"拍照赚钱"的任务定价

摘要

"赚钱拍照"成为商家获取数据、年轻人获得相应酬劳的方式。如何制定合理的任务定价方案,对于移动互联网众包平台运营很关键。本文基于众包平台的数据,建立了相应的定价模型。

针对问题一,首先根据附件一中的任务数据,分析各价格的数量及分布,将任务的价格分成低中高三个价位,结合地图绘制出相应价格的任务分布散点图,通过散点图发现低中高价位的任务呈现出同心圆辐射分布。由此,查阅各同心圆中心的地图,得知同心圆中心为城市的商业中心,故可知任务的定价由城市商业中心向四周价格不断升高,进而通过定量分析,建立同心圆价格模型,采用不同的定价方案,对任务的定价规律进行描述。

对于未完成的任务,在同心圆模型中绘制出完成与未完成任务的散点图,通过散点图发现未完成任务集中分布在低价为区域,因而未完成的任务主要是定价较低,另外,也从会员数量与地区的经济状况等方面进行了分析。

针对问题二,要求设计新的任务定价方案,对于新的任务定价方案,因降低未完成的任务数量减低,且总价格尽量低。由于未完成的任务主要在低价区,进而通过改变低价区的规律模型,相应的提升任务的定价,对于任务完成的较好的区域,相应的降低任务的定价,最后得到了任务在新方案下的定价模型,并且运用神经网络模拟任务的完成情况,并对新方案的定价进行预测,得到新方案仅仅在增加了762元,达到任务的完成度提升到78.2%效果。

针对问题三,采用任务联合打包发布,所以我们需要将打包任务分布在区域内。 因为未完成任务主要分布在低价区域,所以我们直接将任务发布在低价区域即可,将 任务打包之后,通过制定相应的奖励机制,采用随机奖励的机制,使得用户完成更多 的任务,且获得的奖励也相应的增加,进而提高了任务的完成度,并且降低了项目的 总金额。

针对问题四,通过散点图,得到新任务的分布情况,可知新任务呈现聚集状态,因而满足打包发布的定价方案,故采用问题三中的模型,进行计算求解,得到在打包发布的方案下,平均每个任务的价格为35.3元,极大的降低了项目所需的成本。

关键词: 同心圆模型 Matlab 神经网络 众包任务

一、问题重述

当前,"拍照赚钱"是移动互联网下的一种自助式服务模式,APP 下载,注册成为会员,然后从 APP 上领取需要拍照的任务,因而获取相应的酬额。这种自助式劳务众包平台成为互联网搜索中高效且成本低廉的数据收集方案。APP 作为该平台运行的核心,其任务定价显得格外重要。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。

附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价以及任务是 否被完成,附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的 任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额 也就越大,但实际上任务的分配是根据预订限额所占比例进行的。附件三是一个新的 检查项目任务数据,只有任务的位置信息。

请完成下面的问题:

- 1. 研究附件一中项目的任务定价规律,分析任务未完成的原因。
- 2. 为附件一中的项目设计新的任务定价方案,并和原方案进行比较。
- 3. 实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响?
- 4. 对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。

二、问题的分析

2.1 问题一的分析

对于附件一中的数据,根据经纬度使用 MATLAB 绘制出任务的散点图,并对价格进行统计分析,得到价格的分布情况,由此将任务价格分成低、中、高价位,并且做出散点图,根据散点图发现低中高三个价位的任务呈现同心圆分布。由此,建立同心圆模型,对同心圆的不同区域(对应于不同的价位),通过不同的方法进行规律的研究和描述。对于未完成的任务,在同心圆的模型中绘制散点图,发现未完成的任务主要集中在低价区域;分析低价区域的地图之后,低价区域为城市的商业中心,绘制会员的分布图之后,得到会员主要也分布在低价区域;由此可知未完成的任务主要是由于其定价太低所导致的,另一方面,也从地区经济等因素进行了分析。

2.2 问题二的分析

问题二要求为附件一中的项目设计新的任务定价方案,对于新的任务定价方案,从如下定价准则出发: 1. 新定价方案的任务完成率应该尽可能的提高, 2. 新定价方案中项目的总金额数应尽可能比原定价的总金额小。针对定价准则,我们对同心圆模型进行分区域优化,对四个区域设计新的定价调整方案,获得新的定价。新方案与原方

案进行比较时,利用神经网络模型预测任务的完成情况,并从任务定价的总和、任务的完成度两方面进行对比。

2.3 问题三的分析

对于问题三,考虑打包发布情况下的任务定价方案。首先将距离近的任务聚为一类设定为打包的任务,每类的任务数固定为6件;其次需要对每一类中的任务进行定价。由于每一类中的距离很近,所以任务完成情况会相对较好,那么我们就可以相应对每件任务降低2元,那么就有12元的多出费用了,自己事先省下2元费用,然后将多出的钱反过来用于激励会员,其中的奖励机制包括两种:一种是当会员完成任务联合打包中前两件,奖励4元钱;另外一种是当完成前两件任务之后,每完成一件任务后,有一个随机奖励金额,奖励的总金额设定为6元,由于每类有6件任务,故可以有4次机会获得随机奖励金额,第一次随机获取奖励金额后,第二次获取随机奖励金额是剩余金额。

2.4 问题四的分析

将附件三中的任务经纬度绘制成散点图,发现任务位置比较集中,因此需要考虑 将任务打包。针对此情况,利用问题三的优化模型,将距离近的任务,以六个聚为一 类,可以得到任务的定价。根据任务的定价结果,评论该方案的实施效果。

三、模型的假设

- **1.**由于经纬度与变化对应的实际距离不等,查阅相关资料可知,同一条经度上纬度 1°对应的弧长为 111km,在同一条纬线上(假设此纬线的纬度为 A)经度 1°对应的实际弧长大约为 111cosA km,数据中的纬度都在 22-23°度左右变化,由于 cos22°值为 0.9272,对于 0.5 度的经度变化产生的距离误差为 4km,忽略此误差对于模型的影响不大。
- 2.假设任务都是有一定时间限制。
- 3.假设任务之间都是相互独立的。
- 4.假设地图软件对于经纬度的定位准确无误。

四、符号说明

符号 У _{тах}	含义 任务定价最大值
y_{min} x_{max}	任务定价最小值 外部距离最大值
$egin{array}{c} x_{min} \ R1 \end{array}$	外部距离最小值 低价区域半径

R2	中价区域半径
x_i	第 <i>i</i> 件任务的距离
\mathcal{Y}_{i}	第 i 件任务的价格
n_{i}	第 <i>i</i> 件任务的数量
n	任务总数
d	经纬度距离
r	圆的半径

五、模型的建立与求解

5.1问题一的分析与求解

根据附件一中的数据,作出相关的散点图进行分析,通过对任务价格进行分类,得到各任务呈现同心圆的分布,建立同心圆模型,通过在不同的圆心对任务定价规律进行分析。对于未完成的任务,结合同心圆模型,绘制出未完成任务的散点图,通过对图进行分析,并结合会员的位置分布,得到未完成任务的原因。

5.1.1任务价格的分类

分析附件一中的任务数据,其中任务价格分布于[65,85]之间,共有23个定价,统计各个价格的数量,绘制出曲线图,如下:

图 1 价格数量分布曲线图

据图分析,可知任务的定价与数量关系较大,出现在某些价格上的聚集,由此据将价格分成低价,中价,高价三个价位,并且使得各个价位中的任务数量尽可能的均衡,通过多次测试与计算,最终将价格分成以下三个低中高价位区间,各个价位区间

如下:

表1价位区间表

任务价格	[65,66]	[66.5,70.5]	[71,85]
任务数量	318	299	218

5.1.2 任务定价规律的定性分析

通过表 1 中的价格区间,将各个价位区间中的任务绘制成散点图(蓝色*为低价任务,红色△为中价任务,黑色○为高价任务),结果如下:

图 2 价格分布散点图

据图分析可知,对于低价任务呈现按区域聚集分布现象,而中价任务主要都分布在低价任务周围,高价任务则是散乱的分布在中价任务的外侧,各个价位之间呈现同心圆的分布。

由此,根据各区域相应价位的经纬度,查阅了相应区域的地图,结果如下:

图 3 A 区域低价任务任务附近地图

图 4 B 区域低价任务附近区域地图

图 5 A 区域高价任务附近区域地图

图 6 B 区域高价任务附近区域地图

通过地图分析,可知任务价格较低的区域为商业中心地区,任务价格高的区域则 相对于商业中心较远。结合实际情况,商业中心交通便利,任务数量也相对较多,因 此价格较低。

另一方面,结合附件二中的会员信息,绘制出会员分布的散点图(黑色+代表用户),结果如下:

图 7 会员分布散点图

据图分析,可知对于低价任务区域,周围的会员用户数量都较多,结合实际情况,可知当用户数量较多时,任务的价格数量相应会更低。

综合上述的分析,可知附件一中的项目任务定价规律如下:

- 1.对于商业中心区域,任务的定价相对较低。
- 2.对于会员用户较多的区域,任务的定价较低。
- 3.以商业中心为中心,任务的定价呈现出由商业中心向四周递减的趋势。

5.1.3任务定价规律的定量分析

通过对任务定价的定性分析,得知任务定价是呈现出同心圆分布,因而考虑建立 同心圆分布模型,定量分析任务定价的规律。

通过问题的分析,得到问题解决的流程图,如下:

图 8 任务定价规律求解流程图

1.同心圆区域的圆心确定

根据任务价格分布的散点图,可知低价任务主要分布在四大区域,将四大区域设定为 ABCD,并在价格散点图(图 2)中加以标定,对于 ABCD 四大区域,通过编程计算,得到四个区域的圆心经纬度,其值如下:

N-E AB CETTA							
区域	纬度	经度					
Α	23.18055	113.2959926					
В	23.0429824	113.7668916					
С	23.028	113.12					
D	22.6	113.95					

表 2 区域圆心经纬度

2.各同心圆半径的设定

当确定了各区域同心圆之后,对于半径的确定,各个同心圆的半径应包含更多的相应价位任务点,通过 MATLAB 编程调试,不断改变各区域的同心圆半径,得到较合适的各区域半径,如下:

表 3 各区域同心圆半径

半径	А	В	С	D
R1	0.08	0.03	0.04	0.12
R2	0.135	0.1	0.08	0.23

根据各区域圆心的坐标和半径,做出相应的散点图(蓝色*为低价任务,红色△为中

价任务,黑色〇为高价任务),结果如下:

图 9 区域任务的同心圆分布图

通过上图,在做出同心圆之后,任务定价的分布规律更加的明显,进一步反映任 务价格的规律。

3.同心圆模型的建立

根据上述散点图,可知在不同的同心圆区域,即 ABCD 四个区,任务的分布规律都一致相同,因而不用对每个区的规律进行分析,只选取一个区域的同心圆模型即可。

(1) 同心圆内圆部分

对于同心圆的内圆部分,分布的价格分布如下:

表 4 内圆价格分布

任务价格	65	65.5	66
任务数量	65	150	103

由表可知,价格的变化区间较小,但是数量又较多,低价任务的分布较为集中,若要建立函数关系描述较为困难,且效果不佳,因此同心圆内圆部分采用正态分布进行描述,内圆正态分布的均值计算如下:

$$E(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{3} n_i y_i$$

其中 y_i 为任务的价格, n_i 为相应任务价格的数量,n 为该价位的任务总数,通过带入数据计算得 E(x) =65. 565,对于正态分布的方差,通过计算得到其方差 σ^2 =0. 1417。

由此,得到同心圆的内部的分布规律为服从 $N(\mu,\sigma^2)$,其中 $\mu=65.565$, σ^2

=0.1417.

