

# Cambridge International AS & A Level

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

0123456789

MATHEMATICS 9709/03

Paper 3 Pure Mathematics 3

For examination from 2020

SPECIMEN PAPER

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

#### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

### **INFORMATION**

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has **20** pages. Blank pages are indicated.

© UCLES 2017 [Turn over

## **BLANK PAGE**

|       |       | <br>      | <br>      |       |
|-------|-------|-----------|-----------|-------|
|       |       | <br>      | <br>      |       |
|       |       | <br>      | <br>••••• |       |
|       |       | <br>      | <br>      |       |
|       |       | <br>      | <br>      |       |
|       |       |           |           |       |
|       |       | <br>      | <br>      | ••••• |
|       |       | <br>      | <br>      | ••••• |
|       |       | <br>      | <br>      | ••••• |
|       |       | <br>      | <br>      |       |
|       |       | <br>      | <br>      |       |
|       |       | <br>      | <br>      |       |
|       |       |           |           |       |
|       |       |           |           |       |
| ••••• | ••••• | <br>••••• | <br>••••• |       |
| ••••• |       | <br>      | <br>••••• | ••••• |
|       |       | <br>      | <br>      |       |
|       |       |           |           |       |
|       |       |           |           |       |
|       |       | <br>••••• | <br>••••• | ••••• |
|       |       | <br>      | <br>      |       |
|       |       | <br>      | <br>      | ••••• |
|       |       | <br>      | <br>      |       |
|       |       | <br>      | <br>      |       |
|       |       |           |           |       |

|            | Expand $(1+3x)^{-\frac{1}{3}}$ in ascending powers of x, up to and including the term in $x^2$ , simpli coefficients. |                                         |
|------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|            |                                                                                                                       | • • • • • • • • • • • • • • • • • • • • |
|            |                                                                                                                       | • • • • • • • • • • • • • • • • • • • • |
|            |                                                                                                                       |                                         |
|            |                                                                                                                       |                                         |
|            |                                                                                                                       | ••••••                                  |
|            |                                                                                                                       |                                         |
|            |                                                                                                                       |                                         |
|            |                                                                                                                       |                                         |
|            |                                                                                                                       |                                         |
|            |                                                                                                                       | ••••••                                  |
|            |                                                                                                                       |                                         |
|            |                                                                                                                       |                                         |
|            |                                                                                                                       |                                         |
| (b)        | State the set of values of $x$ for which the expansion is valid.                                                      |                                         |
| (b)        | State the set of values of $x$ for which the expansion is valid.                                                      |                                         |
| <b>(b)</b> | State the set of values of x for which the expansion is valid.                                                        |                                         |
| <b>(b)</b> |                                                                                                                       |                                         |
| (b)        |                                                                                                                       |                                         |

[1]

| 3 | (a) | Sketch the     | graph of $y =$ | 2x - 3 | I. |
|---|-----|----------------|----------------|--------|----|
| _ | ··· | ~ 1100011 0110 | D-00011        |        | ı  |

| <b>(b)</b> | Solve the inequality $3x - 1 >  2x - 3 $ . | [3] |
|------------|--------------------------------------------|-----|
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |
|            |                                            |     |

| 4 | The  | parametric | equations | of a | curve | are |
|---|------|------------|-----------|------|-------|-----|
| • | 1110 | parametric | cquations | OI u | Cuive | u   |

$$x = e^{2t-3}, y = 4 \ln t,$$

where t > 0. When t = a the gradient of the curve is 2.

| ow that a satisfies the ec | 2 < | ,     |        | [4     |
|----------------------------|-----|-------|--------|--------|
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     | ••••• | •••••• | •••••• |
|                            | ,   |       |        |        |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     | ••••• | •••••  | •••••  |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     | ••••• | •••••  | •••••  |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     | ••••• | •••••  | •••••  |
|                            | ,   |       |        |        |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     | ••••• | •••••  |        |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     |       |        |        |
|                            |     |       |        |        |
| <br>                       |     |       |        |        |
|                            |     |       |        |        |
|                            |     |       |        |        |

