Commuting signatures and verifiable encryption

Georg Fuchsbauer

University of Bristol

Darmstadt, 21.11.2011

Outline of this talk

- Motivation: Anonymous proxy signatures
- Tools: Bilinear groups & Groth-Sahai proofs
- Automorphic signatures & applications
- 4 Delegatable anonymous credentials
- Commuting signatures
- Instantiating commuting signatures

- Motivation: Anonymous proxy signatures
- Tools: Bilinear groups & Groth-Sahai proofs
- 3 Automorphic signatures & applications
- Delegatable anonymous credentials
- Commuting signatures
- 6 Instantiating commuting signatures

User (sk)

Proxy signatures

Ingredients

- Digital signatures
- Public-key encryption

Ingredients

- Digital signatures
- Public-key encryption
- Non-interactive zero-knowledge proofs (NIZK)
 - ...allow us to prove validity of a statement without revealing anything else

[simplified version]

Setup Generate decryption key for opening authority

[simplified version]

Setup Generate decryption key for opening authority System parameters : [...]

[simplified version]

Setup Generate decryption key for opening authority

System parameters : [...]

Delegate Sign delegatee's verification key → warrant

Re-delegate Additionally forward received warrant(s)

$$vk_0 \xrightarrow{\Sigma_1} vk_1 \xrightarrow{\Sigma_2} \bullet \bullet \bullet \xrightarrow{\Sigma_n} vk_n$$

[simplified version]

Setup Generate decryption key for opening authority

System parameters : [...]

Delegate Sign delegatee's verification key → warrant

Re-delegate Additionally forward received warrant(s)

Proxy-sign Sign message

[simplified version]

Setup Generate decryption key for opening authority

System parameters : [...]

Delegate Sign delegatee's verification key → warrant

Re-delegate Additionally forward received warrant(s)

Proxy-sign Sign message

Encrypt

- delegators' verification keys
- warrants
 signature on message

[simplified version]

Setup Generate decryption key for opening authority

System parameters : [...]

Delegate Sign delegatee's verification key → warrant

Re-delegate Additionally forward received warrant(s)

Proxy-sign Sign message

Encrypt

• delegators' verification keys

warrants
 signature on message

Prove correctness

$$vk_0 \xrightarrow{\qquad \qquad } vk_1 \xrightarrow{\qquad \qquad } vk_1 \xrightarrow{\qquad \qquad } \sum_{m_1} vk_m \xrightarrow{\qquad } \sum_{m_M} vk$$

[simplified version]

Setup Generate decryption key for opening authority

System parameters : [...]

Delegate Sign delegatee's verification key → warrant

Re-delegate Additionally forward received warrant(s)

Proxy-sign Sign message

Encrypt

- delegators' verification keys
- warrants
 signature on message

Prove correctness

Proxy signature : • ciphertexts

proofs

 $\begin{array}{c|c}
\Sigma_n & \Sigma_M \\
\hline
 & \nu k_n & \overline{}_M
\end{array}$

[simplified version]

Setup Generate decryption key for opening authority

System parameters : [...]

Delegate Sign delegatee's verification key → warrant

Re-delegate Additionally forward received warrant(s)

Proxy-sign Sign message

Encrypt

- delegators' verification keys
- warrants
 signature on message

Prove correctness

Proxy signature : • ciphertexts • proofs $vk_0 \xrightarrow[\pi_1]{\Sigma_1} vk_1 \xrightarrow[\pi_2]{\Sigma_2} \cdots \xrightarrow[\pi_n]{vk_n}$

Verify Verify proofs

[simplified version]

Setup Generate decryption key for opening authority

System parameters : [...]

Delegate Sign delegatee's verification key → warrant

Re-delegate Additionally forward received warrant(s)

Proxy-sign Sign message

Encrypt

- delegators' verification keys
- warrants
 signature on message

Prove correctness

Proxy signature : • ciphertexts vk_0 Σ_1 vk_1 T_2 T_2 T_3 Vk_1 T_4 T_4 T_5 T_6 T_8 T_8

Verify Verify proofs

Open Decrypt ciphertext \rightarrow verification keys

[simplified version]

Setup Generate decryption key for opening authority

System parameters : [...]

