Data Science II with python (Class notes)

STAT 303-2-Sec20&21

2025-01-07

Table of contents

Pr	etace	2		5							
1		ple Linear Regression Simple Linear Regression									
	1.1	5mp	9	6 7							
		1.1.1 $1.1.2$	Training with statsmodels	14							
		1.1.2	Training with statsmodels.api	16							
		1.1.0	Training with statsmoders.apr	10							
2	Mul	Multiple Linear Regression									
	2.1	Multi	ple Linear Regression	19							
		2.1.1	Training the model	20							
		2.1.2	Hypothesis test for a relationship between the response and a subset of								
			predictors	21							
		2.1.3	Prediction	21							
		2.1.4	Effect of adding noisy predictors on \mathbb{R}^2	24							
3	Vari	able in	teractions and transformations	26							
	3.1	Varial	ble interactions	26							
		3.1.1	Variable interaction between continuous predictors	27							
		3.1.2	Including qualitative predictors in the model	29							
		3.1.3	Including qualitative predictors and their interaction with continuous								
			predictors in the model	33							
	3.2	Varial	ble transformations	35							
		3.2.1	Quadratic transformation	36							
		3.2.2	Cubic transformation	38							
	3.3	Polyn	omialFeatures()	41							
		3.3.1	Generating polynomial features	42							
		3.3.2	Fitting the model	42							
		3.3.3	Testing the model	43							
4	Logi	istic re	gression	44							
	4.1		ry Behind Logistic Regression	44							
		4.1.1	Description	44							
		4.1.2	Learning the Logistic Regression Model	46							
		4.1.3	Preparing Data for Logistic Regression	47							
	4.2	Logist	cic Regression: Scikit-learn vs Statsmodels	47							

	4.3	Training a logistic regression model											
		4.3.1 Examining the Distribution of the Target Column											
		4.3.2 Fitting the logistic regression model											
	4.4	.4 Confusion matrix and classification accuracy											
	4.5	Variable transformations in logistic regression											
	4.6	Performance Measurement											
		4.6.1 Precision-recall											
		4.6.2 The Receiver Operating Characteristics (ROC) Curve 79											
	4.7	sklearn											
5	Ridg	ge regression and Lasso 85											
	5.1	Ridge regression											
		5.1.1 Standardizing the predictors											
		5.1.2 Optimizing the tuning parameter											
		5.1.3 RMSE on test data											
		5.1.4 Model coefficients & R -squared											
	5.2	Lasso											
		5.2.1 Standardizing the predictors											
		5.2.2 Optimizing the tuning parameter											
		5.2.3 RMSE on test data											
		5.2.4 Model coefficients & R -squared											
	5.3	Lasso/Ridge Classification											
		5.3.1 Cross-validation to find optimal C											
6	Cros	ss-validation 98											
	6.1	Regression											
	6.2	Classification											
7	Pote	ential issues 105											
	7.1	Outliers											
	7.2	High leverage points											
		7.2.1 Identifying extrapolation using leverage											
	7.3	Influential points											
		7.3.1 Influence on single fitted value (DFFITS)											
		7.3.2 Influence on all fitted values (Cook's distance)											
		7.3.3 Influence on regression coefficients (DFBETAS)											
	7.4	Collinearity											
		7.4.1 Why and how is collinearity a problem											
		7.4.2 How to measure collinearity/multicollinearity											
		7.4.3 Manual computation of VIF											
		7.4.4 When can we overlook multicollinearity?											

Αp	ppendices	134
Α	Datasets, assignment and project files	134

Preface

These are class notes for the course STAT303-2-Sec20&Sec21 in Winter 2025. This is not the course text-book. You are required to read the relevant sections of the book as mentioned on the course website.

This book serves as the course notes for [Course Name], and it is an evolving resource developed to support the learning objectives of the course. It builds upon the foundational work of the original iteration, authored and maintained by Professor Arvind Krishna. We are deeply grateful for Professor Krishna's contributions, as his work has provided a robust framework and valuable content upon which this version of the book is based.

As the course progresses during this quarter, the notes will be continually updated and refined to reflect the content taught in real time. The modifications aim to enhance the clarity, depth, and relevance of the material to better align with the current teaching objectives and methodologies.

This book is a living document, and we welcome feedback, suggestions, and contributions from students, instructors, and the broader academic community to help improve its quality and utility.

Thank you for being part of this journey, and we hope this resource serves as a helpful guide throughout the course.

1 Simple Linear Regression

Read section 3.1 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

1.1 Simple Linear Regression

```
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
import statsmodels.api as sm
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from matplotlib.lines import Line2D
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
```

Develop a simple linear regression model that predicts car price based on engine size. Datasets to be used: $Car_features_train.csv$, $Car_prices_train.csv$

```
# We are reading training data ONLY at this point.
# Test data is already separated in another file
trainf = pd.read_csv('./Datasets/Car_features_train.csv') # Predictors
trainp = pd.read_csv('./Datasets/Car_prices_train.csv') # Response
train = pd.merge(trainf,trainp)
train.head()
```

	carID	brand	model	year	transmission	$_{ m mileage}$	fuelType	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980

	carID	brand	model	year	transmission	mileage	fuelType	tax	mpg	engineSize	price
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

1.1.1 Training with statsmodels

Here, we will use the statsmodels.formula.api module of the statsmodels library. The use of "API" here doesn't refer to a traditional external web API but rather an interface within the library for users to interact with and perform specific tasks. The statsmodels.formula.api module provides a formulaic interface to the statsmodels library. A formula is a compact way to specify statistical models using a formula language. This module allows users to define statistical models using formulas similar to those used in R.

So, in summary, the statsmodels.formula.api module provides a formulaic interface as part of the statsmodels library, allowing users to specify statistical models using a convenient and concise formula syntax.

```
# Let's create the model

# ols stands for Ordinary Least Squares - the name of the algorithm that optimizes Linear

# data input needs the dataframe that has the predictor and the response

# formula input needs to:
    # be a string
    # have the following syntax: "response~predictor"

# Using engineSize to predict price
ols_object = smf.ols(formula = 'price~engineSize', data = train)

#Using the fit() function of the 'ols' class to fit the model, i.e., train the model
model = ols_object.fit()

#Printing model summary which contains among other things, the model coefficients
model.summary()
```

Dep. Variable:		price	R	R-square	d:	0.390
Model:		OLS	A	dj. R-sc	quared:	0.390
Method:	I	Least Square	es F	'-statistic	c:	3177.
Date:	Tu	ie, 16 Jan 20	024 P	rob (F-s	statistic):	0.00
Time:		16:46:33	\mathbf{L}	og-Likel	ihood:	-53949.
No. Observation	ons:	4960	A	IC:		1.079e + 05
Df Residuals:		4958	\mathbf{E}	BIC:		1.079e + 05
Df Model:		1				
Covariance Ty	pe:	${\bf nonrobust}$				
	coef	std err	t	$P> \mathbf{t} $	[0.025]	0.975]
Intercept -4	122.0357	522.260	-7.893	0.000	-5145.896	-3098.176
engineSize 1.	299e + 04	230.450	56.361	0.000	1.25e + 04	1.34e + 04
Omnibus:	1271.986	Durb	in-Watso	on: 0	.517	
Prob(Om	0.000	Jarque-Bera (JB): 64			90.719	
Skew:	1.137	Prob(JB):			0.00	
Kurtosis:		8.122	Cond	. No.	7	7.64

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The model equation is: price = -4122.0357 + 12990 * engineSize

- R-squared is 39%. This is the proportion of variance in car price explained by engineSize.
- The coef of engineSize $(\hat{\beta}_1)$ is statistically significant (p-value = 0). There is a linear relationship between X and Y.
- The 95% CI of $\hat{\beta}_1$ is [1.25e+04, 1.34e+04].
- PI is not shown here.

The coefficient of engineSize is 1.299e+04. - Unit change in engineSize increases the expected price by \$ 12,990. - An increase of 3 increases the price by \$ (3*1.299e+04) = \$38,970.

The coefficients can also be returned directly usign the params attribute of the model object returned by the fit() method of the ols class:

model.params

Intercept -4122.035744 engineSize 12988.281021

dtype: float64

Visualize the regression line

Note that the above plot can be made directly using the seaborn function regplot(). The function regplot() fits a simple linear regression model with y as the response, and x as the predictor, and then plots the model over a scatterplot of the data.

```
ax = sns.regplot(x = 'engineSize', y = 'price', data = train, color = 'orange',line_kws={"
plt.xlim(-1,7)
plt.xlabel('Engine size (in litres)')
plt.ylabel('Car price')
ax.yaxis.set_major_formatter('${x:,.0f}')
ax.legend(handles=legend_elements, loc='upper left');
#Note that some of the engineSize values are 0. They are incorrect, and should ideally be
```


The light shaded region around the blue line in the above plot is the confidence interval.

Predict the car price for the cars in the test dataset. Datasets to be used: $Car_features_test.csv, Car_prices_test.csv$

Now that the model has been trained, let us evaluate it on unseen data. Make sure that the columns names of the predictors are the same in train and test datasets.

```
# Read the test data
testf = pd.read_csv('./Datasets/Car_features_test.csv') # Predictors
testp = pd.read_csv('./Datasets/Car_prices_test.csv') # Response
test = pd.merge(testf, testp)

#Using the predict() function associated with the 'model' object to make predictions of capred_price = model.predict(testf)#Note that the predict() function finds the predictor 'en
```

Make a visualization that compares the predicted car prices with the actual car prices

```
sns.scatterplot(x = testp.price, y = pred_price, color = 'orange')
#In case of a perfect prediction, all the points must lie on the line x = y.
ax = sns.lineplot(x = [0,testp.price.max()], y = [0,testp.price.max()],color='blue') #Plot
plt.xlabel('Actual price')
plt.ylabel('Predicted price')
ax.yaxis.set_major_formatter('${x:,.0f}')
ax.xaxis.set_major_formatter('${x:,.0f}')
plt.xticks(rotation=20);
```


The prediction doesn't look too good. This is because we are just using one predictor - engine size. We can probably improve the model by adding more predictors when we learn multiple linear regression.

What is the RMSE of the predicted car price on unseen data?

```
np.sqrt(((testp.price - pred_price)**2).mean())
```

12995.106451548696

The root mean squared error in predicting car price is around \$13k.

What is the residual standard error based on the training data?

```
np.sqrt(model.mse_resid)
```

12810.109175214138

The residual standard error on the training data is close to the RMSE on the test data. This shows that the performance of the model on unknown data is comparable to its performance on known data. This implies that the model is not overfitting, which is good! In case we overfit a model on the training data, its performance on unknown data is likely to be worse than that on the training data.

Find the confidence and prediction intervals of the predicted car price

```
#Using the get_prediction() function associated with the 'model' object to get the interval
intervals = model.get_prediction(testf)
```

#The function requires specifying alpha (probability of Type 1 error) instead of the confiintervals.summary_frame(alpha=0.05)

	mean	mean_se	mean_ci_lower	mean_ci_upper	obs_ci_lower	obs_ci_upper
0	34842.807319	271.666459	34310.220826	35375.393812	9723.677232	59961.937406
1	34842.807319	271.666459	34310.220826	35375.393812	9723.677232	59961.937406
2	34842.807319	271.666459	34310.220826	35375.393812	9723.677232	59961.937406
3	8866.245277	316.580850	8245.606701	9486.883853	-16254.905974	33987.396528
4	47831.088340	468.949360	46911.740050	48750.436631	22700.782946	72961.393735
2667	47831.088340	468.949360	46911.740050	48750.436631	22700.782946	72961.393735
2668	34842.807319	271.666459	34310.220826	35375.393812	9723.677232	59961.937406
2669	8866.245277	316.580850	8245.606701	9486.883853	-16254.905974	33987.396528
2670	21854.526298	184.135754	21493.538727	22215.513869	-3261.551421	46970.604017
2671	21854.526298	184.135754	21493.538727	22215.513869	-3261.551421	46970.604017

Show the regression line predicting car price based on engine size for test data. Also show the confidence and prediction intervals for the car price.

```
interval_table = intervals.summary_frame(alpha=0.05)

ax = sns.scatterplot(x = testf.engineSize, y = pred_price,color = 'orange', s = 10)
sns.lineplot(x = testf.engineSize, y = pred_price, color = 'red')
sns.lineplot(x = testf.engineSize, y = interval_table.mean_ci_lower, color = 'blue')
sns.lineplot(x = testf.engineSize, y = interval_table.mean_ci_upper, color = 'blue')
sns.lineplot(x = testf.engineSize, y = interval_table.obs_ci_lower, color = 'green')
sns.lineplot(x = testf.engineSize, y = interval_table.obs_ci_upper, color = 'green')
```


1.1.2 Training with sklearn

```
# Create the model as an object
model = LinearRegression() # No inputs, this will change for other models
# Train the model - separate the predictor(s) and the response for this!
```

```
X_train = train[['engineSize']]
  y_train = train[['price']]
  # Note that both are dfs, NOT series - necessary to avoid errors
  model.fit(X_train, y_train)
  # Check the slight syntax differences
      # predictors and response separate
      # We need to manually slice the predictor column(s) we want to include
      # No need to assign to an output
  # Return the parameters
  print("Coefficient of engine size = ", model.coef_) # slope
  print("Intercept = ", model.intercept_) # intercept
  # No .summary() here! - impossible to do much inference; this is a shortcoming of sklearn
Coefficient of engine size = [[12988.28102112]]
Intercept = [-4122.03574424]
  # Prediction
  # Again, separate the predictor(s) and the response of interest
  X_test = test[['engineSize']]
  y_test = test[['price']].to_numpy() # Easier to handle with calculations as np array
  y_pred = model.predict(X_test)
  # Evaluate
  model_rmse = np.sqrt(np.mean((y_pred - y_test)**2)) # RMSE
  model_mae = np.mean(np.abs(y_pred - y_test)) # MAE
  print('Test RMSE: ', model_rmse)
Test RMSE: 12995.106451548696
  # Easier way to calculate metrics with sklearn tools
```

```
# Note that we have imported the functions 'mean_squared_error' and 'mean_absolute_error'
# from the sklearn.metrics module (check top of the code)

model_rmse = np.sqrt(mean_squared_error(y_test,y_pred))
model_mae = mean_absolute_error(y_test,y_pred)
print('Test RMSE: ', model_rmse)
print('Test MAE: ', model_mae)

Test RMSE: 12995.106451548696
Test MAE: 9411.325912951994

y_pred_train = model.predict(X_train)
print('Train R-squared:', r2_score(y_train, y_pred_train))
print('Test R-squared:', r2_score(y_test, y_pred))
```

Train R-squared: 0.39049842625794573 Test R-squared: 0.3869900378620146

Note: Why did we repeat the same task in two different libraries?

- statsmodels and sklearn have different advantages we will use both for our purposes
 - statsmodels returns a lot of statistical output, which is very helpful for inference (coming up next) but it has a limited variety of models.
 - With statsmodels, you may have columns in your DataFrame in addition to predictors and response, while with sklearn you need to make separate objects consisting of only the predictors and the response.
 - sklearn includes many models (Lasso and Ridge this quarter, many others next quarter) and helpful tools/functions (like metrics) that statsmodels does not but it does not have any inference tools.

1.1.3 Training with statsmodels.api

Earlier we had used the statsmodels.formula.api module, where we had to put the regression model as a formula. We can also use the statsmodels.api module to develop a regression model. The syntax of training a model with the OLS() function in this module is similar to that of sklearn's LinearRegression() function. However, the order in which the predictors and response are specified is different. The formula-style syntax of the statsmodels.formula.api module is generally preferred. However, depending on the situation, the OLS() syntax of statsmodels.api may be preferred.

Note that you will manually need to add the predictor (a column of ones) corresponding to the intercept to train the model with this method.

```
# Create the model as an object

# Train the model - separate the predictor(s) and the response for this!
X_train = train[['engineSize']]
y_train = train[['price']]

X_train_with_intercept = np.concatenate((np.ones(X_train.shape[0]).reshape(-1,1), X_train))

model = sm.OLS(y_train, X_train_with_intercept).fit()

# Return the parameters
print(model.params)
```

const -4122.035744 x1 12988.281021

dtype: float64

The model summary and all other attributes and methods of the model object are the same as that with the object created using the statsmodels.formula.api module.

model.summary()

Dep. Variable:	pric	price		ared:	0.390
Model:	OLS	\mathbf{S}	Adj. F	R-squared:	0.390
Method:	Least Sq	uares	F-stat	istic:	3177.
Date:	Mon, 08 Ja	an 2024	Prob ($(\mathbf{F\text{-}statistic})$	0.00
Time:	11:17:	:55	$\operatorname{Log-Li}$	kelihood:	-53949.
No. Observations:	4960	4960			1.079e + 05
Df Residuals:	4958	4958			1.079e + 05
Df Model:	1	1			
Covariance Type:	nonrob	nonrobust			
coef	std err	t	P> t	[0.025]	0.975]
const -4122.03	57 522.260	-7.893	0.000	-5145.896	-3098.176
x1 1.299e+0	04 230.450	56.361	0.000	1.25e + 04	1.34e + 04

Omnibus:	1271.986	Durbin-Watson:	0.517
Prob(Omnibus):	0.000	Jarque-Bera (JB):	6490.719
Skew:	1.137	Prob(JB):	0.00
Kurtosis:	8.122	Cond. No.	7.64

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2 Multiple Linear Regression

Read section 3.2 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

2.1 Multiple Linear Regression

```
# importing libraries
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
```

Develop a multiple linear regression model that predicts car price based on engine size, year, mileage, and mpg. Datasets to be used: Car_features_train.csv, Car prices train.csv

```
# Reading datasets
trainf = pd.read_csv('./Datasets/Car_features_train.csv')
trainp = pd.read_csv('./Datasets/Car_prices_train.csv')
train = pd.merge(trainf,trainp)
train.head()
```

	carID	brand	model	year	transmission	mileage	${\it fuel Type}$	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

2.1.1 Training the model

```
#Using the ols function to create an ols object. 'ols' stands for 'Ordinary least squares'
ols_object = smf.ols(formula = 'price~year+mileage+mpg+engineSize', data = train)
model = ols_object.fit()
model.summary()
```

Dep. Varia	able:	price	\mathbf{R}	-squarec	l:	0.660
Model:		OLS	\mathbf{A}	dj. R-sq	uared:	0.660
Method:		Least Squar	es \mathbf{F}	-statistic	: :	2410.
Date:	N	Ion, 29 Jan 2	2024 P	rob (F-s	tatistic):	0.00
Time:		03:10:20	$\mathbf{L}_{\mathbf{c}}$	og-Likeli	ihood:	-52497.
No. Obser	vations:	4960	\mathbf{A}	IC:		1.050e + 05
Df Residua	als:	4955	\mathbf{B}	IC:		1.050e + 05
Df Model:		4				
Covariance	e Type:	nonrobust				
	coef	std err	t	P> $ t $	[0.025]	0.975]
Intercept	-3.661e+06	1.49e + 05	-24.593	0.000	-3.95e+06	-3.37e + 06
year	1817.7366	73.751	24.647	0.000	1673.151	1962.322
$\mathbf{mileage}$	-0.1474	0.009	-16.817	0.000	-0.165	-0.130
mpg	-79.3126	9.338	-8.493	0.000	-97.620	-61.006
${\bf engine Size}$	1.218e + 04	189.969	64.107	0.000	1.18e + 04	1.26e + 04
Omni	bus:	2450.973	Durbin	ı-Watsor	n: 0.	541
$\operatorname{Prob}($	Omnibus):	0.000	Jarque-Bera (JB): 31060.548			60.548
Skew:		2.045	$\mathbf{Prob}(\mathbf{JB})$:			.00
Kurto	sis:	14.557	Cond.	No.	3.83	Se+07

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.83e+07. This might indicate that there are strong multicollinearity or other numerical problems.

