Final Examination CS/MATH 113 Discrete Mathematics

Habib University — Spring 2023 2 May, 2023. 1630-1900h.

Enter your name and ID below and at the top of all the subsequent pages.
Student ID:
Student Name:
Multiple choice problems There are 20 problems below. Enter their solutions in the grid at the bottom of the next side. Note the following conventions: p, q , and r are propositions; R, S , and T are finite sets; f is a function; and $G = (V, E)$ is a graph.
1. 1 point Which of the following is equivalent to $p \iff q$?
A. $p \iff \neg q$ B. $\neg p \iff q$ C. $\neg p \iff \neg q$ D. None of the mentioned 2. 1 point $p \implies (p \lor q)$ is a tautology. A. True B. False
3. 1 point Which of the following is <i>not</i> equivalent to the statement, $(p \land q) \implies (q \lor r)$?
A. $(p \Longrightarrow q) \lor (q \Longrightarrow r)$ B. $(p \Longrightarrow r) \lor (q \Longrightarrow q)$ C. $\neg (p \land q) \Longrightarrow \neg (q \lor r)$ D. True
4. 1 point The premises $(p \land q) \lor r$ and $r \implies s$ lead to which statement? A. $p \land r$ B. $p \lor s$ C. $p \lor q$ D. $r \land s$
5. 1 point The predicate logic statement corresponding to, "The product of two negative real numbers is positive.", assuming a domain of \mathbb{R} , is
A. $\exists x \forall y ((x < 0) \land (y < 0) \implies (xy > 0))$ B. $\exists x \exists y ((x < 0) \land (y < 0) \land (xy > 0))$ C. $\forall x \exists y ((x < 0) \land (y < 0) \land (xy > 0))$ D. $\forall x \forall y ((x < 0) \land (y < 0) \implies (xy > 0))$
6. 1 point In a direct proof of the statement, "If n is an odd integer then n^2 is an odd integer.", using the predicate $P(n)$ for " n is an odd integer", we need to show that
A. $\exists n(P(n) \Longrightarrow P(n^2))$ B. $\forall n(P(n)) \Longrightarrow \forall n(P(n^2))$ C. $\forall n(P(n)) \Longrightarrow \exists n(P(n^2))$ D. $\forall n(P(n) \Longrightarrow P(n^2))$
7. 1 point Which of the following is not a subset of $S = \{\}$?
A. S B. $\{\}$ C. \emptyset D. $\{\emptyset\}$

8. | 1 point | $S \times T = T \times S$.

A. True B. False

9. 1 point $R \subseteq S$, then $R \times T \subseteq S \times T$.

A. True B. False

10. | 1 point | Given that $|R \cup S| = |R \cap S|$, which of the following need not be true?

A. $R \subseteq S$ B. |R| = |S| C. $S = \emptyset$ D. $R - S = \emptyset$

11. 1 point Let $S_1, S_2, S_3, \ldots, S_{100}$ be 100 sets such that $|S_i| = i$ and $S_i \subseteq S_{i+1}$ for $1 \le i \le 99$. What is the cardinality of $\bigcup_{i=1}^{100} S_i$?

A. 99 **B.** 100 C. 101 D. 102

12. 1 point Given $f: \mathbb{Z} \to \mathbb{Z}$ where $f(x) = x^2 + 3$, the range of f is

A. \mathbb{Z} B. \mathbb{Z}^+ C. $\mathbb{Z}^+ - \{0, 1, 2\}$ D. $\mathbb{Z}^+ \cup \{3\}$

13. 1 point Given $f: \mathbb{R} \to \mathbb{R}$ where f(x) = 3x-5, what is a possible expression for $f^{-1}(x)$?

A. $\frac{1}{3x-5}$ **B.** $\frac{x+5}{3}$ C. does not exist since f is not a bijection D. none of the mentioned

14. 1 point The value of $\sum_{i=1}^{100} (-1)^i$ is

A. -1 **B.** 0 C. 1 D. 2

A. -1 **B.** 0 C. 1 D. 2 15. 1 point The value of $\sum_{i=1}^{100} (f(i) - f(i-1))$ is

A. f(0) B. f(1) C. f(100) **D.** f(100) - f(0)

16. 1 point In an inductive proof of the statement, " $P(n): \sum_{i=1}^n 2^i = f(n)$ ", the inductive step will have to show that

A. $f(k+1) = f(k) + 2^k$ B. $f(k+1) = f(k) + 2^{k+1}$ C. f(k+1) = f(k+1) + 2 D. $f(k+1) = \sum_{i=1}^k 2^i + \sum_{i=1}^{k+1} 2^i$

17. I point If G is finite, then the number of elements of V that have odd degree is

C. indeterminate - depends on G D. infinite A. even

18. 1 point G is an undirected graph with 26 edges and with the degree of each vertex equal $\overline{\text{to 4 or more.}}$ What is the maximum possible value of |V|?

A. 7 B. 10 C. 13 D. 43

19. 1 point If G is a simple graph with n vertices, the minimum possible value of |E| is

A. 0 B. 1 C. n-1 D. $\frac{n(n-1)}{2}$

20. 1 point If G is a simple graph with n vertices, the maximum possible value of |E| is

A. 0 B. 1 C. n-1 **D.** $\frac{n(n-1)}{2}$

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.

Written problems

Attempt the following 4 problems in the answer sheet. Submit the entirety of this problem sheet with the answer sheet when done.

1. Cardinality

[15 points]

For each of the following cases, provide example sets A and B that are uncountable and show the value of $A \cap B$.

(a) $5 \text{ points } A \cap B \text{ is finite.}$

Solution: Let A = [0, 1], B = [1, 2]. Then $A \cap B = \{1\}$.

(b) $5 \text{ points } A \cap B$ is countably infinite.

Solution: Let $A = [0,1] \cup \mathbb{Z}, B = [1,2] \cup \mathbb{Z}$. Then $A \cap B = \mathbb{Z}$.

(c) $5 \text{ points} A \cap B \text{ is uncountable}$

Solution: Let A = B = [0, 1]. Then $A \cap B = [0, 1]$.

2. Sequences and Summation

[15 points]

The first six terms of the sequence $[T_n]$ are pictured in the figure. Find

- (a) 5 points a recurrence relation for the sequence.
- (b) 5 points a closed form for the sequence, which does not contain a summation symbol.
- (c) 5 points the sum of the first k terms of the sequence, where k is a positive integer.

Solution:

- (a) $T_n = T_{n-1} + n$, $T_1 = 1$
- (b) We see that $T_1=1, T_2=1+2, T_3=1+2+3, T_4=1+2+3+4, \ldots$ Thus, $T_n=\sum_{i=1}^n i=\frac{n(n+1)}{2}$.

(c)

$$\sum_{i=1}^{k} T_i = \sum_{i=1}^{k} \frac{i(i+1)}{2}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{k} i^2 + \sum_{i=1}^{k} i \right)$$

$$= \frac{1}{2} \left(\frac{k(k+1)(2k+1)}{6} + \frac{k(k+1)}{2} \right)$$

$$= \frac{1}{12} (k(k+1)(2k+1) + 3k(k+1))$$

$$= \frac{k(k+1)(2k+4)}{12}$$

3. Induction

[10 points]

(a) 5 points Use mathematical induction to prove that if a set, A, has n elements, where n is an integer greater than or equal to 2, then it has $\frac{n(n-1)}{2}$ subsets of cardinality 2. For example, the set $A = \{x, y, z\}$ has $\frac{3\cdot 2}{2} = 3$ subsets of cardinality 2, which are: $\{x, y\}, \{x, z\}, \{y, z\}$.

Solution: For ease of notation, let us denote the number of subsets of A that have cardinality 2 as s_n where |A| = n.

cardinality 2 as s_n where |A| = n. Then, $P(n): s_n = \frac{n(n-1)}{2}$, where $n \ge 2$.

Proof. Basis Step We consider P(2).

When A has 2 elements, it has only 1 subset of cardinality 2, i.e. itself. According to P(2), $s_2 = \frac{2 \cdot 1}{2} = 1$.

 \therefore the base case holds.

Inductive Step We consider P(k+1) which claims that $s_{k+1} = \frac{(k+1)k}{2}$.

From the IH, we have that $s_k = \frac{k(k-1)}{2}$.

Consider a set, A with k elements and a set, $B = A \cup \{e\}$ where $e \notin A$.

Then |B| = k + 1. Let us consider its subsets that have cardinality 2.

All the subsets of A are also subsets of B.

