Segmentación Modelos Activos de Forma Lección 03.2

Dr. Pablo Alvarado Moya

MP6127 Visión por Computadora Programa de Maestría en Electrónica Énfasis en Procesamiento Digital de Señales Escuela de Ingeniería Electrónica Tecnológico de Costa Rica

I Cuatrimestre 2013

Contenido

Introducción

- El Análisis de Componentes Principales (ACP, o PCA) es una herramienta estándar del análisis de datos.
- Aplicaciones desde neurociencias hasta gráficos por computador.
- Objetivo: reducir dimensiones de datos
- Se revelan relaciones ocultas en esos datos.
- Referencia:
 Shlens, J. A Tutorial on Principal Component Analysis.

- Supóngase experimento en donde se miden varias cantidades (e. g. espectros, tensiones eléctricas, velocidades, etc.)
- Los datos medidos suelen ser difusos, redundantes, poco claros
- Rescatar interrelaciones entre mediciones es un obstáculo en ciencias con validaciones empíricas.

• Supóngase el montaje de un resorte ideal.

Shlens

Bola de masa m sujeta a resorte sin masa ni fricción. La bola se libera a pequeña distancia del equilibrio. La bola oscila entonces en el eje x.

Se ignora cuáles ejes son relevantes para la medición.

- Se toman medidas espaciales con 3 cámaras.
- Cámaras en 3 posiciones y orientaciones arbitrarias.
- La pregunta es ¿cómo obtener de todas las mediciones la ecuación que pone en evidencia la única dependencia de x?
- Las mediciones reales están contaminadas con ruido, y sufren condiciones no ideales.

(1)

- Meta del ACP: identificar base con "mayor sentido" para reexpresar los datos.
- Con nueva base debe ser fácil filtrar efectos del ruido
- Nueva base debe expresar estructuras ocultas en los datos Por ejemplo:
 - Descubrir de las mediciones que $\underline{\mathbf{x}}$ es la dimensión de interés.

- Cada dato del experimento se denomina muestra.
- Cada muestra es un vector con todas las mediciones (tensión eléctrica, posición, etc.)
- Captura por intervalo de tiempo produce conjunto de muestras
- En el ejemplo: cámara i reporta posición (x_i, y_i) , así:

$$\underline{\mathbf{x}} = \begin{bmatrix} x_A & y_A & x_B & y_B & x_C & y_C \end{bmatrix}^T$$

- Cada muestra $\underline{\mathbf{x}}$ es un vector en un espacio m-dimensional, con m el número de mediciones tomadas.
- Espacio vectorial engendrado por base ortogonal

Por convención, base canónica formada por los vectores

$$\underline{\mathbf{b}}_{1} = [1, 0, 0, \dots, 0]^{T}$$

$$\underline{\mathbf{b}}_{2} = [0, 1, 0, \dots, 0]^{T}$$

$$\vdots$$

$$\underline{\mathbf{b}}_{n} = [0, 0, 0, \dots, 1]^{T}$$

La matriz de proyección a esta base canónica es

$$\mathbf{B} = \begin{bmatrix} \underline{\mathbf{b}}_1^T \\ \underline{\mathbf{b}}_2^T \\ \vdots \\ \underline{\mathbf{b}}_n^T \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = \mathbf{I}$$

La pregunta es ahora

¿Existe alguna combinación **lineal** de la base original que exprese "mejor" el conjunto de datos?

(ver pca.m)

(2)

 Sea X el conjunto original de m datos, donde cada columna es una muestra.

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \cdots & x_{1i} & \cdots & x_{1m} \\ x_{21} & x_{22} & x_{23} & \cdots & x_{2i} & \cdots & x_{2m} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & x_{n3} & \cdots & x_{ni} & \cdots & x_{nm} \end{bmatrix}$$

