

FIG. 1

FIG. 2

FIG. 3

FIG. 4

Cell Cycle Analysis

293 WT Cells

1 hr. after irradiation

293 MAIAP Transfected Cells

24 hrs. after irradiation

48 hrs. after irradiation

FIG. 5

ATGACAGGGTCCAGAAACTGGCGAGCCACGAGGGACATGTGTAGGTATCG
 GCACAACATATCCGGATCTGGTGGAACGAGACTGCAATGGGGACACGCCAA
 ACCTGAGTTCTACAGAAATGAGATCCGCTTCTGCCAACGGCTGTTTC
 ATTGAGGACATTCTCAGAACTGGACGGACAACATGACCTCCTTGAGGA
 CAATCACTCCTACATCCAGTGGCTGTTCTCTGCGAGAACCAAGGAGTGA
 ACTGGCATGCCAAGCCCCTACGCTCAGGGAGGTGAGGTGTTAAAAGC
 TCCCAGGAGATCCAGGAGCGGCTTGTCCGGGCCTACGAGCTCATGCTGGG
 CTTCTACGGGATCCGGCTGGAGGACCGAGGCACGGGCACGGTGGGCCGAG
 CACAGAACTACCAGAACCGCTTCCAGAACCTGAACCTGGCGCAGCCACAAC
 AACCTCCGCATCACACGCATCCTCAAGTCGCTGGGTGAGCTGGGCCCTCGA
 GCACTTCCAGGCAGCGCTGGTCCGCTTCTCGAGGAGACGCTGGTGC
 GGCAGGGAGCTGCCGGGGTGCAGAGTGCCTGGACTACTTCATGTT
 GCCGTGCGCTGCCGACACCAGCGCCGCCAGCTGGTGCACTCGCCTGGGA
 GCACTTCCGGCCCCGCTGCAAGTTCGTCTGGGGGCCCAAGAACAGCTGC
 GGAGGTTCAAGCCCAGCTCTGCCCATCCGCTCGAGGGCTCCAGGAAG
 GTGGAGGAGGAAGGAAGCCCCGGGACCCGACCACGAGGCCAGCACCA
 GGGTCGGACCTGTGGGCCAGAGCATAGCAAGGGTGGGGCAGGGTGGACG
 AGGGGCCCAAGGCCACGGAGCGTGGAGCCCCAGGATGCGGGACCCCTGGAG
 AGGAGCCAGGGGATGAGGCAGGGGCCACGGGGAAAGATAAGGCCGGAGCC
 CTTAAGCCCCAAAGAGAGCAAGAACAGGAGCTGGAGCTGAGCCGGCGGG
 AGCAGCCGCCACAGAGCCAGGCCCTCAGAGTCCTCAGAGGTGGAGAAC
 ATCGCTCTGAATTGGAGGGGTGTGCCCTCAGCCAGGGCAGCCTCAGGAC
 GGGGACCCAGGAAGTGGCGGTCAAGGACCCCTGGGGAGGGCAGTGCAGCC
 GCCGCCAACCCCTGGGAGGCCAGGGTGGCCACAAGGTGAGGAAGCGGAGG
 AAGGTGGATGAGGGTGTGGGACAGTGCTGCGGTGGCCAGTGGTGGTGC
 CCAGACCTTGGCCCTTGCCGGTCCCCTGCCCATCGGGGACCCCAAGG
 CTGGACACAGTGAGAACGGGTTGAGGAGGACACAGAACGGTGAACGGGG
 CCCAAAGAACGGTACCCCTGGGAGCCCATCGGAGACCCAGGGCCCCGCC
 AGCAGGACCTGCAGGGGACGCCAGGAGCCAGGCCAGAGCCCCATCG
 GGGGCCAGCCGGCAGGACCTACAAGGGATGAGCCAGGCCAGAGCCCCATCG
 GAGACCCAGGCCCCCGCCGGCAGGACCTGCAGGGGACGCCAGGCCAG
 GAGCCCACGGAGACCCAGGCCCCGCCAGGACCTGCAGGGGACGCCAGGCC
 AGCCAGCCGAGAGCCCCATCGGAGACCCAGGCCCCAGGCCGGCAGGACCT
 ACAAGGGATGAGCCAGCCAAGGGGGGAGGCAGCAGAGTTGCAGGACGC
 AGAGGTGGAGTCTGCCAAGTCTGGGAAGCCTAA

FIG. 6

7/23

MTGSRNWRATRDMCRYRHKYPDLVERDCNGDTPNLSFYRNEIRFLPNGCFIEDIL
QNWTNDYDLLEDNHSYIQWLFPREPVGVNWHAKPLTLREVEVFKSSQEIQERLV
RAYELMLGFYGINLEDRGTGTVGRAQNYQKRFQNLNWRSHNNLRITRILKSLGEL
GLEHFQAPLVRFFLEETLVRRELPGVRQSALDYFMFAVRCRHQRQLVHFWEH
FRPRCKFVWGPQDKLRRFKPSSLPHPLEGSRKVEEEGSPGDPDHEASTQGRTCGPE
HSKGGGRVDEGPQPRSVEPQDAGPLERSQGDEAGGHGEDRPEPLSPKESKRKLEL
SRREQPPTEPGPQSASEVEKIALNLEGCALSQGSLRTGTQEVEVGGQDPGEAVQPCRQP
LGARVADKVRKRRKVDEGAGDSAASVSGGAQTLALAGSPAPSGHPKAGHS EN
GVEEDTEGRTPKGEGTPGSPSETPGPPRAGPAGDEPAESPSETPGPSAGPTRDEPAE
SPSETPGPPRAGPAGDEPAESPSETPGPPRAGPAGDEPAESPSETPGPSAGPTRDEP
AKAGEAAELQDAEVESSAKSGKP

FIG. 7

MRVLGTVLRWPVVVPRPWPLGPLPHRGTPRLDTVRTGLRRTQKVERGPKKVPL
GAHRRPQAPAQQDLQGTSQPRAHRRPQAPARQDLQGMSQPRAHRRPQAPARQDL
QGTSQPRAHRRPQAPARQDLQGTSQPRAHRRPQAPARQDLQGMSQPRRRGRQQSC
RTQRWSLLPSLGS

FIG. 8

FIG. 9

ELISA Plate Results of Anti-MUC-1 Antisera Binding
to Related Proline-Rich Tandem Repeat Peptides.

FIG. 10

10/23

FIG. 11

11/23

Treatment Day	IL- pg/ml	IL-4 pg/ml	IL-5 pg/ml	IL-6 pg/ml	IL-10 pg/ml	GM-CSF pg/ml	γ -IFN g/ml	TNF- β pg/m
Tumor	0	0	0	0	0	0	0	0
Day 6	0	0	0	2.78	0	0	50	0
Day 28	163	0	6.45	3.71	20	724	0	50
Day 56	411	45	15.81	1.91	204	804	0	0
Day 150	831	45	21.17	2.23	127	1,027	0	0

FIG. 12

FIG. 13

Source	IL-4 pg/ml	IL-5 pg/ml	IL-6 pg/ml	IL-10 pg/ml	GM-CSF pg/ml	γ -IFN g/ml
TTLs	166	7.7	2.9	2095	241	171
Metastatis	0	0	1.12	8.4	0	0

FIG. 14

FIG. 15

Serum → ↓ Tumor	K08	K016	K017	K023	K027	K029	K032
K008 M	++	+	+	++	+++	++	+
K016 V	ND	0	ND	ND	ND	ND	ND
K017 V	0	ND	+	ND	ND	+	ND
K023 V	ND	ND	ND	0	++	1/2+	ND
K023 M	1/2+	ND	ND	+	ND	0	+
K027 M	+++	+	0	0	0	0	+
K029 V	++	0	1/2+	0	+	0	0
K029 M	+	0	1/2+	0	+	0	0

FIG. 16

TRAAM (a novel gene; 5' end)

TTGGTTCGCTCCGCCCTCAGCGAGCCCCGCCGCCGAGCATGGACGACCCGA
 CTGCACTCCACCTGGAGGAGGACGAGGAGGATCGGAGGACGCCAGGAGACTG
 CGAGGACGGCGAGGCCGCCGCCGAGCTCGTCCAGTCCAGAATGACAGGGTCCAGAAA
 CTGGCGAGCCACGAGGGACATGTAGTATCGCACAACTATCGGATCTGGTAACG
 AGACTGCAATGGGACACGCCAACCTGAGTTCTACAGAAATGAGATCCGTTCTGCC
 CAACGGCTTTCATTGAGGACATTCTCAGAACTGGACGGACAATGACCTCTTGA
 GGACAATCACTCCTACATCCAGTGGCTTCTCTGCAGAACCAAGGAGTGAACGGCA
 TGCCAAGCCCCTCACGCTCAGGGAGGTGAGGTGTTAAAAGCTCCAGGAGATCCAGGA
 GCGGCTTGTCCGGGCTACGAGCTATGCTGGCTCTACGGGATCCGCTGGAGGACCG
 AGGCACGGCACGGTGGCCGAGCACAGAACTACCAGAACGCTTCCAGAACCTGAACCTG
 GCGCAGCCACAACAAACCTCCGCATCACACGCATCCTCAAGTCGCTGGGTGAGCTGGCCT
 CGAGCACTTCCAGGCAGCGCTGGCTTCTCTGGAGGAGACGCTGGTGCGGCCGGGA
 GCTGCCGGGGTGCAGAGTGCCTGGACTACTTCATGTTGCCGTGCGTGCAGA
 CCAGCGCCGCCAGCTGGTGCACTTCGCTGGAGCAGTCCGGCCCGCTGCAAGTCGT
 CTGGGGGCCCAAGACAAGCTGCAGGAGTTCAAGCCCAGCTCTGCCCATCCGCTCGA
 GGGCTCAGGAAGGTTGAGGAGGAAGGAAGCCCCGGGACCCGACCACGAGGCCAGCAC
 CCAGGGTGGACCTGTGGCCAGAGCATAGCAAGGGTGGGGCAGGGTGGACGAGGGCC
 CCAGCCACGGAGCGTGGAGCCCCAGGATGCGGACCCCTGGAGAGGAGCCAGGGGATGA
 GGCAGGGGCCACGGGAAGATAGGCCGGAGCCCTAAGCCCCAAAGAGAGCAAGAAGAG
 GAAGCTGGAGCTGAGCCGGGGAGCAGCCGCCACAGAGCCAGGCCCTAGAGTGCCTC
 AGAGGTGGAGAAGATCGCTCTGAATTGGAGGGGTGTGCCCTCAGCCAGGGCAGCCTCAG
 GACGGGACCCAGGAAGTGGCGGTAGGACCCCTGGGAGGCAGTGCACCCCTGCCGGCA
 ACCCCTGGAGCCAGGGTGGCCACAAGGTGAGGAACCGGAGGAAGGTGGAT

