11.7

Motion in Space

DEFINITION Position, Velocity, Speed, Acceleration

Let the **position** of an object moving in three-dimensional space be given by $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $t \ge 0$. The **velocity** of the object is

$$\mathbf{v}(t) = \mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle.$$

The **speed** of the object is the scalar function

$$|\mathbf{v}(t)| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}.$$

The **acceleration** of the object is $\mathbf{a}(t) = \mathbf{v}'(t) = \mathbf{r}''(t)$.

Circular motion: At all times $\mathbf{a}(t) = -\mathbf{r}(t)$ and $\mathbf{v}(t)$ is orthogonal to $\mathbf{r}(t)$ and $\mathbf{a}(t)$.

FIGURE 11.83

On a trajectory on which $|\mathbf{r}(t)|$ is constant, \mathbf{v} is orthogonal to \mathbf{r} at all points.

FIGURE 11.87

11.8

Length of Curves

DEFINITION Arc Length for Vector Functions

Consider the parameterized curve $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, where f', g', and h' are continuous, and the curve is traversed once for $a \le t \le b$. The **arc length** of the curve between (f(a), g(a), h(a)) and (f(b), g(b), h(b)) is

$$L = \int_a^b \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} dt = \int_a^b |\mathbf{r}'(t)| dt.$$

