Libraries Used

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import time
import warnings
from sklearn.model selection import train test split, GridSearchCV,
cross val score
from sklearn.preprocessing import MinMaxScaler, StandardScaler,
LabelEncoder
from sklearn.metrics import accuracy score, precision score,
recall score, fl score, confusion matrix, classification report
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier, plot tree
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
```

(I) Data Preprocessing

```
df=pd.read csv('Titanic-Dataset.csv')
df
      PassengerId
                    Survived
                              Pclass \
0
                           0
                                    3
                 1
                 2
1
                                    1
                           1
2
                 3
                                    3
                           1
3
                 4
                           1
                                    1
4
                 5
                           0
                                    3
. . .
                          . . .
             1305
                           0
                                    3
1304
1305
             1306
                           1
                                    1
                                    3
1306
             1307
                           0
                                    3
                           0
1307
             1308
             1309
1308
                                                      Name
                                                               Sex
                                                                      Age
SibSp \
                                  Braund, Mr. Owen Harris
                                                              male 22.0
0
1
      Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
1
1
2
                                   Heikkinen, Miss. Laina female 26.0
0
```

```
3
           Futrelle, Mrs. Jacques Heath (Lily May Peel) female
                                                                     35.0
1
4
                                 Allen, Mr. William Henry
                                                              male
                                                                     35.0
0
                                       Spector, Mr. Woolf
1304
                                                              male
                                                                      NaN
0
1305
                            Oliva y Ocana, Dona. Fermina female
                                                                     39.0
                            Saether, Mr. Simon Sivertsen
1306
                                                              male
                                                                     38.5
1307
                                      Ware, Mr. Frederick
                                                               male
                                                                      NaN
0
1308
                                 Peter, Master. Michael J
                                                              male
                                                                      NaN
1
      Parch
                          Ticket
                                       Fare Cabin Embarked
0
          0
                       A/5 21171
                                     7.2500
                                               NaN
                                                          S
                                                          C
1
          0
                        PC 17599
                                    71.2833
                                               C85
2
                                                          S
          0
                STON/02. 3101282
                                     7.9250
                                               NaN
3
                                                          S
          0
                          113803
                                    53.1000
                                              C123
4
                                                          S
          0
                          373450
                                     8.0500
                                               NaN
1304
                                                          S
          0
                       A.5. 3236
                                     8.0500
                                               NaN
                        PC 17758
                                   108.9000
                                                          C
1305
          0
                                              C105
                                                          S
1306
          0
             SOTON/0.Q. 3101262
                                     7.2500
                                               NaN
                                                          S
1307
          0
                          359309
                                     8.0500
                                               NaN
          1
                                                          C
1308
                            2668
                                    22.3583
                                               NaN
[1309 rows \times 12 columns]
print("Dataset Overview:")
print(df.info())
Dataset Overview:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1309 entries, 0 to 1308
Data columns (total 12 columns):
#
     Column
                   Non-Null Count
                                    Dtype
- - -
 0
     PassengerId
                   1309 non-null
                                    int64
     Survived
                   1309 non-null
1
                                    int64
 2
     Pclass
                   1309 non-null
                                    int64
 3
     Name
                   1309 non-null
                                    object
 4
                   1309 non-null
     Sex
                                    object
 5
                   1046 non-null
                                    float64
     Age
6
     SibSp
                   1309 non-null
                                    int64
 7
     Parch
                   1309 non-null
                                    int64
 8
     Ticket
                   1309 non-null
                                    object
```

