Optimization Methods

0.1.0

Generated by Doxygen 1.8.17

1 Todo List	1
2 Namespace Index	3
2.1 Namespace List	. 3
3 Hierarchical Index	5
3.1 Class Hierarchy	. 5
4 Class Index	7
4.1 Class List	. 7
5 Namespace Documentation	9
5.1 om_common Namespace Reference	. 9
5.1.1 Detailed Description	
5.2 om_differentiation Namespace Reference	. 9
5.2.1 Detailed Description	. 10
5.3 om_differentiation_traits Namespace Reference	. 10
5.3.1 Detailed Description	
5.4 om_test_functions Namespace Reference	. 10
5.4.1 Detailed Description	
5.4.2 Function Documentation	
5.4.2.1 beale_function()	
5.4.2.2 create_rao_test_collection()	
5.4.2.3 fletcher_powell_helical_valley()	
5.4.2.4 freudenstein_roth_function()	
5.4.2.5 non linear function()	
5.4.2.6 powell_badly_scaled_function()	
5.4.2.7 powell_function()	
5.4.2.8 quadratic_function()	
5.4.2.9 rosenbrock_parabolic_valley()	
5.4.2.10 wood_function()	
5.4.3 Variable Documentation	
5.4.3.1 pi	
5.5 om_test_helpers Namespace Reference	
5.5.1 Detailed Description	
5.6 om_types Namespace Reference	
5.6.1 Detailed Description	
5.6.2 Typedef Documentation	
5.6.2.1 f_line_minimiser_t	
5.6.2.2 f_scalar_t	
5.6.2.3 f_vector_t	
5.6.2.4 matrix_t	
5.6.2.5 sptr_t	
5.6.2.6 vector_arg_t	

5.6.2.7 vector_const_t	20
5.6.2.8 vector_t	20
5.7 om_unconstrained_methods Namespace Reference	20
5.7.1 Detailed Description	21
5.7.2 Function Documentation	21
5.7.2.1 minimize() [1/2]	21
5.7.2.2 minimize() [2/2]	22
5.8 om_unconstrained_methods::om_conjugate_gradient Namespace Reference	22
5.8.1 Detailed Description	23
5.9 om_unconstrained_methods::om_line_methods Namespace Reference	23
5.9.1 Detailed Description	23
5.10 om_unconstrained_methods::om_quasi_newton Namespace Reference	23
5.10.1 Detailed Description	24
5.11 om_unconstrained_methods::om_steepest_descent Namespace Reference	24
5.11.1 Detailed Description	24
5.12 om_unconstrained_methods::om_zero_order Namespace Reference	24
5.12.1 Detailed Description	24
5.13 om_unconstrained_methods_traits Namespace Reference	25
5.13.1 Detailed Description	25
5.14 om_utilities Namespace Reference	25
5.14.1 Detailed Description	25
5.14.2 Function Documentation	26
5.14.2.1 fib()	26
5.14.2.2 iqerp()	26
5.14.2.3 lerp()	27
5.14.2.4 sign()	27
6 Class Documentation	29
6.1 om_unconstrained_methods::om_line_methods::brent_method< fp_type, typename > Class Tem-	
plate Reference	29
6.1.1 Detailed Description	29
6.1.2 Constructor & Destructor Documentation	30
6.1.2.1 brent_method() [1/2]	30
6.1.2.2 brent_method() [2/2]	30
6.1.3 Member Function Documentation	30
6.1.3.1 operator()()	30
6.1.3.2 operator=()	31
6.2 om_unconstrained_methods::om_quasi_newton::broyden_fletcher_goldfarb_shanno_method< fp_← type > Class Template Reference	31
6.2.1 Detailed Description	32
6.2.2 Constructor & Destructor Documentation	32
6.2.2.1 broyden_fletcher_goldfarb_shanno_method()	32
6.2.3 Member Function Documentation	33

6.2.3.1 minimize()	33
$\textbf{6.3 om_utilities::} cartesian_basis_vectors < \textit{fp_type}, \textit{typename} > Struct \ \textit{Template Reference} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	33
6.3.1 Detailed Description	33
$\textbf{6.4 om_differentiation} :: central_difference < order, \textit{fp_type}, \textit{typename} > Struct \ \textit{Template Reference} $	34
6.4.1 Detailed Description	34
$6.5 \ om_differentiation::central_difference < 0, \ fp_type > Struct \ Template \ Reference \qquad . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	34
$6.6 \ om_differentiation::central_difference < 1, \ fp_type > Struct \ Template \ Reference \qquad . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	35
$\textbf{6.7 om_differentiation_traits::central_difference_trait} < \textbf{fp_type} > \textbf{Struct Template Reference} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	35
6.7.1 Detailed Description	35
$\textbf{6.8 om_common} :: \textbf{closest_to} < \textbf{count}, \textbf{fp_type}, \textbf{typename}, \textbf{type} > \textbf{Struct Template Reference} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	35
6.8.1 Detailed Description	36
$\textbf{6.9 om_common} :: \textbf{closest_to} < \textbf{2}, \textbf{fp_type} > \textbf{Struct Template Reference} \ \dots $	36
$6.10 \ om_common::closest_to<3, fp_type>Struct \ Template \ Reference \\ \ \ldots \\ \ \ldots \\ \ \ldots \\ \ \ldots$	36
6.11 om_unconstrained_methods::om_conjugate_gradient::conjugate_gradient_base< fp_type, type-name > Class Template Reference	36
6.11.1 Detailed Description	37
6.11.2 Constructor & Destructor Documentation	37
6.11.2.1 conjugate_gradient_base() [1/2]	37
6.11.2.2 conjugate_gradient_base() [2/2]	38
6.11.3 Member Function Documentation	38
6.11.3.1 operator=()	38
6.11.3.2 set_arg_tolerance()	39
6.11.3.3 set_fun_tolerance()	39
6.11.3.4 set_grad_tolerance()	39
6.11.3.5 set_max_iterations()	40
6.12 om_unconstrained_methods::om_quasi_newton::davidon_fletcher_powell_method< fp_type > Class Template Reference	40
6.12.1 Detailed Description	41
6.12.2 Constructor & Destructor Documentation	41
6.12.2.1 davidon_fletcher_powell_method()	41
6.12.3 Member Function Documentation	41
6.12.3.1 minimize()	41
$6.13\ om_differentiation:: divided_difference < order,\ fp_type,\ typename,\ type > Struct\ Template\ Reference$	42
6.13.1 Detailed Description	42
$\textbf{6.14 om_differentiation::} \\ \textbf{difference} < \textbf{0, fp_type} > \\ \textbf{Struct Template Reference} \\ \ \dots \\ \dots \\$	43
$\textbf{6.15} \ om_differentiation::} \\ difference < 1, \\ \text{fp_type} > \\ Struct \ Template \ Reference \\ \dots \dots \dots$	43
$\textbf{6.16} \ om_differentiation::} \\ difference < 2, \\ \text{fp_type} > \\ Struct \ Template \ Reference \\ \dots \dots \dots$	43
6.17 om_unconstrained_methods::om_line_methods::fibonacci_method< fp_type, typename > Class Template Reference	43
6.17.1 Detailed Description	44
6.17.2 Constructor & Destructor Documentation	44
6.17.2.1 fibonacci_method() [1/2]	44
6.17.2.2 fibonacci_method() [2/2]	45

6.17.3 Member Function Documentation	45
6.17.3.1 operator()()	45
6.17.3.2 operator=()	45
6.18 om_unconstrained_methods::om_conjugate_gradient::fletcher_reeves_method< fp_type > Class Template Reference	46
6.18.1 Detailed Description	46
6.18.2 Constructor & Destructor Documentation	47
6.18.2.1 fletcher_reeves_method()	47
6.18.3 Member Function Documentation	47
6.18.3.1 minimize()	47
$6.19 \ om_differentiation:: forward_difference < order, fp_type, typename > Struct \ Template \ Reference . \ .$	48
6.19.1 Detailed Description	48
6.20 om_differentiation::forward_difference< 0, fp_type > Struct Template Reference	48
$6.21 \ om_differentiation:: forward_difference < 1, \ fp_type > Struct \ Template \ Reference \ \dots \dots \dots \dots$	49
$\textbf{6.22} \ om_differentiation_traits::} forward_difference_trait < fp_type > Struct\ Template\ Reference\ .\ .\ .\ .\ .$	49
6.22.1 Detailed Description	49
$\textbf{6.23} \ om_common:: furthest_from < count, \ fp_type, \ typename, \ type > Struct \ Template \ Reference \ . \ . \ . \ .$	49
6.23.1 Detailed Description	50
6.24 om_common::furthest_from< 2, fp_type $>$ Struct Template Reference	50
6.25 om_common::furthest_from $<$ 3, fp_type $>$ Struct Template Reference	50
6.26 om_unconstrained_methods::om_line_methods::golden_section_method< fp_type, typename > Class Template Reference	51
6.26.1 Detailed Description	51
6.26.2 Constructor & Destructor Documentation	51
6.26.2.1 golden_section_method() [1/2]	51
6.26.2.2 golden_section_method() [2/2]	52
6.26.3 Member Function Documentation	52
6.26.3.1 operator()()	52
6.26.3.2 operator=()	53
6.27 om_unconstrained_methods::om_conjugate_gradient::hestenes_stiefel_method< fp_type > Class Template Reference	53
6.27.1 Detailed Description	54
6.27.2 Constructor & Destructor Documentation	54
6.27.2.1 hestenes_stiefel_method()	54
6.27.3 Member Function Documentation	54
6.27.3.1 minimize()	54
$6.28 \ om_unconstrained_methods_traits:: is_zero_order_method < method > Struct \ Template \ Reference \ .$	55
6.29 om_unconstrained_methods_traits::is_zero_order_method< om_unconstrained_methods::om_	55
6.30 om_unconstrained_methods_traits::is_zero_order_method< om_unconstrained_methods::om_ conjugate_method<>> Struct Reference	56
6.31 om_common::max_arg< count, fp_type, typename, type > Struct Template Reference	56
6.31.1 Detailed Description	56

$6.32 \; om_common:: max_arg < 2, \; fp_type > Struct \; Template \; Reference \; \ldots \; $	56
6.33 om_common::max_arg < 3, fp_type > Struct Template Reference	57
6.34 om_common::min_arg< count, fp_type, typename, type $>$ Struct Template Reference	57
6.34.1 Detailed Description	57
6.35 om_common::min_arg < 2, fp_type > Struct Template Reference	58
6.36 om_common::min_arg < 3, fp_type > Struct Template Reference $\dots \dots \dots \dots$	58
$6.37 \; om_test_helpers::minimizer_helper < fp_type > Struct \; Template \; Reference \; \ldots \; \ldots \; \ldots \; .$	58
$6.38 \ om_unconstrained_methods::om_zero_order::nelder_mead_method < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type \ > \ Class \ Temporal constrained < \ fp_type$	•
Reference	
6.38.1 Detailed Description	
6.38.2 Constructor & Destructor Documentation	
6.38.2.1 nelder_mead_method() [1/2]	
6.38.2.2 nelder_mead_method() [2/2]	
6.38.3 Member Function Documentation	60
6.38.3.1 minimize()	60
6.38.3.2 operator=()	61
6.38.3.3 set_contraction_rho()	61
6.38.3.4 set_converge_tolerance()	61
6.38.3.5 set_expansion_rho()	62
6.38.3.6 set_max_iterations()	62
6.38.3.7 set_reflection_rho()	62
6.38.3.8 set_shrinkage_rho()	63
6.39 om_unconstrained_methods::om_conjugate_gradient::polak_ribiere_method< fp_type > Template Reference	
6.39.1 Detailed Description	63
6.39.2 Constructor & Destructor Documentation	64
6.39.2.1 polak_ribiere_method()	64
6.39.3 Member Function Documentation	64
6.39.3.1 minimize()	64
6.40 om_unconstrained_methods::om_zero_order::powell_conjugate_method< fp_type > Class	Tem-
plate Reference	
6.40.1 Detailed Description	65
6.40.2 Constructor & Destructor Documentation	66
6.40.2.1 powell_conjugate_method() [1/2]	66
6.40.2.2 powell_conjugate_method() [2/2]	66
6.40.3 Member Function Documentation	66
6.40.3.1 minimize()	66
6.40.3.2 operator=()	67
6.40.3.3 set_converge_tolerance()	67
6.40.3.4 set_max_iterations()	67
6.41 om_unconstrained_methods::om_line_methods::powell_method< fp_type, typename > Class plate Reference	
6.41.1 Detailed Description	68

