PIC12C5XX

Однокристальные 8-разрядные, 8-выводные CMOS микроконтроллеры компании Microchip Technology Incorporated

Перевод основывается на технической документации DS40139E компании Microchip Technology Incorporated, USA.

© ООО "Микро-Чип" Москва - 2002

PIC12C5XX

8-Pin, 8-Bit CMOS Microcontrollers

Trademarks: The Microchip name, logo, PIC, PICmicro, PICMASTER, PIC-START, PRO MATE, KEELOQ, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, Filter-Lab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM, MPLINK, MPLIB, PICDEM, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR and SelectMode are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

8-разрядные, 8-выводные CMOS микроконтроллеры PIC12C5XX

Микроконтроллеры,

описываемые в этом документе:

- PIC12C508
- PIC12C508A
- PIC12C509
- PIC12C509A
- PIC12CR509A
- PIC12CE518
- PIC12CE519

Примечание. В этом документе обозначение PIC12C5XX относится к микроконтроллерам PIC12C508, PIC12C508A, PIC12C509, PIC12C509A, PIC12CE518 и PIC12CE519. Обозначение PIC12CE5XX относится только к микроконтроллерам PIC12CE518 и PIC12CE519.

Характеристика микроконтроллеров:

- Высокоскоростная RISC архитектура
- 33 инструкции
- Все команды выполняются за один цикл, кроме инструкций переходов, выполняемых за два цикла
- Тактовая частота:
 - DC 4МГц, тактовый сигнал
 - DC 1мкс, один машинный цикл

Устройство	Память г	рограмм	Память данных			
Устроиство	EPROM	ROM	RAM	EEPROM		
PIC12C508	512 x 12		25			
PIC12C508A	512 x 12		25			
PIC12C509	1024 x 12		41			
PIC12C509A	1024 x 12		41			
PIC12CE518	512 x 12		25	16		
PIC12CE519	1024 x 12		41	16		
PIC12CR509A		1024 x 12	41			

- 12 разрядные инструкции
- 8 разрядные данные
- Семь регистров специального назначения
- 2 уровневый аппаратный стек
- Прямой, косвенный и относительный режим адресации
- Внутренний RC генератор 4МГц с программной калибровкой
- Программирование в готовом устройстве (используется два вывода микроконтроллера)

Периферия:

- 8 разрядный таймер/счетчик (TMR0) с программируемым 8 - разрядным предделителем
- Сброс по включению питания (POR)
- Таймер сброса (DRT)
- Сторожевой таймер WDT с собственным RC генератором
- Программируемая защита памяти программ
- 1000000 гарантируемых циклов стирание/запись EEPROM памяти данных
- Хранение информации в EEPROM памяти более 40 пет
- Режим энергосбережения SLEEP
- Выход из режима SLEEP по изменению входного сигнала на выводе
- Внутренние подтягивающие резисторы на портах ввода/вывода
- Внутренний подтягивающий резистор на выводе -MCLR
- Выбор режима тактового генератора:
 - INTRC: Внутренний RC генератор 4МГц
 - EXTRC : Недорогой внешний RC генератор
 - XT: Стандартный резонатор
 - LP: Низкочастотный резонатор

CMOS технология:

- Высокоскоростная, энергосберегающая CMOS EPROM/ROM технология
- Полностью статическая архитектура
- Широкий диапазон напряжения питания
- Широкий температурный диапазон:
 - Коммерческий от 0°C до +70°C
 - Промышленный от -40°C до +85°C
 - Расширенный от -40°C до +125°C
- Малое энергопотребление:
 - < 2 мA @ 5.0B, 4.0МГц
 - 15мкА @ 3.0В, 32кГц
 - < 1мкА в режиме энергосбережения

Расположение выводов

PIC12C508/509 (PDIP, SOIC)

PIC12C508A/509A (PDIP, SOIC), PIC12CE518/519 (PDIP, SOIC)

PIC12CR509A (PDIP, SOIC)

Сравнительная таблица

Микроконтроллер	Напряжение питания	Генератор	Калибровка генератора ⁽²⁾ (бит)	Технология изготовления (Microns)
PIC12C508A	3.0 - 5.5 B	Примечание 1	6	0.7
PIC12LC508A	2.5 - 5.5 B	Примечание 1	6	0.7
PIC12C508	2.5 - 5.5 B	Примечание 1	4	0.9
PIC12C509A	3.0 - 5.5 B	Примечание 1	6	0.7
PIC12LC509A	2.5 - 5.5 B	Примечание 1	6	0.7
PIC12C509	2.5 - 5.5 B	Примечание 1	4	0.9
PIC12CR509A	2.5 - 5.5 B	Примечание 1	6	0.7
PIC12CE518	3.0 - 5.5 B		6	0.7
PIC12LCE518	2.5 - 5.5 B		6	0.7
PIC12CE519	3.0 - 5.5 B		6	0.7
PIC12LCE519	2.5 - 5.5 B		6	0.7

- Если Вы выполняете переход с микроконтроллеров PIC12C5XX на PIC12C5XXA или PIC12CR509A, то проверьте параметры тактового генератора.
- 2. В разделе 8.2.5 смотрите пояснения различий регистра OSCCAL.

Содержание

1.0 Введение	8
1.1 Применение микроконтроллеров PIC12C5XX	8
2.0 Обзор семейства РІС12С5ХХ	
2.1 Микроконтроллеры с ультрафиолетовым стиранием	
2.2 Однократно программируемые микроконтроллеры (ОТР)	
2.3 Микроконтроллеры, программируемые производителем (QTP)	
2.4 Серийный выпуск продукции (SQTP SM)	
2.5 Масочные микроконтроллеры (ROM)	
3.0 Обзор архитектуры	
3.1 Синхронизация выполнения команд	
3.2 Конвейерная выборка и выполнение команд	
4.0 Организация памяти	
4.1 Организация памяти программ	
4.2 Организация памяти данных	
4.2.1 Регистры общего назначения	
4.2.2 Регистры специального назначения	
4.3 Регистр STATUS	
4.4 Peructp OPTION	
4.5 Регистр OSCCAL	
4.6 Счетчик команд РС	
4.6.1 Эффект сброса	
4.7 CTEK	
4.8 Косвенная адресация, регистры INDF и FSR	
5.0 Порт ввода/вывода	
5.1 Регистр GPIO	
5.2 Регистр TRIS	
5.3 Работа каналов порта ввода/вывода	
5.4 Программирование порта ввода/вывода	
5.4.1 Двунаправленный порт ввода/вывода	24
5.4.2 Последовательность операций с портами ввода/вывода	25
6.0 Модуль таймера TMR0	
6.1 Использование внешнего источника тактового сигнала для TMR0	28
6.1.1 Синхронизация внешнего сигнала	28
6.1.2 Задержка приращения TMR0	
6.1.3 Взаимодействие регистров OPTION и TRIS	
6.2 Предделитель	
6.2.1 Переключение предделителя	29
7.0 Работа с периферийной EEPROM памятью данных	30
7.0.1 Последовательная передача данных	
7.0.2 Линия синхронизации	
7.1 Характеристика шины	
7.1.1 Условие не занятости шины	
7.1.2 Условие начала передачи данных (START)	32
7.1.3 Условие завершения передачи данных (STOP)	32
7.1.4 Требования к передачи данных по шине	
7.1.5 Подтверждение	
7.2 Адресация устройства	
7.3 Операция записи	
7.3.1 Запись байта	
7.4 Подтверждение записи	
7.5 Операция чтения	
7.5.1 Чтение с текущего адреса	
7.5.2 Чтение с требуемого адреса	
7.5.3 Последовательное чтение	3೨

8.0 Особенности микроконтроллеров PIC12C5XX	
8.1 Биты конфигурации	
8.2 Настройка тактового генератора	
8.2.1 Режимы тактового генератора	
8.2.2 Кварцевый/керамический резонатор	
8.2.3 Внешний тактовый генератор	38
8.2.4 Внешний RC генератор	39
8.2.5 Внутренний RC генератор 4МГц	39
8.3 Сброс	
8.3.1 Включение -MCLR	
8.4 Сброс по включению питания (POR)	41
8.5 Таймер включения питания DRT	43
8.6 Определение причины сброса микроконтроллера	43
8.7 Сторожевой таймер WDT	44
8.7.1 Период WDT	44
8.7.2 Рекомендации по работе с WDT	
8.8 Сброс при снижении напряжения питания	
8.9 Режим энергосбережения SLEEP	
8.9.1 Режим SLEEP	46
8.9.2 Выход из режима SLEEP	46
8.10 Защита кода программы	
8.11 Размещение идентификатора ID	46
8.12 Внутрисхемное программирование ICSP	47
9.0 Система команд	40
9.1 Подробное описание команд	
10.0 Поддержка разработчиков	65
10.1 Инструментальные средства проектирования	65
10.2 Универсальный эмулятор MPLAB-ICE	
10.3 ICEPIC	65
10.4 Универсальный программатор PRO MATE II	65
10.5 Программатор PICSTART	
10.6 Аппаратный модуль SIMICE	66
10.7 Демонстрационная плата PICDEM-1	66
10.8 Демонстрационная плата PICDEM-2 для PIC16CXXX	66
10.9 Демонстрационная плата PICDEM-3 для PIC16CXXX	66
10.10 Интегрированная среда проектирования MPLAB-IDE	66
10.11 Ассемблер MPASM	
10.12 Программный симулятор MPLAB-SIM	67
10.13 С компилятор MPLAB-C17	
10.14 Среда проектирования fuzzyTECH-MP	67
10.15 SEEVAL (с функциями программатора)	
10.16 KeeLoq (с функциями программатора)	67
11.0 Электрические характеристики РІС12С508, РІС12С509	60
11.0 Электрические характеристики РГС 12С500, РГС 12С509	
11.1 Электрические характеристики РІС12С508, РІС12С509	70
(Коммерческий, Промышленный, Расширенный)	7(1)
11.2 Электрические характеристики РІС12С508, РІС12С509	
(Коммерческий, Промышленный, Расширенный)	71
(Коммерческий, Промышленный, Расширенный)11.3 Символьное обозначение временных параметров	71 73
(Коммерческий, Промышленный, Расширенный)	71 73

13.0 Электрические характеристики PIC12C508A, PIC12C509A, PIC12LC508A, PIC12LC509A,	
PIC12CR509A, PIC12CE518, PIC12CE519, PIC12LCE518, PIC12LCE519, PIC12LCR509A	. 81
13.1 Электрические характеристики PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12CR509	ŀΑ
(Коммерческий, Промышленный, Расширенный)	82
13.2 Электрические характеристики PIC12LC508A, PIC12LC509A, PIC12LCE518, PIC12LCE519,	
PIC12LCR509A (Коммерческий, Промышленный)	83
13.3 Электрические характеристики PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12CR509	ŀΑ
(Коммерческий, Промышленный, Расширенный)	84
13.4 Электрические характеристики PIC12LC508A, PIC12LC509A, PIC12LCE518, PIC12LCE519,	
PIC12LCR509A (Коммерческий, Промышленный)	85
13.5 Символьное обозначение временных параметров	87
13.6 Временные диаграммы и спецификации	88
14.0 Характеристики микроконтроллеров PIC12C508A, PIC12C509A, PIC12LC508A, PIC12LC509A, PIC12CR509A, PIC12CE518, PIC12CE519, PIC12LCE518, PIC12LCE519, PIC12LCR509A	. 93
15.0 Корпуса микроконтроллеров	. 98
15.1 Описание обозначений на корпусах микроконтроллеров	
15.2 Правила идентификации типа микроконтроллеров PIC12C5XX	103

1.0 Введение

PIC12C5XX - семейство недорогих, 8-разрядных высокоэффективных микроконтроллеров, основанных на EEPROM/EPROM/ROM CMOS технологии. Ядро микроконтроллеров имеет RISC архитектуру с 33 командами, состоящими из одного слова. Все команды выполняются за один машинный цикл (1мкс), за исключением команд ветвления, выполняемых за два цикла. PIC12C5XX имеют высокую эффективность по сравнению с микроконтроллерами данного класса. Набор 12-разрядных ортогональных команд позволяет уменьшить объем кода программы в два раза по сравнению с 8-разрядными командами других микроконтроллеров этого класса. Удобная и простая в изучении система команд позволяет значительно сократить время разработки устройства.

Дополнительные особенности PIC12C5XX позволяют уменьшить стоимость изделия и требования к напряжению питания. Сброс по снижению напряжения питания (POR) и таймер сброса (DRT), устраняют необходимость во внешней схеме сброса. Тактовый генератор микроконтроллеров поддерживает четыре режима, включая INTRC - внутренний RC генератор и LP режим генератора с пониженным энергопотреблением. Режим энергосбережения SLEEP, сторожевой таймер и защита кода программы повышают надежность системы при снижении стоимости и энергопотребления устройства.

PIC12C5XX имеют однократно программируемую память программ (OTP), что позволяет снизить стоимость микроконтроллера и является подходящим при выпуске устройств в любом объеме.

Для микроконтроллеров семейства PIC12C5XX разработан полнофункциональный ассемблер, симулятор, 'С' компилятор, и набор инструментальных средств проектирования (различные программаторы и эмуляторы). Все инструментальные средства работают на IBM PC совместимых компьютерах.

1.1 Применение микроконтроллеров PIC12C5XX

Характеристики микроконтроллеров PIC12C5XX позволяют их использовать от устройств для автомобильных приложений до систем ограничения доступа, в системах, основным требованием которых является малое энергопотребление (например, удаленные приемники/передатчики). ЕРROM технология дает возможность достаточно быстро и легко сохранять настройки прибора (коды передатчика, коэффициенты, частоты приемника и т.д.), а ЕЕРROM память данных позволяет выполнить изменение калибровочной информации, кодов защиты и др. Небольшие размеры корпуса делают это семейство микроконтроллеров особенно ценными для приложений, требующих минимизации габаритов.

Низкая стоимость, малое энергопотребление, высокая эффективность, простота использования и гибко настраиваемых порты ввода/вывода позволяют использовать PIC12C5XX в тех приложениях, в которых применять микроконтроллер ранее даже не рассматривалось (например, таймеры, замена логических элементов и ПЛМ, функции сопроцессора).

Таблица 1-1 Семейство микроконтроллеров PIC12CXXX и PIC12CEXXX

-	acraqui i comonores mi	режеттр								
		PIC12C508(A)	PIC12C509(A)	PIC12CR509A	PIC12CE518	PIC12CE519	PIC12C671	PIC12C762	PIC12CE673	PIC12CE674
Частота	Максим. тактовая частота (МГц)	4	4	4	4	4	10	10	10	10
JT.	EPROM память программ	512x12	1024x12	1024x12 (ROM)	512x12	1024x12	1024x14	2048x14	1024x14	2048x14
Память	RAM память данных (байт)	25	41	41	25	41	128	128	128	128
КИЯ	EEPROM память данных (байт)	-	-	-	16	16	-	-	16	16
Периферия	Таймеры	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0	TMR0
Пері	8-разр. АЦП (каналов)	-	-	-	-	-	4	4	4	4
	Выход из SLEEP по изм. сигнала на входе	Есть	Есть	Есть	Есть	Есть	Есть	Есть	Есть	Есть
Φ	Источников прерываний	1	-	-	1	-	4	4	4	4
호 <u>중</u>	Портов ввода/вывода	5	5	5	5	5	5	5	5	5
18. CT.	Портов только ввода	1	1	1	1	1	1	1	1	1
Дополнительные характеристики	Внутренние подтягив. резисторы	Есть	Есть	Есть	Есть	Есть	Есть	Есть	Есть	Есть
Год	Программирование ICSP	Есть	Есть	-	Есть	Есть	Есть	Есть	Есть	Есть
хар	Число инструкций	33	33	33	33	33	35	35	35	35
4	Корпус	8DIP, 8JW, 8SOIC	8DIP, 8JW, 8SOIC	8DIP, 8SOIC	8DIP, 8JW, 8SOIC	8DIP, 8JW, 8SOIC	8DIP, 8JW, 8SOIC	8DIP, 8JW, 8SOIC	8DIP, 8JW	8DIP, 8JW

Все микроконтроллеры семейств PIC12CXXX и PIC12CEXXX имеют интегрированную схему сброса по включению питания (POR), сторожевой таймер WDT, программируемую защиту кода и порты ввода/выводы с повышенной нагрузочной способностью.

Все микроконтроллеры семейств PIC12CXXX и PIC12CEXXX поддерживают режим последовательного внутрисхемного программирования (GP0 вывод данных, GP1 вывод синхронизации).

2.0 Обзор семейства РІС12С5ХХ

Микроконтроллеры семейства PIC12C5XX выпускаются с различными упаковочными параметрами. В зависимости от приложения может быть выбран нужный тип микроконтроллера, пользуясь материалом этой главы. При размещении заказа на микроконтроллеры семейства PIC12C5XX воспользуйтесь системой идентификации изделий, описанной в конце этого документа.

2.1 Микроконтроллеры с ультрафиолетовым стиранием

Микроконтроллеры с ультрафиолетовым стиранием, выпускаемые в керамическом корпусе, предназначены для отладки программы. Память программ таких микроконтроллеров может быть стерта и повторно запрограммирована для работы в любом режиме.

Примечание. Стирание памяти микроконтроллера также сотрет предварительно запрограммированную калибровочную информацию. Для сохранения калибровочной информации ее рекомендуется прочитать перед стиранием памяти микроконтроллера.

Программаторы PICSTART PLUS и PRO MATE II поддерживают программирование всех микросхем семейства PIC12CXXX. Программаторы других производителей также могут поддерживать микроконтроллеры PIC12C5XXX, смотрите техническую документацию на эти программаторы.

2.2 Однократно программируемые микроконтроллеры (ОТР)

ОТР микроконтроллеры выпускаются в пластмассовых корпусах с однократно программируемой памятью программ. Вместе с памятью программ должны быть запрограммированы биты конфигурации. Эти микроконтроллеры предназначены для изделий, выпускаемых небольшими партиями с возможным изменением текста программы.

2.3 Микроконтроллеры, программируемые производителем (QTP)

Компания Microchip предоставляет возможность заказать запрограммированные микроконтроллеры заранее предоставленным кодом. Данный сервис следует использовать при средних и больших объемах закупок микроконтроллеров и отработанном программном обеспечении. Поставляемые микроконтроллеры полностью соответствуют параметрам стандартных EPROM микроконтроллеров, за исключением того, что код программы и биты конфигурации были записаны на заводе изготовителе. Прежде чем микроконтроллеры будут поставлены заказчику, они пройдут серию испытаний на заводе изготовителе. Для получения дополнительной информации обратитесь к региональному представителю Microchip.

2.4 Серийный выпуск продукции (SQTP SM)

Компания Місгосhір предоставляет уникальную возможность заказывать запрограммированные микроконтроллеры, в которых пользователь может определить место размещения уникального серийного номера генерируемого случайным, псевдослучайным и последовательным методом. Запрограммированный уникальный серийный номер может служить: кодом доступа, паролем или идентификационным номером устройства.

2.5 Масочные микроконтроллеры (ROM)

Компания Microchip предоставляет возможность заказывать микроконтроллеры с масочной памятью. Они обеспечивают минимальную стоимость при крупносерийных заказах.

3.0 Обзор архитектуры

Высокая эффективность микроконтроллеров PIC12C5XX достигается за счет архитектуры ядра, подобная архитектура обычно применяется в RISC микропроцессорах. В PIC12C5XX используется Гарвардская архитектура с раздельными шинами доступа к памяти программ и памяти данных, в отличие от традиционных систем, в которых обращение к памяти программ и данных выполняется по одной шине.

Разделение памяти программ и памяти данных позволяет использовать не 8-разрядные команды или кратные разрядности шины данных. Все команды микроконтроллера 12-разрядные однословные. По 12-разрядной шине доступа к памяти программ выполняется выборка кода за один машинный цикл. Непрерывная работа ядра микроконтроллера по выборке и выполнению кодов программы дает возможность выполнять все команды за один машинный цикл (1мкс @ 4МГц), кроме команд ветвления. Ядро микроконтроллеров поддерживает 33 высокоэффективных команды.

В таблице представлен объем (EEPROM/ROM) памяти программ, памяти данных (RAM) и энергонезависимой (EEPROM) памяти данных.

Устройство	Память п	рограмм	Память данных			
Устроиство	EPROM	ROM	RAM	EEPROM		
PIC12C508	512 x 12		25 x 8			
PIC12C508A	512 x 12		25 x 8			
PIC12C509	1024 x 12		41 x 8			
PIC12C509A	1024 x 12		41 x 8			
PIC12CE518	512 x 12		25 x 8	16 x 8		
PIC12CE519	1024 x 12		41 x 8	16 x 8		
PIC12CR509A		1024 x 12	41 x 8			

В PIC12C5XX адресовать память данных можно непосредственно или косвенно. Все регистры специального назначения отображаются в памяти данных, включая счетчик команд. PIC12C5XX имеет ортогональную систему команд, что дает возможность выполнить любую операцию с любым регистром памяти данных, используя любой метод адресации. Это облегчает написание программ для микроконтроллеров PIC12C5XX и снижает общее время разработки устройства.

Микроконтроллеры PIC12C5XX содержат 8-разрядное АЛУ (арифметико-логическое устройство) с одним рабочим регистром W. АЛУ выполняет арифметические и булевы операции между рабочим регистром и любым регистром памяти данных. Основными операциями АЛУ являются: сложение, вычитание, сдвиг и логические операции. В командах с двумя операндами - один операнд всегда рабочий регистр W, а второй операнд регистр памяти данных или константа. В командах с одним операндом используется регистр W или регистр памяти данных.

Используемый в операциях 8-разрядный рабочий регистр W не отображается на память данных.

В зависимости от выполняемой команды АЛУ может влиять на следующие флаги в регистре STATUS: флаг переноса С, флаг полупереноса DC, флаг нуля Z. Флаги С и DC выполняют роль соответствующих битов заема при выполнении команды вычитания SUBWF.

Упрошенная блок схема микроконтроллеров PIC12C5XX показана на рисунке 3-1. Назначение выводов микроконтроллеров сведено в таблицу 3-1.

Puc. 3-1 Структурная схема микроконтроллеров PIC12C5XX

Таблица 3-1 Назначение выводов микроконтроллеров PIC12C5XX

Обозначение вывода	№ вывода DIP	№ вывода SOIC	Тип I/O/P	Тип буфера	Описание
GP0	7	7	I/O	TTL/ST	Двунаправленный порт ввода/вывода, вывод данных при последовательном программировании. Может быть программно включен подтягивающий резистор на входе. Выход из режима SLEEP пи изменении уровня входного сигнала. В режиме последовательного программирования ко входу подключен буфер с триггером Шмидта
GP1	6	6	I/O	TTL/ST	Двунаправленный порт ввода/вывода, вход синхронизации при последовательном программировании. Может быть программно включен подтягивающий резистор на входе. Выход из режима SLEEP при изменении уровня входного сигнала. В режиме последовательного программирования ко входу подключен буфер с триггером Шмидта
GP2/T0CKI	5	5	I/O	ST	Двунаправленный порт ввода/вывода. Может использоваться в качестве входа T0CKI.
GP3/-MCLR/V _{PP}	4	4	I	TTL/ST	Входной порт, вход сброса, вход напряжения программирования. Когда вывод настроен как -MCLR, то низкий уровень сигнала на входе сбросит микроконтроллер. Напряжение на -MCLR/V _{PP} не должно превышать V _{DD} в нормальном режиме работы микроконтроллера. Может быть программно включен подтягивающий резистор на входе. Выход из режима SLEEP при изменении уровня входного сигнала. Подтягивающий резистор всегда подключен, если вывод настроен как -MCLR. Входной буфер с триггером Шмидта, когда вывод настроен как -MCLR.
GP4/OSC2	3	3	I/O	TTL	Двунаправленный порт ввода/вывода, выход тактового генератора. К выводу подключается кварцевый или керамический резонатор (только в ХТ и LP режиме, порт ввода/вывода в других режимах).
GP5/0SC1/CLKIN	2	2	I/O	TTL/ST	Двунаправленный порт ввода/вывода, вход тактового генератора, вход внешнего тактового сигнала (порт ввода/вывода только в INTRC режиме генератора, OSC1 в остальных режимах). Ко входу подключен буфер ТТЛ в режиме порта ввод/вывода, триггер Шмидта - в EXTRC режиме генератора.
V_{DD}	1	1	Р	-	Положительное напряжение питания для внутренней логики и портов ввода/вывода.
V _{SS}	8	8	Р	-	Общий вывод для внутренней логики и портов ввода/вывода.

Обозначения: I = вход, O = выход, I/O = вход/выход, P = питание, - = не используется, TTL = входной буфер ТТЛ, ST = вход с триггером Шмидта.

3.1 Синхронизация выполнения команд

Входной тактовый сигнал (вывод OSC1) внутренней схемой микроконтроллера разделяется на четыре последовательных неперекрывающихся такта Q1, Q2, Q3 и Q4. Внутренний счетчик команд (PC) увеличивается на единицу в каждом такте Q1, а выборка команды из памяти программ происходит на каждом такте Q4. Декодирование и выполнение команды происходит с такта Q1 по Q4. На рисунке 3-2 показаны циклы выполнения команд.

3.2 Конвейерная выборка и выполнение команд

Цикл выполнения команды состоит из четырех тактов Q1, Q2, Q3 и Q4. Выборка следующей команды и выполнение текущей совмещены по времени, таким образом, выполнение команды происходит за один цикл. Если команда изменяет счетчик команд РС (команды ветвления, например GOTO), то необходимо два машинных цикла для выполнения команды (рисунок 3-3).

