

Question 11. What is the concentration of sugar ($C_{12}H_{22}O_{11}$) in mol L⁻¹ if its 20 g are dissolved in enough water to make a final volume up to 2 L?

Answer:

Molar mass of sugar
$$(C_{12}H_{22}O_{11}) = 12 \times 12 + 22 \times 1 + 11 \times 16 = 342 \text{ g mol}^{-1}$$

No. of moles in 20 g of sugar =
$$\frac{20 \text{ g}}{342 \text{g mol}^{-1}}$$
 = 0.0585 mole

Molar concentration =
$$\frac{\text{Moles of solute}}{\text{Volume of sol in L}} = \frac{0.0585}{2 \text{ L}} = 0.0293 \text{ mol L}^{-1} = 0.0293 \text{ M}.$$

Question 12. If the density of methanol is 0.793 kgL^{-1} , what is its volume needed for making 2.5 L of its 0.25 M solution? Answer:

Molar mass of methanol (CH₃OH) = 32 g mol^{-1} = 0.032 kg mol^{-1}

Molarity of the given solution =
$$\frac{0.793 \text{ kg L}^{-1}}{0.032 \text{ kg mol}^{-1}} = 24.78 \text{ mol L}^{-1}$$

Applying
$$M_1 \times V_1 = M_2V_2$$
 (Given solution) (Solution to be prepared)
$$24.78 \times V_1 = 0.25 \times 2.5 \text{ L or } V_1 = 0.02522 \text{ L} = 25.22 \text{ mL}$$

Question 13. Pressure is determined as force per unit area of the surface. The S.I. unit of pressure, pascal, is as shown below:1 Pa = 1 Nm^{-2} .If mass of air at sea level is 1034 gcm⁻²,calculate the pressure in pascal.

Answer: Pressure is the force (i.e., weight) acting per unit area But weight = mg

$$\therefore \text{ Pressure = Weight per unit area} = \frac{1034 \text{ g} \times 9.8 \text{ m} \text{ s}^{-2}}{\text{cm}^2}$$

$$= \frac{1034 \text{ g} \times 9.8 \text{ ms}^{-2}}{\text{cm}^2} \times \frac{1 \text{kg}}{1000 \text{ g}} \times \frac{100 \text{ cm}}{1 \text{ m}} \times \frac{100 \text{ cm}}{1 \text{ m}} \times 1 \times \frac{1 \text{ N}}{\text{kg ms}^{-2}} \times \frac{1 \text{ Pa}}{1 \text{ Nm}^{-2}}$$

$$= 1.01332 \times 10^5 \text{ Pa.}$$

Question 14. What is the S.I. unit of mass?

Answer: S.I. unit of mass is kilogram (kg).

Question 15. Match the following prefixes with their multiples:

Prefixes	Multiples
(i) micro	10^6
(ii) deca	10^{9}
(iii) mega	10^{-6}
(iv) giga	10^{-15}
(v) femto	10

Answer:

micro = 10^{-6} , deca = 10, mega = 10^{6} , giga = 10^{9} , femto = 10^{-15} .

Question 16. What do you mean by significant figures? Answer: The digits in a properly recorded measurement are known as significant figures. It is also defined as follows. The total numbers of figures in a number including the last digit whose value is uncertain is called number of significant figures.

Question 17. A sample of drinking water was found to be severely contaminated with chloroform, CHCly supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).

- (i) Express this in percent by mass
- (ii) Determine the molality of chloroform in the water sample. Answer:
- (i) 15 ppm means 15 parts in million (106) parts

$$\therefore$$
 % by mass = $\frac{15}{10^6} \times 100 = 15 \times 10^{-4} = 1.5 \times 10^{-3} \%$

(ii) Molar mass of chloroform (CHCl₃) = $12 + 1 + 3 \times 35.5 = 119.5 \text{ g mol}^{-1}$ 100 g of the sample contain chloroform = 1.5×10^{-3} g

 \therefore 1000 g (1 kg) of the sample will contain chloroform = 1.5 × 10⁻² g

$$= \frac{1.5 \times 10^{-2}}{119.5} = 1.26 \times 10^{-4} \text{ mole}$$

:. Molality = 1.266×10^{-4} m.

Question 18. Express the following in scientific notation:

- (i) 0.0048
- (ii) 234,000
- (iii) 8008
- (iv) 500.0
- (v) 6.0012

Answer:

(i) 4.8×10^{-3}

(ii) 2.34×10^5 (iii) 8.008×10^3 (iv) 5.000×10^2

 $(v) 6.0012 \times 10^{0}$

Question 19. How many significant figures are present in the following?

- (i) 0.0025
- (ii) 208
- (iii) 5005
- (iv) 126,000
- (v) 500.0
- (vi) 2.0034

Answer:

(i) 2 (ii) 3 (iii) 4 (iv) 3 (v) 4 (vi) 5.

Question 20. Round up the following upto three significant figures:

- (i) 34.216
- (ii) 10.4107
- (iii) 0.04597
- (iv) 2808