DOCUMENT RESUME

ED 051 864 LI 002 924

AUTHOR TITLE Vaswani, P. K. T.; Cameron, J. B. The National Physical Laboratory Experiments in

Statistical Word Associations and Their Use in

Document Indexing And Retrieval.

INSTITUTION REPORT NO PUB DATE NOTE National Physical Lab., Teddington (England).

COM-SCI-42 Apr 70

171p.

EDRS PRICE DESCRIPTORS EDRS Price MF-\$0.65 HC-\$6.58

*Cluster Grouping, *Indexes (Locaters), *Indexing, *Information Retrieval, *Search Strategies, Word

Frequency

ABSTRACT

The experiments involved 11,571 abstracts (with titles, , 1,000 key-word stems and 93 search requests. Measures of word association are derived in several ways from the numbers of documents in which two given words co-occur, and measures of similarity from the numbers of words associated with both. Word clusters with different degrees of overlap are derived from the resulting networks of word connections for use as document descriptors. All are employed in retrieval and their performance analyzed. Two new measures, sensitivity and coverage, reflect the variation in a strategy's performance from request to request. The best strategy depends on the user's requirements. For a single strategy key-words are simplest but the quantities of output are erratic and may usefully be controlled according to word associations. If two strategies can be used key-words alone may be followed by associations, yielding in a similar output quantity 30% more relevant documents. The corresponding use of clusters is marginally better but unlikely to justify its extra cost. (Author)

National Physical Lab.
TO ERIC AND ORGANIZATIONS OPERATING UNDER AGREEMENTS WITH THE US OFFICE OF EDUCATION FURTHER REPRODUCTION OUTSIDE THE ERIC SYSTEM REQUIRES PERMISSION OF THE COPYRIGHT OWNER."

COM.SCI. 42

April 1970

NATIONAL PHYSICAL LABORATORY

THE NATIONAL PHYSICAL LABORATORY EXPERIMENTS IN STATISTICAL WORD ASSOCIATIONS AND THEIR USE IN DOCUMENT INDEXING AND RETRIEVAL

bу

Dr. P.K.T. Vaswani and J.B. Cameron COMPUTER SCIENCE DIVISION

Summary

The experiments involved 11,571 abstracts (with titles), 1,000 key-word stems and 93 search requests. Measures of word association are derived in several ways from the numbers of documents in which two given words co-occur, and measures of similarity from the numbers of words associated with both. Word clusters with different degrees of overlap are derived from the resulting networks of word connections for use as document descriptors. All are employed in retrieval and their performance analysed.

Two new measures, sensitivity and coverage, reflect the variation in a strategy's performance from request to request. The best strategy depends on the user's requirements. For a single strategy key-words are simplest but the quantities of output are erratic and may usefully be controlled according to word associations. If two strategies can be used key-words alone may be followed by associations, yielding in a similar output quantity 30% more relevant documents. The corresponding use of clusters is marginally better but unlikely to justify its extra cost.

U.S. DEPARTMENT DF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY.

Contents

PART 1

- I Statement of Problem and Outline of Approach.
 - .1 Scope of the NPL experiments
 - .2 The retrieval problem
 - .3 Comparison of fixed classification schemes and key-word based systems
 - 4 Advantages of mechanical systems based upon key-words
 - .5 Systems based upon simple comparison of key-words
 - .6 The need to search under related terms
 - .7 Semantic relationships
 - .b Structural relationships
 - .9 That use should be made of relational information for document retrieval?
 - .10 Statistical word associations
 - .11 Word clusters
 - .12 Scale and subject area of experiments
 - .13 Relevance and coordination
 - .14. Output and evaluation
 - .15 Recall.

PART 2: WORD ASSOCIATION AND CLUSTERING

- II Preparation and Machine Input of Texts
 - .1 Choice of texts and subject matter
 - .2 Unit of text
 - .3 Selection of key-words
 - .4 Conflation of word forms
 - .5 The stem dictionary
 - .6 Word truncation
 - .7 Key-punching of texts
 - .8 Representation of text in the computer store
 - .9 Dictionary organization and look-up
 - .10 Word-abstract incidence matrix
- III Derivation of Statistical Associations
 - .1 Scale of experiment what corpus size?
 - variation of word co-occurrence frequency with corpus size
 - .3 The ACE computer
 - .4 Matrix of word co-occurrence frequencies
 - .5 Degree of association and statistical confidence
 - .6 Choice of association factor
 - .7 Thresholding the association factor
 - .8 Comparison of real and random abstracts
 - ... 9 Computation of similarity coefficients
 - .10 Word-connection matrices, G3 and G4.

2

IV Generation or Word Clusters

- Graph representation of word connections
- .2 .3 Properties of clusters
- Completeness of clusters
- Fragmentation of a graph by random removal of lines
- Meetham's method of clustering, based upon removal of lines not ۰5 included in increasing numbers of triangles
- .6 Cluster emphasis.

PART 3: RETRIEVAL EXPERIMENTS

General Considerations

- Brief description of KDF9
- Search requests .2
- Form of output .3
- Batch processing 04
- Possible variables ٠5
- Quantity of output and cut-off
- Sensitivity of a strategy to changes in the cut-off .7
- .8 The harvest file.

VI Indexing and Retrieval Strategies

Description of strategies VI.1

- 1ه Introduction
- Determination of cut-off level •2
- .3 Basic key-word stem strategy
- Simple use of word clusters as descriptors
- Use of clusters as descriptors with un-weighted ۰5 representation
- .6 Use of clusters as descriptors with weighted representation
- .7 Word-stem comparison with expanded abstracts
- 8。 Word-stem comparison with expanded abstracts and requests
- ۰9 Combined strategy - run 9
- .10 Combined strategy run 28
- 11، Obligatory request words
- .12 Automatic weighting of request key-word stems.

VI.2 Discussion of strategies

- Methods of using word associations
- Discussion of our use of word clusters
- 3ء Comparison with random superimposed coding
- Representation
- Direct use of word associations
- Obligatory request words.

VII Evaluation Procedure

- ٠1 Relevance
- .2 Precision
- ٠3 Operational and evaluation parameters: K and K'
- Recall estimates ٠4,
- Totals and averages.

VIII Discussion of Performance Figures

- General comments
- Relative performance of standard strategies
- Run 13 with a second strategy compared with Run 13 at higher ٠3 cut-off
- Generality of a request .4
- Underlining (55 requests). ٠5

IX Conclusions

- Evaluation criteria
- Performance of key-word stem searches .2
- .3 Advantages of associative strategies
- Best associative strategies
- Effects of cluster overlap and representation
- Effect of obligatory request words
- Effect of request generality
- Choice of strategy
- ۰9 Application to on-line, interactive systems.

Acknowledgements

APPENDICES

- Word-Stem Dictionary and Frequencies A1
- A2 4-Zone Code
- A3 Letter Frequencies
- A4 Word-Frequency Distributions Word-Pair Frequency Distributions
- A5 Binary Word-Connection Matrix G3
- **A6** Selection from Cluster Set C3.
- **B**1 Complete List of Requests
- B2 Numbers and Frequency Distribution of Key-Words
- **B**3 Subsets of Requests
- Bl. Summary Description of Strategies
- B5 Strategy Features
- В6 Computer Implementation of Indexing and Retrieval Operations. Evaluation Programs and Harvest File
- B7 Performance of Successive Strata in Run 13 (Key-Word Stems)
- B8 Performance of Typical Strategies for Varying Cut-off K (Runs 13,28,14,25)
- B9 93 Requests: Numbers of Relevant Documents
- B9a 93 Requests: Numbers of New Relevant Documents
- B1 0 34 Requests Retrieving 0-4 Relevant Documents in Run 13
- B1 1 34 Requests: Numbers of Documents
- B1 2 Request Sets of Increasing Generality: Numbers of Documents
- B13 55 Underlined Requests: Numbers of Documents
- B14 The Approximate Value of K'/K
- B15 Words Accepted by Assessors in Place of Key-Words
- B16 Sample Page of Subject Indexes

Addenda

p.53 VII.4 after line 12 insert

We have two versions of the harvest file on which document assessments are stored. On the standard harvest file HKG50 there are 2020 known relevant documents, on the full harvest file HAROO there are 2090.

On HKG50 the output corresponds strictly to the K values

yielding K'≈50 for the 93 requests.

On HAROO assessments from all sources were retained in case the abstracts should be retrieved again in new runs, or in old

runs at higher K'.

These extra sources were: Runs 6,9,13,20 at $K' \cong 51,52,51,52$ respectively (5 relevant); Run 26 (42); Run 27 (24), the latter pair having 1 in common. The K' mentioned come from the slightly higher K, namely 50,50,72,74, needed to give $K' \cong 50$ at a time when requests 1,6,46,66 had not yet been cancelled. In the other standard runs K' was not altered within the nearest integer.

The requests benefited somewhat unevenly, but the net result

is that both overall and average known recall figures derived from HAROO are lower by about 32%.

In the report Appendix B8 is derived from HAROO; all other known recalls as on pp.53,54,Appendix B3(v),Appendix B9b are related to the standard HKG50.

Tables similar to Appendix B8 based on HKG50 are available

for all runs except 24,26,27 up to $K' \approx 50$.

Our main use of recall is to obtain the estimates of 80% on p.54: it does not enter directly into our evaluation and is tabulated for rough comparison with other experiments.

after Appendix B9a insert

APPENDIX B9b

93 Requests: Average Output K'250

Run	Relevant	Irrelevant	Total	Overall % Precision	Overall % Known Recall
KWS 13	99 1	3637	4628	21.41	49.06
AWKWS 22	898	3720	4618	19.45	44.46
ARM 16	782	3835	4617	16.94	38.71
MCS01 14	873	3870	4743	18.41	43.22
MCS11 20	857	3667	4524	18.94	42.43
RJR 19	939	3764	4703	19.97	46.49
ARMSR 17	785	3877	4662	16.84	38.86
SR14 6	753	3852	4605	16.35	37.28
PDR14 11	861	3825	4686	18.37	42.62
EAG3 15	828	3811	4639	17.35	40.99
EAG4 18	835	3764	4599	18.75	41.34
EARG4 23	9 1 4	3793	4707	19.42	45.25
13T14 9	966	3729	4695	20.58	47.82
13W14 28	99 1	*3689	4680	21.34	49.06
U14 21	902	3759	466 1	19.35	44.65

*includes 36 not assessed

The figure used for total known recall is 2020 relevant (c.f. VII.4.111).

NPL Report Com Sci 42 Corrigenda and Addenda

Corrigenda

p.54 lines 3-6 read

Request 10	11	53	11	75
38	4	1	4	9
91	9	5	9	23
	24	59	24	107

Appendix B4 second page line 3 delete 6.

PART 1: Statement of Problem and Outline of Approach

I.1 Scope of the NPL experiment

During the last two decades there has been an increasing awareness of the inability of fixed classifications, such as the Universal Decimal Classification (UDC), to cope with Document Retrieval, that is the provision of a <u>list of references</u> in response to a request for <u>information on a specified subject</u>. At the same time, methods of indexing and retrieval based more directly upon the <u>vocabulary</u> of documents and requests have grown in popularity and there has been a marked trend towards the use of such systems by many of the more progressive technical libraries.

<u>Document</u>, <u>Reference</u>, or <u>Text Retrieval</u> must be distinguished from <u>Fact</u> or Data Retrieval. A request for articles on

Radio Waves from the planet Jupiter

differs in kind from the queries

'Which companies worth over a million pounds attempted takeovers in 1968?'

'What is the Specific Heat of Copper?'

In this report, we are concerned only with the former.

The work reported here, which began at NPL in 1961 and was recently brought to an end, has been concerned with the improvement of key-word techniques in purely mechanical indexing and retrieval systems. Its objectives were

- (i) to develop methods of <u>clustering</u> words on the basis of specially computed statistical measures of <u>association</u> between word pairs, and
- (ii) to explore and evaluate ways of employing these clusters and associations to improve performance, especially in the ability to recall relevant material.

We assume that natural language texts are in machine-readable form.

I.2 The <u>retrieval</u> problem

Given a collection of documents and a request on some specified topic, the problem is to chose criteria which will select the documents likely to answer the request; will select them singly, or in groups, in order of likelihood; and will optimise the system performance as judged by the users.

Thus any retrieval system must

- (i) subdivide the collection, preferably into mutually exclusive subsets, and
- (ii) order these subsets of documents for presentation to the requestor.

I.3 Comparison of fixed classification schemes and key-word based systems

The view of the retrieval process taken above clarifies some of the main distinctions between hierarchical (tree-like) classification schemes, such as the UDC, and key-word based retrieval systems.

In the case of a hierarchical classification scheme:-

- (i) The system provides a single, fixed, subdivision of the document collection and a fixed ordering of the documents.
- (ii) The system itself does not specify the order in which the document or document subsets should be considered when a search is conducted. The requestor must decide this himself. Cross-references and 'see also' entries are all the system provides to aid him in accomplishing this difficult task.

In contrast, in the case of key-word based systems:-

- (i) A special subdivision of the document collection is provided for each search request.
- (ii) The document subsets are ordered according to some criteria for assessing the likelihood that a document answers the request. In the simplest case, the criterion is taken as the number of key-words in the request that were also assigned to a document to index it. The collection is then subdivided so that all the documents in one subset score the same number of points and the subsets are ordered according to these scores.

There is no reason to suppose that a unique arrangement of the document collection into subsets can be found that would be best, or even good, for all possible requests. In fact, this seems highly unlikely. Yet that is an assumption underlying any classification scheme like the UDC. The chief benefit of the UDC is to decide the arrangement of the books on the shelves. In this respect key-word based systems are superior in providing a tailor-made subdivision for each request. They also have the great advantage of producing an ordering of the document subsets for presentation to the requestor. As will be seen later, some of the more elaborate key-word systems can produce a subdivision of the document collection into a very large number of subsets, producing quite a fine ordering or partial ordering of the collection. This enables the requestor to terminate his search when he desires, giving him considerable control over the quantity of output he receives from the system.

I.4 Advantages of mechanical systems based upon key-words

- (i) Being mechanical, they do not suffer from human indexing inconsistencies, as do the more traditional systems such as the UDC.
- (ii) The key-words may be combined as and when necessary in order to describe the subject content of, or to index, a document, or formulate a request for information. Thus, a document describing a piece of electronic equipment used for measuring

the human heart-rate could have been indexed by such words as 'medical', 'heart', 'rate', 'electronics', 'instrument', 'measurement', even before the development of the 'medical electronics' field had been anticipated, and even if those words had never before been brought together within the system. By contrast the UDC, for example, sets out to anticipate all subject areas of interest. Unpredicted areas covering more than one discipline cannot be accommodated without considerable, and in practice continual, revision of the scheme.

- (iii) Being mechanical and therefore amenable to computer handling, they boast the advantages associated with modern computing machines. These are, principally, high speed and reliability and comparative ease of repeatability. At present texts are key-punched by hand from the printed copy, but more and more material is being put into machine-readable form even before printing.
- (iv) The processing speeds possible with computers make it practicable to consider procedures of a complexity that would otherwise render them quite unfeasible. This is a major advantage of such systems, and it creates a vast range of potential modes of operation still largely unexplored.

Without the aid of computers it would not be sensible to consider the techniques described in this report, as the manual processing involved in the word association and word clustering stages would be quite prohibitive.

I.5 Systems based upon simple comparison of key words

The simplest systems operate by comparing a set of key-words used in formulating a search request with sets used to index documents in the collection. There are two common ways of choosing key-words when indexing: derived indexing, in which words are selected from the title or abstract and, perhaps, from the full document text, and assignment indexing, in which the words used to index a document are decided by other means, most often according to the intuitive judgement of human indexers. The usual practice is to retrieve first any documents indexed by at least all of the words used in formulating the request. If insufficient output is produced, or if the searcher thinks that not all relevant material has been gathered in this way, it is customary to relax the request formulation and to retrieve anything indexed by at least all but one of the request words. If the request consists of more than two words it can be further relaxed in this way to obtain still more output. A slightly more elaborate procedure allows the request to be formulated as a Boolean function (involving logical connectives such as AND, OR, NOT) of a set of key-words.

Control of the indexing language sometimes involves no more than recognition of synonyms and perhaps the use of some form of 'user's dictionary' or 'scope notes' giving guidance on the choice of words in an effort to achieve a modicum of indexing consistency. Key-word stems may be used in place of key words, especially when they are chosen from the text itself. This means conflating or identifying morphological variants such as 'act', 'acts', 'actor', 'acted', 'active'. This can be done mechanically to a satisfactory degree, for example by matching with as long a stem as possible in the machine-held dictionary (See II.9).

I.6 The need to search under related terms

The richness and flexibility of natural languages are such that almost any search request can be expressed in numerous alternative ways. Different people will have different ways of asking for essentially the same thing and, indeed, any individual might express the same request in different ways on different occasions. For example, one would be asking for virtually the same thing by requesting information on

'transistor phase-splitting circuits'

and on

driving circuits for transistor push-pull amplifiers.

A simple system of the type discussed in the previous section would not recognize this fact and, finding that the requests apparently have little in common, would process them accordingly.

Another factor is that very few requests are such that all relevant documents would be retrieved if attention were restricted to those bearing a close parallel to the form of the request. Take Bar-Hillel's example of a search request for documents dealing with

'diseases of animals in South America.'

One can envisage documents with such titles as

'Bacteria living in dogs'

and

The life cycle of insect X'

which may well be relevant and would certainly be worthy of consideration.

This is not a matter of allowing for alternative expressions of the same idea, but one of extending the search to cover subject areas related to that of the request. Once again the recall of relevant material should be improved by searching under terms related to those in the request.

I.7 Semantic relationships

Many kinds of semantic relationship can exist between words or phrases whether within one text or in two comparable texts. Such relations include synonymy, morphological variation, attribution, cause-effect, part - whole; more broadly, similarity of function, even physical proximity where the connection is frequent enough. Almost any association can attach itself to the meanings of words over a period of time, or conversely, may decay or vanish. The strength of a semantic association may also vary from library to library. Some associations apply only within particular documents; others to a subject area of the particular library, or to the library as a whole; others more widely still. The indexing procedure and/or the search strategy should take this into account. Thus with the example given above, documents should be considered for retrieval if indexed by such words as 'bacteria' and 'insect'.

Under such circumstances, the retrieval strategy must decide the relative importance of documents indexed by request words, by semantically related words and by combinations of both.

I.8 Structural relationships

The underlying structure of a text can be described in terms of relationships between words or other components of the text. Any transitive verb, in so far as it indicates some specific sort of connection between a subject and an object, constitutes a structural relationship. All the classical syntactic relationships are structural in nature. Structural relationships are exhibited, for example, by the qualification of a verb or adjective by an adverb, or of a noun by an adjective. Again, in describing the content of technical documents, the 'effect (or action) of A upon B' might be used as a structural relationship. In this case A and B might be chemical elements or compounds, machine components, processes, environmental conditions, etc.

Consider the following title:

Effect of transverse field on switching rates of magnetic-core storage systems.

Examining some of the syntactic relationships we note that 'storage' qualifies 'system', 'magnetic' qualifies 'core', 'magnetic-core' qualifies 'storage system', 'switching rates' pertains to 'magnetic-core storage system', 'transverse' qualifies 'field', etc.

These structural relationships, unlike semantic ones, have no existence outside the texts in which they occur; they are properties of particular texts rather than properties of large corpora.

In the context of document retrieval systems it is still far from clear what use, if any, can be made of structural relationships existing in the documents or in requests. Is it helpful to preserve the structural information as far as possible when indexing? This is done in the SYNTOL system [1] and also in the intricate relational indexing system developed by Farradane [2]. On a much lower level many systems employ links to indicate the existence of relationships at the indexing stage: words, phrases, etc., that are interrelated are tagged and pairs of common tags indicate entities which are related, without defining the sort of relationship.

If structural relationships are specified when indexing documents and only those documents retrieved which show a sufficiently good correspondence with the structure of a request (it being automatically assumed that the words used to index the retrieved documents correspond satisfactorily with those of the request), then the chances are very high that documents of likely interest will be missed. Once a request is transformed or matched against a document using semantically related words, the structure is likely to lose its parallel, particularly, of course, if the matching words are spread over several sentences in the document.

I.9 What use should be made of relational information for document retrieval?

From the discussion in the previous section there seems little case for the introduction of structural or syntactic relationships. On the whole, such information is far too specific in nature to be useful if one is concerned in

improving the recall of relevant documents. If one's prime interest were in minimizing the recall of irrelevant documents, or if one were setting up a fact-retrieval system, different considerations would apply.

On the semantic side synonymy and near-synonymy are not the only things of interest, all other relationships are potentially useful as pointers to words, additional to those used in a request, that should be considered in the retrieval strategy. Our prime concern is to improve retrieval systems from the point of view of their <code>fbility</code> to recall as much relevant material as possible. That being so, the most valuable information is that specifying which words are semantically related. There is little further advantage in distinguishing between the various kinds of relationship occurring.

Cor eration shows that the necessary information about semantically related to its is not readily available. The task of investigating and recording all the relationships for a large technical vocabulary is enormous. Furthermore, the job would have to be repeated from time to time because the situation is dynamic, new relationships being formed and old ones dying out as subjects develop. To some extent the relationships existing depend upon the interests and subject coverage of each particular library. For these reasons, and in the interests of greater objectivity, it would be a tremendous advantage if the identification of semantic relationships could be mechanized. A possible method of doing this, which has been tried experimentally, is discusse in the next section.

I.10 Statistical word association

Suppose that a large set of texts is analysed statistically, observations being made of the total number of distinct words, of the number of sentences containing each word and the number of sentences containing each possible pair of distinct words. From a knowledge of the number of sentences in the full set of texts and of the number of sentences containing each word, and making the assumption that words are statistically independent in their occurrence in texts, it is simple to calculate the expected number of sentences containing any given pair of words. If the number of sentences in which two words are actually observed to occur does not differ too greatly from the calculated expected number, then it is reasonable to suppose that the assumed statistical independence of the given words is verified. If, on the other hand, these observed and expected quantities are significantly different, then the assumption has not been verified and the words in question must be assumed to be statistically associated. Techniques exist for deciding what is significant in this respect and for obtaining a quantitative measure of the degree of statistical association between two words.

Suppose the sample of texts is so large that the measured statistical associations may be taken as representing properties of the language, rather than peculiarities of the particular sample of texts (at least within a given subject area if not in general). It is then reasonable to hypothesize some, albeit unidentified, semantic relationship whenever a significant statistical association is found. The measure of association being statistical, there is always a chance that a high association that looks very significant has, in fact, arisen fortuitously. Steps must be taken to control this. These considerations are fully dealt with in section III, where we define and measure an association factor for any pair of words. We cannot assume directly that, because two words frequently co-occur within texts, therefore one is a good substitute for the other.

Accordingly, for retrieval purposes, we develop a <u>similarity coefficient</u> derived, again mechanically, from the association factor. This measures the tendency of two given words to be found in similar company.

I.11 Word clusters

Having established a network of statistical connections between a set of words by a technique of the sort just described, it is interesting to investigate whether there is a tendency, by virtue of these interconnections, for the words to <u>cluster</u>. Assuming fairly restrictive rules of cluster formation, so that the degree of interconnection within clusters is relatively high, identification of such clusters offers the following advantages:-

- (i) A useful relationship for retrieval purposes may be hypothesized between any pair of words in a cluster. This provides a way of predicting useful connections between words in many cases where they do not result directly from the initial statistical analysis.
- (ii) Instead of indexing documents in terms of individual words or phrases, each cluster of closely associated words could be used as a descriptor* to be assigned to documents to index them and to be used for formulating requests. This method of utilizing the word associations, if effective, is economical in terms of storage space required for indexing a large collection. Further economy is achieved by not having to store explicitly all the separate word associations.

I.12 Scale and subject area of experiments

A collection of some 12,000 abstracts of papers in electronics, computers, physics and geophysics was used as the corpus for the statistical analysis and derivation of word associations. The same collection formed the document base for later retrieval runs in which various indexing and search strategies and several different sets of word clusters were tested. A dictionary containing 1,000 key-word stems was compiled on the basis of a sample of the abstracts. These are the only words, taken separately or in clusters, used in the experiments for indexing and searching.

Each retrieval run involved searches for 93 requests, 7 of an original set of 100 having been cancelled. A variety of strategies involving the use of five different sets of word clusters, and some strategies employing the statistical associations directly, no clusters being involved, have been tested and compared in a total of 14 main retrieval runs.

I.13 Relevance and coordination

All evaluation of performance is based on subjective considerations of the relevance of retrieved material by the 20 people who supplied the search requests, each assessing his own as relevant or not. Within this report we use the word <u>relevance</u> to refer to this subjective judgment by the user, and not to any decision by the machine. The machine as we have said earlier

^{*}By descriptor is meant any key-word, phrase, word cluster, decimal classification number, author's name or any other entity assigned to documents for indexing purposes, or used to formulate search requests.

(I.2) puts the documents into subsets for presentation in a particular order. Each strategy has its own scoring system for this purpose. The score measures in some definite way the extent to which the key-words in an abstract match those in the request, and we refer to it as the <u>coordination</u>. Then each subset contains all documents with a given coordination, whether relevant or not. The machine has to decide how many subsets to output, beginning with the highest coordination, and for this it requires further information from the user.

I.14 Output and evaluation

A customer with a request must specify approximately the size of output he requires, for various reasons. First, there is likely to be a limit on the number of documents he is willing to scan. Secondly, the cost of an operating system is closely related to the quantity of output [3]. Other methods of specification such as a desired coordination level are likely to occasion very wide and therefore costly or inconvenient variations. It is not easy to foretell, for example, the effect of asking for all documents with a particular number of key-words present. Accordingly, strategies are evaluated by comparing the numbers of relevant documents in a given size of output, and also by the relevant documents retrieved by one strategy and not by another.

I.15 Recall

In experiments where the whole library has been evaluated, that is every document compared with every request, it has been common practice to generate output for each request till a certain proportion of its relevant documents have been retrieved (recall ratio) and then to measure what proportion these are of the output (precision ratio). One chief reason for doing this has been to allow for requests with few and with many documents in the collection. It does not however correspond very closely to the actual business of running a system, where the relevant documents are not known beforehand. In our own experiment this would require 11,571 times 93, say one million relevance assessments, which was beyond our resources. In fact about 17,000 were made by our 20 requestors. To estimate the actual numbers of relevant documents by sampling from part only of the library would have been ineffective, since the average is only 21.7 per request. However, we felt that with 14 different strategies we were likely to cover most of the relevant documents. An almost exhaustive search with 3 requests and another using subject indexes with 12 requests suggested that in fac, we had already found about 80% of the relevant documents in the collection. We tabulate a known recall ratio corresponding to the numbers of known relevant in a given output.

PART 2 ; Word Association and Clustering

II Preparation and Machine Input of Texts

II.1 Choice of texts and subject matter

The principal use of the texts in the first phase is word and word-pair counting. If the statistical associations produced by analysing the texts are to be as meaningful and useful as possible, texts should be used which do not contain a high proportion of repetition or redundant 'padding' material. Abstracts have the desired characteristics and that was the form of text selected for these experiments.

The abstracts were compiled at the Radio Research Station (now Radio and Space Research Station) at Slough, England. They were published over the period 1953-62 in a journal which, during that time, has been called 'Wireless Engineer', 'Electronic and Radio Engineer' and 'Electronic Technology'. The same abstracts were published concurrently in New York in the Proceedings of the Institute of Radio Engineers (now the Proceedings of the Institute of Electronics Engineers).

Out of some twenty categories under which these abstracts appeared the following five were selected for our experiments:

- 1. Automatic computers
- 2. Circuits and circuit elements
- 3. General physics
- 4. Geophysical and extraterrestrial phenomena
- 5. Subsidiary apparatus.

These subjects were chosen partly because we have experts at NPL in electronics and computers who could assist us. At the same time it was thought that, from the retrieval point-of-view, these subject areas would provide most of the problems and difficulties encountered in other scientific and technical areas. Geophysical material was included so that the collection should not be too narrow in scope. We have been very grateful for the willing cooperation of the Radio and Space Research Station in providing us with the advice and assistance of subject experts in this field.

It should be pointed out that the scope of the abstracts is not as wide as the category headings would suggest. Abstracts appear under these headings only for papers having some pertinance to radio-communications.

II.2 Unit of text

In studying word co-occurrence in texts for the purpose of computing statistical association measures, what should constitute co-occurrence? Juxtaposition of two words might be taken as the criterion. Alternatively, two words may be said to co-occur if they appear in a text within some broader, but well defined, context such as a span of a specified number of words, a sentence, a paragraph, a page or a complete paper. In any case it is necessary to work with some such unit of text and to define word co-occurrence in terms of it. The disadvantages of adopting too small a unit are that many useful associations might thereby be missed, and secondly that an inordinate amount of text must be analysed. For example, if word juxtaposition were taken as the basis for co-occurrence an astronomical quantity of text would have to be scanned in order to uncover a significant

proportion of useful associations. The main penalty for working with too large a unit of text is that there would then be a high chance that any associations produced would not be very meaningful. There is probably an optimum unit of text for any proposed method of analysis. A considerable amount of experimentation would be required to establish this optimum. However, the point was not thought to be sufficiently critical to justify this and the choice was made less objectively.

Each title and abstract was regarded as a unit of text, these units containing on average a total of about 33 words. Repeated co-occurrence of two words in abstracts of papers on fairly well defined topics should be a reasonable indicator of the existence of a useful relationship between them. Many of the fortuitous relationships found in this way should be eliminated by rejecting the weaker statistical associations.

II.3 Selection of key-words

This is based upon a study of a sample (taken from the corpus) of 1,648 abstracts. A listing was produced of all the distinct words occurring in this sample together with the frequency of occurrence of (i.e. the number of abstracts containing) each. This list was studied very carefully by three people, two of them being fairly familiar with the subject matter, who decided intuitively which words to retain in the system as key-words, all others being excluded from further consideration.

II.4 Conflation of word forms

Where it was thought to be appropriate no distinction was made between different form of the same word. For example, computer, computers, compute, computing, computable, computation, etc., are not distinguished. These forms are conflated by identifying all words starting with the stem COMPUT. This is consistent with the view expressed earlier that structural details are relatively unimportant for document retrieval systems, the information discarded by conflation being mainly syntactic.

Conflation also has the following advantages:

- (i) It reduces the size of the dictionary (of stems) to be stored and manipulated in the computer, and
- (ii) When computing statistical association measures between word stems the frequencies and co-occurrence frequencies involved will be greater, for a given corpus, than those pertaining to the separate word forms. This enables us to work with a smaller corpus.

Another way of thinking about this is that, from the point-of-view of indexing documents and their comparison with requests, it is important that the concept of 'computation' be discussed in a document or introduced in an abstract, but it seems of relatively little interest to know whether the noun or verb is used or whether machines are discussed in singular or plural.

II.5 The stem dictionary

The system of word stems was constructed so as to maintain those distinctions between words thought to be useful for the purpose of these experiments and to suppress others. As an example, the stem ANALY appears

in the dictionary, but ANALYSER is also entered as it was decided that it might be useful to be able to distinguish such references to pieces of hardware (differential or spectral analysers) from other occurrences of the shorter stem. In a few cases word forms that would have been conflated have not been, because to do so simply by shortening the stem would permit undesired words to match the same stem. The stem CIRCL matches with circle, circling, etc., but had the stem been shortened to CIRC in order to match also with circular an undesired match would occur with the word circuit. The dictionary therefore contains CIRCULAR as a separate entry.

Having conflated terms in this way all the stems were listed and their frequency of occurrence within the 1,648 abstract sample was recorded. At this stage there were 1,324 stems. Of these, 323 occurred in the sample once only and 171 occurred twice. It was decided that most of the words occurring in the sample only once were of little value in the experiment and should be discarded. However, fourteen of them were retained as being useful words within the subject area in spite of their single occurrence in the sample.

On consideration of possible methods of organizing and handling the dictionary and other data in the computer it was found that if the number of items in the dictionary could be limited to 1,000 much more efficient use could be made of the machine and programs would be executed more rapidly than would be the case with a larger dictionary. The decision was therefore taken to discard a further fifteen of the rarer words, leaving exactly 1,000 key-word stems in the final dictionary. The complete dictionary is shown in Appendix A1.

II.6 Word truncation

It was observed during construction of the dictionary that practically all the distinctions required to be made between words could be made on the basis of the initial eight letters, or fewer, of each word. Again in the interests of economy, on being read into the computer all text words of greater length are truncated after the initial eight letters. The very small number of distinctions which consequently cannot be made seems a small sacrifice for the computer storage space saved. This is purely a matter of convenience, and although the loss of performance incurred is acceptable for the purpose of our experiments it might not be considered so if the design of an operational system were being considered.

II.7 <u>Key-punching of texts</u>

A typical abstract from the corpus is shown in Fig. II.7.1. The title and full text of each abstract are coded for machine input, with the following exclusions:

- 1) abbreviated bibliographic details (i.e. author, journal, etc.)
- 2) numerical data,3) special symbols,
- 4) all punctuation marks other than the full stop,
- 5) full stops in abbreviations.

551.510.535

Sequential E_s and Lunar Effects on the Equatorial E_s .—S. Matsushita (J. Geomag. Geoelect., Sept. 1955, Vol. 7, No. 3, pp. 91–95.) Among the various types of E_s which have been observed, one shows apparent vertical movement on the ionogram, and has been termed 'sequential E_s ' by investigators at the National Bureau of Standards. A study is made of this phenomenon using records from a number of stations; the subtype investigated is that involving an E_s region which first appears at a height of about 200 km in winter and 180 km in summer and then drops to normal E level, where it persists for some hours. The latitude and time distributions of the phenomenon are briefly discussed.

Fig. II.7.1. Sample abstract from corpus

This is key-punched on to 80-column cards using a standard 4-zone code (see Fig.A2.1, Appendix A2). The one spare code position is used to represent a full stop. The termination of an abstract is marked by two full stops. Each character or space occurring in the material being key-punched is coded in a separate column on a card, the first 48 columns only of each card being used for this purpose. The coding of each abstract commences on a new card and abstracts involving more than 48 characters are continued on a subsequent card or cards. Fig. II.7.2 shows the form in which the sample abstract is coded for machine input after the various exclusions have been made.

SEQUENTIAL E AND LUNAR EFFECTS ON THE EQUATORIAL E.
AMONG THE VARIOUS TYPES OF E WHICH HAVE BEEN OBSERVED
ONE SHOWS APPARENT VERTICAL MOVEMENT ON THE IONOGRAM
AND HAS BEEN TERMED SEQUENTIAL E BY INVESTIGATORS AT
THE NATIONAL BUREAU OF STANDARDS. A STUDY IS MADE OF
THIS PHENOMENON USING RECORDS FROM A NUMBER OF
STATIONS THE SUBTYPE INVESTIGATED IS THAT INVOLVING AN
E REGION WHICH FIRST APPEARS AT A HEIGHT OF ABOUT IN
WINTER AND IN SUMMER AND THEN DROPS TO NORMAL E LEVEL
WHERE IT PERSISTS FOR SOME HOURS. THE LATITUDE AND
TIME DISTRIBUTIONS OF THE PHENOMENON ARE BRIEFLY
DISCUSSED.

Fig. II.7.2. Sample abstract from corpus as key-punched.

The exclusion, during the key-punching operation, of various parts of the text was for the purpose of simplifying the task and thereby reducing its cost, and associated error rate. This applied particularly to bibliographic data. Much of this work had to be contracted out, but it was very difficult to find people with experience in this kind of work. We therefore had to make the requirements as simple as possible in order to get it done at all.

In spite of these precautions the key-punching took many months and the error rate was alarmingly high at first. In the first batch of about 1,600 abstracts, key-punched by an outside agency, about one word in twenty five was incorrectly punched. This material was prepared by girls operating ordinary hand punches, making two finger depressions to obtain the alpha-numeric

coding. Most of the remaining punching was done on machines having a type-writer style keyboard. Fortunately the error rate for the 10,000 or so abstracts following the original batch dropped to about one incorrect word in 250. Presumably this is at least partly attributable to the use of card punches with a full alphanumeric keyboard.

The latter error rate of 1 in 250 was not expected to have a pronounced effect upon the outcome of the statistical analyses and was therefore acceptable. The higher error rate in the first batch would not have been acceptable had it persisted. However, as it affected only a small proportion of the corpus those abstracts were also used without correction.

II.8 Representation of text in the computer store

Stems in the dictionary and text words read from punched cards are stored in the computer in an extremely simple coded form. Each letter, and space, is represented by a five digit binary number: the nth letter of the alphabet by n, space by the number zero. The coded representations of successive characters of a word or piece of text, taken in their natural order, are held in successive groups of five binary digits in the computer store, progressing from the more significant to the less significant end of each computer word.* To illustrate this consider the representation within the computer of the word 'machine'. These characters are first transformed into a sequence of numbers representing the position of each character in the alphabet, thus

The binary representation in the computer is obtained simply by grouping together the corresponding five digit binary numbers:

M A C H I N E
01101 00001 00011 01000 01001 01110 00101

more significant end of computer word.

The text of each abstract, when read into the computer from punched cards, is stored as a continuous character string, running on from one computer word to the next and occupying as many words of computer store as are necessary. The text words are then separated by identifying the space characters, which have their own particular code. After truncating long text words by discarding all letters after the eighth, each text word is stored in a separate computer word, each of the latter being filled from the more significant end.

^{*}A computer store is commonly composed of units referred to as 'words', each able to hold a string of binary digits. Each word of the Ace Computer, used in these experiments, contains 48 digits. By the more significant end of a word is meant the end at which, if the string of digits stored in the word is regarded as a binary number, the most significant digit of that number is located.

II.9 Dictionary organization and look-up

Since text words are truncated to a maximum of eight letters when they are read into the machine, no character string of greater length is ever compared with the stems in the dictionary during the look-up process. The longest stems in the dictionary therefore contain eight letters. The stems are stored one per computer word, coded in the same way as the text words. The dictionary is arranged in eight sections, according to stem length, the stems in each section being arranged in alphabetical order.

The method of coding described requires 40 binary digits to represent the longest stems. Words in the Ace computer are 48 digits long, so that each computer word containing a dictionary stem has at least eight spare digits, some of these digits are used to store a number, in the range 1-8, associated with each stem indicating the longest text words to be considered when testing for a 'match' with that stem. By definition, a match cannot exist involving a text word of more than the specified maximum length. However, since long text words are truncated after eight letters, when the number specified is eight, there is effectively no restriction on the length of text words with which the corresponding dictionary stem might match. The number indicating the maximum allowable extension of each stem is shown with the dictionary in Appendix A1.

To illustrate this system, consider the following dictionary entries (which are not adjacent):

BANDWIDT 8.

The first of these stems is intended to match with band and bands, no match with words of more than 5 letters being permitted. The word bandwidth is picked up by the other stem. Although it does not arise in this case, the system as defined so far could result in the occasional mismatching of a text word with a stem. Consider the following dictionary entries:

MODEL 6
MODE 5.

Since the stem MODE can be matched with words having 5 letters a mismatch could arise between this stem and the word model. However, this is avoided by accepting the longest stem with which a given text word matches. The dictionary being in sections of different stem length, this simply entails referring each word first to the section containing the longest stems, then to the others in order of stem length, and always accepting the first match for each word.

The text of an abstract having been read into the computer, before its words are referred to the dictionary they are alphabetically ordered and multiple occurrences of words are eliminated. The words in each section of the dictionary are also in alphabetical order, so all the words from the abstract are compared with the stems, and matches noted, in a single pass of the dictionary. The dictionary is stored on magnetic drums, so this procedure saves a great deal of time in terms of drum accessing.

Corresponding to each abstract processed in this way a <u>post-abstract</u> is output on punched cards containing the code numbers of all dictionary stems occurring in the abstract. Other data output at the same time include the total number of words (including repetitions and words not in the dictionary)

and the number of distinct dictionary stems in the abstract.

II.10 Word/abstract incidence matrix

This is a binary matrix (i.e. a matrix whose elements all have value either 0 or 1) having a row corresponding to each dictionary word stem and a column corresponding to each abstract (Fig. II.10.1).

ABSTRACT							
		0	1	2	3		11 , 570
	O	0		0			0
	1	0	0	0	0	0000	1
	2	1	1	0	1	000•	0
WORD	o						
	۰						
	0						
	0						
	999	0	0	0	1	0000	1
(VALUES FICTITIOUS)							

Fig. II.10.1. Word-abstract matrix

The complete matrix is far too large to be held in the machine, even on the magnetic drums, in its entirety. It is therefore constructed in sections, each having 1,000 rows in correspondence with the word stems and 1,536 columns, and therefore representing only a fraction of the collection of abstracts.

Before constructing a section of the incidence matrix all the elements are set to zero. The post-abstracts are then read into the computer in sequence. As each one is read in the rows of the matrix representing the word stems listed in the post-abstract are read from the drums, the element in each row corresponding to the particular abstract is set to unity and then the matrix rows thus modified are written back on the drums. After each section of the word/abstract incidence matrix is completed it is output on punched cards.

III Derivation of Statistical Associations

III.1 Scale of experiment - What corpus size?

There are two main considerations in deciding the scale of experiments of this kind. The first is that it should be large enough for the experiment to be realistic. The second is that the corpus should be sufficiently large to yield statistically significant results.

Such an experiment should be regarded as being realistic if its results and conclusions can be extrapolated and applied to the solution of problems arising in real-life retrieval situations. Some of the problems encountered in practice arise through semantic ambiguity, the interpretation of words having different meanings or connotations in different contexts and through the vague and imprecise use of words. In any experiments, therefore, the vocabulary should be sufficiently large and the subject coverage of the collection sufficiently diverse to ensure that factors such as these produce significant problems to be contended with. Results would be worthless if such difficulties were eliminated at the outset by oversimplification in setting up an experiment.

How many documents should a system provide in response to a customer's request? This question has no simple answer. It will depend upon the nature of the request, the nature of the customer's interest in the subject and upon many imponderable factors. However, most customers will have only limited time to consider the output from any system. Hence, given a vast collection and a system capable of turning up more and more relevant documents the limiting factor remains the maximum number of documents the enquirer thinks it reasonable to receive. In other words, the larger the document collection the more discriminating power required of the system. This is another disadvantage of experimenting with an unrealistically small collection.

Turning now to the subject of statistical significance, it should be noted that nothing can be inferred from a single co-occurrence of two words, and two may mean very little, regardless of the collection size. (As explained, the basic unit in these experiments is the word-stem, and 'word', used here for brevity, should be interpreted in this way). It is therefore important to ensure that the outcome of an experiment is not critically dependent upon associations derived from such very small co-occurrence frequencies, many of which may be purely fortuitous. In order to obtain larger co-occurrence frequencies in a reasonable number of cases most of the words should appear in the collection at least a dozen or so times. Rarer words are unlikely to yield the higher co-occurrence frequencies desired.

An analysis of our corpus* shows that:

10% of the dictionary stems occur in not more than 1 in 750 abstracts, 25% of the dictionary stems occur in not more than 1 in 400 abstracts, and

66% of the dictionary stems occur in not more than 1 in 100 abstracts.

These figures make it clear that, for the given subject coverage and

^{*}Individual word frequencies are included in the listing of the dictionary in Appendix A1. Distributions of word frequencies, for the full corpus and for different sized subsets, are shown in Appendix A4.

vocabulary, the corrus must contain at least about 5,000 abstracts. With fewer abstracts than this many of the rarer words would yield no useful associations and would effectively be excluded from the experiment. The vocabulary, which must already be regarded as being of minimal size for a realistic experiment, would thereby be made still smaller.

Regarding the figure of 5,000 as being borderline, it was decided that the corpus for these experiments should contain a minimum of 10,000 abstracts. A total of 12,288 abstracts were finally used for the derivation of word associations and clusters, although a few of these were excluded from the document base used subsequently for retrieval purposes.

When this work began the comparable experiments of which we were aware involved very small numbers of requests and only a few hundreds of documents. (Compare [20], pp.104, 178). With perhaps one or two exceptions this situation has not altered (1969).

III.2 Variation of word co-occurrence frequency with corpus size

For convenience of handling, the abstracts were processed in batches of 1,536, that being equal to the number of bits (binary digits) in one 32-word block of memory in the ACE computer. The full corpus is composed of eight such batches. Distributions of word co-occurrence frequencies appear in Appendix A4. These are for subsets of the corpus consisting of one, two and four batches, and for all eight batches. The cumulative totals shown in Fig. III.2.1 are taken from these distributions. They indicate the number of distinct word pairs with frequency greater than each given value, excluding self-pairings. The number of such pairs possible with a 1,000 word dictionary is 499, 500.

WORD	NO. OF BATCHES OF 1,536 ABSTRACTS					
PAIR FREQUENCY	1	2	4	8		
> 0	56 , 379	89,434	144 , 346	202,721		
> 1	17 , 601	36 , 078	73,392	124 , 009		
> 2	8 , 276	19 , 781	46,251	87 , 534		
> 5	2 , 092	6,522	19,167	43,911		
> 10	532	2,174	7 , 882	21 ,824		
> 20	98	552	2,610	12 , 698		
> 50	1	50	ት ቦት	2 , 100		
>200		1	4	98		
>500		₹ 1		27		

Fig. III.2.1 Number of word pairs with given frequency.

Of all the possible word pairs, roughly 10% occur in the single batch of abstracts analysed, rising to about 40% in the full corpus. The number of word pairs occurring with higher frequencies is of sp cial interest and it is seen that, whereas only 98 word pairs with frequency greater than 20 occur in the single batch, the corresponding number rises dramatically to 12,698 in the full corpus. Thus from the point-of-view of a study of word co-occurrence and association, as the corpus size is increased from the 1500 abstract level its value, in terms of the number of high co-occurrence frequencies, increases far more than proportionately.

III.3 The ACE computer

All the work involved in analysing the abstracts and computing statistical measures of word pair association was executed on the ACE computer. This was the only machine of its kind, having been designed and built at NPL. Since the experimental procedure has been influenced in a number of ways by considerations of what was and what was not feasible using that machine, a brief description of it follows.

ACE was a valve-operated machine having mercury delay lines as its fast access stores. The total delay line capacity was about 800 words, including 24 long delay lines each holding 32 words. The word length was 48 bits. Each instruction occupied one machine word and contained four addresses, two specifying the location of operands, the third specifying where the result should be sent and the last pointing to the next instruction to be obeyed. The cycle time of the 32 word delay lines was one millisecond. The time taken to transfer a word from one of these to another store or to the instruction register was therefore between 32µs and 1 ms depending upon the position in the delay line of the word being transferred.

The long transfer feature of ACE was particularly useful for the analysis of word-pair frequencies. It allowed the contents of any number of words of a long delay line to be regarded as a single number or bit string. Thus the addition of two such numbers or any logical function of one or two strings of up to 1,536 bits could be executed in a single instruction. The time required to obey such an instruction was 1ms when the contents of the full delay line were involved and correspondingly less on other occasions. This facility was used extensively for binary matrix processing.

32,000 words of backing store were provided by four magnetic drums. The information on each drum was held on 256 tracks, each holding one 32-word block. The drums had moving read/write heads. The average time for a track selection involving a head movement was about 35 ms. Transfer of information between a drum track and the fast store took a further 7ms.

The number of stems in the dictionary was limited to 1,000 so that a word/abstract matrix could be stored on the drums with one track assigned to each word or matrix row, the remaining 24 drum tracks being available to hold program and other small amounts of data.

A lower level of storage was provided by six magnetic tape decks. All full-valued (i.e. non-binary) matrices of word pair frequencies, association factors, similarity coefficients, etc., were stored on magnetic tape, their requirements vastly exceeding the capabilities of the drums. Constructing and processing such matrices was a relatively slow business because of the slow speed of tape operations.

III.4 Matrix of word co-occurrence frequencies

Construction of this matrix involves applying the logical or Boolean 24

operation, AND, to two strings of bits. This is illustrated in Fig. III.4.1, A and B being two given strings of bits. C is the string of bits produced by applying the AND operation to A and B, and contains a '1' in every position in which both A and B contain '1'.

The first step in obtaining the co-occurrence frequency of two words is to produce the string of bits obtained by applying the AND operation to the corresponding rows (stored as strings of bits, each row on a separate drum track) of the word/abstract incidence matrix. The co-occurrence frequency of the words is then obtained simply by counting the number of 1 s in this new string of bits.

As mentioned earlier, the word/abstract matrix is so large that it has to be handled in sections, only one of which can be stored on the drums at a time. The matrix is composed of eight sections, each having 1,536 columns and representing that number of abstracts.

A matrix of word co-occurrence frequencies is produced from each section of the word abstract matrix and is stored on magnetic tape. Finally, the matrix of word co-occurrence frequencies for the full corpus is produced as the sum of these eight matrices. This was done by repeated application of a program written to sum two such matrices. When adding two matrices corresponding pairs of elements are added to obtain each element of the sum.

Bit string A: 01000110101001110010
Bit string B: 100111000110101111
Bit string A AND B: 00000100001000100010

Fig. III.4.1 Performing the AND operation upon two bit strings

III.5 Degree of association and statistical confidence

We are interested in two things:

- 1. statistical measurement of the degree of association between two words.
- 2. the statistical confidence with which a degree of association can be asserted.

In the general case these are independent. For an understanding of this consider the following analogous situation. It is generally accepted on statistical grounds that an association exists between cigarette smoking and the incidence of lung cancer. The degree of association is very low, since only a very small proportion of sm kers are affected in this way and by no means all lung cancer is attributable to this cause. However, because the statistics have been gathered from a vast number of case histories the evidence is overwhelming. The possibility that chance events alone account for the observed statistics and that no association exists can, for practical purposes, be ruled out. In this case we say that the association is assertable with high statistical confidence.

When trying to establish whether or not two variables are associated the usual procedure is to start with the null hypothesis that they are not and then to apply a test to see whether this hypothesis can be rejected at a suitably high confidence level. The chi-square test is often used for this purpose (see, for example, [21]). It is inadequate for our purposes, however, since it would only enable us to establish whether or not two words were associated in their use, saying nothing of the degree of association.

Ideally we would like to be in a position to say at what confidence level we could accept any given measured degree of association. This calls for rather more elaborate methods which would be costly in terms of computer time to implement.

It would be particularly important to consider confidence levels if one were working with a small sample of texts and were thereby forced to work with very small word co-occurrence frequencies. Under such circumstances there would be considerable risk that measures of high association were not significant. However, we have rejected all word pairs occurring once only in our collection and, by setting a threshold level upon our association measure, we cream off only about 10% of the word pairs occurring at least twice. From Fig. III.2.1 it is evident that many of the word pairs creamed off will have occurred twenty or more times. We feel that under these circumstances the statistical significance level of selected word pairs is not of such vital importance and that one is justified in considering only the measured degree of association. This is what we have done.

III.6 Choice of association factor

One classical measure of association (see, for example, [21]), or association factor, is obtained in this context as the ratio of the observed number of co-occurrences of two words to the expected number assuming statistical independence (i.e. no association). This may be expressed as

A.F.1 =
$$\frac{\text{N.n.}_{i,j}}{\text{n.i.n.}_{j}}$$

where N is the total number of abstracts, n, is the number of abstracts containing both the ith and jth words, and n, and n, are the respective numbers of abstracts containing the ith word and the jth word.

One interesting property of this function is its symmetry. In evaluating it for a given pair of words it is of no consequence which word is considered as the ith word and which one as the jth, the same value of association will result in either case. Although, at first sight, this may seem entirely logical, there are grounds for arguing in favour of a non-symmetric measure of association yielding, in general, two values for each pair of words. This seems sensible when one observes, for example, that given a request including the word photography, relevant documents are quite likely to contain the word film, whereas documents relevant to a request containing the word film are far less likely to contain the word photography because 'film' is used in many other contexts. Thus, if the purpose of an association measure is the selection of documents containing words associated with those in a given request, symmetry is not necessarily a desirable property.

The conditional probability, $p(w_i/w_j)$, of finding word w_i in an abstract known to contain the word w_j provides a **crude** measure of association which reflects this asymmetry in the use of words. In general the probabilities $p(w_i/w_j)$ and $p(w_j/w_i)$ assume different values.

The association factor is computed for all word pairs and the results are arranged in the form of a matrix. Quite a lot of processing requiring ready access to both the rows and columns is done with this matrix stored on magnetic drums. This presents a problem since, if the rows of the matrix are stored on successive drum tracks, then reference to the columns is slow and vice versa. For this reason we were obliged to adopt a symmetric measure of word association.

The ith column and ith row of the matrix are then identical and the need to refer to both rows and columns is removed. We wished, however, to choose as an association factor a function which would assume a high value if at least one of the two conditional probabilities for a pair of words was large. The simplest function we could imagine satisfying these requirements is that obtained by selecting the greater of the two conditional probabilities,

i.e.
$$MAX[p(w_i/w_j), p(w_j/w_i)]$$
.

This function is not entirely suitable because, in the case of a very frequently used word, the conditional probability of that word given another word is likely to be high for many other given words. In this case a high conditional probability does not necessarily indicate a strong association between two words. Thus, each conditional probability $p(w_i/w_j)$ should be considered in relation to the unconditional probability, $p(w_i)$, of the same

word. This cannot be done by taking the ratio of the two probabilities since that yields the first association factor we considered (A_1) , which does not have the desired property of assuming a high value if either of the conditional probabilities is large. We therefore followed the other obvious course and took the difference between each conditional probability and the corresponding unconditional one. Hence the function becomes

$$MAX[(p(w_{i}/w_{j})-p(w_{i})), (p(w_{j}/w_{i})-p(w_{j}))].$$

In terms of

The fact that we were not interested in negative associations enabled us to simplify the function slightly. As mentioned earlier we wished to reject all word pairs occurring less than twice, and we decided to do this by assigning the value zero to the association factor when n; is less than two. The form in which the association factor was finally computed is:

A.F.5 =
$$\begin{cases} \left(\frac{\mathbf{n_{i,j}}}{\mathrm{MIN}(\mathbf{n_{i},n_{j}})} - \frac{\mathrm{MAX}(\mathbf{n_{i},n_{j}})}{\mathrm{N}}\right) & \text{when } \mathbf{n_{i,j}} \ge 2. \\ 0 & \text{when } \mathbf{n_{i,j}} < 2 \end{cases}$$

It is worth pointing out that this measure takes no account of frequency of occurrence or of co-occurrence within an abstract. There are two reasons for ignoring these:

(i) dealing with short abstracts the important thing is that a word is introduced at all, the frequency of use within an abstract not having much significance and being partly a matter of style, and

(ii) if techniques of this sort are ever to be of practical use the computing time required for processing word pairs (of which there might be an enormous number) must be kept to a minimum.

III.7 Thresholding the association factor

Computed as above to an accuracy of 15 bits, the association factors for all word pairs are packed, three per machine word, and stored on magnetic tape. Access to information on magnetic tape is very slow, and the necessary processing of the association factor matrix would not be practicable if attempted in this way. Instead, a threshold value is set upon the association factor, two words now being regarded as associated if their measured association is at or above this threshold. In this way a binary association matrix is produced containing a 11 to indicate each word pair association and zeros elsewhere. This matrix, being far more compact, can be held on the magnetic drums and processed in very much less time. Bearing in mind the purpose of the associations, we thought that the original matrix contained enough redundancy for this thresholding process to be quite sensible.

The problem, of course, is to decide what threshold value to set. We finally adopted the somewhat arbitrary procedure of assuming, on the basis of the proposed use of the resulting binary matrix, what would be a reasonable average number of associations per word, and setting the threshold value necessary to produce approximately that number. This is achieved by first producing a distribution of the association values in the unthresholded matrix, illustrated in Fig. III.7.1. Starting with the highest association value, cumulative totals are produced of the number of associations exceeding a progressively lower threshold value, until the desired total is approximated.

Fig. III.7.1 Distribution of association values

We initially thought that we could decide what threshold value to set by studying the distribution of association factors produced from a constructed set of random 'abstracts'. Although the exercise did not solve the thresholding problem the results obtained are very interesting and they are described in the next section.

III.8 Comparison of real and random abstracts

A set of 1,536 random 'abstracts' was constructed having the same distribution of word frequencies as a batch of real abstracts. In fact we simply produced a random word/abstract matrix having the same number of 1's in each row as the real matrix (and therefore the same word frequencies). The positioning of the 1's within the rows was determined by use of a pseudo-random number generating program.

This fictitious word/abstract matrix was processed to obtain the word pair counts and the set of association factors for all word pairs.

Distributions of word pair frequencies for the real and random abstracts appear in Fig. III.8.1. They are remarkably similar. However, the real abstracts contain significantly more high frequency (i.e. commonly occurring) word pairs than the random, as shown by the differences in the cumulative totals. The total numbers of word pairs occurring are almost identical in the two cases. Fig. III.8.2 shows the distributions of an association factor. The association factor used here is a modified form of A.F.I (section III.6), the logarithm having been introduced to compress the range of values of the function. Again there is a significant, though quite small, difference between the two distributions.

Anticipating a far greater separation of the distributions of association factors, we had thought that a suitable threshold value might be obtained by taking a value exceeded by, say, only 1% of the word pairs in the random abstracts. The hope was that such a value, used as a threshold for the real data, would reject a similar proportion of the fortuitous associations. The similarity of the distributions shows this argument to be invalid, or at any rate not to yield a useful result.

III.9 Computation of similarity coefficient

The association factor has two weaknesses with respect to the present application. The first is that we can be fairly sure that many high associations will occur by chance, in spite of the precautions we are taking. Secondly, in the short abstracts we are analyzing it is unlikely that synonyms or near synonyms will tend to co-occur, an author choosing one or the other, but having little opportunity of using both. Synonyms are therefore unlikely to be detected by means of their association factor.

The <u>similarity coefficient</u> was introduced in the hope that it would be better in these respects, and because we think it has far more intuitive appeal as a measure of likeness of words.

To compute the similarity coefficient between two words we <u>compare their</u> <u>rows in a binary matrix of associations</u>. In this way we are comparing the sets of words found to associate with each of the given words, and if they are similar we want the similarity coefficient to be high. This is exactly analogous to the process of computing an association factor, in which two rows of the word-abstract matrix (also binary) are compared. We have therefore employed the same function (A.F.5) used as an association factor. The reason for now referring to it as a similarity coefficient is to avoid ambiguity.

The steps involved are:

- 1. Produce binary association matrix from matrix of association factors, A.F.5, setting a threshold value of 5/64.
- 2. Compute similarity coefficients as

S.C.I =
$$\begin{cases} \left(\frac{\mathbf{m_{ij}}}{\text{MIN}(\mathbf{m_{i},m_{j}})}, -\frac{\text{MAX}(\mathbf{m_{i},m_{j}})}{\mathbf{x}}\right) \\ \text{o when } \mathbf{m_{ij}} < 4 \end{cases}$$
 when $\mathbf{m_{ij}} \ge 4$.

where M = number of words in vocabulary = 1000

m,m = number of words associated with word i,j respectively

mi,j = number of words associated with both i and j.

REAL ABSTRACTS			RANDOM ABSTRACTS		
FREQ. R	10. PAIRS P ₁ (R)	CUMULATIVE TOTAL ΣΡ ₁ (R)	NO. PAIRS P ₂ (R)	CUMULATIVE TOTAL ΣP ₂ (R)	
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 5 5 6 8 9 1 2 3 6 7 8 9 1 2 3 5 6 8 9 1 2 3 6 7 8 9 1 2 3 5 6 8 9 1 2 3 6 7 8 9 1 2 3 5 6 8 9 1 2 3 6 7 8 9 1 2 3 7 8 7 8 9 1 2 3 7 8 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	443,778 38,778 9,461 1996 33,461 1995 108 108 108 108 108 108 108 108	499,500 56,379 17,601 8,815 4,815 4,815 3,098 1,148 670 24,600 11,148 1,149 1,	442,183 42,183 42,183 8,884 1,370 2,884 1,276 1,370 1,273 1,	499,626 56,626 14,073 6,018 6,018 1,264 3,18 63,18 1,264 3,264 3,2	

Fig. III.8.1 Distribution of word pair frequencies for real and random abstracts.

ERIC FIG.III.8.2

Note that the similarity coefficient is defined as being zero for pairs of words having fewer than four common associates. The matrix of these coefficients is stored on magnetic tape in the same way as the matrix of association factors.

III.10 Word connection matrices, G3 and G1+

Two binary word connection matrices were used for producing word clusters for certain retrieval processes, in others they were used directly. One of these, G3, was produced, as a hybrid from both matrices A.F.5 and S.C.1. A complete print out of G3 appears in Appendix A5. The other, G4, was derived from S.C.1 alone (and, therefore, is just another word similarity matrix).

