Université Paris Dauphine

Introduction

It is rare for the quantity of interest and the quantity measured to perfectly match often our signal of interest $s \in \mathbb{R}^{m \times n}$ is actually mixed with itself. We will set up a certain number of recording device, generally n and from our recorded signals try to recover the sources. If we assume the sources are linearly mixed our problem is then:

$$x = As$$

where $x \in \mathbb{R}^{k \times n}$, $A \in \mathbb{R}^{k \times m}$. While not always true or needed we will assume that A is square and invertible and call $A^{-1} = W$.

We will see that the sole hypothesis of the independence of the s_i is enough to find a solution to the problem.

Because of the way the problem is posed one cannot hope to recover the real s as for example a scaling or permutation of A leaves the problem unchanged and we therefore cannot hope to recover the magnitudes (and therefore signs) of the s_i or their order.

ICA as an eigenvalue problem

We want to optimize a measure of independance of our estimated sources. Most approaches try to optimize an approximation of the mutual information. The measure chosen here [1] is for two variables:

$$\rho_{\mathcal{F}} = \max_{f_1, f_2 \in \mathcal{F}} \operatorname{corr}(f_1(\mathbf{x}_1), f_2(\mathbf{x}_2))$$

By exploiting the kernel trick we can obtain

$$\rho_{\mathcal{F}} = \max_{\mathbf{f}_1, \mathbf{f}_2 \in \mathcal{F}} \operatorname{corr}(\langle \Phi_1(\mathbf{x}_1), \mathbf{f}_1 \rangle, \langle \Phi_2(\mathbf{x}_2), \mathbf{f}_2 \rangle)$$

We recognize a CCA problem and if we note K_1 and K_2 the respective Gram matrices (assuming they are centered) we get the problem:

$$\begin{pmatrix} 0 & \mathbf{K}_1 \mathbf{K}_2 \\ \mathbf{K}_2 \mathbf{K}_1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \rho \begin{pmatrix} \mathbf{K}_1^2 & 0 \\ 0 & \mathbf{K}_2^2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

This problem is unfortunately not well posed at it will always be equal to 0 for most kernels, we therefore adopt a regularized version as an estimator:

$$\rho_{\mathcal{F}} = \max_{\mathbf{f}_1, \mathbf{f}_2 \in \mathcal{F}} \frac{\text{cov}(\mathbf{f}_1(\mathbf{x}_1), \mathbf{f}_2(\mathbf{x}_2))}{(\text{var}\mathbf{f}_1(\mathbf{x}_1) + \kappa \|\mathbf{f}_1\|_{\mathcal{F}}^2)^{1/2}(\text{var}\mathbf{f}_2(\mathbf{x}_2) + \kappa \|\mathbf{f}_2\|_{\mathcal{F}}^2)^{1/2}}$$

The problem estimated at the first order is then:

$$\begin{pmatrix} 0 & \mathbf{K}_1 \mathbf{K}_2 \\ \mathbf{K}_2 \mathbf{K}_1 & 0 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \rho \begin{pmatrix} (\mathbf{K}_1 + \frac{\mathbf{N}\kappa}{2} \mathbb{I})^2 & 0 \\ 0 & (\mathbf{K}_2 + \frac{\mathbf{N}\kappa}{2} \mathbb{I})^2 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}$$

Of course we are interested in solving the m-variables problems, we can easily extend CCA to m variables. We can then transform that problem in the problem of finding the eigenvalues of:

$$\tilde{\mathcal{K}}_{\kappa} = \begin{pmatrix}
\mathbb{I} & r_{\kappa}(K_{1})r_{\kappa}(K_{2}) \cdots r_{\kappa}(K_{1})r_{\kappa}(K_{m}) \\
r_{\kappa}(K_{2})r_{\kappa}(K_{1}) & \mathbb{I} & \cdots r_{\kappa}(K_{2})r_{\kappa}(K_{m}) \\
\vdots & \vdots & \ddots & \vdots \\
r_{\kappa}(K_{m})r_{\kappa}(K_{1}) & r_{\kappa}(K_{m})r_{\kappa}(K_{2}) \cdots & \mathbb{I}
\end{pmatrix}$$

