FT II - Resolução Exame de Recurso

Felipe B. Pinto 61387 – MIEQB

15 de abril de 20<u>24</u>

Conteúdo

Um tanque com o topo aberto para a atmosfera contém metanol líquido (CH_3OH , peso molecular $32\,\mathrm{g/mol}$) no fundo do tanque.

- O tanque é mantido a 30 °C
- ($d=1.0\,\mathrm{m}$) O diâmetro do tanque cilíndrico é de 1.0 m
- \cdot ($z_1=0\,\mathrm{m}$) A altura total do tanque é de 3.0 m
- ($z_0 = 0.5\,\mathrm{m}$) O nível do líquido no fundo do tanque é mantido em 0.5 m
- · O espaço de gás dentro do tanque está estagnado
- ($y_1 = 0$) Os vapores de CH₃OH são imediatamente dispersos assim que saem do tanque.
- ($P_{*,30^{\circ}\rm C}=163\,{\rm mmHg}$) A 30 °C, a pressão de vapor exercida pelo CH3OH líquido é de 163 mmHg
- ($P_{*,40^{\circ}\text{C}}=265\,\mathrm{mmHg}$) A 40 °C, a pressão de vapor exercida pelo CH₃OH líquido é de 265 mmHg
- ($D_{A,B}=1.66\,\mathrm{cm^2/s}$) O coeficiente de difusão do metanol no ar é 1.66 cm²/s e varia com a temperatura $T^{3/2}$

Q1 a.

Qual é a taxa (W) de emissão de vapor de CH_3OH do tanque em kg/d quando o tanque está a uma temperatura de 30 °C? Deduza a equação necessária e as condições fronteira para este problema.

Resposta

$$p_1 \cong 163 \,\text{mmHg} \frac{\text{atm}}{760.00 \,\text{mmHg}} \cong 214.47 \,\text{E} - 3 \,\text{atm};$$

$$\begin{cases} z_0 = 0.5 \text{ m} & p_0 = 0 \text{ atm} \\ z_1 = 3.0 \text{ m} & p_1 = 214.47 \text{ E} - 3 \text{ atm} \end{cases}$$

$$W = N_A A =$$

$$= \left(\frac{c D_{A,B}}{z_1 - z_0} \ln \frac{1 - p_{A,0}}{1 - p_{A,1}}\right) \left(\pi \left(d/2\right)^2\right) =$$

$$= \frac{\left(\frac{P}{RT}\right) D_{A,B}}{z_1 - z_0} \ln \frac{1 - p_{A,1}}{1 - p_{A,0}} * \frac{\pi d^2}{4} \cong$$

$$\cong \frac{\left(\frac{1}{82.06 \text{ E} - 6*(30 + 273.15)}\right) \left(1.66 \text{ E} - 4\right)}{3.0 - 0.5} \ln \frac{1}{1 - 214.47 \text{ E} - 3} * \frac{\pi 1.0^2}{4} \cong$$

$$\cong 506.08 \text{ E} - 6 \frac{\text{mol (CH3OH)}}{\text{s}} \frac{32 \text{ g}_{\text{CH}_3\text{OH}}}{\text{mol}_{\text{CH}_3\text{OH}}} \frac{3600 \text{ s}}{\text{h}} \frac{24 \text{ h}}{\text{d}} \cong$$

$$\cong 1.40 \text{ kg (CH}_3\text{OH})/\text{d}$$

Q1 b

Se a temperatura do tanque for almentada para 40 °C, qual é a % de almento na taxa de emissão para um aumento de 10 °C na temperatura.

Resposta

$$p_1 = 265 \,\mathrm{mmHg} \,\frac{\mathrm{atm}}{760.00 \,\mathrm{mmHg}} \cong 348.68 \,\mathrm{E}{-3} \,\mathrm{atm};$$

$$\begin{cases} z_0 = 0.5 \,\mathrm{m} & p_0 = 0 \,\mathrm{atm} \\ z_1 = 3.0 \,\mathrm{m} & p_1 = 348.68 \,\mathrm{E}{-3} \,\mathrm{atm} \end{cases}$$

