۴.۲ روش نقطهی ثابت (تکرار ساده)

فرض کنید فردی در حال بازی کردن با یک ماشین حساب جیبی است بطوری که با شروع از عدد 1 دکمه ی کسینوس را مرتبا فشار می دهد. دنباله ی زیر (با سبک گردکردن به صفر تا شش رقم دهده ی بامعنا) حاصل می شود:

$$x^{(0)} = 1.00000$$

$$x^{(1)} = \cos(x^{(0)}) = 0.540302 \cdots$$

$$x^{(2)} = \cos(x^{(1)}) = 0.857553 \cdots$$

$$x^{(3)} = \cos(x^{(2)}) = 0.654289 \cdots$$

$$\vdots$$

$$x^{(10)} = \cos(x^{(9)}) = 0.744237 \cdots$$

$$\vdots$$

$$x^{(19)} = \cos(x^{(18)}) = 0.738937 \cdots$$

$$x^{(20)} = \cos(x^{(18)}) = 0.739184 \cdots$$

$$\vdots$$

$$x^{(25)} = \cos(x^{(24)}) = 0.739071 \cdots$$

$$\vdots$$

$$x^{(30)} = \cos(x^{(29)}) = 0.739087 \cdots$$

این دنباله به عدد حقیقی $\alpha=0.73908513\dots$ از آنجا که این دنباله به عدد حقیقی $\alpha=0.73908513\dots$ بدین مساوی ۴۲ درجه مساوی دنباله را با شروع از $x^{(0)}=1$ بدین صورت ساختیم که

$$x^{(k+1)} = \cos(x^{(k)}), k = 0, 1, 2, \cdots$$

پس حد α در معادلهی $\alpha = \cos(\alpha) = \cos(\alpha)$ صدق میکند. به همین خاطر α را یک نقطهی ثابت تابع کسینوس مینامیم. بطور دقیق تر اگر تابع $\alpha = g(x)$ داده شده باشد، مقدار $\alpha = g(x)$ که در رابطهی $\alpha = g(x)$ صدق میکند را یک نقطه ی ثابت تابع $\alpha = g(x)$ مینامیم، چرا که از اِعمال تابع $\alpha = g(x)$ بر $\alpha = g(x)$ مینامیم، چرا که از اِعمال تابع $\alpha = g(x)$ بر هیچ تغییری حاصل نخواهد شد. یکی از کاربردهای نقاط ثابت در یافتن ریشه ی یک معادله ی غیرخطی مرتبط است.

در مثال قبل، α نه تنها یک نقطه ی ثابت تابع کسینوس بود، بلکه α یک ریشه ی تابع یک نقطه ی ثابت تابع کسینوس بود، بلکه α نیز هست. این ایده را میتوان برای یافتن ریشه ی توابع غیر خطی بکار برد. البته تمام توابع دارای نقطه $y=e^x$ نیز هست. مثلا اگر تجربه ی قبل را با شروع از همان مقدار x=1 این بار روی تابع نمایی $y=e^x$ تکرار کنیم، پس تنها 4 تکرار خطای سرریز رخ خواهد داد:

$$x^{(0)} = 1$$

 $x^{(1)} = \exp(1) = 2.71828 \cdots$
 $x^{(2)} = \exp(x^{(1)}) = 15.1542 \cdots$
 $x^{(3)} = \exp(x^{(2)}) = 3.81427 \cdots \times 10^{+6}$
 $x^{(4)} = \exp(x^{(3)}) = \text{Inf}$

اغلب می توان مسئله یی یافتن ریشه ی یک معادله ی غیرخطی را به صورت مسئله یی یافتن نقطه ی ثابت یک تابع مرتبط مطرح کرد. در واقع بسیاری از روشهای تکراری برای حل معادلات غیرخطی بر پایه ی ایده ی تکرار به شکل

$$x_{k+1} = g(x_k)$$

هستند، جاییکه g تابعی است که بطور مناسبی انتخاب شده است و نقطه ی ثابت g ریشه ی g تابعی است. این روش را روش نقطه ی ثابت یا (با توجه به سادگی و از نوع تکراریبودنش) روش تکرار ساده مینامند. توجه کنید که برای معادله ی داده شده ی g(x)=g ممکن است تعداد زیادی مسئله ی نقطه ی ثابت معادل g(x)=g با توابع g متفاوت موجود باشند ولی همه این مساله های نقطه ی ثابت بطور یکسان در بدست آوردن یک روش تکراری برای حل معادله ی غیرخطی g(x)=g(x) مفید نیستند. اولا ممکن است برخی از این اشکال نقطه ی ثابت اصلا دنباله ای همگرا را بوجود نیاورند و ثانیا حتی در صورت همگرایی، سرعت همگرایی آنها متفاوت باشد. پس باید به دنبال شکل نقطه ی ثابتی باشیم که در صورت امکان همگرایی را

fixed point

به سریعترین صورت نتیجه دهد.

