A Green's Theorem for vector Functions of 3-variables

•	Green's theorem	relates		over	domain	
---	-----------------	---------	--	------	--------	--

to _____ over boundary ____

· Stoke's Theorem relates ____ over Surface ____

to ____ over boundary ___

Important:

Stoke's Theorem

- · S Oriented Piecewise-Smooth Surface
- · C = OS Simple, closed, piecewise-smooth, positive orientation
- · F vector field, components having continuous partials on Open region of TR3 containing S

Proof (special case): S: Z=g(x,y) with (xiy) ED = R2

 $C = \partial S \subseteq \mathbb{R}^3$ and $C_1 = \partial D \subseteq \mathbb{R}^2$

F= <P,O,R> CurlF=

R =

Souri F. ds =

ScF.dr=

Ex. Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = \langle -y^2, x, z^2 \rangle$ and C is the curve of intersection of y+z=2 and $x^2+y^2=1$; orient C to be counterclockwish when viewed from above.

Ex. Use Stoke's Theorem to compute the integral $\iint_S \text{curl} \vec{F} \cdot d\vec{S}$ where $\vec{F} = \langle xz, yz, xy \rangle$ and $S: x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 = 1$ above xy - plane.