| (b) | Verify by calculation that this equation has a root between 1 and 2.                                               | [2]       |
|-----|--------------------------------------------------------------------------------------------------------------------|-----------|
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
| (c) | Use the iterative formula $a_{n+1} = \frac{1}{2}(3 - \ln a_n)$ to calculate a correct to 2 decimal places, showing |           |
|     | result of each iteration to 4 decimal places.                                                                      | [3]       |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    | , <b></b> |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    |           |
|     |                                                                                                                    | ••••      |

|     |                                                                                              | •••••                                   |
|-----|----------------------------------------------------------------------------------------------|-----------------------------------------|
|     |                                                                                              |                                         |
|     |                                                                                              |                                         |
|     |                                                                                              |                                         |
|     |                                                                                              |                                         |
|     |                                                                                              |                                         |
|     |                                                                                              |                                         |
|     |                                                                                              |                                         |
|     |                                                                                              |                                         |
|     |                                                                                              | •••••                                   |
|     |                                                                                              |                                         |
|     |                                                                                              |                                         |
|     |                                                                                              |                                         |
|     |                                                                                              | ••••••                                  |
|     |                                                                                              |                                         |
|     |                                                                                              |                                         |
|     |                                                                                              | • • • • • • • • • • • • • • • • • • • • |
|     |                                                                                              |                                         |
| (b) | Show that $\int_{0}^{\sqrt{3}} x \tan^{-1} x  dx = \frac{2}{3} \pi - \frac{1}{3} \sqrt{3}$ . |                                         |
| (b) | Show that $\int_0^{\sqrt{3}} x \tan^{-1} x  dx = \frac{2}{3} \pi - \frac{1}{2} \sqrt{3}$ .   |                                         |
| (b) | Show that $\int_0^{\sqrt{3}} x \tan^{-1} x  dx = \frac{2}{3} \pi - \frac{1}{2} \sqrt{3}$ .   |                                         |
| (b) |                                                                                              |                                         |

| Find $\frac{u}{v}$ in the form $x + iy$ , where x and y are real. |  |
|-------------------------------------------------------------------|--|
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
| State the argument of $\frac{u}{v}$ .                             |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |
|                                                                   |  |

In an Argand diagram, with origin O, the points A, B and C represent the complex numbers u, v and u-v respectively.

|                                                 | ••••• |
|-------------------------------------------------|-------|
|                                                 |       |
|                                                 |       |
| Show that angle $AOB = \frac{1}{4}\pi$ radians. |       |
| Show that angle $AOB = \frac{1}{4}\pi$ radians. |       |
| Show that angle $AOB = \frac{1}{4}\pi$ radians. |       |
| Show that angle $AOB = \frac{1}{4}\pi$ radians. |       |
| Show that angle $AOB = \frac{1}{4}\pi$ radians. |       |
|                                                 |       |
|                                                 |       |
|                                                 |       |
|                                                 |       |
|                                                 |       |
|                                                 |       |

|   | $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$ . Give the value of R correct to 4 significant figures and the value correct to 2 decimal places. |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
| ٠ |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
| ٠ |                                                                                                                                                 |
|   |                                                                                                                                                 |
| • |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
| • |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
| • |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
| • |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
| • |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
|   |                                                                                                                                                 |
| • |                                                                                                                                                 |
|   |                                                                                                                                                 |

| ( | <b>(b)</b> | Hence     | solve | the | equation |
|---|------------|-----------|-------|-----|----------|
|   |            | , 1101100 | 30110 | uiv | cquation |

| $\cos(x+45^\circ)$ | ) — 1        | $\sqrt{2}$ | sin r | = | 2  |
|--------------------|--------------|------------|-------|---|----|
| $\cos(x + 45)$     | <i>)</i> — \ | 4          | SIIIA | _ | 4, |

| for $0^{\circ} < x < 360^{\circ}$ . | [4] |
|-------------------------------------|-----|
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |
|                                     |     |



In the diagram, OABC is a pyramid in which OA = 2 units, OB = 4 units and OC = 2 units. The edge OC is vertical, the base OAB is horizontal and angle  $AOB = 90^{\circ}$ . Unit vectors **i**, **j** and **k** are parallel to OA, OB and OC respectively. The midpoints of AB and BC are M and N respectively.

