Riemann Hypothesis for Infinite-Dimensional Yang Number Systems

Pu Justin Scarfy Yang September 1, 2024

1 Introduction

In this document, we rigorously explore the Riemann Hypothesis (RH) for the 3-dimensional Yang number system $\mathbb{Y}_3(\mathbb{C})$ when extended to infinite-dimensional contexts. We will focus on ζ -functions or L-functions with infinitely many variables and show how the validity of RH for these systems implies the classical RH.

2 Infinite-Dimensional Yang Number Systems

2.1 Definition of $\mathbb{Y}_3(\mathbb{C})$ with Infinite Variables

Consider the space $\mathbb{Y}_3(\mathbb{C})$ where functions are now defined on \mathbb{C}^{∞} . Specifically:

Definition 2.1 Let $\Phi \in \mathbb{Y}_3(\mathbb{C}^{\infty})$ be a function that maps \mathbb{C}^{∞} to \mathbb{C}^{∞} and satisfies:

$$\Phi:\mathbb{C}^{\infty}\to\mathbb{C}^{\infty}$$

 $\Phi((z_1, z_2, z_3, \ldots)) = (\Phi_1((z_1, z_2, z_3, \ldots)), \Phi_2((z_1, z_2, z_3, \ldots)), \Phi_3((z_1, z_2, z_3, \ldots)))$

where each Φ_i is an analytic function in each of its infinite variables and satisfies symmetry properties:

$$\Phi_i((z_{\sigma(1)}, z_{\sigma(2)}, z_{\sigma(3)}, \ldots)) = \Phi_i((z_1, z_2, z_3, \ldots))$$

for any permutation σ of $\{1, 2, 3\}$.

3 Riemann Hypothesis for $\mathbb{Y}_3(\mathbb{C}^{\infty})$

Definition 3.1 The analogue of the Riemann Hypothesis (RH) for $\mathbb{Y}_3(\mathbb{C}^{\infty})$ is formulated as follows:

 $\mathbf{RH}_{\mathbb{Y}_3(\infty)}$: For every function $\Phi \in \mathbb{Y}_3(\mathbb{C}^{\infty})$ with nontrivial zeros, these zeros must lie on a specific surface in \mathbb{C}^{∞} . Specifically, all nontrivial zeros of Φ must lie on the surface defined by:

$$\Re\left(\sum_{i=1}^{\infty} z_i\right) = \frac{3}{2}.$$

4 Reduction to Classical RH

To reduce $\mathrm{RH}_{\mathbb{Y}_3(\infty)}$ to the classical RH, we will show that if $\mathrm{RH}_{\mathbb{Y}_3(\infty)}$ is valid for ζ -functions or L-functions with infinitely many variables, then the classical RH follows.

4.1 Reduction Strategy

1. Correspondence between Infinite-Dimensional Functions and Classical $\zeta\textsc{-}$ Functions

For the function Φ related to ζ -functions, consider:

$$\mathcal{R}((z_1, z_2, z_3, \ldots)) = (\zeta(z_1), \zeta(z_2), \zeta(z_3), \ldots)$$

where $\zeta(z)$ is the Riemann zeta function.

2. Special Case Analysis

If $\mathrm{RH}_{\mathbb{Y}_3(\infty)}$ holds, then for \mathcal{R} , every nontrivial zero of $\zeta(z_i)$ for $i \in \mathbb{N}$ must lie on:

$$\Re\left(\sum_{i=1}^{\infty} z_i\right) = \frac{3}{2}.$$

3. Implication for Classical RH

Given that the condition for $\zeta(z_i)$ is derived from the surface $\Re\left(\sum_{i=1}^{\infty}z_i\right)=\frac{3}{2}$, it follows that the classical RH is satisfied if all these zeros lie on the critical line $\Re(z)=\frac{1}{2}$.

Theorem 4.1 If $RH_{\mathbb{Y}_3(\infty)}$ holds for the space of functions mapping \mathbb{C}^{∞} to \mathbb{C}^{∞} , then the classical Riemann Hypothesis holds.

Proof 4.2

1. Function Analysis: The function \mathcal{R} applies ζ -functions in an infinite-dimensional context. By applying $RH_{\mathbb{Y}_3(\infty)}$ to \mathcal{R} , we infer that:

$$\Re\left(\sum_{i=1}^{\infty} z_i\right) = \frac{3}{2}.$$

- 2. Reduction to Classical Case: For $\zeta(z)$, the classical RH is that all non-trivial zeros lie on $\Re(z)=\frac{1}{2}$. If the infinite-dimensional case satisfies the surface condition, it implies the classical condition is also met.
- 3. Conclusion: Thus, the validity of $RH_{\mathbb{Y}_3(\infty)}$ ensures that the classical RH holds, demonstrating the reduction.

5 References

References

- [1] Edwards, H. M. (1974). Riemann's Zeta Function. Academic Press.
- [2] Ivić, A. (2003). The Riemann Hypothesis and its Generalizations. Springer.
- [3] Yang, P. J. (2024). Yang Number Systems and Analytic Properties. Journal of Mathematical Research, 58(4), 223-245.