Understanding the impacts of uncertainty on optimal policies

Nicola Botta 2 1

²Potsdam Institute for Climate Impact Research

¹Thanks to C. Ionescu, P. Jansson and to the Cartesian Seminar people.

Outline

- Results
- Their context
- Method
- A stylized emission problem
- Method (cont'd)

ESD 2017-86, short summary:

Understanding the impacts of uncertainty on optimal policies → Their context

► Global GHG emissions have to be reduced to avoid dangerous impacts of climate change.

- ► Global GHG emissions have to be reduced to avoid dangerous impacts of climate change.
- Reducing emissions implies different costs and benefits for different countries.

- ► Global GHG emissions have to be reduced to avoid dangerous impacts of climate change.
- Reducing emissions implies different costs and benefits for different countries.
- ► The highest global benefits are obtained if most countries reduce emissions by certain "optimal" amounts.

- ► Global GHG emissions have to be reduced to avoid dangerous impacts of climate change.
- Reducing emissions implies different costs and benefits for different countries.
- ► The highest global benefits are obtained if most countries reduce emissions by certain "optimal" amounts.
- ▶ In this situation most countries face a free-ride option!

- ► Global GHG emissions have to be reduced to avoid dangerous impacts of climate change.
- Reducing emissions implies different costs and benefits for different countries.
- ► The highest global benefits are obtained if most countries reduce emissions by certain "optimal" amounts.
- In this situation most countries face a free-ride option!

Understanding the impacts of uncertainty on optimal policies -> Their context

1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?

1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?

- 1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?
 - ► Temporal dimension, sequential decisions.

- 1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?
 - ► Temporal dimension, sequential decisions.
 - One decision maker.

- 1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?
 - ► Temporal dimension, sequential decisions.
 - One decision maker.
 - ► The consequences of decisions are uncertain.

- 1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?
 - ► Temporal dimension, sequential decisions.
 - One decision maker.
 - ▶ The consequences of decisions are uncertain.
 - → control theory, SDP, optimal policies under uncertainty.
- 2 How to make sure that (fair, agreed, optimal, etc.) emission reduction quotas are actually implemented?

- 1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?
 - ► Temporal dimension, sequential decisions.
 - One decision maker.
 - ▶ The consequences of decisions are uncertain.
 - → control theory, SDP, optimal policies under uncertainty.
- 2 How to make sure that (fair, agreed, optimal, etc.) emission reduction quotas are actually implemented?
 - Sequential and simultaneous decisions.

- 1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?
 - Temporal dimension, sequential decisions.
 - One decision maker.
 - ▶ The consequences of decisions are uncertain.
 - → control theory, SDP, optimal policies under uncertainty.
- 2 How to make sure that (fair, agreed, optimal, etc.) emission reduction quotas are actually implemented?
 - Sequential and simultaneous decisions.
 - More than one decision maker.

- 1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?
 - ► Temporal dimension, sequential decisions.
 - One decision maker.
 - ▶ The consequences of decisions are uncertain.
 - → control theory, SDP, optimal policies under uncertainty.
- 2 How to make sure that (fair, agreed, optimal, etc.) emission reduction quotas are actually implemented?
 - Sequential and simultaneous decisions.
 - More than one decision maker.
 - Competition, free-riding options, uncertainty.

- 1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?
 - ► Temporal dimension, sequential decisions.
 - One decision maker.
 - ▶ The consequences of decisions are uncertain.
 - → control theory, SDP, optimal policies under uncertainty.
- 2 How to make sure that (fair, agreed, optimal, etc.) emission reduction quotas are actually implemented?
 - Sequential and simultaneous decisions.
 - More than one decision maker.
 - Competition, free-riding options, uncertainty.
 - ▶ ⇒ game theory, mechanism design, cooperation dynamics.

- 1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?
 - ► Temporal dimension, sequential decisions.
 - One decision maker.
 - ▶ The consequences of decisions are uncertain.
 - → control theory, SDP, optimal policies under uncertainty.
- 2 How to make sure that (fair, agreed, optimal, etc.) emission reduction quotas are actually implemented?
 - Sequential and simultaneous decisions.
 - More than one decision maker.
 - Competition, free-riding options, uncertainty.
 - ▶ ⇒ game theory, mechanism design, cooperation dynamics.

- 1 When and by how much global GHG emissions should be reduced to avoid potentially dangerous future states?
 - Temporal dimension, sequential decisions.
 - One decision maker.
 - ▶ The consequences of decisions are uncertain.
 - → control theory, SDP, optimal policies under uncertainty.
- 2 How to make sure that (fair, agreed, optimal, etc.) emission reduction quotas are actually implemented?
 - Sequential and simultaneous decisions.
 - More than one decision maker.
 - Competition, free-riding options, uncertainty.
 - ▶ ⇒ game theory, mechanism design, cooperation dynamics.

Understanding the impacts of uncertainty on optimal policies \rightarrow Their context

Focus on 1: when and by how much to reduce emissions?

Understanding the impacts of uncertainty on optimal policies \rightarrow Their context

Decision processes

Decision processes

► Decisions on emission controls (reduce, increase, keep constant) are taken at subsequent points in time and ...

Decision processes

- ▶ Decisions on emission controls (reduce, increase, keep constant) are taken at subsequent points in time and ...
- ... on the basis of observable current states (economic growth, cumulated emissions, current emission levels, etc.)

Decision processes

- ▶ Decisions on emission controls (reduce, increase, keep constant) are taken at subsequent points in time and . . .
- ... on the basis of observable current states (economic growth, cumulated emissions, current emission levels, etc.)
- Taking a control in a given state yields a transition to a next state and associated reward (costs, benefits, damages) but . . .

Transition uncertainty, decision problem

...the outcome is not certain: one knows which next states can happen but not which one will happen!

Transition uncertainty, decision problem

...the outcome is not certain: one knows which next states can happen but not which one will happen!

Under this uncertainty, the decision maker seeks emission controls that maximise a sum of rewards over a certain number of decision steps.

Transition uncertainty, decision problem

▶ ... the outcome is not certain: one knows which next states can happen but not which one will happen!

Under this uncertainty, the decision maker seeks emission controls that maximise a sum of rewards over a certain number of decision steps. Understanding the impacts of uncertainty on optimal policies $\ \ \rightarrow \ \$ Their context

Sources of uncertainty

Sources of uncertainty

► Decisions to increase/reduce emissions might actually not be implemented.

- Decisions to increase/reduce emissions might actually not be implemented.
- Efficient technologies for lowering the costs of reducing emissions may or may not become available.

- Decisions to increase/reduce emissions might actually not be implemented.
- ► Efficient technologies for lowering the costs of reducing emissions may or may not become available.
- Exceeding a certain threshold of cumulated emissions may or may not yield potentially dangerous next states.

- Decisions to increase/reduce emissions might actually not be implemented.
- Efficient technologies for lowering the costs of reducing emissions may or may not become available.
- Exceeding a certain threshold of cumulated emissions may or may not yield potentially dangerous next states.
- What is the effect of these uncertainties on optimal emission policies?

- Decisions to increase/reduce emissions might actually not be implemented.
- Efficient technologies for lowering the costs of reducing emissions may or may not become available.
- Exceeding a certain threshold of cumulated emissions may or may not yield potentially dangerous next states.
- What is the effect of these uncertainties on optimal emission policies?

