Proximity Measure for Binary Attributes

A contingency table for binary data

		Obj	ect j					
		1	0	sum				
Object i	1	q	r	q+r				e .
Object i	0	s	t	s+t	ารายะราชาชา			0 พราทับ0 , ไม่ใช่ = ไม่ใช่
	sum	q + s	r+t	p m	•	7/)	r+s	1 31.4 = 151.42
• Dista	ince mea	sure for	symmet	ric binary	y variables	$d(i,j) = \frac{1}{q}$	+r+s+t	`)

- Distance measure for asymmetric binary variables: $d(i, j) = \frac{r+s}{q+r+s}$ Jaccard coefficient (similarity)
- Jaccard coefficient (similarity measure for $sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$ asymmetric binary variables):
- Note: Jaccard coefficient is the same as "coherence" (a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Example: Dissimilarity between Asymmetric Binary Variables

Jim

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M 1	Y 1	N O	P 1	N C	N 0	N o
Mary	F 0	Y 1	N 0	P 1	N O	P	N o
Jim	M 1	Y 1	P 1	Nυ	N O	N 0	N o

- Gender is a symmetric attribute (not counted in)
- The remaining attributes are asymmetric binary
- Let the values Y and P be 1, and the value N be 0
- Distance: $d(i, j) = \frac{r+s}{q+r+s}$

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$

$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

(#)

Proximity Measure for Categorical Attributes

- Categorical data, also called nominal attributes have any
 - Example: Color (red, yellow, blue, green), profession, etc.
- Method 1: Simple matching
 - m: # of matches, p: total # of variables $d(i,j) = \frac{p-m}{p}$
- Method 2: Use a large number of binary attributes
 - Creating a new binary attribute for each of the *M* nominal states

Ordinal Variables

- An ordinal variable can be discrete or continuous (3) 8002
- Order is important, e.g., rank (e.g., freshman, sophomore, junior, senior) (12,3,4)
- Can be treated like interval-scaled
- Can be treated like interval-scaled Replace an ordinal variable value by its rank: $r_{if} \in \{1,...,M_f\}$
 - Map the range of each variable onto [0, 1] by replacing *i*-th object in $z_{if} = \frac{r_{if} - 1}{M_c - 1}$ fresh man $z = \frac{1 - 1}{n - 1} = \frac{0}{3} = 0$ the *f*-th variable by
 - Example: freshman: 0; sophomore: 1/3; junior: 2/3; senior 1
 - Then distance: d(freshman, senior) = 1, d(junior, senior) = 1/3
 - Compute the dissimilarity using methods for interval-scaled variables $\left|\frac{1}{3}-\frac{1}{3}\right|=\frac{1}{3}$