```
9
     Fare
                  1308 non-null
                                  float64
10 Cabin
                                   object
                  295 non-null
11 Embarked
                  1307 non-null
                                   object
dtypes: float64(2), int64(5), object(5)
memory usage: 122.8+ KB
None
# Count null values
null values = df.isnull().sum()
print("Number of null values:", null values)
# Count duplicated rows
duplicate rows = df.duplicated().sum()
print("Number of duplicated rows:", duplicate rows)
Number of null values: PassengerId
Survived
Pclass
                  0
Name
                  0
Sex
                  0
                263
Age
SibSp
                  0
                  0
Parch
Ticket
                  0
Fare
                  1
Cabin
               1014
Embarked
                  2
dtype: int64
Number of duplicated rows: 0
df['Age'] = df['Age'].fillna(df['Age'].median())
df['Fare'] = df['Fare'].fillna(df['Fare'].median())
df['Embarked'] = df['Embarked'].fillna(df['Embarked'].mode()[0])
df.drop(['PassengerId','Name','Ticket','Cabin'], axis=1,inplace=True)
df.rename(columns={"Pclass":'Passenger Class','Sex':'Gender','SibSp':
'Siblings Aboard', 'Parch': 'Family Aboard'}, inplace=True)
qender mapping={'male':0,'female':1}
embarked mapping={'S':0,'C':1,'Q':2}
df['Gender']=df['Gender'].map(gender mapping)
df['Embarked']=df['Embarked'].map(embarked_mapping)
print("Descriptive Statistics:")
print(df.describe())
Descriptive Statistics:
          Survived Passenger Class
                                           Gender
                                                           Age \
count 1309,000000
                        1309.\overline{0}00000 \quad 1309.000000 \quad 1309.000000
```

mean std min 25% 50% 75% max	0.377387 0.484918 0.000000 0.000000 0.000000 1.000000		2.294882 0.837836 1.000000 2.000000 3.000000 3.000000 3.000000		0.355997 0.478997 0.000000 0.000000 0.000000 1.000000		29.503186 12.905241 0.170000 22.000000 28.000000 35.000000 80.000000	
count mean std min 25% 50% 75% max	0 1 0 0 0	_Aboard .000000 .498854 .041658 .000000 .000000 .000000	Family_Abo 1309.006 0.385 0.865 0.006 0.006 0.006 9.006	0000 5027 5560 0000 0000 0000	1309.00 33.28 51.74 0.00 7.89 14.45 31.27 512.32	1086 1500 0000 5800 4200 5000	Embarke 1309.00000 0.39419 0.65349 0.00000 0.00000 1.00000	90 94 99 90 90 90
df								
	Survived	Passenge	er_Class (Gender	Age	Sibl	ings_Aboard	b
	_Aboard	\	2	Α	22.0		-	1
0	0		3	0	22.0		-	1
0 1	1		1	1	38.0			1
0	Τ.		T	1	30.0		-	_
0 2	1		3	1	26.0		(9
	-		<u> </u>	-				
0 3	1		1	1	35.0		-	1
0								
4	0		3	0	35.0		(9
0								
								•
1304	0		3	0	28.0		(9
0	J		J	J	_5.0			
1305	1		1	1	39.0		(9
0				-	20 -			
1306	0		3	0	38.5		(9
0 1307	0		3	0	28.0			9
0	U		J	U	20.0			J
1308	0		3	0	28.0			1
1	-							
0 1 2 3	Fare 7.2500 71.2833 7.9250 53.1000	Embarked) L)					

```
4
        8.0500
                       0
1304
        8.0500
                       0
1305 108.9000
                       1
1306
       7.2500
                       0
1307
        8.0500
                       0
                       1
1308 22.3583
[1309 rows x 8 columns]
X = df.drop(columns=['Survived'])
y = df['Survived']
X train, X test, y train, y test = train test split(X, y,
test size=0.3, random state=42)
standard scaler=StandardScaler()
minmax_scaler=MinMaxScaler()
X train standard,
X test standard=standard scaler.fit transform(X train), standard scaler
.fit_transform(X_test)
X train minmax,
X_test_minmax=minmax_scaler.fit_transform(X_train),minmax_scaler.fit_t
ransform(X test)
# Initialize lists to store accuracy and runtime
model names = []
training accuracies = []
testing accuracies = []
runtimes = []
```

(II) Data Exploration

