Econ C103: Game Theory and Networks Module I (Game Theory): Lecture 1

Instructor: Matt Leister

University of California, Berkeley

Fall 2019, UC Berkeley

Readings:

- Osborne (2004) chapters 1-2.1, 4.12
- Osborne and Rubinstein (1994) chapters 1.1-2.1 (note: the authors define a "preference relation" to be complete and transitive; in this class, we call these "rational preference relations")

Preferences

• Binary relationship on X: set of ordered pairs (x, y) from set X.

Definition (Preference relation)

A **preference relation** \succeq *is binary relation over outcomes* X.

• X: e.g., types of fruit, movies, bundles of fruit and movies (e.g, (3 apples, "The Other Guys")), or profiles of players' "actions" (later).

Notation:

- $x \gtrsim y$: \gtrsim includes (x, y) ("x is preferred to y").
- $x \sim y$: $x \succsim y$ and $y \succsim x$ ("x is indifferent to y").
- $x \succ y$: $x \succsim y$ and not $y \succsim x$ ("x is strictly preferred to y").

Rationality

- \succeq **complete**: either $x \succeq y$ OR $y \succeq x$ (one or both) for each $x, y \in X$.
- \succsim **transitive**: for any $x, y, z \in X$, if $x \succsim y$ and $y \succsim z$, then $x \succsim z$.
- A preference relation is **rational** when it is transitive and complete.
- Take $X = \{(A)pple, (O)range, (B)anana, (K)iwi\}$. Consider \succeq s.t. $A \succeq O$, $A \succeq K$, $K \succeq B$, $A \succeq B$, $B \succeq O$ and $K \succeq K$.

	A	O	В	K	
A			0	0	
O					
В					
K				0	

Figure: A preference relation

complete? transitive? Why?

Utility Functions

Definition (Utility function)

A utility function $u: X \mapsto \mathbb{R}$ represents \succsim when:

$$x \gtrsim y \Leftrightarrow u(x) \ge u(y)$$
.

Gereard Debreu (1921-2004, Cal professor, and Nobel Laureate) showed:

Proposition

If \succeq is rational and continuous (see last slide for definition of continuous), then there is some continuous utility function u that represents \succeq .

In the above proposition, the gray text is for the case of infinite X.

• \Rightarrow when \succeq satisfies these three axioms, it is sufficient to study u. That is, the shape of u gives all of the information within \succeq .

Utility Functions: general properties

Facts:

- If there exists some utility function (continuous or not) that represents ≿, then ≿ is rational.
- Monotone strictly increasing transformations preserve preferences over certain (i.e. "without risk") outcomes.

Proposition

For any u a utility representation of \succeq , and any increasing function $f: \mathbb{R} \mapsto \mathbb{R}$, the composition $f \circ u$ (i.e. $f(u(\cdot))$) also represents \succeq .

Firm profits as utility functions

- Assume: demand for output Q is decreasing in its price P, giving "inverse demand function" P(Q).
- Assume: concave total revenue TR(Q) = P(Q)Q.
- Assume: increasing total production cost $TC(Q) \ge 0$.
- Total profit function equal to revenue minus cost: P(Q)Q TC(Q).

Firm profits as utility functions

Social preferences

- ullet "Other-regarding preferences": \succsim depends on others' payoffs/profits.
- Assume: two players 1 and 2 and two outcomes/states a and b.

 Monetary payoffs: outcome a: \$1 to player 1, \$0 to player 2, outcome b: \$0 to player 1, \$1 to player 2.
- Player 1 cares about player 2's monetary payoff according to:

$$u_1(a) = w1 + (1-w)0 = w$$
, and $u_1(b) = w0 + (1-w)1 = (1-w)$,

with $w \in [0, 1]$. If w < .5, player 1 prefers b.

• Generally: take $\sum_{j \in \{agents\}} w_i^i = 1$, $w_i^i \ge 0$, then for outcome a:

$$u_i(a) = \sum_{j \in \{agents\}} w_j^i PO_j(a),$$

where $PO_i(a)$ gives player j's monetary payoff in outcome a.

