This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) A liquid crystal alignment agent used in a method for alignment of liquid crystal molecules that form a liquid crystal alignment film comprising irradiating a thin alignment film formed on a substrate with polarized light or electron rays and aligning the liquid crystal molecules on the substrate without any rubbing treatment, said liquid crystal alignment agent comprising a polymer compound selected from the group consisting of polyurethane and a polyurea comprising a structure selected from the group consisting of the general formula-formulae (1) – (7) below

wherein,

R¹, R² and R³ are independently of each other hydrogen, alkyl, substituted alkyl, aryl or propargyl;

the polymer compound main chain has a number-average molecular weight of 1,000 – 300,000; and

said structure makes a direct bond with either a divalent or trivalent aromatic group at both ends or with a divalent or trivalent aromatic group at one end and a divalent or trivalent alicyclic hydrocarbon group at the other end.

2. (Previously Presented) The liquid crystal alignment agent according to Claim 1, wherein the main chain or a side chain of the polymer have no functional groups shown in the general formula (8) - (17) below

wherein R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are independently of each other hydrogen, halogen, alkyl, substituted alkyl, substituted alkoxy, carboxyl, alkoxycarbonyl or a cyano group as a substituent group that may lead to a dimerization reaction or an isomerization reaction by the irradiation with light or electron rays.

3-10. (Canceled)

11. (Currently Amended) A liquid crystal alignment agent according to Claim 10, Claim 1, wherein said polymer compound is polyurethane having a repeating unit comprising of the general formula (57) below

wherein, R^{48} and R^{49} are independently of each other selected from the radicals shown in the formula (58) - (69) below

wherein, R^{a16} and R^{a17} are independently of each other hydrogen, alkyl, substituted alkyl, aryl or propargyl.

- 12. (Canceled)
- 13. (Currently Amended) A liquid crystal alignment agent according to Claim 12, Claim 1, wherein said polymer compound is polyurea having a repeating unit of the general formula (70) below

 R^{50} and R^{51} are independently of each other selected from formula (58) - (69) above; and

R^{a18} - R^{a21} are independently of each other hydrogen alkyl, substituted alkyl, aryl or propargyl.

- 14. (Previously Presented) A liquid crystal device using the liquid crystal alignment agent according to Claim 1.
- 15. (Currently Amended) A liquid crystal alignment method characterized by the use of the liquid crystal alignment agent according to Claim 1, wherein <u>polarized</u> light or electron rays are irradiated over a thin polymer film formed on a surface of a substrate, achieving liquid crystal alignment without rubbing action.
- 16. (New) A liquid crystal alignment agent used in a method for alignment of liquid crystal molecules that form a liquid crystal alignment film comprising irradiating a thin alignment film formed on a substrate with polarized light or electron rays and aligning the liquid crystal molecules on the substrate without any rubbing treatment, said liquid crystal alignment agent comprising a polymer compound fulfilling all of the following conditions (A), (B), and (C):
- (A) the polymer compound has in the main chain thereof a structure selected from the group consisting of general formulae (1)-(7), the structure makes a direct bond with either a divalent or trivalent aromatic group at both ends or with a divalent or trivalent aromatic group at one end and a divalent or trivalent alicyclic hydrocarbon group at the other end:

R¹, R² and R³ are independently of each other hydrogen, alkyl, substituted alkyl, aryl or propargyl;

(B) the polymer compound is a polyamide having a repeating unit comprising of a general formula (18) or of a general formula (191) and (19b):

wherein,

 R^{10} , R^{11} , R^{12} and R^{13} are divalent organic radicals in the general formula (20) – (23)

$$(x^{1}-R^{14})_{m} = (x^{2}-R^{15})_{m} = (x^{3}-R^{16})_{m} = (x^{4}-R^{17})_{m} = (2 \ 2)$$

$$(x^{5}-R^{18})_{m} = (x^{6}-R^{19})_{m} = (2 \ 3)$$

 X^1 , X^2 , X^3 , X^4 , X^5 and X^6 are independently of each other single bond, O, CO₂, OCO, CH₂O, NHCO or CONH;

R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸ and R¹⁹ are independently of each other hydrogen, halogen, C₁-C₂₄ alkyl, C₁-C₂₄ alkyl containing fluorine, aryl, propargyl, phenyl or substituted phenyl;

 Y^{1} is O, S, CO, CO₂, SO₂, CH₂, NH, NHCO, Y^{2} -Ar¹-Y³, Y^{4} -(CH₂)n¹-Y⁵ or Y^{6} -Ar²-R²⁰-Ar³-Y⁷;

 Y^2 , Y^3 , Y^4 , Y^5 , Y^6 and Y^7 are independently of each other O, S, CO, CO₂, SO₂, CH₂, NH or NHCO;

n¹ is an integer of 1-10;

 R^{20} is C_1 - C_5 straight or branched lower alkylene, fluoroalkylene or alkylenedioxy; and Ar^1 , Ar^2 and Ar^3 are independently of each other divalent organic radical in general formula (24), (25) or (26) below

$$(\chi^{7}-R^{21})_{m}^{1} \qquad (\chi^{0}-R^{22})_{m}^{1} \qquad (\chi^{0}-R^{23})_{m}^{1}$$

$$(24) \qquad (25)$$

$$(\chi^{10}-R^{24})_{m}^{2} (\chi^{11}-R^{25})_{m}^{2}$$

$$(26)$$

 X^7 , X^8 , X^9 , X^{10} and X^{11} are independently of each other single bond, O, CO₂, OCO, CH₂O, NHCO or CONH;