Цикл выборки команды начинается с приращения счетчика команд РС в такте Q1.

В цикле выполнения команды, код загруженной команды, помещается в регистр команд IR на такте Q1. Декодирование и выполнение команды происходит в тактах Q2, Q3 и Q4. Операнд из памяти данных читается в такте Q2, а результат выполнения команды записывается в такте Q4.

4.0 Организация памяти

В микроконтроллерах PIC12C5XX имеется два вида памяти: память программ и память данных. Для микроконтроллеров, имеющих более 512 слов памяти программ используется страничная адресация памяти (один управляющий бит в регистре STATUS). В микроконтроллерах PIC12C509, PIC12C509A, PIC12CR509A и PIC12CE519 с объемом памяти данных более 32 байт применяется разделение памяти на банки. С помощью регистра косвенной адресации FSR можно получить доступ ко всему адресному пространству памяти данных.

4.1 Организация памяти программ

Микроконтроллеры PIC12C5XX имеют 12-разрядный счетчик команд PC, способный адресовать 4К x 12 слов памяти программ. Физически реализовано только первые 512×12 (0000h-01FFh) в PIC12C508, PIC12C508A, PIC12C518 и 1К x 12 (0000h-03FFh) в PIC12C509, PIC12C509A, PIC12CR509A, PIC12C519. На рисунке 4-1 показана организация памяти программ микроконтроллеров PIC12C5XX. Обращение к физически не реализованной памяти программ приведет к адресации реализованной памяти 512×12 (для PIC12C508, PIC12C508A, PIC12C518) или 1024×12 (для PIC12C509, PIC12C509A, PIC12C509A, PIC12C509A, PIC12C519). Адрес вектора сброса — 000h (см. рисунок 4-1). По адресу 01FFh (для PIC12C508, PIC12C508A, PIC12C518) или 03FFh (для PIC12C509, PIC12C509A, PIC12CF09A, PIC12C519) размещена калибровочная константа для внутреннего RC генератора. Калибровочная константа не должна изменяться при программировании микроконтроллера.

Примечание 1. Адрес вектора сброса – 000h. По адресу 01FFh (для PIC12C508, PIC12C508A, PIC12C518) или 03FFh (для PIC12C509, PIC12C509A, PIC12CR509A, PIC12C519) размещена калибровочная константа для внутреннего RC генератора в виде команды MOVLW XX.

4.2 Организация памяти данных

Память данных выполнена в виде регистров или ячеек ОЗУ и разделена на две функциональные группы: регистры специального назначения и регистры общего назначения.

В состав регистров специального назначения входит: регистр TMR0, счетчик команд (PC), регистр STATUS, регистр порта ввода/вывода, регистр адреса при косвенной адресации (FSR). Кроме того, регистры специального назначения используются для управления конфигурацией портов ввода/вывода и параметрами предделителя.

Регистры общего назначения применяются для хранения данных и управляющей информации при выполнении программы.

- В микроконтроллерах РІС12С508, РІС12С508А и РІС12СЕ518 7 регистров специального назначения и 25 регистров общего назначения (см. рисунок 4-2).
- В микроконтроллерах PIC12C509, PIC12C509A, PIC12CR509A и PIC12CE519 7 регистров специального назначения, 25 регистр общего назначения в банке 0 и 16 регистров общего назначения в банке 1 (см. рисунок 4-3).

4.2.1 Регистры общего назначения

Обратиться к регистрам общего назначения можно прямой или косвенной адресацией, через регистр FSR (см. раздел 4.8).

Puc. 4-2 Карта памяти данных PIC12C508, PIC12C508A и PIC12CE518

Адрес INDF⁽¹⁾ 00h 01h TMR0 02h PCL 03h **STATUS** 04h **FSR** 05h OSCCAL 06h **GPIO** 07h Регистры общего назначения 1Fh Примечание 1. Не физический регистр. См. раздел 4.8.

Puc. 4-3 Карта памяти данных PIC12C509, PIC12C509A, PIC12CR509A и PIC12CE519

FSR<6:5> Адрес	00	01
Адрес 00h	INDF ⁽¹⁾	20h
01h	TMR0	
02h	PCL	
03h	STATUS	
04h	FSR	05
05h	OSCCAL	Отображается на банк 0
06h	GPIO	на банк б
07h 0Fh	Регистры общего назначения	2Fh
0111	10h	30h
	Регистры общего назначения	Регистры общего назначения
	1Fh	3Fh
		<u> </u>

4.2.2 Регистры специального назначения

С помощью регистров специального назначения выполняется управление функциями ядра и периферийными модулями микроконтроллера. В этом разделе будут описаны регистры управляющие функциями ядра микроконтроллера. Описание регистров периферийных модулей смотрите в соответствующем разделе документации.

Таблица 4-1 Регистры специального назначения

	Таолица 4-1 гетистры специального назначения										
Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы ⁽²⁾
-	TRIS	-	-							11 1111	11 1111
-	OPTION	SLEEP r	о изменеі	нию входн	едделител ного сигна	ла, подтяг	ивающим			1111 1111	1111 1111
00h	INDF	(не физи	ический ре	егистр)	ес которог	го записан	I B FSR			xxxx xxxx	xxxx xxxx
01h	TMR0		таймера (XXXX XXXX	uuuu uuuu
02h	PCL ⁽¹⁾		их бит сч							1111 1111	1111 1111
03h	STATUS ⁽³⁾	GPWUF	-	PA0	-TO	-PD	Z	DC	С	0001 1xxx	q00q quuu
04h	FSR (PIC12C508/ PIC12C508A/ PIC12C518)	Регистр								111x xxxx	111u uuuu
	FSR (PIC12C509/ PIC12C509A/ PIC12CR509A/		Регистр адреса при косвенной адресации								
04h	PIC12CE519)	Регистр	адреса пр	ои косвень	юй адрес	ации				11xx xxxx	11uu uuuu
05h	OSCCAL (PIC12C508/ PIC12C509)	CAL3	CAL2	CAL1	CAL0	-		_		0111	uuuu
05h	OSCCAL (PIC12C508A/ PIC12C509A/ PIC12CR509A/ PIC12CE518/ PIC12CE519)	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	-		1000 00	uuuu uu
	GPIO (PIC12C508/ PIC12C508A/ PIC12C509/ PIC12C509A/				-	-		051	000		
06h	PIC12CR509A)	-	-	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
06h	GPIO (PIC12CE518/ PIC12CE519)	SCL	SDA	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий.

- 1. Старшие биты счетчика команд РС не доступны пользователю, см. раздел 4.6.
- 2. Другими сбросами является: сброс по сигналу -MCLR, сброс по переполнению WDT и выход из режима SLEEP по изменению сигнала на входе.
- 3. Если сброс произошел при выходе из режима SLEEP по изменению сигнала на входе, то бит GPWUF=1. Во все остальных случаях GPWUF=0.

4.3 Perucmp STATUS

В регистре STATUS содержатся флаги состояния АЛУ, флаги причины сброса микроконтроллера и бит выбора страницы памяти программ.

Регистр STATUS может быть адресован любой командой, как и любой другой регистр памяти данных. Если обращение к регистру STATUS выполняется командой, которая воздействует на флаги Z, DC и C, то изменение этих трех битов командой заблокирована. Эти биты сбрасываются или устанавливаются согласно логике ядра микроконтроллера. Команды изменения регистра STATUS также не воздействуют на биты -TO и -PD. Поэтому, результат выполнения команды с регистром STATUS может отличаться от ожидаемого. Например, команда CLRF STATUS сбросит три старших бита и установит бит Z (состояние регистра STATUS после выполнения команды 000uu1uu, где u - не изменяемый бит).

При изменении битов регистра STATUS рекомендуется использовать команды (MOVWF, BCF и BSF), не влияющие на флаги АЛУ. Описание команд и их воздействие на флаги АЛУ смотрите в разделе 9.0.

Регистр STATUS (адрес 03h)

R/W-0	U-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
GPWUF	-	PA0	-TO	-PD	Z	DC	С	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POR
								–х – неизвестное
								значение после POR

- бит 7: **GPWUF**: Бит сброса GPIO
 - 1 = сброс произошел при выходе из режима SLEEP по изменению сигнала на входе
 - 0 = сброс POR или другой вид сброса
- бит 6: Не реализован: читается как '0'
- бит 5: РАО: Бит выбора страницы памяти программ (длина страницы 512 слов)
 - 1 = страница 1 (200h 3FFh) PIC12C509, PIC12C509A, PIC12CR509A, PIC12CE519
 - 0 = страница 0 (000h 1FFh) PIC12C5XX

Не рекомендуется использовать этот бит для хранения данных в микроконтроллерах с одной страницей памяти программ. Это может усложнить перенос программы на более мощные микроконтроллеры.

- бит 4: •ТО: Флаг переполнения сторожевого таймера
 - 1 = после POR или выполнения команд CLRWDT. SLEEP
 - 0 = после переполнения WDT
- бит 3: -РD: Флаг включения питания
 - 1 = после POR или выполнения команды CLRWDT
 - 0 = после выполнения команды SLEEP
- бит 2: **Z**: Флаг нулевого результата
 - 1 = нулевой результат выполнения арифметической или логической операции
 - 0 = не нулевой результат выполнения арифметической или логической операции
- бит 1: **DC**: Флаг десятичного переноса/заема (для команд ADDWF, SUBWF), заем имеет инверсное значение
 - 1 = был перенос из младшего полубайта
 - 0 = не было переноса из младшего полубайта
- бит 0: **С**: Флаг переноса/заема (для команд ADDWF, SUBWF, RRF, RLF), заем имеет инверсное значение

4.4 Perucmp OPTION

Регистр OPTION доступен только для записи, содержит биты управления предделителем TMR0/WDT и таймером TMR0. Запись в регистр OPTION производится выполнением команды OPTION (значение регистра W переписывается в OPTION). При сбросе микроконтроллера все биты регистра OPTION устанавливаются в '1'.

Примечания:

- 1. Если бит в регистре TRIS сброшен в '0' (вывод настроен на выход), то подтягивающий резистор и функция выхода из режима SLEEP для соответствующего вывода выключены. Т.е. состояние бита TRIS отменяет действие битов -GPPU и -GPWU.
- 2. Если T0CS=1, то GP2 настроен на вход независимо от состояния бита TRIS<2>.

Регистр OPTION

W-1	W-1	W-1	W-1	W-1	W-1	W-1	W-1	
-GPWU	-GPPU	T0CS	T0SE	PSA	PS2	PS1	PS0	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POI
								–х – неизвестное
								значение после РОГ

- бит 7: -GPWU: Разрешение выхода из режима SLEEP по изменению сигнала на входах GP0, GP1, GP3
 - 1 = запрещено0 = разрешено
- бит 6: **-GPPU**: Бит включения подтягивающих резисторов на входах GP0, GP1, GP3
 - 1 = подтягивающие резисторы выключены 0 = подтягивающие резисторы включены
- бит 5: **ТОСS**: Выбор тактового сигнала для TMR0
 - 1 = внешний тактовый сигнал с вывода ТОСКІ
 - 0 = внутренний тактовый сигнал F_{OSC}/4
- бит 4: **TOSE**: Выбор фронта приращения TMR0 при внешнем тактовом сигнале
 - 1 = приращение по заднему фронту сигнала (с высокого к низкому уровню) на выводе ТОСКІ
 - 0 = приращение по переднему фронту сигнала (с низкого к высокому уровню) на выводе ТОСКІ
- бит 3: **PSA**: Выбор включения предделителя
 - 1 = предделитель включен перед WDT
 - 0 = предделитель включен перед TMR0
- биты 2-0: PS2: PS0: Установка коэффициента деления предделителя

Значение	Для ТМКО	Для WD I
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1:128

4.5 Perucmp OSCCAL

Регистр OSCCAL используется для калибровки внутреннего тактового RC генератора 4МГц. Это регистр содержит 4 или 6 калибровочных битов в зависимости от типа микроконтроллера. Увеличение значения сохраняемого в регистре OSCCAL приведет к увеличению тактовой частоты микроконтроллера. Дополнительную информацию смотрите в разделе 8.2.5.

Perистр OSCCAL (адрес 05h) для PIC12C508 и PIC12C509

R/W-0	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0	
CAL3	CAL2	CAL1	CAL0	-	-	-	-	R – чтение бита
Бит 7							Бит 0	W – запись бита
								U – не реализовано,
								читается как 0
								–n – значение после POR
								–х – неизвестное
								значение после POR
биты 7-4: CAL3:CAL0 : Биты калибровки биты 3-0: Не реализованы : читаются как '0'								

Регистр OSCCAL (адрес 05h) для PIC12C508A, PIC12C509A, PIC12CR509A, PIC12CE518 и PIC12CE519

. 0.7.0	.р обобл	_ (appoo o	он, дрин н	J U U U U		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 1000, 1, 1 TO	1202010111101202010
R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	
CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	-	-	R – чтение бита
Бит 7							Бит 0	W – запись бита U – не реализовано, читается как 0 –n – значение после РОГ –х – неизвестное значение после РОГ
биты 7-2: CAL5:CAL0 : Биты калибровки								
биты 1-0: Не реализованы: читаются как '0'								

4.6 Счетчик команд РС

При выполнении команды в счетчике команд PC будет присутствовать адрес инструкции, которая будет выполнена следующей. Значение счетчика команд инкрементируется в каждом машинном цикле микроконтроллера, если выполняемая команда не изменяет значение PC.

При выполнении команды GOTO в младшие биты PC<8:0> загружается 9-разрядный операнд команды, а в 9-й бит значение бита PA0 регистра STATUS<5> (см. рисунок 4-4). Младшие биты счетчика команд PC<7:0> отображаются в регистре PCL.

При выполнении команды CALL или любой другой команды, изменяющей значение PC (например, MOVWF PCL, ADDWF PCL, BSF PCL,5), операнд или результат команды записывается в младшие биты PC<7:0>, бит PC<8> всегда равен 0, а бит 9 загружается значением бита PA0 регистра STATUS<5> (см. рисунок 4-5).

Примечание. Поскольку бит PC<8> всегда равен нулю при выполнении команды CALL или изменения PCL, то все подпрограммы и вычисляемые переходы должны быть размещены в первых 256 словах каждой страницы памяти программ.

Puc. 4-4 Выполнение команды GOTO

Puc. 4-5 Выполнение команды CALL или изменение PCL

4.6.1 Эффект сброса

После сброса все биты счетчика команд PC установлены в '1', что означает адресацию последней ячейки в последней странице памяти программ, где находится калибровочная информация для внутреннего тактового генератора. После выполнения команды MOVLW XX счетчик команд переполнится перейдя к адресу 000h.

После сброса микроконтроллера бит управления страницами памяти программ равен нулю в регистре STATUS. Это означает, что выбрана 0 страница памяти программ. Поэтому выполненная сразу после сброса команда GOTO приведет к адресации 0 страницы памяти программ, пока значение бита PA0 не будет изменено.

4.7 Стек

PIC12C5XX имеют 2-уровневый 12-разрядный аппаратный стек структуры LIFO.

При выполнении команды CALL значение из ячейки 1 стека переписывается в ячейку 2, а в ячейку 1 записывается текущее значение PC (т.е. адрес следующей за CALL инструкции). Если было выполнено более двух команд CALL подряд, то в стеке сохраняется только два последних адреса возврата из подпрограммы.

При выполнении команды RETLW значение из ячейки 1 стека будет загружено в счетчик команд PC, а значение из ячейки 2 переписывается в ячейку 1 стека. При выполнении более двух команд RETLW подряд стек будет содержать адрес возврата, сохраненном в ячейке 2. Обратите внимание, что регистр W будет содержать константу, указанную в команде. Эта команда особенна полезна для сохранения таблиц данных в памяти программ микроконтроллера. После любого сброса микроконтроллера (кроме POR) содержимое стека не изменяется.

- 1. В микроконтроллерах не имеется никаких указателей о переполнении стека.
- 2. В микроконтроллерах не предусмотрено команд записи/чтения из стека, кроме команд вызова/возвращения из подпрограмм (CALL, RETLW).

4.8 Косвенная адресация, регистры INDF и FSR

Для выполнения косвенной адресации необходимо обратиться к физически не реализованному регистру INDF. Обращение к регистру INDF фактически вызовет действие с регистром, адрес которого указан в FSR. Косвенное чтение регистра INDF (FSR=0) даст результат 00h. Косвенная запись в регистр INDF не вызовет никаких действий (вызывает воздействия на флаги АЛУ в регистре STATUS).

Пример косвенной адресации:

- В регистре с адресом 07h сохранено значение 10h;
- В регистре с адресом 08h сохранено значение 0Ah;
- Загрузить в регистр FSR значение 07h;
- Чтение регистра INDF возвратит значение 10h;
- Инкрементировать содержимое регистра FSR на единицу (FSR=08h);
- Чтение регистра INDF возвратит значение 0Ah.

Пример 4-1 Очистка памяти с помощью косвенной адресации

MOVLW 0x10 ; Указать первый регистр в ОЗУ MOVWF FSR NEXT: **CLRF INDF** ; Очистить регистр INCF FSR.F ; Увеличить адрес ; Завершить? BTFSC FSR.4 GOTO NEXT ; Нет, продолжить очистку CONTINUE: ; Да

FSR - 5-разрядный регистр, позволяющий совместно с регистром INDF адресовать всю память данных. Младшие биты регистра FSR<4:0> используются для обращения к памяти данных с адресами 00h-1Fh.

В микроконтроллерах PIC12C508, PIC12C508A и PIC12CE518 не реализовано разделение памяти данных на банки, поэтому биты регистра FSR<7:5> не реализованы и читаются как '1'.

В микроконтроллерах PIC12C509, PIC12C509A, PIC12CR509A и PIC12CE519 бит FSR<5> используется для выбора банка памяти данных. Биты FSR<7:6> не реализованы и читаются как '1'.

- 1. Карту памяти данных смотрите в разделе 4.2.
- 2. Только для микроконтроллеров PIC12C509, PIC12C509A, PIC12CR509A, PIC12CE519.

5.0 Порт ввода/вывода

С регистром порта ввода/вывода можно выполнить операции чтения/записи, как и с любым другим регистром памяти данных. Чтение регистра порта ввода/вывода (например, MOVF GPIO,W) возвращает состояние каналов порта независимо от значения битов TRIS. При сбросе микроконтроллера все порты ввода/вывода настраиваются на вход т.к. все биты регистра TRIS устанавливаются в '1'. Описание работы с выводами SCL и SDA для микроконтроллеров PIC12CE5XX смотрите в разделе 7.0.

5.1 Perucmp GPIO

GPIO - 8-разрядный регистр порта ввода вывода, в котором реально используется только 6-ть младших битов (GP5:GP0). Биты 7 и 6 не реализованы и читаются как '0'. Канал GP3 работает только как вход. Каналы порта ввода вывода могут быть задействованы для реализации других функций микроконтроллера. Чтение этих каналов будет давать результат '0'. Выводы GP0, GP1 и GP3 имеют управляемые подтягивающие резисторы и могут быть настроены для выведения микроконтроллера из режима SLEEP по изменению уровня входного сигнала. Если вывод GP3 используется в качестве входа сброса -MCLR, то подтягивающий резистор всегда включен, а функция выхода из режима SLEEP заблокирована.

5.2 Perucmp TRIS

Регистр направления каналов порта ввода/вывода загружается значением из регистра W при выполнении команды TRIS f. Запись '1' в TRIS переводит соответствующий выходной буфер 3-е состояние. Запись '0' в регистр TRIS определяет соответствующий канал как выход, содержимое защелки передается на вывод микроконтроллера. Исключением является канал GP3, который может работать только как вход и GP2, управляемый битами регистра OPTION. При сбросе микроконтроллера все порты ввода/вывода настраиваются на вход т.к. все биты регистра TRIS устанавливаются в '1'.

Примечание. Чтение выполняется с выводов порта, а не с выходных защелок. Например, если выходная защелка формирует высокий уровень сигнала, а внешняя схема удерживает низкий уровень, то чтение даст результат нуль для этого канала.

Рис. 5-1 Структурная схема одного канала порта

- 1. Выводы порта имеют защитные диоды, подключенные к V_{DD} и V_{SS} .
- 2. Тип входного буфера смотрите в таблице 3-1.
- 3. Описание выводов SCL и SDA смотрите в разделе 7.0 (только для PIC12CE5XX).

5.3 Работа каналов порта ввода/вывода

Структурная схема одного канала порта ввода/вывода показана на рисунке 5-1. Все каналы, кроме GP3, могут быть индивидуально настроены на вход или выход. Все каналы порта ввода/вывода не имеют входных защелок. Входной сигнал должен присутствовать на входе пока выполняется операция чтения порта (например, MOVF GPIO,W). Выходные данные сохраняются в защелке и остаются неизменными, пока не будут перезаписаны. Чтобы использовать канал порта как выход, необходимо сбросить соответствующий бит в регистре TRIS. Для использования вывода как вход нужно соответствующий бит в регистре TRIS установить в '1'.

Таблица 5-1 Регистры и биты, связанные с работой порта ввода/вывода

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
-	TRIS	-	-							11 1111	11 1111
-	OPTION	-GPWU	-GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
03h	STATUS	GPWUF	-	PA0	-TO	-PD	Z	DC	С	0001 1xxx	q00q quuu
06h	GPIO (PIC12C508/ PIC12C508A/ PIC12C509/ PIC12C509A/ PIC12CR509A)	-	-	GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
06h	GPIO (PIC12CE518/ PIC12CE519)	SCL	SDA	GP5	GP4	GP3	GP2	GP1	GP0	11xx xxxx	11uu uuuu

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий.

Примечание. Если сброс произошел при выходе из режима SLEEP по изменению сигнала на входе, то бит GPWUF=1. Во все остальных случаях GPWUF=0.

5.4 Программирование порта ввода/вывода

5.4.1 Двунаправленный порт ввода/вывода

Все операции записи в порт выполняются по принципу "чтение — модификация - запись". Например, команды BCF и BSF считывают значение в регистр CPU, выполняют битовую операцию и записывают результат обратно в регистр. Требуется некоторая осторожность при применении подобных команд к регистру порта ввода/вывода. Например, команда BSF GPIO,5 считывает все восемь битов из GPIO в CPU, изменяет состояние бита 5 и записывает результат в выходные защелки. Если другой двунаправленный канал GPIO (например GP0) настроен на вход, то сигнал на выводе будет считан в CPU и записан в защелку данных, поверх предыдущего значения. Пока GP0 настроен как вход, никаких проблем не возникает. Однако, если GP0 будет позже настроен как выход, значение в защелке данных может отличаться от требуемого.

В примере 5-1 показан эффект последовательного выполнения команд "чтение - модификация — запись" (например, BSF, BCF и т.д.) с регистром порта ввода/вывода.

На активный вывод порта не должны подключаться нагрузки включенные по схемам "монтажное И" или "монтажное ИЛИ". Возможные большие токи могут повредить микроконтроллер.

Пример 5-1 Эффект выполнения команд "чтение - модификация – запись". Начальные установки порта: GPIO<5:3> входы, GPIO<2:0> выходы.

		Защелка GPIO	Выводы GPIO
BCF	GPIO, 5	;01 -ppp	11 pppp
BCF	GPIO, 4	;10 -ppp	11 pppp
MOVLW	07h	;	
TRIS	GPIO	;10 -ppp	11 pppp

Обратите внимание. Возможно, пользователь ожидал, что после выполнения программы на выходах будет значение --00 pppp. Однако, 2-я команда BCF установила в '1' GP5.

5.4.2 Последовательность операций с портами ввода/вывода

Запись в порт ввода/вывода фактически происходит в конце машинного цикла, а чтение данных выполняется в начале цикла (см. рисунок 5-2). Поэтому требуется некоторая осторожность при чтении порта ввода/вывода, если перед этим выполнялась запись в порт. Последовательность команд должна быть такой, чтобы установилось напряжение на выводе порта прежде, чем будет выполнена команда чтение состояния выводов (иначе вместо нового значения может быть считано предыдущее). Если возможна описанная ситуация, разделите команды записи инструкциями NOP или любыми другими командами, которые не обращаются к порту ввода/вывода.

Примечание κ **рисунку.** На рисунке показан пример чтения из GPIO сразу поле записи в него. Время установления данных на GPIO равно T = 0.25 $T_{CY} - T_{PD}$. Где: $T_{CY} - д$ лительность машинного цикла микроконтроллера, T_{PD} — задержка распространения. Следовательно, при высокой тактовой частоте микроконтроллера, чтение с порта ввода/вывода непосредственно после записи может возвращать неверные значения.

6.0 Модуль таймера TMR0

TMR0 – таймер/счетчик, имеет следующие особенности:

- 8-разрядный таймер/счетчик;
- Возможность чтения и записи текущего значения счетчика;
- 8-разрядный программируемый предделитель;
- Внутренний или внешний источник тактового сигнала;
- Выбор активного фронта внешнего тактового сигнала.

Блок схема модуля TMR0 показана на рисунке 6-1.

Когда бит T0CS сброшен в '0' (OPTION<5>), ТМR0 работает от внутреннего тактового сигнала. Приращение счетчика ТМR0 происходит в каждом машинном цикле (если предделитель отключен). После записи в ТМR0 приращение счетчика запрещено два следующих цикла (см. рисунки 6-2 и 6-3). Пользователь должен скорректировать эту задержку перед записью нового значения в ТМR0.

Если бит T0CS установлен в '1' (OPTION<5>), TMR0 работает от внешнего источника тактового сигнала с входа Т0СКІ. Активный фронт внешнего тактового сигнала выбирается битом T0SE в регистре OPTION<4> (T0SE=0 – активным является передний фронт сигнала). Работа модуля TMR0 с внешним источником тактового сигнала будет рассмотрена в разделе 6.1.