We thought it a good idea to produce one matrix as a hybrid so that any useful word connections brought out in the association matrix that may not be reflected in the similarity matrix might be retained. The general procedure used to form G3 was to threshold the A.F.5 and S.C.1 matrices and then to combine the resulting binary matrices to produce a new binary matrix containing a '1' where either one or both contain '1'. When thresholding, the simple process of setting a fixed threshold value for an entire matrix proved unsatisfactory. This way binary matrices were produced with an excessive number of 1's in same rows. These occurred in the case of words used very frequently in the abstracts, such as CIRCUIT, FREQUENCY, GEOPHYSICS, IONOSPHERE. The method used consisted in setting a nominal threshold value and, whenever a row was encountered having an excessive number of values above this threshold, raising the threshold for that row sufficiently to limit the number of 1's per row in the binary matrix produced to a specified maximum. The successive steps in producing G3 were:

- 1. Produce a binary matrix from S.C.1 using a nominal threshold value of 29/64, and limiting the number of 1 s per row to 10.
- 2. Produce a binary matrix from A.F.5 using a nominal threshold value of 19/64, and limiting the number of 1's per row to 5.
- 3. Combine these binary matrices using a logical OR operation on pairs of corresponding elements, producing another binary matrix, X.
- 4. Transpose X.
- 5. Combine X and the transpose using a logical AND operation on pairs of corresponding elements.
- 6. Finally, produce G3 from the matrix produced in step 5 by giving all diagonal elements the value '1'.

Steps 4 and 5 are included to make G3 symmetric, the thresholding process in steps 1 and 2 destroying the symmetry of the original matrices. This thresholding gives higher priority to matrix S.C.1 than to A.F.5, only the highest association factors being permitted to influence G3.

After using G3 for some time we decided, on the basis of results produced, that it contained rather too many non-zero elements and that another matrix, G4, should be formed with fewer. We decided, partly on the basis of some evidence that most word pairs with high S.C.1 also have high A.F.5, to base this only on matrix S.C.1. We wanted to produce a matrix with a more uniform distribution of 1 s in its rows than G3. For this reason the thresholding procedure was modified again. The steps involved in producing G4 were:

- 1. Produce a binary matrix from S.C.1 by setting a threshold value for each row so as to obtain a number of 1's in each row as close as possible to 7.
- 2. Transpose the resulting binary matrix.
- 3. Combine the matrix and the transpose using a logical AND operation on pairs of corresponding elements.
- 4. Finally, produce G4 from the matrix produced in step 3 by giving all diagonal elements the value 11.

Matrix G3 has 188 rows in which only the diagonal element is non-zero (i.e. there are 188 completely isolated words), a maximum number of non-zero elements per row of 15 and a total of 3,582 non-zero elements. G4 has 112 rows in which only the diagonal element is non-zero, a maximum of 7 non-zero elements per row and a total of 3,074 non-zero elements.

IV Generation of Word Clusters

IV.1 Graph representation of word connections

The methods we use for word <u>clustering</u> assume as a starting point a set of binary word connections, i.e. connections which simply do or do not exist between words, having no associated weights or strengths. We have thought of these connections as being represented by a square binary matrix having rows and columns corresponding to the words and element values 0 or 1 to indicate the absence or presence of connections.

When considering problems of clustering we have found it useful to imagine this sort of data being represented by a graph. For this purpose we define a graph as a set of points and a set of lines connecting some or all pairs of points. Consider a graph having a unique point representing each word and lines representing a given set of word connections. The problem of finding clusters of words amounts to locating subsets of points in the graph which are fairly densely interconnected relative to the graph as a whole.

IV.2 Properties of clusters

The sort of properties of clusters in which we are interested is their number, size and degree of overlap. Having no means of knowing what values of these parameters are desirable for retrieval purposes, we decided to produce cluster sets exhibiting different characteristics and to test their retrieval capacities experimentally.

To some extent the properties of clusters derivable from a given set of word connection data are determined by the data. However, they are also influenced by the choice of definition of cluster. For example, a particular definition might not permit common membership of clusters, thereby restraining all clusters to be mutually exclusive. We have therefore tried three quite different methods of producing clusters, with three different implicit cluster definitions.

IV.3 Completeness of clusters

Each word in a completely connected cluster is connected to all other words in the cluster. That part of a graph corresponding to words and connections of a completely connected cluster forms a complete subgraph of the containing graph. If it is contained in no larger complete subgraph it is a maximally complete subgraph.*

In the case of word clusters based upon our statistical associations completely connected clusters containing more than three or four words are unlikely to emerge from the raw statistical data. Unless the connections specified by the raw data are supplemented in some way by further processing prior to cluster detection it is therefore sensible to adopt a definition of cluster which does not demand complete connectivity.

IV.4 Fragmentation of a graph by random removal of lines

The basic idea here is to break down the graph of connections into independent fragments by progressively removing lines from the graph, the

^{*}Sometimes called a clique.

selection of lines to be removed being made with the aid of an algorithm for generating pseudo-random numbers. A set of fragments is independent in this sense if the points and lines in each are such that no connection exists between points in different fragments. An assumption underlying the method to be described is that when a graph is broken down in this way connectivity is more likely to be preserved in those parts of the graph corresponding to clusters being sought (these parts of the graph having a relatively high density of connections) than elsewhere.

The graph defined by connection matrix G3 (section III.10) was examined to find its independent fragments. Apart from isolated words, there were two, one containing only four words, the other containing the rest. Independent fragments containing ten words or fewer were removed from the graph and 10% of the remaining connections were selected randomly and eliminated. The resulting graph was examined and again independent fragments containing ten words or fewer were removed. The processes of eliminating a random selection of connections and then removing from the graph any small independent fragments were repeated until the entire graph had been reduced to a number of such small fragments. Fragments obtained by this process containing from four to ten words each were stored. The complete procedure was repeated 21 times, each time starting with the graph of G3 and eliminating different random selections of connections, until 1,000 fragments were accumulated in the size range four to ten words.

At this stage we were likely to have obtained a number of fragments approximating to each cluster of words in the original graph. The processing that followed was intended to reconstitute the clusters by first comparing the 1,000 fragments accumulated, identifying sets of similar or overlapping fragments and merging them.

A few words featured rather insignificantly, each appearing in only one or two of the 1,000 fragments. These words were discarded. A similarity matrix was produced showing similarities between pairs of fragments. The measure of similarity used was the number of words that two fragments had in common divided by the number of words in the smaller. Different thresholds were set to produce binary similarity matrices which were processed to find independent sets of fragments, i.e. sets of similar fragments having no similarity connections between members of different sets. A similarity threshold of 19/32 was selected which maximized the number of independent sets of fragments, producing 148. Each set of fragments was merged to form a cluster by including in the cluster any word appearing in at least half of the fragments in the set. The word clusters thus produced were not mutually exclusive since the sets of fragments from which they were produced, though independent with a similarity threshold of 19/32, would not all have been independent had a lower threshold value been used.

446 distinct words appear in the 148 clusters formed. These clusters together with the 554 other words (used singly) constituted cluster set C4 used in retrieval run 19.

IV.5 Meetham's method of clustering, based upon removal of lines not included in increasing numbers of triangles

Here a basic assumption is that, for indexing and retrieval purposes, word groups should be mutually exclusive and that words which are associated with two otherwise weakly related or non-related word groups constitute an undesirable ambiguity.

Word connection matrix G3 was the starting point for this clustering experiment and, with the exception of 188 completely isolated words, it

consists largely of a set of words from each of which paths of connections can be traced to every other word in the set. The aim was to break down the graph of word connections into mutually exclusive components, the words in which satisfy intuitive notions of word clusters as regards their size and semantic range. The following procedure, used to obtain this break-down, is described in [10], while [8] and [11] are also of interest in this connection.

All lines (connections) were removed from G3 which were not included in at least one triangle (of connections). This split the graph into exclusive components containing 413, 298, 134, 81, 18, 12, 9, 7, 6, 5, 5, 3 and 3 lines respectively. Lines were removed from the four largest components if they were not included in at least two triangles. This yielded 15 components containing 3 to 18 lines and 7 larger ones, the largest having 167 lines. The process of removing lines unless they were included in at least two triangles was applied iteratively to the 7 larger components until no further changes occurred. (An interesting theorem about the convergence of this iterative process is considered in [11]). This yielded 14 components having 6 to 18 lines and 14 having 20 to 75 lines.

So far G3 had been split into 53 small but strongly connected components. It was still desirable somehow to partition the 14 larger ones. Inspection showed that the removal of one or a small number of points from each conveniently partitioned them further: the points removed corresponded to the ambiguous words mentioned earlier. It was then necessary to decide whether to leave those removed as further isolated points, whether to link them up in some way or whether to include them in any of the word groups.

The resulting set of word clusters (set C2 used in retrieval run 16) included 491 isolated words and 122 clusters each containing between 2 and 15 words.

IV.6 Cluster emphasis*

It is assumed that, in the graph of word connections, the subgraphs representing clusters being sought are unlikely always to be complete. An iterative procedure is used to process the original graph in such a way that clusters should be emphasised, connectivity within them being increased and that between them reduced, to a point at which it is possible to detect them as maximally complete subgraphs.

Consider a binary connection matrix (section III.10), C, with 1,000 rows and columns corresponding to the word stems being clustered, and element values of 1 and C representing the presence and absence of connections respectively. Consider also the corresponding graph, G. In most clusters there will be pairs of words which are not directly connected. Some such pairs are likely to be connected by paths of length two (i.e. via a third word). The hypothesis underlying the technique described is that, considering all pairs

^{*}We used Wolfberg's algorithm for finding all the maximally complete subgraphs of a given graph. A reference to this, [22], appears in the bibliography.

^{*}An account of this part of the work was given at the 1968 IFIP Congress at Edinburgh and is published in the Proceedings [9].

of words not directly connected in G, the proportion of such pairs connected by paths of length two is likely to be higher for the set of pairs occurring within clusters than for other pairs.

The first step of the emphasis procedure is to form a new non-binary connection matrix the same size as C. A direct connection in G between a given pair of words contributes μ towards the value of the corresponding element in the new matrix, and each path of length two between the words contributes $\lambda.$ The new matrix is computed from C as $(\mu C + \lambda C^2)$, integer values of μ and λ being specified when the program is run. A binary form, C', of the new matrix is produced by thresholding its values. The relative contributions of direct paths and paths of length two in G to the connections in the graph G', corresponding to C', depend upon the values chosen for μ and $\lambda.$ Suppose that the threshold value is chosen to make the resulting number of connections in G' as close as possible to the number in G. If the above hypothesis is correct the density of connections within clusters will be higher in G' than in G and, of necessity, the density of connections elsewhere will be lower in G' than in G. The desired emphasis of clusters will thus be achieved.

Using G3 and G4 (section III.10) as initial connection matrices, this process was applied iteratively with various values of μ and λ and trying different methods of thresholding, including that outlined.

The process seemed fairly convergent in the cases tried. Two sets of maximally complete subgraphs (MCS's) were used as descriptors. One set, produced from G3, contains 1,178 highly overlapping clusters. This includes 188 isolated words. These were produced by a single application of the emphasis process with $\mu=2$, $\lambda=1$ and a threshold value of 2. This is the cluster set, C3, referred to in section VI.2.2 and used in retrieval run 14. A sample showing the very high degree of overlap of clusters in this set appears in Appendix A6. The set was selected because of this characteristic. The size distribution of these MCS's and of those of G3 appears in fig. IV.6.1. The size of the largest MCS is increased from 6 to 12 and the number of MCS's of 5 or more words is increased drastically by the emphasis process. However, the number of connections in the graph has increased approximately five-fold.

EMPHASIS	NO. OF NON-		NUMBER OF MCS's OF SIZE											TOT.
EMERIADID	ZERO ELMTS.	1	2	3	4	5	6	7	8	9	10	11	12	MCS [†] s
BEFORE AFTER	3,582 17,324		786 473	28 4 32	88 1 4 0	18 99	1 77	64	57	30	13	3	2	1,365 1,178

Fig. IV.6.1 Size distribution of MCS's before and after emphasis.

The second set, cluster set C5 used in retrieval run 20, was produced after five iterations of the process, starting with connection matrix G_{+} , with $\mu = \lambda = 1$ and thresholding to maintain a number of 1's in the matrices as close as possible to the 3,074 in G4. Fig. IV.6.2 shows the distribution of sizes of the MCS's of the original graph and of those obtained after the iterations.

THENAUTON	NO. OF NON-					TUME	ER	OF	M C	cs	នៃ 🤇	F S	SI Z.						TOT.
ITERATION	ZERO ELMTS.	1	2	3	4.	5	6	7	8	9	10	11	12	13	14	15	16	17	MCS ⁸ s
0	2899	525	85	90	41 49	1 38	1 17	7	1	_									1228 812
2 3	2981 2963	525 593	79 0	79 80	24 24	13	- 1	8	10 3	5	2	0	3	0	2	1	2		771 741
4 5	3095 3111	593 593	0	7 6	19 19	13 12	8 7	6	2	6 4	1	0	1	0	0	0	2	1	7 27 725

Fig. IV.6.2 Distribution of maximally complete subgraphs produced by five iterations.

The convergence evident from fig. IV.6.2 is typical. Two typical clusters obtained in the final iteration are shown in fig. IV.6.3, the connections being those in G4 before any emphasis.

Fig. IV.6.3 Two clusters obtained from G4 by five iterations of the emphasis process.

PART 3: Retrieval Experiments

V. General Considerations

V.1 Brief description of KDF9

KDF9 is a medium size, general purpose machine having a 48-bit word length. The main fast store, or core store, can be shared by up to four programs running at fixed priority levels determined by the operator. The core store has fetch and store times of six microseconds. The times taken for the fixed point operations of addition and multiplication, exclusive of fetch and store, are 1 and 14 microseconds respectively.

Special features of the machine are its two 16-word nesting stores, or stacks; one used to store the operands and results of any functions performed, the other used to hold the link instructions for nested subroutines.

The NPL machine has the following configuration:

32,000 word core store,
6 magnetic tape units,
4,000,000 word disc backing store,
Line printer, 120 character line, 600 lines/min.,
Paper tape reader, 1,000 characters/sec.,
Paper tape punch, 110 characters/sec.,
Card reader, 600 cards/min.,
Typewriter control terminal.

V.2 Search requests

When published, the abstracts used in these experiments appeared under five broad subject headings. The distribution was unbalanced even under these headings. We therefore had no knowledge of the subject profile of the collection. In collecting a set of search requests we naturally wished to achieve a reasonable correspondence between the distribution of their topics and that of the subjects in our document collection. We were thus faced with the problem of trying to match this unknown subject profile. We decided to do this by basing the requests upon a set of abstracts arbitrarily selected from the collection.

It was thought that a set of 100 requests would provide a reasonable spread of subjects. This number was obtained from 21 people, the number per person varying from two to seven. Each person was sent a set of source abstracts each of which he was told to consider simply as specifying the subject area of one search request. He was told that it was immaterial whether or not a source abstract was a relevant answer to the request based upon it.

The requestors were also informed that the systems under test were based entirely upon key-words and that all numerical data and mathematical symbols had been omitted when key-punching the abstracts. In accordance with this they were asked to exclude from their requests numerical data, symbols other than those in the Roman alphabet, and abbreviations.

A complete listing of the requests appears in Appendix B1. It is evident that the exclusion of numerical data has in some requests led to the use of words such as high and low where, for example, a frequency range or

REGUEST 20 RSRS

527 SOURCE ABSTRACT * C BAIN

OBSERVATIONS OF RAPID FLUCTUATIONS IN THE EARTHS MAGNETIC FIELD AND THEIR RELATION TO THE PROPAGATION OF HYDROMAGNETIC M (0:1/026/039/004) REGUEST:

AVES IN THE EXOSPHERE.

/REG./RUN./ ABST. /REL./ /REG./RUN./ ABST. /REL./ / 20 / 11 / 01141 / / 20 / 11 / 04543 / PELATIONS BETWEEN THE ELECTRIC AND MAGNETIC FIELDS OF VERY LONG PERIOD INDUCED IN A MEDIUM OF VARIABLE CONDUCTIVITY. A MODEL OF GROUND CONDUCT-IVITY DISTRIBUTION IS DERIVED WHICY CLOSELY REPRESENTS THE CONDITIONS INDICATED BY OBSERVATIONS OF GEOMAGNETIC AND GEOELECTRIC PULSATIONS. ELECTROMAGNETIC INDUCTION IN A TWO LAYER SARTH. THE THEOPY DEVELOPED BY IS EXTENDED TO DETERMINE THE INDUCED FIELD ON THE SURFACE OF A MEDIUM WHOSE CONDUCTIVITY IS A FUNCTION OF DEPTH. THE RESULTS ARE 01141 04543

/REG./RUN./ ABST. /REL./ / 20 / 11 / 05417 / INFLUENCE OF MAGNETIC FIELD ON CONVECTIVE INSTABILITY IN THE ATMOSPHERES APPLIED TO EVALUATE THE FIELD INDUCED WHEN AN OSCILLATING MAGNETIC DIPOLE IS PLACEC OM THE SURFACE OF A FLAT TWO LAYER EARTH. 05417

THE CALCULATED INFLUENCE OF THE MAGMETIC FIELD ON CONVECTION IS ESSENTIMALLY DIFFERENT FROM THAT PREDICTED BY THE MAGMETOHYDRODYNAMIC APPROXIMAN IN A PLASMA WHICH DOES NOT CONTAIN A LARGE NUMBER OF NEUTRAL PARTICLES OF STARS AND IN THE IOHOSPHERE OF THE EARTH. THE CASE OF A MEDIUM.
WITH AVISOTROPIC ELECTRICAL AND THERMAL COMBUCTIVITIES IS COUSIDERED. TICW IN THE IONGSPHERE THE IMPLUENCE OF THE MAGNETIC FIELD IS SMALL OWING TO THE PRESENCE OF A LARGE NUMBER OF MOLECULES.

THE EARTH. LARGE LOCAL BIPOLAR AND UNIPOLAR FIELDS HAVE BEEN OBSERVED ZEEKAN EFFECT SOLAR MAGNETOGRAPH ARE DESCRIBED AND SOME EXPERIMENTAL AND ARE SHOWN IN SEVERL OF THE MAGNETOGRAMS. THE FIELD DISTRIBUTION RESULTS OBTAINED ARE SHOWN IN THE FORM OF MAGNETOGRAMS. THE GENERAL VARIES FROM DAY TO DAY AND FLUCTUATIONS OF THE ORDER OF DERSTED ARE MAGNETIC FIELD STPENGTH IS DERSTED OF POLARITY OPPOSITE TO THAT OF MAGNETIC FIELD OF THE SUN. THE PRINCIPLES OF OPERATION OF BABCOCKS BELIEVED TO OCCUR IN LOCAL FIELDS WITH PERIODS OF ABOUT MIN. THE UNIPOLAR FIELDS ARE PROBABLY THE SOURCES OF CORPUSCULAR EMISSION WHICH PRODUCE GEOMAGNETIC STORMS WITH A DAY RECUPRENCE PERIOD. 00490

attenuation factor might otherwise have been specified more precisely. However, this sort of thing is noticeable in relatively few cases.

Some time after eliciting the requests we wished to try out a retrieval strategy (see section VI.2.6) in which a specified word or words in a request were regarded as obligatory in that only abstracts containing such words would be retrieved. We asked the requestors to consider their requests and to indicate by underlining any word in them for which they were fairly confident that there was no suitable substitute.

Only 93 of the original set of 100 requests were used. However, the other seven are included in Appendix B1, together with the reasons for their cancellation, in Appendix B3.

V.3 Form of output

For each request, the output from each retrieval run includes the full title and abstract of all items retrieved in answer to the request that have not been so retrieved in any previous run. Thus, the first time a particular abstract is retrieved in response to a given request it gets printed and sent to the author of the request for relevance assessment. If the same abstract is retrieved in a later run in response to the same request it is not printed out. This minimizes the burden placed upon the requestors to assess relevance. It means, however, that the relevance assessments must be fed back to the computer for reference in later runs (see section V.7 on the harvest file).

A sample showing the output format appears in Figure V.3.1. The request is printed, followed by the retrieved abstracts. The first line of each abstract is actually the document title. The serial number of each abstract appears on the left, and to the right of each is repeated request number/run number/serial number, with a space for the requestor to insert a number indicating his relevance judgement. The output continues on as many pages as are required for the retrieved abstracts. In runs utilizing the underlining of request words the underlining is indicated in the print out by a string of X's beneath the word or words in question.

The ultimate page of the output for each request is a <u>summary sheet</u> which simply lists the serial numbers of all the abstracts printed out for the request with spaces for the insertion of relevance assessments. These summary sheets were not sent with the rest of the output to the requestors. When the relevance assessments for a run were available the information was copied on to the summary sheets. It was found useful to have the information in this compact form when preparing paper tapes to feed it back to the computer for storage in the harvest file (appendix B6).

V.4 Batch processing

The indexing and retrieval operations involve processing files, many of which are held on magnetic tape and some of which are rather large. The abstract/word matrix is an example of a large file, consisting of 11,571 lists of word numbers, one corresponding to each abstract indicating the words it contains. These are written on to magnetic tape in abstract serial number order. They occupy about 20% of a reel of tape and take nearly one minute to read or write. When such a file is being processed the time occupied by magnetic tape movements generally far exceeds the actual computing time incurred. This means that for much of the processing involved in

indexing and retrieval only a marginal increase in total computer time is required to process a batch of 100 requests instead of a single one. Consider, for example, the process involved in comparing the sets of key-words occurring in the abstracts with those occurring in the requests (the main part of the basic key-word strategy described in section VL.). The 100 key-word sets in the requests occupy little space and can easily be held together in the core store. When this is done it requires only a single scan of the much larger file indicating the set of words in each abstract in order to compare all requests with all abstracts. The same amount of tape-scanning would be required to process a single request.

Another advantage of batch processing the requests is seen in the final stage of the retrieval process where it is necessary to assemble the particular selection of abstract texts to be printed out for each request. The complete file of texts fills a 2,300 ft reel of magnetic tape. It takes about four minutes to scan this file and hence that is approximately the time that would be required to assemble the abstracts to be output for a single request. With batch processing we begin by reading the entire file of abstract texts from tape and dumping them on to the magnetic disc. This operation takes about 12 minutes and would therefore be pointless when processing a single request. Once on the disc, the abstracts can be accessed randomly in very little time. The requests are then considered in sequence, the abstracts required for each are read into the machine, arranged in the required format and printed out.

V.5 Possible Variables

Various methods have been suggested for improving key-word stem performance independent of word-associations, not all of which we have wished to try.

The principal are:-

- (1) Weighting individual request words, by reference to the requester.
- (2) Weighting individual document words by counting their repetitions.
- (3) Using functions such as the 'cosine' to measure the degree of match.
- (4) 'Underlining', that is, insisting that one or more particular request words be present in each document retrieved.

To examine (1) thoroughly by varying the weights would involve much more work for the requesters than we were prepared to ask them to do. However, a small experiment was tried in getting the machine to assign weights, namely our Run 22 (AWKWS).

- (2) seems of doubtful value with short abstracts where a chance repetition is more likely to introduce noise.
- (3) takes account of the length of the document, so that e.g. a document only partly on the subject of the request scores lower than one wholly devoted to it.

These methods introduce new variables which we have not been able to try in addition to our own work on association techniques.

(4) though not appropriate to every request, we have explored, and we discuss it in section VI.2.6.

V.6 Quantity of output and cut-off

Consider these totals from Appendix B7:-

Run 13. Coordination = Number of Key-word stems in Common.

Request 0.	Coordination	Number of Documents	Output (Cumulative)
(6 keywords)	5	14	14
	4	87	101
	3	463	564
	2	1388	1952
	1	3639	5591
	0	5980	11571
Request 2.	4	2	2
	3	26	28
	2	203	231
	1	1803	2034
	0	9537	11571
Request 3.	3	14	14
	2	228	242
	1	2426	2668
	0	8903	11571

Fig. V.6.1

That is, 14 documents have 5 out of the 6 keywords of Request 0, 87 have 4, 101 have 5 or 4 and so on. (It happens that none have all 6). Since individual documents at any one coordination level are not distinguished, they must be output together. Retrieval consists in 'creaming off' successive 'strata' from the library, which has been arranged as it were in a 'pyramid'.

We shall use

(when used as a noun) = total (number of) documents, relevant or irrelevant, from the top coordination down to a given point inclusive, for one or more requests, and consisting of a number of complete strata, or zero.

As we have described in section I.14, the customer specifies a <u>cut-off</u> value, which we denote by \underline{K} . He asks for <u>as near as possible K documents</u>, with, let us say, fewer rather than more in the case of a tie. Now 0 and 2K are equidistant from K. If the top stratum has 2K or more documents, the strategy is not sufficiently sensitive for the customer's purpose and gives no output. Thus in any case the output lies in the range 0 to (2K-1) inclusive.

Consider Fig. V.6.1 again, and set K = 20.

The outputs for requests 0,2,3,4,5,7,9, ..., 99 are 14, 28, 14, 9, 7, 12, ..., 33 whose average is only 14,20, considerably less than 20.

Similarly, if we ask for 50 documents, we get an average of 35 per request.

We define

<u>K'</u> = effective cut-off = <u>average number of documents per request</u> <u>output for a particular run and a particular request set.</u>

In short, we ask for K documents per request and get K' on average.

By inspection we find that (1) for any given run and our 93 requests, \overline{K} is approximately constant,

App	roxi	mate	value	of	K.
			Stra	tegy	
	<u></u>		13		14
K =	20		710	•	919
	30		.739	۰	931
	40		725	•	918
	50		697	۰	926
	1 00		650	۰	959
	250		827	۰	971
	500		732	•	956

Fig. V.6.2

and that (2) this constant is not necessarily unity.

Take an imaginary single request, with possible outputs of (say) 0, 3, 8, 15, ..., documents.

 $\frac{K'}{K'}$ oscillates about the value 1. If we have several requests, we might expect these oscillations to cancel to some extent, since the points at which the average K' changes become more frequent. This helps to explain (1) but (2) is surprising.

In Appendix B14 we show that (2) is a second-order effect which remains appreciable under the following sets of conditions, which, in our context, are roughly equivalent to each other:-

- (i) For any given request the ratio between successive cumulative output totals is quite large, say 3:1 or more.
- (ii) The outputs nearest to K for the different requests have a large spread.

(iii) The strategy employs few coordination levels.

In fact, if we can assume (1) we show there that

where v = standard deviation mean

for the outputs nearest to K, so that v also is approximately constant K' when -- is. K

V.7 The sensitivity of a strategy to changes in the cut-off K

A number of ideas put forward in the last section relate particularly to systems such as ours where the documents fall into strata of several or many at a time. We say that a strategy is the more sensitive the more strata it has within a given output. For example, Run 13 (KWS) at K = 50, K' \simeq 35 has only 1.9 on average, and 2.0 at K = 71, K' \simeq 50. Run 14 (MCSO1), a descriptor run, has 6.6 at K = 55, K' \simeq 50. Thus a given increase in K is more likely to yield new output for Run 14 than Run 13. This is important in an interactive use where documents are produced, let us say on a screen, stratum by stratum.

From V.6 it appears that the value of $\frac{K^*}{K^-}$ if sufficiently constant, provides a useful guide to sensitivity, being nearer to unity the more sensitive the strategy. Closely related are the ratios of successive output totals for single requests, and the spread of the outputs required to approximate to K over a set of requests.

The effect of underlining (VI.2.6) is to remove part or all from each stratum. In general, the number of strata within a given output appears to decrease and the strategy becomes less sensitive. This is more marked when Run 13 is underlined (Run 25) than when Run 14 is (Run 21), as may be deduced from the tables of K and K' in Appendix B5.

V.8 The harvest file

This name was given to the file kept on magnetic tape and designed to store the results of every strategy as found, in as useful and flexible form as possible. It contained for each request complete lists of abstract numbers retrieved within the cut-off by each successive strategy, their coordination and relevance, and a flag to mask the first occurrence of an abstract for a particular request.

Standard programs recopied assessments known from previous strategies, and arranged that no abstract was sent for assessment twice in regard to a particular request. This kept the work of the assessors to a minimum, decreasing markedly as more strategies were run. It also allowed us to try out strategies related to combinations of earlier runs, even if the new abstracts were not sent for assessment, since we could calculate to what cut-off they were already fully assessed.

The harvest file was basic to all our evaluation programs. These included studying selected requests, smaller cut-offs, and the sets of abstracts retrieved by one strategy and not by another. A separate program calculated the minimum cut-off needed to retrieve each abstract by the particular strategy; we would recommend storing this also on the harvest file in any future experiment, as each new strategy is included. Fuller details are shown in Appendix B6.

VI Indexing and Retrieval Strategies

VI. Description of strategies

A summary of this section will be found in Appendix B4.

The main kinds of strategy used for indexing and retrieval are indicated below:

Fig. VI.1.1 Indexing and retrieval strategies employed

A complete description of the strategies follows. Most of the indexing and retrieval processes were implemented in terms of fairly basic matrix operations upon data arrays. Details of this matrix representation of the problem are not considered here, but are dealt with separately in Appendix 36, together with the computer programs used.

Determination of cut-off level

Our original idea was to aim at the same cut-off level, K, for each request in each run. Thus, in the first 13 runs (i.e. runs 0 to 12) the cut-off coordination value was always set so as to produce an output for each request as close as possible to 50 documents (i.e. K=50).

As discussed in Section VII.3, we later decided that K*, the average output per request, formed a better basis of comparison of different runs. Thus, in later runs, the average output was maintained as close as possible to 50 abstracts per request. Nine of the early runs were repeated in this way. In these cases only the repeat runs are quoted when presenting results.

The cut-off procedure thus involved carrying out the processing for a strategy to the point at which coordination values had been established for all documents in relation to each of the 93 requests being batch processed and forming tables similar to those in fig. V.6.1. Programs were then run which systematically tried different values of K, the number of documents aimed at per request, starting at one and increasing to find the value that produced an average output per request, K, closest to the desired value of 50. Having thus established the cut-off value to be set the necessary processing was continued to complete the particular strategy in hand.

The term standard runs is used to refer to the set of runs in which K' has been made as close as possible to 50, and the output from which has been fully assessed for relevance. The standard runs are 6, 9, 11 and 13 to 23 inclusive.

Basic key-word stem (KWS) strategy - run 13

The key-word stems in a request are compared with those occurring in each abstract. The number in common with a given abstract is noted and taken as its coordination value. The value of K is found giving a K' value closest to 50. The coordination value corresponding to this cut-off is determined and applied as a threshold to cream off the output for this request. All new material (i.e. abstracts in this output that have not previously been output for this request) is printed out for distribution to the requestor.

Simple use of word clusters as descriptors (no representation) - runs 1/ 16, 19 and 20

The strategy here employs a set of word clusters, each cluster being used as a descriptor. The only difference between these runs is in the choice of word clusters, cluster sets C3, C2, C4 and C5 (see Section IV)being used in runs 14, 16, 19 and 20 respectively.

An abstract is indexed by assigning to it all clusters, from the particular set in use, with which it shares one or more key-word stems. Clusters are assigned in the same way to the requests according to their common key-word stems. From this point on the procedure is exactly analogous to the basic KWS strategy. The only difference is that the coordination value of an abstract in relation to a request is now the number of assigned clusters they have in common.

Use of clusters as descriptors with un-weighted representation - runs 6 and 17

Most of the sets of word clusters employed as descriptors are such that, although some words may appear in only one cluster, others occur in several. Thus, using the simple sort of strategy just described it is possible for two abstracts retrieved at the same descriptor coordination level to represent, by inclusion of the actual words or assignment of clusters containing them, different numbers of request words. We define the representation level of an abstract in relation to a given request as the number of request key-word stems actually occurring in the abstract or appearing in at least one cluster assigned to index it.

RADIO NOISE FROM PLANETS - F. Horner. (Nature, London, vol. 180, p. 1253; Dec. 7, 1957). A comparison is made of H.F. radio noise from Jupiter and Venus and from terrestrial <u>lightning</u>. The hypothesis that radio noise from the two planets is due to electrical <u>discharges</u> analogous to terrestrial lightning requires modification.

ABSTRACT A

AN INVESTIGATION OF WHISTLING ATMOSPHERICS - L.R.O. Storey. (Phil. Trans. A., vol. 246, pp. 113-141; July 9, 1953). A comprehensive report of an experimental and theoretical study of whistling atmospherics, at frequencies <15 kc is given. Whistlers may or may not be preceded by ordinary atmospherics, produced by lightning strokes at a distance of ~2000 km. The diurnal and annual variations of the properties of both types were investigated. Explanatory theory of their origin advanced by Eckersley is developed. Measurements of the degree of dispersion indicate an electron density in the upper atmosphere considerably larger than expected. This result is explained on the assumption that electrons are falling in from outside, and this might account for the relation between the occurrence of whistlers and magnetic activity.

ABSTRACT B

Fig. VI.1.2

An example is provided by request no. 36 for abstracts on <u>simultaneous</u> observations of <u>whistlers</u> and <u>lightning discharges</u>. Considering cluster set C3 the key-words, which are underlined, occur as follows:-

SIMULTANEOUS	in	clus te rs	712 and 713
OBSERVATION	11	11	465, 466, 467, 468, 469
			5 9 5 , 5 96, 5 97, 5 98, 5 99
			and 600
WHISTLER	11	. 11	326 and 1032
LIGHTNING	***	11	110, 279, 546 and 5 47
DISCHARGE	11	11	279, 280, 281 and 282

Thus, the request is formulated by 22 distinct descriptor clusters.

In relation to this request it is interesting to note that (referring to Fig. VI.1.2):

Abstract A - contains 2 key-words of the request, has descriptor coordination level 14, has representation level 3.

Abstract B - contains 2 key-words of the request, has descriptor coordination level 7, has representation level 4.

Thus, although Abstract A is indexed by twice as many request descriptors as Abstract B, it represents fewer of the key-words in the request.

This strategy attributes importance to the representation level. The complete set of abstracts is ordered, placing abstracts representing the largest number of request words at the top of the list, followed by those representing the next largest number, etc. Abstracts with the same representation level are ordered, as in the previous strategy, according to their descriptor coordination level. The process of creaming off as nearly as possible to the required number of abstracts is carried out as in the KWS strategy.

Use of clusters as descriptors with weighted representation - run 11

In the previous strategy an abstract, A, represents a request word, W, if it is indexed by at least one word cluster (drawn from the set being used as descriptors) containing W. It seems reasonable to regard W as being more strongly, or better, represented by abstracts indexed by several clusters containing W than by only one. Accordingly, the criterion for representation is now modified slightly. An abstract represents a request word if it is indexed by at least one third of the clusters containing the word. Apart from this the strategy remains unchanged.

Word-stem comparison with expar ed abstracts - runs 15 and 18

One possible advantage to be gained by om loying word clusters to reflect word associations is economy of storage space in the computer. Rather than some all the individual word-pair associations one simply keeps a record of the word content of each cluster. In the case of a cluster containing n words this means storing n items as against some number almost certainly in excess of this and, possibly, as great as n(n-1) if the individual associations are stored. There is also the hope, which has a great deal of intuitive appeal, that the clusters one finds will represent in some way salient themes or concepts relating to the subject matter of one's document collection.

However, these possible advantages could well be offset by the undeniable fact that sensible clustering procedures, even crude ones, are rather costly in terms of computer time.

We therefore thought it worthwhile testing procedures which do not involve clusters at all, but make direct reference to a word connection matrix. Two such matrices were used, matrix G3 in run 15 and matrix G4 in run 18.

Each abstract is processed by noting its key-word stems, referring to the connection matrix to find all the words connected to each of them, and adding these to the original words to form an expanded abstract. Key-words in the requests are then compared with those in the expanded abstracts, continuing as with the basic KWS strategy.

Word-stem comparison with expanded abstracts and requests - run 23

Using connection matrix G4 the same method of expansion is applied to both the abstracts and the requests. The procedure is then identical with the basic KWS strategy.

Combined strategy - run 9

This is intended to combine the advantages of the basic KWS strategy (run 13) and the strategy of run 14 which employs the set of word clusters, C3, and performs relatively well. These two runs are effectively repeated using a K' value of 500 instead of the usual 50. For each request a new list of abstract numbers is produced containing those appearing in both of the sets of approximately 500 thus produced. A new "coordination value" is assigned to each abstract listed obtained as the product of the values in runs 13 and 14. Finally a K' value of 50 is taken to determine the cut-off for each request resulting in an average output of 50 abstracts per request.

Combined strategy - run 28

This is a combination of the basic KWS strategy (run 13) and that used

in run 14. Coordination values are obtained as follows:

Run 28 coordⁿ. value =
$$2^7 \times (\text{run 13 coord}^n \cdot \text{value})$$

+ (run 14 coordⁿ. value).

The effect is to retain the major division of the document collection produced in run 13. However, the document sets at each coordination level in run 13 are now ordered according to the coordination levels they obtained in run 14. The factor 2⁷ in the first term is greater than 99, the highest coordination value in run 14, thus avoiding any carry between the terms in the above expression.

Obligatory request words - runs 21, 24 and 25

Information regarding the word(s) in his request which, given the option, a requestor would make obligatory was used to remove from consideration all abstracts not containing the word(s). The strategies of runs 10, 11 and 13 were then repeated, in runs 21, 24 and 25 respectively, but instead of retrieving from the complete set of abstracts the appropriate reduced set was used for each request.

Automatic Weighting of Request Key-Word Stems - run 22

A set of programs was written to display the request words which had been involved in the retrieval of particular abstracts, whether directly (e.g. Run 0, i.e. the basic KWS strategy with K' = 35) or via some associated word (e.g. Run 11). It appeared, especially in the case of Run 0, that the request words often fell into two groups.

Consider, for example, Request 53.

ABSTRACT		INFORMAT	TRANSIST	AMPLIF	DESIGN	DRIFT	row
176 973 1504	2 2 3		314 314 314	491 491 491	520 520	692	982 982 982
1 644 1 646	3 3 2		314 314	491 491	520 520	692	982
3430 3567	2 2		314 314	491 491	520 520		982 982
4498 5370	2 2		314 314	491 491	520 520		982 982
6202 7019	2 3 . 3		314	491 491	520 520	692	982 982
8030 8590	3		314 314	491 491	520 520	-	982 982
8694 8695	2 2		314 314	491 491	520 520		982 982
1 0505 1 0645 1 0776	3 2 2	136	314 314 314	491 491 491	520 520	692 692	982
11467 11468	3 3	1,00	314 314	491 491 491	520	692 692	982

An indentation marks the abstracts later assessed as relevant (3 = relevant, 2 = irrelevant) and the numbers in the columns are simply the codes for the key-words at their head.

We notice that, if an abstract has 4 out of the 6 possible key-words, it is highly likely that 3 of them are Design Transistor and Amplifier, and also that the fourth is Low. The first 3 words define a background subject area, not in itself sufficiently relevant. On the other hand, the relevance is apparently much higher when DRIFT occurs which, in this request, is a highly selective word. We noticed a marked tendency for abstracts containing words appearing infrequently in the Run 0 output to be assessed relevant. It is tempting to apply this model generally and to suppose that these words are the more selective, and if weighted would lead to higher precision.

Lists were made mechanically for each request of request key-words occurring in 80% or more and in 90% or more of the output for Run 0, 80% seemed the better dividing line between the two classes of word.

The strategy of run 22 is similar to the basic KWS strategy in that the key-word stems of a request are compared with those of each abstract, no associations being considered. Words that occurred in less than 80% of the output for Run 0 contributed 2 to the "coordination value" instead of 1.

VI.2 <u>Discussion of strategies</u>

VI.2.1 Methods of using word associations

The associative strategies fall into two main groups corresponding to the adopted methods of employing information on word association and similarity measures, which are:

- (i) use of word clusters, derived from the word associations, as descriptors for indexing and for comparing indexed abstracts with requests, and
- (ii) direct use of the word association factors and similarity coefficients in the indexing and retrieval processes.

Using method (i) five different sets of clusters were tried. Though derived from the same basic set of word associations, they were produced by a variety of methods and they exhibit quite distinct characteristics. For example, the clusters in set C4 are mutually exclusive whereas some of the other sets contain considerable overlap of words. The number of clusters also varies considerably between the sets.

Method (ii) avoids the problems and effort involved in generating word clusters. It was used in three strategies to provide, by means of comparison, some indication of the benefits of clustering.

VI.2.2 <u>Discussion of our use of word clusters</u>

Clusters used as descriptors are assigned in the simplest possible ay to both documents and requests, one or more word stems in common between a document or request and a cluster being the sole requirement. Furthermore no explicit system of weighting is used, equal importance being attached to all assigned clusters. It would therefore appear that the assumption is being made that all the words in a particular cluster are inter-substitutable in the given texts for retrieval purposes. This is true only in the case of the single set of mutually exclusive clusters. The position is not so simple in the case of clusters of words which overlap.

Consider the following situation in which A,B,C, etc., are words arranged in overlapping clusters, all the clusters containing A being

An abstract containing any of the above words would have one or more of these clusters assigned to it. Notice that if an abstract contained word A or B then all four clusters would be assigned. Word D, on the other hand, would only lead to the assignment of two of the clusters. Thus, the simple use in this way of overlapping clusters provides an in-built system of word weighting. Given the occurrence of word A in a search request, words appearing in abstracts are weighted as follows by virtue of the above clusters:

A 4 B 4 C 1 D 2 E 2 F 1 G 1

As a practical example of this we have considered, in cluster set C3, all those containing the word stem STOR. There are 1,178 clusters in C3, having a high degree of overlap. The following list shows all the word stems appearing with STOR in at least one cluster and the respective weights they would receive for a request containing the stem STOR:

STOR	14	MEMOR	5
BIT	13	SPEED	5
DIGIT	11	DECIMAL	4
INFORMAT	11	MACHINE	4
DRUM	10	SYSTEM	4
ACCESS	9	LOGIC	2
COMPUT	7	CRYOTRON	1
READ	7	HEAD	1
TAPE	7	PRESET	1
READING	6		

A set of clusters with little overlap will produce correspondingly less refined word weightings.

VI.2.3 Comparison with random superimposed coding

It is interesting to compare our use of clusters of associated words with Mooers' system of Zatocoding or superimposed coding [16]. In this system key words used to index a document are represented by cutting notches in the edges of a card uniquely representing the document. The number of positions in which notches can be made is usually in the region of 30 to 50. In order to accommodate a key-word vocabulary probably far in excess of this number each key-word is represented not by one particular notch position, but by a unique set of notch positions. Usually about four positions are used for each word, and these are decided by using random number tables. The words in a search request are similarly transformed into a set of notch positions and documents are retrieved corresponding to cards having notches in the desired positions.

Three observations can be made:

- (i) Since documents and requests are ultimately "described" by sets of notch positions, the total set of available notch positions functions as a set of descriptors,
- (ii) The transformation of key-words into descriptors is non-unique in the sense that different sets of key-words might be transformed into the same set of descriptors, and
- (iii) The transformation of key-words into descriptors is completely arbitrary.

This forms a very close parallel to our use of word clusters as descriptors, each notch corresponding to a word cluster.

The use of mutually exclusive clusters corresponds in Zatocoding to a situation in which each key-word is represented by a single notch position. The two main differences between the use of overlapping clusters and Zatocoding are:

- (i) Whereas all key-words are represented by the same number of notch positions using Zatocoding, in our system different words occur in different numbers of clusters, and
- (ii) In our word cluster systems the relationship between key-words and descriptors is <u>not</u> arbitrary. On the contrary, it is carefully contrived so that associated words are clustered.

Our method of employing word clusters as descriptors may thus be thought of as a generalization of Zatocoding, or superimposed coding, in which the coding is associative or probabilistic rather than random.

VI.2.4 Representation

Consider a search request containing three key-word stems p_1 , q_1 , r_1 . Let the set of all word stems appearing in at least one cluster containing p_1 be $\{p_1, p_2, p_3, p_4\}$, in those containing q_1 be $\{q_1, q_2\}$ and in those containing r_1 be $\{r_1, r_2, r_3\}$. The strategies employing un-weighted resentation effectively formulate this request as

$$(p_1+p_2+p_3+p_4)_{\circ}(q_1+q_2)_{\circ}(r_1+r_2+r_3)_{\bullet}$$

where '+' and '.' signify the logical operations of 'OR' and 'AND' respectively.

We are saying, for example, that an abstract containing $p_1 \circ q_2 \circ r = 1$. better than one containing $p_1 \circ q_1 \circ q_2$, because the former represents all three request words whereas the latter represents only two. Therefore we also imply, for example, that an abstract containing $p_1 \circ p_3 \circ p_4 \circ p_4 \circ p_2 \circ r_3$ is no better than one containing $p_3 \circ q_2 \circ r_1$, as these represent the same number of request words.

The in-built word weightings produced by using overlapping clusters vanish when representation is introduced. The occurrence in an abstract of an actual request word contributes no more to the representation value of the abstract than the occurrence of another word clustered with a request word.

VI.2.5 <u>Direct_use of word associations</u>

A word-connection matrix (Section III.10) is used to expand the request/
abstract texts by addition of all connected words. Retrieval is then
performed by word comparison, the coordination level being the number of
common key-words. The words connected with a given one are regarded as
possible substitutes for it for the purpose of retrieval. The first thing we
tried, therefore, was expanding the abstract texts and comparing them with
the (unexpanded) requests. The effect of doing this and then retrieving by
key-word coordination is to accept connected words as substitutes (Runs 15
and 18).

At first sight it does not seem logical to expand the request texts in his way and then retrieve on the basis of key-word coordination. In this

case the maximum possible coordination value would equal the number of words in the expanded request and, in effect, the search would be for abstracts (or expanded ones) containing all words in the request and all words connected with them. However, in the case when the abstract texts are also expanded the effect is to produce a system of word weighting similar to that obtained using overlapping clusters. If an abstract contains a key-word in a request, then the expanded versions of both contain that word and all words connected with it, and they all contribute to the coordination value. A word in an abstract, not present in a request, may be thought of as having a weight in relation to a request word equal to the number of words with which they are commonly connected. This is their contribution to the coordination value. This method was tried in run 23.

VI.2.6 Obligatory request words

It seems generally to be sound practice for a search strategy to accept words associated with those in a request, or at least to attribute some weight to them. However, in discussing the matter with the requestors we found that occasionally a word was used for which the requestor could think of no useful substitute. It is quite likely in such a case that the word in question has associations with other words which would be misleading in the given context.

Words in all requests were considered by their authors and those whose presence in retrieved material was felt in this way to be obligatory wer underlined. Some strategies were then repeated with a slight modification so that abstracts not containing the stems of underlined words were not retrieved.

VII <u>Evaluation Procedure</u>

VII.1 Relevance

Each abstract was assessed as relevant or irrelevant by the subject expert who contributed the original request. The following code was used:-

- Relevant, would be likely to contribute to a collection of documents answering the question.
- 2 Irrelevant, would not be likely to do so, not worth following up.
- 1 Unassessable owing to lack of numerical data or the like.
- 0 Not yet assessed.

All abstracts were keypunched omitting numerical or symbolic data, equations, formulae, or bibliographic references. This was because, with the keypunching available under contract for the first batch of abstracts, it was very difficult to check such data to a reasonable accuracy. Further, it was hoped that this omission would not greatly affect our examination of a system based essentially on key-words, and this has turned out to be so.

It was strictly for abstracts deficient for this reason that category '1' was made available. However, out of some 17,000 assessments, about 2,000 were '3' while there were no less than 500 '1's. Clearly some assessors were using it to indicate a lower degree of relevance and a letter was sent out asking for a firm decision wherever possible. Finally 83 '1's remained, and in what follows these have been included in the '2's for simplicity's sake.

Note that the machine does not offer a relevance judgement. It may output an abstract for a certain cut-off K, but not at a lower K-value. The assessors on their part used subjective considerations, independently, for example, of the number of request words present.

VII.2 Precision

The customer specifies a cut-off value which we denote by K. He asks for as near as possible K documents, with, let us say, fewer rather than more in the case of a tie. Now 0 and 2K are equidistant from K. If the top stratum has 2K or more documents, the strategy is not sufficiently sensitive for the customer's purpose and gives no output. Thus in any case $0 \le \text{output} \le 2K-1$, where

(i) Output = Total number of Documents Retrieved on a Particular Occasion.

We shall use

(ii) Relevant Output = Number of Documents in Output Judged Relevant by User

and define (as is usual)

(iii) Precision = $\frac{\text{Relevant Output}}{\text{Output}}$

If a customer increases the K-value the output will increase or not, according to the relative size of the next stratum. If it does, he may get more relevant documents, but usually he must expect them to be 'thinner on the ground'. For the machine can respond only by lowering the acceptable standard of matching, and this tends to lower precision as just defined.

To compare two strategies we take a set of requests, so that totals or averages may compensate for individual variations. Originally we assumed that identical K for both strategies would yield much the same total or average output, but this turned out not to be so (below section VII.3). Accordingly the K values were adjusted so that each strategy yielded 50 documents or nearly on average. Within one strategy K is still held constant.

We then calculate

- (iv) Total Relevant Output over all Requests
- (v) Precision for all Requests' Output Combined
- (vi) Average Precision Ratio.

This is not, however, the whole story. A key-word or key-word stem (KWS) match is the simplest, and, involving no associations, remains the cheapest to set up and operate. A customer will want to know whether the extra cost of associations is worthwhile. Moreover, many documents will score highly in both types of run.

Accordingly, we are particularly interested in the <u>numbers of new</u> documents which could not be found by a basic KWS strategy in a reasonably sized output.

We calculate

- (vii) Total New Relevant Output, i.e. not also retrieved in KWS at same or related K-value
- (viii) Precision Ratio of New Output, taken separately
 - (ix) The number of requests which make a positive contribution to (i).

VII. 3 Operational and evaluation parameters, K and K'

Here a parameter is simply a variable which we can conveniently control in one or more strategies, in order to alter or compare their performance.

Examine the following figures:-

Request Set	Run	K	Relevant Abstracts	Irrelevant Abstracts	Output	K 8	Precision
93	13(KWS)	50	799	2443	3242	35	25%
93	9(13T14)	50	97 2	3842	4814	52	20%
9 3	23(EARG4)	50	871	3441	4312	46	20%

These show for three different runs the response when the cut-off K is set at 50. Of the three, Run 9 produces most relevant documents. However,

the customers have had to <u>scan</u> half as much material again as in Run 13 in order to find them. Now, as we have said, the physical <u>quantity of output</u> is one of the chief factors in determining the cost and convenience of an operational system. Thus while <u>cut-off K</u> is the natural <u>operating parameter</u>, <u>average output K¹</u> is the more appropriate <u>evaluation parameter</u>.

Reset the K-values till the K $^{\imath}$ are as near 50 as possible, rather than the K. Compare then

Request Set	Run	K	Relevant Abstracts	Irrelevant Abstracts	Output	K,	Precision
93	13(KWS)	71	991	3637	4628	50	21%
93	9(13T14)	49	966	3729	4695	50	21%
93	23(EARG4)	53	914	3793	4707	51	1 <i>9</i> %

Here Run 13 has most relevant documents. Also,

If we compare strategies at the same K' then precision is proportional to the number of relevant documents retrieved, and we need not quote both.

VII.4 Recall estimates

For a given request, let us define

- (i) Perfect Recall = Number of Relevant Documents in Collection and, given in addition a Strategy and Cut-off,
- (ii) Recall Ratio = Relevant Output
 Perfect Recall

We have mentioned in Part I the difficulty of estimating perfect recall; let us write

- (iii) Known Recall = Number of Relevant Documents retrieved by at least one of the 14 standard strategies
- (iv) Known Recall Ratio = $\frac{\text{Relevant Output}}{\text{Known Recall}}$

Largely manual searches of two types were made to test how meaningful these were.

Virtually Exhaustive Search, 3 requests, (Run 27)

The library was scanned as follows:-

- 1. Retain mechanically all documents having one or more words present in or associated with the request via the word-word association matrix G3, and print out those not previously assessed.
- 2. Mark documents having even the slightest connection with subject matter of request.
- 3. Send to requestors for thorough assessment.

Step 1 retained 5,000 documents on average, Step 2 about 200.

Relevant Documents found

	Run 13(KWS)	Other Standard Runs	Run 27 EXHSEA	Totals
Request 10 38 91	55 4 9	20 1 14	11 :: 9	86 9 32
	68	35	24	127

If these figures are at all typical, then our combined runs have retrieved of the order of 80% of the relevant documents in the collection. Clearly the figures 11, 4, 9 in the fourth column are too small to have been estimated by a random sample much smaller than the whole library itself.

Subject Index Search, 12 requests, (Run 26)

Appendix B16 shows a page from the annual subject indexes. The headings vary little from year to year, while the entries are based on the abstract as a whole but are often rearrangements of words in the title. 12 of the requests were searched by their requestors under headings chosen by themselves. Since the entries did not give a very full picture the abstracts were found and printed out, and some 30% were then found to be irrelevant. Of the 102 relevant, 41 vere known through Run 13 at $K' \simeq 50$, and a further 19 through the other standard runs. Thus 42 were quite new, against 238 already known, suggesting that the standard runs accounted for 80% or more of the total. The following diagram shows the numbers of relevant documents involved.

We have explained our reasons for using K or K' as our independent parameter, and numbers of documents, or precision for given output, as our chief evaluation measure.

For interest's sake we have added, in the runs tabulated in Appendix B8, three other measures which are worth considering. Overall Precision and Overall Known Recall refer to an imaginary request whose numbers of documents are the numbers for each request in the particular set added together. Thus Total Relevant and Overall Precision are what we have used already.

If for fixed K request i retrieves x, relevant in y, output out of z, known relevant then

Overall Precision =
$$\frac{\Sigma_{x_i}}{\Sigma_{y_i}}$$
 Overall Known Recall Ratio = $\frac{\Sigma_{x_i}}{\Sigma_{z_i}}$

Average Precision =
$$\frac{1}{n} \times \frac{x_i}{y_i}$$
 Average Known Recall Ratio = $\frac{1}{n} \times \frac{x_i}{y_i}$

where n is the number of requests.

With the idea that a strategy yielding $x_i = y_i = 0$ is not very selective we have set precision equal to zero in such a case. (It happens that $z_i > 0$ for all our 93 requests). The smaller the value of K the greater the chance that $y_i = 0$ and consequently the <u>average</u> precisions actually increase for the first few K. The two recalls, and the two precisions after the initial rise in average precision, are not much different in size. There does, however, seem to be a systematic difference of a few per cent so that

Overall Precision < Average Precision in general ... (VII.5.1)

Now Overall Precision = $\frac{\sum \frac{x_{i}}{y_{i}} \cdot y_{i}}{\sum y_{i}}, \quad ... (VII.5.2)$

that is, it is an average precision in which precision ratio $\frac{x_i}{y_i}$ is given

weight y_i. The outputs y_i are approximations to K but have a definite spread. Whether the output for an individual request is greater or less then K is likely to be independent of the request's particular output-precision curve. Hence we might expect that requests whose output went above K had a lower average precision than those that went below. Consequently, in (VII.5.2) the lower precisions would carry greater weight and this is what we have found in (VII.5.1). In confirmation, we may verify that the effect is much less marked in Runs 14 or 28 than in Runs 13 or 25, where the output spread is greater.

The same effect was noticed by Cleverdon [15] Volume II, pages 53-55 for certain of his measures, which were calculated by keeping key-word stem coordination constant and then totalling or averaging over a set of requests. It would not be surprising if, for a fixed coordination, large outputs correlated with small precision, and this is what Cleverdon's observation implies.

VIII Discussion of Performance Figures

VIII.1 General Comments

There is naturally no single answer to the question 'which is the best strategy?' Performances differ from request to request; it may not be worth going on to a second strategy, altering the cut-off, or using underlining. Broadly speaking we have in mind the person whose requests are batch processed along with many others, so that feedback is likely to be limited compared with an interactive system with an on-line terminal.

We shall use the following terms:-

Basic Strategy - Run 13

Standard Strategy - Runs 6, 9, 11, 13 - 23, fourteen in all.

A cut-off value of $K^{\dagger} \simeq 50$ is implied unless the contrary is stated. Assessments for runs $2l_{+}$, 25 and 28 are known only where these overlap the standard runs, and we write *25, etc. where the assessments are incomplete. However, Run 28 is almost fully assessed at $K^{\dagger} \simeq 50$ and we shall not go far wrong if we take the unassessed for this K^{\dagger} as irrelevant. We have therefore included Run 28 in most of our tables.

We asked for requests to be formulated in ordinary natural language. One or two contained words such as 'information' used in the non-technical sense, and which we thought might produce noise in the system. It appeared however that say 4 other key-words were sufficient to define a subject area so that the presence of such a key-word seemed to have little effect.

We were not in a position to work on improving or altering the wording of requests to see how this affected performance, other than by 'underlining' (VI.2.6). However, we picked out those requests which we felt were less well formulated (Appendix B3). It turned out that the precision ratios of these 17 were significantly lower in Run 13 than of the remaining 76, at the 5% level, but we did not feel justified in cancelling them also.

VIII.2 Relative Performance of Standard Strategies

Appendix B9 shows the numbers of relevant abstracts output by each of the standard strategies for all 93 requests for a selection of K'. It appears that of these 13 or 28 is the best run uniformly as K' varies. This is far from being the whole story, however. Some of the runs which do nearly as well as Run 13 do so because their output is little different. Since Run 13 does as well as any, let us assume that a requestor is likely to make it his first try.

Consider what happens if he goes on to try a second strategy. The machine is programmed to suppress all documents he has already received and presumably scanned. Appendix B9a shows the <u>new</u> documents output, that is, not also output in Run 13. Thus for example at $K' \simeq 50$, Run 9 produced 966 documents as against 991 documents for Run 13. Only 176 of these were new. Run 6 produced 753 but 238 of these were new. Again Run 21 produced 902 documents of which 311 were new and so is better than Run 6 on both counts. Consider the run numbers rank ordered by averaging their rank orders at $K' \simeq 20$, 30, 40, 50:-

93 Requests: Run Numbers in Averaged Rank Order

(highest)

(lowest)

Total Relevant Output: 13 *28 9 22 23 19 21 20 11 14 18 15 16 17 6 New Relevant Output: 21 18 15 = 23 6 11 = 14 17 = 16 19 20 22 *28 9

There is a weak anticorrelation between these two orders (omitting 13 in the first set), namely $\rho = -.37$, so that, <u>roughly speaking</u>, the nearer a run is in performance to Run 13 the fewer new documents it produces.

It is noticeable that some runs achieve a comparatively high total by doing very well for fewer requests. Thus Run 19 produced 218 new documents, but only 44 out of 93 requests contributed to this total. This coverage or number of productive requests is noted in brackets in the appendices where it is known. The coverages for one relevant document differ little, but those for new relevant documents are perhaps worth putting in average rank order:-

93 Requests: Run Numbers in Rank order

(highest)

(lowest)

Coverage for New Documents: 6 23 11 18 15 21 14 16 = 20 17 19 9 *28 22

This seems to correlate to a fair extent with the numbers of new documents retrieved ($\rho = .80$).

The numbers of new documents are an important test of an association strategy's performance. The motive for going on to a second strategy is much stronger when Run 13 produces only a few documents. It does <u>not</u> necessarily follow that in such a case other runs are likely to produce even fewer. 34 requests, 37 per cent of our set, produced only 0 to 4 relevant documents in Run 13 at $K^2 \simeq 50$, (Appendix B10). Even if we omit the less well formulated requests, there are still 13 for which we need output of 250 or more if we are to get further relevant documents. New documents however are often retrieved for this set by association or descriptor runs at low K.

If we take the standard runs at $K^{\dagger} \simeq 50$ and then select the 34 requests, we get the figures in Appendix B11 and the following rank orders:-

34 Requests: Run Numbers in Rank Order

(most)

(fewest)

Total Relevant Output: 15 18 11 9 23 *28 21 20 14 6 17 16 19 *25 22 13 New Relevant Output: 21 15 18 23 11 9 14 *28 6 20 17 16 19 *25 22 Coverage for New 18 11 23 6 15 21 9 14 17 16 20 *28 19 22 Documents:

Strategy 28 11 = 9 23 13 6 = 15 = 18 = 21 = 22 20 14 = 19 17 16 Numbers of Requests 65 64 64 63 59 58 58 58 58 58 57 55 55 53 51 with 5 or more relevant documents

^{*}Compare, however:-

When we select requests at random we might expect the K? to remain roughly the same, and this holds here for the 34 requests for all runs except 13 and 19 (K' ~ 33 and 35 respectively). This drop from K' ~ 50 makes us ask, in choosing those requests with low relevant output have we simply chosen those with lower than average total output? If we raise the K' to counterbalance Run 13's low sensitivity, thus,

Request Set	Run	K	R≥l e vant	Irrelevant	Output	K 8	% Precision
34	13	87	101	1 572	1672	49.18	6.04
							••• (VIII.2.1)

we still find Run 13 below the other runs, except Run 22, and so the poorer performance of the 34 requests in Run 13 must be due in great measure to semantic considerations. In fact, no single run at K' = 50 is able to cover more than 65 out of the 93 requests at the level of 5 relevant documents, while there are 83 requests for which 5 or more are known.

