አልቁልቁ Exercice 1 /3

Soient les complexes $z_1 = 5 + 2i$ et $z_2 = -1 - i$.

Déterminer la forme algébrique de :

1.
$$z_1^2$$

2.
$$\overline{z_1 - z_2}$$
.

★☆☆☆ Exercice 2

On donne le nombre complexe $z = \frac{1+2i}{1-i}$.

- 1. Déterminer la forme algébrique de z.
- 2. En déduire sans aucun calcul la valeur de $\frac{1+2i}{1-i} + \frac{1-2i}{1+i}$.

★☆☆☆ Exercice 3

Résoudre dans \mathbb{C} les équations suivantes :

1.
$$(1+2i)z = 1-iz$$

2.
$$z+3\overline{z}=i+2$$
.

★★☆☆ Exercice 4 /4

Résoudre dans \mathbb{R}^3 le système suivant, en utilisant la méthode du pivot :

$$\begin{cases} x + y + z = 6 \\ 2x - y + z = 3 \\ -4x + y - z = -5 \end{cases}$$

**** Exercice 5 /5

Soit A une matrice carrée d'ordre 3. On dit qu'un réel λ est une valeur propre de A s'il existe une matrice colonne non nulle X de taille 3×1 telle que $AX = \lambda X$. On dit alors que la matrice X est un vecteur propre associé à la valeur propre λ .

- 1. Dans cette question, on suppose que $A = \begin{pmatrix} 1 & 4 & 8 \\ -2 & 9 & 6 \\ 5 & 1 & 7 \end{pmatrix}$.
 - (a) Calculer AX où $X = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.
 - (b) En déduire une valeur propre de A. ¹
- 2. On suppose désormais que A est une matrice carrée d'ordre 3 quelconque.
 - (a) Démontrer que si λ est une valeur propre non nulle de A et si X est une matrice associée à λ alors, pour tout entier naturel n, $A^nX = \lambda^nX$.
 - (b) Démontrer qu'un réel λ est une valeur propre de A si et seulement si la matrice $A \lambda I_3$ n'est pas inversible.

^{1.} Dédicace pour Pablo et Johan ahahhaha!!!!