Artificial Intelligence Model for Parkinson Disease Detection Using Machine Learning Algorithms

Shahid Ali FA24-RAI-015

Introduction

- Parkinson's Disease (PD) is a progressive neurological disorder that affects movement and speech.
- It impacts motor functions, speech, and posture due to dopamine deficiency.
- Symptoms include tremors, muscle rigidity, slow movements, and speech difficulties.
- Parkinson's disease mainly affects older people and slowly worsens over time.
- Early diagnosis is crucial to manage symptoms and improve quality of life.
- Early treatment can help patients a lot, but currently, diagnosis depends a lot on doctors' experience and observation, which can sometimes be wrong or inconsistent.
- Since PD affects speech, analyzing voice recordings can be a useful way to detect PD automatically.
- This Research leverages machine learning algorithms to detect PD using voice features to provide a fast, objective, and accurate decision support system.

Problem Statement

- The current diagnostic techniques for Parkinson's Disease are subjective, rely on clinical observations, and often detect the disease at a later stage.
- The main challenge is the lack of quantitative, objective, and reliable methods for early diagnosis and staging of Parkinson's disease.
- Existing diagnostic procedures are subjective and prone to variability. There is a need for automated and accurate models that can select important features from complex biomedical data and effectively classify patients.
- This **paper addresses** the problem by proposing machine learning models trained on carefully selected voice features to classify as Parkinson's patient versus Healthy individual.

Related Work (Literature review)

- Various AI methods have been proposed for PD diagnosis using speech (Vocal Features).
- Previous studies utilized feature selection techniques such as LASSO, mRMR, genetic algorithms, and different classifiers including SVM, KNN, and neural networks.
- While many achieved **good accuracy**, feature selection remains critical to improve classifier performance and reduce computational cost.

Gaps in Previous Research:

- Many studies use **black-box models** with limited explainability.
- Overfitting due to too many features is common.
- Lack of comparison across multiple classifiers using consistent feature sets.

The current paper bridges these gaps by:

- Using feature selection to minimize noise
- Applying six classifiers on the same dataset
- Evaluating both full and reduced features

Methodology

Methodology

1. Dataset:

- Sourced from UCI Machine Learning Repository
- 197 voice samples, 23 features, and a binary label:
 - ∘ 1 = Parkinson's patient
 - $_{\circ}$ 0 = Healthy individual

Features include:

- Frequency-based: MDVP:Fo(Hz), MDVP:Fhi(Hz), MDVP:Flo(Hz)
- **Jitter/Shimmer-based**: Indicators of vocal irregularity and amplitude variation
- NHR / HNR: Noise-to-Harmonic and Harmonic-to-Noise Ratios
- DFA, PPE, Spread1, Spread2, D2: Nonlinear dynamics and complexity measure
- **Data Split**: 80% training, 20% testing

2. Feature Selection Techniques:

Methodology

- Chi2 Test: It checks which features are most related to whether a person has PD or not. Features with higher scores are more important.
- Extra Trees Classifier: An ensemble method that provides feature importance scores based on randomized decision trees. Features that help the most get higher importance scores.
- Correlation Matrix: Computes Pearson correlation between features and the target to select features with highest absolute correlation.

3. Machine Learning Classifiers:

- Decision Tree (DT)
- K-Nearest Neighbors (KNN)
- Random Forest (RF)
- Bagging
- AdaBoost
- Gradient Boosting Our added models Logestic Regression, Naïve Bayes and SVM.
- The methodology involves selecting top features from each method and training/testing classifiers on both full and reduced feature sets.

Base Paper Results

No. of features	% Accuracy					
	Without feature selection (23-Attributes)	Chi ² feature selection Technique (11- Attributes)	Extra trees classifier feature selection Technique (11-Attributes)	Correlation matrix feature selection technique (11-Attributes)		
DT	94.87	94.87	94.87	94.87		
KNN	82.05	82.05	82.05	79.48		
RF	92.30	92.30	89.74	87.17		
Bagging	92.30	89.74	89.74	87.17		
AdaBoosting	87.17	84.61	87.17	89.74		
Gradient boosting	92.30	94.87	92.30	94.87		

Our Results

ML Classifier	Accuracy (Full Features)	Accuracy Chi2	Accuracy Extra Tree Classifier	Accuracy Corelation Matrix	AUC
DT	94.92%	82%	98.31%	85%	94.90%
KNN	98%	83%	97%	98%	100%
RF	100%	100%	100%	97%	100%
Bagging	99.57%	76.26%	99.57%	97%	100%
AdaBoosting	85%	76.27%	85%	80%	95%
Gradient Boosting	98.31%	92%	100%	96.61%	100%
Logestic Regression	80%	70%	87%	84%	95%
Naive Bayes	79%	65%	83%	80%	97%
SVM	90%	76%	89.83%	83%	95%

- Random Forest, Bagging and Gradient Boosting performed the best.
- Feature selection improved model performance and reduced complexity.

ROC Curve Analysis

- ROC curves confirm high model performance.
- Best AUC = 100% (RF and Gradient Boosting).

Random Forest Results

=== Random Forest === Classification report (Test data): precision recall f1-score support 1.00 1.00 1.00 30 1.00 1.00 1.00 29 1.00 59 accuracy 59 1.00 1.00 1.00 macro avg 59 weighted avg 1.00 1.00 1.00

Train Accuracy: 100.00% Test Accuracy: 100.00% Train RMSE: 0.0000 Test RMSE: 0.0000

Decision Trees Classifier Result

=== Decision Tree === Classification report (Test data): recall f1-score precision support 0.97 0.93 0.95 30 0.93 0.97 0.95 29 0.95 59 accuracy 0.95 59 0.95 0.95 macro avg 59 weighted avg 0.95 0.95 0.95

Train Accuracy: 100.00% Test Accuracy: 94.92% Train RMSE: 0.0000 Test RMSE: 0.2255

KNN Results

=== K-Nearest Neighbours === Classification report (Test data): precision recall f1-score support 1.00 1.00 1.00 30 1.00 1.00 1.00 29 1 1.00 59 accuracy 1.00 1.00 1.00 59 macro avg 1.00 59 weighted avg 1.00 1.00

Train Accuracy: 97.45% Test Accuracy: 100.00% Train RMSE: 0.1598 Test RMSE: 0.0000

Bagging Results

=== Bagging Classifier === Classification report (Test data): precision recall f1-score support 1.00 1.00 1.00 30 1.00 1.00 29 1 1.00 1.00 59 accuracy 1.00 1.00 1.00 59 macro avg 59 1.00 weighted avg 1.00 1.00

Train Accuracy: 100.00% Test Accuracy: 100.00% Train RMSE: 0.0000 Test RMSE: 0.0000

AdaBoosting Results

=== AdaBoost === Classification report (Test data): precision recall f1-score support 0.90 0.89 0.87 30 0.89 0.86 0.88 29 0.88 59 accuracy 0.88 59 0.88 macro avg 0.88 0.88 0.88 0.88 59 weighted avg

Train Accuracy: 84.26% Test Accuracy: 88.14% Train RMSE: 0.3968 Test RMSE: 0.3444

Gradient Boosting Results

=== Gradient Boosting === Classification report (Test data): precision recall f1-score support 1.00 0.97 0.98 30 0.97 1.00 0.98 29 0.98 accuracy 59 0.98 59 0.98 0.98 macro avg weighted avg 0.98 0.98 0.98 59

Train Accuracy: 100.00% Test Accuracy: 98.31% Train RMSE: 0.0000 Test RMSE: 0.1302

Stacking Classifier Results

=== Stacking Classifier === Classification report (Test data): precision recall f1-score support 0.92 0.88 0.97 30 0.96 0.86 0.91 29 0.92 59 accuracy 59 0.92 0.91 0.91 macro avg 59 weighted avg 0.92 0.92 0.91

Train Accuracy: 90.21% Test Accuracy: 91.53% Train RMSE: 0.3128 Test RMSE: 0.2911

Conclusion

- This study presents an effective AI-based approach to Parkinson's disease detection using feature selection and classification algorithms.
- The combination of Chi2, Extra Trees, and Correlation Matrix methods helps identify the most relevant voice features for PD diagnosis.
- Random Forest, Bagging, GB and SC classifier emerged as the best performer.
- The method is suitable for clinical use due to its high accuracy and low computational complexity.
- Future research could explore deep learning techniques and multimodal data to further improve detection accuracy.

THANKS