PhishingWebsites

November 10, 2017

1 Introduction

1.0.1 Importing the packages

```
In [1]: import arff, itertools,os
        import numpy as np
        import pandas as pd
        import statsmodels.formula.api as sm
        import matplotlib.pyplot as plt
        import graphviz
        from sklearn import tree
        from sklearn.tree import export_graphviz
       from sklearn import model_selection
        from sklearn import preprocessing
        from sklearn.model_selection import train_test_split
        from sklearn.linear_model import LogisticRegression
        from sklearn.linear_model import LogisticRegressionCV
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.naive_bayes import GaussianNB
        from sklearn.feature_selection import SelectKBest
        from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
        from sklearn.svm import SVC
        from sklearn.model_selection import GridSearchCV, StratifiedKFold
        from keras import optimizers
        from keras.layers import Dense
        from keras.models import Sequential
```

Using TensorFlow backend.

1.0.2 Defining the method for textual representation of the confusion matrix

```
if show == True:
    print(cm)
    tp, fn, fp, tn = cm.ravel()
    print("True Positive Rate: ", tp)
    print("True Negative Rate: ", tn)
    print("False Negative Rate: ", fn)
    print("False Positive Rate: ", fp)
```

1.0.3 Defining the method for graphical representation of the confusion matrix

```
In [3]: def callConfusionMatrixGraphical(true_target, predicted_target):
            cm = confusion_matrix(true_target, predicted_target)
            le = preprocessing.LabelEncoder()
            le.fit(true_target)
           np.set_printoptions()
           plt.figure()
           plt.title("Confusion Matrix")
           plt.imshow(cm, "BuGn")
           plt.colorbar()
           plt.tight_layout()
            # Calling the method used to print the numerical values in each cell in the confus
            labelingMatrixCells(cm)
            class_labels = np.arange(len(le.classes_))
           plt.xticks(class_labels, ["Phishing", "Legitimate"], rotation = 45)
           plt.yticks(class_labels, ["Phishing", "Legitimate"])
           plt.ylabel('True label')
            plt.xlabel('Predicted label')
           plt.show()
        # Defining the method to print the numerical values in each cell in the confusion matr
        def labelingMatrixCells(con_mat):
            thresh = con_mat.max() / 2
            for i, j in itertools.product(range(con_mat.shape[0]), range(con_mat.shape[1])):
                plt.text(j, i, format(con_mat[i, j], 'd'),
                horizontalalignment="center",
                color="white" if con mat[i, j] > thresh else "black")
```

1.0.4 Defining the method for combined textual and graphical representation of the confusion matrix.

1.0.5 Defining the method to print the training and test results

```
print("Results on Training data:")
            print("Accuracy: ",accuracy_score(train_target, train_predicted))
            print(classification_report(train_target, train_predicted, digits=4), "\n")
            print("Results on Testing data:")
            print("Accuracy: ",accuracy_score(test_target, test_predicted))
            print(classification report(test_target, test_predicted, digits=4))
In [6]: # Setting the current working directory
        os.chdir("I:/DATA-SCIENCE/Insofe/Internship/PhishingWebsites")
        print("Current working directory:")
        os.getcwd()
Current working directory:
Out[6]: 'I:\\DATA-SCIENCE\\Insofe\\Internship\\PhishingWebsites'
1.0.6 Reading the arff file and modifying it into a dataframe.
In [7]: # URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/00327/Training%20Da
        complete_data_arff = arff.load(open('TrainingDataset.arff'))
        complete_data = np.array(complete_data_arff['data'])
        complete_data = pd.DataFrame(complete_data)
        colNames = dict()
        for i in range(0,complete_data.shape[1]):
            colNames[i] = (pd.DataFrame(complete_data_arff['attributes']))[0][i]
        complete_data = complete_data.rename(columns = colNames)
        for colName in complete_data.columns.values:
            complete_data[colName] = complete_data[colName].astype('category',copy=False)
In [8]: #complete_data.Result = complete_data.Result.astype("category")
        complete_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11055 entries, 0 to 11054
Data columns (total 31 columns):
having_IP_Address
                               11055 non-null category
URL_Length
                               11055 non-null category
Shortining_Service
                               11055 non-null category
having_At_Symbol
                               11055 non-null category
double_slash_redirecting
                               11055 non-null category
Prefix_Suffix
                               11055 non-null category
having_Sub_Domain
                               11055 non-null category
SSLfinal_State
                               11055 non-null category
Domain_registeration_length
                               11055 non-null category
Favicon
                               11055 non-null category
```

In [5]: def reportGenerator(train_target,train_predicted, test_target, test_predicted):

```
11055 non-null category
port
                               11055 non-null category
HTTPS_token
Request_URL
                               11055 non-null category
URL_of_Anchor
                               11055 non-null category
Links_in_tags
                               11055 non-null category
                               11055 non-null category
Submitting_to_email
                               11055 non-null category
Abnormal_URL
                               11055 non-null category
Redirect
                               11055 non-null category
                               11055 non-null category
on mouseover
                               11055 non-null category
RightClick
                               11055 non-null category
popUpWidnow
Iframe
                               11055 non-null category
                               11055 non-null category
age_of_domain
                               11055 non-null category
DNSRecord
                               11055 non-null category
web_traffic
Page_Rank
                               11055 non-null category
Google_Index
                               11055 non-null category
Links_pointing_to_page
                               11055 non-null category
Statistical_report
                               11055 non-null category
Result
                               11055 non-null category
dtypes: category(31)
memory usage: 337.7 KB
```

