Homework II (2022)

1. Assume $y_1, \ldots, y_n \stackrel{iid}{\sim} N(\theta, 1/r)$ where θ and r are unknown. We consider the following priors for θ and r:

$$\theta | r \sim N\left(\mu, \frac{1}{\lambda r}\right),$$

$$r \sim Gamma\left(\frac{a}{2}, \frac{b}{2}\right),$$

where μ , λ , a and b are known. Show the following results:

$$\theta | r, y \sim N\left(\frac{n\bar{y} + \lambda\mu}{n + \lambda}, \frac{1}{r(n + \lambda)}\right),$$

$$r|y \sim Gamma\left(\frac{n + a}{2}, \frac{1}{2}\left\{\sum_{i}(y_i - \bar{y})^2 + \frac{n\lambda}{n + \lambda}(\bar{y} - \mu)^2 + b\right\}\right).$$

- 2. Suppose $y|\theta \sim Poisson(\theta)$. Find Jeffreys' prior density for θ , and then find α and β for which the Gamma(α , β) density is a close match to Jeffreys' density.
- 3. Assume our data X_1, \dots, X_n are i.i.d. Bernoulli(θ) with unknown θ , let $y = \sum_{i=1}^n x_i$. We derived in class the Jeffreys prior $p_J(\theta)$ for θ . Consider the transformation $\tau = \theta/(1-\theta)$, so that τ is the *odds* of success.
 - (a) Show that the joint density of the data (i.e., the likelihood) can be written in terms of τ as

$$f(x|\tau) \propto \tau^y (\tau+1)^{-n}$$
.

- (b) Derive the Jeffreys prior $p_J(\tau)$ for τ .
- (c) Show that the Jeffreys prior for θ is invariant with respect to this particular transformation by showing that

$$p_J(\theta) = p_J(\tau) \left| \frac{d\tau}{d\theta} \right|.$$

- 4. Suppose y has a binomial distribution for given n and unknown θ , where the prior distribution of θ is Beta (α, β) .
 - (a) Find the marginal distribution of y, p(y), for y = 0, ..., n (unconditional on θ). This discrete distribution is known as the *beta-binomial*, for obvious reasons.
 - (b) Show that if the beta-binomial probability is constant in y, then the prior distribution has to have $\alpha = \beta = 1$.