain in your own words how perturbation theory works, as applied to the time-independent Schrödinger equation. Be sure to include a brief discussion of the following in your answer:

- the Hamiltonian
- λ
- The perturbation expansion

Question 3 (3 pts). Derive an expression for $\Phi_0^{(3)}$ by explicitly pulling out terms from the perturbation expansion using the resolvent formalism. Explain you steps.

Question 4 (2 pts). Derive $\Phi_0^{(4)}$ using the energy substitution trick.

Question 5 (2 pts). Derive an expression for $E_0^{(5)}$ using Löwdin's PT formalism.