Logical and Theoretical Foundation of CS

CAU

Dependable Systems Group D. Nowotka, P. Fleischmann

Christian-Albrechts-Universität zu Kiel

Example solution for Series #1

Technische Fakultät

Exercise 1 You get for each correct answer 1 point, but you will lose 1 point for an incorrect answer.			
a) l	Equivalence relations are reflexive, antisymmetric, and transitiv.	\bigcirc true	\boxtimes false
	In a group (G,\cdot,e) where a^{-1} denotes the inverse element of $a\in G$, the inverse $b^{-1}\cdot a^{-1}$.	element ⊗ true	of $a \cdot b$ is \bigcirc false
	Define the complement as $A^C = U \backslash A$ for a set U and $A \subseteq U$. The complement operant.	eration is ⊗ true	idempo-
d) 7	The intersection on sets is commutative.	\bigotimes true) false
e) [The usual substraction $-: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is associative.	\bigcirc true	\bigotimes false
f) 7	The natural numbers $\mathbb N$ are not closed under division.	\bigotimes true) false
g) 1	Functions are left-total and right-unique relations.	\bigotimes true) false
h) l	Each group is abelian w.r.t. its operation.	\bigcirc true	\bigotimes false
i) ($(\mathbb{Z},+,\cdot,0,1)$ is a field with the usual addition and multiplication.	\bigcirc true	\bigotimes false
j) [Two sets A and B are equal iff $A \subseteq B$ and $B \subseteq A$.	\bigotimes true) false
Exercise 2 Give the following definitions and notations:			7 Points
b) 3 c) 5 d) (e) 1	$R\subseteq G\times G$ over a group (G,\cdot,e) is a congruence relation. $R\subseteq M\times M$ for a set M be a well-ordering relation. a) Find R and M such that R is a well-ordering on M . b) Find R' and M' such that R' is not a well-ordering on M' . Symmetric group \mathcal{S}_n on the set $[n]$ for $n\in\mathbb{N}$. (M,\cdot,e) monoid. Let $f,g:\mathbb{N}\to\mathbb{R}$ be functions, define the Landau sets i) $f\in\mathcal{O}(g)$ ii) $f\in\mathcal{O}(g)$		(1P) (1P) (0.5P) (0.5P) (1.5P) (0.5P) (0.5P)
0.1.11			

Solution:

- a) R is an equivalence relation and for all $(g_1, g_2), (g_1', g_2') \in R$ we have $(g_1 \cdot g_1', g_2 \cdot g_2') \in R$.
- b) A relation is a well-order iff it is a total order and each subset has a minimum.
 - i) < on \mathbb{N} is a well-ordering.
 - ii) < on \mathbb{Z} is not a well-ordering.
- c) For $n \in \mathbb{N}$ the symmetric group S_n is defined as set of all permutations on [n].
- d) (M, \cdot, e) is a monoid if M is closed under \cdot, \cdot is associative and e is the neutral element w.r.t. \cdot .
- e) i) $f \in \mathcal{O}(g)$ iff $\exists c > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N}_{\geq n_0} : f(n) \leq cg(n)$
 - ii) $f \in \Omega(g)$ iff $g \in \mathcal{O}(f)$

Winter Semester 2019/20 **Return till**: October 28th, 2019, 12:00 pm

Logical and Theoretical Foundation of CS

iii) $f \in \Theta(g)$ iff $g \in \mathcal{O}(f)$ and $f \in \mathcal{O}(g)$

Exercise 3 17 Points

- a) Define $f: \mathbb{N} \to \mathbb{R}; n \mapsto 4n^2 + 7n + 3$ and $g: \mathbb{N} \to \mathbb{R}; n \mapsto n^2$. Prove $f \in \mathcal{O}(g)$.
- b) Let (G, \cdot, e) be a group. Prove that the right-neutrality of e follows by the left-neutrality of e.
- c) Define $\equiv_c \subseteq \mathbb{Z} \times \mathbb{Z}$ for $c \in \mathbb{N}$ by $(a,b) \in \equiv_c$ iff c|a-b. For convenience we write $a \equiv_c b$ instead of $(a,b) \in \equiv_c$. Prove that \equiv_c is a congruence relation.
- d) i) Prove that the symmetric group S_n for $n \in \mathbb{N}$ is indeed a group with composition $\circ : S_n \times S_n \to S_n$ as operation.
 - ii) Decide whether S_n is abelian or not. Justify your answer.