| Express the vectors $\overrightarrow{ON}$ and $\overrightarrow{CM}$ in terms of $\mathbf{i}$ , $\mathbf{j}$ and $\mathbf{k}$ . | [3] |
|--------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |
|                                                                                                                                |     |

| ,   | Calculate the angle between the directions of $ON$ and $CM$ .                         | [      |
|-----|---------------------------------------------------------------------------------------|--------|
|     |                                                                                       | •••••  |
|     |                                                                                       | •••••  |
|     |                                                                                       | •••••  |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
| ~)  | Show that the length of the normandicular from $M$ to $QN$ is $3\sqrt{5}$             | г      |
| (°) | Show that the length of the perpendicular from $M$ to $ON$ is $\frac{3}{5}\sqrt{5}$ . | [      |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       |        |
|     |                                                                                       | •••••• |
|     |                                                                                       | •••••  |
|     |                                                                                       |        |
|     |                                                                                       |        |

9



The diagram shows the curve  $y = \sin^2 2x \cos x$  for  $0 \le x \le \frac{1}{2}\pi$ , and its maximum point M.

| Find the $x$ -coordinate of $M$ . |       |
|-----------------------------------|-------|
|                                   |       |
|                                   |       |
|                                   |       |
|                                   |       |
|                                   |       |
|                                   |       |
|                                   | ••••• |
|                                   |       |
|                                   |       |
|                                   |       |
|                                   |       |
|                                   |       |
|                                   |       |
|                                   |       |
|                                   | ••••• |
|                                   |       |
|                                   |       |
|                                   |       |

| <i>λ</i> - | axis. |
|------------|-------|
|            |       |
|            |       |
| •••        |       |
|            |       |
|            |       |
|            |       |
|            |       |
| •••        |       |
|            |       |
|            |       |
|            |       |
|            |       |
| •••        |       |
|            |       |
|            |       |
| •••        |       |
|            |       |
| •••        |       |
|            |       |
|            |       |
| •••        |       |
|            |       |
|            |       |
|            |       |
|            |       |
| •••        |       |
|            |       |
|            |       |
| •••        |       |
|            |       |
| •••        |       |
|            |       |
|            |       |
| •••        |       |
|            |       |
|            |       |
|            |       |
|            |       |
| •••        |       |
|            |       |

10 In a chemical reaction, a compound X is formed from two compounds Y and Z.

The masses in grams of X, Y and Z present at time t seconds after the start of the reaction are x, 10 - x and 20 - x respectively. At any time the rate of formation of X is proportional to the product of the masses of Y and Z present at the time. When t = 0, x = 0 and  $\frac{dx}{dt} = 2$ .

(a) Show that x and t satisfy the differential equation

|   | $\frac{dx}{dt} = 0.01(10 - x)(20 - x).$                                             | [1] |
|---|-------------------------------------------------------------------------------------|-----|
|   |                                                                                     |     |
|   |                                                                                     |     |
|   |                                                                                     |     |
|   |                                                                                     |     |
| ) | Solve this differential equation and obtain an expression for $x$ in terms of $t$ . | [9] |
|   |                                                                                     |     |
|   |                                                                                     |     |
|   |                                                                                     |     |
|   |                                                                                     |     |
|   |                                                                                     |     |
|   |                                                                                     |     |
|   |                                                                                     |     |
|   |                                                                                     |     |
|   |                                                                                     |     |

| State what happens to the value of $x$ when $t$ becomes large. [1] |
|--------------------------------------------------------------------|
|                                                                    |
|                                                                    |
|                                                                    |
|                                                                    |

**(c)** 

## Additional page

| If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown. |       |       |        |  |       |       |
|--------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------|--|-------|-------|
| •••••                                                                                                                          |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       | ••••• | •••••  |  |       | ••••• |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
| •••••                                                                                                                          | ••••• |       | •••••• |  | ••••• |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
| •••••                                                                                                                          |       |       | •••••  |  | ••••• |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
| •••••                                                                                                                          |       |       | •••••  |  | ••••• |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       | ••••• | •••••  |  | ••••• | ••••• |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
|                                                                                                                                |       |       |        |  |       |       |
| •••••                                                                                                                          | ••••• |       |        |  |       |       |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.