TRAAM (amino terminus)

SVSLPPPAPPPPSMDPDCDSTWEDEEDAEDAEDEDCEDGEAAGARDADAGDEDE
 ESEEPRARPSSFQSRMTGSRNWATRDMCRYRHNPDLVERDCNGDTPNL SFYRNEIR
 FLPNGCFIEDILQNWTNDNYDLLEDNHSYIQWLFPREPVGWHAKP TLREVEVFKSSQ
 EIQLERLVRAYELMLGFY GIRL EDRTGTVGRAQNYQKRFQNLNWRSHNNLRITRILKSL
 GELGLEHFQAPLVRFFLEETLVRRELPGVRQSALDYFMFAVRCRHQRQLVHF AWEHF
 RPRCKFWGPQDKLRRFKPSSLPHPLEGSRKVEEGSPGD PDHEASTQGRTCGPEHSKG
 GGRVDEGPQPRSVEPQDAGPLERSQGDEAGGHGEDRPEPLSPKESKKRKLELSREQPP
 TEPGPQSASEVEKIALNLEGCALSQGSLRTGTQE VGGQDPGEAVQPCRQPLGARVADKV
 RKPEEGG

TRAAM (3' end; sequence represents the coding strand of the gene, presented 5' to 3')

CGCGGTGGCTAGTGGTGGTCCCAGACCTTGGCCCTTGCCGGTCCCCATCGGG
 GCACCCCAAGGCTGGACACAGTGAGAACGGGTTGAGGAGGACACAGAACGGTCAACGGG
 GCCCAAAGAAGGTACCCCTGGAGGCCATCGGAGACCCAGGCCAGCAGGACC
 TGCAGGGGACGAGCCAGCCAGAGGCCATCGGAGACCCAGGCCAGCAGGACC
 TGCAGGGGACGAGCCAGCCAGCAAGACCCATCGGAGACCCAGGCCAGCAGGACC
 TACAAGGGATGAGCCAGCCAGAGGCCATCGGAGACCCAGGCCAGCAGGACC
 TGCAGGGGACGAGCCAGCCAGAGGCCATCGGAGACCCAGGCCAGCAGGACC
 TGCAGGGGACGAGCCAGCCAGAGGCCATCGGAGACCCAGGCCAGCAGGACC
 TACAAGGGATGAGCCAGCCAAGGCGGGGGAGGCAGCAGAGTGCAGGACGCAGAGGTGGA
 GTCTTCTGCCAAGTCTGGAGCCTTAAGGAAAGGAGTGCCTCGGCTTGGCTCT
 CTGTCCTGCTGCAGGGCTGGGCCTCGGAGCTGCTGCAGGCTCCCTCAGGCTCTGC
 TTGCGTACCCGTGACCCATGACCCACAGTGCTGGCTCCTGTGGGCCACTATAGCAGCC
 ACCAGAACCGCGAGGCCCTCAGGAAGCCAAGGCCTGCAGAACGCTCCTGCCCTGGCT
 GTGTCTTCCCCACCCAGCTCTCCCTGCAGGCCCTGTCTTGAAATTGACCCTCTGGAG
 TGGGGGCGCGGGCAGGGCTGCTTTCTAGTGTGCAAGCAAGGCCTTTTGAA
 TAAATTCAATTGACTTTG

FIG. 17A

TRAAM (carboxy terminus)

RWLVVVPRWPPLPGPLPHRGTPRLDTVTLRRTQKVERGPKVPLGAHRRPQAPAQQ
 DLQGTSPQRAHRRPQAPAQQDLQGTSRPRAHRRPQAPAQQDLQGTSQPRPHRRPQAPA
 RQDLQGMSQPRAHRRPQAPARQDLQGTSQPRAHRRPQAPARQDLQGTSQPRAHRRPQ
 APARQDLQGMSQPRRGRQQSCRTQRWSLLPSLGSALKERSARRRLGPPVPAAGAGASGA
 AAGSPQALLRDP

KIAA0603 (in the database as a human brain cDNA of unknown function; the human homolog of mouse TBC)

GAAC TGAGGAGCTTGTGGAGAAAAGCTATA CACCAACAAATCTTGTACTTCGAATGGAA
 AAAGAAAACCAGAAACTTGAAGCAAGCAGAGATGAAC TCCAGTCCAGAAAAGTTAAATT
 GACTATGAAGAAGTTGGTGCATGTCA GAAAAGAGGTCTTAATAACTTGGGATAAGAAGTTG
 TTAAACTGCAGAGCTAAATCAGATGTGATATGGAGATATT CATACTCTTCTTAAAGAA
 GGAGTTCCAAAAGTCGACGAGGAGAAATTGGCAGTTCTGGCTTACAGTACCGACTC
 AGACACAGATTGCCTAATAAACAAACAGCCTCCTGACATATCCTATAAGGAAC TTTGAAG
 CAGCTCACTGCTCAGCAGCATGCGATTCTGTGGATTAGGAAGGACGTTTCTACTCAC
 CCTTACTTTCA GTACAGCTGGGCCAGGACAGCTGTCAGTTAACCTCCTGAAAGCC
 TATT CATTCTTGCTGGACAAAGAAATGGGATACTGTCA GGGGATCAGCTTGTGGCTGGA
 GTCCTGCTCTGCACATGAGTGAGAGCAAGCCTTGAAATGCTGAAATTCTCATGTAT
 GACCTCGGCTTCCGCAAGCAGTACAGACCTGACATGATGTCGCTGCAGATTCAAATGTAC
 CAGCTGTCAGGCTCTTCA GTACTCACAGAGATCTCATAAATCACCTTGAAGAAAAT
 GAAATCAGCCCCAGTCTTATGCTGCCCTGGTCTCACATTGTTGCCTCTCAGTT
 TCATTAGGATTGTAGCCAGAGTTTGATATTATTTCTTCAGGGAACTGAAGTTATA
 TTCAAGGTTGCACTCAGCCTACTGAGCAGCCAAGAGACACTTATAATGGGATGTGAGAG
 CTTGAAAATATTGTTGAGTTCTTAAACACGCTACCTGATATGAATACCTCTGAAAT
 GGAAAAAATTATTACCCAGGTTTGAGATGGATATTCTAAGCAGTTGCTGCTATGA
 GGTGAATATCATGTGCTACAGGATGAGCTCAGGAATCTCATATTCTGTGAGGATAG
 TGAAACTTGGAGAAGCTGGAGAGGGCCAATAGCCA ACTGAAAAGACAAAACATGGACCT
 CCTAGAAAATTACAGGTAGCTCATACTAAAATCCAGGCCTTGAATCAAACCTGGAAA
 TCTTGTACGAGAGAGACAAATGAAGTCTTAATCCGGACCCCTGGAAACAAGAAAAAT
 GGCTTATCAAAGACAGTGGAGCAACTCCGGAAGCTGCTGCCGCGGATGCTTAGTCAA
 TTGTGACCTGTTGCTGAGAGACCTAAACTGCAACCCCTAACAAACAAAGCCAGATAGGAAAT
 AAGCCATAATTGAAGAGCACGCTCAGCAGAAAGTGTCTTCTAGAATACTACAGAGAGGA
 AGAGCCTGCATGTCGCTGGCCAAGGCTGGACCCCTGAAGCTGATGGAACCACCTAATACT
 GGTGCTGAGCTCCTAGTCACAGCAGGTGGACCTCGTGCATCAGAGCATGCCAATCTAA
 GCCCATTGGACATAGTAGACTGGTTTTGTTGCTATGACATATAAATATATATAA
 AATGAACATAGTTCATGCTTCA GATAAAATGAGTAGATGTATATTAGATTAAATT
 TAGTCAGAACTTCATGAAATCCACACAAAGGAAGGTAAACTGAAATTCCCTGGACA
 TATGTGAAATCTTTGTCTTTAGTGAAACAAAGCCAGAGCATCTTGATATTGCAA
 TATACTTGA AAAAATGAATGTATTTCTCAAAGAACAGCATGTTCACTCAATGG
 TGAAAAGGTGGAAACATTATGTTAACTTATGTTCTGTCTTGATATCTACTGACATT
 GTCTATATGAGGAAAATGATTACTGGTCA TGCTCTGTGATTTGGAGGTAGGGTC
 ATTTCTCCCTGCCTGCTTGTGCCACTAGCATGTTGCATCTACTGCATTATGAATCTGG
 TGGCTTACTTTAAACATACTAAAACAGTAGGACTGGCTGAATCTACCCCAAGGTAA
 GGAGAATGTTGCTTATTGGAAACTAACAGCCTTATTCTCAACTAAAATATCACAC
 CTGAAAATTAAATTGGTGCCACAGTCACCAAATGACAAGGATTGCCACTTCCC
 ACCAAATTGTGAGTGCTTGTAAATTAGGTCTCTACCTTAAATTCA GTATAAGGAAACG
 TAATTATGATTGATTGTTCTTCCAAAGATGACAAGCTGTGTTGAAATACATTGTTCTTGA
 CCAATTGACAGAATCTAATAAGCTTAAATACTTCCCCTTTATGTTGAAAAGTTGAG
 AACTGTGAAATGTTAGGAACAAACTGTTGAAATCCATTGGAAGGGAAAAAGAAAGTGG
 TACCAAGTGTACCTGAGCTCAACTAAAACCTGCAATTGTCATTCAACTTTCACTCCTC
 AGCATAACAAATAGCTCATTAGAAGACATTACGCATGGTGGGTAGGCAAGGAAAGTAA
 TTTCAAGTACATTGCA GTTTCTTCAAAAGTATTATCCTCACTGCTTTGCAGTAC
 TTGTATTTCACAGATGGATTATCTGGGTAATTTCCTCAAAGGGAGTTGTTACAC
 AGTAAAATGTATTAGAGTAGAATAGTAAAGCTCTAGGGTTCAAGAAGCTTGTGATG

