

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁴: C07D 401/04, 401/12 // A01N 43/653, A61K 31/47 (C07D 401/04, 249:08, 215:12) (C07D 401/12, 249:08, 215:36)

(11) International Publication Number:

WO 86/06721

(43) International Publication Date:

20 November 1986 (20.11.86)

(21) International Application Number:

PCT/HU86/00026

A1

(22) International Filing Date:

7 May 1986 (07.05.86)

(31) Priority Application Number:

1718/85

(32) Priority Date:

7 May 1985 (07.05.85)

(33) Priority Country:

HU

(71) Applicant (for all designated States except US): ALKA-LOIDA VEGYÉSZETI GYÁR [HU/HU]; Pf. 1., H-4440 Tiszavasvári (HU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KÓRÓDI, Ferenc [HU/HU]; 9, Elmunkás u., H-4440 Tiszavasvári (HU). FRANK, László [HU/HU]; 23.d, Elmunkás u., H-4440 Tiszavasvári (HU). SALAMON, Zoltán [HU/HU]; 17-19.b, Kabay János u., H-4440 Tiszavasvári (HU). SÁNDOR, József [HU/HU]; 8., Jókai u., H-4450 Tiszalők (HU). POCSAI, Emma [HU/HU]; 17-19.a, Kabay János u.,

H-4440 Tiszavasvári (HU). TEREBES, Erzsébet [HU/HU]; 23.a, Kossuth u., H-4440 Tiszavasvári (HU).

(74) Agent: PATENTBUREAU DANUBIA; 16., Bajcsy-Zsilinszky u., H-1051 Budapest (HU).

(81) Designated States: AT (European patent), BE (European patent), BG, BR, CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), IT (European patent), JP, NL (European patent), SE (European patent), SU, US.

Published

With international search report.

(54) Title: TRIAZOLYL QUINOLINE DERIVATIVES

New triazolyl quinoline derivatives and acid addition salts thereof (wherein R^1 stands for hydrogen, methyl, trihalogenomethyl or carboxy; R^2 is hydrogen, halogen, C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy, phenoxy, amino, acetamino, C_{1-4} dial-kylamino, acetyl, benzoyl, methylthio, carboxy, cyano, ethoxycarbonyl, nitro or trihalogenomethyl; R^3 represents hydrogen, C_{1-4} alkyl or C_{1-4} alkoxy; R^4 stands for hydrogen, methyl or ethyl and X stands for a valency bond or -S-). The new compounds of general formula (I) possess valuable analgesic, antiphlogistic and fungicidal effect and can be used both in therapy and agriculture.

(57) Abstract

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ia
nds
nion
tates of America

TRIAZOLYL QUINOLINE DERIVATIVES

1.

This invention relates to new triazolyl quinoline derivatives, a process for the preparation thereof and pharmaceutical and fungicidal compositions containing the same.

According to an aspect of the present invention there are provided new triazolyl quinoline derivatives and acid addition salts thereof (wherein

R¹ stands for hydrogen, methyl, trihalogenomethyl or carboxy;

is hydrogen, halogen, C₁₋₄ alkyl, hydroxy,

C₁₋₄ alkoxy, phenoxy, amino, acetamino,

C₁₋₄ dialkylamino, acetyl, benzoyl,

methylthio, carboxy, cyano, ethoxycarbonyl,

nitro or trihalogenomethyl;

represents hydrogen, C₁₋₄ alkyl or C₁₋₄ alkoxy;

R⁴ stands for hydrogen, methyl or ethyl and X stands for a valency bond or -S-)

According to a further aspect of the present invention there is provided a process for the preparation of compounds of the general Formula (I)

(wherein R^1 , R^2 , R^3 , R^4 and X are as stated above) A 3770-77-KY

4.3

and acid addition salts thereof which comprises reacting a halogeno quinoline derivative of the general formula (II)

5

$$R_2$$
 Cl R_3 R_4

10

or (III)

15

$$R_2$$
 R_1
 R_3
 R_1
 R_3

20

(wherein R^1 , R^2 and R^3 are as stated above) with a 1,2,4-triazole of the general Formula (IV)

25

$$HN \longrightarrow N$$
 R_4
(IV)

30 or (V)

$$R_4$$

35

(wherein R⁴ is as stated above) in the presence or absence of a solvent, in the presence or absence of an acid or a base, at a temperature between 0 °C and 200 °C and if desired isolating the product thus obtained in the form of the free base or an acid addition salt thereof.

According to a feature of the process of the present invention there is provided a process for the preparation of compounds of the general 10 Formula (Ia)

$$R_{20}$$
 R_{3}
 R_{4}
 R_{1}
 R_{3}
 R_{4}
 R_{1}
 R_{3}
 R_{4}
 R_{1}

which comprises reacting a 4-chloro-quinoline derivative of the general formula (II) with a 1,2,4-triazole of the general Formula (IV) (wherein R¹, R², R³ and R⁴ are as stated above).

According to a further feature of the process of the present invention there is provided a process for the preparation of compounds of the 30 general Formula (Ib)

- 4 -

5
$$R_2$$
 R_3
 R_4
 R_4
 R_5
 R_4
 R_5
 R_5
 R_5
 R_5
 R_6
 R_7
 R_8
 R_8
 R_9
 R_9

which comprises reacting a 4-chloro-quinoline derivative of the general Formula (II) with a 3-mercapto-1,2,4-triazole of the general Formula

(V) (wherein R¹, R², R³ and R⁴ are as stated above).

According to a still further feature of the process of the present invention there is provided a process for the preparation of compounds of the general Formula (Ic)

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{4}$$

30 which comprises reacting a 2-chloro-quinoline of the general Formula (III) with a 1,2,4-triazole of the general Formula (IV) (wherein R¹, R², R³ and R⁴ are as stated above).

According to a still further feature of the process of the present invention there is

provided a process for the preparation of compounds of the general Formula (Id)

which comprises reacting a 2-chloro-quinoline derivative of the general Formula (III) with a 3-mercapto-1,2,4-triazole of the general Formula (V) (wherein R¹, R², R³ and R⁴ are as stated above).

The starting materials used in the process of the present invention are known compounds. The prior art references of the starting materials are as follows:

4-chloro-quinolines of the general Formula (II): "The Chemistry of Heterocyclic Compounds"
Vol. 32 Quinolines Part I pages 391 - 398; the references cited therein; Hungarian patent applications Ser. No. 3869/82 and 4003/82.

2-chloro-quinolines of the general Formula (III): "The Chemistry of Heterocyclic Compounds"
Vol. 32 Quinolines Part I pages 387-390: J. Chem.
Soc. P.I. 1981 1(5) 1537-1543.

IH-1,2,4-triazoles of the general Formula (IV): Hungarian patent application Ser. No.
4370/83; DOS No. 2,802,491; Chem. Ber. 1968, 101 (6)
2033-2036.

3(5)-mercapto-1,2,4-triazoles of the general Formula (V): Liebigs. Ann. Chem. 637, 133 135-165 (1960).

The new compounds of the general
Formula (I) possess valuable biological properties
and exhibit useful analysic and antiphlogistic
effect. Some representatives of the compounds of
the general Formula (I) are highly active against
phytopathogenic fungal pests according to both
in vivo and in vitro tests.

