Authentication

Chapter 2

Basics of Access Control

- Access control is a collection of methods and components
 - Supports confidentiality (protects information from unauthorized disclosure)
 - Supports integrity (protects information from unauthorized modification)
- Goal: to allow only authorized subjects to access objects that they are permitted to access

Access Control

- Two parts to access control
- Authentication: Who goes there?
 - Determine whether access is allowed
 - Authenticate human to machine
 - Authenticate machine to machine
- Authorization: Are you allowed to do that?
 - Once you have access, what can you do?
 - Enforces limits on actions
- Note: Access control often used as synonym for authorization

Access Control Basics (continued)

- Subject
 - The entity that requests access to a resource
- Object
 - The resource a subject attempts to access
- Least privilege philosophy
 - A subject is granted permissions needed to accomplish required tasks and nothing more

Controls

- Mechanisms put into place to allow or disallow object access
 - Any potential barrier to unauthorized access
- Controls organized into different categories
- Common categories
 - Administrative (enforce security rules through policies)
 Hiring practice, Usage monitoring and accounting
 - Logical/Technical (implement object access restrictions)
 User identification and authentication, Encryption
 - Physical (limit physical access to hardware)
 Fence, Walls, Locked doors

Access Control Techniques

- Choose techniques that fit the organization's needs
- Considerations include
 - Level of security required
 - User and environmental impact of security measures
- Techniques differ in
 - The way objects and subjects are identified
 - How decisions are made to approve or deny access

Access Control Designs

- Access control designs define rules for users accessing files or devices
- Three common access control designs
 - Mandatory access control
 - Discretionary access control
 - Non-discretionary access control

Mandatory Access Control

- Assigns a security label to each subject and object
- Matches label of subject to label of object to determine when access should be granted
- A common implementation is rule-based access control
 - Often requires a subject to have a need to know in addition to proper security clearance
 - Need to know indicates that a subject requires access to object to complete a particular task

Mandatory Access Control (continued)

- Common military data classifications
 - Unclassified, Sensitive but Unclassified, Confidential,
 Secret, Top Secret
- Common commercial data classifications
 - Public, Sensitive, Private, Confidential

Discretionary Access Control

- Uses identity of subject to decide when to grant an access request
- All access to an object is defined by the object owner
- Most common design in commercial operating systems
 - Generally less secure than mandatory control
 - Generally easier to implement and more flexible
- Includes
 - Identity-based access control
 - Access control lists (ACLs)

Non-discretionary Access Control

- Uses a subject's role or a task assigned to subject to grant or deny object access
 - Also called role-based or task-based access control
- Works well in environments with high turnover of subjects since access is not tied directly to subject
- Lattice-based control is a variation of nondiscretionary control
 - Relationship between subject and object has a set of access boundaries that define rules and conditions for access

Access Control Administration

- Can be implemented as centralized, decentralized, or hybrid
- Centralized access control administration
 - All requests go through a central authority
 - Administration is relatively simple
 - Single point of failure, sometimes performance bottlenecks
 - Common packages include Remote Authentication Dial-In User Service (RADIUS), Challenge Handshake Authentication Protocol (CHAP), Terminal Access Controller Access Control System (TACACS)

Access Control Administration (continued)

- Decentralized access control administration
 - Object access is controlled locally rather than centrally
 - More difficult administration
 - Objects may need to be secured at multiple locations
 - More stable
 - Not a single point of failure
 - Usually implemented using security domains

Accountability

- System auditing used by administrators to monitor
 - Who is using the system
 - What users are doing
- Logs can trace events back to originating users
- Process of auditing can have a negative effect on system performance
 - Must limit data collected in logs
 - Clipping levels set thresholds for when to start collecting data

Access Control Models

- Provide conceptual view of security policies
- Map goals and directives to specific system events
- Provide a formal definition and specification of required security controls
- Many different models and combinations of models are used

State Machine Model

- A collection of defined states and transitions
- Modifications change objects from one state to the next
- A state represents the characteristics of an object at a point in time
- Transitions represent the modifications that can be made to objects to change from one state to another

Figure 2.1 Simple state machine

- Bell-LaPadula model
 - Works well in organizations that focus on confidentiality
 - No read up, no write down

- Biba model
 - Focuses on integrity controls
 - No read down, no write up

- Clark-Wilson Model
 - Not a state machine model
 - Use a different approach to ensure data integrity
 - Restricts access to a small number of tightly controlled access programs
 - CDIs: constrained data items
 Data protected by the model
 - UDIs: unconstrained data items
 Data not protected by the model
 - IVPs: integrity verification procedures
 Procedures that verifies the integrity of a data item
 - TPs: transaction procedures
 Any procedure that makes authorized changes to a data item

- Noninterference Model
 - Often an addition to other models
 - Ensures that changes at one security level do not bleed over into other levels

Who Goes There? Authentication

- How to authenticate a human to a machine?
- Can be based on...
 - Something you know
 - For example, a password
 - Something you have
 - For example, a smartcard
 - Something you are
 - For example, your fingerprint

Something You Know

- Passwords
- Lots of things act as passwords!
 - PIN
 - Social security number
 - Mother's maiden name
 - Date of birth
 - Name of your pet, etc.