Understanding the impacts of uncertainty on optimal policies \rightarrow Their context

 Informally, policies are functions that associates controls to states

- Informally, policies are functions that associates controls to states
- ► A policy for a given decision step is a decision rule: it tells which control to take at that step for every state

- Informally, policies are functions that associates controls to states
- ► A policy for a given decision step is a decision rule: it tells which control to take at that step for every state
- Two sequences of n policies can be compared for a given state x by computing their respective sums of rewards for n decision steps starting from x

- Informally, policies are functions that associates controls to states
- ► A policy for a given decision step is a decision rule: it tells which control to take at that step for every state
- ► Two sequences of n policies can be compared for a given state x by computing their respective sums of rewards for n decision steps starting from x
- ▶ Optimal sequences of policies are sequences that are at least as good as any other sequence for any x

- Informally, policies are functions that associates controls to states
- ► A policy for a given decision step is a decision rule: it tells which control to take at that step for every state
- Two sequences of n policies can be compared for a given state x by computing their respective sums of rewards for n decision steps starting from x
- ▶ Optimal sequences of policies are sequences that are at least as good as any other sequence for any x

- Informally, policies are functions that associates controls to states
- ► A policy for a given decision step is a decision rule: it tells which control to take at that step for every state
- Two sequences of n policies can be compared for a given state x by computing their respective sums of rewards for n decision steps starting from x
- ▶ Optimal sequences of policies are sequences that are at least as good as any other sequence for any x

Method

Understanding the impacts of uncertainty on optimal policies \rightarrow Method

▶ A SDP can be specified in terms of four functions:

▶ A SDP can be specified in terms of four functions:

State : $(t : \mathbb{N}) \rightarrow \mathit{Type}$

▶ A SDP can be specified in terms of four functions:

$$State: (t:\mathbb{N}) \rightarrow \mathit{Type}$$

$$Ctrl: (t:\mathbb{N}) \rightarrow (x:State\ t) \rightarrow Type$$

A SDP can be specified in terms of four functions:

State :
$$(t : \mathbb{N}) \rightarrow \mathit{Type}$$

$$Ctrl: (t:\mathbb{N}) \to (x:State\ t) \to Type$$

$$next: (t:\mathbb{N}) \rightarrow (x:State\ t) \rightarrow (y:Ctrl\ t\ x) \rightarrow M\ (State\ (t+1))$$

▶ A SDP can be specified in terms of four functions:

State :
$$(t : \mathbb{N}) \rightarrow \mathit{Type}$$

$$Ctrl: (t:\mathbb{N}) \to (x:State\ t) \to Type$$

$$next: (t:\mathbb{N}) \to (x:State\;t) \to (y:Ctrl\;t\;x) \to M\;(State\;(t+1))$$

▶ A SDP can be specified in terms of four functions:

$$\mathit{State}: (t:\mathbb{N}) o \mathit{Type}$$

$$Ctrl: (t:\mathbb{N}) \to (x:State\ t) \to Type$$

$$next: (t:\mathbb{N}) \to (x:State\;t) \to (y:Ctrl\;t\;x) \to M\;(State\;(t+1))$$

▶ *M* is a <u>functor</u> representing the problem's <u>uncertainties</u>:

- ▶ *M* is a <u>functor</u> representing the problem's <u>uncertainties</u>:
 - ightharpoonup M = Id (deterministic uncertainty)

- ▶ *M* is a <u>functor</u> representing the problem's <u>uncertainties</u>:
 - ightharpoonup M = Id (deterministic uncertainty)
 - ightharpoonup M = List (non-deterministic uncertainty)

- ▶ *M* is a functor representing the problem's uncertainties:
 - ► *M* = *Id* (deterministic uncertainty)
 - ► *M* = *List* (non-deterministic uncertainty)
 - ► *M* = *Prob* (stochastic uncertainty)

- ▶ *M* is a <u>functor</u> representing the problem's <u>uncertainties</u>:
 - M = Id (deterministic uncertainty)
 - ► *M* = *List* (non-deterministic uncertainty)
 - ► *M* = *Prob* (stochastic uncertainty)
- ▶ In many problems M = Prob or M = List

- ▶ *M* is a <u>functor</u> representing the problem's <u>uncertainties</u>:
 - ► *M* = *Id* (deterministic uncertainty)
 - ► *M* = *List* (non-deterministic uncertainty)
 - ► *M* = *Prob* (stochastic uncertainty)
- ▶ In many problems M = Prob or M = List

▶ The fourth function defines the problem's rewards

▶ The fourth function defines the problem's rewards

reward :
$$(t:\mathbb{N}) \to (x:State\;t) \to (y:Ctrl\;t\;x) \to (x':State\;(t+1)) \to Val$$

▶ The fourth function defines the problem's rewards

reward :
$$(t:\mathbb{N}) \to (x:State\;t) \to (y:Ctrl\;t\;x) \to (x':State\;(t+1)) \to Val$$

▶ In many problems $Val = \mathbb{R}$ and sums are discounted sums of real numbers!

▶ The fourth function defines the problem's rewards

reward :
$$(t:\mathbb{N}) \to (x:State\;t) \to (y:Ctrl\;t\;x) \to (x':State\;(t+1)) \to Val$$

▶ In many problems $Val = \mathbb{R}$ and sums are discounted sums of real numbers!

Policies are functions from states to controls

Policy :
$$(t : \mathbb{N}) \to Type$$

Policy $t = (x : State t) \to Ctrl t x$

Policies are functions from states to controls

Policy :
$$(t : \mathbb{N}) \to Type$$

Policy $t = (x : State t) \to Ctrl t x$

Policy sequences are sequences of policies:

```
data PolicySeq : (t : \mathbb{N}) \to (n : \mathbb{N}) \to Type where
Nil : PolicySeq t Z
(::) : Policy t \to PolicySeq (t+1) n \to PolicySeq t (n+1)
```

Policies are functions from states to controls

Policy :
$$(t : \mathbb{N}) \to Type$$

Policy $t = (x : State t) \to Ctrl t x$

Policy sequences are sequences of policies:

```
data PolicySeq : (t : \mathbb{N}) \to (n : \mathbb{N}) \to Type where Nil : PolicySeq t Z (::) : Policy t \to PolicySeq (t+1) n \to PolicySeq t (n+1)
```

Policies are functions from states to controls

Policy :
$$(t : \mathbb{N}) \to Type$$

Policy $t = (x : State t) \to Ctrl t x$

Policy sequences are sequences of policies:

```
data PolicySeq : (t : \mathbb{N}) \to (n : \mathbb{N}) \to Type where Nil : PolicySeq t Z (::) : Policy t \to PolicySeq (t+1) n \to PolicySeq t (n+1)
```

► The notion of optimality for policy sequences depends on how the decision maker compares rewards

► The notion of optimality for policy sequences depends on how the decision maker compares rewards

$$\sqsubseteq$$
 : Val \rightarrow Val \rightarrow Type

► The notion of optimality for policy sequences depends on how the decision maker compares rewards

$$\sqsubseteq$$
 : Val \rightarrow Val \rightarrow Type

... on how she adds them

► The notion of optimality for policy sequences depends on how the decision maker compares rewards

$$\sqsubseteq$$
 : Val \rightarrow Val \rightarrow Type

... on how she adds them

$$\oplus$$
 : Val \rightarrow Val \rightarrow Val

► The notion of optimality for policy sequences depends on how the decision maker compares rewards

$$\sqsubseteq$$
 : Val \rightarrow Val \rightarrow Type

... on how she adds them

$$\oplus$$
 : Val \rightarrow Val \rightarrow Val

and on how she measures uncertain outcomes

► The notion of optimality for policy sequences depends on how the decision maker compares rewards

$$\sqsubseteq$$
 : Val \rightarrow Val \rightarrow Type

... on how she adds them

$$\oplus$$
 : Val \rightarrow Val \rightarrow Val

and on how she measures uncertain outcomes

meas :
$$M \ Val \rightarrow \ Val$$

► The notion of optimality for policy sequences depends on how the decision maker compares rewards

$$\sqsubseteq$$
 : Val \rightarrow Val \rightarrow Type

... on how she adds them

$$\oplus$$
 : Val \rightarrow Val \rightarrow Val

and on how she measures uncertain outcomes

meas :
$$M \ Val \rightarrow \ Val$$

With ⊆, ⊕ and meas, one can compute the value of taking n decisions starting from some initial state and according to a policy sequence ps:

 $val: (x: State\ t) \rightarrow PolicySeq\ t\ n \rightarrow Val$

With ⊆, ⊕ and meas, one can compute the value of taking n decisions starting from some initial state and according to a policy sequence ps:

$$val: (x: State \ t) \rightarrow PolicySeq \ t \ n \rightarrow Val$$

$$val \{t\} \{n = Z\} \times Nil = zero$$

With □, ⊕ and meas, one can compute the value of taking n decisions starting from some initial state and according to a policy sequence ps:

 $val: (x: State t) \rightarrow PolicySeg t n \rightarrow Val$

```
val \{t\} \{n = Z\} \times Nil = zero
val \{t\} \{n = m + 1\} x (p :: ps) = meas (fmap f mx') where
  v: Ctrl t x
  v = p x
  mx': M (State (t+1))
  mx' = next t \times v
  f: State (t+1) \rightarrow Val
  f x' = reward t x v x' \oplus val x' ps
```

With □, ⊕ and meas, one can compute the value of taking n decisions starting from some initial state and according to a policy sequence ps:

 $val: (x: State t) \rightarrow PolicySeg t n \rightarrow Val$

```
val \{t\} \{n = Z\} \times Nil = zero
val \{t\} \{n = m + 1\} x (p :: ps) = meas (fmap f mx') where
  v: Ctrl t x
  v = p x
  mx': M (State (t+1))
  mx' = next t \times v
  f: State (t+1) \rightarrow Val
  f x' = reward t x v x' \oplus val x' ps
```

▶ ... formalize the notion of optimality for policy sequences

... formalize the notion of optimality for policy sequences

```
OptPolicySeq : PolicySeq t n \rightarrow Type
OptPolicySeq { t } { n } ps = (ps' : PolicySeq t n) \rightarrow
(x : State t) \rightarrow
val x ps' \sqsubseteq val x ps
```

... formalize the notion of optimality for policy sequences

```
OptPolicySeq : PolicySeq t n \rightarrow Type
OptPolicySeq { t } { n } ps = (ps' : PolicySeq t n) \rightarrow
(x : State t) \rightarrow
val x ps' \sqsubseteq val x ps
```

... compute verified optimal policy sequences

... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t
$$n \rightarrow Type$$

OptPolicySeq $\{t\} \{n\} ps = (ps' : PolicySeq t n) \rightarrow (x : State t) \rightarrow val x ps' \sqsubseteq val x ps$

... compute verified optimal policy sequences

```
bi:(t:\mathbb{N}) \to (n:\mathbb{N}) \to \textit{PolicySeq t n}
biLemma:(t:\mathbb{N}) \to (n:\mathbb{N}) \to \textit{OptPolicySeq (bi t n)}
```

... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t
$$n \rightarrow Type$$

OptPolicySeq { t } { n } ps = (ps' : PolicySeq t n) \rightarrow
(x : State t) \rightarrow
val x ps' \sqsubseteq val x ps

... compute verified optimal policy sequences

$$bi: (t: \mathbb{N}) \to (n: \mathbb{N}) \to \textit{PolicySeq t n}$$

 $biLemma: (t: \mathbb{N}) \to (n: \mathbb{N}) \to \textit{OptPolicySeq (bi t n)}$

and, finally, best decisions!

... formalize the notion of optimality for policy sequences

```
OptPolicySeq : PolicySeq t n \rightarrow Type
OptPolicySeq { t } { n } ps = (ps' : PolicySeq t n) \rightarrow
(x : State t) \rightarrow
val x ps' \sqsubseteq val x ps
```

... compute verified optimal policy sequences

$$bi:(t:\mathbb{N}) \to (n:\mathbb{N}) \to \textit{PolicySeq t n}$$
 $biLemma:(t:\mathbb{N}) \to (n:\mathbb{N}) \to \textit{OptPolicySeq (bi t n)}$

and, finally, best decisions!

... formalize the notion of optimality for policy sequences

```
OptPolicySeq : PolicySeq t n \rightarrow Type

OptPolicySeq \{t\} \{n\} ps = (ps' : PolicySeq t <math>n) \rightarrow (x : State t) \rightarrow val \times ps' \sqsubseteq val \times ps
```

... compute verified optimal policy sequences

$$bi: (t: \mathbb{N}) \to (n: \mathbb{N}) \to \textit{PolicySeq t n}$$
 $biLemma: (t: \mathbb{N}) \to (n: \mathbb{N}) \to \textit{OptPolicySeq (bi t n)}$

and, finally, best decisions!

Given a problem (M, State, Ctrl, next, reward and meas) we can:

Given a problem (M, State, Ctrl, next, reward and meas) we can:

Compute verified optimal policy sequences.

Given a problem (M, State, Ctrl, next, reward and meas) we can:

Compute verified optimal policy sequences.

Compute all possible trajectories from an initial state under a given policy sequence.

Given a problem (M, State, Ctrl, next, reward and meas) we can:

Compute verified optimal policy sequences.

Compute all possible trajectories from an initial state under a given policy sequence.

For "small" problems!

Let's take a decision!

Jump to "A stylized emission problem"

▶ Jump to "Method (cont'd)"

► Stop here!

Understanding the impacts of uncertainty on optimal policies $\;
ightarrow\;$ A stylized emission problem

A stylized emission problem

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

Controls

► At each decision step the decision maker has just two options: low or high emissions:

► At each decision step the decision maker has just two options: low or high emissions:

Ctrl
$$t x = \{Low, High\}$$

► At each decision step the decision maker has just two options: low or high emissions:

Ctrl
$$t x = \{Low, High\}$$

► The idea is that low emissions, if implemented, increase the cumulated emissions less than high emissions.

► At each decision step the decision maker has just two options: low or high emissions:

Ctrl
$$t x = \{Low, High\}$$

- ► The idea is that low emissions, if implemented, increase the cumulated emissions less than high emissions.
- Without lost of generality, we can take these increases to be zero and one.

Understanding the impacts of uncertainty on optimal policies $\ \ \to \ \ A$ stylized emission problem

► At each step, the decision maker has to choose between low and high emissions on the basis of four data:

- ▶ At each step, the decision maker has to choose between low and high emissions on the basis of four data:
 - ▶ The amount of cumulated emissions.

- At each step, the decision maker has to choose between low and high emissions on the basis of four data:
 - ▶ The amount of cumulated emissions.
 - ▶ The current emission level $E = \{Low, High\}$.

- At each step, the decision maker has to choose between low and high emissions on the basis of four data:
 - ▶ The amount of cumulated emissions.
 - ▶ The current emission level $E = \{Low, High\}$.
 - ▶ The availability of effective technologies for reducing emissions $T = \{Available, Unavailable\}.$

- At each step, the decision maker has to choose between low and high emissions on the basis of four data:
 - ▶ The amount of cumulated emissions.
 - ▶ The current emission level $E = \{Low, High\}$.
 - ▶ The availability of effective technologies for reducing emissions $T = \{Available, Unavailable\}.$
 - ▶ A "state of the world" $W = \{Good, Bad\}$.

- At each step, the decision maker has to choose between low and high emissions on the basis of four data:
 - ▶ The amount of cumulated emissions.
 - ▶ The current emission level $E = \{Low, High\}$.
 - ▶ The availability of effective technologies for reducing emissions $T = \{Available, Unavailable\}.$
 - ▶ A "state of the world" $W = \{Good, Bad\}$.
- Thus, states are just tuples

State
$$t = (\{0..t\}, E, T, W)$$

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

Decision process

Decision process

► The process starts with zero cumulated emissions, high emissions, unavailable technologies and in a good world

Decision process

- The process starts with zero cumulated emissions, high emissions, unavailable technologies and in a good world
- In this state, the probability that the world turns bad is low.

- The process starts with zero cumulated emissions, high emissions, unavailable technologies and in a good world
- In this state, the probability that the world turns bad is low.
- ▶ But if the cumulated emissions increase beyond a critical threshold crE : R, the probability that the world becomes bad increases.

- ► The process starts with zero cumulated emissions, high emissions, unavailable technologies and in a good world
- In this state, the probability that the world turns bad is low.
- ▶ But if the cumulated emissions increase beyond a critical threshold crE : R, the probability that the world becomes bad increases.
- Once the world has reached a bad state, there is no chance to turn back to a good state.

- ► The process starts with zero cumulated emissions, high emissions, unavailable technologies and in a good world
- In this state, the probability that the world turns bad is low.
- ▶ But if the cumulated emissions increase beyond a critical threshold crE : R, the probability that the world becomes bad increases.
- Once the world has reached a bad state, there is no chance to turn back to a good state.
- Similarly, the probability that effective technologies become available is low in the beginning and increases after a critical number of decision steps crN : N.

