# Matplotlib By Virat Tiwari

October 18, 2023

1 Why we need Data Visualization - When somebody gave us million or trillions of data for finding the sentiments or may be the relationship between the entire data so just by looking into that data it is not possible. In simple terms, it was almost impossible to find the Patterns from millions record of data by just looking into that numbers. We can not ANALYSIS the TREND, So Here we use GRAPGH OR VISUALIZATION CONCEPT for understanding the SUMMARY of Data or getting the TREND of millions Records of Data Easily.DATA VISUALIZATION help us to understand the huge amount of data and we can easily conclude the result or getting the INSIGHTS with the help of GRAPGH that we made in DATA VISUALIZATION.

```
TOPIC - MATPLOTLIB
```

```
[4]: array([ 0.
                           0.05025126,
                                                       0.15075377,
                                         0.10050251,
                                                                    0.20100503,
             0.25125628,
                           0.30150754,
                                         0.35175879,
                                                       0.40201005,
                                                                    0.45226131,
             0.50251256,
                           0.55276382,
                                         0.60301508,
                                                       0.65326633,
                                                                    0.70351759,
             0.75376884,
                           0.8040201 ,
                                         0.85427136,
                                                       0.90452261,
                                                                    0.95477387,
             1.00502513,
                           1.05527638,
                                         1.10552764,
                                                       1.15577889,
                                                                    1.20603015,
                           1.30653266,
                                         1.35678392,
                                                       1.40703518,
                                                                    1.45728643,
             1.25628141,
             1.50753769,
                           1.55778894,
                                         1.6080402 ,
                                                       1.65829146,
                                                                    1.70854271,
             1.75879397,
                           1.80904523,
                                         1.85929648,
                                                       1.90954774,
                                                                    1.95979899,
             2.01005025,
                           2.06030151,
                                         2.11055276,
                                                       2.16080402,
                                                                    2.21105528,
             2.26130653,
                           2.31155779,
                                         2.36180905,
                                                       2.4120603 ,
                                                                    2.46231156,
                           2.56281407,
                                         2.61306533,
             2.51256281,
                                                       2.66331658,
                                                                    2.71356784,
             2.7638191 ,
                           2.81407035,
                                         2.86432161,
                                                       2.91457286,
                                                                    2.96482412,
             3.01507538,
                           3.06532663,
                                         3.11557789,
                                                       3.16582915,
                                                                    3.2160804 ,
             3.26633166,
                                         3.36683417,
                                                       3.41708543,
                                                                    3.46733668,
                           3.31658291,
             3.51758794,
                           3.5678392 ,
                                         3.61809045,
                                                       3.66834171,
                                                                    3.71859296,
                                         3.86934673,
                           3.81909548,
                                                       3.91959799,
                                                                    3.96984925,
             3.76884422,
                           4.07035176,
                                         4.12060302,
                                                       4.17085427,
             4.0201005 ,
                                                                    4.22110553,
             4.27135678,
                           4.32160804,
                                         4.3718593 ,
                                                       4.42211055,
                                                                    4.47236181,
                           4.57286432,
                                         4.62311558,
                                                       4.67336683,
             4.52261307,
                                                                    4.72361809,
             4.77386935,
                           4.8241206 ,
                                         4.87437186,
                                                       4.92462312,
                                                                    4.97487437,
             5.02512563,
                           5.07537688,
                                         5.12562814,
                                                       5.1758794 ,
                                                                    5.22613065,
                                                       5.42713568,
             5.27638191,
                           5.32663317,
                                         5.37688442,
                                                                    5.47738693,
             5.52763819,
                           5.57788945,
                                         5.6281407 ,
                                                       5.67839196,
                                                                    5.72864322,
             5.77889447,
                           5.82914573,
                                         5.87939698,
                                                       5.92964824,
                                                                    5.9798995 ,
                                         6.13065327,
             6.03015075,
                           6.08040201,
                                                       6.18090452,
                                                                    6.23115578,
             6.28140704,
                           6.33165829,
                                         6.38190955,
                                                       6.4321608 ,
                                                                    6.48241206,
                                         6.63316583,
                                                       6.68341709,
             6.53266332,
                           6.58291457,
                                                                    6.73366834,
             6.7839196 ,
                           6.83417085,
                                         6.88442211,
                                                       6.93467337,
                                                                    6.98492462,
             7.03517588,
                           7.08542714,
                                         7.13567839,
                                                       7.18592965,
                                                                    7.2361809 ,
             7.28643216,
                           7.33668342,
                                         7.38693467,
                                                       7.43718593,
                                                                    7.48743719,
             7.53768844,
                           7.5879397,
                                         7.63819095,
                                                      7.68844221,
                                                                    7.73869347,
             7.78894472,
                           7.83919598,
                                         7.88944724,
                                                       7.93969849,
                                                                    7.98994975,
             8.04020101,
                           8.09045226,
                                         8.14070352,
                                                       8.19095477,
                                                                    8.24120603,
             8.29145729,
                           8.34170854,
                                         8.3919598 ,
                                                       8.44221106, 8.49246231,
             8.54271357,
                           8.59296482,
                                         8.64321608,
                                                       8.69346734,
                                                                    8.74371859,
             8.79396985,
                           8.84422111,
                                         8.89447236,
                                                       8.94472362,
                                                                    8.99497487,
             9.04522613,
                                         9.14572864,
                           9.09547739,
                                                       9.1959799 ,
                                                                    9.24623116,
             9.29648241,
                           9.34673367,
                                         9.39698492,
                                                       9.44723618,
                                                                   9.49748744,
             9.54773869,
                           9.59798995,
                                         9.64824121,
                                                       9.69849246, 9.74874372,
                                                       9.94974874, 10.
             9.79899497,
                           9.84924623,
                                        9.89949749,
                                                                               ])
[5]: # Here we also generate data by using "np.sin () function ", in which we we also generate data by using "np.sin ()
      ⇒pass " x " that generate 200 hunded data from the range 1 to 10 same as<sub>□</sub>
      →previous x but in diffrent numbers
     y=np.sin(x)
```

