

1. Limpieza de la base de datos

- A primera vista, se puede ver valores nulos, sin sentido y otros que no aportan a la variable
- Es una matriz 5110 filas x 11 columnas. Con tipos de datos enteros, decimales y objetos. Y de los cuales algunos se desconocen la información o está incorrecto
- Para los valores nulos/atípicos, se utilizó diferentes métodos y el K-Nearest Neighbors fue el mejor

	Hypertension	Heart Disease	Married	Work	Residence	Avg_glucose_level	Bmi	Smoking	Age	Stroke
Gender										
Female	2994	2994	2994	2994	2994	2994	2897	2994	2994	2994
Male	2115	2115	2115	2115	2115	2115	2011	2115	2115	2115
Other	1	1	1	1	1	1	1	1	1	1

	Hypertension	Heart Disease	Married	Residence	Avg_glucose_level	Bmi	Smoking	Gender	Age	Stroke
Work										
Govt_job	657	657	657	657	657	630	657	657	657	657
Never_worked	22	22	22	22	22	22	22	22	22	22
Private	2919	2919	2919	2919	2919	2806	2919	2919	2919	2919
Self-employed	818	818	818	818	818	774	818	818	818	818
children	687	687	687	687	687	671	687	687	687	687
dsfsdf	2	2	2	2	2	2	2	2	2	2
k□sdh-k	1	1	1	1	1	0	1	1	1	1
sdfsdf	3	3	3	3	3	3	3	3	3	3
sdsd-i	1	1	1	1	1	1	1	1	1	1

Variables Predictivas

Smoking, Residence, Work, Avg_glucose_level, Married, Hypertension, Heart Disease, Gender

Diferentes modelos para tratamientos de datos

Regresión Lineal con 2 variables numéricas-> R^2: 0,12

Regresión Lineal con todas las variables-> R^2: 0,03

R^2 Lasso: 0,24

R^2 Ridge: 0,25

Regresión con Árbol de Decisión -> R^2: -0,55

K nearest Neighbors-> R^2: 1

Tabla limpia

pertension	Heart Disease	Married	Avg_glucose_level	Bmi	Age	Stroke	Gender_Male	Residence_Urban	Formerly Smoked	Never Smoked	Smokes	Never Worked	Private Work	Self- Employed Work
0	0	0	55.12	21.8	21.0	0	0	0	0	1	0	0	1	0
0	0	0	55.25	20.4	20.0	0	1	1	0	1	0	0	1	0
0	0	0	55.34	15.3	10.0	0	1	1	0	0	0	1	0	0
0	0	0	55.35	22.7	5.0	0	0	1	0	0	0	1	0	0
0	0	0	55.39	23.2	13.0	0	1	0	0	0	0	1	0	0
1	1	1	246.53	27.2	59.0	0	1	0	1	0	0	0	1	0
1	1	1	247.51	40.5	68.0	1	0	1	1	0	0	0	1	0
1	1	1	250.89	28.1	81.0	1	1	1	0	0	1	0	1	0
1	1	1	254.63	31.0	67.0	0	1	0	0	1	0	0	1	0
1	1	1	271.74	31.1	68.0	1	1	0	0	0	1	0	1	0

Variables con mayor efecto

- 0.8

- 0.6

- 0.2

- 0.0

2. Unbalanced Dataset

Una base de datos no balanceada o unbalanced dataset se da cuando, en una base de datos, el número de observaciones de una clase es significativamente mayor que el de otras clases.

Problemas: El algoritmo puede tener un sesgo hacia las clases con mayores observaciones, ignorando a las que tienen un menor número. Además, puede generar overfitting ya que el algoritmo puede sobreajustar los datos de la clase con mayor número de observaciones.

2. Unbalanced Dataset

Soluciones durante el entrenamiento del algoritmo:

Undersampling: lo que quiere decir que se eliminan algunas observaciones de forma aleatoria de las clases mayoritarias para igualar al número de observaciones de las clases minoritarias.

