HacklA'21

Team 1 28/03/2021

Introduction

olivier

philippe

Welcome to your smart home olivier dm!

Detection tools	Notifications
Fire detection	SMS
Object+Fire detection	TEAMS Save config
Confidence level: 0.5	Save coming
Activated classes: echarpe, cle, lunettes, telephone, telec ommande, portefeuille, fire, smoke	Reload config
Notifications: fire, smoke	Edit config
Show your emotions	Log out
Detected movements	

Authentification par reconnaissance faciale

Modèle « Face »

- Modèle FaceNet entrainé avec la base de données constituée des visages de l'équipe.
- Bonne performance obtenue...
- ...après plusieurs itérations pour constituer une base d'images de bonne qualité (taille des fichiers, orientation, qualité du rognage).
- ... et que les problèmes de versions de modules Python ont été fixés.
- Bon exemple pour illustrer que la préparation des données est importante et peut prendre plus de temps que l'apprentissage du modèle.

Modèle « Fire »

- Désavantage: entraîné sur feu de forêt
 - Beaucoup de faux négatifs

- Solution implémentée:
 - cv::BackgroundSubtractorMOG2
 - Prediction seulement sur la partie
 qui reste (basé sur changements de pixel)
- Bonne prédiction mais délais supplémentaires

Caractéristiques	MobileNetV2
Taille du modèle en MB	42
Training Loss	0.0642
Training Accuracy	0.9763
Validation_Loss	0.0764
Validation Accuracy	0.9748
Temps (optionnel)	45 min
Test Loss	0.11404
Test_Accuracy	0.9598
	0.95714
Classement Kaggle	0.000
Erreur Kaggle (F1)	9/210

Modèle « Personal + Fire »

- Système embarqué: YOLOv5l 90MB
- Entrainé sur dataset fourni + fire and smoke dataset
 - YOLOV3 → YOLOV5 format
 - 20 images transparentes pour générer un set de 1000 images (sans flip et rotation ±20°)

- Performance Jetson: 10 FPS moyen détection
- Notification SMS et Teams

Modèle « Movement »

- Modèle utilisé avec ses poids pré-entrainés (système de checkpoint)
- Le move set de base ne contenait pas les mouvements souhaités dans le cadre d'une maison intelligente

- Enrichissement du modèle avec une base de données Kinetics700
- Définition des mouvements souhaités (chute d'une chaise, bâillement, ...)
- Résultats sont bons / entrainement dans des temps corrects pour les
 7 mouvements souhaités
- Performances sur la webcam très impactées (fine tuning possible)
- Intégration avec la Jetson Xavier compliquée → Conflit de librairies, manque de temps

QUESTIONS SLIDE