- ► The process starts with zero cumulated emissions, high emissions, unavailable technologies and in a good world
- In this state, the probability that the world turns bad is low.
- ▶ But if the cumulated emissions increase beyond a critical threshold crE : R, the probability that the world becomes bad increases.
- Once the world has reached a bad state, there is no chance to turn back to a good state.
- Similarly, the probability that effective technologies become available is low in the beginning and increases after a critical number of decision steps crN : N.
- ▶ Once available, effective technologies stay available for ever.

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

► Low/high emission decisions might not be implemented.

► Low/high emission decisions might not be implemented.

After crN decision steps, efficient technologies may or may not become available.

► Low/high emission decisions might not be implemented.

► After *crN* decision steps, efficient technologies may or may not become available.

► Exceeding *crE* may or may not turn the world into a bad state.

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

► Low/high emission decisions might not be implemented:

- Low/high emission decisions might not be implemented:
 - ▶ pLL the probability of implementing low emissions when the current emissions measures are low and low emissions are chosen.

- Low/high emission decisions might not be implemented:
 - pLL the probability of implementing low emissions when the current emissions measures are low and low emissions are chosen.
 - pLH the probability of implementing low emissions when the current emissions measures are high and low emissions are chosen.

- Low/high emission decisions might not be implemented:
 - pLL the probability of implementing low emissions when the current emissions measures are low and low emissions are chosen.
 - pLH the probability of implementing low emissions when the current emissions measures are high and low emissions are chosen.
 - pHL the probability of implementing high emissions when the current emissions measures are low and high emissions are chosen.

- Low/high emission decisions might not be implemented:
 - pLL the probability of implementing low emissions when the current emissions measures are low and low emissions are chosen.
 - pLH the probability of implementing low emissions when the current emissions measures are high and low emissions are chosen.
 - pHL the probability of implementing high emissions when the current emissions measures are low and high emissions are chosen.
 - pHH the probability of implementing high emissions when the current emissions measures are high and high emissions are chosen.

- Low/high emission decisions might not be implemented:
 - pLL the probability of implementing low emissions when the current emissions measures are low and low emissions are chosen.
 - pLH the probability of implementing low emissions when the current emissions measures are high and low emissions are chosen.
 - pHL the probability of implementing high emissions when the current emissions measures are low and high emissions are chosen.
 - ▶ pHH the probability of implementing high emissions when the current emissions measures are high and high emissions are chosen.
- ▶ Constraints: $pLH \leq pLL$ and $pHL \leq pHH$.

► After *crN* decision steps, efficient technologies may or may not become available:

- ► After *crN* decision steps, efficient technologies may or may not become available:
 - pA1 the probability that effective technologies become available when the number of decision steps is ≤ crN,

- ► After *crN* decision steps, efficient technologies may or may not become available:
 - ▶ pA1 the probability that effective technologies become available when the number of decision steps is $\leq crN$,
 - ▶ pA2 the probability that effective technologies become available when the number of decision steps is > crN.

- ► After *crN* decision steps, efficient technologies may or may not become available:
 - ▶ pA1 the probability that effective technologies become available when the number of decision steps is $\leq crN$,
 - ▶ pA2 the probability that effective technologies become available when the number of decision steps is > crN.
- ▶ Constraint: $pA1 \leq pA2$.

► Exceeding *crE* may or may not turn the world into a bad state:

- ► Exceeding *crE* may or may not turn the world into a bad state:
 - pS1 the probability of staying in a good world when the cumulated emissions are ≤ crE,

- Exceeding crE may or may not turn the world into a bad state:
 - ▶ pS1 the probability of staying in a good world when the cumulated emissions are $\leq crE$,
 - pS2 the probability of staying in a good world when the cumulated emissions are > crE.

- Exceeding crE may or may not turn the world into a bad state:
 - ▶ pS1 the probability of staying in a good world when the cumulated emissions are $\leq crE$,
 - pS2 the probability of staying in a good world when the cumulated emissions are > crE.
- ▶ Constraint: $pS2 \leq pS1$.

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

► Given *crN*, *crE* and the probabilities *pLL* . . . *pS2*, the transition function can be defined by cases.

- ► Given *crN*, *crE* and the probabilities *pLL* ... *pS2*, the transition function can be defined by cases.
- ▶ For instance, if
 - the current state is x = (e, H, U, G),

- ► Given *crN*, *crE* and the probabilities *pLL* ... *pS2*, the transition function can be defined by cases.
- ▶ For instance, if
 - the current state is x = (e, H, U, G),
 - ▶ the decision maker has opted for low emissions,

- ► Given *crN*, *crE* and the probabilities *pLL* ... *pS2*, the transition function can be defined by cases.
- ▶ For instance, if
 - the current state is x = (e, H, U, G),
 - ▶ the decision maker has opted for low emissions,
 - e is smaller or equal to crE and

- ► Given *crN*, *crE* and the probabilities *pLL* ... *pS2*, the transition function can be defined by cases.
- ▶ For instance, if
 - the current state is x = (e, H, U, G),
 - the decision maker has opted for low emissions,
 - e is smaller or equal to crE and
 - t is smaller or equal to crN . . .

▶ the result of *next t x L* is a probability distribution with the assignments:

▶ the result of *next t x L* is a probability distribution with the assignments:

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

Rewards

The idea is that:

▶ Being in a bad world yields less benefits (more damages) than being in a good world.

The idea is that:

- ▶ Being in a bad world yields less benefits (more damages) than being in a good world.
- Low emissions yield less benefits (more costs, less growth) than high emissions.

The idea is that:

- ▶ Being in a bad world yields less benefits (more damages) than being in a good world.
- Low emissions yield less benefits (more costs, less growth) than high emissions.
- Implementing low emissions when effective technologies are unavailable costs more than implementing emissions when these technologies are available.

Without loss of generality, we can take the benefits of being in a good world for a step to be one and define

```
reward t \times y (e, H, U, G) = 1 + h

reward t \times y (e, H, U, B) = b + h

reward t \times y (e, H, A, G) = 1 + h

reward t \times y (e, H, A, B) = b + h

reward t \times y (e, L, U, G) = 1 + lu

reward t \times y (e, L, U, B) = b + lu

reward t \times y (e, L, A, G) = 1 + la

reward t \times y (e, L, A, B) = b + la
```

where $h, b, lu, la : \mathbb{R}$ fulfil $b \leq 1$, $0 \leq lu \leq la \leq h$.

Rewards

Without loss of generality, we can take the benefits of being in a good world for a step to be one and define

```
reward t \times y (e, H, U, G) = 1 + h

reward t \times y (e, H, U, B) = b + h

reward t \times y (e, H, A, G) = 1 + h

reward t \times y (e, H, A, B) = b + h

reward t \times y (e, L, U, G) = 1 + lu

reward t \times y (e, L, U, B) = b + lu

reward t \times y (e, L, A, G) = 1 + la

reward t \times y (e, L, A, B) = b + la
```

where $h, b, lu, la : \mathbb{R}$ fulfil $b \le 1$, $0 \le lu \le la \le h$. Notice that

▶ The minimal cost of implementing low emissions is h - la

Rewards

Without loss of generality, we can take the benefits of being in a good world for a step to be one and define

```
reward t \times y (e, H, U, G) = 1 + h

reward t \times y (e, H, U, B) = b + h

reward t \times y (e, H, A, G) = 1 + h

reward t \times y (e, H, A, B) = b + h

reward t \times y (e, L, U, G) = 1 + lu

reward t \times y (e, L, U, B) = b + lu

reward t \times y (e, L, A, G) = 1 + la

reward t \times y (e, L, A, B) = b + la
```

where $h, b, lu, la : \mathbb{R}$ fulfil $b \le 1$, $0 \le lu \le la \le h$. Notice that

- ▶ The minimal cost of implementing low emissions is h la
- ▶ The step costs of being in a bad world are 1 b

Rewards

Without loss of generality, we can take the benefits of being in a good world for a step to be one and define

```
reward t \times y (e, H, U, G) = 1 + h

reward t \times y (e, H, U, B) = b + h

reward t \times y (e, H, A, G) = 1 + h

reward t \times y (e, H, A, B) = b + h

reward t \times y (e, L, U, G) = 1 + lu

reward t \times y (e, L, U, B) = b + lu

reward t \times y (e, L, A, G) = 1 + la

reward t \times y (e, L, A, B) = b + la
```

where $h, b, lu, la : \mathbb{R}$ fulfil $b \le 1, 0 \le lu \le la \le h$. Notice that

- ▶ The minimal cost of implementing low emissions is h la
- ▶ The step costs of being in a bad world are 1 b
- ▶ 1 b < h la ⇒ reducing emissions is never a best choice!

