1. (1) 取点列 $x_n = \frac{1}{2n\pi + \frac{\pi}{2}}, y_n = \frac{1}{2n\pi} (n = 1, 2, \cdots)$,则当 $n \to \infty$ 时, $x_n \to 0, y_n \to 0$,且

$$\lim_{n \to \infty} \frac{1}{x_n} \sin \frac{1}{x_n} = \infty, \quad \lim_{n \to \infty} \frac{1}{y_n} \sin \frac{1}{y_n} = 0 \quad ,$$

故原极限不存在但不是∞

故 f(x) 有(跳跃)间断点 x=1 , 见右图

(3) 因为
$$e < \pi < \frac{22}{7}$$
 ,所以 $\lim_{n \to \infty} \left[e^n + \pi^n + \left(\frac{22}{7} \right)^n \right]^{\frac{1}{n}} = \frac{22}{7}$.

(4) 当
$$x \to 0$$
 时 , $\sqrt[3]{1 + x \arcsin(ax)} - 1 \sim \frac{1}{3} x \arcsin(ax) \sim \frac{1}{3} ax^2$, $2^{x^2} - 1 \sim x^2 \ln 2$, 故 $a = 3 \ln 2$.

2. (1) 原式 =
$$\lim_{t \to 0} t \tan \left[\frac{\pi}{4} (2 - t) \right]$$
 (3 分) = $\lim_{t \to 0} \frac{t}{\tan \left(\frac{\pi}{4} t \right)} = \lim_{t \to 0} \frac{t}{\frac{\pi}{4} t} = \frac{4}{\pi}$. (4 分)

(2)
$$\frac{n}{\sqrt{4n^2+n}} < \frac{1}{\sqrt{4n^2+1}} + \frac{1}{\sqrt{4n^2+2}} + \dots + \frac{1}{\sqrt{4n^2+n}} < \frac{n}{\sqrt{4n^2+1}}$$
, (4 分)

$$\lim_{n \to \infty} \frac{n}{\sqrt{4n^2 + 1}} = \lim_{n \to \infty} \frac{n}{\sqrt{4n^2 + n}} = \frac{1}{2} , 故原式 = \frac{1}{2} . (3 分)$$

(3) 原式 =
$$\lim_{x \to 0} [1 + (-\sin x^2)]^{\frac{1}{x \ln(1+2x)}}$$
 (3分) = $e^{\lim_{x \to 0} \frac{-\sin x^2}{x \ln(1+2x)}} = e^{\lim_{x \to 0} \frac{-x^2}{x \cdot 2x}} = e^{-\frac{1}{2}}$. (3分)

(4) 原式 =
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x \cdot \frac{1}{2} x^2 \cdot (\sqrt{1 + \tan x} + \sqrt{1 + \sin x})} = \lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$$
 (4 分)

$$=\lim_{x\to 0} \frac{\tan x}{x} \cdot \frac{1-\cos x}{x^2} = \frac{1}{2} \cdot (4 \%)$$

3. 由
$$0 < a_1 < 2$$
 ,设 $0 < a_n < 2$,则 0 $a_{n+1} = \sqrt{a_n(2-a_n)}$ $\frac{a_n + (2-a_n)}{2} = 1$, $\{a_n\}$ 有界. (4 分)

又
$$a_{n+1} - a_n = \sqrt{a_n(2-a_n)} - a_n = \frac{2a_n(1-a_n)}{\sqrt{a_n(2-a_n)} + a_n}$$
 0 , 即 $\{a_n\}$ 单增 , 故 $\{a_n\}$ 有极限 a . (4 分)

在
$$a_{n+1} = \sqrt{a_n(2-a_n)}$$
 两边取极限,解得 $a=1$,即 $\lim_{n\to\infty} a_n = 1$. (2 分)

4. 由题意 ,
$$\lim_{x\to 0} \frac{ax^2 + bx + c - \cos x}{x^2} = 0$$
 , 故 $\lim_{x\to 0} (ax^2 + bx + c - \cos x) = 0$, 得 $c = 1$. (4 分)

从而 ,
$$0 = \lim_{x \to 0} \left(a + \frac{b}{x} + \frac{1 - \cos x}{x^2} \right) = a + \lim_{x \to 0} \frac{b}{x} + \lim_{x \to 0} \frac{\frac{1}{2}x^2}{x^2}$$
 , 得 $b = 0, a = -\frac{1}{2}$. (6 分)

5. (1) 由
$$\lim_{x\to 0} \frac{f(x)-2}{|x|} = 1$$
 ,知此极限必为 $\frac{0}{0}$ 型 ,得 $\lim_{x\to 0} [f(x)-2] = 0$,即 $\lim_{x\to 0} f(x) = 2$. (3分)

又
$$f(x)$$
 在 $x = 0$ 处连续, 故 $f(0) = \lim_{x \to 0} f(x) = 2$. (2分)

(2) 因为
$$\lim_{x\to 0} \frac{f(x)-2}{|x|} = 1$$
 ,根据局部保号性,在 $x=0$ 的某去心邻域内, $\frac{f(x)-2}{|x|} > 0$,得 $f(x)$ $-2>0$,所以 $f(x)>2=f(0)$. (5 分)

6.
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left[\frac{\ln(1+x)}{\arctan x} + a \right] = 1 + a$$
, (3 **分**)

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left[\frac{\sqrt{1+x} - \sqrt{1-x}}{e^{2x} - 1} - b \right] = \lim_{x \to 0^{-}} \left[\frac{2x}{2x(\sqrt{1+x} + \sqrt{1-x})} - b \right] = \frac{1}{2} - b \cdot (4 \%)$$

由题意 ,
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = f(0)$$
 , 即 $1+a = \frac{1}{2} - b = 0$, 故 $a = -1$, $b = \frac{1}{2}$. (3 分)

7. f(x) 的间断点显然为 x = 0.1. (2分)

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{x}{1 - \mathrm{e}^{\frac{x}{1-x}}} = \lim_{x\to 0} \frac{x}{-\frac{x}{1-x}} = -1 , x = 0 为第一类可去间断点. (4 分)$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x}{1 - e^{\frac{x}{1 - x}}} = 1 , \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{x}{1 - e^{\frac{x}{1 - x}}} = 0 , x = 1 为第一类跳跃间断点. (4 分)$$

8. 因为 f(x) 在 [0,2] 上连续, 所以 f(x) 在 [0,2] 上有最大值 M 和最小值 m. (3 分)

从而 ,
$$m$$
 $f(0), f(1), f(2)$ M , $6m$ $f(0) + 2f(1) + 3f(2)$ $6M$, 得 m 1 M . (3分) 由介值定理 , 存在 $c \in [0,2]$, 使得 $f(c) = 1$. (4分)