This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

_ \$ -	· 8	,	· · · · · · · · · · · · · · · · · · ·	•	· 	-
	*	ě		of the same	¥	
		•				
•						
· •						
- A - 01		· •	i ozi		****	
*						7
				-	.**	
					•	
			•			
				De la constant		
			,			
		•				
		. ,	•			
		· .				
	•		, *			
		2 2 2				
	÷	· •				
	,	· · · · · · · · · · · · · · · · · · ·	(3) A			
	÷		♦ 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			·.			
						•
	<i>¥</i>		r. r.			₹
						1
			The second of th			27

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

INTERNATIONAL APPLICATION PODLISI		
(51) International Patent Classification 6:		(11) International Publication Number: WO 99/10535
C12Q 1/68, C12N 15/12	A1	(43) International Publication Date: 4 March 1999 (04.03.99)
(21) International Application Number: PCT/US (22) International Filing Date: 21 August 1998 (BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU
(30) Priority Data: 60/056,861 22 August 1997 (22.08.97) (71) Applicant (for all designated States except US): YA VERSITY [US'US]; 451 College Street, New H 06520 (US).	LE UI	Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. T
(72) Inventors; and (75) Inventors/Applicants (for US only): LIU, Meng Apartment 7C, 564 Prospect Street, New Haven, (US). BASKARAN, Namadev [IN/US]; 750 Wh enue, New Haven, CT 06511 (US). WEISSMAN, M. [US/US]: 459 Saint Ronan Street, New Haven, (US). (74) Agent: ADLER, Reid, G.; Morgan, Lewis & Bool 1800 M Street, N.W., Washington, DC 20036 (U	CT 065 itney A Sherm CT 065	1 /- /- 1 1

(54) Title: A PROCESS TO STUDY CHANGES IN GENE EXPRESSION IN STEM CELLS

(57) Abstract

The present invention includes a method to identify stem cell genes that are differentially expressed in stem cells at various stages of differentiation when compared to undifferentiated stem cells by preparing a gene expression profile of a stem cell population and comparing the profile to a profile prepared from stem cells at different stages of differentiation, thereby identifying cDNA species, and therefore genes, which are expressed. The present invention also includes methods to identify a therapeutic agent that modulates the expression of at least one stem cell gene associated with the differentiation, proliferation and/or survival of stem cells.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia -
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ.	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary .	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	freland	MN	Mongolia	UA	Ukraine
BR	Brazi!	ΙĻ	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
ÇA	Canada .	IT.	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU .	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

-1-

A PROCESS TO STUDY CHANGES IN GENE EXPRESSION IN STEM CELLS

Technical Field

10

This invention relates to compositions and methods useful to identify agents that modulate the expression of at least one gene associated with the differentiation, proliferation, dedication and/or survival of stem cells.

5 Background of the Invention

The identification of genes associated with development and differentiation of cells is an important step for advancing our understanding of hematopoiesis, the differentiation of hematopoietic stem cells into erythrocytes, monocytes, platelets and polymorphonuclear white blood cells or granulocytes. The identification of genes associated with hematopoiesis is also an important step for advancing the development of therapeutic agents which modulate, promote or interfere with the differentiation of stem cells.

Hematopoietic stem cells derive from bone marrow stem cells. The bone marrow stem cells ultimately differentiate into the hematopoietic stem cells, which are responsible for the lymphoid, myeloid and erythroid lineages, and stromal stem cells, which differentiate into fibroblasts, osteoblasts, smooth muscle cells, stromal cells and adipocytes (STEWART SELL, IMMUNOLOGY, IMMUNOPATHOLOGY & IMMUNITY, 5th ed. 39-42 Stamford, CT, 1996). The lymphoid lineage, comprising B-cells and T-cells, provides for the production of antibodies, regulation of the cellular immune system, detection of foreign agents in the blood, detection of cells foreign to the host, and the like. The myeloid lineage, which includes monocytes, granulocytes, megakaryocytes as well as others cells, monitors for the presence of foreign bodies in the blood stream, provides protection against neoplastic cells, scavenges foreign materials in the blood stream,

-2-

produces platelets and the like. The erythroid lineage provides the red blood cells which act as oxygen carriers.

Hematopoietic stem cells differentiate as a result from their interaction with growth factors such as interleukins (ILs), lymphokines, colony-stimulating factors (CSFs), erythropoietin (epo), and stem cell factor (SCF). Each of these growth factors have multiple actions that are not necessarily limited to the hematopoietic system (ROBERT A. MEYERS, ED., MOLECULAR BIOLOGY AND BIOTECHNOLOGY: A COMPREHENSIVE DESK REFERENCE, 392-6, New York, 1995). Proliferation, differentiation and survival of immature hematopoietic progenitor cells are sustained by hematopoietic growth factors (hemopoietins). These growth factors also influence the 10 survival and function of mature blood cells. The kinetics of hematopoiesis vary depending on cell type, and their life span may be as little as 6-12 hours to as much as months or years. As a result, the daily renewal of certain lymphocyte progenitors may be substantially lower than that of leukocytic progenitors. The most primitive cells, 15 pluripotent stem cells (PSCs), have high self-renewal capacity (Nathan, 818-821; Saito, Recent trends in research on differentiation of hematopoietic cells and lymphokines, Hum. Cell. 5(1): 54 (1992)).

Growth factors are responsible for differentiating the hematopoietic stem cell into either the hemocytoblast, which is the progenitor cell of erythrocytes, neutrophils, eosinophils, basophils, monocytes and platelets, and lymphoid stem cells, which are progenitors to T cells and B cells. Sell, 41. These circulating blood cells are products of terminal differentiation of recognizable precursors (e.g., erythroblasts, monomyeloblasts and megakaryoblasts, to name but a few). The terminal differentiation of these recognizable precursors may occur exclusively in the marrow cavities of the axial skeleton, with some extension into the proximal femora and humeri (David G. Nathan, Hematologic Diseases, IN CECIL TEXTBOOK OF MEDICINE 20th ed., 817, Philadelphia, 1996). White blood cell (WBC) nomenclature may be divided into two major populations on the basis of the form of their nuclei: single nuclei (mononuclear or "round cells") or segmented nuclei (polymorphonuclear).

20

25

PCT/US98/17283

10

15

In human medicine, the ability to initiate and regulate hematopoiesis is of great importance (McCune et al., The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function, Science 241: 1632(1988)). A variety of diseases and immune disorders, including malignancies, appear to be related to disruptions within the lympho-hematopoietic system. Many of these disorders could be alleviated and/or cured by repopulating the hematopoietic system with progenitor cells, which when triggered to differentiate would overcome the patient's deficiency. In humans, a current replacement therapy is bone marrow transplantation. This type of therapy, however, is both painful (for donor and recipient) because of involvement of invasive procedures and can offer severe complications to the recipient, particularly when the graft is allogeneic and Graft Versus Host Disease (GVHD) results. Therefore, the risk of GVHD restricts the use of bone marrow transplantation to patients with otherwise fatal diseases. A potentially more exciting alternative therapy for hematopoietic disorders is the treatment of patients with reagents that regulate the proliferation and differentiation of stem cells (Lawman et al., U.S. Patent No. 5,650,299 (1997)).

There is also a strong interest in the development of procedures to produce large numbers of the human hematopoietic stem cell. This will allow for identification of growth factors associated with its self regeneration. Additionally, there may be as yet undiscovered growth factors associated (1) with the early steps of dedication of the stem cell to a particular lineage; (2) the prevention of such dedication; and (3) the negative control of stem cell proliferation. Availability of large numbers of stem cells would be extremely useful in bone marrow transplantation, as well as transplantation of other organs in association with the transplantation of bone marrow.

An *in vitro* system that permits determination of what agents induce

25 differentiation or proliferation of progenitor cells within a hematopoietic cell population would have many applications. For example, controlled production of red blood cells would permit the *in vitro* production of red blood cell units for clinical replacement (transfusion) therapy. As is well known, transfused red cells are used in the treatment of anemia following elective surgery, in cases of traumatic blood loss, and in the supportive care of, e.g., cancer patients. Similarly, controlled production of platelets would permit

-4-

the *in vitro* production of platelets for platelet transfusion therapy, which may be used in cancer patients with thrombocytopenia caused by chemotherapy. For both red cells and platelets, current volunteer donor pools are accompanied by the risk of infectious contamination, and availability of an adequate supply can be limited. Determination of such compounds would lend itself to developing methods of controlled *in vitro* production of specified lineage of mature blood cells to circumvent these problems (Palsson *et al.*, U.S. Patent No. 5,635,386 (1997)).

Alternatively, agents could be isolated that selectively deplete a particular lineage of cells from within a hematopoietic cell population and can similarly confer important advantages. For example, production of stem cells and myeloid cells while selectively depleting T-cells from a bone marrow cell population could be very important for the management of patients with human immunodeficiency virus (HIV) infection. Since the major reservoir of HIV is the pool of mature T-cells, selective eradication of the mature T-cells from a hematopoietic cell mass collected from a patient has considerable potential therapeutic benefit. If one could selectively remove all the mature T-cells from within an HIV infected bone marrow cell population while maintaining viable stem cells, the T-cell depleted bone marrow sample could then be used to "rescue" the patient following hematolymphoid ablation and autologous bone marrow transplantation. Although there are reports of the isolation of progenitor cells (see, e.g., Tsukamoto et al., (1991) as representative) such techniques are distinct from the selective removal of T-cells from a hematopoietic tissue culture (Palsson et al., U.S. Patent No. 5,635,386 (1997)).

Summary of the Invention

10

15

20

While the differentiation of stem cells has been the subject of intense study, little is known about the global transcriptional response of stem cells during cell

hematopoiesis. The present inventors have devised an approach to systematically assess the transcriptional regulation of stem cells during hematopoiesis as well as methods for the identification of agents that modulate the expression of at least one gene associated with hematopoiesis.

10

The present invention includes a method to identify stem cell genes that are differentially expressed in stem cells at various stages of differentiation when compared to undifferentiated stem cells by preparing a gene expression profile of a stem cell population and comparing the profile to a profile prepared from stem cells at different 5 stages of differentiation, thereby identifying cDNA species, and therefore genes, which are expressed.

The present invention further includes a method to identify an agent that modulates the expression of at least one stem cell gene associated with the differentiation process of a stem cell population, comprising the steps of preparing a first gene expression profile of an undifferentiated stem cell population, preparing a second gene expression profile of a stem cell population at a defined stage of differentiation, treating said undifferentiated stem cell population with the agent, preparing a third gene expression profile of the treated stem cell population, and comparing the first, second and third gene expression profiles. Comparison of the three gene expression profiles for 15 RNA species as represented by cDNA fragments that are differentially expressed upon addition of the agent to the undifferentiated stem cell population identifies agents that modulate the expression of at least one gene in undifferentiated stem cells that is associated with stem cell differentiation.

Another aspect of the invention is a composition comprising a grouping of nucleic acids or nucleic acid fragments affixed to a solid support. The nucleic acids affixed to 20 the solid support correspond to one or more genes whose expression levels are modulated during stem cell differentiation.

Brief Description of the Drawings

Fig. 1 Figure 1 is an autoradiogram of the gene expression profiles generated from cDNAs made with RNA isolated from Lin+, LRH, LRH48 and LRBRH cells. All 25 possible 12 anchoring oligo d(T)n1, n2 were used to generate a complete expression profile for the enzyme ClaI.

-6-

Modes of Carrying Out the Invention

General Description

The differentiation of stem cells during the process of hematopoiesis is a subject of primary importance in view of the need to find ways to modulate the stem cell differentiation process. One means of characterizing the process of hematopoiesis is to measure the ability of stem cells to synthesize specific RNA during stem cell differentiation.

The following discussion presents a general description of the invention as well definitions for certain terms used herein.

10 Definitions

25

The term "stem cells" as used herein, refers to both hematopoietic stem cells and bone marrow stem cells, and includes totipotent cells which serve as progenitors of neoplastic transformation. The term "hematopoietic stem cells" refers to stem cells which differentiate into erythrocytes, monocytes, granulocytes, and platelets. The putative human hematopoietic stem cell may express the cell surface antigen CD34.

The term "hematopoiesis" as used herein, refers to the process by which stem cells differentiate into blood cells, including erythrocytes, monocytes, granulocytes, and platelets.

The term "blood cell", as used herein, refers to all blood cell types derived from the process of hematopoiesis (see STEWART SELL, *IMMUNOLOGY*, *IMMUNOPATHOLOGY* & *IMMUNITY*, 5th ed. 39-42, Stamford, CT, 1996)

The term "solid support", as used herein, refers to any support to which nucleic acids can be bound or immobilized, including nitrocellulose, nylon, glass, other solid supports which are positively charged and nanochannel glass arrays disclosed by Beattie (WO 95/1175).

The term "gene expression profile", also referred to as a "differential expression profile" or "expression profile" refers to any representation of the expression level of at

5

10

least one mRNA species in a cell sample or population. For instance, a gene expression profile can refer to an autoradiograph of labeled cDNA fragments produced from total cellular mRNA separated on the basis of size by known procedures. Such procedures include slab gel electrophoresis, capillary gene electrophoresis, high performance liquid chromatography, and the like. Digitized representations of scanned electrophoresis gels are also included as are two and three dimensional representations of the digitized data.

While a gene expression profile encompasses a representation of the expression level of at least one mRNA species, in practice, the typical gene expression profile represents the expression level of multiple mRNA species. For instance, a gene expression profile useful in the methods and compositions disclosed herein represents the expression levels of at least about 5, 10, 20, 50, 100, 150, 200, 300, 500, 1000 or more preferably, substantially all of the detectable mRNA species in a cell sample or population. Particularly preferred are gene expression profiles or arrays affixed to a solid support that contain a sufficient representative number of mRNA species whose expression levels are modulated under the relevant infection, disease, screening, treatment or other experimental conditions. In some instances a sufficient representative number of such mRNA species will be about 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 50-75 or 100.

Gene expression profiles can be produced by any means known in the art, including, but not limited to the methods disclosed by: Prashar et al. (1996) Proc. Natl. Acad. Sci.

USA 93:659-663; Liang et al. (1992) Science 257:967-971; Ivanova et al. (1995) Nucleic Acids Res. 23:2954-2958; Guilfoyl et al. (1997) Nucleic Acids Res. 25(9):1854-1858;

Chee et al. (1996) Science 274:610-614; Velculescu et al. (1995) Science 270:484-487;

Fischer et al. (1995) Proc. Natl. Acad. Sci. USA 92(12):5331-5335; and Kato (1995)

Nucleic Acids Res. 23(18):3685-3690.

As an example, gene expression profiles are made to identify one or more genes whose expression levels are modulated during the process of stem cell differentiation. The assaying of the modulation of gene expression via the production of a gene expression profile generally involves the production of cDNA from polyA+ RNA (mRNA) isolated from stem cells as described below.

Stem cells are harvested or isolated by any technique known in the art. One of the most versatile ways to separate hematopoietic cells is by use of flow cytometry, where the particles, *i.e.*, cells, can be detected by fluorescence or light scattering. The source of the cells may be any source which is convenient. Thus, various tissues, organs, fluids, or the like may be the source of the cellular mixtures. Of particular interest are bone marrow and peripheral blood, although other lymphoid tissues are also of interest, such as spleen, thymus, and lymph node (see Sasaki *et al.*, U.S. Patent No. 5,466,572 and Fei *et al.*, U.S. Patent No. 5,635,387).

Cells of interest will usually be detected and separated by virtue of surface membrane proteins which are characteristic of the cells. For example, CD34 is a marker for immature hematopoietic cells. Markers for dedicated cells may include CD 10, CD19, CD20, and sIg for B cells, CD 15 for granulocytes, CD 16 and CD33 for myeloid cells, CD 14 for monocytes, CD41 for megakaryocytes, CD38 for lineage dedicated cells, CD3, CD4, CD7, CD8 and T cell receptor (TCR) for T cells, Thy-1 for progenitor cells. 15 glycophorin for erythroid progenitors and CD71 for activated T cells. In isolating early progenitors, one may divide a CD34 positive enriched fraction into lineage (Lin) negative, e.g. CD2 -, CD 14 -, CD15 -, CD16 -, CD10 -, CD19 -, CD33 - and glycophorin A -, fractions by negatively selecting for markers expressed on lineage committed cells, Thy-1 positive fractions, or into CD38 negative fractions to provide a composition substantially enriched for early progenitor cells. Other markers of interest 20 include V alpha and V beta chains of the T-cell receptor (Sasaki et al., U. S. Patent No. 5,466,572 (1995)).

After isolation of the appropriate stem cells, total cellular mRNA is isolated from the cell sample. mRNAs are isolated from cells by any one of a variety of techniques.

Numerous techniques are well known (see e.., Sambrook et al., Molecular Cloning: A Laboratory Approach, Cold Spring harbor Press, NY, 1987; Ausbel et., Current Protocols in Molecular Biology, Greene Publishing Co. NY, 1995). In general, these techniques first lyse the cells and then enrich for or purify RNA. In one such protocol, cells are lysed in a Tris-buffered solution containing SDS. The lysate is extracted with phenol/chloroform, and nucleic acids precipitated. The mRNAs may be purified from

PCT/US98/17283

5

10

15

20

25

30

crude preparations of nucleic acids or from total RNA by chromatography, such as binding and elution from oligo(dT)-cellulose or poly(U)-Sepharose®. However, purification of poly(A)-containing RNA is not a requirement. As stated above, other protocols and methods for isolation of RNAs may be substituted.

The mRNAs are reverse transcribed using an RNA-directed DNA polymerase, such as reverse transcriptase isolated from AMV, MoMuLV or recombinantly produced. Many commercial sources of enzyme are available (e.g. Pharmacia, New England Biolabs, Stratagene Cloning Systems). Suitable buffers., cofactors, and conditions are well known and supplied by manufacturers (see also, Sambrook et al. (1989) Molecular Cloning: a laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory; and Ausbel et al., (1987) Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, N.Y.).

Various oligonucleotides are used in the production of cDNA. In particular, the methods utilize oligonucleotide primers for cDNA synthesis, adapters, and primers for amplification. Oligonucleotides are generally synthesized so single strands by standard chemistry techniques, including automated synthesis. Oligonucleotides are subsequently de-protected and may be purified by precipitation with ethanol, chromatographed using a sized or reversed-phase column, denaturing polyacrylamide gel electrophoresis, high-pressure liquid chromatography (HPLC), or other suitable method. In addition, within certain preferred embodiments, a functional group, such as biotin, is incorporated preferably at the 5' or 3' terminal nucleotide. A biotinylated oligonucleotide may be synthesized using pre-coupled nucleotides, or alternatively, biotin may be conjugated to the oligonucleotide using standard chemical reactions. Other functional groups, such as florescent dyes, radioactive molecules, digoxigenin, and the like, may also be incorporated.

Partially-double stranded adaptors are formed from single stranded oligonucleotides by annealing complementary single-stranded oligonucleotides that are chemically synthesized or by enzymatic synthesis. Following synthesis of each strand, the two oligonucleotide strands are mixed together in a buffered salt solution (e.g., 1 M NaCl, 100 mM Tris-HCl pH.8.0, 10 mM EDTA) or in a buffered solution containing Mg⁺² (e.g.,

10 mM MgCl₂) and annealed by heating to high temperature and slow cooling to room temperature.

The oligonucleotide primer that primes first strand DNA synthesis may comprise a 5' sequence incapable of hybridizing to a polyA tail of the mRNAs, and a 3' sequence that hybridizes to a portion of the polyA tail of the mRNAs and at least one non-polyA nucleotide immediately upstream of the polyA tail. The 5' sequence is preferably a sufficient length that can serve as a primer for amplification. The 5' sequence also preferably has an average G+C content and does not contain large palindromic sequence; some palindromes, such as a recognition sequence for a restriction enzyme, may be acceptable. Examples of suitable 5' sequences are CTCTCAAGGATCTACCGCT (SEQ ID No. _____), CAGGGTAGACGACGCTACGC (SEQ ID No. _____), and TAATACCGCGCCCACATAGCA (SEQ ID No. _____)

10

20

25

30

The 5' sequence is joined to a 3' sequence comprising sequence that hybridizes to a portion of the polyA tail of mRNAs and at least one non-polyA nucleotide immediately upstream. Although the polyA-hybridizing sequence is typically a homopolymer of dT or dU, it need only contain a sufficient number of dT or dU bases to hybridize to polyA under the conditions employed. Both oligo-dT and oligo-dU primers have been used and give comparable results. Thus, other bases may be interspersed or concentrated, as long as hybridization is not impeded. Typically, 12 to 18 bases or 12 to 30 bases of dT or dU will be used. However, as one skilled in the art appreciates, the length need only be sufficient to obtain hybridization. The non-poly A+ nucleotide is A, C, or G, or a nucleotide derivative, such as inosinate. If one non-polyA nucleotide is used, then three oligonucleotide primers are needed to hybridize to all mRNAs. If two non-polyA nucleotides are used, then 12 primers are needed to hybridize to all mRNAs (AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT). If three non-poly A nucleotides are used then 48 primers are needed (3 X 4 X 4). Although there is no theoretical upper limit on the number of non-polyA nucleotides, practical considerations make the use of one or

For cDNA synthesis, the mRNAs are either subdivided into three (if one non-polyA nucleotide is used) or 12 (if two non-polyA nucleotides are used) fractions, each

two non-polyA nucleotides preferable.

PCT/US98/17283 WO 99/10535

-11-

containing a single oligonucleotide primer, or the primers may be pooled and contacted with a mRNA preparation. Other subdivisions may alternatively be used. Briefly, first strand cDNA is initiated from the oligonucleotide primer by reverse transcriptase (RTasc). As noted above, RASE may be obtained from numerous sources and protocols are well known. Second strand synthesis may be performed by RASE (Gubler and Hoffman, Gene 25: 263, 1983), which also has a DNA-directed DNA polymerase activity, with or without a specific primer, by DNA polymerase 1 in conjunction with RNasell and DNA ligase, or other equivalent methods. The double-stranded cDNA is generally treated by phenol:chloroform extraction and ethanol precipitation to remove protein and free nucleotides.

10

15

20

25

Double-stranded cDNA is subsequently digested with an agent that cleaves in a sequence-specific manner. Such cleaving agents include restriction enzymes, chemical cleaving agents, triple helix, and any other cleaving agent available. Restriction enzyme digestion is preferred; enzymes that are relatively infrequent cutters (e.g., ≥ 5 bp recognition site) are preferred and those that leave overhanging ends are especially preferred. A restriction enzyme with a six base pair recognition site cuts approximately 8% of cDNAs, so that approximately 12 such restriction enzymes should be needed to digest every cDNA at least once. By using 30 restriction enzymes, digestion of every cDNA is assured.

The adapters for use in the present invention are designed such that the two strands are only partially complementary and only one of the nucleic acid strands that the adapter is ligated to can be amplified. Thus, the adapter is partially double-stranded (i.e., comprising two partially hybridized nucleic acid strands), wherein portions of the two strands are non-complementary to each other and portions of the two strands are complementary to each other. Conceptually, the adapter may be "Y-shaped" or "bubbleshaped." When the 5' region is non-paired, the 3' end of other strand cannot be extended by a polymerase to make a complementary copy. The ligated adapter can also be blocked at the 3' end to eliminate extension during subsequent amplifications. Blocking groups include dideoxynucleotides and other available blocking agents. In this type of adapter ("Y-shaped"), the non-complementary portion of the upper strand of the adapters is 30

-12-

preferably a length that can serve as a primer for amplification. As noted above, the non-complementary portion of the lower strand need only be one base, however, a longer sequence is preferable (e.g., 3 to 20 bases; 3 to 15 bases; 5 to 15 bases, or 14 to 24 bases. The complementary portion of the adapter should be long enough to form a duplex under conditions of ligation.

For "bubble-shaped" adapters, the non-complementary portion of the upper strands is preferably a length that can serve as a primer for amplification. Thus, this portion is preferably 15 to 30 bases. Alternatively, the adapter can have a structure similar to the Y-shaped adapter, but has a 3' end that contains a moiety that a DNA polymerase cannot extend from.

10

15

20

25

30

Amplification primers are also used in the present invention. Two different amplification steps are performed in the preferred aspect. In the first, the 3' end (referenced to mRNA) of double stranded cDNA that has been cleaved and ligated with an adapter is amplified. For this amplification, either a single primer or a primer pair is used. The sequence of the single primer comprises at least a portion of the 5' sequence of the oligonucleotide primer used for first strand cDNA synthesis. The portion need only be long enough to serve as an amplification primer. The primer pair consists of a first primer whose sequence comprises at least a portion of the 5' sequence of the oligonucleotide primer as described above; and a second primer whose sequence comprises at least a portion of the sequence of one strand of the adapter in the noncomplementary portion. The primer will generally contain all the sequence of the noncomplementary potion, but may contain less of the sequence, especially when the noncomplementary portion is very long, or more of the sequence, especially when the noncomplementary portion is very short. In some embodiments, the primer will contain sequence of the complementary portion, as long as that sequence does not appreciably hybridize to the other strand of the adapter under the amplification conditions employed. For example, in one embodiment, the primer sequence comprises four bases of the complementary region to yield a 19 base primer, and amplification cycles are performed at 56°C (annealing temperature), 72°C (extension temperature), and 94°C (denaturation temperature). In another embodiment, the primer is 25 bases long and has 10 bases of

10

15

20

25

30

sequence in the complementary portion. Amplification cycles for this primer are performed at 68°C (annealing and extension temperature) and 94°C (denaturation temperature). By using these longer primers, the specificity of priming is increased.

The design of the amplification primers will generally follow well-known guidelines, such as average G-C content, absence of hairpin structures, inability to form primer-dimers and the like. At times, however, it will be recognized that deviations from such guidelines may be appropriate or desirable.

In instances where small numbers of cells are available for the initial RNA extraction, such as small numbers of stem cells, the preferred method of producing a gene expression profile comprises the following general steps. Total RNA is extracted from as few as 5000 stem cells. Using an oligo-dT primer, double stranded cDNA is synthesized and ligated to an adapter in accordance with the present invention. Using adapter primers, the cDNA is PCR amplified using the protocol of Baskaran and Weissman (1996) Genome Research 6(7): 633 and/or Liv et al. (1992) Methods of Enzymology. The original cDNA is therefore amplified several fold so that a large quantity of this cDNA is available for use in the display protocol according to the present invention. For the display, an aliquot of this cDNA is incubated with an anchored oligo-dT primer. In one method, this mixture is first heat denatured and then allowed to remain at 50°C for 5 minutes to allow the anchor nucleotides of the oligo-dT primers to anneal. This provides for the synthesis of cDNA utilizing Klenow DNA polymerase. The 3'-end region of the parent cDNA (mainly the polyA region) that remains single stranded due to pairing and subsequent synthesis of cDNA by the anchored oligo-dT primer at the beginning of the polyA region, is removed by the 5'-3' exonuclease activity of the T4 DNA polymerase. Following incubation of the cDNA with T4 DNA polymerase for this purpose, dNTPs are added in the reaction mixture so that the T4 DNA polymerase initiates synthesis of the DNA over the anchored oligo-dT primer carrying the heel. The net result of this protocol is that the cDNA with the 3' heel is synthesized for display from the double stranded cDNA as the starting material, rather than RNA as the starting material as occurs in conventional 3'end cDNA display protocol. The cDNA carrying the 3'-end heel is then subjected to restriction enzyme digestion, ligation, and PCR amplification followed by running the

-14-

PCR amplified 3'-end restriction fragments with the Y-shaped adapter on a display gel. An alternate method is presented in Example 1.

After amplification, the lengths of the amplified fragments are determined. Any procedure that separates nucleic acids on the basis of size and allows detection or identification of the nucleic acids is acceptable. Such procedures include slab gel electrophoresis, capillary gel electrophoresis, 2-dimensional electrophoresis, high performance liquid chromatography, and the like.

- 10

15

Electrophoresis is technique based on the mobility of DNA in an electric field.

