#### Variables Aleatorias Continuas

Una variable aleatoria se dice **Continua** si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados.

#### Variables Aleatorias Continuas

Una variable aleatoria se dice **Continua** si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados. Por ejemplo, medición de la corriente de un alambre, longitud de partes desgastadas en una pieza, tiempo de duración de una bombilla, tiempos de espera, estatura, masa, etc.

#### Variables Aleatorias Continuas

Una variable aleatoria se dice **Continua** si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados. Por ejemplo, medición de la corriente de un alambre, longitud de partes desgastadas en una pieza, tiempo de duración de una bombilla, tiempos de espera, estatura, masa, etc.

#### <u>De</u>finición

Sea X una variable aleatoria continua.

#### Variables Aleatorias Continuas

Una variable aleatoria se dice **Continua** si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados. Por ejemplo, medición de la corriente de un alambre, longitud de partes desgastadas en una pieza, tiempo de duración de una bombilla, tiempos de espera, estatura, masa, etc.

#### Definición

Sea X una variable aleatoria continua. La distribución acumulada para la variable aleatoria X, se define igual que en el caso discreto:

#### Variables Aleatorias Continuas

Una variable aleatoria se dice **Continua** si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados. Por ejemplo, medición de la corriente de un alambre, longitud de partes desgastadas en una pieza, tiempo de duración de una bombilla, tiempos de espera, estatura, masa, etc.

#### Definición

Sea X una variable aleatoria continua. La distribución acumulada para la variable aleatoria X, se define igual que en el caso discreto:

$$F(x) = P(X \le x)$$
,  $\forall x \in \mathbb{R}$ .

#### Variables Aleatorias Continuas

Una variable aleatoria se dice **Continua** si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados. Por ejemplo, medición de la corriente de un alambre, longitud de partes desgastadas en una pieza, tiempo de duración de una bombilla, tiempos de espera, estatura, masa, etc.

#### Definición

Sea X una variable aleatoria continua. La distribución acumulada para la variable aleatoria X, se define igual que en el caso discreto:

$$F(x) = P(X \le x)$$
,  $\forall x \in \mathbb{R}$ .

Esta función resulta ser continua en  $\mathbb{R}$ .

#### Variables Aleatorias Continuas

Una variable aleatoria se dice **Continua** si el rango de dicha variable es un intervalo o es la unión de varios intervalos reales, acotados o no acotados. Por ejemplo, medición de la corriente de un alambre, longitud de partes desgastadas en una pieza, tiempo de duración de una bombilla, tiempos de espera, estatura, masa, etc.

#### Definición

Sea X una variable aleatoria continua. La distribución acumulada para la variable aleatoria X, se define igual que en el caso discreto:

$$F(x) = P(X \le x)$$
,  $\forall x \in \mathbb{R}$ .

Esta función resulta ser continua en  $\mathbb R$ . Si existe una función f(x), tal que  $\frac{dF(x)}{dx}=f(x)$ , para todo x donde dicha derivada exista, entonces f(x) es llamada Función de Densidad de Probabilidad o p.d.f. de X.

### Propiedades

Por el teorema fundamental del cálculo se tiene que:  $F(x) = \int\limits_{-\infty}^{x} f(t) \ dt$  .

#### **Propiedades**

Por el teorema fundamental del cálculo se tiene que:  $F(x) = \int\limits_{-\infty}^{x} f(t) \ dt$  .

1)  $f(x) \ge 0$ ;  $\forall x \in \mathbb{R}$ .

### **Propiedades**

Por el teorema fundamental del cálculo se tiene que:  $F(x) = \int\limits_{-\infty}^{x} f(t) \ dt$  .

- 1)  $f(x) \ge 0$ ;  $\forall x \in \mathbb{R}$ .
- $2) \int_{-\infty}^{+\infty} f(x) \ dx = 1 \ .$

### **Propiedades**

Por el teorema fundamental del cálculo se tiene que:  $F(x) = \int_{-\infty}^{x} f(t) dt$  .

- 1)  $f(x) \ge 0$ ;  $\forall x \in \mathbb{R}$ .
- $2) \int_{-\infty}^{+\infty} f(x) \ dx = 1 \ .$
- 3)  $P(X \in A) = \int_A f(x) dx$ .

### Propiedades

Por el teorema fundamental del cálculo se tiene que:  $F(x) = \int_{-\infty}^{x} f(t) dt$  .

- 1)  $f(x) \ge 0$ ;  $\forall x \in \mathbb{R}$ .
- $2) \int_{-\infty}^{+\infty} f(x) \ dx = 1 \ .$
- 3)  $P(X \in A) = \int_A f(x) dx$ .
- 4) Si A = [a, b], con  $a < b \Rightarrow P(a \le X \le b) = \int_a^b f(x) dx$ .

Usando la propiedad 4 es fácil ver que:

### **Propiedades**

Por el teorema fundamental del cálculo se tiene que:  $F(x) = \int\limits_{-\infty}^{x} f(t) \; dt$  .

- 1)  $f(x) \ge 0$ ;  $\forall x \in \mathbb{R}$ .
- $2) \int_{-\infty}^{+\infty} f(x) \ dx = 1 \ .$
- 3)  $P(X \in A) = \int_A f(x) dx$ .
- 4) Si A = [a, b], con  $a < b \Rightarrow P(a \le X \le b) = \int_a^b f(x) dx$ .

Usando la propiedad 4 es fácil ver que:

$$P(X = x) = P(x \le X \le x) = \int_{x}^{x} f(x) dx = 0.$$

Es decir, la probabilidad en un punto es cero.

Es decir, la probabilidad en un punto es cero. De este resultado se deduce que si  $\boldsymbol{X}$  es una variable aleatoria continua, entonces:

Es decir, la probabilidad en un punto es cero. De este resultado se deduce que si X es una variable aleatoria continua, entonces:

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$
.

Es decir, la probabilidad en un punto es cero. De este resultado se deduce que si X es una variable aleatoria continua, entonces:

$$P\left(a \leq X \leq b\right) = P\left(a < X \leq b\right) = P\left(a \leq X < b\right) = P\left(a < X < b\right) \ .$$

Como  $f(x) \ge 0$ , entonces, el cálculo de probabilidades se reduce a calcular el área bajo f(x) en el rango de interés.