(2) 同心圆环区域

对于同心圆环部分,其任务价格的分布如下:

表 5 圆环内价格数量表

任务价格									
任务数量	63	38	23	30	11	19	8	96	11

通过任务分布表,绘制任务价格与数量的曲线图,如下所示:

图 10 圆环内价格数量曲线图

据图分析,在中价位区域,即同心圆环处,价格数量的变化较大,又同心圆环出的任务价格变化区间为 4,且在散点图中的位置变化较小,因而在此处的任务定价规律,采用频数计算得到频率,进而用频率近视概率的方法,模拟同心圆环出的任务价格分布。

对于各个任务价格的频率计算:

$$P = \frac{n_i}{n}$$

其中, n_i 为相应任务价格的数量,n为该价位的任务总数,带入相关的数据,结果如下:

表 6 价格分布概率

任务数	63	38	23	30	11	19	8	96	11
任务价格	66. 5	67	67.5	68	68. 5	69	69. 5	70	70. 5
概率	0. 21	0. 127	0.0769	0.1003	0.0368	0.0635	0.0268	0.32	0.0368

由此,对于同心圆环处的任务定价,认为其服从上述概率分布。

(3) 同心圆外侧区域

在同心圆的外侧,主要分布为高价的任务,且任务价格的变化较大,价格变化区间为[71,85],对于一个"拍照赚钱"任务而言,14元的跨度其实是较大的。通过地

图观察,也可得知各任务分布在散点图上较为分散,通过经纬度换算出的距离,得出外围距离跨度相对较大,且从图中可以明显看出,外围的任务定价与距离呈现出明显的线性规律,故可通过距离映射转换出任务定价,这就是一个完全通过任务距离便可求出任务定价的一个线性模型。这里的距离指的是任务位置距离该同心圆圆心的距离,自然,这个距离范围必须处于外部分的范围,故可建立函数关系,该模型其实就是将 $[x_{\min},x_{\max}]$ 上每个数映射到 $[y_{\min},y_{\max}]$ 区间上,映射算法思想:计算出任务定价 У 区间长度除以任务距离 x 区间长度,得出 x 区间上单位长度对应于 y 区间上的大小,再将 x 区间上每个数减去 x 区间最小值后乘以单位区间对应的长度,最后加上 y 区间的最小值,实现投射到 y 区间上。

该映射模型如下所示:

$$y_i = \frac{y_{\text{max}} - y_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} (x_i - x_{\text{min}}) + y_{\text{min}}$$

其中 y_{max} 代表任务定价最大值, y_{min} 代表任务定价最小值; x_{max} 代表外部距离最大值, x_{min} 代表外部距离最小值; x_i 代表第i 个任务距离,而 y_i 代表第第i 个任务定价。其实这个模型也就是最为常见的一元非线性方程。

综上所述:对于任务的定价规律,可以通过上述的同心圆分区域模型进行描述,对于每个任务点,通过计算任务点的经纬度距离d,都可得离其最近的一个区域,进而在判断d与该区域同心圆的半径r的关系,确定该任务应该属于哪个同心圆中的哪个模型,进而计算出该任务的定价。

5.1.4 任务未完成的原因分析

对于附件一中的数据,既有完成的任务,又存在未完成的任务,对于未完成的任务,从以下的角度进行原因的分析:

1. 任务价格因素对任务的完成的影响

通过对任务完成与未完成的统计,绘制出任务在不同价位区域的散点图(其中蓝色*是未完成的任务,红色+是已经完成的任务),以及计算其中完成与未完成的统计数据,如下所示:

图 11 任务完成情况散点图

通过散点图分析,发现未完成的任务(蓝色)主要分布在在低价区域内,少量分布在中价区域内。由前面的分析知,对于低价区域,为商业中心,而且会员用户的数量也较多,但是对于高价区域,会员数量相对较少,任务完成情况反而相对较好,对于图中的 B 区域的低价区,由于其任务数量较少的缘故因而在该区域的任务完成的情况较好。

	れ 正力 明元 川 至								
	任务标价的平均值	任务标价的中位数							
任务完成	69.813	69							
任务未完成	67. 928	66							

表 7 任务的统计量

统计出任务标价的平均值与中位数,可以看出:在任务未完成的情况下,任务标价的平均值与中位数都比完成任务时低。在统计学中,平均值用来代表一组数据的总体"平均水平",中位数用来代表全体数据的一般水平。

综上所述,我们可以得出任务未完成的主要原因为任务的定价较低。

2. 会员与任务的距离因素

会员与任务的距离不是唯一确定的,对于不同的任务分布情况差异较大,而对于 会员而言,其任务则相对是固定的,这也就是为什么有的任务即使定价高,同样还是 没有完成。不同的任务相对于同一会员而言,其距离是不同。那么就可能存在这么一 种情况,某个任务的附近几乎没有会员的存在,那么这个任务是终究难被完成的。

3. 会员与任务相对比例因素

会员的分布状况呈现出由中低价区域向高价区域扩散的趋势,而任务主要分布在中低价区域的也同样是占绝大部分,那么对于高价区域而言,其会员分布较少,所以即使是高价任务,也很少会有会员会去做任务,自然很多任务都没有被完成。在实际情况反映出这么一个状况:低价区域任务完成比率相对于中高区域而言,就显得有些

偏低。如下条形图所示:

图 12 任务标价数量

从条形图中可以明显得看出,虽然低价区域任务完成数目高,但任务未完成数目也同样很高,这就导致了低价区域的任务完成率低。中高价区域的完成率明显比低价区域高。低价区域的会员数多,任务数也多,而完成率却低,那么便可以从一个方面说明,在低价区域内,其任务数相对于会员数而言显得略多,故导致大量任务未能完成。而在中高价区域,其任务数相对于会员数而言则显得差不多。这其实就是一个供需问题,供大于需的话,自然完成率低;相反,需大于供的话,也就是所谓的供不应求,任务都不能满足会员的需求,完成率自然高了。

4. 地区的经济状况因素

例如深圳市,任务很多,会员的数目也很多,但该地区相对于其他地区而言,任 务未完成的比例远高于其他地区,经过一系列对比研究可得,深圳市的经济水平远高 于图中其他地区。经济水平高,当地人们的最求自然也高,眼光也高,自然便看不上 那些"小钱"了,还有一个解释就是他们的生活节奏很快,闲暇时间很少,根本无暇 去做那些任务,导致任务搁置,未能完成。

5. 2问题二的分析与求解

5.2.1 新设计方案的准则

通过对附件一中的项目数据分析,得出该项目的任务的完成率为 62.51%,完成率 较低,另一方面,项目的总金额为 57707.5元。据此,在设计新的任务方案时,遵从 以下的准则进行设定性的定价方案。

- 1. 新定价方案的任务完成率应该尽可能的提高。
- 2. 新定价方案中项目的总金额数应尽可能比原定价的总金额小。

5.2.2 同心圆模型的优化

对于问题一中的描述任务定价的规律的同心圆模型,在分析完未完成任务的原因 之后,得出了任务定价低是导致任务未完成的主要原因,因而对于未完成的任务,如 图(红色为完成的任务,蓝色为未完成的任务):

图 13 任务完成情况分布图

根据图中未完成任务的分布特点,针对 ABCD 四个区域,结合其区域的分布特点,采用个性化的定价方案。

1. 对于 A 区域的定价的调整方法

据图中的 A 区域分析,统计及出同心圆内圆的区域中,完成任务与未完成任务的数量与平均价格,如表所示:

	任务的数量	任务的平均价格
未完成任务	50	66.17
完成的任务	47	65.7979

表8A区域任务的数量价格表

据表分析,未完成的任务的均价在更高的情况下,仍然为被完成,由此可知,任务的价格应该相应的调高,针对于 A 区域的同心圆中的内圆,所采用的正态分布的均值应相应的调高,有问题一可知,原定价的方案的均值为 μ =65.565,将均值重新调整为 66.17,并保持方差不变。

对于 A 区域的同心圆的环处由于在其内的未完成的任务的数量较少,故不作出相应的调整。

2. 对于 B 区域的定价的调整方法

针对 B 区域的任务,从图中可知,所有的任务都完成的较好,在结合问题一中的分析,可知 B 区域是处于商业中心的位置,交通便利,在分析该区域的会员分布情况,如图:

图 14 B 区域中的会员与任务分布,其中黑色+代表会员

据图分析知该区域的会员的数量相对于任务的数量并不多,通过 MATLAB 编程计算得到该区域的会员与任务的比例为 3.48,据此可知,会员的数量较少因而可以降低该区域的价格。

对于 B 区域,同心圆的内圆区域,服从的正态分布的均值可相应的调低,通过测试与分析,将同心圆内的正态分布的均值调整为 65,方差不变,对于同心圆的外侧,其价格的区间为[71,85],相应的调整该区域的价格的上限,将其值设置为 82.

B区域的同心圆环处的任务的定价不作相应的调整。

3. 对于 C 区域的定价的调整方法

观察 \mathbb{C} 区域的任务完成情况,与 \mathbb{A} 区域的情况相似,因而采取和 \mathbb{A} 区域一样的调整方法。

4. 对于 D 区域的定价的调整方法

由于 D 区域中的低价任务与中价任务完成的情况较差,大部分都为完成,结合相应的经纬度查询地图知:该区域为深圳市中心地区,同时同心圆环处的主要为一些相应的景区,同时该区域的会员分布如下:

图 15 D 区域中的会员与任务的分布图

可知该区域的会员分布数量较多,另一方面,深圳市的经济水平也叫高,任务未被完成主要是任务的定价很低。

对于 D 区域中的采用不同于 ABC 区域的定价模式,在 A 区域的同心圆的内圆和圆环处都采用正态分布进行模拟,正态分布的均值设定为 68,方差不变,对于外侧的定价方式保持不变。

综上所述,对与附件一中的任务,每个任务都能够通过 GPS 距离,划分至 ABCD 四个区域中,在结合 ABCD 四个区域中的定价方案,则能够对每一个任务进行定价。

5.2.3 与原方案进行比较

1. 任务的完成度对比分析

通过新的定价方案,能够得到新方案的各个任务的定价,但是对于新的定价方案,任 务的完成度只能通过算法进行预测。

1.1 智能算法的选择

结合具体的数据,由于附件一中的数据量较多,因而要充分的利用现有的数据,另一方面,可将模型看成是二分类问题,据此采用神经网络模型,利用原方案的任务数据进行训练,并利用新制定的任务定价数据进行预测。

1.2 神经网络模型

对策略的有效性进行定量预测分析可以采用 BP 神经网络模型,BP 网络是一种按误差逆传播算法训练的多层前馈网络,BP 网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP 神经网络模型拓扑结构包括输入层、隐层和输出层。利用 BP 神经网络模型,结合已知的数据,就可以对方案进行预测。其使用步骤如下:

设计神经网络模型主要有以下几个步骤:

(1)随机选取一组输入样本数据 $P_k = (x_1^k, x_2^k, \dots, x_n^k)$ 和目标样本数据 $T_k = (y_1^k, y_2^k, \dots, y_q^k)$ 提供给网络。所以需要对样本进行预处理:

$$x_i' = 2 \cdot \frac{x_i - \min x}{\max x - \min x} - 1$$

其中 $\min x$ 和 $\max x$ 分别为样本中的最大值和最小值, x_i' 为预处理以后范围在[-1,1]内的数据, x_i 为原始样本数据。

(2)用输入样本 $P_k = (x_1^k, x_2^k, \cdots, x_n^k)$,连接权值 ω_{ij} 和阈值 θ_j 计算隐层各单元的输入 a_j ,然后用 a_i 通过转移函数计算隐层各单元的输出值 b_i :

$$b_j = f(a_j)$$

$$a_{j} = \sum_{i=1}^{n} \omega_{ij} x_{i} - \theta_{j} (j = 1, 2, \dots, p)$$

(3) 利用隐含层的输出值 b_j ,权值 v_{jt} 和阈值 γ_t 计算输出层各单元的输出 L_t ,然后通过传递函数计算输出层各单元的实际输出 C_t :

$$L_{t} = \sum_{j=1}^{p} v_{jt} b_{j} - \gamma_{t} (t = 1, 2, \dots, q)$$

$$C_{t} = f(L_{t})$$

(4)利用网络目标样本 $T_k = (y_1^k, y_2^k, \dots, y_q^k)$ 与网络的实际输出 C_t ,计算输出层的各单元训练误差 d_t^k :

$$d_t^k = C_t \cdot (y_t^k - C_t)(1 - C_t)$$

(5)利用连接权值 v_{jt} ,输出层的训练误差 d_t 和中间层的输出 b_j 计算隐层各单元的训练误差 e_t^k :

$$e_j^k = \left[\sum_{t=1}^q d_t \cdot v_{jt}\right] \cdot b_j (1 - b_j)$$

(6) 采用最速梯度下降法优化权值和阈值:

$$v_{jt}(N+1) = v_{jt}(N) + \alpha \cdot d_t^k \cdot b_j (0 < \alpha < 1)$$
$$\gamma_t(N+1) = \gamma_t(N) + \alpha \cdot d_t^k$$

(7) 利用隐层各单元的训练误差 e_j^k ,输入层各单元的输入 x_k 来修正连接权值 ω_{ij} 和阈值 θ_i :

$$\omega_{ij}(N+1) = \omega_{ij}(N) + \beta \cdot e_j^k \cdot x_i^k (i = 1, 2, \dots, n; 0 < \beta < 1)$$

$$\theta_j(N+1) = \theta_j(N) + \beta \cdot e_j^k$$

- (8)随机选取下一个学习样本向量提供给网络,返回到第二步,一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。
- (9) 通常利用误差测度准则平方误差最小,其计算方式如下所示:

图 17 BP 网络的结构图

2. 模型的求解

1) 价格的预测及其结果

通过问题二中改进的模型,对于附件一中的每一个任务,首先计算出该任务所属的区域,计算公式如下:

$$d = \min\{((H_{xi} - J_{xj})^2 + (H_{yi} - J_{yj})^2)^{\frac{1}{2}}\}\$$

由此可确定该任务所在的区域,进而根据其在不同的区域,采用所在区域的定价方案,对该任务进行定价。最终,得到任务一中的所有任务的定价见附录(附录一新任务的定价),部分结果如下:

任务编号	A0001	A0002	A0003	A0004	A0005	A0006	A0007	A0008	A0009
原始定价	66	65.5	65.5	75	65.5	75	65.5	65. 5	66
新定价	69	69	68	75	68	74. 94	1 68	68	68

表 9 新模型的价格预测表

2) 神经网络模型的预测

2.1 训练集的产生

根据附件一中的任务定价极其完成度,作为神经网络模型的训练集,神经网络模型的训练集的输入如下:

$$\begin{bmatrix} x_1 & \cdots & x_n \\ y_1 & \cdots & y_n \\ s_1 & \cdots & s_n \end{bmatrix}$$

其中, x_i 为任务的经度左边, y_i 为任务的纬度坐标, s_i 为该任务的定价。由于是对任务是否完成进行预测,故可看成为二分类的问题,因而输出集采用二维正交向量进行

表示, 选取如下向量:

将附件数据进行装换之后即可得到训练集进行训练。

对于神经网络的隐含层数量,经过不断的调试之后,发现隐含层选取 6 层时,模型得到的结果相对稳定,如图:

通过数据测试后,得到神经网络的模型,并且选取了相应的数据进行检验,模型的效果较好,因而对新方案的完成度进行了预测,训练图的结果如下:

得到神经网络模型之后,采用新方案的定价,进行预测并且统计完成任务的数量,得到新的定价方案任务的完成度达到了78.20%。

3. 与原方案进行比较

对于新的定价方案与原定价方案的比较,主要从任务的完成度和项目所需要的金 额进行比较。

3.1 任务的完成度比较

对于给出的定价方案,其任务的完成度为 62.51%,而对于新的任务定价方案,其任务的完成度达到 78.20%,提高了 15.69%,有 653 个任务被完成,为被完成的任务只剩 182 个。通过新的定价方案,新增 131 个任务被完成。

3.2 任务的总金额的比较

对于原任务的定价,通过计算可知其所要花费的总金额为: 57707.5元,而采用新的定价方案,所需的总金额为: 58470元,对比与原定价的金额,所新增的金额为762元,相当于增加1.3%费用,完成率提高了15.69%,分配到新增的任务上去,相当于新完成的任务只花费了5.81元,远远低于原定价任务的最低值。

5.3 问题三的分析与求解

5.3.1 打包任务定价的准则

对于问题三,考虑到多个任务的位置较为集中,可以将任务进行打包发布,因而对于打包发布的任务,需要制定相应的价格机制,结合实际情况,给出了对于打包的任务的相应的准则:

- 1.打包的任务的距离应该相距较近。
- **2.**考虑到低价的任务的完成度相对相对较低,因而打包的任务主要针对的是低价的任务,通过打包的方式提高低价任务的完成度。
- **3.**对于打包的任务,用户在完成的时候,能够获得相应的奖励,即针对打包任务定价时,设置相应的奖励机制。

5.3.2 打包任务下的任务定价模型

1. 打包任务的划分方法

根据上述的相应准则,打包任务为距离近且完成度低的任务,由上文可知,完成

度低的任务主要分布在低价区域,且低价区域的任务分布也相对较近,基于上述分析, 只对低价区域的任务进行打包,且任务与任务距离近的才进行打包。

2. 打包任务的定价模型

(1) 打包任务的数量确定

对于打包的任务,多少数量的任务打包在一起发布对用户完成任务最为合适,通过附件二中的数据,计算用户的预定任务的均值,发现其均值为 6,故因此对于打包的任务,选定 6 个任务为一组进行打包发布。

(2) 打包任务的奖励机制

在确定了打包任务的数量和范围之后,制定出一套针对打包任务的定价方案,该方案的具体定价如下:

- 1.对于打包的6个任务,通过问题二中的模型,对这6个打包任务的进行定价,得到定价之后,对每个任务的定价减低两元。
- 2.在6个任务中, 当用户完成两个任务之后将会获得4元的奖励。
- 3.用户在完成两个打包任务之后,用户每完成一个打包任务将获得一次随机的奖励机 会。
- 4.用户获得奖励的规则为:用于奖励的总金额为6元,用户获得一次奖励机会之后,以均匀分布产生0.1元至最高金额的奖励金额,下次奖励的总金额将是剩余的奖励的总金额。

对于在不低价范围中的任务,不进行打包定价方案,仍然采用问题二中的定价方案。

5.3.2 对任务完成的影响

针对上述改进的模型,当任务进行打包之后,由于针对于打包情况下,用户对于打包任务的选择情况,基于现有的数据较难预测与定量分析,但是对于结合了打包模型的定价方案的影响,无非出现以下两种情况:

- 1 推出打包定价方案之后,得到了用户的喜欢,则此情况下,低价任务的完成度 将大大提升,且打包任务完成的越多,项目所需要得金额将有所降低。
- 2. 推出打包定价方案之后,用户对此方案不喜欢,则此情况下,低价任务的完成 度可能会有所下降,而对于项目所需的金额将不变。

对于情况二,表明打包定价方案设置的不合理,因而需要重新调整打包定价的奖励机制,相应提升奖励金额。

5.4 问题四的求解

1. 任务的定价方案

利用任务经纬度绘制其散点图,如下:

其中黑色的点表示任务的位置。通过位置分布,可发现其比较集中,因此需要考 虑将任务打包,有些点的位置距聚集地较远,因此无法进行打包。

由此,采用问题三中的打包定价模型,对于 A 区域,为被打包的任务定价采取同心圆环处的定价准则进行定价,对于 B 区域未被打包的任务让采用问题三中的正态分布计算价格,对于 C 区域未被打包的任务采用 B 中的正态分布方法计算,并且运用matlab 编程进行求解,出相应任务的价格(见支撑材料),其中部分结果如下:

任务的新编码	D0001	D0073	D0154	D0199	D2005
任务定价	582	600.7	567.5	564	65

该方案在实施时,由于采用了打包机制,任务的完成数量会增加,并且比未进行 打包的方案降低了成本。

2. 评价方案的实施效果

对于上述的定价方案,根据得到的定价数据,由于是打包发布的定价方案,因而 不适合采用问题二中的神经网络模型进行任务的完成情况的预测,故通过新定价的相 应数据进行评价:

- 1. 用户完成一个打包任务之后,平均获得的收入为:366.44元;
- 2. 项目所需的总金额为 72921. 46 元, 平均每个单价为 35. 30 元, 若采用问题二中的非打包定价模型,项目所需总金额为: 141685 元,相比节约 68764 元,极大的降低了项目的费用。

六、模型的评价

6.1 模型的优点:

- 1. 基于神经网络模型考虑相对全面, 预测任务的完成结果较真实。
- 2. 利用同心圆模型来确定定价的规律,符合任务位置呈现聚集性的特点。
- 3. 此模拟能够与实际紧密联系,结合实际情况对问题求解,使得模型更加贴近实际,通用性、推广性较强。
- 4. 对于不同的任务价格区间,采用不同的方法进行定制价格,模型的灵活性强。
- 5. 对于打包任务的定价方案,采用合理的奖励机制,即符合用户的心理,有能够增加任务的完成度。

6.2 模型的缺点:

- 1. 区域半径制定的过程中客观因素较多,不能对其进行全面考虑,造成与实际有一定的偏差。
- 2. 同心圆模型中的定价方案的参数设定,较多的主观因素。

七、参考文献

- [1] 姜启源,谢金星,叶俊,数学模型(第三版)[M],北京:高等教育出版社, 2003。
- [2] 余胜威, Matlab 优化算法分析与应用[M], 北京: 清华大学出版社, 2014。
- [3] 司守奎,孙玺菁,数学建模算法与应用[M],北京:国防工业出版社,2013。
- [4] 冯剑红,李国良,众包技术研究综述,计算机学报,2015,38(9):1713-1726。

