Tutorial Sheet 1 Nonlinear Programming

- 1. Consider the constraint set $(1 x_1 x_2)^3 \ge 0$, $x_1, x_2 \ge 0$. Show that at $x^* = (1/2, 1/2)^t, D(x^*) \ne \mathcal{D}(x^*)$.
- 2. Consider the constraint set $x_1 + x_2 \le 3$, $x_1 \ge 0$, $x_1^2 + x_2^2 \le 16$. For the extreme points x at the intersection of the constraints, determine the sets D(x), $\mathcal{D}(x)$.
- 3. The feasible region of some optimization problem is given by $\{x \in R^2 : x_1 \ge 2, x_2 \ge 0\}$. Which of the vectors $(-2,2)^t$, $(0,2)^t$, $(2,0)^t$ are feasible directions at $(4,1)^t$, $(2,3)^t$, $(1,4)^t$, respectively.
- 4. Show that $f(x_1, x_2) = (x_2 x_1^2)^2 + x_1^5$ has only one stationary point which is neither the point of maxima nor the point of minima of f.
- 5. Use graphical approach to find the solution of the following problem:

6. Solve the following nonlinear problems graphically and verify the KKT conditions at an optimal point.

iii. min
$$f(x) = (x_1 - 4)^2 + (x_2 - 4)^2$$
 subject to $x_1 + x_2 \le 4$ subject to $x_1^2 + x_2^2 \le 4$ subject to $x_1^2 + x_2^2 \le 4$ $x_1^2 \ge x_2^2$.

7. Find the KKT point of

$$\min_{\substack{\text{subject to } \mathbf{x}^2 = \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 \\ \mathbf{x}, \mathbf{y}, \mathbf{z} \ge 0}} \min_{\substack{\text{subject to } \mathbf{x}^2 = \mathbf{z}^2 \\ \mathbf{x}, \mathbf{y}, \mathbf{z} \ge 0}} \mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2$$

8. Determine if the KKT conditions are satisfied at the point $(1,1)^t$ for the problem

$$\min_{\substack{\text{subject to } \mathbf{x}_1^2 + \mathbf{x}_2^2 \leq 2 \\ x_1 \geq 0.}} \mathbf{f}(\mathbf{x}) = 100(\mathbf{x}_2 - \mathbf{x}_1^2)^2 + (1 - x_1)^2$$

- 9. Points $(0,0)^t$ and $(6,9)^t$ are probable points of minimizers of the optimization problem with $f(x_1,x_2) = x_1^3 x_1^2 x_2 + 2x_2^2$ over the set $x_1, x_2 \ge 0$. Check whether the necessary KKT conditions are satisfied at the points.
- 10. Consider the following problem

$$\min_{\substack{\text{subject to } 2\mathbf{x}_1 + \mathbf{x}_2^2 + \ 2\mathbf{x}_2\\ \text{subject to } 2\mathbf{x}_1 + 3\mathbf{x}_2 \geq 1\\ x_1^2 + x_2^2 \leq 1\\ x_1, x_2 \geq 0}$$

- **a.** Are (1/2, 0) and $(1/2, \sqrt{3}/2)$ local minimum?
- **b.** Test if any of these is a global optimal solution?
- 11. Check the following functions for convexity:

$$f(x_1, x_2) = e^{x_1} + x_2^2 + 5$$
 $f(x_1, x_2) = 3x_1^2 - 5x_1x_2 + x_2^2$ $f(x_1, x_2) = (1/4)x_1^4 - x_1^2 + x_2^2$

12. If $f_1(x)$ and $f_2(x)$ are convex functions on $S \subset \mathbb{R}^n$, then prove that $f(x) = \max\{f_1(x), f_2(x)\}$ is a convex function on S.

1