```
correlation_matrix = df.corr()

plt.figure(figsize=(8,6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm',
cbar=True, square=True)
plt.title('Correlation Heatmap')
plt.show()
```


Possible Explanations for Correlation Between Survival and Other Attributes

Passenger Class (Moderate Negative Correlation)

- Passengers in higher classes (1st class, represented by the lowest numerical value) were more likely to survive compared to those in lower classes (2nd or 3rd class).
- Likely due to better access to lifeboats and assistance during evacuation.

Gender (Strong Positive Correlation)

• Females (encoded as 1) had a higher likelihood of survival compared to males (encoded as 0).

 Aligns with the historical account of the Titanic's evacuation policy, where women and children were given priority for lifeboats.

Age (Weak Negative Correlation)

- Younger passengers were marginally more likely to survive than older ones.
- This might reflect children receiving priority for lifeboat access.
- The effect is weak, possibly due to the low number of children on board.

Siblings Aboard (Weak Negative Correlation)

- Having more siblings aboard slightly reduced the likelihood of survival.
- Likely due to the challenge of coordinating survival among multiple family members during the chaos.
- The effect is very minor.

Family Aboard (Weak Positive Correlation)

- Having parents or children aboard slightly increased the likelihood of survival.
- Family members may have helped each other during evacuation.
- The effect is not strong.

Fare (Positive Correlation)

- Passengers who paid higher fares were more likely to survive.
- Higher fares were typically associated with higher passenger classes, which had better access to lifeboats and crew assistance.

Embarked (Weak Positive Correlation)

Passengers who embarked at Cherbourg (encoded as 1) and Queenstown (encoded as 2)
were slightly more likely to survive than those who embarked at Southampton (encoded
as 0).

 This may reflect demographic differences or disparities in ticket type, class, or access to lifeboats among passengers from different ports.

Visualizations to support the previous claims

```
# Visualization 3: Pie Chart for Overall Survival
survival_labels = ['Survived', 'Did Not Survive']
survival_counts = [df[df['Survived'] == 1].shape[0], df[df['Survived']
== 0].shape[0]]
survival_percentage=round(df[df['Survived'] ==
1].shape[0]/df.shape[0]*100,2)

plt.figure(figsize=(8, 6))
plt.pie(survival_counts, labels=survival_labels, autopct='%1.1f%',
colors=['#4caf50', '#f44336'])
plt.title('Overall Survival Percentage')
plt.show()
```

Overall Survival Percentage

Calculate the overall survival percentage as a baseline control metric. This will serve as a reference point to compare survival rates across subsets of the dataset.

```
# Calculate variables for gender survival analysis
female survivors = df[(df['Gender'] == 1) & (df['Survived'] ==
1) ] . shape [0]
male survivors = df[(df['Gender'] == 0) & (df['Survived'] ==
1)].shape[0]
total_females = df[df['Gender'] == 1].shape[0]
total males = df[df['Gender'] == 0].shape[0]
# Visualization 1: Survival by Gender
gender labels = ['Female', 'Male']
gender survival rates = [
    (female survivors / total females) * 100 if total females > 0 else
0,
    (male_survivors / total_males) * 100 if total_males > 0 else 0
]
# Plot the barplot
plt.figure(figsize=(8, 6))
ax = sns.barplot(x=gender_labels, y=gender_survival_rates,
palette=['#ff9999', '#66b3ff'])
plt.title('Survival Percentage by Gender')
plt.ylabel('Survival Percentage')
plt.ylim(0, 100)
# Add horizontal line at y=survival percentage
plt.axhline(y=survival percentage, color='r', linestyle='--',
label=f'Average Survival Rate ({survival percentage})')
# Show the legend
plt.legend()
# Add the value labels on top of each bar
for p in ax.patches:
    ax.annotate(f'{p.get height():.2f}%',
                (p.get_x() + p.get_width() / 2., p.get_height()),
                ha='center', va='center',
                fontsize=12, color='black'
                xytext=(0, 5), textcoords='offset points')
# Show the plot
plt.show()
```

Survival Percentage by Gender


