

Intelligente Systeme - Logik -

Hochschule für Angewandte Wissenschaften Hamburg Department Informatik

Dr.-Ing. Sabine Schumann

Beispiele:

- Der Mond ist ein großer gelber Käse.
- Bonn war die Hauptstadt von Deutschland.
- Bonn ist die Hauptstadt von Deutschland.
- Es gibt außerirdisches Leben im Universum.
- Wenn der Mond ein großer gelber Käse ist, dann wird er von Mäusen bewohnt.
- 🕜 Übung: Aussage oder keine Aussage?
- In diesem Sommer hat es überdurchschnittlich viel geregnet.
- Ob der n\u00e4chste Sommer wieder so wird?
- Das hoffe ich nicht.
- Die Blume.
- Geh Blumen pflücken!
- Wenn ich mich beeile, dann erreiche ich den 9 Uhr Bus.

Übungsaufgabe I & Lösung

Wandeln Sie folgende Aussagen in aussagenlogische Formeln um! H=Herbstbeginn, D= dunkler werden, L=Lichtanschalten

Der Herbst hat begonnen und es wird dunkler.

 $\mathsf{H} \wedge \mathsf{D}$

Herbst hat begonnen, aber es wird nicht dunkler.

 $\mathsf{H} \wedge \neg \mathsf{D}$

Zu Herbstbeginn wird es dunkler.

 $H \Rightarrow D$

Wir müssen das Licht anschalten, es sei denn, es wird nicht dunkler.

entweder Lichtanschalten oder nicht dunkler: L XOR \neg D entspricht ((Lichtanschalten oder nicht dunkler) und nicht (Lichtanschalten und nicht dunkler)): $(L \lor \neg D) \land \neg (L \land \neg D)$

Licht anschalten äquivalent dunkler: $L \Leftrightarrow D$

nicht dunkler impliziert NICHT Lichtanschalten UND dunkler impliziert Lichtanschalten: $\neg D \Rightarrow \neg L \land D \Rightarrow L$

Implikation

Prüfen Sie, wann die logische Implikation A ⇒ B wahr ist. A wahr und B wahr oder A falsch und B egal

Untersuchen Sie dazu eine Alltagsaussage wie "Wenn ich Geburtstag habe, dann mache ich eine Fete" und prüfen Sie für die 4 Fälle (a und b jeweils wahr oder falsch), wann wir sagen würden, dass die Aussage erfüllt bzw. wann sie verletzt ist.

Geburtstag wahr, Fete wahr verletzt: Geburtstag und keine Fete Kein Geburtstag, Fete kann stattfinden oder nicht.

Sind folgende Formeln

wahr / erfüllbar / falsifizierbar / falsch ?

- (1) $A \Rightarrow B$
- (2) $A \Rightarrow \neg A$
- (3) $A \Rightarrow A$
- $(4) \neg A \Rightarrow A$
- (5) $(A \land \neg A) \Rightarrow B$
- (6) $(A \Rightarrow B) \lor (A \Rightarrow \neg B)$ wahr, erfüllbar
- (7) $(A \Rightarrow B) \land (A \Rightarrow \neg B)$ erfüllbar, falsifizierbar

erfüllbar, falsifizierbar

erfüllbar, falsifizierbar

wahr, erfüllbar

erfüllbar, falsifizierbar

wahr, erfüllbar

Übungsaufgabe IV & Lösung

1. $(A \lor \neg B) \land (C \lor D)$

Α	В	С	D	A∨¬B	C v D	(A ∨¬ B) ∧ (C ∨ D)
W	W	W	W	W	W	W
W	W	W	F	W	W	W
W	W	F	W	W	W	W
W	W	F	F	W	F	F
W	F	W	W	W	W	W
W	F	W	F	W	W	W
W	F	F	W	W	W	W
W	F	F	F	W	F	F
F	W	W	W	F	W	F
F	W	W	F	F	W	F
F	W	F	W	F	W	F
F	W	F	F	F	F	F
F	F	W	W	W	W	W
F	F	W	F	W	W	W
F	F	F	W	W	W	W
F	F	F	F	W	F	F

Übungsaufgabe IV & Lösung

2.
$$(A \lor \neg A) \Rightarrow (C \lor \neg C)$$

Α	С	A ∨¬ A	C∨⊣C	$(A \vee \neg A) \Rightarrow (C \vee \neg C)$
W	W	W	W	W
W	F	W	W	W
F	W	W	W	W
F	F	W	W	W

3.
$$((A \Rightarrow B) \Rightarrow (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$$

