Klasa Graph

Graph jest abstrakcyjną klasą bazową dla wszystkich klas implementujących grafy. Biblioteka oferuje dwie klasy pochodne:

- AdjacencyMatrixGraph graf reprezentowany za pomocą macierzy sąsiedztwa.
- AdjacencyListsGraph<AL> graf reprezentowany za pomocą list sąsiedztwa. Klasa jest parametryzowana
 typem AL implementującym interfejs IAdjacencyList, który jest używany jako słownik przechowujący sąsiadów
 wierzchołków. Biblioteka oferuje trzy implementacje tego interfejsu:
 - SimpleAdjacencyList używa zwykłej listy,
 - AVLAdjacencyList używa drzew AVL,
 - HashTableAdjacencyList używa tablicy haszowanej.

Pochodne klasy Graph mają dwa konstruktory:

- Konstruktor z jednym parametrem typu Graph tworzy kopię grafu będącego parametrem,
- Konstruktor z dwoma parametrami typów bool i int tworzy graf składający się ze wskazanej liczby izolowanych wierzchołków; parametr typu bool określa, czy tworzony jest graf skierowany (wartość true oznacza, że tak).

Przykład:

```
Graph G = new AdjacencyMatrixGraph(false, 15)
Graph G2 = new AdjacencyListsGraph<AVLAdjacencyList>(G)
```

Posługując się klasą Graph należy pamiętać o następujących konwencjach:

- Liczba wierzchołków oraz to, czy graf jest skierowany, nie zmienia się w trakcie życia obiektu.
- Wierzchołki grafu numerowane są kolejnymi liczbami całkowitymi, poczynając od 0.
- Wszystkie grafy są ważone (w problemach dla grafów nieważonych należy ignorować wagi krawędzi, a przy dodawaniu krawędzi – pozostawiać domyślną wagę 1).
- Działając na typie Graph należy obowiązkowo abstrahować od faktycznego typu obiektu (na przykład kiedy
 dostajemy jako argument obiekt typu Graph i chcemy działać na jego kopii, błędem jest wywołanie konstruktora
 konkretnej klasy AdjacencyMatrixGraph lub AdjacencyListsGraph). Można natomiast użyć nastepujących
 metod klasy Graph:
 - Clone metoda tworzy głęboką kopię bieżącego grafu (tego samego typu),
 - Isolated Vertices Graph – metoda tworzy graf tego samego typu. W wersji bezparametrowej liczba wierzchołków i "skierowalność" pozostają takie same, w wersji z dwoma parametrami obie te właściwości można zmienić.

Kilka wskazówek odnośnie operacji na krawędziach:

- Dodawanie i usuwanie krawędzi realizujemy wywołując metody odpowiednio AddEdge i DelEdge. Metody zgłaszają wyjątek, gdy numery wierzchołków wychodzą poza zakres oraz zwracają false, gdy operacja nie może zostać wykonana (usuwanie nieistniejącej krawędzi, dodawanie już istniejącej krawędzi).
- Do sprawdzenia istnienia krawędzi i wagi krawędzi służy metoda GetEdgeWeight. Gdy krawędź nie istnieje w grafie, zwrócona zostanie wartość NaN (uwaga: porównanie z wartością NaN należy wykonywać używając metody IsNaN, bo operator == zawsze zwraca false).
- Wylistowanie wszystkich krawędzi wychodzacych z zadanego wierzchołka grafu najłatwiej (i najwydajniej) zrobić posługując się metodą OutEdges.

Przeszukiwanie grafu

Biblioteka umożliwia przeszukiwanie grafu poczynając od zadanego wierzchołka zgodnie z następującym, ogólnym schematem.

- procedure GENERALSEARCHFROM(G: graf, v₀ ∈ V(G))
 K ← pusta kolekcja krawędzi
 Wstaw wszystkie krawędzie wychodzące z v₀ do K
 while K jest niepusta do
 pobierz z kolekcji krawędź xy
 if wierzchołek y jest nieodwiedzony then
 Oznacz y jako odwiedzony
- 8: Wstaw wszystkie krawędzie wychodzące z y do K

Zauważmy, że działanie procedury jest zależne od typu kolekcji K – na przykład kiedy K jest kolejką, realizowane jest przeszukiwanie wszerz (BFS), a gdy K jest stosem – przeszukiwanie w głąb (DFS).

