This is the Diagonalization Gateway test. Passing on this test is ALL FIVE of the five problems on the test.

Problem 1. (1 point)

Identify the diagonalizability of each of the following matrices.

$$1. A = \begin{bmatrix} 2 & 2 \\ 0 & 4 \end{bmatrix}$$

- ?
- Diagonalizable over real and complex numbers
- Diagonalizable over complex numbers but not reals
- Not diagonalizable over either real or complex numbers
- Diagonalizable over real numbers but not complex numbers

2.
$$B = \begin{bmatrix} 6 & -1 \\ 2 & 4 \end{bmatrix}$$
B is

- ?
- Diagonalizable over real and complex numbers
- Diagonalizable over complex numbers but not reals
- Not diagonalizable over either real or complex numbers
- Diagonalizable over real numbers but not complex numbers

3.
$$C = \begin{bmatrix} 4 & -1 \\ 4 & 2 \end{bmatrix}$$

C is

- 2
- Diagonalizable over real and complex numbers
- Diagonalizable over complex numbers but not reals
- Not diagonalizable over either real or complex numbers
- Diagonalizable over real numbers but not complex numbers

Solution: For each matrix, we determine diagonalizability from the existence of a complete eigenspace. For A, we see that eigenvalues are given by

$$(-\lambda)(4-\lambda) - 2 \cdot 0 = \lambda^2 - 6\lambda + 8 = 0.$$

Completing the square, we have

$$(\lambda - 3)^2 - 1 = 0,$$

so that there are two distinct real eigenvalues, so that *A* is Diagonalizable over real and complex numbers.

Similarly, for B, we have

$$(\lambda - 5)^2 + 1 = 0$$
,

so that there are two complex conjugate eigenvalues, so that B is Diagonalizable over complex numbers but not reals.

Similarly, for C, we have

$$(\lambda - 3)^2 + 3 = 0$$
,

so that there are two complex conjugate eigenvalues, so that C is Diagonalizable over complex numbers but not reals.

Answer(s) submitted:

- Diagonalizable over real and complex numbers
- Diagonalizable over real and complex numbers
- Diagonalizable over real and complex numbers

submitted: (incorrect) recorded: (incorrect) Correct Answers:

- Diagonalizable over real and complex numbers
- Diagonalizable over complex numbers but not reals
- Diagonalizable over complex numbers but not reals

l

Problem 2. (1 point)

The matrix $A = \begin{bmatrix} 7 & 48 \\ -1 & -9 \end{bmatrix}$ is diagonalizable over $\mathbb C$. Find a diagonal matrix D and an invertible matrix S with real or complex entries such that $D = S^{-1}AS$.

$$D = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$
$$S = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$

Solution: We know that $S^{-1}AS = D$, where $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ (and $\lambda_{1,2}$ are the eigenvalues of the matrix A) and $S = [\mathbf{v}_1]$ $\mathbf{v}_{1,2}$ being the corresponding basis for the eigenspace).

Eigenvalues of A satisfy

$$\det\begin{bmatrix} 7-\lambda & 48 \\ -1 & -9-\lambda \end{bmatrix} = (7-\lambda)(-9-\lambda) - (48)(-1)$$
$$= \lambda^2 + 2\lambda - 15$$
$$= (\lambda - 3)(\lambda + 5) = 0.$$

Thus $\lambda = 3$ or $\lambda = -5$.

If $\lambda = 3$, the eigenvector satisfies

so that
$$\mathbf{v} = \begin{bmatrix} 4 & 48 \\ -1 & -12 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Similarly, if
$$\lambda = -5$$
, the eigenvector satisfies
$$\begin{bmatrix} 12 & 48 \\ -1 & -4 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 so that $\mathbf{v} = \begin{bmatrix} 48 \\ -12 \end{bmatrix}$.

Thus our diagonalization is
$$S^{-1}AS = D$$
, with
$$S = \begin{bmatrix} 48 & 48 \\ -4 & -12 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix}$$

Answer(s) submitted:

submitted: (incorrect) recorded: (incorrect)

Correct Answers:

$$\bullet \left[\begin{array}{cc} 3 & 0 \\ 0 & -5 \end{array}\right]; \left[\begin{array}{cc} 48 & 48 \\ -4 & -12 \end{array}\right]$$

Problem 3. (1 point)

The matrix $A = \begin{bmatrix} 4 & -1 \\ 3 & 0 \end{bmatrix}$ is diagonalizable over \mathbb{C} . Find a diagonal matrix D and an invertible matrix S with real or complex entries such that $D = S^{-1}AS$.

$$D = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$
$$S = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$

Solution: We know that $S^{-1}AS = D$, where $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ (and $\lambda_{1,2}$ are the eigenvalues of the matrix A) and $S = [\mathbf{v}_1]$ $\mathbf{v}_{1,2}$ being the corresponding basis for the eigenspace).

Eigenvalues satisfy

$$\det\begin{pmatrix} \begin{bmatrix} 4 - \lambda & -1 \\ 3 & 0 - \lambda \end{bmatrix} \end{pmatrix} = (4 - \lambda)(0 - \lambda) - (-1)(3)$$
$$= \lambda^2 - 4\lambda + 3$$
$$= (\lambda - 3)(\lambda - 1) = 0.$$

Thus $\lambda = 3$ or $\lambda = 1$.

