科研数据记录与存储的细节问题分析

2021 年秋季 学术道德与学术写作-通论

庄逸¹

目录

1	科研数据存储问题的引出							
2	科研数据记录存储的个人经历 2.1 实验课							
3	浅谈标签式管理软件和未来工作	5						

1 科研数据存储问题的引出

《怎样当一名科学家》[1] 一书阐释了科学研究中所需要遵守的各种科研规范,其中关于数据处理的一小节引起了我的共鸣。这一节讨论了数据操纵现象,数据记录的要求和数据共享等方面的内容。数据操纵毫无疑问是违反科研规范的行为,历来已经听过不少老师强调这一点。而如何记录,共享数据,则很少听老师同学提起。书中提到:"遗憾的是,刚从事科研工作的科研人员一般没有或很少接受过有关数据记录、分析、储存和分享的正式培训。"我对此深有体会。一方面,我在本科的科研经历中,确实遇到了数据记录、存储方面的问题。另一方面,无论是学校课程,还是图书馆讲座,或是导师的指导,都没有专门对这一问题进行探讨。而单拿着"如何记录,存储数据"的问题去问同学老师或是网上搜索,又显得太过笼统。就如同"如何打字打得快"这样的问题,大部分人只能给出"熟能生巧"之类的答案,而无法阐明其中的细节门道。而事实上,科研数据的记录存储是科学研究的基石。做好了数据的记录存储,能更好地进行数据管理,使用和共享。因此,我想结合我本科有关科研数据记录存储的实践经验,作一些分析探讨。

¹学号: 202118005811057; 培养单位: 大气物理研究所; 邮箱: zhuangyi17@mails.ucas.ac.cn

2 科研数据记录存储的个人经历

2.1 实验课

本科有安排专门的实验课,这是我第一次接触到科研数据管理的相关问题。对于大部分实验,老师都会提前上传原始数据记录表,而我们需要提前打印好数据记录表,带去做实验,在实验结束后交给助教签字,再带回进行数据分析。一部分实验数据记录表如图 1所示。

图 1: 原始数据记录表例

这大概是最原始的科研数据记录方法。经过几次实验后,我发现这样的方法存在下面这些问题:

- 1. 不易储存和获取。如果这一张纸不慎丢失或是沾染污物,可能很难找回数据。而即使妥善保存,若不是我把所有的数据记录纸都扫描留存在硬盘中,在数年后的今天也很难快速将其找到。
- 2. 不易辨认。一方面,如果记录得不是很美观整洁,不同的人看,甚至自己隔一段时间再看,都可能会辨认不清或弄混部分数字。另一方面,记在纸上也不方便计算机辨认,还需要人工录入,不利于直接进行数据的进一步处理。
- 3. 灵活性差。虽然表格中预留好了需要采集数据的空位,但是实际实验中不可能总是理想情况。重做实验时删删改改会使得表格变得不美观,需要临时加记数据时则又无处可写。 如今回过头来想,纸质科研数据记录也有两个优点。
- 其一是在短时间内它具有绝对的可靠性。笔和纸都是常见的,构造非常简单的物品,采

用纸笔一定能够将数据记录下来。相比之下,直接记录在电脑上则有小概率遇到电量不足或是软件崩溃的问题。

• 其二是它具有很高的可信度,一般能记录下所有的删改,并且非印刷的签名或章印也防止了伪造行为(电子记录也可以做到这一点,但是具有相当的技术门槛)。

但是这两个优点相对于电子数据记录,在当时的环境下并没有较强的竞争力。而那时的一次驻波实验让我深刻体会到了电子数据记录的便捷性。

驻波实验是一个验证性实验。弦上波的速度可以通过频率(由频率发生器读数得到)和波长(由观察驻波波节位置得到)计算得到,也可以根据弦的物理性质(已知)和张力(由外挂砝码得到)计算得到。我们需要验证这两个方法得出的波速相等,为此,需要验证九组参数,结果如图 2所示。

图 2: 驻波实验部分数据记录表

在实验中,挂好砝码后,需要手动调节频率发生器,使其达到合适的值,观察到对应的驻 波现象才可读数。然而,从实验数据表中可看出频率调节的精度要求较高,并且在调整时也难 以从现象确定应该向大调还是向小调。所以,如果能预先计算出应当调节到的频率,就能较大 地提高实验效率。这一计算虽然不复杂,但是需要重复九次,使用一般的计算器也比较麻烦。而那时我正好把相应的数据记到了 Excel 中,正适合这样的简单批量计算,一下就把九个理论 频率列了出来。在调节到理论频率附近后,果然现象符合预期,再微调找到最佳的状态作为实 际测量值记录下来,进度一下就超过了同组同学。这次经历让我认识到,数据分析并不是一定 要在实验完成之后。在实验中进行数据分析,也能够反作用于实验的顺利进行。而要想高效地 在实验中进行一定程度的数据分析,就必须依靠电子数据记录。

2.2 科研实践与毕设论文

本科后期的科研实践和毕设论文,是我第二次接触到大规模的科研数据储存的问题。由于我做的是理论和数值工作,所以就不再有纸质实验记录数据了。而这一阶段主要有以下两个问题。

1. 如何妥善储存科研工作中产生的各类文件?

2. 如何妥善整理产出的各种初级科研结果?