The model equation is: estimated car price = -3.661e6 + 1818 * year -0.15 * mileage - 79.31 * mpg + 12180 * engineSize

The procedure to fit the model using sklearn will be similar to that in simple linear regression.

```
model = LinearRegression()
```

```
X_train = train[['year','engineSize','mpg','mileage']] # Slice out the predictors
y_train = train[['price']]
model.fit(X_train,y_train)
```

2.1.2 Hypothesis test for a relationship between the response and a subset of predictors

Let us test the hypothesis if there is relationship between car price and the set of predictors: mpg and year.

```
hypothesis = '(mpg = 0, year = 0)'
model.f_test(hypothesis) # the F test of these two predictors is stat. sig.
<class 'statsmodels.stats.contrast.ContrastResults'>
<F test: F=325.9206432972666, p=1.0499509223096256e-133, df_denom=4.96e+03, df_num=2>
```

As the p-value is low, we reject the null hypothesis, i.e., at least one of the predictors among mpg and year has a statistically significant relationship with car price.

Predict the car price for the cars in the test dataset. Datasets to be used: $Car_features_test.csv, Car_prices_test.csv$

```
testf = pd.read_csv('./Datasets/Car_features_test.csv')
testp = pd.read_csv('./Datasets/Car_prices_test.csv')
```

2.1.3 Prediction

```
pred_price = model.predict(testf)
```

Make a visualization that compares the predicted car prices with the actual car prices

```
sns.set(font_scale=1.25)
sns.scatterplot(x = testp.price, y = pred_price, color = 'orange')
#In case of a perfect prediction, all the points must lie on the line x = y.
ax = sns.lineplot(x = [0,testp.price.max()], y = [0,testp.price.max()],color='blue') #Plot
plt.xlabel('Actual price')
```

```
plt.ylabel('Predicted price')
plt.ylim([-10000, 160000])
ax.yaxis.set_major_formatter('${x:,.0f}')
ax.xaxis.set_major_formatter('${x:,.0f}')
plt.xticks(rotation=20);
```


The prediction looks better as compared to the one with simple linear regression. This is because we have four predictors to help explain the variation in car price, instead of just one in the case of simple linear regression. Also, all the predictors have a significant relationship with price as evident from their p-values. Thus, all four of them are contributing in explaining the variation. Note the higher values of \mathbb{R}^2 as compared to the one in the case of simple linear regression.

What is the RMSE of the predicted car price?

```
np.sqrt(((testp.price - pred_price)**2).mean())
```

9956.82497993548

What is the residual standard error based on the training data?

```
np.sqrt(model.mse_resid)
```

9563.74782917604

trainp.describe()

	carID	price
count	4960.000000	4960.000000
mean	15832.446169	23469.943750
std	2206.717006	16406.714563
min	12002.000000	450.000000
25%	13929.250000	12000.000000
50%	15840.000000	18999.000000
75%	17765.750000	30335.750000
max	19629.000000	145000.000000

```
sns.scatterplot(x = model.fittedvalues, y=model.resid,color = 'orange')
ax = sns.lineplot(x = [pred_price.min(),pred_price.max()],y = [0,0],color = 'blue')
plt.xlabel('Predicted price')
plt.ylabel('Residual')
ax.yaxis.set_major_formatter('${x:,.0f}')
ax.xaxis.set_major_formatter('${x:,.0f}')
plt.xticks(rotation=20);
```


2.1.4 Effect of adding noisy predictors on \mathbb{R}^2

Will the explained variation (R-squared) in car price always increase if we add a variable?

Should we keep on adding variables as long as the explained variation (R-squared) is increasing?

```
#Using the ols function to create an ols object. 'ols' stands for 'Ordinary least squares'
np.random.seed(1)
train['rand_col'] = np.random.rand(train.shape[0])
ols_object = smf.ols(formula = 'price~year+mileage+mpg+engineSize+rand_col', data = train)
model = ols_object.fit()
model.summary()
```

Table 2.3: OLS Regression Results

Dep. Variable:	price	R-squared:	0.661
Model:	OLS	Adj. R-squared:	0.660
Method:	Least Squares	F-statistic:	1928.
Date:	Tue, 27 Dec 2022	Prob (F-statistic):	0.00
Time:	01:07:38	Log-Likelihood:	-52497.
No. Observations:	4960	AIC:	1.050e + 05
Df Residuals:	4954	BIC:	1.050e + 05
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025]	0.975]
Intercept	-3.662e+06	1.49e + 05	-24.600	0.000	-3.95e + 06	-3.37e + 06
year	1818.1672	73.753	24.652	0.000	1673.578	1962.756
$_{ m mileage}$	-0.1474	0.009	-16.809	0.000	-0.165	-0.130
mpg	-79.2837	9.338	-8.490	0.000	-97.591	-60.976
engineSize	1.218e + 04	189.972	64.109	0.000	1.18e + 04	1.26e + 04
$rand_col$	451.1226	471.897	0.956	0.339	-474.004	1376.249

Omnibus:	2451.728	Durbin-Watson:	0.541
Prob(Omnibus): Skew:	0.000 2.046	Jarque-Bera (JB): Prob(JB):	31040.331
Kurtosis:	14.552	Cond. No.	3.83e+07

Adding a variable with random values to the model (rand_col) increased the explained variation (R^2) . This is because the model has one more parameter to tune to reduce the residual squared error (RSS). However, the p-value of rand_col suggests that its coefficient is zero. Thus, using the model with rand_col may give poorer performance on unknown data, as compared to the model without rand_col. This implies that it is not a good idea to blindly add variables in the model to increase R^2 .

3 Variable interactions and transformations

Read sections 3.3.1 and 3.3.2 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

3.1 Variable interactions

```
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

trainf = pd.read_csv('./Datasets/Car_features_train.csv')
trainp = pd.read_csv('./Datasets/Car_prices_train.csv')
testf = pd.read_csv('./Datasets/Car_features_test.csv')
testp = pd.read_csv('./Datasets/Car_prices_test.csv')
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	carID	brand	model	year	transmission	$_{ m mileage}$	fuel Type	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

Until now, we have assumed that the association between a predictor X_j and response Y does not depend on the value of other predictors. For example, the multiple linear regression model that we developed in Chapter 2 assumes that the average increase in price associated with a unit increase in engineSize is always \$12,180, regardless of the value of other predictors. However, this assumption may be incorrect.

3.1.1 Variable interaction between continuous predictors

We can relax this assumption by considering another predictor, called an interaction term. Let us assume that the average increase in price associated with a one-unit increase in engineSize depends on the model year of the car. In other words, there is an interaction between engineSize and year. This interaction can be included as a predictor, which is the product of engineSize and year. Note that there are several possible interactions that we can consider. Here the interaction between engineSize and year is just an example.

```
#Considering interaction between engineSize and year
ols_object = smf.ols(formula = 'price~year*engineSize+mileage+mpg', data = train)
model = ols_object.fit()
model.summary()
```

Table 3.2: OLS Regression Results

Dep. Variable:	price	R-squared:	0.682
Model:	OLS	Adj. R-squared:	0.681
Method:	Least Squares	F-statistic:	2121.
Date:	Tue, 24 Jan 2023	Prob (F-statistic):	0.00
Time:	15:28:11	Log-Likelihood:	-52338.
No. Observations:	4960	AIC:	1.047e + 05
Df Residuals:	4954	BIC:	1.047e + 05
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	5.606e + 05	2.74e + 05	2.048	0.041	2.4e + 04	1.1e + 06
year	-275.3833	135.695	-2.029	0.042	-541.405	-9.361
engineSize	-1.796e + 06	9.97e + 04	-18.019	0.000	-1.99e + 06	-1.6e + 06
year:engineSize	896.7687	49.431	18.142	0.000	799.861	993.676
mileage	-0.1525	0.008	-17.954	0.000	-0.169	-0.136
mpg	-84.3417	9.048	-9.322	0.000	-102.079	-66.604

Omnibus:	2330.413	Durbin-Watson:	0.524
Prob(Omnibus):	0.000	Jarque-Bera (JB):	29977.437
Skew:	1.908	Prob(JB):	0.00
Kurtosis:	14.423	Cond. No.	7.66e + 07

Note that the R-squared has increased as compared to the model in Chapter 2 since we added a predictor.

The model equation is:

$$price = \beta_0 + \beta_1 * year + \beta_2 * engineSize + \beta_3 * (year * engineSize) + \beta_4 * mileage + \beta_5 * mpg, \ (3.1)$$
 or

$$price = \beta_0 + \beta_1 * year + (\beta_2 + \beta_3 * year) * engineSize + \beta 4 * mileage + \beta_5 * mpg, \quad (3.2)$$

or

$$price = \beta_0 + \beta_1 * year + \tilde{\beta} * engineSize + \beta_4 * mileage + \beta_5 * mpg, \tag{3.3}$$

Since $\tilde{\beta}$ is a function of year, the association between engineSize and price is no longer a constant. A change in the value of year will change the association between price and engineSize.

Substituting the values of the coefficients:

 $\label{eq:price} \text{price} = 5.606e5 - 275.3833 year + (-1.796e6 + 896.7687 year) \\ \text{engineSize} -0.1525 \textit{mileage} - 84.3417 \\ \text{mpg}$

Thus, for cars launched in the year 2010, the average increase in price for one liter increase in engine size is -1.796e6 + 896.7687 * 2010 \approx \\$6,500, assuming all the other predictors are constant. However, for cars launched in the year 2020, the average increase in price for one liter increase in engine size is -1.796e6 + 896.7687*2020 \approx \\$15,500 , assuming all the other predictors are constant.

Similarly, the equation can be re-arranged as:

$$\label{eq:price} \begin{split} \text{price} &= 5.606e5 + (-275.3833 + 896.7687 \, engineSize) \\ \text{year} - 1.796e6 \, engineSize} - 0.1525 \\ \text{mileage} - 84.3417* \\ \text{mpg} \end{split}$$

Thus, for cars with an engine size of 2 litres, the average increase in price for a one year newer model is $-275.3833+896.7687 * 2 \approx \1500 , assuming all the other predictors are constant.

However, for cars with an engine size of 3 litres, the average increase in price for a one year newer model is -275.3833+896.7687 * 3 \approx \\$2400, assuming all the other predictors are constant.

```
#Computing the RMSE of the model with the interaction term
pred_price = model.predict(testf)
np.sqrt(((testp.price - pred_price)**2).mean())
```

9423.598872501092

Note that the RMSE is lower than that of the model in Chapter 2. This is because the interaction term between engineSize and year is significant and relaxes the assumption of constant association between price and engine size, and between price and year. This added flexibility makes the model better fit the data. Caution: Too much flexibility may lead to overfitting!

Note that interaction terms corresponding to other variable pairs, and higher order interaction terms (such as those containing 3 or 4 variables) may also be significant and improve the model fit & thereby the prediction accuracy of the model.

3.1.2 Including qualitative predictors in the model

Let us develop a model for predicting price based on engineSize and the qualitative predictor transmission.

```
#checking the distribution of values of transmission
train.transmission.value_counts()
```

Manual 1948 Automatic 1660 Semi-Auto 1351 Other 1

Name: transmission, dtype: int64

Note that the *Other* category of the variable *transmission* contains only a single observation, which is likely to be insufficient to train the model. We'll remove that observation from the training data. Another option may be to combine the observation in the *Other* category with the nearest category, and keep it in the data.

```
train_updated = train[train.transmission!='Other']
```

```
ols_object = smf.ols(formula = 'price ~ engineSize + transmission', data = train_updated)
model = ols_object.fit()
model.summary()
```

Table 3.5: OLS Regression Results

Dep. Variable:	price	R-squared:	0.459
Model:	OLS	Adj. R-squared:	0.458
Method:	Least Squares	F-statistic:	1400.
Date:	Tue, 24 Jan 2023	Prob (F-statistic):	0.00
Time:	15:28:21	Log-Likelihood:	-53644.
No. Observations:	4959	AIC:	1.073e + 05
Df Residuals:	4955	BIC:	1.073e + 05
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	3042.6765	661.190	4.602	0.000	1746.451	4338.902
${\bf transmission}[{\bf T.Manual}]$	-6770.6165	442.116	-15.314	0.000	-7637.360	-5903.873
transmission[T.Semi-Auto]	4994.3112	442.989	11.274	0.000	4125.857	5862.765
engineSize	1.023e + 04	247.485	41.323	0.000	9741.581	1.07e + 04

Omnibus:	1575.518	Durbin-Watson:	0.579
Prob(Omnibus):	0.000	Jarque-Bera (JB):	11006.609
Skew:	1.334	Prob(JB):	0.00
Kurtosis:	9.793	Cond. No.	11.4

Note that there is no coefficient for the *Automatic* level of the variable Transmission. If a car doesn't have *Manual* or *Semi-Automatic* transmission, then it has an *Automatic* transmission. Thus, the coefficient of *Automatic* will be redundant, and the dummy variable corresponding to *Automatic* transmission is dropped from the model.

The level of the categorical variable that is dropped from the model is called the baseline level. Here *Automatic* transmission is the baseline level. The coefficients of other levels of transmission should be interpreted with respect to the baseline level.

Q: Interpret the intercept term

Ans: For the hypothetical scenario of a car with zero engine size and *Automatic* transmission, the estimated mean car price is $\approx \$3042$.

Q: Interpret the coefficient of transmission[T.Manual]

Ans: The estimated mean price of a car with manual transmission is $\approx \$6770$ less than that of a car with *Automatic* transmission.

Let us visualize the developed model.

```
#Visualizing the developed model
plt.rcParams["figure.figsize"] = (9,6)
sns.set(font_scale = 1.3)
x = np.linspace(train_updated.engineSize.min(),train_updated.engineSize.max(),100)
ax = sns.lineplot(x = x, y = model.params['engineSize']*x+model.params['Intercept'], color
sns.lineplot(x = x, y = model.params['engineSize']*x+model.params['Intercept']+model.param
sns.lineplot(x = x, y = model.params['engineSize']*x+model.params['Intercept']+model.param
plt.legend(labels=["Automatic", "Semi-Automatic", "Manual"])
plt.xlabel('Engine size (in litre)')
plt.ylabel('Predicted car price')
ax.yaxis.set_major_formatter('${x:,.0f}')
```


Based on the developed model, for a given engine size, the car with a semi-automatic transmission is estimated to be the most expensive on average, while the car with a manual transmission

is estimated to be the least expensive on average.

Changing the baseline level: By default, the baseline level is chosen as the one that comes first if the levels are arranged in alphabetical order. However, you can change the baseline level by specifying one explicitly.

Internally, statsmodels uses the patsy package to convert formulas and data to the matrices that are used in model fitting. You may refer to this section in the patsy documentation to specify a particular level of the categorical variable as the baseline.

For example, suppose we wish to change the baseline level to *Manual* transmission. We can specify this in the formula as follows:

```
ols_object = smf.ols(formula = 'price~engineSize+C(transmission, Treatment("Manual"))', da
model = ols_object.fit()
model.summary()
```

Table 3.8: OLS Regression Results

Dep. Variable:	price	R-squared:	0.459
Model:	OLS	Adj. R-squared:	0.458
Method:	Least Squares	F-statistic:	1400.
Date:	Tue, 24 Jan 2023	Prob (F-statistic):	0.00
Time:	15:28:39	Log-Likelihood:	-53644.
No. Observations:	4959	AIC:	1.073e + 05
Df Residuals:	4955	BIC:	1.073e + 05
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.9'
Intercept	-3727.9400	492.917	-7.563	0.000	-4694.275	-27
C(transmission, Treatment("Manual"))[T.Automatic]	6770.6165	442.116	15.314	0.000	5903.873	763
C(transmission, Treatment("Manual"))[T.Semi-Auto]	1.176e + 04	473.110	24.867	0.000	1.08e + 04	1.2'
engineSize	1.023e + 04	247.485	41.323	0.000	9741.581	1.0'

Omnibus:	1575.518	Durbin-Watson:	0.579
Prob(Omnibus):	0.000	Jarque-Bera (JB):	11006.609
Skew:	1.334	Prob(JB):	0.00
Kurtosis:	9.793	Cond. No.	8.62

3.1.3 Including qualitative predictors and their interaction with continuous predictors in the model

Note that the qualitative predictor leads to fitting 3 parallel lines to the data, as there are 3 categories.

However, note that we have made the constant association assumption. The fact that the lines are parallel means that the average increase in car price for one litre increase in engine size does not depend on the type of transmission. This represents a potentially serious limitation of the model, since in fact a change in engine size may have a very different association on the price of an automatic car versus a semi-automatic or manual car.

This limitation can be addressed by adding an interaction variable, which is the product of engineSize and the dummy variables for semi-automatic and manual transmissions.

