Model comparison, interactions

Frank Edwards 3/6/2020

How to assess a model

If our goal is causal inference

- 1. Construct causal theories (DAGs)
- 2. Determine testable implications of model (conditional indepencies)
- 3. Evaluate, critique, refine

If our goal is prediction

- 1. Establish what we'd like to predict
- 2. Estimate competing models
- 3. Compare with metric of accuracy / fit

Overfitting

Data for today

```
data(mtcars)
ggplot(mtcars, aes(x = wt, y = mpg)) +
  geom_point()
```


The most common measure of model fit: R^2

$$R^{2} = \frac{var(outcome) - var(residuals)}{var(outcome)}$$

$$R^{2} = 1 - \frac{var(residuals)}{var(outcome)}$$

```
m1<-quap(alist(
  mpg ~ dnorm(mu, sigma),
  mu<-a + bW * wt,
  a ~ dnorm(0, 10),
  bW ~ dnorm(0, 5),
  sigma ~ dexp(1)
  ), data = mtcars)</pre>
```

```
## [1] 0.7494697
```

R² tells us how much of the variance in the outcome variable is predictable based on the included predictor variable(s). Here: we can predict 75 percent of the observed variance in mpg after knowing wt

Let's work with a sample of the data

```
car_sample<-mtcars %>%
  sample_n(10)

d<-car_sample</pre>
```

For the linear model with weight as a predictor, $R^2 =$

```
## [1] 0.794339
```

Yes! Let's use this linear function:

$$\mu = \alpha + \beta_1 W + \beta_2 W^2$$

Yes!

$$\mu = \alpha + \beta_1 W + \beta_2 W^2 + \beta_3 W^3$$

\$R^2 = \$

Yes!

$$\mu = \alpha + \beta_1 W + \beta_2 W^2 + \beta_3 W^3 + \beta_4 W^4$$

Yes!

$$\mu = \alpha + \beta_1 W + \beta_2 W^2 + \beta_3 W^3 + \beta_4 W^4 + \beta_5 W^5 + \beta_6 W^6$$

\$R^2 = \$

Overfitting and underfitting

- · Adding complexity will improve goodness-of-fit measures like R²
- But goodness-of-fit doesn't mean that we've modeled the process well, just that we've fit our sample well
- Adding too few parameters though can mean we aren't learning enough from the data
- · Goal: balance model complexity with predictive accuracy

How to address overfitting

Regularizing priors

Use these priors to fit our polynomial model

```
m0<-quap(alist(
  mpg ~ dnorm(mu, sigma),
  mu < -a + b * wt + b1 * wt^2 + b2 * wt^3 + b3 * wt^3 + b4 * wt^4.
  a \sim dnorm(0.10).
 b \sim dnorm(0, 10),
 b1 \sim dnorm(0, 10),
 b2 \sim dnorm(0.10).
 b3 \sim dnorm(0, 10),
 b4 \sim dnorm(0, 10),
 sigma ~ dexp(1)
), data = mtcars)
mReg<-quap(alist(
  mpg ~ dnorm(mu, sigma),
  mu < -a + b * wt + b1 * wt^2 + b2 * wt^3 + b3 * wt^3 + b4 * wt^4
  a \sim dnorm(0.1).
  b \sim dnorm(0, 1).
 b1 \sim dnorm(0, 1),
 b2 \sim dnorm(0.1).
 b3 \sim dnorm(0, 1).
 b4 ~ dnorm(0, 1),
 sigma ~ dexp(1)
). data = mtcars)
```

Narrower priors constrain overfitting

These priors force the model to learn less from the data. Flat priors allow the posterior to overfit the data.

Methods for comparing models

How well can we predict cases that we didn't use to fit the model?

Out of sample prediction is a general set of methods that evaluate how well a model performs at predicting new cases.

In general, we'd like to know how well our model predicts *new* observations, because it is easy to overfit on observed data.

Training and test methods

Let's partition the data into two equal sets: a *training* sample that we'll use to fit the model, and a *test* sample that we'll use to evaluate predictive accuracy

We'll extend this later to a general approach: leave-one-out cross-validation

Checking the fit for our 6 degree polynomial model

Checking the fit for each of the models: compare to test data

Checking the fit for each of the models: compare to test data, less complex model

- 1. Define a model
- 2. Estimate the model, holding the first observation out
- 3. Predict the value for the held out observation, estimate prediction error
- 4. Repeat with 2:n observations
- 5. Average the error across each iteration

Implenting LOO-CV in R

cv_quap(mReg)

```
## [1] -119.683
```

PSIS provides an approximation of LOO-CV that is more computationally efficient

PSIS(mReg)

```
## PSIS lppd penalty std_err
## 1 240.551 -120.2755 3.640157 14.12346
```

Model comparison using cross validation and information criteria

General approach

This approach is appropriate for comparing the estimated *predictive* accuracy of models. It is not appropriate for causal inference.

