Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Wechselstromwiderstände Protokoll

Praktikant: Michael Lohmann

Versuchspartner Felix Kurtz

E-Mail: m.lohmann@stud.uni-goettingen.de

Betreuer: Björn Klaas Versuchsdatum: 08.09.2014

Eingegangen am:

Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	3
2	Theorie	3
3	Durchführung	3
4	Auswertung4.1 Widerstand und Spule in Reihe4.2 RLC-Serienschaltung4.3 Parallelkreis	4 4 4 7
5	Diskussion	7
Lit	iteratur	

1 Einleitung

Wechselströme spielen in der modernen Energieversorgung eine zentrale Rolle. Um so wichtiger ist es für die Effizienz, die genauen Eigenschaften von Wechselstrom-Widerständen zu kennen. Dies soll in diesem Versuch erziehlt werden. [LP1]

2 Theorie

3 Durchführung

Der Aufbau besteht aus einem Frequenzgenerator, welcher einem veränderlichen Stromkreis aus Widerstand, Kondensator und Luftspule Spannung bereitstellt. Die verschiedenen Parameter Ausgangsspannung U, Spannung an Widerstand und Spule U_{L+R} , Spannung am Kondensator U_C und Gesamtstrom I werden mit einem Oszilloskop bzw. Spannungs- und Strom-Messgeräten vermessen.

Zunächst baut man einen Serienschaltkreis aus allen Bauteilen auf. Das Oszilloskop wird zur Bestimmung der Phasenverschiebung einerseits zur Vermessung der Ausgangsspannung U und andererseits zum bestimmen des Stroms mit einer Messzange verwendet. Es kann nun die beiden Kurven mit Hilfe des Mathe-Modus direkt auf deren Phasenverschiebung hin auswerten. Damit dies zuverlässig geschieht, ist darauf zu achten, dass die jeweiligen y-Achsen so gewählt sind, dass die Kurven ungefähr die selben Ausschläge zeigen. Auch muss mehr als eine Periode angezeigt werden.

Alle gemessenen Parameter sollen nun für möglichst viele verschiedene Frequenzen f aufgezeichnet werden. Dabei ist der Resonanzbereich besonders genau zu untersuchen.

Im zweiten Versuchsteil soll ein Parallelkreis aus Kondensator und Spule vermessen werden. In dieser Messung sollen die Spannung U und der Gesamtstrom I für verschiedene Frequenzen ausgewertet werden. Auch hier soll die Resonanzstelle wieder besonders genau untersucht werden.

Für die Auswertung werden abschließend die Daten der einzelnen Bauteile aufgezeichnet. Dies sind:

- Einzelner ohmscher Widerstand R_{Ω}
- Ohmscher Widerstand der Spule R_L
- Innenwiderstand des Amperemeters R_A
- \bullet Kapazität des Kondensators C.

Während der Messungen ist darauf zu achten, dass die hier verwendeten Spannungen tödlich sein können und dass deshalb auf keinen Fall blanke Kabelenden herumliegen dürfen. Auch muss vor jeden Änderungen am Aufbeu sichergestellt werden, dass die Spannung abgeschaltet ist.

4 Auswertung

4.1 Widerstand und Spule in Reihe

Abbildung 1: Quadrat der Impedanz als Funktion der Kreisfrequenz.

$$L = (386.3 \pm 0.6) \,\text{mH} \tag{1}$$

$$R_{\rm ges} = (77.3 \pm 1.1) \,\Omega$$
 (2)

4.2 RLC-Serienschaltung

Aus

$$R = (80.9 \pm 0.5)\,\Omega\tag{3}$$

$$L = (386.1 \pm 1.0) \,\mathrm{mH} \tag{4}$$

$$C = (1.799 \pm 0.005) \,\mu\text{F} \tag{5}$$

Abbildung 2: Impedanz des Serienresonanzkreis als Funktion der Kreisfrequenz.

Mittelwerte aus allen Daten:

$$\overline{L} = (386.2 \pm 0.6) \text{mH}$$
 (6)

$$\overline{R} = (80.2836 \pm 0.455183) \Omega \tag{7}$$

$$\omega_{\rm LC} = \frac{1}{\sqrt{LC}} \tag{8}$$

$$\sigma_{\omega_{\rm LC}} = \frac{\sqrt{\frac{\sigma_L^2}{L^2} + \frac{\sigma_C^2}{C^2}}}{2 \cdot \sqrt{C} \cdot \sqrt{L}} \tag{9}$$

$$\omega_{\rm LC} = (1199.9 \pm 2.3) \,\text{Hz}$$
 (10)

$$\omega_{\text{Phase}} = -\frac{b}{m}$$

$$\sigma_{\omega_{\text{Phase}}} = \frac{1}{m^2} \cdot \sqrt{b^2 \cdot \sigma_m^2 + m^2 \cdot \sigma_b^2}$$
(11)

$$\sigma_{\omega_{\text{Phase}}} = \frac{1}{m^2} \cdot \sqrt{b^2 \cdot \sigma_m^2 + m^2 \cdot \sigma_b^2} \tag{12}$$

$$\omega_{\text{Phase}} = (1200 \pm 120) \,\text{Hz}$$
 (13)

Abbildung 3: Phasenverschiebung des Serienresonanzkreises.

Abbildung 4: Teilspannungen des Serienresonanzkreises.

4.3 Parallelkreis

Aus Fit von Messung 3:

$$R = (68 \pm 5)k\Omega \tag{14}$$

$$L = (370 \pm 10) \text{mH} \tag{15}$$

$$C = (1.88 \pm 0.05)\mu F \tag{16}$$

Abbildung 5: Impedanz des Parallelkreises als Funktion der Kreisfrequenz.

5 Diskussion

Literatur

[LP1] Lehrportal der Universität Göttingen. https://lp.uni-goettingen.de/get/text/4165.