Α	В	С	A⇒B	B⇒C	$(A \Rightarrow B) \Rightarrow (B \Rightarrow C)$	A⇒C	$((A \Rightarrow B) \Rightarrow (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$
W	W	W	W	W	W	W	W
W	W	F	W	F	F	F	W
W	F	W	F	W	W	W	W
W	F	F	F	W	W	F	F
F	W	W	W	W	W	W	W
F	W	F	W	F	F	W	W
F	F	W	W	W	W	W	W
F	F	F	W	W	W	W	W

$$5.1 (A \lor B) \models (\neg A \Rightarrow B)$$

Α	В	A ∨ B	$\neg A \Rightarrow B$
W	W	W	W
W	F	W	W
F	W	W	W
F	F	F	F

$$5.2 ((A \Rightarrow B) \land (B \Rightarrow C)) \equiv (A \Rightarrow C)$$

Α	В	С	A ⇒ B	B⇒C	$(A \Rightarrow B) \land (B \Rightarrow C)$	$A \Rightarrow C$
W	W	W	W	W	W	W
W	W	F	W	F	F	F
W	F	W	F	W	F	W
W	F	F	F	W	F	F
F	W	W	W	W	W	W
F	W	F	W	F	F	W
F	F	W	W	W	W	W
F	F	F	W	W	W	W

Arthur, Bernard, Charles

A Arthur ist Ritter ¬A Arthur ist Schurke (analog für Bernard B und Charles C)

- Abercrombie fragte zunächst Arthur: "Sind Bernard und Charles beide Ritter?" Arthur antwortete: "Ja!"
 - Wenn A dann B und C,
 - wenn ¬A dann ¬(B und C),
- Abercrombie fragte dann: "Ist Bernard ein Ritter?"
 Zu seiner großen Überraschung antwortete Arthur nun mit "Nein".
 - wenn A dann ¬B,
 - wenn ¬A dann ¬ (¬ B).

Alle 4 Aussagen müssen WAHR sein, d.h. die Interpretation(en) finden, unter der (denen) die 4 Aussagen wahr sind.

Übungsaufgabe V & Lösung

A	В	С	B∧ C	A ⇒ (B ∧ C)	A ⇒ ¬ B	$\neg A \Rightarrow \neg (B \land C)$	$\neg A \Rightarrow \neg (\neg B)$
W	W	W	W	W	F	W	W
W	W	F	F	F	F	W	W
W	F	W	F	F	W	W	W
W	F	F	F	F	W	W	W
F	W	W	W	W	W	F	W
F	W(F	F	W	W	W	W
F	F	W	F	W	W	W	F
F	F	F	F	W	W	W	F

Vereinfachen Sie

$$\neg((A \lor \neg(B \land A)) \land (C \lor (D \lor C)))$$

$$\neg((A \lor \neg(B \land A)) \land (C \lor (D \lor C)))$$

$$\neg(A \lor \neg(B \land A)) \lor \neg(C \lor (D \lor C))$$

$$(\neg A \land B \land A) \lor (\neg C \land \neg(D \lor C))$$

$$falsch \lor (\neg C \land \neg D \land \neg C)$$

$$falsch \lor (\neg C \land \neg D)$$

$$\neg C \land \neg D$$

$$\neg((A \lor \neg B \lor \neg A) \land (C \lor D \lor C))$$
$$\neg((wahr \lor \neg B) \land (C \lor D))$$

$$\neg$$
(wahr) $\lor \neg$ (C \lor D)

falsch
$$\vee (\neg C \land \neg D)$$

$$\neg C \land \neg D$$

Überführen Sie die folgende Formel in KNF!

$$\neg A \Leftrightarrow (B \land C)$$

$$\begin{array}{lll} (\neg A \Rightarrow (B \land C)) & \wedge ((B \land C) \Rightarrow \neg A) \\ (\neg (\neg A) \lor (B \land C)) & \wedge (\neg (B \land C) \lor \neg A) \\ (\neg (\neg A) \lor (B \land C)) & \wedge ((\neg B \lor \neg C) \lor \neg A) \\ (A \lor (B \land C)) & \wedge ((\neg B \lor \neg C) \lor \neg A) \\ (A \lor B) \land (A \lor C) & \wedge (\neg B \lor \neg C \lor \neg A) \end{array}$$

Bilden Sie alle Resolventen aus

$$\{A, B, \neg C\}, \{\neg A\}, \{\neg C\} \text{ und } \{\neg A, \neg B\}.$$

Dabei ist mit alle gemeint, auch die Resolventen wieder zur Resolution zu verwenden.