It has been found that the reaction 10 between 4- and 2-chloro-quinoline derivatives of the general Formula (II) or (III), respectively, comprising only electron repulsing substituents (e.g. methyl or methoxy groups) and 1H-1,2,4--triazoles or 3(5)-mercapto-1H-1,2,4-triazoles of 15 the general Formula (IV) or (V), respectively, is autocatalytic whereby the hydrochloric acid formed in the course of the reaction acts as catalyst. The reaction can also be catalysed by other acids, particularly strong mineral or organic acids or 20 acidic salts (e.g. sulfuric acid, trifluoroacetic acid or ammonium chloride). It is preferred to carry out the reaction in the presence of the said acidic compounds - particularly hydrochloric acid range of from catalytic - which can be used in the 25 to stochiometrical amount.

If less basic chloro quinolines comprising electron attracting group or groups (e.g. chlorine, trifluoromethyl) are used, such catalysis is not observed. In this case, however, the reaction may be facilitated by carrying out the same in the presence of an organic or inorganic base (e.g. triethyl amine, potassium carbonate or sodium hydroxide) used in stochiometrical or higher amount. This pertains also to the case if the 1H-1,2,4-triazole or 3(5)-mercapto-1H-1,2,4-triazole

derivative is used in the form of an alkali salt (e.g. sodium salt) thereof.

It has been found furtheron that the mercapto group is more reactive than the -NH-5 -group of the triazole ring.

The reaction (preparation of compounds of the general Formulae (Ia), (Ib), (Ic) and (Id)) may be carried out preferably in the presence of a polar organic solvent (e.g. ethanol. acetone, acetonitrile, dimethyl formamide, dimethyl sulfoxide etc). As reaction medium an apolar organic solvent (e.g. benzene, toluene, chloro benzene, dichloro benzene) may also be used and one may also work in the absence of an organic solvent in the melt.

The reaction of the present invention may be carried out at a temperature between 0 °C and 200 °C, preferably in the range of 20 - 150 °C. The reaction temperature is selected under taking into consideration the properties of the reactants and the method used.

It is sufficient to react the chloro quinoline component with a molar equivalent amount of the LH-1,2,4-triazole or 3(5)-mercapto-1,2,4
25 -triazole but the reactions generally take place more rapidly and completely if the starting material of the general Formula (IV) or (V) is used in a 1-2 molar equivalent amount.

According to a form the realization of the 30 process of the present invention the reaction components are melt and the reaction having been terminated the product formed is isolated. According to the said embodiment of the process the product is formed in the form of the hydrochloride thereof. The direct reaction product is treated

25

with an apolar organic solvent (e.g. ether, chloroform, benzene, hexane) or crystallized from a polar solvent (e.g. ethanol, methanol, acetonitrile, dimethyl formamide) or a mixture of polar and 5 apolar solvents.

The free base of the general Formula (I) may be isolated by cooling the reaction mixture, dissolving in water or a mixture of water and ethanol - preferably under adding a mineral or 10 organic acid - and precipitating the product by adding an organic or inorganic base. The crude product may be crystallized from a mixture of a polar organic solvent and water or polar and apolar organic solvents.

According to a further embodiment of the process of the present invention the reaction partners are reacted in the presence of an apolar organic solvent (e.g. benzene, toluene, xylene, hexane, carbon tetrachloride, chloro benzene, 20 dichloro benzene etc). The reaction having been completed the product precipitated in the form of the hydrochloride is filtered, if necessary crystallized and converted into the free base as described above.

According to a still further embodiment of the process of the present invention the reaction partners are reacted in a polar organic solvent (e.g. ethanol, ethylene glycol, acetonitrile, acetone, ethyl methyl ketone, dimethyl formamide, 30 dimethyl sulfoxide, glacial acetic acid). The product is isolated in the form of the free base or a salt formed with a mineral acid.

According to a preferred embodiment of the process of the present invention the reaction is accomplished in a polar organic solvent (e.g. 35

ethanol, ethylene glycol, acetonitrile, acetone, methyl ethyl ketone, dimethyl formamide), preferably in the presence of hydrochloric acid.

The acidic medium may be either provided

5 by introducing an acid (preferably hydrochloric acid) to the reaction mixture or by using the chloro quinoline component in the form of a salt (preferably hydrochloride) thereof. The product formed in the form of a salt may be isolated from the reaction mixture according to one of the methods set forth above.

According to a further preferable form of realization of the present process of the invention the reaction is accomplished in a polar organic solvent, in the presence of a molar equivalent or larger amount of a strong base (e.g. triethyl amine, potassium carbonate, sodium carbonate etc).

The above reaction may also be carried

20 out by using the triazole or mercapto triazole of
the general Formula (IV) or (V), respectively,
in the form of an alkali (e.g. sodium or potassium)
salt thereof.

The structure of the new compounds prepared by the process of the present invention is characterized and confirmed by means of NMR, IR and MS spectrum and the purity of the product is determined by thin layer, gas and liquid chromatography.

The compounds of the general Formula

(I) possess valuable physiological properties and eliminate or efficiently relieve induced pain and inflammation processes. The significant advantage of the compounds of the general Formula (I) is that in analgesic and antiphlogistic dose range

35

ulcerative activity is observed not at all or but to a very small extent.

Thus the orally administered compounds of the general Formula (I) efficiently reduce 5 acute inflammatory processes. According to the method of Winter [Proc. Soc. Exp. Biol. Med. 111, 544 (1962)] carrageenin oedema is induced and evaluated on male Wistar rats fasted for 16 hours (body weight 160 - 180 g). Percental inhibition is 10 calculated from the average oedema values of the groups treated with the test compound on the one hand and with carrier (carboxy methyl cellulose, CMC; control) on the other. ED50 values are determined by means of regression analysis of the 15 inhibition values. The test compounds are administered through a stomach canule in the form of a 1 % carboxy methyl cellulose (CMC) suspension, one hour before introducing the carrageenin injection. The carrageenin oedema inhibiting effect of

The protecting effect of the test compounds against adjuvant induced arthritis is shown in Table II. According to the method of Newbold O.1 ml of Freund complet adjuvant (Difco Lab. Mich.

the test compounds are summarized in Table I.

25 USA) is injected to the plantar surface of the right hind paw of male Wistar rats weighing 160 - 200 g. The volume of the hind paws is measured before and 21 days after the administration of the adjuvant with the aid of a mercury plethysmometer.

30 The test compound is administered to the test animals for two weeks in a daily oral dose of 25 mg/kg. In Table II the "percental inhibition of the growth of paw volume" relates to the value determined on the 21st day.

In the adjuvant arthritis test, considered

to be the best model test of rheumatoidal arthritis, the compounds of the present invention inhibit articular deformations more effectively than the reference substances Naproxen and Phenylbutazon.

5 The tests show furthermore that the compounds of the present invention are active not only in healing morphological deformations but effect in a desirable and useful manner the functional condition and fitness of the feet, moreover the general physical state and condition of the animals, too.

The analgesic effect of the compounds of the present invention is tested according to the hot (56 °C) plate test on male and female CFLP strain mice weighing 18 - 22 g. The point of time of the appearence of the deterring reaction (Abwehrreaktion) is determined and related to the latent time measured on the control group (Woolfe and McDonald 1944). At least 10 animals are used per dose. The test compounds are administered orally 60 minutes before the test in the form of a 1 % methyl cellulose suspension. The results are summarized in Table III. The test is carried out on separated male Wistar rats weighing 180 - 210 g and fasted for 16 hours. The test compounds are suspended in 1 % carboxy methyl cellulose and

Five hours after treatment the animals are sacrificed and their stomachs are placed into a 2.5 % formaline solution. The number and rate of punctiform haemorrhage and ulcers is evaluated according to the following scale:

0 = no lesion;

 $l = some punctiform haemorrhage (<math>\langle 10 \rangle$;

administered orally in a dose of 10 ml/kg.

