Assignment1

Name: Yubin Hu

ID: 11712121

1 Part I: the perceptron

Code

```
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         def gen gaussian distribution(size, mean=None, cov=None):
             if not mean:
                mean = np.random.randn(2)
             if not cov:
                 cov = np.eye(2)
             data = np.random.multivariate normal(mean, cov, size)
             return data
         class Perceptron(object):
             def __init__(self, n_inputs, max_epochs=1e2, learning_rate=1e-2):
                 Initializes perceptron object.
                 Args:
                     n inputs: number of inputs.
                     max epochs: maximum number of training cycles.
                     learning rate: magnitude of weight changes at each training cycle
                 self.n inputs = n inputs
                 self.max epochs = max epochs
                 self.learning rate = learning rate
                 self.weights = np.zeros(self.n_inputs)
                 self.bias = 0
             def forward(self, input):
                 Predict label from input
                 Args:
                     input: array of dimension equal to n_inputs.
                 sum = np.sign(np.dot(input, self.weights))
                 label = np.where(sum > 0, 1, -1)
                 return label
             def train(self, training inputs, labels):
                 Train the perceptron
                     training_inputs: list of numpy arrays of training points.
                     labels: arrays of expected output value for the corresponding point
                 train size = len(training inputs)
                 epochs = 0
                 while epochs < self.max epochs:
                     epochs += 1
```

```
for i in range(train size):
                if np.any(labels[i] * (np.dot(self.weights, training inputs[i
                    self.weights = self.weights + (self.learning rate * label
                    self.bias = self.bias + self.learning rate * labels[i]
    def score(self, test inputs, test labels):
        pred arr = np.where(self.forward(test inputs) > 0, 1, -1)
        true size = len(np.where(pred arr == test labels)[0])
        return true size / len(test labels)
def main():
   p = Perceptron(2)
    gen dataset
   data size = 100
   train size = 80
   x1 = gen_gaussian_distribution(data_size, [5, 5])
   x2 = gen gaussian distribution(data size, [-5, -5])
   y1 = a label = np.ones(data size, dtype=np.int16)
   y2 = -y1
   x train = np.concatenate((x1[:train size], x2[:train size]), axis=0)
   y train = np.concatenate((y1[:train size], y2[:train size]), axis=0)
   x_test = np.concatenate((x1[train_size:], x2[train_size:]), axis=0)
   y_test = np.concatenate((y1[train_size:], y2[train_size:]), axis=0)
   train model
   p.train(x train, y train)
    0.00
    test model
   acc = p.score(x_test, y_test)
if __name__ == "__main__":
   main()
```

