Trees

Data Structures

Ching-Fang Hsu

Department of Computer Science and Information Engineering

National Cheng Kung University

Introduction -- Terminology

❖ Definition (Tree)

- □ A *tree* is a finite set of one or more nodes such that:
 - ◆ There is a specially designed node called root.
- Subtrees are prohibited from ever connecting together.
- Every node in the tree is the root of some subtree.

Introduction -- Terminology (contd.)

- ❖ The degree of a node
 - ☐ The number of subtrees of the node
- The degree of a tree
 - ☐ The maximum degree of the nodes in the tree
- ❖ A leaf/terminal node
 - ☐ A node with degree zero

Introduction -- Terminology (contd.)

- The parent (children) of a node
 - \Box Given a node X and its subtrees $T_1, ..., T_n$, which are rooted at node $r_1, ..., r_n$, respectively.
 - igspace X is the parent of r_1 , ..., and r_n . In other words, r_1 , ..., and r_n are X's children.
- Siblings
 - ☐ Children of the same parent
- The ancestors of a node
 - □ All the nodes along the path from the root to the node

Introduction -- Terminology (contd.)

- The descendents of a node
 - □ All the nodes that are in its subtrees
- ❖ The *level* of a node
 - ☐ The root is at level one.
 - ☐ Otherwise, the level is the level of its parent plus one.
- The height/depth of a tree
 - ☐ The maximum level of any nodes in the tree

Introduction -- Representation of Trees

- List Representation
 - ■Write a tree as a list in which each of the subtrees is also a list
 - ◆ Example: (p.193, Fig. 5.2)
 (A (B (E (K, L), F), C(G), D(H (M), I, J)))

Introduction -- Representation of Trees in Memory

- Linked lists
 - ☐ A node with varying number of fields
 - ♦p. 195, Fig. 5.4
 - ☐ Each link represents a child of the node.
- Left Child-Right Sibling Representation
 - □ Exactly two link or pointer fields per node
 - ♦ p.195 Fig. 5.5
 - ☐ The order of children in a tree is not important.
 - Any of the children of a node could be its leftmost child and any of its siblings could be the closest right sibling.
 - ◆ Example: p. 196, Fig. 5.6

Binary Trees

- ❖ Definition (Binary Trees)
 - □ A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtree and the right subtree.
- The chief characteristics of a binary tree
 - □ The degree of any given node must not exceed two.
 - ☐ The order of subtrees is not irrelevant any more.
 - May have zero nodes

Binary Trees (contd.)

- ❖ The binary tree ADT (p.199, ADT 5.1)
- ❖ A binary tree vs. A tree
 - ☐ An empty tree is invalid while a binary tree may have zero nodes.
 - ☐ The order of subtrees is irrelevant in a tree while the order of children is distinguishable in a binary tree.
 - ♦p. 199, Fig. 5.9

Binary Trees (contd.)

- Two special types of binary trees
 - □ Skewed trees
 - ◆ Skewed to the left or to the right (p. 200, Fig. 5.10(a))
 - ☐ Complete binary trees
 - ♦=> All the leaf nodes are on two adjacent levels. (p. 200, Fig. 5.9(b))

Binary Trees -- Properties

- **❖ Lemma 5.2** [Maximum number of nodes]:
 - ☐ The maximum number of nodes on level i of a binary tree is 2^{i-1} , $i \ge 1$
 - ☐ The maximum number of nodes in a binary tree of depth k is 2^k -1, $k \ge 1$
 - □proof: ref. p. 200~201
- ❖ Lemma 5.3 [Relation between number of leaf nodes and nodes of degree 2]:
 - □ For any nonempty binary tree, T, if n_0 is the number of leaf nodes and n_2 the number of nodes of degree 2, then $n_0 = n_2 + 1$.

Binary Trees -- Properties (contd.)

- Definition (Full Binary Trees)
 - \square A *full binary tree* of depth k is a binary tree of depth k having 2^k -1 nodes, $k \ge 0$.
 - ☐ A numbering scheme
 - ◆ Starting with the root on level 1, continue with the nodes on level 2, and so on.
 - ◆ Nodes on any level are numbered from left to right.
 - ♦p. 202, Fig. 5.11

Binary Trees -- Properties (contd.)

- Definition (Complete Binary Trees)
 - $egin{array}{l} \Box$ A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the binary tree of depth k.

