Математический анализ, Коллоквиум 4

Балюк Игорь @lodthe, GitHub Основано на материалах Егора Косова.

Дата изменения: 2020.05.03 в 01:49

Содержание

1 Метрические и нормированные пространства.

 $\mathbf{2}$

1 Метрические и нормированные пространства.

Оригинальный конспект.

Определение. Пусть X — множество. Функция $d: X \times X \to [0; +\infty)$ называется метрикой, если

- 1. $d(x,y) = 0 \iff x = y$;
- 2. $d(x,y) = d(y,x) \forall x, y \in X$;
- 3. $d(x,z) \leq d(x,y) + d(y,z) \forall x, y, z \in X$.

Пара (X, d) называется метрическим пространством.

Говоря простым языком, метрика — это расстояние между двумя объектами. Мы будем часто работать с Евклидовой метрикой: пусть $x,y\in\mathbb{R}^n$, тогда $d(x,y)=\sqrt{(x_1-y_1)^2+\cdots+(x_n-y_n)^2}$.

Определение. Пусть X — линейное пространство. Функция $\|\cdot\|: X \to [0; +\infty)$ называется нормой, если

- 1. $||x|| = 0 \iff x = 0$;
- $2. \|\lambda x\| = |\lambda| \|x\|, \forall x \in X;$
- 3. $||x + y|| \le ||x|| + ||y|| \forall x, y \in X$.

Пара $(X, \|\cdot\|)$ называется нормированным пространством.

Нормой является привычнам нам длина вектора. Аналогично матрике, мы будем часто работать с Евклидовой нормой: пусть $x \in \mathbb{R}^n$, тогда $||x|| = \sqrt{x_1^2 + \dots + x_n^2}$.

Всякое нормированное пространство является метрическим с метрикой d(x,y) = ||x-y||.

Определение. Пусть X — линейное пространство. Функция $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ называется скалярным произведением, если для всех $x, y, z \in X$ и всех $a, b \in \mathbb{R}$ выполнены следующие условия:

- 1. $\langle x, x \rangle \geqslant 0$ и $\langle x, x \rangle = 0 \iff x = 0$;
- 2. $\langle x, y \rangle = \langle y, x \rangle$;
- 3. $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$.

Линейное пространство X со скалярным произведением называется Евклидовым.

Мы будем часто работать со следующим скалярным произведением: пусть $x, y \in \mathbb{R}^n$, тогда $\langle x, y \rangle = x_1 \cdot y_1 \dots x_n \cdot y_n$.

Лемма. (Неравенство Коши-Буняковского) Пусть $\langle \cdot, \cdot \rangle$ скалярное произведение на линейном пространстве X, тогда $\forall x,y \in X$

$$|\langle x, y \rangle| \leqslant \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle}.$$

Доказательство. Заметим, что для $\lambda \in \mathbb{R}$ выполнено

$$0 \leqslant \langle x + \lambda y, x + \lambda y \rangle = \lambda^2 \langle y, y \rangle + 2\lambda \langle x, y \rangle + \lambda \langle x, y \rangle + \lambda \langle x, y \rangle$$

Не ограничивая общности, считаем, что $\langle y,y\rangle>0$ (иначе y — нулевой вектор, доказательство тривиально). Это означает, что ветви параболы смотрят вверх. Но парабола не касается оси Ox, поэтому дискриминант этого трехчлена неположителен, т.е. $4|\langle x,y\rangle|-4\langle y,y\rangle\langle x,x\rangle\leqslant 0$.

Следствие. На евклидовом пространстве функция $||x|| := \sqrt{\langle x, x \rangle}$ является нормой.

