Der Vektorraumbegriff	1
2. Unterräume	
3. Lineare Abhängigkeit/ Unabhängigkeit	3
Frzeugendensystem	3
5. Dimension	
5. Austauschlemma	5
7. Linearität von Abbildungen	6
3. Kern und Bild von Abbildungen	

1. Der Vektorraumbegriff

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Die Menge V stellt einen Vektorraum dar, wenn folgende Axiome erfüllt sind:

1. für alle $v, w \in V$ und alle $r \in \mathbb{R}$ gilt.

$$v+w \in V$$
 und $r \bullet v \in V$

- 2. Kommutativität: v+w=w+v für alle $v,w\in V$
- 3. Assoziativität: (v+w)+u=v+(w+u) für alle $v,w,u\in V$
- 4. Neutralität des Nullelements: v+0=v für alle $v \in V$
- 5. Existenz des Inversen: zu jedem $v \in V$ gibt es ein $-v \in V$ mit v + (-v) = 0
- 6. $r \bullet (s \bullet v) = (rs)v$ für alle $v \in V$ und $r, s \in \mathbb{R}$
- 7. $(r+s) \bullet v = rv + sv$ für alle $v \in V$ und $r, s \in \mathbb{R}$
- 8. r(v+w) = rv + rw für alle $v, w \in V$ und $r \in \mathbb{R}$

2. Unterräume

Eine Teilmenge U von \mathbb{R}^n heißt Unterraum von \mathbb{R}^n , wenn mit je zwei Vektoren \vec{a}, \vec{b} aus U auch

 $\vec{a} + \vec{b}$ und $\lambda \vec{a}$ (für alle $\lambda \in \mathbb{R}$) in U liegen.

Beispiele:

1. Stelle fest, ob die Menge der Vektoren $U := \left\{ \begin{pmatrix} 1 \\ x \\ 1 \end{pmatrix} : x \in \mathbb{R} \right\} \subseteq \mathbb{R}^3$ ein Unterraum des

 \mathbb{R}^3 darstellt

Aufgrund der Abgeschlossenheit der Addition im Vektorraum ist U in diesem Beispiel kein U-Vektorraum

- 2. Seien U_1, U_2 Untervektorräume von dem Vektorraum V
- **2.1.** $U_1 + U_2 = \{x + y | x \in U_1, x \in U_2\}$ ist ein Untervektorraum von V
- **2.2.** $U_1 \cap U_2$ ist ein Untervektorraum von V

3. $U = \{x | x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$ ist kein Untervektorraum des \mathbb{R}^4

(Warum?)

Weil der Nullvektor diese Gleichung nicht erfüllt und daher kein Element von U darstellt

3. Lineare Abhängigkeit/ Unabhängigkeit

Eine Menge von Vektoren $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ heißt linear abhängig, wenn wenigstens einer der Vektoren als Linearkombination der anderen geschrieben werden kann, oder der Nullvektor ist. In diesem Fall hat das Gleichungssystem $\vec{a}_1 \lambda_1 + \vec{a}_2 \lambda_2 + ... + \vec{a}_n \lambda_n = 0$ außer der Lösung $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$ noch wenigstens eine andere Lösung. Ist $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$ jedoch die einzige Lösungsmöglichkeit, sind die Vektoren $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$ linear unabhängig.

Warum ist nun eine Menge, die den Nullvektor enthält linear abhängig?

$$0 \bullet \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \bullet \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + 0 \bullet \begin{pmatrix} 4 \\ -7 \\ 5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 für λ kann jede reelle Zahl \neq 0 eingesetzt

werden, sodass nicht nur die triviale Lösung das Gleichungssystem löst.

4. Erzeugendensystem

Ein Erzeugendensystem A eines Vektorraums ist eine beliebige nichtleere Teilmenge des Vektorraums, dessen Menge an Linearkombinationen $x = \sum \lambda_i a_i$ jeden Vektor des Raumes erzeugt.

4.1. Ist E ein EZS von V, so lässt sich jeder Vektor aus V als Linearkombination von endlich vielen Vektoren aus E darstellen (muss keine eindeutige Darstellung sein)

- 4.2. Wenn E EZS von V ist, so ist auch Teilmenge F mit $E \subseteq F \subseteq V$ EZS von V
- 4.3. Eine endliche Teilmenge T ist genau dann linear unabhängig, wenn sich kein Vektor aus dieser Menge als Linearkombination der übrigen Vektoren dieser Menge darstellen lässt
- 4.4. jede endliche Teilmenge von T ist linear unabhängig
- 4.5. V sei ein Vektorraum über dem Körper $\mathbb R$. Eine Teilmenge von $B\subseteq V$ heißt Basis von V, wenn gilt:
- i) B ist linear unabhängig
- ii) B ist ein Erzeugendensystem von V

5. Dimension

Unter der Dimension eines Vektorraumes wird die maximale Anzahl der linear unabhängigen Vektoren in diesem Vektorraum verstanden.

