Trabajo de fin de grado: Movimiento de asteroides en las Zanjas de Kirkwood

Universidad Autónoma de Madrid Roberto Mazo Fernández

Resumen

• Diseñado un método para caracterizar anchura de las Zanjas

• Simulación movimiento asteroides con Python

• Comparación métodos integración numérica

• Influencia de Marte y Saturno

¿Qué son y como se producen las Zanjas de Kirkwood?

Distribución de los asteroides del cinturón principal (huecos de Kirkwood)

Figura 1: Numero de asteroides en función de la distancia al Sol.

Se **cree** que la acumulación de impulsos que Júpiter tiene sobre el asteroide

→Régimen caótico tal que cualquier mínima perturbación →Expulsa de la orbita [1]

[1] Moons, M. Review of the dynamics in the Kirkwood gaps. Celestial Mechanics and Dynamical Astronomy, 1996.

Problema de dos cuerpos

$$F_{Gx} = -\frac{G \cdot M_S \cdot M_T}{r_{ST}^2} \cdot \cos(\theta) = -\frac{G \cdot M_S \cdot M_T}{r_{ST}^3} \cdot x$$

$$F_{Gy} = -\frac{G \cdot M_S \cdot M_T}{r_{ST}^2} \cdot \sin(\theta) = -\frac{G \cdot M_S \cdot M_T}{r_{ST}^3} \cdot y$$

Bajo la acción de fuerza conservativa → Conservación de la energía mecánica y momento angular

Unidades → Tiempo : Años Distancia : Unidades Astronómicas

$$F_{centripeta} = F_{gravitatoria}$$

$$G \cdot M_s = v^2 \cdot r = 4 \pi^2 AU^3 / a\tilde{n}o^2$$

Problema de tres cuerpos

- Aproximaciones:
 - El Sol debido a su masa permanecerá quieto
 - La fuerza que ejerce el asteroide sobre Júpiter es despreciable

•
$$F_{Gx} = -\frac{G \cdot M_S \cdot M_a}{r_{aS}^2} \cdot x - \frac{G \cdot M_J \cdot M_a}{r_{aJ}^3} \cdot (x_a - x_J)$$

• $F_{Gy} = -\frac{G \cdot M_S \cdot M_a}{r_{aS}^2} \cdot y - \frac{G \cdot M_J \cdot M_a}{r_{aJ}^3} \cdot (y_a - y_J)$

•
$$F_{Gy} = -\frac{G \cdot M_S \cdot M_a}{r_{aS}^2} \cdot y - \frac{G \cdot M_J \cdot M_a}{r_{aJ}^3} \cdot (y_a - y_J)$$

$$GM_J = GM_S \frac{M_J}{M_S} = 4 \pi^2 \frac{M_J}{M_S} \text{UA}^3/\text{año}^2$$

Métodos de integración numérica: Euler, Euler-Cromer,

Velocidad Verlet y Runge-Kutta 4

- Ecuaciones a resolver:
- Transformamos en:

$$m\frac{d^2x}{dt^2} = -\frac{GMm}{r^3}x$$

$$\frac{dx}{dt} = f(t, v)$$

$$m\frac{d^2y}{dt^2} = -\frac{GMm}{r^3}y$$

$$\frac{dv}{dt} = g(t, x)$$

Análogo para y

```
Funcion que nos vale para calcular la posicion y la velocidad de un objeto acelerado en funcion del tiempo. Metodo de Verlet
    Input:
                aceleracion que sufre el cuerpo
             vector que contenga posicion inicial
               vector que contenga la velocidad inicial
                paso de tiempo
         tend= tiempo final
    Output:
                                            Vectores que contienen las posiciones del cuerpo en funcion del tiempo
        x_vector, y_vector, z_vector =
        vx vector, vy vector, vz vector =
                                            Vectores que contienen las velocidades del cuerpo en funcion del tiempo
        t vector =
                                            Vector que contiene los tiempos
Ejemplo de funcion aceleracion
 def a(x,y,z):
    ax = -G*M*x/(x**2+y**2+z**2)**(3/2)
    ay = -G*M*y/(x**2+y**2+z**2)**(3/2)
    az = -G*M*z/(x**2+y**2+z**2)**(3/2)
    return [ax,ay,az]
```

