Trabalho 1: Hierarquia de Memórias

Entrega do Trabalho

- Grupos: 2 ou 3 alunos
- Submissão pelo AVA:
 - Submeter um único arquivo **trab1.zip**, contendo:
 - * Todos os arquivos **FONTES** dos simuladores desenvolvidos:
 - · simbasica (apenas se foi modificado)
 - · simsplit
 - · simniveis
 - · módulos auxiliares (apenas se foi modificado)
 - * Arquivo **PDF** com relatório de avaliação de desempenho, contendo informações solicitadas abaixo
 - NÃO submeter: arquivos de configuração, traces, programas executáveis, ...
 - Apenas um aluno do grupo deve submeter

Informações Iniciais

- Nome dos alunos do grupo
- Para cada simulador desenvolvido:
 - Comando de compilação por linha de comando

Experimento 1: Classificação de Falhas e Custo do Hardware

• Trace a ser usado: **traceDijkstra.txt**(Obs.: Esse trace possui 63.159.737 acessos, logo as simulações podem levar alguns segundos)

1. Simule esse trace com o simulador **simbasica** e as seguintes configurações, e obtenha:

	Configuração	NBlocos	Associatividade	NPalavrasBloco
Configuração base	L1: 64-1-1	64	1	1
Variando apenas o fator	L1: 128-1-1	128	1	1
"nº total de blocos da cache"	L1: 256-1-1	256	1	1
Variando apenas o fator	L1: 64-2-1	64	2	1
"associatividade"	L1: 64-4-1	64	4	1
Variando apenas o fator	L1: 64-1-2	64	1	2
"nº de palavras por bloco"	L1: 64-1-4	64	1	4

	Configuração	Nº total palavras	Taxa falhas
Configuração base	L1: 64-1-1		
Variando apenas o fator	L1: 128-1-1		
"nº total de blocos da cache"	L1: 256-1-1		
Variando apenas o fator	L1: 64-2-1		
"associatividade"	L1: 64-4-1		
Variando apenas o fator	L1: 64-1-2		
"nº de palavras por bloco"	L1: 64-1-4		

Para uma estimativa simples do custo do hardware da cache, use:

 N^{o} total de palavras da cache = NBlocos × NPalavras
Bloco

- 2. Analisando os resultados, responda:
 - Em relação à taxa de falhas, o aumento de qual fator trouxe maior ganho de desempenho?
 - As falhas que occorrem na simulação com a configuração 64-1-1 são, provavelmente, em maior parte compulsórias, de capacidade ou de conflito?
 - O programa correspondente ao trace provavelmente apresentou mais localidade temporal ou espacial?
 - Em relação ao nº total de palavras da cache L1, o aumento de qual fator causou maior aumento do custo do hardware?
 - Se você deseja uma cache com desempenho alto, mesmo que o custo do hardware seja alto, qual cache você escolherá?
- 3. Desejamos modificar o simulador **simbasica**, de forma a calcular separadamente o nº de falhas que ocorrem de cada categoria (compulsórias, de capacidade ou de conflito). Explique detalhadamente quais modificações você faria no programa, descrevendo as estruturas de dados usadas e como a classificação seria feita.

Experimento 2: Cache Unificada \times Cache Split

- Trace a ser usado: traceDijkstra.txt
- 1. Simule esse trace com o simulador **simbasica** e a seguinte configuração, e obtenha:

	Configuração	Nº total palavras	Taxa falhas
Configuração unificada	L1: 64-1-1		

2. Simule esse trace com o simulador **simsplit** e a seguinte configuração, e obtenha:

	Configuração	Nº total palavras	Taxa falhas combinada I1D1
			combinada 11D1
Configuração split	I1: 32-1-1		
	D1: 32-1-1		

A taxa de falhas combinada I1D1 da cache split é:

Taxa falhas combinada I1D1 = $(n^{\circ} \text{ falhas I1} + n^{\circ} \text{ falhas D1}) / (n^{\circ} \text{ acessos I1} + n^{\circ} \text{ acessos D1})$

- 3. Analisando os resultados, responda:
 - Qual a vantagem de usar uma cache unificada, como a cache L1 modelada no simulador simbasica?
 - Qual a vantagem de usar uma cache split, como as caches I1 e D1 modeladas no simulador simsplit?
 - Comparando:
 - -o nº total de palavras da cache unificada com o nº total de palavras da cache split (soma do nº total de palavras de I1 e D1);
 - a taxa de falhas da cache unificada com a taxa de falhas combinada da cache split;

Como explicar a diferença nas taxas de falhas?

Experimento 3: Cache 1 Nível × Cache 2 Níveis

- Trace a ser usado: traceDijkstra.txt
- 1. Simule esse trace com o simulador **simbasica** e a seguinte configuração:

	Configuração
Configuração unificada	L1: 64-1-2

2. Simule esse trace com o simulador **simniveis** e a seguinte configuração:

	Configuração
Configuração 2 níveis	I1: 32-1-2
	D1: 32-1-2
	L2: 64-2-8

3. Suponha que:

- \bullet Tempo de acerto da cache unificada L1 = 1 ciclo
- Tempo de acerto da cache I1 = 1 ciclo
- Tempo de acerto da cache D1 = 1 ciclo
- \bullet Tempo de acerto da cache L2 = 10 ciclos
- Tempo de acesso à memória principal para tratamento de falha = 100 ciclos
- \bullet Nº de instruções executadas pelo programa = nº de acessos a instruções do trace
- \bullet CPI ideal do processador (ignorando falhas nas caches) = 1

Calcule, para a cache unificada L1:

- Taxa de falhas
- Tempo efetivo de acesso à memória (em ciclos)
- falhas por instrução
- Ciclos em stall pela memória por instrução
- CPI real do processador (considerando falhas na cache)

Calcule, para a cache 2 níveis:

- Taxa de falhas combinada I1D1
- Taxa de falhas local L2
- Taxa de falhas global L2
- Tempo efetivo de acesso à memória (em ciclos)
- Falhas por instrução I1D1
- Falhas por instrução L2
- Ciclos em stall pela memória por instrução
- CPI real do processador (considerando falhas nas caches)