Formas normales

Clase 17

IIC 2223

Prof. Cristian Riveros

¿qué es una forma normal?

Ejemplo: polinomios

Un polinomio cualquiera:

$$p(x) := (x^3 \cdot ((x-2) + 3x^2) - (3x^5 - 2x^2)) \cdot 2x + 7$$

Un polinomio cualquiera

cuando planeamos hacer un algoritmo sobre polinomios:

$$p(x) := 2x^5 + 4x^3 - 4x + 7$$

Formas normales son útiles en computación para **estudiar** un objeto y **diseñar** algoritmos.

Outline

Forma normal de Chomsky

Formal normal de Greibach

Outline

Forma normal de Chomsky

Formal normal de Greibach

Forma normal de Chomsky

Definición

Una gramática $\mathcal G$ esta en forma normal de Chomsky (CNF) si todas sus reglas son de la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

Forma normal de Chomsky

¿cuáles gramáticas están en CNF?

S
$$\rightarrow$$
 a S b | ϵ

A \rightarrow A B | a | ϵ
B \rightarrow B A | b | ϵ

S \rightarrow AB | AC | SS
C \rightarrow SB
A \rightarrow a
B \rightarrow b

Forma normal de Chomsky

Definición

Una gramática \mathcal{G} esta en forma normal de Chomsky (CNF) si todas sus reglas son de la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

Si \mathcal{G} esta en CNF:

- \blacksquare ¿puede aceptar la palabra ϵ ?
- ¿puede tener reglas unitarias?
- ¿puede tener reglas en vacío?

Toda gramática se puede convertir en CNF

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

- Primero, suponga que $\mathcal G$ no contiene reglas en vacío o unitarias.
- Por lo tanto, todas las reglas en \mathcal{G} son de la forma:
 - $X \to \gamma$ para $|\gamma| \ge 2$
 - X → a

j cómo transformamos G en forma normal de Chomsky?

Hacia la forma normal de Chomsky

Sea una gramática ${\cal G}$ donde las reglas son de la forma:

- $X \rightarrow \gamma$ para $|\gamma| \ge 2$
- $X \rightarrow a$

Paso 1: Convertir todas las reglas a la forma:

- $X \to Y_1 Y_2 \dots Y_k$ para $k \ge 2$
- $X \rightarrow a$

Paso 2: Convertir todas las reglas a la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

Hacia la forma normal de Chomsky (Paso 1)

Paso 1

Convertir todas las reglas a la forma:

- $X \to Y_1 Y_2 \dots Y_k$ para $k \ge 2$
- $X \rightarrow a$

Solución:

- Para cada $a \in \Sigma$, agregar un nueva variable X_a y una regla $X_a \rightarrow a$.
- Reemplazar todas las ocurrencias antiguas de a por X_a .

Hacia la forma normal de Chomsky (Paso 1)

Hacia la forma normal de Chomsky (Paso 1)

Paso 1

Convertir todas las reglas a la forma $X \to Y_1 Y_2 \dots Y_k$ para $k \ge 2$ o $X \to a$.

Solución:

- Para cada $a \in \Sigma$, agregar un nueva variable X_a y una regla $X_a \rightarrow a$.
- Reemplazar todas las ocurrencias antiguas de a por X_a .

Correctitud

Si \mathcal{G}' es la gramática resultante, entonces se cumple que $\mathcal{L}(\mathcal{G}')$ = $\mathcal{L}(\mathcal{G})$.

Hacia la forma normal de Chomsky (Paso 2)

Paso 2

Convertir todas las reglas a la forma:

- $X \rightarrow YZ$
- $X \rightarrow a$

Solución:

Para cada regla $p: X \to Y_1 Y_2 \dots Y_k$ con $k \ge 3$:

- Agregamos una nueva variable Z.
- Reemplazamos la regla *p* por dos reglas:

$$X \to Y_1 Z$$
 y $Z \to Y_2 \dots Y_k$

Repetimos este paso hasta llegar a la forma normal de Chomsky.

