MA 1101: Mathematics I

Problem 1.

Find limit points of $S \subseteq \mathbb{R}$, where

- (i) S is a finite set.
- (ii) $S := (0, \infty)$.
- (iii) $S := [1, 2) \cup \{3\}.$
- (iv) $S := [1, 2) \cup (2, 3)$.
- (v) $S := \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}.$
- (vi) $S := \{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\}.$

Problem 2.

Use the (ϵ, δ) -definition to prove the existence or non-existence of the following limits.

- (i) $f: \mathbb{R} \to \mathbb{R}$, f(x) := [x], $\lim_{x \to 0} f(x)$.
- (ii) $f: \mathbb{R} \to \mathbb{R}$, $f(x) := [x] \left[\frac{x}{3}\right]$, $\lim_{x \to 0} f(x)$.
- (iii) $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}$, $f(x) := \frac{x^3 8}{x 2}$, $\lim_{x \to 2} f(x)$.
- (iv) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) := x \sin \frac{1}{x}$, $\lim_{x \to 0} f(x)$.
- (v) $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, f(x) := \frac{x}{|x|}, \lim_{x \to 0} f(x).$

Problem 3.

Let $\emptyset \neq D \subset \mathbb{R}$, let $f: D \to \mathbb{R}$ and let $a \in \mathbb{R}$ be a limit point of D. Let us suppose that $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ exist and we write

$$L := \lim_{x \to a} f(x), \ M := \lim_{x \to a} g(x).$$

Show that

- (i) $\lim_{x\to a} (f(x) + g(x)) = L + M$.
- (ii) For all $\alpha \in \mathbb{R}$, $\lim_{x \to a} (\alpha f(x)) = \alpha L$.
- (iii) $\lim_{x\to a} f(x)g(x) = LM$.
- (iv) If $M \neq 0$,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}.$$