$$r_{\kappa}(K_{i}) = K_{i}(K_{i} + \frac{N\kappa}{2}\mathbb{I})^{-1}$$

We then optimize:

$$J(W) = -rac{1}{2}\det ilde{\mathcal{K}}_{\kappa}$$

Reducing Complexity

If we decompose the K_i as

$$K_i = G_i G_i^{\mathsf{T}} = U_i \Lambda_i U_i^{\mathsf{T}}$$

with Λ_i diagonal then if R_i is Λ_i regularized by $\lambda \to \frac{\lambda}{\lambda + N\kappa/2}$ we have

$$\tilde{\mathcal{K}}_{\kappa} = (\mathcal{U}\mathcal{V}) \begin{pmatrix} \mathcal{R}_{\kappa} & 0 \\ 0 & \mathbb{I} \end{pmatrix} (\mathcal{U}\mathcal{V})^{\mathsf{T}}$$

with

$$\mathcal{R}_{\kappa} = \begin{pmatrix} \mathbb{I} & R_1 U_1^{\mathsf{T}} U_2 R_2 & \cdots & R_1 U_1^{\mathsf{T}} U_m R_m \\ R_2 U_2^{\mathsf{T}} U_1 R_1 & \mathbb{I} & \cdots & R_2 U_2^{\mathsf{T}} U_m R_m \\ \vdots & \vdots & \ddots & \vdots \\ R_m U_m^{\mathsf{T}} U_1 R_1 & R_m U_m^{\mathsf{T}} U_2 R_2 & \cdots & \mathbb{I} \end{pmatrix}$$

And therefore

$$\det ilde{\mathcal{K}}_{\scriptscriptstyle \mathcal{K}} = \det \mathcal{R}_{\scriptscriptstyle \mathcal{K}}$$

We will therefore make heavy use of incomplete Choleski decompositions to reduce the computational complexity.

Optimization on the Stiefel Manifold

Our problem is

$$\min_{W} J(W)$$
 s.t $WW^{\mathsf{T}} = \mathbb{I}$

The set $\{W \mid WW^{\intercal} = \mathbb{I}\}$ has a particular geometry: it is Riemannian manifolds and most common optimization procedures can be performed on it [2]. The simplest implementation is steepest descent along geodesics in the direction of the gradient using the following: if $W, H \in \mathbb{R}^{m \times n}$ s.t $W^\intercal W = \mathbb{I}$ and $A = W^\intercal H$ skew-symmetric then the geodesic on the Stiefel manifold emanating from Win direction *H* is given by the curve

$$W(t) = WM(t) + QN(t)$$
 where
$$QR = (\mathbb{I} - WW^{\mathsf{T}})H$$
 and
$$\binom{M(t)}{N(t)} = \exp\left(t \begin{pmatrix} A - R^{\mathsf{T}} \\ R & 0 \end{pmatrix} \begin{pmatrix} \mathbb{I}_n \\ 0 \end{pmatrix}\right)$$

Given the cost of the gradient computations a natural extension is to perform conjugate gradient on the manifold, see [2] for the procedure.

Unmixing images

Figure 3: Retrieved images

Independent images basis

This time the quantity of interest is W the unmixing matrix, s representing the random coefficients in the ICA basis of natural images. In this setting the columns of A form the basis and the columns of W the detectors.

Figure 4: ICA basis of the 3 previous images

References

[1] F. R. Bach and M. I. Jordan. Kernel Independent Component Analysis. Journal of Machine Learning Research, 3:1–48, 2002.

[2] A. Edelman, T. A. Arias, and S. T. Smith. The Geometry of Algorithms with Orthogonality Constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.