```
# Calculate variables for passenger class survival analysis
first class survivors = df[(df['Passenger Class'] == 1) &
(df['Survived'] == 1)].shape[0]
second class survivors = df[(df['Passenger Class'] == 2) &
(df['Survived'] == 1)].shape[0]
third class survivors = df[(df['Passenger_Class'] == 3) &
(df['Survived'] == 1)].shape[0]
total_first_class = df[df['Passenger Class'] == 1].shape[0]
total second class = df[df['Passenger Class'] == 2].shape[0]
total third class = df[df['Passenger Class'] == 3].shape[0]
# Visualization 2: Survival by Passenger Class
class_labels = ['First Class', 'Second Class', 'Third Class']
class survival rates = [
    (first_class_survivors / total first class) * 100 if
total first class > 0 else 0,
    (second class survivors / total second class) * 100 if
total second class > 0 else 0,
    (third class survivors / total third class) * 100 if
total third class > 0 else 0
```

```
1
plt.figure(figsize=(8, 6))
ax = sns.barplot(x=class_labels, y=class_survival_rates,
palette='coolwarm')
plt.title('Survival Percentage by Passenger Class')
plt.ylabel('Survival Percentage')
plt.ylim(0, 100)
# Add horizontal line at y=survival percentage
plt.axhline(y=survival percentage, color='r', linestyle='--',
label=f'Average Survival Rate ({survival_percentage}%)')
# Show the legend
plt.legend()
# Add the value labels on top of each bar
for p in ax.patches:
    ax.annotate(f'{p.get height():.2f}%',
                (p.get_x() + p.get_width() / 2., p.get_height()),
                ha='center', va='center',
                fontsize=12, color='black',
                xytext=(0, 5), textcoords='offset points')
# Show the plot
plt.show()
```

Survival Percentage by Passenger Class


```
# Define age demographics
age_bins = [0, 13, 19, 60, 100] # Children, Teens, Adults, Seniors
age labels = ['Children (0-13)', 'Teens (14-19)', 'Adults (20-60)',
'Seniors (60+)']
# Add an age group column to the DataFrame
age df = df.copy()
age_df['Age_Group'] = pd.cut(age_df['Age'], bins=age bins,
labels=age_labels, right=False)
# Calculate survival percentages by age group
age_group_survivors = age_df[age_df['Survived'] ==
1].groupby('Age Group').size()
age_group_totals = age_df.groupby('Age_Group').size()
age group survival rates = (age group survivors / age group totals) *
100
# Visualization: Survival by Age Demographic
plt.figure(figsize=(10, 6))
ax = sns.barplot(x=age group survival rates.index,
y=age group survival rates, palette='coolwarm')
```

```
plt.title('Survival Percentage by Age Demographic')
plt.xlabel('Age Group')
plt.ylabel('Survival Percentage')
plt.ylim(0, 100)
plt.xticks(rotation=45)
# Add horizontal line at y=survival_percentage
plt.axhline(y=survival percentage, color='r', linestyle='--',
label=f'Average Survival Rate ({survival_percentage}%)')
# Show the legend
plt.legend()
# Add the value labels on top of each bar
for p in ax.patches:
    ax.annotate(f'{p.get height():.2f}%',
                (p.get_x() + p.get_width() / 2., p.get_height()),
                ha='center', va='center',
                fontsize=12, color='black',
                xytext=(0, 5), textcoords='offset points')
# Show the plot
plt.show()
```


(III) K-Nearest Neighbors (KNN)

