gtattteata aaacagagag gategeagga ggeeggeact etgaeteetg glygatggga etagggagte agagteaage eelgaetgge tgagggeggg egeteegagt eageATGGAA RETEICTION GENERAL GRANDERS CONTROL OF THE CONTROL 240 360 Q L R G U S S D E M E U D E Q L Y P U U R R G E G R U K D S U E G G R U Q R R L ACCAGIGATI CACCGSCCII GGIGGGIICC ARIRICACCI ICGTAGIGAA CCIGGIGIIC CCCAGAIGCC AGRAGGAAGA IGCCRACGGC AAIAICGICI AIGAGAGGAA CIGCAGAAG 480 T S D S P A L U G S H I T F U U H L U F P R C Q K E D A H G H I U Y E R H C R S GRITTGGGGC TGGCTTCTGG CCCGTATGTC TACARCTGGA CCCGAGGGG AGACCCTTC 600 D.L.E.L. A.S.O.P.Y.U.Y.M.L.T.T.G.A.D.O.E.O.L.O.D.O.M.T.S.O.G.Q.H.L.R.F.P.D.G.K.P.F.
CLICECCEC REGGREGGA GARATGGARC TICGICTACA CACITACACA RETIGGICAG TAITITICANA ACCIGGICAG GIGITICAGA CONGILITA HARACACAGI CARCITACACA
P.R.P.H.G.R.K.L.H.F.U.Y.U.F.H.T.L.G.Q.Y.F.Q.K.L.G.Q.C.S.R.U.S.I.H.I.U.H.L.T.
6TIGGCCCTC AGGICATGGA RETENTICE TITICGARGAC ACGGCCGGGC ATREATICC RECTECHANG TOMANGACGI GIATIGTBATA REGGRICAGA ICCCTATATI COTGACCATG 720 840 960 TOGRACTITIC GGACAGACA TAGACCAGTT DICTICCHECK RICHACHI HANDERLA INDURACI CHRISTIANA CIANCUTO NANATORIA CERCANICA HANDERLA CONTRANA 1320 LSDISHEHCRIHRYGYFRATITUDGILEUN110 UN 110 UN DUP! 1440 C S P U A U D E L C L L S U A R R F N 6 S 6 T Y C U N F T L 6 D D A S L A L T S GCCCTGATCT CTRICCTGG CARGACCTA GGCTCCCTC TGAGARCAGI GRATGGTGTC CTGATCTCCA TTGGCTGCCT GGCCATGTTI GTCACCATGG TTACCATCTT GCTGTACAAA A L I S I P G K D L G S P L R T U N G U L I S I G C L R M F U T M U T I L L Y K
RARCRCARGA CSTRCARGCC ARTREGRARC TGCACCASGA ACCIGGICAR GGGCARAGGC CTGAGIGIII IICTCAGCCA TGCARAAGCC CCGIICICCC GAGGRGACCG GGAGRAGGAI K H K T Y K P 1 G H C T R H U U K G K G L S U F L S H A K A P F S R G D R E K D CORCEGOICC AGGACANGCC ATGGATGCTC TRAGECTICA CELECOCITE Egoclogical ecococite to the control of the control tetoeggati atigioooat gratoteatg gittogggog tglogitoot tggeattiia gigaagggoi gggoogacag tattietieg eatergioti giggittiia toetgitool agggtgggca cottgtgtct gaagggggag ggggaggtca ctgclactla aggtcctogg tlaactgggo gaggatgcc caggctcctt agattletoc ocoogatgtg cctgooccca getagtecty acctualges catgetteat cancelete teageteatt gaacatacet gagegeetya tygaaltata atggaaccaa gettyttyla tygtytyty tytyeetaa gatactcatt aaaaagacag tolatlaaaa aaaaaaaaaa