Trouble with Passwords

- "Passwords are one of the biggest practical problems facing security engineers today."
- "Humans are incapable of securely storing highquality cryptographic keys, and they have unacceptable speed and accuracy when performing cryptographic operations. (They are also large, expensive to maintain, difficult to manage.)"

Why Passwords?

- Why is "something you know" more popular than "something you have" and "something you are"?
- Cost: passwords are free
- Convenience: easier for SA to reset password than to issue new smartcard

Keys vs Passwords

- Crypto keys
- Spse key is 64 bits
- Then 2⁶⁴ keys
- Choose key at random
- Then attacker must try about 2⁶³ keys

- Passwords
- Spse passwords are 8 characters, and 256 different characters
- Then $256^8 = 2^{64}$ pwds
- Users do not select passwords at random
- Attacker has far less than 2⁶³ pwds to try (**dictionary attack**)

Good and Bad Passwords

- Bad passwords
 - frank
 - Fido
 - password
 - -4444
 - Pikachu
 - -102560
 - AustinStamp

- Good Passwords?
 - jfIej,43j-EmmL+y
 - 09864376537263
 - P0kem0N
 - FSa7Yago
 - 0nceuP0nAt1m8
 - PokeGCTall150

Password Experiment

- Three groups of users each group advised to select passwords as follows
 - Group A: At least 6 chars, 1 non-letter
- winner → Group B: Password based on passphrase
 - Group C: 8 random characters
 - Results
 - Group A: About 30% of pwds easy to crack
 - Group B: About 10% cracked
 - Passwords easy to remember
 - Group C: About 10% cracked
 - Passwords hard to remember

Password Experiment

- User compliance hard to achieve
- In each case, 1/3rd did not comply (and about 1/3rd of those easy to crack!)
- Assigned passwords sometimes best
- If passwords not assigned, best advice is
 - Choose passwords based on passphrase
 - Use pwd cracking tool to test for weak pwds
 - Require periodic password changes?

Attacks on Passwords

- Attacker could...
 - Target one particular account
 - Target any account on system
 - Target any account on any system
 - Attempt denial of service (DoS) attack
- Common attack path
 - Outsider \rightarrow normal user \rightarrow administrator
 - May only require one weak password!

Password Retry

- Suppose system locks after 3 bad passwords. How long should it lock?
 - 5 seconds
 - 5 minutes
 - Until SA restores service
- What are +'s and -'s of each?

Password File

- Bad idea to store passwords in a file
- But need a way to verify passwords
- Cryptographic solution: hash the passwords
 - Store y = hash(password)
 - Can verify entered password by hashing
 - If attacker obtains password file, he does not obtain passwords
 - But attacker with password file can guess x and check whether y = hash(x)
 - If so, attacker has found password!

Dictionary Attack

- Attacker pre-computes hash(x) for all x in a dictionary of common passwords
- Suppose attacker gets access to password file containing hashed passwords
 - Attacker only needs to compare hashes to his precomputed dictionary
 - Same attack will work each time
- Can we prevent this attack? Or at least make attacker's job more difficult?

Password File

- Store hashed passwords
- Better to hash with salt
- Given password, choose random s, compute
 y = hash(password, s)
 and store the pair (s,y) in the password file
- Note: The salt s is **not secret**
- Easy to verify password
- Attacker must recompute dictionary hashes for each user lots more work!

Password Cracking: Do the Math

- Assumptions
- Pwds are 8 chars, 128 choices per character
 - Then $128^8 = 2^{56}$ possible passwords
- There is a **password file** with 2^{10} pwds
- Attacker has **dictionary** of 2²⁰ common pwds
- Probability of 1/4 that a pwd is in dictionary
- Work is measured by number of hashes

Password Cracking

- Attack 1 password without dictionary
 - Must try $2^{56}/2 = 2^{55}$ on average
 - Just like exhaustive key search
- Attack 1 password with dictionary
 - Expected work is about

$$1/4 (2^{19}) + 3/4 (2^{55}) = 2^{54.6}$$

- But in practice, try all in dictionary and quit if not found — work is at most 2^{20} and probability of success is 1/4

