Практическая работа 1. Символьные вычисления

Цель работы. Изучение операторов символьного вычисления среды MathCad, приобретение навыков символьных вычислений в среде MathCad.

Задания для самостоятельной работы

- Найти предел, производную, интеграл или сумму ряда, используя операции символьных вычиспений MathCAD.
- 2 Решить аналитически (при помощи символьной функции solve) уравнение в MathCAD. Построить график заданной функции. Для одного из найденных корней повторить процедуру, но уже численным способом (посредством функции root), выбрав в качестве начального приближения любую точку в окрестности этого корня.
- 3 Для функции f(t) найти ее изображение, используя прямое преобразование Лапласа, а для функции F(s) найти ее оригинал при помощи обратного преобразования Лапласа.

Таблица 1.

№ вар	Задание 1	Задание 2	Задание 3
1	$\lim_{x \to \infty} \left(\sqrt{x + a} - \sqrt{x} \right)$	$\frac{\sqrt{x} - x^2}{\ln x + 1} = 0$	$f(t) = \sin(2t)\cos t$
2	$\frac{d}{dx}\frac{e^x}{1+x^2}$	$x^3 + x^2 - x - $ $-1 = 0$	$F(s) = \frac{1}{s-5} + \frac{1}{s^2 - 36}$
3	$\int \frac{dx}{\sqrt{4x-3-x^2}}$	$\cos x - \ln x -$ $-0.125 = 0$	$f(t) = \frac{1}{\sqrt{t}} e^t$
4	$\frac{d}{dx} \frac{\sqrt[9]{4x^5 + 2}}{3x^4}$	$x^4 - x^3 - $ $-5x^2 + 2 = 0$	$F(s) = \frac{s^2 + 1}{s(s+1)(s+2)}$
5	$\sum_{k=1}^{\infty} \frac{1}{(k+1)^2}$	$\frac{x^3 \ln x}{3x+1} = 0$	$f(t) = \frac{\sin t}{t}$
6	$\lim_{x \to \pi/4} \left(\frac{\cos x - \sin x}{\cos 2x} \right)$	$-3x^{5} + x^{4} - $ $-2x^{2} + x + 1 = 0$	$F(s) = \frac{3s}{\left(s^2 + 1\right)^2}$
7	$\int \frac{\ln^2 x}{\sqrt{x^5}} dx$	$\frac{\arccos x - 1}{x^2 + 10} = 0$	$f(t) = \frac{e^{\alpha t} - e^{bt}}{t}$
8	$\sum_{n=1}^{\infty} \frac{n}{(2n+1)!}$	$x^4 - 2x^3 + 3x^2 - $ $-x + 1 = 0$	$F(s) = \frac{1}{(s+1)^3(s+3)}$

9	$\int_{a}^{b} x^{2} \ln(1+x) dx$	$e^{2x} - 1 +$ $+ \frac{x}{x^2 + 1} = 0$	$f(t) = \frac{\sin(2\sqrt{at})}{\sqrt{a\pi}}$
10	$\lim_{x \to \infty} \left(\arctan \frac{x+1}{x+2} - \frac{\pi}{4} \right)$	$2x^3 + 5x^2 - $ $-0.5x + 15 = 0$	$F(s) = \frac{s+1}{s^2(s-1)(s+2)}$
11	$\sum_{k=1}^{\infty} \frac{k+1}{k!}$	$\sin x - \ln x -$ $-0.5 = 0$	$f(t) = \sin t \cdot \sinh t$
12	$\int_{a}^{b} \frac{x^2}{x^6 + 4} dx$	$x^2 - 2\sqrt{x+1} - $ $-1 = 0$	$F(s) = \frac{s^2 + 14}{(s^2 + 4)(s^2 + 9)}$
13	$\frac{d}{dx}\arccos\frac{x^{2n}-1}{x^{2n}+1}$	$\frac{0.5e^{3x} + x}{x(1 - 2x)^2} = 0$	$f(t) = \frac{\sin 7t \cdot \sin 3t}{t}$
14	$\int x \operatorname{arctg} x dx$	$\sqrt[3]{x+1} - 1 - $ $-2\sqrt{x-1} = 0$	$F(s) = \frac{s^2 + 2}{s^4 + s^2 + 1}$