Delegate Sign delegatee's verification key → warrant

Re-delegate Additionally forward received warrant(s)

Proxy-sign Sign message

Showed theoretic feasability but can we instantiate them practically?

rove correctness

Proxy signature : • ciphertexts
$$vk_0$$
 $\xrightarrow{\Sigma_1}$ vk_1 $\xrightarrow{\pi_2}$ • • • $\xrightarrow{\pi_n}$ vk_n $\xrightarrow{\pi_M}$ vk_n

Verify Verify proofs

Open Decrypt ciphertext \rightarrow verification keys

- Motivation: Anonymous proxy signatures
- Tools: Bilinear groups & Groth-Sahai proofs
- 3 Automorphic signatures & applications
- Delegatable anonymous credentials
- Commuting signatures
- Instantiating commuting signatures

Bilinear group : $(p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, G, H)$ with

Groups: $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ cyclic groups of prime order p

Pairing : $e \colon \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ bilinear, ie

$$e(X^a,Y^b)=e(X,Y)^{ab}$$
 for all $X\in\mathbb{G}_1;Y\in\mathbb{G}_2;a,b\in\mathbb{Z}$

Generators : $\mathbb{G}_1=\langle G \rangle$, $\mathbb{G}_2=\langle H \rangle$, $\mathbb{G}_{\mathcal{T}}=\langle e(G,H) \rangle$

Bilinear group : $(p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, e, G, H)$ with

Groups: $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$ cyclic groups of prime order p

Pairing : $e \colon \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ bilinear, ie

$$e(X^a,Y^b)=e(X,Y)^{ab}$$
 for all $X\in\mathbb{G}_1;Y\in\mathbb{G}_2;a,b\in\mathbb{Z}$

Generators : $\mathbb{G}_1 = \langle G \rangle$, $\mathbb{G}_2 = \langle H \rangle$, $\mathbb{G}_T = \langle e(G, H) \rangle$

Pairing-product equation (PPE)

over variables $X_1, \ldots, X_m \in \mathbb{G}_1, Y_1, \ldots, Y_n \in \mathbb{G}_2$

$$\prod_{i=j}^{n} e(A_{j}, Y_{j}) \prod_{i=1}^{m} e(X_{i}, B_{i}) \prod_{i=1}^{m} \prod_{j=1}^{n} e(X_{i}, Y_{j})^{\gamma_{i,j}} = t,$$
 (E)

defined by $A_i \in \mathbb{G}_1, B_i \in \mathbb{G}_2, \gamma_{i,j} \in \mathbb{Z}_p$ and $\mathbf{t} \in \mathbb{G}_T$

Pairing-product equation (PPE)

over variables $X_1, \ldots, X_m \in \mathbb{G}_1, Y_1, \ldots, Y_n \in \mathbb{G}_2$

$$\prod_{i=i}^{n} e(A_{i}, Y_{j}) \prod_{i=1}^{m} e(X_{i}, B_{i}) \prod_{i=1}^{m} \prod_{j=1}^{n} e(X_{i}, Y_{j})^{\gamma_{i,j}} = \mathbf{t} , \qquad (E)$$

defined by $A_i \in \mathbb{G}_1, B_i \in \mathbb{G}_2, \gamma_{i,i} \in \mathbb{Z}_p$ and $\mathbf{t} \in \mathbb{G}_T$

Pairing-product equation (PPE)

over variables $X_1, \ldots, X_m \in \mathbb{G}_1, Y_1, \ldots, Y_n \in \mathbb{G}_2$

$$\prod_{i=j}^{n} e(A_{j}, Y_{j}) \prod_{i=1}^{m} e(X_{i}, B_{i}) \prod_{i=1}^{m} \prod_{j=1}^{n} e(X_{i}, Y_{j})^{\gamma_{i,j}} = t , \qquad (E)$$

defined by $A_i \in \mathbb{G}_1, B_i \in \mathbb{G}_2$, $\gamma_{i,j} \in \mathbb{Z}_p$ and $\mathbf{t} \in \mathbb{G}_T$

