# AD A 0 9 4 8 4 7

AFWAL-TR-80-4093

# LEVEL 21



POLYMERIC MATERIAL TESTING PROCEDURES TO DETERMINE DAMPING PROPERTIES AND THE RESULTS OF SELECTED COMMERCIAL MATERIAL

Michael L. Drake Gary E. Terborg University of Dayton Research Institute 300 College Park Avenue Dayton, Ohio 45469

July 1980 TECHNICAL REPORT AFWAL-TR-80-4093 15 January 1976 - 31 December 1979



e del

Approved for public release; distribution unlimited.

FILE COPY

MATERIALS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

# Best Available Copy

#### NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

DR. D.I.G. JONES, Project Engineer Metals Behavior Branch

Metals and Ceramics Division

DR. J.P. HENDERSON, Acting Chief Metals Behavior Branch Metals and Ceramics Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/31 December 1980 - 500

| SECURITY CLASSIFICATION                                                | OF THIS PAGE (When Dute E                                                  | intered)                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 REPORT DOCUMENTATION PAGE                                           |                                                                            | READ INSTRUCTIONS BEFORE COMPLETING FORM                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AFWAL TR-80-4                                                          | , ,                                                                        | AD-A094                                                             | 3 RECIPIENT'S CATALOG NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DETERMINE DAM                                                          | ERIAL TESTING P<br>PING PROPERTIES<br>LECTED COMMERIC                      | AND THE                                                             | Technical 1-15-76 to 12-31-79 preparation of the property of t |
| Michael L. Dr<br>Gary E. Terbo                                         |                                                                            | 25                                                                  | F33615-76-C-5137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dayton, Ohio                                                           | Dayton Researc<br>Park Avenue<br>45469                                     | h Institute                                                         | 7351<br>06<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Aeronautical                                                           | NAME AND ADDRESS<br>Oratory, Air Fo<br>Laboratories, A<br>and, W-PAFB, Ohi | ir Force                                                            | July 1980  Number of Pages 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IA THONITORING AGENCY                                                  | NAME & ADDRESS II dillerani                                                | tron Controlling Office)                                            | Unclassified 10-1234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 16 . 1.                                                              | 71-34 / 1                                                                  | 11/1                                                                | 154. DECLASSIFICATION DOWNGHADING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17. DISTRIBUTION STATEM                                                | ENT (of the abstract entered in                                            | ) Block 20, if different from                                       | ı: Report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 18 SUPPLEMENTARY NOT                                                   | Ë S                                                                        |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Damping mater<br>beam, loss fa                                         | ctor, Loss Modu                                                            | Oberst Beam,<br>lus, Young's                                        | sandwich beam, bare<br>Modulus, complex modulus<br>nstrained layer, free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| This report of procedures us ly available University of fulfillment of | ed to determine<br>polymeric mater<br>Dayton Researc<br>of Air Force Con   | led discussion the damping lials. The worth Institute, tract Number | n of the methods and properties of commerial rk was done by the Dayton, Ohio, in partia (33615-76-C-5137 for the r Force Base, Ohio. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

SI CURITY CLASSIFICATION OF THIS CASE (When Dath Emered

DD 1 JAN 73 1473 EDITION OF THOU 65 IS OBSOLETE

20. through December 1979 under the general supervision of Mr. D. H. Whitford, Supervisor of the Aerospace Mechanics Division, and Mr. M. L. Drake, Principal Investigator, The tests were conducted primarily by Mr. G. F. Terborg and Mr. J. Graham.

All the data from the testing is contained in the Appendices which include the bare beam results, the coated beam results, and the temperature nomogram for each material tested.

· 有一种

#### PREFACE

This report contains a detailed discussion of the methods and procedures used to determine the damping properties of commerically available polymeric materials. The work was done by the University of Dayton Research Institute, Dayton, Ohio in partial fulfillment of Air Force Contract Number F33615-76-C-5137 for the Materials Laboratory, Wright-Patterson Air Force Base, Ohio. The project, task, and work unit numbers are 7351, 06, 88. The work described was conducted during the period January 1976 through December 1979 under the general supervision of Mr. D. H. Whitford, Supervisor of the Aerospace Mechanics Division, and Mr. M. L. Drake, Principal Investigator. The tests were conducted primarily by Mr. G. E. Terborg and Mr. J. Graham.

All the data from the testing is contained in the Appendices, which include the bare beam results, the coated beam results, and the temperature nomogram for each material tested.



# TABLE OF CONTENTS

| SECTION   |                      |                                         | PAGE |
|-----------|----------------------|-----------------------------------------|------|
| · · · -I  | FΙΝΨR                | ODUCTION                                | 1    |
| II        | VIBR                 | ATING BEAM TESTING TECHNIQUE            | 2    |
| -         | 2.1                  | Set Up the Test                         | 2    |
|           |                      | 2.1.1 Select Test Instruments           | 2    |
|           |                      | 2.1.2 Select Appropriate Specimen Beams | 5    |
|           |                      | 2.1.3 Review Solution Equations         | 5    |
|           |                      | 2.1.4 Review Specimen Beam Criteria     | 8    |
|           | 2.2                  | Prepare and Test Bare Beams             | 10   |
|           |                      | 2.2.1 Prepare Bare Beams                | 10   |
|           |                      | 2.2.2 Test Bare Beams                   | 12   |
|           | 2.3                  | Prepare Specimen Beams                  | 15   |
|           |                      | 2.3.1 Sandwich Beams                    | 15   |
|           |                      | 2.3.2 Free-Layer Beams                  | 23   |
|           | 2.4                  | Testing the Specimen Beams              | 23   |
|           |                      | 2.4.1 Carry Out Test Procedures         | 23   |
|           |                      | 2.4.2 Check Possible Sources of Error   | 26   |
| III       | PRESENTATION OF DATA |                                         | 34   |
| REFERENCI | ES                   |                                         | 37   |
| APPENDIX  | A                    | Bare Beam Test Data                     | 38   |
| APPENDIX  | В                    | Polymeric Materials Test Data           | 67   |

# LIST OF ILLUSTRATIONS

| FIGURE |                                                                                                             | PAGE                   |
|--------|-------------------------------------------------------------------------------------------------------------|------------------------|
| 1      | Block Diagram of the Beam Test Fixture                                                                      | 3                      |
| 2      | Vibrating Beam Test Specimen                                                                                | <del></del> . <b>4</b> |
| 3      | Sandwich Beam Specimen with Recommended Specimen Dimensions                                                 | 9                      |
| 4      | Step Block Orientation                                                                                      | . 11                   |
| . 5    | Test Fixture with Beam in Place                                                                             | 13                     |
| 6      | Response Spectra of a Bare Beam                                                                             | 14                     |
| 7      | Bare Beam Characteristic Modal Plot for Mode 3                                                              | 16                     |
| 8      | Position of Beam on Glass Plate During<br>Cleaning Procedure                                                | 18                     |
| 9      | Placement of Beam on Polymeric Material                                                                     | 19                     |
| 10     | Detailed Assembly Diagram of a Typical<br>Sandwich Beam                                                     | 20                     |
| 11     | Sandwich Beam Final Assembly Procedure                                                                      | 22                     |
| 12     | Response Spectra of a Coated Beam                                                                           | 24                     |
| 13     | Typical Graphs of $r_n$ , $f_n$ , and $f_{on}$ Versus Temperature                                           | 28                     |
| 14     | Typical Temperature Nomogram of Polymeric<br>Material Test Data                                             | 29                     |
| 15     | Curve Fit Parameters for Storage Modulus                                                                    | 31                     |
| 16     | Curve Fit Parameters for Loss Factor                                                                        | 33                     |
| 17     | Reduced Temperature Nomogram for Specific Damping Material with Hypothetical Acceptance Limits Superimposed | 35                     |

# LIST OF SYMBOLS

| A, B                       | nondimensional parameters                                                              |
|----------------------------|----------------------------------------------------------------------------------------|
| b                          | breadth of beam                                                                        |
| ,C,                        | parameter which defines the curvature of the damping peak                              |
| D                          | suffix denoting damping material                                                       |
| e                          | ${\rm E_{ m D}/F}$ ; the modulus ratio                                                 |
| $\mathrm{e}_{1}$           | Young's Modulus of beam material                                                       |
| ED                         | real part of complex Young's Modulus of damping material                               |
| Ε̈́D                       | material storage modulus                                                               |
| £                          | frequency (Hertz)                                                                      |
| fon                        | nth natural frequency of bare beam                                                     |
| f cn                       | nth resonant frequency of coated beam                                                  |
| $f_{\overline{1}_{1}}$     | lower half-power bandwidth frequency                                                   |
| f <sub>R</sub>             | higher half-power bandwidth frequency                                                  |
| froi                       | reduced frequency value of the damping beak                                            |
| from                       | reduced frequency value of inlfection point                                            |
| $\mathfrak{t}_{_{\Gamma}}$ | reduced frequency                                                                      |
| Δf =                       | f <sub>R</sub> - f <sub>I</sub> , total half-power bandwidth                           |
| $G^{\mathbb{D}}$           | real part of complex shear modulus of damping material                                 |
| h                          | thickness of beam                                                                      |
| $^{ m h}_{ m D}$           | thickness of polymeric material                                                        |
| $^{ m h}_{ m r}$           | thickness of root                                                                      |
| Ľ                          | length of beam                                                                         |
| M                          | Young's Modulus value of the lower horizontal assymptope                               |
| Mrom                       | the inflection point of the storage modulus curve as read on the Young's Modulus scale |
| N                          | slope of the curve at the inflection point                                             |
| s <sub>h</sub>             | <pre>slope of the assymptotic line for high values of reduced frequency</pre>          |
| $S_{\hat{\chi}_0}$         | slope of assymptotic line for low values of reduced frequency                          |
| n = 1                      | h thickness ratio (also mode number)                                                   |

THE PERSONNEL PROPERTY OF THE PERSONNEL PROP

# LIST OF SYMBOLS (Concluded)

And the second s

| Τ'                     | temperature                                              |
|------------------------|----------------------------------------------------------|
| T                      | reference temperature                                    |
| TO 2°                  | nondimensional parameter                                 |
| û <sub>m</sub>         | temperature shift factor                                 |
| T                      | loss factor                                              |
| T, t                   | shear loss factor                                        |
| nfro%                  | loss factor value of the damping peak                    |
| r'n                    | loss factor of beam specimen in the n <sup>th</sup> mode |
| $\eta_{\mathrm{D}}$    | extensional loss factor of damping material              |
| £                      | length of beam root                                      |
| $\lambda_{\mathbf{n}}$ | wayelength of nth beam mode                              |
| n                      | n <sup>th</sup> eigen value for beam                     |
| P <sub>n</sub>         | density of beam; also density in general                 |
| ρ <sub>1</sub>         | density of damping material                              |
| <sup>ra</sup> D        | circular frequency                                       |
| 1,3                    | n <sup>th</sup> circular frequency of coated beam        |
| $\omega_{\mathbf{n}}$  | n <sup>th</sup> circular frequency of bare beam          |

#### SECTION I

#### INTRODUCTION

Vibratory energy is a source of acoustic and resonant fatique failures in aerospace structures. The problem of how to dissipate this energy has long been an important consideration in aircraft design. It is well known that polymeric materials with high loss factors, when used in the form of a coating or in a constrained-layer damping treatment, can considerably reduce resonant vibration problems [1, 2]. This report describes the vibrating beam testing technique used by the University of Dayton Research Institute (UDRI) to determine the damping properties of commercially available materials. Accurate determination of these properties is an essential first step in using damping technology to control aircraft design problems.

This report has two main purposes. First the report explains the vibrating beam test technique. This step-by-step explanation (which appears as Section II) includes test instrumentation and set-up, specimen criteria, specimen preparation, and data collection procedures. Second, the report records the results of tests on twenty-eight polymeric materials. Section III of this report introduces these results. The data are included in the Appendices.

#### SECTION II

#### VIBRATING BEAM TESTING TECHNIQUE

The following information is a step-by-step explanation of how to set up and conduct vibrating beam tests.

#### 2.1 SET UP THE TEST

## 2.1.1 Select Test Instruments

The instruments used in a typical UDRI vibrating beam test are shown in Figure 1. This set-up can be used to test four types of specimen beams: uniform; "Oberst;" "modified Oberst;" and, sandwich. Each of these beams is shown in Figure 2.

A continuous sine sweep oscillator is used to excite an Electro 3030HTB transducer (manufactured by Electro Corporation, Sarasota, Florida). The transducer excites the specimen beam. Responses are picked up by an Endevco B22 miniature accelerometer (manufactured by Endevco Corporation, San Juan Capistrano, California). An oscilloscope is used to monitor both excitation and response wave forms during the tests.

The UDRI test set-up incorporates an x-y plotter, used to plot response spectra (raphs comprised of transverse acceleration versus frequency and to note resonant frequencies  $(f_n)$  and half-power bandwidths  $(M_n)$  for selected temperatures. These measurements are used to calculate the complex Young's modulus  $E_D$   $(1 + i n_D)$  for an applied layer of damping material, or the shear modulus  $G_D$   $(1 + i n_D)$  for damping material in the core of a sandwich beam. The measurements must be taken carefully because small errors in measured quantitities can lead to very large errors in the calculated values of  $G_D$  and  $n_D$  or  $E_D$  and  $n_D$ .

Advantages of this test set-up method include: (a) the system is reasonably simple to use; (b) errors can be assessed and kept within limits; (c) a single specimen can be used to cover a wide band of frequencies and temperatures. A disadvantage of this method is that only low strain level data can be obtained.



Figure 1. Block Diagram of the Boam Test Fixture,

والمهون الباري أرمل المؤلف المارية المراق المؤلوسين أيا والمؤلف المؤلف المرايد المرايد المرايد المارية المؤلف المؤلف المؤلف المؤلف المؤلف المؤلف المؤلف المؤلفة المؤلف

and a strong on a lateral list.



Figure 2. Vibrating Beam Test Specimens.

# 2.1.2 Select Appropriate Specimen Beams

Selecting the appropriate specimen beam for testing a particular material depends on the following criteria:

- (a) The uniform beam is used for stiff materials, such as epoxies and plastics, which are self-supporting at ordinary temperatures, that is, have Young's moduli  $E_{\rm D}$  greater than  $10^6$  psi  $(6.89 \times 10^9 \ N/m^2)$ .
- (b) The "Oberst" (nonsymmetrical) or modified Oberst (symmetric) beams are used for materials in which  $|E_D|$  is between  $10^4$   $1b/in^2$   $(6.89 \times 10^7 \ N/m^2)$  and  $10^6$   $1b/in^2$   $(6.89 \times 10^9 \ N/m^2)$ . As  $E_D$  falls toward the lower limit,  $h_D/h$  for these beams can increase.
- (c) The symmetric sandwich beam is used for materials in which  $|E_{\rm D}|$  is between 10 lb/in² (6.89  $\times$  10% N/m²) and 10% lb/in² (6.89  $\times$  10% N/m²). Since the sandwich beam relies on shear of the damping material between two supporting beams, it yields better results for this range of values of  $E_{\rm D}$ .

# 2.1.3 Review Solution Equations

The following equations are used to calculate the value of  $\mathbf{E}_{\mathrm{D}}$  or  $\mathbf{G}_{\mathrm{D}}$  for various materials, according to the specimen beam used:

(a) For an "Oberst" beam (with damping material coated on only one side of the beam), the complex Young's modulus is derived from formulae developed originally by Oberst [3]. These are:

$$z^{2} = 1 + \left[\frac{\rho_{D}h_{D}}{\rho_{h}}\right] \left[\frac{f_{n}}{f_{on}}\right]^{2} = \frac{1 + 2ne(2 + 3n + 2n^{2}) + e^{2}n^{4}}{1 + ne}$$
 (1)

$$\frac{\eta_{n}}{\eta_{D}} = \left[ \frac{3 + 6n + 4n^{2} + 2en^{3} + e^{7}n^{4}}{1 + 2e^{7}n^{4} + 2e^{7}n^{4}} \right]$$
(2)

where  $e = E_D/E$  and  $n = h_D/h$ . In these formulae,  $Z^2$  is calculated from the measured resonance frequency  $(f_n)$  of the  $n^{th}$  mode of the damped beam and the measured frequency  $(f_{on})$  of the undamped beam;

e is then deduced from equation (1) and  $n_D$  is calculated from equation (2), this value of e, and the measured value of the modal damping  $n_D$ . In fact, after some algebraic manipulation, the following equation for e in terms of  $\mathbb{Z}^2$  and n can be derived:

$$e = \left[ -(4 + 6n + 4n^2 - 2^2)n + \sqrt{(4 + 6n + 4n^2 - 2^2)^2n^2 + 4n^4(2^2 - 1)} \right] / 2n^6.$$

These equations give reasonably accurate results provided that  $Z^2 - 1 \ge 0.1$ . If  $Z^2 < 1.0$ , the error in e resulting from an error in  $Z^2$  becomes prohibitively high.

(b) For a "modified Oberst" beam (with damping material coated symmetrically on both sides of the beam) the complex Young's modulus is derived from formulae (2):

$$E_D = E(Z^2 - 1) / [en^3 + 12n^2 + 6n]$$
 (3)

$$\eta_{D} = \eta_{D} Z^{2} / (Z^{2} - 1)$$
 (4)

where

$$z^2 = (1 + 2\rho_D n/\rho) (f_n/f_{on})^2$$
.

Again, the equations give reasonably accurate results whenever  $z^2 - 1 \le 0.1$ .

(c) For the symmetrical sandwich beam, calculation of values of the shear modulus  $(G_D)$  and the loss factor  $(n_h)$  for the damping material is based on a set of equations developed by Ross, Kerwin, and Ungar  $\{4\}$ . In current notation the now classical equations are:

$$(EI)_{e}^{*} = \frac{Eh^{3}}{6} + Eh(h + h_{D})^{2} - \frac{g^{*}}{1 + 2g^{*}}$$
 (5)

when (EI) $_{\rm e}^{\star}$  is the equivalent complex flexural rigidity of the three-layer sandwich ['(EI) $_3$  (1 + in $_n$ )] and g\* is the shear parameter given by:

$$g^* = \frac{G_D^* L^2}{Ehh_D G_D^2}$$
 (6)

Equations (5) and (6) may be solved to give simple algebraic equations for  $G_D$  and  $\pi_D^*$ , namely:

$$G_{D} = \frac{[(A-B) - 2(A-B)^{2} - 2(A\eta_{n})^{2}][Ehh_{D}\xi_{n}^{2}/L^{2}]}{(1 - 2\Lambda + 2B)^{2} + 4(\Lambda\eta_{n})^{2}}$$
(7)

$$\eta_D^+ = A_n / [A - B - 2(A - B)^2 - 2(A\eta_D)^2],$$
 (8)

where

$$\lambda = (\ell_{n}/f_{on})^{2} (2 + \ell_{D}h_{D}/eh) \quad (B/2),$$
 (9)

and

$$B = 1/6(1 + h_D/h)^2. (10)$$

For most polymeric materials in the rubbery and transition regions,  $E_D \sim 3G_D$  and  $\eta_D \sim \eta_D^*$  [5].

For tests covered by this report, the first seven eigen values of the system are given by:

$$\xi_1^2 = 3.515$$

$$\xi_2^2 = 22.0345$$

$$\xi_3^2 = 61.6970$$

$$\xi_4^2 = 120.902$$

$$\xi_5^2 = 199.866$$

$$\xi_6^2 = 298.560$$

$$\xi_7^2 = 416.990$$
(11)

The eigen values define the relationship between the resonant frequencies of the uncoated individual beams and the modulus E by the classical relationship

$$e^{h\omega_{\text{on}}^2} L^h/(Eh^3/12) = E_n^h$$
 (12)

# 2.1.4 Review Specimen Beam Criteria

To obtain satisfactory test results, specimen beams must be prepared carefully. Paying careful attention to specimen dimensions helps avoid machining difficulties and helps to insure accurate test results. Figure 3 shows a typical bare beam, with appropriate dimensions indicated.

Recommended materials for specimen beams depend on the test temperatures. For low temperature tests (below 300°F or 149°C), aluminum or steel beams can be used. It is important to note that if a stiffer beam is used, clamping conditions become more critical.

For high temperature tests (up to 2,000°F or 1,093°C), steel or superalloy beams must be used.

Recommended beam dimensions are as follows:

Length of beam L = 7 in + 0.002 in (177.8 mm + 0.5 mm)

Length of beam root  $\ell = 1.125 \text{ in} + 1/64 \text{ in} (28.58 \text{ mm} + 0.40 \text{ mm})$ 

Thickness of beam  $h \ge 0.05$  in;  $h \le 0.08$  in; h + 0.0005 in

(1.778 mm + 0.018 mm)

Thickness of root  $h_r = 0.25 \text{ in } \cdot 0.005 \text{ in } (6.35 \text{ mm} \cdot 0.12 \text{ mm})$ 

Breadth of beam  $b = 0.45 \text{ in} \pm 0.001 \text{ in } (11.43 \text{ mm} \pm 0.03 \text{ mm})$ 

Thickness of damping material layer  $h_{D} > 0.004$  in (0.127 mm)

Tolerances are as stated. In sandwich beams, two dimensions are particularly important. The tolerances for the beam thickness (h) and the thickness of the damping material (h $_{\rm D}$ ) should be carefully noted.

For sandwich beams, the thickness (h) should not be less than 0.05-inch (1.27 mm). Less thickness is likely to cause machining difficulties, and reduces the likelihood of well-matched beam pairs. For effective sandwich beam tests, the two beams that form the matched pair must have resonant frequencies ( $f_{\rm en}$ ) that match within (1.0 percent. Even small differences in thickness can lead to large differences in resonant frequency. For example, if a hypothetical Beam 1 had thickness  $h_1 = 0.070{\rm -inch} + 0.0005$ ,



Sandwich Beam Specimen with Recommended Specimen Dimensions. Figure 3.

and a hypothetical Beam 2 had thickness  $h_2 = 0.070$ -inch - 0.0005, the  $n^{\mbox{th}}$  resonant frequency of each beam would differ by the ratio:

$$\frac{0.070 + 0.0005}{0.070 - 0.0005} = \frac{0.0705}{0.0695} = 1.0144$$

which represents a difference of over 1.4 percent. At a hypothetical frequency  $f_n=1,000~{\rm Hz}$ , the difference in this case could be as high as 14 Hz, which is unacceptable. Therefore, tolerances for each pair of beams must fall within the above stated limits at all points along each beam in the pair. Beams must be matched in pairs as they are made, and a vibration test must be used to verify this matching.

The thickness of the damping material  $(h_{\rm D})$  should not be less than 0.004-inch (0.127 mm). Preferably the damping material should be thicker; otherwise, it is difficult to control the dimensions of the composite specimen beam.

#### 2.2 PRUPARE AND TEST BARE BEAMS

### 2.2.1 Prepare Bare Beams

- (a) Collect the batch of beams to be tested. It is best to test all beams in a particular machine shop batch (that is, beams of equal geometric dimensions and metallurgical composition) together, and to plot data from these tests on the same set of graphs. This makes it easier to select matched pairs of beams for sandwich beam specimens.
- (b) Glue a rectangular step block to the bottom of the bare beam as shown in Figure 4. The step block should be made of the same metal as the bare beam. The step block should be the same width as the bare beam and the same length as the root of the bare beam.

Mount the step block on the flat side of the beam, directly above the step joint. The front surface of the step block must be in the same plane with the step joint, with the sides of the step block straight and parallel to the beam.



Figure 4. Step Block Orientation.

The glue used for all phases of the vibrating beam test should be a good, quick-drying cyanoacrylate epoxy, such as Loctite 404. This glue is effective for tests at temperatures ranging from -50°F to +225°F (-46°C to +108°C). For testing at greater temperature ranges a higher temperature glue should be used, such as Loctite 306.

- (c) Glue the magnetic drive disk to the beam. When non-magnetic beams are used, the high  $\mu$  excitation disk is mounted near the root end of the beam to minimize the effect of mass loading on the beam being tested. The excitation disk mass is more than the accelerometer mass. Place the drive disk approximately 1.25-inch (3.175 cm) from the beam root. This step is not necessary if the test beam is made of a magnetic material which will maintain its magnetic properties over the temperature range of the test.
- (d) Glue the accelerometer to the beam. Place the accelerometer approximately 0.125-inch (0.3175 cm) from the free end of the beam.
- (e) Place thermocouple in root of the beam or on the base plate of the fixture. Either location is acceptable.
- (f) Place the bare beam in the test fixture as shown in Figure 5. Make sure the front surface of the step joint or root is clamped securely within the test fixture, and does not protrude out of the fixture. Make sure the beam is perpendicular to the front edge of the clamping block.
- (g) Check the system operation by taking frequency sweep and noting locations of resonant frequecies of the specimen beam. Figure 6 shows typical response spectra. For good results, each peak should be distinct, and should rise above the "background" by 10 db or more. If the "rising" is less than 10 db, it may be difficult to obtain satisfactory test data from a given mode.

### 2.2.2 Test Bare Beams

(a) Take frequency scans between 10 Hz and 10 KHz. Test at temperature ranging from  $-100\,^{\circ}\mathrm{F}$  to  $+300\,^{\circ}\mathrm{F}$  ( $-73\,^{\circ}\mathrm{C}$  to  $+150\,^{\circ}\mathrm{C}$ ). Take temperatures at intervals of  $50\,^{\circ}\mathrm{F}$  ( $28\,^{\circ}\mathrm{C}$ ).



Figure 5. Test Fixture with Beam in Place.



Figure 6. Pesponse Spectra of a Bare Beam.

Action for a first transfer and formal control of the formal contr

1 1 1

- (b) Note resonant frequencies for each mode. If any interference modes, i.e., peaks in the response curve caused by 60 cycle noise, external excitation, or instrumentation noise, appear on the graph, verify the true resonance of the beam by comparing the respective frequency ratios to the respective ratios of the eigen values.
- (c) Plot the modal data points. First divide the center frequencies of each mode (f  $_{on}$ ) by their respective eigen values ( $\Lambda_n$ ). Then plot the result versus temperature for each mode.
- (d) Draw a line through all plotted data points. This helps determine frequencies for other unmeasured temperatures.

If sandwich beams are to be prepared, continue with the following steps:

- (e) Select matched pairs of beams. Two beams whose characteristic curves lie very close together may be considered a matched pair. Figure 7 shows typical data for a matched pair of beams.
- (f) Calculate the average natural frequency for the sandwich beam pair (refer to Figure 7). First draw an "average line" between the plots of the beams in the matched pair. Then read a value from this line, at a given temperature, and multiply this value by the respective eigen value. The result is the average natural frequency  $(f_n)$  for the sandwich beam.

#### 2.3 PREPARE SPECIMEN BEAMS

# 2.3.1 Sandwich Beams

During all phases of beam preparation, make sure the beam dimensions are not distorted and make sure the beam surface stays clean and free of any contamination.

- (a) Select a matched pair of beams using the process described above.
  - (b) Remove the step blocks from both the beams,

Bare Ream Characteristic Modal Plot for Mode 3. Figure 7.

the control of the co

The factor of the control of the con

. Hilled

and remove all adhesive from the beam root. Carefully scrape off the adhesive with the edge of a razor knife.

- (c) Place the beams on a solid flat surface (a glass cleaning plate) as shown in Figure 8. Place the step joint over the edge of the cleaning plate to prevent the beam from bending and distorting during cleaning.
- (d) Thoroughly clean both beams. Use a degreaser such as methanol, and an abrasive cloth such as Scotchbrite. Remove any surface oxidation and contamination. Then wipe the beams with a degreaser and a lint-free laboratory tissue. Continue wiping until the tissue shows no discoloration. Avoid contaminating the clean surfaces.
- (e) Apply the polymeric material to one of the beams. Do this immediately after cleaning the beam to assure good adhesion. During this process make sure all air bubbles are removed from the material.
- (1) Place the polymeric material on the glass cleaning plate. Then lay the beam down onto the material (see Figure 9). This process usually eliminates any entrapped air.
- (2) Press the material on solidly with a rubber roller. If any air pockets are visible, use a sharp pointed object to break the bubbles, and then use the roller to work the air out. Use a razor knife to trim any excess material from around the beam.
- Use a razor knife and a straight edge to make sure the polymeric material is cut off on a line directly above the front edge of the step joint. If any material extends into the beam root, remove it and clean the root area thoroughly. Figure 10 is a detailed assembly diagram of a typical sandwich beam.
- (f) Measure the polymeric material layer. If the layer is not thick enough, add material. (The thickness should be greater than 0.004-inch or 0.127 mm). To add material it is easiest to stack one layer on top of another on the same beam. It is also possible to adhere material to each beam in the matched pair.



Position of Seam on Glass Plate During Cleaning Procedure. Figure 8.



Figure 9. Placement of Beam on Polymeric Material.



Detailed Assembly Diagram of a Typical Sandwich Beam. Figure 10.

Either method is acceptable as long as the resulting sandwich beam has an even layer of material that is free of air bubbles.

- (g) Glue a metal spacer to the beam root as shown in Figure 10. The spacer must be the same thickness as the layer of material. The material should adhere to the leading edge of the spacer.
- (h) Finish the sandwich beam assembly as shown in Figure 11.
  - (1) Place both beams on a glass plate.
  - (2) Peel the top layer of release papaer off the material.
  - (3) Spread a thin layer of glue on the exposed side of the spacer.
  - (4) Place both beams on their sides.
  - (5) Hold the beams by the step roots.
  - (6) Place the free ends of the beams against a heavy square metal block.
  - (7) Bring the free ends of the beams together, so the beams form a "V" with the free ends at the point of the "V".
  - (8) Carefully close the "V", bringing the step roots of the beams towards each other so the beams come together with sides in parallel.
- (i) Glue the magnetic drive disk to the completed sandwich beam. If the beams are non-magnetic in the temperature range of the material test, place the drive disk approximately 1.25-inch (3.2 cm) from the beam root (see Figure 5).
- (j) Glue the accelerometer to the completed sandwich beam. Place the accelerometer approximately 0.125-inch (32 mm) from the free end of the beam (see Figure 5).
- (k) Place the thermocouple in the root of the beam. If temperature measurements are made in this fashion, it is acceptable to have a thermocouple attached to the base plate.



Figure 11. Sandwich Beam Final Assembly Procedure.

# 2.3.2 Free-Layer Beams

Prepare free-layer specimen beams using the procedure described previously, with these exceptions:

- (a) Do not remove the step block.
- (b) For an "Oberst" beam, adhere the polymeric material layer to the bottom of the beam (see Figure 2). Glue the drive disk and the accelerometer to the top of the beam.
- (c) For a "modified Oberst" beam, adhere the drive disk and the accelerometer directly to the top layer of material.

### 2.4 TESTING THE SPECIMEN BEAMS

Both "digital" and "analog" systems can be used to generate and handle data from vibrating beam tests. The tests reported here used the analog technique. The advantage of a digital system is that test results can be fed directly into a computer, and necessary mathematical operations can be performed at the time of the vibrating beam test.

# 2.4.1 Carry Out Test Procedures

- (a) Place the specimen beam in the test fixture. Use the same process as was used for bare beam testing (see Section 2.2.1).
- (b) Check the system operation by taking a frequency sweep and noting locations of resonant frequencies of the specimen beam. Figure 12 shows typical response spectra. For good results, each peak should be distinct and should rise above the "background" by 10 db or more. If the "rising" is less than 10 db, it may be difficult to obtain satisfactory test data from a given mode. This is especially true if the peak is highly "unsymmetrical." If "bad" points appear, attempt the following remedies:
  - (1) Integrate the acceleration signal electronically. This procedure has the effect of looking at "velocity" instead of "accelerometer."
  - (2) Try another pickup position on the beam.



SHE SALES AND BE BELLE SHE LEADER AND THE MENT OF LEADING AND SHEET SHEE

Figure 12. Response Spectra of a Coated Beam.

(3) Try another thickness of damping material (generally smaller).

AND THE PROPERTY OF THE PROPER

(4) Try filtering the output signal. Use this procedure very carefully, to avoid obscuring a problem.

If no remedy is successful, the test data must be rejected.

(c) Conduct the tests. Measure the resonant frequency ( $f_c$ ) and the half-power bandwidths [ $f_L$  (-3 db) and  $f_R$  (+3 db)] of modes 2, 3, 4, 5, 6, and 7. Measure frequencies to the second decimal point, and to a precision of +0.1 Hz. Observe at least two sample periods of the counter before writing down the frequency.

Conduct the tests in an ordered sequence of selected temperatures. Measure temperatures by using a thermocouple embedded in the root of the specimen beam, or in the base plate of the test fixture as described previously.

Begin testing at room temperature. Take measurements at test points above room temperature at intervals of 25°F (13.8°C). Continue until the composite loss factor for the majority of modes is below 0.02. For each test point monitor temperature until thermal equilibrium is reached; that is, until two successive temperature readings taken at one-minute intervals are within ± 2°F of each other. After reaching thermal equilibrium, allow a fifteenminute thermal soak before taking dynamic data.

If necessary (to test the maximum damping temperature), cool the specimen beam below room temperature. Continue measurements at decreasing temperatures until the loss factor drops below 0.02.

Use an oscilloscope to monitor the excitation and response waveforms. If a non-sinusoidal shape appears, reject the point and check the system. Response spectra should resemble the examples in Figure 12. Note any spurious peaks caused by stray voltages (usually multiples of 60 Hz) or by fixture resonances.

# 2.4.2 Check Possible Sources of Error

For vibrating beam testing, as for any measurement technique, errors can arise from several sources. Errors in the measured complex moduli of the polymeric material may be the result of:

- (a) Errors in specimen preparation, such as poor adhesion, voids (air bubbles), joint damping in clamping fixture, or non-uniform thicknesses.
- (b) Errors in temperature control. The thermocouple may not indicate the specimen temperature accurately because of thermal lag (insufficient time for reaching thermal equilibrium) or because of non-uniform temperature distribution within the specimen.
- (c) Errors in measuring resonant frequencies, as a result of too high frequency sweep rate, mechanical relaxation of the specimen, or low level signals (hence the need to always monitor "input" and "output").
- (d) Errors in measuring modal damping. Problems could include closely spaced modes, extraneous damping sources (such as damping in the clamp), or incorrect interpretation of non-linear response as apparent increased damping.
- (e) Error magnification, because of unstable regions in the equations. For example, in "Oberst" equations (1) and (2), and "modified Oberst" equations (3) and (4), the term  $(2^2-1)^{-1}$  acts to magnify errors in  $\frac{1}{6}$  or E. As  $2^2 + 1$ , this factor becomes infinite.

While conducting vibrating beam tests it is important to constantly be aware of these and other possible sources of erroneous data, and to apply every possible precaution while obtaining, interpreting, and utilizing the data.

# 2.4.3 Compile Test Data

For any beam specimen, each test "point" consists of a set of simultaneously measured values of temperature, mode, resonant frequency, and modal damping. The complete set of data

points for each test includes these measured values for the undamped beams and for the damped specimen beams. The raw test data for each damping material evaluated include the values of temperature, damped resonant frequency ( $f_c$ ), the half-power frequency ( $f_L$  and  $f_R$ ), bandwidth ( $f_R$ ), and the modal loss factor ( $f_R$ ). Appendix B contains examples of raw test data for each material tested.

It is important to evaluate the validity of raw test data being generated by a particular vibrating beam test. Such evaluation may indicate problems in a test system that need to be pinpointed and solved before too much effort is invested in the test. One way to evaluate the raw test data is to examine the plot of  $\eta_n$ ,  $f_n$ , and  $f_{on}$  versus temperature. This plot may be generated manually as shown in Figure 13, or automatically as part of the test system [6, 7]. In either case, subjective evaluation of the test data at this point is an important step in the testing process.

The valid raw data can now be used in conjunction with the appropriate set of equations to produce a set of material properties for the specific temperatures and frequencies measured during the beam tests.

The final result of damping material analysis is a temperature nomogram, which expands the limited number of test results to a graph from which the designer can obtain the damping material's properties (modulus and loss factor) at any given combination of temperature and frequency. Appendix B contains temperature nomograms generated by the computer system used for UDBI vibrating beam tests.

The development of temperature nomograms is discussed in reference [10]. The computer program used by UDRI to generate nomograms is discussed in reference [7].

Figure 14 is a temperature nomogram with some grid lines removed. This nomogram can be read more easily. The procedure for reading this nomogram is as follows:



Figure 13. Typical Graphs of  $r_n$ ,  $t_n$ , and  $f_{on}$ 



"Tpical Temperature Nomedram of Polymeric Material Test Data. Finare 14

Select a combination of temperature and frequency, for example 200 Hz and 59°F (15°C). Find the point for 200 Hz on the right-hand axis. Follow the point horizontally to the line for 59°F (15°C) temperature. At this intersection, draw a vertical line. Then read the modulus and loss factor values off the appropriate graph, at the point of intersection with the vertical line. In this example, modulus G (200 Hz, 59°F or 15°C) = 140 psi and loss factor n (200 Hz, 59°F or 15°C) = 0.89. This nomogram also shows a second example for the combination 40 Hz and 109°F (42.8°C). In this example, modulus G (40 Hz, 109°F or 42.8°C) = 20 psi and loss factor n (40 Hz, 109°F or 42.8°C) = 0.69.

Figure 15 illustrates another application of temperature nomograms - specifying tolerances for purchased polymeric materials. This nomogram has hypothetical acceptance limits superimposed. Details of this use of nomograms are discussed in reference [9].

It can easily be seen from the nomographs that the data in this format is amenable to the development of analytical equations which would represent the data. The equations used to fit the material properties are those suggested by Rogers in reference [6].

The ability to represent the dynamic material properties in equation form greatly facilitates the use of this data in analytical structural design. A short discussion of the equations and parameters used in the curve fitting routine follows. More detailed information can be obtained in references [6] and [7].

The curve fits to the data on the nomographs were calculated by the computer program mentioned previously in this Section. The basic form for these equations are as follows:

Storage Modulus

$$\log_{10}(E_D^1) = \log 10(M_{\hat{x}}) + \frac{2 \log_{10}(\frac{M_{rom}}{M_{\hat{x}}})}{1 + (\frac{f_{rom}}{f_r})^N}$$
 (13)

where:

 $\mathbf{E}_{D}^{+}$  is the material storage modulus:

f<sub>r</sub> is the reduced frequency;

 ${
m M}_{
m rom}$  is the inflection point of the storage modulus curve as read on the Young's Modulus scale;

 $F_{\text{rom}}$  is the reduced frequency value of this inflection point;

N is the slope of the curve at the inflection point;  $\mathbf{M}_{\xi}$  is the Young's Modulus value of the lower horizontal asymptope of this curve.

Figure 15 illustrates the curve fit parameters  $\rm M_{rom},$   $\rm f_{rom},$  N, and  $\rm M_{\rm L}.$ 



Figure 15. Curve Fit Parameters for Storage Modulus.

Loss Factor

$$\log_{10}(\eta) = \log_{10}(\eta_{\text{frol}}) + \frac{C}{2} \left[ \left( \frac{S_{\ell} + S_{h}}{C} \right) \log_{10} \left( \frac{f_{\ell}}{f_{\text{rol}}} \right) + (S_{\ell} + S_{h}) \right]$$

$$\left( 1 - \sqrt{1 + \left( \frac{\log_{10}\left(\frac{f_{rol}}{f_{\text{rol}}}\right)}{C} \right)^{2}} \right)$$
(14)

where:

η is the loss factor;

 $f_r$  is the reduced frequency;

 $n_{\rm frot}$  is the loss factor value of the damping peak;  $f_{\rm rot}$  is the reduced frequency value of the damping peak;

 $\mathbf{S}_{\hat{k}}$  is the slope of asymptotic line for low values of reduced frequency;

 $\boldsymbol{S}_{h}$  is the slope of asymptotic line for high values of reduced frequency;

C is a parameter which defines the curvature of the damping peak.

Figure 16 illustrates curve fit parameters  $\gamma_{\text{frol}}$  ,  $f_{\text{rol}}$  ,  $S_{\xi}$  ,  $S_{h}$  , and C.



Figure 16. Curve Fit Parameters for Loss Factor.

The curve fit equations for each material tested are included in the materials damping properties evaluation in  $\ensuremath{\mathtt{Appendix}}\ B.$ 

### SECTION III

### PRESENTATION OF DATA

The raw test data from the bare beam characterization tests are presented in Appendix A. This data consists of the natural frequency ( $f_n$ ) for modes two through seven at each temperature the beam was tested at, and the value of this frequency divided by its respective Eigen value ( $f_n/\xi_n$ ). Each set of this bare beam data is plotted in a similar manner as Figure 17. From this graphical form of the data, matched pairs of beams are selected. This form of data is also used to obtain the natural frequencies of the beams at temperatures other than the test temperatures.

All of the polymeric materials that have been tested by UDRI are listed in Table 1. The raw and reduced data from these tests are presented in Appendix B in this order:

- (a) The geometric parameters of the beam and material, the temperature and frequency test range, the peak and range values of the loss factor, the computer file index numbers, the equations for the material's characteristic curve;
- (b) The raw test data;
- (c) The reduced test data;
- (d) The reduced temperature nomogram.



Reduced Temperature Nomouram for Specific Damping Material with Hypothetical Acceptance Limits Superimposed. Firure 17.

## TABLE 1. POLYMERIC MATERIALS AND MANUFACTURERS

| Material           | Manufacturer                       |  |  |
|--------------------|------------------------------------|--|--|
| Exodamp C-2003     | E. A. R. Corporation               |  |  |
| Isodamp C-1002     | E. A. R. Corporation               |  |  |
| MacBond IB1120     | MacBond (Morgan Adhesives Company) |  |  |
| MacBond IB1160     | MacBond (Morgan Adhesives Company) |  |  |
| MacBond IB1200     | MacBond (Morgan Adhesives Company) |  |  |
| MacBond 1B1220     | MacBond (Morgan Adhesives Company) |  |  |
| MacBond IB1248     | MacBond (Morgan Adhesives Company) |  |  |
| MacBond IB1320     | MacBond (Morgan Adhesives Company) |  |  |
| MacBond IB1400     | MacBond (Morgan Adhesives Company) |  |  |
| MacBond IB1401     | MacBond (Morgan Adhesives Company) |  |  |
| MacBond IB1622     | MacBond (Morgan Adhesives Company) |  |  |
| MacBond 1B2101     | MacBend (Morgan Adhesives Company) |  |  |
| MacBond IB2107     | MacBond (Morgan Adhesives Company) |  |  |
| MacBond IB2130     | MacBond (Morgan Adhesives Company) |  |  |
| Soundcoat D        | Soundcoat Company                  |  |  |
| Soundcoat M        | Soundcoat Company                  |  |  |
| Soundcoat N        | Soundcoat Company                  |  |  |
| Soundcoat R        | Soundcoat Company                  |  |  |
| Soundcoat Diad 601 | Soundcoat Company                  |  |  |
| Soundgoat Diad 606 | Soundcoat Company                  |  |  |
| Soundcoat Diad 609 | Soundcoat Company                  |  |  |
| Soundfoil LT12     | Soundcoat Company                  |  |  |
| 1SD 110            | 3M Company                         |  |  |
| 1SD 112            | 3M Company                         |  |  |
| ISD 113            | 3M Company                         |  |  |
| ISD 113M           | 3M Company                         |  |  |
| 180 330            | 3M Company                         |  |  |
| Enjay Butyl        | UDRI                               |  |  |

### REFERENCES

- Oberst, H., "Reduction of Noise by the Use of Damping Materials," Royal Aero. Soc., Vol. 263, pp. 441 - 453, 1968.
- 2. Nashif, A. D., "A New Method for Determining the Damping Properties of Viscoelastic Materials," Shock and Vibration Bulletin 36, pp. 37 47, 1967.
- 3. Oberst, H., "Uber die Dampfung Biegeschwingungen Dumner Bleche Durch fest Haftende Belage," Aucstics (Akustische Beihefte) 4, pp. 181 194, 1952.
- 4. Ross, D., Ungar, E. E., and Kerwin, Jr., E. M., "Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminae," <u>Structural Damping</u>, ed. J. E. Ruzicka, Proc. ASME Collog., 1959.
- 5. Snewdon, J. C., <u>Vibration and Shock in Damped Mechanical</u>
  <u>Systems</u>. John Wiley and Sons, Inc., New York, 1968.
- 6. Rogers, L. C. and Nashif, A., "Computerized Processing and Empirical Representation of Viscoelastic Material Property Data and Preliminary Constrained Layer Damping Treatment Designs," Shock and Vibration Bulletin 48, 1978.
- 7. King, Jr., C. S., "Computerized Processing and Graphic Representation of Viscoelastic Material Property Data," University of Derton, May, 1978, UDR-TR-78-49.
- 8. Jones, D. I. G., "A Reduced-Temperature Nomogram for Characterization of Damped Material Behavior," <u>Shock and Vibration</u> Bulletin 48, 1978.
- 9. Henderson, J. P. and Jones, D. I. G., "Specification of Damping Material Performance," <u>Shock and Vibration Bulletin</u> 48, 1978.

# APPENDIX A BARE BEAM TEST DATA

Beam No. \_\_050A

| Temp.       | Mode         | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub> |
|-------------|--------------|----------------|--------------------------------|
| °F          |              | H Z            | Hz                             |
| + 75        | 2            | 196.6          | 8.78                           |
|             | 3            | 548.5          | 8.89                           |
|             | 4            | 1076.4         | 8.90                           |
|             | 5            | 1784.5         | 9.01                           |
|             | 6            | 2681.1         | 9.00                           |
|             | 7            | 3770.2         | 9.04                           |
| + 25        | 2            | 197.9          | 8.83                           |
|             | 3            | 551.8          | 8.94                           |
|             | 4            | 1084.2         | 8.96                           |
| İ           | 5            | 1798.2         | 9.08                           |
|             | 6            | 2702.1         | 9.07                           |
|             | 7            | 3793.6         | 9.10                           |
| - 25        | 2            | 199.3          | 8.90                           |
|             | <u></u><br>د | 555.7          | 9.01                           |
|             | 4            | 1092.9         | 9.03                           |
|             | 5            | 1813.6         | 9.16                           |
|             | 6            | 2724.5         | 9.14                           |
|             | 7            | 3826.2         | 9.18                           |
| +125        | 2            | 194.8          | 8.70                           |
|             | 3            | 543.7          | 8.81                           |
|             | 4            | 1068.2         | 8.83                           |
|             | 5            | 1772.2         | 8.95                           |
|             | 6            | 2663.0         | 8.94                           |
|             | 7            | 3743.0         | 8.98                           |
| +175        | 2            | 193.4          | 8.63                           |
|             | 3            | 540.2          | 8.76                           |
|             | 4            | 1060.6         | 8.77                           |
|             | r,           | 1760.3         | 8.89                           |
|             | 6            | 2644.6         | 8.87                           |
|             | 7            | 3778.0         | 9.06                           |
|             |              |                |                                |
| <del></del> |              |                | <del></del>                    |

| Temp. | Mode                                             | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub> |
|-------|--------------------------------------------------|----------------|--------------------------------|
| °F    |                                                  | Hz             | Hz                             |
| +225  | 2                                                | 191.6          | 8.55                           |
|       | 3                                                | 534.5          | 8.66                           |
|       | 4                                                | 1044.6         | 8.63                           |
| ļ     | 5                                                | 1723.9         | 8.71                           |
|       | 6                                                | 2593.2         | 8.70                           |
|       | 7                                                | 3667.0         | 8.79                           |
| +275  | 2                                                | 189.9          | 8.48                           |
| !<br> | 3                                                | 530.3          | 8.59                           |
|       | 4                                                | 1036.5         | 8.57                           |
|       | 5                                                | 1709.7         | 8.63                           |
|       | 6                                                | 2572.2         | 8,63                           |
|       | 7                                                | 3637.9         | 8.72                           |
|       |                                                  |                |                                |
|       |                                                  |                |                                |
|       |                                                  |                | i                              |
|       |                                                  | i              |                                |
|       |                                                  | !              |                                |
|       |                                                  |                |                                |
|       |                                                  |                |                                |
|       |                                                  |                | !                              |
|       |                                                  |                |                                |
|       | !                                                |                |                                |
|       |                                                  | <br>           |                                |
|       |                                                  |                |                                |
|       | İ                                                |                |                                |
|       |                                                  |                |                                |
|       | <del> </del>                                     | <u> </u>       |                                |
|       | <del> </del> -                                   |                |                                |
|       | <del> </del>                                     | <del> </del>   | <del></del>                    |
|       | <del>                                     </del> | <del> </del>   | -                              |
|       | <del>                                     </del> | !              |                                |
| ı     | i                                                | :              |                                |

Beam No. 050B

| Temp. | Mode | f <sub>n</sub> | $f_n/A_n$ |
|-------|------|----------------|-----------|
| °F    |      | НZ             | Нz        |
| + 86  | 2    | 197.9          | 8.83      |
|       | 3    | 555.2          | 9.00      |
|       | 4    | 1087.1         | 8.98      |
|       | 5    | 1797.3         | 9.08      |
|       | 6    | 2700.3         | 9.06      |
|       | 7    | 3796.9         | 9.11      |
| + 25  | 2    | 199.1          | 8.89      |
|       | 3    | 560.1          | 9.08      |
|       | 4    | 1094.3         | 9.04      |
|       | 55   | 1801.3         | 9.10      |
|       | 6    | 2703.2         | 9.07      |
| !     | 77   | i_3802.3       | 9.12      |
| - 25  | 2    | 200.4          | 8.95      |
|       | 3    | 563.7          | 9.14      |
|       | 4    | 1101.6         | 9.10      |
|       | 5_   | 1815.4         | 9.17      |
|       | 6    | 2722.6         | 9.14      |
|       | 7    | 3829.2         | 9.18      |
| +125  | 2    | 196.3          | 8.76      |
|       | 3    | 552.6          | 8.96      |
|       | 4    | 1078.8         | 8.92      |
|       | 5    | 1774.2         | 8.96      |
|       | 6    | 2659.3         | 8.92      |
|       | 7    | 3743.0         | 8.98      |
| +180  | 2    | 194.7          | 8.69      |
|       | 3    | 547.9          | 8.88      |
|       | 4    | 1069.5         | 8.84      |
|       | 5    | 1758.7         | 8.88      |
|       | 6    | 2635.3         | 8.84      |
|       | 7    | 3708.3         | 8.89      |
|       |      |                |           |

| Temp.         | Mode                                             | fn                                               | f <sub>n</sub> /A <sub>n</sub>                   |
|---------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| °F            |                                                  | Hz                                               | H 2                                              |
| +225          | 2                                                | 193.5                                            | 3.64                                             |
|               | 3                                                | 544.6                                            | 8.83                                             |
| <u> </u>      | 4                                                | 1063.6                                           | 8.79                                             |
|               | 5                                                | 1748.9                                           | 8.83                                             |
|               | 6                                                | 2619.8                                           | 8.79                                             |
|               | 7                                                | 3687.0                                           | 8.84                                             |
| +275          | 2                                                | 192.3                                            | 8.58                                             |
|               | 3                                                | 540.1                                            | 8.75                                             |
|               | 4                                                | 1053.0                                           | 8.70                                             |
|               | 5                                                | 1738.6                                           | 8.78                                             |
|               | 6                                                | 2621.3                                           | 8.80                                             |
|               | 7                                                | 3705.9                                           | 8.89                                             |
|               | <br>                                             |                                                  |                                                  |
|               | <del>                                     </del> |                                                  |                                                  |
|               | <u> </u>                                         |                                                  |                                                  |
|               | <del></del>                                      |                                                  | !                                                |
|               | 1                                                | <u>;</u>                                         |                                                  |
|               | <del> </del>                                     | <del> </del>                                     |                                                  |
|               | <del> </del>                                     | <u>i</u>                                         |                                                  |
|               |                                                  |                                                  |                                                  |
| <b> </b>      | 1                                                |                                                  |                                                  |
|               | <del> </del>                                     |                                                  | -                                                |
|               | <del></del>                                      | <u> </u>                                         | <del>                                     </del> |
|               | <del> </del>                                     |                                                  | <del>                                     </del> |
| } <del></del> | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     |
|               | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     |
|               | <del> </del> -                                   |                                                  |                                                  |
|               | <del>                                     </del> |                                                  |                                                  |
|               |                                                  |                                                  | <del>                                     </del> |
|               | <del> </del>                                     |                                                  |                                                  |
|               | <del> </del>                                     | <del> </del>                                     |                                                  |
|               | 1                                                | 1                                                |                                                  |

| Temp.    | Mode | fn     | f <sub>n</sub> /A <sub>n</sub> |
|----------|------|--------|--------------------------------|
| °F       |      | Ηz     | H2                             |
| + 72     | 2    | 235.3  | 10.50                          |
| <br>     | 3    | 658.8  | 10.68                          |
|          | 4    | 1290.8 | 10.67                          |
| <b>y</b> | 5    | 2122.2 | 10.61                          |
| + 25     | 2    | 237.0  | 10.58                          |
|          | 3    | 663.7  | 10.76                          |
|          | 4    | 1300.2 | 10.75                          |
|          | 5    | 2138.6 | 10.69                          |
| - 25     | 2    | 239.0  | 10.67                          |
|          | 3    | 668.5  | 10.83                          |
|          | 4    | 1310.1 | 10.83                          |
|          | 5    | 2155.6 | 10.78                          |
| - 75     | 2    | 240.7  | 10.75                          |
|          | 3    | 673.4  | 10.91                          |
|          | 4_   | 1319.3 | 10.90                          |
|          | 5    | 2176.8 | 10.88                          |
| +125     | 2    | 233.3  | 10.42                          |
|          | 3    | 653.0  | 10.58                          |
|          | 4    | 1278.3 | 10.56                          |
|          | 5    | 2102.6 | 10.51                          |
| +180     | 2    | 231.2  | 10.32                          |
|          | 3    | 647.1  | 10.49                          |
|          | 4    | 1266.9 | 10.47                          |
|          | 5    | 2030.3 | 10.40                          |
| +225     | 2    | 229.4  | 10.24                          |
|          | 3    | 642.3  | 10.41                          |
|          | 4    | 1257.1 | 10.39                          |
|          | 5    | 2063.6 | 10.32                          |
| +275     | 2    | 227.2  | 10.14                          |
|          | 3    | 636.5  | 10.32                          |
|          | 4    | 1245.3 | 10.29                          |

| Temp.        | Mode         | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub>                   |
|--------------|--------------|----------------|--------------------------------------------------|
| °F           |              | Нz             | Нz                                               |
|              |              |                |                                                  |
|              |              |                |                                                  |
|              | -            |                |                                                  |
|              |              |                |                                                  |
|              |              |                |                                                  |
| -            |              | <del></del>    |                                                  |
|              |              |                |                                                  |
|              |              |                |                                                  |
|              |              | i<br>          |                                                  |
| ļ            |              |                |                                                  |
| ļ            |              |                |                                                  |
|              |              |                |                                                  |
|              |              |                |                                                  |
|              |              |                |                                                  |
|              |              |                |                                                  |
|              |              |                |                                                  |
| <del></del>  |              |                |                                                  |
| <del></del>  |              |                |                                                  |
| <del> </del> |              | '              |                                                  |
|              |              |                |                                                  |
| <del> </del> | <del> </del> |                |                                                  |
|              |              |                |                                                  |
|              |              |                |                                                  |
|              | ļ<br>        |                |                                                  |
|              | <u></u>      | <u> </u>       |                                                  |
|              | i            |                |                                                  |
|              | i            |                |                                                  |
|              | i            |                |                                                  |
|              |              |                |                                                  |
|              | <del> </del> |                | <del>                                     </del> |
|              | <del> </del> | <del></del>    |                                                  |
|              | <del> </del> |                |                                                  |
|              |              |                |                                                  |
| <u></u>      | <u> </u>     |                |                                                  |

Beam No. 060A

| Temp.       | Mode | fn      | f <sub>n</sub> /A <sub>n</sub> |
|-------------|------|---------|--------------------------------|
| °F          |      | Hz      | Hz                             |
| + 78        | 2    | 235.81  | 10.53                          |
|             | 33   | 662.95  | 10.74                          |
|             | 4    | 1301.1  | 10.75                          |
|             | 5    | 2150.5  | 10.75                          |
|             | 6    | 3200.0  | 10.74                          |
|             | 7    | 4466.3  | 10.71                          |
| + 25        | 2    | 238.10  | 10.63                          |
|             | 3    | 668.54  | 10.84                          |
|             | 4    | 1312.0  | 10.84                          |
|             | 5    | 2166.8  | 10.83                          |
|             | 6    | 3223.7  | 10.82                          |
|             | 7    | 4496.4  | 10.78                          |
| - 25        | 2    | 240.05  | 10.72                          |
|             | 3    | 673.26  | 10.91                          |
|             | 4    | 1321.5  | 10.92                          |
|             | 5    | 2182.5  | 10.91                          |
|             | 6    | 3240.4  | 10.87                          |
|             | 7    | 4508.6  | 10.81                          |
| <b>-</b> 75 | 2    | 240.67  | 10.74                          |
|             | 3    | 676.82  | 10.97                          |
|             | 4    | 1327.0  | 10.97                          |
|             | 5    | 2183.41 | 10.92                          |
|             | 6    | 3206.2  | 10.76                          |
|             | 7    | 4683.8  | 11.23                          |
| +125        | 2    | 233.89  | 10.44                          |
|             | 3    | 657.46  | 10.66                          |
|             | 4    | 1298.03 | 10.73                          |
|             | 5    | 2148.69 | 10.74                          |
|             | 6    | 3204.10 | 10.75                          |
|             | 7    | 4484.30 | 10.75                          |
|             |      |         |                                |

| Temp.        | Mode                                             | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub>                   |
|--------------|--------------------------------------------------|----------------|--------------------------------------------------|
| °F           |                                                  | Hz             | HZ                                               |
| +175         | 2                                                | 232.26         | 10.37                                            |
|              | 3                                                | 654.92         | 10.62                                            |
| L            | 4                                                | 1287.7         | 10.64                                            |
|              | 5                                                | 2133.1         | 10.67                                            |
| <u></u>      | 6                                                | 3186.7         | 10.69                                            |
|              | 7                                                | 4454.3         | 10.68                                            |
| 1225         | 2                                                | 231.54         | 10.34                                            |
|              | 3                                                | 647.84         | 10.50                                            |
|              | 4                                                | 1276.0         | 10.55                                            |
|              | 5                                                | 2117.7         | 10.59                                            |
|              | 6                                                | 3162.6         | 10.61                                            |
|              | 7                                                | 4434.6         | 10.63                                            |
| +290         | 2                                                | 227.74         | 10.17                                            |
|              | 3                                                | 639.06         | 10.36                                            |
|              | 4                                                | 1253.9         | 10.36                                            |
|              | 5                                                | 2067.8         | 10.34                                            |
|              | 6                                                | 3073.1         | 10.31                                            |
|              | 7                                                | 4280.8         | 10.27                                            |
| <br>         | <del> </del>                                     |                |                                                  |
|              |                                                  |                |                                                  |
|              | <del>                                     </del> |                |                                                  |
|              | <del> </del>                                     | <del> </del>   | <del>                                     </del> |
|              | <del> </del>                                     | <del> </del>   |                                                  |
| <del> </del> | <del> </del>                                     |                |                                                  |
|              | <del> </del>                                     |                | <del> </del>                                     |
|              | <del> </del>                                     | <u> </u>       | <del> </del>                                     |
|              | <del> </del>                                     |                | <del> </del>                                     |
|              | <del> </del> -                                   |                | <del> </del>                                     |
| <b> </b>     |                                                  | <u> </u>       | <del> </del>                                     |
|              | <del> </del>                                     | i<br>          |                                                  |
|              | <del> </del>                                     |                | <del> </del>                                     |
|              | <u> </u>                                         | !              | <u>i</u>                                         |

| Temp. | Mode | fn     | $f_n/A_n$ |
|-------|------|--------|-----------|
| °F    |      | Hz     | Hz        |
| +275  | 2    | 230.2  | 10.28     |
|       | 3    | 643.3  | 10.43     |
|       | 4_   | 1256.3 | 10.38     |
|       | 5    | 2061.9 | 10.31     |
| +225  | 2    | 233.4  | 10.42     |
|       | 3    | 651.0  | 10.55     |
|       | 4    | 1270.6 | 10.50     |
|       | 5    | 2084.6 | 10.42     |
| +175  | 2    | 234.4  | 10.46     |
|       | 3_   | 654.8  | 10.61     |
|       | 4    | 1278.0 | 10.56     |
|       | 5    | 2099.1 | 10.50     |
| +125  | 2    | 236.6  | 10.57     |
|       | 3    | 660.2  | 10.70     |
|       | 4    | 1288.0 | 10.64     |
|       | 5    | 2116.0 | 10.58     |
| + 75  | 2    | 238.1  | 10.63     |
|       | 3_   | 665.0  | 10.78     |
|       | 4    | 1295.8 | 10.71     |
|       | 5    | 2129.9 | 10.65     |
| + 25  | 2    | 240.0  | 10.71     |
| ļ     | 3    | 670.2  | 10.86     |
|       | 4    | 1303.6 | 10.77     |
|       | 5    | 2136.3 | 10.68     |
| - 25  | 2    | 241.7  | 10.79     |
|       | 3    | 673.5  | 10.92     |
|       | 4    | 1313.2 | 10.85     |
|       | 5    | 2167.3 | 10.84     |
| - 75  | 2    | 243.5  | 10.87     |
|       | 3    | 678.0  | 10.99     |
|       | 4    | 1323.1 | 10.93     |

| Temp.        | Mode              | fn                                               | $f_n/A_n$                                        |
|--------------|-------------------|--------------------------------------------------|--------------------------------------------------|
| °F           |                   | Ηz                                               | H 2                                              |
|              | 5                 | 2184.8                                           | 10.92                                            |
|              |                   |                                                  |                                                  |
|              |                   |                                                  |                                                  |
|              |                   |                                                  |                                                  |
| ļ            | ļ                 |                                                  |                                                  |
|              | <del> </del>      |                                                  |                                                  |
|              | ·<br><del> </del> |                                                  | ļ                                                |
|              | <u> </u>          |                                                  |                                                  |
| <del></del>  | <del> </del>      |                                                  | <u>;</u>                                         |
| <u> </u>     | <del></del>       | <u> </u>                                         |                                                  |
|              | <del> </del>      |                                                  |                                                  |
|              | <del> </del>      | <u> </u><br>                                     | · · · · · · · · · · · · · · · · · · ·            |
|              | <del> </del>      | <del> </del>                                     |                                                  |
| <del> </del> | <del> </del>      | <del> </del>                                     |                                                  |
|              |                   |                                                  |                                                  |
|              |                   | <del> </del>                                     | <del>                                     </del> |
|              |                   |                                                  |                                                  |
|              |                   |                                                  |                                                  |
|              | <br>              |                                                  |                                                  |
|              | <del></del>       |                                                  | <u> </u>                                         |
|              | ļ<br><del>ļ</del> | <u> </u>                                         | <u> </u>                                         |
|              | <del> </del>      |                                                  | <del> </del>                                     |
|              |                   | <del> </del>                                     | <del> </del>                                     |
|              |                   |                                                  | <u> </u>                                         |
|              | <del> </del>      | <del>                                     </del> | <del> </del>                                     |
|              |                   | -                                                |                                                  |
|              |                   | <del> </del>                                     | <del> </del>                                     |
| -            | <del> </del>      | <del> </del>                                     |                                                  |
| <del></del>  | <del> </del>      |                                                  | <del> </del> -                                   |
| L            | <del></del>       | <del></del>                                      | <u> </u>                                         |

