Overview

- > Peripheral Devices
- > Input-Output Interface
- > Asynchronous Data Transfer
- Modes of Transfer
- > Priority Interrupt
- Direct Memory Access
- > Input-Output Processor
- > Serial Communication

Input Output Organization

I/O Subsystem

- Provides an efficient mode of communication between the central system and the outside environment
- Programs and data must be entered into computer memory for processing and results obtained from computer must be recorded and displayed to user.

Peripheral Devices

- Devices that are under direct control of computer are said to be connected on-line.
- Input or output devices attached to the computer are also called peripherals.
- There are three types of peripherals :
 - Input peripherals
 - Output peripherals
 - Input-output peripherals

Peripheral (or I/O Device)

Monitor (Visual Output Device): CRT, LCD

KeyBoard (*Input Device*): light pen, mouse, touch screen, joy stick

Printer (Hard Copy Device): Daisy wheel, dot matrix and laser printer

Storage Device : Magnetic tape, magnetic disk

Peripheral Devices

Input Devices

- Keyboard
- Optical input devices
 - Card Reader
 - Paper Tape Reader
 - Bar code reader
 - Optical Mark Reader
- Magnetic Input Devices
 - Magnetic Stripe Reader
- Screen Input Devices
 - Touch Screen
 - Light Pen
 - Mouse

•

Output Devices

- Card Puncher, Paper Tape Puncher
- CRT
- Printer (Daisy Wheel, Dot Matrix, Laser)
- Plotter

I/O Interface

- Provides a method for transferring information between internal storage (such as memory and CPU registers) and external I/O devices.
- They are special hardware components between CPU and peripheral to supervise and synchronize all input and output transfer.
- They are called interface units because they interface between the processor bus processor bus and the peripheral device.
- Resolves the differences between the computer and peripheral devices
 - (1). Peripherals Electromechanical or Electromagnetic Devices

 CPU or Memory Electronic Device
 - Conversion of signal values required
 - (2). Data Transfer Rate
 - Peripherals Usually slower
 - CPU or Memory Usually faster than peripherals
 - Some kinds of Synchronization mechanism may be needed
 - (3). Data formats or Unit of Information
 - Peripherals Byte, Block, ...
 - CPU or Memory Word
 - (4). Operating modes of peripherals may differ
 - must be controlled so that not to disturbed other peripherals connected to CPU

I/O Bus and Interface

Interface:

- Decodes the device address (device code)
- Decodes the commands (operation)
- Provides signals for the peripheral controller
- Synchronizes the data flow and supervises the transfer rate between peripheral and CPU or Memory
- 4 types of command interface can receive : control, status, data o/p and data i/p

I/O Commands

I/O Command is an instruction that is executed in the interface and its attached peripheral units.

- •Control command: is issued to activate peripheral and to inform what to do
- •Status command: used to test various status condition in the interface and the peripherals
- •Data o/p command: causes the interface to respond by transferring data from the bus into one of its registers
- •Data i/p command: interface receives an item of data from the peripheral and places it in its buffer register.

I/O Bus and Memory Bus

Functions of Buses

- MEMORY BUS is for information transfers between CPU and the MM
- I/O BUS is for information transfers between CPU and I/O devices through their I/O interface
- •Three ways, bus can communicate with memory and I/O:
- (1). use two separate buses, one to communicate with memory and the other with I/O interfaces
- (2). Use one common bus for memory and I/O but separate control lines for each
- (3). Use one common bus for memory and I/O with common control lines for both

Isolated vs. Memory Mapped I/O

Isolated I/O

- Many computers use common bus to transfer information between memory or I/O.
- Separate I/O read/write control lines in addition to memory read/write control lines
- Separate (isolated) memory and I/O address spaces
- -Distinct input and output instructions
 - each associated with address of interface register

Memory-mapped I/O

- A single set of read/write control lines (no distinction between memory and I/O transfer)
- Memory and I/O addresses share the common address space
 - -> reduces memory address range available
- No specific input or output instruction
 - -> The same memory reference instructions can be used for I/O transfers
- Considerable flexibility in handling I/O operations

Example of I/O Interface

ASYNCHRONOUS DATA TRANSFER

- In a computer system, CPU and an I/O interface are designed independently of each other.
- When internal timing in each unit is independent from the other and when registers in interface and registers of CPU uses its own private clock.
- In that case the two units are said to be asynchronous to each other. CPU and I/O device must coordinate for data transfers.

