

Óptica geométrica IV

1^a série Aula 1 – 3^o bimestre

• Óptica.

- Identificar e compreender princípios da óptica geométrica;
- Compreender os defeitos de visão e as lentes corretivas por meio da formação da imagem.

Para começar

Em grupos de até 4 estudantes, respondam: de acordo com o texto a seguir, quais práticas podem estar colaborando para o aumento dos problemas de visão?

Para embasar a resposta do grupo, leiam o texto disponível em:

https://www.bbc.com/portuguese /geral-40262097.

Defeitos de visão

(Virem e conversem, 3 minutos).

Lentes

Para compreender as lentes específicas utilizadas para corrigir alguns problemas de visão, é necessário entender como ocorre a propagação da luz nessas lentes.

As lentes esféricas podem ser classificadas como **convergentes e divergentes**.

Lentes Divergentes

Lentes Convergentes

Lente convergente

Os raios de luz observados na imagem ao lado, demonstram que, ao saírem da fonte luminosa, passam pela lente e sofrem refração, convergindo para um único ponto chamado de foco. Por esse motivo, podemos denominá-la como convergente.

Lente convergente

Lente divergente

Por outro lado, os raios de luz que saem de uma fonte e passam por uma lente **divergente** se afastam, como observado na imagem ao lado.

Para determinar o foco, é necessário traçar linhas pontilhadas como na imagem. Portanto, o foco é chamado de **virtual**.

Lente divergente

Formação da imagem no olho

Ao estudarmos a câmara escura, podemos compreender o princípio básico da formação de imagens. A câmara escura é um dispositivo que demonstra como a luz passa por um pequeno orifício e projeta uma imagem invertida em uma superfície oposta. De forma semelhante, a estrutura do olho humano permite a entrada de luz através da pupila, que passa pela lente do olho e forma uma imagem invertida na retina.

Formação da imagem no olho

Quando nos deparamos com objetos próximos, os músculos ciliares do olho se contraem, alterando a curvatura da lente para que a imagem seja focada corretamente na retina. Essa ação é conhecida como acomodação visual. Por outro lado, quando olhamos para objetos distantes, os músculos ciliares relaxam, permitindo que a lente fique mais plana e focalize adequadamente a imagem na retina.

Formação da imagem no olho

Observação: nas aulas de biologia foi realizado um estudo sobre a anatomia do olho.

Foco no conteúdo

Defeitos de visão

No caso de uma pessoa com um defeito de visão, a formação da imagem ocorrerá antes ou depois da retina. Portanto, é necessário o uso de lentes para corrigir essa formação inadequada da imagem.

No caso de uma pessoa com hipermetropia, a imagem é formada após a retina. Portanto, é necessário corrigir esse problema direcionando os raios luminosos para convergirem na retina por meio da utilização de uma lente convergente.

Hipermetropia

Foco no conteúdo

Defeitos de visão

No caso da **miopia**, a formação da imagem ocorre antes da retina. Nessa situação, é necessário prolongar os raios luminosos para que a imagem seja corretamente formada na retina. Portanto, para corrigir a miopia, é necessária uma lente divergente.

Existem outros defeitos de visão, como o astigmatismo e a presbiopia, que utilizarão outros tipos de lente ou até mesmo um conjunto delas para que a formação da imagem aconteça na retina.

Miopia

Foco no conteúdo

Equação de Gauss para lentes esféricas

Essa equação pode ser aplicada tanto para lentes convergentes como para lentes divergentes. No entanto, é importante observar que o sinal será positivo para a distância do objeto ou da imagem formado pela lente, e será real e negativo se for virtual.

A distância focal será positiva se a lente for convergente, mas negativa se for divergente. Portanto, temos que:

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$$

f = foco

 d_o = distância do objeto do centro óptico

 d_i = distância da imagem do centro óptico

Aplicando

Vamos analisar as imagens e identificar os possíveis defeitos de visão, além de discutir as correções ou tratamentos para aprimorar a acomodação visual. A pessoa A será responsável por observar a imagem 1, enquanto a pessoa B observará a imagem 2. Como esses defeitos de visão podem impactar na percepção visual e como podem ser tratados para que tenhamos uma visão mais nítida e saudável?

(Todo mundo escreve, 3 minutos)

Na prática

Ana procurou um oftalmologista e relatou que não consegue enxergar corretamente objetos distantes. Após examiná-la, o médico prescreveu um receituário com as seguintes informações:

Para longe	Olho	Esférico
	Direito	-2,00
	Esquerdo	-1,00

Analise as informações prescritas na tabela, discuta com seus colegas qual seria o possível problema de visão de Ana e indique qual tipo de lente é mais recomendado para ela.

(Todo mundo escreve, 3 minutos)

Na prática Correção

A vergência (ou convergência) de uma lente é definida como o inverso da sua distância focal: $\frac{1}{f}$, sendo f a medida em metros (m), e v, em dioptrias (di). A unidade di (dioptria) é conhecida como "grau" da lente e corresponde a $\frac{1}{m}$ ou m^{-1} .

f > 0 e v > 0: a lente é convergente. f < 0 e v < 0: a lente é divergente.

Como $\frac{1}{f}$, a distância focal da lente receitada é < 0 (menor que zero), tratando-se de uma lente divergente. **Nesse caso, dizemos que o problema de visão é a miopia**.

O que aprendemos hoje?

- Compreendemos a formação da imagem em um olho;
- Identificamos os diferentes tipos de lentes para a correção dos defeitos de visão.

Localizador: 96940

- 1. Professor, para visualizar a tarefa da aula, acesse com seu login: tarefas.cmsp.educacao.sp.gov.br
- 2. Clique em "Atividades" e, em seguida, em "Modelos".
- 3. Em "Buscar por", selecione a opção "Localizador".
- 4. Copie o localizador acima e cole no campo de busca.
- 5. Clique em "Procurar".

Videotutorial: http://tarefasp.educacao.sp.gov.br/

Slides 4 a 10 – BARRETO, F. B.; SILVA, C. **Física aula por aula:** Termologia. Óptica. Ondulatória, 2º ano, Vol. 2, 3ª ed. São Paulo: FTD, 2016.

Slides 3, 11 e 12 – LEMOV, D. Aula nota 10 – Guia prático: Exercícios para atingir proficiência nas 49 técnicas e maximizar o aprendizado. São Paulo: Livros de Safra, 2012.

Referências

Lista de imagens e vídeos

Slide 3 - https://cutt.ly/awqptBOq

Slide 4 - https://cutt.ly/mwqptKDA

Slide 5 - https://cutt.ly/OwqfGIjZ

Slide 6- https://cutt.ly/M6dMwgM

Slide 8 - https://cutt.ly/wwqghW4U (adaptado)

Referências

Lista de imagens e vídeos

Slide 9 - https://cutt.ly/Iwqlbwxn (adaptado)

Slide 10 - https://cutt.ly/TwqlbuZm (adaptado)

Slide 12 - https://cutt.ly/awqptBOq

Material Digital