- 1. Estimate competing models
- 2. Compute the indicator of interest
- 3. Evaluate relative model predictive performance

Return to the plant fungus experiment

From the prior lecture and chapter 6: we conduct an experiment on the effect of an antifungal agent on plant growth. Conditioning on the presence of fungus confounds the relationship between the treatment and plant growth.

- fungus_0 is an intercept only model
- fungus_1 includes the treatment as a predictor
- fungus_2 includes both the treatment and fungus as a predictor

Compare these models using an information criterion

Information criteria compute an expected out-of-sample predictive score. AIC and BIC are routinely used, but better approaches now exist. We'll use WAIC (widely applicable information criteria).

In general, information criteria have two components:

 $IC = \log \text{ probability of model} - \text{penalty term}$

The penalty term (crudely) penalizes models for additional complexity. For two models with the same fit (log probability), the IC will prefer the less complex model

Comparing model fits with WAIC

```
compare(fungus_0, fungus_1, fungus_2)
```

```
## fungus_2 370.4278 15.72564 0.00000 NA 3.908673 1.0000000e ## fungus_0 420.6603 12.79034 50.23254 11.65051 2.765443 1.236350e ## fungus_1 421.0453 12.74626 50.61750 11.60759 2.933149 1.019883e
```

- fungus_2 has the lowest WAIC score. This means that it is expected
 to predict new cases with the highest accuracy.
- The difference in WAIC between fungus_2 and fungus_1 is large and meaningful
- Note the dSE (difference standard error) value relative to dWAIC (the difference in WAIC between the lowest scoring model and all others)

Comparing model fits with WAIC

```
compare(fungus_0, fungus_1, fungus_2)
```

```
## fungus_2 370.4278 15.72564 0.00000 NA 3.908673 1.0000000e ## fungus_0 420.6603 12.79034 50.23254 11.65051 2.765443 1.236350e ## fungus_1 421.0453 12.74626 50.61750 11.60759 2.933149 1.019883e
```

- fungus_2 has the lowest WAIC score. This means that it is expected to predict new cases with the highest accuracy.
- The difference in WAIC between fungus_2 and fungus_1 is large and meaningful
- Note the dSE (difference standard error) value relative to dWAIC (the difference in WAIC between the lowest scoring model and all others)
- · Information criteria don't care about causation!

Comparing model fits with PSIS

PSIS is an approximation of the LOO-CV method. It will warn you when there are influential observations that may bias the PSIS estimate. See 7.5.2 for a detailed example of how to address this using *robust regression*.

```
compare(fungus_0, fungus_1, fungus_2, func = PSIS)
```

```
## fungus_2 370.2318 15.82934 0.00000 NA 3.787902 1.0000000 ## fungus_0 420.8314 12.89778 50.59965 11.61946 2.840778 1.029024e ## fungus_1 421.0323 12.89876 50.80055 11.60069 2.933350 9.306789e
```

Interactions

Motivation for interactions

- · A linear model assumes that predictors are independent
- It tells us about the expected relationship between X and Y, once we know Z

Motivation for interactions

- · A linear model assumes that predictors are independent
- It tells us about the expected relationship between X and Y, once we know Z
- · What if we think the relationship between X and Y varies based on Z?

Relationships between bad geography and a country's economic performance

- · Countries with smoother terrain tend to have stronger economies.
- · However, economies in Africa appear to benefit from rough terrain.
- This may be due to the protections that rugged terrain offered against the slave trade.

The data

This data measures (among other things)

- Terrain ruggedness (variance in topography)
- A country's gross domestic product per capita (the ratio of economic productivity to population) in 2000
- Continent

The relationships inside and outside Africa: separate regressions

Set up the data for analysis

```
## a 5.932893e-05 0.06065618 -0.09688096 0.09699962
## b 3.048652e-03 0.08589175 -0.13422296 0.14032026
## sigma 9.941477e-01 0.05368005 0.9833664 1.07993882
```

What if we add intercepts for African / non-African nations?

```
d<-d %>%
  mutate(cont_africa = cont_africa + 1)
m8.2<-quap(alist(
  log_gdp.s~dnorm(mu,sigma),
  mu<-a[cont africa]+b*rugged.s,
  a[cont africa]~dnorm(0, 0.1),
  b \sim dnorm(0,0.3).
  sigma~dexp(1)).
  data=d)
precis(m8.2, depth = 2)
```

```
## mean sd 5.5% 94.5%

## a[1] 0.21919572 0.06315934 0.1182549 0.32013655

## a[2] -0.34560910 0.08208710 -0.4768001 -0.21441807

## b -0.02893965 0.07677022 -0.1516333 0.09375398
```

What do model expectations look like?

