TCS-502/TIT-502

B. TECH. (CSE/IT) (FIFTH SEMESTER) END SEMESTER EXAMINATION, 2019

DESIGN AND ANALYSIS OF ALGORITHMS

Time: Three Hours
Maximum Marks: 100

- Note: (i) The question paper contains five questions.
 - (ii) All questions are compulsory.
 - (iii) Instructions on how to attempt a question are mentioned against it.
 - (iv) Total marks assigned to each question are twenty.
- 1. Attempt any two parts of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) (i) Find the time complexity of function fun in term of 'n' and 'm' (if n > m).
 - (ii) What will be the value of 'p' at the end of function fun if n = 16 and m = 8:

```
fun(int n, int m)
{int p=0;
for (i=0; i<n; i++)
{for (j=0; j<m; j++)
{p++;
m--;
}
n--; p++;
```

(b) Derive run time complexity for the following recurrence relation using recursive tree method and verify using Master's method: 6, 4

$$T(n) = 3 T(n/9) + c$$
 assume $T(1) = c$

- (c) (i) Explain all asymptotic notation with the help of example.
 - (ii) Solve recurrence relation T (n) = T (n 2) + T (n 4) + 2 and assume T (1) = 2.
- 2. Attempt any two parts of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Apply Quick Sort algorithm on the following taking first element as pivot element:

8 4 2 1 3 6 5 7 12 10 11 9 14 15 13

- (b) (i) Give solution for following fractional-knapsack problem (knapsack size = 10).
 - (ii) If it is 0-1 knapsack, then what will be the solution? (Using dynamic program)

Item	Cost	Weight	
1,000	40	5	
2	20	2	
3	30	6	
4	30	5	

- (c) (i) Design the algorithm for activity selection problem using Greedy method.
 - (ii) Sort the following sequence in decreasing order using merge sort: 5

- 3. Attempt any two parts of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Apply Matrix Chain Multiplication Order algorithm for the following matrices:
 - (i) A1 = 2 * 4
 - (ii) A2 = 4 * 2
 - (iii) A3 = 2 * 3
 - (iv) A4 = 3 * 3

- (b) (i) Explain the Hamiltonian Circuit Problem with the example. (Using Backtracking approach) 5
 - (ii) Solve Assignment problem for the following input (Using Branch and Bound method):

	J1	J2	J3 .	J4
P1	9	2	3	6
P2	3	7	4	5
P3	1	2	- 6	. 5
P4	1	3	2	9

(c) (i) Write down algorithm for counting sort. Derive its time complexity.

-

(ii) Sort the following numbers using Radix sort:

5

2478 5932 481 2267 9634 7866 2314 4967 1583

- 4. Attempt any two parts of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Design the Bellman-Ford algorithm for finding existence of negative weight cycle in given Graph. Derive its time complexity.6, 4
 - (b) Write down Prim's algorithm for finding minimum spanning tree and apply this algorithm on the following graph:

- (c) (i) What are the different Graph Representations? Explain with the help of example.
 - (ii) Write down Floyd-Warshall's algorithm for finding all pair shortest path and gives order of time complexity.
- 5. Attempt any two parts of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) What is approximation algorithms? What is approximation ratio? Explain Vertex Cover problem with the help of example using approximation algorithm.
 - (b) What is P, NP, NPC and NP-hard class of problem? What is reducibility? Show the relationship among P, NP, NPC and NP-Hard with the help of diagram.
 - (c) What is set covering problem? Solve Set Cover problem using greedy approximation algorithm for the following sets:

 S1 = {11, 12, 15, 26, 29, 10} S2 = {26, 27, 10, 11} S3 = {11, 12, 13, 14} S4 = {13, 15, 26, 27, 28} S5 = {29, 10, 11, 12} S6 = {14, 28}