```
print("Running K-Nearest Neighbors (KNN)...")
# Step 4: Find the optimal k using the Elbow Method
k values = range(1, 31) # Testing k from 1 to 30
cv scores = [] # Store cross-validation scores
for k in k values:
    knn = KNeighborsClassifier(n neighbors=k)
    scores = cross_val_score(knn, X_train_standard, y_train, cv=10,
scoring="accuracy") # 10-fold cross-validation
    cv scores.append(scores.mean())
# Calculate the misclassification error for each k
error rates = [1 - score for score in cv scores]
# Step 5: Plot the Elbow Curve
plt.figure(figsize=(10, 6))
plt.plot(k values, error rates, marker='o', linestyle='-', color='b')
plt.title("Elbow Method for Optimal k")
plt.xlabel("Number of Neighbors (k)")
plt.ylabel("Misclassification Error")
```

```
plt.xticks(k_values)
plt.grid()
plt.show()

# Step 6: Select the best k (minimum error) and train the final model
optimal_k = k_values[np.argmin(error_rates)]
print(f"The optimal number of neighbors is k = {optimal_k}")

Running K-Nearest Neighbors (KNN)...
```



```
The optimal number of neighbors is k = 11

distance_metrics = ['euclidean', 'manhattan',
    'minkowski','cityblock','cosine','ll','l2','nan_euclidean']
for metric in distance_metrics:
    knn = KNeighborsClassifier(n_neighbors=optimal_k, metric=metric)
    knn.fit(X_train_standard, y_train)
    y_pred = knn.predict(X_test_standard)

    print(f"\nMetric: {metric}")
    print(f"Accuracy: {accuracy_score(y_test, y_pred)*100:.2f}%")

Metric: euclidean
Accuracy: 87.53%
```

Metric: manhattan Accuracy: 88.80%

Metric: minkowski Accuracy: 87.53%

Metric: cityblock Accuracy: 88.80%

Metric: cosine Accuracy: 87.53%

Metric: l1

Accuracy: 88.80%

Metric: 12

Accuracy: 87.53%

Metric: nan_euclidean
Accuracy: 87.53%

Evaluating Distance Metrics for KNN

Various distance metrics were tested to assess their impact on KNN accuracy:

- **Best Performance**: Manhattan (and equivalents like Cityblock, L1) achieved the highest accuracy (88.80%).
- Slightly Lower Accuracy: Metrics like Euclidean, Minkowski, and Cosine scored 87.53%.
- **Key Insight**: The dataset aligns better with grid-like Manhattan calculations than straight-line (Euclidean) or angle-based (Cosine) measures.

Conclusion: Manhattan-based metrics are more effective for this dataset, highlighting the importance of tailoring distance metrics to data characteristics.

```
start_time = time.time()
# Define the KNN model
k = optimal_k # Number of neighbors (you can change this)
knn = KNeighborsClassifier(n_neighbors=k,metric='manhattan')
# Train the model
knn.fit(X_train_standard, y_train)
# Make predictions
train_predictions = knn.predict(X_train_standard)
test_predictions = knn.predict(X_test_standard)
# Calculate accuracies
training_accuracy = accuracy_score(y_train, train_predictions)*100
testing_accuracy = accuracy_score(y_test, test_predictions)*100
```

```
# Print results
print(f"Training Accuracy: {training accuracy:.2f}%")
print(f"Testing Accuracy: {testing_accuracy:.2f}%")
knn report=classification report(y test, test predictions,
output dict=True)
print(classification_report(y_test, test_predictions))
knn train time = time.time() - start time
model names.append("KNN")
training accuracies.append(training accuracy)
testing accuracies.append(testing accuracy)
runtimes.append(knn train time)
Training Accuracy: 86.24%
Testing Accuracy: 88.80%
                           recall f1-score
              precision
                                              support
           0
                   0.90
                             0.93
                                       0.91
                                                  244
           1
                   0.87
                             0.83
                                       0.85
                                                  149
    accuracy
                                       0.89
                                                  393
                   0.88
                             0.88
                                       0.88
                                                  393
   macro avq
weighted avg
                   0.89
                             0.89
                                       0.89
                                                  393
# Optional: Define class names
class names = ['Survived', 'Did Not Survive']
# Plot using Seaborn heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(confusion matrix(y test, test predictions), annot=True,
fmt='d', cmap='Blues', xticklabels=class names,
yticklabels=class names)
plt.title('Confusion Matrix')
plt.xlabel('Actual Labels')
plt.ylabel('Predicted Labels')
plt.show()
```


(IV) Naive Bayes

