# Lecture 1.6 Machine Learning Fundamentals

## **Outline**

- What is Artificial Intelligence (AI)?
- Types of AI
- What is Machine Learning (ML)?
- Types of ML
- What is Artificial Neural Network (ANN)?
- What is Learning in Neural Network?
- What is Deep Learning?
- Types of Layers
- CNN architectures
- RNN / LSTM / GRU
- Transfer Learning

# Learning objectives

- Define artificial intelligence
- Define machine learning
- Define deep learning
- Define neural network and types of layers
- Explain convolution neural network
- Explain types of artificial neural networks

## Al – Machine Learning – Deep Learning

1950's:

First **Artificial Intelligence** concepts

1980's:

digitalization, faster processors => Machine Learning

2000's:

Large (deep) neural networks => **Deep Learning** 

Data Science produces insights.

Machine Learning produces predictions.

Artificial Intelligence produces actions.

David Robinson (@drob)



# What is Artificial Intelligence?

- Intelligence exhibited by machines programmed to sense, think and act like humans
- Humans: sensory receptors, reasoning, decisions, actions
- Al mimics human intelligence and behaviour
  - sensors
  - processors
  - mechanical parts
- Al is now better than us in recognizing images, playing games, medical diagnostics...and driving cars (almost!)
- Future: emotions, sense of humor, ethical decisions

# Types of Al

## Types of Artificial Intelligence

#### Weak AI (Narrow AI)

Can do only specific tasks like humans or better

Traditional: No learning; algorithm rules and parameters are hand-crafted and fixed

Modern: Learning from experience, machine is trained on data (relies on humans)

#### **Strong Al**

Equal to human intelligence

Can solve many types of problems

Can choose the problems it wants to solve

Has Self-awareness; independent - no human intervention needed

#### **Super Al**

Superior to human intelligence

## Artificial Intelligence at the Edge

- The "Edge" means local (or near local) processing, not in the cloud
- Cloud can still be used for training of AI models
- Al models will then be performed at the edge



## What is Machine Learning?

Sub-field of AI that relates to making computers learn from experience.

Requires:

#### data

- used in learning (training) how to accomplish some task
- Features

## algorithm

improves automatically through experience (training)

# **Types of Machine Learning**

Algorithm requires a **feedback** during training (**learning**) phase.

Machine Learning types, by the nature of that feedback:

- Supervised
- Unsupervised
- Semi-supervised
- Reinforcement

# Types of ML

# Supervised Machine Learning

- Training data: labeled (ground truth expected algorithm result; expensive!)
- Training: Algorithm uses labels to evaluate its accuracy on training data.
- Not much training data required. Risk of overfitting.



# Supervised Machine Learning

2 types of problems it tries to solve:

#### Regression

- predict numerical (continuous) value
- Linear, Nonlinear Regression

#### **Classification**:

- predict categorical (discrete) value
- Naive Bayes Classifier, Support Vector Machines, Logistic Regression, ...

Decision Tree, Random Forest, k-NN, Neural Networks, etc...can solve both problems





## **Unsupervised Machine Learning**

Training data: Unlabeled data

## Training:

- extract features and patterns from data itself
- clustering: these features used to label and classify the data into clusters

k-Means clustering, ...



## Semi-supervised Machine Learning

Hybrid learning - between supervised and unsupervised
Solves the problem of having not enough labeled data to train a supervised learning algorithm

Training data: small labeled and large unlabeled data set Training:

- Train model with labeled data
- Trained model used to predict labels for unlabeled data => pseudo-labeled data
- Retrain model with both pseudo- and labeled data sets





## Reinforcement Machine Learning

Training data: none

## Training:

- Machine trained to make specific decisions
- Machine interacting with its environment
- Trial and error
- Reward system: providing feedback when an artificial intelligence agent performs the best action in a particular situation
- Sequence of successful outcomes is reinforced to develop the best solution for a given problem.

