Simulación Numérica Directa para el diseño de vehículos.

Guillem Borrell
Laboratorio de Mecánica de Fluidos Computacional
Universidad Politécnica de Madrid

¿Qué es eso del DNS?

- Resolver numéricamente las ecuaciones del movimiento del fluido.
- Obtenemos toda la información sobre el mismo: Velocidades, presión, temperatura...
- Desde un punto de vista físico es la verdad verdadera.
 - (Hay matices muy importantes)

¿Qué papel juega el DNS en el diseño de un vehículo?

Ninguno.

¿Por qué?

Porque el DNS sirve para hacer Física, no Ingeniería.

DNS es a los vehículos lo que el LHC es a la electrónica.

Bueno, exagero un poquito

Física VS Ingeniería.

Desde el punto de vista de un ingeniero que ahora hace Física y que unos amigos engañaron para que aprendiera sobre Finanzas.

La Ingeniería va de errores

- Los plazos son inamovibles.
 - Rentabilidad, productividad, competencia...
 - Romperlos implica perdier dinero
- La línea roja es lo que no conocemos.
- La labor del ingeniero es estimar los errores asumibles para cumplir los plazos.
 - No terminar significa no tener resultados a tiempo
- Con las dos variables se fija la precisión necesaria.

La Física es el horizonte de la Ingeniería

- Los errores se reducen haciendo Física
- La Física y la Ingeniería resuelven problemas distintos.
 - El papel lo aguanta todo.
- Les separa una distancia abismal.
 - Horizonte: línea imaginaria que se aleja a medida que se avanza hacia ella.
 - Uno avanza hacia al horizonte pero nunca llega.
- Las cosas se rompen.

En la Mecánica de Fluidos los errores tienen un nombre.

TURBULENCIA

Posibles estrategias

Ignorarla

Modelizarla

Imagen: DLR

Forzarla

Cuantificarla (y olvidarse de ella)

¿Se puede calcular?

El DNS sirve para resolver la turbulencia

El DNS cumple la definición de horizonte

- Captar toda la información del fluido requiere una capacidad de cálculo extrema.
 - Un balón de fútbol
 - 100 Tflops durante 1 mes y 100 GB de memoria.
 - Un coche de F1:
 - 1 Pflops durante 1 año y 1PB de memoria.
 - ¡Para una única simulación!

DNS Capa límite turbulenta

- 2 ingenieros aeronáuticos + 1 catedrático
- 6 meses de preparación.
- 3-4 meses de simulación.
- 32000 procesadores.
- 35.000.000 horas de procesador.

La Ingeniería tiene un flujo de trabajo.

Si no corre en menos de 6 horas (1 noche) no me sirve para nada.

El horizonte

Lo que separa la Ingeniería de la Física son los tiempos, el resto de diferencias son una consecuencia directa.

¿Cómo se relacionan?

Cuando un ingeniero asume que el riesgo del error es mayor que el riesgo de investigar para reducirlo.

Antes

- 1.Estallaba una guerra.
- 2.Los contendientes quieren la supremacía tecnológica.
- 3.Les sueltan toneladas de recursos a los ingenieros que se ponen a correr hacia el horizonte.
 - 1. Da igual los proyectos que fracasen.
 - 2. A mayor riesgo mayor beneficio y si me toca la lotería gano la guerra.

Ahora. Ironía ON

- 1.Unos locos y mal pagados se empeñan en andar hacia el horizonte.
 - 1. Llegan a una teoría.
 - 2. No llegan a ninguna conclusión.
 - 3. Descubren algo aplicable
- 2.Convencen a una empresa de su interés
- 3.La empresa saca partido y se lleva el mérito

Ironía OFF

El proceso es el mismo.

El mecanismo es completamente distinto.

La diferencia es el riesgo

- La competitividad impide las empresas a arriesgarse excesivamente.
- Más riesgo implica más avance hacia el horizonte.
- Avanzar aumenta las probabilidades de hallazgos.
- Quien quiera un avance seguro que se dedique a otra cosa.
- ¿Debemos dar dinero a gente que no asegura resultados?

Conclusiones

- La Mecánica de Fluidos y el diseño de vehículos es un caso de I+D multidisciplinar.
- Los Ingenieros debemos educarnos en gestión de riesgos.
 - No es una cuestión política o filosófica.
- Un aumento radical en la productividad puede producir un estancamiento en el desarrollo.
 - Black Swan: no arriesgarse es arriesgarse demasiado.

Muchas gracias guillem@torroja.dmt.upm.es