Vector Operator

Masaaki Yamaguchi

1 Entropy

Already discover with this entropy of manifold is blackhole of energy, these entropy is mass of energy has norm parameter. And string theorem $T_{\mu\nu}$ belong to ρ energy, this equation is same Kaluze-Klein theorem.

$$\nabla \phi^{2} = 8\pi G \left(\frac{p}{c^{3}} + \frac{V}{S}\right)$$

$$y = x$$

$$y = (\nabla \phi)^{\frac{1}{2}}$$

$$\frac{\Delta E}{\frac{1}{2\sqrt{2\pi G}}} = \frac{p}{c^{3}} + \rho$$

$$ds^{2} = g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + \phi^{2}(x)\kappa^{2}A_{\mu\nu}(x)dx^{\mu})^{2}$$

$$ds = (g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + \phi^{2}(x)(\kappa^{2}A_{\mu\nu}(x)dx^{\mu})^{2})^{\frac{1}{2}}$$

$$\frac{\Delta E}{\frac{1}{2\sqrt{2\pi G}} - \rho} = c^{3}, \frac{p}{2\pi} = c^{3}$$

$$ds^{2} = e^{-2kT(x)|\phi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)]dx^{\mu}dx^{\nu} + T^{2}(x)d\phi^{2}$$

$$f_{z} = \int \left[\sqrt{\frac{x_{1} - x_{2} - x_{3}}{y_{1} - y_{2} - y_{3}}} \circ \frac{x_{1} - x_{2} - x_{3}}{y_{1} - y_{2} - y_{3}} \right] dxdydz$$

$$\frac{\partial}{\partial f} \int (\sin 2x)^{2} dx = ||x - y||^{2}$$

2 Atom of element from zeta function

2.1 Knot element

String summulate of landmaistor movement in these knot element. Supersymmetry construct of these mechanism from string theorem. A element of homorphism boundary for kernel function, equal element has meyer beatorise compose structure in mesh emerge. These mesh for atom element equal knot this of exchange, this isomophism three manifold convert with knot these from laplace space. Duality manifold has space equal other operate, this quantum group is element distinguish with other structure. Aspect element has design pattern, this element construct pair of entropy. Quote algebra reflect with atom kernel of function.

3 Imaginary manifold

A vector is scalar, vector, mass own element, imaginary number is own this element.

$$x = \frac{\vec{x}}{|\bar{x}|}$$

For instance

$$|\vec{x}| = \sqrt{x}, i = \sqrt{-1}, |\vec{x}|x = \vec{x}, |\vec{x}| = 1x, |\vec{x}|^2 = -1$$

$$(\frac{x}{|\vec{x}|})^2 = \frac{1}{-1}, |\sqrt{x}| = i$$

Imaginary number is vector, inverse make to norm own means.

4 Singularity

A element add to accept for group of field, this group also create ring has monotonicity. Limit of manifold has territory of variable limit of manifold. This fields also merge of mesh in mass. Zero dimension also means to construct with antigravity. This monotonicity is merged to has quote algebra liner. This boundary operate belong to has category theorem. Meyer beatorise extend liner distinguish with a mesh merged in fixed point theorem. Entropy means to isohomophism with harmony this duality. The energy lead to entropy metric to merge with mesh volume.

5 Time expand in space for laplace equation

6 Laplace equaiton

Seiferd manifold construct with time and space of flow system in universe. Zeta function built in universe have started for big-ban system. Firstly, time has future and past in space, then space is expanding for big-ban mechanism.

Darkmatter equals for Higgs field from expanded in universe of ertel. Three manifold in flow energy has not no of a most-small-flow but monotonicity is one. Because this destruct to distinguish with eight-differential structure, and not exist.

And all future and past has one don't go on same integrate routs. This conject for Seiferd manifold flow. Selbarg conjecture has singularity rout. Landemaistor movement become a integrate rout in this Selbarg conjecture.

Remain Space belong for three manifold to exist of singularity rout. Godsharke conjecture is this reason in mechanism. Harshorn conjecture remain to exist multi universe in Laplace equation resolved. Delete line summulate with rout of integrate differential rout. This solved rout has gradient flow become a future and past in remain space.