Pairing-product equation (PPE)

over variables $X_1, \ldots, X_m \in \mathbb{G}_1, Y_1, \ldots, Y_n \in \mathbb{G}_2$

$$\prod_{i=j}^{n} e(A_{j}, Y_{j}) \prod_{i=1}^{m} e(X_{i}, B_{i}) \prod_{i=1}^{m} \prod_{j=1}^{n} e(X_{i}, Y_{j})^{\gamma_{i,j}} = t,$$
 (E)

defined by $A_i \in \mathbb{G}_1, B_i \in \mathbb{G}_2$, $\gamma_{i,j} \in \mathbb{Z}_p$ and $\mathbf{t} \in \mathbb{G}_T$

Pairing-product equation (PPE)

over variables $X_1, \ldots, X_m \in \mathbb{G}_1$, $Y_1, \ldots, Y_n \in \mathbb{G}_2$

$$\prod_{i=j}^{n} e(A_{j}, Y_{j}) \prod_{i=1}^{m} e(X_{i}, B_{i}) \prod_{i=1}^{m} \prod_{j=1}^{n} e(X_{i}, Y_{j})^{\gamma_{i,j}} = \mathbf{t} , \qquad (E)$$

defined by $A_i \in \mathbb{G}_1, B_i \in \mathbb{G}_2, \gamma_{i,j} \in \mathbb{Z}_p$ and $\mathbf{t} \in \mathbb{G}_T$

Groth-Sahai proofs [GS08]

Efficient non-interactive zero-knowledge proofs :

- Encrypt X_i 's and Y_i 's
- f 2 Make proof π that encrypted values satisfy ${\sf E}$ ${\sf w}/{\sf o}$ revealing anything else

Pairing-product equation (PPE)

over variables
$$X_1, \ldots, X_m \in \mathbb{G}_1, Y_1, \ldots, Y_n \in \mathbb{G}_2$$

$$\prod_{i=1}^{m} e(A; Y_i) \prod_{i=1}^{m} e(X; B_i) \prod_{i=1}^{m} \prod_{j=1}^{m} e(X; Y_j)^{\gamma_{i,j}} = \mathbf{t}$$
 (F

Have a *proof system* for very specific language but can we combine it with signatures?

Groth-Sahai proofs [GS08]

Efficient non-interactive zero-knowledge proofs

- Encrypt X_i 's and Y_i 's
- 2 Make proof π that encrypted values satisfy E w/o revealing anything else

- Motivation: Anonymous proxy signatures
- Tools: Bilinear groups & Groth-Sahai proofs
- 3 Automorphic signatures & applications
- 4 Delegatable anonymous credentials
- Commuting signatures
- Instantiating commuting signatures

- Groth-Sahai proofs allow us to
 - encrypt group elements and to
 - prove that they satisfy PPEs

- Groth-Sahai proofs allow us to
 - encrypt group elements and to
 - prove that they satisfy PPEs

- able to sign its own verification keys
- messages and signatures are group elements
- verification by PPE
- unforgeable (under chosen-message attacks)

- Groth-Sahai proofs allow us to
 - encrypt group elements and to
 - prove that they satisfy PPEs

- able to sign its own verification keys
- messages and signatures are group elements
- verification by PPE
- unforgeable (under chosen-message attacks)

- Groth-Sahai proofs allow us to
 - encrypt group elements and to
 - prove that they satisfy PPEs

- able to sign its own verification keys
- messages and signatures are group elements
- verification by PPE
- unforgeable (under chosen-message attacks)

- Groth-Sahai proofs allow us to
 - encrypt group elements and to
 - prove that they satisfy PPEs

- able to sign its own verification keys
- messages and signatures are group elements
- verification by PPE
- unforgeable (under chosen-message attacks)

- Groth-Sahai proofs allow us to
 - encrypt group elements and to
 - prove that they satisfy PPEs

- able to sign its own verification keys
- messages and signatures are group elements
- verification by PPE
- unforgeable (under chosen-message attacks)

- Groth-Sahai proofs allow us to
 - encrypt group elements and to
 - prove that they satisfy PPEs

Signature scheme s.t.

