

深度學習系統與實現 LAB01 - Basic DL framework & model architecture

Dept. of Computer Science and Information Engineering

National Chiao Tung University

1896

Outline

- LAB 1-1, Train a CNN model via pytorch
- Review of some concept
- LAB 1-2, Use thop to count MACs of your model
- LAB 1-3, Count the MACs / FLOPs of your model
 via the customized forward hook function
- Notices & Hints
- Questions
- Grading

1896

Prerequisite

- Most of Labs for this semester are based on Pytorch (>=1.2, 1.2 is best for deployment)
- The GPU resource requirements
 - Maxwell (只推薦 980ti, Titan)
 - □ Pascal (1060 6G 或以上)
 - □ Turing (1660 6G, 或是 RTX 家族) / Volta (Titan V))

LAB 1-1 Train a CNN model via pytorch

- We provide a cifar10 example on New E3
 - ☐ LAB-1-1-example-code.ipynb
- Just need to change the task to the other dataset
- You should show total accuracy (test case)
- You should show accuracy for each class
- We only verify the correctness of your function usage
 workflow (total accuracy > 60% is OK!)

LAB 1-1

1896

Dataset - skewed_food11

- Food11 Download link https://www.kaggle.com/tohidul/food11
- □ Transfer to skewed_food11 build_imbalanced_food11.sh
 - step 1. copy the script file into the dataset folder /food11
 - step 2. run this script file (build_imbalanced_food11.sh)

Test set: Top 1 Accuracy: 2925/3347 (87%) , Top 3 Accuracy: 3264/3347 (98%) Class 0 : 302/368 82.07% Class 1 : 100/148 67.57% Class 2 : 460/500 92.00% Class 3 : 268/335 80.00% Class 4 : 237/287 82.58% Class 5 : 410/432 94.91% Class 6 : 141/147 95.92%
Class 1 : 100/148 67.57% Class 2 : 460/500 92.00% Class 3 : 268/335 80.00% Class 4 : 237/287 82.58% Class 5 : 410/432 94.91%
Class 2 : 460/500 92.00% Class 3 : 268/335 80.00% Class 4 : 237/287 82.58% Class 5 : 410/432 94.91%
Class 3 : 268/335 80.00% Class 4 : 237/287 82.58% Class 5 : 410/432 94.91%
Class 4 : 237/287 82.58% Class 5 : 410/432 94.91%
Class 5 : 410/432 94.91%
Class 6 : 141/147 95.92%
Class 7 : 93 /96 96.88%
Class 8 : 263/303 86.80%
Class 9 : 482/500 96.40%
Class 10: 169/231 73.16%

- Metrics of model efficiency
- MACs
- FLOPs

Metrics of model efficiency

- the increased model complexity leads to a higher computational burden
- infeasible to deploy on the edge where the compute capacity is limited
- How should we evaluate the efficiency (complexity) of a neural network?

How to evaluate complexity

- Measurement
 - via some profiling tools, to record runtime of each ops
 - consider the real cases, ex: memory behavior ...
 - most of DL frameworks provide their own profiler
 - TensorFlow's profiler, PyTorch's profiler (only record timestamp)
- Theoretical metrics
 - MACs
 - FLOPs

MACs

- In computing, especially digital signal processing, the multiply—accumulate(MAC) is a common operation
- Most layers in CNN model can be composed of many MAC operations - like "convolution"
- It's common used to estimate complexity

$$R[i][j] = (0*227) + (1*224) + (2*220) + (3*212) + (4*221) + (5*220) + (6*192) + (7*213) + (8*207)$$

MACs - example

Convolution

weights/parameters = $(R \times S \times C) \times M$

FLOPs

- Count number of floating-point operations
- Rely on your instruction set architecture & implement method
- In most paper, just use MACs to represent FLOPs, but they are totally different
- If implement the convolution with "dot product instruction" rather than "MAC" ?

