

6-IoT Low Power

Project: Smart Dumbbell

Yves De Boeck Mohammad Amir Wouter Jacobin Gauthier de Borrekens

Concept

Alert if people don't put their dumbbell back

Concept

General scheme

- 1. Dumbbell is picked up → accel sends interrupt
- 2. Each min a dash7 message is send with
 - a. RSSI's to each gateway
 - b. Humidty and temperature
- 3. Ready to rep? push button \rightarrow rep count starts \rightarrow send dash7:

 - a. Bluetooth configb. Humidty and temperature
- **4.** Done with rep? push button → rep counts stops → send dash7:
 - a. Bluetooth configb. Number of reps

 - C. Humidty and temperature
- If no interrupt for 1 min → go to sleep
- 6. If location =/= rack \rightarrow error on thingsboard
- 7. If 3 consecutive send fails → switch to LoRaWAN

Embedded

Done

- ✓ Humidity and T is measured
- Accelerometer interrupt when picked up
- Accelerometer interrupt each rep
- ✓ Sleepmode implemented
- ✓ Timer1→LoRaWAN message sent each min
- ✓ Timer2→1min no interrupt→ go to sleep
- ✓ Button→Start/stop rep count
- ✓ Check success of dash7 message
- To do
 - Implement payload
 - Switch from dash7 to LoRaWAN
 - Bluetooth configuration

Communication

- Done
 - ✓ Subscribing to Message broker
 - ✓ Implementing D7ALP decoder on server
 - Sending information to thingsboard
 - ✓ Visualizing Data on Thingsboard
- To do
 - Implementation + visualization entire payload
 - LoRaWAN thethingsnetwork to thingsboard

Localisation

- Done:
 - ✓ Algorithm for KNN-localisation
 - ✓ MongoDB
- To do:
 - Creating trained dataset
 - Integrating failed connection
 - Implementing on server