### Propiedades de F(x)

$$\bullet \ 0 \le F(x) \le 1 \ , \quad \forall x \in \mathbb{R}$$

### Propiedades de F(x)

• 
$$0 \le F(x) \le 1$$
,  $\forall x \in \mathbb{R}$ 

$$\bullet \ \lim_{x \to -\infty} F(x) = 0 \qquad \text{y} \qquad \lim_{x \to +\infty} F(x) = 1$$

### Propiedades de F(x)

- $0 \le F(x) \le 1$ ,  $\forall x \in \mathbb{R}$
- $\bullet \lim_{x \to -\infty} F(x) = 0 \qquad \text{y} \qquad \lim_{x \to +\infty} F(x) = 1$
- P(X > x) = 1 F(x)

### Propiedades de F(x)

- $0 \le F(x) \le 1$ ,  $\forall x \in \mathbb{R}$
- $\bullet \ \lim_{x \to -\infty} F(x) = 0 \qquad \text{y} \qquad \lim_{x \to +\infty} F(x) = 1$
- P(X > x) = 1 F(x)
- Si  $x < y \Rightarrow F(x) \le F(y)$

### Propiedades de F(x)

- $0 \le F(x) \le 1$ ,  $\forall x \in \mathbb{R}$
- $\bullet \ \lim_{x \to -\infty} F(x) = 0 \qquad \text{y} \qquad \lim_{x \to +\infty} F(x) = 1$
- P(X > x) = 1 F(x)
- Si  $x < y \Rightarrow F(x) \le F(y)$
- Si  $a, b \in \mathbb{R}$ , con a < b, entonces

$$P(a \le X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$
.

#### Ejemplo 20

Sea X una variable aleatoria que representa el tiempo de préstamo de un libro (en horas).

### Propiedades de F(x)

- $0 \le F(x) \le 1$ ,  $\forall x \in \mathbb{R}$
- $\bullet \lim_{x \to -\infty} F(x) = 0 \qquad \text{y} \qquad \lim_{x \to +\infty} F(x) = 1$
- P(X > x) = 1 F(x)
- Si  $x < y \Rightarrow F(x) \le F(y)$
- Si  $a, b \in \mathbb{R}$ , con a < b, entonces

$$P(a \le X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$
.

#### Ejemplo 20

Sea X una variable aleatoria que representa el tiempo de préstamo de un libro (en horas). La distribución acumulada de X está dada por:

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ \frac{x^2}{4} & ; & 0 \le x < 2 \\ 1 & ; & x \ge 2 \end{cases}.$$

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ \frac{x^2}{4} & ; & 0 \le x < 2 \\ 1 & ; & x \ge 2 \end{cases}.$$

Halle:

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ \frac{x^2}{4} & ; & 0 \le x < 2 \\ 1 & ; & x \ge 2 \end{cases}.$$

Halle:

a) 
$$P(X < 1)$$
.

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ \frac{x^2}{4} & ; & 0 \le x < 2 \\ 1 & ; & x \ge 2 \end{cases}.$$

Halle:

- a) P(X < 1).
- b)  $P(\frac{1}{2} < X < 1)$ .

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ \frac{x^2}{4} & ; & 0 \le x < 2 \\ 1 & ; & x \ge 2 \end{cases}.$$

Halle:

- a) P(X < 1).
- b)  $P(\frac{1}{2} < X < 1)$ .
- c) Una expresión para el 100p-avo percentil.

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ \frac{x^2}{4} & ; & 0 \le x < 2 \\ 1 & ; & x \ge 2 \end{cases}.$$

Halle:

- a) P(X < 1).
- b)  $P(\frac{1}{2} < X < 1)$ .
- c) Una expresión para el 100p-avo percentil.
- d) f(x), la p.d.f. de X.

#### Solución

a) 
$$P(X < 1) = P(X \le 1) = F(1) = \frac{1}{4}$$
.

$$F(x) = \begin{cases} 0 & ; & x < 0 \\ \frac{x^2}{4} & ; & 0 \le x < 2 \\ 1 & ; & x \ge 2 \end{cases}.$$

Halle:

- a) P(X < 1).
- b)  $P(\frac{1}{2} < X < 1)$ .
- c) Una expresión para el 100p-avo percentil.
- d) f(x), la p.d.f. de X.

#### Solución

- a)  $P(X < 1) = P(X \le 1) = F(1) = \frac{1}{4}$ .
- b)  $P(\frac{1}{2} < X < 1) = F(1) F(\frac{1}{2}) = \frac{1}{4} \frac{1}{16} = \frac{3}{16}$ .

c) El cálculo del 100p-avo percentil consiste en hallar un valor del rango de la variable aleatoria X, digamos  $x_p$ , tal que  $P(X \le x_p) = p$ ;

c) El cálculo del 100p-avo percentil consiste en hallar un valor del rango de la variable aleatoria X, digamos  $x_p$ , tal que  $P(X \le x_p) = p$ ; es decir, se debe resolver la ecuación  $F(x_p) = p$  para 0 .

c) El cálculo del 100p-avo percentil consiste en hallar un valor del rango de la variable aleatoria X, digamos  $x_p$ , tal que  $P(X \le x_p) = p$ ; es decir, se debe resolver la ecuación  $F\left(x_p\right) = p$  para  $0 . Esta equación equivale a resolver la igualdad: <math>\frac{x^2}{4} = p \quad \Leftrightarrow \quad x_p = 2\sqrt{p}$ .

c) El cálculo del 100p-avo percentil consiste en hallar un valor del rango de la variable aleatoria X, digamos  $x_p$ , tal que  $P(X \le x_p) = p$ ; es decir, se debe resolver la ecuación  $F\left(x_p\right) = p$  para  $0 . Esta equación equivale a resolver la igualdad: <math>\frac{x^2}{4} = p \quad \Leftrightarrow \quad x_p = 2\sqrt{p}$ .

d) 
$$f(x) = F'(x) = \frac{2x}{4} = \frac{x}{2}$$
;  $0 < x < 2$ .

- c) El cálculo del 100p-avo percentil consiste en hallar un valor del rango de la variable aleatoria X, digamos  $x_p$ , tal que  $P(X \le x_p) = p$ ; es decir, se debe resolver la ecuación  $F\left(x_p\right) = p$  para  $0 . Esta equación equivale a resolver la igualdad: <math>\frac{x^2}{4} = p \quad \Leftrightarrow \quad x_p = 2\sqrt{p}$ .
- d)  $f(x) = F'(x) = \frac{2x}{4} = \frac{x}{2}$ ; 0 < x < 2. Observe que F'(0) = 0 y F'(2) no existe.

- c) El cálculo del 100p-avo percentil consiste en hallar un valor del rango de la variable aleatoria X, digamos  $x_p$ , tal que  $P(X \le x_p) = p$ ; es decir, se debe resolver la ecuación  $F\left(x_p\right) = p$  para  $0 . Esta equación equivale a resolver la igualdad: <math>\frac{x^2}{4} = p \quad \Leftrightarrow \quad x_p = 2\sqrt{p}$ .
- d)  $f(x) = F'(x) = \frac{2x}{4} = \frac{x}{2}$ ; 0 < x < 2. Observe que F'(0) = 0 y F'(2) no existe. De esta manera se tiene que:

- c) El cálculo del 100p-avo percentil consiste en hallar un valor del rango de la variable aleatoria X, digamos  $x_p$ , tal que  $P(X \le x_p) = p$ ; es decir, se debe resolver la ecuación  $F\left(x_p\right) = p$  para  $0 . Esta equación equivale a resolver la igualdad: <math>\frac{x^2}{4} = p \quad \Leftrightarrow \quad x_p = 2\sqrt{p}$ .
- d)  $f(x) = F'(x) = \frac{2x}{4} = \frac{x}{2}$ ; 0 < x < 2. Observe que F'(0) = 0 y F'(2) no existe. De esta manera se tiene que:

$$f\left(x\right) = \left\{ \begin{array}{ll} \frac{x}{2} & , & 0 < x < 2 \\ 0 & , & \text{otro caso} \end{array} \right. .$$

### Ejemplo 21

Sea X una variable aleatoria que representa la duración en horas de cierto tipo de bombilla eléctrica.