$$\begin{aligned} & \text{Aumento} = \frac{\Delta W}{W_{30\,^{\circ}\text{C}}} = \frac{W_{40\,^{\circ}\text{C}} - W_{30\,^{\circ}\text{C}}}{W_{30\,^{\circ}\text{C}}} = \frac{W_{40\,^{\circ}\text{C}}}{W_{30\,^{\circ}\text{C}}} - 1 = \frac{N_{A,40\,^{\circ}\text{C}}}{N_{A,30\,^{\circ}\text{C}}} - 1 = \\ & = \left(\frac{\left(\frac{P}{RT}\right) \ D_{A,B,40\,^{\circ}\text{C}}}{z_1 - z_0} \ \ln \frac{1 - y_{A,1}}{1 - y_{A,0}}\right) \frac{1}{N_{A,30\,^{\circ}\text{C}}} - 1 = \\ & = \left(\frac{\left(\frac{P}{RT}\right) \left(D_{A,B,30\,^{\circ}\text{C}} \left(\frac{40 + 273.15}{30 + 273.15}\right)^{3/2}\right)}{z_1 - z_0} \right. \ln \frac{1 - y_{A,1}}{1 - y_{A,0}} A\right) \frac{1}{N_{A,30\,^{\circ}\text{C}}} - 1 = \\ & = \left(\frac{\left(\frac{1}{82.06 \ \text{E} - 6*(313.15)}\right) \left(1.66 \ \text{E} - 4*\left(\frac{313.15}{303.15}\right)^{3/2}\right)}{3.0 - 0.5} \right. \ln \frac{1}{1 - 348.68 \ \text{E} - 3}\right) * \end{aligned}$$

$$*\frac{1}{644.36 E-6} - 1 \cong$$

$$\cong 80.52\%$$

Questão 2

Um reator de leito fluidizado de carvão foi proposto para uma nova fábrica.

- Se operado a 1145 K, o processo de combustão em ar (21 $\%_{O_2}$ e 79 $\%_{N_2}$) será limitado pela difusão do O_2 em contracorrente ao CO_2 , formado na superfície da partícula
- Suponha que o carvão seja carbono sólido puro com densidade de $1.28~{\rm E}\,3\,{\rm kg/m^3}$
- Que a partícula seja esférica com um diâmetro inicial de $1.5~{\rm E}-4~{\rm m}~(150~{\rm \mu m})$.
- Sob as condições do processo de combustão, a difusividade do O_2 na mistura gasosa a 1145 K é 1.3 E-4 cm $^2/s$.
- A reação na superfície é: $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$
- · Na superfície da partícula de carvão, a reação é muito rápida.

Se for assumido um processo de estado quase estacionário, calcule:

- \cdot O₂:A
- CO₂:B

Q2 a.

O tempoo necessário para reduzir o diâmetro da partícula de carbono para $5 E - 5 m (50 \mu m)$. Deduza as equações necessárias e as condições fronteira para este problema

Resposta

 $N_{A,r} = -\overline{r} \pi r c \overline{D_{A,B} y_{A,\infty}};$

$$-4\pi r c D_{A,B} y_{A,\infty} = \frac{\rho_c}{M} 4\pi r dr t;$$

$$dt = -\frac{\rho_c r dr}{M c D_{A,B} y_{A,\infty}} \Longrightarrow$$

$$\Rightarrow t = \frac{\rho_c (r_0^2 - r_1^2)}{2 M c D_{A,B} y_{A,\infty}} \cong$$

$$\frac{(1.28 \text{ E 3}) ((1.5 \text{ E} - 4/2)^2 - (5 \text{ E} - 5/2)^2)}{2 * 0.012 * (\frac{1}{82.06 \text{ E} - 6*1145}) * (1.3 \text{ E} - 8) * 0.21} \cong$$

$$\cong 9.18 \text{ E3 s} \frac{h}{3600 \text{ s}} \cong 2.55 \text{ h}$$

$$N_{A,r} = y_A (N_A + N_B) - c D_{A,B} \frac{dy_A}{dr} = -c D_{A,B} \frac{dy_A}{dr} \Longrightarrow$$

$$\Rightarrow \int N_{A,r} dr = N_{A,r_0} r_0^2 \int dr/r^2 = -N_{A,r_0} r_0^2 \Delta(r^{-1}) =$$

$$= \int -c D_{A,B} dy_A = -c D_{A,B} \int dy_A = -c D_{A,B} \Delta y_A \Longrightarrow$$

$$\Rightarrow N_{A,r_1} = \frac{c D_{A,B} \Delta y_A}{r_1^2 \Delta(r^{-1})} = \frac{c D_{A,B} \Delta y_A}{r_1^2 \Delta(r^{-1})}$$

Q2 b.

Explique por que razão temos neste caso difusão com reação química heterogénea.

