Kubernetes for GPU Powered Machine Learning Workloads in Academia

The architecture, workload use cases, and open issues

Kubernetes for GPU Powered Machine Learning Workloads in Academia

North America 2022 ———

BUILDING FOR THE ROAD AHEAD

DETROIT 2022

October 24-28, 2021

John-Paul
Robinson
HPC Architect,
Manager
UAB

Field Engineering

Manager

Canonical

Project Overview

- VM based infrastructure already available (Openstack)
- Interest in centralizing work done in containers (laptops, docker swarm, etc.)
- Opportunity to offer a dedicated K8s platform to users
- Collaboration with Canonical to get this done

Agenda

- Kubernetes architecture
 - Integrations
- UAB use cases
 - Research workloads
 - ML training
 - CI pipelines
- Research infrastructure
- Future directions

<u>IPM</u>I

Management network

Kubernetes Cluster / API

<u>IPM</u>I

Management network

Kubernetes Cluster / API

IPMI

Management network

Kubernetes Cluster / API

<u>IPM</u>I

Management network

Kubernetes Cluster / API

IPMI

Management network

Kubernetes Cluster / API

Integrations

NVIDIA GPU Integration

1. Installation of the NVIDIA GPU Operator https://github.com/NVIDIA/gpu-operator

\$ kubectl get pods -n gpu-operator

NAME	READY	STATUS	RESTARTS	AGE
gpu-feature-discovery-tkxht	1/1	Running	0	4d15h
gpu-operator-6497cbf9cd-jrgjd	1/1	Running	0	4d16h
gpu-operator-node-feature-discovery-worker-q5tfd	1/1	Running	0	4d16h
nvidia-container-toolkit-daemonset-wgxg8	1/1	Running	0	4d15h
nvidia-cuda-validator-s728q	0/1	Completed	0	4d14h
nvidia-dcgm-exporter-vrl72	1/1	Running	0	4d15h
nvidia-device-plugin-daemonset-hnq7x	1/1	Running	0	4d15h
nvidia-device-plugin-validator-n6b2r	0/1	Completed	0	4d14h
nvidia-driver-daemonset-vv4pk	1/1	Running	0	4d15h
nvidia-mig-manager-c77fx	1/1	Running	0	4d14h
nvidia-operator-validator-gsb66	1/1	Running	0	4d15h

NVIDIA GPU Integration

Multi-instance GPU (MIG) profiles : allows to split the GPU card into multiple compute.memory slices

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

NVIDIA GPU Integration

Multi-instance GPU (MIG) profiles : allows to split the GPU card into multiple compute.memory slices

https://docs.nvidia.com/datacenter/tesla/miq-user-quide/index.html

```
$ kubectl label nodes dgx05 nvidia.com/mig.config=all-1g.5gb
```

MetalLB

MetalLB

- Bare-metal load-balancing in Kubernetes
- Layer 2 or BGP mode
- External IPs assigned by MetalLB
- NGINX Ingress Controller can perform the TLS termination and the balancing across the nodes

 $\underline{https://kubernetes.github.io/ingress-nginx/deploy/baremetal/\#a-pure-software-solution-metallb}$

SAML Authentication

- Keystone + Keystone-SAML-Mellon charms
- Relate Keystone + Kubernetes-control-plane
- snap client-keystone-auth
- "Self-service" for SSO users
- Access level is defined in SAML
- Leveraging existing tooling to streamline authentication and creation of access files

SAML Authentication

- Keystone + Keystone-SAML-Mellon charms
- Relate Keystone + Kubernetes-control-plane
- snap client-keystone-auth
- "Self-service" for SSO users
- Access level is defined in SAML
- Leveraging existing tooling to streamline authentication and creation of access files

Gitlab Integration

Gitlab registry and Gitlab CI/CD

Each project in Gitlab can host their own container registry and be linked to a Kubernetes namespace.

CI/CD feature lets you connect a project to Kubernetes and use pods as runners. It will install a gitlab agent in your cluster

Research at UAB

University of Alabama at Birmingham LI43 THE UNIVERSITY OF LABAMA AT BIRMINGHAM.

- Public institution
- Located in Birmingham, Alabama (1.2M people)
- One of the largest Academic Medical Centers in the United States.
 - 26,000+ employees
 - \$7.15B+ annual economic impact

- UAB Academics + Research
 - ~22,000 enrolled students
 - > 8,000 graduate/researchers
 - +\$600M research funding FY21
- UAB IT Research Computing
 - +200 monthly users
 - +15M CPU hours/year
 - Users are 30% of research revenue

University of Alabama at Birmingham U43 THE UNIVERSITY OF BIRMINGHAM.

- Public institution
- Located in Birmingham, Alabama (1.2M people)
- One of the largest Academic Medical Centers in the United States.
 - 26,000+ employees
 - \$7.15B+ annual economic impact

- UAB Academics + Research
 - ~22,000 enrolled students
 - > 8,000 graduate/researchers
 - +\$600M research funding FY21
- UAB IT Research Computing
 - +200 monthly users
 - +15M CPU hours/year
 - Users are 30% of research revenue

Kubernetes for Research at UAB

- Why K8s?
 - Micro Services
 - ML/AI Workloads
 - Science Gateways
- K8s as a Research Infrastructure
 - Hardware Allocations
 - Workload Support
- The Future of Research: HPC + K8s

K8s Use Cases

- Microservices for consuming and building RESTful Services
 - Migrate from message-based apps
 - Deploy containerized apps
- Self-service IT Platform for Researchers and Labs
 - User Registration, Auto-provisioning and Group Management
 - Eliminate Ticket-based Workflows
- CI/CD Workflows + GitLab
 - Reduce merge backlog with integration builds
 - Nightly builds for new features
- MLOps: Containers, K8s and Workflows at
 - Kubeflow, MLFlow, NextFlow, PyG with graphgym...
 - Container Registry with GitLab for Code Tracking and Deploy
 - K8s Platform with 32x A100 GPUs

High Performance Computing (HPC) LIGHT THE UNIVERSITY OF LIGHT BIRMINGHAM.

HPC nodes have faster hardware to move lots of data through compute cores

- RAM
 - o 384G 1.5T
- CPUs x 2
 - 24 64 core / CPU
- Accelerators (optional)
 - 2,4,8 GPU / node = 1000s cores
- Networking
 - 100Gbps EDR/HDR IB or Ethernet NIC
 - 200Gbps East/West
 - o 100Gbps to Internet2 off site

High Performance Compute Clusters LI43 THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.

High Performance Compute Clusters LIZE THE UNIVERSITY OF BIRMINGHAM.

NextGen Science Gateways

User Analysis and

Composable Apps

Instruments & Data Sources

Kubernetes Container Engine

Thank you! Questions?

For more info, come see us at booth #P28!

Want to connect ?
jpr@uab.edu
camille.rodriguez@canonical.com