Automorphic signatures

- able to sign its <u>own</u> verification keys
- messages and signatures are group elements
- verification by <u>PPE</u>
- unforgeable (under chosen-message attacks)

- Groth-Sahai proofs allow us to
 - encrypt group elements and to
 - prove that they satisfy PPEs

Signature scheme s.t.

Automorphic signatures

- able to sign its <u>own</u> verification keys
- messages and signatures are group elements
- verification by <u>PPE</u>
- unforgeable (under chosen-message attacks)

Combined with Groth-Sahai proofs:

- encrypt keys, messages, and signatures
- prove validity of encryptions
 - ⇒ verifiably encrypt certificate chain

Combining Groth-Sahai proofs and automorphic signatures

Applications of automorphic signatures

- Efficient anonymous proxy signatures
- Non-frameable group signatures with concurrent join
- First efficient round-optimal blind signatures

Combining Groth-Sahai proofs and automorphic signatures

Applications of automorphic signatures

- Efficient anonymous proxy signatures
- Non-frameable group signatures with concurrent join
- First efficient round-optimal blind signatures
- Commuting signatures and verifiable encryption

Combining Groth-Sahai proofs and automorphic signatures

Applications of automorphic signatures

- Efficient anonymous proxy signatures
- Non-frameable group signatures with concurrent join
- First efficient round-optimal blind signatures
- Commuting signatures and verifiable encryption

- Motivation: Anonymous proxy signatures
- Tools: Bilinear groups & Groth-Sahai proofs
- Automorphic signatures & applications
- Delegatable anonymous credentials
- Commuting signatures
- Instantiating commuting signatures

System admin

Delegatable anonymous credentials [BCCKLS09]

- Users can prove to hold credential w/o revealing their identity
- Credentials can be issued/delegated and obtained anonymously

Delegatable anonymous credentials [BCCKLS09]

- Users can prove to hold credential w/o revealing their identity
- Credentials can be issued/delegated and obtained anonymously

BCCKLS model

- Each user holds a secret key and can
- ... produce arbitrarily many (unlinkable) pseudonyms from it

Delegatable anonymous credentials [BCCKLS09]

- Users can prove to hold credential w/o revealing their identity
- Credentials can be issued/delegated and obtained anonymously

BCCKLS model

- Each user holds a secret key and can
- ... produce arbitrarily many (unlinkable) pseudonyms from it
- ...can publish pseudonym as *public key* for a credential
- ...run interactive protocol to issue/delegate credentials to other users

Delegatable anonymous credentials [BCCKLS09]

- Users can prove to hold credential w/o revealing their identity
- Credentials can be issued/delegated and obtained anonymously

BCCKLS model

- Each user holds a secret key and can
- ... produce arbitrarily many (unlinkable) pseudonyms from it
- ...can publish pseudonym as public key for a credential
- run interactive protocol to issue/delegate credentials to other users
- ... prove to hold credentials for every pseudonym

Delegatable anonymous credentials [BCCKLS09]

- Users can prove to hold credential w/o revealing their identity
- Credentials can be issued/delegated and obtained anonymously

BCCKLS model

- Each user holds a secret key and can
- ... produce arbitrarily many (unlinkable) pseudonyms from it
- ...can publish pseudonym as public key for a credential
- run interactive protocol to issue/delegate credentials to other users
- ...prove to hold credentials for every pseudonym

Our scheme: Non-interactive issuing & delegation

- Motivation: Anonymous proxy signatures
- Tools: Bilinear groups & Groth-Sahai proofs
- Automorphic signatures & applications
- 4 Delegatable anonymous credentials
- **5** Commuting signatures
- 6 Instantiating commuting signatures