八、附录

```
问题二 任务定价代码
x=[
23.18055 113.2959926
23.0429824 113.7668916
23.028 113.12
22.6 113.95
]; %圆心的坐标

R=[
0.08 0.03 0.04 0.12
0.135 0.1 0.08 0.23
]; % 半径的坐标

y=xlsread('任务的坐标');
score=xlsread('任务的价格');
```

```
z=[];
for i=1:4
    xx=y-x(i,:);
    xx=abs(xx);
    x1=xx.^2;
    x1=x1';
    x2=sum(x1);
    x3=sqrt(x2);
    d{i}=x3;
end
dd=[d{1};d{2};d{3};d{4}];
[r,ind]=min(dd);
index1=[];
index2=[];
index3=[];
index4=[];
s1=0;
s2=0;
count1=0;
count2=0;
for i=1:835
if ind(i)==1
    if 0 < r(i) && r(i) < = R(1,1)
        z(i)=round(normrnd(66.17,0.3764,1));
    end
    if R(1,1) < r(i) && r(i) < = R(2,1)
         p=rand(1);
         if
                p<=0.2107
                   z(i)=66.5;
         end
         if
                0.2107<p && p<=0.3378
              z(i)=67;
         end
              if
                    0.3378<=p && p<=
                                        0.4147
              z(i)=67.5;
             end
        if
              0.4147<=p && p<=0.5150
              z(i)=68;
        end
```

```
if
           0.5150 <=p && p<=0.5518
             z(i)=68.5;
       end
         if
              0.5518 <=p && p<= 0.6153
             z(i)=69;
         end
        if
             0.6153<=p && p<=
                                0.6421
             z(i)=69.5;
        end
        if 0.6421<=p && p<= 0.9632
            z(i)=70;
         end
        if 0.9632<=p && p<=1
            z(i)=70.5;
        end
    end
    if R(2,1)<r(i)
        z(i)=71+15*(r(i)-0.1359)/(0.7392-0.1359);
    end
end
if ind(i)==2
    if 0 < r(i) && r(i) < = R(1,2)
        z(i) = round(normrnd(65, 0.3764, 1));
    end
    if R(1,2)< r(i) && r(i)<=R(2,2)
    p=rand(1);
         if
               p<=0.2107
                  z(i)=66.5;
         end
         if
               0.2107<p && p<=0.3378
             z(i)=67;
         end
             if
                   0.3378<=p && p<= 0.4147
             z(i)=67.5;
             end
        if
              0.4147<=p && p<=0.5150
             z(i)=68;
        end
       if
            0.5150 <=p && p<=0.5518
             z(i)=68.5;
       end
         if
              0.5518 <=p && p<= 0.6153
             z(i)=69;
```

```
end
        if
             0.6153<=p && p<= 0.6421
             z(i)=69.5;
        end
        if 0.6421<=p && p<= 0.9632
            z(i)=70;
         end
        if 0.9632<=p && p<=1
            z(i)=70.5;
        end
    end
    if R(2,2) < r(i)
    z(i)=71+11*(r(i)-0.1359)/(0.7392-0.1359);
    end
end
if ind(i)==3
    if 0 < r(i) && r(i) < = R(1,3)
        z(i) = round(normrnd(66.17, 0.3764, 1));
    end
    if R(1,3)< r(i) && r(i)<=R(2,3)
    p=rand(1);
         if
               p < = 0.2107
                  z(i)=66.5;
         end
         if
               0.2107<p && p<=0.3378
             z(i)=67;
         end
             if
                   0.3378<=p && p<= 0.4147
             z(i)=67.5;
             end
        if
              0.4147<=p && p<=0.5150
             z(i)=68;
        end
       if
            0.5150 <=p && p<=0.5518
             z(i)=68.5;
       end
              0.5518 <=p && p<= 0.6153
             z(i)=69;
         end
        if
             0.6153<=p && p<= 0.6421
             z(i)=69.5;
```

```
end
        if 0.6421<=p && p<= 0.9632
            z(i)=70;
         end
        if 0.9632<=p && p<=1
            z(i)=70.5;
        end
    end
    if R(2,3)<r(i)
    z(i)=71+15*(r(i)-0.1359)/(0.7392-0.1359);
    end
end
if ind(i)==4
    index4=[index4 i];
    if 0 < r(i) \&\& r(i) <= R(2,4)
    z(i)=round(normrnd(68,0.3764,1));
    end
    if R(2,4) < r(i)
    z(i)=71+14*(r(i)-0.1359)/(0.7392-0.1359);
    end
end
end
sum(z) - 57707
z=z';
```

问题二 新的任务定价

任务号码	任务 gps 纬度	任务 gps 经度	任务标价	任务执行情况	任务的新定 价
A0001	22.56614225	113.9808368	66	0	69.00
A0002	22.68620526	113.9405252	65.5	0	69.00
A0003	22.57651183	113.957198	65.5	1	68.00
A0004	22.56484081	114.2445711	75	0	75.00
A0005	22.55888775	113.9507227	65.5	0	68.00
A0006	22.55899906	114.2413174	75	0	74.94
A0007	22.54900371	113.9722597	65.5	1	68.00
A0008	22.56277351	113.9565735	65.5	0	68.00
A0009	22.50001192	113.8956606	66	0	68.00
A0010	22.5437861	113.9239778	66	1	68.00
A0011	22.52486369	113.9308596	65.5	0	68.00
A0012	22.519087	113.9358436	65.5	0	68.00
A0013	22.54797243	113.977909	65.5	1	69.00
A0014	22.50616871	113.9314284	66	1	68.00

A0015	22.49962566	113.9365145	66	1	68.00
A0016	22.54032142	113.9236456	66	1	68.00
A0017	22.52455419	113.9247319	65.5	1	68.00
A0018	22.4981901	113.8984817	66	0	68.00
A0019	22.54603946	113.9749684	65.5	1	68.00
A0020	22.49772892	113.9373377	66	1	68.00
A0021	22.49416247	113.927139	66	1	68.00
A0022	22.51592012	113.9356769	65	1	68.00
A0023	22.51578568	113.9420557	65.5	0	68.00
A0024	22.54220963	114.0196493	66.5	0	68.00
A0025	22.54458961	113.9986601	67.5	0	68.00
A0026	22.49308313	113.9358391	66	1	68.00
A0027	22.52488949	113.9191429	65.5	1	69.00
A0028	22.54808582	113.9453119	66.5	1	68.00
A0029	22.56470734	113.9820093	66	0	68.00
A0030	22.58193448	114.1563953	68	0	68.00
A0031	22.54293611	114.1314072	67	0	67.00
A0032	22.52394954	113.9434416	65.5	0	68.00
A0033	22.55101305	113.9567446	65.5	1	68.00
A0034	22.5829933	114.1471227	66	1	68.00
A0035	22.54927013	114.1317447	66.5	0	68.00
A0036	22.52596134	113.9353993	65.5	1	69.00
A0037	22.7563793	114.0421356	70	0	68.00
A0038	22.64144071	114.4227421	75	0	79.42
A0039	22.71166007	114.0728836	66.5	0	68.00
A0040	22.60649323	114.1241536	66	0	68.00
A0041	22.66229971	114.0729969	65	0	68.00
A0042	22.63539828	114.2263772	66.5	1	74.55
A0043	22.73802844	114.264097	67	0	76.15
A0044	22.62558348	114.1549664	69	0	68.00
A0045	22.65265496	114.0272292	66	0	68.00
A0046	22.78892197	113.8966327	66	0	68.00
A0047	22.70103564	114.2442921	67	0	75.36
A0048	22.63154051	114.1214928	67	0	69.00
A0049	22.6417148	114.195533	68.5	0	73.81
A0050	22.68940336	114.3454188	70	0	77.70
A0051	22.63010042	114.0638327	66.5	0	68.00
A0052	22.66391673	114.0717177	65.5	0	68.00
A0053	22.750664	114.378843	70	0	78.92
A0054	22.72272561	114.0738016	67	0	67.00
A0055	22.64138032	114.2299818	67	0	74.66
A0056	22.77640754	114.3095878	73	0	77.58

A0057	22.58706534	113.9057614	66	0	68.00
A0058	22.69339571	114.1474874	69	0	68.00
A0059	22.6040497	114.0586138	66	0	68.00
A0060	22.6376364	114.0679162	65.5	0	68.00
A0061	22.65788521	114.0747723	65.5	0	68.00
A0062	22.61781817	114.1572608	67.5	0	69.00
A0063	22.64144071	114.4227421	75	0	79.42
A0064	22.78139876	114.3008065	73	0	77.44
A0065	22.72294122	114.2777156	67	0	76.32
A0066	22.67470711	114.2209333	67	0	74.61
A0067	22.66283814	114.0263974	65	0	68.00
A0068	22.65776972	114.0794934	65.5	0	68.00
A0069	22.65691327	114.2100928	66	0	74.24
A0070	22.73859039	113.8184493	66.5	0	68.00
A0071	22.71636331	114.322257	70	0	77.32
A0072	22.52331401	114.0466386	66.5	0	68.00
A0073	22.65301422	114.2124549	66	0	74.28
A0074	22.5331754	114.0831342	66.5	0	67.00
A0075	22.59955905	114.130363	66.5	0	68.00
A0076	22.65027837	113.9366241	68.5	0	68.00
A0077	22.73782038	114.2858901	65.5	1	76.65
A0078	22.73859039	113.8184493	66.5	1	68.00
A0079	22.74300109	113.9950401	71	0	68.00
A0080	22.63495417	114.0448196	66	0	68.00
A0081	22.75139338	114.0262399	70	1	68.00
A0082	22.61556463	114.1524159	67	0	68.00
A0083	22.68447006	114.000085	66	0	67.00
A0084	22.6651428	114.0200019	65.5	0	68.00
A0085	22.69331552	113.8170784	66	0	68.00
A0086	22.75600203	113.8513612	66.5	0	68.00
A0087	22.73335619	113.8312919	66	0	68.00
A0088	22.7778578	113.9170043	70	0	69.00
A0089	22.70597175	113.8079954	66.5	0	67.00
A0090	22.70466497	113.9726899	70	0	68.00
A0091	22.65204961	114.0535937	65.5	0	68.00
A0092	22.72133411	114.0616196	67	0	68.00
A0093	22.68008861	113.8347861	70	0	68.00
A0094	22.70874974	113.8160543	66	0	68.00
A0095	22.60766979	113.8685312	65.5	0	68.00
A0096	22.72710367	114.0613819	67	1	68.00
A0097	22.67955589	113.8329385	65.5	0	68.00
A0098	22.67509773	113.822362	65.5	0	68.00

