Universidade de Coimbra

Trabalho Prático 2

Mestrado de Segurança Informática

Segurança em tecnologia de Informação

André Ferreira - uc2023188951@student.uc.pt

Nuno Simões - uc2023173985@student.uc.pt

Índice

Introdução3
Packet filtering e NAT usando NFtables4
Configuração da firewall para proteger o router4
Configuração da firewall para autorizar comunicações diretas (sem NAT)6
Configuração da firewall para ligações ao endereço IP externo da firewall (utilizando NAT)11
Configuração da firewall para comunicações da rede interna para o exterior (utilizando NAT)
Deteção e prevenção de intrusões (IDS/IPS)15
Detetar e bloquear (pelo menos) os seguintes ataques15
Audit any modification in the firewall and IDS/IPS configuration files18
Conclusão19
Referências

Introdução

Este trabalho foi realizado no âmbito da cadeira de Segurança em Tecnologias da Informação e visa a implementação de um cenário com a utilização de 4 máquinas virtuais. Os objetivos gerais deste trabalho são os seguintes:

- Configuração dos serviços que são fornecidos na DMZ, na rede interna e no Router Linux.
- Configuração de uma Firewall no Router Linux através de NFtables.
- Configuração do Suricata é um sistema de prevenção de intrusões (IPS), onde ele não só deteta, mas também pode tomar ações para bloquear ou alterar pacotes de rede maliciosos. Isso permite uma resposta proativa a ameaças, mitigando potencialmente o dano antes que ele ocorra.
- Auditar ficheiros importantes de configuração, detetar atividades suspeitas ou maliciosas, como acesso não autorizado ou modificações em arquivos críticos.

Este trabalho têm o cenário acima descrito, composto por quatro máquinas virtuais em VMware, no qual as máquinas "router" e a "VM-Internet" podem variar o IP, visto que este é por DHCP.

Em termos de endereçamento IP, existem 3 redes, DMZ "10.10.10.0/24", Internal"10.20.20.0/24" e a rede da Internet"192.168.220.0/24".

As máquinas virtuais contêm os seguintes IPs, VM-DMZ "10.10.10.100", VM-STI"10.20.20.200", VM-Internet"192.168.220.185" e Router"eth0- 10.10.10.1", "eth1-10.20.20.1" e "eth2- 192.168.220.177".

Em termos de "máquinas" externas alvos dos nossos testes, está o dns da Universidade do Minho "193.137.16.75", Cloudflare "1.1.1.1", Google "8.8.8.8" e Eden"193.137.203.227".

De forma a termos uma aproximação maior à realidade, decidimos fazer os testes, com serviços instalados e configurados, nomeadamente o DNS(bind9), SMTP(postfix), IMAP(dovecot), WEB(apache2), VPN(openvpn). Para fazer os pedidos de ligação, maioritariamente foi com a ferramentas / programas: NetCat, Hping3, Hydra, mysql, ssh.

Packet filtering e NAT usando NFtables

Configuração da firewall para proteger o router

"A configuração da firewall deve eliminar todas as comunicações que entram no sistema do router, exceto as necessárias para o funcionamento normal dos seguintes serviços:"

• Pedidos de resolução de nomes DNS enviados para servidores externos.

Linha de código NFT:

Chain forward { udp dport 53 ip daddr 8.8.8.8 counter accept }

#Execução do comando para fazer a resolução de nome.

```
Router DMZ STI Internet

(roots kali) - [~]

# nslookup dei.uc.pt
Server: 8.8.8.8
Address: 8.8.8#53

Non-authoritative answer:
Name: dei.uc.pt
Address: 193.137.203.227
```