```
#Using the ols function to create an ols object. 'ols' stands for 'Ordinary least squares'
ols_object = smf.ols(formula = 'price~engineSize*transmission', data = train_updated)
model = ols_object.fit()
model.summary()
```

Table 3.11: OLS Regression Results

Dep. Variable:	price	R-squared:	0.479
Model:	OLS	Adj. R-squared:	0.478
Method:	Least Squares	F-statistic:	909.9
Date:	Sun, 22 Jan 2023	Prob (F-statistic):	0.00
Time:	22:55:55	Log-Likelihood:	-53550.
No. Observations:	4959	AIC:	1.071e + 05
Df Residuals:	4953	BIC:	1.072e + 05
Df Model:	5		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025]	0.975]
Intercept	3754.7238	895.221	4.194	0.000	1999.695	5509.753
transmission[T.Manual]	1768.5856	1294.071	1.367	0.172	-768.366	4305.538
transmission[T.Semi-Auto]	-5282.7164	1416.472	-3.729	0.000	-8059.628	-2505.805
engineSize	9928.6082	354.511	28.006	0.000	9233.610	1.06e + 04
engine Size: transmission [T.Manual]	-5285.9059	646.175	-8.180	0.000	-6552.695	-4019.117
engine Size: transmission [T. Semi-Auto]	4162.2428	552.597	7.532	0.000	3078.908	5245.578

Omnibus:	1379.846	Durbin-Watson:	0.622
Prob(Omnibus):	0.000	Jarque-Bera (JB):	9799.471
Skew:	1.139	Prob(JB):	0.00
Kurtosis:	9.499	Cond. No.	30.8

The model equation for the model with interactions is:

```
Automatic transmission: price = 3754.7238 + 9928.6082 * engineSize,
```

```
Semi-Automatic transmission: price = 3754.7238 + 9928.6082 * engineSize + (-5282.7164+4162.2428*engineSize),
```

```
Manual transmission: price = 3754.7238 + 9928.6082 * engineSize + (1768.5856-5285.9059 * engineSize),
```

or

Automatic transmission: price = 3754.7238 + 9928.6082 * engineSize,

Semi-Automatic transmission: price = -1527 + 7046 * engineSize,

Manual transmission: price = 5523 + 4642 * engineSize

Q: Interpret the coefficient of manual transmission, i.e., the coefficient of transmission [T.Manual].

A: For a hypothetical scenario of zero engine size, the estimated mean price of a car with *Manual* transmission is $\approx \$1768$ more than the estimated mean price of a car with *Automatic* transmission.

Q: Interpret the coefficient of the interaction between engine size and manual transmission, i.e., the coefficient of engineSize:transmission[T.Manual].

A: For a unit (or a litre) increase in engineSize, the increase in estimated mean price of a car with *Manual* transmission is $\approx \$5285$ less than the increase in estimated mean price of a car with *Automatic* transmission.

```
#Visualizing the developed model with interaction terms
plt.rcParams["figure.figsize"] = (9,6)
sns.set(font_scale = 1.3)
x = np.linspace(train_updated.engineSize.min(),train_updated.engineSize.max(),100)
ax = sns.lineplot(x = x, y = model.params['engineSize']*x+model.params['Intercept'], label
plt.plot(x, (model.params['engineSize']+model.params['engineSize:transmission[T.Semi-Auto]
plt.plot(x, (model.params['engineSize']+model.params['engineSize:transmission[T.Manual]'])
plt.legend(loc='upper left')
plt.xlabel('Engine size (in litre)')
```

```
plt.ylabel('Predicted car price')
ax.yaxis.set_major_formatter('${x:,.0f}')
```


Note the interaction term adds flexibility to the model.

The slope of the regression line for semi-automatic cars is the largest. This suggests that increase in engine size is associated with a higher increase in car price for semi-automatic cars, as compared to other cars.

3.2 Variable transformations

So far we have considered only a linear relationship between the predictors and the response. However, the relationship may be non-linear.

Consider the regression plot of price on mileage.

```
ax = sns.regplot(x = train_updated.mileage, y =train_updated.price,color = 'orange', line_
plt.xlabel('Mileage')
```

```
plt.ylabel('Predicted car price')
ax.yaxis.set_major_formatter('${x:,.0f}')
ax.xaxis.set_major_formatter('{x:,.0f}')
```



```
#R-squared of the model with just mileage
model = smf.ols('price~mileage', data = train_updated).fit()
model.rsquared
```

0.22928048993376182

From the first scatterplot, we see that the relationship between price and mileage doesn't seem to be linear, as the points do not lie on a straight line. Also, we see the regression line (or the curve), which is the best fit line doesn't seem to fit the points well. However, price on average seems to decrease with mileage, albeit in a non-linear manner.

3.2.1 Quadratic transformation

So, we guess that if we model price as a quadratic function of mileage, the model may better fit the points (or the curve may better fit the points). Let us transform the predictor mileage

to include $mileage^2$ (i.e., perform a quadratic transformation on the predictor).

```
#Including mileage squared as a predictor and developing the model
ols_object = smf.ols(formula = 'price~mileage+I(mileage**2)', data = train_updated)
model = ols_object.fit()
model.summary()
```

Table 3.14: OLS Regression Results

Dep. Variable:	price	R-squared:	0.271
Model:	OLS	Adj. R-squared:	0.271
Method:	Least Squares	F-statistic:	920.6
Date:	Sun, 22 Jan 2023	Prob (F-statistic):	0.00
Time:	23:26:05	Log-Likelihood:	-54382.
No. Observations:	4959	AIC:	1.088e + 05
Df Residuals:	4956	BIC:	1.088e + 05
Df Model:	2		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	3.44e + 04	332.710	103.382	0.000	3.37e + 04	3.5e + 04
mileage	-0.5662	0.017	-33.940	0.000	-0.599	-0.534
I(mileage ** 2)	2.629 e-06	1.56e-07	16.813	0.000	2.32 e-06	2.94 e-06

Omnibus:	2362.973	Durbin-Watson:	0.325
Prob(Omnibus):	0.000	Jarque-Bera (JB):	22427.952
Skew:	2.052	Prob(JB):	0.00
Kurtosis:	12.576	Cond. No.	4.81e + 09

Note that in the formula specified within the ols() function, the I() operator isolates or insulates the contents within I(...) from the regular formula operators. Without the I() operator, mileage**2 will be treated as the interaction of mileage with itself, which is mileage. Thus, to add the square of mileage as a separate predictor, we need to use the I() operator.

Let us visualize the model fit with the quadratic transformation of the predictor - mileage.

```
#Visualizing the regression line with the model consisting of the quadratic transformation
pred_price = model.predict(train_updated)
ax = sns.scatterplot(x = 'mileage', y = 'price', data = train_updated, color = 'orange')
sns.lineplot(x = train_updated.mileage, y = pred_price, color = 'blue')
```

```
plt.xlabel('Mileage')
plt.ylabel('Predicted car price')
ax.yaxis.set_major_formatter('${x:,.0f}')
ax.xaxis.set_major_formatter('{x:,.0f}')
```


The above model seems to better fit the data (as compared to the model without transformation) at least upto mileage around 125,000. The R^2 of the model with the quadratic transformation of mileage is also higher than that of the model without transformation indicating a better fit.

3.2.2 Cubic transformation

Let us see if a cubic transformation of mileage can further improve the model fit.

```
#Including mileage squared and mileage cube as predictors and developing the model
ols_object = smf.ols(formula = 'price~mileage+I(mileage**2)+I(mileage**3)', data = train_u
model = ols_object.fit()
model.summary()
```

Table 3.17: OLS Regression Results

Dep. Variable:	price	R-squared:	0.283
Model:	OLS	Adj. R-squared:	0.283
Method:	Least Squares	F-statistic:	652.3
Date:	Sun, 22 Jan 2023	Prob (F-statistic):	0.00
Time:	23:33:27	Log-Likelihood:	-54340.
No. Observations:	4959	AIC:	1.087e + 05
Df Residuals:	4955	BIC:	1.087e + 05
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	+	D > +	[0.025	0.975]
		sta err	t	1 1	L	,
Intercept	3.598e + 04	371.926	96.727	0.000	3.52e + 04	3.67e + 04
mileage	-0.7742	0.028	-27.634	0.000	-0.829	-0.719
I(mileage ** 2)	6.875 e-06	4.87e-07	14.119	0.000	5.92 e-06	7.83e-06
I(mileage ** 3)	-1.823e-11	1.98e-12	-9.199	0.000	-2.21e-11	-1.43e-11

Omnibus:	2380.788	Durbin-Watson:	0.321
Prob(Omnibus):	0.000	Jarque-Bera (JB):	23039.307
Skew:	2.065	Prob(JB):	0.00
Kurtosis:	12.719	Cond. No.	7.73e + 14

```
#Visualizing the model with the cubic transformation of mileage
pred_price = model.predict(train_updated)
ax = sns.scatterplot(x = 'mileage', y = 'price', data = train_updated, color = 'orange')
sns.lineplot(x = train_updated.mileage, y = pred_price, color = 'blue')
plt.xlabel('Mileage')
plt.ylabel('Predicted car price')
ax.yaxis.set_major_formatter('${x:,.0f}')
ax.xaxis.set_major_formatter('{x:,.0f}')
```


Note that the model fit with the cubic transformation of mileage seems slightly better as compared to the models with the quadratic transformation, and no transformation of mileage, for mileage up to 180k. However, the model should not be used to predict car prices of cars with a mileage higher than 180k.

Let's update the model created earlier (in the beginning of this chapter) to include the transformed predictor.

```
#Model with an interaction term and a variable transformation term
ols_object = smf.ols(formula = 'price~year*engineSize+mileage+mpg+I(mileage**2)', data = t
model = ols_object.fit()
model.summary()
```

Table 3.20: OLS Regression Results

Dep. Variable:	price	R-squared:	0.702
Model:	OLS	Adj. R-squared:	0.702
Method:	Least Squares	F-statistic:	1947.
Date:	Sun, 22 Jan 2023	Prob (F-statistic):	0.00
Time:	23:42:13	Log-Likelihood:	-52162.

 No. Observations:
 4959
 AIC:
 1.043e+05

 Df Residuals:
 4952
 BIC:
 1.044e+05

Df Model: 6

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025]	0.975]
Intercept	1.53e + 06	2.7e + 05	5.671	0.000	1e + 06	2.06e + 06
year	-755.7419	133.791	-5.649	0.000	-1018.031	-493.453
engineSize	-2.022e+06	9.72e + 04	-20.803	0.000	-2.21e+06	-1.83e + 06
year:engineSize	1008.6993	48.196	20.929	0.000	914.215	1103.184
mileage	-0.3548	0.014	-25.973	0.000	-0.382	-0.328
mpg	-54.7450	8.896	-6.154	0.000	-72.185	-37.305
I(mileage ** 2)	1.926e-06	1.04e-07	18.536	0.000	1.72e-06	2.13e-06

Omnibus:	2355.448	Durbin-Watson:	0.562
Prob(Omnibus):	0.000	Jarque-Bera (JB):	38317.404
Skew:	1.857	Prob(JB):	0.00
Kurtosis:	16.101	Cond. No.	6.40e + 12

Note that the R-squared has increased as compared to the model with just the interaction term.

```
#Computing RMSE on test data
pred_price = model.predict(testf)
np.sqrt(((testp.price - pred_price)**2).mean())
```

9074.494088619422

Note that the prediction accuracy of the model has further increased, as the RMSE has reduced. The transformed predictor is statistically significant and provides additional flexibility to better capture the trend in the data, leading to an increase in prediction accuracy.

3.3 PolynomialFeatures()

The function PolynomialFeatures() from the sklearn library can be used to generate a predictor matrix that includes all interactions and transformations upto a degree d.

```
X_train = train[['mileage', 'engineSize', 'year', 'mpg']]
y_train = train[['price']]
X_test = test[['mileage', 'engineSize', 'year', 'mpg']]
y_test = test[['price']]
```

3.3.1 Generating polynomial features

Let us generate polynomial features upto degree 2. This will include all the two-factor interactions, and all squared terms of degree 2.

```
poly = PolynomialFeatures(2, include_bias = False) # Create the object - degree is 2
# Generate the polynomial features
X_train_poly = poly.fit_transform(X_train)
```

Note that the LinearRegression() function adds the intercept by default (check the fit_intercept argument). Thus, we have put include_bias = False while generating the polynomial features, as we don't need the intercept. The term bias here refers to the intercept (you will learn about bias in detail in STAT303-3). Another option is to include the intercept while generating the polynomial features, and put fit_intercept = False in the LinearRegression() function.

Below are the polynomial features generated by the PolynomialFeatures() functions.

3.3.2 Fitting the model

```
model = LinearRegression()
model.fit(X_train_poly, y_train)
```

LinearRegression()

3.3.3 Testing the model

```
X_test_poly = poly.fit_transform(X_test)

#RMSE
np.sqrt(mean_squared_error(y_test, model.predict(X_test_poly)))
```

8896.175508213777

Note that the polynomial features have helped reduced the RMSE further.

4 Logistic regression

Read sections 4.1 - 4.3 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

4.1 Theory Behind Logistic Regression

Logistic regression is the go-to linear classification algorithm for two-class problems. It is easy to implement, easy to understand and gets great results on a wide variety of problems, even when the expectations the method has for your data are violated.

4.1.1 Description

Logistic regression is named for the function used at the core of the method, the logistic function.

The logistic function, also called the **Sigmoid function** was developed by statisticians to describe properties of population growth in ecology, rising quickly and maxing out at the carrying capacity of the environment. It's an S-shaped curve that can take any real-valued number and map it into a value between 0 and 1, but never exactly at those limits.

$$\frac{1}{1+e^{-x}}$$

e is the base of the natural logarithms and x is value that you want to transform via the logistic function.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.formula.api as sm
from sklearn.metrics import precision_recall_curve, roc_curve, auc, accuracy_score
```

from sklearn.linear_model import LogisticRegression

```
%matplotlib inline
sns.set_style('whitegrid')
plt.style.use("fivethirtyeight")
x = np.linspace(-6, 6, num=1000)
plt.figure(figsize=(10, 6))
plt.plot(x, (1 / (1 + np.exp(-x))))
plt.xlabel("x")
plt.ylabel("y")
plt.title("Sigmoid Function")
```

Text(0.5, 1.0, 'Sigmoid Function')

The logistic regression equation has a very similar representation like linear regression. The difference is that the output value being modelled is binary in nature.

$$\hat{p} = \frac{e^{\hat{\beta_0} + \hat{\beta_1} x_1}}{1 + e^{\hat{\beta_0} + \hat{\beta_1} x_1}}$$

$$\hat{p} = \frac{1.0}{1.0 + e^{-(\hat{\beta_0} + \hat{\beta_1} x_1)}}$$

 $\hat{\beta}_0$ is the estimated intercept term

 $\hat{\beta}_1$ is the estimated coefficient for x_1

 \hat{p} is the predicted output with real value between 0 and 1. To convert this to binary output of 0 or 1, this would either need to be rounded to an integer value or a cutoff point be provided to specify the class segregation point.

4.1.2 Learning the Logistic Regression Model

The coefficients (Beta values b) of the logistic regression algorithm must be estimated from your training data. This is done using maximum-likelihood estimation.

Maximum-likelihood estimation is a common learning algorithm used by a variety of machine learning algorithms, although it does make assumptions about the distribution of your data (more on this when we talk about preparing your data).

The best coefficients should result in a model that would predict a value very close to 1 (e.g. male) for the default class and a value very close to 0 (e.g. female) for the other class. The intuition for maximum-likelihood for logistic regression is that a search procedure seeks values for the coefficients (Beta values) that maximize the likelihood of the observed data. In other words, in MLE, we estimate the parameter values (Beta values) which are the most likely to produce that data at hand.

Here is an analogy to understand the idea behind Maximum Likelihood Estimation (MLE). Let us say, you are listening to a song (data). You are not aware of the singer (parameter) of the song. With just the musical piece at hand, you try to guess the singer (parameter) who you feel is the most likely (MLE) to have sung that song. Your are making a maximum likelihood estimate! Out of all the singers (parameter space) you have chosen them as the one who is the most likely to have sung that song (data).

We are not going to go into the math of maximum likelihood. It is enough to say that a minimization algorithm is used to optimize the best values for the coefficients for your training data. This is often implemented in practice using efficient numerical optimization algorithm (like the Quasi-newton method).

When you are learning logistic, you can implement it yourself from scratch using the much simpler gradient descent algorithm.

4.1.3 Preparing Data for Logistic Regression

The assumptions made by logistic regression about the distribution and relationships in your data are much the same as the assumptions made in linear regression.

Much study has gone into defining these assumptions and precise probabilistic and statistical language is used. My advice is to use these as guidelines or rules of thumb and experiment with different data preparation schemes.

Ultimately in predictive modeling machine learning projects you are laser focused on making accurate predictions rather than interpreting the results. As such, you can break some assumptions as long as the model is robust and performs well.

- Binary Output Variable: This might be obvious as we have already mentioned it, but logistic regression is intended for binary (two-class) classification problems. It will predict the probability of an instance belonging to the default class, which can be snapped into a 0 or 1 classification.
- Remove Noise: Logistic regression assumes no error in the output variable (y), consider removing outliers and possibly misclassified instances from your training data.
- Gaussian Distribution: Logistic regression is a linear algorithm (with a non-linear transform on output). It does assume a linear relationship between the input variables with the output. Data transforms of your input variables that better expose this linear relationship can result in a more accurate model. For example, you can use log, root, Box-Cox and other univariate transforms to better expose this relationship.
- Remove Correlated Inputs: Like linear regression, the model can overfit if you have multiple highly-correlated inputs. Consider calculating the pairwise correlations between all inputs and removing highly correlated inputs.
- Fail to Converge: It is possible for the expected likelihood estimation process that learns the coefficients to fail to converge. This can happen if there are many highly correlated inputs in your data or the data is very sparse (e.g. lots of zeros in your input data).

4.2 Logistic Regression: Scikit-learn vs Statsmodels

Python gives us two ways to do logistic regression. Statsmodels offers modeling from the perspective of statistics. Scikit-learn offers some of the same models from the perspective of machine learning.

So we need to understand the difference between statistics and machine learning! Statistics makes mathematically valid inferences about a population based on sample data. Statistics answers the question, "What is the evidence that X is related to Y?" Machine learning has the goal of optimizing predictive accuracy rather than inference. Machine learning answers the question, "Given X, what prediction should we make for Y?"

Let us see the use of statsmodels for logistic regression. We'll see scikit-learn later in the course, when we learn methods that focus on prediction.

4.3 Training a logistic regression model

Read the data on social network ads. The data shows if the person purchased a product when targeted with an ad on social media. Fit a logistic regression model to predict if a user will purchase the product based on their characteristics such as age, gender and estimated salary.

```
train = pd.read_csv('./Datasets/Social_Network_Ads_train.csv') #Develop the model on train
test = pd.read_csv('./Datasets/Social_Network_Ads_test.csv') #Test the model on test data
train.head()
```

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15755018	Male	36	33000	0
1	15697020	Female	39	61000	0
2	15796351	Male	36	118000	1
3	15665760	Male	39	122000	1
4	15794661	Female	26	118000	0

4.3.1 Examining the Distribution of the Target Column

Make sure our target is not severely imbalanced.

```
train.Purchased.value_counts()

0    194
1    106
Name: Purchased, dtype: int64

sns.countplot(x = 'Purchased',data = train);
```


Let us try to fit a linear regression model, instead of logistic regression. We fit a linear regression model to predict probability of purchase based on age.

```
sns.scatterplot(x = 'Age', y = 'Purchased', data = train, color = 'orange') #Visualizing d
lm = sm.ols(formula = 'Purchased~Age', data = train).fit() #Developing linear regression m
sns.lineplot(x = 'Age', y= lm.predict(train), data = train, color = 'blue') #Visualizing m
```

<AxesSubplot:xlabel='Age', ylabel='Purchased'>

Note the issues with the linear regression model:

- 1. The regression line goes below 0 and over 1. However, probability of purchase must be in [0,1].
- 2. The linear regression model does not seem to fit the data well.