Euler:

• Aproximación Taylor orden 1: $x(t + \Delta t) = x(t) + \frac{\partial x}{\partial t} \Delta t + ...$

$$x_{n+1} = x_n + f(t_n, v_n)\Delta t$$

$$v_{n+1} = v_n + g(t_n, x_n)\Delta t$$

Malo en movimientos cíclicos → Aumenta la energía con los ciclos

Euler-Cromer:

• Mejora el método de Euler para movimientos cíclicos

$$v_{n+1} = v_n + g(t_n, x_n) \Delta t$$
 $x_{n+1} = x_n + f(t_n, v_{n+1}) \Delta t$

Velocidad Verlet:

• Mejora el método de Verlet ya que podemos calcular velocidad

$$x_{n+1} = x_n + v_{n+1} \Delta t + \frac{1}{2} a_n \Delta t^2$$
 $v_{n+1} = v_n + \frac{a_n + a_{n+1}}{2} \Delta t$

```
for i in range (0,n):
    [ax, ay, az] = a(x, y,z)

    x_next = x + vx * dt
    y_next = y + vy * dt
    z_next = z + vz * dt

    vx_next = vx + ax * dt
    vy_next = vy + ay * dt
    vz_next = vz + az * dt
```

```
for i in range (0,n):
    [ax, ay, az] = a(x, y, z)

    vx_next = vx + ax * dt
    vy_next = vy + ay * dt
    vz_next = vz + az * dt

x_next = x + vx_next * dt
    y_next = y + vy_next * dt
    z_next = z + vz_next * dt
```

```
for i in range (0,n):
    [ax, ay, az] = a(x, y, z)
    x_next= x + vx * dt + 0.5 * ax * dt ** 2
    y_next= y + vy * dt + 0.5 * ay * dt ** 2
    z_next= z + vz * dt + 0.5 * az * dt ** 2

[ax_next, ay_next, az_next] = a(x_next, y_next, z_next)
    vx_next = vx + 0.5 * (ax + ax_next) * dt
    vy_next = vy + 0.5 * (ay + ay_next) * dt
    vz_next = vz + 0.5 * (az + az_next) * dt
```

Órbita de Júpiter

Figura 11: Comparación de la órbita de Júpiter al cabo de 200 años para los distintos métodos de integración.

Figura 12: Comparación de la energía mecánica de Júpiter en su órbita con los distintos métodos de integración.

Órbita de Júpiter

Método	Tiempo computacional (s)	Desviación del afelio (UA)
Euler	0.693	No procede
Euler Cromer	0.825	4e-07
Velocidad Verlet	1.129	2e-07
Runge-Kutta 4	1.521	2e-07

Tabla 2: Comparación entre los métodos de integración al realizar el cálculo de la trayectoria y su desviación del afelio al cabo de T=200años

La desviación es menor que el radio de Júpiter (69.911km) → necesitamos hacerlo con un cuerpo mas pequeños

Figura 13: Comparación de los métodos al pasar cerca del afelio de Júpiter.

Período obtenido con el método de Verlet: $T_{\text{experimental}} = 11.8878 \pm 0.0005 \text{ años}$ $T_{\text{bilbiografico}} = 11.872 \pm 0.003 \text{ años}$

Órbita de Juno

Método	Tiempo computacional(s)	Desviación del afelio (UA)
Euler Cromer	32.421	0.006
Velocidad Verlet	37.508	0.006
Rungekutta4	65.548	0.006

Tabla 3: Comparación de los métodos de integración al realizar el cálculo de la trayectoria de Júpiter y Juno, así como la desviación del afelio de Juno al cabo de 2000 años terrestres

Figura 17: Representación de las energías de Juno con el método de Verlet..