#Correspondência dos pacotes de rede com as regras nftables.

```
chain forward {

type filter hook forward priority filter; policy drop;

ct state established, related counter packets 2 bytes 171 accept

udp dport 53 ip daddr 10.10.10.00 counter packets 0 bytes 0 accept

tcp dport 53 ip daddr 19.10.10.100 counter packets 0 bytes 0 accept

udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept

tcp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept

udp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept

udp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept

tcp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

tcp dport 23 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

tcp dport 23 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

tcp dport { 110, 143 } ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

udp dport 1194 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

ip protocol icmp counter packets 0 bytes 0 accept

ip protocol icmp counter packets 0 bytes 0 accept

ip saddr 192.168.1.72 ip daddr 10.20.20.200 tcp dport 2022 counter packets 0 bytes 0 accept

ip saddr 192.168.1.72 ip daddr 10.20.20.200 tcp dport 22 ct counter packets 0 bytes 0 accept

ip saddr 192.168.1.72 ip daddr 10.20.20.200 tcp dport 22 ct counter packets 0 bytes 0 accept

ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 counter packets 0 bytes 0 accept

ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 counter packets 0 bytes 0 accept

ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 counter packets 0 bytes 0 accept

ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 counter packets 0 bytes 0 accept

ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 counter packets 0 bytes 0 accept
```

•Ligações SSH ao sistema de router, se forem originadas na rede interna ou no gateway VPN (vpn-gw).

"As ligações SSH também devem ser protegidas com o mecanismo de bloqueio de portas (com um mínimo de 5 bloqueios de portas). Deve-se documentar a sequência secreta."

A sequência do acesso SSH ao router segue a seguinte ordem de portos: 123, 234, 789, 345 e 456, a seguir ele vai iniciar a ligação no porto 22.

Linhas de código NFT:

#Execução do comando para iniciar a ligação. # Estado do porto para a receção do pedido.

```
A Router A DMZ A STI A Internet

(roots kali) - [~]

# nc 10.20.20.1 123 -w 1

nc 10.20.20.1 345 -w 2

ssh kali@10.20.20.1

(UNKNOWN) [10.20.20.1] 123 (?) : Connection timed out

(UNKNOWN) [10.20.20.1] 789 (?) : Connection timed out

(UNKNOWN) [10.20.20.1] 789 (?) : Connection timed out

(UNKNOWN) [10.20.20.1] 789 (?) : Connection timed out

(UNKNOWN) [10.20.20.1] 345 (pawserv) : Connection timed out

(UNKNOWN) [10.20.20.1] 456 (?) : Connection timed out
```

Configuração da firewall para autorizar comunicações diretas (sem NAT)

"A configuração da firewall deve eliminar todas as comunicações entre redes, exceto as necessárias para o funcionamento normal dos seguintes serviços:"

O DNS como é um serviço que utiliza pacotes UDP por defeito (exceto em algumas exceções), e a ferramenta do "Netcat", por defeito usar pacotes TCP, para executar os dois testes seguintes, de forma mais aproximada à realidade (nslookup) foi necessário adicionar flag "-u" ao comando do netcat forçando assim o uso de UDP.

No teste do serviço "openvpn" também foi necessário proceder à adição da flag "-u", para este comando usar o protocolo UDP, visto que este serviço por norma utiliza pacotes UDP.

• Resoluções de nomes de domínio utilizando o servidor dns.

Linha de código NFTable:

Chain forward { tcp dport 53 ip daddr 10.10.10.100 counter accept }

#Execução do comando para iniciar a ligação. # Estado do porto para a receção do pedido.

```
chain forward {
    type filter hook forward priority filter; policy drop;
    ct state established.related counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 10.10.10.100 counter packets 2 bytes 58 accept
    tcp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
```

• O servidor dns deve resolver nomes utilizando servidores DNS na Internet (dns2 e 1.1.1.1).

Utilizando servidor DNS2:

Linha de código NFTable:

Chain forward { udp dport 53 ip daddr 193.137.16.75 counter accept }

#Execução do comando para fazer a resolução de nome.

#Correspondência dos pacotes de rede com as regras nftables.

```
chain forward {

type filter hook forward priority filter; policy drop;

ct state established, related counter packets 2 bytes 162 accept

udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

tcp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

udp dport 53 ip daddr 193.137.16.75 counter packets 2 bytes 118 accept

tcp uport 53 ip daddr 193.137.16.75 counter packets 0 bytes o accept
```

Utilizando servidor 1.1.1.1:

Linha de código NFTable:

Chain forward { udp dport 53 ip daddr 1.1.1.1 counter accept }

#Execução do comando para fazer a resolução de nome.


```
chain forward {
    type filter hook forward priority filter; policy drop;
    ct state established, related counter packets 2 bytes 171 accept
    udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 acce
    tcp dport 53 ip daddr 10.10.100 counter packets 0 bytes 0 acce
    udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 acce
    tcp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 acce
    tcp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 1.1.1.1 counter packets 2 bytes 110 accept
    tcp dport 53 ip daddr 10.0.1.15 counter packets 0 bytes 0 accept
```

Os servidores dos e dos devem ser capazes de sincronizar o conteúdo das zonas DNS.