1.0.7 Understanding the dimensions and structure of the dataset.

```
In [9]: # Displaying the dimensions of the dataset.
    print("Dimensions of the dataset is",complete_data.shape[0], "rows and",complete_data.shape[0], "rows and",complete_data.shape[0],
```

Dimensions of the dataset is 11055 rows and 31 columns

First 5 rows of the dataset is displayed below:

```
having_IP_Address URL_Length Shortining_Service having_At_Symbol
0
                  -1
                              1
                                                   1
                                                                     1
1
                   1
                              1
                                                  1
                                                                     1
2
                   1
                              0
                                                                     1
                                                  1
3
                   1
                              0
                                                  1
                                                                     1
4
                                                 -1
  double_slash_redirecting Prefix_Suffix having_Sub_Domain SSLfinal_State \
0
                                        -1
```

```
-1
                                                                          0
         1
                                      1
                                                                                            1
         2
                                      1
                                                    -1
                                                                         -1
                                                                                           -1
         3
                                      1
                                                    -1
                                                                                           -1
                                                                         -1
         4
                                      1
                                                    -1
                                                                          1
                                                                                            1
           Domain_registeration_length Favicon
                                                            popUpWidnow Iframe age_of_domain
                                                     . . .
         0
                                        -1
                                                      . . .
                                        -1
         1
                                                      . . .
                                                                                1
                                                                                               -1
         2
                                        -1
                                                  1
                                                    . . .
                                                                        1
                                                                                1
                                                                                                1
         3
                                         1
                                                  1
                                                     . . .
                                                                        1
                                                                                1
                                                                                               -1
         4
                                                                                1
                                                                                               -1
                                        -1
                                                  1
                                                    . . .
                                                                       -1
           DNSRecord web_traffic Page Rank Google_Index Links_pointing_to_page
         0
                                 -1
                   -1
                                            -1
                                                             1
                                  0
         1
                   -1
                                             -1
                                                             1
                                                                                       1
         2
                                  1
                                                             1
                                                                                       0
                   -1
                                            -1
         3
                   -1
                                  1
                                             -1
                                                             1
                                                                                      -1
         4
                   -1
                                  0
                                            -1
                                                             1
                                                                                       1
           Statistical report Result
         0
                              -1
         1
                               1
                                      -1
         2
                              -1
                                      -1
         3
                               1
                                      -1
         4
                               1
                                      1
         [5 rows x 31 columns]
1.0.8 Splitting the dataframe into train and test.
In [10]: result_data = pd.DataFrame(complete_data['Result'])
```

```
complete_data = complete_data.drop('Result', axis=1)
        train_data, test_data, train_target, test_target = train_test_split(complete_data, re-
                                                                            test_size=0.3, ra
In [11]: result_data_lw = result_data.Result.value_counts()[1]/(result_data.Result.count())
        result_data_pw = result_data.Result.value_counts()[-1]/(result_data.Result.count())
        print("***************Proportion on the give dataset before the split*******
        print("Percentage of Legitimate websites :", result_data_lw)
        print("Percentage of Phishing websites :", result_data_pw, "\n")
        train_target_lw = train_target.Result.value_counts()[1]/(train_target.Result.count())
        train_target_pw = train_target.Result.value_counts()[-1]/(train_target.Result.count()
        print("***************Proportion on the Training dataset************************
        print("Percentage of Legitimate websites :", train_target_lw)
        print("Percentage of Phishing websites :", train_target_pw, "\n")
        test_target_lw = test_target.Result.value_counts()[1]/(test_target.Result.count())
```

```
test_target_pw = test_target.Result.value_counts()[-1]/(test_target.Result.count())
                print("Percentage of Legitimate websites :", test_target_lw)
                print("Percentage of Phishing websites :", test_target_pw, "\n")
Percentage of Legitimate websites : 0.556942559928
Percentage of Phishing websites : 0.443057440072
Percentage of Legitimate websites: 0.556991470664
Percentage of Phishing websites
                                                              : 0.443008529336
Percentage of Legitimate websites: 0.556828459451
Percentage of Phishing websites
                                                            : 0.443171540549
1.0.9 Displaying the dimensions present in the dataset
In [12]: print("Dimensions of the complete dataset:",complete_data.shape[0], "rows and",complete_data.shape[0], "rows and "row
                print("Dimensions of the training dataset :",train_data.shape[0], "rows and",train_da
                print("Dimensions of the testing dataset :",test_data.shape[0], "rows and",test_data.shape[0]
Dimensions of the complete dataset : 11055 rows and 30 columns
Dimensions of the training dataset: 7738 rows and 30 columns
Dimensions of the testing dataset : 3317 rows and 30 columns
In [13]: # Converting target variables from dataframe to an array
                train_target = np.ravel(train_target)
                test_target = np.ravel(test_target)
1.1 Feature Selection Process
In [14]: sel = SelectKBest()
                sel.fit(train_data, train_target)
Out[14]: SelectKBest(k=10, score_func=<function f_classif at 0x000001D275834488>)
In [15]: important_features = []
                importances = sel.scores_
                indices = np.argsort(importances)[::-1]
                for f in range(train_data.shape[1]):
                        important_features = np.append(important_features, train_data.columns.values[indi
```


