▽ ¡Felicitaciones! ¡Aprobaste!

Calificación recibida $100\,\%$ Para Aprobar $80\,\%$ o más

Ir al siguiente elemento

Module 3 Graded Quiz			
Cal	lificación de la entrega más reciente: 100 $\%$		
1.	Which best describes the mission underlying an autonomous vehicle's mission planner?	1/1 punto	
	 Compute the optimal vehicle behaviour for a given driving scenario Generate an optimal, collision-free path to the required destination Navigate a road network to the desired destination from the ego vehicle's position 		
	 ✓ correcto Correct, this is the underlying goal of mission planning. 		
2.	Which of these are examples of good values to optimize in a mission planner's objective function?	1 / 1 punto	
	✓ Distance travelled		
	Correcto Correct, this is a good measure of the efficiency of a global path.		
	 □ Distance from obstacles □ Deviation from the speed limit ☑ Time to destination 		
	 ♥ Correcto Correct, this is a good measure of the efficiency of a global path. 		
3.	What is a graph in the mission planning context?	1/1 punto	
	A plot of the car's throttle and steering actuation while executing a driving mission		
	A chart of the different speeds reached during different road segments in a road network		
	A discrete mathematical structure used for representing the road network None of the above		
	 Correcto Correct, we are referring to the graph commonly used in discrete math. 		
4.	True or false, Breadth-First Search (BFS) will explore the graph using a "last-in-first-out" data structure known as a stack.	1 / 1 punto	
	○ True		
	False		

Correct, BFS uses a "first-in-first-out" data structure known as a queue during the search process.

5.	True or false, Breadth-First Search (BFS) will always find the optimal (shortest) path in an unweighted graph.	1/1 punto
	TrueFalse	
	Correct, BFS will explore all possible predecessors before reaching the goal node in an unweighted graph, and as a result will find the shortest path to the goal.	
6.	True or false, Breadth-First Search (BFS) will always find the optimal (shortest) path in a weighted graph.	1/1 punto
	TrueFalse	
	Correct, BFS will not always be able to find the shortest path if the graph edges have weights.	
7.	In these graph search algorithms, what is the main purpose of keeping track of a "closed" set of graph vertices?	1 / 1 punto
	It allows us to avoid getting stuck in cycles	
	It allows us to know how much of the graph has been searched	
	O It helps us keep track of which vertices we still need to search	
	Correcto Correct, by keeping track of which vertices we have already processed, we can avoid re-searching another vertex if the graph contains cycles.	
8.	What is a min heap data structure?	1/1 punto
	A data structure that stores keys and values, and sorts the keys in terms of their associated values, from smallest to largest.	
	A sorted list of autonomous driving mission priorities for a given driving scenario	
	A data structure that stores keys and values, and sorts the keys in terms of their associated values, from largest to smallest.	
	A block of memory useful for dynamic memory allocation	
	Correcto Correct, this is the definition of a min heap.	
9.	True or false, in a min heap, the root of the heap (the first element) contains the node with the smallest value.	1 / 1 punto
	True	
	O False	
	Correct, a min heap contains the node with the smallest value at the root.	
10	In Dijkstra's algorithm, suppose during the process of adding vertices to the open set, we come across a vertex that has already been added to the open set. However, this time we have found a lower cost to reach this vertex than is presently stored in the open set's min heap. What should be done?	1 / 1 punto

O Nothing, as the vertex is already in the open set

 Close the vertex, as we have now seen it twice during exploration Update the cost of that vertex in the open set's min heap 	
 Nothing, as this is impossible under Dijkstra's algorithm Correcto Correct, we will need to update the min heap to reflect the new path that we have found to that vertex for Dijkstra's algorithm to remain co 	orrect.
11. What is a search heuristic in the context of mission planning?	1/1 punto
 A tool that autonomous vehicle's use for quickly identifying traffic congestion at a given intersection A method that allows the autonomous vehicle to quickly identify obstacles in its surroundings Something that helps the autonomous vehicle efficiently change the autonomus driving mission depending on the situation An estimate of the remaining cost to reach the destination 	
12. Suppose I have a vertex at location (2.0, 3.0) and another at location (4.0, 5.0). What is the Euclidean distance between these two points (to three	decimal places)? 1/1 punto
2.828	
13. True or false, an admissable heuristic to the A* search algorithm will never underestimate the cost to reach the goal vertex.	1/1 punto
TrueFalse	
Correcto Correct, an admissable heuristic is required to never overestimate the cost to reach the goal vertex.	
14. Is the heuristic function h(v) = 0 an admissible heuristic?	1/1 punto
 Yes, and in this case A* degenerates in DIjkstra's Yes, and in this case A* degenerates into BFS No, as in this case A* degenerates into Dijkstra's 	
No, as in this case A* degenerates into BFS Correcto Correct, a zero-valued heuristic is admissible, and in this case A* is the same as Dijkstra's.	

15. True or false, the min heap in A* contains the sum of the cost to reach each vertex plus the estimate of the cost to reach the destination from said vertex, according to the search heuristic.

1 / 1 punto

O False

⊘ Correcto

Correct, this is required to take advantage of the search heuristic.