6.41.2 Constructor & Destructor Documentation	. 69
6.41.2.1 powell_method() [1/3]	. 69
6.41.2.2 powell_method() [2/3]	. 69
6.41.2.3 powell_method() [3/3]	. 70
6.41.3 Member Function Documentation	. 70
6.41.3.1 operator()()	. 70
6.41.3.2 operator=()	. 70
6.42 om_unconstrained_methods::om_quasi_newton::quasi_newton_base< fp_type, typename > Class Template Reference	
6.42.1 Detailed Description	. 71
6.42.2 Constructor & Destructor Documentation	. 72
6.42.2.1 quasi_newton_base() [1/2]	. 72
6.42.2.2 quasi_newton_base() [2/2]	. 72
6.42.3 Member Function Documentation	. 73
6.42.3.1 operator=()	. 73
6.42.3.2 set_arg_tolerance()	. 73
6.42.3.3 set_fun_tolerance()	. 73
6.42.3.4 set_grad_tolerance()	. 74
6.42.3.5 set_max_iterations()	. 74
6.43 om_utilities::random_vectors_from_guess< fp_type, distribution, typename > Struct Template Reference	
6.43.1 Detailed Description	. 75
6.44 om_utilities::range< fp_type, typename > Class Template Reference	. 75
6.44.1 Detailed Description	. 76
6.44.2 Constructor & Destructor Documentation	. 76
6.44.2.1 range() [1/4]	. 76
6.44.2.2 range() [2/4]	. 76
6.44.2.3 range() [3/4]	. 77
	70
6.44.2.4 range() [4/4]	. 78
6.44.2.4 range() [4/4]	
	. 78
6.44.3 Member Function Documentation	. 78
6.44.3 Member Function Documentation	. 78 . 78 . 78
6.44.3 Member Function Documentation	. 78 . 78 . 78 . 79
6.44.3 Member Function Documentation	. 78 . 78 . 78 . 79 . 79
6.44.3 Member Function Documentation 6.44.3.1 high() 6.44.3.2 low() 6.44.3.3 low_high() 6.44.3.4 operator=() [1/2]	. 78 . 78 . 78 . 79 . 79
6.44.3 Member Function Documentation 6.44.3.1 high() 6.44.3.2 low() 6.44.3.3 low_high() 6.44.3.4 operator=() [1/2] 6.44.3.5 operator=() [2/2]	. 78 . 78 . 78 . 79 . 79 . 79 . 80
6.44.3 Member Function Documentation 6.44.3.1 high() 6.44.3.2 low() 6.44.3.3 low_high() 6.44.3.4 operator=() [1/2] 6.44.3.5 operator=() [2/2] 6.44.3.6 spread() 6.45 om_unconstrained_methods::om_steepest_descent::steepest_descent_method< fp_type > Class	. 78 . 78 . 78 . 79 . 79 . 79 . 80 . 80
6.44.3 Member Function Documentation 6.44.3.1 high() 6.44.3.2 low() 6.44.3.3 low_high() 6.44.3.4 operator=() [1/2] 6.44.3.5 operator=() [2/2] 6.44.3.6 spread() 6.45 om_unconstrained_methods::om_steepest_descent::steepest_descent_method< fp_type > Class Template Reference	. 78 . 78 . 78 . 79 . 79 . 79 . 80 s . 81
6.44.3 Member Function Documentation 6.44.3.1 high() 6.44.3.2 low() 6.44.3.3 low_high() 6.44.3.4 operator=() [1/2] 6.44.3.5 operator=() [2/2] 6.44.3.6 spread() 6.45 om_unconstrained_methods::om_steepest_descent::steepest_descent_method< fp_type > Class Template Reference 6.45.1 Detailed Description	. 78 . 78 . 78 . 79 . 79 . 79 . 80 . 80 . 81 . 82
6.44.3 Member Function Documentation 6.44.3.1 high() 6.44.3.2 low() 6.44.3.3 low_high() 6.44.3.4 operator=() [1/2] 6.44.3.5 operator=() [2/2] 6.44.3.6 spread() 6.45 om_unconstrained_methods::om_steepest_descent::steepest_descent_method< fp_type > Class Template Reference 6.45.1 Detailed Description 6.45.2 Constructor & Destructor Documentation	. 78 . 78 . 78 . 79 . 79 . 79 . 80 . 80 . 81 . 82

	vii
6.45.3.1 minimize()	83
6.45.3.2 operator=()	83
6.45.3.3 set_arg_tolerance()	83
6.45.3.4 set_fun_tolerance()	84
6.45.3.5 set_grad_tolerance()	84
6.45.3.6 set_max_iterations()	84

87

Index

Chapter 1

Todo List

```
Member om_test_functions::freudenstein_roth_function (vector_arg_t< fp_type > const &args)

Check if the minimiser and local_minimiser are correct!!
```

 $\label{lem:lember_om_test_functions::powell_badly_scaled_function} \begin{tabular}{ll} \textbf{Member om_test_functions::powell_badly_scaled_function} & \textbf{(vector_arg_t} < \textbf{fp_type} > \textbf{const \&args)} \\ \textbf{Check the validity of minimiser!!!} \end{tabular}$

2 Todo List

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

on_common	
Contains some commonly used measures	ç
om_differentiation	
Contains some numerical differentiation functors	9
om_differentiation_traits	
Contains traits tested for numerical differentiation	10
om_test_functions	
Some classical test functions (designed by Rao)	10
om_test_helpers	
Contains test helpers	17
om_types	
Contains some types used throughout the whole library	17
om_unconstrained_methods	
Contains some well-known methods for unconstrained optimisation	20
om_unconstrained_methods::om_conjugate_gradient	
Contains conjugate-gradient methods	22
om_unconstrained_methods::om_line_methods	
Contains one-dimensional line methods	23
om_unconstrained_methods::om_quasi_newton	
Contains Quasi-Newton methods	23
om_unconstrained_methods::om_steepest_descent	
Contains steepest-descent method	24
om_unconstrained_methods::om_zero_order	
Contains zero-order methods	24
om_unconstrained_methods_traits	
Contains some traits for minimize() global function	25
om_utilities	
Contains some commonly used utilities	25

4 Namespace Index

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

om_unconstrained_methods::om_line_methods::brent_method< fp_type, typename >	29
om_utilities::cartesian_basis_vectors< fp_type, typename >	33
om_differentiation::central_difference< order, fp_type, typename >	34
om_differentiation::central_difference< 0, fp_type >	34
om_differentiation::central_difference< 1, fp_type >	35
om_differentiation_traits::central_difference_trait< fp_type >	35
$om_common::closest_to < count, fp_type, typename, type > \ \dots \dots$	35
$om_common::closest_to<2, fp_type> \dots \dots$	36
$om_common::closest_to<3, fp_type> \dots \dots$	36
om_unconstrained_methods::om_conjugate_gradient::conjugate_gradient_base< fp_type, typename >	36
$om_unconstrained_methods::om_conjugate_gradient::conjugate_gradient_base < double >$	36
om_unconstrained_methods::om_conjugate_gradient::fletcher_reeves_method< fp_type >	46
om_unconstrained_methods::om_conjugate_gradient::hestenes_stiefel_method< fp_type >	53
$om_unconstrained_methods::om_conjugate_gradient::polak_ribiere_method < fp_type > \ \dots \ \dots \ .$	63
$om_differentiation:: divided_difference < order, fp_type, typename, type > \dots \dots \dots \dots \dots$	42
$om_differentiation:: divided_difference < 0, fp_type > \dots $	43
om_differentiation::divided_difference< 1, fp_type >	43
$om_differentiation:: divided_difference < 2, fp_type > \dots $	43
$om_unconstrained_methods::om_line_methods::fibonacci_method < fp_type, typename > . \ . \ . \ . \ . \ .$	43
om_differentiation::forward_difference< order, fp_type, typename >	48
$om_differentiation:: forward_difference < 0, fp_type > \dots $	48
om_differentiation::forward_difference< 1, fp_type >	49
om_differentiation_traits::forward_difference_trait< fp_type >	49
$om_common:: furthest_from < count, fp_type, typename, type > $	49
$om_common:: furthest_from < 2, fp_type > \dots $	50
$om_common:: furthest_from < 3, fp_type > \dots $	50
$om_unconstrained_methods::om_line_methods::golden_section_method < fp_type, typename > \ . \ . \ .$	51
om_unconstrained_methods_traits::is_zero_order_method< method >	55
$om_unconstrained_methods_traits:: is_zero_order_method < \\ om_unconstrained_methods:: om_zero_ \leftrightarrow \\$	
order::nelder_mead_method<>>	55
$om_unconstrained_methods_traits:: is_zero_order_method < \\ om_unconstrained_methods:: om_zero_ \leftrightarrow \\$	
order::powell_conjugate_method<>>	56
om_common::max_arg< count, fp_type, typename, type >	56
om_common::max_arg< 2, fp_type >	56
om common: may arg < 3 for type >	57

6 Hierarchical Index

om_common::min_arg< count, fp_type, typename, type >	57
om_common::min_arg< 2, fp_type >	58
om_common::min_arg< 3, fp_type >	58
om_test_helpers::minimizer_helper< fp_type >	58
om_unconstrained_methods::om_zero_order::nelder_mead_method< fp_type >	58
om_unconstrained_methods::om_zero_order::powell_conjugate_method $<$ fp_type $> \; \dots \dots \dots $.	65
om_unconstrained_methods::om_line_methods::powell_method $<$ fp_type, typename $> \ \dots \ \dots \ $	68
om_unconstrained_methods::om_quasi_newton::quasi_newton_base $<$ fp_type, typename $> \ \dots \ \dots \ $	71
om_unconstrained_methods::om_quasi_newton::quasi_newton_base $<$ double $> \ \ldots \ldots \ldots $	71
om_unconstrained_methods::om_quasi_newton::broyden_fletcher_goldfarb_shanno_method< fp_ ~	
type >	31
$om_unconstrained_methods::om_quasi_newton:: davidon_fletcher_powell_method < fp_type > \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	40
om_utilities::random_vectors_from_guess< fp_type, distribution, typename >	74
om_utilities::range< fp_type, typename >	75
om_utilities::range< double >	75
om unconstrained methods::om steepest descent::steepest descent method< fo type >	80

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

om_unconstrained_methods::om_line_methods::brent_method< fp_type, typename >
Brent method object
om_unconstrained_methods::om_quasi_newton::broyden_fletcher_goldfarb_shanno_method< fp_type >
Broyden-Fletcher-Goldfarb-Shanno method object
om_utilities::cartesian_basis_vectors< fp_type, typename >
Cartesian basis vectors functor
om_differentiation::central_difference< order, fp_type, typename >
Central difference functor
om_differentiation::central_difference< 0, fp_type >
om_differentiation::central_difference< 1, fp_type >
om_differentiation_traits::central_difference_trait< fp_type >
Central difference trait
om_common::closest_to< count, fp_type, typename, type >
Closest_to functor
om_common::closest_to< 2, fp_type >
om_common::closest_to< 3, fp_type >
om_unconstrained_methods::om_conjugate_gradient::conjugate_gradient_base< fp_type, typename >
Conjugate-gradient base class
om_unconstrained_methods::om_quasi_newton::davidon_fletcher_powell_method< fp_type >
Davidon-Fletcher-Powell method object
om_differentiation::divided_difference< order, fp_type, typename, type >
Divided difference functor
om_differentiation::divided_difference< 0, fp_type >
om_differentiation::divided_difference< 1, fp_type >
om_differentiation::divided_difference< 2, fp_type >
om_unconstrained_methods::om_line_methods::fibonacci_method< fp_type, typename >
Fibonacci method object
om_unconstrained_methods::om_conjugate_gradient::fletcher_reeves_method< fp_type >
Fletcher-Reeves method object
om_differentiation::forward_difference< order, fp_type, typename >
Forward difference functor
om_differentiation::forward_difference< 0, fp_type >
om_differentiation::forward_difference< 1, fp_type >
om_differentiation_traits::forward_difference_trait< fp_type >
Forward difference trait

8 Class Index

om_common::furthest_from< count, fp_type, typename, type >	
Furthest_from functor	49
$om_common:: furthest_from < 2, fp_type > \dots $	50
$om_common:: furthest_from < 3, fp_type > \dots $	50
om_unconstrained_methods::om_line_methods::golden_section_method< fp_type, typename >	
Golden section method object	51
om_unconstrained_methods::om_conjugate_gradient::hestenes_stiefel_method< fp_type >	
Hestenes-Stiefel method object	53
om_unconstrained_methods_traits::is_zero_order_method< method >	55
$om_unconstrained_methods_traits:: is_zero_order_method < om_unconstrained_methods:: om_zero_order: \\ 55$:nelder_mead_metho
$om_unconstrained_methods_traits:: is_zero_order_method < om_unconstrained_methods:: om_zero_order: \\ 56$:powell_conjugate_me
om_common::max_arg< count, fp_type, typename, type >	
Max_arg functor returns argument at which a function takes maximum value	56
$om_common::max_arg < 2, fp_type > \dots $	56
$om_common::max_arg < 3, fp_type > \dots $	57
om_common::min_arg< count, fp_type, typename, type >	
Min_arg functor retuns argument as which a function takes minimum value	57
$om_common::min_arg < 2, fp_type > \dots $	58
$om_common::min_arg < 3, \ fp_type > \ \ldots \ldots \ldots \ldots \ldots \ldots$	58
om_test_helpers::minimizer_helper< fp_type >	
Helper for optimisation methods	58
om_unconstrained_methods::om_zero_order::nelder_mead_method< fp_type >	
Nelder-Mead method object	58
om_unconstrained_methods::om_conjugate_gradient::polak_ribiere_method< fp_type >	
Polak-Ribiere method object	63
om_unconstrained_methods::om_zero_order::powell_conjugate_method< fp_type >	
Powell conjugate method object	65
om_unconstrained_methods::om_line_methods::powell_method< fp_type, typename >	
Powell method object	68
om_unconstrained_methods::om_quasi_newton::quasi_newton_base< fp_type, typename >	
Quasi-Newton base class	71
om_utilities::random_vectors_from_guess< fp_type, distribution, typename >	
Random vectors from guess functor	74
om_utilities::range< fp_type, typename >	
Represents a one dimensional range	75
om_unconstrained_methods::om_steepest_descent::steepest_descent_method< fp_type >	
Steepest descent method object	80

Chapter 5

Namespace Documentation

5.1 om_common Namespace Reference

Contains some commonly used measures.

Classes

```
    struct closest_to

     closest_to functor
struct closest_to< 2, fp_type >

 struct closest to < 3, fp type >

struct furthest_from
     furthest_from functor
struct furthest_from< 2, fp_type >
- struct furthest_from< 3, fp_type >

    struct max_arg

     max_arg functor returns argument at which a function takes maximum value
struct max_arg< 2, fp_type >
struct max_arg< 3, fp_type >

    struct min_arg

     min_arg functor retuns argument as which a function takes minimum value
struct min_arg< 2, fp_type >
struct min_arg< 3, fp_type >
```

5.1.1 Detailed Description

Contains some commonly used measures.