METHODS USED IN ASYNCHRONOUS DATA TRANSFER

- Strobe Control: This is one way of transfer i.e. by means of strobe pulse supplied by one of the units to indicate to the other unit when the transfer has to occur.
- Handshaking: This method is used to accompany each data item being transferred with a control signal that indicates the presence of data in the bus. The unit receiving the data item responds with another control signal to acknowledge receipt of the data.

STROBE CONTROL

- * Employs a single control line to time each transfer
- * The strobe may be activated by either the source or the destination unit

HANDSHAKING

Problems in Strobe Methods

Source-Initiated

The source unit that initiates the transfer has no way of knowing whether the destination unit has actually received data

Destination-Initiated

The destination unit that initiates the transfer no way of knowing whether the source has actually placed the data on the bus

To solve this problem, the *HANDSHAKE* method introduces a second control signal to provide a *Reply* to the unit that initiates the transfer

SOURCE-INITIATED TRANSFER USING HANDSHAKE

- * Handshaking provides a high degree of flexibility and reliability because the successful completion of a data transfer relies on active participation by both units
- * If one unit is faulty, data transfer will not be completed

(initial state).

Invalidate data on bus

-> Can be detected by means of a *timeout* mechanism

ASYNCHRONOUS SERIAL TRANSFER

Four Different Types of Transfer

Asynchronous serial transfer Synchronous serial transfer Asynchronous parallel transfer Synchronous parallel transfer

Asynchronous Serial Transfer

- Employs special bits which are inserted at both ends of the character code
- Each character consists of three parts; Start bit; Data bits; Stop bits.

A character can be detected by the receiver from the knowledge of 4 rules;

- When data are not being sent, the line is kept in the 1-state (idle state)
- The initiation of a character transmission is detected by a *Start Bit*, which is always a 0
- The character bits always follow the Start Bit
- After the last character, a Stop Bit is detected when the line returns to the 1-state for at least 1 bit time

The receiver knows in advance the transfer rate of the bits and the number of information bits to expect

UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER - UART -

A typical asynchronous communication interface available as an IC

Transmitter Register

- Accepts a data byte(from CPU) through the data bus
- Transferred to a shift register for serial transmission

Receiver

- Receives serial information into another shift register
- Complete data byte is sent to the receiver register

Status Register Bits

- Used for I/O flags and for recording errors

Control Register Bits

- Define baud rate, no. of bits in each character, whether to generate and check parity, and no. of stop bits

Modes of transfer (11.4)

- Data transfer between the central computer and the I/O devices may be handled in a variety of modes.
- · The modes of transfer are:
- 4. Programmed I/O.
- 5. Interrupt-initiated I/O
- 6. Direct memory access (DMA)

Programmed I/O

- Programmed I/O operations are the result of I/O instructions written in the computer program.
- · Each data item transfer is initiated by an instruction in the program.
- · Usually, the transfer is to and from CPU register and peripheral.
- Other instructions are needed to transfer the data to and from CPU and memory.
- Transferring data under program control requires constant monitoring of the peripheral by the CPU.
- Once a data transfer is initiated, the CPU is required to monitor the interface to see when a transfer can again be made.
- It is up to the programmed instructions executed in the CPU to keep close tabs on everything that is taking place in the interface unit and the I/O device.
- In this method, the CPU stays in a program loop until the I/O unit indicates that it is ready for data transfer.
- This is a time-consuming process since it keeps the processor busy needlessly.

