Les ensembles plus grands que l'ensemble des décimaux

1 L'ensemble des nombres décimaux

Définition 1: Nombres décimaux

On dit que x est un nombre décimal s'il existe $a \in \mathbb{Z}$ un entier relatif, et $p \in \mathbb{N}$ un entier naturel qui peut être nul, tel que :

$$x = \frac{a}{10^p}$$

On note $\mathbb D$ l'ensemble des nombres décimaux.

Exemple 1

Le nombre 0.23 et le nombre $-80\,123.297\,912\,3$ sont décimaux. Plus généralement, tous les nombres qui admettent une partie décimale *finie* sont des nombres décimaux.

Proposition 1

Le nombre $\frac{1}{3}=1\div 3=0,33333\dots$ n'est **pas** un nombre décimal. Autrement dit :

$$\frac{1}{3}\not\in\mathbb{D}$$

Proposition 2

On obtient ainsi la chaine d'inclusion suivante :

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}$$

2 L'ensemble des nombres rationnels

Définition 2: Les nombres rationnels

On dit que x est un nombre rationnel s'il existe $p\in\mathbb{Z}$ un entier relatif, et $q\in\mathbb{N}$ un entier naturel non nul tel que :

$$x = \frac{p}{q}$$

On note $\mathbb Q$ l'ensemble des nombres rationnels.

Proposition 3

On obtient pour l'instant que $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}$

Proposition 4

Si $\sqrt{2}$ désigne le nombre positif qui, au carré, donne 2, alors :

 $\sqrt{2} \in \mathbb{Q}$

3 L'ensemble des nombres réels.

Définition 4: Ensemble des nombres réels

On note $\mathbb R$ l'ensemble des nombres réels. Sa vraie définition est compliquée. $\mathbb R$ contient **tous** les nombres que vous connaissez, mais aussi π , $\sqrt{2}$, $\frac{1+\sqrt{5}}{2}$, etc.

Proposition 5

On obtient finalement :

 $\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}$