5.2 om_differentiation Namespace Reference

Contains some numerical differentiation functors.

Classes

```
    struct central_difference
        central difference functor
    struct central_difference< 0, fp_type >
    struct central_difference
    truct divided_difference
    Divided difference functor.
    struct divided_difference<0, fp_type >
    struct divided_difference<1, fp_type >
    struct divided_difference<2, fp_type >
    struct forward_difference
    forward difference functor
    struct forward_difference<0, fp_type >
    struct forward_difference<1, fp_type >
    struct forward_difference<1, fp_type >
```

5.2.1 Detailed Description

Contains some numerical differentiation functors.

5.3 om_differentiation_traits Namespace Reference

Contains traits tested for numerical differentiation.

Classes

```
    struct central_difference_trait
        central difference trait
    struct forward_difference_trait
        forward difference trait
```

5.3.1 Detailed Description

Contains traits tested for numerical differentiation.

5.4 om_test_functions Namespace Reference

Some classical test functions (designed by Rao)

template<typename fp_type >

Functions

```
fp type rosenbrock parabolic valley (vector arg t< fp type > const & args)
     Rosenbrock's parabolic valley test function.

    template<typename fp type >

  fp_type quadratic_function (vector_arg_t < fp_type > const &args)
     Quadratic test function.
template<typename fp_type >
  fp type powell function (vector arg t< fp type > const & args)
     Powell's quadratic test function.
template<typename fp_type >
  fp_type fletcher_powell_helical_valley (vector_arg_t< fp_type > const &args)
     Fletcher and Powell's helical valley test function.
template<typename fp_type >
  fp_type non_linear_function (vector_arg_t< fp_type > const &args)
     Non-linear test function of 3 variables.

    template<typename fp type >

  fp_type freudenstein_roth_function (vector_arg_t< fp_type > const &args)
     Freudenstein and Roth test function.
template<typename fp_type >
  fp_type powell_badly_scaled_function (vector_arg_t< fp_type > const &args)
     Powell's badly scaled test function.

    template<typename fp type >

  fp_type beale_function (vector_arg_t< fp_type > const &args)
     Beale's test function.
template<typename fp_type >
  fp_type wood_function (vector_arg_t< fp_type > const & args)
      Wood's test function.

    template<typename fp type >

  std::vector< sptr_t< minimizer_helper< fp_type >>> create_rao_test_collection ()
     Create a rao test collection object.
```

Variables

template<typename fp_type >
 constexpr fp_type pi {3.14159265359}
 Pi definition used in the Rao test functions.

5.4.1 Detailed Description

Some classical test functions (designed by Rao)

5.4.2 Function Documentation

5.4.2.1 beale function()

fp_type	
---------	--

Parameters

```
args
```

Returns

fp_type

5.4.2.2 create_rao_test_collection()

```
template<typename fp_type >
std::vector<sptr_t<minimizer_helper<fp_type> > om_test_functions::create_rao_test_collection
( )
```

Create a rao test collection object.

Template Parameters

```
fp_type | fp_type is a floating-point template parameter
```

Returns

```
std::vector<sptr_t<minimizer_helper<fp_type>>>
```

5.4.2.3 fletcher_powell_helical_valley()

```
\label{template} $$ $$ template< typename fp_type > $$ fp_type om_test_functions:: fletcher_powell_helical_valley ( $$ vector_arg_t< fp_type > const & args ) $$
```

Fletcher and Powell's helical valley test function.

initial guess = (-1.0,0.0,0.0), minimiser = (1.0,0.0,0.0)

Template Parameters

fp_type | fp_type is a floating-point template parameter

Parameters

args	function arguments
argo	i di lottori di garriorita

Returns

fp_type

5.4.2.4 freudenstein_roth_function()

Freudenstein and Roth test function.

initial guess = (0.5,-2.0), minimiser = (5.0,4.0), local_minimiser = (11.41..., -0.8968)

Todo Check if the minimiser and local_minimiser are correct!!

Template Parameters

fp_type	fp_type is a floating-point template parameter
---------	--

Parameters

```
args function arguments
```

Returns

fp_type

5.4.2.5 non_linear_function()

Non-linear test function of 3 variables.

initial guess = (0.0,1.0,2.0), minimiser = (1.0,1.0,1.0)

fp_type	fp_type is a floating-point template parameter
---------	--

Parameters

args function arguments	
-------------------------	--

Returns

fp_type

5.4.2.6 powell_badly_scaled_function()

Powell's badly scaled test function.

initial guess = (0.0,1.0), minimiser = $(1.098...*10^{\circ}-5,9.106...)$

Todo Check the validity of minimiser!!!

Template Parameters

```
fp_type
```

Parameters

args

Returns

fp_type

5.4.2.7 powell_function()

Powell's quadratic test function.

initial guess = (3.0,-1.0,0.0,1.0), minimiser = (0.0,0.0,0.0,0.0)

fp_type	fp_type is a floating-point template parameter
---------	--

Parameters

s

Returns

fp_type

5.4.2.8 quadratic_function()

Quadratic test function.

initial guess = (0.0,0.0), minimiser = (1.0,3.0)

Template Parameters

fp_type | fp_type is a floating-point template parameter

Parameters

```
args function arguments
```

Returns

fp_type

5.4.2.9 rosenbrock_parabolic_valley()

Rosenbrock's parabolic valley test function.

initial guess = (-1.2,1.0), minimiser = (1.0,1.0)

<pre>fp_type fp_type is a floating-point templat</pre>	e parameter
--	-------------

Parameters

```
args arguments of the function
```

Returns

fp_type

5.4.2.10 wood_function()

Wood's test function.

initial guess = (-3.0, -1.0, -3.0, -1.0), minimiser = (1.0, 1.0, 1.0, 1.0)

Template Parameters

fp_type | fp_type is a floation-point template parameter

Parameters

args | function arguments

Returns

fp_type

5.4.3 Variable Documentation

5.4.3.1 pi

```
template<typename fp_type >
constexpr fp_type om_test_functions::pi {3.14159265359} [constexpr]
```

Pi definition used in the Rao test functons.

fp_type | fp_type is a floating-point template parameter

5.5 om_test_helpers Namespace Reference

Contains test helpers.

Classes

struct minimizer_helper
 Helper for optimisation methods.

5.5.1 Detailed Description

Contains test helpers.

5.6 om_types Namespace Reference

Contains some types used throughout the whole library.

Typedefs

```
• template<typename T >
  using sptr_t = std::shared_ptr< T >
     Alias for shared ptr<T>
• template<typename T >
  using vector_arg_t = Eigen::Matrix< T, Eigen::Dynamic, 1 >
     Alias for 1D matrix = vector.
• template<std::size_t dimension, typename T >
  using vector_const_t = Eigen::Matrix< T, dimension, 1 >
     Alias for const dimension 1D matrix = vector<dimension>
• template<typename T >
  using vector_t = Eigen::Matrix< T, Eigen::Dynamic, 1 >
     Alias for dynamic 1D matrix = vector.
• template<typename T >
  using f_scalar_t = std::function < T(T) >
     One dimensional scalar function.
• template<typename T >
 using f_vector_t = std::function < T(vector_arg_t < T >)>
     One dimensional vector function.
  using matrix_t = Eigen::Matrix < T, Eigen::Dynamic, Eigen::Dynamic >
     Alias for Eigen matrix.
template<typename fp_type >
  using f line minimiser t = std::function < std::tuple < fp type, fp type, std::size t, std::size t > (f scalar t <
  fp_type > \&\&) >
     Line method functor type.
• template<typename T >
  using constraints_t = std::vector< std::pair< f_vector_t< T >, constraint_t > >
```

Enumerations

- enum one_dim_line_search_method { GoldenSection, Powell }
- enum constraint_t { Equality, LessThenZero }

5.6.1 Detailed Description

Contains some types used throughout the whole library.

5.6.2 Typedef Documentation

5.6.2.1 f_line_minimiser_t

```
template<typename fp_type >
using om_types::f_line_minimiser_t = typedef std::function<std::tuple<fp_type, fp_type, std
::size_t, std::size_t>( f_scalar_t<fp_type> &&)>
```

Line method functor type.

Template Parameters

```
fp_type
```

5.6.2.2 f_scalar_t

```
template<typename T >
using om_types::f_scalar_t = typedef std::function<T(T)>
```

One dimensional scalar function.

Template Parameters

5.6.2.3 f_vector_t

```
template<typename T >
using om_types::f_vector_t = typedef std::function<T(vector_arg_t<T>)>
```

One dimensional vector function.

Tem	nlate	Paran	neters

Т	

5.6.2.4 matrix_t

```
template<typename T >
using om_types::matrix_t = typedef Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>
```

Alias for Eigen matrix.

Template Parameters

5.6.2.5 sptr_t

```
template<typename T >
using om_types::sptr_t = typedef std::shared_ptr<T>
```

Alias for shared_ptr<T>

Template Parameters

5.6.2.6 vector_arg_t

```
template<typename T >
using om_types::vector_arg_t = typedef Eigen::Matrix<T, Eigen::Dynamic, 1>
```

Alias for 1D matrix = vector.

Template Parameters

5.6.2.7 vector_const_t

```
template<std::size_t dimension, typename T >
using om_types::vector_const_t = typedef Eigen::Matrix<T, dimension, 1>
```

Alias for const dimension 1D matrix = vector<dimension>

Template Parameters

dimension	
T	

5.6.2.8 vector_t

```
template<typename T >
using om_types::vector_t = typedef Eigen::Matrix<T, Eigen::Dynamic, 1>
```

Alias for dynamic 1D matrix = vector.

Template Parameters

5.7 om_unconstrained_methods Namespace Reference

Contains some well-known methods for unconstrained optimisation.

Namespaces

• om_conjugate_gradient

Contains conjugate-gradient methods.

• om_line_methods

Contains one-dimensional line methods.

om_quasi_newton

Contains Quasi-Newton methods.

• om_steepest_descent

Contains steepest-descent method.

• om_zero_order

Contains zero-order methods.

Functions

• template<typename fp_type = double, template< typename, typename > typename line_search_method = om_line_methods::brent ← __method>

```
std::tuple < fp\_type, fp\_type, std::size\_t, std::size\_t > \underbrace{minimize}_{t} (f\_scalar\_t < fp\_type > \& objective, range < fp\_type > const & range, fp\_type tolerance, std::size\_t const & max\_iters)
```

Minimize scalar objective function of one variable.

• template<typename fp_type = double, template< typename > typename method = om_quasi_newton::broyden_fletcher_goldfarb_← shanno_method, template< typename, typename > typename line_search_method = om_line_methods::golden_section_method, typename = typename std::enable_if< is_zero_order_method<method<fp_type>>::value>::type> std::tuple< vector_t< fp_type >, fp_type, std::size_t > minimize (f_vector_t< fp_type > &&objective, vector_arg_t< fp_type > const &init_guess, std::size_t const &max_iters, fp_type arg_tol=1e-4, fp_type grad_tol=1e-4, fp_type fun_tol=1e-4, range< fp_type > const &line_search_range=range< fp_type > (-1.0, 1.0))

Minimize scalar objective function of more then one variable (excluded zero-order methods)

5.7.1 Detailed Description

Contains some well-known methods for unconstrained optimisation.

5.7.2 Function Documentation

5.7.2.1 minimize() [1/2]

Minimize scalar objective function of one variable.

Template Parameters

fp_type	fp_type is a floating-point template parameter
line_search_method	is any of the one_dim methods

Parameters

objective	objective function of f_scalar_t type
range	range where to look for minimum
tolerance	tolerance of minimiser
max_iters	maximum number of iterations

Returns

```
std::tuple<fp_type, fp_type, std::size_t, std::size_t>
```

5.7.2.2 minimize() [2/2]

Minimize scalar objective function of more then one variable (excluded zero-order methods)

Zero-order methods (Nelder-Mead and Powell conjugate) are not allowed here (this is taken care of via std::enable ← _ if and is_zero_order_method trait)

Template Parameters

fp_type	fp_type is a floating-point template parameter	
method	optimisation method	
line_search_method	line search method	
std::enable_if<	is_zero_order_method <method<fp_type>>::value>::type</method<fp_type>	

Parameters

objective	objective function
init_guess	initial guess
max_iters	maximum number of iterations
arg_tol	tolerance for a stopping criteria
grad_tol	tolerance for gradient
fun_tol	tolerance for a vlaue of function
line_search_range	range for line search method

Returns

```
std::tuple<vector_t<fp_type>, fp_type, std::size_t>
```

5.8 om_unconstrained_methods::om_conjugate_gradient Namespace Reference

Contains conjugate-gradient methods.

Classes

- class conjugate_gradient_base
 - Conjugate-gradient base class.
- · class fletcher_reeves_method
 - Fletcher-Reeves method object.
- · class hestenes_stiefel_method
 - Hestenes-Stiefel method object.
- · class polak_ribiere_method

Polak-Ribiere method object.

5.8.1 Detailed Description

Contains conjugate-gradient methods.

5.9 om_unconstrained_methods::om_line_methods Namespace Reference

Contains one-dimensional line methods.

Classes

- · class brent_method
 - Brent method object.
- · class fibonacci_method
 - Fibonacci method object.
- class golden_section_method
 - Golden section method object.
- · class powell_method

Powell method object.

5.9.1 Detailed Description

Contains one-dimensional line methods.

5.10 om_unconstrained_methods::om_quasi_newton Namespace Reference

Contains Quasi-Newton methods.

Classes

• class broyden_fletcher_goldfarb_shanno_method

Broyden-Fletcher-Goldfarb-Shanno method object.

· class davidon_fletcher_powell_method

Davidon-Fletcher-Powell method object.

class quasi_newton_base

Quasi-Newton base class.

