$\sigma\text{-}\mathrm{irregularity}$ vs. total $\sigma\text{-}\mathrm{irregularity}$

Nejc Ševerkar & Anja Trobec

5. november 2019

1 Uvod

V projektni nalogi se bova ukvarjala z merjenjem iregularnosti enostavnih neusmerjenih grafov z dvema na videz podobnima metodama, σ -irregularity in total σ -irregularity, definirani kot

$$\sigma(G) = \sum_{(u,v) \in E(G)} (d_u - d_v)^2 \quad \text{in} \quad \sigma_t(G) = \sum_{(u,v) \in V(G)} (d_u - d_v)^2$$

Cili naloge je maksimizacija razmerja, definiranega kot

$$\sigma_r(G) = \frac{\sigma_t(G)}{\sigma(G)}$$

pri danem redu grafa $n \in \mathbb{N}$ in tako ugotoviti stopnjo naraščanja $\sigma_r(G)$, v odvisnosti od reda. Ker nas grafi, za katere to razmerje ni definirano, torej v primeru $\sigma(G) = 0$, ne zanimajo, definiramo $\sigma_r(G) = 0$. To je natanko tedaj, kadar so vse komponenete grafa G regularne.

2 Osnovna Teorija

2.1 Maksimalna Stopnja Naraščanja

Najprej razčistimo kaj je zgornja meja naraščanja σ_r v odvisnosti od reda grafa G. Ker velja

$$\sigma_r(G) = \frac{\sigma_t(G)}{\sigma(G)} \le \sigma_t(G) = \sum_{(u,v) \in V(G)} (d_u - d_v)^2 < \sum_{(u,b) \in V(G)} n^2 < n^2 n^2 = n^4$$

Je red naraščanja $O(n^4)$.

2.2 Nepovezani Grafi

Ker sva opazila, da družina nepovezanih grafov doseže maksimalno stopnjo naraščanja, se lahko po konstrukciji družine takšnih grafov G_n za $\forall n \in \mathbb{N}$ osredotočimo samo na povezane grafe.

Konstrukcije grafov G_n , za katere ima zaporedje $(\sigma_r(G_n))_n$ stopnjo naraščanja $O(n^4)$ je sledeča. Vzamemo n/2 vozlišč in iz njih konstruiramo poln graf, medtem, ko v preostalih n/2 vozliščih povežemo 3 vozlišča z dvema povezavama.

$$\sigma_r(G_{2n}) \ge \frac{n^2 \binom{n-3}{2}}{2} = \frac{n^2(n-3)(n-4)}{4} = \Theta(n^4)$$

S tem smo zaključili proučevanje nepovezanih grafov.

3 Implementacija

Problem bova reševala v Pythonu in si občasno pomagala s knjižnjico Networkx, končna implementacija pa bo zaradi hitrosti verjetno napisana v jeziku c++.

3.1 Metaheuristike

Za optimalno vrednost σ_r na grafih reda n morava testirati vse neizomorfne grafe tega reda, katerih je $\Omega(2^n)$. Če upoštevamo, da izračun $\sigma_r(G)$ zahteva $\Omega(n^2)$ operacij dobimo skupno časovno zahtevnost $\Omega(n^22^n)$. Očitno je, zahtevnost predstavljala problem že za grafe reda 10, torej bova morala poiskati alternativen pristop v obliki metaheurističnih algoritmov.

Ideja bo torej sistematično postopati po prostoru povezanih enostavnih grafov reda n in tako iskati aproksimacijo grafa G, ki maksimizira vrednost σ_r na tem prostoru.

Za učinkovito delovanje teh procesov, pa potrebujemo definirati ustrezno topologijo na prostoru, torej podati pojem bližine, saj jo zahteva večina heurističnih algoritmov.

To bova naredila v obliki zaporednega dodajanja ali odstranjevanja naključnih povezav v danem grafu, pri čimer morava paziti, da ohranjava povezanost grafa, torej z drugimi besedami, ne odstraniva mostov.

Za te namene je napisana knjižnjica, ki podajo podporo za izbiro teh povezav in splošno generiranje naključnih povezanih grafov.

3.2 Simulated Annealing

Eden od algoritmov, ki naj bi rešil ta problem je Simulated Annealing, katerega implementacija je končana, a brez okolice, ki bi vrnila dobre rezultate. Iz tega razloga sva poskusila implementacijo drugega algoritma

3.3 Variable Neighborhood Search

Trenutni algoritem, ki je v poteku implementacije je *Variable Neighborhood Search*, ki definira dve družini okolic, tj. globalno in lokalno, katere uporablja za iskanje optimalnega grafa.