Configuramos ambos os serviços em diferentes servidores, sendo um em modo de Master e outro em modo de Slave, no qual não obtivemos sucesso na sincronização, paralelamente executou-se os comandos "nc 10.10.10.100 53" apartir do servidor DNS2 e o inverso, sem sucesso. Tentou-se também fazer de uma máquina "nc -l 53" e noutra "nc 10.10.10.100 53", mas sem sucesso.

• Ligações SMTP ao servidor smtp.

Linha de código NFTable:

Chain forward { tcp dport 25 ip daddr 10.10.10.100 counter accept }

#Execução do comando para iniciar a ligação. # Estado do porto para a receção do pedido.

#Correspondência dos pacotes de rede com as regras nftables.

```
chain forward {
    type filter hook forward priority filter; policy drop;
    ct state established, related counter packets 5 bytes 287 accept
    udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 19.10.10.100 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 192.168.220.254 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 192.168.220.254 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 10.10.10.100 counter packets 1 bytes 60 accept
    tcp dport 25 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
```

•Ligações POP e IMAP ao servidor de correio eletrónico.

Ligação POP:

Linha de código NFTable:

Chain forward { tcp dport { 110, 143 } ip daddr 10.10.10.100 counter accept }

#Execução do comando para iniciar a ligação. # Estado do porto para a receção do pedido.

#Correspondência dos pacotes de rede com as regras nftables.

```
chain forward {
    type filter hook forward priority filter; policy drop;
    ct state established, related counter packets 9 bytes 500 accept
    udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    tep dport 53 ip daddr 19.137.16.75 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    tep dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept
    tep dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept
    tep dport 53 ip daddr 10.10.15 counter packets 0 bytes 0 accept
    tep dport 53 ip daddr 10.10.10.100 counter packets 1 bytes 71 accept
    tep dport 25 ip daddr 10.10.10.10.100 counter packets 1 bytes 60 accept
    tep dport { 10, 143 } ip daddr 10.10.10.100 counter packets 1 bytes 60 accept
    tep dport { 80, 443 } ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
```

Ligação IMAP:

Linha de código NFTable:

Chain forward { tcp dport { 110, 143 } ip daddr 10.10.10.100 counter accept }

#Execução do comando para iniciar a ligação. # Estado do porto para a receção do pedido.

```
| Router | DMZ | STI | DMZ | STI | DMZ | STI | DMZ | STI | DMZ | D
```

#Correspondência dos pacotes de rede com as regras nftables.

```
chain forward {
	type filter hook forward priority filter; policy drop;
	ct state established, related counter packets 7 bytes 391 accept
	udp dport 53 ip daddr 10.10.100 counter packets 0 bytes 0 accept
	tcp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
	udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
	tcp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
	udp dport 53 ip daddr 11.1.1 counter packets 0 bytes 0 accept
	tcp dport 53 ip daddr 10.0.4.15 counter packets 0 bytes 0 accept
	tcp dport 53 ip daddr 8.8.8 counter packets 1 bytes 71 accept
	tcp dport 25 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
	tcp dport { 110, 143 } ip daddr 10.10.10.100 counter packets 1 bytes 60 accept
	tcp dport { 80, 443 } ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
```

• Ligações HTTP e HTTPS ao servidor www.

