

"7 Decision Trees & Random Forest"

Dr. Zeyd Boukhers @ZBoukhers

Institute for Web Science and Technologies
University of Koblenz-Landau

December 8, 2021

From previous lecture

- KNN
- K-D Tree
- Bayes Theorem
- Naïve Bayes

Agenda

- Decision Trees
- Overfitting/Underfitting
- Random Forest

- What are they?
 - Non-linear classifiers
 - Multistage decision
 - the feature space is split into unique regions, corresponding to the classes, in a sequential manner.
 - Hyper-rectangles
 - Convex polyhedral cells
 - Pieces of spheres
 - Etc.
 - At each stage, the decision is made based on the answer of the question: is $x_j \leq \alpha$, where α is a threshold value.
 - Work well when a large number of classes are involved.

Notes

- Some observations from the example:
 - Two-dimensional space (remember, we use two dimensions in almost all our example only for an intuitive visualization).
 - The thresholds are obtained by a simple observation of the geometry of the feature space.
 - The tree started with x_1 . Why?

- Given:
 - A k-class classification problem,
 - A data set $X = [x_1, x_2, ..., x_N]$
- Each node t is associated with
 - a subset X_t , where X is associated with the root (t_0) .
 - a question Q_t .
- At each node t,
 - The subset X_t is split into two disjoint descendant subsets X_{tY} and X_{tN} .
 - X_{tY} consists of feature vectors corresponding to the answer "Yes" of the question.
 - The following is true:
 - $X_{tY} \cap X_{tN} = \emptyset$,
 - $X_{tY} \cup X_{tN} = X_t$

- The splitting criterion must be adopted according to the best candidate question.
- The growth of the tree is controlled with a stop-splitting rule, where the terminal node is called "leaf".
- For each attribute x_i , α_i can take any possible value.
 - There is an infinite set of questions has to be asked if $\alpha_i \in \mathbb{R}$
 - In practice, only a finite set can be considered.
 - At a node t, any attribute x_i can take at most $N_t < N$ different values.
 - At a node t, the total number of candidate questions is $\sum_{u=1}^{l} N_{t,u}$
 - Only one question has to be chosen.
 - It must be the one leading to the best split.

Splitting criterion

- Every split must generate subsets that are more "class homogenous" compared to the ancestor.
 - The instances in each subset show a higher preference for the corresponding class.
 - E.g. N_{t_0N} and N_{t_0Y} have to be more homogenous (or purer) than N.
 - How can we measure this?

- Goal: quantifying node impurity and split the node such as the overall impurity of the descendant nodes decreases w.r.t the impurity of the ancestor node.
- Let $P(\omega_j|t)$ be the probability that an instance associated with a node t, belongs to class ω_j , $j=1,2,\ldots,k$., the node impurity I(t) is written as:

$$I(t) = -\sum_{j=1}^{k} P(\omega_j | t) \log_2 P(\omega_j | t)$$

- This is nothing else than the entropy associated with the subset X_t
- $P(\omega_j|t) = \frac{N_t^j}{N_t}$, where N_t^j is the number of points in X_t that belong to class ω_j .

Example

- Parent node (t_0) :
 - 10 orange, 8 blue objects
 - Impurity I = 0.991
- Child Node t_1 :
 - 2 orange, 8 blue objects
 - Impurity I = 0.722
- Child Node t_2 :
 - 8 orange, 0 blue objects
 - Impurity I = 0

13

• After performing a split, N_{tY} points are sent into the "Yes" node (X_{tY}) and N_{tN} into the "No" node (X_{tN}) . The decrease in node impurity is defined as:

$$\Delta I(t) = I(t) - \sum_{o} \frac{N_{to}}{N_t} I(t_o) = I(t) - \frac{N_{tY}}{N_t} I(t_Y) - \frac{N_{tN}}{N_t} I(t_N)$$

The goal now becomes to adopt, from the set of candidate questions, the one that performs the split leading to the highest decrease of impurity.

