1. Vypočítajte:

a.
$$\cos \frac{5}{6} \pi =$$

b.
$$\sin \frac{5}{4} \pi =$$

c.
$$\cos \frac{7}{2}\pi =$$

d.
$$\cos(-\frac{2}{3}\pi) =$$

e. $\cos\frac{11}{6}\pi =$

g.
$$\cos \frac{9}{4} \pi =$$

2. Vypočítajte:

a.
$$tg \frac{5}{6} \pi =$$

b.
$$\cot \frac{5}{4}\pi =$$

c.
$$\cot g \frac{\dot{7}}{2} \pi =$$

d.
$$tg(-\frac{2}{3}\pi) =$$

e.
$$tg \frac{11}{6} \pi =$$

g.
$$tg \frac{9}{4} \pi =$$

i.
$$\sin \frac{5}{6}\pi =$$

j.
$$\sin(-1350^{\circ}) =$$

k. $\sin(-\frac{\pi}{6}) =$

k.
$$\sin(-\frac{\pi}{6}) =$$

I.
$$\cos{(-120^{\circ})} =$$

m.
$$\sin \frac{4}{3}\pi =$$

n.
$$\cos 315^{\circ} =$$

h.
$$\cot 35^\circ =$$

i.
$$tg \frac{5}{6} \pi =$$

j.
$$tg(-1350^\circ) = k$$
. $tg(-\frac{\pi}{6}) =$

k.
$$tg(-\frac{\pi}{6}) =$$

I.
$$\cot (-120^{\circ}) =$$

m.
$$\cot g \frac{4}{3} \pi =$$

n.
$$tg 315^{\circ} =$$

3. Bez výpočtu hodnoty x vypočítajte hodnoty ostatných goniometrických funkcií, ak viete, že:

a.
$$\sin x = -\frac{2}{3}$$
; $kde x \in \left(\frac{3\pi}{2}, 2\pi\right)$

b.
$$\cos x = \frac{12}{13}$$
; kde $x \in (0, \frac{\pi}{2})$

c.
$$tg x = 1,25$$
; $kde x \in \left(\pi, \frac{3\pi}{2}\right)$

d.
$$\cot x = -\frac{9}{40}$$
; $\operatorname{kde} x \in \left(\frac{\pi}{2}, \pi\right)$

4. Vyriešte v R rovnice:

a.
$$\sin x = \frac{\sqrt{3}}{2}$$

b.
$$2 \cos x = \sqrt{2}$$

c.
$$-\sin\frac{x}{2} = \frac{1}{\sqrt{2}}$$

d.
$$\sin(3x) = -\frac{\sqrt{3}}{2}$$

e.
$$tg(2x) = -1$$

f.
$$\cot (x + \frac{\pi}{4}) = 0$$

g.
$$2\cos(4x-\frac{\pi}{2})=1$$

h.
$$-6 \text{tg} \frac{x}{5} = 2\sqrt{3}$$

i.
$$\cos{(\frac{x^2}{2} - \frac{\pi}{8})} = -1$$

j.
$$-\sqrt{3} \cot (3x) = 3$$

k.
$$\cos x + 2\sin x \cdot \cos x = 0$$

$$I. \quad 2\sin^2 x + \sin x = 1$$

$$m. 3 tg x - \cot g x = 0$$

n.
$$\frac{tg x}{cotg x} = tg x$$

- 5. Určte, za akých podmienok sú nasledujúce výrazy definované a čo najviac ich zjednodušte:
 - a. $\sin x \cdot \cos^2 x + \sin^3 x =$
 - b. $\sin x \sin x \cdot \cos^2 x =$
 - c. $\cos x \cos x \cdot \sin^2 x =$
 - $d. \quad \frac{\cos^2 x}{1 + \sin x} =$
 - $e. \quad \frac{\sin^2 x}{1 \cos x} =$
 - $f. \quad \frac{1}{\sin^2 x} 1 =$
 - $g. \quad \frac{\sin^3 x}{\cos x \cos^3 x} =$
 - $h. \quad \frac{\sin \sin^3 x}{\cos x \cos^3 x} =$
 - i. $\frac{1-\sin^2 x}{\cot g^2 x} =$

Výsledky:

1.

a.
$$\cos \frac{5}{6} \pi = -\frac{\sqrt{3}}{2}$$

b.
$$\sin \frac{5}{4} \pi = -\frac{\sqrt{2}}{2}$$

c.
$$\cos \frac{7}{2} \pi = 0$$

d.
$$\cos(-\frac{2}{3}\pi) = -\frac{1}{2}$$

e.
$$\cos \frac{11}{6} \pi = \frac{\sqrt{3}}{2}$$

f.
$$\sin 330^{\circ} = -\frac{1}{2}$$

g.
$$\cos \frac{9}{4} \pi = \frac{\sqrt{2}}{2}$$

2.

a.
$$tg \frac{5}{6} \pi = -\frac{\sqrt{3}}{3}$$

b.
$$\cot g \frac{5}{4} \pi = 1$$

c.
$$\cot g \frac{7}{2} \pi = 0$$

d.
$$tg(-\frac{2}{3}\pi) = \sqrt{3}$$

e.
$$tg \frac{11}{6} \pi = -\frac{\sqrt{3}}{3}$$

f.
$$\cot 330^{\circ} = -\sqrt{3}$$

g.
$$tg \frac{9}{4} \pi = 1$$

3.