In [16]: # Creating train and test dataset using only the important 13 attribute selected base

```
imp_features_selected = []
selected_indices = indices[0:13]
for f in range(13):
    imp_features_selected = np.append(imp_features_selected, train_data.columns.value)
train_data_sel = pd.DataFrame(data= train_data,columns=imp_features_selected)
test_data_sel = pd.DataFrame(data= test_data,columns=imp_features_selected)
for colName in train_data_sel.columns.values:
    train_data_sel[colName] = train_data_sel[colName].astype('category',copy=False)
```

2 1. Logistic Regression Model

2.0.1 Simple Logistic Regression

```
pred_logReg_train = logRegModel.predict(train_data)
pred_logReg_test = logRegModel.predict(test_data)
completeConfusionMatrix(test_target, pred_logReg_test, False)
```

Error metrics

reportGenerator(train_target, pred_logReg_train, test_target, pred_logReg_test)

****	******	******	****
*			*
*	Confusion	Matrix	*
*			*
*****	*******	*** *******	*****

	precision	recall	il-score	support
-1	0.9318	0.9081	0.9198	3428
1	0.9284	0.9471	0.9376	4310

```
avg / total
               0.9299
                         0.9298
                                   0.9297
                                                7738
Results on Testing data:
Accuracy: 0.92523364486
            precision
                         recall f1-score
                                            support
        -1
               0.9285
                         0.9007
                                   0.9144
                                                1470
         1
               0.9228
                         0.9448
                                   0.9337
                                                1847
avg / total
               0.9253
                         0.9252
                                   0.9251
                                                3317
```

2.0.2 Logistic Regression with Stratified K-fold cross validation.

* Confusion Matrix

	raining data: .930343758077			
v	precision	recall	f1-score	support
-1	0.9326	0.9084	0.9203	3428
1	0.9286	0.9478	0.9381	4310
avg / total	0.9304	0.9303	0.9302	7738
Results on Testing data: Accuracy: 0.926138076575				

·	precision	recall	f1-score	support
-1 1	0.9292 0.9238	0.9020 0.9453	0.9154 0.9344	1470 1847
avg / total	0.9262	0.9261	0.9260	3317

Results on Training data: Accuracy: 0.930343758077

ecall f1-score support	recall	precision	
		0.9326 0.9286	-1 1
9303 0.9302 7738	0.9303	0.9304	avg / total

Results on Testing data: Accuracy: 0.926138076575

precision recall f1-score support

-1	0.9292	0.9020	0.9154	1470
1	0.9238	0.9453	0.9344	1847
avg / total	0.9262	0.9261	0.9260	3317

	precision	recall	f1-score	support
-1	0.0020		0.9203	3428
1	0.9286	0.9478	0.9381	4310
avg / total	0.9304	0.9303	0.9302	7738

support	f1-score	recall	precision	
1470 1847	0.9154 0.9344	0.9020 0.9453	0.9292 0.9238	-1 1
3317				avg / total
3317	0.9200	0.9201	0.9202	avg / cocar

	precision	recall	f1-score	support	
-1 1	0.9315 0.9286	0.9084 0.9469	0.9198 0.9376	3428 4310	
avg / total	0.9299	0.9298	0.9297	7738	
Results on Testing data: Accuracy: 0.924932167621					
	precision	recall	f1-score	support	
-1	0.9278	0.9007	0.9140	1470	
1	0.9228	0.9442	0.9334	1847	
avg / total	0.9250	0.9249	0.9248	3317	

2.0.3 Logistic Regression with L1 regularization

* Confusion Matrix *

Results on	${\tt Training}$	data:
Accuracy:	0.9299560	060998

	precision	recall	f1-score	support
-1 1	0.9320 0.9284	0.9081 0.9473		3428 4310
avg / total	0.9300	0.9300	0.9299	7738

	precision		f1-score	support
-: :	0.9285 0.9233	0.9014 0.9448	0.9147 0.9339	1470 1847
avg / total	0.9256	0.9255	0.9254	3317

Results on Training data: Accuracy: 0.929956060998

support	f1-score	recall	precision	
3428 4310	0.9199 0.9378	0.9081 0.9473	0.9320 0.9284	-1 1
7738	0.9299	0.9300	0.9300	avg / total

Results on Testing data:
Accuracy: 0.925836599337

precision recall f1-score support

-1	0.9292	0.9014	0.9151	1470
1	0.9233	0.9453	0.9342	1847
avg / total	0.9259	0.9258	0.9257	3317

support	f1-score	recall	precision	
3428	0.9195	0.9084	0.9309	-1
4310	0.9374	0.9464	0.9285	1
7738	0.9295	0.9296	0.9296	avg / total

support	f1-score	recall	precision	
1470	0.9151	0.9020	0.9286	-1
1847	0.9342	0.9448	0.9238	1
3317	0.9257	0.9258	0.9259	avg / total

	precision	recall	f1-score	support
-1	0.0010	0.9084	0.9199	3428
1	0.9286	0.9471	0.9377	4310
avg / total	0.9300	0.9300	0.9299	7738

	precision	recall	11-score	support
-1	0.9285	0.9014	0.9147	1470
1	0.9233	0.9448	0.9339	1847
avg / total	0.9256	0.9255	0.9254	3317

Results on Training data: Accuracy: 0.930343758077

	precision	recall	il-score	support
-1	0.9334	0.9075	0.9203	3428
1	0.9280	0.9485	0.9382	4310
avg / total	0.9304	0.9303	0.9302	7738

