FGA0137 Sistemas de Banco de Dados 1

Prof. Maurício Serrano

Material original: Prof. Jose Fernando Rodrigues Junior

2021/2

Módulo 3

- Forma Normal que se baseia em dependência multivalorada
- Exemplo:

Leciona= {Curso, Professor, Livro}, sem nenhuma dependência funcional

<u>Curso</u>	<u>Professor</u>	<u>Livro</u>
FGA0100	Odemir	Programacao
FGA0100	Odemir	Estruturas
FGA0100	Leonardo	Programacao
FGA0100	Leonardo	Estruturas
FGA0200	Odemir	Algebra
FGA0200	Odemir	Calculo
FGA0200	Odemir	Programacao

Leciona = {Curso, Professor, Livro}

Curso	<u>Professor</u>	<u>Livro</u>
FGA0100	Odemir	Programacao
FGA0100	Odemir	Estruturas
FGA0100	Leonardo	Programacao
FGA0100	Leonardo	Estruturas
FGA0200	Odemir	Algebra
FGA0200	Odemir	Calculo
FGA0200	Odemir	Programacao

- Não há dependências funcionais triviais:
 - 1^a. FN: Ok
 - 2^a. FN: Ok
 - 3^a. FN: Ok
 - FNBC: Ok

Leciona = {Curso, Professor, Livro}

<u>Curso</u>	<u>Professor</u>	<u>Livro</u>
FGA0100	Odemir	Programacao
FGA0100	Odemir	Estruturas

No entanto, ainda há redundância. Qual é o problema?

- Não ha dependencias tuncionais triviais:
 - 1^a. FN: Ok
 - 2^a. FN: Ok
 - 3^a. FN: Ok
 - FNBC: Ok

Leciona = {Curso, Professor, Livro}

Curso	<u>Professor</u>	<u>Livro</u>
FGA0100	Odemir	Programacao
FGA0100	Odemir	Estruturas
FGA0100	Leonardo	Programacao
FGA0100	Leonardo	Estruturas
FGA0200	Odemir	Algebra
FGA0200	Odemir	Calculo
FGA0200	Odemir	Programacao

- Não há dependências funcionais triviais:
 - 1^a. FN: Ok
 - 2^a. FN: Ok
 - 3^a. FN: Ok
 - FNBC: Ok

- A relação não está na 4^a. Forma Normal
 - Não possui dependências funcionais, mas possui dependências multivaloradas

<u>Curso</u>	<u>Professor</u>	<u>Livro</u>
FGA0100	Odemir	Programacao
FGA0100	Odemir	Estruturas
FGA0100	Leonardo	Programacao
FGA0100	Leonardo	Estruturas
FGA0200	Odemir	Algebra
FGA0200	Odemir	Calculo
FGA0200	Odemir	Programacao

Se Curso = FGA0100 então Livro = {Programacao, Estruturas} diz-se que Curso →→ Livro

Portanto, se Curso = FGA0100 então há duas tuplas para cada professor que ministra a disciplina → redundância

Curso → → Livro

Se Curso = FGA0200 então Livro = {Algebra, Calculo, Programacao}

Portanto, se Curso = FGA0200 então há três tuplas para cada professor que ministra a disciplina → redundância

<u>Curso</u>	<u>Professor</u>	<u>Livro</u>
FGA0100	Odemir	Programacao
FGA0100	Odemir	Estruturas
FGA0100	Leonardo	Programacao
FGA0100	Leonardo	Estruturas
FGA0200	Odemir	Algebra
FGA0200	Odemir	Calculo
FGA0200	Odemir	Programacao

- Simetria no atributo professor
- Se Curso→→Livro e professor é redundante então
 Curso →→ Professor; e Livro também é redundante
- De fato:

Se Curso = FGA0100 então Professor = {Odemir, Leonardo}

Portanto, se Curso = FGA0100 então há duas tuplas para cada livro usado na disciplina

<u>Curso</u>	<u>Professor</u>	<u>Livro</u>
FGA0100	Odemir	Programacao
FGA0100	Odemir	Estruturas
FGA0100	Leonardo	Programacao
FGA0100	Leonardo	Estruturas
FGA0200	Odemir	Algebra
FGA0200	Odemir	Calculo
FGA0200	Odemir	Programacao

- Definição [dependência multivalorada]: seja R um esquema de relação e sejam X, Y, e Z subconjuntos dos atributos de R. Diz-se que a dependência multivalorada X→→Y é válida sobre R se
 - em cada instância válida r de R, cada valor de X está associado a um **conjunto de valores** de Y; e este conjunto é independente dos valores de quaisquer outros atributos.
 - em cada instância válida r de R, cada valor de X está associado a um **conjunto de valores** de Z; e este conjunto é independente dos valores de quaisquer outros atributos.