Negatively charged DNA migrates towards a positive electrode at a rate dependent on their total charge, size, and shape. Most often, DNA is electrophoresed in agarose or polyacrylamide gels. For maximal resolution, polyacrylamide is preferred and for maximal linearity, a denaturant, such as urea is present. A typical gel setup uses a 19:1 mixture of acrylamide:bisacrylamide and a Tris-borate buffer. DNA samples are denatured and applied to the gel, which is usually sandwiched between glass plates. A typical procedure can be found in Sambrook et al. (Molecular Cloning: A Laboratory Approach, Cold Spring Harbor Press, NY, 1989) or Ausbel et al. (Current Protocols in Molecular Biology, Greene Publishing Co., NY, 1995). Variations may be substituted as long as sufficient resolution is obtained.

Capillary electrophoresis (CE) in its various manifestations (free solution,
isotachophoresis, isoelectric focusing, polyacrylamide get. micellar electrokinetic
"chromatography") allows high resolution separation of very small sample volumes.
Briefly, in capillary electrophoresis, a neutral coated capillary, such as a 50 µm X 37 cm
column (eCAP neutral, Beckman Instruments, CA), is filled with a linear polyacrylamide
(e.g., 0.2% polyacrylamide), a sample is introduced by high-pressure injection followed
by an injection of running buffer (e.g., 1X TBE). The sample is electrophoresed and
fragments are detected. An order of magnitude increase can be achieved with the use of
capillary electrophoresis. Capillaries may be used in parallel for increased throughput
(Smith et al. (1990) Nuc. Acids. Res. 18:4417; Mathies and Huang (1992) Nature
359:167). Because of the small sample volume that can be loaded onto a capillary,
sample may be concentrated to increase level of detection. One means of concentration

25

30

is sample stacking (Chien and Burgi (1992) Anal. Chem 64:489A). In sample stacking, a large volume of sample in a low concentration buffer is introduced to the capillary column. The capillary is then filled with a buffer of the same composition, but at higher concentration, such that when the sample ions reach the capillary buffer with a lower electric field, they stack into a concentrated zone. Sample stacking can increase detection by one to three orders of magnitude. Other methods of concentration, such as isotachophoresis, may also be used.

High-performance liquid chromatography (HPLC) is a chromatographic separation technique that separates compounds in solution. HPLC instruments consist of a reservoir of mobile phase, a pump, an injector, a separation column, and a detector. Compounds are separated by injecting an aliquot of the sample mixture onto the column. The different components in the mixture pass through the column at different rates due to differences in their partitioning behavior between the mobile liquid phase and the stationary phase. IP-RO-HPLC on non-porous PS/DVB particles with chemically bonded alkyl chains can also be used to analyze nucleic acid molecules on the basis of size (Huber et al. (1993) *Anal. Biochem.* 121:351; Huber et al. (1993) *Nuc. Acids Res.* 21:1061; Huber et al. (1993) *Biotechniques* 16:898).

In each of these analysis techniques, the amplified fragments are detected. A variety of labels can be used to assist in detection. Such labels include, but are not limited to, radioactive molecules (e.g., 35S, 32P, 33P), fluorescent molecules, and mass spectrometric tags. The labels may be attached to the oligonucleotide primers or to nucleotides that are incorporated during DNA synthesis, including amplification.

Radioactive nucleotides may be obtained from commercial sources; radioactive primers may be readily generated by transfer of label from γ^{-32} P-ATP to a 5'-OH group by a kinase (e.g., T4 polynucleotide kinase). Detection systems include autoradiograph, phosphor image analysis and the like.

Fluorescent nucleotides may be obtained from commercial sources (e.g., ABI, Foster city, CA) or generated by chemical reaction using appropriately derivatized dyes.

Oligonucleotide primers can be labeled, for example, using succinimidal esters to conjugate to amine-modified oligonucleotides. A variety of florescent dyes may be used,

-16-

including 6 carboxyfluorescein, other carboxyfluorescein derivatives, carboxyrhodamine derivatives, Texas red derivatives, and the like. Detection systems include photomultiplier tubes with appropriate wave-length filters for the dyes used. DNA sequence analysis systems, such as produced by ABI (Foster City, CA), may be used.

5

10

15

25

After separation of the amplified cDNA fragments, cDNA fragments which correspond to differentially expressed mRNA species are isolated, reamplified and sequenced according to standard procedures. For instance, bands corresponding the cDNA fragments can be cut from the electrophoresis gel, reamplified and subcloned into any available vector, including pCRscript using the PCR script cloning kit (Stratagene). The insert is then sequenced using standard procedures, such as cycle sequencing on an ABI sequencer (Foster City, CA).

An additional means of analysis comprises hybridization of the amplified fragments to one or more sets of oligonucleotides immobilized on a solid substrate. Historically, the solid substrate is a membrane, such as nitrocellulose or nylon. More recently, the substrate is a silicon wafer or a borosilicate slide. The substrate may be porous (Beattie et al. WO 95/11755) or solid. Oligonucleotides are synthesized in situ or synthesized prior to deposition on the substrate using standard procedures. Various chemistries are known for attaching oligonucleotides. Many of these attachment chemistries rely upon functionalizing oligonucleotides to contain a primary amine group. The oligonucleotides are arranged in an array form, such that the position of each oligonucleotide sequence can be determined.

The amplified fragments, which are generally labeled according to one of the methods described herein, are denatured and applied to the oligonucleotides on the substrate under appropriate salt and temperature conditions. In certain embodiments, the conditions are chosen to favor hybridization of exact complementary matches and disfavor hybridization of mismatches. Unhybridized nucleic acids are washed off and the hybridized molecules detected, generally both for position and quantity. The detection method will depend upon the label used. Radioactive labels, fluorescent labels and mass spectrometry label are among the suitable labels.

10

15

20

25

The present invention as set forth in the specific embodiments, includes methods to identify a therapeutic agent that modulates the expression of at least one stem cell gene associated with the differentiation, proliferation and/or survival of stem cells.

As an example, the method to identify an agent that modulates the expression of at least one stem cell gene associated with the differentiation of a stem cell population, comprises the steps of preparing a first gene expression profile of an undifferentiated stem cell population, preparing a second gene expression profile of a stem cell population at a defined stage of differentiation, treating said undifferentiated stem cell population with the agent, preparing a third gene expression profile of the treated stem cell population, and comparing the first, second and third gene expression profiles.

Comparison of the three gene expression profiles for RNA species as represented by cDNA fragments that are differentially expressed upon addition of the agent to the undifferentiated stem cell population identifies agents that modulate the expression of a least one gene in undifferentiated stem cells that is associated with stem cell differentiation.

While the above methods for identifying a therapeutic agent comprise the comparison of gene expression profiles from treated and not-treated stem cells, many other variations are immediately envisioned by one of ordinary skill in the art. As an example, as a variation of a method to identify a therapeutic agent that modulates the expression of at least one stem cell gene associated with the differentiation, the second gene expression profile of a stem cell population at a defined stage of differentiation and the third gene expression profile of the treated stem cell population can each be independently normalized using the first gene expression profile prepared from the undifferentiated stem cell population. Normalization of the profiles can easily be achieved by scanning autoradiographs corresponding to each profile, and subtracting the digitized values corresponding to each band on the autoradiograph from undifferentiated stem cells from the digitized value for each corresponding band on autoradiographs corresponding to the second and third gene expression profiles. After normalization, the second and third gene expression profiles can be compared directly to detect cDNA fragments which

-18-

correspond to mRNA species which are specifically expressed during differentiation of a stem cell population.

Specific Embodiments

Example 1

15

20

5 Production of gene expression profiles generated from cDNAs made with RNA isolated from undifferentiated and partially differentiated stem cells.

Crude Marrow Preparation

Expression profiles of RNA expression levels from undifferentiated stem cells and stems cells at various levels of differentiation, including partially differentiated and terminally differentiated stem cells, offer a powerful means of identifying genes whose expression levels are associated with stem cell differentiation or proliferation. As an example, the production of expression profiles from murine lineage negative, rhodamine low, Hoechst low and rhodamine bright, Hoechst low hematopoietic precursor cells allows for the identification of mRNA species and their encoding genes whose expression levels are associated with stem cell differentiation

Hoechstlow/Rhodaminelow hematopoietic stem cells were isolated by sacrificing 30 Balb/c female mice (6-12 weeks) and surgically removing the iliac crests, femurs and tibiae. The bones were cleaned and placed in 10 ml PBS/5% HI-FBS on ice. One tube was used for the bones from 10 mice. The bones were ground throughly with a pestle until completely broken. Following grinding, the supernatant was removed into a 50 ml conical tube through a 40 μM filer(Falcon #2340). 10 ml PBS/FBS was added to the mix and the supernatant removed. The supernatant was then centrifuged (1250 rpm) for 5-10 minutes. The supernatant which contains a high concentration of lipid was then decanted and discarded.

The cells were then pooled into 25 or 50 ml fresh PBS/FBS, and tiny bone fragments removed by settling. The cells were then counted in crystal violet. Cells were diluted and underlayed with LSM, centrifuged at 2000rpm(1000xg) for 20 minutes. To harvest the buffy coat, the supernatant was removed to within 1 cm of the cells. The next 8-

-19-

10ml of medium and cells were harvested by swirling the media around in the tube to draw cells from all sides of the gradient. The cell volume was then brought up to 50 ml with PBS/FBS and spun at 1400rpm 5-10 minutes.

Lineage Depletion

Cells were counted in Crystal Violet and resuspended in fresh PBS/FBS. Lineagespecific antibodies were added as follows:

	TER 119	0.1µg/ml final concentra	ation
	B220	15μl/10 ⁸ cells	
	Mac-1	15μl/10 ⁸ cells .	
10	Gr-1	15μl/10 ⁸ cells	•
	Lyt-2	1/20 final dilution	
	L3T4	1/20 final dilution	
	Yw25.12.7	1/100 final dilution	

The cells were incubated on ice for 15 minutes, brought to a volume of 50ml with PBS/FBS and collected at 1400rpm for 5-10 minutes, and washed to remove unbound antibodies.

During the antibody binding step, Magnetic Beads(Dynabeads M-450) were prepared at a ratio of 5 beads/cell. The beads were coated with Sheep anti-Rat antibodies that bind to the lineage-specific antibodies, which are all of rat origin. When the beads are placed in a magnetic field, the Lin⁺ cells are removed. The resulting supernatant contains the Lin population (granulocytes and lymphocyte populations will be substantially depleted or absent after this step.)

Hoechst/Rhodamine Staining

Rhodamine 123 was added to a final concentration of 0.1 µg/ml, then incubated at 32°C for 20 minutes in the dark. Without further manipulation or washing, HOECHST 33342 was added to a final concentration of 10µM then incubated at 37°C for an additional hour. The aliquot of crude marrow was brought to 0.5 ml with PBS/FBS and Hoechst to this cell preparation as well. The volume was brought to 50 ml with PBS/FBS, centrifuged at 1400rpm for 5-10 minutes, supernatant discarded and cells resuspended to 2x10⁷ cells/ml. The rhodamine only and Hoechst Only/Crude Marrow

were washed in parallel. These two populations were then resuspended in 0.5ml PBS/FBS for flow cytometry analysis

Total RNA was extracted from approximately 5000 stem cells. Using an oligo-dT primer, double stranded cDNA is synthesized and ligated to an adapter in accordance with the present invention. Using adapter primers, the cDNA is PCR amplified using the protocol of Baskaran and Weissman (1996) Genome Research 6(7): 633 and Lie et al., Methods of Enzymology, _____. The original cDNA is therefore amplified several fold so that a large quantity of this cDNA is available for use in the display protocol according to the present invention.

10 Synthesis of cDNA for the gene expression profiles was performed as below:

Materials and Reagents

15

20

A microPoly(A)Pure mRNA Isolation kit (Ambion Inc.) was used for mRNA isolation. All the reagents for cDNA synthesis were obtained from Life Technologies Inc. Klentaq1 DNA polymerase (25U/µl) was from Ab peptides Inc. Native Pfu DNA polymerase (2.5U/µl) was purchased from Stratagene Inc. Betaine monohydrate was from Fluka BioChemica and dimethylsulfoxide (DMSO) was from Sigma Chemical Company. Deoxynucleoside triphophates (dNTPs, 100mM) and bovine serum albumin (BSA, 10 mg/ml) were purchased from New England Biolabs, Inc. Qiaquick PCR purification kit (Qiagen) was used to purify the amplified PCR products. The oligonucleotides used in the Examples were synthesized and gel purified in the DNA synthesis laboratory (Department of Pathology, Yale University School of Medicine, New Haven, CT).

Table 1. Sequences of oligonucleotides.

T ₇ -SalI-oligo-d(T)V	5'-ACG TAA TAC GAC TCA CTA TAG GGC GAA TTG GGT CGA C-
·	$d(T)_{18}V-3'$, where $V = A, C, G$
anti-Notl Long	5'-CTT ACA GCG GCC GCT TGG ACG-3'

PCT/US98/17283

-21-

Notl Short	5'-AGC GGC CGC TGT AAG-3'
Notl/RI primer	5'-GCG GAA TTC CGT CCA AGC GGC CGC TGT AAG-3'

Methods

I. Preparation of mRNA

MicroPoly(A)Pure mRNA isolation kit was used for the isolation of Poly(A)⁺ RNA following the kit instructions. mRNA from a small number of mouse hematopoietic cells (5,000-10,000 cells) was extracted, eluted from the column, and precipitated by adding 0.1 volume of 5M ammonium acetate and 2.5 volumes of chilled ethanol with 2μg glycogen as carrier. The tubes were left at -20°C overnight. The pellets were collected by centrifugation at top speed for 30 minutes, washed with 70% ethanol and air-dried at room temperature. The pellets were resuspended in 10μl H₂O/0.1mM EDTA solution. We observed that the dissolved mRNA solution was cloudy due to the leaching of column materials, therefore the samples were centrifuged at 4°C for 5 minutes. The supernatant was collected for further use.

15 II. cDNA synthesis

First strand cDNA synthesis

The cDNA synthesis reaction (final reaction volume is 20μ l) was carried out as described in the instruction manual (Superscript Choice System) provided by Life Technologies Inc. For the first strand cDNA synthesis, mRNA (10μ l) isolated from a small number of cells was annealed with 200ng (1μ l) of T_T -SalI-oligo-d(T)V-primer (see Table-1) in a 0.5-ml micro centrifuge tube (no stick, USA Scientific Plastics) by heating the tubes at 65°C for 5 minutes, followed by quick chilling on ice for 5 minutes. This step was repeated

-22-

once and the contents were collected at the bottom of the tube by a brief centrifugation. The following components were added to the primer annealed mRNA on ice prior to initiating the reaction, 1μ l of 10mM dNTPs, 4μ l of 5 x first strand buffer [250mM Tris-HCl (pH 8.3), 375mM KCl, 15mM MgCl₂], 2μ l of 100mM DTT and 1μ l of RNase Inhibitor (40U/ μ l). All the contents were mixed gently and the tubes were pre-warmed at 45°C for 2 minutes. The cDNA synthesis was initiated by adding 200 units (1μ l) of Superscript II Reverse Transcriptase and the incubation continued at 45°C for 1 hour.

Second strand cDNA synthesis

10

20

25

At the end of first strand cDNA synthesis, the tubes were kept on ice. Second strand cDNA synthesis reaction (final volume is $150\mu l$) was set up in the same tube on ice by adding 91μ l of nuclease free water, 30μ l of 5x second strand buffer [100mM] Tris-HCl (pH 6.9), 23mM MgCl₂, 450mM KCl, 0.75mM (β-NAD⁺ and 50mM ammonium sulfate], 3μ l of 10mM dNTPs, 1μ l of E.coli DNA ligase (10U/ μ l), 4μ l of E. coli DNA polymerase I ($10U/\mu l$) and $1\mu l$ of E. coli RNase H ($2U/\mu l$). The contents were mixed gently and the tubes were incubated at 16°C for 2 hours. Following the incubation, the tubes were kept on ice, $2\mu l$ of T_4 DNA polymerase (3U/ μl) was added and the incubation was continued for another 5 minutes at 16°C. The reaction was stopped by the addition of 10µl of 0.5M EDTA (pH 8.0) and extracted once with equal volume of phenol: chloroform 1:1 (v/v) and once with chloroform. The aqueous phase was then transferred to a new tube and precipitated by adding 0.5 volumes of 7.5M ammonium acetate (pH 7.6), $2\mu g$ of glycogen (as carrier) and 2.5 volumes of chilled ethanol. The samples were left at -20°C for overnight and the cDNA pellets were collected by centrifugation at top speed for 20 minutes. The pellets were washed once with 70% ethanol, air-dried and dissolved in $14\mu l$ of nuclease free water.

As the amount of cDNA derived from a small number of cells may be low, it may be necessary to amplify the cDNA for further analysis. To uniformly amplify the cDNA, an adaptor (NotI adaptor) was first ligated to both ends of the cDNA. Following adaptor -23-

ligation, the cDNAs were amplified with NotI/RI primer (see table 1), by a modified PCR method using betaine and DMSO.

Ligation of cDNA with NotI adaptor

Preparation of NotI adaptor: The NotI adaptor was prepared by annealing

NotI-short and anti-NotI-long oligonucleotides (see Table 1). The anti-NotI-long
oligonucleotide was phosphorylated to ensure that both the adaptor oligonucleotides are
ligated to the cDNA. 1μg of anti-NotI-long was mixed with 1μl of 10x T₄ polynucleotide
kinase buffer [700mM Tris-HCl (pH 7.6), 100mM MgCl₂ and 50mM DTT], 1μl of
10mM adenosine triphosphate (ATP), adjusted the volume to 9μl with water and the
reaction was initiated by adding 1μl of T₄ polynucleotide kinase (10U/μl). The tubes were
incubated at 37°C for 30 minutes and then the enzyme was inactivated at 65°C for 20
minutes. The annealing was carried out by adding the following components to the above
phosphorylated anti-NotI-long: 1μg of NotI-short, 2μl of 10x oligo annealing buffer
[100mM Tris-HCl (pH 8.0), 10mM EDTA (pH 8.0) and 1M NaCl] and water to adjust
the final volume to 20μl. The sample was heated at 65°C for 10 minutes and allowed to
cool down to room temperature. The annealed adaptor was stored at -20°C.

Ligation of cDNA with annealed NotI adaptor: To set up this reaction, $14\mu l$ of cDNA was mixed with 100ng of annealed NotI adaptor in a 0.5-ml micro centrifuge tube. To this mixture $2\mu l$ of 10x T₄ DNA ligase buffer [500mM Tris-HCl (pH 7.8), 100mM MgCl₂, 100mM DDT, 10mM ATP and 250mg/ml BSA] was added and adjusted the volume with water to $18\mu l$ and mixed gently. The reaction was initiated by adding $2\mu l$ of T₄ DNA ligase $(400U/\mu l)$ and incubated at 16°C overnight.

III. cDNA amplification

20

A modified betaine-DMSO PCR method (Baskaran et al. (1996)) Genome

25 Research 6:633) was used to uniformly amplify the cDNA with different GC content.

This method uses the LA system, which combines a highly thermostable form of Taq

DNA polymerase (Klentaq1, which is devoid of 5'-exonuclease activity) and a

proofreading enzyme (Pfu DNA polymerase, which has 3'-exonuclease activity). The

-24-

LA16 enzyme consists of 1 part of *Pfu* DNA polymerase and 15 parts of KlenTaq1 DNA Polymerase (v/v). The NotI adaptor-ligated cDNA was diluted 10 fold with water. 2 µl of this diluted cDNA was used as the template for PCR. The PCR reaction (50µl final volume) was set up with the following components: 5µl of 10x PCR buffer [200mM Tris-HCl (pH 9.0), 160mM ammonium sulfate and 25mM MgCl₂], 16µl of water, 0.8µl of BSA (10mg/ml), 1µl of NotI/RI PCR primer (100ng/ul), 5µl of 50% DMSO (v/v), 15µl of 5M Betaine and 0.2µl of LA16 enzyme. These components were mixed gently on ice and then heated to 95°C for 15 seconds on a PCR machine, and held at 80°C while 5µl of 2mM dNTPs were added to start the reaction. The PCR conditions were as follows: *Stage 1:* 95°C for 15 seconds, 55°C for 1 minute, 68°C for 5 minutes, 5 cycles. *Stage 2:* 95°C for 15 seconds, 60°C for 1 minute, 68°C for 5 minutes, 15 cycles.

After amplification, cDNA was purified with the Qiaquick PCR purification kit (following the instructions provided by the supplier). The purified cDNA was eluted in the desired volume of water.

Gene expression profiles were prepared from the purified cDNA as previously described by Prashar et al. in WO 97/05286 and in Prashar et al. (1996) Proc. Natl. Acad. Sci. USA 93:659-663. Briefly, the adapter oligonucleotide sequences were CTTACAGCGGCCGCTTGGACG, GAATGTCGCCGGCGA or alternatively, A1 (TAGCGTCCGGCGCAGCGACGGCCAG) and

20

A2 (GATCCTGGCCGTCGGCTGTCTGTCGGCGC). When A1/A2 were used, one microgram of oligonucleotide A2 was first phosphorylated at the 5' end using T4 polynucleotide kinase (PNK). After phosphorylation, PNK was heated denatured, and $1\mu g$ of the oligonucleotide A1 was added along with $10\times$ annealing buffer (1 M NaC1/100 mM Tris-HCl, pH8.0/10 mM EDTA, pH8.0) in a final vol of $20~\mu l$. This mixture was then heated at 65° C for 10 min followed by slow cooling to room temperature for 30 min, resulting in formation of the Y adapter at a final concentration of $100~ng/\mu l$. About 20~ng of the cDNA was digested with 4 units of a restriction enzyme

30 fold) of the Y-shaped adapter in a final vol of 5μ l for 16 hr at 15°C. After ligation, the

such as ClaI, Bgl II, etc. in a final vol of 10 μ l for 30 min at 37°C. Two microliters (\approx 4

ng of digested cDNA) of this reaction mixture was then used for ligation to 100 ng (≈50-

reaction mixture was diluted with water to a final vol of 80 μ l (adapter ligated cDNA concentration, =50 pg/ μ l) and heated at 65°C for 10 min to denature T4 DNA ligase, and 2- μ l aliquots (with =100 pg of cDNA) were used for PCR.

The following sets of primers were used for PCR amplification of the adapter ligated 3' -end cDNAs: GCGGAATTCCGTCCAAGCGGCCGCTGTAAG or 5 alternatively, RP 5.0 (CTCTCAAGGATCTTACCGCTT 18AT), RP 6.0 (TAATACCGCGCCACATAGCAT 18CG), or RP 9.2 (CAGGGTAGACGACGCTACGCT₁₈GA) were used as 3' primer while A1.1 (TAGCGTCCGGCGCAGCGAC) served as the 5' primer. To detect the PCR products on the display gel, 24 pmol of oligonucleotide A1.1 was 5' -end-labeled using 15 μ l of 10 $[\gamma^{-32} P]$ ATP (Amersham; 3000 Ci/mmol) and PNK in a final volume of 20 μ l for 30 min at 37°C. After heat denaturing PNK at 65°C for 20 min, the labeled oligonucleotide was diluted to a final concentration of 2 μ M in 80 μ l with unlabeled oligonucleotide A1.1. The PCR mixture (20 μ l) consisted of 2 μ l (\approx 100 pg) of the template, 2 μ l of 10× PCR buffer (100 mM Tris HCl, pH 8.3/500 mM KCl), 2 µl of 15 mM MgCl₂ to yield 1.5 mM 15 final Mg²⁺ concentration optimum in the reaction mixture, 200 μ M dNTPs, 200 nM each 5' and 3' PCR primers, and 1 unit of Amplitaq. Primers and dNTPs were added after preheating the reaction mixture containing the rest of the components at 85°C. This "hot start" PCR was done to avoid artefactual amplification arising out of arbitrary annealing of PCR primers at lower temperature during transition from room temperature to 94°C in 20 the first PCR cycle. PCR consisted of 28-30 cycles of 94°C for 30 sec, 50°C for 2 min, and 72°C for 30 sec. A higher number of cycles resulted in smeary gel patterns. PCR products (2.5 μ l) were analyzed on 6% polyacrylamide sequencing gel. For double or multiple digestion following adapter ligation, 13.2 μ l of the ligated cDNA sample was digested with a secondary restriction enzyme(s) in a final vol of 20 μ l. From this solution, 3μ l was used as template for PCR. This template vol of 3μ l carried ≈ 100 pg of the cDNA and 10 mM MgCl₂ (from the 10× enzyme buffer), which diluted to the optimum of 1.5 mM in the final PCR vol of 20 μ l. Since Mg²⁺ comes from the restriction enzyme buffer, it was not included in the reaction mixture when amplifying secondarily cut cDNA. Bands may then be extracted from the display gels as described 30

-26-

by Liang et al. (1995 Curr. Opin. Immunol. 7:274-280), reamplified using the 5' and 3' primers, and subcloned into pCR-Script with high efficiency using the PCR-Script cloning kit from Stratagene. Plasmids were sequenced by cycle sequencing on an ABI automated sequencer.

Figure 1 presents an autoradiogram of the gene expression profiles generated from cDNAs made with RNA isolated from Lin⁺, LRH, LRH48 and LRBRH cells. All possible 12 anchoring oligo d(T)n1, n2 were used to generate a complete expression profile for the cnzyme *Cla*I.

Table 2 presents the sequences of numerous differentially expressed bands from 10 expression profiles made from LIN⁺, LRH, LRH48 and LRBRH.