Solution:

a) For c = 14 and $n_0 = 1$ we have by $n^2 \ge n$ for all $n \in \mathbb{N}$

$$f(n) = 4n^2 + 7n + 3 \le 4n^2 + 7n^2 + 3n^2 = 14n^2 = c \cdot g(n)$$
. \square

b) Let $a \in G$. Since e is right-neutral we have $a \cdot e = a$. Since e is neutral we have $a^{-1} \cdot a = e$ for the inverse element a^{-1} of a. By the associativity of \cdot on G we get

$$a = a \cdot e = a \cdot (a^{-1} \cdot a) = (a \cdot a^{-1}) \cdot a = e \cdot a.$$

c) We prove firstly that \equiv_c is an equivalence relation. By c|0 we have c|a-a for all $a\in\mathbb{Z}$ and thus $a\equiv_c a$, which proves the reflexivity of \equiv_c . Let $a,b\in\mathbb{Z}$ with $a\equiv_c b$. For the symmetry we have to prove $b\equiv_c a$, i.e. c|b-a. By c|a-b and the implication that if a number n divides a number m then n divides also pm for all integers p, we have c|(-1)(a-b)=-a+b=b-a. For the transitivity let $a,b,d\in\mathbb{Z}$ with $a\equiv_c b$ and $b\equiv_c d$. By the implication that if a number n divides m_1 and m_2 then n divides also m_1+m_2 we get

$$c|(a-b) + (b-d) = a-b+b-d = a-d.$$

Now we prove the congruence property. Assume $a_1 \equiv_c b_1$ and $a_2 \equiv_c b_2$. Again by the *addition*-argument we get

$$c|(a_1-b_1)+(a_2-b_2)=(a_1+a_2)-(b_1+b_2).$$

d) i) We have to prove that the composition $\circ: \mathcal{S}_n \times \mathcal{S}_n \to \mathcal{S}_n$ is closed and associative. Moreover we have to find a neutral element and to show that for each element $\pi \in \mathcal{S}_n$ exists the inverse element in \mathcal{S}_n . Let $\pi_1, \pi_2 \in \mathcal{S}_n$. Permutations are defined as bijective mappings and thus we have to prove that $\pi_1 \circ \pi_2$ is bijective on [n]. Let $m \in [n]$. Since π_2 is surjective there exists an $m_1 \in [n]$ with $\pi_2(m_1) = m$. Since π_1 is surjective there exists an $m_2 \in [n]$ with $\pi_1(m_2) = m_1$. This implies $\pi_2(\pi_1(m_2)) = \pi_2(m_1) = m$, i.e. $\pi_1 \circ \pi_2$ is surjective. For the injectivity consider $m_1, m_2 \in [n]$ with $\pi_2(\pi_1(m_1)) = \pi_2(\pi_1(m_2))$. Since π_2 is injective we get $\pi_1(m_1) = \pi_1(m_2)$. Since π_1 is injective we get $m_1 = m_2$, i.e. the injectivity of $\pi_1 \circ \pi_2$. This proves that \mathcal{S}_n is closed under \circ . We are going to prove now the associativity of \circ . Let $\pi_1, \pi_2, \pi_3 \in \mathcal{S}_n$ and $m \in [n]$. By the definition of the composition we get

$$((\pi_1 \circ \pi_2) \circ \pi_3)(n) = (\pi_3(\pi_1 \circ \pi_2))(n) = \pi_3(\pi_2(\pi_1(n))) = (\pi_2 \circ \pi_3)(\pi_1(n)) = (\pi_1 \circ (\pi_2 \circ \pi_3))(n).$$

Define $\mathrm{id}_n:[n]\to[n]; n\mapsto n$. Let $\pi\in\mathcal{S}_n$ and $m\in[n]$. Then we get $(\pi\circ\mathrm{id}_n)(m)=\mathrm{id}_n(\pi(m))=\pi(m)$ and thus id_n is the neutral element of \mathcal{S}_n . For $\pi\in\mathcal{S}_n$ define $\psi:[n]\to[n]$ by $\psi(m)=m'$ iff $\pi(m')=m$. ψ is well-defined since π is a permutation. For $m\in[n]$ we get

$$(\psi \circ \pi)(m) = \pi(\psi(m)) = \pi(m') = m = id_n(m).$$

This proves that there exists an inverse element for each permutation; this concludes the prove that S_n is a group.

Winter Semester 2019/20 Example solution for Series #1

ii) The symmetric group is not abelian, witnessed by the permutations $\pi_1=(1234)$ and $\pi_2=(143)(2)$:

 $\pi_1 \circ \pi_2 = (12)(3)(4)$ and $\pi_2 \circ \pi_1 = (1)(23)(4)$. \square

Winter Semester 2019/20 Example solution for Series #1