Hacia la forma normal de Chomsky (Paso 2)

```
Ejemplo del Paso 2 (continuación)
El resultado del Paso 1 es:
                            S \rightarrow ASB \mid AB
                            S \rightarrow AZ \mid AB
                            Z \quad \to \quad S \; B
```

Hacia la forma normal de Chomsky (Paso 2)

Paso 2

Convertir todas las reglas a la forma: $X \rightarrow YZ$ o $X \rightarrow a$.

Solución:

Para cada regla $p: X \to Y_1 Y_2 \dots Y_k$ con $k \ge 3$:

- Agregamos una nueva variable Z.
- Reemplazamos la regla *p* por dos reglas:

$$X \to Y_1 Z$$
 y $Z \to Y_2 \dots Y_k$

Repetimos este paso hasta llegar a la forma normal de Chomsky.

Correctitud

Si \mathcal{G}'' es la gramática resultante, entonces se cumple que $\mathcal{L}(\mathcal{G}'')$ = $\mathcal{L}(\mathcal{G}')$.

Toda gramática se puede convertir en CNF

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Teorema

Existe una grámatica \mathcal{G}' en forma normal de Chomsky tal que:

$$\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$$

Si \mathcal{G}' no tiene reglas unitarias ni en vacío, entonces \mathcal{G}' es de **tamaño polinomial** con respecto a \mathcal{G} .

Outline

Forma normal de Chomsky

Formal normal de Greibach

Forma normal de Greibach

Definición

Una gramática $\mathcal G$ esta en forma normal de Greibach (GNF) si todas sus reglas son de la forma:

$$X \rightarrow aY_1 \dots Y_k$$

para algún $k \ge 0$.

¿qué gramáticas están en GNF?

- $S \rightarrow aSb \mid SS \mid \epsilon$
- $S \rightarrow aSb \mid bSa \mid a \mid b$
- $S \rightarrow aSB \mid bSA \mid a \mid b$ $A \rightarrow a \qquad B \rightarrow b$

¿para qué nos puede servir la forma normal de Greibach?

Forma normal de Greibach

Definición

Una gramática \mathcal{G} esta en forma normal de Greibach (GNF) si todas sus reglas son de la forma:

$$X \rightarrow aY_1 \dots Y_k$$

para algún $k \ge 0$.

Si \mathcal{G} esta en GNF, ¿es posible que $\epsilon \in \mathcal{L}(\mathcal{G})$?

... desde ahora supondremos que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Toda gramática se puede convertir en GNF

Definición

Una gramática \mathcal{G} esta en "casi" GNF si todas sus reglas son de la forma:

$$X \to a\gamma$$

$$con \ \gamma \in (V \cup \Sigma)^*.$$

De "casi" GNF a GNF

- Para cada $b \in \Sigma$, agregar un nueva variable X_b y una regla $X_b \to b$.
- Para cada regla $X \to a\gamma$ y $b \in \Sigma$, reemplazar todas las ocurrencias de b en γ por X_b .

Desde ahora, hablaremos de "casi" GNF como una gramática en GNF.

¿cómo convertimos una gramática a GNF?

Necesitamos entender la recursión por la izquierda de las variables.

Grafo de recursión (por la izquierda) de una gramática

Definición

Para una gramática $\mathcal{G} = (V, \Sigma, P, S)$ se define el grafo de recursión:

$$R_{\mathcal{G}} = (V, E)$$

tal que $(X,Y) \in E$ si, y solo si, $(X \to Y\alpha) \in P$ para algún $\alpha \in (V \cup \Sigma)^*$.

¿cuál es el grafo de recursión de los ejemplos anteriores?

Si $R_{\mathcal{G}}$ es **acíclico**, ¿cómo podemos convertir \mathcal{G} a GNF?

Hacia la forma normal de Greibach (caso acíclico)

Sea $\mathcal{G} = (V, \Sigma, P, S)$ tal que su grafo de recursión $R_{\mathcal{G}} = (V, E)$ es acíclico.

1. Si $E = \emptyset$, entonces todas las reglas en P son de la forma $X \to a\gamma$.

2. Si $E \neq \emptyset$, entonces sea $X \in V$ tal que $(Y,X) \in E$ para algún $Y \setminus (X,Z) \notin E$ para todo Z.