Diz-se que $X \rightarrow Y$ e, por simetria, $X \rightarrow Z$, tal que $Z = R - (X \cup Y)$; exemplo:

Curso (X)	<u>Professor (Z)</u>	<u>Livro (Y)</u>
FGA0100	Odemir	Programacao
FGA0100	Odemir	Estruturas
FGA0100	Leonardo	Programacao
FGA0100	Leonardo	Estruturas
FGA0200	Odemir	Algebra
FGA0200	Odemir	Calculo
FGA0200	Odemir	Programacao

- 4ª. Forma Normal: uma relação R está na quarta forma normal se para todas as dependências multivaloradas não triviais A→→B, A é uma chave candidata (além de já satisfazer a FNBC)
- No exemplo da relação Leciona, a 4ª. FN é violada pois Curso é primo, mas não é chave
- Normalização: a normalização segue substituindose R por duas relações, constituídas pelos seguintes atributos:
 - A U B
 - R−B
- Atenção: após a normalização, não há mais dep Multivalorada nem na rel. original e nem nas rels. resultantes

4ª. Forma Normal: uma relação R está na quarta forma normal se para todas as dependências multiva chave candid No ex violada A violação da 4^a. Forma Normal traz dois problemas: pois C 1)Redundância 2) Maior dificuldade em se manter a consistência, pois a ituindomanipulação de uma tupla implica na necessidade de manipulação de outras n tuplas guintes atribut

Atenção: após a normalização, não há mais depos Multivalorada nem na rel. original e nem nas rels. resultantes

A U

R – B

Curso	<u>Professor</u>	<u>Livro</u>
FGA0100	Odemir	Programacao
FGA0100	Odemir	Estruturas
FGA0100	Leonardo	Programacao
FGA0100	Leonardo	Estruturas
FGA0200	Odemir	Algebra
FGA0200	Odemir	Calculo
FGA0200	Odemir	Programacao

<u>Curso</u>	<u>Professor</u>
FGA0100	Odemir
FGA0100	Leonardo
FGA0200	Odemir

<u>Curso</u>	<u>Livro</u>
FGA0100	Programacao
FGA0100	Estruturas
FGA0200	Algebra
FGA0200	Calculo
FGA0200	Programacao

• Exercício:

<u>Cargo</u>	<u>Funcao</u>	<u>Projeto</u>
Engenheiro	CalculoEstrutural	Alpha
Engenheiro	GarantiaDeQualidade	Alpha
Engenheiro	SupervisaoDeObras	Alpha
Engenheiro	CalculoEstrutural	Beta
Engenheiro	GarantiaDeQualidade	Beta
Engenheiro	SupervisaoDeObras	Beta
Desenvolvedor	ArquiteturaDeSoftware	Alpha
Desenvolvedor	Codificação	Alpha
Desenvolvedor	Teste	Alpha
Desenvolvedor	Backup	Alpha

^{*}supõe-se que um cargo sempre tem um conjunto fixo de funções

 Qual é a dependência multivalorada? Justifique com exemplos? Qual é a dependência multivalorada simétrica? Exemplifique. Como fica a normalização?

Resposta:

- A dep multivalorada é Cargo→→Funcao pois, por exemplo, se Cargo=Engenheiro então Funcao={CalculoEstrutural, GarantiaDeQualidade, SupervisaoDeObras} e se Cargo = Desenvolvedor então Funcao = {ArquiteturaDeSoftware, Codificação, Teste, Backup}
- A dep. Multivalorada simétrica é dada por Z = R- A U B, isto é, {Cargo, Funcao, Projeto} {Cargo U Funcao} = Projeto. Portanto, Cargo → Projeto pois, por exemplo, se Cargo = Engenheiro então Projeto = {Alpha, Beta}
- A normalização é possível criando-se duas relações
 - A U B → Funcoes = {Cargo, Funcao}
 - R B → Projetos = {Cargo, Projeto}

Síntese e Considerações Finais

Síntese

- Dependência funcional
 - Se A1, A2 ..., An → B1, B2, ..., Bn
- Formais normais

Forma Normal	Característica*
1a. FN	Atomicidade, monovaloração (não há relações aninhadas)
2a. FN	1a. FN e ausência de dependências parciais
3a. FN	2a.FN e ausência de dependências transitivas
Boyce Codd	A esquerda de toda df é chave candidata
4a.FN	A esquerda de toda dm é chave candidata

- * desconsideram-se dfs triviais, isto é, X → Y tal que Y ⊆ X
- Normalização: decomposição de relações
- Eliminam redundância previnem anomalias de inserção, atualização, remoção, e junção

Formais Normais – Visão Geral

Quando usar normalização

- Quando usar normalização?
 - Resposta: sempre
- Quando aplicá-la ao meu projeto?
 - modo geral: quantidade de operações de leitura não é elevada
 - Ex.: bases operacionais podem ter alto grau de normalização
 - Diferentes graus de normalização em função do sistema
 - Ex.: data warehouses têm baixo grau de normalização (até nenhuma normalização)

Quando usar normalização

 Mas se eu não vou aplicar a normalização, então porque vou usá-la?

 Identificação de possibilidades de melhoria de desempenho

 Verificar se o projeto está correto de acordo com a semântica

Um pouco de história

- Edgar F. Codd (1923 2003)
 - Britânico
 - IBM, Nova York
 - Definiu o Modelo Relacional
 - Curiosidade: concorrentes da IBM começaram a usar as idéias de Codd, antes que a própria IBM
 - Com Raymond F. Boyce, propôs a Forma normal de Boyce-Codd