1.1 Task 1

Generate a dataset of points in R2. To do this, define two Gaussian distributions and sample 100 points from each. Your dataset should then contain a total of 200 points, 100 from each distribution. Keep 80 points per distribution as the training (160 in total), 20 for the test (40 in total).

```
In [2]:
    gen dataset
    """

    data_size = 100
    train_size = 80
    x1 = gen_gaussian_distribution(data_size, [5, 5])
    x2 = gen_gaussian_distribution(data_size, [-5, -5])
    y1 = a_label = np.ones(data_size, dtype=np.int16)
    y2 = -y1
    x_train = np.concatenate((x1[:train_size], x2[:train_size]), axis=0)
    y_train = np.concatenate((y1[:train_size], y2[:train_size]), axis=0)
    x_test = np.concatenate((x1[train_size:], x2[train_size:]), axis=0)
```

```
y_test = np.concatenate((y1[train_size:], y2[train_size:]), axis=0)

# plt
plt.plot(x1[:,0], x1[:,1], 'x')
plt.plot(x2[:,0], x2[:,1], 'x')
plt.axis('equal')
plt.savefig('./img/fig1.png')
plt.show()
```

```
FileNotFoundError
                                         Traceback (most recent call last)
<ipython-input-2-6ff8b82d0010> in <module>
     18 plt.plot(x2[:,0], x2[:,1], 'x')
     19 plt.axis('equal')
---> 20 plt.savefig('./img/fig1.png')
     21 plt.show()
~/.local/lib/python3.7/site-packages/matplotlib/pyplot.py in savefig(*args, **
kwarqs)
    857 def savefig(*args, **kwargs):
    858
           fig = gcf()
--> 859
           res = fig.savefig(*args, **kwargs)
           fig.canvas.draw idle() # need this if 'transparent=True' to rese
    860
t colors
    861
           return res
~/.local/lib/python3.7/site-packages/matplotlib/figure.py in savefig(self, fna
me, transparent, **kwarqs)
   2309
                       patch.set edgecolor('none')
  2310
-> 2311
               self.canvas.print figure(fname, **kwargs)
   2312
   2313
               if transparent:
~/.local/lib/python3.7/site-packages/matplotlib/backend bases.py in print figu
re(self, filename, dpi, facecolor, edgecolor, orientation, format, bbox inche
s, pad inches, bbox extra artists, backend, **kwargs)
   2215
                           orientation=orientation,
   2216
                           bbox inches restore bbox inches restore,
-> 2217
                           **kwargs)
   2218
                    finally:
   2219
                       if bbox inches and restore bbox:
~/.local/lib/python3.7/site-packages/matplotlib/backend bases.py in wrapper(*a
rgs, **kwargs)
   1637
                   kwargs.pop(arg)
   1638
-> 1639
               return func(*args, **kwargs)
   1640
   1641
           return wrapper
~/.local/lib/python3.7/site-packages/matplotlib/backends/backend_agg.py in pri
nt png(self, filename or obj, metadata, pil kwargs, *args)
   510
               mpl.image.imsave(
    511
                   filename or obj, self.buffer rgba(), format="png", origin=
"upper",
--> 512
                   dpi=self.figure.dpi, metadata=metadata, pil kwargs=pil kwa
rgs)
    513
    514
           def print to buffer(self):
~/.local/lib/python3.7/site-packages/matplotlib/image.py in imsave(fname, arr,
pil kwargs.setdefault("dpi", (dpi, dpi))
   1610
-> 1611
               image.save(fname, **pil kwargs)
   1612
```


We set mean1 = [5, 5] and mean2 = [-5, -5], generate cov1 and cov2 with np.eve(2) which returns a 2-D array with ones on the diagonal and zeros elsewhere.

1.2 Task 2

Implement the perceptron following the specs in perceptron.py and the pseudocode in perceptronslides.pdf.

1.3 Task 3

Train the perceptron on the training data (160 points) and test in on the remaining 40 test points. Compute the classification accuracy on the test set.

```
In [3]:
    p = Perceptron(2)

"""
    data_size = 100
    train_size = 80
    x1 = gen_gaussian_distribution(data_size, [5, 5])
    x2 = gen_gaussian_distribution(data_size, [-5, -5])
    y1 = a_label = np.ones(data_size, dtype=np.int16)
    y2 = -y1
    x_train = np.concatenate((x1[:train_size], x2[:train_size]), axis=0)
    y_train = np.concatenate((y1[:train_size], y2[:train_size]), axis=0)
    x_test = np.concatenate((x1[train_size:], x2[train_size:]), axis=0)
    y_test = np.concatenate((y1[train_size:], y2[train_size:]), axis=0)

"""
    train model
"""
    p.train(x_train, y_train)
```

```
test model
"""
acc = p.score(x_test, y_test)
print(f'Perceptron test accuracy: {acc * 100}%')
```

