Computer Implementation 1.11 (Matlab) Complete solution of a plane truss (p. 51)

By combining procedures discussed in earlier implementations, here we present a complete *Matlab* based solution for the five bar truss. This implementation can be used as template to analyze any other plane truss. The global matrices K and R are generated first using statements discussed earlier. To conserve space, printing of individual element matrices is suppressed by using semicolon at the end of each line.

MatlabFiles\Chap1\FiveBarTrussEx.m

```
% Five bar truss example
e1=200*10^3; e2=70*10^3; a1=40*100; a2=30*100; a3=20*100;
P = 150*10^3;
nodes = 1000*[0, 0; 1.5, 3.5; 0, 5; 5, 5];
conn = [1,2; 2,4; 1,3; 3,4; 2,3];
lmm = [1,2,3,4; 3, 4, 7, 8; 1, 2, 5, 6; 5, 6, 7, 8; 3, 4, 5, 6];
K=zeros(8);
% Generate stiffness matrix for each element and assemble it.
for i=1:2
    lm=lmm(i,:);
    con=conn(i,:);
   k=PlaneTrussElement(e1, a1, nodes(con,:));
    K(lm, lm) = K(lm, lm) + k
end
for i=3:4
    lm=lmm(i,:);
    con=conn(i,:);
    k=PlaneTrussElement(e1, a2, nodes(con,:));
    K(lm, lm) = K(lm, lm) + k
end
lm=lmm(5,:); con=conn(5,:);
k=PlaneTrussElement(e2, a3, nodes(con,:));
K(lm, lm) = K(lm, lm) + k
% Define the load vector
R = zeros(8,1); R(4) = -P
% Nodal solution and reactions
[d, reactions] = NodalSoln(K, R, [1,2,7,8], zeros(4,1))
results=[];
for i=1:2
    results = [results; PlaneTrussResults(e1, a1, ...
            nodes(conn(i,:),:), d(lmm(i,:)))];
end
for i=3:4
    results = [results; PlaneTrussResults(e1, a2, ...
            nodes(conn(i,:),:), d(lmm(i,:)))];
end
format short q
results = [results; PlaneTrussResults(e2, a3, ...
        nodes(conn(5,:),:), d(lmm(5,:)))
>> FiveBarTrussEx
K =
```

Columns 1 through 6

32600	76067	-32600	-76067	0
0				
76067	2.9749e+005	-76067	-1.7749e+005	0
-1.2e+005				
-32600	-76067	2.4309e+005	1.1914e+005	-32998
32998				
-76067	-1.7749e+005	1.1914e+005	2.4309e+005	32998
-32998				
0	0	-32998	32998	1.53e+005
-32998				
0	-1.2e+005	32998	-32998	-32998
1.53e+005				
0	0	-1.7749e+005	-76067	-1.2e+005
0				
0	0	-76067	-32600	0
0				

Columns 7 through 8

0	0
0	0
-76067	-1.7749e+005
-32600	-76067
0	-1.2e+005
0	0
76067	2.9749e+005
32600	76067

R =

d =

0 0.53895 -0.95306 0.2647 -0.2647 0

reactions =

54927

1.5993e+005 -54927 -9926.7

results =

-0.0001743	-34.859	-1.3944e+005
-3.15e-005	-6.2999	-25200
-5.2941e-005	-10.588	-31764
-5.2941e-005	-10.588	-31764
0.00032087	22.461	44922