Binary Trees -- Representation

- Array Representation
 - ☐ A one-dimensional array
 - ◆ The 0th position of the array is a dummy element.
 - □ Lemma 5.4: If a complete binary tree with n nodes $(depth = \lfloor log_2 n + 1 \rfloor)$ is represented sequentially, then for any node with index i, $1 \le i \le n$, we have:
 - igoplus parent(i) is at $\lfloor i/2 \rfloor$ if $i \neq 1$. If i = 1, i is at the root and has no parent.
 - ♦ $left_child(i)$ is at 2i if $2i \le n$. If 2i > n, then i has no left child.
 - ♦ $right_child$ (i) is at 2i + 1 if $2i + 1 \le n$. If 2i + 1 > n, then i has no right child.

Binary Trees -- Representation (contd.)

- \Box In the worst case, a skewed tree of depth k requires 2^k -1 spaces
 - ◆ Only *k* spaces will be occupied.
- □ Disadvantages
 - ◆ A waste of space
 - ◆ The general inadequacies of sequential representation

Linked Representation

- ☐ Three fields (p. 204)
 - ◆ left_child, data, and right_child
- □ A fourth field, *parent*, is added if it is necessary to know the parents of random nodes.

Binary Tree Traversals

- ❖ What is "tree traversal"?
 - ☐ Visiting each node in the tree exactly once
- Notations
 - □ *L* -- Moving left
 - □ *V* -- Visiting the node
 - □ R -- Moving right
- Three possible traversals if we traverse left before right (Example: p. 206)
 - □ LVR (inorder), LRV (postorder), and VLR (preorder)

Binary Tree Traversals -- Inorder Traversal

Binary Tree Traversals -- Inorder Traversal (contd.)

- ❖ Recursive inorder traversal (p. 207, Program 5.1)
- For a binary tree with an arithmetic expression, the inorder traversal would produce the infix form of the expression.
- Iterative inorder traversal (p. 210, Program 5.4)
 - ☐ To simulate the recursion, we must create a stack.
 - \Box The time complexity and space complexity are both O(n).

Binary Tree Traversals -- Preorder Traversal

Binary Tree Traversals -- Preorder Traversal (contd.)

- ❖ Recursive preorder traversal (p. 208, Program 5.2)
- Using a preorder traversal, the nodes of a binary tree with arithmetic expression can be output as the prefix form of the expression.

Binary Tree Traversals -- Postorder Traversal

- Postorder traversal visits a node's two children before it visits the node
 - ☐ A node's children will be output before the node.
 - □p. 209, Program 5.3
 - □ Postfix forms

Binary Tree Traversals -- Level Order Traversal

- This type of traversal requires a queue.
- Visits the nodes using the ordering scheme shown in Fig. 5.11
 - □p. 211, Program 5.5
 - ◆A circular queue is used.

The Heap Abstract Data Type

- ❖ Definition (Max (Min) Trees)
 - □ A max (min) tree is a tree in which the key value in each node is no smaller (larger) than the key values in its children (if any).
- ❖ Definition (Max (Min) Heaps)
 - □ A max (min) heap is a complete binary tree that is also a max (min) tree.
- An array can be used to represent a heap.
 - ☐ The addressing scheme provided by Lemma 5.3

The Heap Abstract Data Type (contd.)

- ❖ The basic operations of the ADT of a max heap (p. 223, ADT 5.2)
 - ☐ Creation of an empty heap
 - ☐ Insertion of a new element into the heap
 - ☐ Deletion of the largest element from the heap
- The real challenge is the design of the representation of a heap for efficient insertion and deletion.

The Heap Abstract Data Type -Priority Queues

- One of applications of heaps
 - □ Note: Heaps are only one way to implement priority queues.
 - ☐ The insertion and deletion times for several representations of priority queues

The Heap Abstract Data Type -Insertion into A Max Heap

- ❖ Example: p. 226, Fig. 5.27
- Implementation of heap insertion
 - ☐ Go from an element to its parent
 - ◆ How to get a node's parent?
 - A parent field is added if we use linked representation.
 - It is much easier if we choose the array representation for a heap since a heap is a complete binary tree.
 - □p. 227, Program 5.13
 - \Box Time complexity: O(log n)

The Heap Abstract Data Type -- Deletion from A Max Heap

- Step 1: Take the deleted element from the root of the heap.
- Step 2: Move down the heap, compare and exchange parent and child nodes until the heap definition is re-established.
 - □ Example: p. 228, Fig. 5.28
 - □p. 229, Program 5.14
- \bigstar Time complexity: O(log n)

Binary Search Trees

- ❖ A heap is not well suited for applications in which we must delete arbitrary elements.
- Definition (Binary Search Trees)
 - □ A binary search tree is a binary tree. If it is not empty it satisfies the following properties:
 - ➤ Every element has a key, and no two elements have the same key, i.e., the keys are unique.

 Redundant!
 - ◆ The keys in a nonempty left subtree must be smaller than the key in the root of the subtree.
 - ◆The keys in a nonempty right subtree must be larger than the key in the root of the subtree.
 - The left and right subtrees are also binary search trees.