- c) El cálculo del 100p-avo percentil consiste en hallar un valor del rango de la variable aleatoria X, digamos  $x_p$ , tal que  $P(X \le x_p) = p$ ; es decir, se debe resolver la ecuación  $F\left(x_p\right) = p$  para  $0 . Esta equación equivale a resolver la igualdad: <math>\frac{x^2}{4} = p \quad \Leftrightarrow \quad x_p = 2\sqrt{p}$ .
- d)  $f(x) = F'(x) = \frac{2x}{4} = \frac{x}{2}$ ; 0 < x < 2. Observe que F'(0) = 0 y F'(2) no existe. De esta manera se tiene que:

$$f\left(x\right) = \left\{ \begin{array}{ll} \frac{x}{2} & , & 0 < x < 2 \\ 0 & , & \text{otro caso} \end{array} \right. .$$

### Ejemplo 21

Sea X una variable aleatoria que representa la duración en horas de cierto tipo de bombilla eléctrica. La p.d.f para X esta dada por:

- c) El cálculo del 100p-avo percentil consiste en hallar un valor del rango de la variable aleatoria X, digamos  $x_p$ , tal que  $P(X \le x_p) = p$ ; es decir, se debe resolver la ecuación  $F\left(x_p\right) = p$  para  $0 . Esta equación equivale a resolver la igualdad: <math>\frac{x^2}{4} = p \quad \Leftrightarrow \quad x_p = 2\sqrt{p}$ .
- d)  $f(x) = F'(x) = \frac{2x}{4} = \frac{x}{2}$ ; 0 < x < 2. Observe que F'(0) = 0 y F'(2) no existe. De esta manera se tiene que:

$$f\left(x\right) = \left\{ \begin{array}{ll} \frac{x}{2} & , & 0 < x < 2 \\ 0 & , & \text{otro caso} \end{array} \right. .$$

### Ejemplo 21

Sea X una variable aleatoria que representa la duración en horas de cierto tipo de bombilla eléctrica. La p.d.f para X esta dada por:

$$f\left(x\right) = \left\{ \begin{array}{ll} \frac{a}{x^3} & , & 1500 \leq x \leq 2500 \\ 0 & , & \text{otro caso} \end{array} \right. \, .$$

$$f(x) = \begin{cases} \frac{a}{x^3} &, 1500 \le x \le 2500\\ 0 &, \text{ otro caso} \end{cases}$$

Calcule:

- a)  $P(X \le 2000)$
- b)  $P(X \le 2000 | X \ge 1800)$

### Solución

Primero es necesario hallar el valor de a.

$$f\left(x\right) = \begin{cases} \frac{a}{x^3} & , & 1500 \le x \le 2500\\ 0 & , & \text{otro caso} \end{cases}$$

Calcule:

- a)  $P(X \le 2000)$
- b)  $P(X \le 2000 | X \ge 1800)$

### Solución

Primero es necesario hallar el valor de a. Como:  $\int\limits_{-\infty}^{+\infty}f\left( x\right) dx=1\,.$ 

$$f\left(x\right) = \begin{cases} \frac{a}{x^3} & , & 1500 \le x \le 2500\\ 0 & , & \text{otro caso} \end{cases}$$

Calcule:

- a)  $P(X \le 2000)$
- b)  $P(X \le 2000 | X \ge 1800)$

### Solución

Primero es necesario hallar el valor de a. Como:  $\int\limits_{-\infty}^{+\infty}f\left( x\right) dx=1$  . entonces:

$$f\left(x\right) = \left\{ \begin{array}{ll} \frac{a}{x^3} & , & 1500 \le x \le 2500 \\ 0 & , & \text{otro caso} \end{array} \right.$$

Calcule:

- a)  $P(X \le 2000)$
- b)  $P(X \le 2000 | X \ge 1800)$

### Solución

Primero es necesario hallar el valor de a. Como:  $\int\limits_{-\infty}^{+\infty}f\left( x\right) dx=1$  . entonces:

$$\int_{-\infty}^{1500} f(x) dx + \int_{1500}^{2500} f(x) dx + \int_{2500}^{+\infty} f(x) dx = 1$$

$$\Leftrightarrow \int_{1500}^{2500} \frac{a}{x^3} dx = 1 \quad \Leftrightarrow \quad -\frac{a}{2 x^2} \Big|_{1500}^{2500} = 1 \quad \Rightarrow \quad a = 7031250 \ .$$

$$P(X \le 2000) = \int_{1500}^{2000} \frac{a}{x^3} dx = \frac{a}{2} \left[ \frac{1}{1500^2} - \frac{1}{2000^2} \right] \cong 0.68359.$$

$$\Leftrightarrow \int_{1500}^{2500} \frac{a}{x^3} dx = 1 \quad \Leftrightarrow \quad -\frac{a}{2 x^2} \Big|_{1500}^{2500} = 1 \quad \Rightarrow \quad a = 7031250 \ .$$

$$P(X \le 2000) = \int_{1500}^{2000} \frac{a}{x^3} dx = \frac{a}{2} \left[ \frac{1}{1500^2} - \frac{1}{2000^2} \right] \cong 0.68359.$$

b) 
$$P\left(X \le 2000 \mid X \ge 1800\right) = \frac{P\left(1800 \le X \le 2000\right)}{P\left(X \ge 1800\right)}$$

$$\Leftrightarrow \int_{1500}^{2500} \frac{a}{x^3} dx = 1 \quad \Leftrightarrow \quad -\frac{a}{2 x^2} \Big|_{1500}^{2500} = 1 \quad \Rightarrow \quad a = 7031250 \ .$$
 a)

$$P(X \le 2000) = \int_{1500}^{2000} \frac{a}{x^3} dx = \frac{a}{2} \left[ \frac{1}{1500^2} - \frac{1}{2000^2} \right] \cong 0.68359.$$

b) 
$$P\left(X \leq 2000 \,|\, X \geq 1800\right) = \frac{P\left(1800 \leq X \leq 2000\right)}{P\left(X \geq 1800\right)}$$

$$P(X \le 2000 \mid X \ge 1800) = \frac{\int_{1800}^{2000} \frac{a}{x^3} dx}{\int_{1800}^{2500} \frac{a}{x^3} dx} = \frac{\frac{475}{2304}}{\frac{301}{576}} \approx 0.39452.$$

### Ejemplo 22

El tiempo de espera de un cliente hasta ser atendido es una variable aleatoria X continua con p.d.f dada por:

### Ejemplo 22

El tiempo de espera de un cliente hasta ser atendido es una variable aleatoria X continua con p.d.f dada por:

$$f(x) = \begin{cases} e^{-x} &, & x > 0 \\ 0 &, & \text{otro caso} \end{cases}.$$

### Ejemplo 22

El tiempo de espera de un cliente hasta ser atendido es una variable aleatoria X continua con p.d.f dada por:

$$f\left(x\right) = \left\{ \begin{array}{ll} e^{-x} & , & x > 0 \\ 0 & , & \text{otro caso} \end{array} \right. .$$

a) Halle F(x).

### Ejemplo 22

El tiempo de espera de un cliente hasta ser atendido es una variable aleatoria X continua con p.d.f dada por:

$$f\left(x\right) = \left\{ \begin{array}{ll} e^{-x} & , & x > 0 \\ 0 & , & \text{otro caso} \end{array} \right. .$$

- a) Halle F(x).
- b) Calcule P(X < 1).

### Ejemplo 22

El tiempo de espera de un cliente hasta ser atendido es una variable aleatoria X continua con p.d.f dada por:

$$f\left(x\right) = \left\{ \begin{array}{ll} e^{-x} & , & x > 0 \\ 0 & , & \text{otro caso} \end{array} \right. .$$

- a) Halle F(x).
- b) Calcule P(X < 1).
- c) Calcule P(1 < X < 2).

### Ejemplo 22

El tiempo de espera de un cliente hasta ser atendido es una variable aleatoria X continua con p.d.f dada por:

$$f\left(x\right) = \left\{ \begin{array}{ll} e^{\,-x} & , & x > 0 \\ 0 & , & \text{otro caso} \end{array} \right. \, .$$

- a) Halle F(x).
- b) Calcule P(X < 1).
- c) Calcule P(1 < X < 2).
- d) Halle el valor de k tal que P(X < k) = 0.95.

#### Solución

a) Si  $x \leq 0$  entonces  $F_X(x) = 0$ .

### Ejemplo 22

El tiempo de espera de un cliente hasta ser atendido es una variable aleatoria X continua con p.d.f dada por:

$$f\left(x\right) = \left\{ \begin{array}{ll} e^{\,-x} & , & x > 0 \\ 0 & , & \text{otro caso} \end{array} \right. \, .$$

- a) Halle F(x).
- b) Calcule P(X < 1).
- c) Calcule P(1 < X < 2).
- d) Halle el valor de k tal que P(X < k) = 0.95.

### Solución

a) Si  $x \leq 0$  entonces  $F_X(x) = 0$ . Si x > 0 entonces

### Ejemplo 22

El tiempo de espera de un cliente hasta ser atendido es una variable aleatoria X continua con p.d.f dada por:

$$f\left(x\right) = \left\{ \begin{array}{ll} e^{\,-x} &, & x > 0 \\ 0 &, & \text{otro caso} \end{array} \right. \, .$$

- a) Halle F(x).
- b) Calcule P(X < 1).
- c) Calcule P(1 < X < 2).
- d) Halle el valor de k tal que P(X < k) = 0.95.

#### Solución

a) Si  $x \le 0$  entonces  $F_X(x) = 0$ . Si x > 0 entonces

$$F_X(x) = \int_0^x e^{-t} dt = -e^{-t} \mid_0^x = 1 - e^{-x}.$$

b)

$$P(X < 1) = P(X \le 1) = F_X(1) = 1 - e^{-1} = \frac{e - 1}{e} \approx 0.63212$$
.

c)

$$P(1 < X < 2) = F_X(2) - F_X(1) = (1 - e^{-2}) - (1 - e^{-1})$$
$$P(1 < X < 2) = \frac{1}{e} - \frac{1}{e^2} = \frac{e - 1}{e^2} \approx 0.23254.$$

d)

$$P(X < k) = F_X(k) = 1 - e^{-k} = 0.95 \Leftrightarrow e^{-k} = 0.05 \Rightarrow k = 2.9957$$

### Definición

Sea X una variable aleatoria (Discreta o Continua), con distribución de probabilidad f(x).

#### Definición

Sea X una variable aleatoria (Discreta o Continua), con distribución de probabilidad f(x). El valor esperado de X, el cuál se denota  $E\left[X\right]$ , se define como:

#### Definición

Sea X una variable aleatoria (Discreta o Continua), con distribución de probabilidad f(x). El valor esperado de X, el cuál se denota  $E\left[X\right]$ , se define como:

$$E\left[X\right] = \left\{ \begin{array}{ll} \sum\limits_{x} x \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \sum\limits_{-\infty}^{x} x \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right. .$$

#### Definición

Sea X una variable aleatoria (Discreta o Continua), con distribución de probabilidad f(x). El valor esperado de X, el cuál se denota  $E\left[X\right]$ , se define como:

$$E\left[X\right] = \left\{ \begin{array}{ll} \sum\limits_{x} x \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \sum\limits_{-\infty}^{x} x \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right. .$$

Este valor esperado es usualmente denotado  $\mu_X$ , o  $\mu$ . Algunas propiedades del valor esperado.

#### Definición

Sea X una variable aleatoria (Discreta o Continua), con distribución de probabilidad f(x). El valor esperado de X, el cuál se denota  $E\left[X\right]$ , se define como:

$$E\left[X\right] = \left\{ \begin{array}{ll} \sum\limits_{x} x \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \int\limits_{-\infty}^{\infty} x \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right. .$$

Este valor esperado es usualmente denotado  $\mu_X$ , o  $\mu$ . Algunas propiedades del valor esperado. Sean a,b números reales y sea X una variable aleatoria (Discreta o Continua).

#### Definición

Sea X una variable aleatoria (Discreta o Continua), con distribución de probabilidad f(x). El valor esperado de X, el cuál se denota  $E\left[X\right]$ , se define como:

$$E\left[X\right] = \left\{ \begin{array}{ll} \sum\limits_{x} x \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \sum\limits_{-\infty}^{x} x \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right. .$$

Este valor esperado es usualmente denotado  $\mu_X$ , o  $\mu$ . Algunas propiedades del valor esperado. Sean a,b números reales y sea X una variable aleatoria (Discreta o Continua).

• E[a] = a.

#### Definición

Sea X una variable aleatoria (Discreta o Continua), con distribución de probabilidad f(x). El valor esperado de X, el cuál se denota  $E\left[X\right]$ , se define como:

$$E\left[X\right] = \left\{ \begin{array}{ll} \sum\limits_{x} x \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \int\limits_{-\infty}^{\infty} x \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right. .$$

Este valor esperado es usualmente denotado  $\mu_X$ , o  $\mu$ . Algunas propiedades del valor esperado. Sean a,b números reales y sea X una variable aleatoria (Discreta o Continua).