مثال ١٣. مسئلهي يافتن جواب معادلهي

$$f(x) := x^2 - x - 2 = 0$$

را در نظر بگیرید. نقطه ی ثابت هر یک از تابعهای زیر، جواب معادله ی f(x)=0 است:

$$g_1(x) = x^2 - 2$$

 $g_2(x) = 1 + \frac{2}{x}$
 $g_3(x) = \sqrt{x+2}$
 $g_4(x) = \frac{x^2+2}{2x-1}$

چراکه هرچهار تابع در رابطهی

$$x = g_i(x), \quad i = 1, 2, 3, 4$$

صدق میکنند:

$$\begin{aligned} x^2 - x - 2 &= 0 \to x = x^2 - 2. \\ x^2 - x - 2 &= 0 \to x - 1 - \frac{2}{x} = 0 \to x = 1 + \frac{2}{x}. \\ x^2 - x - 2 &= 0 \to x^2 = x + 2 \to x = \sqrt{x + 2}. \\ x^2 - x - 2 &= 0 \to x^2 - x = 2 \to 2x^2 - x = x^2 + 2 \to x(2x - 1) = x^2 + 2 \to x = \frac{x^2 + 2}{2x - 1}. \end{aligned}$$

هر چهار تابع و محل برخورد آنها با خط y=x در شکل ۵۰۲ رسم شدهاند. همانگونه که میبینیم هر چهار تابع از نقطه یی f(2)=0 عبور میکنند و از سوی دیگر داریم f(2)=0

روش نقطهی ثابت متناظر با هر تابع بصورت گرافیکی در شکل ۶۰۲ نشان داده شده است. در این جا هر پیکانِ عمودی متناظر است با عمل محاسبهی مقدارتابع g در نقطهی مربوطه و پیکان افقی به سوی خط y=x نشان می دهد که مقدار تابع y=x در نقطهی فعلی بعنوان ورودی تکرار بعدی استفاده خواهد شد.

در هر یک از قسمتهای شکل ۶۰۲ روش تکرار ساده ی $x_{k+1}=g(x_k)$ برای یافتن نقطه ی ثابت یکی از چهار تابع قبل اجرا شده است. این کار در قسمت اول با شروع از حدس اولیه ی $x_0=2.1$ و در سه قسمت بعدی با شروع از حدس اولیه ی $x_0=1$ (که در مقایسه با $x_0=2.1$ از هدف یعنی نقطه ی ثابت قسمت بعدی با شروع از حدس اولیه ی $x_0=1$ (که در مقایسه با $x_0=1$ از هدف یعنی نقطه ی ثابت $x_0=1$ دورتر است) انجام شده. در قسمت اول واگرایی روش را مشاهده میکنیم اما در هر سه قسمت بعدی، روش همگراست. قطعه – کد زیر، روش نقطه ی ثابت را برای $x_0=1$ در متلب اجرا میکند:

```
kmax = 100; tol = 1e-10;
g1 = @(x) x.^2-2;
x = 2.1;
for k = 1:kmax
x = [x, g1(x(end))];
```


g1: 100 iters	g2: 36 iters	g3: 18 iters	g4: 7 iters
Inf	1.99999999650754	1.999999995914762	2.011764705882353
Inf	2.00000000174623	1.999999998978691	2.000045777065690
Inf	1.99999999912689	1.99999999744673	2.000000000698492
Inf	2.000000000043656	1.99999999936168	2.0000000000000000
Inf	1.99999999978172	1.99999999984042	2.0000000000000000

همانگونه که با توجه به شکل ۶۰۲ انتظار داریم، روشِ اول واگرا و سه روش بعدی همگرا هستند. همچنین سرعت همگرایی در سه روش پایانی متفاوت بوده و به ترتیب بهتر شده است. پرسشی که مطرح میشود این است که آیا ابزاری ریاضی برای پیشبینی و فهم بهتر دلیل واگرایی یا همگرایی وجود دارد؟ و یا دلیل تفاوت سرعت همگرایی سه قسمت پایانی چیست؟ قضیهی بعد این پرسشها را پاسخ میدهد.