We may use $\frac{K^{\mathfrak{l}}}{K}$ as our measure of sensitivity (V.7). Runs may be rank ordered according to the cut-off values K needed to yield a given average output K' (Appendix B5), a high K giving low sensitivity. We deduce the following orders:

93 Requests: Run numbers in order of sensitivity

	(highest)	(lowest)
$K^{\dagger} \simeq 20$ $K^{\sharp} \simeq 30$ $K^{\sharp} \simeq 40$ $K^{\dagger} \simeq 50$ Average rank order	6 = 11 9 28 23 14 21 22 6 = 11 9 23 28 14 21 22 6 = 9 11 28 23 14 21 = 22	1 17 15 = 16 22 = 13 19 = 25 18 1 15 18 = 13 19 = 17 = 16 20 25 1 18 15 19 20 13 17 25 16 1 18 19 13 15 20 17 16 25 1 15 18 13 20 19 17 16 25

Note that sensitivity is independent of any relevance judgments.

Run 13 with a Second Strategy compared with Run 13 at Higher Cut-Off VIII.3

We have discussed above the numbers of new documents produced by our standard runs. The best of these was Run 21. Let us unite the document sets produced in runs 13 and 21, writing U for set union, thus:-

Request Set	Run	K	Relevant	Irrelevant	Output	K •	% Precision
93	13 U 21	71,62	1302	6006	7308	78 .5 8	17.82
93	13	113-115	1185	5880	7065	75 . 97	16.77
93	13	116-117	1204	6185	7389	79 . 45	16.29

We have included the results for Run 13 which are nearest in total output. We do a little better by using 13 U 21 than by increasing the output for Run 13 alone. Thus the two strategies together are better than either of them singly. Although we have not distinguished documents so long as they are re]cvant, the requestor may appreciate the increased variety brought in by the association run.

The improvement is even more marked for the 34 set. 13 015 indicates documents in Run 15 but not in Run 13.

Request Set	Run	K	Rel e va n t	Irrelevant	0utput	K t	% Precision
34 34 34 34 34 34	13 15 13 0 15 13 U 15 13	71 73 71,73 71,73 110	79 141 77 156 123 124	1 058 1464 958 2016 1 942 2148	1137 1605 1035 2172 2065 2272	33.44; 47.20 30.45 63.88 60.74 66.82	6.95 8.79 7.44 7.18 5.96 5.46

Note that when two runs, at say $K^{\circ} \simeq 50$, are united the new average output per request will be something less than 100, the sum of their K° , and vary somewhat between different pairs of runs, according to their overlap. Thus greater total relevant output may not correspond strictly with greater precision. We may compare the following figures with 13 U 21 above.

Request Set	Run	K	Re event	Irrelevant	Output	K *	% Precision
9 3	13 U 19	71,66	1209	5219	6428	69.12	18.81
93	13	104-109	1158	5082	6240	67.10	18.56
93	13	110	1166	5276	6442	69.27	18.10

VIII.4 <u>Cenerality of a Request</u>

We define

It may be thought of as the precision should the whole library be output. Requests with low generality are in some sense likely to be harder to answer. Some previous workers who have had the whole of their document collection assessed have therefore studied generality as an additional variable. If we use total known relevant in the numerator of (VIII.4.1), the generality of our requests ranges from .008% to .7%. We may divide our set of requests into four groups of increasing generality.

	Known Relevant	% Generality	Number of Requests
GEN 1	0–8	.000069	26
GEN 2	9–17	.07815	21
GEN 3	18-29	.16 25	23
GEN 4	34 84	°26 - °73	23

See Appendix B12 for the corresponding performance figures. The figures for lowest generality are perhaps too small from which to draw any strong conclusions, but the other three show a rank order very similar to those for all 93 requests together (VIII.2).

Rank Order of Run Numbers, K° ≈ 50, for Relevant Documents

(most)											(f	ewe:	st)				
Request Set	GEN 1 GEN 2 GEN 3 GEN 4	9 22	13 13	21 11	19 9 =	22 19	11 21	,	15 23	18 15	=	23 14	20 20	6	14 18	16 17	17 16

New Relevant Documents, not in Run 13

Request Set GEN 1 11 18 6 21 15 17 16 = 23 14 = 20 9 22 19

GEN 2 21 15 18 11 23 = 20 19 9 14 6 16 = 17 22

GEN 3 11 = 15 23 21 6 14 18 9 19 20 16 = 17 22

GEN 4 18 15 21 14 19 16 17 11 23 6 20 9 22

VIII.5 Underlining (55 requests)

Underlining (VI.2.6) was first tried with descriptor Run 14 to give it additional precision, making Run 21. Later it was tried with Runs 13 and 11 after the standard runs had been assessed. The strategies were first applied to all 93 requests at $K^{\bullet} \simeq 30$, and then the 55 requests selected. The figures in Appendix B13 include the resultant effective K^{\bullet} , which do not differ enough from 30 to affect the argument.

(i) One Underlined Strategy

Referring to Appendix B13, we see that underlining slightly improves the performance of each of the three runs so that 25 (U13) is the best of all. But U13 has quite a striking decrease in sensitivity over Run 13, needing, for example, K = 81 to produce $K' \simeq 50$.

(ii) Two Strategies in Succession, One Underlined

Appendix B13 shows that it is best to combine with Run 25 not Run 13 or nother underlined strategy (Run 21), but an association or descriptor run, with Run 23 heading the list. Thus:-

Request Set	Run	K	Relevant	Irrelevant	Output	K.	% Precision
55 55 55	25 25 n 23 25 U 23	29	356 155 511	660 629 1289	1016 784 1800	18	35 20 28
55	25	58	>511		1853	34	>29

It would seem that Run 23 is the best to combine with Run 25, but that we could get similar performanc; on average out of Run 25 alone with increased cut-off. What about the requests, although underlined, for which Run 25 does badly? If a request does badly in Run 25 = U13, it may still be worth trying Run 13 but an association or descriptor run is more likely to break new ground.

However, in underlining, we are limiting ourselves to a particular subset of abstracts and it is for the requestor to decide whether this is desirable in any particular case.

IX Summary and Conclusions

IX.1 Evaluation criteria

Our aim was to find what improvements, if any, could be made upon the performance of retrieval by matching key-word stems by the use of word associations and clusters. Thus run 13 (KWS) is our standard of comparison. In assessing different strategies we consider three measures to be particularly useful:

- (i) The total <u>number of relevant documents</u> retrieved for a <u>set</u> of requests in a given quantity of output.
- (ii) The <u>sensitivity</u> of a strategy, that is, its ability to output a number of accuments uniformly close to that requested.
- (iii) The <u>coverage</u> of a strategy, that is, the number of requests for which it retrieves some minimum number of relevant documents.

For associative strategies (i) and (iii) are calculated using total numbers of relevant documents, and also using numbers of new relevant documents with respect to the output of run 13.

As far as we are aware the concept of the <u>sensitivity of a strategy</u> has not previously been discussed in the literature. We measure it (V.7) as K'/K, the output per request averaged over a set of requests divided by the desired output. In changing the strategy we find that as the relative <u>spread of the outputs</u> for different requests about their average increases so K'/K decreases. With very low spread K'/K approaches unity. Both these effects depend on the number of strata into which the strategy partitions the output. Low sensitivity implies that the performance for some requests may suffer by very little output being produced. As regards (i) we have offset the effect of differing sensitivity by testing each strategy at the same K' rather than at the same K.

The recall performance of the various strategies may be assessed in terms of the total numbers of relevant documents they retrieve in relation to the total number of known relevant. Results of virtually exhaustive searches on three requests and of subject index searches on 12 (section VII.4) suggest that the numbers of known relevant (total and for individual requests) represent about 80% of all relevant documents in the collection.

IX.2 Performance of key-word stem searches

In relation to results yielded by our various associative strategies it must be concluded that retrieval by the simple means of comparing key-word stems (run 13) provides a very good level of performance. The total of 991 relevant documents retrieved for the full set of 93 search requests was matched only by run 28 which uses a refinement of the word stem search.* This represents a recall of about 40% of all relevant documents in the collection. Between them, all the strategies described (including run 13) produced 2,020 relevant documents.

^{*}This superiority of simple key-word stem searchin, when judged purely on the basis of total numbers of relevant documents retrieved closely parallels some of the findings of Cleverdon et al [15]. Our use of key-word stems is very similar to their language consisting of single terms with confounding word forms, which they found to perform better than others they tested.

The weakness of key-word stem retrieval is its very low sensitivity $(K^{\bullet}/K \approx 0.7)$. A five word request, for example, splits the collection into at most five strata whether it contains 10,000 or 100,000 documents. There is a large spread in quantity of output with a marked tendency towards lower output than desired. Thus, in run 13 it was necessary to retrieve as close as possible to 71 documents for each request (K = 71) in order to produce an average output of 50 documents per request (K' = 50). Even at this output level run 13 produced little or no relevant material for many requests.

In run 28 the key-word stem strategy is refined by ordering the documents in each of its strata according to their coordination values in run 14. This subdivision of the strata produces excellent sensitivity (K'/K = 0.97). The total number of documents retrieved for 93 requests is the same as in run 13. However, this reflects a balance between 155 new relevant documents for requests for which run 13 produced low output and 155 fewer for a smaller number of requests for which run 13 produced high output. Appendix B11 summarizes results for a subset of 34 requests for each of which run 13 yielded fewer than five relevant answers. For these, run 28 produced 130 relevant documents compared with 79 in run 13.

IX.3 Advantages of associative strategies

Our strategies employ word associations in one of two ways:

- (i) Word clusters formed from them are used as descriptors which are assigned to abstracts and requests. Retrieval is then based upon comparison of clusters.
- (ii) Abstracts alone, or abstracts and requests, are expanded by adding associated words. Word stems in the expanded texts are then compared when retrieving.

We have found strategies of both kinds with good levels of performance and having three things to recommend them:

- (a) Very good sensitivity $(K^{\circ}/K > 0.9)$.
- (b) Fairly good recall of new relevant material. Although they retrieve fewer relevant documents in total than run 13, the best strategies add to the number of relevant documents found in that run by about 30%.
- (c) Particularly good recall of new relevant material for requests for which a word stem search yields little or no relevant output. For the subset of 34 such requests the best strategies increase the number of relevant documents found in run 13 by about 75% (see Appendices B10 and B11). This improvement is accounted for partly by the better sensitivity of the associative strategies and the fact that a large proportion of the subset of 34 requests obtained low total output in run 13. However, in producing the figures in table VIII.2.1 we have compensated for this by considering a cut-off level which raises the average output of these requests to our standard of approximately 50. The figures show the improved performance of a word stem search at this output level. The best associative strategies are still able to improve upon these new figures by about 40%.

Considered individually, none of these improvements is spectacular and it would not be sensible to recommend the use of one or more associative

strategies rather than performing a simple word stem search. However, the combination of these advantages together with slightly improved coverage provided by most of the associative strategies does make their use well worth considering seriously. We think their main value lies in their use to supplement a key-word stem search when the performance of the latter is found unacceptable or when better sensitivity is required.

One most interesting observation applies generally to our associative strategies. We have found a marked <u>negative</u> correlation between the amount of new relevant output (relative to the results of the word stem search of run 13) from strategies and the total relevant output they produce. In other words, associative strategies providing the highest relevant output tend to produce largely the same relevant documents as run 13, those providing a good selection of new relevant material produce more meagre total numbers of relevant documents.

IX.4 Best associative strategies

Assuming that they would be used along with a key-word stem search, our final assessment of the associative strategies is based upon their performance for the subset of 34 requests for each of which Rum13 produced Tewer than five relevant documents. Our 14 main strategies are ranked below according to the three criteria listed in section IX.1.

Although no single strategy comes out on top on all counts we note that strategies 11 and 23 show a fairly balanced performance, appearing within the top six of each rank ordering. We regard these as the best of the associative strategies we have tried. Strategy 11 uses a set of 1,178 highly overlapping word groups as descriptors with proportional representation (VI.1.6). In strategy 23 key-word stems are compared after expanding both requests and abstracts by adding words which, according to connection matrix G4 (III.10), are associated with the original words.

IX.5 Effects of cluster overlap and representation

One important feature of clusters is their degree of overlap, and it is closely related to the number of words that do not become isolated in the clustering process and the number and size of the clusters themselves. In general, we find that new relevant output, coverage and sensitivity, particularly the latter, are all improved by increasing the overlap of clusters used as descriptors. By contrast, non-overlapping clusters (e.g. strategy 16) necessarily lead to lower sensitivity even than key-word stem retrieval. Use

^{*}In comparing these totals with those for the 93 requests, note that 5 or more relevant documents are known to exist for only 24 out of the 34 requests.

of representation with clusters (VI.1.5) further improves these measures provided there is a sufficient degree of overlap. Proportional representation (VI.1.6) performs even better.

IX.6 Effect of obligatory request words

The results produced by allowing people to make some of their request words obligatory (indicated by underlining) in retrieved abstracts suggest that, used with restraint, this can be a useful precision device. The sensitivity of a strategy is, however, lowered.

IX.7 Effect of request generality

The generality of our requests (i.e. ratio of number of documents in collection relevant to a request to total number in collection) ranges from 0.008% to 0.7%. These figures, however, are based upon numbers of known relevant documents, estimated to be 80% of the totals. The true generality range is therefore likely to be 0.01% to 0.91%. The 93 requests were arranged into four subsets of roughly equal size each covering a different range of generalities. The performance of different strategies was studied for these subsets of requests (VIII.4 and Appendix B12). There is no evidence of significant performance differences for the different generality ranges, nor of significantly different strategy rankings according to their performance for these classes of request.

IX.8 Choice of strategy

If it is desired to use only one strategy then a simple key-word stem search is the best when its low sensitivity is acceptable, and is certainly cheaper to implement than any associative strategy. When better sensitivity is essential, for better control of quantity of output, then a refined keyword stem search, such as run 28*, should be employed. This removes the likelihood of some requests receiving little or no output and, hence, little or no relevant output.

If better recall and sensitivity are required than it, alone, can provide a key-word stem search should be followed by an associative strategy. Of the ones we have tried strategy 23, making direct use of a set of word associations, is undoubtedly the best choice. Run 28, mentioned above, is too nearly related to Run 13 to be so useful as a second strategy. Strategy 11, though yielding a similar level of performance, would be a costlier choice requiring, as it does, the generation of a set of word clusters. We would say, more generally, that, of the strategies we have tested, those involving direct use of word associations perform comparably with, and are therefore preferable to, those employing word clusters.

If a key-word stem search is found not to be very productive, greater improvement in recall can be expected by proceeding with an associative strategy than by changing the cut-off level in the word stem search to yield the corresponding combined output.

For some of the factors affecting the cost of the various strategies, see Appendix B6.

^{*}Any associative strategy can be used to subdivide the coordination strata of the word stem search. The strategy of run 23 is probably the simplest and best choice.

70

IX.9 Application to on-line, interactive systems

Some of the techniques we have studied could be employed to improve the performance of retrieval systems working in an on-line, interactive mode. Words and word clusters statistically associated with those in a request or in an already retrieved relevant document could be displayed. The searcher could then decide which associated words are useful in the context of his own request, and how to use them to broaden or modify his request. It seems likely that word associations could lead to greater improvements in retrieval performance when tailored in this way to a searcher's needs than when employed in a non-interactive mode.

Acknowledgements

We would like to thank Mr. R.J. Reason for sustained programming effort, for many all-night sessions on the computers and for his work on word clustering, and Mr. D.S. Baker for writing KDF9 programs needed for the retrieval tests, most of which worked first time. We are grateful to Dr. A.R. Meetham for many discussions and contributions to the work and for providing us with a set of word clusters. We would also like to thank Dr. S. Papert for many contributions to the earlier parts of the work and Mrs. V. Hawtree for her painstaking key-punching of the abstract texts.

We are indebted to the subjects in our retrieval experiments for providing us with search requests and for their conscientious assessment of the relevance of the reams of output they received. We owe special thanks to Dr. H. Rishbeth for his part as a subject and for the willing way in which he organized coverage of our geophysical material at the Radio and Space Research Station, Slough, for being a subject and for enlisting similar help from Dr. W.C. Bain, Dr. D.A. Bryant, Dr. D.L. Croom and Dr. E. Dunford. The other subjects were our colleagues in Computer Science Division at NPL - Mr. F.M. Blake, Dr. P.A.N. Briggs, Mr. D.O. Clayden, Mr. C.H. Davies, Dr. W.F. Fincham, Mr. P.H. Hammond, Mr. A.A. Hill, Mr. J. McDaniel, Mr. E.A. Newman, Dr. J.R. Parks, Mr. P.J. Pobgee, Dr. W.L. Price, Dr. P.R. Stuart, Mrs. M. Vaswani, Mr. R.S. Watson and Dr. D.M. Yates.

Figures IV.6.2 and 3 are reproduced by permission from proceedings, IFIP Congress, 1968, North-Holland Publishing Company, Amsterdam.

APPENDIX AI

WORD-STEM DICTIONARY

WITH MAXIMUM EXTENSION OF STEM LENGTH (II.5) AND FREQUENCY IN 12288 ABSTRACTS

N.B. REPETITIONS WITHIN AN ABSTRACT ARE NOT COUNTED

	14.8.	KEPEIII	IND MITHIE	N AN ABS	PIRACI A	KE NOT COUNT	ובט	
STEM	STEM	мах	FREQ		STEM	STEM	MAX	FREO
NO	O 1 L III	EXTN			NO		EXTN	
		_	7.0.4		0.7.0	HASE	Ľ	641
653	ABSOR	8	384		8 3 2 6 6 3	BASE Basic	5 5	182
484	A C C E L E R A A C C E S S	8 8	55 18		664	BASIS	5	147
485	ACCURA	8	226		965	BAY	4	33
1	ACOUSTIC	8	5 1		B 3 3	BEAM	5	306
486	ACTION	6	9 5		337	BEARING	8	21
487	ACTIVE	6	9 5		834	BELT	5	71
2	ACTIVITY	8	219		835	BIAS	7	8 4
654	ADAPT ADÜ	8 8	32 . 171		30 31	81D RECT 8 F URCAT	8 8	1 0 1 4
962 825	ADHE	8	' ' 5		665	BINAR	8	95
3	ADIABATI	8	9		32	BISTABLE	8	4 3
488	ADJUST	8	86		966	ВІТ	4	29
4	ADMITTAN	8	6 5		666	BLOCK	5	31
489	ADVANC	8	40		33	BLOCKING	8	33
5 490	ADVANTAG AERIAL	8 8	93 150		967 338	BOD BOMBARD	6 8	6 ੪ 2 5
456	AFTERNOO	8	13		836	BOND	8	13
963	AIR	3	147		339	BOUNDAR	8	104
655	ALIGN	8	36		498	BRANCH	8	37
655	ALLOY	8	32		3 4	BREMSSTR	8	6
7 8	ALPHANUM ALTERNAT	8 8	3 131		499 500	BRIDGE BRIGHT	7 8	108
826	ALTI	8	127		667	BURST	8	8 2 8 8
329	AMBLENT	8	20		35	CALCULAT	В	899
657	AMMON	8	2 1		36	CALIBRAT	8	27
491	AMPLIF	8	1292		340	CANONIC	8	10
9 10	AMPLITUD	8 ខ	388		341	CAPACIT	8	468
330	A N A L O G U E A N A L O G Y	7	216 24		501 342	CARBON CARRIER	8 8	40 116
658	ANALY	ន់	1372		502	CASCAD	8	71
11	ANALYSER	ន្ទ	67		503	CATHOD	8	250
659 331	ANGLE ANGULAR	6 8	163		668	CAVIT	8	239
12	ANISOTRO	8	7 5 7 1		8 3 7 3 7	CELL CENTIMET	8 8	8 8 5 5
332	ANNULAR	8	13		343	CENTRAL	7	4 2
827	ANOD	6	128		504	CENTRE	7	1 4 7
492	ANOMAL	8	123		38	CERENKOV	8	13
333 13	ANTENNA APPARATU	8 8	23		344	CHANNEL	8	70
14	APPARENT	8	8 9 7 7		39 669	CHARACTE CHARG	8 8	921 383
15	APPROXIM	8	401		838	CHOP	8	20
964	ARC	6	63		670	CIRCL	8	31
493 828	ARCTIC	. 6	17		3 4 5	CIRCUIT	8	1863
16	AREA ARGUMENT	5 8	86 19		4 0 4 1	CIRCULAR CIRCULAT	8 8	129 37
660	ARRAY	8	35		671	CLASS	8	123
17	ARTIFICI	8	133		346	CLASSIC	8	61
494	ASPECT	6	13		347	CLASSIF	8	42
18	ASSOCIAT	8	304		505	CLIMAT	8	8
661 19	A S T R O A S Y M M E T R	8 8	101		506	CLOSED	8	4 3
20	ASYMPTOT	8	68 27		672 839	CLOUD	8 7	9 1 3 4
2 1	ATMOSPHE	8	564		840	COAX	8	113
829	ATOM	5	5 7		968	COD	6	33
495 22	A T O M I C A T T A C H M E	6 8	63		42	COEFFICE	8	318
23	ATTENUAT	8	36 172		50 7	COHERE	6	5 5
496	AURORA	8	323		8 4 1 4 3	COIL COINCIDE	7 8	112
24	AUTOMATI	8	128		842	COLD	4	5 7 4 7
25	AVALANCH	8	2 1		348	COLLECT	8	114
334 830	AVERAGE	8	1 1 4		4 4	COLLISIO	8	151
830 662	A X E S A X I A L	4 8	12.		508	COLOUR	8	1 7
26	BACKGROU	8 8	50 35		509 510	COLUMN	8	59
27	BACKWARD	8	12		45	COMBIN Communic	8 8	188
497	BALANC	8	50		46	COMPARIS	8	65 202
28	BALANCED	8	42		4 7	COMPATIS	8	7
0 ⁵	BALLOON BAND	8 5	26	_	48	COMPENSA	8	119
RIC	BANDWIDT	5 8	5 4 8 2 2 6	.72	4 9 5 0	COMPLEME	8	19
at Provided by ERIC	BARRIER	8	27		3 4 9	COMPONEN Complex	8 8	4 1 6 1 5 1
			- •				3	131

STATE
521 DETECT 8 253 93 EXCHANGE 8 43 366 DETONAT 8 8 94 EXCITATI 8 127 522 DEVIAT 8 78 381 EXCITED 7 76 523 DIAMET 8 93 95 EXCSPHER 8 34 70 DIELECTR 8 247 700 EXCSPHER 8 34

STEM NO	STEM	M A X E X T N	FREQ		5 T E M 10	STEM	M A X E X T N	FREQ
N 158558893878173117718885977588178978131817999379713113117717585758118855758306	ATR A TEM C ELA N C ELA N TEM ROOM R	N 28885968838467888384686864488885487848835757588888888658865888854775	1 25287259792703024686885583590 41729455099626138195594089638071391428908025150 2 1 25287259792703024686885583590 41729455099626138195594089638071391428908025150 2 1 2 1 3 2 2 1 3 2 2 1 1 2 2 2 2 2 2 2	575188881185111757151157111151111111111	47509011226345678789889990010123122435456761348901822956345678349957	E ET NNGLS CC Y END N R TE INTRALALN O IMDEAS M TOMP EO DOGMBH I TAFF TANHLR RP TOMP GZ FOOORINT ECORIL REDE A TITTITUM AT TBUARR SAFMNNPVISST AROPUS GZ FOOORIT ECORIL REDE A TITTITUM AT TBUARR SAFMNNPVISST CZZGOSGYNAHRAT GILLMGSLMRUBDDDPPEELAPPPCCCCCCCCTORMICT TBUARR RRRRRRRRR CZZGOSGYNAHRAT ILLMGSLMRUBDDDPPEELAPPPCCCCCDDDDDDDFFFHIJNPSSSSTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	786877588688888888888888888888888888888	2784555515655166833992962755884172833117742839655002189298947332270142278548829522898 1 1 2 2 8 5 1 6 0 0 1 6 2 9 2 3 2 2 4 2 1 1 6 1 0 0 6 0 7 4 1 2 1 1 6 9 2 4 6 6 5 0 3 2 1 8 1 4 3 8 6 5 5 2 6 3 4 1 5 4 5 3 1 8 4 2 4 1 3 2 8 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 4 1 8 8 2 9 5 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1
d by ERIC								

STEM NO	STEM	M A X E X T N	FREQ	STEM NO	STEM	M A X E X T N	FREQ
	N C O E CS MRSD ORCT DE G I I I I OOOOU A A A A A A A A A A A A A A A A A	E 887787448884647588886885889588848565858788878888456848886	19255731317393536410427917447721764481426388947003542 1925573150313173935364104279174477287262141243188552 13 1 344 2111 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1	NO 584468787899400516978890203152345674821559606213456155960621345615596013456	MINDODOLAMINON MANAMANAN NANNAN NANNAN NANNAN NANNAN NANNAN NANNAN	E X 8885678878875886868888888677843885858888868858788888487868	006379670905544458932544020829692698b682335555728368900854522331522001102147853124931343 3 4629309457 3973245
896 738 172 739 562	M A S S M A T C H M A T H E M A T M A T R I	4 8 8 8 8 8 8 8 8 8 8 7	8 0 8 3 1 5 5 1 5 4 2 2 4 1 9 1 9 4 1 2 9 4 1 6 0 2 1 2 6 7 1 7	201 753 754 755 416 756 577 578 202 203 204 205	OPERATIO OPTIC OPTIM ORBIT ORBITAL ORDER ORIENT ORIGIN ORTHOGON OSCILLAT OSCILLOG GUYBURST	8 7 8 6 8 8 8 8 8 8 8 8 8	490 178 135 124
742 566 743 567 744 175 176 177 178 179 180	MEDIOM MENDR MERCUR METAL METEOR METRE MICROMIN MICROPUL MICROWAY MIDNIGHT MILLIMET MILLIMIC MINIATUR	7 8 8 8 8 8 8 8 8 8 8 8 8	160 80 31 321 199 31 11 24 395 32 44 14 33 256	757 579 417 903 580 904 758 418 206 207 419 420 208 905	PARABOL	5 7 8 8 8 8 8 8 8 8 8 8 8 8 8	5835 5835 553 1006 71 304 821 740
d by ERIC				75		-	

STEM NO	STEM	M A X E X T N	FREQ	STEM NO	STEM	M A X E X T N	FREQ
421 581	PASSAGE PASSIV	8 8	5 5 7 9	593 235	R A D I A T R A D I A T I O	8 8	57 609
906	PATH	5	1 4 2	770	RADII	5	33
422 907	PATTERN Peak	8 7	104 155	771 236	RADIO RADIOSON	5 8	973 15
209	PENETRAT	8	39 4 7	594	R A D I U S R A N D O M	6 8	58 104
423 210	PENTODE Performa	8 8	260	595 917	RANG	8	667
424	PERIGEE	7	1 4	918	R A T E R A T 1 O	4 6	206 229
582 211	PERIOD Permanen	8 8	4 4 1 2 3	772 987	RAY	4	259
425	PERMEAB	8	42	237	REACTANO	8	106
212 426	PERPENDI PERSIST	8 8	6 4 2 1	238 439	R E A C T I UN R E A C T I V	8 8	37 41
427	PERTURB	8	116	4 4 0	REACTOR	8	45
908 213	PHAS Phenomen	7 8	529 313	9 1 9 4 4 1	READ READING	6 7	45 24
909	РНОТ	5	38	920	REAL	4	7 2
214 215	PHOTOCEL PHOTOCON	8 8	1 4 1 3	596 239	RECEIV RECIPROC	8 8	238 38
216	PHOTOELE	8	4 4	4 4 2	RECOGNI	8	17
217 583	PHOTOGRA PHOTON	8 7	6 4 2 2	240 597	RECOMBIN RECORD	8 8	98 442
218	PHOTOSEN	8	4	443	RECOVER	8	30
584 428	PHYSIC Picture	8 8	179 14	598 599	R E C T A N R E C T I F	8 8	103 190
219	PIEZOELE	8	34	988	RED	3	14
585 759	PLANAR PLANE	6 6	12 324	7 7 3 2 4 1	REDUC REFERENC	8 8	275 312
586	PLANET	8 7	36 459	4 4 4	REFLECT	8	359
587 429	PLASMA PLASTIC	8	458 19	2 4 2 2 4 3	REFLECTO REFLEXIO	8 8	37 7
760	PLATE	6	115	4 4 5	REFRACT	8	128
910 761	PLOT POINT	8 6	77 325	2 4 4 4 4 6	REGENERA REGULAT	8 8	38 69
762	POLAR POLARITY	5	109	2 4 5	RELATIVE	8	190
22 <u>0</u> 430	POLARIZ	8 8	15 192	2 4 6 2 4 7	RELATIVI RELAXATI	8 8	48 126
911	POLE	5	109	774	RELAY	6	4 9
221 222	POLYNOM I Populati	8 8	35 11	4 4 7 2 4 8	RELEASE REPRESEN	8 8	14 275
912 223	PORT Position	ა 8	2 5	249	RESIDUAL	8	29
224	POSITIVE	8	1 4 5 2 1 4	250 251	RESISTAN RESISTIV	8 8	397 62
225 226	POTENTIA POTENTIO	8 8	218	252	RESISTOR	8	155
763	POWER	6	25 6€1	253 600	RESOLUTI RESOLV	8 8	57 39
588 431	PRECIS PREDICT	8 8	65 136	601	RESONA	8	133
589	PRESET	8	4	2 5 4 2 5 5	RESONANC RESONATO	8 8	365 160
227 432	PRESSURE Primary	8 7	200	256	RESPONSE	8	332
228	PRINCIPA	8	99 4 5	257 602	RESTRICT RETARD	8 8	4 2 3 5
764 229	PRINT Probabil	8 8	6 4 3 9	603	RETURN	6	23
765	PROBE	6	8 0	4 4 8 4 4 9	REVERSA REVERSE	8 8	25 47
913 433	PROD Product	8 7	563 33	258 775	REVERSI8 REVOL	8 8	1 4
434	PROFILE	8	63	776	RIGID	8	26 15
435 230	PROGRAM Progress	8 8	9 3 3 5	9 2 1 6 0 4	RING	4	58
231	PROPAGAT	8	375	922	RIPPLE Rise	7 4	21 105
232 436	PROPORTI PROTECT	8 8	125 19	923 605	ROCK	5	4
590	PROTON	8	90	989	ROCKET ROD	8 4	179 50
914 591	PULL Pulsat	7 8	96 34	924	RDDM	4	28
766	PULSE	6	640	777 259	ROTAT ROUGHNES	8 8	188 11
915 916	PUMP PURE	8 4	75 32	7 78	ROUND	8	29
233	QUADRIPO	8	138	990 77 9	ROW Sampl	4 8	9 9 1
234 437	WUADRUPD WUALITY	8 7	1 4 3 8	260	SATELLIT	8	435
767	U U A N T	8	20 7	4 5 0, 4 5 1	SATURAB SATURAT	8 8	32 75
768 769	QUIET RADAR	5 6	5 4	606	SCALAR	7	75 35
592	RADIAL	8	166 40	780 925	S C A L E S C A N	6 8	127
438	RADIANT	7	1.1	452	SCATTER	8	32 302

STEM NO	STEM	M A X E X T N	FREQ	S T E M N O	STEM	M A X E X T N	FREQ
261 607	SCINTILL SCREEN	8 8	77 116	283 936	S T A ND I N G S T A R	8 5	22 101
608	SEARCH	8	15	802	START	8	42
609 262	SEASON SECUNDAR	. 8 . 8	138 153	621 463	STA TI C STATION	8 8	85 206
453	SECTION	8	216	284	STATIONA	8	35
454 610	SEGMENT SELECT	8 8	9 B 2	285 622	STATISTI STEADY	8 6	174 129
26 <i>3</i>	SELECTIV	8	6 1	937	STEP	5	105
781 926	SELEN SELF	8 4	21	623	STIMUL	8	23
264	SEMICOND	8	142 152	286 938	S T O C H A S T S T O R	8 8	6 2 3 9
265	SEMIDIUR	8	2 4	803	STORM	6	243
455 260	SENSING SENSITIV	7 8	13 117	464 465	STRAIGH STRATIF	8 8	33 20
267	SEQUENCE	8	2 3	6 2 4	STREAM	8	8.0
260 011	SEQUENTI SERIES	8 6	10 309	287 625	STRENGTH STRESS	8 8	169 28
782	SERVO	ಕ	120	804	STRIP	б	48
991 783	S E T S H A P E	4 6	1 1 5 1 5 9	626 288	S T R O K E S T R U C T U R	7 8	21 206
450	SHAPING	7	2 0	289	SUBMILLI	8	15
784 785	SHARP SHEAR	8 8	4 1 1 2	290 992	SUCCESSI Sum	8 8	56 160
786	SHEET	6	5 1	627	SUMMER	6	64
787 788	SHELL SHIFT	6 8	22 190	993 466	SUN	4 7	175
789	SHOCK	6	31	628	SUNKISE SUNSET	8	39 22
790	SHORT	8	261	467	SUNSPOT	8	178
9 27 612	SHOT Shower	5 7	17 32	291 292	SUPERCON Superreg	8 8	5 4 7
791	SHUNT	8	5 7	468	SUPPLIE	8	6.2
928 613	SIGN SIGNAL	5 8	2 4 6 0 5	469 805	SURFACE SURGE	8 6	338 9
792	SILIC	7	6 3	629	SURVEY	8	176
614 457	SILVER SIMILAR	8 8	1 B 2 2 6	80 <i>6</i> 630	SWEEP Switch	8 8	4 9 2 7 2
4 5 B	SIMULAT	8	48	631	SYMBOL	8	17
269 793	SIMULTAN SINGL	8 6	167 328	470 293	SYMMETR Synchron	8 8	160 66
270	SINUSOID	8	90	294	SYNTHESI	8	169
929 930	SIZE SKIN	4 4	107 40	632 633	S Y S T E M T A B U L A	7 8	95 ช 127
931	SLIT	5	28	939	TAIL	8	9
932	SLOW SOFT	4	66	940	1 A P E	5	61
933 794	SOLAR	4 5	19 680	634 295	TARGET TELESCOP	7 8	22 60
795	SOLID	6	168	471	TELEVIS	8	5 5
271 790	SOLUTION SOLVE	8 6	340 77	296 297	TEMPERAT TEMPORAL	8 8	597 10
272	SOUNDING	8	6 2	635	TENSOR	7	5 4
615 797	S O U R C E S O U T H	7 8	4 4 4 9 8	298 299	TERMINAL TERMINAT	8 8	140 59
798	SPACE	5	255	300	TERRESTR	8	53
799 459	SPARK Spatial	8 8	2 8 4 4	807 472	THEOR THERMAL	8 7	1878 158
273	SPECIMEN Spectr	8	21	301	THERMIST	8	4 0
616 274	SPECTROG	8 8	316 27	302 303	THERMOCO THERMODY	8 8	8 2 4
275	SPECTROM	8	7 1	304	THERMOEL	8	29
276 800	SPECTROS Speed	8 6	4 4 2 0 6	305 941	THICKNES THIN	8 4	77
617	SPHERE	7	76	306	THRESHOL	8	144 38
277 278	SPHERICA SPHEROID	8 8	7 6 1 3	473 307	THUNDER THYRATRO	8 8	51
934	SPIN	5	128	994	TID	5	36 54
801 618	SPLIT SPLITT	5 8	15 37	942 636	TIME	4	751
279	SPONTANE	8	23	308	TIMING TOLERANC	6 8	1 4 2 5
280 619	SPURADIC Spread	8	85	943	TONE	5	16
281	SPURIOUS	5 8	76 10	637 474	TOROID TORSION	8 8	43 14
460 620	SPUTNIK	8	43	808	TRACE	6	27
935	SQUARE STAB	8 8	161 162	809 810	TRACK TRAIL	8 8	47
461 462	STABILI	ម	466	811	TRAIN	6	8 1 3 2
າດາ	STAGGER STANDARD	8 8	27 140	309 310	TRAJEC T O Transduc	8 8	39 65
EBIC	-	÷		· 77		J	65
Full Text Provided by ERIC			,	* -			

STEM NO	STEM	M A X E X T N	FREQ	S T E M N O	STEM	MAX EXTN	FREQ
311	TRANSFER	8	195	647	VECTOR	8	101
312	TRANSFOR	8	386	815	VEHIC	8	20
313	TRANSIEN	8	179	480	VELDCIT	8	309
314	TRANSIST	8	679	325	VERTICAL	8	218
475	TRANSIT	7	39	648	VIBRAT	8	6 9
315	TRANSITI	ė	105	950	VIEW	8	61
476	TRANSMI	8	394	481	VIRTUAL.	7	38
316	TRANSPOR	8	6 4	482	VISIBLE	7	40
317	TRANSVER	8	76	649	VISUAL	8	48
944	TRAP	8	7.8	951	VOLT	8	755
318	TRAVELLI	8	113	650	VOLUME	8	43
633	TRIANG	8	32	816	WAFER	6	9
477	TRIGGER	8	9 2	952	WALL	5	42
639	TRIODE	7	117	953	WASH	8	29
64 Ů	TRIPLE	6	1 4	817	WATER	5	4 1
6 4 1	TRUUGH	7	11	954	WAVE	5	1154
945	TUBL	5	206	326	WAVEFORM	8	137
995	TUN	6	198	327	WAVEGUID	8	136
476	TUNABLE	7	35	328	WAVELENG	8	231
642	TUNNEL	6	63	818	WEDGE	6	28
319	TURBULEN	8	4 4	819	WEIGH	8	3 1
812	TWIST	ម 8	7	955	WELL	5	125
320	UNIDIREC UNIF	8	18	651	WHISTL	8	78
946 479	UNIFORM	7	49	820	WHITE	5	18
			125	821	WIDTH	6	138
643	UNIQUE	ម	28	956	WIND	5	109
947 321	UNIT UNIVERSA	7	336	483	WINDING	8	56
321 322	UNSTABLE	ម 8	4 0 1 4	652 957	WINTER WIRE	6	79
813	UPPER	5	216	958	WORK	5	101
948	VACU	6	75	822		4 5	256
644	VALENC	8	6	823	WORLD	5 5	70
645	VALLEY	7	4	959	W O U N D W R I T	5 7	- 2
814	VALVE'	6	380	999	X	1	30 85
646	VAPOUR	7	42	960	YEAR	6	155
323	VARIABLE	. ម	305	824	YIELD	8	58
324	VARIATIO	8	939	961	ZERO	6	169
949	VARY	7	146	996	ZON	5	131

APPENDIX A2

4-Zone Card Code

The table below shows the code used when punching the texts of abstracts on cards for input to the computer. Each character, numeric or alphabetic, is punched in a separate column of a card. Each numeral in the range 0-9 is coded by a single hole punched in the appropriate row. Fach alphabetic character is coded by one hole in one of the rows Y,X,O and another in one of the remaining rows.

ZONE	NUMERALS	Y	х	0
0	0	-	_	-
1	1	A	В	С
2	2	D	E	F
3	3	G	Н	I
4	4-	J	K	Ŀ
5	· 5	М	N	0
6	6	Р	Q	R
7	7	S	Т	ប
8	8	V	W	х
9	9	Y	Z	F.S.

Fig. A.2.1

APPENDIX A3

Letter Frequencies within Abstracts

The program used to read the abstracts from punched cards, perform the dictionary look-up, etc., also counted the number of or surrences of each letter of the alphabet and the number of spaces. All words appearing in the texts, not only dictionary words, were included in this frequency count. The cumulative frequencies obtained from 11,571 abstracts appear below in descending order. The average word length, as computed from these frequencies, is 5.5 letters.

Symbol	Frequency
Space E T	477 860 324 558 233 300
I	224 127
A	214 748
0	197 661
N	189 274
R	182 768
S	171 761
С	113 986
L	101 683
D	99 513
H	88 789
F	77 790

Symbol	Frequency
Ū	70 815
M	66 876
P	62 456
G	47 629
Y	33 544
В	32 970
V	29 854
W	26 040
х	7 469
Q	7 239
K	5 744
Z	3 467
J	1 295

APPENDIX A4

WORD-PREQUENCY DESTRIBUTIONS 1 BATCH = 1535 ABSTRACTS F = FREQUENCY = NUMBER OF ABSTRACTS H(F) = NUMBER OF WORDS WITH PREQUENCY F

0	DATCHES 1-2 BATCHES 1-4	
34 6 107 2 32 3 126 1 33 8 115 3	F	1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 1

DATCHES 1-8

1'	::(:')	F	N(F)	F	74(F)	F	N(F)	F	出(子)
o,	0	71	7	1 4 4	4	.2 4 3	1		
2	1	7 2	2	1 4 5	2	244	i	441	1
3	خ	73	2	1 4 6	1	246	2	4 4 2 4 4 4	1
4	4	7 4	2	1 4 7	5	247	1	4 4 4 4 5 4	ا د
5	4	75	7	1 4 9	1	248	1	4 5 b	2
6	ź	76	U	150	1	250	1	460	1
7	5	77	t)	151	3	253	3	466	خ
8	5	78	4	152	2	255	1	4 u ซ	ĺ
9	12	79	2	153	!	256	2	472	3
10	ხ	0.3	b	154	1	258	1	475	1
11	o O	8 1	2	155	4 1	259	1	489	1
12	9	3 2	3	157	i	260	1	490	2
1 3	11	8 3	4	158 159	1	261	;	5 (4	1
1 4 1 5	19 9	8 4	3	160	4	252	2	506	1
16	2	85	5	161	i	267	1	508	1
17	9	86 87	5	162	i	269 272	;	521	1
18	10	88	4	163	1	275	ż	529	1
1 9	៥	, 89	2	164	1	282	1	546	!
26	1 1	90	2	165	2	287	i	546	
21	12	91	2	166	1	288	i	ა 5 9 5 6 პ	1
2 ج	12	92	2	167	ے	289	2	564	i
23	7	93	4	168	2	2 9 0	1	565	i
24	75	9 4	2	169	4	292	1	565	i
5 ج	13	9 5	Ď.	171	1	297	1	ر8 د	i
20	ರ	96	1	172	2	301	1	597	ż
2. 1	9	97	2	174	!	302	1	601	ī
2.8	1.1	98	2	175	1	304	2	603	i
9	1 0	9 9	1	176	3	305	1	505	1
30	Ü	100	1	178	4	300	2	., 0 9	1
<u>ا ز</u>	. d	101	5	179	4	309	2	613	1
32 33	12 1 v	102	4	182	1	312	2	640	1
34	7	103	3	185	1	313	1	0.11	1
35	11	104	3 4	188	2	314	2	649	1
30	υ	105		190	3 1	315	1	D 0 1	1
ر 5 7	i 1	105 107	. 1	191	2	316 318	i	667	1
3 8	زد	108	5	192	2	319	,	6 7 9	1
39	9	109	6	194 195	1	3 2 1	غَ	n B 0	1
40	1 4	111	i	: 98	i	323	ī	ს 8 გ 7	1
41	4	112	i	199	ż	3 2 4	i	7 u p 7 1 2	1
4 ८	1.1	113	4	200	1	325	1	725	i
÷ 3	7	114	2	202	1	3 2 8	2	751	i
41.4	В	115	ь	204	3	332	1	7 3 6	ì
د 4	ပ	110	4	2 0 ö	5	335	1	816	i
47	ອ	117	2	207	1	330	2	842	i
4 6	3	118	1	209	1	337	1	878	1
49 50	5	119	4	211	1	338	1	899	1
51	8 8	120	2	212	!	340	2	921	1
52	j	122	1	213	1	3 4 5	2	১ 2 ৪	1
53	4	123	5	2 1 4	1	355	1	939	1
5 4	6	1 2 4 1 2 5	1 5	2 1 5	3	359	2 1	956	1
ວ່ຽ	9	120	2	216	1	365 475	i	∌ 7 1	1
5 0	4	127	4	217 218	ځ	ر 5 7 5 3 8 0	2	973	1
5.7	В	128	0	219	2	381	ī	1035	1
5 8	8	129	j	220	ī	383	i	1088	!
59	Š	130	ī	221	2	ź 8 4	i	1154	1
60	2	131	ž	2 2 2	ī	386	i	1265	
ı≟ 1	ರ	133	5	224	2	338	1	1292	i
b 2	0	134	1	226	3	392	i	1294 1372	i
らう	ಚ	135	1	228	1	394	1	1571	i
6 4	7	136	4	229	i	395	1	1642	i
65	5	137	1	230	1	397	1	1646	i
66	څ	138	3	2 3 1	1	398	1	1863	i
67	3	140	2	237	2	401	2	1878	i
68	2	1 4 2	5	238	1	416	1	2140	1
69 70	2 4	143	1	239	2	419	!	_	
, 0	4					4 3 5	. 1		

APPENDIX A4 (CONTINUED)

WORD-PAIR FREQUENCY DISTIBUTIONS

1 BATCH = 1536 ABSTRACTS
F = FREQUENCY = NUMBER OF ABSTRACTS
P(F) = NUMBER OF WORD-PAIRS WITH FREQUENCY F
(OMITTING REPETITIONS WITHIN AN ABSTRACT)

	BATCH 1	(OMITTING REPETITIONS WITHIN A	N ABSTRACT)		70.4 b	
F	P(F)	BATCHES 1-2 F P(F)	F	P(F)	ES 1-4 F	P(F)
O	443121		O	355154 70954 27141 13663 8130 5291 3712 2654	71	6
1 2	443121 38778 9325 3461	1 53356 2 16297	1 2	70954 27141	72 73	6 7 11 3 10 3
2 3 4	3461 1781	3 7082 4 3801	3	13663	73 74 75 76	3 10
	942 609	5 2376	5	5291	76	3
7	336	7 1057	ზ 7	3712 2654	78	9
567030 1 0	336 271 206	8 768 9 555	2 3 4 5 6 7 8 9 9 1 1 1	2066 1581 1272 1039 820	77 78 79 80 81	4
10 11	138 100	10 428 11 339	10 11	1272 1039	81 82	4 4
12	138 100 82 57 51 46	12 256	12 13 14	820	23	3
13	51	14 164	14	706 596 482	85	1
15 16	46 3 1 15	0 410066 1 533567 2 16297 3 7082 4 3801 5 2376 6 1540 7 1057 8 9 5558 10 428 9 556 112 2396 113 216 114 166 1159 109 116 1139 119 799 20 499 21 499 21 22 499 21 22 23 24 22 23 29 30 30 16	15 16 17 18	482 430	8234567891235678999999999999101	1
17 18	15 21	17 104 18 103	17 18	321 307	38 89	6 8
19	16	19 79	19	430 321 307 294 277	9 1	5
20 21	16	21 62	21	213	93	2
22 23	ਲ 15	22 49 23 38	22 23	214 191	95 96	2
23 24	9	24 35 25 36	24 25	133	97	5
25 26	16568599573323221	26 27	26	191 133 139 121 108	99	2
28 29	3	28 20	27 28	90 101	101	1
30 31	3 2	29 30 30 16	29 30	101 95	102 103	3
32	3	31 15	31	95 73 69 64	103 104 105	2
35	2	31 15 32 13 33 19 34 12	33	64	105 106	2
36 36	1	34 12 35 12	34 35	46 62	107 108	1
30 33 33 35 35 36 39 34	3 2 1	36 15 37 3	36 37	46 62 53 47	109 110	2
42 43 46	1 2	12 15 37 13 93 77 15 64 72 44 44 44 44 44 44 44 44 44 44 44 44 44	19 20 21 22 23 24 26 27 28 29 31 32 33 34 35 36 37 38 39 40	35	111 112	9144434131685222225223131212122123311
46	1	40 9	40	3344356679355327	115 116	į
47 48	1	41 3 7	41 42	45 36	117	1 2 1
119) 1	43 7 44 5	43 44	26 27	118 119	. 1
		45 6 46	45 46	29	119 122 124	1
		47 7	47	25	126	1
		40 2 4	48 49	22 23	129 131	1
		50 4 5 1 2	50 5 1	17 15	132 133	1
		52 4 54 3	52 53	20 21	135 138 142 144	1
		55	54	13	142	1 2 1
		58 1	55 56	11	145	1
		59 2 60 1	57 58	11 13	149 159	1
		61 1 62 3	59 60	10 16	165 166	1 1 1 2 1
		63 3	61	11	168	į
		64 I 65 2	63	14	183	1
		66 1 67 1	64 65	9	190 191	1
		68 1 71 3 72 1	66 67	7	192	į
		72 1	68	$\frac{7}{7}$	207	1
		74 1 1 77	2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	20 21 130 11 11 130 16 11 77 14 98 77 78 6	145 149 169 166 168 175 183 190 191 192 201 207 219 381	1 1 1 1 1
		81 1 82 1	•	•		
		83 84 3				
		84 3 85 1				
		90 1 100 1				
		49856720006539277564724424343121133121113111131222222222222				
0		<u></u> J				

BATCHES 1-8

			DATU	nes I-8			
F	P(F)	F	P(F)	F	P(F)	F	P(F)
F 012345678901234444444489012346789012346789012346789012344444444890123467890124890012489001248900124890012489000000000000000000000000000000000000	P(F) 29671773611135293422023222501068750372805277413484 1396917773861111098766255443765222211643319997878766765484 13969177738611110987662554437652222111111111111111111111111111111111	F 634 56 67 89 0 1 2 3 4 5 6 6 7 8 9 0 1 2 3 4 5 6 6 7 8 9 0 1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	F) 90976189885057181742856425759882053063914934190006727586339644) 64635512633741933257243322343324252382144242422213213432233221 P	F. 55689901234680113459012368125790234457493748787459512401982579991122222222222222222222222222222222	P(F) 323114112212111111212113111221111111111

ERIC

APPENDIX A5

BINARY WORD CONNECTION MATRIX G3

0	0	ACCELERA	13	13 608	APPARATU SEARCH	2 4	632 854	S Y S T E M D R U M
1	1 20	A C O U S T I C A S Y M P T O T		925	SCAN	25	2 5	AVALANCH
	86 212 350	ELECTROM PERPENDI CONDUCT	1 4	14 481 983	APPARENT VIRTUAL LUN	26	26 900	8 A C K G R O U N O I S
	516 818 954	CYLIND Wedge Wave	1 5	3 15	ADIABATI APPROXIM	27	27 954	8 A C K W A R D W A V E
2	2 61	ACTIVITY CORRELAT		1 1 2 4 5 4 7 0 0	GAUSSIAN SEGMENT EXPAN	28	28	8 AL ANCED CONVERSI
	285 467 678 960	STATISTI SUNSPOT CYCLE YEAR	16	16 149	ARGUMENT INTERPLA		497 543 914	8 AL ANC HE ATER PULL
3	3 15 421 730 737	ADIABATI APPROXIM PASSAGE LEVEL MASER	1 7	17 21 260 460 693 755	ARTIFICI ATMOSPHE SATELLIT SPUTNIK EARTH ORBIT	29	29 108 433 491 572 704 754	8 AND WIOT FREQUENC PRODUCT AMPLIF NARROW FIGUR OPTIM
4	4 1 2 8 2 4 8 2 9 8	ADMITTAN IMPEDANC REPRESEN TERMINAL	18	18 205 597 880	ASSOCIAT OUTBURST RECORD HISS		831 874 915	8 A N D G A I N P U M P
	412 581 739	NETWORK PASSIV MATRI	1 9	19 112 257	ASYMMETR GAUSSIAN RESPONSE	30	30 356 630 977	8 I D I R E C T C O N T R O L S W I T C H G A T
5	5 59 201 639 774	ADVANTAG CONVENTI OPERATIO TRIODE RELAY	20	905 1 20 141	PASS ACOUSTIC ASYMPTOT INTEGRAL	3 1	31 544 728	8 I FURCAT HE I GHT LAYER
6	935 6 178 196 362	STAB AFTERNOO MIONIGHT NONSEASO DAYTIME		271 513 538 606 643 699	SOLUTION CONVEX FINITE SCALAR UNIQUE EXACT	32	32 33 183 190 201 314	8 I STABLE 8 LOCKING MONOSTA8 MULTIVIB OPERATIO TRANSIST
7	372 564 678 728	DIURNAL MEDIAN CYCLE LAYER ALPHANUM	2 1	700 775 17 21	EXPAN REVOL ARTIFICI ATMOSPHE		345 477 630 689 8 6 9	CIRCUIT TRIGGER SWITCH DIODE FLIP
	39	CHARACTE		159 163 236	ISOTHERM LIGHTNIN RADIOSON	3 3	3 2 3 3	8 ISTABLE 8 LOCKING
8	8 796	ALTERNAT SOLVE		416 580 672	ORBITAL OXYGEN CLOUD		183 190 203	MONOSTA8 MULTIVI8 OSCILLAT
9	9 1 0	AMPLITUD Analogue		813 850 956	UPPER DRAG WIND		326 477	WAVEFORM TRIGGER
	11 172 511	ANALYSER MATHEMAT COMPUT	22	963	ATTACHME		636 922	T I M I N G R I S E
11	1 0 1 1 7 1	ANALOGUE ANALYSER DIFFEREN		42 87 106 159	COEFFIC; ELECTRON FORMATIO ISOTHERM	3 4	34 216 879 987 999	BREMSSTR PHOTOELE HIGH RAY X
1 2	12 70 86	ANISOTRO Dielectr Electrom	23	240 524 23	RECOMBIN Diffus Attenuat	35	35 380	CALCULAT EVALUAT
	121 399 425	HOMOGENE ISOTROP PERMEA8		520 831	DESIGN 8 AND	3 6	36	CALIBRAT
	565 635 703	MEDIUM TENSOR FIELD		867 893 997	FILT LOSS DB	37	37 328 482	CENTIMET Waveleng Visible
C and by ERIC	741 830	MEDIA AXES	8 5	24 364 441	AUTOMATI DECIM A L READING	38	38 70 235	CERENKOV DIELECTR RADIATIO

38	571	MOVING	56	312	TRANSFOR			DIEEDAGT
39	7	ALPHANUM	5 7	57	CONJUNCT	7 2	72 86	DIFFRACT ELECTRUM SOLUTION
	39 781	CHARACTE SELEN	58	58	CONSTITU	,	271 3 3 9	8 O U N D A R
	816	WAFER		191 829	NITROGEN ATOM		395 5 13	INFINIT
4 0	40 606	CIRCULAR Scalar	59	5	ADVANTAG		60 6 607	SCALAR SCREEN
	647	VECTOR		59 101	CONVENT! FEEDBACK		700 759	EXPAN PLANE
	694 931	ELLIP SLIT		257	RESPONSE DISTORT		8 1 8 9 3 1	WEDGE Slit
	967	8 O D		370 378	EQUALIZ		954 967	WAVE 80D
4 1	4 1	CIRCULAT		462 546	STAGGER HY8RID			
4 2	2 2 4 2	ATTACHME Coeffici		865 874	F E E D G A I N	73	63 73	CORRUGAT DIMENSIO
	240 286	RECOMBIN STUCHAST	60	28	BALANCED		759	PLANE
	580	OXYGEN		60 83	CONVERS! EFFICIEN	7 4	7 4	DIRECTIO
4 3	43 742	COINCIDE		357	CONVERT	7 5	75 490	DIRECTIV AERIAL
		MEMOR	6 1	2	A C T V T Y C O R R E L A T		658	ANALY
4 4	4 4 8 7	COLLISIO ELECTRON		6 1 2 8 5	STATISTI	76	76	DISCHARG
	121 123	HOMOGENE HYDRODYN	62	62	CORRESPO		163 227	LIGHTN!N PRESSURE
	246 316	RELATIVI Transpor	63	63	CORRUGAT		387 566	GASEOUS Mercur
	401 406	KINETIC MAGNETO		73 259	DIMENSIO ROUGHNES		765 7 9 9	PROSE Spark
	413 621	NEUTRAL Static		270 278	SINUSOID SPHEROID	77	77	DISCONTI
	725 876	IONIC GYRO		452 469	S C A T T E R S U R F A C E	78		DISCRETE
4 5				703	FIELD	10	78 111	GALACTIC
4 5	45 337	COMMUNIC BEARING		786 954	SHEET WAVE		573 615	NEBULA SOURCE
46	46	COMPARIS	6 4	6 4 7 4 0	CRITICAL Maxim	79	79	DISSIPAT
4 7	47	COMPATIB	c F		•	80	80	DISTRIBU
4.0	601	RESONA	6 5	5 0 6 5	COMPONEN CRYOTRON		113 159	GEOGRAPH ISOTHERM
48	48 101	COMPENSA Feëdback		252 291	RESISTOR Supercon		4 59 5 00	SPATIAL BRIGHT
	301 461	THERMIST Stabili		365 742	DEPOSIT Memor	81	81	ECCENTR 1
	491	AMPLIF		823 866	WOUND Film		4 1 6 755	ORBITAL ORBIT
4 9	49 348	COMPLEME Collect		938	STOR		775	REVOL
	869	FLIP	66	66 98	CYCLOTRO EXTERN AL	8 2	8 2	EFFECTIV
50	50 65	COMPONEN CRYOTRON		131	I NCOHERE RESONANC	8 3	60	CONVERSI
	308 816	TOLERANC WAFER		587	P L A S M A		83 579	EFFICIEN OUTPUT
	825	ADHE		621	STATIC		763 9 51	POWER Volt
5 1	5 1	COMPRESS	6 7	67 270	DEMODULA SINUSOID	8 4	8 4	ELECTRIC
5 2	5 2	CONCENTR	,	370 407	DISTORT MODULAT		316 746	TRANSPOR Mobil
	191 240	NITROGEN RECOMBIN	68	68	DEPARTUR		985	NET
	519 580	DENSIT OXYGEN	69	69	DERIVATI	85	85 88	ELECTROD ELECTROS
	979	ION		109 248	FUNCTION REPRESEN		830	AXES
53	5 <i>3</i> 341	CONDENSE Capacit	70	12	ANISOTRO	8 6	1 12	A COUSTIC ANISOTRO
5 4	5 4	CONDITIO		38 70	CERENKOV Dielectr		72	DIFFRACT
	194 339	NONPERIO 8 OUNDAR		8 B 399	ELECTROS		86 2 7 7	ELECTROM SPHERICA
55	55	CONFIGUR		425	ISOTROP PERMEAB		278 39 5	SPHEROID
	377 109	EMITTER		565 635	MEDIUM TENSOR		39 9 565	ISOTROP Medium
	673	FUNCTION CONIC		7 4 1	MEDIA		6 0 7 6 17	S C R E E N S P H E R E
° 6	56	CONFORMA	7 1	1 1 7 1	ANALYSER Differen		741 818	MEDIA WEDGE
C.					* ,	86		· - <u>-</u>
by ERIC								

