Beej's Guide to Interprocess Communication

Brian "Beej Jorgensen" Hall

v1.1.4, Copyright © February 4, 2023

Chapter 2

A fork() Primer

"Fork", aside from being one of those words that begins to appear very strange after you've typed it repeatedly, refers to the way Unix creates new processes. This document gives a quick and dirty fork() primer, since use of that system call will pop up in other IPC documents. If you already know all about fork(), you might as well skip this document.

2.1 "Seek ye the Gorge of Eternal Peril"

fork() can be thought of as a ticket to power. Power can sometimes be thought of as a ticket to destruction. Therefore, you should be careful while messing with fork() on your system, especially while people are cranking their nearly-late semester projects and are ready to nuke the first organism that brings the system to a halt. It's not that you should never play with fork(), you just have to be cautious. It's kind of like sword—swallowing; if you're careful, you won't disembowel yourself.

Since you're still here, I suppose I'd better deliver the goods. Like I said, fork() is how Unix starts new processes. Basically, how it works is this: the parent process (the one that already exists) fork()'s a child process (the new one). The child process gets a *copy* of the parent's data. *Voila!* You have two processes where there was only one!

Of course, there are all kinds of gotchas you must deal with when fork()ing processes or else your sysadmin will get irate with you when you fill of the system process table and they have to punch the reset button on the machine.

First of all, you should know something of process behavior under Unix. When a process dies, it doesn't really go away completely. It's dead, so it's no longer running, but a small remnant is waiting around for the parent process to pick up. This remnant contains the return value from the child process and some other goop. So after a parent process fork()s a child process, it must wait() (or waitpid()) for that child process to exit. It is this act of wait()ing that allows all remnants of the child to vanish.

Naturally, there is an exception to the above rule: the parent can ignore the SIGCHLD signal (SIGCLD on some older systems) and then it won't have to wait(). This can be done (on systems that support it) like this:

```
main()
{
    signal(SIGCHLD, SIG_IGN); /* now I don't have to wait()! */
    .
    .
    fork();fork(); /* Rabbits, rabbits, rabbits! */
```

Now, when a child process dies and has not been wait()ed on, it will usually show up in a ps listing as "<defunct>". It will remain this way until the parent wait()s on it, or it is dealt with as mentioned below.

Now there is another rule you must learn: when the parent dies before it wait()s for the child (assuming

it is not ignoring SIGCHLD), the child is reparented to the init process (PID 1). This is not a problem if the child is still living well and under control. However, if the child is already defunct, we're in a bit of a bind. See, the original parent can no longer wait(), since it's dead. So how does init know to wait() for these zombie processes?

The answer: it's magic! Well, on some systems, init periodically destroys all the defunct processes it owns. On other systems, it outright refuses to become the parent of any defunct processes, instead destroying them immediately. If you're using one of the former systems, you could easily write a loop that fills up the process table with defunct processes owned by init. Wouldn't that make your sysadmin happy?

Your mission: make sure your parent process either ignores SIGHCLD, or wait()s for all the children it fork()s. Well, you don't *always* have to do that (like if you're starting a daemon or something), but you code with caution if you're a fork() novice. Otherwise, feel free to blast off into the stratosphere.

To summerize: children become defunct until the parent wait()s, unless the parent is ignoring SIGCHLD. Furthermore, children (living or defunct) whose parents die without wait()ing for them (again assuming the parent is not ignoring SIGCHLD) become children of the init process, which deals with them heavy-handedly.

2.2 "'I'm mentally prepared! Give me The Button!"

Right! Here's an example¹ of how to use fork():

```
#include <stdio.h>
   #include <stdlib.h>
   #include <errno.h>
  #include <unistd.h>
   #include <sys/types.h>
   #include <sys/wait.h>
   int main(void)
   {
       pid_t pid;
10
       int rv;
11
12
       switch(pid = fork()) {
13
       case -1:
14
            perror("fork"); /* something went wrong */
15
            exit(1);
                             /* parent exits */
16
17
       case 0:
18
            printf(" CHILD: This is the child process!\n");
           printf(" CHILD: My PID is %d\n", getpid());
20
           printf(" CHILD: My parent's PID is %d\n", getppid());
21
           printf(" CHILD: Enter my exit status (make it small): ");
            scanf(" %d", &rv);
23
            printf(" CHILD: I'm outta here!\n");
24
            exit(rv);
25
26
       default:
27
           printf("PARENT: This is the parent process!\n");
28
           printf("PARENT: My PID is %d\n", getpid());
29
           printf("PARENT: My child's PID is %d\n", pid);
            printf("PARENT: I'm now waiting for my child to exit()...\n");
31
           wait(&rv);
32
            printf("PARENT: My child's exit status is: %d\n", WEXITSTATUS(rv));
33
            printf("PARENT: I'm outta here!\n");
```

¹https://beej.us/guide/bgipc/source/examples/fork1.c

```
35     }
36     return 0;
38 }
```

There is a ton of stuff to note from this example, so we'll just start from the top, shall we?

pid_t is the generic process type. Under Unix, this is a short. So, I call fork() and save the return value in the pid variable. fork() is easy, since it can only return three things:

Return Value	Description
0	If it returns 0, you are the child process. You can get the parent's PID by calling getppid(). Of course, you can get your own PID by calling getpid().
-1	If it returns -1, something went wrong, and no child was created. Use perror() to see what happened. You've probably filled the process table—if you turn around you'll see your sysadmin coming at you with a fireaxe.
Anthing else	Any other value returned by fork() means that you're the parent and the value returned is the PID of your child. This is the only way to get the PID of your child, since there is no getcpid() call (obviously due to the one-to-many relationship between parents and children.)

When the child finally calls exit(), the return value passed will arrive at the parent when it wait()s. As you can see from the wait() call, there's some weirdness coming into play when we print the return value. What's this WEXITSTATUS() stuff, anyway? Well, that is a macro that extracts the child's actual return value from the value wait() returns. Yes, there is more information buried in that int. I'll let you look it up on your own.

"How," you ask, "does wait() know which process to wait for? I mean, since the parent can have multiple children, which one does wait() actually wait for?" The answer is simple, my friends: it waits for whichever one happens to exit first. If you must, you can specify exactly which child to wait for by calling waitpid() with your child's PID as an argument.

Another interesting thing to note from the above example is that both parent and child use the rv variable. Does this mean that it is shared between the processes? *NO!* If it was, I wouldn't have written all this IPC stuff. *Each process has its own copy of all variables*. There is a lot of other stuff that is copied, too, but you'll have to read the man page to see what.

A final note about the above program: I used a switch statement to handle the fork(), and that's not exactly typical. Most often you'll see an if statement there; sometimes it's as short as:

```
if (!fork()) {
         printf("I'm the child!\n");
         exit(0);
} else {
         printf("I'm the parent!\n");
         wait(NULL);
}
```

Oh yeah—the above example also demonstrates how to wait () if you don't care what the return value of the child is: you just call it with NULL as the argument.

2.3 Summary

Now you know all about the mighty fork() function! It's more useful that a wet bag of worms in most computationally intensive situations, and you can amaze your friends at parties. I swear. Try it.