TABLE 2

5

HSC-DD-006	TTTAATTAGCGCTCTATATACATTGCG
•	GAACTTCCCCGACTGCAGCAGTTTGA
	CTTTGGCACAACATCAAGTTCCATTTC
	TTTTGGACATTGGATTCTGTTTTGANA
	GTATGTATGCCCCAAAGCATTTTCAGT
	GTCATCAGGATTAGTTGGGCCCATTCA
·	CAGTAATTCANANATC
HSC-DD-285	TAGAATACCTGGATGGCTTCTCTTGTC
	CACCCGATCTCCCGTGTTACCAATGTG
	TATGGTCTCCTTCTCCCGAAAGTGTAC
	TTAATCTTTGCTTTTTTTTTTCACAATGTC
	TTTGGTTGCAAGTCATAAGCCTGAGGC
	AAATAAAATTCC

-27-

GATCTGGCTAGACAGTTATTCTGAACT
ATGGCTTCAAGATGAACAAGACAAGC
CTAAAAGGATGGAGAGGCAATGGA
GATAATGTTTTGGAGGAAGTATGTCAC
TCAAGCATGAACTCTGTTTATTTAGAA
ATGAGATTCCATATATGTGGTACATGT
GGAAAGAATCTAAAAAGTCCTTTAAA
TTTTTCATTCCAAAAG
CTNNANNAGCACTCTTCTTGGCCAGAC
CTCTGTCCAAGGCTCATTAGAAAGCTG
GGGTTNTGTNCACGTNACNNACTTNAT
CNAAACTNTTGCTGTNTTGGCATAAGT
TGTGTNTCTGGACTGTNNTGTATTCCC
CTCTAGACAAAGGANCAACNNAAAAG
TNNTTGCNNNCTTTNCCAGAACATNCT
CAAAGCCTNTGATGGAGGAGCACAAG
GACCCTGTCTGCTGAGGGCCCATGGNT
CCTCTCAGGGGTTTCTNCCCACCNAGG
CAGTGCCTTCATTNGCTAGTNGTNCAG
TTACTTGTAGNTTATCTTTNAATAAAT
TTNAATAAAANCTA
CTAGATTGTGTGGTTTGCCTCATTGTG
CTATTTGCGCACTTTCCTTCCCTGAAG
AAATANCTGTGAANCTTCTTTCTGTTC
AGTCCTAANATTCNAAATANAGTGAG
ACTATG

-28-

	· · · · · · · · · · · · · · · · · · ·
HSC-DD-214	CTCAAGNACGGCCAGGTAAGGGCCT
	TTAACACAACTAAATCAAGGTGTGCTT
·	NCCTCCGGGTTCTATGCAAGCAAGGCA
	TACACACTGCACTCTCNCNCTCACTAA
•	ACTGGAAANGTACAGTNGCAGGGCTG
	GTTTCAGACNACGTGATGCNTGTTTAC
	AAAC
HSC-DD-035	TTTTTATTCAATATATTAAATATATTAA
	TCAGAAAAGTCACATCCTATAAATCCA
	GGAAAATACACAAATATAAATCAGAA
	TCTGTCAATCACCTTCTTGAGTGACAG
·	TTATGTACACATGGAAGGAGAGCGGA
	AGAGATC
HSC-DD-129	CGATATACACCATCGGTCTGGGGCCAA
	CGCTAATACTACTTGGTGCTGCCAATT
	GAATTCTGGTTTGCTGTGAATCTCTAT
-	CAACAAGAGTATCATTTGTGAATGCTT
	TAATTTATTGAGAAAGAACAAGAAGA
·	TGATGGATACATTGATACATTTGCGCA
	GCCTTGCAGCCTGACTCAATTCTGCTG
	TTCATCAGTTTTAATGTCCTTTCTGTGT
•	CATACGTG

-29-

HSC-DD-040	GATCTTTTTCCTTCACTTATTGCTGAA
-	ACCAAGNGCACAATTCCCATTAAGNG
	AAGGATCTCTGTGCTGTAAACTAAACA
·	AATTGTGCATTTTTCTGGGGCCATTG
	TTTTTGGTTTATTTTGTTTTTG
	TTTTTGTTTTTTGGTTTCATTTTGTTTT
	GGGTTGGTCCAATTTTAAAAGGAAATA
	CTACAATAAAATGTTA
HSC-DD-011	GATCTGATTTGCTAGTTCTTCCTGGTA
	GAGTTATAAATGGAAAGATTACACTAT
	CTGATTAATAGTTTCTTCATACTCTGC
	ATATAATTTGTGGCTGCAGAATATTGT
	AATTTGTTGCACACTATGTAACAAAAC
	TGAAGATATGTTAATAAATATTGTAC
	Т
HSC-DD-121	GCGATGTTCTTCTACTCACAACTCACG
	TTGGTGGCCTGGGCCTGAACTTGACTG
	GAGCTGACACTGTGGTGTTTGTGGAGC
	ATGACTGGAACCCTATGCGAGATCTGC
	AGGCCATGGACCGGGCCCATCGTATTG
	GGCAGAAACGTGTGGTTAATGTCTACC
	GGTTGATAACCAGA
HSC-DD-015B	GATCTGGAAGGGAATGTCCAAAGAGA
	AGAAGGAGGAGTGGGACCGCAAGGCT
	GAGGATGCTAGGAGGGAGTATGAGAA
	AGCCATGAAAGAGTATGAAGGAGGAA
	GAGGGGACTCATCTAAAAG

-30-

TYCO DD 000	0.0000000000000000000000000000000000000
HSC-DD-039	GATCTTCGACACAGAGAAGGAGAAAT
	ACGAGATTACAGAGCAGCGAAAGGCT
·	GACCAGAAAGCTGTGGATTTGCAGATT
	TTGCCAAAGATTAAAGCTGTTCCTCAG
·	CTCCAGGGCTACCTGCGCTCTCAGTTT
	TCCCTGACAAACGGGATGTATCCTCAC
	AAACTGGTCTTCTAAATTGTTAACCTA
	ATTAAACAG
HSC-DD-042	ACTCAATCTCTTCAAACTCTTTATACT
	GGNCTATNATNAGNGGGGATGTGNCA
•	ANATNGACNCTGGTGGTGTATGAAAG
	AAAAGNTCNATGGACNTNGGCATNCC
	AAGATTGAATTCACCTGCTTCCTACGA
	TGTGTGAAACTGCTAATAGCAAAATAT
	CTCTANGGTTATGANGAGTACTGTCGT
	TCTGCAAATATTCACTTCANAACTANN
	CACCACGTTNAA
HSC-DD-256A	CTAGATAATCCCTTACTGAGTCTTTCTT
·	CNCAGGTGATTCANTTGAGTTGACAAT
	TANNNCTAAGAATTCAATGGACTANT
	GAGGTGCCTCAGCAGNTAATAGCANT
	TGCTGTTCTTCCAGAGGACCAGAGTTC
	AGTTTCTCATCCCAAGTTGGGCTGCTC
·	GTNAGTGTCGGTAANTCCAGCTTCAGG
·	GGCTTGAATTTATACTGACCATGGGCA
	CCTGTACCCCAACACANACACATACA
	САТ

HSC-DD-256B	CTAGAAGTTAATCCTGTNAAGCATGGT
	AAGAATANCATTCTCAANATCTTGAGT
	TAANAAAGATCTTGGAGGNGGCTGGN
	GAGATGGCTCANTGGTTAAGANCNCT
	GACTGCTCTTCCAGAGGTCCTGANTTC
	AATTCCCANCAACCACATGGTGGNTCA
	CAACCANCTGTAATGATACCTGATGCC
•	ATCNTCCGTGGTGTATCTGAANACANC
	TACAGTGACAGCTACANCG
HSC-DD-045	GGATTTATTCTAGGCTTGGCCAGATA
	CAGGTTGGCATCCTAGGGGAGGAAGA
	TAACAATGTCATAGGTGAATTTGTTAG
	GAGAGGCAAGACATGGGAAATCATTG
	ATTTCTTCAGATTTCTTTAAAGCAAAT
-	TAGAAGATAAATGTCTAAAAGAGATA
	CACTTAAAAAATGGTGAAACTATAAC
	CCCTTAAGGAGACCAGATGTGGCAG
	GAGCCAGGTCTGAAAATGGTAGCTGA
• .	AGTAAGCAGACCAGCGTAAGATC
HSC-DD-068	CGATGAGTCAGAGGAAGTGGACAG
	TGCGTTATTCATTACAGCAAAGGATTT
	CGTTGGCATCAAAATCTAAGTTTGTTT
	TACAAAGATTGTTTTTAGTACTAAGCT
	GCCTTGGCAGTTTGCATTTTTGAGCCA
	AACAAAATATATTTTC

-32-

HSC-DD-143	CGATTCAATTGTATAAATGATTATAAT
	TTCTTTCATGGAAGCATGATCCTTCTG
	ATTAAGAACTGTACCCCATATTTTATG
	CTGGTTGTCTGCAAGCTTGTGCGATGA
	TGTTATGTTCATGTTAATCCTATTTGTA
	AAATGAAGTGTTCCTGACCTTATGTTA
	AAAAGAGAGAAGTAAATAACAGACAT
	TATTCAGTTATTTTGTCCTTTATCGAAA
	AACCAGATTTCATTTTTCCTTTTTGTTT
	GTGATCTCATTTGGAAATAATTGGCAA
	GTTGAGGTACTTTCTTCCCATGCTTTGT
	ACAATATAAACTGTTATGCCTTTCAGT
	GCGTTACTGTGGG
HSC-DD-263A	CTAGAGGTGGGAACTGGCTCCACTCCA
	CACAGCAGCCAGTTAGTTAGTGACGGT
	CAGCTGCATGCAGGGGAATGAAGGAC
	TCGGAGAGAACGTTCTGTGCTATGTGT
	GTTCCATAGAGATTAAAAAGGAGGCC
	TGGAGCCGAGCATGGTGCACGCC
	TTTAATCCCAGCACTTGGGAGGCAGAG
	TCAGGTGGATTTCTGAGTTCATTGCCA
	GCCTGGTCTACAGAGTGAATTCCAGGA
	CAGGCAGGGCTACACAGAGAAACCCT
	GTCTCAAAAAA
HSC-DD-263B	CTAGAATTTGCAGTAGCATTAATTCAA
	GCCTACGTATTCACCCTCCTAGTAAGC
	I

-33-

HSC-DD-239A1	CTAGACATAAGATATTGTACATAAAG
	ANAATTTTTTTTGCCTTTAAATAGATA
	AAAGTATCTATCAGATAAAAATCANG
	TTGTAAGTTATATTGAAGACAATTTGA
	TACATAATAAAGAT
HSC-DD-239A1'	GGGGAGNNNNCNAGNAANNAGANTC
1150 22 20111	GTACGTAAANAGAANNNTGGTGCNTT
	TANATAGAAAANGTACTATCANATAA
	NAATCAGGTTGTAAGTTATATTGAAGA
	CGNTTTGATACATAAAAGAT
HSC-DD-261	CTAGACTGACAAGACTTTTTGTCAAC
1150 00 201	TTGTACAATCTGAAGCAATGTCTGGCC
	CACAGACAGCTGAGCTGTAAACAAAT
ý.	GTCACATGGAAATAAATACTTTATC
HSC-DD-028A	CTCTCTTGCCACCCAGATGGTTAGGAT
1150-55 02011	GATTCTGAAGATGATGACATCCGTAAG
	CCTGGAGAATCTGAAGAATAAACTGT
	ACCAT
HSC-DD-021	· ATCTCTGGCAGGTCAAGTCTGGGACAA
1100 000	TCTTTGACAATTTCCTCATCACCAGTG
	ATGAGGCCTATGCAGCCAGTTCTAGCG
	CAGCTCACACTGAGAGTGTAAGAACT
	ACGAACAAAATNTCTATTAAATTAAG

-5

. -34-

TICC DD 026	CATCTCCCA ATCCA CCCA ACTCCTCCT
HSC-DD-025	GATCTCGGAATGGACCCAACTGCTCCT
	GCTCCACCGGCGCTCCTGCACTTGCA
	CCAGCTCCTGCGCCTGCAAGAACTGCA
	AGTGCACCTCCTGCAAGAAGAGCTGCT
	GCTCCTGCTGTCCCGTGGGCTGCTCCA
	AATGTGCCCAGGGCTGTGTCTGCAAAG
	GCGCCGCGACAAGTGCACGTGCTGT
	GCCTGATGTGACGAACAGCGCTGCCA
	CCACGTGTAAATAGTATCGGACCAACC
	CAGCGTCTTCCTATACAGTTCCACCCT
	GTTTACTAAACCCCCGTTTTCTACCGA
	GTACGTGAATAATAAAAGCCT
HSC-DD-077	ATTCAGACGAATGAGACTCCTCCACAT
	TGGAGACAAGAGATGCAGAGAGCTCA
·	GAGAATGAGGGTGTCAAGTGGTGAAA
	GATGGATCAAAGGGGATAAGAGTGAG
•	TTAAATGAAATAAAAGAAAATCAAAG
	GAGCC
HSC-DD-245	NGCNNNNNNCCAGNAGGAGGAGAA
	GATGACTGGCCAGTATCANAATGGGA
	TAAGATGAGGCGCGCCCTGGAGTACA
	CCATCTACAACCAGGAGCTCAACGAG
	ACGCGCGCTAAGCTCGACGAGCTTTCT
	GCTAANCGAGAAACNAGTGGAGAGAA
	ATCCNGACAACTAAGGGATGCCCAGC
	AGGATGCANGAGACAAAATGGAGGAT
	ATTGAGCGCCAGGTTAGAGAACTGAA
	AACAATNAT

HSC-DD-226	CTCAAGGAAAAGACAGCACCNCGTGC
	CTGGCATCTGNTGNNTTAGNTNATNTN
·	NAANTNTCNNNTNGNCCTGGCAACGG
	TTCCTGAACNAATTACCACTCCTTCTT
	GCCAGTCNAANAGGGTGGGAAAGTCC
	GAGCCTTANGACCCAGTTTCAGTTCTG
	GTTTCTTCCCTCCTGANCACCATCGGT
	TGTTAGTTGCCTTGAGTTGGGAACGTT
	TGCATCGACACCTGTAAATGTATTCAT
	TCTTTAATTTATGTAAGGTTTTNTGTNC
	TCAATTCTTTAAGAAATGACAAATTTT
	GGTTTTCTACTGTTCAATGAGAACATT
	AGGCCCCAGCAACACGTCATTGTGTAA
·	ANAAATAAAA
HSC-DD-182	CGATGGCTCCATCCTGGCCTCACTGTC
	CACCTTCCAGCAGATCGGCTCAGCAAG
	CAGGAGTAGGATGAGTCTGGCCCCTCC
	ATCGTGCACCGCAAATGCTTCTAGGCG
	GACTGTTTTACACCCTTTCTTTGACAA
	AACC

HSC-DD-089	CNNATGCTACATGCTGNAGGATGCCTA
·	AGGCTGCCCCCACCATCCCCTGGCTC
	TGCTGNCCGGANCAAATTGCTTCCAGA
	TGTGACTTTGGAACCTTCNCACCCCTN
	ACCCNACCNNTCTCNAGAANNTCTTTT
	ATTTAAAGGAGGAAANANNACATCCA
	AGAAAANGGGGGGAGGGGATGGA
	AANNCGCATCCCCTTTCTAGCCAGCTG
	TTCCCAAAAGGTACCCTTCCTCTCCC
	TGCTCCCCAAACNCAAANCCCACTTCN
	GANCCTCCACCTAAANCATCANGCAA
	GTCACNTACACCCTGTTTANCCCCCNA
	CTCTCTGCTTATACCCNGGAACAATTN
	NTGCTCG

HSC-DD-151	CGATGGTGGGAAG
	AGGAAGGACCATTAGCACCACCATCAT
	GATGTCAGATGACAAAATGGAAGCCA
	AGACACCTTGAAGGTGACTTTCTAGGA
•	AGGTCTTAAGCATGTAATGTCCCTTTA
	TCAGAGGGAAGGGGACAAACTCAGGG
	CAGCCCTGTCCAGGTAGAAATATTTTT
	GCCCCCTGTCTGATGTTGATGAGGGG
	TCATACCANCCAGGGAGACCCTCTGG
	GAGGAAGCTGCCACACACAANGACTC
	TGGAAGTATCCAGATGTGAGCCCAGC
	CAGGGTCCTATGGTTCCAAATCTGAAN
	AAAAGGTTTTTCACACACTCCTTGCTT
	TCTGCTAAGATAANAAAGGCGTCACTC
	TGCCAGAGTGTGACTTTTTACAGATTA
	AATAAAGCTGTTAT
HSC-DD-013	GATCTACTCCATTCCCCTGGAAATCAT
	GCAGGCACCGGGGGTGAGCTGTTTG
	ATCACATTGTCTCCTGCATCTCCGACT
	TCCTGGACTACATGGGGATCAAAGGC
	CCCGGATGCCTCTGGGCTTCACCTTCT
	CGTTTCCCTGCAAGCAGACGAGCCTAT
	ATTGCGGAATCTTGATCACGTGGACAA
	AGGGATTCAAAGCCACCGACTGTGTG
· rangeton ·	GGTCACNATGTANCCACTTTACTGAG
HSC-DD-029	GATCTGAGTTCGAGGCCAGCCTGGTCT
	ACAGAGTGAGTTCCAGGNCAGCCAGG
	NCTACACAGAGAAACCCTGTCTCGAA
	AAAACAGAAAGAGA

-38-

HSC-DD-034	CTTTCATTAAAAAGAAACCAGGGGCT
	GGANAGATGGCTCAGTGGTTAAGAGC
	ACCAACTGCTCTTCCCGAAGGTCCTAA
	GTTCAAATCCCAGCAACCACATGGTGG
	CTAACAACCACTCGTAATGAGATC
HSC-DD-082B	ATCGCNTGGCTCTCCTGNGGCCTGGCN
	TACGACNNGAAAAGGAGTGTCCACGG
	CTGCTGTCGNGGCCACGATTAATTAAA
	ACTGAAGTACCGAGGNTNCCCCAGNG
	NCNGANTGTGGGGTCNNGCCNTTCNT
	GNTCCACAANCCAACTTGGCAGACGC
	TTACTGTNCTGTCAACTNTCNNNNGAA
	TACCNCCACCCNCATGCTAAAATGATG
	ACTGACGTTAANCCATGCTGGT
HSC-DD-084	CGATGACAAAGGAGTCCTGAGGCAGA
	TTACTCTGAATGACCTTCCTGTCGGAA
	GATCAGTGGACGAGACACTGCGTTTG
	GTTCAAGCCTTCCAGTACACTGACAAG
	CATGGAGAAGTCTGCCCTGCTGGCTGG
	AAACCTGGTAGTGAAACAATAATCCC
	AGATCCAGCTGGAAAACTGAAGTATTT
	CGACAAGCTAAACTGAAAAGTACTTC
·	AGTTATGATGTTTGGACCTTCTCAATA
·	AAGGTCATTGTG

-39-

HSC-DD-128	CGATGCTGAATAAGCTCCTCAAAAAGT
	GGTAAATTTAACCTTTTNAAAAAACAA
	GCTTTCTCTGTACAGCTCTGGCTGTTTT
	GTTCTGGAATACATTCTGTAGAATTGT
	CTGGCCTCTAACTTGGAGATCCAACTC
	CCTCTGCCTCTTGAGTGCTGGGATTAA
	TGGCATGTGACACTGT
HSC-DD-140	CGATGACCTCATGCCGGCCCAGAAGT
	GAAGCCTGGCCTCGCCACCATCAGG
	CTGCCGCTTCCTAACTTATTAACCGGG
	CAGTGCCCGCCATGCATCCTTGANGTT
·	TGCCGCCTGGCGGCTGAGCCCTTAGCC
	TCGCTGTAGAGACTTCTGTCGCCCTGG
	GTAGAGTTTATTTTTTTGATGGNTAAN
	CTGTTGCTGACACTGAAAATAANCTAG
•	GGTTT
HSC-DD-148	CGATCAATGAAAAGATGACGAGTTTCT
	TTCAAATGGGCAGTTACTCCCTGATAA
	CTTCATAGCTGCCTGCACAGAGAAGA
*	AAATCCCTGTTGTGTTTAGACTACAAG
	AGGGTTATGATCATAGCTACTACTTCA
	TTGCAACTTTCATCGCTGACCACATCA
	GACACCATGCTAAGTACCTGAATGCAT
	GANAAGCCTCAGCCAAGAGAATCTCA
	TCAGGAGGCCGGAAGGGAATCAACAG
	GAGTGCTGACTTCCTCGCAGAAGATCA
	TGCTCCTGCAGCTGAATCGCTTTTCTG
	AATAAATAT

	<u> </u>
HSC-DD-176	CGATGTNTACTTCATTGCCACCCTGTC
	ANTCCTCTGGAAGGTGTCCGTCATCAC
	CTTGGTCAGCTGTCTCCCCCTCTATGT
	CCTCAAGTACCTGCGGAGACGGTTCTC
	CCCACCCAGCTACTCGAAGCTCACTTC
	CTAAGCTGCAGGGCTGCCTCGGGCAG
	GGCCTCCGGCCTCTCCCAG
	GAGGAGGTCAAGTTCCACACGCACGA
	GCCGCCTCTGCTGGACGGTGCAGTCAT
	GGCTGGCACATGAGGCTTCGCTGAGG
	CGACACTGGGCACCTAATGGGGATGG
•	AACATTGGTGGAACCGGAGGGAGGGA
	CCTGAGAGCTGTACCTATCAGAACCTT
	GGGTGCTAAGCTGTGCTGAGGGGGAA
•	GACGTGGGACCGGATGGCCCGTCTGA
	GGTTTGTGGGGTCACTGTGCAAGCTTC
	CTTATGGTTTGAACCTCTTGTCATGTG
	ATAAAAGT
HSC-DD-178	CGATTTACGTATTTGACTGAAATGAAA
•	GTTCCACTAAACGGTATTTGCTCTTGT
	GATATGTGGCACATTGTGATATTTCT
	TAGTCTGTTCTGTTTCATTTAAAAAAT
	AAAACTGCTGAT
HSC-DD-180	CCGATGTNCGATAATAGTAAATACCTT
	AATTANTTAAATAATTCATTGNATTGT
·	TTCAGAGACGTTTGGAAATTACTGTAT
	ACATTTACAACCTAATGACTTTTGTAT
	TTTATTTTTCAAAANAAAAGCTTA

-	
HSC-DD-186	CNTTNGNNNNTCCNTNCATCNCNGCN
	GTNTGAGTCCCNCCCAANNAGTCCATC
	CAANANCCANNGCATNNCAGCTTTAT
	CATGACAACAANTGGAGNAAGAAGA
	AGATGAGTTTCGGCCACTGTTGAGGCA
	AATCNNTGNNNANTCNTAATANACAC
	CTGGTCCGCTCATCCTTCAACGTTGTT
	NTNTANAANTTACCTCCCAGTAGAAA
	NGCTAGCAANTTTNACCTGCCACNGGT
,	TNTA
HSC-DD-191	CGATCAGATGTCACGCGGGACACANC
1150-55 171	NCCGCCNCAGTNAATGGNAATATATTT
	GCATGTTACCCCAAATTANCTTCTNTG
	CATNGAACATANGTANGTGTCTTTGGG
	GACACGTGTGTTCTACTAC

HSC-DD-158	CGATTTACAAATGAACAANCAAGATT
	ACATATANTGAAAATCCACGCAGGAC
,	CTATTACANAGCATGGTGAAATAGATT
	ATGAAGCAATTGTAAAGCTTTCAGATG
·	GCTTTAATGGAGCATGACCTGACAAAT
	GTTTGTACTGAAGCAGGTATGTTTGCA
	ATTCGTGCCGATCATGATTTTGTANTT
	CAGGAAGACTTCATGAAAGCAGTCAN
	GAANGTGGCTGACTCCAAGAAGCTGG
	AGTCCAAGCTGGACTACAAACCTGTGT
	GATTCACTANNAGGGTTTGGTGGCTGC
	ATGACAGACATTGGTTTAATGTANACT
	TAACNGTTANNGAAACTAATGTANNT
	ATTGGCAATGANCTTATTANAAGTGAA
	TANACATGTG
HSC-DD-099	CGATGTTTTAATTAAGAAGAAATTCA
	CTTTCTCATTACCTATGAATCTGTGCC
	AGGGCAGGTGATTTTTGAGTATGAGA
	ACTITGTCCTCTCCACAGTTGTCACAA
	AAATGGTTCCTTCTCATTGAACTATTG
	TGGCATGCTAATTAAGAAGTGAGTGA
	CCACTTGGGAGGCAGGTGGA
	TTTCTGAGTTTGAGGCCAGCCTGGTCT
	ACAAAGTGAGTTCTAAGACAGCCAGG
	GCTATACAGAGAAACC

HSC-DD-222	CCAAGNAATATGGTCTAATCAAAGGT
	CGTCTGTCTGCTTTTGATTGTCTACATC
	ACAGCAATCCCTGGGAATTTCTATCCA
	TTTTAAATGCNGCCGCTTTCATCTGTTT
	AGCCAGCACCCAATGGTTTCACTAA
	CTAGCCCAGTTGACCTTTTGGAAGTTT
·	GAGCCTTGAGCACCTTCAACAAATTG
	AGCACTCTGATTAGGATATCCACTTTG
·	CAAATAAAACCAAATGTTTTGTCAAC
HSC-DD-104	CGATGAGGGGAAGATGACCTGGGCCG
	GGGAGGCCATCCCTTATCCAAGATCAC
·	AGGGAATTCTGGGAAGAGGTTGGCCT
	GTGGCATCATTGCACGCTCTGCCGGCC
	TTTTCCAGAACCCCAAGCAGATCTGCT
	CCTGTGATGGCCTCACTATCTGGGAGG
	AGCGAGGCCGGCCCATTGCCGGTCAA
	GGCCGAAAGGACTCAGCCCAACCCCC
	AGCTCACCTCTAAACAGAGCCTCATGT
	CAGGTTATTTGGTCCTCGTAGCTGAAC
·	ATCTTCTTGCAGAGGGAGCTGCNGGCC
	CTTGCTTGTACAGGCCTAAGTACAGGG
	CAGATAAGTGCTGTAGCCTGAACAAA
	TTAAATTGTTAC

-44-

HSC-DD-172	CGATTAGCTGNGGTCTCTAGGANATAC
·	TCGTCACTATATGAGCTCAGGANGCCA
	GCTCTTAGTAGCTCTGAANCAGGTGAA
	GAATCCTCCTCTGAGGAAACAGACTG
	GGAGGAAGAAGCAGCCCATTACCAGC
	CAGCTAATTGGTCAAGAAAAAAGCCA
	AAAGCNGCTGGCGAAAGTCAGCGTAC
	TGTTCAACCTCCCGGCAGTCGGTTTCA
	AGGTCCGCCCTATGCGGAGCCCCCGCC
	CTGCGTAGTGCGTCAGCAATGCGCAG
·	AGGGGCAATGCGCAGAGAGGTGCGCA
·	GAGGGCAGTGCGCAGAGAGGTGCGC
-	AGAGAGGCAGTGCGCAGAGAGGCAGT
	GCGCAGACTCAT
HSC-DD-169	CGATTTCTAAATCAGTCTCGCCTGTGC
	TAGGATGACCGGTAATGAGCCTGTTTA
	AAATAAGACTTAAAAGTGTCGTGCGTT
	GGCCGGGCGGTAGGGGCGCATGCCTT
	TAATTTCATAACTTGGAGGTAGAGACA
	GGCGGATCTTTGTGAGTTCAAGGTCAG
	CCTGGTGTACAGAGTGACTTCCAGAAC
	AGCCAGGGCTGTTAAACAGAGAAAC
HSC-DD-003A	TTGTTTTGTTNTTCAGATAGGGTCTTAC
	ATATCCCATGCTGGTCTCAAACTCACA
	TTATGCATGCGGGGAAAGCCATTTACT
·	GACTGATATACCCCTGGCCCTAAGATA
	GATC

CTGG AAC CTGG TCT INAG AAT
AAC CTGG ICT INAG AAT
TGG ICT INAG AAT
CTGG ICT INAG AAT NAA
ICT INAG AAT NAA
NAG AAT NAA
AAT NAA
NAA
GNG
TTT
AAC
FAAT
SACC
ATG
TAT
ATN
AGCT
·
CCT
TGG
ATTT
ATG
CANC

MCC DD 166	
HSC-DD-155	CGATGGAAGTTCTGCTGAGCCCTTCTG
	ACGTAACCCTGGCNATGGCTAACACTG
	TCCTTCCTGCAATGTTCNTGGTGGACA
	CANCTTCTCTGGANATACCCTGAANGT
	GGCACGCCCTGTTCCAGCCCACCTGGT
,	GTGCACTTTTTGCCCTCTTTACCTCATT
	ANTAAATGTTTTCNTGCTCCTAATG
HSC-DD-212	CTNAGNAAGGANCTGTACTTCGTATTG
	CAAGGCAGTCTCTTGTGTCTTCTTAGA
	. GTGTCTTCCCCATGCACAGCCTCAGTT
	TGGAGCACTAGTTTATAATGTTTATTA
·	CAATTTTAATAAATTGANTAGGTAGT
	Α
HSC-DD-090	TCNTCNTTCTGGTAAGAACTGGAATAT
	GGCCCAAGTTCCTGAAGTCTGGCGAT
	GCTGCCATTGTTGATATGGTCCCTGGC
	AANCCCATGTGTTGAGAGCTTCTCT
	GACTACCCTCCACTTGGTCGCTTTGCT
	GTTCGTGACATGAGGCAGACAGTTGCT
	GTGGGTGTCATCAAAGCTGTGGACAA
	AAANGCTGCTGGAGCTGGCNAAGTCA
	CCAAGTCTGCCCANAAAGCTCAGAAG
·	GCTAAATGAATATTACCCCTAACANCT
	GCCACCNCANTCTTAATCAGTGGTGGA
	AGAACGGTCTCAGAACTGTTNGTCTCA
	ANTGGCCATTTAAGTTTAATANTAAAA
	GACTGGTTAATGATAAC