86	954	WAVE	101	852 8 9 2	DRIV LOOP	114	176 371	MICROPUL DISTURB EQUATOR
87	22 44 87	ATTACHME COLLISIO ELECTRON	102	102 341	FERROELE CAPACIT		379 529 591	OYNAMO Pulsat
	191 262 316 413 434 524	NITROGEN SECONOAR TRANSPOR NEUTRAL POFILE DIFFUS TARGET	103	103 166 167 193 405 807	FERROMAG MAGNETIC MAGNE; IS NONMAGNE MAGNETI THEOR SPIN		712 733 762 797 803 894 965	GIANT LOCAL POLAR SOUTH STORM MAIN BAY
	644 710 765 829	VALENC GASES PROBE ATOM	104	934 104 361	F1LAMENT CURRENT	115	115 148 857 960	GEOPHYSI INTERNAT EAST YEAR
88	979 70	ION Dielectr	105	105 927	FLUCTUAT SHOT	116	116	GERMANIU
00	85 88 225	ELECTROD ELECTROS POTENTIA	106	22 106	ATTACHME FORMATIO	110	160 599 792	JUNCTION RECTIF SILIC
89	807 830 89	THEOR AXES ENGINEER		153 240 580 826	IONIZATI RECOMBIN OXYGEN ALTI	117	117 159 325	GRAO1ENT JSOTHERM VERTICAL
	404 435	MACHINE Program		933	SOFT		529	O Y N A M O
	511	COMPUT	107	107	FRACTION	118	118	HAMILTON
90 91	90 91	EQUILIBR	108	29 108 263	BANDWIDT FREQUENC	119	119	HARMONIC
92	92 743 866 903 948	EQUIVALE EVAPORAT METAL FILM OX10 VACU		478 488 572 601 806 890	SELECT # V TUNABLE ADJUST NARROW RESONA SWEEP LOCK	120	113 120 162 324 463 752 797	GEOGRAPH HEMISPHE LATITUOE VARIATIO STATION NORTH SOUTH
93	93 144 532	EXCHANGE INTERACT ENERGY		943 978 984	TONE IOL Mix	121	12 44 121	ANISOTRO COLLISIO HOMOGENE
94	94 381 644	EXCITAT; EXCITED VALENC	109	56 69 109 172 199	CONFORMA DERIVATI FUNCTION MATHEMAT NUMERICA		401 621 635 703 707	KINETIC STATIC TENSOR FIELO FLUIO
95	95 651 693	EXOSPHER WHISTL EARTH		221 311 313	POLYNÓMI TRANSFER TRANSIEN	122	967	BOD HORIZONT
96	96	EXPONENT		380 911 920	EVALUAT POLE REAL		185 325 9 5 6	MOVEMENT VERTICAL
97	97	EXTENSIO	110	110	FUNDAMEN	123	44	WINO COLLISIO
98	66 98 332	C Y C L O T R O E X T E R N A L A N N U L A R		386 680	FOURIER OAMPI	123	123 387 406	HYDROOYN GASEOUS MAGNETO
99	99 391 430	EXTINCTI INCIOEN POLARIZ	111	78 111 235 573	OISCRETE GALACTIC RAOIATIO NEBULA		587 72 5 726	PLASMA IONIC IONIZ
	444 452 5 7 6	REFLECT SCATTER OBLIQU		615 709	S O U R C E G A L A X	124	124 765	HYDROGEN PROBE
	577 694 954	ORIENT ELLIP WAVE	112	771 871 964	RACIO FLUX ARC	1 2 5	125 591 707	HYDROMAG PULSAT FLUID
100	100 243	EXTRAORO Reflexio	112	15 19 112	APPROXIM ASYMMETR GAUSSIAN	126	126	HYPERBOL
	406 645	MAGNETO VALLEY		984	MIX	127	127	HYPOTHES
101	808 876	TRACE GYRO	113	80 113 120	DISTRIBU GEOGRAPH HEMISPHE	128	4 128 138	AOMITTAN IMPEDANC INSERTIO
101	48 59 101 293 461	COMPENSA CONVENTI FEEOBACK SYNCHRON STABILI		162 463 679 7 97	LATITUDE STATION OAILY SOUTH		233 298 487 498	QUADRIPO TERMINAL ACTIVE BRANCH
ERIC C	499 782	BRIOGE SERVO	114	114	WORLD GEOMAGNE		502 556 719	CASCAO LADOER IMAGE

ERIC Full Text Provided by ERIC

128	738	MATCH	145	1 4 5	INTEREER	156	679 7 52	O A I L Y N O R T H
129	129	IMPERFEC	14,5	235	INTERFER RAOIATIO		797	SOUTH
	469	SURFACE		295 328	TELESCOP Waveleng	157	157	IRREGULA
	699	EXACT		490	AERIAL	13.	243	REFLEXIO
130	130	IMPURITY		523	OIAMET		319	TURBULEN ASPECT
	644	VALENC		615 661	SOURCE ASTRO		494 537	FADING
131	66	CYCLOTRO		771	RAOIO		619	SPREAO
	131 246	INCOHERE RELATIVI		993	SUN		655 858	ALIGN ECHO
	413	NEUTRAL	146	146	INTERMED			
	452	SCATTER	147	1 4 7	INTERNAL	158	158 303	IRREVERS THERMODY
	621	STATIC	147	377	EMITTER		832	BASE
132	132	INCREMEN		865	FEEO		901	NOTE
133	133	INDEPENO	148	115 148	GEOPHYSI INTERNAT	159	2 1 2 2	ATMOSPHE ATTACHME
134	134	INDUCTAN		960	YEAR		80	OISTRIBU
	135	INDUCTOR	149	16	ADCHMENT		117	GRADIENT
	341 345	CAPACIT	149	143	ARGUMENT Intensit		159 296	ISOTHERM Temperat
	393	INDUCTI		149	INTERPLA		390	HEAT ING
	823 841	W O U N O C O I L		300 358	TERRESTR CORPUSC		780	SCALE
				515	COSMIC	160	116	GERMANIU
135	134 135	INOUCTAN		693 798	E ARTH SPACE		160 314	JUNCTION Transist
	341	CAPACIT		828	AREA		546	HYBRIO
	439	REACTIV		987	RAY		6 36	ALLOY
136	136	INFORMAT	150	150	INTERVAL		792	SILIC
	4 4 1 4 8 4	READING ACCESS		597 8 11	RECORO TRAIN	161	161	LABORATO
	511	COMPUT		942	TIME	162	113	GEOGRAPH
	632 687	SYSTEM	151	151	LALWADAAL		120	HEMISPHE
	742	O I G I T M E M O R	151	151	INVARIAN		162 184	LATITUOE MORPHOLO
	800	SPEEO	152	152	INVERSIO		379	EQUATOR
	938 940	STOR Tape		222 801	POPULATI Split		679 762	OAILY POLAR
•							768	QUIET
137	137	INHOMOGE	153	106 153	FORMATIO IONIZATI		822 960	₩ORLO YEAR
138	128	IMPEDANC		154	I O N O G R A M			
	138 233	INSERTIO		155 185	10NOSONO MOVEMENT	163	21 76	A T M O S P H E O I S C H A R G
	299	TERMINAT		280	SPORADIC		163	LIGHTNIN
	498 556	8 R A N C H L A O O E R		579 524	EQUATOR OIFFUS		473 603	THUNOER RE TU RN
	719	MAGE		324	017703		626	STROKE
	83 1 867	BANO Filt	154	153	IONIZATI		672	CLOUO
	893	LOSS		154 155	IONOGRAM Ionosono		706	FLASH
	905	PASS		196	NONSEASO	164	164	LONGITUD
139	139	INSTABIL		280 325	SPORAO I C Vert I cal		4 7 4 5 8 7	TORSION Plasma
140	140	INSTRUME		6 4 5	VALLEY	165	165	LUMINESC
	605	ROCKET	155	153	IONIZATI	105	375	ELECTRO
141	20	ASYMPTOT		154 155	IONOGRA M Ionosono	166	103	
	141	INTEGRAL		272	SOUNDING	100	166	FERROMAG Magnetic
	27 1 696	SOLUTION EQUAT		597 619	RECORO		167	MAGNETIS
	700	EXPAN		019	SPREAO		385 405	FERRITE Magneti
	796 818	SOLVE WEOGE	156	156 185	IONOSPHE		45 1	SATURAT
142				243	MOVEMENT Reflexio		569 707	MOMENT Fluio
	142	INTEGRAT		272 325	SOUNDING		708	FORCE
143	143	NTENSIT		362	VERTICAL OAYTIME		7 1 1 8 5 4	GAUSS OR UM
	149 300	INTERPLA Terrestr		372	OIURNAL		877	HEAD
	515	COSMIC		379 463	EQUATOR Station	167	103	EEDDOMAG
144	93	EACHVNC-		481	VIRTUAL	101	144	FERROMAG Interact
	144	EXCHANGE INTERACT		493 529	ARCTIC OYNAMO		166	MAGNETIC
	167	MAGNETIS		609	SEASON		167 56 9	MAGNETIS MOMENT
	382 532	EXCITON ENERGY		6 1 9 6 2 7	SPREAD		934	SPIN
	569	MOMENT		652 652	SUMMER Winter	168	168	MAGNETOM
.1				.,		,		MAGRETOM

168	563	MEASUR	185	153 156	IONIZATI IONOSPHE	201	5	ADVANTAG
169	169 264	MAGNETOR SENICOND		185	MOVEMENT	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	32 201	BISTABLE DPERATIO
	350	CONDUCT	186	186	MULTILAY		292 663	SUPERREG BASIC
	70 3		187	187	MULTIPLI		735	LOGIC
170	170 474	MAGNETOS TORSION	188	188	MULTIPOL		869 9 62	FLIP Add
171	171	MAGNITUD		739	MATRI	202	202	ORTHOGON
172	1 0	ANALOGUE	189	189 ·257	MULTISTA RESPONSE	203	33	BLOCKING
	109 172	FUNCTION MATHEMAT		417	OVERSHO STAGGER	200	203	OSCILLAT
	214	PHOTOCEL					381 410	EXCITED NATURAL
	248 538	REPRESEN FINITE	190	32 3 3	BISTABLE BLOCKING		601 680	RESONA Dampi
	622 631	S T E A D Y S Y M B O L		183 190	MONOSTAB Multivib		890 926	LOCK Self
	647 696	VECTOR EQUAT		345 477	CIRCUIT Trigger	204	204	OSCILLOG
173	173	MECHANIC		869	FLIP		535	EXTREM
174	174	MECHANIS	191	52 58	CONCENTR CONSTITU	205	18	ASSOCIAT
175	175			87 191	ELECTRON		205 667	OUTBURST BURST
173	1 B 1	MICROMIN MINIATUR		238	NITROGEN REACTION		69 8 70 5	ERUPT FLARE
	345 520	C I R C U I T D E S I G N		495 545	ATOMIC HELIUM		794 803	SOLAR STORM
	73 5 7 4 8	LOGIC Modul		58 0 710	O X Y G E N G A S E S	206	206	PARALLEL
176	114	GEOMAGNE		973	1 O N	207	207	PARAMAGN
	1 7 6 591	MICROPUL Pulsat	192	19; 990	NONLINEA ROW		254	RESONANC
177	177	MICROWAV	193	1 0 3	FERROMAG	208	208 24 6	PARTICLE RELATIVI
	276	SPECTROS	123	193	NONMAGNE		3 09	TRAJECTO
178	6	AFTERNOO		934	SPIN		571 590	MOVING PROTON
	178 196	M I DN I GHT Nonseaso	194	54 194	CONDITIO NONPERIO		669 708	CHARG FORCE
	582 733	PERIOD LOCAL	195	195	MONRECIP		757 B34	OUTER BELT
	740 965	M		376 581	ELEMENT Passiv		944	TRAP
179	179	MILLIMET	196	6	AFTERNOU	209	209 685	PENETRAT DEPTH
	289 38 B	SUBMILL: Generat		154 178	IONOGRAM MIDNIGHT	210	210	PERFORMA
	954	WAVE		196 324	NONSEASO			
180	180 388	MILLIMIC GENERAT		466	VARIAT-10 SUNRISE	211	211	PERMANEN
	766 922	PULSE		492 519	ANOMAL DENSIT	212	1 2 1 2	ACOUSTIC PERPENDI
181		RISE		5 4 4 6 0 9	HEIGHT SEASON		647 759	VECTOR PLANE
181	175 181	MICROMIN MINIATUR		679 72 B	DAILY LAYER		786	SHEET
182	182	MOMENTUM	197	197	NONUNIFO	213	213 883	PHENOMEN Jump
107	532	ENERGY	198	198	NORMALIZ	214	172	MATHEMAT
183	3 2 3 3	BISTABLE Blocking		299 633	TERMINAT TABULA		214 302	PHOTOCEL THERMOCO
	183 190	MONOSTAB Multivib		867	FILT	015		
	314 345	TRANSIST Circuit	1 99	109 199	FUNCTION	215	215 3 7 5	PHOTOCON ELE C TRO
	47 7 610	TRIGGER SELECT	2 0 0		NUMERICA	216	34	BREMSSTR
	835 8 6 9	BIAS	200	200 295	OBSER VAT TELESCOP		2 1 6 7 4 3	PHOTOELE Metal
184				300 366	TERRE STR DETONAT		9 0 9	PHOT
104	162 184	LATITUDE Morpholo		400 500	JUPITER Bright	217	217 596	PHOTOGRA
	371 489	D I STURB Advanc		5 73 6 4 9	NEBULA VISUAL		597	RECEIV RECORD
	803 994	STORM TID		661	ASTRO		649	VISUAL
Q .	122			736 768	MAJOR QUIEȚ	21 8	218 456	PHOTOSEN Sh ap ing
Provided by ERIC		HORIZONT		7 97	SOUTH		6 7 5	COUNT

- 236	993 2 1	SUN Atmosphe		501 823 973	CARBON Wound Fix		520 572 905	DESIGN NARROW PASS
	573 709 834 871 988	NEBULA GALAX BELT FLUX RED	252	439 65 251 252 436	REACTIV CRYOTRON RESISTIV RESISTOR PROTECT	263	108 257 263 378 462 499	FREQUENC RESPONSE SELECTIV EQUALIZ STAGGER BRIDGE
	235 328 363 400 500 514	RADIATIO WAVELENG DECIMET JUPITER BRIGHT CORONA	251	250 251 252 341	RESISTAN RESISTIV RESISTOR CAPACIT		532 634 743 903	ENERGY TARGET METAL OXID
235	38 111 145	CERENKOV GALACTIC INTERFER	2 4 9 250	2 4 9 226	RESI D UAL Potentio		262 338 432 531	SECONDAR 80M8ARD PRIMARY EMISSI
234	234 415 737	QUADRUPO NUCLEAR MASER		172 248 349 739	MATHEMAT REPRESEN COMPLEX MATR	26 1 262	261 936 87	SCINTILL STAR ELECTRON
	340 412 498 502 581 719	CANONIC NETWORK BRANCH CASCAD PASSIV IMAGE	2 4 7 2 4 8	708 2 47 25 4 4 69	RELAXATI RESONANC ADMITTAN DERIVATI		460 557 693 755 815 850	SPUTNIK LAUNCH EARTH ORBIT VEHIC DRAG
233	128 138 233 298	IMPEDANC INSERTIO QUADRIPO TERMINAL		401 542 551 571 669 708	K!NET#C GROWTH INJECT MOVING CHARG FORCE		260 366 384 416 424	SATELL!T DETONAT FARADAY ORBITAL PERIGEE SPHINIK
232	95 4 232 398	WAVE PROPORTI INVERSE		131 208 246	INCOHERE PARTICLE RELATIVI	260	563 17	MEASUR ARTIFICI
231	231 406 741 856	PROPAGAT MAGNETO MEDIA DUCT	245 246	245 44	RELATIVE COLLISIO	259	63 259 444 469	CORRUGAT ROUGHNES REFLECT SURFACE
230	230	PROGRESS	2 4 4	244 293 849	REGENERA SYNCHRON DIVI		665 675	8 I N A R C O U N T
229	229	PROBABIL		243	REFLEXIO	258	258	REVERSIB
228	545 710 765 228	HELIUM GASES PROBE PRINCIPA	243	418 100 156 157	PARABOL EXTRAORD IONOSPHE IRREGULA	257	937 257 417 990	STEP RESTRICT OVERSHO ROW
227	76 227 387 424	DISCHARG PRESSURE GASEOUS PERIGEE	2 41 2 4 2	241 242 295	REFERENC REFLECTO TELESCOP		471 782 883 910	TELEVIS SERVO JUMP PLOT
226	336 226 250	BARRIER POTENTIO RESISTAN		240 495 580 863	RECOMBIN ATOMIC OXYGEN FALL		313 378 417 454 462	TRANSIEN EQUALIZ OVERSHO SEGMENT STAGGER
225	411 88 225	NEGATIV ELECTROS POTENTIA	240	2 2 4 2 5 2 1 0 6	ATTACHME COEFFICI CONCENTR FORMATIO		59 189 256 263	CONVENTI MULTISTA RESPONSE SELECTIV
223	2 2 3 5 0 4 2 2 4	POSITION CENTRE POSITIVE		581 695 904	PASSIV EQUAL PAIR	256	410 668 19	NATURAL CAVIT ASYMMETR
222	152 222 737 915	INVERSIO POPULATI MASER PUMP	239	238 580 239 298	REACTION OXYGEN RECIPROC TERMINAL	255	286 415 702 255	STOCHAST NUCLEAR FERRI RESONATO
221	109 221 920	FUNCTION POLYNOMI REAL	238	439 990 191	REACTIV ROW NITROGEN	254	66 207 247 254	CYCLOTRO PARAMAGN RELAXATI RESONANC
220	220	POLARITY	237	848	DATA REACTANC		879 9 2 5	HIGH SCAN
219	219 360	PIEZOELE CRYSTAL		445 563 721	REFRACT MEASUR INDEX	253	253 490 600	RESOLUTI AERIAL RESOLV
218	753	OPTIC	236	23 6	RADIOSON			

264	169 264 342	MAGNETOR SEMICOND CARRIER	280	280 325 544 597 858	SPORADIC VERTICAL HEIGHT RECORD ECHO	295	596 661 771 925	RECEIV ASTRO RADIO SCAN
265	265 324 529 983 983	SEMIDIUR VARIATIO DYNAMO PHAS LUN TID	281	281 520 610 898	SPURIOUS DESIGN SELECT MODE	296	159 296 304 329 924	ISOTHERM TEMPERAT THERMOEL AMBIENT ROOM
266	266	SENSITIV	282	282	STANDARD	297	297 372	TEMPORAL DIURNAL
	494	ASPECT	283	283 381	ST ANDI NG Excited		609	SEASON
267	267	SEQUENCE		587 954	PLASMA Wave	298	4 1 2 8	ADMITTAN IMPEDANC
268	268	SEQUENTI	284	284	STATIONA		233 239	QUADRIPO RECI p roc
269	269 496 858	SIMULTAN AURORA ECHO		538 542 696	FINITE GROWTH EQUAT		298 412 581	TERMINAL NETWORK Passiv
270	63 67 270 370	CORRUGAT CEMODULA SINUSOID DISTORT	285	2 61 285 467 582	ACTIVITY CORRELAT STATIST! SUNSPOT PERIOD	299	138 198 299 439 438	INSERTIO NORMALIZ TERMINAT REACTIV 8 RANCH
271	20 72 141 271	ASYMPTOT DIFFRACT INTEGRAL SOLUTION	286	803 42 254	STORM COEFFICI RESONANC		556 738 905	LAUDER MATCH PASS
	278 339 395 538 606 607	SPHEROID 8 OUNDAR INFINIT FINITE SCALAR SCREEN		286 595 616 807 934	STOCHAST RANDOM SPECTR THEOR SPIN	300	143 149 200 300 515 693	INTENSIT INTERPLA OBSERVAT TERRESTR COSMIC EARTH
	643 696 699 700	UNIQUE EQUAT EXACT EXPAN	287 288	287 703 288	STRENGTH FIELD STRUCTUR		803 987 993	STORM FAY SUN
	796	SOLVE		8 6 8	FINE	301	48 301	COMPENSA THERMIST
272	155 156 272 325	IONOSOND IONOSPHE SOUNDING VERTICAL	289	179 289 388	MILLIMET SUBMILLI GENERAT		329 461	AMBIENT STABILI
	481 858	VIRTUAL ECHO		8 3 3 9 5 4	8 E A M W A V E	302	214 302	PHOTOCEL THERMOCO
273	273	SPECIMEN	290	290 626	SUCCESSI STR O KE	303	158 303	IRREVERS THERMODY
274	274 276	SPECTROG Spectros	291	65 29 1 365	CRYOTRON SUPERCON DEPOSIT	304	296 304	TEMPERAT THERMOEL
275	275 276	SPECTROM Spectros	292	201	OPERATIO	3 O S	305 785	THICKNES SHEAR
276	177	MICROWAV		292 4 1 9	SUPERREG Paramet	306	306	THRESHOL
	274 275	SPECTROG SPECTROM		49 1 689	AMPLIF DIODE	307	307	THYRATRO
277	276 86	SPECTROS	00-	900	NOIS		345 446	C I R C U I T R E G U L A T
211	277 350	ELECTROM SPHERICA	293	101	F E E D B A C K R E G E N E R A		450 468	SATURA8 Supplie
	516 759	CONDUCT CYLIND PLANE		293 370	SYNCHRON DISTORT		579 951	OUTPUT VOLT
278	6 3	CORRUGAT		403 724 943	LEADING INPUT TONE	308	50 308	COMPONEN TOLERANC
	86 2 71 278	ELECTROM Solution Spheroid	29 4	294	SYNTHESI		520 950	DESIGN VIEW
	606 700	S C A L A R E X P A N		340 376	CANONIC ELEMENT	3 09	208	PARTICLE
	967	BOD	295	412	NETWORK Interfer		309 669	TRAJECTO CHARG
2 7 9	2 7 9 506	SPONTANE CDHERE	275	200	OBSERVAT REFLECTO	310	310	TRANSDUC
	531	EMISSI		295 490	TELESCOP AERIAL	311	109	FUNCTION
E _V ERIC	153 154	I O N I Z A T I I O N O G R A M		523 568	DIAMET		311 412 911	TRANSFER NETWORK POLE

312	56 312 340	CONFORMA TRANSFOR CANONIC	325	325 544 728 780	VERTICAL HEIGHT LAYER SCALE	342	264 342	SEMICOND CARRIER
•	386 801	FOURIER SPLIT	326	983 33 326	LUN BLOCKING Waveform	3 4 3	343 421 467 582	CENTRAL PASSAGE SUNSPOT PERIOD
313	109 257 313	FUNCTION RESPONSE TRANSIEN OVERSHO		6 1 0 766	SELECT PULSE	3 4 4	344	CHANNEL
	417 559 724 937	LINEAR INPUT STEP	327 328	327 37	WAVEGUID CENTIMET	345	32 134 175	BISTABLE INDUCTAN MICROMIN
314	32 160 183 314 345	BISTABLE JUNCTION MONOSTAB TRANSIST CIRCUIT	740	1 45 2 3 5 3 2 8 3 6 3 7 4 4	INTERFER RADIATIO WAVELENG DECIMET METRE		183 190 307 314 345 440	MONOSTAB MULTIVIB THYRATRO TRANSIST CIRCUIT REACTOR
	348 377 477 663 671	COLLECT EMITTER TRIGGER BASIC CLASS	329	296 301 329 403 844	TEMPERAT THERMIST AMBIENT LEADING COOL	346	456 477 497 852	SHAPING TRIGGER BALANC DRIV CLASSIC
	835 838 869	BIAS Chop Flip	330	330	ANALOGY	940	635 703	TENSOR FIELD
315	9 3 5	STAB TRANSITI	331	331 771	ANGULAR RADIO		796 807 830	SOLVE THEOR AXES
316	4 4	COLLISIO	332	98 332	EXTERNAL ANNULAR	3 4 7	3 4 7	CLASSIF
	84 87 316 401 621	ELECTRIC ELECTRON TRANSPOR KINETIC STATIC	333	530 333 490 596	ECLIPS ANTENNA AERIAL RECEIV	348	49 314 348 377	COMPLEME TRANSIST COLLECT EMITTER
	703 726 746	FIELD IONIZ MOBIL	334	334	AVERAGE	349	248 349	REPRESEN COMPLEX
317	976 317 621 703	GAS TRANSVER STATIC FIELD	335	335 515 826 987	BALLOON COSMIC ALTI RAY	350	1 169 277 350	ACOUSTIC MAGNETOR SPHERICA CONDUCT
318	318 954	TRAVELL! WAVE	336	225 336 469	POTENTIA BARRIER SURFACE		513 516 607 617	CONVEX CYLIND SCREEN SPHERE
319	157 319 567 780 810	IRREGULA TURBULEN METEOR SCALE TRAIL	337 338	45 337 384 262	COMMUNIC BEARING FARADAY SECONDAR		6 4 4 6 9 9 7 0 7 7 8 6 9 3 0	VALENC EXACT FLUID SHEET SKIN
320	320	UNIDIREC	·	338 531	BOMBARD EMISSI	351	351	CONSERV
321	321	UNIVERSA	339	54 72	CONDITIO OIFFRACT	3 52	532 352	E NERGY CONSTAN
322	322	UNSTABLE		271 339	SOLUTION BOUNDAR	353	353	CONTACT
323	323 973	VARIABLE FIX		538 643 673	FINITE UNIQUE CONIC	7.5.4	76 1	POINT
324	120 196	HEM ISPHE Nonseaso		759	PLANE	354 355	354 355	CONTINU
	265 324 372 609 627 652 679 882	SEMIDIUR VARIATIO DIURNAL SEASON SUMMER WINTER DAILY HOUR	340	233 294 312 340 412 581 739	QUADRIPO SYNTHESI TRANSFOR CANONIC NETWORK PASSIV MATRI	356	30 356 455 588 589 750	8 I D I RECT CONTRUL SENS I NG PRECIS PRESET MOTOR
325	960 994 117 122 154	YEAR TID GRADIENT HORIZONT IONOGRAM	341	53 102 134 135 251	CONDENSE FERROE; E INDUCTAN INDUCTOR RESISTIV	357	60 357 403 642 724	CONVERS I CONVERT LEAD ING TUNNEL INPUT
C ady ERIC	156 272 280	IONOGRAM IONOSPHE SOUNDING SPURADIC		341 484 791 973	CAPACIT ACCESS SHUNT FIX	358	149 358 705	INTERPLA CORPUSC Flarë

358	736	MAJDR	777		0000150	387	123 227	HYDRODYN Pressure
359	359	CORRECT	373	373 384 460	DOPPLER FARADAY SPUTNIK		387 545	G A S E O U S H E L I U M
360	219 360	PIEZOELE Crystal		788	SHIFT		587 7 65	PLASMA PROBE
	382	EXCITON	374	374	DYNAMIC	388	179	MILLIMET
	648 785	V I 8 R A T S H E A R	375	165	LUMINESC	960	180	MILLIMIC
361	104	FILAMENT		215 375	PHOTOCON ELEC T RO		289 388	SUBMILLI GENERAT
	361 393	CURRENT ! NDUCT I	376	195	NONRECIP		8 4 9 922	DIVI RISE
	603	RETURN	270	294	SYNTHESI	7.00		
	722 97 1	I N D U C E D D		376	ELEMENT	389	389	GEOMETR
362	6	AFTERNOO	377	55 14 7	CONFIGUR Internal	390	159 390	ISOTHERM HEATING
	156 362	IONOSPHE DAYTIME		314 348	TRANSIST COLLECT	391	99	EXTINCT
	372	DIURNAL		377	EMITTER	,	391	INCIDEN
	463 609	STATION SEASON		491 671	AMPLIF CLASS		444 5 76	REFLECT OBLIQU
	627 652	SUMMER Winter		791 8 35	SHUNT BIAS		931	SLIT
	751	NIGHT	378	59	CONVENTI	392	392	INDICAT
363	24	AUTOMATI	278	257	RESPONSE	393	134	INDUCTAN
	363 441	DECIMAL READING		263 378	SELECTIV EQUALIZ		361 393	CURRENT INDUCTI
	665 687	BINAR Digit		471 520	TELEVIS DESIGN	394	394	INERTIA
	940 962	TAPE ADD	379	114	GSOMAGNE		621	STATIC
	966 968	BIT	2,13	153	IONIZATI	395	72	DIFFRACT
		COD		1 5 6 162	IONOSPHE Latitude		86 271	ELECTRUM SOLUTION
364	235 328	RADIATIO ₩AVELENG		379 728	EQUATOR LAYER		395 513	INFINIT CONVEX
	364	DECIMET		768	QUIET		606 607	SCALAR SCREEN
365	65 291	CRYOTRON Supercon	380	35	CALCULAT		699	EXACT
	365	DEPOSIT		109 380	FUNCTION EVALUAT		759 786	PLANE SHEET
	866	FILM	381	94	EACITATI		967	BOD
366	200 260	OBSERVAT Satellit		203 283	O S C I L L A T S T A N D I N G	396	396	INITIAL
	366 383	DETONAT EXPLOSI		381	EXCITED	397	397	INSULAT
	415 734	NUCLEAR		5 87 668	PLASMA CAVIT		743	METAL
	944	L O C A T T R A P	382	1 4 4	INTERACT	398	232 398	PROPORT I Inverse
367	367	DEVELDP		360 382	CRYSTAL EXCIT O N	399	12	ANISOTRO
368	368	OISPERS		402 648	LATTICE VIBRAT		70 86	DIELECTR ELECTROM
3 69	369	DISPLAC		807	THEOR		399	ISOTROP
370	59	CONVENTI	383	366	DETONAT		635	TENSDR
,,,	6 7	DEMODULA		383 415	EXPLOS! NUCLEAR	400	200 235	OBSERVAT RADIATIO
	270 293	SINUSOID Synchron		5 5 3	ISLAND		40 0 586	JUPITER PLANET
	370 671	DISTORT CLASS	384	260 337	SATELL IT Bearing		771	RADIO
371	114	GEOMAGNE		373	DOPPLER	401	44	COLLI
	184 371	MORPHOLO DISTURB		384 444	FARADAY REFLECT		121 246	HOMOGENE RELATIV!
	712	GIANT		519 5 3 7	DENSIT FADING		316 401	TRANSPOR KINETIC
	733 762	LOCAL Polar		7 7 7	ROTAT		532	ENERGY
372	6	AFTERNOO	385	166	MAGNETIC		708 807	FORCE THEOR
	156 297	I ONOSPHE TEMPORAL		385 405	FERRITE Magneti	402	382	EXCITON
	324	VARIATIO		8 4 5	CORE		402	LATTICE
	362 372	DAYTIME Diurnal	3 86	110 312	FUNDAMEN Transfor	403	293	SYNCHRON
	609 679	SEASON Daily		386	FOURIER		3 2 9 3 5 7	AM81ENT CONVERT
9	733	LOCAL		622 643	STEADY Unique		403	LEADING
<u>IC</u>	768 797	QUIET South	387	7 6	DISCHARG	404	89	ENGINEER
vided by ERIC	882	HOUR			5,17,11,0		404	MACHINE

404	435 484 511 632	PROGRAM ACCESS COMPUT SYSTEM	416	755 850 189	ORBIT DRAG MULTISTA	434	434 481 519 544	PROFILE VIRTUAL DENSIT HEIGHT
	687 854 938	DIGIT DRUM STOR		257 256 313 417	RESPONSE RESTRICT TRANSIEN OVERSHO	135	89 404 435 5 1 1	ENGINEER MACHINE PROGRAM COMPUT
405	103 166 385 405	FERROMAG MAGNETIC FERRITE MAGNETI		462 718 922 937 942	STAGGER IDEAL RISE STEP TIME	436	252 436 792	RESISTOR PROTECT SILIC
406	44 100 123	COLLISIO Extraord Hydrooyn	418	2 4 2 4 1 8	REFLECTO PARABOL	437	437 914	QUALITY Pull
	231 406 480 587 725 726	PROPAGAT MAGNETO VELOCIT PLASMA IONIC IONIZ	419	292 419 704 719 915	SUPERREG PARAMET FIGUR IMAGE PUMP	438	438 567 612 810	RADIANT METEOR SHOWER TRAIL
	876	GYRO		978	IDL	439	135 237	I NOUCTOR REACTANC
407	67 407	DE MDDUL A MODUL A T	420	420 530 726	PARTIAL ECLIPS IONIZ		251 299 439	RESISTIV TERMINAT REACTIV
408	408 657	M O L E C U L A M M O N	421	3 3 4 3	ADIABATI CENTRAL		498 990	8 R A N C H R O W
409	409	MULTIPL		421 698	PASSAGE ERUPT	4 4 0	345 440	C I R C U I T R E A C T O R
410	203 255 410	DSCILLAT RESONATO NATURAL	422	422	PATTERN		450 451 579	SATURAB SATURAT OUTPUT
411	2 2 4 4 1 1	POSITIVE NEGATIV	423	423 461 491	PENTODE STABILI AMPLIF		589 845 951	PRESET CORE VOLT
412	4 233 294 298	ADMITTAN QUAORIPO SYNTHESI TERMINAL		639 814 827 875	T R I O D E V A L V E A N D D G R I D	441	24 136 364 441	AUTOMATI INFORMAT DECIMAL READING
	311 3,9 -12 498 555 556 581 739	TRANSFER CANONIC NETWORK BRANCH ITERAT LADDER PASSIV MATRI	424	227 260 416 424 540 544 755 850	PRESSURE SATELLIT ORBITAL PERIGEE GRAVIT HEIGHT ORBIT DRAG		589 665 854 919 940 959 968	PRESET 8 I NAR DRUM READ TAPE WRIT COD
413	44		425			442	442	RECOGNI
412	87 131 413	COLLISIO ELECTRON INCOHERE NEUTRAL	423	12 70 425	ANISOTRO Dielectr Per m eas	443	443 942	RECOVER TIME
	524	DIFFUS	426	426	PERSIST	444	99	EXTINCTI
	587 621 726	PLASMA STATIC IONIZ GAS	427	427 570	PERTUR8 MOTION		259 384 391	ROUGHNES FARADAY INCIDEN
	976 979	ION	428	4 2 B	PICTURE		4 4 4 4 8 1	REFLECT V I R T U A L
414	414 515 590 681 723 834	NEUTRON COSMIC PROTON OECAY INNER BELT	429	429 625 764 825 836 950	PLASTIC STRESS PRINT ADHE BOND	445	576 236 445 505 721	OBLIQU RADIOSON REFRACT CLIMAT INOEX
	987	RAY			VIEW	446	307	THYRATRO
415	234 254 366	QUAORUPO RESONANO DETONAT	430	99 430 694	EXTINCTI POLARIZ ELLIP		446 468 579 763	REGULAT SUPPL;E OUTPUT POWER
	3 B 3 4 1 5	EXPLOS! NUCLEAR	431	431	PRED IC T		B 5 2	DRIV
	553	ISLAND	432	262 432	SECONDAR Primary		951 995	VOLT TUN
416	21	ATMOSPHE		532	ENERGY		998	DC
	21 260 416 424	ECCENTRI SATELLIT ORBITAL PERIGEE	433	29 433	SANDWIDT PRODUCT	447	447 605 672	RELEASE ROCKET CLOUD
	693	EARTH	434	87	ELECTRON	4 4 8	4 4 8	REVERSA

448	692	DRIFT	463	960	YEAR	480	406 480	MAGNETO VELOCIT
449	449 599 781	REVERSE RECTIF SELEN	464	464 88 8	STRAIGH LINE		57 1 69 2 8 0 5	MOVING DRIFT SURGE
	792	SILIC	465	465	STRATIF	481	14	APPARENT
450	307 440 450 451 552 845	THYRATRO REACTOR SATURAB SATURAT INVERT CORE	466 467	196 466 628 728 751	NONSEASO SUNRISE SUNSET LAYER NIGHT	401	156 272 434 444 481 544	ONOSPHE SOUNDING PROFILE REFLECT VIRTUAL HEIGHT VALLEY
451	166 440 450 451	MAGNETIC REACTOR SATURA8 SATURAT		285 343 467 575	STATISTI CENTRAL SUNSPOT NUMBER	482	863 37 482	FALL CENTIMET VIS18LE
452	63 99 131	CORRUGAT EXTINCTI INCOHERE		6 7 8 7 9 4 9 6 0	CYCLE SOLAR YEAR	483	483 845	WINDING CORE
	452 494 776	SCATTER ASPECT RIGID	468	307 446 461 468	THYRATRO REGULAT STABILI SUPPLIE	484	136 341 404 484	INFORMAT CAPACIT MACHINE ACCESS
453 454	453 677 15	SECTION CROSS APPROXIM		579 7 63 95 1 995	OUTPUT POWER VOLT TUN		595 735 742 854	RANDOM LOGIC MEMOR DRUM
	257 454 559 832	RESPONSE SEGMENT LINEAR 8ASE	469	998 63 129	DC CORRUGAT IMPERFEC	485	938 966 485	STOR 8 I T ACCURA
455	356 455	CONTROL SENSING		259 336 469 513	ROUGHNES BARRIER SURFACE CONVEX	486	486 737 795	ACTION MASER SOLID
456	218 345 456 766	PHOTOSEN CIRCUIT SHAPING PULSE	470	923	ROCK Symmetr	487	128 487	I MPEDANC ACTIVE
457	457	SIMILAR	4 7 1	257 378	RESPONSE EQUALIZ	488	108 488	FRÈQUENC ADJUST
458	458	SIMULAT		471 508 831	TELEVIS COLOUR 8 A N D		497 543 8 1 4	8 A L A N C H E A T E R V A L V E
459 460	80 459 1 7	DISTRIBU SPATIAL ARTIFICI	472	472 878 981	THERMAL NEAT LAW	489	184 489 529	MORPHOLO AOVANC DYNAMO
	260 373 460 537 755	SATELLIT DOPPLER SPUTNIK FADING ORBIT	473	163 473 706	LIGHTNIN THUNDER FLASH	490	75 145 253 295	DIRECTIV INTERFER RESOLUTI TELESCOP
46 1	48 101 301 423	COMPENSA FEEDBACK THERMIST PENTODE	474	164 170 4 7 4 867	LONGITUD MAGNETOS TORSION FILT		333 490 523 5 9 6 6 0 0	ANTENNA AERIAL DIAMET RECEIV RESOLV
	461 468 499	STABILI SUPPLIE BRIDGE	475	475 942	TRANSIT Time		660 66 1	ARRAY ASTRO
	543 875 935	HEATER GRID STAB	476 477	476 32	TRANSMI Bistable	4 9 1	29 48	8 AND WIDT COMPENSA
462	491 572 633 691 831 905 995	AMPLIF NARROW TABULA OOUBL 8AND PASS TUN	•••	33 183 190 314 345 477 766 869	BLOCKING MONOSTAB MULTIVIB TRANSIST CIRCUIT TRIGGER PULSE FLIP		292 377 422 491 703 874 874	SUPERREG EMITTER PENTODE STAGGER AMPLIF 8 ALANC FIGUR CHOP GAIN
463	113 120 156 362	GEOGRAPH HEMISPHE IONOSPHE DAYTIME	478	108 478 831 917	FREQUENC TUNABLE 8AND RANG	492	915 978 196 492	PUMP IDL NONSEASO ANOMAL
	4 6 3 752 797	STATION NORTH SOUTH	479	4 '' 9	UNIFORM		930	SKIN
RIC	822	SOUTH WORLD		621	STATIC	493	156 4 93	IONOSPHE ARCTIC

494	157 266 452	IRREGULA SENSITIV SCATTER	507	507 632 782 892	CLOSED SYSTEM SERVO LOOP	520	263 281 308 378 520	SELECTIV SPURIOUS TOLERANC EQUALIZ DESIGN
	494 655 858	ASPECT ALIGN ECHO	508	47 1 508	TELEVIS COLOUR		663 691 738	BASIC DOUBL MATCH
495	191 240	NITROGEN RECOMBIN	509	509	COLUMN	5 2 1	521	DETECT
	495 580	A TOMIC OXYGEN	510	5 1 0 559	COMBIN Linear	522	522	DEVIAT
	829	ATOM	511	511	COMPOS	523	145	INTERFER
496	269 496 553 965 996	SIMULTAN AURORA ISLAND BAY ZON	512	10 89 136 404 435	ANALOGUE ENGINEER INFORMAT MACHINE PROGRAM	C	295 490 523 568 661 744	TELESCOP AERIAL DIAMET MIRROR ASTRO METRE
497	28 345 488 491 497 543 552	8 A L A N C E D C I R C U I T A D J U S T A M P L I F B A L A N C H E A T E R I N V E R T O U T P U T	513	512 687 854 919 940 20	COMPUT DIGIT DRUM READ TAPE ASYMPTOT DIFFRACT	524	2 2 8 7 1 5 3 4 1 3 5 1 9 5 2 4 7 2 6	ATTACHME ELECTRON IONIZATI NEUTRAL DENSIT DIFFUS IONIZ
	8 1 4 9 5 1	VALVE VOLT		350 395	CONDUCT INFINIT	- 0.5	979	1 O N
400	998	DC		469 513	SURFACE CONVEX	525	525	DIRECT
498	128	IMPEDANC INSERTIO		516 759	CYLIND PLANE	526	526	DISTAN
	233 299 412	QUADRIPO TERMINAT	5 1 4	967	BOD	527	527	DIVERG
	439 498	NETWORK REACTIV	514	235 500	RADIATIO BRIGHT	528	528	DOMIN
	556 719 867 905	BRANCH LADDER IMAGE FILT PASS		514 698 794 9 9 3	CORONA ERUPT SOLAR SUN	529	114 117 156 265 489	GEOMAGNE GRADIENT IONOSPHE SEMIDIUR ADVANC
499	101 263 461 499 855	FEEDBACK SELECTIV STABILI BRIDGE OUAL	515	143 149 300 335 414 515 578	INTENSIT INTERPLA TERRESTR BALLOON NEUTRON COSMIC ORIGIN		529 707 768 807 894 939 9 94	DYNAMO FLUID QUIET THEOR MAIN TAIL
500	80 200 235 500 514 573	DISTRIBU OBSERVAT RADIATIO BRIGHT CORONA NEBULA		590 705 834 871 987	PROTON FLARE BELT FLUX RAY	530	332 420 530 794	ANNULAR PARTIAL ECLIPS SOLAR
	771 828 964 993	RADIO AREA ARC SUN	516	1 277 350 513 516	ACOUSTIC SPHERICA CONDUCT CONVEX CYLIND	531	262 279 33B 531	SECONDAR SPONTANE 8 OMBARD EMISSI
5 O 1	252 501 535 866	RESISTOR CARBON EXTREM FILM		617 662 673 786	SPHERE AXIAL CONIC SHEET	532	623 634 860	STIMUL TARGET EMIT
502	128	MPEDANC		830	AXES	572	93 144 182	EXCHANGE INTERACT MOMENTUM
	233 502	QUADRIPO Cascad	5 1 7	5 1 7	DEFOR M		262 351	SECONDAR CONSERV
503	905	PASS	5 1 8	5 1 8	DEGREE		401 432	KINETIC
305	503 B27 B42	CATHOD ANOD COLD	5 1 9	52 196 384	CONCENTR NONSEASO EARADAY		532	ENERGY
504	223	POSITION		434 5 19	FARADAY PROFILE	533	533	EXAMIN
	504	CENTRE		5 2 4 6 4 5	DENSIT DIFFUS	534	534	EXTEND
505	4 4 5 5 0 5	REFRACT CLIMAT		780 8 1 3 8 6 3	VALLEY SCALE UPPER FALL	535	204 501 535 604	OSCILLOG CARBON EXTREM RIPPLE
506	279 506	SPONTANE COHERE	520	23 175	ATTENUAT MICROMIN		9 35 982	STAB LOW

536	536	FACTOR	553	383 415	EXPLOS NUCLEAR AURORA	570	427 570	PERTURB MOTION
537	157 384	I R R E G U L A F A R A D A Y		496 55 3	ISLAND	c 7 1	38	CERENKOV
	460 537	SPUTNIK FADING	554	554	ISOLAT	5 7 1	208	PARTICLE RELATIVI
£ 7.0	6 1 3 9 5 6	SIGNAL WIND	555	4 1 2 5 5 5	NETWORK I TERAT		2 4 6 4 8 0 5 7 1	VELOCIT MOVING
538	20 172 171 284 338 5447 796	ASYMPTOT MATHEMAT SOLUTION STATIONA BOUNDAR FINITE UNIQUE VECTOR SOLVE	556	128 138 299 412 498 556 719	IMPEDANC INSERT IO TERMINAT NETWORK BRANCH LADDER IMAGE MATCH	572	29 108 263 462 572 676 831	BANDWIDT FREQUENC SELECTIV STAGGER NARROW COUPL BAND
539	539	FLIGHT		867 905	FILT PASS	573	78 111	DISCRETE
	557 563 605	LAUNCH MEASUR ROCKET	557	260 539 557	SATELLIT FLIGHT LAUNCH		200 235 500 573	OBSERVAT RADIATIO BRIGHT NEBULA
540	424 540	PERIGEE Gravit		605	ROCKET		615 661	SOURCE ASTRO
	693	EARTH	558	558	LENGTH		709 77 1	GALAX RADIO
5 4 1	541	GROUND	559	3 1 3 4 5 4	TRANSIEN SEGMENT		964	ARC
542	246 284	RELATIVI STATIDNA		510 559	CDMBIN LINEAR	574	574	NORMAL
	2 8 4 5 4 2	GROWTH		739	MATRI	575	467 575	SUNSPOT Number
543	28 4 61	B A L A N C E D S T A B I L I	560	560	LIQUID	576	9 9	EXTINCTI
	488 497	ADJUST BALANC	561	561	MAGNET		39 1 444	INCIDEN Reflect
	543 8 1 4	HEATER VALVE	562	562	MATTER		576	OBLIQU
544	951 31	VOLT BIFURCAT	563	168 236 259	MAGNETDM RADIOSON ROUGHNES	577	99 577	EXTINCT! ORIENT
	196 280	NONSEASO SPDRADIC		539 563	FLIGHT MEASUR	578	5 1 5 5 7 8	COSMIC Drigin
	325 424	VERTICAL PERIGEE		605 765	ROCKET PROBE	579	83	EFFICIEN
545	434 481 544 528 751 813	PROFILE VIRTUAL HEIGHT SUNSET NIGHT UPPER	564	6 564 678 679 749 960	AFTERNOO MEDIAN CYCLE DAILY MDNTH YEAR	0,13	3 0 7 4 4 0 4 4 6 4 6 8 4 9 7 5 5 2 5 7 9	THYRATRO REACTOR REGULAT SUPPLIE BALANC INVERT OUTPUT
343	227 387 545 587 765	NITROGEN PRESSURE GASEDUS HELIUM PLASMA PROBE	56 5	12 70 86 565 741	ANISOTRO OIELECTR ELECTROM MEDIUM MEDIA	580	724 852 962 21 42	INPUT DRIV ADD ATMOSPHE COEFFICI
546	59 160 546	CONVENT! JUNCTION HYBRID	566	954 76 566	WAVE DISCHARG MERCUR		52 106 191 238	CONCENTR FORMATIO NITROGEN REACTION
5 4 7	547	IDENTI	567	319	TURBULEN		240 495	RECOMBIN Atomic
5 4 8	548	IMPACT		438 567	R A D A N T M E T E O R		580 7 1 0	DXYGEN GASES
549	549	IMPULS		6 1 2 8 1 0	SHOWER Trail		863	FALL
550	550 755	INCLIN ORBIT	568	858 295	E C H O T E L E S C D P	58 1	4 195 233	ADMITTAN NONRECIP QUADRIPO
551	2 4 6 5 5 1	RELATIVI Inject		5 2 3 5 6 8 7 3 4	DIAMET MIRROR LDCAT		239 298 340	RECIPROC Terminal Canonic
552	450 497 552 579 852 908	SATURAB BALANC INVERT OUTPUT DRIV PHAS	569	144 166 167 569 703 722 934	INTERACT MAGNETIC MAGNETIS MOMENT FIELD INDUC SPIN	5 82	4 1 2 5 8 1 7 3 9 1 7 8 2 8 5 3 4 3 5 8 2	NETWORK PASSIV MATRI MIDNIGHT STATISTI CENTRAL PERIOD

					•			
583	583	PHOTON	597	940	TAPE	610	683 766	DELAY PULSE
584	584	PHYSIC	598	589 598	PRESET RECTAN		793 864	SINGL FAST
585	585	PLANAR	599	116	GERMANIU	611	611	SERIES
586	400 586	JUPITER PLANET		449 599 763 781	REVERSE RECTIF POWER SELEN	612	438 567 6 1 2	RADIANT METEOR SHOWER
587	66 123 164	CYCLOTRO HYDRODYN LONGITUD		792 844	SILIC		6 4 9 8 1 0	VISUAL TRAIL
	283 381 387 406 413	STANDING EXCITED GASEOUS MAGNETO NEUTRAL	600	253 490 600 763	RESOLUTI AERIAL RESOLV POWER	613	537 589 6 1 3 978 984	FADING PRESET SIGNAL IDL MIX
	545 587 707 765	HEL!UM PLASMA FLUID PROBE	601	47 108 203 601	COMPATIS FREQUENC OSCILLAT RESONA	6 1 4	614 836	SILVER BOND
588	356	CONTROL	602	602	RETARD	615	78 111	DISCRETE
589	588 890 356 440	PRECIS LOCK CONTROL REACTOR	603	163 361 603 626	L I GHTN I N CURRENT RETURN STROKE		145 573 615 629	INTERFER NEBULA SOURCE SURVEY
	441 589 598	READING PRESET RECTAN	604	535 604	EXTREM RIPPLE	616	286 6 1 6	STOCHAST SPECTR
	613 800 864 890 966 977	SIGNAL SPEED FAST LOCK BIT GAT	605	140 447 539 557 563	INSTRUME RELEASE FLIGHT LAUNCH MEASUR	617	86 350 516 617 807 830	ELECTROM CONDUCT CYLIND SPHERE THEOR AXES
590	208 414 515 590 7257 834 987	PARTICLE NEUTRON COSMIC PROTON INNER OUTER BELT TRAP RAY	606	605 20 40 72 271 278 306 643	ROCKET ASYMPTOT CIRCULAR DIFFRACT SOLUTION SPHEROID INFINIT SCALAR UNIQUE	618 619	618 155 156 157 619 655 858	SPL) TT I ONOSOND I ONOSPHE IRREGULA SPREAD ALIGN ECHO
591	114 125 176 591 712 803 965	GEOMAGNE HYDROMAG MICROPUL PULSAT GIANT STORM BAY	607	647 776 72 86 271 350 395	VECTOR RIGID DIFFRACT ELECTROM SOLUTION CONDUCT INFINIT	620 621	620 44 66 121 131 316 317	COLLISIO CYCLOTRO HOMOGENE INCOHERE TRANSPOR TRANSVER
592	592 770	RADIAL RADII		607 759 931 954	SCREEN PLANE SLIT WAVE		394 413 479 621	INERTIA NEUTRAL UNIFORM STATIC
593	593	RADIAT	608	13	APPARATU		976	GAS
594	594 967	RADIUS BOD	609	608	SEARCH IONOSPHE	622	172 386 622	MATHEMAT FOURIER STEADY
595	286 484 595	STOCHAST ACCESS RANDOM	0.1	196 297 324	NONSEASO TEMPORAL VARIATIO	623	531 623	EMISSI Stimul
596	2 1 7 295 333 490	PHOTOGRA TELESCOP ANTENNA AERIAL		362 372 609 627 652	DAYTIME DIURNAL SEASON SUMMER WINTER	624	737 624	MASER
597	596 18 150 155	RECEIV ASSOCIAT INTERVAL IONOSOND		678 679 728 749 960	CYCLE DA & LY LAYER MONTH YEAR	6 2 5 6 2 6 -	429 625 825 836	PLASTIC STRESS ADHE BOND
	217 280 597 645 712	PHOTOGRA SPORADIC RECORD VALLEY GIANT	610	183 281 326 610	MONOSTA8 SPURIOUS WAVEFORM SELECT	625	163 290 603 626 706	LIGHTNIN SUCCESSI RETURN STROKE FLASH
	877	HEAD		636	TIMING	627	156	IONOSPHE

627	324 362	VARIATIO DAYTIME	6 4 2	357	CONVERT	6 5 6	160 656	JUNCTION ALLOY
	609 627 652 679 728	SEASON SUMMER WINTER DAILY LAYER		639 642 689 8 7 4 935	TRIODE TUNNEL DIODE GAIN STAB	657	408 657 737 888	MOLECUL AMMON MASER LINE
	797 969	SOUTH	643	978	1DL ASYMPTOT	658	7 5	DIRECTIV ANALY
6 2 8	466 544 628	SUNRISE HEIGHT SUNSET	- · · ·	271 339 386	SOLUTION BOUNDAR FOURIER	€59	883 659	JUMP Angle
629	848 615	DATA Source		538 606 643	FINITE SCALAR UNIQUE	660	818 490	WEDGE AERIAL
023	629	SURVEY	644	87	ELECTRON		660	ARRAY
630	30 32 530 565 735 774 869 977	BIDIRECT BISTABLE SWITCH BINAK LOGIC KELAY FLIP GAT	, 6 4 5	94 130 350 644 829 831	EXCITATI IMPURITY CONDUCT VALENC ATOM 8 AND EXTRAORD	661	145 200 295 490 523 573 661 771	INTERFER OBSERVAT TELESCOP AERIAL DIAMET NEBULA ASTRO RADIO
631	172	MATHEMAT		154 481	I O N O G R A M V I R T U A L		993	SUN
	631	SYMBOL System		519 597 645	DENSIT RECORD VALLEY	662	516 662	CYLIND AXIAL
632	24 136 404 507 631 632	AUTOMATI INFORMAT MACHINE CLOSED SYMBOL SYSTEM	646	846 907 646 817	CURV PEAK VAPOUR WATER	663	201 314 520 663 665 687	OPERATIO TRANSIST DESIGN BASIC 8 INAR DIGIT
	782 830 966	SERVO AXES 8 T	647	40 172 212	CIRCULAR MATHEMAT PERPENDI	664	735 664	LOGIC 8ASIS
633	198	NORMALIZ		538 606	FINITE SCALAR	665	258	REVERS 18
	462 633 719	STAGGER TABULA IMAGE		647 703	VECTOR FIELD		364 441 630	DECIMAL READING SWITCH
634	87 262 531 634	ELECTRON SECONDAR EMISSI TARGET	648	360 382 648 785 898	CRYSTAL EXCITON VIBRAT SHEAR MODE		665 665 687 735 962 977	BASIC BINAR DIGIT LOGIC ADD
635	12 70 121	ANISOTRO DIELECTR HOMOGENE	649	200 217 612	OBSERVAT PHOTOGRA SHOWER	666	666	G A T 8 L O C K
	346 399	CLASSIC		649 858	VISUAL ECHO	667	205 667	OUTBURST BURST
	635 703 741	TENSOR FIELD MEDIA	650	650	VOLUME		698 705	ERUPT Flare
636	33	BLOCKING	65 ₁	95 651	EXOSPHER Whistl	668	868 255	FINE RESONATO
	610 636 864	SELECT TIMING FAST	65 2	856 156	DUCT	000	38 1 668	EXCITED CAVIT
637	637 845	TOROID CORE	~ ~ ~	324 362 609	VARIATIO DAYTIME SEASON	669	20B 246 309	PARTICLE RELATIVI TRAJECTO
638	638	TRIANG		627 652	SUMMER Winter		669 798	CHARG SPACE
639	5 423	ADVANTAG PENTODE		67B 679	CYCLE DAILY		896	MASS
	639 642	TRIODE TUNNEL		728 96 9	L A Y E R D A Y	670	670	CIRCL
	814 827	V A L V E A N O D	653	653	ABSOR	671	314 370 377	TRANSIST Distort Emitter
	8 75 9 3 5	GRID STAB	654	654	ADAPT		67 1 91 4	CLASS
640	640 691	TRIPLE DOUBL	655	157 494 619	IRREGULA ASPECT SPREAD	6 7 2	21 163	ATMOSPHE LIGHTNIN
RIC	641 728	TROUGH LAYER		65 5 856	ALIGN DUCT		447 672	RELEASE CLOUD

673	55 339 516 673 696	CONFIGUR BOUNDAR CYLIND CONIC EQUAT	6 B 9	32 292 642 689	B1STABLE SUPERREG TUNNEL DIODE	703	121 169 287 316 317	HOMOGENE MAGNETOR STRENGTH '(RANSPOR TRANSVER
	772 840	RATIO COAX	690	690 722	DIPOLINDUC		346 569 635	CLASSIC MOMENT TENSOR
674	674	CONNE	69 1	462 520	STAGGER DES GN		647 703	VECTOR FIELD
675	218 258 675 766	PHOTOSEN REVERSIB COUNT PULSE		6 4 0 6 7 6 6 9 1	TRIPLE COUPL DOUBL		707 708 7 11	FLUID FORCE GAUSS
	962	ADD	692	4 4 B 4 B O	REVERSA VELOCIT	704	29 4 1 9	8 ANDWIDT PARAMET
6 7 6	572 676 69 1	NARROW COUPL DOUBL	69 3	692 17 95	DRIFT ARTIFICI EXOSPHER		491 704 874 900	AMPLIF FIGUR GAIN NOIS
677	453 677	SECTION CROSS		149 260 300	INTERPLA Satellit Terrestr		9 1 5 978 982	PUMP IDL LOW
678	2 6 467 564 609 652 678 749 960	ACTIVITY AFTERNOO SUNSPOT MEDIAN SEASON WINTER CYCLE MONTH YEAR		416 540 693 755 757 770 834 894	ORBITAL GRAVIT EARTH ORBIT OUTER RADII BELT MAIN	705	205 358 515 667 698 705 736 794	OUTBURST CORPUSC COSMIC BURST ERUPT FLARE MAJOR SOLAR
	969	ĐAY	694	40 99	C I R C U L A R E X T N C T		8 0 3 987	STORM RAY
679	113 156 162 196 324	GEOGRAPH IONOSPHE LATITUDE NONSEASO	6.0.5	430 694 759	POLARIZ ELLIP PLANE	706	163 473 6 26	LIGHTNIN THUNDER STROKE
	372 564	VARIATIO DIURNAL MEDIAN	695	239 695	RECIPROC EQUAL	707	706	FLASH
680	609 627 652 679 728	SEASON SUMMER WINTER DAILY LAYER FUNDAMEN	6°6	141 172 271 284 673 696 700	INTEGRAL MATHEMAT SOLUTION STATIONA CONIC EQUAT EXPAN	707	121 125 166 350 529 587 703	HOMOGENE HYDROMAG MAGNETIC CONDUCT DYNAMO PLASMA FIELD FLUID
000	203 680	OSCILLAT DAMPI		796	SOLVE	708	707 166	MAGNETIC
68 1	414 681	NEUTRON DECAY	697 698	697 205	ERROR OUTBURST	708	2 0 8 2 4 6 4 0 1	PARTICLE RELATIVI KINETIC
682	682	DEFIN		421 514	P A S S A G E C O R O N A		703 708	FIELD FORCE
683	610 683	SELECT DELAY		66 7 698 705	BURST ERUPT FLARE		7 1 7 8 7 0	HELIC FLOW
684	684	DENSE	699	20	ASYMPTOT	709	111 235	GALACTIC RADIATIO
685	209 685 903 930	PENETRAT DEPTH OXID SKIN		29 271 350 395	IMPERFEC SOLUTION CONDUCT INFINIT		5 7 3 7 0 9 77 1	NEBULA GALAX RAD10
686	686 746	DERIV MOBIL	700	699 15 20	EXACT APPROXIM ASYMPTOT	710	87 191 227 580	ELECTRON NITROGEN PRESSURE OXYGEN
687	136 364	INFORMAT DECIMAL		72 141	DIFFRACT INTEGRAL		710 726	GASES IONIZ
•	404 5 11 663	MACHINE COMPUT BASIC		27 1 278 696 700	SOLUTION SPHEROID EQUAT		976 979	GAS
	665 687 854	BINAR D/GIT DRUM	701	700 818 701	E X P A N W E D G E	711	166 703 7 11	MAGNETIC FIELD GAUSS
	940 962	TAPE ADD	701	254	FAULT	712	114	GEOMAGNE
	966 968	BIT	1 4 2	702 934	RESONANC Ferri Spin		3 71 59 1 597	D I S T U R B P U L S A T R E C O R D
688	688	DILUT	703	12 63	ANISOTRO CORRUGAT		7 1 2 976	G I A N T G A S