Plot model expectation μ

Model specification

The linear component of our Africa / not - Africa intercept model is:

$$\mu = \alpha_{\text{Africa}[i]} + \beta r_i$$

Model specification

The linear component of our Africa / not - Africa intercept model is:

$$\mu = \alpha_{\text{Africa}[i]} + \beta r_i$$

This specification estimates one intercept for African countries, and one for non-African countries. Slopes are identical for all countries.

Model specification: adding an interaction

Adding a slope for each group is easy:

$$\mu = \alpha_{\text{Africa}[i]} + \beta_{\text{Africa}[i]} r_i$$

Model specification: adding an interaction

Adding a slope for each group is easy:

$$\mu = \alpha_{\text{Africa}[i]} + \beta_{\text{Africa}[i]} r_i$$

This is the interaction: the slope of ruggedness now depends on continent.

Estimating the interaction model

```
m8.3<-quap(alist(
  log_gdp.s~dnorm(mu,sigma),
  mu<-a[cont_africa]+b[cont_africa]*rugged.s,
  a[cont_africa]~dnorm(0, 0.1),
  b[cont_africa]~dnorm(0,0.3),
  sigma~dexp(1)),
  data=d)

compare(m8.1, m8.2, m8.3)</pre>
```

```
## WAIC SE dWAIC dSE pWAIC weight

## m8.3 435.7359 13.88377 0.000000 NA 4.294965 9.906037e-01

## m8.2 445.0520 12.98362 9.316006 7.314588 2.911406 9.396258e-03

## m8.1 486.4011 13.37420 50.665135 8.982639 2.305062 9.865193e-12
```

Visualizing the interaction

Continuous interactions

- We just estimated an interaction between a categorical variable and a continuous variable
- This results in *k* slopes, where *k* is the number of categories in the categorical variable
- If we interact a continuous varible with another continuous variable we estimate an infinite number of slopes (!).
- · Directly interpreting posterior parameter estimates is very difficult

The example data

- · Plant growth depends on light and water
- If we've got light and no water, no growth
- · If we've got water and no light, no growth

2 3 76.75

6

· How do tulip blooms vary as a function of shade and water?

Fitting a model without interactions

Our linear function for this model will be:

$$\mu = \alpha + \beta_{\rm w} W_{\rm i} + \beta_{\rm s} S_{\rm i}$$

Add the interaction

Interactions allow for the relationship between *B* and *W* to depend on *S* (equivalently *B* and *S* depends on *W*).

$$\mu = \alpha + \beta_{\rm w} W_{\rm i} + \beta_{\rm s} S_{\rm i} + \beta_{\rm sw} W_{\rm i} S_{\rm i}$$

```
tulip1<-quap(alist(
    blooms.s ~ dnorm(mu, sigma),
    mu <- a + bw * water.s * bs * shade.s * bws * water.s * shade.s,
    a ~ dnorm(0.5, 0.25),
    bw ~ dnorm(0, 0.25),
    bs ~ dnorm(0, 0.25),
    bws ~ dnorm(0, 0.25),
    sigma ~ dexp(1)
), data = d)</pre>
```

Look at the posterior

```
compare(tulip0, tulip1)
             WATC
                  SE dWAIC dSE
                                              pWAIC
##
                                                        weight
## tulip1 -22.43088 10.398908 0.00000 NA 6.453630 0.994747659
## tulip0 -11.94325 9.065879 10.48763 8.134821 5.454518 0.005252341
precis(tulip1)
                             5.5%
##
             mean
                         sd
                                           94.5%
      0.3579828 0.02391897 0.3197556 0.39620990
## a
## bw
     0.2067291 0.02923472 0.1600064 0.25345186
## hs
     -0.1134613 0.02922769 -0.1601728 -0.06674980
## hws -0.1431612 0.03567987 -0.2001846 -0.08613791
## sigma 0.1248457 0.01694070 0.0977712 0.15192022
```

- \cdot $\, lpha \,$ is the intercept, same as usual
- \cdot $\beta_{\rm w}$ is now the slope for water when shade is zero
- $\cdot \beta_s$ is the slope for shade when water is zero
- \cdot β_{ws} moves the slope by $W \times S$ when neither is zero

This is very difficult to interpret... Don't try! Let's visualize instead.

The plan for a visual

- Let's visualize the counterfactual relationship between water and blooms for a range of values of shade.
- This means multiple plots, partitioning the continuous into ordered categories
- · We want a full range of water along a range of values of shade
- If we want to see k values of water and j values of shade, we'll have $k \times j$ scenarios in our counterfactual data

```
## water.s shade.s
## 1 -1.0000000 -1
## 2 -0.7777778 -1
## 3 -0.5555556 -1
## 4 -0.333333 -1
## 5 -0.1111111 -1
## 6 0.1111111 -1
```

Plotting it

Expected blooms by water (x) and shade (facets)

Pushing this further

Wrapping up

- Homework: Complete problem 8H4 from the book (Chapter 8 Practice)
- · We'll review this material and discuss in lab on Tuesday