Ligação HTTP:

Linha de código NFTable:

Chain forward { tcp dport { 80, 443 } ip daddr 10.10.10.100 accept }

#Execução do comando para iniciar a ligação. # Estado do porto para a receção do pedido.


```
chain forward {
    type filter hook forward priority filter; policy drop;
    ct state established, related counter packets 6 bytes 339 accept
    udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    top dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    top dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 13.11.1 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept
    top dport 53 ip daddr 1.0.1.4.15 counter packets 0 bytes 0 accept
    top dport 53 ip daddr 10.10.1.10.100 counter packets 0 bytes 0 accept
    top dport 25 ip daddr 8.8.8.8 counter packets 0 bytes 0 accept
    top dport 25 ip daddr 10.10.10.10.100 counter packets 0 bytes 0 accept
    top dport ( 110, 143 ) ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    top dport ( 80, 443 ) ip daddr 10.10.10.100 counter packets 1 bytes 60 accept
    udp dport 1194 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    ip protocol icmp counter packets 0 bytes 0 accept
    ip saddr 10.0.4.15 ip daddr 10.20.20.200 tcp dport 2022 counter packets 0 byte
    ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 counter packets 0 bytes 0 accept
    ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 (20 counter packets 0 bytes 0 accept
    ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 (20 counter packets 0 bytes 0 accept
    ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 (80, 443 ) counter packets 0 bytes
```

Ligação HTTPS:

Linha de código NFTable:

Chain forward { tcp dport { 80, 443 } ip daddr 10.10.10.100 accept }

#Execução do comando para iniciar a ligação. # Estado do porto para a receção do pedido.

```
(Not all processes could be identified, non-owned process info
(UNKNOWN) [10.10.100] 443 (https) open tcp6 0 0 :::448 :::* LISTEN
```

#Correspondência dos pacotes de rede com as regras nftables.

```
chain forward {
    type filter hook forward priority filter; policy drop;
    ct state established, related counter packets 6 bytes 339 accept
    udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 192.16.75 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 192.168.220.254 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    tcp dport 25 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    tcp dport { 110, 143 } ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    tcp dport { 80, 443 } ip daddr 10.10.10.100 counter packets 1 bytes 60 accept
    udp dport 1194 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
```

• Ligações OpenVPN ao servidor vpn-gw.

Linha de código NFTable:

Chain forward { udp dport 1194 ip daddr 10.10.10.100 counter accept }

#Execução do comando para iniciar a ligação. # Estado do porto para a receção do pedido.

```
A Router A DMZ A STI A Internet A Router DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Router A DMZ A STI A Internet I Transport A Internet
```

```
chain forward {

type filter hook forward priority filter; policy drop;

ct state established, related counter packets 1 bytes 71 accept

udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

tcp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept

tcp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept

udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept

tcp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept

tcp dport 53 ip daddr 10.0.4.15 counter packets 0 bytes 0 accept

tcp dport 53 ip daddr 8.8.8.8 counter packets 1 bytes 71 accept

tcp dport 25 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

tcp dport { 110, 143 } ip daddr 10.10.10.100 counter packets 0 bytes 0

tcp dport { 80, 443 } ip daddr 10.10.10.100 counter packets 0 bytes 0 accept

lp protocol 1cmp counter packets 0 bytes 0 accept
```

Configuração da firewall para ligações ao endereço IP externo da firewall (utilizando NAT)

"As conexões originadas no exterior (Internet) e destinadas ao endereço IP externo (identificado como VMWare IP) do firewall devem ser autorizadas e tratadas de acordo com os seguintes requisitos:"

• As ligações SSH para a porta 2021 do router Linux devem ser redirecionadas para a porta SSH do servidor de armazenamento de dados e devem ser limitadas a 2 ligações simultâneas.

Linha de código NFTable:

Chain forward {ip saddr 192.168.220.253 ip daddr 10.20.20.200 tcp dport 22 ct count 2 accept}

Chain prerouting { ip saddr 192.168.220.253 tcp dport 2021 counter accept }

#Execução do comando para iniciar a ligação. # Estado do porto para a receção do pedido.

• As ligações para a porta 2022 do Router Linux devem ser redirecionadas para a porta 2022 do servidor STI CA e só devem ser permitidas a partir de um único endereço IP da Internet (este endereço deve ser documentado no relatório).

Para permitir acesso SSH ao servidor através de 2 portas, foi preciso aceder ao servidor e alterar o seu ficheiro "/etc/ssh/sshd config" e adicionar a linha "Port 2022".