713	7 13 879	GLASS HIGH	728	627 6 41	SUMMER Trough	742	43 65	COINCIDE CRYOTRON
714	714	GRAPH		6 52 679	WINTER DAILY		136 484	INFORMAT ACCESS
715	715	GROUP		7 2 8 8 8 2	L A Y E R H O U R		742 938	MEMOR STOR
716	716	HEAVY	7 2 9	729	LEADS		966	BIT
717	708	FORCE	730	3	ADIABATI	743	92 2 1 6	E VAPORAT PHOTOELE
	7 1 7 888	HELIC Line	,	730 737	LEVEL MASER		262 397	S E C O N D A R I N S U L A T
718	417	OVERSHO	731	731	LIGHT		720 743	IMPUR METAL
	7 1 8 7 1 9	I DEAL I MAGE	732	732	LIMIT		316 825	WAFER ADHE
719	128 138	MPEDANC	733	114 178	GEOMAGNE		903 930 9 41	OXID SKIN
	233 419	INSERTIO WUADRIPO PARAMET		371 372	MIDNIGHT DISTURB DIURNAL		948	T H I N V A C U
	498 556	BRANCH		733	LOCAL	7 4 4	328	WAVELENG
	633 718	LADDER TABULA IDEAL	734	366 568	ÐE TONAT Mirror		5 2 3 7 4 4	DIAMET METRE
	719 719	I MAGE MATCH		734	LOCAT	7 4 5	7 4 5	MINIM
	867 905	FILT PASS	735	175 201	MICROMIN OPERATIO	746	84 316	ELECTRIC Transpor
720	720	IMPUR		484 630	ACCESS SWITCH		686 7 4 6	DERIV MOBIL
	743 916	METAL PURE		663	BASIC BINAR	747	747	MODEL
721	236	RADIOSON		735 966	LOGIC	, 4,	939	TAIL
	445 721	REFRACT INDEX	736	200	OBSERVAT	748	175 748	MICROMIN Modul
722	361	CURRENT		358 705	CORPUSC FLARE	749	564	MEDIAN
	569 690	MOMENT DIPOL		736 857	MAJOR EAST	743	609 678	SEASON CYCLE
	722	INDUC	737	3	ADIABATI		7 49 897	MONTH MEAN
723	414 590	NEUTRON PROTON		222 234	POPULATI QUADRUPO	750	35 6	CONTROL
	723 757	I NNER OUTER		486 623	ACTION Stimul		7 5 0 852	MOTOR DRIV
724	293	SYNCHRON		657 730	AMMON LEVEL	7 5 1	362	DAYTIME
	313 357	TRANSIEN CONVERT		737 795	MASER SOLID		466 544	SUNR I SE HE I GHT
	579 724	OUTPUT INPUT	•	9 1 5	PUMP		75 1 780	N I GHT S C A L E
	838 852	CHOF DRIV	738	128 299	I M P E D A N C T E R M I N A T		863	FALL
	8 65 968	FEED COD		520 556	DESIGN LADDE R	752	120 156	HEMISPHE IONOSPHE
725	44	COLLISIO		719 738	I M A G E M A T C H		463 752	STATION NORTH
	123 406 725	HYDRODYN MAGNETO		867 905	FILT Pass		762 797	POLAR South
	726	IONIC IONIZ	739	4	ADMITTAN		9 6 5	ВАҮ
726	123 316	HYDRODYN Transpor		188	MULTIPOL REPRESEN	753	2 1 8 7 5 3	PHOTOSEN OPT!C
	406 413	MAGNETO NEUTRAL		340 412 559	CANONIC NETWORK	754	29	BANDWIDT
	420 524	PARTIAL DIFFUS		581 739	LINEAR PASSIV		754	OPTIM
	7 1 0 7 2 5	GASES IONIC	74 0	64	MATRI	755	17 81	ARTIFICI ECCENTR:
	726 976	IONIZ GAS	, 40	178 740	CRITICAL MIDNIGHT		260 41 6	SATELLIT Orbital
727	727	JOINT	741		MAXIN		424 460	PERIGEE Sputnik
728	6	AFTERNOO	771	12 70 86	ANISDTRO DIELECTR		550 693	INCL IN EARTH
	31 196	BIFURCAT NONSEASO		231 565	PROPAGAT		755	ORBIT
	325 379	VERTICAL EQUATOR		635	MEDIUM TENSDR	756	756	ORDER
C°	466 609	SUNRISE SEASON		7 4 1 9 5 4	M E D I A W A V E	757	208 590	PARTICLE Proton
V ERIC		- 270014					693	EARTH

757	723 757	INNER	769 770	858 592	E C H O R A D I A L	788	373 788 908	DOPPLER Shift Phas
7.4.0	834	8ELT PAPER	770	693 770	EARTH RADI1	78 9	789	sно с к
758	758			921	RING	79 0	790	SHORT
759	72 73 212 277 339 395 513	DIFFRACT DIMENSIO PERPENDI SPHERICA BOUNDAR INFINIT CONVEX	771	111 145 295 331 400 500	GALACTIC INTERFER TELESCOP ANGULAR JUPITER BRIGHT	791	341 377 791 889	CAPACIT EMITTER SHUNT LOAD
	607 694 759 818 931	SCREEN ELLIP PLANE WEDGE SLIT		573 661 709 771 936	NEBULA ASTRO GALAX RADID STAF.	792	116 160 436 449 599 763	GERMANIU JUNCTION PROTECT REVERSE RECTIF POWER
760	760 785	PLATE SHEAR	772	673 7 7 2	CONIC RATIO	7 93	792 610	SILIC SELECT
761	353 761	CONTACT POINT	773	7 73	REDUC	795	793	SINGL
762	950 114 162 371	VIEW GEOMAGNE LATITUDE DISTURB	774	5 630 774 855	ADVANTAG SWITCH RELAY DUAL	794	205 467 514 530 705	OUTBURST SUNSPOT CORONA ECL1PS FLARE
	752 762 803 996	NDRTH POLAR STORM ZON	775 776	20 81 775 452	ASYMPTOT ECCENTRI REVOL SCATTER		768 794 960 993	QUIET SOLAR YFAR SUN
763	83 446 468 599 600	EFFICIEN REGULAT SUPPLIE RECTIF RESOLV	777	606 776 384 77 7	SCALAR RIGID FARADAY ROTAT	795	486 737 795 934	ACTION MASER SOLID SPIN
	763 792 990 998	POWER SILIC ROW DC	778 779	778 779	ROUND Sampl	796	8 141 271 346	ALTERNAT INTEGRAL SOLUTION CLASSIC
764	429 764 825 836	PLASTIC PRINT ADHE BOND	780	159 319 325 519	ISOTHERM TURBULEN VERTICAL DENSIT	-07	538 696 796 967	FINITE EQUAT SOLVE BOD
765	76 87 127 287 545 563 585 976	DISCHARG ELECTRON HYDROGEN PRESSOUS HELIUM MEASUR PLASMA PRDBE	78 1 782	751 780 39 449 599 781 951	NIGHT SCALE CHARACTE REVERSE RECTIF SELEN VOLT	797	113 114 120 156 200 372 463 627 752 797	GEOGRAPH GEOMAGNE HEMISPHE IONOSPHE OBSERVAT DIURNAL STATION SUMMER NODRTH SOUTH
766	979 180 326 456	ION MILLIMIC WAVEFORM SHAPING		257 507 632 782 892	RESPONSE CLOSED SYSTEM SERVO LOOP	798	149 669 798 815	INTERPLA CHARG SPACE VEHIC
	477 610 675	TRIGGER Select	783	783	SHAPE	799	76 799	DISCHARG Spark
	766 811 922	COUNT PULSE TRAIN RISE	784 785	784 305 360	SHARP THICKNES CRYSTAL	800	136 589 8 0 0	INFORMAT PRESET SPEED
767	767 807	QUANT THEOR		648 760 785 898	VIBRAT PLATE SHEAR MODE		879 919 938 940	H!GH READ STOR
7 6 8	162 200 372 379 529 768 794	LATITUDE OBSERVAT DIURNAL EQUATOR DYNAMO QUIET SOLAR	786	63 212 350 395 516 786	CORRUGAT PERPEND I CONDUCT INFINIT CYLIND SHEET	8 0 1 8 02	962 152 312 801	TAPE ADD INVERSIO TRANSFOR SPLIT
	969	DAY	787	7 87	SHELL	80 3	802 114	START
9	769	RADAR			-	6 9	184	GEOMAGNE MORPHOLO

803	205 285 300	OUTBURST STATISTI TERRESTR	818	759 818 859	PLANE WEDGE EDGE	8 3 3	289 833	SUBMILL! BEAM
	591 705 762	PULSA; FLARE POLAR	819	819	WEIGH	834	208 235	PARTICLE RADIATIO
	803 894	STOR M Main	820	820 900	WHITE NOIS		414 515 590	NEUTRON COSMIC PROTON
804	965 804	BAY Strip	821	821	WIDTH		693 757	E ARTH OUTER
	931	SLIT	822	113 162	GEOGRAPH LATITUDE		В34 944	BEL T TRAP
805	480 805	VELOCIT SURGE		463 822	STA TI ON WORLD	835	987 183	RAY Monostab
B 0 6	108 806	FREQUENC Sweep	823	65 134	CRYOTRON INDUCTAN		314 377 835	TRANSIST EMI T TER BIAS
807	88	ELECTROS		252 823	RESISTOR WOUND		875	GRID
	103	FERROMAC STOCHAST		8 4 1 9 5 7	COIL Wire	836	429	PLASTIC
	346 382	CLASSIC EXCITON	824	8 2 4	YIELD		614 625	SILVER STRESS
	401 529	KINETIC DYNAMO	825	50	COMPONEN		764 825	PRINT ADHE
	617 767	SPHERE QUANT		429 625	PLAS TI C Stress		836 950	BOND VIEW
	807	THEOR		7 4 3 7 6 4	METAL PRINT	837	837	CELL
808	100 808	EXTRAORD		325	ADHE			
		TRACE		836 950	BOND VIEW	838	314 491	TRANSIST AMPLIF
809	809	TRACK	826	106	FORMATIO		724 838	I NP U T C H O P
810	319 438	TURBULEN RADIANT		335 826	BALLOON ALT 1		874 998	GAIN DC
	567 612	METEOR Shower		9; ,	X	839	839	COAT
	810 858	TRAIL ECHO	827	4 2 3 5 0 3	PENTODE CATHOD	022	903	OXID
8 1 1	150	INTERVAL		639	TRIODE	៦40	673	CONIC
011	766 811	PULSE		8 1 4 8 2 7	VALVE ANOD		840 888	COAX LINE
		TRAIN		865 875	FEED GRID	841	134	INDUCTAN
812	812 888	TWIST Line	828	149	INTERPLA		823 84 1	WOUND
	898	MODE		500 828	8RIGHT AREA	842	503	CATHOD
813	21 519	ATMOSPHE DENSIT		857 993	E A S T S U N	542	842	COLD
	544 813	HEIGHT	222			8 4 3	843	CONE
0.4.4		UPPER	8 2 9	5 8 8 7	CONSTITU ELECTRON	8 4 4	329	AMBIENT
814	423 488	PENTODE ADJUST		495 644	A T O M I C V A L E N C		5 9 9 844	RECTIF COOL
	497 543	B A L A N C H E A T E R		829 909	A T 0 M PH 0 T	8 4 5	385	FERR TE
	639 814	TRIODS Valve	830	12	ANISOTRO	0.0	440	REACTOR
	827 875	A N O D G R I D		85 88	ELECTROD		450 483	SATURAB WIND1NG
	995 998	TUN DC		346	ELECTROS CLASSIC		637 845	TORO I D CORE
815	260			516 617	CYLIND Sphere	8 4 6	645	VALLEY
0,0	798	SATELLIT Space		632 830	SYSTEM AXES		846 880	CURV
0.1.6	815	VEHIC	831	23	ATTENU AT	0.47		HISS
816	39 50	CHARACTE COMPON E N		29 138	BANDWIDT INSERTIO	847	847 9 3 9	DARK TAIL
	743 816	METAL Wafer		462	STAGGER	8 4 8	236	RADIOSON
817	646			471 478	TELE VI S TUNABLE		628 848	SUNSET
~	817	VAPOUR Water		572 644	NARROW VALENC	8 4 9	244	DATA
818	1	ACOUSTIC		831 867	BAND FILT	049	388	R E G E N E R A G E N E R A T
	72 86	DIFFRACT ELECTROM		905	PASS		849 890	DIVI Lock
	141: 659	INTEGRAL	83 2	158	IRREVERS	850	21	ATMOSPHE
· ·	700	ANGLE EXPAN		454 832	SE GMENT Ba s e	300	260	SATELLIT
							4 1 6	ORBITAL

850	424 850	PERIGEE DRAG	865	865 87 5	FEE D GRID	879	3 4 253	8 REMSSTR RESOLUTI
	963	AIR	866	65	CRYOTRON		713	GLASS
851	851	DRAW	000	92	EVAPORAT		800	SPEED
	•			365	DEPOSIT		8 7 9	HIGH
852	101	FEED8ACK		501 866	CARBON F ilm		986	016
	345 446	C I R C U I T R E G U L A T		941	THIN	880	18	ASSOCIAT
	552	INVERT					846	CURV
	579	OUTPUT	867	23	ATTENUAT		880	HISS
	7 2 4 7 5 0	INPUT Motor		138 198	INSERTIO Normaliz	881	881	HOLE
	852	DRIV		474	TORSION			
	865	FEED		498	8 R A N C H	882	324	VARIATIO DIURNAL
	951	VOLT		556 719	L A D D E R I M A G E		3 7 2 728	LAYER
853	853	DROP		738	MATCH		882	HOUR
				831	8 A N D		969	DAY
8 5 4	24	AUTOMATI		867 905	FILT PASS	883	213	PHENOMEN
	166 404	MAGNETIC MACHINE		, ,	, ,,,,,	002	257	RESPONSE
	441	READING	868	288	STRUCTUR		658	ANALY
	484 511	ACCESS COMPUT		667 868	8 URST Fine		883	JUMP
	687	DIGIT		000	1 1112	884	884	LAND
	854	DRUM	869	32	BISTABLE		0 - 5	
	919	READ		49 183	COMPLEME Monostas	885	885	LEAD
	938 940	S T O R T A P E		190	MULTIVIS	886	886	LEAK
				201	OPERATIO		0 - 7	
855	499	8 R I D G E R E L A Y		314 477	TRANSIST TRIGGER	887	887	LIFE
	774 855	OUAL		630	SWITCH	888	465	STRAIGH
				86 9	FLIP		657	AMMON
856	231 651	PROPAGAT WHISTL	870	708	FORCE		7 1 7 8 1 2	HELIC TWIST
	655	ALIGN	0.0	870	FLOW		840	COAX
	856	DUCT			C 4 4 4 C T 4 C		888	LINE
857	115	GEOPHYSI	871	111 235	G A L A C T I C R A D I A T I O	889	79 1	SHUNT
	736	MAJOR		515	COSMIC	002	889	LOAD
	828	AREA		87 1	FLUX		• • •	
	857	EAST	872	872	FORM	890	108 203	FREQUENC OSCILLAT
858	157	RREGULA			1 0 · · · in		588	PRECIS
	269 272	SIMULTAN	873	873	FREE		589	PRESET
	280	SOUNDING Sporadic	874	29	8 AND WIDT		849 890	DIVI Lock
	494	ASPECT		59	CONVENTI		908	PHAS
•	567 619	METEOR Spread		49 1 642	AMPLIF Tunnel			1.01.5
	649	VISUAL		704	FIGUR	89 1	89 1 939	LONG TAIL
	769	RADAR		838	CHOP			· · · · · ·
	810 858	TRAIL E c ho		874 9 1 4	GAIN Pull	892	101	FEEDBACK
0.4.0				915	PUMP		50 7 782	CLOSED SERVO
859	818 859	WEDGE		935	STA8		892	LOOP
		EDGE		997	D 8	893	23	A T T C AL., A =
860	531 860	EMISSI	875	423	PENTODE	000	138	ATTENUAT INSERTIO
	800	EMIT		461 639	STABILI		893	LOSS
861	861	FACE		814	TRIODE VALVE		971	EDD
862	862	FAIL		827	ANOD	894	114	GEOMAGNE
	002	INIL		835 865	BIAS		529	DNANO
863	240	RECOMBIN		875	FEED GRID		693	EARTH
	481 519	VIRTUAL DENSIT		914	PULL		803 894	STORM Main
	580	OXYGEN	876	4 4	00113840		939	TAIL.
	751	NIGHT	0.0	100	COLLISIO Extraord		996	ZON
	863	FALL		406	MAGNETO	895	895	MASK
864	589	PRESET		876	GYRO			
	610	SELECT	877	166	MAGNETIC	8 9 6	669	CHARG
	636 8 6 4	TIMING Fast		597	RECORD		8 9 6	MASS
		7 N V I		877	HEAD	897	749	MONTH
865	5 9	CONVENTI		9 1 9 940	R E A D T A P E		897	MEAN
	147	INTERNAL		959	WRIT	898	201	S D II D 1 C 11 C
_	724 827	INPUT Anod	. 0.30			0 7 0	281 648	SPURIOUS Vibrat
	852	DRIV	8 7 8	472 8 7 8	THERMAL HEAT		785	SHEAR
IC				J. 0	HEAT		812	TWIST
ided by ERIC								

898	898	MODE	915	87 4 900	GAIN NOIS	934	103	FERROMAG
899	899	MOON		915	PUMP	324	167	MAGNETIS NONMAGNE
	923 983	ROCK LUN		9 7 8	IDL		286	STOCHAST
900	26	BACKGROU	916	720 916	IMPUR Pure		569 702	MOMENT FERRI
	292 704	SUPERREG Figur	917	478	TUNABLE		795 934	SOLID Spin
	820	WHITE NOIS		917	RANG	935	5	ADVANTAG
	900	PUMP	918	918	RATE	995	314	TRANSIST
	927	SHOT	919	4 4 1	READING		461 535	STABILI EXTREM
901	158 901	IRREVERS NOTE		5 1 1 8 0 0	. DMPUT SPEED		639 642	TRIODE Tunnel
902	902	OPEN		8 5 4 8 7 7	DRUM HEAD		874 935	GAIN STAB
903	92	EVAPORAT		919 938	R E A D S T O R	936	261	SCINTILL
300	262	SECONDAR		940	TAPE	9,70	771	RADIO
	685 7 43	DEPTH METAL		959 966	WRIT BIT		936	STAR
	839 903	COAT	920	109	FUNCTION	937	257 313	RESPONSE TRANSIEN
904	239	RECIPROC		221 920	POLYNOM I REAL		417 937	OVERSHO STEP
	904	PAIR	921	770	RADII	938		
905	19 138	ASYMMETR	221	921	RING	928	65 136	CRYOTRON INFORMAT
	263	INSERTIO SELECTIV	922	33	BLOCKING		404 484	M A C H N E A C C E S S
	299 462	TERMINAT STAGGER		180 388	MILLIMIC GENERAT		7 4 2 800	MEMOR SPEED
	498 502	B R A N C H C A S C A D		417 766	OVERSHO Pulse		854 919	DRUM READ
	556 719	L A D D E R I M A G E		922	RISE TIME		938	STOR
	738	MATCH	0.2.7				940 966	TAPE BIT
	831 867	BAND F!LT	923	46 9 899	S U R F A C E M O O N	939	529	DYNAMO
	905 982	PASS LOW		923	ROCK		747 847	M O D E L D A R K
906	906	PATH	924	296 924	TEMPERAT ROOM		89 1 894	L O N G M A I N
907	645	VALLEY	925	13	APPARATU		939	TAIL
	907	PEAK		253	RESOLUTI	940	136	INFORMAT
908	265 552	SEMIDIUR		295 92 5	TELESCOP SCAN		364 441	DEC!MAL READING
	788	INVERT SHIFT	926	203	OSCILLAT		5 1 1 5 9 7	C O M P U T R E C O R D
	890 908	LOCK Phas		926	3ELF		687 800	DIGIT SPEED
909	216	PHOTOELE	927	1 0 5 9 0 0	FLUCTUAT NOIS		8 5 4	DRUM
	829 909	A T O M P H O T		927	SHOT		877 9 1 9	HEAD READ
910	257	RESPONSE	928	928	SIGN		938 940	S T O R T A P E
	910	PLOT	9 2 9	929	SIZE	941	743	METAL
911	109 311	FUNCTION Transfer	9 3 0	350	CONDUCT		866 9 41	FILM Thin
	911	POLE		492 685	ANOMAL DEPTH	942	150	INTERVAL
912	912	PORT		743 930	METAL Skin		417	OVERSHO
913	913	PROD	931	40	CIRCULAR		475	RECOVER TRANSIT
0.1.4	988	RED		72 391	DIFFRACT INCIDEN .		922 942	R I S E T I M E
914	28 43 7	BALANCED Quality		607 759	SCREEN	, ·	980	LAG
	671 874	CLASS GAIN		80 4	PLANE STRIP	943	108 293	FREQUENC Synchron
	875 914	GRID PULL		9 3 1 9 5 4	SLIT WAVE		943	TONE
915				972	FAR	944	208	PARTICLE
213	29 222	BANDWIDT Populati	932	932	SLOW		366 590	DETONAT Proton
	419 491	PARAMET AMPLIF	933	106	FORMATIO		834 944	BELT TRAP
3	704 737	FIGUR MASER		933 987	S O F T R A Y		987	RAY
ERIC	,			9 9 9	X	945	945	TU8E
A	6							

			961	96 1	ZERO	976	413 621	NEUTRAL STATIC
946	946	UNIF	962	201	OPERAT 10		710	GASES
947	947	UNIT	902	364	DECIMAL OUTPUT		7 1 2 726	GIANT IONIZ
241	962	ADD		579 665	BINAR		765	PROSE GAS
948	92	EVAPORAT		675 68 7	C O U N T D G T	_	976	BIDIRECT
	743 948	METAL VACU		800	SPEED Unit	977	30 589	PRESET
0.40	949	VARY		947 962	ADD		630 665	SWITCH BINAR
949			963	21	ATMOSPHE		977	GAT
950	308 429	TOLERANC PLASTIC	,,,,	850 963	DRAG AIR	978	108	FREQUENC
	761 825	POINT ADHE					419 491	PARAMET AMPL 1 F
	836	BOND	964	111 500	G A L A C T I C B R I G H T		613	SIGNAL
	950	VIEW		573 964	NEBULA ARC		642 704	TUNNEL FIGUR
951	83 307	EFFICIEN THYRATRO		988	RED		915 978	PUMP IDL
	440 446	REACTOR REGULAT	965	114	GEOMAGNE		990	ROW
	468	SUPPLIE		178 496	M I D N I G H T A U R O R A	979	52	CONCENTR
	497 543	B A L A N C H E A T E R		591	PULSAT		87 191	ELECTRON Nitrogen
	78 1 852	SELEN DRIV		752 803	NORTH STORM		413 524	NEUTRAL Diffus
	95 1 986	V O L T O J L.		965	ВАҮ		710	GASES
	995	TUN	966	364 484	DECIMAL ACCESS		765 979	PROBE ION
	998	DC		589	PRESET	980	942	TIME
952	952	WALL		632 687	S Y S T E M D I G I T	500	980	LAG
953	953	WASH		735 742	LOGIC MEMOR READ	98 1	472 981	THERMAL LAW
954	1 27	A COUSTIC B A C K W A R D		9 1 9 9 3 8	STOR	982	535	EXTREM
	63 72	CORRUGAT D (F F R A C T		966	віт	902	704	FIGUR
	86	ELECTROM	967	40 72	C I R C U L A R D I F F R A C T		905 982	PASS LOW
	99 17 9	EXTINCTI MILLIMET		121	HOMOGENE	983	1 4	APPARENT
	231 283	PROPAGAT STANDING		278 395	SFHEROID INFINIT	900	265	SEMIDIUR
	289	SUBMILLI		513 594	CONVEX RAD.US		325 899	VERTICAL Moon
	318 65د	TRAVELLI MED!UM		796	SOL VE 8 O D		983 994	L U N T I D
	ь07 74 1	S C R E E N M E D I A		967		0.04	108	FREQUENC
	93 1 954	SLIT Wave	968	364 441	DEC IMAL READING	984	112	GAUSSIAN
0.5.5	955			687 724	DIGIT		613 984	S I G N A L M I X
955		WELL		968	COD	985	8 4	ELECTRI C
956	2 1 122	A T M O S P H E H O R I Z O N T	969	627	SUMMER	903	985	NET
	537 956	FADING WIND		6 5 2 678	WINTER Cycle	986	879	HIGH
957	823	WOUND		768 882	QUIET Hour		95 1 986	VOLT OIL
957	957	WIRE		969	DAY	987	3 4	BREMSSTR
958	958	WORK	970	970	DIS	987	149	INTERPLA
959	441	READING		993	SUN		300 335	TERRESTR BALLOON
,,,	877	HEAD	97 1	361	CURRENT LOSS		414 515	NEUTRON Cosmic
	9 1 9 9 5 9	READ WRIT		89 3 97 1	E D D		590	PROTON
960	2	ACTIVITY	972	931	SLIT		705 834	FLARE 8ELT
	1 1 5 1 4 8	GECPHYSI INTERNAT		972	FAR		933 9 4 4	SOFT TRAP
	162	LATITUDE	973	252	RESISTOR		987	RAY
	324 463	VARIATIO STATION		323 341	VARIABLE CAPACIT	886	235	RADIATIO
	467 564	SUNSPOT MEDIAN		973	FIX		913 964	PROD Afic
	609	SEASON	974	974	FOC		988	RED
	678 794	CYCLE SOLAR	975	9 7 5	GAP	989	989	ROD
	960	YEAR	976	316	TRANSPOR	990	192	NONL 1 NEA
			916	210	INVICAL	330	. 176	HONETHER

990	237	REACTANC	993	993	SUN	996	996	ZON
	256	RESTRICT						
	439	REACTIV	994	184	MORPHOLO	997	23	ATTENUAT
	763	POWER		265	SEMIDIUR		87 4	GAIN
	978	IDL		324	VARIATIO		997	D 8
	990	RO₩		529	DYNAMO			
				983	LUN	998	446	REGULAT
991	991	SET		994	TID		468	SUPPLIE
	-						497	BALANC
992	992	SUM	995	446	REGULAT		763	POWER
				462	STAGGER		814	VALVE
993	145	INTERFER		468	SUPPLIE		838	CHOP
	235	RADIATIO		814	VALVE		951	VOLT
	300	TERRESTR		95 1	VOLT		995	TUN
	500	8 R I G H T		995	TUN		998	D C
	514	CORONA		998	ÐC			
	661	ASTRO				999	34	BREMSSTR
	794	SOLAR	996	496	AURORA		82 6	ALTI
	828	AREA		762	POLAR		933	SOFT
	970	DIS		894	MAIN		999	X

APPENDIX AG

SELECTION FROM CLUSTER SET C3, USED IN RUN 14(MCSO1)

6	 AFTERNOO	6 1 96 466 60 9	Al'TERNOO NONSEASO SUNRISE SEASON	24 136 363 441	AUTOMATI INFORMAT DECIMAL READING	44 100 406 8 76	COLLISIO EXTRAORD MAGNETO GYRO
156 196 324 362 372 609 627	AFTERNOO IONOSPHE NONSEASO VARIATIO DAYTIME DIURNAL SEASON SUMMER WINTER CYCLE DAILY LAYER AFTERNOO IONOSPHE	679 728 6 564 609 652	DAILY LAYER AFTERNOO MEDIAN SEASON WINTER	919 940 966 24	DIGIT DRUM READ TAPE BIT AUTOMATI	44 121 246 316 401 621	COLLISIO HC.40GENE RELATIVI TRANSPOR KINETIC STATIC
652 678 679 728	WINTER CYCLE DAILY LAYER AFTERNOO	679 749 960	DAILY MONTH YEAR	404 632 687 854 966	MACHINE SYSTEM DIGIT DRUM BIT	44 121 246 316 401	COLLISIO HOMOGENE RELATIVI TRANSPOR KINETIC
324 362 372 609 627 652 678	LAYER AFTERNOO IONOSPHE NONSEASO VARIATIO DAYTIME DIURNAL SEASON SUMMER WINTER CYCLE DAILY YEAR AFTERNOO MIDNIGHT NONSEASO DIURNAL LAYER	17 21 260 416 424 693 755 850	AFTERNOO NONSEASO SUNRISE SEASON DAILY LAYER AFTERNOO MEDIAN SEASON WINTER CYCLE DAILY MONTH YEAR ARTIFICI ATMOSPHE SATELLIT ORBITAL PERIGE EARTH ORBIT DRAG ATMOSPHE ISOTHERM ATMOSPHE LIGHTNIN CLOUD ATMOSPHE RADIOSON ATMOSPHE ORBITAL DRAG AIR ATMOSPHE ORBITAL DRAG AIR ATMOSPHE UPPER ATMOSPHE OXYGEN ATMOSPHE UPPER ATMOSPHE UPPER	24 136 404 687 854 919 940	AUTOMATI INFORMAT DECIMAL READING DIGIT DRUM READ TAPE BIT AUTOMATI INFORMAT MACHINE SYSTEM DIGIT DRUM BIT AUTOMATI INFORMAT MACHINE SYSTEM DIGIT DRUM BIT AUTOMATI INFORMAT MACHINE DIGIT DRUM READ TAPE BIT COLLISIO ELECTRON TRANSPOR KINETIC STATIC COLLISIO ELECTRON TRANSPOR NEUTRAL DIFFUS IONIZ GAS COLLISIO ELECTRON TRANSPOR NEUTRAL DIFFUS IONIZ GAS COLLISIO ELECTRON ONEUTRAL STATIC IONIZ GAS COLLISIO ELECTRON NEUTRAL STATIC IONIZ GAS COLLISIO ELECTRON NEUTRAL STATIC IONIZ GAS COLLISIO ELECTRON NEUTRAL STATIC IONIZ GAS	708 44 121 246 316 413 621	FORCE COLLISIO HOMOGENE RELATIVI TRANSPOR NEUTRAL STATIC COLLISIO
960 6 178 196 372 728	YEAR AFTERNOO MIDNIGHT NONSEASO DIURNAL LAYER	21 159 21 163 672	ATMOSPHE ISOTHERM ATMOSPHE LIGHTNIN CLOUD	44 87 316 401	COLLISIO ELECTRON TRANSPOR KINETIC	121 316 401 621 703	HOMOGENE TRANSPOR KINETIC STATIC FIELD COLLISIO
6 178 372 733	AFTERNOO MIDNIGHT DIURNAL LOCAL	21 236 21 416	ATMOSPHE RADIOSON ATMOSPHE ORBITAL	621 44 87 316 413	STATIC COLLISIO ELECTRON TRANSPOR NEUTRAL	121 316 401 703 708	HOMOGENE TRANSPOR KINETIC FIELD FORCE
6 196 324 372 564 609 652	LAYER AFTERNOO MIDNIGHT DIURNAL LOCAL AFTERNOO NONSEASO VARIATIO DIURNAL MEDIAN SEASON WINTER CYCLE DAILY LAYER AFTERNOO NONSEASO VARIATIO DIURNAL MEDIAN SEASON WINTER CYCLE DAILY LAYER AFTERNOO NONSEASO VARIATIO DIURNAL MEDIAN SEASON WINTER CYCLE DAILY MEDIAN SEASON WINTER CYCLE DAILY	850 963 21 580	DRAG AIR ATMUSPHE OXYGEN ATMOSPHE	524 726 976 44 87 316	DIFFUS IONIZ GAS COLLISIO ELECTRON TRANSPOR	44 123 316 406 413 725 726	COLLISIO HYDRODYN TRANSPOR MAGNETO NEUTRAL IONIC IONIZ
652 678 679 728	CYCLE DAILY LAYER AFTERNOO	813 21 956	UPPER ATMOSPHE WIND	413 621 726 976	NEUTRAL STATIC IONIZ GAS	44 123 406 413	COLLISIO HYDRODYN MAGNETO NEUTRAL
195 324 372 564 609	NONSEASO VARIATIO DIURNAL MEDIAN SEASON	24 136	AUTOMATI	44 87 413 524 726	COLLISIO ELECTRON NEUTRAL DIFFUS TONIZ	587 725 726	PLASMA IONIC IONIZ COLLISIO
652 678 679 960	WINTER CYCLE DAILY YEAR	363 441 632 687 854	DECIMAL READING SYSTEM DIGIT DRUM	976 979 44 87	GAS ION COLLISIO ELECTRON	123 406 725 8 76	HYDRODYN MAGNETO IONIC GYRO
6 196 324 372 609 627	AFTERNOO NONSEASO VARIATIO DIURNAL SEASON SUMMER	966 24 136 363 441	BIT AUTOMATI INFORMAT DECIMAL READING	413 587 621 726 976	NEUTRAL PLASMA STATIC IONIZ GAS	44 131 246 413 621	COLLISIO INCOHERE RELATIVI NEUTRAL STATIC
652 679 728 882	SUMPLER WINTER DAILY LAYER HOUR	665 687 854 940 966 968	BINAR DIGIT DRUM TAPE BIT COD	44 87 413 587 726 976 979	COLLISIO ELECTRON NEUTRAL PLASMA IONIZ GAS ION	44 131 413 58 7 621 976	COLLISIO INCOHERE NEUTRAL PLASMA STATIC GAS

COMPLETE LIGT OF REQUESTS

showing the name of the requestor, the number of key-word stems, the stems themselves with their underlinings, if any, (section VI.2.6), and their dictionary code numbers (Appendix A1).

```
Request 0 (P.H. Hasmond) (6)
HIGH FREQUENCY OSCILLATORS USING TRUBSISTORS THEORETICAL TREATMENT AND PRACTICAL CIRCUIT DATALLS
HIGH FREQUENC OSCILLAT TRANSIST THEOR CIRCUIT
                                                                                                                                                                                                                                                                                            807
   Request 1 (Cancolled) (10)

SUPER RECEIVER RECEIVERS IN THE HIGH FREQUENCY REGION WITH DETAILS OF NOISE FIGURE SELECTIVITY AND RADIATED RECEIVER. RECEIV HIGH FREQUENC NOISE FIGURE SELECTIVITY AND RADIATED NOISE FIGURE SELECTIVITY RECEIVED NOISE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   NOTS FIGURE SELECTIV 18.DIV.T
900 704 263 593
                                                     244
                                                                                                                                596
                                                                                                                                                                                                                                    879
                                                                                                                                                                                                                                                                           108
                    SIGNAL LEVEL
  Request 2 (P.H. Hannond) (5)

MATERIAL OF DIELECTRIC CONSTANT OF LIQUIDS BY THE USE OF MICROWAVE TECHNIQUES

TRASHR

DIELECTR

CONSTANT

LIQUID MICROWAVE

1777

1770

1770

1770

1770
  Request 3 (P.W. Hammond) (6)
LAMINEMATICAL COLLYSIS AND DESIGN DETAILS OF WAVEGUIDE FED MICROWAVE RADIATIONS
LATERMAT ANALY DESIGN WAVEGUID MICROWAV RADIAT

172 668 520 2020
                                                                                        658
                                                                                                                                                                                                                                                                                          327
  Request L (P.H. Hammond) (9)
1:3 OF DIGITAL COMMUTATO IN THE DESIGN OF BAND PASS FILTERS HAVING GIVEN PHASE AND ATTENUTATION CLICKCESSISTICS
DIGIT COLFUT DESIGN BAND PASS FILT
PHAS ATTENUTATION CLICKCESSISTICS
OF DIGITAL CONFIDENCE OF THE PHASE ATTENUTATION CLICKCESSISTICS
OF DIGITAL CONFIDENCE OF THE PHASE ATTENUTATION CLICKCESSISTICS
OF THE PHASE ATTENUTATION CL
                                                                                                                                                                                                          520
                                                                                                                                                                                                                                                                        831 905 867
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       908
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                23
  Request 5 (F.M. Blake) (5)
SYSTEMS OF DATA CODING FOR INFORMATION TRANSFER
SYDTEM DATA COD HIPPORMAT TRUNSFER
652 848 968 136 311
                    Request 6
                                                                                                         (Cancelled)
  USE OF PROGRAMS IN ENGINEER TESTING OF COMPUTERS
PROGRAMS MERGINEER COMPUT
                                                         435
                                                                                                                                            89
 Request 7 (F.L. Blake) (5)
SIMPLATION OF EXTERMATICAL FUNCTIONS USING MAGNETIC CIRCUITS
GIMULT EXTERMAT FUNCTION MAGNETIC CIRCUIT
A58 172 109 166 345
Request 8 (Cancelled) (L)
MULTIPLE DIGIT THOUNI UES IN FONT DECIMAL ADDRESS
MULTIPL DIGIT THOUNI UES IN FONT DECIMAL ADDRESS
MULTIPL DIGIT DECIMAL ADD
363 962
Request 9 (F.M. Blake) (4)
HUMBER REP. ESENTATION II: BHIARY MACHINES
HUMBER REPRESEN BINAR MACHINE
21.8 665 404
  Request 10 (W.L. Price) (7)
SECONDARY EMISSION OF ELECTRONS BY POSITIVE ION BOMBARDMENT OF THE CATHODE

OUTPUT

TOTAL TO
  Request 11 (J.L. Price) (7)
MEXICUREMENT OF PLISMA TEMPERATURES IN ARC DISCHARGE USING SHOCK WAVE TECHNIQUES
MEASUR PLASMA TEMPERAT ARC DISCHARG SHOCK WAVE
587 296 964 76 789 954
 Request 12 (V.L. Price) (7)
CHARACTERISTICS OF THE SINGLE ELECTRODE DISCHARGE IN THE RARE GASES AT LOW PRESSURES
CHARACTE SINGL ELECTRODE DISCHARG GASES LOW PRESSURE
39 793 85 76 710 982 227
 Request 13 (W.L. Price) (5)
LETHOR OF CALCULATING INSTANTANEOUS POWER DISSIPATION IN REACTIVE CIRCUITS
CALCULAT POWER DISSIPAT REACTIVE CIRCUITS
                                                                                     35
                                                                                                                                                                                                                                                                                                                                                                                439
  Request 14 (W.L. Price) (3)
THE EFFECT OF OXIDATION ON CIRCUIT BREAKER CONTACTS
OXID CIRCUIT CONTACT
                                                                                    0XID
903
                                                                                                               (W. Fincham)
```

TEMPERATURE GIBERAT METHODS FOR TUNING HIGHLY STABLE HIGH FREQUENCY OSCILLATORS
TEMPERAT GIADPEND TUN (HIGH) STAB HIGH FREQUENC OSCILLAT
296 133 995 (879) 935 879 108 203


```
Request 16 (4. ginchum)
                                                              (8)
SECTION OF THE PROPERTY OF THE
                                                                                                                        TUN PASS BAND CHLIF
                                                  GRAPH
                                                                            DESIGN TRANSIST
   1/2
                                                                                520
                                                                                                                        995
                                                                                                                                     905
                                                     714
                                                                                                  314
     Request 17
                             (W. Finchen)
                                                              (6)
SYNY LÍSTO OF FILMALS HAVING TÍCH ATTEMBÁTISM CHUJACTERISTICS USING A BLOCK DIAGNAM APPROACH
                                                 HI '' ATTENUAT 23
                     FILT
                                                                              CHARACTE
                                                                                    39
   294
     Remort 18
                               (W. Finch in)
VOLUME CURRING REPARTIONSHIPS IN UNTOORKS OF NONLINEAR BLEMENTS CONNECTED IN PARTILLEL
                                                        KETWORK
                                                                         NONLINGAR ELEMENT CONNE
T.IOV
            CURRENT
  954
                 361
                                                                                    192
                                                                                                     376
                            (... Fincham)
     Request 19
                                                               (7)
THEORY OF APPROXICATION THE PRESENCE THAT HE PROSECUTIVE HONOR THE PRESENCE OF APPROXICATIVE AND APPROXICATIVE CAPACITIVE
                                                  FREQUENC PHAS 908
                                                                                                             RESISTIV INDUCTI
                                                                                                                                                  (RESISTIV) CAPACIT
                  APPROXIM
                                                                                                                                   393
                        15
                                                                                                                 251
     CIRCUITA
     CIRCUIT
        345
Regrest 20 (%.C. Bain) (9)
ORANGE, THORS OF RAPID FLUCTUATIONS IN THE MARTHS MAGNETIC FIELD AND THEIR RELATION TO THE PROPAGATION OF
                                     FILICTUAT
                                                                        MARTH MAGNETIC FIELD
                                                                                                                                                             PROPAGAT
OBJERVAT
    200
                                          105
                                                                           693
                                                                                        166
                                                                                                       703
                                                                                                                                                                 231
     HYDROMACHETIC WAVES IN THE EMODELERS
      OFFICERCE.
                       EVE.
                                         EMOSPHER
                            (W.C. Bain)
     Request 21
                                                                (6)
DINERAL VARIATIONS OF PRICTARTICHS IN THE EARTHS LAGMETIC FIRED
DEUCE A VARIATIO FINCTUAT
                                                                         MURTH MAGNETIC FIELD
                    327.
                                                                           693
                                                                                       166
     Request 22
                             (E. Dunford)
SUMBLED IN BELLIOTTE ABELYDIS OF THE EMPTHS MAGNETIC FIRED
                                                       E-RTH E-GRITTC FT LD
693 166 703
Demarton Rescould about
                   199
                                 653
   2/7
                               (D. Dunford)
     Request 23
                                                                 (6)
DESTRICTION OF THE COMPORTING OF THE ELECTRICAL CONDUCTIVITY HE THE UPPER ATMOSPHERE
                                                              ELECTRIC CONDUCT
DERCIVAT
                               COMPOSITE
                                                                                                                    UPPER ATMOSPHE
     69
                                    50
                                                                                     350
                                                                                                                      813
     Request 24
                              (H. Rishveth)
                                                                (7)
THE MEANTS OF SOLER FLEROS OR THE ABSOLUTION OF COSMIC HEDIO ROLLS IN THE ISMOSPHERE
                                                                          COSMIC RADIO NOIS
                         30LR FLEE
794 705
                                                  LBCOR
                                                                                                                                   IONO.33-HE
                                                                                      515
                                                                                                771 900
                            794
                                                              653
                                                                                                                                      156
     Request 25
                               (s. Dunford)
                                                                (6)
DEFINABILITION OF THE CONTAINT SYSTEMS IN THE UPPOR ATMOSPRES DURING HAGNETIC STORMS
                                   CT REMOT SYSTEM
                                                                          UPPER ATMOSPHE
                                                                                                                     MAGNETIC STORM
                                                    632
                                        361
                                                                              813
                                                                                            21
                                                                                                                         166
                                                                                                                                       803
     Remest 26
                               (D.L. Croom)
                                                              (3)
OBSERVATIONS OF THE SUM DURING MCLIPSES CIVING THE DISTRIBUTION OF SOURCES ON THE SIGN THE MICROLARM PLANCE
                                                     1.GLTP3
530
                                                                                                                    SOURCE
OBGERVAT
                                  Curi
                                                                                        DISTRIBU
                                                                                                                                               DIS
                                                                                                                                                             - MICROMAV RADIG
                                  993
     200
                                                                                              80
                                                                                                                        615
                                                                                                                                               970
                                                                                                                                                                         177
                                                                                                                                                                                       917
     Request 27
                               (D.L. Croom)
                                                               (4)
GBBERVATIONS OF THE SUN USING MADIO ENTERFEROMETERS
CBAERVAT
                                  SUN
                                                   MADIO INTERMER
     200
                                  993
                                                      771
                                                                 145
     Request 28
                              (D.L. Croom)
                                                                (7)
EQUATIONS GOVERNING THE PROPAGATION OF ELECTROMAGNETIC AND HYDROMAGNETIC MAKES IN THE SOLIR CORONA
REUAT
                                         PROPAGAT
                                                                                                                                                      SOLAR CORONA
                                                                ELECTROM.
                                                                                                      HYDROMAG
                                                                                                                               WAVE
  696
                                             231
                                                                         86
                                                                                                                               954
                                                                                                          125
                                                                                                                                                        794 514
     Request 29
                               (D.L. Croom)
MENTERATING OF THE DESCRIPT OF IONIMATION AND TEMPERATURE IN THE SOLAR CORONA
                                                JONIZATI
153
                             DECSIT
                                                                          TEMPERAT
                                                                                                           SOLAR CORONA
                                                                                296
                                19ر
                                                                                                             794
     Request 30
                              (D.L. Croom)
```

LIGHTNIN DISCHARG

163

PLANCE SEND ABSTRACTS ON THE SOURCE SPECTRA OF LIGHTNING DISCHARGES SOURCE SPECTR

616

```
(5)
                 (Cancelled)
   Request 31
PLEASE SEND ABSTRACTS CONNECTED WITH THE OCCURRENCE OF A SECONDARY OZONE LAYER AT NIGHT TIME
                                                                                       NIGHT TIME
                                                                               LAYER
                       CONNE
                                                             SECONDAR
                                                                                728
                                                                                          751 942
                         674
   Request 32
                   (D.M. Yates)
                                        (4)
THE EFFECT OF SMALL DISTORTIONS IN THE SURFACE OF A CAVITY RESONATOR
                     DISTORT
                                          SURFACE CAVIT RESONATO
                                                         668
                                            469
                       370
   Request 33
                   (W.C. Bain)
                                        (3)
THE DETERMINATION OF THE ORBITS OF INDIVIDUAL METEORS BY RADIO METHODS
                                                 METEOR
                                                             RADIO
                           ORBIT
                            755
                   (W.C. Bain)
                                        (5)
   Request 34
THE DETERMINATION OF ION MASSES IN THE IONOSPHERE BY THE STUDY OF BACK SCATTERED RADIO WAVES
                                         IONOSPHE
                                                                             SCATTER RADIO WAVE
                      ION
                                                                               452
                                                                                         771 954
                                             156
                      979
                                        (9)
   Request 35
                   (W.C. Bain)
THEORETICAL STUDIES OF THE SOURCE OF HIGH FREQUENCY RADIO WAVES EMITTED FROM THE PLANET JUPITER
                             SOURCE
                                       HIGH FREQUENC RADIO WAVE FMIT
                                                                                        PLANET JUPITER
THEOR
                                                         771 954 860
                                                                                          586
                                        879
                                              108
                               615
 807
                  (W.C. Bain)
                                        (5)
   Request 36
SIMULTANEOUS OBSERVATIONS OF WHISTLERS AND LIGHTNING DISCHARGES
                               WHISTL 651
                                              LICHTNIN DISCHARG
SIMULTAN
             OBSERVAT
                200
                                                163
   Request 37
                   (W.C. Bain)
                                        (10)
VARIATIONS IN THE HEIGHT OF REFLECTION OF LOW OR VERY LOW FREQUENCY RADIO WAVES IN THE PERIOD BEFORE GROUND
VARTATT
                   HEIGHT
                             REFLECT
                                             LOW
                                                         (LOW) FREQUENC RADIO WAVE
                                                                                              PERIOD
                                                                                                             GROUND
                                             982
                                                         (982)
                                                                 108
                                                                          771 954
                                                                                               582
                                444
  324
                     544
   SUNRISE.
   SUNRISE
     466
   Request 38
                   (H. Rishbeth)
                                        (7)
THE USE OF ICHOSPHERIC CROSS MODULATION IN THE DETERMINATION OF ICHOSPHERIC ELECTRON DENSITIES AND COLLISION
                         CROSS MODULAT
                                                                     IONOSPHE ELECTRON DENSIT
                                                                                                     COLLISIO
                                                                                      87
                                                                                             519
                                                                                                               44
                                 407
                                                                       156
                          677
   FREQUENCIES
   FREQUENC
     108
Request 39 (H. Rishbeth) (L)
MEASUREMENTS OF IOMOSPHERIC DRIFTS NEAR THE EQUATOR
MEASUR IOMOSPHE DRIFT EQUATOR
  563
                    156
                               692
                  (H. Rishbeth)
   Request 40
                                        (5)
THE USE OF ANALOGUE COMPUTERS IN UPPER ATMOSPHERE THEORY
ANALOGUE COMPUT UPPER ATMOSPHE THEOR
              10
                       512
                                    813
                                              21
                   (H. Rishbeth)
   Request 41
                                        (5)
THE USE OF LUNAR RADIO REFLECTIONS IN INVESTIGATIONS OF THE NATURE OF THE MOONS SURFACE
                  RADIO REFLECT
            HIM
                                                                                MOON SURFACE
            983
                   771
                           444
                                                                                 899
                                                                                         469
   Request 42
                   (D.A. Bryant)
                                        (9)
WHAT REFERENCES ON COMPARISON BETWEEN GROUND LEVEL AND HIGH ALTITUDE BALLOON COSMIC RAY RESULTS
                    COMPARIS
     REFERENC
                                                                          BALLOON COSMIC RAY
                                         GROUND LEVEL
                                                           HIGH ALTI
       241
                       46
                                           541 730
                                                            879 826
                                                                             335
Request 43 (D.A. Bryant) (3) WHAT REFERENCES ON MODEL EXPERIMENTS ON AURORA
                    MODEL
     REFERENC
                                           AURORA
       241
Request 44 (D.A. Bryant) (6)
WINT REFERENCES ON INTEGRAL SPECTRUM OF PRIMARY COSMIC RAYS
REFERENC INTEGRAL SPECTR PRIMARY COSMIC RAY
C16 432 515 987
   Request 45
                   (Cancelled)
                                        (5)
REFERENCES ON SOLAR AND GEOMAGNETIC EFFECTS OF COSMIC RAYS
REFERENC
               SOLAR
                          GEOMAGNE
                                                   COSMIC RAY
```

515 987

114

```
Request 46
                (Cancelled)
CODING DIBCS FOR ANALOGUE DIGITAL CONVERTERS
COD
                THEVHOO TIDIG HUDGLAND.
968
                    10
                          697
                                   357
   Request 47
                 (J. McDaniol)
PARROMAGNETIC TECHNIQUES FOR COMPUTER STORES
                            COMPUT STOR
FERROMAG
                             512
                                      938
  103
   Request 48
                 (J, McDaniel)
BOL T. HE OF DIFFERENTIAL EQUATIONS BY CONFUTER
HOLLING .
           DIFFEREN EQUAT
                                CO;iFijT
                          696
  271
                                       512
                  (J. McDaniel)
                                     (6)
   Request 49
MENTICENCY OF DIGITAL COMPUTERS VERSUS ANALOGUE COMPUTERS IN THE SOLUTION OF BOUNDARY VALUE PROBLEMS
DEFIGEN.
            DIGIT
                                      ANALOGUE COMPUT
                                                           SOLUTION BOUNDAR
                                          10
                                                512
  33
              687
                                                                  271
                 (J. McDaniel)
   Request 50
ENTHODS OF ERROR CLESCHING IN DICITAL COMPUTERS
                            DIGIT COMPUT
          ERROR
                             687
            697
                                     512
Request 51 (M. Longden) (7)
                                         LOGIC FUNCTION CAMONIC FORM
           PROD
                  HIRHIL NET
                             985
                                          735
            913
                     745
                                                   109
                                                               340
                 (M. Longden)
ARITHERTIC UNITS AS REQUIRED IN A DIGITAL COMPUTER INCLUDING SHIFT REGISTERS SERVAL AND PARALIEL ADDER
          UNIT
                                 DIGIT CCSHUT
                                                            SHIFT
                                                                                       PARAMEL ADD
                                  687
           947
                                          512
                                                             788
                                                                                         206
                                                                                                962
  Request 53
                 (C.H. Davis)
THEOREM ON THE DESIGN OF LOW DRIFT TRANSISTOR AMPLIFIERS THEOREM DESIGN LOW DRIFT TRANSIST AMPLIF
                            982 692
 136
                   520
                                        314
                                                  1.91
  Request 54
                 (C.H. Davis)
1. PORENTION ON HIGH CURRENT THRUSISTOR SWITCHES
          HIGH CURRENT TRANSIST SWITCH
Ing'oasaT
  136
               ს79 361
                             31 L
                                        630
  Request 55
                 (C.H. Davis)
                                    (6)
TAPONSLATION ON DUSIGN OF TIMEDIVINION MULTIPLEXING CIRCUITS
           DESIGN TIME DIVI
                                                CLRCUIT
II.FORLU
                                  LULTIPL
  136
                         942 849
               520
                                       4.09
                                                    345
  Request 56
                 (C.H. Davis)
DETAILS OF AVAILABLE LOW VOLTAGE CAPACITORS
                    LOA VOLT CAPACIT
982 951 344
                                  541
                 (C.H. Davis)
                                    (9)
DESCRIPTION OF DIRECT COUPLED FLIP PLOPS TO FUNCTION SITH THE MAXIMUM WIRLATIONS IN THE VILUES OF THE CIRCUIT
DEBIGN DIRECT COUPL FLIP
                                FUNCTION
                                                        MAXIM VARIATIO
                                                                                                CIRCUIT
                         869
 520
          525
               676
                                        109
                                                         740
                                                                   324
                                                                                                  345
   COMPONENTS
  COLPONER
    50
                (A.A. Hill)
                                   (7)
PRESENT BUPPLY INFORMATION ON THE PERFORMANCE OF TYPICAL MAGNETIC FILM MEMORY SYSTEMS WITH CIRCUIT DIAGRAMS
             THFORMAT
                         PERFORMA
                                                       MAGNETIC FILM MEMOR SYSTEM CIRCUIT
                                                                 866
               136
                                 210
                                                          166
                                                                     742
                                                                            632
                 (n.A. Hill)
I COULD LIKE DETAILS OF THE COPK WHICH HAS BEEN DONE TO EXTEND THE FREQUENCY RANGE OF MAGNETIC AMPLIFIERS

WORK EXTEND FREQUENC RANG MAGNETIC AMPLIF
                                                              FREQUENC RANG MAGNETIC AMPLIF
                                                       EXTEND
                             6
                                                                    108
                                                                            917
                                                        534
                (A.A. Hill)
                                   (6)
  ODED LIKE THEFOREACTION ON THE RANGE OF STATIC RELAYS SUITABLE FOR USE AT HIGH SWITCHING RATES IMPORTED RANG STATIC RELAY HIGH SWITCH
                                917
                                         621
                                                                           879 630
  Request 61
                  (4.A. Hill)
```

I ... INTERMENTED IN CIRCUITRY CAPABLE OF GENERATING EXTREMELY NARROW PULSES

GENERAT

388

EXTREM NARROW PULSE

572

535

CIRCUIT

345

ERIC Full Text Provided by EF

```
(A.A. Hill)
                                      (4)
   Request 62
PLEASE SUPPLY INFORMATION ON THE THEORY AND USE OF PARAMETRIC AMPLIFIERS
              THFORMAT
                                  THEOR
                                                    PARAMET
                                                                AMPLIF
                 136
                                   807
                                                       419
                                      (6)
   Request 63
                  (F.A. Briggs)
THE SYNTHESIS OF METWORKS WITH GIVEN SAMPLED DATA TRANSFER FUNCTIONS
                 NETWORK
                                      SAMPL
                                            DATA TRANSFER FUNCTION
    SYNTHESI
                                               848
                                       779
                                                    311
      294
                   412
Request 64 (P.A. Briggs) (6)
THE THEORY OF STABILITY IN RELATION TO CONTROL SYSTEMS WITH RELAY ELEMENTS
              STABLLI
                                        CONTROL SYSTEM
                                                             RELAY ELEMENT
    THEOR
                 461
                                          356
                                                   632
                                                               774
                                                                      376
      807
   Request 65
                  (P.A. Briggs)
                                      (7)
THE USE OF DIGITAL COMPUTERS TO OBTAIN POWER SPECTRAL ANALYSIS OF NUMERICAL DATA
                                        POWER SPECTR AKALY
           DIGIT COMPUT
                                                                    NUMERICA DATA
            687
                                         763 616
                                                         658
                                      (8)
                   (Cancelled)
   Request 66
CIRCUIT ELAMENTS WITH ZERO MEMORY NON LIMEAR CHARACTERISTICS AND VARIABLE PARAMETERS
                                       LINEAR CHARACTE
CIRCUIT ELEMENT
                      ZERO MEMOR
                                                                   VARIABLE PARAMET
          376
                       961 742
                                         559
                                                  39
  345
                                      (8)
   Request 67
                   (P.A. Briggs)
PRINTED CIRCUIT DESIGN FOR A RANDOM PULSE GENERATOR OF LOW FREQUENCY
PRINT CIRCUIT DESIGN
                             RANDOM PULSE GENERAT
                                                         LOW FRE UENC
 764
          108
                                      768
                                             388
                                                         982 108
                  520
                               595
   Request 68
                  (D.A. Bryant)
REFURENCED ON ELECTRIC FIELD THEORIES OF THE AURORA
REFERENC
              ELECTRIC FIELD THEOR
                                              AURORA
   241
                                               496
                 34
                        703
                              807
                  (C.H.Davis)
   Request 69
                                      (3)
FAST TRANSISTOR COUNTERS
FAST TRANSIST
               COUNT
 864
        314
                 675
   Request 70
                  (E.A. Newman)
                                      (11)
LOW PAGE LATTICE FILTERS
LOW PAS LATTICE FILT
982 905
           402
   Request 71
                  (D.M. Yates)
                                      (7)
SIMILARITIES BETWEEN THE DIFFRACTION THEORY OF SLECTROMAGNETIC WAVES AND THAT OF ELECTRON STREAMS
SIMILAR
                         DIFFRACT
                                      TIMOR
                                                ELECTROM
                                                                 WAVE
                                                                                    ELECTRON STREAM
  1,57
                             72
                                       807
                                                    86
                                                                  954
                                                                                              624
   Request 72
                  (D.M. Yates)
                                      (5)
THE USE OF COMPLEX WARLAGES IN THE THEORY OF COMMUNICATION NETWORKS
           COMPLEX VARIABLE
                                     THEOR
                                               COMMUNIC
                                                             NETWORK
             349
                     323
                                      807
                                                   45
                                                                412
                  (D.II. Yates)
   Request 73
                                      (5)
THE BEHAVIOUR OF A BHIM OF CHARGED PARTICLES IN THE PRESENCE OF PLANE CONDUCTORS
                   BEALi
                           CHARG
                                  P/RTICLE
                                                                  PLANE CONDUCT
                    823
                             669
                                                                   759
                                                                          350
   Request 74
                  (D.M. Yates)
                                      (7)
PREDICTING THE PAYES OF ELECTRONS MOVING IN A VARYING MAGNETIC FIELD
PREDICT
               PATH
                        ELECTRON MOVING
                                                       MAGNETIC FIELD
                                               VARY
  431
                906
                                   571
                                                949
                                                           166
                                                                  703
                  (J.R. Parks)
                                      (6)
ACTIVE CONSTANT VOLTAGE TRANSFORMER FOR SIGNAL DISTRIBUTION
ACTIVE CONSTAN VOLT
                        TRANSFOR
                                         SIGNAL DISTRIBU
  487
         352
                 959
                                           613
                            312
                                                   80
   Request 76
                  (J.R. Parks)
                                      (4)
ACTIVE AUDIO FREQUENCY FILTER WITH VARIABLE CUT OFF SLOPE
ACTIVE
             FREQUENC FILT
                                    VARIABLE
  487
                108
                        867
                                      323
   Request 77
                   (J.R. Parks)
VARIABLE ULTIM HIGH PREQUENCY ATTENUATORS
               HIGH FREQUENC ATTENUAT 879 108 23
VARIABLE
   323
   Request 78
                  (J.R. Parks)
WHILTY OPERATION OF FREDBACK TIME BASES
  LT
       OPERATIO
                    FEEDBACK TIME BASE
```

201

942 852

101

```
Request 79 (P.J. Pobgee) WARIABLE CAPACITALISE AMPLIFIERS
                                      (3)
VARIABLE CAPACIT
                     AMPLIF
                       7,91
   323
           341
Request 80 (P.J. Pobgee)
TRANSISTOR SEEEP GREEKATORS
                                       (3)
TRANSIST SWEEP CHIERLY
            806
Request 84 (P.J. Pobgoe)
ADVAUTAGES OF PARAMETRIC AMPLIFIERS
                                       (3)
            PALAST
                       AMPLIF
DATILAVG
                419
                          491
Request 82 (F.J. Pobgeo)
OFFILIBING LINEAR NETWORKS
                                       (3)
        LEUMAR WITHORK
            559
                 412
Request 83 (P.J. Fobgee) TRANSISTOR PLACE SPLITTING SIRCUITS
TRANSIST PHAS SPLITT CIRCUIT
            908
                   618
                            345
   Request 84
                   (E.A. Newman)
                                       (5)
PLEASE SUPPLY INFORMATION PERTUNET TO THE USE OF SURFACE PRETEATMENT TO PREVENT SECONDARY EMMISSION EFFECTS
              THFORWAT
                                                    SURFACE
                                                                                      SECONDAR EMISSI
                                                                                        262
                136
                                                     469
   IN VALVES
      A"TAE
       814
   Request 85
                  (E.A. Hewman)
                                      (7)
I STAN TO SEATA ASSET THE DESIGN OF ENCHANICAL BAND PASS FILTURE FOR GOOD PASS CHARACTERISTICS
                               DESIGN
                                         AMCHANIC BAND
               DATA
                                                                FILT
                                                                                  PASS CHARACTE
                                                      831
                                                                 867
                                                                                        39
                87.8
                                520
                                            173
                                                                                   905
   Request 86
                   (E.A. Hewman)
                                      (6)
JECHALISMS WHEREBY THE SMISSION AT HIGH FRE DENOIDS IS AFFECTED BY WEATHER AND TIME OF DAY
                                    HIGH FAR YURNO
LECHARIS
                    TRALELIA
                                                                                   TIME
                                                                                           DAY
                                     879 108
                                                                                    942
                                                                                           969
  174
                      1.76
   Request 87
                  (E... Newman)
                                      (2)
GOULD YOU PLANSS GIVE AS ANYTHING ABOUT THE POSSIBILITIES OF GETTING RECTIFICATION USING METALLIC DEVICES
                                                                        RECTIF
                                                                                             METAL
                                                                         599
                                                                                              743
                                      (7)
   Request 88
                  (E... Hewman)
I LIGH TO CALCULATE THE DIDUCTARCA AND LOSS IN COILS MADE USING PRINTED CIRCUIT OR OTHER MINIATURIZATION
          CALCULAT
                         IIIDUCT/N
                                         LOSS
                                                 COIL
                                                                   PRINT CIRCUIT
                                                                                             MINLIUR
                                                  87.1
                                                                    764
                                          893
                                                                             345
                                                                                              1.81
             35
                           134
           A SULTABLE ARTICLE PLEASE
   IDEAS.
Request 89 (R.S. Matson) (5)
AMALYSIS OF MORLIMEAR SYSTEMS USING PHASE PLANE TECHNIQUES
                                  PIVAS PLANE
         NONLINEA BYSTEM
               192
                   (R.S. Watson)
   Request 90
                                       (7)
MINIATURE LOW MOISE HIGH GAIN HIGH IMPEDANCE AMPLIFIERS
MENIATUR LOW NOISE
                       GAIN HIGH IMPEDANC AMPLIF
          982 900
                          874 879
                                        128
   Request 91
                  (R.S. Watson)
CONTROL CHARACTERISTICS OF SAMPLING SERVO SYSTEMS
CONTROL CHARACTE
                            SAMPL
                                     SERVO SYSTEM
           39
   356
                                       782
                                            632
   Request 92
                  (R.S. Watson)
                                       (5)
POWER SPECTRAL DESCRIPTION OF TAINED USING ANALOGUE TECHNIQUES
POWER SPECTR DEMSIT DISTRIBU
                                                     ANALOGUE
 763 616
                519
                                                        10
   Request 93
                   (R.S. Watson)
                                      (7)
HIGH STABILITY HIGH INPUT IMPEDANCE TRANSISTORISED ANALOGUE AMPLIFTER
     STABILI HIGH INPUT IMPEDANC TRANSIST
                                                   AMALOGUE AMPLIF
```


1,61

128

314

10

(P.R. Stuart) Request 94 (6) MEDITIONIC DESCRIPT REAT OF A SUPERCONDUCTOR SHOWING A DISCOUTIFUTTY AT THE SUPERCONDUCTING CRITICAL ELECTRON HELV SUITERCON DISCONTI (SUPERCON) CRITICAL 87 378 291 (291) 64 TEMPERATURE $\mathbf{T} \cdot \mathbf{M}.\mathbf{PERAT}$ 296 Request 95 (P.R. Stuart) (8) ACQUIEST 45 (1.46. Studies) (5)

72. ABSTRACT ON THE PEAL DESTRIBUTION SERBONDING A CHARGED THEN CIRCULAR DISC RESTING ON AN INFINITE

FIELD DESCRIPTION CHARGE THEN CIRCULAR DISC RESTING ON AN INFINITE

703 80 669 941 40 970 395 DIMLECTRIC SLAB DIELECTR 70 Request 96 (P.R. Stuart) (4)TUNNEL DIOUE CONSTRUCTION AND ITS ELECTRICAL CHARACTERISTICS EXPLAINED ELECTRIC CHARACTE TOWNET DIODE 61,2 689 84 39 Request 97 (P.R. Stuart) (5)
ELECTRON DENSITY OF STATES AT THE SURFACE OF A SEMICONDUCTOR COMPARED WITH THAT AT DEPTH SURFACE SURFACE SEMICOND 264

87 519 685 Request 99 (D.M. Yates) (9) THE PHENOLENON OF RADIATION CAUGED BY CHARGED PARTICLES MOVING IN VARYING ELECTRIC AND MAGNETIC FIELDS PHENOMEN RADIATIO CHARG PARTICLE MOVING VARY ELECTRIC MAGNETIC FIELD

208

571

949

84

166

703

669

213

APPENDIX B2

Numbers and distribution of key-word in requests 0-99

) = cancelled request Request Number (10)(3) (4)(5) (4) (5) (8)

Distribution

Number of Keywords

	1	2	3	4	5	6	7	8	9	10		
Requests		87	(6) 14 33 47 50 56 69 79 80 81 82	(8) 9 27 30 32 39 (46) 48 62 70 76 77 83 96	2 5 7 13 29 (31) 34 36 40 41 (45) 54 61 68 72 73 78 84 89 91 92 97	0 3 7 1 2 2 3 5 4 4 9 2 5 5 5 5 6 6 6 4 7 8 6 9 8	11 12 15 18 19 24 8 51 58 65 74 85 8 90 93	26 (66) 67	4 20 35 42 57 99	(1) 37		93 requests, Mean 5.75 key-words Mode 5.5 key-words Standard Deviation 1.6 key-words
Number of requests	0,	1	11(+1)	12(+2)	20(+2)	20	18	4(+1)	6	1(+1)	= 93	

Subsets of Requests

(i) Cancelled Requests

7 of the original 100 requests were cancelled at various stages of the work.

