Model Documentation of the 'The Chemical Reactor Example'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^4 u$$
 $\in \mathbb{R}^2 w \in \mathbb{R}^4 z$ $\in \mathbb{R}^4 y \in \mathbb{R}^3$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t) \tag{1c}$$

Outputs: z

2.1 Exemplary parameter values

Symbol	Value
A	$\begin{bmatrix} 1.38 & -0.2077 & 6.715 & -5.676 \end{bmatrix}$
	$\begin{bmatrix} -0.5814 & -4.29 & 0 & 0.675 \end{bmatrix}$
	$\begin{bmatrix} 1.067 & 4.273 & -6.654 & 5.893 \end{bmatrix}$
	$\begin{bmatrix} 0.048 & 4.273 & 1.343 & -2.104 \end{bmatrix}$
В	
	5.679 0
	1.136 -3.146
	1.136 0
B_1	
	5.679 0
	1.136 -3.146
	1.136 0
C_1	$\begin{bmatrix} 1.0 & 0 & 0 & 0 \end{bmatrix}$
	0 1.0 0 0
	0 0 1.0 0
	0 0 0 1.0
C	$\begin{bmatrix} 1.0 & 0 & 1.0 & -1.0 \end{bmatrix}$
	0 1.0 0 0
	$\begin{bmatrix} 0 & 0 & 1.0 & -1.0 \end{bmatrix}$
D_{11}	
	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$
D_{12}	
	1.0 0
	0 1.0
	$[0 \ 0 \ 0]$
D_{21}	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$
	

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

REA1 The Chemical Reactor Example ehemals CHR2 Y. S. Hung and A. G. J. MacFarlane, "Multivariable feedback A quasi-classical approach", Springer-Verlag, "Lecture Notes in Control and Information Sciences", 1982

4 Simulation

Figure 1: Simulation of the The Chemical Reactor Example.

References

[1] . S. Hung and A. G. J. MacFarlane, "Multivariable feedback A quasiclassical approach", Springer-Verlag, "Lecture Notes in Control and Information Sciences", 1982