

Title Page

Contents

Page 13 of 30

Go Back

Full Screen

Close

Quit

Regularised Least Squares

- Why? An otherwise nice model with nice properties, but gives infinite/trivial solutions.
- To control overfitting
- Start: $\mathbf{E}_D(\mathbf{w}) \stackrel{\triangle}{=} \sum_{i=1}^N \{t_i \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\}^2$ (data fidelity)
- To minimise $E_D(\mathbf{w}) + \lambda E_w(\mathbf{w})$ Fidelity, weights param $\lambda : E_w(\mathbf{w}) = 0$. $E_w(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{w} = \frac{1}{2}\sum_{i=0}^{M-1}w_j^2$
- Advantage: Quadratic in w: tlosed-form solution
- (ML): weight decay': weights ↓ 0 unless supported by the data. (Stat): param shrinkage'

$$\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\}^2 + \lambda \frac{1}{2} \mathbf{w}^T \mathbf{w}. \quad \stackrel{\partial E}{\partial \mathbf{w}} = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T = 0 \implies \\
\bullet E \stackrel{\triangle}{=} \sum_{i=1}^{N} \{t_i - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i)\} \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_i) \boldsymbol{\phi}^T(\mathbf{x}_i) + \frac{2\lambda}{2} \mathbf{w}^T \boldsymbol{$$

Title Page

Contents

Page 14 of 30

Go Back

Full Screen

Close

Quit

$$\bullet \sum_{i=1}^{N} t_{i} \boldsymbol{\phi}^{T}(\mathbf{x}_{i}) = \mathbf{w}^{T} (\sum_{i=1}^{N} \boldsymbol{\phi}(\mathbf{x}_{i}) \boldsymbol{\phi}^{T}(\mathbf{x}_{i}) + \lambda \mathbf{I}) \Longrightarrow \mathbf{I}$$

$$\mathbf{t}^{T} \boldsymbol{\Phi} = (\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} + \lambda \mathbf{I})^{T} \mathbf{w} = (\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} + \lambda \mathbf{I}) \mathbf{w} \Longrightarrow \mathbf{I}$$

$$\bullet \mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

• Note about the $||\mathbf{w}^T\mathbf{w}||$: May actually be implemented numerically as $||\mathbf{w}^T\mathbf{w}|| - c$, small c

Title Page

Page 15 of 30

Go Back

Full Screen

Close

Intertwined Histories

J.-L. Lagrange [1736-1813]

A. Lavoisier

J.-B. J. Fourier [1768-1830]

https://upload.wikimedia.org/wikipedia/commons/4/44/Lavoisier-statue.jpg

https://upload.wikimedia.org/wikipedia/commons/a/aa/Fourier2.jpg

Title Page

Contents

Page 16 of 30

Go Back

Full Screen

Close

Quit

Classification

- $\mathbf{x} \rightarrow [Classifier] \mapsto \mathscr{C}_{j}$
- Three approaches to Classification:
 - 1. Simplest: Discriminant Functions:

 Functions which directly assign a class to x.

 Linear Discriminant: the discriminant fns are lines/linear/hyperplanes
 - 2. Model them directly: Le.g., Mixture of Gaussians. Represent as parametric models, optimise params using a training set
 - 3. Toughest: Generative Approach: Find $P(\mathscr{C}_j|\mathbf{x})$ Find $P(\mathscr{C}_j|\mathbf{x})$ using the Bayes' Theorem: $P(\mathscr{C}_j|\mathbf{x}) = P(\mathbf{x}|\mathscr{C}_j)P(\mathscr{C}_j)/P(\mathbf{x})$. Models for: $P(\mathbf{x}|\mathscr{C}_j)$: class cond densities; $P(\mathscr{C}_j)$: priors

Title Page

Page 17 of 30

Go Back

Full Screen

Close

Men of God...