2 = diffuse haemorrhage or small ulcer (<2 mm);

35 3 = two or more minor small ulcer ($\langle 2 \text{ mm} \rangle$;

4 = one or more large ulcer (>2 mm).

In a dose of 25 mg/kg and 100 mg/kg the compounds of the present invention do not 5 exhibit ulcerogenic effect. In acute test the UD value of Naproxen and Indomethacin amounts to 20.8 mg/kg and 6.3 mg/kg p.o., respectively.

The acute toxicity of the compounds of the general Formula (I) is determined according 10 to the method of Litchfield - Wilcoxon on male and female rats of CFLP strain. The LD₅₀ values vary between 500 and 2000 mg/kg p.o.

According to a further aspect of the present invention there are provided pharmaceutical compositions comprising in an effective amount at least one compound of the general Formula (I) (wherein R¹, R², R³, R⁴ and X are as stated above) or a pharmaceutically acceptable acid addition salt thereof as active ingredient in admixture with suitable inert solid or liquid pharmaceutical carriers.

The pharmaceutical compositions may be prepared in a manner known per se by admixing at least one compound of the general Formula (I) or a pharmaceutically acceptable acid addition salt thereof with suitable inert solid or liquid pharmaceutical carriers.

The compounds of the present invention may be used in therapy preferably for the treat
30 ment of various rheumatic diseases, particularly rheumatoidal arthritis, spondylitis, osteortrosis and gout. The active ingredient may be finished by known methods of pharmaceutical industry in forms suitable for enteral or parenteral administration (.e.g. tablets, capsules, dragées, injec-

tions etc.). The pharmaceutical compositions of the present invention may optionally comprise one or more further biologically active materials in addition to the compound of the general Formula 5 (I). The compositions comprise carriers and excipients generally used in therapy.

The dose of the compounds of the general Formula (I) varies between wide ranges and depends on several factors (e.g. body weight, age and condition of the patient etc). The dose amounts 10 generally to 10 - 200 mg/kg body weight (enteral administration) and to 1 - 50 mg/kg (parenteral administration). The above ranges are, however, just of an informative character.

The compounds of the general Formula (I) possess considerable antifungal activity, too, and are active against phytopathogenic fungal strains and diseases. The compounds of the general Formula (I) are particularly effective against powdery 20 mildew. In Table IV the activity of some compounds of the general Formula (IV) against Erysiphe graminis f. sp. tritici strain are disclosed.

The following test method is used: Glasshouse conditions: temperature 20 °C; relative 25 humidity 80 %; strength of illumination 6000 lux. The test plants (MV-9 Automn wheat) are cultivated in pots (diameter 20 cm) in a 1:1 mixture of sand and perlite. The average number of plants per pot amounts to 180, the height of the plants is 6-7 cm. 30 About 8 ml of the aqueous suspension of the test compound is applied onto the plants with the aid of a sprayer.

The rate of infectedness is determined after 8 days. Activity is calculated from the percental inhibition values. As control commercial products Fundazol 50 WP and Karathene LC 50 are used.

According to a further feature of the present invention there are provided fungicidal 5 compositions comprising as active ingredient in an effective amount at least one compound of the general Formula (I) (wherein R¹, R², R³, R⁴ and X are as stated above) or an acid addition salt thereof in admixture with suitable inert solid or liquid carriers or diluents.

The said fungicidal compositions are prepared by methods known per se.

Table I

15 Antiphlogistic effect on carrageenin induced oedema

on rats

Test com-	_	Percental inhibition of paw volume	ED ₅₀ mg/kg p.o.
	12.5	29	
61	25.0	37	60.9
	100.0	58 	
	12.5	18	
	25.0	51	
62 ·	50.0	59	38.4
	100.0	69	
)	12.5	15	
	25.0	27	
64	50.0	<u>1</u> 414	59.1
•	100.0	65	

- 15 -

Table I (contd.)

Test com-	Dose	n	Percental	ED ₅₀
pound No.	mg/kg		inhibition	mg/kg p.o.
	p.o.		of paw	
			volume	
	12.5		27	
	25		33	
69	50		52	35.0
	100		86	
	12.5		26	
74	25		55	25.7
	50		69	
	12.5		21	
	25		63	
83	50		70	28.1
	100		72	
	12.5		29	
-	25		40	
107	50		70	30.6
	100	•	74	
	12.5	10	19	
	25	10	45	
108	50	10	61	38.5
	100	10	70	
	12.5	10	10	
	25	10	42	
110	50	10	46	51.4
	100	10	61	•

- 16 -

Table I (contd.)

Test com-	Dose mg/kg p.o.	n	Percental inhibition of paw volume	ED 50 mg/kg p.o.
	25	10	21	
Phenylbu-	50	15	42	
tazon	100	15	45	100.9
	200	15	66	
	12.5	15	33	
•	25	15	49	,
Naproxen	50	15	64	28.7
	100	15	71	·
	1	10	28	,
	2	10	40	,
Indomethac	in 4	10	47	4.1
	8	10	. 64.	
	12	10	67	

n = number of the test animals

Table II

Inhibitory effect on adjuvant induced arthritis on rats

Test com-	Dose	n	Percental inhibition of the
pound No.	mg/kg		growth of paw volume, on the
-	p.o.		21st day
46	25	10	28.1
61	25	10	38.2
62	25	10	40.3

- 17 -

Table II (contd.)

Test com-	Dose mg/kg	n	Percental inhibition of the growth of paw volume, on the
	p.o.	_	21st day
64	25	10	40.6
67	25	10	32. -8
69	25	10	35.2
83	25	12	46.7
85	25	12	28.4
107	25	12	17.8
108	25	12	35.2
109	25	12	36.7
110	25	12	32.1
138	25	10	35.2
Phenylbu-			·
tazon	50	15	18.5
Naproxen	12.5	15	16.8
	25	15	28.4

n = number of the test animals

Table III

Hot plate test, on mice

Test com-	Dose mg/kg p.o.	Lengthening of reaction time in $\%$
	25	7
46	50	18
	100	38

- 18 -

Table III (contd.)

Test com- pound No.	Dose mg/kg p.o.	Lengthening of reaction time in %
	25	20
61	50	22
	100	26
	12.5	. 17
	25	19
62	50	30
	100	38
	25	17
64	50	39
	100	44
	25	13
69	50	24
·	100	30
	25	19
74	50	26
	100	43
	25	16
83	50	28
	100	59
	25	34
107	50	41
	100	88
	25	34
108	50	46
	100	46

- 19 -

Table III (contd.)

Test com-	Dose	Lengthening of reaction time in %
pound No.		
	25	21
110	50	34
	100	52
	25	25
138	50	37
	100	82
Phenylbu-	100	29
tazon	150	42
	200	44
	12.5	25
	25	31
Naproxen	50	45
•	100	49

- 20 -

Table IV

In vitro antifungal effect on Erysiphe graminis

test organism

Test com-	Concentration /ug/ml	Inhibition %	ED ₅₀ ug/ml
	37.5	50-6	
	50	72.6	
	75	83-0	
1 .	100	85.3	32.9
	150	36.8	
	200	90.1	•
	400	99.6	
	25	42.1	
	50	70.9	
	100	82.0	
8	150	84.1	31.1
	200	91.9	
	1 00	98.8	
	25	20.3	-
	50	42.8	
- 10	100	76.4	56.9
	200	9.7	
	400	90.1	
	25	49.2	
	50	71.6	•
6	100	85.1	27.9
÷	200	89.5	
	400	99.4	

- 21 -

Table IV (contd.)

