Question Number	Answer	Mark
16(a)	• Use of $\omega = \Delta\theta / \Delta t$ (1) • Use of $v = r\omega$ (1) • $v = 4.7 \text{ ms}^{-1}$ (1) Or • Use of $\Delta s = r \Delta \theta$ • Use of $v = \Delta s / \Delta t$ • $v = 4.7 \text{ ms}^{-1}$ $\frac{\text{Example of calculation}}{\omega = 1.3 \text{ rads} / 0.22 \text{ s} = 5.9 \text{ rad s}^{-1}}$ $v = 5.9 \text{ rad s}^{-1} \times 0.80 \text{ m} = 4.73 \text{ m s}^{-1}$	3
16(b)(i)	Use of p = mv Use of the scale 1:2 Adds scaled line at 56° to correctly represent initial momentum Adds scaled line to correctly represent final momentum of ball Concludes that conservation of momentum is obeyed as their diagram completes a triangle Or Concludes that conservation of momentum isn't obeyed as their triangle has a small gap OR Use of p = mv Use of the scale 1:2 Adds scaled line at 56° to correctly represent initial momentum Adds line to complete triangle Concludes that conservation of momentum is obeyed as their line is the right length Or Concludes that conservation of momentum isn't obeyed as their line is not the right length Example of vector diagram Phoel Phoel Phoel After Phoel After Momentum ball before = 0.16 kg × 13 m s ⁻¹ = 2.08 N s, length = 4.16 cm Momentum ball after = 0.16 kg × 16 m s ⁻¹ = 2.56 N s, length = 5.12 cm	5

16(b)(ii)	 Use of E_k = ½ mv² Uses total kinetic energy before = E_k heel + E_k ball before Total kinetic energy before = 21.0 (J) or kinetic energy after = 20.5 (J) Elastic collision because total E_k before = E_k after Or Not elastic collision total E_k before is not the same as E_k after (both figures must have been correctly calculated) Example of calculation E_k heel = ½ × 3.0 Ns × 5.0 m s⁻¹ = 7.5 J E_k ball before = ½ 0.16 kg × 13² (m s⁻¹)² = 13.5 J E_k after = ½ 0.16 kg × 16² (m s⁻¹)² = 20.5 J Total kinetic Energy before = 21.0 J 	(1) (1) (1)	4
	Total for question 16		12