Aula 13

Conteúdo

Contadores

- Contadores Síncronos
 - Contador Síncrono Gerador de Código Binário de 4 bits
 - Contador de Década
 - Contador Gerador de uma sequencia qualquer
 - Contadores de Anel
 - Contadores Utilizados em Circuitos Temporizados

Estes contadores possuem entradas clock curto-circuitadas, ou seja, o clock entra em todos os flip-flops simultaneamente, fazendo todos atuarem de forma sincronizada.

Para que haja mudanças de estado, devemos então estudar o comportamento das entradas J e K dos vários flip-flops, para que tenhamos nas saídas, as sequencias desejadas.

- Se o flip-flop estiver em 0 (Qa = 0) e quisermos que o estado a ser assumido seja 0 (Qf = 0), podemos tanto manter o estado do flip-flop (J = 0, K = 0 ⇒ Qf = Qa), como fixar 0 (J = 0, K = 1 ⇒ Qf = 0), logo, se J = 0 e K = X, teremos a passagem de Qa = 0 para Qf = 0.
- 2) Se o flip-flop estiver em 0 (Qa = 0) e quisermos que o estado a ser assumido seja 1 (Qf = 1), podemos tanto inverter o estado (J = 1, K = 1 ⇒ Qf = Qa), como fixarmos 1 (J = 1, K = 0 ⇒ Qf = 1), logo, se J = 1 e K = X, teremos a passagem de Qa = 0 para Qf = 1.
- Quando o flip-flop estiver em 1 (Qa = 1) e quisermos que ele vil para 0 (Qf = 0), podemos inverter o estado (J = 1, K = 1 ⇒ Qf = Qa) ou fixar 0 (J = 0, K = 1 ⇒ Qf = 0), logo, se J = X e K = 1, teremos a passagem de Qa = 1 para Qf = 0.
- Quando o flip-flop estiver em 1 (Qa = 1) e quisermos que ele permaneça em 1 (Qf = 1), podemos manter o estado (J = 0, K = 0 □ Qf = Qa) ou fixarmos 1 (J = 1, K = 0 ⇒ Qf = 1), logo, se J = X ∈ K = 0, teremos a passagem de Qa = 1 para Qf = 1.

K	Qf	
()	Qa	(mantém o estado)
1	0	(fixa 0)
()	1	(fixa 1)
1	Qa	(inverte o estado)
	0 1 0	1 0 0 1

	- Qa	Qf	J	K
1)	0	0	0	· X
2)	0	1	1	X
3)	1	0	X	1
4)	1	1	X	0

De posse dos resultados das entradas J e K dos flip-flops para a sequencia desejada, obtidos na tabela, efetuamos as simplificações e montamos um circuito combinacional que em função das saídas dos flip-flops irá atuar nestas entradas para processar as mudanças de estado.

Genericamente, um contador síncrono possui o esquema visto na figura:

Contador Síncrono Gerador de código binário de 4 bits

Para gerarmos esse código, necessitamos de 4 flip-flops JK mestre-escravo, ou

seja, um flip-flop para cada bit do código:

ck	Q_3	Q_2	Q_1	Q_0	
<u>1a</u>	0	0	0	0	≪
2 <u>a</u>	0	0	0	1	
<u>3a</u>	0	0	1	0	
4.0	0	0	1	1	
5ª	0	1.	0	0	
6 <u>a</u>	0	1	0	1	
7 <u>a</u>	0	1	1	0	
ga	0	1	1	1	
9a	1	0	0	0	
10a	1	0	0	1	
11a	1	0	1	0	
12ª	1	0	1	1	
13a	1	1	0	0	
140	1	1	0	1	
15a	1	1	1	0	
16a	1	1	1	1	-

Contador Síncrono Gerador de código binário de 4 bits

Esta tabela apresenta a sequencia que as saídas dos flip-flops devem assumir em função da presença de pulsos de clock. Para o projeto, devemos estudar, para cada caso, o comportamento das entradas J e K dos flip-flops e levantar o circuito necessário para gerar a sequencia.

Vamos supor que ao ligarmos o contador, ele assuma o seguinte estado inicial:

Q_3	Q_2	Q_1	Q_0
0	0	0	0

E deverá, após o 1º pulso e clock, passar para o estado seguinte:

Q_3	Q_2	Q_1	Q_0
0	0	0	1

Contador Síncrono Gerador de código binário de 4 bits

Sob a presença do 1º pulso do clock temos:

- Q₃: estava em 0, deve passar para 0, logo, antes do 1º pulso de clock, devemos ter as seguintes entradas neste flip-flop: J₃ = 0 e K₁ = X (J = 0 e K = X ⇒ Qa = 0 passa para Qf = 0).
- Q_2 : caso análogo a Q_3 , logo $J_2 = 0$ e $K_2 = X$.
- Q_1 : idem, logo, $J_1 = 0$ e $K_1 = X$.
- Q₀: estava em 0, após o 1º pulso de clock deve mudar para 1, logo anten do 1º pulso de clock, devemos ter as seguintes entradas neste flip-flopt J₀ = 1 e K₀ = X (J = 1 e K = X ⇒ Qa = 0 passa para Qf = 1).

