

Building the Futuristic Blockchain Ecosystem

SECURITY AUDIT REPORT

Oggy Floki

TOKEN OVERVIEW

Risk Findings

Severity	Found	
High	0	
Medium	0	
Low	0	
Informational	0	

Centralization Risks

Owner Privileges	Description	
Can Owner Set Taxes >25%?	Not Detected	
Owner needs to enable trading?	Not Detected	
Can Owner Disable Trades ?	Not Detected	
Can Owner Mint ?	Not Detected	
Can Owner Blacklist ?	Not Detected	
Can Owner set Max Wallet amount?	Not Detected	
Can Owner Set Max TX amount?	Not Detected	

TABLE OF CONTENTS

02	Token Overview
03	Table of Contents
04	Overview
05	Contract Details
06	Audit Methodology
07	Vulnerabilities Checklist ————————————————————————————————————
08	Risk Classification
09	Static Analysis ———————————————————————————————————
11	Testnet Version ————————————————————————————————————
12	Manual Review ————————————————————————————————————
13	About Expelee
	Disclaiment

OVERVIEW

The Expelee team has performed a line-by-line manual analysis and automated review of the smart contract. The smart contract was analysed mainly for common smart contract vulnerabilities, exploits, and manipulation hacks. According to the smart contract audit:

Audit Result	Passed
KYC Verification	-
Audit Date	14 November 2023

CONTRACT DETAILS

Token Address: --

Name: Oggy Floki

Symbol: \$OGF

Decimals: 18

Network: Binance smart chain

Token Type: ERC20

Owner: --

Deployer: --

Token Supply: 469690000000000

Checksum: b391b4a737a5cdfd0edf7de92a1b2764

Testnet version:

The tests were performed using the contract deployed on the Binance smart chain Testnet, which can be found at the following address:

https://testnet.bscscan.com/address/0x1c4E97890b81d9d11d74EaCe15F3F122f0f77b15#code

AUDIT METHODOLOGY

Audit Details

Our comprehensive audit report provides a full overview of the audited system's architecture, smart contract codebase, and details on any vulnerabilities found within the system.

Audit Goals

The audit goal is to ensure that the project is built to protect investors and users, preventing potentially catastrophic vulnerabilities after launch, that lead to scams and rugpulls.

Code Quality

Our analysis includes both automatic tests and manual code analysis for the following aspects:

- Exploits
- Back-doors
- Vulnerability
- Accuracy
- Readability

Tools

- DE
- Open Zeppelin
- Code Analyzer
- Solidity Code
- Compiler
- Hardhat

VULNERABILITY CHECKS

Design Logic	Passed
Compiler warnings	Passed
Private user data leaks	Passed
Timestamps dependence	Passed
Integer overflow and underflow	Passed
Race conditions & reentrancy. Cross-function race conditions	Passed
Possible delays in data delivery	Passed
Oracle calls	Passed
Front Running	Passed
DoS with Revert	Passed
DoS with block gas limit	Passed
Methods execution permissions	Passed
Economy model	Passed
Impact of the exchange rate on the logic	Passed
Malicious event log	Passed
Scoping and declarations	Passed
Uninitialized storage pointers	Passed
Arithmetic accuracy	Passed
Cross-function race conditions	Passed
Safe Zepplin module	Passed

RISK CLASSIFICATION

When performing smart contract audits, our specialists look for known vulnerabilities as well as logical and acces control issues within the code. The exploitation of these issues by malicious actors may cause serious financial damage to projects that failed to get an audit in time. We categorize these vulnerabilities by the following levels:

High Risk

Issues on this level are critical to the smart contract's performance/functionality and should be fixed before moving to a live environment.

Medium Risk

Issues on this level are critical to the smart contract's performance/functionality and should be fixed before moving to a live environment.

Low Risk

Issues on this level are minor details and warning that can remain unfixed.

Informational

Issues on this level are minor details and warning that can remain unfixed.

STATIC ANALYSIS

```
| NPTO_Detectors:
| OgsyFlokiToken.constructor(address, address, address, address, address.]) (OgsyFloki.sol883-87W) performs a multiplication on the result of a division:
| - sint(liquidityWallet,((_supply * liquidityPercent) / 100) * 10 ** 9) (OgsyFloki.sol883-97W) performs a multiplication on the result of a division:
| - sint(liquidityWallet,((_supply * liquidityPercent) / 100) * 10 ** 9) (OgsyFloki.sol883-97W) performs a multiplication on the result of a division:
| aline(normality (_supply * liquidityPercent) / 100) * 10 ** 9) (OgsyFloki.sol883-97W) performs a multiplication on the result of a division:
| sint(normality (_supply * liquidityPercent) / 100) * 10 ** 9) (OgsyFloki.sol883-97W) performs a multiplication on the result of a division:
| sint(normality (_supply * liquidityPercent) / 100) * 10 ** 9) (OgsyFloki.sol883-97W) performs a multiplication on the result of a division:
| sint(normality (_supply * liquidityPercent) / 100) * 10 ** 9) (OgsyFloki.sol883-97W) performs a multiplication on the result of a division:
| sint(normality (_supply * liquidityPercent) / 100) * 10 ** 9) (OgsyFloki.sol883-97W) performs a multiplication on the result of a division:
| sint(normality (_supply * liquidityPercent) / 100) * 10 ** 9) (OgsyFloki.sol883-97W) performs a multiplication on the result of a division:
| sint(normality (_supply * liquidityPercent) / 100) * 100 ** 9) (OgsyFloki.sol883-97W) performs a multiplication on the result of a division:
| sint(normality (_supply * liquidityPercent) / 100 ** 9) (OgsyFloki.sol883-97W) performs a multiplication on the result of a division:
| sint(normality (_supply * liquidityPercent) / 100 ** 9) (OgsyFloki.sol883-0) (Ogs
```

```
INFO: Detectors:
 OggyFlokiToken.constructor(address,address,address,address[])._liquidityWallet (OggyFloki.sol#834) lacks a zero-check on :
OggyFlokiToken.constructor(address,address,address,address,address]]._lquidityWallet (OggyFloki.sol#834) lacks a zero-check on :
- liquidityWallet = _liquidityWallet (OggyFloki.sol#848)
OggyFlokiToken.constructor(address,address,address,address,address])._presaleWallet (OggyFloki.sol#835) lacks a zero-check on :
- presaleWallet = _presaleWallet (OggyFloki.sol#841)
OggyFlokiToken.constructor(address,address,address,address])._burnWallet (OggyFloki.sol#836) lacks a zero-check on :
- burnWallet = _burnWallet (OggyFloki.sol#842)
OggyFlokiToken.constructor(address,address,address,address,address])._cexListingWallet (OggyFloki.sol#837) lacks a zero-check on :
- cexListingWallet = _cexListingWallet (OggyFloki.sol#843)

Peference: https://github.com/cyric/sliten/wiik/Detector-Documentation#missing-zero-address-validation
 Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-address-validation
INFO:Detectors:
 Reentrancy in OggyFlokiToken.swapTokens(uint256,address,address) (OggyFloki.sol#989-1013):
               External calls:
- router.swapExactTokensForTokens(tokenAmount,0,path,address(this),block.timestamp) (OggyFloki.sol#1001-1007)
                   Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-vulnerabilities-2
               ncy in OggyFlokiToken.swapTokens(uint256,address,address) (OggyFloki.sol#989-1013):
External calls:
- router.swapExactTokensForTokens(tokenAmount,0,path,address(this),block.timestamp) (OggyFloki.sol#1001-1007)
Event emitted after the Catt(s):

- Swapped(_token,tokenAmount,_to) (OggyFloki.sol#1012)

- Transfer(from,to,amount) (OggyFloki.sol#574)

- super__transfer(msg.sender,_to,tokenAmount) (OggyFloki.sol#1010)

Reentrancy in OggyFlokiToken.withdrawBEP20(address,uint256) (OggyFloki.sol#1015-1023):
                - IERC20(_token).transfer(owner(),amount) (0ggyFloki.sol#1020)
Event emitted after the call(s):
- WithdrawnBEP20(_token,amount) (0ggyFloki.sol#1022)
INFO:Detectors:
                                                                    '^0.8.0', '^0.8.19']
                - Version used: ['0.8.19', ''
- 0.8.19 (OggyFloki.sol#747)
                   ^0.8.0 (OggyFloki.sol#39)
```


STATIC ANALYSIS

TESTNET VERSION

1- Set Max Swap Amount (passed):

https://testnet.bscscan.com/tx/0xa4103487b63ce1f0f614ff21e570fca5e1bdabdd79534a 8031c2386529fc2be3

2- Set Max Wallet Amount (passed):

https://testnet.bscscan.com/tx/0x490582e2a11a88d7865bf7efe756befe3522ad059198ddfb951e391cc813e051

3-Burn (passed):

https://testnet.bscscan.com/tx/0xc5f4cc3931ec10ecb35f28b3ef63cbcebd7418ed1c9506b6b97058abb8f6d162

4- Approve (passed):

https://testnet.bscscan.com/tx/0xc256e5d327066da579e294110ed5c5859106609be5edc04047282b53b2e1c17e

5- Transfer Ownership (passed):

https://testnet.bscscan.com/tx/0xd3bb053f8ad3ca54eb396ce257e8b7ce079b04988ace86bf0a1bc7aaba8a81c3

MANUAL REVIEW

Severity Criteria

Expelee assesses the severity of disclosed vulnerabilities according to methodology based on OWASP standarts.

Vulnerabilities are dividend into three primary risk categroies:

High

Medium

Low

High-level considerations for vulnerabilities span the following key areas when conducting assessments:

- Malicious input handling
- Escalation of privileges
- Arithmetic
- Gas use

Overall Risk Severity							
Impact	HIGH	Medium	High	Critical			
	MEDIUM	Low	Medium	High			
	LOW	Note	Low	Medium			
		LOW	MEDIUM	HIGH			
	Likelihood						

ABOUT EXPELEE

Expelee is a product-based aspirational Web3 start-up.
Coping up with numerous solutions for blockchain security and constructing a Web3 ecosystem from deal making platform to developer hosting open platform, while also developing our own commercial and sustainable blockchain.

www.expelee.com

- 🔰 expeleeofficial
- expelee

Expelee

- in expelee
- expelee_official
- 👩 expelee-co

Building the Futuristic Blockchain Ecosystem

DISCLAIMER

All the content provided in this document is for general information only and should not be used as financial advice or a reason to buy any investment. Team provides no guarantess against the sale of team tokens or the removal of liquidity by the project audited in this document.

Always do your own research and project yourselves from being scammed. The Expelee team has audited this project for general information and only expresses their opinion based on similar projects and checks from popular diagnostic tools.

Under no circumstances did Expelee receive a payment to manipulate those results or change the awarding badge that we will be adding in our website. Alway do your own research and protect yourselves from scams.

This document should not be presented as a reason to buy or not buy any particular token. The Expelee team disclaims any liability for the resulting losses.

Building the Futuristic Blockchain Ecosystem