- En ejemplo de resorte \mathbf{X} es una matriz de 6×72000 .
- Sea Y datos proyectados con transformación lineal P:

$$Y = PX$$

• P es una matriz que transforma X en Y

- Sea \mathbf{p}_{i}^{T} una fila de \mathbf{P}
- Sea $\underline{\mathbf{x}}_j$ una columna de \mathbf{X} (la j-ésima muestra)
- Sea $\underline{\mathbf{y}}_{j}$ una columna de \mathbf{Y} (la j-ésima muestra)
- Geométricamente, **P** rota y estira cada dato.
- Filas de P: nueva base del espacio vectorial

$$\mathbf{PX} = \begin{bmatrix} \mathbf{\underline{p}}_{1}^{T} \\ \vdots \\ \mathbf{\underline{p}}_{m}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{\underline{x}}_{1} & \cdots & \mathbf{\underline{x}}_{n} \end{bmatrix}$$

$$\mathbf{Y} = \begin{bmatrix} \mathbf{\underline{p}}_{1}^{T} \mathbf{\underline{x}}_{1} & \cdots & \mathbf{\underline{p}}_{1}^{T} \mathbf{\underline{x}}_{n} \\ \vdots & \ddots & \vdots \\ \mathbf{\underline{p}}_{m}^{T} \mathbf{\underline{x}}_{1} & \cdots & \mathbf{\underline{p}}_{m}^{T} \mathbf{\underline{x}}_{n} \end{bmatrix}$$

• La i-ésima columna de Y

$$\underline{\mathbf{y}}_{i} = \begin{bmatrix} \underline{\mathbf{p}}_{1}^{T} \underline{\mathbf{x}}_{i} \\ \underline{\mathbf{p}}_{2}^{T} \underline{\mathbf{x}}_{i} \\ \vdots \\ \underline{\mathbf{p}}_{m}^{T} \underline{\mathbf{x}}_{i} \end{bmatrix}$$

se conforma por la proyección del *i*-ésimo vector original $\underline{\mathbf{x}}_i$ sobre cada uno de los vectores $\underline{\mathbf{p}}_j$

Las preguntas que quedan por responder son

- 1 ¿cómo deben ser elegidos los vectores de la nueva base P?
- 2 ¿qué es bueno rescatar de X?, o similar
- 3 ¿qué debería contener **Y**?

ullet Valor medio μ del conjunto de datos es:

$$\underline{\mu} = \frac{1}{n} \sum_{i=1}^{n} \underline{\mathbf{x}}_{i}$$

ullet Varianza σ^2 es promedio de desviaciones respecto a ${m \mu}$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n \|\underline{\mathbf{x}}_i - \underline{\boldsymbol{\mu}}\|_2^2 = \frac{1}{n} \sum_{i=1}^n (\underline{\mathbf{x}}_i - \underline{\boldsymbol{\mu}})^T (\underline{\mathbf{x}}_i - \underline{\boldsymbol{\mu}})$$

- El cálculo de estas magnitudes se puede realizar con **un** solo recorrido por el conjunto de datos.
- ¿Cómo?

Demostración:

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (\underline{\mathbf{x}}_{i} - \underline{\boldsymbol{\mu}})^{T} (\underline{\mathbf{x}}_{i} - \underline{\boldsymbol{\mu}})$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\underline{\mathbf{x}}_{i}^{T} \underline{\mathbf{x}}_{i} - \underline{\mathbf{x}}_{i}^{T} \underline{\boldsymbol{\mu}} - \underline{\boldsymbol{\mu}}^{T} \underline{\mathbf{x}}_{i} + \underline{\boldsymbol{\mu}}^{T} \underline{\boldsymbol{\mu}})$$

$$= \frac{1}{n} \sum_{i=1}^{n} (\|\underline{\mathbf{x}}_{i}\|^{2} - 2\underline{\boldsymbol{\mu}}^{T} \underline{\mathbf{x}}_{i} + \|\underline{\boldsymbol{\mu}}\|^{2})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|\underline{\mathbf{x}}_{i}\|^{2} - 2\underline{\boldsymbol{\mu}}^{T} \frac{1}{n} \sum_{i=1}^{n} \underline{\mathbf{x}}_{i}^{T} + \|\underline{\boldsymbol{\mu}}\|^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \|\underline{\mathbf{x}}_{i}\|^{2} - \|\underline{\boldsymbol{\mu}}\|^{2}$$

• Deben acumularse las magnitudes de los vectores y su suma

- Ruido de medición debe ser lo suficientemente bajo para poder rescatar información.
- Calidad de los datos (o señal) se mide con la tasa de señal a ruido (SNR), descrita a través de una tasa de varianzas:

$$\mathit{SNR} = rac{\sigma_{\mathsf{se\~nal}}^2}{\sigma_{\mathsf{ruido}}^2}$$

- ullet SNR $\gg 1$ indica mediciones de alta precisión
- Baja SNR indica datos ruidosos.