Доказательство. Первые два свойства следуют из определения скалярного произведения. Неравенство треугольника следует из неравенства Коши-Буняковского:

$$\left\| x + y \right\|^2 = \left\langle x + y, x + y \right\rangle \leqslant \left\| x \right\|^2 + 2 \cdot \left| \left\langle x, y \right\rangle \right| + \left\| y \right\|^2 \leqslant \left\| x \right\|^2 + 2 \left\| x \right\| \left\| y \right\| + \left\| y \right\|^2 = (\left\| x \right\| + \left\| y \right\|)^2.$$

Пример. На линейном пространстве \mathbb{R}^k всех упорядоченных наборов (x_1,\ldots,x_k) задано скалярное произведение $\langle x,y\rangle:=\sum_{j=1}^k x_jy_j$. Тем самым, на \mathbb{R}^k задана естественная евклидова метрика $\|x-y\|:=\sqrt{|x_1-y_1|^2+\cdots+|x_k-y_k|^2}$.

Определение. Пусть (X, d) метрическое пространство.

1. Множество

$$B_r(x_0) := \{x \in X \mid d(x, x_0) < r\}$$

называется **открытым шаром** радиуса r.

2. Множество

$$\overline{B_r}(x_0) := \{ x \in X \mid d(x, x_0) \leqslant r \}$$

называется **замкнутым шаром** радиуса r.

- 3. Последовательность точек $x_n \in X$ называется **сходящейся к точке** x, если для всякого $\varepsilon > 0$ найдется такой номер $N(\varepsilon)$, что $d(x,x_n) < \varepsilon$ для каждого $n \geqslant N(\varepsilon)$.
- 4. Последовательность точек $x_n \in X$ называется фундаментальной, если для всякого $\varepsilon > 0$ найдется такой номер $N(\varepsilon)$, что $d(x_k, x_n) < \varepsilon$ для всех $k, n \geqslant N(\varepsilon)$.
- 5. Точка x называется **предельной** для множества $M \subset X$, если для всякого $\varepsilon > 0$ выполнено $B_{\varepsilon}(x) \cap (M \setminus \{x\}) \neq \varnothing$.
- 6. Множество $U\subset X$ называется **открытым**, если для всякого $x\in U$ найдется такое $\varepsilon>0$, что $B_{\varepsilon}(x)\subset U.$
- 7. Множество $F \subset X$ называется **замкнутым**, если множество $X \setminus F$ открыто.

Лемма. Пусть (X, d) метрическое пространство. Тогда

- 1. если $x_n \to x, y_n \to y$, то $d(x_n, y_n) \to d(x, y)$;
- 2. предел сходящейся последовательности единственный;
- 3. любой открытый шар является открытым множеством;
- 4. множество F замкнуто тогда и только тогда, когда множество F содержит все свои предельные точки.

Доказательство.

1. Следует из оценки

$$|d(x_n, y_n) - d(x, y)| \le |d(x_n, y_n) - d(x_n, y)| + |d(x_n, y) - d(x, y)| \le d(y_n, y) + d(x_n, x).$$

- 2. Следует из пункта 1).
- 3. Если $x \in B_r(x_0)$, то по неравенству треугольника $B_\varepsilon(x) \subset B_r(x_0)$ при $\varepsilon + d(x,x_0) < r$.
- 4. Множество F замкнуто тогда и только тогда, когда $\forall x \notin F \ \exists \varepsilon > 0: \ B_{\varepsilon} \cap F = \varnothing \iff$ всякая точка $x \notin F$ не предельная для F.

Определение. Метрическое пространство называется полным, если каждая фундаментальная последовательность в нем сходится.

Замечание. На \mathbb{R}^k справедливы соотношения

$$\max_{1 \le i \le k} |x_j| \le ||x_j|| \le \sqrt{k} \cdot \max_{1 \le i \le k} |x_j|$$

для векторов $x = (x_1, \dots, x_k)$. Тем самым, последовательность $x_n \to x$ в \mathbb{R}^k тогда и только тогда, когда $(x_n)_j \to x_j$.

Пример. Пространство \mathbb{R}^k со стандартной евклидовой метрикой полное. Действительно. если последовательность векторов $x_n \in \mathbb{R}^k$ фундаментальна, то фундаментальны и последовательности координат $\{(x_n)_j\}_{j=1}^{\infty}$ для всякого $j \in \{1, \dots, k\}$.