Linha de código NFTable:

Chain forward {ip saddr 192.168.220.253 ip daddr 10.20.20.200 tcp dport 2022 ct count 2 accept}

Chain prerouting { ip saddr 192.168.220.253 tcp dport 2022 counter accept }

#Execução do comando para iniciar a ligação. # Estado do porto para a receção do pedido.

```
ssh kallaj92.168.220.191 - p 2022
kallaj92.168.220.191's password:
Linux stica 6.5.0-kalla-mad64 #1 SMP PREEMPT_DYNAMIC Debia
2023-10-09) x86_64

The programs included with the Kali GNU/Linux system are f
the exact distribution terms for each program are describe
individual files in /usr/share/doc/*/copyright.

Kali GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the e
permitted by applicable law.
Last login: Sun Apr 21 07:19:16 2024 from 192.168.220.253

(Mali@sticA)-[*]

(Mali@sticA)-[*]

tcp6 0 0 0.0.0.0:2022 0.0.0.0:*

LISTEN

LISTEN
```

#Correspondência dos pacotes de rede com as regras nftables.

```
chain forward {
    type filter hook forward priority filter; policy drop;
    ct state established, related counter packets 243 bytes 28484 accept
    udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 10.91.37.16.75 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 18.11.1 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 18.220.254 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 18.220.254 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 10.10.100 counter packets 0 bytes 0 accept
    tcp dport 25 ip daddr 10.10.100 counter packets 0 bytes 0 accept
    tcp dport 4 10.44 3 ip daddr 10.10.100 counter packets 0 bytes 0 accept
    tcp dport 4 80, 443 3 ip daddr 10.10.100 counter packets 0 bytes 0 accept
    udp dport 1194 ip daddr 10.10.1010 counter packets 0 bytes 0 accept
    ip protocol icmp counter packets 0 bytes 0 accept
    ip protocol icmp counter packets 0 bytes 0 accept
    ip saddr 192.168.220.253 ip daddr 10.20.20.200 tcp dport 2022 counter packets 1 bytes 60 accept
    ip saddr 10.20.20.0/24 oif "eth2" tcp dport 22 counter packets 0 bytes 0 accept
    ip saddr 10.20.20.0/24 oif "eth2" tcp dport 22 counter packets 0 bytes 0 accept
    ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 counter packets 0 bytes 0 accept
    ip saddr 10.20.20.0/24 oif "eth2" tcp dport 2 counter packets 0 bytes 0 accept
    ip saddr 10.20.20.20.203 tcp dport 2021 counter packets 0 bytes 0 accept
    ip saddr 10.20.20.20.203 tcp dport 2021 counter packets 0 bytes 0 accept
    ip saddr 10.20.20.20.203 tcp dport 2021 counter packets 0 bytes 0 dnat to 10.20.20.200.2022
    ip saddr 192.168.220.233 tcp dport 2021 counter packets 0 bytes 0 dnat to 10.20.20.200.200.2022
    ip saddr 192.168.220.235 tcp dport 2021 counter packets 1 bytes 60
```

Configuração da firewall para comunicações da rede interna para o exterior (utilizando NAT)

"As seguintes comunicações da rede interna para o exterior (Internet) devem ser autorizadas utilizando NAT:"

• Resoluções de nomes de domínio utilizando DNS.

Linha de código NFTable:

Chain forward { udp dport 53 ip daddr 8.8.8.8 counter accept }

#Execução do comando para fazer a resolução de nome.

#Correspondência dos pacotes de rede com as regras nftables.

```
chain forward {
	type filter hook forward priority filter; policy drop;
	ct state established,related counter packets 8 bytes 694 accept
	udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
	tcp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
	udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
	tcp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
	udp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept
	tcp dport 53 ip daddr 10.0.4.15 counter packets 0 bytes 0 accept
	tcp dport 53 ip daddr 8.8.8.8 counter packets 5 bytes 301 accept
	tcp dport 25 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
```

• Ligações HTTP, HTTPS e SSH a partir de dispositivos com endereço IP dinâmico (clientes DHCP).