Предделитель может быть включен перед WDT или TMR0, в зависимости от состояния бита PSA в регистре OPTION<3>. Если бит PSA сброшен в '0', то предделитель включен перед TMR0. Нельзя прочитать или записать новое значение в предделитель. Когда предделитель включен перед TMR0, можно выбрать его коэффициент деления 1:2, 1:4,...,1:256. Подробное описание работы с предделителем смотрите в разделе 6.2.

Регистры и биты, связанные с работой TMR0 смотрите в таблице 6-1.

Примечания:

- 1. Биты управления TOCS, TOSE, PS2, PS1, PS0, PSA расположены в регистре OPTION.
- 2. Схему включения предделителя перед WDT смотрите на рисунке 6-5.

Puc. 6-2 Временная диаграмма работы TMR0 от внутреннего источника тактового сигнала (предделителе выключен)

Puc. 6-3 Временная диаграмма работы TMR0 от внутреннего источника тактового сигнала (предделителем 1:2)

Таблица 6-1 Регистры и биты связанные с работой TMR0

Адрес	РМИ	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
-	OPTION	-GPWU	-GPPU	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
01h	TMR0	Регистр таймера 0xxxx xxxxuuuu uuuu									

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий.

6.1 Использование внешнего источника тактового сигнала для ТМR0

При использовании внешнего тактового сигнала для TMR0 необходимо учитывать некоторые особенности работы таймера. Активный фронт внешнего тактового сигнала синхронизируется с внутренней тактовой частотой микроконтроллера, из-за чего возникает задержка от получения активного фронта сигнала до приращения TMR0.

6.1.1 Синхронизация внешнего сигнала

Если предделитель не используется, внешний тактовый сигнал поступает непосредственно на синхронизатор. Синхронизация ТОСКІ с таковым сигналом микроконтроллера усложняется из-за опроса выхода синхронизатора в машинные циклы Q2 и Q4 (см. рисунок 6-4). Поэтому длительность высокого или низкого логического уровня внешнего сигнала должна быть не меньше 2T_{OSC} (плюс небольшая задержка внутренней RC цепи 20нс). Дополнительную информацию смотрите в разделе электрических характеристик.

Если предделитель включен перед TMR0, то на вход синхронизатора поступает сигнал с асинхронного предделителя. Период сигнала ТОСКІ должен быть не менее 4T_{OSC} (плюс небольшая задержка внутренней RC цепи 40нс) деленное на коэффициент предделителя. Дополнительное требование, высокий и низкий логический уровень внешнего сигнала должен быть не менее 10нс. Смотрите параметры 40, 41 и 42 в разделе электрических характеристик.

6.1.2 Задержка приращения TMR0

Поскольку сигнал с выхода предделителя синхронизируется с внутренним тактовым сигналом микроконтроллера, возникает задержка от получения активного фронта сигнала до приращения TMR0 (см. рисунок 6-4).

Puc. 6-4 Временная диаграмма работы TMR0 с внешним источником тактового сигнала

Примечания:

- Задержка от активного фронта тактового сигнала до приращения TMR0 от 3T_{OSC} до 7T_{OSC}. Следовательно, максимальная ошибка измерения интервала между двумя активными фронтами тактового сигнала $\pm 4T_{OSC}$.
- 2. Если предделитель выключен, на вход синхронизатора поступает внешний тактовый сигнал.
- 3. Стрелками указаны точки выборки уровня сигнала.

6.1.3 Взаимодействие регистров OPTION и TRIS

Если TMR0 настроен в режиме внешнего источника тактового сигнала, то канал GP2/T0CKI работает как вход независимо от состояния бита TRIS<2>.

6.2 Предделитель

8-разрядный счетчик может работать как предделитель TMR0 или выходной делитель WDT (см. рисунок 6-5). Для простоты описания этот счетчик всегда будем называть "предделитель". Обратите внимание, что существует только один предделитель, который может быть включен перед TMR0 или WDT. Использование предделителя пред TMR0 означает, что WDT работает без предделителя, и наоборот.

Коэффициент деления предделителя определяется битами PSA и PS2:PS0 в регистре OPTION<3:0>.

Если предделитель включен перед TMR0, любые команды записи в TMR0 (например, CLRF 1, MOVWF 1, BSF 1,x и т.д.) сбрасывают предделитель. Когда предделитель подключен к WDT, команда CLRWDT сбросит предделитель вместе с WDT. Предделитель также очищается при сбросе микроконтроллера.

Примечание. Биты управления T0CS, T0SE, PS2, PS1, PS0, PSA расположены в регистре OPTION.

6.2.1 Переключение предделителя

Переключение предделителя выполняется программным способом, т.е. переключение можно сделать во время выполнения программы. В примере 6-1 показана рекомендуемая последовательность инструкций переключения предделителя от TMR0 на WDT для предотвращения неожиданного сброса микроконтроллера.

Переключение предделителя от WDT на TMR0 показано в примере 6-2. Меры осторожности должны применяться, даже если сторожевой таймер WDT выключен.

Пример 6-1 Переключения предделителя от TMR0 к WDT

1.	CLRWDT		; Сбросить WDT
2.	CLRF	TMR0	; Сбросить TMR0 и предделитель
3.	MOVLW	b'00xx1111'	; Три строки (2, 3. 4) должны быть включены в
4.	OPTION		; текст программы только, если биты
5.	CLRWDT		; PS<2:0> равны значению 000 или 001
6.	MOVLW	b'00xx1xxx'	; Переключить предделитель на WDT,
7.	OPTION		: выбирать коэффициент деления

Пример 6-2 Переключения предделителя от WDT к TMR0

CLKWDI		, Соросить уурт и предделитель
MOVLW	b'xxxx0xxx'	; Включить предделитель перед TMR0 и
OPTION		; выбрать новое значение коэффициента деления

7.0 Работа с периферийной EEPROM памятью данных

Этот раздел относится только к микроконтроллерам PIC12CE518 и PIC12CE519.

Микроконтроллеры PIC12CE518 и PIC12CE519 имеют 16 байт энергонезависимой EEPROM памяти данных с 1000000 гарантированных циклов стирание/запись и временем хранения данных не менее 40 лет. EEPROM память данных работает по двунаправленной 2-х проводной шине данных с протоколом I^2 C. По одной линии передаются данные (SDA), по другой тактовый сигнал (SCL). Линии SDA, SCL подсоединены внутри микроконтроллера к EEPROM памяти и не имеют внешних выводов, как GP0-GP5. SDA, SCL отображаются на 6 и 7 бит регистра GPIO (адрес 06h). Для большинства приложений работу с энергонезависимой памятью данных можно свести к следующим основным функциям:

; Byte_write: Подпрограмма записи байта

Входные данные: Адрес EEPROM EEADDR Данные EEPROM EEDATA
Выходные данные: Если W=01, то запись выполнена Если W=00, то произошла ошибка

; Read Current: Подпрограмма чтения байта по текущему адресу в EEPROM

Входные данные: Нет

Выходные данные: Данные EEPROM EEDATA

Если W=01, то чтение выполнено Если W=00, то произошла ошибка

; Read_Random: Подпрограмма чтения байта с указанного адреса ; Входные данные: Адрес EEPROM EEADDR ; Выходные данные: Данные EEPROM EEDATA ; Если W=01, то чтение выполнено ; Если W=00, то произошла ошибка

Текст программы работы с EEPROM памятью данных можно получить на WEB узлах технической поддержки www.microchip.com и www.microchip.ru. В файле FL51XINC.ASM абсолютный код программы, а в FLASH51X.ASM перемещаемый код программы, предназначенный для работы линкера.

Необходимо проверять возвращаемые коды подпрограммами и повторить операцию записи/чтения в случае возникновения ошибки. Код ошибки может быть получен когда в EEPROM памяти выполняется цикл записи, длительность которого равна около 4 мс.

7.0.1 Последовательная передача данных

SDA - двунаправленный вывод, предназначенный для передачи данных, адреса и приема данный из EEPROM

При передачи данных изменять уровень сигнала на линии SDA можно только когда на SCL низкий логический уровень. Изменение уровня сигнала на SDA в то время, когда на SCL высокий логический уровень используется для формирования на шине условий START и STOP.

Двухпроводный интерфейс связи с EEPROM памятью данных состоит из линии данных (SDA) и линии тактового сигнала (SCL). Хотя эти линии отображены в регистре GPIO, они не имеют внешних выводов, только подключены к внутренней EEPROM памяти. Работа с линиями SDA и SCL несколько отличается от операций с каналами порта ввода/вывода GP0-GP5.

Выводы SCL и SDA всегда являются выходами, что не требует изменения битов TRIS кодом программы. Для чтения данных из EEPROM памяти необходимо чтобы на линии SDA присутствовала логическая 1 за счет подтягивающего резистора (на линии SDA внутренний подтягивающий резистор 100кОм).

SDA:

Внутренний подтягивающий резистор 100кОм (номинальное значение), подключенный к V_{DD} Выход с открытым стоком

Всегда выход

После сброса на выходе 1

SCL:

Полнофункциональный выходной буфер КМОП

Всегда выход

После сброса на выходе 1

Ресурсы микроконтроллера, используемы программой для работы с EEPROM памятью данных:

- Память программ: 77 слов
- Память данных: 5 байт
- Стек: 1 уровень (Только вызов подпрограммы. В подпрограмме нет больше переходов на другие подпрограммы)
- Время выполнения:
 - WRITE_BYTE 328 циклов
 - READ_CURRENT 212 циклов
 - READ_RANDOM 416 циклов
- Порты ввода/вывода: 0 (Используются не внешние каналы порта ввода/вывода)

Код этой программы должен размещаться в нижней половине страницы памяти программ. Малый размер кода программы удалось получить за счет использования таблицы вычисляемых переходов на процедуры. Для эффективного выполнения переходов GOTO используется команда ADDWF PCL,F, которая воздействует на 8 младших разрядов счетчика команд PC, вынуждая продолжить выполнение программы в первой половине (256 слов) страницы памяти программ.

Рис. 7-1 Структурная схема вывода GPIO6 (линия SDA)

Сброс
Запись GPIO
выходная защелка
Входная защелка
Ск Тригтер Шмидта

7.0.2 Линия синхронизации

Вывод SCL используется для синхронизации обмена данными с EEPROM памятью данных.

7.1 Характеристика шины

Должен использоваться следующий протокол шины для обращения к EEPROM памяти данных:

- Передача данных может быть инициирована только когда шина свободна.
- Во время передачи данных сигнал на линии SDA не должен изменяться пока на SCL высокий логический уровень сигнала.
- Изменение уровня сигнала на SDA, когда на SCL высокий логический уровень, будет интерпретироваться как формирование условия START или STOP.

На рисунке 7-3 смотрите временные диаграммы, поясняющие протокол шины.

7.1.1 Условие не занятости шины

Шина свободна, если на выводах SCL и SDA высокий логический уровень сигнала.

7.1.2 Условие начала передачи данных (START)

Переход с высокого к низкому логическому уровню сигнала на линии SDA, когда на SCL высокий уровень сигнала, является условием START. Всем операциям на шине должно предшествовать формирование условия START.

7.1.3 Условие завершения передачи данных (STOP)

Переход с низкого к высокому логическому уровню сигнала на линии SDA, когда на SCL высокий уровень сигнала, является условием STOP. Все операции на шине должны завершаться формированием условия STOP.

7.1.4 Требования к передачи данных по шине

После формирования условия START на шине присутствуют достоверные данные, если уровень сигнала на лини SDA не изменяется, когда на SCL высокий логический уровень. Изменение уровня сигнала на линии SDA необходимо выполнять только при низком логическом уровне на SCL. В одном такте синхронизации передается только один бит данных.

Каждый обмен информацией по шине инициализируется условием START, а завершается формированием условия STOP. Число байт передаваемых между условием START и STOP определяется пользователем и теоретически не ограничено.

7.1.5 Подтверждение

Каждый приемник на шине, если выполнено условие адресации, обязан генерировать бит подтверждения после приема каждого байта. Ведомое устройство шины должно генерировать дополнительный тактовый импульс для формирования бита подтверждения.

Примечание. Бит подтверждения не генерируется, если выполняется внутренний цикл записи.

Устройство, подтверждающее прием данных, должно перевести линию SDA в низкий логический уровень на время высокого уровня сигнала SCL в такте подтверждения. Должна учитываться длительность фронт сигнала на линиях шины. Ведущий шины должен сообщить ведомому о завершении чтения данных отсутствием бита подтверждения. В этом случае ведомый шины "отпустить" линию SDA в высокий логический уровень, чтобы дать возможность ведущему сформировать условие STOP (см. рисунок 7-4).

Примечания:

- 1. Передатчик должен "отпустить" линию SDA в этой точке, чтобы дать возможность приемнику перевести линию в низкий логический уровень для подтверждения приема предыдущих восьми битов.
- 2. Приемник должен "отпустить" линию SDA в этой точке, чтобы дать возможность передатчику продолжить передавать данные.

7.2 Адресация устройства

После формирования условия START ведущий шины передает управляющий байт, состоящий из адреса устройства и бита чтения/записи. Бит чтения/записи определяет, какая операция должна быть выполнена на шине. Адрес ведомого состоит из 4-разрядного кода устройства (1010), трех бит, которые могут иметь любое значение

Последний бит управляющего байта определяет тип операции. Когда бит операции равен 1, то будет выполняться чтение данных. Если бит операции равен 0, то выполняется операция записи (см. рисунок 7-5). Шина постоянно проверяется на соответствие адреса ведомого устройства. Бит подтверждения генерируется после получения управляющего байта, если совпал адрес устройства и не выполняется внутренний цикл записи.

7.3 Операция записи

7.3.1 Запись байта

После формирования условия START передается управляющий байт, состоящий из: 4 бита кода устройства, 3 незначащих бита, бит операции R/W (в данном случае R/W должен быть равен нулю). Эта последовательность указывает на то, что после получения бита подтверждения (на девятом такте сигнала синхронизации) будет передан байт адреса ячейки в EEPROM памяти, к которой будет выполняться обращение. Только младших четыре бита адреса участвуют в адресации памяти, а старшие четыре бита игнорируются. Передав байт адреса необходима принять подтверждение, после чего передается один байт сохраняемых данных по указанному адресу. EEPROM память снова формирует бит подтверждения, а ведущий шины генерирует условие STOP. После формирования условия STOP инициализируется цикл записи. Во время цикла записи EEPROM память не будет генерировать биты подтверждения (см. рисунок 7-6). После операции записи адрес в EEPROM памяти не инкрементируется, указывая на ячейку, в которую была выполнена запись.

Если сформировано условие STOP до передачи всей последовательности записи, то никакие данные не будут записаны. Если передано более 8 бит данных прежде чем сформировано условие STOP, то EEPROM память очистит предварительно загруженный байт и начнет загружать данные снова. Если передано более одного байта данных и условие STOP сформировано прежде чем переданы все 8 бит последнего байта, то никакие данные не будут записаны. Встроенная в EEPROM память схема запрещает операцию стирание/запись, если напряжение питание V_{DD} ниже установленного порога.

Перед и после операции записи шина должна находиться в не занятом состоянии (на SCL и SDA высокий логический уровень сигнала).

Puc. 7-6 Запись байта S T S Активность **Управляющий** Байт адреса Данные ведущего À байт O на шине R Р SDA Χ 0 A C K A C K A C K Активность на шине

7.4 Подтверждение записи

EEPROM память не будет генерировать биты подтверждения, когда выполняется внутренний цикл записи, что может использоваться для определения завершения цикла записи (эта особенность применяется когда необходимо получить максимальную производительность шины). Как только сформировано условие STOP инициализируется внутренний цикл записи. Опрос окончания записи может быть начат немедленно, включая формирование условия START с передачей управляющего байта, в котором бит R/W=0. Если выполняется цикл записи, то подтверждение не будет получено. Если подтверждение не было получено, то условие START и управляющий байт должны быть переданы повторно. После завершения цикла записи будет сформирован бит подтверждения и ведущий может инициировать новую операцию записи или чтения. Пояснения смотрите на рисунке 7-7.

7.5 Операция чтения

Операция чтения инициализируется аналогично записи, за исключением того, что бит R/W=1. Существует три основных типа операции чтения: чтение с текущего адреса, чтение с требуемого адреса и последовательное чтение.

7.5.1 Чтение с текущего адреса

Во внутреннем счетчике EEPROM памяти содержится адрес ячейки, к которой было выполнено обращение последний раз, увеличенный на единицу. Поэтому, если предыдущая операция чтения обращалась к ячейки с адресом n, то следующая операция чтения обратится к ячейки с адресом n+1. После получения байта управления (R/W=1) ведомый генерирует бит подтверждения и передает 8 бит данных. Ведущий шины не генерирует бит подтверждения, но формирует условие STOP, что указывает ведомому прекратить передачу данных (см. рисунок 7-8).

7.5.2 Чтение с требуемого адреса

Этот вид операции чтения позволяет ведущему шины обратиться к любой ячейки EEPROM памяти в произвольном порядке. Для начала операции чтения необходимо установить адрес ячейки в памяти. Установка адреса выполняется как часть операции записи. После передачи адреса ячейки в памяти, получив бит подтверждения, ведущий генерирует условие START. Условие START завершает операцию записи (необходимо формировать условие START после передачи адресного байта, но не ранее). Ведущий шины вновь передает байт управления, в котором бит R/W=1. После получения байта управления (R/W=1) ведомый генерирует бит подтверждения и передает 8 бит данных. Ведущий шины не генерирует бит подтверждения, но формирует условие STOP, что указывает ведомому прекратить передачу данных (см. рисунок 7-9). После этой операции счетчик адреса EEPROM памяти будет указывать на следующую ячейку.

7.5.3 Последовательное чтение

Последовательное чтение инициализируется аналогично чтению с требуемого адреса. Отличие заключается в том, что после приема первого байта данных ведущий формирует бит подтверждения, настраивая ведомого передать следующий байт (см. рисунок 7-10). Операция последовательного чтения реализована за счет внутреннего счетчика адреса, который инкрементируется после чтения каждого байта. Этот счетчик адреса позволяет последовательно прочитать всю EEPROM память в течение одной операции.

8.0 Особенности микроконтроллеров PIC12C5XX

В настоящее время, устройства работающие в режиме реального времени часто содержат микроконтроллер как основной элемент схемы. PIC12C5XXX имеют много усовершенствований повышающие надежность системы, снижающие стоимость устройства и число внешних компонентов. Микроконтроллеры PIC12C5XXX имеют режимы энергосбережения и возможность защиты кода программы.

Основные достоинства:

- Выбор тактового генератора.
- Cброс:
 - сброс по включению питания (POR);
 - таймер включения питания (DRT);
 - выход из режима SLEEP по изменению уровня входного сигнала.
- Сторожевой таймер (WDT).
- Режим энергосбережения (SLEEP).
- Защита кода программы.
- Область памяти для идентификатора.
- Внутрисхемное программирование по последовательному порту (ICSP).

В микроконтроллеры PIC12C5XX встроен сторожевой таймер WDT, который может быть выключен только в битах конфигурации микроконтроллера. Для повышения надежности сторожевой таймер WDT имеет собственный RC генератор. При сбросе микроконтроллера с установленным XT или LP режимом генератора всегда присутствует задержка в 18 мс (номинальное значение) внутреннего сброса. Эта задержка формируется таймером сброса (DRT) и предназначена для стабилизации частоты тактового генератора. В INTRC или EXTRC режиме генератора задержка в 18мс появляется только при включении питания. В большинстве приложений эти функции микроконтроллера позволяют исключить внешние схемы сброса.

Режим SLEEP предназначен для обеспечения сверхнизкого энергопотребления. Микроконтроллер может выйти из режима SLEEP по переполнению сторожевого таймера или при изменении уровня входного сигнала. Выбор режима работы тактового генератора позволяет использовать микроконтроллеры в различных приложениях. Режим тактового генератора EXTRC позволяет уменьшить стоимость устройства, а режим LP снизить энергопотребление. Биты конфигурации микроконтроллера используются для указания режима его работы.

8.1 Биты конфигурации

В PIC12C5XX 12-разрядное слово конфигурации предназначено для указания режима работы микроконтроллера: два бита - выбор режима работы тактового генератора; один бит - разрешение работы сторожевого таймера; один бит - режим работы вывода -MCLR.

Слово конфигурации для PIC12C5XX

8.2 Настройка тактового генератора

8.2.1 Режимы тактового генератора

Микроконтроллеры PIC12C5XX могут работать в одном из четырех режимов тактового генератора. Указать режим тактового генератора можно при программировании микроконтроллера в битах конфигурации (FOSC1:FOSC0):

- LP низкочастотный резонатор;
- ХТ обычный резонатор;
- INTRC внутренняя RC цепочка;
- EXTRC внешняя RC цепочка.

8.2.2 Кварцевый/керамический резонатор

В режимах тактового генератора XT и LP кварцевый или керамический резонатор подключается к выводам GP5/OSC1/CLKIN, GP4/OSC2 (см. рисунок 8-1). Для микроконтроллеров PIC12C5XX нужно использовать резонаторы с параллельным резонансом. Использование резонаторов с последовательным резонансом может привести к получению тактовой частоты не соответствующей параметрам резонатора. В режимах XT и LP микроконтроллер может работать от внешнего источника тактового сигнала OSC1/CLKIN (см. рисунок 8-2).

Puc. 8-1 Подключение кварцевого/керамического резонатора

Примечания:

- 1. Смотрите таблицы 8-1, 8-2 для выбора емкости конденсаторов.
- 2. Для некоторых типов резонаторов может потребоваться последовательно включенный резистор.
- 3. Значение сопротивления RF примерно равно 10МОм.

Рис. 8-2 Подключение внешнего тактового сигнала

Таблица 8-1 Параметры конденсаторов для керамического резонатора

· a os · a a	omo i per non gonou i	оров дээг коранит ю	onoro pocoriaropa
Режим	Частота	OSC1(C1)	OSC2(C2)
XT	4.0 МГц	33 пФ	33 пФ

Значения емкости конденсаторов, указанные в таблице, являются оценочными, т.к. каждый резонатор имеет собственные характеристики. Проконсультируйтесь у производителя резонаторов для правильного подбора внешних компонентов.

Таблица 8-2 Параметры конденсаторов для кварцевого резонатора

Режим	Частота	OSC1(C1)	OSC2(C2)
LP	32 кГц	15 пФ	15 пФ
XT	200 кГц	47-68пФ	47-68пФ
	1 МГц	15пФ	15пФ
	4 МГц	15пФ	15пФ

Примечание. Для $V_{DD} > 4.5B$, рекомендуется C1=C2 ≈ 30пФ.

Значения емкости конденсаторов, указанные в таблице, являются оценочными. Последовательный резистор Rs может потребоваться в XT режиме для предотвращения возбуждения резонатора на низкой частоте, т.к. каждый резонатор имеет собственные характеристики. Проконсультируйтесь у производителя резонаторов для правильного подбора внешних компонентов.

8.2.3 Внешний тактовый генератор

В качестве внешнего тактового генератора можно использовать готовый генератор, либо собрать простую схему с ТТЛ выходом. Качественный кварцевый резонатор обеспечивает высокую эффективность ТТЛ схемы. Существует две основных схемы включения кварцевых резонаторов: с параллельным резонансом, с последовательным резонансом.

На рисунке 8-3 показана типовая схема генератора с параллельным резонансом, предназначенная для работы на основной частоте кварцевого резонатора. Инвертор 74AS04 производит необходимый для параллельного резонанса сдвиг фазы на 180°. Для обеспечения стабильности схемы в отрицательной обратной связи включен резистор 47кОм. Потенциометр 10кОМ предназначен для смещения рабочей точки инвертора в линейную область.

Puc. 8-3 Внешний генератор с параллельным резонансом +5V К другим устройствам **≨**10k 74AS04 PIC12C5XX **CLKIN** 74AS04 XTAI 20 пФ 20 пФ

На рисунке 8-4 показана типовая схема генератора с последовательным резонансом, тоже предназначенная для работы на основной частоте кварцевого резонатора. Инверторы выполняют сдвиг фазы на 180°. Резисторы 330Ом создают отрицательную обратную связь для смещения рабочих точек инверторов в линейную область.

Рис. 8-4 Внешний генератор с последовательным резонансом

8.2.4 Внешний RC генератор

В приложениях, не требующей высокостабильной тактовой частоты, возможно использовать RC режим генератора, уменьшающий стоимость устройства. Частота RC генератора зависит от напряжения питания, значения сопротивления (R_{EXT}), емкости (C_{EXT}) и рабочей температуры. Дополнительно частота будет варьироваться в некоторых пределах из-за технологического разброс параметров кристалла. Различные паразитные емкости также будут влиять на частоту генератора, особенно при малых значениях СЕХТ. Необходимо учитывать технологический разброс параметров внешних компонентов R и C.

На рисунке 8-5 показана схема подключения RC цепочки к PIC12C5XX. Для сопротивления резистора меньше 2.2кОм частота тактового генератора может быть нестабильна или генерация может прекратиться. Для очень большого сопротивления (больше 1МОм) генератор тактового сигнала становится чувствителен к внешним помехам, токам утечки и влажности. Рекомендуется выбирать сопротивления резисторов от 3кОм до 100кОм.

Тактовый генератор может работать без внешнего конденсатора (Сехт=0), но для стабильной работы генератора рекомендуется подключать конденсатор с емкостью более 20пФ. Без внешнего конденсатора (или конденсатор имеет очень малую емкость) частота тактового генератора может зависеть от емкости проводников печатной платы и выводов компонентов.

