DIGITAL COMMUNICATION AND RECEIVER

Publication number: JP9214474

Publication date:

1997-08-15

Inventor:

KATO MASAMI

Applicant:

SANYO ELECTRIC CO

Classification:

- international:

H04B14/04; H04L1/00; H04L1/18; H04N7/24; H04B14/04; H04L1/00; H04L1/16; H04N7/24; (IPC1-

7): H04L1/18; H04B14/04; H04L1/00; H04N7/24

- european:

Application number: JP19960317951 19961128

Priority number(s): JP19960317951 19961128; JP19950309560 19951128

Abstract of JP9214474

PROBLEM TO BE SOLVED: To provide the hybrid forward error correction (FEC)/automatic re- transmission request (ARQ) system operated in an excellent way even when a data length for the FEC differs from a packet data length. SOLUTION: In the digital communication method adopting the hybrid FEC/ ARQ system, at first an error of a received packet is checked (S36), and when the error is checked, re-transmission is not requested immediately, second, an error correction parity bit (BCHD) stored in other packet for error correction of this packet is used to apply error correction processing to this packet (S40). Third, after the error correction processing, an error is detected again (S42) and when any error is detected, re-transmission is requested (S46).

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-214474

(43)公開日 平成9年(1997)8月15日

(51) Int.Cl. 6		識別記号	庁内整理番号	FΙ			技術表示箇所
H04L	1/18			HO4L	1/18		
H04B	14/04			H04B	14/04	D	
H04L	1/00			H04L	1/00	F	
H04N	7/24			H04N	7/13	Α	

審査請求 未請求 請求項の数5 OL (全 14 頁)

		HT.BLDF1	不明水 明水系以致5 OL (主 14 兵)
(21)出願番号	特顯平8-317951	(71)出顧人	000001889
			三洋電機株式会社
(22)出願日	平成8年(1996)11月28日		大阪府守口市京阪本通2丁目5番5号
		(72)発明者	加藤正美
(31)優先権主張番号	特段平7 -309560		大阪府守口市京阪本通2丁目5番5号 三
(32)優先日	平7 (1995)11月28日		洋電機株式会社内
(33)優先權主張国	日本(JP)	(74)代理人	弁理士 安富 耕二 (外1名)

(54) 【発明の名称】 デジタル通信方法及び受信装置

(57)【要約】

【課題】 本願の目的は、FECを行うデータ長と、パケットデータ長が異なる場合でも、良好に動作するハイブリッドFEC/ARQ方式を提案するものである。

【解決手段】 本発明は、ハイブリッドFEC/ARQ 方式によるデジタル通信方法において、まず第1に、受信したパケットに対してに誤り検出を行い、誤りを検出した場合に、すぐに、再送信を要求せずに、第2に、このパケットの誤り訂正のために他のパケットに格納された誤り訂正パリティビット(BCHD)により、このパケットの誤り訂正処理を行い、第3に、この誤り訂正処理の後に、再度、誤り検出を行い、誤りを検出した場合に、再送信を要求する。

1

【特許請求の範囲】

【請求項1】 ハイブリッドFEC/ARQ方式による デジタル通信方法において、

送信側(1a)では、誤り訂正パリティビット(BCHD)を含む 伝送基本データ(AD)を分割し、この分割されたパケット データ毎に誤り検出符号を付加してパケット毎に送出 し、受信側からパケットの再送要求があると、要求され たパケットを再送信し、

受信側(1b)では、複数のパケットに分割された前記伝送 基本データ(AD)を全て受信してから、前記誤り訂正符号 10 により、受信データの誤り訂正処理を行い、この誤り訂 正されたデータの誤り検出を前配誤り検出符号により行 い、誤りのあるデータを含むパケットの再送信を、前記 送信側(1a)に要求することを特徴とするデジタル通信方

