Wireless Networking Fundamentals and Applications

Kate C.-J. Lin (林靖茹)

Network & Mobile System Lab

Research Center for IT Innovation Academia Sinica

Agenda

Auto Rate Adaptation

 Orthogonal Frequency Division Modulation (OFDM)

Multi-Input Multi-Output Systems (MIMO)

Auto Rate Adaptation

- Modulations and bit-rates
- SNR and bit-error rate
- Bit-rate selection algorithms

Modulations

Modulate digital bits to a complex number (sample)

Modulations

Demodulation

Map the received complex number back to digital bits

Bit-Rates in 802.11

Bit-	802.11	DSSS	Modulation	Bits	Coding	Mega-
rate	Stan-	or		per	Rate	Symbols
	dards	OFDM		Symbol		per
						second
1	b	DSSS	BPSK	1	1/11	11
2	b	DSSS	QPSK	2	1/11	11
5.5	b	DSSS	CCK	1	4/8	11
11	b	DSSS	CCK	2	4/8	11
6	a/g	OFDM	BPSK	1	1/2	12
9	a/g	OFDM	BPSK	1	3/4	12
12	a/g	OFDM	QPSK	2	1/2	12
18	a/g	OFDM	QPSK	2	3/4	12
24	a/g	OFDM	QAM-16	4	1/2	12
36	a/g	OFDM	QAM-16	4	3/4	12
48	a/g	OFDM	QAM-64	6	2/3	12
54	a/g	OFDM	QAM-64	6	3/4	12

Coding Rate

- Avoid random errors
 - ▶ 1/2: Add 1x redundant bits
 - ▶ 3/4: Add 1/3x redundant bits
- Haven't solved the problem yet
 - ▶ Data input: 1, 1, 0, 1, 0, 1, 1, 0, ...
 - After encoding:
 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0,
 - ► Still one bit error → Suffer from bursty errors

Interleave and De-interleave

Transmitter

Channel Quality vs. Bit-Rate

- When channels are very good
 - ► Encode more bits as a sample

- When channels are noisy
 - Encode fewer bits as a sample

Why is it affected by the channel quality?

Error Probability vs. Modulations

Given the same SNR

Decode correctly

Decode incorrectly

SNR = 10log10 (|| signal || / || noise ||)

Given the same SNR, decodable for BPSK, but un-decodable for QPSK

SNR vs. BER (Bit Error Rate)

802.11 operating region 5dB

SNR vs. PER (Packet Error Rate)

- In 802.11, a packet is received correctly if it passes the CRC check (all bits are correct)
 - Receive all or none

 $PER = 1-(1-BER)^{n}$

Throughput = (1-BER)ⁿ * bit-rate

Throughput degrades quickly even with a little BER

Bit-Rate Selection

 Given the SNR, select the bit-rate that can achieve the highest throughput

Difficulties with Rate Adaptation

- Channel quality changes very quickly
 - Especially when the device is moving

- Can't tell the difference between
 - poor channel quality due to noise/interference/ collision (high || noise ||)
 - poor channel quality due to distance (low || signal ||)

Ideally, we want to decrease the rate due to low signal strength, but not interference/collision

Types of Auto-Rate Adaptation

	Transmitter-based	Receiver-Based
SNR-based		RBAR, OAR
ACK-based	ARF, AARF	
Throughput-based	SampleRate (default in Linux)	RRAA
	Selected by Tx (Less accurate)	Selected by Rx (Higher overhead)

Sync. ACK vs. Async ACK

- Sync. ACK
 - Cost the minimum overhead
 - Only know whether the packet is transmitted correctly
 - Don't know whether the packet error is due to incorrect rate selection or collision
- Async. ACK
 - Cost extra overhead
 - Can include more detailed information

Robust Rate Adaption Algorithm (RRAA)

- Dynamically enable RTS/CTS before data transmission
- Detect that the low throughput is due to the incorrect bit-rate selection or collision (hidden terminals)
- Estimate the correct number of transmissions to keep RTS/CTS
- Disable RTS/CTS if it does not help