Beam Nc. 060B

| *F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Temp. | Mode | f <sub>n</sub>                                   | $f_n/A_n$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------------------------------------------------|-----------|
| 3       666.67       10.81         4       1300.7       10.75         5       2142.7       10.71         6       3199.0       10.73         7       4488.3       10.76         +125       1       38.066       10.81         2       237.46       10.60         3       662.60       10.74         4       1294.50       10.70         5       2138.1       10.69         6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68 <th>°F</th> <td></td> <td>Нz</td> <td></td>                      | °F    |      | Нz                                               |           |
| 4       1300.7       10.75         5       2142.7       10.71         6       3199.0       10.73         7       4488.3       10.76         +125       1       38.066       10.81         2       237.46       10.60         3       662.60       10.74         4       1294.50       10.70         5       2138.1       10.69         6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71 <th>+ 80</th> <th>2</th> <th>238.44</th> <th>10.64</th>          | + 80  | 2    | 238.44                                           | 10.64     |
| 5       2142.7       10.71         6       3199.0       10.73         7       4488.3       10.76         +125       1       38.066       10.81         2       237.46       10.60         3       662.60       10.74         4       1294.50       10.70         5       2138.1       10.69         6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         4       1290.66       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466 <t< th=""><th></th><th>33</th><th>666.67</th><th>10.81</th></t<> |       | 33   | 666.67                                           | 10.81     |
| 6       3199.0       10.73         7       4488.3       10.76         +125       1       38.066       10.81         2       237.46       10.60         3       662.60       10.74         4       1294.50       10.70         5       2138.1       10.69         6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77 <td< th=""><th></th><th>4</th><th>1300.7</th><th>10.75</th></td<> |       | 4    | 1300.7                                           | 10.75     |
| 7       4488.3       10.76         +125       1       38.066       10.81         2       237.46       10.60         3       662.60       10.74         4       1294.50       10.70         5       2138.1       10.69         6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.69         4       1290.66       10.69         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77 <t< th=""><th></th><th>5</th><th>2142.7</th><th>10.71</th></t<>  |       | 5    | 2142.7                                           | 10.71     |
| +125       1       38.066       10.81         2       237.46       10.60         3       662.60       10.74         4       1294.50       10.70         5       2138.1       10.69         6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                             |       | 6    | 3199.0                                           | 10.73     |
| 2       237.46       10.60         3       662.60       10.74         4       1294.50       10.70         5       2138.1       10.69         6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                                                                           |       | 7    | 4488.3                                           | 10.76     |
| 3       662.60       10.74         4       1294.50       10.70         5       2138.1       10.69         6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                                                                                                              | +125  | 1    | 38,066                                           | 10.81     |
| 4       1294.50       10.70         5       2138.1       10.69         6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                                                                                                                                                 |       | 2    | 237.46                                           | 10.60     |
| 5       2138.1       10.69         6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                                                                                                                                                                                     |       | 3    | 662.60                                           | 10.74     |
| 6       3198.0       10.73         7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                                                                                                                                                                                                                        |       | 4    | 1294.50                                          | 10.70     |
| 7       4488.3       10.76         +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                                                                                                                                                                                                                                                           |       | 5    | 2138.1                                           | 10.69     |
| +174       1       38.19       10.85         2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                                                                                                                                                                                                                                                                                              |       | 6    | 3198.0                                           | 10.73     |
| 2       236.98       10.58         3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 7    | 4488.3                                           | 10.76     |
| 3       659.76       10.69         4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +174  | 1    | 38.19                                            | 10.85     |
| 4       1290.66       10.67         5       2137.7       10.69         6       3207.2       10.76         7       4496.4       10.78         +225       1       37.910       10.77         2       235.03       10.49         3       654.11       10.60         4       1279.5       10.57         5       2120.8       10.60         6       3182.6       10.68         7       4464.1       10.71         +275       1       37.466       10.64         2       232.77       10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 2    | 236.98                                           | 10.58     |
| 5     2137.7     10.69       6     3207.2     10.76       7     4496.4     10.78       +225     1     37.910     10.77       2     235.03     10.49       3     654.11     10.60       4     1279.5     10.57       5     2120.8     10.60       6     3182.6     10.68       7     4464.1     10.71       +275     1     37.466     10.64       2     232.77     10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 3    | 659.76                                           | 10.69     |
| 6     3207.2     10.76       7     4496.4     10.78       +225     1     37.910     10.77       2     235.03     10.49       3     654.11     10.60       4     1279.5     10.57       5     2120.8     10.60       6     3182.6     10.68       7     4464.1     10.71       +275     1     37.466     10.64       2     232.77     10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 4    | 1290.66                                          | 1.0.67    |
| 7 4496.4 10.78<br>+225 1 37.910 10.77<br>2 235.03 10.49<br>3 654.11 10.60<br>4 1279.5 10.57<br>5 2120.8 10.60<br>6 3182.6 10.68<br>7 4464.1 10.71<br>+275 1 37.466 10.64<br>2 232.77 10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | 5    | 2137.7                                           | 10.69     |
| +225     1     37.910     10.77       2     235.03     10.49       3     654.11     10.60       4     1279.5     10.57       5     2120.8     10.60       6     3182.6     10.68       7     4464.1     10.71       +275     1     37.466     10.64       2     232.77     10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 6    | 3207.2                                           | 10.76     |
| 2 235.03 10.49 3 654.11 10.60 4 1279.5 10.57 5 2120.8 10.60 6 3182.6 10.68 7 4464.1 10.71 +275 1 37.466 10.64 2 232.77 10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 7    | 4496.4                                           | 10.78     |
| 3     654.11     10.60       4     1279.5     10.57       5     2120.8     10.60       6     3182.6     10.68       7     4464.1     10.71       +275     1     37.466     10.64       2     232.77     10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +225  | 1    | 37.910                                           | 1.0.77    |
| 4     1279.5     10.57       5     2120.8     10.60       6     3182.6     10.68       7     4464.1     10.71       +275     1     37.466     10.64       2     232.77     10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 2    | 235.03                                           | 10.49     |
| 5 2120.8 10.60<br>6 3182.6 10.68<br>7 4464.1 10.71<br>+275 1 37.466 10.64<br>2 232.77 10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 3    | 654.11                                           | 10.60     |
| 6 3182.6 10.68<br>7 4464.1 10.71<br>+275 1 37.466 10.64<br>2 232.77 10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 4    | 1279.5                                           | 10.57     |
| 7 4464.1 10.71<br>+275 1 37.466 10.64<br>2 232.77 10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 5    | 2120.8                                           | 10.60     |
| +275 1 37.466 10.64<br>2 232.77 10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 6    | 3182.6                                           | 10.68     |
| 2 232.77 10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 7    | 4464.1                                           | 10.71     |
| 2 232.77 10.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +275  | 1    | 37.466                                           | 10.64     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 2    | <del> </del>                                     |           |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 3    | 648.30                                           | 10.51     |
| 4 1267.9 10.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 4    | <del>                                     </del> |           |

| Temp. | Mode | fn     | $f_n/A_n$ |
|-------|------|--------|-----------|
| °F    |      | Hz     | Hz        |
|       | 5    | 2099.9 | 10.50     |
|       | 6    | 3150.1 | 10.57     |
|       | 7    | 4419.0 | 10.60     |
| +175  | 1    | 38.603 | 10.97     |
|       | 2    | 237.38 | 10.60     |
|       | 3    | 660.98 | 10.71     |
|       | 4    | 1293.0 | 10.69     |
|       | 5    | 2142.3 | 10.71     |
|       | 6    | 3213.1 | 10.84     |
|       | 7    | 4504.4 | 10.80     |
| +125  | 1.   | 38.72  | 11.00     |
|       | 2    | 239.22 | 10.68     |
|       | 3    | 666.18 | 10.80     |
|       | 4    | 1303.1 | 10.77     |
|       | 5    | 2158.7 | 10.79     |
|       | 6_   | 3237.7 | 10.86     |
|       | 7    | 4538.6 | 10.88     |
| + 25  | 11   | 39.214 | 11.14     |
|       | 2    | 243.29 | 10.86     |
| L     | 3    | 679.21 | 11.01     |
|       | 4    | 1327.6 | 10.97     |
|       | 5    | 2194.8 | 10.97     |
|       | 6    | 3286.5 | 11.03     |
|       | 7    | 4608.9 | 11.05     |
| - 25  | 1    | 39.554 | 11.24     |
|       | 2    | 244.70 | 10.92     |
|       | 3    | 633.67 | 11.08     |
|       | 4    | 1336.0 | 11.04     |
|       | 5    | 2204.7 | 11.02     |
|       | 6    | 3301.9 | 11.08     |
|       | 7    | 4635.5 | 11.12     |

| Temp. | Mode | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub> |
|-------|------|----------------|--------------------------------|
| °F    |      | НZ             | Hz                             |
| - 80  | 11   | 39.760         | 11.30                          |
|       | 2    | 246.24         | 10.99                          |
|       | 3    | 688.04         | 11.15                          |
|       | 4    | 1344.9         | 11.11                          |
|       | 5    | 2220.8         | 11.10                          |
|       | 6    | 3324.5         | 11.16                          |
|       | 7    | 4665.0         | 11.19                          |
| +125  | 1 _  | 38.385         | 10.90                          |
|       | 2    | 238.93         | 10.67                          |
|       | 3    | 667.74         | 10.82                          |
|       | 4    | 1305.3         | 10.79                          |
|       | 5    | 2156.8         | 10.78                          |
|       | 6    | 3227.8         | 10.83                          |
|       | 7    | 4525.4         | 10.85                          |
| +181  | 1    | 37.58          | 10.68                          |
|       | 2    | 236.7          | 10.57                          |
|       | 3    | 661.7          | 10.72                          |
|       | 4    | 1293.9         | 10.69                          |
|       | 5    | 2137.8         | 10.69                          |
|       | 6    | 3201.3         | 10.74                          |
|       | 7    | 4489.3         | 10.77                          |
| +222  | 1    | 37.72          | 10.72                          |
|       | 2    | 235.24         | 10.50                          |
|       | 3    | 657.81         | 10.66                          |
|       | 4    | 1286.0         | 10.63                          |
|       | 5    | 2124.6         | 10.63                          |
|       | 6    | 3181.4         | 10.68                          |
|       | 7    | 4458.9         | 10.69                          |
| +270  | 2_   | 232.8          | 10.39                          |
|       | 3    | 651.0          | 10.55                          |
|       | 4    | 1273.0         | 10.52                          |
|       | L    | 1 + 4 / 3 + (/ | 10.04                          |

|         | Mode                                             | 11     | f <sub>n</sub> /A <sub>n</sub> |
|---------|--------------------------------------------------|--------|--------------------------------|
| °F      |                                                  | Нz     | Нz                             |
|         | 5                                                | 2103.8 | 10.52                          |
|         | 6                                                | 3145.3 | 10.55                          |
|         | 7                                                | 4414.9 | 10.59                          |
|         |                                                  |        |                                |
|         |                                                  |        |                                |
| <u></u> |                                                  |        |                                |
|         |                                                  |        |                                |
|         |                                                  |        |                                |
|         | !                                                |        |                                |
| ļ       | <br>                                             |        |                                |
|         |                                                  | L      |                                |
|         |                                                  |        | <br><del> </del>               |
|         | ļ                                                |        |                                |
|         |                                                  |        |                                |
|         |                                                  |        |                                |
|         |                                                  |        |                                |
|         |                                                  |        |                                |
| ļ       | -                                                |        |                                |
|         |                                                  | <br>   |                                |
| ļ       |                                                  |        |                                |
|         | <u> </u>                                         |        |                                |
|         | <del> </del>                                     |        |                                |
|         | <del>                                     </del> |        |                                |
|         |                                                  |        |                                |
| -       | <del> </del>                                     |        |                                |
|         | <del></del>                                      |        |                                |
|         | <del> </del>                                     |        |                                |
|         |                                                  |        |                                |
|         | <del> </del> -                                   |        |                                |
|         | 1                                                |        |                                |
|         |                                                  |        | <u> </u>                       |

Beam No. 060C

| Temp.    | Mode | fn     | $f_n/A_n$ |
|----------|------|--------|-----------|
| °F       |      | Hz     | Hz        |
| + 68     | 2    | 241.9  | 10.80     |
| ¦ !      | 3    | 677.9  | 10.99     |
|          | 4    | 1327.1 | 10.97     |
|          | 5    | 2189.1 | 10.95     |
|          | 6    | 3242.5 | 10.88     |
| + 25     | 2    | 243.6  | 10.88     |
| <u> </u> | 3    | 682.7  | 11.06     |
| :        | 4    | 1336.2 | 11.04     |
|          | 5    | 2203.1 | 11.02     |
|          | 6    | 3266.9 | 10.96     |
|          | 7    | 4562.0 | 10.94     |
| - 25     | 2 _  | 245.6  | 10.96     |
|          | 3    | 688.2  | 11.15     |
|          | 4    | 1346.3 | 11.13     |
|          | 5    | 2226.2 | 11.13     |
|          | 6    | 3292.7 | 11.05     |
|          | 7    | 4591.4 | 11.01     |
| - 75     | 2    | 247.0  | 11.03     |
|          | 3    | 692.2  | 11.22     |
|          | 4    | 1355.0 | 11.20     |
|          | 5    | 2236.1 | 11.18     |
|          | 6    | 3303.6 | 11.09     |
|          | 7    | 4580.9 | 10.99     |
| +125     | 2    | 239.8  | 10.71     |
|          | 3    | 672.3  | 10.90     |
|          | 4    | 1315.8 | 10.87     |
|          | 5    | 2170.1 | 10.85     |
|          | 6    | 3215.4 | 10.79     |
| +175     | 2    | 238.1  | 10.63     |
|          | 3    | 667.3  | 10.82     |
|          | 4    | 1305.7 | 10.79     |

| Temp. | `:ode | f      | f <sub>n</sub> /A <sub>n</sub>        |
|-------|-------|--------|---------------------------------------|
| °F    |       | Hz     | Нz                                    |
| !     | 5     | 2152.4 | 10.76                                 |
|       | 6     | 3183.7 | 10.68                                 |
| +225  | 2     | 236.2  | 10.54                                 |
|       | 3     | 661.8  | 10.73                                 |
|       | 4     | 1294.8 | 10.70                                 |
|       | 5     | 2134.2 | 19.67                                 |
|       | 6     | 3152.8 | 10.58                                 |
| +275  | 2     | 233.9  | 10.44                                 |
|       | 3     | 655.9  | 10.63                                 |
|       | 4     | 1286.1 | 10.67                                 |
|       | 5     | 2124.1 | 10.62                                 |
| i     | 6     | 3177.9 | 10.66                                 |
|       |       |        |                                       |
| į     |       |        |                                       |
|       |       |        | · · · · · · · · · · · · · · · · · · · |
|       | _     |        |                                       |
|       |       |        |                                       |
|       |       |        |                                       |
|       |       |        |                                       |
|       |       |        |                                       |
|       |       |        |                                       |
|       | _     |        |                                       |
|       |       |        |                                       |
|       |       |        |                                       |
|       |       |        |                                       |
|       |       |        |                                       |
|       |       |        |                                       |
|       |       |        | -                                     |
|       |       |        |                                       |
|       |       | ·      |                                       |
|       |       |        |                                       |

| Temp. | Mode | fn      | f <sub>n</sub> /A <sub>n</sub> |
|-------|------|---------|--------------------------------|
| °F    |      | Нz      | Hz                             |
| + 72  | 2    | 242.16  | 10.987                         |
|       | 3    | 673.76  | 10.920                         |
|       | 4    | 1319.34 | 10.904                         |
|       | 5    | 2181.40 | 10.907                         |
|       | 6    | 3267.30 | 10.964                         |
|       | 7    | 4580.76 | 10.985                         |
| + 25  | 2    | 243.47  | 11.047                         |
|       | 3    | 678.43  | 10.996                         |
|       | 4    | 1328.00 | 10.975                         |
|       | 5    | 2198.38 | 10.992                         |
|       | 6    | 3293.19 | 11.051                         |
|       | 7    | 4619.94 | 11.079                         |
| - 25  | 2    | 246.25  | 11.173                         |
|       | 3    | 685.37  | 11.108                         |
|       | 4    | 1342.15 | 11.092                         |
|       | 5    | 2221.46 | 11.107                         |
|       | 6    | 3329.31 | 11.172                         |
|       | 7    | 4667.05 | 11.192                         |
| - 75  | 2    | 247.60  | 11.234                         |
|       | 3    | 690.42  | 11.190                         |
|       | 4    | 1350.22 | 11.159                         |
|       | 5    | 2234.32 | 11.172                         |
|       | 6    | 3346.10 | 11.229                         |
|       | 7    | 4690.58 | 11.248                         |
| +1.25 | 2    | 240.60  | 10.917                         |
|       | 3    | 670.15  | 10.861                         |
|       | 4    | 1311.92 | 10.842                         |
|       | 5    | 2171.54 | 10.858                         |
|       | 6    | 3253.07 | 10.916                         |
|       | 7    | 4559.20 | 10.933                         |
|       |      |         |                                |
|       |      |         |                                |

| Temp.    | Mode     | fn      | f <sub>n</sub> /A <sub>n_</sub> |
|----------|----------|---------|---------------------------------|
| °F       |          | Hz      | Нz                              |
| +173     | 2        | 238.51  | 10.822                          |
|          | 3        | 665.40  | 10.784                          |
|          | 4        | 1302.82 | 10.767                          |
|          | 5        | 2153.48 | 10.767                          |
| L        | 6        | 3223.68 | 10.818                          |
|          | 7        | 4517.40 | 10.833                          |
| +225     | 2        | 235.05  | 10.665                          |
|          | 3        | 661.62  | 10.723                          |
|          | 4        | 1302.38 | 10.763                          |
| <u></u>  | 5        | 2158.40 | 10.792                          |
|          | 6        | 3229.28 | 10.837                          |
|          | 7        | 4515.20 | 10.828                          |
| +270     | 2        | 233.81  | 10.608                          |
| <u></u>  | 3        | 653.62  | 10.594                          |
| <u> </u> | 4        | 1279.40 | 10.574                          |
|          | 5        | 2113.74 | 10.569                          |
|          | 6        | 3164.35 | 10.619                          |
| <u> </u> | 7        | 4446.80 | 10.664                          |
|          | <u> </u> |         |                                 |
| ļ        | İ        |         |                                 |
|          | i<br>!   |         |                                 |
|          |          |         |                                 |
|          |          |         |                                 |
|          |          |         |                                 |
|          | <u> </u> |         |                                 |
|          |          |         |                                 |
|          |          |         |                                 |
|          |          |         |                                 |
|          |          |         |                                 |
|          |          |         |                                 |
|          |          |         |                                 |
|          |          |         |                                 |

1 1

| Temp.       | Mode                                   | fn           | f <sub>n</sub> /A <sub>n</sub> |
|-------------|----------------------------------------|--------------|--------------------------------|
| °F          |                                        | Ηz           | Hz                             |
| + 72        | 3                                      | 674.2        | 10.93                          |
|             | 4                                      | 1319.2       | 10.90                          |
|             | 5                                      | 2166.9       | 10.83                          |
|             | 6                                      | 3212.5       | 10.78                          |
|             | 7                                      | 4486.1       | 10.76                          |
| + 25        | 2                                      | 242.8        | 10.84                          |
|             | 3                                      | 679.3        | 11.01                          |
|             | 4                                      | 1327.5       | 10.97                          |
|             | 5                                      | 2182.9       | 10.91                          |
|             | 6                                      | 3238.1       | 10.87                          |
|             | 7                                      | 4520.8       | 10.84                          |
| 25          | 2                                      | 244.5        | 10.92                          |
|             | 3                                      | 684.1        | 11.09                          |
|             | 4                                      | 1337.2       | 11.05                          |
|             | 5                                      | 2197.6       | 10.99                          |
|             | 6                                      | 3262.7       | 10.95                          |
|             | 7                                      | 4554.1       | 10.92                          |
| <b>-</b> 75 | 2                                      | 246.4        | 11.00                          |
|             | 3                                      | 688.8        | 11.16                          |
|             | 4                                      | 1349.1       | 11.13                          |
|             | 5                                      | 2216.5       | 11.08                          |
|             | 6                                      | 3284.5       | 11.02                          |
|             | 7                                      | 4588.2       | 11.00                          |
| +125        | 2                                      | 238.9        | 10.67                          |
|             | 3                                      | 668.6        | 10.34                          |
|             | 4                                      | 1307.3       | 10.80                          |
|             | 5                                      | 2149.7       | 10.75                          |
|             | 6                                      | 3187.1       | 10.69                          |
|             | 7                                      | 4450.6       | 10.67                          |
|             |                                        |              |                                |
|             |                                        | <del> </del> |                                |
| L           | ــــــــــــــــــــــــــــــــــــــ | <del></del>  | <del></del>                    |

| Temp. | Mode         | fn           | $f_n/A_n$   |
|-------|--------------|--------------|-------------|
| °F    |              | H z          | Hz          |
| + 175 | 2            | 237.0        | 10.58       |
| Ĺ     | 3            | 663.6        | 10.76       |
|       | 4            | 1296.8       | 10.72       |
|       | 5            | 2122.4       | 10.66       |
|       | 6            | 3164.7       | 10.62       |
|       | 7            | 4411.9       | 10.58       |
| +225  | 2            | 235.1        | 10.50       |
|       | 3            | 658.2        | 10.67       |
|       | 4            | 1286.7       | 10.63       |
|       | 5            | 2115.8       | 10.58       |
|       | 6            | 3135.1       | 10.52       |
|       | 7            | 4374.6       | 10.49       |
| +275  | 2            | 233.0        | 10.40       |
|       | 3            | 652.2        | 10.57       |
|       | 4            | 1275.3       | 10.54       |
|       | 5            | 2096.4       | 10.48       |
|       | 6            | 3106.5       | 10.42       |
|       | 7            | 4325.8       | 10.37       |
|       |              |              |             |
|       |              |              |             |
|       |              |              |             |
|       |              |              |             |
|       |              |              |             |
|       |              |              |             |
|       | <del> </del> |              |             |
|       | 1            |              |             |
|       |              |              |             |
|       |              |              |             |
|       |              | <del> </del> |             |
|       |              |              |             |
|       |              | ·            |             |
| ·     | <del></del>  | <del></del>  | <del></del> |

Beam No. 060D

| Mode | fn                                                                                                                                                                               | $f_n/A_n$                                                                                                                                                                                                                                                                                                               |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Hz                                                                                                                                                                               | Hz                                                                                                                                                                                                                                                                                                                      |
| 2    | 243.38                                                                                                                                                                           | 11.063                                                                                                                                                                                                                                                                                                                  |
| 3    | 678.55                                                                                                                                                                           | 10.998                                                                                                                                                                                                                                                                                                                  |
| 4    | 1328.76                                                                                                                                                                          | 10.981                                                                                                                                                                                                                                                                                                                  |
| 5    | 2202.46                                                                                                                                                                          | 11.012                                                                                                                                                                                                                                                                                                                  |
| 6    | 3302.25                                                                                                                                                                          | 11.081                                                                                                                                                                                                                                                                                                                  |
| 7    | 4633.06                                                                                                                                                                          | 11.110                                                                                                                                                                                                                                                                                                                  |
| 2    | 245.08                                                                                                                                                                           | 11.140                                                                                                                                                                                                                                                                                                                  |
| 3    | 682.68                                                                                                                                                                           | 11.065                                                                                                                                                                                                                                                                                                                  |
| 4    | 1337.60                                                                                                                                                                          | 11.055                                                                                                                                                                                                                                                                                                                  |
| 5    | 2217.60                                                                                                                                                                          | 11.088                                                                                                                                                                                                                                                                                                                  |
| 6    | 3326.60                                                                                                                                                                          | 11.163                                                                                                                                                                                                                                                                                                                  |
| 7    | 4667.35                                                                                                                                                                          | 11.193                                                                                                                                                                                                                                                                                                                  |
| 2    | 246.81                                                                                                                                                                           | 11.219                                                                                                                                                                                                                                                                                                                  |
| 3    | 687.48                                                                                                                                                                           | 11.142                                                                                                                                                                                                                                                                                                                  |
| 4    | 1346.82                                                                                                                                                                          | 11.131                                                                                                                                                                                                                                                                                                                  |
| 5    | 2232.39                                                                                                                                                                          | 11.162                                                                                                                                                                                                                                                                                                                  |
| 6    | 3349.40                                                                                                                                                                          | 11.240                                                                                                                                                                                                                                                                                                                  |
| 7    | 4698.55                                                                                                                                                                          | 11.268                                                                                                                                                                                                                                                                                                                  |
| 2    | 248.63                                                                                                                                                                           | 11.301                                                                                                                                                                                                                                                                                                                  |
| 3    | 692.51                                                                                                                                                                           | 11.224                                                                                                                                                                                                                                                                                                                  |
| 4    | 1357.58                                                                                                                                                                          | 11.220                                                                                                                                                                                                                                                                                                                  |
| 5    | 2249.64                                                                                                                                                                          | 11.248                                                                                                                                                                                                                                                                                                                  |
| 6    | 3374.35                                                                                                                                                                          | 11.323                                                                                                                                                                                                                                                                                                                  |
| 7    | 4731.86                                                                                                                                                                          | 11.347                                                                                                                                                                                                                                                                                                                  |
| 2    | 241.58                                                                                                                                                                           | 10.981                                                                                                                                                                                                                                                                                                                  |
| 3    | 673.28                                                                                                                                                                           | 10.912                                                                                                                                                                                                                                                                                                                  |
| 4    | 1319.75                                                                                                                                                                          | 10.907                                                                                                                                                                                                                                                                                                                  |
| 5    | 2185.48                                                                                                                                                                          | 10.927                                                                                                                                                                                                                                                                                                                  |
| 6    | 3277.12                                                                                                                                                                          | 10.997                                                                                                                                                                                                                                                                                                                  |
| 7    | 4592.10                                                                                                                                                                          | 11.012                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                         |
|      | 2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>7 | Hz  2 243.38  3 678.55  4 1328.76  5 2202.46  6 3302.25  7 4633.06  2 245.08  3 682.68  4 1337.60  5 2217.60  6 3326.60  7 4667.35  2 246.81  3 687.48  4 1346.82  5 2232.39  6 3349.40  7 4698.55  2 248.63  3 692.51  4 1357.58  5 2249.64  6 3374.35  7 4731.86  2 241.58  3 673.28  4 1319.75  5 2185.48  6 3277.12 |

| Temp.    | Mode         | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub> |
|----------|--------------|----------------|--------------------------------|
| °F       |              | Ηz             | Hz                             |
| +175     | 2            | 239.60         | 10.891                         |
|          | 3_           | 668.55         | 10.835                         |
|          | 4            | 1310.01        | 10.827                         |
|          | 5            | 2167.14        | 10.836                         |
|          | 6            | 3248.12        | 10.900                         |
|          | 7            | 4554.75        | 10.923                         |
| +225     | 2            | 236.53         | 10.751                         |
|          | 3            | 663.00         | 10.746                         |
|          | 4            | 1297.92        | 10.727                         |
|          | 5            | 2137.98        | 10.690                         |
|          | 6            | 3194.32        | 10.719                         |
|          | 7            | 4476.98        | 10.736                         |
| +275     | 2            | 234.37         | 10.653                         |
|          | 3            | 657.75         | 10.660                         |
|          | 4            | 1287.33        | 10.639                         |
|          | 5            | 2113.84        | 10.569                         |
|          | 6            | 3150.38        | 10.572                         |
|          | 7            | 4390.50        | 10.529                         |
|          |              |                |                                |
|          |              |                |                                |
|          |              |                |                                |
|          |              |                |                                |
|          | 1            |                |                                |
|          |              |                |                                |
|          |              |                |                                |
|          |              |                |                                |
|          |              |                |                                |
|          |              |                |                                |
|          |              |                | † <del></del>  <br>!           |
| -        |              |                |                                |
|          | <del> </del> |                |                                |
| <u> </u> | <u> </u>     | <u> </u>       | <u> </u>                       |

Beam No. 060E

| Temp.       | Mode | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub> |
|-------------|------|----------------|--------------------------------|
| °F          |      | Нz             | НZ                             |
| + 72        | 2    | 243.74         | 11.059                         |
|             | 3    | 679.01         | 11.005                         |
|             | 4    | 1328.8         | 10.982                         |
|             | 5    | 2199.8         | 10.999                         |
|             | 6    | 3291.2         | 11.044                         |
|             | 7    | 4620.3         | 11.080                         |
| + 25        | 2    | 244.97         | 11.115                         |
|             | 3    | 683.31         | 11.075                         |
|             | 4    | 1337.8         | 11.056                         |
|             | 5    | 2213.9         | 11.070                         |
|             | 6    | 3310.6         | 11.109                         |
|             | 7    | 4641.7         | 11.131                         |
| - 25        | 2    | 245.56         | 11.142                         |
|             | 3    | 688.12         | 11.153                         |
|             | 4    | 1347.1         | 11.133                         |
|             | 5    | 2223.2         | 11.116                         |
|             | 6    | 3314.8         | 11.123                         |
|             | 7    | 4637.4         | 11.121                         |
| <b>-</b> 75 | 2    | 248.78         | 11.288                         |
|             | 3    | 694.11         | 11.250                         |
|             | 4    | 1359.1         | 11.232                         |
|             | 5    | 2249.4         | 11.247                         |
|             | 6    | 3363.0         | 11.285                         |
|             | 7    | 4715.5         | 11.308                         |
| +125        | 2    | 239.72         | 10.877                         |
|             | 3    | 672.57         | 10.901                         |
|             | 4    | 1316.9         | 10.883                         |
|             | 5    | 2172.7         | 10.864                         |
|             | 6    | 3235.1         | 10.856                         |
|             | 7    | 4523.3         | 10.847                         |
|             |      |                |                                |
|             |      | <del></del>    | <del></del> '                  |

| Temp. | Mode     | fn            | f <sub>n</sub> /A <sub>n</sub> |
|-------|----------|---------------|--------------------------------|
| °F    |          | Ηz            | Hz                             |
| +175  | 2        | 237.90        | 10.794                         |
|       | 3        | 667.96        | 10.826                         |
|       | 4        | 1307.4        | 10.805                         |
|       | 5        | 2157.5        | 10.788                         |
|       | 6        | 3212.0        | 10.779                         |
|       | 7        | 4490.7        | 10.769                         |
| +225  | 2        | 236.30        | 10,721                         |
| <br>  | 3        | 662,92        | 10.744                         |
|       | 4        | 1297.6        | 10.724                         |
|       | 5        | 2140.0        | 10.700                         |
|       | 6        | 3183.5        | 10.683                         |
|       | 7        | 4449.0        | 10.669                         |
| +275  | 2        | 234.40        | 10.635                         |
|       | 3        | 657.06        | 10.649                         |
|       | 4        | 1298.4        | 10.648                         |
|       | 5        | 2125.6        | 10.628                         |
| İ     | 6        | 3163.0        | 10.614                         |
|       | 7        | 4423.2        | 10.607                         |
|       |          |               |                                |
|       |          |               |                                |
|       |          |               |                                |
|       |          |               |                                |
|       |          |               |                                |
|       |          |               |                                |
|       |          |               |                                |
|       |          |               |                                |
|       |          |               |                                |
|       |          |               |                                |
|       |          |               |                                |
|       | <u> </u> |               | <del>1</del>                   |
|       |          |               | 1                              |
|       |          | · <del></del> |                                |

| Beam | No. | 060E |
|------|-----|------|
|      |     |      |

| Temp. | Mode | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub> |
|-------|------|----------------|--------------------------------|
| °F    |      | Hz             | Hz                             |
| + 72  | 2    | 244.36         | 11.089                         |
|       | 3    | 679.96         | 11.020                         |
|       | 4    | 1332.5         | 11.012                         |
|       | 5    | 2213.0         | 11.065                         |
|       | 6    | 3321.7         | 11.146                         |
|       | 7    | 4658.6         | 11.172                         |
| + 25  | 2    | 245.86         | 11.155                         |
|       | 3    | 684.79         | 11.098                         |
|       | 4    | 1341.3         | 11.085                         |
|       | 5    | 2226.6         | 11.133                         |
|       | 6    | 3338.0         | 11.201                         |
|       | 7    | 4680.0         | 11.223                         |
| - 25  | 2    | 247.60         | 11.234                         |
| ļ<br> | 3    | 689.57         | 11.176                         |
|       | 4    | 1350.8         | 11.163                         |
|       | 5    | 2239.8         | 11.199                         |
|       | 6    | 3357.4         | 11.266                         |
|       | 7    | 4703.5         | 11.279                         |
| - 75  | 2    | 248.25         | 11.263                         |
|       | 3    | 693.05         | 11.232                         |
|       | 4    | 1356.4         | 11.209                         |
|       | 5    | 2242.1         | 11.210                         |
|       | 6    | 3346.7         | 11.230                         |
|       | 7    | 4686.0         | 11.237                         |
| +125  | 2    | 239.63         | 10.872                         |
|       | 3    | 674.75         | 10.935                         |
|       | 4    | 1318.3         | 10.895                         |
|       | 5    | 2175.3         | 10.876                         |
|       | 6    | 3243.8         | 10.885                         |
|       | 7    | 4548.9         | 10.908                         |
|       |      |                |                                |

| Temp.          | Mode           | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub> |
|----------------|----------------|----------------|--------------------------------|
| o <sub>F</sub> |                | Hz             | Hz                             |
| +175           | 2              | 238.81         | 10.835                         |
|                | 33             | 669.95         | 10.858                         |
|                | 4              | 1309.1         | 10.819                         |
|                | 5              | 2160.3         | 10.801                         |
|                | 6              | 3221.9         | 10.811                         |
|                | 7              | 4516.7         | 10.831                         |
| +222           | 2              | 237.63         | 10.781                         |
|                | 3              | 665.20         | 10.781                         |
|                | 4              | 1301.4         | 10.755                         |
|                | 5              | 2152.2         | 10.761                         |
|                | 6              | 3215.4         | 10.789                         |
| -              | 7              | 4509.9         | 10.815                         |
| +275           | 2              | 235.4          | 10.680                         |
|                | 3              | 659.0          | 10.680                         |
|                | 4              | 1289.7         | 10.658                         |
|                | 5              | 2133.2         | 10.666                         |
|                | 6              | 3185.6         | 10.689                         |
|                | 7              | 4471.0         | 10.721                         |
|                |                |                |                                |
| i<br>          |                |                |                                |
|                | L              |                |                                |
|                |                |                |                                |
|                |                |                |                                |
|                |                |                |                                |
|                |                |                |                                |
|                |                |                |                                |
|                |                |                |                                |
|                |                |                |                                |
|                | <del> </del>   | <del> </del>   | <del> </del>                   |
|                |                |                | <del> </del>                   |
|                | <del> </del> - |                |                                |
| 1              | <u> </u>       | ì              |                                |

Beam No. 070A

| Temp. | Mode | fn     | f <sub>n</sub> /A <sub>n</sub> |
|-------|------|--------|--------------------------------|
| °F    |      | Нz     | Hz                             |
| + 89  | 2    | 281.5  | 12.57                          |
|       | 3    | 783.5  | 12.70                          |
|       | 4    | 1540.2 | 12.73                          |
|       | 5    | 2549.9 | 12.88                          |
|       | 6    | 3824.8 | 12.83                          |
|       | 7    | 5353.9 | 12.84                          |
| + 69  | 2    | 284.1  | 12.68                          |
|       | 3    | 791.1  | 12.82                          |
|       | 4    | 1546.0 | 12.78                          |
|       | 5    | 2564.2 | 12.95                          |
|       | 6    | 3845.2 | 12.90                          |
|       | 7    | 5385.0 | 12.91                          |
| + 25  | 2    | 287.0  | 12.81                          |
|       | 3    | 794.7  | 12.88                          |
|       | 4    | 1555.5 | 12.86                          |
|       | 5    | 2579.0 | 13.03                          |
|       | 6    | 3866.3 | 12.97                          |
|       | 7    | 5410.9 | 12.98                          |
| - 25  | 2    | 288.9  | 12.90                          |
|       | 3    | 799.4  | 12.96                          |
|       | 4    | 1564.9 | 12.93                          |
|       | 5    | 2586.7 | 13.06                          |
|       | 6    | 3893.6 | 13.07                          |
|       | 7    | 5440.8 | 13.05                          |
| +125  | 2    | 281.7  | 12.58                          |
|       | 3    | 784.9  | 12.72                          |
|       | 4    | 1538.5 | 12.71                          |
|       | 5    | 2549.3 | 12.88                          |
|       | 6    | 3822.9 | 12.83                          |
|       | 7    | 5352.0 | 12.83                          |
|       |      |        |                                |

| Temp.   | Mode | f<br>n     | f <sub>n</sub> /A <sub>n</sub> |
|---------|------|------------|--------------------------------|
| °F      |      | Нz         | НZ                             |
| +175    | 2    | 280.1      | 12.50                          |
|         | 3    | 781.3      | 12.66                          |
|         | 4    | 1534.5     | 12.68                          |
| <u></u> | 5    | 2540.0     | 12.83                          |
|         | 6    | 3805.3     | 12.77                          |
|         | 7    | 5326.0     | 12.77                          |
| +225    | 2    | 276.5      | 12.34                          |
|         | 3    | 774.1      | 12.55                          |
|         | 4    | 1511.8     | 12.49                          |
|         | 5    | 2493.3     | 12.59                          |
|         | 6    | 3725.2     | 12.50                          |
|         | 7    | 5222.9     | 12.52                          |
| +275    | 2    | 274.6      | 12.26                          |
|         | 3    | 769.6      | 12.47                          |
|         | 4    | 1502.5     | 12.42                          |
|         | 5    | 2476.1     | 12.51                          |
|         | 6    | 3696.2     | 12.40                          |
|         | 7    | 5179.5     | 12.42                          |
|         |      |            |                                |
|         |      |            |                                |
|         |      |            | 1                              |
|         |      |            |                                |
|         |      |            |                                |
|         |      |            |                                |
|         |      |            |                                |
|         |      |            |                                |
|         |      |            |                                |
|         |      |            |                                |
|         | 1    | 1          |                                |
|         |      |            | <b>†</b>                       |
|         |      |            | <del> </del>                   |
|         |      | · <u> </u> | <u> </u>                       |

Beam No. 070C

| Temp. | Mode | fn     | f <sub>n</sub> /A <sub>n</sub> |
|-------|------|--------|--------------------------------|
| °F    |      | Hz     | Hz                             |
| + 74  | 2    | 283.9  | 12.67                          |
|       | 3    | 789.8  | 12.80                          |
|       | 4    | 1542.6 | 12.75                          |
|       | 5    | 2550.2 | 12.75                          |
|       | 6    | 3814.8 | 12.80                          |
|       | 7    | 5341.0 | 12.81                          |
| + 25  | 2    | 285.8  | 12.76                          |
|       | 3    | 795.3  | 12.89                          |
|       | 4    | 1553.0 | 12.83                          |
|       | 5    | 2567.3 | 12.84                          |
|       | 6    | 3841.0 | 12.89                          |
|       | 7    | 5378.4 | 12.90                          |
| - 10  | 2    | 287.5  | 12.83                          |
|       | 3    | 799.4  | 12.96                          |
|       | 4    | 1561.3 | 12.90                          |
|       | 5    | 2581.2 | 12.91                          |
|       | 6    | 3863.0 | 12.96                          |
|       | 7    | 5408.9 | 12.97                          |
| +125  | 2    | 282.4  | 12.61                          |
|       | 3    | 786.0  | 12.74                          |
|       | 4    | 1535.5 | 12.69                          |
|       | 5    | 2538.1 | 12.82                          |
|       | 6    | 3797.5 | 12.74                          |
|       | 7    | 5316.8 | 12.75                          |
| +175  | 2    | 280.3  | 12.51                          |
|       | 3    | 781.3  | 12.66                          |
|       | 4    | 1527.0 | 12.62                          |
|       | 5    | 2524.4 | 12.75                          |
|       | 6    | 3777.0 | 12.67                          |
|       | 7    | 5287.2 | 12.68                          |
|       |      |        |                                |

| Temp.    | Mode | fn     | f <sub>n</sub> /A <sub>n</sub>          |
|----------|------|--------|-----------------------------------------|
| °F       |      | Нz     | liz                                     |
| +225     | 2    | 278.1  | 12.42                                   |
| i        | 3    | 775.8  | 12.57                                   |
|          | 4    | 1515.7 | 12.53                                   |
|          | 5    | 2500.6 | 12.63                                   |
| <u> </u> | 6    | 3734.0 | 12.53                                   |
|          | 7    | 5226.6 | 12.53                                   |
| +275     | 2    | 275.0  | 12.28                                   |
|          | 3    | 768.7  | 12.46                                   |
|          | 4    | 1502.7 | 12.42                                   |
|          | 5    | 2474.4 | 12.50                                   |
|          | 6    | 3684.2 | 12.36                                   |
|          | 7    | 5146.3 | 12.34                                   |
|          |      | 1      |                                         |
|          | <br> |        |                                         |
|          |      |        |                                         |
|          | Ī    |        |                                         |
|          |      |        |                                         |
|          |      |        |                                         |
|          |      | !      |                                         |
|          |      |        |                                         |
|          | !    |        |                                         |
|          |      |        |                                         |
|          |      |        |                                         |
|          |      |        |                                         |
|          |      |        |                                         |
|          |      |        |                                         |
|          |      |        |                                         |
|          |      |        |                                         |
|          |      |        |                                         |
|          | 1    |        | † · · · · · · · · · · · · · · · · · · · |
|          | 1    |        |                                         |

| Temp. | Mode        | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub> |
|-------|-------------|----------------|--------------------------------|
| °F    |             | Hz             | Нz                             |
| + 69  | 1           | 44.534         | 12.65                          |
|       | 2           | 275.79         | 12.31                          |
|       | 3           | 779.42         | 12.63                          |
|       | 4           | 1525.2         | 12.60                          |
|       | 5           | 2518.3         | 12.59                          |
|       | 6           | 3757.6         | 12.61                          |
|       | 7           | 5257.2         | 12.61                          |
| + 20  | 2           | 283.03         | 12.64                          |
|       | 3           | 785.73         | 1.2.73                         |
|       | 4           | 1537.0         | 12.70                          |
|       | 5           | 2538.7         | 12.69                          |
|       | 6           | 3787.6         | 12.71                          |
|       | 7           | 5302.6         | 12.72                          |
| - 25  | 2           | 285.99         | 12.77                          |
|       | 3           | 792.96         | 12.85                          |
|       | 4           | 1531.4         | 12.82                          |
|       | 5           | 2561.8         | 12.81                          |
|       | 6           | 3822.3         | 12.83                          |
|       | 7           | 5350.5         | 12.83                          |
| - 75  | 4           | 1552.5         | 12.83                          |
|       | 5           | 2563.7         | 12.82                          |
|       | 6           | 3824.8         | 12.83                          |
|       | 7           | 5354.2         | 12.84                          |
| +125  | 2           | 278.23         | 12.42                          |
|       | 3           | 773.81         | 12.54                          |
| !     | 4           | 1515.5         | 12.52                          |
|       | 5           | 2502.4         | 12.51                          |
|       | 6           | 3731.7         | 12.52                          |
|       | 7           | 5217.2         | 12.51                          |
| +175  | 2           | 272.65         | 12.17                          |
|       | 3           | 769.35         | 12.47                          |
|       | <del></del> |                |                                |

| Temp. | Mode                                             | f <sub>n</sub>                                   | f <sub>n</sub> /A <sub>n</sub> |
|-------|--------------------------------------------------|--------------------------------------------------|--------------------------------|
| °F    |                                                  | Hz                                               | H 7.                           |
|       | 4                                                | 1507.1                                           | 12.46                          |
|       | 5                                                | 2488.7                                           | 12.44                          |
|       | 6                                                | 3710.3                                           | 12.45                          |
|       | 7                                                | 5187.1                                           | 12.44                          |
| +225  |                                                  | 275.69                                           | 12.31                          |
|       |                                                  | 764.99                                           | 12.40                          |
|       | <u> </u>                                         | 1497.7                                           | 12.38                          |
|       |                                                  | 2473.5                                           | 12.37                          |
|       | <u> </u>                                         | 3689.8                                           | 12.38                          |
|       | ļ<br>                                            | 5161.3                                           | 12.38                          |
| +275  | <u> </u>                                         | 269.71                                           | 12.041                         |
|       |                                                  | 759.76                                           | 12.31                          |
|       | ļ                                                | 1486.2                                           | 12.28                          |
|       |                                                  | 2452.8                                           | 12.26                          |
|       |                                                  | 3655.0                                           | 12.27                          |
|       |                                                  | 5112.3                                           | 12.26                          |
|       |                                                  |                                                  |                                |
|       |                                                  |                                                  |                                |
|       |                                                  |                                                  |                                |
|       |                                                  |                                                  |                                |
|       |                                                  |                                                  |                                |
|       |                                                  |                                                  |                                |
|       |                                                  |                                                  |                                |
|       | :                                                |                                                  |                                |
|       |                                                  |                                                  |                                |
|       |                                                  |                                                  |                                |
|       |                                                  |                                                  |                                |
|       |                                                  |                                                  |                                |
|       | <u> </u>                                         | <del>                                     </del> |                                |
|       | <del>                                     </del> |                                                  |                                |
|       |                                                  |                                                  |                                |
|       | <u>'</u>                                         | <u> </u>                                         |                                |

Beam No. 070D

| Temp. | Mode | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub> |
|-------|------|----------------|--------------------------------|
| °F    |      | Ηz             | Hz                             |
| + 64  | 2    | 277.2          | 12.38                          |
|       | 3    | 772.7          | 12.52                          |
|       | 4    | 1502.7         | 12.42                          |
|       | 5    | 2481.5         | 12.53                          |
| + 25  | 2    | 278.8          | 12.45                          |
|       | 3    | 777.3          | 12.60                          |
|       | 4    | 1512.0         | 12.50                          |
|       | 5    | 2498.0         | 12.62                          |
| - 24  | 2    | 280.5          | 12,52                          |
|       | 3    | 782.4_         | 12.68                          |
|       | 4    | 1523.8         | 12.59                          |
|       | 5    | 2518.7         | 12.72                          |
| +122  | 2    | 274.8          | 12.27                          |
|       | 3    | 765.8          | 12.41                          |
|       | 4    | 1489.7         | 12.31                          |
|       | 5    | 2459.6         | 12.42                          |
| +172  | 2    | 272.6          | 12.17                          |
|       | 3    | 759.8          | 12.31                          |
|       | 4    | 1477.9         | 12.21                          |
|       | 5    | 2439.6         | 12.32                          |
| +224  | 2    | 270.4          | 12.07                          |
|       | 3    | 754.0          | 12.22                          |
|       | 4    | 1466.2         | 12.12                          |
|       | 5    | 2420.5         | 12.22                          |
| +271  | 2    | 268.2          | 11.97                          |
|       | 3    | 747.5          | 12.12                          |
|       | 4    | 1453.1         | 12.01                          |
|       | 5    | 2397.2         | 12.11                          |
| + 71  | 2    | 173.1          |                                |
|       | 3    | 481.4          |                                |
|       | 4    | 946.8          |                                |

|      | Mode         | 11      | f <sub>n</sub> /A <sub>n</sub> |
|------|--------------|---------|--------------------------------|
| °F   |              | Нz      | Hz                             |
|      | 5            | 1.553.6 |                                |
| +138 | 2            | 171.8   |                                |
|      | 3            | 477.4   |                                |
|      | 4            | 939.5   |                                |
|      | 5            | 1541.1  |                                |
| +202 | 2            | 170.5   |                                |
|      | 3            | 473.6   |                                |
| <br> | 4            | 932.0   |                                |
|      | 5            | 1529.6  |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         |                                |
|      |              |         | -                              |
|      |              |         |                                |
|      |              |         |                                |
|      | <del> </del> |         |                                |
|      |              |         | <del> </del>                   |

| Mode | fn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f <sub>n</sub> /A <sub>n</sub>                                                                                                                                                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Нz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hz                                                                                                                                                                                                                                                                      |
| 2    | 277.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.39                                                                                                                                                                                                                                                                   |
| 3    | 776.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.58                                                                                                                                                                                                                                                                   |
| 4    | 1518.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.55                                                                                                                                                                                                                                                                   |
| 5    | 2503.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.52                                                                                                                                                                                                                                                                   |
| 6    | 3726.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.50                                                                                                                                                                                                                                                                   |
| 7    | 5203.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.48                                                                                                                                                                                                                                                                   |
| 2    | 279.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.46                                                                                                                                                                                                                                                                   |
| 3    | 780.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.65                                                                                                                                                                                                                                                                   |
| 4    | 1526.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.62                                                                                                                                                                                                                                                                   |
| 5    | 2518.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.59                                                                                                                                                                                                                                                                   |
| 6    | 3748.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.58                                                                                                                                                                                                                                                                   |
| 7    | 5228.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.54                                                                                                                                                                                                                                                                   |
| 2    | 281.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.56                                                                                                                                                                                                                                                                   |
| 3    | 788.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.78                                                                                                                                                                                                                                                                   |
| 4    | 1542.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.75                                                                                                                                                                                                                                                                   |
| 5    | 2544.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.72                                                                                                                                                                                                                                                                   |
| 6    | 3789.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.71                                                                                                                                                                                                                                                                   |
| 7    | 5289.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.68                                                                                                                                                                                                                                                                   |
| 2    | 283.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.66                                                                                                                                                                                                                                                                   |
| 3    | 793.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.85                                                                                                                                                                                                                                                                   |
| 4    | 1551.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.83                                                                                                                                                                                                                                                                   |
| 5    | 2559.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.80                                                                                                                                                                                                                                                                   |
| 6    | 3812.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.79                                                                                                                                                                                                                                                                   |
| 7    | 5325.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.77                                                                                                                                                                                                                                                                   |
| 2    | 274.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.26                                                                                                                                                                                                                                                                   |
| 3    | 769.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.47                                                                                                                                                                                                                                                                   |
| 4    | 1508.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.47                                                                                                                                                                                                                                                                   |
| 5    | 2490.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.45                                                                                                                                                                                                                                                                   |
| 6    | 3707.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.44                                                                                                                                                                                                                                                                   |
| 7    | 5173.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.41                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                         |
|      | 2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>2<br>3<br>6<br>7<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>2<br>3<br>6<br>6<br>7<br>2<br>3<br>6<br>6<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>3<br>6<br>6<br>7<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7 | RZ 2 277.60 3 776.28 4 1518.1 5 2503.2 6 3726.0 7 5203.0 2 279.14 3 780.58 4 1526.8 5 2518.1 6 3748.3 7 5228.3 2 281.37 3 788.58 4 1542.8 5 2544.4 6 3789.0 7 5289.0 2 283.58 3 793.02 4 1551.9 5 2559.2 6 3812.0 7 5325.8 2 274.57 3 769.41 4 1508.3 5 2490.6 6 3707.7 |

| Temp. | Mode | fn          | $f_n/A_n$ |
|-------|------|-------------|-----------|
| °F    |      | Hz          | НZ        |
| +175  | 2    | 272.71      | 12.17     |
|       | 3    | 764.41      | 12.39     |
| ļ     | 4    | 1489.9      | 12.31     |
| <br>  | 5    | 2476.4      | 12.38     |
|       | 6    | 3687.1      | 12.37     |
|       | 7    | 5143.3      | 12.33     |
| +225  | 2    | 270.91      | 12.09     |
|       | 3    | 759.19      | 12.30     |
| i     | 4    | 1489.2      | 12.31     |
|       | 5    | 2461.2      | 12.31     |
|       | 6    | 3663.9      | 12.29     |
|       | 7    | 5113.2      | 12.26     |
| +275  | 2    | 268.42      | 11.98     |
|       | 3    | 753.13      | 12.21     |
|       | 4    | 17.6        | 12.21     |
|       | 5    | 2441.3      | 12.21     |
|       | 6    | 3632.1      | 12.19     |
|       | 7    | 5068.4      | 12.15     |
|       |      | i<br>       |           |
|       |      |             |           |
|       |      |             |           |
|       | Ţ    |             |           |
|       |      |             |           |
|       |      |             |           |
|       |      |             |           |
|       |      |             |           |
|       | Ţ    |             |           |
|       |      |             |           |
|       |      |             |           |
|       |      |             |           |
|       | 1    |             |           |
|       |      | <del></del> | -         |

| Beam N | 10. | 070E |
|--------|-----|------|
|--------|-----|------|

| Temp.       | Mode | fn_    | $f_n/A_n$ |
|-------------|------|--------|-----------|
| °F          |      | Hz     | НZ        |
| + 69        | 2    | 277.4  | 12.38     |
|             | 3    | 774.6  | 12.55     |
|             | 4    | 1508.3 | 12.47     |
|             | 5    | 2493.7 | 12.59     |
| + 5         | 2    | 279.8  | 12.49     |
|             | 3    | 781.8  | 12.67     |
|             | 4    | 1522.4 | 12.58     |
|             | 5    | 2497.7 | 12.61     |
| <b>-</b> 50 | 2    | 281.9  | 12.58     |
|             | 3    | 788.1  | 12.77     |
|             | 4    | 1535.6 | 12.69     |
| i           | 5    | 2522.5 | 12.74     |
| +100        | 2    | 275.8  | 12.31     |
|             | 3    | 771.0  | 12.50     |
|             | 4    | 1501.9 | 12.41     |
|             | 5    | 2474.4 | 12.50     |
| +150        | 2    | 273.8  | 12.22     |
|             | 3    | 765.0  | 12.40     |
|             | 4    | 1490.0 | 12.31     |
| i           | 5    | 2453.9 | 12.39     |
| +199        | 2    | 271.8  | 12.13     |
|             | 3    | 759.2  | 12.30     |
|             | 4    | 1478.5 | 12.22     |
|             | 5    | 2434.9 | 12.30     |
| +250        | 2    | 269.5  | 12.03     |
|             | 3    | 752.3  | 12.19     |
| i           | 4    | 1464.9 | 12.11     |
|             | 5    | 2408.4 | 12.16     |
|             |      |        |           |
|             |      |        |           |
|             |      |        |           |

| Temp.                                            | Mode                                             | f <sub>n</sub> | f <sub>n</sub> /A <sub>r.</sub>                  |
|--------------------------------------------------|--------------------------------------------------|----------------|--------------------------------------------------|
| °F                                               |                                                  | Hz             | Hz                                               |
|                                                  |                                                  |                |                                                  |
|                                                  |                                                  |                |                                                  |
| -                                                |                                                  |                |                                                  |
|                                                  |                                                  |                |                                                  |
|                                                  |                                                  |                |                                                  |
|                                                  |                                                  |                |                                                  |
|                                                  | <del>                                     </del> |                |                                                  |
| <del></del>                                      | <del></del>                                      |                | <del> </del>                                     |
| ļ                                                | <del> </del>                                     |                |                                                  |
| ļ                                                | ! i                                              |                |                                                  |
| i                                                | <u> </u>                                         |                | i                                                |
|                                                  | 1                                                |                |                                                  |
|                                                  | <u> </u>                                         |                |                                                  |
|                                                  | <del> </del>                                     |                |                                                  |
|                                                  | <u> </u>                                         |                |                                                  |
|                                                  |                                                  |                | <u> </u>                                         |
|                                                  | i<br>¦                                           |                |                                                  |
|                                                  | \                                                | i              | † — — — ;                                        |
| <del>                                     </del> | <del>†</del>                                     |                |                                                  |
| _                                                | <u> </u>                                         |                | <del> </del>                                     |
|                                                  | ļ                                                |                | <u> </u>                                         |
|                                                  | !                                                |                | !                                                |
|                                                  | i<br>                                            |                |                                                  |
|                                                  |                                                  |                |                                                  |
| <del> </del>                                     | <del>                                     </del> |                |                                                  |
| -                                                | <del></del>                                      |                | <del> </del> -                                   |
| ļ                                                | <del> </del>                                     |                | <del>                                     </del> |
|                                                  | <br>                                             |                | <u> </u>                                         |
|                                                  |                                                  |                |                                                  |
|                                                  |                                                  |                |                                                  |
|                                                  | +                                                |                | <u> </u>                                         |
|                                                  | <del> </del>                                     |                | <del> </del>                                     |
|                                                  | <del> </del>                                     | ļ              |                                                  |
|                                                  |                                                  |                |                                                  |
|                                                  |                                                  |                |                                                  |
|                                                  |                                                  |                |                                                  |
|                                                  | <del> </del>                                     |                | <del> </del>                                     |
|                                                  |                                                  | 1              | <u> </u>                                         |

| Temp. | Mode | fn     | $f_n/A_n$ |
|-------|------|--------|-----------|
| °F    |      | Нz     | Нz        |
| + 72  | 1    | 50.932 | 14.47     |
|       | 2    | 321.70 | 14.36     |
|       | 3    | 903.18 | 14.64     |
|       | 4    | 1768.3 | 14.61     |
|       | 5    | 2920.3 | 14.60     |
|       | 6    | 4333.4 | 14.61     |
|       | 7    | 6045.0 | 14.50     |
| + 25  | 1    | 51.787 | 14.71     |
|       | 2    | 325.58 | 14.53     |
|       | 3    | 911.66 | 14.78     |
|       | 4    | 1782.9 | 14.73     |
|       | 5    | 2942.2 | 14.71     |
|       | 6    | 4406.3 | 14.79     |
|       | 7    | 6129.2 | 14.70     |
| - 25  | 2    | 330.05 | 14.73     |
|       | 3    | 922.34 | 14.95     |
|       | 4    | 1800.3 | 14.88     |
|       | 5    | 2971.2 | 14.86     |
|       | 6    | 4427.4 | 14.86     |
|       | 7    | 6202.4 | 14.87     |
| + 85  | 2    | 330.24 | 14.74     |
|       | 3    | 925.07 | 14.99     |
|       | 4    | 1809.2 | 14.95     |
|       | 5    | 2986.8 | 14.93     |
|       | 6    | 4449.8 | 14.93     |
|       | 7    | 6221.5 | 14.92     |
| +125  | 2    | 319.66 | 14.27     |
|       | 3    | 896.30 | 14.53     |
|       | 4    | 1755.5 | 14.51     |
|       | 5    | 2898.1 | 14.49     |
|       | 5    | 4325.7 | 14.52     |

| Temp.   | Mode                                             | fn                                    | f <sub>n</sub> /A <sub>n</sub>        |
|---------|--------------------------------------------------|---------------------------------------|---------------------------------------|
| °F      |                                                  | Hz                                    | НZ                                    |
|         | 7                                                | 6021.2                                | 14.44                                 |
| +175    | 2                                                | 318.01                                | 14.20                                 |
|         | 3                                                | 892.14                                | 14.46                                 |
|         | 4                                                | 1745.8                                | 14.43                                 |
|         | 5                                                | 2882.3                                | 14.41                                 |
|         | 6                                                | 4304.5                                | 14.44                                 |
| !       | 7                                                | 5989.2                                | 14.36                                 |
| +225    | 2                                                | 315.28                                | 14.08                                 |
|         | 3                                                | 885.58                                | 14.35                                 |
|         | 4                                                | 1733.8                                | 14.33                                 |
|         | 5                                                | 2862.5                                | 14.31                                 |
|         | 6                                                | 4269.1                                | 14.33                                 |
|         | 7                                                | 5945.2                                | 14.26                                 |
| +272    | 2                                                | 313.1                                 | 13.98                                 |
|         | 3                                                | 977.8                                 | 14.23                                 |
| 1       | 4                                                | 1719.3                                | 14.21                                 |
|         | 5                                                | 2838.1                                | 14.19                                 |
|         | 6                                                | 4227.4                                | 14.19                                 |
|         | 7                                                | 4889.7                                | 14.32                                 |
|         | !                                                |                                       |                                       |
|         | :                                                |                                       |                                       |
| i       |                                                  |                                       |                                       |
|         | <del></del>                                      |                                       |                                       |
|         | <del>;</del> _                                   | İ                                     |                                       |
|         |                                                  |                                       |                                       |
|         |                                                  | <del> </del>                          | <del></del>                           |
|         | <del>                                     </del> |                                       |                                       |
|         | <del> </del>                                     | <del> </del>                          | 1                                     |
|         | <del> </del>                                     | <del> </del>                          | <del>-</del>                          |
|         | <del></del>                                      | 1                                     |                                       |
|         | <del>i</del>                                     | · · · · · · · · · · · · · · · · · · · | +                                     |
| <u></u> | <u> </u>                                         | <u>!</u>                              | · · · · · · · · · · · · · · · · · · · |