Example

- Parent node (t_0) :
 - 10 orange, 8 blue objects
 - Impurity I = 0.991
- Child Node t_1 :
 - 2 orange, 8 blue objects
 - Impurity I = 0.722
- Child Node t_2 :
 - 8 orange, 0 blue objects
 - Impurity I = 0

$$\Delta I(t) = 0.991 - \left(\frac{10}{18} \cdot 0.722 + \frac{8}{18} \cdot 0\right) = 0.59$$

15

Stop-Splitting rule and class assignment rule

- when to decide to stop splitting a node and declares it as a leaf of the tree.
 - If the maximum value of $\Delta I(t)$, over all possible splits, is less than T, which is a predefined a threshold.
 - If N_t is small enough.
 - If X_t is pure (zero impurity).
 - All samples in it belong to a single class.
- Every leaf in the tree has to be assigned to a class. the leaf is labelled as $\omega_{\hat{j}}$ where:

$$\hat{j} = \arg\max_{j} P(\omega_{j}|t).$$

Binary Decision Tree: algorithm

- The root node $X_t = X$
- For each new node *t*
 - For every feature x_u , u = 1, ..., l
 - For every value $\alpha_{u,n}$, $n=1,\ldots,N_{t,u}$
 - Generate X_{tY} and X_{tN} according to: $x_{u,i} \leq \alpha_{u,n}$, $i=1,\ldots,N_t$
 - Compute $\Delta I(t)$.
 - Choose α_{u,n_0} leading to the maximum of $\Delta I(t)$.
 - Choose x_{u0} and associated $\alpha_{u0,n0}$ leading to the overall maximum of $\Delta I(t)$.
 - If the stop-splitting rule is met, declare node t as a leaf and designate it with a class label
 - If not, generate two descendant nodes t_Y and t_N with associated subsets X_{tY} and X_{tN} , depending on: is $x_{u0} \le \alpha_{u0,n0}$

Non-Binary Decision Tree: algorithm

- The root node $X_t = X$
- For each new node *t*
 - For every feature x_u , u = 1, ..., l
 - Generate $X_{u,i}$, $i=1,\ldots,N_{t,u}$ according to the question
 - Compute $\Delta I(t)$.
 - Choose x_{u0} leading to the maximum of $\Delta I(t)$.

Non-Binary vs. Binary Decision Tree

- Non-binary:
 - One child node per value
 - Problem:
 - High fan-out of tree
 - Not applicable to all attribute types
- Binary:
 - Binary splits of the value set
 - Advantage: binary tree
 - Disadvantage: Many possible splits
 - t values $\rightarrow 2^t 2$ possible splits

Notes

- the size of a tree must be large enough but not too large; otherwise, it tends to learn the particular details of the training set → Overfitting
- The best threshold value for the impurity decreases is very hard to define and does not lead to trees of the right size.
 - One solution is to grow a tree up to a large size first and then prune nodes according to a *pruning* criterion.

- 100 instances
- 21 poisonous
- 79 edible
- Impurity: $I(t_0) = 0.741$
- Attribute: Cap-shape

• Impurity: 0.565

???

value	P E total		impurity		
Ь	0	29	29	0	
f	1	13	14	0.371	
S	0	3	3	0	
X	20	34	54	0.951	

$$\Delta I(t_0) = 0.176$$

???

• Attribute: Cap-surface

 $\Delta I(t_0) = 0.053$

• Attribute: Cap-color

 $\Delta I(t_0) = 0.236$

value	Р	е	total	Impurity
f	0	14	14	0
S	8	29	37	0.753
V	13	36	49	0.835

• ...

• Attribute: Habitat

 $\Delta I(t_0) = 0.236$

 $\Delta I(t_0) = 0.279$

Impurity value total 14 14 0.753 29 37 S 0.835 36 49 У

???

value	Р	е	total	Impurity
d	0	8	8	0
g	8	28	36	0.764
m	0	28	28	0
Р	0	8	8	0
u	13	7	20	0.934

•	Attribute:	Cap-surface
---	------------	-------------

 Attribute: Cap-co 	olor
---------------------------------------	------

• Attribute: Habitat

23

value	Р	е	total	Impurity	
d	0	8	8	0	
g	8	28	36	0.764	
m	0	28	28	0	
Р	0	8	8	0	
u	13	7	20	0.934	

value	р	е	total	Impurity
d	0	8	8	0
g	8	28	36	0.764
m	0	28	28	0
р	0	8	8	0
u	13	7	20	0.934

- Next node
 - ◆ 36 samples
 - 8 poisonous
 - ◆ 28 edible
 - Impurity: $I(t_1) = 0.764$
- Attribute: Cap-shape

value	Р	е	total	Impurity
b	0	8	8	0
f	1	6	7	0.592
S	0	0	0	0
X	7	14	21	0.918

■ Impurity: 0.651

$$\Delta I(t_1) = 0.113$$

Attribute: Cap-surface

$$\Delta I(t_1) = 0.113$$

- **-** ...
- Attribute: Gill-size

$$\Delta I(t_1) = 0.32$$

value	Р	ре		Impurity	
Ь	0	20	20	0	
n	8	8	16	1	

Attribute: Cap-surface

$$\Delta I(t_1) = 0.113$$

- **-** ...
- Attribute: Gill-size

$$\Delta I(t_1) = 0.32$$

value	Р	е	total	Impurity	
Ь	0	20	20	0	
n	8	8	16	1	

Attribute: Cap-surface

$$\Delta I(t_1) = 0.113$$

- **-** ...
- Attribute: Gill-size

$$\Delta I(t_1) = 0.32$$

value	Р	е	total	Impurity	
Ь	0	20	20	0	
n	8	8	16	1	

- Next node
 - ◆ 20 samples
 - 13 poisonous
 - ◆ 7 edible
 - Entropy: $I(t_2) = 0.934$

- ...

More about Decision Trees

Observations

- What if there is an attribute that has a large number of values?
 - The parent set is split into a large number of children subsets.
 - Only a few samples in each child subset.
 - The children subsets are more likely to be pure.
 - This attribute has a higher chance to be chosen first because *impurity decrease* (Stopsplitting criterion) is biased towards choosing attributes leading to pure children \Rightarrow attributes with a large number of values.
- Consequences:
 - Overfitting.
 - Too many children subsets.

Observations

- What if there is an attribute that perfectly distinguishes between the two classes?
 - $\Delta I(t_0) = I(t_0) \Rightarrow$ The maximum possible Impurity decrease.

	cap-shape	cap-surf	ace	ca	p-color	bruises	gill-spacing	gill-size	gill-color	habitat	odor
b	ell=b	fibrous=f	b	row		bruises=t	close=c	broad=b	black=k	grasses=g	almond=a,
f		scaly=y gray=g smooth=s white=w yellow=y		e=w	no=f	crowded=w	owded=w narrow=n b g P w		meadows=m paths=p urban=u woods=d	anise=l none=n pungent=p	
					r. c.l						new
	value	Р	е		total	entropy					
	a	0	3	31	31	0			odor		
	l	0	3	5	35	0					
	n	0	1	3	13	0)	a,l,n		p	
	Р	21		0	21	0		edibl		poisonous	
	edible poisonous $\Delta I(t_0) = 0.741$										

Normalized Impurity Decrease

- Use Normalized Impurity Decrease (Gain ratio) instead of Impurity Decrease (Information Gain). The Normalized Impurity Decrease at a node t is then:
 - $\hat{\Delta}I(t) = \frac{\Delta I(t)}{E_d(t)}$, where $E_d(t)$ is the *entropy of distribution* (Intrinsic Information).
 - $E_d(t) = -\sum_j P(t_j|t) \log_2 P(t_j|t)$,
 - $P(t_j|t) = \frac{N_{t_j}}{N_t}$.

???

- 100 samples
- 21 poisonous
- 79 edible
- Impurity: $I(t_0) = 0.741$
- Attribute: Cap-shape
 - Impurity: 0.565

$$\Delta I(t_0) = 0.176$$

$$\hat{\Delta}I(t_0) = 0.114$$

value	Р	е	total	Impurity
Ь	0	29	29	0
f	1	13	14	0.371
S	0	3	3	0
X	20	34	54	0.951

Example from [1]

• Attribute: Habitat

$$\bullet \ \hat{\Delta}I(t_0) = 0.134$$

• Attribute: Gill-size

- Entropy of distribution: 0.943
- $\bullet \ \widehat{\Delta}I(t_0) = 0.412$

value	Р	е	total	Impurity
Ь	0	64	64	0
n	21	15	36	1

Overfitting

1200 o 1800 +

Splitting until reaching a satisfactory pureness withing the training set.

Overfitting

- Remember the Stop-Splitting rules
 - If the maximum value of $\Delta I(t)$, over all possible splits, is less than T, which is a predefined a threshold. \Rightarrow *Pre pruning*.
 - If N_t is small enough.
 - If X_t is pure (zero impurity).
 - All samples in it belong to a single class.

Overfitting

Data split: 30% training, 70% evaluation

Tree Post Pruning

- Grow a tree up to a large size.
- Prune (remove) nodes according to a pruning criterion [*].
 - E.g. Expected Generalisation Error (Applied on the training set but expected for the testing set),
 - Reduce Error Pruning (Applied on a validation set).
- At a node t with J children nodes $t_{j=1,...,J}$,
- the overall error rate (optimistic) is:

•
$$\frac{1}{N_t} \sum_j |\gamma(N_{t_j}) \neq \omega(t_j)|$$

- Use the pessimistic error:
 - $\frac{1}{N_t} \sum_j |\gamma(N_{t_j}) \neq \omega(t_j)| + \lambda$

Example: 0.167

Example $(\lambda=0.5)$: 0.25

Example

Optimistic / Pessimistic

Type of attributes

- Categorical values
 - Split w.r.t the values belonging to different classes.
- Ordinal or continuous values
 - Split w.r.t a threshold (higher or lower)
 - For continuous values, we can use the middle value between two observed values for better separation boundaries.

Pros and Cons

- Advantages
 - Interpretable.
 - Non-parametric.
 - Can handle missing data.
 - Low complexity (prediction) O(l).
 - Invariant to feature scaling.
 - Does not require data normalization.
 - Can handle heterogeneous data.
 - Attributes of different types.
- Disadvantages
 - Splits are aligned w.r.t axes.
 - It might cause overfitting because the tree goes far more complex than needed.

Overfitting & Underfitting

- Overfitting: the model is too complex and captures all the details in the training set, but it does not achieve the same accuracy on the testing set (not generalized).
- **Underfitting**: The model is too simple and can achieve a good accuracy on neither the training set nor the testing set.

• **Generalization**: When the model achieves similar accuracy on unseen data as it does on the training data.

• Good model: it achieves high accuracy on the training set and generalizes well on unseen data.

Overfitting & Underfitting

- Bias error: Expected (or assumed) error in the result given by the model.
- Variance error: Variability in the result given by the model when the dataset is changed.

Generalization Error

• Training error:

$$E_{\text{train}} = \frac{1}{N} \sum_{i=1}^{N} \text{error}(\gamma(\mathbf{x}_i), \omega(\mathbf{x}_i)).$$

Generalization error:

$$E_{\text{gen}} = \int \text{error}(\gamma(\mathbf{x}), \omega(\mathbf{x})) p(\omega, \mathbf{x}) d\mathbf{x}.$$

- It cannot be computed but it can be estimated:
- Testing error:

$$E_{\text{test}} = \frac{1}{N'} \sum_{i=1}^{N'} \text{error}(\gamma(\mathbf{x}_i), \omega(\mathbf{x}_i)).$$

•
$$E_{\text{gen}} = \lim_{N' \to \infty} E_{\text{test}}$$

Generalization Error of a Decision Tree

- For squared error loss, the generalization error can be decomposed as:
 - $E_{gen}(\gamma(X)) = noise(X) + bias(X)^2 + var(X)$
- The generalization error is minimized when finding a good balance between bias and variance.

Generalization Error of a Decision Tree

- Decision trees usually have
 - Low bias
 - High variance

✓ Combine the predictions of several trees into a single model.

Random Forest

Random forest

- It constructs multiple decision trees
- The final decision is made based on the majority votes of all trees.

Random forest

- Define the number of trees *B*
- For b = 1 to B
 - Draw a bootstrap sample N^* from the original data set N.
 - *Bootstrap: random sampling with replacement.
 - Grow a *decision* tree using the N^* samples. For each node, repeat:
 - Select l^* attributes at random from the l attribute.
 - Using Normalized Impurity Decrease, split the node into children nodes.
- Output the ensemble of trees.

Using random forest for classification

- ullet Given an unseen sample that is represented by x
- Let $\gamma_b(x)$ is the class prediction of x by the b tree,

$$\gamma(\mathbf{x}) = \underset{j}{\operatorname{argmax}} |\gamma_b(\mathbf{x}) = \omega_j|_{b=1}^B$$

Generalization Error of an ensemble of Decision Trees

- For squared error loss, the generalization error can be decomposed as:
 - $E_{gen}(\gamma(X)) = noise(X) + bias(X)^2 + var(X)$
- Notes:
 - The bias of the ensemble is identical to the bias of a randomized tree but higher than the bias of a non-randomized tree.
 - Stronger randomization: $var(X) \rightarrow 0$
 - Weaker randomization: $var(X) \rightarrow the variance of a non-randomized tree.$
- ✓ Randomization increases bias but decreases the variance of the ensemble of trees.
 - ✓ Find the right bias-variance trade-off.

Advantages

- Better accuracy than a decision tree.
- Robustness to outliers and missing data.
- Robustness to irrelevant attributes.
- Non-parametric (completely random)
- Invariant to feature scaling and types.
- Reduces overfitting.
- High accuracy, especially for large data sets.
- Interpretability ???

Attribute importance scores

- Mean Decrease of Accuracy (MDA)
 - Consider the out-of-bag instances (which were not sampled in the bootstrapped set). Of course, we may use a separate set.
 - Consider the corresponding trees.
 - Permute the value of the attribute (to be assessed) with random noise.
 - Consider an evaluation metric (e.g. accuracy)
 - Compute the mean decrease accuracy over all corresponding trees.
 - The attribute is important when the MDA is high

Attribute importance scores

- Mean Decrease in Impurity (MDI):
 - The importance of an attribute x_u is measured as:
 - $Imp(x_j) = \frac{1}{B} \sum_{b=1}^{B} \sum_{t:b(t)=x_u} P(t) * \Delta I(t),$
 - Where $P(t) = \frac{N_t}{N}$
 - The intuition is that an attribute is important when:
 - It decreases a lot of impurities
 - It is used to split nodes with many instances.
 - It is used many times.
- Compared to MDA, MDI is widely used because:
 - It is faster and easier to compute.
 - Experiences showed that it correlates well with MDA.

Example of MDI

Source: Sato, M., Morimoto, K., Kajihara, S., Tateishi, R., Shiina, S., Koike, K., & Yatomi, Y. (2019). Machine-learning Approach for the Development of a Novel predictive Model for the Diagnosis of Hepatocellular Carcinoma. *Scientific reports*, *9*.

Computational complexity

	Training	Prediction
Decision Tree	$O(l*N\log(N))$	O(l)
Random Forest	$O(T * \hat{l} * \widehat{N} \log(\widehat{N}))$	$O(T * \hat{l})$
Extra Tree	$O(T * \hat{l} * N \log(N))$	$O(T*\hat{l})$

- \hat{l} : the number of variables randomly drawn at each node.
- *T*: the number of trees
- $\hat{N} = 0.632 \times N$

Summary

- Decision Trees
 - Impurity
 - Impurity decrease
 - Normalized impurity decrease
 - Pruning
- Generalizibility
 - Overfitting
 - Underfitting
- Mean Decrease in Impurity
- Random Forest

Thank you!

Zeyd Boukhers

E-mail: Boukhers@uni-koblenz.de

Phone: +49 (0) 261 287-2765

Web: Zeyd.Boukhers.com

University of Koblenz-Landau Universitätsstr. 1 56070 Koblenz

