The ultrafilter monad

Malthe Sporring

$$11+11=22$$

Monads

Definition

A **monad** on C is an endofunctor T, a **unit** natural transformation $\eta: id \Rightarrow T$ and a **multiplication** natural transformation $\mu: T^2 \Rightarrow T$ that is unital and associative, i.e. so the following diagrams commute.

Here $T\eta$ and ηT are defined componentwise by **whiskering**: $(T\eta)_c = T(\eta_c)$ and $(\eta T)_c = \eta_{T(c)}$.

◆□▶◆□▶◆壹▶◆壹▶ 壹 めなぐ

2/20

Definition

An adjunction

$$C \stackrel{F}{\underset{U}{\longleftarrow}} D$$

is a pair of functors and a pair of natural transformations $\eta:1_C\to UF$ and $\epsilon:FU\to 1_D,$ called the **unit** and **counit** respectively, satisfying the triangle identities:

Malthe Sporring

Definition

An adjunction

$$C \stackrel{F}{\underset{U}{\longleftarrow}} D$$

is a pair of functors and a pair of natural transformations $\eta: 1_C \to UF$ and $\epsilon: FU \to 1_D$, called the **unit** and **counit** respectively, satisfying the triangle identities:

Lemma

An adjunction gives rise to a monad $T = UF : C \rightarrow C$.

Malthe Sporring The ultrafilter monad 11+11=22

3/20

Example

There is an adjunction

Set
$$\bigcup_{U}^{\mathbb{Z}[-]}$$
 Ab

where U is the forgetful functor, and $\mathbb{Z}[X]$ is the **free abelian group** generated by X.

4 / 20

Example

There is an adjunction

Set
$$\bigcup_{U}^{\mathbb{Z}[-]}$$
 Ab

where U is the forgetful functor, and $\mathbb{Z}[X]$ is the **free abelian group** generated by X.

The corresponding monad $\mathbb{Z}[X]: \mathbf{Set} \to \mathbf{Set}$ maps X to the set of finite formal sums $\sum_i a_i x_i$. The unit $\eta_X: X \to \mathbb{Z}[X]$ maps x to the singleton sum $\sum^1 x$. Multiplication is given by distributing coefficients:

$$\mu_X: \mathbb{Z}[\mathbb{Z}[X]] \to \mathbb{Z}[X], \quad \sum_i a_i \sum_j b_j x_j \mapsto \sum_{i,j} a_i b_j x_j$$

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

4 / 20

Adjunctions from monads

Given a monad (T, η, μ) on C, can we find an adjunction $C \xrightarrow{\Gamma} D$ that restricts to it?

5/20

Adjunctions from monads

Given a monad (T, η, μ) on C, can we find an adjunction $C \stackrel{F}{\underset{U}{\longleftarrow}} D$ that restricts to it?

Lemma

Yes. Furthermore, there is both a final and an initial such adjunction. The final adjunction goes to the category of T-algebras. The initial adjunction goes to the category of free T-algebras.

5/20

The category of T-algebras

Intiutively, the category consists of **evaluation maps** $a: TA \to A$ where $A \in C$. These are required to play nicely with the unit and multiplication. Maps are maps $f: A \to B$ in C such that the following diagram commutes:

$$\begin{array}{ccc}
TA & \xrightarrow{Tf} & TB \\
\downarrow^{a} & & \downarrow^{b} \\
A & \xrightarrow{f} & B
\end{array}$$

6/20

The category of T-algebras

Example

Recall the monad $T=\mathbb{Z}[-]:\mathbf{Set}\to\mathbf{Set}$. Claim: the category of T-algebras is equivalent to \mathbf{Ab} . A T-algebra is a set X and an evaluation map $a:\mathbb{Z}[X]\to X$ carrying a formal sum to its corresponding element. The commutative square

$$\mathbb{Z}[\mathbb{Z}[X]] \xrightarrow{\mu_X} \mathbb{Z}[X]$$

$$\mathbb{Z}[a] \downarrow \qquad \qquad \downarrow a$$

$$\mathbb{Z}[X] \xrightarrow{a} A$$

gives the group axioms.