В разделе электрических характеристик представлены данные технологического разброса частоты RC генератора. Разброс частоты возрастает с увеличением сопротивления R (т.к. возрастает влияние токов утечки) и уменьшением емкости С (т.к. усиливается влияние паразитной емкости проводников и выводов компонентов).

Также в разделе электрических характеристик показано влияние напряжения питания V_{DD} на частоту генератора при различных значениях R_{EXT} , C_{EXT} и влияние температуры для определенных значениях R_{C} и V_{DD} .

Puc. 8-5 EXTRC режим тактового генератора

8.2.5 Внутренний RC генератор 4МГц

Внутренний тактовый генератор формирует тактовый сигнал с частотой 4МГц (номинальное значение) при напряжении питания V_{DD}=5В и температуре 25°C. Графики зависимости частоты внутреннего RC генератора от температуры и напряжения питания смотрите в разделе "электрические характеристики".

В последней ячейки памяти программ сохраняется калибровочная константа для внутреннего RC генератора. На эту ячейку памяти программ не распространяется действие бита защиты СР в слове конфигурации (кроме микроконтроллеров PIC12C508/509). Калибровочная константа сохраняется в виде команды MOVLW XX, где XX калибровочное значение. После сброса микроконтроллера значение калибровки будет загружено в регистр W, счетчик команд РС переполнится и микроконтроллер начнет выполнять программу пользователя с адреса 000h. В начале выполнения программы имеется возможность загрузить калибровочную константу в регистр OSCCAL (05h) или игнорировать ее.

Запись калибровочной константы в регистр OSCCAL позволяет устранить технологический разброс параметров внутреннего RC генератора.

Примечание. Стирание памяти микроконтроллера также сотрет предварительно запрограммированную калибровочную информацию. Для сохранения калибровочной информации ее рекомендуется прочитать перед стиранием памяти микроконтроллера.

Для PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, и PIC12CR509A

Биты CAL5:CAL0 регистра OSCCAL<7:2> используются для записи калибровочной константы (от 000000 до 111111). Запись большего значения увеличивает частоту тактового генератора. Младшие биты регистра OSCCAL <1:0> не реализованы и должны равняться нулю при записи калибровочной информации для совместимости с последующими версиями микроконтроллеров.

<u>Для PIC12C508 и PIC12C509</u>

Биты CAL3:CAL0 регистра OSCCAL<7:4> используются для записи калибровочной константы. Запись большего значения увеличивает частоту тактового генератора.

8.3 Сброс

PIC12C5XX различает следующие виды сбросов:

- а) сброс по включению питания POR;
- b) сброс по сигналу -MCLR в нормальном режиме работы;
- с) сброс по сигналу -MCLR в SLEEP режиме;
- d) сброс от WDT в нормальном режиме работы;
- e) сброс от WDT в режиме SLEEP;
- f) выход из режима SLEEP по изменению входного сигнала.

Некоторые регистры не изменяются после любого вида сброса, но после сброса по включению питания POR они содержат неизвестное значение. Большинство регистров сбрасываются в начальное состояние при сбросах POR, -MCLR и WDT в нормальном режиме, -MCLR в режиме SLEEP. Сброс WDT, -MCLR в SLEEP режиме рассматривается как возобновление нормальной работы и на значение регистров не влияет. Биты -TO, -PD и GPWUF принимают определенные значения при различных видах сброса. Программное обеспечение может использовать эти биты для детектирования вида сброса микроконтроллера. Состояние регистров специально назначения после сброса смотрите в таблице 8-3.

Таблица 8-3 Состояние регистров после различных видов сбросов

таблици в в обстояние реги	Таолица 6-3 Состояние регистров после различных видов соросов									
РМИ	Адрес	Сброс POR	Сброс -MCLR, переполнение WDT, выход из SLEEP							
W (PIC12C508/ PIC12C509)	-	dddd 0000 ₍₁₎	dddd 0000 ₍₁₎							
W (PIC12C508A/ PIC12C509A/ PIC12CR509A/ PIC12CE518/ PIC12CE519)	-	dddd dd00 ₍₁₎	dddd dd00 ₍₁₎							
INDF	00h	xxxx xxxx	xxxx xxxx							
TMR0	01h	xxxx xxxx	uuuu uuuu							
PCL	02h	1111 1111	1111 1111							
STATUS	03h	0001 1xxx	q00q quuu ^(2,3)							
FSR (PIC12C508/ PIC12C508A/ PIC12C518)	04h	111x xxxx	111u uuuu							
FSR (PIC12C509/ PIC12C509A/ PIC12CR509A/ PIC12CE519)	04h	11xx xxxx	11uu uuuu							
OSCCAL (PIC12C508/ PIC12C509)	05h	0111	uuuu							
OSCCAL (PIC12C508A/ PIC12C509A/ PIC12CR509A/ PIC12CE518/ PIC12CE519)	05h	1000 00	uuuu uu							
GPIO (PIC12C508/ PIC12C508A/ PIC12C509/ PIC12C509A/ PIC12CR509A)	06h	xx xxxx	uu uuuu							
GPIO (PIC12CE518/ PIC12CE519)	06h	11xx xxxx	11uu uuuu							
TRIS	=	11 1111	11 1111							
OPTION	-	1111 1111	1111 1111							

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий.

Примечания:

- 1. Биты <7:2> в регистр W загружаются командой MOVLW XX в последней ячейки памяти программ.
- 2. Состояние битов смотрите в таблице 8-7.
- 3. Если сброс произошел при выходе из режима SLEEP по изменению сигнала на входе, то бит GPWUF=1. Во все остальных случаях GPWUF=0.

Таблица 8-4 Состояние особых регистров после сброса

Вид сброса	Регистр STATUS	Регистр PCL
Сброс по включению питания	0001 1xxx	1111 1111
Сброс по сигналу -MCLR в нормальном режиме	000u uuuu	1111 1111
Сброс по сигналу -MCLR в SLEEP режиме	0001 0uuu	1111 1111
Сброс от WDT	0000 uuuu	1111 1111
Выход из режима SLEEP от WDT	0000 0uuu	1111 1111
Выход из режима SLEEP по изменению уровня	1001 0uuu	1111 1111
входного сигнала		

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно.

8.3.1 Включение -MCLR

Если бит MCLRE в слове конфигурации не запрограммирован (оставлен равным 1), то вывод GP3/-MCLR работает как вход сброса -MCLR. Если MCLRE=0, то GP3/-MCLR работает как цифровой вход, -MCLR подключен внутри микроконтроллера к V_{DD} (см. рисунок 8-6). Когда вывод работает как -MCLR, внутренний подтягивающий резистор всегда включен.

Puc. 8-6 Структурная схема -MCLR

8.4 Сброс по включению питания (POR)

Микроконтроллеры семейства PIC12C5XX содержат схему сброса по включения питания (POR), которая обеспечивает сброс микроконтроллера в большинстве ситуаций включения питания.

Интегрированная схема POR удерживает микроконтроллер в состоянии сброса, пока напряжение V_{DD} не достигнет требуемого уровня. Для включения схемы POR необходимо соединить вывод GP3/-MCLR/ V_{PP} с V_{DD} или настроить вывод как GP3. Для реализации внутреннего резистора используется транзистор (в таблице 11-1 представлены значения подтягивающих резисторов в различных режимах работы микроконтроллера). Это не требует внешней RC цепочки, обычно используемой для сброса. Максимальное время нарастания V_{DD} смотрите в разделе "электрические характеристики".

Когда микроконтроллер переходит в режим нормальной работы из состояния сброса, рабочие параметры (напряжение питания, частота, температура и т.д.) должны соответствовать указанным в разделе "электрические характеристики". Если рабочие параметры не удовлетворяют требованиям, микроконтроллер должен находиться в состоянии сброса.

Упрощенную структурную схему сброса смотрите на рисунке 8-7.

Схема сброса по включению питания POR и таймер DRT связаны между собой (см. раздел 8.5). При сбросе POR сбрасывается таймер DRT, который начинает счет после перехода сигнала на выводе -MCLR в высокий логический уровень. Типовое время счета DRT до переполнения 18мс, после чего сигнал внутреннего сброса микроконтроллера перейдет в высокий логический уровень.

На рисунке 8-8 показан пример сброса микроконтроллера по включению питания, когда вывод -MCLR удерживается в низком логическом уровне после достижения напряжением питания требуемого уровня. Фактически микроконтроллер выйдет из состояния сброса через T_{DRT} после появления высокого уровня на -MCLR.

На рисунке 8-9 показана ситуация, когда скорость нарастания напряжения питания удовлетворяет требованиям, а вывод -MCLR соединен с V_{DD} через резистор или работает в режиме GP3. А на рисунке 8-10 показана ситуация, когда скорость нарастания напряжения питания слишком мала. Между началом отсчета таймера DRT и достижением на -MCLR (и V_{DD}) напряжения номинального уровня очень большой временной интервал. В этой ситуации, после завершения счета DRT, напряжение питания не достигнет требуемого уровня. Это может привести к ненормальной работе микроконтроллера. Для устранения подобных ситуаций рекомендуется применять внешние схемы сброса по включению питания.

Примечание. Когда микроконтроллер переходит в режим нормальной работы из состояния сброса, рабочие параметры (напряжение питания, частота, температура и т.д.) должны соответствовать указанным в разделе "электрические характеристики". Если рабочие параметры не удовлетворяют требованиям, микроконтроллер должен находиться в состоянии сброса.

Дополнительную информацию смотрите в документации AN607 "Power-up Trouble Shooting" и AN522 "Power-Up considerations".

C6poc POR Детектор Изменение сигнала питания на входе SLEEP GP3/MCLR/VPP Переполнение WDT MCLRE RESET s Q 8- разрядный асинхронный счетчик Генератор DRT OSC R $\overline{\mathbf{Q}}$ ВНУТРЕННИЙ СБРОС

Рис. 8-7 Упрощенная структурная схема сброса

Puc. 8-8 Временная диаграмма сброса микроконтроллера по включению питания (вывод -MCLR удерживается в низком логическом уровне)

Puc. 8-9 Временная диаграмма сброса микроконтроллера по включению питания (вывод -MCLR подключен V_{DD}) скорость нарастания V_{DD} удовлетворяет требованиям

Puc. 8-10 Временная диаграмма сброса микроконтроллера по включению питания (вывод -MCLR подключен V_{DD}) скорость нарастания V_{DD} не удовлетворяет требованиям

8.5 Таймер включения питания DRT

В PIC12C5XX таймер DRT запускается при каждом сбросе POR и при других сбросах в зависимости от режима работы тактового генератора (см. таблицу 8-5). Таймер DRT работает от собственного RC генератора. Микроконтроллер находится в состоянии сброса пока таймер DRT активен, что дает возможность достигнуть напряжению питания требуемого уровня и стабилизироваться частоте тактового генератора.

Схема тактового генератора, основанная на кварцевом или керамическом резонаторе, требует некоторого времени запуска для стабилизации частоты после включения питания. Интегрированный таймер DRT удерживает микроконтроллер в состоянии сброса в течение 18мс после появления на выводе -MCLR сигнала с высоким логическим уровнем (V_{IH}MCLR). Поэтому, не требуется настраивать вывод GP3/-MCLR/V_{PP} в режим -MCLR и подключать к нему внешнею RC цепочку. Это дает возможность уменьшить число внешних компонентов и использовать вывод как цифровой вход.

Время задержки DRT зависит от напряжения питания V_{DD} , рабочей температуры и имеет небольшой технологический разброс (см. раздел "электрические характеристики").

DRT всегда запускается после переполнения WDT. Это особенно важно для приложений, использующих WDT для автоматического выхода из режима SLEEP.

Таблица 8-5 Время задержки при различных видах сброса (типовое значение)

Режим генератора	Сброс POR	Последующие сбросы
XT, LP	18мс	18мс
EXTRC, INTRC	18мс	300мкс

8.6 Определение причины сброса микроконтроллера

С помощью битов GPWUF, - ТО и -PD в регистре STATUS можно определить причину сброса микроконтроллера (POR, сигнал -MCLR или переполнение WDT).

Таблица 8-6 Состояние некоторых битов регистра STATUS после сброса

GWUF	-TO	-PD	Тип сброса
0	0	0	Выход из режима SLEEP от WDT
0	0	1	Переполнение WDT
0	1	0	Сброс -MCLR в SLEEP режиме
0	1	1	Сброс по включению питания
0	u	u	Сброс -MCLR при нормальном режиме работы
1	1	0	Выход из режима SLEEP по изменению уровня входного сигнала

Обозначения: и = не изменяется

Примечание. Биты GPWUF, -TO и -PD не изменяют своего состояния пока не произойдет сброс микроконтроллера. Низкий логический уровень сигнала на выводе -MCLR не изменяет состояние битов -TO, -PD.

8.7 Сторожевой таймер WDT

Встроенный сторожевой таймер WDT работает от отдельного RC генератора, не требующего внешних компонентов. Это позволяет работать сторожевому таймеру WDT при выключенном тактовом генератора в SLEEP режиме микроконтроллера. В нормальном режиме работы и в режиме SLEEP при переполнении WDT происходит сброс микроконтроллера.

После сброса по переполнению WDT сбрасывается в '0' бит -TO регистра STATUS<4>.

WDT выключен, если WDTE = 0 в слове конфигурации (см. раздел 8.1). Доступ к слову конфигурации описан в документации по программированию микроконтроллеров PIC12C5XX.

8.7.1 Период WDT

WDT имеет номинальное время переполнения 18мс (без предделителя). Время переполнения зависит от температуры, напряжения питания V_{DD} и разброса технологических параметров микроконтроллера (см. раздел "электрические характеристики"). Если требуется большее время переполнения WDT, необходимо программно подключить предделитель в регистре OPTION с максимальным коэффициентом деления 1:128. С включенным предделителем время переполнения может достигать 2.3с.

Даже в самих плохих условиях работы требуется несколько секунд для переполнения WDT (минимальное напряжение питания V_{DD} , максимальная температура, максимальный коэффициент предделителя подключенного к WDT).

8.7.2 Рекомендации по работе с WDT

Команды CLRWDT и SLEEP сбрасывают сторожевой таймер и предделитель, если он подключен к WDT, откладывая сброс устройства. В регистре STATUS бит -TO=0, если произошел сброс по переполнению WDT.

Примечание. Биты PSA, PS2:PS0 находятся в регистре OPTION.

Таблица 8-7 Регистры и биты, связанные с работой WDT

Адрес	Имя	Бит 7	Бит 6	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Бит 0	Сброс POR	Другие сбросы
-	OPTION	-GPWU	-GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Обозначения: - = не используется, читается как 0; u = не изменяется; x = не известно; q = зависит от условий. Затененные биты не влияют на работу WDT.

8.8 Сброс при снижении напряжения питания

Условием сброса по снижению напряжения питания является уменьшение напряжения на V_{DD} ниже порогового уровня (но не до нуля) и последующее восстановление до номинального значения. В случае описанного снижения напряжения питания микроконтроллер должен быть сброшен.

Для сброса микроконтроллера при снижении напряжения питания можно использовать внешние схемы сброса, показанные на рисунках 8-12, 8-13 и 8-14.

Рис. 8-12 Схема внешнего сброса по снижению напряжения питания (1 вариант)

Примечания:

- 1. Эта схема будет сбрасывать микроконтроллер, когда V_{DD} будет ниже V_Z + 0.7B, где V_Z -напряжение стабилизации стабилитрона.
- 2. На рисунке 8-6 показана схема вывода -MCLR, а в таблице 11-1 представлены значения внутреннего подтягивающего резистора.

Puc. 8-13 Схема внешнего сброса по снижению напряжения питания (2 вариант)

Примечания:

1. Недорогая схема сброса, но менее точная по сравнению с 1 вариантом. Транзистор Q1 закрывается, когда напряжение питания ниже определенного порога.

$$Vdd \bullet \frac{R1}{R1 + R2} = 0.7$$

- 2. На рисунке 8-6 показана схема вывода -MCLR, а в таблице 11-1 представлены значения внутреннего подтягивающего резистора.
- 3. Номиналы резисторов должны быть выбраны с учетом типа транзистора.

Рис. 8-14 Схема внешнего сброса по снижению напряжения питания (3 вариант)

Примечание. В данной схеме сброса по снижение напряжения питания используется супервизор компании Microchip MCP809. Микросхемы семейств супервизоров MCP8XX и MCP1XX имеют выходы с открытым коллектором, активным низким/высоким уровнем сигнала сброса и 7 значений порогового напряжения для устройств с напряжением питания 3В и 5В.

8.9 Режим энергосбережения SLEEP

Микроконтроллер может быть переведен в режим энергосбережения SLEEP, а затем выведен из него по одному из условий.

8.9.1 Режим SLEEP

Переход в режим энергосбережения происходит по команде SLEEP. При переходе в режим SLEEP сторожевой таймер WDT сбрасывается (если включен), но продолжает работать. В регистре STATUS бит -PD сбрасывается в '0', бит -TO устанавливается в '1', тактовый генератор микроконтроллера выключен. Порты ввода/вывода остаются в том же состоянии, что и до выполнения команды SLEEP (высокий уровень, низкий уровень, третье состояние).

Сброс, сгенерированный при переполнении WDT не переводит сигнал на входе -MCLR в низкий логический уровень.

Для снижения энергопотребления в SLEEP режиме все каналы ввода/вывода должны быть подключены к V_{DD} или V_{SS} при отсутствии токов из внешней схемы через выводы портов. Выводы находящиеся в третьем состоянии должны иметь высокий или низкий уровень сигнала, чтобы избежать токов переключения входных буферов. Вход T0СКІ должен быть подключен к V_{DD} или V_{SS} для снижения энергопотребления. Должны учитываться внутренние подтягивающие резисторы. На входе -MCLR должен быть высокий уровень сигнала.

8.9.2 Выход из режима SLEEP

Микроконтроллер выйдет из режима SLEEP по одному из следующих событий:

- 1. Внешний сброс по сигналу на входе GP3/-MCLR/V_{PP}, если вывод настроен как -MCLR.
- 2. Переполнение сторожевого таймера WDT (если он включен).
- 3. Изменение уровня сигнала на входе GP0, GP1 или GP3/-MCLR/V_{PP}, если разрешено.

Биты GPWUF, -TO и -PD в регистре STATUS могут использоваться для определения причины сброса микроконтроллера. Бит -PD сбрасывается в '0' при переходе в режим SLEEP. Бит -TO сбрасывается в '0', если произошло переполнение WDT (и выходу из режима SLEEP). Бит GPWUF устанавливается в '1', если выход из режима SLEEP произошел по изменению входного сигнала на выводах GP0, GP1 или GP3.

Примечание. Перед входом в SLEEP режим необходимо прочитать из регистра GPIO состояние портов ввода/вывода, т.к. выход из SLEEP режима происходит при изменении входного сигнала по сравнению с последним считыванием из порта. Если изменение сигнала на входах произошло до перехода в SLEEP режим, то микроконтроллер немедленно выйдет из режима SLEEP после перехода в него.

При выходе из SLEEP режима по любой причине WDT сбрасывается.

8.10 Защита кода программы

Если защита кода программы не была включена, то память программ может быть прочитана для проверки программирования.

Первые 64 слова памяти программ в PIC12C5XX доступны для чтения независимо от состояния бита защиты.

В РІС12С508/509 последняя ячейка памяти программ не может быть прочитана при включенной защите.

В PIC12C508A/509A/CR509A/CE518/CE519 последняя ячейка памяти программ может быть прочитана независимо от состояния бита зашиты.

8.11 Размещение идентификатора ID

Четыре ячейки памяти программ предназначены для размещения идентификатора, которые могут использоваться для сохранения контрольной суммы или другой информации. Эти ячейки недоступны программе микроконтроллера, но могут быть прочитаны и изменены при программировании микроконтроллера. Используются только 4 младших бита каждой ячейки (старшие 8 бит должны быть оставлены не запрограммированными).

8.12 Внутрисхемное программирование ICSP

Микроконтроллеры PIC12C5XX могут быть запрограммированы по последовательному интерфейсу в готовом изделии. Программирование выполняется по двум линиям последовательно интерфейса (данные, синхронизация) и трем дополнительным линиям: напряжение питания, общий провод, напряжение программирования. Это позволяет изготавливать платы с не запрограммированными микроконтроллерами, а затем загружать в них программу перед поставкой изделия. Данная функция также позволяет записывать последнюю версию программного обеспечения и настраивать программу микроконтроллера для каждого изделия.

Микроконтроллер переходит в режим программирования/проверки при удержании на выводах GP0, GP1 низкого уровня во время перехода сигнала на входе -MCLR от $V_{\rm IL}$ к $V_{\rm IHH}$ (см. спецификацию программирования микроконтроллера). После этого GP1 становится тактовым входом, GP0 входом данных. Оба вывода имеют входные триггеры Шмидта.

После перехода в режим программирования/проверки можно передать 6-разрядную команду. В зависимости от типа команды можно записать/прочитать 12-разрядные данные из микроконтроллера. Дополнительную информацию смотрите в спецификации программирования PIC12C5XX. На рисунке 8-15 показана типовая схема включения микроконтроллера для внутрисхемного программирования.

Puc. 8-15 Типовая схема включения микроконтроллера для внутрисхемного программирования

9.0 Система команд

Каждая команда микроконтроллеров PIC12C5XX состоит из одного 12-разрядного слова, разделенного на код операции (OPCODE), определяющий тип команды и один или несколько операндов, определяющие операцию команды. Полный список команд смотрите в таблице 9-2. Команды разделены на следующие группы: байт ориентированные команды, бит ориентированные команды управления и операций с константами. Описание полей кода операции смотрите в таблице 9-1.

Для байт ориентированных команд 'f является указателем регистра (определяет какой из 32 регистров будет адресован), а 'd' указателем адресата результата. Указатель регистра определяет, какой регистр должен использоваться в команде. Указатель адресата определяет, где будет сохранен результат. Если 'd'=0, результат сохраняется в регистре W. Если 'd'=1, результат сохраняется в регистре, который используется в команде.

В бит ориентированных командах 'b' определяет номер бита участвующего в операции, а 'f' - указатель регистра, который содержит этот бит.

В командах управления или операциях с константами 'k' представляет восемь или девять бит константы или значения литералов.

Все команды выполняются за один машинный цикл, кроме команд условия, в которых получен истинный результат и инструкций изменяющих значение счетчика команд РС. В случае выполнения команды за два машинных цикла, во втором цикле выполняется инструкция NOP. Один машинный цикл состоит из четырех тактов генератора. Для тактового генератора с частотой 4 МГц все команды выполняются за 1мкс. Если условие истинно или изменяется счетчик команд РС, команда выполняется за 2мкс.

Мнемоника команд, поддерживаемая ассемблером MPASM, показана в таблице 9-2. На рисунке 9-1 показан форма команд трех основных групп.

Во всех примерах используется следующий формат шестнадцатеричных чисел: 0xhh, где h - шестнадцатеричная цифра.

