EXERCICIOS HASHING

Considere a estrutura de armazenamento de dados a seguir, na resolução dos exercícios 1 e 2.

define Max
struct Aluno{
char nPUC[12];
char nome[80];
char email[30];
char fone[12];
} ;
Aluno tabela[Max];

- 1) Supondo que o número de matrícula de um aluno da PUCSP seja composto por 8 dígitos, qual o espaço de memória (em bytes) necessário para o armazenamento do array tabela, para todos os possíveis números de matrícula? Assinalar a alternativa correta e **justificar a resposta na folha.**
 - a) 134 bytes
 - b) $\approx 100 \text{ Mbyte}$
 - c) ≈ 1 Gbyte
 - d) ≈ 10 Gbyte
 - e) ≈ 100 Gbyte
- 2) Se o cadastro de alunos tem não mais do que 10000 alunos, qual o espaço de memória (em bytes) necessário para o armazenamento do array tabela? **Justificar a resposta na folha pautada.**

Resposta:

3) Para cada função hash definida a seguir, determine os endereços obtidos para os valores das chaves (nesta ordem) 44, 121, 51, 68, 46 e complete a tabela de espalhamento:

0	1	2	3	4	5	6	7	8	9	10

4) Considere a estrutura de armazenamento de dados de uma tabela Hashing dada a seguir e preencha com os dados referentes à inserção das chaves 71, 44, 60, 46, 49, 51 nesta ordem. Considere a função hash h(k) = (k MOD 7) +1 e o tratamento de colisões por encadeamento com tabela de descritores.

	chave	next	ant
1			
2			
3			
4			
5			
6			
7			

	prim	ult
1		
2		
3		
4		
5		
6		
7		