University of Padova, Italy Department of Information Engineering (DEI)

Online and Adaptive Parking Availability Mapping: An Uncertainty-Aware Active Sensing Approach for Connected Vehicles

L. VAROTTO - SPARCS, DEI, UniPD

A. CENEDESE - SPARCS, DEI, UniPD - angelo.cenedese@unipd.it

Probabilistic Active Sensing (PAS)

- Active Sensing: control of perception process
- Probabilistic: a belief map encodes mission knowledge

- objectives:
 - guide the platform behavior towards information gain maximization (explorative PAS) or task completion (exploitative PAS)
- why to use PAS?
 - ✓ enables autonomous perception in robotics systems
 - ✓ higher performance w.r.t passive counterparts
 - ✓ account for perception uncertainties, noisy scenarios, unmodeled dynamics
 - ✓ high adaptivity properties (through probabilistic decision making)

- Autonomous warehouse schemes
- Robotics perception
- Environmental exploration
- Target tracking
- Search & rescue
- Sensor Networks
- ADAS systems

PARKING AVAILABILITY MAP ESTIMATION (PAME)

How to deal with ...

- 1 modeling:
 - environmental properties
 - traffic behavior
- 2 complexity:
 - big data vs runtime specifications
- 3 adaptivity:
 - obsolete and noisy data
- 4 decision making and control:
 - planning under uncertainty and on unmonitored areas

Environment

Parking Availability Map (PAM)

$$f(x|\mu_t(x)): \mathcal{X} \mapsto [0,1]$$

 $x \to \pi(x)\lambda(\mu_t(x)),$

- $\mathcal{X} = [0, L]$: road path
- \blacksquare $\pi(x)$: (on-street) a-priori parking availability \leadsto environmental properties
- $\lambda(\mu_t(x))$: parking availability attenuation function \leadsto traffic conditions $\leadsto \mu_t(x)$

Sensing platform

Vehicle equipped with

- communication capabilities (connected vehicle)
- sensing (e.g., LiDAR) and computational resources to detect on-street parking slots and to recognize their availability (smart vehicle)

State: $s_t \in \mathcal{X}$ (position over the road path)

PA observation model: estimated parking availability at current position

$$y_t(s_t) \approx f(s_t|\mu_t(s_t)) + \epsilon_t$$

$$\epsilon_{t} \sim \mathcal{N}\left(\epsilon \left| 0, \sigma^{2} \right. \right)$$

$External\ information\ sources$

- 1 cloud database (DB)
 - stores up-to-date and noiseless information on the traffic density level over \mathcal{X} \rightarrow the platform has access to $\mu_t(x)$, $\forall x \in \mathcal{X}$, $\forall t > 0$
- $\underline{\mathbf{2}}$ other connected vehicles (V2V) and $\underline{\mathbf{smart}}$ parking stations (V2I)
 - $V_t = \{v_{t,i}\}_{i=1}^{N_t}$: set of connected external sources at time t
 - $v_{t,i}$, placed in x_i , sends $y_t(x_i)$, $y_t(\cdot)$ follows the same observation model of the platform for any i

$External\ information\ sources$

- 1 <u>cloud database</u> (DB)
 - stores up-to-date and noiseless information on the traffic density level over \mathcal{X} \rightarrow the platform has access to $\mu_t(x)$, $\forall x \in \mathcal{X}$, $\forall t > 0$
- 2 other connected vehicles (V2V) and smart parking stations (V2I)
 - $\mathbf{V}_t = \{v_{t,i}\}_{i=1}^{N_t}$: set of connected external sources at time t
 - $v_{t,i}$, placed in x_i , sends $y_t(x_i)$, $y_t(\cdot)$ follows the same observation model of the platform for any i

Incremental data accumulation

$$\mathbf{X}_{t} = \mathbf{X}_{t-T} \cup s_{t} \cup \{x_{i}\}_{i=1}^{N_{t}}$$
$$\mathbf{y}_{t} = \mathbf{y}_{t-T} \cup y_{t}(s_{t}) \cup \{y_{t}(x_{i})\}_{i=1}^{N_{t}},$$

At time t, the dataset is $\mathcal{D}_t = (\mathbf{X}_t, \mathbf{y}_t)$, with cardinality $|\mathcal{D}_t| = t + \sum_{\tau=1}^t N_\tau$

Problem formulation (PAME)

Exploit local and remote data in \mathcal{D}_t to reconstruct the latent PAM function $f(x|\mu_t(x))$, over the road path \mathcal{X} and under dynamic traffic conditions.

METHODOLOGY

PAS for PAME

Overview & Contributions

Overview

- **1** design of a GPR scheme that incrementally and adaptively learns $f(x|\mu_t(x))$
- 2 GPR coupled with an uncertainty-aware data acquisition policy
- 3 $\mu_t(x)$ exploited to adapt to traffic changes

PAS for PAME Overview & Contributions

Overview

- 1 design of a GPR scheme that incrementally and adaptively learns $f(x|\mu_t(x))$
- 2 GPR coupled with an uncertainty-aware data acquisition policy
- 3 $\mu_t(x)$ exploited to adapt to traffic changes

Contributions

- \blacksquare V2V/I communication guarantees online learning and continuous map update
- 2 knowledge of $\mu_t(x)$ allows adaptivity w.r.t. the time-varying fluctuations of the traffic density level
- first attempt to design a parking mapping algorithm by leveraging PAS within the framework of connected vehicles

PAS for PAME

Overview & Contributions

Overview

- **1** design of a GPR scheme that incrementally and adaptively learns $f(x|\mu_t(x))$
- 2 GPR coupled with an uncertainty-aware data acquisition policy
- 3 $\mu_t(x)$ exploited to adapt to traffic changes