• Volviendo al ejemplo del resorte.

- Resorte mueve bola en línea recta ⇒ tres cámaras deberían observar un movimiento en línea recta.
- Toda desviación de la línea recta es ruido.
- Si señal es suficientemente fuerte, entonces dirección de mayor varianza coincide con la señal.
- Se busca rotación base canónica para alinearlos con los ejes de mayor varianza.

Redundancia (1

- Otro factor a considerar es la redundancia.
- En el ejemplo de las cámaras es notorio, pues cada cámara registra la misma información.
- Obsérvese que incluso en una misma imagen, si sube x, también sube y.
- Posibles dependencias entre dos variables r_1 y r_2 :

Redundancia (2

- En ejemplo, una dimensión es suficiente para describir los datos altamente redundantes (se puede reducir la dimensión)
- Dos dimensiones serían necesarias si datos en r_1 y r_2 no redundan.

Considérense dos conjuntos de mediciones con media cero

$$A = \{a_1, a_2, \dots, a_n\}$$
 $B = \{b_1, b_2, \dots, b_n\}$

• Las varianzas de los datos A y B por separado son

$$\sigma_A^2 = \frac{1}{n} \sum_i a_i^2, \qquad \sigma_B^2 = \frac{1}{n} \sum_i b_i^2$$

• La **covarianza** entre A y B se generaliza como

$$\sigma_{AB}^2 = \frac{1}{n} \sum_i a_i b_i$$

- La covarianza mide el grado de dependencia lineal entre dos variables:
 - un valor positivo grande indica datos correlacionados positivamente
 - un valor negativo grande indica datos correlacionados negativamente
 - es cero si A y B no están correlacionados (no hay redundancia)
 - $\sigma_{AB}^2 = \sigma_A^2 \text{ si } A = B$
- Valor absoluto de covarianza indica grado de redundancia

• Expresando A y B como vectores:

$$A \to \underline{\mathbf{a}}^T = [a_1, a_2, \dots, a_n]$$

 $B \to \underline{\mathbf{b}}^T = [b_1, b_2, \dots, b_n]$

se replantea la covarianza como

$$\sigma_{\underline{\mathbf{a}}\underline{\mathbf{b}}}^2 = \frac{1}{n}\underline{\mathbf{a}}^T\underline{\mathbf{b}}$$

 Lo anterior se puede generalizar de dos a cualquier número de vectores x_i: Dada la matriz X de dimensiones m × n

$$\mathbf{X} = \begin{bmatrix} \underline{\mathbf{x}}_1^T \\ \underline{\mathbf{x}}_2^T \\ \vdots \\ \underline{\mathbf{x}}_m^T \end{bmatrix}$$

- Las filas de **X** corresponden a todas las mediciones de un tipo particular (por ejemplo, eje x de la cámara A).
- Cada columna de X corresponde a un conjunto de mediciones de una única muestra
- La matriz de covarianza $\Sigma_{\mathbf{X}}$ se define entonces como

$$\Sigma_{\mathbf{X}} = \frac{1}{n} \mathbf{X} \mathbf{X}^T$$

- El elemento (i,j) de la matriz $\Sigma_{\mathbf{X}}$ es el producto punto entre el i-ésimo tipo de medición y el j-ésimo tipo.
- Esta matriz es
 - Cuadrada $(m \times m)$ y simétrica
 - La diagonal está formada por las varianzas de cada tipo de medición
 - Los términos fuera de la diagonal son las covarianzas entre tipos de medición.
- Los valores de covarianzas reflejan niveles de ruido y redundancia en las mediciones.
- En la diagonal, valores de gran magnitud indican estructuras relevantes
- Fuera de la diagonal, valores grandes en magnitud indican alta redundancia.

