

Interacción Terreno Estructura I Especialización en Ingeniería Geotécnica

Coeficiente de balasto

El coeficiente de balasto es una idealización, no es un parámetro físico medible en forma directa.

Por lo tanto en la practica es estimado en base a:

- Modulo elástico del suelo;
- Ensayos PLT;
- Correlaciones empíricas.

Coeficiente de balasto

ENSAYO DE CARGA EN PLACA

Profundidad:		Management of the Control of the Con	In a sile a set of
Profundidad:	6	metros	horizontal

Suelo	Placa 1	Placa 2	Descripción
ω%	28.1	31.8	humedad natural
ω,%	50	48	límite líquido
Ip%	19	17	índice de plasticidad
#200 %	>90	>90	pasa tamiz 200

Placa 1		Carga	Recarga	A [m ²]	0.07
δ_0	mm	-0.5	3.2	corrección de	e cero
K _i	MN/m ³	220	270	balasto inicia	al
Pult	KPa	1400	(=)	presión últim	a

Placa 2		Carga	Recarga	A [m ²]	0.07
δ_0	mm	-0.5	8.0	corrección de cero	
Ki	MN/m ³	200	220	balasto inicial	
Pult	KPa	1150	-	presión últim	na

 Zapatas cuadradas de ancho b en suelos cohesivos:

$$k = k_{30} \ 0.30/b$$

Zapatas cuadradas de ancho
 b en suelos granulares:

$$k = k_{30} \left(\frac{b + 0.30}{2 b} \right)^2$$

CUADRO 4.2.

VALORES DE K₃₀ PROPUESTOS
POR TERZAGHI

Suelo	K ₃₀ (Kp/cm ³)
Arena seca o húmeda —Suelta	0,64-1,92 (1,3)*
—Media —Compacta	1,92-9,60 (4,0) 9,60-32 (16,0)
Arena sumergida —Suelta —Media —Compacta	(0,8) (2,50) (10,0)
Arcilla $q_u = 1-2 \text{ Kp/cm}^2$ $q_u = 2-4 \text{ Kp/cm}^2$ $q_u > 4 \text{ Kp/cm}^2$	1,6-3,2 (2,5) 3,2-6,4 (5,0) > 6,4 (10)

CUADRO 4.3.

VALORES DE K₃₀ PROPUESTOS POR DIVERSOS AUTORES

Suelo	$K_{30}(Kp/cm^3)$
Arena fina de playa	1,0-1,5
Arena floja, seca o húmeda	1,0-3,0
Arena media, seca o húmeda	3,0-9,0
Arena compacta, seca o húmeda	9,0-20,0
Gravilla arenosa floja	4,0-8,0
Gravilla arenosa compacta	9,0-25,0
Grava arenosa floja	7,0-12,0
Grava arenosa compacta	12,0-30,0
Margas arcillosas	20,0-40,0
Rocas blandas o algo alteradas	30,0-500
Rocas sanas	800-30.000

Zapatas rectangulares de ancho
 b y largo l:

$$k' = \frac{2}{3} k \left(1 + \frac{b}{2l} \right)$$

^{*} Entre paréntesis los valores medios propuestos.

^(*) Al menos en los casos normales ya que el terreno puede presentar un comportamiento no lineal, fluencias plásticas, etc. no reproducibles con modelos sencillos.

Zapatas cuadradas de ancho b en suelos cohesivos:

$$k = k_{30} \ 0.30/b$$

Zapatas cuadradas de ancho b en suelos granulares:

$$k = k_{30} \left(\frac{b + 0.30}{2 b} \right)^2$$

Zapatas rectangulares de ancho b y largo l:

$$k' = \frac{2}{3} k \left(1 + \frac{b}{2l} \right)$$

CUADRO 4.2. VALORES DE K₃₀ PROPUESTOS POR TERZAGHI

Suelo	K_{30} (Kp/cm ³)
Arena seca o húmeda —Suelta —Media —Compacta	0,64-1,92 (1,3)* 1,92-9,60 (4,0) 9,60-32 (16,0)
Arena sumergida —Suelta —Media —Compacta	TABL
Arcilla $q_u = 1-2 \text{ Kp/cm}^2$ $q_u = 2-4 \text{ Kp/cm}^2$ $q_u > 4 \text{ Kp/cm}^2$	1,6- 3,2- react
* Entre paréntesis los valores me	dios propues Use va

CUADRO 4.3.