[6]: y

```
[6]: array([ 0.
                          0.05023011,
                                       0.10033341,
                                                    0.15018339,
                                                                 0.19965422,
             0.24862099,
                          0.29696008,
                                       0.34454944,
                                                    0.39126893,
                                                                  0.43700061,
             0.481629
                          0.52504145,
                                       0.56712835,
                                                    0.60778345,
                                                                  0.6469041,
             0.68439153,
                                       0.75409257,
                          0.72015112,
                                                     0.78613019,
                                                                  0.8161831,
             0.84417544,
                          0.87003651,
                                       0.89370105,
                                                    0.91510929,
                                                                  0.9342072 ,
             0.95094655,
                          0.96528509,
                                       0.97718662,
                                                    0.98662108,
                                                                  0.99356467,
             0.99799984,
                          0.99991541,
                                       0.99930653,
                                                    0.99617474,
                                                                  0.99052796,
             0.98238043,
                          0.97175273,
                                       0.95867168,
                                                    0.94317032,
                                                                 0.92528777,
             0.90506919,
                          0.88256563,
                                       0.85783388,
                                                    0.8309364 ,
                                                                  0.80194109,
             0.77092115,
                          0.7379549 ,
                                       0.70312557,
                                                    0.66652108,
                                                                 0.62823386,
             0.58836056,
                          0.54700186,
                                       0.50426216,
                                                    0.46024937,
                                                                  0.41507461,
             0.36885193,
                          0.32169803,
                                       0.27373195,
                                                    0.22507478, 0.17584939,
                                       0.02601183, -0.02423412, -0.07441889,
             0.12618003,
                          0.07619211,
            -0.12441577, -0.17409855, -0.22334179, -0.27202116, -0.32001378,
            -0.36719847, -0.41345611, -0.45866992, -0.50272574, -0.54551235,
            -0.58692173, -0.62684933, -0.66519435, -0.70185999, -0.73675367,
            -0.7697873 , -0.80087747, -0.82994571, -0.85691862, -0.88172811,
            -0.90431153, -0.92461187, -0.94257789, -0.95816422, -0.97133152,
            -0.98204653, -0.99028221, -0.99601778, -0.99923873, -0.99993695,
            -0.99811068, -0.99376451, -0.98690943, -0.97756275, -0.96574805,
            -0.95149517, -0.93484009, -0.91582485, -0.89449748, -0.8709118,
            -0.84512737, -0.81720929, -0.78722803, -0.75525929, -0.72138377,
            -0.68568702, -0.64825913, -0.60919462, -0.56859209, -0.52655407,
            -0.48318668, -0.4385994, -0.39290482, -0.34621828, -0.29865766,
            -0.25034303, -0.20139637, -0.15194126, -0.10210255, -0.05200606,
            -0.00177827,
                          0.048454
                                      0.09856395,
                                                    0.14842506, 0.19791144,
             0.24689816,
                                       0.34287951,
                          0.29526155,
                                                    0.38963181,
                                                                  0.43540043,
             0.48006981,
                          0.52352718,
                                       0.56566282,
                                                    0.60637036,
                                                                  0.64554701,
             0.68309389,
                          0.71891618,
                                       0.75292346,
                                                    0.78502987,
                                                                  0.81515434,
             0.84322083,
                          0.86915847,
                                       0.89290179,
                                                    0.91439084,
                                                                  0.93357136,
             0.95039493,
                                       0.9768074 ,
                          0.96481908,
                                                    0.98632961,
                                                                 0.99336168,
             0.99788585,
                          0.99989069,
                                       0.99937116,
                                                    0.99632856,
                                                                  0.99077057,
             0.98271122,
                          0.97217086,
                                       0.95917611,
                                                    0.94375976, 0.92596075,
                                       0.85874643,
                                                    0.83192446, 0.80300216,
             0.905824
                          0.88340035,
             0.77205257,
                          0.7391538 ,
                                       0.70438892,
                                                    0.66784571, 0.62961641,
             0.58979754,
                                       0.50579699,
                          0.54848964,
                                                    0.46182738,
                                                                 0.41669181,
             0.37050423,
                          0.32338126,
                                       0.27544187, 0.22680707, 0.17759967,
                          0.07796509,
                                       0.02778946, -0.02245633, -0.07264543,
             0.12794389,
            -0.12265112, -0.17234716, -0.22160808, -0.27030952, -0.31832851,
            -0.36554384, -0.4118363 , -0.45708901, -0.50118772, -0.54402111])
```

