Seminár 7: Teória čísel I – úlohy o deliteľ nosti

Úloha 7.1. [[Hol10], úloha 38, str. 115] Nech N je päťciferné kladné číslo také, že $N=\overline{a679b}$. Ak je N deliteľné 72, určte prvú cifru a a poslednú cifru b.

Úloha 7.2. [66-I-2-N1] Dokážte, že v nekonečnom rade čísel

$$1 \cdot 2 \cdot 3, 2 \cdot 3 \cdot 4, 3 \cdot 4 \cdot 5, 4 \cdot 5 \cdot 6, \ldots,$$

je číslo prvé deliteľom všetkých čísel ďalších.

Úloha 7.3. [63-I-5-N1] Dokážte, že pre každé prirodzené n je číslo $n^3 + 2n$ deliteľné tromi.

Úloha 7.4. [63-I-5-N2] Dokážte, že pre každé nepárne číslo n je číslo $n^2 - 1$ deliteľné ôsmimi.

Úloha 7.5. [63-I-5-N3+63-I-5-N4, resp. 55-I-1]

- a) Dokážte, že pre všetky celé kladné čísla m je rozdiel $m^6 m^2$ deliteľný šesťdesiatimi.
- b) Určte všetky kladné celé čísla m, pre ktoré je rozdiel $m^6 m^2$ deliteľný číslom 120.

Úloha 7.6. [59-II-1] Dokážte, že pre ľubovoľné celé čísla n a k väčšie ako 1 je číslo $n^{k+2} - n^k$ deliteľné dvanástimi.

Úloha 7.7. [58-S-3] Keď isté dve prirodzené čísla v rovnakom poradí sčítame, odčítame, vydelíme a vynásobíme a všetky štyri výsledky sčítame, dostaneme 2 009. Určte tieto dve čísla.

Úloha 7.8. [66-I-2-N2] Nájdite všetky celé d > 1, pri ktorých hodnoty výrazov $U(n) = n^3 + 17n^2 - 1$ a $V(n) = n^3 + 4n^2 + 12$ dávajú po delení číslom d rovnaké zvyšky, nech je celé číslo n zvolené akokoľvek.

Úloha 7.9. [66-I-2-D1] Pre ktoré prirodzené čísla n nie je výraz $V(n) = n^4 + 11n^2 - 12$ násobkom ôsmich?

Úloha 7.10. [66-I-2] Nájdite najväčšie prirodzené číslo d, ktoré má tú vlastnosť, že pre ľubovoľné prirodzené číslo n je hodnota výrazu

$$V(n) = n^4 + 11n^2 - 12$$

deliteľná číslom d.

Úloha 7.11. [66-S-2] Označme M množinu všetkých hodnôt výrazu $V(n)=n^4+11n^2-12$, pričom n je nepárne prirodzené číslo. Nájdite všetky možné zvyšky po delení číslom 48, ktoré dávajú prvky množiny M.

Úloha 7.12. [60-I-2] Dokážte, že výrazy 23x + y, 19x + 3y sú deliteľné číslom 50 pre rovnaké dvojice prirodzených čísel x, y.

Citácie

[Hol10] D. A. Holton. A First Step to Mathematical Olympiad Problems. 1st edition. Danvers, USA: World Scientific, 2010. ISBN: 981-4273-87-2.