Course 47202 - Introduction to Future Energy

Module Nuclear Power

Exercise 1

Fission of one U-235 atom releases about 200 MeV of energy. How many megawatt-days (MWd) thermal energy is released from fission of 1g ²³⁵U?

$$Q = 200 \,\text{MeV} \cdot \frac{6.023 \cdot 10^{23} \,\text{mol}^{-1}}{235 \,\text{g mol}^{-1}} \cdot 1.6 \cdot 10^{-19} \,\frac{\text{J}}{\text{eV}} \cdot \frac{1 \,\text{d}}{24 \cdot 3600 \,\text{s}}$$

 $\approx 0.95 \,\text{MWd} \,\text{g}^{-1}$

Exercise 2

In a BWR or PWR, steam is generated with a temperature of about 290 °C. (a) If river water used to receive excess heat has a temperature of 20 °C, what is the maximum possible conversion efficiency of the reactor's thermal energy into electricity? (b) Nuclear power plants typically have conversion efficiencies of 34 %. Why is this efficiency less that the ideal efficiency?

(a)
$$\eta = \frac{T_i - T_o}{T_i} = \frac{270}{290 + 273} \approx 48\%$$

(b) Non-isentropic processes in turbine and pumps imply deviations from an ideal Rankine cycle, in part due to water droplets forming in the turbine.

Exercise 3

A 1000 MW_e nuclear power plant has a thermal conversion efficiency of 33%. (a) How much thermal power is rejected through the condenser to the cooling water? (b) What is the flow rate (kg/s) of the condenser cooling water if the temperature rise of this water is 12 °C? Specific heat of water is about 4180 J kg⁻¹ C⁻¹.

(a)
$$1000 \text{ MW} \times (1-0.33)/0.33 = 2000 \text{ MW}$$

(b)
$$M = \frac{Q}{C_V \Delta T} = \frac{2000 \, MJs^{-1}}{4180 \, JK^{-1} kg^{-1} 12K} \approx 40,000 \, kg \, s^{-1}$$

Exercise 4

What are the advantages and disadvantages of using (a) light water, (b) heavy water, and (c) graphite as a moderator in a power reactor?

Moderator	Advantages	Disadvantages
Light water	Good moderator	Neutron absorber
	Inexpensive	Tritium production
Heavy water	No absorption	Expensive
	Natural uranium	Tritium production
Graphite	No absorption	Poor moderation
	Inexpensive	Wigner energy
		C-14 waste

Exercise 5

Why can a heavy-water moderated reactor use a lower enrichment uranium fuel that a light-water moderated reactor?

Neutron loss due to absorption is less in heavy water than in light water, yielding a higher fission probability in a heavy water reactor.

Exercise 6

Over the period of one year, what mass (kg) of fission products is generated by a 1000 MW_e power reactor?

Approx. 1000 kg: 365 days * 0.9 (capacity factor) *3 kg/GW_ed