Important Note - We successfully generate x-axis and y-axis data but we can not analysis the movement of x-cordinate and y-cordinate of data by just looking at the data numbers so here we use or draw a grapph which help us to visualize the data and we simply understand the movement of x and y co-ordination of axis by just looking at the grapph

[7]: # plt is our alias or matplotlib like we denote matplotlib as plt so whenevr we was ematplotlib we call plt

# plt.plot ( ) function is used for plot the data into the grapph and we pass the axis or variables like x and y inside the plot

plt.plot(x,y)

### [7]: [<matplotlib.lines.Line2D at 0x7f4bd4c3af50>]



```
[8]: # plt.xlabel or plt.ylabel () function is used for labelling the data data ...

We pass the label or any text that present the x or y axis

plt.xlabel("This is my x data")

plt.ylabel("This is my y data")
```

[8]: Text(0, 0.5, 'This is my y data')



```
[9]: # plt.title ( ) function is used for given the name of grapph by passing the 

→ text inside the title ( ) function

plt.title("This is my first grapph")
```

[9]: Text(0.5, 1.0, 'This is my first grapgh')



```
[10]: # This is final presentation of grapph with all naming text that justify the ⊔ entire grapph like title, name of x and y axis etc

plt.plot(x,y)
plt.title("This is my first grapph")
plt.xlabel("This is my x data")
plt.ylabel("This is my y data")
```

