CS 211: Computer Architecture Digital Logic

Topics:

- Transistors
- Logic Gates
- Boolean algebra

Transistor: Building Block of Computers

Microprocessors contain millions (billions) of transistors

- Intel Pentium 4 (2000): 48 million
- IBM PowerPC 750FX (2002): 38 million
- IBM/Apple PowerPC G5 (2003): 58 million

Logically, each transistor acts as a switch

Combined to implement logic functions

AND, OR, NOT

Combined to build higher-level structures

Adder, multiplexer, decoder, register, ...

Combined to build processor

Simple Switch Circuit

Switch open:

- No current through circuit
- Light is off
- V_{out} is +2.9V

Switch closed:

- Current flows
- Light is on
- V_{out} is 0V

Switch-based circuits can easily represent two states: on/off, open/closed, voltage/no voltage.

n-type MOS Transistor

#1

#2

MOS = Metal Oxide Semiconductor

two types: n-type and p-type

n-type

- when Gate has positive voltage, short circuit between #1 and #2
- when Gate has zero voltage, open circuit between #1 and #2

Gate

p-type MOS Transistor

p-type is complementary to n-type

- when Gate has positive voltage, open circuit between #1 and #2
- when Gate has zero voltage, short circuit between #1 and #2

Logic Gates

Use transistors to implement logical functions: AND, OR, NOT Digital symbols:

recall that we assign a range of analog voltages to each digital (logic) symbol

- assignment of voltage ranges depends on electrical properties of transistors being used
 - typical values for "1": +5V, +3.3V, +2.9V
 - from now on we'll use +2.9V

CMOS Circuit

Complementary MOS

Uses both n-type and p-type MOS transistors

- p-type
 - Attached to + voltage
 - Pulls output voltage UP when input is zero
- n-type
 - Attached to GND
 - Pulls output voltage DOWN when input is one

MOS transistors are combined to form Logic Gates

For all inputs, make sure that output is either connected to GND or to +, but not both!

Inverter (NOT Gate)

NOR Gate

A	В	С
0	0	1
0	1	0
1	0	0
1	1	0

Note: Serial structure on top, parallel on bottom.

OR Gate

Α	В	С
0	0	0
0	1	1
1	0	1
1	1	1

Add inverter to NOR.

NAND Gate (AND-NOT)

0

Note: Parallel structure on top, serial on bottom.

AND Gate

Α	В	С
0	0	0
0	1	0
1	0	0
1	1	1

Add inverter to NAND.

What is this?

A	В	С	Out
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Basic Logic Gates Symbols

More than 2 Inputs?

AND/OR can take any number of inputs.

- AND = 1 if all inputs are 1.
- OR = 1 if any input is 1.
- Similar for NAND/NOR.

Can implement with multiple two-input gates.

Logical Completeness

Can implement ANY truth table with AND, OR, NOT.

A	В	C	D
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

DeMorgan's Law

Converting AND to OR (with some help from NOT)

Consider the following gate:

To convert AND to OR (or vice versa), invert inputs and output.

A	В	Ā	\overline{B}	$\overline{A}\cdot\overline{B}$	A ·B
0	0	1	1	1 0	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	1 0 1 0	0	1

Generally, DeMorgan's Laws:

1.
$$\overline{PQ} = \overline{P} + \overline{Q}$$

2.
$$\overline{P+Q} = \overline{P} \overline{Q}$$

Same as A+B!

NAND and NOR Functional Completeness

Any gate can be implemented using either NOR or NAND gates.

Why is this important?

When building a chip, easier to build one with all of the same gates.

NAND, NOR universality

NAND, NOR universal because they can realize AND, OR, NOT

$\overline{A} = A \text{ NAND } A$	$\overline{A} = A \text{ NOR } A$
$AB = \overline{A} NAND \overline{B}$	$A+B=\overline{A \text{ NOR } B}$
$A+B=\overline{A}$ NAND \overline{B}	$AB = \overline{A} \text{ NOR } \overline{B}$

Terminology

Binary variable: a symbolic representation that might be 0 or 1 (eg. X, Y, A, B)

Complement: the opposite value of variable X

Literal: a boolean variable or its complement (eg, X, \overline{X})

Expression: a set of literals combined with logical operations (eg. AB + C)

Boolean algebra

Values: 0, 1

Operations: and, or, not, xor, implies, etc.

X AND Y: like multiplication

X XOR Y: like addition (mod 2)

	0	1
0	0	0
1	0	1

	0	1
0	0	1
1	1	0

Boolean Identities

OR	AND	NOT	
X+0 = X	X1 = X		(identity)
X+1 = 1	X0 = 0		(null)
X+X = X	XX = X		(idempotent)
$\overline{X+X} = 1$	$\overline{XX} = 0$		(complementarity)
		$\overline{\overline{X}} = X$	(involution)
X+Y = Y+X	XY = YX		(commutativity)
X+(Y+Z) = (X+Y)+Z	X(YZ) = (XY)Z		(associativity)
X(Y+Z) = XY + XZ	X+YZ = (X+Y)(X+Z)		(distributive)
$\overline{X+Y} = \overline{X}\overline{Y}$	$\overline{XY} = \overline{X} + \overline{Y}$		(DeMorgan's theorem)

Boolean Algebra Example

$$F = \overline{XYZ} + \overline{XYZ} + XZ$$

$$\overline{XY}(Z + \overline{Z}) + XZ \qquad (by reverse distribution)$$

$$\overline{XY}(Z + \overline{Z}) + XZ \qquad (by complementarity)$$

$$\overline{XY}(Z + \overline{Z}) + XZ \qquad (by identity)$$

Boolean Algebra Example 2

Find the complement of F

$$F = \overline{AB} + \overline{AB}$$

$$\overline{F} = \overline{AB} + \overline{AB}$$

$$\overline{(AB)} (\overline{AB}) \qquad (by DeMorgan's)$$

$$(\overline{A} + \overline{B}) (\overline{A} + \overline{B}) \qquad (by DeMorgan's)$$

$$(\overline{A} + B) (A + B) \qquad (by involution)$$

Using DeMorgan's Laws to Complement

- 1. Big bar over AND and OR of 2 or more functions
- 2. Replace AND with OR, OR with AND
- 3. 1 with 0, 0 with 1
- 4. F with not(F), not(F) with F

$$\overline{ABC} + \overline{ACD} + \overline{BC}$$

$$F = \overline{ABC}, G = \overline{ACD}, \forall f = BC, \overline{F+G+\forall f} = \overline{FG} \forall f$$

$$= (ABCX ACD)(B\overline{C})$$

$$= (ABC)(ACD) = ABCD, F = B, G = \overline{C}, \overline{FG} = \overline{F+G}$$

$$= (ABCD)(B+C)$$

$$= ABCD + ABCD$$

$$= ABCD$$

Duals

All boolean expressions have duals

Any theorem you prove, you can also prove for the dual

To form a dual

- 1. replace AND with OR, OR with AND
- 2. replace 1 with 0, 0 with 1

Complements and Duals

Complement Using Duals

Get dual and then complement each literal

$$F = X + A (Z + \overline{X} (Y + W) + \overline{Y} (Z + W))$$

$$Dual: F_{dual} = X (A + Z (\overline{X} + YW)(\overline{Y} + ZW))$$

$$\overline{F} = \overline{X} (\overline{A} + \overline{Z} (X + \overline{YW})(Y + \overline{ZW}))$$

Simplifying Expressions

