Please submit your solutions to Moodle by Tuesday, 17.10.2023, 23:55.

Homework #1

- 1. Draw the cross section of a n channel enhancement MOSFET and explain the $I_D\text{-}V_{DS}$ relation for
 - $\textbf{a.} \quad V_{GS} \! < V_{th}$
 - **b.** $V_{GS} > V_{th}$, and for small V_{DS} voltages
 - **c.** $V_{GS} > V_{th}$, and for large V_{DS} voltages

You need to explain why there is no current flowing from Gate, Drain, and Source terminals to the substrate.

2.

For the circuit on the left $V_{th}=1V$, and $K_N=0.2mA/V^2$

Find and plot V_0 vs V_I for $0 < V_I < 5V$.

You don't have to calculate V_O for all the V_I values, but your plot should reflect the actual behavior. Label the states of M1 in your plot. Find the value of V_I when the M1 state changes from TRIODE to SATURATION.

It is not required but you can write a program to plot V_O vs V_I for all values of V_I .

3.

For the circuit on the left k_N '/2=100 μ A/V², Vth=1V for all transistors.

(W/L) ratio of M2 and M3, and V_1 =2V are given.

Find V_X , $(W/L)_3$, and I_D .

Verify the transistor states.

4.

For the pMOS circuit on the left, $K_p\!\!=\!\!0.25mA/V^2,$ and $V_{tp}\!\!=\!\!-1V$

Find the Q point (V_{SD}, I_D) for

- a. $R_S=5k\Omega$
- **b.** $R_S=1k\Omega$

Verify the transistor state for both cases.

5.

For the nMOS circuit on the left, $K_{N}\!\!=\!\!0.2mA/V^{2},$ and $Vth\!\!=\!\!1.5V$

- **a.** Write the condition in terms of I_D and other circuit parameter for M1 to stay in SATURATION (no numerical values here). Explain the state of M1 as I increase the value of R_D using the load line approach.
- **b.** Find the range of R_D to keep M1 in SATURATION.

6.

For the circuit on the left, $K_N=K_P$, $V_{tn}=1V$, $V_{tp}=-1V$

Find the range of bias voltage V_b , to keep M1 in SATURATION and M2 in TRIODE for

- **a.** $V_I=2V$
- **b.** $V_I=3V$