FIG. 17B

AACAGATGACAAACATCTGAAACCCCTCCGACTGTTACCCAGTGTATATAATGACT
 TGTATAGCTCAGTGTGCCCTGAATCCATACAGTTCTAAAAGACAATAAAATCTTAT
 TAATAAAGTTAATGTAACCTCAAGTTCTAGAAAATGCTGATTCTGTCTGCCCATCAA
 TTGGGGGCTACTAATTGATTTGCTTGATGACAATTACTTATGGGTGTGATGCACCGATG
 GGTTTTTCTTTACGGTCTGTTGATGACAATTACTTATGGGTGTGATGCACCGATG
 GTAGCCAAGGAATCTGGGGAGTCGGAAAGAACCTTTCTTCTTTATTCAGTT
 TAAAGTAAACTTATCCTGGATGTTAGAATCAACATTAAGAGTTATATTGGTGTCA
 GAGATTAAGCTGACTGGATACAATATTCTTTGAAAATGAATTTCATTCAGGTT
 TGATTTTAAAAATGTTGCACCAGTTATGCTCATGCATCAGTTACATCTCATCAGGTT
 TGAAAATGTCTAGTCCCTTGAATAAATATTGCTGC

UBP-3 (a novel nuclear ubiquitin-specific protease)

MTVRNIASICNMGTNASALEKDIGPEQFPINEHYFGLVNFGNTCYCNSVLQALYFCRPFR
 ENVLAYKAQQKKKENLLTCLADLFHSIATQKKKVGVIPPKFISRLRKENDLFDNYMQQ
 DAHEFLNYLLNTIADILQEEKQEKQNGKLKNGNMNEPAENNKPTELTVHEIFQGTLTN
 ETRCLNCETVSSKDEDFLDLSVDVEQNTSITHCLRDFSNTELCESEQKYYCETCCSKQEA
 QKRMRVKKLPMILALHLKRFKYMELHRYTKLSYRVFPLERLFNTSSDAVNLDRLMY
 DLVAVVVHCGSGPNRGHYITIVKSHGFLLLFDIVKIDAQAIIEFYGLTSDISKNSESG
 YILFYQSRE

**TPR/UBP-3 (a novel translocation; the 5' end is identical to the nucleoporin
 TPR and the 3' end is a novel nuclear ubiquitin-specific protease)**

GAGAACTACAAAAAAGAAAAGCAGAAAATGAAAAAATACAAAATGAGCAGCTTGAGAAA
 CTTCAAGAACAGTTACAGATTGCGATCACAAATACCAAAATTCTACCCAGCTAGAT
 TTTGCTTCTAACGTTATGAAATGCTGCCAGATAATGTTGAAGGATATCGTCAGAAATA
 ACATCACTCCTGAGAGAAATCAGAAACTCACTGCCACAACCTCCAAAGCCAGAACAGATT
 ATCCATACGATGACTCCGATTGAGAGGAGCCAATGAGAAGCTAGCTGTCGCCAGT
 GAGCCGAAAATTGAAGAAGGAAAGGAAATGCTTAAATTGTCAGTTCTGCTCTTC
 AGCAAAGAGAGTCTTGTAGCTGAACAAAGGGGCAAAACTTACTGCTAACTATCTC
 AAACAATTAGGGAAACTGGAGCGATCTGAAACAGAAACCAAACAAAGGCTTAGTAGCC
 AGATAGAAAAACTGGAACATGAGATCTCTCATCTAAAGAAGAAGTTGGAAAATGAGGTGG
 AACAAAGGCATACACTACTAGAAATCTAGATGTTCACTTTAGATACAAAGAGACAAAC
 TGGATACAGAGACAAATCTCATCTAACACAAAAGAACTATTAAAAAAATGCTAAAAAG
 AAATTGCCACATTGAAACAGCACCTCAGTAATATGGAAGTCCAAGTTGCTCTCAGTCTT
 CACAGAGAACTGGTAAAGGTGGCCTAGCAACAAAGAAGATGTGGATGATCTGTGAGTC
 TGCTAAGACAGACAGAAGAGCAGGTGAATGACTTAAAGGAGAGACTCAAAAAAAACAAGT
 ACGAGCAATGTGGAACAATATCAAGCAATGGTTACTAGTTAGAAGAATCCCTGAACAAG
 GAAAAACAGGTGACAGAAGAAGTGCAGTAAGAATATTGAAGTTGTTAAAGAGTCAGCT
 GAATTTCAGACACAGTTGGAAAAGAAGTTGATGGAAGTAGAGAAGGAAAACAAGAACCTT
 CAGGATGATAAAAGAAGAGCCATAGAGAGCATGGAACAAACAGTTATCTGAATTGAAGAAA
 ACACTTCTAGTGTTCAGAATGAAGTACAAGAAGCTCTCAGAGAGCAAGCAGCTTT
 AAGTAATGAGCAGCAAGCCAGACGTGACTGTCAGGAACAAGCTAAATAGCTGTGGAAGC
 TCAGAATAAGTATGAGAGAGATTGATGCTGCATGCTGATGTTGAAGCTCTACAAGC
 TGCAGGAGCAGGTTCAAAATGGCATCAGTCGTCAGCATTGGAAGAAACAACACA
 GAAAGCAGAATCACAGTTGGAGTGTAAAGCATCTTGGAGGAAAGAGAGAGAATGTT
 AAAGGATGAAGTTCCAATGTTATGTCGCTGTAAAGATCTGGAGAAAACAAACAGATT
 ACTTCATGATCAGATGAAAAATTAAAGTGACAAGGTCGTTGCCTCTGTGAAGGAAGGTGT
 ACAAGGTCCCAGTGAATGTATCTCTCAGTGAAGAAGGAAAATCTCAAGAACAAATTG
 AAATTCTCAGATTACGAGAGAAAAGAAATTGCTGAAACTAGGTTGAGGTGGCTC
 AGGTTGAGAGTCTGCGTTATGACAAGGGTTGAACCTTAAAGAGAGCTGAGGAAC
 TGCAAGATAGTCTAAATGCTGAAAGGGAGAAAGTCCAGGTAAC TGCAAAACAAATGGCTC
 AGCATGAAGAACTGATGAAGAAAAGTGAACAAATGAATGTAGTTATGGAGACCAATAAAA
 TGCTAAGAGAAGAGAAGGAGAGACTAGAACAGGATCTACAGCAAATGCAAGCAAAGGTGA

GGAAACTGGAGTTAGATATTTACCCCTTACAAGAAGCAAATGCTGAGCTGAGTGAGAAAA
 GCGGTATGTTGCAGGCAGAGAAGAACGCTCTAGAAGAGGATGTCACAGAAAGATCAGATA
 GTAACCAGCATCTAGTAAGTCAACAGAAAAGATCAGATA
 CAGAAGAATATCGAAGCAGCTCC
 TTTCTGAAAAGGAAGATTCACTAAGCGTATTCAACAATTGACAGAAGAAATTGGTAGAC
 TTAAAGCTGAAATTGCAAGATCAAATGCATCTTGACTAACACAGAGAACTTAATT
 CAGA
 GTCTGAAGGAAGACTAAATAAGTAAGAACTGAAAAGGAACCATCCAGAAGGACTTAG
 ATGCCAAAATAATTGATATCCAAGAAAAAGTCAAACACTATTACTCAAGTTAGAAAATTG
 GACGTAGGTACAAGACTCAATATGAAGAACTTAAAGCACACAGGATAAGGTTATGGAGA
 CATCGGCTCAGTCTCTGGAGACCATCAGGAGCAGCATGTTCAGTCCAGGAAATGCAGG
 AACTCAAAGAACGCTCAACCAAGCTGAAACAAAATCAAATCACTGAAAGTCAGTAG
 AGAATTGCGAGAACATTATTGAAAAAGAGACAGAAGCAAGAAATCTCCAGGAACAGA
 CTGTGCAACTTCAGTCTGAACCTTCACGACTTTGTCAGGATTTCAGAAGATAGAAC
 CAC
 AGGAGGAGCAGCTCGACAACAGATAACTAAAAAAAAACTCGTGCCTGAATT
 CGGCAC
 GAGCTCCCAGCCAATTGAAAGCCGGACCCCGAGCCGCCGTTGCCGCCGGCTCCCC
 GCCAGCGGCCACCATGGGCAGTCCGGTTCCCTTGTAAGATGGCGGTGAGGGATCG
 CTGCAACCTTAGATTAATGACTCTCGAACATCGCCTCCATCTGTAATATGGCACC
 CAATGCTTTGTTGGAAAAAGACATTGGTCAGAGCAGTTCCAATCAATGAACACTA
 TTTCGGATTGGTCAATTGGAAACACATGCTACTGTAACTCCGTGCTTCAGGCATTGTA
 CTTCTGCCGTCCATTGGGAGAATGTTGGCATACAAGGCCAGCAAAAGAAGAAGGA
 AAACCTTGCTGACGTGCCTGGGGACCTTTCCACAGCATTGCCACACAGAAGAAGG
 TGGCGTCATCCCACAAAGAAGTTCATTCAAGGCTGAGAAAAGAGAATGATCTTTGA
 TAACTACATGCAGCAGGATGCTCATGAATTAAATTATTGCTAAACACTATTGCGGA
 CATCCTTCAGGAGGAGAAGAACAGGG