Dostęp do tej funkcjonalności uzyskujemy za pośrednictwem metody GeneralSearchFrom<T> rozszerzającej interfejs Graph. Metoda przyjmuje następujące parametry:

- \bullet T typ kolekcji K używanej w przeszukiwaniu, implementujący interfejs IEdgesContainer. Przydatne implementacje:
 - EdgesStack stos
 - EdgesQueue kolejka
 - EdgesMinPriorityQueue, EdgesMaxPriorityQueue kolejki priorytetowe
- from wierzchołek, z którego rozpoczynamy poszukiwania.
- preVisitVertex predykat (typu Predicate<Int32>) wywoływany w momencie oznaczania wierzchołka jako odwiedzony. Wartość zwracana jest interpretowana jako informacja, czy kontynuować przeszukiwanie.
- post Visit Vertex – predykat wywoływany po przetworzeniu (usunięciu w K) wszystkich krawędzi wychodzacych z wierzchołka. Korzystanie z tego argumentu jest dozwolone jedynie gdy K jest typu Edges Stack, czyli dla przeszukiwania w głąb (w innych przypadkach metoda zgłasza wyjątek Argument Exception).
- visitEdge predykat (typu Predicate<Edge>) wywoływany dla każdej przetwarzanej krawędzi.
- visitedVertices tablica typu bool[] z informacją, które wierzchołki zostaną pominęte przy przeszukiwaniu

Dodatkowo, bilioteka udostępnia metodę General Search
All, która realizuje przeszukiwanie całego grafu poprzez wielokrotne wywoływanie metody
 General Search From dla jeszcze nieodwiedzonego wierzchołka dopóki takie wierzchołki znajdują się w grafie. Parametry metody są analogiczne, poza następującymi różnicami:

- cc parametr wyjściowy, informacja o liczbie wywołań metody GeneralSearchFrom
- nr Tablica kolejności "wierzchołków startowych" (jako wierzchołek startowy dla kolejnego wywołania metody GeneralSearchFrom wybierany jest pierwszy nieodwiedzony wierzchołek nr[i], gdzie tablica nr przeglądana jest w kierunku rosnących indeksów)

Zadanie: badanie dwudzielności i algorytm Kruskala

Uzupełnić w klasie Lab03GraphFunctions następujące metody:

- Graph Lab03Reverse(Graph g) metoda wyznaczająca odwrotność zadanego grafu skierowanego, gdzie odwrotność grafu to graf skierowany o wszystkich krawędziach przeciwnie skierowanych niż w grafie pierwotnym.
- bool Lab03IsBipartite(Graph g, out int[] vert) metoda sprawdzająca, czy zadany graf jest dwudzielny i, jeśli tak, zwracająca 2-kolorowanie za pośrednicwem parametru wyjściowego vert.
- Graph Lab03Kruskal(Graph g, out double mstw) wyznaczanie minimalnego drzewa rozpinającego algorytmem Kruskala.
- bool Lab03IsUndirectedAcyclic(Graph g) sprawdzenie, czy zadany graf jest acykliczny.

Punktacja:

- Etap 1. 0.5 punktu,
- Etap 2. 0.5 punktu,
- Etap 3. 1 punkt,
- Etap 4. 0.5 punkt.

Wskazówki:

- Drugą i czwarta częśc zadania najłatwiej rozwiązać wykorzystując metodę GeneralSearchFrom
- W implementacji algorytmu Kruskala przydatne mogą być klasy UnionFind oraz EdgesMinPriorityQueue z blibioteki Graph

Zadanie: silny indeks chromatyczny

Zadanie składa się z czterech cześci; części 1-3 są niezależne od siebie, natomiast część 4 korzysta ze wszystkich poprzednich.