Construimos la gramática $G' = (V, \Sigma, P', S)$ tal que:

$$P' \ = \ \left(P \ \cup \ \left\{Y \to \alpha\beta \in P \ \big| \ Y \to X\beta \in P \ \land \ X \to \alpha \in P\right\}\right) \ \backslash \ \left\{Y \to X\beta \in P\right\}$$

Lema

$$\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}') \ \ \text{y} \ \ R_{\mathcal{G}'} = \big(V, E \setminus \{(Y, X) \in E \mid Y \in V\}\big).$$

Aplicando el caso 2. hasta llegar a 1. encontraremos una gramática equivalente a $\mathcal G$ en GNF.

Hacia la forma normal de Greibach (caso acíclico)

```
input: Gramática \mathcal{G} = (V, \Sigma, P, S) y R_{\mathcal{G}} grafo de recursión acíclico
output: Gramática G' en GNF
Function GNF-aciclico (\mathcal{G})
    let R_{\mathcal{G}} := (V, E) grafo de recursión acíclico de \mathcal{G}
    let P' := P
    while E \neq \emptyset do
         let X \in V : \exists Y. (Y, X) \in E \land \forall Z. (X, Z) \notin E
        P' := P' \cup \{Y \to \alpha\beta \in P' \mid Y \to X\beta \in P' \land X \to \alpha \in P'\}
     P' := P' \setminus \{Y \to X\beta \in P'\}
         let R_G = (V, E) grafo de recursión acíclico de (V, \Sigma, P', S)
    return G' = (V, \Sigma, P', S)
```

Ejercicio: demuestre la correctitud del algoritmo.

¿cómo eliminamos los ciclos del grafo de recursión?

Definición

Una gramática G se dice recursiva por la izquierda si existe $X \in V$ tal que:

$$X \stackrel{+}{\Rightarrow} X \gamma$$
 para algún $\gamma \in (V \cup \Sigma)^*$

¿cuáles gramáticas son recursivas por la izquierda?

¿cómo eliminamos los ciclos del grafo de recursión?

Definición

Una gramática \mathcal{G} se dice recursiva por la izquierda si existe $X \in V$ tal que:

$$X \stackrel{+}{\Rightarrow} X \gamma$$
 para algún $\gamma \in (V \cup \Sigma)^*$

Lema

 \mathcal{G} es recursiva por la izquierda si, y solo si, $R_{\mathcal{G}}$ es cíclico.

Si **eliminamos la recursividad** por la izquierda de una gramática, entonces habremos **eliminado los ciclos** de R_G .

(eliminar la recursividad por la izquierda también será importante más adelante para algoritmos de parsing)

Recursión inmediata por la izquierda

Suponga que existe $X \in V$ tal que:

$$X \rightarrow X\alpha_1 \mid \cdots \mid X\alpha_m \mid \beta_1 \mid \cdots \mid \beta_n$$

¿cómo podemos eliminar la recursión inmediata por la izquierda?

Considere la misma gramática pero cambiando las reglas de X por:

¿es la nueva gramática recursiva inmediata por la izquierda en X?

Recursión inmediata por la izquierda

Idea de eliminación de recursión inmediata

Ejemplo de eliminar la recursión inmediata

Recursión inmediata por la izquierda

Teorema

Sea G una gramática tal que que existe $X \in V$:

$$X \rightarrow X\alpha_1 \mid \cdots \mid X\alpha_m \mid \beta_1 \mid \cdots \mid \beta_n$$

Sea \mathcal{G}' la misma gramática \mathcal{G} pero cambiando las reglas de X por:

Entonces $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}')$.

