Conceptual models of cross-immunity, and practical applications

Jonathan Dushoff, McMaster University

UNICEF McMaster, Mar 2025

Dynamical models of disease spread

Jonathan Dushoff

UNICEF McMaster's 2025 Panel Event

March 2025

Outline

What is dynamical modeling?

Modeling approaches

Deterministic models

Stochastic models

Statistical fitting

Limitations

Heterogeneity

Behavioural changes

Dynamical modeling connects scales

Measles reports from England and Wales

- Start with rules about how things change in short time steps
 - Usually based on individuals
- Calculate results over longer time periods
 - Usually about populations
- Also known as "mechanistic" or "mathematical"

Model worlds

- A dynamical model is based on a model world
- The model world has enough assumptions to allow us to calculate dynamics
- ► The model world is *simpler* than the real world
- Essentially, all models are wrong, but some are useful. – Box and Draper (1987), Empirical Model Building . . .

Simple models of disease spread

Divide people into categories:

- ► Susceptible: can be infected
- Infectious: can infect others
- Recovered: cannot be infected

PRESLIDE What determines transition rates?

What determines transition rates?

- ► People get better independently
- ▶ People get infected by infectious people

Outline

What is dynamical modeling?

Modeling approaches Deterministic models

Stochastic models Statistical fitting

Limitations

Heterogeneity Behavioural changes

Conceptual modeling

Conceptual modeling

- What is the final result?
- How do disease levels change?
- ▶ When does disease increase, decrease?

Result: change tends to be exponential

- ► The number of people recovering or becoming infected is *proportional* to the number infected
 - ▶ I infect three people, they each infect 3 people . . .
 - ► How fast does disease grow?
 - ► How quickly do we need to respond?

little r

- ▶ We measure epidemic *speed* using little *r*:
 - Units: [1/time]
 - ► Disease increases like *e*^{rt}
- ▶ Characteristic time scale is C = 1/r
 - Closely related to doubling time
 - ▶ COVID, $C \approx 1$ month
 - ▶ HIV in SSA, $C \approx 18$ month
- ▶ Often focus on initial period (may also say r_0)

Exponential growth

Exponential growth

Result: disease does not always spread

- ▶ If rate out of I is faster than the rate into I
- ightharpoonup I
 ightarrow 0 and the outbreak stops

Concept: reproductive number

- ▶ R is the number of people who would be infected by an infectious individual *in a fully susceptible population*.
- $ightharpoonup \mathcal{R} = \beta/\gamma = \beta D = (cp)D$
 - c: Contact Rate
 - p: Probability of transmission (infectivity)
 - D: Average duration of infection
- lacktriangle A disease can invade a population if and only if $\mathcal{R} > 1$.
- ▶ Often focus on initial period (may also say \mathcal{R}_0)

Yellow fever in Panama

endemic equilibrium

Example: Dengue (Taiwan CDC)

Indigenous cases

Imported cases

Result: not every one gets infected

- ▶ When S gets low, then I goes down and the outbreak stops
- There is not always a reason why you didn't get infected!
 - Remember the model world
 - Everyone in this model is assumed to be the same

Next steps

- ▶ We can *implement* the model and see what it's going to do
- This requires more assumptions, for example:
 - ► Time steps or continuous time?
 - ► Deterministic or stochastic?

Outline

What is dynamical modeling?

Modeling approaches Deterministic models

Stochastic models
Statistical fitting

Limitations

Heterogeneity Behavioural changes

Deterministic models

- ► For a given set of assumptions, a deterministic model always predicts the same results
- ▶ In other words, our model world *determines* the outcome

Simulations

8.0

1.0

Simulations (repeat)

Closing the circle

▶ * Births and deaths

Closing the circle (repeat)

Closing the circle

* Loss of immunity

Processes and rates

Event	transition	rate	Effect (S, I)
Recovery	$S \to I$ $I \to R$ $R \to S$	$\beta SI/N \\ \gamma I \\ \mu(N-S-I)$	(-1,1) (0,-1) (1,0)

Result: Diseases tend to oscillate

Result: Oscillations tend to be damped

What is missing from our model world? (repeat)

Measles reports from England and Wales

What is missing from our model world?

- Almost everything! So what's important?
- * Seasonality
- * Chinese New Year!
- * School terms
- * Randomness
- ▶ * Any of these things can amplify damped oscillations

Example: Ebola transmission

- ► How much Ebola spread occurs before vs. after death
- ► Highly context dependent
 - Funeral practices, disease knowledge
- Weitz and Dushoff Scientific Reports 5:8751.

