I/WE CLAIM:

1

5

Œ١

L)

Ē þ. N 14

上 上 日 日 日 日

- A method of engine starting in a gas turbine engine 2 1. 3 comprising:
- rotating the engine to provide an air flow into a 4

combustor of the engine;

- injecting fuel into the combustor at a varying rate 6 until the engine is lighted-off, the varying rate 7 being a function of time and represented by a curve 8 9 having at least one high frequency with respect to a light-off time, representing instant changes of the m 11 a light-off for intersecting zone while **0**12 reducing a quantity of fuel injected into the combustor; and then, 13
 - injecting fuel into the combustor continuously accelerate the engine to a self-sustaining operation condition.
 - claimed in claim 1 wherein the 17 as comprises a low frequency with respect to the light-off 18 time, representing a change trend of the varying rate. 19
 - A method as claimed in claim 2 wherein the curve has an 20 21 increasing trend and comprises an oscillatory profile.
 - 22 A method as claimed in claim 2 wherein the curve has an increasing trend and comprises a series of spikes. 23

- 1 5. A method as claimed in claim 2 wherein the curve has an
- 2 increasing trend and comprises a squared-off wave
- 3 profile.
- 4 6. A method as claimed in claim 2 wherein the curve has an
- 5 increasing trend and comprises a step profile.
- 6 7. A method as claimed in claim 2 wherein the engine is
- 7 rotated at a varying speed as a function of time.
- 8 8. A method as claimed in claim 6 wherein the engine is
 - 9 rotated at an increasing speed.
- 10 9. A method as claimed in claim 2 further comprising
- 4 11 introduction of a predetermined first fuel flow level
 - into the combustor prior to fuel injection at the
 - 13 varying rate.
 - 14 10. A method as claimed in claim 9 further comprising:
 - 15 selecting a minimum engine speed to begin the
 - 16 introduction of the predetermined first fuel flow level
 - for stating the engine under a variety of altitude and
 - 18 temperature conditions.
 - 19 11. A method as claimed in claim 10 further comprising:
 - sensing a temperature of the fuel to be injected into
 - 21 the combustor;
 - 22 sensing a temperature of the air flow to be provided
 - into the combustor;
 - sensing a forward flight velocity ram quantity;

 sensing an ambient air pressure;

1

TOOLEGES LEILAGI

2		sensing the varying speed of the engine; and
3		processing the sensed data to determine the minimum
4		engine speed for the introduction of the
5		predetermined first fuel flow level.
6	12.	A method as claimed in claim 2 further comprising:
7		sensing a temperature of an exhaust gas flow to
8		determine if the light-off occurs.
9	13.	A method as claimed in claim 2 further comprising:
10		biasing a profile of the curve representing the varying
11		fuel injection rate according to changes in the altitude
12		and temperature conditions.
13	14.	A method as claimed in claim 2 further comprising:
14		changing the predetermined first fuel flow level
15		according to changes in the altitude and temperature
16		conditions.
17	15.	A method as claimed in claim 11 further comprising:
18		measuring a light-off time taken from the beginning of
19		the introduction of the predetermined first fuel
20		flow level, to the occurrence of the light-off; and
21		storing the measured light-off time and the sensed data
22		in a database for reference in a future engine
23		starting process when a search shows no data
24		associated with an altitude and temperature
25		condition, similar to a current altitude and

1		temperature condition generated in a previous
2		light-off process and stored in the database.
3	16.	A method as claimed in claim 15 further comprising:
4		changing a criterion of the minimum engine speed and the
5		predetermined first fuel flow level to reduce the
6		light-off time according to the stored data
7		associated with the similar altitude and temperature
. 8		condition, when such data is located in the
₩ 9 □ 10		database; and
🖺 10		storing data regarding the changes and the light-off
(1) (1)		time currently measured, and deleting the previously
g 12		stored data of the minimum engine speed and the
<u>1</u> 3		predetermined first fuel flow level and the
- 14		previously stored light-off time associated with the
∏ ≟ 15		similar altitude and temperature condition, when the
学 16		current light-off time is shorter than the
<u>□</u> - 17		previously stored light-off time.

the

18