Laplace equation composite for singularity in zeta function and Kaluze-Klein space.

7 Non-commutative algebra for antigravity

Laplace equation and zeta function belong for fermison and boson, then power of construct equation merge Duality of symmetry formula. These power construct of deceive in dimension, and deal the other dimension. Reflection of power erasing of own dimension, the symmetry of formula has with merging of energy, then these power has fourth of basic power Symmetry solved for equation, general relativity deal from reality these formula. Quantum group construct of zeta function and Laplace equation. Imaginary number consist of Euler constance, this prime number reach to solve contiguish of power in emergy of parameter. Zeta function conclude of infinite to finite on all equation. Global differential equation merge a mass of antigravity and gravity.

Module exist zero dimension merge of symmetry in catastrophe D-brane, this mechanism of phenomonoun is Non-symmetry explain to emerge with which cause of mass on gravity.

$$x \bmod N = 0$$

$$\sum_{M=0}^{\infty} \int_{M} dm \to \sum_{x=0}^{\infty} F_{x} = \int_{m} dm = F$$

$$\frac{x-y}{a} = \frac{y-z}{b} = \frac{z-x}{c}$$

$$\frac{\Pi(x-y)}{\partial xy}$$

Volume of space interval to all exist area is integrate rout in universe of shape, this space means fo no exist loop on entropy of energy's rout.

$$||\int f(x)||^2 \to \int \pi r^2 dx \cong V(\tau)$$

This equation is part of summulate on entropy formula.

$$\frac{\int |f(x)|^2}{f(x)} dx$$

$$V(\tau) \to mesh$$

$$\int \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} dv(\tau)$$

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}_{dx=v}$$

$$z_y = a_x + b_y + c_z$$

$$dz_y = d(z_y)$$

$$[f, f^{-1}] = ff^{-1} - f^{-1}f$$

Universe of extend space has non-integrate rout entropy in sufficient of mass in darkmatter, this reason belong for cohomology and heat equation concerned. This expanded mass match is darkmatter of extend. And these heat area consume is darkmatter begun to start big-ban system invite of universe.

$$V(\tau) = \int \tau(q)^{-\frac{n}{2}} \exp(-\frac{1}{\sqrt{2\tau(q)}} L(x) dx) + O(N^{-1})$$

$$\frac{1}{\tau} (\frac{N}{2} + \tau(2\Delta f - |\nabla f|^2 + R) + f) \bmod N^{-1}$$

$$\Delta E = -2(T - t) |R_{ij} + \nabla_i \nabla_j f - \frac{1}{2(T - t)} g_{ij}|^2$$

$$\frac{d}{df} F = \frac{2\int (R + \nabla_i \nabla_j f)^2}{-(R + \Delta f)} dm$$

$$\frac{d}{dt} g_{ij}(t) = -2R_{ij}$$

$$dx = (g_{\mu\nu}(x)^2 dx^2 - g_{\mu\nu}(x) dx g_{\mu\nu})^{\frac{1}{2}}$$

$$ds^{2} = -N(r)^{2}dt^{2} + \psi^{2}(r)(dr^{2} + r^{2}d\theta^{2})$$

$$f_{z} = \int \left[\sqrt{\begin{pmatrix} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \end{pmatrix}} \circ \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ y_{1} & y_{2} & y_{3} \end{pmatrix} \right] dxdydz$$

$$\sum_{n=0}^{\infty} a_{1}x^{1} + a_{2}x^{2} \dots a_{n-1}x^{n-1} \to \sum_{n=0}^{\infty} a_{n}x^{n} \to \alpha$$

$$f = n\nu\lambda, \lambda = \frac{x}{l}, \int dn\nu\lambda = f(x), xf(x) = F(x), [f(x)] = \nu h$$

8 Three manifold of dimension system worked with database

This universe built with fourth of dimension in add manifold constructed with being destructed from three manifold.