FIGURE 1A

8
9
10
11
153
H
*#5
13
1200
1-1
117
ā;
1
100

EXON	BAC Start	BAC Stop	cDNA Start	cDNA Stop	Exon Length	
1	83294	83455	1	162	162	poly A signal is position 111614-111619
2	89834	89986	163	314	152	
3	90696	90839	315	458	144	translation start (ATG) is:
4	93419	93594	459	634	176	cDNA: 92
5	96509	96665	635	791	157	Gene: 83385
6	96983	97300	792	1109	318	
7	103044	103142	1110	1208	99	
8	104413	104515	1209	1311	103	
9	106494	106702	1312	1520	209	
10	110048	110141	1521	1614	94	
11	110592	111633	1615	2656	1042	

FIGURE 1B

FIGURE 1C

rat mouse humai	ATGGAAAGT ATGGAAAGT ATGGAATGT	C TCTGCGGGG	T CCTGGGATT	T CTGCTGCTG	G CTGCAGGAC	T GCCGCTCCA T GCCTCTCCA T GCCACTTGA	G GCTGCCAAG	CGATTT	75 75 75
rat mouse humar	CGTGATGTGG CGTGATGTGGG CATGATGTGG	C TGGGCCATG	A ACAGTATCC	C GATCACATG	A GAGAGCACA	A CCAATTACG A CCAATTACG A TCAATTAAAT	GGCTGGTCTT	CGGAT	150 150 150
rat mouse humar	GAAAATGAA GAAAATGAA GAAAATGAC	r gggatgaac	A CCTGTATCC	A GTGTGGAGG	A GGGGAGACG	G CAGATGGAAC G CAGGTGGAAC T GAGGTGGAAA	GACTCCTGGG	AAGGA	225 225 225
rat mouse human	GGCCGTGTG	AGGCAGTCC'	r GACCAGTGA	TCACCGGCT	C TGGTGGGTT	C CAATATCACC C CAATATCACT C AAATATAACA	TTTGTGGTGA	ACCTG	300 300 300
rat mouse human	GTGTTCCCCA GTGTTCCCCA ATATTCCCTA	GATGCCAGA	A GGAAGATGCT	' AATGGCAATA	TCGTCTATGA	A GAGGAACTGO A GAAGAACTGO A GAAGAACTGO	AGGAATGATT	TGGGA	375 375 375
rat mouse human	CTGGCTTCTG CTGACATCTG TTATCTGCTG	ACCTGCATGT	CTACAACTGO	ACTGCAGGGG	CAGATGATGO	A GGACTGGGAA G TGACTGGGAA G TGACGGGGAA	GATGGCACCA	GCCGA	450 450 450
'Ħuman □	AGCCAGCATC	TCAGGTTCCC	GGACAGGAGG	CCCTTCCCTC	GCCCCCATGG	G ACGGAAGAAA G ATGGAAGAAA G ATGGAGAAGA	TGGAGCTTTG	TCTAC	525 525 525
mouse human	GTCTTTCACA	CACTTGGCCA	GTATTTCCAA	AAACTGGGTC	GGTGTTCAGC	ACGAGTTTCT ACGGGTTTCT GAGAGTTTCT	ATAAACACAG	TCAAC	600 600 600
rat Mouse human	TTGACAGCTG	GCCCTCAGGT	CATGGAAGTG	ACTGTCTTTC	GAAGATACGG	CCGGGCATAC CCGGGCATAC ACGGGCATAT	ATTCCCATCT	CGAAG	675 675 675
rat Mouse himan	GTGAAAGATG	TGTATGTGAT	AACAGATCAG	ATCCCTGTAT	TCGTGACCAT	GTACCAGAAG GTCCCAGAAG GTTCCAGAAG	AATGACAGGA	ACTTG	750 750 750
mouse ruman	TCTGATGAGA	TCTTCCTCAG	AGACCTCCCC	ATCGTCTTCG	ATGTCCTCAT	TCACGATCCC TCATGATCCC TCATGATCCT	AGCCACTTCC	TCAAC	825 825 825
rat mouse human	TACTCTGCCA GACTCTGCCA TATTCTACCA	TTTCCTACAA	GTGGAACTTT	GGGGACAACA	CTGGCCTGTT	TGTCTCCAAC TGTCTCCAAC TGTTTCCACC	AATCACACTT	TGAAT	900 900 900
rat mouse human	CACACGTATG CACACTTATG CACACGTATG	TGCTCAATGG	AACCTTCAAC	CTTAACCTCA	CCGTGCAAAC	TGCAGTGCCG TGCAGTGCCC TGCAGCACCA	GG	-GCCA	966 966 975
rat mouse human	-TGCC-CC-T -TGCC-CT CCGCCACCAC	CCCCC	TTCGCCTTCG	ACTCCGCCTT	CACCTTCAAC	GCCTGCA TCCGCCCTTA	CCTTCGCCCT	CACCT	1029 1032 1004
rat mouse human	CCCACAT TTGCCCACAT	TATCAACACC	TAGCCCCTCT	TTAATGCCTA	CTGGTTACAA	ATCCATGGAG	CTGAGTGACA	TTTCC	1101 1107 1059
mouse	AATGAAAACT (AATGAAAACT (GATGAAAACT (GCCGAATAAA	CAGATATGGC *	TACTTCAGAG	CCACCATCAC	AATTGTAGAG	SGGATCCTGG	λλαπα	1176 1182 1134