Diagonalización de la matriz de covarianza

- Es de interés minimizar la redundancia y maximizar la señal de los datos de salida Y, y por lo tanto
 - Todos los datos fuera de la diagonal de Σ_{Y} deben ser cero, por lo que Σ_{Y} es diagonal
 - Cada dimensión sucesiva de Y deberá estar ordenada de acuerdo a la varianza.
- La matriz Σ_X debe ser entonces diagonalizada
- El ACP asume que los vectores de la nueva base son ortonormales, y éstos constituyen los componentes principales.
- La varianza en cada componente indica qué tan importante es el componente.

Resumen de supuestos

- Se ha supuesto que el problema es lineal
 Un cambio de base expresado como producto de matrices puede solucionar el problema.
- Varianzas grandes indican estructura importante.
 Esto supone que se tiene alto SNR, para que las varianzas grandes estén asociadas con la señal.
- Componentes principales son ortogonales.
 Esto permite encontrar una solución utilizando álgebra lineal.
- Lo anterior se cumple si la distribución de los datos es normal

El problema que se plantea es:
 dado el conjunto de datos X (matriz m × n, cada columna
 representa una muestra de m dimensiones, se cuenta con n
 muestras), encuéntrese una matriz ortogonal P que
 transforma los datos a Y = PX, de tal modo que

$$\Sigma_{\mathbf{Y}} = \frac{1}{n} \mathbf{Y} \mathbf{Y}^T$$

sea una matriz diagonal.

Las filas de P son los componentes principales de X

• Se parte de Σ_Y

$$\begin{split} \Sigma_{\mathbf{Y}} &= \frac{1}{n} \mathbf{Y} \mathbf{Y}^T \\ &= \frac{1}{n} (\mathbf{P} \mathbf{X}) (\mathbf{P} \mathbf{X})^T \\ &= \frac{1}{n} \mathbf{P} \mathbf{X} \mathbf{X}^T \mathbf{P}^T \\ &= \mathbf{P} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^T \right) \mathbf{P}^T \\ &= \mathbf{P} \Sigma_{\mathbf{X}} \mathbf{P}^T \end{split}$$

que relaciona las matrices de covarianza de datos de entrada y salida

 Lo anterior se cumple si las columnas de P^T son los eigenvectores de X, y los elementos en la matriz diagonal Σ_Y los eigenvalores.

- En otras palabras, las filas de P son los eigenvectores, que se ordenan de acuerdo a sus correspondientes eigenvalores de forma descendiente.
- Los componentes principales de **X** están dados entonces por los eigenvectores de su matriz de covarianza $\Sigma_{\mathbf{X}} = \frac{1}{n} \mathbf{X} \mathbf{X}^T$
- El *i*-ésimo valor de la diagonal de $\Sigma_{\mathbf{Y}}$ es la varianza de \mathbf{X} a lo largo del componente principal \mathbf{p}_i .

Pasos del ACP

- Substraer la media de todos los datos
- 2 Calcular la matriz de covarianza Σ_X
- ullet Calcular los eigenvectores y eigenvalores de $\Sigma_{\mathbf{X}}$
- Construir la matriz de proyección P compuesta por el número de componentes principales deseados (seleccionados de acuerdo a los eigenvalores)
- lacktriangledown Proyectar los datos con $\mathbf{Y} = \mathbf{P}\mathbf{X}$

Ejemplos

- AAM http://www.youtube.com/watch?v=I3YsqHCQB4k
- Eigenfaces http://www.youtube.com/watch?v=5nBL_u4MF0k

Modelos Activos de Forma

- Propuesta de Cootes, Taylor, Cooper y Graham, 1995 (idea publicada en 1992)
- Idea: representar cada forma como un vector

• $s = [x_1, y_1, x_2, y_2, \dots, x_n, y_n]^T$

Modelo de Distribución de Puntos

- Modelo de distribución de puntos: ACP sobre todas formas de entrenamiento
- Se reducen dimensiones de representación
- Se supone que distribución de formas es normal
- Modelo extrae información de formas en datos de entrenamiento
- Es necesario alinear formas antes del ACP

Alineación

- Alineación "normaliza" respecto a rotación, traslación y escalado
- Se usa el análisis de Procusto.