So, s_{k+1} is s_k plus the new formed by adding e.

The new subsets of cardinality 2 will be those that contain e and each of the k elements of A.

k elements of A. Thus, $s_{k+1} = \frac{k(k-1)}{2} + k = \frac{k(k+1)}{2}$.

(b) 5 points Let A be a set of ordered pairs of integers defined recursively as follows.

Basis step $(0,0) \in A$

Recursive step If $(a, b) \in A$, then the following also belong to A: (a, b+1), (a+1, b+1), and (a+2, b+1)

Use structural induction to show that $a \leq 2b$ whenever $(a,b) \in A$.

[5 points]

Solution: $P(n):(a,b)\in A \implies a\leq 2b$ Proof. Basis Step (a,b)=(0,0) and $0\leq 2\cdot 0$.

Recursive Step Assume that $(a, b) \in A$ and $a \leq 2b$.

We obtain (a', b') from (a, b) and show that $a' \leq 2b'$.

There are 3 cases for (a', b').

: the base case holds.

Case 1: (a', b') = (a, b + 1)We know that $a \le 2b$. Then $a \le 2b + 2 = 2(b + 1)$ $\therefore a' \le 2b'$

Case 2: (a', b') = (a + 1, b + 1)We know that $a \le 2b$. Then $a + 1 \le 2b + 2 = 2(b + 1)$ $\therefore a' \le 2b'$

Case 3: (a',b') = (a+2,b+1)We know that $a \le 2b$. Then $a+2 \le 2b+2 = 2(b+1)$ $\therefore a' \le 2b'$

4. Graphs

Show that in a simple graph with at least two vertices, there must be two or more vertices of the same degree. For example, in the complete graph, K_5 , the degrees are 4, 4, 4, 4, and 4, and there are 5 vertices with the same degree.

Solution: We prove the statement through contradiction. We show that the negation, i.e., all vertices in a simple graph have distinct degrees, leads to a contradiction.

Proof. In a simple graph with n vertices, the minimum and maximum possible degrees are 0 and (n-1).

Consider an assignment (a bijection) between the n vertices and the possible degrees. Let v_{min} be the vertex with degree 0, and v_{max} be the vertex with degree (n-1). v_{min} is not connected to any vertex.

 v_{max} is connected to every vertex except itself, i.e., it is connected to v_{min} .

Good luck!

1 Some useful formulas and definitions

Definition 1.1 (Finite Set). Let S be a set. If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|.

Definition 1.2 (Equality of Cardinality). The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.

Definition 1.3 (Countable Set). A set that is either finite or has the same cardinality as the set of positive integers is called countable. A set that is not countable is called uncountable.

Definition 1.4 (Mathematical Induction). To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

Basis Step: We verify that P(1) is true.

Inductive Step: We show that the statement $P(k) \to P(k+1)$ is true for all positive integers k.

Definition 1.5 (Structural Induction). To prove that P(n) is true for a recursively defined structure, we complete two steps:

Basis Step: Show that P(n) holds for all elements specified in the basis step of the recursive definition.

Recursive Step: Show that if P(n) holds for each of the elements used to construct new elements in the recursive step of the definition, then P(n) holds for these new elements.

Definition 1.6 (Graph). A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints.

Definition 1.7 (Simple Graph). A graph in which each edge connects two different vertices and where no two edges connect the same pair of vertices is called a simple graph.

Definition 1.8 (Degree). The degree of a vertex in a graph is the number of edges incident with it, except that a loop at a vertex contributes twice to the degree of that vertex. The degree of the vertex v is denoted by deg(v).

Closed Forms of some Common Summations

Sum $\left\ \sum_{k=0}^{n} ar^k (r \neq 0) \right\ $	$\int_{k=1}^{n} k \mid \sum_{k=1}^{n} k^2$	$\left \sum_{k=1}^{n} k^3 \right \sum_{k=0}^{\infty} x^k, x < 1$	
Formula $\left\ \frac{ar^{n+1}-a}{r-1}, r \neq 1 \right\ $	$\begin{array}{c c} n(n+1) & n(n+1)(2n+1) \\ \hline 2 & 6 \end{array}$	$\left \begin{array}{c} \frac{n^2(n+1)^2}{4} \end{array}\right \qquad \frac{1}{1-x}$	$\frac{1}{(1-x)^2}$