Contador Síncrono Gerador de código binário de 4 bits

Podemos a partir da análise, escrever a primeira linha da tabela verdade:

Descida do pulso de clock	101000000000000000000000000000000000000	Q2	Qı	Q_0	Jı	K ₃	J_2	K ₂	J_1	\mathbf{K}_{1}	J_0	K ₀
1ª	0	0	0	0	0	X	0	X	0	X	1	X
	0	0	0	1								

O contador agora está no estado:

Q_3	Q_2	Q_1	Q_0
0	0	0	1

Contador Síncrono Gerador de código binário de 4 bits

E deve após o 2º pulso, passar para:

$$\begin{array}{c|ccccc} Q_3 & Q_2 & Q_1 & Q_0 \\ \hline 0 & 0 & 1 & 0 \\ \end{array}$$

Vamos, então, analisar as entradas J e K para este caso:

- Q_3 : estava em 0 e deve permanecer em 0, logo, antes do 2° pulso de clock, devemos ter a seguinte situação de entrada: $J_3 = 0$ e $K_3 = X$
- \Rightarrow Q₂: possui caso análogo a Q₃, logo J₂ = 0 e K₂ = X.
- Arr Q₁: estava em 0 e deve passar para 1, logo, antes do 2º pulso de clock, devemos ter a seguinte situação de entrada no flip-flop: J₁ = 1 e K₁ = X.
- Q_0 : estava em 1 e deve passar para 0, logo antes do Q_0 pulso de clock, devemos ter a seguinte situação de entrada: $Q_0 = X \in K_0 = 1$.

Contador Síncrono Gerador de código binário de 4 bits

Podemos, a partir disso, escrever a segunda linha da tabela verdade:

Descida do pulso de clock			Q ₁		13	K 3	J ₂	K_2	Jı	K_1	Ja	K ₀
1^{8}	0	0	0	0	0	X	0	X	0	X	1	X
2ª	0	0	0	1	0	X	0	X	1	Х	X	1
(c.)	0	0	1	0				70				

	Q_3	Q_2	Q_1	Q_0
estado 2 -	0	0	1	0
estado 3 →	0	0	1	1

$$Q_3$$
: vai de 0 para $0 \rightarrow J_3 = 0$ e $K_3 = X$
 Q_2 : vai de 0 para $0 \rightarrow J_2 = 0$ e $K_2 = X$
 Q_1 : vai de 1 para $1 \rightarrow J_1 = X$ e $K_1 = 0$
 Q_0 : vai de 0 para $1 \rightarrow J_0 = 1$ e $K_0 = X$

Contador Síncrono Gerador de código binário de 4 bits

A tabela verdade até a 3ª linha será

Descidas do pulso de clock	Q3	Q2	Q ₁	Q_0	J_3		J ₂	K ₂	Jr	\mathbf{K}_{1}	J_0	\mathbf{K}_{0}
1^{0}	0	0	0	0	0	X	0	X	0	X	1	X
2^{9}	0	0	0	1	0	X	0	Х	1	Х	Х	1
3^{a}	0	0	1	0	0	Х	0	X	X	0	1	X
	0	()	1	1								

Contador Síncrono Gerador de código binário de 4 bits

Descidas do pulso de clock	Q3	100	Qı		J3	К,	J_2	K ₂	Ji	K,	J_{θ}	K ₀
I ₃ :	- ▶0	0	0	0	0	X	0	X	0	Х	1	X
2 ^a	0	0	0	1	0	Х	0	X	1	X	Х	1
3ª	0	0	1	0	0	X	0	X	X	0	1	X
42	0	0	1	1	0	X	1	X	X	1	X	1
52	0	1	0	0	0	X	X	0	0	X	1	X
6ª	0	1	0	1	0	X	X	0	1	X	Х	1
72	0	1	1	0	.0	X	X	0	X	0	1	X
8 ²	0	1	1	1	1	X	X	1	X	1	Х	1
92	1	0	0	0	Х	0	0	Х	0	X	1	X
104	1	()	0	1	Х	0	0	Х	1	Х	Х	1
11ª	1	0	1	0.	Х	0	0	Х	. X	0	1	X
12ª	1	0	1	1	Х	0	1	X	X	1	Х	1
134	1	1	0	0	X	0	X	0	0	Х	1	X
14ª	1	1	0	1	Х	0	X	0	1	X	Х	1
15ª	1	1	1	0	Х	0	X	0	X	0	1	X
16ª :	-11	1	1	1.	Х	1	X	1	X	1	Х	1

Notamos que, no projeto, o estado 0 foi considerado após o estado 15, pois ao final, o contador deve reiniciar a contagem.

