Chương 4. ÁNH XẠ TUYẾN TÍNH

Phần I. Hướng dẫn sử dụng Maple

Với $f: V \to W$ là ánh xạ tuyến tính, ta dễ dàng tìm được ma trận biểu diễn của f theo cặp cơ sở chính tắc của V và W. Hơn nữa, các bài toán liên quan đến ánh xạ f có thể được giải được thông qua ma trận biểu diễn của f.

4.1 Nhân và ảnh của ánh xạ tuyến tính

Giả sử A là ma trận biểu diễn theo cặp cơ sở chính tắc của ánh xạ tuyến tính f. Khi đó

- kernel(A) hay nullspace(A): Tìm một cơ sở cho không gian nhân của f. Kết quả trả về là tập hợp các vectơ.
- colspan(A): Tìm một cơ sở cho không gian ảnh của f. Kết quả trả về là tập hợp các vectơ.

Ví dụ 1. Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi:

$$f(a,b,c) = (a-2b+2c, -a+2b-3c, 2a-4b+5c).$$

Tìm một cơ sở của $\operatorname{Ker} f$ và $\operatorname{Im} f$.

$$> A := \mathsf{matrix}(3, \, 3, \, [1, \, -2, \, 2, \, -1, \, 2, \, -3, \, 2, \, -4, \, 5]);$$

$$\begin{bmatrix} 1 & -2 & 2 \\ -1 & 2 & -3 \\ 2 & -4 & 5 \end{bmatrix}$$

$$> \mathsf{kernel}(\mathsf{A});$$

$$\{[2 \, 1 \, 0]\}$$

$$> \mathsf{colspan}(\mathsf{A});$$

$$\{[0 \, -1 \, 1], [1 \, -1 \, 2]\}$$

Dựa vào kết quả tính toán trên ta có:

- Ker f có một cơ sở là $\{(2,1,0)\}$.
- Imf có một cơ sở là $\{(0,-1,1),(1,-1,2)\}.$

4.2 Tìm ánh xạ tuyến tính

Bài toán. Cho $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ là một cơ sở của V và v_1, v_2, \dots, v_m là các vectơ thuộc W. Tìm ánh xạ tuyến tính $f: V \to W$ thỏa $f(u_1) = v_1, f(u_2) = v_2, \dots, f(u_n) = v_n$.

Phương pháp. Với $u \in V$, ta tìm tọa độ của u theo cơ sở \mathcal{B} . Giả sử $[u]_{\mathcal{B}} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$, khi đó

$$f(u) = f(\alpha_1 u_1) + f(\alpha_2 u_2) + \dots + f(\alpha_n u_n)$$

= $\alpha_1 f(u_1) + \alpha_2 f(u_2) + \dots + \alpha_n f(u_n)$
= $\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$

Ví du 2. Trong không gian \mathbb{R}^3 cho cơ sở

$$\mathcal{B} = \{u_1 = (1, -1, 1), u_2 = (1, 0, 1), u_3 = (2, -1, 3)\}$$
 và $v_1 = (2, 1, -2), v_2 = (1, 2, -2), v_3 = (3, 5, -7).$

Tìm ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ thỏa $f(u_1) = v_1, f(u_2) = v_2, f(u_3) = v_3$.

> u1 := vector([1, -1, 1]): u2 := vector([1, 0, 1]): u3 := vector([2, -1, 3]): v1 := vector([2, 1, -2]): v2 := vector([1, 2, -2]): v3 := vector([3, 5, -7]): v2 := vector([x, y, z]);
$$u := [x \ y \ z]$$
> A := matrix([u1, u2, u3]): A:=transpose(A): s:=linsolve(A, u); #Tîm $[u]_{\mathcal{B}}$

$$s := [x - z - y \ 2x - z + y \ - x + z]$$
> evalm(s[1]*v1+s[2]*v2+s[3]*v3); #Tính f(u)
$$[x - y \ 2z + y \ x - 3z]$$

Dựa vào kết quả tính toán ta có f(x, y, z) = (x - y, y + 2z, x - 3z).

4.3 Ma trận biểu diễn ánh xạ tuyến tính

Bài toán. Cho ánh xạ tuyến tính $f: \mathbb{R}^n \to \mathbb{R}^m$. Với $\mathcal{B}_0, \mathcal{B}$ là hai cơ sở của \mathbb{R}^n và $\mathcal{C}_0, \mathcal{C}$ là hai cơ sở của \mathbb{R}^m . Cho biết $[f]_{\mathcal{B}_0,\mathcal{C}_0}$, hãy tính $[f]_{\mathcal{B},\mathcal{C}}$.

Phương pháp. Ta áp dụng công thức sau:

$$[f]_{\mathcal{B},\mathcal{C}} = (\mathcal{C}_0 \to \mathcal{C})^{-1} [f]_{\mathcal{B}_0,\mathcal{C}_0} (\mathcal{B}_0 \to \mathcal{B}).$$

Nếu \mathcal{B}_0 và \mathcal{C}_0 là những cơ sở chính tắc thì việc tính $(\mathcal{B}_0 \to \mathcal{B})$ và $(\mathcal{C}_0 \to \mathcal{C})$ rất dễ dàng.

