Limites, continuité

1. Limites

1.1. Définitions

- a) Limite d'une fonction en un point : soit f une fonction définie sur I et et $a \in \overline{I}$.
 - (i) Limite finie en $a \in \mathbb{R}$:

$$\lim_{x \to a} f(x) = \ell \iff \forall \varepsilon > 0, \ \exists \alpha > 0 \ / \ \forall x \in [a - \alpha, a + \alpha] \cap I, \ \ell - \varepsilon \leqslant f(x) \leqslant \ell + \varepsilon$$

qui s'écrit aussi

$$\forall \varepsilon > 0, \ \exists \alpha > 0 \ / \ \forall x \in I, (|x - a| \leqslant \alpha \Rightarrow |f(x) - \ell| \leqslant \varepsilon)$$

Autrement dit, f(x) est aussi proche de ℓ que l'on veut, **pourvu** que x soit suffisamment proche de a.

(ii) Limite infinie en $a \in \mathbb{R}$:

$$\lim_{x\to a}f\left(x\right)=+\infty\Longleftrightarrow\forall M>0,\ \exists\alpha>0\ /\ \forall x\in I,\left(a-\alpha\leqslant x\leqslant a+\alpha\Rightarrow f\left(x\right)\geqslant M\right)$$

(iii) Limite finie en $+\infty$:

$$\lim_{x \to +\infty} f(x) = \ell \iff \forall \varepsilon > 0, \ \exists A > 0 \ / \ \forall x \in I, (x \geqslant A \Rightarrow \ell - \varepsilon \leqslant f(x) \leqslant \ell + \varepsilon)$$

(iv) Limite infinie en $+\infty$:

$$\lim_{x \to +\infty} f(x) = +\infty \Longleftrightarrow \forall M > 0, \ \exists A > 0 \ / \ \forall x \in I, \ (x \geqslant A \Rightarrow f(x) \geqslant M)$$

Remarque 1 : dans tous les cas ($a\in\overline{\mathbb{R}}$ et $\ell\in\overline{\mathbb{R}}$), $\lim_a f=\ell$ revient à

Pour tout voisinage V de ℓ , il existe un voisinage W de a dans lequel on ait : $f(x) \in V$

Remarque 2 : f admet 0 pour limite en 0 s'écrit

$$\forall \varepsilon > 0, \ \exists \alpha > 0 \ / \ \forall x \in I, \ \text{si} \ |x| \leqslant \alpha, \ \text{alors} \ |f(x)| \leqslant \varepsilon$$

On peut toujours s'y ramener car $\lim_{x \to a} f(x) = \ell \iff \lim_{h \to 0} (f(a+h) - \ell) = 0$

Exemples: montrer avec la définition: $\lim_{x\to 0} \sqrt{x+1} = 1$, $\lim_{x\to 0} \frac{1}{\sqrt{x}} = +\infty$ et $\lim_{x\to +\infty} \frac{x-1}{x-2} = 1$

Remarque 3 : il y a unicité de la limite.

b) Limite à gauche-à droite : soit I un intervalle, $a \in \overset{\circ}{I}$ (i.e. a n'est pas une borne de I).

On suppose que f est définie sur I sauf éventuellement en a.

On dit que $\lim_{a^+} f = \ell \in \overline{\mathbb{R}}$ si la restriction de f à $I \cap]a, +\infty[$ admet ℓ pour limite soit :

$$\left| \forall \varepsilon > 0, \ \exists \alpha > 0 \ / \ \forall x \in I, \ \text{si} \ a < x \leqslant a + \alpha, \ \text{alors} \ |f\left(x\right) - \ell| \leqslant \varepsilon \right| \quad (\text{cas} \ \ell \in \mathbb{R})$$

Définition analogue pour la limite à gauche. On a la caractérisation suivante

si
$$f$$
 n'est pas définie en a , alors $\lim_a f = \ell \Longleftrightarrow \lim_{a-} f = \lim_{a+} f = \ell$

1

Cela est faux lorsque f est définie en a.

Deux conséquences :

(i) Soit
$$a\in\overline{\mathbb{R}}$$
. Si $\lim_a f=\ell\in\mathbb{R}$, alors f est bornée au voisinage de a

(ii) Si
$$\lim_{a} f = \ell > 0$$
, alors $f(x) > 0$ au voisinage de a .