Beam No. 080D

| Temp. | Mode | f <sub>n</sub> | f <sub>n</sub> /A <sub>n</sub> |
|-------|------|----------------|--------------------------------|
| °F    |      | Hz             | Hz                             |
| + 75  | 2    | 326.2          | 14.804                         |
|       | 3    | 912.1          | 14.783                         |
|       | 4    | 1785.1         | 14.765                         |
|       | 5    | 2952.2         | 14.771                         |
|       | 6    | 4409.5         | 14.769                         |
|       | 7    | 6159.7         | 14.772                         |
| - 72  | 2    | 333.7          | 15.145                         |
|       | 3    | 930.9          | 15.088                         |
|       | 4    | 1820.9         | 15.061                         |
|       | 5    | 3013.2         | 15.076                         |
|       | 6    | 4507.0         | 15.096                         |
|       | 7    | 6296.2         | 15.099                         |
| - 25  | 2    | 331.5          | 15.045                         |
|       | 3    | 925.8          | 15.005                         |
|       | 4    | 1810.1         | 14.972                         |
|       | 5 `  | 2995.2         | 14.986                         |
|       | 6    | 4479.7         | 15.004                         |
|       | 7    | 6259.3         | 15.011                         |
| + 25  | 2    | 328.9          | 14.927                         |
|       | 3    | 918.9          | 14.894                         |
|       | 4    | 1798.1         | 14.872                         |
|       | 5    | 2975.1         | 14.886                         |
|       | 6    | 4447.4         | 14.896                         |
|       | 7    | 6213.3         | 14.900                         |
| + 75  | 2    | 326.1          | 14.800                         |
| !     | 3    | 912.0          | 14.782                         |
|       | 4    | 1785.3         | 14.766                         |
|       | 5    | 2952.4         | 14.772                         |
|       | 6    | 4410.2         | 14.772                         |
|       | 7    | 6160.6         | 14.774                         |
|       |      |                |                                |
|       |      |                |                                |

| Temp.    | Mode     | fn             | f <sub>n</sub> /A <sub>n</sub> |
|----------|----------|----------------|--------------------------------|
| °F       |          | Hz             | Hz                             |
| +125     | 2        | 323.4          | 14.677                         |
|          | 3        | 905.2          | 14.672                         |
| !        | 4        | 1772.8         | 14.663                         |
| <u></u>  | 5        | 2931.5         | 14.668                         |
|          | 6        | 4376.2         | 14.658                         |
| :<br>    | 7        | 6112.4         | 14.658                         |
| +175     | 2        | 322.0          | 14.614                         |
|          | 3        | 898.7          | 14.566                         |
| 1        | 4        | 1760.7         | 14.563                         |
|          | 5        | 2913.6         | 14.578                         |
|          | 6        | 4352.7         | 14.578                         |
|          | 7        | 6082.9         | 14.587                         |
| +225     | ! 2      | 319.5          | 14.500                         |
| <br>     | 3        | 693.0          | 14.474                         |
|          | 4        | 1746.7         | 14.447                         |
| i        | 5        | 2890.8         | 14.464                         |
|          | 6        | 4320.2         | 14.470                         |
|          | 7 _      | 6037.3         | 14.478                         |
| +275     | 2        | 317.0          | 14.387                         |
|          | 3        | 886,2          | 14.364                         |
|          | 4        | 1733.1         | 14.335                         |
|          | 5        | 2867.7         | 14.348                         |
|          | 6        | 4286,3         | 14.356                         |
|          | 7        | 5988.3         | 14.361                         |
|          |          |                |                                |
|          |          |                |                                |
|          | ļ        |                |                                |
|          | i        |                | <del> </del>                   |
|          | <u> </u> | <del> </del> - |                                |
|          |          |                | !                              |
|          |          |                | <del> </del>                   |
| <u> </u> |          | !              | <u> </u>                       |

Beam Nc. 080E

| Temp. | Mode | f_n    | f <sub>n</sub> /A <sub>n</sub> |
|-------|------|--------|--------------------------------|
| °F    |      | Hz     | Hz                             |
| - 75  | 2    | 333.0  | 15.1130                        |
|       | 3    | 927.7  | 15.0364                        |
|       | 4    | 1806.8 | 14.9443                        |
|       | 5    | 2979.5 | 14.9079                        |
|       | 6    | 4437.6 | 14.8635                        |
|       | 7    | 6184.1 | 14.8303                        |
| - 25  | 2    | 330.7  | 15.0086                        |
|       | 3    | 921.0  | 14.9278                        |
| i     | 4    | 1793.8 | 14.8368                        |
|       | 5    | 2957.7 | 14.7989                        |
|       | 6    | 4399.5 | 14.7359                        |
|       | 7    | 6130.3 | 14.7013                        |
| + 25  | 2    | 328.4  | 14.9042                        |
|       | 3    | 915.4  | 14.8370                        |
|       | 4    | 1783.6 | 14.7524                        |
|       | 5_   | 2942.9 | 14.7248                        |
|       | 6    | 4385.0 | 14.6874                        |
|       | 7    | 6120.5 | 14.6771                        |
| + 75  | 2    | 326.0  | 14.7953                        |
|       | 3    | 909.1  | 14.7349                        |
|       | 4    | 1772.5 | 14.6606                        |
|       | _ 5  | 2924.5 | 14.6327                        |
|       | 6    | 4360.5 | 14.6053                        |
|       | 7    | 6081.7 | 14.5847                        |
| +125  | 2    | 323.1  | 14.6637                        |
|       | 3    | 901.6  | 14.6134                        |
|       | 4    | 1758.9 | 14.5481                        |
|       | 5    | 2900.5 | 14.5127                        |
|       | 6    | 4318.2 | 14.4636                        |
|       | 7    | 6023.1 | 14.4442                        |
|       |      |        |                                |

| Temp. | Mode | <sup>£</sup> n | $f_{n}/A_{n}$ |
|-------|------|----------------|---------------|
| °F    |      | Hz             | Hz            |
| +175  | 2    | 320.8          | 14.5593       |
| <br>  | 3    | 894.7          | 14.5015       |
| L     | 4    | 1744.9         | 14.4324       |
|       | 5    | 2878.1         | 14.4006       |
|       | 6    | 4285.4         | 14.3538       |
|       | 7    | 5975.7         | 14.3305       |
| +225  | 2    | 317.4          | 14.4050       |
|       | 3    | 886.5          | 14.3686       |
|       | 4    | 1730.1         | 14.3099       |
|       | 5    | 2849.9         | 14.2595       |
|       | 6    | 4240.1         | 14.2020       |
|       | 7    | 5902.8         | 14.1557       |
| +275  | 2    | 314.5          | 14.2734       |
|       | 3    | 879.9          | 14.2616       |
|       | 4    | 1717.9         | 14.2090       |
|       | 5    | 2830.5         | 14.1624       |
|       | 6    | 4200.6         | 14.0697       |
|       | 7    | 5847.2         | 14.0224       |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |
|       |      |                |               |

| Temp.       | Mode | <u>f</u> n | 3 <sub>a</sub> |
|-------------|------|------------|----------------|
| °F          |      | Нz         | 1:2            |
| - 75        | 2    | 333.3      | 15.127         |
|             | 3    | 927.0      | 15.025         |
|             | 4    | 1819.3     | 15.047         |
|             | 5    | 3017.5     | 15.098         |
|             | 6    | 4518.0     | 15.133         |
|             | 7    | 6306.8     | 15.124         |
| + 25        | 2    | 328.6      | 14.913         |
|             | 3    | 913.0      | 14.798         |
|             | 4    | 1791.9     | 14.821         |
|             | 5    | 2972.3     | 14.872         |
|             | 6    | 4446.8     | 14.994         |
|             | 7    | 6214.5     | 14.903         |
| + 75        | 2    | 326.5      | 14.818         |
|             | 3    | 908.0      | 114.717        |
|             | 4    | 1782.5     | 14.743         |
| i<br>i      | j 5  | 2956.9     | 14.795         |
|             | 6    | 4442.4     | 14.879         |
|             | 7    | 6182.3     | 14.826         |
| +125        | 2    | 324.5      | 14.727         |
|             | 3    | 903.0      | 14.636         |
| į           | 4    | 1772.8     | 14.663         |
|             | 5    | 2940.3     | 14.712         |
|             | 6    | 4417.0     | 14.794         |
|             | 7    | 6149.7     | 14.745         |
| +175        | 2    | 322.9      | 14.655         |
|             | 3    | 898.6      | 14.565         |
|             | 4    | 1762.6     | 14.579         |
|             | 5    | 2922.3     | 14.622         |
|             | 6    | 4371.2     | 14.641         |
|             | 7    | 6112.4     | 14.658         |
|             | 1    |            |                |
| <del></del> |      |            |                |

| Temp.        | Mode           | fn           | f <sub>n</sub> /A <sub>n</sub> |
|--------------|----------------|--------------|--------------------------------|
| °F           |                | Нz           | Hz                             |
| +225         | 2              | 321.1        | 14.573                         |
|              | 3              | 893.8        | 14.487                         |
|              | 4              | 1753.2       | 14.501                         |
|              | 5              | 2905.7       | 14.539                         |
|              | 6              | 4344.6       | 14.552                         |
| i            | 7              | 6076.6       | 14.572                         |
| +275         | 2              | 319.5        | 14.500                         |
|              | ! 3            | 888.8        | 14.406                         |
|              | 4              | 1741.3       | 14.403                         |
|              | 5              | 2889.5       | 14.458                         |
|              | . 6            | 4335.4       | 14.521                         |
|              | 7              | 6042.7       | 14.491                         |
|              |                | !            |                                |
|              | !              |              |                                |
|              | <del>!</del>   | 1            |                                |
|              | <del> </del>   |              |                                |
|              | i              |              |                                |
|              | <del> </del> - |              |                                |
|              |                |              |                                |
|              |                | <del> </del> |                                |
|              | <del> </del>   |              |                                |
|              | <del> </del> - |              | T                              |
|              |                | <del></del>  |                                |
|              | <del> </del>   |              |                                |
| <del> </del> | 1              |              | -                              |
| <u> </u>     |                |              |                                |
| <del></del>  | <del></del>    |              |                                |
|              |                | <del> </del> |                                |
|              | <del> </del>   | -            |                                |
|              | <del> </del>   |              |                                |
| -            | -              |              |                                |
|              | _!             |              | <u> </u>                       |

| Temp. | Mode | ${\sf f}_{f n}$ | f <sub>n</sub> /A <sub>n</sub> |
|-------|------|-----------------|--------------------------------|
| F     |      | Hz              | Нz                             |
| + 69  | 2    | 326.0           | 14.795                         |
|       | 3    | 906.6           | 14.694                         |
|       | 4    | 1780.6          | 14.728                         |
|       | 5    | 2951.4          | 14.767                         |
|       | 6    | 4416.4          | 14.792                         |
|       | 7    | 6174.1          | 14.806                         |
| - 75  | 2    | 331.8           | 15.058                         |
|       | 3    | 906.1           | 14.686                         |
|       | 4    | 1811.6          | 14.728                         |
|       | 5    | 3003.1          | 15.026                         |
|       | 6    | 4501.6          | 14.792                         |
|       | 7    | 6287.1          | 14.806                         |
| 25    | 2    | 330.8           | 15.013                         |
|       | 3    | 920.5           | 14.920                         |
|       | 4    | 1805.6          | 14.934                         |
|       | 5    | 2994.0          | 14.980                         |
|       | 6    | 4482.9          | 15.015                         |
|       | 7    | 6261.8          | 15.017                         |
| + 25  | 2    | 328.6           | 14.913                         |
|       | 3    | 914.1           | 14.815                         |
|       | 4    | 1794.1          | 14.839                         |
|       | 5    | 2974.8          | 14.884                         |
|       | 6    | 4452.9          | 14.914                         |
|       | 7    | 6222.8          | 14.923                         |
| + 75  | 2    | 326.5           | 14.818                         |
|       | 3    | 908.0           | 14.717                         |
|       | 4    | 1783.3          | 14.750                         |
|       | 5    | 2954.9          | 14.785                         |
|       | 6    | 4422.9          | 14.814                         |
|       | 7    | 6182.2          | 14.826                         |
|       |      |                 |                                |

| Temp.                                 | Mode | f      | $f_n/A_n$ |
|---------------------------------------|------|--------|-----------|
| °F                                    |      | Hz     | Hz        |
| +125                                  | 2    | 324.5  | 14.727    |
|                                       | 3    | 902.5  | 14.628    |
| · · · · · · · · · · · · · · · · · · · | 4    | 1772.8 | 14.663    |
|                                       | 5    | 2936.4 | 14.692    |
|                                       | 6    | 4396.2 | 14.724    |
|                                       | 7    | 6145.0 | 14.736    |
| +175                                  | 2    | 322.8  | 14.650    |
|                                       | 3    | 897.7  | 14.550    |
|                                       | 4    | 1763.3 | 14.534    |
|                                       | 5    | 2919.9 | 14.610    |
|                                       | 6    | 4369.1 | 14.634    |
|                                       | 7    | 6109.4 | 14.651    |
| +225                                  | 2    | 321.3  | 14.582    |
|                                       | 1 3  | 894.7  | 14.501    |
|                                       | 4    | 1755.0 | 14.515    |
|                                       | 5    | 2906.9 | 14.545    |
|                                       | 6    | 4366.5 | 14.625    |
|                                       | 7    | 6082.2 | 14.586    |
| +275                                  | 2    | 319.2  | 14.487    |
|                                       | 3    | 889.4  | 14.415    |
|                                       | 4    | 1743.5 | 14.421    |
|                                       | 5    | 2890.3 | 14.461    |
|                                       | 6    | 4338.9 | 14.533    |
|                                       | 7    | 6040.1 | 14.485    |
|                                       |      |        |           |
|                                       |      |        |           |
| L                                     |      |        |           |
|                                       |      |        |           |
|                                       |      |        |           |
|                                       |      |        |           |
|                                       |      |        |           |

| °F         Hz           - 75         2         331.6           3         924.7           4         1810.9           5         2993.7           6         4478.9 | Hz 15.0495 14.9878 14.9782 14.9790 15.0019 15.0025 14.9451 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 3 924.7<br>4 1810.9<br>5 2993.7<br>6 4478.9                                                                                                                     | 14.9878<br>14.9782<br>14.9790<br>15.0019<br>15.0025        |
| 4 1810.9<br>5 2993.7<br>6 4478.9                                                                                                                                | 14.9782<br>14.9790<br>15.0019<br>15.0025                   |
| 5 2993.7<br>6 4478.9                                                                                                                                            | 14.9790<br>15.0019<br>15.0025                              |
| 6 4478.9                                                                                                                                                        | 15.0019<br>15.0025                                         |
| · · · · ·   · · · · · · · · · · · · ·                                                                                                                           | 15.0025                                                    |
| 7 (000                                                                                                                                                          |                                                            |
| 7 6255.9                                                                                                                                                        | 14.9451                                                    |
| - 25   2   329.3                                                                                                                                                |                                                            |
| 3 918.3                                                                                                                                                         | 14.8840                                                    |
| 4 1798.0                                                                                                                                                        | 14.8715                                                    |
| 5 2972.1                                                                                                                                                        | 14.8709                                                    |
| 6 4443.8                                                                                                                                                        | 14.8843                                                    |
| 7 6211.6                                                                                                                                                        | 14.8962                                                    |
| + 20 2 326.7                                                                                                                                                    | 14.8271                                                    |
| 3 913.1                                                                                                                                                         | 14.7997                                                    |
| 4 1786.6                                                                                                                                                        | 14.7773                                                    |
| 5 2949.8                                                                                                                                                        | 14.7593                                                    |
| 6 4406.0                                                                                                                                                        | 14.7577                                                    |
| 7 6160.1                                                                                                                                                        | 14.7727                                                    |
| + 75   2   323.4                                                                                                                                                | 14.6773                                                    |
| 3 905.4                                                                                                                                                         | 14.5749                                                    |
| 4 1769.3                                                                                                                                                        | 14.6342                                                    |
| 5 2912.4                                                                                                                                                        | 14.5722                                                    |
| 6 4339.1                                                                                                                                                        | 14.5336                                                    |
| 7 6071.4                                                                                                                                                        | 14.5600                                                    |
| +125 2 321.2                                                                                                                                                    | 14.5775                                                    |
| 3 899.4                                                                                                                                                         | 14.5777                                                    |
| 4 1757.5                                                                                                                                                        | 14.5366                                                    |
| 5 2892.1                                                                                                                                                        | 14.4706                                                    |
| 6 4307.8                                                                                                                                                        | 14.4288                                                    |
| 7 6026.8                                                                                                                                                        | 14.453                                                     |
|                                                                                                                                                                 |                                                            |

| Temp. | Mode | fn     | f <sub>n</sub> /A <sub>n</sub> |
|-------|------|--------|--------------------------------|
| °F    |      | Нz     | Нz                             |
| +175  | 2    | 320.3  | 14.5366                        |
|       | 3    | 892.2  | 14.4610                        |
|       | 4    | 1739.5 | 14.3877                        |
|       | 5    | 2865.9 | 14.3395                        |
|       | 6    | 4264.8 | 14.2848                        |
|       | 7    | 5945.5 | 14.2581                        |
| +255  | 2    | 316.4  | 14.3596                        |
|       | 3    | 885.7  | 14.3556                        |
|       | 4    | 1731.0 | 14.3174                        |
|       | 5    | 2844.6 | 14.2330                        |
|       | 6    | 4240.8 | 14.2044                        |
|       | 7    | 5932.8 | 14.2276                        |
| +275  | 2    | 312.9  | 14.2462                        |
|       | 3    | 878.5  | 14.2389                        |
|       | 4    | 1718.2 | 14.2115                        |
|       | 5    | 2824.6 | 14.1329                        |
|       | 6    | 4208.5 | 14.0962                        |
|       | 7    | 5888.8 | 14.1221                        |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |
|       |      |        |                                |

**に関する。 これのこれには、一般のでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これのでは、これ** 

| Temp.       | Mode | fn     | f <sub>n</sub> /A <sub>a</sub> |
|-------------|------|--------|--------------------------------|
| °F          |      | Hz     | Hz                             |
| + 77        | 22   | 323.8  | 14.69                          |
|             | 3    | 908.9  | 14.73                          |
|             | 4    | 1774.3 | 14.67                          |
|             | 5    | 2930.9 | 14.66                          |
|             | 6    | 4364.2 | 14.62                          |
|             | 7    | 6158.4 | 14.77                          |
| <b>-</b> 75 | 2    | 340.1  | 15.43                          |
|             | 3    | 927.3  | 15.03                          |
|             | 4    | 1812.2 | 14.99                          |
|             | 5    | 3003.2 | 15.06                          |
|             | 6    | 4499.2 | 15.07                          |
|             | 7    | 6282.4 | 15.07                          |
| - 25        | 2    | 328.6  | 14.91                          |
|             | 3    | 922.0  | 14.94                          |
|             | 4    | 1800.3 | 14.89                          |
| i           | 5    | 2983.8 | 14.93                          |
|             | 6    | 4468.6 | 14.97                          |
|             | 7    | 6230.9 | 14.94                          |
| + 25        | 2    | 325.2  | 14.76                          |
|             | 3    | 916.1  | 14.85                          |
|             | 4    | 1789.4 | 14.80                          |
|             | 5    | 2965.9 | 14.84                          |
|             | 6    | 4426.9 | 14.36                          |
|             | 7    | 6100.8 | 14.63                          |
| +125        | 2    | 321.5  | 14.59                          |
|             | 3    | 902.9  | 1.4.63                         |
|             | 4    | 1762.7 | 14.58                          |
|             | 5    | 2902.0 | 14.52                          |
|             | 6    | 4315.2 | 14.45                          |
|             | 7    | 6033.4 | 14.67                          |
|             |      |        |                                |
|             |      |        |                                |

| Temp. | эрсм   | fn     | f <sub>n</sub> /A <sub>n</sub> |
|-------|--------|--------|--------------------------------|
| °F    |        | Нz     | H2                             |
| +175  | 2      | 319.0  | 14.48                          |
|       | 3      | 896.6  | 14.53                          |
|       | 4      | 1749.3 | 14.47                          |
|       | 5      | 2880.2 | 14.41                          |
|       | 6      | 4293.9 | 14.38                          |
|       | 7      | 5994.0 | 14.37                          |
| +220  | 2      | 317.2  | 14.39                          |
|       | 3      | 891.0  | 14.44                          |
|       | 4      | 1737.6 | 14.37                          |
|       | 5      | 2863.0 | 14.32                          |
| !     | 6      | 4260.9 | 14.27                          |
|       | 7      | 5976.2 | 14.33                          |
| +272  | 2      | 314.0  | 14.25                          |
|       | 3      | 882.4  | 1.4.30                         |
|       | 4      | 1725.4 | 14.27                          |
|       | 5      | 2837.1 | 14.20                          |
|       | 6      | 4223.4 | 14.15                          |
|       | 7      | 5845.5 | 14.02                          |
|       |        | !      |                                |
|       |        | !      |                                |
|       | i      | 1      |                                |
|       | i      |        |                                |
|       |        |        |                                |
|       | i<br>i |        |                                |
|       |        |        |                                |
|       |        |        |                                |
|       |        |        |                                |
|       |        |        |                                |
|       |        |        |                                |
|       |        |        |                                |
|       |        |        |                                |

Beam No. 080-1

| Temp.    | Mode | f <sub>n.</sub> | $f_{\rm n}/A_{\rm n}$ |
|----------|------|-----------------|-----------------------|
| °F       |      | Hz              | Нz                    |
| -100     | 2    | 327.6           | 14.87                 |
| <u> </u> | 3    | 913.3           | 14.80                 |
| ļ        | 4    | 1799.8          | 14.89                 |
|          | 5    | 2985.8          | 14.94                 |
|          | 6    | 4480.7          | 15.01                 |
| i i      | 7    | 6256.9          | 15.00                 |
| - 50     | 2    | 325.4           | 14.77                 |
|          | 3    | 907.3           | 14.71                 |
|          | 4    | 1788.3          | 14.79                 |
|          | 5    | 2966.2          | 14.84                 |
| i        | 6    | 4449.5          | 14.90                 |
|          | 7    | 6217.9          | 14.91                 |
| 0        | 2    | 323.1           | 14.66                 |
| !        | 3    | 900.7           | 14.60                 |
|          | 4    | 1773.2          | 14.67                 |
|          | 5    | 2940.4          | 14.71                 |
|          | 6    | 4410.3          | 14.77                 |
|          | 7    | 6163.5          | 14.78                 |
| + 48     | 2    | 320.9           | 14.56                 |
| !        | _3   | 895.2           | 14.51                 |
|          | 4    | 1762.1          | 14.57                 |
|          | 5    | 2922.5          | 14.62                 |
| i ,      | 6    | 4354.6          | 14.58                 |
|          | 7    | 6126.0          | 14.69                 |
| +102     | 2    | 318.4           | 14.45                 |
|          | 3    | 888.0           | 14.39                 |
|          | 4    | 1747.6          | 14.45                 |
|          | 5    | 2896.9          | 14.49                 |
|          | 6    | 4345.2          | 14.55                 |
|          | 7    | 6076.5          | 14.57                 |
|          |      |                 |                       |

| Temp. | Mode     | fn     | f <sub>n</sub> /A <sub>n</sub> |
|-------|----------|--------|--------------------------------|
| ۶F    |          | Нz     | Нz                             |
| +152  | 2        | 315.9  | 14.34                          |
|       | 3        | 881.2  | 14.28                          |
|       | 4        | 1734.3 | 14.34                          |
| :     | 5        | 2874.1 | 14.38                          |
|       | 6        | 4311.4 | 14.44                          |
|       | 7        | 6030.5 | 14.46                          |
| +200  | ;<br>j 2 | 313.6  | 14.23                          |
|       | 3        | 874.6  | 14.18                          |
|       | 4        | 1721.5 | 14.24                          |
|       | 5        | 2853.5 | 14.28                          |
| į     | 6        | 4280.4 | 14.34                          |
|       | 7        | 5986.4 | 14.36                          |
| +250  | 2        | 311.3  | 14.12                          |
|       | 3        | 867.9  | 14.06                          |
|       | 4        | 1708.8 | 14.13                          |
|       | 5        | 2833.0 | 14.17                          |
|       | 6        | 4249.1 | 14.23                          |
|       | 7        | 5943.6 | 14.25                          |
| +303  | 2        | 308.4  | 14.00                          |
|       | 3        | 860.2  | 13.94                          |
|       | 4        | 1692.8 | 14.00                          |
|       | 5        | 2804.1 | 14.03                          |
|       | 6        | 4206.6 | 14.09                          |
|       | 7        | 5884.7 | 14.11                          |
|       |          |        |                                |
|       |          |        |                                |
|       |          |        |                                |
|       |          |        |                                |
|       |          |        |                                |
|       |          |        | İ                              |
|       |          |        |                                |

Beam No. 080-2

| Temp. Mode f n f n/A n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |      |                |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|----------------|-------|
| °F         Hz         Hz           -100         2         324.0         14.70           3         908.7         14.73           4         1775.8         14.69           5         2941.1         14.72           6         4414.0         14.87           - 55         2         322.0         14.61           3         903.8         14.65           4         1765.5         14.60           5         2922.4         14.62           6         4389.4         14.70           7         6176.1         14.81           - 1         2         319.8         14.51           3         897.6         14.55           4         1758.4         14.54           5         2915.1         14.58           6         4374.5         14.65           7         6123.8         14.69           + 48         2         317.3         14.40           3         890.7         14.39           4         1739.9         14.39           5         2879.0         14.40           6         4324.7         14.48 | _       | 1    |                |       |
| °F         Hz         Hz           -100         2         324.0         14.70           3         908.7         14.73           4         1775.8         14.69           5         2941.1         14.72           6         4414.0         14.87           - 55         2         322.0         14.61           3         903.8         14.65           4         1765.5         14.60           5         2922.4         14.62           6         4389.4         14.70           7         6176.1         14.81           - 1         2         319.8         14.51           3         897.6         14.55           4         1758.4         14.54           5         2915.1         14.58           6         4374.5         14.65           7         6123.8         14.69           + 48         2         317.3         14.40           3         890.7         14.39           4         1739.9         14.39           5         2879.0         14.40           6         4324.7         14.48 | =       | Mode | f <sub>n</sub> |       |
| 3       908.7       14.73         4       1775.8       14.69         5       2941.1       14.72         6       4414.0       14.78         7       6201.4       14.87         - 55       2       322.0       14.61         3       903.8       14.65         4       1765.5       14.60         5       2922.4       14.62         6       4389.4       14.70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2679.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30                                                                      | °F      |      | Hz             | Hz    |
| 4       1775.8       14.69         5       2941.1       14.72         6       4414.0       14.78         7       6201.4       14.87         - 55       2       322.0       14.61         3       903.8       14.65         4       1765.5       14.60         5       2922.4       14.62         6       4389.4       14.70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.58         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.49         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26 <td>-100</td> <td></td> <td>324.0</td> <td></td>                    | -100    |      | 324.0          |       |
| 5       2941.1       14.72         6       4414.0       14.78         7       6201.4       14.87         - 55       2       322.0       14.61         3       903.8       14.65         4       1765.5       14.60         5       2922.4       14.62         6       4389.4       14.70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2679.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26 <td></td> <td>3</td> <td>908.7</td> <td>14.73</td>                  |         | 3    | 908.7          | 14.73 |
| 6       4414.0       14.78         7       6201.4       14.87         - 55       2       322.0       14.61         3       903.8       14.65         4       1765.5       14.60         5       2922.4       14.62         6       4389.4       14.70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         5       2851.0       14.36 <td></td> <td>4</td> <td>1775.8</td> <td>14.69</td>                 |         | 4    | 1775.8         | 14.69 |
| 7       6201.4       14.87         - 55       2       322.0       14.61         3       903.8       14.65         4       1765.5       14.60         5       2922.4       14.62         6       4389.4       14.70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.49         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         5       2851.0       14.26         6       4286.8       14.36 <td>j</td> <td>5</td> <td>2941.1</td> <td>14.72</td>                | j       | 5    | 2941.1         | 14.72 |
| - 55       2       322.0       14.61         3       903.8       14.65         4       1765.5       14.60         5       2922.4       14.62         6       4389.4       14.70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         5       2851.0       14.36                                                                                                                                           | <u></u> | 66   | 4414.0         | 14.78 |
| 3       903.8       14.65         4       1765.5       14.60         5       2922.4       14.62         6       4389.4       14.70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         5       2851.0       14.26         6       4286.8       14.36                                                                                                                                                     |         | 7    | 6201.4         | 14.87 |
| 4       1765.5       14.60         5       2922.4       14.62         6       4389.4       14.70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         5       2851.0       14.36                                                                                                                                                                                                                          | - 55    | .2   | 322.0          | 14.61 |
| 5       2922.4       14.62         6       4389.4       14.70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         5       2851.0       14.36                                                                                                                                                                                                                                                             |         | 3    | 903.8          | 14.65 |
| 6       4389.4       14 70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         5       2851.0       14.26         6       4286.8       14.36                                                                                                                                                                                                                                                             |         | 4    | 1765.5         | 14.60 |
| 6       4389.4       14 70         7       6176.1       14.81         - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         5       2851.0       14.36                                                                                                                                                                                                                                                                                                |         | 5    | 2922.4         | 14.62 |
| - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         6       4286.8       14.36                                                                                                                                                                                                                                                                                                                                                                      |         | 6    | 4389.4         | 14 70 |
| - 1       2       319.8       14.51         3       897.6       14.55         4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         6       4286.8       14.36                                                                                                                                                                                                                                                                                                                                                                      |         | 7_   | 6176.1         | 14.81 |
| 4       1758.4       14.54         5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         6       4286.8       14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - 1     | 2    | 319.8          | 14.51 |
| 5       2915.1       14.58         6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         6       4286.8       14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 3    | 897.6          | 14.55 |
| 6       4374.5       14.65         7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +101       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         6       4286.8       14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 4    | 1758.4         | 14.54 |
| 7       6123.8       14.69         + 48       2       317.3       14.40         3       890.7       14.44         4       1739.9       14.39         5       2879.0       14.40         6       4324.7       14.48         7       6071.6       14.56         +1.01       2       314.8       14.29         3       882.5       14.30         4       1724.1       14.26         5       2851.0       14.26         6       4286.8       14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 5    | 2915.1         | 14.58 |
| + 48     2     317.3     14.40       3     890.7     14.44       4     1739.9     14.39       5     2879.0     14.40       6     4324.7     14.48       7     6071.6     14.56       +101     2     314.8     14.29       3     882.5     14.30       4     1724.1     14.26       5     2851.0     14.26       6     4286.8     14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 6    | 4374.5         | 14.65 |
| 3     890.7     14.44       4     1739.9     14.39       5     2879.0     14.40       6     4324.7     14.48       7     6071.6     14.56       +101     2     314.8     14.29       3     882.5     14.30       4     1724.1     14.26       5     2851.0     14.26       6     4286.8     14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 7    | 6123.8         | 14.69 |
| 4     1739.9     14.39       5     2879.0     14.40       6     4324.7     14.48       7     6071.6     14.56       +101     2     314.8     14.29       3     882.5     14.30       4     1724.1     14.26       5     2851.0     14.26       6     4286.8     14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + 48    | 2    | 317.3          | 14.40 |
| 5     2879.0     14.40       6     4324.7     14.48       7     6071.6     14.56       +101     2     314.8     14.29       3     882.5     14.30       4     1724.1     14.26       5     2851.0     14.26       6     4286.8     14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | 3    | 890.7          | 14.44 |
| 6 4324.7 14.48<br>7 6071.6 14.56<br>+101 2 314.8 14.29<br>3 882.5 14.30<br>4 1724.1 14.26<br>5 2851.0 14.26<br>6 4286.8 14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 4    | 1739.9         | 14.39 |
| 7     6071.6     14.56       +101     2     314.8     14.29       3     882.5     14.30       4     1724.1     14.26       5     2851.0     14.26       6     4286.8     14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 5    | 2879.0         | 14.40 |
| +1.01     2     314.8     14.29       3     882.5     14.30       4     1724.1     14.26       5     2851.0     14.26       6     4286.8     14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | 6    | 4324.7         | 14.48 |
| 3     882.5     14.30       4     1724.1     14.26       5     2851.0     14.26       6     4286.8     14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 7    | 6071.6         | 14.56 |
| 4     1724.1     14.26       5     2851.0     14.26       6     4286.8     14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +101    | 2    | 314.8          | 14.29 |
| 5 2851.0 14.26<br>6 4286.8 14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 3    | 882.5          | 14.30 |
| 6 4286.8 14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 4    | 1724.1         | 14.26 |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 5    | 2851.0         | 14.26 |
| 7 6023.4 14.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 6    | 4286.8         | 14.36 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 7    | 6023.4         | 14.44 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |                |       |

| Temp.    | Mode            | fn                                                 | f <sub>n</sub> /A <sub>n</sub> |
|----------|-----------------|----------------------------------------------------|--------------------------------|
| °F       |                 | Нz                                                 | Нz                             |
| +154     | 2               | 312,5                                              | 14.18                          |
|          | 3               | 877.8                                              | 14.23                          |
| <u> </u> | 4               | 1710.4                                             | 14.15                          |
| ļ        | 5               | 2829.6                                             | 14.16                          |
| <u> </u> | 6               | 4256.4                                             | 14.26                          |
| ļ        | 7               | 5980.7                                             | 14.34                          |
| +199     | 2               | 310.3                                              | 14.08                          |
| <u> </u> | 3               | 870.8                                              | 14.11                          |
| ļ        | 4               | 1698.2                                             | 14.05                          |
|          | 5               | 2808.7                                             | 14.05                          |
|          | 6               | 4226.1                                             | 14.15                          |
|          | 7               | 5936.5                                             | 14.24                          |
| +248     | 2               | 307.9                                              | 13.97                          |
| :        | ! 3             | 864.0                                              | 14.00                          |
|          | 4               | 1684.9                                             | 13.94                          |
|          | !<br>! 5        | 2786.9                                             | 13.94                          |
|          | 6_              | 4193.2                                             | 14.04                          |
| ļ        | :<br>1 <u>7</u> | 5896.1                                             | 14.14                          |
| +299     | 2               | 305.2                                              | 13.86                          |
| L        | 3               | 856.2                                              | 13.87                          |
|          | 4               | 1670.2                                             | 13.81                          |
|          | 5               | 2762.6                                             | 13.82                          |
|          | 6               | 4157.1                                             | 13.92                          |
|          | 7               | 5839.3                                             | 14.00                          |
|          |                 |                                                    |                                |
|          |                 |                                                    |                                |
|          | <u> </u>        | <br>                                               | <br>                           |
|          |                 |                                                    |                                |
|          | i<br>!          |                                                    | !                              |
|          |                 | !                                                  | 1                              |
|          | !               |                                                    |                                |
| ·        |                 | <del>·                                      </del> |                                |

(. ·

| Temp.         | Mode | f_n    | f <sub>n</sub> /A <sub>n</sub> |
|---------------|------|--------|--------------------------------|
| °F            |      | Нz     | Нz                             |
| + 48          | 2    | 306.9  | 13.92                          |
|               | 3    | 866.4  | 14.04                          |
|               | 4    | 1705.8 | 14.11                          |
|               | 5    | 2830.3 | 14.16                          |
|               | 6    | 4244.3 | 14.22                          |
|               | 7    | 5959.4 | 14.29                          |
| - 2           | 2    | 309.1  | 14.03                          |
|               | 3    | 872.8  | 14.14                          |
| i             | 4    | 1718.5 | 14.21                          |
|               | 5    | 2851.8 | 14.27                          |
|               | 6    | 4278.3 | 14.33                          |
|               | 7    | 6004.2 | 14.40                          |
| - 55          | 2    | 311.3  | 14.13                          |
|               | 3    | 879.4  | 14.25                          |
| <del>  </del> | 4    | 1731.6 | 14.32                          |
|               | 5 1  | 2873.5 | 14.38                          |
|               | 6    | 4311.0 | 14.44                          |
|               | 7    | 6047.9 | 14.50                          |
| -105          | 2    | 313.5  | 14.23                          |
|               | 3    | 835.0  | 14.34                          |
|               | 4    | 1741.9 | 14.41                          |
|               | 5    | 2882.3 | 14.42                          |
|               | 6    | 4343.6 | 14.55                          |
|               | 7    | 6081.2 | 14.58                          |
| +102          | 2    | 304.3  | 13.81                          |
|               | 3    | 859.4  | 15.93                          |
|               | 4    | 1688.9 | 13.97                          |
|               | 5    | 2798.2 | 14.00                          |
|               | 6    | 4201.2 | 14.07                          |
|               | 7    | 5898.8 | 14.17                          |
|               |      |        |                                |
|               |      |        | · —                            |

| Temp. | Mode | fn          | $f_n/A_n$   |
|-------|------|-------------|-------------|
| °F    |      | H2          | Hz          |
| +158  | 2    | 301.9       | 13.70       |
|       | 3    | 852.3       | 13.81       |
|       | 4    | 1675.1      | 13.85       |
|       | 5    | 2774.0      | 13.88       |
|       | 6    | 4161.0      | 13.94       |
|       | 7    | 5843.7      | 14.01       |
| +200  | 2    | 299.8       | 13.61       |
|       | 3    | 846.7       | 13.72       |
|       | 4    | 1663.1      | 13.76       |
|       | 5    | 2751.1      | 13.76       |
|       | 6    | 4125.6      | 13.82       |
|       | . 7  | 5823.5      | 13.96       |
| +246  | 2    | 297.4       | 13.50       |
|       | 3    | 839.6       | 13.61       |
|       | 1    | 1650.3      | 13.65       |
|       | 5    | 2739.8      | 13.71       |
|       | 6    | 4135.8      | 13.85       |
|       | 7    | 5808.5      | 13.93       |
| +301  | 2    | 294.6       | 13.37       |
| L     | 3    | 834.6       | 13.53       |
|       | 4    | 1651.0      | 13.66       |
|       | 5    | 2746.6      | 13.74       |
|       | 6    | 4116.2      | 13.79       |
|       | 7    | 5764.3      | 13.82       |
|       | 1    |             |             |
|       |      |             |             |
|       |      |             |             |
|       | <br> | <br>        |             |
|       |      |             |             |
| 1     |      |             |             |
|       | :    |             | !           |
|       |      | <del></del> | <del></del> |

# APPENDIX B POLYMERIC MATERIALS TEST DATA

Polymeric Material Characterization Test

|                                                                                                                                | Test No. /9-8                           |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Beam Nos. 060D and                                                                                                             | Date <u>12/11/79</u>                    |
| Damping Material E.A.R. Exodamp C-2                                                                                            |                                         |
|                                                                                                                                |                                         |
| Material Thickness 0.1204 cm Mater                                                                                             | rial Density 1.716 g/cc                 |
| Beam Thickness 0.1524 cm Beam                                                                                                  |                                         |
| Beam Length 17.78 cm                                                                                                           | 717 77 77 77 77 77 77 77 77 77 77 77 77 |
| Temperature Test Range: Between                                                                                                | 3.9 °C and 93.3 °C                      |
| Projuency Test Range: Between 10                                                                                               | Hz and 10 KHz                           |
| Loss Factor n <sub>D</sub> :                                                                                                   |                                         |
| Peak 100 Hz n <sub>D</sub> 0.95 Temperat                                                                                       | ure 44.4 °C                             |
| 1000 Hz % 0.95 Temperat                                                                                                        | ure 54.44 °C                            |
| Range 100 Hz 23.9 °C 63.3                                                                                                      | _°C                                     |
| 1000 liz 35.6 °C 77.8                                                                                                          | °C                                      |
| LOG(ETA)=LOG(ETAFROL)+((SL+SH)A+(S<br>T0 ETAFROL SL SH<br>B1 B2 B3<br>140.0 .950 .325325<br>LOG(FR)+LOG(F)-12(T-T0)/(525/1.8+1 | FROL C<br>B4 B5<br>8.0000E+07 3.000     |
| Remarks: Material was tested as an                                                                                             | Oberst type specimen.                   |
| Loctite 404 was used to adhere mate                                                                                            | crial to the beam.                      |
|                                                                                                                                | acquisition of accurate data            |
| between 120°C and 150°C. An attemp                                                                                             | t was made to acuqire more              |
| data in this range by going to a Mo                                                                                            | dified Oberst type specimen,            |
| but this did not help.                                                                                                         |                                         |
|                                                                                                                                |                                         |
|                                                                                                                                |                                         |
|                                                                                                                                |                                         |
|                                                                                                                                |                                         |
|                                                                                                                                |                                         |

ſ,

| D O      | 1дв             |       |        |               |        |         |         |         |        |        | T       |         |                | 7      |         |        |         |         |         |        |        |         |         |          |         |
|----------|-----------------|-------|--------|---------------|--------|---------|---------|---------|--------|--------|---------|---------|----------------|--------|---------|--------|---------|---------|---------|--------|--------|---------|---------|----------|---------|
| 0090     | r <del>-l</del> |       |        |               |        |         |         |         |        |        |         |         |                |        |         |        |         |         |         |        |        |         |         |          |         |
| Beam No. | s<br>S          |       |        | 0.0210        | 0.0192 | 0.0172  | 0.0165  | 0.0354  | 0 6593 | 0.0524 | 0 0467  | 70.00   | 0.0436         | 07100  | 0.0764  | 0.0720 | 0.0681  | 0.0660  | 0.0614  | 7,000  | 0.0927 | 0.0000  | 0.0962  | 0.0974   | 0.0996  |
|          | Δ£              |       |        | 5.79          | 15.02  | 26.71   | 42.67   | 60.00   | 15.20  | 38.47  | 68.38   | 111 16  | 157.80         |        | 00.00   | 50.57  | 95.41   | 155.40  | 218.34  | 20.63  | 2 L A  |         | 1.24.41 | 222.50   | 19.77   |
|          | fR              |       | 010    | 21.077        | 788.00 | 1565.38 | 2614.43 | 3927.15 | 264.93 | 755.70 | 1499.90 | 2538.29 | 3766.18        | 10 400 | 10.10.  | /2/.52 | 1453 33 | 2234.14 | 3654.48 | 233.78 | 673.70 | רכ 1351 | 3018 00 | 27.00 10 | 2 60.10 |
| •        | f.              |       | 272 23 | 2 / 2 - 2 / 2 | 772.98 | 1538.67 | 2571.76 | 3867.15 | 249.73 | 715.23 | 1431.52 | 2397.13 | 3608.78        | 235 62 | 26.66.2 | 070.93 | 1357.92 | 2278.74 | 3436,14 | 213.15 | 612.15 | 1229 80 | 2063 28 | 3101     |         |
| ų        | t<br>n          |       | 245.46 |               | 86.789 | 1336.57 | 2217.45 | 3342.38 | 244.46 | 680,52 | 1331.74 | 2209.45 | 3328.94        | 244.14 | 679 39  | 66.776 | 1329.92 | 2206.45 | 3322.07 | 243.58 | 678:05 | 1327.50 | 2263 46 | 3315.51  |         |
| ų        | ຸບ              |       | 275.58 | i             |        | 1552.10 | 2593.13 | 3897.54 | 256.50 | 734.17 | 1464.66 | 2456.91 | 3694.95        | 244.60 | 702.59  | • }    | 1401.60 | 2355.73 | 3556.31 | 222.65 | 644.72 | 1293.32 | 2181.63 | €o.locc  |         |
|          |                 | Mode  | 2      | ~             | -\  -  | 4       | 5       | 9       | 2      | m;     | 4       | ις      | ı2:            | (7)    | 1       |        | 4       | 25      | 9       | 7.4    | (1)    | 41      | ın      | <u> </u> |         |
| o<br>L   | 4               | Temp. | 25     | Ĵί            |        | 9.7     | 9:1     | 26      | 49     | 6.7    | 49      | 40      | <b>4</b><br>0. | — eu   | 0.9     |        | 09      | 09      | 0.9     | (A)    | ٦,     | ď (     | u ·     | 10.1     |         |

10 ----

|                              |       |        |        |         |         |         |        |           |         |         |         |        |        |         | <u> </u> |
|------------------------------|-------|--------|--------|---------|---------|---------|--------|-----------|---------|---------|---------|--------|--------|---------|----------|
| 1dB                          |       |        |        |         |         |         |        |           |         |         |         |        |        |         |          |
| ຮ                            |       | 0.1597 | 0.1670 | 0.1723  | 0.1862  | 0.1858  | 0.0720 | 0.0883    | 0.0952  | 0.1005  | 0.1125  | 0.0446 | 0.0644 | 0.0722  | 0.0810   |
| Δf                           |       | 34.58  | 106.48 | 224.11  | 408.26  | 613.71  | 15.14  | 53.54     | 115.49  | 205.78  | 348.00  | 6.07   | 37.32  | R3.57   | 157.40   |
| $f_{ m R}$                   |       | 235.42 | 692.54 | 1407.05 | 2364.87 | 3432.05 | 218.62 | 632.16    | 1272.40 | 2143.71 | 3234.61 | 208.04 | 597.30 | 1199.05 | 2018.61  |
| $^{\mathrm{f}}_{\mathrm{L}}$ |       | 200.84 | 586.06 | 1182.94 | 1956.61 | 3119.89 | 203.48 | 578.62    | 1156.91 | 1937.93 | 2886.61 | 198.97 | 559.93 | 1115.43 | 1861.21  |
| f<br>u                       |       | 244.14 | 678.05 | 1327.50 | 2201.46 | 3715.51 | 243.14 | 677.12    | 1325.09 | 2197.46 | 3308.04 | 243.05 | 675.58 | 1323.27 | 2192.46  |
| f<br>C                       |       | 216.52 | 637.72 | 1300.93 | 2193.01 | 3362.31 | 210.29 | 605.99    | 1212.81 | 2048.15 | 3094.29 | 203.37 | 579.25 | 1157.66 | 1944.02  |
|                              | Mode  | 2      | 3      | 4       | S       | 9       | 2      | ~         | 47      | ιſ      | ئ       | 2      | ~~     | 130     | 10       |
| о<br>[14                     | Temp. | 76     | 3.6    | 76      | 26      | 26      | 8.7    | - 1<br>90 | ι.<br>ω | 28      | C 00    | 102    | 202    | 300     | 192      |

0090

Beam No.

4 Page

9.030 !

0.0916 0.0906

266.66 3,10.00

1952.97 5888.56 199.00 560.49

2786.31

3300.58

2928.73

701 00

5627.41

15.955 196.10

0.0147 0.0228 0.0292

2.96

12.65 32.26 17 H 7

187\_76

242.04

197.48

C1

125 1.55 125 (A)

1119.12

1086.86

1318.44 2187.47

1102.95 1841.95

٠,

1873.31

1805.47

| 0090 |  |
|------|--|
| Š.   |  |
| Beam |  |

| 1dB                       |       |         |        |        |         |         |         |        |        |         |         |         |        |        |         |         |         |        |        |         |         |
|---------------------------|-------|---------|--------|--------|---------|---------|---------|--------|--------|---------|---------|---------|--------|--------|---------|---------|---------|--------|--------|---------|---------|
| e<br>S                    |       | 0.0408  | 0.0060 | 0.0074 | 0.0092  | 0.0120  | 0.0140  | 0.0038 | 0.0038 | 0.0639  | J.0052  | 0.0057  | 0.0059 | 0.0062 | 0.0071  | 0.0084  | 0.0102  | 0.0032 | 0.0034 | 0.0027  | 0.0035  |
| δÉ                        |       | 112.90  | 1.18   | 4.04   | 10.00   | 21.63   | 37.86   | 0.74   | 2.05   | 4.15    | 9.25    | 15.18   | 1.00   | 2.94   | 6.62    | 12.91   | 23.58   | 0.61   | 1.82   | 2.95    | 6.30    |
| F<br>R                    |       | 2820.44 | 196.03 | 548.91 | 1089.56 | 1814.69 | 2722.59 | 194.51 | 544.12 | 1078.26 | 1793.77 | 2687.53 | 169.48 | 474.86 | 933.31  | 1547.62 | 2325.13 | 193.62 | 541.27 | 1069.59 | 1777.87 |
| $\mathbf{f}_{\mathrm{L}}$ |       | 2707.54 | 194.85 | 544.87 | 1079.56 | 1793.06 | 2684.73 | 193.77 | 542.07 | 1074.11 | 1784.52 | 2672.35 | 168.48 | 471.92 | 926.69  | 1534.71 | 2301.55 | 103.01 | 539.45 | 1066.64 | 1771.57 |
| f.                        |       | 3287.15 | 240.94 | 670.65 | 1314.20 | 2175.48 | 3273.71 | 239.95 | 668.49 | 1308.76 | 2165.48 | 3260.27 | 239.73 | 668.18 | 1308.76 | 2165.48 | 3260.27 | 238.84 | 665.71 | 1303.32 | 2153.49 |
| <b>~</b>                  |       | 2763.77 | 195.37 | 546.98 | 1085.13 | 1803.69 | 2702.73 | 194.06 | 542.97 | 1076.11 | 1788.97 | 2689.05 | 168.85 | 473.24 | 929.79  | 1541.10 | 2313.47 | 193.27 | 540.19 | 1068.17 | 1774.83 |
|                           | Hode  | و       | 2      | ε      | 4       | ıΩ      | မ       | 5      | m      | ++      | 5       | و       | 2      | m      | ব       | 5       | 9       | 2      | ٣      | 4       | 5       |
| ە<br>بى                   | Temp. | 125     | 151    | 151    | 151     | 150     | 150     | 176    | 176    | 175     | 174     | 173     | 1.0    | 177    | 175     | 174     | 173     | 200    | c 5.7  | 100     | ] a &   |

A SECTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P

οţ

|          |                             | _     | ·       | _ | т- | <del>, .</del> | <del>-,</del> | <br>_ | <del>,</del> – | <u>,                                     </u> | <br> | , | ·r | <del></del> | ·- | <br>_ | <br> | _ |
|----------|-----------------------------|-------|---------|---|----|----------------|---------------|-------|----------------|-----------------------------------------------|------|---|----|-------------|----|-------|------|---|
| 0090     | 148                         |       |         |   |    |                |               |       |                |                                               |      |   |    |             |    |       |      |   |
| Beam No. | s<br>S                      |       | 0.0034  |   |    |                |               |       |                |                                               |      |   |    |             |    |       |      |   |
|          | ٥f                          |       | 9.07    |   |    |                |               |       |                |                                               |      |   |    |             |    |       |      | T |
|          | £                           |       | 2665.53 |   |    |                |               |       |                |                                               |      |   |    |             |    |       |      |   |
|          | $\mathfrak{t}_{\mathrm{L}}$ |       | 2656.46 |   |    |                |               |       |                |                                               |      |   |    |             |    |       |      |   |
|          | f<br>n                      |       | 3245.35 |   |    |                |               |       |                |                                               |      |   |    |             |    |       |      |   |
|          | f,                          |       | 2661.43 |   |    |                |               |       |                |                                               |      |   |    |             |    |       |      |   |
|          |                             | Mode  | 9       |   |    |                |               |       |                |                                               |      |   |    |             |    |       |      |   |
| ļ        | o<br>[i.i                   | Temp. | 198     |   |    |                |               |       |                |                                               |      |   |    |             |    |       |      | I |

| C-2003                                                      |                    |
|-------------------------------------------------------------|--------------------|
| EXPERIMENTAL CODE :140 MATERIAL :E A R EXODAMP DATA SOURCES | MANUFACTURER INDRE |

|                      | 100.                        | 86+         | +08       | + 6 B       | +98         | +0B              | + 0.B       | 96       | <b>3</b>       | Ž           | \$          | 60+            | 0.0         | 80+         | + <b>0</b> 8 | 80          | 80          | # <b>@</b> #   | 8           | 6 <del>0</del> + | 6 <b>0</b> + | D (         | 5)<br>P     | 804         | 20 CE       |              | 8          | 80+            | 82+         | æ           | ************************************** | 84          | <b>8</b>    | <b>6</b>    | 20 C        | 20.5        | •           | 1           |
|----------------------|-----------------------------|-------------|-----------|-------------|-------------|------------------|-------------|----------|----------------|-------------|-------------|----------------|-------------|-------------|--------------|-------------|-------------|----------------|-------------|------------------|--------------|-------------|-------------|-------------|-------------|--------------|------------|----------------|-------------|-------------|----------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                      | COMPLEX NO NAMES            | 3.99924E+08 | 6.03279E  | 7.69367E    | 8.25972E    | 9.47632E         | 3.300596+   | 3.70092E | 1.034126+      | 1.16132E    | 1.24277E+09 | 1.321696+09    | . 38394E    | 9.46013E    | 8.89407E     | 8.32430E+0  | 8.361418    | 8.00637E       | 1.07819E+0  | 1.08920E+0       | 1.08048E+0   | 1.09158E+09 | 1.04264E    | 6.99423E    | 9.618416+08 | 162945       | 30000      | 4. 04.893E     | 3.840835+08 | 3.585656+88 | 2.55781E                               | 3.53268E+08 | 3.34273£    | 7.76215E    | 1.02521E    | 1.000 M     | 7.030       | ¥ 4 6 6 6   |
|                      |                             | 243.0       | 675.6     | 1323.3      | 2192.5      | 33 <b>66</b> , 6 | 2183.5      | 3287.1   | 243.6          | 678.1       | 1327.5      | 2201.5         | 3315.5      | 244.5       | 680.5        | 1331.7      | 2200        | 3358.9         | 244.1       | 679.6            | 1329.9       | 2206.5      | 3323.0      | 243.1       | 227         | 1,000        | 0 2000     | 245.5          | 683.0       | 1336.6      | 1318.4                                 | 2217.5      | 3342.4      | 1314.2      | 2175.5      | 3273.7      | 7000        | 4           |
|                      | COMPOSITE BEAL<br>LOSS FAC. |             | ¥ 24      | . 6722      | . 6810      | <b>9</b> 0109.   | . 6368      | .6468    | . <b>6</b> 927 | . 0955      | 6963        | . <b>6</b> 974 | 9680        | . 6593      | . 8524       | .0467       |             | . <b>64</b> 26 | .0764       | .0720            | . 9681       | 9999        | .0614       | . 0720      | . 6889      | 2            | 3          | 6716           | 26.0        | .0172       | . 6292                                 | . 0165      | .0154       | 2600        | . 0120      | . 0140      | Series.     |             |
|                      | BEAN NOD. C.                | 32E+10      | 82756E+1  | 6.82139€+10 | 6.85259€+10 | 6.98540E+10      | 6.73651E+10 |          | 6.95857€+10    | 6.87758E+10 | 6.86507E+10 | 6.90896E+10    | 7.04873£+16 | 7.00894E+10 | 6.92778€+10  | 6.98980E+10 | 6.95921E+10 | 7.105965+10    | 6.99668E+10 | 6.90886E+10      | 6.89013€+10  | 6.946325+10 | 7.08649€+10 | 6.9334SE+10 | 6.858736+10 | 6.8401/E+18  | 7 447444   | 7 ACC 405 + 10 | 6.97795€+10 | 6.95921E+10 |                                        | 7.00969€+10 |             | 6.72820E+10 | 6.74686E+10 | 6.872125+10 | 6.67262£+10 |             |
|                      | M .                         | 'n          | ų         | ÷           | 'n          | ,•               | s.          | ģ        | من             | <u>.</u>    | +           | 5              | ė           | ก๋          | m            | ÷           | 'n          | ف              | က်          | 'n               | ÷            | 'n          | ض           | പ്          | 'n,         | ÷            | i u        | i n            | ď           | 4           | 4                                      | 'n          | 9           | 4           | ķ           | •           | ÷           |             |
|                      | FREG.                       | 203.4       | 579.2     | 1157.       | 9.146       | 2928.7           | 1841.9      | 2763.8   | 222.6          | 644.7       | 1293.3      | 2181.6         | 3291.3      | 256.5       | 734.2        | 1464.7      | 2456.9      | 3695.0         | 244.6       | 702.6            | 1401.6       | 2355.7      | 3556.3      | 210.3       | 900         | 3.01V        |            | 2000           | 786.7       | 1552.1      | 0.0                                    | 2593.1      | 3897.5      | 1085.1      | 1803.7      | 2702.7      | 1076.1      |             |
|                      | TEMP.                       | 38.9        | 38.8      | 38.5        | œ.<br>œ.    | 8                | 51.7        | 51.7     | 0.00           | 2           | S.          | 8              | 23.9        | ₹.0         | ₹.6          | 4.0         | ₹,          | ₹.0            | 15.6        | 15.6             | 15.6         | 15.6        | 15.6        | 9.00        | 9.0         | ٠.<br>ج<br>ج | 9.0        | 90             | יר<br>ייי   | .e.         | 51.7                                   | -3.3        | -<br>-<br>- | <br>58      | 65.6        | 65.6        | 78.         | 6           |
|                      | 1055                        | 1.1889      | •         | •           | 5.55        | 6466             | 9           | 8744     | 8              | 1870        | 3448        | .3238          | 3289        | 1623        | 1335         | 9611.       | . 1075      | .1017          | . 2433      | 8582.            | . 1840       | .1722       | .1593       | 7326        | 5659        | 26           |            |                | 6           | . 0378      | 787                                    | 0320        | .0336       | . 7853      | .6967       | 1.2211      | 7.248       | Į           |
| :UDRI-CET<br>R :NONE | MODULUS                     | 363896+08   | 75500E+0B | 161636+09   | 475978+89   | 4701074          | 74755F+878  | 2754F+88 | 12255          | 201215400   | 604655+00   | 87.867e        | 287795+89   | 832536+09   | 67494E+89    | 32571E+09   | 788825.+60  | 87530E+09      | 43240E+09   | 29293E+00        | 87369E+69    | .33756E+09  | .54686E+09  | .54743E+68  | .62886E+09  | . 16495F+62  | COST ACTOR | 2003346408     | 864705+60   | 483476+69   |                                        |             | .941406+09  | .88421E+07  | B9+365689.  | 87696E+87   | .81007E+07  | A. T. 1. A. |
| AFIR. P              | į                           | -           |           | m           | 7           |                  | • <b>4</b>  | •        | · a            | 90          | 9           | -              | 15          | 13          | 14           | 15          | 16 7        | 17 7           | 81          | 20.02            | 8            | 21.         | გ           | 5           | 7           | S            | 91         | ັດຄື           | 38          | 38          | 3.5                                    | 2           | 8           | Ø.          | ĸ           | 9           | 37 2        | •           |



#### Polymeric Material Characterization Test

|                                                                                                                                                                                                                                                                           | Test            | No. 79-9     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| Beam Nos. 080-2 and                                                                                                                                                                                                                                                       | Date            | 2/15/79      |
| Damping Material F.A.R. Isodamp C-1002                                                                                                                                                                                                                                    |                 |              |
|                                                                                                                                                                                                                                                                           |                 |              |
| Material Thickness 0.3068 cm Material Density                                                                                                                                                                                                                             | 1.2             | 71 g/cc      |
| Beam Thi chess 0.2032 cm Beam Density 2.                                                                                                                                                                                                                                  | 795 <u>-</u>    | 1/cc         |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                      |                 |              |
| Temperature Test Range: Between -31.7 % and                                                                                                                                                                                                                               | 51.             | <u>7_</u> ∘c |
| Frequency Test Range: Between 10 Hz and                                                                                                                                                                                                                                   | 10 K            | H2           |
| Loss Factor r <sub>D</sub> :                                                                                                                                                                                                                                              |                 |              |
| Poak 100 Hz n 0.900 Temperature 11.0                                                                                                                                                                                                                                      | _°C             |              |
| 1000 Hz n <sub>D</sub> 0.900 Temperature 19.0                                                                                                                                                                                                                             |                 |              |
| Range 100 Hz -1.0 °C 25.0 °C                                                                                                                                                                                                                                              |                 |              |
| 1000 Hz 7.0 °C 34.0 °C                                                                                                                                                                                                                                                    |                 |              |
| LOG(F)+LOG(ML)+(2LOG(MRCM-ML))/(1+:FROM-FR)ESh) TO FROM MROM N A1 A2 A3 A4 140.0 1.0003E+12 1.7500E+08 .350 1.5000E- A-(LOG(FR)-LOG(FROL))/C LOG(ETA)+LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-5QRT(1+/T0)) ETAFROL SH SH FROL C B1 B2 B3 B4 B5 140.0 1900 .225225 3.0000E+11 1.7 | +07<br>A**2)))C | / <b>2</b>   |
| Remarks: <u>Test specimen was an "Oberst"-Lybe co</u>                                                                                                                                                                                                                     | nfi             | <u>iun</u>   |
|                                                                                                                                                                                                                                                                           |                 |              |
|                                                                                                                                                                                                                                                                           |                 |              |
|                                                                                                                                                                                                                                                                           |                 |              |
|                                                                                                                                                                                                                                                                           |                 |              |
|                                                                                                                                                                                                                                                                           | <del></del>     |              |
|                                                                                                                                                                                                                                                                           |                 |              |
|                                                                                                                                                                                                                                                                           | ···             |              |

|                |       |        |         |          | · ·     |         | <del></del> - |            |            |         |         |        | <u> </u> |         |         |          |        |               |         |         |         |
|----------------|-------|--------|---------|----------|---------|---------|---------------|------------|------------|---------|---------|--------|----------|---------|---------|----------|--------|---------------|---------|---------|---------|
| 148            |       |        |         |          |         |         |               |            |            |         |         |        |          |         |         |          |        |               |         |         | ×       |
| r<br>S         |       | 0,0493 | 0.0137  | 0.0164   | 0.0140  | 0.0147  | 0.0462        | 0.0431     | 6980.0     | 0.0354  | 0.0344  | 0.0819 | 0.0749   | 0.0686  | 0.0646  | 0.0674   | 0.1103 | 0.1049        | 0.0994  | 0.09634 | 0.0970  |
| Δ£             |       | 5.20   | 13.96   | 33.08    | 46.42   | 71.66   | 15.14         | 41.14      | 70.06      | 111.52  | 161.06  | 24.57  | 66.37    | 121.81  | 190.82  | 205.23   | 31.48  | 87.59         | 166.80  | 270.60  | 403.89  |
| fR             |       | 350.78 | 1021.86 | 2036.73  | 3332.81 | 4918.97 | 336.51        | 973.55     | 1932.97    | 3205.71 | 4749.27 | 316.00 | 919.09   | 1835.30 | 3042.10 | 4502.41  | 30.5   |               | 1758.91 | 2928.49 | 4254.81 |
| Î.             |       | 345.58 | 1007.90 | 1997.65  | 3286.39 | 4847.31 | 321.37        | 932.40     | 1862.90    | 3094.19 | 4583.27 | 291.43 | 852.72   | 1713.49 | 2841.37 | 4207.18  | 270.67 | 791.03        | 1592.11 | 2657.89 | 4040.37 |
| H<br>G         |       | 310.03 | 375.79  | 1723.46  | 2863.99 | 4203.29 | 309.14        | 872.39     | 1718.02    | 2852.00 | 76.87   | 308.48 | 870.85   | 1714.39 | 10.2845 | 4264.93  | 307.92 | 00698         | 1710.16 | 2838.03 | 4257.47 |
| J <sub>O</sub> |       | 348.24 | 1015.4  | 2016     | 3311.   | 1 0 Fac | 327.83        | 955.69     | 1890.01    | 3150 21 | 4680.65 | 303.47 | 885.96   | 1774.6  | 2952.29 | 4379.47  | 285.50 | 835.04        | 1678.32 | 3808.   | 4164.   |
|                | ::c3e | ( )    |         | • 7      | 10      | 4       | cı            | <i>"</i> . | ~ 3.       | L       | ٠.      | (,     | m        | •;      | 17.     | -<br>\&> |        | <i>(</i> **)  | .,      |         | 4       |
| (14<br>U       | 100   |        | ;<br>{; | (1<br>(1 | 1 1     | ¥ : -   | 16:           | -          | ( )<br>( ) |         | 11.     |        | , ,      | , 4     |         |          | 11:    | 10 /<br>1 / y | 15 ·    |         | 1,4     |

71.

