ANTICO GIOCO della ZARA -3 olasti (onesti) obanno lugo a 3 PUNTÉGEI ola 1 a 6: P₁, P₂ e P₃. $5 = P_1 + P_2 + P_3$ (1,1,1) -P 5=3(6,6,6) - 0 = 18

- L'insieme der possibili valori assumibili (Con probabilità nulla) des 5 é $\{3,4,-,17,18\}$ - Ha senso considerare: $P(5-10)>0 3P_{3}+3P_{2}=18+9=27$ (1,2,1) + (2,1,1) =# délle terne "con somme (1,2,1) + (2,1,1) = # délle terne $0^{(2)}_{6,3} = 6^3$

è basorto sul seguente

PRINCIPIO FONDAMENTALE DEL CALCOLO CONBINATORIO 5e une PROCEDURA DI SCELTA SI PUO DE COAPORRE IN T PROCEDURE DI SCELTA, ALLO RA 11 NUTTERO N DELLE SCELTE E'UGNALE AL PRODOTTO DEL NUTTERO N1, N2, ---, Na DELLE SCELTE

DI CIASCUNA SOTTOPROCEDURA N=N1. N2 --. N2

ESEMPIO: CAMICIE

_ CO CORE: N_=5

- TAGLIA: N2=8

- FOGGIA: N3=3

- COLLO: N4=2

N = 5.8.3.2

Ritorniamo al problema del contare: vogliamo contare in quanti modi si puo fore la scelta di k elementi di

on n, KEW, rispettando i seguenti olue CRITERI

Con RIPETIZIONE

- 1) oppure senta RIPETIZIONE
 - 2) BISOGNA RISPETTARELI ORDINE
 CON IL QUALE SI
 SUSSEGUONO GLI ELEMENTI!
 oppure

NON B1506NA

ESEMPIO

Schedine del totocolcio n=3, $A = \left\{1, x, 2\right\}$ K= 14 le due "colonne" sono diverse pur avendo lo stesso numero 'di 1, la stessa numero di x 131 2C 2 e la stessa numero di 2. 14) 1 1

ESEMPIO - Corsa tris A= 21,2,--,99 m=9, K=3 (1,3,5): rince el cavallo # 1 secondo posto al cavallo # 2 terzo posto al cavallo # 3

(1,1,5); (1,3,5) + (1,5,3) NON E' VALIDA

ESEMPIO

- Persi al gioco del lotto A= {1,2,--,90} (1, 1, 5) non è valido (18, 53, 34)= (18, 34, 53) =(53,18,34)=(53,34,18)=(34,53,18)=(18,53,34).

P051710N1

mieme di $A = \{l_1, l_2, ..., ln\}$; scelta

egnemioni dei (R, \overline{R}) ; $(0, \overline{0})$;

D sta per "olisposizioni"

c sta per "combina zioni"

P stor per "permu tazioni"

1) Numero delle obsposizioni con ripet izione

[R, 0];

$$\frac{1}{n} \frac{2}{n} \frac{R}{n - - n}$$

$$\frac{1}{n} \frac{2}{n} \frac{R}{n} = n$$

2) Numero delle combina zioni con ripet izione [R, 0];

 $C_{n,k}^{(n)} = ?$

3) Numero olelle olisposizioni senza ripet izione (semplici) $\begin{bmatrix} \overline{R}, 0 \end{bmatrix}; 1 2 \qquad k$ $\begin{bmatrix} n & | n-1 | -- | n-(k-1) = n-k+1 \end{bmatrix}$ $k \leq n$, $D_{n,k} = n(n-1) - (n-k+1)$ R= n Dn, n= n (n-1) --- 1 = n! numero delle permutazioni: Dn, n = Pn = m! sempli ci coso particolare