## Bipartite Graphs and K-Colouring

Instructor: Meng-Fen Chiang

COMPCSI220: WEEK 10





### OUTLINE

- Bipartite Graph
- Colouring Problem
  - K-Colour Mapping
  - K-coulourings





#### Problem

 Colour the map of Europe with k colours such that no two adjacent countries have the same colour





# K-Colour Mapping







Represent each node as a country





Add an edge (x,y) if x and y are neighbouring countries





The naïve approach is to have one colour for each country 6-Colouring graph...Can we do better?





5-Colouring graph...Can we do better?





4-Colouring graph...Can we do better?





3-Colouring graph...Can we do better?





3-Colouring graph...Can we do better? Nope!



#### k-colorable Graphs

• Definition. Let k be a positive integer. A graph G has a k-coloring if V(G) can be partitioned into k nonempty disjoint subsets such that each edge of G joins two vertices in different subsets (colors). The smallest number of colors needed to color a graph is called chromatic number.









#### Bipartite Graphs (digraphs)

• Definition. A graph G is **bipartite** if V(G) can be partitioned into two nonempty disjoint subsets  $V_1, V_2$  such that each edge of G has one endpoint in  $V_1$  and one in  $V_2$ . (Similar for digraphs)









#### Bipartite Graphs

- **Theorem**. The following conditions on a graph G are equivalent.
  - 1. G has a 2-coloring;
  - 2. G is bipartite;
  - 3. G does not contain an odd length cycle.
- Suppose G has a 2-coloring. Let  $V_1$  be the set of vertices with color  $c_1$ , and let  $V_2$  be the set of vertices with color  $c_2$ . Then each edges joins a vertex in  $V_1$  with a vertex in  $V_2$ . By definition,  $G = (V_1 \cup V_2, E)$  is bipartite.





#### Bipartite Graphs (Contd.)

- **Theorem**. The following conditions on a graph G are equivalent.
  - 1. G has a 2-coloring;
  - 2. G is bipartite;
  - 3. G does not contain an odd length cycle.
- Suppose  $G = (V_1 \cup V_2, E)$  is bipartite. Each edges joins a vertex in  $V_1$  with a vertex in  $V_2$ . Color each vertex in  $V_1$  with color  $c_1$  and each vertex in  $V_2$  with color  $c_2$ . Since G is bipartite, this induces a 2-coloring of G.





#### Bipartite Graphs (Contd.)

- **Theorem**. The following conditions on a graph G are equivalent.
  - 1. G has a 2-coloring;
  - 2. G is bipartite;
  - 3. G does not contain an odd length cycle.
- Suppose G is bipartite. Let C be a cycle in G. Then, since G is 2-colorable, C has even length (for any path,  $v_1 \dots, v_n, v_1$ , the start node  $v_1$  and end node  $v_n$  have different colors).
- Hence, G does not contain a cycle of odd length.





#### Bipartite Graphs (Contd.)

- **Theorem**. The following conditions on a graph G are equivalent.
  - 1. G has a 2-coloring;
  - 2. G is bipartite;
  - 3. G does not contain an odd length cycle.



• Suppose G has no cycle of odd length. Obtain a 2-coloring as follows: Start BFS at v, assign v to color  $c_1$ , assign all neighbors of v to color  $c_2$ , assign all neighbors of neighbors of v to color  $c_1$  and continue in this way until all vertices are colored. Since there is no odd cycle, each cross edge joins vertices of different color. (Why?)



### Deciding if a Graph is Bipartite

• Fact. A version of BFS can be used to check if a graph is bipartite(e.g. 2-colorable).





Not Bipartite



### k-Colourings (Contd.)

• If a graph has a k-colouring, then it also has a (k+1)-colouring. The reverse does not

apply!



This graph has a 4-colouring



... and a 3-colouring...











#### **SUMMARY**

- Bipartite Graph
- Colouring Problem
  - K-Colour Mapping
  - K-coulourings