VALORES DE K₃₀ PROPUESTOS POR DIVERSOS AUTORES

Suelo	$K_{30}(Kp/cm^3)$
Arena fina de playa	1,0-1,5
Arena floja, seca o húmeda	1,0-3,0
Arena media, seca o húmeda	3,0-9,0
Arena compacta, seca o húmeda	9,0-20,0
Gravilla arenosa floja	4,0-8,0
Gravilla arenosa compacta	9,0-25,0

ABLE 9-1

lange of modulus of subgrade eaction $k_{ m s}$

se values as guide and for comparison when using approximate equations

Soil	k _s , kN/m ³ 4800–16 000	
Loose sand		
Medium dense sand	9600-80 000	
Dense sand	64 000-128 000	
Clayey medium dense sand	32 000-80 000	
Silty medium dense sand	24 000-48 000	
Clayey soil:		
$q_a \le 200 \text{ kPa}$	12 000-24 000	
$200 < q_a \le 800 \text{ kPa}$	24 000-48 000	
$q_a > 800 \text{ kPa}$	> 48 000	

Al menos en los casos normales ya fluencias plásticas, etc. no reproduc

(Codevilla & Sfriso (2011) Actualización de la información geotécnica de los suelos de la Ciudad de Buenos Aires)

Aproximación – Platea rígida

L/B	Flexible, β _r (promedio)	Rígido, βr
Circular	1,04	1,13
1	1,06	1,08
2	1,09	1,10
3	1,13	1,15
5	1,22	1,24
10	1,41	1,41

$$\delta = \frac{1 - \nu_S^2}{E_S} \frac{q \sqrt{A}}{\beta_Z}$$

 $k_0=rac{q}{\delta}=rac{E_S}{1-v_S^2}rac{eta_Z}{\sqrt{A}}$ (k_0 es función de la forma y rigidez de la platea)

Para placas rígidas circulares o cuadradas, $k = k_0 B$

Aproximación de Vesic (1961)

La aproximación de Vesic está basada en la solución de Biot para una viga infinita sobre un medio continuo elástico.

$$k_0 = \frac{0.65 E_S}{b (1 - v_S)^2} \left(\frac{E_S b^4}{E_h J}\right)^{1/12}$$

Vigas sobre fundación elástica Teoría de Winkler (1948)

- La respuesta del suelo es considerada como reacción de resortes individuales;
- Se ignora la transferencia de corte y distribución de las cargas;
- Los resortes están definidos por un parámetro denominado coeficiente de reacción o coeficiente de balasto, k. Este coeficiente no representa ninguna constante física.

Vigas sobre fundación elástica Teoría de Winkler (1948)

 Fundaciones rígidas: Igual patrón de desplazamientos en la fundación, pero muy distinta distribución de tensiones.

Vigas sobre fundación elástica Teoría de Winkler (1948)

 En fundaciones flexibles, se mantiene la distribución de presiones, pero la distribución de desplazamientos resulta muy diferente.

 Conclusión: el modelo de Winkler no representa correctamente las distribuciones de presión y desplazamiento de forma conjunta. Sin embargo, permite una razonable aproximación para el diseño estructural.

