```
In [118]: ## Importing required packages
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    %matplotlib inline
    plt.rcParams['figure.figsize'] = (16, 9)

In [102]: ## Importing data
    data = pd.read_csv("C:\\Users\\Snigdha.Cheekoty\\Downloads\\daily_revenue.csv"
)

In [103]: type(data)
    ### Checking the dattype of the input: Pandas dataframe

Out[103]: pandas.core.frame.DataFrame
```

In [104]: data.head(20) ## checking the first 20 records

Out[104]:

	date	site	revenue	pageviews
0	7/13/2016	wearewearside	0.539353	389
1	7/13/2016	projectspurs	3.588072	2353
2	7/13/2016	totalbarca	5.130714	1228
3	7/14/2016	projectspurs	4.264064	2762
4	7/14/2016	totalbarca	2.280724	539
5	7/14/2016	hoosierhuddle	0.219857	187
6	7/14/2016	wearewearside	0.895627	638
7	7/15/2016	hoosierhuddle	hoosierhuddle 0.132319	
8	7/15/2016	wearewearside	0.064656	71
9	7/15/2016	totalbarca	2.157703	785
10	7/15/2016	projectspurs	2.853130	2844
11	7/16/2016	projectspurs	1.683579	2257
12	7/16/2016	wearewearside	0.390841	577
13	7/16/2016	hoosierhuddle	0.068215	120
14	7/16/2016	totalbarca	1.373814	672
15	7/17/2016	projectspurs	0.841798	1180
16	7/17/2016	wearewearside	0.507751	784
17	7/17/2016	hoosierhuddle	0.081240	150
18	7/17/2016	totalbarca	1.296636	663
19	7/18/2016	therepublikofmancunia	3.052134	2524

In [110]: ## Importing subtted data for EDA data2 = pd.read_csv("C:\\Users\\Snigdha.Cheekoty\\OneDrive - Serco\\Desktop\\m onthlydata.csv")

In [114]: data2
Time-based(Monthly) data for revenue and pageviews

Out[114]:

	Month	Pageviews	Revenue
0	July	264657	196
1	August	550	257
2	October	1512223	1735
3	November	16313638	26570
4	December	39452572	63920
5	January	57822021	57601
6	February	57130139	42665
7	March	110093915	30548
8	April	81325976	36148
9	May	53561098	49224

In [125]: sns.jointplot(x = "Pageviews", y = "Revenue", data = data2 , kind = "reg")

Out[125]: <seaborn.axisgrid.JointGrid at 0x1e281d137f0>


```
In [64]: ## importing library for kmeans clustering
from sklearn.cluster import KMeans
```

```
In [65]: # Obtaining the values and Plotting them
f1 = data['revenue'].values
f2 = data['pageviews'].values
X = np.array(list(zip(f1, f2)))
plt.scatter(f1, f2, c='black', s=7)
```

Out[65]: <matplotlib.collections.PathCollection at 0x1e2eb8c6128>


```
In [66]: # Assigning the Number of clusters
    ## Choosing the k value after considering an elbow plot
    kmeans = KMeans(n_clusters=4)
    # Fitting the input data
    kmeans = kmeans.fit(X)
    # Obtaining the cluster labels
    labels = kmeans.predict(X)
    # Obtaining the Centroid values
    centroids = kmeans.cluster_centers_
    print(centroids)
```

```
[[8.34444215e+00 1.00059614e+04]
[1.02725276e+02 1.68972439e+06]
[2.22710427e+02 2.15013048e+05]
[4.17985329e+02 7.18365309e+05]]
```

```
In [18]: # Plotting the clusters
    plt.scatter(data['revenue'], data['pageviews'], c= kmeans.labels_.astype(float
    ), s=50, alpha=0.5)
    plt.scatter(centroids[:, 0], centroids[:, 1], c='red', s=50)
```

Out[18]: <matplotlib.collections.PathCollection at 0x1e2eb213550>

In [107]: ## Importing the data for the black box method: one classsvm ...
This data contains the computed "cpm"
after manual computation of CPM as per the report instructions, I have obta
ined the CPM values, shown below
data = pd.read_csv("C:\\Users\\Snigdha.Cheekoty\\OneDrive - Serco\Desktop\\dai
ly_revenue123.csv")

In [99]: data.head(20)

