Лабораторная работа №6. Модель эпидемии SIR].

Вариант №28

Евдокимов Иван Андреевич. НФИбд-01-20

Содержание

1	Цель работы	4		
	1.1 Цель лабораторной работы:	. 4		
2	Задание[1]	5		
	2.1 Задания лабораторной работы:	. 5		
3	Ход выполнения лабораторной работы:	6		
	3.1 Теоретические сведения[2]:	. 6		
	3.2 Теоретические сведения	. 7		
	3.3 Теоретические сведения			
4	Задача[1]	8		
	4.1 Условие задачи:	. 8		
5	Код программы			
	5.1 Код программы на Julia общий: [3]	. 9		
	5.2 Код программы на OpenModelica:			
6	Результаты работы	15		
	6.1 Результаты работы на Julia:	. 15		
	6.2 Результаты работы на OpenModelica:			
7	Выводы	18		
Сп	Список литературы			

Список иллюстраций

6.1	Графики численности в случае $I(0) \leq I^*$	15
6.2	Графики численности в случае $I(0)>I^*$	16
6.3	Графики численности в случае $I(0) \leq I^*$	16
6.4	Графики численности в случае $I(0) > I^*$	17

1 Цель работы

1.1 Цель лабораторной работы:

Изучить простейшую модель эпидемии SIR. Используя условия из варианты, задать в уравнение начальные условия и коэффициенты. После построить графики изменения численностей трех групп в двух случаях.

2 Задание[1]

2.1 Задания лабораторной работы:

- 1. Изучить модель эпидемии
- 2. Построить графики изменения числа особей в каждой из трех групп.
- 3. Рассмотреть, как будет протекать эпидемия в случае: $I(0) \leq I^*$, $I(0) > I^*$

3 Ход выполнения лабораторной работы:

3.1 Теоретические сведения[2]:

Рассмотрим простейшую модель эпидемии. Предположим, что некая популяция, состоящая из N особей, (считаем, что популяция изолирована) подразделяется на три группы. Первая группа – это восприимчивые к болезни, но пока здоровые особи, обозначим их через S(t). Вторая группа – это число инфицированных особей, которые также при этом являются распространителями инфекции, обозначим их I(t). А третья группа, обозначающаяся через R(t) – это здоровые особи с иммунитетом к болезни. До того, как число заболевших не превышает критического значения I^* , считаем, что все больные изолированы и не заражают здоровых. Когда $I(t) > I^*$, тогда инфицирование способны заражать восприимчивых к болезни особей.

Таким образом, скорость изменения числа S(t) меняется по следующему закону:

$$rac{dS}{dt} = egin{cases} -lpha S & ext{,ecли } I(t) > I^* \ 0 & ext{,ecли } I(t) \leq I^* \end{cases}$$

3.2 Теоретические сведения

Поскольку каждая восприимчивая к болезни особь, которая, в конце концов, заболевает, сама становится инфекционной, то скорость изменения числа инфекционных особей представляет разность за единицу времени между заразившимися и теми, кто уже болеет и лечится. Т.е.:

$$rac{dI}{dt} = egin{cases} lpha S - eta I & \mbox{,ecли } I(t) > I^* \ -eta I & \mbox{,ecли } I(t) \leq I^* \end{cases}$$

3.3 Теоретические сведения

Рассмотрим скорость изменения выздоравливающих особей, которые при этом приобретают иммунитет к болезни:

$$\frac{dR}{dt} = \beta I$$

Постоянные пропорциональности α,β - это коэффициенты заболеваемости и выздоровления соответственно. Для того, чтобы решения соответствующих уравнений определялось однозначно, необходимо задать начальные условия. Считаем, что на начало эпидемии в момент времени t=0 нет особей с иммунитетом к болезни R(0)=0, а число инфицированных и восприимчивых к болезни особей I(0) и S(0) соответственно. Для анализа картины протекания эпидемии необходимо рассмотреть два случая: $I(0) \leq I^*$ и $I(0) > I^*$

4 Задача[1]

4.1 Условие задачи:

На одном небольшом острове вспыхнула эпидемия. Известно, что из всех проживающих на острове (N=11400) в момент начала эпидемии (t=0) число заболевших людей (являющихся распространителями инфекции) I(0)=250. Число здоровых людей с иммунитетом к болезни R(0)=47. Таким образом, число людей восприимчивых к болезни, но пока здоровых, в начальный момент времени S(0)=N-I(0)-R(0). Постройте графики изменения числа особей в каждой из трех групп. Рассмотрите, как будет протекать эпидемия в случае: 1. $I(0) \leq I^*$ 2. $I(0) > I^*$

