ESTRUCTURAS ALGEBRAICAS. Problemas. 2 de Noviembre.

Ejercicio 11. Hoja 3. Determinad la clase de isomorfía de los subgrupos de Sylow de S₄.

Solución:

Recordamos que todos los p-subgrupos de Sylow son conjugados entre sí y, por tanto, isomorfos. Se tiene que $|S_4| = 4! = 2^3 \cdot 3$. Los 2-subgrupos de Sylow tienen orden 8. Como vimos en el ejercicio 2 de esta hoja, D_8 es un grupo de orden 8 isomorfo a un subgrupo de S_4 . Por tanto, la clase de isomorfía de los 2-subgrupos de Sylow es D_8 . Por otro lado, los 3-subgrupos de Sylow tienen orden 3, por lo que, son cíclicos, con clase de isomorfía C_3 .

Ejercicio 12. Hoja 3. Sea $|G| = p^a q^b$ con $p \neq q$ número primos. Demostrad que G = PQ donde $P \in \operatorname{Syl}_p(G) \neq Q \in \operatorname{Syl}_q(G)$.

Solución:

Se tiene que $|P|=p^a$ y $|Q|=q^b$. Observamos que $P\cap Q$ es un subgrupo de P y de Q, por lo que $|P\cap Q|$ divide a p y a q. Pero (p,q)=1, por tanto, $P\cap Q=\{1\}$. Entonces el subconjunto $PQ\subseteq G$ tiene cardinal

$$|PQ| = \frac{|P||Q|}{|P \cap Q|} = |P||Q| = p^a q^b = |G|.$$

Por tanto, concluimos que G = PQ.

Ejercicio 13. Hoja 3. Sea G un grupo finito, p un número primo y $P \in \operatorname{Syl}_p(G)$. Demostrad que si P es el único p-subgrupo de Sylow de G y $f: G \to G$ es un homomorfismo, entonces $f(P) \leq P$. Concluid que si $P \subseteq G$ entonces P es característico en G.

Solución:

Supongamos que P es el único p-subgrupo de Sylow de G. Sabemos que f(P) es un subgrupo de G y, como consecuencia del Teorema de Lagrange, se tiene que |f(P)| divide a |P|. Por tanto, f(P) es un p-subgrupo de G. Sabemos que todo p-subgrupo de G está contenido en algún p-subgrupo de Sylow, como P es el único, necesariamente se tiene que $f(P) \leq P$.

Si P es normal en G, entonces es el único p-subgrupo de Sylow de G. Para todo $\alpha \in \operatorname{Aut}(G)$ se tiene que $\alpha(P) \leq P$. Por tanto, P es característico en G.

Ejercicio 14. Hoja 3. Sea G un grupo finito, p un número primo y $H \subseteq G$ con $|H| = p^k$. Demostrad que $H \subseteq P$ para todo P, p-subgrupo de Sylow de G.

Solución:

Sea H un p-subgrupo normal de G. Sabemos que H está contenido en algún p-subgrupo de Sylow P. Por otro lado, sabemos que el resto de p-subgrupos de Sylow son congujados de P, es decir, son de la forma gPg^{-1} para algún $g \in G$. Como $H \leq P$, se tiene que $gHg^{-1} \leq gPg^{-1}$. Pero H es normal, por lo que, $gHg^{-1} = H$ para todo $g \in G$. Así, concluimos que $H \leq gPg^{-1}$, es decir, H está contenido en todo p-subgrupo de Sylow.

Ejercicio 15. Hoja 3. Si $H \leq G$ son grupos finitos y $Q \in \operatorname{Syl}_p(H)$, probad que existe $P \in \operatorname{Syl}_p(G)$ tal que $P \cap H = Q$. Concluid que $\nu_p(H) \leq \nu_p(G)$.

Solución:

Sea $Q \in \operatorname{Syl}_p(H)$. Tenemos que $Q \leq H \leq G$ es un p-subgrupo de G. Por tanto, existe $P \in \operatorname{Syl}_p(G)$ tal que $Q \leq P$. Observamos que $Q \leq P \cap H \leq H$ y $P \cap H \leq P$, por lo que, $P \cap H$ es un p-subgrupo de H que contiene a Q. Pero Q tiene el mayor orden posible para un p-subgrupo, por tanto, $P \cap H = Q$.

Esto nos dice que por cada p-subgrupo de Sylow de H existe al menos un p-subgrupo de Sylow distinto en G. Si existieran $Q, Q' \in \operatorname{Syl}_p(H)$ y $P \in \operatorname{Syl}_p(G)$ tal que $P \cap H = Q$ y $P \cap H = Q'$, entonces Q = Q'. Por tanto, $\nu_p(H) \leq \nu_p(G)$.