Test com-	Concentration /ug/ml	Inhibition %	ED 50 ug/m1
·	25	40.8	
	.50	67.7	
22	100	79.8	31.2
	200	93.0	
	400	96.9	
	12.5	24.9	
Karathane	25	46.2	
LC 50	50	72.7	27.4
	100	87.9	
	50	55.3	
Chinoin fun	_ 100	72.6	41.2
dazol 50 WP	200	89.1	
	400	94.6	

Further details of the present invention are to be found in the following Examples without limiting the scope of protection to the said Examples.

5

20

Example 1 4-(1H-1,2,4-triazole-1-y1)-7-chloro--quinoline

A mixture of 1.98 g of 4,7-dichloro10 -quinoline, 1,38 g of 1,2,4-triazole and 10 ml of dimethyl formamide is stirred at 100 °C for 6 hours, whereupon the reaction mixture is poured into 100 ml of water and neutralized with 1 ml of a concentrated ammonium hydroxide solution. The precipitated product is filtered and recrystallized from ethanol. Thus 1.61 g of the desired product are obtained, yield 70 %, Mp.: 169 - 170 °C.

Example 2 4-(1H-1,2,4-triazole-1-v1)-2,8-dimethyl--quinoline

A mixture of 1.91 g of 2,8-dimethyl-4-chloro-quinoline and 1.38 g of 1,2,4-triazole
is melt at 120 °C and stirred for 2 hours. The

25 solidified melt is dissolved in a mixture of ethanol
and water. The solution is poured into a solution of
0.84 g of sodium bicarbonate and 20 ml of water. The
precipitated product is filtered. Thus 1.97 g of the
desired compound are obtained, yield 88 %, m.p.:

30 99 - 100 °C.

Example 3 4-(1H-1,2,4-triazole-1-y1)-2-methy1-6-methoxy-quinoline

35 A mixture of 2.44 g of 2-methyl-4-chloro-

-6-methoxy-quinoline-hydrochloride, 1.38 g of 1,2,4-triazole and 10 ml of dimethyl formamide is stirred at 80 °C for 3 hours whereupon the reaction mixture is poured into 100 ml of water and 5 neutralized with 2 ml of a concentrated ammonium hydroxide solution. The precipitated product is filtered. Thus 2.09 g of the desired compound are obtained, yield 87 %, mp.: 117 - 118 °C.

Example 4 4-(1H-1,2,4-triazole-1-y1)-2-methyl-6,8--dichloro-quinoline

A mixture of 2.46 g of 2-methyl-4,6,8--trichloro-quinoline, 1.82 g of the sodium salt 15 of 1,2,4-triazole and 10 ml of dimethyl formamide is stirred at 100 °C for 25 hours whereupon the reaction mixture is poured into 100 ml of water. The precipitated product is filtered. Thus 2.59 g of the desired compound are obtained, yield 93 %. 20 Mp.: 220 - 222 °C.

Example 5 4-(1H-1,2,4-triazole-1-y1)-2,8-bis-trifluoromethyl-quinoline

A mixture of 3.0 g of 4-chloro-2,8--bis-trifluoromethyl-quinoline, 1.38 g of 1,2,4--triazole, 1.38 g of potassium carbonate and 30 ml of acetone is heated to boiling for 23 hours whereupon the reaction mixture is poured into 100 ml of water. The precipitated product is filtered, 30 dissolved in 5 ml of ethanol; whereupon 5 ml of water are added. The precipitated product is filtered. Thus 2.42 g of the desired compound are obtained, yield: 73 %, mp.: 106 - 107 °C.

25

Example 6 4-[1H-1,2,4-triazole-3(5)-y1-5(3)-mercapto]-2-trichloromethy1-8-chloroquinoline

A mixture of 3.16 g of 2-trichloromethyl-4,8-dichloro-quinoline, 1.48 g of the sodium salt
of 3(5)-mercapto-1,2,4-triazole and 10 ml dimethylformamide is stirred at 100 °C for 18 hours. The
reaction having been completed the reaction mixture
10 is poured into water, the precipitated product is
filtered and recrystallized from ethanol. Thus 2.1 g
of the desired compound are obtained, yield 55 %,
M.p.: 188 - 183 °C.

Example 7

4-[5(3)-ethyl-1H-1,2,4-triazole-3(5)-yl--mercapto]-2,8-dimethyl-quinoline

A mixture of 1.32 g of 4-chloro-2,8-dimethyl-quinoline, 1.55 g of 3(5)-mercapto-5(3)20 -ethyl-1,2,4-triazole and 20 ml of ethanol is
stirred at 30 °C for 20 hours. The reaction mixture
is poured into 50 ml of water, neutralized with
l ml of concentrated ammonium hydroxide and the
precipitated product is filtered. Thus 2.41 g of
25 the desired compound are obtained, yield 85 %,
mp.: 176 - 177 °C.

Example 8

2-(1H-1,2,4-triazole-1-y1)-3-methy1-

30 <u>-quinoline</u>

A mixture of 1.78 g of 2-chloro-3-methyl-quinoline and 0.69 g of 1,2,4-triazole is melt and allowed to stand at 120 °C for 4 hours. The melt is cooled, then dissolved in 10 ml of ethanol, poured into 20 ml of water and neutralized with 1 ml of

20

concentrated ammonium hydroxide. The precipitated product is filtered. Thus 1.49 g of the desired compound are obtained, yield 71 %. Mp.: 80 - 81 °C.

Example 9

2-(1H-1,2,4-triazole-1-y1)-4-methyl-quinoline hydrochloride

A mixture of 1.78 g of 2-chloro-4-methyl-quinoline, 0.76 g of 1,2,4-triazole and 10 ml of
10 chloro benzene is stirred at 100 °C for 7 hours.

The reaction mixture is cooled, the precipitated product is filtered, dissolved in 5 ml of ethanol and precipitated by adding 10 ml of ethyl ether.

The precipitated product is filtered. Thus 1.72 g
15 of the desired compound are obtained, yield 70 %.

Mp.: 193 - 194 °C.

Example 10

2-(1H-1,2,4-triazole-1-yl)-7-chloro-3,8--dimethyl-quinoline

A mixture of 2.26 g of 2,7-dichloro-3,8-dimethyl-quinoline, 1,1 g of the sodium salt of 1,2,4-triazole and 10 ml of dimethyl formamide is stirred at 100 °C for 25 hours. The reaction mixture is poured into 100 ml of water and the precipitated product is filtered. Thus 2.48 g of the desired compound are obtained, yield 96 %. Mp.: 147 - 148 °C.

30 Example 11-

2-(3-methyl-1H-1,2,4-triazole-1-yl)-4,6--bis-trichloromethyl-quinoline

A mixture of 3.99 g of 2-chloro-4,6-bis-trichloromethyl-quinoline, 1.26 g of the sodium
35 salt of 3-methyl-1,2,4-triazole and 10 ml of dimethyl

30

formamide is stirred at 100 °C for 20 hours. The reaction mixture is poured into 100 ml of water, the precipitated product is filtered and recrystallized from 10 ml of ethanol. Thus 2.76 g of the desired compound are obtained, yield 62 %.

M.p.: 169 - 170 °C.

Example 12

2-[5(3)-methyl-1H-1,2,4-triazole-3(5)--yl-mercapto]-3-methyl-quinolinehydrochloride

A mixture of 1.78 g of 2-chloro-3-methyl-quinoline, 1.38 g of 3(5)-mercapto-5(3)-methyl-1,2,4-triazole and 10 ml of chloro benzene is

15 stirred at 100 °C for 2 hours. The reaction mixtur
is cooled, the precipitated product is filtered and
washed with diethyl ether. Thus 2.8 g of the desired
compound are obtained, yield 96 %, mp.: 190 - 192 °C.