HSC-DD-173	CGATCNTCGTTCTGGTAAGANNCNGG
	AACATGGCCCCAAGTTCCNGANNTCTG
	GCGANGCNGCCANTGTTGATATGGTCC
	CTGGCAAGCCCATGTGTNTTGAGAGCT
	TCACNNACNACCCTCCANTTGGTCGCT
	TTGCTGTTCGTGACATGAGGCAGACAG
	TTGCTGTGGGTGTCANCAAANCTGTGG
	ACAANANGGCTGCTGGAGCTGGCAAG
	NTCACCAANTCTGCCCAGAAAGCTCA
	GAATGCTAAATNAATATTACCCCTAAN
•	ACCTGCCACCCCAGTCNTAATCAGTGG
	TGGAATAACNGTCTCAGAACTGTTTGT
•	CNCAATTGGCCANTTANGTTTAATNAT
·	ACAAGACTG
HSC-DD-249	GNNNNNNNNNNNCNANGAAAAAGAG
	GTGAAAAATGCTTGGCTCTAGCTGATG
	ACAGAAAGCTGAAATCCATCGCCTTCC
·	CATCCATTGGCAGCGGCAGGAACGGG
· .	TTCCCGGAAGCAGACAGCGGCCCAGC
	110000011110111111111111111111111111111
	TCATTCTGAAGTGCCATCTCCAGCTAC
,	TCATTCTGAAGTGCCATCTCCAGCTAC
,	TCATTCTGAAGTGCCATCTCCAGCTAC NTTGTCTCCACGATGTCCTCCATC
,	TCATTCTGAAGTGCCATCTCCAGCTAC NTTGTCTCCACGATGTCCTCCATC AAAACTGTGTACTTCATGCTTTTTGAC
·	TCATTCTGAAGTGCCATCTCCAGCTAC NTTGTCTCCACGATGTCCTCCTCCATC AAAACTGTGTACTTCATGCTTTTTGAC AGTGAGAGCATAGGTATCTATGTGCA

HSC-DD-250	CTNANGAAAGCTGCTGGGGCNCCCTG
	ACATCACTCACTCACTATGCTACC
·	AATTCTATTTATTTCGGAATTACAAGA
·	TATCGGGAATCTCTCTGCAGGCTGGAC
	TGGCAGGCTGTGGGGTGGGCGGACA
	CGGCTCTTAACATTTNCAGAGGGAAAC
•	GCGCANATGTCCAAAAGTCTAAATAA
	ATGCATTCAGAGGTTTNTGGGGTCCAT
	GGCCAAGTGGAGTTCCCCCNCAGGGG
	GAGGTGGGTAAGTGCCTCCAGGAAG
	GCAGGCAGCCTGCCTTANACTTGCANC
	CCGGNTGTGGGAATGAATCATTGGAG
	TAATAAACT
HSC-DD-108	CGATGCCAATGGCATCCTCAATGTTTC
	TGCTGTAGATAAGAGCACAGGAAAGG
·	AGAAAGTCTGCAACCCTATCATTACCA
	AGCTGTACCAGAGTGCAGGTGGCATG
	CCTGGGGGAATGCCTGGTGGCTTCCCA
	GGTGGAGGAGCTCCCCCATCTGGTGGT
	GCTTCTTCAGGCCCCACCATTGAAGAG
	GTGGATTAAGTCAGTCCAAGAAGAAG
	GTGTAGCTTTGTTCCACAGGGACCCAA
	AACAAGTAACATGGAATAATAAAACT
	ATTTA

PCT/US98/17283

HSC-DD-116	CGATGAAGATGAGGTCACTGCAGAGG
	AGCCCAGTGCTGCTGTTCCTGATGAGA
	TCCCCCTCTGGAAGGCGATGAGGATG
	CCTCGCGCATGGAAGAGGTGGATTAA
, , , , , , , , , , , , , , , , , , ,	AGCCTCCTGGAAGAAGCCCTGCCCTCT
	GTATAGTATCCCCGTGGCTCCCCCAGC
	AGCCCTGACCCACCTGGATCTCTGCTC
	ATGTCTACAAGAATCTTCTATCCTGTC
	CTGTGCCTTAAGGCAGGAAGATCCCCT
	CCCACAGAATAGCAGGGTTGGGTGTT
	ATGTATTGTGGTTTTTTTTGTTTGTTTTA
	TTTTGTTCTAAAATT

-50-

HSC-DD-166 CGATGCCAATGGCATCCTCAATGTTTC TGCTGTAGATAAGAGCACAGGAAAGG AGAACAAGATCACCATCACCAATGAC AAGGCCCCTTGAGTAAGGAAGATAT TGAGCGCATGGTCCAAGAAGCTGAGA AGTACAAGGCTGAGGATGAGAAGCAG AGAGATAAGGTTTCCTCCAAGAACTCA CTGGAGTCCTATGCCTTCAACATGAAA GCAACTGTGGAAGATGAGAAACTTCA AGGCAAGATCAATGATGAGGACAAAC AGAAGATTCTTGACAAGTGCAATGAA ATCATCAGCTGGCTGGATAAGAACCA GACTGCAGAGAAGGAAGAATTTGAGC ATCAGCAGAAAGAACTGGAGAAAGTC TGCAACCCTATCATTACCAAGCTGTAC CAGAGTGCAGGTGGCATGCCTGGGGG **AATGCCTGGTGGCTTCCCAGGTGGAGG** AGCTCCCCCATCTGGTGGTGCTTCTTC AGGCCCCACCATTGAANAGGTGGNTT **AAGTNATCCANNAAGAAAGGNTNCCT** TTTTTTCCAAAGGGANCCAAAAAAGTA ANATGGATAATAAAACCTATTTAATT

HSC-DD-184	CGATGCCAATAGNANCCCAANTNTCT
	GCNGTNGATAAGACACANGAAAAGAG
	AACAAGATCACCATCACCAATGACAA
	GGGCCGCTTGAGTAAGGAAGATATTG
	AGCGCATGGTCCAAGATCAATGATGA
	GGACAAACAGAAGATTCTTGACAAGT
	GCAATGAAATCATCAGCTGGCTGGAT
. 4	AAGA
HSC-DD-101	CGATTAGCGGAGGTCTCTAGGAGATA
	CTCGTCACTAGATGAGCTCAGGAAGCC
	AGCTCTTAGTAGCTCTGAAGCAAGTGA
	AGAATCCTCCTCTGAGGAAACAGACT
	GGGAGGAAGAAGCAGCCCATTACCAG
.	CCAGCTAATTGGTCAAGAAAAAAGCC
	AAAAGCGGCTGGCGAAAGTCAGCGTA
,	CTGTTCAACCTCCCGGCAGTCGGTTTC
	AAGGTCCGCCCTATGCGGAGCCCCCG
	CCCTGCGTAGTGCGTCAGCAATGCGCA
	GAGGGCAATGCGCAGAGAGGCAGTG
·	CGCAGAGAGGCAGTGCGCAGACTCAT
	TCATT
HSC-DD-017	TCTCTGTATAACCCTGGATGTCCTGGA
	ACTCACTTTGTAGACCAGGTTGGCCTC
	GAACTCAGAAATCCGCCTGCCTCTGCC
	AAGCGCTGGGATTAAAGGTGTGCGCC
	ACCACACCGGCAGGTAATTTTTTCT
	TTTTAAAGATTTATTATGTATACAGGT
	TCTGCCTACATGTGTACCTGCCGGCCA
	GAAGAGGCATCANATC

HSC-DD-026	GATCTTTGTAGGCACAAAATGAATCCC
	GCACCTGGTGACCCATGATGCTCGTAC
	TATTCGGTACCCTGATCCCCTCATCAA
	GGTGAACGACACCATTCAGATTGATTT
•	GGAGACAGGCAAAATAACTGACTTCA
	TCAAGTTTGACACTGGGAACCTGTGTA
	TGGTGACTGGAGGTGCTAACTTGGGA
	AGAATTGGTGTAATCACCAACAGAGA
	GAGACATCCCGGCTCTTTTGATGTGGT
	TCATGTGAAAGATGCCAATGGCAACA
	GCTTTGCCACTCGGCTGTCCAACATTT
	TTGTTATTGGCAAGGGTAACAAACCAT
	GGATCTCTCTCCCAGAGGAAAAGGA
	ATCCGCCTCACCATTGCTGAAGAGAGA
	GACAAGAGGCTTGCGGCCAAACAGAG
·	CAGTGGGTTGAAATGGTCTCCTAGGAG
	ACATGCCTGGAAAGTTGTTTTGTACAA
	CCTTTCTCAGGCAACATACATTGCTAG
	AATTAAACAGCCATG
HSC-DD-064	CGATCGAGAGGCAAACCACGGAAGG
	TGGTTGGTTGCAGTTGCGTAGTGGTTA
	AGGACTATGGCAAAGAATCTCAGGCC
	AAGGATGTCATCGAGGAAATACTTCA
	AGTGCAAGAAATAAATAAATTTTGGCT
	GATT

HSC-DD-066	ATTCCAGATGAGGACCACAAGCGACT
H3C-DD-000	CATTGATTTACATAGTCCTTCTGAGAT
	TGTTAAGCAGATTACTTCCATCAGTAT
·	TGAGCCGGGAGTTGAGGTTGAAGTCA
	CCATTGCAGATGCCTAAGACAACTGA
•	ATAAATCG
HSC-DD-041	GATCTATACAGTCGGGAAACGCTTCAA
	GGAAGCAAATAACTTCCTGTGGCCCTT
	CAAGTTATCTTCCCCACGAGGTGGGAT
	GAAGAAAAGACAACTCACTTTGTAG
	AAGGTGGAGATGCTGGCAACAGGGAA
	GACCAGATAAACAGGCTTATTAGACG
	GATGAACTAAGGTGTCACCCATTGTAT
	TTTTGTAATCTGGTCAGTTAATAAACA
	GTC
HSC-DD-111	CGATGTGGCCAAAGTCAATACCCTGAT
	AAGGCCCGACGGAGAAGAAGAAGCCGT
	ATGTTCGCTTGGCTCCTGATTATGATG
	CCCTAGATGTTGCCAACAAGATTGGGA
·	TCATCTAAACTGAGTCCAGATGGCTAA
	TTCTAAATATATACTTT
HSC-DD-028B	GATCTGGAACCATAGATGCGAGCATC
	AGCAACAGAATACAAGAAATGGAAGN
	GNGAATCTCAGGTGCAGAAGNTTCCA
	TAGAGAACATCG

HSC-DD-142	GCGATGCAAAATCCTTAATANAATTCT
	TGCTAACCGAATCCAAGAACACATTA
	AAGCAATCATCCATCCTGACCAAGTAG
	GTTTTATTCCAGGGATGCNGNGATGGT
	TTAATATATGAAAATCCATCAATGTAA
	TCCATTNTATAAACAANCTCAANGACA
·	NAAACCACATGATCATCTCGTTAGNTG
·	CAGAAAAAGCATTTGACAAGATCCAA
	CACACATTCGTGATAANAGTTTTGGNA
	AGATCAGGAATTCAAG
HSC-DD-095	CGATNNACCCGCTCTACCTCACCATCT
	CTTGCTAATTCAGCCTATATACCGCCA
	TCTTCAGCAAACCCTAAATNAGGTATT
	AAAGTAAGCATCNAGAATCANCCATA
	CTCAACGTNACGTCAAGGTGTACCCAA
·	TGNAATGGGAAGAAATGGGCTACATT
	TTCTTATANAAGAACATTNCTATACCC
	TTTNTGAAACTAA

Table 3 presents the expression patterns of the differentially expressed bands set forth in Table 2. The band fragment length (size) in Table 3 is the length before unwanted terminal sequences were removed. Table 3 also presents the results of a GenBank Search and analysis of the sequences of Table 2.

Summary of Known Gener from Moure HSC Differential Display (1)

	Cire	En stemp	NIN	Poly(V)		Fronces	Function nattern	5	Gene Bank Search & Analvels
liems ivo.	2716		. [Clan	9 41	10	I PITAK	IRIGHT	
	(da)		(ongo-co i)						
HSC-DD-006	213	Bgl II	AC	fair	0	÷	-	•	mouse homeobox protein
HSC-DD-285	158	Xba I	99	boob	1	+	+	#	human homeobox gene regulator
HSC-DD-007B	213	Bgl II	AC	(air	#	2+	,	#	human zinc finger protein 10
HSC-DD-238	363	Xbal	AG	pood	3+	0	3+	3+	mouse cell division control protein 19
HSC-DD-206	123	Xba t	Ą	poofi	3+	0	2+	+	human HS1 heamatopoletic protein
HSC-DD-214	192	Xba 1	AC	fair	#	2+	0	3+	mouse pim-1 proto-oncogene
HSC-DD-035	151	Bg/ II	AC	fair	‡	2+	_	+	mouse thyroid hormone receptor
HSC-DD-129	234	Clai	AC	poor	0	÷	0	0	mouse inositol 1,4,5-trisphosphate receptor
HSC-DD-040	220	Bgl II	AC	fair	+	2+	1	0	mouse G protein beta-36 subunit
HSC-DD-011	173	Bgill	ĄC	рооб	7	#	1	2+	mouse ras-related YPT1 protein
HSC-DD-121	186	Clal	CI	bood	0	3+	#	#	human TBP-associated factor 170
HSC-DD-015B	133	Bgl 11	AG	boot	0	3+	,	+	mouse HMG1-related DNA binding protein
HSC-DD-039	902	Bgl II	. AC	fair	2+	4+	,	4+	mouse TAX responsive element binding protein 107
HSC-DD-042	235	Bgl II	AC	fair	‡	0	_	+	mouse retinoblastoma binding protein isoform III
HSC-DD-256	272	Xbal	₩	poor	0	-5+	*	0	Ral androgen-binding protein
HSC-DD-045	270	Bgl II	AC	рооб	++	2+	`	#	similar to Rat cca2
HSC-DD-068	164	Cla I	AC	fak	+	4+	4	4+	mouse jerky mRNA
HSC-DD-143	320	Cla (AG	fair	#	2+	#	#	similar to human memd
HSC-DD-263	292	Xba I	AT	pood	0	2+	#	0	mouse interleukin 5
HSC-DD-239	156	Xbal	СА	pood	+1	3+	3+	•	human CD9
HSC-DD-261	115	1 edx	*	bood	0	٠	0	0	mouse gernáne lyM.
HSC DO 028A	ક	Bytti	У С	pood	•	+		•	mouse chaperown continuing ICP-1 e subunit
HSC 100 021	3	Byl II	₩C	3	-	•	-	2.	mouse cateliculm
HSC 00 025	336	Bof II	¥	Dig.		ۂ		~ ~!	וויאואפן ווארוויקרוויקרוויקרוויקרוויקרוויקרווים וויאואיווים וויאואיים וויאואיווים וויאויוים וויאויים וויאואיים וויאויים וויאואיים וויאויים וויאואיים וויאויים וויאיים וויאייים וויאיים וויאייים וויאיים וויאייים וויאייים וויאיים וויאיים ווי

Summary of Known Gener from Mouse HSC Differential Display (11)

			101(2)				=	
	(hp)	(nlign-dT)	Sign	l ın•	IRII	LKHAR	I.RHAR I.RBRH	
	203 Cla I	AC	рооб	+	2+	2+	3+	Rat matrin cyclophilin
	450 Cla I	₩	fair	+	7	+7	+	mouse G-utrophin
	272 Xba I	CA	fair	3+	7	3+	2+	ral basement membrane-associated chondroitin
┞	387 Xba f	AC .	pood	#	3+	.#	0	mouse cytoplasmic g-actin
HSC-DD-182 12	149 Cla I	၁၅	poor	#	3+	#	+	mouse A-X actin
HSC-DD-089	364 Cla I	AC	boot	+	3+	2+	+	mouse TIE receptor tyrosine kinase
HSC-DD-151 42	424 Cla I	GA	pood	0	+	2+	+	rat elk, brain-specific receptor tyrosine kinase
HSC-DD-013 24	248 Bgl II	AC	fair	+1	2+	/	3+	mouse hexokinase
HSC-DD-029 10	103 Bgl II	AC	fair	0	+	,	0	mouse bruton agammaglobutinemia tyrosine kinase
HSC-DD-034 14	140 Bgl II	AC	fair	0	2+	,	2+	mouse spermine synthase
HSC-DD-082B 24	244 Cla I	AC	fair	+	4+	2+	2+	mouse stearoyl-CoA desalurase (SCD2)
HSC-DD-084 261	St Cla I	AC	pood	÷	+	#	2+	mouse antioxidanl enzyme AOE 372
HSC-DD-128 18	189 Cla I	- AC	fair	0	3+	3+	+1	mouse casein kinase II beta chain
HSC-DD-140 229	29 Cla I	AG	pood	#	0	0	+	mouse creatine kinase B
HSC-DD-148 313	I3 Cla I	CA	pood	+	+	2+	#	human esterase D
HSC-DD-176 470	0 Cla I	၅၁	fair	#	3+	+	0	mouse putative E1-E2 ATPase
HSC-DD-178 13	130 Cla I	၁၅	pood	*	3+	0	+	mouse aspartate aminotransferase
HSC-DD-180 14	142 Cla I	ည	рооб	+	+	0	+	mouse tyrosylprotein sulfotransferase-1
HSC-DD-186 252	52 Cla I	၁၅	poor	**	+	2+	2+	mouse ubiquitin-conjugating enzyme E214K
HSC-DD-191 13	136 Cla I	*	fair	0	#	÷	2+	mouse b-1,4-galactosyltransferase
HSC-DD-158 391	31 Cla I	GT	fair	+	3	0	+	spermophilus tridecemlineatus 26s proteasome
HSC-DD-099 26	265 Cla I	သ	fair	#	3÷	0	**	mouse proleasome epsilon chain precursor
HSC: DO: 222 21	270 Xba1	AC	pood	0	2.	÷	•	Rai 3-hydroxyrso-bulyrate
HSC-DD-104 36	368 Cla I	သ	far	0	41	•	4	human copper chaperone for superoxide dismulase
HSC-DD-172 36	365 Cla I	93	Jan.	*	3	2.	0	mouse Ercc 4 DNA repair gene
HSC-DD-169 22	223 Cla I	၁	lar	4	*	2.	0	Cricetulus griseus піклечінде ехсізняя гераіг protein
A	148 Bgl II	AC	poor	0	•	7	*	human Girch sequence factor

Summary of Known Genes from Mouse USC Differential Display (III)

-58-

As is apparent to one of ordinary skill in the art, this same procedure can be used to identify stem cells genes whose expression levels are associated with stem cell proliferation, dedicated differentiation and survival.

5 Example 2

10

15

20

25

Method to identify a therapeutic agent that modulates the expression of at least one stem cell gene associated with the differentiation process of a stem cell population.

The methods set forth in Example 1 offer a powerful approach for identifying therapeutic agents that modulate the expression of at least one stem cell gene associated with the differentiation process of a stem cell population. For instance, gene expression profiles of undifferentiated stem cells and partially differentiated or terminally differentiated stem cells are prepared as set forth in Example 1. A profile is also prepared from an undifferentiated stem cell sample that has been exposed to the agent to be tested. By examining for differences in the intensity of individual bands between the three profiles, agents which up or down regulate genes associated with the differentiation process of a stem cell population are identified.

Example 3

Method to identify a therapeutic agent that modulates the expression of at least one stem cell gene associated with the proliferation of a stem cell population.

The methods set forth in Example 1 offer a powerful approach for identifying therapeutic agents that modulate the expression of at least one stem cell gene associated with the proliferation of a stem cell population. For instance, gene expression profiles of undifferentiated stem cells and actively proliferating stem cells are prepared as set forth in Example 1. A profile is also prepared from an undifferentiated stem cell sample that has been exposed to the agent to be tested. By examining for differences in the intensity of individual bands between the three profiles, agents which up or down regulate genes associated with the proliferation of a stem cell population are identified.

As is apparent to one of ordinary skill in the art, this same procedure can be used to identify stem cells genes whose expression levels are associated with stem cell dedicated differentiation and survival.

Example 4

5 Production of solid support compositions comprising groupings of nucleic acids or nucleic acid fragments that correspond to genes whose expression levels are associated with the differentiation, proliferation, dedicated differentiation or survival of stem cells.

As set forth in Example 1, expression profiles prepared from stem cells at different stages of differentiation, from proliferating stem cells, from stem cells that are dedicated to a differentiation pathway and from stem cells resistant to apoptosis (which may be linked to increased survival) provide a means to identify genes whose expression levels are associated with stem cell differentiation, proliferation, dedicated differentiation and survival, respectively.

Solid supports can be prepared that comprise immobilized representative groupings of nucleic acids or nucleic acid fragments corresponding to the genes from stem cells whose expression levels are modulated during stem cell differentiation, proliferation, dedicated differentiation and survival. For instance, representative nucleic acids can be immobilized to any solid support to which nucleic acids can be immobilized, such as positively charged nitrocellulose or nylon membranes (see Sambrook et al. (1989) Molecular Cloning: a Laboratory Manual, 2nd Ed., Cold Spring Harbor 20 Laboratory) as well as porous glass wafers such as those disclosed by Beattie (WO 95/11755). Nucleic acids are immobilized to the solid support by well established techniques, including charge interactions as well as attachment of derivatized nucleic acids to silicon dioxide surfaces such as glass which bears a terminal epoxide moiety. At least one species of nucleic acid molecule, or fragment of a nucleic acid molecule corresponding to the genes from stem cells whose expression levels are modulated during stem cell differentiation, proliferation, dedicated differentiation and survival may be immobilized to the solid support. A solid support comprising a representative grouping of nucleic acids can then be used in standard hybridization assays to detect the presence

-60-

or quantity of one or more specific nucleic acid species in a sample (such as a total cellular mRNA sample or cDNA prepared from said mRNA) which hybridize to the nucleic acids attached to the solid support. Any hybridization methods, reactions, conditions and/or detection means can be used, such as those disclosed by Sambrook et al. (1989) Molecular Cloning: a Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Ausbel et al. (1987) Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience. N.Y. or Beattie in WO 95/11755.

10

20

One of ordinary skill in the art may determine the optimal number of genes that must be represented by nucleic acid fragments immobilized on the solid support to effectively differentiate between samples that are at the various stages of stem cell differentiation, including terminal differentiation, proliferating stem cells, stem cells dedicated to a given differentiation pathway and/or stem cells with increased survival rates. Preferably, at least about 5, 10, 20, 50, 100, 150, 200, 300, 500, 1000 or more preferably, substantially all of the detectable mRNA species in a cell sample or population will be present in the gene expression profile or array affixed to a solid support. More preferably, such profiles or arrays will contain a sufficient representative number of mRNA species whose expression levels are modulated under the relevant differentiation process, disease, screening, treatment or other experimental conditions. In most instances, a sufficient representative number of such mRNA species will be about 1. 2, 5, 10, 15, 20, 25, 30, 40, 50, 50-75 or 100 in number and will be represented by the nucleic acid molecules or fragments of nucleic acid molecules immobilized on the solid support. For example, nucleic acids encoding all or a fragment of one or more of the known genes or previously reported ESTs that are identified in Tables 2 and 3 may be so immobilized. Additionally, the skilled artisan may select nucleic acids encoding the protein cell surface markers discussed above at page 8 (i.e., CD 34) in order to help identify the particular stage of differentiation of a given stem cell population and to identify agents that are involved in promoting such differentiation. The skilled artisan will be able to optimize the number and particular nucleic acids for a given purpose, i.e., screening for modulating agents, identifying activated stem cells, etc.

10

15

20

25

In general, nucleic acid fragments comprising at least one of the sequences or part of one of the sequences of Table 2 can be used as probes to screen nucleic acid samples from cell populations in hybridization assays. Alternatively, nucleic acid fragments derived from the identified genes in Table 3 which correspond to the sequences of Table 2 may be employed as probes. To ensure specificity of a hybridization assay using probe derived from the sequences presented in Table 2 or the genes of Table 3, it is preferable to design probes which hybridize only with target nucleic acid under conditions of high stringency. Only highly complementary nucleic acid hybrids form under conditions of high stringency. Accordingly, the stringency of the assay conditions determines the amount of complementarity which should exist between two nucleic acid strands in order to form a hybrid. Stringency should be chosen to maximize the difference in stability between the probe:target hybrid and potential probe:non-target hybrids.

Probes may be designed from the sequences of Table 2 or the genes of Table 3 through methods known in the art. For instance, the G+C content of the probe and the probe length can affect probe binding to its target sequence. Methods to optimize probe specificity are commonly available in Sambrook et al. (Molecular Cloning: A Laboratory Approach, Cold Spring Harbor Press, NY, 1989) or Ausubel et al. (Current Protocols in Molecular Biology, Greene Publishing Co., NY, 1995). Any available format may be used in designing hybridization assays, including immobilizing the probes to a solid support or immobilizing the cellular test sample nucleic acids to a solid support.

It should be understood that the foregoing discussion and examples merely present a detailed description of certain preferred embodiments. It therefore should be apparent to those of ordinary skill in the art that various modifications and equivalents can be made without departing from the spirit and scope of the invention. All documents, patents and references, including provisional patent application 60/056,861, referred to throughout this application are herein incorporated by reference.

-62-

What is Claimed Is:

10

population;

25

1. A method to identify an agent that modulates the expression of at least one stem cell gene associated with the differentiation process of a stem cell population, comprising the steps of:

preparing a first gene expression profile of an undifferentiated stem cell population;

preparing a second gene expression profile of a stem cell population at a defined stage of differentiation;

treating said undifferentiated stem cell population with the agent;

preparing a third gene expression profile of the treated undifferentiated stem cell population;

comparing the first, second and third gene expression profiles; and identifying an agent that modulates the expression of a least one gene in undifferentiated stem cells that is associated with stem cell differentiation.

15 2. A method to identify an agent that modulates the expression of at least one stem cell gene associated with the proliferation of a stem cell population, comprising the steps of:

preparing a first gene expression profile of a non-proliferating stem cell population;

preparing a second gene expression profile of a proliferating stem cell population;

treating the non-proliferating stem cell population with the agent; preparing a third gene expression profile of the treated stem cell

comparing the first, second and third gene expression profiles; and identifying an agent that modulates the expression of a least one gene that is associated with stem cell proliferation.

PCT/US98/17283

3. A composition comprising a grouping of nucleic acid molecules that correspond to at least part of the sequences of Table 2 or genes of Table 3 affixed to a solid support.

FIG. 1

FIG. 1 (Cont.)

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/17283

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :C12Q 1/68; C12N 15/12				
US CL : 435/6; 536/23.5				
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols)				
U.S. : 435/6; 536/23.5				
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched	
Electronic d	ata base consulted during the international search (na	me of data base and, where practicable	, search terms used)	
APS, Medline, WPIDS search terms: hematopoietic stem cell, differential display				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
x	TAGOH et al. Molecular Cloning and	_	1, 2	
	Stromal Cell-Derived cDNA Encoding a Protein That Facilitates Gene Activation of Recombination Activating Gene (RAG)-1 in Human Lymphoid Progenitors. Biochem. Biophys Res. Commun.			
	1996, Vol. 221, pages 744-749, especially page 744.			
X	MOREB et al. Human A1, a Bcl-2-		1, 2	
	leukemic cells by cytokines as well as differentiating factors. Leukemia. July 1997, Vol. 11, Number 7, pages 998-1004,			
	especially page 998.			
	copedia, page 550.			
		-	,	
	·			
		•		
-				
_				
Further documents are listed in the continuation of Box C. See patent family annex.				
-	ocial estegories of cited documents:	"T" later document published after the inte date and not in conflict with the appl	lication but cited to understand	
	cument defining the general state of the art which is not considered be of particular relevance	"X" document of particular relevance; the		
	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered when the document is taken alone		
cit	scument which may throw doubts on priority claim(s) or which is ted to establish the publication date of another citation or other ecial reason (as specified)	"Y" document of particular relevance; th		
O do	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such	h documents, such combination	
°P" dio	sens cument published prior to the international filing date but later than e priority date claimed	*A* document member of the same patent family		
Date of the actual completion of the international search Date of		Date of mailing of the international sea	arch report	
30 NOVEMBER 1998		24 DEC 1998		
Name and mailing address of the ISA/US Authorized officer				
Commissioner of Patents and Trademarks Box PCT Weshington D.C. 2023		JOHN S. BRUSCA		
Washington, D.C. 20231 Facsimile No. (703) 305-3230		Telephone No (703) 308-0196		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/17283

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
2. X Claims Nos.: 3 because they relate to parts of the international application that do not comply with the prescribed rean extent that no meaningful international search can be carried out, specifically:	quirements to such		
No sequence listing or computer readable form of sequence listing has been supplied, and claim 3 is d sequences that therefore cannot be searched.	rawn to specific		
	·		
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentence	es of Rule 6.4(a).		
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows:			
·	•		
1. As all required additional search fees were timely paid by the applicant, this international search reclaims.	port covers all scarchable		
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment			
of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant, this international search fees were timely paid by the applicant of the search f	ional search report covers		
As only some of the required additional search lees were unitely paid by the appropriate only those claims for which fees were paid, specifically claims Nos.:			
·			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:			
Remark on Protest The additional search fees were accompanied by the applicant's protest	st.		
No protest accompanied the payment of additional search fees.			

