Lei de Stevin Principio

Hidrostática

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

7 de Novembro de 2020

Prof. Flaviano W. Fernandes

- - 1 Lei de Stevin
 - 2 Princípio de Pascal
 - Princípio de Arquimedes
 - Apêndice

Prof. Flaviano W. Fernandes

Cálculo da pressão no interior de um fluido

Supondo um cilindro totalmente imerso e imóvel no interior de um fluido como mostra a figura ao lado, verificamos que

O peso do cilindro aplica uma força puxandoo para baixo;

O fluido pressiona as paredes do cilindro no intuito de espremê-lo de fora para dentro;

A somatória da pressão na base produz uma forca que empurra o cilindro para cima:

A somatória da pressão no topo produz uma forca que empurra o cilindro para baixo:

Forças atuando acima e abaixo do obieto submerso num fluido em repouso.

Lei de Stevin 00000

Variação da pressão com altitude e profundidade

Pela relação da pressão p e força F, deve ser zero, portanto $p = \frac{F}{A}$, temos

$$F = (p) \times (A),$$

portanto

Lei de Stevin

000000

$$F_1 = p_1 A$$
,

$$F_2 = p_2 A$$

Se o cilindro está em repouso, pela segunda Lei de Newton a forca resultante

$$F_2 = F_1 + P$$
.

Pela definição de densidade, $m = \rho V$, e sabendo que o volume do cilindro é a base A vezes a altura h temos

$$p_2 \lambda = p_1 \lambda + \rho g h \lambda$$

$$p_2=p_1+\rho gh.$$

Variação da pressão com a profundidade

Lei de Stevin

Lei de Stevin 000000

> Se a superfície de um fluido, cuja densidade é ρ , está submetida a uma pressão patm, a pressão p, no interior desse líquido, a uma profundidade h, é dada por

$$p = p_{atm} + \rho gh$$

Corollary

A força da gravidade puxa o fluido para baixo causando uma pressão na base e nas paredes do recipiente.

Pressão em função da profundidade h.

Corollary

Para baixas altitudes ou profundidade a força da gravidade é praticamente constante, portanto a Lei de Stevin pode ser aplicada, mas para altas altitudes a força da gravidade diminui de modo que a pressão do ar varia de maneira praticamente exponencial com a altura.

Variação da pressão com a altitude.

Experiência de Torricelli

Lei de Stevin

000000

Coloca-se mercúrio cuja densidade é conhecida num tubo fino e vira-o de cabeça para baixo. O líquido irá descer e irá preencher o recipiente da parte de baixo. A parte de cima como estava fechada não entrou ar e com a descida do líquido criou-se um vácuo, portanto a pressão da parte de cima será zero. Pela Lei de Stevin temos que a pressão da parte de baixo é dado por

$$p_{atm} = \rho g h$$

onde h é a coluna de mercúrio (se for medido ao nível do mar h=760mm).

Representação da experiência de Torricelli.

Vasos comunicantes

Corollary

Lei de Stevin

000000

Pela Lei de Stevin a variação da pressão em um fluido homogêneo ($\rho = constante$) somente depende da profundidade do fluido e independe da posição do líquido ao longo da horizontal, portanto é esperado que a pressão seja a mesma para cada altura independente do recipiente que está contido o fluido.

Pressão do fluido em diferentes recipientes (O líquido atinge a mesma altura independente do recipiente).

Prof. Flaviano W. Fernandes IFPR-Irati

Variação da pressão na superfície do recipiente

Pela Lei de Stevin a pressão nos pontos 1 e 2 equivale a

$$p = p_0 + \rho g h$$
.

Pela Lei de Stevin a pressão nos pontos 1 e 2 equivale a

$$p'=p_0'+\rho gh.$$

Variação da pressão ao longo das paredes do recipiente

Caculando o quanto a pressão na posicão 1 aumenta temos

$$egin{align} \Delta p &= p' - p, \ \Delta p &= (p'_0 +
ho g h) - (p_0 +
ho g h), \ \Delta p &= p'_0 +
ho g h - p_0 -
ho g h, \ egin{align} \Delta p &= \Delta p_0. \ \end{matrix} \end{pmatrix}$$

Corollary

O acréscimo de pressão, em um ponto de um líquido em equilíbrio, transmite-se integralmente a todos os pontos desse líquido.