1.2. Caractérisation séquentielle des limites :

Soit $f: I \to \mathbb{R}$, $a \in \overline{I}$ et $\ell \in \overline{\mathbb{R}}$. Alors on a l'équivalence :

 $\lim_{x\to a}f\left(x\right)=\ell\text{ si, et seulement si, pour toute suite }(u_n)_{n\in\mathbb{N}}\text{ qui converge vers }a\text{, la suite }(f\left(u_n\right))_{n\in\mathbb{N}}\text{ converge vers }\ell$

Remarque: la contraposée est très utilisée : si on trouve une suite (u_n) de limite a telle que $f(u_n)$ ne tend pas vers ℓ alors f ne tend pas vers ℓ en a (par exemple, \cos n'a pas de limite en $+\infty$)

Application: soit f une fonction continue sur \mathbb{R} qui s'annule sur \mathbb{Q} . Montrer que f s'annule sur \mathbb{R} .

1.3. Opérations sur limites.

1. <u>Sommes et produits</u> : on suppose que $\lim_a f = \ell \in \overline{\mathbb{R}}$ et $\lim_a g = \ell' \in \overline{\mathbb{R}}$.

Si
$$\ell + \ell'$$
 est défini sur $\overline{\mathbb{R}}$, alors $\lim_a (f+g) = \ell + \ell'$

Si
$$\ell\ell'$$
 est défini sur $\overline{\mathbb{R}},$ alors $\lim_a (fg) = \ell\ell'$

2. **Quotients**: on suppose que $\lim_{t \to 0} f = \ell$.

Si
$$\ell = \pm \infty$$
, alors $\lim_{a} \frac{1}{f} = 0$

Si
$$\ell = 0$$
, alors $\lim_{a} \left| \frac{1}{f} \right|^{J} = +\infty$

Les quotients $\frac{f}{g}$ se traitent alors comme produits : $f \times \frac{1}{a}$.

 $3. \ \ \underline{\textbf{Compos\acute{e}s}}: \text{soient} \quad u:I\to J, \quad f:J\to \mathbb{R}, \quad a\in \overline{I}, \text{ et} \quad b\in \overline{J} \quad (a \text{ et } b \text{ dans } \overline{\mathbb{R}})$

$$\boxed{ \text{Si} \quad \lim_{x \to a} u(x) = b \quad \text{et} \quad \lim_{y \to b} f(y) = \ell \in \overline{\mathbb{R}}, \quad \text{alors} \quad \lim_{x \to a} f\left(u(x)\right) = \ell }$$

1.4. Limites et inégalités

Théorème des gendarmes :

on suppose $f\left(x\right)\leqslant g\left(x\right)\leqslant h\left(x\right)$ au voisinage de $a\in\overline{\mathbb{R}},$ et $\lim_{a}f=\lim_{a}h=\ell.$ alors $\lim_{a}g$ existe et vaut ℓ

Attention : ce théorème n'est pas un passage à la limite. Il prouve l'existence et donne la valeur.

Remarque: on a aussi: $|\operatorname{si} f(x)| \ge g(x)$ au voisinage de $a \in \overline{\mathbb{R}}$, et $\lim_{a} g = +\infty$, alors $\lim_{a} f = +\infty$

2

b) Passage à la limite dans une inégalité :

On suppose que
$$\lim_{a}f=\ell, \lim_{a}g=\ell'$$
 et qu'au voisinage de $a,$ on ait $f\left(x\right)\leqslant g\left(x\right)$: alors $\ell\leqslant\ell'$

Attention: l'hypothèse f(x) < g(x) n'entraı̂ne pas $\ell < \ell'$:

c) Limites et fonctions monotones : soit f une fonction croissante sur un intervalle [a,b] $(b \in \overline{\mathbb{R}})$. On a

Si
$$f$$
 est majorée sur $[a,b[$, alors f admet une limite finie en b , et $\lim_b f = \sup_{[a,b[} f$ Si f est non majorée sur $[a,b[$, alors $\lim_b f = +\infty$

Résultats analogue pour les fonction décroissantes, et pour l'intervalle]a,b] .

Remarque: on en déduit que toute fonction monotone sur un intervalle admet une limite à droite et une limite à gauche en chaque point.

