Hierarchical Taxonomy Aware Network Embedding

Jianxin Ma (https://jianxinma.github.io), Peng Cui, Xiao Wang, Wenwu Zhu Department of Computer Science and Technology, Tsinghua University, Beijing, China

Computer Science

(Experiments) Performance

Node Classification

(Background) Network Embedding

To learn a d-dimensional vector representation $x_i \in \mathbb{R}^d$ for each vertex $v_i \in V$ in the network G = (V, E).

(Motivation) Hierarchical Taxonomy

Hierarchical taxonomy is a tree structure in which the entities (e.g. papers of a citation network) are classified hierarchically.

- □ coarse-grained → paper *i* and *j* are similar (both about AI)
- □ fine-grained → paper *i* and *j* are different (NLP \neq CV)

OS | Compiler

- 2. Better Interpretability

(Method) A Generative Model

Not all networks come with a labeled taxonomy. To learn the taxonomy unsupervisedly, imagine coarse-grained

there's a tree of height L, where each non-leaf $x_{i,1:2}$ node has an infinite number of child nodes.

A toy example (L = 3, d = 8).

Each vertex i is associated with a path c_i of length L. We define $p(c_1, c_2, ..., c_N)$ as a nested Chinese restaurant process^[Blei03], i.e., $c_n \mid c_{1:(n-1)} \sim \text{nCRP}(\gamma, c_{1:(n-1)})$. The subtree formed by $c_1, ..., c_N$ is the hierarchical taxonomy we aim to learn.

Let $x_i \in \mathbb{R}^d$ be the representation of vertex $i \in V$. Each node in the infinite-sized tree represents a cluster. Let the representation of cluster t be $w_t \in \mathbb{R}^{\Delta d}$, where $\Delta d = \left| \frac{d}{t+1} \right|$. The prior over w_t is $w_t \sim \text{Normal}(0, \sigma_w^2 I)$ (we use $\sigma_w \to \infty$).

Vertex representation x_i is split into L+1 parts (each of Δd , except the last one). The first L parts (i.e., $x_{i,1:L\Delta d}$) follows $x_{i,1:L\Delta d} \sim \text{Normal}(w_{c_i}, \sigma_x^2 I)$, where w_{c_i} is the result of concatenating all the w_t visited by path c_i . The last part, however, just follows $x_{i,(L\Delta d+1):d} \sim \text{Normal}(\mathbf{0}, +\infty \mathbf{I})$ (for capturing features that are unique to vertex i itself).

Let $r_{uv} = 1$ if vertex u and v are linked. And we sample $r_{uv} = 0$ via negative sampling. (We can additionally add more $r_{uv} = 1$, by leveraging 2rd-order proximity or random walks). Then,

$$r_{uv} \sim \text{Bernoulli}\left(e^{-\frac{||x_u - x_v||^2}{l^2}}\right).$$

(Method) How to Optimize

EM Algorithm + Truncated Tree[Wang-Blei-09]

To find x_i and w_t that maximize $\log \sum_C p(X, W, C)$, where $C = \{c_1, c_2, ..., c_n\}$ and p(X, W, C) =

$$\prod_{t} p(\mathbf{w}_{t}) \cdot \prod_{i} p(\mathbf{c}_{i} | \mathbf{c}_{1:(i-1)}) p(\mathbf{x}_{i} | \mathbf{w}_{\mathbf{c}_{i}}) \cdot \prod_{uv} p(\mathbf{r}_{uv} | \mathbf{x}_{u}, \mathbf{x}_{v}).$$

Link Prediction

					Baselines			This Work
ric	Network	%Missing Links	DeepWalk	LINE	node2vec	GraRep	Walklets	NetHiex
2(%)	Citeseer	50%	77.00	77.25	77.58	74.11	74.57	77.78
		40%	79.76	80.36	80.04	76.02	78.09	80.44
		30%	82.12	82.41	83.03	81.55	80.80	83.86
		20%	82.97	84.00	83.02	85.81	83.86	87.19
		10%	86.59	88.44	86.74	87.15	86.16	88.97
	PPI	50%	74.60	73.23	75.13	76.81	74.55	76.85
		40%	75.00	74.34	75.92	77.73	74.19	78.07
		30%	75.49	75.13	76.02	77.80	76.37	77.98
		20%	76.73	75.35	77.04	78.51	77.89	78.55
		10%	77.30	75.69	77.69	78.96	78.89	78.96
	Cora	50%	74.50	73.84	75.16	75.85	71.05	80.86
		40%	80.48	78.81	80.61	82.93	76.75	87.62
		30%	81.59	81.09	82.37	85.94	78.86	88.21
_		20%	84.28	82.11	83.72	89.42	81.03	90.59
.=4.	. 1	10%	84.22	83.75	85.03	90.29	81.65	90.55

(Visualization) Multiple Levels of Granularity

The inter-vertex similarity between a vertex and all the other vertices, in terms of the 1st, 3rd, and 5th parts (Vis.) Finding Out the Taxonomy of the learned vertex representations (Cora, L = 5).

The different components of the vertex representations indeed reflect the different levels of granularity.

We can uncover the hierarchical taxonomy, unsupervisedly, from a word co-occurrence network.

(The word co-occurrence network is constructed from CS paper titles. The words with a low TF-IDF score are removed.)