4.3.2 Fitting the logistic regression model

Now, let us fit a logistic regression model to predict probability of purchase based on Age.

```
sns.scatterplot(x = 'Age', y = 'Purchased', data = train, color = 'orange') #Visualizing d
logit_model = sm.logit(formula = 'Purchased~Age', data = train).fit() #Developing logistic
sns.lineplot(x = 'Age', y= logit_model.predict(train), data = train, color = 'blue') #Visualizing developing logistic
```

Optimization terminated successfully.

Current function value: 0.430107

Iterations 7

<AxesSubplot:xlabel='Age', ylabel='Purchased'>

As logistic regression uses the sigmoid function, the probability stays in [0,1]. Also, it seems to better fit the points as compared to linear regression.

logit_model.summary()

Table 4.2: Logit Regression Results

Dep. Variable:	Purchased	No. Observations:	300
Model:	Logit	Df Residuals:	298
Method:	MLE	Df Model:	1
Date:	Tue, 19 Apr 2022	Pseudo R-squ.:	0.3378
Time:	16:46:02	Log-Likelihood:	-129.03
converged:	True	LL-Null:	-194.85
Covariance Type:	nonrobust	LLR p-value:	1.805e-30

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-7.8102	0.885	-8.825	0.000	-9.545	-6.076
Age	0.1842	0.022	8.449	0.000	0.141	0.227

Interpret the coefficient of age

For a unit increase in age, the log odds of purchase increase by 0.18, or the odds of purchase get multiplied by $\exp(0.18) = 1.2$

Is the increase in probability of purchase constant with a unit increase in age?

No, it depends on age.

Is gender associated with probability of purchase?

```
logit_model_gender = sm.logit(formula = 'Purchased~Gender', data = train).fit()
logit_model_gender.summary()
```

Optimization terminated successfully.

Current function value: 0.648804

Iterations 4

Table 4.4: Logit Regression Results

Dep. Variable:	Purchased	No. Observations:	300
Model:	Logit	Df Residuals:	298
Method:	MLE	Df Model:	1
Date:	Tue, 19 Apr 2022	Pseudo R-squ.:	0.001049
Time:	16:46:04	Log-Likelihood:	-194.64
converged:	True	LL-Null:	-194.85
Covariance Type:	nonrobust	LLR p-value:	0.5225

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-0.5285	0.168	-3.137	0.002	-0.859	-0.198
Gender[T.Male]	-0.1546	0.242	-0.639	0.523	-0.629	0.319

No, assuming a significance level of $\alpha = 5\%$, Gender is not associated with probability of default, as the *p*-value for Male is greater than 0.05.

4.4 Confusion matrix and classification accuracy

A confusion matrix is a summary of prediction results on a classification problem. The number of correct and incorrect predictions are summarized with count values and broken down by each class.

```
#Function to compute confusion matrix and prediction accuracy on training data
def confusion_matrix_train(model,cutoff=0.5):
    # Confusion matrix
    cm_df = pd.DataFrame(model.pred_table(threshold = cutoff))
    #Formatting the confusion matrix
    cm_df.columns = ['Predicted 0', 'Predicted 1']
    cm_df = cm_df.rename(index={0: 'Actual 0',1: 'Actual 1'})
    cm = np.array(cm_df)
    # Calculate the accuracy
    accuracy = (cm[0,0]+cm[1,1])/cm.sum()
    sns.heatmap(cm_df, annot=True, cmap='Blues', fmt='g')
    plt.ylabel("Actual Values")
    plt.xlabel("Predicted Values")
    print("Classification accuracy = {:.1%}".format(accuracy))
```

Find the confusion matrix and classification accuracy of the model with Age as the predictor on training data.

```
cm = confusion_matrix_train(logit_model)
```

Classification accuracy = 83.3%

Confusion matrix:

• Each row: actual class

• Each column: predicted class

First row: Non-purchasers, the negative class:

- 181 were correctly classified as Non-purchasers. **True negatives**.
- Remaining 13 were wrongly classified as Non-purchasers. False positive

Second row: Purchasers, the positive class:

- 37 were incorrectly classified as Non-purchasers. False negatives
- 69 were correctly classified Purchasers. **True positives**

```
#Function to compute confusion matrix and prediction accuracy on test data
def confusion_matrix_test(data,actual_values,model,cutoff=0.5):
#Predict the values using the Logit model
    pred_values = model.predict(data)
# Specify the bins
    bins=np.array([0,cutoff,1])
```

```
#Confusion matrix
    cm = np.histogram2d(actual_values, pred_values, bins=bins)[0]
    cm_df = pd.DataFrame(cm)
    cm_df.columns = ['Predicted 0','Predicted 1']
    cm_df = cm_df.rename(index={0: 'Actual 0',1:'Actual 1'})
    accuracy = (cm[0,0]+cm[1,1])/cm.sum()
    sns.heatmap(cm_df, annot=True, cmap='Blues', fmt='g')
    plt.ylabel("Actual Values")
    plt.xlabel("Predicted Values")
    print("Classification accuracy = {:.1%}".format(accuracy))
```

Find the confusion matrix and classification accuracy of the model with Age as the predictor on test data.

```
confusion_matrix_test(test,test.Purchased,logit_model)
```

Classification accuracy = 86.0%

The model classifies a bit more accurately on test data as compared to the training data, which

is a bit unusual. However, it shows that the model did not overfit on training data.

Include EstimatedSalary as a predictor in the above model

```
logit_model2 = sm.logit(formula = 'Purchased~Age+EstimatedSalary', data = train).fit()
logit_model2.summary()
```

Optimization terminated successfully.

Current function value: 0.358910

Iterations 7

Table 4.6: Logit Regression Results

Dep. Variable:	Purchased	No. Observations:	300
Model:	Logit	Df Residuals:	297
Method:	MLE	Df Model:	2
Date:	Tue, 14 Feb 2023	Pseudo R-squ.:	0.4474
Time:	12:03:29	Log-Likelihood:	-107.67
converged:	True	LL-Null:	-194.85
Covariance Type:	nonrobust	LLR p-value:	1.385e-38

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-11.9432	1.424	-8.386	0.000	-14.735	-9.152
Age	0.2242	0.028	7.890	0.000	0.168	0.280
${\bf Estimated Salary}$	3.48e-05	6.15 e-06	5.660	0.000	2.27e-05	4.68e-05

confusion_matrix_train(logit_model2)

Classification accuracy = 83.3%

confusion_matrix_test(test,test.Purchased,logit_model2)

Classification accuracy = 89.0%

The log likelihood of the model has increased, while also increasing the prediction accuracy on test data, which shows that the additional predictor is helping explain the response better, without overfitting the data.

Include Gender as a predictor in the above model

```
logit_model = sm.logit(formula = 'Purchased~Age+EstimatedSalary+Gender', data = train).fit
logit_model.summary()
```

Optimization terminated successfully.

Current function value: 0.357327

Iterations 7

Table 4.8: Logit Regression Results

Dep. Variable:	Purchased	No. Observations:	300
Model:	Logit	Df Residuals:	296
Method:	MLE	Df Model:	3
Date:	Tue, 14 Feb 2023	Pseudo R-sau.:	0.4498

Time:	12:17:28	Log-Likelihood:	-107.20
converged:	True	LL-Null:	-194.85
Covariance Type:	nonrobust	LLR p-value:	9.150e-38

	coef	std err	${f z}$	P> z	[0.025]	0.975]
Intercept	-12.2531	1.478	-8.293	0.000	-15.149	-9.357
Gender[T.Male]	0.3356	0.346	0.970	0.332	-0.342	1.013
Age	0.2275	0.029	7.888	0.000	0.171	0.284
${\bf Estimated Salary}$	3.494 e-05	6.17e-06	5.666	0.000	2.29e-05	4.7e-05

confusion_matrix_train(logit_model)

Classification accuracy = 84.3%

confusion_matrix_test(test,test.Purchased,logit_model)

Gender is a statistically insignificant predictor, and including it slightly lowers the classification accuracy on test data. Note that the classification accuracy on training data will continue to increase on adding more predictors, irrespective of their relevance (similar to the idea of RSS on training data in linear regression).

Is there a residual in logistic regression?

No, since the response is assumed to have a Bernoulli distribution, instead of a normal distribution.

Is the odds ratio for a unit increase in a predictor X_j , a constant (assuming that the rest of the predictors are held constant)?

Yes, the odds ratio in this case will e^{β_j}

4.5 Variable transformations in logistic regression

Read the dataset *diabetes.csv* that contains if a person has diabetes (Outcome = 1) based on health parameters such as BMI, blood pressure, age etc. Develop a model to predict the

probability of a person having diabetes based on their age.

```
data = pd.read_csv('./Datasets/diabetes.csv')
data.head()
```

	Pregnancies	Glucose	${\bf BloodPressure}$	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age
0	6	148	72	35	0	33.6	0.627	50
1	1	85	66	29	0	26.6	0.351	31
2	8	183	64	0	0	23.3	0.672	32
3	1	89	66	23	94	28.1	0.167	21
4	0	137	40	35	168	43.1	2.288	33

Randomly select 80% of the observations to create a training dataset. Create a test dataset with the remaining 20% observations.

```
#Creating training and test datasets
np.random.seed(2)
train = data.sample(round(data.shape[0]*0.8))
test = data.drop(train.index)
```

Does Age seem to distinguish Outcome levels?

```
sns.boxplot(x = 'Outcome', y = 'Age', data = train)
```

<AxesSubplot:xlabel='Outcome', ylabel='Age'>

Yes it does!

Develop and visualize a logistic regression model to predict Outcome using Age.

```
#Jittering points to better see the density of points in any given region of the plot
def jitter(values,j):
    return values + np.random.normal(j,0.02,values.shape)
sns.scatterplot(x = jitter(train.Age,0), y = jitter(train.Outcome,0), data = train, color
logit_model = sm.logit(formula = 'Outcome~Age', data = train).fit()
sns.lineplot(x = 'Age', y= logit_model.predict(train), data = train, color = 'blue')
print(logit_model.llf) #Printing the log likelihood to compare it with the next model we be
```

Optimization terminated successfully.

Current function value: 0.612356

Iterations 5

-375.9863802089716

confusion_matrix_train(logit_model)

Classification accuracy = 65.6%

Classification accuracy on train data = 66%

confusion_matrix_test(test,test.Outcome,logit_model)

Classification accuracy = 59.7%

Classification accuracy on test data = 60%

Can a tranformation of Age provide a more accurate model?

Let us visualize how the probability of people having diabetes varies with Age. We will bin Age to get the percentage of people having diabetes within different Age bins.

```
#Binning Age
binned_age = pd.qcut(train['Age'],11,retbins=True)
train['age_binned'] = binned_age[0]

#Finding percentage of people having diabetes in each Age bin
age_data = train.groupby('age_binned')['Outcome'].agg([('diabetes_percent','mean'),('nobs'age_data
```

	age_binned	diabetes_percent	nobs
0	(20.999, 22.0]	0.110092	109
1	(22.0, 23.0]	0.206897	29
2	(23.0, 25.0]	0.243243	74
3	(25.0, 26.0]	0.259259	27

	age_binned	diabetes_percent	nobs
4	(26.0, 28.0]	0.271186	59
5	(28.0, 31.0]	0.415094	53
6	(31.0, 35.0]	0.434783	46
7	(35.0, 39.0]	0.450980	51
8	(39.0, 43.545]	0.500000	54
9	(43.545, 52.0]	0.576271	59
10	(52.0, 81.0]	0.415094	53

#Visualizing percentage of people having diabetes with increasing Age (or Age bins)
sns.lineplot(x = age_data.index, y= age_data['diabetes_percent'])
plt.xlabel('Age_bin')

Text(0.5, 0, 'Age_bin')

We observe that the probability of people having diabetes does **not** keep increasing monotonically with age. People with ages 52 and more have a lower probability of having diabetes than people in the immediately younger Age bin.

A quadratic transformation of Age may better fit the above trend

```
#Model with the quadratic transformation of Age
def jitter(values,j):
    return values + np.random.normal(j,0.02,values.shape)
sns.scatterplot(x = jitter(train.Age,0), y = jitter(train.Outcome,0), data = train, color
logit_model = sm.logit(formula = 'Outcome~Age+I(Age**2)', data = train).fit()
sns.lineplot(x = 'Age', y= logit_model.predict(train), data = train, color = 'blue')
logit_model.llf
```

${\tt Optimization\ terminated\ successfully.}$

Current function value: 0.586025

Iterations 6

-359.81925590230185

logit_model.summary()

Table 4.12: Logit Regression Results

Dep. Variable:	Outcome	No. Observations:	614
Model:	Logit	Df Residuals:	611
Method:	MLE	Df Model:	2
Date:	Tue, 14 Feb 2023	Pseudo R-squ.:	0.08307
Time:	12:25:54	Log-Likelihood:	-359.82
converged:	True	LL-Null:	-392.42
Covariance Type:	nonrobust	LLR p-value:	6.965 e-15

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-6.6485	0.908	-7.320	0.000	-8.429	-4.868
Age	0.2936	0.048	6.101	0.000	0.199	0.388
I(Age ** 2)	-0.0031	0.001	-5.280	0.000	-0.004	-0.002

The log likelihood of the model is higher and both the predictors are statistically significant indicating a better model fit. However, the model may also be overfitting. Let us check the model accuracy on test data.

```
confusion_matrix_train(logit_model)
```

Classification accuracy = 68.1%

confusion_matrix_test(test,test.Outcome,logit_model)

Classification accuracy = 68.8%

The classification accuracy on test data has increased to 69%. However, the number of false positives have increased. But in case of diabetes, false negatives are more concerning than false positives. This is because if a person has diabetes, and is told that they do not have diabetes, their condition may deteriorate. If a person does not have diabetes, and is told that they have diabetes, they may take unnecessary precautions or tests, but it will not be as harmful to the person as in the previous case. So, in this problem, we will be more focused on reducing the number of false negatives, instead of reducing the false positives or increasing the overall classification accuracy.

We can decrease the cutoff for classifying a person as having diabetes to reduce the number of false negatives.

```
#Reducing the cutoff for classifying a person as diabetic to 0.3 (instead of 0.5)
confusion_matrix_test(test,test.Outcome,logit_model,0.3)
```

Classification accuracy = 69.5%

Note that the changed cut-off reduced the number of *false negatives*, but at the cost of increasing the *false positives*. However, the stakeholders may prefer the reduced cut-off to be safer.

Is there another way to transform Age?

return data

Yes, binning age into bins that have similar proportion of people with diabetes may provide a better model fit.

dum.columns = ['age'+str(x) for x in range(1,len(bins)-1)]

data = pd.concat([data,dum], axis = 1)

```
#Creating a function to bin age so that it can be applied to both the test and train datas
def var_transform(data):
    binned_age = pd.qcut(train['Age'],10,retbins=True)
    bins = binned_age[1]
    data['age_binned'] = pd.cut(data['Age'],bins = bins)
    dum = pd.get_dummies(data.age_binned,drop_first = True)
```

```
train = var_transform(train)
test = var_transform(test)

#Re-creating the plot of diabetes_percent vs age created earlier, just to check if the fun age_data = train.groupby('age_binned')['Outcome'].agg([('diabetes_percent', 'mean'), ('nobs' sns.lineplot(x = age_data.index, y= age_data['diabetes_percent'])
plt.xlabel('Age_bin')
```

Text(0.5, 0, 'Age_bin')

#Binning age using the function var_transform()


```
#Model with binned Age
def jitter(values,j):
    return values + np.random.normal(j,0.02,values.shape)
sns.scatterplot(x = jitter(train.Age,0), y = jitter(train.Outcome,0), data = train, color
logit_model = sm.logit(formula = 'Outcome~' + '+'.join(['age'+str(x) for x in range(1,10)]
sns.lineplot(x = 'Age', y= logit_model.predict(train), data = train, color = 'blue')
```

Optimization terminated successfully.

Current function value: 0.585956

Iterations 6

<AxesSubplot:xlabel='Age', ylabel='Outcome'>

logit_model.summary()

Table 4.14: Logit Regression Results

Dep. Variable:	Outcome	No. Observations:	614
Model:	Logit	Df Residuals:	604
Method:	MLE	Df Model:	9
Date:	Sun, 19 Feb 2023	Pseudo R-squ.:	0.08318
Time:	14:19:51	Log-Likelihood:	-359.78
converged:	True	LL-Null:	-392.42
Covariance Type:	nonrobust	LLR p-value:	1.273e-10

	C	. 1		D. 1.1	[0, 00]	0.0751
	coef	std err	\mathbf{Z}	P> z	[0.025]	0.975]
Intercept	-2.0898	0.306	-6.829	0.000	-2.690	-1.490
age1	0.7461	0.551	1.354	0.176	-0.334	1.826
age2	0.9548	0.409	2.336	0.019	0.154	1.756
age3	1.0602	0.429	2.471	0.013	0.219	1.901
age4	1.3321	0.438	3.044	0.002	0.474	2.190
age5	1.9606	0.398	4.926	0.000	1.180	2.741
age6	1.8303	0.399	4.586	0.000	1.048	2.612
age7	1.7596	0.410	4.288	0.000	0.955	2.564
age8	2.4544	0.402	6.109	0.000	1.667	3.242
age9	1.8822	0.404	4.657	0.000	1.090	2.674

Note that the probability of having diabetes for each age bin is a constant, as per the above plot.

confusion_matrix_test(test,test.Outcome,logit_model,0.3)

Classification accuracy = 67.5%

Binning Age provides a similar result as compared to the model with the quadratic transformation of Age.

train.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	A
158	2	88	74	19	53	29.0	0.229	22
251	2	129	84	0	0	28.0	0.284	2
631	0	102	78	40	90	34.5	0.238	24
757	0	123	72	0	0	36.3	0.258	52
689	1	144	82	46	180	46.1	0.335	46

#Model with the quadratic transformation of Age and more predictors
logit_model_diabetes = sm.logit(formula = 'Outcome~Age+I(Age**2)+Glucose+BloodPressure+BMI
logit_model_diabetes.summary()

Optimization terminated successfully.

Current function value: 0.470478

Iterations 6

Table 4.17: Logit Regression Results

Dep. Variable:	Outcome	No. Observations:	614
Model:	Logit	Df Residuals:	607
Method:	MLE	Df Model:	6
Date:	Thu, 23 Feb 2023	Pseudo R-squ.:	0.2639
Time:	10:26:00	Log-Likelihood:	-288.87
converged:	True	LL-Null:	-392.42
Covariance Type:	nonrobust	LLR p-value:	5.878e-42

	coef	std err	\mathbf{z}	P> z	[0.025	0.975]
Intercept	-12.3347	1.282	-9.621	0.000	-14.847	-9.822
Age	0.2852	0.056	5.121	0.000	0.176	0.394
I(Age ** 2)	-0.0030	0.001	-4.453	0.000	-0.004	-0.002
Glucose	0.0309	0.004	8.199	0.000	0.024	0.038
BloodPressure	-0.0141	0.006	-2.426	0.015	-0.025	-0.003
BMI	0.0800	0.016	4.978	0.000	0.049	0.112
${\bf Diabetes Pedigree Function}$	0.7138	0.322	2.213	0.027	0.082	1.346

Adding more predictors has increased the log likelihood of the model as expected.

confusion_matrix_train(logit_model_diabetes,cutoff=0.3)

Classification accuracy = 74.3%

confusion_matrix_test(test,test.Outcome,logit_model_diabetes,0.3)

Classification accuracy = 80.5%

The model with more predictors also has lesser number of *false negatives*, and higher overall classification accuracy.

How many bins must you make for Age to get the most accurate model?

If the number of bins are too less, the trend may not be captured accurately. If the number of bins are too many, it may lead to overfitting of the model. There is an optimal value of the number of bins that captures the trend, but does not overfit. A couple of ways of estimating the optimal number of bins can be:

- 1. The number of bins for which the trend continues to be "almost" the same for several samples of the data.
- 2. Testing the model on multiple test datasets.

Optimizing the number of bins for each predictor may be a time-consuming exercises. You may do it for your course project. However, we will not do it here in the class notes.

4.6 Performance Measurement

We have already seen the confusion matrix, and classification accuracy. Now, let us see some other useful performance metrics that can be computed from the confusion matrix. The metrics below are computed for the confusion matrix immediately above this section (or the confusion matrix on test data corresponding to the model logit_model_diabetes).

4.6.1 Precision-recall

Precision measures the accuracy of positive predictions. Also called the **precision** of the classifier

$$precision = \frac{True\ Positives}{True\ Positives + False\ Positives}$$

```
==>70.13\%
```

Precision is typically used with recall (Sensitivity or True Positive Rate). The ratio of positive instances that are correctly detected by the classifier.

$$\mbox{recall} = \frac{\mbox{True Positives}}{\mbox{True Positives} + \mbox{False Negatives}}$$

==>88.52%

Precision / Recall Tradeoff: Increasing precision reduces recall and vice versa.

Visualize the precision-recall curve for the model logit model diabetes.

```
y=train.Outcome
ypred = logit_model_diabetes.predict(train)
p, r, thresholds = precision_recall_curve(y, ypred)
def plot_precision_recall_vs_threshold(precisions, recalls, thresholds):
    plt.figure(figsize=(8, 8))
    plt.title("Precision and Recall Scores as a function of the decision threshold")
    plt.plot(thresholds, precisions[:-1], "b--", label="Precision")
    plt.plot(thresholds, recalls[:-1], "g-", label="Recall")
    plt.ylabel("Score")
    plt.xlabel("Decision Threshold")
    plt.legend(loc='best')
    plt.legend()
plot_precision_recall_vs_threshold(p, r, thresholds)
```


As the decision threshold probability increases, the precision increases, while the recall decreases.

Q: How are the values of the thresholds chosen to make the precision-recall curve?

Hint: Look at the documentation for precision_recall_curve.

4.6.2 The Receiver Operating Characteristics (ROC) Curve

A ROC(Receiver Operator Characteristic Curve) is a plot of sensitivity (True Positive Rate) on the y axis against (1–specificity) (False Positive Rate) on the x axis for varying values of the threshold t. The 45° diagonal line connecting (0,0) to (1,1) is the ROC curve

corresponding to random chance. The ROC curve for the gold standard is the line connecting (0,0) to (0,1) and (0,1) to (1,1).

```
<IPython.core.display.Image object>
<IPython.core.display.Image object>
```

An animation to demonstrate how an ROC curve relates to sensitivity and specificity for all possible cutoffs (Source)

High Threshold:

- · High specificity
- Low sensitivity

Low Threshold

- Low specificity
- High sensitivity

The area under ROC is called *Area Under the Curve(AUC)*. AUC gives the rate of successful classification by the logistic model. To get a more in-depth idea of what a ROC-AUC curve is and how is it calculated, here is a good blog link.

Here is good post by google developers on interpreting ROC-AUC, and its advantages / disadvantages.

Visualize the ROC curve and compute the ROC-AUC for the model logit_model_diabetes.

```
y=train.Outcome
ypred = logit_model_diabetes.predict(train)
fpr, tpr, auc_thresholds = roc_curve(y, ypred)
print(auc(fpr, tpr))# AUC of ROC
def plot_roc_curve(fpr, tpr, label=None):
    plt.figure(figsize=(8,8))
    plt.title('ROC Curve')
    plt.plot(fpr, tpr, linewidth=2, label=label)
    plt.plot([0, 1], [0, 1], 'k--')
    plt.axis([-0.005, 1, 0, 1.005])
    plt.xticks(np.arange(0,1, 0.05), rotation=90)
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate (Recall)")
```

```
plot_roc_curve(fpr, tpr)
```


Q: How are the values of the auc_thresholds chosen to make the ROC curve? Why does it look like a step function?

Below is a function that prints the confusion matrix along with all the performance metrics we discussed above for a given decision threshold probability, on train / test data. Note that ROC-AUC does not depend on a decision threshold probability.

```
#Function to compute confusion matrix and prediction accuracy on test/train data
  def confusion matrix_data(data,actual_values,model,cutoff=0.5):
  #Predict the values using the Logit model
      pred_values = model.predict(data)
  # Specify the bins
      bins=np.array([0,cutoff,1])
  #Confusion matrix
      cm = np.histogram2d(actual_values, pred_values, bins=bins)[0]
      cm_df = pd.DataFrame(cm)
      cm df.columns = ['Predicted 0','Predicted 1']
      cm_df = cm_df.rename(index={0: 'Actual 0',1:'Actual 1'})
  # Calculate the accuracy
      accuracy = (cm[0,0]+cm[1,1])/cm.sum()
      fnr = (cm[1,0])/(cm[1,0]+cm[1,1])
      precision = (cm[1,1])/(cm[0,1]+cm[1,1])
      fpr = (cm[0,1])/(cm[0,0]+cm[0,1])
      tpr = (cm[1,1])/(cm[1,0]+cm[1,1])
      fpr roc, tpr roc, auc_thresholds = roc_curve(actual_values, pred_values)
      auc_value = (auc(fpr_roc, tpr_roc))# AUC of ROC
      sns.heatmap(cm_df, annot=True, cmap='Blues', fmt='g')
      plt.ylabel("Actual Values")
      plt.xlabel("Predicted Values")
      print("Classification accuracy = {:.1%}".format(accuracy))
      print("Precision = {:.1%}".format(precision))
      print("TPR or Recall = {:.1%}".format(tpr))
      print("FNR = {:.1%}".format(fnr))
      print("FPR = {:.1%}".format(fpr))
      print("ROC-AUC = {:.1%}".format(auc_value))
  confusion matrix data(test,test.Outcome,logit model_diabetes,0.3)
Classification accuracy = 80.5%
Precision = 70.1%
TPR or Recall = 88.5%
FNR = 11.5\%
FPR = 24.7\%
ROC-AUC = 90.1\%
```


4.7 sklearn

The LogisticRegression() function from the linear_model module of the sklearn library is used for fitting a logistic regression model. Note that the function as a default regularization parameter value set as C = 1. We'll understand the purpose of regularization later in the course.

```
test = pd.read_csv('./Datasets/Social_Network_Ads_test.csv') #Test the model on test data

X_train = train[['Age']]
y_train = train['Purchased']

X_test = test[['Age']]
y_test = test['Purchased']

model = LogisticRegression(penalty=None) # We will talk about this input later in the quar
```

train = pd.read_csv('./Datasets/Social_Network_Ads_train.csv') #Develop the model on train

```
model.fit(X_train, y_train)

y_pred = model.predict(X_test) # Note that in sklearn, .predict returns the classes direct

print("Accuracy = ",accuracy_score(test.Purchased, y_pred)*100, "%")

# To return the prediction probabilities, we need .predict_proba

y_pred_probs = model.predict_proba(X_test)

# First col: class 0 prob, second col: class 1 prob

# We will need the probs to try different thresholds - this will be necessary for the other.
```

Accuracy = 86.0 %

5 Ridge regression and Lasso

Read section 6.2 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge, RidgeCV, Lasso, LassoCV, LogisticRegressionCV, Log
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score, accuracy_score
from sklearn.model_selection import cross_val_score, cross_val_predict

trainf = pd.read_csv('./Datasets/house_feature_train.csv')
trainp = pd.read_csv('./Datasets/house_price_train.csv')
testf = pd.read_csv('./Datasets/house_feature_test.csv')
testp = pd.read_csv('./Datasets/house_price_test.csv')
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	house_id	house_age	${\rm distance_MRT}$	$number_convenience_stores$	latitude	longitude	house_pri
0	210	5.2	390.5684	5	24.97937	121.54245	2724.84
1	190	35.3	616.5735	8	24.97945	121.53642	1789.29
2	328	15.9	1497.7130	3	24.97003	121.51696	556.96
3	5	7.1	2175.0300	3	24.96305	121.51254	1030.41
4	412	8.1	104.8101	5	24.96674	121.54067	2756.25

5.1 Ridge regression

Let us develop a ridge regression model to predict house price based on the five house features.

```
\#Taking the log transform of house\_price as house prices have a right-skewed distribution <math>y = np.log(train.house\_price)
```

5.1.1 Standardizing the predictors

```
#Standardizing predictors so that each of them have zero mean and unit variance

#Filtering all predictors
X = train.iloc[:,1:6];

#Defining a scaler object
scaler = StandardScaler()

#The scaler object will contain the mean and variance of each column (predictor) of X.

#These values will be useful to scale test data based on the same mean and variance as obt scaler.fit(X)

#Using the scaler object (or the values of mean and variance stored in it) to standardize
Xstd = scaler.transform(X)
```

5.1.2 Optimizing the tuning parameter

```
#The tuning parameter lambda is referred as alpha in sklearn

#Creating a range of values of the tuning parameter to visualize the ridge regression coef
#for different values of the tuning parameter
alphas = np.logspace(10,-2,200)

#Finding the ridge regression coefficients for increasing values of the tuning parameter
coefs = []
for a in alphas:
    ridge = Ridge(alpha = a)
    ridge.fit(Xstd, y)
```

coefs.append(ridge.coef_)

```
#Visualizing the shrinkage in ridge regression coefficients with increasing values of the
plt.xlabel('xlabel', fontsize=18)
plt.ylabel('ylabel', fontsize=18)
plt.plot(alphas, coefs)
plt.xscale('log')
plt.xlabel('$\lambda$')
plt.ylabel('$\tambda$')
plt.ylabel('Standardized coefficient')
plt.legend(train.columns[1:6]);
```


#Let us use cross validation to find the optimal value of the tuning parameter - lambda #For the optimal lambda, the cross validation error will be the least

#Note that we are reducing the range of alpha so as to better visualize the minimum

```
alphas = np.logspace(1.5,-3,200)
ridgecv = RidgeCV(alphas = alphas,store_cv_values=True)
ridgecv.fit(Xstd, y)

#Optimal value of the tuning parameter - lambda
ridgecv.alpha_
```

```
#Visualizing the LOOCV (leave one out cross validatation error vs lambda)
plt.xlabel('xlabel', fontsize=18)
plt.ylabel('ylabel', fontsize=18)
plt.plot(ridgecv.alphas,ridgecv.cv_values_.sum(axis=0))
plt.plot([ridgecv.alpha_,ridgecv.alpha_],[40,40.2],':')
plt.xlabel('$\lambda$')
plt.ylabel('Cross-validation error');
```


Note that the cross validation error is minimum at the optimal value of the tuning parameter.

```
#Visualizing the shrinkage in ridge regression coefficients with increasing values of the
alphas = np.logspace(10,-2,200)
plt.xlabel('xlabel', fontsize=18)
plt.ylabel('ylabel', fontsize=18)
plt.plot(alphas, coefs)
plt.plot([ridgecv.alpha_,ridgecv.alpha_],[-0.4,0.25],':')
plt.xscale('log')
plt.xlabel('$\lambda$')
plt.ylabel('$\tandardized coefficient')
plt.legend(train.columns[1:6]);
```


5.1.3 RMSE on test data

```
#Test dataset
Xtest = test.iloc[:,1:6]

#Standardizing test data
Xtest_std = scaler.transform(Xtest)

#Using the developed ridge regression model to predict on test data
ridge = Ridge(alpha = ridgecv.alpha_)
ridge.fit(Xstd, y)
pred=ridge.predict(Xtest_std)

#RMSE on test data
np.sqrt(((np.exp(pred)-test.house_price)**2).mean())
```

405.64878431933295

Note that the RMSE is similar to the one obtained using least squares regression on all the five predictors. This is because the coefficients were required to shrink very slightly for the best ridge regression fit. This may happen when we have a low number of predictors, where most of them are significant. Ridge regression is likely to perform better than least squares in case of a large number of predictors, where an OLS model will be prone to overfitting.

5.1.4 Model coefficients & R-squared

```
#Checking the coefficients of the ridge regression model ridge.coef_
array([-0.14444475, -0.3683359 , 0.17988341, 0.22567002, 0.01429926])
```

Note that none of the coefficients are shrunk to zero. The coefficient of longitude is smaller than the rest, but not zero.

```
#R-squared on train data for the ridge regression model
r2_score(ridge.predict(Xstd),y)
```

0.6993726041206049

```
#R-squared on test data for the ridge regression model
r2_score(pred,np.log(test.house_price))
```

5.2 Lasso

Let us develop a lasso model to predict house price based on the five house features.

5.2.1 Standardizing the predictors

We have already standardized the predictors in the previous section. The standardized predictors are the NumPy array object Xstd.

5.2.2 Optimizing the tuning parameter

```
#Creating a range of values of the tuning parameter to visualize the lasso coefficients
#for different values of the tuning parameter
alphas = np.logspace(2,-2,100)
#Finding the lasso coefficients for increasing values of the tuning parameter
lasso = Lasso(max_iter = 10000)
coefs = []
for a in alphas:
    lasso.set_params(alpha=a)
    lasso.fit(Xstd, y)
    coefs.append(lasso.coef_)
#Visualizing the shrinkage in lasso coefficients with increasing values of the tuning para
plt.xlabel('xlabel', fontsize=18)
plt.ylabel('ylabel', fontsize=18)
plt.plot(alphas, coefs)
plt.xscale('log')
plt.xlabel('$\lambda$')
plt.ylabel('Standardized coefficient')
plt.legend(train.columns[1:6]);
```


Note that lasso performs variable selection. For certain values of lambda, some of the predictor coefficients are zero, while others are non-zero. This is different than ridge regression, which only shrinks the coefficients, but doesn't do variable selection.

```
#Let us use cross validation to find the optimal value of the tuning parameter - lambda
#For the optimal lambda, the cross validation error will be the least

#Note that we are reducing the range of alpha so as to better visualize the minimum
alphas = np.logspace(-1.5,-5,200)
lassocv = LassoCV(alphas = alphas, cv = 10, max_iter = 100000)
lassocv.fit(Xstd, y)

#Optimal value of the tuning parameter - lamda
lassocv.alpha_
```

0.00865338307114046

```
#Visualizing the LOOCV (leave one out cross validatation error vs lambda)
plt.xlabel('xlabel', fontsize=18)
plt.ylabel('ylabel', fontsize=18)
plt.plot(lassocv.alphas_,lassocv.mse_path_.mean(axis=1))
plt.plot([lassocv.alpha_,lassocv.alpha_],[0.145,0.151],':')
plt.xlabel('$\lambda$')
plt.ylabel('Cross-validation error');
```


The 10-fold cross validation error minimizes at lambda = 0.009.

```
#Visualizing the shrinkage in lasso coefficients with increasing values of the tuning para
alphas = np.logspace(2,-2,100)
plt.xlabel('xlabel', fontsize=18)
plt.ylabel('ylabel', fontsize=18)
plt.plot(alphas, coefs)
plt.xscale('log')
```

```
plt.xlabel('$\lambda$')
plt.ylabel('Standardized coefficient')
plt.legend(train.columns[1:6]);
```


5.2.3 RMSE on test data

```
#Using the developed lasso model to predict on test data
lasso = Lasso(alpha = lassocv.alpha_)
lasso.fit(Xstd, y)
pred=lasso.predict(Xtest_std)

#RMSE on test data
np.sqrt(((np.exp(pred)-test.house_price)**2).mean())
```

400.8580108804818

5.2.4 Model coefficients & R-squared

```
#Checking the coefficients of the lasso model lasso.coef_
array([-0.13758288, -0.38414914, 0.17276584, 0.21970825, 0. ])
```

Note that the coefficient of longitude is shrunk to zero. Lasso performs variable selection.

```
#R-squared on train data for the lasso model
r2_score(lasso.predict(Xstd),y)
```

0.6931007715680897

```
#R-squared on test data for the lasso model
r2_score(pred,np.log(test.house_price))
```

0.7526968660283655

5.3 Lasso/Ridge Classification

The Ridge and Lasso penalties are added from inside the same LogisticRegression object, they don't have their own objects like they do in regression.

```
# Data
train = pd.read_csv('Datasets/Social_Network_Ads_train.csv')
test = pd.read_csv('Datasets/Social_Network_Ads_test.csv')

# Predictors and response
X_train = train[['Age', 'EstimatedSalary']]
y_train = train['Purchased']

X_test = test[['Age', 'EstimatedSalary']]
y_test = test['Purchased']
```

```
# Creating the model
    # penalty=None means regular logistic Regression
    # penalty=12 means Ridge Classification
    # penalty=11 means Lasso Classification
    \# C = 1/lambda
model = LogisticRegression(penalty='12', C = 1)
# Scale
sc = StandardScaler()
sc.fit(X_train)
X_train_scaled = sc.transform(X_train)
X_test_scaled = sc.transform(X_test)
# Train
model.fit(X_train_scaled, y_train)
y_pred = model.predict(X_test_scaled) # threshold = 0.5 here
# Evaluate
print(accuracy_score(test.Purchased, y_pred)*100)
# Probs
y_pred_probs = model.predict_proba(X_test_scaled)
```

5.3.1 Cross-validation to find optimal C

```
# a list of possible C values
Cs = np.logspace(-1,1)

# Cs = the C values we want to try out
# cv = number of folds, 3,5,10 - if no input given, 5-fold
# penalty = Ridge or Lasso
model_cv = LogisticRegressionCV(Cs = Cs, cv=5, penalty='12')

model_cv.fit(X_train_scaled, y_train)

model_cv.C_[0]
```

```
model = LogisticRegression(penalty='12', C = model_cv.C_[0])
model.fit(X_train_scaled, y_train)
y_pred = model.predict(X_test_scaled) # threshold = 0.5 here

# Evaluate
print(accuracy_score(test.Purchased, y_pred)*100)
```

88.0

6 Cross-validation

Read section 5.1 of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

- The aim of the notebook is to introduce how to use some low-level cross-validation tools.
- Why? Because unlike Lasso, Ridge and LogisticRegression, most models in sklearn don't have a CV version.
- In that case, you need to CV yourself with the tools in this notebook.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge, Lasso, LogisticRegression # No CV versions of the
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.metrics import mean_squared_error, mean_absolute_error, accuracy_score, roc_o
precision_score, recall_score, confusion_matrix
from sklearn.model_selection import cross_val_score, cross_val_predict
```

6.1 Regression

```
trainf = pd.read_csv('Datasets/house_feature_train.csv')
trainp = pd.read_csv('Datasets/house_price_train.csv')
testf = pd.read_csv('Datasets/house_feature_test.csv')
testp = pd.read_csv('Datasets/house_price_test.csv')
train = pd.merge(trainf,trainp)
test = pd.merge(testf,testp)
train.head()
```

	house_id	house_age	${\rm distance_MRT}$	number_convenience_stores	latitude	longitude	house_pri
0	210	5.2	390.5684	5	24.97937	121.54245	2724.84
1	190	35.3	616.5735	8	24.97945	121.53642	1789.29
2	328	15.9	1497.7130	3	24.97003	121.51696	556.96
3	5	7.1	2175.0300	3	24.96305	121.51254	1030.41
4	412	8.1	104.8101	5	24.96674	121.54067	2756.25

Data

```
# Train
y_train = np.log(train.house_price) # Response (log taken to account for the skewed dist.
X_train = train.iloc[:,1:6] # Slice out the predictors
# Test
y_test = np.log(test.house_price) # Response (log taken to account for the skewed dist. of
X_test = test.iloc[:,1:6] # Slice out the predictor
# Scale both
scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Let's tune the lambda of a Ridge model, with 5-fold CV.
# For that, we need to loop through lambda (alpha) values.
# However, we don't need to loop through folds - we will use a function for that! - cross_
alphas = np.logspace(-1,1,200)
cv_results = []
for alpha in alphas: # For each alpha
    model = Ridge(alpha=alpha) # Create the model
    cv_results.append(cross_val_score(model, X_train_scaled, y_train, cv=5, scoring='neg_r
# Note that the input is the model object, the data, number of folds and the metric
# If you don't specify the scoring, it will use r-squared for regression and accuracy for
# The output is an array of k values, k being the number of folds (cv input)
```

```
# For each alpha value, 5 RMSE values

# Take the mean of each row to find avg cv score for each alpha
# Negative sign because the scoring input has "neg" in the previous cell
rmses = -np.array(cv_results).mean(axis=1)

# Index of the minimum CV RMSE
np.argmin(rmses)

alphas[np.argmin(rmses)]

# Note the same alpha as in RidgeCV example in the previous notebook
```

```
# Now we need to create one final Ridge model with the optimized alpha value
model = Ridge(alpha=alphas[np.argmin(rmses)])
model.fit(X_train_scaled, y_train)

# Predict
# Evaluate
```

Ridge(alpha=4.768611697714469)

6.2 Classification

```
# Data
train = pd.read_csv('Datasets/Social_Network_Ads_train.csv')
test = pd.read_csv('Datasets/Social_Network_Ads_test.csv')

# Predictors and response
X_train = train[['Age', 'EstimatedSalary']]
y_train = train['Purchased']

X_test = test[['Age', 'EstimatedSalary']]
y_test = test['Purchased']
```

```
# Scale
  sc = StandardScaler()
  sc.fit(X_train)
  X_train_scaled = sc.transform(X_train)
  X_test_scaled = sc.transform(X_test)
  # CV a logistic regression model
  # a list of possible C values
  Cs = [0.001, 0.01, 0.1, 1, 10, 100]
  cv results = []
  for C in Cs:
      model = LogisticRegression(penalty='12', C=C)
      cv results.append(cross val score(model, X train scaled, y train, cv=10))
  # Scoring not given, default metric is accuracy (you can use recall, precision etc.)
  # For each C, 10 accuracy values
  accs = np.array(cv_results).mean(axis=1)
  Cs[np.argmax(accs)] # best C - Same as the output of LogisticRegressionCV in the previous
  # Train the final model
  # predict
  # Evaluate
1
```

- Important question: How were these accuracies calculated? With a threhold of 0.5
- What if we want to change/optimize the threshold in this process as well? Then cross_val_score() is not enough, we need to change the function!

```
# CV a logistic regression model - but do not return the accuracy metric for each fold
    # Return the PREDICTIONS FOR EACH FOLD
# a list of possible C values
Cs = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
```

```
cv_results = []
     for C in Cs:
              model = LogisticRegression(penalty='12', C=C)
               cv_results.append(cross_val_predict(model, X_train_scaled, y_train, cv=10, method='predict(model, y
     # Cross_val_predict function has an optional input: method
     threshold_hyperparam_vals = np.arange(0,1.01,0.01)
      C_hyperparam_vals = np.logspace(-3.5, 1)
      accuracy_iter = pd.DataFrame(columns = {'threshold':[], 'C':[], 'accuracy':[]})
      iter_number = 0
     for c_val in C_hyperparam_vals:
               predicted probability = cross_val_predict(LogisticRegression(C = c_val), X_train_scale
                                                                                                                              y_train, cv = 5, method = 'predict_proba
               for threshold_prob in threshold_hyperparam_vals:
                         predicted_class = predicted_probability[:,1] > threshold_prob
                         predicted_class = predicted_class.astype(int)
                         #Computing the accuracy
                         accuracy = accuracy_score(predicted_class, y_train)*100
                         accuracy_iter.loc[iter_number, 'threshold'] = threshold_prob
                         accuracy_iter.loc[iter_number, 'C'] = c_val
                         accuracy_iter.loc[iter_number, 'accuracy'] = accuracy
                         iter_number = iter_number + 1
      # Parameters for highest accuracy
      optimal_C = accuracy_iter.sort_values(by = 'accuracy', ascending = False).iloc[0,:]['C']
      optimal_threshold = accuracy_iter.sort_values(by = 'accuracy', ascending = False).iloc[0,
     #Optimal decision threshold probability
     print("Optimal decision threshold = ", optimal_threshold)
     #Optimal C
     print("Optimal C = ", optimal_C)
Optimal decision threshold = 0.41000000000000000
```

```
model = LogisticRegression(C = optimal_C).fit(X_train_scaled, y_train)
test_pred = model.predict_proba(X_test_scaled)[:,1]

y_pred_optimal_threshold = (test_pred > optimal_threshold).astype(int)

#Computing the accuracy
print("Accuracy: ",accuracy_score(y_pred_optimal_threshold, y_test)*100)

#Computing the ROC-AUC
fpr, tpr, auc_thresholds = roc_curve(y_test, y_pred_optimal_threshold)
print("ROC-AUC: ",auc(fpr, tpr))# AUC of ROC

#Computing the precision and recall
print("Precision: ", precision_score(y_test, y_pred_optimal_threshold))
print("Recall: ", recall_score(y_test, y_pred_optimal_threshold))

#Confusion matrix
cm = pd.DataFrame(confusion_matrix(y_test, y_pred_optimal_threshold), columns=['Predicted index = ['Actual 0', 'Actual 1'])
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g');
```

Accuracy: 87.0

ROC-AUC: 0.868940368940369

Precision: 0.8

Recall: 0.8648648648649

- We will use cross_val_score() and cross_val_predict() repeatedly next quarter.
- There is a cross_validate() function that allows us to use multiple metrics at once (for example, accuracy and recall) next quarter.

Find some more examples of using the cross validation and some other useful functions here.

7 Potential issues

Read section 3.3.3 (4, 5, & 6) of the book before using these notes.

Note that in this course, lecture notes are not sufficient, you must read the book for better understanding. Lecture notes are just implementing the concepts of the book on a dataset, but not explaining the concepts elaborately.

Let us continue with the car price prediction example from the previous chapter.

```
import pandas as pd
import numpy as np
import statsmodels.formula.api as smf
import seaborn as sns
import matplotlib.pyplot as plt
import statsmodels.api as sm
from scipy import stats
from sklearn.model_selection import cross_val_predict
from patsy import dmatrices
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
trainf = pd.read_csv('./Datasets/Car_features_train.csv')
trainp = pd.read_csv('./Datasets/Car_prices_train.csv')
testf = pd.read_csv('./Datasets/Car_features_test.csv')
testp = pd.read_csv('./Datasets/Car_prices_test.csv')
train = pd.merge(trainf,trainp)
train.head()
```

	carID	brand	model	year	transmission	$_{ m mileage}$	fuelType	tax	mpg	engineSize	price
0	18473	bmw	6 Series	2020	Semi-Auto	11	Diesel	145	53.3282	3.0	37980
1	15064	bmw	6 Series	2019	Semi-Auto	10813	Diesel	145	53.0430	3.0	33980
2	18268	bmw	6 Series	2020	Semi-Auto	6	Diesel	145	53.4379	3.0	36850
3	18480	bmw	6 Series	2017	Semi-Auto	18895	Diesel	145	51.5140	3.0	25998
4	18492	bmw	6 Series	2015	Automatic	62953	Diesel	160	51.4903	3.0	18990

```
# Considering the model developed to address assumptions in the previous chapter
# Model with an interaction term and a variable transformation term
ols_object = smf.ols(formula = 'np.log(price)~(year+engineSize+mileage+mpg)**2+I(mileage**
model_log = ols_object.fit()
model_log.summary()
```

Intercept -238.2125 25.790 -9.237 0.000 -288.773 -1 year 0.1227 0.013 9.608 0.000 0.098 0 engineSize 13.8349 5.795 2.387 0.017 2.475 2 mileage 0.0005 0.000 3.837 0.000 0.000 0.000 mpg -1.2446 0.345 -3.610 0.000 -1.921 - year:engineSize -0.0067 0.003 -2.324 0.020 -0.012 - year:mileage -2.67e-07 6.8e-08 -3.923 0.000 -4e-07 -1 year:mpg 0.0006 0.000 3.591 0.000 0.000 6 engineSize:mileage -2.668e-07 4.08e-07 -0.654 0.513 -1.07e-06 5 engineSize:mpg 0.0028 0.000 6.842 0.000 3.72e-08 1 I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2<	3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
No. Observations: 4960 AIC: 2372 Df Residuals: 4948 BIC: 2450 Df Model: 11 2450 Covariance Type:nonrobust 11 11 Covariance Type: 11 11 11 Lintercept -238.2125 25.790 -9.237 0.000 -288.773 -1 year 0.1227 0.013 9.608 0.000 0.098 0.000 engineSize 13.8349 5.795 2.387 0.017 2.475 2.20 mileage 0.0005 0.000 3.837 0.000 0.000 0.000 0.000 mpg -1.2446 0.345 -3.610 0.000 -1.921 <		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
year 0.1227 0.013 9.608 0.000 0.098 0.0098 engineSize 13.8349 5.795 2.387 0.017 2.475 2 mileage 0.0005 0.000 3.837 0.000 0.000 0.000 mpg -1.2446 0.345 -3.610 0.000 -1.921 - year:engineSize -0.0067 0.003 -2.324 0.020 -0.012 - year:mileage -2.67e-07 6.8e-08 -3.923 0.000 -4e-07 -1 year:mpg 0.0006 0.000 3.591 0.000 0.000 0 engineSize:mileage -2.668e-07 4.08e-07 -0.654 0.513 -1.07e-06 5. engineSize:mpg 0.0028 0.000 6.842 0.000 0.002 0 mileage:mpg 7.235e-08 1.79e-08 4.036 0.000 3.72e-08 1. I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12	.975]	
engineSize 13.8349 5.795 2.387 0.017 2.475 2 mileage 0.0005 0.000 3.837 0.000 0.000 0.000 0 mpg -1.2446 0.345 -3.610 0.000 -1.921 - year:engineSize -0.0067 0.003 -2.324 0.020 -0.012 - year:mpg 0.0006 0.000 3.591 0.000 0.000 0 engineSize:mileage -2.668e-07 4.08e-07 -0.654 0.513 -1.07e-06 5. engineSize:mpg 0.0028 0.000 6.842 0.000 0.002 0 mileage:mpg 7.235e-08 1.79e-08 4.036 0.000 3.72e-08 1. I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2.	87.652	
mileage 0.0005 0.000 3.837 0.000 0.000 0.000 mpg -1.2446 0.345 -3.610 0.000 -1.921 - year:engineSize -0.0067 0.003 -2.324 0.020 -0.012 - year:mileage -2.67e-07 6.8e-08 -3.923 0.000 -4e-07 -1 year:mpg 0.0006 0.000 3.591 0.000 0.000 0 engineSize:mileage -2.668e-07 4.08e-07 -0.654 0.513 -1.07e-06 5. engineSize:mpg 0.0028 0.000 6.842 0.000 0.002 0 mileage:mpg 7.235e-08 1.79e-08 4.036 0.000 3.72e-08 1. I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2.	0.148	
mpg -1.2446 0.345 -3.610 0.000 -1.921 - year:engineSize -0.0067 0.003 -2.324 0.020 -0.012 - year:mileage -2.67e-07 6.8e-08 -3.923 0.000 -4e-07 -1 year:mpg 0.0006 0.000 3.591 0.000 0.000 0 engineSize:mileage -2.668e-07 4.08e-07 -0.654 0.513 -1.07e-06 5. engineSize:mpg 0.0028 0.000 6.842 0.000 0.002 0 mileage:mpg 7.235e-08 1.79e-08 4.036 0.000 3.72e-08 1. I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2.	5.195	
year:engineSize -0.0067 0.003 -2.324 0.020 -0.012 - year:mileage -2.67e-07 6.8e-08 -3.923 0.000 -4e-07 -1 year:mpg 0.0006 0.000 3.591 0.000 0.000 0 engineSize:mileage -2.668e-07 4.08e-07 -0.654 0.513 -1.07e-06 5. engineSize:mpg 0.0028 0.000 6.842 0.000 0.002 0 mileage:mpg 7.235e-08 1.79e-08 4.036 0.000 3.72e-08 1. I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2.	0.001	
year:mileage -2.67e-07 6.8e-08 -3.923 0.000 -4e-07 -1 year:mpg 0.0006 0.000 3.591 0.000 0.000 0 engineSize:mileage -2.668e-07 4.08e-07 -0.654 0.513 -1.07e-06 5. engineSize:mpg 0.0028 0.000 6.842 0.000 0.002 0 mileage:mpg 7.235e-08 1.79e-08 4.036 0.000 3.72e-08 1. I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2.	0.569	
year:mpg 0.0006 0.000 3.591 0.000 0.000 0 engineSize:mileage -2.668e-07 4.08e-07 -0.654 0.513 -1.07e-06 5. engineSize:mpg 0.0028 0.000 6.842 0.000 0.002 0 mileage:mpg 7.235e-08 1.79e-08 4.036 0.000 3.72e-08 1. I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2.	0.001	
engineSize:mileage -2.668e-07 4.08e-07 -0.654 0.513 -1.07e-06 5. engineSize:mpg 0.0028 0.000 6.842 0.000 0.002 0.002 mileage:mpg 7.235e-08 1.79e-08 4.036 0.000 3.72e-08 1. I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2.	.34e-07	
engineSize:mpg 0.0028 0.000 6.842 0.000 0.002 0.002 mileage:mpg 7.235e-08 1.79e-08 4.036 0.000 3.72e-08 1. I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2.	0.001	
mileage:mpg 7.235e-08 1.79e-08 4.036 0.000 3.72e-08 1. I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2.	33e-07	
I(mileage ** 2) 1.828e-11 5.64e-12 3.240 0.001 7.22e-12 2.	0.004	
	08e-07	
O1 711 F14 D-1 W-4 0 400	93e-11	
Omnibus: 711.514 Durbin-Watson: 0.498	0.498	
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2545.807		
Skew: 0.699 Prob(JB): 0.00		
Kurtosis: 6.220 Cond. No. $1.73e+13$	1.73e + 13	

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.73e+13. This might indicate that there are strong multicollinearity or other numerical problems.

```
#Computing RMSE on test data
pred_price_log = model_log.predict(testf)
np.sqrt(((testp.price - np.exp(pred_price_log))**2).mean())
```

7.1 Outliers

An outlier is a point for which the true response (y_i) is far from the value predicted by the model. Residual plots can be used to identify outliers.

If the the response at the i^{th} observation is y_i , the prediction is \hat{y}_i , then the residual e_i is:

$$e_i = y_i - \hat{y_i}$$

```
#Plotting residuals vs fitted values
sns.set(rc={'figure.figsize':(10,6)})
sns.scatterplot(x = (model_log.fittedvalues), y=(model_log.resid),color = 'orange')
sns.lineplot(x = [model_log.fittedvalues.min(),model_log.fittedvalues.max()],y = [0,0],col
plt.xlabel('Fitted values')
plt.ylabel('Residuals');
```


Some of the errors may be high. However, it is difficult to decide how large a residual needs to be before we can consider a point to be an outlier. To address this problem, we have standardized residuals, which are defined as:

$$r_i = \frac{e_i}{RSE(\sqrt{1-h_{ii}})},$$

where r_i is the standardized residual, RSE is the residual standard error, and h_{ii} is the leverage (introduced in the next section) of the i^{th} observation.

Standardized residuals, allow the residuals to be compared on a *standard scale*.

Issue with standardized residuals:, If the observation corresponding to the standardized residual has a high leverage, then it will drag the regression line / plane / hyperplane towards it, thereby influencing the estimate of the residual itself.

Studentized residuals: To address the issue with standardized residuals, studentized residual for the i^{th} observation is computed as the standardized residual, but with the RSE (residual standard error) computed after removing the i^{th} observation from the data. Studentized residual, t_i for the i^{th} observation is given as:

$$t_i = \frac{e_i}{RSE_i(\sqrt{1-h_{ii}})},$$

where RSE_i is the residual standard error of the model developed on the data without the i^{th} observation.

Distribution of studentized residuals: If the regression model is appropriate such that no case is outlying because of a change in the model, then each studentized residual will follow a t distribution with (n-p-1) degrees of freedom.

As the studentized residuals follow a t distribution, we can conduct a hypothesis test to identify whether an observation is an outlier or not for a given sigificance level. Note that the test will be two-sided since we are not concerned with the sign of the residuals, but only their absolute values.

In the current example, for a significance level of 5%, the critical t-statistic is $t(1-\frac{\alpha}{2},n-p-1)$, as calculated below.