rat	AACATCATCC	AGGTAGCAGA	TGTCCCAATC	CCCACACTG	CAGCCTGACAA	CTCACTGATG	GACTTCATTG	TGACC	1251
mouse	AGCATCATGC	AGATAGCAGA	TGTCCCCATG	CCCACACCG	CAGCCTGCCAA	CTCCCTGATG	GACTTCACTG	TGACC	1257
human					r ggcctgaaag				1209
rat	TGCAAAGGGG	CCACTCCCAC	GGAAGCCTGT	ACGATCATC	r CTGACCCCAC	CTGCCAGATC	GCCCAGAACA	GGGTG	1326
mouse	TGCAAAGGGG	CCACCCCCAT	GGAAGCCTGT	ACGATCATC	CCGACCCCAC	CTGCCAGATC	GCCCAGAACC	GGGTC	1332
human	TGCCAAGGGA	GCATTCCCAC	GGAGGTCTGT	ACCATCATT'	CTGACCCCAC	CTGCGAGATC	ACCCAGAACA	CAGTC	1284
rat	TGCAGCCCGG	TGGCTGTGGA	TGAGCTGTGC	CTCCTGTCC	G TGAGGAGAGC	CTTCAATGGG	TCCGGCACGT	ACTGT	1401
mouse	TGCAGCCCTG	TGGCTGTGGA	TGGGCTGTGC	CTGCTGTCTC	G TGAGAAGAGC	CTTCAATGGG	TCTGGCACCT	ACTGT	1407
human	TGCAGCCCTG	TGGATGTGGA	TGAGATGTGT	CTGCTGACTC	TGAGACGAAC	CTTCAATGGG	TCTGGGACGT	ACTGT	1359
rat	GTGAATTTCA	CTCTGGGAGA	CGATGCAAGC	CTGGCCCTCA	CCAGCGCCCT	GATCTCTATC	CCTGGCAAAG	ACCTA	1476
mouse	GTGAATTTCA	CTCTGGGAGA	TGATGCAAGC	CTGGCCCTCA	CCAGCACCCT	GATCTCTATC	CCTGGCAAAG	ACCCA	1482
human	GTGAACCTCA	CCCTGGGGGA	TGACACAAGC	CTGGCTCTCA	CGAGCACCCT	GATTTCTGTT	CCTGACAGAG	ACCCA	1434
\$ 1170 m									
Frat	GGCTCCCCTC	TGAGAACAGT	GAATGGTGTC	CTGATCTCCA	TTGGCTGCCT	GGCCATGTTT	GTCACCATGG	TTACC	1551
i_mouse	GACTCCCCTC	TGAGAGCAGT	GAATGGTGTC	CTGATCTCC	TCGGCTGCCT	GGCTGTGCTT	GTCACCATGG	TTACC	1557
human	GCCTCGCCTT	TAAGGATGGC	AAACAGTGCC	CTGATCTCC	TTGGCTGCTT	GGCCATATTT	GTCACTGTGA	TCTCC	1509
pag E									
Frat	ATCTTGCTGT	ACAAAAAACA	CAAGACGTAC	AAGCCAATAG	GAAACTGCAC	CAGGAACGTG	GTCAAGGGCA	AAGGC	1626
mouse	ATCTTGCTGT	ACAAAAAACA	CAAGGCGTAC	AAGCCAATAG	GAAACTGCCC	CAGGAACACG	GTCAAGGGCA	AGGGC	1632
human	CTCTTGGTGT	ACAAAAAACA	CAAGGAATAC	AACCCAATAG	AAAATAGTCC	TGGGAATGTG	GTCAGAAGCA	AAGGC	1584
1									
frat mouse					GAGGAGACCG				1701
#mouse	CTGAGTGTTC	TCCTCAGTCA	CGCGAAAGCC	CCGTTCTTCC	GAGGAGACCA	GGAGAAGGAT	CCATTGCTCC	AGGAC	1707
human	CTGAGTGTCT	TTCTCAACCG	TGCAAAAGCC	GTGTTCTTCC	CGGGAAACCA	GGAAAAGGAT	CCGCTACTC-	AA	1655
i main									
Trat	AAGCCATGGA	TGCTCTAA		- 171	9				
· MOUSE	AAGCCAAGGA	CACTCTAA		- 172	5				
human	AAACCAAGAA	TTTAAAG	GAGTTTCTTA	A 168	3				
im.									