Таблица 9-1 Описание полей кода операции

Поле	Описание
f	Адрес регистра (от 0x00 до 0x1F)
W	Рабочий регистр (аккумулятор)
b	Номер бита в 8-разрядном регистре
k	Константа (данные или метка)
X	Не имеет значения (0 или 1). Ассемблер
	генерирует х=0 для совместимости
	программы микроконтроллера с
	инструментальными средствами
d	Указатель адресата результата операции:
	d = 0 - результат сохраняется в регистре w
	d = 1 - результат сохраняется в регистре f
	По умолчанию d = 1
label	Имя метки
TOS	Вершина стека
PC	Счетчик команд
WDT	Сторожевой таймер
-TO	Флаг переполнения WDT
-PD	Флаг сброса по включению питания
dest	Приемник, регистр w или регистр памяти
[]	Дополнительные параметры
()	Содержимое
\rightarrow	Присвоение
< >	Битовое поле
€	Из набора
Курсив	Термин, определяемый пользователем

Рис 9-1 Форма команд трех основных групп

ьаит ори	ентиро	ванн	ные с	пера	ции с регис	трами
11		6	5	4		0
OPO	CODE		d	f	(№ в файл	ie)
d = 0 -	результ	ат с	охра	няетс	ЯBW	
d = 1 -	результ	ат с	oxpa	няетс	явf	
f - 5-pa	зрядны	й ад	ipec p	егист	гра	
Бит орие	нтирова	анні	ые ог	терац	ии с регист	рами
11	8	7	5	4		0
OPC	ODE		b	f	(№ в файл	ie)
·						
b - 3-p	азряднь	ий но	омер	бита	в регистре	
	азряднь азрядны				в регистре гра	
f - 5-pa	азрядны	й ад	ipec p	егист		стантамі
f - 5-ра Команды	азрядны	й ад	ipec p	егист	гра	с тантам і
f - 5-ра Команды Общее 11	азрядны	й ад 1ени	црес р 1 я и с	оегист опера	гра	
f - 5-ра Команды Общее 11 ОР	азрядны управл	й ад 1ени 8	трес р 1 я и с 7	регист опера k (i	гра	
f - 5-ра Команды Общее 11 ОР	азрядны управл CODE азрядно	й ад 1ени 8 е зн	тя и с 7 ачені	регист опера <u>k (</u> и	гра иций с конс константа)	
f - 5-ра Команды Общее 11 ОР k - 8-р	азрядны управл CODE азрядно	й ад 1ени 8 е зн	тя и с 7 ачені	регист опера <u>k (</u> и	гра иций с конс константа)	
f - 5-ра Команды Общее 11 ОР k - 8-р	азрядны управл СОDE азрядно инстр	й ад 1ени 8 е зн	т и с т т т т т т т т т т т т т т т т т	k (и ие	гра иций с конс константа)	0

Таблица 9-2 Список команд микроконтроллеров PIC12C5XX

Мнемоника		Описание	Циклов	12-раз	ряднь	ый код	Изм.	Прим.
команд	ды	Описание	циклов	Бит 11		Бит 0	флаги	прим.
Байт орие	нтиров	анные команды						
ADDWF	f,d	Сложение W и f	1	0001	11df	ffff	C,DC,Z	1,2, 4
ANDWF	f,d	Побитное 'И' W и f	1	0001	01df	ffff	Z	2,4
CLRF	f	Очистить f	1	0000	011f	ffff	Z	4
CLRW	-	Очистить W	1	0000	0100	0000	Z	
COMF	f,d	Инвертировать f	1	0010	01df	ffff	Z	
DECF	f,d	Вычесть 1 из f	1	0000	11df	ffff	Z	2,4
DECFSZ	f,d	Вычесть 1 из f и пропустить если 0	1(2)	0010	11df	ffff		2,4
INCF	f,d	Прибавить 1 к f	1	0010	10df	ffff	Z	2,4
INCFSZ	f,d	Прибавить 1 к f и пропустить если 0	1(2)	0011	11df	ffff		2,4
IORWF	f,d	Побитное 'ИЛИ' W и f	1	0001	00df	ffff	Z	2,4
MOVF	f,d	Переслать f	1	0010	00df	ffff	Z	2,4
MOVWF	f	Переслать W в f	1	0000	001f	ffff		1,4
NOP	-	Нет операции	1	0000				
RLF	f,d	Циклический сдвиг f влево через перенос	1	0011	01df	ffff	С	2,4
RRF	f,d	Циклический сдвиг f вправо через перенос	1	0011	00df	ffff	С	2,4
SUBWF	f,d	Вычесть W из f	1	0000	10df	ffff	C,DC,Z	1,2,4
SWAPF	f,d	Поменять местами полубайты в регистре f	1	0011	10df	ffff		2,4
XORWF	f,d	Побитное 'исключающее ИЛИ' W и f	1	0001	10df	ffff	Z	2,4
Бит ориен	тирова	нные команды						
BCF	f,b	Очистить бит b в регистре f	1	0100	bbbf	ffff		2,4
BSF	f,b	Установить бит b в регистре f	1	0101	bbbf	ffff		2,4
BTFSC	f,b	Проверить бит b в регистре f, пропустить если 0	1(2)	0110	bbbf	ffff		
BTFSS	f,b	Проверить бит b в регистре f, пропустить если 1	1(2)	0111	bbbf	ffff		
	управл	ения и операций с константами						
ANDLW	k	Побитное 'И' константы и W	1	1110			Z	
CALL	k	Вызов подпрограммы	2	1001				1
CLRWDT	-	Очистить WDT	1	0000			-TO,-PD	
GOTO	k	Безусловный переход	2	101k				
IORLW	k	Побитное 'ИЛИ' константы и W	1	1101			Z	
MOVLW	k	Переслать константу в W	1	1100				
OPTION	-	Загрузка регистра OPTION	1	0000	0000	0010		
RETLW	k	Возврат из подпрограммы с загрузкой константы в W	2	1000	kkkk	kkkk		
SLEEP	-	Перейти в режим SLEEP	1	0000	0000	0011	-TO,-PD	
TRIS	f	Загрузка регистра TRIS	1	0000	0000	Offf		3
XORLW	k	Побитное 'исключающее ИЛИ' константы и W	1	1111	kkkk	kkkk	Z	

Примечания:

- 1. При любом изменении счетчика команд PC, кроме команды GOTO, 9-й бит PC всегда сбрасывается в '0' (см. раздел 4.6).
- 2. При выполнении операции "чтение модификация запись" с портом ввода/вывода исходные значения считываются с выводов порта, а не из выходных защелок. Например, если в выходной защелке было записана '1', а на соответствующем выходе низкий уровень сигнала, то обратно будет записано значение '0'.
- 3. Инструкция TRIS f, где f=6, загружает из регистра W во внутреннюю защелку направление каналов ввода/вывода порта GPIO. Если бит равен 1, то соответствующий вывод переходит в 3-е состояние, а выходной буфер выключен.
- 4. При выполнении записи в TMR0 (и d=1) предделитель TMR0 сбрасывается, если он подключен к модулю TMR0.

9.1 Подробное описание команд

ADDWF	Сложение W и f
Синтаксис:	[/abe/] ADDWF f,d
Операнды:	$0 \le f \le 31$
	$d \in [0,1]$
Операция:	$(W) + (f) \rightarrow (dest)$
Измен. флаги:	C, DC, Z 0001 11df ffff
Код:	Сложить содержимое регистров W и 'f'. Если d=0,
Описание:	результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.
Слов:	1
Циклов:	1
Пример:	ADDWF FSR,0
	До выполнения команды
	W = 0x17
	FSR = 0xC2
	После выполнения команды W = 0xD9
	FSR = 0xC2
ANDLW	Побитное 'И' константы и W
Синтаксис:	[/abe/] ANDLW k
Операнды:	$0 \le k \le 255$
Операция:	(W) .AND. $k \rightarrow (W)$
Измен. флаги:	Z
Код:	1110 kkkk kkkk
Описание:	Выполняется побитное 'И' содержимого регистра W и 8-разрядной константы 'k'. Результат сохраняется в регистре W.
Слов:	1
Циклов:	1
Пример:	ANDLW 0x5F
	До выполнения команды
	W = 0xA3
	После выполнения команды
	W = 0x03
ANDWF	Побитное 'И' W и f
Синтаксис:	[<i>label</i>] ANDWF f,d 0 ≤ f ≤ 31
Операнды:	d ∈ [0,1]
Операция:	(W) .AND. (f) \rightarrow (dest)
Измен. флаги:	Z
Код:	0001 01df ffff
Описание:	Выполняется побитное 'И' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.
Слов:	результат сохраняется в регистре т.
Циклов:	1
Пример:	ANDWF FSR,1
p	До выполнения команды
	W = 0x17 FSR = 0xC2
	После выполнения команды W = 0x17 FSR = 0x02

BCF	Очистить бит b в регистре f				
Синтаксис:	[/abe/] BC	F f,b			
Операнды:	$0 \le f \le 31$ $0 \le b \le 7$				
Операция:	$0 \rightarrow (f < b >)$				
Измен. флаги:	Нет				
Код:	0100	bbbf	ffff		
Описание:	Очистить бит	'b' в регистре 'f'			
Слов:	1				
Циклов:	1				
Пример:	BCF	FLAG_REG,7			
	До выполнени	ия команды			
		FLAG_REG = 0	xC7		
	После выполн	нения команды			
		FLAG_REG = 0	x47		

BSF Установить бит b в регистре f

_			-	
Синтаксис:	[/abe/] BS	F f,b		
Операнды:	$0 \le f \le 31$ $0 \le b \le 7$			
Операция:	$1 \rightarrow (f < b >)$			
Измен. флаги:	Нет			
Код:	0101	bbbf	ffff	
Описание:	Установить бы	ит 'b' в регистре	'f'.	
Слов:	1			
Циклов:	1			
Пример:	BSF	FLAG_REG,7		
	До выполнени	ія команды		
		FLAG_REG = 0	x0A	
	После выполнения команды			
		FLAG_REG = 0	x8A	

BTFSC	Проверить (бит b в регист	гре f, пропустить	если 0
Синтаксис:	[label] B	TFSC 1	f,b	
Операнды:	$0 \le f \le 31$ $0 \le b \le 7$			
Операция:	пропустить е	если (f) = 0		
Измен. флаги:	Нет			
Код:	0110	bbbf	ffff	
Описание:	следующая и Если бит 'b' в инструкция н	инструкция. в регистре 'f' ра не выполняетс	авен '1' , то испол авен '0' , то следу я, команда выпол полняется NOP.	ющая
Слов:	1			
Циклов:	1(2)			
Пример:	HERE	BTFSC	FLAG,1	
	FALSE	GOTO	PROCESS_COD	ÞΕ
	TRUE	•		
		•		
	До выполнен	ния команды		
		РС = адрес Н	HERE	
	После выпол	пнения команд Если FLAG< PC = адрес Т Если FLAG< PC = адрес F	1> = 0, 「RUE 1> = 1,	

BTFSS	Проверить б	ит b в регистр	е f, пропустить если 1	
Синтаксис:	[label] B1	TFSS f,b)	
Операнды:	$0 \le f \le 31$ $0 \le b \le 7$			
Операция:	пропустить ес	сли (f) = 1		
Измен. флаги:	Нет			
Код:	0111	bbbf	ffff	
Описание:	следующая и Если бит 'b' в инструкция не	нструкция. регистре 'f' рав	вен '0' , то исполняется вен '1' , то следующая команда выполняется за два опняется NOP	
Слов:	1	pom driiaio 22mi		
Циклов:	1(2)			
Пример:	HERE	BTFSS	FLAG,1	
	FALSE	GOTO	PROCESS_CODE	
	TRUE	•		
		•		
	До выполнен	ия команды		
		РС = адрес НЕ	ERE	
	После выполнения команды			
		ECЛИ FLAG<1> PC = адрес FA ECЛИ FLAG<1> PC = адрес TR	LSE = 1,	

CALL	Вызов подп	рограммы		
Синтаксис:	[label] Ci	ALL k		
Операнды:	$0 \le k \le 255$			
Операция:	$(PC) + 1 \rightarrow TC$ $k \rightarrow PC < 7:0 >$, (STATUS < 6:5 $0 \rightarrow PC < 8 >$		>	
Измен. флаги:	Нет			
Код:	1001	kkkk	kkkk	
Описание:	(РС+1) помец загружаются Два старших РС<10:9> из	цается в верш из кода коман, бита загружак регистра STAT	ес следующей ини ину стека. Восем ды в счетчик ком отся в счетчик ком ГUS, PC<8> сбрася за два цикла.	ь бит адреса анд РС<7:0>. ианд
Слов:	1			
Циклов:	2			
Пример:	HERE	CALL	THERE	
	До выполнен	ия команды		
	PC = адрес HERE			
	После выпол	нения команді PC = адрес Т TOS = адрес	HERE	

CLRF	Очистить f				
Синтаксис:	[label] Cl	LRF	f		
Операнды:	$0 \leq f \leq 31$				
Операция:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Измен. флаги:	Z				_
Код:	0000	011f		ffff	
Описание:	Очистить сод	цержимое ре	гистра	'f' и установі	ить флаг Z
Слов:	1				
Циклов:	1				
Пример:	CLRF	FLAG_REG	ì		
	До выполнен	ия команды			
		FLAG_REG	S = 0x5A	١	
	После выпол	нения коман FLAG_REG Z = 1		1	

CLRW	Очистить W
Синтаксис:	[label] CLRW
Операнды:	Нет
Операция:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Измен. флаги:	Z
Код:	0000 0100 0000
Описание:	Очистить содержимое регистра W и установить флаг Z
Слов:	1
Циклов:	1
Пример:	CLRW
	До выполнения команды
	W = 0x5A
	После выполнения команды
	W = 0x00
	Z = 1
OL DIMPT	O MOT

CLRWDT Очистить WDT

Синтаксис: CLRWDT [label] Операнды: Нет $00h \rightarrow WDT$, $00h \rightarrow предделитель WDT,$ Операция: $1 \rightarrow -TO$ $1\to \text{-PD}$ Измен. флаги: -TO, -PD 0000 0100 Код: 0000 Инструкция CLRWDT сбрасывает WDT и предделитель, Описание: если он подключен к WDT. В регистре STATUS

устанавливает биты -TO и -PD.

Слов: 1 Циклов: 1

CLRWDT Пример:

До выполнения команды

Счетчик WDT = ?

После выполнения команды

Счетчик WDT = 0 Предделитель WDT = 0

-TO = 1 - PD = 1

COMF Инвертировать f

Синтаксис:	[label] CC	DMF f,d		
Операнды:	$0 \le f \le 31$ $d \in [0,1]$			
Операция:	$(\text{-f}) \to (\text{dest})$			
Измен. флаги:	Z			
Код:	0010	01df	ffff	
Описание:		раняется в рег	егистре 'f'. Если истре W. Если d	
Слов:	1			
Циклов:	1			
Пример:	COMF	REG1,0		
	До выполнени	ия команды		
		REG1 = 0x13		

После выполнения команды

REG1 = 0x13

DECF	Вычесть 1 из	3 f		
Синтаксис:	[label] DE	CF f,d		
Операнды:	$0 \le f \le 31$ $d \in [0,1]$			
Операция:	(f) - 1 \rightarrow (dest))		
Измен. флаги:	Z			
Код:	0000	11df	ffff	
Описание:		раняется в рег	ое регистра 'f'. Если d= истре W. Если d=1, резу	
Слов:	1			
Циклов:	1			
Пример:	DECF	CNT,1		
	До выполнени	ия команды CNT = 0x01 Z = 0 нения команды CNT = 0x00 Z = 1		

DECFSZ Вычесть 1 из f и пропустить если 0

DE01 02	DBI-ICCIB I M	3 i n lipoliye i	HID COMM 0	
Синтаксис:	[label] D	ECFSZ	f,d	
Операнды:	$0 \le f \le 31$ $d \in [0,1]$			
Операция:	(f) - 1 \rightarrow (dest	t); пропустить	если результат р	авен 0
Измен. флаги:	Нет			
Код:	0000	11df	ffff	
Описание:	результат со сохраняется Если результ инструкция. В инструкция н	храняется в р в регистре 'f'. гат не равен '(Если результа е выполняетс	кимое регистра 'f'. егистре W. Если о о', то исполняется ат равен '0', то слея, команда выполняется NOP.	d=1, результат я следующая едующая
Слов:	1			
Циклов:	1(2)			
Пример:	HERE	DECFSZ	CNT,1	
		GOTO	LOOP	
	CONTINUE	•		
		•		
	До выполнен	ия команды		
		PC = адрес I	HERE	
	После выполнения команды CNT = CNT - 1 Если CNT = 0, PC = адрес CONTINUE Если CNT ≠ 0, PC = адрес HERE + 1			

GOTO	Безусловныі	й переход		
Синтаксис:	[label] G0	OTO k		
Операнды:	$0 \le k \le 511$			
Операция:	$k \rightarrow PC < 8:0>$, (STATUS < 6:5	>) → PC<10:9>		
Измен. флаги:	Нет			
Код:	101k	kkkk	kkkk	
Описание:	загружаются і Два старших (езусловный пере из кода командь бита загружаюто регистра STATU за два цикла.	І В СЧЕТЧИК КОМА СЯ В СЧЕТЧИК КОМ	анд PC<8:0>. ианд
Слов:	1			
Циклов:	2			
Пример:	GOTO	THERE		
	После выполн	нения команды		
		PC = адрес THI	ERE	

INCF	Прибавить 1	κf		
Синтаксис:	[label] IN	CF f,d		
Операнды:	$0 \le f \le 31$ $d \in [0,1]$			
Операция:	(f) + 1 \rightarrow (dest	:)		
Измен. флаги:	Z			
Код:	0010	10dff	ffff]
Описание:		овать содержим краняется в реги з регистре 'f'.		
Слов:	1			
Циклов:	1			
Пример:	INCF	CNT,1		
	До выполнени	ия команды		
		CNT = 0xFF Z = 0		
	После выполн	нения команды CNT = 0x00 Z = 1		

INCFSZ	Прибавить 1 к f и пропустить если 0			
Синтаксис:	[label] IN	NCFSZ	f,d	
Операнды:	$0 \le f \le 31$ $d \in [0,1]$			
Операция:	(f) + 1 \rightarrow (des	st); пропустить	если результат ра	авен 0
Измен. флаги:	Нет			
Код:	0011	11df	ffff	
Описание:	результат со сохраняется Если резуль инструкция инструкция н	храняется в р в регистре 'f'. тат не равен '(Если результа не выполняетс	кимое регистра 'f'. I егистре W. Если d D', то исполняется ат равен '0', то сле я, команда выполн ыполняется NOP.	=1, результат следующая дующая
Слов:	1			
Циклов:	1(2)			
Пример:	HERE	INCFSZ	CNT,1	
		GOTO	LOOP	
	CONTINUE	•		
		•		
	До выполнен	ния команды		
		РС = адрес I	HERE	
	После выпол	пнения команд CNT = CNT - Если CNT = PC = адрес (Если CNT ≠ PC = адрес (0, CONTINUE 0,	

IORLW	Побитное 'ИЛИ' константы и W
Синтаксис:	[label] IORLW k
Операнды:	$0 \le k \le 255$
Операция:	(W) .OR. $k \rightarrow (W)$
Измен. флаги:	Z
Код:	1101 kkkk kkkk
Описание:	Выполняется побитное 'ИЛИ' содержимого регистра W и 8-разрядной константы 'k'. Результат сохраняется в регистре W.
Слов:	1
Циклов:	1
Пример:	IORLW 0x35
	До выполнения команды
	W = 0x9A
	После выполнения команды
	W = 0xBF

IORWF	Побитное 'ИЈ	ПИ' W и f		
Синтаксис:	[label] IO	RWF f,d		
Операнды:	$0 \le f \le 31$ $d \in [0,1]$			
Операция:	(W) .OR. (f) \rightarrow	(dest)		
Измен. флаги:	Z			
Код:	0001	00df	ffff	
Описание:	'f'. Если d=0, р	побитное 'ИЛИ' результат сохра т сохраняется в	няется в регист	
Слов:	1			
Циклов:	1			
Пример:	IORWF	RESULT,0		
	До выполнени	ия команды RESULT = 0x13 W = 0x91	1	
	После выполн	нения команды RESULT = 0x13 W = 0x93	1	

MOVF	Переслать 1

Синтаксис:	[/abe/] MOVF f,d
Операнды:	$0 \le f \le 31$ $d \in [0,1]$
Операция:	$(f) \rightarrow (dest)$
Измен. флаги:	Z
Код:	0010 00df ffff
Описание:	Содержимое регистра 'f' пересылается в регистр адресата. Если d=0, значение сохраняется в регистре W. Если d=1, значение сохраняется в регистре 'f'. d=1 используется для проверки содержимого регистра 'f' на ноль.
Слов:	1
Циклов:	1
Пример:	MOVF FSR,0
	После выполнения команды

W = значение регистра FSR

MOVLW	Переслать	ь константу	з W	
Синтаксис:	[label]	MOVLW	k	
Операнды:	$0 \le k \le 255$			
Операция:	$k \rightarrow (W)$			
Измен. флаги:	Нет			
Код:	1100	kkkl	2	kkkk
Описание:	Переслать	константу 'k'	в реги	истр W.
Слов:	1			
Циклов:	1			
Пример:	MOVLW	0x5A		
	После вып	олнения ком	анды	
		W = 0x5A		

MOVWF	Переслать	Wвf		
Синтаксис:	[/abe/] I	MOVWF f		
Операнды:	$0 \le f \le 31$			
Операция:	$(W) \to (f)$			
Измен. флаги:	Нет			_
Код:	0000	001f	ffff]
Описание:	Переслать	содержимое регис	тра W в регист	- г р 'f '.
Слов:	1			
Циклов:	1			
Пример:	MOVWF	REG		
	До выполне	ения команды REG = 0xFF W = 0x4F		
	После выпо	лнения команды REG = 0x4F W = 0x4F		

NOP	Нет операциі	1	
Синтаксис:	[label] NC)P	
Операнды:	Нет		
Операция:	Нет операции		
Измен. флаги:	Нет		
Код:	0000	0000	0000
Описание:	Нет операции		
Слов:	1		
Циклов:	1		
Пример:	NOP		

OBTION	O O O O O O O O O O O O O O O O O O O
OPTION	Загрузить регистр OPTION

Синтаксис:	[label] OF	PTION		
Операнды:	Нет			
Операция:	$(W) \to OPTIOI$	V		
Измен. флаги:	Нет			
Код:	0000	0000	0010	
Описание:	Переслать со,	держимое регис	стра W в регист	p OPTION.
Слов:	1			
Циклов:	1			
Пример:	OPTION			
	До выполнени	ія команды		
		W = 0x07		

После выполнения команды

OPTION = 0x07

RETLW	Возврат из п	одпрограмм	ы с за	грузкой кон	станты в W
Синтаксис:	[/abe/] F	RETLW	k		
Операнды:	$0 \le k \le 255$				
Операция:	$k \to (W) \\ TOS \to PC$				
Измен. флаги:	Нет				_
Код:	1000	kkkk		kkkk	
Описание:	В регистр W з стека TOS заг выполняется	ружается в сч			
Слов:	1				
Циклов:	2				
Пример:		CALL	TAI	BLE	
		•			
		•			
	TABLE	ADDWF	PC	L,f	
		RETLW	k1		
		RETLW	k2		
		•			
		•			
		RETLW	kn		
	До выполнени	ия команды			
		W = 0x07			
	После выполн	нения команд	Ы		
		W = значен	ие k8		

RLF Циклический сдвиг f влево через перенос

RRF Циклический сдвиг f вправо через перенос

Синтаксис: [/abe/] RRF f,d

Oперанды: $\begin{array}{c} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$ Операция: См. описание

Измен. флаги: С

Код: 0011 00df ffff

Выполняется циклический сдвиг вправо содержимого регистра 'f через бит С регистра STATUS. Если d=0,

Описание: результат сохраняется в регистре W. Если d=1, результат

сохраняется в регистре 'f'.

С Регистр 'f'

Слов: 1 Циклов: 1

Пример: RRF REG1,0

До выполнения команды

REG1 = 1110 0110

C = 0

После выполнения команды

REG1 = 1110 0110 W = 0111 0011

C = 0

SLEEP Перейти в режим SLEEP

Синтаксис: [label] SLEEP

Операнды: Нет

 $00h \to WDT$

Опорация: 00h ightarrow предделитель WDT

Операция: $1 \rightarrow -TO$

 $0 \to \text{-} \, PD$

Измен. флаги: -TO, -PD

Код: 0000 0000 0011

Сбросить флаг включения питания -PD в '0'. Установить флаг переполнения WDT -TO в '1'. Очистить таймер WDT

и его предделитель. Перевести микроконтроллер в

режим SLEEP и выключить тактовый генератор.

Подробное описание смотрите в разделе 8.9.

Слов: 1 Циклов: 1

Описание:

Пример: SLEEP

SUBWF	Вычесть W из f		
Синтаксис:	[/abe/] SUBWF f,d		
Операнды:	$0 \le f \le 31$ $d \in [0,1]$		
Операция:	$(f) - (W) \to (dest)$		
Измен. флаги:	C, DC, Z		
Код:	0000 10df ffff		
Описание:	Вычесть содержимое регистра W из регистра 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.		
Слов:	1		
Циклов:	1		
Пример 1:	SUBWF REG1,1		
	До выполнения команды REG1 = 3 W = 2 C = ? Z = ?		
	После выполнения команды		
	REG1 = 1 W = 2 C =1 ; результат положительный Z = 0		
Панта От	D		
Пример 2:	До выполнения команды REG1 = 2 W = 2 C = ? Z = ?		
	После выполнения команды		
	REG1 = 0 W = 2 C =1 ; результат нулевой Z = 1		
Примор 2:			
Пример 3:	До выполнения команды REG1 = 1 W = 2 C = ? Z = ?		
	После выполнения команды REG1 = 0xFF W = 2 C =0 ; результат отрицательный Z = 0		

SWAPF	Поменять местами полубайты в регистре f			
Синтаксис:	[/abe/] SV	VAPF f,	,d	
Операнды:	$0 \le f \le 31$ $d \in [0,1]$			
Операция:	$(f<3:0>) \rightarrow (de)$ $(f<7:4>) \rightarrow (de)$	•		
Измен. флаги:	Нет			_
Код:	0011	10df	ffff	
Описание:	регистра 'f'. Е	сли d=0, резул	й и младший пол пьтат сохраняетс краняется в регис	я в регистре
Слов:	1			
Циклов:	1			
Пример:	SWAPF	REG,0		
	До выполнени	ия команды		
		REG = 0xA5		
	После выполн	нения команды REG = 0xA5 W = 0x5A	Ы	

TRIS Загрузить регистр TRIS

Синтаксис:	[/abe/] T	RIS f	
Операнды:	f = 6		
Операция:	$(W) \to TRIS$	регистр f	
Измен. флаги:	Нет		
Код:	0000	0000	Offf
Описание:	Переслать с	одержимое W в	регистр TRIS ('f
Слов:	1		
Циклов:	1		
Пример:	TRIS	GPIO	
	До выполне	ния команды	

W = 0xA5

После выполнения команды

TRIS = 0xA5

Примечание. Для PIC12C5XX 'f' всегда должно равняться 6.