Ví dụ 3. Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ được xác định bởi

$$f(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

Tìm ma trận biểu diễn f theo cặp cơ sở

$$\mathcal{B} = \{u_1 = (1, 0, -1), u_2 = (1, 1, 0), u_3 = (1, 0, 0)\} \text{ và } \mathcal{C} = \{v_1 = (1, 1), v_2 = (2, 1)\}.$$

> u1 := vector([1, 0, -1]): u2 := vector([1, 1, 0]): u3 := vector([1, 0, 0]):

$$\begin{tabular}{lll} v1 := vector([1, 1]): & v2 := vector([2, 1]): \\ & > P := matrix([u1, u2, u3]): BoB := transpose(P); & \# BoB := (\mathcal{B}_0 \to \mathcal{B}) \\ & & \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \\ & > Q := matrix([v1, v2]): CoC := transpose(Q); & \# CoC := (\mathcal{C}_0 \to \mathcal{C}) \\ & & \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \\ & > fBC := multiply(inverse(CoC), fBoCo, BoB); & \# fBC := [f]_{\mathcal{B},\mathcal{C}} \\ & & \begin{bmatrix} -7 & -4 & -3 \\ 4 & 3 & 2 \end{bmatrix} \\ \end{tabular}$$

Từ kết quả tính toán ta có $[f]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} -7 & -4 & -3 \\ 4 & 3 & 2 \end{pmatrix}$.

Ví dụ. Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$, biết ma trận biểu diễn của f theo cặp cơ sở $\mathcal{B} = (u_1 = (1, 1, 1); u_2 = (1, 0, 1); u_3 = (1, 1, 0))$ và $\mathcal{C} = (v_1 = (1, 1); v_2 = (2, 1))$ là

$$[f]_{\mathcal{B},\mathcal{C}} = \left(\begin{array}{ccc} 2 & 1 & -3 \\ 0 & 3 & 4 \end{array}\right).$$

Hãy tìm công thức của f.

> fBoCo:= multiply(CoC, fBC, inverse(BoB)); # fBoCo :=
$$[f]_{\mathcal{B}_0,\mathcal{C}_0}$$

$$\begin{bmatrix} 10 & -5 & -3 \\ 3 & -2 & 1 \end{bmatrix}$$

Dựa vào kết quả tính toán ta có

$$[f]_{\mathcal{B}_0,\mathcal{C}_0} = \left(\begin{array}{ccc} 10 & -5 & -3 \\ 3 & -2 & 1 \end{array}\right).$$

Suy ra f(x, y, z) = (10x - 5y - 3z, 3x - 2y + z).

Phần II. Bài tập

4.1 Ánh xạ nào sau đây là ánh xạ tuyến tính từ \mathbb{R}^2 vào \mathbb{R}^2 ? Giải thích.

a)
$$f(x,y) = (xy, x + y)$$
.

b)
$$f(x,y) = (x + y, x - y)$$
.

c)
$$f(x,y) = (x, 0)$$
.

d)
$$f(x,y) = (x^2, 0)$$
.

4.2 Cho ánh xạ $f: \mathbb{R}^3 \to \mathbb{R}^2$ được xác định bởi:

$$f(x, y, z) = (x + 2y + 3z, 2x + 2y + z).$$

Chứng minh $f \in L(\mathbb{R}^3, \mathbb{R}^2)$.

4.3 Cho ánh xạ $f: \mathbb{R}^3 \to \mathbb{R}^3$ được xác định bởi:

$$f(x, y, z) = (x - 2y + 2z, -x + 2y - 3z, 2x - 4y + 5z).$$

Chứng minh f là toán tử tuyến tính trên \mathbb{R}^3 .

4.4 Hãy xác định ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^2$ sao cho f(1,1,1) = (1,2), f(1,1,2) = (1,3) và f(1,2,1) = (2,-1).

4.5 Cho $u_1=(1,-1),\ u_2=(-2,3).$ Hãy xác định toán tử tuyến tính $f\in L(\mathbb{R}^2)$ sao cho $f(u_1)=u_2$ và $f(u_2)=-u_1.$

4.6 Cho $f \in L(\mathbb{R}^3)$ xác định bởi:

$$f(x,y,z) = (x - 2y + 2z, -x + 2y - 3z, 2x - 4y + 5z).$$

- a) Kiểm tra các vecto $u_1 = (1, 1, 1), u_2 = (2, 1, 0), u_3 = (0, 0, 0), u_4 = (0, 1, 2)$ có thuộc Kerf hay không?
- b) Kiểm tra các vect
ơ $v_1=(0,1,-1),\,v_2=(1,-1,2),\,v_3=(0,0,0),\,v_4=(1,1,1)$ có thuộc Im
 fhay không?

4.7 Cho $f \in L(\mathbb{R}^3, \mathbb{R}^2)$ xác định bởi

$$f(x, y, z) = (x - y + 2z, 2x - 3y + z).$$

Tìm cơ sở cho Im f và Ker f.

