SPARRAfairness example

James Liley, Ioanna Thoma

2025-04-09

Introduction

In this vignette, we will demonstrate how to calculate and plot a range of performance metrics for a clinical risk score across demographic groups. We will use both simulated and real data. Please see our manuscript for further details (Thoma et al. 2024).

Our main risk score of interest is the SPARRA score (Health and Social Care Information Programme 2011), which predicts emergency hospital admission in the coming year given data from electronic health records for the majority of the population of Scotland. We analyse the currently-used SPARRA version 3 score but this package and vignette also allows for analysis of the in-development SPARRA version 4 score (sparrav4?).

Simulation of data

Raw data for the SPARRA version 3 score comprises individual-level medical records and is private. In order to demonstrate computation of performance metrics, we will begin by simulating semi-realistic data for 10,000 individuals.

```
# Load packages
library(SPARRAfairness)
#> Loading required package: matrixStats
#> Loading required package: ranger
library(ranger)
# Get data
data(all_data)
data(decomposition_matrix)
# Set random seed
seed=463825
set.seed(seed)
# Simulate data
pop_data=sim_pop_data(10000)
# First few rows
head(pop_data)
     age sexM raceNW prevAdm SIMD urban_rural mainland_island target id
     39 TRUE FALSE
                            1
                                 8
                                         FALSE
                                                         FALSE
#> 2 46 FALSE FALSE
                                                                       2
                                10
                                         FALSE
                                                         FALSE
                                                                     1
                            1
#> 3 22 TRUE FALSE
                            0
                                 9
                                         FALSE
                                                         FALSE
                                                                     0
                                                                       3
     77 FALSE FALSE
                            0
                                10
                                         FALSE
                                                         FALSE
#> 5 88 TRUE FALSE
                            6
                                10
                                          TRUE
                                                         FALSE
                                                                       5
                                                                     1
#> 6 74 FALSE FALSE
                            9
                                 5
                                         FALSE
                                                         FALSE
                                                                     1
```

```
#> reason
#> 1 Blood
#> 2 Ear
#> 3 <NA>
#> 4 Circulatory
#> 5 Died.of.Genitourinary
#> 6 Congenital
```

Fit risk score

We will fit a risk score to this data using a random forest, using the ranger package with default settings (500 trees). We will use scores generated from a model fitted directly to our simulated data, which will be somewhat overfitted, but for our purposes will be adequate.

```
# Fit model
sim_model=ranger(
  target~age+sexM+raceNW+prevAdm+SIMD+urban_rural+mainland_island,
  data=pop_data)

# Model predictions
score=predict(sim_model,pop_data)$predictions

# Affix to pop_data
pop_data$score=score
```

Define groups

We will define groups based on urban/rural postcode: 1 will be urban, 2 rural

```
group1=which(pop_data$urban_rural==FALSE)
group2=which(pop_data$urban_rural==TRUE)
```

Generate metrics

We will look at threshold score values evenly spaced between 0 and 1.

```
score_cutoffs=seq(0,1,length=101)
```

Score distributions

We begin with distribution of scores, or demographic parity Zliobaite (2015):

```
dem_par=demographic_parity(pop_data$score,group1,group2,cutoffs=score_cutoffs)
```

Counterfactual score distributions

We now consider the distribution of scores of a counterfactual set of individuals, distributed as though they were urban residents, but are rural. We take age and sex as downstream of urban/rural status. Essentially we isolate causes of differential score distributions to those attributable to age and sex. We do this by generating a 'counterfactual sample' from our data. Please see the examples for counterfactual_yhat for a more in-depth look at what we mean by counterfactuals and what this funtion does.

Score performance

We then look at performance in each group, first looking at ROC curves. In generating ROC and PRC curves, the functions getroc and getprc return 100 equally-spaced points along the curve, rather than the full curve which would have 10,000 points.

```
roc1=getroc(pop_data$target[group1],pop_data$score[group1])
#> Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
#> collapsing to unique 'x' values
roc2=getroc(pop_data$target[group2],pop_data$score[group2])
#> Warning in regularize.values(x, y, ties, missing(ties), na.rm = na.rm):
#> collapsing to unique 'x' values
```

then PR curves

```
prc1=getprc(pop_data$target[group1],pop_data$score[group1])
prc2=getprc(pop_data$target[group2],pop_data$score[group2])
```

then calibration curves (Brocker and Smith 2007):

```
cal1=getcal(pop_data$target[group1],pop_data$score[group1])
cal2=getcal(pop_data$target[group2],pop_data$score[group2])
```

False omission and false discovery rates

We assess false omission rate. Where Y is target, \hat{Y} is score, G is group, this is $P(Y = 1|\hat{Y} \leq c, G = g)$, considered across groups g and cutoffs c. We compute this by defining a specifications vector (see documentation of function group_fairness):

We then assess false discovery rate: $P(Y=0|\hat{Y}>c,G=g)$, considered across groups g and cutoffs c.