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

÷· .

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 99/10535 (11) International Publication Number: (51) International Patent Classification 6: A1 C12Q 1/68, C12N 15/12 4 March 1999 (04.03.99) (43) International Publication Date: (81) Designated States: AU, CA, IL, JP, US, European patent (AT, PCT/US98/17283 (21) International Application Number: BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). 21 August 1998 (21.08.98) (22) International Filing Date: **Published** (30) Priority Data: With international search report. US 22 August 1997 (22.08.97) 60/056,861 Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of (71) Applicant (for all designated States except US): YALE UNIamendments. VERSITY [US/US]; 451 College Street, New Haven, CT 06520 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): LIU, Meng [CN/US]; Apartment 7C, 564 Prospect Street, New Haven, CT 06511 (US). BASKARAN, Namadev [IN/US]; 750 Whitney Avenue, New Haven, CT 06511 (US). WEISSMAN, Sherman, M. [US/US]; 459 Saint Ronan Street, New Haven, CT 06511 (US). (74) Agent: ADLER, Reid, G.; Morgan, Lewis & Bockius LLP, 1800 M Street, N.W., Washington, DC 20036 (US).

(54) Title: A PROCESS TO STUDY CHANGES IN GENE EXPRESSION IN STEM CELLS

(57) Abstract

The present invention includes a method to identify stem cell genes that are differentially expressed in stem cells at various stages of differentiation when compared to undifferentiated stem cells by preparing a gene expression profile of a stem cell population and comparing the profile to a profile prepared from stem cells at different stages of differentiation, thereby identifying cDNA species, and therefore genes, which are expressed. The present invention also includes methods to identify a therapeutic agent that modulates the expression of at least one stem cell gene associated with the differentiation, proliferation and/or survival of stem cells.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	. FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan .	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	K2	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE .	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
					· •		

-1-

A PROCESS TO STUDY CHANGES IN GENE EXPRESSION IN STEM CELLS

Technical Field

15

This invention relates to compositions and methods useful to identify agents that modulate the expression of at least one gene associated with the differentiation, proliferation, dedication and/or survival of stem cells.

5 Background of the Invention

The identification of genes associated with development and differentiation of cells is an important step for advancing our understanding of hematopoiesis, the differentiation of hematopoietic stem cells into erythrocytes, monocytes, platelets and polymorphonuclear white blood cells or granulocytes. The identification of genes associated with hematopoiesis is also an important step for advancing the development of therapeutic agents which modulate, promote or interfere with the differentiation of stem cells.

Hematopoietic stem cells derive from bone marrow stem cells. The bone marrow stem cells ultimately differentiate into the hematopoietic stem cells, which are responsible for the lymphoid, myeloid and erythroid lineages, and stromal stem cells, which differentiate into fibroblasts, osteoblasts, smooth muscle cells, stromal cells and adipocytes (STEWART SELL, IMMUNOLOGY, IMMUNOPATHOLOGY & IMMUNITY, 5th ed. 39-42 Stamford, CT, 1996). The lymphoid lineage, comprising B-cells and T-cells, provides for the production of antibodies, regulation of the cellular immune system, detection of foreign agents in the blood, detection of cells foreign to the host, and the like. The myeloid lineage, which includes monocytes, granulocytes, megakaryocytes as well as others cells, monitors for the presence of foreign bodies in the blood stream, provides protection against neoplastic cells, scavenges foreign materials in the blood stream,

WO 99/10535 PCT/US98/17283

-2-

produces platelets and the like. The erythroid lineage provides the red blood cells which act as oxygen carriers.

Hematopoietic stem cells differentiate as a result from their interaction with growth factors such as interleukins (ILs), lymphokines, colony-stimulating factors (CSFs), erythropoietin (epo), and stem cell factor (SCF). Each of these growth factors 5 have multiple actions that are not necessarily limited to the hematopoietic system (ROBERT A. MEYERS, ED., MOLECULAR BIOLOGY AND BIOTECHNOLOGY: A COMPREHENSIVE DESK REFERENCE, 392-6, New York, 1995). Proliferation, differentiation and survival of immature hematopoietic progenitor cells are sustained by hematopoietic growth factors (hemopoietins). These growth factors also influence the 10 survival and function of mature blood cells. The kinetics of hematopoiesis vary depending on cell type, and their life span may be as little as 6-12 hours to as much as months or years. As a result, the daily renewal of certain lymphocyte progenitors may be substantially lower than that of leukocytic progenitors. The most primitive cells, pluripotent stem cells (PSCs), have high self-renewal capacity (Nathan, 818-821; Saito, 15 Recent trends in research on differentiation of hematopoietic cells and lymphokines, Hum. Cell. 5(1): 54 (1992)).

Growth factors are responsible for differentiating the hematopoietic stem cell into either the hemocytoblast, which is the progenitor cell of erythrocytes, neutrophils, eosinophils, basophils, monocytes and platelets, and lymphoid stem cells, which are progenitors to T cells and B cells. Sell, 41. These circulating blood cells are products of terminal differentiation of recognizable precursors (e.g., erythroblasts, monomyeloblasts and megakaryoblasts, to name but a few). The terminal differentiation of these recognizable precursors may occur exclusively in the marrow cavities of the axial skeleton, with some extension into the proximal femora and humeri (David G. Nathan, Hematologic Diseases, IN CECIL TEXTBOOK OF MEDICINE 20th ed., 817, Philadelphia, 1996). White blood cell (WBC) nomenclature may be divided into two major populations on the basis of the form of their nuclei: single nuclei (mononuclear or "round cells") or segmented nuclei (polymorphonuclear).

20

15

20

In human medicine, the ability to initiate and regulate hematopoiesis is of great importance (McCune et al., The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function, Science 241: 1632(1988)). A variety of discases and immune disorders, including malignancies, appear to be related to disruptions within the lympho-hematopoietic system. Many of these disorders could be alleviated and/or cured by repopulating the hematopoietic system with progenitor cells, which when triggered to differentiate would overcome the patient's deficiency. In humans, a current replacement therapy is bone marrow transplantation. This type of therapy, however, is both painful (for donor and recipient) because of involvement of invasive procedures and can offer severe complications to the recipient, particularly when the graft is allogeneic and Graft Versus Host Disease (GVHD) results. Therefore, the risk of GVHD restricts the use of bone marrow transplantation to patients with otherwise fatal diseases. A potentially more exciting alternative therapy for hematopoietic disorders is the treatment of patients with reagents that regulate the proliferation and differentiation of stem cells (Lawman et al., U.S. Patent No. 5,650,299 (1997)).

There is also a strong interest in the development of procedures to produce large numbers of the human hematopoietic stem cell. This will allow for identification of growth factors associated with its self regeneration. Additionally, there may be as yet undiscovered growth factors associated (1) with the early steps of dedication of the stem cell to a particular lineage; (2) the prevention of such dedication; and (3) the negative control of stem cell proliferation. Availability of large numbers of stem cells would be extremely useful in bone marrow transplantation, as well as transplantation of other organs in association with the transplantation of bone marrow.

An *in vitro* system that permits determination of what agents induce

differentiation or proliferation of progenitor cells within a hematopoietic cell population would have many applications. For example, controlled production of red blood cells would permit the *in vitro* production of red blood cell units for clinical replacement (transfusion) therapy. As is well known, transfused red cells are used in the treatment of anemia following elective surgery, in cases of traumatic blood loss, and in the supportive care of, *e.g.*, cancer patients. Similarly, controlled production of platelets would permit

15

20

-4-

the *in vitro* production of platelets for platelet transfusion therapy, which may be used in cancer patients with thrombocytopenia caused by chemotherapy. For both red cells and platelets, current volunteer donor pools are accompanied by the risk of infectious contamination, and availability of an adequate supply can be limited. Determination of such compounds would lend itself to developing methods of controlled *in vitro* production of specified lineage of mature blood cells to circumvent these problems (Palsson *et al.*, U.S. Patent No. 5,635,386 (1997)).

Alternatively, agents could be isolated that selectively deplete a particular lineage of cells from within a hematopoietic cell population and can similarly confer important advantages. For example, production of stem cells and myeloid cells while selectively depleting T-cells from a bone marrow cell population could be very important for the management of patients with human immunodeficiency virus (HIV) infection. Since the major reservoir of HIV is the pool of mature T-cells, selective eradication of the mature T-cells from a hematopoietic cell mass collected from a patient has considerable potential therapeutic benefit. If one could selectively remove all the mature T-cells from within an HIV infected bone marrow cell population while maintaining viable stem cells, the T-cell depleted bone marrow sample could then be used to "rescue" the patient following hematolymphoid ablation and autologous bone marrow transplantation. Although there are reports of the isolation of progenitor cells (see, e.g., Tsukamoto et al., (1991) as representative) such techniques are distinct from the selective removal of T-cells from a hematopoietic tissue culture (Palsson et al., U.S. Patent No. 5,635,386 (1997)).

Summary of the Invention

While the differentiation of stem cells has been the subject of intense study, little is known about the global transcriptional response of stem cells during cell

hematopoiesis. The present inventors have devised an approach to systematically assess the transcriptional regulation of stem cells during hematopoiesis as well as methods for the identification of agents that modulate the expression of at least one gene associated with hematopoiesis.

The present invention includes a method to identify stem cell genes that are differentially expressed in stem cells at various stages of differentiation when compared to undifferentiated stem cells by preparing a gene expression profile of a stem cell population and comparing the profile to a profile prepared from stem cells at different stages of differentiation, thereby identifying cDNA species, and therefore genes, which are expressed.

The present invention further includes a method to identify an agent that modulates the expression of at least one stem cell gene associated with the differentiation process of a stem cell population, comprising the steps of preparing a first gene expression profile of an undifferentiated stem cell population, preparing a second gene expression profile of a stem cell population at a defined stage of differentiation, treating said undifferentiated stem cell population with the agent, preparing a third gene expression profile of the treated stem cell population, and comparing the first, second and third gene expression profiles. Comparison of the three gene expression profiles for RNA species as represented by cDNA fragments that are differentially expressed upon addition of the agent to the undifferentiated stem cell population identifies agents that modulate the expression of at least one gene in undifferentiated stem cells that is associated with stem cell differentiation.

Another aspect of the invention is a composition comprising a grouping of nucleic acids or nucleic acid fragments affixed to a solid support. The nucleic acids affixed to the solid support correspond to one or more genes whose expression levels are modulated during stem cell differentiation.

Brief Description of the Drawings

Fig. 1 Figure 1 is an autoradiogram of the gene expression profiles generated

from cDNAs made with RNA isolated from Lin⁺, LRH, LRH48 and LRBRH cells. All
possible 12 anchoring oligo d(T)n1, n2 were used to generate a complete expression
profile for the enzyme ClaI.

-6-

Modes of Carrying Out the Invention

General Description

The differentiation of stem cells during the process of hematopoiesis is a subject of primary importance in view of the need to find ways to modulate the stem cell differentiation process. One means of characterizing the process of hematopoiesis is to measure the ability of stem cells to synthesize specific RNA during stem cell differentiation.

The following discussion presents a general description of the invention as well definitions for certain terms used herein.

10 Definitions

25

The term "stem cells" as used herein, refers to both hematopoietic stem cells and bone marrow stem cells, and includes totipotent cells which serve as progenitors of neoplastic transformation. The term "hematopoietic stem cells" refers to stem cells which differentiate into erythrocytes, monocytes, granulocytes, and platelets. The putative human hematopoietic stem cell may express the cell surface antigen CD34.

The term "hematopoiesis" as used herein, refers to the process by which stem cells differentiate into blood cells, including erythrocytes, monocytes, granulocytes, and platelets.

The term "blood cell", as used herein, refers to all blood cell types derived from the process of hematopoiesis (see STEWART SELL, *IMMUNOLOGY*, *IMMUNOPATHOLOGY* & *IMMUNITY*, 5th ed. 39-42, Stamford, CT, 1996)

The term "solid support", as used herein, refers to any support to which nucleic acids can be bound or immobilized, including nitrocellulose, nylon, glass, other solid supports which are positively charged and nanochannel glass arrays disclosed by Beattie (WO 95/1175).

The term "gene expression profile", also referred to as a "differential expression profile" or "expression profile" refers to any representation of the expression level of at

10

20

least one mRNA species in a cell sample or population. For instance, a gene expression profile can refer to an autoradiograph of labeled cDNA fragments produced from total cellular mRNA separated on the basis of size by known procedures. Such procedures include slab gel electrophoresis, capillary gene electrophoresis, high performance liquid chromatography, and the like. Digitized representations of scanned electrophoresis gels are also included as are two and three dimensional representations of the digitized data.

While a gene expression profile encompasses a representation of the expression level of at least one mRNA species, in practice, the typical gene expression profile represents the expression level of multiple mRNA species. For instance, a gene expression profile useful in the methods and compositions disclosed herein represents the expression levels of at least about 5, 10, 20, 50, 100, 150, 200, 300, 500, 1000 or more preferably, substantially all of the detectable mRNA species in a cell sample or population.

Particularly preferred are gene expression profiles or arrays affixed to a solid support that contain a sufficient representative number of mRNA species whose expression levels are modulated under the relevant infection, disease, screening, treatment or other experimental conditions. In some instances a sufficient representative number of such mRNA species will be about 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 50-75 or 100.

Gene expression profiles can be produced by any means known in the art, including, but not limited to the methods disclosed by: Prashar et al. (1996) Proc. Natl. Acad. Sci. USA 93:659-663; Liang et al. (1992) Science 257:967-971; Ivanova et al. (1995) Nucleic Acids Res. 23:2954-2958; Guilfoyl et al. (1997) Nucleic Acids Res. 25(9):1854-1858; Chee et al. (1996) Science 274:610-614; Velculescu et al. (1995) Science 270:484-487; Fischer et al. (1995) Proc. Natl. Acad. Sci. USA 92(12):5331-5335; and Kato (1995) Nucleic Acids Res. 23(18):3685-3690.

As an example, gene expression profiles are made to identify one or more genes whose expression levels are modulated during the process of stem cell differentiation. The assaying of the modulation of gene expression via the production of a gene expression profile generally involves the production of cDNA from polyA+ RNA (mRNA) isolated from stem cells as described below.

Stem cells are harvested or isolated by any technique known in the art. One of the most versatile ways to separate hematopoietic cells is by use of flow cytometry, where the particles, i.e,. cells, can be detected by fluorescence or light scattering. The source of the cells may be any source which is convenient. Thus, various tissues, organs, fluids, or the like may be the source of the cellular mixtures. Of particular interest are bone marrow and peripheral blood, although other lymphoid tissues are also of interest, such as spleen, thymus, and lymph node (see Sasaki et al., U.S. Patent No. 5,466,572 and Fei et al., U.S. Patent No. 5,635,387).

Cells of interest will usually be detected and separated by virtue of surface membrane proteins which are characteristic of the cells. For example, CD34 is a marker for 10 immature hematopoietic cells. Markers for dedicated cells may include CD 10, CD19, CD20, and sIg for B cells, CD 15 for granulocytes, CD 16 and CD33 for myeloid cells, CD 14 for monocytes, CD41 for megakaryocytes, CD38 for lineage dedicated cells, CD3, CD4, CD7, CD8 and T cell receptor (TCR) for T cells, Thy-1 for progenitor cells, glycophorin for erythroid progenitors and CD71 for activated T cells. In isolating early 15 progenitors, one may divide a CD34 positive enriched fraction into lineage (Lin) negative, e.g. CD2 - , CD 14 - , CD15 - , CD16 - , CD10 - , CD19 - , CD33 - and glycophorin A -, fractions by negatively selecting for markers expressed on lineage committed cells, Thy-1 positive fractions, or into CD38 negative fractions to provide a composition substantially enriched for early progenitor cells. Other markers of interest 20 include V alpha and V beta chains of the T-cell receptor (Sasaki et al., U. S. Patent No. 5,466,572 (1995)).

After isolation of the appropriate stem cells, total cellular mRNA is isolated from the cell sample. mRNAs are isolated from cells by any one of a variety of techniques.

Numerous techniques are well known (see e..., Sambrook et al., Molecular Cloning: A

Laboratory Approach, Cold Spring harbor Press, NY, 1987; Ausbel et., Current

Protocols in Molecular Biology, Greene Publishing Co. NY, 1995). In general, these
techniques first lyse the cells and then enrich for or purify RNA. In one such protocol,
cells are lysed in a Tris-buffered solution containing SDS. The lysate is extracted with
phenol/chloroform, and nucleic acids precipitated. The mRNAs may be purified from

15

25

30

crude preparations of nucleic acids or from total RNA by chromatography, such as binding and elution from oligo(dT)-cellulose or poly(U)-Sepharose®. However, purification of poly(A)-containing RNA is not a requirement. As stated above, other protocols and methods for isolation of RNAs may be substituted.

The mRNAs are reverse transcribed using an RNA-directed DNA polymerase, such as reverse transcriptase isolated from AMV, MoMuLV or recombinantly produced. Many commercial sources of enzyme are available (e.g. Pharmacia, New England Biolabs, Stratagene Cloning Systems). Suitable buffers., cofactors, and conditions are well known and supplied by manufacturers (see also, Sambrook et al. (1989) Molecular Cloning: a laboratory manual, 2nd Ed., Cold Spring Harbor Laboratory; and Ausbel et al., (1987) Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience, N.Y.).

Various oligonucleotides are used in the production of cDNA. In particular, the methods utilize oligonucleotide primers for cDNA synthesis, adapters, and primers for amplification. Oligonucleotides are generally synthesized so single strands by standard chemistry techniques, including automated synthesis. Oligonucleotides are subsequently de-protected and may be purified by precipitation with ethanol, chromatographed using a sized or reversed-phase column, denaturing polyacrylamide gel electrophoresis, high-pressure liquid chromatography (HPLC), or other suitable method. In addition, within certain preferred embodiments, a functional group, such as biotin, is incorporated preferably at the 5' or 3' terminal nucleotide. A biotinylated oligonucleotide may be synthesized using pre-coupled nucleotides, or alternatively, biotin may be conjugated to the oligonucleotide using standard chemical reactions. Other functional groups, such as florescent dyes, radioactive molecules, digoxigenin, and the like, may also be incorporated.

Partially-double stranded adaptors are formed from single stranded oligonucleotides by annealing complementary single-stranded oligonucleotides that are chemically synthesized or by enzymatic synthesis. Following synthesis of each strand, the two oligonucleotide strands are mixed together in a buffered salt solution (e.g., 1 M NaCl, 100 mM Tris-HCl pH.8.0, 10 mM EDTA) or in a buffered solution containing Mg⁺² (e.g.,

15

20

10 mM MgCl₂) and annealed by heating to high temperature and slow cooling to room temperature.

The oligonucleotide primer that primes first strand DNA synthesis may comprise a 5' sequence incapable of hybridizing to a polyA tail of the mRNAs, and a 3' sequence that hybridizes to a portion of the polyA tail of the mRNAs and at least one non-polyA nucleotide immediately upstream of the polyA tail. The 5' sequence is preferably a sufficient length that can serve as a primer for amplification. The 5' sequence also preferably has an average G+C content and does not contain large palindromic sequence; some palindromes, such as a recognition sequence for a restriction enzyme, may be acceptable. Examples of suitable 5' sequences are CTCTCAAGGATCTACCGCT (SEQ ID No. _____), CAGGGTAGACGACGCTACGC (SEQ ID No. _____), and TAATACCGCGCCCACATAGCA (SEQ ID No. _____)

The 5' sequence is joined to a 3' sequence comprising sequence that hybridizes to a portion of the polyA tail of mRNAs and at least one non-polyA nucleotide immediately upstream. Although the polyA-hybridizing sequence is typically a homopolymer of dT or dU, it need only contain a sufficient number of dT or dU bases to hybridize to polyA under the conditions employed. Both oligo-dT and oligo-dU primers have been used and give comparable results. Thus, other bases may be interspersed or concentrated, as long as hybridization is not impeded. Typically, 12 to 18 bases or 12 to 30 bases of dT or dU will be used. However, as one skilled in the art appreciates, the length need only be sufficient to obtain hybridization. The non-poly A+ nucleotide is A, C, or G, or a nucleotide derivative, such as inosinate. If one non-polyA nucleotide is used, then three oligonucleotide primers are needed to hybridize to all mRNAs. If two non-polyA nucleotides are used, then 12 primers are needed to hybridize to all mRNAs (AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT). If three non-poly A nucleotides are used then 48 primers are needed (3 X 4 X 4). Although there is no theoretical upper limit on the number of non-polyA nucleotides, practical considerations make the use of one or two non-polyA nucleotides preferable.

For cDNA synthesis, the mRNAs are either subdivided into three (if one non-polyA nucleotide is used) or 12 (if two non-polyA nucleotides are used) fractions, each

containing a single oligonucleotide primer, or the primers may be pooled and contacted with a mRNA preparation. Other subdivisions may alternatively be used. Briefly, first strand cDNA is initiated from the oligonucleotide primer by reverse transcriptase (RTase). As noted above, RASE may be obtained from numerous sources and protocols are well known. Second strand synthesis may be performed by RASE (Gubler and Hoffman, Gene 25: 263, 1983), which also has a DNA-directed DNA polymerase activity, with or without a specific primer, by DNA polymerase 1 in conjunction with RNaseH and DNA ligase, or other equivalent methods. The double-stranded cDNA is generally treated by phenol:chloroform extraction and ethanol precipitation to remove protein and free nucleotides.

Double-stranded cDNA is subsequently digested with an agent that cleaves in a sequence-specific manner. Such cleaving agents include restriction enzymes, chemical cleaving agents, triple helix, and any other cleaving agent available. Restriction enzyme digestion is preferred; enzymes that are relatively infrequent cutters (e.g., ≥ 5 bp recognition site) are preferred and those that leave overhanging ends are especially preferred. A restriction enzyme with a six base pair recognition site cuts approximately 8% of cDNAs, so that approximately 12 such restriction enzymes should be needed to digest every cDNA at least once. By using 30 restriction enzymes, digestion of every cDNA is assured.

The adapters for use in the present invention are designed such that the two strands are only partially complementary and only one of the nucleic acid strands that the adapter is ligated to can be amplified. Thus, the adapter is partially double-stranded (i.e., comprising two partially hybridized nucleic acid strands), wherein portions of the two strands are non-complementary to each other and portions of the two strands are complementary to each other. Conceptually, the adapter may be "Y-shaped" or "bubble-shaped." When the 5' region is non-paired, the 3' end of other strand cannot be extended by a polymerase to make a complementary copy. The ligated adapter can also be blocked at the 3' end to eliminate extension during subsequent amplifications. Blocking groups include dideoxynucleotides and other available blocking agents. In this type of adapter ("Y-shaped"), the non-complementary portion of the upper strand of the adapters is

WO 99/10535 PCT/US98/17283

-12-

preferably a length that can serve as a primer for amplification. As noted above, the non-complementary portion of the lower strand need only be one base, however, a longer sequence is preferable (e.g., 3 to 20 bases; 3 to 15 bases; 5 to 15 bases, or 14 to 24 bases. The complementary portion of the adapter should be long enough to form a duplex under conditions of ligation.

5

10

15

20

30

For "bubble-shaped" adapters, the non-complementary portion of the upper strands is preferably a length that can serve as a primer for amplification. Thus, this portion is preferably 15 to 30 bases. Alternatively, the adapter can have a structure similar to the Y-shaped adapter, but has a 3' end that contains a moiety that a DNA polymerase cannot extend from.

Amplification primers are also used in the present invention. Two different amplification steps are performed in the preferred aspect. In the first, the 3' end (referenced to mRNA) of double stranded cDNA that has been cleaved and ligated with an adapter is amplified. For this amplification, either a single primer or a primer pair is used. The sequence of the single primer comprises at least a portion of the 5' sequence of the oligonucleotide primer used for first strand cDNA synthesis. The portion need only be long enough to serve as an amplification primer. The primer pair consists of a first primer whose sequence comprises at least a portion of the 5' sequence of the oligonucleotide primer as described above; and a second primer whose sequence comprises at least a portion of the sequence of one strand of the adapter in the noncomplementary portion. The primer will generally contain all the sequence of the noncomplementary potion, but may contain less of the sequence, especially when the noncomplementary portion is very long, or more of the sequence, especially when the noncomplementary portion is very short. In some embodiments, the primer will contain sequence of the complementary portion, as long as that sequence does not appreciably hybridize to the other strand of the adapter under the amplification conditions employed. For example, in one embodiment, the primer sequence comprises four bases of the complementary region to yield a 19 base primer, and amplification cycles are performed at 56°C (annealing temperature), 72°C (extension temperature), and 94°C (denaturation temperature). In another embodiment, the primer is 25 bases long and has 10 bases of

sequence in the complementary portion. Amplification cycles for this primer are performed at 68°C (annealing and extension temperature) and 94°C (denaturation temperature). By using these longer primers, the specificity of priming is increased.

The design of the amplification primers will generally follow well-known guidelines, such as average G-C content, absence of hairpin structures, inability to form primer-dimers and the like. At times, however, it will be recognized that deviations from such guidelines may be appropriate or desirable.

In instances where small numbers of cells are available for the initial RNA extraction, such as small numbers of stem cells, the preferred method of producing a gene expression profile comprises the following general steps. Total RNA is extracted from as few as 5000 stem cells. Using an oligo-dT primer, double stranded cDNA is synthesized and ligated to an adapter in accordance with the present invention. Using adapter primers, the cDNA is PCR amplified using the protocol of Baskaran and Weissman (1996) Genome Research 6(7): 633 and/or Liv et al. (1992) Methods of Enzymology. The original cDNA is therefore amplified several fold so that a large quantity of this cDNA is available for use in the display protocol according to the present invention. For the display, an aliquot of this cDNA is incubated with an anchored oligo-dT primer. In one method, this mixture is first heat denatured and then allowed to remain at 50°C for 5 minutes to allow the anchor nucleotides of the oligo-dT primers to anneal. This provides for the synthesis of cDNA utilizing Klenow DNA polymerase. The 3'-end region of the parent cDNA (mainly the polyA region) that remains single stranded due to pairing and subsequent synthesis of cDNA by the anchored oligo-dT primer at the beginning of the polyA region, is removed by the 5'-3' exonuclease activity of the T4 DNA polymerase. Following incubation of the cDNA with T4 DNA polymerase for this purpose, dNTPs are added in the reaction mixture so that the T4 DNA polymerase initiates synthesis of the DNA over the anchored oligo-dT primer carrying the heel. The net result of this protocol is that-the cDNA with the 3' heel is synthesized for display from the double stranded cDNA as the starting material, rather than RNA as the starting material as occurs in conventional 3'end cDNA display protocol. The cDNA carrying the 3'-end heel is then subjected to restriction enzyme digestion, ligation, and PCR amplification followed by running the 30

WO 99/10535 PCT/US98/17283

-14-

PCR amplified 3'-end restriction fragments with the Y-shaped adapter on a display gel.

An alternate method is presented in Example 1.

After amplification, the lengths of the amplified fragments are determined. Any procedure that separates nucleic acids on the basis of size and allows detection or identification of the nucleic acids is acceptable. Such procedures include slab gel electrophoresis, capillary gel electrophoresis, 2-dimensional electrophoresis, high performance liquid chromatography, and the like.

10

15

25

30

Electrophoresis is technique based on the mobility of DNA in an electric field.