Page 1 of 3

|          |                 | r     |        |        | <del>,</del> | <del></del> | <del>-</del> - |         | <del></del> |        | <del></del> | т—       | · • · · · |        |        |                 |         |         |        |         |            |                                                                                                      |                                         |   |
|----------|-----------------|-------|--------|--------|--------------|-------------|----------------|---------|-------------|--------|-------------|----------|-----------|--------|--------|-----------------|---------|---------|--------|---------|------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|---|
| 080-3    | 1dB             |       |        |        |              |             |                | *       | ;           |        |             |          | ×         |        |        |                 |         |         |        |         |            |                                                                                                      |                                         |   |
| Beam No. | r<br>S          |       |        | 0.1067 | 0.1138       | 0.1173      | 0.1207         | 0.1186  | 0.0705      | 0.0942 | 6.1070      | 0.1190   | 0.1341    | 0.0161 | 0.0054 | 0 6303          | 0.0405  | 0.0524  | 0.0063 | 0.0086  | 0.0122     | 6.0172                                                                                               | 0.0251                                  |   |
|          | ΔÉ              |       |        | 27.97  | 86.44        | 179.64      | 309.84         | 453.42  | 17.43       | 67.61  | 154.47      | 387.82   | 482.71    | 3 80   |        |                 | 93.22   | 172.75  | 1.47   | 5.69    |            | 37.40                                                                                                |                                         | 7 |
|          | $f_{ m R}$      |       |        | 614.44 | 803.48       | 1620.65     | 2704.27        | 3917.41 | 255.51      | 750.05 | 1517.68     | 2549.11  | 3696.44   | 237.27 | 678.25 | 1356.26         | 2263.53 | 3376.58 | 234.00 | 663.80  | 1321.33    | 2192.31                                                                                              | 3267.39                                 |   |
|          | f               |       | 746 47 | 7.07.7 | 717.04       | 1441.01     | 2396.43        | 3686.78 | 238.08      | 682.44 | 1363.21     | 2261.29  | 3450.91   | 233.47 | 661.20 | 1316.09         | 2170.31 | 3203.83 | 222.53 | 658.11  | 3305.35    | 2154.92                                                                                              | 7:92.39                                 |   |
|          | en c            |       | 307.51 |        | လ၂           | 1707.74     | 2833.02        | 4250.00 | 305.71      | 865.92 | 1703,51     | 282K.N2  | 4239,55   | 305.50 | 862.52 | 160K.9F         | 60.6883 | 4221.64 | 304.29 | 889.133 | 1689.60    | 10°00 60                                                                                             | • † • † • † • • • • • • • • • • • • • • |   |
|          | 41 <sub>0</sub> |       | 262.1  | ;      | 2<br>()      | 1531.0g     | 2567.91        | 3823.48 | 247.14      | 17.65  | 3443.46     | 50-11-52 | 3599.51   | 238.36 | 650.98 | 100 m - \$100 C | 2216.83 |         | 233.36 | 561.00  | 1 373 00 7 | 15<br>• 7<br>• 6<br>• 7<br>• 6<br>• 7<br>• 7<br>• 7<br>• 7<br>• 7<br>• 7<br>• 7<br>• 7<br>• 7<br>• 7 | 3.26.73                                 |   |
|          |                 | 1.0de | Ca     | ,      | .,           | ٠,٠         | 10             | Q)      | cı          | C)     | .,          | 1/1      |           | (1)    |        | -,              | IO      | u       | C 1    | (+)     | . ,        |                                                                                                      | 4                                       |   |
| (        | ,,<br>,         | Tens  | 10:    | u c    |              | <i>(;</i> ) | 66             | 100     | gi<br>Ty    | 0.     | 0.          | 0.       | a ·       | 75.01  | 1 2 2  | 0               | u : }   |         |        | 707     |            | 4                                                                                                    | ()<br>()                                |   |

|      | Y | 000 |  |
|------|---|-----|--|
| (    | 2 |     |  |
| 1000 | Ţ |     |  |

|                  |        |         |                     |             |         |         |         | <br> |  | <br> | <br> | <br> | <br> | <br> | <br>- |  |
|------------------|--------|---------|---------------------|-------------|---------|---------|---------|------|--|------|------|------|------|------|-------|--|
| 1dB              |        |         |                     |             |         |         |         |      |  |      |      |      |      |      |       |  |
| s u              |        | 0.0426  | 0.0046              | 0.0053      | 0.0091  | 0.0183  | 0.0396  |      |  |      |      |      |      |      |       |  |
| οf               |        | 192.40  | 1.08                | 3.49        | 11.84   | 39.26   | 125.58  |      |  |      |      |      |      |      |       |  |
| ۲.<br>۲.         |        | 4633.71 | 232.69              | 658.49      | 1307.79 | 2168.77 | 3231.11 |      |  |      |      |      |      |      |       |  |
| f.               |        | 4441.31 | 231.61              | 655.00      | 1295.95 | 2129.51 | 3105.53 |      |  |      |      |      |      |      |       |  |
| m <sub>t</sub> : |        |         | 363.19              | 856.04      | 1683.56 | 2787.05 | 4184.32 |      |  |      |      |      |      |      |       |  |
| <sup>41</sup> 0  |        | 4511.61 | 323.19              | 656.73      | 1301.83 | 2149.43 | 3174.82 |      |  |      |      |      |      |      |       |  |
|                  | 1Xode  | 1 .     | (,                  | <i>(.</i> ) | 47      | in      | w       |      |  |      |      |      |      |      |       |  |
| lia<br>o         | 1.0.13 | 75.7    | -<br>44<br>44<br>44 | 1 4,        | 11.     | 1 1     |         |      |  |      |      |      |      |      |       |  |

-------

EXPERIMENTAL CODE ::47
MATERIAL :E A R :SODAMP C-1982
MANNIFACTURER :MONE
AFRI :UPRI-GET
JTHER :MONE
TC. MODULUS LOSS TEMP.

| Ŝ                      | 2.43376E    | 1.78286F  | 3.57507E     | r)          | 6.21309E    | 8.44743E+8  | 4.08535E+0  | 1.50964E+0      | 2.18111E+0  | 'n          | S.99892E+0  | 3.36451E+0  | 3.248375+0  | 3.461995+0      | 3.41010E+0 | 3.39485E+0 | 3.370346+0  | 1.86377E+0      | 1.905386+0       | 1.68393€+0  | 1.62553€+0 | 1.56347E+8     | 2.73753E+0 | 2.77877E+0  | 2.67343E+0  | 2.55156E+0 | 2.62644E+0    | 2.69025E+0  | 2.983135+6  | 3.476345+0  | 3.40025E+0  | 6.91892E+0    | 1.50893E+1  | 8.556705+0  | 7.22432E+0  | 7.38896E+07 | 3.2772E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.98014     |
|------------------------|-------------|-----------|--------------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|-------------|-----------------|------------|------------|-------------|-----------------|------------------|-------------|------------|----------------|------------|-------------|-------------|------------|---------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| SEAR                   |             |           |              |             |             |             | 4221.6      | 396.            | 865.9       | 1703.5      | 2826.9      | 4239.5      | 367.9       |                 |            |            |             |                 |                  |             |            |                |            |             |             |            |               | 367.4       | 867.8       | 2833.0      | 4259.0      | 310.2         | 128.9       | 1783.5      | 2864.3      | 4293.3      | 1707.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.5.8       |
| COMPOSITE<br>LOSS FAC. | .0122       | 1000      | .0183        | .0254       | 1000        | .0405       | .0524       | .0305           | . 8942      | . 1678      | 1198        | .1341       | .1103       | .:049           | P660.      | . 0963     | .0970       | . 9462          | .0431            | . 6369      | .0354      | . <b>6</b> 344 | .6816      | . 6749      | 9890        | . 8646     | .0674         | 1961        | 1138        | 1267        | .1186       | . 0149        | . 3573      | .0164       | . 0140      | . 0147      | .1173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .0137       |
| BEAN HOD.              | 6.25557E+10 | 326915    | 22879E       | 25939E      | 3446        | 34545E      | 42829E      | 2 <b>069</b> 5E | 30843E      | 366856      | 49429E      | 48295E      | 25511E      | 3844 <b>0</b> E | 48874E     | 45865E     | 3787E2      | 3847BE          | 40497E           | 4677BE      | 52249E     | 365765         | 2778BE     | 38148E      | 4464BE      | 4365E      | <b>56883E</b> | 232796      | 33642E      | 43596E      | 51495E      | 34972E        | 39723E      | .50881E     | .57744E     | 4835E       | .33961E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45469E      |
| HODE                   | <b>√</b> ⊔  | •         | 'n           | ė,          | ÷           | 'n          | ú           | <b>ດ</b> ່      | m<br>M      | ÷           | υ;          | •           | 'n          | (T)             | ÷          | 'n         | 9           |                 | m                | 4           |            | ú              | ก่         | 'n          | 4           | v,         | 9             | 'n          | m           | Ġ           | ف           | 'n            | 'n          | ÷           | 'n          | ف           | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e,          |
| FREG.                  | 1313.1      |           |              | 6.8.9       |             | 2216.B      | 3536.5      | 247.            | 717.7       | 1443.5      | 2417.5      | 3588.5      | 285.5       | 835.6           | 1678.2     | 2808.9     | 4164.7      | 327.8           | 952.6            | 839.        | 3150.2     | 4686.7         |            | 886.8       |             | 2952.3     | 4379.5        | 262.2       | - :         | -:          | 3853.5      | 348.2         |             | 2010.5      | 331:11      | 4885.0      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LO.         |
| TEMP.                  | 9.0         | n u       | 25           | S.          | N)          | N           | N           |                 |             |             |             | S           | <u> </u>    | (F)             | e-         | -          | •           | -               | 61-              | C .         | - 19       | 7              | 7          | =           | -1          | ÷          | <b>r</b> ~    | ۲.          |             | ۲.          |             | (*)           | 1           | n           | ŗ           | -32.8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E -         |
| 1355                   |             |           | -            |             |             |             |             |                 |             |             |             |             |             |                 |            |            |             |                 |                  |             |            |                |            |             |             |            |               |             |             |             |             |               |             |             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| SULUS<br>SANDON        | 3.589436+67 | - 440 HAD | C. SC3066+06 | 3.396756+67 | 8.411986+67 | 5.36555E+67 | 5.65a73E+07 | 1.845636+68     | 3.14632E+08 | 4.224796+08 | 4.738145+38 | 4.486575.48 | 8.558545+68 | 69-31566        | 64+35ES2** | 60.3.000   | 50+356-35-1 | 25.8.1.8.1.8.1. | 2 - 4 - 20E + BC | 2.243355+69 | 2.2557E+65 | 2.156916+85    | 2851-38    | 1.53476E+69 | 1.68:458.69 | 53+39SE1_1 | 1.643535+69   | 4.46:535-68 | 5.835695-08 | 7.83.635+38 | 7.54546E+88 | 2 34672E + 89 | 3.458916+10 | 2.785226+95 | 2.724875+65 | 2.586326+65 | 11. U. 14. U. 14. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16. U. 16 | 5.65620E+89 |
| نِ                     |             |           |              | <b>U</b> h  |             |             |             |                 |             |             |             |             |             |                 |            |            |             |                 |                  |             |            |                | 4          | Ŋ           | 9           | r<br>(1)   | 80            | Š           | ě           | Ä           | 30          |               | •           | Ų;          | 4           | į,          | er)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (A)         |



### Polymeric Material Characterization Test

| 1030 10                                                                                                                                                                                                                                                                         | o. <u>/8-3</u>                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Berm Nos. Not and Recorded Date                                                                                                                                                                                                                                                 | 2/3/78                                 |
| Damping Material MacBond IB1120                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                 |                                        |
| Material Thickness <u>0.0203</u> cm Material Density <u>0.950</u>                                                                                                                                                                                                               | —ā/aa                                  |
| Beam Thickness 0.2032 cm Beam Density 2.795 g/o                                                                                                                                                                                                                                 | cc                                     |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                            |                                        |
| Temperature Test Range: Between3.9 oc and79.4                                                                                                                                                                                                                                   | _°C                                    |
| Frequency Test Range: Between 10 Hz and 10 KH:                                                                                                                                                                                                                                  | Z                                      |
| Loss Factor np:                                                                                                                                                                                                                                                                 |                                        |
| Peak 100 Hz np 1.5 Temperature 12.2 %                                                                                                                                                                                                                                           |                                        |
| Peak 100 Hz $\eta_D = 1.5$ Temperature $\frac{12.2}{32.2} \circ 0$                                                                                                                                                                                                              |                                        |
|                                                                                                                                                                                                                                                                                 |                                        |
| Range 100 Hz                                                                                                                                                                                                                                                                    |                                        |
| 1000 Hz 15.6 °C 53.9 °C                                                                                                                                                                                                                                                         |                                        |
| T0 FROM MROM N ML A1 A2 A3 A4 40.0 2.0000E+03 3.3000E+06 .450 7.7500E+04 A*(LOG(FR)~LOG(FROL))/C LOG(ETA)*LOG(ETAFROL)+((SL+SH)A+(SL~SH)(1-SQRT(1+A**2)))C/2 T0 ETAFROL SL SH FROL C B1 B2 B3 B4 B5 40.0 1.500 1.000900 1.3500E+03 2.250 LOG(FR)*LOG(F)-12(T-T0)/(525/1.8+T-T0) |                                        |
| Remarks:                                                                                                                                                                                                                                                                        |                                        |
|                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                 | <del></del>                            |
|                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                 |                                        |
|                                                                                                                                                                                                                                                                                 | ······································ |
|                                                                                                                                                                                                                                                                                 | •                                      |
|                                                                                                                                                                                                                                                                                 |                                        |

Test No. 78-3 Beam No. Not Recorded

| 1¢B      |       |          |          |         |        |        |        |        |        |        |        |        |        |        |              |        | ×        | ×             | ×      |         | ٨             |
|----------|-------|----------|----------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------------|--------|----------|---------------|--------|---------|---------------|
| د<br>ع   |       | 0.0260   | 0.0404   | 0.0484  | 0.0634 | 0.0643 | 0.0611 | 0.0758 | 0.1080 | 0.1160 | 0.1180 | 0.1130 | 0.1435 | 0.2364 | 0.2544       | 0.2581 | 0.2072   | 0.1951        | 0.2753 | b.3550  | 0.4578        |
| Δ£       |       | 17.1     | 71.1     | 155.7   | 295.0  | 431.6  | 566.8  | 47.3   | 177.9  | 342.1  | 501.6  | 688.6  | 1208.8 | 131.8  | 360.7        | 658.4  | 774.4    | 1.072.4       | 2011.0 | 130.4   | 232.2         |
| th<br>Ex |       | 665.5    | 1800.6   | 3298.2  | 4819.2 | 6937.1 |        | 648.9  | 1746.0 | 3146.8 | 4497.6 | 6500.5 |        | 645.1  | 1683.8       | 3003.0 | 3980.8   | 5835.2        | 8120.9 | 468.1   | 12?3.3        |
| H<br>L   |       | 648.4    | 1729.5   | 3142.5  | 4524.2 | 6505.5 | 9003.1 | 601.6  | 1568.1 | 2804.7 | 3996.0 | 5811.9 | 7898.6 | 513.3  | 1323.1       | 2344.6 | 3586.9   | 5289.7        | 0.8607 | 337.7   |               |
| rr E     |       | 327.3    | 912.2    | 1783.5  | 2942.5 | 4407.4 | 6140.3 | 325.9  | 8.806  | 1777.5 | 2932.0 | 4391.0 | 6121.6 | 324.8  | 0.5.8        | 1772.6 | 2923.0   | के अन्य प्रस् | 6100.7 | 223.1   | 0.23.1        |
| f,       |       | 656.7    | 1763.0   | 3222.9  | 4656.0 | 6712.6 | 9286.5 | 624.3  | 1649.4 | 2942.9 | 4260.2 | 6169.7 | 8503.0 | 572.9  | 1 1463.0     | 2634.1 | 3816.0   | 5599.3        | 1212.  | 0 0 0 C | 1115.2        |
|          |       | 2        | m        | ₹7      | w      | ب      | ı .    | C1     | 6      | .,     | w      | J      | 1%     | C1     |              | चा     | 5        | 4.            | ,      | ٦       |               |
| o<br>(14 | Tono. | in<br>Ca | io<br>Ci | io<br>G | ;r:    | 83     | ir:    | ( ·    | Co     | 000    | 0,10   | 311    | 00     | ,      | ( <u>-</u> ) | 2      | ر ب<br>ا | (_)           |        | ;       | ,<br>,<br>, , |

Test No. 78-3 Beam No. Not Recorded

| 1dB      |      |                |        |            |                  |                   |        |                |        |        |        |              |        |        |        |        |        |              | ×        |                 |                   |
|----------|------|----------------|--------|------------|------------------|-------------------|--------|----------------|--------|--------|--------|--------------|--------|--------|--------|--------|--------|--------------|----------|-----------------|-------------------|
| e<br>a   |      | 0.1982         | 0.1326 | 0.1390     | 0.1435           | 0.1412            | 0.1383 | 0.1012         | 0.0720 | 0.0659 | 0.0656 | 0.1103       | 0.1187 | 0.0690 | 0.0541 | 0.0502 | 0.0522 | 0.0378       | 0.0365   | 0.0247          | p.0226            |
| Δ£       |      | 375.1          | 411.6  | 643.0      | 912.6            | 47.4              | 129.6  | 182.9          | 213.5  | 290.5  | 404.0  | 37.0         | 109.6  | 123.9  | 159.6  | 220.7  | 317.5  | 12.4         | 33.22    | 43.6            | 65.5              |
| .,<br>.¤ |      | 2138.2         | 3329.7 | 5006.8     | 9.0689           | 365.8             | 1003.8 | 1903.2         | 3081.6 | 4579.0 | 6357.7 | 347.8        | 8.586  | 1862.5 | 3034.1 | 4513.1 | 6278.6 | 334.2        | 916.9    | 1786.5          | 2939.4            |
| f.<br>L  |      | 1763.1         | 2917.1 | 4363.8     | 5978.0           | 318.4             | 874.2  | 1720.3         | 2868.1 | 4288.5 | 5953.7 | 320.8        | 876.2  | 1738.6 | 2874.5 | 4292.4 | 5961.1 | 321.8        | 0.006    | 1742.9          | 2873.9            |
| ధ        |      | 1764.2         | 2910.0 | 4358.8     | 6071.8           | 321.7             | 898.4  | 1758.1         | 2899.0 | 4337.4 | 6042.3 |              | 398.4  | 1758.1 | 2899.0 | 4337.4 | K042.3 | 320:1        | 895.3    | 1750.3          | 12888.0           |
| О        |      | 1920.2         | 3130.9 | 4670.3     | 6425.6           | 339.0             | 937.1  | 1816.5         | 1973.4 | 4414.3 | 6168.0 | ti<br>m<br>m | 929.7  | 1.90.1 | 2953.2 | 4398.7 | 6090.2 | 328.0        | 007.4    | : 1.564         | 1.1904.1          |
|          | Node | 77             | 5      | ι <u>σ</u> | 1                | ~1                | m      | ٠,             | un     | 9      |        | C)           | 65     | -7     | .0     | ري     | 1      | C1           | .,       |                 |                   |
| [14      | 0.00 | (.<br>()<br>F1 | 001    | 200        | ر<br>ن<br>د<br>د | (f)<br>(q)<br>(d) | 823    | 10<br>C1<br>C1 | (C)    | 10     | 602    | 200          | 60     | 177    | 57.    | (4)    | 111    | (* )<br>(* ) | ;<br>(;) | ;<br>[')<br>; { | ( )<br>( )<br>( ) |

of

Test No. 78-3

| corded                | ldB            |       |        |        |        |        |        |        |         |      |      |   | -    |   | _ |   |  |  |
|-----------------------|----------------|-------|--------|--------|--------|--------|--------|--------|---------|------|------|---|------|---|---|---|--|--|
| Not Re                | 10             |       |        |        |        |        |        |        |         |      |      | _ |      |   |   |   |  |  |
| Beam No. Not Recorded | ິຊ             |       | 9.0176 | 0.0173 | 0.0213 | 0.0169 | 0.0115 | 0.0101 | 0.00755 |      |      |   |      |   |   |   |  |  |
|                       | ΔĒ             |       | 76.3   | 104.7  | 6.9    | 15.2   | 20.1   | 29.2   | 45.3    |      |      |   |      |   |   |   |  |  |
|                       | f,             |       | 4368.7 | 0.0009 | 328.2  | 908.0  | 1762.1 | 2901.0 | 6024.0  |      |      |   |      |   |   |   |  |  |
|                       | T.             |       | 4292.4 | 5985.3 | 321.3  | 892.8  | 1742.0 | 2871.8 | 4287.7  |      |      |   |      |   |   |   |  |  |
|                       | f<br>n         |       | 4318.0 | 6013.1 | 318.6  | 9.168  | 1743.6 | 2876.0 | 4297.2  |      |      |   |      |   |   | : |  |  |
|                       | m <sub>o</sub> |       | 4328.9 | 6035.4 | 324.5  | 900.4  | 1752.4 | 2886.2 | 4303.7  |      |      |   |      |   |   |   |  |  |
|                       |                | Hode  | 9      | 7      | 2      | 3      | 4      | 5      | 9       | <br> | <br> |   | <br> | - |   |   |  |  |
|                       | o<br>[14       | Temp. | 150    | 750    | 175    | 175    | 175    | 173    | 5.1     |      | <br> |   |      |   |   |   |  |  |

And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

οŧ

| AL CODE :197<br>MACBOND 1120<br>MATA SOURCES | NO.                         |
|----------------------------------------------|-----------------------------|
| EXPERIMENTAL MATERIAL (MAC                   | MANUFACTURER<br>AFRL : UDRI |

|   | CONFLEX HOD.       | 00+40/C | 1.31/1/2+8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.20046E+07 | 1.846405+07 | 0130075       | 1010       |             | . 831PMF+8 | 275              | 87869F   | 23430546                 |      | . 1685bt       | . 699176 | 671P1F   | 100      | 1004101                                                            | .56191E  | 1.90004F+07 |                                        | 1 . 368456 +87 | 1.78044E+07 | 3 05731F+07 | 10000 | 1 . 85 396£ +60      | 7.1505EF+66 | 1 022015+06 | 00.114.110.1 | 4. C0440E + 00 | 6.53939£+96 | 8.983675+00 | 20+31C1C4 | 00.74.00.00.00.00.00.00.00.00.00.00.00.00.00 | ו בככו ודישם        | 1.696318.+06 | 1.93975E+06      | 2.60140E+06 | 3. 62452F+06 | 7 554075405 | CONTRACTO | 1 . 82230E + 05 | 1.12199E+06 | 1.42644E+06 | 1.95912E+06 | 20075400 | 300500 | 100000000000000000000000000000000000000 | 200000                                  | 3. 79624E+85 | 5.67750E+05 | 6.56612E+05 | 8.97763E+05 | 5.15046F+04 | 220000 | 1.368556+05 | 1/34E+   | 2.50043E+05 | 988E        |
|---|--------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------------|------------|-------------|------------|------------------|----------|--------------------------|------|----------------|----------|----------|----------|--------------------------------------------------------------------|----------|-------------|----------------------------------------|----------------|-------------|-------------|-------|----------------------|-------------|-------------|--------------|----------------|-------------|-------------|-----------|----------------------------------------------|---------------------|--------------|------------------|-------------|--------------|-------------|-----------|-----------------|-------------|-------------|-------------|----------|--------|-----------------------------------------|-----------------------------------------|--------------|-------------|-------------|-------------|-------------|--------|-------------|----------|-------------|-------------|
|   | BEHT PREG.         | •       | 367.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 912.2       | 1787.5      | 2010          | 4.001      | 1           | 6140.3     | 325.9            | 308.8    | 0 000                    | - 1  | 0.000<br>0.000 | 4391.0   | A.1513   | 100      | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 8.596    | 1,72,6      | יייייייייייייייייייייייייייייייייייייי | Ξ.             | Ξ.          | •           |       | _                    |             |             | 10.00        |                |             | 6071.8      |           |                                              | יות<br>אולי<br>אולי |              | 2833.0           | 4337.4      | 5.042.3      | 7 160       | 301.      | 4.35.8          | 1758.1      | 2899.0      | 4337.4      | 6 0440   | 1.460  | 900                                     |                                         | 1750.3       | 9.8882      | 4318.0      | 5013.1      | 4.00        |        | 20.150      | 1743.6   | 2876.0      | 4297.2      |
|   | CONFUSITE          |         | 9924                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .040        | 9424        | AC 20         | 6.434      |             | 1.99       | . 0758           | 1.086    | 1150                     |      | 1180           | .1130    | 1436     | 7900     | 1000                                                               | . 2544   | . 5331      | 1000                                   | י בפינט.       | . 1951      | 626         |       | 9556.                | . 4578      | 600         | 300          | 1325           | 1380        | 1435        | 017       |                                              |                     | .1012        | .0728            | 6659        | 9556         |             | 5077      |                 | 9690.       | .0541       | 6000        | 0000     | 1000   | 0 10 0                                  | C989.                                   | . 0247       | . 0226      | .0176       | . 0172      | 600         |        | 59.65       | 9118.    | . 0101      | 9484        |
| 1 |                    | 200000  | \$ / <pr +="" 18<="" td=""><td>96189E+18</td><td>07020F+10</td><td>14772641</td><td>200700</td><td></td><td>34501E+1</td><td><b>20</b>694E+1</td><td>34979F+1</td><td>14305550</td><td></td><td>33 35 A</td><td>95441E+1</td><td>14377541</td><td></td><td>42871641</td><td>386E + 1</td><td>28526F+1</td><td></td><td>5&gt;1&lt;8&lt;</td><td>91203E+1</td><td>255726+</td><td></td><td>33 / <b>8</b>5E + I</td><td>3476SE+1</td><td>11374000</td><td>1 20100</td><td>1384 /F+1</td><td>35278E+1</td><td>2000F+1</td><td>14303000</td><td>100000</td><td>191646+1</td><td>7738EE+1</td><td><b>73853E+</b>1</td><td>73566E+1</td><td>725 A GF + 1</td><td>100000</td><td>1 100 2</td><td>751645+1</td><td>77308E+1</td><td>739236+1</td><td>725556+1</td><td>100000</td><td></td><td></td><td>14485E+</td><td>71311E+1</td><td>58815E+1</td><td>725:0E+1</td><td>56825E+1</td><td>1733330</td><td>4</td><td>6.689215+18</td><td>36182E+1</td><td>33272E+1</td><td>S6046E+1</td></pr> | 96189E+18   | 07020F+10   | 14772641      | 200700     |             | 34501E+1   | <b>20</b> 694E+1 | 34979F+1 | 14305550                 |      | 33 35 A        | 95441E+1 | 14377541 |          | 42871641                                                           | 386E + 1 | 28526F+1    |                                        | 5>1<8<         | 91203E+1    | 255726+     |       | 33 / <b>8</b> 5E + I | 3476SE+1    | 11374000    | 1 20100      | 1384 /F+1      | 35278E+1    | 2000F+1     | 14303000  | 100000                                       | 191646+1            | 7738EE+1     | <b>73853E+</b> 1 | 73566E+1    | 725 A GF + 1 | 100000      | 1 100 2   | 751645+1        | 77308E+1    | 739236+1    | 725556+1    | 100000   |        |                                         | 14485E+                                 | 71311E+1     | 58815E+1    | 725:0E+1    | 56825E+1    | 1733330     | 4      | 6.689215+18 | 36182E+1 | 33272E+1    | S6046E+1    |
|   |                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |             |               |            |             |            |                  |          |                          |      |                |          |          |          |                                                                    |          |             |                                        |                |             |             |       |                      |             |             |              |                |             |             |           |                                              |                     |              |                  |             |              |             |           |                 |             |             |             |          |        |                                         |                                         |              |             |             |             |             |        | m.          |          |             |             |
|   | FEG.               | - (     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8           | o           | ١,            | V          | 0           | S          | m                | 4        | . 0                      | • (  | υ              | ^        | •        | •        | Э,                                                                 | ø        | _           | • •                                    | Ð              | m           | -           | ٠ (   | œ                    | N           | ın          | U            | ת              | m           | u           |           |                                              |                     |              | 2973.4           |             |              | •           | 200       |                 |             | 2953.2      | •           | . "      | 900    | •                                       | * · · · · · · · · · · · · · · · · · · · | 1764.3       | 1.000 V     | 4328.9      | 6935.4      | 10.0        | 18     | <b>B</b>    | 1.25.    | 2886.2      | 4303.7      |
|   | TEMP.              | ۰       | ņ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۳           | 'n          | 'n            | י ר        | ż           | 'n         | 9                | 9        |                          |      | Ė              | 9        | 9        |          | :                                                                  | 2        | 7           | ;                                      | 2.13           | 2           | ,           | •     | 37.                  | 5           | ,           | -            | 3              | 37.         | 5           |           | -                                            | ?!                  | 51.          | 3                | 51.         |              |             |           | 51.7            | 51.7        | 51.7        | 7.5         |          |        | 0 1                                     | 0.0                                     | 65.6         | 65.6        | 65.4        | 65.6        | 2           | ç      | 2           | <b>Y</b> | 7.          | ₹.          |
|   | LOSS TEM           | FACTOR  | .2347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CYC         |             | 7             |            | 2           | 3          | 75F4.            | ACCC     | 100                      | 7007 | 79EE.          | 37 15    |          | 3774     | 1.0334                                                             | .8712    | 755         |                                        | .6534          | 6325        | 000         | 0000  | 1.5426               | 7.1551      |             | 200          | . 264          | 1.0636      | 000         |           | 700                                          | 1.5783              | 1.3671       | 11511            | 3475        | 1000         |             | 7.1136    | 1.5781          | 1.1763      | 1.6639      | 1757        | 27.7     | 100    |                                         | C .                                     | . 7763       | 8295        | .8197       | . 7284      | 4156        |        | 17.4        | 4364     | 4299        | .3855       |
|   | PODULUS<br>STANDON |         | CE+300119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 004676407   |             | - 7.20 PC - 1 | 5          | . 86397E+87 | 8          | ç                | ,        | ֓֞֞֝֟֝֟֝֓֞֟֝֓֓֓֓֟֓֓֓֓֓֟֟ | L    | 6              | a        |          | DAMPS AT | 8                                                                  | 6        | Ġ           |                                        | 6              | ŗ           | ,           | Ď     | 9                    | ď           | 1           | 8            | 9              | 9           | č           | 1         | Ç                                            | ŝ                   | 9            | g                | 9           | ď            |             | - 100 CE  | 6.51478E+85     | . S2205E+   | .34881E+    | 66547F+     | •        | 9 4    | 9 (                                     | •                                       | . 83 ESE     | •           | . 0:011E+0  | 232566+     | 4700mm      | 2000   |             | . 98322E |             | 7.21453E+B5 |
|   | į                  |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •         | y r         | 7)            | <b>T</b> ( | S           | 2،         | , [              | - 0      | <b>O</b> (               | 29   | -              |          |          | Ų        | F                                                                  | *        |             | 7                                      | 9              | • 2         |             | 9     | 61                   | ē           | ;           | 7            | 25             | 53          | 4           | , ,       | <b>(</b> )                                   | Š                   | Ņ            | <b>∞</b><br>~    | 5           | ۶            | ) r         | 7         | Ŋ               | M           | *           | ¥           | 17       | 3      | ì                                       | ×                                       | ጽ            | 7           | ÷           | 4           | 1           | ? ;    | 7           | 45       | 7           | 47          |

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

97.



## Polymeric Material Characterization Test

|             |                                                                                                                                                        | Test N                                  | 0. 78-4        |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|
| Beam Nos.   | Not and Recorded                                                                                                                                       | Date _                                  | 2/9/78         |
| Damping Mat | cerial MacBond IB1160                                                                                                                                  |                                         |                |
|             |                                                                                                                                                        |                                         |                |
| Material Th | nickness 0.0102 cm Material Density                                                                                                                    | 0.965                                   | a/cc           |
|             | ness 0.152 cm Beam Density 2.                                                                                                                          |                                         | •              |
|             | 17.78 cm                                                                                                                                               |                                         |                |
|             | Test Range: Between -3.9 °C and                                                                                                                        | 65.6                                    | ەر-            |
| =           | Test Range: Between 10 Hz and                                                                                                                          |                                         | <del>_</del> · |
| Loss Factor |                                                                                                                                                        |                                         |                |
|             | D                                                                                                                                                      | 0.0                                     |                |
|             | ) Hz $n_D$ 2.0 Temperature 7.2<br>) Hz $n_D$ 2.0 Temperature 29.4                                                                                      |                                         |                |
| Range 100   | 2                                                                                                                                                      | _ ~ _ ~                                 |                |
| _           | ) Hz 15.6 °C 46.1 °C                                                                                                                                   |                                         |                |
| 1000        | 7 112                                                                                                                                                  |                                         |                |
|             | LOG(M)=LOG(NL)+(2LOG(MROM/ML))/(1+(FROM/FR)****IN) TO FROM MROM ML A2 A3 A4 30.0 4.0000E+03 4.0000E+06 .600 8.0000E+0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0- |                                         |                |
| Remarks:    |                                                                                                                                                        |                                         |                |
|             |                                                                                                                                                        |                                         |                |
|             |                                                                                                                                                        |                                         |                |
|             |                                                                                                                                                        |                                         |                |
|             |                                                                                                                                                        |                                         | ·              |
|             |                                                                                                                                                        |                                         |                |
|             |                                                                                                                                                        |                                         |                |
|             |                                                                                                                                                        |                                         |                |
|             |                                                                                                                                                        |                                         |                |
| -           |                                                                                                                                                        | · • • • • • • • • • • • • • • • • • • • |                |
|             |                                                                                                                                                        |                                         |                |
|             |                                                                                                                                                        |                                         |                |

Test No. 78-4 Beam No. Not Recorded

| 1dB               |      |        |        |          |            |               |          |           |        |         |        |        |          |              |        | ×      | ×      |        |                  |                   |        |
|-------------------|------|--------|--------|----------|------------|---------------|----------|-----------|--------|---------|--------|--------|----------|--------------|--------|--------|--------|--------|------------------|-------------------|--------|
| សួ                |      | 0.0223 | 0.0304 | 0.0422   | 0.0509     | 0.0604        | 0.0715   | 0.0868    | 0.1095 | 0.1314  | 0.1556 | 0.1513 | 0.2328   | 0.4202       | 0.4953 | 0.2155 | ા 688  | 0.3629 | 0.2859           | 0.1907            | 1640   |
| Δ£                |      | 11.0   | 40.4   | 106.7    | 201.4      | 346.6         | 528.6    | 41.2      | 136.3  | 305.5   | 551.7  | 787.2  | 1521.2   | 168.8        | 8.890  | 821.4  | 987.7  | 0.96   | 199.7            | 259.6             | 5 757  |
| <del>н</del><br>स |      | 499.1  | 1348.2 | 2580.2   | 4054.4     | 5926.6        | 7640.1   | 497.7     | 1322.8 | 2509.1  | 3867.0 | 5654.2 | 7470.2   | 536.3        | 1317.7 | 2194.0 | 3269.6 | 338.2  | 838.6            | 1517.4            | 7,637  |
| f<br>L            |      | 488.1  | 1307.8 | 2473.5   | 3853.0     | 5580.0        | 7111.5   | 456.5     | 1186.5 | 2203.6  | 3315.3 |        |          | 367.5        | 848.0  | 1776.2 |        | 242.2  | 638.9            | 1257.8            | 1 0400 |
| ధ                 |      | 240.7  | 675.5  | 1322.7   | 2184.0     | 3257.7        | 4553.6   | 239.8     | 673.0  | 1318.7  | 2177.6 | 3249.7 | 4542.4   | 238.9        | 670.5  | 1314.1 | 2170.4 | 237.9  | 9*299            | 1309.0            | 0,00   |
| ູ່ມູ              |      | 493.4  | 1328.1 | 2530.4   | 3958.4     | 5745.9        | 7408.2   | 476.7     | 1252.4 | 2345.2  | 3588.0 | 5260.6 | 9.6079   | 435.         | 1056.3 | 1983.4 | 3018.4 | 281.4  | ध्य कुटा<br>इ.स. | 1385.7            | , 0000 |
|                   | 050% | :      | cr;    | ę.       | w          | <u>۔</u><br>ب | 1-       | (4)       | (r)    | 47      | ភោ     | vo     | 1.       | (4           | 161    | ų.     | ιO     | c1     | m                | ej.               | 1      |
| ٥<br>۲۰           |      | 25     | 14:    | r)<br>L) | 16+<br>C 4 | ur:<br>Ca     | ir<br>Ci | ίΩ<br>( ) | C +    | C<br>IL | (; ·   | C+     | ر<br>بر. | • <i>y</i> - | ;;     | • r    | · 1    | ٠<br>  | , ,              | 1 /<br>1 /<br>1 / |        |

<del>Ц</del> 0

Test No. 78-4 Beam No. Not Recorded

| ıdB            |      |        |        |        |        |        |        |        |        |        |        |        |        |        |        | ×      | ×      | -      |        |        |        |
|----------------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| e<br>S         |      | 0.0223 | 0.0304 | 0.0422 | 0.0509 | 0.0604 | 0.0715 | 0.0868 | 0.1095 | 0.1314 | 0.1556 | 0.1513 | 0.2328 | 0.4202 | 0.4953 | 0.2155 | 0.1688 | 0.3629 | 0.2859 | 0.1907 | 0.1940 |
| ΔΕ             |      | 11.0   | 40.4   | 106.7  | 201.4  | 346.6  | 528.6  | 41.2   | 136.3  | 305.5  | 551.7  | 787.2  | 1521.2 | 168.8  | 468.8  | 821.4  | 987.7  | 0.96   | 199.7  | 259.6  | 434.3  |
| f <sub>R</sub> |      | 499.1  | 1348.2 | 2580.2 | 4054.4 | 5926.6 | 7640.1 | 4.7.7  | 1322.8 | 2509.1 | 3867.0 | 5654.2 | 7470.2 | 536.3  | 1317.7 | 2194.0 | 3269.6 | 338.2  | 838.6  | 1517.4 | 2483.4 |
| 다<br>H         |      | 488.1  | 1307.8 | 2473.5 | 3853.0 | 5580.0 | 7111.5 | 456.5  | 1186.5 | 2203.6 | 3315.3 |        |        | 367.5  | 848.9  | 1776.2 |        | 242.2  | 638.9  | 1257.8 | 2049.l |
| fn             |      | 240.7  | 675.5  | 1322.7 | 2184.0 | 3257.7 | 4553.6 | 239.8  | 673.0  | 1318.7 | 2177.6 | 3249.7 | 4542.4 | 238.9  | 670.5  | 1314.1 | 2170.4 | 237.9  | 667.6  | 1309.0 | 2162.4 |
| j,             |      | 493.4  | 1328.1 | 2530.4 | 3958.4 | 5745.9 | 7408.2 | 476.7  | 1252.4 | 2345.2 | 3588.0 | 5260.6 | 9.6029 | 435.7  | 1056.3 | 1983.4 | 3018.4 | 281.4  | 726.5  | 1385.7 | 2280.1 |
|                | Hode | 2      | n      | 4      | 5      | 9      | 7      | 2      | 3      | 4      | 5      | 9      | 7      | 2      | 3      | 4      | 5      | 2      | 3      | 4      | 5      |
| o<br>[t4       | Con. | 25     | 25     | 25     | 25     | 25     | 25     | 5.0    | 50     | 50     | 26     | 50     | 5.0    | 7.4    | 7.4    | 74     | 7.4    | 100    | 100    | 100    | 100    |

of

Rest No. 78-4

| Not Recorded | ldB             |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |  |  |  |
|--------------|-----------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
|              | ູເ              |       | 0.2092 | 0.2246 | 0.0866 | 0.0550 | 0.0307 | 0.0324 | 0.0285 | 0.0332 | 0.0327 | 0.0211 | 0.0127 | 0.0118 | 0.0107 | 0.0174 |  |  |  |
|              | Δ£              |       | 700.0  | 1049.6 | 21.6   | 37.5   | 40.7   | 70.6   | 93.0   | 1.47.0 | 8.0    | 14.2   | 16.7   | 25.6   | 34.5   | 78.5   |  |  |  |
|              | #<br>α          |       | 3742.7 | 5223.4 | 261.7  | 701.2  | 1345.0 | 2216.4 | 3311.8 | 4628.1 | 249.0  | 680.7  | 1320.4 | 2177.5 | 3253.8 | 4555.2 |  |  |  |
|              | ᆈ               |       | 3042.7 | 4173.8 | 240.1  | 663.7  | 1304.3 | 2145.8 | 3218.8 | 4481.1 | 241.0  | 666.5  | 1303.7 | 2151.9 | 3219.3 | 4476.7 |  |  |  |
| ,            | H<br>H          |       | 3230.0 | 4516.9 | 236.9  | 665.0  | 1304.2 | 2155.5 | 3222.1 | 4505.2 | 235.9  | 6.199  | 1298.3 | 2146.2 | 3209.2 | 4488.2 |  |  |  |
| ,            | <sup>41</sup> 0 |       | 3418.7 | 4788.8 | 250.4  | 683.3  | 1325.2 | 2178.4 | 3265.9 | 4564.5 | 245.0  | 673.9  | 1311.9 | 2165.2 | 3237.1 | 4501.4 |  |  |  |
|              |                 | ::ode | 9      | _      | 2      | ~      | 4      | 5      | 9      | 7      | 2      | 3      | 4      | 2      | 9      | 7      |  |  |  |
| Ç            | ;·4             | Temp. | 1.00   | 100    | 122    | 122    | 122    | 122    | 122    | 122    | 1.50   | 150    | 1.50   | 150    | 150    | 150    |  |  |  |

Page 2 of

| HODE | £  | e, | +  | ġ   | 'n | ۲. | e,       | ÷   | 'n       | ė | က် | 'n | ڧ   | ۲,   | તં  | m  | ť  | 'n | ڧ   | ۲- | 'n | က် | 4   | 'n |
|------|----|----|----|-----|----|----|----------|-----|----------|---|----|----|-----|------|-----|----|----|----|-----|----|----|----|-----|----|
|      |    | -  | •  | a   | •  | N  | 4        | 'n  | 0        | ø | *  | -  | ^   | ∞    | •   | m  | N  | •  | O   | S  | •  | O  | O   | N  |
| Ġ    |    | 렸  | ė  | ñ   | ŏ. | œ. | က့်      | ñ   | <u>ऴ</u> | ě | ä  | ė  | Ġ   | œ    | é   | Ö  | Ř. | œί | Ň   | ÷  | Ř. | çi | -   | Ņ  |
|      | N  | ന  | S  | ۰   | O  | Ť  | Ū        | m   | S        | Ñ | ũ  | à  | 4   | ~    | ຜ   | 39 | m  | -  | 356 | Ñ  | ú  | 9  | 131 | ě  |
|      |    | a  | O  | O.  | O  |    |          |     |          |   |    |    |     |      |     |    |    |    |     |    |    |    | ٠   | g  |
|      | ပ  | ښ  | ų  | ė   | ė  | ~  | ė        | •   | •        | • | ~  | ۲. | ~   | ^    | •   | 0  | •  | •  | •   |    | 5  | S  | ŝ   | ś  |
| 187  | E  | ,  | •  | •   | •  | •  |          | _   |          | _ | m  | m  | m   | ניז  | w   | S  | Š  | S  | S   | S  | 9  | 9  | 9   | G  |
|      |    | 2  | 9  | 2   | 9  | 2  | 9        | 89  | 3        | 8 | 9  | 9  | 3   | 8    | 2   | 2  | 9  | 2  | 8   | 2  | 9  | 9  | \$  | 3  |
| S    | Œ  | w  | •  | •   | œ  | m  | -        | _   | 177      | o | •  |    | ΥМ  | ~    | •   | C) | m  | •  |     | 80 | •  | w  | ģ   | _  |
| 202  | ๖  | •  | •  | •   | •  | •  |          |     | -:       |   | ٠. |    |     | •    |     | -  | •  | -  | •   |    | •  | •  | •   | •  |
|      |    | 2  | 2  | -   | 2  | 2  | 2        | 5   | 2        | 2 | Š  | g  | 9   | 9    | 2   | 2  | 5  | 2  | S   | S  | I  | ž  | 95  | Š  |
| S    | o. | :: | •  |     | ٠  |    | . +      |     |          |   |    | .+ |     | . +  | . • | .+ | .+ |    | +   | Ť  | .+ | Ť. | Ť.  | ٠  |
| Ë    | *  | œ  | -  | IN. | w  | •  | •        | w   | •        | 4 | _  | 00 |     | , -  | •   | •  | N  | 5  | m   | 00 | 0  | S  | 416 | 4  |
| ā    | ₹  | S  | 80 | N   | 1  | ď  | 3        | α   | 80       | • | ā  | Ö  | 0   | 3    | Ŧ   | •  | ū  | 00 | ī   | 9  | 00 | S  | è   | -  |
| £    | Z  | Ś  | ٩  | -   | ø  | v  | 'n       | •   |          | - | •  | •  |     | •    | •   | Φ  | Ň  | -  | ··· | 0  | ٠  | 4  | æ   | ă  |
| _    |    | S  | ~  | æ   | 9  | 9  | <b>^</b> | (T) | M        | 4 | •  | -  | -   | ı (C | ۳,  | n, | N  | (  | S   | ~  | 0  | -  | -   | N  |
|      |    | _  | N  | •   | •  | ·  | ď        | ~   | 00       | o | •  |    | • 1 | ım   | •   | s  | 9  | ~  | 00  | σ  | •  | _  | N   | 9  |
| £    |    |    |    |     |    |    |          |     |          |   |    | -  | -   | _    | -   | _  | •  | -  | -   | -  | N  | N  | Ň   | N  |



#### Polymeric Material Characterization Test

|                                                                               | Test No. <u>78-5</u> |
|-------------------------------------------------------------------------------|----------------------|
| Beam Nos. Not and Recorded                                                    | Date2/13/78          |
| Damping Material MacBond IB1200                                               |                      |
|                                                                               |                      |
|                                                                               |                      |
| Material Thickness 0.0279 cm Material Density                                 |                      |
| Beam Thickness 0.2032 cm Beam Density 2                                       | <u>.795</u> q/ee     |
| Beam Length 17.78 cm                                                          |                      |
| Temperature Test Range: Between $\frac{-17.8}{2}$ °C and                      | ى» <u>51.7</u>       |
| Frequency Test Range: Between 10 Hz and                                       | 10 K H7              |
| Loss Factor n <sub>D</sub> :                                                  |                      |
| Peak 100 Hz = 1.5 Temperature -4.4                                            | ಾರ                   |
| 1000 Hz                                                                       |                      |
| Range 100 Hz -17.8 °C 10.0 °C                                                 | _ ``C                |
|                                                                               |                      |
| 1000 Hz 2.2 °C 31.1 °C                                                        |                      |
|                                                                               |                      |
| LOG(M)+LOG(ML)+(2LOG(MROM/NL))/(1+(FROM/FR)**N) TO FROM MROM N ML             |                      |
| TO FROM MROM N ML<br>A1 A2 A3 A4<br>30.0 4.2478E+03 7.0540E+06 .620 2.5097E+  | aς                   |
| A=(LOG(FR)-LOG(FROL))/C<br>LOG(ETA)=LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-SQRT(1+A |                      |
| TO ETAFROL SL SH FROL C<br>R1 R2 R3 R4 R5                                     |                      |
| 30.6 1.500 1.750600 3.0000E+03 1.6<br>LOG(FR)+LOG(F)-12(T-T0)/(525/1.8+T-T0)  | 80                   |
|                                                                               |                      |
| Remarks:                                                                      |                      |
|                                                                               |                      |
|                                                                               |                      |
|                                                                               |                      |
|                                                                               |                      |
|                                                                               |                      |
|                                                                               |                      |
|                                                                               |                      |
|                                                                               |                      |
|                                                                               |                      |
|                                                                               |                      |
|                                                                               |                      |

Test No. 78-5

|               |       |          | 1      | _      |        |        |        |        |         |        |        |        |        |                 |        |        |        |          |        |          |        |
|---------------|-------|----------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|-----------------|--------|--------|--------|----------|--------|----------|--------|
| lāB           |       |          |        |        |        |        |        |        |         |        |        |        | ×      |                 |        |        | ×      | ×        |        |          |        |
|               |       |          |        |        |        |        |        |        |         |        |        |        |        |                 |        |        |        |          |        |          |        |
| s u           |       | .0261    | 0.0549 | 0.0415 | 0.0526 | 0.0592 | 0.0767 | 0.0707 | .0953   | 0.1051 | 0.1676 | 0.1415 | 0.1461 | 0.2503          | .2956  | 0.2698 | 0.2676 | .2423    | 0.2661 | 3935     | 0.4485 |
| 1             |       | <u>.</u> |        |        |        |        |        |        | 0       |        |        |        |        |                 | 0      |        |        | <u>c</u> |        | <u>c</u> |        |
| Δ£            |       | 18.0     | 101.2  | 141.4  | 278.8  | 439.4  | 750.4  | 46.3   | 164.1   | 328.3  | 804.3  | 945.6  | 1269.8 | 142.0           | 413.4  | 711.9  | 1074.2 | 1358.1   | 114.6  | 478.2    | 910.6  |
|               |       |          |        |        |        |        |        |        |         | _      |        |        |        |                 |        |        |        |          |        |          |        |
| <u>ب</u><br>ب |       | 697.4    | 1888.8 | 3482.1 | 5446.3 | 5446.3 |        | 680.5  | 1809.0  | 3309.0 | 5294.2 | 7179.6 | 9072.5 | 666.4           | 1716.5 | 5084.8 | 4401.1 | 6118.6   |        |          | 2706.8 |
|               |       |          |        |        |        |        |        |        |         |        |        |        |        |                 |        |        |        |          | ·      |          |        |
| H<br>L        |       | 679.4    | 1787.6 | 3340.7 | 5167.5 | 7210.6 | 9442.8 | 634.2  | 1.644.9 | 2980.7 | 4489.9 | 6234.D | 8426.6 | 524.4           | 1303.1 | 2372.9 | 3854.7 | 5427.8   | 388.3  | 0.976    | 1796.2 |
|               | _     |          |        |        | Lin    |        | 65     |        | 1       | 2      | 7      | ٠      | æ      |                 | 7      | 1/2    |        |          |        |          | 7      |
| H<br>n        |       | 328.4    | 915.3  | 1790.2 | 2954.0 | 4422.3 | 6173.7 | 327.3  | 912.2   | 1784.1 | 2943.0 | 4407.4 | 6148.7 | 325.9           | 908.8  | 1777.5 | 2932.0 | 4391:0   | 324.8  | 906.1    | 1772.0 |
|               |       | ın.      | 9      | œ      | 9.     | 6.     | c.     | 9.     | υ.      | 10     | - 7    | .4     | C.     | α               | 15.    | 4.     | 6.     | 6.       | 9.     | 7.       | .2     |
| Ψ,            |       | 688      | 1845   | 3410   | 5303   | 7438   | 9818   | 959    | 1729    | 3141   | 4865   | 6750   | 8779   | **<br>(で)<br>() | 1458   | 2733   | 4153   | 5764     | 445    | 1215     | 2225   |
|               | Hope: | 2        | 3      | 4      | 5      | 9      | 7      | 2      | 3       | 4      | 5      | 9      | 7      | 7               | 8      |        | 5      | 3        | 2      | m        | 4      |
| o<br>(14      | Geno. | C        | С      | 0      | 0      | 0      | c      | 25     | 25      | 25     | 25     | 25     | 25     | 50              | 0.6    | 5.0    | 50     | 0.5      | 20     | 92       | 6-     |

Test No. 78-5 Beam No. Not Recorded

| 1ċ3            |      | ×              |           |         |        |        |        |        |        |        |        |              |              |            |           |        |        |  |       |               |   | of 2   |
|----------------|------|----------------|-----------|---------|--------|--------|--------|--------|--------|--------|--------|--------------|--------------|------------|-----------|--------|--------|--|-------|---------------|---|--------|
| ت<br>ن         |      | 0.3847         | 0.2793    | 0.1403  | 0.1203 | 0.01.0 | )<br>; | 0.0841 | 0.0688 | 0.0562 | 0.0236 | 0.0298       | 0.0206       | 0.0152     | D.0129    | h 0132 |        |  | ļ<br> |               |   | Page 2 |
| δ£             |      | 1250.0         | 1346.1    | 48.6    |        | 182    | 7.701  | 249.1  | 302.3  | 343.6  | 11.1   | 27.1         | 36.4         | 44.0       | 55.7      | 6 0 3  | ٠.     |  |       |               |   |        |
| f<br>R         |      | 3763.1         | 5620.2    | 375.6   | 0 900  | 0.000  | 1907.3 | 3100.3 | 4561.2 | 6304.8 | 336.4  | 923.6        | 1783.5       | 2922.5     | 4342.6    |        | 6052.6 |  |       |               |   |        |
| Ħ<br>H         |      | 3127.3         | 4274.1    | 227.0   | 6.720  | 885.5  | 1725.2 | 2851.2 | 4258.9 | 5961.2 | 325.3  | 896.5        | 1747.1       | 2878.5     | 286       |        | 5983.4 |  |       |               |   |        |
| ч<br>ч         |      | 0 8000         | 277       | 2.7.7.7 | 525.1  | 902.1  | 1764.2 | 2710.0 | 4356.8 | 6069.4 | 321.7  | 4.898        | 1758.13      | 0 8680     | A 7.7.7.4 | . 1    | 6042.3 |  |       |               |   |        |
| f <sub>o</sub> |      | 2020           | 0 × 0 0 u | 5.500   | 349.7  | 940.7  | 1812.4 | 2974.0 | 4405.7 | 6126.6 | 330.6  | 910.3        | 1765 0       |            | 0 7 0     | 0.0164 | 6014.6 |  |       |               | _ |        |
|                | 0,00 | 0000           | ^         | ۰       | 2      | ~      | 4      | 7.     | ٤      | ,      |        | ~   ړ        |              | <b>.</b> . |           | С      | 7      |  |       | <br><b></b> - |   |        |
| رب<br>د        | ſ    | $\cdot \Gamma$ | 0/2       | 0/      | 100    | 100    | 100    | 001    | 100    |        | ) r    | 4 <b>j</b> c | ۲ <b>۱</b> ۲ | 4 C        | v l       | 1.25   | 1.25   |  |       |               |   |        |

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

MATERIAL CODE : 5 MATERIAL :MACROND IN 1200 78-5 LOG(FR)-LOG(F)-12(T-T0)/(525/1.8+T-T0)

| 22         | _   |     |     | _        | _   |    |          |    | _ | _ |      |    | _  |   |    |     |    |    |   |   |   |      |               |   |    |     |   |
|------------|-----|-----|-----|----------|-----|----|----------|----|---|---|------|----|----|---|----|-----|----|----|---|---|---|------|---------------|---|----|-----|---|
|            | œ.  |     |     |          |     |    |          |    |   |   |      | ۲. |    |   |    |     | ٩  |    |   | ŗ |   |      | ŗ             |   |    | 0   | • |
| Ġ          | Ñι  |     |     |          |     |    |          |    |   |   |      |    |    |   |    |     |    |    |   |   |   |      |               |   |    |     |   |
| ŭΝ         | 7   |     |     |          |     |    |          |    |   |   | Ū    | ~  | ~  | Ö |    |     |    |    |   |   |   |      |               |   |    |     |   |
| Œ, J.      | •   | (1  | Ùſ  | ורי      | 'n  | •  | _        | ru | * | S |      | 9  | 00 |   | _  | (T) | S  | ^  |   |   | - | വ    | *             | 9 | )  | -   | ٩ |
|            | ٠.  | ٠.  | ٠.  | <b>.</b> |     |    |          |    |   |   |      |    |    |   |    |     |    |    |   |   |   |      |               |   |    | ~   | t |
| ٠٠         | - 4 | ä,  | έ,  | ä,       |     |    |          |    |   |   |      | ö  |    |   |    |     |    |    |   |   |   |      |               |   |    |     |   |
| Ł.         |     | M   |     |          |     |    |          |    |   |   |      |    |    | - | -  | -   | -  | -  |   |   |   |      |               |   |    |     |   |
| <b>ت</b> ن |     |     |     |          |     |    |          |    |   |   |      |    |    | ' | '  | •   | ŀ  | •  |   |   |   |      |               |   |    |     |   |
| F          |     |     |     |          |     |    |          |    |   |   |      |    |    |   |    |     |    |    |   |   |   |      |               |   |    |     |   |
|            | 9   | 9   | 2   | Š        | 9   | 9  | æ        | 9  | 0 | 9 | 9    | 9  | 9  | ó | 2  | •   | Ø  | 9  | 9 | 0 | 2 | ø    | 9             | • | 9  | 9   | • |
| Œ          | 9   | ∞:  | ì١  | Ó١       | ~ 1 | 9  | œ        | ũ  | O | S | O    | 0  | 0  | • | O  | 0   | 8  | ~  | Ū | ~ | • | ف    | ٥             | • | 'n | ı'n | • |
| 55         |     |     |     |          |     |    |          |    |   |   |      | 'n |    |   |    |     |    |    |   |   |   | יייו |               |   | Ģ  |     |   |
| 25         |     | ٠.  | ٠.  | _        | _   | ~  |          |    |   |   |      |    |    |   |    |     |    |    |   | - | _ | -    | -             | _ |    |     |   |
|            |     | 8   |     |          |     |    |          |    |   |   |      |    |    |   |    |     |    |    |   |   |   |      |               |   |    |     |   |
|            | +   |     | •   | ٠        | ě   | ٠  | ٠        | +  | + | + | +    | +  | +  | + | +  | ٠   | Ŧ  | Ť  | Ŧ | + | Ŧ | Ŧ    | Ť             | Ŧ | Ť  | +   |   |
| SS         | ×   | ۲   | Υ.  | 3        | ۳   | ۳  | 썷        | ¥  | × | W | ш    | 7  | W  | Ж | 炴  | 띭   | 띯  | ×  | ۳ | ¥ | ¥ | ٣    | Z             | 4 | щ  | w   | , |
| <b>→</b>   | 4   | 4 ( | 20  | ю.       | ۰   | -  | -        | 4  | S | S | 00   | ī  | ~  | N | •  | 0   | 8  | ~  | ø | • | Š | ~    | 9             | ū | 9  | 0   | • |
| 34         | O   | 9   | Э.  | n        | •   | 00 | O        | Ō  | 0 | ( | n (N | 0  | -  | ø | Ň  | 3   | 00 | r- | • | O | δ | •    | $\overline{}$ | ā | Õ  | ιũδ |   |
| QZ         | ~   | Ŏ,  | 100 | N        | S   | Ň  | ø        | S  | 0 |   | œ    | Õ  | •  | _ | ١Ñ | ~   | ~  | ~  | 0 | 0 | Š | -    | _             | Ó | Ö  | Ō   | ı |
| E          |     | 'n, |     |          |     |    |          |    |   |   |      |    |    |   |    |     |    |    |   |   |   |      |               |   |    |     |   |
|            |     |     |     |          |     |    |          |    |   |   |      |    |    |   |    |     |    |    |   |   |   |      |               |   |    |     |   |
| <i>:</i>   | -   | ณ   | ٠,  | •        | S   | ø  | <u>~</u> | œ  | ø |   |      |    |    |   |    |     |    |    |   |   |   |      |               |   |    |     |   |
| 웆          |     |     |     |          |     |    |          |    |   | • | _    | _  | •  | - | -  | •   |    | •• | • | · | N | (V   | (U            | 1 | 'n | 'n  | • |



<u>:</u> –

## Polymeric Matorial Characterization Test

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test 1      | No, $\frac{78-6}{}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|
| Beam Nos. Not and Recorded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date        | 2/15/78             |
| Damping Material MacLond 181220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •           |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
| Material Thickness 0.0254 cm Material Densit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . n 4       |                     |
| Beam Thickness 0.2032 cm Beam Density 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                     |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 - 793 - a | <b>C</b> C          |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e: h        |                     |
| Temperature Test Range: Batween3.9 °C and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                     |
| Frequency Test Range: Between 10 Hz and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 1        | H2                  |
| Loss Factor no:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
| Peak 100 Hz 5 0.9 Temperature 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u></u> °C  |                     |
| 1000 Hz n. 0.9 Temperature 32.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
| Range 100 Hz6.7 °C35.0 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                     |
| 1000 Hz 12.2 °C 60.0 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
| A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A COLUMN A C |             |                     |
| LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FROM/FR)##N) TO FROM MROM N ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                     |
| TO FROM MROM N ML<br>A1 A2 A3 A4<br>40.0 4.0000E+03 4.5000E+06 .450 5.0000E<br>A*(LOG(FR)-LOG(FROL))/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +04         |                     |
| I 00 (FTA ) = 1 00 (FTAFDOL ) + ( / CL + CU ) / + ( CL + CU ) / ( 1 + CO + CU + CU + CU + CU + CU + CU + CU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42#2)))C/2  |                     |
| TO ETAFROL SL SH FROL C  B1 B2 B3 B4 B5  40.0 .900 .750900 3.0000E+03 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500         |                     |
| LOG(FR)*LOG(F)-12(T-T0)/(525/1.8*T-T0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                     |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                     |
| Nonat No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . —         |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     |