Request 1. 'Super-regenerative' is a single word in the dictionary and the abstracts, but hyphens were coded as spaces throughout our work.

Request 6. "Testing" is not in the dictionary.

Request 8. Request garbled in typing.

Request 31. 'Ozone' is not in the dictionary.

Request 45. Requestor not available for assessments.

Request 46. Dictionary mistakenly does not accept plural of 'disc'.

Request 66. Non-linear', as with Request 1.

(ii) <u>The *55*</u> set (report VI.2.6)

The following 55 requests had one or more words underlined:-

0, 2, 4, 7, 10-12, 14-19, 22-24, 26-30, 32, 33, 35, 36, 42-44, 47-50, 58, 59, 61, 62, 64, 65, 67, 68, 71, 74-79, 81, 89, 94-99.

(iii) The '34' set (report, VIII.2)

The following 34 requests retrieved only 0-4 relevant documents in Run 13 at $K^* \simeq 50$:-

3, 5, 7, 11-14, 35, 38, 40, 43, 49-51, 54-56, 60, 64, 65, 67, 71-74, 77, 78, 81, 87, 88, 92, 94, 96, 99.

(iv) The 17' set (report, VIII.1)

The following 17 requests were reckoned less well formulated:-

- 5, 12, 13, 34, 43, 52-55, 60, 62, 76, 84-86, 94,96.
- (v) Four Request Sets of Increasing Generality (report VIII.4)
- Gen 1 (0-8 known relevant documents) (26 requests)
 5, 7, 11, 12, 14, 32, 34, 37, 38, 40, 43, 49, 50, 51, 54, 55, 56
 65, 67, 72, 73, 77, 83, 88, 92, 94
- Gen 2 (9-17 known relevant documents) (21 requests)
 3, 9, 15, 21, 22, 33, 35, 36, 42, 57, 59, 60, 61, 63, 64, 76, 87, 91, 95, 96, 99
- Gen 3 (18-29 known relevant documents) (23 requests)
 2, 18, 19, 20, 23, 26, 30, 41, 44, 58, 69, 70, 71, 74, 78, 80, 84, 85, 86, 89, 90, 93, 97
- Gen 4 (30-84 known relevant documents) (23 requests)
 0, 4, 10, 15, 16, 17, 24, 25, 27, 28, 29, 39, 47, 48, 52, 53, 62, 68
 75, 79, 81, 82, 98.

- (vi) The 'Subject Index' set (report, VII.4)
 Subject Index searches were carried out for requests
 0, 18, 22, 38, 41, 57, 58, 70, 74, 75, 83, 94.
- (vii) The 'Virtually Exhaustive Search' set (report, VII.4)
 This involved requests
 10, 38, 91.

Summary Description of Strategies (report, VI.1).

	Summary	Description of Strategies (report, VI.1).
Mnemonic	Run	Formula for Coordination Value
Basic K	ey Word	Stem Strategy
KWS	13	Number of Key-word Stems common to abstract and request
KWS wit	h Automa	tic Weighting
AWKWS	22	Weight = 2 if word not present in 80% of output for
		Run 0 (i.e. Run 13 at $K = 50$, $K^{!} \simeq 35$)
Descrip	ter Stra	<u>tegies</u>
		Number of Descriptors in common, using:-
ARM	16	A R Meetham's non-overlapping clusters from G3, (C2)
MCSO1	14	P Vaswani's 1178 overlapping clusters, (C3),
MCS11	20	P Vaswani's 725 overlapping clusters, (C5),
RJR	19	R J Reason's 702 slightly overlapping clusters from G3, (C4)
Descrip	tors wit	h Representation
ARMSR	17	24. Run 16 Representation + Run 16 Coordination
SR14	6	27. Run 14 Representation + Run 14 Coordination
PDR14	11	27. Run 14 Proportional Representation + Run 14
•		Coordination, where a request word is represented
		if a third of its descriptors are assigned to the
		abstract
Associa	tion Str	ategies
EAG3	15	Number of Request Words associated with some abstract
•		word via G3
EAG4	18	As 15 but with G4
EARG4	23	Number of Associations via G4
Combina	tions of	Two Strategies
1314	9	Run 13 Coordination times Run 14 Coordination
13W14	28	27. Run 13 Coordination + Run 14 Coordination,
		effectively subdividing the strata of Run 13
Strateg	ies with	Underlining
Մ14-	21	Run 14 with underlining
Ŭ1 1	24	Run 11 with underlining
U13	25	Run 13 with underlining
Searche	s Largel	y Manual
SI	26	Subject Indexes - No Coordination

EXHSEA

27

Virtually Exhaustive Search - No Coordination

Discarded

ARM- 1 As Run 16 but ignoring isolated words as descriptors.

Note 1. Runs 0 2 3 4 5 6 7 8 10 12 were Runs 13 15 16 17 14 19 20 21 22 respectively at K = 50, rather than $K^{\ell} \simeq 50$.

Note 2. Run 24 is fully assered up to and including K = 18, $K^{\dagger} \simeq 15$ 25 K = 27, $K^{\dagger} \simeq 17$ K = 42, $K^{\dagger} \simeq 40$

but careful use may be made of these runs beyond this point. For example, Run 28 and Run 13 yield identical total numbers, or nearly, of relevant documents at $K^{i} \simeq 50$ as well as at $K^{i} = 20$, 30, 40.

Strategy Features

K' K'≥ 50	20044777777777 0004000000000000000000000	81 52
given K′≥49	00000000000000000000000000000000000000	75
ible the ' K'≃48	24440000000000000000000000000000000000	74
ssod K⁄~47	7444674777675 76747776777767	73 49
near as K′≃46	4448876776887488 774887776887488	72 48
ding as K′≃45	444040700004 500040000000000000000000000	70 74
K yielding K'≃40 K'≃	744 CA CO	75 74 75 75
Values of Yo K'c≥30	30404344343333333333333333333333333333	35 47 32
.Va. K′≃20	88888666888888	28 28 28
Maximum Coordination attained	1220 104 99 88 136 136 136	
Maxim Mnemonic Coordina attain	SR14 13T14 PDR14 KWS MCSO1 EAG3 ARM ARMSR EAG4 RJR MCS11 U14 AWKWS	U11 U13 13W14
Run	0016470758000190 88888999999998888	200 200 200 200 200 200 200 200 200 200

Computer Implementation of Indexing and Retrieval Operations

Matrix manipulation of data

A matrix is a rectangular or square array of numbers or data elements. We have dealt with them throughout this report, but we have not mentioned operations upon matrices. One used extensively in the organization of computer programs for indexing and retrieval is that of <u>multiplying</u> two matrices. The product, A.B, of two matrices is defined only when the number of columns of matrix A and the number of rows of matrix B are equal. The product is then another matrix having as many rows as A and as many columns as B. The element in row-i and column-j of the product is obtained as the sum of products of corresponding elements in row-i of A and column-j of B. This is illustrated in fig. B6.1.

 $3\times2+0\times1+7\times2+1\times3+5\times10+9\times0=33$

Fig. B6.1 Illustration of matrix multiplication

Consider this process in the case where A is a heary abstract/word matrix (i.e. rows corresponding to abstracts, columns to words) and B is a binary word/request matrix. Row-i of A is then a string of O's and 1's, the 1's representing the particular words in abstract-i, and column-j of B is a similar string of O's and 1's in which the 1's represent the particular words occurring in request-j. The value of the element in row-i and column-j of the product will then be the number of words in common, i.e. the key word coordination level, for the abstract and request in question. The product matrix contains the key word coordination levels for all abstracts with respect to all requests. The rows of this matrix correspond to abstracts and the columns to requests. The organization of our programs in the computer is such that the matrix of coordination levels produced in

each run is required to have rows corresponding to requests. Having produced the matrix for run 13 as above it is therefore necessary to transpose it so that its columns become rows and vice-versa. Before transferring the lists of retrieved abstracts to the harvest file (Section V.8) it is also necessary to apply the necessary coordination cut-off level for each request (Section VI.1), rejecting abstracts at lower levels.

Three matrix products are formed in the case of a simple descriptor run such as run 14. In the first the abstract/word matrix is multiplied by a word descriptor one to obtain an abstract/descriptor matrix. In accordance with the indexing strategy this is converted to binary form by setting a threshold value of one. We now have a matrix indicating the descriptors by which each abstract is indexed. The descriptor/word matrix (the transpose of the word/descriptor one) is then multiplied by the word/request matrix, again thresholding at one, to give a descriptor/request matrix. Finally the product of the abstract/descriptor and descriptor/request matrices yields an abstract/request one which, as before, requires transposing and application of the cut-off process.

Run 14, an associative run using word connection matrix G3 directly, involves only two products. First the abstract/word matrix is multiplied by G3. This yields a new abstract/word matrix which is converted to binary by thresholding its values at one (for strategy see Section VI.1). This is then multiplied by the word/request matrix to obtain the abstract/request matrix.x.

The main operations used are thus multiplication, transposition and thresholding.

Data formats

Two formats were adopted for matrices. With the first, used for storage on magnetic tape or for holding individual matrix rows in the core store, each row is stored as a block of successive machine words, the first of which specifies the number of words to follow. The remaining words in a block specify the non-zero elements in the matrix row, each word containing the element value and column number of one element.

Binary matrices with not more than 1,000 rows or columns could be held entirely in the core store by adopting a more economical format. Column numbers of all the non-zero elements of a matrix are held, three per word, in a block of words and are accompanied by a ke, indicating the starting point within the block of each row.

Matrix multiplication

With one or two exceptions all the multiplication involves binary matrices. For simplicity and processing speed the programs took advantage of this fact. Referring to fig. B6.1 we see that the non-zero elements of row-i of matrix A indicate those rows of matrix B that must be accessed to obtain element-ij of the product. Furthermore computation of every element of row-i of the product requires access to these same rows of matrix B. It is therefore economical to compute all the elements in a row of the product together. For binary matrices it is necessary simply to add together corresponding elements of all the selected rows of matrix B in order to obtain a row of the product matrix.

Two multiplication routines are used working on this principle. One is used when both matrices in a product are small and are held entirely in the core store. The other requires the post-multiplier (the R.H. matrix) to be in the core store and reads successive rows of the pre-multiplier from magnetic tape. Both write successive rows of the product, which is generally non-binary, to magnetic tape.

Matrix thresholding

One program reads a complete non-binary matrix from magnetic tape and stores it in compact binary form in the core store after setting a threshold value one (the commonest value).

Another program accepts any stated value in thresholding a single row of a non-binary matrix held in the core store and leaves the result in the core.

Coordination value cut-off

The abstract/request matrices have 11,571 rows and 100 columns.

Transposing a matrix of this size on a computer is a difficult and a slow job, the time increasing with the number of non-zero matrix elements. For this reason the coordination cut-off level for each request is computed and applied before transposing the matrix.

Two programs are used here. We wish to obtain an average output as close as possible to 50 abstracts per request by retrieving as near as possible to some fixed number, K, of abstracts for each (see Section VI.1). The first program forms 100 distributions, one for each request, of the coordination values (i.e. the element values of the abstract/request matrix) and from them computes the value K. The second program makes two passes of the tape containing the abstract/request matrix. During the first the distributions are re-formed and the coordination cut-off level giving an

output closest to K is recorded for each request. On the second tape pass the matrix is thresholded using these separate cut-off values for the different columns and the resulting matrix is written on to magnetic tape.

Matrix transpose

Difficulty only arises in the case of very large matrices such as the abstract/request and abstract/word ones. We will therefore only describe the method used for these. The number of passes of the tape containing the matrix to be transposed depends upon the number of non-zero elements. first pass is used to find the number of elements in each column. Knowing this and the amount of core store made available for holding the transpose, the program decides how many rows of the transpose to form on the next and s of the tape. The requisite number of passes of the input subsequent pa tape is then made, each time forming a subset of the rows of the transpose in the available core store and then writing them on another magnetic tape.

Retrieval print-out

The texts of all 11,571 abstracts are read from magnetic tape and druped on to a magnetic disc store giving reasonable random access. Having ied the contents of the request/abstract matrix for the run in hand on to the harvest file, the latter is now accessed to obtain the list of abstract numbers retrieved for each request. The text of each request, held in the core store, is assembled with those of the retrieved abstracts as they are called down from the disc. The complete output for each request is sent in the required format to a magnetic tape. When the entire output for .. run is written on tape another program is run which reads it from the cape and sends it to the line-printer. The programs are organized in this way so that the main program, the run time of which is drawn out by the vast number of disc accesses, does not monopolize the line-printer, inhibiting its use by other programs that may be running in the machine in parallel.

Computer time required for indexing and retrieval

It is assumed that the abstract/word matrix the word/request matrix and any required descriptor/word matrix are available in machine readable form.

When a program being run in time sharing mode on KDF9 terminates, three times are printed out:

1. the time for which the program actually occupied the central processor unit,

. 125

- 2. the total elapsed time during which the program was running in parallel with others, and
- 3. the notional elapsed time, which is an estimate of the time for which the program would run on a machine without time sharing.
 In calculating the following times (3) was used.

We consider run 13, the basic key-word strategy, and runs 11 and 23, the best single runs with which to supplement it. Run 11 uses a cluster strategy with proportional representation and run 23 involves expanding requests and abstracts with G4, but does not use clusters (see Section VI.1).

Below we give the total times to run all necessary programs to produce, from the basic matrices mentioned above, a request/abstract matrix (for 93 requests):

Run	Number of matrix operations	total notional elapsed time
13	. 3	16 mins
11	10	164 "
23	5	69 "

Although the machine times required, having produced a request/abstract matrix, to obtain the final printed output of retrieved material are substantial, they would not be very meaningful figures to quote. This is because the economics of this and of the process depend upon factors such as whether or not the computer is time-shared, what sort of backing store the document texts are held on and whether retrieved texts are printed on-line to the computer or off-line. These times are also independent of retrieval strategy.

In our case the texts of the abstracts are held on magnetic tape and are only dumped on to a magnetic disc when the appropriate program is running. It takes approximately 17 minutes to transfer them to the disc, but as our machine is time-shared that is quite reasonable. In an operational environment the texts might reside permanently on a disc file. The line-printer on our KDF9 can only be used in an on-line mode. Again, having time-sharing, it is not too unreasonable to print extensive quantities of output in this way, although it does monopolize the printer. In an operational system one would try to arrange that large amounts of printing are produced in an off-line mode.

APPENDIX B6 (Continued)

Evaluation Files and Programs

The Harvest File is the central information bank and is arranged thus on magnetic tape:-

There is one block of information on the tape per request.

The block's machine words are each arranged thus,

Flag/Strategy Number/Relevance/Coordination/Abstract,

ordered by strategy and then abstract.

The blocks are overwritable for later insertion of relevances, or other corrections. To <u>lengthen</u> the blocks with the results of a new strategy the file is copied from one of two tapes to the other in turn.

The flag marks abstracts retrieved by no previous strategy.

Flagged abstracts only are sent to request or to avoid duplicate assessment and reduce unnecessary output. The flags are also of use in counting, for example, the numbers of distinct relevant abstracts, or all distinct abstracts.

The harvest file can be reduced to study subsets of requests or smaller cut-offs.

Programs to Run and Fvaluate a Typical Strategy

Each step after the first represents a single program. They rely on 4-25K store and on a single pass of each with each input or output tape, and take 3-15 minutes on KDF9.

- Form coordination for each abstract-request, for example by matrix multiplication or merging two tapes, in order of abstracts.
- Print out numbers of abstracts in each stratum. 2.
- 3. List K^{1} for K = 1, 2, 3
- Cut off 1) at largest K or K' likely to be needed and transpose, i.e. rewrite 1) in order of requests.
- 5。 Suppress permanently cancelled requests as necessary.
- Add new strategy to Harvest file, mark abstracts not previously retrieved with flag.
- Print out new abstracts and send to requesters for assessment. 7.
- 8. Insert assessments of flagged abstracts via paper tape.
- 9. On Harvest Tape, copy assessments of all unflagged items where known from an earlier run.
- Replace existing coordinations by 100 K, where K = minimum K-value needed to retrieve stratum in which abstract occurs. This preserves the strata while enabling any smaller cut-off to be applied by a simple program step.

- 11. Form one new Harvest File for each desired K', using appropriate K from step 3.
- 12. Reset Harvest File Flags if earlier runs have had items removed in step 11.
- 13. Form other Harvest Files with selected requests only.
- 14. Several Print-Outs, each displaying:

For Fixed Cut Off, Each Rur, Each Request

The numbers of relevant, irrelevant, the % precision and recall, also totals and average numbers of relevant per request; the same after suppressing abstracts also found in a stated run (e.g. Run 13) or runs.

15. Several Print-Outs, each displaying:

For K = 1, 2, 3 and One Run, One Request Set K, K° , K° , totals relevant, irrelevant, unassessed, output, Overall Precision and Recall (report VII.5), Average Precision and Recall with Standard Deviations.

Programs to display behaviour of strategy for large cut-offs

- 16. Collect abstracts known to be relevant from all available sources.
- 17. Insert coordinations for given strategy from 1).
- 18. For each stratum display numbers of relevant from 16), and of the remainder, assumed irrelevant, using 2), precision and recall.
- 19. As 15) as far as Overall Precision and Recall, for K = 1 to 500 (say).

 Other Programs
- 20. For a given Run display request words represented by each abstract.
- 21. Display words associated with request words via some descriptor.

Performance of Successive Strata in Run 13(KWS). Table RCCOO.

Unassessed documents, that is, those not retrieved by standard strategies or by the two manual searches, have been set `irrelevant $(c.f.\ VII.4)$.

Coord-	Cumul -	Rele-	Irrel-	%Prec-						
ination		vant	evant	ision						
111110 1011	Output									
	Cuopuo		REQU	EST 0					REQU	EST 7
5	1 4	7	7	50.00		3	12	0	12	• 0 0
4	101	30	57	34.48		2	375	3	360	•83
3	564	8	455	1.73		1	3701	1	3325	• 0 3
2	1952	i	1387	•07		0	11571	Ō	7870	•00
ī	5591	ò	3639	•00			TOTAL	4	11567	•03
Ö	11571	0	5980	•00				•		
U	TOTAL		11525	• 40					REQU	EST 8
	TOTAL	40	11727	• 40		0	11571	0	11571	•00
			REQU	EST 1		·	TOTAL	0	11571	• 00
•		•					10176	U	113/1	• 00
0	11571	0	11571	•00					DCOU	FAT 0
	TOTAL	- 0	11571	•00		_		_	REQU	
						3	4	3	1	75.00
			REQU			2	53	3	46	6 • 1 2
4	2	1	1	50.00		1	739	4	682	• 58
3	28	8	18	30.77		0	11571	0	10832	• 0 0
2	231	9	194	4 • 43			TOTAL	10	11561	• 0 9
1	2034	1	1802	•06						
0	11571	0	9537	•00					REQUI	EST 10
	TOTAL	L 19	11552	•16		5	5	2	3	40.00
		- •				4	29	9	15	37.50
			REQU	EST 3		3	114	44	4 1	51.76
3	1 4	4	10	28.57		2	399	17	268	5.96
2	242	7	221	3.07		1	2196	3	1794	•17
1	2668	4	2422	•16		ň	11571	Ö	93/5	• 00
0	11571		8903	•00			TOTAL	75	11496	•65
U	TOTAL	0 L 15	11556	•13			10176	, ,	11490	•67
	TOTAL	r 12	11220	• 1.3					REQU	EST 11
			BEOL	ITCT 4		Ü	1	0		
7	•		REQU			4	9	0	1	•00
7	1	1	0	100.00		3		1	7	12.50
6	9	2	6	25.00			70 544	0	61	• 0 0
5	32	10	13	43.48		2	546 30 7 3	0	476	• 0 0
4	105	5	68	6.85		1	3073	0	2527	•00
3	300	10	185	5.13		0	11571	0	8498	• 0 0
2	873	4	569	• 7 0			TOTAL	1	11570	•01
1	3092	1	2218	• 0 5						
0	11571	0	8479	• 0 0					REQUE	ST 12
	TOTAL	L 33	11538	• 2 9		5	3	1	2	33.33
						4	22	0	19	• 00
			REGL	EST 5		3	79	1	56	1.75
3	7	2	5	28.57		2	341	0	262	• 00
2	125	2	116	1 - 69		1	2416	0	2075	•00
1	1568	$\vec{1}$	1442	•07		0	11571	0	9155	•00 ·
Ō	11571	0	10003	•00			TOTAL	2	11569	•02
_	TOTAL	=	11566	• 0 4				-		•02
	1017	- /	.,,,,,	•04					REQUE	ST 13
			REGU	EST 6		4	2	0	2	
0	11571	0	11571		<.**	3	19	4	13	•00
U		0		•00		2	360			23.53
	TOTA	L O	11571	•00		1	2922	7	334	2.05
EDIC						ò	11571	0	2562	• 0 0
EKIC						J		.0	8649	•00
Full Text Provided by ERIC							TOTAL	11	11560	•10

			0.50	- C T				REQU	EST 21
_		_	REQUI		_	_	_		•00
3	1	0	i	• 0 0	5	5	0	5	
2	51	0	50	• 0 0	4	4 3	6	32	15.79
1	1884	4	1829	• 22	3	275	5	227	2 • 1 6
0	11571	0	9687	• 0 0	. 2	1163	2	886	• 2 3
-	TOTAL	4	11567	• 03	1	3296	0	2133	•00
	IOIAL	4	1176/	• 0.3	· o	11571	Ö	8275	• 0 0
					U				
			REQUI	EST 15		TOTAL	13	11558	• 1 1
5	4	2	2	50.00					
4	2.4		9	55.00				RFJU	EST 22
4	24	1 1			5	2	2	0	100.00
3	232	26	182	12.50	4	18	7	9	43.75
2	1061	1	828	• 12					
1	3823	0	2762	• 00	3	243	9	216	4 • 0 0
Ō	11571	Ō	7748	• 0 0	2	1127	4	880	• 45
J					1	3655	1	2527	• 0 4
	TOTAL	40	11531	• 35	Ġ	11571	1	7915	• 0 1
					· ·		-		
			REQUI	EST 16		TOTAL	24	11547	• 2 1
5	. 13	7	6	53.85					
4	43	19	1 1	63.33				REQU	EST 23
			_		4	3	3	0	100.00
3	224	23	158	12.71	3	30		19	29.63
2	857	8	625	1.26			8		
1	3003	2	2144	• 0 9	2	366	12	324	3.57
0	11571	0	8568	• 0 0	1	1991	0	1625	• 0 0
•	TOTAL	59	11512	•51	0	11571	0	9580	• 0 0
	IOIAL	27	11712	• 71	•	TOTAL	23	11548	• 2 0
				_		TOTAL	23	11240	•20
				EST 17					<u> </u>
4	3	1	2	33.33				REQL	
3	52	29	20	59.18	6	2	2	0	100.00
2	324	19	253	6.99	5	15	8	5	61.54
		_			4	70	21	34	38 • 18
1	2452	6	2122	• 28					
0	11571	1	9118	• O i	3	237	16	151	9 • 58
	TOTAL	56	11515	• 48	2	. 792	3	552	• 5 4
					1	2759	0	1967	• 0 0
			0.500	- c T 10	0	11571	0	8812	• 0 0
_	_	_	REQUI			TOTAL	50	11521	• 43
5	2	0	2	• 0 0		IOIAL	70	11721	•
4	13	7	4	63.64					
3	107	10	8 4	10.64				REQU	
2	611	9	495	1.79	5	3	2	1	66•67
	2637				4	18	10	5	66•67
1		6	2020	• 30	3	91	31	42	42.47
Q	11571	0	8934	• 0 0					
	TOTAL	32	11539	• 28	2	661	19	551	3.33
					1	3354	3	2690	• 1 1
			REQUE	EST 19	0	11571	0	8217	• 0 0
4	19	1.4	3	84.21		TOTAL	65	11506	• 5 6
		16							-
3	167	10	138	6.76				0.501	FOT OF
2	964	2	795	• 25	_	•	_		EST 26
1	4059	0	3095	• 0 0	7	i	1	0	100.00
0	11571	0	7512	•00	.5	2	0	1	•00
•	TOTAL	28	11543	•24	5	6	2	2	50.00
	IOIAL	20	11743	• 2 4	4	2 4	4	1 4	22.22
						85			
			REQUE	EST 20	3		5	56	8 • 20
7	1	0	1	•00	2	440	7	348	1.97
6	9	2	6	25.00	1	2711	1	2270	• 0 4
5	27	5	13	27.78	0	11571	0	8860	• 0 (
					-	TOTAL	20	11551	• 17
4	118	7	8 4	7 • 69		10171			• • •
3	395	7	270	2.53				5-0:	
2	1414	2	1017	• 20					EST 27
1	4097	0	2683	• 00	4	3	3	0	100.00
ō	11571	ő	7474	•00	3	55	15	37	28.85
-					2	374	1 4	305	4.35
	TOTAL	23	11548	•20	1	1621	7	1240	•56
			•						
					0	11571	0	9950	• C (
						TOTAL	39	11532	• 3 4
					120				

			REQU	EST 28					REQU	EST 37
4	17	4	13	23.53		6	5	1	4	20.00
3	122	12	93	11.43		5	33	2	26	7 . 1 4
2	599	55	422	11.53		4	104	2	69	2.52
1	2491	2	1890	• 1 1		3	391	3	284	1.05
0	11571	0	9080	• 0 0		2	1640	0	1249	•00
	TOTAL	73	11498	•63		1	5046	0	3406	• 0 0
						0	11571	0	6525	•00
				EST 29			TOTAL	8	11563	. •07
4	2	2	0	100.00						
3	3 4	8	2 4	25.00					REQU	EST 38
2	291	43	214	16.73		6	1	0	1	• 0 0
1	1867	0	1576	• 00		5	12	2	9	18 • 18
0	11571	0	9704	•00		4	70	2	56	3 • 4 5
	TOTAL	53	11518	• 46	•	3	264	1	193	• 5 2
						2	1008	1	743	• 1 3
			REQU	EST 30		1	4384	3	3373	•09
3	7	5	2	71 • 43		0	11571	0	7187	• 0 0
2	70	12	51	19.05			TOTAL	9	11562	•08
1	1014	11	933	1 e 1 7						
0	11571	0	10557	• 0 0					REQU	EST 39
	TOTAL	28	11543	• 2 4		4	2	2	0	100.00
						3	4 4	14	28	33.33
			REQU	EST 31		2	339	14 -	281	4 • 7 5
0	11571	0	11571	•00		1	2218	0	1879	• 0 0
	TOTAL	Ō	11571	• 0 0		0	11571	0	9353	• 0 0
	_						TOTAL	30	11541	• 2 6
			REQU	EST 32						
3	4	1	3	25.00					REQU	EST 40
2	73	5	64	7.25		3	24	1	23	4 • 1 7
ī	765	2	690	• 29		2	371	6	341	1.73
Ô	11571	ō	10806	•00		1	2817	i	2445	• 0 4
Ū	TOTAL	8	11563	•07		o	11571	Ó	8754	•00
	TOTAL	O	11263	• 0 7	-	J	TOTAL	8	11563	•07
			REQU	EST 33			IOTAL		11203	• 0 7
2	3	-	0	100.00					REQU	EST 41
3 2	83	3 8	72	10.00		5	1	1	0	100.00
1	1138			•09		4	9			
0		1	1054				27	6	2	75.00
U	11571	0	10433	•00		3 2		6	12	33.33
	TOTAL	12	11559	• 1 0			168	8	133	5 • 6 7
			B = 0.11			1	1504	4	1332	•30
_	_	_	REQU			0	11571	0	10067	• 0 0
5	2	1	1	50.00			TOTAL	25	11546	• 2 2
4	13	1	10	9.09						
3	102	3	86	3.37		_			REGUI	
2	522	2	418	• 48		7	1	1	0	100.00
1	2950	0	2428	• 0 0		6	2	0	1	• 0 0
0	11571	0	8621	• 0 0		5	7	2	3	40.00
	TOTAL	7	11564	•06		4	15	2	6	25•0°
						3	56	6	35	14.6-
			REQUI			2	382	1	325	• 3 1
6	1	1	0	100.00		1	2329	0	1947	•00
5	5	2	2	50.00		0	11571	0	9242	• 0 0
4	4 7	0	4 2	• 00			TOTAL	12	11559	• 1 0
3	341	3	291	1 • 0 2						
2	1641	4	1296	•31					REQUI	EST 43
1	5477	1	3835	•03		2	32	2	30	6 • 25
0	11571	0	6094	•00		1	850	, з	815	•37
	TOTAL	1 1	11560	•10		0	11571	0	10721	• 0 0
							TOTAL	5	11566	• 0 4
			REQU	EST 36						
4	3	3	0	100.00					REQUI	EST 44
. З	15	4	8.			4	12	8	4	66.67
2	105	6	8 4	6 • 67		3	33	7	14	33.33
1	1321	Ō	1216	• 00		2	197	12	152	7.32
1	11571	0	10250	• 0 0		1	1047	2	848	• 2 4
C	TOTAL	13	11558	• 1 1		0	11571	ō	10524	•00
	• • •		_ • - • -		131		TOTAL	29	11542	• 25
1 by ERIC										_

ERIC Full Text Provided by ERIC

REQUEST 46 3 39 1 543 707AL 0 11571 0 0 12571 0 0 12571 0 0 12571 0 0 12571 0 0 12571 0 0 12571 0 0 12571 0 0 12571 0 0 0 0 0 0 0 0 0	0	11571 TOTAL	0	REQUES 11571 11571	7 45 •00 •00				REQU	JEST 55
0 11571 0 11571 00 2 5583 1 5.43 REQUEST 47 101541 7 11564 3 2 1 1 50.00 2 86 41 43 48.61 1 796 32 678 4.51 3 7 0 7 10171 10 10765 .099 2 214 1 206 11571 10 10765 .099 2 214 1 206 11571 10 0 10765 .099 2 214 1 11570 REQUEST 48						4	5	3	2	60.00
0 11571 0 11571 00 2 563 1 543 TOTAL 0 11571 00 0 1 31377 2 2552 REQUEST 47 3 2 1 1 50.00 2 66 41 43 48.61 1 796 32 678 4.51 3 7 0 7 TOTAL 0 4 11407 .73 1 1848 0 16934 3 10 10 10 0 100.00 3 65 16 39 29.09 2 282 7 210 3.23 5 4 2 2 2 51 1 1751 3 1466 .20 4 35 3 28 0 1 11571 0 9020 .00 3 195 7 153 1 1071 0 9020 .00 3 195 7 153 2 317 3 280 11.66 1 1134 0 617 .00 5 1 1444 0 3239 4 3 3 0 100.00 7 1074L 16 11555 3 144 1 30 3.23 2 317 3 280 11.66 1 11571 0 10437 .00 4 13 4 8 3 3 7 3 10 50 11 11 11 11 11 11 11 11 11 11 11 11 11				REQUES	T 46	3	39	1	33	2 • 9 4
TOTAL 0 11571 .00	0	11571	0	11571	• 0 0	2	583	1		• 18
REQUEST 47 3	_									• 08
REQUEST 47 TOTAL 7 11564		10111	Ū							•00
3 2 1 1 50.00 REQUEST 1 1 79.00 REQUEST 1 1 79.0 REQUEST 1 1 10.00 PTOTAL 1 1 11570 REQUEST 1 1 11571 REQUEST 1 11571 REQUEST 1 1 1 11571 REQUEST 1 1 1 11571 REQUEST 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				BEOUE c	T 47	Ū				
2 86 41 43 48.81	_	2					IOTAL	,	11264	• 06
1 796 32 678 4.51 3 7 0 27 0 11571 10 10765 .099 2 214 1 206 10161 10 10 10 10 10 10 10 10 10 10 10 10 10										
0 11571 10 10765 *09						_	_			
TOTAL 84 11487 .73										• 0 0
REQUEST 48 4 10 10 0 100.000 3 65 16 39 29.09 2 282 7 210 3.23 5 4 2 2 5. 1 1751 3 1466 20 4 35 3 28 1 1751 3 1466 20 3 195 7 153	0		-					ì	206	• 48
REQUEST 48 1 0 10 0 0 100-00 3 65 16 39 29-09 2 2822 7 210 3-23 5 4 2 2 2 5 7 153 1466 20 4 35 3 2 8 1		TOTAL	8 4	11487	•73			0	1634	•00
4 10 10 0 100 0 100.00 3 65 16 39 29.09 2 282 7 7 210 3.23 5 4 2 2 5.5 2 11751 3 1466 20 4 35 3 28 7 TOTAL 36 11535 .31 2 1135 4 936 8 REQUEST 49 0 11571 0 7197 4 3 3 0 100.00 TOTAL 16 11555 3 34 1 30 3.23 2 317 3 280 1.06 1 1134 0 817 .00 5 1 0 1 1551 0 11571 0 10437 .00 4 13 4 8 33 1 11571 0 10437 .00 5 1 0 1 1571 0 11571 0 10437 .00 4 13 4 8 33 2 165 3 158 1.86 TOTAL 25 11546 1 772 2 605 .33 2 165 3 158 1.86 TOTAL 25 11546 1 772 2 605 .33 2 165 3 158 1.86 TOTAL 25 11546 1 772 2 605 .33 2 11571 0 10599 .00 REQUEST 5 1 0 1 1571 3 9 1 1 8 11.11 2 1091 3 971 2 163 2 152 1.30 1 4565 0 3474 1 1683 2 1518 .13 0 11571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554						0	11571	0	9723	• 0 0
4 10 10 0 100.00 3 65 16 39 29.09 2 282 7 210 3.23 5 4 2 2 5 1 1751 0 9820 .00 3 195 7 153 .00 11571 0 9820 .00 3 195 7 153 .00 11571 0 7167 .00 11571 0 7167 .00 11571 0 10137 .00 4 13 4 8 33 .00 100.00 11571 0 7533 .00 11571 0 10137 .00 11571 0 7533 .00 11571 0 7506 .00 11571 0 7066 .00 11571 0 7066 .00 11571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 7066 .00 11571 0 9888 .00 101571 0 7066 .00 11571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 9888 .00 101571 0 9453 .00 11571 0 10130 .				REQUES	T 48		TOTAL	1	11570	• 0 1
2 282 7 210 3.23 5 4 2 2 5, 1 1751 3 1466 20 4 35 3 28 0 11571 0 9820 00 3 195 7 153	4	10	10	0 1	00.00					
2 282 7 210 3.23 5 4 2 2 5, 1 1751 3 1466 20 4 35 3 28 0 11571 0 9820 00 3 195 7 153	3	65	16	39	29.09				REGII	EST 57
1 1751 3 1466 20 4 35 3 28 0 11571 0 9820 00 3 195 7 153						5	4	2		50.00
9 11571 0 9820 .00 3 195 7 153 TOTAL 36 11535 .31 2 1135 4 936 REQUEST 49 0 11571 0 7197 4 3 3 3 0 100.00 3 3.43 1 30 3.23 2 317 3 280 1.06 1 1134 0 817 .00 4 133 4 8 33 2 317 0 10437 .00 4 133 4 8 33 TOTAL 7 11564 .06 3 73 10 50 16 REQUEST 50 1 4038 5 3461 3 4 3 1 75.00 0 11571 0 7533 2 165 3 158 1.86 TOTAL 25 11546 1 772 2 605 .33 0 11571 0 10799 .00 1 1571 0 10130 .00 1 1571 0 9888 .00 TOTAL 17 11554 1 1441 7 1194 .58 0 11571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 8989 .01 1 1571 0 8411 .00 2 276 0 2203 .00 1 1571 0 8420 .00 1 1571 0 8411 .00 2 277 0 3 3 589 .51 1 3160 0 2410 .00 0 11571 0 8411 .00 0 11571										9.68
TOTAL 36 11535 •31 2 1135 4 936 REQUEST 49 0 11571 0 7197 REQUEST 49 0 11571 0 7197 3 34 1 30 3-23 2 317 3 280 1.06										
REQUEST 49 REQUEST 49 1 1374 0 3239 1 1571 0 7197 3 34 1 30 3.23 2 317 3 280 1.06 1 1134 0 817 .00 5 1 0 1 0 1 0 11571 0 10437 .00 4 13 4 8 3: TOTAL 7 11564 .06 3 73 10 50 16 REQUEST 50 1 4038 5 3461 3 4 3 1 75.00 0 11571 0 7533 2 165 3 158 1.86 TOTAL 25 11546 1 772 2 605 .33 0 11571 0 10799 .00 TOTAL 8 11563 .07 5 1 0 1 REQUEST 51 3 117 13 98 11 3 9 1 8 11.11 2 1091 3 971 2 163 2 152 1.30 1 4565 0 3474 1 1683 2 1518 1.30 1 4565 0 3474 1 1683 2 1518 .30 1 4565 0 3474 1 1683 2 1518 .30 1 1571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554 TOTAL 5 11566 .04 REQUEST 52 3 8 1 1 7 12 4 8 5 2 71.43 1 2118 1 1907 3 3 7 9 20 31.03 0 11571 0 9453 2 240 27 176 13.30 1 2118 1 1907 3 3 7 9 20 31.03 0 1571 0 9453 2 240 27 176 13.30 TOTAL 10 11561 REQUEST 53 2 389 2 334 1 141 7 1194 .58 0 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 REQUEST 53 2 389 2 334 4 20 8 12 40.00 1 2416 1 0 11561 TOTAL 32 11539 .20 3 39 10 42 19 REQUEST 54 1 3151 5 2747 3 3 1 2 33.93 0 11571 0 9115 TOTAL 32 11539 .20 3 39 10 31571 0 9115 TOTAL 32 11539 .20 3 39 10 11571 0 9115 TOTAL 32 11539 .20 3 39 10 11571 0 9115 TOTAL 32 11539 .20 3 39 10 3151 5 2747 4 3 1 2 33.93 0 11571 0 9115 TOTAL 32 11539 .20 3 39 11571 0 9115 TOTAL 32 11539 .20 3 39 11571 0 9115 TOTAL 32 11539 .20 3 39 10 11571 0 9115 TOTAL 32 11539 .20 3 39 10 11571 0 9115 TOTAL 32 11539 .20 3 39 10 11571 0 9115 TOTAL 32 11539 .20 3 39 10 31571 0 9115 TOTAL 32 11539 .20 3 39 10 11571 0 9115 TOTAL 32 11539 .20 3 39 10 11571 0 9115 TOTAL 32 11539 .20 3 39 10 11571 0 8420 3 38 2 33 5.71 TOTAL 39 11532	.5									4.38
REQUEST 49 0 11571 0 7197 3 34 1 30 3-23 2 317 3 280 1.06 1 1134 0 817 .00 5 1 0 1 0 11571 0 10437 .00 4 13 4 8 33 1 707AL 7 11564 .06 3 73 10 50 16 REQUEST 50 1 4038 5 3461 1 772 2 605 .33 0 11571 0 10799 .00 1 1571 0 10799 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 10790 .00 1 1571 0 9888 .00 1 1571 0 9888 .00 1 1571 0 9888 .00 1 1571 0 9888 .00 1 1571 0 9888 .00 1 1571 0 9888 .00 1 1571 0 9888 .00 1 1571 0 9888 .00 1 1571 0 9888 .00 1 1571 0 9888 .00 1 1571 0 9888 .00 1 1571 0 9858 .00 1 1571 0 10130 .00 1 1441 7 1194 .58 0 11571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 10130 .00 1 1571 0 8989 .51 1 107AL 3 11539 .28 3 34 2 35 31 3 36 2 334 33 3 31 2 33433 0 11571 0 9155 1 3160 0 2410 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 0 11571 0 8412 .00 0 1157		IOTAL	36	11232	• 31					• 43
3 3 4 1 30 3.23 2 317 3 280 1.06 1 1134 0 817 .00 5 1 0 1 2 11571 0 10437 .00 4 13 4 8 3:										• 0 0
3						U		_	7197	• 0 0
2 317 3 280 1.06 1 1134 0 817 .00 5 1 0 1 0 11571 0 10437 .00 4 13 4 8 33 1 TOTAL 7 11564 .06 3 73 10 50 16 2 572 6 493 1 3 4 3 1 75.00 0 11571 0 7533 0 11571 0 10799 .00 7533 0 11571 0 10799 .00 7071 13 98 11 3 9 1 8 11.11 2 1091 3 971 2 163 2 152 1.30 1 4565 0 3474 1 1683 2 1518 .13 0 11571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554 1 1683 2 1516 .13 0 11571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554 1 1683 2 1516 .13 0 11571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554 1 1641 7 1194 .58 0 11571 0 10130 .00 REQUEST 5 1 0 1 .00 2 210 8 194 3 3 37 9 20 31.03 0 11571 0 9453 1 1441 7 1194 .58 0 11571 0 10130 .00 REQUEST 5 1 0 1 0 1 .00 2 210 8 194 3 3 37 9 20 31.03 0 11571 0 9453 1 1441 7 1194 .58 0 11571 0 10130 .00 TOTAL 10 11561 1 1441 7 1194 .58 0 11571 0 10130 .00 REQUEST 5 750 3 589 .51 TOTAL 13 11558 1 3160 0 2410 .00 1 11571 0 8411 .00 1 2456 1 2066 3 158 21 117 15.22 0 11571 0 9115 1 3160 0 2410 .00 1 1571 0 8411 .00 1 2456 1 2066 3 3 3 4 22 12 64 4 3 1 2 33.33 0 11571 0 9115 1 3160 0 2410 .00 1 1571 0 8411 .00	4	3	3	0 1			TOTAL	16	11555	• 14
2 317 3 280 1.06 1 1134 0 817 .00 5 1 0 1 11571 0 10437 .00 4 13 4 8 33 1 70 11564 .06 3 73 10 50 11 2 572 6 493 1 3 4 3 1 75.00 0 11571 0 7533 0 11571 0 10799 .00 7033 0 11571 0 10799 .00 7071 3 98 11 3 9 1 8 11563 .07 5 1 0 1 1 663 2 152 1.30 1 4565 0 3474 1 1683 2 1518 .13 0 11571 0 7006 0 11571 0 9888 .00 70 70761 17 11554 1 70 10 10 10 10 10 10 10 10 10 10 10 10 10	3	34	1	30	3.23					
1 1134 0 817 .00 5 1 0 1 0 11571 0 10437 .00 4 133 4 8 3: TOTAL 7 11564 .06 3 73 10 50 16 REQUEST 50 1 4038 5 3461 3 4 3 1 75.00 0 11571 0 7533 2 165 3 158 1.86 TOTAL 25 11546 1 772 2 605 .33 0 11571 0 10799 .00 REQUEST 51 3 117 13 98 11 3 9 1 8 11.11 2 1091 3 971 2 163 2 152 1.30 1 4565 0 3474 1 1683 2 1518 .13 0 11571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554 REQUEST 52 3 8 1 7 7 12 1 1683 2 1518 .13 0 11571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554 REQUEST 52 3 8 1 7 7 12 4 8 5 2 71.43 1 2118 1 1907 3 37 9 20 31.03 0 11571 0 9453 1 1441 7 1194 .58 0 11571 0 10130 .00 REQUEST 53 2 369 2 334 4 20 8 12 40.00 1 1571 0 9453 1 158 21 117 15.22 0 11571 0 9453 1 3160 0 2410 .00 0 11571 0 8411 .00 2 210 8 194 3 4 20 8 12 40.00 1 2456 1 2066 3 158 21 117 15.22 0 11571 0 9453 1 3160 0 2410 .00 0 11571 0 8411 .00 2 230 33 34 22 12 64 2 750 3 589 .51 TOTAL 13 11558 REQUEST 54 3 34 22 12 64 2 375 0 337 .00 2 2578 0 2203 .00 11571 0 8993 .00 11571 0 8420 11551 0 8993 .00 11571 0 8420 11552		317	3	280	1.06				REQU	EST 58
0 11571 0 10437 00 4 13 4 6 33 TOTAL 7 11564 06 3 73 10 50 16 REQUEST 50 1 4038 5 3461 2 165 3 158 1.86 1 772 2 605 .33 0 11571 0 10799 .00 TOTAL 8 11563 .07 5 1 0 1 4038 3 117 13 98 11 3 9 1 8 11.11 2 1091 3 971 1 1683 2 1518 .13 0 11571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554 REQUEST 51 3 117 13 98 11 1 1683 2 1518 .13 0 11571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554 REQUEST 52 3 8 1 7 12 5 1 0 1 .00 2 210 8 194 3 3 37 9 20 31.03 0 11571 0 9453 2 240 27 176 13.30 TOTAL 10 11561 REQUEST 53 2 389 2 334 4 20 8 12 40.00 1 2456 1 2066 3 1571 0 8899 .00 REQUEST 54 3 34 22 12 64 3 3 16 0 2410 .00 0 11571 0 8420 REQUEST 54 3 34 22 12 64 3 3 3 4 22 12 64 3 3 3 4 22 12 64 3 3 3 5 77 107AL 39 11532			0		• 0 0	5	1	Ω		•00
TOTAL 7 11564 .06 3 73 10 50 12 REQUEST 50 1 4038 5 3461 3 4 3 1 75.00 0 11571 0 7533 2 165 3 158 1.86				-						33.33
REQUEST 50 1 4038 5 3461 3 4 3 1 75.00 0 11571 0 7533 2 165 3 158 1.86 TOTAL 25 11546 1 772 2 665 .33 0 11571 0 10799 .00 TOTAL 8 11563 .07 5 1 0 1 REQUEST 51 3 117 13 98 11 3 9 1 8 11.11 2 1091 3 971 2 163 2 152 1.30 1 4565 0 3474 1 1683 2 1518 .13 0 11571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554 TOTAL 5 11566 .04 REQUEST 52 3 8 1 7 12 5 1 0 1 .00 2 210 8 194 3 4 8 5 2 71.43 1 2118 1 1907 3 37 9 20 31.03 0 11571 0 9453 2 240 27 176 13.30 0 11571 0 9453 2 240 27 176 13.30 TOTAL 10 11561 1 1441 7 1194 .58 0 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 11571 0 8411 .00 TOTAL 32 11539 .28 3 34 22 34 4 20 8 12 40.00 1 2456 1 2066 3 158 21 117 15.22 0 11571 0 9115 2 750 3 589 .51 TOTAL 13 11558 REQUEST 54 1 3151 5 2747 4 3 3 1 2 33.33 0 11571 0 8420 375 0 337 .00 2 2578 0 2203 .00 11571 0 8993 .00	Ū									
REQUEST 50 1 4038 5 3461 7533 1 75.00 0 11571 0 7533 772 2 605 .33		IOIAL	,	11204	•00					16.67
3 4 3 1 75.00 0 11571 0 7533 2 165 3 158 1.86				DEOUE	T =0					1 • 20
2 165 3 158 1.86	_		_							o 1 4
1 772 2 605 •33 0 11571 0 10799 •00 10714 8 11563 •07 5 1 0 1 REQUEST 51 3 117 13 98 11 REQUEST 51 3 117 13 98 11 3 9 1 8 11•11 2 1091 3 971 2 163 2 152 1•30 1 4565 0 3474 1 1683 2 1518 •13 0 11571 0 7006 0 11571 0 9888 •00 TOTAL 17 11554 TOTAL 5 11566 •04 REQUEST 52 3 8 1 7 12 5 1 0 1 •00 2 210 8 194 3 4 8 5 2 71•43 1 2118 1 1907 3 37 9 20 31•03 0 11571 0 9453 2 240 27 176 13•30 TOTAL 10 11561 1 1441 7 1194 •58 0 11571 0 10130 •00 TOTAL 48 11523 •41 4 1 0 1561 1 1441 7 1194 •58 0 11571 0 10130 •00 REQUEST 53 2 389 2 334 4 20 8 12 40•00 1 2456 1 2066 3 158 21 117 15•22 0 11571 0 9115 2 750 3 589 •51 TOTAL 13 11558 1 3160 0 2410 •00 0 11571 0 8411 •00 0 11571 0 8410 •00 0 11571 0 8410 •00 0 11571 0 8410 •00						U				• 0 0
0 11571 0 10799 .00							TOTAL	25	11546	• 2 2
TOTAL 8 11563 •07	1		2							
REQUEST 51 3 117 13 98 11 3 9 1 8 11 11 2 1091 3 971 2 163 2 152 1 30 1 4565 0 3474 1 1683 2 1518 13 0 11571 0 7006 0 11571 0 9888 000 TOTAL 17 11554 REQUEST 52 3 8 1 7 12 5 1 0 1 000 2 210 8 194 3 4 8 5 2 71 43 1 2118 1 1907 3 37 9 20 31 03 0 11571 0 9453 2 240 27 176 13 30 TOTAL 10 11561 1 1441 7 1194 58 0 11571 0 10130 000 11571 0 10130 000 REQUEST 53 2 389 2 334 4 20 8 12 40 00 1 2456 1 2066 3 158 21 117 15 22 0 11571 0 9115 2 750 3 589 51 TOTAL 13 11558 1 3160 0 2410 000 0 11571 0 8411 1000 0 11571 0 8411 1000 0 11571 0 8411 000 0 11571 0 8411 1000 0 11571 0 8411 1000 0 11571 0 8411 000 0 11571 0 8411 1000 0 11571 0 8410 1000 0 11571 0 8410 1000 0 11571 0 8411 1000 0 11571 0 8410 1000 0 11571 0 8411 1000 0 11571 0 8411 1000 0 11571 0 8411 1000 0 11571 0 8411 1000 0 11571 0 8411 1000 0 11571 0 8411 1000	0		0		. 00				REQUI	EST 59
REQUEST 51 3 117 13 98 11 3 9 1 8 11 11 2 1091 3 971 2 163 2 152 130 1 4565 0 3474 1 1683 2 1518 13 0 11571 0 7006 0 11571 0 9888 000 TOTAL 17 11554 TOTAL 5 11566 04 REQUEST 52 3 8 1 7 12 5 1 0 1 0 0 0 2 210 8 194 3 4 8 5 2 71 43 1 2118 1 1907 3 37 9 20 31 03 0 11571 0 9453 2 240 27 176 13 30 TOTAL 10 11561 1 1441 7 1194 58 0 11571 0 10130 00 TOTAL 48 11523 41 4 1 0 1561 1 1441 7 1194 58 0 11571 0 10130 00 REQUEST 53 2 369 2 334 4 20 8 12 40 00 1 2456 1 2066 3 158 21 117 15 22 0 11571 0 9115 2 750 3 589 51 TOTAL 13 11558 1 3160 0 2410 00 0 11571 0 8411 00 TOTAL 32 11539 28 3 34 22 12 64 3 38 2 33 5 71 TOTAL 32 11539 028 3 34 4 3 1 2 33 93 0 11571 0 8420 3 38 2 33 5 71 TOTAL 39 11532 TOTAL 39 11532 TOTAL 39 11532		TOTAL	8	11563	•07	5	i	0	1	• 0.0
REQUEST 51 3 117 13 98 11 3 9 1 8 11-11 2 1091 3 971 2 163 2 152 1-30 1 4565 0 3474 1 1683 2 1518 -13 0 11571 0 7006 0 11571 0 9888 -00 TOTAL 17 11554 TOTAL 5 11566 -04 REQUEST 52 3 8 1 7 12 5 1 0 1 00 2 210 8 194 3 4 8 5 2 71-43 1 2118 1 1907 3 37 9 20 31-03 0 11571 0 9453 2 240 27 176 13-30 TOTAL 10 11561 1 1441 7 1194 -58 0 11571 0 10130 000 TOTAL 48 11523 -41 4 1 0 1 REQUEST 53 2 389 2 334 4 20 8 12 40-00 1 2456 1 2066 3 158 21 117 15-22 0 11571 0 9115 2 750 3 589 51 TOTAL 13 11558 1 3160 0 2410 000 0 11571 0 8411 00 TOTAL 32 11539 -28 3 34 22 12 64 3 38 2 33-93 0 11571 0 8420 3 38 2 33-93 0 11571 0 8420 3 38 2 33 5-71 TOTAL 39 11532 2 2578 0 2203 000 11571 0 8993 000						4	6	1	4	20.00
9 9 1 8 11.11 2 1091 3 971 2 163 2 1518 13 1 4565 0 3474 1 1683 2 1518 13 0 11571 0 7006 0 11571 0 9688 00				REQUES	T 51	3	117	13		11.71
2 163 2 152 1.30 1 4565 0 3474 1 1683 2 1518 .13 0 11571 0 7006 0 11571 0 9888 .00 TOTAL 17 11554 TOTAL 5 11566 .04 REQUEST 52 3 8 1 7 12 5 1 0 1 .00 2 210 8 194 3 4 8 5 2 71.43 1 2118 1 1907 3 37 9 20 31.03 0 11571 0 9453 2 240 27 176 13.30 TOTAL 10 11561 1 1441 7 1194 .58 0 11571 0 10130 .00 REQUEST TOTAL 48 11523 .41 4 1 0 1 1 1441 7 1194 .58 0 11571 0 10130 .00 REQUEST 53 2 389 2 334 4 20 8 12 40.00 1 2456 1 2066 3 158 21 117 15.22 0 11571 0 9115 2 750 3 589 .51 TOTAL 13 11558 1 3160 0 2410 .00 0 11571 0 8411 .00 1 1571 0 8411 .00 1 1571 0 8411 .00 1 1571 0 8411 .00 1 1571 0 8411 .00 2 399 12 353 3 34 22 12 64 3 3 1 2 33.33 0 11571 0 8420 3 38 2 33 5.71 TOTAL 39 11532 REQUEST 54 1 3151 5 2747 4 3 1 2 33.33 0 11571 0 8420 3 38 2 33 5.71 TOTAL 39 11532	3	9	1	8	11.11	2				•31
1 1683										•00
0 11571 0 9888 •00 TOTAL 17 11554 TOTAL 5 11566 •04 REQUEST 52 3 8 1 7 12 5 1 0 1 •00 2 210 8 194 3 4 8 5 2 71 43 1 2118 1 1907 3 37 9 20 31 03 0 11571 0 9453 2 240 27 176 13 30 TOTAL 10 11561 1 1441 7 1194 •58 0 11571 0 10130 •00 REQUEST TOTAL 48 11523 •41 4 1 0 1 1 17 15 8 2 389 2 334 4 20 8 12 40 •00 1 2456 1 2066 3 158 21 117 15 22 0 11571 0 9115 2 750 3 589 •51 TOTAL 13 11558 1 3160 0 2410 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 11571 0 8411 •00 0 2578 0 2203 •00 11571 0 8993 •00										
REQUEST 52 3 8 1 7 12 5 1 0 1 000 2 210 8 194 3 4 8 5 271.43 1 2118 1 1907 3 37 9 20 31.03 0 11571 0 9453 2 240 27 176 13.30 TOTAL 10 11561 1 1441 7 1194 .58 0 11571 0 10130 .00 TOTAL 48 11523 .41 4 1 0 1 REQUEST 53 2 389 2 334 4 20 8 12 40.00 1 2456 1 2066 3 158 21 117 15.22 0 11571 0 9115 2 750 3 589 .51 TOTAL 13 11558 1 3160 0 2410 .00 0 11571 0 8411 .00 TOTAL 32 11539 .28 3 34 22 12 64 REQUEST 54 1 3151 5 2747 4 3 1 2 33.33 0 11571 0 8420 3 38 2 33 5.71 TOTAL 39 11532 2 375 0 337 .00 11571 0 8993 .00						Ū				• 00
REQUEST 52 3 8 1 7 12 5 1 0 1 000 2 210 8 194 3 4 8 5 2 71.43 1 2118 1 1907 3 37 9 20 31.03 0 11571 0 9453 2 240 27 176 13.30 TOTAL 10 11561 1 1441 7 1194 .58 0 11571 0 10130 .00	U						TOTAL	1 /	11224	• 15
REQUEST 52 3 8 1 7 12 5 1 0 1 000 2 210 8 194 3 4 8 5 2 71.43 1 2118 1 1907 3 37 9 20 31.03 0 11571 0 9453 2 240 27 176 13.30 TOTAL 10 11561 1 1441 7 1194 .58 0 11571 0 10130 .00		TOTAL	כ	11200	• U 4					
5 1 0 1 000 2 210 8 194 3 4 8 5 2 71 43 1 2118 1 1907 3 37 9 20 31 03 0 11571 0 9453 2 240 27 176 13 30 TOTAL 10 11561 1 1441 7 1194 58 0 11571 0 10130 00 REQUEST TOTAL 48 11523 41 4 1 0 1 REQUEST 53 2 389 2 334 4 20 8 12 40 00 1 2456 1 2066 3 158 21 117 15 22 0 11571 0 9115 2 750 3 589 51 TOTAL 13 11558 1 3160 0 2410 00 0 11571 0 8411 00 0 11571 0 8411 00 0 11571 0 8411 00 0 11571 0 8411 00 0 11571 0 8411 00 0 11571 0 8411 00 0 11571 0 8411 00 0 11571 0 8411 00 0 11571 0 8411 00 0 11571 0 8411 00 0 11571 0 8411 00 0 11571 0 8411 100 0 11571 0 8411 00 0 11571 0 8411 100 0 11571 0 8411 100 0 11571 0 8411 100 0 11571 0 8411 100 0 11571 0 8411 100 0 11571 0 8411 100 0 11571 0 8411 100 0 11571 0 8411 100 0 11571 0 8411 100 0 11571 0 8411 100 0 11571 0 8411 100 0 11571 0 8410 11532						_	_			
4 8 5 2 71.43 1 2118 1 1907 3 37 9 20 31.03 0 11571 0 9453 2 240 27 176 13.30 TOTAL 10 11561 1 1441 7 1194 .58 0 11571 0 10130 .00										12.50
3 37 9 20 31.03 0 11571 0 9453 2 240 27 176 13.30 TOTAL 10 11561 1 1441 7 1194 .58 0 11571 0 10130 .00 REQUEST TOTAL 48 11523 .41 4 1 0 1 REQUEST 53 2 389 2 334 4 20 8 12 40.00 1 2456 1 2066 3 158 21 117 15.22 0 11571 0 9115 2 750 3 589 .51 TOTAL 13 11558 1 3160 0 2410 .00 0 11571 0 8411 .00 0 11571 0 8411 .00 TOTAL 32 11539 .28 3 34 22 12 64 2 399 12 353 3 REQUEST 54 1 3151 5 2747 4 3 1 2 33.33 0 11571 0 8420 3 38 2 33 5.71 TOTAL 39 11532 2 578 0 2203 .00 11571 0 8993 .00								8	194	3•96
2 240 27 176 13.30 TOTAL 10 11561 1 1441 7 1194 .58 0 11571 0 10130 .00	4	8	5	2	71.43	1		1	1907	• 05
2 240 27 176 13.30 TOTAL 10 11561 1 1441 7 1194 .58 0 11571 0 10130 .00 REQUEST TOTAL 48 11523 .41 4 1 0 1 REQUEST 53 2 389 2 334 4 20 8 12 40.00 1 2456 1 2066 3 158 21 117 15.22 0 11571 0 9115 2 750 3 589 .51 TOTAL 13 11558 1 3160 0 2410 .00 0 11571 0 8411 .00 TOTAL 32 11539 .28 3 34 22 12 64 2 399 12 353 3 REQUEST 54 1 3151 5 2747 4 3 1 2 33.33 0 11571 0 8420 3 38 2 33 5.71 TOTAL 39 11532 2 2578 0 2203 .00 11571 0 8993 .00	3	37	9	20	31.03	0	11571	0	9453	• 00
1 1441 7 1194 •58 0 11571 0 10130 •00	2	240	27	176	13.30		TOTAL	10		• 09
0 11571 0 10130 •00 TOTAL 48 11523 •41 4 1 0 1 REQUEST 53 2 389 2 334 4 20 8 12 40•00 1 2456 1 2066 3 158 21 117 15•22 0 11571 0 9115 2 750 3 589 •51 TOTAL 13 11558 1 3160 0 2410 •00 0 11571 0 8411 •00 TOTAL 32 11539 •28 3 34 22 12 64 TOTAL 32 11539 •28 3 34 22 12 64 3 38 2 33 5•71 3151 5 2747 4 3 1 2 33•33 0 11571 0 8420 3 38 2 33 5•71 TOTAL 39 11532 3 375 0 337 •00 2578 0 2203 •00 11571 0 8993 •00								• -		•0,
TOTAL 48 11523 •41 4 1 0 1 3 53 10 42 19 REQUEST 53 2 389 2 334 4 20 8 12 40•00 1 2456 1 2066 3 158 21 117 15•22 0 11571 0 9115 2 750 3 589 •51 TOTAL 13 11558 1 3160 0 2410 •00 0 11571 0 8411 •00									PEONE	ST 61
REQUEST 53 2 389 2 334 4 20 8 12 40.00 1 2456 1 2066 3 158 21 117 15.22 0 11571 0 9115 2 750 3 589 51 TOTAL 13 11558 1 3160 0 2410 .00 0 11571 0 8411 .00	Ū					4	1	0		
REQUEST 53 2 389 2 334 4 20 8 12 40.00 1 2456 1 2066 3 158 21 117 15.22 0 11571 0 9115 2 750 3 589 .51 TOTAL 13 11558 1 3160 0 2410 .00 0 11571 0 8411 .00		TOTAL	40		• 7 1					• 00
4 20 8 12 40.00 1 2456 1 2066 3 158 21 117 15.22 0 11571 0 9115 2 750 3 589 .51 TOTAL 13 11558 1 3160 0 2410 .00 0 11571 0 8411 .00 REQUEST TOTAL 32 11539 .28 3 34 22 12 64 2 399 12 353 3 REQUEST 54 1 3151 5 2747 4 3 1 2 33.33 0 11571 0 8420 3 38 2 33 5.71 TOTAL 39 11532 3 375 0 337 .00 2578 0 2203 .00 11571 0 8993 .00				DE OUE C	T = 2					19.23
3										• 60
2 750 3 589 •51 TOTAL 13 11558 1 3160 0 2410 •00 0 11571 0 8411 •00								1	2066	• 05
2 750 3 589 •51 TOTAL 13 11558 1 3160 0 2410 •00 0 11571 0 8411 •00	3					0		D	9115	• 0 0
1 3160 0 2410 .00 0 11571 0 8411 .00 TOTAL 32 11539 .28 3 34 22 12 64 2 399 12 353 3 REQUEST 54 1 3151 5 2747 4 3 1 2 33.33 0 11571 0 8420 3 38 2 33 5.71 TOTAL 39 11532 2 375 0 337 .00 2 2578 0 2203 .00 11571 0 8993 .00	2		3	589	•51		TOTAL	13	11558	• 1 1
TOTAL 32 11539 • 28 3 34 22 12 64 2 399 12 353 3 REQUEST 54 1 3151 5 2747 4 3 1 2 33•33 0 11571 0 8420 3 38 2 33 5•71 TOTAL 39 11532 375 0 337 • 00 2578 0 2203 • 00 11571 0 8993 • 00	1	3160	0	2410	• 0 0					
TOTAL 32 11539 • 28 3 34 22 12 64 2 399 12 353 3 REQUEST 54 1 3151 5 2747 4 3 1 2 33•33 0 11571 0 8420 3 3 38 2 33 5•71 TOTAL 39 11532 375 0 337 • 00 2578 0 2203 • 00 11571 0 8993 • 00	0	11571	0	8411	• 0 0				REQUE	ST 62
2 399 12 353 3 REQUEST 54 1 3151 5 2747 4 3 1 2 33•33 0 11571 0 8420 3 38 2 33 5•71 TOTAL 39 11532 2 399 12 353 3 TOTAL 39 11532						3	34	22		64.71
REQUEST 54 1 3151 5 2747 4 3 1 2 33•33 0 11571 0 8420 3 38 2 33 5•71 TOTAL 39 11532 375 0 337 •00 2578 0 2203 •00 11571 0 8993 •00										
4 3 1 2 33.33 0 11571 0 8420 3 38 2 33 5.71 TOTAL 39 11532 3 375 0 337 .00 2578 0 2203 .00 11571 0 8993 .00				REDHEC	T 54					3 • 29
3 38 2 33 5.71 TOTAL 39 11532 375 0 337 .00 2578 0 2203 .00 11571 0 8993 .00	4	3	1			-				• 18
3 36 2 33 5.71 TOTAL 39 11532 3 375 0 337 .00 2578 0 2203 .00 11571 0 8993 .00	9					U				• 0 0
2578 0 2203 •00 11571 0 8993 •00	_						TOTAL	39	11532	• 34
11571 0 8993 •00	(3)									
	IC.									
TOTAL 3 11568 .03 136	vided by ERIC						122			
		TOTAL	3	11568	•03		TOW			