BRAP-2/H⁺-ATPase (5' portion nearly identical with BRAP-2; 3' end identical to a portion of an accessory unit of H⁺-ATPase)

AACAGATGGAAAAATAGTACAGTATGAATGTGAGGGGGATACTTGCAGGAAGAGAAAAT
 AGATGCCTTACAGTTAGAGTATTCAATTACTAACAGCCAGCTGGAATCTCAGCGAAT
 CTACTGGAAAACAAGATAGTTGGATAGAGAAGGACACAGCAGAGGAATTAAACAACAT
 GAAGACCAAGTTAAAGAAACAATTGAGAAGTGTGATAATCTAGAGCACAAACTAAATGA
 TCTCTAAAAGAAAAGCAGTCTGTGGAAAGAAAGTGCACTCAGCTAAACACAAAAGTGGC
 CAAACTCACCAACGAGCTAAAGAGGGAGCAGGAATGAACAAGTGTGCGAGGCCAACCA
 AGTCCTCTGCAGAACAGCTAAAGAGGGAGGAGGGGTGCTGAAGGAGACCTGTGACCA
 AAAAGATCTGCAGATCACCGAGATCCAGGAGCAGCTGCGTGACGTATGTTACCTGGA
 GACACAGCAGAAGATCAACCCTGCCTGCCAGACCCGGCAGGAATTCCAGGAGGGACA
 GATCAACATGCCATGGCCTCGGCCTCGAGCCCTGCCTTGGGGCAGTGGGAAGTT
 GCCCTCCAGGAAGGGCCGCAGCAAGAGGGCAAGTGACCTTCAGAGAACAGACATCCCT
 GAGACTGTTCTCCCTGACACTGTGAGAGTGTGCTGGACCTTCAGCTAAATGTGAGGGTG
 GGCCCTAATAAGTACAAGTGAGGATCAAGCCACAGTTGGCTCTTCATTGCTAGT
 GTGTGATGAGTGAATGTAAGGGTGTGACTGGAGAGCTGATAGAAAGGCCTGCGTT
 GAAAAGGTCTTAAGAGTTACTAACCTCACATTCTAATGACCAATTGCTTCTGCTTG
 GTAGAAGCCCCAACTCTGCTGTGATTTCATTGTTAGGAGTTGGCGTATTGTA
 CATTCAAGTTCTGGGGTAGGTTAAAGATGTTAAGTTATTCTGTAACCTCAAAGGTAA
 GGTTATCTAGCACTAAAGCACCAAACCTCTGAGGGCATAACAGCTGTTAAAGAGAGGT
 TTCCATTGGCTATTAGGGAGTTATGAAAACCTCCCTAGCAATAGTGTCAATCATTATCAT
 CTCCCCCTTCTGGGGAGTGGAGAATTGCTTGAATGTTATCTGAAAGAGGGCTGGT
 AGTAAACCAGGCCCTGGCTTTACAGCAGTCATCTTCTGCTTGGGGCAGCCAG
 GAAAAACAAACAACCCGGGGACATTGGTAGACTCAGTGAGGAAAATGGTGGCAGCT
 CCACTGTTATTGGTGTGACTCGTACGTCAATTGAACCGCAATTAGGAGGGAGGCTT
 AATGGCTGTTCCAAACTCAAATCTCAGAGTGGTATCCTAGCATCTAGCAAGACTGAGT
 GGGGAGATTCTCATCGTGTGAAAATGTAGAGTGAGGCTCTGACTAGCTAATTGTGTA
 TTTGTTGGTTAGTATTCTAAATGTTACAAATATTGGCTGATGTTCAAGGG

FIG. 17D

CAGCTAGAGGGAGCTTGGGCAGATTTCAATTACGCTTCAGAATAACCAAAGCTGT
 TTCTAAATCCTAAAATTAGAATTCAACAGAGCCCCCTTAGAACAGTCATAACGCTT
 GTGTGGGCCAACAGAGGGCTGTACTCTCTGGAACCATAAATGTCAAATAATTTAT
 AACCTGCAGTAATTGAGCAAACCTAAATAAGACCTGTGGAAATTAGTTCTTGAAG
 AGGTAGAGGGATAGGTTAGTAAGATGTATTGTTAAACAACAGGTTAGTTTGCTTAA
 TAATTAGCCACAGGTTCAATGATCACATTAGAATAGGTTAGCCTGTAATTAG
 GCCTCATCCCCTTGACCTAAATGTCTACATGTTACTGTTAGCACATCAACTGTATCA
 CTAATCACCATCTGTTTGATGTGCTGCAGCATTCCAAAAACTTACGTGTA
 ATGTTGAAAATGAATGTACTCAGACATTCTAATTTTACTTAGGGCAGACCAACTCTT
 TGAGTCTCTTGGACTTATATACAGATATCTAAGAGTGGGAATGAAAGCATAACC
 TAATTCTCTTCCTATAGAGATTCTATTTATTTAAAATCTATTTTACACTAGTTAGAA
 TCCTGCTGTTTGGATCAAGTACTGTCTGCATGTCTGACCTTGAGAAGCTGGGTGG
 ATCATAGCATACTAATGAAGAGAATTAGAAGTAGTTACAAAGCTCGCTACTCCTCATT
 TCTCTGTGATCCCTTATCCAGTGGCCCCACCAACCTGGAAAACAGATTTCACT
 ACAGGTGGATAATGCTCTGAAAGGCTGTGCCAGAGGAATGAGCAATAGGCAAGTGT
 TTCCAAACTACTTGAGGTTACAAAAAAATATGTCCTCAGGAAACACTCGTGCCTGA
 ATTGGCAGGAGGAGGACCTGACTCCCTCACCTTGGGTGCAGGAACCTAACCTGAC
 TGGCTCTCTGGAATGACTCCTTGCCAGGCTCTACTGACCTATGAAACGACTCTTGG
 TACCACAGTGACATTCAAGTTCATTCTGGCCAACCGCCTTACCCAGTGTCTGCCGGCA
 CTGGTTTACCATGGAGCGCCTCGAAGTCCACAGCAATGGCTCCGTGCCTACTTCAATGC
 TTCCCAGGTACAGGGCCACATCTACTCCTTCACTGCGAGTATGTCAGCAGCCTGAG
 CAAGAAGGGTAGTCTCTCGTGGCCCGCACGCAAGCCCTCCCTGGCAGATGATGCTTCA
 GGACTTCCAGATCCAGGTTCAACGTAATGGGGAGCAGTTCTCCTACGCCAGCGACTG
 TGCCAGCTCTCTCCCCCGCATCTGGATGGGTGCTCACCTCCCTGTTATGCTCTT
 CATCTCACCTATGCCCTGCACATGATCCTCAGCCTCAAGACCATGGATGCTTGTGATGA
 CCACAAGGGCCCCACTATTTCTTGACCCAGATTGTGTGACCTGTGCCAGTGGGGGGGT
 TGAGGGTGGGACGGTGTCCGTGTTGCTTCCCACCCCTGCAGCGACTGGACTGAAGA
 GCTTCCCTCTTCACTGCAACTGCAAGCTCCCTCAGCCCATCTGCTCCCT
 TTCAGCCCCTGAGGGAGCTTCTGGCTGCCCATCTCTCCAACAAGGTGTACATAT
 TCTCGTAGATGCTAGACCAACCAGCTCCAGGGTCGCTGTGAGGCGTAAGGGAC
 ATGAATTCTAGGGTCTCCTTCTCTTATTGTTGCTGTTGCTACATCATCCCTGGCTGT
 GGATAGTCTTTGTGAGCAAATGCTCCCTCTTAAGGTTAGGGCTCCCTGAGTTG
 GGAGTGTGGAAGTACTTAACTGTCTGCTGCTGGCTGCTGTTGAGAAGGAAGGGA
 CCTCCACGACAGGTGGCTGGCTGGCATGCCGGCTGTTGGCATGTTCCCACCGGGAGT
 GCCGGCAGGAGCATGGGTGCT

K008-1 (a novel gene whose product bears homology to ankyrin containing proteins)