Oversampling: es decir generar datos sintéticos aleatorios para la clase minoritaria. Una de las técnicas usadas para hacer esto es conocida como SMOTE (Synthetic Minority Over-sampling Technique) o K Nearest Neighbors, encontrando así observaciones cercanas para predecir una nueva observación.

3. Set de entrenamiento, validación y prueba

Set de entrenamiento: 60%

Set de Validación: 20%

Set de Prueba: 20%

Training (60%): (2040, 15)
Validation (20%): (2449, 15)

Test (20%): (613, 15)

Undersampling

4. Algoritmos y aplicando técnicas

Mean cross-validation score for OverSampled: 0.62 Mean cross-validation score for UnderSampled: 0.88 ENTONCES SE UTILIZA UNDERSAMPLED

Oversampling

5. Algoritmos y mejor técnica de entrenamiento

- Se utilizaron dos algoritmos:
- Random decision forests: Es un ensamble de varios árboles de decision concatenados
- Support Vector Machines: Este algoritmo no fue visto en clase. Se crea hiperplanos entre todas las clases y se busca maximizar la distancia entre los puntos más cercanos del hiperplano. Estos puntos se llaman vectores de soporte y el algoritmo escoge los vectores que mejor describen al modelo.

Random decision forest

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
#Se utiliza el modelo random forest classifier
model = RandomForestClassifier()
#Se entrena el modelo con nustros sets de entrenamiento
model.fit(X train, y train)
RandomForestClassifier()
y_pred = model.predict(X_test)
#Se muestran Los puntajes de presición, accuracy, Recall y F1 para el modelo
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Precision:", precision_score(y_test, y_pred))
print("Recall:", recall_score(y_test, y_pred))
print("F1 Score:", f1_score(y_test, y_pred))
```

Accuracy: 0.991

Precision: 0.983

Recall: 1.0

F1 Score: 0.991

Support Vector Machines

```
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
svm = SVC(kernel='linear', C=1, random state=42)
# Entrenar el modelo SVM
svm.fit(X_train, y_train)
# Se realizan Las predicciones
y pred = svm.predict(X test)
#Se muestran Los puntajes de presición, accuracy, Recall y F1 para el modelo
accuracy = accuracy score(y test, y pred)
precision = precision_score(y_test, y_pred)
recall = recall score(y test, y pred)
f1 = f1 score(y test, y pred)
print("Accuracy: {:.3f}".format(accuracy))
print("Precision: {:.3f}".format(precision))
print("Recall: {:.3f}".format(recall))
print("F1 Score: {:.3f}".format(f1))
```

Accuracy: 0.773

Precision: 0.752

Recall: 0.834

F1 Score: 0.791

Conclusiones

- En conclusión, por más que no se termine el proyecto, ya se tiene una mejor idea con la base de datos correctamente estructurada y analizada
- La limpieza de datos es una parte fundamental en la generación de un modelo adecuado.
- El método K nearest Neighbors es el que realiza una mejor predicción en comparación a la regresión lineal, logística y árbol de decisión para reemplazar valores atípicos.
- Aprendimos técnicas para balancear la base de datos, utilizando undersampling como el métodomas adecuado.
- Dentro de los dos modelos utilizados, el Random decision forest fue el que nos dio el mejor modelo

Referencias

- Badr, W. (2019). Having an Imbalanced Dataset? Here Is How You Can Fix It. Towards Data Science. Having an Imbalanced Dataset? Here Is How You Can Fix It. | by Will Badr | Towards Data Science
- AprendelA. (2019). Conjunto de datos desbalanceado. AprendelA. Conjunto de datos desbalanceado - Aprende IA
- Gutierrez-Garcia, J. O. (2021). Datos de Entrenamiento, Validación y Prueba: ¿Cómo crearlos y qué objetivos tienen? Machine Learning. YouTube. https://www.youtube.com/watch?v=vdYz m4xC7mc
- Cho, J. Lee, K. Et.al. (2016) How much data is needed to train a medical image deep learning system, to achieve necessary high accuracy