15	$\frac{d}{dx}(3\cos x + 2\sin x)$	$x^3 + x^2 - x -$ $-1 = 0$	$f(t) = \frac{1}{\sqrt{t}} e^t$
16	$\frac{d}{dx}(x^2+1) \operatorname{arctg} x$	$-1 = 0$ $\cos x - \ln x -$ $-0,125 = 0$	$F(s) = \frac{s^2 + 1}{s(s+1)(s+2)}$
17	$\frac{d}{dx}\frac{\sin x + \cos x}{\sin x - \cos x}$	$x^4 - x^3 - $ $-5x^2 + 2 = 0$	$f(t) = \frac{\sin t}{t}$
18	$\frac{d}{dx}(x^3 \arcsin x)$	$\frac{x^3 \ln x}{3x+1} = 0$	$F(s) = \frac{3s}{\left(s^2 + 1\right)^2}$
19	$\frac{d}{dx}(5x^{2/3} - 3x^{5/2} + 2x^{-3})$	$3x+1 - 3x^5 + x^42x^2 + x + 1 = 0$	$f(t) = \frac{e^{at} - e^{bt}}{t}$
20	$\frac{d}{dx}\Big[(1+3x+5x^2)^4\Big]$	$-2x^{2} + x + 1 = 0$ $\frac{\arccos x - 1}{x^{2} + 10} = 0$	$F(s) = \frac{s+1}{s^2(s-1)(s+2)}$
21	$\frac{d}{dx} \left[(3 - \sin x)^3 \right]$	$e^{2x} - 1 +$ $+ \frac{x}{x^2 + 1} = 0$ $\sin x - \ln x -$	$f(t) = \sin(2t)\cos t$
22	$\frac{d}{dx}\frac{2x^2+x+1}{x^2-x+1}$	$\sin x - \ln x -$ $-0.5 = 0$	$F(s) = \frac{s+1}{s^2(s-1)(s+2)}$
23	$\frac{d}{dx}(2x^3 + 3x - 5)$	$x^2 - 2\sqrt{x+1} - $ $-1 = 0$	$f(t) = \frac{\sin 7t \cdot \sin 3t}{t}$
24	$\frac{d}{dx}(2e^x + \ln x)$	$\frac{0.5e^{3x} + x}{x(1 - 2x)^2} = 0$	$F(s) = \frac{s^2 + 2}{s^4 + s^2 + 1}$

25	$\frac{d}{dx}\frac{e^x + \sin x}{x e^x}$	$\frac{\sqrt{x} - x^2}{\ln x + 1} = 0$	$F(s) = \frac{1}{s-5} + \frac{1}{s^2 - 36}$
26	$\frac{d}{dx}(e^x(\cos x + \sin x))$	$x^3 + x^2 - x - $ $-1 = 0$	$f(t) = \frac{1}{\sqrt{t}} e^t$
27	$\frac{d}{dx} \frac{x + x^{1/2}}{x - 2x^{1/3}}$		$F(s) = \frac{3s}{\left(s^2 + 1\right)^2}$
28	$\frac{d}{dx}(\ln\sin(x^3+1))$	$-3x^{5} + x^{4} - $ $-2x^{2} + x + 1 = 0$	$f(t) = \frac{\sin 7t \cdot \sin 3t}{t}$
29	$\frac{d}{dx}(x^{1/2} + 1/(x^{1/2}) + 0.1x^{10})$	$2x^3 + 5x^2 - $ $-0.5x + 15 = 0$	$F(s) = \frac{s^2 + 14}{\left(s^2 + 4\right)\left(s^2 + 9\right)}$
30	$\frac{d}{dx}(\sin^3 x)$	$x^2 - 2\sqrt{x+1} - $ $-1 = 0$	$f(t) = \sin(2t)\cos t$

Порядок выполнения работы.

- 1. Ознакомиться с теоретическими сведениями.
- 2. По предложенному преподавателем варианту выполнить задание.
- 3. Оформить отчет по проделанной работе. Отчет должен содержать: титульный лист, цель работы, задание, результаты работы, анализ результатов и выводы по работе.