Perceptron test accuracy: 100.0%

1.4 Task 4

Experiment with different sets of points (generated as described in Task 1). What happens during the training if the means of the two Gaussians are too close and/or if their variance is too high?

```
In [4]:
         for _ in range(10):
             p = Perceptron(2)
             .....
             gen dataset
             data_size = 100
             train size = 80
             x1 = gen gaussian distribution(data size, [1, 1])
             x2 = gen gaussian distribution(data size, [1, 1])
             y1 = a label = np.ones(data size, dtype=np.int16)
             y2 = -y1
             x train = np.concatenate((x1[:train size], x2[:train size]), axis=0)
             y_train = np.concatenate((y1[:train_size], y2[:train_size]), axis=0)
             x_test = np.concatenate((x1[train_size:], x2[train_size:]), axis=0)
             y test = np.concatenate((y1[train size:], y2[train size:]), axis=0)
             train model
             p.train(x_train, y_train)
             .....
             test model
             acc = p.score(x test, y test)
             print(f'Perceptron test accuracy: {acc * 100}%')
```

We run 10 times for the close Gaussians([1, 1], [1, 1]), and accuracy is lower then 50%.

```
for _ in range(10):
    p = Perceptron(2)

"""
    gen dataset
```

```
data_size = 100
train_size = 80
x1 = gen_gaussian_distribution(data_size, [-5, -5])
x2 = gen_gaussian_distribution(data_size, [1, 1])
y1 = a_label = np.ones(data_size, dtype=np.int16)
y2 = -y1
x_train = np.concatenate((x1[:train_size], x2[:train_size]), axis=0)
y_train = np.concatenate((y1[:train_size], y2[:train_size]), axis=0)
x_test = np.concatenate((x1[train_size:], x2[train_size:]), axis=0)
y_test = np.concatenate((y1[train_size:], y2[train_size:]), axis=0)

"""
train model
"""
p.train(x_train, y_train)

"""
test model
"""
acc = p.score(x_test, y_test)
print(f'Perceptron test accuracy: {acc * 100}%')
```

```
Perceptron test accuracy: 85.0%
Perceptron test accuracy: 97.5%
Perceptron test accuracy: 100.0%
Perceptron test accuracy: 92.5%
Perceptron test accuracy: 90.0%
```

We run 10 times for the Gaussians with high variance([-5, -5], [1, 1]), and accuracy is higher then the close Gaussians, over 90%.

