Basic linear algebra (with R practice)

Woojoo Lee

Basic vector operations

Remark) Check the geometric meaning of the "addition" and "scalar multiplication".

Definition: Any set of m linearly independent vectors is called a **basis** for the vector space of all m-tuples of real numbers.

Every vector can be expressed as a unique linear combination of a fixed basis.

Ex:
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

2) Inner product

$$\mathbf{x}^T \mathbf{y} = \sum_i x_i y_i$$

Length:
$$\sqrt{\mathbf{x}^T \mathbf{x}}$$

Angle: $\cos(\theta) = \frac{\mathbf{x}^T \mathbf{y}}{\sqrt{\mathbf{x}^T \mathbf{x}} \sqrt{\mathbf{y}^T \mathbf{y}}} = \frac{\mathbf{x}^T}{\sqrt{\mathbf{x}^T \mathbf{x}}} \frac{\mathbf{y}}{\sqrt{\mathbf{y}^T \mathbf{y}}}$

x and **y** are perpendicular $\iff \mathbf{x}^T \mathbf{v} = 0$

Ex:
$$\mathbf{x}_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

Remark) 1) Compare your results with R results.

Ex:
$$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \mathbf{x}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

2) Make a R-function to compute the angle.

The projection of a vector \mathbf{x} on a vector \mathbf{y} is

$$\frac{\mathbf{x}^T\mathbf{y}}{\mathbf{y}^T\mathbf{y}}\mathbf{y}$$

This definition can be used for constructing perpendicular vectors.

Ex) Construct perpendicular vectors from

$$\mathbf{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Given linearly independent vectors $\mathbf{x}_1, \dots, \mathbf{x}_k$,

how can we make mutually perpendicular vectors with the same linear span?

Gram-Schmidt process

1)
$$\mathbf{u}_1 = \mathbf{x}_1$$

2)
$$\mathbf{u}_j = \mathbf{x}_j - \frac{\mathbf{x}_j^T \mathbf{u}_1}{\mathbf{u}_1^T \mathbf{u}_1} \mathbf{u}_1 - \dots - \frac{\mathbf{x}_j^T \mathbf{u}_{j-1}}{\mathbf{u}_{j-1}^T \mathbf{u}_{j-1}} \mathbf{u}_{j-1}$$

for $j=2,\cdots,k$.

Remark 1) Do "?qr" in R.

Matrix: basic definitions and elementary operations

Matrix addition/ scalar multiplication

Transpose

Identity matrix

Matrix inverse

Remark) See how to input the matrix in R.

Remark) Matrix multiplication is, in general, not commutative.

Consider a $p \times q$ matrix A:

$$A = (a_{ij})(i = 1, \dots, p, q = 1, \dots, q)$$

- 1. A is a square matrix if p = q.
- 2. $(AB)^T = B^T A^T$ where T denotes the transpose.
- 3. A square matrix A is symmetric if $A = A^T$.
- 4. A square matrix A is diagonal if $a_{ij} = 0$ for all $i \neq j$
- 5. A square matrix A is orthogonal if $AA^T = A^TA = I_p$.
- 6. A square matrix A is idempotent if AA = A.

Ex:
$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}, \mathbf{Q} = \begin{pmatrix} -1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}, \mathbf{R} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
$$I_n - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T, A(A^T A)^{-1} A^T$$

Some terminologies

- Row rank: the maximum number of linearly independent rows
- Column rank: the maximum number of linearly independent columns
- The row rank and the column rank of a matrix are equal.
- The rank of matrix is either the row rank or the column rank.
- A square matrix **A** is nonsingular if A has full rank.

See Result 2A.10. and 2A.11. for the details related to "inverse".

Remark) Do "?solve" in R.

The determinant of a square matrix A is denoted by |A| or det(A). i.e.

- 1. For a 2×2 matrix A, $|A| = a_{11}a_{22} a_{12}a_{21}$.
- 2. For $p \times p$ matrix A, $|aA| = a^p |A|$.
- 3. For two $p \times p$ matrices A and B, |AB| = |A||B|.
- 4. If A is orthogonal matrix, $|A| = \pm 1$.
- 5. A square matrix A is nonsingular if $|A| \neq 0$.

Ex:
$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$$

The trace of a square matrix A is the sum of diagnoal elements. i.e.

$$tr(A) = \sum_{i} A_{ii}$$

See Result 2A.12. for the details related to "trace".

