- **1.** State the definitions of:
- a. The span of the vectors v_1, \ldots, v_k .

b. Linearly independent vectors v_1, \ldots, v_k .

c. The dimension of a subspace U of a vector space V.

d. A linear map $T \in \mathcal{L}(V, W)$.

Let v_1, \ldots, v_n be a basis for V . Prove that each $v \in V$ is a <i>unique</i> linear combination of v_1, \ldots, v_n .	

3. The range of a linear map $T: V \to W$ is range $T = \{Tv : v \in V\}$. Prove that range T is a subspace of W .

4. Let v_1, \ldots, v_m and w_1, \ldots, w_n be linearly independent vectors in V. Let $U = \operatorname{span}(v_1, \ldots, v_m)$ and $W = \operatorname{span}(w_1, \ldots, w_n)$. Prove that U + W is a direct sum.

5. Give an example of a linear map $T: M_{2,2}(\mathbb{C}) \to P_2(\mathbb{C})$ such that $\dim(\operatorname{null} T) = 2$.

6. Give an example of a nontrivial subspace of $\mathbb{R}^{\mathbb{R}}$	that does not have finite dimension.