Introduction to Ray Tracing

RAJESH SHARMA
Walt Disney Animation Studios

Thank you to ACM SIGGRAPH!

Pol Jeremias-Vila: SIGGRAPH 2021 Chair

Tomasz Bednarz: Frontiers Program Chair

Alex Bryant: Student Volunteers Chair

Tim Hendrickson: Digital Marketing Manager

Student Volunteers:

Rogelio, Trinity, Aurora, Emily, Hunter & Kendra

Ray Tracing

Rajesh Sharma

Today

- Introduction
- Guest: Peter Shirley
- What is Ray Tracing?
- How does a camera work?
- Properties of lights and materials
- Sampling a function

Course Outline

- -- Intro, Model, Sampling
- -- Rays, Intersections
- -- Scene, Recursion
- -- Materials, BRDF
- -- Importance Sampling, Lights
- -- Systems View: Integrators, Accelerators
- -- Wrap up, Learn more

Housekeeping

- Link to today's slides and Colab notebooks:
 - Log in to your google drive
 - Make a shortcut to: https://bit.ly/3viTHez
 - Create an account on <u>shadertoy.com</u>
- Use the chat to ask questions, help others
- After the lecture: @xarmalarma, #siggraph2021

Peter Shirley

Researcher, Teacher, Author

Distinguished Scientist NVIDIA

$$L_{r}(x, \omega_{r}) = L_{e}(x, \omega_{r}) + \int_{\Omega} L_{r}(x', -\omega_{i}) f(x, \omega_{i}, \omega_{r}) \cos \theta_{i} d\omega_{i}$$

Image is formed from interaction of lights and materials

Depends on:

- Location of objects
- Location of lights
- Viewing Angle

We only see what's in front of us But, it may be affected by what is not directly visible

• At each pixel, ask questions from an object

- O Do you exist?
- O What color are you?

• Problem: Pixels are large and discontinuous, object is continuous

• Problem: Pixels are large and discontinuous, object is continuous

A solution: Multiple samples per pixel (Random)

• A (better) solution: Stratified/jittered multiple samples per pixel

Single Pixel

Hands-on

- ★ Log in to your google drive
- ★ Make a shortcut to: https://bit.ly/3viTHez
- ★ Create an account on shadertoy.com
- ★ Fork a copy of:
 - https://www.shadertoy.com/view/sls3Rn

ShaderToy Basics

```
// Created by inigo quilez - iq/2014
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
// The final product of some live coding improv. The process is live narrated in this
// video: https://www.youtube.com/watch?v=0ifChJ0nJfM
void mainImage( out vec4 fragColor, in vec2 fragCoord )
     vec2 p = fragCoord.xy / <u>iResolution</u>.xy;
     vec2 q = p - \underline{vec2}(0.33, 0.7);
     vec3 col = mix(vec3(1.0,0.3,0.0), vec3(1.0,0.8,0.3), sqrt(p.y));
     float r = 0.2 + 0.1*\cos(\frac{1}{2} \arctan(q.y,q.x)*10.0 + 20.0*q.x + 1.0);
     col *= smoothstep(r, r+0.01, length(q));
     r = 0.015;
     r += 0.002*sin(120.0*q.y);
     r += exp(-40.0*p.v);
     col *= 1.0 - (1.0-smoothstep(r,r+0.002,
                   abs(q.x-0.25*sin(2.0*q.y)))*(1.0-smoothstep(0.0,0.1,q.y));
     fragColor = \underline{\text{vec4}}(\text{col}, 1.0);
```

Hands-on

Next Class

Next Class

- Rays, Spheres
- Intersections
- Homework:
 - Sample some interesting functions
 - Implement jittered/stratified sampling
 - o @xarmalarma, #siggraph2021

QUESTIONS?

- Chat
- #xarmalarma