5.10.1 Detailed Description

Contains Quasi-Newton methods.

5.11 om_unconstrained_methods::om_steepest_descent Namespace Reference

Contains steepest-descent method.

Classes

class steepest_descent_method
 Steepest descent method object.

5.11.1 Detailed Description

Contains steepest-descent method.

5.12 om_unconstrained_methods::om_zero_order Namespace Reference

Contains zero-order methods.

Classes

· class nelder_mead_method

Nelder-Mead method object.

· class powell_conjugate_method

Powell conjugate method object.

5.12.1 Detailed Description

Contains zero-order methods.

5.13 om unconstrained methods traits Namespace Reference

Contains some traits for minimize() global function.

Classes

- struct is_zero_order_method
- struct is_zero_order_method< om_unconstrained_methods::om_zero_order::nelder_mead_method<>>
- struct is_zero_order_method< om_unconstrained_methods::om_zero_order::powell_conjugate_method<>>>

5.13.1 Detailed Description

Contains some traits for minimize() global function.

5.14 om_utilities Namespace Reference

Contains some commonly used utilities.

Classes

• struct cartesian_basis_vectors

Cartesian basis vectors functor.

struct random_vectors_from_guess

Random vectors from guess functor.

class range

Represents a one dimensional range.

Functions

```
double fib (std::size_t n)
```

fib function

template<typename fp_type >

```
fp_type iqerp (fp_type x0, fp_type x1, fp_type x2, fp_type y0, fp_type y1, fp_type y2)
```

Inverse quadratic interpolation among points (x0,y0),(x1,y1),(x2,y2)

template<typename fp_type >

```
fp_type lerp (fp_type x0, fp_type x1, fp_type y0, fp_type y1)
```

Linear interpolation between points (x0,y0) and (x1,y1)

• template<typename fp_type >

```
fp_type sign (fp_type x)
```

Signum function.

5.14.1 Detailed Description

Contains some commonly used utilities.

5.14.2 Function Documentation

5.14.2.1 fib()

fib function

Parameters

n number of values from Fibonacci sequence

Returns

double

5.14.2.2 iqerp()

Inverse quadratic interpolation among points (x0,y0),(x1,y1),(x2,y2)

Template Parameters

fp_type

Parameters

x0	first value
x1	second value
x2	third value
y0	first function value
y1	second function value
y2	third function value

Returns

fp_type

5.14.2.3 lerp()

Linear interpolation between points (x0,y0) and (x1,y1)

Template Parameters

```
fp_type
```

Parameters

x0	first value		
x1	second value		
y0	first function value		
y1	second function value		

Returns

fp_type

5.14.2.4 sign()

Signum function.

Template Parameters

fp type	fp_type is a floating-point template parameter

Parameters

x value

Returns

fp_type

Chapter 6

Class Documentation

6.1 om_unconstrained_methods::om_line_methods::brent_method< fp_type, typename > Class Template Reference

Brent method object.

#include <om_brent.hpp>

Public Types

• typedef fp_type value_type

Public Member Functions

- brent_method (range< fp_type > const &range, fp_type tolerance=1e-5, std::size_t max_iters=1000)
 Construct a new brent method object.
- brent_method (brent_method const ©)

Copy constructor of a brent method object.

brent_method & operator= (brent_method const ©)

Assignment operator of a brent method object.

• std::tuple < fp_type, fp_type, std::size_t, std::size_t > operator() (f_scalar_t < fp_type > &&fun) const Functor of a brent method object.

6.1.1 Detailed Description

template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_point<fp_type>::value>::type> class om_unconstrained_methods::om_line_methods::brent_method< fp_type, typename >

Brent method object.

Template Parameters

fp_type	fp_type id a floating-point template parameter
std::enable_if<	std::is_floating_point <fp_type>::value>::type</fp_type>

6.1.2 Constructor & Destructor Documentation

6.1.2.1 brent_method() [1/2]

Construct a new brent method object.

Parameters

range	range of the minimiser
tolerance	tolerance of the minimiser
max_iters	maximum number of iterations

6.1.2.2 brent_method() [2/2]

Copy constructor of a brent method object.

Parameters

```
copy copy is the object which we want to make a copy of
```

6.1.3 Member Function Documentation

6.1.3.1 operator()()

Functor of a brent method object.

Parameters

fun objective function

Returns

std::tuple<fp_type, fp_type, std::size_t, std::size_t>

6.1.3.2 operator=()

Assignment operator of a brent method object.

Parameters

сору

Returns

brent_method&

The documentation for this class was generated from the following file:

• include/unconstrained_methods/one_dim/om_brent.hpp

6.2 om_unconstrained_methods::om_quasi_newton::broyden_fletcher _goldfarb_shanno_method< fp_type > Class Template Reference

Broyden-Fletcher-Goldfarb-Shanno method object.

```
#include <om_broyden_fletcher_goldfarb_shanno.hpp>
```

 $Inheritance \ diagram \ for \ om_unconstrained_methods::om_quasi_newton::broyden_fletcher_goldfarb_shanno_{\hookleftarrow} \\ method < fp_type >:$

 $\label{lem:constrained_methods::om_quasi_newton::broyden_fletcher_goldfarb_shanno_ \leftarrow method < fp_type >:$

Public Member Functions

• broyden_fletcher_goldfarb_shanno_method (f_line_minimiser_t< fp_type > const &line_search_minimiser, std::size_t const &max_iters=100, fp_type arg_tol=1e-4, fp_type grad_tol=1e-4, fp_type fun_tol=1e-4)

Construct a new broyden fletcher goldfarb shanno method object.

std::tuple < vector_t < fp_type >, fp_type, std::size_t > minimize (f_vector_t < fp_type > objective, vector ←
 _arg_t < fp_type > const &init_guess) const

Function method that minimises the objective function.

Additional Inherited Members

6.2.1 Detailed Description

```
template < typename fp_type = double > class om_unconstrained_methods::om_quasi_newton::broyden_fletcher_goldfarb_shanno_method < fp_type >
```

Broyden-Fletcher-Goldfarb-Shanno method object.

Template Parameters

```
fp_type | fp+type is a floating-point template parameter
```

6.2.2 Constructor & Destructor Documentation

6.2.2.1 broyden fletcher goldfarb shanno method()

Construct a new broyden fletcher goldfarb shanno method object.

Parameters

line_search_minimiser	line method to be used in finding the minimiser		
max_iters	maximum number of iterations		
arg_tol	tolerance for stopping criteria		
grad_tol	tolerance for gradient		
fun_tol	tolerance for a value of objective function		

6.2.3 Member Function Documentation

6.2.3.1 minimize()

Function method that minimises the objective function.

Parameters

objective	objective function
init_guess	initial guess

Returns

```
std::tuple<vector_t<fp_type>, fp_type, std::size_t>
```

The documentation for this class was generated from the following file:

 $\bullet \ include/unconstrained_methods/multi_dim/quasi_newton/om_broyden_fletcher_goldfarb_shanno.hpp$

6.3 om_utilities::cartesian_basis_vectors< fp_type, typename > Struct Template Reference

Cartesian basis vectors functor.

```
#include <om_utilities.hpp>
```

Public Member Functions

• std::vector< vector_t< fp_type >> operator() (std::size_t const &dimension) const

6.3.1 Detailed Description

template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_point<fp_type>::value>::type> struct om_utilities::cartesian_basis_vectors< fp_type, typename >

Cartesian basis vectors functor.

Template Parameters

fp_type	fp_type is a floating-point template parameter
std::enable_if<	std::is_floating_point <fp_type>::value>::type</fp_type>

The documentation for this struct was generated from the following file:

• include/utilities/om_utilities.hpp

6.4 om_differentiation::central_difference< order, fp_type, typename > Struct Template Reference

central difference functor

#include <om_differentiation.hpp>

6.4.1 Detailed Description

 $template < std::size_t \ order, \ typename \ fp_type, \ typename \ = \ typename \ std::enable_if < \ std::is_floating_point < fp_type > \hookleftarrow ::value > ::type >$

struct om_differentiation::central_difference < order, fp_type, typename >

central difference functor

Template Parameters

order	order of difference
fp_type	fp_type is a floating-point template parameter
std::enable_if<	std::is_floating_point <fp_type>::value>::type</fp_type>

order = 0,order = 1 currently supported

The documentation for this struct was generated from the following file:

• include/utilities/om_differentiation.hpp

6.5 om_differentiation::central_difference< 0, fp_type > Struct Template Reference

Public Member Functions

 $\bullet \ \ \text{vector_t} < \text{fp_type} > \text{operator()} \ (\text{f_vector_t} < \text{fp_type} > \text{fun, vector_arg_t} < \text{fp_type} > \text{const \&args)} \ \text{const} \\$

The documentation for this struct was generated from the following file:

• include/utilities/om_differentiation.hpp

6.6 om_differentiation::central_difference< 1, fp_type > Struct Template Reference

Public Member Functions

vector_t< fp_type > operator() (f_vector_t< fp_type > fun, vector_arg_t< fp_type > const &args) const

The documentation for this struct was generated from the following file:

· include/utilities/om differentiation.hpp

6.7 om_differentiation_traits::central_difference_trait< fp_type > Struct Template Reference

central difference trait

#include <om_differentiation_traits.hpp>

Static Public Attributes

• static constexpr fp_type step_size = 10e-7

6.7.1 Detailed Description

template<typename fp_type>
struct om_differentiation_traits::central_difference_trait< fp_type>

central difference trait

Template Parameters

fp_type | fp_type is a floating-point template parameter

The documentation for this struct was generated from the following file:

include/utilities/om_differentiation_traits.hpp

6.8 om_common::closest_to< count, fp_type, typename, type > Struct Template Reference

closest_to functor

#include <om_common.hpp>

6.8.1 Detailed Description

template<std::size_t count, typename fp_type = double, typename = typename std::enable_if<count >= 2 && count <= 3, \leftarrow ::type>

struct om_common::closest_to < count, fp_type, typename, type >

closest_to functor

Template Parameters

count	number of points
fp_type	fp_type is a floating-point template parameter

count = 2,count = 3 is currently supported

The documentation for this struct was generated from the following file:

include/utilities/om_common.hpp

6.9 om_common::closest_to< 2, fp_type > Struct Template Reference

Public Member Functions

• fp_type **operator()** (fp_type const &target, fp_type const &x1, fp_type const &x2) const

The documentation for this struct was generated from the following file:

• include/utilities/om_common.hpp

6.10 om_common::closest_to< 3, fp_type > Struct Template Reference

Public Member Functions

• fp_type operator() (fp_type const &target, fp_type const &x1, fp_type const &x2, fp_type const &x3) const

The documentation for this struct was generated from the following file:

• include/utilities/om_common.hpp

6.11 om_unconstrained_methods::om_conjugate_gradient::conjugate _ gradient_base< fp_type, typename > Class Template Reference

Conjugate-gradient base class.

```
#include <om_conjugate_gradient_base.hpp>
```

Collaboration diagram for om_unconstrained_methods::om_conjugate_gradient::conjugate_gradient_base< fp_ \leftarrow type, typename >:

Public Member Functions

• conjugate_gradient_base (f_line_minimiser_t< fp_type > const &line_search_minimiser, std::size_t const &max_iters=100, fp_type arg_tol=1e-4, fp_type grad_tol=1e-4, fp_type fun_tol=1e-4)

Construct a new conjugate gradient base object.

conjugate_gradient_base (conjugate_gradient_base const ©)

Construct a new conjugate gradient base object.

conjugate_gradient_base & operator= (conjugate_gradient_base const ©)

Assignment operator of a conjugate gradient base object.

void set_arg_tolerance (fp_type arg_tol)

Set the stopping criteria tolerance object.

void set_fun_tolerance (fp_type fun_tol)

Set the fun tolerance object.

void set_grad_tolerance (fp_type grad_tol)

Set the grad tolerance object.

• void set max iterations (std::size t const &iters)

Set the max iterations object.

Protected Attributes

- fp_type arg_tol_
- fp_type grad_tol_
- fp type fun tol
- std::size_t max_iters_
- f_line_minimiser_t< fp_type > lsm_

6.11.1 Detailed Description

template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_point<fp_type>::value>::type> class om_unconstrained_methods::om_conjugate_gradient::conjugate_gradient_base< fp_type, typename >

Conjugate-gradient base class.

Template Parameters

fp_type	fp_type is a floating-point template parameter
std::enable_if<	std::is_floating_point <fp_type>::value>::type</fp_type>

6.11.2 Constructor & Destructor Documentation

6.11.2.1 conjugate_gradient_base() [1/2]

 $\label{template} $$ \text{template}$ $$ \text{typename = typename std}::enable_if< std::is_floating}$$ $$ \text{point}$ $$ \text{fp_type}$:::value>::type>$$ $$ $$ $$ \text{typename std}::enable_if< std::is_floating}$$$ $$ \text{point}$ $$ \text{fp_type}$ $$ \text{type}$ $$ $$ \text{type}$ $$ \text{type}$ $$ $$ \text{typename std}::enable_if< std::is_floating}$$$ $$ \text{point}$ $$ \text{fp_type}$ $$ \text{typename std}::enable_if< std::is_floating}$$$ $$ \text{typename std}::enable_if< std::is$

Construct a new conjugate gradient base object.

Parameters

line_search_minimiser	line method to be used in finding the minimiser
max_iters	maximum number of iterations
arg_toltolerance	for a stopping criteria
grad_tol	tolerance for gradient
fun_tol	tolerance for a value of objective function

6.11.2.2 conjugate_gradient_base() [2/2]

Construct a new conjugate gradient base object.

Parameters

```
copy copy is the object which we want to make a copy of
```

6.11.3 Member Function Documentation

6.11.3.1 operator=()

Assignment operator of a conjugate gradient base object.

