Vamos a calcular el gradiente de la función $y=w_0+w_1x$. Esta es una función lineal, típica en problemas de regresión lineal, donde:

- W0 y W1 son los parámetros (o pesos) que queremos optimizar.
- *x* es la variable de entrada (o característica).
- y es la salida predicha.

1. Definición de la función

La función es:

y=*w*0+*w*1*x*

2. Identificar las variables

Queremos calcular el gradiente de y con respecto a los parámetros w_0 y w_1 . Es decir, necesitamos las derivadas parciales de y con respecto a w_0 y w_1 .

3. Calcular las derivadas parciales

Derivada parcial con respecto a w0w0:

Tratamos *W*1 y *X* como constantes:

$$rac{\partial y}{\partial w_0} = rac{\partial}{\partial w_0}(w_0 + w_1 x) = 1$$

Derivada parcial con respecto a W1:

Tratamos *W*⁰ y *X* como constantes:

$$rac{\partial y}{\partial w_1} = rac{\partial}{\partial w_1}(w_0 + w_1 x) = x$$

4. Gradiente

El gradiente de y con respecto a w_0 y w_1 es el vector de derivadas parciales:

$$abla y = \left(rac{\partial y}{\partial w_0},\,rac{\partial y}{\partial w_1}
ight) = (1,\,x)$$

5. Interpretación

- El gradiente $\nabla y = (1,x)\nabla$ indica cómo cambia y cuando modificamos w_0 y w_1 .
 - Si aumentamos wo en una unidad, y aumenta en 1.
 - \circ Si aumentamos w_1 en una unidad, y aumenta en x.