整个科研流程所产生的文件可谓是多而繁杂。如今回顾,有大量的参考文献,每周的工作报告,用于模拟的程序代码文件,模拟结果的图和数据,开题计划书,中期报告和结题报告及相关表格等等。按照一个项目一个文件夹存放所有的相关资料,是一个最直觉的选择,但并不是最理想的方案。根据我科研实践的经历,参考文献存于文献管理软件中以方便制作引用,也存于阅读软件中用以精读分析。程序代码有 A 软件和 B 软件的两份,分别被我存在了专门用于存放 AB 两软件代码的地方。部分考虑是基于潜在的复用性,例如同一篇文献,可以在很多项目中被引用。故如果每个项目文件夹都存放相关文献,就会造成空间浪费和无法同步的问题。另一个考虑则是部分数值软件运行默认目录下的程序更为方便,若将程序放在项目文件夹下,则每次都需要指定较长的项目路径,比较费事。

在漫长的科研流程中,产生的初级科研成果也是多种多样:小到看文献时做的注解,每周的工作报告,大到自己发展的方法,程序模拟的大量结果。这些初级科研成果往往在之后的科研写作中经常用到,需要不时翻找出来并回忆当时的思路。而我在实践中发现,这些初级科研成果往往细碎地散落在各个地方而难以检索到。例如想要寻找当时看一篇文献的注记,却忘了是写在了第几周的工作报告中。

case8c2.eps	3-1a.pdf	3-1b.pdf	3-2a.pdf	3-2b.pdf	3-3a.pdf	3-3b.pdf	3-4a.pdf
3-4b.pdf	3-5a.pdf	3-5b.pdf	3-6a.pdf	3-6b.pdf	case1a1.pdf	case1a2.pdf	case1b1.pdf
case1b2.pdf	case1c1.pdf	case1c2.pdf	case2a1.pdf	case2a2.pdf	case2b1.pdf	case2b2.pdf	case2c1.pdf
case2c2.pdf	case3a1.pdf	case3a2.pdf	case3b1.pdf	case3b2.pdf	case3c1.pdf	case3c2.pdf	case4a1.pdf
case4a2.pdf	case4b1.pdf	case4b2.pdf	case4c1.pdf	case4c2.pdf	case5a1.pdf	case5a2.pdf	case5b1.pdf
case5b2.pdf	case5c1.pdf	case5c2.pdf	case6a1.pdf	case6a2.pdf	case6b1.pdf	case6b2.pdf	case6c1.pdf
case6c2.pdf	case7a1.pdf	case7a2.pdf	case7b1.pdf	case7b2.pdf	case7c1.pdf	case7c2.pdf	case8a1.pdf

图 3: 大量的图片

而在做程序数值模拟时,往往需要对多个参数组合进行模拟,产生大量的图片和数据。上图显示了我在毕设工作中所生成的大量图片。例如参数 A 取值六种,参数 B 取值三种,每种情况运行出四张图加一份数据,最后总共就有 90 个文件。以目前的树形文件系统分类存储,

需要在每个 A 参数文件夹下建三个 B 参数取值文件夹,有一些繁复,并且在对比不同参数的结果时需要反复跳转,不甚方便。而直接存放在一个文件夹中,以文件名区分,虽然一定程度上能解决这个问题,但又对文件名的批量操作提出了要求,且在文件进一步增多时翻找起来也较麻烦。此外,有时会遇到获取结果生成时所采用的参数(包括 A,B 之外的一些参数)的需求,例如需要复现某一情况再作一个图。这就需要在生成数据时不仅仅只是产生并存储数据,还需要将如何生成的这些数据记录在单独的一个实验记录文档中。

3 浅谈标签式管理软件和未来工作

上面这些我在科研实践和毕设过程中遇到的问题,有一些直到最后也没有解决。但我从这些需求中获得了一个初步的想法,那就是依靠一个标签式的文件管理软件进行科研项目管理。它通过硬链接²的方式把分散在各个地方的文件集中到一起进行管理,并对这些文件打上标签。硬链接解决了空间浪费和同步的问题,而通过搜索或标签筛选可以很方便地找到需要的文件,对比不同组合的参数结果图,进行跨项目的文件共享等。不过直到目前我还没有找到一个合适的能实现这些功能的软件。

很快,我就要进入课题组参加工作,课题组所采用的主要研究手段为大气的数值模拟。大 气的数据想来也是规模巨大,所以估计到时也一定会遇到类似的数据存储的问题。结合之前的 经验和大气数据的相关特点,拟定了如下的注意事项:

- 1. 需要做好关于科研初步结果的总索引,可以在一个文件中查到所有工作内容。
- 2. 记录下关于数据本身的信息,将其和数据放在一起。对于源数据,记录下获取方式和时间;对于程序运行得到的数据,记录下生成这些数据所采用的参数等。
- 3. 在平时工作中多留意多思考,和同学老师多交流相关经验。

除了前面谈到的这些,科研数据的记录和存储还包含了很多方面,例如包含隐私数据的安全性和访问权限^[2],数据的存储格式,备份方案和永久储存仓库^[3]等。可见,科研数据的记录存储工作具有相当的重要性,是合格的科研工作者的必备技能,需要我们认真对待。

参考文献

[1] 美国科学、工程与公共政策委员会. 怎样当一名科学家: 科学研究中的负责行为[M]. 第三版. 北京: 中国科学技术出版社, 2014.

 $^{^2}$ 计算机术语。通过硬链接复制的文件得到的文件,表面上类似直接复制,但其和源文件指向硬盘中同一个实体。

- [2] Best Practices for Data Analysis of Confidential Data | Research Integrity and Assurance [Z]. https://ria.princeton.edu/human-research-protection/data/best-practices-for-data-a. (Accessed on 10/11/2021).
- [3] Best Practices for Storing, Archiving and Preserving Data[Z]. https://library.si.edu/rese arch/best-practices-storing-archiving-and-preserving-data. (Accessed on 10/11/2021).