Formulación analítica (Timoshenko)

 Hipótesis de Navier: Las secciones planas se mantienen perpendiculares a la fibra neutra.

$$\epsilon = -y \frac{d^2 \eta_{(x)}}{dx^2}$$

Momento flexor:

$$M = -\int \sigma y \, dA = E J \frac{d^2 \eta_{(x)}}{dx^2}$$

• Equilibrio de momentos:

$$Q = -\frac{dM}{dx}$$

Equilibrio vertical

$$dQ = k \eta_{(x)} dx + q dx$$

Formulación analítica (Timoshenko)

Modelo matemático

$$E J \frac{d^2 \eta_{(x)}}{dx^2} - M_{(x)} = 0$$

$$E J \frac{d^3 \eta_{(x)}}{dx^2} - Q_{(x)} = 0$$

$$E J \frac{d^4 \eta_{(x)}}{dx^2} - p_{(x)} + q_{(x)} = 0$$

• Winkler: $q_{(x)} = k \eta_{(x)}$

$$E J \frac{d^4 \eta_{(x)}}{dx^2} - p_{(x)} + k \eta_{(x)} = 0$$

Formulación analítica (Timoshenko)

• Winkler: $q_{(x)} = k \eta_{(x)}$

$$E J \frac{d^4 \eta_{(x)}}{dx^2} - p_{(x)} + k \eta_{(x)} = 0$$

Solución de la ecuación diferencial homogénea

$$\eta_{(x)} = e^{\beta x} (A \sin(\beta x) + B \cos(\beta x)) + e^{-\beta x} (C \sin(\beta x) + D \cos(\beta x))$$
$$\beta = \sqrt[4]{b k / 4 E J}$$

• Longitud característica: $L_0 = 1/\beta$

Viga infinita sobre fundación tipo Winkler EACULTAD DE INGENIERA sometida a una carga puntual

$$\eta_{(x)} = -\frac{P e^{-\beta x}}{8 E I \beta^3} (\cos \beta x + \sin \beta x)$$

Viga infinita sobre fundación tipo Winkler EACULTAD DE INGENIERA sometida a una carga puntual

Formulación de elementos finitos

Energía potencial total (Π) de un sistema elástico:

$$\Pi_{(u)} = U_{(u)} - \Omega_{(u)}$$

 $U_{(u)}$ es la energía de deformación

 $\Omega_{(u)}$ es la energía potencial de las fuerzas externas.

• El valor de u buscado es un extremo de $\Pi_{(u)}$. En particular, en el régimen elástico lineal este extremo representa un mínimo (principio de la energía potencial mínima).

$$\frac{d\Pi_{(u)}}{du} = 0$$
 ; $\frac{d^2\Pi_{(u)}}{du^2} > 0$

Elemento de viga sobre medio elástico .UBAfiuba

$$\frac{d\Pi_{(u)}}{du} = 0$$
 ; $\frac{d^2\Pi_{(u)}}{du^2} > 0$

$$\Pi_{(u)} = U_{(u)} - \Omega_{(u)} = U_{viga} + U_{resorte} - \Omega_{(u)}$$

Elemento de viga sobre medio elástico .UBA fiuba @

$$\frac{d\Pi_{(u)}}{du} = 0 \; ; \; \frac{d^2\Pi_{(u)}}{du^2} > 0$$

$$\Pi_{(u)} = U_{(u)} - \Omega_{(u)} = U_{viga} + U_{resorte} - \Omega_{(u)}$$

$$\frac{d\Pi_{(u)}}{d\{u^e\}} = \mathbf{0} \rightarrow \frac{d}{d\{u^e\}} \left(\mathbf{U}_{viga} + \mathbf{U}_{resorte} - \mathbf{\Omega}_{(u)} \right) = \mathbf{0}$$

$$\frac{d\mathbf{U}_{viga}}{d\{u^e\}} + \frac{d\mathbf{U}_{resorte}}{d\{u^e\}} - \frac{d\mathbf{\Omega}_{(u)}}{d\{u^e\}} = \mathbf{0}$$