Test No. 78-6 No. Not Pecorded

| of 2        | b.1012<br>b.0807<br>Page 1 | 324.6  | 3383.6 | 3059.0 | 2923.0  | $1 \sim 1 \infty$ | - w &     | 12 2                       |
|-------------|----------------------------|--------|--------|--------|---------|-------------------|-----------|----------------------------|
|             | 0.1630                     | 338.4  | 2276.9 | • •    | 1772.0  | 2103.7            | 4         | 2                          |
|             | 0.2106                     |        |        | 1040.6 | 905:8   | 1 ~ 1             | <u>م</u>  | , ~                        |
|             | 0.1715                     | 79.4   | 455.7  | 385.3  | 324.8   | 416.6             | 2         | 7                          |
| ×           | 0.2375                     | 1375.6 | 6288.6 | 5588.0 | 4377.6  | 5949.9            | 10        | . _                        |
|             | 0.2665                     | 711.2  | 3134.9 | 2423.7 | 1777.0  | 2761.8            | 4         | 17                         |
|             | 0.1803                     | 256.8  |        | 1313.9 | 905.8   | 1447.3            | ~         | 1 7                        |
|             | 0.2493                     | 141.7  | 667.4  | 525.7  | 324.8   | 585.8             | ^:        | 1.                         |
| ×           | 9.1056                     | 968.8  | 9500.9 | 1.5008 | 6121.6  | 9225.4            | 7.        | 000                        |
|             | 0.1294                     | 880.3  | 7259.1 | 6378.8 | 4391.0  | 6860.6            | 9         |                            |
|             | 0.1152                     | ٠!     | 4972.4 | 4430.9 | 2932.0  | 4731.7            | S         | 500                        |
|             | 0.0863                     | 274.3  | 3261.4 | 2987.1 | 1777.5  | 3117.9            | 4         |                            |
|             | 0.0934                     | 162.4  | 1827.5 |        | 908.8   | 1746.3            |           | _                          |
|             | 0.0659                     | 42.3   | 664.6  | 622.3  | 325.9   | 643.0             | 2         | 0                          |
|             | 0.0476                     | .1     | 7667.9 | 7254.0 | 4407.4  | 7441.8            | ت ا       | \<br>\<br>\                |
| `           | 0.0228                     | 230.2  | 5184.4 | 5067.3 | 2943.5  | 5132.5            | רט        | 100                        |
| ;           | 0.0382                     | 2.7    | 3403.0 | 3275.4 | 1783.5  | 3342.7            | 4         | \[\sigma_{\text{\color}}\] |
|             | 0.0449                     | 78.8   | 1795.1 | 1716.3 | 912.2   | 1755.0            | (1)       | ر.<br>ا                    |
|             | 0.0200                     | 13.4   | 676.2  | 662.8  | 327.3   | 669.2             | $   \sim$ | χ.                         |
|             |                            |        |        |        |         |                   | ::Ode     |                            |
| ldB         | s r                        | ΔĒ     | f<br>R | Ħ<br>H | ជ<br>មា | f,                |           |                            |
| Not Pecorde | Beam No.                   |        |        |        |         |                   |           |                            |

Test No. 78-6

| Jed<br>Jed            |                             | Γ     |        |        |        |        |        |        |        |        |        |        |        |        |        |  |      | <br> | $\neg$ |
|-----------------------|-----------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|------|------|--------|
| ot Record             | ldB                         |       |        |        |        |        |        |        |        |        |        |        |        |        |        |  |      |      |        |
| Beam No. Not Recorded | e<br>S                      |       | 0.0650 | 0.0973 | 0.1146 | 0.0534 | 0.0341 | 0.0408 | 0.0295 | 0.0262 | 0.0247 | 0.0174 | 0.0137 | 0.0128 | 0.0110 |  |      |      |        |
|                       | Δ£                          |       | 420.8  | 32.9   | 108.1  | 7.96   | 101.1  | 179.4  | 180.6  | 8.5    | 22.3   | 30.6   | 38.1   | 55.2   | 66.3   |  |      |      |        |
|                       | f<br>R                      |       | 6703.2 | 357.3  | 993.2  | 1860.0 | 3016.2 | 4503.2 | 6212.0 | 329.2  | 913.9  | 1776.4 | 2920.2 | 4348.3 | 6050.0 |  |      |      |        |
|                       | $\mathfrak{t}_{\mathrm{L}}$ |       | 6282.4 | 324.4  | 886    | 1763.3 | 2915.2 | 4323.8 | 6031.4 | 320.7  | 891.6  | 1745.8 | 2882.1 | 4292.1 | 5983.7 |  |      |      |        |
|                       | f.                          |       | 6100.7 | 323.1  | 902.1  | 1764.2 | 2910.0 | 4558.8 | 6071.8 | 321.7  | 898.4  | 1758.1 | 2899.0 | 4337.4 | 6042.3 |  |      |      |        |
|                       | <sup>th</sup> O             |       | 6492.0 | 339.8  | 940.5  | 1812.1 | 2963.9 | 4401.8 | 6118.3 | 324.6  | 903.0  | 1761.3 | 2901.1 | 4321.7 | 6023.3 |  |      |      |        |
|                       |                             | ::ode | 7      | 2      | 3      | 4      | Ŋ      | 9      | 7      | 2      | 3      | 4      | ιn     | 9      | 7      |  |      |      |        |
|                       | ្<br>រ                      | Guar. |        | 1.00   | 100    | 1.00   | 100    | 100    | 100    | 125    | 125    | 125    | 125    | 1.25   | 125    |  | <br> |      |        |

```
MODULUS LOSS TEMP. FREO. MODE 1.1990-00-1.

2. 1.450-00-00-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1490-0-1.1491-0-1.1490-0-1.1490-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-0-1.1491-
```



| Beam Nos. Not and Recorded Date 2/21/78  Damping Material MacBond IB1248  Material Thickness 0.0178 cm Material Density 0.965 d/cc  Beam Thickness 0.1524 cm Beam Density 2.975 d/cc                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material Thickness 0.0178 cm Material Density 0.965 g/cc Beam Thickness 0.1524 cm Beam Density 2.975 g/cc                                                                                                                                                                     |
| Material Thickness 0.0178 cm Material Density 0.965 g/cc Beam Thickness 0.1524 cm Beam Density 2.975 g/cc                                                                                                                                                                     |
| Beam Thickness 0.1524 cm Beam Density 2.975 q/cc                                                                                                                                                                                                                              |
| Beam Thickness 0.1524 cm Beam Density 2.975 q/cc                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                               |
| Dan Tanak 17 20                                                                                                                                                                                                                                                               |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                          |
| Temperature Test Range: Between31.7 °C and51.7 °C                                                                                                                                                                                                                             |
| Frequency Test Range: Between 10 Hz and 10 KHz                                                                                                                                                                                                                                |
| Loss Factor no:                                                                                                                                                                                                                                                               |
| Peak 1.00 Hz n <sub>D</sub> 1.403 Temperature -18.9 °C                                                                                                                                                                                                                        |
| 1000 Hz $\frac{1.403}{1.200}$ Temperature $\frac{-1.1}{1.400}$ $\frac{1.403}{1.400}$                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                               |
| Range 100 Hz30.0 °C6.7 °C                                                                                                                                                                                                                                                     |
| 1000 fiz °C 15.6 °C                                                                                                                                                                                                                                                           |
| TO FROM MRON N ML A1 A2 A3 A4 20.0 6.8243E+03 5.3055E+06 .845 3.0861E+05 A-(LOG(FR)-LOG(FROL))/C LOG(ETA)-LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-SQRT(1+A**2)))C/2 TO ETAFROL SL SH FROL C B1 B2 B3 B4 B5 20.0 1.403 .336584 7.4699E+03 .234 LOG(FR)+LOG(F)-12(T-T0)/(525/1.8+T-T0) |
| Remarks:                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |

Test No. 78-7 Beam No. Not Recorded

|                   |       |         |        | -      |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|-------------------|-------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| lċB               |       |         |        |        |        |        |        |        |        |        |        |        |        |        |        | ×      | ×      |        |        |        | ×      |
| n<br>S            |       | 0.00692 | 0.0127 | n.n215 | 0.0211 | 0.0238 | 0.0239 | 0.0352 | 0.0515 | 0.0798 | 0.0768 | 0.0802 | 0.1780 | 0.2174 | 0.2486 | 0.2644 | b.2107 | 0.3962 | p.5542 | D.2673 | p.2379 |
| Δ£                |       | 3.6     | 17.6   | 52.6   | 81.4   | 135.7  | 176.7  | 17.8   | 69.7   | 136.1  | 282.9  | 435.8  | 82.4   | 259.3  | 485.7  | 797.2  | 977.5  | 133.8  | 414.8  | 385.4  | 565.2  |
| a<br>g            |       | 521.8   | 1395.4 | 2468.9 | 3899.1 | 5769.7 | 7460.0 | 518.6  | 1391.9 | 2422.6 | 3841.0 | 5677.5 | 514.4  | 1357.5 | 2210.3 | 3324.7 | 4965.8 | 427.2  |        | 1698.5 | 2559.5 |
| ħ<br>L            |       | 518.2   | 1377.8 | 2415.3 | 3817.7 | 5634.0 | 7283.3 | 8.003  | 1322.2 | 2236.5 | 3558.1 | 5241.7 | 432.0  | 1098.2 | 1724.6 | 2919.2 | 4468.6 | 293.4  | 664.0  | 1313.1 | 2272.0 |
| A<br>E            |       | 242.3   | 6.9.9  | 1330.4 | 2195.0 | 3272.0 | 4572.4 | 241.5  | 677.8  | 1326.8 | 2190.0 | 3264.6 | 240.7  | 675.3  | 1322.5 | 2184.0 | 3257.1 | 239:8  | 672.8  | 1318.3 | 2178.0 |
| 4, <sup>C</sup> C |       | 520.0   | 1386.7 | 2443.0 | 3858.6 | 5699.1 | 7387.6 | 505.4  | 1356.3 | 2338.8 | 3695.7 | 5449.2 | 470.3  | 1220.4 | 2013.4 | 3117.6 | 4738.2 | 336.1  | 876.4  | 1492.4 | 2440.9 |
|                   | Node  | 2       | 3      | 4      | un i   | 9      | 7      | 2      | χ.     | 4      | 5      | 9      | ۲۷     | 3      | 4      | m      | 9      | C i    | m      | 4      | 5      |
| o<br>[14          | Temp. | -25     | -25    | -25    | -25    | -25    | -25    | C:     | 0      | 0      | 0      | 0      | 2.5    | 2.5    | 2.5    | 25     | 25     | 50     | 50     | 0 10   | 90     |

Test No. 78-7 Beam No. Not Recorded

| 1cB     |       |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |          |         |        |  |
|---------|-------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|----------|---------|--------|--|
| <br>    |       | 0.3020 | 0.1963 | 0.1592 | 0.0873 | 0.0799 | 0.0853 | 0.0738 | 0.0598 | 0.0416  | 0.0234 | 0.9183 | 0.0204 | 0.0174 | 0.0356 | 0.0204 | 0.0108 | 0.00824  | 0.00871 | 0.0086 |  |
| ΔÊ      |       | 1061.9 | 53.7   | 114.5  | 113.9  | 172.1  | 282.7  | 341.8  | 15.4   | 28.7    | 31.0   | 39.9   | 66.4   | 78.8   | 0.6    | 13.9   | 14.1   | 17.3     | 28.1    | 38.7   |  |
| #1<br>K |       | 4173.6 | 310.5  | 785.6  | 1426.7 | 2317.8 | 3482.3 | 4806.4 | 266.1  | 794.2   | 1339.0 | 2196.8 | 3284.6 | 4570.4 | 257.7  | 687.7  | 1318.8 | 2169.2   | 3240.5  | 4518.3 |  |
| Į.<br>L |       | 3111.7 | 256.8  | 671.1  | 1307.8 | 2145.7 | 3199.6 | 4464.6 | 256.7  | 675.5   | 1308.0 | 2156.9 | 3218.2 | 4491.5 | 248.7  | 673.8  | 1304.7 | 2151.4   | 3212.4  | 4479.6 |  |
| f       |       | 3249.7 | 239.1  | 671.0  | 1314.7 | 2172.0 | 3242.2 | 4532.8 | 237.9  | 667.6   | 1309.2 | 2163.0 | 3231.8 | 4518.2 | 236.9  | 664.8  | 1303.8 | 2155:0   | 3219.9  | 4503.6 |  |
| f,      |       | 3673.2 | 278.8  | 728.3  | 1366.8 | 2229.1 | 3327.1 | 4643.1 | 257.9  | 689.8   | 1322.6 | 2177.5 | 3249.9 | 4534.1 | 253.0  | 680.5  | 1311.5 | 2160.7   | 3226.6  | 4498.5 |  |
|         | Node  | 9      | 2      | 0      | 4      | ın     | 9      | 1      | 2      | <u></u> | 7      | וח     | Ψ      | 1      | 2      | (*)    | 7      | u,       | ¥       | 1~     |  |
| ٠<br>٢٠ | Temp. | 50     | 7.0    | 7.0    | 7.0    | 7.0    | 7.0    | 7.0    | 100    | 100     | 100    | 100    | 100    | 100    | 125    | 125    | 125    | -1<br>54 |         | 125    |  |



|                                                                                                         | Test No         | 78-8        |
|---------------------------------------------------------------------------------------------------------|-----------------|-------------|
| Beam Nos. Not and Recorded                                                                              | Date _          | 2/27/78     |
| Damping Material MacBond IB1320                                                                         | _               |             |
|                                                                                                         |                 |             |
| Matarial Mhighners a see                                                                                | 0.065           | <u> </u>    |
| Material Thickness 0.0381 cm Material Density                                                           |                 |             |
| Beam Thickness 0.2032 cm Beam Density 2.                                                                | <u>795</u> _q/0 | ec          |
| Beam Length 17.78 cm                                                                                    |                 |             |
| Temperature Test Range: Between°C and                                                                   |                 |             |
| Frequency Test Range: Between 10 Hz and 1                                                               | 0 KH:           | 7.          |
| Loss Factor n <sub>D</sub> :                                                                            |                 |             |
| Peak 100 Hz n <sub>D</sub> 1.5 Temperature 12.2                                                         | °C              |             |
| 1000 Hz $\eta_{\overline{D}}$ 1.5 Temperature 32.2                                                      |                 |             |
| Range 100 Hz                                                                                            | -               |             |
| 1000 Hz 15.6 °C 57.2 °C                                                                                 |                 |             |
|                                                                                                         |                 |             |
| 100/8 100/81 1/2100/800 81 11/4/2008 50                                                                 |                 |             |
| LOG(M)=LOG(ML)+(2LOG(MROM/ML))/(1+(FROM/FR)**N) T0 FROM MROM N ML                                       |                 |             |
| T0 FROM MRON N ML<br>A1 A2 A3 A4<br>40.0 2.0000E+03 6.0000E+06 , 30 1.2500E+<br>A*(LOG(FR)-LOG(FROL))/C | 05              |             |
| LOG(FTA)=LOG(FTAFRÖL)+((SL+SH)A+(CL-S+)(1-SQRT(1+A                                                      | **2)))C/2       |             |
| TO ETAFROL SL SH : J! C B1 B2 B3 54 B5 40.0 1.590 1.000 -1.000 1.6000£+03 2.5                           | <b>0</b> 0      |             |
| LOG(FR)+LOG(F)-12(T-T0)/(525/1.8+T-T0)                                                                  |                 |             |
| Bana wka                                                                                                |                 |             |
| Remarks:                                                                                                |                 | <del></del> |
|                                                                                                         |                 |             |
|                                                                                                         |                 |             |
|                                                                                                         |                 |             |
|                                                                                                         |                 |             |
|                                                                                                         |                 |             |
|                                                                                                         |                 |             |
|                                                                                                         |                 |             |
|                                                                                                         |                 |             |
|                                                                                                         |                 |             |
|                                                                                                         |                 |             |
|                                                                                                         |                 |             |

Test No. 78-8 Beam No. Not Recorded

| ;<br>)         |       |        |        |        |        | r       | <del></del> |        | [      |        |        |        |        |        | _      |        |        |        |        |        |         |
|----------------|-------|--------|--------|--------|--------|---------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| 1dB            |       |        |        |        |        |         |             |        |        | ×      |        |        | X      |        | X      | ×      | X      | ×      | ×      |        |         |
| , s            |       | 0.0267 | 0.0344 | 0.0619 | 0.0757 | 0.0903  | 0.0791      | 0.0922 | 0.1189 | 0.1246 | 0.1557 | 0.3173 | 0.3430 | 0.3422 | 0.2528 | 0.2293 | 0.3872 | 0.4116 | 0,2921 | 0.2312 | 0.01035 |
| ٥£             |       | 18.1   | 63.6   | 210.8  | 554.8  | 867.7   | 51.0        | 159.8  | 368.3  | 813.5  | 1335.1 | 176.2  | 504.5  | 878.3  | 1406.7 | 1705.1 | 140.0  | 395.4  | 548.9  | 712.0  | 34.4    |
| f <sub>R</sub> |       | 686.3  | 1881.5 | 3496.6 | 7644.4 | 10155.6 | 671.5       | 1821.2 | 3301.0 | 6814.2 | 9318.1 | 672.9  | 1696.0 | 3155.6 | 6105.5 | 8119.3 | 428.0  | 215.6  | 2090.1 | 3486.0 | 351.9   |
| 1<br>1         |       | 668.2  | 1817.9 | 3285.8 | 7089.5 | 9287.9  | 620.5       | 1661.4 | 2932.7 | 6400.4 | 7983.0 |        | 1439.4 | 2277.3 | 5390-0 | 7252.0 | 356.8  | 954.5  | 1810.9 | 2774.0 | 317.5   |
| #<br>¤         |       | 327.3  | 912.2  | 1783.5 | 4407.4 | 6140.3  | 325.9       | 8.806  | 1777.5 | 4391.0 | 6121.6 | 324.8  | 906.1  | 1772.0 | 4377.6 | 6100.7 | 323.1  | 902:1  | 1764.2 | 2910.0 | 321.7   |
| f,             |       | 6.929  | 1848.4 | 3414.4 | 7346.8 | 9646.3  | 645.6       | 1741.2 | 3120.4 | 6579.1 | 8679.0 | 584.5  | 1554.1 | 2712.8 | 5737.1 | 7626.1 | 387.5  | 1038.3 | 1957.2 | 3160.2 | 334.0   |
|                | Node  | 2      | 3      | 4      | 9      | 7       | 2           | 3      | 4      | 9      | 7      | 2      | 3      | 4      | 9      | 7      | 2      | 3      | 4      | 5      | 2       |
| o<br>ក         | Temp. | 25     | 25     | 25     | 25     | 25      | 5.0         | 20     | 5.0    | 50     | 50     | 7.0    | 7.0    | 7.0    | 7.0    | 7.0    | 100    | 1.00   | 100    | 100    | 125     |

2

Test No. 78-8
Beam No. Not Recorded

| NOT Recorded | 143           |       |        |        |        | ×      |        |        |        |        |        | ×       |          |      |          |  |  |  |
|--------------|---------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|----------|------|----------|--|--|--|
| Beam No.     | s<br>S        |       | 0.0907 | 0.0725 | 0.0605 | 0.0499 | 0.0493 | 0.0330 | 0.0276 | 0.0208 | 0.0169 | 0.00639 | 0.0133   |      |          |  |  |  |
|              | Δ£            |       | 82.2   | 128.2  | 176.4  | 216.5  | 298.0  | 10.7   | 24.8   | 36.4   | 48.7   | 54.1    | 79.4     |      |          |  |  |  |
|              | <b>ት</b><br>ස |       | 952.8  | 1841.1 | 3012.0 | 4406.6 | 6202.4 | 330.2  | 909.4  | 1766.0 | 2902.1 | 4314.4  | 6015.5   |      |          |  |  |  |
|              | f,<br>L       |       | 870.6  |        | 2835.6 | 4296.5 | 5904.4 | 319.5  | 884.6  | 1729.6 | 2853.4 | 4286.9  | 5936.1   |      |          |  |  |  |
|              | th<br>C       |       | 898.4  | 1758.1 | 2899.0 | 4337.4 | 6042.3 | 320.1  | 895.3  | 1750.3 | 2888.0 | 4138.0  | 6013.1   |      |          |  |  |  |
|              | £°            |       | 910.3  | 1773.9 | 2919.9 | 4340.1 | 6057.0 | 324.7  | 897.4  | 1748.0 | 2878.7 | 4300.5  | 1 5976.0 | <br> |          |  |  |  |
|              |               | Node: | (C)    | 4      | 5      | 9      | Ĺ      | 2      | ۳.     | 4      | نٿ. '  | 9       | 1~       |      | <u> </u> |  |  |  |
|              | ្ត<br>ប្      | Temp. | 1.25   | 125    | 125    | 125    | 125    | 150    | 150    | 150    | 150    | 150     | 150      |      |          |  |  |  |

FREO. BEAR ( 3-84) <u>.</u> EG. EXPERIMENTAL CODE 1172
MATERIAL : MACBOND IB1320 (
DATA SOUNCES
MANUFACTURER : MONE
AFPL : UDRI
OTHER : MONE 76 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0. 



|             |                                                                                                                                                                                                                                                                     | Test No. <u>78-9</u>       |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Beam Nos.   | Not and Recorded                                                                                                                                                                                                                                                    | Date _3/11/78              |
| Damping Ma  | terial MacBond IB1400                                                                                                                                                                                                                                               |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
| Material T  | nickness 0.0178 cm Material Density                                                                                                                                                                                                                                 | 0.965 a/cc                 |
|             | ness 0.1524 cm Beam Density 2.                                                                                                                                                                                                                                      |                            |
|             | n <u>17.78</u> cm                                                                                                                                                                                                                                                   |                            |
| Temperature | e Test Range: Between17.8 °c and                                                                                                                                                                                                                                    | 65.6 °C                    |
| Frequency ' | Test Range: Between 10 Hz and                                                                                                                                                                                                                                       | 10 K Hz                    |
| Loss Facto  | r ո <sub>ր</sub> ։                                                                                                                                                                                                                                                  |                            |
| Peak 10     | O Hz - 1.358 Temperature 2.2                                                                                                                                                                                                                                        | 3 <u>,~</u>                |
|             | D                                                                                                                                                                                                                                                                   |                            |
|             | 0 Hz9.4 _°C10.0 °C                                                                                                                                                                                                                                                  | _ •                        |
| 100         | ) Hz 10.0 °C 32.2 °C                                                                                                                                                                                                                                                |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
|             | T0 FROM MROM N ML A1 A3 A4 30.0 3.2120E+03 5.9439E+06 .557 2.4589E+09 A+(LOG(FR)-LOG(FROL))/C LOG(ETA)+LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-SQRT(1+A#) T0 ETAFROL SL SH FROL C B1 B2 B3 B4 B5 30.0 1.358 .484367 1.6138E+03 .219 LOG(FR)+LOG(F)-12(T-T0)/(S25/1.8+T-T0) | 5<br><b>*2</b> 1))C/2<br>5 |
| Remarks:    |                                                                                                                                                                                                                                                                     |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
|             |                                                                                                                                                                                                                                                                     |                            |
| <u></u>     |                                                                                                                                                                                                                                                                     |                            |

Test No. 78-9 Beam No. Not Recorded

| Not Recorded | ldB      |       |        |        |        |        |        |        |        |        |        |        |        |        |         |         |        | ×      |        |        |        | ×      |
|--------------|----------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|
| Beam No. N   | s<br>S   |       | 0.0164 | 0.0272 | 0.0295 | 7.0339 | 0.0356 | 0.0540 | 0.0833 | 0.0989 | 0.1100 | 0.1106 | 0.1571 | 0.1796 | 0.1834  | 0.2374  | 0.2373 | 0.3321 | 0.3757 | 0.6625 | 0.3991 | 0.5073 |
|              | Δ£       |       | 8.3    | 36.8   | 75.2   | 137.6  | 211.2  | 26.3   | 106.2  | 232.4  | 406.3  | 598.6  | 70.9   | 208.2  | 380.9   | 761.8   | 1122.6 | 1994.9 | 141.8  | 563.4  | 662.2  | 1243.7 |
|              | 표        |       | 509.0  | 1373.2 | 2584.0 | 4127.2 | 6044.2 | 501.1  | 1335.5 | 2475.8 | 3920.9 | 5747.2 | 494.5  | 1297.5 | 2302.0  | 3646.3  | 5454.6 | 6729.9 | 484.8  | 1301.8 | 2081.8 | 3064.4 |
|              | H<br>L   |       | 500.7  | 1336.4 | 2508.8 | 3989.6 | 5833.0 | 474.8  | 1229.3 | 2243.4 | 3514.6 | 5148.6 | 423.6  | 1089.3 | 1.921.1 | 2884.5  | 4332.0 | 5715.2 | 343.0  |        | 1419.6 |        |
|              | f<br>r   |       | 241.5  | 9.779  | 1327.0 | 2190.0 | 3265.2 | 240.7  | 675.5  | 1322.7 | 2184.0 | 3257.7 | 2.39.8 | 673.0  | 1318.7  | 21.77.6 | 3449.7 | 4542.4 | 239:1  | 671.0  | 1315.0 | 2172.0 |
|              | f o      |       | 504.8  | 1354.7 | 2546.1 | 4357.8 | 5937.0 | 487.3  | 1279.5 | 2360.6 | 3717.2 | 5446.9 | 456.7  | 1177.6 | 2112.0  | 3298.4  | 4862.0 | 6326.4 | 403.2  | 1020.1 | 1786.5 | 2748.1 |
|              |          | Noae  | 2      | 3      | 4      | 5      | 9      | 2      | ٤      | 4      | 5      | 9      | 5      | 8      | 4       | 2       | 9      | 7      | 2      | 3      | 4      | n)     |
|              | о<br>[14 | Temb. | 0      | 0      | 0      | 0      | 0      | 2.5    | 25     | 25     | 2.5    | 25     | 5.0    | 50     | 50      | 5.0     | 5.0    | 50     | 69     | 69     | 69     | 6.9    |

÷

Page \_

Test No. 78-9 Beam No. Not Recorded

| ldB                          |       | ×       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |  |
|------------------------------|-------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| s E                          |       | 32      | 12     | 4      | 2      | 4      | 9      | 8      | 0      | 6      | 5      | 4      | 3      | 9      | 0      | 2      | 2      | 3      | 2      | 8      |  |
| . E                          | -     | 0.02532 | 0.1632 | 0.2044 | 0.1332 | 0.1134 | 0.1146 | 0.1068 | 0.0640 | 0.0679 | 0.0395 | 0.0324 | 0.0343 | 0.0296 | 0.0300 | 0.0222 | 0.0102 | 0.0093 | 0.0102 | 0.0108 |  |
| ΔŤ                           |       | 1022.5  | 44.9   | 148.6  | 181.0  | 254.4  | 382.0  | 496.4  | 16.7   | 47.5   | 52.6   | 71.0   | 112.0  | 134.8  | 7.6    | 15.2   | 5.4    | 19.9   | 32.8   | 48.4   |  |
| f<br>R                       |       | 4411.3  | 303.8  | 819.3  | 1474.2 | 2387.4 | 3562.0 | 4922.4 | 270.5  | 724.7  | 1360.6 | 2226.8 | 3322.1 | 4617.2 | 257.1  | 691.2  | 1310.4 | 2171.3 | 3239.4 | 4520.9 |  |
| $^{\mathrm{f}}_{\mathrm{L}}$ |       | 3891,2  | 258.9  | 670.7  | 1292.3 | 2133.0 | 3177.0 | 4426.0 | 253.8  | 677.2  | 1308.0 | 2155.8 | 3210.1 | 4482.4 | 249.5  | 676.0  | 1305.0 | 2151.4 | 3206.6 | 4472.5 |  |
| f<br>a                       |       | 3239.3  | 237.9  | 9.799  | 1309.0 | 2162.4 | 3230.9 | 4516.9 | 236.8  | 664.7  | 1303.5 | 2154.6 | 3220.8 | 4503.6 | 235.9  | 661.9  | 1298.3 | 2146.2 | 3209.2 | 4488.2 |  |
| f,                           |       | 4164.5  | 278.8  | 742.0  | 1377.5 | 2257.2 | 3381.2 | 4672.4 | 261.6  | 7.007  | 1334.2 | 2191.2 | 3266.4 | 4551.3 | 253.3  | 683.6  | 1312.0 | 2161.3 | 3222.9 | 4492.0 |  |
|                              | ::cce | 9       | 2      | 3      | 4      | 5      | 9      | 7      | 2      | 3      | 4      | 5      | 9      | 7      | 2      | 3      | 4      | ıc     | 9      | ۲-     |  |
| ٥<br>٢٠                      | Temp. | 69      | 100    | 100    | 100    | 100    | 100    | 100    | 125    | 125    | 125    | 125    | 125    | 125    | 150    | 150    | 150    | 150    | 150    | 150    |  |

113

```
1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.
                                                                                                                                                                 BEAM
                                                                                                                                                                 MANUFACTURER IN
AFRE ISANDUICH I
EXPERIMENTAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPATERIAL COMPA
```

or and the Indian



|                                                                                                | Test No78-12   |
|------------------------------------------------------------------------------------------------|----------------|
| Beam Nos. Not and Recorded                                                                     | Date 3/20/78   |
| Damping Material <u>MacBond IB1401</u>                                                         | <del></del>    |
|                                                                                                |                |
| Natorial Whickness 0 01524                                                                     | 1 102          |
| Material Thickness 0.01524 cm Material Dens                                                    | ,              |
| Beam Thickness 0.1524 cm Beam Density                                                          | 2.795 q/cc     |
| Beam Length 17.78 cm                                                                           |                |
| Temperature Test Range: Between -20.0 °C a                                                     |                |
| Frequency Test Range: Between 10 Hz and                                                        | 10 KHz         |
| Loss Factor n <sub>D</sub> :                                                                   |                |
| Peak 100 Hz n <sub>D</sub> 1.25 Temperature -6                                                 | 5.7 °C         |
| 1000 i.z np 1.25 Temperature 15                                                                | <br>ن.6 هن     |
| Range 100 Hz <u>-21.7 °C 12.8 °C</u>                                                           |                |
| 1000 Hz3.9 °C37.8 °C                                                                           |                |
|                                                                                                |                |
| T0 FROM MROM N A A3 A3 A3 A2 A3 A3 A3 A3 A3 A3 A3 A3 A3 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 A4 | T(1+A**2)))C/2 |
| Remarks:                                                                                       |                |
|                                                                                                |                |
|                                                                                                |                |
|                                                                                                |                |
|                                                                                                |                |
|                                                                                                |                |
|                                                                                                |                |
|                                                                                                |                |
|                                                                                                |                |
|                                                                                                |                |
|                                                                                                |                |
|                                                                                                |                |

Test No. 78-12 Beam No. Not Recorded

| ldB    |      |               |        |        |        |        |        |              |        |        |          |        |         |        |        |         |        |        |        |        |        |        |         |          | 7      |
|--------|------|---------------|--------|--------|--------|--------|--------|--------------|--------|--------|----------|--------|---------|--------|--------|---------|--------|--------|--------|--------|--------|--------|---------|----------|--------|
| ຮ      |      | 0.0134        | 0.0171 |        | 0.0315 | 0.0356 | 0.0366 | 0.0436       | 0.0459 | 0.0601 | 0.0938   | 0 1052 | 20010   | 0.1290 | 0.1130 | 0.1347  | 0.1649 | 2050   | 0.2029 | 0.2119 | 0.3577 | 0.4036 | b. 3724 | 0 3063   |        |
| ۵£     |      | 6.8           | 23.8   | ,      | 78.9   | 136.5  | 219.4  | 340.4        | 22.6   | 0.08   | 219.3    | 1 775  | 1.1.0   | 712.8  | 819.3  | 61.3    | 198.8  |        | 6 54   | 1313.9 | 130.8  | 359.2  | 557.0   | 763.1    | 4.01.  |
| f<br>R |      | 512.2         | 3      | 1401.0 | 2550.1 | 3965.3 | 6109.2 | 7993.2       | 504.2  | 1374.3 | 2454.9   | . 0000 | . 1     | 5908.8 | 7755.5 | 488.3   | . 1    | 0.0201 | 3454.3 | 7096.0 |        |        | 1836.0  |          | 2869.3 |
| H<br>L |      | 505 4         |        | 1378.0 | 2471.2 | 3826.7 | 5889.8 | 7652.8       | 481.6  | 1294.3 | 235      | 3.002  | 3423.0  | 5196.0 | 6936.2 | 427.0   | 0 00 5 | 1129.0 | 2820.0 | 5782.1 | 323.0  | 780.1  | 1270 0  | 0.6721   | 2136.2 |
| ብ<br>G |      | 2416          | 0.147  | 678.1  | 1327.4 | 2191.0 |        | 4566.2       | 240.8  | 75     |          | 3      | 2185.0  | 3259.2 | 4555.7 | 0 0 0 0 | 0.042  | 673.5  | 2179.0 | 3251.2 | 239:2  | 671    |         | 21.0     | 2172.2 |
| f o    |      |               | 508.6  | 1389.5 | 2504.7 | 2      | 6002   | 213          | 492    | 1333   | ין<br>נו | 2347.1 | 3505.1  | 5547.0 | 7299.0 |         | 407    | 1222.0 | 3144.8 | 6338.8 | 1,88.4 | 0 0    |         | 1.996.1  | 2537.2 |
|        | 080: | ט<br>כי<br>כי | 2      | ω,     | 4      |        | 1      | 7            | ,      |        |          | 4      | ار<br>ا | 9      | 7      |         | 7      | m<br>  | un     | 9      |        | 1 (    |         | <u>,</u> | 10     |
| e<br>G | 1    |               | -4     | ₹ŗ<br> | 4-     |        |        | <del>J</del> | ,      |        |          | 2.1    | 21      | 2.1    | 1 6    |         | 15.    | 45     | 45     | 45     |        |        |         | ၉အ       | 68     |

Test No. 78-12

| Recorded     | 138               |       | ×      | ×      |        |         |         |        |        |         |        |        |        |        |        |         |      |         |      |
|--------------|-------------------|-------|--------|--------|--------|---------|---------|--------|--------|---------|--------|--------|--------|--------|--------|---------|------|---------|------|
| Beam No. Not | e<br>S            |       | 0.2799 | 0.2016 | 0.1654 | 0.1769  | 0.1131  | 0.0931 | 0.1175 | 0.0937  | 0.0741 | 0.0538 | 0.0310 | 0.0255 | 0.0300 | p.0280  |      |         |      |
| נט           | Δ<br><del>1</del> |       | 1027.2 | 1024.5 | 45.8   | 128.7 0 | 153.8 0 | 207.8  | 393.9  | 438.8 0 | 19.5 0 | 37.5   | 41.2 0 | 55.8 0 | 98.3   | 127.9 b |      |         |      |
|              | f <sub>R</sub>    |       | 4115.1 | 5467.1 | 303.1  | 807.7   | 1452.5  | 2349.3 | 3571.8 | 4908.3  | 274.0  | 716.4  | 1351.0 | 2214.6 | 3324.5 | 4627.7  |      |         |      |
|              | f.                |       | 3592.6 | 4946.0 | 257.3  | 679.0   | 1298.7  | 2141.5 | 3177.9 | 4469.5  | 254.5  | 678.9  | 1309.8 | 2158.8 | 3226.2 | 4499.8  |      |         |      |
|              | fn                |       | 3239.6 | 4533.6 | 237.9  | 667.6   | 1309.0  | 2162.4 | 3230.9 | 4516.9  | 236.8  | 664.7  | 1303.5 | 2154.6 | 3220.8 | 4503.6  |      |         |      |
|              | f.                |       | 3809.0 | 5183.0 | 280.7  | 738.9   | 1368.6  | 2241.1 | 3375.8 | 4705.5  | 264.0  | 697.8  | 1329.6 | 2187.5 | 3277.0 | 4563.0  |      | 1       |      |
|              |                   | ::oce | 9      | 7      | 2      | m       | 4       | 5      | 9      | 7       | 2      | 3      | 4      | 5      | 9      | 1-      | <br> | <br>- 2 | <br> |
|              | o<br>(4           | Temp. | 68     | 68     | 100    | 100     | 1.00    | 100    | 100    | 100     | 125    | 125    | 125    | 125    | 125    | 125     |      |         |      |

A second such a second such a second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the second such as the se

: 点 ! 普

3



|                                                                           | Test N           | lo. <u>/8-i3</u> |
|---------------------------------------------------------------------------|------------------|------------------|
| Beam Nos. Not and Recorded                                                | Date             | 3/22/78          |
| Damping Material MacBond IB1622                                           | _                |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |
| Material Thickness 0.0203 cm Material Densit                              |                  | ,.               |
| Beam Thickness 0.2032 cm Beam Density 2                                   | 2.795 q/         | 'cc              |
| Beam Length 17.78 cm                                                      |                  |                  |
| Temperature Test Range: Between $-31.7$ $\circ_{\text{C}}$ and            | 51.7             | °C               |
| Frequency Test Range: Between 10 Hz and                                   | 10 K H           | (z               |
| Loss Factor nn:                                                           |                  |                  |
| 5                                                                         | 0 2 -            |                  |
| Peak 1.00 Hz $n_D$ 1.3 Temperature -15. 1000 Hz $n_D$ 1.3 Temperature 6.1 | <u>.</u> ,Ç      |                  |
| 5                                                                         | °C               |                  |
| Range 100 liz <u>-28.9</u> °C <u>-3.9</u> °C                              |                  |                  |
| 1000 Hz <u>-7.8</u> °C <u>20.0</u> °C                                     |                  |                  |
|                                                                           |                  |                  |
| LOG(M)+LOG(ML)+(2LOG(MROM/NL))/(1+(FROM/FR)**N)                           |                  |                  |
| TO FROM MROM N ML                                                         |                  |                  |
| 20.0 7.2800E+03 8.2000E+06 .500 4.000<br>0+(10G(FR)-10G(FROL))/C          |                  | _                |
| LOGIETA)-LOGIETAFROL)-((SL+SH)A+(SL-SH)(1-SQRT(<br>TO ETAFROL SL SH FROL  | 1+A112)))C/<br>C | 2                |
| TO ETAFROL SL SH FROL<br>B1 B2 B3 B4<br>20.0 1.300 1.000750 3.0000E+03    | 1.000            |                  |
| LOG(FR)+LOG(F)-12(T-T0)/(525/1.8+T-T0)                                    |                  |                  |
| Remarks:                                                                  |                  |                  |
|                                                                           | <del></del>      |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |
|                                                                           |                  |                  |

Test No. 78-13 Beam No. Not Recorded

| 148                       |       |        |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |          | ×       |        |
|---------------------------|-------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|---------|--------|
| e<br>S                    |       | 0.0118 | 16600.0 | 0.0139 | 0.0272 | 0.0218 | 0.0548 | 0.0420 | 0.0546 | 0.0680 | 0.0680 | 0.0677 | 0.1412 | 0.1431 | 0.1892 | b.1834 | D.1573 | 0.3533 | 0.4448   | 0.4181  | 0.2834 |
| Δf                        |       | 7.9    | 18.3    | 47.8   | 139.4  | 155.4  | 35.6   | 74.4   | 177.9  | 325.5  | 450.2  | 616.0  | 6.58   | 231.0  | 544.6  | 764.9  | 7.716  | 156.5  | 529.1    | 896.5   | 946.5  |
| f<br>R                    |       | 675.5  | 1855.9  | 3462.7 | 5223.0 | 7217.3 | 672.8  | 1812.1 | 3351.1 | 4964.1 | 6866.5 | 9408.5 | 643.4  | 1748.5 | 3232.7 | 4580.9 | 6374.6 | 555.4  | 1608.4   | 2564.3  | 3915.8 |
| $\mathbf{f}_{\mathbf{L}}$ |       | 667.6  | 1837.6  | 3414.9 | 5083.6 | 7061.9 | 637.2  | 1737.7 | 3173.2 | 4638.6 | 6416.3 | 8792.5 | 559.5  | 1517.5 | 2688.1 | 3816.0 | 5456.9 | 398.9  | 1079.3   | 2108.3  | 2969.3 |
| fi<br>G                   |       | 329.5  | 918.7   | 1796.8 | 2965.8 | 4437.2 | 328.4  | 915.3  | 1790.2 | 2954.0 | 4422.3 | 6173.7 | 327.4  | 912.5  | 1784.8 | 2945.0 | 4407.4 | 326.3  | 908.5    | 1778.7  | 2934.0 |
| ff <sub>0</sub>           |       | 671.3  | 1847.0  | 3440.0 | 5133.3 | 7142.6 | 650.2  | 1774.9 | 3264.2 | 4300.1 | 6636.2 | 9115.5 | 0.003  | 1631.0 | 2928.9 | 4240.1 | 5.5065 | 469.8  | 1302.0   | 2323.3  | 3471.5 |
|                           | ::oge | 2      | 3       | 4      | 5      | 9      | 2      | ٤      | 4      | 5      | 9      | 1~     | ۲3     | m      | 4      | 5      | 9      | 2      | m        | ব্য     | 2      |
| о<br>[ <del>1</del>       | Temp. | -25    | -25     | -25    | -25    | -25    | 0      | 0      | 0      | 0      | 0      | 0      | 22     | 22     | 22     | 22     | 2.2    | 4.5    | ιΩ<br>•• | ٠.<br>١ | 10     |

Page \_

Test No. 78-13 Beam No. Not Pecorded

| ldB                          |        | ×        |        |             |          |          |          |         |          |            |        |        |         |                 |        |        |        |            |        |          |        |   |
|------------------------------|--------|----------|--------|-------------|----------|----------|----------|---------|----------|------------|--------|--------|---------|-----------------|--------|--------|--------|------------|--------|----------|--------|---|
| s u                          |        | 0.2007   | 0.1916 | 0.1942      | 0.1540   | 0.1053   | 0.1027   | 9060.0  | 0.1642   | 0.1590     | 0.1073 | 0.0767 | 0.0792  | 0.0686          | 0.0536 | 0.0483 | 0.0322 | 0.0236     | 0.0223 | 0.0194   | 0.0304 |   |
| ΔĒ                           |        | 1001.9 0 | 70.0   | 191.4 0     | 289.0 0  | 319.8 0  | 466.6 D  | 570.1 0 | 58.5     | 155.2      | 200.0  | 232.2  | 358.4   | 428.8           | 18.4   | 45.5   | 57.9   | 69.5       | 97.7   | 118.9    | 10.3   |   |
| f <sub>R</sub>               |        | 5336.7   | 409.9  | 1102.1      | 2041.8   | 3228.2   | 4784.3   | 8.0099  | 396.4    | 1068.5     | 1972.6 | 3155.6 | 4695.1  | 6481.4          | 353.0  | 957.4  | 1829.0 | 2985.4     | 4438.7 | 6177.0   | 343.7  |   |
| $^{\mathrm{f}}_{\mathrm{L}}$ |        | 4827.1   | 339.9  | 910.7       | 1752.8   | 2908.4   | 4317.7   | 6031.7  | 337.9    | 913.3      | 1772.6 | 2923.4 | 4336.7  | 6052.6          | 334.6  | 911.9  | 1771.1 | 2915.9     | 4341.0 | 6058.1   | 333.4  |   |
| <del>لا</del><br>د           |        | 394.0    | 325.0  | 906.4       | 1772.6   | 2924.0   | 4379.1   | 6102.8  | 324.7    | 905.4      | 4      | 2922.0 | 4374.6  | 6098.7          | 323.1  | 902.1  | 1764.2 | 2910:0     | 4356.8 | 6069.4   | 321.7  |   |
| fc                           |        | 5088.5 4 | 372.0  | -           | 897.8    | 3053.7 2 | 4566.6 4 | -       | $\vdash$ | 988/3      | -      | 035.5  | 537.4   | <del> -</del> - | 343.8  | 934.6  | -      | 2950.8   2 | 390.8  | 61:8.6 6 | 338.3  | - |
|                              | Node   |          | -      | -<br>-<br>- | <u> </u> | i,       | 9        |         | 2        |            | 7      | - 10   | <u></u> | 7               | 2      | 1 10   | 4      | in.        | 9      | 1~       |        | - |
| β.,<br>0                     | : ames |          |        |             | 89       |          | 80       |         |          | ;;;<br>[5] |        |        |         |                 |        |        | 1001   | 100        | 100    | 100      | 125    | 1 |

of

Test No. 78-13

| Recorded     | ldB            |       |        |        |        |        |         |      |  |      |      |      |       |   |       |
|--------------|----------------|-------|--------|--------|--------|--------|---------|------|--|------|------|------|-------|---|-------|
| Beam No. Not | c<br>S         |       | 42     | 59     | 32     | 90     | 91.5    |      |  |      |      |      |       |   |       |
| Веал         |                |       | 0.0242 | 0.0159 | 0.0132 | 0.0106 | 0.00915 |      |  |      | <br> | <br> | <br>_ | - | <br>_ |
|              | Δ£             |       | 22.3   | 28.3   | 38.5   | 46.1   | 55.6    |      |  |      |      |      |       |   |       |
|              | ᄯ              |       | 933.8  | 1796.4 | 2945.2 | 4380.7 | 6102.5  |      |  |      |      |      |       |   |       |
|              | τŢ             |       | 911.5  | 1768.1 | 2906.7 | 4334.6 | 6046.9  |      |  |      |      |      |       |   |       |
|              | ti<br>E        |       | 898.4  | 1757.5 | 2899.0 | 4337.4 | 6042.3  |      |  |      |      |      |       |   |       |
|              | <sup>A</sup> O |       | 922.8  | 1781.9 | 2919.3 | 4358.0 | 6075.2  | <br> |  |      |      |      |       |   |       |
|              |                | 000   | 3      | 4      | 5      | 9      | 7       |      |  | <br> | <br> | -    | <br>  |   | <br>  |
|              | ٥<br>٢٠        | 20:03 | 125    | 125    | 125    | 125    | 125     |      |  |      |      |      |       |   |       |

```
## CODULUS | LOSS | TEMP | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE 0 | PRE
```

Andonecoma benkunduk



|                                                                             | Test        | No. <u>78-14</u> |
|-----------------------------------------------------------------------------|-------------|------------------|
| Beam Nos. Not and Recorded                                                  | Date        | 3/27/78          |
| Damping Material MacBond 2101                                               |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
| Material Thickness 0.0203 cm Material Density                               |             | -                |
| Beam Thickness 0.1524 cm Beam Density 2                                     | <u>.795</u> | q/cc             |
| Beam Length 17.78 cm                                                        |             |                  |
| Temperature Test Range: Between $\frac{-17.8}{}$ ${}^{\circ}C$ and          | 93.3        | °C               |
| Frequency Test Range: Between 10 Hz and                                     | 10 K        | _Hz              |
| Loss Factor r <sub>D</sub> :                                                |             |                  |
| Doob 100 Mg n 1 470 Temperature 0 4                                         | 0.0         |                  |
| Peak 100 Hz $\eta_D = 1.470$ Temperature $-9.4$                             |             |                  |
| $1000 \text{ Hz}  \eta_{\text{D}}  1.470  \text{Temperature}  10.0$         | °C          |                  |
| Range 100 Hz <u>-17.8</u> °C <u>8.9</u> °C                                  |             |                  |
| 1000 Hz <u>2.2</u> °C <u>31.1</u> °C                                        |             |                  |
|                                                                             |             |                  |
| LOG(M)=LOG(ML)+(2LOG(MROM/NL))/(1+(FROM/FR)**N)                             |             |                  |
| TO FROM MROM N ML                                                           |             |                  |
| 30.0 4.7887E+03 9.9865E+06 .412 2.2607<br>A+(LOG(FR)-LOG(FROL))/C           |             |                  |
| LOG(ETA)=LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-SQRT(1<br>T0 ETAFROL SL SH FROL C | +A**2)))    | C \ S            |
| T0 ETAFROL SL SM FROL C<br>B1 B2 B3 B4 B<br>30.0 1.470 .182355 6.2003E+03   | 5<br>. 100  |                  |
| LOG(FR)=LOG(F)-12(T-T0)/(525/1.8+T-T0)                                      |             |                  |
| Remarks:                                                                    |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |
|                                                                             |             |                  |

Test No. 78-14 Beam No. Not Recorded

| Not Recorde | 1 <b>d</b> B   |       |        |         |             |        |        |        |        |        |           |        |         |          |        |        | ×      | ×      | ×      |          | ж      | ×      |
|-------------|----------------|-------|--------|---------|-------------|--------|--------|--------|--------|--------|-----------|--------|---------|----------|--------|--------|--------|--------|--------|----------|--------|--------|
| Beam No.    | e<br>Q         |       | 0.0158 | 0.0229  | 0.0357      | 0.0472 | 0.0548 | 0.0716 | 0.0604 | 0.0660 | 9860.0    | 0.1156 | 0.1394  | 0.1432   | 0.1997 | 0.2302 | 0.3237 | 0.3000 | 0.2635 | 0.4854   | n.8397 | 0.3495 |
|             | ΔĒ             |       | 8.2    | 32.6    | 94.8        | 197.7  | 335.5  | 586.2  | 30.4   | 90.6   | 245.4     | 446.8  | 789.9   | 1072.7   | 6.06   | 280.5  | 674.7  | 9.656  | 1650.4 | 430.8    | 1100.2 | 872.9  |
|             | <b>н</b><br>к  |       | 524.5  | 1443.0  | 2706.5      | 4291.9 | 6317.7 | 8498.5 | 520.3  | 1420.1 | 2632.4    | 4116.0 | 6.131.9 | 8065.5   | 510.6  | 1394.8 | 2359.7 | 3568.5 | 6861.1 | 1233.2   | 1990.0 | 2870.2 |
|             | ή,<br>Ί        |       | 516.3  | 1.410.4 | 2611.7      | 4094.2 | 5982.2 | 7912.3 | 489.9  | 1329.5 | 2387.0    | 3669.2 | 5342.0  | 6992.8   | 419.7  | 1114.3 | 2016.5 | 3080.4 | 6021.6 | 802.4    |        | 2436.2 |
|             | ur<br>ur       |       | 241.5  | 677.6   | 1327.0      | 2190.0 | 3265.2 | 4563.6 | 240.7  | 675.5  | 1322.7    | 2184.0 | 3257.7  | 4553.6   | 239.8  | 673.0  | 1318.7 | 2177.6 | 4542:4 | 670.7    | 1314.4 | 2171.4 |
|             | f <sub>C</sub> |       | 520.3  | 1426.5  | 2659.2      | 4190.7 | 6132.8 | 8205.3 | 504.4  | 1375.5 | 2501.0    | 3890.3 | 5720.0  | 1 7567.7 | 464.1  | 1250.3 | 2189.8 | 3337.7 | 6474.7 | 986.5    | 1710.2 | 2644.9 |
|             |                | ::ode | 2      | 3       | <b>•</b> 3* | :C     | 9      | 7      | 2      | 3      | 4         | 5      | S       | ۲-       | 5      | ۳۱     | 4      | ıc     | 7      | М        | 4      | ıcı    |
|             | 0<br>[14       | femo. | 0      | 0       | 0           | 0      | 0      | 0      | 5.2    | 25     | <u>ان</u> | 35     | 10      | 25       | 5.0    | 20     | 5.0    | 9.0    | 50     | €4<br> - | 1.2    |        |

Page \_

Test No. 78-14 Beam No. Not Pecorded

| 13B      |       |        |        |        |        |        |        |        |        |        |        |        |        |        |          |        |        |        |        |        |        |
|----------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|
| s        |       | 0.3529 | 0.2568 | 0.1783 | 0.1405 | 0.1511 | 0.1171 | 0.1825 | 0.1229 | 0.0798 | 0.0635 | 0.0605 | 0.0549 | 0.0956 | 0.0636   | 0.0411 | 0.0312 | 0.0291 | 0.1021 | 0.0626 | 0.0340 |
| ΔĒ       |       | 1766.6 | 189.0  | 246.2  | 317.2  | 507.9  | 549.9  | 47.5   | 86.3   | 107.4  | 140.2  | 198.6  | 252.0  | 23.9   | 43.4     | 54.3   | 67.7   | 94.3   | 4.5    | 15.4   | 25.6   |
| 41<br>EK |       | 6126.3 | 865.5  | 1527.4 | 2450.0 | 3657.1 | 4995.4 | 289.6  | 752.5  | 1402.8 | 2279.8 |        | 4715.0 | 263.3  | 706.4    | 1347.8 | 2206.4 | 3288.2 | 47.0   | 254.5  | 687.i  |
| 버        |       | 4359.6 | 676.5  | 1281.2 | 2132.8 | 3149.2 | 4445.5 | 242.1  | 666.2  | 1295.4 | 2139.6 | 2191.8 | 4463.0 | 239.4  | 663.0    | 1293.5 | 2138.7 | 3193.9 | 42.5   | 239.1  | 651.5  |
| Åg       |       | 4532.0 | 9-199  | 1309.0 | 2162.4 | 3230.9 | 4516.9 | 236.8  | 664.7  | 1303.6 | 2154.6 | 3220.8 | 4503.6 | 235.9  | 661.9    | 1298.3 | 2146.2 | 3209:2 |        | 234.8  | 658.8  |
| 'nρ      |       | 5308.5 | 759.9  | 1402.9 | 2280.1 | 3400.5 | 4729.3 | 264.6  | 707.2  | 1349.6 | 2213.5 | 3291.1 | 4593.3 | 251.1  | 683.6    | 1320.7 | 2172.0 | 32:2.2 | 44.3   | 246.6  | 674.0  |
|          | Rode  | 7      | ۳      | 4      | S      | 9      | 1      | 2      | m      | 4      | \r     | 9      | [~     | 2      | <u>ب</u> | -4     | ıs.    | 9      | 7      | 2      | 0      |
| [14<br>⊙ | Temp. | 72     | 100    | 100    | 100    | 100    | 100    | 125    | 125    | 125    | 125    | 125    | 125    | 150    | 1.50     | 150    | 150    | 0.0    | 176    | 175    | 175    |

بب 0

Test No. 78-14 Beam No. Not Recorded

| 1dB     | 1      |       |        |         |        |        |        |        |        |        |        |        |        |  |  |  |  |  |
|---------|--------|-------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|--|--|--|
|         | ဟ<br>- |       | 0.0240 | 0.0177  | 0.0166 | 0.0154 | 0.0881 | 0.0457 | 0.0267 | 0.0173 | 0.0120 | 0.0113 | 0.0103 |  |  |  |  |  |
| Λ£      | i<br>I |       | 31,4   | 38.1    | 53.3   | 69.0   | 3.8    | 11.1   | 17.8   | 22.5   | 25.7   | 36.1   | 45.9   |  |  |  |  |  |
| 4       | i<br>R |       | 1322.4 | 2171.8  | 3241.1 | 4523.8 | 45.7   | 248.6  | 9.929  | 1309.6 | 2153.7 | 3214.9 | 4486.0 |  |  |  |  |  |
| 4       | ij     |       | 1291.0 | 21.33.7 | 3187.8 | 4454.8 | 41.9   | 237.5  | 8.859  | 1287.1 | 2128.0 | 3178.8 | 4440.1 |  |  |  |  |  |
| 4-      | ជ      |       | 1292.5 | 2137.4  | 3197.5 | 4473.2 |        | 234.1  | 656.5  | 1287.5 | 2120.5 | 3187.5 | 4460.5 |  |  |  |  |  |
| ų       | ņ      |       | 1306.5 |         | 3214.1 | 4485.9 | 43.3   | 242.9  | 8.199  | 1297.6 | 2140.4 | 3196.3 | 4464.9 |  |  |  |  |  |
|         |        | Node  | 4      | 5       | ع      | 7      | 1      | 2      | 8      | 4      | 5      | 9      | ۲-     |  |  |  |  |  |
| با<br>0 | 4      | Teno. | 1.75   |         | 174    | 1.74   | 195    | 195    | 195    | 195    | 195    | 195    | 195    |  |  |  |  |  |

EXPERIMENTAL CODE : 1
MATERIAL :MACBOND IB 2181 78-14
DATA SOURCES
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MANUFACTURER :MODE
MAN

| 2. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.586.10E+04<br>1.825.45E+05<br>2.08877E+05<br>8.92074E+05<br>3.706.38E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| हु <sup>±</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.00<br>2.45.0 |
| 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6457<br>6457<br>6457<br>6457<br>6457<br>6457<br>6457<br>6457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.42746E110<br>6.44738E110<br>6.45759E110<br>5.41914E110<br>6.51495E110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| בַּבָּ<br>מַ : שָׁמְּיִּמְשְׁבְּּמִּשְׁבְּמִּשְׁבְּמִּשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִשְׁבְּמִי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ₩.4.Y.Q.F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nan-unce and uncentual mande and on a uncentual and and and and and and and and and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 242.9<br>667.8<br>1287.6<br>3186.3<br>4464.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22222<br>2323<br>3466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.4.5<br>25.4.4.5<br>25.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 700ULUS<br>N. 144651112<br>1. 3446116<br>2. 3746116<br>2. 3746116<br>2. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746116<br>3. 3746 | 1.99361E+95<br>3.18598E+95<br>4.12716E+95<br>7.39382E+95<br>7.64661E+95<br>9.41795E+66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 404744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



|                                                                                                                                                                                                                                                                                                         | Test No. 78-15 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Beam Nos. Not and Recorded                                                                                                                                                                                                                                                                              | Date 3/30/78   |
| Damping Material MacBond IB2107                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |
| Material Thickness 0 0179 Waterial Densit                                                                                                                                                                                                                                                               |                |
| Material Thickness <u>0.0178</u> cm Material Densit Beam Thickness 0.2032 cm Beam Density                                                                                                                                                                                                               |                |
|                                                                                                                                                                                                                                                                                                         | 2.795 g/cc     |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                                                    | . 00.0         |
| Temperature Test Range: Between                                                                                                                                                                                                                                                                         |                |
| Frequency Test Range: Between 10 Hz and                                                                                                                                                                                                                                                                 | 10 KHZ         |
| Loss Factor n <sub>D</sub> :                                                                                                                                                                                                                                                                            |                |
| Peak 100 Hz $n_D = \frac{1.321}{1.321}$ Temperature 8.3                                                                                                                                                                                                                                                 | ° C            |
| 1000 Hz $\eta_{D}$ 1.321 Temperature 26.7                                                                                                                                                                                                                                                               | • C            |
| Range 100 Hz <u>-3.9</u> °C <u>26.7</u> °C                                                                                                                                                                                                                                                              |                |
| 1000 Hz 12.8 °C 50.0 °C                                                                                                                                                                                                                                                                                 |                |
| LOG(M)+LOG(ML)+(2LOG(MROM/NL))/(1+(FROM/FR)**N) TO FROM MROM N ML A1 A2 A3 A4 50.0 2.6973E+04 9.9986E+06 .280 1.012' A+(LOG(FR)-LOG(FROL))/C LOG(ETA)+LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-SQRT()) TO ETAFROL SL SH FROL B1 B2 B3 B4 E 50.0 1.321 .169325 1.5063E+04 LOG(FR)+LOG(F)-12(T-T0)/(525/1.8+T-T0) | 7E+05          |
| Remarks:                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |
|                                                                                                                                                                                                                                                                                                         |                |

Test No. 78-15 Beam No. Not Recorded

| 1dB              |           |         |                                                                                                                                                                                                                                        |           |           |           |           |         |          |           |           |           |           |        |         |          |          | ×            |         |          |          |
|------------------|-----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|---------|----------|-----------|-----------|-----------|-----------|--------|---------|----------|----------|--------------|---------|----------|----------|
| nsam (NO.        | _         | 0.00642 | 0.0171                                                                                                                                                                                                                                 | 0.0351    | 0.0271    | 0.0359    | 0.0342    | 0.0148  | 0.0386   | G.0501    | a 0640    | 0 0 7 7 6 | 0.0833    | 0.0615 | 0.1331  | 0.1541   | 0.1828   | 0.2203       | 0.1941  | 0.4298   | 0.3170   |
| ρŧ               |           | 0.7 0.  | 12.2 0.                                                                                                                                                                                                                                | 71.7      | 103.5 0.  | 215.7 0.  | 296.4 0.  | 1.6 0.  | 25.2 6.  | 38.3      | 210.9 a   | 402.8 Q   | 627.0 0   | 6.5 0  | 31.8 O  | 251.3 0  | 544.5 0. | 757.8 0.     | 18.5 0. | 214.0 0. | 431.1 o  |
| $f_{ m R}$       | _         | 109.4   | 9.717                                                                                                                                                                                                                                  | 2092.6    | 3879.2    | 6112.1    | 8842.3    | 108.9   | 666.5    | 810.1     | 3410.5    | 5406.2    | 7875.8    | 109.2  | 662.8   | 1778.4   | 3309.4   | 7232.3       | 108.0   | 649.0    | 1649.2   |
| $_{ m I}^{ m f}$ |           | 108.7   | 705.7                                                                                                                                                                                                                                  | 2020.6 20 | 3775.7 38 | 5896.4 61 | 8545.9 88 | 107.3   | 641.3 6  | 1721.8 18 | 3199.6 34 | 5003.4 54 | 7249.8 78 | 102.7  | 581.0 6 | 1527.1   | 6        | .5           | 89.5    | 9        | 1213.1   |
|                  |           | 7.7     | </td <td>.3</td> <td>.2</td> <td></td> <td>.3</td> <td>1(</td> <td></td> <td>.2 1.7.</td> <td>5</td> <td>. 5</td> <td>. 4.</td> <td>1(</td> <td>6.</td> <td>8.</td> <td>.5 2764</td> <td>:0 6474</td> <td>ω</td> <td>8.</td> <td></td> | .3        | .2        |           | .3        | 1(      |          | .2 1.7.   | 5         | . 5       | . 4.      | 1(     | 6.      | 8.       | .5 2764  | :0 6474      | ω       | 8.       |          |
|                  |           | 0.1     | 1.7 328                                                                                                                                                                                                                                | .6 915.   | .4 1790   | .4 2954.0 | -4 4422   | 8.1     | 3.6 327. | 5.1 912   | 2.5 1783. | 6.1 2943  | 3.2 4407  | 5.0    | .9 325  | 806 7 2. | 7.5 1777 | .1 4391      | 1       | .0 324   | 8°500 0° |
| 4,               | 130       | 1 1 30  | 2 711                                                                                                                                                                                                                                  | 3 2045    | 4 ; 3821  | 5 ( 6009  | 6193 J    | 1 1 108 | 2   653  | 3   1765  | 4   3302  | 5 5206    | 6 : 17553 | 105    | 2   619 | 3 , 1650 | 4 1 5027 | 1263 9       | 1 1 97  | 2   542  | 5   1426 |
| <b>υ,</b><br>ο   | Temp. /Ko | i —     | 0                                                                                                                                                                                                                                      | - o       | ĵ         | J.        | ũ         | 25      | 55       | 52        | 55        | 25 !      | is ca     | 50     | 50      | , 09     | 99       | <br>()<br>() | 7.7     | r-1      | 1 11     |

