

CSCI 2200 FOUNDATIONS OF COMPUTER SCIENCE

David Goldschmidt goldsd3@rpi.edu Fall 2022

PROVING AN UNFOLDED RECURRENCE — EXAMPLE

Given $A_1 = 1$ and $A_n = 10A_{n-1} + 1$ for n > 1

If unfolding does not work, try tinkering with a few values to observe a pattern...

$$A_2 = 10A_1 + 1 = 10(1) + 1 = 11$$

$$A_3 = 10A_2 + 1 = 10(11) + 1 = 111$$

$$A_4 = 10A_3 + 1 = 10(111) + 1 = 1111$$

$$A_5 = 10A_4 + 1 = 10(1111) + 1 = 11111$$

Aha, observe that $A_n = 1 + 10 + 100 + 1000 + ... + 10^{n-1}$

...how can we write this more precisely?

 $A_n = \left\lfloor \frac{10^n}{9} \right\rfloor$

PROVING AN UNFOLDED RECURRENCE — EXAMPLE

Given
$$A_1 = 1$$
 and $A_n = 10A_{n-1} + 1$ for $n > 1$ — our claim is that $A_n = \left\lfloor \frac{10^n}{9} \right\rfloor$

Proof. We use induction to prove the claim for $n \ge 1$.

- 1. [Base case] For n = 1, we have $A_1 = \left| \begin{array}{c} 10^1 \\ 9 \end{array} \right| = 1$, which is **T**.
- 2. [Induction step] Assume $A_n = \left\lfloor \frac{10^n}{9} \right\rfloor$; we must prove $A_{n+1} = \left\lfloor \frac{10^{n+1}}{9} \right\rfloor$.

From the LHS, $A_{n+1} = 10A_n + 1$.

Applying our induction hypothesis, we have $A_{n+1} = 10 \left[\frac{10^n}{9} \right] + 1$.

Given
$$A_1 = 1$$
 and $A_n = 10A_{n-1} + 1$ for $n > 1$ — our claim is that $A_n = \left\lfloor \frac{10^n}{9} \right\rfloor$

Proof. We use induction to prove the claim for $n \ge 1$.

See Problem 7.12(a)...

- 1. [Base case] For n = 1, we have $A_1 = \left| \begin{array}{c} 10^1 \\ 9 \end{array} \right| = 1$, which is **T**.
- 2. [Induction step] Assume $A_n = \begin{bmatrix} 10^n \\ 9 \end{bmatrix}$; we must prove $A_{n+1} = \begin{bmatrix} 10^{n+1} \\ 9 \end{bmatrix}$.

From the LHS, $A_{n+1} = 10A_n + 1$.

Applying our induction hypothesis, we have $A_{n+1} = 10 \left| \frac{10^n}{9} \right| + 1$.

Rearranging, we obtain $A_{n+1} = 10 \left(\left\lfloor \frac{10^n}{9} \right\rfloor + \frac{1}{10} \right)$.

Adding 0.1 and multiplying by 10 is equivalent to the floor here...

And from this, we have $A_{n+1} = \left\lfloor \frac{10^{n+1}}{9} \right\rfloor$, as was to be shown.

Strings in M are balanced, meaning the number of opening and closing parentheses is equal...

RECURSIVE SETS — MATCHED PARENTHESES

Recursive definition of matched parentheses set M.

1. $\varepsilon \in M$

- [basis]
- 2. $x, y \in M \rightarrow [x] \bullet y \in M$
- [constructor]

Write derivations for [], [[]], and [] [] by showing each step taken from the base case...

 $M = \{ \epsilon, [], [[]], [][], [[]][], \dots \}$

- $\varepsilon \rightarrow []$ set $x = \varepsilon$ and $y = \varepsilon$ to get $[\varepsilon] \varepsilon = []$
- $\varepsilon \to [] \to []]$ set x = [] and $y = \varepsilon$ to get $[]] \varepsilon = []]$
- $\varepsilon \rightarrow [] \rightarrow [][]$
- set $x = \varepsilon$ and y = [] to get $[\varepsilon][] = [][]$

We derive element s, by applying the constructor to two prior strings...

...and the two strings need not be distinct!

PROPERTIES OF RECURSIVE SETS

Recursive definition of the natural numbers \mathbb{N} .

1. $1 \in \mathbb{N}$.

- [basis]
- 2. $x \in \mathbb{N} \to x + 1 \in \mathbb{N}$.
- [constructor]

e.g., show $P(n): 5^n - 1$ is divisible by 4 for all natural numbers...

Consider any property P(n) that we want to prove for all $n \in \mathbb{N}$.

Proof. We use structural induction to prove that property P(n) holds for all $n \in \mathbb{N}$.

- 1. [Base cases] Prove P(n) holds for all base cases.
- 2. [Induction step] Prove that each constructor rule preserves P(n):
 - IF P(n) is **T** for parent element x, THEN P(n) is **T** for all child element(s)
- 3. By structural induction, we have shown that P(n) is **T** for all $n \in \mathbb{N}$.