FLOPs - example

A.1 FLOPS COMPUTATION

To compute the number of floating-point operations (FLOPs), we assume convolution is implemented as a sliding window and that the nonlinearity function is computed for free. For convolutional kernels we have:

$$FLOPs = 2HW(C_{in}K^2 + 1)C_{out}, \qquad (11)$$

where H, W and C_{in} are height, width and number of channels of the input feature map, K is the kernel width (assumed to be symmetric), and C_{out} is the number of output channels.

For fully connected layers we compute FLOPs as:

$$FLOPs = (2I - 1)O, (12)$$

where *I* is the input dimensionality and *O* is the output dimensionality.

<u>reference - Pruning Convolutional Neural Networks for Source</u> Efficient Inference [ICLR '17, Pavlo Molchanov, NVIDIA]

LAB 1-2

Use thop to count MACs of your model

- THOP: PyTorch-OpCounter
- Choose some models from torchvision
 - □ at least 2 kinds (recommend ResNet, MobileNetV2)
- How to use

```
from torchvision.models import resnet50
from thop import profile
model = resnet50()
input = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ))
```

Output format

```
Lab 1-2:
Total params: 2.238M
Total MACs: 312.879M
```

LAB 1-3

Count the MACs / FLOPs of your model via the customized forward hook function

- you also need to count the FLOPs in LAB 1-3
 - should be different with your MACs results
- need to show layer-wise MACs information
- customize your own MACs calculator for each layer
- hook function example pytorch_hook_sample.py

```
def my_hook_function(self, input, output):
    print("Op:{}".format(str(self.__class__.__name__)))
    for param in self.parameters():
        print("params shape: {}".format(list(param.size())))

def main():
    model = SampleNet()
    model.conv1.register_forward_hook(my_hook_function)
    input_data = torch.randn(1, 3, 224, 224)
    out = model(input_data)
```

LAB 1-3 Output Format

- You don't need to follow the format, but you need to provide each layer's information with the following items
 - op_type
 - input_shape
 - output_shape
 - params
 - MACs

Total MACs: 1.816G

Lab 1-3: op_type	input_shape	output_shape	params	MACs
Conv2d	[1, 3, 224, 224]	[1, 64, 112, 112]	9408	118013952
 Linear	[1, 512]	[1, 11]	5643	5632
Total params: 11.18	2 M			

Notices & Hints

- Please carefully confirm which layers need to count MACs (hint: compare with the works from thop)
- How many FLOPs for the non-linear layer ?
- Do we need to count MACs for pooling layer?

Questions

- You can try to answer the following questions in your report (TAs will ask you during the DEMO)
 - Do you get the same result from 'thop' & your own functions? If not, please explain.
 - How could you get a difference result between FLOPs and MACs?
 - Is MACs/FLOPs a good metric to estimate the real inference latency? If not, please explain.

Grading

- □ LAB 1-1 (60%)
- □ LAB 1-2 (15%)
- □ LAB 1-3 (25%)
- Bonus (10%)

- Total:
- 110
- □ In LAB 1-3, if your selected model contains the following special layers, TAs will give extra points
 - Dilated (Atrous) Convolution, Deconvolution, Others(ask TAs)
- Submission: source code + report (.ipynb is accepted)(E3)
 - zip format (ex: DLSR_lab1_{group id}.zip)
 - □ 未依照上述命名格式者,扣該Lab成績5分
- Deadline: 2020/03/23, 23:59 (Mon)(2 week)
- Demo: (TAs will announce date on New-E3 later)

Report Spec.

- □ EX:
 - Introduction
 - Experiment setup
 - □ Result
 - □ Discussion
 - □ Other ...

Reference

- Stanford Course : CS231n
 - http://cs231n.stanford.edu/
- Pytorch Document:
 - https://pytorch.org/docs/stable/index.html
- pytorch_OpCounter:
 - https://github.com/Lyken17/pytorch-OpCounter