```
n = train.shape[0]
p = model_log.df_model
alpha = 0.05

# Critical value
stats.t.ppf(1 - alpha/2, n - p - 1)
```

1.9604435402730618

If we were conducting the test for a single observation, we'll compare the studentized residual for that observation with the critical t-statistic, and if the residual is greater than the critical value, we'll consider that observation as an outlier.

However, typically, we'll be interested in conducting this test for all observations, and thus we'll need a more conservative critical value for the same significance level. This critical value is given by the Bonferroni correction as $t(1-\frac{\alpha}{2n},n-p-1)$.

Thus, the minimum value of studentized residual for which the observation will be classified as an outlier is:

```
critical_value = stats.t.ppf(\frac{1}{-alpha}/(\frac{2*n}{n}), n - p - \frac{1}{n}) critical_value
```

4.4200129981725365

The studentized residuals can be obtained using the outlier_test() method of the object returned by the fit() method of an OLS object. Let us find the studentized residuals in our car price prediction model.

```
#Studentized residuals
out = model_log.outlier_test()
out
```

	$student_resid$	unadj_p	bonf(p)
0	-1.164204	0.244398	1.0
1	-0.801879	0.422661	1.0
2	-1.263820	0.206354	1.0
3	-0.614171	0.539131	1.0
4	0.027929	0.977720	1.0
	•••		
4955	-0.523361	0.600747	1.0
4956	-0.509538	0.610398	1.0
4957	-1.718808	0.085712	1.0
4958	-0.077594	0.938154	1.0
4959	-0.482388	0.629551	1.0

Studentized residuals are in the first column of the above table. Let us plot the studentized residuals against fitted values. In the figure below, the studentized residuals above the top dotted green line and below the bottom dotted green line are outliers.

Outliers: Observations whose studentized residuals have a magnitude greater than $t(1 - \frac{\alpha}{2n}, n - p - 1)$.

Impact of outliers: Outliers do not have a large impact on the OLS line / plane / hyperplane as long as they don't have a high leverage (discussed in the next section). However, outliers do inflate the residual standard error (RSE). RSE in turn is used to compute the standard errors of regression coefficients. As a result, statistically significant variables may appear to be insignificant, and R^2 may appear to be lower.

Are there outliers in our example?

```
#Number of points with absolute studentized residuals greater than critical_value
np.sum(np.abs(out.student_resid) > critical_value)
```

19

Let us analyze the outliers.

```
ind = (np.abs(out.student_resid) > critical_value)
pd.concat([train.loc[ind,:], np.exp(model_log.fittedvalues[ind])], axis = 1)
```

	carID	brand	model	year	transmission	$_{ m mileage}$	${\it fuel Type}$	tax	mpg	engineSize	price
2042	18228	bmw	i3	2017	Automatic	24041	Hybrid	0	78.2726	0.0	2149
2046	17362	bmw	i3	2016	Automatic	68000	Hybrid	0	78.0258	0.0	1599
2050	19224	bmw	i3	2016	Automatic	20013	Hybrid	0	77.9310	0.0	1987
2051	13913	bmw	i3	2014	Automatic	34539	Hybrid	0	78.3838	0.0	1449
2055	16512	bmw	i3	2017	Automatic	28169	Hybrid	0	77.9799	0.0	2375
2059	15844	bmw	i3	2016	Automatic	19995	Hybrid	0	78.2825	0.0	1985
2060	12107	bmw	i3	2016	Automatic	8421	Hybrid	0	77.9125	0.0	1949
2061	18215	bmw	i3	2014	Automatic	37161	Hybrid	0	77.7505	0.0	1418
2063	15617	bmw	i3	2017	Automatic	41949	Hybrid	140	78.1907	0.0	1999
2064	18020	bmw	i3	2015	Automatic	9886	Hybrid	0	78.1810	0.0	1748
2143	12972	bmw	i8	2017	Automatic	9992	Hybrid	135	69.2767	1.5	5995
2144	13826	bmw	i8	2015	Automatic	43323	Hybrid	0	69.2683	1.5	4499
2150	18949	bmw	i8	2015	Automatic	43102	Hybrid	0	69.0922	1.5	4289
2151	18977	bmw	i8	2016	Automatic	10087	Hybrid	0	68.9279	1.5	4899
2744	18866	merc	M Class	2004	Automatic	121000	Diesel	325	29.3713	2.7	1995
3548	13149	audi	S4	2019	Automatic	4900	Diesel	145	40.7030	0.0	4500
4116	16420	audi	SQ5	2020	Automatic	1500	Diesel	145	34.7968	0.0	5645
4117	17611	audi	SQ5	2019	Automatic	1500	Diesel	145	34.5016	0.0	4880
4851	16577	bmw	Z3	2002	Automatic	16500	Petrol	325	29.7614	2.2	1499

Do you notice some unique characteristics of these observations due to which they may be outliers?

What methods you can propose to estimate the price of these outliers more accurately, which will also result in the overall reduction in RMSE?

7.2 High leverage points

High leverage points are those with an unsual value of the predictor(s). They have the potential to have a relatively higher impact on the OLS line / plane / hyperplane, as compared to the outliers.

Leverage statistic (page 99 of the book): In order to quantify an observation's leverage, we compute the leverage statistic. A large value of this statistic indicates an observation with high leverage. For simple linear regression,

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_{i'=1}^n (x_{i'} - \bar{x})^2}.$$
 (7.1)

It is clear from this equation that h_i increases with the distance of x_i from \bar{x} . A large value of h_i indicates that the i^{th} observation is distance from the center of all the other observations in terms of predictor values.

The leverage statistic h_i is always between 1/n and 1, and the average leverage for all the observations is always equal to (p+1)/n:

$$\bar{h} = \frac{p+1}{n} \tag{7.2}$$

So if a given observation has a leverage statistic that greatly exceeds (p+1)/n, then we may suspect that the corresponding point has high leverage.

If the i^{th} observation has a large leverage h_i , it may exercise substantial leverage in determining the fitted value \hat{Y}_i , because:

- The fitted value \hat{Y}_i is a linear combination of the observed Y values, and h_i is the weight of observation Y_i in determining this fitted value.
- The larger the h_i , the smaller is the variance of the residual e_i , and the closer the fitted value \hat{Y}_i will tend to be the observed value Y_i .

Thumb rules:

- A leverage h_i is usually considered large if it is more than twice as large as the mean value \bar{h} .
- Another suggested guideline is that h_i values exceeding 0.5 indicate **very high leverage**, whereas those between 0.2 and 0.5 indicate moderate leverage.

Influential points: Note that if a high leverage point falls in line with the regression line, then it will not affect the regression line. However, it may inflate R-squared and increase the significance of predictors. If a high leverage point falls away from the regression line, then it is also an outlier, and will affect the regression line. The points whose presence significantly affects the regression line are called influential points. A point that is both a high leverage point and an outlier is likely to be an influential point. However, a high leverage point is not necessarily an influential point.

 $Source\ for\ influential\ points:\ https://online.stat.psu.edu/stat501/book/export/html/973$

Let us see if there are any high leverage points in our regression model.

```
#Model with an interaction term and a variable transformation term
ols_object = smf.ols(formula = 'np.log(price)~(year+engineSize+mileage+mpg)**2+I(mileage**
model_log = ols_object.fit()
model_log.summary()
```

Dep. Variable:	np.log(price)	R-squared:	0.803
Model:	OLS	Adj. R-squared:	0.803
Method:	Least Squares	F-statistic:	1834.
Date:	Sun, 10 Mar 2024	Prob (F-statistic):	0.00
Time:	16:53:39	Log-Likelihood:	-1173.8
No. Observations:	4960	AIC:	2372.
Df Residuals:	4948	BIC:	2450.
Df Model:	11		
Covariance Type:	nonrobust		

	coef	std err	t	$P> \mathbf{t} $	[0.025]	0.975]
Intercept	-238.2125	25.790	-9.237	0.000	-288.773	-187.652
year	0.1227	0.013	9.608	0.000	0.098	0.148
engineSize	13.8349	5.795	2.387	0.017	2.475	25.195
$\mathbf{mileage}$	0.0005	0.000	3.837	0.000	0.000	0.001
mpg	-1.2446	0.345	-3.610	0.000	-1.921	-0.569
year:engineSize	-0.0067	0.003	-2.324	0.020	-0.012	-0.001
year:mileage	-2.67e-07	6.8e-08	-3.923	0.000	-4e-07	-1.34e-07
year:mpg	0.0006	0.000	3.591	0.000	0.000	0.001
engineSize:mileage	-2.668e-07	4.08e-07	-0.654	0.513	-1.07e-06	5.33e-07
engine Size:mpg	0.0028	0.000	6.842	0.000	0.002	0.004
${f mileage:mpg}$	7.235e-08	1.79e-08	4.036	0.000	3.72e-08	1.08e-07
I(mileage ** 2)	1.828e-11	5.64e-12	3.240	0.001	7.22e-12	2.93e-11

Omnibus:	711.514	Durbin-Watson:	0.498
Prob(Omnibus):	0.000	Jarque-Bera (JB):	2545.807
Skew:	0.699	Prob(JB):	0.00
Kurtosis:	6.220	Cond. No.	1.73e + 13

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.73e+13. This might indicate that there are strong multicollinearity or other numerical problems.

```
#Computing the leverage statistic for each observation
influence = model_log.get_influence()
leverage = influence.hat_matrix_diag

#Visualizing leverage against studentized residuals
sns.set(rc={'figure.figsize':(15,8)})
sm.graphics.influence_plot(model_log);
```


Let us identify the high leverage points in the data, as they may be affecting the regression line if they are outliers as well, i.e., if they are influential points. Note that there is no defined threshold for a point to be classified as a high leverage point. Some statisticians consider points having twice the average leverage as high leverage points, some consider points having thrice the average leverage as high leverage points, and so on.

```
out = model_log.outlier_test()

#Average leverage of points
average_leverage = (model_log.df_model+1)/model_log.nobs
average_leverage
```

0.0024193548387096775

Let us consider points having four times the average leverage as high leverage points.

#We will remove all observations that have leverage higher than the threshold value. high_leverage_threshold = 3*average_leverage

```
#Number of high leverage points in the dataset
np.sum(leverage>high_leverage_threshold)
```

269

7.2.1 Identifying extrapolation using leverage

Leverage can be used to check if prediction on a particular point will lead to extrapolation.

Below is the function that can be used to find the leverage at for a particular observation xnew. Note that xnew has to be a single-dimensional array, and X has to be the predictor matrix (also called the design matrix).

```
def leverage_compute(xnew, X):
    return(xnew.reshape(-1, 1).T.dot(np.linalg.inv(X.T.dot(X))).dot(xnew.reshape(-1, 1))[Continuous continuous continu
```

As expected, the function will return the same leverage as provided by the hat_matrix_diag attribute of the objected returned by the get_influence() method of model_log as shown below:

```
leverage[0]
```

0.0026426981240353694

As the observation for prediction is required we need to create the predictor matrix X to create all the observations with the interactions specified in the model.

```
y, X = dmatrices('np.log(price)~(year+engineSize+mileage+mpg)**2+I(mileage**2)', data = tr
leverage_compute(X[0,:], X)
```

0.0026426973869101977

If the leverage for a new observation is higher than the maximum leverage among all the observations in the training dataset, then prediction at the new observation will be extrapolation.

7.3 Influential points

Observations that are both high leverage points and outliers are influential points that may affect the regression line. Let's remove these influential points from the data and see if it improves the model prediction accuracy on test data.

Note that as the Bonferroni's critical value is very conservative estimate, we have rounded off the critical value to 4, instead of 4.42.

```
train_filtered.shape

(4948, 11)

#Number of points removed as they were influential train.shape[0]-train_filtered.shape[0]
```

12

We removed 12 influential data points from the training data.

```
#Model after removing the influential observations
ols_object = smf.ols(formula = 'np.log(price)~(year+engineSize+mileage+mpg)**2+I(mileage**
model_log = ols_object.fit()
model_log.summary()
```

Dep. Variable:	np.log(price)	R-squared:	0.815
Model:	OLS	Adj. R-squared:	0.814
Method:	Least Squares	F-statistic:	1971.
Date:	Sun, 10 Mar 2024	Prob (F-statistic):	0.00
Time:	16:54:08	Log-Likelihood:	-1027.9
No. Observations:	4948	AIC:	2080.
Df Residuals:	4936	BIC:	2158.
Df Model:	11		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} \gt \mathbf{t} $	[0.025	$\boldsymbol{0.975}]$
Intercept	-256.2339	25.421	-10.080	0.000	-306.070	-206.398
year	0.1317	0.013	10.462	0.000	0.107	0.156
engineSize	18.4650	5.663	3.261	0.001	7.364	29.566
$\mathbf{mileage}$	0.0006	0.000	4.288	0.000	0.000	0.001
mpg	-1.1810	0.338	-3.489	0.000	-1.845	-0.517
year:engineSize	-0.0090	0.003	-3.208	0.001	-0.015	-0.004
year:mileage	-2.933e-07	6.7e-08	-4.374	0.000	-4.25e-07	-1.62e-07
year:mpg	0.0006	0.000	3.458	0.001	0.000	0.001
engineSize:mileage	-4.316e-07	4e-07	-1.080	0.280	-1.21e-06	3.52 e-07
engineSize:mpg	0.0048	0.000	11.537	0.000	0.004	0.006
mileage:mpg	7.254 e-08	1.75e-08	4.140	0.000	3.82e-08	1.07e-07
I(mileage ** 2)	1.668e-11	5.53e-12	3.017	0.003	5.84e-12	2.75e-11
Omnibus:	ous: 718.619 Durbin-Watson: 0.521					

Omnibus:	718.619	Durbin-Watson:	0.521
Prob(Omnibus):	0.000	Jarque-Bera (JB):	2512.509
Skew:	0.714	Prob(JB):	0.00
Kurtosis:	6.185	Cond. No.	1.75e + 13

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.75e+13. This might indicate that there are strong multicollinearity or other numerical problems.

Let us compare the square root of 5-fold cross-validated mean squared error of the model with and without the influential points.

```
y, X = dmatrices('np.log(price)~(year+engineSize+mileage+mpg)**2+I(mileage**2)', data = tr
np.sqrt(mean_squared_error(np.exp(cross_val_predict(LinearRegression(), X, y)), np.exp(y))
```

9811.74078331643

```
y, X = dmatrices('np.log(price)~(year+engineSize+mileage+mpg)**2+I(mileage**2)', data = tr
np.sqrt(mean_squared_error(np.exp(cross_val_predict(LinearRegression(), X, y)), np.exp(y))
```

9800.202063309154

Why can't we use cross_val_score() instead of cross_val_predict() here?

There seems to be a slight improvement in prediction error after removing influential points. Note that none of the points had "very high leverage", and thus the change is not substantial.

Note that we obtain a higher R-squared value of 81.5% as compared to 80% with the complete data. Removing the influential points helped obtain a slightly better model fit. However, that may also happen just by reducing observations.

```
#Computing RMSE on test data
pred_price_log = model_log.predict(testf)
np.sqrt(((testp.price - np.exp(pred_price_log))**2).mean())
```

8922.977452912108

The RMSE on test data has also reduced. This shows that some of the influential points were impacting the regression line. With those points removed, the model better captures the general trend in the data.

7.3.1 Influence on single fitted value (DFFITS)

• A useful measure of the influence that the i^{th} observation has on the fitted value \hat{Y}_i is:

$$(DFFITS)_i = \frac{\hat{Y}_i - \hat{Y}_{i(i)}}{\sqrt{MSE_i h_i}} \tag{7.3}$$

- Note that the denominator in the above fraction is the estimated standard deviation of \hat{Y}_i , but uses the error mean square when the i^{th} observation is omitted.
- DFFITS for the i^{th} observation represents the number of estimated standard deviations of \hat{Y}_i that the fitted value \hat{Y}_i increases or decreases with the inclusion of the i^{th} observation in fitting the regression model.
- It can be shown that:

$$(DFFITS)_i = t_i \sqrt{\frac{h_i}{1 - h_i}} \tag{7.4}$$

where t_i is the studentized deleted residual for the i^{th} observation.

- We can see that if an observation has high leverage and is an outlier, it is likely to be influential
- For large datasets, an observation is considered influential if the magnitude of DFFITS for it exceeds $2\sqrt{\frac{p}{n}}$

```
sns.set(font_scale =1.5)
sns.lineplot(x = range(train.shape[0]), y = influence.dffits[0])
plt.xlabel('Observation index')
plt.ylabel('DFFITS (model)');
```


Let us analyze the point with the highest *DFFITS*.

```
\verb"np.where(influence.dffits[0]>1)"
(array([ 813, 4851], dtype=int64),)
   train.loc[813,:]
carID
                       12454
brand
model
                   Caravelle
year
                        2012
                   Semi-Auto
{\tt transmission}
                      212000
mileage
fuelType
                      Diesel
```

```
325
tax
                   34.4424
mpg
engineSize
                       2.0
                     11995
price
Name: 813, dtype: object
  train.loc[train.model == ' Caravelle', 'mileage'].describe()
             65.000000
count
mean
          25638.692308
std
          42954.135726
min
             10.000000
25%
           3252.000000
50%
           6900.000000
75%
          30414.000000
         212000.000000
max
Name: mileage, dtype: float64
  # Prediction with model developed based on all points
  ols_object = smf.ols(formula = 'np.log(price)~(year+engineSize+mileage+mpg)**2+I(mileage**
                        data = train)
  model_log = ols_object.fit();
  np.exp(model_log.predict(train.loc[[813],:]))
813
       5502.647323
dtype: float64
  # Prediction with model developed based on all points except the 813th point
  ols_object = smf.ols(formula = 'np.log(price)~(year+engineSize+mileage+mpg)**2+I(mileage**
                        data = train.drop(index = 813))
  model_log = ols_object.fit();
  np.exp(model_log.predict(train.loc[[813],:]))
813
       4581.374593
dtype: float64
```

Let us see the leverage and studentized residual for this observation.