Uwagi do wszystkich metod:

- 1. Grafy wynikowe musza być reprezentowane w taki sam sposób jak grafy będace parametrami
- 2. Grafów będących parametrami nie wolno zmieniać

Część I: Funkcja zwracajaca kwadrat danego grafu

Kwadratem grafu nazywamy graf o takim samym zbiorze wierzchołków jak graf pierwotny, w którym wierzchołki połączone sa krawędzią jeśli w grafie pierwotnym były polączone krawędzia bądź ścieżką złożoną z 2 krawędzi (ale petli, czyli krawędzi o początku i końcu w tym samym wierzchołku, nie dodajemy!).

Część II: Funkcja zwracająca Graf krawędziowy danego grafu

Wierzchołki grafu krawędziowego odpowiadają krawędziom grafu pierwotnego, wierzchołki grafu krawędziowego połączone są krawędzią jeśli w grafie pierwotnym z krawędzi odpowiadającej pierwszemu z nich można przejść na krawędź odpowiadającą drugiemu z nich przez wspólny wierzchołek (jeśli graf pierwotny jest skierowany to wierzchołki grafu krawędziowego połączone są krawędzią jeśli wierzchołek końcowy krawędzi odpowiadającej pierwszemu z nich jest wierzchołkiem początkowym krawędzi odpowiadającej drugiemu z nich).

Tablicę names tworzymy i wypełniamy według następującej zasady: każdemu wierzchołkowi grafu krawędziowego odpowiada element tablicy names (o indeksie równym numerowi wierzchołka) zawierający informację z jakiej krawędzi grafu pierwotnego wierzchołek ten powstał, np. dla wierzchołka powstałego z krawedzi <0,1> do tablicy zapisujemy krotkę (0,1) - przyda się w dalszych etapach.

UWAGA: Graf pierwotny może być skierowany lub nieskierowany, graf krawędziowy zawsze jest nieskierowany.

Część III: Funkcja znajdujaca poprawne kolorowanie wierzchołków danego grafu nieskierowanego Kolorowanie wierzchołków jest poprawne, gdy każde dwa sąsiadujące wierzchołki mają różne kolory.

Funkcja ma szukać kolorowania według następujacego algorytmu zachłannego: Dla wszystkich wierzchołków v (od 0 do n-1) pokoloruj wierzcholek v kolorem o najmniejszym możliwym numerze (czyli takim, na który nie są pomalowani jego sąsiedzi).

Kolory numerujemy poczawszy od 0.

Funkcja zwraca liczbę użytych kolorów (czyli najwyższy numer użytego koloru + 1), a w tablicy colors zapamiętuje kolory poszczególnych wierzchołków.

UWAGA: Podany opis wyznacza kolorowanie jednoznacznie, jakiekolwiek inne kolorowanie, nawet jeśli spełnia formalnie definicję kolorowania poprawnego, na potrzeby tego zadania będzie uznane za błędne.

UWAGA 2: Dla grafów skierowanych metoda powinna zgłaszać wyjątek ArgumentException.

Część IV: Funkcja znajduje silne kolorowanie krawędzi danego grafu

Silne kolorowanie krawędzi grafu jest poprawne gdy każde dwie krawędzie, które są ze sobą sąsiednie (czyli można przejść z jednej na drugą przez wspólny wierzchołek, uwzględniając kierunek krawędzi) albo są połączone inną krawędzią (czyli można przejść z jednej na drugą przez ową inną krawędź, uwzględniając kierunek wszystkich biorących w tym udział krawędzi), mają różne kolory.

Należy zwrocić nowy graf, który będzie miał strukturę identyczną jak zadany graf, ale w wagach krawędzi zostaną zapisane przydzielone kolory.

Wskazówka: to bardzo proste. Należy wykorzystać wszystkie poprzednie funkcje. Zastanowić się co możemy powiedzieć o kolorowaniu wierzchołków kwadratu grafu krawędziowego? Jak się to ma do silnego kolorowania krawędzi grafu pierwotnego?