RECURSIVE SETS — BINARY STRINGS OF ODD LENGTH

Recursive definition of set S_{add} (binary strings of odd length).

1. $0 \in S_{odd}$; $1 \in S_{odd}$

2. $x \in S_{add} \rightarrow 0 \bullet x \bullet 0 \in S_{add}$

 $x \in S_{odd} \rightarrow 0 \bullet x \bullet 1 \in S_{odd}$

 $x \in S_{odd} \rightarrow 1 \bullet x \bullet 0 \in S_{odd}$

 $x \in S_{odd} \rightarrow 1 \bullet x \bullet 1 \in S_{odd}$

[basis]

[constructor (i)]

[constructor (ii)]

[constructor (iii)]

[constructor (iv)]

Prove by structural induction that every element in S_{odd} is of odd length...

(next slide)

Prove (often by contradiction) that every binary string of odd length is in S_{odd} ...

(next next slide)

STRUCTURAL INDUCTION

Recursive definition of set S_{odd} .

1. $0 \in S_{odd}$; $1 \in S_{odd}$ [basis]

2. $x \in S_{odd} \rightarrow 0 \bullet x \bullet 0 \in S_{odd}$ [constructor (i)] $x \in S_{odd} \rightarrow 0 \bullet x \bullet 1 \in S_{odd}$ [constructor (ii)]

 $x \in S_{odd} \rightarrow 1 \bullet x \bullet 0 \in S_{odd}$ [constructor (iii)]

 $x \in S_{odd} \rightarrow 1 \bullet x \bullet 1 \in S_{odd}$ [constructor (iv)]

Proof. We use structural induction to prove that every element of S_{odd} has odd length.

- 1. [Base cases] Both strings 0 and 1 have odd length.
- 2. [Induction step] We must prove that each constructor preserves oddness.

Assume $x \in S_{\text{odd}}$ has odd length, meaning |x| = 2k + 1 for $k \in \mathbb{N}_0$.

For constructor (i), we must show $0 \bullet x \bullet 0$ has odd length.

Here, $0 \bullet x \bullet 0$ increases the length by 2, so |0x0| = 2k + 3, which must be odd.

For constructors (ii), (iii), and (iv), we repeat the above.

3. By structural induction, we conclude that every member of $S_{\rm odd}$ has odd length.

CONTRADICTION

Recursive definition of set S_{odd}.

1. $0 \in S_{odd}$; $1 \in S_{odd}$ [basis]

2. $x \in S_{odd} \rightarrow 0 \bullet x \bullet 0 \in S_{odd}$ [constructor (i)] $x \in S_{odd} \rightarrow 0 \bullet x \bullet 1 \in S_{odd}$ [constructor (ii)]

 $x \in S_{odd} \rightarrow 1 \bullet x \bullet 0 \in S_{odd}$ [constructor (iii)]

 $x \in S_{odd} \rightarrow 1 \bullet x \bullet 1 \in S_{odd}$ [constructor (iv)]

Proof. We use contradiction to prove that every binary string of odd length is in S_{odd} .

Consider string s, the shortest string of odd length not in Sodd.

Then $|s| \ge 3$ or else s would be a base case in S_{odd} . We have two cases.

Case 1. If s starts with 0, we can define $s = 0 \bullet x \bullet 0$ or $s = 0 \bullet x \bullet 1$. Then, x must have odd length $|x| \ge 1$, meaning that $x \in S_{odd}$.

But if $x \in S_{odd}$, then by constructor (i) or (ii), we have $s \in S_{odd}$, a contradiction!

If s starts with 1, we can define $s = 1 \bullet x \bullet 0$ or $s = 1 \bullet x \bullet 1$. Then, x must have odd length $|x| \ge 1$, meaning that $x \in S_{odd}$.

But if $x \in S_{odd}$, then by constructor (iii) or (iv), we have $s \in S_{odd}$, a contradiction!

Given both contradictions, we conclude that there is no shortest string of odd length that is not in S_{odd} , i.e., every binary string of odd length is in S_{odd} .

ROOTED BINARY TREE

Write a recursive definition that generates RBTs of arbitrary height...

A rooted binary tree (RBT) is a graph with $|V| \ge 0$ vertices and the following properties:

- 1. One vertex is identified as the root of the tree (indicated in red)
- 2. There is exactly one path from the root to any other vertex in the tree (Here, a path is defined as a sequence of edge traversals...)
- 3. Each vertex has at most two children!

ROOTED BINARY TREE

Recursive definition of Rooted Binary Tree (RBT).

- 1. The empty tree ε is an RBT (no root).
- 2. If T_1 and T_2 are disjoint RBTs with roots r_1 and r_2 , then linking r_1 and r_2 to a new root r produces a new RBT with root r.

[basis]

[constructor]

$$\varepsilon \xrightarrow{T_1 = \varepsilon} T_2 = \varepsilon \xrightarrow{T_1 = \varepsilon} T_2 = \varepsilon \xrightarrow{T_1 = \varepsilon} T_2 = \varepsilon$$

ROOTED BINARY TREE

Recursive definition of Rooted Binary Tree (RBT).

