I – Variables aléatoires

Exercice 1

La loi exponentielle $\mathcal{E}(\lambda)$ de paramètre $\lambda > 0$ est celle d'une variable aléatoire X dont la densité est donnée par

$$f_X(x) = \begin{cases} c e^{-\lambda x} & \text{si } x \geqslant 0, \\ 0 & \text{sinon.} \end{cases}$$

- a) Déterminer la bonne valeur pour la constante de normalisation c.
- b) Quelle est l'espérance de X? son mode? sa médiane?
- c) Montrer que la fonction génératrice des moments de X est donnée par

$$g_X(x) = \frac{\lambda}{\lambda - x}$$

et utiliser cela pour retrouver aisément $\mathbb{E}[X]$ et Var(X).

Exercice 2

La loi de Poisson $\mathcal{P}(\lambda)$ de paramètre $\lambda > 0$ est celle d'une variable aléatoire X sur $\mathbb N$ pour laquelle

$$\mathbb{P}[X=n] = c \, \frac{\lambda^n}{n!} \qquad (n \in \mathbb{N}).$$

- a) Quelle est la valeur appropriée pour la constante c? Vérifier que $\mathbb{E}[X] = \lambda$.
- b) Calculer la fonction génératrice des moments de X et l'utiliser pour en déduire Var(X).
- c) Supposons que le nombre de personnes appelant le centre d'assistance d'un opérateur téléphonique à chaque minute suive une loi de Poisson de moyenne 3. Quelle est la probabilité que 5 appels ou plus surviennent au cours de la même minute?

Exercice 3

Soit X une variable aléatoire suivant une loi $\mathcal{N}(0,1)$ et $Y := X^2 - 2$.

Que vaut
$$\mathbb{P}[Y < 0]$$
? $\mathbb{P}[Y = 3]$? $\mathbb{P}[1 \leqslant Y \leqslant 4]$? $\mathbb{P}[Y \geqslant 2]$?

Exercice 4

Soit $X \sim \mathcal{U}([0,1])$. Comparer $\mathbb{E}[X]$, $\mathbb{E}[X^2]$, $\mathbb{E}[\sqrt{X}]$, $\mathbb{E}[e^X]$, $\mathbb{E}[\ln X]$... et en tirer les conclusions appropriées.

Exercice 5

Fabriquer une variable aléatoire $\mathcal{U}([3,5])$ à partir d'une $\mathcal{U}([0,1])$.

Plus généralement, expliquer comment obtenir une $\mathcal{U}([a,b])$.

Exercice 6

« S'opposer au hasard des naissances » : comment expliquez-vous l'apparent paradoxe décrit ici?

https://accromath.uqam.ca/2021/10/rubrique-des-paradoxes-sopposer-au-hasard-des-naissances/

Fonction de répartition d'une loi normale centrée réduite