Para os testes HTTP e HTTPS, as regras são as mesmas e os outputs do "nft list ruleset" são os mesmos.

Ligação HTTP:

Linhas de código NFTable:

Chain forward{ ip saddr 10.20.20.0/24 oif "eth2" tcp dport { 80, 443 } counter}

Chain postrouting { ip saddr 10.20.20.0/24 oifname "eth2" counter accept }

#Execução do comando para fazer download da página web.

#Correspondência dos pacotes de rede com as regras nftables.

```
chain forward {
    type filter hook forward priority filter; policy drop;
    ct state established, related counter packets 511 bytes 669740 accept
    udp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 193.137.16.75 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept
    udp dport 53 ip daddr 1.1.1.1 counter packets 0 bytes 0 accept
    tcp dport 53 ip daddr 10.0.4.15 counter packets 0 bytes 0 accept
    tcp dport 25 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    tcp dport ( 110, 143 ) ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    tcp dport ( 80, 443 ) ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    udp dport 1194 ip daddr 10.10.10.100 counter packets 0 bytes 0 accept
    ip protocol icmp counter packets 0 bytes 0 accept
    ip saddr 10.0.4.15 ip daddr 10.20.20.200 tcp dport 2022 counter packets 0 bytes 0 accept
    ip saddr 10.0.4.15 ip daddr 10.20.20.200 tcp dport 2022 counter packets 0 bytes in saddr 10.20.20.00/24 oif "eth2" tcp dbort 22 counter packets 0 bytes 0 accept
    ip saddr 10.20.20.0/24 oif "eth2" tcp dbort 22 counter packets 2 bytes 120 accept
    ip saddr 10.0.4.15 tcp dport 2021 counter packets 0 bytes 0 dnat to 10.20.20.200:22
    ip saddr 10.0.4.15 tcp dport 2022 counter packets 0 bytes 0 dnat to 10.20.20.200:202
}

chain postrouting (
    type nat hook postrouting priority sronat; policy accept;
    ip saddr 10.0.4.15 tcp dport 2022 counter packets 3 bytes 177 masquerade

    type nat hook postrouting priority sronat; policy accept;
    ip saddr 10.20.20.0/24 oifname "eth2" counter packets 3 bytes 177 masquerade
```

Ligação HTTPS:

#Execução do comando para fazer download da página web.

Ligação SSH:

Linha de código NFTable:

Chain forward { ip saddr 10.0.4.15 ip daddr 10.20.20.200 tcp dport 22 ct count 2 counter accept}

Chain postrouting { ip saddr 10.20.20.0/24 oifname "eth2" counter accept}

#Execução do comando para fazer ligação SSH.

```
A Router DMZ A ST A Internet

(root6 kali) -[~]

# ssh eden.dei.uc.pt

The authenticity of host 'eden.dei.uc.pt (193.136.212.2)' can't be established.

ED25519 key fingerprint is SHA256:ChQnnVk9Z89S3eYylokuGrmbfnKD221p2ukKPnhb/J4.

This key is not known by any other names.

Are you sure you want to continue connecting (yes/no/[fingerprint])?
```

#Correspondência dos pacotes de rede com as regras nftables.

Deteção e prevenção de intrusões (IDS/IPS)

Detetar e bloquear (pelo menos) os seguintes ataques

Um tipo de injeção SQL:

Para realizar este ataque SQL foi necessário instalar o serviço "mariadb" no qual procedeu-se à criação de base dados de teste. Foram criadas 2 regras no nftable, bem como adicionadas 2 regras no ficheiro "/etc/suricata/suricata.rules".

Esta experiência teve como objetivo apagar a base de dados "na3", no qual o Suricata cumpriu com a sua função e ao ler a regra de "drop" para este efeito bloqueou de imediato.

Comando executado:

mysql -h 10.10.10.100 -u admin -p -e "DROP DATABASE na3;"

```
(root@internet)-[/home/kali]
mysql -h 192.168.220.191 -u admin -p -e "DROP DATABASE na3;"
Enter password:
```

No seguinte ficheiro "/var/log/suricata/fast.log" é possível ver o drop e o aviso dos pacotes a serem bloqueados.

```
[var/log/suricata] [var/log/sur
```

Dois tipos de ataques DoS:

1º Ataque:

Para este tipo de ataque foi necessário recorrer à ferramenta "hping3", no qual vai enviar pacotes para o router do tipo "TCP-SYN", com a opção "--flood" vai enviar o mais rápido possível até este deixar de responder.