Commuting signatures and verifiable encryption I

Signature

$$M \xrightarrow{sk} \Sigma$$

Verification : vk, M, Σ

Commuting signatures and verifiable encryption I

Signature

$$M \xrightarrow{sk} \Sigma$$

Verification : vk, M, Σ

Verifiable encryption

$$vk, M, \Sigma \longrightarrow \left\{ \begin{array}{ccc} \longrightarrow & \Sigma, \widetilde{\pi} \\ \longrightarrow & M, \overline{\pi} \\ \longrightarrow & M, \Sigma, \pi \\ \longrightarrow & vk, M, \Sigma, \widehat{\pi} \end{array} \right.$$

Verification : vk, M, Σ , $\widetilde{\pi}$ Verification : vk, M, Σ , $\overline{\pi}$

Verification : vk, M, Σ , π

Verification : vk, M, Σ , $\widehat{\pi}$

Signature

$$M \xrightarrow{sk} \Sigma$$

Verification : vk, M, Σ

Verifiable encryption

$$vk, M, \Sigma \longrightarrow \left\{ \begin{array}{c} \longrightarrow & [\Sigma], \widetilde{\pi} \\ \longrightarrow & [M], \overline{\pi} \\ \longrightarrow & [M], [\Sigma], \pi \\ \longrightarrow & [vk], [M], [\Sigma], \widehat{\pi} \end{array} \right.$$

Verification : vk, M, Σ , $\widetilde{\pi}$ Verification : vk, M, Σ , $\overline{\pi}$

Verification : vk, M, Σ , π

 $\mathsf{Verification}: \boxed{\mathit{vk}}, \boxed{\mathit{M}}, \boxed{\Sigma}, \widehat{\pi}$

$$\begin{bmatrix} \widetilde{\pi} \\ \overline{\pi} \end{bmatrix} \longleftrightarrow \pi \longleftrightarrow \widehat{\pi}$$

Signature

$$M \xrightarrow{sk} \Sigma$$

Verification : vk, M, Σ

Verifiable encryption

$$vk, M, \Sigma \longrightarrow \left\{ \begin{array}{c} \longrightarrow & [\Sigma], \widetilde{\pi} \\ \longrightarrow & [M], \overline{\pi} \\ \longrightarrow & [M], [\Sigma], \pi \\ \longrightarrow & [vk], [M], [\Sigma], \widehat{\pi} \end{array} \right.$$

Verification : vk, M, $[\Sigma]$, $\tilde{\pi}$ Verification : vk, M, Σ , $\bar{\pi}$

Verification : vk, M, Σ , π

 $\mathsf{Verification}: [\mathit{vk}], [\mathit{M}], [\Sigma], \widehat{\pi}$

Commuting signature and verifiable encryption

Proof adaptation:

$$\begin{bmatrix} \widetilde{\pi} \\ \overline{\pi} \end{bmatrix} \longleftrightarrow \pi \longleftrightarrow \widehat{\pi}$$

Sign M given M:

$$M \xrightarrow{sk}$$

Signature

$$M \xrightarrow{sk} \Sigma$$

Verification : vk, M, Σ

Verifiable encryption

$$vk, M, \Sigma \longrightarrow \left\{ \begin{array}{c} \longrightarrow & [\Sigma], \widetilde{\pi} \\ \longrightarrow & [M], \overline{\pi} \\ \longrightarrow & [M], [\Sigma], \pi \\ \longrightarrow & [vk], [M], [\Sigma], \widehat{\pi} \end{array} \right.$$

Verification : vk, M, $|\Sigma|$, $\widetilde{\pi}$ Verification : vk, M, Σ , $\bar{\pi}$

Verification : vk, M, Σ , π Verification : vk, M, Σ , $\widehat{\pi}$

Commuting signature and verifiable encryption

Proof adaptation:

$$\begin{bmatrix} \widetilde{\pi} \\ \overline{\pi} \end{bmatrix} \longleftrightarrow \pi \longleftrightarrow \widehat{\pi}$$

