Математический анализ 2, Коллоквиум IV

Версия от 13.06.2021 14:26

Содержание

1.	Кусочно-гладкая кривая и её длина. Элемент длины для параметрически заданной кривой. Криволи- нейный интеграл I-го рода	2
2.	Кусочно-гладкая поверхность и её площадь. Элемент площади для параметрически заданной поверхно-	
	сти. Поверхностный интеграл I-го рода	2
3.	Дифференциальная 1-форма в области пространства. Перенесение дифференциальной 1-формы на глад-	
	кую кривую. Ориентация кривой. Криволинейный интеграл ІІ-го рода. Выражение криволинейного ин-	
	теграла II-го рода через криволинейный интеграл I-го рода	2
4.	Формула Грина и её приложение к вычислению площади клоской фигуры. Внешний дифференциал	
	2-мерный 1-формы и краткая запись формулы Грина	2
5.6.	Дифференциальная 2-форма в области пространства. Перенесение дифференциальной 2-формы на глад-	
	кую поверхность. Ориентация поверхности и вектор нормали. Поверхностный интеграл ІІ-го рода. Вы-	
	ражение поверхностного интеграла II-го рода через поверхностный интеграл I-го рода	2
	Формула Остроградского-Гаусса и её приложение к вычислению объема тела. Внешний дифференциал	
	3-мерной 2-формы, дивергенция векторного поля и краткая запись формы Остроградского-Гаусса	2
7.	Формула Стокса. Внешний дифференциал 3-мерной 1-формы, ротор векторного поля и краткая запись	
	формулы Стокса.	2
8.	Комплексная плоскость, сфера Римана и стереографическая проекция. Определения экспоненты e^z и	
	тригонометрических функций $\sin z,\cos z.$ Определения многозначных функций $\sqrt[n]{z},\ln z.$	2
9.	Дифференциал, дифференцируемость и производная комплексной функции. Условия Коши-Римана и	
	голоморфность. Интеграл от голоморфной функции по кусочно-гладкой кривой. Теорема Коши. Инте-	
	гральная формула Коши.	2
10.	Голоморфная функция нескольких переменных. Голоморфность композиции (в том числе: суммы, про-	
	изведения, частного) голоморфных функций. Голоморфность обратной функции.	2
11.	Аналитическая функция. Аналитичность голоморфной функции. Неравенство Коши для коэффициен-	
	тов ряда. Радиус сходимости ряда как максимальный радиус круга, в котором функция голоморфна.	
	Теорема Лиувилля.	4
12.	Бесконечная дифференцируемость и голоморфность аналитической функции. Нуль аналитической функ-	
	ции и его порядок. Изолированность нуля аналитической функции. Теорема единственности аналитиче-	
	ской функции.	4
13.	Однозначные особые точки: устранимая особенность, полюс, существенная особенность. Голоморфность	
	функции, доопределенной по непрерывности в устранимой особой точке. Порядок полюса функции $f(z)$	
	и порядок нуля функции $\frac{1}{f(z)}$. Теорема Сохоцкого о существенно особой точке	4
14.	Ряд Лорана и его сходимость. Единственность разложения Лорана. Главная часть ряда Лорана и клас-	
	сификация особых точек	4
15.	Вычет голоморфной функции в однозначной особой точке. Теорема Коши о вычетах. Вычет как коэф-	
	фициент c_{-1} ряда Лорана. Вычисления вычета в полюсе	4

- 1. Кусочно-гладкая кривая и её длина. Элемент длины для параметрически заданной кривой. Криволинейный интеграл I-го рода.
- 2. Кусочно-гладкая поверхность и её площадь. Элемент площади для параметрически заданной поверхности. Поверхностный интеграл I-го рода.
- 3. Дифференциальная 1-форма в области пространства. Перенесение дифференциальной 1-формы на гладкую кривую. Ориентация кривой. Криволинейный интеграл II-го рода. Выражение криволинейного интеграла II-го рода через криволинейный интеграл I-го рода.
- 4. Формула Грина и её приложение к вычислению площади клоской фигуры. Внешний дифференциал 2-мерный 1-формы и краткая запись формулы Грина.
- 5. Дифференциальная 2-форма в области пространства. Перенесение дифференциальной 2-формы на гладкую поверхность. Ориентация поверхности и вектор нормали. Поверхностный интеграл II-го рода. Выражение поверхностного интеграла II-го рода через поверхностный интеграл I-го рода.
- 6. Формула Остроградского-Гаусса и её приложение к вычислению объема тела. Внешний дифференциал 3-мерной 2-формы, дивергенция векторного поля и краткая запись формы Остроградского-Гаусса.
- 7. Формула Стокса. Внешний дифференциал 3-мерной 1-формы, ротор векторного поля и краткая запись формулы Стокса.
- 8. Комплексная плоскость, сфера Римана и стереографическая проекция. Определения экспоненты e^z и тригонометрических функций $\sin z$, $\cos z$. Определения многозначных функций $\sqrt[n]{z}$, $\operatorname{Ln} z$.
- 9. Дифференциал, дифференцируемость и производная комплексной функции. Условия Коши-Римана и голоморфность. Интеграл от голоморфной функции по кусочногладкой кривой. Теорема Коши. Интегральная формула Коши.
- 10. Голоморфная функция нескольких переменных. Голоморфность композиции (в том числе: суммы, произведения, частного) голоморфных функций. Голоморфность обратной функции.