Um tanque de agua profundo tem O_2 dissolvido com uma concetração uniforme $1\,\mathrm{g/L}$. Se a concentração de O_2 for subtamente elevada á superfície para $10\,\mathrm{g/L}$, calcule:

$$egin{align} \cdot D_{ ext{CO}_2- ext{H}_2 ext{O}} &= 10^{-5}\, ext{cm}^2/ ext{S} \ &rac{oldsymbol{c}_{A,s} - oldsymbol{c}_A}{oldsymbol{c}_{A,s} - oldsymbol{c}_{A,0}} = ext{erf}\,oldsymbol{\xi} & oldsymbol{\xi} = rac{oldsymbol{z}}{\sqrt{4\,D\,t}} \ &J_{A,*} &= -Drac{\partial oldsymbol{c}_A}{\partial oldsymbol{z}} = \sqrt{rac{D}{\pi\,t}}\,\exp\left(rac{-oldsymbol{z}^2}{4\,D\,t}
ight)\,(oldsymbol{c}_{A,s} - oldsymbol{c}_{A,0}) \end{split}$$

 C_A é a concentração de O_2 a uma distância (z) da superfície num determinado instante (t)

 $C_{A,0}$ é a concentração inicial

 $C_{A,s}$ é a concentração na superfície

D é o coeficiente de difusão

a	$\operatorname{erf}(a)$	a	$\operatorname{erf}(a)$	a	$\operatorname{erf}(a)$
0.0	0.0	0.48	0.50275	0.96	0.82542
0.04	0.04511	0.52	0.53790	1.00	0.84270
0.08	0.09008	0.56	0.57162	1.10	0.88021
0.12	0.13476	0.60	0.60386	1.20	0.91031
0.16	0.17901	0.64	0.63459	1.30	0.93401
0.20	0.22270	0.68	0.66378	1.40	0.95229
0.24	0.26570	0.72	0.69143	1.50	0.96611
0.28	6.30788	0.76	0.71754	1.60	0.97635
0.32	0.34913	0.80	0.7421	1.70	0.98379
0.36	0.38933	0.84	0.76514	1.80	0.98909
0.40	0.42839	0.88	0.78669	2.00	0.99532
0.44	0.46622	0.92	0.80677	3.24	0.99999

Tabela 1: Error function values. For negative a, erf(a) is negative

$$\operatorname{erf}(|a|) = 1 - \left(1 + 0.2784 |a| + 0.2314 |a|^2 + 0.0781 |a|^4\right)^{-4}$$

Q3 a.

A concentração de O_2 a $1\,\mathrm{mm}$ de profundidade ao fim de 2 horas?

Resposta

$$C_A = C_{A,S} - (C_{A,S} - C_{A,0}) erf(A);$$

 $a = \frac{z}{\sqrt{4 D t}} = \frac{10^{-3}}{\sqrt{4 * 10^{-9} * (2 * 3600)}} \cong 186.34 \text{ E} - 3 \implies$
 $\implies erf(a) \cong 0.17901 * 186.34 \text{ E} - 3/0.16 \cong 208.48 \text{ E} - 3$

$$C_A \cong 10 - (10 - 1)208.48 \,\mathrm{E} - 3 \cong 8.12$$

Q3 b.

O fluxo de O₂ na superfície do tanque para esse tempo?

Resposta

$$J_A = \sqrt{\frac{D}{\pi t}} (C_{A,s} - C_{A,0}) = \sqrt{\frac{10^{-9}}{\pi (2 * 3600)}} (10 - 1) \approx 1.89 \,\mathrm{E} - 6$$

Questão 4

- Ar seco (300 K e 1.013 E 5 Pa) circula a uma velocidade de $1.5\,\mathrm{m/s}$
- \cdot num tubo com 6 m de comprimento e $0.15\,\mathrm{m}$ de diâmetro
- A superficie interior do tubo está revestida com um material adsorvente (com razão diâmetro/rugosidade, d/ε , de 10.000) que está saturado com agua
- Difusidade da água em ar 300 K $D_{
 m H_2O-Ar,300\,K}=D_{
 m H_2O-Ar}=2.6~{
 m E}-5~{
 m m}^2$ s
- Viscosidade cinemática do ar a 300 K: 1.569 E –5 m² s
- Pressão de vapor da água a 300 K: 17.5 mmHg
- $R = 82.06 \,\mathrm{E} 3 \,\mathrm{Latm} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1}$
- Fator de atrito: $f = 0.00791 Re^{0.12}$

$$Re = rac{
ho\, d\, v}{\mu} \hspace{0.5cm} Sc = rac{\mu}{
ho\, D_{A,B}} \hspace{0.5cm} Sh = rac{k_c\, d}{D_{A,B}}
onumber \ rac{c_{A,s} - c_{A,0}}{c_{A,s} - c_{A,l}} = rac{4\, k_c}{d\, v} L$$

- $C_{A,s} = C_*$
- ν: Velocidade

Analogia de chilton–Colburn:

$$rac{k_c}{v}Sc^{2/3}=f/2$$

Determine:

Q4 a.