Sign M given M:

Signature

$$M \xrightarrow{sk} \Sigma$$

Verification : vk, M, Σ

Verifiable encryption

$$vk, M, \Sigma \longrightarrow \left\{ \begin{array}{c} \longrightarrow & [\Sigma], \widetilde{\pi} \\ \longrightarrow & [M], \overline{\pi} \\ \longrightarrow & [M], [\Sigma], \pi \\ \longrightarrow & [vk], [M], [\Sigma], \widehat{\pi} \end{array} \right.$$

Verification : vk, M, Σ , $\tilde{\pi}$ Verification : vk, M, Σ , $\bar{\pi}$

Verification : vk, M, Σ , π

 $\mathsf{Verification}: \boxed{\mathit{vk}}, \boxed{M}, \boxed{\Sigma}, \widehat{\pi}$

• Commuting signature and verifiable encryption

Proof adaptation:

$$\begin{bmatrix} \widetilde{\pi} \\ \overline{\pi} \end{bmatrix} \longleftrightarrow \pi \longleftrightarrow \widehat{\pi}$$

Sign M given \boxed{M} :

$$M \xrightarrow{sk} \Sigma, \pi$$

 $\mathsf{Verification}: \ \textit{vk}, \boxed{M}, \boxed{\Sigma}, \pi$

Signature

$$M \xrightarrow{sk} \Sigma$$

Verification : vk, M, Σ

Verifiable encryption

$$vk, M, \Sigma \longrightarrow \left\{ \begin{array}{c} \longrightarrow & [\Sigma], \widetilde{\pi} \\ \longrightarrow & [M], \overline{\pi} \\ \longrightarrow & [M], [\Sigma], \pi \\ \longrightarrow & [vk], [M], [\Sigma], \widehat{\pi} \end{array} \right.$$

Verification : vk, M, $|\Sigma|$, $\widetilde{\pi}$ Verification : vk, M, Σ , $\bar{\pi}$

Verification : vk, M, Σ, π

Verification : vk, M, Σ , $\hat{\pi}$

• Commuting signature and verifiable encryption

Sign plaintext then encrypt ← encrypt then sign plaintext

Sign
$$M$$
 given M :

$$M \xrightarrow{sk} \Sigma, \tau$$

$$M \xrightarrow{sk} \Sigma, \pi$$
 Verification: vk, M, Σ, π

In a nutshell

- Pseudonym : encryption of user verification key
- Credential : verifiably encrypted signature
- Non-interactive delegation : commuting signature

Delegation of signing rights

Delegation of signing rights

$$vk_0 \xrightarrow{\Sigma_1} vk_1$$

• Delegation of signing rights

$$vk_0 \xrightarrow{\Sigma_1} vk_1 \xrightarrow{\Sigma_2} \bullet \bullet \bullet \xrightarrow{\Sigma_n} vk_n$$

Delegation of signing rights

Signatures

 vk_0 $\xrightarrow{\Sigma_1}$ vk_1 $\xrightarrow{\Sigma_2}$ vk_n credential

Delegation of signing rights
 Signatures

Anonymous show

Delegation of signing rights
 Signatures

 vk_0 Σ_1 vk_1 Σ_2 Σ_n vk_n credential

Anonymous show

Delegation of signing rights
 Signatures

Anonymous show

Verifiable encryption

Delegation of signing rights

$$vk_0$$
 $\xrightarrow{\Sigma_1}$ vk_1 $\xrightarrow{\Sigma_2}$ Σ_n vk credential

