

O Sistema Merkle-Hellman Knapsack

Bernardo Rodrigues a79008@alunos.uminho.pt

César Silva a77518@alunos.uminho.pt

Maria Francisca Fernandes a72450@alunos.uminho.pt

Universidade do Minho — 6 de Maio de 2019

Resumo

Este documento apresenta os vários passos e considerações feitas para implementação do sistema em questão. Assim como, alguns factos relativos a este.

Conteúdo

_	11101	rodução
2	Imp	olementação
	2.1	Geração de Permutações
	2.2	Geração de um sequência super crescente aleatória
	2.3	Geração de Coprimos
	2.4	Geração das Chaves
		2.4.1 Geração da chave Pública
		2.4.2 Geração da chave Privada
		2.4.3 Versão Multi-Iterada
	2.5	Encriptação
	2.6	Decriptação
		2.6.1 Versão Multi-Iterada

Lista de Algoritmos

1	Geração da sequência super crescente aleatória	5
2	Gerador de Coprimos - brute force	6

Capítulo 1

Introdução

Este trabalho foi desenvolvido no ambito da Unidade Curricular de *Teoria de Números Computacional*. De entre as escolhas possiveis, foi escolhido estudar o sistema *Merkle-Hellman Knapsack*.

Este foi um dos pioneiros da criptografia de chave pública, inventado por Ralph Merkle e por Martin Hellman em 1978, 2 anos após a introdução deste conceito. Ao contrário do RSA, um outro sistema de chave pública, este não serve para fazer autentificações a partir de assinaturas digitais. Devido à encriptação deste só usar a chave pública e a decriptação só usar a chave privada. O sistema, assenta num problema subset sub problem um caso especial do problema da Mochila, conhecido por ser NP-complete. Utiliza um variante "fácil"que acenta em sequências super crescentes para as chaves privadas, e um "difícil"para as chaves públicas.

Capítulo 2

Implementação

Link da implementação no CoCalc - aqui - Kernel usado: SageMath, Py3.

Ao longo das secções deste capítulo apresentamos os vários algoritmos seguidos para a codificação do sistema. A implementação destes segue nos ficheiros de texto que acompanham o relatório.

2.1 Geração de Permutações

Um dos passos da Geração da Chave Pública - 2.4 - consiste em gerar uma permutação de uma sequência. Para tal utilizamos o algoritmo proposto por Sandra Sattolo[1].

Este itera uma lista - seq - a partir do último índice desta - n. Em cada passo calculamos um índice aleatório - j - tal que $1 \le j < n$ e de seguida trocamos os valores de seq_j e seq_n . Finalmente, terminámos quando n=1. Na nossa implementação usamos listas para guardar as permutações.

Na implementação, a função tem o nome sattoloShuffle.

2.2 Geração de um sequência super crescente aleatória

Um dos componentes da Chave Privada - 2.4 - é uma sequência, esta é considerada super crescente se:

Definição 1. Consideremos uma sequência de números $b_1, ..., b_n$. Esta diz-se super crescente se:

$$b_i > \sum_{j=1}^{i-1} b_j$$
 para cada $i, 2 \le i \le n$.

Como tal, conseguimos deduzir:

$$b_1 + b_2 + \ldots + b_k < 2 \times b_k$$

Ou seja, precisamos apenas de considerar o último valor gerado para calcular um próximo. Com isto apresentamos o nosso algoritmo.

Algoritmo 1 Geração da sequência super crescente aleatória

 \mathbf{Recebe} : n - o tamanho da sequência

Devolve: $\{x_1,...,x_n\}$ - uma sequência super crescente aleatória

- 1: k um limite aleatóriamente grande
- 2: f uma função que satisfaz f(x) > 2 * x
- 3: $x_1 \leftarrow j$ tal que $1 \le j \le k$ aleatório
- 4: for $x_i \text{ com } i := 2$ até n do
- 5: $x_i = f(x_{i-1})$
- 6: end for

Na implementação, a função tem o nome randomSupIncSequence.

2.3 Geração de Coprimos

Também durante a Geração das Chaves - 2.4 - do sistema temos de considerar dois valores, M e W. Dada um sequência super crescente $\{b_1, ..., b_n\}$, M verifica:

$$M > \sum_{j=1}^{N} b_j$$

W por sua vez, verifica:

$$1 \le W < M \operatorname{gcd}(W, M) = 1$$

O algoritmo considerado adopta uma estratégia brute force. Isto é possível face ao discutido num artigo de StackExchange [2], que demonstra que calcular o gcd é uma operação não custosa. Este considera um valor aleatório para W compreendido no intervalo apresentado acima, testando o gcd de este com M. Se forem coprimos o processo para, caso contrário somamos um a este e repetimos o teste.

Algoritmo 2 Gerador de Coprimos - brute force

Recebe: M - um número

Devolve: W - um número coprimo com o argumento, $1 \le W < M$

- 1: $W \leftarrow$ número aleatório tal que $1 \leq W < M$
- 2: while $gcd(M, W) \neq 1$ do
- 3: W = W + 1
- 4: end while

Na implementação, a função que calcula um M tem o nome **findM**. Na implementação, a função que calcula um W tem o nome **findW**.