A concentração de água à saída do tubo.

Resposta

$$\ln \frac{c_{A,s} - c_{A,0}}{c_{A,s} - c_{A,l}} = \frac{4 k_c L}{d v} \implies c_{A,s} - \frac{c_{A,s} - c_{A,0}}{\exp\left(\frac{4k_c L}{d v}\right)} = c_{A,s} - \frac{c_{A,s}}{\exp\left(\frac{4k_c L}{d v}\right)} =$$

$$= c_{A,s} \left(1 - \exp\left(\frac{-4 k_c L}{d v}\right)\right) = c_{A,*} \left(1 - \exp\left(\frac{-4 k_c L}{d v}\right)\right) = c_{A,l} \implies$$

$$\implies c_{A,l} = c_{A,*} \left(1 - \exp\left(\frac{-4 k_c L}{d v}\right)\right) = \left(\frac{P_{A,*}}{RT}\right) \left(1 - \exp\left(\frac{-4 k_c L}{d v}\right)\right)$$

$$\frac{k_c}{v}Sc^{2/3} = f/2 \implies$$

$$\implies k_c = \frac{f \, v}{2 \, Sc^{2/3}} = \frac{\left(0.00791 * Re^{0.12}\right) \, v}{2 \, \left(\frac{\mu}{\rho \, D_{A,B}}\right)^{2/3}} = \frac{\left(0.00791 * \left(\frac{\rho \, d \, v}{\mu}\right)^{0.12}\right) \, v}{2 \, \left(\frac{\mu}{\rho \, D_{A,B}}\right)^{2/3}} = \frac{\left(0.00791 * \left(\frac{\mu}{\rho \, D_{A,B}}\right)^{2/3}\right) \, 1.5}{2 \, \left(\frac{1*0.15*1.5}{1.569 \, E-5}\right)^{0.12}\right) \, 1.5} \approx$$

$$= \frac{\left(0.00791 * \left(\frac{1*0.15*1.5}{1.569 \text{ E}-5}\right)^{0.12}\right) 1.5}{2 \left(\frac{1.569 \text{ E}-5}{1*2.6 \text{ E}-5}\right)^{2/3}} \cong$$

$$\cong 26.20 \text{ E}-3 \implies$$

$$\implies c_{A,l} \cong \left(\frac{17.5}{82.06 \,\mathrm{E} - 6 * 300 * 760.00}\right) \left(1 - \exp\left(\frac{-4 * 26.20 \,\mathrm{E} - 3 * 60.00}{0.15 * 1.5}\right)\right)$$

$$\cong 874.92 \,\mathrm{E} - 3$$

Q4 b.

A velodicade de transferência de água em kg/h

$$W = N_A A = c_{A,l} v \pi (d/2)^2 \cong 874.92 E - 3 * 1.5 * \pi * (0.15/2)^2 \cong$$

$$\cong 23.19 E - 3 \mod (H_2O)/s \frac{3600 s}{h} \frac{18 g_{H_2O}}{mol_{H_2O}} \cong 1.50 \text{ kg/h}$$

Questão 5

Pretende-se remover SO_2 de uma mistura gasosa constituída por SO_2 e ar por adsorção utilizando água.

- A constante de Henry é 1.5 atm
- A coluna usada opera a 15 °C e 3 atm.
- Nim dado ponto da coluna a % molar de SO_2 na fase gasosa é 20% e na fase líquida é 1%.
- Sabendo que os coeficientes individuais de transferência de massa são $k_y=5.6~{\rm E}-4~{\rm mol/s}\,{\rm m}^2$ e $k_x=5.6~{\rm mol/s}\,{\rm m}^2$.

Determine:

Q5 a.

As composições interfaciais.

Q5 b.

A % da resisência total respeitante a cada uma das fases.

Q5 c.

O coeficiente global de transferência de massa K_x .

Q5 d.

O fluxo de SO₂

Q5 e.

O valor do fluxo quando usar soluções de NaOH com a concentração crítica de NaOH. Comente. body