20 Example 13

2-[1H-1,2,4-triazole-3(5)-yl-mercapto]--4,8-dimethyl-quinoline-hydrochloride

A mixture of 1.92 g of 2-chloro-4,8-

-dimethyl-quinoline and 1.21 g of 3(5)-mercapto-25 -1,2,4-triazole is melt and allowed to stand at 120 °C for an hour. The cooled reaction mixture is treated with 5 ml of hot ethanol, cooled and filtered. Thus 1.90 g of the desired compound are obtained, yield 65 %. Mp.: 201 - 202 °C.

Example 14

4-(1H-1,2,4-triazole-1-y1)-2,8-dimethyl--5-chloro-quinoline

A mixture of 2.26 g of 4,5-dichloro-2,8-35 -dimethyl-quinoline, 1.38 g of 1,2,4-triazole and 0.1 g of 96 % sulfuric acid is stirred at 70 °C for 3 hours. The reaction mixture is poured into 50 ml of water and neutralized with 1 ml of a concentrated ammonium hydroxide solution. The precipitated product is filtered and washed with water. Thus 2.0 g of the desired compound are obtained, yield 77.4 %. Mp.: 117-118 °C.

Example 15

10 4-[5(3)-methy1-1H-1,2,4-triazole-3(5)-y1-mercapto]-2-methyl-7,8-dichloro-quinoline

A mixture of 2.46 g of 2-methyl-4,7,8-trichloro-quinoline, 1.38 g of 3(5)-mercapto-5(3)15 -methyl-1,2,4-triazole and 10 ml of dimethyl formamide is stirred at 100 °C for 8 hours. The reaction
mixture is poured into 100 ml of water, neutralized
and the precipitated product is filtered. Thus 3.10 g
of the desired compound are obtained, yield 95 %.
20 Mp.: 156 - 158 °C.

Example 16 2-(1H-1,2,4-triazole-1-y1)-3-methyl-7-ethyl-quinoline

A mixture of 2.05 g of 2-chloro-3-methyl-7-ethyl-quinoline, 1.05 g of 1,2,4-triazole-hydrochloride, 0.69 g of 1,2,4-triazole and 10 ml
of dimethyl formamide is stirred at 100 °C for 6
hours. The reaction mixture is poured into 100 ml

of water, neutralized and the crude product is recrystallized from a mixture of ethanol and hexane. Thus 1.52 g of the desired compound are obtained, yield 64 %. Mp.: 72 - 73 °C.

Example 17 2-[1H-1,2,4-triazole-3(5)-yl-mercapto]-4-methyl-quinoline

A mixture of 1.78 g of 2-chloro-4
5 -methyl-quinoline, 1.21 g of 3(5)-mercapto-1,2,4-triazole and 10 ml of dimethyl formamide is
stirred at 40 °C for 3 hours. The reaction mixture
is poured into 100 ml of water, neutralized and
filtered. Thus 2.37 g of the desired compound are
10 obtained, yield 98 %, m.p.: 96 - 98 °C.

Example 18 3-[5(3)-ethyl-1H-1,2,4-triazole-3(5)-yl-mercapto]-3,8-dimethyl-quinoline 1.91 g of 2-chloro-3,8-dimethyl-quinoline and 1.55 g of 3(5)-mercapto-5(3)-ethyl-1,2,4-triazole are reacted in an analoguous manner to Example 16. The crude product is recrystallized from a mixture of chloroform and ethanol. Thus 1.93 g of the desired compound are obtained, yield 68 %. Mp.: 190 - 192 °C.

Further compounds are prepared in an analoguous manner to the process described in the preceding Examples. The compounds are disclosed in the following Table V. The number appearing in the column "method" relates to the number of the Example used for the preparation of the compound in caption.

30

•	. (Ia)
	Formula
	gonoral
	the
	Jo
	ompounds of the gonoral Formula (T

					<u></u>		· · ·						
Mp.		169-170	142-144	146-147	. 68-88	110-112	98-100	117-118	179-180	173-175	142-144	68-70	154-156
Yiela (%)	(2/)	70	81	75	57	71	98	87	89	58	76	93	98
Nothod		7	r	4	3	3	٦	6	3	3	4	4	4
14, 1		н	н	H	н	Н	Ħ	н	H	н	н	н	н
113		H	н	н	Ħ	н	H	H	Н	Н	н	H	Ħ
۳. ع	:	7-01	8-CH3	8-CF3	Ħ	6-СН,	B-CH ₃	6-0CH ₂	8-осн	12-9	8-01	7-CF3	8-CF3
H		Ħ	Ħ	Ħ	2-CH ₃	2-CH ₂	2-CH ₂	2-CH2	2-CH ₂	2-CH,	2-CH ₃	2-CH ₃	2-CH3
Compound	No.	1	2	3	4	5	9	7	. 8	6	10	11	12

238-240	189-190	184-186	208-210	113-115	173-175	147-149	123-124	220-222	168-170	188-190	119-121	120-122	129-131
40	28	49	57	88	50	98	74	93	93	59	59	64	99
1	Н	ı	4	н	4	4	٦.	. 4	4	ч	H	ч	1
н	Н	н	н	н	н	н	н	Н	н	Н	Н	н	H
Н	Н	н	н	8-CH ₃	8-CH ₃	B-CH,	8-01	8-01	8-01	8-0CH ₃	7-cH ₃	в-сн ₃	B-CII ₃
но-9	6-codH ₃	7-COOCH ₃	в-сн	5-C1	€-¢1	7-d1	5C1	12-9	7-01	5-C1	5CH ₃	5-CH ₃	6-сн ₃
2-CH ₃	2-CH ₃	2-CH ₃	.2-CH ₃	2-CH ₃	2-CH3	2-CH ₃	2-CH ₃	2-CH ₃	2-CH ₃				
13	1.4	15	16	17	18	19	20	21	22	23	24	25	. 26

27	2-CH ₂	7-CII3	8-CII3	H	7	62	128-130
28	2-CH ₂	5-CII3	B-NHCOCII,	H		22	232-234
29	2-CH ₃	5-CH ₃	8-NH ₂	H	-	. 35	205-207
30	2-cc1 ₃	6-сн3	Н	н	4	50	102-104
31	2-cc1 ₃	8-CH ₃	н	н	4	61	130-132
32	2-cc1 ₃	8-0CH ₃	Н	н	4	31	169-170
33	2-0013	8-01	н	н	5	40	133-135
34	2-001,	6-001,	н	н	5	47	162-163
35	2-001,	8-cc1 ₃	H	н	5	50	157-158
36	2-0013	B-CF3	н	н	5	47	132-133
37	2-001,	6-01	8-01	Н	5	73	157-159
38	2-CF3	8-CF3	Н	н	5	73	106-107
	1	1	1	t	1	•	1
			,				