[10]: Text(0, 0.5, 'This is my y data')



```
[11]: # np.random.rand ( ) function is used for genrating the random data by passing__
the value inside the function like here we pass 50 data

# x is a variable that store the random 50 data

x=np.random.rand(50)
```

```
[12]: # We call x to show the data that we generate
x
```

```
[12]: array([0.3264215 , 0.72191338, 0.7333547 , 0.81296528, 0.4911694 , 0.03063241, 0.42982928, 0.00637064, 0.68367324, 0.93270052, 0.26664415, 0.06082933, 0.12513395, 0.41651939, 0.74616772, 0.9637124 , 0.89000411, 0.83290546, 0.20541492, 0.24282567, 0.02972526, 0.98269047, 0.94256722, 0.68632248, 0.19913464, 0.70416475, 0.49065208, 0.12038608, 0.37673275, 0.4517113 , 0.24964646, 0.319042 , 0.30186613, 0.83047236, 0.01001234,
```

```
0.3052248 , 0.56588282, 0.64823433, 0.58840345, 0.40956623,
             0.91555259, 0.20541003, 0.92396157, 0.57789832, 0.08059255])
[13]: # np.random.rand ( ) function is used for genrating the random data by passing.
      the value inside the function like here we pass 50 data
      # y is a variable that store the random 50 data
      y=np.random.rand(50)
[14]: # Now we call y to show the generated data
      У
[14]: array([0.91341842, 0.94708124, 0.06875672, 0.78643276, 0.81436647,
             0.10016853, 0.10482149, 0.46316924, 0.8606652, 0.18358126,
             0.94270757, 0.79259743, 0.86975442, 0.03467551, 0.6095806,
             0.25922808, 0.83297392, 0.20273026, 0.54995152, 0.84956303,
             0.9823761, 0.68375716, 0.25733, 0.97788305, 0.34847496,
             0.56770074, 0.82106037, 0.82286519, 0.64152776, 0.31240952,
             0.69248289, 0.17329901, 0.75242493, 0.67140246, 0.27214963,
            0.30399486, 0.4931393, 0.52092903, 0.74746735, 0.44004225,
             0.77351238, 0.48088991, 0.49597598, 0.88060822, 0.97056656,
            0.7467046 , 0.03526698, 0.08932695, 0.25692132, 0.68314107])
[15]: | # plt.scatter ( ) function is used for present the data in scatter form
      plt.scatter(x,y)
```

0.92400325, 0.13612251, 0.23418177, 0.36338538, 0.30657197,

[15]: <matplotlib.collections.PathCollection at 0x7f4bcca7eb00>



OR

```
[16]: # By compiling all three functions we direct call the grapph without executing the function seperately

x=np.random.rand(50)
y=np.random.rand(50)
plt.scatter(x,y)
```

[16]: <matplotlib.collections.PathCollection at 0x7f4bcc8ffa30>



```
[17]: # This is we colouring the data
colours=np.random.rand(50)

[18]: # This is we colouring the data
plt.scatter(x,y,c=colours)
colours=np.random.rand(50)
```



CASE - 3 We present Categorical vs Numerical Data so we take 5 categorical data and 5 numerical data

```
[19]: # We take varaibles like a , b , c , d etc in x

# Here we generate the 5 variables data

x=["a","b","c","d","e"]

[20]: # Here we generate the 5 numerical data

y= np.random.rand(5)

[21]: # plt.bar () function is used for presenting the bar graph by passing the
values of x and y inside the function

plt.bar(x,y)
```

[21]: <BarContainer object of 5 artists>



OR

```
[22]: x=["a","b","c","d","e"]
y= np.random.rand(5)
plt.bar(x,y)
plt.xlabel("Categorical Data")
plt.ylabel("Numerival Data")
plt.title("Categorical vs Numerical Data Grapgh")
```

[22]: Text(0.5, 1.0, 'Categorical vs Numerical Data Grapgh')



So yeah , This is how we Draw Categorical vs Numerical Data

```
[23]: # Note - plt.barh ( ) function is used for horizontal bar plot

x=["a","b","c","d","e"]
y= np.random.rand(5)

plt.barh(x,y)

plt.xlabel("Categorical Data")
plt.ylabel("Numerival Data")
plt.title("Categorical vs Numerical Data Grapgh")
```