2 Part II: the mutli-layer perceptron

2.1 Task 1

Implement the MLP architecture by completing the files mlp_numpy.py and modules.py.

```
In [ ]:
        from __future__ import absolute_import
               future import division
        from
         from future import print function
         from modules import *
        class MLP(object):
            def __init__(self, n_inputs, n_hidden, n_classes):
                 Initializes multi-layer perceptron object.
                 Args:
                    n inputs: number of inputs (i.e., dimension of an input vector).
                     n_hidden: list of integers, where each integer is the number of u
                    n_classes: number of classes of the classification problem (i.e.,
                 self.n inputs = n inputs
                 self.n_hidden = n_hidden
                 self.n_classes = n_classes
```

```
self.layers = []
        n pre = n inputs
        for n units in n hidden:
            self.layers.append(Linear(n pre, n units))
            self.layers.append(ReLU())
            pre = n units
        self.layers.append(Linear(pre, n classes))
        self.layers.append(SoftMax())
    def forward(self, x):
        Predict network output from input by passing it through several layer
           x: input to the network
        Returns:
           out: output of the network
        out = x
        for layer in self.layers:
            out = layer.forward(out)
        return out
    def backward(self, dout):
        Performs backward propagation pass given the loss gradients.
           dout: gradients of the loss
        for layer in self.layers[::-1]:
            dout = layer.backward(dout)
        return dout
if __name__ == '__main__':
   pass
```

```
In [ ]:
         import numpy as np
         class Linear(object):
             def __init__(self, in_features, out_features):
                 Module initialisation.
                 Args:
                     in features: input dimension
                     out features: output dimension
                 1) Initialize weights self.params['weight'] using normal distribution
                 std = 0.0001.
                 2) Initialize biases self.params['bias'] with 0.
                 3) Initialize gradients with zeros.
                 mean = 0
                 std = 0.0001
                 size = (in features, out features)
                 self.params = {}
                 self.params['weight'] = np.random.normal(mean, std, size)
                 self.params['bias'] = np.zeros(out_features)
                 self.gradients = {}
             def forward(self, x):
                 Forward pass (i.e., compute output from input).
```

```
Args:
           x: input to the module
        Returns:
           out: output of the module
        Hint: Similarly to pytorch, you can store the computed values inside
        and use them in the backward pass computation. This is true for *all*
        self.x = x
        w = self.params['weight']
        b = self.params['bias']
        out = np.dot(x, w) + b
        self.out = out
        return out
    def backward(self, dout):
        Backward pass (i.e., compute gradient).
            dout: gradients of the previous module
        Returns:
            dx: gradients with respect to the input of the module
        Implement backward pass of the module. Store gradient of the loss with
        layer parameters in self.grads['weight'] and self.grads['bias'].
        # TODO
        self.gradients['weight'] = np.dot(np.transpose(self.x), dout) / self
        self.gradients['bias'] = np.mean(dout, axis=0)
        dx = np.dot(dout, np.transpose(self.params['weight']))
        return dx
class ReLU(object):
    def forward(self, x):
        Forward pass.
        Args:
            x: input to the module
        Returns:
           out: output of the module
        self.x = x;
        out = np.maximum(x, 0)
        return out
    def backward(self, dout):
        Backward pass.
        Args:
            dout: gradients of the previous module
        Returns:
           dx: gradients with respect to the input of the module
        dx = np.where(self.x > 0, dout, 0)
        return dx
class SoftMax(object):
    def exp normalize(self, x):
        b = x.max()
        y = np.exp(x - b)
        return y / np.reshape(y.sum(axis=1), (-1, 1))
    def forward(self, x):
        Forward pass.
        Args:
```

```
x: input to the module
        Returns:
           out: output of the module
        TODO:
        Implement forward pass of the module.
        To stabilize computation you should use the so-called Max Trick
        https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick/
        .. .. ..
        self.x = x
        out = self.exp_normalize(x)
        self.out = out
        return out
    def backward(self, dout):
        Backward pass.
        Aras:
            dout: gradients of the previous module
           dx: gradients with respect to the input of the module
        # TODO
        dx = (dout - np.reshape(np.sum(dout * self.out, 1), [-1, 1])) * self.
        return dx
class CrossEntropy(object):
    def forward(self, x, y):
        Forward pass.
        Args:
            x: input to the module
            y: labels of the input
        Returns:
           out: cross entropy loss
        # TODO
        out = np.sum(-np.log(np.maximum(x, 1e-8)) * y) / x.shape[0]
        return out
    def backward(self, x, y):
        Backward pass.
        Args:
           x: input to the module
            y: labels of the input
        Returns:
           dx: gradient of the loss with respect to the input x.
        dx = -y / (np.maximum(x, 1e-8))
        return dx
if __name__ == "__main__":
    softmax = SoftMax()
    crossentropy = CrossEntropy()
```

2.2 Task 2

Implement training and testing script in train mlp numpy.py. (Please keep 80% of the dataset for training and the remaining 20% for testing. Note that this is a random split of 80% and

```
def generate_dataset():
    data_size = 1000
    train_size = 800
    x, y = datasets.make_moons(data_size, shuffle=True, noise=None)
# one hot
    data_shape = 2
    y = np.eye(data_shape)[y.reshape(-1)]
    train_x = x[:train_size]
    train_y = y[:train_size]
    test_x = x[train_size:]
    test_y = y[train_size:]
    return train_x, train_y, test_x, test_y
```

2.3 Task 3

Using the default values of the parameters, report the results of your experiments using a jupyter notebook where you show the accuracy curves for both training and test data.

3 Part III: stochastic gradient descent

3.1 Task 1

Modify the train method in train mlp numpy.py to accept a parameter that allows the user to specify if the training has to be performed using batch gradient descent (which you should have implemented in Part II) or stochastic gradient descent.

3.2 Task 2

Using the default values of the parameters, report the results of your experiments using a jupyter notebook where you show the accuracy curves for both training and test data.

How to run code

```
for SGD, default is BGD

python3 train_mlp_numpy.py --grdient_descent SGD
```