Breast Cancer Classification Prediction

A project by Rafif

Project Overview

Goal

To predict whether a breast cancer case is benign or malignant based on the available features.

Dataset

This dataset is obtained from the Breast Cancer Wisconsin Dataset (<u>Kaggle</u>), and it is also one of the standard datasets in Scikit-learn.

Focus

This project focuses on standard data cleaning and EDA pipeline, hyperparameter tuning using grid search, dimensionality reduction using PCA, and classification using logistic regression and SVM.

Dataset

Contains 33 columns:

- 1 ID column and 1 NaN column
- 30 features:
 - 10 unique features: radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, and fractal dimension
 - o 3 measurements: mean, standard error, worst
- The target diagnosis: 357 benign, 212 malignant

10 'mean' columns

- 2 radius mean
- 3 texture mean
- 4 perimeter mean
- 5 area mean
- 6 smoothness mean
- 7 compactness_mean
- concavity mean
- 9 concave points mean
- 10 symmetry mean
- 11 fractal dimension mean

10 'standard error' columns

- 12 radius se
- 13 texture se
- 14 perimeter se
- 15 area se
- 16 smoothness se
- 17 compactness se
- 18 concavity se
- 19 concave points se
- 20 symmetry_se
- 21 fractal dimension se

10 'worst' columns

- 22 radius_worst
- 23 texture worst
- 24 perimeter_worst
- 25 area_worst
- 26 smoothness_worst
- 7 compactness_worst
- 28 concavity_worst
- 29 concave points_worst
 30 symmetry worst
- 31 fractal dimension worst

Features were directly computed from the cell nucleus

Preprocessing

• Dropping unimportant columns: id and Unnamed: 32

No duplicated rows

• Binary encoding for diagnosis: benign (0), malignant (1)

EDA

Check the distribution of diagnosis

diagnosis	percentage	
0	62.741652	
1	37.258348	

More benign cases (1.5 times)
 than malignant cases → severe
 cases are rarer

 Slightly imbalanced, but not too extreme → balancing not needed

EDA

Visualize distribution and check outliers with boxplot and histogram

- Malignant cases have systematically larger values for the features
- No extreme outliers in the dataset

Feature Selection

Train-test split to prevent information leakage (70:30 ratio)

• Checking the correlation between mean and worst features

High correlation (as expected)

Have to pick one as predictors: _mean or _worst

Feature Selection

- Picking the one that has overall higher correlation with diagnosis
- Using point-biserial correlation (special case of Pearson correlation)

	features	_mean	worst
0	radius	0.712933	0.761693
1	texture	0.406121	0.455530
2	perimeter	0.726666	0.770895
3	area	0.688087	0.715231
4	smoothness	0.357168	0.405991
5	compactness	0.582411	0.581583
6	concavity	0.691392	0.674592
7	concave points	0.780350	0.791089
8	symmetry	0.351107	0.433798
9	fractal	-0.032082	0.290516

Overall, _worst features have higher correlation with diagnosis

Dropping all _mean features

Feature Selection

- Check correlations within worst features
- radius is correlated with perimeter and area (also expected)
- perimeter has the largest correlation with perimeter diagnosis → dropping radius and area

Building the Model: Logistic Regression

 Linearly separable case → using logistic regression and support vector machine (SVM).

• Employing the grid search method to optimize the hyperparameters.

- For logistic regression, the best hyperparameters are:
 - \Box C = 100
 - \Box Penalty = 12
 - ☐ Solver = newton-cg

Evaluating the Model: Logistic Regression

Recall as metric \rightarrow as few false negatives as possible

 Better to falsely diagnose someone as having a malignant cancer (more treatment, potentially saving lives) than falsely diagnose a cancer as benign (less treatment, potentially losing lives).

Test data = 171		Prediction	
		0	1
Actual	0	105	3
Actual	1	1	62

Recall score = 98%

The model performs very well

Building the Model: SVM

For SVM, the best hyperparameters are:

- □ C = 100
- \Box gamma = 1
- □ kernel = linear

Evaluating the Model: SVM

Test data = 171		Prediction	
		0	1
Actual	0	104	4
Actual	1	2	61

Recall score = $97\% \rightarrow$ slightly lower since there is 1 more false negative.

Overall, logistic regression performs better.

Dimensionality Reduction with PCA

 Using PCA to reduce feature dimensions, and see if the results can be improved.

• Using the whole dataset again (minus id and Unnamed: 32) \rightarrow train-test split to prevent information leakage.

• Scaling the features with sklearn's $StandardScaler \rightarrow mean 0$, variance 1 for all features.

Dimensionality Reduction with PCA

Skree plot:

 Needs at least 5 PC's to preserve 80% information in the data.

 But is it really necessary to use 5 PC's?

Dimensionality Reduction with PCA

Plot the data in 2 PC's

 The separation between the cases is very clear

Two PC's are all we need!

Building the Model: PCA + Logistic Regression

Using only 2 PC's and transform the features into PC coordinates.

• Building the model again with similar method (grid search).

- For logistic regression, the best hyperparameters are:
 - \Box C = 0.1
 - penalty = l1
 - □ solver = liblinear

Evaluating the Model: PCA + Logistic Regression

Test data = 171		Prediction	
		0	1
Actual	0	106	2
Actual	1	1	62

The recall score has not improved.

 Accuracy increases to 98% since one false positive is removed.

Building the Model: PCA + SVM

- For SVM, the best hyperparameters are:
 - \Box C = 1
 - \Box gamma = 1
 - ☐ Kernel = linear

Evaluating the Model: PCA + SVM

Test data = 171		Prediction		
		0	1	
Actual	0	106	2	
	1	3	60	

• The recall score has slightly dropped to 95% (more false negatives).

 Accuracy increases to 97% (more correct predictions).

 Overall, logistic regression still performs better.

Conclusion

- There are more benign cases than malignant cases in this dataset → normal since severe cases should be rarer.
- 2. Malignant cases have larger values on all of the features.
- 3. The _mean features are highly correlated with the _worst features, but _worst have higher correlations with diagnosis.
- 4. The target diagnosis in this dataset is linearly separable. Therefore, logistic regression and SVM perform very well.
- 5. Using PCA to reduce the dimension of the data does not improve model performance significantly, but it is very time-efficient and easy to implement for this dataset.