Forecasting piogge - Emilia Romagna

Operational Analytics 2024/2025 G.Casamenti

Introduzione e obiettivi

La previsione delle piogge sono un problema critico per numerosi settori:

- Agricoltura e pianificazione delle irrigazioni,
- Gestione del rischio idrologico (alluvioni, siccità),
- Pianificazione urbana e ambientale.

Da questa motivazione nasce l'esigenza di studiare e confrontare diversi modelli di forecasting, tra cui

- Modelli statistici
- Reti neurali
- Alberi decisionali

L'obiettivo è determinare quale metodo offra il miglior compromesso tra accuratezza, stabilità e capacità di apprendere dinamiche stagionali e fluttuazioni settimanali.

Data e preprocessing - pt1

I dati storici utilizzati per l'addestramento dei modelli sono stati ottenuti da fonti meteorologiche ufficiali e certificate. Alcune delle fonti di riferimento includono:

- ARPAE
- ISPRA Istituto Superiore per la Protezione e la Ricerca Ambientale

I dati sono stati aggregati su base settimanale e pre-processati per garantire coerenza temporale e qualità statistica.

Frequenza: settimanale

Unità di misura: mm di pioggia

Intervallo temporale: dati storici dal 2014 fino al 2023, previsione per tutto il 2024

Data e preprocessing - pt2

Data e preprocessing - pt3

Modelli statistico - Sarima

• Componenti non stagionali: ARIMA(1,1,2)

• Componenti stagionali: ARIMA(1,1,1)

• Stagionalità: 52

```
--- RISULTATI ACCURATEZZA SARIMA ---
MAPE (Mean Absolute Percentage Error): 0.0955 (9.55%)
ME (Mean Error): -0.8993
MAE (Mean Absolute Error): 1.7397
MPE (Mean Percentage Error): -0.0756 (-7.56%)
RMSE (Root Mean Square Error): 3.7483
Correlazione: 0.9003
```


Rete neurale feedforward

Struttura:

- nn.Linear(input_size, 64)
- nn.ReLU(),
- nn.Dropout(0.2),
- nn.Linear(64, 32),
- nn.ReLU(),
- nn.Linear(32, 1)

```
--- RISULTATI ACCURATEZZA RETE NEURALE ---
MAPE (Mean Absolute Percentage Error): 0.2879 (28.79%)
ME (Mean Error): -1.0646
MAE (Mean Absolute Error): 5.4412
MPE (Mean Percentage Error): -0.0602 (-6.02%)
RMSE (Root Mean Square Error): 7.1422
Correlazione: 0.6499
```


Decision tree - XGBoost

XGBRegressor:

- objective='reg:squarederror',
- n_estimators=1000,
- max_depth=5,
- learning_rate=0.01,
- subsample=0.6,
- colsample_bytree=0.8,gamma=1

```
--- RISULTATI ACCURATEZZA XGBOOST ---
MAPE (Mean Absolute Percentage Error): 0.2387 (23.87%)
ME (Mean Error): -1.4770
MAE (Mean Absolute Error): 4.2696
MPE (Mean Percentage Error): -0.0770 (-7.70%)
RMSE (Root Mean Square Error): 6.3283
Correlazione: 0.6951
```


Settimane dal 2024

Conclusioni

Benchmark di valutazione:

Categoria	MAPE
ECCELLENTE:	5-15%
MOLTO BUONO:	15-25%
BUONO:	25-35%
ACCETTABILE:	35-50%
SCARSO:	50%+

Diebol-Mariano TEST

SARIMA vs Neural Network - DM stat: 5.2411, p-value: 0.0000

SARIMA vs XGBoost - DM stat: 2.9026, p-value: 0.0055

Neural Network vs XGBoost - DM stat: -1.0153, p-value: 0.3148