$$\mathcal{O}(x) = ([\nabla_i \nabla_j f(x)])'$$

$$\cong {}_n C_r(x)^n (y)^{n-r} \delta(x, y)$$

$$(\Box \psi)' = \nabla_i \nabla_j (\delta(x) \circ G(x))^{\mu \nu} \left(\frac{p}{c^3} \circ \frac{V}{S}\right)$$

$$F_t^m = \frac{1}{4} g_{ij}^2, x^{\frac{1}{2} + iy} = e^{x \log x}$$

$$S_m^{\mu \nu} \otimes S_n^{\mu \nu} = G_{\mu \nu} \times T^{\mu \nu}$$

This equation is gravity of surface quality, and this construct with sheap of manifold.

$$S_m^{\mu\nu} \otimes S_n^{\mu\nu} = -\frac{2R_{ij}}{V(\tau)} [D^2 \psi]$$

This equation also means that surface of parameters, and next equation is non-integral of routs theorem.

$$S_m^{\mu\nu} = \pi(\chi, x) \otimes h_{\mu\nu}$$

$$\pi(\chi, x) = \int \exp[L(p, q)] d\psi$$

$$ds^2 = e^{-2\pi T|\phi|} [\eta + \bar{h}_{\mu\nu}] dx^{\mu\nu} dx^{\mu\nu} + T^2 d^2 \psi$$

$$M_3 \bigotimes_{k=0}^{\infty} E_-^+ = \operatorname{rot}(\operatorname{div} E, E_1)$$

$$= m(x), \frac{P^{2n}}{M_3} = H_3(M_1)$$

These equation is conclude with dimension of parameter resolved for non-metric of category theorem. Gravity of surface in space mechanism is that the parameter become with metric, this result consruct with entropy of metric.

These equation resulted with resolved of zeta function built on D-brane of surface in fourth of power.

$$\exists [R + |\nabla f|^2]^{\frac{1}{2} + iy} = \int \exp[L(p, q)] d\psi$$
$$= \exists [R + |\nabla f|^2]^{\frac{1}{2} + iy} \otimes \int \exp[L(p, q)] d\psi + N \operatorname{mod}(e^{x \log x})$$
$$= \mathcal{O}(\psi)$$

9 Particle with each of quarks connected from being stimulate with gravity and antigravity into Artificial Intelligence

This equation conclude with middle particle equation in quarks operator, and module conjecture excluded. $\frac{d}{dt}g_{ij}(t) = -2R_{ij}, \frac{P^{2n}}{M_3} = H_3(M_1), H_3(M_1) = \pi(\chi, x) \otimes h_{\mu\nu}$ This equation built with quarks emerged with supersymmetry field of theorem. And also this equation means with space of curvature parameters.

$$S_{m}^{\mu\nu} \times S_{n}^{\mu\nu} = [D^{2}\psi], S_{m}^{\mu\nu} \times S_{n}^{\mu\nu} = \ker f / \operatorname{im} f, S_{m}^{\mu\nu} \otimes S_{n}^{\mu\nu} = m(x)[D^{2}\psi], -\frac{2R_{ij}}{V(\tau)} = f^{-1}xf(x)$$

$$f_{z} = \int \left[\sqrt{\begin{pmatrix} x & y & z \\ u & v & w \end{pmatrix}} \circ \begin{pmatrix} x & y & z \\ u & v & w \end{pmatrix} \right] dxdydz, \to f_{z}^{\frac{1}{2}} \to (0,1) \cdot (0,1) = -1, i = \sqrt{-1}$$

This equation operate with quarks stimulated in Higgs field.

$$\begin{split} \left(x,y,z\right)^2 &= (x,y,z)\cdot(x,y,z) \to -1 \\ \mathcal{O}(x) &= \nabla_i \nabla_j \int e^{\frac{2}{m}\sin\theta\cos\theta} \times \frac{N\mathrm{mod}(e^{x\log x})}{\mathrm{O}(x)(x+\Delta|f|^2)^{\frac{1}{2}}} \\ & x\Gamma(x) = 2\int |\sin 2\theta|^2 d\theta, \\ \mathcal{O}(x) &= m(x)[D^2\psi] \end{split}$$

$$\lim_{\theta \to 0} \frac{1}{\theta} \begin{pmatrix} \sin\theta \\ \cos\theta \end{pmatrix} \begin{pmatrix} \theta & 1 \\ 1 & \theta \end{pmatrix} \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, f^{-1}(x)xf(x) = I_m', I_m' = [1,0] \times [0,1] \end{split}$$