- 1. The empty tree ε is an RBT (no root).
- 2. If T_1 and T_2 are disjoint RBTs with roots r_1 and r_2 , then linking r_1 and r_2 to a new root r produces a new RBT with root r.

$$\varepsilon \xrightarrow{T_1 = \varepsilon} \qquad \qquad T_1 = \varepsilon \qquad \qquad T_1 = \bullet \qquad \qquad T_1 = \bullet \qquad \qquad T_2 = \varepsilon \qquad \qquad T_2 = \bullet \qquad \qquad T_3 = \bullet \qquad \qquad T_4 = \bullet \qquad \qquad T_5 = \bullet \qquad \qquad T_6 = \bullet \qquad T_6 = \bullet \qquad \qquad T_6$$

RBTs of height 0, 1, and 2

Can you prove that an RBT with $n \ge 1$ vertices must have n - 1 edges...?

STRUCTURAL INDUCTION

Our claim is P(T): if T is an RBT with $n \ge 1$ vertices, then T has n - 1 edges.

Recursive definition of Rooted Binary Tree (RBT).

- 1. The empty tree ϵ is an RBT (no root).
- 2. If T_1 and T_2 are disjoint RBTs with roots r_1 and r_2 , then linking r_1 and r_2 to a new root r produces a new RBT with root r.

Proof. We use structural induction to prove claim P(T).

- 1. [Base case] For $P(\varepsilon)$, the claim is **T** since ε is not an RBT with $n \ge 1...$
- 2. [Induction step] We must prove that the constructor preserves P. For our constructor, let parent T_1 have v_1 vertices and e_1 edges, and let parent T_2 have v_2 vertices and e_2 edges. Assume $P(T_1) \wedge P(T_2)$ is \mathbf{T} (i.e., our induction hypothesis). Let the constructed RBT T_{new} have v_{new} vertices and e_{new} edges. We must show $e_{new} = v_{new} 1$.
 - Case 1. $T_1 = T_2 = \varepsilon$. Here, tree T_{new} has $v_{new} = 1$, $e_{new} = 0$, and $e_{new} = v_{new} 1$.
 - Case 2. $T_1 = \varepsilon$; $T_2 \neq \varepsilon$. Here, $v_{new} = v_2 + 1$ and $e_{new} = e_2 + 1$. Applying the induction hypothesis for e_2 , we have $e_{new} = e_2 + 1 = (v_2 1) + 1 = v_2 = v_{new} 1$.

Our claim is P(T): if T is an RBT with $n \ge 1$ vertices, then T has n - 1 edges.

Proof. We use structural induction to prove claim P(T).

- 1. [Base case] For $P(\varepsilon)$, the claim is **T** since ε is not an RBT with $n \ge 1...$
- 2. [Induction step] We must prove that the constructor preserves P. For our constructor, let parent T_1 have v_1 vertices and e_1 edges, and let parent T_2 have v_2 vertices and e_2 edges. Assume $P(T_1) \wedge P(T_2)$ is \mathbf{T} (i.e., our induction hypothesis). Let the constructed RBT T_{new} have v_{new} vertices and e_{new} edges. We must show $e_{new} = v_{new} 1$.
 - Case 1. $T_1 = T_2 = \varepsilon$. Here, tree T_{new} has $v_{new} = 1$, $e_{new} = 0$, and $e_{new} = v_{new} 1$.

Case 2. $T_1 = \varepsilon$; $T_2 \neq \varepsilon$. Here, $v_{new} = v_2 + 1$ and $e_{new} = e_2 + 1$. Applying the induction hypothesis, we have $e_{new} = e_2 + 1 = (v_2 - 1) + 1 = v_2 = v_{new} - 1$.

- Case 3. $T_1 \neq \epsilon$; $T_2 = \epsilon$. Here, $v_{new} = v_1 + 1$ and $e_{new} = e_1 + 1$. Applying the induction hypothesis, we have $e_{new} = e_1 + 1 = (v_1 1) + 1 = v_1 = v_{new} 1$.
- Case 4. $T_1 \neq \varepsilon$; $T_2 \neq \varepsilon$. Here, $v_{new} = v_1 + v_2 + 1$ and $e_{new} = e_1 + e_2 + 2$. Applying the induction hypothesis, we have $e_{new} = e_1 + e_2 + 2 = (v_1 1) + (v_2 1) + 2$. Thus, $e_{new} = v_1 + v_2 = v_{new} 1$.
- 3. By structural induction, P(T) is **T** for all $T \in RBT$.

here, the

constructor

preserves

P(T), i.e.,

WHAT NEXT...?

Grade inquiries for Exam 1 and Homeworks 1 and 2 due by 11:59PM on October 21

Homework 3 is due by 11:59PM on October 20

This week's October 19 recitations will be Q&A sessions focused on Homework 3...

Practice! Tinker! Practice! Tinker! Practice! Tinker! Practice!