Password Cracking

- Attack any of 1024 passwords in file
- Without dictionary
 - Assume all 2¹⁰ passwords are distinct
 - Need 2⁵⁵ comparisons before expect to find password
 - If no salt, each hash computation gives 2^{10} comparisons \Rightarrow the expected work (number of hashes) is $2^{55}/2^{10} = 2^{45}$
 - If salt is used, expected work is 2⁵⁵ since each comparison requires a new hash computation

Other Password Issues

- Too many passwords to remember
 - Results in password reuse
 - Why is this a problem?
- Who suffers from bad password?
 - Login password vs ATM PIN
- Failure to change default passwords
- Social engineering
- Error logs may contain "almost" passwords
- Bugs, keystroke logging, spyware, etc.

Passwords

- The bottom line
- Password cracking is too easy!
 - One weak password may break security
 - Users choose bad passwords
 - Social engineering attacks, etc.
- The bad guy has all of the advantages
- All of the math favors bad guys
- Passwords are a big security problem

Password Cracking Tools

- Popular password cracking tools
 - Password Crackers
 - Password Portal
 - L0phtCrack and LC4 (Windows)
 - John the Ripper (Unix)
- Admins should use these tools to test for weak passwords since attackers will!
- Good article on password cracking
 - Passwords Conerstone of Computer Security

Biometrics

Something You Are

- Biometric
 - "You are your key" Schneier

Examples

- Fingerprint
- Handwritten signature
- Facial recognition
- Speech recognition
- o Gait (walking) recognition
- "Digital doggie" (odor recognition)
- o Many more!

Why Biometrics?

- Biometrics seen as desirable replacement for passwords
- Cheap and reliable biometrics needed
- Today, a very active area of research
- Biometrics are used in security today
 - Thumbprint mouse
 - Palm print for secure entry
 - Fingerprint to unlock car door, etc.
- But biometrics not too popular
 - Has not lived up to its promise (yet?)

Ideal Biometric

- Universal applies to (almost) everyone
 - In reality, no biometric applies to everyone
- **Distinguishing** distinguish with certainty
 - In reality, cannot hope for 100% certainty
- **Permanent** physical characteristic being measured never changes
 - In reality, want it to remain valid for a long time
- Collectable easy to collect required data
 - Depends on whether subjects are cooperative
- Safe, easy to use, etc., etc.

Biometric Modes

- **Identification** Who goes there?
 - Compare one to many
 - Example: The FBI fingerprint database
- **Authentication** Is that really you?
 - Compare one to one
 - Example: Thumbprint mouse
- Identification problem more difficult
 - More "random" matches since more comparisons
- We are interested in authentication

Enrollment vs Recognition

Enrollment phase

- Subject's biometric info put into database
- Must carefully measure the required info
- OK if slow and repeated measurement needed
- Must be very precise for good recognition
- A weak point of many biometric schemes

Recognition phase

- Biometric detection when used in practice
- Must be quick and simple
- But must be reasonably accurate

Cooperative Subjects

- We are assuming cooperative subjects
- In identification problem often have uncooperative subjects
- For example, facial recognition
 - Proposed for use in Las Vegas casinos to detect known cheaters
 - Also as way to detect terrorists in airports, etc.
 - Probably do not have ideal enrollment conditions
 - Subject will try to confuse recognition phase
- Cooperative subject makes it much easier!
 - In authentication, subjects are cooperative

Biometric Errors

- Fraud rate versus insult rate
 - Fraud user A mis-authenticated as user B
 - Insult user A not authenticate as user A
- For any biometric, can decrease fraud or insult, but other will increase
- For example
 - -99% voiceprint match \Rightarrow low fraud, high insult
 - -30% voiceprint match \Rightarrow high fraud, low insult
- Equal error rate: rate where fraud == insult
 - The best measure for comparing biometrics

Fingerprint Comparison

- Examples of loops, whorls and arches
- Minutia extracted from these features

Loop (double)

Whorl

Arch

Fingerprint Biometric

- Capture image of fingerprint
- Enhance image
- Identify minutia

Fingerprint Biometric

- Extracted minutia are compared with user's minutia stored in a database
- Is it a statistical match?