 R^{21} , R^{22} , R^{23} , R^{24} and R^{25} are independently of each other hydrogen, halogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl containing fluorine, aryl, propargyl, phenyl or substituted phenyl;

m¹ is an integer of 1 - 4, and m² is an integer of 1 - 3;

with the proviso that when R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{21} , R^{22} , R^{23} , R^{24} and R^{25} are either hydrogen or halogen, then X^1 , X^2 , X^3 , X^4 , X^5 , X^6 , X^7 , X^8 , X^9 , X^{10} and X^{11} are single bond; and

R^{a1}, R^{a2}, R^{a3} and R^{a4} are independently of each other hydrogen, alkyl, substituted alkyl, aryl or propargyl; and

- (C) the polymer compound has a number-average molecular weight of 1,000 300,000.
- 17. (New) The liquid crystal alignment agent according to Claim 16, wherein R^{10} or R^{11} in the general formula (18) or R^{12} and R^{13} in the general formula (19a) and (19b) are independently of each other a radical selected from formulae (27) (41) below

18. (New) A liquid crystal alignment agent used in a method for alignment of liquid crystal molecules that form a liquid crystal alignment film comprising irradiating a thin alignment film formed on a substrate with polarized light or electron rays and aligning the liquid crystal molecules on the substrate without any rubbing treatment, said liquid crystal alignment agent comprising a polymer compound fulfilling all of the following conditions (A), (B), and (C):

(A) the polymer compound has in the main chain thereof a structure selected from the group consisting of general formulae (1)-(7), the structure makes a direct bond with either a divalent or trivalent aromatic group at both ends or with a divalent or trivalent

aromatic group at one end and a divalent or trivalent alicyclic hydrocarbon group at the other end:

wherein,

R¹, R² and R³ are independently of each other hydrogen, alkyl, substituted alkyl, aryl or propargyl;

(B) the polymer compound is a polyimide precursor or a polyimide obtained by chemical heat or imidization of the polyimide precursor, with a repeating unit comprising of a general formula (42a) or (42b):

R²⁶ is a tetravalent organic radical;

R²⁶' is a trivalent organic radical; and

 R^{27} is a divalent organic radical containing an amide radical bonded with a divalent or trivalent aromatic or alicyclic hydrocarbon group, wherein R^{27} in the general formula (42a) and (42b) above is selected from the general formula (43) – (48) below

wherein,

 X^{12} - X^{30} are independently of each other single bond, O, CO₂, OCO or CH₂O;

 R^{28} - R^{46} are independently of each other hydrogen, halogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkyl containing fluorine, aryl, propargyl, phenyl or substituted phenyl;

R^{a5} - R^{a15} are independently of each other hydrogen, alkyl, substituted alkyl, aryl or propargyl;

 Y^8 and Y^9 are O, S, SO₂, CH₂, NH, NHCO or CONH; and

m¹ is an integer of 1 - 4;

with the proviso that when R^{28} - R^{46} are hydrogen or halogen, then X^{12} - X^{30} are single bond; and

- (C) the polymer compound has a number-average molecular weight of 1,000 300,000.
- 19. (New) The liquid crystal alignment agent according to Claim 18, wherein the radical for R²⁷ in the general formulae (42a) and (42b) above is selected from the formulae (49) (56) below

wherein, R^{47} is halogen, C_1 - C_{24} alkyl, C_1 - C_{24} alkoxy or C_1 - C_{24} alkoxycarbonyl.

20. (New) The liquid crystal alignment agent according to Claim 16, wherein the main chain or a side chain of the polymer have no functional group of general formulae (8) – (17) below

wherein R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are independently of each other hydrogen, halogen, alkyl, substituted alkyl, substituted alkoxy, carboxyl, alkoxycarbonyl or a cyano group as a substituent group that may lead to a dimerization reaction or an isomerization reaction by the irradiation with light or electron rays.

21. (New) The liquid crystal alignment agent according to Claim 18, wherein the main chain or a side chain of the polymer have no functional group of general formulae (8) – (17) below

wherein R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are independently of each other hydrogen, halogen, alkyl, substituted alkyl, substituted alkoxy, carboxyl, alkoxycarbonyl or a cyano group as a substituent group that may lead to a dimerization reaction or an isomerization reaction by the irradiation with light or electron rays.

- 22. (New) A liquid crystal device using the liquid crystal alignment agent according to Claim 16.
- 23. (New) A liquid crystal device using the liquid crystal alignment agent according to Claim 18.

- 24. (New) A liquid crystal alignment method characterized by the use of the liquid crystal alignment agent according to Claim 16, wherein polarized light or electron rays are irradiated over a thin polymer film formed on a surface of a substrate, achieving liquid crystal alignment without rubbing action.
- 25. (New) A liquid crystal alignment method characterized by the use of the liquid crystal alignment agent according to Claim 16, wherein light or electron rays are irradiated over a thin polymer film formed on a surface of a substrate, achieving liquid crystal alignment without rubbing action.