Since false discovery and false positive rates might be influenced by different distributions of age and sex between groups, we adjust for these. We define a categorisation by age and sex

```
group1,group2,cutoffs=score_cutoffs,nboot=10)
```

Plotting data

We now plot the output of these computations. We also plot similar figures for real data.

We set some general settings

Score distributions

We plot demographic parity on a log scale. Note score is given as a percentage.

An equivalent plot for real data:

Counterfactual score distributions

We plot counterfactual score distributions in a similar way

An equivalent plot for real data:

Score performance

We plot ROC curves, PR curves and calibration curves for both groups

For real data:

We now plot PR curves:

For real data:

Finally, we plot calibration curves (reliability diagrams):

For real data:

False omission and false discovery rates

We plot raw false omission rates as follows:

and false discovery rates as follows:

For real data, we plot false omission rates as follows:

and false discovery rates as follows:

We plot adjusted false omission rates as follows:

and false discovery rates as follows:

For real data, we plot false omission rates as follows:

and false discovery rates as follows:

Decompose FOR by admission type

Amongst individuals who have had a hospital admission, we may wish to probe the distribution of reasons for admission. This distribution of reasons may be expected to change across demographic groups. We will use a score threshold of 50% or 0.5.

We begin by decomposing admissions by type and score quantile. See documentation for plot_decomp() for details of what we produce.

We now plot the corresponding figure for real data:

Frequencies of admission types amongst false omissions

A useful thing to consider is the proportions of each admission type (respiratory, cardiac etc) amongst individuals with a low SPARRA score as compared with the proportion amongst all individuals. To do this, we consider a particular category (e.g., urban residents) and a score threshold and the two groups of individuals:

- 1. All individuals in that category who had an emergency admission
- 2. All individuals in that category who had an emergency admission and who had a SPARRA score less than the threshold.

Individuals in group 2 are, in a sense, those for whom an emergency admission was unexpected. If a particular admission type is more common in group 2 than in group 1, it indicates that that admission type is relatively harder to predict amongst individuals in that category, and such admissions are less expected.

We first plot an example with simulated data:

We now plot the corresponding figure for real data:

Plot a diagram

Finally, if we so wish, we may illustrate a proportion as a group of people of various colours. We may plot an individual human figure as follows:

```
plot(0,type="n",bty="n",ann=F,xlim=c(-1,1)/2,ylim=c(-1,1)/2)
drawperson(0,0,col="blue",border="gray",lwd=3)
```


and illustrate a proportion as follows. Human igures in the 'ci' region are coloured with a gradient between colours.

drawprop(0.3,ci=c(0.2,0.4),col1 = "blue",col2="gray")

References

Brocker, Jochen, and Leonard A Smith. 2007. "Increasing the Reliability of Reliability Diagrams." Weather and Forecasting 22 (3): 651–61.

Calders, Toon, Faisal Kamiran, and Mykola Pechenizkiy. 2009. "Building Classifiers with Independency Constraints." In 2009 IEEE International Conference on Data Mining Workshops, 13–18. IEEE.

Health and Social Care Information Programme. 2011. "A Report on the Development of SPARRA Version 3 (Developing Risk Prediction to Support Preventative and Anticipatory Care in Scotland)."

Thoma, Ioanna, Simon Rogers, Jillian Ireland, Rachel Porteous, Katie Borland, Catalina A Vallejos, Louis JM Aslett, and James Liley. 2024. "Differential Behaviour of a Risk Score for Emergency Hospital Admission by Demographics in Scotland—a Retrospective Study." PLOS Digital Health 3 (12): e0000675.

Zliobaite, Indre. 2015. "On the Relation Between Accuracy and Fairness in Binary Classification." arXiv Preprint arXiv:1505.05723.