a.
$$\cos x = \frac{\sqrt{5}}{3}$$
; $\tan x = -\frac{2\sqrt{5}}{5}$; $\cot x = -\frac{\sqrt{5}}{2}$

b.
$$\sin x = \frac{5}{13}$$
; $\tan x = \frac{5}{12}$; $\cot x = \frac{12}{5}$

c.
$$\sin x = -\frac{5\sqrt{41}}{41}$$
; $\cos x = -\frac{4\sqrt{41}}{41}$; $\cot x = 0.8$

d.
$$\sin x = \frac{40}{41}$$
; $\cos x = -\frac{9}{41}$; $\tan x = -\frac{40}{9}$

4.

a.
$$K = \left\{ \frac{\pi}{3} + k \cdot 2\pi; \frac{2\pi}{3} + k \cdot 2\pi \right\}, k \in \mathbb{Z}$$

b.
$$K = \left\{ \frac{\pi}{4} + k \cdot 2\pi; \frac{7\pi}{4} + k \cdot 2\pi \right\}, k \in \mathbb{Z}$$

c.
$$K = \left\{ \frac{5\pi}{2} + k \cdot 4\pi; \frac{7\pi}{2} + k \cdot 4\pi \right\}, k \in \mathbb{Z}$$

b.
$$K = \left\{ \frac{\pi}{4} + k \cdot 2\pi; \frac{7\pi}{4} + k \cdot 2\pi \right\}, k \in \mathbb{Z}$$

c. $K = \left\{ \frac{5\pi}{2} + k \cdot 4\pi; \frac{7\pi}{2} + k \cdot 4\pi \right\}, k \in \mathbb{Z}$
d. $K = \left\{ \frac{4\pi}{9} + k \cdot \frac{2\pi}{3}; \frac{5\pi}{9} + k \cdot \frac{2\pi}{3} \right\}, k \in \mathbb{Z}$

e.
$$K = {\frac{3\pi}{8} + k \cdot \frac{\pi}{2}}, k \in Z$$

f.
$$K = \left\{\frac{\pi}{4} + k \cdot \pi\right\}, k \in Z$$

g.
$$K = \left\{ \frac{5\pi}{24} + k \cdot \frac{\pi}{2}; \frac{7\pi}{24} + k \cdot \frac{\pi}{2} \right\}, k \in \mathbb{Z}$$

h.
$$K = \left\{\frac{25\pi}{6} + k \cdot 5\pi\right\}, k \in Z$$

i. $K = \left\{\frac{9\pi}{4} + 4k\pi\right\}, k \in Z$

i.
$$K = \left\{ \frac{9\pi}{4} + 4k\pi \right\}, k \in \mathbb{Z}$$

j.
$$K = \left\{ \frac{5\pi}{18} + k \cdot \frac{\pi}{3} \right\}, k \in Z$$

k.
$$K = \left\{ \frac{\pi}{2} + k \cdot 2\pi; \frac{3\pi}{2} + k \cdot 2\pi; \frac{7\pi}{6} + k \cdot 2\pi; \frac{11\pi}{6} + k \cdot 2\pi \right\}, k \in \mathbb{Z}$$

h.
$$\cos 135^{\circ} = -\frac{\sqrt{2}}{2}$$

i.
$$\sin\frac{5}{6}\pi = \frac{1}{2}$$

j.
$$\sin(-1350^\circ) = 1$$

k.
$$\sin(-\frac{\pi}{6}) = -\frac{1}{2}$$

I.
$$\cos(-120^\circ) = -\frac{1}{2}$$

m.
$$\sin \frac{4}{3} \pi = -\frac{\sqrt{3}}{2}$$

n.
$$\cos 315^{\circ} = \frac{\sqrt{2}}{2}$$

h.
$$\cot 35^{\circ} = -1$$

i.
$$\cot \frac{5}{6} \pi = -\sqrt{3}$$

j.
$$tg(-1350^\circ) = neexistuje$$

k.
$$tg(-\frac{\pi}{6}) = -\frac{\sqrt{3}}{3}$$

I.
$$\cot (-120^\circ) = \frac{\sqrt{3}}{3}$$

m.
$$\cot g \frac{4}{3} \pi = \frac{\sqrt{3}}{3}$$

n.
$$tg 315^{\circ} = -1$$

1.
$$K = \left\{ \frac{3\pi}{2} + k \cdot 2\pi; \frac{\pi}{6} + k \cdot 2\pi; \frac{5\pi}{6} + k \cdot 2\pi \right\}, k \in \mathbb{Z}$$

m.
$$K = \left\{ \frac{\pi}{6} + k \cdot \pi; \frac{5\pi}{6} + k \cdot \pi \right\}, k \in Z$$

$$n. \quad K = \left\{ \frac{\pi}{4} + k \cdot \pi \right\}, \ k \in Z$$

5.

a.
$$\sin x$$
; $x \in \mathbb{R}$

b.
$$\sin^3 x$$
; $x \in \mathbb{R}$

c.
$$\cos^3 x$$
; $x \in \mathbb{R}$

d.
$$1 - \sin x$$
; $x \in \mathbb{R}^- \left\{ \frac{3\pi}{2} + 2k\pi \right\}$

e.
$$1 + \cos x$$
; $x \in \mathbb{R}^- \{2k\pi\}$

f.
$$\cot g^2 x$$
; $x \in \mathbb{R}^- \{k\pi\}$

g.
$$\operatorname{tg} x$$
; $x \in \mathbb{R}^-\left\{\frac{\pi}{2} + k\pi; k\pi\right\}$

h.
$$\cot x$$
; $x \in \mathbb{R}^-\left\{\frac{\pi}{2} + k\pi; k\pi\right\}$

i.
$$\sin^2 x$$
; $x \in \mathbb{R}^- \{k\pi\}$