Test No. 78-15 Beam No. Not Recorded

| vecol ded     |                   |       |        | _      |        |        | 7         |            |        |        |        |        |        |        |        |        |        |        |        |        |        | 1       |
|---------------|-------------------|-------|--------|--------|--------|--------|-----------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| טר שברס       | 1дВ               |       | ×      |        |        |        |           | ×          |        |        |        |        |        |        |        |        |        |        |        |        |        |         |
| Deali No. No. | ເ:<br>ຜ           |       | 0,2009 | 0.2850 | 0.3018 | 0.2921 | 0.2057    | 0.1775     | 0.1805 | 0.2399 | 0.1765 | 0.1556 | 0.1185 | 0.0871 | 0.0816 | 9690.0 | 0.0952 | 0.1400 | 0.0554 | 0.0379 | 0.0363 | 0.0326  |
|               | Δf                |       | 768.4  | 109.7  | 303.3  | 553.3  | 631.2     | 820.6      | 1140.3 | 16.4   | 62.8   | 148.5  | 216.8  | 260.7  | 362.6  | 429.8  | 32.6   | 129.1  | 99.2   | 111.2  | 158.5  | 198.7   |
|               | A<br>R            |       | 4261.2 | 463.9  | 1227.5 | 2262.4 | 3467.1    | 4894.1     | 6901.3 |        | 395.0  | 1046.6 | 1953.7 | 3134.0 | 4652.1 | 6405.6 | 358.6  | 0.696  | 1842.6 | 2990.7 | 4451.2 | 6.187.9 |
|               | $^{\rm f}_{ m L}$ |       | 3492.8 | 354.2  | 924.2  | 1709.1 | 2835.9    | 4476.7     | 5761.0 | 62.1   | 332.2  | 1.898  | 1736.9 | 2873.3 | 4289.5 | 5975.8 | 326.0  | 839.9  | 1743.4 | 2879.5 | 4292.0 | 3.0895  |
|               | fn                |       | 2013.6 | 323.1  | 902.1  | 1764.2 | 2910.0    | 4358.8     | 6071.8 |        | 321.7  | 898.4  | 1758.1 | 2899.0 | 4337.4 | 6042.3 | 320.1  | 895.3  | 1750.3 | 2888.0 | 4318.0 | 6613.1  |
|               | ္မွ               |       | 3091.3 | 400.3  | 1049.6 | 1973.4 | 3133.1    | 4693.0     | 6419.6 | 70.3   | 361.3  | 0.996  | 1842.3 | 3003.4 | 4456.5 | 6188.5 | 344.1  | 931.2  | 1793.0 | 2938.7 | 4370.7 | 6089    |
|               |                   | Node  | רע     | C1     | m      | •3"    | <u>ان</u> | ¥          | 1-     |        | C a    |        | .,     | 10     | 9      | 1-     | (4     | c.     | 1.7    | 15.    | ę      | 1.      |
|               | [14<br>0          | Temp. | 7.1    | 102    | 201    | 162    | 102       | <b>201</b> | ()     | 125    | 125    | 125    | 125    | 3.25   | 123    | 571    | 001    | C 10   | 951    | 057    | G: 10: | 7 0 G   |

Test No. 78-15 Beam No. Not Recorded

|                           |       |        | ·—     | ·<br>  |        |        | <del></del>        | ······································ | ,      |        |        |        | ,      |        |        |        |        | <del></del> | <br> | _ |
|---------------------------|-------|--------|--------|--------|--------|--------|--------------------|----------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|------|---|
| ldB                       |       |        |        |        |        |        |                    |                                        |        |        |        |        |        |        |        |        |        |             |      |   |
| n<br>S                    |       | 0.0309 | 0.1284 | 0.0617 | 0.0500 | 0.0302 | 0.0214             | 0.0189                                 | 0.0171 | 0.0164 | 0.1141 | 0.0376 | 0.0281 | 0.0178 | 0.0124 | 0.0114 | 0.0100 | 0.0107      |      |   |
| Δ£                        |       | 249.6  | 7.4    | 20.4   | 45.4   | 53.8   | 62.3               | 81.7                                   | 103.2  | 131.1  | 6.2    | 12.2   | 25.3   | 31,2   | 35.8   | 49.0   | 0.09   | 84.9        |      |   |
| f <sub>R</sub>            |       | 8205.1 | 62.2   | 342.0  | 935.2  | 1795.7 | 2938.0             | 4366.5                                 | 6082.6 | 8070.8 | 58.7   | 331.1  | 912.3  | 1767.9 | 2902.0 | 4316.6 | 6014.8 | 7983.8      |      |   |
| $\mathbf{f}_{\mathbf{L}}$ |       | 7955.5 | 54.8   | 321.6  | 8.688  | 1,41.9 | 2875.7             | 4284.8                                 | 5979.4 | 7939.7 | 52.5   | 318.9  | 887.0  | 1736.7 | 2866.2 | 4267.6 | 5954.8 | 7898.9      |      |   |
| r<br>G                    |       |        |        | 318.64 | 891.6  | 1743.6 | 2876.0             | 4297.2                                 | 5988.1 |        |        | 317.1  | 837.9  | 1736.4 | 2864.0 | 4280.8 | 5958.9 |             |      |   |
| 41<br>O                   |       | 8079.6 | 58.1   | 331.4  | 811.6  | 1768.6 | 2906.5             | 4326.6                                 | 6032.6 | 3006.0 | 54.7   | 324.8  | 899.5  | 1751.8 | 2884.2 | 4292.2 | 5984.8 | 7941.6      |      |   |
|                           | ::ode | တ      | -      | C      | m      | *1"    | ſſ                 | w                                      | 1-     | အ      | r=4    | (1)    | ŀЭ     | 4      | ıΩ     | ب      | 1-     | ധ           | <br> |   |
| о<br>[4                   | Temp. | 150    | 175    | 175    | 5 7    | 175    | (5)<br>(1)<br>(-1) | 175                                    | L .    | 175    | 200    | 200    | 200    | 200    | 200    | 200    | 200    | 002         | <br> |   |

of

|   | ROBULUS        | 1055   | TEMP.            | FREG.                   | 300              | BEAR ROD.                               | COMPOSITE     | BEAM FREG.                              | COMPLEX MOD.   |
|---|----------------|--------|------------------|-------------------------|------------------|-----------------------------------------|---------------|-----------------------------------------|----------------|
|   | VALUE OF       | ¥ .    | , .<br>, .       | 4                       | •                | 4147805.00                              | 40.00         | 9                                       | 450054         |
|   | 1.25161E+07    | 1.1591 |                  | 1466                    |                  | 1 30C 1 30 U                            |               | 2000                                    | 1 324455 -42   |
|   | 2.141476+07    | .6185  | ัง               | 2                       | 'n               | 0.0010000                               | ,             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                |
|   | 1.8546E+07     | 9968   |                  | 619.8                   | 'n               | 7. 88694K+18                            | 1331          | 365.5                                   | 1.5.56512.00/  |
|   | 3.67406E+07    | 7134   | 19.0             | 1650.2                  | 'n               | 6.949796+16                             | . 1541        | 308.8                                   | 2.64330E+07    |
|   | 4.748425+87    | 677    | 10.0             | 3627.8                  | ÷                | 6.923385+16                             | . 1828        | 1777.5                                  | 3.214546+07    |
|   | 7.459465.07    | 7111   | 10.0             | 6921.1                  | ف                | 6.95441E+10                             | . 2203        | 4391.6                                  | 5.31163£+07    |
|   | 101306407      | 3737   | 9.6              | 653.6                   | તં               | 7.06726€+10                             | . 0386        | 327.3                                   | 1.83600E+07    |
|   | CA-36126 B     | 4      | 0                | 1765.1                  | m                | 7. 90189E+10                            | . 6501        | 912.2                                   | 2.84429E+67    |
|   | 200000         | 1054   | 6                | 3.5                     | 4                | 6.97828E+18                             | 9648          | 1783.5                                  | 3.23180E+07    |
|   | 000000         | 6000   | 1                | ,                       | ٠,               | 6.947726+10                             | . 9776        | 2943.5                                  | 3,593546+07    |
|   | 44007CAB       | 000    | 9                | 2553.2                  | غادة             | 7.066456+18                             | . 8833        | 4.487.4                                 | 4.204285+07    |
|   | 3/844.7        | 900    | 17.1             | 4                       | ú                | 6.997376+110                            | 6320          | 2954.0                                  | 3.073035+08    |
| _ | 344005404      |        | 2                | 8679.4                  | غا               | 7.05391E+10                             | . 6342        | 4422.3                                  | 1.364916+08    |
|   | 34 34 34 34 4  | 200    | 8                | 480.3                   | 3                | 6.887@5E+10                             | 2850          | 323.1                                   | 1.499375+06    |
|   | 465046.05      |        | e o              | 1949                    | · ·              | 6.84769F+18                             | 3918          | 285                                     | 3.47592E+86    |
|   | 2 261 555      | X      | 0                | 1973.4                  | 4                | 6.82016E+10                             | 1263          | 1764.2                                  | 5.71281E+06    |
|   | 78.2005.83     | 1.5855 | 38.0             | 3133,1                  | 'n               | 6.79847:+18                             | 7502.         | 2916.0                                  | 5.84301E+06    |
|   | 2000 C         |        | 0                | 4693.8                  | ی ا              | 6.85278E+10                             | 1775          | 4358.8                                  | 7.59693€+06    |
| _ | A 56126 A      | 2012   | 0                | 6419.6                  | ,                | 6.796325+18                             | 1885          | 6071.8                                  | 1.80795E+87    |
| _ | 6.97954F+85    | 9227   | 51.7             | 200                     | ้ณ่              | 6.8275@E+18                             | .1765         | 321.7                                   | 6.4402AE+85    |
|   | 1.16984E+06    | 1.1639 | 51.7             | 9.996                   | 'n               | 6.79164E+18                             | 1556          | 838.4                                   | 1.36158£+06    |
|   | 1.51201E+06    | 1.2313 | 51.7             | 1842.3                  | ÷                | 6.77308E+10                             | 1185          | 1758.1                                  | 1.86171E+06    |
|   | 1.966136+86    | 1.1035 | 51.7             | 3003.4                  | 'n               | 6.73923€+18                             | . 6871        | 8239.0                                  | 2.16968E+06    |
| _ | 2.35418€+06    | 1.252  | 51.7             | 4456.5                  | Ġ                | 6.73566E+19                             | . 0816        | 4337.4                                  | 2.97694E+86    |
| - | 2.97479€+86    | 1.1695 | 51.7             | 6188.5                  | ۲.               | 6.72509€+10                             | 9630.         | 5642.3                                  | 3.47961E+06    |
|   | 4.366945+05    | . 6882 | 65.6             | 344.1                   | പ്               | 6.75975E+10                             | . 6952        | 320.1                                   | Z.96412E+05    |
| - | 6.38239€+05    | 1.7079 | 9.59             | 931.2                   | e,               | 6.7448SE+19                             | 87            | 895.3                                   | 1.09008E+06    |
|   | 8.74445E+05    | .9173  | 65.6             | 1793.0                  | ₹ 1              | 6.71311E+10                             | . 6554        | 1750.3                                  | 8.02093E+05    |
|   | 1.13636.+96    | . 7785 | 9.69             | 2938.7                  | S,               | 6.688196+10                             | 9750          | 2888.6                                  | 8 . 845.90E+05 |
|   | 1.339375+06    | 9300   | 65.6             | 4370.7                  | ، ف              | 6.72510E+10                             | E9E9.         | 4318.8                                  | 1.243056+86    |
|   | 20 - Negar - C | 2010   | ָ<br>ה<br>ה<br>ה | 0.000<br>0.000<br>0.000 | ٠,               | 0.000000000000000000000000000000000000  | 0250          | 1.6140                                  | 796615+95      |
|   | 7813C10C1      | 2000   |                  | 100                     | in               | 0.030030                                |               | 9.158                                   | 3,65852E+05    |
| _ | 301365         |        | 2                | 1768 6                  | ; <b>-</b>       | 0.0000000000000000000000000000000000000 |               | 1743.6                                  | 4.204615+05    |
|   | 8 1004CF + 65  | 100    | 2                | 2000                    | ·                | 6.632776                                | 4129          | 2876.9                                  | 4.84659E+05    |
| - | 9.77.14.45     | 6481   | 7.02             | 300                     | ف                | 6.66846E+18                             | 98180         | 4297.2                                  | 6.33348€+05    |
|   | 1.411476+06    | 5644   | ~                | 9.25                    | , <del>,</del> . | 6.6849BE+10                             | 1718.         | 5988.1                                  | 7.96660€+05    |
|   | 1.582296+65    | .6195  | 83.3             | 324.8                   | ~                | 6.63364E+18                             | 9250          | 317.1                                   | 3.80197E+04    |
| - | 2.86575€+65    | 6910   | 60               | 839.5                   | 'n               | 6.63381E+10                             | . 9281        | 887.9                                   | 1.984116+05    |
|   | 4.478616+05    | .5394  | 83.3             | 1751.8                  | 4                | 6.60691E+10                             | .0178         | 1736.4                                  | 2.41594E+05    |
|   | 6.578816+05    | . 4186 | <b>3</b> 3.3     | 2884.2                  | Š.               | 6.57749€+11                             | .0124         | 2864.0                                  | 2. 75400E+05   |
| _ | 6.972328+85    | . 5366 | 83.3             | 4290.2                  | ف                | 6.60972E+10                             | <b>1118</b> . | 4280.8                                  | 3.74158E+05    |
|   | 1.111726+86    | T807   | 83.3             | 5984.8                  | ۲.               | 6.548725+19                             | <b>2</b> .    | 5958.9                                  | 4. S6#96E+#5   |
|   |                |        |                  |                         |                  |                                         |               |                                         |                |



|                                                                                                                                                                                                                                                                                                            | Test No. <u>78-17</u> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Beam Nos. Not and Recorded                                                                                                                                                                                                                                                                                 | Date <u>4/11/78</u>   |
| Damping Material MacBond IB2130                                                                                                                                                                                                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
| Material Thickness <u>0.0203</u> cm Material Densi                                                                                                                                                                                                                                                         | ty 1.103 a/ce         |
| Beam Thickness 0.1524 cm Beam Density                                                                                                                                                                                                                                                                      | 2.795 g/cc            |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                                                       | <del></del>           |
| Temperature Test Range: Between <u>-31.7</u> ∘C an                                                                                                                                                                                                                                                         | d <u>93. 3</u> °€     |
| Frequency Test Range: Between 10 Hz and                                                                                                                                                                                                                                                                    | 10 K Hz               |
| Loss Factor 7D:                                                                                                                                                                                                                                                                                            |                       |
| Peak 100 Hz np 1.408 Temperature -9.                                                                                                                                                                                                                                                                       | 1 °C                  |
| 1000 Hz 7 1.408 Temperature 8.                                                                                                                                                                                                                                                                             |                       |
| Range 100 Hz -20.6 °C 4.4 °C                                                                                                                                                                                                                                                                               |                       |
| 1000 Hz -1.1 °C 30.0 °C                                                                                                                                                                                                                                                                                    |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
| LOG(M)*LOG(ML)*(2LOG(MROM/ML))/(1*(FROM/FR)**N) TO FROM MROM N ML A1 A2 A3 A4 30.0 1.03175+04 8.7144E+06 .390 2.1115 A*(LOG(FR)*LOG(FROL))/C LOG(ETA)*LOG(ETAFROL)*((SL*SH)A*(SL*SH)(1-5QRT(1)) TO ETAFROL SL SH FROL C B1 B2 B3 B4 B 30.0 1.408 .192358 8.5782E+03 LOG(FR)*LOG(F)*12(T-T0)/(S25/1.8*T-T0) | +A\$\$2)))C/2         |
| Remarks:                                                                                                                                                                                                                                                                                                   |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                            |                       |

Test. No. 78-17 Beam No. Not Recorded

| 1дв            |       |         |        |        |        |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |        |
|----------------|-------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|
| [<br>E         |       | 0.00848 | 0.0137 | 0.0199 | 0.0268 | 0.0280 | 0.0348 | 0.0244 | 0.0402 | 0.0563 | 0.0641 | 0.0697 | 0.0998 | 0.1342  | 0.1620 | 0.1850 | 0.2071 | 0.2017 | 0.1652 | 0.3443 | 0.4020 |
| ΔĒ             |       | 4.4     | 19.3   | 53.3   | 111.6  | 174.2  | 258.5  | 12.5   | 54.8   | 143.7  | 252.0  | 410.4  | 746.4  | 64.0    | 261.6  | 426.0  | 708.9  | 1041.0 | 1095.0 | 128.5  | 368.6  |
| f <sub>R</sub> |       | 521.3   | 1416.9 | 2704.1 | 4224.8 | 6303.4 | 8137.0 | 517.7  | 1391.3 | 2639.1 | 4067.5 | 6097.4 | 9.5607 | 516.8   | 1369.9 | 2541.4 | 3824.1 |        | 7266.5 |        | 1194.2 |
| $f_L$          |       | 516.9   | 1397.6 | 2650.9 | 4113.2 | 6129.2 | 7878.5 | 505.2  | 1336.5 | 2495.4 | 3815.3 | 5687.0 | 7159.2 | 452.8   | 118.3  | 2115.4 | 3115.2 | 4744.2 |        | 330.7  | 835.6  |
| $f_{ m n}$     |       | 242.2   | 6.629  | 1330.0 | 2195.4 | 3272.0 | 4572.0 | 241.5  | 677.6  | 1327.0 | 2190.0 | 3265.2 | 4563.6 | 240.7   | 675.5  | 1322.7 | 2184.0 | 3257.7 | 4553.6 | 239.8  | 673.0  |
| f <sub>C</sub> |       | 519.0   | 1406.7 | 2678.1 | 4168.1 | 6218.2 | 8009.7 | 511.9  | 1354.4 | 2557.4 | 3945.5 | 5899.0 | 7519.2 | 431.0   | 1260.8 | 2342.1 | 3495.3 | 5264.7 | 6179.0 | 395.0  | 588.2  |
|                | Node  | 7.      | ~      | 4      | 5      | 9      | 7      | 2      | 3      | 4      | 5      | 9      | 7      | 7       | 3      | -7     | ی      | œ      | [-]    | CI     | ~      |
| ە<br>بى        | Temp. | -25     | -25    | -25    | -25    | -25    | -25    | 0      | 0      | 0      | 0      | 0      | С      | 61<br>만 | 25     | 25     | 5.2    | 25     | 25     | 0.00   | 5.0    |

Test No. 78-17 Beam No. Not Recorded

| 1 <b>d</b> B   |       | ×      | ×      | ×      |        |        |        |        | ×      |        |        |        |        |        |        |        |        |        |        |        |        |
|----------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| e<br>S         |       | 0.2593 | 0.3396 | 0.3241 | 0.3465 | 0.3218 | 0.2974 | 0.2258 | 0.2569 | 0.1922 | 0.1825 | 0.1282 | 0.0915 | 0.0719 | 0.0773 | 0.0620 | 0.1178 | 0.0789 | 0.0478 | 0.0413 | 0.0338 |
| ٥f             |       | 886.7  | 882.3  | 1714.2 | 102.9  | 240.9  | 418.9  | 520.8  | 876.2  | 0.806  | 48.5   | 90.3   | 123.5  | 159.1  | 255.2  | 284.5  | 30.1   | 54.4   | 63.5   | 90.2   | 110.1  |
| $f_{ m R}$     |       | 2036.4 | 3007.5 | 5892.5 | 371.2  | 926.1  | 1699.2 | 2635.0 | 876.2  | 5259.0 | 297.1  | 758.6  | 1420.7 | 2300.8 | 3433.9 | 4737.4 | 272.1  | 7.9.7  | 1362.6 | 2231.4 | 3315.3 |
| f <sub>L</sub> |       | 1585.4 | 2558.7 | 5020.6 | 268.3  | 685.2  | 1280.3 | 2114.2 | 3293.6 | 4351.0 | 248.6  | 668.3  | 1297.2 | 2141.7 | 3178.7 | 4452.9 | 242.0  | 665.3  | 1299.1 | 2141.2 | 3205.2 |
| fn             |       | 1318.7 | 2177.6 | 4542.4 | 238.9  | 670.4  | 1313.8 | 2170.2 | 3236.9 | 4530.7 | 237.9  | 667.6  | 1309.0 | 2162.4 | 3230.9 | 4516.9 | 236.8  | 6.64.7 | 1303.5 | 2154.6 | 3220.8 |
| j<br>S         |       | 1796.8 | 2742.8 | 5      | 314.3  | 786.4  | 1469.5 | 2364.9 | 3520.5 | 4811.6 | 270.1  | 710.3  | 1354.8 | 2218.8 | 3311.2 | 4598.8 | 257.2  | 691.3  | 1330.4 | 2187.6 | 3257.9 |
|                | Mode  | 4      | 5      | 7      | 2      | 3      | 4      | 5      | 9      | 7      | 2      | 3      | 4      | 5      | 9      | 7      | 2      | ~      | 4      | 5      | 9      |
| تن<br>0        | Temp. | 5.0    | 5.0    | 50     | 7.5    | 7.5    | 52     | 7.5    | 7.5    | 75     | 100    | 100    | 100    | 100    | 100    | 100    | 125    | 125    | i 25   | 125    | 125    |

Test No. 78-17 Beam No. Not Recorded

| 1dB            |       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         |         |        |  |
|----------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--|
| r<br>S         |       | 0.0336 | 0.0702 | 0.0411 | 0.0262 | 0.0200 | 0.0184 | 0.0149 | 0.0511 | 0.0262 | 0.0166 | 0.0122 | 0.0116 | 0.0104 | 0.0369 | 0.0184 | 0.0117 | 0.00788 | r.00746 | 0.0072 |  |
| Δ£             |       | 152.8  | 17.3   | 27.8   | 34.4   | 43.1   | 59.2   | 6.99   | 12.4   | 17.5   | 21.6   | 26.1   | 37.0   | 46.2   | 8.8    | 12.2   | 15.1   | 16.8    | 23.7    | 31.9   |  |
| f <sub>R</sub> |       | 4614.9 | 256.2  | 690.1  | 1327.7 | 2180.8 | 3249.3 | 4519.1 | 249.2  | 6.929  | 1310.6 | 2157.1 | 3217.2 | 4483.3 | 243.3  | 6.799  | 1298.8 | 2139.5  | 3191.4  | 4449.0 |  |
| $f_{L}$        |       | 4462.1 | 238.9  | 662.3  | 1293.3 | 2137.7 | 3190.1 | 4452.2 | 236.8  | 659.3  | 1289.0 | 2131.0 | 3180.2 | 4437.1 | 234.5  | 655.7  | 1288.7 | 2122.7  | 3167.7  | 4417.1 |  |
| f              |       | 4503.6 | 235.9  | 661.9  | 1298.3 | 2146.2 | 3209.2 | 4488.2 | 234.8  | 658.8  | 1292.5 | 2137.4 | 3197.5 | 4473.2 | 233.7  | 655.7  | 1286.2 | 2128.0  | 3185.0  | 4457.3 |  |
| A O            |       | 4546.5 | 246.9  | 676.3  | 1311.0 | 2159.3 | 3220.8 | 4488.8 | 242.5  | 668.3  | 1299.3 | 2143.5 | 3199.4 | 4460.2 | 238.6  | 661.8  | 1291.3 | 2131.2  | 3179.0  | 4433.1 |  |
|                | Mode  | 7      | 2      | 3      | Þ      | 5      | 9      | 7      | 2      | 3      | 4      | 5      | 6      | 7      | 5      | 3      | 4      | ا کی    | 9       | 7      |  |
| о<br>[14       | Temp. | 125    | 150    | 150    | 150    | 150    | 150    | 150    | 175    | 175    | 175    | 175    | 175    | 175    | 200    | 200    | 200    | 200     | 203     | 200    |  |

 $^{\rm of}$ 

| FO. COMPLEX BOD.  | N/MX         | 9          | 4           | <b>T</b>     | 2             | ∞<br>•        | ~             | œ             | 0           | <u>م</u>      | 9           | 42.4 2.36678E+87 | -           |              | 322.7 3.89951E+07 | 2             | 7 7           | 12 C 7 R440SF+07 | i R                                   | 'n            | m                                       | e e         | m<br>         | m<br>m        | 9                             | Ň             | 330.0 2.79756E |               | <b>М</b>      | o c           | ) a           | o -            | •             | 0             | o.             | ni∙<br>∞i   | 1241 C 4.03338E+03 | 9             | 3 9.226       | 9                                      | oj c<br>oj c  | ě.             | i<br>i        | . d           | i vi          |             | 658.8 1.45825E+65                        |   |
|-------------------|--------------|------------|-------------|--------------|---------------|---------------|---------------|---------------|-------------|---------------|-------------|------------------|-------------|--------------|-------------------|---------------|---------------|------------------|---------------------------------------|---------------|-----------------------------------------|-------------|---------------|---------------|-------------------------------|---------------|----------------|---------------|---------------|---------------|---------------|----------------|---------------|---------------|----------------|-------------|--------------------|---------------|---------------|----------------------------------------|---------------|----------------|---------------|---------------|---------------|-------------|------------------------------------------|---|
| COMOCETTE BEAM ED | LOSS FAC. HZ | .3465      | 3218        | . 2974 13    | .2258         | 6952.         | 1922          | 3443          | •           |               |             | ١                | 40          | . «          |                   |               | 1103.         | ۰.               | . •                                   |               |                                         |             |               |               |                               |               |                |               |               |               |               |                |               |               | . 6620         |             | 67789              | C. 140        |               | .0336                                  | 5040          |                |               |               | 4 0410        |             |                                          |   |
| 200               | N/8482       | 6.69374E+1 | 6.72326E+10 | . 72411E+1   | 71415E+1      | 71845E+1      | 722056+1      |               |             |               |             |                  | 01.13001111 |              |                   |               |               |                  | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |               |                                         |             | 27.0          |               | 8                             | •             | 0.000          |               |               | . 6.84516E+10 | . 6.63782E+19 | 1. 6.66722E+19 | 6.67507E+19   | 6.66597E+10   | 6.68116E+10    | 6.57658E+10 | 1, 6.60942E+10     | 6 64707541B   | 6 65178F+19   | 6.64187E+10                            | 6.52668E+10   | 3. 6.55386E+14 | 6.56647E+18   | 6.56638E+10   | 5. 6.64366+10 | 6.46506E+10 | 3. 6.49261E+10                           | , |
|                   |              | 416        | 7.982       |              | ٠.            | <b>.</b>      |               | h d           |             |               | <b>.</b>    | <b>5</b>         | 20.00.00    | <b>D</b> ) ( | <b>.</b>          | <b>.</b>      | <b>.</b>      | 9 5264.7 6       | D) (                                  | ю с           | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 1000 C      | 240.00 a      |               | ית מינו<br>מינונים<br>מינונים | 0.610         | 7 2678         | 7 4168.1 5    | 2 6212 6      | 7 8009.7 7    | 8 279.1 2     | 8 710.3 3      | 8 1354.8      | 2218.8        | 4508.8         | 257.2       | 5 691.3            |               | 2 236.0       | 4546.5                                 | 246.9         | 6 676.3 3      | 5 6.6515 9.   | 1311.0        | 3270.8        |             |                                          |   |
| 1                 | LOSS TEMP.   | אַנ        | ייני<br>מר  | 36           | 35            | 36            | 35            | u .           | ٠.          | ٠.            | ┥.          | 1.2341 18.       | 1.2477 10.  | m·           | . 7622 - 3.       | .502.         | .6320 -3.     | .6218 -3.        | m r                                   | _             |                                         |             |               |               | 7 €                           | ,             |                | 7             |               |               |               | .9785 37.      |               | .9659         |                | 7266        | .8106              |               |               |                                        |               |                |               |               |               |             | 2746                                     |   |
|                   | MODULUS      | N/1822     | 1.487828+86 | C. 078555+66 | 3 2.72/852+46 | 4 3.63139E+06 | 5 5.117195+06 | 5 5.47798E+06 | 3.90105E+06 | 8 6.39978E+06 | 1.09821E+07 | 1.67386E+07      | 1.89635E+37 | 1.71939€+07  | 3 3,12258£+07     | 4 4.39605E+07 | 5 4.25554E+07 | 5 6.70804E+87    | 7 6.19171E+07                         | 8 9.31171E+07 | 29-389EE0-6                             | 1.65130E+08 | 1 1.00372E+08 | 2 1.51647E+08 | 1.16516E+#8                   | 4 1.99966E+08 | 5 1.565876+68  | 7 1.8/JONETHO | 7 1.58830E+86 | 779575+88     | 6 6.28218E+05 | 1 8.70438E+05  | 2 1.05642E+06 | 3 1.42773€+06 | 4 C. 00C04E+00 | A 677215+85 | 2 5.96265E+05      | 8 7.45757E+05 | 9 1.041695+96 | 10000000000000000000000000000000000000 | 2 2.366776+65 | 2 3 SEC38E+05  | 4 7.11761E+65 | 5 5.00574E+05 | 6 9.381678+05 | 7           | 20-20-00-00-00-00-00-00-00-00-00-00-00-0 |   |
|                   | Š            |            |             | -            | •             | •             |               | _             | •           | _             | _,          | ã                | -           | -            | -                 | -             |               | -                | -                                     | -4            |                                         | ۸ı          | N             | N             | N                             | N             | W,             | u r           | υĊ            | ٧ń            | 'n            | ואו            | m             | m             | n f            | יו ני       | נה) נ              | m             | , ب           | ٠,                                     | 4             | •              | 4             | 4             | 4             | 4,          | 4                                        | , |

2. 12946. 45 2. 12946. 45 3. 01702. 45 3. 74370. 45 7. 33312. 44 1. 2266. 44 1. 35771. 45 2. 55348. 46

8.129. 4.129. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.29. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20. 1.20

6.55874 6.55874 6.55874 6.55875 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.44878 6.4487

40.00.00.40.00.

4312 35872 45887 45837 55837 5584 5584 3875 3875

4. 99225E + 65 5. 93594E + 65 7. 32594E + 65 1. 33346E + 65 2. 49574E + 65 2. 49574E + 65 5. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65 6. 42594E + 65

\$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2825. \$2



|                                                                                                                                                                                                                                                                                                                  | Test No. | 79-4           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|
| Beam Nos. 060C and 060D                                                                                                                                                                                                                                                                                          | Date     | 5/79           |
| Damping Material Soundcoat D                                                                                                                                                                                                                                                                                     |          |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |
| Material Thickness 0.0102 cm Material Density                                                                                                                                                                                                                                                                    | 0.965    | 0/00           |
| Beam Thickness 0.1524 cm Beam Density 2.                                                                                                                                                                                                                                                                         |          | -              |
| Beam Length 17.78 CP:                                                                                                                                                                                                                                                                                            | ٩, ٥٠    | •              |
| Temperature Test Range: Between -17.8 sc and                                                                                                                                                                                                                                                                     | 148.9    | ٠ <sub>٢</sub> |
| Frequency Test Range: Between 10 Hz and                                                                                                                                                                                                                                                                          |          |                |
| Loss Factor np:                                                                                                                                                                                                                                                                                                  |          |                |
| D                                                                                                                                                                                                                                                                                                                |          |                |
| Peak 100 Hz n <sub>D</sub> 0.9 Temperature 79.4                                                                                                                                                                                                                                                                  |          |                |
| Range 100 Hz 10.6 °C 116.67 °C                                                                                                                                                                                                                                                                                   | _ , C    |                |
| 1000 Hz 62.8 °C 150.00 °C                                                                                                                                                                                                                                                                                        |          |                |
| 1000 NZ 02.0 10 150.00 °C                                                                                                                                                                                                                                                                                        |          |                |
| LOG(M)*LOG(ML)*(2LOG(MROM/NL))/(1*(FROM/FR)*IN) TO FROM MROM N ML A1 A2 A3 A4 75.0 4.0000E+02 1.4000E+06 .200 5.5000E* A*(LOG(FR)*LUG(FROL))/C LOG(ETA)*LOG(ETAFROL)*((SL*SH)A*(SL*SH)(1*SQRT(1*A TO ETAFROL SL SH FROL C B1 B2 B3 B4 B5 75.0 .900 .400200 1.8000E+01 1.5 LOG(FR)*LOG(F)*12(T-T0)/(525/1.8*T-T0) |          |                |
| Remarks:                                                                                                                                                                                                                                                                                                         | <u> </u> |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |
|                                                                                                                                                                                                                                                                                                                  |          |                |

| ldB                       |       |        |         |         |         |        |         |         |         |        |         |         |         |        |         |         |         |        |               |               |         |
|---------------------------|-------|--------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|---------|--------|---------------|---------------|---------|
| s<br>S                    |       | 0.0180 | 0.0274  | 0.0327  | 0.0397  | 0.0258 | 0.0411  | 0.0445  | 0.0510  | 0.0451 | 0.0574  | 0.0773  | 0.0773  | 0.0755 | a 0872  | a 0974  | a 1085  | 0.1171 | <b>a</b> 1192 | <b>a</b> 1267 | n 1322  |
| Δ£                        |       | 8.5    | 33.5    | 73.5    | 142.6   | 12.4   | 48.6    | 96.7    | 176.7   | 20.4   | 66.2    | 160.8   | 254.9   | 32.6   | 95.1    | 190.40  | 334.1   | 47.7   | 122.6         | 232.7         | 380.3   |
| f <sub>R</sub>            |       | 476.40 | 1238.40 | 2286.20 | 3658.50 | 469.20 | 1210.70 | 2222.60 | 3534.70 | 462.70 | 1186.10 | 2167.60 | 3421.10 | 448.30 | 1138.20 | 0252.20 | 3245.40 | 432.40 | 1088.20       | 1951.50       | 3068.80 |
| $\mathbf{f}_{\mathbf{L}}$ |       | 467.90 | 1204.90 | 2206.70 | 3515.90 | 456.80 | 1162.10 | 2125.90 | 3367.00 | 442.30 | 1119.90 | 2006.80 | 3166.20 | 415.70 | 1043.10 | 1861.80 | 2911.30 | 384.70 | 965.60        | 1718.80       | 2688.50 |
| rri<br>C                  |       | 246.00 | 683.60  | 1337.78 | 2217.45 | 246.90 | 686.38  | 1343.83 | 2226.44 | 244.03 | 678.36  | 1327.50 | 2198.46 | 243.14 | 676.20  | 1323.27 | 2189.47 | 242:15 | 673.73        | 1319.04       | 2182.47 |
| fo                        |       | 472.20 | 1220.80 | 2244.00 | 3591.90 | 462.80 | 1181.20 | 2173.60 | 3461.40 | 452.10 | 1152.80 | 2078.90 | 3298.30 | 431.80 | 1090.20 | 1954.60 | 3078.40 | 407.20 | 1028.90       | 1837.10       | 2875.90 |
|                           | :ode  | 2      | ťΩ      | 4       | 5       | 2      | ~       | 4       | 5       | 2      | 3       | 4       | 5       | 2      | т       | 4       | 2       | 2      | m             | ना            | 5       |
| o<br>ਜ                    | Temp. | 0      | Ú       | 0       | 0       | 25     | 25      | 25      | 25      | 50     | 50      | 20      | 5.0     | 13     | 75      | 10.1    | 75      | 100    | 100           | 100           | 100     |

|                 |            |                |         |         |                |       | Deale NO. | 0000 |
|-----------------|------------|----------------|---------|---------|----------------|-------|-----------|------|
| [14<br>0        |            | f <sub>o</sub> | f<br>n  | f.      | f <sub>R</sub> | Δ£    | د<br>S    | 145  |
| Como.           | Node       |                |         |         |                |       |           |      |
| 100             | ٩          | 4605.30        |         | 4603.60 | 4608.50        | 4.9   | 0.0011    |      |
| 503             | 2          | 376.90         | 211.27  | 348.30  | 412.70         | 64.4  | 0.1709    |      |
| 125             | 8          | 952.60         | 671.57  | 878.50  | 1030.30        | 151.8 | 0.1593    |      |
| 1.25            | 4          | 1717.60        | 1314.20 | 1568.70 | 1837.30        | 268.6 | 0.1564    |      |
| 125             | S          | 2678.70        | 2175.48 | 2484.70 | 2887.70        | 403.0 | 0.1504    |      |
| 1.25            | ٤,         | 366.40         | 241.05  | 334.20  | 402.70         | 68.5  | 0.1869    |      |
| 135             | m          | 922.20         | 670.65  | 847.50  | 1000.70        | 153.2 | 0.1661    |      |
| 1 35            | 4          | 1664.90        | 13.3.60 | 1520.30 | 1784.50        | 264.2 | 0.1587    |      |
| 135             | 5          | 2623.30        | 2173.48 | 2414.00 | 2807.10        | 393.1 | 0.1498    |      |
| 000             | (,         | 347.30         | 240.39  | 313.50  | 389.20         | 75.7  | 0.2180    |      |
| 0.5.7           | 5          | 883.10         | 669.10  | 802.90  | 969.90         | 167.0 | 0.1891    |      |
| (<br>(()<br>(-4 | <b>4</b> 7 | 1593.40        | 1310.58 | 1458.40 | 1723.60        | 265.2 | 0.1664    |      |
| in<br>in        | 15         | 2521.90        | 2168.48 | 2338.20 | 2709.00        | 370.8 | 0.1470    |      |
| 5.4.7           | (1         | 330.60         | 239.73  | 298.50  | 372.40         | 73.9  | 0.2235    |      |
| ur<br>i         | (6)        | 845.30         | 657.56  | 767.30  | 931.90         | 164.5 | 0.1947    |      |
| 11.             | -,         | 1536.70        | 1307.55 | 1410.20 | 1659.90        | 249.7 | 0.1625    |      |
| 10 mg/d         | 15)        | 2458.00        | 2162.48 | 2284.00 | 2619.80        | 335.8 | 0.1366    |      |
| 1/3<br>[ +      | (-)        | 315.20         | 1239.51 | 283.90  | 359.00         | 75.1  | 0.2383    |      |
| (***            | (n)        | 818.00         | 671.57  | 733.30  | 900.50         | 162.2 | 0.1983    |      |
| 100             |            | 00.80t I       | 1308.14 | 377.30  | 1608.60        | 231.3 | 0.1547    |      |
|                 |            |                |         |         |                |       |           |      |

1dB

د ئ

Δ£

 $\hat{\mathbf{r}}_{\mathbf{R}}$ 

r L

f<sub>C</sub>

្រ

| Soc.            |          |         |         |         |        |        |
|-----------------|----------|---------|---------|---------|--------|--------|
| ıc.             | 2393.00  | 2158.49 | 2244.80 | 2538.50 | 293.7  | 0.1227 |
| £į              | 307.30   | 239.07  | 277.00  | 345.60  | 68.6   | 0.2232 |
| m               | 792.20   | 665.71  | 720.90  | 873.60  | 152.7  | 0.1927 |
| ₹}              | 1,469.10 | 1302.72 | 1357.20 | 1570.60 | 213.4  | 0.1453 |
| in              | 2366.60  | 2154.49 | 2226.60 | 2498.20 | 271.6  | 0.1148 |
| 2               | 291.60   | 238.30  | 263.80  | 325.40  | 61.6   | 0.2117 |
| ~               | 756.10   | 664.48  | 703.30  | 826.90  | 123.6  | 0.1635 |
| च               | 1416.10  | 1299.70 | 1329.30 | 1506.50 | 177.6  | 0.1251 |
| ı۲              | 2316.80  | 2148.49 | 2195.70 | 2419.50 | 223.6  | 0.0966 |
| 2               | 273.40   | 236.26  | 250.30  | 298.40  | 48.1   | 0.1760 |
| m               | 723.80   | 662.32  | 669.80  | 774.20  | 104.4  | 0.1442 |
| 4               | 1374.10  | 1299.09 | 1311.10 | 1442.10 | 131.0  | 0.0953 |
| ເກ              | 2254.30  | 2143.56 | 2169.80 | 2343.60 | 173.8  | 0.0771 |
| C1              | 1 257.50 | 235.65  | 242.50  | 275.90  | 33.4   | 0.1297 |
| m               | 09.889   | 658.92  | 660.20  | 726,40  | 66.2   | 0.0961 |
| <del>-</del> -7 | 1338.10  | 1237.61 | 1296.80 | 1376.80 | 80.0   | 0.0598 |
| ıν              | 2203.40  | 2123.51 | 2150.20 | 2254.70 | 104.50 | 0.0474 |
| CJ.             | 252.20   | 234.44  | 240.00  | 265.60  | 25.6   | 0.1015 |
| C°1             | 681.10   | 655.53  | 657.60  | 699.70  | 42.1   | 0.0618 |
| •1·             | 11320.90 | 1282.16 | טו ופכן | 1251 40 | 503    | 21 V U |

Page 3 of

| 060C, 060D |
|------------|
| No.        |
| Beam       |

|          |       |         |        | ·      |         |         | <br> | <br> | <br> | <br> | <br> | <br> | <br> |  |
|----------|-------|---------|--------|--------|---------|---------|------|------|------|------|------|------|------|--|
| ldB      |       |         |        |        |         |         |      |      |      |      |      |      |      |  |
| e<br>S   |       | 0.0369  | 0.0746 | 0.0474 | 0.0319  | 0.0264  |      |      |      |      |      |      |      |  |
| Δ£       |       | 80.5    | 18.4   | 31.8   | 41.5    | 56.7    |      |      |      |      |      |      |      |  |
| f<br>R   |       | 2220.80 | 256.20 | 686.30 | 1322.50 | 2178.30 |      |      |      |      |      |      |      |  |
| T T      |       | 2140.30 | 237.80 | 654.50 | 1281.00 | 2121.60 |      |      |      |      |      |      |      |  |
| fn       |       | 2112.52 | 233.01 | 653.99 | 1275.52 | 2098.53 |      |      |      |      |      |      |      |  |
| f o      |       | 2183.60 | 246.60 | 670.90 | 1302.10 | 2149.80 |      |      |      |      |      |      |      |  |
|          | Mode  | 5       | 2      | 3      | 4       | 5       |      |      |      |      |      |      |      |  |
| (Lu<br>O | Temp. | 275     | 300    | 300    | 300     | 300     |      |      |      |      |      |      |      |  |

| ,                                                           | ž                                                        |
|-------------------------------------------------------------|----------------------------------------------------------|
| EXPERIMENTAL CODE : 64 MATERIAL :SOUNDCOAT D-2 DATA SOURCES | MANUFACTURER ISOUNDCOAT<br>AFRI IUDRI-OET<br>OTHER INDNE |
| û₽                                                          | 285                                                      |

|       |                  | 9          | ۰                 | ۰۹         | ۰۵          | ۰          | p (          | ۰۵         | ۰ م         | 9         | 9         | 9        | ي د            | y cg    |             | ų.          | 9 4                                     | <b>.</b>   | ρ.          | ٥,          | ۰و                   | ۰           | ψ         | Q.           | ٩         | وب       | و                                       | وب          | 9         | ų.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 'n         | 9               | 9         | 9     | S         | ري<br>اري   | e c         | ه د         | ) <b>(</b>  | 9 (2        | . 4  | w.       | 9                                     | •         | <b>9</b> (  | ٥,           | <b>8</b> 4  | Βų          | ı Vi        |   |
|-------|------------------|------------|-------------------|------------|-------------|------------|--------------|------------|-------------|-----------|-----------|----------|----------------|---------|-------------|-------------|-----------------------------------------|------------|-------------|-------------|----------------------|-------------|-----------|--------------|-----------|----------|-----------------------------------------|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-----------|-------|-----------|-------------|-------------|-------------|-------------|-------------|------|----------|---------------------------------------|-----------|-------------|--------------|-------------|-------------|-------------|---|
|       |                  | 16+0       | 0 + 0<br>28<br>28 | 8E + 6     | 2           | , .        | 35.0         | 36.40      | 8E+6        | 2E+0      | 12E+0     | 35+0     | 45             |         | 1           | 96.00       |                                         |            | 1           | <b>8</b>    | ξ,                   | 11E+0       | 9         | £ +0         | 176+0     | <b>8</b> | 34E+0                                   | 88E+9       | 4E+0      | 8E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3E+0       | 0+39I           | 25E+0     | 9E+9  | 395+0     | 255+0       | 9E+6        | 1           | NO.         | 100         |      | E        | 375776+0                              | 740       | \$ 1.00 P   |              |             |             | į           | ! |
|       | COMPLEX MOD.     | 8447       | 248               | 999        | 5           | 9          |              | 9          | 784         | .2117     | .6408     | 1.527    | 897            | 920     | 3           | 915         | ,                                       |            | 7790        | 200         | 200                  | 3.7834      | . 3399    | . 9586       | .525.     | 3.1156   | . 8426                                  | 6118        | 9616      | 418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1286       | 2868            | 4416      | .6806 | . 586     | .53%        | 659         |             |             | 275         | 200  | 2        | 375                                   | . 6536    | 218         |              | Ņ           | 24          | 7216        | } |
|       | ខ                |            |                   |            |             |            |              |            |             |           |           |          |                |         |             |             |                                         |            |             |             |                      |             |           |              |           |          |                                         |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |           |       |           |             |             |             |             |             |      |          |                                       | S         | -           | - (          | ٠.<br>د     | <b>.</b>    | u m         | • |
|       | BEAN FRED.<br>H7 | 246.       | 683               | 1337.      | 2217.       | 200        | 989          | 1343       | 5556.       | 24.       | 678.      | 1327.    | 2010           |         | 676         | 1323        |                                         |            | ง<br>งั้ง   | 9           | 1339                 | 2182.       | 241.      | 671.         | 1314.     | 2175.    | 240.                                    | 9           | 1310.     | 7168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0        | 651.            | 1305.     | 2158. | 238.      | 664.        |             | 2148.       |             |             | 2154 | 200      | 667.                                  | 2162.     | 241.        | 676          | 1313.       | į           |             |   |
|       | COMPOSITE 1      | .6180      | . 0274            | . 6327     | 7859.       | 8920       | 1169.        | S 4 4 9 .  | .0510       | .0451     | .0574     | . 9773   | A773           | A755    | 6220        | 4700        |                                         | 5007       | 211.        | 2811.       | .166                 | . 1322      | 1789      | . 1593       | .1564     | 1504     | 2180                                    | 500         | 1664      | 1479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000       | 200             | 1547      | 1227  | .2113     | . 1635      | . 1251      | 9966        | )<br>)<br>) | ) A .       | 244  | A        | 1947                                  | 1366      | . 1869      | . 1661       | . 1587      | 1408        | 644         | • |
|       | BEAN HOD.        | . 997526+  | .996635+1         | .97181E+   | . 88969E+   | .14955E+   | . 04 (bbt.+) | .03501E+   | . 06665E+1: | .98430E+1 | .88387E+1 | RECO7F+1 |                | 07345F+ | O AD COLO   | 021206      | 111111111111111111111111111111111111111 | .83391E+1  | .87710E+1   |             | .77785E+1            | .79028E+1   | 827215+1  | 74675E+1     | .72820E+1 | 74686E+1 | 7775AF+1                                | 20201641    | CO110F+1  | 70751541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 227076+1   | 25005           | £3576F+1  |       | .66016E+1 | .60505E+1   | .580556+1   | - 58049E+1  | 70327E+1    | 6315CL+1    |      | 14372076 | 6.66642F+10                           | .66646E+1 | .81477E+1   | 큯            | 6.72266€+16 | =           | 6.54338E+18 |   |
|       | 300              | · ~        | 'n                | ÷          | S.          | nio        | •            | ÷          | 'n.         | 'n        | ď         | -        |                |         |             | ; •         | Ė                                       | 'n         | ů           | ·           | ÷                    | s,          | 'n        | 'n           | 4         | 'n       |                                         | ir          | 1 4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ; ~             | •         | ,     | ี่ก่      | 'n          | ÷           | 'n          | ,           | ÷.          | ÷u   | 'nn      | ir                                    | ú         | ก่          | ų            | 4           | ,           | ir          | ; |
|       | FEG.             | 4          | 1220.8            | 2244.0     | 3591.9      | 462.8      | 1181.        | 2173.6     | 3461.4      | 452.1     | 1152.8    | 92.00    | 7500           | 0.00    |             |             |                                         | 200        | 407.2       | 1028.9      | 1837.1               | 2875.9      | 376.9     | 925          | 1717.6    | 2678.7   | 242                                     |             | 1.000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.01.0     | 100             | 404 F     | 230   | 291.      | 756.1       | 1416.1      | 2316.8      | 307.3       | 2           | 746  |          | ייייייייייייייייייייייייייייייייייייי | 2458.     | 366.4       | 2.58<br>28.5 | 1664.9      | 2623.3      | 700         | } |
|       | £                |            | 25                | -18.       |             | ķ          | ķ            | ķ          | ķ           | 10        |           |          |                | - 0     |             | 36          | 3                                       | N          | 37          |             |                      |             |           |              |           |          |                                         |             |           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 200             | 700       | 7     |           |             |             | 83.3        | ٠.          | 63          |      |          |                                       |           |             | -            | -           |             | 3.0         |   |
|       | TE SECT          | 1227       | 1145              | 1101       | . 1241      | . 1488     | . 1493       | 1388       | 1505        | 2         | 2016      |          | . הנית<br>הנית | ) .     |             |             | CK64                                    | BETE.      | . 4117      | •           | •                    | •           |           | •            | •         |          | •                                       | •           | •         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •          | •               | •         | •     |           | •           | ٠           | •           | •           | •           | •    | •        | 65.37                                 | 519       | .5767       | . 4971       | 2525        |             |             | • |
| HONE  | MODULUS          | CA:4076+A7 | 7 -37 36 30       | 41 EB2E+47 | 3.20234E+87 | .12825E+07 | . 47997E+87  | .92312F+07 | C1505E+87   | 34+3665   | 200000407 |          | , ACC. 1       |         | 3.11036.100 | 115912 - 60 | .075568+07                              | .34745[+07 | 1.08339E+06 | 3.47499E+06 | . 59363£+ <b>8</b> 6 | 1.130848+86 | 491226+06 | 1 70985 + 66 | 145576+06 | 20075    | 200000000000000000000000000000000000000 | 200,000,000 | 105845405 | STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE | 1 20005465 | 1.1.30 B3C + 63 | 301386-00 | 41400 | 78611E+05 | 1.43967E+05 | 1.173625+86 | . 71182E+66 | . 03767E+65 | . 3546ZE+86 |      | 20011000 | 1.00013E+06                           | 18675     | 2.11269E+66 | 1.4900E+86   | 1.25412£+66 | - 05638E+46 |             |   |
| OTHER | į                | Ī          | - •               | •          |             |            | •            |            |             |           |           |          |                | •       | •           | ~           | -                                       |            | ٠           | _           | •                    | •           | ,,,       | •            | •         |          | , -                                     | -,          | •         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ••         |                 | •         | •••   | -         | _           | -           | • • •       | _           |             | ~,   | -        | -4                                    | 100       | 4           | \$           | \$          | <b>~</b>    | <b>3</b> 6  | • |

6.512866. 6.5128666. 6.45843866. 6.4283366. 6.4283366. 6.4283366. 6.363366. 6.363366. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.3636. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336. 6.36336.

<u> จุบุนุสุทยตุนุลุกุ</u>ทุ

12/18 12/18 12/18 12/18 12/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18 13/18

7.59602E+95 2.18959E+95 5.2463CE+95 8.35498E+95 1.78112E+95 7.59113E+95 1.36932E+95 3.662382E+95 5.662382E+95 5.662382E+95 5.662382E+95 5.13759E+95

<u> )</u> ...



|                                                                                                                                                                                                                                                                                                                           | Test No. <u>80-1</u> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Beam Nos. 080-1 and 080-2                                                                                                                                                                                                                                                                                                 | Date 1/80            |
| Damping Material Soundcoat M                                                                                                                                                                                                                                                                                              |                      |
|                                                                                                                                                                                                                                                                                                                           |                      |
| Material Thickness 0.0127 cm Material Density                                                                                                                                                                                                                                                                             | 1 049 5/66           |
| Beam Thickness 0.2032 cm Beam Density 2.                                                                                                                                                                                                                                                                                  |                      |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                                                                      | <u></u>              |
| Temperature Test Range: Between -45.6 oc and                                                                                                                                                                                                                                                                              | 65.6 °C              |
| Frequency Test Range: Between 10 Hz and                                                                                                                                                                                                                                                                                   |                      |
| Loss Factor ::                                                                                                                                                                                                                                                                                                            |                      |
| •                                                                                                                                                                                                                                                                                                                         |                      |
| Peak 100 Hz n <sub>D</sub> 1.5 Temperature 32.2                                                                                                                                                                                                                                                                           |                      |
| Pance 1000 Hz $\frac{n_D}{1.5}$ Temperature 65.6                                                                                                                                                                                                                                                                          | _ oC                 |
| Range 100 Hz 7.2 °C 57.2 °C                                                                                                                                                                                                                                                                                               |                      |
| 1000 Hz 44.4 °C 101.1 °C                                                                                                                                                                                                                                                                                                  |                      |
| LOG(N)*LOG(ML)*(2LOG(MROM/ML))/(1*(FROM/FR)**N) T0 FROM MROM N ML A1 A2 A3 A4 -10.0 6.0000E+02 8.5000E+06 .600 3.5000E+ A*(LOG(FR)*-LOG(FROL))*/C LOG(ETA)*-LOG(ETAFROL)*+((5L*5M)A+(5L*5M)(1*5ORT(1*A T0 ETAFROL SL SH FROL C B1 B2 B3 B4 B5 -10.0 1.500 .800850 3.0000E+02 L.2 LOG(FR)*-LOG(F)*-12(T-T0)/(525/1.8+T-T0) | <b>**2</b> )))C/2    |
| Remarks:                                                                                                                                                                                                                                                                                                                  |                      |
|                                                                                                                                                                                                                                                                                                                           |                      |
|                                                                                                                                                                                                                                                                                                                           |                      |
|                                                                                                                                                                                                                                                                                                                           |                      |
|                                                                                                                                                                                                                                                                                                                           |                      |
|                                                                                                                                                                                                                                                                                                                           |                      |
|                                                                                                                                                                                                                                                                                                                           |                      |
|                                                                                                                                                                                                                                                                                                                           |                      |
|                                                                                                                                                                                                                                                                                                                           |                      |
|                                                                                                                                                                                                                                                                                                                           | <del> </del>         |
|                                                                                                                                                                                                                                                                                                                           |                      |

| 1dB            |       |        |         | -       |         |        |         |         |         | -      |         |         | -      |         |         |        |         |        |         |         |         |
|----------------|-------|--------|---------|---------|---------|--------|---------|---------|---------|--------|---------|---------|--------|---------|---------|--------|---------|--------|---------|---------|---------|
| ا<br>ع<br>د    |       | 0.0055 | 0.0052  | 0.0101  | 0.0116  | 0.0182 | 0.0157  | 0.0250  | 0.0318  | 0.0870 | 0.0716  | 0.1001  | 0.1812 | 0.1525  | 0.2266  | 0.3296 | 0.2720  | 0.3260 | 0.3856  | 0.2540  | 0.3988  |
| δĒ             |       | 3.66   | 5.40    | 34.59   | 54.25   | 11.9   | 28.09   | 83.39   | 170.30  | 55.01  | 121.99  | 311.48  | 107.22 | 246.91  | 653.95  | 174.11 | 399.23  | 146.43 | 496.84  | 104.43  | 450.80  |
| f <sub>R</sub> |       | 662.82 | 1820.61 | 3450.17 | 5559.61 | 660.61 | 1797.80 | 3374.68 | 5436.46 | 657.33 | 1767.99 | 3263.57 | 650.92 | 1750.01 | 3150.58 | 628.82 | 1669.75 | :29.86 | 1553.32 | 466.79  | 1366.13 |
| $f_{\rm L}$    |       | 659.16 | 1811.21 | 3415.58 | 5495.36 | 648.71 | 1770.71 | 3291.29 | 5266.16 | 602.32 | 1646.00 | 2952.09 | 543.70 | 1503.10 | 2496.63 | 454.71 | 1270.53 | 383.4  | 1056.48 | 362.36  | 915.33  |
| f              |       | 323.68 | 965.40  | 1776.05 | 2941.94 | 322.58 | 902.63  | 1770.00 | 2930.95 | 321.70 | 899.54  | 1764.56 | 320,92 | 868.00  | 1761.54 | 320.37 | 896.46  | 319.82 | 894.91  | 319.27  | 893.06  |
| f,<br>o        |       | 661.13 | 1815.33 | 3434.38 | 5528.86 | 654.67 | 1785.49 | 335.61  | 5359.96 | 632.04 | 1704.31 | 3110.53 | 591.72 | 1619.13 | 2885.86 | 528.17 | 1467.97 | 449.16 | 1288.32 | 411.075 | 1130.39 |
|                | Node  | 2      | 3       | 4       | 2       | 2      | m)      | 4       | 5       | 2      | 3       | 4       | 2      | 'n      | 4       | 2      | 3       | 2      | 3       | 2       | 3       |
| ٥<br>(ب        | Temp. | -50    | 871     | -48     | -47     | -25    | -25     | -24     | -24     | - 2    | - 1     | 1       | 12     | 12      | 12      | 26     | 26      | 3.7    | 37      | 5.0     | 51      |

| 7 |
|---|
| 0 |
| 8 |
| C |
| • |
| C |
| ٤ |

|                |       |         |         | 7      |         | 7       |         | $\neg$  |         |        |        |         | 7       |         |         |        |         | $\neg$  | 7       |         | _       |
|----------------|-------|---------|---------|--------|---------|---------|---------|---------|---------|--------|--------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------|
| 1 <b>d</b> B   | -     |         | X       |        |         |         | -       |         |         |        |        |         |         |         |         |        |         |         |         |         |         |
| ຜ              |       | 0.2668  | 0.2752  | 0.1554 | 0.1474  | 0.0761  | 0.0811  | 0.0863  | 0.0817  | 0.0803 | 0.0644 | 0.0342  | 0.0321  | 0.0316  | 0.0288  | 0.0545 | 10.0371 | 0.0191  | 0.0164  | 0.0153  | 0.0136  |
| भ              |       | 513.48  | 874.93  | 56.12  | 142.35  | 139.30  | 243.81  | 386.90  | 508.10  | 27.42  | 08.65  | 61.35   | 94.93   | 139.27  | 177.20  | 18.20  | 33.91   | 33.91   | 47.93   | 66.90   | 83.00   |
| ж<br>ч         |       | 2152.39 | 3373.44 | 392.71 | 1038.21 | 1900.65 | 3127.87 | 4646.51 | 6450.56 | 355.55 | 957.05 | 1823.95 | 3022.11 | 4476.18 | 6226.51 | 343.00 | 930.56  | 1791.28 | 2951.06 | 4403.41 | 6132.41 |
| τΓ             |       | 1638.91 | 2928.41 | 336.59 | 98.368  | 1761.35 | 2884.06 | 4259.61 | 5942.46 | 328.13 | 897.25 | 1762.60 | 2907.18 | 4336.91 | 6049.31 | 324.80 | 896.65  | 1757.37 | 2903.13 | 4336.51 | 6049.41 |
| f <sub>n</sub> |       | 1751.26 | 2897.97 | 317.95 | 86.98   | 1744.62 | 2887,98 | 4335.09 | 6075.54 | 316.85 | 886.59 | 1738.57 | 2876.98 | 4320.16 | 6054.69 | 315.64 | 883.19  | 1730:71 | 2863.99 | 4302.25 | 6029.67 |
| ų,<br>U        |       | 1924.22 | 3178.65 | 361.09 | 965.52  | 1829.92 | 3005.58 | 4484.91 | 6221.91 | 341.88 | 927.94 | 1792.20 | 2954.75 | 4408.84 | 6141.31 | 333.85 | 913.93  | 1774.47 | 2926.79 | 4371.31 | 6093.01 |
|                | Mode  | 4       | 5       | 2      | 3       | ₹†      | 5       | 9       | ۲~      | 2      | 3      | 4       | .c      | 9       | (->     | 63     | 3       | 4       | 5       | 9       | 7       |
| 다<br>다         | remp. | e<br>in | 5.1     | 97     | 97      | 92      | 92      | 97      | 92      | 101    | 100    | 66      | 66      | 66      | 66      | 126    | 126     | 126     | भटर     | 126     | 126     |

| Si                           |       | _      | 7      | 1       |         |         |         |  |  |  |  |  | <u>-</u> |  | 7 |  |
|------------------------------|-------|--------|--------|---------|---------|---------|---------|--|--|--|--|--|----------|--|---|--|
| 1dB                          |       |        |        |         |         |         |         |  |  |  |  |  |          |  |   |  |
| s<br>c                       |       | 0.0350 | 0.0223 | 0.0118  | 0.0059  | 0.0088  | 0.0677  |  |  |  |  |  |          |  |   |  |
| ٥f                           |       | 11.47  | 20.14  | 20.82   | 28.71   | 38.14   | 46.70   |  |  |  |  |  |          |  |   |  |
| fR                           |       | 333.47 | 913.59 | 1770.97 | 2921.99 | 4362.21 | 6080.21 |  |  |  |  |  |          |  |   |  |
| $^{\mathrm{f}}_{\mathrm{L}}$ |       | 322.00 | 893.45 | 1750.15 | 2893.28 | 4324.07 | 6033.51 |  |  |  |  |  |          |  |   |  |
| f<br>n                       |       | 314.31 | 879.18 | 1724.06 | 2854.00 | 4285.83 | 6006.74 |  |  |  |  |  |          |  |   |  |
| 44<br>0                      |       | 327.56 | 903.56 | 1760.41 | 2906.91 | 4342.91 | 6056.81 |  |  |  |  |  |          |  |   |  |
|                              | Node  | 2      | 3      | 47      | 5       | 9       | 7       |  |  |  |  |  |          |  |   |  |
| 0<br>(ب                      | Temp. | 153    | 152    | 454     | 150     | 150     | 150     |  |  |  |  |  |          |  |   |  |