Figura 15: Trayectoria de Júpiter y del asteroide Juno con Verlet y Euler Cromer con T=2000 años terrestres

 $\emph{Figura 16: Desviación de los distintos métodos al pasar cerca del afelio de Juno con $T=2000$ años terrestres}$

Estudio Zanjas de Kirkwood

Figura 19: Desviación de un asteroide en función de su posición inicial respecto al Sol al cabo de 1000 años asumiendo órbita de Júpiter circular

Elíptico

Figura 20: Desviación de un asteroide en función de su posición inicial respecto al Sol al cabo de 1000 años asumiendo órbita de Júpiter elíptica

Comportamiento en las proximidades de las Zanjas de Kirkwood

Cuerpo celeste	Distancia (AU)	Velocidad inicial (AU/año)
Asteroide 1	3.000	3.628
Asteroide 2	3.276	3.471
Asteroide 3	3.600	3.312

Tabla 4: Posiciones iniciales y velocidades usadas para tres asteroides hipotéticos en la vecindad de la zanja de Kirkwood con resonancia 2/1

Cuerpo celeste	Distancia (AU)	Velocidad inicial (AU/año)
Asteroide 1	3.000	3.628
Asteroide 2	3.276	3.471
Asteroide 3	3.600	3.312

Tabla 5: Posiciones iniciales y velocidades usadas para tres asteroides hipotéticos en la vecindad de la Zanja de Kirkwood con resonancia 3/1

Zanja 3/1

Zanja 3/1

Zanja 2/1

Anchura de las Zanjas

Figura 31: Desviación de un asteroide (en resonancia 3:1 con Júpiter) en función de su posición inicial respecto al Sol, T=1000años. Los datos han sido ajustados a una Lorentziana

Centro de la lorentziana = 2.5056 ± 0.0001 UA Anchura= 0.0032 ± 0.0004 UA

Proximidades: 2.5040 y 2.5072 UA.

Zanja 2/1

Figura 32: Desviación de un asteroide (en resonancia 2:1 con Júpiter) en función de su posición inicial respecto al Sol, T=1000 años. Los datos han sido ajustados a una Lorentziana

Centro de la lorentziana = 3.322 ± 0.002 UA Anchura= 0.13 ± 0.01 UA

Proximidades: 3.25 y 3.39 UA.

Influencia de Marte

$$F_{Gx} = -\frac{G \cdot M_S \cdot M_a}{r_{aS}^2} \cdot \mathbf{x} - \frac{G \cdot M_J \cdot M_a}{r_{aJ}^3} \cdot (x_a - x_J) - \frac{G \cdot M_M \cdot M_a}{r_{aM}^3} \cdot (x_a - x_M)$$

$$F_{Gy} = -\frac{G \cdot M_S \cdot M_a}{r_{aS}^2} \cdot y - \frac{G \cdot M_J \cdot M_a}{r_{aJ}^3} \cdot (y_a - y_J) - \frac{G \cdot M_M \cdot M_a}{r_{aM}^3} \cdot (y_a - y_M)$$

- Tiempo = $100\ 000\ a\tilde{n}os$
- Masa Marte = $6.41 \cdot 10^{23} \text{ kg}$
- Masa del Sol= $1.98 \ 10^{30} \ \text{kg}$
- Masa de Júpiter= $1,89 \cdot 10^{27} \text{ kg}$
- Semieje mayor=1,52UA

Figura 33: Comparación de la desviación de un asteroide en función de su posición inicial respecto al Sol al cabo de 100 000 años con la presencia de Marte y sin la presencia de Marte.

Influencia de Saturno

- Tiempo = $100\ 000$ años
- Masa Saturno = $5.98 \cdot 10^{26} \text{ kg}$
- Masa del Sol= $1.98 \ 10^{30} \ \mathrm{kg}$
- Masa de Júpiter= $1,89 \cdot 10^{27} \text{ kg}$
- Semieje mayor= 9,58 UA

Figura 34: Comparación de la desviación de un asteroide en función de su posición inicial respecto del Sol al cabo de 100 000 años con la presencia de Saturno y sin la presencia de Saturno

Conclusiones

- Existen unas regiones entre Marte y Júpiter en las cuales los asteroides exhiben un comportamiento inusual.
- Con el código y el método desarrollado ha sido posible determinar la anchura aproximada de las Zanjas
- De los métodos estudiados el método de Velocidad Verlet es el más adecuado para el cálculo de órbitas.
- Órbitas elípticas → Más Zanjas de Kirkwood
- La influencia de Marte y Saturno en los asteroides que se encuentran en las Zanjas de Kirkwood es despreciable.