Negatively charged DNA migrates towards a positive electrode at a rate dependent on their total charge, size, and shape. Most often, DNA is electrophoresed in agarose or polyacrylamide gels. For maximal resolution, polyacrylamide is preferred and for maximal linearity, a denaturant, such as urea is present. A typical gel setup uses a 19:1 mixture of acrylamide:bisacrylamide and a Tris-borate buffer. DNA samples are denatured and applied to the gel, which is usually sandwiched between glass plates. A typical procedure can be found in Sambrook et al. (Molecular Cloning: A Laboratory Approach, Cold Spring Harbor Press, NY, 1989) or Ausbel et al. (Current Protocols in Molecular Biology, Greene Publishing Co., NY, 1995). Variations may be substituted as long as sufficient resolution is obtained.

Capillary electrophoresis (CE) in its various manifestations (free solution, isotachophoresis, isoelectric focusing, polyacrylamide get. micellar electrokinetic "chromatography") allows high resolution separation of very small sample volumes. Briefly, in capillary electrophoresis, a neutral coated capillary, such as a 50 μ m X 37 cm column (eCAP neutral, Beckman Instruments, CA), is filled with a linear polyacrylamide (e.g., 0.2% polyacrylamide), a sample is introduced by high-pressure injection followed by an injection of running buffer (e.g., 1X TBE). The sample is electrophoresed and fragments are detected. An order of magnitude increase can be achieved with the use of capillary electrophoresis. Capillaries may be used in parallel for increased throughput (Smith et al. (1990) Nuc. Acids. Res. 18:4417; Mathies and Huang (1992) Nature 359:167). Because of the small sample volume that can be loaded onto a capillary, sample may be concentrated to increase level of detection. One means of concentration

20

is sample stacking (Chien and Burgi (1992) Anal. Chem 64:489A). In sample stacking, a large volume of sample in a low concentration buffer is introduced to the capillary column. The capillary is then filled with a buffer of the same composition, but at higher concentration, such that when the sample ions reach the capillary buffer with a lower electric field, they stack into a concentrated zone. Sample stacking can increase detection by one to three orders of magnitude. Other methods of concentration, such as isotachophoresis, may also be used.

High-performance liquid chromatography (HPLC) is a chromatographic separation technique that separates compounds in solution. HPLC instruments consist of a reservoir of mobile phase, a pump, an injector, a separation column, and a detector. Compounds are separated by injecting an aliquot of the sample mixture onto the column. The different components in the mixture pass through the column at different rates due to differences in their partitioning behavior between the mobile liquid phase and the stationary phase. IP-RO-HPLC on non-porous PS/DVB particles with chemically bonded alkyl chains can also be used to analyze nucleic acid molecules on the basis of size (Huber et al. (1993) Anal. Biochem. 121:351; Huber et al. (1993) Nuc. Acids Res. 21:1061; Huber et al. (1993) Biotechniques 16:898).

In each of these analysis techniques, the amplified fragments are detected. A variety of labels can be used to assist in detection. Such labels include, but are not limited to, radioactive molecules (e.g., 35S, 32P, 33P), fluorescent molecules, and mass spectrometric tags. The labels may be attached to the oligonucleotide primers or to nucleotides that are incorporated during DNA synthesis, including amplification.

Radioactive nucleotides may be obtained from commercial sources; radioactive primers may be readily generated by transfer of label from γ -³²P-ATP to a 5'-OH group by a kinase (e.g., T4 polynucleotide kinase). Detection systems include autoradiograph, phosphor image analysis and the like.

Fluorescent nucleotides may be obtained from commercial sources (e.g., ABI, Foster city, CA) or generated by chemical reaction using appropriately derivatized dyes.

Oligonucleotide primers can be labeled, for example, using succinimidal esters to conjugate to amine-modified oligonucleotides. A variety of florescent dyes may be used,

WO 99/10535 PCT/US98/17283

-16-

including 6 carboxyfluorescein, other carboxyfluorescein derivatives, carboxyrhodamine derivatives, Texas red derivatives, and the like. Detection systems include photomultiplier tubes with appropriate wave-length filters for the dyes used. DNA sequence analysis systems, such as produced by ABI (Foster City, CA), may be used.

5

10

15

20

25

After separation of the amplified cDNA fragments, cDNA fragments which correspond to differentially expressed mRNA species are isolated, reamplified and sequenced according to standard procedures. For instance, bands corresponding the cDNA fragments can be cut from the electrophoresis gel, reamplified and subcloned into any available vector, including pCRscript using the PCR script cloning kit (Stratagene). The insert is then sequenced using standard procedures, such as cycle sequencing on an ABI sequencer (Foster City, CA).

An additional means of analysis comprises hybridization of the amplified fragments to one or more sets of oligonucleotides immobilized on a solid substrate. Historically, the solid substrate is a membrane, such as nitrocellulose or nylon. More recently, the substrate is a silicon wafer or a borosilicate slide. The substrate may be porous (Beattie et al. WO 95/11755) or solid. Oligonucleotides are synthesized in situ or synthesized prior to deposition on the substrate using standard procedures. Various chemistries are known for attaching oligonucleotides. Many of these attachment chemistries rely upon functionalizing oligonucleotides to contain a primary amine group. The oligonucleotides are arranged in an array form, such that the position of each oligonucleotide sequence can be determined.

The amplified fragments, which are generally labeled according to one of the methods described herein, are denatured and applied to the oligonucleotides on the substrate under appropriate salt and temperature conditions. In certain embodiments, the conditions are chosen to favor hybridization of exact complementary matches and disfavor hybridization of mismatches. Unhybridized nucleic acids are washed off and the hybridized molecules detected, generally both for position and quantity. The detection method will depend upon the label used. Radioactive labels, fluorescent labels and mass spectrometry label are among the suitable labels.

The present invention as set forth in the specific embodiments, includes methods to identify a therapeutic agent that modulates the expression of at least one stem cell gene associated with the differentiation, proliferation and/or survival of stem cells.

As an example, the method to identify an agent that modulates the expression of at

least one stem cell gene associated with the differentiation of a stem cell population,
comprises the steps of preparing a first gene expression profile of an undifferentiated
stem cell population, preparing a second gene expression profile of a stem cell population
at a defined stage of differentiation, treating said undifferentiated stem cell population
with the agent, preparing a third gene expression profile of the treated stem cell
population, and comparing the first, second and third gene expression profiles.

Comparison of the three gene expression profiles for RNA species as represented by
cDNA fragments that are differentially expressed upon addition of the agent to the
undifferentiated stem cell population identifies agents that modulate the expression of a
least one gene in undifferentiated stem cells that is associated with stem cell
differentiation.

While the above methods for identifying a therapeutic agent comprise the comparison of gene expression profiles from treated and not-treated stem cells, many other variations are immediately envisioned by one of ordinary skill in the art. As an example, as a variation of a method to identify a therapeutic agent that modulates the expression of at least one stem cell gene associated with the differentiation, the second gene expression profile of a stem cell population at a defined stage of differentiation and the third gene expression profile of the treated stem cell population can each be independently normalized using the first gene expression profile prepared from the undifferentiated stem cell population. Normalization of the profiles can easily be achieved by scanning autoradiographs corresponding to each profile, and subtracting the digitized values corresponding to each band on the autoradiograph from undifferentiated stem cells from the digitized value for each corresponding band on autoradiographs corresponding to the second and third gene expression profiles. After normalization, the second and third gene expression profiles can be compared directly to detect cDNA fragments which

WO 99/10535 PCT/US98/17283

-18-

correspond to mRNA species which are specifically expressed during differentiation of a stem cell population.

Specific Embodiments

Example 1

15

20

5 Production of gene expression profiles generated from cDNAs made with RNA isolated from undifferentiated and partially differentiated stem cells.

Crude Marrow Preparation

Expression profiles of RNA expression levels from undifferentiated stem cells and stems cells at various levels of differentiation, including partially differentiated and 10 terminally differentiated stem cells, offer a powerful means of identifying genes whose expression levels are associated with stem cell differentiation or proliferation. As an example, the production of expression profiles from murine lineage negative, rhodamine low, Hoechst low and rhodamine bright, Hoechst low hematopoietic precursor cells allows for the identification of mRNA species and their encoding genes whose expression levels are associated with stem cell differentiation

Hoechstlow/Rhodaminelow hematopoietic stem cells were isolated by sacrificing 30 Balb/c female mice (6-12 weeks) and surgically removing the iliac crests, femurs and tibiae. The bones were cleaned and placed in 10 ml PBS/5% HI-FBS on ice. One tube was used for the bones from 10 mice. The bones were ground throughly with a pestle until completely broken. Following grinding, the supernatant was removed into a 50 ml conical tube through a 40 μ M filer(Falcon #2340). 10 ml PBS/FBS was added to the mix and the supernatant removed. The supernatant was then centrifuged (1250 rpm) for 5-10 minutes. The supernatant which contains a high concentration of lipid was then decanted and discarded.

25 The cells were then pooled into 25 or 50 ml fresh PBS/FBS, and tiny bone fragments removed by settling. The cells were then counted in crystal violet. Cells were diluted and underlayed with LSM, centrifuged at 2000rpm(1000xg) for 20 minutes. To harvest the buffy coat, the supernatant was removed to within 1 cm of the cells. The next 8-19-

10ml of medium and cells were harvested by swirling the media around in the tube to draw cells from all sides of the gradient. The cell volume was then brought up to 50 ml with PBS/FBS and spun at 1400rpm 5-10 minutes.

Lineage Depletion

5 Cells were counted in Crystal Violet and resuspended in fresh PBS/FBS. Lineagespecific antibodies were added as follows:

	TER 119	0.1µg/ml final concentration
	B220	15µl/108 cells
	Mac-1	15μ1/10 ⁸ cells
10	Gr-1	15µl/108 cells
	Lyt-2	1/20 final dilution
	L3T4	1/20 final dilution
	Yw25.12.7	1/100 final dilution

The cells were incubated on ice for 15 minutes, brought to a volume of 50ml with

PBS/FBS and collected at 1400rpm for 5-10 minutes, and washed to remove unbound antibodies.

During the antibody binding step, Magnetic Beads(Dynabeads M-450) were prepared at a ratio of 5 beads/cell. The beads were coated with Sheep anti-Rat antibodies that bind to the lineage-specific antibodies, which are all of rat origin. When the beads are placed in a magnetic field, the Lin⁺ cells are removed. The resulting supernatant contains the Lin⁻ population (granulocytes and lymphocyte populations will be substantially depleted or absent after this step.)

Hoechst/Rhodamine Staining

Rhodamine 123 was added to a final concentration of 0.1 µg/ml, then incubated at 32°C for 20 minutes in the dark. Without further manipulation or washing, HOECHST 33342 was added to a final concentration of 10µM then incubated at 37°C for an additional hour. The aliquot of crude marrow was brought to 0.5 ml with PBS/FBS and Hoechst to this cell preparation as well. The volume was brought to 50 ml with PBS/FBS, centrifuged at 1400rpm for 5-10 minutes, supernatant discarded and cells resuspended to 2x10⁷ cells/ml. The rhodamine only and Hoechst Only/Crude Marrow

PCT/US98/17283

-20-

were washed in parallel. These two populations were then resuspended in 0.5ml PBS/FBS for flow cytometry analysis

Total RNA was extracted from approximately 5000 stem cells. Using an oligo-dT primer, double stranded cDNA is synthesized and ligated to an adapter in accordance with the present invention. Using adapter primers, the cDNA is PCR amplified using the protocol of Baskaran and Weissman (1996) Genome Research 6(7): 633 and Lie et al., Methods of Enzymology, ____. The original cDNA is therefore amplified several fold so that a large quantity of this cDNA is available for use in the display protocol according to the present invention.

10 Synthesis of cDNA for the gene expression profiles was performed as below:

Materials and Reagents

A microPoly(A)Pure mRNA Isolation kit (Ambion Inc.) was used for mRNA isolation. All the reagents for cDNA synthesis were obtained from Life Technologies Inc. Klentaq1 DNA polymerase (25U/ μ l) was from Ab peptides Inc. Native Pfu DNA polymerase (2.5U/ μ l) was purchased from Stratagene Inc. Betaine monohydrate was from Fluka BioChemica and dimethylsulfoxide (DMSO) was from Sigma Chemical Company. Deoxynucleoside triphophates (dNTPs, 100mM) and bovine serum albumin (BSA, 10 mg/ml) were purchased from New England Biolabs, Inc. Qiaquick PCR purification kit (Qiagen) was used to purify the amplified PCR products. The oligonucleotides used in the Examples were synthesized and gel purified in the DNA synthesis laboratory (Department of Pathology, Yale University School of Medicine, New Haven, CT).

Table 1. Sequences of oligonucleotides.

T ₇ -Sall-oligo-d(T)V	5'-ACG TAA TAC GAC TCA CTA TAG GGC GAA TTG GGT CGA C-
	$d(T)_{18}V-3'$, where $V = A, C, G$
anti-Notl Long	5'-CTT ACA GCG GCC GCT TGG ACG-3'

15

5'-AGC GGC CGC TGT AAG-3'
5'-GCG GAA TTC CGT CCA AGC GGC CGC TGT AAG-3'

Methods

I. Preparation of mRNA

MicroPoly(A)Pure mRNA isolation kit was used for the isolation of Poly(A)⁺ RNA following the kit instructions. mRNA from a small number of mouse hematopoietic cells (5,000-10,000 cells) was extracted, eluted from the column, and precipitated by adding 0.1 volume of 5M ammonium acetate and 2.5 volumes of chilled ethanol with $2\mu g$ glycogen as carrier. The tubes were left at -20°C overnight. The pellets were collected by centrifugation at top speed for 30 minutes, washed with 70% ethanol and air-dried at room temperature. The pellets were resuspended in $10\mu l$ H₂O/0.1mM EDTA solution. We observed that the dissolved mRNA solution was cloudy due to the leaching of column materials, therefore the samples were centrifuged at 4°C for 5 minutes. The supernatant was collected for further use.

15 II. cDNA synthesis

First strand cDNA synthesis

The cDNA synthesis reaction (final reaction volume is 20µl) was carried out as described in the instruction manual (Superscript Choice System) provided by Life Technologies Inc. For the first strand cDNA synthesis, mRNA (10µl) isolated from a small number of cells was annealed with 200ng (1µl) of T₇-Sall-oligo-d(T)V-primer (see Table-1) in a 0.5-ml micro centrifuge tube (no stick, USA Scientific Plastics) by heating the tubes at 65°C for 5 minutes, followed by quick chilling on ice for 5 minutes. This step was repeated

WO 99/10535 PCT/US98/17283

-22-

once and the contents were collected at the bottom of the tube by a brief centrifugation. The following components were added to the primer annealed mRNA on ice prior to initiating the reaction, 1μ l of 10mM dNTPs, 4μ l of 5 x first strand buffer [250mM Tris-HCl (pH 8.3), 375mM KCl, 15mM MgCl₂], 2μ l of 100mM DTT and 1μ l of RNase Inhibitor (40U/ μ l). All the contents were mixed gently and the tubes were pre-warmed at 45°C for 2 minutes. The cDNA synthesis was initiated by adding 200 units (1μ l) of Superscript II Reverse Transcriptase and the incubation continued at 45°C for 1 hour.

Second strand cDNA synthesis

At the end of first strand cDNA synthesis, the tubes were kept on ice. Second strand cDNA synthesis reaction (final volume is 150μ l) was set up in the same tube on ice by adding 91μ l of nuclease free water, 30μ l of 5x second strand buffer [100mM] Tris-HCl (pH 6.9), 23mM MgCl₂, 450mM KCl, 0.75mM (β -NAD⁺ and 50mM ammonium sulfate], 3μ l of 10mM dNTPs, 1μ l of E.coli DNA ligase (10U/ μ l), 4μ l of E.coli DNA polymerase I ($10U/\mu I$) and $1\mu I$ of E.coli RNase H ($2U/\mu I$). The contents were mixed gently and the tubes were incubated at 16°C for 2 hours. Following the incubation, the tubes were kept on ice, $2\mu l$ of T_4 DNA polymerase $(3U/\mu l)$ was added and the incubation was continued for another 5 minutes at 16°C. The reaction was stopped by the addition of 10μ l of 0.5M EDTA (pH 8.0) and extracted once with equal volume of phenol: chloroform 1:1 (v/v) and once with chloroform. The aqueous phase was then transferred to a new tube and precipitated by adding 0.5 volumes of 7.5M ammonium acetate (pH 7.6), $2\mu g$ of glycogen (as carrier) and 2.5 volumes of chilled ethanol. The samples were left at -20°C for overnight and the cDNA pellets were collected by centrifugation at top speed for 20 minutes. The pellets were washed once with 70% ethanol, air-dried and dissolved in $14\mu l$ of nuclease free water.

As the amount of cDNA derived from a small number of cells may be low, it may be necessary to amplify the cDNA for further analysis. To uniformly amplify the cDNA, an adaptor (NotI adaptor) was first ligated to both ends of the cDNA. Following adaptor

20

ligation, the cDNAs were amplified with Notl/RI primer (see table 1), by a modified PCR method using betaine and DMSO.

Ligation of cDNA with NotI adaptor

Preparation of Notl adaptor: The Notl adaptor was prepared by annealing

Notl-short and anti-Notl-long oligonucleotides (see Table 1). The anti-Notl-long oligonucleotide was phosphorylated to ensure that both the adaptor oligonucleotides are ligated to the cDNA. 1μg of anti-Notl-long was mixed with 1μl of 10x T₄ polynucleotide kinase buffer [700mM Tris-HCl (pH 7.6), 100mM MgCl₂ and 50mM DTT], 1μl of 10mM adenosine triphosphate (ATP), adjusted the volume to 9μl with water and the reaction was initiated by adding 1μl of T₄ polynucleotide kinase (10U/μl). The tubes were incubated at 37°C for 30 minutes and then the enzyme was inactivated at 65°C for 20 minutes. The annealing was carried out by adding the following components to the above phosphorylated anti-NotI-long: 1μg of NotI-short, 2μl of 10x oligo annealing buffer [100mM Tris-HCl (pH 8.0), 10mM EDTA (pH 8.0) and 1M NaCl] and water to adjust the final volume to 20μl. The sample was heated at 65°C for 10 minutes and allowed to cool down to room temperature. The annealed adaptor was stored at -20°C.

Ligation of cDNA with annealed NotI adaptor: To set up this reaction, 14μl of cDNA was mixed with 100ng of annealed NotI adaptor in a 0.5-ml micro centrifuge tube. To this mixture 2μl of 10x T₄ DNA ligase buffer [500mM Tris-HCl (pH 7.8), 100mM MgCl₂, 100mM DDT, 10mM ATP and 250mg/ml BSA] was added and adjusted the volume with water to 18μl and mixed gently. The reaction was initiated by adding 2μl of T₄ DNA ligase (400U/μl) and incubated at 16°C overnight.

III. cDNA amplification

A modified betaine-DMSO PCR method (Baskaran et al. (1996)) Genome

Research 6:633) was used to uniformly amplify the cDNA with different GC content.

This method uses the LA system, which combines a highly thermostable form of Taq

DNA polymerase (Klentaq1, which is devoid of 5'-exonuclease activity) and a

proofreading enzyme (Pfu DNA polymerase, which has 3'-exonuclease activity). The

15

LA16 enzyme consists of 1 part of Pfu DNA polymerase and 15 parts of KlenTaq1 DNA Polymerase (v/v). The NotI adaptor-ligated cDNA was diluted 10 fold with water. 2 μ l of this diluted cDNA was used as the template for PCR. The PCR reaction (50 μ l final volume) was set up with the following components: 5μ l of 10x PCR buffer [200mM Tris-HCl (pH 9.0), 160mM ammonium sulfate and 25mM MgCl₂], 16μ l of water, 0.8μ l of BSA (10mg/ml), 1μ l of NotI/RI PCR primer (100ng/ul), 5μ l of 50% DMSO (v/v), 15μ l of 5M Betaine and 0.2μ l of LA16 enzyme. These components were mixed gently on ice and then heated to 95°C for 15 seconds on a PCR machine, and held at 80°C while 5μ l of 2mM dNTPs were added to start the reaction. The PCR conditions were as follows: Stage 1: 95°C for 15 seconds, 55°C for 1 minute, 68°C for 5 minutes, 5 cycles. Stage 2: 95°C for 15 seconds, 60°C for 1 minute, 68°C for 5 minutes, 15 cycles.

After amplification, cDNA was purified with the Qiaquick PCR purification kit (following the instructions provided by the supplier). The purified cDNA was eluted in the desired volume of water.

Gene expression profiles were prepared from the purified cDNA as previously described by Prashar et al. in WO 97/05286 and in Prashar et al. (1996) Proc. Natl. Acad. Sci. USA 93:659-663. Briefly, the adapter oligonucleotide sequences were CTTACAGCGGCCGCTTGGACG, GAATGTCGCCGGCGA or alternatively, A1 (TAGCGTCCGGCGAGCGACGGCCAG) and

A2 (GATCCTGGCCGTCGGCTGTCTGTCGGCGC). When A1/A2 were used, one microgram of oligonucleotide A2 was first phosphorylated at the 5' end using T4 polynucleotide kinase (PNK). After phosphorylation, PNK was heated denatured, and 1μg of the oligonucleotide A1 was added along with 10× annealing buffer (1 M NaC1/100 mM Tris-HCl, pH8.0/10 mM EDTA, pH8.0) in a final vol of 20 μl. This
 mixture was then heated at 65°C for 10 min followed by slow cooling to room

mixture was then heated at 65°C for 10 min followed by slow cooling to room temperature for 30 min, resulting in formation of the Y adapter at a final concentration of $100 \text{ ng/}\mu$ l. About 20 ng of the cDNA was digested with 4 units of a restriction enzyme such as ClaI, Bgl II, etc. in a final vol of 10μ l for 30 min at 37°C. Two microliters (\approx 4 ng of digested cDNA) of this reaction mixture was then used for ligation to 100 ng (\approx 50-

30 fold) of the Y-shaped adapter in a final vol of 5μ l for 16 hr at 15°C. After ligation, the

reaction mixture was diluted with water to a final vol of 80 μ l (adapter ligated cDNA concentration, $\approx 50 \text{ pg/}\mu$ l) and heated at 65°C for 10 min to denature T4 DNA ligase, and 2- μ l aliquots (with $\approx 100 \text{ pg}$ of cDNA) were used for PCR.

The following sets of primers were used for PCR amplification of the adapter ligated 3' -end cDNAs: GCGGAATTCCGTCCAAGCGGCCGCTGTAAG or alternatively, RP 5.0 (CTCTCAAGGATCTTACCGCTT 18AT), RP 6.0 (TAATACCGCGCCACATAGCAT 18CG), or RP 9.2 (CAGGGTAGACGACGCTACGCT₁₈GA) were used as 3' primer while A1.1 (TAGCGTCCGGCGCAGCGAC) served as the 5' primer. To detect the PCR products on the display gel, 24 pmol of oligonucleotide A1.1 was 5' -end-labeled using 15 μ l of $[\gamma^{-32}]$ PATP (Amersham; 3000 Ci/mmol) and PNK in a final volume of 20 μ l for 30 min at 37°C. After heat denaturing PNK at 65°C for 20 min, the labeled oligonucleotide was diluted to a final concentration of 2 μ M in 80 μ l with unlabeled oligonucleotide A1.1. The PCR mixture (20 μ l) consisted of 2 μ l (\approx 100 pg) of the template, 2 μ l of 10× PCR buffer (100 mM Tris HCl, pH 8.3/500 mM KCl), 2 μ l of 15 mM MgCl₂ to yield 1.5 mM final Mg²⁺ concentration optimum in the reaction mixture, 200 μ M dNTPs, 200 nM each 5' and 3' PCR primers, and 1 unit of Amplitaq. Primers and dNTPs were added after preheating the reaction mixture containing the rest of the components at 85°C. This "hot start" PCR was done to avoid artefactual amplification arising out of arbitrary annealing of PCR primers at lower temperature during transition from room temperature to 94°C in the first PCR cycle. PCR consisted of 28-30 cycles of 94°C for 30 sec, 50°C for 2 min, and 72°C for 30 sec. A higher number of cycles resulted in smeary gel patterns. PCR products $(2.5\mu l)$ were analyzed on 6% polyacrylamide sequencing gel. For double or multiple digestion following adapter ligation, 13.2 μ l of the ligated cDNA sample was digested with a secondary restriction enzyme(s) in a final vol of 20 μ l. From this 25 solution, 3μ l was used as template for PCR. This template vol of 3μ l carried $\approx 100 \text{ pg}$ of the cDNA and 10 mM MgCl₂ (from the 10× enzyme buffer), which diluted to the optimum of 1.5 mM in the final PCR vol of 20 μ l. Since Mg²⁺ comes from the restriction enzyme buffer, it was not included in the reaction mixture when amplifying secondarily cut cDNA. Bands may then be extracted from the display gels as described

WO 99/10535 PCT/US98/17283

-26-

by Liang et al. (1995 Curr. Opin. Immunol. 7:274-280), reamplified using the 5' and 3' primers, and subcloned into pCR-Script with high efficiency using the PCR-Script cloning kit from Stratagene. Plasmids were sequenced by cycle sequencing on an ABI automated sequencer.

Figure 1 presents an autoradiogram of the gene expression profiles generated from cDNAs made with RNA isolated from Lin⁺, LRH, LRH48 and LRBRH cells. All possible 12 anchoring oligo d(T)n1, n2 were used to generate a complete expression profile for the enzyme ClaI.

Table 2 presents the sequences of numerous differentially expressed bands from expression profiles made from LIN⁺, LRH, LRH48 and LRBRH.

Table 3 presents the expression patterns of the differentially expressed bands set forth in Table 2. The band fragment length (size) in Table 3 is the length before unwanted terminal sequences were removed. Table 3 also presents the results of a GenBank Search and analysis of the sequences of Table 2.

