

UNIVERSITATEA TRANSILVANIA DIN BRAŞOV

PROIECT DE AN LA DISCIPLINA Organe de Maşini

Autor: Student Danila Mihai Bogdan

Programul de studii: Robotică

Grupa 4LF801 A

Coordonatori: Prof. univ. dr. ing. Gheorghe MOGAN Dr. ing. Eugen BUTILĂ Drd. ing. Diana BUZDUGAN

UNIVERSITATEA TRANSILVANIA DIN BRAŞOV

FACULTATEA DE INGINERIE MECANICĂ

Disciplina Organe de Maşini

MEMORIU TEHNIC

Autor: Student Danila Mihai Bogdan Grupa 4LF801 A

Coordonatori: Prof. univ. dr. ing. Gheorghe MOGAN Dr. ing. Eugen BUTILĂ Drd. ing. Diana BUZDUGAN

CUPRINS

	Introd	ucere		5
1.	Aspec	te gener	rale și tema de proiectare	6
	1.1.	Aspec	cte generale	6
	1.2.	Obiec	ctive și date de proiectare	6
		1.2.1.	Obiectivele proiectului	6
		1.2.2.	Date de proiectare	7
2.	Schen	na struct	turală funcțional-constructivă și parametri cinetostatici	7
	2.1.	Schem	na structurală funcțional-constructivă	7
	2.2.	Prame	tri cinetostatici	8
3.	Predin	nension	area angrenajului	10
	3.1.	Alege	rea tipului oțelului, tratamentelor termice și tehnologiilor	10
	3.2.	Predin	nensionarea angrenajului cilindric	13
		3.2.1.	Determinarea modulului frontal	13
		3.2.2.	Standardizarea modulului și parametri geometrici principali	15
		3.2.3.	Modelarea dinților roților în angrenare (CATIA)	15
		3.2.4.	Standardizarea distanței dintre axe și parametri geometrici principali	17
		3.2.5.	Modelarea și verificarea angrenajului deplasat (CATIA)	18
		3.2.6.	Modelarea și verificarea angrenării (CATIA)	19
4.	Predin	nension	area arborilor și alegerea rulmenților	21
	4.1.	Alege	rea tipului oțelului, tratamentelor termice și tehnologiilor	21
	4.2.	Alege	rea structurilor constructive alubansamblelor arborilor	23
		4.2.1.	Alegerea materialelor arborilor și tratamentelor termice	23
		4.2.2.	Calculul de predimensionare al arborilor	23
		4.2.3.	Standardizarea capetelor arborilor de intrare/ieșire	23
	4.3.	Alege	rea rulmenților și montajelor	23
		4.3.1.	Alegerea rulmenților	23
		4.3.2.	Alegerea montajelor rulmenților	24
5.	Model	larea și	simularea cinematică a mecanismului	25
	5.1.	Gener	area și simularea modelului cinematic	25
6.	Verifi	carea (d	limensionarea) angrenajului	26
	6.1.	Verific	carea (dimensionarea) angrenajului cilindric	31
		6.1.1.	Geometria angrenajului și roților cilindrice	31
		6.1.2.	Alegerea procedeelor de prelucrare și de lubrifiere (ungere)	32
		6.1.3.	Determinarea factorilor de corecție.	33
		6.1.4.	Determinarea coeficienților de siguranță și verificare/dimensionare	34
		6.1.5.	Parametri de executie și montaj a angrenajului si roților dințate conice	34

7.	Forțe î	n angrenajul cilindric	35
	7.1.	Schema forțelor din angrenaj	35
	7.2.	Determinarea forțelor din angrenaj	36
8.	Aleger	rea și calculul asamblărilor cu pene paralele	37
	8.1.	Alegerea formelor și dimensiunilor penelor paralele	37
	8.2.	Calculul asamblărilor cu pene paralele	37
9.		tarea formei și generarea modelelor în catia ale parturilor pentru subansamblele pale	37
10.	Genera	are subansamble rulmenți, arbori și angrenaj	38
11.	Genera	are subansamble carcase	41
12.	Genera	are model 3D ansambu	42
13.	Verific	carea arborilor	43
	13.1.	Verificarea arborelui de intrare	43
14.	Verific	carea rulmenților	51
	14.1.	Verificare rulmenți radiali pentru arborele de intrare	51
15.	Model	area și generarea desenului de ansamblu	53
	Biblio	grafie	54

ANEXE (aplcații în CATIA)

- 1. Modelul dintilor rotilor nedeplasate în angrenare
- 2. Modelul angrenajului cilindric cu danturi deplasate
- 3. Model pentru simularea și verificarea angrenării
- 4. Modelul 3D al reductorului
- 5. Desenul de ansamblu al reductorului
- 6. Desene de execuție

INTRODUCERE

Scopul proiectului de an la disciplina *Organe de maşini* implică dezvoltarea de abilități practice ale studenților de proiectare și sintetizare a cunoștințelor de mecanică, rezistența materialelor, tehnologia materialelor, organe de mașini I și reprezentare grafică în decursul anilor I și II, precum și modul în care aceștia pot rezolva în mod independent o lucrare de proiectare, pe baza algoritmilor, metodelor specifice și programelor avansate din domeniu.

Autorul,

1. ASPECTE GENERALE ȘI TEMA DE PROIECTARE

1.1 ASPECTE GENERALE

Reductorul de turație este un sistem mecanic demontabil, cu mișcări relative între elemente active (de obicei, roți dințate) care are ca <u>parametri de intrare</u>, puterea (momentul de torsiune) și turația (viteza unghiulară) arborelui de intrare, și ca <u>parametri de ieșire</u>, puterea (momentul de torsiune) și turația (viteza unghiulară) arborelui de ieșire.

Pe lângă <u>funcția principală</u> de transmitere a momentului de torsiune și mișcării de rotație prin angrenajele cu roti dințate conice și cilindrice se urmărește și îndeplinirea următoarelor <u>funcții auxiliare</u>: respectarea prevederilor de interschimbabilitate cerute de standardele din domeniu; respectarea condițiilor de protecție a omului și mediului.

1.2 OBIECTIVE ȘI DATE DE PROIECTARE

1.2.1 OBJECTIVELE PROJECTULUI

Obiectivul principal

Dobândirea și dezvoltarea de cunoștințe și abilități pentru identificarea, calculul și proiectarea formei elementelor componente ale transmisiilor mecanice, cu precădere reductoare conico-cilindrice, în vederea execuției și montajului acestora.

Obiective specifice

- dezvoltarea de cunoştinţe fundamentale privind calculul şi proiectarea elementelor transmisiilor mecanice, inclusiv aspecte privind alegerea materialelor şi a tehnologiile de execuţie şi montaj;
- calculul elementelor şi subansamblelor specializate ale transmisiilor mecanice de tip reductor de turație conico-cilindric (angrenaje, roți dințate, arbori, rulmenți etc.);
- dezvoltarea de cunoștințe de identificare şi proiectare a formelor elementelor şi subansamblelor transmisiilor mecanice, cu precădere a reductoarelor conico-cilindrice;
- dezvoltarea de abilități practice de utilizare a pachetelor performante de calcul (MDESIGN) și pentru proiectare (CATIA);
- dezvoltarea de abilități practice de elaborare a documentației grafice (modele 3D, desene de ansamblu și de execuție);
- dezvoltarea de abilități practice de elaborare a documentației scrise (memoriul tehnic).

1.2.2 DATE DE PROIECTARE

Tema de proiectare a unui produs, de obicei, este lansată de către un beneficiar și reprezintă o înșiruire de date, cerințe și condiții tehnice care constituie caracteristicile și performanțele impuse viitorului produs.