Markov Decision Process



# What is Deep Learning?

- Deep Neural Networks more than one hidden layer (vs Shallow Network)
- With each new hidden layer system becomes more intelligent; increases capabilities to learn: new features and more complex features
- Each feature reflects one detail from the input



## **Artificial Neural Network**

Collection of simple, trainable, interconnected mathematical units (neurons) that collectively learn complex function

#### System of interconnected layers:

- input: numeric representation of the data
- hidden: nonlinear function (activation function) of the sum of weighted inputs from the previous layer plus bias
- output: prediction set of values (continuous ⇒ model solves regression problem; discrete ⇒ classification



 $y = F(w \ 1 \ x \ 1 + w \ 2 \ x \ 2 + ... \ w \ N \ x \ N + b);$  F(x) = max(0, x); (ReLU) xi - input, wi - weight

# What is Learning in Neural Network?

## Learning (training):

- Auto-adjusting model parameters with the each new input sample so the output (prediction) gets closer to expected values (ground truth)
- forward-propagating activations for labeled input and back-propagating

Errors to adjust parameters in each node in order to minimize loss function



**Types of Layers** 

## Neural Network Input: Digital Image



Digital image - 2D set of pixels.

Each **pixel** has numeric value(s) associated to it:

Monochrome: 0, 1

Grayscale: 0 (black) - 255 (white)

Colour: 0 - 255 (in each channel: R, G, B)

Computer sees an array of numbers.









## Fully-connected Input Layer

Feeding input to a fully-connected input layer:

2D intensity (or 3D colour) matrix is collapsed into 1D vector



# Problem with fully-connected input layer

- Explosion of parameters
- Spatial information lost





## **Solution: Convolution**

How to preserve that valuable spatial structure of the input?

- Feed a small patch of the input image to a single neuron in a hidden layer
- Each neuron in that hidden layer is seeing only a patch in the input image

How to extract features? (fundamental task of DNN)

Use convolution as a mapping function of a patch into a neuron



## Convolution

- Measure of similarity between a filter (kernel, small feature) and currently observed region in the input image.
- Detects that image contains given feature and creates an output matrix a feature map. Feature map tells where in the image is the activation for this particular filter
- Depth of a filter must match the depth of the input for the filter (e.g. the number of channels).



## **Feature Maps**

Convolution layer creates a feature map for each filter.

The same pixel in each feature map is connected to the same patch of the input image.



# Nonlinearity Layer: Rectified Linear Unit (ReLu)

Activation function: nonlinear function converts feature map into the activation map





- ReLU makes CNNs perform best.
- CNN data input is usually normalized to range [-1, 1] => improves learning speed and accuracy

## **Pooling**

Reducing the size of the feature stack by downsampling spatial resolution of each feature map =>

- less data for processing
- features and their spatial information are not lost

## **Max Pooling:**

Slide the window across the image and pick the maximum value at every position.



## Stack



# **Deep Stacking**

With each new convolutional layer:

- filters become larger and learn larger and more complex features
- feature maps are shrinking and become smaller



## **Fully-connected layers**

They learn non-linear combinations of the high-level features outputted by the convolutional layers. Features are assign weights which describe their contribution in recognizing particular object.



# **Softmax Layer**

- Softmax Function
- Multiclass logistic regression
- Normalizes the output of a network to a probability distribution over predicted output classes





## **CNN Architectures**

The first hidden layer is always a **convolutional layer**.



## **Recurrent Neural Networks**

Recurrent neural networks, also known as RNNs, are a class of neural networks that allow previous outputs to be used as inputs while having hidden states. They are typically as follows:



RNN's are good at processing sequence data for prediction.

## Long short-term memory

Long Short-Term Memory networks, also known as LSTMs, are a type of RNN, capable of learning long-term dependencies in sequence prediction problems.



## **Gated Recurrent Network**

The GRU is the newer generation of Recurrent Neural networks. Just like LSTM, GRU uses gates to control the flow of information.



## **Transfer Learning**

If the classes we want to recognize are not among the labels of the pre-trained model, we can usually **retrain** the pre-trained neural network model to recognize the new classes, by using most of the weights and connections of the pre-trained model.