Results on Testing data:
Accuracy: 0.926138076575

support	f1-score	recall	precision	
1470 1847	0.9153 0.9345	0.9000 0.9469	0.9310 0.9225	-1 1
3317	0.9260	0.9261	0.9263	avg / total

* Confusion Matrix *

Results on	Training	data:
Accuracy:	0.9299560	060998

support	f1-score	recall	precision	
3428 4310		0.9084 0.9471	0.9318 0.9286	-1 1
7738	0.9299	0.9300	0.9300	avg / total

support	f1-score		precision	noourusy.
1470 1847	0.9147 0.9339	0.9014 0.9448	0.9285 0.9233	_
3317	0.9254	0.9255	0.9256	avg / tota

Results on Training data: Accuracy: 0.930214525717

support	f1-score	recall	precision	
3428 4310	0.9200 0.9381	0.9061 0.9494	0.0011	-1 1
7738	0.9301	0.9302	0.9303	avg / total

Results on Testing data:
Accuracy: 0.926439553814

precision recall f1-score support

-1	0.9317	0.9000	0.9156	1470
1	0.9225	0.9475	0.9348	1847
avg / total	0.9266	0.9264	0.9263	3317

support	f1-score	recall	precision	
3428	0.9201	0.9067	0.9339	-1
4310	0.9381	0.9490	0.9274	1
7738	0.9301	0.9302	0.9303	avg / total

```
Results on Testing data:
Accuracy: 0.925836599337
            precision
                        recall f1-score
                                            support
        -1
               0.9304
                         0.9000
                                   0.9149
                         0.9464
               0.9224
                                   0.9343
```

0.9260 0.9258 0.9257 3317 avg / total

2.0.4 Logistic Regression with L2 regularization

```
In [20]: for i, c in enumerate((1, 0.9, 0.8, 0.6, 0.4, 0.3, 0.2, 0.1)):
                                                                 logReg_12 = LogisticRegression(penalty= '12', C = c, dual=False, tol=0.0001, rand-
                                                                 logReg_12_model = logReg_12.fit(train_data, train_target)
                                                                pred_logReg_12_train = logReg_12_model.predict(train_data)
                                                                 pred_logReg_l2_test = logReg_l2_model.predict(test_data)
                                                                 completeConfusionMatrix(test_target, pred_logReg_12_test, False)
                                                                  # Error metrics
                                                                reportGenerator(train_target, pred_logReg_12_train, test_target, pred_logReg_12_test_target, pred_logReg_12_test_t
```

1470

1847

*********** Confusion Matrix

Results on Training data: Accuracy: 0.929826828638				
	precision	recall	f1-score	support
-1	0.9318	0.9081	0.9198	3428
1	0.9284	0.9471	0.9376	4310
avg / total	0.9299	0.9298	0.9297	7738
Results on To Accuracy: 0	•			
,	precision	recall	f1-score	support
-1	0.9285	0.9007	0.9144	1470
1	0.9228	0.9448	0.9337	1847
avg / total	0.9253	0.9252	0.9251	3317

Results on Training data: Accuracy: 0.929826828638

support	f1-score	recall	precision	
3428 4310	0.9198 0.9376	0.9081 0.9471	0.9318 0.9284	-1 1
7738	0.9297	0.9298	0.9299	avg / total

Results on Testing data: Accuracy: 0.92523364486

precision recall f1-score support

-1	0.9285	0.9007	0.9144	1470
1	0.9228	0.9448	0.9337	1847
avg / total	0.9253	0.9252	0.9251	3317

support	f1-score	recall	precision	
3428	0.9199	0.9081	0.9320	-1
4310	0.9378	0.9473	0.9284	1
7738	0.9299	0.9300	0.9300	avg / total

support	f1-score	recall	precision	
1470 1847		0.9007 0.9448	0.9285 0.9228	-1 1
3317	0.9251	0.9252	0.9253	avg / total

support	f1-score	recall	precision	
3428	0.9195	0.9081	0.0012	-1
4310	0.9374	0.9466	0.9283	1
7738	0.9295	0.9296	0.9296	avg / total

support	f1-score	recall	precision	
1470	0.9140	0.9007	0.9278	-1
1847	0.9334	0.9442	0.9228	1
3317	0 9248	0 9249	0 9250	avg / total

Results on Training data: Accuracy: 0.929826828638

	precision	recall	f1-score	support
-1	0.9312	0.9087	0.9198	3428
1	0.9288	0.9466	0.9376	4310
avg / total	0.9299	0.9298	0.9297	7738

Results on Testing data:
Accuracy: 0.924932167621

support	f1-score	recall	precision	
1470 1847		0.9014 0.9437	0.9272 0.9232	-1 1
3317	0.9248	0.9249	0.9250	avg / total

* Confusion Matrix *

* *

Results	on	Training	data:
Accuracy	:	0.9299560	60998

	precision	recall	f1-score	support
-1	0.9313	0.9090	0.9200	3428
1	0.9290	0.9466	0.9377	4310
avg / total	0.9300	0.9300	0.9299	7738

Accuracy.	precision	recall	f1-score	support
-	1 0.9272 1 0.9232	0.9014 0.9437	0.9141 0.9333	1470 1847
avg / tota	1 0.9250	0.9249	0.9248	3317

Results on Training data: Accuracy: 0.929568363918

support	f1-score	recall	precision	
3428 4310		0.9081 0.9466	0.9312 0.9283	-1 1
7738	0.9295	0.9296	0.9296	avg / total