Pa	ra	m	Δi	ŀΔ	rc
		ш			

сору

Returns

conjugate_gradient_base&

6.11.3.2 set_arg_tolerance()

Set the stopping criteria tolerance object.

Parameters

arg_tol tolerance for a stopping criteria

6.11.3.3 set_fun_tolerance()

Set the fun tolerance object.

Parameters

fun_tol tolerance for a value of objective function

6.11.3.4 set_grad_tolerance()

```
template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_←
point<fp_type>::value>::type>
void om_unconstrained_methods::om_conjugate_gradient::conjugate_gradient_base< fp_type, typename</pre>
```

Set the grad tolerance object.

Parameters

```
grad_tol tolerance for gradient
```

6.11.3.5 set_max_iterations()

Set the max iterations object.

Parameters

```
iters maximum number of iterations
```

The documentation for this class was generated from the following file:

• include/unconstrained_methods/multi_dim/conjugate_gradient/om_conjugate_gradient_base.hpp

6.12 om_unconstrained_methods::om_quasi_newton::davidon_← fletcher_powell_method< fp_type > Class Template Reference

Davidon-Fletcher-Powell method object.

```
#include <om_davidon_fletcher_powell.hpp>
```

 $Inheritance\ diagram\ for\ om_unconstrained_methods::om_quasi_newton::davidon_fletcher_powell_method < fp_ {\leftarrow}\ type >:$

Collaboration diagram for om_unconstrained_methods::om_quasi_newton::davidon_fletcher_powell_method< fp __type >:

Public Member Functions

• davidon_fletcher_powell_method (f_line_minimiser_t< fp_type > const &line_search_minimiser, std::size_t const &max_iters=100, fp_type arg_tol=1e-4, fp_type grad_tol=1e-4, fp_type fun_tol=1e-4)

Construct a new davidon fletcher powell method object.

std::tuple < vector_t < fp_type >, fp_type, std::size_t > minimize (f_vector_t < fp_type > objective, vector ←
 arg_t < fp_type > const &init_guess) const

Function method that minimises the objective function.

Additional Inherited Members

6.12.1 Detailed Description

```
template<typename fp_type = double> class om_unconstrained_methods::om_quasi_newton::davidon_fletcher_powell_method< fp_type >
```

Davidon-Fletcher-Powell method object.

Template Parameters

```
fp_type | fp_type is a floating-point template parameter
```

6.12.2 Constructor & Destructor Documentation

6.12.2.1 davidon_fletcher_powell_method()

Construct a new davidon fletcher powell method object.

Parameters

line_search_minimiser	line method to be used in finding the minimiser
max_iters	maximum number of iterations
arg_tol	tolerance for stopping criteria
grad_tol	tolerance for gradient
fun_tol	tolerance for a value of objective function

 $fp_type fun_tol = 1e-4$) [inline]

6.12.3 Member Function Documentation

6.12.3.1 minimize()

```
template<typename fp_type >
std::tuple< om_unconstrained_methods::om_quasi_newton::vector_t< fp_type >, fp_type, std
::size_t > om_unconstrained_methods::om_quasi_newton::davidon_fletcher_powell_method< fp_type</pre>
```

Function method that minimises the objective function.

Parameters

objective	objective function
init_guess	initial guess

Returns

```
std::tuple<vector_t<fp_type>, fp_type, std::size_t>
```

The documentation for this class was generated from the following file:

include/unconstrained_methods/multi_dim/quasi_newton/om_davidon_fletcher_powell.hpp

6.13 om_differentiation::divided_difference< order, fp_type, typename, type > Struct Template Reference

Divided difference functor.

```
#include <om_differentiation.hpp>
```

6.13.1 Detailed Description

template<std::size_t order, typename fp_type = double, typename = typename std::enable_if<order >= 0 && order <= 3, ::type> struct om_differentiation::divided_difference< order, fp_type, typename, type >

Divided difference functor.

Template Parameters

order	order of difference
fp_type	fp_type is a floating-point template parameter

```
order = 0, order = 1, order = 2, order = 3 currently supported
```

The documentation for this struct was generated from the following file:

• include/utilities/om_differentiation.hpp

6.14 om_differentiation::divided_difference< 0, fp_type > Struct Template Reference

Public Member Functions

• fp_type **operator()** (f_scalar_t< fp_type > fun, fp_type const &arg) const

The documentation for this struct was generated from the following file:

• include/utilities/om_differentiation.hpp

6.15 om_differentiation::divided_difference< 1, fp_type > Struct Template Reference

Public Member Functions

• fp type operator() (f scalar t< fp type > fun, std::tuple< fp type, fp type > const & arg) const

The documentation for this struct was generated from the following file:

• include/utilities/om differentiation.hpp

6.16 om_differentiation::divided_difference< 2, fp_type > Struct Template Reference

Public Member Functions

• fp_type operator() (f_scalar_t< fp_type > fun, std::tuple< fp_type, fp_type, fp_type > const &arg) const

The documentation for this struct was generated from the following file:

• include/utilities/om differentiation.hpp

6.17 om_unconstrained_methods::om_line_methods::fibonacci_← method< fp_type, typename > Class Template Reference

Fibonacci method object.

#include <om_fibonacci.hpp>

Public Types

typedef fp_type value_type

Public Member Functions

- fibonacci_method (range< fp_type > const &range, fp_type tolerance=1e-5, std::size_t max_iters=1000)

 Construct a new fibonacci method object.
- fibonacci_method (fibonacci_method const ©)

Copy constructor of a fibonacci method object.

fibonacci_method & operator= (fibonacci_method const ©)

Assignment operator of a fibonacci method object.

• std::tuple < fp_type, fp_type, std::size_t, std::size_t > operator() (f_scalar_t < fp_type > &&fun) const Functor of a fibonacci method object.

6.17.1 Detailed Description

template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_point<fp_type>::value>::type> class om_unconstrained_methods::om_line_methods::fibonacci_method< fp_type, typename >

Fibonacci method object.

Template Parameters

fp_type	<pre>fp_type is floating-point template parameter</pre>
std::enable_if<	std::is_floating_point <fp_type>::value>::type</fp_type>

6.17.2 Constructor & Destructor Documentation

6.17.2.1 fibonacci_method() [1/2]

Construct a new fibonacci method object.

Parameters

range	range of the minimiser
tolerance	tolerance of the minimiser
max_iters	maximum number of iterations

6.17.2.2 fibonacci_method() [2/2]

Copy constructor of a fibonacci method object.

Parameters

copy copy is the object which we want to make a copy of

6.17.3 Member Function Documentation

6.17.3.1 operator()()

Functor of a fibonacci method object.

Parameters

```
fun | objective function
```

Returns

```
std::tuple<fp_type, fp_type, std::size_t, std::size_t>
```

6.17.3.2 operator=()

Assignment operator of a fibonacci method object.

Parameters

сору

Returns

fibonacci_method&

The documentation for this class was generated from the following file:

• include/unconstrained_methods/one_dim/om_fibonacci.hpp

6.18 om_unconstrained_methods::om_conjugate_gradient::fletcher_← reeves_method< fp_type > Class Template Reference

Fletcher-Reeves method object.

```
#include <om_fletcher_reeves.hpp>
```

Inheritance diagram for om_unconstrained_methods::om_conjugate_gradient::fletcher_reeves_method< fp_type >:

Collaboration diagram for om_unconstrained_methods::om_conjugate_gradient::fletcher_reeves_method< fp_type >:

Public Member Functions

• fletcher_reeves_method (f_line_minimiser_t< fp_type > const &line_search_minimiser, std::size_t const &max_iters=100, fp_type arg_tol=1e-4, fp_type grad_tol=1e-4, fp_type fun_tol=1e-4)

Construct a new fletcher reeves method object.

std::tuple < vector_t < fp_type >, fp_type, std::size_t > minimize (f_vector_t < fp_type > objective, vector ←
 arg_t < fp_type > const &init_guess) const

Function method that minimises the objective function.

Additional Inherited Members

6.18.1 Detailed Description

template<typename fp_type = double>
class om_unconstrained_methods::om_conjugate_gradient::fletcher_reeves_method< fp_type >

Fletcher-Reeves method object.

Template Parameters

ip type ip type is a libating-point template parameter	fp type	fp_type is a floating-point template parameter
--	---------	--

6.18.2 Constructor & Destructor Documentation

6.18.2.1 fletcher_reeves_method()

Construct a new fletcher reeves method object.

Parameters

line_search_minimiser	line method to be used in finding the minimiser
max_iters	maximum number of iterations
arg_tol	tolerance for stopping criteria
grad_tol	tolerance for gradient
fun_tol	tolerance for a value of objective function

6.18.3 Member Function Documentation

6.18.3.1 minimize()

Function method that minimises the objective function.

Parameters

objective	objective function
init guess	initial guess

Returns

```
std::tuple < vector\_t < fp\_type>, fp\_type, std::size\_t>
```

The documentation for this class was generated from the following file:

• include/unconstrained_methods/multi_dim/conjugate_gradient/om_fletcher_reeves.hpp

6.19 om_differentiation::forward_difference< order, fp_type, typename > Struct Template Reference

forward difference functor

#include <om_differentiation.hpp>

6.19.1 Detailed Description

template<std::size_t order, typename fp_type, typename = typename std::enable_if< std::is_floating_point<fp_type> \leftarrow ::value>::type> struct om_differentiation::forward_difference< order, fp_type, typename >

forward difference functor

Template Parameters

order	order of difference
fp_type	
std::enable_if<	std::is_floating_point <fp_type>::value>::type</fp_type>

order = 0,order = 1 currently supported

The documentation for this struct was generated from the following file:

• include/utilities/om_differentiation.hpp

6.20 om_differentiation::forward_difference< 0, fp_type > Struct Template Reference

Public Member Functions

vector_t< fp_type > operator() (f_vector_t< fp_type > fun, vector_arg_t< fp_type > const &args) const

The documentation for this struct was generated from the following file:

• include/utilities/om_differentiation.hpp

6.21 om_differentiation::forward_difference< 1, fp_type > Struct Template Reference

Public Member Functions

vector_t< fp_type > operator() (f_vector_t< fp_type > fun, vector_arg_t< fp_type > const &args) const

The documentation for this struct was generated from the following file:

• include/utilities/om differentiation.hpp

6.22 om_differentiation_traits::forward_difference_trait< fp_type > Struct Template Reference

forward difference trait

#include <om_differentiation_traits.hpp>

Static Public Attributes

• static constexpr fp_type step_size = 10e-6

6.22.1 Detailed Description

template<typename fp_type>
struct om_differentiation_traits::forward_difference_trait< fp_type >

forward difference trait

Template Parameters

fp_type | fp_type is a floating-point template parameter

The documentation for this struct was generated from the following file:

include/utilities/om_differentiation_traits.hpp

6.23 om_common::furthest_from< count, fp_type, typename, type > Struct Template Reference

furthest_from functor

#include <om_common.hpp>

6.23.1 Detailed Description

template<std::size_t count, typename fp_type = double, typename = typename std::enable_if<count >= 2 && count <= 3, \leftarrow ::type>

struct om_common::furthest_from< count, fp_type, typename, type >

furthest_from functor

Template Parameters

count	number of points to measure the distance from
fp_type	fp_type is a floating-point template parameter

currently count = 2, count = 3 is supported

The documentation for this struct was generated from the following file:

• include/utilities/om_common.hpp

6.24 om_common::furthest_from< 2, fp_type > Struct Template Reference

Public Member Functions

• fp type operator() (fp type const &target, fp type const &x1, fp type const &x2) const

The documentation for this struct was generated from the following file:

• include/utilities/om_common.hpp

6.25 om_common::furthest_from< 3, fp_type > Struct Template Reference

Public Member Functions

• fp_type **operator()** (fp_type const &target, fp_type const &x1, fp_type const &x2, fp_type const &x3) const

The documentation for this struct was generated from the following file:

• include/utilities/om_common.hpp

6.26 om_unconstrained_methods::om_line_methods::golden_section_← method< fp_type, typename > Class Template Reference

Golden section method object.

#include <om_golden_section.hpp>

Public Types

• typedef fp_type value_type

Public Member Functions

• golden_section_method (range< fp_type > const &range, fp_type tolerance=1e-5, std::size_t max_ \leftarrow iters=1000)

Construct a new golden section method object.

golden_section_method (golden_section_method const ©)

Copy constructor of a golden section method object.

golden_section_method & operator= (golden_section_method const ©)

Assignment operator of a golden section method object.

• std::tuple< fp_type, fp_type, std::size_t, std::size_t > operator() (f_scalar_t< fp_type > &&fun) const Functor of a golden section method object.

6.26.1 Detailed Description

template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_point<fp_type>::value>::type> class om_unconstrained_methods::om_line_methods::golden_section_method< fp_type, typename >

Golden section method object.

Template Parameters

fp_type	fp_type is floating point template parameter
std::enable_if<	std::is_floating_point <fp_type>::value>::type</fp_type>

6.26.2 Constructor & Destructor Documentation

6.26.2.1 golden_section_method() [1/2]

 $\label{template} $$ \text{template}$ $$ \text{typename = typename std}::enable_if< std::is_floating}$$ $$ \text{point}$ $$ \text{fp_type}$:::value>::type>$$ $$ $$ $$ \text{typename std}::enable_if< std::is_floating}$$$ $$ \text{point}$ $$ \text{fp_type}$ $$ \text{type}$ $$ $$ \text{type}$ $$ \text{type}$ $$ $$ \text{typename std}::enable_if< std::is_floating}$$$ $$ \text{point}$ $$ \text{fp_type}$ $$ \text{typename std}::enable_if< std::is_floating}$$$ $$ \text{typename std}::enable_if< std::is$

Construct a new golden section method object.

Parameters

range	range of the minimiser
tolerance	tolerance of minimiser
max_iters	maximum number of iterations

6.26.2.2 golden_section_method() [2/2]

Copy constructor of a golden section method object.

