$\vec{x}_h(t) = C_1^* \vec{r}_1 \cos(\omega_1 t) + C_2^* \vec{r}_1 \sin(\omega_1 t) + C_3^* \vec{r}_2 \cos(\omega_2 t) + C_4^* \vec{r}_2 \sin(\omega_2 t)$ $= (C_1 \cos(\omega_1 t) + C_2 \sin(\omega_1 t)) \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$

Die homogene Lösung ist in reeller Darstellung

$$+ \left(C_3\cos(\omega_2t) + C_4\sin(\omega_2t)\right) \begin{bmatrix} 1 \\ -\frac{1}{4} \end{bmatrix}$$
 (5.38) wobei hier Integrationskonstante und Skalierungskonstante zusammengefasst wurden: $C_1^*s_1 = C_1$, $C_2^*s_1 = C_2$, $C_3^*s_2 = C_2$, $C_4^*s_2 = C_4$. Die Eigenvektoren \vec{r}_1 und \vec{r}_2 kennzeichnen die Eigenschwingungsformen:

• 1. Eigenschwingungsform bei $\omega_1 = \sqrt{\frac{c}{2m}}$. Die Bewegung beider Massen ist gleichphasig, da die Vorzeichen der Komponenten von \vec{r}_1 gleich sind

• 2. Eigenschwingungsform bei $\omega_2 = \sqrt{\frac{5c}{4m}}$. Die Bewegung beider Massen ist gegenphasig, da die Vorzeichen der Komponenten von \vec{r}_2 verschieden sind Die partikuläre Lösung folgt direkt nach Gl. (5.22)

 $\vec{x}_p(t) = (K - \Omega^2 M)^{-1} \vec{F} = \begin{bmatrix} c - m\Omega^2 + & -c \\ -c & 6c - 8m\Omega^2 \end{bmatrix}^{-1} \begin{bmatrix} F_1 \\ 0 \end{bmatrix} \cos(\Omega t) \quad (5.39)$ $= \frac{F_1}{8m^2\Omega^4 - 14cm\Omega^2 + 5c^2} \begin{bmatrix} 6c - 8m\Omega^2 \\ c \end{bmatrix} \cos(\Omega t)$ (5.40)

Die Konstanten C_i , $i \in \{1, ..., 4\}$ werden durch Anpassung an die Anfangsbedin-

Die Konstanten
$$C_i$$
, $i \in \{1, ..., 4\}$ werden durch Anpassung an die Anfangsbedingungen zu
$$\begin{bmatrix} C_1 \\ C_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{4}{3} \\ \frac{2}{3} & -\frac{4}{3} \end{bmatrix} [\vec{x}_0 - \vec{p}] \tag{5.41}$$

 $= \begin{bmatrix} \frac{1}{3}(x_{01} + 4x_{02}) \\ \frac{1}{2}(2x_{01} - 4x_{02}) \end{bmatrix}$ $-\frac{F_1}{8m^2\Omega^4 - 14cm\Omega^2 + 5c^2} \begin{bmatrix} \frac{1}{3}(6c - 8m\Omega^2) + \frac{4}{3}c\\ \frac{2}{3}(6c - 8m\Omega^2) - \frac{4}{3}c \end{bmatrix}$

(5.42)

(5.37)