R ₂ R ₃ R ₄ Method Yield (%) (%	힏	Compound of the general	- F					
7-C1 II II T 77 H II H 7 66 6-CH ₃ H H T 59 6-CH ₃ H H T 71 8-CH ₃ H H T 77 6-CL II H T 77 6-CL II H T 76 9-CL II II II II <t< td=""><td></td><td>г₁</td><td>۳ 2</td><td>ж 2</td><td>$R_{m{\mu}}$</td><td>Method</td><td>Yield (%)</td><td>Mp. ο</td></t<>		г ₁	۳ 2	ж 2	$R_{m{\mu}}$	Method	Yield (%)	Mp. ο
6-CH ₃ H H 7 59 6-CH ₃ H H 7 59 6-CH ₃ H H 7 7 59 6-CCH ₃ H H 7 7 77 6-C1 II H 7 7 68 6-C1 II H 7 7 77 7-CF ₃ II II 7 76 6-C1 6-C1 II II 7 68 7-CF ₃ II II 7 76 7-CF ₃ II II 7 76 6-C1 6-CH ₃ II 7 66		H	7-01		II	7	7.1	161-162
6-CH ₃ H H T 71 8-CH ₃ H H T 71 8-COH ₃ H H T 98 6-C1 II H T 68 7-CP ₃ II II T 68 8-C1 II II T 76 8-C1 II II T 72 8-C1 ₃ II II T 72 8-C1 II II T 72 8-C1 II II T 72 8-C1 B-CH ₃ II T 78	``.	2-CH ₃	. H	П	Н	7	99	181-182
8-CH ₃ H H 7 71 6-COH ₃ H H 7 98 6-C1 II H 7 77 9-C1 II H 7 68 7-CF ₃ II II 7 88 9-CF ₃ II II 7 76 5-CI B-CH ₃ II 7 78 5-C1 B-CH ₃ II 7 78 6-C1 B-CH ₃ II 7 78		2-CH ₃	6-CH ₃	Ħ	H	7	59	167-169
6-0CH ₃ H H 7 77 8-0CH ₃ H H 7 77 6-Cl II H 7 68 7-CP ₃ II II 7 88 8-CP ₃ II II 7 76 6-Cl ₃ II II 7 42 6-Cl ₃ II II 7 78 6-Cl ₂ II II 7 78		2-CH ₃	6-сн ₃	н	н	<i>L</i> ·	11	143-145
8-0CII ₃ H H T T7 6-C1 II H 7 68 7-CF ₃ II II 7 88 8-CI II II 76 76 9-CF ₃ II II 7 42 5-C1 8-CII ₃ II 7 78 6-C1 8-CII ₃ II 7 66		2-сн3	6-0CH ₃	H	н	7	98	191-192
6-C1 II H 7 68 7-CP ₃ II II 7 88 8-CP ₃ II II 7 76 9-CP ₃ II II 7 42 5-C1 8-CII ₃ II 7 78 6-C1 8-CII ₃ II 7 66		2-CH ₃	8-00113	H	· H	7	77	186-187
B-C1 II II 7 88 7-CF ₃ II II 7 76 B-CF ₃ II II 7 42 5-C1 8-CII ₃ II 7 78 6-C1 8-CII ₃ II 7 78	<u> </u>	2-CII3	10-9	Ħ	H	7	69	194-195
7-CF3 II II 7 76 8-CF3 II II 7 42 '5-C1 8-CH3 II 7 78 6-C1 8-CH3 II 7 78		2-CH,	12-8	1	Ħ	7	-88	199-200
B-CP ₃ II II 7 42 '5-C1 B-CII ₃ II 7 78 6-C1 B-CH ₃ II 7 66	<u>.</u>	2-CH ₃	7-CP3	II	Ħ	7	76	205-207
5-C1 8-CH ₂ H 7 78 6-C1 8-CH ₂ H 66		2-CH ₂	8-017	H	Ħ	7	42	183-184
6-C1 B-CH ₂ H 7		2-CH ₃	, 5-C1	8-CII3	H	7	78	184-186
	↓	2-CH ₃	12 - 9	8-CH ₃	н	. 7	99	197-199

7-C1 8-CH3 H 7 6-C1 8-C1 H 7 7-C1 8-C1 H T 6-CH3 H H 15 8-CH3 H H 6 9-CC1 H H 6 8-CC1 H H 6 8-CC1 H H 6 8-CC1 H H 6
8-C1 8-C1 H H
7-c1 6-c1 7-c1 6-cH ₃ 8-cH ₃ 8-c1 8-cC1 ₃

		= =	
	= =		2
СН. 15		в-сн,	6-C1 8-CH
сн ₃ 15) (C	8-CH ₃	7-C1 8-CH
сн ₃ 15		8-C1	6-01 8-01
сн ₃ 15		8-C1	7-01 8-01
CH ₂ CH ₃ 7		#	7-с1 н
CH ₂ CH ₃ 7		Ħ	н
CH ₂ CH ₃ 7		Н	6-сн ₃ п
CII ₂ CH ₃ 7		H	8-сп3 н
сн ₂ сн ₃ 15		H	е-осп ₃ н
cH ₂ CH ₃ 7		H	н енгосн
CH2CH3 15		H	B-CP ₂ H

2-CH2	6 - 01	8-сн.	CII 2CH3	15	44	191-193
2-CH ₂	7-c1	8-СН3	CH ₂ CH ₃	15	72	155-156
2-CH2	6-cı	8-01	сн2сн3	15	85	177-178
2-CH3	7-01	8-C1	сн2сн3	15	32	172-174
	. 1		1	3	ŧ	1
		•				·
						·
,						
						•
					-	

Compounds of the general Formula (Ic)

No.	T _t		14. 3	18. 14.	Method	Yield (%)	<u>.</u> 0
83	3-CH ₃	#	Ħ	П	16	7.1	79-80
84	3-c _{II} 3	6-0113	1	11	16	68	98–90
95	3-CII ₃	7-C113	H	Н	16	87	79-80
98	3-CH ₃	B-CII3	H	н	10	30	101-66
87	3-CH ₃	6-cH2CH3		н	. 91	58	81-83
88	3-CH ₃	7-cH2CH3	H	Ħ	16	64	72-73
89	3-cH ₃	8-c112c113	11	Ħ	16	41	79-80
90	3-CH ₃	6-00113	Π	Ħ	10	75	87-89
91	3-CH ₃	6-cı	Н	H	10	66	148-150
92	3-CH ₃	7-cı	Ħ	H	10	98	119-120
93	3-CII ₃	5-c11 ₃	7-c11 ₃		91	70	137-139
94	3-c11 ₃	6-0113	7-c11 ₃	11	16	62	117-115

	138-140	126-128	118-119	194-195	147-148	111-113	134-136	134-135	124-126	.124-126	193-195	169-170	8	
i :: :	51	. 84	91	90	96	66	7.1	99	63	11	99	62	D	
	16	16	16	10	10	16	16	lo	10	10	10	11	1	
	Н	Н	H	Ħ	H	H	H	н	H	II	H	CH ₃	1	
-	8-CH ₃	8-011,	B-CH ₂	8-CH ₃	8-CII3	, H	H	H	Н	II	H	II	8	
· ·	5-CH ₃	6-CH2	7-CH.	601	 7-C1	н	6-сн3	7-CH2	8-CH2	6-0CH ₂	7-61	6-0013	8	
·. · · · · · · · · · · · · · · · · · ·	3-CH ₂	3-CH.	3-CH.	3-CH.	3~CH,	4-CH.	4=CH2	4-CH.	A_CH	4-CH_	4-CII.	4-CC1-3	8	
	95	96	2,6	98	66	90[101	200	200	John Tollins	201	106	8	

205-206 134-136 213-215 19 -192 125-126 158-160 188-190 124-125 96-96 165-166 170-171 144-145 <u>ಕ</u>ಂ ರ ಬ X101d (%) 92 68 98 89 9 9 8 62 66 51 84 Method 18 18 18 17 18 18 18 11 17 11 17 17 я 4 = = Ξ = Ħ = \equiv Ħ H = Ξ H 8-CII G-CII ≃ຕ = = Ξ Ξ Ħ Ξ 6-0011 6-C113 7-C11₃ ≃ິ 8-CH3 7-c113 6-c₁₁3 7-C1 10-9 7-01 6-C1 Ξ 4-CH3 4-CII3 3-CH3 3-CII 3-CH3 4-CH3 3-CH3 $3-CH_3$ $3-CH_{\gamma}$ 3-CH₃ 3-c113 3-CH3 <u>1</u> Compound No. 118 911 115 117 114 112 113 108 109 110 נננ 107