A0099	22.73335619	113.8312919	66	0	68.00
A0100	22.61177508	114.0380587	66	0	68.00
A0101	22.73006657	114.0666477	66.5	0	68.00
A0102	22.65235376	113.9299125	70	0	68.00
A0103	22.71365257	114.0652375	66	0	69.00
A0104	22.56073431	113.8900779	70	1	69.00
A0105	22.67343353	113.8257052	65	0	69.00
A0106	22.59155498	114.1259102	67.5	0	68.00
A0107	22.670522	113.9235611	70	0	68.00
A0108	22.70038707	113.8449026	66	0	68.00
A0109	22.56350361	113.9068948	65.5	1	68.00
A0110	22.70743279	113.9300131	68.5	0	68.00
A0111	22.6335575	113.8513604	70.5	0	68.00
A0112	22.56419251	113.8961664	65.5	0	68.00
A0113	22.66919267	114.0384117	66.5	0	68.00
A0114	22.59628077	113.8550628	66.5	0	68.00
A0115	22.68518823	113.8115675	67	0	68.00
A0116	22.70700814	114.0967766	66	0	68.00
A0117	22.730349	114.068783	67	0	68.00
A0118	22.607611	113.8698943	65.5	0	68.00
A0119	22.58488076	113.913275	66	1	68.00
A0120	22.5609901	113.894563	65.5	0	68.00
A0121	22.73565178	114.280464	65	1	76.50
A0122	22.58194314	113.8880166	66.5	1	68.00
A0123	22.58297289	113.9071834	65.5	1	68.00
A0124	22.54138954	113.9191104	66	1	67.00
A0125	22.77040177	113.8551161	66	0	68.00
A0126	23.16769035	113.6651728	75	1	71.46
A0127	23.16549805	113.3875901	65.5	1	66.50
A0128	23.159336	113.3387113	65.5	0	67.00
A0129	23.16878915	113.4199598	66.5	1	66.50
A0130	23.12849295	113.3506186	65	0	66.00
A0131	23.13070225	113.4162609	65.5	0	66.50
A0132	23.13822079	113.3894867	65	0	67.00
A0133	23.18611685	113.5974857	75	1	72.57
A0134	23.12401896	113.411547	65	0	67.50
A0135	23.1381659	113.3728361	65.5	1	70.50
A0136	23.19967301	113.406847	68.5	0	67.50
A0137	23.12248087	113.3611249	65.5	0	69.00
A0138	23.20013915	113.374909	65.5	0	66.50
A0139	23.10125022	113.5484367	68	0	72.64
A0140	23.12486646	113.5614453	69	0	72.55

A0141	23.10871181	113.4928846	66.5	0	72.83
A0142	23.12431564	113.4081151	65	0	70.00
A0143	23.16751438	113.3379544	66	0	66.00
A0144	23.13544204	113.390008	65	0	70.00
A0145	23.13680577	113.3315495	65	0	66.00
A0146	23.11593032	113.4204891	66	0	71.11
A0147	23.16189407	113.3433346	66	0	67.00
A0148	23.10979739	113.4534484	66	0	71.91
A0149	23.10975809	113.4534812	66	0	71.91
A0150	23.19090473	113.4492017	73	1	71.44
A0151	23.10871181	113.4928846	66.5	1	72.83
A0152	23.09982822	113.4849635	65.5	0	72.73
A0153	23.07978943	113.429745	70.5	1	71.78
A0154	23.11810119	113.5442171	67	1	72.81
A0155	23.10871181	113.4928846	66.5	1	72.83
A0156	23.10112473	113.4872412	65.5	0	72.77
A0157	23.14872294	113.5152914	73.5	0	73.13
A0158	23.0479764	113.2892933	69	0	68.00
A0159	23.11114068	113.2782409	66	0	66.00
A0160	22.9345908	113.4167995	70	0	74.43
A0161	23.39690863	113.3475114	75	0	73.15
A0162	23.09138071	113.5316771	70	0	72.90
A0163	23.21565299	113.3005692	66	0	66.00
A0164	22.96099325	113.4427752	66.5	0	74.19
A0165	23.21280913	113.2563331	65.5	0	66.00
A0166	23.29451408	113.3313063	69	0	67.00
A0167	23.23745771	113.2042653	70	0	70.00
A0168	23.37184576	113.3603993	74.5	0	72.64
A0169	23.38627895	113.410599	74	0	73.48
A0170	23.25778406	113.3199932	65.5	0	70.00
A0171	23.08029132	113.2042061	67.5	0	70.09
A0172	23.21280913	113.2563331	65.5	0	66.00
A0173	23.25231339	113.2640936	66.5	0	66.00
A0174	23.26171206	113.2736317	65.5	0	67.00
A0175	23.19657146	113.248218	65	0	66.00
A0176	23.23376317	113.2234607	67.5	0	68.00
A0177	22.60495971	113.8575896	66	0	68.00
A0178	22.75034263	113.5835226	70	1	74.82
A0179	23.11295796	113.2185961	67	1	66.50
A0180	23.13175901	113.275758	65	0	66.00
A0181	23.1404539	113.2885119	65.5	1	67.00
A0182	23.12882385	113.4224455	65.5	0	71.02

A0183	23.1381659	113.3728361	65.5	1	70.50
A0184	23.13534304	113.3037146	65	0	66.00
A0185	23.14416119	113.2937609	65.5	1	66.00
A0186	23.13508872	113.3087933	65	0	66.00
A0187	23.12912268	113.3502696	65.5	0	66.00
A0188	23.13559919	113.3507531	65.5	0	66.00
A0189	22.89140037	113.4634086	69.5	1	75.93
A0190	23.1324472	113.3398257	65.5	1	66.00
A0191	23.13782219	113.3913207	65	0	70.00
A0192	23.13708468	113.3341858	65	0	66.00
A0193	23.19965405	113.3471287	65.5	0	67.00
A0194	23.16281868	113.418328	66	1	70.00
A0195	23.16213347	113.3362425	65.5	0	66.00
A0196	23.17452179	113.3590439	66.5	0	67.00
A0197	23.13963001	113.373441	65	0	67.50
A0198	22.82926076	113.5128066	75	1	74.58
A0199	22.77403434	113.5634849	74.5	1	74.67
A0200	22.76096874	113.5670518	75	1	74.82
A0201	23.06873266	113.2597245	67	1	66.50
A0202	23.38043854	113.2148083	70	1	72.99
A0203	23.06832244	113.259826	67	0	67.00
A0204	22.80661724	113.5538411	66.5	1	74.32
A0205	22.80808312	113.5540935	66.5	1	74.30
A0206	22.8075467	113.5521662	70	1	74.33
A0207	22.75155653	113.5823006	70	1	74.81
A0208	22.73722496	113.49332	75	1	76.00
A0209	22.75149396	113.5830112	70	1	74.81
A0210	23.10871181	113.4928846	67	1	72.83
A0211	23.14381101	113.225977	66	0	67.00
A0212	23.45231332	113.1865032	70	0	74.91
A0213	23.33873201	113.287509	68	1	71.56
A0214	23.46633279	113.159492	70	0	75.50
A0215	23.14217367	113.2258303	66	0	66.00
A0216	23.37477577	113.1788848	70.5	1	73.26
A0217	23.4707977	113.1623173	70	0	75.57
A0218	23.13697262	113.2511805	66	1	66.00
A0219	23.45673194	113.2818311	70.5	1	74.50
A0220	23.39286447	113.2168771	65	1	73.25
A0221	23.45948327	113.1906655	70	0	75.03
A0222	22.71023017	113.5528912	75	1	75.74
A0223	23.46689744	113.1568477	70	0	75.54
A0224	23.39484028	113.2214471	70	0	73.26

A0225	23.33887144	113.1110649	75	1	73.67
A0226	23.4739307	113.2286618	75	0	75.11
A0227	23.4153625	113.2559812	70	1	73.54
A0228	23.39620146	113.2148232	65.5	1	73.35
A0229	23.40499354	113.2185644	70	1	73.52
A0230	23.07562227	113.2882907	66	1	69.00
A0231	23.37243417	113.2076071	70	1	72.87
A0232	23.42583117	113.2080568	70	1	74.10
A0233	23.39841078	113.2515307	70	1	73.15
A0234	23.38959437	113.2094492	70	1	73.25
A0235	23.40380215	113.2090908	70	1	73.58
A0236	23.39508831	113.2092329	70	1	73.37
A0237	23.09692801	113.239735	66	1	66.50
A0238	23.40841281	113.2127554	70	1	73.65
A0239	23.09187146	113.3378758	65	1	67.00
A0240	23.39484028	113.2214471	70	0	73.26
A0241	23.09537864	113.340586	65.5	0	66.50
A0242	23.40649056	113.1696376	71.5	1	74.06
A0243	23.10022614	113.2726541	65.5	0	66.50
A0244	23.11405394	113.2681623	66	0	66.00
A0245	23.42604026	113.2057436	70	1	74.12
A0246	23.09144379	113.3619952	66.5	0	69.00
A0247	23.07250678	113.3232631	66	1	68.50
A0248	23.09874703	113.3145001	65	0	67.50
A0249	23.09223544	113.3618211	66.5	0	66.50
A0250	23.09225763	113.3092172	65.5	1	68.00
A0251	23.07813828	113.3563529	66.5	0	70.00
A0252	23.07207495	113.3573906	67	0	70.00
A0253	23.08686269	113.3324673	65	1	68.00
A0254	23.09349108	113.2792664	65.5	1	66.50
A0255	23.08887865	113.3283798	65	1	67.00
A0256	23.08690863	113.3432045	65.5	1	70.00
A0257	23.08762923	113.3338413	65	1	67.00
A0258	23.06884733	113.3226199	66.5	1	70.00
A0259	23.01403653	113.3995947	68	1	72.50
A0260	23.08308279	113.3399863	65.5	1	68.00
A0261	23.0479764	113.2892933	69	0	67.00
A0262	23.09231582	113.333797	65	1	67.00
A0263	22.94104074	113.3643577	65	1	73.81
A0264	23.09607127	113.321481	65.5	1	70.00
A0265	23.01919557	113.3252713	65.5	1	71.70
A0266	22.8145924	113.4191078	75	0	76.76

A0267	22.96639568	113.4186506	67	1	73.76
A0268	22.9345908	113.4167995	70	1	74.43
A0269	22.99106044	113.4052447	70.5	1	73.06
A0270	22.96178714	113.4420382	66	1	74.16
A0271	22.88992793	113.4614475	72	1	75.94
A0272	23.02170016	113.3574494	68	1	71.86
A0273	22.8100654	113.4141599	75	0	76.72
A0274	23.00743132	113.3201755	67	1	71.97
A0275	22.94194927	113.3712035	65.5	0	73.84
A0276	22.94428352	113.4044932	65	1	74.09
A0277	22.96481939	113.3565805	66.5	1	73.19
A0278	22.9345908	113.4167995	70	1	74.43
A0279	22.98035071	113.3222749	66	1	72.64
A0280	22.95705294	113.4238473	67	1	74.02
A0281	22.96859452	113.4081296	65.5	1	73.58
A0282	22.95454492	113.3451482	66.5	1	73.37
A0283	22.92265134	113.3754902	68	1	74.33
A0284	22.94228167	113.3604421	65	1	73.76
A0285	22.95321398	113.3659058	65.5	0	73.53
A0286	22.95435755	113.3680492	65.5	1	73.52
A0287	22.9677616	113.4044377	65.5	1	73.56
A0288	22.95410901	113.358418	65.5	0	73.46
A0289	22.94001202	113.360734	65	0	73.81
A0290	23.05399472	113.2699138	69	1	67.00
A0291	22.94289179	113.3606862	65	0	73.75
A0292	23.55528066	113.5988663	70	1	79.60
A0293	22.94548161	113.4033092	65	1	74.05
A0294	22.96950879	113.3827743	67.5	1	73.29
A0295	23.56341133	113.5803848	70	1	79.48
A0296	23.62547628	113.4313956	70	1	79.18
A0297	23.87839806	113.5397114	70	1	86.00
A0298	23.72311773	113.739427	75	1	80.93
A0299	23.56038693	113.6018782	70	1	79.75
A0300	23.54435986	113.5926833	70	1	79.29
A0301	23.54456994	113.5926934	70	1	79.30
A0302	23.55079636	113.5963006	70	1	79.47
A0303	23.81610767	113.9579294	75	1	83.04
A0304	23.54966086	113.5927756	70	1	79.40
A0305	23.23158622	113.2643764	66.5	1	66.00
A0306	23.55654335	113.594664	70	1	79.56
A0307	23.55090902	113.602251	70	1	79.57
A0308	23.45165523	113.2845092	70	1	74.37