Beispiel:

Der Vektorraum \mathbb{R}^3 hat die Dimension 3. Das bedeutet, dass eine Teilmenge des Raumes mit 3 linear unabhängigen Vektoren eine Basis darstellt. Jeder vierte hinzukommende Vektor lässt sich durch die anderen 3 linear unabhängigen Vektoren linear erzeugen, sodass eine TM vom \mathbb{R}^3 mit vier Vektoren linear abhängig ist.

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}; \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$
 sind beispielsweise linear abhängig, da die ersten drei Vektoren

eine Basis des \mathbb{R}^3 darstellen und somit den vierten Vektor $\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ linear erzeugen.

5.1. Ein Vektorraum kann mehrere Basen haben, der \mathbb{R}^3 hat sogar unendlich viele Basen, die natürlich nur aus drei Elementen, die zueinander linear unabhängig sind, bestehen.

6. Austauschlemma

Sei B= $\{v_1,...,v_n\}\subseteq V$ eine Basis des Vektorraums V. Für einen Vektor $w\in V$ gelte $w=a_1v_1+a_2v_2+,...,+a_nv_n$ $a_i\subseteq\mathbb{R}$ mit $a_i\neq 0$

Dann ist auch die Menge $C := \{v_1, ..., v_{j-1}, w, v_{j+1}, ..., v_n\}$

Der j-te Vektor aus B wird gegen den Vektor w ausgetauscht.

Ist also B eine Basis von v und $w \neq 0$, so lässt sich ein geeigneter Vektor aus B gegen diesen Vektor w austauschen. Es lassen sich sogar sogar simultan geeignete Vektoren aus B durch die Vektoren einer beliebig vorgegebenen linear unabhängigen Teilmenge von V ersetzen, so dass wieder eine Basis von V entsteht.

Beispiel:

Sei

$$\mathbf{T:=} \quad v_1 = \begin{pmatrix} 0 \\ 6 \\ 8 \\ 18 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, v_3 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 5 \end{pmatrix}, v_4 = \begin{pmatrix} 4 \\ 7 \\ 1 \\ 1 \end{pmatrix} \text{ eine Menge linear unabhängiger Vektoren}$$

Tausche einen der Vektoren der Menge T aus durch den Vektor

$$w = \begin{pmatrix} 1 \\ 5 \\ 7 \\ 19 \end{pmatrix}$$
, so dass wieder eine Basis des \mathbb{R}^4 entsteht

Lösungsansatz siehe Nelius

7. Linearität von Abbildungen

Sei K ein beliebiger Körper. V und W seinen beliebige Vektorräume über K. Eine Abbildung

$$f: V \to W$$

heißt K-linear (oder auch K-Homomorphismus) wenn gilt:

$$\forall a \in K; \forall v \in V$$

L1)
$$f(v+v') = f(v) + f(v') \ \forall v, v' \in V$$

L2)
$$f(av) = af(v)$$

8. Kern und Bild von Abbildungen

Für eine K-lineare Abbildung $f:V \to W$ gilt:

a)
$$\operatorname{Kern}(f) := \{ v | v \in V, f(v) = 0_w \} \subseteq V$$

b) Bild(f):=
$$\{f(v) | v \in V\} \subseteq W$$

Satz: für eine K-lineare Abbildung gilt:

a) f injektiv \Leftrightarrow Kern(f) =0

(somit ist auch die Dimension des Kerns 0 und nicht 1!)

- b) f surjektiv \Leftrightarrow Bild (f) = W
- c) Der Kern einer linearen Abbildung ist ein Unterraum der Definitionsbereichs
- d) Das Bild einer linearen Abbildung ist ein Unterraum des Wertebereichs

Beispiel:

1.

Es sei A eine $m \times n$ - Matrix. Wir betrachten die lineare Abbildung

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
, $f(x)=Ax$

Dann ist der Kern von f die Lösungsmenge des linearen Gleichungssystems Ax=0.

Das Bild von f ist die Menge aller Vektoren $b \in \mathbb{R}^m$, für die das lineare Gleichungssystem Ax = b eine Lösung besitzt

2.

$$\mathbb{R}^3 \to \mathbb{R}^2$$
, $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+1 \\ y-1 \end{pmatrix}$ ist nicht linear da gilt: $f(0) \neq 0$

da der Kern einer linearen Abbildung jedoch ein Unterraum des \mathbb{R}^3 ist, müsste 0 im Kern enthalten sein.

Satz (Dimensionssatz für lineare Abbildungen).

Seien V, W Vektorräume, sei $f: V \rightarrow W$ eine lineare Abbildung.

Ist V endlich erzeugt, so sind auch Kern(f) und Bild(f) endlich erzeugt und es gilt

$$\dim \operatorname{Kern}(f) + \dim \operatorname{Bild}(f) = \dim V$$

Man nennt dim Bild(f) den Rang von f. Also kann man auch schreiben:

$$\dim \operatorname{Kern}(f) + \operatorname{Rang}(f) = \dim V$$

Seien V und W endlich dimensionale Vektorräume, und es gilt, $\dim(V) = \dim(W)$, so gilt für eine lineare Abbildung f:

- a) f ist injektiv
- b) f ist surjektiv
- c) f ist bijektiv