Órbitas elípticas

Figura 3: Órbita elíptica alrededor del Sol.

Bajo la acción de fuerza conservativa → Conservación de la energía mecánica y momento angular

$$\frac{1}{2} M_{p} v_{1}^{2} - \frac{GM_{s}M_{p}}{r_{1}} = -\frac{GM_{s}M_{p}}{r_{2}} + \frac{1}{2} M_{p} v_{2}^{2}$$

$$M_{p} v_{1}r_{1} = M_{p} v_{2}r_{2}$$

$$V_{max} = \sqrt{\frac{GM(1+e)\cdot(1+\frac{M_{jup}}{Msun})}{a(1-e)}}$$

$$V_{min} = \sqrt{\frac{GM(1-e)\cdot(1+\frac{M_{jup}}{Msun})}{a(1+e)}}$$

Runge-Kutta 4

Para hallar la posición y la velocidad hay que calcular los siguientes coeficientes primero

$$x_{n+1} = x_n + \frac{\Delta t}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Donde:

$$k_{1} = f(t_{n}, v_{n})$$

$$k_{2} = f(t_{n} + \frac{\Delta t}{2}, v_{n} + \frac{\Delta t}{2}k_{1})$$

$$k_{3} = f(t_{n} + \frac{\Delta t}{2}, v_{n} + \frac{\Delta t}{2}k_{2})$$

$$k_{4} = f(t_{n} + \Delta t, v_{n} + \Delta t k_{3})$$

```
134 def RungeK_42(a,r0,v0,dt,tend,x_jup_RK4, y_jup_RK4 ,z_jup_RK4):
136 #Creamos vectores de las posiciones, tiempo y velocidades
138
       x vector = []
       y vector = []
140
       z_vector = []
141
142
       t vector = []
143
       vx vector = []
145
       vy vector = []
       vz_vector = []
147
148 #Condiciones iniciales
149
150
       x = r0[0]
151
       y = r0[1]
       z = r0[2]
152
       t=0
                    #Tiempo a partir del cual empezamos a contar
       vx = v0[0]
155
       vy = v0[1]
       vz = v0[2]
158 #Decimos que el primer elemento de nuestros vectores sea:
159
       x vector.append(x)
161
       y_vector.append(y)
162
       z vector.append(z)
163
       vx vector.append(vx)
165
       vy vector.append(vy)
166
       vz vector.append(vz)
167
168
       t_vector.append(t)
169
170
       n=int(tend/dt)
                            #Numero de elementos que contendran nuestros vectores
```

```
for i in range (0,n):
173
                                                                                                                                  214
                                                                                                                                               x_vector.append(x_next)
                                                                                                                                                                                       # Guardamos los valores en nuestros vectores
174 #Las k de las velocidades que las denotaremos como klvx,klvy,klvz
175 #Las k para las posiciones las denotaremos como klx, kly,klz
                                                                                                                                  215
                                                                                                                                              y_vector.append(y_next)
                                                                                                                                               z_vector.append(z_next)
177 #Ecuaciones Rungekutta4
178
179
           [k1vx, k1vy, k1vz] = a(x, y, z,x_jup_RK4[i], y_jup_RK4[i],z_jup_RK4[i])
180
                                                                                                                                  218
                                                                                                                                               vx_vector.append(vx_next)
181
           k1x = vx
                                                                                                                                  219
                                                                                                                                               vy_vector.append(vy_next)
182
           k1y = vy
183
           k1z = vz
                                                                                                                                               vz_vector.append(vz_next)
184
185
           [k2vx, k2vy, k2vz] = a(x + k1x * (dt / 2), y + k1y * (dt / 2), z + k1z * (dt / 2),x_jup_RK4[i], y_jup_RK4[i],z_jup_RK4[i])
186
                                                                                                                                  222
                                                                                                                                               t next = t + dt
187
           k2x = vx + k1vx * (dt / 2)
                                                                                                                                  223
188
           k2y = vy + k1vy * (dt / 2)
189
           k2z = vz + k1vz * (dt / 2)
                                                                                                                                  224
                                                                                                                                               t_vector.append(t_next)
190
191
           [k3vx, k3vy, k3vz] = a(x + k2x * (dt / 2), y + k2y * (dt / 2), z + k2z * (dt / 2), x_jup_RK4[i], y_jup_RK4[i], z_jup_RK4[i])
192
                                                                                                                                  226
                                                                                                                                                                                  # Actualizamos los valores para realizar de nuevo el bucle
                                                                                                                                               x = x next
193
           k3x = vx + k2vx * (dt / 2)
194
           k3y = vy + k2vy * (dt / 2)
                                                                                                                                  227
                                                                                                                                              y = y next
195
           k3z = vz + k2vz * (dt / 2)
196
                                                                                                                                               z = z_next
197
           [k4vx, k4vy, k4vz] = a(x + k3x * dt, y + k3y * dt, z + k3z * dt,x_jup_RK4[i], y_jup_RK4[i],z_jup_RK4[i])
                                                                                                                                  229
198
                                                                                                                                  230
199
           k4x = vx + k3vx * dt
                                                                                                                                               t = t next
200
           k4y = vy + k3vy * dt
                                                                                                                                  231
201
           k4z = vz + k3vz * dt
202
                                                                                                                                  232
                                                                                                                                               vx = vx next
203 #Finalmente obtenemos las velocidades y posiciones siguientes
                                                                                                                                  233
                                                                                                                                               vy = vy next
205
           vx next = vx + (dt / 6) * (k1vx + 2 * k2vx + 2 * k3vx + k4vx)
                                                                                                                                               vz = vz next
206
           vy_next = vy + (dt / 6) * (k1vy + 2 * k2vy + 2 * k3vy + k4vy)
207
           vz_next = vz + (dt / 6) * (k1vz + 2 * k2vz + 2 * k3vz + k4vz)
208
                                                                                                                                  236
                                                                                                                                          return t_vector,x_vector, y_vector, z_vector, vx_vector, vy_vector, vz_vector
209
           x \text{ next} = x + (dt / 6) * (k1x + 2 * k2x + 2 * k3x + k4x)
210
           y \text{ next} = y + (dt / 6) * (k1y + 2 * k2y + 2 * k3y + k4y)
           z_next = z + (dt / 6) * (k1z + 2 * k2z + 2 * k3z + k4z)
```