Results on Testing data:
Accuracy: 0.925535122098

precision recall f1-score support

-1	0.9291	0.9007	0.9147	1470
1	0.9228	0.9453	0.9339	1847
avg / total	0.9256	0.9255	0.9254	3317

Results on	Training data:			
Accuracy:	0.929309899199			
	precision	recall	f1-score	support
-1	1 0.9322	0.9064	0.9191	3428
-	1 0.9271	0.9476	0.9372	4310

0.9293

avg / total 0.9294

0.9292

7738

```
Results on Testing data: Accuracy: 0.925535122098
```

	precision	recall	f1-score	support	
-1	0.0201	0.9000		1470	
1	0.9224	0.9459	0.9340	1847	
avg / total	0.9256	0.9255	0.9254	3317	

2.0.5 Logistic Regression with the 13 important features selected from ANOVA F-value

Error metrics

reportGenerator(train_target, pred_logRegSel_train, test_target, pred_logRegSel_train,

Results on	Training	data:
Accuracy:	0.9231067	745929

support	f1-score	recall	precision	
3428	0.9117	0.8961	0.02.0	-1 1
4310	0.9319	0.9445	0.9196	
7738	0.9230	0.9231	0.9232	avg / total

support	f1-score		precision	Accuracy.
1470 1847	0.9090 0.9302	0.8898 0.9459	0.9290 0.9151	-
3317	0.9208	0.9210	0.9213	avg / tota

Results on Training data: Accuracy: 0.923106745929

support	f1-score	recall	precision	
3428	0.9117	0.8961	0.9278	-1
4310	0.9319	0.9445	0.9196	1
7738	0.9230	0.9231	0.9232	avg / total

Results on Testing data:
Accuracy: 0.921012963521

precision recall f1-score support

-1	0.9290	0.8898	0.9090	1470
1	0.9151	0.9459	0.9302	1847
avg / total	0.9213	0.9210	0.9208	3317

Results on Training data: Accuracy: 0.923106745929

support	f1-score	recall	precision	
	0.9117			-1
4310	0.9319	0.9445	0.9196	1
7738	0.9230	0.9231	0.9232	avg / total

Results on Testing data:
Accuracy: 0.921012963521

support	f1-score	recall	precision	
1470	0.9090	0.8898	0.9290	-1
1847	0.9302	0.9459	0.9151	1
3317	0.9208	0.9210	0.9213	avg / total

Results on Training data: Accuracy: 0.923106745929

	precision	recall	f1-score	support
-1	0.02.0	0.8961	0.9117	3428
1	0.9196	0.9445	0.9319	4310
avg / total	0.9232	0.9231	0.9230	7738

Results on Testing data:
Accuracy: 0.921615917998

support	f1-score	recall	precision	
1470		0.8912	0.0201	-1
1847	0.9307	0.9459	0.9161	, _
3317	0.9214	0.9216	0.9219	avg / total

Results on Training data: Accuracy: 0.92284828121

	precision	recall	11-score	support
-1	0.9273	0.8961	0.9114	3428
1	0.9195	0.9441	0.9317	4310
avg / total	0.9230	0.9228	0.9227	7738

Results on Testing data: Accuracy: 0.921615917998

support	f1-score	recall	precision	
1470 1847			0.9291 0.9161	-1 1
3317	0.9214	0.9216	0.9219	avg / total

* Confusion Matrix *

* *

	Training data: 0.92258981649			
v	precision	recall	f1-score	support
-1	0.9270	0.8959	0.9111	3428
1	0.9193	0.9439	0.9314	4310
avg / total	0.9227	0.9226	0.9224	7738

avg / octai	0.0221	0.0220	0.0221	1100
Results on T	esting data:			
	•			
Accuracy: C	.921917395237			
	precision	recall	f1-score	support
	•			
-1	0.9291	0.8918	0.9101	1470
1	0.9166	0.9459	0.9310	1847
1	0.9100	0.9459	0.9510	1047
avg / total	0.9221	0.9219	0.9217	3317
avg / total	0.9221	0.9219	0.9211	3317

Results on	Training	data:
Accuracy.	0 9225898	21649

support	f1-score	recall	precision	
3428	0.9110		0.0200	-1
4310	0.9315	0.9448	0.9186	1
7738	0.9224	0.9226	0.9227	avg / total

Results on Testing data:
Accuracy: 0.921917395237

precision recall f1-score support

```
-1 0.9297 0.8912 0.9100 1470
1 0.9161 0.9464 0.9310 1847
avg / total 0.9222 0.9219 0.9217 3317
```

3 2. Decision Tree Model

Results on	Training	data:
Accuracy.	0 9852675	510985

support	f1-score	recall	precision	
3428 4310	0.9834 0.9868	0.9828 0.9872	0.9839 0.9863	-1 1
7738	0.9853	0.9853	0.9853	avg / total

Results on Testing data:

Accuracy: 0.954175459753 precision recall f1-score support -1 0.9508 0.9456 0.9482 1470 0.9569 0.9610 0.9589 1 1847 avg / total 0.9542 0.9542 0.9542 3317