AAATATAGATCTGACCTCGAAATTGTACAGTCTTGCAGCATGGCATGGAGGATGGAC
 TGATGGAATGTTGAGACTTAACTACAACGTGGAACTGTTGTGGCATTGATGAAGATCA
 TGACATTGAGTACAGTATCCAAGTGGCAATAGGTGGACCTCAATCCTGCTGTTCTCAC
 TAAAGCGAACATTGTCGAAGTGGAGATGCTGCTCAGGGTGCAGAAGGAGGACCTCGCA
 GTTCAAGTGGGTGATCTGTACAAGTGTGTTATGACCTGGAACGAATTAAACTTCTACA
 AAGAGGACATGGAGAATGGGCTGAAGCGATGCTCCAACTTAGTAAAGTTGGCCGAGT
 ACAACAGATTATTACAGACAGTGTAAAGGTGGAAAGTTGTGGAACATCTGGACATA
 CAATCCAGCAGCAGTTCCAAGGTGGCATCTGCAGGATGCCATTAGCAATGCACTGG
 TGAAAGACTCTACAACCTCTGAAGAAATTATTGAAACCCAAGAAATCTGGTGACCTCAA
 TGAAGAATTAGTTAAGGCTGCTGCAATGGAGATGTTGCTAAAGTGGAAAGATTGCTTAA
 AAGACCAAGATGTGGATGTAATGGCAATGTGCTGGCCACACAGCTATGCAAGCTGCTAG
 TCAGAATGGACATGTTGACATTGAAAGTTACTTTGAAGCAAAACGTGGATGTCGAAGC

AGAGGATAAAGATGGTGATAGAGCAGTTACCATGCAGCTTGGAGATGAAGGCCTGT
TATAGAAGTACTACATCGAGGAGTAGTGCCTGATTGAATGCTCGAAACAAGCGCCACAGAC
ACCACTTCATATTGCTGTAATAAAGGTACATCTCAAGTTGTGAAGACTTATTGGACTT
TGGCTGTCATCCCAGTCTCAGGATTCTGAAGGTGATACCCCTCTCATGATGCAATAAG
TAAGAAACGTGATGATATCCTAGCAGTTCTTGGAAAGCTGGAGCAGATGTTACCATCAC
AAACAATAATGGATTTAATGCTCTGCATCATGCTGACTAAGGGAAATCCCAGTGCAT
GCGTGTAACTATCTAAATTACCAAGACCAGGATTGGATGAGAAGAAAGATGATGG
TTATACTGCCTACATCTGGCTGCCCTAATAATCACGTAGAAGTGGCTGAACGTGTTGG
ACATCAGGGTAATGCAAACCTGGATATCCAGAATGTGAACCAACAAACTGCCCTACACCT
TGCTGTTAACGACAGCATACCCAGATTGTTAGGCTTGGTCCGTGCAGGTGCCAAAGCT
TGATATTAGGATAAGGATGGGATACTCCTTGCATGAAGCTCTAAGGCATCACACTT
GTCTCAGCTACGTCAAGATATGCAAGATGTGGGAAGGGATGCTGCCCTGGGA
GCCATCCAAAACACGTTAAATAATGGGACTTGGTACCCAGGGGGAGAGAAAGAGACTGC
AGCATCTATTGCTGTTCTGGCAGCCAATGGTGCACCTGAGCATTGAAATAAGAA
GGGTCAATGCCACTTGATCTCTGCTGATCCGAATCTCTGCAAAGCACTGGCAAAGTG
TCATAAGGAAAAAGTCAGTGGTCAAGTGGTTCTGGAGTCCTCTATGATTAGTAATGA
TTCTGAAACCTTAGAAGAGTGTATGGTGTGCTCAGATATGAAGAGAGATACTTTTG
TCCATGTGGACATATTGCTACCTGTTCTTATGTTCTCACGTGTCAGAAATGCCCTCAT
CTGTAAGAACAGGTTCAATCCAGGACAAAGATTGAAGAATGTGTGGATGCTCTGACAA
GAAAGCAGCTGTTCTTCAACCCTGTGGCACATGTGTGCTTGAGAACTGTGCTAA
CCTGATGAAAAAGTGTGTCAGTGTGAGCAGTAGTTGAACGAAGAGTCCTTCAATT
GTGCTGAGGGAAAAGTTAGAAGATGCCACTGATGATATCTCAAGTGGAAATATTCC
AGTATTACAAAAGGACAAGGATAATACCAATGTCATGCAGATGTGCAAAAGTTGAGCA
ACAGTTACAAGACATTAAGAGCAGACAATGTGCCCTGTGTCTAGATGTCAGAA
TATGATTTCTTGTGGTCA CGGAACCTGTCACCTGTGAGGATTCTTGTATTAA
ACTGACAGACATGGTCAACTCATAGGATAATTACCTTGGCTTCAAG
GTATTTGTTAGCTAATGTATCTAGTCATGAGATCTTAATAGGCTTGTACTAGTTGG
AGTTCTGATGAGTTAATTCTAATATCATAGTTCTTACTAGAGTATAATTGGCTGTA
AATGTACAGAACAAAAACCCATACAAATGGTGTGGAAATTGTGTTTTGTTTTG
TTAAATTGAAACATCAAATTGTAACTCATAGGATAATTACCTTGGCTTCAAG
AGGAAAGTCCTTAAGGATATCCTTTAAAAAATTGCACTTTCTTATAATTGTA
AATTGTTGGATCTCAAAGACATAATTCTTGTATCAGTTACCTTCATTCATCGT
GTTTACACAGTGAGTTGATAACAGGTTCTGAGAAGTCATGCAAAATAAGAGGC
AGGTCAAACAAATTATGTCACATGGTAAATTATAAAATGACAGTACAAGTCCAGATAGT
AAGGGAAATACCGAAGGGATGATTCTTTAAAGATAACAGGAAGTACCCACATGTTG
TTTCTGAATTCTTAGAGTAAATGGAGCATAGAATGAGGGATAATGACTTGCATTCT
CTGTTCTAGATTCAAAGGAACATTGTTAACTGTAATCAGATTACCAAGTTCAGG
TGACTGATAGACAAGAAAAGGAAAATAAGCAATAATAGTGGCAACTGAAGAGAAAA
AAAACGAGTATCTATTAACTGGCCACTAACAGTTGCCTTCTTACATTAAATTATAC
ATTTGTTGAGGCTTAAAGGAAATTCTATGAAAGTGACTTCCGGTTTCTG
GATTACTTATCTGGCTGATCTGAGCAGTGAAATGACATTGCCCTATTGGACCTCTGA
GGTTCTATTAGCTTGCAGATGTACATAGTATCCAGTGATCTGCAAATAATGCCT
TTCCAAGAAAAATCTTCTCTGATCAGTTAATTCTGACAGTGTTAGTGTACT
TCTTCATTATAGGCCATTCTTCAATTCTCTTCTTATAGTATTGTTATAAAGA
AAACAGTCTTCTGTGATACCTACGGATGAGGGTATTATTTAAACTGCCAACAATATCC
AAGACATGGTCAATAACCTAATTAAATACCTAGAAGAGTGACCGAGCATGTATAG
AAATGTCCTGCTTACCTGTAGACTTT

FIG. 17F

K008-1

NIDLDLEIVQSLQHGGWTGMFETLTTTGTVCIGIDEHDIVVQYPSGNRWTNPAVL
 TKANIVRSGDAAQGAEGGTSQFQVGDLVQCYDLERIKLLQRGHGEWAEMPLTLGKVG
 RVQQIYSSDLKVEVCGTSWTYNPAAVSKVASAGSAISNASGERLSQLLKKLFETQESG
 DLNEELVKAANGDVAKEVDLLKRPDVDVNQCAUGHTAMQAASQNGHVDILKLLLKQNV
 DVEAEDKDGDRAVAAAAGDEGAVIEVLHRGSAIDLARNKRRQTPLHIAVNKGHLQVVK
 TLLDFGCHPSLQDSEGDTPLHDAISKRDDLAVLLEAGADVTITNNNGFNALHHAALR
 GNPSAMRVLLSKLPRPWIVDEKKDDGYTALHAAALNNHVEVAELLVHQGNALDIQNVN
 QQTALHLAVERQHTQIVRLLVRAGAKLDIQDKDGTPLHEALRHHTLSQLRQLQDMQDV
 GKVDAAWEP SKNTLIMGLGTQGAEKSSAASIACFLAANGADLSIRNKKGQSPLDLC PDP
 NLCKALAKCHKEVSGQVGSRSPSMISNDSETLEECMVCSDMKRDTLFGPCGHIATCSL
 CSPRVKKCLICKEQVQSRTKIEECVVCSDKAAVLFQPCGHMCACENCANLMKKCVQCR
 AVVERRVPFIMCCGGKSSEDATDDISSGNIPVLQKDKDNTNVNADVQLQQQLQDIKEQ
 TMCPVCLDRLKNMIFLCGHGTCQLCGDRMSECPICRKAIERRILLYZLRHMVYFVSZCI
 ZSZDLNRLLIZLEVMSZFLISZFLYZSIIGLZMYQNKKPYKMVLEIVFFVFVNLKHQ
 IHVTHRIYLWLLRGKSFKDILFZKIAFFSYNLZICWISKDIILCDQLSFISSWFYTVS
 ZZQVLZEVMHQIKEAGQTIMSHGKLZNDSTSSRZLREYRDDSFFKITGSYPHCFZIL
 RVNGSIEZGNNDFAFLLFSRFKRNIVZLESDYQFQGDZZTRKGKISNSGQLRKKKR
 SINWPLTVAFTLIYTLFCASVFKNLZKVYFRFSVITYLGLIZPVKZHCPWTSEVL
 FSFADVHSIPVICKINA FSKKSFLLCISZFZQZFC LHYRPYFH YLFLYSIFCYKEN
 SLSVYTYGZYYLNCQQYPRHGQZPNKYFRKSDQDMYRNVCLPVDF