```
start_time = time.time()
# Initialize Naive Bayes model
nb = GaussianNB()

# Fit the model
nb.fit(X_train_standard, y_train)

# Predict on the test data
y_pred_nb = nb.predict(X_test_standard)
nb_train_time = time.time() - start_time

# Confusion Matrix
cm = confusion_matrix(y_test, y_pred_nb)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=class_names, yticklabels=class_names)
```

```
plt.title("Confusion Matrix (Naive Bayes)")
plt.xlabel("Actual Labels")
plt.ylabel("Predicted Labels")
plt.show()
```



```
# Predict on training data
y_train_pred=nb.predict(X_train_standard)

# Calculate training accuracy
nb_training_accuracy = accuracy_score(y_train, y_train_pred)*100

print(f"Training Accuracy: {nb_training_accuracy:.2f}%")

# Calculate test accuracy
nb_test_accuracy = accuracy_score(y_test, y_pred_nb)*100

print(f"Test Accuracy: {nb_test_accuracy:.2f}%")
```

```
# Performance Metric
print("Naive Bayes Performance:")
nb_report=classification_report(y_test, y_pred_nb,output_dict=True)
print(classification_report(y_test, y_pred_nb))
model_names.append("Naive Bayes")
training accuracies.append(nb training accuracy)
testing accuracies.append(nb test accuracy)
runtimes.append(nb train time)
Training Accuracy: 84.50%
Test Accuracy: 85.24%
Naive Bayes Performance:
              precision
                           recall f1-score
                                               support
                             0.88
                                        0.88
                                                   244
                   0.88
           1
                                        0.81
                                                   149
                   0.81
                              0.81
                                        0.85
                                                   393
    accuracy
                   0.84
                             0.84
                                        0.84
                                                   393
   macro avg
weighted avg
                   0.85
                             0.85
                                        0.85
                                                   393
```

(V) Support Vector Machine (SVM)

```
start_time = time.time()
svm params = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']} # test
for best hyperparameters
svm = SVC()
grid search svm = GridSearchCV(svm, svm params, cv=3,
scoring='f1 weighted')
grid search svm.fit(X train standard, y train)
best svm = grid search svm.best estimator
print("Best SVM Parameters:", grid search svm.best params )
y pred svm = best svm.predict(X test standard)
svm train time = time.time() - start time
Best SVM Parameters: {'C': 1, 'kernel': 'rbf'}
# Extract results from GridSearchCV
results = pd.DataFrame(grid search svm.cv results )
# Heatmap for F1 score
pivot table = results.pivot(index='param kernel', columns='param C',
values='mean test score')
sns.heatmap(pivot table, annot=True, fmt=".3f", cmap="viridis")
```

```
plt.title("F1 Score Across Hyperparameters")
plt.xlabel("C (Regularization Parameter)")
plt.ylabel("Kernel")
plt.show()
```



```
# Calculate the confusion matrix
cm = confusion_matrix(y_test, y_pred_svm)

# Plot the confusion matrix as a heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=class_names, yticklabels=class_names)
plt.title("Confusion Matrix (SVM)")
plt.xlabel("Actual Labels")
plt.ylabel("Predicted Labels")
plt.show()
```



```
# Predict on training data
y_train_pred = best_svm.predict(X_train_standard)

# Calculate training accuracy
svm_training_accuracy = accuracy_score(y_train, y_train_pred)*100

print(f"Training Accuracy: {svm_training_accuracy:.2f}%")