Para obter as expressões de J_3 , K_3 , J_2 , K_2 , J_1 , K_1 , J_0 , K_0 , simplificadas, vamos utilizar diagramas de Veitch-Karnaugh.

Contador Síncrono Gerador de código binário de 4 bits

 $J_3 = Q_2 Q_1 Q_0$

:.
$$J_3 = K_3 = Q_2 Q_1 Q_0$$

$$K_3 = Q_2 Q_1 Q_0$$

Contador Síncrono Gerador de código binário de 4 bits

 $J_2 = Q_1 Q_0$

$$\therefore J_2 = K_2 = Q_1 Q_0$$

$$K_2 = Q_1 Q_0$$

Contador Síncrono Gerador de código binário de 4 bits

 $J_1 = Q_0$

 \therefore J₁ = K₁ = Q₀

Contador Síncrono Gerador de código binário de 4 bits

 $J_0 = 1$ $\therefore J_0 = K_0 = 1$

Contador Síncrono Gerador de código binário de 4 bits

O circuito completo deste contador:

As entradas clear e preset dos flip-flops poderiam, da mesma forma que nos contadores assíncronos, ser utilizadas para estabelecer o caso inicial, zerar o contador, ou ainda, fixar qualquer caso no decorrer da contagem

Contador de Década

Verificando o comportamento das estradas J e K:

Q_3	Q_2	Q_1	Q_{θ}	J_3	K_3	J_2	K ₂	J_1	K ₁	J_0	K_0
 0	0	0	0	0	X	0	X	0	X	1	X
0	0	0	1	0	X	0	X	1	X	X	1
0	0	1	0	0	X	0	X	X	0	1	X
0	0	1	1	0	X	1	X	X	1	X	1
0	1	0	0	0	X	X	0	0	X	1	X
0	1	0	1	0	X	X	0	1	X	X	1
0	1	1	0	0	X	X	0	X	0	1	X
0	1	1	1	1	X	X	1	X	1	X	1
1	0	0	0	X	0	0	X	0	X	1	X
1	0	0	1	X	1	0	X	0	X	X	1

Supondo conseguir o estado inicial através das entradas clear e preset, vamos considerar os estados não pertencentes à sequencia com o irrelevantes.

Contador de Década

Contador de Década

 J_1 :

 $J_1=Q_0\ \overline{Q}_3$

 K_1 :

 $K_1 = Q_0$

 J_0 :

 $J_0 = 1$

 K_0 :

		\overline{Q}_1	Q	,	
$\overline{\mathbb{Q}}_3$	Х	1	1	Х	Q,
7	Х	1	1	Х	
	Х	Х	Х	Х	Q,
Q_3	х	1	х	Х	Q.
	$\overline{\mathbb{Q}}_0$		Q_0	$\overline{\mathbb{Q}}_{0}$	
		(h)		

 $K_0 = 1$

Contador de Década

Circuito obtido das Expressões:

Contador Gerador de uma sequência qualquer

Podemos construir um contador que gere uma sequência qualquer, para isso:

- Estabelecemos a sequência
- Seguimos o método já conhecido (determinação das entradas J e K)
- Os estados que não fizerem parte da sequencia deverão ser considerados como condições irrelevantes, ou ser encadeados objetivando atingir o estado inicial

Contador Gerador de uma sequência qualquer

Ex.: construir um contador que gere a seguinte sequência:

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 10 \longrightarrow 13 \longrightarrow 0$$

Diagrama de estados

Contador Gerador de uma sequência qualquer

Notamos que os estados que não pertencem à sequência são: 4, 5, 6, 7, 8, 9, 11, 12, 14 e 15.