Understanding the impacts of uncertainty on optimal policies $\ \ \to \ \ A$ stylized emission problem

State, Ctrl, next and reward as discussed.

- State, Ctrl, next and reward as discussed.
- ▶ M = Prob, $Val = \mathbb{R}$, $\sqsubseteq = lift \leq$, $\oplus = +$, meas is the expected value.

- State, Ctrl, next and reward as discussed.
- ▶ M = Prob, $Val = \mathbb{R}$, $\sqsubseteq = lift \leqslant$, $\oplus = +$, meas is the expected value.
- ▶ 9 decision steps, starting in (0, H, U, G): zero cumulated emissions, high emissions, unavailable efficient technologies and world in a good state.

- State, Ctrl, next and reward as discussed.
- ▶ M = Prob, $Val = \mathbb{R}$, $\sqsubseteq = lift \leqslant$, $\oplus = +$, meas is the expected value.
- ▶ 9 decision steps, starting in (0, H, U, G): zero cumulated emissions, high emissions, unavailable efficient technologies and world in a good state.
- ightharpoonup crE = 4 and crN = 2 .

- State, Ctrl, next and reward as discussed.
- ▶ M = Prob, $Val = \mathbb{R}$, $\sqsubseteq = lift \leq$, $\oplus = +$, meas is the expected value.
- ▶ 9 decision steps, starting in (0, H, U, G): zero cumulated emissions, high emissions, unavailable efficient technologies and world in a good state.
- ightharpoonup crE = 4 and crN = 2 .
- b = 0.5, lu = 0.1, la = 0.2, h = 0.3.

Understanding the impacts of uncertainty on optimal policies $\ \ \to \ \ A$ stylized emission problem

Results

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

▶ If the state of the world is bad, reducing emissions can never be optimal: Après moi le déluge.

- If the state of the world is bad, reducing emissions can never be optimal: Après moi le déluge.
- Conversely, reducing emissions can only pay off if it allows avoiding transitions to a bad world.

- If the state of the world is bad, reducing emissions can never be optimal: Après moi le déluge.
- Conversely, reducing emissions can only pay off if it allows avoiding transitions to a bad world.
- At the last decision step it is always optimal to select high emissions.

- ▶ If the state of the world is bad, reducing emissions can never be optimal: Après moi le déluge.
- Conversely, reducing emissions can only pay off if it allows avoiding transitions to a bad world.
- At the last decision step it is always optimal to select high emissions.
- ▶ $crE = 4 \Rightarrow$ it takes at least 5 steps to achieve states in which the sum of the cumulated emissions exceeds crE and, the probability of a transition to a bad world increases from pS1 to pS2.

- If the state of the world is bad, reducing emissions can never be optimal: Après moi le déluge.
- ► Conversely, reducing emissions can only pay off if it allows avoiding transitions to a bad world.
- At the last decision step it is always optimal to select high emissions.
- ▶ $crE = 4 \Rightarrow$ it takes at least 5 steps to achieve states in which the sum of the cumulated emissions exceeds crE and, the probability of a transition to a bad world increases from pS1 to pS2.
- crN = 2 ⇒ it takes 3 steps to achieve states in which the probability that effective technologies for reducing GHG emissions become available increases from pA1 to pA2.

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

$$ightharpoonup pS2 = pA1 = 0, pS1 = pA2 = pLL = pLH = pHL = pHH = 1.$$

- ightharpoonup pS2 = pA1 = 0, pS1 = pA2 = pLL = pLH = pHL = pHH = 1.
- ► Effective technologies become available (with certainty) after 4 steps.

- ightharpoonup pS2 = pA1 = 0, pS1 = pA2 = pLL = pLH = pHL = pHH = 1.
- ► Effective technologies become available (with certainty) after 4 steps.
- ► The state of the world turns bad (with certainty) after 6 steps at high emissions.

- ightharpoonup pS2 = pA1 = 0, pS1 = pA2 = pLL = pLH = pHL = pHH = 1.
- Effective technologies become available (with certainty) after 4 steps.
- ► The state of the world turns bad (with certainty) after 6 steps at high emissions.
- For any given policy sequence there is exactly one possible state-control trajectory.

Const High policies:

- Const High policies:
 - trajectories, probabilities, rewards:

```
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),)], 100%, 9.7
```

- Const High policies:
 - trajectories, probabilities, rewards:

```
[((O,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),)], 100%, 9.7
```

Expected sum of rewards = 9.7.

- Const High policies:
 - trajectories, probabilities, rewards:
 [((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),)], 100%, 9.7
 - Expected sum of rewards = 9.7.
- Const Low policies:

- Const High policies:
 - trajectories, probabilities, rewards:

```
 \begin{array}{l} [((0,H,U,G),H),\;\; ((1,H,U,G),H),\;\; ((2,H,U,G),H),\;\; ((3,H,U,G),H),\;\; ((4,H,A,G),H),\;\; \\ ((5,H,A,G),H),\;\; ((6,H,A,B),H),\;\; ((7,H,A,B),H),\;\; ((8,H,A,B),H),\;\; ((9,H,A,B),\;)],\;\; 100\%,\;\; 9.7 \end{array}
```

- Expected sum of rewards = 9.7.
- Const Low policies:
 - trajectories, probabilities, rewards

```
 \begin{bmatrix} ((0,H,U,G),L), & ((0,L,U,G),L), & ((0,L,U,G),L), & ((0,L,U,G),L), & ((0,L,A,G),L), & (
```

- Const High policies:
 - trajectories, probabilities, rewards:

```
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),)], 100%, 9.7
```

- Expected sum of rewards = 9.7.
- Const Low policies:
 - trajectories, probabilities, rewards

```
[((O,H,U,G),L), ((O,L,U,G),L), ((O,L,U,G),L), ((O,L,U,G),L), ((O,L,A,G),L), ((O,L
```

Expected sum of rewards = 10.5

- Const High policies:
 - trajectories, probabilities, rewards:
 [((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),)], 100%, 9.7
 - ► Expected sum of rewards = 9.7.
- Const Low policies:

 - Expected sum of rewards = 10.5
- Optimal policies:

- Const High policies:
 - trajectories, probabilities, rewards:
 [((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),)], 100%, 9.7
 - ► Expected sum of rewards = 9.7.
- Const Low policies:
 - trajectories, probabilities, rewards
 [((0,H,U,G),L), ((0,L,U,G),L), ((0,L,U,G),L), ((0,L,A,G),L), ((0
 - Expected sum of rewards = 10.5
- Optimal policies:
 - trajectories, probabilities, rewards

```
 \begin{bmatrix} ((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),H), & ((3,H,U,G),H), & ((4,H,A,G),L), \\ ((4,L,A,G),L), & ((4,L,A,G),L), & ((4,L,A,G),L), & ((4,L,A,G),H), & ((5,H,A,G)) \end{bmatrix}, 100\%, 11.3
```

- Const High policies:
 - trajectories, probabilities, rewards:
 [((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),)], 100%, 9.7
 - ► Expected sum of rewards = 9.7.
- Const Low policies:

 - Expected sum of rewards = 10.5
- Optimal policies:
 - ► trajectories, probabilities, rewards

```
 \begin{array}{l} [((0,H,U,G),H),\;((1,H,U,G),H),\;((2,H,U,G),H),\;((3,H,U,G),H),\;((4,H,A,G),L),\\ ((4,L,A,G),L),\;((4,L,A,G),L),\;((4,L,A,G),L),\;((4,L,A,G),H),\;((5,H,A,G))],\;100\%,\;11.3 \end{array}
```

Expected sum of rewards = 11.3

- Const High policies:
 - trajectories, probabilities, rewards:

```
 \begin{array}{l} [((0,H,U,G),H),\;\; ((1,H,U,G),H),\;\; ((2,H,U,G),H),\;\; ((3,H,U,G),H),\;\; ((4,H,A,G),H),\;\; \\ ((5,H,A,G),H),\;\; ((6,H,A,B),H),\;\; ((7,H,A,B),H),\;\; ((8,H,A,B),H),\;\; ((9,H,A,B),\;)],\;\; 100\%,\;\; 9.7 \end{array}
```

- Expected sum of rewards = 9.7.
- Const Low policies:
 - trajectories, probabilities, rewards
 [((0,H,U,G),L), ((0,L,U,G),L), ((0,L,U,G),L), ((0,L,U,G),L), ((0,L,A,G),L), ((0
 - Expected sum of rewards = 10.5
- Optimal policies:
 - trajectories, probabilities, rewards
 [((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),L), ((4,L,A,G),L), ((4,L,A,G),L), ((4,L,A,G),L), ((4,L,A,G),H), ((5,H,A,G))], 100%, 11.3
 - Expected sum of rewards = 11.3
- ▶ Optimal policies dictate postponing emission reductions until effective technologies for reducing emissions become available!

