Układy logiczne

Układy logiczne to dział *techniki cyfrowej*, w której układy cyfrowe konstruowane są na poziomie bramek logicznych i przerzutników.

kombinacyjne

sekwencyjne

Funkcja boolowska

Funkcją boolowską zmiennych binarnych x_1, \dots, x_n nazywamy odwzorowanie:

$$f: \mathbf{X} \to \mathbf{Y}$$

gdzie:

$$X \subseteq B^n = \{0,1\} \times \{0,1\} \times ... \times \{0,1\},$$
 $Y \subseteq B^m$

Jeżeli $X = B^n$, to funkcję nazywamy zupełną; w przeciwnym przypadku jest to funkcja niezupełna, zwana również funkcją nie w pełni określoną.

Reprezentacje:

Tablica prawdy

Formuła (wyrażenie) boolowskie

... i wiele innych sposobów opisu (np. BDD)

Tablica prawdy

tablicowe przedstawienie odwzorowania f

$$f: B^3 \rightarrow B$$
 $f(x_1, x_2, x_3)$

	X ₁	X ₂	X ₃	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	
7	1	1	1	1

Funkcja niezupełna

	X ₁	X ₂	X ₃	f
0	0	0	0	0
1	0	0	1	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
7	1	1	1	1

$$A_D = L(A_{NKB}) = \sum_{j=0}^{n-1} a_j 2^j$$

Uproszczony zapis tablicy prawdy

	X ₁	X ₂	X ₃	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

	X ₁	X ₂	X ₃	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	_
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	_
7	1	1	1	1

$$f = \Sigma(1, 3, 5, 6, 7)$$

$$f = \Sigma[(1, 3, 5, 7, (2, 6))]$$

Formuła boolowska

Formuła boolowska to wyrażenie, w którym zmienne boolowskie połączone są operatorami: + (OR),

• (AND), (NOT) \overline{X}

a b	a + b	a • b	a
0 0	0	0	1
0 1	1	0	1
10	1	0	0
11	1	1	0

Ogromne znaczenie formuł boolowskich ...

Operatory logiczne

mają swoje realizacje techniczne tzw. bramki logiczne

Realizacja funkcji f

$$f = \bar{x}_1 \bar{x}_2 x_3 + \bar{x}_1 x_2 x_3 + x_1 \bar{x}_2 x_3 + x_1 x_2 \bar{x}_3 + x_1 x_2 \bar{x}_3 + x_1 x_2 x_3$$

Inne operatory logiczne

$$y = \overline{a \cdot b}$$

$$y = a + b$$

$$y = a \oplus b = a\overline{b} + \overline{a}b$$

NAND (NOT-AND)

NOR (NOT-OR)

EXOR (Exclusive OR)

Prawa i własności algebry Boole'a

Własności stałych

$$a + 0 = a$$

$$a \cdot 0 = 0$$

$$a + 1 = 1$$

Własności negacji

$$a + \overline{a} = 1$$

$$\mathbf{a} \bullet \overline{\mathbf{a}} = \mathbf{0}$$

Idempotentność

$$a + a = a$$

$$a \cdot a = a$$

Przemienność

$$a + b = b + a$$

$$a \cdot b = b \cdot a$$

$$a + (b + c) = (a + b) + c$$

$$a \bullet (b \bullet c) = (a \bullet b) \bullet c$$

Rozdzielność

$$a + b \bullet c = (a + b) \bullet (a + c)$$

$$a \bullet (b + c) = a \bullet b + a \bullet c$$

Prawa i własności algebry Boole'a c.d.

Prawa De Morgana

$$y = \overline{a \bullet b} = \overline{a} + \overline{b}$$
 $y = \overline{a + b} = \overline{a} \bullet \overline{b}$

Podwójna negacja

$$\overline{a} = a$$

Transformacja formuły

$$f = \overline{x_1} \overline{x_2} x_3 + \overline{x_1} x_2 x_3 + x_1 \overline{x_2} x_3 + x_1 x_2 \overline{x_3} + x_1 x_2 x_3 =$$

$$= \overline{x_1} \overline{x_2} x_3 + \overline{x_1} x_2 x_3 + x_1 \overline{x_2} x_3 + x_1 x_2 \overline{x_3} + x_1 x_2 x_3 + x_1 x_2 x_3 =$$

$$= \overline{x_1} x_3 (\overline{x_2} + x_2) + x_1 x_3 (\overline{x_2} + x_2) + x_1 x_2 (\overline{x_3} + x_3) =$$

$$= \overline{x_1} x_3 + x_1 x_3 + x_1 x_2 =$$

$$= x_3 + x_1 x_2$$

$$= x_3 + x_1 x_2$$

Realizacja uproszczonej funkcji f

Minimalizacja funkcji boolowskich!!!

Od funkcji do układu

x ₁	
x ₂	
x ₃	

Sens fizyczny minimalizacji

	X ₁	X ₂	X ₃	f
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

... i typowe zastosowania

Tablica prawdy

S-boxy układów kryptograficznych

Układy arytmetyki rozproszonej algorytmów DSP

Konwertery kodów

Transkodery sygnałów transmisyjnych

. . .