[23]: Text(0.5, 1.0, 'Categorical vs Numerical Data Grapgh')



a ·

0.0

0.2

#### CASE - 4 [24]: x=np.linspace(0,10,200) y=np.sin(x) [25]: [26]: x [26]: array([ 0. 0.20100503, 0.05025126, 0.10050251, 0.15075377, 0.25125628, 0.30150754, 0.35175879, 0.40201005, 0.45226131, 0.50251256, 0.55276382, 0.60301508, 0.65326633, 0.70351759, 0.75376884, 0.8040201, 0.85427136, 0.90452261, 0.95477387, 1.00502513, 1.05527638, 1.10552764, 1.15577889, 1.20603015, 1.25628141, 1.30653266, 1.35678392, 1.40703518, 1.45728643, 1.50753769, 1.55778894, 1.6080402 , 1.65829146, 1.70854271, 1.75879397, 1.80904523, 1.85929648, 1.90954774, 1.95979899, 2.01005025, 2.06030151, 2.11055276, 2.16080402, 2.21105528, 2.26130653, 2.31155779, 2.36180905, 2.4120603 , 2.46231156, 2.51256281, 2.56281407, 2.61306533, 2.66331658, 2.71356784, 2.81407035, 2.7638191 , 2.86432161, 2.91457286, 2.96482412,

0.4

Categorical Data

0.6

0.8

```
3.26633166,
                            3.31658291,
                                         3.36683417,
                                                       3.41708543,
                                                                     3.46733668,
              3.51758794,
                            3.5678392 ,
                                         3.61809045,
                                                       3.66834171,
                                                                     3.71859296,
              3.76884422,
                            3.81909548,
                                         3.86934673,
                                                       3.91959799,
                                                                     3.96984925,
                                                       4.17085427,
                                         4.12060302,
                                                                     4.22110553,
              4.0201005 ,
                            4.07035176,
              4.27135678,
                            4.32160804,
                                         4.3718593 ,
                                                       4.42211055,
                                                                     4.47236181,
              4.52261307,
                            4.57286432,
                                         4.62311558,
                                                       4.67336683,
                                                                     4.72361809,
                                                       4.92462312,
              4.77386935,
                            4.8241206 ,
                                         4.87437186,
                                                                     4.97487437,
              5.02512563,
                            5.07537688,
                                         5.12562814,
                                                       5.1758794 ,
                                                                     5.22613065,
              5.27638191,
                            5.32663317,
                                         5.37688442,
                                                       5.42713568,
                                                                     5.47738693,
              5.52763819,
                            5.57788945,
                                         5.6281407,
                                                       5.67839196,
                                                                     5.72864322,
                                                                     5.9798995,
              5.77889447,
                            5.82914573,
                                         5.87939698,
                                                       5.92964824,
              6.03015075,
                            6.08040201,
                                         6.13065327,
                                                       6.18090452,
                                                                     6.23115578,
              6.28140704,
                            6.33165829,
                                         6.38190955,
                                                       6.4321608 ,
                                                                     6.48241206,
              6.53266332,
                                                                     6.73366834,
                            6.58291457,
                                         6.63316583,
                                                       6.68341709,
              6.7839196 ,
                            6.83417085,
                                         6.88442211,
                                                       6.93467337,
                                                                     6.98492462,
              7.03517588,
                            7.08542714,
                                         7.13567839,
                                                       7.18592965,
                                                                     7.2361809 ,
                                         7.38693467,
              7.28643216,
                            7.33668342,
                                                       7.43718593,
                                                                     7.48743719,
              7.53768844,
                            7.5879397,
                                         7.63819095,
                                                       7.68844221,
                                                                     7.73869347,
              7.78894472,
                            7.83919598,
                                         7.88944724,
                                                       7.93969849,
                                                                     7.98994975,
              8.04020101,
                            8.09045226,
                                         8.14070352,
                                                       8.19095477,
                                                                     8.24120603,
              8.29145729,
                            8.34170854,
                                         8.3919598 ,
                                                       8.44221106,
                                                                     8.49246231,
              8.54271357,
                                         8.64321608,
                                                                     8.74371859,
                            8.59296482,
                                                       8.69346734,
              8.79396985,
                            8.84422111,
                                         8.89447236,
                                                       8.94472362,
                                                                     8.99497487,
                            9.09547739,
                                         9.14572864,
                                                       9.1959799 ,
                                                                     9.24623116,
              9.04522613,
                            9.34673367.
                                                       9.44723618,
              9.29648241,
                                         9.39698492,
                                                                     9.49748744,
              9.54773869,
                            9.59798995,
                                         9.64824121,
                                                       9.69849246, 9.74874372,
              9.79899497,
                                         9.89949749,
                                                       9.94974874, 10.
                            9.84924623,
                                                                               ])
[27]:
[27]: array([ 0.
                            0.05023011,
                                         0.10033341,
                                                       0.15018339,
                                                                     0.19965422,
              0.24862099,
                            0.29696008,
                                         0.34454944,
                                                       0.39126893,
                                                                     0.43700061,
              0.481629
                            0.52504145,
                                         0.56712835,
                                                       0.60778345,
                                                                     0.6469041,
              0.68439153,
                            0.72015112,
                                         0.75409257,
                                                       0.78613019,
                                                                     0.8161831 ,
              0.84417544,
                            0.87003651,
                                         0.89370105,
                                                       0.91510929,
                                                                     0.9342072 ,
              0.95094655,
                            0.96528509,
                                         0.97718662,
                                                       0.98662108,
                                                                     0.99356467,
              0.99799984,
                            0.99991541,
                                         0.99930653,
                                                       0.99617474,
                                                                     0.99052796,
              0.98238043,
                            0.97175273,
                                                                     0.92528777,
                                         0.95867168,
                                                       0.94317032,
              0.90506919,
                            0.88256563,
                                         0.85783388,
                                                       0.8309364 ,
                                                                     0.80194109,
              0.77092115,
                            0.7379549 ,
                                         0.70312557,
                                                       0.66652108,
                                                                     0.62823386,
              0.58836056,
                            0.54700186,
                                         0.50426216,
                                                       0.46024937,
                                                                     0.41507461,
              0.36885193,
                            0.32169803,
                                         0.27373195,
                                                       0.22507478,
                                                                    0.17584939,
                                         0.02601183, -0.02423412, -0.07441889,
              0.12618003,
                            0.07619211,
             -0.12441577, -0.17409855, -0.22334179, -0.27202116, -0.32001378,
             -0.36719847, -0.41345611, -0.45866992, -0.50272574, -0.54551235,
             -0.58692173, -0.62684933, -0.66519435, -0.70185999, -0.73675367,
```