$$[K^e] \cdot \{u^e\} + \frac{dU_{resorte}}{d\{u^e\}} = \{f^e\}$$

Elemento de viga sobre medio elástico .UBA fiuba

$$[K^e] \cdot \{u^e\} + \frac{dU_{resorte}}{d\{u^e\}} = \{f^e\}$$

$$[K^e] = \begin{bmatrix} \frac{12EJ}{L^3} & \frac{-6EJ}{L^2} & \frac{-12EJ}{L^3} & \frac{-6EJ}{L^2} \\ \frac{-6EJ}{L^2} & \frac{4EJ}{L} & \frac{6EJ}{L^2} & \frac{2EJ}{L} \\ \frac{-12EJ}{L^3} & \frac{6EJ}{L^2} & \frac{12EJ}{L^3} & \frac{6EJ}{L^2} \\ \frac{-6EJ}{L^2} & \frac{2EJ}{L} & \frac{6EJ}{L^2} & \frac{4EJ}{L} \end{bmatrix} ; \quad \{u^e\} = \begin{bmatrix} u_1 \\ \theta_1 \\ u_2 \\ \theta_2 \end{bmatrix}$$

Elemento de viga sobre medio elástico .UBAfiub

$$[K^e] \cdot \{u^e\} + \frac{dU_{resorte}}{d\{u^e\}} = \{f^e\}$$

$$U_{resorte} = \int_0^L \frac{1}{2} \cdot k \cdot y^2 \, dx = \frac{1}{2} \cdot k \cdot \int_0^L y^2 \, dx$$

Elemento de viga sobre medio elástico .UBAfiuba .

$$[K^e] \cdot \{u^e\} + \frac{dU_{resorte}}{d\{u^e\}} = \{f^e\}$$

Asumiendo como función aproximada para la deflexión de la viga un polinomio de tercer grado.

$$\begin{split} & \int_0^L y^2 \, dx \\ & = \frac{13 \, L}{35} \, u_1^2 + \frac{13 \, L}{35} \, u_2^2 + \frac{L^3}{105} \, \theta_1^2 + \frac{L^3}{105} \, \theta_2^2 + \frac{9 \, L}{35} \, u_1 \, u_2 - \frac{11 \, L^2}{105} \, u_1 \, \theta_1 + \frac{13 \, L^2}{210} \, u_1 \, \theta_2 \\ & + \dots - \frac{13 \, L^2}{210} \, u_2 \, \theta_1 + \frac{11 \, L^2}{105} \, u_2 \, \theta_2 - \frac{L^3}{70} \, \theta_1 \, \theta_2 \end{split}$$

Elemento de viga sobre medio elástico .UBA fiuba @

$$[K^e] \cdot \{u^e\} + k \cdot L \cdot [K_r^e] \cdot \{u^e\} = \{f^e\}$$

$$[K^e] = \begin{bmatrix} \frac{12EJ}{L^3} & \frac{-6EJ}{L^2} & \frac{-12EJ}{L^3} & \frac{-6EJ}{L^2} \\ \frac{-6EJ}{L^2} & \frac{4EJ}{L} & \frac{6EJ}{L^2} & \frac{2EJ}{L} \\ \frac{-12EJ}{L^3} & \frac{6EJ}{L^2} & \frac{12EJ}{L^3} & \frac{6EJ}{L^2} \\ \frac{-6EJ}{L^2} & \frac{2EJ}{L} & \frac{6EJ}{L^2} & \frac{4EJ}{L} \end{bmatrix}; [K_r^e] = \begin{bmatrix} \frac{13}{35} & -\frac{11L}{210} & \frac{9}{70} & \frac{13L}{420} & \frac{12L}{420} \\ \frac{9}{70} & \frac{13L}{420} & \frac{13}{35} & \frac{11L}{210} \\ \frac{9}{70} & \frac{13L}{420} & \frac{13}{35} & \frac{11L}{210} \\ \frac{13L}{420} & -\frac{L^2}{140} & \frac{11L}{210} & \frac{L^2}{105} \end{bmatrix}; \{u^e\} = \begin{bmatrix} u_1 \\ \theta_1 \\ u_2 \\ \theta_2 \end{bmatrix}$$

Otros modelos analíticos

 Modelo de Filonenko – Borodich: En este modelo el resorte k₁ de Winkler es conectado a una membrana delgada sometida a una tracción constante T.

$$q(x) = k_1 w(x, y) - T \frac{\partial^2 w}{\partial x^2}$$

• Modelo de Hetenyi: En este modelo el resorte k_1 llega a ser interactivo con una viga elástica embebida.