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

7/20

Monadic adjunctions

When an adjunction is equivalent to the adjunction to the category of T-algebras, the adjunction is called **monadic**. The familiar free-forgetful adjunctions between **Set** and **Grp**, **Ab**, **Ring**, **Vect**_k are all monadic, identifying their categories as **algebraic theories**.

Generators and relations

Algebraic theories as we know them can be explained in terms of generators and relations. Given an abelian group A, a set of generators G and a set of relations R, $A = \mathbb{Z}[G]/\mathbb{Z}[R]$. Equivalently, A is the coequalizer

$$\mathbb{Z}[R] \xrightarrow{ev} \mathbb{Z}[G] \longrightarrow A$$

9/20

Generators and relations

Algebraic theories as we know them can be explained in terms of generators and relations. Given an abelian group A, a set of generators G and a set of relations R, $A = \mathbb{Z}[G]/\mathbb{Z}[R]$. Equivalently, A is the coequalizer

$$\mathbb{Z}[R] \xrightarrow{ev} \mathbb{Z}[G] \longrightarrow A$$

This is not well-behaved categorically, as it is not functorial. Instead, we may take *every element* of A to be a generator, and *every* possible equation to be a relation. This identifies A as the coequalizer

$$\mathbb{Z}[\mathbb{Z}[A]] \xrightarrow{\mathbb{Z}[a]} \mathbb{Z}[A] \xrightarrow{a} A$$

Generators and relations (2)

Theorem

In the category of T-algebras for a monad T, an element A is the coequalizer

$$T^2A \xrightarrow{T[a]} TA \xrightarrow{a} A$$

We will see a surprising consequence...

10 / 20

An unrelated story?

There is an adjunction

between sets and compact Hausdorff spaces. β is given by **Stone–Čech compactification** on the set with the discrete topology. The induced monad has an explicit description as the set $\beta(X)$ of **ultrafilters** on X.

4□ > 4₫ > 4½ > 4½ > ½

11/20

Ultrafilters

Definition

An **ultrafilter** \mathcal{F} on a set X is a set of subsets such that whenever we write $X = X_1 \sqcup X_2 \sqcup \cdots \sqcup X_n$ as a finite disjoint union, exactly one of the X_i 's is in \mathcal{F} .

12 / 20

Ultrafilters

Definition

An **ultrafilter** \mathcal{F} on a set X is a set of subsets such that whenever we write $X = X_1 \sqcup X_2 \sqcup \cdots \sqcup X_n$ as a finite disjoint union, exactly one of the X_i 's is in \mathcal{F} .

Example

Given any $x \in X$ its **principal ultrafilter** \mathcal{F}_x is the set of all subsets containing x. Note given any partition $X = X_1 \sqcup X_2 \sqcup \cdots \sqcup X_n$, exactly one X_i contains x.

12/20

Limits of ultrafilters

Ultrafilters classify convergence on a topological space.

Definition

 $x \in X$ is a **limit** of an ultrafilter \mathcal{F} if every open neighbourhood of x is contained in \mathcal{F} .

For example, x is a limit of the principal ultrafilter \mathcal{F}_x .

Malthe Sporring

Limits of ultrafilters

Ultrafilters classify convergence on a topological space.

Definition

 $x \in X$ is a **limit** of an ultrafilter \mathcal{F} if every open neighbourhood of x is contained in \mathcal{F} .

For example, x is a limit of the principal ultrafilter \mathcal{F}_x .

Lemma

If a topological space X is compact, then every ultrafilter on X has at least one limit. If X is Hausdorff, then every ultrafilter on X has at most one limit. Therefore, X is compact Hausdorff if and only if every ultrafilter has exactly one limit.

13 / 20

Algebras over the ultrafilter monad

A β -algebra is a map lim : $\beta(X) \to X$ sending each ultrafilter $\mathcal F$ to a unique lim $\mathcal F \in X$. By the previous lemma, this hints that β -algebras are exactly compact Hausdorff spaces. And indeed...

Algebras over the ultrafilter monad

A β -algebra is a map lim : $\beta(X) \to X$ sending each ultrafilter \mathcal{F} to a unique $\lim \mathcal{F} \in X$. By the previous lemma, this hints that β -algebras are exactly compact Hausdorff spaces. And indeed...