5

Summary of Known Gener from Moure HSC Differential Display (1)

iern Gene Bank Scarch & Analysis	I.RII48 I.RIIRII	mouse homeobox protein	human homeobox gene regulator	± human zinc finger protein 10	3+ mouse cell division control protein 19	+ human HS1 heamatopoletic protein	3+ mouse plm-1 proto-oncogene	+ mouse thyrold hormone receptor	0 mouse mositor 1,4,5-trisphosphate receptor	0 mouse G protein beta-36 subunit	2+ mouse ras-related YPT1 protein	human TBP-associated factor 170	+ mouse HMG1-related DNA binding protein	4+ mouse TAX responsive element binding protein 107	+ mouse retinoblastoma binding protein isoform III	0 Rat androgen-binding protein	1 similar to Rel cca2	4+ mouse jerky mRNA	± similar to human memd	0 mouse interteukin 5	+ human CD9		• mouse chaperonn contiuning ICP-1 e subunit	2+ mouse cateliculari	2. Transfer tract. Mathematical 1
Fipression pattern	1 R114	_	+	_	÷	*	0		0		_	41	_	1	^	+		+	#	*	Ř	0	-		_
Fipres	I K	÷	+	5	0	0	2+	2+	3+	5 +	#	÷	ř	4	0	2+	5+	÷	ż	5	÷	•	+	•	
	Ē	0	*	+	ň	Ř	+	+	0	+	#	0	0	5	*	0	4	+	#	0	+	0	•		•
Polvivi	S. F.	麦	Poo	35	000	pood	fair	fair	poor	fair	poof	DO00	bood	aj	fair	poor	pood	fair	(air	pood	рооб	рооб	pood	3	
ZZZZ		Ş	99	AC	AG	ĄC	AC	AC	¥C	AC	AC	5	AG	AC	AC	*	AC	AC	AG	AT	Š	*	¥C	¥G	3
Fnyvme		Bol 11	xhal	Bol II	X	Xhal	Xba I	Boli	Clal	Bolii	Bal II	Clair	Bal II	Bol 11	Ball	Xbal	Bgli	Cla1	Cla I	Xba I	Xbail	Xbail	Bof =	841	
Size	(aq)	2 5	2 2	3 5	363	\$ 5	192	151	234	220	5	-88	5	8	235	272	270	ž	350	292	156	115	જ	3	
N STATE	IICHIS IVO.	900 00 030	200-00-001	150.00.203	H3C-00-034	HSC-00-238	HSC-DD-214	HSC-DD-035	HSC-DD-129	HSC-DD-040	HSC-00-011	HSC.DD.121	HSC.DD-015B	HSC-DD-039	HSC-DD-042	HSC-00-256	HSC-DD-045	HSC-DD-068	HSC-DD-143	HSC-DD-263	HSC.00-239	HSC.DD.261	11SC DD 028A	180 00 021	

Summary of Known Gener from Moure HSC Differential Display (11)

	\neg	1		\neg	Т	\Box	\Box	П		T				T	T	\neg		T	\neg	Т	T	T	Т	Т	T	T	Т	\neg
Gene Bank Search & Analysis		Ral malrin cyclophilin	mouse G-utrophin	ral basement membrane-associated chondroitin	moușe cytoplasmic g-actin	mouse A-X actin	mouse TIE receptor tyrosine kinase	rat elk, brain-specific receptor tyrosine kinase	mouse hexokhase	mouse bruton agammaglobulinemia tyrosine kinase	mouse spermine synthase	mouse stearoyt-CoA desaturase (SCD2)	mouse antioxidant enzyme AOE 372	mouse casein kinase II beta chain	mouse creatine kinase B	human esterase D	mouse putative E1-E2 ATPase	mouse aspartate aminotransferase	mouse tyrosylprotein sulfotransferase-1	mouse ubiquitin-conjugating enzyme E214K	mouse b-1,4-galactosyltransferase	spermophilus tridecemlineatus 26s profeasome	mouse proleasome epsilon chain precursor	Rat 3-hydroxyrso- bulyrate	human copper chaperone for superoxide dismutase	mouse Ercc 4 DNA repair gene	Creetukus griseus nuckeutuki excisim repair profein	human G rich sequence factor
	I.RIIRII	3+	+	2+	0	+	•	#	34	0	24	2+	2+	#	•	+1	0	+	+	2+	2+	+	#	•	#	0	0	44
Expression pattern	I.RII48 I.RIIRII	2+	2+.	3+	#	+	2+	2+	1	-	-	.2+	#	3+	0	2+	+	0	0	2+	3+	0	0	3+	•	2+	2.	
Frpress	IRII	2+	#	#	3+	3+	3+	٠	2+	+	2+	4+	+	3+	0	+	3+	3+	+	+	. .	3+	3+	2+	*	•€	*	•
	· uı ·	٠	+	*	+	+	+	0	#	0	0	+	+	0	#	+	#	#	+	4	0	•	#	0	0	1	1	0
Polv(A)	Sign	pood	fair	fair	pood	poor	poor	bood	fair	fair	fair	fair	pood	fair	pood	pood	fair	pood	pood	poor	fair	fair	fair	pood	far	far	lar	200
NIN	_	AC	\$	క	AC	ည္ပ	AC	GA	AC .	AC	ΥC	ĄC	AC	ĄĊ	ΑG	A S	93	ည္ဗ	ည္တ	ဗ္ဗ	\$	GT	ဗ	VC	ន	93	93	J.
Enzyme		Cla I	Clal	Ybal	Xbal	Clal	Clal	Cla I	Bgl II	Bglll	Bgl II	Cla	Clal	Cla	Clat	Clal	Cla 1	Clal	Cla 1	Clal	Cla 1	Cla 1	Clal) EdX	Clai	Cal	Clal	II log
Size	(a)	203	450	272	38,	149	364	424	248	5	5	244	261	189	229	313	470	130	142	252	136	391	265	270	368	365	223	9
Mems No		HSC.00.077	HSC.00.200	HSC.00.245	HSC-DD-226	HSC-DD-182	HSC-DD-089	HSC-00-151	HSC-DD-013	HSC-DD-029	HSC-DD-034	HSC-DD-082B	HSC-DD-084	HSC-DD-128	HSC.DD-140	HSC.DD-148	HSC-DD-176	HSC-DD-178	HSC-DD-180	HSC-DD-186	HSC-DD-191	HSC-DD-158	HSC.DD.099	HSC-DO-222	HSC. DD. 104	HSC.DD.172	HSC.DD-169	400

Summary of Known Genes from Mouse USC Differential Display (III)

Gene Bank Search & Analysis		mouse elongation factor 1:a	himan elongation factor 1-delta		Kat eorganon racio: r-alpira	human splicing factor (SFRS7)	mouse transcription elongation factor S-II-T1	mouse transfation initiation factor 4E	mouse protein synthesis elongation factor	mouse protein synthesis elongation factor Tu	ral histone macroH2A1.2	mouse MER9 processed pseudogene	mouse heat shock protein 70	mouse 84 kD heal shock protein	mouse heat shock protein 70 cognate	mouse breast heat shock protein 73	mouse MHC locus II region	And Alone III region	mouse minc cass in region	mouse noosomal protein of	mouse ribosomal protein S12	mouse ribosoami protein S20	mouse ribosomal protein L?	rat ribosomal protein L23a	mouse LINE: I.A. 1 element	A THE ATT CORES SECUENCE	RNA CAMPAGE LANGE	PROJECT THE PROJECT OF THE PROJECT O
=	LRBRH	•	1	T	+	+	0	0	+	0	44	\$	2+	2+	+	+	•	1	0	‡	3+	2.	3.	•	•		•	-
Expression pattern	LR1148	+		1	#	+	+	#	3+	+	4	3+	•	0	3+	6	6	3		-	**	2+	/	4	`		-	
upressly	I.R.	ئم	, ·	•	•	34	2+	÷	3+	3+	+	2+	2+	2+	2+	24		10	4+	4+	2+	3+	÷	•	÷		:	*
	÷ Li,			*	*	+	0	0	#	#	4+	+	+	44	+	1	•	•	0	2+	2+	2+	•	-	٠		-	
Poly(A)	Sign	2		lat	poor	fair	fair	DO0	fair	fak	poor	pood	pood	fair	book	, ici	10	Tar	pood	fair	pood	pood	9000	3	1		3	3
CNIN	(oligo-dT)	200	3	ဗ	S	AC	<u>G</u>	Q V	Ş	93	క	క	၁၅	₹S	ΑT	2 2	١	႘	AG	AG	AC	AC	Ş	3	4	2	ध	2
2	L'III ŽIIII		Cla	Xba·l	Cla 1	Xbal	C el C	Xhal	Clair	Cla	Xba 1	Xbal	Clail	Clal	3 2		- ES	Cla	Bgi II	Bgl II	Cla	Cla	128	2		2	3	3
3	3776	(da)	=	480	267	178	g	3 2	375	367	Š	Ş	28.	3 5	37 3	à	86	331	215	505	146	Š	3 %			<u>8</u>	28.	210
-	liems No.		HSC-DD-092	HSC-DD-288	HSC-DD-114	HSC.00.213	35 00 000	115 DO 212	HSC-DD-090	HSC.DD.173	HSC.DD.249	02-00-050	907-00-05H	H3C-00-106	HSC-00-116	HSC-DD-166	HSC-DD-184	HSC-DD-101	HSC-DD-017	HSC-DD-026	HSC. DD-064	90 00 397	HSC-DO-968	HSC.DO.	100.00	11SC DO 0288	11SC DO 142	115C 00 095

As is apparent to one of ordinary skill in the art, this same procedure can be used to identify stem cells genes whose expression levels are associated with stem cell proliferation, dedicated differentiation and survival.

Example 2

10

Method to identify a therapeutic agent that modulates the expression of at least one stem cell gene associated with the differentiation process of a stem cell population.

The methods set forth in Example 1 offer a powerful approach for identifying therapeutic agents that modulate the expression of at least one stem cell gene associated with the differentiation process of a stem cell population. For instance, gene expression profiles of undifferentiated stem cells and partially differentiated or terminally differentiated stem cells are prepared as set forth in Example 1. A profile is also prepared from an undifferentiated stem cell sample that has been exposed to the agent to be tested. By examining for differences in the intensity of individual bands between the three profiles, agents which up or down regulate genes associated with the differentiation process of a stem cell population are identified.

Example 3

Method to identify a therapeutic agent that modulates the expression of at least one stem

cell gene associated with the proliferation of a stem cell population.

The methods set forth in Example 1 offer a powerful approach for identifying therapeutic agents that modulate the expression of at least one stem cell gene associated with the proliferation of a stem cell population. For instance, gene expression profiles of undifferentiated stem cells and actively proliferating stem cells are prepared as set forth in Example 1. A profile is also prepared from an undifferentiated stem cell sample that has been exposed to the agent to be tested. By examining for differences in the intensity of individual bands between the three profiles, agents which up or down regulate genes associated with the proliferation of a stem cell population are identified.

As is apparent to one of ordinary skill in the art, this same procedure can be used to identify stem cells genes whose expression levels are associated with stem cell dedicated differentiation and survival.

Example 4

10

Production of solid support compositions comprising groupings of nucleic acids or nucleic acid fragments that correspond to genes whose expression levels are associated with the differentiation, proliferation, dedicated differentiation or survival of stem cells.

As set forth in Example 1, expression profiles prepared from stem cells at different stages of differentiation, from proliferating stem cells, from stem cells that are dedicated to a differentiation pathway and from stem cells resistant to apoptosis (which may be linked to increased survival) provide a means to identify genes whose expression levels are associated with stem cell differentiation, proliferation, dedicated differentiation and survival, respectively.

Solid supports can be prepared that comprise immobilized representative groupings of nucleic acids or nucleic acid fragments corresponding to the genes from stem cells whose expression levels are modulated during stem cell differentiation, proliferation, dedicated differentiation and survival. For instance, representative nucleic acids can be immobilized to any solid support to which nucleic acids can be immobilized, such as positively charged nitrocellulose or nylon membranes (see Sambrook et al. (1989) Molecular Cloning: a Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory) as well as porous glass wafers such as those disclosed by Beattie (WO 95/11755). Nucleic acids are immobilized to the solid support by well established techniques, including charge interactions as well as attachment of derivatized nucleic acids to silicon dioxide surfaces such as glass which bears a terminal epoxide moiety. At least one species of nucleic acid molecule, or fragment of a nucleic acid molecule corresponding to the genes from stem cells whose expression levels are modulated during stem cell differentiation, proliferation, dedicated differentiation and survival may be immobilized to the solid support. A solid support comprising a representative grouping of nucleic acids can then be used in standard hybridization assays to detect the presence

or quantity of one or more specific nucleic acid species in a sample (such as a total cellular mRNA sample or cDNA prepared from said mRNA) which hybridize to the nucleic acids attached to the solid support. Any hybridization methods, reactions, conditions and/or detection means can be used, such as those disclosed by Sambrook et al. (1989) Molecular Cloning: a Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory, Ausbel et al. (1987) Current Protocols in Molecular Biology, Greene Publishing and Wiley-Interscience. N.Y. or Beattie in WO 95/11755.

One of ordinary skill in the art may determine the optimal number of genes that must be represented by nucleic acid fragments immobilized on the solid support to effectively differentiate between samples that are at the various stages of stem cell differentiation, including terminal differentiation, proliferating stem cells, stem cells dedicated to a given differentiation pathway and/or stem cells with increased survival rates. Preferably, at least about 5, 10, 20, 50, 100, 150, 200, 300, 500, 1000 or more preferably, substantially all of the detectable mRNA species in a cell sample or population will be present in the gene expression profile or array affixed to a solid support. More preferably, such profiles or arrays will contain a sufficient representative number of mRNA species whose expression levels are modulated under the relevant differentiation process, disease, screening, treatment or other experimental conditions. In most instances, a sufficient representative number of such mRNA species will be about 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 50-75 or 100 in number and will be represented by the 20 nucleic acid molecules or fragments of nucleic acid molecules immobilized on the solid support. For example, nucleic acids encoding all or a fragment of one or more of the known genes or previously reported ESTs that are identified in Tables 2 and 3 may be so immobilized. Additionally, the skilled artisan may select nucleic acids encoding the protein cell surface markers discussed above at page 8 (i.e., CD 34) in order to help 25 identify the particular stage of differentiation of a given stem cell population and to identify agents that are involved in promoting such differentiation. The skilled artisan will be able to optimize the number and particular nucleic acids for a given purpose, i.e., screening for modulating agents, identifying activated stem cells, etc.

20

In general, nucleic acid fragments comprising at least one of the sequences or part of one of the sequences of Table 2 can be used as probes to screen nucleic acid samples from cell populations in hybridization assays. Alternatively, nucleic acid fragments derived from the identified genes in Table 3 which correspond to the sequences of Table 2 may be employed as probes. To ensure specificity of a hybridization assay using probe derived from the sequences presented in Table 2 or the genes of Table 3, it is preferable to design probes which hybridize only with target nucleic acid under conditions of high stringency. Only highly complementary nucleic acid hybrids form under conditions of high stringency. Accordingly, the stringency of the assay conditions determines the amount of complementarity which should exist between two nucleic acid strands in order to form a hybrid. Stringency should be chosen to maximize the difference in stability between the probe:target hybrid and potential probe:non-target hybrids.

Probes may be designed from the sequences of Table 2 or the genes of Table 3 through methods known in the art. For instance, the G+C content of the probe and the probe length can affect probe binding to its target sequence. Methods to optimize probe specificity are commonly available in Sambrook et al. (Molecular Cloning: A Laboratory Approach, Cold Spring Harbor Press, NY, 1989) or Ausubel et al. (Current Protocols in Molecular Biology, Greene Publishing Co., NY, 1995). Any available format may be used in designing hybridization assays, including immobilizing the probes to a solid support or immobilizing the cellular test sample nucleic acids to a solid support.

It should be understood that the foregoing discussion and examples merely present a detailed description of certain preferred embodiments. It therefore should be apparent to those of ordinary skill in the art that various modifications and equivalents can be made without departing from the spirit and scope of the invention. All documents, patents and references, including provisional patent application 60/056,861, referred to throughout this application are herein incorporated by reference.

10

What is Claimed Is:

1. A method to identify an agent that modulates the expression of at least one stem cell gene associated with the differentiation process of a stem cell population, comprising the steps of:

preparing a first gene expression profile of an undifferentiated stem cell population;

preparing a second gene expression profile of a stem cell population at a defined stage of differentiation;

treating said undifferentiated stem cell population with the agent;
preparing a third gene expression profile of the treated undifferentiated stem cell population;

comparing the first, second and third gene expression profiles; and identifying an agent that modulates the expression of a least one gene in undifferentiated stem cells that is associated with stem cell differentiation.

15 2. A method to identify an agent that modulates the expression of at least one stem cell gene associated with the proliferation of a stem cell population, comprising the steps of:

preparing a first gene expression profile of a non-proliferating stem cell population;

preparing a second gene expression profile of a proliferating stem cell population;

treating the non-proliferating stem cell population with the agent; preparing a third gene expression profile of the treated stem cell

comparing the first, second and third gene expression profiles; and identifying an agent that modulates the expression of a least one gene that is associated with stem cell proliferation.

25

population;

3. A composition comprising a grouping of nucleic acid molecules that correspond to at least part of the sequences of Table 2 or genes of Table 3 affixed to a solid support.

F1G. 1

SUBSTITUTE SHEET (RULE 26)

FIG. I (Cont.)

SUBSTITUTE SHEET (RULE 26)

SEQUENCE LISTING

```
<110> Yale University
<120> A PROCESS TO STUDY CHANGES IN GENE EXPRESSION IN STEM
      CELLS
<130> 44574-5014-WO
<140> PCT/US98/17283
<141> 1998-08-21
<160> 93
<170> PatentIn Ver. 2.0
<210> 1
<211> 178
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
     throughout the sequence may be A, T, C or G
<400> 1
tttaattagc gctctatata cattgcggaa cttcccccga ctgcagcagt ttgactttgg 60
cacaacatca agttccattt cttttggaca ttggattctg ttttganagt atgtatgccc 120
caaagcattt tcagtgtcat caggattagt tgggcccatt cacagtaatt cananatc
<210> 2
<211> 148
<212> DNA
<213> murine
<400> 2
tagaatacct ggatggcttc tcttgtccac ccgatctccc gtgttaccaa tgtgtatggt 60
ctccttctcc cgaaagtgta cttaatcttt gctttctttg cacaatgtct ttggttgcaa 120
 gtcataagcc tgaggcaaat aaaattcc
 <210> 3
 <211> 203
 <212> DNA
 <213> murine
 <400> 3
 gatctggcta gacagttatt ctgaactatg gcttcaagat gaacaagaca agcctaaaag 60
 gatggagaga ggcaatggag ataatgtttt ggaggaagta tgtcactcaa gcatgaactc 120
 tgtttattta gaaatgagat tccatatatg tggtacatgt ggaaagaatc taaaaagtcc 180
 tttaaatttt ttcattccaa aag
 <210> 4
 <211> 336
 <212> DNA
 <213> murine
 <220>
 <221> variation
 <222> (various)
```

<223> bases designated as "n" at various positions throughout the sequence may be A, T, C or G <400> 4 ctnnannagc actettettg gecagacete tgtecaagge teattagaaa getggggttn 60 tgtncacgtn acnnacttna tcnaaactnt tgctgtnttg gcataagttg tgtntctgga 120 etgtnntgta ttcccctcta gacaaaggan caacnnaaaa gtnnttgcnn nctttnccag 180 aacatnetca aageetntga tggaggagca caaggaceet gtetgetgag ggeecatggn 240 tecteteagg ggtttetnee cacenaggea gtgeetteat tngetagtng tneagttact 300 tgtagnttat ctttnaataa atttnaataa aancta <210> 5 <211> 113 <212> DNA <213> murine <220> <221> variation <222> (various) <223> bases designated as "n" at various positions throughout the sequence may be A, T, C or G <400> 5 ctagattgtg tggtttgcct cattgtgcta tttgcgcact ttccttccct gaagaaatan 60 ctgtgaanct tctttctgtt cagtcctaan attcnaaata nagtgagact atg <210> 6 · · <211> 164 <212> DNA <213> murine <220> <221> variation <222> (various) <223> bases designated as "n" at various positions throughout the sequence may be A, T, C or G <400> 6 ctcaagnacg ggccaggtaa gggcctttaa cacaactaaa tcaaggtgtg cttncctccg 60 ggttctatgc aagcaaggca tacacactgc actctcncnc tcnctaaact ggaaangtac 120 164 agtngcaggg ctggtttcag acnacgtgat gcntgtttac aaac <210> 7 <211> 141 <212> DNA <213> murine -<400> 7 tttttattca atatattaaa tatattaatc agaaaagtca catcctataa atccaggaaa 60 atacacaaat ataaatcaga atctgtcaat caccttcttg agtgacagtt atgtacacat 120 ggaaggagag cggaagagat c <210> 8 <211> 224 <212> DNA <213> murine <400> 8 cgatatacac catcggtctg gggccaacgc taatactact tggtgctgcc aattgaattc 60 tggtttgctg tgaatctcta tcaacaagag tatcatttgt gaatgcttta atttattgag 120

aaagaacaag aagatgatgg atacattgat acatttgcgc agccttgcag cctgactcaa 180

ttctgc	tgtt	catcagtttt	aatgtccttt	ctgtgtcata	cgtg		2 7.4
<210><211><212><213>	210 DNA	e	,				
<220> <221> <222> <223>	(vari bases	ous) designated		various pos y be A, T, (
		7					
ctctgt	tttt gctg attt	taaactaaac tgttttgttt	aaattgtgca	ttttttctgg	attcccatta ggccattgtt tgttttgggt	tttggtttat	120
<210> <211> <212> <213>	163 DNA	e			÷ .	,	
aatagt	gattt	tcatactctg	catataattt	ttataaatgg gtggctgcag taaatattgt	aaagattaca aatattgtaa act	ctatctgatt tttgttgcac	60 120 163
<210> <211> <212> <213>	176 DNA	ie					
acact	gttct gtggt	gtttgtggag	catgactgga	accctatgcg	cctgaacttg agatctgcag ccggttgata	gccatggacc	60 120 176
<210> <211> <212> <213>	123	ne					-
<400> gatct tagga aag	ggaag	ggaatgtcca tatgagaaag	aagagaagaa ccatgaaaga	ggaggagtgg gtatgaagga	gaccgcaagg ggaagagggg	ctgaggatgc actcatctaa	60 120 123
<210><211><211><212><213>	196	ne					
agctg gcgct	tcgac tggat ctcag	ttqcaqattt	tgccaaagat	taaagctgtt	g cagogaaagg cotcagotoo aaactggtot	agggctacct	120
<210>	14		•				

```
<211> 225
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 14
actcaatctc ttcaaactct ttatactggn ctatnatnag nggggatgtg ncaanatnga 60
enciqqiqqt gtatgaaaga aaagntenat ggaentngge atnecaagat tgaatteace 120
tgcttcctac gatgtgtgaa actgctaata gcaaaatatc tctanggtta tgangagtac 180
tgtcgttctg caaatattca cttcanaact anncaccacg ttnaa
<210> 15
<211> 244
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
 <400> 15
 ctagataatc ccttactgag tctttcttcn caggtgattc anttgagttg acaattannn 60
 ctaagaattc aatggactan tgaggtgcct cagcagntaa tagcanttgc tgttcttcca 120
 gaggaccaga gttcagtttc tcatcccaag ttgggctgct cgtnagtgtc ggtaantcca 180
 gettcagggg cttgaattta tactgaccat gggcacctgt accccaacac anacacatac 240
 acat
 <210> 16
 <211> 233
 <212> DNA
 <213> murine
 <220>
 <221> variation
 <222> (various)
 <223> bases designated as "n" at various positions
       throughout the sequence may be A, T, C or G
 <400> 16
 ctagaagtta atcctgtnaa gcatggtaag aatancattc tcaanatctt gagttaanaa 60
 agatettgga ggnggetggn gagatggete antggttaag anenetgaet getettecag 120
 aggteetgan tteaattee ancaaceaca tggtggntca caaceanetg taatgatace 180
 tgatgccatc ntccgtggtg tatctgaana canctacagt gacagctaca ncg
  <210> 17
  <211> 260
  <212> DNA
  <213> murine
  <400> 17
  ggattttatt ctaggcttgg ccagatacag gttggcatcc taggggagga agataacaat 60
  gtcataggtg aatttgttag gagaggcaag acatgggaaa tcattgattt cttcagattt 120
  ctttaaagca aattagaaga taaatgtcta aaagagatac acttaaaaaa tggtgaaact 180
  ataacccctt aaggagagcc agatgtggca ggagccaggt ctgaaaatgg tagctgaagt 240
```

aagcagacca gcgtaagatc	260
<210> 18 <211> 154 <212> DNA <213> murine	
<400> 18 cgatgagtca gagaggaagt ggacagtgcg ttattcatta cagcaaagga tttcgttggc atcaaaatct aagtttgttt tacaaagatt gtttttagta ctaagctgcc ttggcagttt gcatttttga gccaaacaaa aatatattat tttc	
<210> 19 <211> 340 <212> DNA <213> murine	
<400> 19 cgattcaatt gtataaatga ttataatttc tttcatggaa gcatgatcct tctgattaag aactgtaccc catatttat gctggttgtc tgcaagcttg tgcgatgatg ttatgttcat gttaatccta tttgtaaaat gaagtgttcc tgaccttatg ttaaaaagag agaagtaaat aacagacatt attcagttat tttgtccttt atcgaaaaac cagatttcat ttttcctttt tgtttgtgat ctcatttgga aataattggc aagttgaggt actttcttcc catgctttgt acaatataaa ctgttatgcc tttcagtgcg ttactgtggg	120 180 240
<210> 20 <211> 277 <212> DNA <213> murine	
<400> 20 ctagaggtgg gaactggctc cactccacac agcagccagt tagttagtga cggtcagctg catgcagggg aatgaaggac tcggagagaa cgttctgtgc tatgtgttt ccatagagat taaaaaggag gcctggagcc gagcatggtg gtgcacgcct ttaatcccag cacttgggag gcagagtcag gtggatttct gagttcattg ccagcctggt ctacagagtg aattccaggag caggcagggc tacacagaga aaccctgtct caaaaaa	120 180
<210> 21 <211> 66 <212> DNA <213> murine	
<400> 21 ctagaatttg cagtagcatt aattcaagcc tacgtattca ccctcctagt aagcctatactact	t 60 66
<210> 22 <211> 121 <212> DNA <213> murine	
<220> <221> variation <222> (various) <223> bases designated as "n" at various positions throughout the sequence may be A, T, C or G	
<400> 22 ctagacataa gatattgtac ataaaganaa ttttttttgc ctttaaatag ataaaagta ctatcagata aaaatcangt tgtaagttat attgaagaca atttgataca taataaaag t	