Anonymous show
 Verifiable encryption

 vk_0 x_1 x_2 x_2 x_3 x_4 x_5 x_6 x_6 x_6 x_6 x_6 x_6 x_6 x_6 x_6 x_6

Anonymous delegation

Delegation of signing rights

$$vk_0$$
 $\xrightarrow{\Sigma_1}$ vk_1 $\xrightarrow{\Sigma_2}$ Σ_n vk_n

Signatures

credentia

Anonymous show

 vk_0 x_1 x_1 x_2 x_n x_n vk_n

Verifiable encryption

Anonymous delegation

Commuting signatures

• Sign encrypted value vk_3 \Rightarrow (vk_2 , Σ_3 , vk_3 , π'_3)

Delegation of signing rights

$$vk_0 \xrightarrow{\Sigma_1} vk_1 \xrightarrow{\Sigma_2} vk_n$$

Signatures

credentia

Anonymous show

Verifiable encryption

Anonymous delegation

Commuting signatures

- Sign encrypted value vk_3 \Rightarrow (vk_2 , Σ_3 , vk_3 , π_3')
- Adapt proof for vk_2 \Rightarrow $(vk_2, \Sigma_3, vk_3, \pi_3)$

Delegation of signing rights

$$vk_0$$
 $\xrightarrow{\Sigma_1}$ vk_1 $\xrightarrow{\Sigma_2}$ vk_n vk_n

Signatures

Anonymous show

Verifiable encryption

$$vk_0$$
 x_1
 x_2
 x_2
 x_n
 x_n
 x_n

Anonymous delegation

Commuting signatures

- Sign encrypted value vk_3 \Rightarrow (vk_2 , Σ_3 , vk_3 , π'_3)
- Adapt proof for vk_2 $\Rightarrow (vk_2, \Sigma_3, vk_3, \pi_3)$

Send credential
$$\left(\begin{array}{ccc} \Sigma_1 \end{array}, \begin{array}{ccc} vk_1 \end{array}, \begin{array}{ccc} \Sigma_2 \end{array}, \begin{array}{ccc} vk_2 \end{array}, \begin{array}{ccc} \Sigma_3 \end{array} \right)$$

- Motivation: Anonymous proxy signatures
- Tools: Bilinear groups & Groth-Sahai proofs
- 3 Automorphic signatures & applications
- 4 Delegatable anonymous credentials
- Commuting signatures
- Instantiating commuting signatures

- Groth-Sahai (GS) proofs
 (shown to be randomizable [BCCKLS09])
- Automorphic signatures

 (allow signing of verification keys)

- Groth-Sahai (GS) proofs (shown to be randomizable [BCCKLS09])
- Automorphic signatures

 (allow signing of verification keys)

GS proofs + automorphic signatures = verifiably encrypted signatures

- Groth-Sahai (GS) proofs (shown to be randomizable [BCCKLS09])
- Automorphic signatures

 (allow signing of verification keys)

 $\textbf{GS proofs} + \textbf{automorphic signatures} \ = \ \textbf{verifiably encrypted signatures}$

Algebraic properties of GS proofs \implies instantiation of new functionalities

- Groth-Sahai (GS) proofs (shown to be randomizable [BCCKLS09])
- Automorphic signatures

 (allow signing of verification keys)

GS proofs + automorphic signatures = verifiably encrypted signatures

Algebraic properties of GS proofs \implies instantiation of new functionalities

Proof adaptation

- $\begin{bmatrix} \widetilde{\pi} \\ \overline{\pi} \end{bmatrix} \longleftrightarrow \pi \longleftrightarrow \widehat{\pi}$
- Sign encrypted messages : $M \xrightarrow{sk} \Sigma, \pi$ (where Σ is signature on M)

$$\pi: e(A_1, Y_1) \cdots e(A_n, Y_n) \cdots e(X_i, B_i) \cdots e(X_m, Y_n)^{\gamma_{m,n}} = \mathbf{t}$$

Independence

Proofs do not depend on t

$$\pi: e(A_1, Y_1) \cdots e(A_n, Y_n) \cdots e(X_i, B_i) = \mathbf{t}$$

Independence

Proofs do not depend on t

Some proofs $(\gamma_{ii} = 0)$ do not depend on encrypted values

$$\pi: e(A_1, Y_1) \cdots e(A_n, Y_n) \cdots e(X_i, B_i) \cdots e(X_m, Y_n)^{\gamma_{m,n}} = \mathbf{t}$$