 ${\bf 4.8}$ Cho f là toán tử tuyến tính trên \mathbb{R}^3 xác định bởi

$$f(x, y, z) = (x + 3y - z, x - 2y + 4z, 2x - y + 5z).$$

Tìm cơ sở cho Im f và Ker f.

4.9 Cho $f \in L(\mathbb{R}^3)$ có dạng ma trận là

$$A = \left(\begin{array}{ccc} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & -2 & -3 \end{array}\right).$$

5

Tìm cơ sở cho Im f và Ker f.

4.10 Cho ánh xạ tuyến tính

$$f(x, y, z, t) = (x + y + z - t, x + 2y - z - 2t, x + 3y - 3z - 3t).$$

Tìm một cơ sở của $\operatorname{Ker} f$ và một cơ sở của $\operatorname{Im} f$.

- **4.11** Tìm $f \in L(\mathbb{R}^3)$ sao cho Ker $f = \langle (1, 1, 1), (0, 1, 2) \rangle$ và Im $f = \langle (1, 1, 1) \rangle$.
- **4.12** Tìm $f \in L(\mathbb{R}^3)$ sao cho Ker $f = \langle (1,1,1) \rangle$ và Im $f = \langle (1,1,1), (0,1,2) \rangle$.
- **4.13** Cho $f \in L(\mathbb{R}^3, \mathbb{R}^2)$ xác định bởi:

$$f(x, y, z) = (x + y - z, 2x - 3y + z).$$

- a) Xác định ma trận biểu diễn của f theo cặp cơ sở chính tắc của \mathbb{R}^3 và \mathbb{R}^2 .
- b) Xác định ma trận biểu diễn của f theo cặp cơ sở $\mathcal{B} = \{(1,0,-1), (1,1,0), (1,0,0)\}$ (của \mathbb{R}^3) và $\mathcal{B}' = \{(1,1), (2,3)\}$ (của \mathbb{R}^2).
- **4.14** Cho toán tử tuyến tính $f \in L(\mathbb{R}^2)$ xác định bởi f(x,y) = (x-2y, 2x+y).
 - a) Tìm $[f]_{\mathcal{B}_0}$, với \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^2 .
- b) Tìm $[f]_{\mathcal{B}}$, với $\mathcal{B} = \{u_1 = (1, -3), u_2 = (-1, 2)\}.$
- **4.15** Cho toán tử tuyến tính $f \in L(\mathbb{R}^3)$ xác định bởi

$$f(x, y, z) = (x + 2y, 3y - z, 2x + z).$$

Tìm ma trận biểu diễn f theo cơ sở $\mathcal{B} = \{u_1, u_2, u_3\}$ của \mathbb{R}^3 , với $u_1 = (-1, 2, 1), u_2 = (0, 1, 1), u_3 = (0, -3, -2).$

4.16 Cho toán tử tuyến tính $f \in L(\mathbb{R}^3)$ xác định bởi:

$$f(x,y,z) = (x - y + z, \ x + 2y - 2z, \ x - 3y + 3z).$$

- a) Tìm một cơ sở của Im f và một cơ sở của Ker f.
- b) Tìm ma trận biểu diễn f theo cơ sở $\mathcal{B} = \{(1,0,1), (1,-2,0), (2,1,3)\}$ của \mathbb{R}^3 .
- **4.17** Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ sao cho $f(u_1) = u_2 + u_3$, $f(u_2) = u_3 + u_1$ và $f(u_3) = u_1 + u_2$, với $u_1 = (1, 1, 1)$, $u_2 = (1, 0, 1)$, $u_3 = (0, 1, 1)$.
 - a) Hãy xác định ánh xạ tuyến tính f.
 - b) Xác định ma trận biểu diễn f theo cơ sở $\mathcal{B} = \{u_1, u_2, u_3\}$.
- **4.18** Cho $\mathcal{B} = \{(1, -1), (-2, 3)\}$ là cơ sở của \mathbb{R}^2 . Hãy xác định $f \in L(\mathbb{R}^2)$ sao cho

$$[f]_{\mathcal{B}} = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}.$$

4.19 Cho $\mathcal{B} = \{(1,1,1), (1,1,0), (1,0,-1)\}$ là cơ sở của \mathbb{R}^3 . Hãy xác định $f \in L(\mathbb{R}^3)$ sao cho

$$[f]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

4.20 Cho cặp cơ sở $\mathcal{B} = \{(1,1,1), (1,1,0), (1,0,-1)\}$ (của \mathbb{R}^3) và $\mathcal{C} = \{(2,-1), (-3,2)\}$ (của \mathbb{R}^2). Hãy xác định ánh xạ tuyến tính $f \in L(\mathbb{R}^3, \mathbb{R}^2)$ sao cho

$$[f]_{\mathcal{B},\mathcal{C}} = \begin{pmatrix} 2 & 1 & -2 \\ 3 & -1 & 1 \end{pmatrix}.$$

6