Comparación de los métodos

```
start1=timer()
t_jup_E, x_jup_E, y_jup_E, z_jup_E, vx_jup_E, vy_jup_E, vz_jup_E = Euler (grav_sun , r0_jup, v0_jup, deltat,tend)
end1=timer()
start2=timer()
t_jup_EC, x_jup_EC, y_jup_EC, z_jup_EC, vx_jup_EC, vy_jup_EC, vz_jup_EC = Euler_Cromer (grav_sun , r0_jup, v0_jup, deltat,tend)
end2=timer()
start3=timer()
t_jup_V, x_jup_V, y_jup_V, z_jup_V, vx_jup_V, vz_jup_V = Verlet (grav_sun , r0_jup, v0_jup, deltat,tend)
end3=timer()
start4=timer()
t_jup_RK4, x_jup_RK4, y_jup_RK4, z_jup_RK4, vx_jup_RK4, vz_jup_RK4, vz_jup_RK4 = RungeK_4 (grav_sun , r0_jup, v0_jup, deltat,tend)
end4=timer()
```

```
for i in range(n): #No importan las unidades, queremos ver si varia
  v[i] =sqrt( vx[i] ** 2 + vy[i] ** 2 + vz[i] ** 2)
  Energia_cinet[i]= 0.5*v[i] ** 2 * Mplaneta1
  r[i] =sqrt( x[i] ** 2 + y[i] ** 2 + z[i] ** 2)
  Energia_grav[i] = - 4*pi**2*Mplaneta1/ r[i]
  Energia_mec[i]= Energia_grav[i] + Energia_cinet[i]
```

```
if fabs(x_jup_V[i]-x_jup_V[0])<tol:
    T1_jup=T2_jup
    T2_jup = deltat * i
    T_jup1 =T2_jup-T1_jup
    T_jup.append(T_jup1)
    x_afel.append(fabs(x_jup_V[i]-x_jup_V[0]))</pre>
```

