Mind the gap: Modelling evolution with indels

TAMING THE BEAST 2023

EXPECTATION

PHYLOGENETIC PIPELINES REALITY

PHYLOGENETIC PIPELINES REALITY

REALITY

PHYLOGENETIC PIPELINES REALITY

PHYLOGENETIC PIPELINES REALITY

REALITY

REALITY

EXPECTATION 2.0

REMINDER: SUBSTITUTION MODELS

CONTINUOUS TIME MARKOV CHAINS

- Q substitution rate matrix
- P(t) transition probability matrix
- $P(t) = e^{tQ}$
 - $P(t + s) = e^{(t+s)Q} = e^{tQ}e^{sQ} = P(t)P(s)$

USING FELSENSTEIN'S PRUNING ALGORITHM

$$L(\triangle) = P(\exists | \triangle, \exists \exists)$$

USING FELSENSTEIN'S PRUNING ALGORITHM

USING FELSENSTEIN'S PRUNING ALGORITHM

USING FELSENSTEIN'S PRUNING ALGORITHM

Likelihood = $f(v_A v_C v_G v_T)$

MODELLING INDELS

WHY NOT WITH MARKOV CHAINS?

MODELLING INDELS

WHY NOT WITH MARKOV CHAINS?

G

ANOTHER FUNKY INDEL SCENARIO

ANOTHER FUNKY INDEL SCENARIO

ANOTHER FUNKY INDEL SCENARIO

• Process (e.g. TKF91/92) described with an HMM

- Process (e.g. TKF91/92) described with an HMM
- Differentiating along a branch explodes the HMM

- Process (e.g. TKF91/92) described with an HMM
- Differentiating along a branch explodes the HMM
 - Finite branch length -> infinite states

- Process (e.g. TKF91/92) described with an HMM
- Differentiating along a branch explodes the HMM
 - Finite branch length -> infinite states
- Can be simplified!
 - For local likelihood;
 - Global likelihood complexity is still exponential.

MODELLING INDELS...

... is very hard

MODELLING INDELS

POISSON INDEL PROCESS (PIP)

- PIP = Poisson insertion process on a tree
 - + Substitution/deletion Markov process
- Properties:
 - Single character insertions/deletions
 - Time-reversible
 - Linear time likelihood

JOINT INFERENCE: THE DREAM

EXPECTATION 2.0

JOINT INFERENCE REALITY

- JATI 1.0 necessary (but not sufficient) conditions:
 - Efficient T
- MSA adjustment in O(NL3)
 - Tree search in O(N²L)
 - Open-source
 - User-friendly

- Implementation:
 - Rust codebase (github.com/acg-team/JATI (private for now))
 - Release information (twitter.com/JulijaPecerska)

TAKEAWAYS

- Indel models are complicated;
- Know your data!!!
- Know your models and priors;
- Know your software and its assumptions.

ACKNOWLEDGEMENTS

• ACGTeam @ ZHAW

Prof Maria Anisimova

Dr Manuel Gil

Clara Iglhaut

Gholamhossein Jowkar