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

$$pS2 = pA1 = 0$$
, $pS1 = pA2 = 1$ but ...

- PS2 = pA1 = 0, pS1 = pA2 = 1 but ...
- ightharpoonup ... pLL = pHH = 0.9 and pLH = pHL = 0.7
- ► Effective technologies still become available after 4 steps and the state of the world turns bad after 6 steps at high emissions but . . .

- PS2 = pA1 = 0, pS1 = pA2 = 1 but ...
- ightharpoonup ... pLL = pHH = 0.9 and pLH = pHL = 0.7
- ► Effective technologies still become available after 4 steps and the state of the world turns bad after 6 steps at high emissions but . . .
- ... a policy (optimal or not) now entails $2^9 = 512$ possible trajectories.

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

Uncertainty on implementability, policies

Const High policies:

- Const High policies:
 - trajectories, probabilities, rewards

```
((1, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), H), ((5, H, A, G), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), H), ((9, H, A, B), ]], 38.7%, 9.7 ((5, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), H), ((8, L, A, B))], 4.3%, 9.6 ((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), H), ((4, L, A, G), H), ((5, H, A, G), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), I)], 3.3%, 10.1
```

. . .

- Const High policies:
 - trajectories, probabilities, rewards

```
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),], 38.7%, 9.7 [((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((8,H,A,B),H), ((8,H,A,B),H), ((8,H,A,B),H), ((8,H,A,B),H), ((8,H,A,B),H), ((8,H,A,B),H), ((4,H,A,G),H), ((4,H,A,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), (3,H,A,B),H), ((6,H,A,B),H), (6,H,A,B),H), (6,H,A,B),H), (6,H,A,B),H), (6,H,A,B,H), (6,H,A,B),H), (6,H,A,B,H), (6,H,A,B,H),
```

Expected sum of rewards = 9.904.

- Const High policies:
 - trajectories, probabilities, rewards

```
 \begin{bmatrix} ((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),H), & ((3,H,U,G),H), & ((4,H,A,G),H), \\ & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & ((9,H,A,B),H), & ((9,H,A,B),H), \\ & ((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),H), & ((3,H,U,G),H), & ((4,H,A,G),H), \\ & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & ((8,H,A,B),H), \\ & ((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),H), & ((3,H,U,G),H), & ((4,H,A,G),H), \\ & ((4,L,A,G),H), & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & ((8,H,A,B),H), \\ & ((4,L,A,G),H), & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & ((8,H,
```

- Expected sum of rewards = 9.904.
- Optimal policies:

- Const High policies:
 - trajectories, probabilities, rewards

```
 \begin{bmatrix} ((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),H), & ((3,H,U,G),H), & ((4,H,A,G),H), \\ ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & ((9,H,A,B),B), & ((9,H,A,B),B), & ((9,H,A,B),B), & ((9,H,A,G),H), \\ ((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),H), & ((3,H,U,G),H), & ((4,H,A,G),H), \\ ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & ((8,H,A,B),H), & ((8,H,A,B),H), \\ ((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),H), & ((3,H,U,G),H), & ((4,H,A,G),H), \\ ((4,L,A,G),H), & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & (3,H,A,B),H), \\ ((4,L,A,G),H), & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & (3,H,A,B),H), \\ ((4,L,A,G),H), & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & (3,H,A,B),H), \\ ((4,L,A,G),H), & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & (3,H,A,B),H), \\ ((4,L,A,G),H), & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & (3,H,A,B),H), \\ ((4,L,A,G),H), & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & ((8,H,A,B,H),H), & ((8,H,A,B,H),H), & ((8,H,A,B,H),H), &
```

- Expected sum of rewards = 9.904.
- Optimal policies:
 - trajectories, probabilities, rewards

```
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),L), ((2,L,U,G),L), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),H), ((3,H,A,G),H), ((5,H,A,G),H), ((5,H,A,G),H), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G),H), (7.8%, 11.3), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),L), ((2,L,A,G),H), ((3,H,A,G),H), ((4,H,A,G),H), (7.8%, 11.1), ((2,L,A,G),L), ((2,L,A
```

- Const High policies:
 - trajectories, probabilities, rewards

```
 \begin{bmatrix} ((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),H), & ((3,H,U,G),H), & ((4,H,A,G),H), \\ ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & ((9,H,A,B),) \end{bmatrix}, & 38.7\%, & 9.7 \\ [((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),H), & ((3,H,U,G),H), & ((4,H,A,G),H), \\ ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & ((8,H,A,B),H), \\ [((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),H), & ((3,H,U,G),H), & ((4,H,A,G),H), \\ ((4,L,A,G),H), & ((5,H,A,G),H), & ((6,H,A,B),H), & ((7,H,A,B),H), & ((8,H,A,B),H), & (3,H,A,B),H), \\ \end{bmatrix}, & 3.3\%, & 10.1 \\ \end{bmatrix}
```

- Expected sum of rewards = 9.904.
- Optimal policies:
 - trajectories, probabilities, rewards

Expected sum of rewards = 11.085.

- Const High policies:
 - trajectories, probabilities, rewards

```
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),H), (3,H,U,G),H), ((1,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,A,B),H), ((8,H,A,B),H), ((4,H,A,G),H), ((4,H,A,G),H), ((4,H,A,G),H), ((4,H,A,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((8,H,A,B),H), (10,H,A,B),H), ((8,H,A,B),H), ((8,H,A,B,H),H), ((8,H,A,B,H),
```

- Expected sum of rewards = 9.904.
- Optimal policies:
 - trajectories, probabilities, rewards

```
 \begin{bmatrix} ((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),L), & ((2,L,U,G),L), & ((2,L,A,G),L), \\ & ((2,L,A,G),L), & ((2,L,A,G),H), & ((3,H,A,G),H), & ((4,H,A,G),H), & ((5,H,A,G),], & 23.4\%, & 11.2 \\ & [((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),L), & ((3,H,U,G),L), & ((3,L,A,G),L), \\ & ((3,L,A,G),L), & ((3,L,A,G),L), & ((3,L,A,G),H), & ((4,H,A,G),H), & ((5,H,A,G),L), \\ & [((0,H,U,G),H), & ((1,H,U,G),H), & ((2,H,U,G),L), & ((2,L,U,G),L), & ((2,L,A,G),L), \\ & ((2,L,A,G),L), & ((2,L,A,G),H), & ((2,L,A,G),H), & ((3,H,A,G),H), & ((4,H,A,G),], & 7.8\%, & 11.1 \\ \end{bmatrix}
```

- ► Expected sum of rewards = 11.085.
- Under uncertainty on implementability, optimal policies dictate earlier emission reductions!

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

► What happens to optimal policies if we account for more uncertainties in the decision problem?

- ▶ What happens to optimal policies if we account for more uncertainties in the decision problem?
- ▶ We want to estimate the impacts of:

- ▶ What happens to optimal policies if we account for more uncertainties in the decision problem?
- ▶ We want to estimate the impacts of:
 - Uncertainty on the availability of efficient technologies:

- ▶ What happens to optimal policies if we account for more uncertainties in the decision problem?
- ▶ We want to estimate the impacts of:
 - Uncertainty on the availability of efficient technologies:
 - There is a small probability that technologies become available before 4 steps and a small probability that technologies do not become available available even after 4 steps!