$$q(x) = k_1 w(x, y) - \frac{E J}{h} \frac{\partial^4 w}{\partial x^4}$$

Otros modelos analíticos

 Modelo de Pasternak: En este modelo se incorpora una interacción cortante entre los resortes elásticos de Winkler.

$$q(x) = k_1 w(x, y) - G \frac{\partial^2 w}{\partial x^2}$$

 Modelo de Vlasov-Leontiev: Método basado en una formulación del terreno basado en la teoría de la elasticidad y en el método variacional.

$$q(x) = k_1 w(x, y) - t \frac{\partial^2 w}{\partial x^2}$$

$$k_1 = \frac{(1 - \nu_s)E_s b}{(1 + \nu_s)(1 - 2\nu_s)} \int_0^H \left(\frac{dg}{dz}\right)^2 dz \quad ; \quad t = \frac{E_s b}{2(1 + \nu_s)} \int_0^H g^2 dz$$

Implementación Modelo Filonenko - Borodich

$$q(x) = k_1 w(x, y) - T \frac{\partial^2 w}{\partial x^2}$$

$$EA = 18 MN$$
$$T = 18 kN$$

Los métodos de diseño son función de la rigidez de la fundación.

Fundación rígida:

- Este método asume que la fundación es rígida y que la distribución de presiones de contacto es plana.
- No tiene en cuenta la redistribución de la presiones de contacto y supone que las columnas no se asientan de forma diferencial.

$$S_{col (max)}/S_{col (min)} < 1.20 \mid S_{col (med)} < 1.75/\lambda$$

$$\lambda = \sqrt[4]{\frac{k_v B}{4 E_f J}}$$

Los métodos de diseño son función de la rigidez de la fundación.

Fundación rígida:

$$q_{max} = \frac{R}{BL} \left(1 \pm \frac{6 e_x}{B} \pm \frac{6 e_y}{L} \right)$$

$$q_{(x,y)} = \frac{R}{A} \pm \frac{M_y}{J_y} x \pm \frac{M_x}{J_x} y$$

Los métodos de diseño son función de la rigidez de la fundación.

- Fundación rígida
- Fundación flexible:
 - Método flexible aproximado: Teoría de placas apoyadas sobre medios elásticos (ACI 1993).
 - Métodos numéricos: FDM, FEM, FGM

Los métodos de diseño son función de la rigidez de la fundación.

- Fundación rígida
- Fundación flexible:
 - Rigidez flexional:

$$D = \frac{E_f t^3}{12 \left(1 - \mu_f^2\right)}$$

- Radio de rigidez efectiva: $L' = \sqrt[4]{\frac{D}{k_s}}$

Los métodos de diseño son función de la rigidez de la fundación.

- Fundación rígida
- Fundación flexible

$$\begin{split} M_{r} &= -\frac{P}{4} \left(Z_{4} - \left(\frac{1 - \mu_{f}}{x} \right) Z'_{3} \right) \\ M_{t} &= -\frac{P}{4} \left(\mu_{f} Z_{4} - \left(\frac{1 - \mu_{f}}{x} \right) Z'_{3} \right) \\ \delta_{max} &= \frac{P (L')^{2}}{8 D} \end{split}$$

Para una platea flexible, el ancho *B* para el cálculo del coeficiente de reacción de la subrasante se adopta como el doble del radio elástico con lo que queda (Vesic)

$$k = \frac{0.516}{t} \sqrt[3]{\frac{E_S \left(1 - \nu_f^2\right)}{E_f \left(1 - \nu_S^2\right)^{9/13}} \frac{E_S}{1 - \nu_S^2}}$$

Central zone has $K_s = K_{s,A}$ Interior zone has $K_s = 1.5 K_{s,A}$ Exterior zone has $K_s = 2.0 K_{s,A}$

Modificar el coeficiente de reacción en el área de la platea es una simplificación que evita modelar la interacción existente debido a la transferencia por corte y permite utilizar la hipótesis de Winkler para el diseño.

