Math 214 – Foundations of Mathematics Homework 2/4 Sam Harrington

(Due Tuesday, February 18)

Proposition 2.7(iv): Let $m, n, p \in \mathbb{Z}$. If m < n and p < 0, then np < mp.

Proof. Let m, n, p be integers. And suppose m < n and p < 0 Then,

$$n-m \in \mathbb{N}$$
 definition of $<$ $0-p \in \mathbb{N}$ definition of $<$ $(0-p)(n-m) \in \mathbb{N}$ (Axiom. 2.1(ii)) $(mp-np) \in \mathbb{N}$ Chapter 1 $np < mp$ definition of $<$

COMPLETED Proposition 2.8: Let $m, n \in \mathbb{Z}$. Exactly one of the following is true: m < n, m = n, m > n.

Proof. Let m, n be integers. Then,

Prop 2.2 states that one and only one of the following is true:

$$x \in \mathbb{N}, -x \in \mathbb{N}, \text{ or } x = 0$$

if we set x = m - n then we get the following three cases: case(1):

$$m-n \in \mathbb{N} = m > n$$

definition of <

case (2):

$$-(m-n) \in \mathbb{N} = n-m \in \mathbb{N}$$
 Chapter 1
= $m < n$ definition of <

case(3):

$$m-n=0$$
 $m=n$ Chapter 1

Proving that exactly one of the following is true: m < n, m = n, m > n.

Proposition 2.12(ii): Let $m, n, p \in \mathbb{Z}$. If p > 0 and mp < np, then m < n.

Proof. Let m, n, p be integers. And suppose p > 0 and mp < np Then,

$np - mp \in \mathbb{N}$	definition of $<$
$p-0=p\in\mathbb{N}$	definition of $<$
$(p)(n-m) \in \mathbb{N}$	Chapter 1
$(n-m) \in \mathbb{N}$	(Prop 2.11)
m < n	definition of $<$