|                                                    | COMPLEX MOD. | 30F+05      | 495+05       | 105 + 05<br>665 + 05 | 191E+06     | 275+85      | 86E - 05         | 736+85      | 38E +06     | 15.15.15.15.15.15.15.15.15.15.15.15.15.1 | .69E+05        | 50+322      | 16E+05      | 446+04      | 59E+05      | 149E+05     | 0.3E+05         | 95E+05      | 985-196     | 335+96                                                       | 50E+06      | 85E+07      | 148€+07     | 315+07      | 695+67      | 375+07      | 355+96                                  | 35E+07     | 575+87                     | 545+07      | 34E+07                     | 65E+07      | 9                          |
|----------------------------------------------------|--------------|-------------|--------------|----------------------|-------------|-------------|------------------|-------------|-------------|------------------------------------------|----------------|-------------|-------------|-------------|-------------|-------------|-----------------|-------------|-------------|--------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-----------------------------------------|------------|----------------------------|-------------|----------------------------|-------------|----------------------------|
|                                                    | COMPLE       | 9.738       | 8            | 2,388                | 3.865       | 3.7         | 3.716            | 8.316       | 1.04        | 9.0                                      | 2.017          | S.83        | 0.4         | 6           | 1.20        | 22.         | 70.0            | 2.69        | 1.159       | 6.136                                                        | 5.33        | 7.0         | 36.         | 200         | 66          |             | 7.87                                    | 2.93       | 1.619                      | 2.011       | 1.23.1                     | 1.20        | 4.586                      |
|                                                    | FREG.        | <b>9 G</b>  | 9            | •                    | S           | S) C        | 9                | ÞΝ          | ~           | ρ٩                                       | ٠,             | 0           | S)          | لما -       | S           |             | <b>∞</b> α      | 1           | m c         | 10                                                           | 4 (         | 31          | S           | ø           | 9           | S           | 00                                      | 9          | 0 0                        | 91          | - 4                        |             | 893.1                      |
|                                                    | BEAR .       | 4.4         | .53          | - E                  | 2           | 24          | Ď.               | . 9         | æ.          | ٠<br>-                                   | :=             | 4           | e d         | 9 60        | 23          | æ :         | 2) X            | ;c          | 99          | o Q                                                          | 9           | 69 G        | 99          | Z.          | ñΝ          | 9.5         | 9 49                                    | , or       | ~ @                        | 00          | 5.0                        | =           | <u></u>                    |
|                                                    | COMPOSITE I  | 21.4        | 6            |                      | 6           |             |                  |             |             |                                          |                |             |             |             |             |             |                 |             |             |                                                              |             |             |             |             |             |             |                                         |            |                            |             |                            |             |                            |
|                                                    | EAN HOD.     |             | .66961E+1    | . 77844E+1           | . 79929E+1  | 614256+     |                  | .73183E+    | .75270E+    | - 5 / 6 / 9 L +                          | . 56368E+      | .57744E+    | 676136+     | 517425+     | .58415E+    | .51334E+    | .53164E+        | .64617E+    | -72474E+    | 73445E+                                                      | .77116E+    | . 76234E+   | .80838E+    | .82294E+    | . 78559E+   | . 79961E+   | 73897F+                                 | 86490E+    | . 8550/4E+                 | .8886eE+    | .91180E+<br>.89789E+       | .91209E+    |                            |
|                                                    | 700E<br>700E | ณ์ตั        | <b>,</b>     | 'nĠ                  | ~           | ni r        | ; <del>;</del> ; | 'nĠ         | <u>ا</u> م  | ง่า                                      | i <del>d</del> | 'n          | ٦ڝؙ         | Ċ           | im          | ÷           | 'nú             | ٠ <u>٠</u>  | ก่ •        | · v                                                          | 'n          | m'n         | j'n         | ÷           | ú'n         | ÷           | ง์ r                                    | ก่         | •                          | 'n          | Ň                          | <b>.</b>    | ņė.                        |
|                                                    | FREG.        | 361.1       | 1829.9       | 4884                 | 6221.9      | 941.6       | 1792.2           | 4488.8      | 6141.3      | 933.00                                   | 1774.5         | 2926.8      | 4371.3      | 327.6       | 9.0         | 1760.4      | 23.0            | 6056.8      | 411.1       | 3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00<br>3.00 | 528.2       | 1468.0      | 1764.3      | 3110.5      | 1619.1      | 2885.9      | 7 . X . X . X . X . X . X . X . X . X . | 654.7      | 3335.6                     | 5360.0      | 1815.8                     | 4.4         | 1136.4                     |
|                                                    |              |             |              |                      |             |             |                  |             |             |                                          |                |             |             |             |             |             |                 |             |             |                                                              |             | ,           | •           | ,           | , ,         | •           |                                         | •          |                            | •           | , ,                        | •           |                            |
| ODE 1166<br>DCOAT H-5<br>SOURCES<br>NOHE           | LOSS TE      | 7643        | 2            | 9792                 | 1.5013      | .5792       | 100 S            | 5531        | .7472       | - 1815<br>- 1815                         | 3265           | .3115       | . 3648      | 450         | 3554        | 8368        | . 2128<br>285.c | 2875.       | .8726       | 1.9583                                                       | 1.5026      | 1.0769      | . 4589      | 4154        | . 7513      | .8374       | 1.1636                                  | 3723       | 1484                       | 1531        | . 1474                     | . 771       | 1.5847                     |
| CAL SOUR<br>CAL SOUR<br>DATA<br>CTURER<br>UDRI-GET | MODULUS      | 5.650036+05 | 1.114106.406 | 1.54739E+06          | 2.044826+06 | 3.180696+05 | 7.371726+05      | 1.08959E+06 | 1.39497E+06 | 2.37214E+#5                              | 6.18829E+05    | 9.10182E+05 | 1.07851E+06 | 1.12281E+#6 | 3.37844E+05 | 5.28555E+05 | 7.91311E+05     | 9.649196+85 | 1.32927E+B6 | 1.94/35E+46                                                  | 3.553496+06 | 1.18201E+07 | 5.16158E+07 | 5.25486E+67 | 2.65280E+07 | 2.632295+07 | 346865+86                               | 7.8888E+07 | 1.165.55.00<br>1.08861E+08 | 1.313566+88 | 1.18386E+88<br>1.672:5E+68 | 1.56549E+01 | 1.78492E+68<br>2.72217E+66 |
| EXPERI<br>MATERI<br>MANUFA<br>OTHER                | ġ            | <b>⊸</b> (  | um           | <b>T</b> U           | 9           | <b>~</b> 0  | <b>6</b> Ø       | <b>e</b> -  | : 23        | £;                                       | * L            | 9           | <b>.</b>    | 000         | 20          | 2           | O<br>C          | 74          | 52          | <b>3</b> 2                                                   | 8           | ನ್ನಿ        | ,<br>E      | ,<br>N      | 3 <b>4</b>  | ድ           | 86                                      | 8          | 3                          | +           | <b>\$</b>                  | 7           | <del>.</del> φ             |



|        |         |                |                            |                                                                        |         |                            |                                |        | 16:             | o L IV        | 0        |
|--------|---------|----------------|----------------------------|------------------------------------------------------------------------|---------|----------------------------|--------------------------------|--------|-----------------|---------------|----------|
| Beam N | los     | 080-           | l and                      | 080-2                                                                  |         |                            |                                |        | Da <sup>•</sup> | te            | 11/27/79 |
| Dampin | ig Mate | eria           | ]                          | Soundcoa                                                               | it N    |                            |                                |        |                 |               |          |
|        |         |                |                            |                                                                        |         |                            |                                |        |                 |               |          |
| Materi | al Th   | i ekn          | ess (                      | 0.0127                                                                 |         | ———<br>Mater               | ial                            | Dens   | ity 1           | 049           | n/oo     |
|        |         |                |                            | 32 cm                                                                  |         |                            |                                |        |                 |               |          |
| Beam L |         |                |                            |                                                                        |         |                            |                                | - · ·  |                 | ′             |          |
|        |         |                |                            | ge: Bet                                                                | ween    | <b>-</b> 3                 | 1.7                            | ≎c as  | na 9            | 3.3           | 0.0      |
| _      |         |                |                            | : Betwe                                                                |         |                            |                                |        |                 |               | _        |
| Loss F |         |                |                            |                                                                        | _       |                            |                                |        |                 |               | •        |
|        |         | U              |                            | , ,                                                                    | _       |                            |                                |        | •               |               |          |
| Peak   |         |                |                            | 1.3                                                                    |         |                            |                                |        |                 |               |          |
| _      |         |                |                            | 1.3                                                                    |         |                            |                                | 4      | <u>.4</u> °C    |               |          |
| Range  |         |                |                            | 8.9 °C                                                                 |         |                            |                                |        |                 |               |          |
|        | 1000    | 11 z           | -1                         | <u>7.8</u> °€                                                          |         | 26.7                       | _ °C                           |        |                 |               |          |
|        |         | LOG(           | .0G(FR)-<br>ETA)-LO<br>ETA | FROM A1 .400E+06 LOG(FROL)) G(ETAFROL) FROL SL B1 B2 1.250 .(F)-12(T-T | *((SL+) | 5H)A+(5<br>5H<br>33<br>350 | L-SH)(<br>FROL<br>84<br>4.3000 | 1-50RT | (1+Axx2)        | 31072         |          |
| Remark | :s:     |                |                            |                                                                        |         |                            |                                |        |                 |               |          |
|        | _       |                |                            |                                                                        |         |                            |                                |        |                 |               |          |
|        |         |                | · <b>-</b>                 |                                                                        |         |                            |                                |        |                 |               |          |
|        |         |                |                            |                                                                        |         |                            |                                |        |                 | <del></del> - |          |
|        |         |                |                            |                                                                        |         |                            |                                |        |                 |               |          |
|        |         |                |                            |                                                                        |         |                            |                                |        |                 |               |          |
|        |         |                |                            |                                                                        |         |                            |                                |        |                 |               |          |
|        |         |                |                            |                                                                        |         |                            |                                |        | <del></del>     |               |          |
|        |         | - <del> </del> |                            |                                                                        | ·       |                            |                                |        |                 |               |          |
|        |         |                |                            |                                                                        |         |                            |                                |        |                 |               |          |
| •      |         | - <del></del>  |                            |                                                                        |         |                            | ·                              |        |                 |               |          |
|        |         |                |                            |                                                                        |         |                            |                                |        |                 |               |          |

| 080-2  |
|--------|
| 080-1, |
| No.    |
| Веаш   |

|                           |        |        |         |         |            |        | ,,      |         |         |        |         |          |         |          |        | <u>_</u> , | ,       |          |           |         |               |
|---------------------------|--------|--------|---------|---------|------------|--------|---------|---------|---------|--------|---------|----------|---------|----------|--------|------------|---------|----------|-----------|---------|---------------|
| ldB                       |        |        |         |         |            |        |         |         |         |        |         |          |         |          | -      | -          |         | ×        |           |         | ×             |
| S                         |        | 0.0053 | 0.0060  | 0.0096  | 0.0115     | 0.0107 | 0.0130  | 0.0249  | 0.0255  | 0.0445 | 0.0522  | 0.0720   | 0.0816  | 0.0467   | 0.1956 | 0.1895     | 0.2406  | 0.2352   | 0.2820    | 0.2959  | 0.3970        |
| Δ£                        |        | 3.52   | 11,12   | 34.00   | 66.45      | 7.07   | 23.60   | 85.63   | 142.90  | 28.63  | 89.06   | 234.33   | 426.85  | 346.15   | 112.07 | 296.59     | 681.27  | 1069.39  | 146.81    | 412.32  | ଜଃଖ. ମନ       |
| f <sub>R</sub>            |        | 671.05 | 1847.05 | 1550.34 | 5784.46    | 666.16 | 1826.00 | 3493.71 | 5668.16 | 658.15 | 1787.89 | 3363.74  | 5443.16 | 7574.76  | 640.81 | 1710.75    | 3126.68 | 4776.05  | 597.41    | 3610.81 | 2661.77       |
| $\mathbf{f}_{\mathbf{L}}$ |        | 667.53 | 1835.93 | 3516.34 | 5718.01    | 69.09  | 1802.40 | 3408.08 | 5525.26 | 629.52 | 1697.23 | 3129.41  | 5016.31 | 7228.61  | 528.74 | 1414.16    | 2445.41 | 4232.11  | 450.69    | 1108.49 | 2161.73       |
| $f_{ m n}$                |        | 322.69 | 902.63  | 1770.00 | 2925.95    | 321.70 | 900.16  | 1765.17 | 2917.96 | 320.37 | 896.46  | 1757.02  | 2905.96 | 4367.93  | 319.27 | 89.698     | 1751.87 | 2895.97  | 318.72    | 964.37  | 1749.24       |
| ##<br>D                   |        | 669.32 | 1841.90 | 3532.91 | 5751.01    | 662.83 | 1814.03 | 3446.11 | 5599.26 | 643.99 | 1737.76 | 3254.0F  | 5232.06 | 7413.71  | 772.02 | 1564.92    | 2831.74 | 56.740.4 | 0 3 5 C C | 1393.6  | ( *1 *1 *1 *1 |
|                           | Hode   | 2      | (C)     | -7      | ഗ          | 2      | m       | +5      | ır:     | ~:     | m       | 4.       | ır.     | 9        | Cı     | در.ا       | +1      | ഗ        | C)        | [       | ٠,            |
| μ.,<br>ο                  | Terro. | -26    | 92-     | -2.5    | 16.01<br>1 | च      | -7      | (C)     | 1       | គ<br>ប |         | C3<br>IC | 2.5     | 15<br>15 | -1     | •1.<br>1 • | - T     | 1 -      |           |         |               |

| 080-2  |
|--------|
| 080-1, |
| No.    |
| Веаш   |

|                    |       |        |           |         |         |        |         |         |         |        |         |         |         |         |         |        |         |         |           | _       |         |
|--------------------|-------|--------|-----------|---------|---------|--------|---------|---------|---------|--------|---------|---------|---------|---------|---------|--------|---------|---------|-----------|---------|---------|
| 1dB                |       |        |           | ×       | ×       |        |         |         | X       |        |         |         |         |         | ×       |        | :       |         |           |         |         |
| s s                |       | 0.3075 | 0.3417    | 0.3647  | 0.3753  | 0.2631 | 0.3196  | 0.2411  | 0.2139  | 0.2373 | 0.2517  | 0.1822  | 0.1795  | 0.1725  | 0.1521  | 0.1803 | 0.1657  | 0.1077  | 0.0907    | 0.0939  | 0.0903  |
| Δf                 |       | 140.25 | 421.63    | 770.63  | 1302.38 | 106.75 | 341.25  | 473.30  | 684.48  | 91.79  | 258.85  | 344.00  | 560.24  | 791.87  | 961.08  | 65.65  | 159.90  | 197.96  | 276.30    | 421.60  | 561.00  |
| £<br>R             |       | 533.08 | 1439.97   | 2303.83 | 3748.44 | 465.67 | 1258.91 | 2172.59 | 3375.41 | 428.09 | 1155.78 | 2066.13 | 3376.47 | 4910.31 | 6521.31 | 400.66 | 1048.12 | 1935.55 | 3184.49   | 4679.41 | 6452.91 |
| $_{\rm L}^{\rm f}$ |       | 392.83 | 1018.34   | 1911.85 | 3085.99 | 358.92 | 917.66  | 1699.29 | 3027.25 | 346.30 | 896.93  | 1722.13 | 2816.23 | 4118.44 | 6032.46 | 335.01 | 888.22  | 1737.59 |           | 4257.81 | 5891.91 |
| f                  |       | 318.01 | 889.98    | 1744.62 | 2882.98 | 317.40 | 888.44  | 1740.99 | 2877.98 | 316.85 | 886.58  | 1737.36 | 2871.99 | 4318.67 | 6052.61 | 316.19 | 884.43  | 1733.73 | 98.4 ABEC | 4308.22 | 6040.10 |
| f<br>C             |       | 456.07 | 1233.98   | 2113.19 | 3470.18 | 405.57 | 1067.59 | 1962.83 | 3199.91 | 386.81 | 1028.40 | 1887.89 | 3121.78 | 4589.21 | 6317.56 | 364.07 | 964 of  | 1337.71 | ान्य्ह.इद | 4480.3] | 5214.43 |
|                    | Hode  | 2      | ~         | च       | Ŋ       | 2      | 3       | 4       | ıs      | 2      | ~       | 4       | ഗ       | ıε      | 1~      | (4     | ···     | -,      | ur:       | ú       | ;       |
| o<br>[r4           | Temb. | 75     | ιο<br>(*) | 75      | 7.5     | 88     | 88      | 88      | တ       | 101    | 101     | 101     | 101     | 101     | 101     | ر<br>ا | :15     | 113     | 11.1      | ÷17     |         |

| 140-1, 080-1<br>1dB |       |        |         |         |         |         |         |        |        |          |         |         |         |         |        |         |         |         |         |            |        |
|---------------------|-------|--------|---------|---------|---------|---------|---------|--------|--------|----------|---------|---------|---------|---------|--------|---------|---------|---------|---------|------------|--------|
| Bedin NO. US        |       | 0.1495 | 0.1222  | 0.0074  | 0.0710  | 0.0664  | 0.0617  | 0.0821 | 0.0618 | 0.0364   | 0.0348  | 0.0292  | 0.0263  | 0.051.8 | 0.0384 | 0.0206  | 0.0190  | 0.0158  | 0.0138  | 0.0344     | 0.0208 |
| ΔÍ                  |       | 52.93  | 115.57  | 140.46  | 210.84  | 294.87  | 380.25  | 27.63  | 56.56  | 64.56    | 101.68  | 127.34  | 159.65  | 16.99   | 31.37  | 36.13   | 55.14   | 68.27   | 83.51   | 11.12      | 18.53  |
| f<br>R              |       | 382.76 | 1002.92 | 1882.35 |         | 4577.41 | 6338.61 | 350.08 | 842.55 | 1807.29  | 2975.21 | 1427.41 | 6158.56 | 336.39  | 916.34 | 1774.31 | 2926.25 | 4361.44 | 5075.71 | 328.47     | 901.49 |
| f.                  |       | 329.83 | 887.35  | 1741.89 | 2862.85 | 4282.54 | 5958.36 | 322.45 | 885.99 | 1742.73  | 2873.53 | 4300.07 | 5998.91 | 319.40  | 884.97 | 1738.18 | 2871.11 | 4293.17 | 5992.20 | 317.35     | 882.96 |
| f                   |       | 315.64 | 883.19  | 1731.32 | 2861.99 | 4302.25 | 6029.67 | 314.42 | 879.80 | 1724.06  | 2850.00 | 4287.32 | 6008.83 | 313.21  | 876.10 | 1716.81 | 2840.01 | 4269.41 | 5983.81 | 311.78     | 872.39 |
| f.                  |       | 354.04 | 945.46  | 1813.97 | 2968.27 | 4438.55 | 6160.36 | 336.35 | 914.40 | 1775.24  | 2978.51 | 4357.11 | 6076.86 | 327.77  | 900.36 | 1755.33 | 2899.61 | 4327.11 | 6033.96 | 322.81     | 892.16 |
|                     | Node  | 2      | Ж       | ব       | 5       | 9       | 7       | 2      | m      | <u>च</u> | ທ       | 9       | 10      | 2       |        | ধ       | io      | \G      | ۲۰      | с <b>1</b> | 3      |
| o<br>ਜਿ             | Temb. | 125    | 125     | 124     | 77      | 123     | 123     | 150    | 150    | 140      | 149     | 148     | 148     | 175     | 175    | 174     | 173     | 173     | 173     | 203        | 203    |

on straight a belle. The track at the characteristic challenges and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra

| 1          |                              |       |         |          |         |         |  |  | <br> | <b>,</b> | <del></del> - | <br> | <del></del> - |   | <br>1 | <br>1 |   |
|------------|------------------------------|-------|---------|----------|---------|---------|--|--|------|----------|---------------|------|---------------|---|-------|-------|---|
| 000 11 000 | 1dB                          |       |         |          |         |         |  |  |      |          |               |      |               |   |       |       |   |
| י בי       | s<br>S                       |       | 0.0128  | 0.0109   | 0.0093  | 0.0081  |  |  |      |          |               |      |               | - |       |       |   |
|            | Δ£                           |       | 22.32   | 31.28    | 40.06   | 48.60   |  |  |      |          |               |      |               | _ |       |       |   |
|            | fR                           |       | 1753.74 | 2894,79  | 4318.47 | 6020.91 |  |  |      |          |               |      |               |   |       |       |   |
|            | $^{\mathrm{f}}_{\mathrm{L}}$ |       | 1731.42 | 2863.41  | 4278.4] | 5972.31 |  |  |      |          |               |      |               |   |       |       |   |
|            | A<br>G                       |       | 1709.55 | 28.26.02 | 4251.49 | 5960.87 |  |  |      |          |               |      |               |   |       |       |   |
|            | f.                           |       | 1742.51 | 79.41    | 97.21   | 7.41    |  |  |      |          |               |      |               |   |       |       |   |
|            |                              | Node  | 4       | رن<br>د  | 9       | 7       |  |  |      |          |               |      |               |   |       |       |   |
|            | ە<br>(با                     | Caro. |         | 202      | 201     | 201     |  |  |      |          |               |      |               |   |       |       | 1 |

EXPERIMENTAL CODE 1148
NATERIAL SOUNDCOAT N=5
DATA SOURCES
NAMMERCTURER INOME

|   | COMPLEX MOD.     | 576766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0848SE+06     | 350435      | 327668   | 16062                                                                                                          | 6. 82935E+06 | 7.01444F+05  | 7.60011F+05 | 2 725 ISE+05         | 1 200000     | 204125446   | 00.000000000000000000000000000000000000 | C. C0661E+85 | 5 - C058CE +05 | 1.10175E+06 | 1.27351E+86 | 1.780428+96 | 5.62857E+06 | 3.40454E+06 | 2.27074E+86 | 5.89938E+86 | 6.92255E+86 | 1.14665E+07 | 7.76772£+06  | 1.68869E+07 | 2.07586E+07 | 2.77766E+07 | 1.14736E+0E | 3.01281E+06 | 3.544(37+96 | 4.8.56.c+06 | 4.53438E+86 | 1.13021E+0/ | 1.45432407 | 1.88734E+63 | 3.436366     | 6. 88592E+85   | 7.51713€+65 | 9.28529€+05 | 1.05210€+05 | 2. 05.245E+05 | 2.161906+05 | 3.664/Mr.   | 3. 200000      | C C C C C C C C C C C C C C C C C C C | . 084878+ <del>0</del> 5 | 1.29424545  | 1.81965E+05 |
|---|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|----------|----------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------|----------------------|--------------|-------------|-----------------------------------------|--------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|--------------|----------------|-------------|-------------|-------------|---------------|-------------|-------------|----------------|---------------------------------------|--------------------------|-------------|-------------|
|   | BEAM FREG.<br>HZ | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 886.6           | 737         | 22       | Š                                                                                                              | Ŷ            | 315.6        | 283         |                      |              | _           | 7000                                    |              | 316.6          | 884.4       | 1733.7      | 2867.0      | 4398.2      |             | 318.0       |             | 1744.6      | 2883.       |              |             |             |             |             |             |             | 878.<br>9   | 318.7       | 864.4       | 1748.6     | `. '        | 9.40         | 60000          | 4287.3      | 6668.8      | 313.2       | 876.1         | 1716.8      | C846.       | 88             | 70.0                                  | 872.4                    | 1709.6      | 2826.0      |
|   | COMPOSITE BEAM F | 566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2517            | 1822        | 2        | 724                                                                                                            | 1551         | 1.05         | 2001        | 9774                 | 0.70         | 1000        |                                         | .6617        | 1863           | .1657       | 2/01        | 2864        | 6660.       | .009        | 3075        | .3417       | .3642       | .3753       | .1956        | .1895       | . 2406      | . 2352      | 1692.       | .3136       | . 2411      | . 2139      | . 2820      | 8562        | 9266.      | .0821       | .0018        | 7000           | 6292        | . 6263      | .0518       | . 6384        | . 6296      | 90.         | 8510.          | 44.00                                 | 9560                     | 9719        | . 0100      |
|   | _                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •               | 614225+1    | 61424F+1 | 227186+                                                                                                        | 74896F+      | C7270F+      | +3c3c35     | 568315+1             | 1730000      | 1,300000    | 10/01/35 +1                             | 6.697815+16  | Sybore +1      | - 58206E+1  | .52661E+1   | .59123E+1   | <u>.</u>    | .72019E+1   | ⇁           | 6.664938+10 | .66961E+1   | 7           | 6.72474E+10  | 6.72846E+10 | 6.72516F+10 | 6.72515E+10 | -           | 7           | .64189£+1   | .64186E+1   | 7           | . 28687E+1  | ٠,         | .521986+1   | . 51333E+1   | 0.513345414    | 62987F+1    | 650806+1    | .47188E+1   | 6.45866E+10   | 6.45867E+10 | 6.46776E+10 | 6.574596+18    | 6.525cc+18                            | 6.40407F+10              | 6.404176+10 | 6.40420€+10 |
|   | ODE<br>CODE      | ٠,٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 4           |          |                                                                                                                | ,            | ٨            | ; ~         | •                    | ;<br>u       | 'n          | ام                                      | ٠,           | น่             | m           | •           | 'n          | ġ           | ۲.          | ۲,          | m           |             | 'n          | 'n           | · ~         |             | ď           | 'n          | m           | <b>+</b>    | ņ           | 'n          | 'n          | ÷          | ก่          |              | ÷u             |             | ,           | 'n          | m,            | 7           | ķ           |                | ٠,                                    |                          | 4           | S           |
|   | FREG.            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.00            | 2001        | 200      | 7000                                                                                                           | A 21.7       | 470          | 0.40        | 7.0                  | 0.000        | 2011        | 20.00                                   | 6160.4       | 104            | 96.         | 1837.5      | 3046.3      | 4489.3      | 6214.4      | 456.1       | 12.4.0      | 13          | 3470.2      | 575.9        | 1564.9      | 2831.2      | 4547.3      | 4.95.6      | 1067.6      | 1962.8      | 3199.9      | 520.6       | 1393.6      | 5476.5     | 336.3       | 4.4          | 0.000          | 4367.1      | 6.876.9     | 327.8       | 7.            | 1755.3      | 2800.6      | 4327.1         | 4.00                                  | 0.00                     | 1742.5      | 2879.4      |
|   | TEMP.            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | יי<br>פיטי      |             |          |                                                                                                                |              |              |             |                      |              |             |                                         |              |                |             |             | ŧ.          | ŝ.          | 45.         | 5           | 23.5        | 4           | e<br>γ      | 00           | (m)         | œ.          | e m         | 31.1        | 31.1        | 31.1        | 31.1        | 16.1        | 1.91        | 16.        | 92.6        | 9.6          | 9.00           | 4           | 4.4         | 4.04        | 79.4          | 78.9        | <br>        | 786.3          | ? ¢                                   | y                        | 3           | 7           |
|   | 1055 TE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100             | 7700        | 200      | ָר בְּינוֹ בְּינוֹ בְּינוֹ בְּינוֹ בְּינוֹ בְּינוֹ בְּינוֹ בְּינוֹ בְּינוֹ בְּינוֹ בְּינוֹ בְּינוֹ בְּינוֹ בְי | 070          |              |             | n 6                  | 9 0          | > 10<br>3   | . 5716                                  | 1.2094       | .8340          | 1.1073      | . 3672      | . 7783      | 1.1145      | 1.4496      | 9484        | 4466        | 1.5477      | 1.7610      | 1.0072       | 8456        | 27.7        | 000         | SE SS       | 1.3987      | 1.3281      | 1.2677      | 1.1267      | 1.1673      | 1.5352     | .6433       |              | 7 d            | 6264        | 796.        | 5542        | .6156         | 3885        | 3736        | 424            |                                       | 10864                    | 52.55       | 1162        |
|   | RODULUS          | DEMINISTRATION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY | 10. 441 36t +65 | 70000       | 100000   | 110000                                                                                                         | 3.C/885E+66  | 3.00/436.400 |             | ( . 8 31 C 1 E 1 E 2 | 1.071482480  | 1.48358E+86 | 1.846595+86                             | 1.3741BE+06  | 6.23517E+05    | 9.95021E+05 | 1.31582E+06 | 2.30052E+06 | 2.35849E+06 | 2.34866E+06 | 7 18255F+BK | 4 800015+86 | 4 20147F+B6 | 6.511486+96 | 7.71213F+046 | 1.937116+07 |             | 3.47193F+07 |             | 2.15393E+06 | 2.66868E+86 | ō           | 4.05454E+86 | Ō.          | Ō.         | 2.81292E+05 | 4.55361: +65 | 0 C71 BOC + BC | 10408       | 325         | 1.898436+05 | .33388E+      | . SO404E    | .63177E+    | 9. 354588E+465 | •                                     | 7. RB781F+65             | 837636      | 7.87226E+#5 |
| 5 | į                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • •           | <b>(1</b> f | <b>~</b> | • 1                                                                                                            | Δ.           | ا ۵          | - 6         | <b>*</b>             | <b>7</b> 1 ( | 9           | <b>-</b>                                | 5            | E T            | _           | 15          | 9           | 1.5         | 00          | 9           | X           | 1           | , C         | ເຕ           | 4           | ίX          | 34          | 2           | 00<br>(V    | R           | 8           | ű           | ×           | e :        | <b>.</b>    | £1           | 45             | , ex        | 88          | 2           | 7             | <b>4</b>    | <u>.</u>    | <b>;</b>       | t d                                   | <b>P</b> C               | 4           | Ş           |

100

54551.5 54551.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456.5 5456 Property Gong 4 mond 4 m 7.94446. 4.42996. 4.42996. 4.1394. 8.116146. 1.07296. 1.07296. 1.07296. 1.07296. 1.07296. 1.07296. 1.07296. 1.07296. 1.07296. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.07596. 1.0 £2825233333473874



|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test No                   | 79-1     |
|-----------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------|
| Beam Nos. | 060C and 06                    | <u>0</u> D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date _                    | 5/79     |
| Damping M | aterial Soun                   | ocnat R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| Material  | Thickness 0.02                 | 54 cm. Material Densit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y 0.950                   | <br>a/ac |
|           |                                | m Beam Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | •        |
| Beam Leng | th 17.78 cm                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| Temperatu | re Test Rahde:                 | Between -59.4 °c and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.6                      | _ c C    |
| Frequency | Test Range: Be                 | etween <u>10</u> Hz and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 KH                     | 2        |
| Loss Fact | or n <sub>o</sub> :            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| Peak 1    | 00 Hz 15 2.4                   | Temperature12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 60                      |          |
|           | ••                             | Temperature 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| Range l   | Ţ. <del></del>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
| 10        | 00 llz3.9_                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           | TØ ETAFROL<br>Bi<br>15.0 2.298 | OG(MROM/ML))/(1+(FROM/FR)**h)  MROM N ML A2 A3 A4 03 7.7910E+06 .621 1.2588E-0 01)+((SL+SH)A+(SL-SH)()-SQRT(1+6 SL SH FROL C B2 B3 B4 B5 .429507 1.7768E+03 .2 T-T0)/(525/1.8+T-T0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • <b>05</b><br>A**2)))c/2 |          |
| Remarks:  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |
|           |                                | e a company and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                           |          |
|           |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |          |

| 060D    |
|---------|
| 20      |
| ŏ       |
|         |
| 060C.   |
| $\circ$ |
| v       |
| 0       |
|         |
| Š.      |
| Beam    |

| 060C, 060D<br>1dB |       |        |             |           |         |        |          |                |           |                   |          |            |         |        |         |         |         |        |          | ×         |        |
|-------------------|-------|--------|-------------|-----------|---------|--------|----------|----------------|-----------|-------------------|----------|------------|---------|--------|---------|---------|---------|--------|----------|-----------|--------|
| Beam No.          |       | 0.0033 | . 3006      | 0.0018    | 0.0020  | 0.0042 | 0.0015   | 0.0034         | 0.0048    | 0.0096            | 0.010    | 0.0170     | 0.0223  | 0.0359 | 0.0508  | 0.0739  | 0.0901  | 0.2100 | 0.2544   | 0.3830    | 0.4601 |
| ۵£                |       | 1.80   | 0.90        | 5.20      | 9.60    | 2.30   | 2.20     | 9.70           | 22.30     | 5.20              | 16.50    | 48.50      | 102.40  | 19.00  | 73.60   | 199.70  | 388.70  | 100.40 | 323.90   | 833.39    | 189.50 |
| f.<br>R           |       | 546.40 | 1506.00     | 2880,50   | 4657.50 | 542.30 | 1500.90  | 2364.90        | 4627.90   | 542.20            | 1504.10  | 2873.60    | 4648.30 | 538.10 | 1487.30 | 2805.00 | 4480.60 | 531.80 | 1426.40  | 2350.70   | 525.36 |
| ᆔ                 |       | 544.60 | 1505.10     | 2875.30   | 4647.90 | 540.00 | 1498.70  | 2855.20        | 4605.60   | 537.00            | 1487.50  | 2825.10    | 4545.90 | 519.10 | 1413.70 | 2605.30 | 4691.90 | 431.40 | 1102.50  | 1936.80   | 335.80 |
| <b>м</b><br>ц     |       | 248.54 | 691.65      | 1357.49   | 2241.43 | 247.77 | 689.15   | 1348.66        | 2234.43   | 246.89            | 686.38   | 1343.83    | 2226.44 | 246.00 | 682,60  | 1337.78 | 2217.45 | 244.91 | 683.40   | 0:.       | 4,05   |
| ų,<br>O           |       | 00.00  | 3404.60     | 1.2877.50 | 4653.00 | 541.16 | 1499.80  | 2860.40        | 4616.70   | 539.70            | 1496.10  | 2850.10    | 4596.20 | 528.70 | 00°0557 | 2702.70 | 43:2.50 | 478,00 | 1272.90  | 00.35.5   | / c    |
|                   | 89.C: | . (1   | <i>e</i> :. | .,        | 1. 1    | ٠,     | 11.1     | -1-            | m         | Ca                | , -<br>i | • 3"       | 65      | : 4    | £-)     | ·r      | tr      | c a    | (*)      | *r        | ٠.     |
| ļ.,<br>o          |       | ()     | 1           | (f)<br>1  | :       | C 10 = | ()<br>() | رم<br>الا<br>ا | (<br>10.7 | 1 :<br>6 )<br>1 ; | 10       | (7)<br>(4) | (1)     | ن<br>ا | C.      | ٥       | 0       | ; J    | ()<br>() | ι,<br>( ) | 11 /   |

The second second

¥0

|   | 60T   |   |
|---|-------|---|
|   | č     |   |
|   | 0,000 | , |
|   | NO.   |   |
| - | Beam  | } |

| 1дв      |         |            |        |         | :<      |        |        |         |         |          |           |         | -       |          |        | ·                 |         |        |           |         |                      |
|----------|---------|------------|--------|---------|---------|--------|--------|---------|---------|----------|-----------|---------|---------|----------|--------|-------------------|---------|--------|-----------|---------|----------------------|
| ຮູ້      |         | 0.4482     | 0.4270 | 0.5873  | 0.4111  | 0.2844 | 0.2824 | 0.2224  | 0.2132  | 0.1510   | 0.1246    | 0.0828  | 0.0735  | 0.0494   | 0.0277 | 0.0210            | 0.0191  | 0.0204 | 0.0123    | 0.0081  | 0.0075               |
| Δ£       |         | 486.30     | 136.90 | 495.30  | 606.71  | 78.30  | 212.20 | 309.10  | 485.60  | 39.00    | 86.10     | 111.30  | 163.70  | 12.20    | 18.80  | 27.80             | 41.90   | 5.00   | 8.30      | 10.70   | 16.30                |
| f<br>R   |         | 1335,50    | 405.80 | 1082.90 | 1630.16 | 323.30 | 848.20 | 1516.90 | 2468.20 | 279.70   | 740.80    | 1401.50 | 2306.40 | 252.30   | 688.40 | 1338.60           | 2215.20 | 247.00 | . 70      | . 21.70 | 2187.50              |
| f.       |         | 849.20     | 268.90 | 587.60  | 1323.10 | 245.00 | 635.00 | 1207.80 | 1982.60 | 240.70   | 654.70    | 1290.20 | 2136.70 | 240.10   | 670.10 | 1310.20           | 2173.30 | 242.00 | 669.40    | 1311.00 | 2171.20              |
| 44       |         | 679.59     | 244.03 | 678.36  | 1327.50 | 243.48 | 677.12 | 1325.86 | 2194.46 | 243.14   | 676.20    | 1323.27 | 2189.47 | 242.15   | 673.73 | 1319.04           | 2182.47 | 241:57 | 673.57    | 1314.20 | 2175.48              |
| , U      |         | 1085.00    | 320.60 | 843.40  | 1775.80 | . 7.30 | 08.    | 1390.10 | 2277.60 | 258.30   | 690.80    | 1344.80 | 2226.   | 246.80   | 678.30 | 1324.00           | 2192.60 | 244.50 | 673.50    | 1316.50 | 2279.50              |
|          | Node    | ю          | ĊΙ     | e       | 4       | Ü      | Ε.     | ध       | ហ       | (.1      | 2         | #J;     | ហ       | ۲3       | e'i    | 41                | 1/)     | C      | e         | •1      | ır.                  |
| [14<br>0 | :0::0:: | (f)<br>(*) | С<br>С | 0.5     | C<br>th | Ş      | 6.5    | 99      | نين     | gri<br>L | 10<br>( - | un<br>L | 10      | 00<br>.1 | ပ<br>ပ | ( )<br>( )<br>( ) | ,       | 100    | 1/1<br>C1 |         | 10<br>11<br>11<br>12 |

| 060C, 060D | 1dB               |        |        |        |                    |         |  |  |  |  |  |      |      |  | of 3   |
|------------|-------------------|--------|--------|--------|--------------------|---------|--|--|--|--|--|------|------|--|--------|
| Ream No.   | s<br>L            |        | 0.0115 | 0.0061 | 0.0042             | 0.0041  |  |  |  |  |  | <br> |      |  | Page 3 |
|            | ΔÉ                |        | 2.80   | 4.10   | 5.50               | 8.90    |  |  |  |  |  |      |      |  |        |
|            | £R                |        | 244.10 | 672.29 | 1313.10            | 2174.60 |  |  |  |  |  |      |      |  |        |
|            | <del>ы</del><br>ч |        | 241.30 | 01.899 | 1307.50            | 2165.70 |  |  |  |  |  |      |      |  |        |
|            | A1<br>E1          |        | 240.39 | 01.699 | 1310.58            | 2168.48 |  |  |  |  |  |      |      |  |        |
|            | ္မွာ              |        | 242.60 |        | ( T)               | 2269.90 |  |  |  |  |  |      |      |  |        |
|            |                   | Node   | 2      | (*)    | 43                 | 'n      |  |  |  |  |  |      | <br> |  |        |
|            | ្រ                | Toros. | 1      | ເກ     | (D)<br>(I)<br>(-1) | 100     |  |  |  |  |  |      |      |  |        |

THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O

| <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 35 : 36<br>2007<br>30 1 50<br>30  y .        |
| SOUNDCOKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| EZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACT (SEE ) |
| E TER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |

| COMPLEX MOD.    | 3.69498E+67          | 9.506506+06   | 7.45958E+06  | 2.51568E+87 | 1. (65335 +07 | 1.55672E+07                              | 5.99993E+07  | 1.390486+08                              | 7.74561E+07  | 6.886026+07 | 4.74934E+87 | 74.30565467  | 7. 925.725.487                            | 1.56505E+07  | 3.127715+07 | 3.16894E+07 | 8.01371E+06  | 1.68286E+87 | 7 70105 405                | יייייייייייייייייייייייייייייייייייייי | 0 094925+00 | 2.572795+06                             | 3,31662E+06      | 5.10711E+06 | 4.34076E+05 | S. /b.seak +es | 1.65129€+86              | 1.23976E+05 | 1.85163€+05 | 2.72097E+85 | 4.103456.485 | 2 0740F+84    | 1.03557E+05 | 1.58993E+05                           | 2.76835E+04 | 3.95836E+04 | 4.04.7/E    |                                         |
|-----------------|----------------------|---------------|--------------|-------------|---------------|------------------------------------------|--------------|------------------------------------------|--------------|-------------|-------------|--------------|-------------------------------------------|--------------|-------------|-------------|--------------|-------------|----------------------------|----------------------------------------|-------------|-----------------------------------------|------------------|-------------|-------------|----------------|--------------------------|-------------|-------------|-------------|--------------|---------------|-------------|---------------------------------------|-------------|-------------|-------------|-----------------------------------------|
| BEAM FREG.      | 248.5<br>501.5       | 1353.5        | 2241.4       | 24.7        | 7.026         | 2234.4                                   | 246.9        | 686.4                                    | 1343.8       | 2226.4      | 246.0       | 923.0        | 2217.5                                    | 244.9        | 683.6       | 1354.1      | 244.2        | 679.6       | 9 TO                       | 9000                                   | 13C         | 677.1                                   | 1325.9           | 2194.5      | ج. ۱<br>س   | 5,975          | 2189.5                   | 2.5.1       | 673.7       | 1319.0      | 2186.5       | 1.1.2         | 1314.2      | 2175.5                                | 7.46.4      | 2.66        | 2168.5      | 1                                       |
| COMPOSITE       | 9899<br>9899<br>9899 | 8             | . 6626       |             |               |                                          | 8.           | .0110                                    | 6179         | . 8223      | 9329        | 9000         | 1000                                      | 2100         | .2544       | .3830       | . 4601       | 4482        | 4.<br>5.00<br>6.00<br>6.00 | 5,96.                                  | . 4111      | 4000                                    | 100              | 513.        | .1510       | 12.46          | . 60E0                   | 4040        | 728.        | . 6218      | .0191        | 100 G         | 100         | 2. S                                  | . 6115      | . 665       | 144         | • • • • • • • • • • • • • • • • • • • • |
| BEAN NOD.       | 7.242525+10          | 25.25         | 7.16212E+10  | 7.2000K+10  | 7.10450E+10   | 7.11746E+18                              | 7.14897E+18  | 7.04750E+10                              | 7.83581E+19  | 7.8665E+18  | 7.697522+10 | A1+450A55    | 0.476.26.00<br>7.476.06.00<br>7.476.06.00 | 7.83477E+18  | 6.996636+10 | 7.1429SE+10 | 6.99690E+18  | 6.90886E+10 | 6.984396+18                | 6.88387E+18                            | 6.865872419 | 6.956856+18                             | 6.848126 + 10    | 6.86510€+19 | 6.93345E+10 | 6.84919E+19    | 91-38-39-4<br>91-38-58-3 | 6.87710E+10 | 6.79622E+10 | 6.77785E+10 | 6. 79828E+10 | 6.82721E • 19 | 1200000     | 6.74686E+10                           | 6.77750€+10 | 6.69721E+10 | 6.691198+18 |                                         |
| 30 PE           | ก่า                  | ,             | Ś            | ۸i          | ท่จ           | ŕ                                        |              | m                                        | ÷            | Ŋ.          | ni r        | ÷.           | ŤU                                        | 'n           | 'n          | -           | 'n           | 'n          | ก่                         | mi.                                    | ÷           | ง่า                                     | •                | Ŋ           | က်          | ų,             | · u                      | า้ณ         | 'n          | ÷           | 'n           | i             | ,<br>,      | ı ur                                  | نہ          | ų.          | ÷u          |                                         |
|                 | 545.3                | 20.00         | <b>4653.</b> | 541.1       | 200           | 4616.7                                   | 7            | 1496.1                                   | 2850.1       | 4596.2      | 528.7       | 244          | ,                                         |              | 1272.9      | 2176.0      | 411.9        | 1685.0      | 9                          | 843.4                                  | 14.3.8      | 7.0<br>0.0<br>0.0                       | 13061            | 2277.6      | 258.3       | 699.8          | 164.00                   | 26.5        | 578.3       | 1324.1      | 2182.6       |               |             | 27.0                                  | 242.6       | 670.1       | 1316        |                                         |
| TEMP.           | 22                   |               | 1.50.4       | -65.6       | 9:01          | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 7.16-        | 17.                                      | -31.7        | -31.7       | -17.8       | -17.8        | -1.0                                      |              | 9           | -3.5        |              | 1.7         | 0.6                        | 18.0                                   | 14.0        | 9.4                                     | ָרְיָה<br>ביינים | 35.6        | 23.9        | E 23           | 76                       |             | , C         | 37.8        | <b>1</b> 00  | 2             |             |                                       | 65.6        | 8           |             | ;                                       |
| 1.055<br>FACTOR | 1282                 |               | 0.62         | K           | 290           | 2000                                     | 100          | 38                                       | 1945         | 1696        | 2698        | 205          |                                           | 4000         | 2           | 101         | 2.3437       | 1.8359      | 1.555?                     | 3.2681                                 | 2.83.7      | 2 × × × × × × × × × × × × × × × × × × × | 7                | 280         | 1.1946      | 1.9612         | 1.4815                   | R C         | .6931       | . 6189      | 5583         |               | 200         | 26.3                                  | 200         | 26.21       | 157         | 37, 4.                                  |
| MODULUS         | 2.8E3:1E+06          | 4. 97824. + W |              | 2.003362+08 | 4.878585.46   | 4.14893E+64                              | 2 ACBCCC 140 | A 45 4 6 6 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6 | OF THE PARTY | A 47556+0   | 8.33455E+07 | 1. GARSZE+68 | 1.602196+68                               | 1.842836.468 | 2 500775    | 2322        | 3.419596.466 | 9.15635E+86 | :.62691E+66                | 2.362485+66                            | 2.647338+66 | 6.845375465                             | ACE 75 C A B A   | 1.37214E+86 | 3.633758+85 | 4.423125+85    | 344180                   | A 1500 150  | 2-671516+05 | 4.453966+#5 | 7.757415+85  | 1.2741545     | 2 010645405 | S S S S S S S S S S S S S S S S S S S | 1.0785EF-05 | 1.96834F+65 | 3.363515465 | 70. J. J. J. B. C. C.                   |
| ģ               | -1                   | N 1           | T) =         | · rv        | ٠             | <b>~</b> (                               | n t          | <b>A</b> 0                               | • •          | • •         | m           | Ξ            | S                                         | 4            |             | 90          | 7            | กั          | প্ৰ                        | R                                      | 7           | ĸ                                       | 65               | ī           | ń           | <b>a</b>       | :: î                     | X.          | ) (1)       | 35          | 9            | h (           | , 8         | 1                                     | 7           | <b>4</b>    | ₽;          | ř                                       |

17.

|        |         |                  |                           |                                                                                    |                         |        |                            |                             |        | 1          | Test        | No.  | 7 -   | 11 |
|--------|---------|------------------|---------------------------|------------------------------------------------------------------------------------|-------------------------|--------|----------------------------|-----------------------------|--------|------------|-------------|------|-------|----|
| Beam N | los     | 0502             | an                        | d 050                                                                              | <u> </u>                |        | ÷                          |                             |        |            |             |      | /26/7 |    |
| Dampin | ig Mate | eria             | 1;                        | Soundo                                                                             | oat                     | Diac   | 601                        |                             |        |            |             |      |       |    |
|        |         |                  |                           |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |
| Materi | al Th   | lckn             | ess                       | 0.038                                                                              | <u>1</u> cı             | m :    | Mater                      | rial                        | Dens   | sity       | 0.9         | 65   | q/cc  |    |
| Beam T | hickne  | ess              | 0.                        | 127 cr                                                                             | n                       | !      | Beam                       | Dens                        | sity   | 2.7        | 95          | q/cc |       |    |
| Beam I | ength   | 17               | .78                       | _cm                                                                                |                         |        |                            |                             |        |            |             |      |       |    |
| Temper | ature   | Tes              | t Ra                      | nge:                                                                               | Bet                     | ween   | <u>-3</u>                  | .9                          | _°C a  | ind _      | 65.         | 6    | С     |    |
| Freque | ency Te | est              | Rang                      | e: Be                                                                              | etwe                    | en _   | 10                         | н                           | z and  | 11         | .0 K        | _Hz  |       |    |
| Loss F | 'actor  | n <sub>D</sub> : |                           |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |
| Peak   | 1.00    | Ηz               | ηp                        | 1.01                                                                               |                         | Tem    | perat                      | ure                         | 1      | 0.0        | °C          |      |       |    |
|        |         |                  | -                         | 1.01                                                                               |                         |        |                            |                             |        |            |             |      |       |    |
| Range  |         |                  |                           |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |
| _      |         |                  |                           | 29.4                                                                               |                         |        |                            |                             |        |            |             |      |       |    |
|        |         |                  |                           |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |
|        |         | LOG              | LOG(FM<br>(ETA)+!<br>0 E' | FROM<br>A1<br>7.3251E<br>1-LOG(FR<br>LOG(ETAF<br>FAFROL<br>B1<br>1.010<br>OG(F)-12 | ROL)+<br>SL<br>B2<br>.7 | ((SL+5 | SH)A+(S<br>SH<br>I3<br>700 | L-SH)<br>FRO<br>84<br>2.000 | (1-500 | T/1+41     | 21110       | ∕ 2  |       |    |
| Romark | :s: _   |                  |                           |                                                                                    |                         |        |                            |                             |        |            | <del></del> |      | •     |    |
|        |         |                  |                           |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |
|        |         |                  |                           |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |
|        |         |                  |                           |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |
|        |         |                  | <b></b>                   |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |
|        |         |                  |                           |                                                                                    |                         |        | <u>-</u>                   |                             |        |            |             |      |       |    |
|        |         |                  |                           |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |
|        |         |                  |                           |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |
|        |         |                  |                           | . <b></b> -                                                                        |                         |        |                            |                             |        | <b>-</b> - |             |      |       |    |
|        |         | ····             |                           |                                                                                    |                         |        |                            |                             |        |            |             |      | - • • | ·  |
|        |         |                  |                           |                                                                                    |                         |        |                            |                             |        |            |             |      |       |    |

| 050B |
|------|
| 0501 |
| No.  |
| Beam |

|                | 1     |        | 1      |         |        |        |        |         |        |        |        |        |        |        |            |        |        |        |                    |         |                                       |
|----------------|-------|--------|--------|---------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------------------|---------|---------------------------------------|
| 143            |       |        |        |         |        |        |        |         |        |        |        |        |        |        |            |        |        |        |                    |         |                                       |
| ر<br>م         |       | 0.0064 | 0.0085 | 0.0117  | 0.0141 | 0.0195 | 0.0231 | 0.0381  | 0.1128 | 0.1778 | 0.2092 | 0.1196 | 0.3008 | 0.1282 | 0.0964     | 0.0683 | 0.0584 | 0.0942 | 0.0575             | 0.0422  | 0.0345                                |
| Δf             |       | 3.0    | 11.0   | 29.0    | 58.0   | 9.6    | 29.0   | 91.0    | 49.0   | 205.0  | 448.0  | 824.0  | 106.0  | 30.0   | 57.0       | 76.0   | 105.0  | 21.0   | 33.0               | 46.0    | 61.0                                  |
| f<br>R         |       | 470.0  | 1300.0 | 2492.0  | 4139.0 | 465.0  | 1268.0 | 2440.0  | 465.0  | 1299.0 | 2441.0 |        |        | 252.0  | 625.0      | 1156.0 | 1854.0 | 236.0  | 593.0              | 1114.0  | 1797.0                                |
| $f_{ m L}$     |       | 467.0  | 1289.0 | 2463.0  | 4081.0 | 456.0  | 1239.0 | 2349.0  | 416.0  | 1094.0 | 1993.0 | 3056.0 | 315.0  | 222.0  | 568.0      | 1080.0 | 1749.0 | 215.0  | 560.0              | 1068.0  | 1776.0                                |
| fn             |       | 201.8  | 555.9  | 1090.0  | 1784.0 | 201.7  | 555.6  | 1090.0  | 201.6  | 555.3  | 1089.0 | 1782.0 | 201.2  | 199.4  | 549.4      | 1077.0 | 1763.0 | 198.8  | 547.6              | 1074.0  | 1757.0                                |
| ft<br>C        |       | 468.0  | 1294.0 | 2479.0  | 4118.0 | 461.0  | 1254.0 | 2392.0  | 437.0  | 1171.0 | 2188.0 | 3468.0 | 368.0  | 236.0  | 594.0      | 1115.0 | 1800.0 | 224.0  | 0.10               |         | 0.89.1                                |
|                | ::ode | (1     | m      | -7      | 5      | ۲ ،    | m      | ঘ       | C1     | (2)    | 4      | in     | i.a.   | (1     | <i>c</i> , | .,     | ம்     | Γij    | ,                  | .,      | 1/.                                   |
| <u>ku</u><br>0 | remo. | ;<br>; |        | ,<br>(1 | 1      | [ · ]  | 1 2    | [ : / ] | 00     | 3.0    | 2 C    | 00     | ; •    | 3.2.8  | 67.1       |        | 6.7.1  | 000    | ;<br>;<br>;<br>; , | C . U . | , , , , , , , , , , , , , , , , , , , |

| 0504, 0508 | 1dB            |           |         |        |           |        |  |  |   |   |       |       |   |  |  |  |
|------------|----------------|-----------|---------|--------|-----------|--------|--|--|---|---|-------|-------|---|--|--|--|
| beam NO.   | e<br>S         |           | 0.0739  | 0.0443 | 0.0325    | 0.0263 |  |  |   |   |       |       |   |  |  |  |
|            | 44<br>4        |           | 16.0    | 25.0   | 35.0      | 46.0   |  |  |   |   |       |       |   |  |  |  |
|            | f <sub>R</sub> |           | 226.0   | 578.0  | 1095.0    | 1773.0 |  |  |   |   |       |       |   |  |  |  |
|            | ‡<br>T         |           | 210.0   | 553.0  | 1060.0    | 1727.0 |  |  |   |   |       |       |   |  |  |  |
|            | ᄕ              |           | 198.5   | 546.7  | \ \tag{7} | 1754.0 |  |  |   |   |       |       |   |  |  |  |
|            | 44<br>O        |           | 1 217.0 | 565.0  | 1077.0    | 1750.0 |  |  |   |   |       | <br>  |   |  |  |  |
|            | (L4            | ero. Node | 0       |        | •#<br>    | ιΩ<br> |  |  | - | - | <br>- | <br>- | - |  |  |  |

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

استخباره فالرافية الموالية والمقاللية كالمشاق للشخاص فيستماع فتسادياه فأستما



|                                                                                                                                                                                                                                                                                              | rest r                                       | 40. <u>//-18</u> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|
| Beam Nos. Not and Recorded                                                                                                                                                                                                                                                                   | Date                                         | 2/10/77          |
| Damping Material Soundcoat Diad 606                                                                                                                                                                                                                                                          | ~                                            |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |
| Material Thickness 0.0381 cm Material Densi                                                                                                                                                                                                                                                  | ty 0.965                                     | 5 a/ee           |
| Beam Thickness 0.1778 cm Beam Density                                                                                                                                                                                                                                                        |                                              | -                |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                                         |                                              |                  |
| Temperature Test Range: Between 10.0 °C ar                                                                                                                                                                                                                                                   | nd 93.3                                      | ಿ                |
| Frequency Test Range: Between 10 Hz and                                                                                                                                                                                                                                                      |                                              |                  |
| Loss Factor np:                                                                                                                                                                                                                                                                              |                                              |                  |
| Peak 100 Hz $\eta_D = 1.01$ Temperature 38.                                                                                                                                                                                                                                                  | 3 0.5                                        |                  |
| 1000 Hz $\frac{1.01}{1000}$ Temperature $\frac{57}{1000}$                                                                                                                                                                                                                                    |                                              |                  |
| Range 100 Hz 15.6 °C 68.3 °C                                                                                                                                                                                                                                                                 |                                              |                  |
| 1000 Hz 29.4 °C 93.9 °C                                                                                                                                                                                                                                                                      |                                              |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |
| LOG(M)+LOG(ML)+(2LOG(MROM/ML))/(1+(FROM/FR)##N TO FROM MROM N A1 A2 A3 80.0 2.2000E+04 2.0000E+07 .350 3.50; A+(LOG(FR)-LOG(FROL))/C 1.OG(ETA)-LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-SQRT) TO ETAFROL SL SH FROL B1 B2 B3 B4 20.0 1.010 .400500 3.0000E+04 LOG(FR)+LOG(F)-12(T-T0)/(S25/1.8+T-T0) | L<br>4<br>?0E+05<br>(1+A**2);)C/2<br>C<br>B5 |                  |
| Remarks:                                                                                                                                                                                                                                                                                     |                                              |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |
|                                                                                                                                                                                                                                                                                              | · • • • • • • • • • • • • • • • • • • •      |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |
|                                                                                                                                                                                                                                                                                              |                                              |                  |

| Not Recorde | 1dB    |                 |          |         |            |          |        |        |        |          |          |            |        | <br>   |        |                                        |                   |                |        |                      |        |         |
|-------------|--------|-----------------|----------|---------|------------|----------|--------|--------|--------|----------|----------|------------|--------|--------|--------|----------------------------------------|-------------------|----------------|--------|----------------------|--------|---------|
| Beam No.    | ر<br>ع |                 | 0.0408   | 0.0097  | 0.0194     | 0.0147   | 0.0331 | 0.0220 | 0.0330 | 0.0384   | 0.0635   | 0.0823     | a.1487 | 0.2837 | 0.2036 | 0.3587                                 | 0.2179            | 0.2463         | 0.2633 | 0.1939               | 0.1570 | 0.1246  |
|             | ۵£     |                 | 25.0     | 17.0    | 65.0       | 78.0     | 20.0   | 38.0   | 107.0  | 196.0    | 37.0     | 132.0      | 673.0  | 43.0   | 264.0  | 792.0                                  | 8.6               | 238.0          | 466.0  | 67.0                 | 136.0  | 201.0   |
|             | fR     |                 | 625.0    | 1769.0  | 3377.0     | 5351.0   | 615.0  | 1750.0 | 3304.0 | 5201.0   | 663.0    | 1675.0     | 4958.0 | 600.0  |        |                                        |                   |                |        | 391.0                | 952.0  | 1740.0  |
|             | H<br>L |                 | 0.009    | 1752.0  | 3312.0     | 5273.0   | 595.0  | 1712.0 | 3197.0 | 5005.0   | 0.995    | 1543.0     | 4285.0 | 457.0  | 1191.0 | 1950.0                                 | 361.0             | 876.0          | 1597.0 | 324.0                | 816.0  | 1539.0  |
|             | #g     |                 | 287.6    | 792.2   | 1554.0     | 2542.0   | 285.7  | 789.7  | 1549.0 | 2534.0   | 286.0    | 787.9      | 2528.0 | 285.4  | 786.1  | 1542.0                                 | 284.5             | 783.6          | 1537:0 | 283.6                | 781.1  | 13532.0 |
|             | υ      |                 | 614.0    | 11761.0 | 3346.0     | 5311.0   | 605.0  | 1728.0 | 3248.0 | 5106.0   | 0.485    | 0.6191     | 4576.0 | 524.0  | 1323.0 | 1 2346.0                               | 401.0             | 0.599          | 1830.0 | 352.0                | 0.7.8  | 1626.0  |
|             |        | 9.50%<br>S.C.S. | 57       | 6       | 121        | 5        | ۲3     | 6      | • 9•   | tf)      | ( I      | <b>ر</b> م | S      | C4     | ťΩ     | •#                                     | C1                | 3              | - 1.   | ( 1                  | er)    | •3"     |
|             | (r)    | 0.10            | t<br>• j | •1      | 41.<br>[ • | <br>  *# | , 1    | C)     | / J    | [<br>( ] | 0.<br>6. | 86         | a<br>o | 다<br>다 | * p    | ************************************** | (4)<br>(5)<br>(4) | - C1<br>- E- C |        | ::-<br> <br> -<br> - | 10     | 1 · ·   |

Page \_

Test No. 77-18 No. Not Recorded

| Not Recorde | làB      |       |        |        | ·       |        |         |           |        |        |  |  |  |  |  |  |  |
|-------------|----------|-------|--------|--------|---------|--------|---------|-----------|--------|--------|--|--|--|--|--|--|--|
| Beam No.    | e<br>Q   |       | 0.1430 | 0.0921 | 0.0635  | 0.0474 | 0.0962  | 0.0553    | 0.0376 | 0.0291 |  |  |  |  |  |  |  |
|             | Δ£       |       | 46.0   | 76.0   | 0.66    | 118.0  | 29.0    | 44.0      | 57.0   | 71.0   |  |  |  |  |  |  |  |
|             | 범        |       | 351.0  | 0.698  | 1614.0  |        | 319.0   | 820.0     | 1548.0 | 2478.0 |  |  |  |  |  |  |  |
|             | i,       |       | 305.0  | 793.0  | 1.515.0 | 2431.0 | 290.0   | 776.0     | 1491.0 | 2407.0 |  |  |  |  |  |  |  |
|             | H<br>G   |       | 282.2  | 777.4  | 1525.0  | 2495.0 | 280.2   | 771.9     | 1514.0 | 2477.0 |  |  |  |  |  |  |  |
|             | f,       |       | 325.0  | 82     | 1561.0  | 2490.0 | 303.0   | 797.0     | 15.5   | 2442.0 |  |  |  |  |  |  |  |
|             |          | epo:: | (-)    | m      | .,      | in     | 5.1     | C,        | ন      | ın     |  |  |  |  |  |  |  |
|             | 0<br>(14 | 0.00  | ου.    | ού,    | 00.1    | 05.    | 1 1 2 1 | [-<br>[-] |        | 1.7    |  |  |  |  |  |  |  |

of

Page

|                                |                             | щ,              | ∞ <b>/~ </b> ▼                            | ~ -          | • •                    | <b>-</b> . ^  | mr            | ~         | ( O C-                        | <b></b>                 | . m        | <b></b>                | (0.5      | ·                      | .r. •      | r (1)            | <b>ر</b>  | a                      |  |
|--------------------------------|-----------------------------|-----------------|-------------------------------------------|--------------|------------------------|---------------|---------------|-----------|-------------------------------|-------------------------|------------|------------------------|-----------|------------------------|------------|------------------|-----------|------------------------|--|
|                                |                             | 발생              | 2000<br>2000<br>2000<br>2000              | <b>→</b> (C) | ນຕ                     | ဆ္ကမ္သ        | 289           | 283       | © 83                          | 217                     | 25.        | 9<br>2                 | 45        | 995                    | €          | - 96             | 5         | 200                    |  |
|                                |                             | EAK NOD.        | 7.12723E+18<br>6.89745E+18<br>6.91178E+18 | .76782E+1    | .85398E+1<br>.86729E+1 | .72529E+1     | .82278E+1     | .01861E+1 | . 79164E+1                    | .97442E+1               | .76130E+1  | .93036E+1<br>.70551E+1 | 11395-17. | .85611E*1<br>.64214E*1 | .65614E+1  | .76518E+1        | .54849E+1 | .56046E+1<br>.42614E+1 |  |
|                                |                             | MODE<br>NO.     | nini+                                     | เก่ณ         |                        |               |               |           | ب ⊿                           |                         |            | กม์ค่                  |           | น์ต                    | ÷          | 'n'n             | m         | ψN                     |  |
|                                |                             |                 | 614.8<br>1761.8<br>3346.8                 | 311.         | œ œ                    | 196.          | ندة           | 524       | e i                           | 400                     | i e        | mir.                   | ٠.        | i ci                   | <u>.</u> ; | 96               | 737.      | ശ്വ                    |  |
|                                |                             | TEMP.<br>DEG. C | ∞ ∞ ∝<br>                                 | മവ           | n n                    | 200           | ים ים         | . F       |                               | 4101                    | 010        | 0.0                    | 11        | וחוח                   | 1101       | ገ ፤ ፈል           | (a) (     | ഥാവാ                   |  |
| CODE : 170<br>DCOAT 606        | •                           | LOSS            | 1                                         | 234          | 268                    | 185           | 200           | 4 88.F    | 593                           | יוס<br>פרי              | - 4<br>861 | 6635                   | 9         | 587                    | 2          | y g              | 6         | 936<br>752             |  |
| RIMENTAL CODE<br>RIAL :SOUNDCO | ACTURER :<br>:UDAI<br>:NOME | 걸               | 3.24385E+07<br>5.11696E+08                | . 66448E+    | . 59953E+              | 72192E+       | 198946+       | +362515.  | -962278+                      | . 1 1633E+<br>. 99163E+ | .36738E+   | +35%65*                | .33698E+  | . 46: 43E+<br>S25: 9F+ | - 36699T.  | .63:116+         | . PSP55E+ | .19822E.               |  |
| EXPER                          | MANUE<br>PEN<br>OTHER       | ٠<br>٢          | N r                                       | ን ቀ ሆ        | i de l                 | - <b>69</b> ( | بار<br>دور در | =:        | : رما زر<br>. <del>سو</del> د | <b>4</b> 1/1            | 41.        | <i>u</i> , c           | 7.69      | .;?                    | 10         | ( <b>1</b> ) (1) | <br>      | 15.50<br>1.80          |  |

COMPLEX MOD.