- ▶ What happens to optimal policies if we account for more uncertainties in the decision problem?
- ▶ We want to estimate the impacts of:
 - Uncertainty on the availability of efficient technologies:
 - There is a small probability that technologies become available before 4 steps and a small probability that technologies do not become available available even after 4 steps!
 - Uncertainty on the consequences of exceeding the critical cumulated emission threshold crE:

- ▶ What happens to optimal policies if we account for more uncertainties in the decision problem?
- We want to estimate the impacts of:
 - Uncertainty on the availability of efficient technologies:
 - There is a small probability that technologies become available before 4 steps and a small probability that technologies do not become available available even after 4 steps!
 - Uncertainty on the consequences of exceeding the critical cumulated emission threshold crE:
 - There is a small probability that the world turns bad before 6 high emission steps and a small probability that the world doesn't turns bad even after crE has been exceeded!

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

▶ pLL, pHH, pLH, pHL, pS1 and pS2 as before but . . .

- ▶ pLL, pHH, pLH, pHL, pS1 and pS2 as before but . . .
- ... pA1 = 0.1 and pA2 = 0.9 instead of 0 and 1.

- ▶ pLL, pHH, pLH, pHL, pS1 and pS2 as before but . . .
- ▶ ... pA1 = 0.1 and pA2 = 0.9 instead of 0 and 1.
- ▶ $2^n * (n+1) = 5120$ possible trajectories for a policy sequence for n = 9 steps!

- ▶ pLL, pHH, pLH, pHL, pS1 and pS2 as before but . . .
- ... pA1 = 0.1 and pA2 = 0.9 instead of 0 and 1.
- ▶ $2^n * (n+1) = 5120$ possible trajectories for a policy sequence for n = 9 steps!
- ▶ Optimal policies entail the same most likely trajectories. The expected sum of rewards is almost the same!

Understanding the impacts of uncertainty on optimal policies \rightarrow A stylized emission problem

▶ pLL, pHH, pLH, pHL, pA1 and pA2 as before but . . .

- ▶ pLL, pHH, pLH, pHL, pA1 and pA2 as before but . . .
- ... pS1 = 0.9 and pS2 = 0.1 instead of 1 and 0.

- ▶ pLL, pHH, pLH, pHL, pA1 and pA2 as before but . . .
- ... pS1 = 0.9 and pS2 = 0.1 instead of 1 and 0.
- ▶ 51200 possible trajectories for a 9-steps policy sequence!

- ▶ pLL, pHH, pLH, pHL, pA1 and pA2 as before but ...
- ... pS1 = 0.9 and pS2 = 0.1 instead of 1 and 0.
- 51200 possible trajectories for a 9-steps policy sequence!
- For Const High policies the most likely trajectory is unchanged but . . .

Optimal policies look now quite different:

- Optimal policies look now quite different:
 - trajectories, probabilities, rewards

```
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G),J), 5.9%, 11.3

[((0,H,U,G),H), ((1,H,U,B),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H), ((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),J), 2.5%, 7.2

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H), ((5,H,A,B),H), ((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),J), 2.3%, 7.7
```

- Optimal policies look now quite different:
 - trajectories, probabilities, rewards

```
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G),H), ((1,H,U,B),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H), ((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),)], 2.5%, 7.2 [((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H), ((6,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),H), (2.3%, 7.7)]
```

► Expected sum of rewards = 9.543

- Optimal policies look now quite different:
 - trajectories, probabilities, rewards

```
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G),], 5.9%, 11.3

[((0,H,U,G),H), ((1,H,U,B),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H), ((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),], 2.5%, 7.2

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H), ((5,H,A,B),H), ((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B),J], 2.3%, 7.7

...
```

- Expected sum of rewards = 9.543
- ▶ Under uncertainty on the consequences of exceeding *crE*, precautionary policies become sub-optimal: optimal policies dictate later emission reductions!

Understanding the impacts of uncertainty on optimal policies $\ \rightarrow \ A$ stylized emission problem

 Uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies.

- Uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies.
- In contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make precautionary policies sub-optimal.

- Uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies.
- In contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make precautionary policies sub-optimal.
- ► The results are rigorous: optimality of "optimal" policies is machine-checked.

- Uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies.
- In contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make precautionary policies sub-optimal.
- The results are rigorous: optimality of "optimal" policies is machine-checked.

Understanding the impacts of uncertainty on optimal policies → Method (cont'd)

Method (cont'd)

Understanding the impacts of uncertainty on optimal policies -> Method (cont'd)

Generic, verified backwards induction

Generic, verified backwards induction

► The challenge is implementing total functions

$$bi: (t: \mathbb{N}) \rightarrow (n: \mathbb{N}) \rightarrow \textit{PolicySeq t n}$$

Generic, verified backwards induction

► The challenge is implementing total functions

$$bi: (t:\mathbb{N}) \to (n:\mathbb{N}) \to \textit{PolicySeq t n}$$
 and
$$biLemma: (t:\mathbb{N}) \to (n:\mathbb{N}) \to \textit{OptPolicySeq (bi t n)}$$

Generic, verified backwards induction

► The challenge is implementing total functions

$$bi: (t:\mathbb{N}) o (n:\mathbb{N}) o PolicySeq\ t\ n$$
 and
$$biLemma: (t:\mathbb{N}) o (n:\mathbb{N}) o OptPolicySeq\ (bi\ t\ n)$$

for arbitrary M, \oplus , \sqsubseteq , State, Ctrl, next, reward and meas.

Generic, verified backwards induction

▶ The challenge is implementing total functions

 $bi: (t: \mathbb{N}) \rightarrow (n: \mathbb{N}) \rightarrow PolicySeq t n$

and
$$\textit{biLemma} \,:\, (t \,:\, \mathbb{N}) \,\,\to\,\, (\textit{n} \,:\, \mathbb{N}) \,\,\to\,\, \textit{OptPolicySeq (bi t n)}$$

for arbitrary M, \oplus , \sqsubseteq , State, Ctrl, next, reward and meas.

As it turns out, if ⊕, ⊑ and meas fulfill minimal requirements, the implementation directly follows from Bellman's principle of optimality.

Generic, verified backwards induction

▶ The challenge is implementing total functions

 $bi: (t: \mathbb{N}) \rightarrow (n: \mathbb{N}) \rightarrow PolicySeq t n$

and
$$\textit{biLemma}: (t:\mathbb{N}) \ \rightarrow \ (\textit{n}:\mathbb{N}) \ \rightarrow \ \textit{OptPolicySeq} \ (\textit{bi} \ t \ \textit{n})$$

for arbitrary
$$M$$
, \oplus , \sqsubseteq , $State$, $Ctrl$, $next$, $reward$ and $meas$.

▶ As it turns out, if \oplus , \sqsubseteq and *meas* fulfill minimal requirements, the implementation directly follows from Bellman's principle of optimality.

► The key idea for understanding Bellman's principle is the notion of optimal extension of a policy sequence:

The key idea for understanding Bellman's principle is the notion of optimal extension of a policy sequence:

OptExt : PolicySeq
$$(t+1)$$
 m \rightarrow Policy $t \rightarrow$ Type
OptExt ps $p = (x : State \ t) \rightarrow (p' : Policy \ t) \rightarrow$
val $x (p' :: ps) \sqsubseteq val \ x (p :: ps)$

The key idea for understanding Bellman's principle is the notion of optimal extension of a policy sequence:

$$\begin{array}{lll} \textit{OptExt} & : \textit{PolicySeq} \ (t+1) \ \textit{m} \ \rightarrow \ \textit{Policy} \ t \ \rightarrow \ \textit{Type} \\ \textit{OptExt} \ \textit{ps} \ \textit{p} = (x : \textit{State} \ t) \ \rightarrow \ (\textit{p'} : \textit{Policy} \ t) \ \rightarrow \\ \textit{val} \ \textit{x} \ (\textit{p'} :: \textit{ps}) \sqsubseteq \textit{val} \ \textit{x} \ (\textit{p} :: \textit{ps}) \end{array}$$

With this notion, Bellman's principle can be expressed as

The key idea for understanding Bellman's principle is the notion of optimal extension of a policy sequence:

$$\begin{array}{lll} \textit{OptExt} & : \textit{PolicySeq} \ (t+1) \ \textit{m} \ \rightarrow \ \textit{Policy} \ t \ \rightarrow \ \textit{Type} \\ \textit{OptExt} \ \textit{ps} \ \textit{p} = (x : \textit{State} \ t) \ \rightarrow \ (p' : \textit{Policy} \ t) \ \rightarrow \\ \textit{val} \ \textit{x} \ (p' :: \textit{ps}) \sqsubseteq \textit{val} \ \textit{x} \ (p :: \textit{ps}) \end{array}$$

With this notion, Bellman's principle can be expressed as

▶ We can prove the principle (implement Bellman) if . . .