A0309	23.21417689	113.2830531	65.5	1	66.00
A0310	23.34332347	113.301253	66.5	1	71.67
A0311	23.55840651	113.5895144	70	1	79.52
A0312	23.24103979	113.3111972	65.5	1	66.00
A0313	23.17268536	113.2829081	67.5	0	66.00
A0314	23.17916744	113.2579074	65.5	0	66.00
A0315	23.22905901	113.274368	66	1	66.00
A0316	23.19914624	113.2594586	65.5	0	67.00
A0317	23.21375407	113.2848136	65.5	1	66.00
A0318	23.25396062	113.3157819	65.5	1	66.00
A0319	23.21385224	113.250264	65.5	1	66.00
A0320	23.21696173	113.2862596	65	1	66.00
A0321	23.29451408	113.3313063	69	1	68.00
A0322	23.24188766	113.2770715	66	0	66.00
A0323	23.24225952	113.3111664	65.5	1	66.00
A0324	23.18365032	113.2334603	65	1	66.00
A0325	23.19907045	113.2387753	65.5	0	67.00
A0326	23.23709476	113.2837807	65.5	1	66.00
A0327	23.18718813	113.3366981	66	0	67.00
A0328	23.22035048	113.249282	66	0	66.00
A0329	23.21844312	113.2333725	65	1	66.00
A0330	23.21277909	113.2649338	65.5	1	66.00
A0331	23.22783298	113.3098073	65.5	0	66.00
A0332	23.17801596	113.2461178	65	1	66.00
A0333	23.22050464	113.2826379	65.5	1	66.00
A0334	23.18623308	113.2363258	65	1	66.00
A0335	23.29451408	113.3313063	69	1	66.50
A0336	23.15898957	113.2276926	65.5	1	68.00
A0337	23.21394862	113.281015	65.5	1	66.00
A0338	23.17886838	113.2482347	65	1	67.00
A0339	23.21872162	113.2323053	65	1	66.00
A0340	23.21794012	113.2368675	65.5	1	66.00
A0341	23.29451408	113.3313063	69	1	66.50
A0342	23.23158622	113.2643764	66.5	1	67.00
A0343	23.23159701	113.283057	65.5	0	67.00
A0344	23.15334517	113.2396818	66	1	65.00
A0345	23.21271064	113.2644744	65.5	1	67.00
A0346	23.22137104	113.2360855	65.5	1	67.00
A0347	23.17281527	113.3224149	66	0	66.00
A0348	23.20636522	113.3358956	65.5	0	66.00
A0349	23.23637165	113.279566	65.5	1	67.00
A0350	23.19538681	113.2410703	65	0	66.00

A0351	23.22620876	113.3095973	65.5	l o	66.00
A0352	23.1570952	113.2297309	65.5	1	66.00
A0353	23.161857	113.2676472	65.5	0	67.00
A0354	23.15645038	113.2549363	66.5	0	66.00
A0355	22.63899906	114.0675793	65.5	0	69.00
A0356	22.51924352	113.9195281	65.5	1	69.00
A0357	22.67057736	113.8735894	72.5	0	69.00
A0358	22.58781321	113.9729021	66.5	0	68.00
A0359	22.57204653	114.1188134	66	0	68.00
A0360	22.58243264	113.9591486	65.5	0	68.00
A0361	22.68008861	113.8347861	65.5	0	68.00
A0362	22.5635259	113.9893556	66	0	68.00
A0363	23.01217957	113.3974048	68	0	72.51
A0364	22.6873087	113.9459597	65	0	68.00
A0365	23.2177189	113.23556	65.5	0	66.00
A0366	23.27373214	113.3010978	66	0	70.00
A0367	23.30080982	113.3621418	65.5	0	71.03
A0368	23.26172271	113.2781659	65.5	0	67.00
A0369	22.54605355	114.0259737	66.5	0	67.00
A0370	23.14311721	113.2254512	66	0	66.00
A0371	23.3004295	113.3621215	65.5	0	71.03
A0372	23.19924759	113.334818	65.5	0	66.00
A0373	23.09705081	113.6581524	68	1	70.74
A0374	23.12928955	113.6604402	75	1	71.02
A0375	22.64153534	114.0719117	65.5	0	68.00
A0376	23.03098143	113.3157936	65	1	71.37
A0377	22.97984508	113.3212453	66	1	72.65
A0378	23.13206675	113.2749836	65	0	66.00
A0379	23.12974908	113.2752038	65	1	67.00
A0380	22.96267859	113.4455898	66	1	74.19
A0381	23.12858004	113.3011622	65.5	1	66.00
A0382	23.14246797	113.3005	65	0	67.00
A0383	23.18246071	113.3497966	66	0	66.00
A0384	22.77665396	113.5933558	75	1	74.32
A0385	22.64946304	113.6129849	75	1	76.09
A0386	23.13891176	113.3274613	65	0	66.00
A0387	23.12382897	113.3298085	65.5	1	66.00
A0388	22.80839337	113.5539168	72	1	74.30
A0389	23.14416119	113.2937609	65.5	1	66.00
A0390	22.82771435	113.5218711	74	1	74.47
A0391	23.13562043	113.3048107	65	0	67.00
A0392	23.12742643	113.2581662	65	1	66.00

A0393	23.446661	113.2201755	75	1	74.50
A0394	23.08068204	113.2757904	66	1	70.00
A0395	23.47430929	113.163008	75	0	75.64
A0396	23.12011401	113.253472	65.5	1	66.00
A0397	23.44184274	113.3286502	72	1	74.17
A0398	23.37803295	113.2569259	75	1	72.63
A0399	23.4422023	113.3300279	72	0	74.18
A0400	23.40329889	113.2398514	75	1	73.33
A0401	23.43115969	113.4254505	75	1	74.63
A0402	23.03030049	113.3145988	65	1	71.39
A0403	22.97479086	113.3293635	66	1	72.80
A0404	23.01335039	113.3953229	68	1	72.46
A0405	22.88992793	113.4614475	72	1	75.94
A0406	22.84224477	113.3450767	73	1	74.88
A0407	23.46444973	113.1728925	75	0	75.31
A0408	23.02768375	113.3178615	65	1	71.46
A0409	22.97556192	113.4972296	75	1	73.59
A0410	22.83996892	113.3498966	73.5	0	75.01
A0411	22.91229115	113.3507636	75	1	74.04
A0412	23.02749214	113.3208977	65	1	71.48
A0413	22.9505863	113.360999	65.5	1	73.56
A0414	22.97284334	113.3354088	65.5	1	72.88
A0415	22.96099325	113.4427752	72	1	74.19
A0416	22.96283395	113.4063597	65.5	1	73.69
A0417	22.95377413	113.4063406	65.5	1	73.89
A0418	23.54196985	113.5979552	75	1	79.33
A0419	22.94294137	113.4065271	65	1	74.14
A0420	22.89445321	113.4096635	70	1	75.28
A0421	23.01619601	113.3314991	65.5	1	71.80
A0422	23.15655948	113.2149279	66.5	1	70.50
A0423	22.9564903	113.3756996	65.5	1	73.53
A0424	23.55366671	113.5951132	75	1	79.51
A0425	23.29881375	113.3629421	65.5	1	71.00
A0426	23.45457434	113.4983044	80	1	76.09
A0427	23.2516148	113.2923559	66	1	66.00
A0428	23.28119075	113.2376396	75	1	66.50
A0429	23.5532428	113.5953837	75	1	79.51
A0430	23.25840064	113.2999763	66	1	66.00
A0431	23.55380843	113.5953328	75	1	79.52
A0432	23.20717633	113.2643515	65	1	66.00
A0433	23.22050464	113.2826379	65.5	1	66.00
A0434	23.21772876	113.273664	65.5	1	66.00

A0435	23.45803366	113.1869153	75	0	75.03
A0436	23.3754398	113.2134638	75	0	72.88
A0437	23.47484287	113.1908172	75	0	75.39
A0438	23.47290189	113.1700943	75	0	75.54
A0439	23.46841629	113.1611801	75	0	75.52
A0440	22.52619876	113.9892211	69.5	0	68.00
A0441	22.55528126	114.1160913	67	0	67.00
A0442	22.72286461	114.2445007	69	0	75.56
A0443	22.56778253	114.1781275	73	0	73.35
A0444	22.56382444	113.9907634	66.5	0	68.00
A0445	22.6315777	114.1233026	72	1	67.00
A0446	22.68155741	113.9462038	72	0	68.00
A0447	22.54700517	114.1111563	66.5	0	68.00
A0448	22.54938063	114.0502177	67	0	68.00
A0449	22.5342988	114.0317449	66	0	68.00
A0450	22.57872798	114.4936096	85	0	81.15
A0451	22.64040872	114.043872	66	0	68.00
A0452	22.73383221	113.8315273	65.5	0	68.00
A0453	22.78567173	113.9004089	65.5	0	68.00
A0454	22.77248305	113.853852	66	0	68.00
A0455	22.74040934	113.7890795	72	0	68.00
A0456	22.6614933	114.0272899	65	0	68.00
A0457	23.46633279	113.159492	72	0	75.50
A0458	22.58197746	113.8879268	66.5	0	68.00
A0459	22.805179	113.5628515	72	0	74.24
A0460	22.70528903	114.1403154	85	0	68.00
A0461	23.19096422	113.3331534	65.5	1	66.00
A0462	22.52394954	113.9434416	65.5	1	69.00
A0463	23.09785202	113.3057915	65	0	68.00
A0464	22.52712849	114.0539088	65.5	0	68.00
A0465	22.54660305	114.1049551	67	0	67.00
A0466	22.57517644	114.1449386	67	0	68.00
A0467	22.5684784	113.9001112	65.5	0	68.00
A0468	22.5382642	114.0658681	80	0	68.00
A0469	23.13875611	113.3288103	65	0	66.00
A0470	23.14339098	113.6011789	75	1	72.05
A0471	23.12003249	113.2890606	80	0	66.00
A0472	23.13542532	113.3037677	65	0	66.00
A0473	23.16432044	113.2431433	66	1	66.00
A0474	23.12585311	113.4120539	65	1	69.00
A0475	23.1260612	113.3323389	65.5	1	65.00
A0476	23.15263157	113.3319798	65	1	66.00