3.11557789,

3.16582915,

3.2160804 ,

3.01507538,

3.06532663,

```
-0.7697873 , -0.80087747, -0.82994571, -0.85691862, -0.88172811,
            -0.90431153, -0.92461187, -0.94257789, -0.95816422, -0.97133152,
            -0.98204653, -0.99028221, -0.99601778, -0.99923873, -0.99993695,
            -0.99811068, -0.99376451, -0.98690943, -0.97756275, -0.96574805,
            -0.95149517, -0.93484009, -0.91582485, -0.89449748, -0.8709118,
            -0.84512737, -0.81720929, -0.78722803, -0.75525929, -0.72138377,
            -0.68568702, -0.64825913, -0.60919462, -0.56859209, -0.52655407,
            -0.48318668, -0.4385994, -0.39290482, -0.34621828, -0.29865766,
            -0.25034303, -0.20139637, -0.15194126, -0.10210255, -0.05200606,
            -0.00177827, 0.048454 , 0.09856395, 0.14842506, 0.19791144,
             0.24689816, 0.29526155, 0.34287951, 0.38963181, 0.43540043,
             0.48006981, 0.52352718, 0.56566282, 0.60637036, 0.64554701,
             0.68309389, 0.71891618, 0.75292346, 0.78502987, 0.81515434,
             0.84322083, 0.86915847, 0.89290179, 0.91439084, 0.93357136,
             0.95039493, 0.96481908, 0.9768074, 0.98632961, 0.99336168,
             0.99788585, 0.99989069, 0.99937116, 0.99632856, 0.99077057,
             0.98271122,
                          0.97217086, 0.95917611, 0.94375976, 0.92596075,
             0.905824 , 0.88340035, 0.85874643, 0.83192446, 0.80300216,
             0.77205257, 0.7391538, 0.70438892, 0.66784571, 0.62961641,
             0.58979754, 0.54848964, 0.50579699, 0.46182738, 0.41669181,
             0.37050423, 0.32338126, 0.27544187, 0.22680707, 0.17759967,
             0.12794389, 0.07796509, 0.02778946, -0.02245633, -0.07264543,
            -0.12265112, -0.17234716, -0.22160808, -0.27030952, -0.31832851,
            -0.36554384, -0.4118363, -0.45708901, -0.50118772, -0.54402111])
[28]: \# plt.plot (" - - r"), in this function double hyphen (--) represent the dot,
      \hookrightarrow in graph and " r " represent the colour of line grapph that is r (red)
     plt.plot(x,y,"--r")
     plt.title("This is my first grapgh")
     plt.xlabel("This is my x data")
     plt.ylabel("This is my y data")
```