Some useful formulas are

- 1. tr(aA + bB) = atr(A) + btr(B) for scalars a and b (the trace is a linear function)
- $2. tr(A) = tr(A^T)$
- 3. tr(AB) = tr(BA)
- 4. $tr(AA^T) = \sum_{i,j} A_{ij}^2$

Ex:
$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$$

Eigenvalue/ eigenvector

A square matrix A is said to have an eigenvalue λ and its associated eigenvector $\mathbf{x}(\neq 0)$, if

$$A\mathbf{x} = \lambda \mathbf{x}$$

Ordinarily, we normalize \mathbf{x} to have unit length.

Ex: Compute eigenvalues and eigenvectors:

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 0 \\ 1 & 3 \end{array}\right)$$

Eigen-analysis

Spectral decomposition:

Let A be a $k \times k$ symmetric matrix. Then A can be expressed in terms of its k eigenvalue-eigenvectors pairs (λ_i, e_i) as

$$A = \sum_{i=1}^{k} \lambda_i e_i e_i^T = P \Lambda P^T$$

where $P = [e_1, e_2, \dots, e_k]$ and $\Lambda = diag(\lambda_i)$

Remark) P is an orthogonal matrix.

Why is the spectral decomposition important?

For instance, consider A^d .

Some properties are

1.
$$|A| = \prod_i \lambda_i$$

1.
$$|A| = \prod_i \lambda_i$$

2. $tr(A) = \sum_i \lambda_i$

Note that the below is not always defined.

$$1)A^{-1}$$

$$2)A^{1/2}$$

$$3)A^{-1/2}$$

Now, do you understand why the spectral decomposition is important in statistics? E.g.- standardize multivariate random vectors.

$$A^{1/2}A^{-1/2} = A^{-1/2}A^{1/2} = I$$

Quadratic form

Let
$$\mathbf{x} = (x_1, \cdots, x_p)^T$$
.

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$$
 for a symmetric $p \times p$ matrix A .

Another representation:
$$Q(\mathbf{x}) = \sum_{i=1}^{p} \sum_{j=1}^{p} A_{ij} x_i x_j$$
.

$$\rightarrow Q(\mathbf{x})$$
 is called a quadratic form.

e.g.)
$$\mathbf{x} = (x_1, x_2, x_3)$$
 and $A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & -1 & -2 \\ 0 & -2 & 2 \end{pmatrix}$. Compute $Q(\mathbf{x})$.

Positive-definite matrix (PD)

Suppose that A is a symmetric matrix.

A is positive definite if

$$\mathbf{x}^T A \mathbf{x} > 0$$

for all $\mathbf{x} \neq 0$.

Remark) The characteristic of PD matrix can be understood easily in terms of its spectral decomposition.

Remark) A is positive definite if and only if every eigenvalue of A is positive.

If A is PD, A^{-1} is also PD?

Show that for all $(x_1, x_2) \neq (0, 0)$:

$$3x_1^2 + 2x_2^2 - 2\sqrt{2}x_1x_2 > 0.$$

Why does PD matrix have a special status?

Consider a quadratic form of $\mathbf{x}^T A \mathbf{x}$ where A is PD.

Let's check whether $\mathbf{x}^T A \mathbf{x}$ satisfies the three condition for the distance function.

Some useful techniques frequently used in multivariate analysis

Matrix inequalities (an extended version of Cauchy-Schwarz inequality.)

Let b and d be any two $p \times 1$ vectors.

1.
$$(b^T d)^2 \le (b^T b)(d^T d)$$

with equality if and only if b = cd for some constant c.

2.
$$(b^T d)^2 \le (b^T B b)(d^T B^{-1} d)$$

for a PD matrix B.

3.
$$\max_{x \neq 0} \frac{(x^T d)^2}{x^T B x} = d^T B^{-1} d$$

for $p \times p$ PD matrix B and d is a given vector.

4. $\max_{x \neq 0} \frac{x^T B x}{x^T x} = \lambda_1$ $\min_{x \neq 0} \frac{x^T B x}{x^T x} = \lambda_p$

for $p \times p$ PD matrix Bwith eigenvalues $\lambda_1 \geq \cdots \lambda_p \geq 0$. An application of the matrix inequalities

$$\max_{||a||=1} Var(a^T \mathbf{x})$$

Remark) Think of geometry of this problem!