Тем самым, у j-ой координаты есть предел x_j для каждого $j \in \{1, \ldots, k\}$. То есть $|(x_n)_j - x_j| \to 0$. Значит, $x_n \to x := (x_1, \ldots, x_k)$.

Пример. Пусть $X = [0; \pi/2)$. Пространство X не является полным с метрикой $d_1(x, y) = |x - y|$, но является полным с метрикой $d_2(x, y) = |\lg x - \lg y|$.

Определение. Пусть (X, d_X) и (Y, d_Y) — два метрических пространства. Отображение $f: X \to Y$ называется непрерывным в точке $x_0 \in X$, если для всякой последовательности $x_n \to x_0$ выполнено $f(x_n) \to f(x_0)$.

Лемма. Пусть (X, d_X) и (Y, d_Y) — два метрических пространства.

- 1. Отображение $f: X \to Y$ является непрерывным в точке $x \in X$ тогда и только тогда, когда для всякого $\varepsilon > 0$ найдется $\delta > 0$ такое, что $d_Y(f(x), f(x_0)) < \varepsilon$, если $d_X(x, x_0) < \delta$.
- 2. Отображение $f: X \to Y$ является непрерывным в каждой точке $x \in X$ тогда и только тогда, когда прообраз каждого открытого множества в Y будет открытым множеством в X (такие отображения будем называть просто непрерывными).

Доказательство.

- 1. Отображение f разрывно в точке $x_0 \iff$ найдется последовательность $x_n \to x_0$, для которой $f(x_n)$ не сходится к $f(x_0) \iff$ найдется число $\varepsilon > 0$ и последовательность $x'_n \to x_0$, для которой $d_Y(f(x'_n), f(x_0)) \geqslant \varepsilon \iff$ найдется такое число $\varepsilon > 0$, что для произвольного $\delta > 0$ существует $x_\delta \in B_\delta(x_0)$, для которого $d_Y(f(x_\delta), f(x_0)) \geqslant \varepsilon$.
- 2. Если прообраз любого открытого множества открыт, то для произвольного $\varepsilon > 0$ найдется такое $\delta > 0$, что $f^{-1}(B_{\varepsilon}(f(x_0))) \supset B_{\delta}(x_0)$, и значит отображение f непрерывно в точке x_0 . Наоборот: пусть U открыто в Y и $x_0 \in f^{-1}(U)$. Тогда в силу открытости найдется $\varepsilon > 0$, для которого $B_{\varepsilon}(f(x_0)) \subset U$. Из-за непрерывности в точке x_0 найдется такое $\delta > 0$, что $f^{-1}(B_{\varepsilon}(f(x_0))) \supset B_{\delta}(x_0)$, что дает открытость множества $f^{-1}(U)$.

Предложение. Пусть $f: X \to Y$ непрерывна в точке $a \in X, g: Y \to Z$ непрерывна в точке $f(a) \in Y$. Тогда композиция $g \circ f: X \to Z$ непрерывна в точке a.

Доказательство. Следует из определения непрерывности. TODO()

Следствие. Пусть $f,g:\mathbb{R}^k \to \mathbb{R}^m$ — непрерывные в точке a функции. Тогда f+g и $f\cdot g$ — непрерывны в точке a.

Доказательство. Следует из того, что отображение $(x_1, x_2) \to x_1 + x_2$ и $(x_1, x_2) \to x_1 \cdot x_2$ непрерывны на \mathbb{R}^2 .

Определение. Пусть (X, d_X) и (Y, d_Y) — метрические пространства и пусть x_0 — предельная точка в X. Скажем, что предел функции $f: X \to Y$ в точке x_0 равен y_0 , если функция g, определенная соотношением g(x) = f(x) при $x \neq x_0$ и $g(x_0) = y_0$ иначе, непрерывна в точке x_0 .