Probabilities, lotteries and expectations (see primer notes)

- A probability distribution over a set X is a function $P: X \mapsto [0,1]$ such that $\sum_{x \in X} P(x) = 1$ if X finite; $\int_{x \in X} P(x) dx = 1$ if X infinite.
- We refer to a couple $(X, P(\cdot))$ as a "lottery" over X.
- $\Delta(X)$ denotes the set of all lotteries $(X, P(\cdot))$ over X.

Definition (Expectation)

For finite X, lottery $(X, P(\cdot))$, and function $f: X \mapsto \mathbb{R}$, the **expectation** of f is defined as:

$$\mathbb{E}_{P}[f(x)] \equiv \sum_{x \in X} P(x)f(x)$$

If instead X is infinite, the **expectation of** f is defined as:

$$\mathbb{E}_{P}[f(x)] \equiv \int_{x \in Y} f(x) P(x) dx$$

• In this class, we (almost) always consider finite X.

vNM Expected Utilities

• Risk preferences: when \succeq is defined over the set of lotteries $\Delta(X)$.

Definition (Expected utility)

For utility u, the **expected utility** from lottery $(X, P(\cdot))$ is $\mathbb{E}_P[u(x)]$.

John von Neumann (1903-1957) and Oskar Morgenstern (1902-1977), in "Theory of Games and Economic Behavior" showed:

Proposition (vNM utility representation)

If \succeq over $\Delta(X)$ is rational, continuous (see last slide) and satisfies IIA (see last slide), then there is some measurable $u: X \mapsto \mathbb{R}$ that represents \succeq :

$$\mathbb{E}_{P}[u(x)] \geq \mathbb{E}_{P'}[u(x)] \Leftrightarrow (X, P(\cdot)) \succsim (X, P'(\cdot)).$$

In the above proposition, the gray text is for the case of infinite X.

Utility Functions: general properties

Fact:

• Affine increasing transformations preserve preferences over lotteries.

Proposition

For any vNM utility representation u of \succeq over $\Delta(X)$, and any increasing function f(z) = a + bz for b > 0, the composition $f \circ u$ (i.e. $f(u(\cdot))$) also represents \succeq .

Risk preferences

- We refer to *u* as the "Bernoulli" or "vNM" function.
- Risk preferences are captured by the concavity/convexity of *u*.
- Example: Three outcomes $x \in X = \{a, b, c\} \subseteq \mathbb{R}$, a < b < c, and take $(X, P(\cdot))$ s.t. P(b) = 0 and $\mathbb{E}[x] = P(a)a + P(c)c = b$. Receiving b with probability 1 (which yields certain utility u(b)) [is]/[is not] preferred to $(X, P(\cdot))$ in the [left]/[right] figure:

Figure: Risk preferences over three outcomes

From Decision Theory to Game Theory

- Game theory is the study of strategic interaction between players, while taking their preferences as given.
- We study games played by social expected utility maximizers.

Definition

A static game (or "normal-form game", or "strategic game") is defined as the triplet $\langle N, \{A_i\}_{i \in N}, \{u_i\}_{i \in N} \rangle$.

- $N = \{1, ..., n\}$: players,
- A_i: player i's (finite or infinite) action set,
- $u_i(\mathbf{a})$: i's vNM utility from action profile $\mathbf{a}=(a_1,...,a_n)\in \times_{k=1}^n A_k$.
- "X" now becomes the set of action profiles $\times_{k=1}^{n} A_{k}$.
- Players may be people, firms, even algorithms with well-defined preferences/objectives, represented by utility functions.

Formalities (for the case of infinite X)

- \succsim over X is **continuous** if for any sequence of pairs $((x^t, y^t))_{t=1}$ where $x^t \succsim y^t$ for each $t, x^t \to x \in X$ and $y^t \to y \in X$, then $x \succsim y$ ("preferences do not jump").
- \succsim over ΔX is **continuous** if for any $x,y,z\in \Delta X$ where $x\succsim y\succsim z$, there is some $t\in [0,1]$ such that $tx+(1-t)z\sim y$ ("preferences over lotteries do not jump").
- \succeq over ΔX satisfies **Independence of Irrelevant Alternatives** (IIA) if for any $x, y, z \in \Delta X$ where $x \succeq y$, then:

$$tx + (1-t)z \gtrsim ty + (1-t)z$$

for any $t \in [0, 1]$ ("preferences over lotteries remain intact when mixing-in other lotteries").