Comando executado:

hping3 -S --flood 192.168.220.191

```
(root@internet)-[/home/kali]
| hping3 -S --flood 192.168.220.191

HPING 192.168.220.191 (eth0 192.168.220.191): S set, 40 headers + 0 data bytes hping in flood mode, no replies will be shown
```

No seguinte ficheiro "/var/log/suricata/fast.log" é possível ver o drop e o aviso dos pacotes a serem bloqueados.

```
SETENT DIOCUCATIONS.

04/21/2024-14:53:36.500519 [**] [1:1100001:1] DoS TCP Attack Detected [**] [Classification: (null)] [Priority: 3] {TCP} 192.168.220.25

3:64941 → 192.168.220.191:0

04/21/2024-14:53:36.520022 [Drop] [**] [1:1100011:1] DoS TCP Attack Detected [**] [Classification: (null)] [Priority: 3] {TCP} 192.168.

220.253:55296 → 192.168.220.191:0

04/21/2024-14:53:36.520022 [**] [1:1100001:1] DoS TCP Attack Detected [**] [Classification: (null)] [Priority: 3] {TCP} 192.168.220.25

3:65296 → 192.168.220.191:0
```

2º Ataque:

Conforme anteriormente visto voltou-se a usar a ferramenta "hping3", no qual vai enviar pacotes para o router do tipo "ICMP", com a opção "--flood" enviando assim o mais rápido possível, até este deixar de responder.

Comando executado: hping3 --icmp --flood 192.168.220.191

No seguinte ficheiro "/var/log/suricata/fast.log" é possível ver o drop e o aviso dos pacotes a serem bloqueados.

```
04/21/2024-15:04:57.189537 [**] [1:1100001:1] DOS ICMP Attack Detected [**] [Classification: (null)] [Priority: 3] {ICMP} 192.168.220.253:8 → 192.168.220.191:0 04/21/2024-15:04:57.617777 [Drop] [**] [1:1100010:1] DOS ICMP Attack Detected [**] [Classification: (null)] [Priority: 3] {ICMP} 192.168.220.253:8 → 192.168.220.191:0 04/21/2024-15:04:57.617777 [**] [1:1100010:1] DOS ICMP Attack Detected [**] [Classification: (null)] [Priority: 3] {ICMP} 192.168.220.253:8 → 192.168.220.191:0 04/21/2024-15:04:58.191465 [wDrop] [**] [1:1100010:1] DOS ICMP Attack Detected [**] [Classification: (null)] [Priority: 3] {ICMP} 192.168.220.253:8 → 192.168.220.191:0 04/21/2024-15:04:58.191465 [**] [1:1100011:1] DOS ICMP Attack Detected [**] [Classification: (null)] [Priority: 3] {ICMP} 192.168.220.253:8 → 192.168.220.191:0 04/21/2024-15:04:58.191465 [**] [1:1100001:1] DOS ICMP Attack Detected [**] [Classification: (null)] [Priority: 3] {ICMP} 192.168.220.253:8 → 192.168.220.191:0
```

Um tipo de ataque de força bruta:

Para este ataque foi usada a ferramenta "hydra" que é muito popular nos dias de hoje, para fazer ataques de força bruta.

No comando usou-se os seguintes atributos / flags:

- "-l kali" de forma a identificar o utilizador alvo do ataque;
- "-P /usr/share/wordlists/rockyou.txt" dizer qual é o dicionário que ele vai usar;
- "192.168.220.191" Endereço IP alvo do ataque;
- "-s 2021 ssh " é o porto e o serviço a ser explorados.

