Leetcode in Rust

Contents

1	Rust	t in a Nutshell	3
	1.1	Why Rust?	4
	1.2	Cargo	4
	1.3	Cargo Doc	4
	1.4	Crates	4
	1.5	Basic Data Structures	4
		1.5.1 Sequences	4
		1.5.2 Maps	4
		1.5.3 Sets	4
		1.5.4 Other	4
	1.6	Basic Algorithms	4
	1.7	Other Useful things	4
	1.8	Regex	4
	1.9	Derive Macros	4
	1.10	Counting in O(1) space with slices	4
2	Mac	cros for Rust	5
	2.1	A macro for testing	5
3	Tree	es	7
	3.1	Maximum Path through a Binary Tree	7
	3.2	Validate Binary Search Tree	7
	3.3	Same Tree	8
		3.3.1 Problem	8
		3.3.2 Intuition	8
		3.3.3 Test Cases	9
		3.3.4 Answer	9

1 Rust in a Nutshell

1.1 Why Rust?
1.2 Cargo
1.3 Cargo Doc
1.4 Crates
1.5 Basic Data Structures
1.5.1 Sequences
1.5.1.1 Vec
1.5.1.2 VecDeque
1.5.1.3 LinkedList
1.5.2 Maps
1.5.2.1 HashMap
1.5.2.2 BTreeMap
1.5.3 Sets
1.5.3.1 HashSet
1.5.3.2 BTreeSet
1.5.4 Other
1.5.4.1 BinaryHeap
1.6 Basic Algorithms
1.7 Other Useful things

4

- 1.8 Regex
- 1.9 Derive Macros

2 Macros for Rust

2.1 A macro for testing

Unlike C and C++, a testing framework is built into rust. We can create our own tests by creating a mod block and letting cargo know that we want to test it.

Let's say we create this function:

```
fn add(a: i32, b: i32) -> i32 {
   a + b
}
```

We can test it at the bottom of the file:

```
#[cfg(test)]
mod test {
   use super::*;

   #[test]
   fn add_one_and_one() {
      assert_eq!(add(1, 1), 2);
   }

   #[test]
   fn add_one_and_two() {
      assert_eq!(add(1, 2), 3);
   }
}
```

Macros let us reduce most of the boilerplate:

```
)*
}
}
```

Test can then be called like so:

```
test! {
  add_one_to_one: add(1, 1), 2,
  add_one_to_two: add(1, 2), 3,
}
```

3 Trees

3.1 Maximum Path through a Binary Tree

```
use crate::*;
use std::cmp::max;
/// Finds the maximum path sum through a binary tree.
pub fn max_path_sum(root: BSTNode) -> i32 {
  let mut max_so_far = i32::MIN;
  fn helper(node: &BSTNode, max_so_far: &mut i32) -> i32 {
    match node {
      Some(n) \Rightarrow \{
        let val = n.borrow().val;
        let l = max(0, helper(&n.borrow().left, max_so_far));
        let r = max(0, helper(&n.borrow().right, max_so_far));
        *max_so_far = max(*max_so_far, val + 1 + r);
        val + max(1, r)
      }
      None \Rightarrow 0,
    }
  }
  helper(&root, &mut max_so_far);
  max_so_far
}
test! {
    test_1: max_path_sum(btree![1,2,3]), 6,
    test_2: max_path_sum(btree![-10, 9, 20, null, null, 15, 7]), 42,
}
```

3.2 Validate Binary Search Tree

```
use crate::*;
pub fn is_valid_bst(root: BSTNode) -> bool {
    fn helper(node: &BSTNode, possible_min: i64, possible_max: i64) -> bool {
        if let Some(n) = node {
```

```
let borrowed = n.borrow();
            let left = &borrowed.left;
            let right = &borrowed.right;
            let val: i64 = borrowed.val.into();
            if val >= possible_min && val <= possible_max {</pre>
                helper(&left, possible_min, val) && helper(&right, val, possible_max)
            } else {
                false
            }
        } else {
            true
        }
    helper(&root, i64::MIN, i64::MAX)
}
test! {
    test_1: is_valid_bst(btree![2, 1, 3]), true,
    test_2: is_valid_bst(btree![5, 1, 3]), false,
```

3.3 Same Tree

3.3.1 Problem

Given the roots of two binary trees p and q, write a function to check if they are the same or not. Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.

3.3.2 Intuition

This question tests your knowledge of recursion. To do so, start off with the base case:

- What happens when left is None and right has a value? Return false.
- What happens when left has a value and right is None? Return false.
- What happens when both left and right are None? Return true.
- What happens when left and right have different values? Return false.
- What happens when left and right have the same values? Test their left and right nodes for equality as well.

3.3.3 Test Cases

```
test! {
   test_1: is_same_tree(btree![], btree![]), true,
   test_2: is_same_tree(btree![1], btree![]), false,
   test_3: is_same_tree(btree![1,2,3], btree![1,2,3]), true,
   test_4: is_same_tree(btree![1,2,3,4], btree![1,2,3]), false,
}
```

3.3.4 Answer

```
/// Calculates if two binary search trees have the same values.
/// In this question, there are four possible cases:
/// 1. Both left and right point to a `None` node. In this case, return true.
/// 2. Both left and right point to nodes with the same value. Continue recursing
/// trees left and right subtrees.
/// 3. For any other case, return false.
pub fn is_same_tree(p: BSTNode, q: BSTNode) -> bool {
    fn same(p: &BSTNode, q: &BSTNode) -> bool {
       match (p, q) {
            (Some(left), Some(right)) => {
               let left = left.borrow();
               let right = right.borrow();
               left.val == right.val
                    && same(&left.left, &right.left)
                    && same(&left.right, &right.right)
            (None, None) => true,
            _ => false,
    same(\&p, \&q)
}
```

