

Exercices axés sur le calcul

Exercice 1

Vérifier l'existence et calculer les sommes suivantes :

1) $S_1 = \sum_{n=1}^{+\infty} \frac{1}{2^{n+1}}$ 2) $S_2 = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$ 3) $S_3 = \sum_{n=1}^{+\infty} \frac{3n+2}{n(n+1)(n+2)}$

1)
$$S_1 = \sum_{n=1}^{+\infty} \frac{1}{2^{n+1}}$$

2)
$$S_2 = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$

3)
$$S_3 = \sum_{n=1}^{+\infty} \frac{3n+2}{n(n+1)(n+2)}$$
.

Exercice 2

Soit $(u_n)_{n\in\mathbb{N}}$ une suite telle que $u_0=0$, $u_1=1$ et $u_{n+2}=\frac{5}{6}u_{n+1}-\frac{1}{6}u_n$ pour tout $n\in\mathbb{N}$. Vérifier que la série $\sum\limits_{n\geqslant 0}u_n$ converge et calculer sa somme.

Exercice 3 Classique \

Justifier l'existence de $S_2 = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2}$ et calculer sa valeur en admettant $S_1 = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Indication: Introduire $S_1 - S_2$.

Exercice 4

Pour n entier supérieur (ou égal) à 2, on pose $u_n = \frac{1}{(n-1)^3} + \frac{1}{(n+1)^3} - 2\frac{1}{n^3}$

On note $\zeta(3) = \sum_{n=1}^{+\infty} \frac{1}{n^3}$.

- 1) Justifier la convergence de la série $\sum_{n \ge 2} \frac{1}{(n+1)^3}$ et donner la valeur de sa somme en fonction de $\zeta(3)$.
- 2) Montrer que la série de terme général u_n converge et calculer $\sum_{n=2}^{+\infty} u_n$.

Exercice 5 *

Soit x un réel strictement positif. Pour $n \in \mathbb{N}$, on pose $a_n = \sum_{k=0}^n \frac{1}{k!}$

- 1) Rappeler la valeur de $\sum_{k=0}^{+\infty} \frac{1}{k!}$.
- 2) Déterminer, selon la valeur de x, la nature de la série $\sum_{n > 0} a_n x^n$.
- 3) En cas de convergence, calculer $(1-x)\left(\sum_{k=0}^{+\infty}a_kx^k\right)$ et en déduire la valeur de $\sum_{k=0}^{+\infty}a_kx^k$.

Exercice 6

- 1) Justifier la convergence de la série $\sum_{k\geq 0} \frac{(-1)^k}{2k+1}$.
- 2) Soit $n \in \mathbb{N}$. Calculer, pour $x \in [0, 1]$, la somme $\sum_{k=0}^{n} (-1)^k x^{2k}$.
- 3) En intégrant l'égalité précédente entre 0 et 1, montrer que $\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$.

Exercice 7

Pour n entier supérieur (ou égal) à 2, on pose :

$$u_n = \frac{1}{\sqrt{n-1}} - 2\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n+1}}.$$

- 1) Montrer que la série de terme général u_n converge.
- 2) Calculer $\sum_{n=2}^{+\infty} u_n$.

Exercice 8 Comparaison série-intégrale

Pour tout $n \ge 1$, on pose $S_n = \sum_{k=1}^n \sqrt{k}$.

- 1) Préciser la limite de S_n quand n tend vers l'infini.
- 2) Pour $k \ge 1$, comparer $\int_{k-1}^{k} \sqrt{t} \, dt$, \sqrt{k} et $\int_{k}^{k+1} \sqrt{t} \, dt$.
- 3) En déduire un équivalent de S_n quand n tend vers l'infini.

Exercice 9 Comparaison série-intégrale

- 1) Montrer que la série $\sum_{n>2} \frac{\ln(n)}{n^2}$ est convergente.
- 2) Pour $k \geqslant 3$, montrer que $\int_k^{k+1} \frac{\ln(t)}{t^2} dt \leqslant \frac{\ln(k)}{k^2} \leqslant \int_{k-1}^k \frac{\ln(t)}{t^2} dt$.
- 3) En déduire que pour n et p entiers tels que $p > n \le 4$, on a :

$$\frac{\ln(n+1)}{(n+1)^2} + \frac{1}{n+1} - \frac{\ln(p+1)}{(p+1)^2} - \frac{1}{p+1} \le \sum_{k=n+1}^p \frac{\ln(k)}{k^2} \le \frac{\ln(n)}{n^2} + \frac{1}{n} - \frac{\ln(p)}{p^2} - \frac{1}{p}.$$

4) En déduire un équivalent du reste R_n quand n tend vers l'infini.