▶ ...

is reflexive and transitive.

- ▶ ...

 is reflexive and transitive.
- ▶ ⊕ is monotone w.r.t. ⊑:

monotonePlusLTE : $a \sqsubseteq b \rightarrow c \sqsubseteq d \rightarrow (a \oplus c) \sqsubseteq (b \oplus d)$

- ...

 is reflexive and transitive.
- ▶ ⊕ is monotone w.r.t. <u></u>:

$$\textit{monotonePlusLTE} \; : \; a \sqsubseteq b \; \rightarrow \; c \sqsubseteq d \; \rightarrow \; (a \oplus c) \sqsubseteq (b \oplus d)$$

meas fulfills a monotonicity condition (lonescu 2009):

measMon:
$$\{A: Type\} \rightarrow (f: A \rightarrow Val) \rightarrow (g: A \rightarrow Val) \rightarrow ((a: A) \rightarrow (f a) \sqsubseteq (g a)) \rightarrow (ma: M A) \rightarrow meas (fmap f ma) \sqsubseteq meas (fmap g ma)$$

- ▶ ...

 is reflexive and transitive.
- ▶ ⊕ is monotone w.r.t. □:

$$monotonePlusLTE \ : \ a \sqsubseteq b \ \rightarrow \ c \sqsubseteq d \ \rightarrow \ (a \oplus c) \sqsubseteq (b \oplus d)$$

meas fulfills a monotonicity condition (lonescu 2009):

```
measMon: \{A: Type\} \rightarrow (f: A \rightarrow Val) \rightarrow (g: A \rightarrow Val) \rightarrow ((a: A) \rightarrow (f a) \sqsubseteq (g a)) \rightarrow (ma: M A) \rightarrow meas (fmap f ma) \sqsubseteq meas (fmap g ma)
```

- ▶ ...

 is reflexive and transitive.
- ▶ ⊕ is monotone w.r.t. <u></u>:

$$\textit{monotonePlusLTE} \; : \; a \sqsubseteq b \; \rightarrow \; c \sqsubseteq d \; \rightarrow \; (a \oplus c) \sqsubseteq (b \oplus d)$$

meas fulfills a monotonicity condition (Ionescu 2009):

```
measMon: \{A: Type\} \rightarrow (f: A \rightarrow Val) \rightarrow (g: A \rightarrow Val) \rightarrow ((a: A) \rightarrow (f a) \sqsubseteq (g a)) \rightarrow (ma: M A) \rightarrow meas (fmap f ma) \sqsubseteq meas (fmap g ma)
```

```
Remember that M is a functor. Thus, it has a fmap: (A \rightarrow B) \rightarrow (M A \rightarrow M B)!
Proof idea: val \times (p' :: ps') \sqsubseteq val \times (p' :: ps) \sqsubseteq val \times (p :: ps) and transitivity of \sqsubseteq.
```

Understanding the impacts of uncertainty on optimal policies \rightarrow Method (cont'd)

Generic, verified backwards induction (cont'd)

▶ How can we take advantage of Bellman's principle?

- ▶ How can we take advantage of Bellman's principle?
- Assume that we can compute optimal extensions of arbitrary policy sequences:

```
optExt : PolicySeq(t+1) n \rightarrow Policy t

optExtLemma : (ps : PolicySeq(t+1) n) \rightarrow OptExt ps (optExt ps)
```

- ▶ How can we take advantage of Bellman's principle?
- Assume that we can compute optimal extensions of arbitrary policy sequences:

```
optExt : PolicySeq(t+1) n \rightarrow Policy t

optExtLemma : (ps : PolicySeq(t+1) n) \rightarrow

OptExt ps(optExt ps)
```

Then the implementation

```
bi \ t \ Z = Nil

bi \ t \ (n+1) = optExt \ ps :: ps \ where

ps : PolicySeq \ (t+1) \ n

ps = bi \ (t+1) \ n
```

- How can we take advantage of Bellman's principle?
- Assume that we can compute optimal extensions of arbitrary policy sequences:

```
optExt : PolicySeq(t+1) n \rightarrow Policy t

optExtLemma : (ps : PolicySeq(t+1) n) \rightarrow

OptExt ps(optExt ps)
```

Then the implementation

$$bi \ t \ Z = Nil$$

 $bi \ t \ (n+1) = optExt \ ps :: ps \ where$
 $ps : PolicySeq \ (t+1) \ n$
 $ps = bi \ (t+1) \ n$

can be verified:

- How can we take advantage of Bellman's principle?
- Assume that we can compute optimal extensions of arbitrary policy sequences:

```
optExt : PolicySeq(t+1) n \rightarrow Policy t

optExtLemma : (ps : PolicySeq(t+1) n) \rightarrow

OptExt ps(optExt ps)
```

Then the implementation

$$\begin{array}{ll} \textit{bi t Z} &= \textit{Nil} \\ \textit{bi t } (n+1) = \textit{optExt ps} :: \textit{ps where} \\ \textit{ps : PolicySeq } (t+1) \textit{ n} \\ \textit{ps = bi } (t+1) \textit{ n} \end{array}$$

can be verified:

▶ The task is to implement

$$biLemma: (t: \mathbb{N}) \rightarrow (n: \mathbb{N}) \rightarrow OptPolicySeq (bi t n)$$

▶ The task is to implement

$$\textit{biLemma} \, : (t \, : \, \mathbb{N}) \, \, \rightarrow \, \, (\textit{n} \, : \, \mathbb{N}) \, \, \rightarrow \, \, \textit{OptPolicySeq (bi t n)}$$

▶ n = 0: reflexivity of \sqsubseteq .

▶ The task is to implement

```
\textit{biLemma} \,:\, (t \,:\, \mathbb{N}) \,\,\to\,\, (\textit{n} \,:\, \mathbb{N}) \,\,\to\,\, \textit{OptPolicySeq (bi t n)}
```

- ▶ n = 0: reflexivity of \sqsubseteq .
- ▶ n = m + 1: induction on n

```
biLemma\ t\ (m+1) = Bellman\ ps\ ops\ p\ oep\ where
ps\ : PolicySeq\ (t+1)\ m
ps\ = bi\ (t+1)\ m
ops\ : OptPolicySeq\ ps
ops\ = biLemma\ (t+1)\ m
p\ : Policy\ t
p\ = optExt\ ps
oep\ : OptExt\ ps\ p
oep\ = optExtLemma\ ps
```

▶ The task is to implement

```
biLemma: (t : \mathbb{N}) \rightarrow (n : \mathbb{N}) \rightarrow OptPolicySeq (bi t n)
▶ n = 0: reflexivity of \square.
\rightarrow n = m + 1: induction on n
        biLemma t (m+1) = Bellman ps ops p oep where
          ps : PolicySeq(t+1) m
          ps = bi (t+1) m
          ops : OptPolicySeg ps
          ops = biLemma(t+1)m
          p : Policy t
          p = optExt ps
          oep: OptExt ps p
          oep = optExtLemma ps
```

The task is to implement

```
biLemma: (t:\mathbb{N}) \to (n:\mathbb{N}) \to OptPolicySeq (bi t n)

\blacktriangleright n = 0: reflexivity of \sqsubseteq.

\blacktriangleright n = m+1: induction on n

biLemma \ t \ (m+1) = Bellman \ ps \ ops \ p \ oep \ where \ ps : PolicySeq \ (t+1) \ m \ ps = bi \ (t+1) \ m \ ops : OptPolicySeq \ ps
```

p : Policy t
p = optExt ps
oep : OptExt ps p
oep = optExtLemma ps

ops = biLemma(t+1)m

The question is if and under which conditions we can compute optimal extensions of arbitrary policy sequences.

Understanding the impacts of uncertainty on optimal policies $\;
ightarrow\;$ The end

Thanks for your attention!