

@mhelmich - 07/20/2017

https://github.com/mhelmich/carbon-copy

Databases are Magicians

"Magic seems to break the laws of physics but it's an illusion [... relational databases are magicians] Because they decouple 'what you want' from 'how you get it'".

- The core illusion relational databases entertain us with is that we actually don't know how and where the data is stored
 - And we don't need to know in order to retrieve data

A History Lesson

- Data was structured in a hierarchical way
 - Imagine this much like a JSON file
 - Code would read like a description of how to get the data you want
- Until Dr. Frank Codd came around
 - Combining set theory and graph theory to propose a declarative way of describing "the data you want"

Recap: How do databases work again?


```
Jedis jedis = new Jedis();
Map<String, Double> scores = new HashMap<>();

scores.put("PlayerOne", 3000.0);
scores.put("PlayerTwo", 1500.0);
scores.put("PlayerThree", 8200.0);

scores.keySet().forEach(player -> {
    jedis.zadd("ranking", scores.get(player), player);
});

String player = jedis.zrevrange("ranking", 0, 1).iterator().next();
long rank = jedis.zrevrank("ranking", "PlayerOne");
```

player	score
PlayerOne	3000.0
PlayerTwo	1500.0
PlayerThree	8200.0

```
SELECT player FROM ranking ORDER BY score LIMIT 1;
SELECT ROWNUMBER() FROM ranking WHERE name = 'PlayerOne' ORDER BY score;
```

Enter Carbon Copy

- An in-memory cache that speaks SQL
 - Tell me "what you want" not "how to get it"
 - Ships with its own JDBC driver
- Based on two design concepts
 - Data placement
 - Minimum coordination

Carbon Copy

 Calcite providing JDBC interface, query planning in a box

 Carbon Copy building complex data structures, managing data placement and query distribution

 Galaxy providing a consistency framework for byte[]

Behind the Scenes Byte Arrays to distributed Indexes

- Started with byte[]
 - DataBlock is the simplest data structure
 - Just 32kb long linked lists in a byte array

- DataBlocks are composing complex data structures
 - Like hashes and btrees and tables and indexes

Behind the Scenes Distributed BTrees

- Two fundamental design principles explained
 - Minimum coordination
 - Data placement
 - Code is moved to data

A tree distributed with Galaxy

Next Up

- Performance and scalability
- Feed the query optimizer
 - Collecting stats
 - Data sampling
- Monitoring
- Automatic generation of indexes based on usage patterns

Thank you!

• Fork me on github: https://github.com/mhelmich/carbon-copy

• Questions?