Побитное 'исключающее ИЛИ' константы и W	
[label] XORLW k	
$0 \le k \le 255$	
(W) .XOR. $k \rightarrow (W)$	
Z	
1111 kkkk kkk	
Выполняется побитное 'исключающее ИЛИ' содержимого регистра W и 8-разрядной константы 'k'. Результат сохраняется в регистре W.	
1	
1	
XORLW 0xAF	
До выполнения команды	
W = 0xB5	
После выполнения команды	
W = 0x1A	
	[/abe/] XORLW k $0 \le k \le 255$ (W) .XOR. k → (W) Z 1111 kkkk kkkk Bыполняется побитное 'исключающее ИЛИ' содержимого регистра W и 8-разрядной константы 'k'. Результат сохраняется в регистре W. 1 1 XORLW 0xAF До выполнения команды $W = 0xB5$ После выполнения команды

XORWF	Побитное 'исключающее ИЛИ' W и f
Синтаксис:	[/abe/] XORWF f,d
Операнды:	$0 \le f \le 31$ $d \in [0,1]$
Операция:	(W) .XOR. (f) \rightarrow (dest)
Измен. флаги:	Z
Код:	0001 10df ffff
Описание:	Выполняется побитное 'исключающее ИЛИ' содержимого регистров W и 'f'. Если d=0, результат сохраняется в регистре W. Если d=1, результат сохраняется в регистре 'f'.
Слов:	1
Циклов:	1
Пример:	XORWF REG,1
	До выполнения команды REG = 0xAF W = 0xB5
	После выполнения команды REG = 0x1A W = 0xB5

10.0 Поддержка разработчиков

10.1 Инструментальные средства проектирования

Микроконтроллеры PICmicro обеспечены большим спектром аппаратных и программных инструментальных средств проектирования:

- Внутрисхемный эмулятор реального времени MPLAB-ICE;
- Недорогой эмулятор ICEPIC для PIC16C5X и PIC16CXXX;
- Универсальный программатор PRO MATE II;
- Недорогой программатор PICSTART для начала работы с PICmicro;
- SIMICE:
- Недорогая демонстрационная плата PICDEM-1;
- Недорогая демонстрационная плата PICDEM-2;
- Недорогая демонстрационная плата PICDEM-3;
- Ассемблер MPASM;
- Программный симулятор MLAB-SIM;
- MLAB-C17 (С компилятор);
- Интегрированная среда проектирования MPLAB-IDE;
- Среда проектирования *fuzzy*TECH-MP;
- Среда проектирования и программатор для KeeLoq.

10.2 Универсальный эмулятор MPLAB-ICE

Универсальный эмулятор MPLAB-ICE обеспечивает разработчиков полным набором инструментальных средств для проектирования устройств с применением микроконтроллеров PICmicro. Управление работой эмулятора выполняется из интегрированной среды проектирования MPLAB-IDE с возможностью редактирования, компиляции, загрузки и выполнения программы.

Заменяемые поды позволяют быстро перенастроить эмулятор для работы с другим типом микроконтроллеров. Универсальная архитектура MPLAB-ICE дает возможность поддерживать новые типы микроконтроллеров PICmicro.

Эмулятор MPLAB-ICE был разработан как система эмуляции (анимации) в реальном масштабе времени с дополнительными возможностями, присутствующих в дорогих инструментальных средствах. Эмулятор работает под управлением распространенной операционной системы Microsoft Windows 3.x/95/98.

MPLAB-ICE 2000 - полнофункциональная система эмуляции с усовершенствованными функциями трассировки, триггеров и управляющих особенностей. Оба эмулятора используют одинаковые поды и работают во всех допустимых режимах микроконтроллеров PICmicro.

10.3 ICEPIC

ICEPIC - недорогой эмулятор, предназначенный для однократно программируемых (ОТР) 8-разрядных микроконтроллеров семейств PIC16C5X, PIC16C6X, PIC16C7X и PIC16CXXX. Модульная структура позволяет поддерживать все типы микроконтроллеров семейства PIC16C5X и PIC16CXXX за счет сменных подов.

10.4 Универсальный программатор PRO MATE II

Универсальный программатор PRO MATE II может работать автономно и под управлением PC совместимого компьютера. Для максимальной надежности программирования в программаторе PRO MATE II можно указать напряжения V_{DD} и V_{PP} . В программатор встроен ЖКИ дисплей для вывода сообщений об ошибках и клавиатура для ввода команд. Модульная колодка позволяет программировать микросхемы в различных корпусах. В автономном режиме программатор PRO MATE II может проверять микроконтроллер и устанавливать биты защиты.

10.5 Программатор PICSTART

Недорогой программатор PICSTART (PICSTART+CE) предназначен для начала работы с микроконтроллерами PICmicro, подключается к PC совместимому компьютеру через COM (RS-232) порт и работает под управлением интегрированной среды проектирования MPLAB-IDE. PICSTART поддерживает все микроконтроллеры PICmicro в корпусах до 40 выводов. Микроконтроллеры с большим числом выводов (PIC16C92X, PIC17C76X) поддерживаются при использовании адаптеров.

10.6 Аппаратный модуль SIMICE

SIMICE предназначен для работы совместно с симулятором MPLAB-SIM. SIMICE и MPLAB-SIM работают под управлением интегрированной среды проектирования MPLAB-IDE. SIMICE поддерживает работу микроконтроллеров PIC12C5XX, PIC12CE5XX и PIC16C5X с эмуляцией портов ввода/вывода не в реальном масштабе времени. SIMICE позволяет разработчику выполнить код программы непосредственно в устройстве, что освобождает от необходимости написания файлов стимула. SIMICE ценный инструмент отладки программного обеспечения при начале работы с микроконтроллерами PICmicro.

10.7 Демонстрационная плата PICDEM-1

Демонстрационная плата PICDEM-1 предназначена для микроконтроллеров PIC16C5X (PIC26C54, PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 и PIC17C44. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя. В состав демонстрационной платы входит: драйвер интерфейса RS-232, потенциометр для моделирования аналогового входа, выключатели и восемь светодиодов подключенных к PORTB.

10.8 Демонстрационная плата PICDEM-2 для PIC16CXXX

Демонстрационная плата PICDEM-2 предназначена для микроконтроллеров PIC16C62, PIC16C64, PIC16C65, PIC16C73 и PIC16C74. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя. В состав демонстрационной платы входит: драйвер интерфейса RS-232, потенциометр для моделирования аналогового входа, последовательная EEPROM для демонстрации работы шины I^2 C, выводы для подключения ЖКИ и дополнительной клавиатуры.

10.9 Демонстрационная плата PICDEM-3 для PIC16CXXX

Демонстрационная плата PICDEM-3 предназначена для микроконтроллеров PIC16C923 и PIC16C924 выполненных в 44-выводном PLCC корпусе с интегрированным ЖКИ модулем. В комплект поставки входят необходимые аппаратные модули, программное обеспечение и демонстрационные программы. Записать демонстрационные программы в микроконтроллер можно с помощью программатора PRO MATE II или PICSTART. Пользователь может подключить к демонстрационной плате эмулятор MPLAB-ICE и выполнять отладку программы. На демонстрационной плате имеется полигон для установки дополнительных элементов пользователя. В состав демонстрационной платы входит: драйвер интерфейса RS-232, выключатели; потенциометр для моделирования аналогового входа; термистор; выводы для подключения ЖКИ и дополнительной клавиатуры; 12-разрядный ЖКИ для отображения времени, даты и температуры; дополнительный интерфейс RS-232; программное обеспечение работающее под управлением операционной системы Windows 3.х для передачи данных на PC совместимый компьютер.

10.10 Интегрированная среда проектирования MPLAB-IDE

Программное обеспечение MPLAB-IDE предназначено для разработки программного обеспечения 8-разрядных микроконтроллеров PICmicro, работающее под управлением операционной системы Windows.

Основные характеристики MPLAB-IDE:

- Многофункциональные возможности:
 - Редактор;
 - Симулятор;
 - Программатор (приобретается отдельно);
 - Эмулятор (приобретается отдельно).
- Полнофункциональный редактор.
- Организатор проекта.
- Настройка панелей инструментов и параметров отображения.
- Строка состояния.
- Интерактивная помощь.

MPLAB-IDE позволяет Вам:

- Редактировать исходные файлы написанные на языке ассемблера или С.
- Быстро выполнять трансляцию и компиляцию проекта автоматически загружая параметры используемого микроконтроллера PICmicro.
- Выполнять отладку программы с использованием:
 - Исходных файлов;
 - Листинга программы;
 - Объектного кода.

Однотипная работа инструментальных модулей интегрированной среды проектирования MPLAB-IDE позволяет легко перейти от программного симулятора MPLAB-SIM к использованию полнофункционального эмулятора.

10.11 Ассемблер MPASM

MPASM - полнофункциональный универсальный макроассемблер для всех семейств микроконтроллеров PICmicro. Ассемблер может генерировать шестнадцатиразрядный файл пригодный для записи в микроконтроллер или формировать перемещаемые объектные файлы для линкера MPLINK.

MPASM имеет интерфейс командной строки и оконный интерфейс, работает под управлением операционной системы Windows 3.X и выше, может работать как автономное приложение. MPASM генерирует объектные файлы, шестнадцатеричные HEX файлы в стандарте Intel, файл карты памяти (для детализации использования памяти микроконтроллера), файл листинга программы (текст программы совмещен с кодами микроконтроллера) и файл отладки для MPLAB-IDE.

Особенности MPASM:

- MPASM и MPLINK интегрированы в MPLAB-IDE;
- МРАЅМ поддерживает систему макрокоманд, упрощающих написание текста программы;
- Позволяет выполнять компиляцию условных блоков текста программы;
- Директивы MPASM дают возможность управлять компиляцией исходного текста программы.

10.12 Программный симулятор MPLAB-SIM

Симулятор MPLAB-SIM позволяет проследить выполнение программы микроконтроллеров PICmicro на уровне команд по шагам или в режиме анимации. На любой команде выполнение программы может быть остановлено для проверки и изменения памяти. Функции стимула позволяют моделировать сигнал с логическими уровнями на входах микроконтроллера. MPLAB-SIM полностью поддерживает символьную отладку, используя MPLAB-C17, MPLAB-C18 и MPASM. MPLAB-SIM является доступным и удобным средством отладки программ микроконтроллеров PICmicro.

10.13 С компилятор MPLAB-C17

MPLAB-C17 - полнофункциональный ANSI 'C' компилятор с интегрированной средой обработки для микроконтроллеров семейства PIC17CXXX. Для упрощения отладки текста программы компиляторы обеспечивают интеграцию в средства проектирования с передачей информации об используемых переменных в формате совместимом с MPLAB-IDE.

10.14 Среда проектирования fuzzyTECH-MP

Среда проектирования нечеткой логики *fuzzy*TECH-MP разработана в двух версиях: недорогая версия *fuzzy*TECH-MP предназначена для ознакомления проектировщиков с возможностями использования нечеткой логики в разрабатываемых проектах; полнофункциональная версия.

В комплект обоих версий входит демонстрационная плата *fuzzy*LABTM с рабочими примерами.

10.15 SEEVAL (с функциями программатора)

Комплект SEEVAL SEEPROM поддерживает весь спектр 2-x/3-х проводных последовательных микросхем EEPROM фирмы Microchip. С помощью комплекта можно SEEVAL выполнять чтение, стирание и запись любой микросхемы последовательного EEPROM фирмы Microchip. Система позволяет сделать анализ обмена данных, число циклов и надежность записи. Полный комплект SEEVAL позволяет уменьшить время проектирование устройства.

10.16 KeeLoq (с функциями программатора)

Оценочная система KeeLoq предназначена для микросхем HCS фирмы Microchip. В состав комплекта входит: ЖКИ дисплей для отображения изменяющихся кодов, декодер, интерфейс программирования.

<i>Табли</i> МСР2510	ца 1	0-1 V	1нстр	уме	нтал	ьные	е сре	ЭДСТЕ	за пр	оект	иров	зания	TO F	комп	ании	1 Mic	rochi	ip					~
MCRFXXX																			>	>	\wedge	\wedge	
нсѕххх				٨						>							>	>					
24CXX/ 25CXX/ 93CXX				^						>													
PIC18CXX2	٨		٨	٨	٨				>	>			٨										
PIC17C7XX	٨	^		Λ	٨	Λ			>	>						٨							
PIC17C4X	٨	Λ		Λ	Λ	Λ			Λ	^		Λ											
PIC16C9XX	٨			٨	٨	٨	^		^	٨				٨									
PIC16F8XX	>			^	^			^	>	>													
PIC16C8X	>			>	>	^	>		>	>		>					_	_					
PIC16C7XX	٨			٨	٨	٨	Λ		Λ	^													
PIC16C7X	٨			Λ	Λ	Λ	Λ	*/\	Λ	^		+/\	+/\										
PIC16F62X	٨			Λ	**/\				**/\	**/\													
PIC16CXXX	٨			٨	٨	٨	^		\nearrow	>		^											
PIC16C6X	>			>	>	>	>	*	>	>			+ ^										
PIC16C5X	>			>	>	>	>		>	>	>	>											
PIC14000	^			٨	٨	٨			>	>					>								
PIC12CXXX	٨			Λ	Λ	Λ	^		\wedge	\nearrow	Λ												
	MPLAB-IDE	MPLAB-C17	MPLAB-C18	MPASM/MPLINK	MPLAB-ICE	PICMASTER	ICEPIC	MPLAB-ICD	PICSTART	PRO MATE II	SIMICE	PICDEM-1	PICDEM-2	PICDEM-3	PICDEM-14A	PICDEM-17	KeeLoq	КееLод транспондеры	Программатор microID	DEMO microlD 125kFų	Проверка коллизий microID 125кГц	Проверка коллизий microID 13.56МГц	DEMO MCP2510 CAN
	Пр	Программное Отладик Демонстрационные и отладочные платы																					

* Обратитесь в представительства компании Microchip для получения дополнительной информации по использованию MPLAB-ICD с PIC16C62, 63, 64, 65, 72, 73, 74, 76, 77 ** Обратитесь в представительства компании Microchip для уточнения времени доступности к заказу. + Инструментальное средство доступно для некоторых устройств.

11.0 Электрические характеристики РІС12С508, РІС12С509

Максимально допустимые значения (*)

Предельная рабочая температура	
Температура хранения	
Напряжение V _{DD} относительно V _{SS}	
Напряжение -MCLR относительно V _{SS}	от 0В до +14В
Напряжение на остальных выводах относительно V _{SS}	от -0.6В до V _{DD} +0.6В
Рассеиваемая мощность (1)	700мВт
Максимальный ток вывода V _{SS}	200мА
Максимальный ток вывода V _{DD}	150мА
Входной запирающий ток I_{IK} ($V_I < 0$ или $V_I > V_{DD}$)	±20мА
Выходной запирающий ток I_{OK} ($V_O < 0$ или $V_O > V_{DD}$)	±20мА
Максимальный выходной ток стока канала ввода/вывода	25мА
Максимальный выходной ток истока канала ввода/вывода	25мА
Максимальный выходной ток стока портов ввода/вывода (GPIO)	100мА
Максимальный выходной ток истока портов ввода/вывода (GPIÓ)	100мА

Примечание 1. Потребляемая мощность рассчитывается по формуле:

 $P = V_{DD} x \{I_{DD} - \Sigma I_{OH}\} + \Sigma \{(V_{DD} - V_{OH}) x I_{OH}\} + \Sigma (V_{OL} x I_{OL})$

Примечание *. Выход за указанные значения может привести к необратимым повреждениям микроконтроллера. Не предусмотрена работа микроконтроллера в предельном режиме в течении длительного времени. Длительная эксплуатация микроконтроллера в недопустимых условиях может повлиять на его надежность.

11.1 Электрические характеристики PIC12C508, PIC12C509 (Коммерческий, Промышленный, Расширенный)

			Станда	ртные ра	бочие усл	повия (е	если не указано иное)
				атурный д	-	•	- · · · · · · · · · · · · · · · · · · ·
						•	ленный -40°C ≤ T _A ≤ +85°C
Ma	05			- (1)		Расшир	• • • • • • • • • • • • • • • • • • • •
№ пар.	Обоз.	Описание	Мин.	Тип. ⁽¹⁾	Макс.	Ед.	Примечание
D001	V_{DD}	Напряжение питания	2.5		5.5	В	F _{OSC} = от DC до 4МГц (Коммерч., Промышл.)
			3.0		5.5	В	F _{OSC} = от DC до 4МГц (Расширенный)
D002	V_{DR}	Напряжение сохранения данных в ОЗУ ⁽²⁾		1.5*		В	Микроконтроллер в SLEEP режиме
D003	V _{POR}	Стартовое напряжение V _{DD} для формирования POR		V _{SS}		В	Смотрите раздел "сброс POR"
D004	S _{VDD}	Скорость нарастания V _{DD} для формирования POR	0.05*			В/мс	Смотрите раздел "сброс POR"
Do 40 ⁽⁴⁾	I_{DD}	Ток потребления ⁽³⁾		0.70			\/T_5\/TD0
D010 ⁽⁴⁾			-	0.78	2.4	мА	XT, EXTRC режим генератора F_{OSC} = 4МГц, V_{DD} =5.5В
D010C			-	1.1	2.4	мА	INTRC режим генератора $F_{OSC} = 4M\Gamma_{U}, V_{DD} = 5.5B$
D010A			-	10	27	мкА	LP режим генератора (Комм.) F _{OSC} = 32кГц, V _{DD} =3.0B, WDT выключен
			-	14	35	мкА	LP режим генератора (Пром.) F _{OSC} = 32кГц, V _{DD} =3.0B, WDT выключен
			-	14	35	мкА	LP режим генератора (Расш.) $F_{OSC} = 32$ к Γ ц, $V_{DD} = 3.0$ В, WDT выключен
	I _{PD}	Ток потребления в SLEEP режиме ⁽⁵⁾					
D020			-	0.25	4	мкА	V _{DD} =3.0B, WDT выключен, Коммерческий
D021			-	0.25	5	мкА	V _{DD} =3.0B, WDT выключен, Промышленный
D021B			-	2	18	мкА	V _{DD} =3.0B, WDТ выключен, Расширенный
D022	ΔI_{WDT}	Ток потребления WDT					
			-	3.75	8	мкА	V _{DD} =3.0B, Коммерческий
			-	3.75	9	мкА	V _{DD} =3.0B, Промышленный
			-	3.75	14	мкА	V _{DD} =3.0B, Расширенный

^{* -} Эти параметры определены, но не протестированы.

Примечания:

- В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.
- 2. Предел, до которого может быть понижено напряжение питания V_{DD} без потери данных в ОЗУ.
- 3. Ток потребления в основном зависит от напряжения питания и тактовой частоты. Другие факторы, влияющие на ток потребления: выходная нагрузка и частота переключения каналов ввода/вывода; тип тактового генератора; температура и выполняемая программа. Измерения I_{DD} проводилось в следующих условиях: внешний тактовый сигнал (меандр); каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{ss};TOCKI = V_{DD}; -MCLR = V_{DD}; WDT выключен/выключен, указано в спецификации.
- 4. В RC режиме генератора ток через внешний резистор не учитывается. Ток, протекающий через внешний резистор, может быть рассчитан по формуле Ir = $V_{DD}/2R_{EXT}$ (мA), где R_{EXT} в кОм.
- 5. Потребляемый ток в SLEEP режиме не зависит от типа тактового генератора. При измерении тока все каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{DD} или V_{SS} .

11.2 Электрические характеристики PIC12C508, PIC12C509 (Коммерческий, Промышленный, Расширенный)

D-6	Рабочее напряжение питания V _{DD} должно		Стандартные рабочие условия (если не указано иное)								
		ение питания ∨ _{DD} должно значению,	Температурный диапазон: Коммерческий 0°C ≤ T _A ≤ +70°C								
		значению, зделе 11.1	Промышленный -40°С ≤ T _A ≤ +85°С								
указанн	owy B pa	зделе тт.т	Расширенный -40°C ≤ T _A ≤ +125°C								
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание				
	V _{IL}	Входное напряжение низкого уров	зня	I	ı	I					
		Канал порта ввода/вывода									
D030		ТТЛ буфер	V_{SS}	-	0.8	В	V _{DD} = от 4.5B до 5.5B				
			V_{SS}	-	$0.15V_{DD}$	В	иначе				
D031		Триггер Шмидта	V_{SS}	-	$0.15V_{DD}$	В					
D032		-MCLR, GP2/T0CKI	V_{SS}	-	$0.15V_{DD}$	В					
D033		OSC1 (EXTRC)(1)	V_{SS}	-	$0.15V_{DD}$	В					
D033		OSC1 (XT, LP) ⁽¹⁾	V_{SS}		$0.3V_{DD}$	В					
	V_{IH}	Входное напряжение высокого ур	ОВНЯ								
		Канал порта ввода/вывода									
D040		ТТЛ буфер	2.0	-	V_{DD}	В	V _{DD} = от 4.5B до 5.5B				
D040A			0.25V _{DD} +0.8	-	V_{DD}	В	иначе				
D041		Триггер Шмидта	$0.85V_{DD}$	-	V_{DD}	В					
D042		-MCLR, GP2/T0CKI	$0.85V_{DD}$	-	V_{DD}	В					
D042A		OSC1 (XT, LP) ⁽¹⁾	$0.7V_{DD}$	-	V_{DD}	В					
D043		OSC1 (EXTRC)	$0.85V_{DD}$	-	V_{DD}	В					
D070	I_{PUR}	Ток через подтягивающие	50	250	400	мкА	V_{DD} = 5.0B, V_{PIN} = V_{SS}				
		резисторы GPIO									
	I _{IL}	Входной ток утечки $^{(2,3)}$ для $V_{DD} \le 5$	5.5B								
D060		Порт ввода/вывода	-1	0.5	±1	мкА	$V_{SS} \leq V_{PIN} \leq V_{DD}$, 3-e coct.				
D061		-MCLR, GP2/T0CKI	20	130	250	мкА	$V_{PIN} = V_{SS} + 0.25B^{(2)}$				
				0.5	5		$V_{PIN} = V_{DD}$				
D063		OSC1	-	-	±5	мкА	$V_{SS} \leq V_{PIN} \leq V_{DD}, XT, LP$				
D080	V_{OL}	Выходное напряжение низкого	-	-	0.6	В	I_{OL} =8.7 mA, V_{DD} = 4.5B				
		уровня канала ввода/вывода									
D090	V _{OH}	Выходное напряжение высокого	V _{DD} - 0.7	-	-	В	I_{OH} = - 5.4 mA, V_{DD} = 4.5B				
		уровня канала ввода/вывода									
		Емкостная нагрузка на выходах									
D100	C _{OSC2}	Вывод OSC2	-	-	15	пΦ	XT, LP внешний тактовый				
							сигнал				
D101	C _{IO}	Все каналы ввода/вывода	-	-	50	пΦ					

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Примечания:

- 1. В EXTRC режиме генератора на входе OSC1 включен триггер Шмидта. Не рекомендуется использовать внешний тактовый сигнал для PIC12C5XX в EXTRC режиме тактового генератора.
- Ток утечки на выводе -MCLR зависит от приложенного напряжения. Параметры указаны для нормального режима работы. В других режимах может возникнуть больший ток утечки.
- 3. Отрицательный ток показывает, что он вытекает из вывода.

Таблица 11-1 Значения внутренних подтягивающих резисторов

Напряжение V _{DD} (B)	Температура (°C)	Мин.	Тип.	Макс.	Единицы измерения
		GP0/GP	1		
2.5	-40	38	42	63	кОм
	25	42	48	63	кОм
	85	42	49	63	кОм
	125	50	55	63	кОм
5.5	-40	15	17	20	кОм
	25	18	20	23	кОм
	85	19	22	25	кОм
	125	22	24	28	кОм
		GP3			
2.5	-40	285	346	417	кОм
	25	343	414	532	кОм
	85	368	457	532	кОм
	125	431	504	593	кОм
5.5	-40	247	292	360	кОм
	25	288	341	437	кОм
	85	306	371	448	кОм
	125	351	407	500	кОм

^{* -} Эти параметры определены, но не протестированы.

11.3 Символьное обозначение временных параметров

Символьное обозначение временных параметров имеет один из следующих форматов:

- 1. TppS2ppS
- 2. TppS

Т								
F	Частота	Т	Время					
Стро	Строчные символы (рр) и их значение							
pp								
2	До	mc	-MCLR					
ck	CLKOUT	osc	Генератор					
су	Длительность цикла	os	OSC1					
drt	DRT	t0	T0CKI					
io	Канал ввода/вывода	wdt	WDT					
-								
	исные символы и их значение							
S _		_	_					
F	Задний фронт	Р	Период					
Н	Высокий уровень	R	Передний фронт					
1	Неверный (3-е состояние)	V	Верный					
L	Низкий уровень	Z	3-е состояние					

Puc. 11-1 Нагрузочные параметры

 C_L = 50пФ (для всех выводов, кроме OSC2)

 $C_L = 15 \pi \Phi$ (для вывода OSC2)

LP режим

XT режим

LP режим

мс

нс

нс

25*

50*

11.4 Временные диаграммы и спецификации

Рис. 11-2 Временная диаграмма внешнего тактового сигнала

Таблица 11-2 Параметры внешнего тактового сигнала

Робоноо нопражение питания V получно			Стандартные рабочие условия (если не указано иное)							
	Рабочее напряжение питания V _{DD} должно соответствовать значению,			Температурный диапазон: Коммерческий 0°C ≤ T _A ≤ +70°C						
		зделе 11.1				Промыш	ленны	\ddot{H} -40°C $\leq T_A \leq +85$ °C		
указанн	DIVIY B Pa	зделе 11.1				Расшире	енный	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		
№ пар.	Обоз.	Описание		Мин.	Тип. ⁽¹⁾	Макс.	Ед.	Примечание		
	Fosc	Частота внешнего тактового сигнала	(2)	DC	-	4	МГц	XT режим		
				DC	-	200	кГц	LP режим		
		Частота генератора ⁽²⁾		0.1	-	4	МГц	XT режим		
				DC	-	200	кГц	LP режим		
1	Tosc	Период внешнего тактового сигнала	2)	250	-	-	нс	EXTRC режим		
				250	-	-	HC	XT режим		
				5	-	-	МС	LP режим		
		Период генератора ⁽²⁾		250	-	-	HC	RC режим		
				250	-	10000	HC	XT режим		
				5	-	-	МС	LP режим		
2	T _{CY}	Время выполнения инструкции (2)		-	4/Fosc	1	1			
3	TosL,	_	ровня	50*	-	-	нс	XT режим		

ТosF внешнего тактового сигнала (OSC1)
* - Эти параметры определены, но не протестированы.