【請求項2】 前記誤り訂正符号とは、BCH符号であ ることを特徴とする請求項1のデジタル通信方法。

【請求項3】 前記誤り検出符号とは、CRC符号であ ることを特徴とする請求項1のデジタル通信方法。

【請求項4】 基本データ(BD)と誤り訂正符号の誤り訂 20 正パリティビット(BCHD)とを含む伝送基本データ(AD) を、この伝送基本データ(AD)のデータ長より短いデータ 長のパケットに分割し、このパケット毎に餌り検出符号 を付して送られてくるデータを受信する受信装置に於 て、

少なくても、前記伝送基本データ(AD)を一括して格納 し、この伝送基本データ(AD)のうち、前配誤り訂正符号 により、誤り訂正処理を行う誤り訂正手段(38)と、

この誤り訂正手段(38)により訂正処理されたデータを、 前記誤り検出符号により、誤りの有無を検出し、誤りが 30 あれば、この誤りが存在するパケットの再送信を送信側 (1a)に要求する誤り検出手段(40)とを備える受信装置。

【請求項5】 ハイブリッドFEC/ARQ方式による デジタル通信方法において、

受信したパケットに対して誤り検出を行い、誤りを検出 した場合に、すぐに、再送信を要求せずに、

このパケットのデータと共に誤り訂正符号を形成するデ ータにより、このパケットの誤り訂正処理を行い、

この誤り訂正処理の後に、再度、このパケットの誤り検 出を行い、誤りを検出した場合に、このパケットの再送 40 信を要求するデジタル通信方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、周知のハイブリッ ドFEC/ARQ技術に関する。

[0002]

【従来の技術】デジタル通信技術に於て、誤り制御技術 として、FECとARQが良く知られれている。FEC (誤り訂正符号化方式:Forward Error Correction)は、

り訂正符号により、発生したエラーを訂正するものであ る。このFECの符号としては、BCH符号(Bose-Chau dhuri-Hocquenghem Code)が良く知られている。

【0003】ARQ(自動再送要求方式:Automatic Repe at Request)は、送信側でデータにエラー検出符号を付 与し、受信側でこのエラー検出符号によりエラー発生を 検出すると、このデータの再送を送信側に要求するもの である。このFECは、良く知られるように長所と短所 がある。ARQにも、長所と短所がある。

【0004】そこで、様々な改良が、提案されている。 ・伝送経路の品質に応じて、FECの種別を切り替え

・伝送経路の品質に応じて、ARQにおけるパケットデ ータ長を可変する。

・伝送経路の品質に応じて、FECとARQを切り替え る。

・FECとARQを複合し、FECで訂正不能なデータ のみをARQにより再送する(ハイブリッドFEC/A RQ) 。

【0005】・伝送経路の品質に応じて、伝送レート、 FEC、ARQ、ハイブリッドFEC/ARQを切り替

・伝送経路の品質に応じて、ハイブリッドFEC/AR Qにおけるパケットデータ長を可変する。

図1~図3を参照しつつ、周知のハイブリッドFEC/ ARQの一例を説明する。

【0006】図1は、その概略プロック図である。図2 は、送信側のデータ加工を説明するための図である。図 3 は受信側での動作を説明するためのフローチャートで ある。図1において、1aは送信側である。1bは受信 側である。送信側1aにおいて、10は、入力端子であ る。この入力端子10には、図2(a)の基本データB Dが入力される。

【0007】12は、パケット化回路である。14は、 分割回路である。分割回路14は、基本データBDを図 2 (b) の如く、固定長に分割する。16は、誤り検出 符号付加回路である。誤り検出符号付加回路16は、分 割されたデータに、それぞれ、図2(c)の如く、誤り 検出符号を付加する。ここでは、誤り検出符号としてC RC符号を用いた。

【0008】18は、誤り訂正パリティピット付加回路 である。 誤り訂正パリティビット付加回路18は、図2 (d) の如く、誤り訂正パリティビットを付加する。こ こでは、誤り訂正符号としてBCH符号を用いた。な お、この実施例では誤り訂正符号を作成する場合のデー タの範囲としては、分割された基本データの部分だけで あるが、CRC符号部分を含む様にしても良い。

