

Laboratorio Software 2008-2009 M. Grotto R. Farina

Sommario

1. Applicazioni Distribuite

- Introduzione
- ☐ Interfacce e protocolli

2. I Socket

- Descrizione
- Stile di comunicazione
- Namespace e protocollo
- ☐ Include e system call
- □ Creazione e chiusura
- Dettagli sulle funzioni
- Connessione
- Socket locali
- Internet domain socket
- Socket pairs

Applicazioni distribuite

Introduzione

- Applicazione distribuita:
 - E' costituita da un insieme di programmi che vengono generalmente eseguiti su macchine diverse
 - I vari programmi cooperano attraverso una rete di calcolatori
- □ Le applicazioni distribuite richiedono la capacità di comunicare attraverso una rete
- □ Per la comunicazione i programmi di una applicazione distribuita si appoggiano a un insieme di servizi tipici forniti:
 - Dal sistema operativo
 - Dal software di rete

Applicazioni distribuite

Interfacce e protocolli

- □ II programmatore utilizza funzioni di libreria
 - L'insieme delle funzioni di base prende il nome di Application Program Interface o API
 - un socket è un'astrazione software progettata per poter utilizzare delle API standard e condivise per la trasmissione e la ricezione di dati attraverso una rete
- □ La configurazione di riferimento di una applicazione distribuita basata su TCP/IP e socket è la seguente:

Descrizione

- Mezzo di comunicazione BIDIREZIONALE tra processi residenti sulla stessa macchina o su macchine differenti
- □ I dati trasmessi sono suddivisi in pacchetti
- □ I socket sono rappresentati da file descriptor
 - È possibile operare con le primitive di I/O classiche
- ☐ Tre parametri caratteristici
 - Stile di comunicazione
 - Namespace
 - Protocollo

Stile di comunicazione

- □ Stabilisce come vengono trattati i dati trasmessi
- Connection
 - Garantisce la ricezione di TUTTI i pacchetti nell'ordine esatto di spedizione
- Datagram
 - Pacchetti persi o riordinati a causa della rete
 - Ogni pacchetto va etichettato con l'indirizzo del destinatario

Namespace e protocollo

- Namespace
 - Che forma hanno gli indirizzi
 - Ogni indirizzo identifica un'estremità di un socket
 - Nomi locali = nomi di file
 - Nomi Internet = indirizzo IP + porta
 - La porta identifica il particolare socket
- □ Protocollo
 - Modalità di trasmissione
 - TCP/IP: il più famoso per Internet
 - AppleTalk
 - UNIX local communication protocol

Include e system call

```
□ #include <sys/types.h>
□ #include <sys/socket.h>
                   crea un socket
□ socket();
                   distrugge un socket
□ close();
                   crea una connessione tra due socket
□ connect();
                   assegna un indirizzo ad un socket server
□ bind();
                   configura un socket per accettare connessioni
□ listen();
                   accetta una connessione e crea un nuovo socket per
□ accept();
                    la comunicazione
                   per spedire
□ send();
                   per ricevere
□ recv();
```

Creazione e chiusura

- ☐ Si usa socket (); per la creazione
 - Namespace
 - PF_LOCAL, PF_UNIX, PF_INET (PF = protocol families)
 - Stile di comunicazione
 - SOCK_STREAM, SOCK_DGRAM
 - Terzo parametro: protocollo
 - Meccanismo di basso livello per trasmissione e ricezione
 - Dipendente dalla coppia namespace-stile: assegnare 0 è la scelta migliore
 - Restituisce un file descriptor
- □ close(); per chiudere il socket

Dettagli sulle funzioni

- □ bind();
 - Socket file descriptor
 - Puntatore ad una struttura per l'indirizzo del socket
 - Lunghezza in bytes della struttura
- □ Quando un indirizzo viene collegato ad un socket di tipo connection tramite bind(); è necessario invocare listen(); per indicare che è un server
 - File descriptor e dimensione della coda
- □ accept (); per accettare una connessione
 - File descriptor e puntatore ad una struttura sockadar riempita con i dati del client
 - Crea un nuovo socket e restituisce il file descriptor

Connessione

- □ II server
 - Crea un socket
 - Invoca bind(); per assegnargli un indirizzo
 - Invoca listen(); per consentire connessioni al socket
 - Invoca accept (); per accettare connessioni
 - Quando una connessione è accettata viene creato un secondo socket per il trasferimento dati, lasciando il primo in ascolto
- □ Il client invoca connect (); passando l'indirizzo del socket al quale effettuare la connessione
 - Socket da usare e indirizzo a cui connettersi

Socket locali

- □ Namespace locale: PF_LOCAL O PF_UNIX
- □ Formato degli indirizzi (struct sockaddr_un)
 - Il campo sun_family impostato a AF_LOCAL
 - Il campo sun_path specifica il percorso del file da usare
 - Lunghezza massima di 108 bytes
 - Il processo deve avere permessi di scrittura nella directory per poter creare nuovi file
 - Per la connessione al socket un processo deve avere i permessi di lettura sul file

Socket locali

- □ Si usa la macro sun_len per calcolare la lunghezza in bytes della struttura sockaddr
- □ Solo per processi locali
 - Impossibile l'uso anche se computer differenti condividono lo stesso filesystem
- ☐ Si invoca unlink(); sul file descriptor quando si è finito di usare il socket

Esempio

socket-server.c
socket-client.c

Internet domain socket

- □ Namespace Internet: **PF_INET**
- □ Formato degli indirizzi (struct sockaddr_in)
 - sin_family impostate a AF_INET
 - sin_addr memorizza l'indirizzo IP della macchina come intero a 32 bit
 - gethostbyname (); per convertire indirizzi IP nella notazione dotted o nomi in interi a 32 bit

Restituisce un puntatore ad una struttura hostent il cui campo h addr contiene l'indirizzo IP

- sin_port memorizza il numero di porta
 - Distingue i diversi socket su una macchina
 - Funzione htons (); per convertire il numero di porta in network byte order

Socket pairs

- □ Pipe limitate dal fatto che la comunicazione è unidirezionale e solo tra processi in relazione
- □ socketpair(); crea una coppia di socket connessi
 - Comunicazione bidirezionale tra processi in relazione
 - Primi tre parametri identici a quelli per l'invocazione di socket (dominio, stile, protocollo)
 - PF_LOCAL come dominio
 - Parametro addizionale: array di interi di dimensione 2
 - File descriptors dei socket
 - Simile alle pipe