3.0.1 Plotting Feature importance with Decision Tree model

```
In [23]: important_features = []
         importances = dt.feature_importances_
         indices = np.argsort(importances)[::-1]
         for f in range(train_data.shape[1]):
             print("%d. %s (%f)" % (f+1, train data.columns.values[indices[f]], importances[indices[f]]
             important_features = np.append(important_features, train_data.columns.values[indi-
        plt.figure(figsize =(15,5))
        plt.title("Feature importances")
        plt.bar(range(train_data.shape[1]), importances[indices],
                color="#138D75", align="center")
        plt.xticks(range(train_data.shape[1]), important_features, rotation = 90)
        plt.xlim([-1, train_data.shape[1]])
        plt.ylabel('Importance')
        plt.xlabel('Features according to their importance')
        plt.show()
1. SSLfinal_State (0.622179)
2. URL_of_Anchor (0.117256)
3. Links_in_tags (0.036394)
4. web_traffic (0.029622)
5. having_Sub_Domain (0.027317)
6. Prefix_Suffix (0.025085)
7. Links_pointing_to_page (0.020975)
8. Request_URL (0.015369)
9. SFH (0.012364)
10. age_of_domain (0.010502)
11. DNSRecord (0.009654)
12. Google_Index (0.009647)
13. Page_Rank (0.009284)
14. having_IP_Address (0.009177)
15. Domain_registeration_length (0.007949)
16. Submitting_to_email (0.007498)
17. on_mouseover (0.004612)
18. Redirect (0.003860)
19. URL_Length (0.003391)
20. Statistical_report (0.002984)
21. Abnormal_URL (0.002816)
22. RightClick (0.002147)
23. port (0.001932)
24. HTTPS_token (0.001873)
25. Shortining_Service (0.001634)
26. popUpWidnow (0.001340)
27. having_At_Symbol (0.001114)
28. Iframe (0.000941)
29. Favicon (0.000922)
30. double_slash_redirecting (0.000161)
```


3.0.2 Decision Tree with the 13 important features selected from ANOVA F-value

Results on	${\tt Training}$	data:
Accuracy.	0 9746704	157483

support	f1-score	recall	precision	
3428 4310	0.9714 0.9772	0.9726 0.9763	0.9703 0.9781	-1 1
7738	0.9747	0.9747	0.9747	avg / total

Results on Testing data:

Accuracy: 0.944226710883 precision recall f1-score support -1 0.9356 0.9388 0.9372 1470 1 0.9511 0.9486 0.9499 1847 avg / total 0.9443 0.9442 0.9442 3317

4 3. RandomForest Model

4.0.1 Creating a RandomForest model with Cross validation

Results on Training data: Accuracy: 0.990307573016

·	precision	recall	f1-score	support
-1	0.0000	0.9845	0.9890	3428
1	0.9878	0.9949	0.9913	4310
avg / total	0.9903	0.9903	0.9903	7738

Results on Testing data: Accuracy: 0.969852276153

	precision	recall	f1-score	support
-1	0.9731	0.9585	0.9657	1470
1	0.9674	0.9789	0.9731	1847
avg / total	0.9699	0.9699	0.9698	3317

In [26]: # RandomForest Model

X = train_data

Y = train_target

model = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', main_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fractions verbose=0, warm_start=False)

prediction_randomForest_train = model.fit(train_data,train_target).predict(train_data
prediction_randomForest_test = model.fit(train_data,train_target).predict(test_data)
completeConfusionMatrix(test_target,prediction_randomForest_test, False)

```
In [27]: print(rf_grid.best_estimator_ )
```

4.0.2 Ranking the features based on their importance in the forest.

```
for f in range(train_data.shape[1]):
            print("%d. %s (%f)" % (f+1, train_data.columns.values[indices[f]], importances[indices[f]],
             important_features = np.append(important_features, train_data.columns.values[indicate]
***********
      Ranking of the features
*
**********
1. SSLfinal_State (0.268968)
2. URL_of_Anchor (0.211928)
3. web_traffic (0.075466)
4. having_Sub_Domain (0.071872)
5. Links_in_tags (0.054317)
6. Prefix_Suffix (0.041842)
7. Request_URL (0.026254)
8. SFH (0.025278)
9. Links_pointing_to_page (0.023914)
10. Domain_registeration_length (0.020534)
11. age_of_domain (0.018674)
12. having_IP_Address (0.018316)
13. Google_Index (0.016843)
14. DNSRecord (0.016837)
15. Page_Rank (0.015634)
16. URL_Length (0.011526)
17. Statistical_report (0.007719)
18. popUpWidnow (0.007631)
19. having_At_Symbol (0.007590)
20. Redirect (0.007338)
21. Shortining_Service (0.007057)
22. HTTPS_token (0.006738)
23. Submitting_to_email (0.006583)
24. Abnormal_URL (0.005910)
25. double_slash_redirecting (0.005557)
26. Favicon (0.005281)
27. on_mouseover (0.004972)
28. port (0.003572)
29. Iframe (0.003530)
30. RightClick (0.002318)
4.0.3 Plotting Feature importance with Random Forest model
In [29]: std = np.std([tree.feature_importances_ for tree in model.estimators_], axis=0)
        plt.figure(figsize =(15,5))
        plt.title("Feature importances")
        plt.bar(range(train_data.shape[1]), importances[indices],
               color="#138D75", yerr=std[indices], align="center")
```

```
plt.xticks(range(train_data.shape[1]), important_features, rotation = 90)
plt.xlim([-1, train_data.shape[1]])
plt.ylabel('Importance with their inter-trees variability')
plt.xlabel('Features according to their importance')
plt.show()
```