Vamos fazer então que o contador estando no estado 4, após o pulso de clock, vá para o estado 5, desta para o 6 e assim sucessivamente, até que do estado 15 vá para o 0 e inicie a sequência:

Notamos que este contador, na pior das hipóteses (no estado 4), irá entrar no loop da sequência após o 10º pulso do de clock

Contador Gerador de uma sequência qualquer

Estados	Q ₃	Q_2	Q_1	Q_0	J_3	K ₃	J_2	K ₂	J_1	K ₁	Jo	Ko
0	0	0	0	0	0	Х	0	Х	0	Х	1	X
1	0	0	0	1	0	Х	0	Х	1	X	X	1
2	0	0	1	0	0	Х	0	X	X	0	1	Х
3	0	0	1	1	1	Х	0	X	X	0	X	1
<u>(10</u>	1	0	1	0	o estado 3 antecede o 10							
4	0	1	0	0	0	X	X	0	0	X	1	X
4) 5	0	1	0	1	0	Х	Х	0	1	Х	Х	1
6	0	1	1	0	0	Х	X	0	X	0	1	X
⑦ ⑧ ⑨	0	1	1	1	1	Х	X	1	X	1	X	1
8	1	0	0	0	X	0	0	X	0	X	1	X
9	1	0	0	1	Х	0	0	Х	1	X	X	0
(11)	1	0	1	1	o estado 9 antecede o 11							
10	1	0	1	0	X	0	1	X	Х	1	1	X
(<u>13</u>	1	1	0	1	o estado 10 antecede o 13							
11)	1	0	1	1	Х	0	1	X	X	1	X	1
(12)	1	1	0	0	Х	0	X	0	1	X	0	X
<u>(14)</u>	1	1	1	0	o estado 12 antecede o 14							
(13)	1	1	0	1	Х	1	Х	1	0	Х	X	1
<u></u>	0	0	0	0	o estado 13 antecede o 0							
14)	1	1	1	0	Х	0	X	0	Х	0	1	X
15	1	1	1	1	Х	1	Х	1	X	1	Х	1
<u> </u>	0	0	0	0	o e	stad	o 15	ant	eced	le o (0	\supseteq

Contador Gerador de uma sequência qualquer

$$J_3 = Q_1 Q_0$$

$$K_3 = Q_2 \; Q_0$$

		$\overline{\overline{Q}}_1$	Q	1	
$\overline{\mathbb{Q}}_3$	0	0	0	0	$\overline{\mathbb{Q}}_2$
	х	Х	х	х	
	Х	Х	(x	X)	Q ₂
Q_3	0	0	1	1)	$\overline{\mathbb{Q}}_2$
-	$\overline{\mathbb{Q}}_{0}$		Q_0	$\overline{\mathbb{Q}}_{0}$	

$$J_2 = Q_3 Q_1$$

$$K_2 = Q_3Q_0 + Q_1 Q_0$$

Contador Gerador de uma sequência qualquer

$$J_{1} = Q_{0} \overline{Q}_{3} + Q_{0} \overline{Q}_{2} + Q_{3} Q_{2} \overline{Q}_{0}$$

$$J_{1} = Q_{0} (\overline{Q}_{3} + \overline{Q}_{2}) + \overline{Q}_{0} (Q_{3} Q_{2})$$

$$J_{1} = Q_{0} (\overline{Q}_{3} \overline{Q}_{2}) + \overline{Q}_{0} (Q_{3} Q_{2})$$

$$J_{1} = Q_{0} \oplus (Q_{3} Q_{2})$$

$$K_1 = Q_2 Q_0 + Q_3 \overline{Q}_2$$

$$J_0 = \overline{Q}_3 + \overline{Q}_2 + Q_1$$

$$K_0 = \overline{Q}_3 + Q_2 + Q_1$$

Contador Gerador de uma sequência qualquer

O circuito:

Contador de Anel

Este contador também conhecido em inglês com Ring Counter, irá gerar a sequência:

Contador de Anel

Comportamento de J e K perante a sequencia apresentada:

	Q_3	Q_2	Q_1	Q_0	J_3	K ₃	J_2	STATE OF THE PARTY	J_1			K ₀
;>	0	0	0	1	0	X	0	X	1	X	X	1
	0	0	1	0	0	X	1	X	X	1	0	X
	0	1	0	0	1	X	X	1	0	X	0	X
	1	0	.0	0	X	1	0	X	0	X	1	X

Contador de Anel

Se obtivermos o estado inicial através das entradas preset e clear, faremos o contador permanecer sempre no loop da sequência, logo, os outros estados tornar-se-ão irrelevantes:

^{*} Embora pudéssemos ligar a entrada K_3 em 1 (agrupamento máximo), podemos também ligá-la à saída \overline{Q}_2 (agrupamento da oitava \overline{Q}_2).

Contador de Anel

 J_2 :

 $J_2 = Q_1$

 K_2 :

 $K_2 = \overline{Q}_1 *$

 J_1 :

 $J_1 = Q_0$

 K_1 :

 $K_1 = \overline{Q}_0$ *

Contador de Anel

 J_0 :

$$J_0 = Q_3$$

* K_2 , K_1 e K_0 , análogos a K_3 .

K_0 :

$$K_0 = \overline{Q}_3 *$$

Contador de Anel

O circuito:

