МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Информатика»

Tema: Основные управляющие конструкции. Wikipedia API

Студентка гр. 0382	 Ситченко К.С
Преподаватель	 Шевская Н.В.

Санкт-Петербург 2020

Цель работы.

Изучить основные управляющие конструкции языка Python, а также научиться работать с модулем Wikipedia API.

Задание.

Используя вышеописанные инструменты, напишите программу, которая принимает на вход строку вида

название_страницы_1, название страницы_2, ... название_страницы_n, сокращенная_форма_языка

и делает следующее:

- 1. Проверяет, есть ли такой язык в возможных языках сервиса, если нет, выводит строку "no results" и завершает выполнение программы. В случае, если язык есть, устанавливает его как язык запросов в текущей программе.
- 2. Ищет максимальное число слов в кратком содержании страниц "название_страницы_1", "название страницы_2", ... "название_страницы_n", выводит на экран это максимальное количество и название страницы (т.е. её title), у которой оно обнаружилось. Считается, что слова разделены пробельными символами.

Если максимальных значений несколько, выведите последнее.

3. Строит список-цепочку из страниц и выводит полученный список на экран.

Элементы списка-цепочки - это страницы "название_страницы_1", "название страницы_2", ... "название_страницы_п", между которыми может быть одна промежуточная страница или не быть промежуточных страниц.

Предположим, нам на вход поступила строка:

Айсберг, IBM, ru

В числе ссылок страницы с названием "Айсберг", есть страница с названием, которая содержит ссылку на страницу с названием "Буран", у

которой есть ссылка на страницу с названием "ІВМ" -- это и есть цепочка с промежуточным звеном в виде страницы "Буран".

Гарантируется, что существует или одна промежуточная страница или ноль: т.е. в числе ссылок первой страницы можно обнаружить вторую.

Цепочка должна быть кратчайшей, т.е. если существуют две цепочки, одна из которых содержит промежуточную страницу, а вторая нет, стройте цепочку без промежуточного элемента.

Пример входных данных:

Айсберг, IBM, ru

Пример вывода:

115 IBM

['Айсберг', 'Буран', 'ІВМ']

Первая строка содержит решение подзадачи №2, вторая - №3.

Основные теоретические положения.

Функции модуля Wikipedia представлены в таблице 1. Атрибуты класса WikipediaPage (страницы сервиса Wikipedia) представлены в таблице 2.

Таблица 1 – Функции модуля Wikipedia

Функция	Описание	Возвращаемое значение
page(title)	Поиск страницы	Объект класса WikipediaPage, который
		представляет собой страничку сервиса
		Wikipedia, название которой - строка
		title
languages()	Поиск всех	Словарь, ключами которого являются
	возможных языков	сокращенные названия языков, а
	сервиса	значениями - названия. Например:
		>>> wikipedia.languages()['ru'] 'русский'
set_lang(lang)	Установить язык	None
	lang, как язык	
	запросов в текущей	
	программе.	

Таблица 2 – Атрибуты класса WikipediaPage (страницы сервиса Wikipedia)

Поле класса	Описание	Возвращаемое
		значение
page.summary	Краткое содержание страницы page	Строка
page.title	Название страницы page	Строка
page.links	Список названий страниц, ссылки на которые содержит страница раде	Список строк

Выполнение работы.

Для решения данной задачи было написано несколько функций:

- 1. is_page_valid(page) функция проверяет наличие страницы с таким именем в Wikipedia.
- 2. set_lang(lang) функция проверяет существование указанного языка и, если да, то устанавливает его как язык запросов в текущей программе.
- 3. max_words_on_page(pages) функция находит среди данных страницу с максимальным количеством слов в кратком содержании и выводит на экран это количество и название страницы.
- 4. min_chain(pages) функция строит список-цепочку из страниц и выводит полученный список на экран.

На вход программе подается строка. С помощью метода *split()* преобразовываем эту строку в список, хранящийся в переменной *st* и последний элемент которого является сокращенной формой языка и проверяется во второй функции. Если введенной формы языка нет в Wikipedia, то программа выведет на экран "no results" и прекратит работу. Если есть, то установит его как язык запросов данной программы. Затем в переменную *inp_pages* мы помещаем срез списка до предпоследнего элемента (список названий страниц). Далее мы отправляем этот список в третью функцию, где проверяется факт существования страницы с помощью функции *is_page_valid(page)*, а также посредством функций *len()* и *page(title)*

ищется максимальное количество слов в кратком содержании страницы и ее название. С помощью вложенного цикла в функции *min_chain(pages)* построим кратчайшую список-цепочку из страниц.

Разработанный программный код см. в приложении А.

Тестирование.

Результаты тестирования представлены в таблице 3.

Таблица 3 – Результаты тестирования

	ца 5 — Гезультаты тест	1	
$N_{\underline{0}}$	Входные данные	Выходные данные	Комментарии
			•
Π/Π			
1	Айсберг, IBM, ru	115 IBM	Программа работает верно
	-		
		['Айсберг', 'Буран',	
		HDM 411	
		'IBM']	
2	Seoul, ocean, enl	no results	Программа работает верно
2	Scoul, occan, cm	no results	Программа раобтает верно
3	ㅂㄱ 타드리 1	100 日 コ	Программа работает верно
	불교, 탄트라, ko	198 불교	11p of position possesses 2 opins
		['불교', '탄트라']	
		ᅵ[걸뽀, 건드니]	

Выводы.

Были изучены основные управляющие конструкции языка Python, а также проведена работа с модулем Wikipedia API.

Разработана программа, которая считывала строку, преобразовывала ее в список, а затем отправляла ее ф функции. Для работы подключался модуль Wikipedia API и использовались его функции.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

1. Название файла: main.py

```
import wikipedia
def is page valid(page):
  try:
    wikipedia.page(page)
  except Exception:
    return False
  return True
def set lang(lang):
  if lang in wikipedia.languages():
    wikipedia.set lang(lang)
    return True
  else:
    return False
def max words on page (pages):
  max page = \overline{'}'
  max\_words = 0
  for i in range(len(pages)):
    if is page valid(pages[i]) == True:
      page = wikipedia.page(pages[i])
      if len((page.summary).split()) >= max words:
        max words = len((page.summary).split())
        max page = page.title
  return max words, max page
def min chain (pages):
  arr = []
  arr.append(pages[0])
  for i in range (len (pages) -1):
    if pages[i+1] in wikipedia.page(pages[i]).links:
      arr.append(pages[i+1])
    else:
      for j in wikipedia.page(pages[i]).links:
        if pages[i+1] in wikipedia.page(j).links:
          arr.append(j)
          arr.append(pages[i+1])
          break
  return arr
st = input().split(', ')
if set lang(st[-1]):
  inp pages = st[:len(st) - 1]
  print(max words on page(inp pages)[0],
max words on page(inp pages)[1])
  print(min chain(inp pages))
else:
  print("no results")
```