5 Код программы

5.1 Код программы на Julia общий: [3]

```
# Вариант 28
using Plots
using DifferentialEquations
N = 11400
I0 = 250
R0 = 47
a = 0.01
b = 0.02
S0 = N - I0 - R0
function fn_1(du, u, p, t)
    S0 , I0, R0 = u
    du[1] = 0
    du[2] = -b*u[2]
    du[3] = b*u[2]
end
function fn_2(du, u, p, t)
    S0, I0, R0 = u
```

```
du[1] = -a*u[1]
    du[2] = a*u[1] - b*u[2]
    du[3] = b*u[2]
end
v0 = [S0, I0, R0]
tspan = (0, 100)
prob = ODEProblem(fn_1, v0, tspan)
sol = solve(prob, dtmax=0.01)
S = [u[1] \text{ for } u \text{ in sol.} u]
I = [u[2] \text{ for } u \text{ in sol.} u]
R = [u[3] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
plt = plot(
  dpi=300,
  title="Решение уравнения",
  legend=false)
plot!(
  plt,
  Τ,
  S,
  color=:blue)
plot!(
  plt,
  Τ,
```

```
I,
  color=:red)
  plot!(
  plt,
  Τ,
  R,
  color=:green)
v0 = [S0, I0, R0]
tspan = (0, 100)
prob = ODEProblem(fn_2, v0, tspan)
sol = solve(prob, dtmax=0.01)
S = [u[1] \text{ for } u \text{ in sol.} u]
I = [u[2] \text{ for } u \text{ in sol.} u]
R = [u[3] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
plt2 = plot(
  dpi=300,
  title="Решение уравнения",
  legend=false)
plot!(
  plt2,
  Τ,
  S,
  color=:blue)
```

```
plot!(
  plt2,
  T,
  I,
  color=:red)

plot!(
  plt2,
  T,
  R,
  color=:green)

savefig(plt, "lab06_1.png")
  savefig(plt2, "lab06_2.png")
```

5.2 Код программы на OpenModelica:

```
model laba_6_1

parameter Real N(start=11400);
parameter Real I0(start=250);
parameter Real R0(start=47);
parameter Real a( start=0.01);
parameter Real b( start=0.02);
parameter Real S0 = N - I0 - R0;
Real S(start=S0);
Real I(start=I0);
```

```
Real R(start=R0);
equation
 der(S) = 0;
 der(I) = -b*I;
 der(R) = b*I;
 annotation(experiment(StartTime=0, StopTime=100, Tolerance=1e-
6, Interval=0.01));
end laba_6_1;
model laba_6_2
 parameter Real N(start=11400);
 parameter Real IO(start=250);
 parameter Real R0(start=47);
 parameter Real a( start=0.01);
 parameter Real b( start=0.02);
 parameter Real S0 = N - I0 - R0;
 Real S(start=S0);
  Real I(start=I0);
  Real R(start=R0);
equation
 der(S) = -a*S;
  der(I) = a*S-b*I;
 der(R) = b*I;
```

```
annotation(experiment(StartTime=0, StopTime=100, Tolerance=1e-
6, Interval=0.01));
end laba_6_2;
```

6 Результаты работы

6.1 Результаты работы на Julia:

Рис. 6.1: Графики численности в случае $I(0) \leq I^*$

Рис. 6.2: Графики численности в случае $I(0) > I^*$

6.2 Результаты работы на OpenModelica:

Рис. 6.3: Графики численности в случае $I(0) \leq I^*$

Рис. 6.4: Графики численности в случае $I(0)>I^{st}$

7 Выводы

В ходе выполнения лабораторной работы была изучена простейшая модель эпидемии и построены графики на основе условий задачи и начальных данных, которые были описаны в варианте лабораторной работы.

Список литературы

- 1. Задания к лабораторной работе №6 (по вариантам) [Электронный ресурс]. RUDN, 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971665/mod_resou rce/content/2/%D0%97%D0%B0%D0%B4%D0%B0%D0%BD%D0%B8%D0%B5 %20%D0%BA%20%D0%BB%D0%B0%D0%B1%D0%BE%D1%80%D0%B0%D1% 82%D0%BE%D1%80%D0%BD%D0%BE%D0%B9%20%D1%80%D0%B0%D0%B 1%D0%BE%D1%82%D0%B5%20%E2%84%96%207%20%283%29.pdf.
- 2. Лабораторная работа №6 [Электронный ресурс]. RUDN, 2023. URL: https://esystem.rudn.ru/pluginfile.php/1971664/mod_resource/content/2/Лабораторная%20работа%20№%205.pdf.
- 3. DifferentialEquations.jl: Efficient Differential Equation Solving in Julia [Электронный ресурс]. 2023. URL: https://docs.sciml.ai/DiffEqDocs/stable/.