Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 08

16 de Abril

MAT1106 - Introducción al Cálculo

- 1) Usaremos la notación $\{(x+y)_n\}_{n\in\mathbb{N}}$ para la sucesión definida como $(x+y)_n=x_n+y_n$, y $\{(xy)_n\}_{n\in\mathbb{N}}$ para la sucesión definida como $(xy)_n=x_n\cdot y_n$. Determine si las siguientes proposiciones son verdaderas o falsas. Si es verdadero demuestre, en caso contrario presente un contraejemplo:
 - a) Si $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ son crecientes, entonces $\{(x+y)_n\}_{n\in\mathbb{N}}$ es creciente.
 - b) Si $\{x_n\}_{n\in\mathbb{N}}, \{y_n\}_{n\in\mathbb{N}}$ son crecientes, entonces $\{(xy)_n\}_{n\in\mathbb{N}}$ es creciente.
 - c) Si $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ son monótonas, entonces $\{(x+y)_n\}_{n\in\mathbb{N}}$ es monótona.
 - d) Si $\{x_n\}_{n\in\mathbb{N}}$, $\{y_n\}_{n\in\mathbb{N}}$ son monótonas, entonces $\{(xy)_n\}_{n\in\mathbb{N}}$ es monótonas.
 - e) Si $\{x_n\}_{n\in\mathbb{N}}$ es monótona, entonces $\{(x^2)_n\}_{n\in\mathbb{N}}$ es creciente.
- 2) Sea $\{x_n\}_{n\in\mathbb{N}}=r^n$, para algún valor constante de r.
 - a) Muestre que $\{x_n\}_{n\in\mathbb{N}}$ no es monótona si r<0.
 - b) Muestre que $\{x_n\}_{n\in\mathbb{N}}$ es decreciente si $0 \le r \le 1$.
 - c) Muestre que $\{x_n\}_{n\in\mathbb{N}}$ es creciente si $1\leq r$.
 - d) Concluya que la sucesión $\{y_n\}_{n\in\mathbb{N}}=|r^n|$ (donde r es una constante) siempre es monótona, sin importar el valor de r.
 - e) Notar que tanto la parte b) como c) incluyen al 1 dentro del intervalo. ¿Por qué esto no genera problemas?
- 3) Sea $\{x_n\}_{n\in\mathbb{N}}$ definida de manera recursiva: $x_{n+1}=\sqrt{3x_n+4}$. ¿Es $\{x_n\}_{n\in\mathbb{N}}$ monótona si...
 - a) $...x_1 < 4$?
 - b) ... $-\frac{4}{3} < x_1 < 4$?

- c) $...x_1 > 4$?
- 4) Muestre que $\{x_n\}_{n\in\mathbb{N}} = \sqrt[n]{n!}$ es creciente. (Hint: Recuerde que si x > 0, entonces $\sqrt[a]{x} = \sqrt[ab]{x^b}$ con $a, b \in \mathbb{N}$.)
- 5) ¿Es $\{x_n\}_{n\in\mathbb{N}}$ definida como $x_n=\sqrt[n]{n}$ monótona? ¿Cual es la diferencia entre $\{x_n\}_{n\in\mathbb{N}}$ y $\{x_n\}_{n\geq 3}$?