Theoretical Quantum Optics

Problem Sheet

Lecturer: Prof. Dr. Igor Lesanovsky

Semester: Winter 23/24

Sheet: 4 **Hand-out:** 2.11.23 **Hand-in:** 9.11.23

Problem 8. Complex Gaussian integrals

a. Show that the complex Gaussian integral gives,

$$\int d^2 \beta e^{a\beta + b\beta^* - \delta|\beta|^2} = \frac{\pi}{\delta} e^{ab},$$

with $a, b \in \mathbb{C}$ where $\delta > 0$ and $d^2\beta = d\beta d\beta^*$.

b. Generalize the result to Gaussian integrals over N variables, that is, $\boldsymbol{\beta} = (\beta_1, \dots, \beta_N)$ and show that,

$$\int d^2 \boldsymbol{\beta} \, e^{-\boldsymbol{\beta}^{\dagger} \boldsymbol{\Gamma} \boldsymbol{\beta} + \mathbf{J}^{\dagger} \boldsymbol{\beta} + \boldsymbol{\beta}^{\dagger} \mathbf{J}} = \frac{(2\pi)^N}{\det(\boldsymbol{\Gamma})} e^{\mathbf{J}^{\dagger} \boldsymbol{\Gamma}^{-1} \mathbf{J}},$$

where Γ is a Hermitian matrix, \mathbf{J} is a complex vector, and $\mathrm{d}^2\boldsymbol{\beta} = \mathrm{d}\beta_1 \mathrm{d}\beta_1^* \cdots \mathrm{d}\beta_N \mathrm{d}\beta_N^*$.

Problem 9. Eigenstates of the annihilation operator

Coherent states $|\alpha\rangle$ are defined as eigenstates of the annihilation operator, $a|\alpha\rangle = \alpha |\alpha\rangle$. One may wonder what the eigenstates of the creation operator a^{\dagger} are. It turns out, however, that a^{\dagger} does not have any eigenstates! Prove this.

Problem 10. Fourier transform in the complex plane

Let $g(\xi)$ be a function, $g: \mathbb{C} \to \mathbb{C}$. Its Fourier transform over the complex plane, $\tilde{g}(\alpha)$, is then defined as,

$$\tilde{g}(\alpha) = \frac{1}{\pi} \int_{\mathbb{C}} d^2 \xi \ e^{\alpha \xi^* - \alpha^* \xi} g(\xi),$$

where the integration is over the complex plane, that is, $d^2\xi = d(\mathfrak{Re}(\xi))d(\mathfrak{Im}(\xi))$.

- **a.** Show that $g(\xi) = \frac{1}{2} e^{-\frac{1}{2}|\xi|^2}$ has the Fourier transform $\tilde{g}(\alpha) = e^{-2|\alpha|^2}$.
- **b.** The convolution product of two functions $f(\xi)$ and $g(\xi)$ is defined as,

$$(f * g)(\xi) = \int d^2 \rho f(\rho) g(\xi - \rho).$$

Show that $(\widetilde{f*g})(\alpha) = \pi \widetilde{f}(\alpha)\widetilde{g}(\alpha)$.