This equation means that imaginary pole is universe and other dimension each cover with one geometry, and this power remind imaginary pole of antigravity.

$$i^{2} = (0, 1) \cdot (0, 1), |a||b|\cos\theta = -1, E = \operatorname{div}(E, E_{1})$$
$$\left(\frac{\{f, g\}}{[f, g]}\right)' = i^{2}, E = mc^{2}, I' = i^{2}$$

This fermison of element decide with gravity of reflected for antigravity of power in average and gravity of mass, This equals with differential metric to emerge with creature of existing materials.

These equation deconstructed with mesh emerged in singularity resolved into vector and norm parameters.

$$\mathcal{O}(x) = ||\nabla \int [\nabla_i \nabla_j f \circ g(x)]^{\frac{1}{2} + iy}||, \partial r^n ||\nabla||^2 \to \nabla_i \nabla_j ||\vec{v}||^2$$

 $\nabla^2 \phi$ is constructed with module conjecture excluded.

$$\nabla^2 \phi = 8\pi G \left(\frac{p}{c^3} + \frac{V}{S} \right)$$

Reflected equation concern with differential operator in metric, sine and cosine function also rotate of differential operator in metric. Weil's theorem concern with this calcurate in these equation process.

$$(\log x^{\frac{1}{2}})' = \frac{1}{2} \frac{1}{(x \log x)}, (\sin \theta)' = \cos \theta, (f_z)' = ie^{ix \log x}, \frac{d}{df} F = m(x)$$

$$\frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m = \frac{d}{df} \int \int \left(\frac{1}{(x \log x)^2} + \frac{1}{(y \log y)^{\frac{1}{2}}}\right) dm$$

$$\geq \frac{d}{df} \int \int \left(\frac{1}{(x \log x)^2 \circ (y \log y)^{\frac{1}{2}}}\right) dm$$

$$\geq 2h$$

Three dimension of manifold equals with three of sphere in this dimension. Plank metrics equals \hbar equation to integrate with three manifold in sphere of formula. These explain recognize with universe and other dimension of system in brane of topology theorem.

$$\frac{d}{df} \int \int \left(\frac{1}{(x \log x)^2 \circ (y \log y)^{\frac{1}{2}}} \right) dm \ge \hbar$$

$$y = x, xy = x^2, (\Box \psi)' = 8\pi G \left(\frac{p}{c^3} \circ \frac{V}{S} \right)$$

This equation built with other dimension cover with universe of space, then three dimension invite with fifth dimension out of these universe.

$$\Box \psi = \int \int \exp[8\pi G (\bar{h}_{\mu\nu} \circ \eta_{\mu})^{\nu}] dm d\psi, \sum a_k x^k = \frac{d}{df} \sum \sum \frac{1}{a_k^2 f^k} dx_k$$

$$\sum a_k f^k = \frac{d}{df} \sum \sum \frac{\zeta(s)}{a_k} dx_{k_m}, a_k^2 f^{\frac{1}{2}} \to \lim_{k \to 1} a_k f^k = \alpha$$

$$\mathcal{O}(x) = D^2 \psi \otimes h_{\mu\nu}, ds^2 = e^{-2\pi T |\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}] dx^{\mu} dx^{\nu} + T^2 d^2 \psi$$

$$f(x) + f(y) \ge 2\sqrt{f(x)f(y)}, \frac{1}{4} (f(x) + f(y))^2 \ge f(x) f(y)$$

$$T^{\mu\nu} = \left(\frac{p}{c^3} + \frac{V}{S}\right)^{-1}, E^+ = f^{-1}xf(x), E = mc^2$$