Parameters

сору	copy is the object which we want to make a copy of
------	--

6.26.3 Member Function Documentation

6.26.3.1 operator()()

Functor of a golden section method object.

Parameters

fun	objective function

Returns

```
std::tuple<fp_type, fp_type, std::size_t, std::size_t>
```

6.26.3.2 operator=()

Assignment operator of a golden section method object.

Parameters

сору

Returns

golden_section_method&

The documentation for this class was generated from the following file:

• include/unconstrained_methods/one_dim/om_golden_section.hpp

6.27 om_unconstrained_methods::om_conjugate_gradient::hestenes_← stiefel_method< fp_type > Class Template Reference

Hestenes-Stiefel method object.

```
#include <om_hestenes_stiefel.hpp>
```

Inheritance diagram for om_unconstrained_methods::om_conjugate_gradient::hestenes_stiefel_method< fp_type >:

 $\label{lem:conjugate_gradient::hestenes_stiefel_method< fp} \begin{tabular}{ll} Collaboration diagram for om_unconstrained_methods::om_conjugate_gradient::hestenes_stiefel_method< fp} \end{tabular} \begin{tabular}{ll} conjugate_gradient::hestenes_stiefel_method< fp} \end{tabular} \begin{tabular}{ll}$

Public Member Functions

- hestenes_stiefel_method (f_line_minimiser_t< fp_type > const &line_search_minimiser, std::size_t const &max_iters=100, fp_type arg_tol=1e-4, fp_type grad_tol=1e-4, fp_type fun_tol=1e-4)
 - Construct a new hestenes stiefel method object.
- std::tuple < vector_t < fp_type >, fp_type, std::size_t > minimize (f_vector_t < fp_type > objective, vector ←
 _arg_t < fp_type > const &init_guess) const

Function method that minimises the objective function.

Additional Inherited Members

6.27.1 Detailed Description

```
template<typename fp_type = double> class om_unconstrained_methods::om_conjugate_gradient::hestenes_stiefel_method< fp_type >
```

Hestenes-Stiefel method object.

Template Parameters

```
fp_type | fp_type is a floating-point template parameter
```

6.27.2 Constructor & Destructor Documentation

6.27.2.1 hestenes_stiefel_method()

Construct a new hestenes stiefel method object.

Parameters

line_search_minimiser	line method to be used in finding the minimiser
max_iters	maximum number of iterations
arg_tol	tolerance for stopping criteria
grad_tol	tolerance for gradient
fun_tol	tolerance for a value of objective function

6.27.3 Member Function Documentation

6.27.3.1 minimize()

```
template<typename fp_type >
std::tuple< om_unconstrained_methods::om_conjugate_gradient::vector_t< fp_type >, fp_type,
```

Function method that minimises the objective function.

Parameters

objective	objective function
init_guess	initial guess

Returns

```
std::tuple < vector\_t < fp\_type>, fp\_type, std::size\_t>
```

The documentation for this class was generated from the following file:

• include/unconstrained_methods/multi_dim/conjugate_gradient/om_hestenes_stiefel.hpp

6.28 om_unconstrained_methods_traits::is_zero_order_method < method > Struct Template Reference

Static Public Attributes

• static const bool value = true

The documentation for this struct was generated from the following file:

- include/unconstrained_methods/om_unconstrained_methods_traits.hpp
- 6.29 om_unconstrained_methods_traits::is_zero_order_method< om_
 unconstrained_methods::om_zero_order::nelder_mead_method<>
 > Struct Reference

Static Public Attributes

• static const bool value = false

The documentation for this struct was generated from the following file:

• include/unconstrained_methods/om_unconstrained_methods_traits.hpp

6.30 om_unconstrained_methods_traits::is_zero_order_method< om_unconstrained_methods::om_zero_order::powell_conjugate_← method<>> Struct Reference

Static Public Attributes

• static const bool value = false

The documentation for this struct was generated from the following file:

include/unconstrained methods/om unconstrained methods traits.hpp

6.31 om_common::max_arg< count, fp_type, typename, type > Struct Template Reference

max_arg functor returns argument at which a function takes maximum value

#include <om_common.hpp>

6.31.1 Detailed Description

template<std::size_t count, typename fp_type = double, typename = typename std::enable_if<count >= 2 && count <= 3, ← ::type>

struct om_common::max_arg < count, fp_type, typename, type >

max_arg functor returns argument at which a function takes maximum value

Template Parameters

cou	nt	number of arguments
fp_typ	ре	fp_type is a floating-point template argument

count = 2,count = 3 currently supported

The documentation for this struct was generated from the following file:

• include/utilities/om_common.hpp

6.32 om_common::max_arg< 2, fp_type > Struct Template Reference

Public Member Functions

std::pair< fp_type, fp_type > operator() (f_scalar_t< fp_type > fun, fp_type const &first, fp_type const &second) const

The documentation for this struct was generated from the following file:

• include/utilities/om_common.hpp

6.33 om_common::max_arg< 3, fp_type > Struct Template Reference

Public Member Functions

• std::pair< fp_type, fp_type > **operator()** (f_scalar_t< fp_type > fun, fp_type const &first, fp_type const &second, fp_type const &third) const

The documentation for this struct was generated from the following file:

• include/utilities/om_common.hpp

6.34 om_common::min_arg< count, fp_type, typename, type > Struct Template Reference

min_arg functor retuns argument as which a function takes minimum value

#include <om_common.hpp>

6.34.1 Detailed Description

 $template < std::size_t\ count,\ typename\ fp_type = double,\ typename\ = typename\ std::enable_if < count\ >= 2\ \&\&\ count\ <= 3,\ \hookleftarrow ::type>$

struct om_common::min_arg< count, fp_type, typename, type >

min_arg functor retuns argument as which a function takes minimum value

Template Parameters

count	number of arguments
fp_type	fp_type is a floating-point template parameter

count = 2,count = 3 currently supported

The documentation for this struct was generated from the following file:

include/utilities/om_common.hpp

6.35 om_common::min_arg< 2, fp_type > Struct Template Reference

Public Member Functions

• std::pair< fp_type, fp_type > **operator()** (f_scalar_t< fp_type > fun, fp_type const &first, fp_type const &second) const

The documentation for this struct was generated from the following file:

• include/utilities/om_common.hpp

6.36 om_common::min_arg< 3, fp_type > Struct Template Reference

Public Member Functions

• std::pair< fp_type, fp_type > **operator()** (f_scalar_t< fp_type > fun, fp_type const &first, fp_type const &second, fp_type const &third) const

The documentation for this struct was generated from the following file:

• include/utilities/om_common.hpp

6.37 om_test_helpers::minimizer_helper< fp_type > Struct Template Reference

Helper for optimisation methods.

```
#include <om_test_helpers.hpp>
```

Collaboration diagram for om_test_helpers::minimizer_helper< fp_type >:

6.38 om_unconstrained_methods::om_zero_order::nelder_mead_← method< fp_type > Class Template Reference

Nelder-Mead method object.

#include <om_nelder_mead.hpp>

Public Member Functions

nelder_mead_method (std::size_t const &max_iters=80, fp_type convergence_tol=10e-4, fp_type reflection
 —rho=0.5, fp_type expansion_rho=1.5, fp_type contraction_rho=0.25, fp_type shrinkage_rho=0.5)

Construct a new nelder mead method object.

nelder_mead_method (nelder_mead_method const ©)

Construct a new nelder mead method object.

nelder_mead_method & operator= (nelder_mead_method const ©)

Assignment operator of a nelder mead method object.

void set_max_iterations (std::size_t const &iters)

Set the max iterations object.

void set_converge_tolerance (fp_type converge_tol)

Set the converge tolerance object.

void set_reflection_rho (fp_type value)

Set the reflection rho object.

void set_expansion_rho (fp_type value)

Set the expansion rho object.

void set_contraction_rho (fp_type value)

Set the contraction rho object.

void set_shrinkage_rho (fp_type value)

Set the shrinkage rho object.

std::tuple < vector_t < fp_type >, fp_type, std::size_t > minimize (f_vector_t < fp_type > objective, vector ←
 _arg_t < fp_type > const &init_guess) const

Function method that minimises the objective function.

6.38.1 Detailed Description

```
template<typename fp_type = double>
class om unconstrained methods::om zero order::nelder mead method< fp type >
```

Nelder-Mead method object.

Template Parameters

```
fp_type | fp_type is a floating-point template parameter
```

6.38.2 Constructor & Destructor Documentation

6.38.2.1 nelder mead method() [1/2]

```
fp_type expansion_rho = 1.5,
fp_type contraction_rho = 0.25,
fp_type shrinkage_rho = 0.5 ) [inline]
```

Construct a new nelder mead method object.

Parameters

max_iters	maximum number of iterations
convergence_tol	tolerance for convergence
reflection_rho	reflection rho
expansion_rho	expansion rho
contraction_rho	contraction rho
shrinkage_rho	shrinkage rho

6.38.2.2 nelder_mead_method() [2/2]

Construct a new nelder mead method object.

Parameters

```
copy copy is the object which we want to make a copy of
```

6.38.3 Member Function Documentation

6.38.3.1 minimize()

Function method that minimises the objective function.

Parameters

objective	objective function
init_guess	initial guess

Returns

```
std::tuple < vector\_t < fp\_type>, fp\_type, std::size\_t>
```

6.38.3.2 operator=()

Assignment operator of a nelder mead method object.

Parameters

```
сору
```

Returns

nelder mead method&

6.38.3.3 set_contraction_rho()

Set the contraction rho object.

Parameters

```
value | value of contraction rho
```

6.38.3.4 set_converge_tolerance()

Set the converge tolerance object.

Parameters

converge_tol	tolerance for convergance
--------------	---------------------------

6.38.3.5 set_expansion_rho()

Set the expansion rho object.

Parameters

value value of expansion rh	10
-----------------------------	----

6.38.3.6 set_max_iterations()

Set the max iterations object.

Parameters

iters maximum number	er of iterations
------------------------	------------------

6.38.3.7 set_reflection_rho()

Set the reflection rho object.

Parameters

value	value of reflection rho

6.38.3.8 set_shrinkage_rho()

Set the shrinkage rho object.

Parameters

value	value of shrinkage rho
-------	------------------------

The documentation for this class was generated from the following file:

• include/unconstrained_methods/multi_dim/zero_order/om_nelder_mead.hpp

6.39 om_unconstrained_methods::om_conjugate_gradient::polak_← ribiere_method< fp_type > Class Template Reference

Polak-Ribiere method object.

```
#include <om_polak_ribiere.hpp>
```

Inheritance diagram for om_unconstrained_methods::om_conjugate_gradient::polak_ribiere_method< fp_type >:

Collaboration diagram for om_unconstrained_methods::om_conjugate_gradient::polak_ribiere_method< fp_type >:

Public Member Functions

- polak_ribiere_method (f_line_minimiser_t< fp_type > const &line_search_minimiser, std::size_t const &max_iters=100, fp_type arg_tol=1e-4, fp_type grad_tol=1e-4, fp_type fun_tol=1e-4)
 - Construct a new polak ribiere method object.
- std::tuple < vector_t < fp_type >, fp_type, std::size_t > minimize (f_vector_t < fp_type > objective, vector ←
 arg_t < fp_type > const &init_guess) const

Function method that minimises the objective function.

Additional Inherited Members

6.39.1 Detailed Description

template<typename fp_type = double>
class om_unconstrained_methods::om_conjugate_gradient::polak_ribiere_method< fp_type >

Polak-Ribiere method object.

Template Parameters

fp_type

6.39.2 Constructor & Destructor Documentation

6.39.2.1 polak_ribiere_method()

Construct a new polak ribiere method object.

Parameters

line_search_minimiser	line method to be used in finding the minimiser
max_iters	maximum number of iterations
arg_tol	tolerance for stopping criteria
grad_tol	tolerance for gradient
fun_tol	tolerance for a value of objective function

6.39.3 Member Function Documentation

6.39.3.1 minimize()

Function method that minimises the objective function.

Parameters

objective	objective function
init auess	initial quess

Returns

```
std::tuple<vector_t<fp_type>, fp_type, std::size_t>
```

The documentation for this class was generated from the following file:

• include/unconstrained_methods/multi_dim/conjugate_gradient/om_polak_ribiere.hpp

6.40 om_unconstrained_methods::om_zero_order::powell_conjugate_← method< fp_type > Class Template Reference

Powell conjugate method object.

```
#include <om_powell_conjugate.hpp>
```

Public Member Functions

• powell_conjugate_method (f_line_minimiser_t< fp_type > const &line_search_minimiser, std::size_t const &max iters=50, fp_type convergence_tol=10e-4)

Construct a new powell conjugate method object.

powell_conjugate_method (powell_conjugate_method const ©)

Copy constructor a new powell conjugate method object.

powell_conjugate_method & operator= (powell_conjugate_method const ©)

Assignment operator of a powell conjugate method object.

void set_max_iterations (std::size_t const &iters)

Set the max iterations object.

void set_converge_tolerance (double converge_tol)

Set the converge tolerance object.

std::tuple < vector_t < fp_type >, fp_type, std::size_t > minimize (f_vector_t < fp_type > objective, vector ←
 arg_t < fp_type > const &init_guess) const

Function method that minimises the objective function.

6.40.1 Detailed Description

```
template < typename fp_type = double > class om_unconstrained_methods::om_zero_order::powell_conjugate_method < fp_type >
```

Powell conjugate method object.

Template Parameters

fp_type	fp_type is a floating-point template parameter
---------	--

6.40.2 Constructor & Destructor Documentation

6.40.2.1 powell conjugate method() [1/2]

Construct a new powell conjugate method object.