- E[a] = a.
- E[aX + b] = aE[X] + b.

ullet Si g(X) es una función de X, entonces:

• Si g(X) es una función de X, entonces:

$$E\left[g(X)\right] = \left\{ \begin{array}{ll} \sum\limits_{x} g(x) \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \sum\limits_{-\infty}^{x} g(x) \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right..$$

• Si g(X) es una función de X, entonces:

$$E\left[g(X)\right] = \left\{ \begin{array}{ll} \sum\limits_{x} g(x) \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \int\limits_{-\infty}^{x} g(x) \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right..$$

**Nota:** Sea  $g(X) = (X - \mu_X)^2$ .

• Si g(X) es una función de X, entonces:

$$E\left[g(X)\right] = \left\{ \begin{array}{ll} \sum\limits_{x} g(x) \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \int\limits_{-\infty}^{x} g(x) \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right..$$

**Nota:** Sea  $g(X)=(X-\mu_X)^2$ . La *Varianza* de X, la cual se denotará Var[X] o  $\sigma_X^2$  o simplemente  $\sigma^2$ , se define como:

• Si g(X) es una función de X, entonces:

$$E\left[g(X)\right] = \left\{ \begin{array}{ll} \sum\limits_{x} g(x) \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \sum\limits_{-\infty}^{x} g(x) \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right..$$

**Nota:** Sea  $g(X)=(X-\mu_X)^2$ . La *Varianza* de X, la cual se denotará Var[X] o  $\sigma_X^2$  o simplemente  $\sigma^2$ , se define como:

$$Var[X] = E\left[ \left( X - \mu_X \right)^2 \right] = E\left[ X^2 \right] - E\left[ X \right]^2 \; .$$

• Si g(X) es una función de X, entonces:

$$E\left[g(X)\right] = \left\{ \begin{array}{ll} \sum\limits_{x} g(x) \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \int\limits_{-\infty}^{x} g(x) \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right..$$

**Nota:** Sea  $g(X)=(X-\mu_X)^2$ . La *Varianza* de X, la cual se denotará Var[X] o  $\sigma_X^2$  o simplemente  $\sigma^2$ , se define como:

$$Var[X] = E[(X - \mu_X)^2] = E[X^2] - E[X]^2.$$

### Propiedades de la Varianza

Sean a,b números reales y sea X una variable aleatoria (Discreta o Continua).

• Si g(X) es una función de X, entonces:

$$E\left[g(X)\right] = \left\{ \begin{array}{ll} \sum\limits_{x} g(x) \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \int\limits_{-\infty}^{\infty} g(x) \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right..$$

**Nota:** Sea  $g(X)=(X-\mu_X)^2$ . La *Varianza* de X, la cual se denotará Var[X] o  $\sigma_X^2$  o simplemente  $\sigma^2$ , se define como:

$$Var[X] = E[(X - \mu_X)^2] = E[X^2] - E[X]^2.$$

### Propiedades de la Varianza

Sean a,b números reales y sea X una variable aleatoria (Discreta o Continua).

• 
$$Var[X] = E[X^2] - (E[X])^2$$
.

• Si g(X) es una función de X, entonces:

$$E\left[g(X)\right] = \left\{ \begin{array}{ll} \sum\limits_{x} g(x) \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \int\limits_{-\infty}^{\infty} g(x) \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right..$$

**Nota:** Sea  $g(X)=(X-\mu_X)^2$ . La *Varianza* de X, la cual se denotará Var[X] o  $\sigma_X^2$  o simplemente  $\sigma^2$ , se define como:

$$Var[X] = E[(X - \mu_X)^2] = E[X^2] - E[X]^2.$$

### Propiedades de la Varianza

Sean a,b números reales y sea X una variable aleatoria (Discreta o Continua).

- $Var[X] = E[X^2] (E[X])^2$ .
- $\bullet \ Var[a] = 0.$

• Si g(X) es una función de X, entonces:

$$E\left[g(X)\right] = \left\{ \begin{array}{ll} \sum\limits_{x} g(x) \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \int\limits_{-\infty}^{\infty} g(x) \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right..$$

**Nota:** Sea  $g(X)=(X-\mu_X)^2$ . La *Varianza* de X, la cual se denotará Var[X] o  $\sigma_X^2$  o simplemente  $\sigma^2$ , se define como:

$$Var[X] = E[(X - \mu_X)^2] = E[X^2] - E[X]^2.$$

### Propiedades de la Varianza

Sean a,b números reales y sea X una variable aleatoria (Discreta o Continua).

- $Var[X] = E[X^2] (E[X])^2$ .
- Var[a] = 0.
- $Var[a X + b] = a^2 Var[X].$

• Si g(X) es una función de X, entonces:

$$E\left[g(X)\right] = \left\{ \begin{array}{ll} \sum\limits_{x} g(x) \; p(x) & ; \quad \text{Si $X$ es discreta} \\ \int\limits_{-\infty}^{\infty} g(x) \; f(x) \; dx & ; \quad \text{Si $X$ es continua} \end{array} \right..$$

**Nota:** Sea  $g(X)=(X-\mu_X)^2$ . La *Varianza* de X, la cual se denotará Var[X] o  $\sigma_X^2$  o simplemente  $\sigma^2$ , se define como:

$$Var[X] = E[(X - \mu_X)^2] = E[X^2] - E[X]^2.$$

#### Propiedades de la Varianza

Sean a,b números reales y sea X una variable aleatoria (Discreta o Continua).

- $Var[X] = E[X^2] (E[X])^2$ .
- Var[a] = 0.
- $Var[aX + b] = a^2 Var[X].$

A la raíz cuadrada de la Varianza se le conoce como *Desviación estándar* y se denota como  $\sigma_X$  o simplemente  $\sigma$ .

A la raíz cuadrada de la Varianza se le conoce como *Desviación estándar* y se denota como  $\sigma_X$  o simplemente  $\sigma$ .

### Ejemplo 23

El tiempo de espera en la fila de un autobús (en min) es una variable aleatoria X, con p.d.f. dada por  $f(x)=0.1\,e^{-0.1\,x}$  ,  $\ x>0$  .

A la raíz cuadrada de la Varianza se le conoce como *Desviación estándar* y se denota como  $\sigma_X$  o simplemente  $\sigma$ .

### Ejemplo 23

El tiempo de espera en la fila de un autobús (en min) es una variable aleatoria X, con p.d.f. dada por  $f(x)=0.1\,e^{-0.1\,x}$  ,  $\ x>0$  .

• Halle E[X], Var[X] y  $\sigma_X$ .

A la raíz cuadrada de la Varianza se le conoce como *Desviación estándar* y se denota como  $\sigma_X$  o simplemente  $\sigma$ .

### Ejemplo 23

El tiempo de espera en la fila de un autobús (en min) es una variable aleatoria X, con p.d.f. dada por  $f(x)=0.1\,e^{-0.1\,x}$  ,  $\ x>0$  .

- ullet Halle E[X], Var[X] y  $\sigma_X$  .
- Sea g(X) = 2X 10. Calcule Var[g(X)].

#### Solución

• Por definición se tiene que:

A la raíz cuadrada de la Varianza se le conoce como *Desviación estándar* y se denota como  $\sigma_X$  o simplemente  $\sigma$ .

### Ejemplo 23

El tiempo de espera en la fila de un autobús (en min) es una variable aleatoria X, con p.d.f. dada por  $f(x)=0.1\,e^{-0.1\,x}$  , x>0 .

- ullet Halle E[X], Var[X] y  $\sigma_X$  .
- Sea g(X) = 2X 10. Calcule Var[g(X)].