Compounds of the general Formula (14)

135-137	152-154	158-160	211-212	215-216	204-205	212-213	205-207	213-215	205-206	226–227	228-230	172-174	189-190
50	81	83	84	74	85	74	72	. 6L	74	40	18	78	74
18	16	16	17	18	1.1	18	18	18	18	1.8	1.8	1.1	1.7
	Н	H	снз	CH ₃	CHJ	CH3	CH3	CH3	CH3	CH2	CH ₃	CHJ	CH ₃
. н	н	Н	Н	н	H	н	H	H	H	B-CH,	8-CH ₂	H	н
8-CH,	6-0CH	7-01	H		7-CH,	8-CH,		6-01	7-61	[D=9	7-01	H	6-CH ₃
4-CH.	ν-Cil	4-CH	3-GH,	3-CH,	3-CH	3CH.	3-CH	3_CH	3-CH	3 AH	3-CH-	A_CH	4-CH ₃
911	1.20	121	122	123	124	105	361	70.	128		427	201	132

172-174	188-190	192-193	179~180	187-189	209-211	145-146	190-192	192-195	203-205	191-193	185-186	214-215	130-131
59	. 29	98	79	85	68	57	89	29	29	73	50	72	92
18	18	17	17	17	18	17	18	17	18	17	18	18	17
снэ	CHJ	CII.3	сн3	сн2сн3	CH ₂ CH ₃	сн2сн3	CII2CH3	CH ₂ CH ₃	сн2сн3	сн2сн3	CH2CH3	CH2CH3	сн2сн3
. =	Н	.][H	·H	Н	Н	н	H	Н	Н	в-сн3	8-CII3	Ħ
7-CH ₃	в-сн3	6-00113	7-01	; ;	6-сн3	7-CH ₃	8-CH ₂	6-осн ₃	6-01	17-01	E-C1	7-01	И
4-CH ₃	4-CH ₂	4-CH ₃	4-CH ₃	3-CH ₃	3-сн ₃	3-CH ₃	3-CH,	3-CII	3-CH ₂	3-CH ₂	3-СН3	3-CH ₃	4-CH ₃
133	134	135	136	137	138	139	140	141	142	143	144	145	146

						 - 41	 	 ·	
132-133	117-118	154-156	163–165	149-152	t				
37	9.	63	40	63	•				·
18	18	18	18	18	1				
CII2CII3	снгснз	сн2сн3	сн2сн3	CH2CH3	1				
Ħ	Π	Н	Н	H	1				
6-сн3	7-CH ₂	в-сн3 .	6-осн3	1-01	1				
4-CII3	4-CH ₂	4-CH ₃	1	:	1				
147	148	149	150	151	1				

What we claim is:

1. Triazolyl quinoline derivatives of the general Formula (I)

5

10

15

20

$$\begin{array}{c|c}
R_2 & & \\
\hline
R_3 & & \\
\hline
\mathbf{I} & & \\
\end{array}$$

$$\begin{array}{c|c}
R_1 & & \\
\hline
N & & \\
\hline
N & & \\
\end{array}$$

$$\begin{array}{c|c}
R_1 & & \\
\hline
N & & \\
\hline
N & & \\
\end{array}$$

$$\begin{array}{c|c}
(I) \\
\end{array}$$

(wherein

stands for hydrogen, methyl, trihalogenomethyl or carboxy;

is hydrogen, halogen, C₁₋₄ alkyl, hydroxy,
C₁₋₄ alkoxy, phenoxy, amino, acetamino,
C₁₋₄ dialkylamino, acetyl, benzoyl,

methylthio, carboxy, cyano, ethoxycarbonyl, nitro or trihalogenomethyl;

represents hydrogen, C_{1-4} alkyl or C_{1-4} alkoxy;

 R^4 stands for hydrogen, methyl or ethyl and X stands for a valency bond or -S-)

25 and acid addition salts thereof.

2. Compounds according to Claim 1 of the general Formula (Ia)

30

$$R_{2}$$
 R_{3}
 R_{3}
 R_{4}
 R_{1}
 R_{3}
 R_{4}
 R_{1}

35

(wherein R^1 , R^2 , R^3 and R^4 are as stated in Claim 1) and acid addition salts thereof.

3. Compounds according to Claim 1 of the general Formula (Ib)

 R_2 R_3 R_4 R_4 R_5 R_4 R_5 R_5 R_5 R_6 R_7 R_8 R_9 R_9

(wherein R¹, R², R³ and R⁴ are as stated in Claim
1) and acid addition salts thereof.
4. Compounds according to Claim 1 of the general Formula (Ic)

wherein R¹, R², R³ and R⁴ are as stated in Claim 1)
30 and acid addition salts thereof.

5. Compounds according to Claim 1 of the general Formula (Id)

$$\begin{array}{c|c}
R_2 & R_1 \\
\hline
R_3 & Id
\end{array}$$
(Id)

10

(wherein R^1 , R^2 , R^3 and R^4 are as stated in Claim 1) and acid addition salts thereof.

6. A process for the preparation of

L5 triazolyl quinoline derivatives of the general Formula (I)

(wherein

stands for hydrogen, methyl, trihalogenomethyl or carboxy;

R² stands for hydrogen, halogen, C₁₋₁ alkyl,
hydroxy, C₁₋₁ alkoxy, phenoxy, amino,
acetamino, C₁₋₁ dialkylamino, acetyl,
benzoyl, methylthio, carboxy, cyano,
ethoxycarbonyl, nitro or trihalogeno-

ethoxycarbonyl, nitro or trihalogeno methyl;

represents hydrogen, C₁₋₁ alkyl or C₁₋₄ alkoxy;

35 R4 stands for hydrogen, methyl or ethyl and

x stands for a valency bond or -S-) and acid addition salts thereof which comprises reacting a halogeno quinoline derivative of the general Formula (II)

5

$$R_2$$
 Cl R_3 (III)

10

or (III)

15

$$R_2$$
 R_1
 R_3
 R_1
 R_3
 R_1
 R_3

20

(wherein R^1 , R^2 and R^3 are as stated above) with a 1,2,4-triazole of the general Formula (IV)

25

$$R_4$$
 (IV)

30 or (V)

$$R_4$$

35

(wherein R⁴ is as stated above) in the presence or absence of a solvent, in the presence or absence of an acid or a base, at a temperature between 0 °C and 200 °C and if desired, isolating the product thus obtained in the form of the free base or an acid addition salt thereof.

7. A process according to Claim 6 for the preparation of compounds of the general Formula (Ia) which comprises reacting a 4-chloro-10 -quinoline derivative of the general Formula (II) with a 1,2,4-triazole of the general Formula (IV) (wherein R¹, R², R³ and R⁴ are as stated in Claim 6).

