Datum:		Třída:
5.10.2023	SPŠ CHOMUTOV	A4
Číslo úlohy:		Příjmení:
2	Měření na stabilizátorech	Klokoč

Zadání:

Změřte chování stabilizátoru.

Schéma:

1.) Zatěžovací charakteristika:

2.) Aplikace integrovaného stabilizátoru:

3.) Zdroj konstantního proudu:

Tabulka přístrojů:

Název nástroje:	Označení:	Údaje:	Ev. číslo:
SS zdroj	U1	EA-STP2000B-3A	LE 5116
Síťový transformátor	ST	220V/2x6V	-
Diodový můstek	-	-	-
Voltmetr	V ₁	600V=1% □ Q 05 🕸	LE2 2161/10
Voltmetr	V ₂	600V=1%一 Q 05 🕸	LE2 410/5
Ampérmetr	mA	6A一 🚨 <u>05</u> 🏚	LE2 1944/11
Kondenzátor	С	4G7 / 50V	-
Stabilizátor	-	MA 7805	-
Reostat	R _{z1}	18Α/100Ω	LE 5083
Reostat	R _{z2}	4Α/16 Ω	LE 420
Odporová dekáda	R ₁ / R _b	11ΜΩ	LE2 5055
Odporová dekáda	R ₂ / Ra	11ΜΩ	LE2 5056

Postupy:

- 1.) Měření zatěžovací charakteristiky:
 - Zjistíme si v katalogu mezní hodnoty:
 - \circ U_{2výs}=5V
 - o I_{výs}=1A
 - Zapojíme dle schématu.
 - Pomalu snižujeme zátěž pomocí potenciometrů.
 - Provedeme ještě jedno měření, kde záměrně nedodržíme podmínku, abychom viděli, že bez ní neplní stabilizátor svou správnou funkci.
 - Tabulárně a graficky zpracujeme.
- 2.) Aplikace integrovaného stabilizátoru:
 - Upravíme zapojení, čímž můžeme na výstupu dosáhnout jiného vyššího napětí, než je dáno konstrukcí.
 - Pomocí vzorce si dopočteme odpor R_a , R_b si zvolíme (150 Ω) a výstupní napětí, kterého chceme dosáhnout nyní je 8V.
 - U₀ si nadále vypočítáme a porovnáme s katalogovou hodnotou.
 - Na vstupu nyní nesmí být napětí menší než 11V pro správný chod stabilizátoru.
 - Tabulárně a graficky zpracujeme.
- 3.) Zdroj konstantního proudu
 - Přepojíme schéma.
 - Dle vzorců si vypočteme hodnotu odporu R_1 pro I_2 =50mA. Odpor R_2 nabývá hodnot 0-200 Ω .
 - Určíme potřebnou velikost vstupního napětí.
 - Tabulárně a graficky zpracujeme.

Tabulky:

1.) Měření zatěžovací charakteristiky:

Splněná podmínka		Nesplněná podmínka			
I ₀ [A]	U ₁ [V]	$U_2[V]$	I ₂ [A]	$U_1[V]$	$U_2[V]$
0	13	5,2	0	10,2	5
0,10	11,8	5,1	0,10	9	5
0,20	11,1	5	0,20	8,4	5
0,30	10,8	5	0,30	8	5
0,40	10,4	5	0,40	7,6	5
0,50	10,2	5	0,50	7,4	5
0,60	10	5	0,60	7,2	4,9
0,70	9,6	5	0,70	6,9	4,8
0,80	9,5	5	0,80	6,6	4,5
0,90	9,4	5	0,90	6,4	4,4
1,00	9,1	5	1,00	6,4	4,3

2.) Aplikace integrovaného stabilizátoru:

I ₀ [A]	U ₁ [V]	U ₂ [V]
0	16	8
0,10	15,2	8
0,20	14,7	8
0,30	14,2	8
0,40	14,0	8
0,50	13,6	8
0,60	13,2	8
0,70	12,8	8
0,80	12,5	8
0,90	12,2	8
1,00	12	8

3.) Zdroj konstantního proudu:

I ₀ [mA]	U ₂ [V]
50	0
50	1
50	2
50	3
50	4
50	5
50	6
50	7
50	8
50	9
50	10
48	11

Výpočty:

Výpočet Ra:

$$R_{a} = \frac{U_{2} - U_{jm}}{(\frac{U_{jm}}{R_{b}})} = \frac{8 - 5}{(\frac{5}{150})} = 90\Omega$$

Výpočet R₁:

$$R_1 = \frac{U_{jm}}{I_2} = \frac{5}{0.05} = 100$$

Výpočet I_{0:}

$$I_0 = \frac{U_2 - U_{jm} - \frac{U_{jm}}{R_b} \times R_a}{R_a} = \frac{8.6 - 5 - \frac{5}{150} \times 90}{90} = 6.7 \text{mA}$$

Výpočet minimálního vstupního napětí:

$$U_{\text{vst}} \ge U_{jm} + R_{2MAX} \times I_2 + 3V$$

$$U_{MIN} \ge 5 + 200 \times 0.05 + 3V = 18V$$

Grafy:

1.) Měření zatěžovací charakteristiky:

2.) Aplikace integrovaného stabilizátoru:

3.) Zdroj konstantního proudu:

Závěr:

Naměřené hodnoty odpovídají teoretickému předpokladu. Původní U_2 vyšlo 8,6V při 150 Ω a 90 Ω , tak jsme snížili R_a na 76 Ω .