2. Continuité

2.1. Compléments

a) Continuité en un point : soit $f:I\to\mathbb{R}$ et $a\in I$. La continuité de f en a, $(\lim_a f=f(a))$ s'exprime par :

$$\forall \varepsilon>0,\;\exists \alpha>0\;/\;\forall x\in I, \text{si }|x-a|\leqslant\alpha, \text{alors }|f\left(x\right)-f\left(a\right)|\leqslant\varepsilon$$

Remarque 1 : si f est définie en a et si $\lim_a f$ existe, alors f est continue en a :

Remarque 2: si f est continue en a et f(a) > 0, alors f > 0 au voisinage de a. (utile)

De plus, toute fonction continue en a est bornée au voisinage de a (cf. plus haut)

b) Fonctions lipschitziennes:

(i) Soit $k \in \mathbb{R}_+$. On dit que $f: I \to \mathbb{R}$ est k-lipschitzienne sur I lorsque

$$\forall (x,y) \in I^2, \quad |f(y) - f(x)| \leq k|y - x|$$

Exemple: \sin est 1-lip \sup \mathbb{R} .

(ii) $\underline{\text{Proprièt\'e}}$: toute fonction k-lipschitzienne sur I est continue sur I

Remarque: la réciproque est fausse. Par exemple $f: x \to x^2$ est continue non lipschitzienne sur \mathbb{R} .

Cas particulier: si k < 1, on dit que f est k-contractante sur I.

2.2. Théorème des valeurs intermédiaires

a) Caractérisation des intervalles de \mathbb{R} : soit I une partie de \mathbb{R} .

 $\boxed{I \text{ est un intervalle de } \mathbb{R} \text{ si et seulement si pour tous réels } \alpha < \beta \text{ de } I, \text{ on a } [\alpha, \beta] \subset I}$ ce qui revient à

I est un intervalle de $\mathbb R$ si et seulement si $\forall (\alpha, \beta) \in I^2, \ \forall x \in \mathbb R, \ (\alpha \leqslant x \leqslant \beta \Rightarrow x \in I)$

b) Théorème: si f est continue sur l'intervalle I, alors $f \langle I \rangle$ est un intervalle.

Contre exemple: E n'est pas continue, et on a $E(0,2) = \{0,1,2\}$ qui n'est pas un intervalle.

c) Enoncé équivalent : propriété des valeurs intermédiaires :

Si
$$f$$
 est continue sur $[a,b]$, alors $\forall m \in \left\{ \begin{array}{l} [f\left(a\right),f\left(b\right)] \\ [f\left(b\right),f\left(a\right)] \end{array} \right.$, l'équation $f\left(x\right)=m$ admet au moins une solution.

d) Enoncé équivalent plus courant :

Si
$$f$$
 est continue sur $\left[a,b\right]$, et $f\left(a\right)f\left(b\right)<0$, alors f s'annule au moins une fois sur $\left]a,b\right[$

Exemple 1 : tout polynôme de degré impair admet au moins une racine réelle

Exemple 2: si
$$f:[0,1] \rightarrow [0,1]$$
 est continue sur $[0,1]$, alors il existe $x \in [0,1] / f(x) = x$.

e) Corollaire : théorème de la bijection :

si f est continue strictement monotone sur l'intervalle I, alors f réalise une bijection de I sur l'intervalle $J=f\langle I\rangle$

 $\it Remarque:$ autre conséquence : si f continue ne s'annule pas sur I, alors f est de signe constant sur I

2.3. Image d'un segment (intervalle fermé et borné, donc de la forme [a,b])

- a) <u>Théorème</u>(admis): l'image d'un segment par une fonction continue est un segment
- b) Conséquence : toute fonction continue sur un segment y est bornée, et atteint ses bornes

Contre exemples :

- <u>I non borné</u> : $f: x \mapsto \arctan x$. f est bornée sur $[0, +\infty[$, mais n'atteint pas sa borne supérieure.
- <u>I non fermé</u>: $f: x \mapsto \frac{1}{x}$ est continue sur]0,1], mais $f(]0,1]) = [0,+\infty[:f]$ n'est pas bornée.
- $\quad \underline{f \text{ non continue}} : f : x \mapsto \left\{ \begin{array}{l} x \text{ si } x \in [0,1[\\ 0 \text{ si } x = 1 \end{array} \right. \text{ . } f \text{ est born\'ee mais } \sup_{[0,1]} f = 1 \text{ n\'est pas atteint.}$

Exemple: si $f \in C^1\left([a,b]\right)$, alors on peut parler de $\sup_{[a,b]} |f'|$ (qui est un \max)