Module 3 summary: Probability: The Language of Uncertainty

Contingency Tables

• Consider the relationship between the cut of a diamond and its clarity.

```
> tally( ~ cut + clarity,margins=TRUE,data=Diamonds)

clarity

cut I1 SI1 SI2 VS1 VS2 VVS1 VVS2 IF Total
Fair 210 408 456 170 261 17 69 9 1610
Good 96 1560 1081 648 978 186 286 71 4906
Very Good 84 3240 2100 1775 2591 789 1235 268 12082
Premium 205 3575 2949 1989 3357 616 870 230 13791
Ideal 146 4282 2598 3589 5071 2047 2606 1212 21551
Total 741 13065 9194 8171 12258 3655 5066 1790 53940
```

Contingency Tables

- To explore the relationship between two categorical variables for the object, we create contingency tables, also known as crosstabulations.
- Contingency tables present one categorical variable as the rows and the other categorical variable as the columns.
- These tables are used to calculate the conditional probabilities or percentages, which makes it easier for us to explore potential associations between variables.

Contingency Tables

- Can calculate the conditional column percentages using the following code:
- Use round() to reduce the decimal points, otherwise R uses 6 decimal points.

Interpretation of Contingency table

- These are conditional column probabilities.
- If we add all the probabilities for a column together, they will equal 1, e.g. sum column 1=(0.283, 0.130, 0.113, 0.227, 0.197) = 1.00.
- Comparing the worst clarity I1 with the best, IF (Flawless). Probability of IF diamonds having Ideal cut is 0,667 vs I1 of 0.197.

Clustered Bar Charts using contingency table

- > barplot(table, main = "Diamond Cut Quality by Clarity",ylab="Proportion within Clarity",ylim=c(0,.8),legend=rownames(table),beside=TRUE, args.legend=c(x = "top",horiz=TRUE,title="Cut"),xlab="Clarity") > grid()
- Notice how grid() was added after the plot was produced in R. Grid lines can help the viewer quickly read off and compare values on the plot axes.

Clustered Bar Charts using contingency table

- Clustered bar charts are a great way to visualise two qualitative variables.
- First, must create contingency table in an object called table.
- This will make it easy for us to create the clustered bar chart.
- > table<-tally(~ cut | clarity, format = "proportion", data=Diamonds)

Probability:

- Probability is defined as the proportion of times a random event occurs in a very large number of trials. Its value is between 0 and 1.
- The probability of an event = f/n, where f is the frequency or number of times an event occurs and n is the total sample size.
- As the sample size n increases, the sample will begin to approximate the true population probability.

Rules

$$Pr(2 \text{ serves}) = 4984/17042 = .292$$

$$\begin{split} Pr(<1\text{ serve}) + Pr(1\text{ serve}) + Pr(2\text{ serves}) + Pr(3\text{ serves or more}) &= 1\\ \frac{3368 + 5445 + 4984 + 3244}{17042} &= \frac{17042}{17042} = 1 \end{split}$$

<u>Table 10 of the Australian Bureau of Statistics</u> <u>2011 -2012 National Health Survey</u>

				e group (ve	iral .			
	18-24	25-34	35-44	45-54	55-64	65-74	75+	Total
Males								
Usual daily int	ake of trut							
< 1 seve :	232	463	463	266	292	129	73	2036
1 serve	397	563	626	479	345	243	143	2591
2 serves	254	279	349	350	359	257	174	2182
3 serves er i	188	202	215	265	263	195	164	1493
Total :	1120	1606	1551	1433	1265	824	651	5406
Females :								
Usual daily int	ake of fruit							
< 1 save	199	264	280	251	191	83	64	1332
1 serve	417	602	E99	456	307	209	165	2765
2 serves	318	E03	448	503	463	323	246	2302
3	135	231	261	324	343	242	214	1747
Total :	1070	1600	1587	1534	1301	857	655	8535
Persons								
Usual dary int								
< 1 04*/4	431	727	743	616	453	212	137	3368
1 sens	613	1164	1124	934	652	452	306	5445
2 serves	672	832	795	853	853	550	422	4954
3 serves ors	323	433	476	559	603	433	378	3244
Total	2189	3206	3138	3023	2565	1651	1239	17042