Binary Search Trees -- Search

- ❖ p. 233, Program 5.15 (Recursive version)
- ❖ p. 233, Program 5.16 (Iterative version)
- Analysis
 - \Box If h is the height of the binary search tree

 - lacktriangle Iterative version: O(h)

Binary Search Trees -- Insertion

- ❖ p. 235, Program 5.17
- Analysis

Binary Search Trees -- Deletion

- Deletion of a leaf node is easy.
- For the nonleaf node case
 - □ Replace the target node with either the largest element in its left subtree or the smallest element in its right subtree.
 - ☐ Delete the replacing element from the subtree
- Arr Time complexity: O(h)

Set Representation

Assumptions

- ☐ The elements of the set are the numbers 0, 1, 2, ..., n-1.
- ☐ The sets being represented are pairwise disjoint.
 - lacklosh If S_i and S_j are two sets and $i \neq j$, then there is no element that is in both S_i and S_j .
 - ♦ Example: $S_1 = \{0, 6, 7, 8\}, S_2 = \{1, 4, 9\}, S_3 = \{2, 3, 5\}$
- ☐ For each set, link the nodes from the children to the parent.
 - ♦p. 248, Fig, 5.37

- The minimal operations
 - \square Disjoint set union (union (i, j))
 - lacktriangle If S_i and S_j are two disjoint sets, then $S_i \cup S_j = \{ x \mid x \in S_i \text{ or } x \in S_i \}$
 - \Box find(i)
 - ◆ Find the set containing the element, *i*.
- ❖ For simplicity, each set is identified by its root of the tree representing it.
 - \square Example: We refer to S_1 as 0.

- Each node needs only one field, the index of its parent.
 - ☐ The only data structure needed is an array, as depicted in Fig. 5.40 on p. 249.
 - □ Root nodes have a parent of -1.
 - **union** (i, j) (p. 250, Program 5.19)
 - ◆ Assuming that the convention is that the first tree becomes a subtree of the second, parent[i] = j.
 - **□** *find(i)* (p. 250, Program 5.19)
 - ◆ Follow the indices starting at i and continue until a negative parent index is reached.

- □ Analysis
 - ◆ Performance characteristics are not very good, especially for a series of find operations over a degenerate tree.
 - ◆ Example: p. 251, Fig. 5.41
 - ◆ The total time needed to process n-1 finds is: $\sum_{i=2}^{n} i = O(n^2)$
- How to avoid the creation of degenerate trees?
 - ◆ Solution: Adopt Weighting Rule for union(*i*, *j*)!
- **Definition** (Weighting Rule for union(i, j))
 - \Box If the number of nodes in tree i is less than the number in tree j then make j the parent of i; otherwise make i the parent of j.

- ❖ By incorporating the weighting rule, the union operation takes the form given in WeightedUnion (p. 252, Program 5.20).
- **Lemma 5.5:** Let T be a tree with n nodes created as a result of *WeightedUnion*. No node in T has level greater than $\left|\log_2 n\right| + 1$.
 - ☐ The time to process a find in an n element tree is $O(\log_2 n)$.
- ❖ Definition [Collapsing rule]: If j is a node on the path from i to its root then make j a child of the root.

- ❖ By incorporating the collapsing rule, the find operation takes the form given in *find2* (p. 255, Program 5.21).
 - ☐ Roughly doubles the time for an individual find
 - ☐ However, the worst case time over a sequence of finds is reduced.
 - □ Example: p. 253, Example 5.4

Definition (Ackermann's function A(p, q))

inverse of Ackermann's function A(p, q)

$$\square \alpha(m, n) = \min \{ z \ge 1 \mid A(z, 4\lceil m/n \rceil) > \log_2 n \}$$

- Lemma 5.6 [Tarjan and Van Leeuwen]
 - Let T(f, u) be the maximum time required to process any inter-mixed sequence of f finds and u unions. Assume that $u \ge n/2$ Then:
- $k_1(u + f\alpha(f + u, u)) \le T(f, u) \le k_2(u + f\alpha(f + u, u))$ for some positive constants k_1 and k_2 .

Set Representation -- Equivalence Classes

- Regard the equivalence classes to be generated as sets
- \clubsuit How to process an equivalence pair, $i \equiv j$?
 - \Box Determine the sets containing *i* and *j*.
 - ◆ different ⇒ union operation
 - lack the same \Rightarrow do nothing
 - □So, two finds and at most one union are needed to perform for each equivalence pair.
 - Time complexity: $O(n+m\alpha(2m, min\{n-1, m\}))$, if we have n polygons and $m \ge n$ equivalence pairs