Demostración

Una derivación por la izquierda de X en \mathcal{G} :

$$X \underset{\text{lm}}{\Rightarrow} X\alpha_{i_1} \underset{\text{lm}}{\Rightarrow} X\alpha_{i_2}\alpha_{i_1} \underset{\text{lm}}{\Rightarrow} \cdots \underset{\text{lm}}{\Rightarrow} X\alpha_{i_p}\alpha_{i_{p-1}}\cdots\alpha_{i_1} \underset{\text{lm}}{\Rightarrow} \beta_j\alpha_{i_p}\alpha_{i_{p-1}}\cdots\alpha_{i_1}$$

Una derivación por la derecha de X en \mathcal{G}' equivalente:

$$X \underset{m}{\Rightarrow} \beta_{j}X' \underset{m}{\Rightarrow} \beta_{j}\alpha_{i_{p}}X' \underset{m}{\Rightarrow} \cdots \underset{m}{\Rightarrow} \beta_{j}\alpha_{i_{p}} \dots \alpha_{i_{2}}\alpha_{i_{1}}X' \underset{m}{\Rightarrow} \beta_{j}\alpha_{i_{p}}\alpha_{i_{p-1}} \dots \alpha_{i_{1}} \square$$

Considere la siguiente gramática recursiva por la izquierda:

$$S \rightarrow Xa \mid b$$

$$X \rightarrow Yc$$

$$Y \rightarrow Xd \mid e$$

¿cómo eliminamos la recursión por la izquierda no-inmediata?

Estrategia

Dado $V = \{X_1, \dots X_n\}$, removemos la recursión inductivamente en n tal que, en cada paso i de la inducción, se cumplirá que para todo $i, j \le n$:

si
$$X_i \rightarrow X_j \alpha$$
, entonces $i < j$.

```
input: Gramática \mathcal{G} = (V, \Sigma, P, S) y V = \{X_1, \dots, X_n\}
output: Gramática \mathcal{G}' sin recursión por la izquierda
Function Eliminar Recursión (G)
      P' := P
      for i = 1 to n do
            for j = 1 to i - 1 do
   foreach X_i \rightarrow X_j \gamma \in P' do

foreach X_j \rightarrow \alpha \in P' do

P' := P' \cup \{X_i \rightarrow \alpha \gamma\}
P' := P' - \{X_i \rightarrow X_j \gamma\}
            Remover recursión inmediata para X_i en P' (si existe)
     V' \coloneqq \{X_1, \dots, X_n\} \cup \{X_1', \dots, X_n'\} return ( V', \Sigma, P', S )
```

Ejercicio: demuestre la correctitud del algoritmo.

Ejemplo

$$S \rightarrow Xa \mid b$$

$$X \rightarrow Yc$$

$$Y \rightarrow Xd \mid e$$

Ordenamos S, X, Y como X_1, X_2, X_3 .

$$X_1 \rightarrow X_2 a \mid b$$

 $X_2 \rightarrow X_3 c$
 $X_3 \rightarrow X_2 d \mid e$

- Para i = 1: si $X_1 \to X_j \alpha$, entonces 1 < j.
- Para i = 2: si $X_2 \rightarrow X_j \alpha$, entonces 2 < j.

```
Ejemplo: para caso i = 3
                                        X_1 \rightarrow X_2 a \mid b
                                        X_2 \rightarrow X_3c
                                       X_3 \rightarrow X_2d \mid e
                                       X_1 \rightarrow X_2 a \mid b
                                       X_2 \rightarrow X_3c
                                       X_3 \rightarrow X_3 cd \mid e
                                        X_1 \rightarrow X_2a \mid b
                                        X_2 \rightarrow X_3c
                                        X_3 \rightarrow eX_3'
                                        X_3' \rightarrow cdX_3' \mid \epsilon
```

Toda gramática se puede convertir en GNF

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una CFG tal que $\epsilon \notin \mathcal{L}(\mathcal{G})$.

Teorema

Existe una grámatica \mathcal{G}' en forma normal de Greibach tal que:

$$\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$$

Algoritmo

Dado una gramática \mathcal{G} .

- 1. G' := EliminarRecursión(G)
- 2. $\mathcal{G}'' := GNF-aciclico(\mathcal{G}')$

Resultado: Gramática \mathcal{G}'' en forma normal de Greibach ("casi").

OJO: El tamaño de \mathcal{G}'' puede ser **exponencial** en el tamaño de \mathcal{G} .