In [30]: callConfusionMatrixValues(test_target,prediction_randomForest_test, False)
Error metrics
reportGenerator(train_target_prediction_randomForest_train_test_target_prediction_randomFores

reportGenerator(train_target, prediction_randomForest_train, test_target, prediction_randomForest_train_ran

Results on Training data: Accuracy: 0.990307573016

support	f1-score	recall	precision	
3428	0.9890	0.9866	0.9915	-1
4310	0.9913	0.9933	0.9894	1
7738	0.9903	0.9903	0.9903	avg / total

Results on Testing data: Accuracy: 0.968947844438

	precision	recall	f1-score	support
-1	0.9717	0.9578	0.9647	1470
1	0.9668	0.9778	0.9723	1847
avg / total	0.9690	0.9689	0.9689	3317

4.0.4 Random Forest Model by selecting only the 13 important variables.

```
In [31]: \# RandomForest Model
```

X = train_data

Y = train_target

model = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', m min_impurity_split=1e-07, min_samples_leaf=1, min_samples_split=2, min_weight_fraction verbose=0, warm_start=False)

prediction_rf_imp_train = model.fit(train_data_sel,train_target).predict(train_data_sel
prediction_rf_imp_test = model.fit(train_data_sel,train_target).predict(test_data_sel
completeConfusionMatrix(test_target,prediction_rf_imp_test, False)

Error metrics

reportGenerator(train_target, prediction_rf_imp_train, test_target, prediction_rf_imp_

Results on Training data: Accuracy: 0.975575084001 precision recall f1-score support -1 0.9745 0.9702 0.9724 3428 1 0.9764 0.9798 0.9781 4310 avg / total 0.9756 0.9756 0.9756 7738 Results on Testing data: Accuracy: 0.955984323184 precision recall f1-score support 0.9547 0.9456 -1 0.9501 1470 0.9570 1 0.9643 0.9606 1847 avg / total 0.9560 0.9560 0.9560 3317

5 4. Naive Bayes Model

reportGenerator(train_target, prediction_NaiveBayes_train, test_target, prediction_Na

Results	on	Training	data:
Accuracy	·:	0.5988627	755234

support	f1-score	recall	precision	
3428 4310	0.6880 0.4385	0.9982 0.2812	0.5248 0.9951	-1 1
7738	0.5490	0.5989	0.7868	avg / total

Results on Testing data: Accuracy: 0.613204703045

support	f1-score	recall	precision	
1470 1847	0.6960 0.4683	0.9993 0.3059	0.5340 0.9982	-1 1
3317	0.5692	0.6132	0.7925	avg / total

5.0.1 Naive Bayes model with the 13 important features selected from ANOVA F-value

reportGenerator(train_target, prediction_gnb2_train, test_target, prediction_gnb2_test

Results on Training data: Accuracy: 0.590721116568

precision recall f1-score support
-1 0.5198 1.0000 0.6840 3428

```
0.2652
          1
                1.0000
                                     0.4192
                                                 4310
                          0.5907
                                     0.5365
                                                 7738
avg / total
                0.7873
Results on Testing data:
Accuracy: 0.599336750075
             precision
                          recall f1-score
                                              support
         -1
                0.5252
                          1.0000
                                     0.6887
                                                 1470
          1
                1.0000
                          0.2805
                                     0.4381
                                                 1847
avg / total
                0.7896
                          0.5993
                                     0.5491
                                                 3317
```

6 5. KNN Classifier

6.0.1 K-NN Classifier with distance as Manhattan distance

* *

	Training data: 0.990049108297 precision	recall	f1-score	support
-1	0.9866	0.9910	0.9888	3428
1	0.9928	0.9893	0.9911	4310
avg / total	0.9901	0.9900	0.9901	7738
	Cesting data: 0.95869761833 precision	recall	f1-score	gunnort
	precision	recarr	II SCOLE	support
-1	0.9574	0.9490	0.9532	1470
1	0.9597	0.9664	0.9630	1847
avg / total	0.9587	0.9587	0.9587	3317

6.0.2 K-NN Classifier with distance as Euclidean

Results on Training data:
Accuracy: 0.990178340657

precision recall f1-score support

```
-1
                0.9878
                          0.9901
                                    0.9889
                                                3428
          1
                0.9921
                          0.9903
                                    0.9912
                                                4310
avg / total
                0.9902
                          0.9902
                                    0.9902
                                                7738
Results on Testing data:
Accuracy: 0.951763641845
             precision
                         recall f1-score
                                             support
         -1
                0.9474
                          0.9435
                                    0.9455
                                                1470
```

0.9583

0.9518

0.9568

0.9518

6.0.3 K-NN Classifier with distance as Hamming

0.9552

0.9517

1

avg / total

 $\verb|reportGenerator| (train_target, prediction_train_knn2, test_target, prediction_test_knn2, test_target, prediction_test_target, prediction_$

1847

3317

Results on	Training	data:
Accuracy:	0.9901783	340657

support	f1-score	recall	precision		
3428 4310	0.9889 0.9912	0.9901 0.9903	0.9878 0.9921	-1 1	
7738	0.9902	0.9902	0.9902	avg / total	

Results on Testing data:

Accuracy: 0.964124208622 precision recall f1-score support -1 0.9630 0.9558 0.9594 1470 1 0.9650 0.9708 0.9679 1847 avg / total 0.9641 0.9641 0.9641 3317

