**Theorem 0.1.** Let  $C = (c_{ij})$ ,  $C' = (c'_{ij})$ , P and Q be  $n \times n$  matrices. Assume that

- (i)  $PCQ \leq PC'Q$ ;
- (ii) there exist a nonnegative column vector  $u = (u_1, u_2, \dots, u_n)^T$  and a scalar  $\lambda' \in \mathbb{R}$  such that  $\lambda'$  is an eigenvalue of C' with associated eigenvector Qu;
- (iii) there exist a nonnegative row vector  $v^T = (v_1, v_2, \dots, v_n)$  and a scalar  $\lambda \in \mathbb{R}$  such that  $\lambda$  is an eigenvalue of C with associated left eigenvector  $v^T P$ ; and
- (iv)  $v^T PQu > 0$ .

Then  $\lambda \leq \lambda'$ . Moreover,  $\lambda = \lambda'$  if and only if

$$(PC'Q)_{ij} = (PCQ)_{ij}$$
 for  $1 \le i, j \le n$  with  $v_i \ne 0$  and  $u_j \ne 0$ . (1)

## 1 Our Method

We use [n-1] as notation of the set of elements from one to n-1, which is 1,2,...,n. Throughout fix  $k \in [n-1]$ .Let  $E_{kn}$  denote the  $n \times n$  binary matrix with a unique 1 appearing in the position k, n of  $E_{kn}$ . We will apply the previous theorem 0.1 with P = I and

**Lemma 1.1.** Let  $C' = (c'_{ij})$  be an  $n \times n$  nonnegative matrix. Then the following (i)-(iii) hold.

- (i) C' is a k-rooted matrix, if and only if,  $Q^{-1}C'Q$  is nonnegative.
- (ii) Assume that C' is k-rooted and let u be a nonnegative eigenvector of  $Q^{-1}C'Q$  for  $\rho(C')$ . Then C' has a k-rooted eigenvector v' = Qu for  $\rho(C')$ .
- (iii)  $\rho(C') = \rho(Q^{-1}C'Q)$

**Lemma 1.2.** If a square matrix C' has a rooted eigenvector for  $\lambda'$ , then C' + dI also has the same rooted eigenvector for  $\lambda' + d$ , where d is a constant and I is the identity matrix with the same size of C'.

**Theorem 1.3.** Let  $C = (c_{ij}), C' = (c'_{ij})$  be  $n \times n$  matrices. Assume that

- (i)  $C[[n]|[n-1]] \leq C'[[n]|[n-1]]$  and  $c_{ik} + c_{in} \leq c'_{ik} + c'_{in}$  for all  $1 \leq i \leq n$ ;
- (ii) there exists a k-rooted vector  $v' = (v'_1, v'_2, \dots, v'_n)^T$  and a scalar  $\lambda' \in \mathbb{R}$  such that  $\lambda'$  is an eigenvalue of C' with associated eigenvector v';
- (iii) there exists a nonnegative vector  $v^T = (v_1, v_2, \dots, v_n)$  and a scalar  $\lambda \in \mathbb{R}$  such that  $\lambda$  is an eigenvalue of C with associated left eigenvector  $v^T$ ;
- (iv)  $v^T v' > 0$ .

Then  $\lambda \leq \lambda'$ . Moreover,  $\lambda = \lambda'$  if and only if

(a) 
$$c_{ik} + c_{in} = c'_{ik} + c'_{in}$$
 for  $1 \le i \le n$  with  $v_i \ne 0$  and  $v'_n \ne 0$ ;

(b) 
$$c'_{ij} = c_{ij}$$
 for  $1 \le i \le n, \ 1 \le j \le n - 1, j \ne k$ with  $v_i \ne 0;$ 

(c) 
$$c'_{ik} = c_{ik}$$
 for  $1 \le i \le n$  and  $v'_k > v'_n$ 

**Theorem 1.4.** Let C be an  $n \times n$  nonnegative matrix. For  $1 \le i \le n$  and  $1 \le j \le n - 1$ , choose  $c'_{ij}$  such that  $c'_{ij} \ge c_{ij}$  and  $c'_{kj} \ge c'_{nj} > 0$ , and choose  $r'_{i}$  such that  $r'_{i} \ge c_{ik} + c_{in}$ , and  $r'_{k} \ge r'_{n}$ . Moreover choose  $c'_{in} := r'_{i} - c'_{ik}$ . Then  $\rho(C) \le \rho(C')$ , when  $C' = (c'_{ij})$ .

*Proof.* These assumptions are necessary that  $PCQ \leq PC'Q$ , and C' is K-rooted, based on Lemma (1.1);

where  $Q^{-1}C'Q =$ 

$$\begin{pmatrix} c'_{11} & c'_{12} & \cdots & c'_{1 \ n-1} & c'_{1k} + c'_{1n} \\ \vdots & & & & & \\ c'_{k-11} & c'_{k-12} & \cdots & c'_{k-1n-1} & c'_{k-1k} + c'_{k-1n} \\ c'_{k1} - c'_{n1} & c'_{k2} - c'_{n2} & \cdots & c'_{kn-1} - c'_{nk-1} & c'_{kk} + c'_{kn} - c'_{nk} - c'_{nn} \\ c'_{k+11} & c'_{k+12} & \cdots & c'_{k+1 \ n-1} & c'_{k+1k} + c'_{k+1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c'_{n1} & c'_{n2} & \cdots & c'_{n \ n-1} & c'_{nk} + c'_{nn} \end{pmatrix} .$$

 $Q^{-1}C'Q \ge 0$  for that  $c'_{kj} \ge c'_{nj} > 0$  when  $1 \le j \le n-1$ ,  $c'_{ij} \ge c_{ij}$  where C is nonnegative, and the last column  $c'_{in} + c'_{ik} = r'_{i} \ge c_{in} + c_{ik}$  by assumption  $r'_{i} \ge c_{ik} + c_{in}$ 2ed

For  $1 \le i \le n$  and  $1 \le j \le n-1$ , choose  $c'_{ij}$  such that  $c'_{ij} \ge c_{ij}$ , which implies  $C[[n]|[n-1]] \le C'[[n]|[n-1]]$ 

And under the same condition for i and j, choose  $r'_i$  such that  $r'_i \geq c_{ik} + c_{in}$ , which implies  $c_{ik} + c_{in} \leq c'_{ik} + c'_{in} = r'_i$ 

2ed C' is K-rooted matrix, then by Lemma (1.1), there exists a k-rooted vector  $v' = (v'_1, v'_2, \dots, v'_n)^T$  and a scalar  $\lambda' \in \mathbb{R}$  such that  $\lambda'$  is an eigenvalue of C' with associated eigenvector v';

- (i)  $C[[n]|[n-1]] \le C'[[n]|[n-1]]$  and  $c_{ik} + c_{in} \le c'_{ik} + c'_{in}$  for all  $1 \le i \le n$ ;
- (ii) there exists a k-rooted vector  $v' = (v'_1, v'_2, \dots, v'_n)^T$  and a scalar  $\lambda' \in \mathbb{R}$  such that  $\lambda'$  is an eigenvalue of C' with associated eigenvector v';
- (iii) there exists a nonnegative vector  $v^T = (v_1, v_2, \dots, v_n)$  and a scalar  $\lambda \in \mathbb{R}$  such that  $\lambda$  is an eigenvalue of C with associated left eigenvector  $v^T$ ;
- (iv)  $v^T v' > 0$ .

by 1.2, For certain d, if C'+dI is k-rooted, then it has a k-rooted eigenvector with its spectral radius  $\lambda+d$ . C' would share the same eigenvector with C'+dI and has eigenvalue  $\lambda$ . So C'+dI and C+dI meet the conditions of 1.3, and we can show that  $\rho(C'+dI) \geq \rho(C+dI)$  and then  $\rho(C') \geq \rho(C)$