Máquinas hidráulicas

Pela definição de pressão podemos dizer que o aumento de pressão no pistão 1 é dado por

$$\Delta p_1 = \frac{F_1}{A_1}.$$

Pelo princípio de Pascal esse aumento será o mesmo no pistao 2, pois $\Delta p_1 = \Delta p_2$.

Princípio de Pascal

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

Corollary

O volume deslocado em um pistão é o mesmo deslocado em outro pistão.

O que é empuxo?

Corollary

A somatória de todas as forças que o fluido atua nas paredes de um objeto imerso em um fluido é igual a força resultante que atua para cima no intuito de subir o objeto:

Se a forca resultante \vec{E} for de mesma intensidade da forca peso \vec{P} do volume do fluido deslocado, essa forca é chamada de empuxo:

Se o empuxo for maior que a força peso o objeto flutua, e se for menor o obieto afunda.

Princípio de Arquimedes

Representação de empuxo como o peso da água deslocada.

Relação entre a densidade do fluido, do objeto e o princípio de Arquimedes

Pela definição de empuxo E podemos dizer aue

$$E=m_{fluido}g,$$

mas pela definição de densidade temos $m_{fluido} = \rho_{fluido} V$, portanto

$$E = \rho_{fluido} Vg$$

O peso P do objeto mergulhado no fluido é dado por $P = m_{obi}g$, portanto se o empuxo for iqual ao peso do objeto temos

$$m_{obj}g = \rho_{fluido}Vg,$$

 $\rho_{obi}Vg = \rho_{fluido}Vg.$

Corollary

Princípio de Arquimedes

Se $\rho_{fluido} < \rho_{obi}$, o corpo afundará;

Se $\rho_{fluido} = \rho_{obi}$, o corpo ficará em eauilíbrio:

Se $\rho_{fluido} > \rho_{obi}$, o corpo irá flutuar na superfície:

Transformar um número em notação científica

Corollary

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que somente reste um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Conversão de unidades em uma dimensão

$$1 \text{ mm} = 1 \times 10^{(-1) \times 2} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5 \text{ kg} = 2,5 \times 10^{(1) \times 6} \text{ mg} \rightarrow 2,5 \times 10^{6} \text{ mg}$$

$$10 \text{ ms} = 10 \times 10^{(-1) \times 3} \text{ s} \rightarrow 10 \times 10^{-3} \text{ s}$$

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times \textcolor{red}{2}} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5 \text{ m}^2 = 2,5 \times 10^{(2) \times 3} \text{ mm}^2 \rightarrow 2,5 \times 10^6 \text{ mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times 3} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

Apêndice

$$1 \text{ mm}^3 = 1 \times 10^{2 \times (-3)} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5 \text{ m}^3 = 2,5 \times 10^{3 \times (3)} \text{ mm}^3 \rightarrow 2,5 \times 10^9 \text{ mm}^3$$

$$2,5 \text{ km}^3 = 2,5 \times 10^{6 \times (3)} \text{ mm}^3 \rightarrow 2,5 \times 10^{18} \text{ mm}^3$$

Alfabeto grego

Alfa α В Beta Gama Delta Δ Ε **Epsílon** ϵ, ε Zeta Н Eta Teta Θ lota Capa K κ Lambda Mi Μ μ

Ν	ν
Ξ	ξ
0	0
П	π
Ρ	ho
Σ	σ
Τ	au
Υ	v
Φ	ϕ, φ
X	χ
Ψ	ψ
Ω	ω
	Ξ <i>O</i> Π <i>P</i> Σ <i>T</i> Υ Φ <i>X</i> Ψ

A. Máximo, B. Alvarenga, C. Guimarães, Física, Contexto e aplicações, v.1. 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereco https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.