• Dadas dos formas $\underline{\mathbf{x}}_1$ y $\underline{\mathbf{x}}_2$, se busca mapeo de rotación θ , escala s y traslación $\underline{\mathbf{t}} = [t_x, t_y]^T$ que mapee

$$\underline{\mathbf{x}}_2 \to M(\theta, s)[\underline{\mathbf{x}}_2] + \underline{\mathbf{t}}$$

con el operador

$$M(\theta, s) \begin{bmatrix} x_{jk} \\ y_{jk} \end{bmatrix} = \begin{bmatrix} s \cos \theta & -s \sin \theta \\ s \sin \theta & s \cos \theta \end{bmatrix} \begin{bmatrix} x_{jk} \\ y_{jk} \end{bmatrix}$$

y

$$\underline{\mathbf{t}} = [t_x, t_y, t_x, t_y, \dots, t_x, t_y]^T$$

que minimice

$$E = (\underline{\mathbf{x}}_1 - M(\theta, s)[\underline{\mathbf{x}}_2] - \underline{\mathbf{t}})^T \mathbf{W} (\underline{\mathbf{x}}_1 - M(\theta, s)[\underline{\mathbf{x}}_2] - \underline{\mathbf{t}})$$

con W una matriz de ponderación de cada punto

- Por mínimos cuadrados se puede resolver este problema derivando E para cada parámetro θ , s, t_x y t_y e igualando a cero.
- Lo anterior se resume en solucionar el sistema lineal:

$$\begin{bmatrix} X_2 & -Y_2 & W & 0 \\ Y_2 & X_2 & 0 & W \\ Z & 0 & X_2 & Y_2 \\ 0 & Z & -Y_2 & X_2 \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ t_x \\ t_y \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ C_1 \\ C_2 \end{bmatrix}$$

donde $a_x = s \cos \theta$, $a_y = s \sin \theta$ y

$$X_i = \sum_{k=1}^n w_k x_{ik}$$
 $Y_i = \sum_{k=1}^n w_k y_{ik}$ $Z = \sum_{k=1}^n w_k (x_{2k}^2 + y_{2k}^2)$ $W = \sum_{k=1}^n w_k$

$$C_1 = \sum_{k=1}^{n} w_k (x_{1k} x_{2k} + y_{1k} y_{2k})$$

$$C_2 = \sum_{k=1}^{n} w_k (y_{1k} x_{2k} - x_{1k} y_{2k})$$

Alineación de todo el conjunto

- Los pesos W se eligen para dar más significancia a los puntos estables
- Algoritmo de alineación:
 - Alinie todas las formas con primera del conjunto
 - Repita
 - Calcule forma promedio de formas alineadas
 - Normalice orientación, escala y origen de la media actual
 - Relinie todas las formas a la media actual
 - Hasta que proceso converja

Reducción de dimensiones

 Luego del ACP sobre las formas alineadas se puede reconstruir cualquier forma a partir de los coeficientes de los componentes principales <u>b</u>

$$\underline{\mathbf{x}} = \underline{\bar{\mathbf{x}}} + \mathbf{P}\underline{\mathbf{b}}$$

- P es la matriz de los primeros t eigenvectores
- $\underline{\mathbf{b}} = [b_1, b_2, \dots, b_t]^T$ es la parametrización de la forma
- Se restringen formas válidas logrando que

$$-3\sqrt{\lambda_k} \le b_k \le 3\sqrt{\lambda_k}$$

• λ_k es el eigenvalor correspondiente al k-ésimo eigenvector

Ajuste a imagen

- Una vez que se tienen los modelos entrenados, deben ajustarse a la imagen
- Se coloca una forma en algún lugar probable sobre la imagen
- Las marcas o hitos se ajustan buscando bordes (entre otras ideas)
- Una vez ajustados se determinan los parámetros <u>b</u> correspondintes
- Esos parámetros se restrinjen al rango válido $-3\sqrt{\lambda_k} \le b_k \le 3\sqrt{\lambda_k}$
- La forma resultante se vuelve a ajustar
- En todo paso se deben determinar rotación, escala y traslación

Resumen

Tarea 3

- Revisar tutorial sobre ACP de Shlens
- 2 Revisar artículo de Cootes et al. sobre ASM
- 3 Cree un modelo de forma para el tablero de ajedrez.

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, LTI-Lib-2, GNU-Make, Kazam, Xournal y Subversion en GNU/Linux

Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2013 Pablo Alvarado-Moya Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica