54LS160A/DM74LS160A, 54LS162A/DM74LS162A Synchronous Presettable BCD Decade Counters

General Description

The 'LS160 and 'LS162 are high speed synchronous decade counters operating in the BCD (8421) sequence. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The 'LS160 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The 'LS162 has a Synchronous Reset input that overrides counting and parallel loading and allows all outputs to be simultaneously reset on the rising edge of the clock.

Features

- Synchronous counting and loading
- High speed synchronous expansion
- Typical count rate of 35 MHz
- Fully edge triggered

Connection Diagram

Order Number 54LS160ADMQB, 54LS160AFMQB, 54LS160ALMQB, 54LS162ADMQB, 54LS162AFMQB, 54LS162ALMQB, DM74LS160AM, DM74LS160AN, DM74LS162AM or DM74LS162AN See NS Package Number E20A, J16A, M16A, N16E or W16A

Pin Names	Description			
CEP	Count Enable Parallel Input			
CET	Count Enable Trickle Input			
CP	Clock Pulse Input (Active Rising Edge)			
MR ('160)	Asynchronous Master Reset			
	Input (Active LOW)			
SR ('162)	Synchronous Reset			
	Input (Active LOW)			
P0-P3	Parallel Data Inputs			
PE	Parallel Enable Input			
	(Active LOW)			
Q0-Q3	Flip-Flop Outputs			
TC	Terminal Count Output			

Symbol

PE	P0	P1	P2	P3
CEP	7	4162	,	
CET CP	,	4102	4	TC
SR	Q0	Q1	Q2	Q3
-0				

Truth Table

SR PE CET CEP CP					Q _{3:0} ^{t+1}		
0	X	Χ	Χ	\uparrow	(0000) ₂		
1	0	X	X	\uparrow	$(P_3P_2P_1P_0)_2$		
1	1	1	1	\uparrow	(Q _{3:0} +1) mod 10		
1	1	0	X	X	$\mathrm{Q}_{3:0}^{t}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$TC = Q_3 \cdot \overline{Q_2} \cdot \overline{Q_1} \cdot Q_0 \cdot CET$							
Count Enable = $CEP \cdot CET \cdot PE$							

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage 7V
Input Voltage 7V
Operating Free Air Temperature Range

Storage Temperature Range -65°C to $+150^{\circ}\text{C}$

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	54LS160A/162A		DM74LS160A/162A			Units	
Syllibol	raiametei	Min	Nom	Max	Min	Nom	Max	Joints
V _{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C
t _s (H) t _s (L)	t _S (H) Setup Time, HIGH or LOW				20 20			ns
t _h (H)	Hold Time, HIGH or LOW P _n to CP	0.0 0.0			0.0 0.0			ns
t _s (H)	Setup Time, HIGH or LOW PE to CP	20 20			20 20			ns
t _h (H) t _h (L)	Hold Time, HIGH or LOW PE to CP	0 0			0			ns
t _s (H) t _s (L)	Setup Time, HIGH or LOW CEP, CET or SR to CP	20 20			20 20			ns
t _h (H)	Hold Time, HIGH or LOW CEP, CET or SR to CP	0 0			0			ns
t _w (H) t _w (L)	CP Pulse Width, HIGH or LOW	15 25			15 25			ns
t _w (L)	MR Pulse Width LOW ('160)				15			ns
t _{rec}	_ `				20			ns

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	54LS	2.5			V
	Voltage	Voltage V _{IL} = Max DM74	DM74	2.7			·
V _{OL}	Low Level Output	$V_{CC} = Min, I_{OL} = Max,$	54LS			0.4	
	Voltage	V _{IH} = Min	DM74			0.5	٧
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$	DM74			0.4	

Note 1: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted) (Continued)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	Other			0.1	mA
	Input Voltage	PE, CI	PE, CET Inputs			0.2	1117
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$	Other			20	μΑ
		PE, CI	ET Inputs			40	μπ
I _{IL}	Low Level Input Current	V _{CC} = Max, V _I = 0.4V Inputs	54LS			-0.4	mA
		DM7-				-1.6	1117
		PE, CET Inputs				-0.8	mA
los	Short Circuit	V _{CC} = Max	54LS	-20		-100	mA
	Output Current	(Note 2)	DM74	-20		-100	1117
Іссн	Supply Current with Outputs HIGH	$V_{CC} = Max, \overline{PE} = GND$ $CP = \checkmark$, Other Inputs = 4.5V				31	mA
I _{CCL}	Supply Current with Outputs LOW	V _{CC} = Max, V _{IN} = GND CP = ✓				31	mA

Switching Characteristics $V_{CC} = +5.0V$, $T_A = +25$ °C

Symbol	Parameter	R _L C _L	Units	
		Min	Max	
f _{max}	Maximum Clock Frequency	25		MHz
t _{PLH}			25 21	ns
t _{PLH}	Propagation Delay CP to Q _n		24 27	ns
t _{PLH}			14 23	ns
t _{PHL} Propagation Delay MR to Q _n ('160)			28	ns

Functional Description

The 'LS160 and 'LS162 count modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLL). The '161 and '163 count modulo-16 binary sequence. From state 15 (HHHH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the 'LS160) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('LS160), synchronous reset ('LS162), parallel load, count-up and hold. Five control inputs—Master Reset (MR, 'LS160), Synchronous Reset (GR, 'LS162), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)—determine the mode of operation, as shown in the

Mode Select Table. A LOW signal on $\overline{\text{MR}}$ overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on $\overline{\text{SR}}$ overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on $\overline{\text{PE}}$ overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{\text{PE}}$ and $\overline{\text{MR}}$ ('LS160) or $\overline{\text{SR}}$ ('LS162) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The 'LS160A and 'LS162A use D-type edge-triggered flipflops and changing the $\overline{SR}, \overline{PE}$, CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

Functional Description (Continued)

The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in its maximum count state (9 for the decade counters, 15 for the binary counters). To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways.

These two schemes are shown in the 9310 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. In the decade counters of the 'LS160, 'LS162, the TC output is fully decoded and can only be HIGH in state 9.

LOGIC EQUATIONS:

Count Enable = CEP • CET • PE $TC = Q0 \bullet \overline{Q}1 \bullet \overline{Q}2 \bullet Q3 \bullet CET$

Mode Select Table

*SR	PE	CET	CEP	Action on the Rising Clock Edge ()
L	Χ	Х	Х	RESET (Clear)
Н	L	Х	Х	LOAD $(P_n \rightarrow Q_n)$
Н	Н	Н	Н	COUNT (Increment)
Н	Н	L	X	NO CHANGE (Hold)
Н	Н	Х	L	NO CHANGE (Hold)

*For the 'LS162

H = HIGH Voltage Level
L = LOW Voltage Level

X = Immaterial

State Diagrams

'LS160, 'LS162

TL/F/10177-5

Physical Dimensions inches (millimeters) (Continued)

16-Lead Small Outline Molded Package (M)
Order Number DM74LS160AM DM74LS162AM
NS Package Number M16A

16-Lead Molded Dual-In-Line Package (N) Order Number DM74LS160AN or DM74LS162AN NS Package Number N16E

Physical Dimensions inches (millimeters) (Continued)

16-Lead Ceramic Flat Package (W) Order Number 54LS160AFMQB or 54LS162AFMQB NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege etevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408