# Modulator

Ultra-compact silicon nanophotonic modulator

with broadband response

Volker J. Sorger<sup>1</sup>, Norberto D. Lanzillotti-Kimura<sup>1</sup>, Ren-Min Ma<sup>1</sup> and Xiang Zhang<sup>1,2,\*</sup>

**Keywords:** Modulator; silicon-on-insulator; ultra-compact.





10.1117/2.1201305.004843

# A high-performance silicon-based plasmonic modulator

Ren-Min Ma and Xiang Zhang

Photonic integrated circuits could be scaled down for future optical communication applications with the help of a new wavelength-scale modulator.

To meet the ever-increasing global demand for bandwidth, optical interconnects are now being used to cover shorter distances. They will eventually account for all the interconnects inside a chip, setting a roadmap for reducing the photonic com-



### Electro-Optic Modulator (EOM)



#### **Materials**

- LiNbO<sub>3</sub>
- Silicon
- Polymers
  - ITO

Franz Keldysh effects
Pockels effects
Kerr effects
Free carrier effects

**But Non-Plasmonic = Weak Effect** 

$$\frac{\Delta n}{\Delta U_{bias}} = 3 \times 10^{-6} V^{-1} *$$

<sup>\*</sup> Intel Si-Photonics, e.g. Nature (2004)

### A Technological Opportunity: Bridging the "Gap"



### MOS Silicon Modulator

# A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor

Ansheng Liu<sup>1</sup>, Richard Jones<sup>1</sup>, Ling Liao<sup>1</sup>, Dean Samara-Rubio<sup>1</sup>, Doron Rubin<sup>2</sup>, Oded Cohen<sup>2</sup>, Remus Nicolaescu<sup>1</sup> & Mario Paniccia<sup>1</sup>

<sup>1</sup>Intel Corporation, 2200 Mission College Blvd, CHP3-109, Santa Clara, California 95054, USA

<sup>2</sup>Intel Corporation, S. B. I. Park Har Hotzvim, Jerusalem, 91031, Israel



# **MOS** Capacitor



### **Active Material: ITO**

Indium tin oxide (ITO), is a heavily-doped n-type semiconductor with a large bandgap Typically 90% In2O3, 10% SnO2 by weight



pubs.acs.org/NanoLett

# Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies

Eyal Feigenbaum,\*\* Kenneth Diest,\* and Harry A. Atwater

Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125

Nano Lett. 2010, 10, 2111–2116



### Ultra-compact Si-based Modulator



### ITO Optical Properties at Biases



### Electric field densities for the ON and OFF state



W/O bias
ITO → Semi. → larger n, smaller k
More field in SiO2 and Si
Low insertion loss



W/ bias
ITO → Metal → smaller n, larger k
More field in ITO
High modulation strength

### High Performance Modulation



## Low Insertion Loss (on-chip)





\*\*Intel Group Nature (2004)



#### **Low Insertion loss**

-0.25dB / SOI-MOS coupler

• -0.14 dB / μm

$$\Sigma \approx -6dB^{**}$$

$$\Sigma \approx -1dB^*$$
\*5 µm long device

### Modulation Bandwidth → WDM



Operation Bandwidth > 1000 nm

# Summary

■ An ultra-compact Si-based plasmonic modulator

-----High Modulation Strength

-----Ultra-Compact

-----Low Insertion Loss

----- Broadband



Optical MOS = Hybrid Plasmon Mode Electrical MOS = Field Effect