- 8. A process according to Claim 6 for
 15 the preparation of compounds of the general
 Formula (Ib) which comprises reacting a 4-chloro-quinoline derivative of the general Formula
 (II) with a 3-mercapto-1,2,4-triazole of the general Formula (V) (wherein R¹, R², R³ and R⁴ are as
 20 stated in Claim 6.).
 - 9. A process according to Claim 6 for the preparation of compounds of the general Formula (Ic) which comprises reacting a 2-chloro--quinoline of the general Formula (III) with a
- 1,2,4-triazole of the general Formula (IV) (wherein \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{R}^4 are as stated in Claim 6).
 - 10. A process according to Claim 6 for the preparation of compounds of the general Formula (Id) which comprises reacting a 2-chloro-
- -quinoline derivative of the general Formula (III) with a 3-mercapto-1,2,4-triazole of the general Formula (V) (wherein R^1 , R^2 , R^3 and R^4 are as stated in Claim 6.).
- 11. Pharmaceutical compositions comprising 35 in an effective amount at least one compound of the

general Formula (I) (wherein R¹, R², R³, R⁴ and X are as stated in Claim I) or a pharmaceutically acceptable acid addition salt thereof as active ingredient in admixture with suitable inert solid or liquid pharmaceutical carriers.

- 12. A process for the preparation of pharmaceutical compositions according to Claim 11 which comprises admixing at least one compound of the general Formula (I) or a pharmaceutically 10 acceptable acid addition salt thereof with suitable inert solid or liquid pharmaceutical carriers.
- 13. Fungicidal compositions comprising as active ingredient in an effective amount at least one compound of the general Formula (I)

 15 (wherein R¹, R², R³, R⁴ and X are as stated in Claim 1) or an acid addition salt thereof in admixture with suitable inert solid or liquid carriers or diluents.
- 14. A process for the preparation
 20 of fungicidal compositions according to Claim 13
 which comprises admixing at least one compound of
 the general Formula (I) or an acid addition salt
 thereof with suitable inert solid or liquid
 carriers or diluents.
- 25 15. A method for combating fungal diseases which comprises applying an effective amount of a fungicidal composition according to Claim 13 onto the plants, parts or environment thereof or the pests or the objects to be protected.
- 30 l6. Compounds of the general Formula (I) and acid addition salts thereof whenever prepared by the process according to any of Claims 6-10.
 - 17. A process as substantially disclosed herein with particular reference to the Examples.

INTERNATIONAL SEARCH REP RT

International Application No PCT/HU 86/00026

	SIFICATION OF SUBJECT MATTER (if several class)		
According	to International Patent Classification (IPC) or to both Nati C 07 D 401/04, 401/12, //A	O1 N 43/653. A 61	K 31/47.
C 07	D 401/04, 249:08, 215:12) ((C 07 D 401/12, 249	:08, 215:36)
	SEARCHED		
	Minimum Documen	itation Searched 7	
Classification		Classification Symbols	V. 4
Int.	C1. ⁴ C 07 D 401/04, 401/1	.2	
	Documentation Searched other to the Extent that such Documents	han Minimum Documentation are Included in the Fields Searched ®	
	AT	, , , , , , , , , , , , , , , , , , ,	•
III. DOCU	MENTS CONSIDERED TO BE RELEVANT		
ategory *	Citation of Document, 11 with indication, where app	ropriate, of the relevant passages 12	Relevant to Claim No. 13
X	Chemical Abstracts, vol. 9 October 24, 1983 (Columbus E. G. KNYSH "Synthesis and vity of some 5-heterylmero zoles", see page 592, colu 139 866z, KhimForm. Zh, 801 (Russ).	s, Ohio, USA), i biological acti- capto-1,2,4-tria- umn 1, abstract-no.	(1)
х	DE, A, 2 147 794 (MERCK) 3 (30.03.72), see claim 1, p	30 March 1972 Dage 4, lines 9-18.	(1,11)
	Chemical Abstracts, vol. 9 June 22, 1981 (Columbus, Columbus, Colu	Ohio, USA), M. Byl tetrazolide Ligonucleotides Oroach", see page Droach 126f, Chiba	(1)
			·
"A" doc con "E" earl filin "L" doc whire cuts "O" doc oth	Il categories of cited documents: 19 rument defining the general state of the art which is not sidared to be of particular relevance lier document but published on or after the international g date rument which may throw doubts on priority claim(s) or ch is cited to establish the publication date of another tion or other special reason (as specified) rument referring to an oral disclosure, use, exhibition or er means rument published prior to the international filling date but or than the priority date claimed	"T" later document published after or priority date and not in conficted to understand the princip invention "X" document of particular relevar cannot be considered novel or involve an inventive step "Y" document of particular relevar cannot be considered to involve document is combined with only ments, such combination being in the art. "&" document member of the same	lict with the application but le or theory underlying the claimed invention or cannot be considered to cannot be claimed invention on inventive step when the or more other such docuous to a person shiller
IV. CERT	IFICATION		
Date of the	Actual Completion of the International Search	Date of Mailing of this International S	earch Report
2	3 June 1986 (23.06.86)	25 June 1986 (29	5 O6 861
	nal Searching Authority	Signature of Authorized Officer	2.00.00)
	RIAN PATENT OFFICE	MoNIN	n
2.00	A P10 (second sheet) (teause 1966)		,y

atagary °	MENTS CONSIDERED TO DE RELEVANT (COMPINUED FROM THE SEC NO SHEET Citation of Document, with indication, where appropriate, of the relevant passages	Rolovant to Claim No
A	Chemical Abstracts, vol. 83, no. 23, issued December 8, 1975 (Columbus, Ohio, USA), J. J. BALDWIN "4-Trifluoromethylimidazoles and 5-(4-pyridyl)-1,2,4-triazoles, new classes of xanthine oxidase inhibitors", see page 14, column 1, abstract-no. 188 199n, J. Med. Chem 1975, 18(9), 895-900 (Eng).	(1)
	Chemical Abstracts, vol. 98, no. 17, issued April 25, 1983 (Columbus, Ohio, USA), P.K. KADABA "Triazolines", see page 572, column 2, abstract-no. 143 336y, J. Prakt. Chem. 1982, 324(5), 857-64 (Eng).	(1)
j 		
	·	
		-
İ	·	
ļ		
•		
•		
į		,
j		
	. ,	
Ì		
j		•

Form PCT-ISA/210 (oxtra shoot) (January 1805)

Anhang zum internationalen Recherchenbericht über die internationale Patentanmeldung Nr.

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben. Diese Angaben dienen nur zur Untersichtung und erfolgen ohne Gewähr.

Annex to the International Search Report on International Patent Application No. PCT/HU 86/00026

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned International search report. The Austrian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Annexe au rapport de recherche internationale relatif à la demande de brevet international n°.

La présente annexe indique les membres de la famille de brevets relatifs aux documents de brevets cités dans le rapport de recherche internationale visé ci-dessus. Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office autrichier des brevets.

Im Recherchenbericht
angeführtes Patentdokument
Patent document cited
in search report
Document de brevet cité
dans le rapport
de recherche

Datum der
Veröffentlichung
Publication
date
Date de
publication

Mitglied(er) der
Patentfamilie
Patent family
member(s)
Membre(s) de la
famille de
brevets

Datum
Veröffenti-unur.
Publication
date
Date de
publication

DE-A-2 147 794

30/03/1972

AU-A1-33 427/71 22/03/1970 BE-A1-781 055 22/09/197: CA-A1-950 463 02/07/197-CH-A -562 813 13/06/1978 FR-A5- 2 107 984 12/05/197: FR-B1- 2 107 984 01/08/197: GB-A - 1 358 893 03/07/197 JP-B4-49-046 622 11/12/197 NL-A - 7 112 373 28/03/197: US-A - 3 865 945 11/02, US-A - 3 879 404 22/04/1975 US-A - 4 011 218 08/03/197 US-A - 4 071 518 31/01/1978 US-A - 4 102 889 25/07/1978 US-A - 4 156 085 22/05/197: US-A - 4 198 513 15/04/1980 US-A - 4 256 887 17/03/198:

RNSDOCID - WO REDETEL 1 -