În tabelul următor se prezintă datele de proiectare impuse pentru o situație practică cerută, unde P_i [kW] reprezintă puterea la intrare, n_i [rot/min] - turația la intrare, i_R - raportul de transmitere al reductorului, L_h^{imp} [ore] - durata de funcționare impusă, PA - planul axelor roților angrenajului cilindric: orizontal (H) sau vertical (V), z_1^{cil} - numărul de dinți ai pinionului cilindric.

P _i [kW]	n _i [rot/min]	i_R	L _{h imp} [ore]	PA	z ₁ ^{cil}
12	3000	4	11000	Vs	19

Condiții de funcționare și constructive

Condiții de funcționare:

- tipul mașinii (utilajului) în care se integrează: elevator auto sau stand testare frâne;
- tipul încărcării exterioare: alternativă cu șocuri;
- tipul motorului de acționare: electric, asincron cu rotorul în scurtcircuit;
- nivel de vibrații și zgomot, max 25 dB.
- caracteristicile mediului în care funcționeză: temperaura (- $20 \dots 60 \, ^{\circ}$ C), umiditate max $30 \, \text{g/m}^3$;

Condiții constructive: ieșirea pe partea stângă; arborele de ieșire plin.

<u>Condiții ecologice</u>: utilizarea de materiale și tehnologii eco, reciclarea materialelor, protecția vieții; volum minim; greutate minimă.

Domenii de utilizare

Reductorul de turație de proiectat se poate întegra în mașini de ridicat și transportat (de ex. elevatoare pentru ridicarea autoturismelor).

2. SCHEMA STRUCTURALĂ FUNCȚIONAL-CONSTRUCTIVĂ ȘI PARAMETRI CINETOSTATICI

2.1 SCHEMA STRUCTURALĂ FUNCȚIONAL-CONSTRUCTIVĂ

În figură se prezintă schema structurală funcțional-constructivă generală a reductoarelor conicocilindrice în două trepte. Din punct de vedere funcțional se evidențiază următoare elemente: I – angrenaj conic ortogonal cu dantură înclinită (curbă); II – angrenaj cilindic cu dantură înclinată; 1^{I} – pinion conic; 2^{I} – roată conică; 1^{II} – pinion cilindric; 2^{II} – roată cilindrică; A_{1} – arborele de intrare; A_{2} – arborele intermediar; A_{3} – arborele de ieșire; $L_{A}^{A_{1}}$ – lagărul A_{1} ; $L_{B}^{A_{2}}$ – lagărul A_{2} ; $L_{B}^{A_{3}}$ – lagărul A_{3} ; $L_{B}^{A_{3}}$ – lagărul A_{4} al arborelui A_{5} ; $L_{B}^{A_{4}}$ – lagărul A_{5} al arborelui A_{5} ; $L_{B}^{A_{5}}$ – lagărul A_{5} 0 al arborelui A_{5} 1.

Din punct de vedere constructiv, reductorul de turație formează un ansamblu compus din subansamble și elemente constructive. Subansamblele sunt structuri independente, care se evidențiază printr-un grup compact compus, în configurație minimală, din cel puțin două elemente constructive sau din alte subansamble și elemente constructive, în interacțiune permanentă, formate ținându-se cont, cu precădere, de tehnologiile de montai, de întretinere si de exploatare.

În cazul reductoarelor conico-cilindrice se definesc următoarele subansamble: S_C – subasamblul carcasă; S_{A_1} - <u>subansamblul arborelui de intrare</u>, format din pinionul cilindric (1^I) fixat pe arborele de intrare (A_1) care la rândul său este fixat pe două lagăre ($L_A^{A_1}$ și $L_B^{A_1}$), se sprijină pe subansamblul carcasa S_C ; S_{A_2} - <u>subansamblul arborelui de ieșire</u>, format din roata cilindrică (2^I) fixat pe arborele de ieșire (A_2) care la rândul său este fixat pe două lagăre ($L_A^{A_2}$ și $L_B^{A_2}$), se sprijină pe subansamblul carcasa S_C .

2.2 PARAMETRI CINETOSTATICI

Numere de dinți și rapoarte de transmitere/angrenare

Considerând valorile numerelor de dinți ai pinionului cilindric, $\mathbf{z}_1^I = \mathbf{z}_1^{\text{cil}}$ se determină valoarea numărului de dinți ai roții cilindrice,

$$z_2^I = z_1^{cil} i_R = 19 * 4 = 76$$

Se adoptă, $z_2^I = 76$

Astfel, se recalculează rapoartul de angrenare al angrenajului cilindric și al reductorului,

$$u_{rec1}^{I} = \frac{z_2^{I}}{z_1^{I}} = \frac{76}{19} = 4,$$

și raportul de transmitere,

$$i_{R rec1}^{I} = u_{rec1}^{I} = 4.$$

În tabelul următor se prezintă sintetic aceste valori precum și abaterea A_b rapotului de transmitere recalculat față de cel impus care respectă abatera acceptabilă de max $\pm 2\%$.

$\mathbf{z}_1^{\mathrm{I}}$	$\mathbf{z}_2^{\mathrm{I}}$	u _{rec1}	i ^I rec1	A_{b}
19	76	4	4	0%

Puteri, turații și momente de torsiune

Valorile puterilor la nivelul arborilor reductorului sunt:

$$P_1 = P_i = 12 \text{ kW},$$

$$P_2 = \eta^I P_i = 0.96 * 12 = 11.52 \text{ kW},$$

Valorile turațiilor la nivelul arborilor reductorului sunt:

$$n_1 = n_i = 3000 \text{ rot/min},$$

$$n_2 = \frac{n_1}{u_{rec_1}^I} = \frac{3000}{4} = 750 \text{ rot/min.}$$

Valorile momentelor de torsiune la nivelul arborilor reductorului sunt:

$$M_{t1} = M_{ti} = \frac{30}{\pi} \cdot 10^6 \frac{P_i}{n_i} = \frac{30}{\pi} \cdot 10^6 \frac{12}{3000} = 38197.1863 Nmm,$$

$$M_{t2} = M_{t1} \; u_{rec1}^{I} \eta I = 38197.1863 \, *\, 4*\, 0.96 = 146677.1955 Nmm. \label{eq:mt2}$$

Obs. S-a considerat $\eta^{I} = 0.96$, randamentul angrenajului cilindric.

Aceste valori sunt sintetzate în următorul tabel

Arborele	Puterea [kW]	Turația [rot/min]	Momentul de torsiune [Nmm]
Arborele intrare (A ₁)	$P_1 = 12$	$n_1 = 3000$	$M_{t1} = 38197.1863$
Arborele de ieşire (A ₂)	$P_2 = 11.52$	$n_2 = 750$	$M_{t2} = 146677.1955$

3. PREDIMENSIONAREA ANGRENAJULUI

3.1 ALEGEREA TIPULUI OŢELULUI, TRATAMENTELOR TERMICE ŞI TEHNOLOGIILOR

Alegerea tipului oțelului și tratamentelor termice

Deoarece, $M_{ti} = 38197.1863 \text{Nmm} > 30000...40000 \text{ Nmm}$, se va adopta pentru roțile angrenajului oțel de cementare.

Alegerea oțelului, durităților și rezistențelor

Pentru ambele roți dințate se adoptă oțelul, 18MoMnNi13 (oțel cu 0,18% C aliat cu Molibden, Mangan și Nichel 1,3%) cu caracteristicile mecanice din tabel.

