Tutorato AFL

Linpeng Zhang

20 marzo 2019

Sommario

Per errori/dubbi/problemi: linpeng.zhang@studenti.unipd.it.

Indice

1	Lez	3	1
	1.1	Riassunto informale	
	1.2	Esercizi	
	1.3	Soluzioni	6

1 Lez3

1.1 Riassunto informale

- Da FA a RE, se il FA ha solo uno stato finale, basta eliminare gli stati che non sono né iniziali né finali e inserire opportune transizioni. Conviene partire da stati in cui ci sono pochi stati entranti ed uscenti;
- per mostrare che un linguaggio è regolare o meno si possono anche usare le proprietà di chiusura viste a lezione.

1.2 Esercizi

Dire se l'automa dato è deterministico; in caso contrario, definire un DFA equivalente.

1.

Costruire un FA che accetti il linguaggio denotato dalle seguenti RE:

1.
$$R = 0^* + 1^* + (01)^*$$

2.
$$R = (0+1)*1(0+1)$$

3.
$$R = a(a+b)^* + c$$

Convertire l'automa dato in una RE:

1.

2.

I seguenti linguaggi sono regolari? Motivare la risposta.

$$1. \ L = \{0^{5k}, k \in \mathbb{N}\}$$

2.
$$L = \{0^{pq}, p, q \in \mathbb{N}, p > 1, q > 1\}$$

3.
$$L = \{0^{k^3}, k \in \mathbb{N}\}$$

1.3 Soluzioni

Conversione da NFA a DFA

1.

Conversione da RE a FA

Conversione da FA a RE

1.
$$R = (1 + 0((0 + 10^*1)1)^*(0 + 10^*1)0)^*$$

2.
$$R = ((\epsilon + aa(aa)^*)ab) * (a + aa(aa)^*(\epsilon + a))$$

Dire se il linguaggio dato è regolare.

- 1. una regexp che riconosce lo stesso linguaggio è: $R = (00000)^*$. Supponendo che la regexp sia corretta possiamo dire che il linguaggio è regolare.
- 2. a lezione è stato visto che $L_p = \{0^p, p \text{ è primo }\}$ è non regolare. Notiamo che $L = comp(L_p)$, quindi L non è regolare poiché i linguaggi regolari sono chiusi per complementazione. Infatti:

$$L$$
 è regolare $\Rightarrow comp(L)$ è regolare

comp(L) è non regolare $\Rightarrow L$ è non regolare;

3. Supponiamo per assurdo che L sia regolare. Allora vale il PL e sia h la lunghezza data dal PL; Cerchiamo una parola $w \in L$ tale che $|w| \ge h$. Scegliamo $w = 0^{h^3}$, che ovviamente soddisfa $|w| \ge h, \forall h \in \mathbb{N}$.

Sia w=xyze $|xy|\leq h,\;y\neq\epsilon.$ Allora xysarà fatta solo di 0, cioè $x = 0^n, y = 0^m, n + m \le h, m > 0.$

x = 0, y = 0, $n + m \le n, m > 0$. Proviamo a pompare y. Prendiamo $w' = xy^2z = 0^{h^3+m}$. Sono sufficienti per arrivare al cubo successivo? Alla meglio si ha m = h, ma si dimostra immediatamente che $(h + 1)^3 > h^3 + h$. Quindi non basta (anche nel migliore dei casi), cioè $w' \notin L$ e quindi L non è regolare. NB: formalmente si può dimostrare che $h^3 < h^3 + m \le h^3 + h \le (h + 1)^3$ $h^3 + h < (h+1)^3$.