Cálculo Afelio

if r_afel[i]>r_afel[i-1] and r_afel[i]>r_afel[i+1]:
 rmaxV.append(r_afel[i])

Figura 14: Calculo del afelio de Juno

```
97 n=int(tend/deltat)
99 #Convertimos en vectores las listas de Verlet
100 x1=np.array(x_ast1_V,float)
101 y1=np.array(y_ast1_V,float)
102 r_afel=(x1**2+y1**2)**(1/2)
103
104 #Convertimos en vectores las listas de Euler Cromer
105 x2=np.array(x ast1 EC,float)
106 y2=np.array(y ast1 EC,float)
107 r_afe12=(x2**2+y2**2)**(1/2)
108 #Convertimos en vectores las listas de RK4
109 x3=np.array(x_ast1_RK4,float)
110 y3=np.array(y_ast1_RK4,float)
111 r_afel3=(x3**2+y3**2)**(1/2)
112
113 #Hacemos el bucle para hallar el afelio
114 rmaxV=[]
115 rmaxEC=[]
116 rmaxRK4=[]
117
118 for i in range(0,n):
       if r afel[i]>r afel[i-1] and r afel[i]>r afel[i+1]:
120
           rmaxV.append(r_afel[i])
121
       if r afel2[i]>r afel2[i-1] and r afel2[i]>r afel2[i+1]:
           rmaxEC.append(r afel2[i])
122
123
       if r_afel3[i]>r_afel3[i-1] and r_afel3[i]>r_afel3[i+1]:
124
           rmaxRK4.append(r afel3[i])
125
126 #Los convertimos en vectores para poder aplicar las funciones mean y stdev
127 rV=np.array(rmaxV,float)
128 rEC=np.array(rmaxEC,float)
129 rRK4=np.array(rmaxRK4,float)
130
131 #Calculamos las desviaciones
132 print('La media con Verlet es=',rV.mean())
133 print('La desviacion respecto al valor real', stats.stdev(rV))
134 print('La media con Euler Cromer es=',rEC.mean())
135 print('La desviacion respecto al valor real', stats.stdev(rEC))
137 print('La media con RK4 es=',rRK4.mean())
138 print('La desviacion respecto al valor real', stats.stdev(rRK4))
```

95 #%% Comparacion de los metodos en el afelio

```
141 #Pintamos los valores en una recta
142
143 a=[stats.stdev(rV),stats.stdev(rV)]
144 b=[stats.stdev(rEC),stats.stdev(rEC)]
145 c=[stats.stdev(rRK4),stats.stdev(rRK4)]
146
147 d=[0,1]
148 figure(2)
149 plt.plot(d,b,'g', label='Euler Cromer')
150 plt.plot(d,a,'y', label='Verlet Velocity')
151 plt.plot(d,c,'r', label='RungeK_4')
152 plt.ylabel('Desviacion(UA)')
153 plt.plot(d,[0,0],'b',label='Valor observado')
154
155 plt.legend(loc='center')
156 show()
```

Estudio Zanjas de Kirkwood

```
for radius in np.arange(2.2,3.45,0.001):

    V_i = sqrt(4 * pi ** 2 / (radius))

    Init_pos = [radius, 0, 0]
    V_init = [0, V_i, 0]

    t_ast, x_ast, y_ast, z_ast, vx_ast, vy_ast, vz_ast =\
    Verlet2 (grav_sun_Jupiter , Init_pos , V_init, deltat,tend,x_jup , y_jup , z_jup )

    x_ast = np.array(x_ast,float)
    y_ast = np.array(y_ast,float)
    r_ast = ( x_ast**2 + y_ast**2 ) ** (1/2)
    desviacion=abs(max(r_ast)-min(r_ast))
```

Inclinación > plano de la eclíptica

• Tierra: 0°

• Marte: 1,85°

• Júpiter: $1,30^{\circ}$

• Saturno $2,48^{\circ}$