6.0.4 K-NN Classifier with distance as Hamming and the 13 important features selected from ANOVA F-value

Out[39]: <matplotlib.legend.Legend at 0x1d27c374fd0>


```
prediction_train_knn3 = knn.predict(train_data_sel)
prediction_test_knn3 = knn.predict(test_data_sel)
completeConfusionMatrix(test_target, prediction_test_knn3, False)
# Error metrics
```

reportGenerator(train_target, prediction_train_knn3, test_target, prediction_test_knn3

Results on Training data: Accuracy: 0.975316619281

	precision recall fi		f1-score	support
-1	0.9762	0.9679	0.9720	3428
1	0.9746	0.9812	0.9779	4310

avg / total 0.9753 0.9753 0.9753 7738 Results on Testing data: Accuracy: 0.951160687368 precision recall f1-score support 0.9486 -1 0.9408 0.9447 1470 0.9532 0.9594 0.9563 1847 avg / total 0.9511 0.9512 0.9511 3317

7 6. Support Vector Machine Classification

Confusion Matrix

Results on	Training	data:
Accuracy:	0.9515378	365081

support	f1-score	recall	precision	
3428 4310	0.9445 0.9570	0.9314 0.9675	0.9580 0.9467	-1 1
7738	0.9515	0.9515	0.9517	avg / total

Results on Testing data:

Accuracy: 0.942719324691 precision recall f1-score support -1 0.9507 0.9184 0.9343 1470 1 0.9367 0.9621 0.9493 1847 avg / total 0.9429 0.9427 0.9426 3317

```
In [42]: # Tuning Support Vector Machines with GridSearchCV
         parameter_values = [
           {'C': [35, 40], 'gamma': [0.1], 'kernel': ['rbf'], 'degree': [1, 2, 3]},
           {'C': [35,40], 'gamma': [0.1], 'kernel': ['poly'], 'degree': [3, 4]}
         svm_grid = GridSearchCV(estimator= SVC(), param_grid=parameter_values, n_jobs=-1, cv =
         svm_grid.fit(train_data,train_target)
Out[42]: GridSearchCV(cv=StratifiedKFold(n splits=10, random state=50, shuffle=True),
                error_score='raise',
                estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
           decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
           max_iter=-1, probability=False, random_state=None, shrinking=True,
           tol=0.001, verbose=False),
                fit_params={}, iid=True, n_jobs=-1,
                param_grid=[{'C': [35, 40], 'gamma': [0.1], 'kernel': ['rbf'], 'degree': [1, 2
                pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
                scoring=None, verbose=0)
In [43]: print(svm_grid.best_estimator_)
SVC(C=35, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=1, gamma=0.1, kernel='rbf',
 max_iter=-1, probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False)
In [44]: ### Creating the SVM Classifier based on the Grid search results
In [45]: svm2 = SVC(kernel='rbf', gamma=0.1, C=35, degree = 1)
         svm2.fit(train_data,train_target)
         predicted_train_svm2 = svm2.predict(train_data)
         predicted_test_svm2 = svm2.predict(test_data)
         completeConfusionMatrix(test_target, predicted_test_svm2, False)
         # Error metrics
         reportGenerator(train_target, predicted_train_svm2, test_target, predicted_test_svm2)
         # SVM with Cross validation
         parameter_values = [
           {'C': [35], 'gamma': [0.1], 'kernel': ['rbf'], 'degree':[1]}
         svm3_grid = GridSearchCV(estimator= SVC(),param_grid=parameter_values, n_jobs=-1, cv =
         svm3_grid.fit(train_data,train_target)
         predicted_train_svm3 = svm3_grid.predict(train_data)
         predicted_test_svm3 = svm3_grid.predict(test_data)
         completeConfusionMatrix(test_target, predicted_test_svm3, False)
         # Error metrics
         reportGenerator(train_target, predicted_train_svm3, test_target, predicted_test_svm3)
```


Results on Training data: Accuracy: 0.988627552339

support	f1-score	recall	precision	
3428 4310	0.9871 0.9899	0.9793 0.9961	0.9950 0.9837	-1 1
7738	0.9886	0.9886	0.9887	avg / total

Results on Testing data: Accuracy: 0.967741935484

precision recall f1-score support

	0.9710 0.9652			1470 1847
avg / total	0.9678	0.9677	0.9677	3317

Results on Training data: Accuracy: 0.988627552339

precision		recall	f1-score	support
-1	0.9950	0.9793	0.9871	3428
1	0.9837	0.9961	0.9899	4310

avg / total 0.9887 0.9886 0.9886 7738 Results on Testing data: Accuracy: 0.967741935484 precision recall f1-score support -1 0.9710 0.9558 0.9633 1470 1 0.9652 0.9773 0.9712 1847 0.9678 0.9677 0.9677 3317 avg / total

7.0.1 SVM with Cross validation on the 13 important variables selected from the ANOVA F-value

* Confusion Matrix * *

Results on Training data: Accuracy: 0.970922719049

support	f1-score	recall	precision	
3428 4310	0.9670 0.9740	0.9603 0.9794	0.9737 0.9688	-1 1
7738	0.9709	0.9709	0.9710	avg / total

Results on Testing data:
Accuracy: 0.949954778414

support	f1-score		precision	necuracy.
1470 1847	0.9432 0.9553	0.9367 0.9605	1 0.9497 1 0.9502	-
3317	0.9499	0.9500	1 0.9500	avg / tota

In []: