Explanatory Notes for 6.390

Shaunticlair Ruiz (Current TA)

Fall 2022

Regression Visualization

Visualizing our Model

With **one variable**, we've seen that our linear model simply turns into $\theta_1 x_1 + \theta_0$. As you'd expect, on a plot, this looks like a **line** in the **2D plane**.

This example of linear regression is not a great fit: $(\theta_0 = 10, \theta_1 = 1)$

We're trying to get our line as **close as possible** to the points, hoping to find a linear pattern. We're **fitting** our line to the data.

This line is much better fitted to the data: $(\theta_0 = 1, \theta_1 = 3)$

What does this like if we have **two** variables? You need a 3D space, with 2 dimensions for the input.

Extending our line into a second dimension, we create a **plane**.

This plane is **fitted** the same way our line was. Notice that y is our **height**: this is the **output** of our regression.

Higher-dimension versions are hard to visualize. So, instead, we don't try, and call it a **hyperplane**.

Definition 1

A hyperplane is a higher-dimensional version of a plane - a flat surface that continues on forever.

We use it to represent our linear hypothesis for the purpose of regression.

The "height" ($(d+1)^{th}$ dimension) of this plane at a certain point represents the output of our linear hypothesis at that point.

Our line was a **1-D** object in a **2-D** plane. Our plane was a **2-D** object in a **3-D** space. So, our hyperplane is a d dimensional object in a d + 1 dimensional space.

With this intuition, we can imagine our **hyperplane** as trying to get as **close** to all of the data points as it possibly can.

Another Interpretation

There's another, similar way to interpret our model

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \dots + \theta_d x_d \tag{1}$$

Before, we took θ_k as just an **extension** of the mx + b formula: θ_k tells us how much x_k affects our output.

However, we can also think about the **relative** scale of each θ_k : if θ_2 is **larger** than θ_1 , then x_2 has a **stronger** effect on the output than x_1 .

We can say that x_2 weighs more heavily in our calculation: it has more say in the result.

Because of that, we sometimes call θ_k the **weight** for x_k .

Definition 2

A weight is a parameter that tells us how strongly a variable influences our output.

It is usually a scalar that we multiply by our variable.