Rules

- Two events are mutually exclusive if, when one event occurs, the other cannot and vice versa.
- Mutually exclusive sets have no intersection: $Pr(A \cap B) = 0$. We use \cap to denote an intersection.
- Example: The levels of fruit consumption are mutually exclusive. A person cannot occupy more than one category at a particular time.

12

Rules Intersection, Union and Complement

 $Pr(1 \text{ serve} \cap 2 \text{ serves}) = 0$

$$Pr(< 1 \text{ serve } \cap \text{Male}) = \frac{2471}{17042} = .145$$

$$Pr(1 \text{ serve} \cup < 1 \text{ serve}) = \frac{3368 + 5445}{17042} = .517$$

 $Pr(\overline{<1~\text{serve}}) = Pr(1~\text{serve}) + Pr(2~\text{serves}) + Pr(3~\text{serves} \text{ or more})$ $= \frac{5445 + 4984 + 3244}{17942} = .802$

 $Pr(< 1 \text{ serve}) = 1 - Pr(< 1 \text{ serve}) = 1 - \frac{3368}{17042} = .802$

13

Conditional Probability

The probability that an event, B, will occur given that another event, A has already occurred.

$$Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)}$$

Using an example.

$$Pr(< 1 \text{ serve} \mid \text{Male}) = \frac{Pr(\text{Male} \cap < 1 \text{ serve})}{Pr(\text{Male})} = \frac{2471/17042}{8842/17042} = .280$$

15

Rules

14

Conditional probability

Using conditional probability to check independence.

The two events A and B are independent if and only if Pr(A|B) = Pr(A) or Pr(B|A) = Pr(B).

Use this rule to reconfirm that gender and fruit consumption are dependent:

$$Pr(< 1 \text{ serve} \mid \text{Male}) = .280$$

$$Pr(< 1 \text{ serve}) = \frac{3368}{17042} = .198$$

16

Permutations

- There are six candidates. You need to vote for the top three (order matters).
- How many possible ways can you assign your votes, 1st, 2nd and 3rd preference? This is an example of a permutation problem, 3 possible ways:

Veronica Paskett	Milagros Depacio	Loraine Muntz	Thuy Silverberg	Myriam Hakes	Maude Dimery
12	2 rd	3rd	-	-	-
	şE	20d	3 rd	-	
	and	15		शर्व	

17

Combinations

 In combination, we need to know how many possible combinations of selecting four out of ten friends exist (with combinations the order does not matter), 3 possibilities are:

Leah	Rosalie	Marlena	Tarra	Graham	Gilberto	Marcos	Gladis	Otha	Jeremial
Ticket		Ticket	-	Ticket			-	-	Ticket
	-	-	-	-	-	Ticket	Ticket	Ticket	Ticket
	Ticket	-	Ticket	-	Ticket		-	-	Ticket

19

Permutations

Calculation of number of possible permutation of k observations out of n observations;

$$P(n,k) = \frac{n!}{(n-k)!}$$

The nt is known as the factorial of a number. For example 6t = $6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$.

Solving the voting problem:

$$P(6,3) = \frac{6!}{1000} = \frac{6!}{1000} = \frac{720}{1000} = 120$$

Using F

> factorial(6)/factorial(6-3)
[1] 120

Combinations

$$C(n,k) = \frac{n!}{(n-k)!H}$$

This is known as the choose formula or the binomial coefficient (we will revisit this in Module 4). Solving, we find:

$$C(n,k) = \frac{n!}{(n-k)!k!} = \frac{10!}{(10-4)!4!} = \frac{10!}{6!4!} = \frac{3628800}{17280} = 210$$

Using R:

> choose(10,4) [1] 210

20