

olp of I-channel = $\frac{1}{2}$ m(t) cos ϕ olp of Q-channel = $\frac{1}{2}$ m(t) Sin ϕ

- > old of I- and Q-channels are coupled together to form -ve feedback system designed in such a way as to maintain the local oscillator synchronous with the carrier wave.
 - ⇒ let the local oscillator (vco) signal is of the same phase as
 the carrier wave Accoswct, i.e., \$=0

-. o|p of I-channel = \frac{1}{2}m(t) \quad desired demodulated signal.

olp of Q-channel = 0

How, suppose the local oscillator phase drifts from its proper value by a small angle ϕ radians.

op of I-channel = $\pm m(t) \cos \phi \approx \pm m(t)$ op of Q-channel = $\pm m(t) \sin \phi \approx \pm m(t)$. ϕ as $\cos \phi \approx 1$ and $\sin \phi \approx \phi$ for small ϕ .

=> Phase discriminator consists of a multiplier followed by

OP of LPF & \$

olp of multiplier = + m?(+) +

3(+)= of af LPF (time averaging unit) = = = = + \ T + & m?(t) dt

and is the same sign as the phase error t.

- ⇒ If g(t)>0 (or \$>0), then the vco will decrease from for proportional to the value of g(t) (or \$).
- =) If g(t) to $(or \phi co)$, then the vco will increase from to the value of g(t). $(or \phi)$.

$\phi >$ 0: Freq of local oscillator needs to temporarily decrease

 $\phi <$ 0: Freq of local oscillator needs to temporarily increase

