Àlgebra Multilineal i Geometria

FME, curs 2020-2021 Teorema de von Staudt

Entregable 5

En aquest curs hem provat que per a una aplicació bijectiva $f:\mathbb{P}^1\longrightarrow\mathbb{P}^1$ es té l'equivalència

f és una projectivitat \iff f conserva les raons dobles.

Fixem el cos base $\mathbf{k} = \mathbb{R}$. L'objectiu d'aquest problema és provar:

Teorema de von Staudt. Sigui $f: \mathbb{P}^1 \longrightarrow \mathbb{P}^1$ una aplicació. Aleshores, f és una projectivitat $\iff f$ conserva les quaternes harmòniques.

Escolliu una referència projectiva de \mathbb{P}^1 i denoteu els punts de \mathbb{P}^1 per la seva coordenada absoluta en aquesta referència, (recordeu que $\mathbb{P}^1 \leftrightarrow \mathbf{k} \cup \{\infty\}$). Atès que la implicació directa és coneguda, provarem que si f conserva les quaternes harmòniques, aleshores és una projectivitat.

1. Proveu que f és bijectiva i que existeix una única projectivitat g tal que

$$g(f(0)) = 0, \ g(f(1)) = 1, \ g(f(\infty)) = \infty.$$

2. Deduïu que l'aplicació h = gf conserva les quaternes harmòniques i satisfà

$$h(0) = 0, \ h(1) = 1, \ h(\infty) = \infty,$$

i raonareu que és suficient provar que $h: \mathbf{k} \longrightarrow \mathbf{k}$ és un automorfisme.

3. *h* és additiva: h(x + y) = h(x) + h(y).

Si $x \neq y$ són elements de \mathbf{k} , proveu que la quaterna $x,y,(x+y)/2,\infty$ és harmònica i deduïu que se satisfà

$$h\left(\frac{x+y}{2}\right) = \frac{h(x) + h(y)}{2}.$$

Proveu, en particular, que h(2y) = 2h(y) i, en definitiva, que h conserva la suma.

4. h és multiplicativa: h(xy) = h(x)h(y).

Comproveu que per a $z \in \mathbf{k}$ la quaterna $-z, z, 1, z^2$ és harmònica i proveu que $h(z^2) = (h(z))^2$. Deduïu que h és multiplicativa.