Ejercicio 16. Hoja 3. Sea G un grupo finito. Si $H \leq G$ tiene índice 2 en G, probad que $\nu_p(G) = \nu_p(H)$ para cada primo p impar. ¿Se satisface la misma igualdad si p=2?

Solución:

Supongamos que [G:H]=2, entonces H es normal en G y |G|=2|H|. Si p es impar, entonces la máxima potencia que de p que divide a |G| es la misma que la que divide a |H|. Por tanto, los p-subgrupos de Sylow de G y H tienen el mismo orden. En particular, como todo subgrupo de H es un subgrupo de G, se tiene que todo p-subgrupo de Sylow de H es un p-subgrupo de Sylow de G. De modo que, $\mathrm{Syl}_p(H)\subseteq\mathrm{Syl}_p(G)$. Veamos que, de hecho, es una igualdad. Sea $P\in\mathrm{Syl}_p(G)$. Como todos los p-subgrupos de Sylow de G son conjugados entre sí, para cada $Q\in\mathrm{Syl}_p(H)\subseteq\mathrm{Syl}_p(G)$ existe $g\in G$ tal que $P=gQg^{-1}$. Por lo que

$$P = gQg^{-1} \le gHg^{-1} = H,$$

por ser H normal en G. Por tanto, $P \in \mathrm{Syl}_p(H)$. Es decir, $\mathrm{Syl}_p(H) = \mathrm{Syl}_p(G)$ y concluimos que $\nu_p(G) = \nu_p(H)$.

El resultado no es cierto para p=2. Para encontrar un ejemplo, lo primero que observamos es que en un grupo abeliano G, todos los subgrupos son normales. Por tanto, existe un único p-subgrupo de Sylow de G para cada primo p. Además todo subgrupo de G es abeliano, por lo que, ocurre lo mismo con sus p-subgrupos de Sylow. Por tanto, para nuestro ejemplo, necesitaremos un grupo no abeliano.

Además, para buscar un ejemplo en que los 2-subgrupos de Sylow de G y de $H \leq G$ no sean triviales, es necesario que 2 divida a |H|, por lo que, $G=2^2$ m para algún entero m. Por otro lado, si m es una potencia de 2, entonces los 2-subgrupos de Sylow de G y H coinciden con G y H respectivamente. Así que, debemos tomar m divisible por algún primo p impar.

Consideramos el grupo de orden 12 $G = D_{12} = \langle r, s \rangle$ y el subgrupo $H = \langle r \rangle$ de orden 6. Así, se tiene que [G:H]=2 y 2 divide a |H|. Como H es cíclico, todos sus subgrupos son normales. Por tanto, existe un único 2-subgrupo de Sylow que tendrá orden 2, es decir, $\nu_2(H)=1$. Sin embargo, vamos a ver que $\nu_2(G)=3$. Los 2-subgrupos de Sylow de G tienen orden 4. Sabemos que en D_{12} no hay elementos de orden 4. Por tanto, estos subgrupos contendrán el elemento neutro y tres elementos de orden 2. Ahora, debemos ver que pares de elementos generan estos subgrupos. Si escogemos los elementos de orden dos, sr^i y sr^j , con $i \neq j$, tenemos que

$$sr^{i}sr^{j} = s^{2}r^{j-i} = r^{j-i}$$
 y $sr^{j}sr^{i} = r^{i-j}$.

Por lo que, estos generan un grupo de orden 4 si y solo si $r^{i-j} = r^{j-i}$. Pero esto sucede solo si $r^{i-j} = r^3$. De esta forma, los únicos 2-subgrupos de Sylow son

$$\langle s, sr^3 \rangle$$
, $\langle sr^2, sr^5 \rangle$ y $\langle sr, sr^4 \rangle$.

Concluimos que $\nu_2(H) = 1 < 3 = \nu_2(G)$.

Ejercicio 17. Hoja 3. (Argumento de Frattini) Sea G un grupo finito y $N \leq G$. Si $P \in \text{Syl}_p(N)$, probad que $G = N\mathbf{N}_G(P)$.

Solución:

Sea $P \in \operatorname{Syl}_P(N)$. Como N es normal en G, para cada $g \in G$, se tiene que $gPg^{-1} \subseteq gNg^{-1} = N$. Por lo que, $gPg^{-1} \in \operatorname{Syl}_P(N)$. Sabemos que todo p-subgrupo de Sylow de N es de la forma nPn^{-1} , para algún $n \in N$. Entonces tenemos que para cada $g \in G$, existe $n \in N$ tal que $gPg^{-1} = nPn^{-1}$, es decir, $n^{-1}gP(n^{-1}g)^{-1} = P$. Por tanto, se tiene que $n^{-1}g \in \mathbf{N}_G(P)$, equivalentemente, $g \in \mathbf{N}_G(P)N$. Pero $g \in G$ es arbitrario, por lo que $G = \mathbf{N}_G(P)N$.