【0009】20は、ヘッダ付加回路である。ヘッダ付 加回路20は、図2(e)の如く、パケットヘッダを付 送信側でデータに誤り訂正符号を施し、受信側でこの誤 50 加する。22は、パケット化されたデータを格納するデ

ータメモリである。このデータメモリ22は、データ送 信後もデータを保持している。これは、後で受信側か ら、再送要求があった場合に、素早く再送するためであ る。尚、再送要求があった場合に、もう一度、パケット 化処理からやり直すようにしてもよい。

【0010】24は、送受信回路である。送受信回路2 4は、パケット化されたデータを受信側1bに送信する とともに、受信側1bからの再送要求を受信する。26 は、再送要求回路である。再送要求回路26は、送受信 回路24を介して受信側1bからの再送要求が入力し、 この再送要求されたパケットのデータを、データメモリ 22より、送受信回路24に再び出力させる。

【0011】受信側1bにおいて、28は、送受信回路 である。送受信回路28は、送信側1aからのデータを 受信するとともに、送信側1aに再送要求を送信する。 30は、誤り訂正回路である。誤り訂正回路30は、B CH符号により、誤り訂正処理を行う。32は、誤り検 出回路である。誤り検出回路32は、誤り訂正回路30 で誤り訂正処理済みのデータに対して、CRC符号によ り、餌り検出を行う。そして、誤りが検出されると、こ 20 のパケットの再送を送受信回路28を介して、送信側1 aに要求する。

【0012】この従来例の動作を簡単に説明する。送信 側1aの入力端子10から、入力された基本データは、 パケット化回路12で、パケットに収められるように、 分割される。そして、この分割データ毎に、CRC符号 とBCH符号によるパリティビットが付加される。そし て、データメモリ22、送受信回路24を介して、送信 される。

【0013】受信側1bでは、送受信回路28でデータ 30 を受信する。そして、誤り訂正回路30で、図3ステッ プS12に示すように、BCH符号による誤り訂正処理 を行う。これにより、通信により発生したエラーを復旧 できる場合がある。次に、誤り検出回路32で、図3ス テップS14に示すように、CRC符号による誤り検出 処理を行う。そして、図3ステップS16, S18に示 すように、誤りがあれば、この誤ったパケットのデータ を破棄し、このパケットの再送信を送信側1aに要求す る。

[0014]

【発明が解決しようとする課題】従来のハイブリッドF EC/ARQにおいては、通信時のデータの一塊(パケ ット: セル) 毎に、FECが行われ、ARQが行われて いた。つまり、受信側では、1パケット毎に、FECで の訂正後の観りの有無を検出する。そして、観りを存在 すると、このパケットの再送信を送信側に要求してい

【0015】本願の目的は、パケット毎にFECを行わ ない場合でも、良好に動作するハイブリッドFEC/A 訂正符号が付されているデータを送信する場合に、この 誤り訂正符号を利用して、ハイブリッドFEC/ARQ 方式を実現するものである。本願の目的を他の観点から 表現すると、FECを行うデータ長と、パケットデータ 長が異なる場合でも、良好に動作するハイブリッドFE C/ARQ方式を提案するものである。

【0016】更に、本願は、提案したハイブリッドFE C/ARQ方式において、スループット特性の向上を目 的とする。更に、本願は、このハイブリッドFEC/A RQ方式により、ビデオ信号をPHSで伝送することを 目的とする。

[0017]

【課題を解決するための手段】本発明は、ハイブリッド FEC/ARQ方式のデジタル通信方法において、送信側(1a) で、誤り訂正パリティビット(BCHD)を含む伝送基本デー タ(AD)を分割し、この分割されたパケットデータ毎に誤 り検出符号を付加してパケット毎に送出し、受信側(1b) からパケットの再送要求があると、要求されたパケット を再送信し、受信側(ib)は、複数のパケットに分割され た前記伝送基本データ(AD)を全て受信してから、前記誤 り訂正パリティビット(BCHD)により、受信データの誤り 訂正処理を行い、この誤り訂正されたデータの誤り検出 を前記誤り検出符号により行い、誤りのあるデータを含 むパケットの再送信を、前記送信側(1a)に要求すること を特徴とする。