Определение. Пусть $D \subseteq \mathbb{R}^2$ – область определения

 $f: D \to \mathbb{R}^2$ – непрерывно дифференцируема.

f называется голоморфной в D, если она удовлетворяет условию Коши-Римана:

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \end{cases}$$

Определение. Пусть $G_1,G_2\subseteq\mathbb{C}$ – области определения. Функция $F:G_1\times G_2\to\mathbb{C}$:

$$F(z_1, z_2) = U(x_1, y_1, x_2, y_2) + iV(x_1, y_1, x_2, y_2)$$

называется голоморфной, если она непрерывно дифференцируема и голоморфна по каждой переменной в отдельности.

Теорема. Пусть $D\subseteq\mathbb{C}$ – область, $\varphi_1:D\to G_1,\,\varphi_2:D\to G_2$ – голоморфны.

Тогда $f(z) = F\left(\varphi_1(z), \varphi_2(z)\right)$ – голоморфна.

Доказательство. Для удобства будем иметь в виду, что $\varphi_k(z) = \xi_k(x,y) + i\eta_k(x,y), k \in \{1,2\}$ и f(z) = u(x,y) + iv(x,y) Тогда

$$u'_{x} = U'_{x_{1}} \frac{\partial \xi_{1}}{\partial x} + U'_{y_{1}} \frac{\partial \eta_{1}}{\partial x} + U'_{x_{2}} \frac{\partial \xi_{2}}{\partial x} + U'_{y_{1}} \frac{\partial \eta_{2}}{\partial x} = V'_{y_{1}} \frac{\partial \eta_{1}}{\partial y} + \left(-V'_{x_{1}}\right) \cdot \left(-\frac{\partial \xi_{1}}{\partial y}\right) + V'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{1}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{1}}{\partial y}\right) + V'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{1}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) \cdot \left(-\frac{\partial \xi_{2}}{\partial y}\right) = v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + \left(-V'_{x_{2}}\right) + v'_{y_{2}} \frac{\partial \eta_{2}}{\partial y} + v'_{y_{2}} \frac{\partial \eta_{$$

Аналогично, $u'_y = -v'_x$

Следствие. Голоморфны следующие функции:

- 1. $F(z_1, z_2) = az_1 + bz_2$
- 2. $F(z_1, z_2) = z_1 \cdot z_2$
- 3. $F(z_1, z_2) = \frac{z_1}{z_2}, z_2 \neq 0$

Теорема. Пусть $w = f(z), w_0 = f(z_0), f'(z_0) \neq 0$ и f – голоморфна в окрестности точки z_0 .

Тогда в некоторой окрестности точки w_0 существует единственная обратная функция $f^{-1}(w): f^{-1}(w_0) = z_0$, которая является голоморфной.

Доказательство. Пусть f(z) = u(x,y) + iv(x,y), тогда:

$$\begin{cases} u = u(x,y) \\ v = v(x,y) \end{cases}, \text{ причем } \begin{cases} u_0 = u(x_0,y_0) \\ v_0 = v(x_0,y_0) \end{cases}$$

Посчитаем Якобиан отображения в z_0 :

$$\begin{vmatrix} u_x' & u_y' \\ v_x' & v_y' \end{vmatrix} \Big|_{z_0} = \left| f'(z_0) \right|^2 > 0 \implies$$
 Существует единственное обратное отображение по теореме о неявной функции

Найдем матрицу Якоби обратного отображения:

$$\begin{pmatrix} x'_u & x'_v \\ y'_u & y'_v \end{pmatrix} \bigg|_{v_0} = \begin{pmatrix} u'_x & u'_y \\ v'_x & v'_y \end{pmatrix}^{-1} \bigg|_{z_0} = \frac{1}{|f'(z_0)^2|} \begin{pmatrix} v'_y & -u'_y \\ -v'_x & u'_x \end{pmatrix}$$

Рассмотрим элементы на главных диагоналях первой и последней матриц. Т.к. исходное отображение голоморфно, то $v_u' = u_x'$, а значит и $x_u' = y_u'$.

Аналогично, рассмотрев элементы на побочных диагоналях, получим, что $x'_v = -y'_u$. Условие Коши-Римана выполнено, значит, обратная функция является голоморфной.

- 11. Аналитическая функция. Аналитичность голоморфной функции. Неравенство Коши для коэффициентов ряда. Радиус сходимости ряда как максимальный радиус круга, в котором функция голоморфна. Теорема Лиувилля.
- 12. Бесконечная дифференцируемость и голоморфность аналитической функции. Нуль аналитической функции и его порядок. Изолированность нуля аналитической функции. Теорема единственности аналитической функции.
- 13. Однозначные особые точки: устранимая особенность, полюс, существенная особенность. Голоморфность функции, доопределенной по непрерывности в устранимой особой точке. Порядок полюса функции f(z) и порядок нуля функции $\frac{1}{f(z)}$. Теорема Сохоцкого о существенно особой точке.
- 14. Ряд Лорана и его сходимость. Единственность разложения Лорана. Главная часть ряда Лорана и классификация особых точек.
- 15. Вычет голоморфной функции в однозначной особой точке. Теорема Коши о вычетах. Вычет как коэффициент c_{-1} ряда Лорана. Вычисления вычета в полюсе.