Примечания:

TosH

TosR,

- 1. В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.
- 2. Машинный цикл микроконтроллера равняется 4 периодам тактового сигнала. Все приведенные значения основываются на характеристиках конкретного типа генератора в стандартных условиях при выполнении программы. Выход за указанные пределы может привести к нестабильной работе генератора и/или к большему потребляемому току. Все микроконтроллеры проверены в режиме "Мин." при внешнем тактовом сигнале на выводе OSC1/CLKIN.

Таблица 11-3 Параметры калибровки внутреннего RC генератора

Длительность переднего/заднего фронта

соответ	ствовать	ение питания V _{DD} должно значению, вделе 11.1	Промышленный -40°С ≤ T _A ≤ +8			$0^{\circ}C \leq T_A \leq +70^{\circ}C$		
№ пар.	Обоз.	Описание		Мин.*	Тип. ⁽¹⁾	Макс.*	Ед.	Примечание
		Частота внутреннего RC генерато	ра	3.58	4.00	4.32	МГц	V _{DD} = 5.0 B
		Частота внутреннего RC генерато	pa	3.50	-	4.26	МГц	$V_{DD} = 2.5 B$

^{* -} Эти параметры определены, но не протестированы.

Примечания:

 В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Таблица 11-4 Параметры работы каналов ввода/вывода

Рабочее напряжение питания V _{DD} должно
соответствовать значению,
указанному в разделе 11.1

Стандартные рабочие условия (если не указано иное)								
Температурный диапазон:	Коммерческий	$0^{\circ}C \leq T_A \leq +70^{\circ}C$						
	Промышленный	$-40^{\circ}C \le T_A \le +85^{\circ}C$						
	Расширенный	$-40^{\circ}C < T_{\Lambda} < +125^{\circ}C$						

№ пар.	Обоз.	Описание	Мин.	Тип.(1)	Макс.	Ед.	Примечание
17*	TosH2ioV	От OSC1 ↑ до установл. выхода ⁽³⁾	-		100*	нс	
18*	TosH2iol	Удержание входа после OSC1 ↑	TBD	-	-	нс	
19*	TioV2osH	Переход в режим входа относ. OSC1↑	TBD	-	-	нс	
20*	TioR	Длительность переднего фронта на выходе порта ввода/вывода ^(2,3)	-	10	25*	HC	
21*	TioF	Длительность заднего фронта на выходе порта ввода/вывода ^(2,3)	-	10	25*	HC	

^{* -} Эти параметры определены, но не протестированы.

- В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.
- 2. Измерения проведены в EXTRC режиме генератора.
- 3. Параметры нагрузки смотрите на рисунке 11-1.

Примечания:

- 1. Выводы каналов порта ввода/вывода должны перейти в 3-е состояние, включение выходных драйверов выполняется программным обеспечением.
- 2. При сбросе -MCLR или WDT выполняется только в XT, LP режиме генератора.

Таблица 11-5 Параметры сброса, WDT, DRT

Рабочее напряжение питания V _{DD} должно соответствовать значению,			Стандартные рабочие условия (если не указано иное)					
			Темпера	турный д	циапазон:	Коммерч Промыш		
указанному в разделе 11.1						Расшире		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$
№ пар.	Обоз.	Описание		Мин.	Тип. ⁽¹⁾	Макс.	Ед.	Примечание
30	TmcL	Длительность импульса -MCLR		2*	-	-	МКС	V _{DD} =5B
31*	Twdt	Период переполнения WDT (без предделителя)		9*	18*	30*	МС	V _{DD} =5B (Коммерческий)
32	T _{DRT}	Период DRT ⁽²⁾		9*	18*	30*	МС	V _{DD} =5B (Коммерческий)
34	T _{IOZ}	От сброса -MCLR до перевода ввода/вывода 3-е состояние	каналов	-	-	2*	МКС	

^{* -} Эти параметры определены, но не протестированы.

Примечания:

- В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.
- 2. Смотрите таблицу 11-6.

Таблица 11-6 Время задержки при различных видах сброса (типовое значение)

Режим генератора	Сброс POR	Последующие сбросы		
XT, LP	18мс	18мс		
EXTRC, INTRC	18мс	300мкс		

Рис. 11-5 Временная диаграмма внешнего тактового сигнала TMR0

Таблица 11-7 Параметры внешнего тактового сигнала TMR0

соответ	ствовать	ение питания V _{DD} должно значению, зделе 11.1	Температурный диапазон: Коммерческий $0^{\circ}\text{C} \leq T_{A} \leq +70^{\circ}\text{C}$ Промышленный $-40^{\circ}\text{C} \leq T_{A} \leq +85^{\circ}\text{C}$ Расширенный $-40^{\circ}\text{C} \leq T_{A} \leq +125^{\circ}\text{C}$					$^{\circ}C \le T_A \le +70^{\circ}C$
№ пар.	Обоз.	Описание		Мин.	Тип. ⁽¹⁾	Макс.	Ед.	Примечание
40	Tt0H	Длительность высокого уровня ТО	CKI					
		Без предд	делителя	0.5T _{CY} +20*	-	-	нс	
		С предде	елителем	10*	-	-	HC	
41	Tt0L	Длительность низкого уровня ТОС	KI					
		Без предд	делителя	0.5T _{CY} +20*	-	-	нс	
		С предде	елителем	10*	-	-	нс	
42	Tt0P	Период T0CKI		20 или	-	-	нс	N = коэфф.предд.
				(T _{CY} +40*)/N				

^{* -} Эти параметры определены, но не протестированы.

^{1.} В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

12.0 Характеристики микроконтроллеров РІС12С508, РІС12С509

Графики в этом разделе не проверены и предназначены только для оценки при разработке устройств. В некоторых графиках представлены данные вне рабочего диапазона (в частности для напряжения питания V_{DD}). Это только информационные данные.

Данные, представленные в этом разделе, являются среднестатистическим результатом испытаний большого числа микроконтроллеров в течение длительного времени. Типовое значение подразумевает среднее, а минимальное и максимальное - соответственно (среднее - 3σ) и (среднее + 3σ), где σ - стандартный разброс.

Рис. **12-1** График зависимости калиброванной частоты внутреннего RC генератора от температуры (V_{DD} =2.5B)

Рис. **12-2** График зависимости калиброванной частоты внутреннего RC генератора от температуры (V_{DD} =5.0B)

Таблица 12-1 Типовое значение тока потребления Inn (WDT включен, температура 25°C)

Режим генератора	Частота	$V_{DD} = 2.5B$	$V_{DD} = 5.5B$
EXTRC	4 МГц	250 мкА*	780 мкА*
INTRC	4 МГц	420 мкА	1.1 мА
XT	4 МГц	251 мкА	780 мкА
LP	32 кГц	15 мкА	37 мкА

^{* -} Не учитывается ток через внешний резистор.

Рис. **12-3** График зависимости периода WDT от напряжения питания V_{DD}

Рис. **12-4** График зависимости минимального периода DRT от напряжения питания V_{DD}

13.0 Электрические характеристики PIC12C508A, PIC12C509A, PIC12LC508A, PIC12LC509A, PIC12CE518, PIC12CE519, PIC12LCE518, PIC12LCE519, PIC12LCE519, PIC12LCR509A

Максимально допустимые значения (*)

Предельная рабочая температура Температура хранения	
Hапряжение V _{DD} относительно V _{SS}	от 0В до +7.0В
Напряжение -MCLR относительно V _{SS}	от 0В до +14В
Напряжение на остальных выводах относительно V _{SS}	от -0.3B до V _{DD} +0.3B
Рассеиваемая мощность (1)	
Максимальный ток вывода V _{SS}	200мА
Максимальный ток вывода V _{DD}	150мА
Входной запирающий ток I_{IK} ($V_I < 0$ или $V_I > V_{DD}$)	±20мА
Выходной запирающий ток I_{OK} ($V_O < 0$ или $V_O > V_{DD}$)	±20мА
Максимальный выходной ток стока канала ввода/вывода	25мА
Максимальный выходной ток истока канала ввода/вывода	25мА
Максимальный выходной ток стока портов ввода/вывода (GPIO)	100мА
Максимальный выходной ток истока портов ввода/вывода (GPIO)	100мА

Примечание 1. Потребляемая мощность рассчитывается по формуле: $P = V_{DD} x \{I_{DD} - \Sigma \mid_{OH}\} + \Sigma \{(V_{DD} - V_{OH}) \mid x \mid_{OH}\} + \Sigma (V_{OL} \mid x \mid_{OL})$

Примечание *. Выход за указанные значения может привести к необратимым повреждениям микроконтроллера. Не предусмотрена работа микроконтроллера в предельном режиме в течении длительного времени. Длительная эксплуатация микроконтроллера в недопустимых условиях может повлиять на его надежность.

13.1 Электрические характеристики PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12CR509A (Коммерческий, Промышленный, Расширенный)

			Стандартные рабочие условия (если не указано иное)						
			Температурный диапазон: Коммерческий 0°C ≤ T _A ≤ +70°C						
			Промышленный -40°С ≤ T _A ≤ +85°С						
№ пар.	Обоз.	Описание	Мин.	Тип.(1)	Макс.	Расшир Ед.	енный -40°C ≤ T _A ≤ +125°C Примечание		
				тип.			•		
D001	V _{DD}	Напряжение питания	3.0	4.5*	5.5	В	F _{OSC} = oτ DC до 4MΓц		
D002	V_{DR}	Напряжение сохранения данных в ОЗУ ⁽²⁾		1.5*		В	Микроконтроллер в SLEEP режиме		
D003	V _{POR}	Стартовое напряжение V _{DD} для формирования POR		V _{SS}		В	Смотрите раздел "сброс POR"		
D004	S _{VDD}	Скорость нарастания V _{DD} для формирования POR	0.05*			В/мс	Смотрите раздел "сброс POR"		
(4)	I _{DD}	Ток потребления ⁽³⁾							
D010 ⁽⁴⁾			-	8.0	1.4	мА	XT, EXTRC режим генератора $F_{OSC} = 4M\Gamma_{U}$, $V_{DD} = 5.5B$		
D010C			-	8.0	1.4	мА	INTRC режим генератора $F_{OSC} = 4M\Gamma_{U}, V_{DD} = 5.5B$		
D010A			-	19	27	мкА	LP режим генератора (Комм.)		
							F _{OSC} = 32кГц, V _{DD} =3.0B, WDT выключен		
			_	19	35	мкА	LP режим генератора (Пром.)		
							F _{OSC} = 32кГц, V _{DD} =3.0B,		
				30	55	мкА	WDT выключен LP режим генератора (Расш.)		
			-	30	33	IVIKA	$F_{OSC} = 32 \kappa \Gamma_{U}, V_{DD} = 3.0 B,$		
							WDT выключен		
	I _{PD}	Ток потребления в SLEEP							
		режиме ⁽⁵⁾							
D020			-	0.25	4	мкА	V _{DD} =3.0B, WDТ выключен,		
D021			_	0.25	5	мкА	Коммерческий V _{DD} =3.0B, WDT выключен,		
0021				0.20		WIIO (Промышленный		
D021B			-	2	12	мкА	V _{DD} =3.0B, WDT выключен,		
							Расширенный		
D022	ΔI_{WDT}	Ток потребления WDT			_		\/ -2.0D \(\(\)		
			-	2.2 2.2	5 6	мкА мкА	V _{DD} =3.0B, Коммерческий V _{DD} =3.0B, Промышленный		
			_	4	11	мкА мкА	V _{DD} =3.0B, Промышленный V _{DD} =3.0B, Расширенный		
	ΔI_{EE}	Ток потребления EEPROM	-	0.1	0.2	мА	F _{OSC} = 4MΓμ, V _{DD} =5.5B,		
		памяти во время цикла					SCL=400κΓц		
		стирание/запись ⁽³⁾							

^{* -} Эти параметры определены, но не протестированы.

- 1. В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.
- 2. Предел, до которого может быть понижено напряжение питания V_{DD} без потери данных в ОЗУ.
- 3. Ток потребления в основном зависит от напряжения питания и тактовой частоты. Другие факторы, влияющие на ток потребления: выходная нагрузка и частота переключения каналов ввода/вывода; тип тактового генератора; температура и выполняемая программа. Измерения I_{DD} проводилось в следующих условиях: внешний тактовый сигнал (меандр); каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{ss};ТОСКІ = V_{DD}; -MCLR = V_{DD}; WDT выключен/выключен, указано в спецификации.
- 4. В RC режиме генератора ток через внешний резистор не учитывается. Ток, протекающий через внешний резистор, может быть рассчитан по формуле $Ir = V_{DD}/2R_{EXT}$ (мA), где R_{EXT} в кОм.
- 5. Потребляемый ток в SLEEP режиме не зависит от типа тактового генератора. При измерении тока все каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{DD} или V_{SS} .

13.2 Электрические характеристики PIC12LC508A, PIC12LC509A, PIC12LCE518, PIC12LCE519, PIC12LCR509A (Коммерческий, Промышленный)

				ртные ра атурный д	•	Коммер	если не указано иное) ческий 0°C ≤ T _A ≤ +70°C ⊔ленный -40°C ≤ T _A ≤ +85°C
№ пар.	Обоз.	Описание	Мин.	Тип. ⁽¹⁾	Макс.	Ед.	Примечание
D001	V_{DD}	Напряжение питания	2.5		5.5	В	F _{OSC} = от DC до 4МГц
D002	V_{DR}	Напряжение сохранения данных в ОЗУ ⁽²⁾		1.5*		В	Микроконтроллер в SLEEP режиме
D003	V _{POR}	Стартовое напряжение V _{DD} для формирования POR		V _{SS}		В	Смотрите раздел "сброс POR"
D004	S _{VDD}	Скорость нарастания V _{DD} для формирования POR	0.05*			В/мс	Смотрите раздел "сброс POR"
D010 ⁽⁴⁾	I _{DD}	Ток потребления ⁽³⁾	-	0.4	0.8	мА	XT, EXTRC режим генератора
D010C			-	0.4	0.8	мА	F _{OSC} = 4МГц, V _{DD} =5.5B INTRC режим генератора F _{OSC} = 4МГц, V _{DD} =5.5B
D010A			-	15	23	мкА	LP режим генератора (Комм.) F _{OSC} = 32кГц, V _{DD} =3.0B, WDT выключен
			-	15	31	мкА	LP режим генератора (Пром.) F _{OSC} = 32кГц, V _{DD} =3.0B, WDT выключен
	I _{PD}	Ток потребления в SLEEP режиме ⁽⁵⁾					
D020			-	0.2	3	мкА	V _{DD} =3.0B, WDT выключен, Коммерческий
D021			-	0.2	4	мкА	V _{DD} =3.0B, WDT выключен, Промышленный
D022	ΔI_{WDT}	Ток потребления WDT			_		
			-	2.0 2.0	4 5	мкА мкА	V _{DD} =3.0B, Коммерческий V _{DD} =3.0B, Промышленный
	ΔI_{EE}	Ток потребления EEPROM памяти во время цикла стирание/запись ⁽³⁾	-	0.1	0.2	мА	F _{OSC} = 4МГц, V _{DD} =5.5B, SCL=400кГц

^{* -} Эти параметры определены, но не протестированы.

- В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.
- 2. Предел, до которого может быть понижено напряжение питания V_{DD} без потери данных в ОЗУ.
- 3. Ток потребления в основном зависит от напряжения питания и тактовой частоты. Другие факторы, влияющие на ток потребления: выходная нагрузка и частота переключения каналов ввода/вывода; тип тактового генератора; температура и выполняемая программа. Измерения I_{DD} проводилось в следующих условиях: внешний тактовый сигнал (меандр); каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{ss};TOCKI = V_{DD}; -MCLR = V_{DD}; WDT выключен/выключен, указано в спецификации.
- 4. В RC режиме генератора ток через внешний резистор не учитывается. Ток, протекающий через внешний резистор, может быть рассчитан по формуле Ir = $V_{DD}/2R_{EXT}$ (мA), где R_{EXT} в кОм.
- Потребляемый ток в SLEEP режиме не зависит от типа тактового генератора. При измерении тока все каналы портов ввода/вывода в третьем состоянии и подтянуты к V_{DD} или V_{SS}.

13.3 Электрические характеристики PIC12C508A, PIC12C509A, PIC12CE518, PIC12CE519, PIC12CR509A (Коммерческий, Промышленный, Расширенный)

Dagawaa		Стандартные рабочие условия (если не указано иное)					сли не указано иное)
		ение питания V _{DD} должно	Температу	/рный д	иапазон:	Коммерч	неский 0°C ≤ T _A ≤ +70°C
		значению, зделе 13.1				Промыш	ленный -40°C ≤ T _A ≤ +85°C
указанн	ому в ра	зделе тэ.т				Расшире	-40°C ≤ T _A ≤ +125°C
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
	V _{IL}	Входное напряжение низкого уров	вня		I	1	
		Канал порта ввода/вывода					
D030		ТТЛ буфер	V_{SS}	-	8.0	В	V _{DD} = от 4.5B до 5.5B
			V_{SS}	-	$0.15V_{DD}$	В	иначе
D031		Триггер Шмидта	V_{SS}	-	$0.2V_{DD}$	В	
D032		-MCLR, GP2/T0CKI	V_{SS}	-	$0.2V_{DD}$	В	
D033		OSC1 (EXTRC) ⁽¹⁾	V_{SS}	-	$0.2V_{DD}$	В	
D033		OSC1 (XT, LP) ⁽¹⁾	V_{SS}		$0.3V_{DD}$	В	
	V _{IH}	Входное напряжение высокого ур	ОВНЯ				
		Канал порта ввода/вывода					
D040		ТТЛ буфер	0.25V _{DD} +0.8	-	V_{DD}	В	V_{DD} = от 4.5B до 5.5B
D040A		, , ,	2.0	-	V_{DD}	В	иначе
D041		Триггер Шмидта	$0.8V_{DD}$	-	V_{DD}	В	
D042		-MCLR, GP2/T0CKI	$0.8V_{DD}$	-	V_{DD}	В	
D042A		OSC1 (XT, LP) ⁽¹⁾	$0.7V_{DD}$	-	V_{DD}	В	
D043		OSC1 (EXTRĆ)	$0.9V_{DD}$	-	V_{DD}	В	
D070	I _{PUR}	Ток через подтягивающие	30	250	400	мкА	V_{DD} = 5.0B, V_{PIN} = V_{SS}
		резисторы GPIO ⁽⁴⁾					
		Ток через подтягивающий	-	-	30	мкА	V_{DD} = 5.0B, V_{PIN} = V_{SS}
		резистор на -MCLR					
	I _{IL}	Входной ток утечки $^{(2,3)}$ для $V_{DD} \le 5$	5.5B				
D060		Порт ввода/вывода	-	-	±1	мкА	$V_{SS} \le V_{PIN} \le V_{DD}$, 3-e coct.
D061		T0CKI	-	-	±5	мкА	$V_{SS} \le V_{PIN} \le V_{DD}$
D063		OSC1	-	-	±5	мкА	$V_{SS} \le V_{PIN} \le V_{DD}, XT, LP$
D080	V _{OL}	Выходное напряжение низкого	-	-	0.6	В	I_{OL} =8.5 MA, V_{DD} = 4.5B,
	02	уровня канала ввода/вывода					от -40°С до +85°С
D080A		71.	_	_	0.6	В	I_{OL} =7.0 mA, V_{DD} = 4.5B,
200071					0.0		от -40°C до +125°C
D090	V _{OH}	Выходное напряжение высокого	V _{DD} - 0.7	-	-	В	I_{OH} = - 3.0 MA, V_{DD} = 4.5B,
	0	уровня канала ввода/вывода					от -40°C до +85°C
D090A			V _{DD} - 0.7	_	_	В	I_{OH} = - 2.5 MA, V_{DD} = 4.5B,
			100 0				от -40°С до +125°С
		Емкостная нагрузка на выходах	1	<u> </u>	<u> </u>	<u> </u>	от то о до тта о
D100	C _{OSC2}	Вывод OSC2	_	I -	15	пФ	XT, LP внешний тактовый
	00002				.	''	сигнал
D101	C _{IO}	Все каналы ввода/вывода	_	_	50	пФ	
		опбие "Тип" привелены параметры и	V OD				

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0B @ 25C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

- 1. В EXTRC режиме генератора на входе OSC1 включен триггер Шмидта. Не рекомендуется использовать внешний тактовый сигнал для PIC12C5XX в EXTRC режиме тактового генератора.
- Ток утечки на выводе -MCLR зависит от приложенного напряжения. Параметры указаны для нормального режима работы. В других режимах может возникнуть больший ток утечки.
- 3. Отрицательный ток показывает, что он вытекает из вывода.
- 4. Для режима, когда GP3/-MCLR настроен как -MCLR. Ток потребления входного буфера -MCLR больше чем канала порта ввода/вывода.

13.4 Электрические характеристики PIC12LC508A, PIC12LC509A, PIC12LCE518, PIC12LCE519, PIC12LCR509A (Коммерческий, Промышленный)

Рабочее	напряж	ение питания V _{DD} должно	Стандартные рабочие условия (если не указано иное)				
соответ	ствовать	значению,	Температу	/рный д	иапазон:	Коммер	ческий 0°C ≤ T _A ≤ +70°C
указанно	ому в раз	вделе 13.2				Промыц	ленный -40°C ≤ T _A ≤ +85°C
№ пар.	Обоз.	Описание	Мин.	Тип.**	Макс.	Ед.	Примечание
	V _{IL}	Входное напряжение низкого уров	ВНЯ	I	I	I	
		Канал порта ввода/вывода					
D030		ТТЛ буфер	V_{SS}	-	0.8	В	V _{DD} = от 4.5B до 5.5B
			V_{SS}	-	$0.15V_{DD}$	В	иначе
D031		Триггер Шмидта	V_{SS}	-	$0.2V_{DD}$	В	
D032		-MCLR, GP2/T0CKI	V_{SS}	-	$0.2V_{DD}$	В	
D033		OSC1 (EXTRC)(1)	V_{SS}	-	$0.2V_{DD}$	В	
D033		OSC1 (XT, LP) ⁽¹⁾	V_{SS}		$0.3V_{DD}$	В	
	V_{IH}	Входное напряжение высокого ур	ОВНЯ				
		Канал порта ввода/вывода					
D040		ТТЛ буфер	0.25V _{DD} +0.8	-	V_{DD}	В	V _{DD} = от 4.5B до 5.5B
D040A			2.0	-	V_{DD}	В	иначе
D041		Триггер Шмидта	$0.8V_{DD}$	-	V_{DD}	В	
D042		-MCLR, GP2/T0CKI	$0.8V_{DD}$	-	V_{DD}	В	
D042A		OSC1 (XT, LP) ⁽¹⁾	$0.7V_{DD}$	-	V_{DD}	В	
D043		OSC1 (EXTRC)	$0.9V_{DD}$	-	V_{DD}	В	
D070	I_{PUR}	Ток через подтягивающие	30	250	400	мкА	$V_{DD} = 5.0B$, $V_{PIN} = V_{SS}$
		резисторы GPIO ⁽⁴⁾					
		Ток через подтягивающий	-	-	30	мкА	$V_{DD} = 5.0B$, $V_{PIN} = V_{SS}$
		резистор на -MCLR					
	I₁∟	Входной ток утечки $^{(2,3)}$ для $V_{DD} \le 5$	5.5B				
D060		Порт ввода/вывода	-	-	±1	мкА	$V_{SS} \le V_{PIN} \le V_{DD}$, 3-e coct.
D061		T0CKI	-	-	±5	мкА	$V_{SS} \leq V_{PIN} \leq V_{DD}$
D063		OSC1	-	-	±5	мкА	$V_{SS} \leq V_{PIN} \leq V_{DD}, XT, LP$
D080	V_{OL}	Выходное напряжение низкого	-	-	0.6	В	I_{OL} =8.5 MA, V_{DD} = 4.5B,
		уровня канала ввода/вывода					от -40°С до +85°С
D090	V_{OH}	Выходное напряжение высокого	V _{DD} - 0.7	-	-	В	I_{OH} = - 3.0 MA, V_{DD} = 4.5B,
		уровня канала ввода/вывода					от -40°С до +85°С
		Емкостная нагрузка на выходах	•	•	•		
D100	C _{OSC2}	Вывод OSC2	-	-	15	пФ	XT, LP внешний тактовый
							сигнал
D101	C _{IO}	Все каналы ввода/вывода	-	-	50	пФ	

^{** -} В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

- 1. В EXTRC режиме генератора на входе OSC1 включен триггер Шмидта. Не рекомендуется использовать внешний тактовый сигнал для PIC12C5XX в EXTRC режиме тактового генератора.
- 2. Ток утечки на выводе -MCLR зависит от приложенного напряжения. Параметры указаны для нормального режима работы. В других режимах может возникнуть больший ток утечки.
- 3. Отрицательный ток показывает, что он вытекает из вывода.
- 4. Для режима, когда GP3/-MCLR настроен как -MCLR. Ток потребления входного буфера -MCLR больше чем канала порта ввода/вывода.

Таблица 13-1 Значения внутренних подтягивающих резисторов

Напряжение V _{DD} (B)	Температура (°C)	Мин.	Тип.	Макс.	Единицы измерения
		GP0/GP	1		1
2.5	-40	38	42	63	кОм
	25	42	48	63	кОм
	85	42	49	63	кОм
	125	50	55	63	кОм
5.5	-40	15	17	20	кОм
	25	18	20	23	кОм
	85	19	22	25	кОм
	125	22	24	28	кОм
		GP3			
2.5	-40	285	346	417	кОм
	25	343	414	532	кОм
	85	368	457	532	кОм
	125	431	504	593	кОм
5.5	-40	247	292	360	кОм
	25	288	341	437	кОм
	85	306	371	448	кОм
	125	351	407	500	кОм

^{* -} Эти параметры определены, но не протестированы.