If $\lambda = 3$, the eigenvector satisfies

$$\begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

so that $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Similarly, if $\lambda = 1$, the eigenvector satisfies

$$\begin{bmatrix} 3 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

so that $\mathbf{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

Thus our diagonalization is $S^{-1}AS = D$, with

$$S = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

Answer(s) submitted:

submitted: (incorrect)

recorded: (incorrect)

Correct Answers:

$$\bullet \left[\begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array} \right]; \left[\begin{array}{cc} 1 & 1 \\ 1 & 3 \end{array} \right]$$

Problem 4. (1 point)

Identify the diagonalizability of each of the following matrices.

$$1. A = \begin{bmatrix} 1 & 0 \\ 7 & 1 \end{bmatrix}$$
A is

- ?
- Diagonalizable over real and complex numbers
- Diagonalizable over complex numbers but not reals
- Not diagonalizable over either real or complex numbers
- Diagonalizable over real numbers but not complex numbers

2.
$$B = \begin{bmatrix} 3 & 4 \\ 0 & 3 \end{bmatrix}$$
B is

- ?
- Diagonalizable over real and complex numbers
- Diagonalizable over complex numbers but not reals
- Not diagonalizable over either real or complex numbers
- Diagonalizable over real numbers but not complex numbers

3.
$$C = \begin{bmatrix} -2 & 0 \\ -3 & -2 \end{bmatrix}$$

- ?
- Diagonalizable over real and complex numbers
- Diagonalizable over complex numbers but not reals
- Not diagonalizable over either real or complex numbers
- Diagonalizable over real numbers but not complex numbers

Solution: For each matrix, we determine diagonalizability from the existence of a complete eigenspace. For A, we see that eigenvalues are given by

$$(-\lambda)(1-\lambda) - 0 \cdot 7 = \lambda^2 - 2\lambda + 1 = 0.$$

Completing the square, we have

$$(\lambda - 1)^2 + 0 = 0$$
,

so that there are two repeated real eigenvalues, and because the matrix (after subtracting λI) will have nonzero entries and so cannot have two eigenvectors, so that A is Not diagonalizable over either real or complex numbers.

Similarly, for B, we have

$$(\lambda - 3)^2 + 0 = 0$$
,

so that there are two repeated real eigenvalues, and because the matrix (after subtracting λI) will have nonzero entries and so cannot have two eigenvectors, so that B is Not diagonalizable over either real or complex numbers.

Similarly, for *C*, we have

$$(\lambda + 2)^2 + 0 = 0,$$

so that there are two repeated real eigenvalues, and because the matrix (after subtracting λI) will have nonzero entries and so cannot have two eigenvectors, so that C is Not diagonalizable over either real or complex numbers.

Answer(s) submitted:

- Not diagonalizable over either real or complex numbers
- Not diagonalizable over either real or complex numbers
- Not diagonalizable over either real or complex numbers

submitted: (correct) recorded: (correct) *Correct Answers:*

- Not diagonalizable over either real or complex numbers
- Not diagonalizable over either real or complex numbers
- Not diagonalizable over either real or complex numbers

3

Problem 5. (1 point)

The matrix $A = \begin{bmatrix} 0 & 2 \\ 3 & -1 \end{bmatrix}$ is diagonalizable over \mathbb{C} . Find a diagonal matrix D and an invertible matrix S with real or complex entries such that $D = \underline{S}^{-1}AS$.

$$D = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$
$$S = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$

Solution: We know that $S^{-1}AS = D$, where $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$ (and $\lambda_{1,2}$ are the eigenvalues of the matrix A) and $S = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}$ (with $\mathbf{v}_{1,2}$ being the corresponding basis for the eigenspace).

Eigenvalues satisfy

$$\det\begin{bmatrix} 0 - \lambda & 2 \\ 3 & -1 - \lambda \end{bmatrix} = (0 - \lambda)(-1 - \lambda) - (2)(3)$$
$$= \lambda^2 + 1\lambda - 6$$
$$= (\lambda + 3)(\lambda - 2) = 0.$$

Thus $\lambda = -3$ or $\lambda = 2$.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

If $\lambda = -3$, the eigenvector satisfies

$$\begin{bmatrix} 3 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

so that $\mathbf{v} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$.

Similarly, if $\lambda = 2$, the eigenvector satisfies

$$\begin{bmatrix} -2 & 2 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

so that $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

Thus our diagonalization is
$$S^{-1}AS = D$$
, with
$$S = \begin{bmatrix} 2 & 2 \\ -3 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} -3 & 0 \\ 0 & 2 \end{bmatrix}$$

Answer(s) submitted:

$$\bullet \left[\begin{array}{cc} -3 & 0 \\ 0 & 2 \end{array} \right]; \left[\begin{array}{cc} -2 & 1 \\ 3 & 1 \end{array} \right]$$

submitted: (correct)

recorded: (correct)

Correct Answers:

$$\bullet \left[\begin{array}{cc} -3 & 0 \\ 0 & 2 \end{array} \right]; \left[\begin{array}{cc} 2 & 2 \\ -3 & 2 \end{array} \right]$$