Лемма о вложенных отрезках.

Определение:

Пусть $\{a_n\}$, $\{b_n\}\subset \mathbb{R}$ и $a_n\leqslant b_n$ \forall $n\in\mathbb{N}$. Тогда $\{[a_n$, $b_n]\}$, где $n=1,...,\infty$ называется последовательностью отрезков. Эта последовательность называется вложенной (или состоящей из вложенных отрезков), если \forall $n\in\mathbb{N}$: $[a_{n+1}$, $b_{n+1}]\subset [a_n$, $b_n]$ или $a_n\leqslant a_{n+1}\leqslant b_{n+1}\leqslant b_n$ \forall $n\in\mathbb{N}$ ($\{a_n\}$ не убывает, $\{b_n\}$ не возрастает).

Лемма:

 \forall последовательность {[a_n , b_n]}, где n=1,..., ∞ вложенных отрезков имеет хотя бы одну общую точку:

$$\exists c \in \mathbb{R} \forall n \in \mathbb{N} : c \in [a_n, b_n]$$

Если дополнительно $\lim_{n \to \infty} (b_n - a_n)$ =0, то общая точка для всех вложенных отрезков единственна и с = $\lim_{n \to \infty} a_n$ = $\sup(a_n)$ и

$$\mathsf{c} = \lim_{n \to \infty} b_n = \inf(b_n)$$
, где $\mathsf{n} \in \mathbb{N}$

Задачи для самостоятельного выполнения:

Доказать, что теорема Коши-Кантора о вложенных отрезках не выполняется на множестве \mathbb{Q} .