Programmed I/O

- CPU while executing a program encounters an I/O instruction
- CPU issues I/O command to I/ O module
- I/O module performs the requested action & set status registers
- CPU is responsible to check status registers periodically to see if I/O operation is complete. SO
- No Interrupt to alert the processor

Interrupts By: Irfanullah University Of Peshawar, F

Interrupt Initiated IO

- In the programmed I/O method, the CPU stays in a program loop until the I/O unit indicates that it is ready for data transfer.
- This is a time-consuming process since it keeps the processor busy needlessly.
- It can be avoided by using interrupt facility and special commands to inform the interface to issue an interrupt request signal when the data are available from the device.
- In the mean-time the CPU can proceed to execute another program.
- The interface meanwhile keeps monitoring the device.
- When the interface determines that the device is ready for the data transfer, it generates an interrupt request to the computer.
- Upon detecting the external interrupt signal, the CPU momentarily stops the task it is processing, branches to a service program to process the I/O transfer, and then returns to the task it was originally performing.

Direct Memory Access (DMA)

- I/O exchanges occur directly with memory
 - Requires DMA module on system bus
 - Capable of mimicking CPU and taking over control of system from CPU
 - DMA will use bus when
 - Processor does not require it OR
 - Must force processor to suspend operation temporarily— called cycle stealing
- An interrupt is sent when the task is complete
- The processor is only involved at the beginning and end of the transfer

Interrupts By: Irfanullah University Of Peshawar, F

DMA (Direct Memory Access - 11.6)

- Direct memory access is an I/O technique used for high speed data transfer.
- In DMA, the interface transfers data into and out of the memory unit through the memory bus.
- In DMA, the CPU releases the control of the buses to a device called a DMA controller.
- Removing the CPU from the path and letting the peripheral device manage the memory buses directly would improve the speed of transfer.
- The CPU initiates the transfer by supplying the interface with the starting address and the number of words needed to be transferred and then proceeds to execute other tasks.
- When the transfer is made, the DMA requests memory cycles through the memory bus.
- When the request is granted by the memory controller, the DMA transfers the data directly into memory.
- The CPU merely delays its memory access operation to allow the direct memory I/O transfer.

Direct Memory Access (DMA)

Cycle Stealing

DMA Controller acquires control of bus

Transfers a single byte (or word)

Releases the bus

The CPU is slowed down due to bus contention

Burst Mode

DMA Controller acquires control of bus

Transfers all the data

Releases the bus

The CPU operation is temporarily suspended

Direct Memory Access(DMA)

BURST TRANSFER / CYCLE STEALING

When DMA takes control of the bus system, it communicate directly with The memory. The transfer can be made in several ways.

BURST TRANSFER

In DMA burst transfer, a block sequence consisting of a number of memory word is transferred in a continuous burst. This mode is needed for fast devices.

CYCLE STEALING

An alternative technique called Cycle Stealing allows the DMA controller to transfer one data word at a time, after which it must return control of the buses to the CPU.

- CPU is usually much faster than I/O(DMA), thus CPU uses the most of the memory cycles
- DMA Controller steals the memory cycles from CPU
- For those stolen cycles, CPU remains idle
- DMA Controller may steal most of the memory cycles which may cause CPU remain idle long time

Input/Output Organization

(

Lecture 39

I/O Processor - Channel

<u>Channel</u>

- Processor with direct memory access capability that communicates with I/O devices
- Channel accesses memory by cycle stealing
- Channel can execute a Channel Program
 - Stored in the main memory
 - Consists of Channel Command Word(CCW)
 - Each CCW specifies the parameters needed by the channel to control the I/O devices and perform data transfer operations
- CPU initiates the channel by executing an channel I/O class instruction and once initiated, channel operates independently of the CPU

CSE 211, Computer Organization and Architecture

Harjeet Kaur, CSE/IT

I/O Processor

- Many computers combines the interface logic with the requirements for direct memory access into one unit and call it an I/O processor.
 The IOP can handle many peripherals through a DMA and interrupt facility. The computer is divided into three separate modules in such a system.
- ✓ Memory unit
- ✓ CPU
- ✓ IOP
- CPU is the master while the IOP is a slave processor. The CPU performs the tasks of initiating all operations.
- The operations include
- ✓ Starting an I/O transfer
- Testing I/O status conditions needed for making decisions on various I/O activities.