قضیهی ۱۰۴۰۲ فرض کنید x^* نقطه ثابت تابع g(x) باشد.

- اگر $|g'(x^*)| < 1$ آنگاه روش نقطهی ثابت، بطور محلی (موضعی) همگراست (یعنی وجود دارد بازهای شامل x^* بطوری و روش نقطهی ثابت متناظر با شروع از درون این بازه، همگرا خواهد شد.)
 - اگر است. اگر اگر است متناظر واگراست. اگر ا $|g'(x^*)| \geq 1$

اثبات. برای بررسی همگرایی روش، خطای دو مرحلهی متوالی را با هم مقایسه میکنیم. فرض کنید:

$$\begin{cases} e_{k+1} := x^* - x_{k+1} \\ e_k := x^* - x_k \end{cases}$$

در روش نقطهی ثابت داریم: $x_{k+1} = g(x_k)$. پس با استفاده از دو رابطهی قبل داریم:

$$x^* - e_{k+1} = g(x^* - e_k)$$
locally

از طرف دیگر اگر e_k کوچک باشد با استفاده از بسط تیلور تابع g حول نقطه x^* میتوان سمت راست رابطه ی بالا را به صورت زیر ساده تر کرد:

$$x^* - e_{k+1} = g(x^*) - e_k \ g'(x^*) + \frac{e_k^2}{2!} \ g''(x^*) - \frac{e_k^3}{3!} \ g^{(3)}(x^*) + \cdots$$
 (Y.Y)

با نگهداشتن دو جملهی اول سری تیلور و توجه به اینکه طبق فرض، x^* نقطهی ثابت و است یعنی $k=0,1,2,\cdots$ تقریب زیر را برای $k=0,1,2,\cdots$ داریم:

$$e_{k+1} \approx e_k \ g'(x^*) \tag{A.Y}$$

اگر و $e_0 = x^* - x_0$ خطای حدس اولیه را نشان دهد، طبق رابطهی قبل داریم:

$$\begin{cases} e_1 \approx e_0 \ g'(x^*) \\ \Rightarrow e_2 \approx e_0 \ (g'(x^*))^2 \end{cases}$$

$$e_2 \approx e_1 \ g'(x^*)$$

و به همین ترتیب می توان دید که:

$$e_k \approx e_0 \ (g'(x^*))^k. \tag{9.7}$$

آنچه به دنبالش هستیم شرایط همگرایی حد دنبالهی خطاها به صفر است. با توجه به رابطهی قبل اگر $|g'(x^*)| < 1$

نتیجه ی ۱. با توجه به رابطه ی (۸.۲) میبینیم که نرخ همگرایی ِ روش نقطه ی ثابت معمولا خطی بوده و ثابت خطای مجانبی آن $c = |g'(x^*)|$ است.

نتیجه ی ۲. با توجه به رابطه ی (۹.۲) هرچه اندازه ی $g'(x^*)$ به صفر نزدیک تر باشد سرعت همگرایی بیشتر شده و حالت ایده آل این است که $g'(x^*) = 0$ باشد.

نتیجه ی ۳. اگر $g'(x^*) = 0$ باشد آنگاه نرخ همگرایی روش نقطه ی ثابت حداقل مربعی خواهد بود! فهم این موضوع به کمک بسط تیلور (۷.۲) ساده است. در این وضعیت داریم:

$$-e_{k+1} \approx 0 + \frac{e_k^2}{2!} g''(x^*).$$

چنانچه علاوه بر $g'(x^*)$ داشته باشیم $g'(x^*)=0$ آنگاه نرخ همگرایی حداقل از مرتبهی سه خواهد بود و به همین ترتیب!