### Solución

• Por definición se tiene que:

$$E[X] = \int_{0}^{\infty} 0.1 e^{-0.1x} x \, dx = -\frac{1}{0.1} (u+1) e^{-u} \Big|_{0}^{\infty} = 10.$$

### Solución

$$E[X^2] = \int_{0}^{\infty} 0.1 e^{-0.1x} x^2 dx = -\frac{1}{0.1^2} (u^2 + 2u + 2) e^{-u} \Big|_{0}^{\infty} = 200.$$

### Solución

 $E[X^2] = \int_{0}^{\infty} 0.1 e^{-0.1 x} x^2 dx = -\frac{1}{0.1^2} (u^2 + 2u + 2) e^{-u} \Big|_{0}^{\infty} = 200.$ 

Con esto

### Solución

$$E[X^2] = \int_{0}^{\infty} 0.1 e^{-0.1 x} x^2 dx = -\frac{1}{0.1^2} (u^2 + 2u + 2) e^{-u} \Big|_{0}^{\infty} = 200.$$

Con esto

$$Var[X] = E[X^2] - (E[X])^2 = 200 - 100 = 100$$
.

Finalmente  $\sigma_X = 10$ .

### Solución

$$E[X^2] = \int_0^\infty 0.1 \, e^{-0.1 \, x} \, x^2 \, dx = -\frac{1}{0.1^2} (u^2 + 2 \, u + 2) \, e^{-u} \, |_0^\infty = 200 \, .$$

Con esto

$$Var[X] = E[X^2] - (E[X])^2 = 200 - 100 = 100$$
.

Finalmente  $\sigma_X=10$ . El tiempo medio de espera en fila por el autobús es de 10 min y la mayoría de personas que esperan en fila, requieren entre 0 y 20 min.

### Solución

$$E[X^2] = \int_{0}^{\infty} 0.1 e^{-0.1 x} x^2 dx = -\frac{1}{0.1^2} (u^2 + 2u + 2) e^{-u} \Big|_{0}^{\infty} = 200.$$

Con esto

$$Var[X] = E[X^2] - (E[X])^2 = 200 - 100 = 100$$
.

Finalmente  $\sigma_X=10$ . El tiempo medio de espera en fila por el autobús es de 10 min y la mayoría de personas que esperan en fila, requieren entre 0 y 20 min.

$$Var[g(X)] = Var[2X - 10] = 2^2 Var[X] = 4 * 100 = 400$$
.

### Ejemplo 24

Se lanzan cuatro monedas no cargadas.

### Ejemplo 24

Se lanzan cuatro monedas no cargadas. Sea X la variable aleatoria definida por el número de caras, entonces  $A_X=\{0,1,2,3,4\}.$ 

### Ejemplo 24

Se lanzan cuatro monedas no cargadas. Sea X la variable aleatoria definida por el número de caras, entonces  $A_X=\{0,1,2,3,4\}$ . Halle la p.m.f de X y E[X].

### Ejemplo 24

Se lanzan cuatro monedas no cargadas. Sea X la variable aleatoria definida por el número de caras, entonces  $A_X=\{0,1,2,3,4\}$ . Halle la p.m.f de X y E[X].

#### Solución

Es fácil verificar que (ejercicio):

### Ejemplo 24

Se lanzan cuatro monedas no cargadas. Sea X la variable aleatoria definida por el número de caras, entonces  $A_X=\{0,1,2,3,4\}$ . Halle la p.m.f de X y E[X].

#### Solución

Es fácil verificar que (ejercicio):

$$p(x) = {4 \choose x} \left(\frac{1}{2}\right)^4$$
,  $x = 0, 1, 2, 3, 4$ .

### Ejemplo 24

Se lanzan cuatro monedas no cargadas. Sea X la variable aleatoria definida por el número de caras, entonces  $A_X=\{0,1,2,3,4\}$ . Halle la p.m.f de X y E[X].

#### Solución

Es fácil verificar que (ejercicio):

$$p(x) = {4 \choose x} \left(\frac{1}{2}\right)^4$$
,  $x = 0, 1, 2, 3, 4$ .

De esta manera se tiene que:

### Ejemplo 24

Se lanzan cuatro monedas no cargadas. Sea X la variable aleatoria definida por el número de caras, entonces  $A_X=\{0,1,2,3,4\}$ . Halle la p.m.f de X y E[X].

#### Solución

Es fácil verificar que (ejercicio):

$$p(x) = {4 \choose x} \left(\frac{1}{2}\right)^4$$
,  $x = 0, 1, 2, 3, 4$ .

De esta manera se tiene que:

$$E[X] = \sum_{x=0}^4 x \binom{4}{x} \left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^4 \left[0\binom{4}{0} + 1\binom{4}{1} + 2\binom{4}{2} + 3\binom{4}{3} + 4\binom{4}{4}\right] \ .$$

### Ejemplo 24

Se lanzan cuatro monedas no cargadas. Sea X la variable aleatoria definida por el número de caras, entonces  $A_X=\{0,1,2,3,4\}$ . Halle la p.m.f de X y E[X].

#### Solución

Es fácil verificar que (ejercicio):

$$p(x) = {4 \choose x} \left(\frac{1}{2}\right)^4$$
,  $x = 0, 1, 2, 3, 4$ .

De esta manera se tiene que:

$$E[X] = \sum_{x=0}^{4} x \binom{4}{x} \left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^4 \left[0\binom{4}{0} + 1\binom{4}{1} + 2\binom{4}{2} + 3\binom{4}{3} + 4\binom{4}{4}\right].$$

$$E[X] = \frac{1}{16} [0(1) + 1(4) + 2(6) + 3(4) + 4(1)] = \frac{32}{16} = 2.$$

### Ejemplo 24

Se lanzan cuatro monedas no cargadas. Sea X la variable aleatoria definida por el número de caras, entonces  $A_X=\{0,1,2,3,4\}$ . Halle la p.m.f de X y E[X].

#### Solución

Es fácil verificar que (ejercicio):

$$p(x) = {4 \choose x} \left(\frac{1}{2}\right)^4$$
,  $x = 0, 1, 2, 3, 4$ .

De esta manera se tiene que:

$$E[X] = \sum_{x=0}^{4} x \binom{4}{x} \left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^4 \left[0\binom{4}{0} + 1\binom{4}{1} + 2\binom{4}{2} + 3\binom{4}{3} + 4\binom{4}{4}\right].$$

$$E[X] = \frac{1}{16} [0(1) + 1(4) + 2(6) + 3(4) + 4(1)] = \frac{32}{16} = 2.$$

Si se repite muchas veces este experimento, se espera que el número de caras obtenidas tienda a 2.

En general, si se lanzan n monedas no cargadas y X: representa el número de caras en los n lanzamientos, entonces (verificar):

En general, si se lanzan n monedas no cargadas y X: representa el número de caras en los n lanzamientos, entonces (verificar):

$$E[X] = \sum_{x=0}^{n} x \binom{n}{x} \left(\frac{1}{2}\right)^{n} = \frac{n}{2}.$$

### Ejemplo 25

Una máquina de llenado de latas es revisada cada hora.

