

Curso de Tecnologia em Sistemas de Computação Disciplina : Álgebra Linear AD1 - Segundo Semestre de 2007 Professores: Márcia Fampa & Mauro Rincon

Nome -Assinatura -

- 1.(2.0) Considere dois vetores não nulos u e v do \mathbb{R}^n .
 - (a) Defina ortogonalidade entre os vetores u e v.
 - (b) Defina paralelismo entre vetores u e v.
 - (c) Defina comprimento de vetores no \mathbb{R}^n .
- 2.(2.0) Considere o seguinte conjunto: $V = \{x, y, z, t\}; \quad x + y = t\}$
 - (a) Mostre que V é um subespaço vetorial do \mathbb{R}^4 .
 - (b) Determine uma base para V.
 - (c) Determine uma base ortogonal para V.
 - (d) Determine $(V)^{\perp}$, (o complemento ortogonal de V) em \mathbb{R}^4 .
- 3.(2.0) Considere os seguintes vetores (matrizes)

$$\left\{ A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 2 & 1 \\ 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 0 & -1 \end{bmatrix} \right\} \tag{1}$$

- (a) Calcular 2A + B 3C
- (b) Determine uma matriz X, tal que $\frac{1}{2}(A+X) \frac{1}{3}(X-B) = C$
- (c) Calcule, se possível, o produto $(B^t)C$ e AB.
- 4.(2.0) Considere os seguintes subespaços do \mathbb{R}^4 :

$$U = [(1,0,1,0); (0,1,0,0)]$$
 e $V = \{x,y,z,t\}; x+y=0\}$

Determine uma base e a dimensão de (U+V) e $(U\cap V)$.

5.(2.0) Determine as condições, sobre o escalar $\alpha,$ para que o conjunto

$$\{(1,0,\alpha),(1,1,\alpha),(1,1,\alpha^2)\}$$

de vetores seja LI.