The Role of Research Leaders on the Evolution of Scientific Communities

Bruno Leite Alves

Fabrício Benevenuto Alberto H. F. Laender

Federal University of Minas Gerais Belo Horizonte, Brazil

Society is Organized in Communities

There are a lot of kinds of communities

 In a social networks, individuals influence and are influenced by others

Communities have opinion leaders

A group of leaders or influential members are able to affect the dynamics of the entire community

Our Goal

- Study the dynamics of scientific communities
- Identify leaderships within scientific communities (Community Core)

Investigate the properties of a Community Core

Outline

Data Source about Scientific Communities

Extracting the Community Core

Properties of a Community Core

Data Source

dblp computer science bibliography

2.2 million publications

from 1.2 million authors

24 flagship conferences

of major ACM SIGs

We considered each **conference** as a **scientific community**

ACM SIGs Considered

SIGACT	SIGDOC	SIGMOD
SIGAPP	SIGGRAPH	SIGOPS
SIGARCH	SIGIR	SIGPLAN
SIGBED	SIGKDD	SIGSAC
SIGCHI	SIGMETRICS	SIGSAM
SIGCOMM	SIGMICRO	SIGSOFT
SIGCSE	SIGMM	SIGUCCS
SIGDA	SIGMOBILE	SIGWEB

Core Score

Estimates a researcher's importance within a community.

 The core score of a researcher r into a community c in a period of time t is given by:

$$CoreScore_{r,c,t} = h_r \times \#publications_{r,c,t}$$

How to Estimate H-index

Only **30%**

of **DBLP** authors had a profile at

Google Scholar

How to Estimate H-index

Only **30%**

of **DBLP** authors had a profile at

Google Scholar

Alternative

www.shine.icomp.ufam.edu.br

Shine vs. Google Scholar

Shine offers a good estimation for H-Index

Resemblance and Angular Coefficient

SIGMOD

Resemblance and Angular Coefficient

SIGMOD

Luis von Ahn's Communities

High core score in CHI and SIGCSE

Luis von Ahn's Communities

Member of the Community Core of CHI

Jon Kleinberg's Communities

High core score in several communities

Jon Kleinberg's Communities

Moving from STOC to KDD

Awarded Researchers

Members of the core community awarded

Evolution of the Scientific Communities

Year by year by accumulating nodes and edges

Evolution of the Scientific Communities

Snapshots (3 years) constructed based on nodes and edges

Core Members vs. Non-Members

Average degree of core members is higher than those of non-members'

Core Members vs. Non-Members

The core might act like hubs, by connecting different groups with small intersection

Core Members vs. Non-Members

A higher number of shortest paths include the core

Influence of Core Members

The average core score of a community, in general, rises along its life time

Influence of Core Members

How does it affect the network?

Strong Correlation with Average Core Score

Conclusions

The core community:

- is strongly correlated with variations on network properties
- works as bridges that connect groups
- increases the average degree
- decreases the assortativeness

Conclusions

Future Work:

- Analysis of other kinds of network such as massive multiplayer games and on-line social networks
- Estimation of the h-index as a function of time

Thank you!

Bruno Leite Alves
Fabrício Benevenuto Alberto H. F. Laender
Computer Science Department
Federal University of Minas Gerais
{bruno.leite,fabricio,laender@dcc.ufmg.br}