- (1) $\{A, B, \neg C\}$
- (2) {¬A}
- (3) {¬C}
- (4) {¬A, ¬B}
- (5) (1+2) {B, \neg C}
- (6) $(5+4) \{ \neg A, \neg C \}$
- $(7) (1+4) \{B, \neg B, \neg C\} \equiv wahr$
- (8) $(1+4) \{A, \neg A, \neg C\} \equiv wahr$
- $(9) (7+4) \{ \neg A, \neg B, \neg C \}$

Übungsaufgabe VII & Lösung

Variable A bedeutet: A war der Täter analog für B sowie C.

- 1. $A \wedge \neg B \Rightarrow C$
- als Klausel: ¬A ∨ B ∨ C
- 2. $C \Rightarrow A \lor B$ als Klausel: $\neg C \lor A \lor B$

(alternativ: $(C \land A) \lor (C \land B) \lor \neg C$ (zusätzlich $(C \land A \land B)$ nicht notwendig, da bspw. $(C \land A) \equiv (C \land A \land B) \lor (C \land A \land \neg B)$

- 3. $\neg (A \land C)$ als Klausel: $\neg A \lor \neg C$
- 4. $A \lor B \lor C$
- 5. Vermutung negiert hinzufügen: ¬B
- 6. $(1) + (5) \neg A \lor C$
- 7. $(4) + (5) A \lor C$
- 8. (6) + (7) C
- 9. $(2) + (3) \neg C \lor B$
- 10. (8) + (9) B
- 11. (5) + (10) leere Klausel Widerspruch

- Formulieren Sie nachfolgende natürlichsprachliche Sätze mittels prädikatenlogischer Ausdrücke.
 - Alle Menschen sind sterblich.

```
\forall X \text{ mensch}(X) \Rightarrow \text{sterblich}(X)
```

2. Sokrates ist ein Mensch.

```
mensch (sokrates)
```

3. Nicht alle Säugetiere sind lebendgebärend.

```
\neg \forall X \text{ säugetier}(X) \Rightarrow \text{lebendgebärend}(X)
Oder
\exists X \neg (\text{säugetier}(X) \Rightarrow \text{lebendgebärend}(X))
\exists X \text{ säugetier}(X) \land \neg \text{lebendgebärend}(X)
```


Formulieren Sie nachfolgende natürlichsprachliche Sätze mittels prädikatenlogischer Ausdrücke.

4. Paul liebt Paula.

lieben (paul, paula)

5. Alle lieben Paula.

 $\forall X \text{ lieben}(X, \text{ paula})$

6. Jemand liebt Paula.

 $\exists X \text{ lieben}(X, \text{ paula})$

7. Niemand liebt Paula.

 $\forall X \neg lieben(X, paula)$

Oder

 $\neg \exists X \text{ lieben}(X, \text{ paula})$

- Formulieren Sie nachfolgende natürlichsprachliche Sätze mittels prädikatenlogischer Ausdrücke.
 - 8. Manchmal ist Paul einsam.

 $\exists Z \text{ zeitraum}(Z) \land \text{einsam}(\text{paul}, Z)$

9. Elefanten haben vor Mäusen Angst.

 $\forall E, M \text{ elefant}(E) \land maus(M) \Rightarrow angst(E, M)$ oder

 $\forall E \ \forall M \ \text{elefant(E)} \ \land \ \text{maus(M)} \Rightarrow \ \text{angst(E, M)}$

10. Auf jeden Topf passt ein Deckel.

 $\forall T \text{ topf}(T) \Rightarrow \exists D \text{ deckel}(D) \land passt(T, D)$

Übung:

Welche Unifikationen haben folgende Literale?

- p(X,f(Y),a) und p(Z,f(g(S)),a)
 - $\{Z/X, g(S)/Y\}$
- p(X,f(Y),a) und p(h(k),f(k),T)

$$\{h(k)/X, k/Y, a/T\}$$

Finden Sie für die folgenden Ausdrücke den allgemeinsten Unifikator:

```
    q(f(g(X))) q(f(g(h(Y))))
    {h(Y)/X}
    q(f(g(X))) q(f(g(h(X))))
    {h(X)/X} Geht nicht wegen Occur Check!!
    q(a,b) q(b,a)
    Geht nicht, unterschiedliche Konstanten.
```

4.q(a,b) p(a,b)

Geht nicht, unterschiedliche Prädikate.

- Finden Sie für die folgenden Ausdrücke den allgemeinsten Unifikator:
 - 5.verheiratet(henryVIII, mutter(marie))
 verheiratet(Mann, mutter(X))
 {henryVIII/Mann, marie/X}
 - 6. verheiratet (henryVIII, mutter (marie))
 verheiratet (Mann, catherinedearagon)

Geht nicht, Funktion und Konstante lassen sich nicht gleich machen.