$$\mathcal{O}(x) = \Box \int \int \int \frac{(\nabla_i \nabla_j f \circ g(x))^2}{V(x)} dm$$

$$ds^2 = g_{\mu\nu}^2 d^2x + g_{\mu\nu} dx g_{\mu\nu}(x), E^+ = f^{-1}xf(x), \frac{V}{S} = AA^{-1}, AA^{-1} = E$$

$$\mathcal{O}(x) = \int \int \int f(x^3, y^3, z^3) dx dy dz, S(r) = \pi r^2, V(r) = 4\pi r^3$$

$$E^+_- = f(x) \cdot e^{-x \log x}, \sum_{k=0}^{\infty} a_k f^k = f(x) \cdot e^{-x \log x}$$

$$\frac{P^{2n}}{M_3} = E^+ - \phi, \frac{\zeta(x)}{\sum_{k=0}^{\infty} a_k x^k} = \mathcal{O}(x)$$

$$\mathcal{O}(N^{-1}) = \frac{1}{\mathcal{O}(x)}, \Box = \frac{8\pi G}{c^3} T^{\mu\nu}$$

$$\partial^2 f(\Box \psi) = -2\Box \int \int \int \frac{V}{S^2} dm, \frac{d}{dt} g_{ij}(t) = -2R_{ij}$$

$$E^+_- = e^{-2\pi T |\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}] dx^\mu dx^\nu + T^2 d^2 \psi$$

$$S_1^{mn} \otimes S_2^{mn} = D^2 \psi \otimes h_{\mu\nu}, S_m^{\mu\nu} \otimes S_n^{\mu\nu} = \int [D^2 \psi] dm$$

$$= \nabla_i \nabla_j \int f(x) dm, h = \frac{p}{mv}, h\lambda = f, f\lambda = h\nu$$

D-brane for constructed of sheap of theorem in non-certain mechanism, also particle and wave of duality element in D-brane.

$$||ds^2|| = S_m^{\mu\nu} \otimes S_n^{\mu\nu}, E_-^+ = f^{-1}(x)xf(x)$$

$$R^+ \subset C_-^+, \nabla R^+ \to \bigoplus Q_-^+$$

Complex of group in this manifold, and finite of group decomposite theorem, add group also.

$$\nabla_i \nabla_j R_-^+ = \bigoplus \nabla Q_-^+$$

Duality of differential manifold, then this resulted with zeta function.

$$M_1 = \frac{R_3^+}{E_-^+} - \{\phi\}, M_3 \cong M_2, M_3 \cong M_1$$

World line in one of manifold.

$$H_3(\Pi) = Z_1 \oplus Z_1, H_3(M_1) = 0$$

Singularity of zero dimension. Lens space in three manifold.

$$ds^{2} = e^{-2\pi T|\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^{2} d^{2}\psi$$

Fifth dimension of manifold. And this constructed with abel manifold.

$$\nabla \psi^2 = 8\pi G \left(\frac{p}{c^3} + \frac{V}{S} \right)$$

These system flow to build with three dimension of energy.

$$(\partial \gamma^n + m^2) \cdot \psi = \int [D^2 \psi \otimes h_{\mu\nu}] dm$$
$$= 0$$

Complex of connected of element in fifth dimension of equation.

$$\Box = \pi(\chi, x) \otimes h_{\mu\nu}$$
$$= D^2 \psi \otimes h_{\mu\nu}$$

Fundamental group in gravity of space. And this stimate with D-brane of entropy.

$$\int [D^2 \psi] dm = \pi(M_1), H_n(m_1) = D^2 \psi - \pi(\chi, x)$$
$$= \ker f / \operatorname{im} f$$

Homology of non-entropy.

$$\int Dq \exp[L(x)] d\psi + O(N^1) = \pi(\chi, x) \otimes h_{\mu\nu}$$

Integral of rout entropy.

$$=D^2\psi\otimes h_{\mu\nu}$$

$$\lim_{x \to 1} \sum_{k=0}^{\infty} \frac{\zeta(x)}{a_k f^k} = \int ||[D^2 \psi \otimes h_{\mu\nu}]|| dm$$