•		•	REQUE		4	2		REQU	
4	18	0	18	•00	4	2	1	1	50.00
3 2	68 272	6	44	12.00	3 2	18 231	1 1	15 212	6 • 25 • 47
1	1814	4 0	200 1542	1•96 •00	1	2601	1	2369	• 0 4
o	11571	0	9757	•00	Ċ	11571	Ó	8970	•00
Ū	TOTAL	10	11561	• 0 9	J	TOTAL	4	11567	•03
	TOTAL		11201	• • •		, , , , ,	•	11201	•00
			REQUE	ST 64				REQU	EST 73
4	4	1	3	25.00	4	1	0	1	• 0 0
3	74	2	68	2.86	3	19	4	1 4	22•22
2	539	7	458	1 • 5 1	2	260	4	227	1 • 6 6
1	3388	0	2849	•00	1	1496	0	1236	• 0 0
0	11571	0	8183	• 00	0	11571	0	10075	• 0 0
	TOTAL	10	11561	• 0 9		TOTAL	8	11563	•07
			REQUE	ST 65				REQU	EST 74
4	6	0	6	•00	5	1	0	1	•00
3	50	Ō	4 4	• 0 0	4	25	4	20	16.67
2	502	1	451	• 2 2	3	251	12	214	5.31
1	3009	0	2507	• 0 0	2	1115	1 1	853	1 • 27
0	11571	0	8562	•00	1	3663	0	2548	•00
	TOTAL	1	11570	• 0 1	0	11571	0	7908	•00
				_		TOTAL	27	11544	• 2 3
•	11571		REQUE					556	
0	11571 TOTAL	0	11571 11571	•00	4	•		REQU	
	TOTAL	0	115/1	• 0 0	4	1	1	0	100.00
			REQUE	ST 67	3 2	23	5	17	22.73
4	3	0	3	•00	1	297	15	259	5 • 47
6 5	14	0	11	•00	0	2493 11571	1 2 0	2184	• 55
4	80	1	65	1.52	U	TOTAL	33	9078 11538	•00
3	415	2	333	•60		IOIAL	33	11530	• 29
2	1633	0	1218	•00				REQU	EST 76
1	4696	0	3053	•00	4	1	1	0	100.00
ō	11571	ő	6875	•00	3	18	7	10	41.18
•	TOTAL	3	11568	•03	2	282	5	259	1.89
	, , , , , ,	Ū		• • • • • • • • • • • • • • • • • • • •		2532	ĺ	2249	•04
			REQUE	ST 68	Ō	11571	ō	9039	• 00
4	1 1	5	6	45.45		TOTAL	1 4	11557	• 1 2
3	123	26	86	23.21			_		
2	811	13	675	1.89				REQUI	EST 77
1	3614	0	2803	• 0 0	4	2	1	1	50.00
0	11571	0	7957	• 0 0	3	40	Э	35	7.89
	TOTAL	4 4	11527	•38	2	573	1	532	• 19
					1	3039	0	2466	•00
_		_		ST 69	0	11571	0	8532	• 0 0
3	4	. 3	1	75.00		TOTAL	5	11566	• 0 4
2	39 845	15	20	42.86				BEOU	
1 0	845 11571	3	803 10726	• 37	3	8	-	REQUE	
U	TOTAL	0 21	11550	•00 •18	2	199	Э 14	5 177	37.50
	IOIAL	2 1	11250	• 10	1	1874	4	1671	7•33
			REQUE	ST 70	Ó	11571	0	9697	• 2 4 • 0 0
4	2	2		100.00	ŭ	TOTAL	21	11550	• 18
3	75	17	56	23.29		, o ,	2.1		
2	210	6	129	4.44	3			REQUI	
1	1375	5	1160	• 43	3 2	18 165	17	1	94.44
0	11571	0	10196	.00	1	1773	15 0	132 1608	10.20
	TOTAL	30	11541	• 26	Ó	11571	0	9798	•00
			REQUE		Ŭ	TOTAL	32	11539	•00 •28
4	25	0	25	•00				,	• 20
3	209	17	167	9.24				REQUI	EST 80
2	1022	5	808	•62	. 'ब' 2	45	13	32	28.89
1	4036	0	3014	•00	1	1064	5	1014	• 49
3	11571	0	753 <i>5</i>	• 00	. 0	11571	0	10507	• 0 0
ERIC	TOTAL	22	11549	• 19	133	TOTAL	18	11553	• 16

			REQUE	ST 81				REQUI	EST 86
3	3	3		100.00	4	8	1	7	12.50
2	220	17	200	7.83	3	103	19	76	20.00
1	1584	11	1353	. 8 1	2	808	9	696	1 • 28
Ö	11571	1	9986	• 0 1	1	3741	0	2933	• 0 0
Ū	TOTAL	э2	11539	. 28	0	11571	0	7830	• 0 0
	, - , -					TOTAL	29	11542	• 25
			REQUE	ST 82					4)
3	1	1	0	100.00				REQUE	
2	9 4	62	31	66.67	2	1 1	4	7	36.36
1	1054	3	957	• 31	1	464	8	445	1.77
Ō	11571	0	10517	• 00	0	11571	1	11106	• 0 1
	TOTAL	66	11505	.57		TOTAL	13	11558	• 1.1
								REQUI	EST 88
			REDUE	ST 83	4	5	0	5	• 0 0
3	19	6	13	31.58	3	31	1	25	3.85
2	484	2	463	٠43	2	333	3	299	• 99
1	2417	1	1932	• 05	1	2786	0	2453	• 00
0	11571	0	9154	• 00	0	11571	0	8785	•00
	TOTAL	9	11562	• 08		TOTAL	4	11567	•03
			REQUE	ST 84				REQUE	EST 89
3	2 4	4	20	16.67	4	3	1	2	33.33
2	115	18	73	19.78	3	5 <i>7</i>	9	45	16.67
ī	1127	2	1010	• 20	2	393	12	324	3.57
0	11571	ō	10444	• 0 0	1	2812	. 0	2419	•00
•	TOTAL	24	11547	• 21	0	11571	0	8759	•00
			• • • • •		ū	TOTAL	22	11549	•19
			REQUE	ST 85				• • • • •	••,
6	3	0	3	• 0 0				REQUE	ST 90
5	22	5	14	26.32	5	8	1	7	12.50
4	81	9	50	15.25	4	62	12	4 2	22.22
3	221	8	132	5 • 7 1	3	244	10	172	5 • 49
2	607	3	383	• 78	2	886	2	640	•31
1	2691	0	2084	• 00	1	3364	1	2477	• 0 4
0	11571	0	8880	• 0 0	0	11571	0	8207	•00
	TOTAL	25	11546	• 22		TOTAL	26	11545	• 2 2

			REQU	EST 91				REQU	EST 96
4	4	0	4	• 0 0	3	13	0	13	• 00
3	37	9	2.4	27 • 27	2	149	12	124	8.82
2	282	9	236	3.67	1	1758	0	1609	• 0 0
ī	2078	5	1791	• 28	Ō	11571	ō	9813	• 0 0
o	11571	Ó	9493	• 0 0		TOTAL	12	11559	• 10
Ü	TOTAL	23	11548	• 20		, 5 , 2	• -	• • • • •	•
	TOTAL	د ۾	11240	• 20				REQU	EST 97
			REQUI	EST 92	4	1	0	1	• 0 0
3	12	2	10	16.67	3	17	5	1 1	31.25
2	231	4	215	1.83	2	453	18	413	4.13
1	2076	2	1843	• 1 1	1	2107	4	1650	• 24
0	11571	0	9495	• 0 0	0	. 1571	2	9462	• 0 2
	TOTAL	8	11563	• 07		TOTAL	29	11542	• 25
			REQUI	- .				REQU	EST 98
6	2	1	1	50.00	4	6	2	4	33.33
5	13	2	9	18.18	3	29	6	17	26.09
4	47	2	32	5•88	2	165	26	110	19.12
3	217	13	157	7 • 65	1	756	I	590	• 17
2	856	2	637	• 31	0	11571	0	10815	•00
1	3362	0	2506	• 0 0		TOTAL	35	11536	• 30
0	11571	0	82 09	• 00					
	TOTAL	20	11551	• 17				REQUI	EST 99
					6	5	1	4	20.00
			REQUI	EST 94	5	33	3	25	10.71
3	13	3	10	23.08	4	117	5	79	5.95
2	212	1	198	•50	3	408	5	286	1.72
1	2206	3	1991	• 15	2	1312	0	904	•00
0	11571	Ō	9365	• 0 0	1	3561	ō	2249	• 0 0
	TOTAL	7	11564	• 06	0	11571	ō	8010	•00
	· -					TOTAL	14	11557	• 1 2
			REQUI	EST 95		, , , , , ,	• '		• • -
5	1	1	0	100.00					
4	8	3	4	42.86					
3	68	2	58	3.33					
2	524	3	453	• 66					
ī	2659	1	2134	• 05					
-		•							
0	11571	0	8912	• 0 0					
	TOTAL	10	11561	• 0 9					

Performance of Typical Strategies for Varying Cut-off K

See VIII.2,3,4,5 for explanation of the tables. S.D. = Standard Deviation of the percentages averaged in the immediately preceding columns.

93 REQUESTS, RUN 13 (KWS). TABLE RPK (93, 13).

Cut-off K	Average Output K'	K'/K	Rele- vant	Irrel- evant	Not Assessed	Output
0	• 0 0	•000	0	0	0	0
1	• 2 2	.220	9	11	0	20
2	• 9 4	470	49	38	0	87
3	1.60	•533	71	78	0	149
4	2 • 05	•513	83	108	0	191
5	2.74	•548	102	153	0	255
6	3 • 4 3	•572	132	187	0	319
7	4.35	•621	154	251	0	405
8	5 • 1 4	•643	179	299	0	478
9	5.58	•620	191 -	328	0	519
10	6.86	•686	246	392	0	638
1 1	7.96	•724	280	460	0	740
12	8 • 0 4	. 670	282	466	0	748
13	9 • 47	•728	2 7	584	0	831
14	9.73	•695	301	604	0	905
15	9.95	•663	312	613	. 0	925
16	10 • 42	•651	324	645	0	969
17	11.05	•650	334	694	0	1028
18	11.92	•662	371	738	0	1109
19 20	13.27 14.20	•698	392	842	0	1234
21	15.18	.710	400 421	921	0 0	1321
22	15.10	•723 •726	421	991		1412
2.3	17.35	• 7 2 6 • 7 5 4	469	1046 1145	0 0	1485
24	17.81	•742	483	1173	0	1614 1656
25	18.22	•729	489	1205	0	1694
26	18.22	•701	489	1205	0	1694
27	19.20	•711	489	1297	Ö	1786
28	20.29	•725	5 2 8	1359	Ö	1887
29	21.61	•745	550	1460	Ö	2010
30	22:17	•739	565	1497	Ö	2062
31	23 • 12	•746	576	1574	Ö	2150
32	23.12	•723	576	1574	Ö	2150
33	23 • 12	.701	576	1574	0	2150
34	23 • 12	•680	5 76	1574	G	2150
35	23 • 12	.661	5 76	1574	0	2150
36	24 • 4	•671	5 94	1651	อ	2245
37	24 • 14	•652	5 94	1651	o	2245
38	24•73	•651	610	1690	0	2300
39	27 • 58	•707	646	1919	O	2 5 65
40	28.99	•725	648	2048	0	2696
4 1	28.99	≈707	648	2048	0	2696
42	29.61	•705 °	65 0	2104	0	2754
43	30.20	•702	671	2138	0	2809
4 4	32,25	•733	69 5	2 30 4	0	2999

Cut-off K	Average Output	Overall %Prec-	Overall %Known	Average %Prec-	Average	S.D.	S.D.
K	K,	ision	Recall	iston	%Known Recall	%Prec- ision	%Known Recall
0	•00	•00	•00	• 0 0	•00	• 0 0	• 0 0
1	• 2 2	45.00	• 4 3	9.68	• 5 5	29.57	1.90
2	• 9 4	5 6 • 32	2.34	25.81	3.93	34.75	8.90
3	1.60	47.65	3.40	31.34	5•94	39.71	10.63
4	2.05	43.46	3.97	J Z • 53	6 • 8 8	38.87	11.38
. 5	2 • 7 4	40,00	4 • 8 8	33.51	8 • 1 5	37.71	11.98
6	3 • 4 3	41.38	6.32	34.87	10•40	36• 63	15 • 47
7	4 • 35	38.02	7.37	36.77	11.79	36.00	15.80
8	5 • 1 4	37 • 45	8.56	37.86	12.91	35.30	15.78
9	5.58	36.80	9 • 1 4	37.76	13.14	34 • 64	15.73
10	6.86	38.56	11.77	39.16	16.10	33.37	18.37
11	7.96	37 • 8 4	13.40	39.09	18.04	32.25	18.89
12	8 • 0 4	37.70	13.49	38.99	18.22	32.25	19.03
13	9 • 47	33.71	14.21	38.35	18.91	31.40	18.68
14	9.73	33.26	14.40	38.52		31.23	18.58
15	9 • 95	33.73	14.93	38.57	19.37	31 • 25	18.56
16 17	10.42 11.05	33.44 32.49	15•50 15•98	38 • 15	20.04	31.23	18.80
18	11.05	32.49		37 • 5 4	20.84	30.48	18.98
19	13.27	31.77	17.75 18.76	38 • 15 36 • 20	21.76	30•37 28•72	19.05 19.25
20	14.20	30.28	19.14	35.61	22•84 23•54	28.92	19.25
21	15.18	29.82	20.14	35.68	25.00	28.85	20.62
22	15.97	29.53	21.00	34.94	26.41	28.66	22.22
23	17.35	29.06	22.44	34.22	27.81	28.11	22.77
2 4	17.81	29.17	23.11	33.54	28.31	27.26	22.81
25	18.22	28.87	23.40	33.69	28.80	27.12	22.69
26	18.22	28.87	23.40	33.69	28.60	27.12	22.69
27	19.20	27.38	23.40	33.11	28.80	27.12	22.69
28	20.29	27.98	25.26	33.58	30.19	27.06	22.97
29	21.61	27.36	26.32	32.96	30.86	26.87	23.14
30	22.17	27 • 40	27.03	32.24	31.27	25.95	23.06
31	23.12	26.79	27.56	31.94	31.82	26.07	22.89
32	23.12	26.79	27.56	31.94	31.82	26.07	22.89
33	23.12	26.79	27.56	31.94	31.82	26.07	22.89
34	23.12	26.79	27.56	31.94	31.82	26.07	22.89
35	23.12	26.79	27.56	31.94	31.82	26.07	22.89
36	24.14	26 • 46	28 • 42	31.88	32.85	26.04	23.56
37	24.14	25 • 46		31.88	32.85	26.04	23.56
38	24.73	26.52	29.19	31.23	33.33	25.07	23.90
39	27.58	25.19	30.91	29.30	35.29	23.76	24.42
40	28.99	24.04	31.00	28.97	35. 50	24.00	24.28
4 1	28.99	24.04	31.00	28.97	3 5•50	24.00	24.28
42	29.61	23.60	31.10	28.85	35.74	24.08	24.26
43	30.20	23.89	32.11	28.61	36.19	23.82	24.35
4 4	32.25	23.17	33.25	27.65	37.98	22.59	24.77

Cut-off K	Average Output K'	K'/K	Rele- vant	Irrel- evant	Not Assessed	Output
45	33.15	•737	736	2347	0	3083
46	33.15	•721	736	2347	0	3083
47	33.15	•705	736	2347	0	3083
48	34.86	•726	799	2443	0	3242
49	34.86	•711	799	2443	0	3242
50	34.86	•697	799	2443	0	3242
5 1	35.47	•695	800	2499	0	3299
52	36.11	•694	809	2549	0	3358
53	36.11	•681	809	2549	0	3358
54	36.11	•669	8 09	2549	0	3358
55	37.55	•683	845	2647	0	3492
5 6	38.57	689	864	2723	0	3587
57	38.57	•677	864	2723	0	3587
58	40.46	• 69 8	897	2866	0	3763
59	40.46	•686	897	2866	0	3763
60	40.46	•674	897	2866	0	3763
61	42.44	•696	913	3034	0	3947
62	43.63	•704	926	3132	0	4058
63	43.63	•693	926	3132	0	4058
64	43.63	•682	926	3132	0	4058
65	43.63	•671	926	3132	0	4058
66	43.63	•661	926	3132	0	4058
67	44.90	•670	928	3248	0	4176
68	46.11	•678	954	3334	0	4288
6 9	47.66	•691	961	3471	0	4432
70	49.76	•711	991	3637	0	4628
71	49.76	•701	991	3637	0	4628
72	50.68	• 704	1035	3678	0	4713

Cut-off	Average	Overall	Overall	Average	Average	S.D.	S.D.
K	Output	%Prec-	%Known	%Prec-	%Known	%Prec-	%Known
	K'	ision	Recall	ision	Recall	ision	Recall
45	33.15	23.87	35.22	27.64	38.51	22.58	24.50°
46	33.15	23.87	35.22	27.64	38.51	22.58	24.50
47	33.15	23.87	35.22	27.64	38.51	22.58	24.50
48	34.86		38.23	27.30	39.88	21.66	24.55
49	34.86		38.23	27.30	39.88	21.66	24.55
50	34.86	24.65	38.23	27.30	39.88	21.66	24.55
51	35•47	24.25	38.28	27 • 28	40.41	21.69	25.31
52	36 • 11	24.09	38.71	27.22	40.80	21.71	25.27
53	36.11	24.09	38.71	27.22	40.80	21.71	25.27
54	36.11	24.09	38.71	27 • 22	40.80	21.71	25.27
55	37.55	24.20	40.43	26.85	41.58	21.46	25.35
56	38.57	24.09	41.34	26.92	42.29	21.42	25.20
57	38.57	24.09	41.34	26.92	42.29	21.42	25.20
58	40.46	23.84	42.92	26.66	43.45	21.40	25.46
59	40 • 46	23.84	42.92	26.66	43.45	21.40	25.46
60	40•46		42.92	26.66	43.45	21.40	25.46
61	42 • 44	23.13	43.68	25.89	44.28	21.18	26.02
62	43•63	22.82	44.31	25.84	45.10	21.20	26.00
63	43•63	22.82	44.31	25.64	45.10	21.20	26.00
64	43.63	22.82	44.31	25.84	45.10	21.20	26.00
65	43.63	22.82	44.31	25.84	45.10	21.20	26.00
66	43.63	22.82	44.31	25 • 84	45.10	21.20	26.00
67	44.90	22.22	44.40	25.56	45.53	21.33	26.24
68	46.11	22.25	45.65	25.35	46.17	21.23	26.12
69	47.66	21.68	45.98	25.05	46.60	21.22	26.16
70	49•76	21.41	47.42	24.96	47.59	21.25	26.15
7 1	49.76	21.41	47.42	24.96	47.59	21.25	26.15
72	50.68	21.96	49.52	25.07	48 - 22	21.34	26.06

93 REQUESTS, RUN 28(13W14). TABLE RPK(93,28).

	-	•				,
Cut-off K	Average Output K'	K ' /K	Rele- vant	Irrel- evant	Not Assessed	Output
0	•00	•000	0	0	0	0
1	•54	• 5 4 0	18	32	0	50
2	1 • 4 1	•705	60	71	0	131
3	2 • 40	.800	94	129	0	223
4	3 • 1 2	• 780	114	176	Ō	290
5	4.13	.826	136	248	0	384
6	5.06	.843	164	307	Ō	471
7	6 • 1 1	.873	185	383	0	568
8	6.86	.858	206	432	0	638
9	8.28	•920	234	536	0	770
10	9.68	.968	278	622	0	900
1 1	10.80	.982	298	706	0	1004
12	11.54	•962	306	767	0	1073
13	12.55	•965	333	834	0	1167
1 4	13.13	•938	344	877	0	1221
15	13.83	• 9 2 2	366	920	0	1286
16	14.52	•908	377	973	0	1350
17	15.39	•905	394	1037	ΰ	1431
18	16.31	•906	432	1085	0	1517
19	17 • 49	•921	472	1155	0	1627
20	18.63	•932	498	1235	0	1733
21	18.91	• 900	499	1260	0	1759
22	20 • 24	• 920	526	1356	0	1882
23	21.54	•937	541	1462	0	2003
2 4	22.68	• 9 4 5	549	1560	0	2109
25	23.81	•952	562	1652	0	2214
26	24.96	•960	586	1735	0	2321
27	25•44	• 9 4 2	597	1769	0	2366
28	27.01	• 965	608	1904	0	2512
29	27.58	• 951	618	1947	0	2565
30	28.53	• 951	625	2028	0	2653
31	29.11	•939	629	2078	0	2707
32	30.29	• 9 4 7	657	2160	0	2817
33	30.74	•932	666	2193	0	2859
34	31 • 49	• 926	677	2252	0	2929
35	32.13	•918	687	2301	0	2988
36	32.80	•911	692	2358	0	3050
37	34.20	• 9 2 4	714	2467	0	3181
38	35.05	•922	741	2519	0	3260
39	35.96	•922	747	2597	0	3344 3485
40	37 • 47	•937	816	2669	0	3573
41	38•42 39•95	•937	842	2731 2855	Ö	3715
42 43	41.42	•951 •963	860 874	2971	7	3852
44	42.46	•965	877	3065	7	3949
45	43.34	•963	896	3128	7	4031
16	44.19	•961	908	3195	7	4110
47	45.35	•965	917	3271	30	4218
48	45.99	.958	920	3327	30	4277
49	46.94	958	930	3405	30	4365
50	48.37	•967	939	3529	30	4498
51	49.31	•967	949	3601	36	4586
52	50.32	•968	991	3653	36	4680
53	51.12	• 965	996	3706	52	4754
54	52 • 12	.965	1001	3794	52	4847
55	53.22	.968	1019	3878	52	4949
56	53.77	•960	1025	3924	52	5001
57	54.78	•961	1027	4012	56	5095
58	55•56	•958	1036	4073	58	5167
59	56.45	•957	1040	4150	60	5250
60	58.76	•979	1057	4348	60	5465
61	59.58	•977	1061	4420	60	5541
62	60.29	•972	1075	4471	6 1	5607
63	62 • 40	•990	1102	4638	63	5803
64	63.45	•991	1110	4717	7 4	5901
65	64•67	•995	1112	4816	86	6014
66	65.10	• 986	1114	4854	86	6054
67	66.10	•987	1128	4933	86	6147
68	66 • 42	•977	1131	4957	89	6177
69	67.65	• 980	1137	5025	129	6291
70	68•73	• 982	1146	5107	139	6392
7 1	70.08	•987	1163	5187	167	6517
72	70•71	• 982	1168	5236	172	6576

Cut-off	Average	Overall	Oyerall	Average	Average	S.D.	s.D.
К	Output K'	%Prec-	%Known	%Prec-	%Known	%Prec-	%Known
		ision	Recall	ision	Recall	ision	Recall
0	•00	•00	•00	• 0 0	•00	•00	•00
1	• 5 4	36.00	•86	19.35	1.02	39.51	2.61
2	1 • 4 1	45.80	2.87	33.33	4.32	41.04	7.52
3	2 • 40	42.15	4 • 50	37.22	6.92	36.92	9.81
4	3.12	39.31	5 • 45	38 • 23	8.15	35.01	10.74
5	4 • 1 3	35 • 42	6.51	36•35 37•10	9•58 12•33	32•89 31•11	11•71 15•43
6 7	5.06 6.11	34•82 32•57	7 • 85 8 • 85	33.33	13.28	27.65	15.72
8	6.86	32.29	9.86	33.09	14.47	27.64	16.25
y	8 • 28	30.39	11.20	31.04	15.96	25.73	16.63
10	9.68	30.89	13.30	32.24	18.90	26.29	19.16
11	10.80	29.68	14.26	31.62	20.10	25.55	19.22
12	11.54	28.52	14.64	30•97	20.91	24.66	19.04
13	12.55	28.53	15.93	30 • 22	22.33	23.15	19.42
1 4	13.13	28 • 17	16.46	29.86	22.75		19.43
15	13.83	28.46	17.51	29.48	23.73	22.88	19.79
16	14.52	27.53	18.04	29•38 28•89	24.51 25.20	22.80 22.10	19•92 19•86
17 18	15.39 16.31	27•53 28•48	18•85 20•67	28.90	26.04	22.53	19.94
19	17.49	29.01	22.58	28.92	27.46	22.45	19.97
20	18.63	28.74	23.83	28.91	28.68	22.15	19.52
21	18.91	28.37	23.88	28.59	28.75	21.96	19.50
22	20.24	27•95	25 • 17	28.00	29.89	21.73	20 • 17
23	21.54	27.01	25.89	27 • 41	30.72	21.57	20.00
24	22.68	26.03	26 • 27	26.74	31.04	21.61	19.99
25	23.81	25.38	26 • 89	26 • 22	31.59	21.73	20.06
26	24.96	25.25	28.04	26.08	32.50	21.08	19.73
27	25 • 4 4	25 • 23	28 • 56	25.96	32.89 33.53	21.16	19.87
28 29	27.01 27.58	24 • 20 24 • 09	29•09 29•57	25 • 64 25 • 60	33.53	21 • 0 4 20 • 9 2	20•75 20•57
30	28.53	23.56	29.90	25 • 24	34.35	20.88	20.85
31	29.11	23.24	30.10	25.06	34.53	20.95	20.83
32	30.29	23.32	31.44	24.97	36.02	20.84	21 • 47
33	30.74	23.29	31.87	24 • 92	36 • 41	20.81	21.55
34	31.49	23.11	32.39	24.79	36.86	20.78	21.38
35	32.13	22.99	32.87	24.79	37.35	20.82	21.90
36	32.80	22.69	33.11	24.54	37.54	20.83	21.90
37	34.20	22 • 45	34.16	23 • 47	38.26	19.15	21.78
38 39	35.05	22.73	35 • 45	23.56 23.03	39.56	19.05 18.53	22•39 22•38
40	35•96 37•47	22•34 23•41	35•74 39•04	23.03	39•75 41e13	19.20	22.51
41	38 • 42	23.57	40.29	23 • 45	42.05	19.21	22.17
42	39.95	23.15	41.15	23.22	43.10	19.25	22.43
43	41.42	22.73	41.82	22.88	43.98	19.27	22.96
4 4	42.46	22.25	41.96	22.74	44.07	19.37	22.94
45	43.34	22.27	42.87	22•76	44.76	19.38	22.99
46	44.19	22 • 13	43.44	22•70	45•23	19.34	22.75
47 48	45•35 45•99	21.90	43.88	22,61	45.99	19.30	22 • 48
49	46.94	21.66 21.45	44.02	22 • 44	46.16	19.17	22 • 45
50	48.37	21.02	44•50 44•93	22 • 22 21 • 68	46.66	19.11	22.59
51	49.31	20.86	45 • 41	21.38	47•00 47•31	18.70	22.34
52	50.32	21.34	47.42	21.67	48.83	18.41 18.84	22•34 22•92
53	51.12	21.18	47.66	21.55	49.09	18.78	23.03
54	52.12	20.88	47.89	21.37	49.48	18.80	23.23
55	53.22	20.81	48.76	20.71	50.11	17.26	23.68
56 57	53.77	20.71	49.04	20.58	50•26	17.19	23.70
57 58	54•78 55•56	20.38	49 • 1 4	20.48	50.80	17.09	23.11
59	56.45	20 • 28 20 • 04	49.57	20 • 47	51.45	17.11	23 • 45
60	58.76	19.56	49•76 50-57	20.34	51.54	17.14	23 • 42
61	59.58	19.36	50•57 50•77	19•97 19•74	52 • 66 52 • 79	17.00	23.41
62	60.29	19.38	51.44	19.81	52•79 53•35	16•94 17•02	23.45
63	62.40	19.20	52.73	19.12	54.06	15.63	23•45 22•96
64	63.45	19.05	53.11	18.99	54.26	15.58	22.96
65	64.67	18.76	53.21	18.78	54.32	15.48	22.83
66	65.10	18.67	53.30	18.69	54.40	15.44	22.84
67 68	66.10	18.61	53.97	18.65	55.30	15.29	22.76
68 69	66 • 42 67 • 65	18.58	54.11	18.63	55 • 44.	15.28	22.74
70	67•65 68•73	18•45 18•33	54•40 54•83	18.54	55.79	15.32	22.74
71	70.08	18.31	55.65	18.49	56.08	15.37	22.77
72	70.71	18.24	55 · 89 ·		56•58 56•74	15•17 15•22	22.67
				,	20014		22.68

93 REQUESTS, RUN 14 (MCSO1). TABLE RPK(93,14).

Cut-off K	Average Output K'	к ′ /к	Rele- vant	Irrel- evant	Not Assessed	Output
0	•00	• 000	0	0	0	0
1	• 40	• 400	11	26	0	37
2	1.34	•670	4 4	81	0	125
3	2.23	•743	74	133	0	207
4	3.25	.813	98	204	0	302
5	4 • 15	.830	105	281	0	386
6	4.96	827	129	332	0	461
7	5 • 65	807	145	380	0	525
8	6.69	•836	170	452	0	622
9	7.62	847	189	520	0	709
10	8 • 7 4	•874	228	585	0	813
1 1	9.39	854	237	636	0	873
12	10.58	•882	260	724	0	984
13	11.18	•860	266	774	0	1040
1 4	12.05	.861	281	840	0	1121
15	13.34	•889	296	945	0	1241
16	14.44	•903	308	1035	0	1343
17	14.90	•876	314	10/2	0	1386
18	15.75	•875	321	1144	0	1465
19	16.98	•894	332	1247	0	1579
20	18.37	•919	374	1334	0	1708
21	19.15	•912	383	1398	0	1781
22	19.67	•894	394	1435	0	1829
23	21.68	•943	428	1588	0	2016
24	22.42	•934	450	1635	0	2085
25	23.62	•945	457	1740	0	2197
26 27	23.95	•921	460	1767	0 0	2227
27 28	25•18 26•48	•933 •946	487 504	1855 1959	0	2342 2463
29	27.24	•939	504 513	2020	o	2533
30	27.92	•931	527	2070	Ö	2597
31	28.44	•917	527	2118	ō	2645
32	28.70	·897	531	2138	ő	2669
33	29.69	•900	546	2215	ő	2761
34	29.83	•877	548	2226	ō	2774
35	30.03	858	549	2244	Ō	2793
36	30.63	• 85 l	559	2290	Ō	2849
37	32.28	•872	579	2423	Ō	3002
38	33.90	.892	606	2547	0	3153
39	35.31	•905	647	2637	0	3284
40	36.73	.918	708	2708	0	3416
41	37.49	•914	713	2774	0	3487
4 2	38.30	•912	728	2834	0	3562
43	39.74	•924	753	2943	0	3696
44	40.95	•931	755	3053	0	3808
45	41 • 47	•922	760	3097	0	3857
46	43.03	•935	774	3228	0	4002
47	43.61	•928	791	3265	0	4056
48	44.52	6928	799	3341	0	4140
49	45 • 15	• 921	812	3387	0	4199
50	46.30	•926	829	3477	0	4306
5 l	46 • 89	•919	833	3528	0	4361
52	47 • 10	•906	834	3546	0	4380
53	48 • 25	•910	844	3643	0	4487
54 55	48 • 87	•905	849	3696	0	4545
55	51.00	•927	873	3870	0	4743

C	A	C	C	A	^	u 10	u D
		Uverall	Overall	Average	Average	S.D.	S.D.
K	Dutput	%Prec-	%Know.1	%Prec-	%Known	%Prec-	%Known
	K'	ision	Recall	ision	Recall	ision	Recall
0	•00	•00	• 0 0	•00	•00	•00	• 0 0
1	• 40	29•73	•53	11.83	• 5 8	32.29	1.92
2	1.34	35•20	2 • 1 1	23.66	2 • 9 2	37•17	6 • 5 5
. 3	2 • 23	35•75	3.54	27.78	4 • 6 4	35•33	8 • 0 0
4	3 • 25	32 • 45	4 • 6 9	30 • 40	5 • 9 1	34•54	8 • 5 5
5	4 • 15	27 • 20	5 • 0 2	28.31	6 • 1 2	33•20	8.60
6	4.96	27.98	6.17	28.37	7•37	31.01	9 • 1 7
7	5 • 65	27.62	6.94	29.36	7•92	31.05	9•37
8	6.69	27.33	8 • 13	29.18	9 • 8 3	29.69	10.91
9	7.62	26.66	9.04	27.84	10.50	27.50	11.32
10	8 • 7 4	28.04	10.91	28.66	13.15	26.32	15.75
11	9.39		11.34	28.63	13.63	28 • 13	15.80
12	10.58		12.44	28.52		27 • 71	16,13
13	11.18	25.58	12.73	27.47		26.53	16.16
1 4	12.05	25.07	13.44	27.28	16.66	26.51	18.29
15	13.34	23.85	14.16	26.83	17.48	26.18	18.35
16	14.44	22.93	14.74	25.94	17.84	25.72	18.29
17	14.90	22.66	15.02	25.76	18.17	25.51	18.53
18	15.75	21.91	15.36	25.06	18.79	25.16	18.93
19	16.98	21.03	15.89	24.01	19.13	24.51	18.92
20	18.37	21.90	17.89	23.46	20.33	23.96	19•53
21	19.15	21.50	18.33	23.13	21.17	23•25	20.13
22	19.67	21.54	18.85	23.14	21.70	23.07	19.97
23	21.63	21.23	20.48	22.65	23.26	22.86	20.60
2 4	22.42	21.58	21.53	22.41	24.08	22.67	21 • 41
25	23.62	20.80	21.87	21.69	24.38	21.68	21.38
26	23.95	20.66	22.01	21.63	24.51	21.68	21.32
27	25 • 18	20.79	23.30	21.93	26.01	21.37	21.24
28	26 • 48	20.46	24.11	21.72	26.67	21.24	21.20
29	27 • 24	20 • 25	24.55	21.58	27.13	21.20	21.46
30	27•92 28•44	20.29	25.22	21.64	27.46	21.27	21.30
31			25 • 22	21.61	27 • 46	21.28	21.30
32	28•70	19.90	25 • 41	21.54	27.67	21.22	21.48
33	29 • 69		26 • 12	21.36	28.33	21.21	21.74
34	29 • 83	19.75	26.22	21.37	28 • 49	21.20	21.76
35	30.03	19.66	26.27	21.31	28.54	21.21	21.75
36	30.63	19.62	26.75	21.23	28 • 77	21.07	21.66
3 <i>7</i> 38	32 • 28	19.29	27.70	20.22	29.74	19.49	21.81
39	33•90 35•31	19.22	29.00	20.16	30 • 85	19.43	22.12
40	36.73	19•70 20•73	30.96	20.53	31.44	20.15	22.12
41	37 • 49	20 • 7 3	33.88	20.56	32.52	20.63	22.62
42	38.30		34.11	20.43	32.77	20.62	22.57
43	39.74	20 • 44	34.83	20.44	33.31	20.57	22.50
44	40.95	20•37 19•83	36.03	20•57	34 • 11	20.51	22.10
45	41.47	19.03	36•12 36•36	20•35 20•32	34.40	20•50	22.10
46	43.03	19.70	37.03	19.97	34.60 35.07	20•49 20•41	22 • 40
47	43.61	19.50		19.80	35 • 07	20.41	22 • 41
48	44.52	19.30	37•85 38•23	19.89	35•61 36•70	20•07 20•00	22.89 22.89
49	45.15	19.34	38 • 85	19.09	37.21	19.98	22.90
5 0	46.30	19.34	39.67	19.72	37.76	19.91	22.95
51	46 • 89	19.10	39•86 39•86	19.72	38 • 41	19.88	22.81
52	47.10	19.10	39.00	19.68	38 • 42	19.87	22.81
53	48 • 25	18.81		19.43	38 • 81	19.83	22.72
54	48 • 87	18.68		19.38	39.07	19.76	22.68
55	51.00	18.41	41.77	18.63	40 • 40	18.09	22.94
, ,	- · • · ·		7 . 7 / /		70070		

55 UNDERLINED REQUESTS, RUN 25(U13). TABLE RPK(55,25).

Cut-off K	Average Output K'	K ∕ K	Rele- vant	Irrel- evant	Not Assessed	Output
0	•00	•000	0	0	0	0
1	•31	•310	10	7	0	17
2	• 98	• 490	37	17	0	54
3	1.98	•660	59	50	0	109
4	2.55	.638	75	65	0	140
5	3.04	•608	83	8 4	0	167
6	4.16	•693	126	103	0	229
7	4 • 8 4	•691	144	122	0	266
8	5 • 18	•648	156	129	0	285
9	5 • 8 2	•647	167	153	0	320
10	6 • 85	•685	194	183	0	377
1 1	7•51	•683	203	210	0	413
12	8•36	•697	226	234	0	460
13	8.78	675	230	253	0	483
1 4	9 • 47	•676	238	283	0	521
15	9 • 47	•631	238	283	0	521
16	10.33	•646	240	328	0	568
17	10.33	•608	240	328	0	568
18	11.11	•617	265	i 4 6	0	611
19	11.78	•620	287	∌61	0	648
20	12.78	•639	311	392	0	703
21	14.04	•669	317	455	0	772
22	14.58	•663	327	475	0	802
23	15.62	•679	336	523	0	859
24	15.62	•651	336	523	0	859
25	15.69	•628	337	526	0	863
26	16.02	•616	340	541	0	881
27	17.45	•646	355	605	0	960
28	18 • 49	•660	356	660	1	1017
29	18.49	•638	356	660	1	1017
30	18 • 49	•616	356	660	1	1017
31	18 • 49	•596	356	660	1	1017
32	19.24	•601	378	679	1	1058
33	19.73	•598	382	697	6	1085
34 35	21•24 23•11	•625	399	763 824	6	1168 1271
36	24 • 25	•660 •674	441 445	883	6	1334
37	25.04	•677	445	924	6	1334
38	26.27		453	984	8	1445
39	26 • 27	•691 •674	453	984	8	1445
40	27.53	•674 •688	462	1044	8 8	1514
41	28•55	•696	470	1092	8	1570
42	29.49	•702	478	1130	14	1622
43	25 • 49	•686	478	1130	14	1622
44	29 • 49	•670	478	1130	14	1622
77	- / - - /	4 070	-, , 0		• 7	

Cut-off	Average	Overall	Cverall	Average		S.D.	3, S.D.
K	Output	%Prec-	%Known	%Prec-	%Known	%Prec-	%Known
	K'	ision	Recall	ision	Recall	ision	Recall
0	• 0 0	•00	•00	• 0 0	• 0 0	• 0 0	•00
1	• 3 1	58•82	• 7 1	18.18	1.92	38∙57	7 • 1 0
2	•98	68.52	2.64	34.24	4 • 25	44.09	8•58
3	1.98	54.13	4 • 2 1	39.76	6.97	41.50	10.44
4	2.55	53.57	5.35	44.27	7 • 9 8	40.75	10.38
5	3 • 0 4	49.70	5.92	43.97	8 • 77	39.25	11.14
6	4 • 16	55.02	8 • 9 9	48.77	10.96	38 • 41	11.74
7	4 9 8 4	54.14	10.28	51.50	12.11	37.54	12.17
8 9	5.18	54•74 52•19	11•13 11•92	50•73 50•22	13.42	37.02	13.98
10	5 • 82		13.85		14.48	36.12	13.93
11	6•85 7•51	51•46 49•15	14.49	50•07 49•07	16•67 17•46	35.98 35.05	16.15
12	8.36	49.13	16.13	48.31	17.46	35•95 35•46	16•13 17•03
13	8 • 78	47.62	16.42	48.61	19.13	35.46	16.84
14	9 • 47	45.68	16.99	47.66	20.04	34.41	17.24
15	9 • 47	45.68	16.99	47.66	20.04	34.41	17.24
16	10.33	42.25	17.13	46.10	20.52	34.83	17.56
17	10.33	42.25	17.13	46.10	20.52	34.83	17.56
18	11.11	43.37	18.92	47.18	22.04	34.36	19.22
19	11.78	44.29	20.49	47.06	22.87	34.29	19.29
20	12.78	44.24	22.20	45.41	23.85	32.95	19.40
2 1	14.04	41.06	22.63	44.03	24.80	33.53	19.84
22	14.58	40.77	23.34	43.53	25.45	33.39	20.07
23	15.62	39.12	23.98	42.82	26.25	33.50	20.26
24	15.62	39.12	23.98	42.82	26.25	33.50	20.26
25	15.69	39.05	24.05	42.78	26.42	33.50	20.75
26	16.02	38.59	24.27	42.64	26.69	33.57	20.82
27	17.45	36•98	25.34	42.79	28.85	33.31	22.44
28	18.49	35.04	25.41	42.57	28.98	33.46	22.46
29	18.49	35.04	25.41	42.57	28.98	33.46	22.46
30	18.49	35.04	25 • 41	42.57	28.98	33.46	22.46
31	18.49	35.04	25.41	42.57	28.98	33.46	22.46
Э2	19.24	35•76	26.98	42.43	29.84	33.39	22.83
33	19.73	35 • 40	27.27	41.89	30.14	33.12	23.26
3.4	21.24	34.34	28 • 48	40.86	31.62	32.14	23.91
35	23.11	34.86	31.48	40.55	33.68	31.11	24.00
36	24.25	33.51	31.76	40.24	34.59	31.36	24.13
37	25.04	32.51	31.76	39.79	34.59	31.62	24.13
38	26.27	31.52	32.33	38.26	35.80	30.70	25.27
39	26.27	31.52	32.33	38.26	35.80	30.70	25.27
40	27.53	30.68	32.98	38 • 14	36.76	30.78	25.12
41	28 • 55	30.09	33.55	37 • 10 34 7 0	37.28	30.20	25.38
42	29•49 29•49	29.73	34.12	36 • 79 34 7 9	37.72	30.25	25.26
43 44	•	29.73	34.12	36.79	37.72	30.25	25.26
44	29 • 49	29.73	34.12	36.79	37.72	30.25	25.26

Cut-off	Average	K. /K	Rele-	Irrel-	Not	Output
K	Output		vant	evant	Assessed	
	K'				_	
45	29 • 49	655	478	1130	1 4	1622
46	29•49	•641	478	1130	1 4	1622
47	29•49	•627	478	1130	14	1622
48	29•49	•614	478	1130	14	1622
4 9	29•93	•611	485	1147	14	1646
50	30•47	•609	489	1169	18	1676
51	30•47	•597	489	1169	18	1676
52	30•47	•586	489	1169	18	1676
53	30•47	•575	489	1169	18	1676
54	31.78	• 589	496	1203	4 9	1748
55	31.78	•578	496	1203	4 9	1748
56	31.78	•568	496	1203	49	1748
57	31.78	•558	496	1203	49	1748
58	33.69	•581	511	1250	92	1853
59	33 • 6.9	•571	511	1250	92	1853
60	33.69	•562	511	1250	92	1853
61	35.15	•576	519	1268	146	1933
62	37.49	605	542	1327	193	2062
63	38.78	•616	542	1361	230	2133
64	38.78	•606	542	1361	230	2133
65	38.78	•597	542	1361	230	2133
56	40.67	•616	544	1413	280	2237
67	40.67	•607	544	1413	280	2237
68	42.78	•629	545	1421	387	2353
69	42.78	•620	545	1421	387	2353
70	43.89	•627	549	1456	409	2414
71	44.27	•624	549	1458	428	2435
72	44.27	•615	5 1 9	1458	428	2435
73	46 • 25	•634	564	1494	486	2544
74	46.25	•625	564	1494	486	2544
75	48.29	• 6 4 4	578	1557	521	2656
76	48.29	•635	578	1557	521	2656
77	48.29	•627	578	1557	521	2656
78	48.29	•619	578	1557	521	2656
79	48.82	•618	579	1558	548	2685
80	48.82	•610	579	1558	548	2685
81	50.40	•622	579	1589	604	2772
8 2	50.40	•615	579	1589	604	2772

Cut-off	Average	Overall	Overall	Average	Average	S.D.	S.D.
ĸ	Output	%Prec-	%Known	%Prec-	% Known	%Prec-	%Known
	κ	ision	Recall	ision	Recall	ision	Recall
45	29 • 49	29.73	34.12	36.79	37.72	30.25	25.26
46	29.49	29.73	34.12	36.79	37.72	30.25	25.26
47	29.49	29.73	34.12	36.79	37•72	30.25	25 • 26
48	29.49	29.73	34.12	36.79	37•72	30.25	25.26
49	29.93	29•72	34.62	36•72	38.18	30.25	25.69
50	30•47	29 • 49	34.90	36.66	38.54	30•29	25•86
51	30.47	29 • 49	34.90	36.66	38.54	30.29	25.86
5 2	30.47	29 • 49	34.90	36.66	38.54	30.29	25.86
53	30.47	29 • 49	34.90	36.66	38.54	30.29	25.86
5 4	31.78	29.19	35•40	36.42	38.93	30.34	25•71
55	31.78	29.19	35•40	36.42	38.93	30.34	25.71
56	31.78	29.19	35•40	36.42	38.93	30.34	25.71
57	31 a 78	29.19	35•40	36.42	38.93	30.34	25.71
58	33.69	29.02	36.47	36.01	39.45	30.27	25.62
59	33.69	29.02	36•47	36.01	39.45	30.27	25.62
60	33.69	29.02	36.47	36.01	39.45	30•27	25.62
6 1	35.15	29.04	37.04	35.92	40 • 22	30.26	26.31
6 2	37.49	29.00	38.69	35.05	41.11	29.63	26.82
63	38.78	28 • 48	38.69	34.98	41.11	29.71	26.82
6 4	38.78	28 • 48	38.69	34.98	41.11	29.71	26.82
6.5	38.78	28 • 48	38.69	34.98	41.11	29.71	26.82
66	40.67	27.80	38.83	34.24	41.37	29.73	26.97
67	40.67	27.80	38.83	34.24	41.37	29.73	26.97
68	42.78	27.72	38.90	33.64	41.39	29.17	26.95
69	42.78	27.72	38.90	33.64	41.39	29.17	26.95
70	43.89	27.38	39.19	33.61	41.91	29.19	27.11
71	44.27	27.35	39.19	33.57	41.91	29.14	27.11
72	44.27	27.35	39.19	33.57	41.91	29.14	27.11
73	46.25	.27 • 41	40.26	33.37	42.59	29.10	27.02
74	46 • 25	27.41	40.26	33.37	42.59	29.10	27.02
75 7.	48.29	27.07	41.26	32.24	43.39	27.89	27.95
76	48.29	27.07	41.26	32.24	43.39	27.89	27.95
77 70	48 • 29	27.07	41.26	32.24	43 - 39	27.89	27.95
78 70	48 • 29	27.07	41.26	32.24	43.39	27.89	27.95
79	48 • 82	27.09	41.33	32.26	43.48	27.88	28.01
80	48 • 82	27.09	41.33	32.26	43.48	27.88	28.01
81	50.40	26.71	41.33	32.13	43.48	27.98	28.01
8 2	50•40	26.71	41.33	02.13	43•48	27•98	28.01

APPENDIX B8 CONTINUED

In this and the following two tables, documents not assessed in any standard or manual strategy have been set irrelevant.

