Niveau 1-2 : ACQUÉRIR DES NOTIONS Restitution directe de connaissances et application directe de lois.	(atomes) 13,16,17 p 49 (classification) 24,25 p51 (mole) 28,29 p 51 ; (lewis) 21,25 p 72-73, 29 p 73 (ions) 15, 19 p 71-72 ; exo photocopié		
Niveau 2-3 : CROISER DES NOTIONS Mener un raisonnement simple en plusieurs étapes.	(atomes) 36,38 p 54 à 56 ; 37 p 76 (mole) 37, 42, 43 p 54 à 56 (lewis) 43 p 78 (ions) 35 p 76		
Niveau 3-4 : ACQUÉRIR DES COMPÉTENCES Mener un raisonnement élaboré avec plusieurs étapes et plusieurs paramètres	(atomes) 49 p 58 (lewis) 49 p 80		

EXERCICE 13 p 49 (niveau 1-2)

		Atome			
		Platine Pt	Cuivre Cu	Or Au	Argent Ag
Symbole du noyau		¹⁹⁵ ₇₈ Pt	63 29 Cu	¹⁹⁷ / ₇₉ Au	¹⁰⁸ ₄₇ Ag
Nombre	électrons	78	29	79	47
	protons	78	29	79	47
	neutrons	117	34	118	61
	nucléons	195	63	197	108

EXERCICE 16 p 49 (niveau 1-2)

1. Le symbole du noyau d'uranium est $^{235}_{92}\mathrm{U}$, donc :

A = 235 = nombre de protons et de neutrons = nombre de nucléons.

Z = 92 = numéro atomique = nombre de protons.

A - Z = 235 - 92 = 143 = nombre de neutrons.

Le noyau d'uranium est donc composé de 92 protons et 143 neutrons.

2. a. La masse du noyau est égale à la masse de ses nucléons : m_{noyau} = 235 × $m_{nucléon}$ = 235 × 1,67 × 10⁻²⁷ = 3,92 × 10⁻²⁵ kg

b. Comme l'atome est électriquement neutre, on a nombre d'électrons = nombre de protons = 92 m_{noyau} = 235 × $m_{nucl\acute{e}on}$ + 92 × $m_{electron}$ = 235 × 1,67 × 10⁻²⁷ + 92 × 9,11 × 10⁻³¹ = 3,92 × 10⁻²⁵ kg Relativement au nombre de chiffres significatifs, les deux masses trouvées m_{noyau} et m_{atome} sont égales. La masse des électrons du cortège électronique est donc négligeable par rapport à la masse du noyau.