Norm space.

$$\nabla \psi^2 = \Box \int \int \int \frac{V}{S^2} dm$$

$$\mathcal{O}(x) = D^2 \psi \otimes h_{\mu\nu}$$

These operators accept with level of each scals.

$$dx < \partial x < \nabla \psi < \Box v$$

$$\oplus < \sum < \otimes < \int < \wedge$$

$$(\delta \psi(x))^2 = \int \int \int \frac{V(x)}{S^2} dm, \, \delta \psi(x) = \left(\int \int \int \frac{V(x)}{S^2} dm \right)^{\frac{1}{2}}$$

$$\nabla \psi^2 = -4R \int \delta(V \cdot S^{-3}) dm$$

$$\nabla \psi = 2R\zeta(s)i$$

$$\sum_{k=0}^{\infty} \frac{a_k x^k}{m dx} f^k(x) = \frac{m}{n!} f^n(x)$$

$$= \frac{(\zeta(s))^k}{df} m(x), \, (\delta(x))^{\frac{1}{2}} = \left(\frac{x \log x}{x^n} \right)^n$$

$$\mathcal{O}(x) = \frac{\int [D^2 \psi \otimes h_{\mu\nu}] dm}{e^{x \log x}}$$

$$\mathcal{O}(x) = \frac{V(x)}{\int [D^2 \psi \otimes h_{\mu\nu}] dm}$$

Quantum effective equation is lowest of light in structure of constant. These resulted means with plank scals of universe in atom element.

$$M_3 = e^{x \log x}, x^{\frac{1}{2} + iy} = e^{x \log x}, (x) = \frac{M_3}{e^{x \log x}}$$
$$= nE_x$$

These equation means that lowest energy equals with all of materials have own energy. Zeta function have with plank energy own element, quantum effective theorem and physics energy also equals with plank energy of potential levels.

$$\frac{V}{S^2} = \frac{p}{c^3}, h\nu \neq \frac{p}{mv}, E_1 = h\nu, E_2 = mc^2, E_1 \cong E_2$$

$$l = \sqrt{\frac{\hbar G}{c^3}}, \frac{\int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m}{\int \int \frac{1}{(x \log x)^2} dx_m} = \frac{1}{i}$$

Lowest of light in structures of constant is gravity and antigravity of metrics to built with zeta function. This result with the equation conclude with quota equation in Gauss operators.

$$ihc = G, hc = \frac{G}{i}, \frac{\frac{1}{2}}{\frac{1}{2}i} = \frac{\overrightarrow{v_1}}{\overrightarrow{v_2}}$$

$$\leq 1$$

$$A = BQ + R, ds^{2} = e^{-2\pi T|\psi|} [\eta_{\mu\nu} + \bar{h}_{\mu\nu}(x)] dx^{\mu} dx^{\nu} + T^{2} d^{2} \psi$$

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} + \kappa^2 (A^{\mu\nu})^2, \int \int e^{-x^2 - y^2} dx dy = \pi$$

$$\Gamma(x) = \int e^{-x} x^{1-t} dx$$
$$= \delta(x)\pi(x)f^{n}(x)$$

$$\frac{d}{df}F = \frac{d}{df} \int \int \frac{1}{(x \log x)^2} dx_m + \frac{d}{df} \int \int \frac{1}{(y \log y)^{\frac{1}{2}}} dy_m$$

Quota equation construct of piece in Gauss operator, abel manifold equals with each equation.

$$ds^2 = [T^2 d^2 \psi]$$

$$\mathcal{O}(x) = [x]$$

$$\nabla \psi^2 = 8\pi G \left(\frac{p}{c^3} \circ \frac{V}{S}\right)$$

Volume of space equals with plank scals.

$$\frac{pV}{S} = h$$

Summuate of manifold means with beta function to gamma function, equals with each equation.