Ejercicio 18. Hoja 3. Si |G| = pq donde p > q son números primos, demostrad que G tiene un único p-subgrupo de Sylow. ¿Cuántos elementos de orden p tiene G? ¿Y de orden q?

Solución:

El teorema de Sylow nos dice que $\nu_p = 1 + kp$ para algún $k \ge 0$ y que ν_p divide a q. Como q < p y $\nu_p \le q$, necesariamente se tiene k = 0 y $\nu_p = 1$. Es decir, G tiene un único p-subgrupo de Sylow.

Todo elemento de orden p genera un p-subgrupo de Sylow de G. Como G solo tiene un p-subgrupo de Sylow, entonces todos los elementos de orden p están contenidos en ese subgrupo. Por el Teorema de Lagrange, el orden de cualquier elemento divide al orden del grupo. Por tanto, todos los elementos no triviales del p-subgrupo de Sylow tienen orden p. De manera que, existen p-1 elementos de orden p en G.

Si G es abeliano, entonces $\nu_q=1$. Repitiendo el argumento anterior, G tiene q-1 elementos de orden q. Si G no es abeliano, entonces no contiene ningún elemento de orden pq, si lo tuviera sería cíclico. Entonces, por el Teorema de Lagrange, sabemos que los posibles órdenes de los elementos de G son 1, p y q. Como existen pq elementos en total, donde 1 elemento tiene orden 1 y p-1 elementos tienen orden p, concluimos que pq-1-(p-1)=pq-p=p(q-1) elementos tienen orden q.

Ejercicio 19. Hoja 3. Si $|G| = p^2q$ donde $p \neq q$ son primos, demostrad que G no es simple.

Solución:

(p>q) Por el Teorema de Sylow, tenemos que ν_p divide a q y $\nu_p=1+kp$ para algún $k\geq 0$. Entonces $\nu_p\leq q< p$. Por lo que, k=0 y $\nu_p=1$. De esta forma, G tiene un único p-subgrupo de Sylow que es normal.

(p < q) De nuevo, por el Teorema de Sylow, tenemos que ν_q divide a p^2 y $\nu_q = 1 + tq$ para algún $t \ge 0$. Si $\nu_q > 1$, entonces $\nu_q > q > p$. Por lo que, $\nu_q = p^2$. Entonces tendríamos que $tq = p^2 - 1 = (p-1)(p+1)$. Como q es primo, necesariamente q divide a p-1 o a p+1. Pero q > p, por lo que, q divide a p+1 y solo es posible si q = p+1. Esto sucede solo para p = 2, q = 3 y |G| = 12.

Veamos que todo subgrupo de orden 12 tiene algún subgrupo normal. Por los Teoremas de Sylow, se tiene que $\nu_2 \in \{1,3\}$ y $\nu_3 \in \{1,4\}$. Si alguno de ellos es igual a 1, entonces tiene un subgrupo normal. Supongamos que $\nu_2 = 3$ y $\nu_3 = 4$. Entonces G tiene 8 elementos de orden 3, dejando 4 elementos de orden. Esto da para formar un único grupo de orden 4, dando lugar a una contradicción. Por tanto, G tiene algún subgrupo normal.

Ejercicio 20. Hoja 3. Demostrad que todo grupo de orden 175 es abeliano.

Solución:

Sea G un grupo de orden 175. Se tiene $|G| = 175 = 5^2 \cdot 7$. Por el Teorema de Sylow, tenemos que

$$\nu_5 \equiv 1 \mod 5, \quad \nu_5 | 7, \qquad \nu_7 \equiv 1 \mod 7, \quad \nu_7 | 25.$$

Por tanto, $\nu_5 = 1$ y $\nu_7 = 1$, es decir, $\mathrm{Syl}_5(G) = \{P\}$ y $\mathrm{Syl}_7(G) = \{Q\}$. Entonces los subgrupos P y Q son normales en G. Además, $|P \cap Q| = \{1\}$, puesto que $|P \cap Q|$ es divisor común de |P| = 25 y |Q| = 7. El subgrupo PQ tiene orden

$$|PQ| = \frac{|P||Q|}{|P \cap Q|} = \frac{25 \cdot 7}{1} = 175.$$

Por tanto, PQ = G y se tiene que $G \cong P \times Q$. Finalmente, como $|P| = 5^2$, sabemos que P es abeliano. Por otro lado, como |Q| = 7, sabemos que Q es cíclico y en consecuencia abeliano. Por tanto, G es producto de dos grupos abelianos y concluimos que G es abeliano.