A0477	23.128422	113.4111868	80	0	70.00
A0478	23.18845597	113.2716284	80	0	66.00
A0479	22.94295695	113.3934216	66	1	74.01
A0480	23.09450111	113.2664068	66.5	1	68.00
A0481	23.19676966	113.2703134	80	1	66.00
A0482	23.00569584	113.1243661	65.5	0	67.00
A0483	23.04490751	113.7884342	65.5	1	65.00
A0484	23.03272552	113.12013	65.5	0	66.00
A0485	23.00621128	113.1241309	65.5	0	67.00
A0486	22.77759139	113.7516813	70	1	73.37
A0487	22.72103752	114.1790518	70.5	1	74.06
A0488	22.81230491	114.1729882	72	1	75.28
A0489	22.801073	113.7618106	66.5	1	72.93
A0490	23.03122319	113.1207972	65.5	0	66.00
A0491	23.05595171	113.871321	70.5	1	70.44
A0492	22.91692471	113.6433026	71.5	1	71.74
A0493	22.87739958	114.1275908	70	1	75.81
A0494	23.06483206	113.7971486	66.5	1	68.00
A0495	23.01025416	113.6817199	69	1	67.50
A0496	23.06159876	113.6626383	67.5	1	70.45
A0497	23.0416214	113.7119223	68.5	1	70.00
A0498	23.08542731	113.6936712	70	1	70.00
A0499	22.85522568	114.1534998	70	1	75.74
A0500	22.80544018	113.8238665	67.5	1	73.61
A0501	22.82232789	113.7424637	70	1	72.57
A0502	22.85094098	114.1669061	70	1	75.87
A0503	22.85030931	114.1708909	70	1	75.92
A0504	23.00567603	113.7076519	70	1	67.00
A0505	23.06209254	113.826673	68	1	70.00
A0506	22.84478414	113.6454694	69.5	1	72.76
A0507	22.85171477	113.6315449	67.5	1	72.79
A0508	22.86139706	113.8539976	72.5	1	72.19
A0509	22.81963599	113.8037291	65	1	72.65
A0510	22.79566135	114.1565339	70	1	74.69
A0511	22.80567514	113.7907865	67	1	72.87
A0512	23.00064852	113.6154402	67	1	71.39
A0513	22.78249643	113.7638949	66	1	73.27
A0514	22.95998261	113.0474105	72.5	1	70.09
A0515	23.01478583	113.6858529	68.5	1	69.00
A0516	22.78139716	113.7672628	66	1	74.02
A0517	23.05170834	113.8429711	69.5	1	70.00
A0518	22.99142805	113.7725018	67.5	1	70.00

A0519	23.07829135	113.7987384	69	1	67.00
A0520	23.06286454	113.7987584	66.5	1	68.00
A0521	23.0553869	113.7700911	65.5	1	65.00
A0522	22.80016347	114.0627615	70	1	69.00
A0523	23.04845541	113.5499061	75	1	72.48
A0524	22.82104527	113.8090357	65	1	72.64
A0525	22.7958979	113.7978335	68	1	73.79
A0526	23.06060865	113.7374003	66.5	1	67.50
A0527	23.01783954	113.8233686	69	1	70.00
A0528	23.05828484	113.8147964	67	1	67.00
A0529	22.96936454	113.8966138	69.5	1	71.24
A0530	23.01465206	113.7680676	65.5	1	65.00
A0531	22.99522565	113.8000233	71	1	66.50
A0532	23.05866525	113.8321688	68	1	70.00
A0533	22.98744806	113.725147	68	1	70.00
A0534	22.99313225	113.7323716	67	1	70.00
A0535	23.02871297	113.8045789	66	1	66.50
A0536	22.97417485	113.7345883	67.5	1	70.00
A0537	22.94132785	113.6767951	66	1	71.00
A0538	22.84339687	113.2557574	66	0	73.32
A0539	23.06167985	113.8102199	67	1	70.00
A0540	23.17934885	112.8994031	70	1	74.27
A0541	23.17455266	113.0688513	75	1	71.48
A0542	23.17677756	112.8784023	70	1	74.68
A0543	23.16943397	112.9073857	70	1	73.97
A0544	23.2615299	113.0247518	75	1	73.89
A0545	23.16865186	112.8938126	70	1	74.24
A0546	23.16321812	112.9148997	70	1	73.73
A0547	23.07057951	112.8445408	75	1	74.55
A0548	22.90422292	112.9019826	75	1	73.85
A0549	23.0386685	113.2034172	70	1	69.71
A0550	23.20300498	113.1713931	69.5	1	67.50
A0551	23.17018893	112.9060636	70	1	74.01
A0552	22.87794292	113.2265578	70.5	1	72.20
A0553	23.18828575	113.2051584	68	1	68.00
A0554	23.1176526	113.1774208	66.5	1	70.27
A0555	23.14659839	113.1104485	67.5	1	70.58
A0556	23.12232763	113.1914852	67	1	70.56
A0557	23.16730584	112.902416	70	1	74.04
A0558	23.10435408	113.1991211	66.5	1	70.35
A0559	23.18585718	113.0927552	75	1	71.60
A0560	23.06677042	113.1421953	66.5	1	70.00

A0561	23.04403683	112.9214509	71.5	1	72.57
A0562	22.83661574	113.0000318	73	1	73.24
A0563	23.00707365	113.008964	73.5	1	70.43
A0564	22.95343786	112.9712874	75	1	71.76
A0565	23.07826539	113.0413813	70	1	69.94
A0566	23.11360001	113.0152889	73.5	1	70.98
A0567	23.0386685	113.2034172	70	1	69.71
A0568	23.0695963	113.156189	66	1	66.50
A0569	22.90311313	112.8923366	73	1	74.08
A0570	23.06369651	113.1355791	66.5	1	66.00
A0571	22.91055956	112.8841425	75	1	74.17
A0572	23.03863041	113.1704547	66.5	1	70.00
A0573	23.06573343	113.1321153	66.5	1	66.00
A0574	23.15666359	112.9049408	70	1	73.85
A0575	23.07059532	113.0576611	66	0	70.00
A0576	23.0723988	113.0896832	67.5	1	68.50
A0577	23.03791217	113.1563516	65.5	1	66.00
A0578	22.89624538	112.8883289	73.5	1	74.25
A0579	23.33555566	113.3075287	67.5	1	71.49
A0580	23.0723988	113.0896832	67.5	1	70.00
A0581	23.06817647	112.9707635	72.5	1	71.46
A0582	23.04372806	113.1470411	66	1	67.00
A0583	23.03964619	113.154622	65.5	1	65.00
A0584	22.98796007	113.0170859	70	1	70.37
A0585	23.0968614	113.041882	73	1	70.21
A0586	23.01479481	113.1651816	68	1	66.50
A0587	22.82452268	112.6832583	75	1	79.60
A0588	23.04112492	113.1373402	65.5	0	66.00
A0589	23.00022308	113.1080614	67	0	67.00
A0590	22.90119911	112.8850012	73	1	74.26
A0591	23.00675916	113.1290287	65	1	66.00
A0592	23.03480604	113.0880386	66	1	66.00
A0593	23.03489605	113.0901446	66	0	66.00
A0594	23.00573639	112.9707899	75	0	71.37
A0595	23.03905705	113.072597	66	0	68.50
A0596	22.94081692	113.0626781	72.5	0	70.22
A0597	23.0407653	113.1115737	65	0	66.00
A0598	23.0387396	113.1073721	65.5	0	67.00
A0599	23.00421017	113.0704232	66.5	0	70.00
A0600	23.0488615	113.0718864	66	0	66.50
A0601	23.03429331	113.0640067	66	0	68.50
A0602	23.03041581	113.121425	65.5	0	66.00

A0603	23.0208495	113.1393148	66	0	67.00
A0604	22.9908325	113.0723102	68	0	67.00
A0605	23.02630556	113.1403491	66	0	66.00
A0606	23.04334065	113.1056167	65.5	0	66.00
A0607	23.02991483	113.0576595	66	0	70.00
A0608	23.01281035	113.1202326	66	0	66.00
A0609	23.04516433	113.1210046	65.5	0	67.00
A0610	23.0024026	113.0651869	67	0	66.50
A0611	23.03004352	113.1298659	65.5	0	66.00
A0612	22.91452474	113.6760975	70	1	71.39
A0613	22.85615682	114.1539907	70	1	75.76
A0614	23.009444	113.0925428	66	0	66.00
A0615	22.97994563	114.0020847	67	1	72.96
A0616	23.0103936	113.1462973	66	0	67.00
A0617	23.00576024	113.1355665	65.5	0	66.00
A0618	22.94362798	113.6756826	65.5	1	70.98
A0619	23.08043298	113.9678196	70	1	72.25
A0620	22.93224969	113.9403339	69	1	72.27
A0621	22.79339959	114.1608936	70	1	74.74
A0622	22.80018488	113.7826897	67	1	72.96
A0623	22.97892268	113.956267	70	1	72.17
A0624	22.83110817	113.7801718	69	1	72.39
A0625	22.72831758	114.1967043	72	1	74.54
A0626	22.78108249	114.0574014	70	1	68.00
A0627	22.79633118	114.0632326	70	1	68.00
A0628	22.82104527	113.8090357	65	1	72.64
A0629	23.04883737	113.8557656	70	1	66.50
A0630	22.81973576	113.8093302	65	1	72.67
A0631	22.92277014	113.6689502	66	1	71.35
A0632	22.8387028	113.7066879	68.5	1	72.41
A0633	23.03128773	113.8334312	67.5	1	67.00
A0634	22.99889137	113.6206429	66.5	1	71.31
A0635	22.7920915	114.1017881	70	1	73.71
A0636	22.96921119	113.7638371	71.5	1	67.00
A0637	22.76781337	114.0421691	70	1	68.00
A0638	23.05029788	113.7566159	65.5	1	65.00
A0639	22.8188764	113.6774155	65.5	1	72.92
A0640	22.88245435	114.0068175	75	1	74.78
A0641	22.7406896	114.1664449	70	1	74.04
A0642	22.96547337	114.1542792	75	1	75.73
A0643	22.69796842	114.1787142	68	1	73.81
A0644	22.96920507	114.1741551	75	1	76.07

