Corps Cyclotomique

I) Racine n-ième de l'unité, Racine primitive n-ième de l'unité.

Définition 1

Soit P le polynôme K[X] s'écrivant sous la forme $P(X) = X^n - 1$ avec $n \in N^*$, K un corps commutatif. Les racines de P sont appelées racines n-ième de l'unité. L'ensemble de ces racines est noté $G_n = \{X \in K \mid X^n = 1\}$.

Pour K = C, on a $G_n = \{e^{(\frac{2\pi i k}{n})} \text{ avec } k \in \{0,..., n-1\}\}$ et est un sous-groupe cyclique de C^* isomorphe à Z/nZ et de cardinal n.

 $P(X) = X^n - 1 = (X-1)(X^{n-1} + X^{n-2} + ... + X + 1)$ Il ne s'agit donc pas d'un polynôme irréductible.

Exemple 1

Pour n=4, les racines 4èmes de l'unité sont : 1, -1, i, -i.

Pour n=3, les racines 3èmes de l'unité sont 1, exp $(2\pi i/3)$, et exp $(4\pi i/3)$.

Définition 2

Une racine n-ième de l'unité est dite primitive quand elle est d'ordre exactement n, c'est-à-dire quand c'est un générateur de G_n . On note P_n l'ensemble des racines primitives nième de l'unité.

Exemple 2

Pour n=4, les racines quatrième primitives de l'unité sont : $\{i, -i\}$

la première racine n-ième de l'unité noté $\alpha = e^{2\pi i/n}$ est toujours primitive card(α)=n

Proposition

Il y'a φ(n) racine primitives n-ème de l'unité,

$$ord(\alpha^k)=n \iff pgcd(k,n)=1$$

Démonstration

Soit α^k une racine n-ième de l'unité.

-Si pgcd (k,n)=1 alors
$$(\alpha^{k})^{n} = (\alpha^{n})^{k} = 1^{k} = 1$$
.

$$\alpha^{kr} = (\alpha^k)^r = 1 \Rightarrow n/kr \Rightarrow n \le r \Rightarrow ord(\alpha^k) = n$$

-Si pgcd(k,n)
$$> 1$$

$$(\alpha^{k})^{(n/pgcd(n,k))} = (\alpha^{n})^{(k/pgcd(n,k))} = 1^{(k/pgcd(n,k))} \Rightarrow ord(\alpha^{k}) < n$$

L'ensemble des racines primitives nièmes de l'unités est $P_n = {\alpha^k / 0 \le k \le n-1}$, pgcd(k ,n) = 1}= $\phi(n)$

II) Corps cyclotomique, polynôme cyclotomique

Définition

Posons $K = Q(P_n)$ le corps de racine primitive n-ième de l'unité. Ce corps est appelé le **n-ième corps cyclotomique** ou **le corps cyclotomique des racines n-ième de l'unité**.

Soit **K** un corps cyclotomique et n un entier qui n'est pas divisible par card **(K).** On appelle n-ième polynôme cyclotomique de **K** le polynôme

$$\Phi_{n,k}(x) = \prod_{\alpha \in P_n(x)} (X - \alpha)$$

Quand K = Q, on note plus simplement $\Phi_{n,K} = \Phi_{n}$.

a) Propriétés des polynômes cyclotomiques en caractéristique 0.

Propriétés:

- **1.** $\Phi_n(x) \in Z[X]$
- **2.** $\Phi_n(x)$ est irréductible dans Q[X] (donc dans Z[X])
- **3.** Deg $(\Phi_n(x)) = \phi(n) = (|Z/nZ^*| \text{ par définition})$ avec ϕ l'indicateur d'Euler.
- **4.** Dans C[x], on a $\Phi_n(x) = \prod_{k \in (\mathbb{Z}/n\mathbb{Z})*} (X \alpha_n^k)$ où $\alpha_n = e^{2\pi i / n}$.
- b) Propriétés des polynômes cyclotomiques en caractéristique p

Propriété:

1. Si $n = p^r - 1$, alors $\Phi_n(x)$ est un produit de polynômes irréductibles de degré r.

- 2. Si n et p sont premiers entre eux et r est l'ordre de p dans $(Z/nZ)^*$ alors $\Phi_n(x)$ est un produit de polynômes irréductibles de degré r.
- 3. Si n et p sont premiers entre eux, alors $\Phi_{pin}(X) = \Phi_n(X)^{\varphi(pi)}$

EXEMPLE

$$\Phi_n(x)=\prod(x-\alpha)$$

Par la propriété précédente son degré est $\phi(n)$

Pour n=1,
$$\Phi_1(x)=x-1$$

Pour n=2,
$$\Phi_2(x)=x+1$$

Pour n=3,
$$\Phi_3$$
 (x)=(x-j)(x-j²)

=
$$x^2$$
- $x(j+j^2)+j$. j^2
= x^2+x+1 car $j^2+j\approx-1$ et $j.j^2\approx1$ avec j^2 le conjugué de j .

Exercice:

Déterminer pour n=3 le polynôme cyclotomique.

Solution:

On a,
$$x^3-1=(x-1)(x-j)(x-j^2)=\Phi_1(x)$$
. $\Phi_3(x)$

=(x-1).
$$\Phi_3$$
 (x) \Rightarrow Φ_3 (x)= $\frac{x_3-1}{(x-1)}$
= x^2+x+1

De façon général, on a pour les nombres premiers

$$X^{p}-1 = \Phi_{1}(x). \Phi_{p}(x) \Rightarrow \Phi_{p}(x) = (X^{p}-1)/(x-1)$$

$$\Phi p(x) = x^{p-1} + x^{p-2} + ... + 1$$

Quelques exemples de polynômes cyclotomiques :

•
$$\Phi_3(x) = x^2 + x + 1$$

•
$$\Phi_4(x)=x^2+1$$

•
$$\Phi_5(x) = x^4 + x^3 + x^2 + x + 1$$

•
$$\Phi_6(x) = x^2-x+1$$

- $\Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$
- $\Phi_8(x) = x^4 + 1$
- $\Phi_9(x) = x^6 + x^3 + 1$
- $\Phi_{10}(x) = x^4 x^3 + x^2 x + 1$

III) Extension cyclotomique

Définition

Une extension cyclotomique est une extension de la forme $K(\alpha_n)/K$ où K est un corps de caractéristique premier à n et α_n une racine primitive nième de l'unité (dans un corps de décomposition de $X^n - 1$) sur K.

Si K = Q alors $K(\alpha_n) = Q(\alpha_n)$. Elle sera noté $Q^{(n)}$ et s'appelle nième corps cyclotomique. Autrement on appelle corps cyclotomique K_n , le corps de décomposition du polynôme cyclotomique Φ_n .

Propriété

Notons n l'ordre de α , c'est-à-dire que α est une racine primitive nième de l'unité, ou encore une racine du polynôme cyclotomique Φ_n .

- 1. L'extension $Q(\alpha)/Q$ est de degré $\phi(n)$, où ϕ désigne la fonction indicatrice d'Euler.
- **2.** L'extension cyclotomique est aussi le corps de décomposition du polynôme Φ_n . Elle est donc **galoisienne.**

Démonstration

L'extension contient α et toutes ses puissances, or les puissances de α forment l'ensemble des racines n-ièmes de l'unité et donc en particulier les racines primitives n-ièmes de l'unité qui sont les racines du polynôme cyclotomique. Ceci démontre que $\mathbf{Q}(\alpha)$ est le corps de décomposition de $\mathbf{\Phi}_n$.

Dans un corps parfait comme celui des rationnels (un corps parfait est un corps où tous les polynômes irréductibles sont séparables c'est-à-dire n'ont pas de racines multiples dans la clôture algébrique), un corps de décomposition est toujours une extension Galoisienne.

Proposition

Soient m et n deux entiers naturels non nuls. Si m et n sont premiers entre eux alors $\mathbf{Q}(\alpha_n\alpha_m) = \mathbf{Q}(\alpha_n, \alpha_m)$.

Démonstration:

En effet on a $\mathbf{Q}(\alpha_n \alpha_m) \subset \mathbf{Q}(\alpha_n, \alpha_m)$. D'autre part si m et n sont premiers entre eux alors il existe \mathbf{u} et \mathbf{v} deux entiers tels que $\mathbf{u}.\mathbf{n} + \mathbf{v}.\mathbf{m} = \mathbf{1}$.

Donc $\alpha_m = (\alpha_m \alpha_n).nu$ et $\alpha_n = (\alpha_n \alpha_m).vm$.

Et par suite $Q(\alpha_n \alpha_m) = Q(\alpha_n, \alpha_m)$.

Corollaire:

Soient m et n deux entiers naturels non nuls premiers entre eux alors $\mathbf{Q}(\alpha_n) \cap \mathbf{Q}(\alpha_m) = \mathbf{Q}$

Démonstration:

En effet on sait que si m et n sont premiers entre eux alors $u_{mn} \cong u_{m \times} u_n$ et par suite $Gal(Q(\alpha_{nm})/Q) \cong U_{mn} \cong U_m \times U_n \cong Gal(Q(\alpha_m)/Q) \times Gal(Q(\alpha_n)/Q)$ qui permet de conclure que $Q(\alpha_n) \cap Q(\alpha_m) = Q$.

IV) Groupe de Galois d'une extension cyclotomique

Théorème

- 1. Soit une extension cyclotomique $K(\alpha_n)/K$ où K est un corps de caractéristique première à n et α_n une racine primitive n-ième de 1. Alors $K(\alpha_n)/K$ est galoisienne de groupe de Galois isomorphe à un sous-groupe de $(Z/n\ Z)^*$
- 2. Soit $\alpha_n \in C(x)$, n éléments d'ordre n. L'extension Q (n)/Q est galoisienne de groupe de Galois isomorphe à $(Z/nZ)^*$.

Corollaire

Une extension cyclotomique est toujours abélienne.

Démonstration:

Soit **d**'un entier plus petit que **n** et premier à **n**. Alors α^d est une racine du polynôme cyclotomique donc il existe un Q-automorphisme m_d (évidemment unique) du corps de décomposition $Q(\alpha)$ qui envoie α sur α^d . Considérons alors l'application du groupe multiplicatif des éléments

inversibles de $\mathbf{Z/nZ}$ dans le groupe de Galois qui, à la classe de \mathbf{d} associe l'automorphisme $\mathbf{m_d}$. Cette application est clairement un isomorphisme de groupes. Cet isomorphisme montre que le groupe de Galois est abélien.