Parameters

line_search_minimiser	line method to be used in finding the minimiser
max_iters	maximum number of iterations
convergence_tol	tolerance for convergance

6.40.2.2 powell_conjugate_method() [2/2]

Copy constructor a new powell conjugate method object.

Parameters

```
copy copy is the object which we want to make a copy of
```

6.40.3 Member Function Documentation

6.40.3.1 minimize()

Function method that minimises the objective function.

Parameters

objective	objective function
init_guess	initial guess

Returns

```
std::tuple<vector_t<fp_type>, fp_type, std::size_t>
```

6.40.3.2 operator=()

Assignment operator of a powell conjugate method object.

Parameters

сору

Returns

powell_conjugate_method&

6.40.3.3 set_converge_tolerance()

Set the converge tolerance object.

Parameters

converge tol	tolerance for convergance
converge_tor	tolerance for convergance

6.40.3.4 set_max_iterations()

```
template<typename fp_type = double>
```

Set the max iterations object.

Parameters

```
iters maximum number of iterations
```

The documentation for this class was generated from the following file:

• include/unconstrained_methods/multi_dim/zero_order/om_powell_conjugate.hpp

6.41 om_unconstrained_methods::om_line_methods::powell_method< fp type, typename > Class Template Reference

Powell method object.

```
#include <om_powell.hpp>
```

Public Types

• typedef fp_type value_type

Public Member Functions

- powell_method (range< fp_type > const &range, fp_type tolerance=1e-5, std::size_t max_ites=1000)
 Construct a new powell method object.
- powell_method (range< fp_type > const &range, fp_type step, fp_type max_step, fp_type tolerance=1e-5, std::size_t max_ites=1000)

Construct a new powell method object.

powell_method (powell_method const ©)

Copy constructor of a new powell method object.

powell_method & operator= (powell_method const ©)

Assignment operator of a powell method object.

• std::tuple < fp_type, fp_type, std::size_t, std::size_t > operator() (f_scalar_t < fp_type > &&fun) const Functor of a powell method object.

6.41.1 Detailed Description

template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_point<fp_type>::value>::type> class om_unconstrained_methods::om_line_methods::powell_method<fp_type, typename >

Powell method object.

Template Parameters

fp_type	fp_type is floating-point template parameter
std::enable_if<	std::is_floating_point <fp_type>::value>::type</fp_type>

6.41.2 Constructor & Destructor Documentation

6.41.2.1 powell_method() [1/3]

Construct a new powell method object.

Parameters

range	range of the minimiser
tolerance	tolerance of the minimiser
max_ites	maximum number of iterations

6.41.2.2 powell_method() [2/3]

Construct a new powell method object.

Parameters

range	range of the minimiser
step	size of the step of the minimiser
max_step	maximum size of the step of the minimiser
tolerance	tolerance of the minimiser
max_ites	maximum number of iterations

6.41.2.3 powell_method() [3/3]

Copy constructor of a new powell method object.

Parameters

сору

6.41.3 Member Function Documentation

6.41.3.1 operator()()

Functor of a powell method object.

Parameters

fun objective function

Returns

std::tuple<fp_type, fp_type, std::size_t, std::size_t>

6.41.3.2 operator=()

Assignment operator of a powell method object.

Parameters

сору

Returns

powell_method&

The documentation for this class was generated from the following file:

• include/unconstrained_methods/one_dim/om_powell.hpp

6.42 om_unconstrained_methods::om_quasi_newton::quasi_newton_← base< fp_type, typename > Class Template Reference

Quasi-Newton base class.

#include <om_quasi_newton_base.hpp>

Collaboration diagram for om_unconstrained_methods::om_quasi_newton::quasi_newton_base< fp_type, type-name >:

Public Member Functions

quasi_newton_base (f_line_minimiser_t< fp_type > const &line_search_minimiser, std::size_t const &max
 —
 iters=100, fp_type arg_tol=1e-4, fp_type grad_tol=1e-4, fp_type fun_tol=1e-4)

Construct a new quasi newton base object.

quasi_newton_base (quasi_newton_base const ©)

Construct a new quasi newton base object.

quasi_newton_base & operator= (quasi_newton_base const ©)

Assignment operator of a quasi newton base object.

• void set max iterations (std::size t const &iters)

Set the max iterations object.

void set_arg_tolerance (fp_type arg_tol)

Set the stopping criteria tolerance object.

void set_fun_tolerance (fp_type fun_tol)

Set the fun tolerance object.

void set_grad_tolerance (fp_type grad_tol)

Set the grad tolerance object.

Protected Attributes

- fp type arg tol
- fp_type grad_tol_
- fp_type fun_tol_
- std::size_t max_iters
- f_line_minimiser_t< fp_type > lsm_

6.42.1 Detailed Description

template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_point<fp_type>::value>::type> class om_unconstrained_methods::om_quasi_newton::quasi_newton_base< fp_type, typename >

Quasi-Newton base class.

Template Parameters

fp_type	fp_type is a floating-point template parameter
std::enable_if<	std::is_floating_point <fp_type>::value>::type</fp_type>

6.42.2 Constructor & Destructor Documentation

6.42.2.1 quasi newton base() [1/2]

Construct a new quasi newton base object.

Parameters

line_search_minimiser	line method to be used in finding the minimiser
max_iters	maximum number of iterations
arg_tol	tolerance for stopping criteria
grad_tol	tolerance for gradient
fun_tol	tolerance for a value of objective function

6.42.2.2 quasi_newton_base() [2/2]

Construct a new quasi newton base object.

Parameters

сору	copy is the object which we want to make a copy of

6.42.3 Member Function Documentation

6.42.3.1 operator=()

Assignment operator of a quasi newton base object.

Parameters

сору

Returns

quasi_newton_base&

6.42.3.2 set_arg_tolerance()

Set the stopping criteria tolerance object.

Parameters

arg_tol tolerance for stopping criteria

6.42.3.3 set_fun_tolerance()

Set the fun tolerance object.

Parameters

fun_tol tolerance for a value of objective fur	ction
--	-------

6.42.3.4 set grad tolerance()

Set the grad tolerance object.

Parameters

grad_tol	tolerance for gardient
----------	------------------------

6.42.3.5 set_max_iterations()

Set the max iterations object.

Parameters

The documentation for this class was generated from the following file:

• include/unconstrained_methods/multi_dim/quasi_newton/om_quasi_newton_base.hpp

6.43 om_utilities::random_vectors_from_guess< fp_type, distribution, typename > Struct Template Reference

Random vectors from guess functor.

```
#include <om_utilities.hpp>
```

Public Member Functions

std::vector< vector_t< fp_type >> operator() (std::size_t N, vector_t< fp_type > const &init_guess)

6.43.1 Detailed Description

 $template < typename \ fp_type = double, template < typename > typename \ distribution = std::normal_distribution, typename = typename \ std::enable_if_t < std::is_floating_point < fp_type > ::value > > \\ struct \ om_utilities::random_vectors_from_guess < fp_type, \ distribution, \ typename > \\$

Random vectors from guess functor.

Template Parameters

fp_type	fp_type is a floating-point template parameter
distribution	distribution of random generator
std::enable_if_t <std::is_floating_point<fp_type>::value></std::is_floating_point<fp_type>	

The documentation for this struct was generated from the following file:

· include/utilities/om utilities.hpp

6.44 om_utilities::range< fp_type, typename > Class Template Reference

Represents a one dimensional range.

#include <om_utilities.hpp>

Public Member Functions

range (fp_type const &low, fp_type const &high)

Construct a new range object.

range ()

Construct a new range object.

range (range< fp_type > const ©)

Construct a new range object.

range< fp_type > & operator= (range< fp_type > const ©)

Copy assignment operator of a range object.

range (range < fp_type > &&other)

Move constructor of a range object.

range< fp_type > & operator= (range< fp_type > &&other)

Move assignment of a range object.

• const fp_type & low () const

Returns low end of the range.

const fp_type & high () const

Returns high end of the range.

• std::pair< fp_type, fp_type > low_high () const

Returns a pair of low high end of the range.

• fp_type spread () const

Returns a spread between high and low end of the range.

6.44.1 Detailed Description

 $template < typename \ fp_type = double, \ typename = typename \ std::enable_if < std::is_floating_point < fp_type > ::value > ::type > class \ om_utilities::range < fp_type, \ typename >$

Represents a one dimensional range.

Template Parameters

fp_type	fp_type is a floating-point template parameter
std::enable_if<	std::is_floating_point <fp_type>::value>::type</fp_type>

6.44.2 Constructor & Destructor Documentation

6.44.2.1 range() [1/4]

Construct a new range object.

Parameters

low	low value of a range
high	high value of a range

6.44.2.2 range() [2/4]

```
template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_
point<fp_type>::value>::type>
om_utilities::range< fp_type, typename >::range ( ) [inline]
```

Construct a new range object.

6.44.2.3 range() [3/4]

Construct a new range object.

Parameters

copy | copy is the object which we want to make a copy of

6.44.2.4 range() [4/4]

Move constructor of a range object.

Parameters

other

6.44.3 Member Function Documentation

6.44.3.1 high()

```
template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_
point<fp_type>::value>::type>
const fp_type& om_utilities::range< fp_type, typename >::high ( ) const [inline]
```

Returns high end of the range.

Returns

fp_type const&

6.44.3.2 low()

```
template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_← point<fp_type>::value>::type> const fp_type& om_utilities::range< fp_type, typename >::low ( ) const [inline]
```

Returns low end of the range.

Returns

fp_type const&

6.44.3.3 low_high()

```
template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_\( \sigma \)
point<fp_type>::value>::type>
std::pair<fp_type, fp_type> om_utilities::range< fp_type, typename >::low_high ( ) const
[inline]
```

Returns a pair of low high end of the range.

Returns

```
std::pair<fp_type, fp_type>
```

6.44.3.4 operator=() [1/2]

Move assignment of a range object.

Parameters

other

Returns

```
range<fp_type>&
```

6.44.3.5 operator=() [2/2]

Copy assignment operator of a range object.

Parameters

copy

Returns

```
range<fp_type>&
```

6.44.3.6 spread()

```
template<typename fp_type = double, typename = typename std::enable_if< std::is_floating_
point<fp_type>::value>::type>
fp_type om_utilities::range< fp_type, typename >::spread ( ) const [inline]
```

Returns a spread between high and low end of the range.

Returns

fp type

The documentation for this class was generated from the following file:

• include/utilities/om_utilities.hpp

6.45 om_unconstrained_methods::om_steepest_descent::steepest_← descent_method< fp_type > Class Template Reference

Steepest descent method object.

```
#include <om_steepest_descent.hpp>
```

Public Member Functions

• steepest_descent_method (f_line_minimiser_t< fp_type > const &line_search_minimiser, std::size_t const &max_iters=100, fp_type arg_tol=1e-4, fp_type grad_tol=1e-4, fp_type fun_tol=1e-4)

Construct a new steepest descent method object.

steepest_descent_method (steepest_descent_method const ©)

Copy constructor of a steepest descent method object.

steepest_descent_method & operator= (steepest_descent_method const ©)

Assignment operator of a steepest descent method object.

void set_arg_tolerance (fp_type arg_tol)

Set the stopping criteria tolerance object.

void set_fun_tolerance (fp_type fun_tol)

Set the fun tolerance object.

void set_grad_tolerance (fp_type grad_tol)

Set the grad tolerance object.

void set_max_iterations (std::size_t const &iters)

Set the max iterations object.

std::tuple < vector_t < fp_type >, fp_type, std::size_t > minimize (f_vector_t < fp_type > objective, vector ←
 arg_t < fp_type > const &init_guess) const

Function method that minimises the objective function.

6.45.1 Detailed Description

 $template < typename \ fp_type = double > \\ class \ om_unconstrained_methods::om_steepest_descent::steepest_descent_method < fp_type > \\$

Steepest descent method object.

Template Parameters

fp_type	fp_type is a floating-point template parameter
---------	--

6.45.2 Constructor & Destructor Documentation

6.45.2.1 steepest_descent_method() [1/2]

Construct a new steepest descent method object.

Parameters

line_search_minimiser	line method to be used in finding the minimiser	
max_iters	maximum number of iterations	
arg_tol	tolerance for stopping criteria	
grad_tol	tolerance for gradient	
fun_tol	tolerance for a value of objective function	

6.45.2.2 steepest_descent_method() [2/2]

Copy constructor of a steepest descent method object.

Parameters

copy copy is the object which we want to make a copy of

6.45.3 Member Function Documentation

6.45.3.1 minimize()

Function method that minimises the objective function.

Parameters

objective	objective function
init_guess	initial guess

Returns

```
std::tuple<vector_t<fp_type>, fp_type, std::size_t>
```

6.45.3.2 operator=()

Assignment operator of a steepest descent method object.

Parameters

Returns

steepest descent method&

6.45.3.3 set arg tolerance()

Set the stopping criteria tolerance object.

Parameters

arg_tol	tolerance for stopping criteria
---------	---------------------------------

6.45.3.4 set_fun_tolerance()

Set the fun tolerance object.

Parameters

fun_tol	tolerance for a value of function
---------	-----------------------------------

6.45.3.5 set_grad_tolerance()

Set the grad tolerance object.

Parameters

```
grad_tol tolerance for gradient
```

6.45.3.6 set_max_iterations()

Set the max iterations object.

Parameters

iters maximum number of iterations

The documentation for this class was generated from the following file:

• include/unconstrained_methods/multi_dim/steepest_descent/om_steepest_descent.hpp

Index

```
beale function
                                                     lerp
    om_test_functions, 11
                                                          om utilities, 27
brent method
                                                     low
    om_unconstrained_methods::om_line_methods::brent_methods::range< fp_type, typename >, 78
         fp_type, typename >, 30
                                                     low_high
broyden_fletcher_goldfarb_shanno_method
                                                          om_utilities::range< fp_type, typename >, 78
    om_unconstrained_methods::om_quasi_newton::broyden_fletcher_goldfarb_shanno_method<
         fp type >, 32
                                                     matrix t
                                                          om types, 19
conjugate_gradient_base
                                                     minimize
    om_unconstrained_methods::om_conjugate_gradient::conjugate_gradient hase ethods, 21, 22
         fp type, typename >, 37, 38
                                                          om unconstrained_methods::om_conjugate_gradient::fletcher_reeve
create rao test collection
                                                               fp_type >, 47
    om_test_functions, 12
                                                          om_unconstrained_methods::om_conjugate_gradient::hestenes_stie
                                                               fp_type >, 54
davidon_fletcher_powell_method
    om_unconstrained_methods::om_conjugate_gradient::polak_ribiere_
om_unconstrained_methods::om_quasi_newton::davidon_fletcher_powell_method<
         fp_type >, 41
                                                          om unconstrained methods::om quasi newton::broyden fletcher g
                                                               fp type >, 33
f_line_minimiser_t
                                                          om_unconstrained_methods::om_quasi_newton::davidon_fletcher_properties.
    om_types, 18
                                                               fp_type >, 41
f_scalar_t
                                                          om unconstrained methods::om steepest descent::steepest desce
    om_types, 18
                                                               fp_type >, 83
f vector t
                                                          om_unconstrained_methods::om_zero_order::nelder_mead_method
    om_types, 18
                                                               fp_type >, 60
                                                          om_unconstrained_methods::om_zero_order::powell_conjugate_met
    om utilities, 26
                                                               fp_type >, 66
fibonacci method
    om_unconstrained_methods::om_line_methods::fibonacci_method<
fn_type_typename > 44_45___nelder_mead_method
         fp_type, typename >, 44, 45
                                                          om unconstrained methods::om zero order::nelder mead method
fletcher_powell_helical_valley
                                                               fp_type >, 59, 60
    om test functions, 12
                                                     non_linear_function
fletcher reeves method
    om_unconstrained_methods::om_conjugate_gradient::fletcher_reeves_method
         fp type >, 47
                                                      om common, 9
freudenstein roth function
                                                      om_common::closest_to< 2, fp_type >, 36
    om_test_functions, 13
                                                     om_common::closest_to< 3, fp_type >, 36
                                                      om common::closest to< count, fp type, typename,
golden section method
    fp_type, typename >, 51, 52
                                                     om_common::furthest_from< 2, fp_type >, 50
                                                      om_common::furthest_from< 3, fp_type >, 50
                                                     om_common::furthest_from < count, fp_type, typename,
hestenes_stiefel_method
    om unconstrained methods::om conjugate gradient::hestenestysmetel 4flethod<
                                                      om_common::max_arg< 2, fp_type >, 56
         fp type >, 54
high
                                                      om_common::max_arg< 3, fp_type >, 57
                                                      om_common::max_arg< count, fp_type, typename,
    om_utilities::range< fp_type, typename >, 78
                                                               type >, 56
                                                      om_common::min_arg< 2, fp_type >, 58
iqerp
    om_utilities, 26
                                                     om_common::min_arg< 3, fp_type >, 58
```

88 INDEX

>, 57	om_unconstrained_methods::om_conjugate_gradient::fletcher_reeves_methods:tom_conjugate_gradient::fletcher_reeves_methods:
om_differentiation, 9 om_differentiation::central_difference< 0, fp_type >, 34	fletcher_reeves_method, 47 minimize, 47
om_differentiation::central_difference< 1, fp_type >, 35	om_unconstrained_methods::om_conjugate_gradient::hestenes_stiefel_n
om_differentiation::central_difference< order, fp_type,	fp_type >, 53
typename >, 34	hestenes_stiefel_method, 54
om_differentiation::divided_difference< 0, fp_type >, 43	minimize, 54
om_differentiation::divided_difference< 1, fp_type >, 43	om_unconstrained_methods::om_conjugate_gradient::polak_ribiere_meth
om_differentiation::divided_difference< 2, fp_type >, 43	fp_type >, 63
om_differentiation::divided_difference< order, fp_type,	minimize, 64
typename, type >, 42	polak_ribiere_method, 64
om_differentiation::forward_difference< 0, fp_type >,	om_unconstrained_methods::om_line_methods, 23
48	om_unconstrained_methods::om_line_methods::brent_method<
om_differentiation::forward_difference< 1, fp_type >,	fp_type, typename >, 29
49	brent_method, 30
om_differentiation::forward_difference< order, fp_type,	operator(), 30
typename >, 48	operator=, 31
om_differentiation_traits, 10	om_unconstrained_methods::om_line_methods::fibonacci_method<
om_differentiation_traits::central_difference_trait<	fp_type, typename >, 43
fp_type >, 35	fibonacci_method, 44, 45
om_differentiation_traits::forward_difference_trait<	operator(), 45
fp type $>$, 49	operator=, 45
om_test_functions, 10	om_unconstrained_methods::om_line_methods::golden_section_method-
beale_function, 11	fp_type, typename >, 51
create_rao_test_collection, 12	golden_section_method, 51, 52
fletcher_powell_helical_valley, 12	operator(), 52
freudenstein_roth_function, 13	operator=, 53
non_linear_function, 13	om_unconstrained_methods::om_line_methods::powell_method<
pi, 16	fp_type, typename >, 68
powell_badly_scaled_function, 14	operator(), 70
powell_function, 14	operator=, 70
quadratic_function, 15	powell_method, 69, 70
rosenbrock_parabolic_valley, 15	om_unconstrained_methods::om_quasi_newton, 23
wood_function, 16	om_unconstrained_methods::om_quasi_newton::broyden_fletcher_goldfa
om_test_helpers, 17	fp_type >, 31
om_test_helpers::minimizer_helper< fp_type >, 58	broyden_fletcher_goldfarb_shanno_method, 32
om_types, 17	minimize, 33
f_line_minimiser_t, 18	om unconstrained methods::om quasi newton::davidon fletcher powel
f_scalar_t, 18	fp_type >, 40
f_vector_t, 18	davidon_fletcher_powell_method, 41
matrix_t, 19	minimize, 41
sptr_t, 19	om_unconstrained_methods::om_quasi_newton::quasi_newton_base<
vector_arg_t, 19	fp_type, typename >, 71
vector_const_t, 19	operator=, 73
vector_t, 20	quasi_newton_base, 72
om_unconstrained_methods, 20	set_arg_tolerance, 73
minimize, 21, 22	set_fun_tolerance, 73
om_unconstrained_methods::om_conjugate_gradient,	set_grad_tolerance, 74
22	set_max_iterations, 74
om_unconstrained_methods::om_conjugate_gradient::co	
fp_type, typename >, 36	om_unconstrained_methods::om_steepest_descent::steepest_descent_n
conjugate_gradient_base, 37, 38	fp_type >, 80
operator=, 38	minimize, 83
set_arg_tolerance, 39	operator=, 83
set_fun_tolerance, 39	set_arg_tolerance, 83
set_grad_tolerance, 39	set_fun_tolerance, 84
set_max_iterations, 40	set_grad_tolerance, 84

INDEX 89

```
set_max_iterations, 84
                                                                                            om_unconstrained_methods::om_line_methods::brent_method<
       steepest_descent_method, 82
                                                                                                    fp_type, typename >, 31
                                                                                            om_unconstrained_methods::om_line_methods::fibonacci_method<
om_unconstrained_methods::om_zero_order, 24
om_unconstrained_methods::om_zero_order::nelder_mead_methodfp_type, typename >, 45
                                                                                            om_unconstrained_methods::om_line_methods::golden_section_me
              fp_type >, 58
       minimize, 60
                                                                                                    fp_type, typename >, 53
       nelder_mead_method, 59, 60
                                                                                            om unconstrained methods::om line methods::powell method<
                                                                                                    fp_type, typename >, 70
       operator=, 61
                                                                                            om_unconstrained_methods::om_quasi_newton::quasi_newton_base
       set_contraction_rho, 61
                                                                                                    fp_type, typename >, 73
       set_converge_tolerance, 61
                                                                                            om_unconstrained_methods::om_steepest_descent::steepest_desce
       set_expansion_rho, 62
                                                                                                   fp_type >, 83
       set_max_iterations, 62
                                                                                            om_unconstrained_methods::om_zero_order::nelder_mead_method
       set_reflection_rho, 62
                                                                                                   fp_type >, 61
       set_shrinkage_rho, 63
om\_unconstrained\_methods::om\_zero\_order::powell\_conjugate \underline{\verb|Qmethode||} at a least of the property of the 
                                                                                                    fp_type >, 67
              fp_type >, 65
                                                                                            om_utilities::range< fp_type, typename >, 79
       minimize, 66
       operator=, 67
       powell_conjugate_method, 66
                                                                                     рi
                                                                                            om_test_functions, 16
       set_converge_tolerance, 67
                                                                                     polak_ribiere_method
       set_max_iterations, 67
om_unconstrained_methods_traits, 25
                                                                                            om_unconstrained_methods::om_conjugate_gradient::polak_ribiere_
                                                                                                    fp\_type >, 64
om_unconstrained_methods_traits::is_zero_order_method<
                                                                                     powell_badly_scaled_function
              method >, 55
                                                                                            om_test_functions, 14
om_unconstrained_methods_traits::is_zero_order_method<
              om_unconstrained_methods::om_zero_order::nenderellneadjugetaomethod
                                                                                            om_unconstrained_methods::om_zero_order::powell_conjugate_met
om_unconstrained_methods_traits::is_zero_order_method<
                                                                                                    fp_type >, 66
              om_unconstrained_methods::om_zero_order::paperle_balle_finjugtane_method<>
                                                                                            om_test_functions, 14
om_utilities, 25
                                                                                     powell_method
       fib, 26
                                                                                            om_unconstrained_methods::om_line_methods::powell_method<
                                                                                                    fp_type, typename >, 69, 70
       iqerp, 26
       lerp, 27
                                                                                     quadratic function
       sign, 27
                                                                                            om_test_functions, 15
om_utilities::cartesian_basis_vectors< fp_type, type-
              name >, 33
                                                                                     quasi_newton_base
                                                                                            om_unconstrained_methods::om_quasi_newton::quasi_newton_base
om_utilities::random_vectors_from_guess<
                                                                      fp_type,
              distribution, typename >, 74
                                                                                                    fp_type, typename >, 72
om_utilities::range< fp_type, typename >, 75
       high, 78
                                                                                     range
       low, 78
                                                                                            om_utilities::range< fp_type, typename >, 76, 78
       low_high, 78
                                                                                     rosenbrock_parabolic_valley
                                                                                            om_test_functions, 15
       operator=, 79
       range, 76, 78
       spread, 80
                                                                                     set_arg_tolerance
operator()
                                                                                            om_unconstrained_methods::om_conjugate_gradient::conjugate_gra
       om_unconstrained_methods::om_line_methods::brent_method *p_type, typename >, 39
              fp_type, typename >, 30
                                                                                            om_unconstrained_methods::om_quasi_newton::quasi_newton_base
       om_unconstrained_methods::om_line_methods::fibonacci_methfpdtype, typename >, 73
              fp_type, typename >, 45
                                                                                            om_unconstrained_methods::om_steepest_descent::steepest_desce
       om_unconstrained_methods::om_line_methods::golden_sectionfpntppteod< 83
                                                                                     set contraction rho
              fp type, typename >, 52
       om_unconstrained_methods::om_line_methods::powell_methodrconstrained_methods::om_zero_order::nelder_mead_method
              fp_type, typename >, 70
                                                                                                   fp_type >, 61
                                                                                     set_converge_tolerance
       om_unconstrained_methods::om_conjugate_gradient::conjougatenconatteainduaseethods::om_zero_order::nelder_mead_method
              fp_type, typename >, 38
                                                                                                    fp_type >, 61
```

90 INDEX

```
om_unconstrained_methods::om_zero_order::powell_conjugate_method<
         fp_type >, 67
set_expansion_rho
    om_unconstrained_methods::om_zero_order::nelder mead method<
         fp_type >, 62
set_fun_tolerance
    om unconstrained methods::om conjugate gradient::conjugate gradient base<
         fp type, typename >, 39
    om_unconstrained_methods::om_quasi_newton::quasi_newton_base<
         fp_type, typename >, 73
    om unconstrained methods::om steepest descent::steepest descent method<
         fp_type >, 84
set_grad_tolerance
    om_unconstrained_methods::om_conjugate_gradient::conjugate_gradient_base<
         fp type, typename >, 39
    om\_unconstrained\_methods::om\_quasi\_newton::quasi\_newton\_base<
         fp_type, typename >, 74
    om unconstrained methods::om steepest descent::steepest descent method<
         fp type >, 84
set_max_iterations
    om_unconstrained_methods::om_conjugate_gradient::conjugate_gradient_base<
         fp_type, typename >, 40
    om_unconstrained_methods::om_quasi_newton::quasi_newton_base<
         fp_type, typename >, 74
    om_unconstrained_methods::om_steepest_descent::steepest_descent_method<
         fp_type >, 84
    om_unconstrained_methods::om_zero_order::nelder_mead_method<
         fp_type >, 62
    om_unconstrained_methods::om_zero_order::powell_conjugate_method<
         fp type >, 67
set reflection rho
    om_unconstrained_methods::om_zero_order::nelder_mead_method<
         fp_type >, 62
set shrinkage rho
    om_unconstrained_methods::om_zero_order::nelder_mead_method<
         fp_type >, 63
sign
    om utilities, 27
spread
    om_utilities::range< fp_type, typename >, 80
sptr_t
    om types, 19
steepest descent method
    om_unconstrained_methods::om_steepest_descent::steepest_descent_method<
         fp_type >, 82
vector_arg_t
    om_types, 19
vector const t
    om_types, 19
vector_t
    om types, 20
wood function
    om test functions, 16
```