A0645	23.03504106	113.8561107	69	1	70.00
A0646	23.02874532	113.8311519	67.5	1	70.00
A0647	23.10214598	113.8030771	69.5	1	67.00
A0648	23.0230261	113.8416605	68	1	68.00
A0649	22.84421485	114.1744379	70	1	75.87
A0650	23.06377156	113.834619	68.5	1	69.00
A0651	23.0284963	113.848423	68	1	70.00
A0652	22.84485611	114.1728089	70	1	75.85
A0653	23.02631551	113.8422567	67.5	1	66.50
A0654	22.85760935	113.0531252	70.5	1	72.17
A0655	22.98796007	113.0170859	69	1	70.37
A0656	22.84851008	113.1870299	70.5	1	72.38
A0657	22.88459841	113.2182759	68	0	71.94
A0658	22.9138949	113.2240878	74	0	71.46
A0659	22.9652963	113.2460732	71.5	0	71.12
A0660	22.87852312	113.0553623	75	0	71.67
A0661	22.87852312	113.0553623	75	0	71.67
A0662	22.70990173	113.1682307	75	1	75.62
A0663	23.00974206	113.0855228	65.5	0	66.00
A0664	22.80363066	113.2523984	72.5	1	74.10
A0665	22.72036334	113.1550942	75	1	75.32
A0666	22.85727159	113.2677905	68	1	73.24
A0667	22.76789967	113.2924173	70	1	75.38
A0668	22.84690063	113.2779749	68	1	73.60
A0669	22.90953334	113.1809251	70	1	70.93
A0670	22.93017212	113.2183671	72.5	1	71.07
A0671	22.86636347	113.1383829	70	1	71.67
A0672	22.85737617	113.0534819	70.5	0	72.17
A0673	22.82250546	113.2418331	70	1	73.56
A0674	22.8821413	113.2179369	68.5	0	71.99
A0675	23.0386685	113.2034172	70	1	69.71
A0676	22.85271431	113.2565554	67.5	1	73.15
A0677	23.12824102	113.0139313	71	1	71.25
A0678	23.10103232	113.2116872	67	1	66.50
A0679	22.80574632	113.2755918	72	1	74.37
A0680	23.14631831	113.1050926	68	1	70.59
A0681	22.84139024	113.2631754	66	1	73.47
A0682	22.84799685	113.265445	66.5	1	73.37
A0683	22.82250546	113.2418331	70	1	73.56
A0684	22.8413378	113.2528321	66.5	1	73.32
A0685	22.81782912	113.7288782	72	1	72.69
A0686	22.91334578	113.6256759	75	1	72.02

A0687	23.10425851	113.8644239	72	1	70.62
A0688	23.25434329	113.1416733	72.5	1	71.87
A0689	22.80461472	113.7389577	72	1	72.90
A0690	23.22978218	113.0857182	75	1	72.71
A0691	23.12824102	113.0139313	75	1	71.25
A0692	23.15072393	113.1068267	68	1	70.69
A0693	23.04014697	113.1074724	65.5	0	66.00
A0694	23.03509621	113.215227	68	1	70.00
A0695	23.06712166	113.711025	72	1	70.00
A0696	22.96894263	113.9857532	68	1	72.73
A0697	22.8249516	114.1473047	75	1	75.06
A0698	23.02986674	113.8069493	66	1	70.00
A0699	23.06397425	113.1073552	66.5	0	67.00
A0700	22.92463744	113.6632245	72	1	71.39
A0701	22.94434236	113.6771283	65.5	1	70.95
A0702	22.84443218	114.1749839	75	1	75.88
A0703	22.78108249	114.0574014	69	1	68.00
A0704	22.91789735	114.0148092	75	1	73.59
A0705	23.08248182	113.8756202	68.5	1	70.63
A0706	22.78849837	114.1091621	75	1	73.76
A0707	23.10904412	113.824964	72	1	70.00
A0708	22.88864948	113.6687951	75	1	71.86
A0709	22.82311516	113.682687	65.5	1	72.81
A0710	23.02147069	113.9767303	72	1	72.37
A0711	22.84158065	113.9837534	75	1	73.69
A0712	22.80193697	113.7215484	72	1	72.99
A0713	23.09996972	113.6603676	68	1	70.72
A0714	22.82065293	113.6793236	66	1	72.88
A0715	23.00078427	113.9509232	72	1	71.96
A0716	22.74394534	114.1439999	75	1	73.63
A0717	22.8387028	113.7066879	72	1	72.41
A0718	22.70228568	114.1736681	75	1	73.74
A0719	22.8291523	113.7347647	72	1	72.46
A0720	23.02506148	114.1035973	75	1	74.67
A0721	22.74829892	114.1391543	75	1	73.60
A0722	22.87660886	113.675044	75	1	71.99
A0723	22.73591184	114.2757904	65.5	1	76.40
A0724	23.08248182	113.8756202	68.5	1	70.63
A0725	22.96547337	114.1542792	75	1	75.73
A0726	22.83586295	114.1128578	75	1	74.75
A0727	22.94565906	113.9505843	72	1	72.31
A0728	23.00561717	113.9381655	72	1	71.72

A0729	22.88898088	113.2210372	69.5	O	71.89
A0730	22.76676047	113.2629498	72.5	1	75.03
A0731	22.88479945	113.2589542	73	1	72.58
A0732	22.84425565	113.2588793	66	1	73.35
A0733	22.95119214	113.2670328	75	1	71.75
A0734	22.71129853	113.1614172	75	0	75.56
A0735	23.20445879	113.1633891	75	1	66.50
A0736	22.78360392	113.2915659	72	1	75.05
A0737	23.2604804	113.0236253	75	1	73.88
A0738	22.9870642	113.7689429	68	1	68.50
A0739	23.09554245	113.1847645	85	1	69.95
A0740	23.10350796	113.1836978	80	1	70.08
A0741	22.82065293	113.6793236	66	1	72.88
A0742	22.98965586	113.8897387	85	1	70.96
A0743	22.94132785	113.6767951	72	1	71.00
A0744	22.83399226	114.0968097	72	1	74.49
A0745	23.22113868	112.9248459	75	1	74.45
A0746	23.02429369	113.7913009	66.5	1	66.50
A0747	22.82065293	113.6793236	66	1	72.88
A0748	23.09621418	113.6572812	68	1	70.74
A0749	22.97049574	113.9193364	85	1	71.60
A0750	23.02941462	113.9955167	85	1	72.70
A0751	23.11759803	113.8836368	85	1	71.05
A0752	22.8184991	113.8067168	65	1	72.68
A0753	22.962945	113.6786409	66.5	1	70.69
A0754	23.06354452	113.7710582	65.5	1	66.00
A0755	22.80029657	113.7472574	72	1	72.96
A0756	23.0781566	113.8741143	67.5	1	70.58
A0757	23.05983215	113.5872324	75	1	71.81
A0758	23.12703337	113.0120037	72	1	71.26
A0759	23.04235254	113.7318371	67	1	70.00
A0760	22.80869811	114.1002264	85	1	74.01
A0761	23.10500981	113.8198157	72	1	68.00
A0762	23.05466654	113.7414039	66	1	65.00
A0763	23.05714801	113.663448	72	1	70.43
A0764	23.04229567	113.8077758	66	1	70.00
A0765	23.00371616	113.881268	85	1	70.73
A0766	23.00877683	113.7381856	72	1	70.00
A0767	22.93815956	113.8870409	70	1	71.43
A0768	23.05080297	113.7156716	72	1	67.00
A0769	23.0832246	113.7285264	66.5	1	66.50
A0770	23.05434269	113.7548907	65.5	1	65.00

A0771	22.91669305	114.0248715	72	1	73.76
A0772	23.02609965	113.746608	66.5	1	65.00
A0773	23.07328362	114.0234467	85	1	73.23
A0774	23.08636883	113.9505344	72	1	71.96
A0775	23.13871675	113.111198	85	1	70.38
A0776	22.98807885	114.0208579	66	1	73.26
A0777	23.04326407	112.9260813	85	1	72.46
A0778	23.061023	112.9221482	80	1	72.61
A0779	22.94081175	113.9453226	72	1	72.27
A0780	22.99587084	113.7621434	72	1	66.50
A0781	22.91334142	113.8483693	72	1	71.31
A0782	22.97333327	113.730314	67.5	1	70.00
A0783	23.11276083	112.9299114	70	1	72.80
A0784	23.12358718	113.1648355	68	1	70.25
A0785	23.05913863	113.7431308	66	1	65.00
A0786	23.06812838	113.0255363	80	1	70.17
A0787	23.09724421	113.7523577	71	1	70.50
A0788	23.19885366	113.1851605	85	1	70.00
A0789	23.09348295	113.1826215	85	1	69.87
A0790	23.23190692	113.0890874	85	1	72.75
A0791	23.06279119	113.0623784	85	0	69.50
A0792	23.06233415	113.1056841	66.5	1	65.00
A0793	23.10971032	113.1808405	85	1	70.15
A0794	23.22923111	113.0827188	85	1	72.71
A0795	23.11501909	112.9305637	70	1	72.80
A0796	23.11526775	113.1169399	85	1	69.79
A0797	22.80256864	113.2873979	85	1	74.60
A0798	23.06007494	112.9216899	85	1	72.62
A0799	23.15029122	113.1092646	67.5	1	70.67
A0800	23.11065649	113.1309687	85	1	69.69
A0801	23.0650595	113.0572779	72	1	70.00
A0802	22.93595157	113.8990852	80	1	71.62
A0803	23.11458393	113.8613142	72	1	70.68
A0804	22.90672977	113.8475874	72	1	71.41
A0805	22.9097662	114.0740398	80	1	75.92
A0806	23.11465325	113.8369654	72	1	70.35
A0807	23.03909825	113.7731777	65.5	1	65.00
A0808	22.84670401	114.1592865	85	1	75.66
A0809	23.11526775	113.1169399	85	1	69.79
A0810	22.86402965	113.1398401	72	1	71.73
A0811	22.96629587	113.0906029	72	0	66.50
A0812	22.96411796	113.0897185	72	0	66.50

A0813	22.95881496	113.0899638	72	0	70.00
A0814	22.88967401	113.081987	74	0	71.19
A0815	23.11275168	113.1253912	80	1	69.73
A0816	22.96420705	113.0957859	72	0	66.50
A0817	22.96049969	113.1071838	72	0	70.00
A0818	23.06367854	113.0570744	72	0	70.00
A0819	22.96532138	113.0925684	72	0	68.00
A0820	23.00958915	113.0856424	72	0	66.00
A0821	22.78982133	113.1641039	74	0	73.64
A0822	23.04181877	113.0883982	72	0	67.00
A0823	22.96817917	113.0978671	72	0	67.00
A0824	22.99456666	113.1409256	72	0	66.00
A0825	22.97888202	113.0166506	72	0	70.47
A0826	22.94563836	113.0900415	72	0	69.80
A0827	23.06667235	113.1548703	65.5	1	66.50
A0828	23.01280811	113.7603122	66	1	67.50
A0829	23.17903001	112.8761925	80	1	74.75
A0830	23.12341113	113.1517748	85	1	70.12
A0831	23.0440624	113.125784	65.5	0	66.00
A0832	22.8332624	113.2801516	72	1	73.89
A0833	22.81467597	113.8277312	85	1	72.83
A0834	23.06367398	113.7711884	65.5	1	65.00
A0835	23.12329431	113.1103823	85	1	70.00

```
问题二 神经网络模拟任务代码
x=x1sread('新方案的定价');
xx=x(:, 1:3);
flag=x(:, 4);
y=[];
sum(x(:,5))
for i=1:835
       if flag(i)==1
             y=[y;[1,0]];
       end
       if flag(i) == 0
               y=[y;[0,1]];
       end
end
XX = XX';
y=y';
```

```
net=newff(minmax(xx), [6, 2], {'tansig', 'purelin'}, 'trainlm');
net.trainparam.epochs=3000;
net. trainparam. goal=0.0001;
net=train(net, xx, y);
r=[x(:,1),x(:,2),x(:,5)];
r=r';
f=sim(net, r);
f=f';
s=[];
for i=1:835
        if f(i, 1) > f(i, 2)
                 s=[s;1];
        end
        if f(i, 1) < f(i, 2)
                 s=[s;0];
        end
end
count1=0;
count2=0;
for i=1:835
        if s(i)==1
                 count1=count1+1;
        end
        if s(i)==0
                 count2=count2+1;
        end
end
count1/835
```