S. Wong, H. Yang, S. Lu, V. Bharghavan, "Robust Rate Adaptation for 802.11 Wireless Networks," ACM MOBICOM, 2006

SampleRate

 Periodically send packets at bit-rates other than the current bit-rate

- Calculate the transmission time of each packet
 - packet length, bit-rate, number of retries, backoff time

```
tx\_time(b,r,n) = difs + backoff(r) + (r+1) * (sifs + ack + header + (n*8/b))
```

Sample Rates

- Select the rate that has the smallest predicted average packet transmission time
- Do not sample the rates that
 - have failed four successive times
 - are unlikely to be better than the current one
- Is thought of the most efficient scheme for static environments

Rate Adaptation for Multicast?

- Can only assign a single rate to each packet
- Possible Solutions
 - ► For reliable transmission: select the rate based on the worst node
 - ► For non-reliable transmission: provide clients heterogeneous throughput

Recent Proposals

ZipTx

K. Lin, N. Kushman and D. Katabi, "Harnessing Partial Packets in 802.11 Networks," ACM MOBICOM, 2008

Exploit partial packets with consideration of bit-rate adaptation

SoftRate

M. Vutukuru, H. Balakrishnan and K. Jamieson, "Cross-Layer Wireless Bit Rate Adaptation," ACM SIGCOMM, 2009

Exploit soft information to improve selection accuracy

FARA

H. Rahul, F. Edalat, D. Katabi and C. Sodini, "Frequency-Aware Rate Adaptation and MAC Protocols," ACM MOBICOM, 2009

Adapt the bit-rate for every OFDM subcarrier

ESNR

D. Halperin, W. Hu, A. Sheth and D. Wetherall, "Predictable 802.11 Packet Delivery from Wireless Channel Measurements", ACM SIGCOMM, 2010

Consider frequency selective fading

Frequency-Aware Rate Adaptation (FARA)

H. Rahul, F. Edalat, D. Katabi, C. Sodini MOBICOM 2009

Frequency Diversity

- Frequency diverse across 100MHz of 802.11a spectrum
- The SNRs of different frequencies can be as much as 20dB on a single link
- Different receivers could prefer different frequencies

FARA

 Instead of assigning the same rate to the entire frequency band, it allows each OFDM sub-carrier to pick a modulation and a code rate that match its SNR

FARA

- Receiver driver protocol
 - Initially, the sender transmit few symbols using the lowest bit-rate for all sub-carriers
 - The receiver selects the bit-rate based on an SNR-Rate mapping table

Minimum Required SNR	Modulation	Coding
<3.5 dB	Suppress subband	
3.5 dB	BPSK	1/2
5.0 dB	BPSK	3/4
5.5 dB	4-QAM	1/2
8.5 dB	4-QAM	3/4
12.0 dB	16-QAM	1/2
15.5 dB	16-QAM	3/4
20.0 dB	64-QAM	2/3
21.0 dB	64-QAM	3/4

Predictable 802.11 Packet Delivery from Wireless Channel Measurements

D. Halperin, W. Hu, A. Sheth and D. Wetherall ACM SIGCOMM, 2010

SNR-based Rate Adaptation

- SNR-based rate adaptation is usually inaccurate because we
 - Assume frequency-flat fading
 - Select the bit-rate based on "average SNR" across bins
- However, this will over-estimate the channel quality because
 - ▶ A packet will fail to pass the CRC check even if only few bits are erroneous due to frequencyselective fading

Effective SNR

Bias toward the weaker sub-carrier SNRs

$$BER_{eff,k} = \frac{1}{52}BER_{k}(SNR_{s})$$

$$SNR_{eff,k} = BER_{k}^{-1}(BER_{eff,k})$$

Modulation	Bits/Symbol (k)	$\mathrm{BER}_k(\rho)$
BPSK	1	$Q\left(\sqrt{2\rho}\right)$
QPSK	2	$Q\left(\sqrt{ ho}\right)$
QAM-16	4	$\frac{3}{4}Q\left(\sqrt{ ho/5}\right)$
QAM-64	6	$\frac{7}{12}Q\left(\sqrt{\rho/21}\right)$

Effective SNR

Look up the SNR-MAP table using ESNR