[1882-1884]

M. Mitra [1968-]

https://upload.wikimedia.org/wikipedia/commons/d/d4/Thomas_Bayes.gif

https://upload.wikimedia.org/wikipedia/commons/3/3d/Gregor_Mendel_oval.jpg

http://iseeindia.com/wordpress/wp-content/uploads/2011/11/Ramkrishna_Miss11736-290x290.jpg

Mahan Maharaj/Swami Vidyanathananda 2011 Shanti Swarup Bhatnagar Award in Math Sciences Infosys Prize 2015 for Mathematical Sciences

Title Page

Contents

Page 18 of 30

Go Back

Full Screen

Close

Quit

Useful Generalisations of Linearity

- Linearity: Written equivalently in two ways: $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$, for $(D+1) = M \dim \operatorname{data}$, $x_0 = 1$, or $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x} + w_0$, for $D = (M-1) \dim \operatorname{data}$
- $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}_0 x_0 + \dots + \mathbf{w}_{M-1} x_{M-1} = \sum_{j=0}^{M-1} w_j x_j$
- Model useful for Regression: linear comb of basis fns (lin/non-lin) $\mathbf{v}(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$
- Generalising lin to scalar basis functions $\phi_i(\mathbf{x})$:

•
$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = w_o \phi_0(\mathbf{x}) + \dots w_{M-1} \phi_{M-1}(\mathbf{x})$$

- Model useful for Classification: Ins (lin/non-lin) of the linear $\mathbf{w}^T \mathbf{x}$ (or $\mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$) If $y(\mathbf{x}, \mathbf{w}) = f(\mathbf{w}^T \mathbf{x})$
- Examples: Linear Regression, Neural Networks

Title Page

Contents

Page 19 of 30

Go Back

Full Screen

Close

Quit

Discriminant Functions: 2 Classes

- $\bullet \ y(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$
- 2-D implicit from of eqn of a line is ax + by + c = 0. Here, $y(\mathbf{x}, \mathbf{w}) = w_2x_2 + w_1x_1 + w_0 = 0$
- y(x) = 0: 1-D h'plane in 2-D
- Relative location of \mathcal{R}_1 , \mathcal{R}_2 is immaterial: which is above/below/to the left/to the right
- Physical Significance of w_0 : Impeasure of the dist from the origin IWhy? For ax + by + c = 0, perp distance of (x_1, y_1) from the line is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$ Perp dist of $y(\mathbf{x}) = 0$ from the origin = $\frac{|w_2(0) + w_1(0) + w_0|}{\sqrt{w_2^2 + w_1^2}} \blacktriangleright \frac{|w_0|}{||\mathbf{w}||}, ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w} = \sum w_j^2$

Title Page

Contents

Page 20 of 30

Go Back

Full Screen

Close

Quit

Some more Physical Significance

• For two points \mathbf{x}_A and \mathbf{x}_B on the line $y(\mathbf{x}) = 0$:

$$y(\mathbf{x}_A) = 0 \implies \mathbf{w}^T \mathbf{x}_A + w_0 = 0$$

$$y(\mathbf{x}_B) = 0 \implies \mathbf{w}^T \mathbf{x}_B + w_0 = 0$$

$$\implies \mathbf{w}^T (\mathbf{x}_A - \mathbf{x}_B) = 0$$

$$\implies \mathbf{w}^\perp (\mathbf{x}_A - \mathbf{x}_B) = 0$$

$$\implies \mathbf{w}^\perp (\mathbf{x}_A - \mathbf{x}_B) = 0$$

Phy Significance of perp dist of a point from a line.

$$\bullet \mathbf{x} = \mathbf{x}_{\perp} + r \; \hat{\mathbf{w}} \Vdash \mathbf{x}_{\perp} + r \; \frac{\mathbf{w}}{||\mathbf{w}||}$$

• Pre-multiply by \mathbf{w}^T & add w_0 :

$$\bullet \mathbf{w}^T \mathbf{x} + w_0 = \mathbf{w}^T (\mathbf{x}_\perp + r_{\frac{\mathbf{w}}{||\mathbf{w}||}}) + w_0$$

$$\mathbf{y}(\mathbf{x}) = (\mathbf{w}^T \mathbf{x}_{\perp} + w_0) + r \frac{||\mathbf{w}||^2}{||\mathbf{w}||}$$

$$\bullet \implies r = \frac{y(\mathbf{x})}{||\mathbf{w}||}$$

→ x_i • Consistent with perp distance of (x_1, y_1) from line: $\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$

y(x)=0

Title Page

Contents

Page 21 of 30

Go Back

Full Screen

Close

Quit

Discriminant Functions: K Classes

Building a K − Classifier from 2-class ones

[C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006. Fig. 4.2, p. 183]

- One-versus-Rest
- -K-1 classifiers, each of which solves the 2-class \mathcal{C}_i vs. not \mathcal{C}_i

- One-versus-One
- ^KC₂ 2-class classifiers
- Ambiguity here also!

• e.g., Tree-SVM? Explicitly define the hierarchy!