Oţelul	Limita de curgere, σ _c [MPa]	Rezistenţa la rupere, σ _r [MPa]	Tratamentul termic de bază	Duritățile flancurilor dinților roților	Duritățile zonelor interioare ale dinților	Tensiunea limită la contact, σ _{Hlim} [MPa]	Tensiunea limită la încovoiere, σ_{Flim} [MPa]
C15,C20	280	390	Cementare	$HRC_{1,2} = 60$	$HB_{1,2} = 130$	1440	145

Procedee de prelucrare a danturii

Corespunzător tipului materialului și tratamentului termic adoptate se impune prelucrarea prin <u>frezare</u> înainte de cementare și prin <u>rectificare</u> după călire și revenre înaltă.

3.2 PREDIMENSIONAREA ANGRENAJULUI CILINDRIC

3.2.1 DETERMINAREA MODULULUI FRONTAL

Schema de calcul

În figură se prezintă schema de calcul a angrenajului cilindric în care se evidențiază momentul de torsiune al pinionului (T_1) și parametri geometrici de calcul: diametrul de divizare al pinionului (d_1) , diametrul de divizare al roții (d_2) , lățimea danturii pinionului (b_1) , lățimea danturii roții (b_2) , distanța dintre axe de referință (a), unghiul de înclinare a danturii (β) .

Date de intrare

În tabel sunt sintetizate valorile paramettilor de calcul cunoscuți.

Denumirea parametrului	Simbolul	Valoarea	Unitatea de măsură
Raportul de angrenare	u	4	-
Numărul de dinți al pinionului	\mathbf{z}_1	19	-
Momentul de torsiune al pinionului	T_1	38197.1863	Nmm
Turația pinionului conic	n_p	3000	rot/min
Durata de funcționare impusă	L _{h imp}	11000	ore
Tensiunea limită la oboseala de contact,	$\sigma_{ m Hlim}$	1440	MPa
Tensiunea limită la oboseala încovoiere,	σ_{Flim}	145	MPa
Unghiul de înclinare a danturii	β	15	° (grade)

Calculul modulului frontal din solicitarea de contact

Valoarea modului exterior din solicitarea de contact se determină cu relația,

$$m_{H}\!=\!\sqrt[3]{\frac{2T_{1}\;K_{A}K_{v}K_{H\beta}K_{H\alpha}}{\psi_{d}\;z_{1}^{\,2}\sigma_{HP}^{2}}(Z_{E}Z_{\epsilon}Z_{H}Z_{\beta})^{2}\frac{u\pm1}{u}}$$

conform datelor următoare:

m_H = 3.367545251683 mm

unde, T_1 reprezintă momentul de torsiune al pinionului (M_{t2}), u - raportul de angrenare al angrenajului cilindric, β - unghiul de înclinare a danturii, z_1 - numărul de dinți ai pinionului cilindric, K_A - factorul regimului de funcționare, K_v - factorul dinamic, $K_{H\alpha}$ - factorul repartizării neuniforme a sarcinii pe perechile de dinți aflate în angrenare pentru solicitarea de contact, $K_{H\beta}$ - factorul repartizării neuniforme

a sarcinii pe lungimea dintelui pentru solicitarea de contact, Z_E - factorul de elasticitate a materialelor roților, Z_H - factorul zonei de contact, Z_E - factorul gradului de acoperire pentru solicitarea de contact, $\psi_d = b/d_1$ - factorul de lățime, σ_{HP} - tensiunea admisibilă la solicitarea de contact.

Calculul modulului frontal exterior din solicitarea de încovoiere

Valoarea modului frontal din solicitarea de încovoiere se determină cu relația,

$$m_F = \sqrt[a]{\frac{2\,T_1}{\psi_\text{d}\,z_\text{l}^2\text{cos}\beta}\,K_A\,K_v\,K_{F\beta}K_{F\alpha}\,Y_\varepsilon Y_\beta\,\max\!\left(\!\frac{Y_\text{Sa1}Y_\text{Fa1}}{\sigma_\text{FP1}}\,,\frac{Y_\text{Sa2}Y_\text{Fa2}}{\sigma_\text{FP2}}\!\right)}$$

conform datelor următoare:

unde, T_1 reprezintă momentul de torsiune al pinionului (M_{t2}), u - raportul de angrenare al angrenajului cilindric, β - unghiul de înclinare a danturii curbe, z_1 - numărul de dinți al pinionului cilindric, K_A - factorul regimului de funcționare, K_v - factorul dinamic, $K_{F\alpha}$ - factorul repartizării neuniforme a sarcinii pe perechile de dinți aflate în angrenare pentru solicitarea de încovoiere, $K_{F\beta}$ - factorul repartizării neuniforme a sarcinii pe lungimea dintelui pentru solicitarea de încovoiere, Y_{Fa1} - factorul de formă a dinților pinionului cilindric, Y_{Fa2} - factorul de formă a dinților roții cilindrice, Y_{Sa1} - factorul de corecție a tensiunii la baza dinților pinionului cilindric, Y_{Sa2} - factorul de corecție a tensiunii la baza dinților roții cilindrice, Y_{β} - factorul înclinării dinților, Y_{ϵ} - factorul gradului de acoperire pentru solicitarea de încovoiere, $\psi_d = b/d_1$ - factorul de lățime, σ_{FP1} - tensiunea admisibilă la solicitarea de încovoiere pentru pinion, σ_{FP2} - tensiunea admisibilă la solicitarea de încovoiere pentru roată.

Modulul frontal calculat al danturii

Ținând cont de valorile modului frontal exterior obținute din calculele la contact și încovoiere reyultă, $m_c = max \ (m_H, m_F) = max \ (3.3675; 2.2975) = 3.3675mm$.

Astfel, se evidențiază că solicitarea de contact este solicitarea principală.

3.2.2 STANDARDIZAREA MODULULUI NORMAL ŞI PARAMETRI GEOMETRICI PRINCIPALI

Ca urmare a standardizării modulului normal se pot determina parametri principali ai angrenajului cilindric.

Parametrul	Simbolul	Valoarea [mm]	Observații
Modulul frontal calculat	m _c	3.3675	
Modulul normal calculat	$m_{nc} = m_c \cos \beta$	3.2527	
Modulul normal (standardizat)	m_n	3.5	
Modulul frontal	$m = \frac{m_n}{\cos \beta}$	3.6234	
Diametrul de divizare al pinonului	$d_1 = m z_1$	68.8458	$a = (d_1 + d_2)/2,$
Diametrul de divizare al roții	$d_2 = m z_2$	275.3834	172.1146=
Distanța dintre axe de referință	$a = \frac{m_n(z_1 + z_2)}{2\cos\beta}$	172.1146	(68.8458+275.3834)/2 (se verifică)
Lățimea danturii roții	$b_2 = \psi_d d_1$	69	

Lățimea danturii pinionului	$b_1 = b_2 + 46$	74	
-----------------------------	------------------	----	--

3.2.3 MODELAREA DINȚILOR ROȚILOR ÎN ANGRENARE (CATIA)

Personalizarea datelor de intrare în aplicația CATIA

− ⑤ `Date de intrare`=	Simbol teoretic	Semnificația
alfa_n=20deg	$\alpha_{\rm n}$	Unghiul de presiune (angrenare) normal [°]
ha_n=1	h _{an}	Coeficientul înălțimii capului dintelui
c_n=0.25	c _{0n} *	Coeficientul jocului la piciorul dintelui
rho_n=0.375	ρ_n^*	Coeficientul razei de racordare
	\mathbf{z}_1	Numărul de dinți ai pinionului
z1=19	\mathbf{z}_2	Numărul de dinți ai roții
z2=76	m_n	Modulul normal [mm]
m_n=3.5mm	β	Unghiul de înclinare a danturii [°]
	a_{w}	Distanța dintre axe (reală) [mm]
beta=15deg aw=172.115mm	X _{n1}	Coeficientul deplasării de profil a danturii pinionului (zero, roţi nedeplasate)
xn1=0 g=4mm	ø	Grosimea coroanei [mm]

Verificarea modelului CATIA

	_	
Simbol teoretic	Semnificația	Verificare
u	Raportul de angrenare	u >1; 4 > 1
m	Modulul frontal [mm]	$m > m_n$; 3.6234> 3.5
a	Distanța dintre axe de referință [mm]	$a = a_w;$ 172.115=172.115
α	Unghiul de presiune frontal [°]	$\alpha > \alpha_n$; 20,647 > 20
$\alpha_{ m w}$	Unghiul de angrenare frontal [°]	$\alpha_{\rm w} = \alpha$; 20,647 = 20,647
a_{w}	Distanța dintre axe reală [mm]	a _w (aw_rec) = a 172.115=172.115
X _{ns}	Suma coeficeienților depasărilor	$x_{ns} = 0$
X _{n2}	Coeficientul deplasării roții	$x_{n2} = 0$
$r_{ m d1}$	Raza cercului de divizare al pinionului [mm]	$r_{d1} + r_{d2} = a$
r_{d2}	Raza cercului de divizare al roţii [mm]	34.423+137.692=172.115
r_{w1}	Raza cercului de rostogolire al pinionului [mm]	$r_{w1} = r_{d1}; 34.423 = 34.423$
r_{w2}	Raza cercului de rostogolire al roții [mm]	$r_{w2} = r_{d2};$ 137.692=137.692
$r_{\rm fl}$	Raza cercului de picior al pinionului [mm]	$r_{fl} < r_{d1}; 30.048 < 34.423$
$r_{\rm f2}$	Raza cercului de picior al roții [mm]	$\begin{array}{c} r_{f2}\!<\!r_{d2};133.317<\\ 137.692 \end{array}$
r_{a1}	Raza cercului de divizare al pinionului [mm]	$r_{a1} > r_{d1}; 37.923 > 34.423$
r_{a2}	Raza cercului de divizare al roţii [mm]	$\begin{array}{c} r_{a2} > r_{d2}; \ 141.192 > \\ 137.692 \end{array}$
	$Simbol teoretic \\ u \\ m \\ a \\ \alpha \\ \alpha_w \\ a_w \\ x_{ns} \\ x_{n2} \\ r_{d1} \\ r_{d2} \\ r_{w1} \\ r_{w2} \\ r_{f1} \\ r_{f2} \\ r_{a1}$	Simbol teoretic Semnificația u Raportul de angrenare m Modulul frontal [mm] a Distanța dintre axe de referință [mm] α Unghiul de presiune frontal [°] αw Unghiul de angrenare frontal [°] aw Distanța dintre axe reală [mm] xns Suma coeficeienților depasărilor xn2 Coeficientul deplasării roții Raza cercului de divizare al pinionului [mm] Raza cercului de divizare al roții [mm] rul Raza cercului de rostogolire al pinionului [mm] rul Raza cercului de picior al pinionului [mm] rul Raza cercului de picior al roții [mm] rul Raza cercului de divizare al pinionului [mm] Raza cercului de divizare al pinionului [mm] Raza cercului de divizare al roții Raza cercului de divizare al pinionului [mm] Raza cercului de divizare al roții

Modelul CATIA

3.2.4 STANDARDIZAREA DISTANȚEI DINTRE AXE ȘI PARAMETRI GEOMETRICI PRINCIPALI

Alegerea (standardizarea) distanței dintre axe

Pentru distanța dintre axe standard, $a_w = 180$ mm, restricțiile impuse în vederea realizării angrenajului cu distanța dintre axe impusă - $0.5m_n < a_w - a \le m_n$ devin:

 $-0.5 *3.5 < 180 - 172.115 \le 3.5$ sau $1.75 < 7.885 \le 3.5$???. Se observă că una din restricții (a doua, maractă cu roșu) nu este îndeplinită și se impune modificarea parametrilor angrenajului nedeplasat.

Modificarea parametrilor angrenajului de referință

Considerând, u_{rec1}^{II} = 4, se determină numerele de dinți teoretice:

$$z_1 = \frac{2 \ a_w \cos \beta}{m_n (\ u_{rec1}^{II} + 1)} = \frac{2* \ 180 \ \cos 15}{3.5 \ (4+1)} = 19.8704;$$

$$z_2 = u \ z_1 = 3,9541 \ . \ 17,59 = 79.4818.$$

Ca urmare a rounjirilor se pot considera 4 perechi (z_1, z_2) posibile)

Numărul de dinți ai pinionului,	Numărul de dinți ai roții,	Raportul de angrenare recalculat, $u_{rec2}^{II} = z_2/z_1$	Abaterea raportului de angrenare, u ^{II} _{rec2} față de u ^{II} _{rec1} A _b [%]	Distanța dintre axe de referință recalculată, a ^r [mm]
LI	LZ		Ab [70]	L J
19	79	4.1578	0	177.5498

19	80	4.2105	0	179.3615
20	79	3.95	0	179.3615
20	80	4	0	181.1733
Obs. [z ₁] sau [z ₂				

Dintre cele 4 posibilități din acest table se adoptă perechea $(z_1, z_2) = (19,79)$ cu distanța dintre axe de referință recalculată $a^r = 177.5498 < 180$ mm. Astfel rezultă angrenaj PLUS, care asigură rezistențe la contact și încovoiere mărite.

Determinarea parametrilor geometrici ai angrenajului deplasat

Denumirea parametrului	Relația de calcul	Valoarea	Unitatea de măsură	Observații
Unghiul de presiune frontal	$\alpha = \operatorname{arctg}_{\cos \beta}^{\operatorname{tg} \alpha_{\mathbf{n}}}$	20,6468	[°]	$\alpha_n=20^{\rm o}$
Unghiul de angrenare frontal	$\alpha_{\rm w} = \arccos(\frac{a}{a_{\rm w}}\cos\alpha)$	22.6263	[°]	
Suma coeficienți depasărilor de profil ale danturilor roților	$x_{ns} = \frac{(inv\alpha_{W} - inv\alpha)(z_2 + z_1)}{2 tg\alpha \cos\beta}$	0.7326		
Coeficientul deplasării de profil a danturii pinionului	$x_{n1} = \frac{x_{ns}}{2} + \left(0.5 - \frac{x_{ns}}{2}\right) \frac{\log(z_2/z_1)}{\log\left(\frac{z_1 z_2}{100 (\cos \beta)^6}\right)}$	+0.4371		$x_{n2} = +0.2954$

Pentru asigurarea distanței dintre axe impusă (a_w = 180 mm) și pentru asigurarea unei angrenări corespunzătoare, în continuare, se vor considera următoarele valori:

Numărul de dinți ai pinionului, z ₁	Numărul de dinți ai roții, z ₂	Coeficientul deplasării de profil a danturii pinionului, x _{n1}	Coeficientul deplasării de profil a danturii roții, x _{n2}	Raportul de angrenare recalaculat, u ^{II} _{rec2}
19	79	+ 0.4371	0.2954	4

3.1.1 MODELAREA ŞI VERIFICAREA ANGRENAJULUI DEPLASAT (CATIA)

Personalizare date de intrare

i (calculat)

Verificarea modelului

verificarea moaetutui			-
Parametri angrenaj și roți `=	Simbol teoretic	Semnificația	Verificare
<i>=</i>	u	Raportul de angrenare	$u = u_{rec2}^{II}; 4.1578 \approx 4,158$
u=4.157894737=zi	m	Modulul frontal [mm]	$m > m_n$; 3.623 > 3.5
m_t=3.623mm=m_	a	Distanța dintre axe de referință [mm]	$a < a_w$; 177.55 < 180
a= 177.55mm = m_t	α	Unghiul de presiune frontal [°]	$\alpha < \alpha_{\rm w}, 20,647 < 22,22$
	α_{w}	Unghiul de angrenare fronatl [°]	(angr. PLUS)
alfa=20.647deg=at	$a_{ m w}$	Distanța dintre axe reală [mm] (verificare)	a _w > a; 180 > 177.55 (angr. PLUS)
	Xns	Suma coeficeienților depasărilor	$x_{ns} > 0$; 0,7325 > 0 (angr.
aw_rec=180mm=m	X _n 2	Coeficientul deplasării roții	PLUS)
rs=0.732595462=	r _{d1}	Raza cercului de divizare al pinionului [mm]	$r_{w1,2} > r_{d1,2}$ (angr. PLUS)
rd1=34.423mm=m	r _{d2}	Raza cercului de divizare al roţii [mm]	34.898 > 34.423; 145.102 >143.127
rd2=143.127mm=r	r_{w1}	Raza cercului de rostogolire al pinionului [mm]	$r_{d1} + r_{d2} = a;$ 34.423 + 143.127 = 177.55 $r_{w1} + r_{w2} = a_w;$
rw1=34.898mm=m	r_{w2}	Raza cercului de rostogolire al roții [mm]	34.898 + 145.102 = 180
rw2=145.102mm= rf1=31.578mm=m_	\mathbf{r}_{f1}	Raza cercului de picior al pinionului [mm]	$r_{\rm fl} < r_{\rm w1}; 31.578 < 34.898$
rf2=139.786mm=m	r_{f2}	Raza cercului de picior al roţii [mm]	$\begin{array}{l} r_{f2}\!<\!r_{w2};139.786\!<\!\\ 145.102 \end{array}$
ra1=39.339mm=(2	r_{a1}	Raza cercului de divizare al pinionului [mm]	$r_{a1} > r_{w1}$; 39.339 > 34.898
ra2=147.547mm=(r _{a2}	Raza cercului de divizare al roţii [mm]	$\begin{array}{c} r_{a2}\!>\!r_{w2};\ 147.547>\\ 145.102 \end{array}$

Modelul CATIA

Verificarea ascuțirii dinților roților

Prin măsurare pe modelul CATIA, $s_1 = 0,661$ mm și $s_2 = 1.833$ mm. $s_{1,2} > (0, 3...0,45)$ $m_n/2$; 0.661 > 0,6 ...0,9 mm (se verifică).

3.1.2 MODELAREA ȘI VERIFICAREA ANGRENĂRII (CATIA)

Modelul CATIA

Simularea angrenării și verificarea continuității

Schema continuității angrenării

Semnificațiile parametrilor: C – polul angrenării; T_1T_2 – segmentul teoretic de angrenare; AB – segmentul real de angrenare; K_1K_2 - segmentul de angrenare unipară (numai o pereche de dinți în contact); AK_1 și K_2B – segmente de angrenare bipară (două perechi de dinți în angrenare simultan); p_b – pasul pe cercul de bază

Determinarea valorii aproximative a gradului de acoperire frontal prin măsurare:

$$\epsilon_{\alpha}^{m} = \frac{AB}{P_{h}} = \frac{T_{1}B - T_{1}A}{p_{h}} = = \frac{22.582 - 7.348}{10.608} = 1.43608.$$

Valorile numerice sunt obținute prin măsurare de cel puțin două ori, conform tebelului de mai sus; în această relația s-au considerat mediile aritmetice ale valorilor măsurate.

Determinarea valorii exacte a gradului de acoperire frontal prin calcul cu relația,

$$\epsilon_{\alpha} \, = \, \frac{\left(2\cos\beta\,\sqrt{r_{a1}^2 - r_{b1}^2} + \sqrt{r_{a2}^2 - r_{b2}^2} - 2\;a_{w}\sin\alpha_{w}\right)}{2\,\pi\,m_{n}\cos\alpha} \, ,$$

pentru care din modelul CATIA rezultă,

Abaterea valorii gradului de acoperire obținut prin măsurare, $\epsilon_{\alpha}^{m} = 1.43608$, în raport cu gradul de acoperire calculat, $\epsilon_{\alpha} = 1.430123339$, este -0.4181%.

4. PREDIMENSIONAREA ARBORILOR ȘI ALEGEREA RULMENȚILOR

4.1 ALEGEREA STRUCTURILOR CONSTRUCTIVE ALUBANSAMBLELOR ARBORILOR

Subansamble arbori de intrare, intermediar și de ieșire

Semnificații parametri

 d_{A1}^{ST} – diametrul capului arborelui de intrare (standardizat), L_{A1}^{ST} – lungimea capului arborelui de intrare (standardizat), d_{A2}^{ST} – diametrul capului arborelui de ieșire (standardizat), L_{A2}^{ST} – lungimea capului arborelui de ieșire (standardizat), d_{A2}^{ST} – diametrul arborelui de ieșire (tronsonul de așezare a roții cilindrice), d_{R1} – diametrul interior al rulmenților arborelui de intrare, d_{R2} – diametrul interior al rulmenților arborelui de ieșire.

4.2 PREDIMENSIONAREA ARBORILOR

ALEGEREA MATERIALELOR ARBORILOR ȘI TRATAMENTELOR TERMICE 4.2.1

Caracteristicile ofelurilor și tratamentele termice								
Oțelul	Limita la încovoiere [1			Tratamentul	Duritatea la	Duritatea		
Oţeiui	re [MPa]		Pulsatorie	Alternant simetrică	termic	suprafață	în interior	
Marca	σ_c/σ_r	σ _{aiI}	σ _{aiI} σ _{aiII} σ _{aiIII} j		Îmbunătățire/ Cementare	HB/HRC	НВ	
	Arborele de intrare (corp comun cu pinionul cilindric)							
C15,C20	280/400	130	70	40	Cementare	60 HRC	130	
			Arbor	ele de ieșire				

C45	600/800	200	95	55	Îmbunătățire	250300 HB	250300
-----	---------	-----	----	----	--------------	--------------	--------

4.2.2. CALCULUL DE PREDIMENSIONARE A ARBORILOR

De ce predimensionare din solicitarea de torsiune?

Deoarece nu se poate face dimensionare cu laurea în considerare și a solicitării de încovoiere, necunoscând, la această etapă, valorile momentelor de încovoiere. Diagramele momentelor de încovoiere se vor putea determina numai după definitivarea configurațiilor arborilor ca urmare a generării formelor acestora ca modele 3D cavasifinale în CATIA.

Relația de calcul

$$d_{Ai} = \sqrt[3]{\frac{16 M_{ti}}{\pi \tau_{ati}}},$$

unde, considerând $i=1, 2, d_{A1}$ reprezintă diametrul arborelui de intrare, d_{A2} - diametrul arborelui de ieşire, M_{t1} - momentul de torsiune al arborelui de ieşire, τ_{at1} - tensiunea admisibilă la torsiune a materialului arborelui de intrare, τ_{at2} - tensiunea admisibilă la torsiune a materialului arborelui de intrare, τ_{at2} - tensiunea admisibilă la torsiune a materialului arborelui de de ieșire.

Valorile parametrilor de calcul

Parametrul	Arbore de intrare (A ₁)	Arbore de ieşire (A ₃)
Momentul de torsiune	$M_{t1} = 38197.1863 \text{ Nmm}$	$M_{t2} = 146677.1955 \text{ Nmm}$
Tensiunea admisibilă	$\tau_{at1} = 24 \text{ MPa}$	$\tau_{at2} = 27 \text{ MPa}$
Diametrul	$d_{A1} = 20mm$	$d_{A2} = 30$ mm

Obs. Valorile diametrelor se vor rotunji.

4.2.3 STANDARDIZAREA CAPETELOR ARBORILOR DE INTRARE/IEŞIRE

Formă și dimensiuni

Valorile parametrilor

Denumire parametru	Arbore de intrare (A1)	Arbore de ieşire (A2)
Diametrul standard	$d_{A1}^{ST} = 20 \text{ mm}$	$d_{A2}^{ST} = 30 \text{ mm}$
Lungimea standard	$L_{A1}^{ST} = 36 \text{ mm}$	$L_{A2}^{ST} = 58 \text{ mm}$

Obs. S-au adoptat capete de arbori cu lungime scurtă.

4.3 ALEGEREA RULMENŢILOR ŞI MONTAJELOR

4.3.1 ALEGEREA RULMENŢILOR

Date despre rulmenti

suic despite runnengi								
	Tipul		Di			nm]	Capacitatea	
Arborele	rulmentului	Simbol	d	7	В	Т		dinamică
	Tullilelitulul		d	ע	Б	1	a	C [N]
De intrare (var. I)	Radial cu bile	6006	30	55	13	-	-	12700
Do introno (von II)	Radial-axial cu bile	7206—	30	62	16		27	20400
De intrare (var. II)		B-JP	30	02	10	-	21	20400
De ieşire	Radial cu bile	6008	40	68	15	-	-	16600

Obs.

- diametrele tronsoanelor pe care se montează rulmenții: $d_{R1} = 30$ mm, $d_{R2} = 40$ mm;
- pentru arborele de ieșire se adoptă diametrul tronsonului pe care se montează roata cilindrică, $d_{A2}^r = d_{R2} + 10 \text{ mm} = 50 \text{ mm}.$

Montaje cu rulmenți

Arbore de intrare

Arbore de ieșire

5. MODELAREA ŞI SIMULAREA CINEMATICĂ A MECANISMULUI

5.1 GENERAREA ȘI SIMULAREA MODELULUI CINEMATIC

Model cinematic

Obs. La simularea prin intermediul modelului cinematic generat în CATIA se va urmări procesele de angrenare în regimul animație.

- 6. VERIFICAREA (DIMENSIONAREA) ANGRENAJULUI
- 6.1 VERIFICAREA (DIMENSIONAREA) ANGRENAJULUI CILINDRIC
- 6.1.1 GEOMETRIA ANGRENAJULUI ȘI ROȚILOR CILINDRICE

Geometria angrenajului și roților cilindrice

$$z_1 = 19$$
 $z_2 = 79$ $\beta = 15$ grade $a_W = 180$ mm $m_1 = 3.5$ mm $m_2 = 0.4371$ $m_3 = 0.2954$ $m_4 = 1$

 $\textbf{Obs. Pentru dantură dreaptă se consideră: } \beta = 0; \quad \mathbf{m_n} = \mathbf{m}; \quad \mathbf{x_{n1,2}} = \mathbf{x_{1,2}}; \quad \mathbf{\alpha_t} = \mathbf{\alpha_t}; \quad \mathbf{\alpha_{Wt}} = \mathbf{\alpha_{W}}$

Calculează

Parametrii angrenajului:

$$\alpha_{t} = \boxed{177.5498649400 \text{ mm}} \qquad \alpha_{t} = \boxed{20.64689648704 \text{ grade}} \qquad \alpha_{wt} = \boxed{22.62631012394 \text{ grade}} \qquad \alpha_{wn} = \boxed{21.91109675181 \text{ grade}}$$

$$m = \boxed{3.623466631434 \text{ grade}}$$

Parametrii rotilor:

Parametrii geometrici ai roților pentru verificarea conformităților de execuție:

Gradele de acoperire:

$$\varepsilon_{\rm mmin} = 1.2 < \varepsilon_{\alpha} = \boxed{1.43017797979} \text{ [mm]} < \varepsilon_{\rm mmax} = 2$$

$$\varepsilon_{\beta} = \boxed{1.76538558833} \text{ mm} \qquad \varepsilon_{\gamma} = \boxed{3.195563568122} \text{ mm}$$

Parametri angrenaj și roți echivalente:

$$z_{n1} = \boxed{20.90691825257} \qquad z_{n2} = \boxed{86.92876536597} \qquad d_{n1} = \boxed{73.17421388407} \text{ mm} \qquad d_{n2} = \boxed{304.250678780\$} \text{ mm}$$

$$d_{n3} = \boxed{68.76126881867} \text{ mm} \qquad d_{n3} = \boxed{285.902117719\$} \text{ mm} \qquad d_{n3} = \boxed{83.0066840033\$} \text{ mm} \qquad d_{n3} = \boxed{313.0912489007} \text{ mm}$$

$$a_{n4} = \boxed{191.138795667\$} \text{ mm} \qquad a_{n4} = \boxed{1.470548320277}$$

6.1.2 ALEGEREA PROCEDEELOR DE PRELUCRARE ŞI DE LUBRIFIERE (UNGERE)

Viteza periferică a roților în polul angrenării

Schema de calcul a vitezei periferice pentru angrenajul cilindric

Relația de calcul a vitezei periferice

$$v = \frac{\pi d_{w1} n_p}{60.1000}$$
 [m/s],

Date cunoscute:

$$\mathrm{n}_p = \boxed{3000} \qquad \qquad \mathrm{rot/min} \qquad \mathrm{d}_{w1} / \mathrm{d}_{m1} \ = \boxed{69.79591836734} \ \mathrm{mm}$$

Calculează

$$v = 10.9635172196$$
 m/s

Alegerea treptei de precizie și procedeelor de prelucrare

Tipul danturii cilindrice	Treapta de precizie	Procedeul de prelucrare
Înclinată	5	Şeveruire (înainte de cementare) + Rectificare (după cementare și călire)

Alegerea rugozităților

Tipul danturii cilindrice	Rugozitatea flancului, R_{a_f} [μ m]	Rugozitatea racordării, R _{a_r} [µm]	Procedeul de prelucrare final
Înclinată	0,2	0,4	Rectificare urmată de lepuire

Alegerea tipului lubrifiantului (uleiului) și vâscozității acestuia

Deorece viteza periferică a angrenajului cilindric este mai mică decât cea a angrenajului conic (v. subcap. 6.1.3) tipul uleiului va fi cel ales pentru angrenajul conic (TIN 125 EP).

6.1.3 DETERMINAREA FACTORILOR DE CORECȚIE

Valorile factorilor pentru solicitarea de contact

Simbolul	Denumirea	Valoarea factorului de corecție
K_A	Factorul dinamic exterior	1,5
$K_{\rm v}$	Factorul dinamic interior	1,07
$K_{H\beta}$	Factorul distribuției neuniforme a sarcinii pe lățime	1,4
Z_{ϵ}	Factorul gradului de acoperire	0,83
$K_{H\alpha}$	Factorul distribuției neuniforme a sarcinii în plan frontal	1,45
Z_{H}	Factorul de formă ai dintelui	1,98
Z_{x}	Factorul dimensional	1
$Z_{\rm w}$	Factorul de duritate (cuplului de materiale)	1
$Z_{\rm v}$	Factorul de viteză	0,9
Z_R	Factorul rugozității flancurilor active ale dinților	0,96
Z_{L}	Factorul lubrificației	1,02
Z_{N}	Factorul numărului de cicluri de solicitare	1
Z_{eta}	Factorul înclinării danturii pentru solicitarea de contact $(\beta = \beta_m$, pentru dantură conică)	0,98
Z_{E}	Factorul de elasticitate a materialelor roţilor (pentru roţi dinţate din oţel cu modulul de elasticitate, $E = 2,06$ 10^5 MPa, şi coeficientul Poisson, $v = 0,3$)	190 √MPa

Valorile factorilor pentru solicitarea de încovoiere

Simbolul	Denumirea	Valoarea factorului de corecție		
K_A	Factorul dinamic exterior	1,5		
K_{v}	Factorul dinamic interior	1,07		
$K_{F\beta}$	Factorul distribuției neuniforme a sarcinii pe lățime	1,25		
Y_{ϵ}	Factorul gradului de acoperire	0,76		
$K_{F\alpha}$	Factorul distribuției neuniforme a sarcinii în plan frontal	1,4		
Y _{Fa1}	Footonii da formaŭ ai dintilan	2,35		
Y_{Fa2}	Factorii de formă ai dinților	2,1		
Y_x	Factorul dimensional	1		
Y_{β}	Factorul înclinării danturii	0,875		
$Z_{\rm v}$	Factorul de viteză	0,98		
Y_{R1}	Footonii myoogitătilon noogudănilon dintilon	0,96		
Y_{R2}	Factorii rugozităților racordărilor dinților	0,96		
Y_{sa1}	Factorul concentratorului de tensiune de la baza	1,73		
Y_{sa2}	dintelui	1,95		
$Y_{\delta 1}$	Factorii de concentrare relativă a sarcinii	1		
$Y_{\delta 2}$	ractorn de concentrare relativa à sarchin	1,04		
Y_N	Factorii numărului de cicluri de solicitare	1		

6.1.4 DETERMINAREA COEFICIENȚILOR DE SIGURANȚĂ ȘI VERIFICARE/DIMENSIONARE

Tensiunile efective de contact și de încovoiere

T_1	= 312071	Nmm	u (u _r) =	4.059		β =	15	grade	z _l	17	
\mathbf{a}_{w}	= 180	mm	b ₁ =	61	mm	b ₂ =	57	mm	Z _E	190	MPa ^{1/2}
K_A	= 1.5		K _v =	1.07		Z _H =	1.98]	Z ε =	0.83	
$\boldsymbol{K}_{H\alpha}$	= 1.45		K _{Hβ} =	1.4]	K _{Fa} =	1.4]	K _{Fβ} :	1.25	
$\mathbf{Y}_{\mathtt{Sal}}$	= 1.73		Y _{Sa2} =	1.95		Y_{Fal}	= 2.35		Y _{Fa2}	= 2.1	
$\boldsymbol{Y}_{\epsilon}$	= 0.76		Υ _β =	0.875]						
Ca	lculeaza										

Factorii (coeficienții) de siguranță efectivi la solicitările de contact și de încovoiere

 $\sigma_{F1} = 270.042282373 \text{ MPa}$

$\sigma_{\text{Hlim}} = \begin{bmatrix} 1530 \end{bmatrix}$ MPa	о _н = 909.38 мРа	$Z_{\rm N}$ = 1	$Z_L = 1.02$
$Z_{\rm R}$ = 0.96 grade	z _v = 0.9	Z _w = 1	
$\sigma_{Flim} = \boxed{420} \hspace{1cm} \mathrm{MPa}$	$\sigma_{F1} \ = \boxed{270.04} \hspace{1cm} \text{MPa}$	σ _{F2} = 291.09	Y _x = 1
Y _{N1} = 1	$Y_{R1} = \boxed{0.96}$	Y ₅₁ = 1	
Y _{N2} = 1	$Y_{R2} = \boxed{0.96}$	Y ₅₂ = 1.04	
Calculează			

с_н = 909.376189950 мРа

$$s_{H} = \boxed{1.48272273417}$$
 $s_{F1} = \boxed{2.98622426307}$ $s_{F2} = \boxed{2.88108832319}$

Verificarea valorilor factorilor (coeficienților) de siguranță

 $S_H \ge S_{Hmin}$: 1,48 > 1,2 (se verifică la solicitarea de contact);

 $S_F = min(S_{F1}, S_{F2}) \ge S_{Fmin}$: 2,88 > 1,5 (se verifică la solicitarea de încovoiere).

Concluzie

Deoarece cel putin una (cea corespunzătoare solicitării de contact) dintre cele două inegalități este respectată cu abatere redusă, nu se impune etapa de dimensionare.

6.1.5 PARAMETRI DE EXECUTIE ŞI MONTAJ A ANGRENAJULUI SI ROŢILOR DINTATE CONICE

Jocuri, abateri și toleranțe ale angrenajului și roților cilindrice

Jocului minim necesar, $j_{min}^{nec} = (0.01...0.03) m_n = (0.01...0.03) 4 = (0.04...0.12) mm$; se adoptă 0.08 mm (80 µm).

Jocul minim normal, $j_{nmin} = 100 \mu m$;

Tipul ajustajului, B.

Tipul toleranței jocului dintre flancuri, b;

Toleranţele bătăii radiale: F_r = 50 μm, pentru pinion; = 71 μm, pentru roată.

Abatererile minime ale cotelor peste dinți: E_{ws} = 100 μm, pentru pinion; E_{ws} = 180 μm, pentru roată.

Toleranțele cotelor peste dinți: T_w = 60 μm, pentru pinion; T_w = 100 μm, pentru roată.

Abatererile minime ale grosimilor dinților pe coarde constante: $E_{cs} = 100 \mu m$, pentru pinion; $E_{cs} =$ 180 μm, pentru roată.

Toleranțele grosimii dintelui pe coarda constantă: T_c = 60 μm, pentru pinion; T_c = 100 μm, pentru roată.

Abaterile limită ale distanței dintre axe, $f_a = \pm 80 \mu m$.

Personalizarea cotelor angrenajului și roților $((W_{Nn})_{-E_{Ws}-T_{W}}^{-E_{Ws}}; (\bar{s}_{cn})_{-E_{cs}-T_{c}}^{-E_{cs}}; a_{w} \pm f_{a})$:

- cota peste 3 dinți, $31_{-0,16}^{-0,1}$ și coarda constantă, $6,56_{-0,16}^{-0,1}$, la înălțimea $h_{cn} = 4,3$ mm, pentru pinion;

- cota peste 9 dinți, $104,93^{-0,18}_{-0,28}$ și coarda constantă, $5,82^{-0,1}_{-0,16}$, la înălțimea $h_{cn}=3,3$ mm, pentru roată;
- distanța dintre axe, 180 ± 0.08 mm.

FORŢE ÎN ANGRENAJ

7.1 SCHEMA FORŢELOR DIN ANGRENAJUL CILINDRIC

Direcțiile și sensurile forțelor

Forța tangențială: direcție tangentă la cercurile de rostogolire; sensul opus vitezei (forță rezistentă), pentru roata conducătoare, și același sens cu viteza (forță motoare), pentru roata condusă.

Forța radială: direcție radială; sensul spre centrul roții.

Forța axială: direcție axială; sensul determinat de direcția de înclinare a dintelui și de sensul de rotație al roții.

Schema forțelor

Semnificațiile notațiilor

Elemente structurale: I – angrenaj cilindric; 1^I – pinion cilindric; 2^I – roată cilindrică.

Forțe în angrenajul cilindric: F_t^I – forța tangențială din angrenajul cilindric; F_r^I – forța radială din angrenajul cilindric; F_a^I – forța axială din angrenajul cilindric

7.2 DETERMINAREA FORŢELOR DIN ANGRENAJUL CILINDRIC

Calculul forțelor

Valorile forțelor

Angrenajul	Cilindric				
Forța	F _t F _r		F_a		
Valoarea forței [N]	1094.5395	456.2024	293.2809		

8. ALEGEREA ȘI CALCULUL ASAMBLĂRILOR CU PENE PARALELE

8.1 ALEGEREA FORMELOR ȘI DIMENSIUNILOR PENELOR PARALELE

Tipurile și formelor penelor paralele Forma A

8.2 CALCULUL ASAMBLĂRILOR CU PENE PARALELE

Calcul lungimii necesare a penei din solicitarea de strivire,

$$l_c = \frac{4 M_t}{d h \sigma_{as}}$$
.

Determinarea numărului de pene

Deoarece $l_c \le L_b$, se adoptă o singură pană.

Date de calcul și valori dimensiuni

Denumirea penei/	Pană paralelă I	Pană paralelă II	Pană paralelă III
Parametrul	(tip A)	(tip A)	(tip C)
d [mm]	$d_{A1}^{ST} = 20$	$d_{A2}^{r} = 50$	$d_{A2}^{ST} = 30$
b[mm]	6	14	8
h [mm]	6	9	7
M_t [Nmm]	$M_{t1} = 38197.1863$	$M_{t2} = 146677.1955$	$M_{t2} = 146677.1955$
σ _{as} [MPa]	150	50	150
l _c [mm]	8.4882	26.0759	18.6256
1 [mm] (STAS)	16	45	28
t ₁ [mm]	3.5	5.5	4.0
t ₂ [mm]	2.8	3.8	3.3

9. PROIECTAREA FORMEI ȘI GENERAREA MODELELOR ÎN CATIA ALE PARTURILOR PENTRU SUBANSAMBLELE PRINCIPALE

La proiectaea formei și generarea modelelor parturilor s-a ținut cont de recomandările din Anexa 9.1.

10. GENERARE SUBANSAMBLE RULMENŢI, ARBORI ŞI ANGRENAJE

Subansamble rulmenți

Subansamblu arbore de ieşire
Subansamblu arbore de iesire VS.CATProduct 42.076mm 15mm 58mm 13.5mm 129.2mm

Subansamblu angrenaj

11. GENERARE SUBANSAMBLE CARCASE

Subansamblu carcasă inferioară Vs

Subansamblu carcasa inferioara Vs.CATProduct

Subansamblu carcasa superioara Vs.CATProduct

12. GENERARE MODEL 3D ANSAMBU

Ansamblu Vs

13. VERIFICAREA ARBORILOR

13.1 VERIFICAREA ARBORELUI DE INTRARE (RCil H)

Scheme de încărcare

Date de intrare

Schema arborelui conform schiței CATIA

Valori diametre și lungimi

Diametrele și lungimile tronsoanelor: conform schiței CATIA (v. schema de mai sus).

Distanțe de poziționare a reacțiunilor (v. schemele 1.1, 1.2 și 1.3), B = 16 mm.

Grosimea coroanei dintate, g = 1 mm.

 $\underline{\text{Diametrul de rostogolire al pinionului}}, \, d_{w1} = 69.7959 \text{mm}.$

<u>Lungimile de calcul</u>: $L_1 = 60$ mm; $L_2 = 62.6$ mm; $L_3 = 62.6$ mm.

Valori forțe și momente

Momentul de torsiune, $M_{t1} = 38197.1863$ Nmm.

Forțele de încărcare a pinionului cilindric: tangențială, $F_t = 1094.5395 \text{ N}$; radială, $F_r = 456.2024 \text{ N}$; axială, $F_a^{II} = 293.2809 \text{ N}$.

Forța de încărcare a capului arborelui, Fe = F_r = 456.2024 N.

<u>Momentele de încovoiere</u>, $M_{\hat{1}1} = F_a \ d_{w\hat{1}}/2 = 293.2809*69.7959/2 = 10235.1848 \ mm$.

Turația arborelui

n = 3000 rot/min, turația arborelui de intrare.

Date despre material

<u>Tipul oțelului și tratamentul termic</u>: C15,C20, Cementare (carburare+călire+revenire înaltă).

Date despre concentratorii de tensiune

14. VERIFICAREA RULMENTILOR

14.1 VERIFICARE RULMENȚI RADIALI PENTRU ARBORELE DE **INTRARE**

Schema de încărcare a rulmenților radiali ai arborelui de intrare

Date de intrare

Forțele exterioare

- radiale: $F_{rA} = 5559,32 \text{ N}$, $F_{rB} = 5344,247 \text{ N}$.
- axiale: $F_{a1} = \pm 2350 \text{ N}$; forța F_{a1} în funcție de sensul de rotație poate avea semnul + (de la stânga la dreapta) sau – (de la dreapta la stânga) și deci în funcție de acestea se impune studiul în 2 cazuri.

Tipul rulmentului și sarcina (capacitatea) dinamică de bază

Rulment radial cu bile (cod 6006) cu sarcina dinamică de bază C = 12700 N, din catalog pentru rulmenți..

Factorii de influență pentru calcul

Factorul, $f_0 = 14.8$; sarcina statică radială de bază, $C_{0r} = 8000$ N; pentru $\frac{f_0 F_a}{c_{0r}} = \frac{14.8 * 293.2809}{8000} = 0.6428$ și joc radial normal (CN) rezultă factorii de influență: e = 0.24, X = 0.56, Y = 1.8. Turația arborelui

Rulmenții se rotesc cu turația arborelui de intrare, $n = n_1 = 3000 \text{ rot/min.}$

Durata de funcționare

Durata de funcționare a rulmenților este egală cu cea impusă RCil, L_{h imp} = 11000 ore.

Sarcinile dinamice echivalente (rulmentul cel mai încărcat)

Pentru rulmentul din lagărul $L_A^{A_1}$

$$\frac{F_a}{F_r} = \frac{293.2809}{456.2024} = 0.642 > e = 0.24;$$

Sarcina dinamică echivalentă,

 $P_A = X F_r + Y F_a = 0.56 * 456.2024 + 1.8 * 293.2809 = 783.3789 N.$

Verificarea rulmentului cel mai înărcat

Determinara durabilității rulmentului cel mai încărcat

$$L = \left(\frac{C}{P}\right)^p = \left(\frac{12700}{783.3789}\right)^3 = 4260.8432$$
 milioane de rotații.

Determinara duratei de funcționare a rulmentului cel mai încărcat

$$L_h = \frac{L10^6}{n_1 \ 60} = \frac{4260.8432* \ 10^6}{3000* \ 60} = 23671.351 \ ore,$$

Verificarea rulmentului cel mai încărcat

$$L_h \ > L_{h \ imp}; \, 23671.351 > 11000$$

15. MODELAREA ȘI GENERAREA DESENULUI DE ANSAMBLU

Desen de ansamblu RCil VS

BIBLIOGRAFIE

- 1. Jula, A. ş.a. Organe de maşini, vol. I,II. Universitatea din Braşov, 1986, 1989.
- 2. Mogan, Gh. ş.a. Organe de maşini. Teorie-Proiectare-Aplicații, Ed Universității Transilvania din Braşov, 2012 (format electronic: www.mg.rrv.ro, user name: student; password: mogan).
- 3. Moldovean, Gh. ș.a. Angrenaje cilindrice și conice. Calcul și construcție. Ed. LuxLibris, Brașov, 2001.
- 4. Moldovean, Gh. ș.a. Angrenaje cilindrice și conice. Metodici de proiectare. Ed. LuxLibris, Brașov, 2002.
- 5. Rădulescu, C. Organe de mașini, vol. I, II, III. Universitatea Transilvania din Brașov, 1985.
- 6. *** Culegere de norme și extrase din standarde pentru proiectarea elementelor componente ale mașinilor, vol. I. și II. Universitatea din Brașov, 1984.