93 REQUESTS, RUN 13(KWS) CONTINUED. TABLE RPL(93,13).

Cut-off K	Average Output K'	κ ′ /κ	Rele- vant	Irrel- evant	Output	Overall %Prec- ision	Overall %Known Recall
73	51.66	•708	1042	3762	4804	21.69	49.86
74	51.66	•698	1042	3762	4804	21.69	49.86
75	51.66	•689	1042	3762	4804	21.69	49.86
76	52.56	•692	1047	3841	4888	21.42	50 • 10
77	52.56	•683	1047	3841	4888	21.42	50 • 10
78	52.56	•674	1047	3841	4888	21.42	50.10
79	52.56	• 665	1047	3841	4888	21.42	50 • 10
80	52.56	• 657	1047	3841	4888	21.42	50.10
81	52.56	• 649	1047	3841	4888	21.42	50.10
82	54.02	•659	1059	3965	5024	21.08	50 • 67
83	54.02	•651	1059	3965	5024	21.08	50.67
84	54.02	•643	1059	3965	5024	21.08	50.67
85	55.75	•656	1062	4123	5185	20.48	50.81
86	55.75	• 648	1062	4123	5185	20.48	50.81
87	57.41	•660	1064	4275	5339	19.93	50.91
88	57.41	•652	1064	4273	5339	19.93	50.91
89	57.41	•645	1064	4275	5339	19.93	50.91
90	58.89	•654	1085	4392	5477	19.81	51.91
91	58.89	•647	1085	4392	5477	19.81	51.91
92	60 • 47	2657	1100	4524	5624	19.56	52.63
93	60 • 47	•650	1100	4524	5624	19.56	52.63
94	62.06	•660	1110	4662	5772	19.23	53.11
95	62.06	•653	1110	4662	5772	19.23	53.11
96	62.06	•646	1110	4662	5772	19.23	53.11
97	62.06	•640	1110	4662	5772	19.23	53.11
98	65.04	•664	1144	4905	6049	18.91	54.74
99	65.04	· 657	1144	4905	6049	18.91	54.74
100	65.04	•650	1144	4905	6049	18.91	54.74
101	65.04	•644	1144	4905	6049	18.91	54.74
102	65 • 0 4	.638	1144	4905	6049	18.91	54.74
103	65.04	•631	1144	4905	6049	18.91	54.74
104	67.10	.645	1158	5082	6240	18.56	55.41
105	67.10	.639	1158	5082	6240	18.56	55.41
106	67.10	.633	1158	5082	6240	18.56	55.41
107	67.10	•627	1158	5082	6240	18.56	55.41
108	67.10	•621	1158	5082	6240	18.56	55.41
109	67.10	•616	1158	5082	6240	18.56	55.41
110	69.27	•630	1166	5276	6442	18 • 10	55.79
111	71 • 49	.644	1167	5482	6649	17.55	55.84
112	73.83	•659	1184	5682	6866	17.24	56.65
113	75.97	•672	1185	5880	7065	16.77	56.70
114	75•97	•666	1185	5880	7065	16.77	56.70
115	75•97	•661	1185	5880	7065	16.77	56.70
116	79 • 45	•685	1204	6185	7389	16.29	57.61
117	79.45	•679	1204	6185	7389	16.27	57.61
118	81.43	•690	1221	6352	7573	16.12	58.42

Cut	t-off	Average	к ′/к	Rele-	Irrel-	Dutput	Overall	Qverall
	K	Output	·	vant	evant	-	%Prec-	%Known
		K					ision	Recall
	119	81.43	•684	1221	6352	7573	16 • 12	58.42
	120	81.43	•679	1221	6352	7573	16 • 12	58.42
	121	81.43	•673	1221	6352	7573	16•12	58.42
	122	83.78	687	1225	6567	7792	15.72	58.61
	123	83.78	•681	1225	6567	7792	15.72	58.61
	124	83.78	•676	1225	6567	7792	15.72	58.61
	125	86.08	•689	1226	6779	8005	15.32	58.66
	126	86.08	•633	1226	6779	8005	15.32	58.66
	127	86.08	∙67 8	1226	6779	8005	15.32	58.66
	128	86•08	•673	1226	6779	8005	15.32	58.66
	129	90•76	•704	1259	7182	8441	14.92	6J•24
	130	92.95	0715	1268	7376	8644	14.67	60.67
	131	95,37	•728	1277	7592	8869	14.40	61.10
	132	95.37	•723	1277	7592	8869	14.40	61.10
	133	97.19	•731	1290	7749	9039	14.27	61.72
	134	99 • 1 4	•740	1313	7907	9220	14.24	62.82
	135	99.14	•734	1313	7907	9220	14.24	62.82
	136 137	99•14 99•14	•729	1313	7907 7907	9220	14•24 14•24	62.82
	138	99.14	•724 •718	1313 1313	7907 7907	9220 92 2 0	14.24	62•82 62•82
	139	103.75	•746	1313	8297	9649	14.01	64.69
	140	106.34	•760	1356	8534	9890	13.71	64.88
	141	106.34	•754	1356	8534	9890	13.71	64.88
	142	106.34	•749	1356	8534	9890	13.71	64.88
	143	107.80	•754	1362	8663	10025	13.59	65.17
	144	107.80	•749	1362	8663	10025	13.59	65.17
	145	107.80	•743	1362	8663	10025	13.59	65 • 17
	146	107.80	•738	1362	8663	10025	13.59	65.17
	147	107.80	•733	1362	8663	10025	13.59	65.17
	148	107.80	•728	1362	8663	10025	13.59	65.17
	149	107.80	•723	1362	8663	10025	13.59	65.17
	150	107.80	•719	1362	8663	10025	13.59	65.17
	151	110.63	•733	1367	8922	10289	13.29	65.41
	152	112.14	•738	1375	9054	10429	13.18	65.79
	153	112.14	•733	1375	9054	10429	13.18	65.79
	154	115.89	•753	1401	9377	10778	13.00	67.03
	155	115.89	•748	1401	9377	10778	13.00	67.03
	156	115.89	•743	1401	9377	10778	13.00	67.03
	157	115.89	•738	1401	9377	10778	13.00	67.03
	158	115.89	•733	1401	9377	10778	13.00	67.03
	159	115.89	• 729	1401	9377	10778	13.00	67.03
	160	121.02	•756	1415	9840	11255	12.57	67.70
	161	123.97	•770	1430	10099	11529	12.40	68.42
	162 163	123.97	•765	1430	10099	11529	12.40	68 42
	164	126•73 126•73	•177 •773	1473	10313	11786	12.50	70 • 48
	165	126.73	•773 •768	1473 1473	10313 10313	11786	12.50 12.50	70 • 48
	166	126.73	• 763	1473	10313	11786	12.50	70.48
	167	126.73	•759	1473	10313	11786 11786	12.50	70•48 70•48
	168	128.82	•767	1474	10513	11980	12.30	70.40
	169	128.82	•762	1474	10506	11980	12.30	70.53
	170	128.82	•758	1474	10506	11980	12.30	70.53
	171	131.01	•766	1478	10706	12184	12.13	70.72
	172	131.01	•762	1478	10706	12184	12 • 13	70.72
	173	131.01	•757	1478	10706	12184	12.13	70.72
	174	133.34	•766	1485	10916	12401	11.97	71.05
	175	133.34	•762	1485	10916	12401	11.97	71.05
	176	136.39	•775	1488	11196	12684	11.73	71.20
	177	136.39	•771	1488	11196	12684	11.73	71.20
	178	136.39	•766	1488	11196	12684	11.73	71.20
3	179	136.39	~ 762	1488	11196	12684	11.73	71.20
ĬC	180	136.39	•758	1488	11196	12684	11073	71.20
led by EBIC	181	136.39	•75 <i>4</i>	1488	11196	12684	11.73	71.20
	182	136.39	749	1488	11196	12684	11.73	71 • 20

Cut-off K	Average Output K'	κ ′ /κ	Rele- vant	Irrel- evant	Output	Overall %Prec- ision	Overall. %Known Recall
183 184 185	139.63 139.63 139.63	•763 •759 •755	1491 1491 1491	11495 11495 11495	12986 12986 12986	11•48 11•48 11•48	71.34 71.34 71.34
186	139.63	•751	1491	11495	12986	11.48	71.34
187 188	139•63 139•63	•747 •743	1491 1491	11495 11495	12986 12986	11•48 11•48	71.34
189	142.56	•754	1510	11748	13258	11.39	71.34 \ 72.25
190	146.23	•770	1517	12082	13599	11.16	72.58
191	146.23	•766	1517	12082	13599	11.16	72.58
192	149.40	•778	1531	12363	13894	11.02	73.25
193	149.40	•774	1531	12363	13894	11.02	73.25
194	153.30	•790	1534	12723	14257	10.76	73 • 40
195	156.46	•802	1537	13014	14551	10.56	73.54
196	156.46	• 798	1537	13014	14551	10.56	73.54
197	156.46	• 794	1537	13014	14551	10.56	73.54
198	160.19	•809	1543	13355	14898	10.36	73.83
199 200	163.81	•823	1555	13679	15234	10.21	74.40
210	163.81 169.53	•819 •807	1555 1565	13679 14201	15234 15766	10•21 9•93	74.40
220	183.20	•833	1592	15446	17038	9.93	74.88 76.17
230	190 • 43	•828	1606	16104	17710	9.07	76.84
240	199.99	•833	1632	16967	18599	8.77	78.09
250	206.68	•827	1637	17584	19221	8.52	78.33
260	217.72	•837	1663	18585	20248	8 • 2 1	79.57
270	224.67	•832	1675	19219	20894	8 • 0 2	80.14
280	229.53	•820	1676	19670	21346	7 • 85	80.19
290	229.53	•791	1676	19670	21346	7•85	80.19
300	234.43	•781	1679	20123	21802	7•70	80.33
310	250.28	•807	1687	21589	23276	7 • 25	80.72
320	260.65	•815	1690	22550	24240	6.97	80.86
330 340	266.01	•806 •797	1696	23043	24739	6 • 8 6	81.15
350	270•99 270•99	•774	1704 1704	23498 23498	25202 25202	6 • 7 6 4 • 7 6	81.53
360	276.41	•768	1713	23490	25706	6•76 6•66	81.53
370	281.54	•761	1768	24415	26183	6.75	84.59
380	287.67	• 757	1787	24966	26753	6.68	85.50
390	287.67	•738	1787	24966	26753	6.68	85.50
400	295.04	•738	1791	25648	27439	6.53	85.69
410	295.04	•720	1791	25648	27439	6.53	85.69
420	306.63	•730	1796	26721	28517	6.30	85•93
430	306•63	•713	1796	26721	28517	6.30	85.93
440	306.63	•697	1796	26721	28517	6.30	85.93
450 440	331.73	•737	1834	29017	30851	5 • 9 4	87.75
460 470	345.68	•751	1846	30302	32148	5 • 7 4	88.33
480	365•96 365•96	•779 •762	1862	32172	34034	5 • 4 7 5 • 4 7	89.09
490	365.96	• 7 6 Z • 7 4 7	1862 1862	32172 32172	34034 34034	5 • 47 5 • 47	89.09 89.09
500	365.96	•732	1862	32172	34034	5 • 4 7 5 • 4 7	89.09
	2020,0	U , UL	• 002	52.12	J 7 J J 4	2 4 4 1	07007

Cut-off	Average	к '/к	Rele-	Irrel-	Output	Overall	Overall
K	Output		vant	evant		%Prec-	% Known
	K'					ision	Recall
55	51.00	•927	873	3870	4743	18 • 41	41.77
56	52.74	• 9 4 2	876	4029	4905	17.86	41.91
57 50	53•76	•943	893	4107	5000	17.86	42.73
58 59	54•25 55•30	•935 •937	895 911	4150 4232	5045 5143	17•74 17•71	42•82 43•59
60	55•54	•937 •926	911	4253	5143 5165	17.66	43.54
61	56•11	•920	920	4298	5218	17.63	44.02
62	57.41	•926	939	4400	5339	17.59	44.93
63	57.43	•912	939	4402	5341	17.58	44.93
64	57.43	897	939	4402	5341	17.58	44.93
65	58•86	•906	944	4530	5474	17.25	45.17
66	59•15	•896	945	4556	5501	17.18	45.22
67	59•18	•883	946	4558	5504	17.19	45 • 26
68	59.90	•881	951	4620	5571	17.07	45.50
69	60•43	•876	953	4667	5620	16.96	45.60
70 71	61•82	•883	966	4783 4828	5749 5704	16.80	46.22
72	62•30 64•25	•877 •892	966 978	4997	5794 5975	16•67 16•37	46•22 46•79
72	65.32	•895	989	5086	6075	16.37	47.32
74	65.96	•891	991	5143	6134	16.16	47.42
75	66.19	•883	995	5161	6156	16.16	47.61
76	66.91	•880	1000	5223	6223	16.07	47.85
77	68.91	•895	1010	5399	6409	15.76	48.33
78	69•60	•892	1011	5462	6473	15.62	48.37
79	71.39	•904	1036	5603	6639	15.60	49.57
80	73•75	•922	1041	5818	6859	15.18	49.81
8 1	75 • 14	•928	1044	5944	6988	14.94	49.95
82	76.68	•935	1047	6084	7131	14.68	50.10
83	77•13	•929	1053	6120	7173	14.68	50.38
84 85	79•61	•948	1059	6345	7404	14.30	50•67
86	80•37 81•48	•946 •947	1061 1067	6413 6511	7474 7578	14•20 14•08	50∙77 51•05
87	82.97	•954	1007	6646	7716	13.87	51.00
88	84.73	•963	1079	6801	7880	13.69	51.63
89	85.00	•955	1080	6825	7905	13.66	51.67
90	85.86	•954	1080	6905	7985	13.53	51.67
91	86•57	•951	1089	6962	8051	13.53	52.11
92	86.84	• 9 4 4	1089	6987	8076	13.48	52•11
93	88•10	•947	1097	7096	8193	13.39	52.49
94	89•90	•956	1099	7262	8361	13.14	52.58
95	90.39	•951	1099	7307	8406	13.07	52.58
96	91.43	• 952	1102	7401	8503	12.96	52•73
97 98	93•18 94•66	•961	1105 1111	7561 7692	8666	12•75 12•62	52•87 53•16
99	95 • 22	•966 •9 6 2	1111	7744	8803 8855	12.55	53.16
100	95.85	•959	1119	7795	8914	12.55	53.54
101	96.91	•960	1137	7876	9013	12.62	54.40
102	97.65	•957	1141	7940	9081	12.56	54.59
103	98.05	•952	1141	7978	9119	12.51	54.59
104	98•95	•951	1145	8057	9202	12.44	54•78
105	100.20	•954	1146	8173	9319	12.30	54.83
106	100•45	•948	1147	8195	9342	12.28	54•88
107	102.60	• 9 5 9	1153	8389	9542	12.08	55 • 17
108	102.97	•953	1153	8423	9576	12.04	55 • 17
109	103.87	•953	1158	8502 8522	9660	11.99	55 • 41
110 111	104•12 104•43	•947	1160	8523 8551	9683 9712	11•98 11•95	55∙50 55∙55
111	104.43	•941 •935	1161 1161	8578	9712	11.92	55∙55
113	104.72	•939	1162	8709	9871	11.72	55•60
114	106.25	•932	1162	8722	9884	11.76	55.60
115	106.40	•925	1163	8732	9895	11.75	55.65
116	106.40	•917	1163	8732	9895	11.75	55•65
117	106.95	•914	1163	8783	9946	11.69	55.65
118	107.53	•911	1165	8835	10000	11.65	55•74

								_
Cut	-off	Average	к'/к	Rele-		Output	Overall	Overall
	K	Output		vant	evan t		% Prec-	%Known
•		K'					ision	Recall
	119	109.60	•921	1170	9023	10193	11.48	55.98
	120	1:0.28	•919	1171	9085	10256	11.42	56.03
	121	110.85	•916	1173	9136	10309	11.38	56.12
	122	111.18	•911	1175	9165	10340	11.36	56•22 5/ 70
	123	113.00	•919	1185	9324	10509	11.28	56 .70 56•70
	124	113.11	•912	1185	9334 9425	10519 10612	11•27 11•19	56•70 56•79·
	125 126	114•11 115•39	•913 •916	1187 1188	9543	10731	11.07	56.84
	127	115.39	•909	1188	9543	10731	11.07	56 • 84
	128	115.40	•902	1188	9544	10732	11.07	56.84
	129	115.82	•898	1190	9581	10771	11.05	56.94
	130	115.82	•891	1190	9581	10771	11.05	56.94
	131	117.73	•899	1194	9755	10949	10.91	57.13
	132	119.97	•909	1206	9951	11157	10.81	57 • 70
	133	122.08	•918	1217	10143	11353	10.66	57.89
	134	122.92	•917	121	10222	11432	10.58	57•89
	135	124.20	•920	121 =	10335	11551	10.53	58 • 18
	136	125•77	•925	1217	10480	11697	10.40	58•23
	137	128.88	•941	1232	10754	11986	10.28	58.95
	138	130.97	•949	1233	10947	12180	10.12	59.00
	139	131.15	•944	1233	10964	12197	10.11	59.00
	140	131.75	•941	1255	10998	12253	10.24	60 • 05
	141	134.97	•957	1256	11296 11361	12552	10.01 9.95	60.10 60.10
	142 143	135•67 136•73	∙955 ∙956	1256 1258	11458	12617 12716	9 • 8 9	60 • 19
	144	137.16	•953	1264	11492	12756	9•91	60 • 48
	145	138.11	•952	1272	11572	12844	9.90	60.86
	146	138.28	•947	1275	11585	12860	9.91	61.00
	147	138.69	•943	1275	11623	12898	9 • 89	61.00
	148	139.43	•942	1277	11690	12967	9.85	61.10
	149	141.00	•946	1277	11836	13113	9.74	61.10
	150	142.87	•952	1286	12001	13287	9•68	6:.53
	151	143.57	•951	1287	12065	13352	9 • 6 4	61.58
	152	143.57	•945	1287	12065	13352	9 • 6 4	61.58
	153	143.57		1287	12065	13352	9 • 6 4	61.58
	154	144.05	•935	1287	12110	13397	9 • 6 1	61.58
	155	144.82	•934	1289	12179	13468	9 • 5 7	61.67
	156	144.82	•928	1289	12179	13468	9•57	61.67
	157 158	146•39 147•02	•932 •931	1292	12322 12381	13614 13673	9 • 4 9 9 • 4 5	61•82 61•82
	159	147.02	•931 •925	1292 1292	12381	13673	9 • 45	61.82
	160	147.02	•919	1292	12381	13673	9 • 45	61.82
	161	149.98	•932	1296	12652	13948	9.29	62.01
	162	152.01	•938	1299	12838	14137	9.19	62.15
	163	152.01	•933	1299	12838	14137	9•19	62.15
	164	152.86	•932	1299	12917	14216	9 • 1 4	62 • 15
•	165	153.75	•932	1299	130 00	14299	9 • 08	62.15
	166	155.57	•937	1302	13166	14468	9.00	62.30
	167	155.70	•932	1302	13178	14480	8 • 9 9	62.30
	168	156.88	•934	1310	13280	14590	8 • 9 8	62.68
	169	160.27	•948	1313	13592	14905	8 • 8 1	62.82
	170	164.17	•966	1314	13954	15268	8 • 6 1 8 • 5 2	62•87 62•87
	171 172	165•74 166•78	•969 •970	1314 1316	14100 14195	15414 15511	8 • 48	62.07
	173	166.78	•964	1316	14195	15511	8 • 48	62.97
	174	168.68	•969	1326	14361	1.5687	8 • 45	63.44
	175	171.19	•978	1327	14594	15921	8 • 33	63.49
	176	171.60	975	1329	14630	15959	8.33	63.59
	177	175.23	•990	1331	14965	16296	8 • 1 7	63.68
	178	176.03	•989	1333	15038	16371	8 • 1 4	63•78
	179	176.03	•983	1333	15038	16371	8 • 1 4	63•78
	180	177•53	•986	1335	15175	16510	8.09	63.88
52	181	177.53	•981	1335	15175	16510	8.09	63.88
Ų.	182	177.53	•975	1335	15175	16510	8 • 0 9	63 .8 8

ERIC

		1.					
	Average	к'/к	Rele-	Irrel-	Output	Overall	
K	Output		vant	evant			%Known
	K_{λ}					ision	Recall
183	177•53	•970	1335	15175	16510	8 • 0 9	63.88
184	179.90	•978	1337	15394	16731	7 • 9 9	63.97
185	180.14	•974	1337	15416	16753	7 • 9 8	63.97
186	180.91	•973	1341	15484	16825	7 • 9 7	
187	183.38	•981	1355	15699	17054	7 • 9 5	
188	185.04	• 984	1356	15853	17209	7 • 8 8	64-88
189	185 • 47	•981	1357	15892	17249	7 • 8 7	64.93
190	185.73	•978	1357	15916	17273	7 • 8 6	64.93
191	187.47	•982	1358	16077	17435	7 • 7 9	64.98
192	189.01	•984	1365	16213	17578	7 • 77	65.31
193	189.74	•983	1367	16279	17646	7.75	65.41
194	189.74	• 978	1367	16279	17646	7 • 75	65.41
195	193.92	•994	1368	16667	18035	7.59	65.45
196	194.00	•990	1368	16674	18042	7 • 58	65.45
197	196.15	•996	1373	16869	18242	7 • 5 3	65.69
198	196.52	•993	1375	16901	18276	7 • 5 2	65.79
199	196.52	•988	1375	16901	18276	7.52	65.79
200	197.31	•987	1377	16973	18350	7 • 5 0	65.89
210	204.38	•973	1391	17616	19007	7.32	66.56
220	216.24	•983	1403	18707	20110	6 • 98	67.13
230	228 • 29	•993	1424	19807	21231	6 • 7 1	68.13
240	234.24	•976	1437	20347	21784	6 • 6 0	68•76
250 260	242•77 255•15	•971 •981	1450 1455	21128	22578 23729	6 • 42	69.38
270	263.59	•976	1468	22274 23046	24514	6 • 13 5 • 99	69•62 70•24
280	275.69	•985	1480	24159	25639	5 • 77	70.24
290	284.68	•982	1489	24986	26475	5.62	71.24
300	291.96	•973	1494	25658	27152	5.50	71.48
310	300.75	•970	1501	26469	27970	5.37	71.82
320	305.84	•956	1508	26935	28443	5.30	72.15
330	316.05	•958	1524	27869	29393	5 • 18	72.92
340	320.73	•943	1534	28294	29828	5 • 1 4	73.40
350	328.16	•938	1544	28975	30519	5 • 06	73.88
360	340.55	•946	1549	30122	31671	4 • 8 9	74.11
370	345.16	•933	1554	30546	32100	4 • 8 4	74.35
380	363.46	• 956	1559	32243	33802	4 • 6 1	74.59
390	369.87	• 9 4 8	1582	32816	34398	4.60	75.69
400	388.56	•971	1593	34543	36136	4 • 4 1	76.22
410	399.31	•974	1601	35535	37136	4.31	76.60
420	408.40	•972	1605	36376	37981	4 • 23	76.79
430	424.34	•987	1613	37851	39464	4 • 0 9	77.18
440	429.02	•975	1616	38283	39899	4 • 05	77.32
450	435.48	•968	1619	38881	40500	4.00	77.46
460	445.74	•969	1625	39829	41454	3.92	77.75
470	450.89	•959	1626	40307	41933	3 • 88	77.80
480	461.58	•962	1631	41296	42927	3.80	78.04
490	471.95	•963	1633	42258	43891	3.72	78.13
500	478.11	•956	1634	42830	44464	3.67	78.18

		/ /					
	Average	к'/к	Rele-	Irrel-	Output	Oyerall	Overall
K	Output K'		vant	evant		%Prec-	%Known
	K					ision	Recall
1	• 18	•180	1	5	6	16.67	•33
2	• 79	.395	11	16	27	40.74	3.58
3	1 • 47	• 490	19	31	50	38.00	6.19
4	2.18	• 545	23	51	74	31.08	7 • 49
5	2.91	• 582	28	71	99	28.28	9.12
6	3 • 47	• 578	33	85	118	27.97	10.75
7	5.26	•751	40	139	179	22.35	13.03
8 9	5 • 68 4 00	•710	4 4 4 4	149	193	22.80 21.57	14.33 14.33
10	6•00 6•00	•667 •600	44	160 160	204 204	21.57	14.33
11	7.50	•682	53	202	255	20.78	17.26
12	7.50	•625	53	202	255	20.78	17.26
13	9.50	•731	54	269	323	16.72	17.59
1 4	10.21	•729	58	289	347	16.71	18.89
15	10.21	•681	58	289	347	16.71	18.89
16	10.21	638	58	289	347	16.71	18.89
17	11.15	656	60	319	379	15.83	19.54
18	11.15	•619	60	319	379	15.83	19.54
19	12.82	• 675	62	374	436	14.22	20.20
20	13.65	•683	65	399	464	14.01	21.17
21	14.68	•699	67 70	432 467	499 537	13.43 13.04	21.82 22.80
22 23	15.79 16.79	•718 •730	70 71	500	571	12.43	23.13
24	16.79	•700	7 I	500	571	12.43	23.13
25	16.79	•672	71	500	571	12.43	23.13
26	16.79	•646	71	500	571	12.43	23.13
27	19.50	•722	71	592	663	10.71	23.13
28	19.50	• 696	71	592	663	10.71	23.13
29	20.79	•717	71	636	707	10.04	23.13
30	20.79	•693	71	636	707	10.04	23.13
31	20.79	• 671	71	636	707	10.04	23.13
32	20.79	•650	71	636	707	10.04	23.13
33	20.79	•630	71	636	707	10.04	23.13
34	20.79	•611	71	636	707	10.04	23.13
35 36	20•79 20•79	•594 •578	7 1 7 1	636 636	707 707	10.04 10.04	23.13 23.13
37	20.79	• 562	71	636	707	10.04	23.13
38	20.79	• 547	71	636	707	10.04	23.13
39	20.79	•533	71	636	707	10.04	23.13
40	24.65	•616	73	765	838	8 • 71	23.78
4 1	24.65	•601	73	765	838	8 • 7 1	23.78
42	26.35	•627	75	821	896	8.37	24.43
43	26.35	•613	75	821	896	8.37	24.43
44	26.35	• 599	75	821	896	8.37	24.43
45	26.35	• 586	75	821	896	8.37	24.43
46	26 • 35	•573	75 75	821	896	8.37	24.43
47 48	26•35 28•29	•561 •589	75 76	821 886	896 962	8•37 7•90	24.43 24.76
49	28.29	• 577	76 76	886	962	7 • 9 0 7 • 9 0	24.76
50	28.29	•566	76	886	962	7.90	24.76
51	29.97	• 588	77	942	1019	7.56	25.08
52	29.97	• 576	77	942	1019	7.56	25.08
53	29.97	• 565	77	942	1019	7.56	25.08
54	29.97	• 555·	77	942	1019	7.56	25.08
65	29.97	•545	77	942	1019	7.56	25.08

Cu		Average	к′/к	Rele-	Irrel-	Output	Overall	Overall
	K	Output K'		vant	evant		% Prec- ision	% Known Recall
	56	29.97	• 535	77	942	1019	7.56	25.08
	57	29.97	•526	77	942	1019	7.56	25.08
	58	29.97	•517	77	942	1019	7.56	25.08
	59	29.97	•508	77	942	1019	7.56	25.08
	60	29.97	•500	77	942	1019	7 • 5 6	25.08
	6 1 6 2	29•97 29•97	• 491	7 7	942	1019	7.56	25.08
	63	29.97	•483 •476	77 77	942 942	1019 1019	7•56 7•56	25•08 25•08
	64	29.97	• 468	77	942	1019	7 • 5 6	25.08
	65	29.97	• 461	77	942	1019	7.56	25.08
	66	29.97	• 454	77	942	1019	7.56	25.08
	67	33.44	• 499	79	1058	1137	6.95	25.73
	68	33.44	• 492	79	1058	1137	6 • 95	25.73
	69 70	33•44 33•44	•485 •478	79 79	1058 1058	1137	6•95 6•95	25.73
	71	33.44	• 471	7 9 7 9	1058	1137 1137	6.95	25∙73 25∙73
	72	33.44	• 464	79	1058	1137	6 • 95	25.73
	73	33.44	• 458	79	1058	1137	6.95	25.73
	74	33.44	• 452	79	1058	1137	. 6 • 95	25.73
	75	33.44	• 4 4 6	79	1058	1137	6.95	25.73
	76	35.91	• 473	84	1137	1221	6 • 88	27.36
	77 78	35.91 35.01	• 466	84	1137	1221	6.88	27.36
	7 0 7 9	35•91 35•91	•460 •455	84 84	1137 1137	1221	6 • 88	27•36
	80	35.91	• 449	84	1137	1221 1221	6•88 6•88	27•36 27•36
	81	35.91	• 443	84	1137	1221	6 • 88	27.36
	82	39.91	• 487	96	1261	1357	7.07	31.27
	83	39.91	• 481	96	1261	1357	7.07	31.27
	8 4	39.91	• 475	96	1261	1357	7.07	31.27
	85	44.65	•525	99	1419	1518	6.52	32.25
	86 87	44•65 49•18	•519	99	1419	1518	6.52	32.25
	88	49.18	∙565 •559	101 101	1571 1571	1672 1672	6 • 0 4 6 • 0 4	32.90 32.90
	89	49 • 18	•553	101	1571	1672	6 • 0 4	32.90
	90	49.18	• 5 4 6	101	1571	1672	6 • 0 4	32.90
	91	49.18	• 5 4 0	101	1571	1672	6 • 0 4	32.90
	92	49.18	•535	101	1571	1672	6.04	32.90
	93	49.18	•529	101	1571	1672	6 • 0 4	32.90
	94 95	49•18 49•18	•523	101	1571	1672	6.04	32.90
	96	49.18	•518 •512	101 101	1571 1571	1672 1672	6 • 0 4 6 • 0 4	32.90 32.90
	97	49.18	•507	101	1571	1672	6 • 0 4	32.90
	98	49.18	•502	101	1571	1672	6.04	32.90
	99	49.18	• 497	101	1571	1672	6 • 0 4	32.90
	100	49 • 18	• 492	101	1571	1672	6 • 0 4	32.90
	101	49.18	• 487	101	1571	1672	6 • 0 4	32.90
	102 103	49•18 49•18	• 482 477	101	1571	1672	6.04	32.90
	104	54.79	•477 •527	101 115	1571 1748	1672 1863	6 • 0 4 6 • 1 7	32.90
	105	54.79	•522	115	1748	1863	6.17	37•46 37•46
	106	54.79	•517	115	1748	1863	6 • 17	37.46
	107	54.79	•512	115	1748	1863	6.17	37.46
	108	54.79	•50 7	115	1748	1863	6.17	37.46
	109	54.79	•503	115	1748	1863	6 • 17	37.46
	110 111	60•74 66•82	•552	123	1942	2065	5.96	40.07
	112	73.21	•602 •654	124 141	2148 2348	2272 2489	5 • 4 6 5 • 4 6	40.39
	113	79.06	• 700	141	2546	2469 2688	5 • 6 6 5 • 28	45•93 46•25
	114	79.06	•694	142	2546	2688	5.28	46.25
3	115	79.06	•687	142	2546	26 8 8	5.28	46.25
IC.	116	79.06	•682	142	2546	2688	5.28	46.25
od by ERIC	117	79.06	•676	142	2546	2688	5 • 28	46.25
	118	84•47	•716	159	2713	2872	5.54	51.79

Cut	-off K	Average Output	к′/к	Rele- vant	Irrel- evant	Output	Overall %Prec- ision	Overall %Known Recall
		к′						
	119	84.47	•710	159	2713	2872	5•54 5•54	51.79
	120	84.47	•704	159	2713	2872	5.54 5.54	51.79 51.79
	121 122	84•47 90•91	•698 745	159 163	2713 2928	2872 3091	5 • 2 7	53.09
	123	90.91	•745 •739	163	2928	3091	5.27	53.09
	124	90.91	•733	163	2928	3091	5.27	53.09 53.09
	125	97.18	• 7 3 3 • 7 7 7	164	3140	3304	4.96	53.42
	126	97.18	•771	164	3140	3304	4.96	53.42
	127	97.18	• 765	164	3140	3304	4.96	53.42
	128	97.18	• 759	164	3140	3304	4.96	53.42
	129	103.88	•805	171	3361	3532	4.84	55.70
	130	103.88	• 799	171	3361	3532	4.84	55.70
	131	103.88	•793	171	3361	3532	4 • 8 4	55.70
	132	103.88	•787	171	3361	3532	4 • 8 4	55•70
	133	103.88	•781	171	3361	3532	4 • 8 4	55.70
	134	103.88	• 775	171	3361	3532	4 • 8 4	55.0
	135	193.88	• 769	171	3361	3532	4 • 8 4	55.70
	136	103.88	• 764	171	3361	3532	4 • 8 4	55•70 55 70
	137 138	103.88 103.88	•758	171 171	3361	3532 3532	4 • 8 4 4 • 8 4	55•70 55•70
	139	110.53	•753 •795	183	3361 3575	3758	4.87	59.61
	140	117.52	•840	187	3812	3999	4 • 68	60.91
	141	117.62	•834	187	3812	3999	4.68	60.91
	142	117.62	•828	187	3812	3999	4.68	60.91
	143	117.62	•823	187	3812	3999	4 • 68	60.91
	144	117.62	817	187	3812	3999	4 • 68	60.91
	145	117.62	•811	187	3812	3999	4 • 68	60.91
	146	117.62	•806	187	3812	3999	4.68	60.91
	147	117.62	•800	187	3812	3999	4.68	60.91
	148	117.62	•795	187	3812	3999	4 • 68	60.91
	149	117.62	• 789 784	187	3812	3999	4 • 68	60.91
	150 151	117•62 117•62	• 784	187 187	3812 3812	3999 3999	4 • 68 4 • 68	60•91 60•91
	152	117.62	•779 •774	187	3812	3999	4 • 68	60.91
	153	117.62	. 769	187	3812	3999	4.68	60.91
	154	117.62	• 764	187	3812	3999	4.68	60.91
	155	117.62	• 759	187	3812	3999	4.68	60.91
	156	117.62	•754	187	3812	3999	4.68	60.91
	157	117.62	•749	187	3812	3999	4 • 68	60.91
	158	117.62	• 7 4 4	187	3812	3999	4 • 68	60.91
	159	117.62	• 7 4 0	187	3812	3999	4.68	60.91
	160	117.62	•735	187	3812	3999	4 • 68	60.91
	161	117.62	•731	187	3812	3999	4 • 68	60.91
	162 163	117.62 117.62	•726 •722	187 187	3812 3812	3999 3999	4 • 68 4 • 68	60•91 60•91
	164	117.62	•717	187	3812	3999	4 • 68	60.91
	165	117.62	•713	187	3812	3999	4 • 68	60.91
	166	117.62	•709	187	3812	3999	4.68	60.91
	167	117.62	.704	187	3812	3999	4.68	60.91
	168	123.32	•734	188	4005	4193	4 • 48	61.24
	169	123.32	•730	188	4005	4193	4 • 48	61.24
	170	123.32	•725	188	4005	4193	4 • 48	61.24
	171	123.32	• 721	188	4005	4193	4 • 48	61.24
	172	123.32	•717	188	4005	4193	4 • 48	61.24
	173	123.32	•713	188	4005	4193	4 • 48	61.24
	174	123.32	•709 •705	188	4005	4193	4 • 48	61.24
	175 176	123•32 131•65	•705 •748	188 191	4005 4285	4193 4476	4•48 4•27	61.24
	177	131.65	•744	191	4285	4476	4 • 2 7	62•21 62•21
	178	131.65	•740	191	4285	4476	4.27	62.21
	179	131.65	•735	191	4285	4476	4.27	62.21
56	180	131.65	.731	191	4285	4476	4.27	62.21
	181	131.65	•727	191	4285	4476	4.27	62.21
IC	182	131.65	•723	191	4285	4476	4 • 27	62.21

156 ERIC

Cut-off	Average	κ ′/ κ	Rele-	Irrel-	Output	Overall	Overall
K	Output	/	vant	evant	Carpar	% Prec-	%Known
-	κŽ					ision	Recall
183	140.53	•768	194	4584	4778	4.06	63.19
184	140.53	• 764	194	4584	4778	4.06	63.19
185	140.53	•760	194	4584	4778	4.06	63.19
186	140.53	•756	194	4584	4778	4.06	63.19
187	140.53	•751	194	4584	4778	4.06	63.19
188	140.53	•748	194	4584	4778	4.06	63.19
189	140.53	• 7 4 4	194	4584	4778	4.06	63.19
190	150.56	•792	201	4918	5119	3.93	65 • 47
191	150.56	•788	201	4918	5119	3.93	65 • 47
192	150.56	•784	201	4918	5119	3.93	65.47
193	150.56	•780	201	4918	5119	3.93	65 • 47
194	161.24	.831	204	5278	5482	3.72	66 • 45
195	169.88	•871	207	5569	5776	3.58	67.43
196	169.88	•867	207	5569	5776	3.58	67.43
197	169.88	•862	207	5569	5776	3.58	67.43
198	180.09	•910	213	591 0	6123	3.48	69.38
199	180.09	•905	213	591 0	6123	3.48	69.38
200	180.09	•900 605	213	5910 4347	6123	3 • 48	69.38
10ء معد	190.00	•905	213	6247	6460	3.30	69.38
220	197.71	•899 840	213	6 5 09	6722	3 • 1 7	69 • 38
23 0 24 0	197•71 211•03	•860 870	213	6509 6054	6722 7175	3.17	69.38
25 0	220.88	•879 •884	221 223	69 54 7287	7510	3•08 2•97	71.99 72.64
260	220.88	• 850 • 850	223	7287	7510 7510	2.97	72.64
270	229.44	• 8 5 0	228	7573	7801	2.92	74.27
280	242.74	• 8 6 7	229	8024	8253	2.77	74.59
290	242.74	•837	229	8024	8253	2.77	74.59
300	242.74	•809	229	8024	8253	2 • 77	74.59
310	286.09	•923	237	9490	9727	2.44	77.20
320	302.09	• 9 4 4	238	10033	10271	2.32	77.52
330	302.09	•915	238	10033	10271	2.32	77.52
340	302.09	.889	238	10033	10271	2.32	77.52
350	302.09	.863	238	10033	10271	2.32	77.52
360	302.09	•839	238	10033	10271	2.32	77.52
370	302.09	•816	238	10033	10271	2 • 32	77.52
380	302.09	•795	238	10033	10271	2 • 32	77.52
390	302.09	•775	238	10033	10271	2 • 32	77.52
400	302.09	•755	238	10033	10271	2 • 32	77•52
410	302.09	•737	238	10033	10271	2.32	77.52
420	302.09	•719	238	10033	10271	2 • 32	77.52
430	302.09	•703	238	10033	10271	2 • 32	77•52
. 440	302.09	687	238	10033	10271	2 • 32	77•52
450	326.15	•725	241	10848	11089	2 • 1 7	78∙5 0
460	326.15	•709	241	10848	11089	2 • 1 7	78.50
470	344.00	• 732	243	11453	11696	2 • 08	79.15
480	344.00	•717	243	11453	11696	2.08	79.15
490	344.00	•702	243	11453	11696	2.08	79.15
5 00	344.00	•688	243	11453	11696	2.08	79 • 15

93 Requests: Numbers of Relevant Documents Retrieved with (in brackets) the numbers of requests making a positive contribution-to each total

	₂₀ κ' (nearest in	teger) 40	45	46	47	48	49	50
Run KWS 13 AWKWS 22	528(85) 499(88)	671 (85) 650 (88)	897(87) 781(88)	928(87) 850(88)	954(87) 876(88)	961 (87) 890 (88)	961(87) 890(88)	991 (87) 898 (88)	991 (87 898 (88
ARM 16	402(78)	525(81)	656(83)	773(84)	773 (84)	773 (84)	781 (85)	781(85)	782(86
MCS01 14	394(78)	549(81)	753(82)	812(83)	829 (83)	834 (83)	844(85)	849(83)	873(85
MCS11 20	428(81)	630(87)	752(87)	813(87)	820 (88)	828 (88)	828 (88)	857(88)	857(38
RJR 19	489(82)	611(84)	739(86)	807(86)	848 (86)	860 (86)	865 (86)	880(86)	939(86
ARMSR 17	401(78)	537(82)	637(83)	687(85)	711 (85)	775(85)	775(85)	785(86)	785(86
SR14 6	395(83)	539(89)	649(91)	706(91)	719 (91)	735(91)	746(91)	753(91)	753(91
PDR14 11	425(83)	551(87)	669(90)	776(90)	781 (90)	804(90)	820(90)	831(90)	861(90
EAG3 15	405(77)	502(83)	660 (85)	704(86)	785(87)	785(87)	800 (87)	828(87)	828(87)
EAG4 18	405(84)	541(86)	725 (89)	815(89)	815(89)	819(89)	819 (89)	835(90)	835(90)
EARG4 23	460(81)	613(86)	783 (88)	845(88)	871(88)	871(88)	888 (89)	895(89)	914(89)
10m14 9	486(85)	632(87)	348(87)	884(87)	894 (88)	910 (88)	910(88)	910(88)	966(88
10w14 28	526	629	860	*9 1 7	*920	*930	*939	*949	*991 (89
V14 21	473(80)	602(82)	782(83)	840 (84)	842(84)	867(84)	868(84)	880 (84)	902(84
Union of Standard Strategie	1195(92) s	1528(92)	1816(93)	1900(93)	1925(93)	1944(93)	1954(93)	1976(93)	20 20 (93 °

APPENDIX B9a

93 Requests: Numbers of NEW Relevant Documents Retrieved, that is, not also retrieved by Run 13(KWS) at same K^{i} ,

with (in brackets) the numbers of requests making a positive contribution to each total

	20 K' (1	nearest int 30	eger) 40	45	46	47	48	49	50
Run KWS 13 AWKWS 22	105(32)	132(36)	117(32)	130(33)	115(32)	113(32)	113(32)	108(33)	108(33)
ARM 16 MCS01 14 MCS11 20 RJR 19	121 (41) 130 (43) 104 (41) 115 (39)	144 (50) 184 (49) 179 (53) 147 (39)	185(51) 207(51) 157(50) 162(41)	210 (52) 221 (55) 189 (50) 160 (41)	209(51) 227(55) 192(51) 152(42)	207(51) 225(56) 197(50) 156(42)	211(53) 233(57) 197(50) 157(43)	206(53) 234(57) 196(51) 161(44)	206(53) 252(58) 196(51) 218(44)
ARMSR 17 SR14 6 PDR14 11	116(41) 145(51) 140(44)	152(50) 203(59) 179(53)	171 (49) 213 (68) 178 (65)	194(50) 222(69) 230(67)	205(50) 219(68) 223(67)	207(51) 233(68) 235(68)	207(51) 238(68) 242(69)	206(53) 238(67) 245(68)	206(53) 238(67) 271(69)
EAG3 15 EAG4 18 EARG4 23	152(47) 129(49) 157(47)	168(53) 184(56) 210(59)	241 (58) 275 (55) 212 (63)	256(59) 299(58) 227(64)	291 (60) 297 (57) 232 (63)	287(60) 296(59) 228(63)	295(60) 296(59) 240(64)	306(60) 290(59) 234(63)	306(60) 290(59) 246(63)
13T14 9 13W14 28	101(32)	131(37)	126(37)	125(37)	121(36)	124(39)	124(39)	122(37)	176(42) *155(32)
U14 21	200 (49)	234 (50)	257 (53)	283(58)	272 (58)	202(58)	293 (57)	296 (57)	311(58)
Union of Standard Strategie	667(86) s	857 (88)	919(90)	972 (89)	971 (89)	983 (89)	993(89)	985(89)	1029 (89)

*output not wholly assessed

34 Requests Retrieving 0 to 4 Relevant Documents in Run 13 (KWS) at K=71, $K^{\prime} \simeq 50$

Request	Known Relevant	Relevant in Run 13	Output in Run 13	Next Highest Output containing more relevant 242	P = less well formulated
3 5 7 11	15 5 4	4 4 0 1	14 125 12 70	1568 375	P
	2	2	70 79 19	. 7	P P
113344580390145604571234781782469	11 4	0	19 5 1	360 1884	P
35	11	0 3 4 1	51 77 724 724 758 758 218	341	
30 40	58578537	1	70 24	264 371	
43 40	5	2 4 3 1 3 4	32	371 850	P
50	8	3	34 4	317 165	
5 1	5	1	9	163	_
55 55	3 7	ے 4	39	- 583	P P
56 60	1 10	0 1	7	?14	
64	10	3	74	2 1 0 539	P
65 67	1	3	50	539 502 4 1 5	
71	3 22	1 0	80 25	415 209	
72	- - 4	į		231	
73 74	8 8	4 ն	1 9	2 <i>6</i> 0	
່ ່າ	3 22 4 8 20 5 21	$\vec{4}$	40	25 1 573	
78 81	2 1	3	8	199 220	
87	32 13 4 8 7	244334	19 25 40 8 3 11	220 464	
88	<u> </u>	1	31	333	
94 94	0 7	2 3	12 13	231 212	_
96	12 14	2 . 3 . 4	13 33	149	P P
99	14	4	33	117	-
Totals Averages	296 8 . 7	79 2•3	1137 33.41	12812 (31 request	s)
wer akes	0.7	2.5	33.41	413	

Of the above, and omitting less well formulated requests, 7,14,35,38,40,49,64,65,67,73,77,87,88 have their next highest productive output greater than 250.

APPENDIX B11

With (in brackets) numbers of requests making a positive contribution Subtotals for 34 Requests, Standard Runs at $\text{K}'\!\!\simeq\!50$

New=Not also retrieved in Run 13

Irrelevant 508	906 1038 770 440	928 1011 987	958 1035 884	868 607	1109	4777
t New						
Relevant 17(8)	39(15) 59(16) 46(14) 33(9)	40 (15) 49 (21) 69 (22)	77 $\{20\}$ 77 $\{23\}$ 70 $\{21\}$	64(17) 작(12)	78(19)	217(31)
New						CV
1ve K' 3 6	-01010	am o	~ 88	Nω	10	
Effective 33 46	1004 E	744 000	444	<u>17.77</u>	9†	1
Output 1137 1562	1748 1687 1539 1193	1752 1646 1675	1605 1643 1630	1766 1643	1573	6131
Jnasses sed 0 0	0000	000	000	30	0	0
[rrelevant 1058	1640 1578 1428 1082	1643 1537 1539	1464 1504 1498	1632 1483	1451	5835
1-1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~	~~	$\tilde{}$	$\widehat{}$
Relevant 79(28) 95(29)	108(30) 109(28) 111(30) 101(28)	109 (29) 109(32) 136(31)	141 (30 139 (32 132 (30	134 (29) 130 (30)	122(27)	296(34)
ر 200	120 120 120 120 120 120 120 120 120 120	119	3 3 3 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	580	23	of lard egies
Rur KWS 1 AWKWS 2	ARM MCS01 MCS11 RJR	ARMSR SR14 PDR14	EAG3 EAG4 EARG4	13T14 13W14	U14	Union of Standard Strategies

Request sets of increasing generality (report, VIII.4)

	Numbers o	Numbers of Relevant Documents at $\mathrm{K}^{f 1}$	Occuments at	K¹ ≈ 50	Num	Numbers of New R	New Relevant Documents	ments
	GEN 1	GEN 2	GEN 3	GEN 4	GEN 1	GEN 2	GEN 3	GEN 4
Run KWS 13 AWKWS 22	68(22) 72(22)	137(20) 128(20)	277(22) 285(23)	509(23) 413(23)	11 (6)	13 (5)	37(11)	47(11)
ARM 16 MCS01 14 MCS11 20 RJR 19	62(23) 50(21) 64(23) 56(20)	102(20) 104(20) 118(20) 130(21)	199(22) 238(21) 232(22) 258(22)	419(21) 454(21) 443(23) 495(23)	14 (9) 12 (7) 12 (7) 4 (2)	20(11) 29(14) 34(10) 33(13)	44(14) 57(17) 46(15) 47(16)	128(19) 154(20) 104(19) 134(13)
ARMSR 17 SR14 6 PDR14 11	63 70(24.) 74.(23.)	101 111(21) 124(21)	205 225(23) 272(23)	416 347(23) 391(23)	15 21 (14) 24 (13)	20 27(12) 37(15)	44 72(21) 85(19)	127 118(20) 125(22)
EAG3 15 EAG4 18 EARG4 23	57(22) 69(24.) 58(23)	123(20) 121(21) 121(21)	239(23) 212(23) 243(23)	409(22) 433(22) 492(23)	16 (8) 22(12) 14(11)	40(14) 39(13) 34(11)	85(17) 54(15) 74(21)	165(21) 175(19) 124(20)
13IM4 9 13W14 28	64(21) 64(22)	141 (21) 146 (21)	258(23) 277(23)	503(23) 504(23)	11 (8) 3 (3)	32(11) 29 (9)	50(10) 45 (9)	83(13) 78(11)
U14 21	55(21)	136(20)	257(21)	4.54(22)	(6) 61	48(16)	73(15)	171 (18)
Union of Standard Strategies	136(26)	262(21)	539(25)	1083(23)	68(23)	125(20)	262(23)	574(23)

APPENDIX B13

Subtotals for 55 Requests, Runs with Underlining and other Runs all at $\mathrm{K}'\!\simeq\!30$ $\overline{25}$ = Not also retrieved in Run 25(U13)

t 25								
Irre levant	772 960 985	330 325	919	996 955 846	1020	937 982 984	872	4215
Relevant 25	152 180 176	- 48	124	148 192 158	153 188	156 157 217	181	587
Effective K	800 800 800	29 24 26	33	8 8 8 8 8 9	29 30	27 28 31	31	ı
Output	1736 1661 1661	1622 1468 1403	1788	1564 1733 1619	1601 1654	1491 1515 1683	1706	79
Unassessed Output	000	다 다 다	0	000	00	000	0	去
Irrelevant	1288 1271 1269	1130 1049 950	1356	1224 1308 1201	1248· 1272	1155 1179 1252	1261	5345
Relevant	448 390 392	478 419 412	432	340 425 418	353 382	336 336 431	445	1065
Run	KWS 13 MCSO1 14 PDR14 11	U13 25 U14 21 U11 24	AWKWS 22	ARM 16 MCS11 20 RJR 19	ARMSR 17 SR14 6	EAG3 15 EAG4 18 EARG4 23	13414 9	Union of Standard Strategies

The Approximate value of \overline{K}^{\prime} .

84.

Take the single request in V.6.3 with its choice of output quantities, 0, 3, 7, 15, ,..., thus

K 0 1 2 3 4 5 6
$$7$$
 8 9 10 11 12 13 14 15 16 17 18 ... output 0 0 3 3 3 5 7 7 7 7 11 15 15 15 15 15 15 15 15 15 ... ΣΚ 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 ... Σ (output) 0 0 3 6 9 14 21 28 35 42 49 60 75 90 105 120 135 150 165 ...

where for the moment we have written an average in the case of a tie (K = 5,11) instead of going to the lower (3,7) ...(A). In the third and fourth rows we have accumulated these values. Note how Σ (output) lags behind ΣK , catching up only at the points where K or K+1 is an exact output. In fact

$$\sum_{1}^{K} (\text{output}) = \frac{1}{2}K(K+1) - \frac{1}{2}(K-y)(K-y+1)$$

where y is the output nearest to K, whether above or below.

We now use the assumption that for a <u>set of requests</u> $\frac{K^2}{K}$ is approximately constant, as K varies. In particular

$$\frac{K^{\dagger}}{K} \simeq \frac{1}{\sum_{K} K^{\dagger}} = \frac{1}{\sum_{req} \sum_{req} 1} \text{ (output)}$$

$$\sum_{K} K = \frac{1}{\sum_{K} K^{\dagger}} = \frac{1}{\sum_{K} K^{\dagger}}$$

y varying from request to request.

Thus the larger the spread of the y values, the further below 1 is $\frac{K}{\kappa}$.

We can take (B) further. The y values have mean $K^{\mathfrak{l}}$, and standard deviation $vK^{\mathfrak{k}}$, say. Then

$$\sum_{\mathbf{req}} \mathbf{y} = \mathbf{n} K^{\mathbf{g}}$$

$$\sum_{reg} y^2 = nK^{12}(1+v^2).$$

From (B)
$$\frac{K!}{K} \simeq \frac{\sum_{\text{req}} (2Ky-y^2+y)}{nK(K+1)} = \frac{2KK!-K!^2(1+v^2)+K!}{K^2+K}$$

which yields the simple relation

$$\frac{K!}{K} \simeq \frac{1}{1+v^2},$$

where $v = \frac{s.d.}{mean}$ for the outputs whose average is K^{2} .

The adjustration we made in (A) affects the final result by at most 1 part in 2K and may be ignored.

More generally, if the outputs have the same dispersion or coefficient of variation v at $K=K_1$ and $K=K_2$ and $\frac{K^{\frac{1}{2}}}{K}$ may be taken as constant from K_1 to K_2 , we may still deduce in a similar manner that

$$\frac{K^{\dagger}}{K} \simeq \frac{1}{1+v^2}.$$

v will be considerable for a strategy in which the ratio r between successive output totals tends to be large. Take an imaginary case in which r is constant for all requests and all levels and abandon the stipulation that the y's must be integers. $\frac{K^1}{K}$ being constant puts a second constraint on the y values nearest to a given K. If, e.g., no two are equal, a little experiment shows that they must be in geometric progression with ratio $r^{\frac{1}{n}}$, say

$$z$$
, $zr^{\frac{1}{n}}$, $zr^{\frac{2}{n}}$, ..., $zr^{\frac{n-1}{n}}$

where e.g. K is just nearer z than zr but just near $zr^{\frac{n-1}{n}}$ than $zr^{\frac{1}{n}}$.

Thus

$$K : = \frac{1}{2} (z + zr)$$

$$K^{\dagger} = \frac{1}{n} \left(\begin{array}{c} \frac{1}{n} \\ z + zr^{\frac{1}{n}} + \cdots + zr^{\frac{n-1}{n}} \end{array} \right)$$

$$= \frac{1}{n} \cdot \frac{r-1}{r^{\frac{1}{n}} - 1} \approx z \cdot \frac{r-1}{\log_{e} r}$$

$$\frac{K^{\dagger}}{K} \approx 2 \cdot \frac{r-1}{r+1} \cdot \frac{1}{\log_{e} r}$$

and

Thus if r=10, $\frac{K!}{2K} \approx .76$, which could be typical values for run 13. If r=2, $\frac{K!}{K}=\frac{2K}{3\times .69}=.96$, while if r=3, $\frac{K!}{K}=.91$ and the effect is becoming noticeable.

Words Accepted by Assessors in Place of Key-Words

A short study was made by S. Whelan of abstracts retrieved by Subject Indexes which had not come up in any mechanical strategy. In particular, these documents would not have had sufficient keywords for retrieval in Run 13 at $K^1 \simeq 51$.

For example:-

Request 74. Predicting the paths of electrons moving in a varying magnetic field.

Abstract 5163. The motion of charged particles in weakly variable magnetic fields. Analysis is simplified by considering in place of the actual particle which follows a helical path an equivalent particle following a mean path and having a magnetic moment.

Abstract 7855. On the non-optical theory of focusing in rotating magnetic fields. The difficulties arising in the application of optical methods to electron optics are pointed out. The general theory of the focusing action of static magnetic fields developed by Grinberg which is based on nonoptical methods is applied to the case of apraxial electron beams in rotating magnetic fields.

Here we have 'charged particle' accepted by the requester in place of 'electron' while 'focusing' corresponds to the word 'paths'. For want of a better term, let us call these words or phrases 'acceptances'. These acceptances were examined to see whether they were in G3, and below are some that were not.

Abstract Word	Request Word	Subjective Judgement on Preserving Connection in a Word-Word Matrix
Charge Current Density Discharge Films Focus Impact Illumination Motion Particle Production Pulse Screen Surface Trajectory	Electron Electron Ion Emission Oxidation Path Bombardment Bombardment Moving Electron Emission Electron Cathode Cathode Path	
Trajectory Velocity	Electron Bombardment	? No
Waveform	${ t Spectrum}$	Yes

We reproduce the rows of G3 corresponding to some of the stems on the request and abstracts quoted:-

Stem

Stems Associated in G3

charg(e) particle relativi trajecto charg space mass attachme collisio electron nitrogen secondar transpor electron neutral profile diffus target valenc gases probe atom ion anisotro corrugat homogene magnetor strength transpor field transver classic moment tensor foc(us) foc magnetic ferromag magnetic magnetis ferrite magneti saturat moment fluid force gauss drumhead <u>motion</u> perturb motion moving Cerenkov particle relativi velocit moving particle particle relativi trajecto moving proton charg force outer belt trap path path predict predict trajecto(ry)particle trajecto charg vary vary

Examination of such lists as the above led to the following simple observations:-

- 1. If it were desired to amend or generate a word-word thesaurus by this means, we would need many more than 93 requests, and new criteria of frequency of association.
- 2. G3 is, after all, generated from the document set as a whole, and any threshold must exclude some connections which are only 'part of the picture'.
- 5. The particular case of 'motion-moving' arises because the stem mo- is too short to be used in the basic vocabulary. Where grammatical variants cannot be united by a common stem, they should be by some other means, for example, by assigning the variant stems the same code number in the dictionary, and choosing one as the preferred term for ease of reference. If they were assigned different code-numbers and links were inserted in the word-word matrix, joining each to the other and its associates, this would be less straightforward and would not help key-word-stem strategies.

Sample Page of Subject Indexes to Abstracts (see VII.5)

```
Ferrimagnetic materials, ferrites, MgAlMn, having low loss at 4 kMc/s, Mg-Mn, commercially available, 2146 merrowave Faraday effect in, 95 mixed, commercially available, 2146 merrowave Faraday effect in, 95 mixed, commercially available, 2146 mixed expectation of the commercial mixed of the commercial mixed expectation of the commercial mixed expectation of the commercial mixed expectation of the commercial mixed expendence of magnetic attention of the will in it, 2444 Ni-Za, magnetic-dispersion spectrum of, 2710, temperature dependence of magnetization of, 1486 mixed ferrite-atminiate, glactor of, 2955, resonance absorption nickel ferrite-atminiate, glactor of, 2957, resonance absorption in, 2445 resonance absorption in, 2445 resonance absorption in, 2445 resonance absorption in, 2445 resonance absorption in, 2712 magnetic resonance in 1828 resonance absorption in, 2712 magnetic resonance in 1828 resonance absorption in, 2712 magnetic resonance in 1828 resonance absorption in, 2712 mixed resonance absorption in, 2712 resonance absorption in, 2712 mixed resonance absorption in, 2712 resonance absorption in, 2713 resonance absorption in, 2714 resonance and 275 resonance in, 180 resonance and 275 resonance in 275 resonance
Electron microscopy, application at A.E.I. Research Laboratory, 2740 at Cambridge, 2740 conference in London, Nov. 1953, 3330 French work in during 1952–1953, 2740 replicas for, high-resolution, perpetration of, 3228 shallowing technique for, 3653 Series work in, 2740 et al. (2018) and the formal magnetic fields, 105, 1384 Electron motion, in exercise and magnetic fields, 105, 1384 Electron optics, double focusing by two-magnet system, 498 focusing charged particles, 3541 magnetic and electric fields with eylindrical and mirror symmetry, 2191 relativistic aberration functions in, 3649 schlieren fechnique for studying can, fields, 1536 shadow methed of mapping magnetic fields, 2465 wave-mechanics theory of, 499 Electron spectrographs, e.s., developed from electron interoscope, 3655 Electron trajectories, automatic plotting of, use of chetrolyte tank for, 3040 an uncerical integrations of equation of, 1535 Electronic applications, (See also Control systems; Heating; Photocells, applications of) aircrew training equipment using analogue computers, 3471; air warfare game, 2187; blind gnifling device, 3641; electrocardiology, resultant dipole consenses and stream of the stream o
            Faraday effect, cm-\(\lambda\), experimental investigation of, 3202 in ferrites, 995
In waveguides and cavity resonators, 2987
at microwave frequencies, medium-boundary effects in, 2927
In waveguides containing anisotropic media, 1300

Ferrimagnetic materials, ferrites, after-effects in, 3605
as core materials for magnetic heads, 2846
of Ey and Er, thermomagnetic study of, 3274
fermalite, ferrilite and fercolite, 1827
ferramagnetic resonance of, 1832, effect of anisotropy and relaxation phenomena on, 2713
ferroxube, measurement of properties of, 207
ferroxube, two substreament of properties of, 207
ferroxube IV, thermal effects accompanying magnetization of, 177
ferroxdure, BaO.6Fe,O,, with preferred orientation, 184, domain-wall displacements in, 179
Gd, thermomagnetic study of, 3273
magnetic phenomena in, 175
magnetic resonance phenomena in, 2144
magnetostrictive, as u.h.f. detectors, 2904
Mg, dielectric behaviour of, 1107, investigation by heat treatment, 1108
```

WIRELESS ENGINEER

Glossary

association factor	III.6
coverage	IX.1; VIII.2
coordination	I.13, appendix B4
descriptor	VI.2.2
document = abstract, both including title	
G3, G4	III.10
K (desired output cut-off)	v. 6
K' (average output)	v. 6
relevant	VII.1
sensitivity	V.7, VIII.2, IX.1
similarity coefficient	III.9
strategy = run = retrieval method = formula :	for coordination

stratum

v.6.

BIBLIOGRAPHY

- 1. GARDIN, J.C. Le Syntol (syntagmatic organization language). Etude d'un systeme general de documentation automatique. Assoc. Marc Bloch, Final Report to Euratom Part 1, 1962.
- 2. FARRADANE, J. Relational indexing and classification in the light of recent experimental work in psychology. <u>Information Storage and</u> Retrieval, 1963, 1, (1), 3.
- 3. KENT, A.K. et al. Chemical Society Research Unit, Nottingham University, Bulletin, Jan., 1969.
- 4. VASWANI, P.K.T. Mechanized storage and retrieval of information. Rev. int. Docum., 1965, 32, (1), 19.
- 5. MEETHAM, A.R. Preliminary studies for machine generated index vocabularies. Language and Speech, 1963, 6, (1), 22.
- 6. STILES, H.E. The association factor in information retrieval. <u>J. Assoc.</u> Comput. Mach., 1961, <u>8</u>, (2), 271.
- 7. Statistical association methods for mechanized documentation, Washington, 1964, edited by V.E. Giuliano, N.B.S. Misc. Pub. 269.
- 8. MEETHAM, A.R. Probabilistic pairs and groups of words in a text. Language and Speech, 1964, 7, (2), 98.
- 9. VASWANI, P.K.T. A technique for cluster emphasis and its application to automatic indexing. Proc. <u>IFIP Congress</u>, Edinburgh, 1968, edited by A.J.H. Norrell, Amsterdam, North-Holland Publishing Co., 1969, 2, 1300.
- 10. MEETHAM, A.R. Graph separability and word grouping. Proc. 21st National Conference of A.C.M., (1966), London, Academic Press, 1967, 513-4.
- 11. MEETHAM, A.R. Algorithm to assist in finding the complete sub-graphs of a given graph. Nature, 1966, 211, (5044), 105.
- 12. SPARCK JONES, K. and JACKSON, D. Current approaches to classification and clump-finding at the Cambridge Language Research Unit.

 Computer J., 1967, 10 (1), 29.
- 13. SPARCK JONES, K. and JACKSON, D. The use of automatically-obtained keyword classifications for information retrieval. Final report, 1969, ML211, Cambridge Language Research Unit, Cambridge.
- 14. BAR-HILLEL, Y. Some theoretical aspects of the mechanization of literature searching. Technical report no. 3, Hebrew University, Jerusalem, 1960.
- 15. CLEVERDON, C., MILLS, J. and KEEN, M. Factors determining the performance of indexing systems. 2 vols., 1966, College of Aeronautics, Cranfield.
- 16. MOOERS, C.N. Zatocoding applied to mechanical organization of knowledge.

 <u>American Documentation</u>, 1951, 2, 20.
- 17. GIULIANO, V.E. The interpretation of word associations. Page 26 in ref. 7 above.

- 18. BORKO, H. The construction of an empirically based mathematically derived classification system. Proc. Spring Joint Computer Conference, San Fransisco, 1962, AFIPS, 1962, 21, 279.
- 19. MARON, M.E. and KUHNS, J.L. On relevance, probabilistic indexing and information retrieval. <u>J. Assoc. Comput. Mach.</u>, 1960, <u>7</u>, (3), 216. (One of the earliest papers suggesting the use of association measures).
- 20. STEVENS, M.E. Automatic indexing: a state-of-the-art report. Nat. Bur. Stand. Monograph 91, Washington, 1965.
- 21. YULE, G.U. and KENDALL, M.G. An introduction to the theory of statistics, 14th edition, Charles Griffin & Co. Ltd., London, 1950.
- 22. WOLFBERG, M.S. Determination of maximally complete subgraphs. Moore School Report No. 65-27, 1965, University of Pennsylvania, Philadelphia, Pa.

BM

171