MAIAP (a novel member of the "inhibitor of apoptosis" family)

CGGCACGAGCTCGTGCCGGGCAGGCCTGTGCCTATCCCTGCTGTCCCCAGGGTGGGCC
 GGGGGTCAGGAGCTCCAGAACGGCCAGCTGGCATATTCTGAGATTGGCCATCAGCCCC
 ATTTCTGCTGCAAACCTGGTCAGAGCCAGTGTCCCTCATGGGACCTAAAGACAGTGC
 AAGTGCCTGCACCGTGGACCACAGCCAGCCACTGGCAGCCGGTATGGTCCACGCAG
 GAGCGCTGTGGACCCCGCTCTGGCAGCCCTGTCTAGGCCTGGACACCTGCAGAGCC
 TGGGACCACGTGGATGGCAGATCTGGCCAGCTGGCCCTGACAGAGGAGGAAGAG
 GAGGAGGGCGCCGGGGCACCTTGTCCAGGGGCCTGCCTTCCCCGGCATGGCTCTGAG
 GAGTTGCCTCTGGCCTCTTCTATGACTGGCCGTGACTGCTGAGGTGCCACCCGAGCTG
 CTGGCTGCTGCCGCTTCTTCCACACAGGCCATCAGGACAAGGTGAGGTGCTTCTTCTG
 TATGGGGCCTGCAAGCTGGAAGCGGGGACGACCCCTGGACGGAGCATGCCAAGTGG
 TTCCCCCAGCTGTCAGTTCTGCTCCGGTCAAAAGGAAGAGACTTTGTCCACAGTGTG
 GAGACTCACTCCCAGCTGCTGGCTCTGGACCCGTGGGAAGAACCGGAAGACGCAGCC
 CCTGTGGCCCCCTCCGTCCCTGCCTCTGGTACCCCTGAGCTGCCACACCCAGGAGAG
 GTCCAGTCTGAAAGTGCCAGGAGCCAGGAGCCAGGGATGTGGAGGGCGCAGCTGCG
 CTGAGGAGGAGAGGACGTGCAAGGTGTGCTGGACCGCCGTGTCATCGTCTTG
 CGTGCAGGCCACCTGGCTGTGCTGAGTGTGCCCCCGGCCTGCAGCTGTGCCCCATCTG
 AGAGCCCCCGTCCGCAGCCCGTGCACCTTCTGTCCCTAGGCCAGGTGCCATGGCC
 CCAGGTGGCTGCAAGAGTGGCTCCCTGCCCTCTGCTGCTGTTCTGGACTGTGTTCTG
 GCCTGCTGAGGATGGCAGAGCTGGTGTCCATCCAGCACTGACCAGCCGTGATTCCCC
 CACCGCCCCAGGGTGGAGAAGGAGGCCCTTGCTTGGCGTGGGGATGGCTTAAGTGT
 GTTGGATGCTTCTGAATAGAAATAAGTGGTTTCCCTGGAGGT

FIG. 17G

MAIAP

MGPKDSAKCLHRGPQPSHWAAGDGPTQERCGPRSLGSPVLGLDTCRAWDHVVDGQILGQLRPLTEE
 EEEEGAGATLSRGPAFPGMGSEELRLASFYDWPLTAEVPELLAAGFFHTGHQDKVRCCFCYGG
 LQSWKRGDDPWTEHAKWFPSCQFLRSKGRDFVHSVQETHSQLGSWDPWEEPEDAAPVAPSVP
 SGYPELPTPRREVQSESAQEPGARDVEAQLRLQEERTCKVCLDRAVSIVFVPCGHLVCAECAPG
 LQLCPICRAPVRSRVRTFLSZARCHGRPGGLQSGLPAPLCLFWTVFWAC

Nor-90 (originally identified as an autoantigen in scleroderma pigmentosum patients)

GAAC TGAGGAGCTTGAGAAAAAGCTATACACCAACAAATCTTGTACTTCGAATGGAA
 AAAGAAAACCAGAAACTTGAAGCAAGCAGAGATGAAC TCCAGTCCAGAAAAGTTAAATTAA
 GACTATGAAGAAGTTGGTGATGTCAAGAAAGAGGTCTTAATAACTTGGATAAGAAGTTG
 TTAAACTGCAGAGCTAAAATCAGATGTGATATGGAAGATATTCATACTCTTAAAGAA
 GGAGTTCCAAAAGTCGACGAGGAGAAATTGGCAGTTCTGGCTTACAGTACCGACTC
 AGACACAGATTGCCTAATAAACACAGCCTCTGACATATCCTATAAGGAACCTTTGAAG
 CAGCTCACTGCTCAGCAGCATGCGATTCTGTGGATTAGGAAGGACGTTCTACTCAC
 CCTTACTTTCACTGACAGCTGGGCCAGGACAGCTGTCACTGTTAACCTCCTGAAAGCC
 TATTCACTTTGCTGGACAAAGAATGGGATACTGTCAGGGATCAGCTTGCTGGGA
 GTCCTGCTTCTGCACATGAGTGAAGAGCAAGCCTTGAAATGCTGAAATTCTCATGTAT
 GACCTCGGCTTCCGCAAGCAGTACAGACCTGACATGATGTCGCTGAGATTCAAATGTAC
 CAGCTGTCCAGGCTCTTCACTGACTATCACAGAGATCTCTACAATCACCTGAAGAAAAT
 GAAATCAGCCCCAGTCTTATGCTGCCCCCTGGTCCTCACATTGTTGCCTCTCAGTT
 TCATTAGGATTGACTCAGCCTACTGAGCAGGCAAGAGACACTTATAATGGGAATGTGAGAG
 TTCAAGGTTGACTCAGCCTACTGAGCAGGCAAGAGACACTTATAATGGGAATGTGAGAG
 CTTGAAAATATTGAGTTGAGTTCTTAAACACGCTACCTGATATGAAATACCTCTGAAAAT
 GGAAAAAAATTATTACCCAGGTTTGAGATGGATATTCTAAGCAGTTGCATGCCTATGA
 GGTGGAATATCATGTGCTACAGGATGAGCTTCAGGAATCTCATATTCTGTGAGGATAG
 TGAAAACTTGGAGAAGCTGGAGAGGGCCAATAGCCAATGAAAAGACAAAACATGGACCT
 CCTAGAAAAATTACAGGTAGCTCATAACTAAAATCCAGGCCTTGGAAATCAAACCTGGAAAAT
 TCTTTGACGAGAGAGACAAAATGAAGTCTTAAATCCGGACCTTGGAAACAAGAAAAAAAT
 GGCTTATCAAAGACAGTGGAGCAACTCCGGAAAGCTGCTGCCGCGGATGCTTAGTCAA
 TTGTGACCTGTTGCTGAGAGACCTAAACTGCAACCCTAACAAACAAAGCCAGATAGGAAAAT
 AAGCCATAATTGAAGAGCACGGCTCAGCAGAAAGTGTCTCTTGAATAACTACAGAGAGGA
 AGAGCCTGCATGTCGCTGGCCAAGGCTGGACCTGAAGCTGATGGAACCACCTAACACT
 GGTGCTGAGCTCTAGTCACAGCAGGTTGACCTCGTCTCATCAGAGCATGCCAACCTAA
 GCCCATTGGACATAGTAGACTGGTTTGTGCTATGACATATAAATATATATAA
 AATGAACATAGTCATGCTTCAGATAAAATGAGTAGATGTATATTAGATTAATT
 TAGTCAGAACTTCATGAAATCCACACCAAAAGGAAAGGTAAACTGAAATTCCCTGGACA
 TATGTGAAATCTTTGTCCTTATAGTGAACAAAGCCAGAGCATCTTGTATATTGCAA
 TATACTGAAAAAAATGAATGTATTTCTCAAAGAACAGCATGTTCACTCAATGG
 TGAAAAGGGAAACATTATGTTAACTTATGTTCTGTCTTGTGATATCTACTGACATT
 GTCTATATGAGGAAAATGATTACTGGTCATGCTCTGTGATTTTTGGGAAGGTAGGGTC
 ATTTCTCCCTGCCTGCTTGTGCCAACTAGCATGTTGCATCTACTGCATTATGAATCTGG
 TGGCTTACTTTAAACATACTAAAAACAGTAGGACTGGCTGAATCTACCCCAAGGTAAA
 GGAGAAATGTTGCTTATTAGCAAACAAACAGCCTTATTCTCAACTAAAATATCACAC
 CTGAAAATTTAATTAGGACCTAAAATGTCTAGATTAGCTTCTGCTTTTTATTG
 ATAACCTCATTGAGTGTGAATGAATTCCCTTTATTGGTGCCACAGTCACCAAAATGACA
 AGGATTGCCACTTCCCACCAAATTGTGAGTGCTGTAATTAGGTCTCTACCTTAA