[28]: Text(0, 0.5, 'This is my y data')



```
[29]: # We cantrol the sixe of figure as well

plt.figure(figsize=(8,4))
plt.plot(x,y,"--r")
plt.title("This is my first grapgh")
plt.xlabel("This is my x data")
plt.ylabel("This is my y data")
```

[29]: Text(0, 0.5, 'This is my y data')



[30]: Text(0, 0.5, 'This is my y data')



```
[31]: x=np.random.rand(50)
y=np.random.rand(50)
colours=np.random.rand(50)
sizes=1000*np.random.rand(50)
plt.scatter(x,y,c=colours,s=sizes,alpha=.5)
plt.xlabel("X- axis")
plt.ylabel("Y-axis")
plt.title("Scatter Grapgh")
```

[31]: Text(0.5, 1.0, 'Scatter Grapgh')



```
[32]: # Marker function for changing the design of dots inside the grapph

x=np.random.rand(50)
y=np.random.rand(50)
colours=np.random.rand(50)
sizes=1000*np.random.rand(50)
plt.scatter(x,y,c=colours,s=sizes,alpha=.5 , marker="v")
plt.xlabel("X- axis")
plt.ylabel("Y-axis")
plt.title("Scatter Grapph")
```

[32]: Text(0.5, 1.0, 'Scatter Grapgh')



```
[33]: # Marker function for changing the design of dots inside the grapgh

x=np.random.rand(50)
y=np.random.rand(50)
colours=np.random.rand(50)
sizes=1000*np.random.rand(50)
plt.scatter(x,y,c=colours,s=sizes,alpha=.5 , marker="s")
plt.xlabel("X- axis")
plt.ylabel("Y-axis")
plt.title("Scatter Grapgh")
```

[33]: Text(0.5, 1.0, 'Scatter Grapgh')



[36]: x=[4,5,6,7,8,9] y=[6,7,8,9,10,11] plt.plot(x,y) plt.show()



```
[42]: x=[4,5,6,7,8,9]
y=[60,70,30,90,150,10]
plt.plot(x,y)
plt.show()
```



[52]: data=[1,2,3,4,1,2,3,7,8,1,2,3,5,6]

[53]: plt.hist(data) plt.show()



```
[57]: x=[4,5,6,7,8,9]
y=[60,70,30,90,150,10]
colour=["red","blue","#51f846","#f846cd","#4646f8","#10080d"]
plt.scatter(x,y,c=colour)
plt.show()
```



```
[65]: # 3D DATA PROJECTION

x=np.random.rand(100)
y=np.random.rand(100)
z=np.random.rand(100)

fig=plt.figure()

# THIS FUNCTION IS USED FOR MAKING 3D PROJECTION GRAPGH

ax=fig.add_subplot(projection="3d")
ax.scatter(x,y,z)
plt.show()
```



THANK YOU SO MUCH!!
YOURS VIRAT TIWARI:)