En general, si se lanzan n monedas no cargadas y X: representa el número de caras en los n lanzamientos, entonces (verificar):

$$E[X] = \sum_{x=0}^{n} x \binom{n}{x} \left(\frac{1}{2}\right)^{n} = \frac{n}{2}.$$

### Ejemplo 25

Una máquina de llenado de latas es revisada cada hora. Cada lata es sometida a un proceso para determinar el volumen de llenado y verificar si cumple o no los requisitos exigidos.

En general, si se lanzan n monedas no cargadas y X: representa el número de caras en los n lanzamientos, entonces (verificar):

$$E[X] = \sum_{r=0}^{n} x \binom{n}{x} \left(\frac{1}{2}\right)^{n} = \frac{n}{2}.$$

### Ejemplo 25

Una máquina de llenado de latas es revisada cada hora. Cada lata es sometida a un proceso para determinar el volumen de llenado y verificar si cumple o no los requisitos exigidos. Este proceso se continúa hasta encontrar la primera lata que no cumple con los requisitos.

En general, si se lanzan n monedas no cargadas y X: representa el número de caras en los n lanzamientos, entonces (verificar):

$$E[X] = \sum_{r=0}^{n} x \binom{n}{x} \left(\frac{1}{2}\right)^{n} = \frac{n}{2}.$$

### Ejemplo 25

Una máquina de llenado de latas es revisada cada hora. Cada lata es sometida a un proceso para determinar el volumen de llenado y verificar si cumple o no los requisitos exigidos. Este proceso se continúa hasta encontrar la primera lata que no cumple con los requisitos.

Sea X número de latas revisadas hasta encontrar la primera que no cumple.

4□ > 4♠ > 4 = > 4 = > 4 0 Q (

En general, si se lanzan n monedas no cargadas y X: representa el número de caras en los n lanzamientos, entonces (verificar):

$$E[X] = \sum_{x=0}^{n} x \binom{n}{x} \left(\frac{1}{2}\right)^{n} = \frac{n}{2}.$$

### Ejemplo 25

Una máquina de llenado de latas es revisada cada hora. Cada lata es sometida a un proceso para determinar el volumen de llenado y verificar si cumple o no los requisitos exigidos. Este proceso se continúa hasta encontrar la primera lata que no cumple con los requisitos.

Sea X número de latas revisadas hasta encontrar la primera que no cumple. Suponga que la proporción de latas que no cumplen las especificaciones es p.

En general, si se lanzan n monedas no cargadas y X: representa el número de caras en los n lanzamientos, entonces (verificar):

$$E[X] = \sum_{x=0}^{n} x \binom{n}{x} \left(\frac{1}{2}\right)^{n} = \frac{n}{2}.$$

### Ejemplo 25

Una máquina de llenado de latas es revisada cada hora. Cada lata es sometida a un proceso para determinar el volumen de llenado y verificar si cumple o no los requisitos exigidos. Este proceso se continúa hasta encontrar la primera lata que no cumple con los requisitos.

Sea X número de latas revisadas hasta encontrar la primera que no cumple. Suponga que la proporción de latas que no cumplen las especificaciones es p. Halle E[X].

### Solución

Defina los eventos:

 ${\cal N}:$  La lata no cumple los requisitos

### Solución

Defina los eventos:

 $N: \mathsf{La}\ \mathsf{lata}\ \mathsf{no}\ \mathsf{cumple}\ \mathsf{los}\ \mathsf{requisitos}$  ;  $S: \mathsf{La}\ \mathsf{lata}\ \mathsf{si}\ \mathsf{cumple}\ \mathsf{los}\ \mathsf{requisitos}$ 

### Solución

Defina los eventos:

N : La lata no cumple los requisitos ; S : La lata si cumple los requisitos

El espacio muestral para este experimento está dado por:

#### Solución

Defina los eventos:

 $N: \mathsf{La}\ \mathsf{lata}\ \mathsf{no}\ \mathsf{cumple}\ \mathsf{los}\ \mathsf{requisitos}$  ;  $S: \mathsf{La}\ \mathsf{lata}\ \mathsf{si}\ \mathsf{cumple}\ \mathsf{los}\ \mathsf{requisitos}$ 

El espacio muestral para este experimento está dado por:

$$S = \{N,\,SN,\,SSN,\,SSSN,\,SSSSN,\,\cdots\}$$
 , con  $A_X = \{1,\,2,\,3,\,4,\,\cdots\}$  .

#### Solución

Defina los eventos:

 $N: \ensuremath{\mathsf{La}}$  lata no cumple los requisitos ;  $S: \ensuremath{\mathsf{La}}$  lata si cumple los requisitos

El espacio muestral para este experimento está dado por:

$$S = \{N,\,SN,\,SSN,\,SSSN,\,SSSSN,\,\cdots\}$$
 , con  $A_X = \{1,\,2,\,3,\,4,\,\cdots\}$  .

$$P(X = 1) = P(N) = p$$
  
 $P(X = 2) = P(SN) = P(S) P(N) = (1 - p) p$   
 $P(X = 2) = P(SN) = P(S) P(S) P(N) = (1 - p) p$ 

$$P(X = 3) = P(S S N) = P(S) P(S) P(N) = (1 - p)^{2} p$$

$$P(X = x) = P\left(\underbrace{SS \cdots S}_{x-1 \text{ veces}} N\right) = P(S)^{x-1} p = (1-p)^{x-1} p$$

$$P(x) = p (1-p)^{x-1}$$
;  $x = 1, 2, 3, \dots$ 

$$E[X] = \sum_{x=1}^{\infty} x p(x) = \sum_{x=1}^{\infty} x p(1-p)^{x-1} = \frac{1}{p}$$

Se probará que en efecto  $E[X] = \frac{1}{p}$ .

Se probará que en efecto  $E[X]=\frac{1}{p}$ . Sea  $f(t)=\sum_{x=0}^{\infty} p\ t^x$  .

Se probará que en efecto  $E[X]=\frac{1}{p}$ . Sea  $f(t)=\sum_{x=0}^{\infty} p\ t^x$ . Si |t|<1 entonces  $f(t)=\frac{p}{1-t}$  .

Se probará que en efecto  $E[X]=\frac{1}{p}$ . Sea  $f(t)=\sum\limits_{x=0}^{\infty}p\;t^{\;x}$ . Si |t|<1 entonces  $f(t)=\frac{p}{1-t}$  . De esta manera

Se probará que en efecto  $E[X]=\frac{1}{p}$ . Sea  $f(t)=\sum_{x=0}^{\infty}p\ t^x$ . Si |t|<1 entonces  $f(t)=\frac{p}{1-t}$  . De esta manera

$$f^{'}(t) = \sum_{x=1}^{\infty} x \, p \; t^{x-1} \; , \quad \text{ para } \quad |t| < 1 \; .$$

Se probará que en efecto  $E[X]=\frac{1}{p}$  . Sea  $f(t)=\sum_{x=0}^{\infty} p\ t^x$  . Si |t|<1

entonces 
$$f(t) = \frac{p}{1-t}$$
 . De esta manera

$$f^{'}(t) = \sum_{x=1}^{\infty} x \, p \; t^{x-1} \; , \quad \text{ para } \quad |t| < 1 \; .$$

Pero

Se probará que en efecto  $E[X]=\frac{1}{p}$ . Sea  $f(t)=\sum_{x=0}^{\infty} p\ t^x$ . Si |t|<1

entonces  $f(t) = \frac{p}{1-t}$  . De esta manera

$$f^{'}(t) = \sum_{x=1}^{\infty} x \, p \; t^{x-1} \; , \quad {\sf para} \quad |t| < 1 \; .$$

Pero

$$f'(t) = \frac{p}{(1-t)^2} \implies \frac{p}{(1-t)^2} = \sum_{x=1}^{\infty} x \, p \, t^{x-1} \, .$$

- 4 ロト 4 部 ト 4 恵 ト 4 恵 ト - 恵 - 釣 Q

Se probará que en efecto  $E[X]=\frac{1}{p}$ . Sea  $f(t)=\sum_{x=0}^{\infty} p\ t^x$ . Si |t|<1

entonces  $f(t) = \frac{p}{1-t}$  . De esta manera

$$f^{'}(t) = \sum_{x=1}^{\infty} x \, p \; t^{x-1} \; , \quad \text{para} \quad |t| < 1 \; .$$

Pero

$$f'(t) = \frac{p}{(1-t)^2} \implies \frac{p}{(1-t)^2} = \sum_{x=1}^{\infty} x \, p \, t^{x-1} \, .$$

Haciendo t = 1 - p, se tiene que:

Se probará que en efecto  $E[X]=\frac{1}{p}$ . Sea  $f(t)=\sum_{x=0}^{\infty} p\ t^x$ . Si |t|<1

entonces  $f(t) = \frac{p}{1-t}$  . De esta manera

$$f^{'}(t) = \sum_{x=1}^{\infty} x p t^{x-1}$$
 , para  $|t| < 1$  .

Pero

$$f'(t) = \frac{p}{(1-t)^2} \implies \frac{p}{(1-t)^2} = \sum_{x=1}^{\infty} x \, p \, t^{x-1} \, .$$

Haciendo t = 1 - p, se tiene que:

$$E[X] = \sum_{x=1}^{\infty} x p (1-p)^{x-1} = \frac{p}{p^2} = \frac{1}{p}.$$

### Ejemplo 26

Sea X una variable aleatoria con p.d.f. dada por:

### Ejemplo 26

Sea X una variable aleatoria con p.d.f. dada por:

$$f(x) = \begin{cases} kx(1-x) & ; & 0 < x < 1 \\ 0 & ; & \text{otro caso} \end{cases}.$$

### Ejemplo 26

Sea X una variable aleatoria con p.d.f. dada por:

$$f(x) = \begin{cases} kx(1-x) & ; & 0 < x < 1 \\ 0 & ; & \text{otro caso} \end{cases}.$$

 ${\sf Calcule}\; E[X] \; {\sf y} \; Var[X].$ 

### Ejemplo 26

Sea X una variable aleatoria con p.d.f. dada por:

$$f(x) = \begin{cases} kx(1-x) & ; & 0 < x < 1 \\ 0 & ; & \text{otro caso} \end{cases}.$$

Calcule E[X] y Var[X].

#### Solución

Primero se debe hallar el valor de k:

### Ejemplo 26

Sea X una variable aleatoria con p.d.f. dada por:

$$f\left(x\right) = \left\{ \begin{array}{ccc} k \, x \, (1-x) & ; & 0 < x < 1 \\ 0 & ; & \text{otro caso} \end{array} \right. .$$

Calcule E[X] y Var[X].

#### Solución

Primero se debe hallar el valor de k:

$$\int_0^1 k \, x \, (1 - x) \, dx = 1 \quad \Leftrightarrow \quad k \, \left[ \frac{x^2}{2} - \frac{x^3}{3} \right] \Big|_0^1 = 1 \; ;$$

### Ejemplo 26

Sea X una variable aleatoria con p.d.f. dada por:

$$f\left(x\right) = \left\{ \begin{array}{ccc} k \, x \, (1-x) & ; & 0 < x < 1 \\ 0 & ; & \text{otro caso} \end{array} \right. .$$

Calcule E[X] y Var[X].

#### Solución

Primero se debe hallar el valor de k:

$$\int_0^1 k \, x \, (1 - x) \, dx = 1 \quad \Leftrightarrow \quad k \, \left[ \frac{x^2}{2} - \frac{x^3}{3} \right] \Big|_0^1 = 1 \; ;$$

Así,

$$k\left[\frac{1}{2} - \frac{1}{3}\right] = 1 \quad \Leftrightarrow \quad \frac{k}{6} = 1 \quad \Rightarrow \quad k = 6.$$

### Ejemplo 26

Sea X una variable aleatoria con p.d.f. dada por:

$$f\left(x\right) = \left\{ \begin{array}{ccc} k \, x \, (1-x) & ; & 0 < x < 1 \\ 0 & ; & \text{otro caso} \end{array} \right. .$$

Calcule E[X] y Var[X].

#### Solución

Primero se debe hallar el valor de k:

$$\int_0^1 k \, x \, (1 - x) \, dx = 1 \quad \Leftrightarrow \quad k \, \left[ \frac{x^2}{2} - \frac{x^3}{3} \right] \Big|_0^1 = 1 \; ;$$

Así,

$$k\left[\frac{1}{2} - \frac{1}{3}\right] = 1 \quad \Leftrightarrow \quad \frac{k}{6} = 1 \quad \Rightarrow \quad k = 6.$$

Con esto f(x) = 6x(1-x); 0 < x < 1.

$$E[X] = \int_0^1 x \, 6 \, x \, (1 - x) \, dx = \int_0^1 6 \, (x^2 - x^3) \, dx = 6 \, \left[ \frac{x^3}{3} - \frac{x^4}{4} \right] \Big|_0^1 = \frac{1}{2} \, .$$

$$E[X^2] = \int_0^1 x^2 6x (1-x) dx = 6 \left[ \frac{x^4}{4} - \frac{x^5}{5} \right] \Big|_0^1 = \frac{3}{10}.$$

Finalmente,

$$E[X] = \int_0^1 x \, 6 \, x \, (1 - x) \, dx = \int_0^1 6 \, (x^2 - x^3) \, dx = 6 \, \left[ \frac{x^3}{3} - \frac{x^4}{4} \right] \Big|_0^1 = \frac{1}{2} \, .$$

$$E[X^2] = \int_0^1 x^2 6 x (1 - x) dx = 6 \left[ \frac{x^4}{4} - \frac{x^5}{5} \right]_0^1 = \frac{3}{10}.$$

Finalmente,

$$Var[X] = E[X^2] - (E[X])^2 = \frac{3}{10} - (\frac{1}{2})^2 = \frac{1}{20}.$$

У

$$\sigma_X = \frac{1}{2\sqrt{5}} \ .$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○