CSCE 451/851 Homework 3

Solutions

Problem 1 (40 points)

Consider the following set of processes:

Process Name	Arrival Time	Processing Time
A	0	3
В	1	5
С	3	2
D	9	5
E	12	5

Perform FCFS, RR (q=4), SPN, SRT, HRRN, Feedback $\left(q=2^i\right)$ on them and get the Finish Time and Turnaround Time for each process. For reference:

• FCFS: First Come First Served

• RR: Round Robin

• SPN: Shortest Process Next

• SRT: Shortest Remaining Time Next

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
FCFS	A	A	A	В	В	В	В	В	С	С	D	D	D	D	D	Е	Е	Е	Е	Е
RR	A	A	A	В	В	В	В	С	С	В	D	D	D	D	Е	Е	Е	Е	D	Е
SPN	A	A	A	C	C	В	В	В	В	В	D	D	D	D	D	Ε	E	Ε	E	Ε
SRT	Α	A	A	C	C	В	В	В	В	В	D	D	D	D	D	E	E	E	E	E

Scheduler		A	В	C	D	E	Average
	T_a	0.00	1.00	3.00	9.00	12.00	
	T_s	3.00	5.00	2.00	5.00	5.00	
FCFS	T_f	3.00	8.00	10.00	15.00	20.00	N/A
	T_r	3.00	7.00	7.00	6.00	8.00	6.20
	T_r/T_s	1.00	1.40	3.50	1.20	1.60	1.74
RR	T_f	3.00	10.00	9.00	19.00	20.00	N/A
	T_r	3.00	9.00	6.00	10.00	8.00	7.20
	T_r/T_s	1.00	1.80	3.00	2.00	1.60	1.88
SPN	T_f	3.00	10.00	5.00	15.00	20.00	N/A
	$ec{T_r}$	3.00	9.00	2.00	6.00	8.00	5.60
	T_r/T_s	1.00	1.80	1.00	1.20	1.60	1.32
SRT	T_f	3.00	10.00	5.00	15.00	20.00	N/A
	T_r	3.00	9.00	2.00	6.00	8.00	5.60
	T_r/T_s	1.00	1.80	1.00	1.20	1.60	1.32

Problem 2 (20 points)

Consider a computer with two processes, \mathbb{H} , with high priority, and \mathbb{L} , with low priority. The scheduling rules are such that \mathbb{H} is run whenever it is in ready state. At a certain moment, with \mathbb{L} in its critical region, \mathbb{H} becomes ready to run (e.g., an I/O operation completes). \mathbb{H} now begins busy waiting, but since \mathbb{L} is never scheduled with \mathbb{H} is running, \mathbb{L} never gets the chance to leave its critical region, so \mathbb{H} loops forever. This situation is sometimes referred to as the priority inversion problem.

If instead of priority scheduling, we use round-robin scheduling, will we encounter the same problem? Please explain your answer in detail.

Answer: With round-robin scheduling it works. Sooner or later $\mathbb L$ will run, and eventually it will leave its critical region. The point is, with priority scheduling, $\mathbb L$ never gets to run at all; with round robin, it gets a normal time slice periodically, so it has the chance to leave its critical region.

Problem 3 (40 points)

Based on measurements, we know for a certain system the average process runs for a time X before blocking on I/O. It takes a time Y to do a process switch, which is effectively wasted (overhead). For round-robin scheduling with quantum Q, give a formula for the CPU efficiency for each of the following:

- a) $Q = \infty$
- b) Q > X
- c) Y < Q < X
- d) Q = Y
- e) $Q \longrightarrow 0, Q \neq 0$

NOTE: The CPU efficiency is the useful CPU time divided by the total CPU time.

The CPU efficiency is the useful CPU time divided by the total CPU time. When $Q \ge X$, the basic cycle is for the process to run for X and undergo a process switch for Y. Thus, a) and b) have an efficiency of X/(X+Y). When the quantum is shorter than X, each run of X will require X/Q process switches, wasting a time YX/Q. The efficiency here is then

$$\frac{X}{X + \frac{YX}{Q}}$$

which reduces to Q/(Q+Y), which is the answer to c). For d), we just substitute Q for Y and find that the efficiency is 50%. Finally, for e), as $Q \longrightarrow 0$, the efficiency goes to 0.