5.3

Lien entre les variations de f et le signe de f^\prime

SPÉ MATHS 1ÈRE - JB DUTHOIT

Propriété (admise)

Soit f une fonction définie et dérivable sur un intervalle I.

- f est croissante sur I si et seulement si la fonction f' est positive sur I.
- f est décroissante sur I si et seulement si la fonction f' est négative sur I.
- f est constante sur I si et seulement si la fonction f' est nulle sur I.

© Exercice 5.11

Soit g une fonction définie sur [-3;4] dont la courbe représentative C_g est donnée par :

Donner le signe de f'(x) suivant les valeurs de x.

© Exercice 5.12

Soit h une fonction définie sur l'intervalle [-3;4]. La courbe ci-dessous représente la fonction h', dérivée de la fonction h:

Sachant de plus que h(-1) = 2 et h(3) = -1.

Dresser le tableau de variations de h sur l'intervalle [-3;4].

Exercice 5.13

Soit une fonction f dont la courbe représentative est :

Quelle est la courbe qui représente la fonction f' parmi les courbes suivantes? Expliquez!

Savoir-Faire 5.28

SAVOIR ÉTUDIER LES VARIATIONS D'UNE FONCTION GRÂCE À LA DÉRIVATION

1.
$$f(x) = 5x^2 - 8x + 1$$
, $I = \mathbb{R}$

2.
$$f(x) = 18x^3 + 12x^2 - 5x + 7$$
, $I = \mathbb{R}$

₩Méthode :

- On calcule f'(x)
- On étudie le signe de f'(x). Pour cela, il faut avoir en tête qu'il faudra peut-être :
 - factoriser l'expression
 - penser au signe de la fonction trinôme
 - mettre au même dénominateur ...
- On dresse le tableau de variations (avec le signe de f' et les variations de f).

3.
$$f(x) = \frac{2x+3}{x^2+1}$$
, $I = \mathbb{R}$

4.
$$f(x) = (x-1)\sqrt{x}, I =]0; +\infty[$$

Exercice 5.14

Dans chaque cas suivant, dresser le tableau de variation de la fonction f définie sur \mathcal{D}_f :

1.
$$f(x) = -x^3 + x^2 - x$$
, $D_f = \mathbb{R}$.

2.
$$f(x) = -x^2 + 4x + 5$$
, $D_f = \mathbb{R}$.

3.
$$f(x) = 2x^2 + 6x - 8$$
, $D_f = \mathbb{R}$.

4.
$$f(x) = -x^3 + 3x$$
, $D_f = \mathbb{R}$.

5.
$$f(x) = x^3 - x^2 + x + 1$$
, $D_f = \mathbb{R}$.

6.
$$f(x) = x^4 - 8x^2 + 8$$
, $D_f = \mathbb{R}$.

7.
$$f(x) = \frac{x+2}{x-1}$$
, $D_f = \mathbb{R} - \{1\}$.

8.
$$f(x) = \frac{-4x}{x^2 + 1}$$
, $D_f = \mathbb{R}$.

Exercice 5.15

Soit f la fonction définie sur $]-\infty;1[\cup]1;+\infty[$ par $f(x)=\frac{x^2-x-2}{(x-1)^2}.$

Dresser le tableau de variations de la fonction f.

Exercice 5.16

Soit f la fonction définie sur $]-\infty;-1[\cup]-1;+\infty[$ par $f(x)=\frac{x^2+3}{x+1}.$ Dresser le tableau de variations de la fonction f.

Exercice 5.17

Soit f la fonction définie sur $]-\infty; 2[\cup]2; +\infty[$ par $f(x)=x-1+\frac{4}{x-2}.$ Dresser le tableau de variations de la fonction f.

Exercice 5.18

Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{x+1}{\sqrt{x}}.$ Dresser le tableau de variations de la fonction f.