FIGURE 2A, cont'd.

	MESLCGVLGF	LLLAAGLPLQ	AAKRFRDVLG AAKRFRDVLG AAKRFHDVLG	HEQYPDHMRE	HNQLRGWSSD	50 50 50
	ENEWDEHLYP	VWRRGDGRWK	DSWEGGRVQA DSWEGGRVQA NSWKGGRVQA	VLTSDSPALV	GSNITFVVNL	100 100 100
	VFPRCQKEDA	NGNIVYEKNC	RSDLELASDP RNDLGLTSDL RNEAGLSADP	HVYNWTAGAD	DGDWEDGTSR	150 150 150
rat mouse human	SQHLRFPDRR	PFPRPHGWKK	WNFVYVFHTL WSFVYVFHTL WNFIYVFHTL	GQYFQKLGRC		200 200 200
	LTAGPQVMEV	TVFRRYGRAY	IPISKVKDVY IPISKVKDVY VPIAQVKDVY	VITDQIPVFV	TMYQKNDRNS TMSQKNDRNL TMFQKNDRNS	250 250 250
	SDETFLRDLP SDEIFLRDLP SDETFLKDLP				LFVSNNHTLN LFVSNNHTLN LFVSTNHTVN	300 300 300
rat mouse human		LNLTVQTAVP	GPCPSPTPS- GPCPPPSPST GPCPPPPP		ASSPSPTLST SPSPLPTLST SK	348 350 334
rat mouse human	PSPSLMPTGY	KSMELSDISN KSMELSDISN NPLELSRIPD	ENCRINRYGY ENCRINRYGY ENCQINRYGH	FRATITIVEG	ILEVNIIQVA ILEVSIMQIA ILEVNIIQMT	398 400 384
rat mouse human	DVPMPTPQPA	NSLMDFIVTC NSLMDFTVTC SSLIDFVVTC	KGATPMEACT		QNRVCSPVAV QNRVCSPVAV QNTVCSPVDV	448 450 434
	DGLCLLSVRR	AFNGSGTYCV	NFTLGDDASL NFTLGDDASL NLTLGDDTSL	ALTSTLISIP	GKDLGSPLRT GKDPDSPLRA DRDPASPLRM	498 500 484
mouse	VNGVLISIGC	LAVLVTMVTI	LLYKKHKTYK LLYKKHKAYK LVYKKHKEYN	PIGNCPRNTV	KGKGLSVLLS	548 550 534
mouse	HAKAPFFRGD	REKDPLLQDK QEKDPLLKNQ	PRTL 574			

FIGURE 2B

FIGURE 3

FIGURE 4A

FIGURE 4B

FIGURE 5

Figure 5A

Figure 5B

Figure 5C

FIGURE 6

FIGURE 7A

FIGURE 7B

FIGURE 8

FIGURE 9

FIGURE 10