Bộ môn Sinh lý - Khoa Y - Đại Học Y Dược Tp. Hồ Chí Minh

SINH LÝ HORMON GH

ThS. BS. Lê Quốc Tuấn

MỤC TIÊU HỌC TẬP

Sau khi học, sinh viên có thể:

- Trình bày được cấu tạo và hoạt động của trục hạ đồi - tuyến yên của hormon GH.
- Trình bày được tác động của GH lên hoạt động chuyển hóa và phát triển cơ thể.
- Giải thích được đáp ứng của các tế bào somatotroph đối với GHRH và somatostatin.
- Giải thích được vai trò của các yếu tố ảnh hưởng lên sự bài tiết GH tại tuyến yên.

NỘI DUNG

- Giới thiệu khái quát về hormon GH
- Tác động của GH trong cơ thể
- Diều hòa bài tiết GH

KHÁI QUÁT VỀ HORMON GH

SỰ TĂNG TRƯỞNG CỦA CƠ THỂ

CÁC MỐC LỊCH SỬ QUAN TRỌNG

hGH: human GH GHR: GH receptor

GRS: The Growth Hormone Research Society

GHD: GH deficiency

HORMON GH

- Được tổng hợp và bài tiết bởi các tế bào somatotroph từ tuyến yên trước.
- Chịu tác động kích thích từ hormon GHRH (GH releasing hormone) và tác động ức chế từ GHIH (hay somatostatin) của hạ đồi, thông qua hoạt động của cAMP.

CẤU TRÚC CỦA HORMON GH

- Protein 191 acid amin
- 4 vòng xoắn: giúp gắn vào thụ thể.
- 2 cầu nối sulfide tạo nên cấu trúc hormon.

CẤU TRÚC CỦA THỤ THỂ GH

- Là glycoprotein, thuộc nhóm tyrosine kinase (thụ thể liên kết với enzyme).
- ❖ Gồm 2 thụ thể khác nhau cho mỗi phân tử GH: GHRI và GHRII.
- ❖ 2 thụ thể gắn vào 2 điểm đối diện nhau trên một phân tử hormon --> "dimer hóa" thụ thể.
- ❖ Thụ thể gắn hormon --> tự phosphoryl hóa.

CẤU TRÚC CỦA THỤ THỂ GH

TÁC ĐỘNG CỦA GH

CƠ CHẾ TÁC ĐỘNG CỦA GH

- Hormon GH gắn vào và gây phản ứng "dimer hóa" thụ thể tại tế bào đích.
- Sự tương tác này dẫn đến phản ứng tự phosphoryl hóa các gốc tyrosine kinase nằm trong tế bào --> khởi phát lộ trình tín hiệu nội bào liên quan sự tăng trưởng.

JAK2: Janus kinase 2

STATs: signal transducers and activators of transcription

MAPK: mitogen-activated protein kinase

IRS: insulin receptor substrate

TÁC ĐỘNG CỦA GH TRONG CƠ THỂ

Hormon GH có 2 nhóm tác động chính:

- Tác động trực tiếp thông qua thụ thể GH: đối kháng với hormon insulin lên hoạt động chuyển hóa của cơ thể.
- Tác động gián tiếp thông qua phân tử IGF-1: kích thích sự tăng trưởng tại nhiều cơ quan.

CÁC MÔ ĐÍCH CHÍNH CỦA GH

- Tác động trực tiếp thông qua thụ thể GH:
 - Mô gan (Liver)
 - Mô cơ (Muscle)
 - Mô mỡ (Fat)
- Tác động gián tiếp thông qua IGF-1:
 - Mô xương (Bone)
 - Mô sụn (Cartilage)
 - Các mô khác (Visceral organs)

TÁC ĐỘNG TRÊN CHUYỂN HÓA

- Chuyển hóa protid: kích thích các mô đích thu nhận acid amin và tổng hợp protein.
- Chuyển hóa lipid:
 - Kích thích ly giải triglyceride trong mô mỡ.
 - Tăng sử dụng acid béo tạo năng lượng.
- Chuyến hóa glucid:
 - Đối kháng insulin: tân sinh glucose tại gan, giảm sự thu nhận glucose vào mô.
 - Hiệp đồng với insulin: tăng đưa glucose vào các tế bào cơ nhờ IGF-1.

TÁC ĐỘNG TRÊN CHUYỂN HÓA

TÁC ĐỘNG TRÊN TĂNG TRƯỞNG

- Kích thích sự bài tiết IGF-1:
 - Từ gan: lưu hành trong máu.
 - Từ các mô khác: tác động tại chỗ.
- Ở trẻ em, IGF-1 kích thích các tế bào sụn phân chia tại đĩa sụn nối ở đầu các xương dài --> giúp phát triển chiều cao.
- IGF-1 cũng tác động lên sự tăng trưởng của nhiều mô khác trong cơ thể.

TÁC ĐỘNG TRÊN TĂNG TRƯỞNG

- Kích thích sụn và xương phát triển: qua 2 vị trí là đĩa sụn nối và cốt mạc (màng xương).
- Ở người trưởng thành, GH có vai trò quan trọng trong sửa chữa và tái tạo các mô.
- Chống lão hóa.