Hand Geometry

- Popular form of biometric
- Measures shape of hand
 - o Width of hand, fingers
 - o Length of fingers, etc.
- Human hands not unique
- Hand geometry sufficient for many situations
- Suitable for authentication
- Not useful for ID problem

Hand Geometry

- Advantages
 - Quick
 - 1 minute for enrollment
 - 5 seconds for recognition
 - Hands symmetric (use other hand backwards)
- Disadvantages
 - Cannot use on very young or very old
 - Relatively high equal error rate

Iris Patterns

- Iris pattern development is "chaotic"
- Little or no genetic influence
- Different even for identical twins
- Pattern is stable through lifetime

Iris Scan

- Scanner locates iris
- Take b/w photo
- Use polar coordinates...
- Find 2-D wavelet trans
- Get 256 byte iris code

Measuring Iris Similarity

- Based on Hamming distance
- Define d(x,y) to be
 - # of non match bits/# of bits compared
 - d(0010,0101) = 3/4 and d(1011111,101001) = 1/3
- Compute d(x,y) on 2048-bit iris code
 - Perfect match is d(x,y) = 0
 - For same iris, expected distance is 0.08
 - At random, expect distance of 0.50
 - Accept as match if distance less than 0.32

Attack on Iris Scan

- Good photo of eye can be scanned
- And attacker can use photo of eye
- Afghan woman was authenticated by iris scan of old photo
- To prevent photo attack, scanner could use light to be sure it is a "live" iris

Equal Error Rate Comparison

- Equal error rate (EER): fraud == insult rate
- Fingerprint biometric has EER of about 5%
- Hand geometry has EER of about 10⁻³
- In theory, iris scan has EER of about 10⁻⁶
 - But in practice, hard to achieve
 - Enrollment phase must be extremely accurate
- Most biometrics much worse than fingerprint!
- Biometrics useful for authentication...
- But ID biometrics are almost useless today

Something You Have

- Something in your possession
- Examples include
 - Car key
 - Laptop computer
 - Or specific MAC address
 - Password generator
 - We'll look at this next
 - ATM card, smartcard, etc.

Identification and Authentication Methods

- Security practices often require input from multiple categories of authentication techniques
- Most complex authentication mechanism is biometrics (detection and classification of a subject's physical attributes)

Identification and Authentication Methods

- Two-factor authentication uses two phases
 - Identification
 - Authentication
 - Requires 2 out of 3 of
 - Something you know
 - Something you have
 - Something you are
 - Examples
 - ATM: Card and PIN
 - Credit card: Card and signature
 - Password generator: Device and PIN
 - Smartcard with password/PIN

Password Generator

- Alice gets "challenge" R from Bob
- Alice enters R into password generator
- Alice sends "response" back to Bob
- Alice has pwd generator and knows PIN

Identification and Authentication Methods (continued)

TABLE 2.6 Authentication Types

Authentication Type	Description	Examples
Type 1	What you know	Password, passphrase, PIN, lock combin- ation
Type 2	What you have	Smart card, token device
Туре 3	What you are	Biometrics—fingerprint, palm print, retina/iris pattern, voice pattern

Single Sign-On

- Used to avoid multiple logins
- Once a subject is positively identified, authentication information can be used within a trusted group
- Great for users since they can sign on once and use multiple resources
- Requires additional work for administrators
- Several good SSO systems in use, Kerberos is one example

Kerberos

- Uses symmetric key cryptography for messages
- Provides end-to-end security
 - Intermediate machines between the source and target cannot read contents of messages
- Used in distributed environments but implemented with a central server
- Includes a data repository and an authentication process
- Weaknesses include
 - Single point of failure, performance bottleneck
 - Session key lives on client machines for a small amount of time, can be stolen

File and Data Ownership

- Different layers of responsibility for ensuring security of organization's information
- Data owner
 - Bears ultimate responsibility, sets classification levels
- Data custodian
 - Enforces security policies, often a member of IT department
- Data user
 - Accesses data on a day-to-day basis, responsible for following the organization's security policies

Related Methods of Attacks

Brute force attack

Try all possible combinations of characters to satisfy Type
 1 authentication (password guessing)

Dictionary attack

- Subset of brute force
- Instead of all possible combinations, uses a list of common passwords

Spoofing attack

- Create fake login program, prompt for User ID, password
- Return login failure message, store captured information

Summary

- Use access control to ensure that only authorized users can view/modify information
- Access control designs define rules for accessing objects
 - Mandatory, discretionary, non-discretionary
- Access control administration defines the mechanisms for access control implementation
 - Centralized, decentralized, hybrid
- Administrators use system logs to monitor access

Summary (continued)

- Access control models
 - Provide a conceptual view of security policies
 - One common example is the state machine model
- Identification and authentication methods
 - Used to identify and validate a user
 - Include passwords, smart cards, and biometrics
 - Single sign-on systems allow trusted groups to share authorizations (e.g., Kerberos)
- Responsibility for information access is shared
 - Data owners, custodians, users
- Attack types related to access controls include
 - Brute force attacks, dictionary attacks, login spoofing