Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat	
No.	

[5252]-544

SE (Electrical) (First Semester) EXAMINATION, 2017 MATERIAL SCIENCE

(2015 **PATTERN**)

Time: Two Hours Maximum Marks: 50

Physical Constants :-

- (i) Angstrom Unit (AU) = 1×10^{-10} metres.
- (ii) Boltzmann's Constnat (k) = 1.380×10^{-23} joule.degree⁻¹
- (iii) Charge on Electron (e) = 1.601×10^{-19} coulomb
- (iv) Mass of Electron (m) = $9.107 \times 10^{-31} \text{ kg}$
- (v) Electron volt (eV) = 1.602×10^{-19} joules
- (vi) Mass of Proton (m_p) = 1.627×10^{-27} kg.
- (vii) Velocity of light (c) = 2.998×10^8 m/sec
- (viii) Dielectric Constant of free space (ϵ_0) = 8.854 \times 10^{-12} F/m
 - (ix) Permeability of free space (μ_0) = 4 π × 10⁻⁷ H/m
 - (x) Debye Unit $= 3.33 \times 10^{-30}$ coulomb.metre

1. (a) Explain:

[6]

- (i) Polarization
- (ii) Pyroelectricity and
- (iii) Ferroelectricity.
- (b) State the properties and applications of: [6]
 - (i) Asbestos
 - (ii) Carbon.

P.T.O.

2.	(a)	A parallel plate capacitor is used to store 16 μC at a potentil
		of 8 kV. The distance between the plates is 10×10^{-4} m.
		If the dielectric constant of the material is 20, kept between
		plates, what is the area of the plates? [6]
	(b)	Discuss insulating materials used for transmission line. [6]
	(a)	Explain Ferromagnetic and Ferrimagnetic materials and their
		applications. [7]
	(<i>b</i>)	Describe the properties and applications of the following
		materials: [6]
		(i) Platinum
		(ii) Molybdenum.
4	()	
4.	(a)	Explain in detail BH curve (hysteresis loop) for ferromagnetic
	(1)	materials. [6]
	(<i>b</i>)	Write a short note on thermocouple. [7]
_	()	
5.	(a)	Write down applications of carbon nano tubes and BN nano
	(1)	tubes. [6]
	(<i>b</i>)	Write a short note on: ZEBRA batteries. [6]
0	()	Or
6.	(a)	Write a short note on molecular machines. [6]
	(<i>b</i>)	Explain with neat diagram, chemical reaction, applications
		of: [6]
		(i) Nickel-cadmium battery and
		(ii) Sodium-sulphur battery.
[5252	2]-544	2

- 7. (a) Describe measurement of dielectric strength of solid insulating material with reference to IS. [7]
 - (b) What is dielectric loss? Explain with a suitable phasor diagram and derivation. [6]

Or

- 8. (a) With a neat sktech explain how flux density is measured with the help of gauss meter. [7]
 - (b) How will you test transformer oil? Explain with neat diagram the test set up. [6]

Stranger of the stranger of th