2.4 Geração das Chaves

Reunindo os vários algoritmos decritos nas secções anteriores, podemos agora construir as Chaves do sistema. Consideremos as várias componentes precisas ao longo deste secção.

- Uma permutação π 2.1
- \bullet Uma sequência super crescente aleatória $\{b_1,...,b_n\}$ 2.2
- Dois inteiros coprimos W e M 2.3. Para as versões multi iteradas ainda extendemos estes valores para 2 sequências $\{W_1,...,W_n\}$ e $\{M_1,...,W_n\}$ tais que $\gcd(W_i,W_i)=1$ para i=1 até n.

O algoritmo seguido é dado na bibliografia recomendada [3]. Com isto, a geração da chave pode ser dividida em duas subcategorias.

2.4.1 Geração da chave Pública

Definição 2. São computados a_i tal que:

$$a_i = W \times b_{\pi_i} \pmod{M}$$
 para cada i tal que $1 \le i \le n$.

A chave publica é dada por $(a_1, a_2, ..., a_n)$

2.4.2 Geração da chave Privada

A chave privada é dada por $(\pi, M, W, (b_1, b_2, b_3, ..., b_n))$

2.4.3 Versão Multi-Iterada

Uma variante do algoritmo base de Merkle-Hellman envolve disfarçar a sequência super crescente, através de sucessivas multiplicações modulares.

Neste caso precisamos de fixar outro inteiro, T, que ditará o numero de iterações para geração da chave. Mais uma vez um inteiro N é fixo como parâmetro de sistema.

Para $1 \leq j \leq T$ são feitos os cálculos descritos em 2.3. Para calcular a sequencia atual são calculados M_j e W_j , da mesma maneira que eram calculados na geração da chaves no algoritmo básico. O M_j é calculado com base na sequência super crescente anterior (índice j-1) sendo depois calculado W_j de maneira igual ao calculado na versão normal. A sequência dada na primeira iteração $a_1, ..., a_n$ é a que será usada na Chave Privada.

Na implementação, a função que que gera as Chave Simples tem o nome **KSKeyGen**. Para a versão Multi Iterada a função tem o nome **MIKS-KeyGen**.

2.5 Encriptação

A encriptação é feita a partir da chave pública $a_1, a_2, ... a_n$. É representada a mensagem m a encriptar em binário como uma string de tamanho N. $(m = m_1 m_2 ... m_n)$

Finalmente é calculado um inteiro c tal que: $c = \sum_{i=1}^{N} a_i \times m_i$.

Na implementação, a função da versão simples tem o nome **KSEncrypt**. A versão multi iterada tem o nome **MIKSEncrypt**

2.6 Decriptação

Para recuperar a mensagem m a partir de c, o dono da chave privada deve: Calcular $d = W^{-1} \times c \pmod{M}$.

Encontrar inteiros $r_1, ..., r_n, r_i \in \{0, 1\}$ tal que $d = r_1 \times b_1 + r_2 \times b_2 + ... + r_n \times b_n$. Os bits da mensagem são então $m_i = r_{\pi_i}, i = 1, 2, ...n$.

2.6.1 Versão Multi-Iterada

A decriptação desta variante do algoritmo é análoga à sua encriptação, ou seja, os cálculos efetuados são os mesmos do que na versão básica do algoritmo, mas são efetuados mais vezes.

A decriptação é feita a partir de sucessivamente calcularmos:

$$d_j = W^{-1} \times d_{j+1} \ (\text{mod} \ M_j),$$
 para $j = t, t-1, ..., 1$

onde $d_{t+1} = c$.

Finalmente só temos de encontrar inteiros $r_1,...,r_n,r_i\in\{0,1\}$ tal que:

$$d_1 = r_1 \times a_1 + r_2 \times a_2 + \dots + r_n \times a_n.$$

E os bits da mensagem são recuperados a partir de aplicarmos a permutação $\pi.$

Na implementação, a função para a versão normal tem o nome **KSDecrypt**. A versão multi iterada tem o nome **MIKSDecrypt**.

Capítulo 3

Conclusões

Após a realização do trabalho e depois de compreendido o problema em questão foi possivel concluir que o sistema Merkle-Hellman Knapsack não é seguro, tal como ficou provado, apenas alguns anos após a sua publicação, por Adi Shamir. Existem várias maneiras de o atacar, de entre estas, destaca-se o Lenstra-Lenstra-Lovász[3], que reduz o problema subset sum problem a um de encontrar short vector in a lattice, que para alguns casos resolve o problema em tempo polinomial. Deixamos como trabalho futuro uma possivel implementação deste ataque.

Bibliografia

- [1] Wikipedia, Fisher-Yates shuffle Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Fisher%E2%80%93Yates%20shuffle&oldid=882337194, Acedido em 05-May-2019.
- [2] Finding a coprime of a general magnitude, https://math.stackexchange.com/questions/2430742/finding-a-coprime-of-a-general-magnitude.
- [3] A. J. Menezes, P. C. van Oorschot e S. A. Vanstone, *Handbook of applied cryptography*. CRC Press, 1997, Acedido a partir de http://cacr.uwaterloo.ca/hac/about/chap8.pdf, ISBN: 978-0849385230.