FIG. 17H

ATTCAGTATAAGGAAACGTATTGATTGATTTTCAAAGATGACAAGCTGTGTTGA
 AATACATTTTCTTTGACCAATTGACAGAATCTAATAAGCTTAATAATCTCCCTT
 TATGTAAAAAGTTGAGAACTGTGAATGTTAGGAACAAACTGTTGAAATCCATTGG
 AGGGAAAAAAAGAAAGTGGTACCGAGTGTACAGCTCAACTAAAACCTGCAATTGTGCATT
 TCAACTTTCACTCCTCAGCATACAAATAGCTATTAGAAGACATTACGCATGGTGGG
 TATAGGCAAGGAAAGTAATTTCAAAGTACATTGAGCTCTTTTCAAGAGATGATT
 TATGATAGCGCCTCTGAAAGTTGATGCAGCATTTCGCCTTCCAAAAAGTATTATCCT
 CACTGCTTTTGAGTACTTGATTTCACAGATGGATTATCTGGGGTAATTTCTTCAA
 AGGGAGTTGTTATACACAGTAAAATGTATTAGAGTAGAATAGTAAAGCTCTAGGGG
 TTTCAGAAAGCTTGATGAACAGATGACAAACATCTGAAACCCCCCTCCGCACTGTTACCC
 AGTGTGTATATAATGACTTGTATAGCTCAGTGTGCCCTGATCCATACAGTTCTTAA
 AAGACAATAAAATCTTATTAAATAAGTTAATGTAACCTCTAAGTTCTAGAAAATGCTGAT
 TCTGTCTGCCCTTCAATTGGGGCTACTAATTGATTGTTGCTGGATTTCCTGAGAA
 TTTCTCTATTGTAGGAGGGGTTTTCTTTTACGGTCTGTTGATGACAATTACTTT
 GGGTGTGATGCACCGATGGTAGCCAAGGAATCTTGGGGAAAGTTGGAAAGAAACCTT
 TCTTCTTTATTCAAGTTAAAGTAAACTTATCCTGGATGTTAGAATCACATTAAAGA
 GTTATATTATGGTGTCAAGAGATTAAGCTGACTTGGATAACATATTTCCTTGAAAATG
 AATTTCTTTTCAATTGTGATTAAAATGTTGACCAAGTTGCTTCATGCATCG
 TTACATCTTCATCAGGTTAATGTAATGCTAGTTCCATTGCAATAAATATATTGCTGC

BR-1 (a novel gene; likely an alternatively spliced form of BR-2)

GCTGACTGGCTAGCACAAAACAACCCCTCTCAAATGCTATGGGAAAGAACAGAAGAGGAT
 TCTAAAAGCATTAAAAGTGTGTTCCAGTGTACTTGAAAAGGTTGAAAGGAATAAACAT
 GATGATGGTACGCAAAGTGATTGAGAACGCTGGGCTCACAGGCCTGTAGCAAACGT
 GCAACTCTGAGGAACACTTAAGACGCCACATTCAAGAACACAAAAGCTACAGAAGGTC
 CAGGCTACTGAAAAGCATCAAGACCAAGCTTACTAGCTCTGCGCATCACAGAGGGGG
 CATGGTGTCCACATGGGAAATTGTTAAACAGAAATCAGAGGAGCCATGGTGTCAATA
 CCCTCTACAAACTGCATTATTAAAGAAGTTAGGGACTTGGGACAGACCAAGCCAG
 GAGATGGATAAAATGTTAAAAAATCAAGCAACTTCTGCTACTTCTGAAAAGGATAATGAT
 GATGACCAAAGTGACAAGGGACTTATACCATTGAGTTAGAGAATCCCAACAGTGAGGAA
 GTGGAAGCAAGAAAATGATTGACAAGGTGTTGGAGTAGATGACAATCAGGATTATAAT
 AGGCCTGTTATCAACGAAAACATAAAAGATCTAATAAAAGATTGGGCTCTAGTTCTGCT
 GCAGCAGTAATGGAAGAAAGAAAACACTGACTACATCTGGATTTACCAACTCAGAGGAA
 GGCACATCTTCATCTGGAAAGCAAACGTTGGGTTACAGTGGCTAGTTGGCTGCCAAT
 CATACAAGGCATATCAAGAAGAAAGGATAATGGAATTTCACCTCTCCTTTAGAGA
 ATGAGACAGAGATCACTGAGTCTGGCATGACAGTGAGAAGTACTGGCTCTGCAACTCCT
 TGGCTAGCCAGGGAGAGAGAAGGAGAGAACTCTTCCCAGCTTCAAATGAAGAAAAGT
 CTCTTGAGAGGCCACAGAGCAAAGGTTGTAACACAGAGGTAGAGATAGGAGAAAACAAG
 ACACAGAACCTCAGGAGAGAAAGAACACCTACACAGGTATACCAAGAAAGATAAACAGATG
 CTGACAGACCCCTGAGTAAAATGAACAGGGCAGTAATGGAGAGAGACTCTAAACACTGGT
 GAGATAATAAAACCTACTTCACTTAGGCAGCTGCTCTGGAAAAGAGAAAAGTGA
 CTGATAAGGAAACTTCTTGTTGTAAGCAAACATTAGCAAACATTCAACAAAGAACAAA
 GGGAGGAGGCTCAGTGGACACCTACTAAATTGCTTCCAAAATGTTCAAGGTAGACAG
 ATAATGTAGGGAGGAAACTTTAAACAGAACATCACACCTCCAGAAAAAAATTCAGGAC
 ATTCTACAAGCAAAGGAGACAGAGTGGCACAAAGTGAGAGCAAGAGAAGAAAAGCTGAGG
 AAATTCTGAAAAGTCAGACTCCAAAGGGAGGAGACAAGAACATCCTCCAAGTCATTAG
 TGCGACAAGGGAGCTTCACTATAGAAAAACCCAGCCAAACATACCCATAGAACTTATT
 CCCATATAAATAACAGACTTCTCTACTCCTCTTCTTAGCATTAAACATCTGCAAGTA
 GAATACGAGAAAGAAGTGAAGTCTTGATCCTGATTCTAGTATGGACACAAACCTTATT
 TAAAAGACACAGAAGCAGTAATGGCTTCTAGAAGCTAAACTACGTGAAGATAATAAA
 CTGATGAAGGAGCAGATACTCCAGTTATAATAGAGACAATTCTATTTCACCAAGAATCTG
 ATGTAGATACAGCTAGTACAATCAGTCTGGTTACTGGAGAAAAGTGAAGAAAAGTCAACCC
 AAAAGCGAAAGAGTTCACTAGCCTCTATAAAAGATAGGTGTTCCACAGGTTCTCCTTCCA
 AAGATGTTACAAATCATCTTCAGGTGCTAGGG

BR-2 (a novel gene; 5' end; likely an alternatively spliced form of BR-1)

GGATGACGTAGCTTGCAAAGACTTAGAAGCTAACGAGAAAATGAGCTTAACATCCTGG
 TTTTGCGAGCAGTGGAGGCACTCGCCACAGGCTGCCACGGAAATGATTTGTTGGA
 AGAGATGACTGTGAGCTCATGTTGAGCTCGTAGTGTGGATAAGCAACACGCTGTCATC
 AACTATGATGCGTCTACGGATGAGCATTAGTGAAGGATTGGCAGCCTCAATGGGACT
 TTTGTGAATGATGTAAGGATTCCGGAACAGACTTATATCACCTTGAAACTTGAAGATAAG
 CTGAGAGTTGGATATGATACAAATCTTTCAGTGTAGTACAAGGGAGAAATGAGGGTCCCT
 GAAGAAGCTCTTAAGCATGAGAAGTTACCATTAGCTTCAGTTGTCCAAAATCTTCA
 GAATCAGAATTATCCAATCTGCAAGTGCCAAAGCATAGATTCAAAGGTAGCAGACGCT
 GCTACTGAAGTGCAGCACAAACTACTGAAGCACTGAAATCCGAGGAAAAGCATGGAT
 ATTTCTGCTATGCCCGTGGTACTCCATTATATGGCAGCGTCATGGTGGGGGATGAT
 GAGGTGGATAAAAAGAGCTTCAAGACAAATGGCAAACTGAAAAAAAACCATGAA
 GCTGGAACATCAGGGTGCAGCATAGATGCCAAGCAAGTTGAGGAACAATCTGAGCTGCA
 AATGAAGAAGTACTTTTCTTCTGTAGGGAACCAAGTTATTTGAAATCCCTACAAA
 GAATTCCAGCAACCATCACAAATAACAGAAAGCACTATTGATGAAATCCAACAAAAGAC
 ACGCCAAGTCCCATAAACAGGTGCAGGGCATGCTTCATTACCATGAAATTGATGAC
 AGTACCCCAGGGAAGGTAACTATTAGAGACCATGTGACAAGTTACTTCTGATCAGCGC
 CACAAGTCCAAGAAGTCTTCTCTGAACTCAAGACTTGCTGGGATTCAAACAGGAATG
 ATGGCACCCGAAAACAAAGTTGCTGACTGGCTAGCACAAACACCCTCTCAAATGCTA
 TGGGAAAGAACAGAAGAGGATTCTAAAGCATTAAAGTGTGTTCCAGTGTACTGAAA
 AGGTTGAAAGGAAATAAACATGATGATGGTACGAAAGTGTGATTGAGAACGCTGGGCT
 CACAGGCCTGTAGCAAACGTGCAACTTTGAGGAACACTTAAGACGCCACATTGAGAA
 CACAAAAAGCTACAGAAGGTCCAGGCTACTGAAAAGCATCAAGACCAAGCTGTTGTT
 GGAGTAGATGACAATCAGGATTATAATAGGCCTGTTATCAACGAAAACATAAAGATCTA
 ATAAAAGATTGGGCTCTCAGTTCTGCTGAGCAGTAATGGAAGAAAGAAAACACTGACT
 ACATCTGGATTTACCACTCAGAGGAAGGCACATCTTCATCTGGAAGCAAACGTTGGGTT
 TCACAGTGGCTAGTTGGCTGCCATACAAAGGCATGATCAAGAAGAAAGGATAATG
 GAATTTCTGCACCTCTCCTTAGAGAAATGAGACAGAGATCAGTGTGACTGGCATGACA
 GTGAGAAGTACTGGCTCTGCAACTTCTGGCTAGCCAGGGAGAGAACGACT
 CTTCCCCAGCTCCAAATGAAAGAAAAGTCTTGTAGAGGCCACAGAGCAAAGGTTGTAACA
 CAGAGGTAGAGATAGGAGAAAACAAGACACAGAACTTCAGGAGAAAGAACACCTACA
 CAGGTATACAGAAGATAAACAGATGCTGACAGACCTTGAGTAAAATGAACAGGGCA
 GTAAATGGAGAGACTCTAAAACCTGGTGAGATAATAAACCCCTACTTCAGGAGC
 TCTGCTCCTGGAAAAGAGAAAAGTGAACACTGATAAGGAAACTTCTTGTAAAGCAAACA
 TTAGAAAACCTCAACAACAAGAACAAAGGGAGGGCTCAGTGGACACCTACTAAATTG
 TCTTCCAAAATGTTTCAGGTAGACAGATAATGTTAGGGAGGAAACTTTAAACAAGAA
 TCACAACCTCCAGAAAAAAATTAGGACATTCTACAGCAAGGAGACAGAGTGGCACA
 AGTGAGAGCAAGAGAAAGAAAAGCTGAGGAAATTCTGAAAGTCAGACTCCAAAGGGAGGA
 GACAAGAAGGAATCCTCCAAGTCATTAGTGCAGCAAGGGAGCTTCACTATAGAAAAACCC
 AGCCCCAACATACCCATAGAACTTATTCCCCATATAAATAACAGACTTCTACTCCT
 TCTTCTTAGCATTAAACATCTGCAAGTAGAATACGAGAAAGAAGTGAATGTTGGATCCT
 GATTCTAGTATGGACAC

