Calculus III

Sean Richardson

October 12, 2018

Contents

1	2D	2D and 3D space												1					
	1.1	Cartes	sian Coordin	ates															1
	1.2											1							
	1.3											1							
	1.4 Vector Fields										2								
	1.5											2							
	1.6		Products																2
2	???																		3
	2.1	Curvilinear Coordinates										3							
		2.1.1	Polar Coor	dinat	es														3
		2.1.2	Cylindrical																3
		2.1.3	Spherical C																3
1	21) and	d 3D spa	.ce															

- Cartesian Coordinates 1.1
- Contour Maps 1.2
- Quadratic Surfaces 1.3

$$f(x,y) = x^2 + y^2$$
 (Paraboloid)
 $f(x,y) = x^2 - y^2$ (Saddle)
 $f(x,y) = xy$ (Saddle)

Theorem 1.1. An equation of the form $f(x,y) = ax^2 + bxy + cy^2$ is a saddle if $b^2 - 4ac > 0$ and a bowl if $b^2 - 4ac < 0$.

1.4 Vector Fields

Definition 1.2 (Vector Field). A vector field is some mapping $V: S \to \mathbb{R}^n$ with $S \subset \mathbb{R}^n$. Visually, we represent vector fields by drawing the vector of the output centered at the input point. /*Visual vector field*/

1.5 Transformations

Definition 1.3 (Transformation). A transformation is a mapping $T : \mathbb{R}^n \to \mathbb{R}^m$. We represent this mapping $\mathbf{x} \to \mathbf{y}$ with an equation of the form

$$(y^1, \ldots, y^m) = T(x^1, \ldots, x^n) = (T_1(x^i), \ldots, T_m(x^i))$$

Note that linear-ish transformations can be written

$$\begin{pmatrix} y^1 \\ \vdots \\ y^m \end{pmatrix} = \begin{pmatrix} T_1(x^1, \dots, x^n) \\ \vdots \\ T_m(x^1, \dots, x^n) \end{pmatrix} = \begin{pmatrix} b^1 + \sum a_i^1 x^i \\ \vdots \\ b^m + \sum a_i^m x^i \end{pmatrix} = \begin{pmatrix} b^1 \\ \vdots \\ b^m \end{pmatrix} + \sum \begin{pmatrix} a_i^1 \\ \vdots \\ a_i^m \end{pmatrix} x^i$$

$$= \begin{pmatrix} b^1 \\ \vdots \\ b^m \end{pmatrix} + \begin{pmatrix} a_1^1 & \dots & a_n^1 \\ \vdots & \ddots & \vdots \\ a_1^m & \dots & a_n^m \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

1.6 Vector Products

Theorem 1.4. For vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ separated by some angle θ , we have

$$\sum u^i v^i = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta)$$

Definition 1.5 (Dot Product). The previous equivalency is quite useful, so we define the *dot product* by the mapping $\cdot : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ such that

$$u \cdot v = \sum u^i v^i = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta)$$

Where $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ separated by angle θ .

Definition 1.6 (Cross Product). The *cross product* is some mapping \times : $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$ such that for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^3$, $a = \langle a_x, a_y, a_z \rangle$ and $v = \langle b_x, b_y, b_z \rangle$ we have

$$a \times b = \langle (a_y b_z - a_z b_y), (a_z b_x - a_x b_z), (a_x b_y - a_y b_x) \rangle.$$

By abuse of notation, we can write the cross product as:

$$a \times b = \det \begin{pmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{pmatrix}$$

2 ???

2.1 Curvilinear Coordinates

2.1.1 Polar Coordinates

Definition 2.1. Polar coordinates are defined by a transformation from (r, θ) space to (x, y) space.

Below are transformations $T:(r,\theta)\to (x,y)$ and $T^{-1}:(x,y)\to (r,\theta)$

$$T: (x,y) = (r\cos(\theta), r\sin(\theta))$$

$$T^{-1}: (r,\theta) = (\sqrt{x^2 + y^2}, \arctan(y/x)[+\pi?])$$

Note: In T^{-1} ,

2.1.2 Cylindrical Coordinates

2.1.3 Spherical Coordinates