Out[99]:

	date	site	revenue	pageviews	срт
0	13-07-2016	wearewearside	0.539353	389	1.386513
1	13-07-2016	projectspurs	3.588072	2353	1.524892
2	13-07-2016	totalbarca	5.130714	1228	4.178106
3	14-07-2016	projectspurs	4.264064	2762	1.543832
4	14-07-2016	totalbarca	2.280724	539	4.231400
5	14-07-2016	hoosierhuddle	0.219857	187	1.175705
6	14-07-2016	wearewearside	0.895627	638	1.403804
7	15-07-2016	hoosierhuddle	0.132319	173	0.764850
8	15-07-2016	wearewearside	0.064656	71	0.910647
9	15-07-2016	totalbarca	2.157703	785	2.748666
10	15-07-2016	projectspurs	2.853130	2844	1.003210
11	16-07-2016	projectspurs	1.683579	2257	0.745936
12	16-07-2016	wearewearside	0.390841	577	0.677367
13	16-07-2016	hoosierhuddle	0.068215	120	0.568462
14	16-07-2016	totalbarca	1.373814	672	2.044365
15	17-07-2016	projectspurs	0.841798	1180	0.713388
16	17-07-2016	wearewearside	0.507751	784	0.647642
17	17-07-2016	hoosierhuddle	0.081240	150	0.541601
18	17-07-2016	totalbarca	1.296636	663	1.955710
19	18-07-2016	therepublikofmancunia	3.052134	2524	1.209245

```
In [141]: fig, ax = plt.subplots() # creating a figure
    fig.set_size_inches(15,35)
    sns.stripplot(data = data, y = "site", x = "pageviews")
    #### Different sites and the correspondin pageviews (on a daily basis)
    ## You can see few abnormally high values pertaining to sesonality factors
```

Out[141]: <matplotlib.axes._subplots.AxesSubplot at 0x1e28f89cd30>


```
nationnetwork-canucksarmy lee-pantagraph lee-pantagraph lee-pantagraph lee-pantagraph lee-heraldreview pittsburghtockeynow pratestalknow billiboard umgoblue foxports-wisconsin icy-veins foxports-north blackandbluereview pewterreport tentonhammer dendreek overwolf liveforfilms toffeeweb thr-billiboard mbc-test lee-madison of 500000 1000000 1500000 2000000
```

```
In [ ]:
In [86]:
         ## Importing the library for svm
         from sklearn import svm
In [89]: # Preparing the data
         ## Instead of using sampling, I have manually partioned the data into training
         and test sets
         ## The trainset contains the records prior to 04/01/2017
         ## and the test set contains records after 04/01/2017
         X = data[["revenue", "cpm"]]
         train feature = X.loc[0:4932, :]
         train_feature = train_feature.drop('cpm', 1)
         Y_1 = X.loc[4932:, "cpm"]
         Y 2 = X['cpm']
In [90]: # Creating test observations and features
         X_{\text{test}_1} = X.loc[4932:, :].drop('cpm',1)
         X_test = X_test_1.append(X_test_2)
In [92]: # Setting the hyperparameters for oneclass SVM
         #Y test is used to evaluate the model
         oneclass = svm.OneClassSVM(kernel='linear', gamma=0.001, nu=0.95)
         # Used various combination of hyperparameters like linear, rbf, poly, gamma-
         Y 1 = X.loc[4320:, 'cpm']
         Y 2 = X['cpm']
         Y_test= Y_1.append(Y_2)
In [93]: #training the model
         oneclass.fit(train feature)
Out[93]: OneClassSVM(cache size=200, coef0=0.0, degree=3, gamma=0.001, kernel='linea
               max_iter=-1, nu=0.95, random_state=None, shrinking=True, tol=0.001,
               verbose=False)
In [94]: # Testing the model on the validation set
         fraud pred = oneclass.predict(X test)
```

```
In [95]: # Check the number of outliers predicted by the algorithm
         unique, counts = np.unique(fraud_pred, return_counts=True)
         print (np.asarray((unique, counts)).T)
         []
              -1 28909]
               1 1653]]
In [96]: #Convert Y-test and fraud pred to dataframe for ease of operation
         Y_test= Y_test.to_frame()
         Y_test=Y_test.reset_index()
         fraud pred = pd.DataFrame(fraud pred)
         fraud pred= fraud pred.rename(columns={0: 'prediction'})
In [97]: | fraud_pred[fraud_pred['prediction']==1]=0
         fraud pred[fraud pred['prediction']==-1]=1
In [98]: | print(fraud_pred['prediction'].value_counts())
         print(sum(fraud pred['prediction'])/fraud pred['prediction'].shape[0])
              28909
               1653
         Name: prediction, dtype: int64
         0.9459132255742425
In [ ]:
In [ ]:
```