FIG. 17J

Gene AS (encodes a novel gene product; may be anti-sense of tyrosinase-related protein-2)

AAAAGGAGGAGGCTTAATCAATATTGGGGGGGGTTATTATTAGATATCACAAATTGTC
 AGGTCTATCTTATTGAAGGTAGAGGTAGCCTCAAGCACTTACTGTTGGTTGTTAAC
 AAGCAAGCAAAGCGGAAACTACAGCTAAGCATCTCTGAATGAGATCATCACTATAG
 AAGAACCTATGTCAAAGATCTCACTCAAGAAGGAACAGTGAGGATTAGTCCCTTATT
 GTCAGCGTCAGAACTGTGGCTGCCAGCCTCTCTTAGTAAAGGCATGAGCACCTA
 GGCTTCTCTGTATCTGCTGCTTAAATGTCCTCAATTAGGGGTATATCCTTT
 TCGAAGTCTTCTATTGAAGAAAAGCCAACAGCACAAAAGACCAACAAAGCCACCAG
 TGTCCTCATGACTACTAAGAGAGTGTGGGCCACCTGGAGTTCTTCAACTGAAACTGG
 CAGATCGATGGCATAGCTGTAGCCAAGTGGTCTGAGGTTAAAAGAGTTCTTCAATTAGT
 CACTGGAGGAAGAAGGAACCATGTTGTACATCCGATTGTGACCAATAGGGCCAGCTC
 CTGAGGCCAGGCATCTGAGGAGTTAAATCTTTCATCCACTCATCAAAGATGGCATC
 AGTAAAGGAATGAAGAACACAAAAATGGGATCATTGGCGGTGAATGTGCAAAGCGTT
 TGTCCTGTTAGGAAGGAATGAACCAAATTATGAAGGCTCATCACTTGAGAATCCAGAGT
 CCCATCTGTTTATCAAACCCCTCAAAGCATTCTGAAACTGAAGGTAGAGTTCTGGAA
 GAAGGGAGGATTGTCAAACTCTGGAGAGACAGGCAATCTGTTGCTTAAAGGTTGG
 CAATTTCATGCTGTTCTCCCATTTGATTCTTCAGCAAACCTTCATAGGTTCCATT
 GCACAAGGTGACCAGGTGGTTGAGTCATCCAAGCTATCACAGACAGTTCCAGCTGGA
 GAATCTTGAGTTCCGACTAATCAGAGTCGGATGTCCTGGTCTGCTGCCAAACAGCTG
 GTCTGTACACACATCACACTCGTCTCCAGTGGCAAAGTCCAGTAGGGCAAAGCAA
 AGACTCATTGCCAATGAGTCGCTGGAGATCTCTTCCAGACACAAATGGTACCGGTG
 CCAGGTAACAAATGCAAGGTCTTGTAGTGTGAGAAATCTATGGCCCTGTAGGGCGTCTGG
 TCCTAAATATGTATCTAACAGAATAATAATGGAGCCACACAAAAAAATCATAAACACT
 GCAGTTGGCAAACCTGGGCTGGGTTCCATTGGGCCAAGCAGGCCAGCCAGTGTGTTG
 GGTGATCACGTAGTCGGGGTGTACTCTTCTTCAGGAGATCTAGGCGCACCTGTGACTG
 CTCTCTTCTGAGGACTCAAGGAATGGATGTTCTGCGGAATCACTGGTGGTTCTCG
 CTCGAGTTGGGACCGGTCCAGCAAACATTGCACTCCACAAATTATAGCCGGCAAAGTT
 TCCTGTGACTTGCAAGTCCGGTGGAGAATTTCCTGGCACAGCTCACGGTATCCTG
 GTTTCGTAGGATGTAGGGACCACTCCAGGGCTTGTGTCGGCTCGCACCTGTGACTG
 CCCCCGGCTTGTGAGAGCCACAGACATTGGCCACTCTGCACCCAGGCAGGGCA
 CTCTTGTTCACTAGGCTGTCACCGTCATGCAGACTCGGGGAACTGACCTGGCTCC
 TGGCAGGATTTCAGGCCAAGCAACTGAGCAGAAACCCCCACCAAAAGGGGCTATGGC
 TTTATAATTGGGAGAGCTCTCTCTTACTTCTGCTCTGTGACTTTCTC
 CTTATCTTCTACTCTTCAGCTTTCTTTCTAGTATTTTTATTTTCTTGTGTTCTA
 TTCCCTTCTTAAACCCACAAGAATCACAGAGGTTACATGTGATCAAACA
 CATGTGTCACATGTACATGAACGTGACACACAATTAAATGAGGTAGCGCTTCTC
 CACATCTCCCCCGTAAAGTCAGGCTTGTCTAAACACAAATTAAATGAGGTAGCGCTTCTC
 CATACTACTTATTATGCTGGTAAACCTCTCCCTCCTAGCTTGA
 TAATCTCGTGGCAATTGGCAGAGAAATTGTTAAACAGAAATCAGAGGAGCCATCGGT
 GTCAATACCTTCTACAAACATGCAATTAAAGAAGTTCAAGGAGTCTGGGACAGACC
 AAGCCAGGAGATGGATAAAATGTTAAACAGCAACTTCTGCTACTTCTGAAAGGA
 TAATGATGACCAAGTGTGACAAGGGTACTTATACCAATTGAGTTAGAGAATCCAAACAG
 TGAGGAAGTGGAGAAGAAAATGATTGACAAGGTGTTGGAGTAGATGACAATCAGGA
 TTATAATAGGCCTGTTATCAACGAAAACATAAAAGATCTAATAAAGATTGGCTCTCAG
 TTCTGTCAGCAGTAATGGAAGAAGAAAACACTGACTACATCTGGATTTCACCCTC
 AGAGGAAGGCACATCTCATCTGGAAAGCAACGTTAGGTTTACAGTGGCTAGTTGGC
 TGCAATCATACAAGGCATGATCAAGAAGAAAGGATAATGGAATTTCGACCTCTCC
 TTAGAGAAATGAGACAGAGATCAGTGAGTCTGGCATGACAGTGAGAAGTACTGGCTCTC
 AACCTCCCTGGCTAGCCAGGGAGAGAGAAGGAGACGAACCTTCCCCAGCTTCAAATGA
 AGAAAAGTCTCTTGAGAGCCACAGAGCAAAGGTTGTAACACAGAGGTAGAGATAAGGAGA
 AAAACAAGACACAGAACTTCAGGAGAAAGAAACACCTACACAGGTATACCAGAAAGATAA
 ACAAGATGCTGACAGACCCCTTGAGTAAATGAACAGGGCAGTAAATGGAGAGACTCTCAA
 AACTGGTGGAGATAATAAACCTACTTCAGTTAGGAGCAGCTCTGCTCTGGAAAAAGAGAA
 AAGTGAAGACTGATAAGGAAACTTCTTGGTAAAGCAAACATTAGCAAACACTTCAACAACA
 AGAACACAAAGGGAGGAGGAGCTAGTGGACACCTACTAAATTGCTTCAAACAGTGGAA
 TCAGACAGATAAAATGTAGGGAGGAAACTTTAAACAGAAATCACAACCTCCAGAAAAAAA
 TTCAGGACATTCTACAAGCAAAGGAGACAGAGTGGCACAAAGTGAAGAGCAAGAGAAGAAA
 AGCTGAGGAAATTCTGAAAGTCAGACTCCAAAGGGAGGAGACAAGAAGGAATCCTCAA
 GTCATTAGTGCACAAGGGAGCTCACTATAGAAAACCCAGGCCAAACATACCCATAGA
 ACTTATTCCCCATATAAATAAACAGACTTCTACTCCTTCTTAGCATTAAACATC
 TGCAAGTAGAATACGAG