$$\beta(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

$$\cong \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)}$$

 $\ker f/\mathrm{im}f \cong \mathrm{im}f/\ker f$

$$\bigoplus \nabla g(x) = [\nabla_i \nabla_j \int \nabla f(x) d\eta], \bigcup_{k=0}^{\infty} \left(\bigoplus \nabla f(x) \right) = \Box \int \int \int \nabla g(x) d\eta$$

Rich tensor equals of curvature of space in Gauss liner from differential equation of operators.

$$a' = \sqrt{\frac{v}{1 - (\frac{v}{c})^2}}, F = ma'$$

Accessority put with force of differential operators.

$$\nabla f(x) = \int_{M} \Box \left(\bigoplus \nabla f(x) \right)^{n} dm$$

$$\Box = 2(T - t)|R_{ij} + \nabla \nabla f - \frac{1}{2(T - t)}|g_{ij}^{2}$$

$$(\Box + m) \cdot \psi = 0$$

$$\Box \times \Box = (\Box + m^{2}) \cdot \psi, (\partial \gamma^{n} + \delta \psi) \cdot \psi = 0$$

$$\nabla_{i} \nabla_{j} \int \int_{M} \nabla f(t) dt = \Box \left(\bigcup_{k=0}^{\infty} \bigoplus \nabla g(x) d\eta \right)$$

Dalanverle equation of operator equals with summuate of category theorem.

$$\int_{M} (l \times l) dm = \sum l \oplus l d\eta$$

Topology of brane equals with string theorem, verisity of force with add group.

$$= [D^2 \psi \otimes h_{\mu\nu}]^{\frac{1}{2} + iy}$$
$$= H_3(M_1)$$

$$y = \nabla_i \nabla_j \int \nabla g(x) dx, y' - y + \frac{d}{dx} z + [n] = 0$$

Equals of group theorem is element of equals with differential element.

$$z = \cos x + i \sin x$$
$$= e^{i\theta}$$

Imaginary number emerge with Artificial Intelligence.

These equation resulted with prime theorem equals from differential equation in fields of theorem.

Imaginary pole of theorem and sheap of duality manifold. Duality of differential and integrate equation. Summuate of manifold and possibility of differential structure. Eight of differential structure is stimulate with D-brane recreated of operators. Differential and integrate of operators is emerged with summuated of space.

$$T^{\mu\nu} = -2R_{ij}, \frac{d}{dt}g_{ij}(t) = -2R_{ij}$$

$$G_{\mu\nu} = R_{\mu\nu}T^{\mu\nu}, \sigma(x) \oplus \delta(x) = (E_n^+ \times H_m)$$

$$G_{\mu\nu} = \left[\frac{\partial}{\partial f}R_{ij}\right]^2, \delta(x) \cdot V(x) = \lim_{n \to 1} \delta(x)$$

$$\lim_{n \to \infty} \operatorname{mesh}V(x) = \frac{m}{m+1}$$

$$V(x) = \sigma \cdot S^2(x), \int \int \int \frac{V(x)}{S^2(x)} dm = [D^2\psi \otimes h_{\mu\nu}]$$

$$g(x)|_{\delta(x,y)} = \frac{d}{dt}g_{ij}(t), \sigma(x,y) \cdot g(x)|_{\delta(x,y)} = R_{ij}|_{\sigma(x,y)}$$

$$= \int R_{ij}^{a(x-y)^n+r^n}$$

$$(ux + vy + wz)/\Gamma$$

$$= \int R_{ij}^{(x-u)(y-v)(z-w)} dV$$

$$(\Box + m) \cdot \psi = 0, E = mc^2, \frac{\partial}{\partial f} \Box \psi = 4\pi G\rho$$

$$(\partial \gamma^n + m) \cdot \psi = 0, E = mc^2 - \frac{1}{2}mv^2$$

$$= (-\frac{1}{2}\left(\frac{v}{c}\right)^2 + m) \cdot c^2$$

$$= (-\frac{1}{2}a^2 + m) \cdot c^2, F = ma, \int adx = \frac{1}{2}a^2 + C$$

$$T^{\mu\nu} = -\frac{1}{2}a^2, (e^{i\theta})' = ie^{i\theta}$$