Contributions

- 1 V2V/I communication guarantees online learning and continuous map update
- 2 knowledge of $\mu_t(x)$ allows adaptivity w.r.t. the time-varying fluctuations of the traffic density level
- first attempt to design a parking mapping algorithm by leveraging PAS within the framework of connected vehicles

Results

- high adaptivity capabilities
- small computational and storage demands (w.r.t. standard multi-source learning procedures and usual GPR schemes)

GPR-based PAME

- model the PAM as a GP with zero mean function and Matern covariance function $\hat{f}(x|\mu_t(x)) \sim \mathcal{GP}\left(0,k(x,x')\right)$
- lacktriangle iterative procedure: a new GPR is performed as the dataset D_t is updated with incoming data

Uncertainty-aware active sampling

- \blacksquare GPR becomes quickly intractable, due to data accumulation
- consider only one sample per iteration, according to the following selection strategy

$$x_{t} = \underset{x_{*} \in s_{t} \cup \{x_{i}\}_{i=1}^{N_{t}}}{\arg \max} a(x_{*} | \mathcal{D}_{t-T}),$$

• use an uncertainty-aware policy $a(x_*|\mathcal{D}_{t-T}) = \sigma_{*,\mathcal{D}_{t-T}}$ (predictive std. dev. at x_*) \rightarrow choose the most informative sample

Adaptation to time-varying traffic density

- $\blacksquare \mu_t(\cdot)$ changes over time
- \blacksquare some data in \mathcal{D}_t become obsolete

$$\mathcal{D}_{obsolete} = \{(x_j, y_j) \in \mathcal{D}_t : \mu_{t-T}(x_j) \neq \mu_t(x_j)\} \subseteq \mathcal{D}_t$$

lacktriangle the platform can access the DB, compute $\mathcal{D}_{obsolete}$ and remove it from \mathcal{D}_t

1

successive GPR iterations are not contaminated by spurious information

NUMERICAL RESULTS

- Python-based synthetic environment (https://github.com/luca-varotto/Pparking)
- Monte Carlo (MC) experiment with $N_{tests} = 10$ tests (capture the performance variability)
- $L = 10 \text{ km}, N_t \sim \mathcal{U}(0, 10)$
- $\mu_t(x)$ time-varying according to a spatio-temporal random variable (uniform in space, Bernoullian in time)

Performance indices:

- **1** Learning curve (estimation quality): $RMSE_t/RMSE_0$, where
 - $\blacksquare RMSE_t = \sqrt{\frac{1}{L} \int_0^L \left[\hat{f}(x|\mu_t(x)) f(x|\mu_t(x)) \right]^2 dx}$
 - $RMSE_0$ is computed before any measurement is collected (i.e., during model initialization) and it is equal for all baselines
- Processing time ratio (computational demand of a GPR iteration: model training and prediction):

$$\tau_t = \frac{T_{C,t}^{(proposed)}}{T_{C,t}^{(noSel)}}$$

<u>Baselines</u>:

- NoCom: non-connected vehicle \rightarrow local measurements only
- NoSel: connected vehicle, but no active sampling applied
- lacktriangleq Rnd: connected vehicle; active sampling with random acquisition function

- time-invariant traffic density
- why a multi-source approach?

- noCom has not access to remote data
- it can not replace obsolete data with more up-to-date samples
- lacktriangledown poor adaptivity capabilities
- good estimation only locally

- → multi-source data collection is necessary
 - $\rightarrow Rnd$
 - \rightarrow proposed

time-invariant traffic density \rightarrow analyze the asymptotic estimation properties

- RMSE smaller than Rnd for the 66% of the times
- RMSE smaller than noCom for the 96% of the times

- PAS: drives the data collection process towards the highest information gain → fastest and highest quality mapping performance
- noCom:
 - slowest convergence
 - \blacksquare no spatial predictive capabilities \to need to wait until the end to have accurate reconstruction

- why employing data selection?
- consider the time required to train and evaluate the GP, at every iteration until $s_t = L$

- 83% less processing demand w.r.t. noSel
- the computational gap increases with t, as $|\mathcal{D}_t| = t + \sum_{\tau=1}^t N_{\tau}$ suggests

data selection is necessary when GPR meets big data

- \blacksquare time-invariant traffic density \rightarrow time-varying traffic density
- why uncertainty-aware policy?

■ The uncertainty of the GP model increases where obsolete datapoints are removed (i.e., where traffic changes)

- \blacksquare time-invariant traffic density \rightarrow time-varying traffic density
- why uncertainty-aware policy?

- The uncertainty of the GP model increases where obsolete datapoints are removed (i.e., where traffic changes)
- the uncertainty-aware policy prioritises high-variance query points
- \blacksquare fast recovery under dynamic environments

- \blacksquare time-invariant traffic density \rightarrow time-varying traffic density
- why uncertainty-aware policy?

■ RMSE smaller than Rnd the for 80% of the times (14% more than the time-invariant case)

- The uncertainty of the GP model increases where obsolete datapoints are removed (i.e., where traffic changes)
- the uncertainty-aware policy prioritises high-variance query points
- \blacksquare fast recovery under dynamic environments

CONCLUSIONS & FOLLOW-UPS

• Summary:

- ✓ online and adaptive learning of on-street parking availability in the framework of connected vehicles.
- ✓ incremental learning via GPR in a multi-source data collection scenario
- \checkmark computational and storage intractability issues prevented through probabilistic active sensing

• Future works:

- extension to multi-platform cooperative scenarios
- extension to online routing problems

Angelo Cenedese
Dept. of Information
Engineering
University of Padova, Italy
angelo.cenedese@unipd.it

