

A Data-Based Approach to Flattening the Curve

BY: Oluwaseun Ademiloye, Tye Robison, Paul Lee, Vijay Fisch

Paul Lee

Tye Robison

Vijay Fisch

Oluwaseun Ademiloye

The Question

What are the most unrestrictive policies Caladan can implement to keep the growth rate of deaths below 1% and the growth rate of new cases below 3% on a *30-day rolling average?

Our Answer

The most unrestrictive policies that fit the constraints and we recommend to be used in Caladan are H6_facial_coverings and H7_vaccination_policy.

Initial Steps

Importing Data, parquet settings, Cleaning Data, etc

Data Flow

Column removal, sinking to data lake

Schema Design

One-to-many relationships and star schema organization

04

Power BI

Graphical designs, statistical choices, rolling 30 day averages

ML & External Data

External data usage and implementation into a machine learning algorithm

Final Conclusion

Answering the question, recommended policies, etc

What was the issue?

•

Objective: Mitigate and prevent the <u>next wave of COVID-19 in Caladan</u> - a midsize commonwealth with a population of 3.2 million.

Approach and Strategy:

- Evaluate <u>efficacy of diverse COVID-19 policies</u> from 10 countries.
 - United Kingdom, France, New Zealand, Russia, South Korea, Sweden, Canada,
 Japan, Italy, and Germany
- Aim to create unrestrictive policies while keeping <u>death growth rate below 1% and</u> new cases growth rate below 3% on a <u>30-day rolling average</u>
- Analyze <u>correlation between growth and policies</u> implemented by various governments and Establish a functional Data Pipeline.

Data Flow Pt.1

Data Flow Pt.2

THE OUTPUT

Deaths.parquet

Deleted columns: Deleted columns: (country_region, ISO2, latitude, longitude, load time)

Created derived column "UniqueID" to connect on Date & CountryCode

Dates.parquet

Kept all columns

Recoveries.parquet Cases.parquet

(country_region, ISO2, latitude, longitude, load time)

Created derived column "UniqueID" to connect on Date & CountryCode

Deleted columns: (country_region, ISO2, latitude, longitude, load time)

Created derived column "UniqueID" to connect on Date & CountryCode

Policy.parquet

Deleted Null Columns: Region name, Region code

Created derived column "UniqueID" to connect on Date & CountryCode

Geography.parquet

Kept all columns

Creating One-to-Many relationships & removed irrelevant/redundant columns

THE SCHEMA

MACHINE LEARNING: RANDOM FOREST REGRESSOR

- 1) Connected Cases and Policy on UniqueID, eliminated duplicate rows
- 2) Imported world population data from United Nations, divided confirmed by population to make it proportional to population
- Isolated columns needed for machine learning analysis (variables are policies, label/target is confirmed_per_capita)
- 4) Train, test, split (test size 80%)
- 5) Fit RandomForestRegressor on training data with target as label data, hyperparameter tuning
- 6) Test it on test data, calculating regressor score (~68%)
- 7) Run feature importances, graphed using SeaBorn

Source: "Random Forest" by Deniz Gunay on Medium

CONCLUSIONS

Caladan's suite of optimal policies

- H7_vaccination_policy (best overall)
- H6_facial_coverings
- One additional policy depending on severity of cases:

C6_Stay_at_home_requirements

Please give us a good grade!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**