Contents

3	\mathbf{Sigh}	at Distance (SD)	30
	3.1	Objectives	30
	3.2	key component of SD	30
	3.3	Sight Distance Types	30
	3.4	SSD - stopping sight distance	30
	3.5	SSD on vertical curve	31
	3.6	DSS - decision sight distance	31
	3.7	Terms	31
	3.8	Rules	31
	3.9	Formulas	31
	3.10	Reference	31

3 Sight Distance (SD)

3.1 Objectives

- 1. describe various types of sight distance
- 2. determine sight distance requirements for stopping and passing maneuvers

3.2 key component of SD

- 1. PRT: the perception-reaction time required to initiate a maneuver (premaneuver phase)
- 2. MT: the time required to safely complete a maneuver

```
driver's eye - 3.5ft high
Hazard - 2ft high
```

3.3 Sight Distance Types

- 1. stopping sight distance (SSD)
- 2. decision sight distance (DSD)
- 3. passing sight distance (PSD)
- 4. intersection sight distance (ISD)

3.4 SSD - stopping sight distance

SSD is a key input for geometric design, including horizontal and vertical alignment

PRT includes: recognize an object + decide a stop + react and prepare to apply the brake

Deceleration rate: $11.2ft/sec^2$, 10th percentile deceleration rate, by AASHTO

$$SSD = D_{p-r} + D_b$$

 D_{p-r} : in ft, perception-reaction distance

 D_b : in ft, braking distance

$$D_{p-r} = 1.47 \times 2.5s \times v = 3.675v$$

 D_{p-r} : in ft, perception-reaction distance

v: in mi/h, design speed

$$D_b = \frac{(v_0)^2 - (v_f)^2}{30(\frac{a}{g} \pm G)}$$

 D_b : in ft, braking distance

 v_0 : in mi/h, design speed

 v_f : in mi/h, final velocity

a: $11.2 \ ft/sec^2$, deceleration rate, by AASHTO, in [10, 15]

g: 32.2 ft/sec^2

f = a/g: 0.35 by ASSHTO, coefficient of friction, 0.7 for dry roads, 0.3-0.4 for wed roads

G: grade, e.g. down grade: -0.06

3.5 SSD on vertical curve

crest curve:

- Driver eye height: 3.5ft

- Height of object in readway: 2.0ft

sag curve:

- headlight height: 2ft

- headlight beam angle: 1 degree (departure from horizontal, suggest changing to 0.75 degree)

- 3.6 DSS decision sight distance
- 3.7 Terms
- 3.8 Rules
- 3.9 Formulas
- 3.10 Reference