210> 211> 212> 213>	127	,				·	
1222	variati	is) Resignated (as "n" at v quence may	arious pos be A, T, C	itions or G		
<400> gggga aangt aaaag	gnnnn ci actat c	nagnaanna g anataanaa t	antcgtacg t caggttgta a	aaanagaan agttatattg	nntggtgcnt aagacgnttt	ttanatagaa gatacataat	60 120 127
		·					÷
<400 ctage cage	actorac a	aagactttt t taaacaaat (gtcaacttg gtcacatgga	tacaatctga aataaatact	agcaatgtct ttatc	ggcccacaga	60 105
		2					
ctct	> 25 cttgcc a	acccagatgg aataaactgt	ttaggatgat accat	tctgaagatg	atgacatccg	taagcctgga	60 85
<211 <212)> 26 l> 85 2> DNA 3> murin	e					
ctc	0> 26 tcttgcc tctgaag	acccagatgg aataaactgt	ttaggatgat accat	tctgaagato	g atgacatcc	g taageetgg	a 60 85
<21 <21	0> 27 1> 316 2> DNA 3> murir	ne			·.		
gat cct ccg cgt	gcgcctg stgggctg	caagaactgc ctccaaatgt ctgatgtgac cctatacagt	gcccagggct	gtgtctgca	g ctcctgcac a gagctgctg a aggcgccgc t gtaaatagt c cccgttttc	g gacaagtgo	a 180
<2: <2:	10> 28 11> 136 12> DNA 13> muri	ne					

```
<400> 28
attcagacga atgagactcc tccacattgg agacaagaga tgcagagagc tcagagaatg 60
agggtqtcaa gtggtgaaag atggatcaaa ggggataaga gtgagttaaa tgaaataaaa 120
qaaaatcaaa ggagcc
                                                                   136
<210> 29
<211> 243
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 29
ngcnnnnnn ccagnaggag gagaagatga ctggccagta tcanaatggg ataagatgag 60
gcgcgccttg gagtacacca tctacaacca ggagctcaac gagacgcgcg ctaagctcga 120
cgagetttet getaanegag aaacnagtgg agagaaatee ngacaactaa gggatgeeca 180
gcaggatgca ngagacaaaa tggaggatat tgagcgccag gttagagaac tgaaaacaat 240
<210> 30
<211> 359
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 30
ctcaaggaza agacagcacc ncgtgcctgg catctgntgn nttagntnat ntnnaantnt 60
cnnntngncc tggcaacggt tcctgaacna attaccactc cttcttgcca gtcnaanagg 120
gtgggaaagt ccgagcctta ngacccagtt tcagttctgg tttcttccct cctgancacc 180
atcggttgtt agttgccttg agttgggaac gtttgcatcg acacctgtaa atgtattcat 240
tetttaattt atgtaaggtt tintginete aattetttaa gaaatgacaa attitggitt 300
tctactgttc aatgagaaca ttaggcccca gcaacacgtc attgtgtaaa naaataaaa 359
<210> 31
<211> 139
<212> DNA
<213> murine
<400> 31
cgatggctcc atcctggcct cactgtccac cttccagcag atcggctcag caagcaggag 60
taggargagt ctggcccctc catcgtgcac cgcaaatgct tctaggcgga ctgttttaca 120
ccctttcttt gacaaaacc
                                                                   139
<210> 32
<211> 354
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
```

```
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 32
cnnatgetac atgetgnagg atgectaagg etgeceecca ceateceetg getetgetgn 60
coggancaaa ttgcttccag atgtgacttt ggaaccttcn cacccctnac ccnaccnntc 120
tenagaannt ettttattta aaggaggaaa nannacatee aagaaaangg ggggaggggg 180
gatggaaann cgcatcccct ttctagccag ctgttcccaa aaggtaccct tcctctctgc 240
tgctccccaa acncaaance cacttengan cetecaceta aancateang caagteacnt 300
acaccctgtt tancccccna ctctctgctt atacccngga acaattnntg ctcg
<210> 33
<211> 412
<212> DNA
<213> murine |
<220>
<221> variation
<222> (various) .
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 33 -
cgatggtggg gatcttactg gggaagagga aggaccatta gcacaccatc atgatgtcag 60
atgacaaaat ggaagccaag acaccttgaa ggtgactttc taggaaggtc ttaagcatgt 120
aatgtccctt tatcagaggg aaggggacaa actcagggca gccctgtcca ggtagaaata 180
tttttgcccc cetgtctgat gttgatgagg ggtcatacca nccagggaga cectetggga 240
ggaagetgee acacacaang actetggaag tatecagatg tgageecage cagggteeta 300
tggttccaaa tctgaanaaa aggtttttca cacactcctt gctttctgct aagataanaa 360
 aggogtcact ctgccagagt gtgacttttt acagattaaa taaagctgtt at
 <210> 34
 <211> 239
 <212> DNA
 <213> murine
 <220>
 <221> variation
 <222> (various)
 <223> bases designated as "n" at various positions
       throughout the sequence may be A, T, C or G
 <400> 34
 gatctactcc attcccctgg aaatcatgca gggcaccggg ggtgagctgt ttgatcacat 60
 tgtctcctgc atctccgact tcctggacta catggggatc aaaggccccg gatgcctctg 120
 ggcttcacct tctcgtttcc ctgcaagcag acgagcctat attgcggaat cttgatcacg 180
 tggacaaagg gattcaaagc caccgactgt gtgggtcacn atgtanccac tttactgag 239
 <210> 35
 <211> 93
 <212> DNA
 <213> murine
 <220>
 <221> variation
  <222> (various)
  <223> bases designated as "n" at various positions
        throughout the sequence may be A, T, C or G
 <400> 35
  gatctgagtt cgaggccagc ctggtctaca gagtgagttc caggncagcc aggnctacac 60
```

```
agagaaaccc tgtctcgaaa aaacagaaag aga
                                                                   93
<210> 36
<211> 130
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 36
ctttcattaa aaagaaacca ggggctggan agatggctca gtggttaaga gcaccaactg 60
ctcttcccga aggtcctaag ttcaaatccc agcaaccaca tggtggctaa caaccactcg 120
taatgagatc '
<210> 37
<211> 234
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 37
ategentgge teteetgngg cetggentae gaenngaaaa ggagtgteea eggetgetgt 60
cgnggccacg attaattaaa actgaagtac cgaggntncc ccagngncng antgtggggt 120
cnngccnttc ntgntccaca anccaacttg gcagacgctt actgtnctgt caactntcnn 180
nngaatacen ecaccencat getaaaatga tgaetgaegt taaneeatge tggt
<210> 38
<211> 251
<212> DNA
<213> murine
<400> 38
cgatgacaaa ggagtcctga ggcagattac tctgaatgac cttcctgtcg gaagatcagt 60
ggacgagaca ctgcgtttgg ttcaagcctt ccagtacact gacaagcatg gagaagtctg 120
ccctgctggc tggaaacctg gtagtgaaac aataatccca gatccagctg gaaaactgaa 180
gtatttcgac aagctaaact gaaaagtact tcagttatga tgtttggacc ttctcaataa 240
aggtcattgt g
                                                                   251
<210> 39
<211> 179
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 39
cgatgctgaa taagctcctc aaaaagtggt aaatttaacc ttttnaaaaa acaagctttc 60
tetgracage tetggetgtt ttgttetgga atacattetg tagaattgte tggeetetaa 120
```

```
cttggagatc caactccctc tgcctcttga gtgctgggat taatggcatg tgacactgt 179
<210> 40
<211> 219
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 40
cgatgacete atgeeggeec agaagtgaag cetggeecte geeaccatea ggetgeeget 60
tectaaetta ttaaeeggge agtgeeegee atgeateett gangtttgee geetggegge 120
tgagccctta gcctcgctgt agagacttct gtcgccctgg gtagagttta tttttttgat 180
                                                                   219
ggntaanctg ttgctgacac tgaaaataan ctagggttt
<210> 41
<211> 303
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
 <223> bases designated as "n" at various positions
       throughout the sequence may be A, T, C or G
 <400> 41
 cgatcaatga aaagatgacg agtttctttc aaatgggcag ttactccctg ataacttcat 60
 agctgcctgc acagagaaga aaatccctgt tgtgtttaga ctacaagagg gttatgatca 120
 tagctactac ttcattgcaa ctttcatcgc tgaccacatc agacaccatg ctaagtacct 180
 gaatgcatga naagcctcag ccaagagaat ctcatcagga ggccggaagg gaatcaacag 240
 gagtgctgac ttcctcgcag aagatcatgc tcctgcagct gaatcgcttt tctgaataaa 300
 tat
 <210> 42
 <211> 460
 <212> DNA
 <213> murine
 <220>
 <221> variation
 <222> (various)
 <223> bases designated as "n" at various positions
       throughout the sequence may be A, T, C or G
 <400> 42
 cgatgtntac ttcattgcca ccctgtcant cctctggaag gtgtccgtca tcaccttggt 60
 cagetgtete eccetetatg tecteaagta ectgeggaga eggtteteee cacecageta 120
 ctcgaagctc acttcctaag ctgcagggct gcctcgggca gggcctccgg cctccggcgc 180
 teteccagga ggaggteaag ttecacaege acgageegee tetgetggae ggtgeagtea 240
 tggctggcac atgaggcttc gctgaggcga cactgggcac ctaatgggga tggaacattg 300
 gtggaaccgg agggagggac ctgagagctg tacctatcag aaccttgggt gctaagctgt 360
 gctgaggggg aagacgtggg accggatggc ccgtctgagg tttgtggggt cactgtgcaa 420
  gcttccttat ggtttgaacc tcttgtcatg tgataaaagt
  <210> 43
  <211> 120
```

```
<212> DNA
<213> murine
<400> 43
cgatttacgt atttgactga aatgaaagtt ccactaaacg gtatttgctc ttgtgatatg 60
tggcacattg tgatattttc ttagtctgtt ctgtttcatt taaaaaataa aactgctgat 120
<210> 44
<211> 132
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 44
ccqatqtncg ataatagtaa ataccttaat tanttaaata attcattgna ttgtttcaga 60
gacgtttgga aattactgta tacatttaca acctaatgac ttttgtattt tatttttcaa 120
aanaaaagct ta
                                                                    132
<210> 45
<211> 240
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 45
cnttngnnnn tccntncatc nongongtht gagtoconco caannagtoo atccaanano 60
canngcatnn cagctttatc atgacaacaa antggagnaa gaagaagatg agtttcggcc 120
actgttgagg caaatcnntg nnnantcnta atanacacct ggtccgctca tccttcaacg 180
ttgttntnta naanttacct cccagtagaa angctagcaa ntttnacctg ccacnggttn 240
<210> 46
<211> 126
<212> DNA
<213> murine
<220>
<221> variation
                                            NOTE: 1
<222> (various)
 <223> bases designated as "n" at various positions
       throughout the sequence may be A, T, C or G
 <400> 46
 cgatcagatg tcacgcggga cacanenecg ceneagtnaa tggnaatata tttgcatgtt 60
 accccaaatt ancttcintg catngaacat angtangigt cittggggac acgigtgitc 120
 tactac
 <210> 47
 <211> 383
 <212> DNA
```

<213> murine

```
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 47
cgatttacaa atgaacaanc aagattacat atantgaaaa tccacgcagg acctattaca 60
nagcatggtg aaatagatta tgaagcaatt gtaaagcttt cagatggctt taatggagca 120
tgacctgaca aatgtttgta ctgaagcagg tatgtttgca attcgtgccg atcatgattt 180
tgtanttcag gaagacttca tgaaagcagt cangaangtg gctgactcca agaagctgga 240
gtccaagetg gactacaaac etgtgtgatt cactannagg gtttggtggc tgcatgacag 300
acattggttt aatgtanact taacngttan ngaaactaat gtanntattg gcaatganct 360
tattanaagt gaatanacat gtg
<210> 48
<211> 255
<212> DNA
<213> murine
<400> 48
cgatgttttt aattaagaag aaattcactt tctcattacc tatgaatctg tgccagggca 60
ggtgattttt gagtatgaga actttgtcct ctccacagtt gtcacaaaaa tggttccttc 120
tcattgaact attgtggcat gctaattaag aagtgagtga ccacttggga ggcagaggca 180
 ggtggatttc tgagtttgag gccagcctgg tctacaaagt gagttctaag acagccaggg 240
                                                                    255
 ctatacagag aaacc
 <210> 49
 <211> 243
 <212> DNA
 <213> murine
 <220>
 <221> variation
 <222> (various)
 <223> bases designated as "n" at various positions
       throughout the sequence may be A, T, C or G
 <400> 49
 ccaagnaata tggtctaatc aaaggtcgtc tgtctgcttt tgattgtcta catcacagca 60
 atccctggga atttctatcc attttaaatg engecgettt catctgttta gecageacae 120
 ccaatggttt cactaactag cccagttgac cttttggaag tttgagcctt gagcaccttc 180
 aacaaaattg agcactctga ttaggatatc cactttgcaa ataaaaccaa atgttttgtc 240
                                                                     243
 aac
  <210> 50
  <211> 358
  <212> DNA
  <213> murine
  <220>
  <221> variation
  <222> (various)
  <223> bases designated as "n" at various positions
        throughout the sequence may be A, T, C or G
  <400> 50
  cgatgagggg aagatgacct gggccgggga ggccatccct tatccaagat cacagggaat 60
  tetgggaaga ggttggeetg tggeateatt geaegetetg eeggeetttt ceagaacece 120
  aagcagatet geteetgtga tggeeteact atetgggagg agegaggeeg geeeattgee 180
  ggtcaaggcc gaaaggactc agcccaaccc ccagctcacc tctaaacaga gcctcatgtc 240
```

```
aggitating greetegtag engageatet tennegagag ggagengeng geeentgett 300
gtacaggcct aagtacaggg cagataagtg ctgtagcctg aacaaattaa attgttac
<210>51
<211> 355
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 51
cgattagctg nggtctctag ganatactcg tcactatatg agctcaggan gccagctctt 60
agtagetetg aancaggtga agaateetee tetgaggaaa cagaetggga ggaagaagca 120
gcccattacc agccagctaa ttggtcaaga aaaaagccaa aagcngctgg cgaaagtcag 180
cgtactgttc aacctcccgg cagtcggttt caaggtccgc cctatgcgga gcccccgccc 240
tgcgtagtgc gtcagcaatg cgcagagggg caatgcgcag agaggtgcgc agaggggcag 300
tgcgcagaga ggtgcgcaga gaggcagtgc gcagagaggc agtgcgcaga ctcat
<210> 52
<211> 213
<212> DNA
<213> murine
<400> 52
cgatttctaa atcagtctcg cctgtgctag gatgaccggt aatgagcctg tttaaaataa 60
gacttaaaag tgtcgtgcgt tggccgggcg gtaggggcgc atgcctttaa tttcataact 120
tggaggtaga gacaggcgga tctttgtgag ttcaaggtca gcctggtgta cagagtgact 180
tccagaacag ccagggctgt taaacagaga aac
                                                                   213
<210> 53
<211> 113
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 53
ttgttttgtt nttcagatag ggtcttacat atcccatgct ggtctcaaac tcacattatg 60
catgcgggga aagccattta ctgactgata tacccctggc cctaagatag atc
<210> 54
<211> 108
<212> DNA
<213> murine
<400> 54
cgatcgtcgt tctggtaaga agctggaaga tggccccaag ttcctgaagt ctggccattt 60
                                                                    108
aagtttaata gtaaaagact ggttaatgat aacaatgcat cgtaaaac
<210> 55
<211> 257
<212> DNA
<213> murine
```

```
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 55
cgatcgtcgt tctgagtaan aagctggaan anggccccaa gttcctgnng tctggcgatg 60
ctgccattta agttnannag ananaagact ggctnatgat aacaatgcan cntaaaacct 120
tcaggnaggn aacgaatgtt gtggaccatt ttttntgngt gtggcagttt naagttatna 180
agntttcaaa ancantactt nttaanggga acaacttgac ccatcanctg tcacagaatn 240
ttgangacca ttaacac
<210> 56
<211> 151
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 56
netacgatea tetagateta etagacetae nacnagacea tgggecaaan atggtegace 60
tgcaaacttg caaggtttat tttanataca cattatggcg ttttatnttt tgtaattcta 120
agttgtaatt cagcttttaa caaatctttt t
 <210> 57
 <211> 152
 <212> DNA
 <213> murine
 <220>
 <221> variation
 <222> (various)
 <223> bases designated as "n" at various positions
       throughout the sequence may be A, T, C or G
 <400> 57
 ccaagnanat cnagactact agacctacta cnagaccatn ggncaaacat ggtcgaccnn 60
 caaacgnata ngtatatttn anatacacan anatagcgtt ntatgtctng taattctaag 120
 tngtanatca nctattanca aaatctttnt tt
 <210> 58
 <211> 188
 <212> DNA
 <213> murine
 <220>
  <221> variation
  <222> (various)
  <223> bases designated as "n" at various positions
        throughout the sequence may be A, T, C or G
  <400> 58
  cgatggaagt tctgctgagc ccttctgacg taaccctggc natggctaac actgtccttc 60
  ctgcaatgtt entggtggac acanettete tgganatace etgaangtgg caegecetgt 120
  tecageceae etggtgtgea etttttgeee tetttaeete attantaaat gttttentge 180
```

```
188
tcctaatg
<210> 59
<211> 136
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
ctnagnaagg anctgtactt cgtattgcaa ggcagtctct tgtgtcttct tagagtgtct 60
tececatgea cageeteagt ttggageact agtttataat gtttattaca atttttaata 120
aattgantag gtagta
<210> 60
<211> 365
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 60
tententet ggtaagaact ggaatatgge eccaagttee tgaagtetgg egatgetgee 60
attgttgata tggtccctgg caancccatg tgtgttgaga gcttctctga ctaccctcca 120
cttggtcgct ttgctgttcg tgacatgagg cagacagttg ctgtgggtgt catcaaagct 180
gtggacaaaa angctgctgg agctggcnaa gtcaccaagt ctgcccanaa agctcagaag 240
gctaaatgaa tattacccct aacanctgcc accncantct taatcagtgg tggaagaacg 300
gtctcagaac tgttngtctc aantggccat ttaagtttaa tantaaaaga ctggttaatg 360
ataac
<210> 61
<211> 357
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 61
cgatentegt tetggtaaga nnenggaaca tggccccaag tteengannt etggegange 60
ngccantgtt gatatggtcc ctggcaagcc catgtgtntt gagagcttca cnnacnaccc 120
tecantiggt egettigetg tiegtgaeat gaggeagaea gitgetgigg gigteaneaa 180
anctgtggac aananggctg ctggagctgg caagntcacc aantctgccc agaaagctca 240
gaatgctaaa tnaatattac ccctaanacc tgccacccca gtcntaatca gtggtggaat 300
aacngtctca gaactgtttg tcncaattgg ccanttangt ttaatnatac aagactg
 <210> 62
 <211> 305
 <212> DNA
 <213> murine
```

```
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 62
gnnnnnnnn nncnangaaa aagaggtgaa aaatgcttgg ctctagctga tgacagaaag 60
ctgaaatcca tegeetteee atceattgge ageggeagga aegggtteee ggaageagae 120
ageggeecag eteattetga agtgeeatet ceagetaent tgteteeaeg atgteeteet 180
ccatcaaaac tgtgtacttc atgctttttg acagtgagag cataggtatc tatgtgcagg 240
aaatggccaa getggacgcc aactaggcca gtgatcccta gagccagcac atgeggtgtc 300
cccca
<210> 63
<211> 327
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
 <400> 63
ctnangaaag ctgctggggc necetgacat cacteateae teactatget accaatteta 60
tttatttcgg aattacaaga tatcgggaat ctctctgcag gctggactgg caggctgtgg 120
ggtgggcggg acacggctct taacatttnc agagggaaac gcgcanatgt ccaaaagtct 180
 aaataaatgc attcagaggt ttntggggtc catggccaag tggagttccc ccncaggggg 240
 aggtggggta agtgcctcca ggaaggcagg cagcctgcct tanacttgca ncccggntgt 300
                                                                    327
 gggaaigaat cattggagta ataaact
 <210> 64
 <211> 271
 <212> DNA
 <213> murine ...
 <400> 64
 cgatgccaat ggcatcctca atgtttctgc tgtagataag agcacaggaa aggagaaagt 60
 ctgcaacct atcattacca agctgtacca gagtgcaggt ggcatgcctg ggggaatgcc 120
 tggtggette ccaggtggag gagetecece atetggtggt gettetteag geeceaceat 180
 tgaagaggtg gattaagtca gtccaagaag aaggtgtagc tttgttccac agggacccaa 240
                                                                    271
 aacaagtaac atggaataat aaaactattt a
 <210> 65
 <211> 310
 <212> DNA
 <213> murine
 <400> 65
 cgatgaagat gaggtcactg cagaggagcc cagtgctgct gttcctgatg agatcccccc 60
 tetggaagge gatgaggatg ectegegeat ggaagaggtg gattaaagee teetggaaga 120
 agccctgccc tetgtatagt atccccgtgg etcccccage agccctgace cacctggate 180
 totgotcatg totacaagaa tottotatoo tgtootgtgo ottaaggcag gaagatooco 240
  teccacagaa tageagggtt gggtgttatg tattgtggtt tttttgtttg ttttattttg 300
                                                                     310
  ttctaaaatt
  <210> 66
  <211> 579
```

```
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 66
cgatgccaat ggcatcctca atgtttctgc tgtagataag agcacaggaa aggagaacaa 60
gatcaccatc accaatgaca agggccgctt gagtaaggaa gatattgagc gcatggtcca 120
agaagctgag aagtacaagg ctgaggatga gaagcagaga gataaggttt cctccaagaa 180
ctcactggag tcctatgcct tcaacatgaa agcaactgtg gaagatgaga aacttcaagg 240
caagatcaat gatgaggaca aacagaagat tettgacaag tgcaatgaaa teatcagetg 300
gctggataag aaccagactg cagagaagga agaatttgag catcagcaga aagaactgga 360
gaaagtetge aaccetatea ttaccaaget gtaccagagt geaggtggea tgeetggggg 420
aatgeetggt ggetteeeag gtggaggage teecceatet ggtggtgett etteaggeee 480
caccattgaa naggtggntt aagtnatcca nnaagaaagg ntnccttttt ttccaaaggg 540
anccaaaaaa gtaanatgga taataaaacc tatttaatt
<210> 67.
<211> 186
<212> DNA
<213> murine
<220>
<221> variation
<222> (various)
<223> bases designated as "n" at various positions
      throughout the sequence may be A, T, C or G
<400> 67
cgatgccaat agnancccaa ntntctgcng tngataagac acangaaaag agaacaagat 60
caccatcacc aatgacaagg gccgcttgag taaggaagat attgagcgca tggtccaaga 120
tcaatgatga ggacaaacag aagattcttg acaagtgcaa tgaaatcatc agctggctgg 180
ataaqa
<210> 68
<211> 321
<212> DNA
<213> murine
<400> 68
cgattagcgg aggtctctag gagatactcg tcactagatg agctcaggaa gccagctctt 60
agtagetetg aageaagtga agaateetee tetgaggaaa cagaetggga ggaagaagea 120
gcccattacc agccagctaa ttggtcaaga aaaaagccaa aagcggctgg cgaaagtcag 180
egtactgtte aaceteeegg cagteggttt caaggteege cetatgegga geeeeegeee 240
tgcgtagtgc gtcagcaatg cgcagagggg caatgcgcag agaggcagtg cgcagagagg 300
cagtgcgcag actcattcat t
                                                                   321
<210> 69
<211> 321
<212> DNA
<213> murine
<400> 69
cgattagcgg aggtctctag gagatactcg tcactagatg agctcaggaa gccagctctt 60
agtagetetg aageaagtga agaateetee tetgaggaaa cagaetggga ggaagaagea 120
gcccattacc agccagctaa ttggtcaaga aaaaagccaa aagcggctgg cgaaagtcag 180
cgtactgttc aacctcccgg cagtcggttt caaggtccgc cctatgcgga gcccccgccc 240
```

t	gcgtagtgc agtgcgcag	gtcagcaatg actcattcat	cgcagagggg t	caatgcgcag	agaggcagtg	cgcagagagg	300 321
< <	210> 70 211> 495 212> DNA 213> murii	ne			· .		•
g a c t t	taccctgat ataactgac ttgggaaga catgtgaaa ggcaagggt	cccctcatca ttcatcaagt attggtgtaa gatgccaatg aacaaaccat agagacaaga gcctggaaag	aggtgaacga ttgacactgg tcaccaacag gcaacagctt ggatctctct ggcttgcggc	caccattcag gaacctgtgt agagagacat tgccactcgg tcccagagga caaacagagc	catgatgctc attgatttgg atggtgactg cccggctctt ctgtccaaca aaaggaatcc agtgggttga taggcaacat	agacaggcaa gaggtgctaa ttgatgtggt tttttgttat gcctcaccat aatggtctcc	120 180 240 300 360 420
<	210> 71 211> 136 212> DNA 213> muri	ne				·	
t	(400> 71 cgatcgagag cggcaaagaa caaattttgg	tctcaggcca	ggaaggtggt aggatgtcat	tggttgcagt cgaggaaata	tgcgtagtgg cttcaagtgc	ttaaggacta aagaaataaa	60 120 136
•	<210> 72 <211> 140 <212> DNA <213> muri	.ne					
,	cagattactt	aggaccacaa ccatcagtat gaataaatcg	tgagccggga	gatttacata gttgaggttg	gtccttctga aagtcaccat	gattgttaag tgcagatgcc	60 120 140
	<210> 73 <211> 216 <212> DNA <213> muri	ine					
	atcttcccca tggcaacag	a cgaggtggga g gaagaccaga	a tgaagaaaaa	gacaactcac tattagacgg	ttcctgtggc tttgtagaag atgaactaag	gtggagatgc	: 120
	<210> 74 <211> 151 <212> DNA <213> mur:	ine					٠
	cttggctcc	t gattatgate	a ccctgataac g ccctagatgt a atatatactt	tgccaacaa	a gagaagaagg g attgggatca	cgtatgttcg	g 60 a 120 151
	<210> 75						

WO 99/10535 PCT/US98/17283

<211> <212> <213>			
<222>	variation (various) bases designated as "n" at various positions throughout the sequence may be A, T, C or G		
	75 gaac catagatgcg agcatcagca acagaataca agaaatggaa gcaga agnttccata gagaacatcg	gngngaatct	60 90
<210> <211> <212> <213>	257		
<222>	variation (various) bases designated as "n" at various positions throughout the sequence may be A, T, C or G		
catccat atccat gttagr	gcaaa atccttaata naattcttgc taaccgaatc caagaacaca atcct gaccaagtag gttttattcc agggatgcng ngatggttta caat gtaatccatt ntataaacaa nctcaangac anaaaccaca atgca gaaaaagcat ttgacaagat ccaacacaca ttcgtgataa cagga attcaag	atatatgaaa tgatcatctc	120 180
<210> <211> <212> <213>	200		
<222>	variation (various) bases designated as "n" at various positions throughout the sequence may be A, T, C or G		
gcaaaq caaggi	77 naccc gctctacctc accatctctt gctaattcag cctatatacc cccta aatnaggtat taaagtaagc atcnagaatc anccatactc tgtac ccaatgnaat gggaagaaat gggctacatt ttcttatana ccttt ntgaaactaa	aacgtnacgt	120
<210> <211> <212> <213>	56		•
<400> acgtaa	78 atacg actcactata gggcgaattg ggtcgacttt ttttttttt	tttttv	56
<210><211><211><212>	79 21		

<400> 79	21
cttacagcgg ccgcttggac g	
<210> 80	·
<211> 15	
<212> DNA	
<213> oligo used in gene expression	
<400> 80	3.5
ageggeeget gtaag	15
<210> 81	
<211> 30	
<212> DNA	
<213> oligo used in gene expression	
<400> 81	
gcggaattcc gtccaagcgg ccgctgtaag	30
<210> 82	
<211> 21	
<212> DNA	
<213> adapter oligo	•••
<400> 82	
cttacagcgg ccgcttggac g	21
<210> 83	
<211> 15	
<212> DNA	
<213> adapter oligo	
<400> 83	15
gaatgtcgcc ggcga	13
<210> 84	
<211> 25	
<212> DNA	
<213> adapter oligo	
<400> 84	
tagcgtccgg cgcagcgacg gccag	25
<210> 85	
<211> 29	
<212> DNA	
<213> adapter oligo	
<400> 85	
gatectggee gteggetgte tgteggege	29
<210> 86	
<211> 30	
<212> DNA	
<213> primer	
. <400> 86	20
gcggaattcc gtccaagcgg ccgctgtaag	30
<210> 87	

<400> 93

taataccgcg ccacatagca

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/17283

		1				
. CLASSIFICATION OF SUBJECT MATTER						
IS CL: 435/6; 536/23.5 cording to International Patent Classification (IPC) or to both national classification and IPC						
PIELDS SEARCHED						
Minimum documentation searched (classification system follows	lowed by classification symbols)	,				
U.S. : 435/6; 536/23.5						
Documentation searched other than minimum documentation	to the extent that such documents are included	in the fields searched				
Electronic data base consulted during the international searce	h (name of data base and, where practicable,	search terms used)				
APS, Medline, WPIDS search terms: hematopoietic stem cell, differential display		· .				
C. DOCUMENTS CONSIDERED TO BE RELEVAN						
Category* Citation of document, with indication, who		Relevant to claim No.				
X TAGOH et al. Molecular Cloning	and Characterization of a Novel	1, 2				
Stromal Cell-Derived cDNA End	coding a Protein That racintates					
Come Activation of Recombination	on Activating Gene (RAG)-1 III					
Human Lymphoid Progenitors. B	Biochem. Biophys Res. Commun.	·				
1996, Vol. 221, pages 744-749, e	especially page 744.					
LACORED at al Human A1 a F	3cl-2-related gene, is induced in	1, 2				
lankomic cells by cytokines as	MOREB et al. Human A1, a Bcl-2-related gene, is induced in 1, 2 leukemic cells by cytokines as well as differentiating factors.					
Leukemia July 1997, Vol. 11	Leukemia. July 1997, Vol. 11, Number 7, pages 998-1004,					
especially page 998.	·					
Copecian, page 1	·					
	•					
ti a dia sta accetiquation of	Box C. See patent family annex.					
Further documents are listed in the continuation of	had after the i	nternational filing date or priority				
 Special categories of cited documents: A* document defining the general state of the art which is not con 	date and not in conflict with the a	oplication but cited to miceiamic				
to be of perticular relevance	eve document of particular relevance;	the claimed invention cannot be				
egrier document published on or after the international film L. document which may throw doubts on priority claim(s) or a document which may throw doubts on priority claim(s) or a	which is When the document is taken stone	neien m manare m manare e				
cited to establish the publication date of another charges	-y- document of particular relevance;	we sten when use document of				
special reason (as specified) *O* document referring to an oral disclosure, use, exhibition of		uch documents, such comountain				
eps document published prior to the international filing date but h	·					
Date of the actual completion of the international search	Date of mailing of the international	search report				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
30 NOVEMBER 1998	Authorized officer	60				
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks		XUID				
Box PCT Washington, D.C. 20231	JOHN S. BRUSCA	1 60				
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0196					

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/17283

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X Claims Nos.: 3 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
No sequence listing or computer readable form of sequence listing has been supplied, and claim 3 is drawn to specific sequences that therefore cannot be searched.
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
Remark on Protest The additional search tees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*