Lemma

CHaus is equivalent to the category of β -algebras, i.e. the adjunction $\beta \dashv U$ is monadic.

This means compact Hausdorff spaces are an algebraic theory!

Malthe Sporring

14 / 20

Generators and relations on compact Hausdorff spaces

A compact Hausdorff space X is the coequaliser

$$\beta^2 X \xrightarrow{\beta[\lim]} \beta X \xrightarrow{\lim} X$$

Generators and relations on compact Hausdorff spaces

A compact Hausdorff space X is the coequaliser

$$\beta^2 X \xrightarrow{\beta[\lim]} \beta X \xrightarrow{\lim} X$$

For example of a relation, fix an ultrafilter \mathcal{F} on X and take the principal ultrafilter of ultrafilters $\mathcal{G}_{\mathcal{F}} \in \beta^2 X$. The multiplication takes an ultrafilter of ultrafilters \mathcal{G} to the ultrafilter $\{A \in X : [A] \in \mathcal{G}\}$ where [A] is the set of all ultrafilters containing A. In particular, $\mu_X(\mathcal{G}_{\mathcal{F}}) = \mathcal{F}$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Generators and relations on compact Hausdorff spaces

A compact Hausdorff space X is the coequaliser

$$\beta^2 X \xrightarrow{\beta[\lim]} \beta X \xrightarrow{\lim} X$$

For example of a relation, fix an ultrafilter \mathcal{F} on X and take the principal ultrafilter of ultrafilters $\mathcal{G}_{\mathcal{F}} \in \beta^2 X$. The multiplication takes an ultrafilter of ultrafilters \mathcal{G} to the ultrafilter $\{A \in X : [A] \in \mathcal{G}\}$ where [A] is the set of all ultrafilters containing A. In particular, $\mu_X(\mathcal{G}_{\mathcal{F}}) = \mathcal{F}$. This relation therefore says

$$\lim \mathcal{G}_{\lim \mathcal{F}} = \lim \mathcal{F}$$

as expected.

11+11=22

15/20

Malthe Sporring

Thank you for listening!

References

- nLab authors, *ultrafilter*, https://ncatlab.org/nlab/show/ultrafilter, 2022, Revision 43.
- Emily Riehl, Category theory in context, Dover Publications, 2017.

Malthe Sporring

Adjunctions

Definition

An adjunction

$$C \stackrel{F}{\underset{U}{\longleftarrow}} D$$

is a pair of functors and a pair of natural transformations $\eta:1_C\to UF$ and $\epsilon:FU\to 1_D,$ called the **unit** and **counit** respectively, satisfying the triangle identities:

◆□▶ ◆□▶ ◆ 壹▶ ◆ 壹 ▶ ○ ⑤

17/20

The category of T-algebras

Definition

The category C^T of T-algebras has as objects pairs $(A \in C, a : TA \to A)$ such that the following diagrams commute:

$$\begin{array}{cccc}
A & \xrightarrow{\eta_A} & TA & & T^2A & \xrightarrow{\mu_A} & TA \\
\downarrow a & & \downarrow a & & \downarrow a \\
& A & & TA & \xrightarrow{a} & A
\end{array}$$

Maps are maps $f: A \rightarrow B$ in C such that the following diagram commutes:

$$TA \xrightarrow{Tf} TB$$

$$\downarrow a \qquad \qquad \downarrow b$$

$$A \xrightarrow{f} B$$

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 夕久○

Topology of β

 $\beta(X) \in \mathbf{CHaus}$ has a topology generated by the open sets

$$\mathcal{F}^A := \{ \mathcal{F} \in \beta(X) : A \in \mathcal{F} \} \text{ where } A \subset X.$$

19 / 20

β -homomorphisms

A $\beta-$ homomorphism is a map $X \to Y$ such that the following square commutes

$$\beta(X) \xrightarrow{\beta f} \beta(Y)$$

$$\lim_{X \longrightarrow f} \qquad \lim_{Y \longrightarrow Y} Y$$

where $\beta f(\mathcal{F})$ is the ultrafilter that takes a partition $Y = Y_1 \sqcup \cdots \sqcup Y_n$, and picks out the unique Y_i such that $f^{-1}(Y_i) \in \mathcal{F}$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

20 / 20