Independence

Proofs do not depend on t

Some proofs $(\gamma_{ij} = 0)$ do not depend on encrypted values

Adapting

$$\pi: e(A_1, Y_1) \cdots e(A_n, Y_n) \cdots e(X_i, B_i) \cdots e(X_m, Y_n)^{\gamma_{m,n}} = \mathbf{t}$$

Independence

Proofs do not depend on t

Some proofs $(\gamma_{ij} = 0)$ do not depend on encrypted values

Adapting

$$\pi: e(A_1, Y_1) \cdots e(A_n, Y_n) \cdots e(X_i, B_i) \cdots e(X_m, Y_n)^{\gamma_{m,n}} = \mathbf{t}$$

Independence

Proofs do not depend on t

Some proofs $(\gamma_{ij} = 0)$ do not depend on encrypted values

Adapting

$$\pi: e(A_1, Y_1) \cdots e(A_n, Y_n) \cdots e(X_i, B_i) \cdots e(X_m, Y_n)^{\gamma_{m,n}} = \mathbf{t}$$

Independence

Proofs do not depend on t

Some proofs $(\gamma_{ii} = 0)$ do not depend on encrypted values

Adapting

$$\pi: e(A_1, Y_1) \cdots e(A_n, Y_n) \cdots e(X_i, B_i) \cdots e(X_m, Y_n)^{\gamma_{m,n}} = \mathbf{t}$$

Independence

Proofs do not depend on t

Some proofs $(\gamma_{ij} = 0)$ do not depend on encrypted values

Adapting

$$\pi: \qquad e(A_1, \boxed{Y_1}) \cdots e(A_n, \boxed{Y_n}) \cdots e(\boxed{X_i}, B_i) \cdots e(\boxed{X_m}, \boxed{Y_n})^{\gamma_{m,n}} = \mathbf{t}$$

$$\pi': \qquad e(A'_1, \boxed{Y'_1}) \cdots e(A'_n, \boxed{Y'_n}) \cdots e(\boxed{X'_i}, B'_i) \cdots e(\boxed{X'_m}, \boxed{Y'_n})^{\gamma'_{m,n}} = \mathbf{t}'$$

Independence

Proofs do not depend on t

Some proofs $(\gamma_{ij} = 0)$ do not depend on encrypted values

Adapting

Proofs can be adapted when constants are turned into variables or vice versa

Homomorphic

The product of 2 proofs is a proof for the product of the 2 equations

Independence

Proofs do not depend on t

Some proofs $(\gamma_{ij} = 0)$ do not depend on encrypted values

Adapting

Proofs can be adapted when constants are turned into variables or vice versa

Homomorphic

The product of 2 proofs is a proof for the product of the 2 equations

Conclusion

New primitives

- Automorphic signatures (First efficient "Groth-Sahai compatible" signatures)
- Commuting signatures

 $({\sf Toolbox}\ for\ privacy\!-\!preserving\ primitives})$

Conclusion

New primitives

- Automorphic signatures (First efficient "Groth-Sahai compatible" signatures)
- Commuting signatures (Toolbox for privacy-preserving primitives)

Applications

- First efficient anonymous proxy signatures
- First efficient round-optimal blind signatures
- First anonymous credentials that are non-interactively delegatable
 - & no more complex 2-party protocols; size halved

Conclusion

New primitives

- Automorphic signatures (First efficient "Groth-Sahai compatible" signatures)
- Commuting signatures (Toolbox for privacy-preserving primitives)

Applications

- First efficient anonymous proxy signatures
- First efficient round-optimal blind signatures
- First anonymous credentials that are non-interactively delegatable
 - & no more complex 2-party protocols; size halved
- Receipt-free e-voting [BFPV11]
- Fully anonymous transferable e-cash [BCFGST11]

Thank you! 💮