[0018]

【発明の実施の形態】図4~図7を参照しつつ、本願の ハイブリッドFEC/ARQ方式の第1実施例を説明す る。図4は、その概略プロック図である。図5は、送信 側のデータ加工を説明するための図である。

【0019】図6は、受信側での動作を説明するための フローチャートである。図7は、受信側のデータ処理を 説明するための図である。送信側1aにおいて、10 は、入力端子である。この入力端子10には、図5 (a) の伝送基本データADが入力される。この伝送基 本データADは、BCH符号である。つまり、この伝送 基本データADは、基本データ部分BDを予かじめBC H符号することにより、この基本データ部分BDに誤り

【0020】12は、パケット化回路である。14は、 分割回路である。分割回路14は、伝送基本データAD を図4(b)の如く、固定長に分割する。16は、誤り 検出符号付加回路である。誤り検出符号付加回路 1 6 は、分割されたデータに、それぞれ、図5(c)の如 く、誤り検出符号を付加する。ここでは、誤り検出符号 としてCRC符号を用いた。この誤り検出符号は、分割 された伝送基本データに対して行われる。

訂正パリティビットBCHDが付加されている。

【0021】20は、ヘッダ付加回路である。ヘッダ付 加回路20は、図4(e)の如く、パケットヘッダを付 RQ方式を提案するものである。つまり、最初から誤り 50 加する。このバケット化回路12は、FEC処理された

伝送基本データADに対して、ARQのための誤り検出 符号を付与している。このパケット化回路12で作成さ れるパケットは、誤り訂正パリティビットBCHDを伝 送するための修正用パケットと、基本データ部分BDの みを伝送するための通常パケットに分けられる。

【0022】22は、データメモリである。24は、送 受信回路である。26は、再送要求回路である。受信側 1 bにおいて、28は、送受信回路である。36は、第 1の誤り検出回路である。この誤り検出回路36は、複 て受信してから、CRC符号により、修正用パケットの 誤り検出を行う。そして、誤りが検出されると、この修 正用パケットの再送を送受信回路28を介して、送信側 1 a に要求する。この誤り検出回路36は、再送される と、この修正用パケットの誤り検出を再び行い、上述の 動作を繰り返す。

【0023】この誤り検出回路36は、BCH符号化に よる誤り訂正パリティビットが誤りなく伝送された修正 用パケット中のデータと、伝送途中で誤りが発生してい るかもしれない通常パケット中のデータを、次段の回路 20 38に出力する。38は、誤り訂正回路である。誤り訂 正回路38は、BCH符号により、誤り訂正処理を行 う。つまり、この誤り訂正処理により、通常パケット中 に発生したエラーを訂正できる場合がある。

【0024】40は、第2の誤り検出回路である。この 誤り検出回路40は、誤り訂正回路38で誤り訂正処理 済みのデータを対して、CRC符号により、誤り検出を 行う。そして、誤りが検出されると、このパケットの再 送を送受信回路28を介して、送信側1aに要求する。 この第1実施例の動作を簡単に説明する。

【0025】送信側1aの入力端子10からは、FEC 処理によりBCH符号化による誤り訂正パリティビット が付加済みの伝送基本データADが、入力される。パケ ット化回路12では、パケットに収められるように、伝 送基本データADを分割する。そして、この分割データ 毎に、CRC符号を付加する。そして、データメモリ2 2、送受信回路24を介して、送信する。

【0026】受信側1bでは、送受信回路28でデータ を受信する。そして、餌り検出回路36は、図6ステッ プS32に示すように、修正パケットのを含む1セット 40 の伝送基本データADを受信する。図6ステップS34 に示すように、CRC符号により、この修正パケットの 誤り検出処理を行う。そして、図6ステップS36, S 38に示すように、誤りがあれば、この誤った修正パケ ットのデータを破棄し、この修正パケットの再送信を送 信側1aに要求する。

【0027】これにより、図7(a)に示すごとく、誤 りの無い修正パケットと、伝送途中でエラーが発生して いるかもしれない通常パケットが、受信側にメモリされ Oに示すように、BCH符号による誤り訂正処理を行

【0028】 麒り訂正回路38は、図7(b)(C)に 示すように、BCH符号による誤り訂正処理を行う。こ の関り訂正により、伝送時に発生したエラーを復旧でき る場合がある。次に、第2の誤り検出回路40で、図6 ステップS42に示すように、CRC符号により通常パ ケットの誤り検出処理を行う。

【0029】麒り検出回路40は、図7(d)に示すよ 数のパケットに分割された前記伝送基本データADを全 10 うに、誤り訂正処理された基本データBD'をパケット に対応する様に再度分割し、CRC符号による誤り検出 を行う。そして、第2の誤り検出回路40は、図6ステ ップS44、S46に示すように、誤りがあれば、この 誤った通常パケットのデータを破棄し、この通常パケッ トの再送信を送信側1 a に要求する。

> 【0030】尚、この第1実施例では、第2の麒り検出 回路40では、修正パケットの誤り検出は、行わなかっ たが、これを、行うようにしてもよい。尚、この第1実 施例では、CRCのチェックのみによる再送不要処理 は、行わなかった。本願は、このような、処理を行って もよい。図8にこのような処理をする第2実施例の動作 を示す。

【0031】この第2実施例では、図8のステップS3 3に示すように、CRCのチェックのみによる再送不要 処理を行う。

【0032】又、この第1、2実施例では、誤り訂正パ リティビットを含む伝送基本データ(AD)を形成するパケ ットの内の一つを優先しているが、本願はこれに限定さ れるわけではない。各パケットを同様に扱うようにして も良い。図10~図13を参照しつつ、本願のハイブリ ッドFEC/ARQ方式の第3実施例を説明する。

【0033】図10は、その概略プロック図である。図 11は、送信側のデータ加工を説明するための図であ り、図5と同様である。

【0034】図12は、受信側での動作を説明するため のフローチャートである。図13は、受信側のデータ処 理を説明するための図である。図11において、図4と 同一部分の説明は省略する。38は、誤り訂正回路であ る。誤り訂正回路38は、複数のパケットに分割された 前記伝送基本データADを全て受信してから、BCH符 号により、誤り訂正処理を行う。つまり、この誤り訂正 処理により、パケット中に発生したエラーを訂正できる

【0035】40は、誤り検出回路である。この誤り検 出回路40は、誤り訂正回路38で誤り訂正処理済みの データを対して、CRC符号により、誤り検出を行う。 そして、誤りが検出されると、このパケットの再送を送 受信回路28を介して、送信側1aに要求する。

【0036】この第3実施例の動作を簡単に説明する。 ることとなる。誤り訂正回路38は、図6ステップS4 50 送信側1aの入力端子10からは、FEC処理によりB

CH符号化による誤り訂正パリティビットが付加済みの 伝送基本データADが、入力される。パケット化回路1 2では、パケットに収められるように、伝送基本データ ADを分割する。そして、この分割データ毎に、CRC 符号を付加する。

【0037】そして、データメモリ22、送受信回路2 4を介して、送信する。

【0038】受信側1bでは、送受信回路28でデータ を受信する。そして、誤り訂正回路38は、図12ステ ップS32に示すように、伝送基本データADを受信す 10 る。誤り訂正回路38は、図12ステップS40に示す ように、BCH符号による誤り訂正処理を行う。

【0039】誤り訂正回路38は、図13(b)(C) に示すように、BCH符号による誤り訂正処理を行う。 この誤り訂正により、伝送時に発生したエラーを復旧で きる場合がある。次に、誤り検出回路40で、図12ス テップS42に示すように、CRC符号によりパケット の誤り検出処理を行う。

【0040】麒り検出回路40は、図7(d)に示すよ うに、誤り訂正処理された基本データBD'をパケット 20 に対応する様に再度分割し、CRC符号による誤り検出 を行う。そして、誤り検出回路40は、図12ステップ S44、S46に示すように、誤りがあれば、この誤っ たパケットのデータを破棄し、このパケットの再送信を ・送信側1aに要求する。

【0041】この第3実施例では、CRCのチェックの みによる再送不要処理は、行わなかった。本願は、この ような、処理を行ってもよい。図14にこのような処理 をする第4実施例の動作を示す。この第4実施例では、 図14のステップS33に示すように、CRCのチェッ 30 クのみによる再送不要処理を行う。

【0042】図9を参照しつつ、本発明の第5実施例を 説明する。この第5実施例は、ビデオ信号をPHSによ り伝送する例である。周知の如く、PHS (Personal Ha ndy Phone System)は、既に携帯電話システムとして、 使用されている。

【0043】このPHSは、TDMA/TDD(Time Division M ultiplex Access/ Time Division Duplex) 方式を採用 し、1スロットで32kbit/sの伝送能力を有し、さらに複 数スロットを使用すればそれ以上の伝送が可能である。 このPHSの2スロットを利用して、ビデオを伝送する 場合、このビデオのデータとしては、低ビットレートの ものが望まれる。

【0044】低ビットレートの動画像圧縮方式として、 既にH. 261(p×64kbit/s)が、ITU-Tで標準化されてい る。この第5実施例では、PHSの2スロットを使用し て、64kbit/sのH. 261ビデオ情報を伝送するものであ る。そして、FEC(誤り訂正)としては、既に、H.26 1に採用された誤り訂正符号(BCH符号)を流用する。

【0045】また、ARQ(自動再送)のための誤り検 50 る。

出符号としては、PHSの各スロットに付加された誤り検 出符号を活用する。図9にPHSのスロットの構成と、H.2 61のFECフレーム構成と、この両者の関係を示す。ま ず、PHSのデータ構成について、説明する。

【0046】PHSは、前述のごとく、TDMA/TDD方式を採 用しており、5msec周期の1フレームを8スロットに時分 割し、前半の4スロットを基地局から端末への下りスロ ット、後半の4スロットを端末から基地局への上りスロ ットとしている。端末は、対応する上下スロットを一つ または複数使用して双方向通信を行う。240ビットで構 成される各スロットには、データ伝送用チャネルとして FACCH (FastAttendantControl Channel: 160ビット)と、SA CCH(SlowAttendantControlChannel:16ビット)がある。

【0047】第5実施例では、これを利用してビデオ伝 送を行う。つまり、ビデオ情報はFACCHで伝送され、ACK /NACKやスロット番号等の制御情報はSACCHに相当するチ ャネルで伝送される。また、各スロットには、16ビット -CRC(Cyclic Redundancy Check) (生成多項式:1+X5+X12 +X16)が設けられ、チャネル識別子(Channel Discrimina tor)、SACCH、FACCHに対して誤り検出が可能である。

【0048】次に、H. 261のデータ構成について、説明 する。一方、H. 261は、512ピットのFECフレームを伝送 単位とする。フレーム同期ビット(Synchronizing Signa 1)に続き、圧縮符号化されたビデオ情報(DataPayload:4 93ビット)が、設けられる。更に、BCH(511, 493) 誤り訂 正符号(生成多項式:(1+X4+X9)(1+X3+X4+X6+X9))を採 用しており、18ビットが付加される。

【0049】このBCH誤り訂正符号により、2ビットまで のランダム誤りか、6ビットまでのバースト誤りを訂正 できる。H. 261で圧縮符号化されたビデオ情報をPHS伝送 規格で伝送する場合、図9から明らかなように、16個の スロットを使用して、ちょうど5個のFECフレームを伝送

【0050】このとき、BCH符号による餌り訂正パリ ティピットを含むスロットが特定できる。 図9に示すス ロットS3, S6, S9, S12, S15である。

【0051】このPHSシステムの動作を説明する。 A. 送信器は、同一フレーム内の2スロットを使用 し、スロット番号(0~15)と、ビデオ情報とを送信す 40 る。このスロット番号(0~15)とは、FECフレームとスロ ットとの対応を示している。

受信器は、同一フレーム内の2スロットを受信 し、かつスロット番号により1つのFECフレームを受信し 終えたと判断した時点で、以下の処理を行う。

【0052】C. スロットに誤りがあれば、FECフレ ームに対し誤り訂正を行う。 そして、誤り訂正されたF ECフレームに対し各スロット毎にCRC符号による誤り検 出を行う。誤りが検出されなければ、受信確認済みスロ ット番号を含むACK(良好受信: Acknoledge)を返送す

9

【0053】また、誤りが検出されれば、そのスロット 番号を含むNACKを返送する。

D. NACKを受信した送信端末は、以下の手続きにより 再送を行う。

D-1. 1スロットだけの再送が要求された場合、スロットダイバーシチを適用し、次の2スロットに同じ情報を乗せて再送する。

D-2. 2スロットの再送が要求された場合、次の2スロットを使用して再送する。

【0054】D-3. 3スロット以上の再送が要求された場合、まず先頭の2スロットに対してD-2と同様の処理を行い、さらに送信が完了しないスロット数に応じて、D-1, D-2, D-3と同様の処理を行う。尚、第5実施例では、低ビットレート対応の動画像圧縮方式として、H.261を参考に述べたが、本願は、MPEG4(M oving Picture Experts Group)で実施してもよい。

【0055】また、第5実施例では、PHS伝送システム規格で、H.261画像圧縮規格のデータを、ARQを利用して伝送している。このため、ARQによるデータ再送により、大きな送信遅延が生じてしまう。このような、場合は、送信側で遅延したデータを強制的に廃棄して同期をとるようにすればよい。

【0056】つまり、あるビデオ画面の送信が完了するまでに、複数枚の画面の送信遅延が生じた場合を考える。このときは、最新の画面以外を、強制的に廃棄することにより、同期を維持する。この結果、ビデオ情報は乱れる。

【0057】この場合、H. 261符号化部では、この強制 的に廃棄に伴う復号画像の乱れを防止するために、廃棄 後に出力する画像に対しては、フレーム内符号化(イン 30 トラフレーム)を行う。

[0058]

【発明の効果】本発明によれば、FECによるデータ長と、ARQの単位となるパケットデータ長が異なる場合でも、ハイブリットFEC/ARQを行うことが出来る。従って、データの効率的な伝送が可能となる。

【図面の簡単な説明】

10

【図1】従来のハイブリッドFEC/ARQ方式通信システムの一例を示す図である。

【図2】図1の従来例の動作を説明するための図である。

【図3】図1の従来例の受信側での動作を説明するため のフロチャート図である。

【図4】本発明によるハイブリッドFEC/ARQ方式 通信システムの第1実施例を示す図である。

【図5】この第1実施例の動作を説明するための図である。

【図 6】この第1実施例の受信側での動作を説明するためのフロチャート図である。

【図7】この第1実施例の受信側での動作を説明するための図である。

【図8】本発明の第2実施例の動作を説明するための図である。

【図9】本発明の第5実施例を示す図である。

【図10】この第3実施例の動作を説明するための図である。

20 【図11】この第3実施例の受信側での動作を説明する ためのフロチャート図である。

【図12】この第3実施例の受信側での動作を説明する ための図である。

【図13】この第3実施例の動作を説明するための図で ねる

【図14】本発明の第4実施例の動作を説明するための 図である。

【符号の説明】

- (1a) · · · · · · 送信側、
- 30 (1b) · · · · · · 受信側、
 - (36)・・・・・・第1の誤り検出手段、
 - (38) · · · · · · 誤り訂正手段、
 - (40)・・・・・・・第2の誤り検出手段。
 - (AD)・・・・・伝送基本データ (観り訂正符号データ)、
 - (BCHD)・・・・・!誤り訂正パリティピット、
 - (BD) · · · · · · · 基本データ。

[図4]

【図5】

【図7】

[図9]

[図10]

【図11】

(a) 受信パケットデータ

(b) 類り訂正パリティビット付加済の伝送基本
データ(AD)

(c) 誤り訂正済みデータ

(d) 誤り較出