# Calculate test accuracy
svm_test_accuracy = accuracy_score(y_test, y_pred_svm)*100

print(f"Test Accuracy: {svm_test_accuracy:.2f}%")

print("SVM Performance:")
svm_report=classification_report(y_test, y_pred_svm,output_dict=True)
print(classification_report(y_test, y_pred_svm))

model_names.append("SVM")
```

```
training accuracies.append(svm training accuracy)
testing accuracies.append(svm test accuracy)
runtimes.append(svm_train_time)
Training Accuracy: 87.34%
Test Accuracy: 87.28%
SVM Performance:
                           recall f1-score
              precision
                                              support
                   0.88
                             0.91
                                       0.90
                                                   244
           1
                             0.81
                   0.85
                                       0.83
                                                   149
    accuracy
                                       0.87
                                                   393
                   0.87
                             0.86
                                                   393
                                       0.86
   macro avg
weighted avg
                   0.87
                             0.87
                                       0.87
                                                   393
```

(VI) Decision Tree

```
start time = time.time()
# Define the Decision Tree model
decision tree = DecisionTreeClassifier(
   max depth=3,
                               # Limit the depth of the tree
   min_samples_split=4, # Minimum samples needed to split a
node
   min samples leaf=2,
                              # Minimum samples in a leaf node
                             # Maximum number of leaf nodes
   max leaf nodes=10,
    random state=42
)
# Train the model
decision_tree.fit(X_train_minmax, y_train)
# Make predictions
train predictions = decision tree.predict(X train minmax)
test_predictions = decision_tree.predict(X_test_minmax)
tree train time = time.time() - start_time
# Visualize the tree
plt.figure(figsize=(12, 8))
plot tree(decision tree, feature names=X.columns,class names=['Not
Survived', 'Survived'], filled=True)
plt.title("Decision Tree")
plt.show()
```

Decision Tree

• **DecisionTreeClassifier**: A supervised learning algorithm used for classification tasks.

Observations

- 1. **Gender Influence**:
 - Female passengers (right subtree) had a higher survival rate.
 - Male passengers (left subtree) had a lower survival rate.

2. Age and Fare:

- For females, higher fares and Passenger Class improved survival probability.
- Among males, **younger ages** and **lower fares** improved survival probability.

3. Pure Nodes:

 Some nodes (Gini = 0.0, 0.019) indicate near-perfect classification, where all samples belong to one class.

Conclusion

- **Gender** is the most critical predictor of survival.
- Fare, Age, and Passenger Class are significant secondary predictors...

```
# Calculate the confusion matrix
cm = confusion_matrix(y_test, test_predictions)
# Plot the confusion matrix as a heatmap
plt.figure(figsize=(8, 6))
```

```
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=class_names, yticklabels=class_names)
plt.title("Confusion Matrix (Decision Tree)")
plt.xlabel("Actual Labels")
plt.ylabel("Predicted Labels")
plt.show()
```



```
# Calculate accuracies
tree_training_accuracy = accuracy_score(y_train,
train_predictions)*100
tree_testing_accuracy = accuracy_score(y_test, test_predictions)*100

# Print results
print(f"Training Accuracy: {tree_training_accuracy:.2f}%")
print(f"Testing Accuracy: {tree_testing_accuracy:.2f}%")
tree_report=classification_report(y_test,
test_predictions,output_dict=True)
```

```
print(classification report(y test, test predictions))
model names.append("Decision Tree")
training accuracies.append(tree training accuracy)
testing accuracies.append(tree testing accuracy)
runtimes.append(tree train time)
Training Accuracy: 87.45%
Testing Accuracy: 86.77%
              precision
                            recall
                                    f1-score
                                                support
                    0.88
                              0.91
                                        0.89
                                                    244
                    0.84
                                                    149
                              0.81
                                        0.82
                                        0.87
                                                    393
    accuracy
                                        0.86
   macro avg
                    0.86
                              0.86
                                                    393
                    0.87
                              0.87
                                        0.87
                                                    393
weighted avg
```

(VII) Results Comparison