Pour n et k dans \mathbb{N}^* , on pose :

$$u_{n,k} = \frac{1}{k} \left(\frac{k-1}{k}\right)^n - \frac{1}{k+1} \left(\frac{k}{k+1}\right)^n.$$

La famille $(u_{n,k})_{(n,k)\in\mathbb{N}^*\times\mathbb{N}^*}$ est-elle sommable? Indication: Calculer les sommes doubles.

以 Exercices axés sur le raisonnement

Exercice 11

Soit $\alpha \in \mathbb{R} \setminus \{0\}$. Pour $n \in \mathbb{N}^*$, on pose $u_n = \frac{1}{n^{\alpha} + \alpha^n}$. Étudier la nature de la série de terme général u_n .

D'après Mines-Ponts PSI

Exercice 12

Pour $n \in \mathbb{N}$, on pose:

$$u_n = \frac{1! + 2! + \dots + n!}{(n+1)!}$$
 et $v_n = \frac{1! + 2! + \dots + n!}{(n+2)!}$.

Étudier la nature des séries numériques $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$.

Exercice 13 *

Pour x > -1 on envisage :

$$S(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n+x} - \frac{1}{n} \right).$$

- 1) Pour tout x > -1, vérifier que S(x) existe.
- Vérifier que S est monotone sur]−1, +∞[.
- 3) Que vaut S(0)? S(1)? Plus généralement, que vaut S(k) pour $k \in \mathbb{N}^*$?
- 4) Justifier que S admet une limite réelle ou infinie en $+\infty$ et montrer que $\lim S = -\infty$.

Exercice 14

Soit $\theta \in]0,\pi[$.

- 1) Montrer qu'au moins une des deux séries $\sum_{n\geqslant 1}\frac{\sin(n\theta)}{n}$ ou $\sum_{n\geqslant 1}\frac{\cos(n\theta)}{n}$ n'est pas absolument convergente.
- 2) On suppose que la série $\sum_{n \ge 1} \frac{\sin(n\theta)}{n}$ est absolument convergente.
 - a) Montrer que la série $\sum_{n\geqslant 1}\frac{\sin((n-1)\theta)}{n}$ est absolument convergente.
 - b) Montrer que $\sum_{n\geqslant 1} \frac{\cos(n\theta)}{n}$ est aussi absolument convergente.
 - c) Que peut-on en conclure?

Exercice 15 Classique '

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite réelle positive décroissante telle que la série $\sum_{n>1} u_n$ converge.

1) Montrer que $nu_n \xrightarrow[n\to\infty]{} 0$.

Indication: Considérer $\sum_{k=n+1}^{2n} u_k$.

- 2) Montrer que $\sum_{n=1}^{+\infty} n(u_n u_{n+1})$ existe et est égale à $\sum_{n=1}^{+\infty} u_n$.
- 3) Application

Montrer que $\sum_{n=1}^{+\infty} \frac{n(n-1)2^n}{(n+1)!} = e^2 - 1$.

Exercices avec questions ouvertes

Exercice 16

Soit $\sum\limits_{n\geqslant 1}u_n$ et $\sum\limits_{n\geqslant 1}v_n$ deux séries réelles convergentes.

- 1) En supposant que les deux séries sont à termes positifs, montrer que $\sum_{n>1} \sqrt{u_n v_n}$ converge.
- 2) On suppose dans cette question que pour tout $n \in \mathbb{N}$, $u_n v_n \ge 0$. La série $\sum_{n\geq 0} \sqrt{u_n v_n}$ est-elle toujours convergente?

D'après CCINP

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite de nombres réels.

- 1) On suppose que pour tout $n \in \mathbb{N}^*$, $u_n > 0$. Les séries $\sum_{n\geqslant 1} u_n$ et $\sum_{n\geqslant 1} \ln(1+u_n)$ sont-elles de même nature?
- 2) On suppose que pour tout $n \in \mathbb{N}^*$, $1 + u_n > 0$. Les séries $\sum_{n\geqslant 1}u_n$ et $\sum_{n\geqslant 1}\ln(1+u_n)$ sont-elles de même nature?