اکنون بار دیگر به مثال قبل بازگشته و شرایط قضیهی قبل را برای هر چهار تابع بررسی میکنیم:

$$g_1(x)=x^2-2 \ \Rightarrow \ g_1'(2)=4>1 \ \Rightarrow \ \mathrm{comp}$$
 روش واگراست $g_2(x)=1+rac{2}{x} \ \Rightarrow \ |g_2'(2)|=|-rac{1}{2}|<1 \ \Rightarrow \ \mathrm{comp}$ روش همگراست $g_3(x)=\sqrt{x+2} \ \Rightarrow \ g_3'(2)=rac{1}{4}<1 \ \Rightarrow \ \mathrm{comp}$ روش همگراست $g_4(x)=rac{x^2+2}{2x-1} \ \Rightarrow \ g_4'(2)=0<1 \ \Rightarrow \ \mathrm{comp}$

همچنین روشها به ترتیب از بالا به پایین دارای کندترین تا سریعترین همگرایی هستند. این تاییدکننده ی تعداد تکرارهایی است که در بالا برای سه روش همگرا دیدیم. به طور خاص، g_4 ، متناظر با روشی با نرخ همگرایی مربعی ((r=2)) است. به یاد آورید که تعداد ارقام دهدهی درستی که در بالا در خروجی این روش دیدیم، در هر تکرار تقریبا ((دو برابر)) میشد: به بیان دقیق تر، خروجی روش نقطهی ثابت متناظر با g_4 در اولین تکراری که جوابش (در ستون آخر، سطر اول) چاپ شده برابر با g_4 در اولین تکراری که جوابش (در ستون آخر، سطر اول) چاپ شده برابر با g_4 ده دست آمد، به که دارای دو رقم درست است. این تعداد در تکرار بعدی جایی که g_4 در تمرار بعد از آن، جواب تقریبی g_4 در تمرار بعد از آن، جواب تقریبی g_4 دارای دهدهی درست ممکن (که میدانیم در قالب دوگانه ی آی-تریپل-ای g_4 رقم است) دست یافتیم.

مثال ۱۴ دو روش نقطهی ثابت را برای حل معادلهی $f(x)=x-e^{-x}=0$ ساخته و در مورد همگرایی یا واگرایی هر دو روش به ریشهی $x^*=0.567$ بحث کنید.

واضحترین انتخاب ممکن $g_1(x) = e^{-x}$ یعنی اجرای روش نقطه یثابت

$$x_{k+1} = g_1(x_k) = e^{-x_k}$$

مىباشد. داريم:

$$g_1'(x) = -e^{-x} \Rightarrow g_1'(x^*) = -e^{-0.567} \approx -0.567 \Rightarrow |g_1'(x^*)| < 1$$

پس با این انتخاب g_1 حتما میتوان بازهای یافت که روش، همگرا باشد. دومین تابع نقطه ی ثابت را میتوان به صورت زیر ساخت:

$$f(x) = x - e^{-x} = 0 \Rightarrow e^{-x} = x \Rightarrow -x = \log x.$$

بنابراین $g_2(x) = -\log x$ داریم:

$$g_2'(x) = -\frac{1}{x} \Rightarrow g'(x^*) = -\frac{1}{0.567} \approx -1.7637$$

. پس این روش، واگراست. $|g_2'(x^*)| > 1$

تمرین ۵. سه روش نقطهی ثابت متفاوت را برای حل معادلهی $f(x)=x^2-2x-3=0$ ساخته و همگرایی روشها را برای یافتن هر دو ریشه $f(x)=x^2-2x-3=0$ به صورت مجزا بررسی کنید.

یکی از پرسشهایی که میتواند در مورد قضیه x^* مطرح شود این است که استفاده عملی از آن نیاز به دانستن مقدار نقطه x^* دارد حال آنکه x^* را قبل از اجرای روش نقطه x^* ثابت (حتی به صورت تقریبی نیز) نداریم و به دنبال یافتن آن هستیم. بررسی شرایط قضیه x^* محل دقیق نقطه x^* ندارد.

قضیه ی ۲۰۴۰۲. فرض کنید تابع g(x) بر بازه ی $I=[a,\ b]$ مشتق پذیر بوده و برای هر $x\in I$ داشته باشیم: $x\in I$ همچنین فرض کنید مقدار ثابت نامنفی K<1 وجود داشته باشد به طوری که برای هر $G(x)\in I$ داشته باشیم

$$|g'(x)| \le K.$$

در این صورت g دارای نقطه ی ثابت یکتایی در I است به طوری که روش نقطه ی ثابت با شروع از هر حدس اولیه ای در این بازه همگراست.

اکنون نوبت به ساختن سیستماتیک حالت خاصی از روش نقطه ی ثابت است که دارای نرخ همگرایی مربعی است. تابع $g_4(x)$ که سریعترین نرخ همگرایی را در بین چهار روش نقطه ی ثابت مثال ۱۳ داشت، در واقع روش نیوتن-رفسون بوده است.