```
# Leverage
leverage[813]
```

0.19038697461006687

```
# Studentized residual
out.student_resid[813]
```

2.823478041409651

Do you notice what may be contributing to the high influence of this point?

7.3.2 Influence on all fitted values (Cook's distance)

In contrast to DFFITS, which considers the influence of the i^{th} observation on the fitted value \hat{Y}_i , Cook's distance considers the influence of the i^{th} observation on all n the fitted values:

$$D_i = \frac{\sum_{j=1}^{n} (\hat{Y}_j - \hat{Y}_{j(i)})^2}{pMSE}$$
 (7.5)

It can be shown that:

$$D_i = \frac{e_i^2}{pMSE} \left[\frac{h_i}{(1 - h_i)^2} \right] \tag{7.6}$$

The larger h_i or e_i , the larger is D_i . D_i can be related to the F(p, n-p) distribution. If the percentile value is 50% or more, the observation is considered as highly influential.

Cook's distance is considered high if it is greater than 0.5 and extreme if it is greater than 1.

```
sns.set(font_scale =1.5)
sns.lineplot(x = range(train.shape[0]), y = influence.cooks_distance[0])
plt.xlabel('Observation index')
plt.ylabel("Cook's Distance (model)");
```



```
# Point with the highest Cook's distance
np.where(influence.cooks_distance[0]>0.15)
```

(array([813], dtype=int64),)

The critical Cook's distance value for a point to be highly influential in this dataset is:

```
stats.f.ppf(0.5, 11, 4949)
```

0.9402181103263811

Thus, we don't have any highly influential points in the dataset.

7.3.3 Influence on regression coefficients (DFBETAS)

- DFBETAS measures the influence of the i^{th} observation on the regression coefficient.
- DFBETAS of the i^{th} observation on the k^{th} regression coefficient is:

$$(DFBETAS)_{k(i)} = \frac{\hat{\beta}_k - \hat{\beta}_{k(i)}}{\sqrt{MSE_i c_k}}$$
 (7.7)

where c_k is the k^{th} diagonal element of $(X^TX)^{-1}.$

For large datasets, an observation is considered influential if DFBETAS exceeds $\frac{2}{\sqrt{n}}$. Below is the plot of DFBETAS for the year predictor against the observation index.

```
sns.set(font_scale =1.5)
sns.lineplot(x = range(train.shape[0]), y = influence.dfbetas[:,1])
plt.xlabel('Observation index')
plt.ylabel("DFBETAS (year)");
```


Let us analyze the point with the highest magnitude of DFBETAS.

```
np.where(influence.dfbetas[:,1]<-0.8)
(array([4851], dtype=int64),)
    train.year.describe()</pre>
```

4960.000000 count2016.737903 meanstd 2.884035 min 1997.000000 25% 2016.000000 50% 2017.000000 75% 2019.000000 2020.000000 max

Name: year, dtype: float64

train.loc[train.year<=2002,:]</pre>

	carID	brand	model	year	transmission	$_{ m mileage}$	${\it fuel Type}$	tax	mpg	engine Size	pri
330	13200	audi	A8	1997	Automatic	122000	Petrol	265	19.3511	4.2	465
732	13988	vw	Beetle	2001	Manual	47729	Petrol	330	32.5910	2.0	249
3157	18794	ford	Puma	2002	Manual	108000	Petrol	230	38.5757	1.7	219
3525	19395	merc	S Class	2001	Automatic	108800	Diesel	325	31.5473	3.2	169
3532	17531	merc	S Class	1999	Automatic	34000	Petrol	145	24.8735	3.2	599
3533	18761	merc	S Class	2001	Automatic	66000	Petrol	570	24.7744	3.2	449
3535	18813	merc	S Class	1998	Automatic	43534	Petrol	265	23.2962	6.0	199
3536	17891	merc	S Class	2002	Automatic	24000	Petrol	570	20.7968	5.0	699
3707	18746	hyundi	Santa Fe	2002	Manual	94000	Petrol	325	30.2671	2.4	120
4091	12995	merc	SLK	1998	Automatic	113557	Petrol	265	31.8368	2.3	199
4094	19585	merc	SLK	2001	Automatic	69234	Petrol	325	30.8839	2.0	399
4096	14265	merc	SLK	2001	Automatic	48172	Petrol	325	29.7058	2.3	399
4097	15821	merc	SLK	2002	Automatic	61400	Petrol	325	29.6568	2.3	399
4098	13021	merc	SLK	2001	Automatic	91000	Petrol	325	30.3248	2.3	395
4099	12660	merc	SLK	2001	Automatic	42087	Petrol	325	29.9404	2.3	449
4101	17521	merc	SLK	2002	Automatic	75034	Petrol	325	30.1380	2.3	499
4107	13977	merc	SLK	2000	Automatic	87000	Petrol	265	27.2998	3.2	149
4108	18679	merc	SLK	2000	Automatic	113237	Petrol	270	26.8765	3.2	399
4109	14598	merc	SLK	2001	Automatic	64476	Petrol	325	27.4628	3.2	499
4847	17268	bmw	Z3	1997	Manual	49000	Petrol	270	34.9548	1.9	395
4848	12137	bmw	Z3	1999	Manual	58000	Petrol	270	35.3077	1.9	395
4849	13288	bmw	Z3	1999	Manual	74282	Petrol	245	35.4143	1.9	399
4850	19172	bmw	Z3	2001	Manual	60000	Petrol	325	30.7305	2.2	595
4851	16577	bmw	Z3	2002	Automatic	16500	Petrol	325	29.7614	2.2	149

Let us see the leverage and studentized residual for this observation.

```
# Leverage
leverage[4851]
```

0.047120455781282225

```
# Studentized residual
out.student_resid[4851]
```

4.938606329343604

Do you see what makes this point influential?

7.4 Collinearity

Collinearity refers to the situation when two or more predictor variables have a high linear association. Linear association between a pair of variables can be measured by the correlation coefficient. Thus the correlation matrix can indicate some potential collinearity problems.

7.4.1 Why and how is collinearity a problem

(Source: page 100-101 of book)

The presence of collinearity can pose problems in the regression context, since it can be difficult to separate out the individual effects of collinear variables on the response.

Since collinearity reduces the accuracy of the estimates of the regression coefficients, it causes the standard error for $\hat{\beta}_j$ to grow. Recall that the t-statistic for each predictor is calculated by dividing $\hat{\beta}_j$ by its standard error. Consequently, collinearity results in a decline in the t-statistic. As a result, in the presence of collinearity, we may fail to reject $H_0: \beta_j = 0$. This means that the power of the hypothesis test—the probability of correctly detecting a non-zero coefficient—is reduced by collinearity.

7.4.2 How to measure collinearity/multicollinearity

(Source: page 102 of book)

Unfortunately, not all collinearity problems can be detected by inspection of the correlation matrix: it is possible for collinearity to exist between three or more variables even if no pair of variables has a particularly high correlation. We call this situation multicollinearity. Instead of inspecting the correlation matrix, a better way to assess multicollinearity is to compute the variance inflation factor (VIF). The VIF is variance inflation factor the ratio of the variance of $\hat{\beta}_j$ when fitting the full model divided by the variance of $\hat{\beta}_j$ if fit on its own. The smallest possible value for VIF is 1, which indicates the complete absence of collinearity. Typically in practice there is a small amount of collinearity among the predictors. As a rule of thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of collinearity.

The estimated variance of the coefficient β_j , of the j^{th} predictor X_j , can be expressed as:

$$\label{eq:var} \hat{var}(\hat{\beta}_j) = \frac{(\hat{\sigma})^2}{(n-1)\hat{var}(X_j)}.\frac{1}{1-R_{X_j|X_{-j}}^2},$$

where $R_{X_j|X_{-j}}^2$ is the *R*-squared for the regression of X_j on the other covariates (a regression that does not involve the response variable Y).

In case of simple linear regression, the variance expression in the equation above does not contain the term $\frac{1}{1-R_{X_j|X_{-j}}^2}$, as there is only one predictor. However, in case of multiple linear regression, the variance of the estimate of the j^{th} coefficient $(\hat{\beta}_j)$ gets inflated by a factor of $\frac{1}{1-R_{X_j|X_{-j}}^2}$ (Note that in the complete absence of collinearity, $R_{X_j|X_{-j}}^2=0$, and the value of this factor will be 1).

Thus, the Variance inflation factor, or the VIF for the estimated coefficient of the j^{th} predictor X_j is:

$$VIF(\hat{\beta}_{j}) = \frac{1}{1 - R_{X_{j}|X_{-j}}^{2}}$$
 (7.8)

#Correlation matrix
train.corr()

	carID	year	$_{ m mileage}$	tax	mpg	engineSize	price
carID	1.000000	0.006251	-0.001320	0.023806	-0.010774	0.011365	0.012129
year	0.006251	1.000000	-0.768058	-0.205902	-0.057093	0.014623	0.501296
$_{ m mileage}$	-0.001320	-0.768058	1.000000	0.133744	0.125376	-0.006459	-0.478705

	carID	year	mileage	tax	mpg	engineSize	price
tax	0.023806	-0.205902	0.133744	1.000000	-0.488002	0.465282	0.144652
mpg	-0.010774	-0.057093	0.125376	-0.488002	1.000000	-0.419417	-0.369919
engineSize	0.011365	0.014623	-0.006459	0.465282	-0.419417	1.000000	0.624899
price	0.012129	0.501296	-0.478705	0.144652	-0.369919	0.624899	1.000000

Let us compute the Variance Inflation Factor (VIF) for the four predictors.

```
X = train[['mpg','year','mileage','engineSize']]
X.columns[1:]
```

Index(['year', 'mileage', 'engineSize'], dtype='object')

```
from statsmodels.stats.outliers_influence import variance_inflation_factor
from statsmodels.tools.tools import add_constant
X = add_constant(X)
vif_data = pd.DataFrame()
vif_data["feature"] = X.columns

for i in range(len(X.columns)):
    vif_data.loc[i,'VIF'] = variance_inflation_factor(X.values, i)
print(vif_data)
```

	feature	VIF
0	const	1.201579e+06
1	mpg	1.243040e+00
2	year	2.452891e+00
3	${\tt mileage}$	2.490210e+00
4	engineSize	1.219170e+00

As all the values of VIF are close to one, we do not have the problem of multicollinearity in the model. Note that the VIF of year and mileage is relatively high as they are the most correlated.

Q1: Why is the VIF of the constant so high?

Q2: Why do we need to include the constant while finding the VIF?

7.4.3 Manual computation of VIF

```
#Manually computing the VIF for year
ols_object = smf.ols(formula = 'price~mpg', data = train)
model_log = ols_object.fit()
model_log.summary()
```

Dep. Variable:	price]	R-square	d:	0.137
Model:	OLS		Adj. R-squared:		0.137
Method:	Least Squa	res	F-statisti	c:	786.0
Date:	Wed, 06 Mar	2024	Prob (F-	statistic):	1.14e-160
Time:	17:04:39]	Log-Like	lihood:	-54812.
No. Observations:	4960		AIC:		1.096e + 05
Df Residuals:	4958]	BIC:		1.096e + 05
Df Model:	1				
Covariance Type:	nonrobus	t			
coef	std err	t	P> $ t $	[0.025	0.975]
Intercept 4.144e+0	04 676.445	61.258	0.000	4.01e+04	4.28e + 04
mpg -374.297	5 13.351	-28.036	0.000	-400.471	-348.124
Omnibus:	2132.208	Durbi	n-Watso	n: 0	.320
Prob(Omnibus)	0.000	Jarque-Bera (JB): 13751.995			
Skew:	1.942	Prob(JB):			0.00
Kurtosis:	10.174	Cond	No.	1	158.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
(13.351/9.338)**2
```

2.044183378279958

```
#Manually computing the VIF for year
ols_object = smf.ols(formula = 'price~year+mpg+engineSize+mileage', data = train)
model_log = ols_object.fit()
model_log.summary()
```

Dep. Varia	able:	price	F	R-squared	d:	0.660
Model:		OLS	Adj. R-squared:		0.660	
Method:		Least Squar	es F	`-statistic	: :	2410.
Date:	W	ed, 06 Mar :	2024 F	Prob (F-s	tatistic):	0.00
Time:		17:01:18	\mathbf{L}	og-Likel	ihood:	-52497.
No. Obser	${f vations:}$	4960	A	AIC:		1.050e + 05
Df Residua	als:	4955	Е	BIC:		1.050e + 05
Df Model:		4				
Covariance	e Type:	nonrobust				
	coef	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
Intercept	-3.661e+06	1.49e + 05	-24.593	0.000	-3.95e + 06	-3.37e + 06
year	1817.7366	73.751	24.647	0.000	1673.151	1962.322
\mathbf{mpg}	-79.3126	9.338	-8.493	0.000	-97.620	-61.006
${\bf engine Size}$	1.218e + 04	189.969	64.107	0.000	1.18e + 04	1.26e + 04
$\mathbf{mileage}$	-0.1474	0.009	-16.817	0.000	-0.165	-0.130
Omni	bus:	2450.973	Durbii	n-Watsor	n: 0	541
Prob(Omnibus):	0.000	Jarque	e-Bera (J	B): 3106	60.548
Skew:		2.045	Prob(3	JB):	0.	.00
Kurto	osis:	14.557	Cond.	No.	3.83	e+07

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.83e+07. This might indicate that there are strong multicollinearity or other numerical problems.

```
#Manually computing the VIF for year
ols_object = smf.ols(formula = 'year~mpg+engineSize+mileage', data = train)
model_log = ols_object.fit()
model_log.summary()
```

Dep. Variable:	year	R-squared:	0.592
Model:	OLS	Adj. R-squared:	0.592
Method:	Least Squares	F-statistic:	2400.
Date:	Wed, $06 \text{ Mar } 2024$	Prob (F-statistic):	0.00
Time:	17:00:13	Log-Likelihood:	-10066.
No. Observations:	4960	AIC:	2.014e+04
Df Residuals:	4956	BIC:	2.017e + 04
Df Model:	3		
Covariance Type:	nonrobust		

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025	0.975]
Intercept	2018.3135	0.140	1.44e + 04	0.000	2018.039	2018.588
mpg	0.0095	0.002	5.301	0.000	0.006	0.013
${\bf engine Size}$	0.1171	0.037	3.203	0.001	0.045	0.189
$\mathbf{mileage}$	-9.139e-05	1.08e-06	-84.615	0.000	-9.35e-05	-8.93e-05
Omnib	ous:	2949.664	Durbin-	Watson	1.1	61
Prob(0	Omnibus):	0.000	Jarque-	Bera (JI	3): 63773	3.271
Skew:		-2.426	$\operatorname{Prob}(\operatorname{JH}$	3):	0.0	00
Kurtos	sis:	19.883	Cond. I	No.	1.91ϵ	e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.91e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
#VIF for year 1/(1-0.592)
```

2.4509803921568625

Note that year and mileage have a high linear correlation. Removing one of them should decrease the standard error of the coefficient of the other, without significantly decrease R-squared.

```
ols_object = smf.ols(formula = 'price~mpg+engineSize+mileage+year', data = train)
model_log = ols_object.fit()
model_log.summary()
```

Table 7.6: OLS Regression Results

Dep. Variable:	price	R-squared:	0.660
Model:	OLS	Adj. R-squared:	0.660
Method:	Least Squares	F-statistic:	2410.
Date:	Tue, 07 Feb 2023	Prob (F-statistic):	0.00
Time:	21:39:45	Log-Likelihood:	-52497.
No. Observations:	4960	AIC:	1.050e + 05
Df Residuals:	4955	BIC:	1.050e + 05
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025]	0.975]
Intercept	-3.661e + 06	1.49e + 05	-24.593	0.000	-3.95e + 06	-3.37e + 06
mpg	-79.3126	9.338	-8.493	0.000	-97.620	-61.006
engineSize	1.218e + 04	189.969	64.107	0.000	1.18e + 04	1.26e + 04
mileage	-0.1474	0.009	-16.817	0.000	-0.165	-0.130
year	1817.7366	73.751	24.647	0.000	1673.151	1962.322

Omnibus:	2450.973	Durbin-Watson:	0.541
Prob(Omnibus):	0.000	Jarque-Bera (JB):	31060.548
Skew:	2.045	Prob(JB):	0.00
Kurtosis:	14.557	Cond. No.	3.83e + 07

Removing mileage from the above regression.

```
ols_object = smf.ols(formula = 'price~mpg+engineSize+year', data = train)
model_log = ols_object.fit()
model_log.summary()
```

Table 7.9: OLS Regression Results

Dep. Variable:	price	R-squared:	0.641
Model:	OLS	Adj. R-squared:	0.641
Method:	Least Squares	F-statistic:	2951.
Date:	Tue, 07 Feb 2023	Prob (F-statistic):	0.00
Time:	21:40:00	Log-Likelihood:	-52635.
No. Observations:	4960	AIC:	1.053e + 05
Df Residuals:	4956	BIC:	1.053e + 05
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-5.586e + 06	9.78e + 04	-57.098	0.000	-5.78e + 06	-5.39e + 06
mpg	-101.9120	9.500	-10.727	0.000	-120.536	-83.288
engineSize	1.196e + 04	194.848	61.392	0.000	1.16e + 04	1.23e + 04
year	2771.1844	48.492	57.147	0.000	2676.118	2866.251

Omnibus:	2389.075	Durbin-Watson:	0.528
Prob(Omnibus):	0.000	Jarque-Bera (JB):	26920.051
Skew:	2.018	Prob(JB):	0.00
Kurtosis:	13.675	Cond. No.	1.41e + 06

Note that the standard error of the coefficient of *year* has reduced from 73 to 48, without any large reduction in R-squared.

7.4.4 When can we overlook multicollinearity?

- The severity of the problems increases with the degree of the multicollinearity. Therefore, if there is only moderate multicollinearity (5 < VIF < 10), we may overlook it.
- Multicollinearity affects only the standard errors of the coefficients of collinear predictors. Therefore, if multicollinearity is not present for the predictors that we are particularly interested in, we may not need to resolve it.
- Multicollinearity affects the standard error of the coefficients and thereby their p-values, but in general, it does not influence the prediction accuracy, except in the case that the coefficients are so unstable that the predictions are outside of the domain space of the response. If our sole aim is prediction, and we don't wish to infer the statistical significance of predictors, then we may avoid addressing multicollinearity. "The fact that some or all predictor variables are correlated among themselves does not, in general, inhibit our ability to obtain a good fit nor does it tend to affect inferences about mean responses or predictions of new observations, provided these inferences are made within the region of observations" Neter, John, Michael H. Kutner, Christopher J. Nachtsheim, and William Wasserman. "Applied linear statistical models." (1996): 318.

A Datasets, assignment and project files

Datasets used in the book, assignment files, project files, and prediction problems report tempate can be found here