- Objetivo: Comparar los resultados provenientes del método aproximado con los resultados obtenidos a partir del método de elementos finitos.
- Platea cuadrada de 0.20 m de espesor con 9 columnas uniformemente distribuidas: B = L = 10 m, $S_{col} = 5 m$
- Cargas en columnas (En servicio): $P_{col} = 50 \ ton$
- Condiciones del terreno de fundación: $E = 25 MPa \mid \mu = 0.20$

• Coef. de reacción:

$$k = \frac{0.516}{t} \sqrt[3]{\frac{E_S \left(1 - \nu_f^2\right)}{E_f \left(1 - \nu_S^2\right)^{9/13}}} \frac{E_S}{1 - \nu_S^2} = 6.83 \frac{MPa}{m}$$

• Coef. de rigidez:

$$\lambda = \sqrt[4]{\frac{k_v B}{4 E_f J}} = 0.683 \frac{1}{m}$$

$$S_{col\ (med)} < \frac{1.75}{\lambda} \to 5 \ m > \frac{1.75}{0.683} \ m \approx 2.6 \ m$$

(Fundación flexible)

Rigidez flexional:

$$D = \frac{E_f t^3}{12 (1 - \mu_f^2)} = 16.3 MN.m$$

• Radio de rigidez eff:

$$L' = \sqrt[4]{\frac{D}{k_s}} = 1.24 m$$

Momento radial:

$$M_r = -\frac{P}{4} \left(Z_4 - \left(\frac{1 - \mu_f}{x} \right) Z_3' \right)$$

Momento tangencial:

$$M_t = -\frac{P}{4} \left(\mu_f \, Z_4 - \left(\frac{1 - \mu_f}{x} \right) Z'_3 \right)$$

Rigidez flexional:

$$D = \frac{E_f t^3}{12 \left(1 - \mu_f^2\right)} = 16.3 \, MN.m$$

Radio de rigidez eff:

$$L' = \sqrt[4]{\frac{D}{k_s}} = 1.24 m$$

Momento radial:

$$M_r = -\frac{P}{4} \left(Z_4 - \left(\frac{1}{2} \right) \right)$$

Momento tangencial:
$$M_t = -\frac{P}{4} \left(\mu_f Z_4 - \frac{9}{8} \right)$$

Calculamos los momentos a 0.5 m del eje de la columna (x = r/L' = 0.40).

A 50 cm del eje de la columna central y con $\theta = 0$ tenemos:

• Momento radial: $M_{r(r=0.5m)} = 62.5 kN.m$

• Momento tangencial: $M_{t (r=0.5m)} = -27.5 \text{ kN.m}$

• Momento xx: $M_x = M_r \cdot \cos^2 \theta + M_t \cdot \sin^2 \theta = M_r$

• Momento yy: $M_y = M_r \cdot \sin^2 \theta + M_t \cdot \cos^2 \theta = M_t$

Ejemplo de fundación flexible (Solución numérica)

Ejemplo de aplicación (Palermo View)

Ejemplo de aplicación (Palermo View)

- Estimación del coeficiente de balasto y cálculo de presiones (p).
- Estimación de asentamientos.
 Solido semi-infinito elástico lineal (δ)
- 3. Cálculo de coeficiente de balasto ($\mathbf{k} = \mathbf{p}/\delta$)
- 4. Repetir pasos hasta lograr convergencia.

Predicción de comportamiento en servicio

Los modelos numéricos permiten efectuar predicciones ajustadas del comportamiento en servicio

- Secuencia constructiva
- Interacción terreno-estructura
- Compresión primaria y secundaria
- Fluctuación de napa freática
- •

Bien empleados, son más confiables que los métodos analíticos

Ejemplo (sofisticado) de diseño con métodos numéricos

Platea de fundación para un reactor atómico experimental

- Requisito de diseño: Asentamiento uniforme de edificios con cargas muy diferentes
- Riesgo geotécnico: Arcillas miocénicas (~12 m.a.) normalmente consolidadas 50 m bajo el plano de fundación

Respuesta: modelo numérico 3D con todas las etapas de construcción