TÁC ĐỘNG TRÊN PHÁT TRIỂN XƯƠNG

TÁC ĐỘNG TRÊN PHÁT TRIỂN XƯƠNG

TÁC ĐỘNG TRÊN PHÁT TRIỂN XƯƠNG

TÓM TẮT TÁC ĐỘNG CỦA HORMON GH

ĐIỀU HÒA SỰ BÀI TIẾT GH

ĐIỀU HÒA BÀI TIẾT GH

- Điều hòa bằng cơ chế nội tiết:
 - Các hormon từ hạ đồi và dạ dày
 - Điều hòa ngược âm tính
- Các yếu tố ảnh hưởng lên sự bài tiết GH:
 - Thế thao (exercise) và dinh dưỡng (nutrition)
 - Giấc ngủ (sleep)
 - --> Sự dao động trong ngày của GH
 - Stress / hormon cortisol
 - Hormon sinh duc
 - Kích thích alpha-adrenergic và dopaminergic
 - Sự lão hóa

HORMON ĐIỀU HÒA BÀI TIẾT GH

- 2 hormon từ vùng hạ đồi:
 - GHRH (Growth hormone-releasing hormone):
 kích thích tổng hợp và bài tiết GH.
 - Somatostatin (SS) hay GHIH: ức chế giải phóng GH từ các tế bào somatotroph.
- ❖ 1 hormon từ dạ dày:
 - Ghrelin: kích thích bài tiết hormon GH.

ĐIỀU HÒA NGƯỢC TỪ IGF-1 VÀ GH

❖ IGF-I:

- Trực tiếp ức chế các tế bào somatotroph tại tuyến yên.
- Gián tiếp kích thích giải phóng somatostatin từ vùng hạ đồi.

❖ GH:

- Trực tiếp ức chế các tế bào somatotroph tại tuyến yên.
- Gián tiếp ức chế bài tiết GHRH từ vùng hạ đồi.

IGF-1 - Insulin-Like Growth Factor

ẢNH HƯỞNG TỪ SỰ LÃO HÓA

Growth Hormone Axis

CÁC YẾU TỐ KHÁC

Các yếu tố làm tăng bài tiết GH:

- Thể thao (exercise)
- Dinh dưỡng: chế độ ăn tăng acid amin, giảm acid béo và giảm glucose.

CÁC YẾU TỐ KHÁC

Các yếu tố làm tăng bài tiết GH:

- Giấc ngủ: GH tăng trong giấc ngủ Non-REM, giảm trong REM.
- Stress: GH tăng trong stress cấp, giảm trong stress mạn.
- Kích thích α-adrenergic và dopaminergic (dùng L-dopamin)
- Tăng tiết hormon sinh dục, giảm tiết cortisol (hạn chế stress).

TÓM TẮT SỰ ĐIỀU HÒA BÀI TIẾT GH

© Rashid A. Buttar, DO, FAAPM, FACAM, FAAIM, Director of Clinical Research and Development, V-SAB Medical Laboratories, INC.

BẤT THƯỜNG BÀI TIẾT GH

GIẨM TIẾT HORMON TĂNG TRƯỞNG

- Khởi phát trước dậy thì: bệnh lùn (Dwarfism)
- Khởi phát sau dậy thì: giảm sức mạnh và khối lượng cơ / xương.

BỆNH LÙN (DWARFISM)

BỆNH LÙN (DWARFISM)

KEY: GHD – growth hormone deficiency, IGF-ID – insulin-like growth factor I deficiency, ISS – idiopathic short stature

GH STIMULATION TEST

GH STIMULATION TEST

2 test với kết quả (peak GH) < 10 ng/mL --> GHD (GH deficiency)

"There are no great limits to growth because there are no limits of human intelligence, imagination, and wonder."

Ronald Reagan

TĂNG TIẾT HORMON GH

- Nguyên nhân: u tuyến yên
- Khởi phát trước dậy thì: bệnh khổng lồ (gigantism)
- Khởi phát trước dậy thì: bệnh to đầu chi (acromegaly)
 - Biến dạng khuôn mặt, bàn tay và bàn chân
 - Tăng huyết áp và bệnh tim
 - Rối loạn chuyển hóa, như tăng đường huyết

BỆNH KHỔNG LỒ (GIGANTISM)

BỆNH TO ĐẦU CHI (ACROMEGALY)

TÀI LIỆU THAM KHẢO

- Sinh Lý học Y khoa 2017, Bộ môn Sinh Lý, Đại học Y Duợc Tp.HCM.
- Ganong W. F. Review of Medical Physiology, 18th ed., Appleton & Lange, Connecticut, USA, 2012.
- Guyton A. C., Hall John E. Textbook of Medical Physiology, 11th ed., Elsevier Inc., China, 2006.
- Medical Physiology Principles for Clinical Medicine, 4th ed., Lippincott Williams & Wilkins, Philadelphia, USA, 2013.

Bộ môn Sinh lý học - Khoa Y - Đại Học Y Dược Tp. Hồ Chí Minh

CẨM ƠN SỰ CHỦ Ý LẮNG NGHE!