Simple disease model (repeat)

Model with latent period

Include post-death transmission

Result: generation interval links $r\mathcal{R}(preview)$

Result: generation interval links $r\mathcal{R}$

- Mechanistic view: If we know R, faster generations mean faster spread (bigger r)
- ▶ Phenomenological view: If we know r, slower generations mean stronger spread (bigger R)

Example: COVID: flatten the curve

Example: COVID

Result: It is easier to reduce the peak than the total cases

More box models

Childs et al., http://covid-measures.stanford.edu/

Example: COVID waves (preview)

Example: COVID waves (preview)

Example: COVID waves

Example: COVID waves (preview)

New Variants of Concern (VOCs) and Early Variants (non-VOCs)

Example: COVID waves

- alpha variant was increasing even though total was decreasing
- using a dynamical perspective allows us to project the effect of this

Outline

What is dynamical modeling?

Modeling approaches

Deterministic models

Stochastic models

Statistical fitting

Limitations

Heterogeneity

Behavioural changes

Stochastic models

- ► For a given set of assumptions, a stochastic model predicts a variety of possible results
- ► In other words, there is room for randomness (stochasticity) inside our model world
 - ▶ We may think the world is really stochastic
 - Or simply that there are things we can't predict . . .

Types of stochasticity

Event	transition	rate	Effect (S, I)
Infection Recovery Loss of immunity	$I \to R$	$\beta SI/N \\ \gamma I \\ \mu (N-S-I)$	(-1,1) (0,-1) (1,0)

- ▶ We can add random changes to the rates
 - Contact rate (β) , for example, may go up and down for reasons we can't predict
- We also get a stochastic model even by just treating individuals as individuals!

Deterministic spread

Demographic spread

Demographic spread

 Demographic refers to the minimum stochasticity corresponding to treating individuals as individuals

Result: outbreaks can die out at random

- In simple models, the probability of a single introduction going extinct at random is $1/\mathcal{R}$
- ▶ If an introduction does not lead to an outbreak, there's not always a reason

Result: Pattern of outbreak sizes is related to $\mathcal{R}(repeat)$

Indigenous cases

Imported cases

Result: stochasticity interacts with oscillations (preview)

Result: stochasticity interacts with oscillations

Outline

What is dynamical modeling?

Modeling approaches

Deterministic models
Stochastic models

Statistical fitting

Limitations

Heterogeneity

Rehavioural change

Behavioural changes

Statistical fitting

Sierra Leone

Statistical fitting

- How certain or uncertain are our projections?
- ► What else do we need to know?

Outline

What is dynamical modeling?

Modeling approaches
Deterministic models
Stochastic models
Statistical fitting

Limitations

Heterogeneity Behavioural changes

Outline

What is dynamical modeling?

Modeling approaches
Deterministic models
Stochastic models
Statistical fitting

Limitations

Heterogeneity

Behavioural changes

Heterogeneity

- Simple models treat the world like this cup
- ▶ People are all the same
- Perfectly mixed
- Lots of people
 - (for deterministic models)

Human heterogeneity

Human heterogeneity

Human heterogeneity

Example: Gonorrhea

endemic equilibrium

Example: Gonorrhea

endemic equilibrium

Result: heterogeneity makes incidence robust

- Disease levels are more resistant to change
- Higher when averaged transmission is low
- Lower when averaged transmission is high

endemic equilibrium

Example: HIV

Outline

What is dynamical modeling?

Modeling approaches
Deterministic models
Stochastic models
Statistical fitting

Limitations

Heterogeneity

Behavioural changes

Behavioural changes

► I can calculate the motion of heavenly bodies, but not the madness of people. – Isaac Newton

Example: COVID

Example: HIV

Example: Dengue (Taiwan CDC)

Indigenous cases

Imported cases

Example: mpox

Example: COVID awareness

Weitz et al.

https://www.pnas.org/doi/10.1073/pnas.2009911117

Summary

- Dynamical models are an essential tool to link scales
- Very simple models can provide useful insights
- More complex models can provide more detail, but also require more assumptions, and more choices
 - Statistical fitting can guide in interpretation
- We can evaluate assumptions
 - What was right, what was wrong?
 - ► What else do we need to know?

Thanks

- Organizers
- ► Collaborators
- ► Funders
- Audience