13.5 Символьное обозначение временных параметров

Символьное обозначение временных параметров имеет один из следующих форматов:

- 1. TppS2ppS
- 2. TppS

Т				
F	Частота	T	Время	
Стро	чные символы (рр) и их значение			
pp				
2	До	mc	-MCLR	
ck	CLKOUT	osc	Генератор	
су	Длительность цикла	os	OSC1	
drt	DRT	t0	T0CKI	
io	Канал ввода/вывода	wdt	WDT	
Проп	исные символы и их значение			
S				
F	Задний фронт	Р	Период	
Н	Высокий уровень	R	Передний фронт	
I	Неверный (3-е состояние)	V	Верный	
L	Низкий уровень	Z	3-е состояние	

Puc. 13-1 Нагрузочные параметры

 C_L = 50пФ (для всех выводов, кроме OSC2)

 $C_L = 15 \pi \Phi$ (для вывода OSC2)

13.6 Временные диаграммы и спецификации

Рис. 13-2 Временная диаграмма внешнего тактового сигнала

Таблица 13-2 Параметры внешнего тактового сигнала

Рабочее напряжение питания V_{DD} должно соответствовать значению, указанному в разделе 13.1 или 13.2 Стандартные рабочие условия (если не указано иное)

Температурный диапазон: Коммерческий $0^{\circ}C \le T_A \le +70^{\circ}C$ Промышленный $-40^{\circ}C \le T_A \le +85^{\circ}C$ Расширенный $-40^{\circ}C \le T_A \le +125^{\circ}C$

№ пар.	Обоз.	Описание	Мин.	Тип.(1)	Макс.	Ед.	Примечание
	Fosc	Частота внешнего тактового сигнала ⁽²⁾	DC	_	4	МГц	XT режим
	- 000		DC	_	200	кГц	LP режим
		Частота генератора ⁽²⁾	DC	-	4	МГц	EXTRC режим
		·	0.1	-	4	МГц	XT режим
			DC	-	200	кГц	LP режим
1	Tosc	Период внешнего тактового сигнала ⁽²⁾	250	-	-	нс	XT режим
			5	-	-	МС	LP режим
		Период генератора ⁽²⁾	250	-	-	HC	RC режим
			250	-	10000	HC	XT режим
			5	-	-	МС	LP режим
2	T _{CY}	Время выполнения инструкции ⁽²⁾	•	4/Fosc	-	-	
3	TosL,	Длительность высокого/низкого уровня	50*	-	-	HC	XT режим
	TosH	(OSC1)	2*	-	-	мс	LP режим
4	TosR,	Длительность переднего/заднего фронта	-	-	25*	нс	XT режим
	TosF	внешнего тактового сигнала (OSC1)	-	-	50*	HC	LP режим

^{* -} Эти параметры определены, но не протестированы.

Примечания:

- В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.
- 2. Машинный цикл микроконтроллера равняется 4 периодам тактового сигнала. Все приведенные значения основываются на характеристиках конкретного типа генератора в стандартных условиях при выполнении программы. Выход за указанные пределы может привести к нестабильной работе генератора и/или к большему потребляемому току. Все микроконтроллеры проверены в режиме "Мин." при внешнем тактовом сигнале на выводе OSC1/CLKIN.

Таблица 13-3 Параметры калибровки внутреннего RC генератора

Рабочее напряжение питания V _{DD} должно соответствовать значению, указанному в разделе 13.1 или 13.2					циапазон:	повия (есл Коммерче Промышл Расширен	ский енный	иказано иное) $0^{\circ}C \le T_A \le +70^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$ $-40^{\circ}C \le T_A \le +125^{\circ}C$
№ пар.	Обоз.	Описание		Мин.*	Тип. ⁽¹⁾	Макс.*	Ед.	Примечание
		Частота внутреннего RC генератора		3.65	4.00	4.28	МГц	V _{DD} = 5.0 B
		Частота внутреннего RC генерато	ра	3.55	-	4.31	МГц	$V_{DD} = 2.5 B$

^{* -} Эти параметры определены, но не протестированы.

Примечания:

 В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Таблица 13-4 Параметры работы каналов ввода/вывода

Рабочее напряжение питания V _{DD} должно	Станд Темпе
соответствовать значению,	I CIVILIO
указанному в разделе 13.1 или 13.2	

стандартные рабочие ус	ловия (если не ук	казано иное)
Температурный диапазон:	Коммерческий	$0^{\circ}C \leq T_A \leq +70^{\circ}C$
	Промышленный	$-40^{\circ}C \le T_A \le +85^{\circ}C$
	Расширенный	$-40^{\circ}C \le T_A \le +125^{\circ}C$

№ пар.	Обоз.	Описание	Мин.	Тип.(1)	Макс.	Ед.	Примечание
17*	TosH2ioV	От OSC1 ↑ до установл. выхода ⁽³⁾	-		100*	НС	
18*	TosH2iol	Удержание входа после OSC1 ↑	TBD	-	-	HC	
19*	TioV2osH	Переход в режим входа относ. OSC1↑	TBD	-	-	HC	
20*	TioR	Длительность переднего фронта на выходе порта ввода/вывода (2,3)	-	10	25*	нс	
21*	TioF	Длительность заднего фронта на выходе порта ввода/вывода (2,3)	-	10	25*	нс	

^{* -} Эти параметры определены, но не протестированы.

- В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.
- 2. Измерения проведены в EXTRC режиме генератора.
- 3. Параметры нагрузки смотрите на рисунке 13-1.

Puc. 13-4 Временная диаграмма сброса, WDT, DRT

Примечания:

- Выводы каналов порта ввода/вывода должны перейти в 3-е состояние, включение выходных драйверов выполняется программным обеспечением.
- 2. При сбросе -MCLR или WDT выполняется только в XT, LP режиме генератора.

Таблица 13-5 Параметры сброса, WDT, DRT

соответ	ствовать	ение питания V _{DD} должно значению, вделе 13.1 или 13.2	Стандартные рабочие условия (если не указано иное)Температурный диапазон: Коммерческий $0^{\circ}C \le T_{A} \le +70^{\circ}C$ Промышленный $-40^{\circ}C \le T_{A} \le +85^{\circ}C$ Расширенный $-40^{\circ}C \le T_{A} \le +125^{\circ}C$					
№ пар.	Обоз.	Описание	· // // // // // // // // // // // // //			Макс.	Ед.	Примечание
30	TmcL	Длительность импульса -MCLR		2*	-	-	мкс	V _{DD} =5B
31*	Twdt	Период переполнения WDT (без предделителя)		9*	18*	30*	МС	V _{DD} =5B (Коммерческий)
32	T _{DRT}	Период DRT ⁽²⁾		9*	18*	30*	МС	V _{DD} =5В (Коммерческий)
34	T _{IOZ}	От сброса -MCLR до перевода ввода/вывода 3-е состояние	каналов	-	-	2*	МКС	

^{* -} Эти параметры определены, но не протестированы.

Примечания:

- В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°C, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.
- Смотрите таблицу 13-6.

Таблица 13-6 Время задержки при различных видах сброса (типовое значение)

Режим генератора	Сброс POR	Последующие сбросы
XT, LP	18мс	18мс
EXTRC, INTRC	18мс	300мкс

Puc. 13-5 Временная диаграмма внешнего тактового сигнала TMR0

Таблица 13-7 Параметры внешнего тактового сигнала TMR0

Рабочее напряжение питания V _{DD} должно соответствовать значению, указанному в разделе 13.1 или 13.2			Стандартные рабочие условия (если не указано иное)Температурный диапазон: Коммерческий $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$ Промышленный $-40^{\circ}C \leq T_{A} \leq +85^{\circ}$ Расширенный $-40^{\circ}C \leq T_{A} \leq +125^{\circ}$						
№ пар.	Обоз.	Описание	Мин.	Тип. ⁽¹⁾	Макс.	Ед.	Примечание		
40	Tt0H	Длительность высокого уровня ТО	ительность высокого уровня TOCKI						
		Без предд	Без предделителя		-	-	нс		
		С предде	С предделителем		-	-	нс		
41	Tt0L	Длительность низкого уровня ТОС	KI						
		Без предд	Без предделителя		-	-	нс		
		С предде	С предделителем		-	-	HC		
42	Tt0P	Период T0CKI	1 1 1 1 1		-	-	нс	N = коэфф.предд.	

[!] * - Эти параметры определены, но не протестированы.

^{1.} В столбце "Тип." приведены параметры при V_{DD}=5.0В @ 25°С, если не указано иное. Эти параметры являются ориентировочными, используются при разработке устройств и не измеряются.

Таблица 13-8 Параметры шины связи с EEPROM памятью данных (только для PIC12CE5XX)

таолица 13-о параметры шины связи с <u>с</u>					не указано иное)	
Рабочее напряжение питания V _{DD} должно	Температурный диапазон: Коммерческий 0°C ≤ T _A ≤ +70°C					
соответствовать значению,	Промышленный $-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$					
указанному в разделе 13.1 или 13.2	Расширенный -40°C ≤ T _A ≤ +1					
Параметр	Обоз.	Мин.	Макс.	Ед.	Примечание	
Частота сигнала синхронизации	F _{CLK}	_	100	кГц	4.5B ≤ V _{DD} ≤ 5.5B (E)	
• •		-	100	кГц	$3.0B \le V_{DD} \le 4.5B$	
		_	400	кГц	$4.5B \le V_{DD} \le 5.5B$	
Длительность высокого уровня тактового сигнала	T _{HIGH}	4000	-	HC	$4.5B \le V_{DD} \le 5.5B$ (E)	
		4000	_	нс	$3.0B \le V_{DD} \le 4.5B$	
		600	_	нс	$4.5B \le V_{DD} \le 5.5B$	
Длительность низкого уровня тактового сигнала	T _{LOW}	4700	-	нс	$4.5B \le V_{DD} \le 5.5B$ (E)	
		4700	_	нс	$3.0B \le V_{DD} \le 4.5B$	
		1300	_	нс	$4.5B \le V_{DD} \le 5.5B$	
Длительность переднего фронта на SDA и SCL ⁽¹⁾	T _R	-	1000	нс	4.5B ≤ V _{DD} ≤ 5.5B (E)	
		-	1000	нс	$3.0B \le V_{DD} \le 4.5B$	
		-	300	нс	$4.5B \le V_{DD} \le 5.5B$	
Длительность заднего фронта на SDA и SCL ⁽¹⁾	T _F	-	300	нс		
Удержание условия START	T _{HD:STA}	4000	-	нс	$4.5B \le V_{DD} \le 5.5B$ (E)	
		4000	_	нс	$3.0B \le V_{DD} \le 4.5B$	
		600	-	нс	$4.5B \le V_{DD} \le 5.5B$	
Установка условия START	T _{SU:STA}	4700	-	нс	$4.5B \le V_{DD} \le 5.5B$ (E)	
·		4700	-	нс	$3.0B \le V_{DD} \le 4.5B$	
		600	-	нс	$4.5B \le V_{DD} \le 5.5B$	
Удержание данных на входе ⁽²⁾	T _{HD:DAT}	0	-	нс		
Установка данных на входе	T _{SU:DAT}	250	-	нс	$4.5B \le V_{DD} \le 5.5B$ (E)	
		250	-	нс	$3.0B \le V_{DD} \le 4.5B$	
		250	-	HC	$4.5B \le V_{DD} \le 5.5B$	
Установка условия STOP	T _{SU:STO}	4000	-	нс	$4.5B \le V_{DD} \le 5.5B$ (E)	
		4000	-	HC	$3.0B \le V_{DD} \le 4.5B$	
		600	-	HC	$4.5B \le V_{DD} \le 5.5B$	
Достоверность сигнала на выходе ⁽²⁾	T _{AA}	-	3500	HC	$4.5B \le V_{DD} \le 5.5B$ (E)	
		-	3500	HC	$3.0B \le V_{DD} \le 4.5B$	
		-	900	HC	$4.5B \le V_{DD} \le 5.5B$	
Время не занятости шины. Шина должна быть	T _{BUF}	4700	-	нс	$4.5B \le V_{DD} \le 5.5B$ (E)	
свободна перед началом нового обмена		4700	-	нс	$3.0B \le V_{DD} \le 4.5B$	
		1300	-	нс	$4.5B \le V_{DD} \le 5.5B$	
Длительность перехода сигнала от мин. V_{IH} до V_{IL}	T _{OF}	20 + 0.1	250	нс	СВ ≤ 100 пФ	
на выходе ⁽¹⁾		CB				
Входной фильтр подавления BЧ помех на SDA и $\mathrm{SCL}^{(1)}$		-	50	HC		
Длительность цикла записи	Twc	-	4	МС		
Число циклов стирание/запись ⁽³⁾		1M	-	-	V _{DD} =5B @ 25°C	

- 1. Эти параметры являются оценочными. СВ емкость одной линии в пФ.
- 2. Необходимо выдерживать эту минимальную задержку относительно заднего фронта SCL, чтобы избежать ложное формирование битов START и STOP.
- Этот параметр не проверен, но гарантируется характеристиками. Для оценки реального числа циклов воспользуйтесь программным обеспечением, которое можно получить на WEB узлах технической поддержки www.microchip.com и www.microchip.ru.

14.0 Характеристики микроконтроллеров PIC12C508A, PIC12C509A, PIC12LC508A, PIC12LC509A, PIC12CE518, PIC12CE519, PIC12LCE518, PIC12LCE519, PIC12LCE519, PIC12LCE519, PIC12LCR509A

Графики в этом разделе не проверены и предназначены только для оценки при разработке устройств. В некоторых графиках представлены данные вне рабочего диапазона (в частности для напряжения питания V_{DD}). Это только информационные данные.

Данные, представленные в этом разделе, являются среднестатистическим результатом испытаний большого числа микроконтроллеров в течение длительного времени. Типовое значение подразумевает среднее, а минимальное и максимальное - соответственно (среднее - 3σ) и (среднее + 3σ), где σ - стандартный разброс.

Рис. **14-1** График зависимости калиброванной частоты внутреннего RC генератора от температуры (V_{DD} =2.5B)

Рис. **14-2** График зависимости калиброванной частоты внутреннего RC генератора от температуры (V_{DD}=5.0B)

Таблица 14-1 Типовое значение тока потребления I_{DD} (WDT включен, температура 25°C)

Режим генератора	Частота	$V_{DD} = 2.5B$	$V_{DD} = 5.5B$
EXTRC	4 МГц	240 мкА*	800 мкА*
INTRC	4 МГц	320 мкА	800 мкА*
XT	4 МГц	300 мкА	800 мкА*
LP	32 кГц	19 мкА	50 мкА

^{* -} Не учитывается ток через внешний резистор.

Рис. **14-3** График зависимости тока потребления I_{DD} от напряжения питания V_{DD} (WDT выкл., $25^{\circ}C$, F_{OSC} =4MГц)

Рис. **14-5** График зависимости периода WDT от напряжения питания V_{DD}

Рис. **14-4** График зависимости тока потребления I_{DD} от тактовой частоты F_{OSC} (WDT выкл., 25°C, V_{DD} = 5.5B)

Рис. **14-6** График зависимости минимального периода DRT от напряжения питания V_{DD}

Рис. **14-7** График зависимости I_{OH} от V_{OH} (V_{DD} =2.5B) -0 -1 -2 -3 -4 Мин. +125С -5 IOH (MA) Мин. +85С -6 -7 Тип. +25С -8 -9 Макс. -40С -10 .5 .75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 Vон (B)

Рис. **14-12** График зависимости I_{OL} от V_{OL} (V_{DD} =5.5B) 55 Макс. -40С 50 45 40 IOL (MA) 35 Тип. +25С 30 25 Мин. +85С 20 15 Мин. +125С 10 0 0.25 0.5 0.75 1.0 Vol (B)

Рис. **14-13** График зависимости тока потребления I_{PD} от напряжения питания V_{DD} (WDT выкл., 25°C)

Рис. **14-14** График зависимости V_{TH} GPIO от напряжения питания V_{DD}

15.0 Корпуса микроконтроллеров

15.1 Описание обозначений на корпусах микроконтроллеров

Обозначения:

XXX	Тип микроконтроллера*						
AA	Две цифры даты изготовления						
BB	Две цифры номера недели изготовления считая с 1 января.						
С	Код завода изготовителя						
	О = внешний представитель						
	C = 5"						
	S = 6"						
	H = 8"						
D	Номер версии						
E	Код завода или страны, в которой кристалл был упакован в корпус						
<i>Примечание.</i> Если тип микроконтроллера не помещается в одну строку, то он будет							

12C508A

Примечание. Если тип микроконтроллера не помещается в одну строку, то он будет перемещен на другую строку, ограничивая число доступных символов для информации заказчика.

XXXXXX

^{*} Стандартная маркировка ОТР микросхем состоит из: типа микроконтроллера, код года, код недели, код завода изготовителя, код упаковщика кристалла в корпус. Изменение маркировки микросхемы выполняется за отдельную плату. Для QTР микроконтроллеров стоимость маркировки входит в цену микросхем QTP.

Тип корпуса: 8-выводный PDIP K04-018 - 300mil

Единицы измерения		Дюймы*			Миллиметры		
Пределы размеров		Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		8			8	
Расстояние между выводами	р		0.100			2.54	
Ширина нижней части вывода	В	0.014	0.018	0.022	0.36	0.46	0.56
Ширина верхней части вывода	B1**	0.055	0.060	0.065	1.40	1.52	1.65
Радиус сгиба вывода	R	0.000	0.005	0.010	0.00	0.13	0.25
Толщина вывода	С	0.006	0.012	0.015	0.20	0.29	0.38
Толщина корпуса	Α	0.140	0.150	0.165	3.56	3.81	4.06
Толщина нижней части корпуса	A1	0.060	0.080	0.152	1.52	2.03	2.54
Расстояние между корпусом и платой	A2	0.005	0.020	0.035	0.13	0.51	0.89
Длина нижней части вывода	L	0.120	0.130	0.140	3.05	3.30	3.56
Длина корпуса	D***	0.355	0.370	0.385	9.02	9.40	9.78
Ширина корпуса	E***	0.245	0.250	0.260	6.22	6.35	6.60
Ширина корпуса без фаски	E1	0.267	0.280	0.292	6.78	7.10	7.42
Полная ширина корпуса с выводами	eВ	0.310	0.342	0.380	7.87	8.67	9.65
Угол фаски верхней части корпуса	а	5	10	15	5	10	15
Угол фаски нижней части корпуса	b	5	10	15	5	10	15

^{*} Основные размеры.
** Параметр В1 не включает в себя возможные выступы. Выступ в сторону не должен превышать 0.003"(0.076мм) или не более 0.006"(0.152мм) параметра В1.

^{***} Параметры D и E не включают выступы. Выступы в сторону не должны превышать 0.010"(0.254мм) или не более 0.020"(0.508мм) параметров D и E.

Тип корпуса: 8-выводный SOIC K04-057 - 150mil

Единицы измерения		Дюймы*			Миллиметры		
Пределы размеров		Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		8			8	
Расстояние между выводами	р		0.050			1.27	
Толщина корпуса	Α	0.054	0.061	0.069	1.37	1.56	1.75
Толщина нижней части корпуса	A1	0.027	0.035	0.044	0.69	0.90	1.11
Расстояние между корпусом и платой	A2	0.004	0.007	0.010	0.10	0.18	0.25
Длина корпуса	D***	0.189	0.193	0.196	4.80	4.89	4.98
Ширина корпуса	E***	0.150	0.154	0.157	3.81	3.90	3.99
Ширина корпуса с выводами	E1	0.229	0.237	0.244	5.82	6.01	6.20
Размер ориентирующей фаски	Χ	0.010	0.015	0.020	0.25	0.38	0.51
Радиус изгиба верхней части вывода	R1	0.005	0.005	0.010	0.13	0.13	0.25
Радиус изгиба нижней части вывода	R2	0.005	0.005	0.010	0.13	0.13	0.25
Длина нижней части вывода	L	0.011	0.016	0.021	0.28	0.41	0.53
Угол наклона нижней части вывода	f	0	4	8	0	4	8
Длина верхней части вывода	L1	0.000	0.005	0.010	0.00	0.13	0.25
Толщина вывода	С	0.008	0.009	0.010	0.19	0.22	0.25
Ширина вывода	B**	0.014	0.017	0.020	0.36	0.43	0.51
Угол фаски верхней части корпуса	а	0	12	15	0	12	15
Угол фаски нижней части корпуса	b	0	12	15	0	12	15

^{*} Основные размеры.

^{**} Параметр В не включает в себя возможные выступы. Выступ в сторону не должен превышать 0.003"(0.076мм) или не более 0.006"(0.152мм) параметра В.

^{***} Параметры D и E не включают выступы. Выступы в сторону не должны превышать 0.010"(0.254мм) или не более 0.020"(0.508мм) параметров D и E.

Тип корпуса: 8-выводный SOIC K04-056 - 208mil

Единицы измерения		Дюймы*			Миллиметры		
Пределы размеров		Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		8			8	
Расстояние между выводами	р		0.050			1.27	
Толщина корпуса	Α	0.070	0.074	0.079	1.78	1.89	2.00
Толщина нижней части корпуса	A1	0.037	0.042	0.048	0.94	1.08	1.21
Расстояние между корпусом и платой	A2	0.002	0.005	0.009	0.05	0.14	0.22
Длина корпуса	D***	0.200	0.205	0.210	5.08	5.21	5.33
Ширина корпуса	E***	0.203	0.208	0.213	5.16	5.28	5.41
Ширина корпуса с выводами	E1	0.300	0.313	0.325	7.62	7.94	8.26
Радиус изгиба верхней части вывода	R1	0.005	0.005	0.010	0.13	0.13	0.25
Радиус изгиба нижней части вывода	R2	0.005	0.005	0.010	0.13	0.13	0.25
Длина нижней части вывода	L	0.011	0.016	0.021	0.28	0.41	0.53
Угол наклона нижней части вывода	f	0	4	8	0	4	8
Длина верхней части вывода	L1	0.010	0.015	0.020	0.25	0.38	0.51
Толщина вывода	С	0.008	0.009	0.010	0.19	0.22	0.25
Ширина вывода	B**	0.014	0.017	0.020	0.36	0.43	0.51
Угол фаски верхней части корпуса	а	0	12	15	0	12	15
Угол фаски нижней части корпуса	b	0	12	15	0	12	15

^{*} Основные размеры.
** Параметр В не включает в себя возможные выступы. Выступ в сторону не должен превышать 0.003"(0.076мм) или не более 0.006"(0.152мм) параметра В.

^{***} Параметры D и E не включают выступы. Выступы в сторону не должны превышать 0.010"(0.254мм) или не более 0.020"(0.508мм) параметров D и E.

Тип корпуса: 8-выводный керамический корпус с окном для УФ стирания (JW) K04-084 - 300mil

Единицы измерения		Дюймы*			Миллиметры		
Пределы размеров		Мин.	Ном.	Макс.	Мин.	Ном.	Макс.
Число выводов	n		8			8	
Расстояние между выводами	р	0.098	0.100	0.102	2.49	2.54	2.59
Ширина нижней части вывода	В	0.016	0.018	0.020	0.41	0.46	0.51
Ширина верхней части вывода	B1	0.050	0.055	0.060	1.27	1.40	1.52
Толщина вывода	С	0.008	0.010	0.012	0.20	0.25	0.30
Толщина корпуса	Α	0.145	0.165	0.185	3.68	4.19	4.70
Толщина нижней части корпуса	A1	0.103	0.123	0.143	2.62	3.12	3.63
Расстояние между корпусом и платой	A2	0.025	0.035	0.045	0.64	0.89	1.14
Длина нижней части вывода	L	0.130	0.140	0.150	3.30	3.56	3.81
Длина корпуса	D	0.510	0.520	0.530	12.95	13.21	13.46
Ширина корпуса	Е	0.280	0.290	0.300	7.11	7.37	7.62
Полная ширина корпуса с выводами	eВ	0.310	0.338	0.365	7.87	8.57	9.27
Диаметр окна	W	0.161	0.166	0.171	4.09	4.22	4.34
Длина крышки	Т	0.440	0.450	0.460	11.18	11.43	11.68
Ширина крышки	U	0.260	0.270	0.280	6.60	6.86	7.11

^{*} Основные размеры.

15.2 Правила идентификации типа микроконтроллеров PIC12C5XX

Чтобы определить параметры микроконтроллеров воспользуйтесь ниже описанным правилом.

Пример

- 1. **PIC12C508A-04/P** = коммерческий температурный диапазон, корпус PDIP, 4МГц, нормальный диапазон напряжения питания.
- 2. **PIC12C508A-04I/SM** = промышленный температурный диапазон, корпус SOIC, 4МГц, нормальный диапазон напряжения питания.
- 3. **PIC12C509-04I/P** = промышленный температурный диапазон, корпус PDIP, 4МГц, нормальный диапазон напряжения питания.

Уважаемые господа!

OOO «Микро-Чип» поставляет полную номенклатуру комплектующих фирмы Microchip Technology Inc

и осуществляет качественную техническую поддержку на русском языке.

С техническими вопросами Вы можете обращаться по адресу support@microchip.ru

По вопросам поставок комплектующих Вы можете обращаться к нам по телефонам:

(095) 963-9601 (095) 737-7545

и адресу sales@microchip.ru

На сайте www.microchip.ru

Вы можете узнать последние новости нашей фирмы, найти техническую документацию и информацию по наличию комплектующих на складе.