Comando executado:

hydra -l kali -P /usr/share/wordlists/rockyou.txt 192.168.220.191 -s 2021 ssh

```
(root@internet)-[/home/kali]

# hydra -l kali -P /usr/share/wordlists/rockyou.txt 192.168.220.191 -s 2021 ssh

Hydra v9.5 (c) 2023 by van Hauser/THC & David Maciejak - Please do not use in military o

r secret service organizations, or for illegal purposes (this is non-binding, these ***

ignore laws and ethics anyway).

Hydra (https://github.com/vanhauser-thc/thc-hydra) starting at 2024-04-21 15:03:23

[WARNING] Many SSH configurations limit the number of parallel tasks, it is recommended

to reduce the tasks: use -t 4

[WARNING] Restorefile (you have 10 seconds to abort ... (use option -I to skip waiting))

from a previous session found, to prevent overwriting, ./hydra.restore

[DATA] max 16 tasks per 1 server, overall 16 tasks, 14344399 login tries (l:1/p:14344399), ~896525 tries per task

[DATA] attacking ssh://192.168.220.191:2021/

[ERROR] all children were disabled due too many connection errors

0 of 1 target completed, 0 valid password found

Hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2024-04-21 15:04:06
```

No seguinte ficheiro "/var/log/suricata/fast.log" é possível ver o drop e o aviso dos pacotes a serem bloqueados.

```
04/21/2024-15:03:34.493534 [Drop] [**] [1:1110011:1] Possivel ataque de força bruta SSH [**] [Classification: Attempted Administrator Privilege Gain] [Priority: 1] {TCP} 192.168.220.253:52732 → 10.20.200:22 04/21/2024-15:03:34.493534 [**] [1:1110001:1] Possivel ataque de força bruta SSH [**] [Classification: Attempted Administrator Privile ge Gain] [Priority: 1] {TCP} 192.168.220.253:52732 → 10.20.200.220 04/21/2024-15:03:34.493540 [Drop] [**] [1:1110011:1] Possivel ataque de força bruta SSH [**] [Classification: Attempted Administrator Privilege Gain] [Priority: 1] {TCP} 192.168.220.253:527340 → 10.20.200:22 04/21/2024-15:03:34.493540 [**] [1:11100011:1] Possivel ataque de força bruta SSH [**] [Classification: Attempted Administrator Privile ge Gain] [Priority: 1] {TCP} 192.168.220.253:52740 → 10.20.20.200:22 04/21/2024-15:03:34.493540 [**] [1:11100011:1] Possivel ataque de força bruta SSH [**] [Classification: Attempted Administrator Privile ge Gain] [Priority: 1] {TCP} 192.168.220.253:52740 → 10.20.20.200:22
```

Audit any modification in the firewall and IDS/IPS configuration files

"Utilize os recursos de auditoria do Linux para encontrar qualquer modificação nos ficheiros de segurança da firewall e do IDS/IPS. Qualquer tentativa de modificar as permissões e qualquer tentativa de ler estes ficheiros de configuração deve ser auditada."

apt-get install auditd

systemetl enable auditd

systemctl restart auditd

auditctl -w /etc/nftables.conf -p wa -k nftables changes

auditetl -w /etc/suricata/rules/suricata.rules -p wa -k suricata rules changes

Auditoria ao ficheiro de configuração das regras do NFtables:

Comando para realizar a auditoria ao ficheiro:

ausearch -k nftables changes

Auditoria ao ficheiro de configuração das regras do Suricata:

Comando para realizar a auditoria ao ficheiro:

ausearch -k suricata_rules_changes

Conclusão

Este trabalho foi interessante, pois permitiu implementar um cenário semelhante à realidade, apesar de ter sido concentrado vários tipos de serviços numa única máquina apenas, neste caso a VM DMZ.

Foi possível aprofundar ainda mais os conhecimentos de NFT, bem como configuração de outros serviços pedidos no trabalho (smtp,dns,imap,pop...).

Como nos dias de hoje é quase imperativo ter um IDS /IPS, foi também implementado o Suricata, de forma a bloquear certas tentativas de ataque, conseguindo assim ganhar um maior à vontade com esta ferramenta.

Referências

- [1] https://wiki.nftables.org/wiki-nftables/index.php/Main_Page
- [2] https://docs.suricata.io/en/latest/quickstart.html
- [3] <u>https://www.stamus-networks.com/suricata-rules</u>
- [4] Laboratórios da prática de STI