```
results = {
    'Algorithm': model names,
    'Training Accuracy': training accuracies,
    'Testing Accuracy': testing_accuracies,
    'Runtime (seconds)': runtimes,
    'Class 0 Precision': [
        knn_report['0']['precision'],
        nb report['0']['precision'],
        svm_report['0']['precision'],
        tree report['0']['precision']
    'Class 1 Precision': [
        knn_report['1']['precision'],
        nb report['1']['precision'],
        svm report['1']['precision'],
        tree report['1']['precision']
   ],
    'Class 0 Recall': [
        knn report['0']['recall'],
        nb report['0']['recall'],
        svm report['0']['recall'],
        tree report['0']['recall']
    'Class 1 Recall': [
        knn_report['1']['recall'],
        nb report['1']['recall'],
        svm report['1']['recall'],
```

```
tree report['1']['recall']
    ],
'Class 0 F1-Score': [
        knn_report['0']['f1-score'],
        nb report['0']['f1-score'],
        svm report['0']['f1-score'],
        tree report['0']['f1-score']
    ],
    'Class 1 F1-Score': [
        knn report['1']['f1-score'],
        nb_report['1']['f1-score'],
        svm_report['1']['f1-score'],
        tree report['1']['f1-score']
    ]
}
# Convert to DataFrame
results df = pd.DataFrame(results)
# Visualization for Accuracy
plt.figure(figsize=(12, 8))
x = np.arange(len(model names))
bar width = 0.35
plt.bar(x - bar_width / 2, training_accuracies, width=bar_width,
label='Training Accuracy', color='skyblue')
plt.bar(x + bar_width / 2, testing_accuracies, width=bar_width,
label='Testing Accuracy', color='orange')
plt.xlabel('Models')
plt.ylabel('Accuracy')
plt.title('Model Accuracy Comparison')
plt.xticks(x, model names)
plt.ylim(0, 100)
plt.legend()
plt.show()
```



```
# Visualization
fig, ax1 = plt.subplots(figsize=(14, 8))
bar width = 0.12
index = np.arange(len(results df['Algorithm'])) # Default index for
each algorithm
# Plot bars for Class 0 and Class 1 Precision
ax1.bar(index - 1.5 * bar width, results df['Class 0 Precision'],
bar_width, label='Precision (Class 0)', color='#4F81BD')
ax1.bar(index - 0.5 * bar width, results df['Class 1 Precision'],
bar width, label='Precision (Class 1)', color='#9BBB59')
# Plot bars for Class 0 and Class 1 Recall
ax1.bar(index + 0.5 * bar width, results df['Class 0 Recall'],
bar width, label='Recall (Class 0)', color='#C0504D')
ax1.bar(index + 1.5 * bar width, results df['Class 1 Recall'],
bar_width, label='Recall (Class 1)', color='#F79646')
# Plot bars for Class 0 and Class 1 F1-Score
ax1.bar(index + 2.5 * bar width, results df['Class 0 F1-Score'],
bar width, label='F1-Score (Class 0)', color='#8064A2')
ax1.bar(index + 3.5 * bar_width, results df['Class 1 F1-Score'],
```

```
bar_width, label='F1-Score (Class 1)', color='#4BACC6')

# Set labels, title, and ticks
ax1.set_xlabel('Algorithms')
ax1.set_ylabel("Metric's Values")
ax1.set_title('Comparison of ML Algorithms by Class')
ax1.set_xticks(index)
ax1.set_xticklabels(results_df['Algorithm'])

# Add legends
fig.legend(loc="lower center", bbox_to_anchor=(0.5, 1.05), ncol=3)

# Show plot
plt.tight_layout()
plt.show()
```

Recall (Class 0)

Precision (Class 0)


```
# Visualization for Runtime
plt.figure(figsize=(10, 5))
plt.bar(model_names, runtimes, color='lightgreen')
plt.xlabel('Models')
plt.ylabel('Runtime (seconds)')
plt.title('Model Runtime Comparison')
plt.ylim(0, max(runtimes) + 1)
plt.show()
```

