

MATERIA METODOS NUMERICOS

TEMA REPORTE DE ACTIVIDADES

ESTUDIANTE CAPIN ALBERTO HERNANDEZ PEREZ

DOCENTE
ING. EFREN FLORES CRUZ

FECHA DE ENTREGA 02 DE MAYO DEL 2020

Unidad 3 metodos de solución de sistemo de ecuaciones

Metodo Iterativos

El metodo de gaus y sus varianto se conocen

con el nombre de metodos directos; se edecutor

a traves de un numero finito de pasos y dan lugar

a una solución que seria exacta si no fuese

por los errores de redondeo.

Por contrajún metodo indirecto da lugar a una sucesian

de vectores que idealmente converge a la solución

El calculo se detiene cuando se cuenta con una solución

aproximada con cierto grado de precision especificado

de antemano o despues de cierto numeros de Heracións

Los metodos indirectos son casi siempre iterativos

para Obtener la sucesión mencionada se varia, se

Utilita repetidomente un proceso sencisso.

Distema de revaciones no lineales

llamamos sistema no lineal o un sistema de ecuaciones
en el que una o ambas de las recuaciones que
forman el sistema es una revación no lineal cuando
alguna de las ineognitas que forman parte de la
ecuación no son de primer grado, por tanto en este
lipo de sistema nos Podemos encontror pouno mos de
segundo grado, lales, logaritmo, exponentes.
la mayor parte de estos sistemas se resuelven
utilizando el metodo de sustitución, quinque en
algunos casos puede ocurrir que no sea la
formo mas sencilla.

Heraaon	y convergenc	la de suti	ena de ec	vacion
En gener	a1, en +000	165 Proc	sos Hea	atives
Para res	ower el sist	eng Ax=	b se recu	rre a
	rta matriz a			
es cogida	de tal form	o que en	problemo o	119100
adopt e 11	a forma eq.	olvolente.		4 194
	Q x = (Q - A)			
La etvan	on 167) quier		11 4 60	DELLADA
9 U & 5 P	concreta or	escanisi	so Itera.	1100
Q x (K).	= (0 - A) x (K-1)+	h (1-21)	101 100	
El vector	inicial X'O)	ruede ser	naphtidae	0 0 0000
Sr se 213	pone de un	huen andle	tota como	501-10-10
este es	el que se	dese emme		2010 [6
initial 40	SP adopta	, 0 10 581	and 30 4	15000
de una m	edor, es la ide	n+1 comente	noia X, = x	- X
100 - 101 -				
A partir	de la ecu	ación se 6	vede call	10000
sultsion	00 110165	XUXU	Nite 2 mm	ab Jetev
(5 62009	er una matur	, a de man	P19 95	ab c lap
36 106 90	sion [xth] a	mente la	Succession [x'	F7]
- 19 20(e	sion LX J a	onverdy ra	pidomente (25000
19 50100	con.			

unidad 4 Diferenciación e miegracción numerica 4.1 Diferenciación numerica El calculo de la derivada de una fonción puede ser un proceso dificii Vasta por lo compicado de la définicion analítico de la función o porque esta se conoce unicamente en un numero discreto de puntos: Formulas para la primero derivada: la definición de la derivado de la función f(x) en el punto xº esta dada en termines del limite FI(X) = 11M F(X+1) - F(X) De esta definition podemos desir que si h as pequeno entencos: F(N) = F(X+N) - F(N) 4. Z integración numerica En analysis numericos la integración numerico constituxe una ampila. gana de algoritmos para calculor el valor numerico de una Integral de Finida y por extension, el termino se usa a veres para describir algoritmos numericos para resolver ecvacion di ferencialos. El problema basico considerado por la integración numerica es calculo, una solución aproximación a la integral definida. FCAJ dx

4. 3 Inte	gracion	Mul	tiple		1031		
la integrale promed	no, una	uno 1	107	de 110.	4		en
	F = 50 (S. (F(x,y)		1 2 1 1			
Al numerado El carculo cono inte	graves	chas 1+erac	in tegn	(e) 3	e po	eden	Calco
th canculo cono inte	graves SolfaFCX,	thas 1+ erac y) dx) d	$y = \int_{c}^{c}$	E(x,y))	dx		21
th canculo	granes Se evaluation por y	thas 1+ erac y) dx) d sa la	In tegral $y = \int_{c}^{c} $ In te	(x,y))	dx en un e es-	ia de	ne
en canculo cono inte	granes Se evaluation por y	thas 1+ erac y) dx) d called n (or for	In tegral $y = \int_{c}^{c} $ In te	gral 1	dx en un e es- egun di	de de pri	ne

Everci				
SISTEMA	de ecua	cion es ne	ineares	
En contrar	105 501UC 7 + 47 = 75	ion es, si	ias nay	de
Maria Street in Street of Street Street	$x \rightarrow y = 5$			
Des pesa ~ y = 5.				
x2 +15->	17 - 25			
, , ,				
x2 + 25 -	10 × + x2 =	222 x2 - 10	×	
	Ox. (zx-	10) = 0 x,	= 07x - 10	
	X, =0	4, = 5		
	x z = S	y2 = 0		
comproba				
			V -55	
	4 15J2 = 25	3 + e 5 + e 5	9 - 5	
	75 = 75	5	= 5	