N.NRTE

7. 7409406E+087

9.53952E+077

1.688639E+077

1.57494E+077

1.57494E+067

1.57494E+067

1.5758E+067

1.5658E+067

1.

177



|                                                                                                                                            | Test No. <u>77-20</u> |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Beam Nos. 070D and 070E                                                                                                                    | Date <u>2/17/77</u>   |
| Damping Material Soundcoat Diad 609                                                                                                        |                       |
|                                                                                                                                            |                       |
| Material Thickness 0.0406 cm Material Density                                                                                              | 0.965 0/00            |
| Beam Thickness 0.1778 cm. Beam Density 2                                                                                                   |                       |
| Beam Length 17.78 cm                                                                                                                       |                       |
| Temperature Test Range: Between 19.4 °C and                                                                                                | 121.5 °c              |
| Frequency Test Range: Between 10 Hz and                                                                                                    |                       |
| Loss Factor to:                                                                                                                            |                       |
| Peak 100 Hz n <sub>D</sub> 0.610 Temperature 37.8                                                                                          | 9.0                   |
| 1000 Hz $\frac{1000 \text{ D}}{1000 \text{ D}} = \frac{0.610 \text{ Temperature}}{1000 \text{ D}} = \frac{60.0 \text{ D}}{1000 \text{ D}}$ |                       |
| Range 100 Hz 10.0 °C 73.9 °C                                                                                                               | _ `                   |
| 1000 Hz 29.4 °C 101.7 °C                                                                                                                   |                       |
|                                                                                                                                            |                       |
| LOG(M)+LOG(ML)+(2LOG(MROM/ML))/(1+(FROM/FR)**N)                                                                                            |                       |
| TO FROM N NL  41 A2 A3 A4                                                                                                                  |                       |
| 70.0 2.0000E+04 5.0000E+07 .300 8.5000E<br>A*(LOG(FR)-LOG(FROL))/C<br>LOG(ETA)-LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-SQRT(1+                    | +05                   |
| TØ ETAFROL SL SH FROL C                                                                                                                    |                       |
|                                                                                                                                            | 500                   |
| COURTE / - EOUT / 12/1-16// (363/1/34)                                                                                                     |                       |
| Remarks:                                                                                                                                   |                       |
|                                                                                                                                            |                       |
|                                                                                                                                            |                       |
|                                                                                                                                            |                       |
|                                                                                                                                            |                       |
|                                                                                                                                            |                       |
|                                                                                                                                            |                       |
|                                                                                                                                            |                       |
|                                                                                                                                            |                       |
|                                                                                                                                            |                       |
|                                                                                                                                            |                       |

| 070E  |
|-------|
| 070D, |
| No.   |
| Веаш  |

| 1dB                  |         |         |        |        |        |        |        |        |        |        |                                           |        |        |           |                |        |          |        |         |         |             |
|----------------------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|-------------------------------------------|--------|--------|-----------|----------------|--------|----------|--------|---------|---------|-------------|
| Heam No.             |         | 0.6405  | 0.0271 | 0.0297 | 0.0258 | 0.0766 | 0.0806 | 0.1086 | 0.1384 | 0.3-46 | 0.2934                                    | 0.3370 | 0.2421 | 0.2188    | 0.1380         | 0.3448 | 0.1257   | 0.1014 | 955001  | 6.0529  | 16, 57.7.24 |
| ΔĒ                   |         | 26.0    | ځړ. ن  | 97.0   | 134.0  | 64.0   | 126.0  | 320.0  | 638.0  | 8.7.0  | 183.0                                     | 378.0  | 95.0   | 107.0     | C . 69         | 127.0  | 202.5    | 0.48   | 0.00 i  | 1.134.0 | 30.0        |
| <del>44</del><br>Б   |         | 657.0   | 1715.0 | 3321.6 | 5253.0 | 0.009  |        | 0.9800 | 4383.0 | 583.0  |                                           |        | 442.0  |           | 279.0          | 0.886  | 1721.0   | 355.0  | 894.0   | 2592.0  | 342.0       |
| 护                    |         | 631.0   | 1669.0 | 3224.0 | 5119.0 | 556.0  | 1505.0 | 2766.0 | 4345.0 |        | 1117.0                                    | 1989.0 | 357.0  | 894.0     | 331.0          | 331.0  |          | 321.0  | 814.0   | 2462.0  | 312.0       |
| fn                   |         | 279.3   | 769.4  | 1509.0 | 2469.0 | 278.2  | 766.3  | 1503.0 | 2459.0 | 276.9  | 762.6                                     | 1496.0 | 276.0  | 760.1     | 274.8          | 757.1  | 1485.0   | 274.0  | 1 754.6 | 0.22.0  | 2-3-8       |
| ф<br>O               |         | 643.0   | 1695.0 | 3271.0 | 5186.0 | 576.0  | 1568.0 | 2963.0 | 4653.0 | 496.0  | 1300.0                                    | 2367.0 | 391.0  | 1001.0    | 351.0          | 886.0  | 1626.0   | 337.0  | 849.0   | 2536.0  | 326.0       |
|                      | oge     | 2       | c.     | ۲۳     | ı,     | 7      | ~      | •J'    | ın     | C-I    | 3                                         | 43     | C4     | m         | C ;            | m      | 4        | r:     | (1)     | ທ       | 61          |
| ប្ <sub>រ</sub><br>o | (Tions) | ι.<br>Ψ | 6.7    | Æ.     | 67     | 98     | တ<br>ဇ | ဗဗ     | დ<br>ლ | [<br>  | 1 × 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 ± 0 | [ · ]  | 1.51   | , _1<br>, | 10<br>[<br>r-! | 16.1   | 10 11 11 |        |         |         | -           |

| 070E  |
|-------|
| 070D, |
| No.   |
| Веаш  |

| 1/0D, 0/0E     | 1 <b>d</b> B               |                          |        |         |                    |                |        |              |        |   |  |  |  |  |  |  |
|----------------|----------------------------|--------------------------|--------|---------|--------------------|----------------|--------|--------------|--------|---|--|--|--|--|--|--|
| Beam No. U/UD, | ر<br>ي                     |                          | 0,0725 | 0.0414  | 0.0334             | 0.0945         | 0.0687 | 0.0399       | 0.0347 |   |  |  |  |  |  |  |
|                | ٥f                         |                          | 60.09  | 64.0    | 96.0               | 30.0           | 56.0   | 61.0         | 0.98   |   |  |  |  |  |  |  |
|                | 44<br>64                   |                          | 863.0  | 1573.0  | 2549.0             | 336.0          | 848.0  | 1559.0       | 2524.0 |   |  |  |  |  |  |  |
|                | $\mathcal{L}_{\mathbf{L}}$ |                          | 863.0  | 1.509.0 | 2453.0             | 306.0          | 792.0  | 1498.0       | 2438.0 |   |  |  |  |  |  |  |
|                | # <b>.</b>                 |                          | 751.5  | 1474.0  | 2412.0             | 271.7          | 748.4  | 1468.0       | 2402.0 |   |  |  |  |  |  |  |
|                | f,<br>C                    |                          | 828.0  | 1546.0  | 2502.0             | 319.0          | 817.0  | 1530.0       | 2482.0 |   |  |  |  |  |  |  |
|                |                            | (a)<br>(b)<br>(c)<br>(c) | . 1    | •.j-    | 1 .                | . 2            | 51     | • j-         | ir.    |   |  |  |  |  |  |  |
|                | 1°,                        |                          | : 1    | 12      | 15 a<br>1 a<br>1 a | :<br>:<br>:: 1 | 958    | \$ 100<br>01 | C (C)  | _ |  |  |  |  |  |  |

Page 2

And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t

1

althorate and a dis

÷

and an extension



|                                                                                                                                                                                                                                                                        | Test No. <u>80-2</u>                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Beam Nos. <u>080-1</u> and <u>080-2</u>                                                                                                                                                                                                                                | Date3/20/80                           |
| Damping Material <u>Soundfoil LT12 (Soundcoat)</u>                                                                                                                                                                                                                     |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
| Material Thickness 0.0259 cm Material Densit                                                                                                                                                                                                                           | v 1.095 - 7.55                        |
| Beam Thickness 0.2032 cm Beam Density 2                                                                                                                                                                                                                                | <b></b>                               |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                   | 4 C C                                 |
| Temperature Test Range: Between -59.4 oc and                                                                                                                                                                                                                           | 65.6                                  |
| Frequency Test Range: Between 10 Hz and                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |
| Loss Factor nn:                                                                                                                                                                                                                                                        |                                       |
| U                                                                                                                                                                                                                                                                      | 2                                     |
| Peak 100 Hz $n_D = \frac{1.010}{1.010}$ Temperature $\frac{-48.3}{20.1}$                                                                                                                                                                                               | <u>3_</u> °C                          |
| 1000 Hz % 1.010 Temperature -26.1                                                                                                                                                                                                                                      | 00                                    |
| Range 100 Hz                                                                                                                                                                                                                                                           |                                       |
| 1000 Hz <u>-42.8</u> °C <u>1.1</u> °C                                                                                                                                                                                                                                  |                                       |
| TO FROM MROM N ML A1 A2 A3 A4 -30.0 10.0000E+03 10.0000E+07 .275 1.2500E A+(LOG(FR)-LOG(FROL))/C LOG(ETA)=LOG(ETAFROL)+((5L+SH)A+(5L-SH)(1-SQRT(1+ TO ETAFROL SL SH FROL C B1 B2 B3 B4 B5 -30.0 1.010 .700 -1.250 2.0000E+03 1. LOG(FR)+LOG(F)-12(T-T0)/(525/1.8+T-T0) | 5/3(((S##A                            |
| Remarks:                                                                                                                                                                                                                                                               |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                                                                                                        |                                       |
|                                                                                                                                                                                                                                                                        |                                       |

| 080-2  |
|--------|
| 080-1, |
| 5      |
| Beam   |

|                  |      |        |         |             |         |         |                     |               |           |         |         |             |            |          |                |        |        |         | ·       |         |        |
|------------------|------|--------|---------|-------------|---------|---------|---------------------|---------------|-----------|---------|---------|-------------|------------|----------|----------------|--------|--------|---------|---------|---------|--------|
| 1dB              |      |        |         |             |         |         |                     |               |           |         |         | ×           |            |          |                |        |        |         |         |         |        |
| ່                |      | 9.00.0 | 0.00298 | 0.0029      | 0.0064  | 0.0194  | 0.0140              | 0.0230        | 0.0260    | 0.0418  | 0.0424  | 0.0403      | 0.1618     | 0.3395   | 0.4912         | 0.2006 | 0.2455 | 0.2598  | 0.1758  | 0.1843  | 0.1710 |
| Δ£               |      | 0.20   | 2.10    | 5.66        | 22.73   | 111.45  | 1.57                | 16.63         | 49.46     | 143.97  | 239.15  | 333.04      | 16.81      | 199.63   | 779.24         | 36.86  | 192.23 | 275.29  | 340.42  | 582.95  | 12.64  |
| 41<br>EK         |      | 332.04 | 705.45  | 1936.48     | 1550.81 | 5807.51 | 112.91              | 705.12        | 1928.93   | 3515.61 | 5759.81 | 8356.91     | 113.52     | 703.97   |                | 93.58  | 476.28 | 1203.42 | 2097.91 | 3427.94 | 82.14  |
| H<br>H           |      | 111.34 | 703.35  | 1930.82     | 3528.38 | 9015695 | 1.11.34             | 689.19        | 1879.45   | 3371.64 | 5520.66 | 8187.51     | 68.39      | 504.94   | 1196.77        | 76.72  | 374.05 | 928.13  | 1757.49 | 2844.39 | 69.50  |
| <b>پ</b> ر<br>تا |      |        | 325.55  | 908.18      | 1782.09 | 2952.93 |                     | 325.33        | 905.09    | 1776.05 | 2941.94 | 4412.72     |            | 324.23   | 902.32         |        | 323.02 | 1059:55 | 1763.96 | 2919,95 |        |
| ů<br>O           |      | 113.92 | 704.35  | 1933.95     | 3540.18 | 5756.66 | 112.16              | 696.94        | 1903.81   | 3444.88 | 5641.51 | 8265.01     | 102.89     | 536.16   | 1586.39        | 34.05  | 416.39 | 899.54  | 1936.75 | 3162.41 | 73.90  |
|                  | 9000 |        | 2       | 3           | 7       | 10      | ; ii                | 2             | Ο.        | 4       | را      | و           |            | 2        | <u></u>        | r-{    | 5      | ()      | -1      | ر.      |        |
| 1-4<br>-3        |      | 1      |         | • j.<br>( • | : S ( ) | 713<br> | 9 ·  <br>- 1<br>- 1 | 00<br>11<br>1 | [ -<br>-1 | 1       | ; ; -   | ; ~<br>• 3° | (2)<br>(1) | \$31<br> | 65<br>157<br>1 | ,      | c i    | - ;     |         |         | 2.6    |

| 380-2    |
|----------|
| 080-1,   |
| Seam No. |
| $\alpha$ |

| ıċв      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e<br>S   |                               | 0.1041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0613  | 0.0593                                                                                                                                                                                                                                                                              | 0.0316                                                                                                                                                                                                                                                                                                                                                                                              | 0.0443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.2152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.027]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0142                                                                  | 0.0118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Δ£       |                               | 101.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 112.81  | 179.04                                                                                                                                                                                                                                                                              | 231.64                                                                                                                                                                                                                                                                                                                                                                                              | 275.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 48.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 72.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 106.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.72                                                                   | 51.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| rt<br>Ut |                               | 1024.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1896.34 | 3110.63                                                                                                                                                                                                                                                                             | 4602.7]                                                                                                                                                                                                                                                                                                                                                                                             | 6342.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 368.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1825.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3001.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4464.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6187.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 350.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1395.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2957.66                                                                 | 86.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.21.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 332.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H<br>T   |                               | 922.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1783.53 | 2931.65                                                                                                                                                                                                                                                                             | 4371.07                                                                                                                                                                                                                                                                                                                                                                                             | 6066.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 339.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 914.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1776.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2329.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2370,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6581.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 328.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 903.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1765.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2915.94                                                                 | 4354.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66.63.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 322.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 894.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| f<br>g   |                               | 386.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17:7.91 | 2969.96                                                                                                                                                                                                                                                                             | 4367.93                                                                                                                                                                                                                                                                                                                                                                                             | 61.19.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 319.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30.568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1751.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2897.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4353.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6098.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 319.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 82.088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1744.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.7.932                                                                | 4.36.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66.77.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$6.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 44       |                               | 55.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1839.97 | 3020.08                                                                                                                                                                                                                                                                             | 4490.84                                                                                                                                                                                                                                                                                                                                                                                             | 6220.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 353.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33.626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1661.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2966.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4416.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6334.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 539.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 926.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1780.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2936.99                                                                 | 4379.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60.92.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                               | ,••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7       |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ٧.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| fi.      |                               | <i>3</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.      | 0.7                                                                                                                                                                                                                                                                                 | 7.5                                                                                                                                                                                                                                                                                                                                                                                                 | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ! .                                                                     | · ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | fc fn f <sub>L</sub> fg Af ns | For the first of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of the line of t | 25      | 25         f.         f.         f.         f.         f.         ns           25         1524.3         1525.85         1624.44         101.59         0.1041           26         2         1839.97         1777.91         1783.53         1896.34         112.81         0.0613 | 26         fn         fL         fR         Af         ns           26         3   375.9c         386.46         922.85         1024.44         101.59         0.1041           2c         4   1339.97         1777.91         1783.53         1896.34         112.81         0.0613           3c         4   3020.09         2969.96         3931.65         3110.69         179.04         0.0593 | 25         for         fr         fr         fr         ns           26         1524.4         101.59         0.1041           26         2         1896.46         922.85         1624.44         101.59         0.1041           26         2         177.91         1783.53         1896.34         112.81         0.0613           26         3         13020.09         2969.96         3931.65         3110.69         179.04         0.0593           26         4490.84         4367.93         4371.07         4602.71         231.64         0.0516 | 25         formation         fr         fr         fr         fr         ns           26         3         375.96         886.46         922.85         1024.44         101.59         0.1041           26         3         177.91         1783.53         1896.34         112.81         0.0613           26         4         177.91         1783.53         1896.34         112.81         0.0613           26         3         177.91         1783.53         1896.34         112.81         0.0613           26         3         13020.09         2969.96         2931.65         3110.69         179.04         0.0593           26         44490.84         4367.93         4371.07         4602.71         231.64         0.0516           27         5220.46         5119.33         6066.76         6342.46         275.70         0.0443 | 25         £         f         f         f         n         n           26         3         350.30         386.46         922.85         1024.44         101.59         0.1041           26         3         175.30         386.46         922.85         1024.44         101.59         0.1041           26         4         177.91         1783.53         1896.34         112.81         0.0613           26         5         177.91         1783.53         1896.34         179.04         0.0593           26         6         4490.84         4367.93         4371.07         4602.71         231.64         0.0516           27         6         6119.33         6066.76         6342.46         275.70         0.0443           27         65.30         66.21         74.26         14.05         0.2152 | 25         fo         f         f         f         h         f         n         n           26         3         155.3         386.46         922.85         1624.44         101.59         0.1041           26         3         175.9         177.9         1783.53         1896.34         112.8         0.0613           26         4         177.9         1783.53         1896.34         112.8         0.0613           26         5         177.9         1783.53         1896.34         179.04         0.0593           26         6         4490.84         4367.93         4371.07         4602.71         231.64         0.0516           27         6         6119.33         6066.76         6342.46         275.70         0.0443           28         1         66.21         74.26         14.05         0.2152           28         253.32         319.27         339.92         368.51         29.49         6.0835 | 25         formation         f.         f.         f.         f.         f.         f.         ns           26         3         350.36         386.46         922.85         1024.44         101.59         0.1041           26         4         1757.91         1763.53         1896.34         112.81         0.0613           26         4         1757.91         1763.53         1896.34         112.81         0.0613           26         4         1757.91         1763.65         3110.69         179.04         0.0593           26         4         4490.84         4367.93         4371.07         4602.71         231.64         0.0516           27         6         4490.84         4367.93         4371.07         4602.71         231.64         0.0516           26         3         4367.93         4371.07         4602.71         231.64         0.0643           27         6         66.21         74.26         14.05         0.0443           21         65.30         359.32         369.51         29.49         0.0835           23         23         359.35         48.47         0.0516 | F         f         f         f         f         n         n           10.1.50         386.46         922.85         1024.44         101.59         0.1041           26         3         177.91         1783.53         1896.34         112.81         0.0613           26         4         1879.97         177.91         1783.53         1896.34         101.59         0.1041           26         5         177.91         1783.53         1896.34         112.81         0.0613           26         5         177.91         1783.53         110.59         179.04         0.0593           26         6         14490.84         4367.93         4371.07         4602.71         231.64         0.0516           26         7         6220.46         6119.33         6066.76         6342.46         275.70         0.0443           21         6         61.20         339.02         368.51         29.49         6.0835           22         230.85         993.06         914.88         963.35         48.47         0.0516           23         4         1801.03         1751.26         1776.38         1825.12         48.74         0.0271 <td>25         fo         f         f         f         f         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h</td> <td>25         f.         f.         f.         f.         f.         ns           26         3         386.46         922.85         1024.44         101.59         0.1041           26         3         13520.95         386.46         922.85         1024.44         101.59         0.1041           26         4         1359.97         1777.91         1783.53         1896.34         112.81         0.0613           26         4         1359.97         1777.91         1783.53         1896.34         101.59         0.1041           26         4         1359.95         2911.65         3110.69         179.04         0.0516           26         4         4367.93         4371.07         4602.71         231.64         0.0516           27         6         1490.84         4367.93         606.76         6342.46         275.70         0.0443           27         6         1299.35         606.21         74.26         14.05         0.2152           23         3         139.27         339.02         369.35         48.47         0.0516           23         3         1401.03         1751.26         176.33         1825.12         48.74<td>25         £         f         f         f         f         h         n         n           70.1.304         1024.36         886.46         922.85         1024.44         101.59         0.1041           26         1         175.96         886.46         922.85         1024.44         101.59         0.1041           26         1         177.91         1783.53         1896.34         100.613         0.0613           26         1         1777.91         1783.53         1896.34         179.04         0.0613           26         1         1         1777.93         4371.07         4602.71         231.64         0.0516           26         1         1         1         1         1         1         0.0593           26         1         1         1         1         1         0.0593         0.0593           27         1         1         1         1         1         1         1         0.0593           28         1         1         1         1         1         1         1         0.0593           28         1         1         1         1         1         1</td><td>\$\frac{\text{f}}{\text{c}}\$         \$\frac{\text{f}}{\text{b}}\$         \$\frac{\text{f}}{\text{c}}\$         \$\text{f}}{\text{c}}\$         \$\text{c}}{\text{c}}\$         \$\text{f}}{\text{c}}\$         \$\text{c}}{\text{c}}\$         \$\text{c}}{\text{c}}{\text{c}}\$         \$\text{c}}{\text{c}}{\text{c}}\$</td><td>15.         £         f         f         f         h         h         ns         ns</td><td>  Factor   Fig.   Fig.   Fig.   Af   hg   hg   hg   hg   hg   hg   hg   h</td><td>\$\frac{1}{2}\$         \$\frac{1}{2}\$         \$1</td><td>\$\frac{1}{2}\$         \$\frac{1}{2}\$         \$1</td><td>2         fn         fL         fn         fn         ns           2         1 270.96         886.46         922.85         1004.44         101.59         0.1041           2         1 1829.97         1777.91         1783.53         1896.34         112.81         0.0613           2         1 1829.97         1777.91         1783.53         1896.34         101.59         0.1041           2         1 1829.97         1777.91         1783.53         1896.34         112.81         0.0613           2         1 1829.97         1 27.93         4 371.07         4602.71         231.64         0.0516           2         1 1829.97         4 367.93         4 371.07         4602.71         231.64         0.0516           3         1 1829.97         4 360.20         231.65         360.21         74.26         14.05         0.0516           3         1 1801.03         1751.26         1776.38         1827.12         48.74         0.0516           4         1 1801.03         1751.26         1776.38         1827.12         0.0244         0.0516           1         4 1801.03         1751.26         1776.38         1827.12         0.0236         0.0144      <t< td=""><td>\$\frac{\text{f}}{\text{c}}\$         \$\frac{\text{f}}{\text{b}}\$         \$\frac{\text{f}}{\text{c}}\$         \$\text{d}\$         \$\text{d}\$<!--</td--></td></t<></td></td> | 25         fo         f         f         f         f         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h         h | 25         f.         f.         f.         f.         f.         ns           26         3         386.46         922.85         1024.44         101.59         0.1041           26         3         13520.95         386.46         922.85         1024.44         101.59         0.1041           26         4         1359.97         1777.91         1783.53         1896.34         112.81         0.0613           26         4         1359.97         1777.91         1783.53         1896.34         101.59         0.1041           26         4         1359.95         2911.65         3110.69         179.04         0.0516           26         4         4367.93         4371.07         4602.71         231.64         0.0516           27         6         1490.84         4367.93         606.76         6342.46         275.70         0.0443           27         6         1299.35         606.21         74.26         14.05         0.2152           23         3         139.27         339.02         369.35         48.47         0.0516           23         3         1401.03         1751.26         176.33         1825.12         48.74 <td>25         £         f         f         f         f         h         n         n           70.1.304         1024.36         886.46         922.85         1024.44         101.59         0.1041           26         1         175.96         886.46         922.85         1024.44         101.59         0.1041           26         1         177.91         1783.53         1896.34         100.613         0.0613           26         1         1777.91         1783.53         1896.34         179.04         0.0613           26         1         1         1777.93         4371.07         4602.71         231.64         0.0516           26         1         1         1         1         1         1         0.0593           26         1         1         1         1         1         0.0593         0.0593           27         1         1         1         1         1         1         1         0.0593           28         1         1         1         1         1         1         1         0.0593           28         1         1         1         1         1         1</td> <td>\$\frac{\text{f}}{\text{c}}\$         \$\frac{\text{f}}{\text{b}}\$         \$\frac{\text{f}}{\text{c}}\$         \$\text{f}}{\text{c}}\$         \$\text{c}}{\text{c}}\$         \$\text{f}}{\text{c}}\$         \$\text{c}}{\text{c}}\$         \$\text{c}}{\text{c}}{\text{c}}\$         \$\text{c}}{\text{c}}{\text{c}}\$</td> <td>15.         £         f         f         f         h         h         ns         ns</td> <td>  Factor   Fig.   Fig.   Fig.   Af   hg   hg   hg   hg   hg   hg   hg   h</td> <td>\$\frac{1}{2}\$         \$\frac{1}{2}\$         \$1</td> <td>\$\frac{1}{2}\$         \$\frac{1}{2}\$         \$1</td> <td>2         fn         fL         fn         fn         ns           2         1 270.96         886.46         922.85         1004.44         101.59         0.1041           2         1 1829.97         1777.91         1783.53         1896.34         112.81         0.0613           2         1 1829.97         1777.91         1783.53         1896.34         101.59         0.1041           2         1 1829.97         1777.91         1783.53         1896.34         112.81         0.0613           2         1 1829.97         1 27.93         4 371.07         4602.71         231.64         0.0516           2         1 1829.97         4 367.93         4 371.07         4602.71         231.64         0.0516           3         1 1829.97         4 360.20         231.65         360.21         74.26         14.05         0.0516           3         1 1801.03         1751.26         1776.38         1827.12         48.74         0.0516           4         1 1801.03         1751.26         1776.38         1827.12         0.0244         0.0516           1         4 1801.03         1751.26         1776.38         1827.12         0.0236         0.0144      <t< td=""><td>\$\frac{\text{f}}{\text{c}}\$         \$\frac{\text{f}}{\text{b}}\$         \$\frac{\text{f}}{\text{c}}\$         \$\text{d}\$         \$\text{d}\$<!--</td--></td></t<></td> | 25         £         f         f         f         f         h         n         n           70.1.304         1024.36         886.46         922.85         1024.44         101.59         0.1041           26         1         175.96         886.46         922.85         1024.44         101.59         0.1041           26         1         177.91         1783.53         1896.34         100.613         0.0613           26         1         1777.91         1783.53         1896.34         179.04         0.0613           26         1         1         1777.93         4371.07         4602.71         231.64         0.0516           26         1         1         1         1         1         1         0.0593           26         1         1         1         1         1         0.0593         0.0593           27         1         1         1         1         1         1         1         0.0593           28         1         1         1         1         1         1         1         0.0593           28         1         1         1         1         1         1 | \$\frac{\text{f}}{\text{c}}\$         \$\frac{\text{f}}{\text{b}}\$         \$\frac{\text{f}}{\text{c}}\$         \$\text{f}}{\text{c}}\$         \$\text{c}}{\text{c}}\$         \$\text{f}}{\text{c}}\$         \$\text{c}}{\text{c}}\$         \$\text{c}}{\text{c}}{\text{c}}\$         \$\text{c}}{\text{c}}{\text{c}}\$ | 15.         £         f         f         f         h         h         ns         ns | Factor   Fig.   Fig.   Fig.   Af   hg   hg   hg   hg   hg   hg   hg   h | \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$1 | \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$\frac{1}{2}\$         \$1 | 2         fn         fL         fn         fn         ns           2         1 270.96         886.46         922.85         1004.44         101.59         0.1041           2         1 1829.97         1777.91         1783.53         1896.34         112.81         0.0613           2         1 1829.97         1777.91         1783.53         1896.34         101.59         0.1041           2         1 1829.97         1777.91         1783.53         1896.34         112.81         0.0613           2         1 1829.97         1 27.93         4 371.07         4602.71         231.64         0.0516           2         1 1829.97         4 367.93         4 371.07         4602.71         231.64         0.0516           3         1 1829.97         4 360.20         231.65         360.21         74.26         14.05         0.0516           3         1 1801.03         1751.26         1776.38         1827.12         48.74         0.0516           4         1 1801.03         1751.26         1776.38         1827.12         0.0244         0.0516           1         4 1801.03         1751.26         1776.38         1827.12         0.0236         0.0144 <t< td=""><td>\$\frac{\text{f}}{\text{c}}\$         \$\frac{\text{f}}{\text{b}}\$         \$\frac{\text{f}}{\text{c}}\$         \$\text{d}\$         \$\text{d}\$<!--</td--></td></t<> | \$\frac{\text{f}}{\text{c}}\$         \$\frac{\text{f}}{\text{b}}\$         \$\frac{\text{f}}{\text{c}}\$         \$\text{d}\$         \$\text{d}\$ </td |

| 080-2   |
|---------|
| ) [-060 |
| No.     |
| ear     |

|            |      |         |         |              |         |        | ,      |         |         |             |          |          |         |          | ·       |                                         | <br> | , | , |  |
|------------|------|---------|---------|--------------|---------|--------|--------|---------|---------|-------------|----------|----------|---------|----------|---------|-----------------------------------------|------|---|---|--|
| 1 ÇE       |      |         |         |              |         |        |        |         |         |             |          |          |         |          |         |                                         |      |   |   |  |
| E<br>ທ     |      | 0.0113  | 0.070   | 6.6072       | 0.0064  | 6.0283 | 0.0.56 | \$360°b | 690010  | 0.0056      | 6.6056   |          | 5.00.0  | 3,1,5,0  | 8:70.   | 1969.6                                  |      |   |   |  |
| <b>1</b> 7 |      | 1000    | 26.58   | 31.46        | 25.00   | 9.40   | 30.55  | 71.     | 13.35   | 24.23       | 33.80    | 6.37     | 9.68    | 16.1     |         | 72.20                                   |      | - |   |  |
| #4<br>EX   |      | 771.84  | 2924.84 | 4362.62      | 6071.26 | 329.51 | J8-806 | 1759.48 | 2307.16 | \$359.08    | 4.043.46 | 323.93   | 86.0.04 | 1766.22  | 7387.61 | 43:2:31                                 |      |   |   |  |
| ᆈ          |      | 1751 38 | 2898.26 | 7 ( • EO ) 4 | 6032.51 | 320.11 | 889.80 | 1744.75 | 2387.27 | 4314.87     | 6009.66  | 317.59   | 96.588  | 111 9871 | 63.61-  | 4295.07                                 |      |   |   |  |
| д<br>Н     |      | 1737,36 | 2871.99 | 4-18.67      | 6052.61 | 335.64 | 883.19 | 1731.32 | 2361.99 | 4302.75     | 6329.67  | 314.42   | 879.96  | 1724.06  | 2850.66 | 20 mm 2 mm                              |      |   |   |  |
| υ<br>U     |      | 3762.34 | 2911.25 | 4345.85      | 6051.46 | 324.80 | 396.80 | 1752.02 | 2897.03 | 4327.11     | 6025.36  | 326.72   | 889.41  | 11.03    | 3880.46 | 4300.35                                 |      |   | - |  |
|            | 0.00 | Ą       | S       | Ø            | 7       | 2      | ,55    | 77      | 5       | 9           | 7        | 2        | رب      | 4        | ji Y    | ζ                                       |      |   |   |  |
|            |      | 7.02    | 102     | 162          | 263     | 10     | + p    | : ? T   | 57.     | • #<br>: •} | \$ 7 T   | 1<br>1-3 | ,       |          | .,      | • • • • • • • • • • • • • • • • • • • • |      |   |   |  |
|            |      |         |         |              |         |        |        |         |         |             |          |          |         |          |         | ~                                       | <br> |   |   |  |

All the transfer of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second

in the facility of the

L. Milacialli mana



|                                                                                                                                                                                                                                                                                                                         | Cest           | No.              | 79-2     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|----------|
| Beam Nos. 060C and 060D                                                                                                                                                                                                                                                                                                 | Date           | 5/               | 79       |
| Damping Material 3M ISD 110                                                                                                                                                                                                                                                                                             |                |                  |          |
|                                                                                                                                                                                                                                                                                                                         |                |                  |          |
| Material Thickness 0.0127 cm Material Density                                                                                                                                                                                                                                                                           | 0.90           | <u>.5g</u> ,     | /cc      |
| Beam Thickness <u>0.1524</u> cm Beam Density <u>2.7</u>                                                                                                                                                                                                                                                                 | 9 <u>5</u> c   | /cc              |          |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                                                                    |                |                  |          |
| Temperature Test Range: Between $\underline{-17.8}$ °C and $\underline{1}$                                                                                                                                                                                                                                              | 21.1           | °C               |          |
| Frequency Test Range: Between 10 Hz and 1                                                                                                                                                                                                                                                                               | 0 K            | <sup>1</sup> . 2 |          |
| Less Factor n <sub>D</sub> :                                                                                                                                                                                                                                                                                            |                |                  |          |
| Peak 100 Hz $\eta_{\overline{D}}$ 1.14 Temperature 43.5                                                                                                                                                                                                                                                                 | °C             |                  |          |
| 1000 Hz 1 1.14 Temperature 60.0                                                                                                                                                                                                                                                                                         | °C             |                  |          |
| Range 100 Hz 18.3 °C 82.2 °C                                                                                                                                                                                                                                                                                            |                |                  |          |
| 1000 Hz 29.4 °C 110.0 °C                                                                                                                                                                                                                                                                                                |                |                  |          |
| LOG(M)*LOG(ML)+(2LOG(MROM/NL))/(1+(FROM/FR)**N) T0 FROM MROM N ML A1 A2 A3 A4 70.0 5.0000E+03 2.0000E+06 .350 5.5000E+04 A-(LOG(FR)-LOG(FROL))/C LOG(ETA)*LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-SQRT(1+A** T0 ETAFROL 5L SH FROL C B1 B2 B3 B4 B5 70.0 1.300 .350400 2.0000E+03 2.000 LOG(FR)*LOG(F)-12(T-T0)/(525/1.8+T-T0) | <b>3</b> )))C/ |                  |          |
| Remarks: Composite structures made with this ma                                                                                                                                                                                                                                                                         | teri           | al sh            | ould be  |
| heat-soaked between 51.9°C and 65.6°C for at lea                                                                                                                                                                                                                                                                        | st o           | ne ho            | urs to   |
| insure good adhesion.                                                                                                                                                                                                                                                                                                   |                |                  |          |
| Thermogravitational analysis (TGA) rev                                                                                                                                                                                                                                                                                  | cale           | d sic            | nificant |
| decomposition beginning at 240°C.                                                                                                                                                                                                                                                                                       |                |                  |          |
|                                                                                                                                                                                                                                                                                                                         |                |                  |          |
|                                                                                                                                                                                                                                                                                                                         |                |                  |          |
|                                                                                                                                                                                                                                                                                                                         |                |                  |          |
|                                                                                                                                                                                                                                                                                                                         | <b></b>        | - <u></u>        |          |
|                                                                                                                                                                                                                                                                                                                         |                |                  |          |

| 1d3    |       |        |         |         |        |         |         |        |          |         |        |         |        |         |        |         |         |          |        |         |        |
|--------|-------|--------|---------|---------|--------|---------|---------|--------|----------|---------|--------|---------|--------|---------|--------|---------|---------|----------|--------|---------|--------|
| 1d3    |       |        |         |         | _      |         |         | -      |          |         |        | -       |        |         |        | _       |         |          | _      |         | _      |
| ر<br>د |       | 0.0097 | 0.0096  | 0.0161  | 0.0205 | 0.0208  | 0.0315  | 0.0264 | 0.0538   | 0.0824  | 0.0778 | 0.1615  | 0.2756 | 0.2391  | 0.3285 | 0.2985  | 0.2006  | 0.3476   | 0.3036 | 0.2084  | 0.2185 |
| ₹7     |       | 4.90   | 13.00   | 40.20   | 10.20  | 27.60   | 76.00   | 12.80  | 68.40    | 184.10  | 34.76  | 189.30  | 110.20 | 239.20  | 123.90 | 280.39  | 325.00  | 108.20   | 243.40 | 302.10  | 61.00  |
| f<br>R |       | 507.80 | 1364.90 | 2508.30 | 502.20 | 1344.50 | 2451.00 | 132.30 | 1303.30  | 2342.60 | 461.30 | 1254.20 | 461.70 | 1201.40 | 448.10 | 1083.20 | 1762.00 | 379.60   | 932.20 | 1580.10 | 110.80 |
| f<br>L |       | 502.90 | 1351.90 | 2368.10 | 492.00 | 1316.90 | 2375.99 | 479.50 | 1234.90  | 2158.50 | 426.60 | 1064.90 | 351.50 | 8£2.20  | 324.20 | 802.90  | 1437.00 | 273.40   | 03.889 | 1287.00 | 249,80 |
| r<br>u |       | 246.00 | 683.00  | 1337.80 | 246.90 | 686.40  | 1342.80 | 244.03 | 678.35   | 1327.50 | 243.14 | 676.29  | 242.15 | 673.73  | 241.82 | 673.11  | 1315.40 | 241:05   | 56.079 | 1311.80 | 240.30 |
| f o    |       | 505.60 | 1558.80 | 2489.20 | 496.80 | 1330.10 | 2413.30 | 485.20 | 1271.90  | 2234.80 | 445.90 | 1172.50 | 399.90 | 1000.60 | 377.20 | 938.90  | 1620.10 | 311.39   | 801.60 | 1449.90 | 2-0.20 |
|        | :icde | 2      | 3       | 4       | 2      | 3       | 7       | 2      | <u>.</u> | 4       | 2      | 3       | 2      | m       | 7      | т       | ġ       | 2        | ()     | 4       | 2      |
| ი<br>რ | Temp. | 7      | 1       | ત       | 2.5    | 2.5     | 25      | 5.0    | 50       | 5.0     | 7.5    | 75      | 100    | 100     | 112    | 112     | 1.2     | [-<br> - | 137    | 137     | 152    |

| 060D  |  |
|-------|--|
| 060C, |  |
| No.   |  |
| Beam  |  |

| 060C, 060I | 1dB      |       |        |         |        |        |         |        |        |         |        |        |         |        |        |         |  |  |  |
|------------|----------|-------|--------|---------|--------|--------|---------|--------|--------|---------|--------|--------|---------|--------|--------|---------|--|--|--|
| Beam No.   | ر<br>د   |       | 0.1773 | 0.0190  | 0.1486 | 0.1124 | 0.0661  | 0.1054 | 0.0722 | 0.0422  | 0.0614 | 0.0408 | 0.0223  | 0.0382 | 0.0260 | 0.0133  |  |  |  |
| ,          | Δ        |       | 128.20 | 148.50  | 39.20  | 78.30  | 88.30   | 26.90  | 49.60  | 55.70   | 15.20  | 27.50  | 29.10   | 9.30   | 17.30  | 17.20   |  |  |  |
| •          | f<br>R   |       | 792.10 | 1435.90 | 284.30 | 09.687 | 1379.20 | 270.10 | 711.80 | 1347.30 | 255.30 | 688.10 | 1317.80 | 248.10 | 675.20 | 1301.20 |  |  |  |
| •          | T<br>L   |       | 663.90 | 1287.40 | 245.10 | 661.30 | 1290.90 | 243.20 | 662.20 | 1291.60 | 240.10 | 660.60 | 1288.70 | 238.80 | 657.90 | 1284.00 |  |  |  |
|            | f<br>u   |       | 669.10 | 1310.58 | 239.51 | 671.57 | 1305.14 | 238.30 | 664.48 | 1299.70 | 236.86 | 661.70 | 1294.90 | 235.76 | 658.61 | 1288.30 |  |  |  |
| ·          | <b>,</b> |       | 723.00 | 1362.60 | 263.80 | 696.50 | 1334.90 | 255.30 | 686.90 | 1320.60 | 247.40 | 674.70 | 1304.00 | 243.50 | 666.60 | 1292.10 |  |  |  |
|            |          | Mode  | 3      | 4       | 2      | 3      | 4       | 2      | 3      | 4       | 2      | 3      | 4       | 2      | ۳      | 4       |  |  |  |
| Ç          | ,<br>,,, | Temb. | 152    | 152     | 175    | 175    | 175     | 200    | 200    | 200     | 225    | 225    | 225     | 250    | 250    | 250     |  |  |  |

```
COMPLEX MODE  

1. N. ATARLE  

2. ATARLE  

3. ATARLE  

4. ATARLE  

4. ATARLE  

4. ATARLE  

4. ATARLE  

4. ATARLE  

4. ATARLE  

4. ATARLE  

4. ATARLE  

4. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

6. ATARLE  

                                                                                                                                                                                                                                                                                     \frac{1}{4} ชั้น นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้ นักลู้
                                                                                                                                                                                                                                  BEAM FREG.
                                                                                                                                                                                                                    10.55 F POST TE TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO
                                                                                                                                                                                                                              1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.055

1.
EXPERIMENTAL CORE : 71
MATERIAL : 34: 1SD 110
DATA SOURCES
MANUFACTURER : 14
AFRIL : UDRI - GET, RLR
OTHER : 14
                                                                                                                                                                                                                                            ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULUS
ACCULU
                                                                                                                                                                                                                                                                                                                <u>ჃႪႽჾႲჇႼჿჅႺჇჇჇႣჇჾႽჇჇჅჅႺჇჃႦႷႵႺჇႼႽჅჅჅჃႣႽႵႲがに</u>
ႲჇႼႡႲႮႲႲႮჇჇჇჇჇჇჇჇჇჇჇჇ
```



|                                                                                                                                                                                                                                         | Test No. 79-3      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Beam Nos. 060C and 060D                                                                                                                                                                                                                 | Date <u>5/79</u>   |
| Damping Material 3M ISD 112                                                                                                                                                                                                             |                    |
|                                                                                                                                                                                                                                         |                    |
| Material Thickness 0.0127 cm Material Densi                                                                                                                                                                                             | ty 0.965 g/cc      |
| Beam Thickness 0.1524 cm Beam Density                                                                                                                                                                                                   |                    |
| Beam Length 17.78 cm                                                                                                                                                                                                                    |                    |
| Temperature Test Range: Between <u>-31.7</u> ∘ <sub>C</sub> an                                                                                                                                                                          | a 93.3 °c          |
| Frequency Test Range: Between 10 Hz and                                                                                                                                                                                                 | 10_KHz             |
| Loss Factor r <sub>D</sub> :                                                                                                                                                                                                            |                    |
| Peak 100 Hz n <sub>D</sub> 1.08 Temperature 7.                                                                                                                                                                                          | 2 °C               |
| 1000 Hz 10 1.08 Temperature 29.                                                                                                                                                                                                         |                    |
| Range 100 Hz -12.2 °C 35.0 °C                                                                                                                                                                                                           |                    |
| 1000 Hz 4.4 °C 76.7 °C                                                                                                                                                                                                                  |                    |
|                                                                                                                                                                                                                                         |                    |
| TO FROM MROM N M  40.0 2.0000E+04 4.7500E+06 .275 6.00  A-(LOG(FR)-LOG(FROL))/C  LOG(ETA)=LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-SQRT  TO ETAFROL SL SH FROL  B1 B2 B3  40.0 1.080 .458550 5.0000E+03  LOG(FR)=LOG(F)-12(T-T0)/(525/1.8+T-T0) | (1+4**21))6/2      |
| Remarks: Thermogravitational (TGA) analysis                                                                                                                                                                                             |                    |
| revealed significant decomposition of this m                                                                                                                                                                                            | natorial beginning |
| at 250°C.                                                                                                                                                                                                                               |                    |
|                                                                                                                                                                                                                                         |                    |
|                                                                                                                                                                                                                                         |                    |
|                                                                                                                                                                                                                                         |                    |
|                                                                                                                                                                                                                                         |                    |
|                                                                                                                                                                                                                                         |                    |
|                                                                                                                                                                                                                                         |                    |
|                                                                                                                                                                                                                                         |                    |
|                                                                                                                                                                                                                                         |                    |

| 0600    |  |
|---------|--|
| 0600, 0 |  |
| NO.     |  |
| Веаш    |  |

| 148              |       |         |          |         |        |         |         |        |         |         |        |         |        |         |        |         |        |        |         |        |         |
|------------------|-------|---------|----------|---------|--------|---------|---------|--------|---------|---------|--------|---------|--------|---------|--------|---------|--------|--------|---------|--------|---------|
| e<br>S           |       | 0.00953 | 0.01226  | 0.01683 | 0.0271 | 0.0394  | 0.0483  | 0.1101 | 0.1073  | 0.1422  | 0.2197 | 0.2358  | 0.2863 | 0.3143  | 0.3207 | 0.3152  | 0.3161 | 0.2671 | 0.2475  | 0.2779 | 0.2359  |
| Δ£               |       | 4.80    | 16.70    | 43.10   | 13.40  | 52.20   | 118.90  | 51.70  | 131.30  | 320.20  | 93.80  | 257.60  | 115.00 | 316.10  | 113.00 | 281.50  | 99.60  | 213.00 | 368.40  | 84.60  | 184.50  |
| ${\sf f}_{ m R}$ |       | 505.80  | 1.370.20 | 2581.90 | 501.50 | 1348.40 | 2522.90 | 496.60 | 1305.10 | 2405.80 | 480.80 | 1215.40 | 465.80 | 1161.00 | 420.30 | 1031.90 | 372.80 | 909.30 | 1642.80 | 353.00 | 876.50  |
| f.               |       | 501.00  | 1353.50  | 2538.80 | 488.10 | 1296.20 | 2404.00 | 444.90 | 1173.80 | 2085.60 | 387.00 | 957.80  | 350.80 | 844.90  | 307.39 | 750.00  | 273.20 | 696.30 | 1274.40 | 268.40 | 692.00  |
| f<br>n           |       | 247.00  | 668.38   | 1343.20 | 246.00 | 683.60  | 1337.80 | 246.90 | 686.40  | 1343.80 | 244.36 | 679.90  | 244.03 | 678.36  | 243.48 | 676.82  | 243.14 | 676.20 | 1323.80 | 243.03 | 96.479  |
| f <sub>o</sub>   |       | 503.50  | 1362.00  | 2560.90 | 494.70 | 1323.30 | 2463.70 | 469.70 | 1223.20 | 2251.20 | 426.90 | 1092.20 | 401.60 | 1005.80 | 352.40 | 894.30  | 315.10 | 797.40 | 1488.20 | 304.40 | 782.10  |
|                  | :lode | 2       | 3        | 4       | 2      | 3       | 4       | 2      | ~       | 4       | 2      | ~       | 2      | ~       | 2      | دب      | 2      | m      | 4       | ۲1     | 3       |
| 0<br>[14         | Temp. | -25     | -25      | -25     | (1)    | -2      | -2      | 22     | 22      | 22      | 40     | 40      | 20     | 5.0     | 65     | 59      | 92     | 26     | 92      | 8.5    | α<br>.c |

| 060c, 060D<br>1dB |      |         |        |        |         |        |        |         |        |        |         |        |        |         |        |        |         |  |  |
|-------------------|------|---------|--------|--------|---------|--------|--------|---------|--------|--------|---------|--------|--------|---------|--------|--------|---------|--|--|
| Beam No. 061      |      | 0.2058  | 0.110  | 0.1598 | 0.1252  | 0.1419 | 0 1057 | 0.0709  | 0.0794 | 0.0686 | 0.0363  | 0.0518 | 0.0296 | 0.0220  | 0.0345 | 0.0186 | 0.0138  |  |  |
| ıδ£               |      | 306.80  | 60.00  | 124.60 | 175.80  | 37.40  | 74.90  | 97.20   | 20.20  | 46.60  | 48.80   | 12.90  | 20.00  | 29.30   | 8.50   | 12.50  | 18.30   |  |  |
| $f_{ m R}$        |      | 1603.60 | 314.90 | 796.10 | 1489.80 | 285.30 | 744.40 | 1416.60 | 264.40 | 712.10 | 1369.00 | 255.70 | 687.00 | 1345.70 | 250.30 | 679.30 | 1330,70 |  |  |
| $^{ m f}_{ m L}$  |      | 1296.80 | 254.90 | 671.50 | 1314.00 | 247.90 | 669.50 | 1319.40 | 244.20 | 665.50 | 1319.20 | 2.6.00 | 667.00 | 1316.40 | 241.80 | 666.80 | 13,2.40 |  |  |
| $f_{\mathbf{n}}$  |      | 1321.50 | 242.15 | 673.73 | 319.04  | 241.27 | 671.57 | 1314.20 | 240.39 | 669.10 | 1210.58 | 255.51 | 71.57  | 1305.14 | 238.30 | 664.48 | 1299.70 |  |  |
| £                 |      | 1471.10 | 284.30 | 733.50 | 1404.10 | 263.50 | 708.90 | 1369.90 | 254.30 | 678.80 | 1344.80 | 249.00 | 676.40 | 1331.50 | 246.00 | 673.30 | 1321.40 |  |  |
|                   | Hode | 4       | 2      | 3      | 4       | 2      | Э      | 4       | 2      | ω      | 4       | 2      | 3      | 4       | 2      | ~      | 4       |  |  |

ο£

 Temp. 

| COMPLEX MOD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | 3.466596+06    | 5.59116E+06 | 7.75496E+06 | 8.96264E+86 | 1.251365+07 | 9.99797E+86 | 1.28913E+07 | 1.26361E+07 | 7.18963E+06    | 2.34724E+87 | 8.12493€+06 | 1.07806E+06 | 1.74614E+06 | 2.66539E+06 | 4.89866E+05 | 8.35586E+05 | 8.28985E+05 | 1.44440E+06 | 2.16745€+06 | 1.81381E+06 | 3.23130E+06 | 4.53894E+06 | 7.09189E+06 | 2.532836+05 | 4.65722E+05 | 5.85977E+05 | 1.264865+05 | 2.63765E+05 | 7.736476+84 | 1.12079€+05 | 1.672846+05 | 4.985216+04 | 7.02879E+04 | 1.02919E+05 | 2.83543E+05 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| FEAM FREG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74     | 244.0          | 678.4       | 246.9       | 686.4       | 1343.8      | 246.0       | 883.6       | 1337.8      | 247.0          | 568.4       | 1343.2      | 243.1       | 676.2       | 1323.8      | 240.1       | 673.7       | 243.8       | 675.0       | 1321.5      | 243.5       | 8.929       | 244.4       | 679.9       | 241.3       | 671.6       | 1314.2      | 240.4       | 1.699       | 239.5       | 671.6       | 1305.1      | 238.3       | 664.5       | 1299.7      | 1310.6      |
| COMPOSITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | . 2863         | .3143       | .1101       | . 1073      | . 1422      | . 0271      | .0394       | .0483       | . <b>66</b> 95 | . 8123      | .0168       | .3161       | .2671       | .2475       | .2119       | . 1698      | 9775.       | . 2359      | . 2035      | .3207       | .3152       | .2197       | . 2358      | .1419       | .1057       | 6929.       | +620°       | .0686       | .0518       | . 0296      | .6226       | .0345       | . 0186      | .0138       | . 0363      |
| BEAM MOD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 6.98438E+19    | 6.88387£+10 | 7.14955E+10 | 7.04801E+10 | 7.03470E+10 | 7.09752E+10 | 6.99663€+10 | 6.97202E+10 | 7.15534€+10    | 6.68281E+10 | 7.02842E+10 | 6.9334SE+10 | 6.84010E+10 | 6.82686E+10 | 6.87710€+10 | 6.79022E+10 | 6.92718€+19 | 6.81504E+10 | 6.89316E+19 | 6.95286E+10 | 6.85265E+10 | 7.003215+10 | 6.915166+10 | 6.82721E+10 | 6.74675E+10 | 6.72820€+16 | 6.77750E+10 | 6.69721E+10 | 6.72797E+10 | 6.74675E+10 | ഹ           | 6.65916E+10 | à           | 6.58055E+10 | 6.691196+10 |
| 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | 'n             | m           | 'n          | ٠.          | 4           | 'n          | <u>ښ</u>    | <b>+</b>    | αi             | 'n          | ÷           | <b>ດ</b> ່  | 'n          | ÷           | 'n          | m           | ญ่          | 'n          | ÷           | ດ່          | 'n          | 'n          | 'n          | က်          | 'n          | ÷           | 'n          | ų.          | તાં         | <u>ښ</u>    | Ť           | 'n          | 'n          | ÷           | ÷           |
| FREG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •      | 401.6          | 1665.8      | 469.7       | 1223.2      | 2251.2      | 484.7       | 1323.3      | 2463.7      | 503.5          | 1362.0      | 2560.9      | 315.1       | 797.4       | 1488.2      | 284.3       | 733.9       | 304.4       | 782.1       | 1471.1      | 4.55.       | 894.3       | 456.9       | 1992.2      | 263.5       | 708.9       | 1369.9      | 254.3       | 678.8       | 249.0       | 676.4       | 1331.5      | 246.0       | 673.3       | 1321.4      | 1344.8      |
| TEMP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٠.     | 18.6           | 19.6        | -5.6        | -5.6        | -5.6        | -18.9       | -18.9       | 6.81-       | -31.7          | -31.7       | -31.7       | 24.4        | 4.4         | 54.4<br>2   | 37.8        | 37.8        | ₹.62        | 29.4        | 33.4        | 18.3        | 18.3        | *.          | 4.4         | 51.7        | 51.7        | 51.7        | 66.7        | 2.99        | 89.63       | 80.0        | 80.0        | 83.9        | 83.8        | 93.0        | 6,6.7       |
| 1055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FACTOR | 1.156          | 1.0667      | .6758       | 66E*.       | 4869        | . 3044      | . 2646      | . 2243      | . 1442         | . 1840      | . 6976      | 1.1203      | 1.1685      | 1.3745      | 1868.       | 1.1351      | 1.9131      | 1.0873      | 1.1978      | 1.0755      | 1.6867      | . 5496      | 8056        | 9806        | 9836        | . 8011      | . 7057      | 1.7930      | .6116       | 1.9658      | . 4239      | .4733       | . 4731      | . 3023      | . 5843      |
| MODULUS<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SULING<br>SU<br>SULIN | PARE   | 3.16450£+06    | 5.27104E+06 | 1.147515-87 | 2.03761E+87 | 2.57024E+87 | 3.28407E+07 | 4.87240E+07 | 5.63468E+07 | 4.98507E+07    | 1.27545E+08 | 8.32845E+07 | 9.62263€+05 | 1.49432E+06 | 1.93929E+96 | 5.45475E+05 | 7.36162E+05 | 8.18262E+05 | 1.32839£+06 | 1.86955E+06 | 1.685426+06 | 2.97348E+06 | 4.78292E+06 | 8.80290E+06 | 2.78940E+05 | 4.73490E+05 | 7.31422E+65 | 1.79241E+05 | 1.54883E+85 | 1.26498E+05 | 1.051565+05 | 3.94595E+05 | 1.05320E+05 | 1.48579E+05 | 3.404376+05 | 4.853046+05 |
| į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | <del>,</del> 4 | N           | m           | •           | S           | ø           | <b>~</b>    | 00          | O,             | 9           | =           | 12          | 13          | <b>*</b> .  | 15          | 9           | 1,          | 80          | 9           | R           | ű           | ე<br>ე      | S.          | v.          | K)          | Š.          | 2           | 8           | 2           | 9           |             | 30          | ,<br>(1)    | <b>7</b> (  | Ş           |



|          |             |                  |                                        |                 |                     |                   |                |                 | Test   | No.            | 77-61 |
|----------|-------------|------------------|----------------------------------------|-----------------|---------------------|-------------------|----------------|-----------------|--------|----------------|-------|
| Beam N   | Nos.        | 0701             | and _                                  | 070E            |                     |                   |                |                 | Date   | 5/4            | /77   |
| Dampin   | ng Mate     | eria             | 118D                                   | 113             |                     |                   | <del></del>    |                 |        |                |       |
|          |             |                  |                                        |                 |                     |                   |                |                 |        |                |       |
| Materi   | al Th       | ickn             | ess _0.                                | ن 013           | ini Ma              | aterio            | l Fens         | sity            | 0.96   | 9a,            | ico   |
|          |             |                  | 0.178                                  |                 |                     |                   |                |                 |        |                |       |
|          |             |                  | 7.78 cm                                |                 |                     |                   |                |                 |        |                |       |
| Temper   | ature       | Tes              | t Range                                | : Bet           | ween                | -36.1             | °C             | and _           | 65.6   | °C             |       |
|          |             |                  | Range:                                 |                 |                     |                   |                |                 |        |                |       |
| Loss F   | actor       | r <sub>D</sub> : |                                        |                 |                     |                   |                |                 |        |                |       |
| Peak     | 100         | Ηz               | $r_{\rm D} = \frac{1}{2}$              | .25             | Tempe               | eratui            | re -1          | . 5             | 00     |                |       |
|          |             |                  | $\frac{1}{2}$                          |                 |                     |                   |                |                 |        |                |       |
|          | 100         | Ηz               | <del>-</del> 35                        | ح ہ             | 1:                  | 2                 | e c            |                 | _      |                |       |
|          | 1000        | Нz               | 35                                     | °C              | -19                 | ;                 | · C            |                 |        |                |       |
|          |             | LOG              | S(M)=LOG(ML                            | .)+(2L0G(       | MROM/ML)            | )/(1+(F           | ROM/FR)I       | XN)             |        |                |       |
|          |             | T                | 0 F                                    | ROM<br>A1       | MROM<br>AZ          | N<br>A            | 3              | ML<br>64        |        |                |       |
|          |             | A • (            | LOG(FR)-LO                             | G(FROL))        | /()<br>             | 104/5/-           | SH ) ( 1 = 60) | PT ( 1 + 4 *    | *2111C | / <del>2</del> |       |
|          |             | T                | 0 ETAFR<br>B1<br>10.0 1.<br>(FR)-LOG(F | OL SI           | SH<br>B3            |                   | FROL<br>B4     | C<br><b>B</b> 5 |        | -              |       |
|          |             | LOG              | 10.0 1.<br>(FR)•LOG(F                  | 250<br>)-12(T-T | 800 -1.<br>0)/(525/ | 000 2.<br>1.8+T-T | 5000E+03<br>0) | 3.00            | 0      |                |       |
| Remark   |             |                  |                                        |                 |                     |                   |                |                 |        |                |       |
| Valuerry | \ <u>-</u>  |                  |                                        | <del></del>     |                     |                   |                |                 |        |                |       |
|          |             |                  |                                        |                 |                     |                   |                |                 |        |                |       |
|          |             |                  |                                        |                 |                     |                   |                |                 |        |                |       |
|          |             |                  |                                        |                 |                     |                   |                |                 |        |                |       |
|          |             |                  |                                        |                 |                     |                   |                |                 |        |                |       |
|          | <del></del> |                  |                                        | <del></del> -   | · <del>-</del>      | <u></u>           | ···· • •       | ···-            |        | <del></del>    |       |
|          |             |                  |                                        |                 |                     |                   |                |                 |        |                |       |
|          |             |                  |                                        |                 |                     |                   |                |                 |        |                |       |
|          |             |                  |                                        |                 |                     |                   |                |                 |        |                |       |
|          |             |                  |                                        |                 |                     |                   |                | ·               |        |                |       |
|          |             |                  |                                        |                 |                     |                   |                |                 |        |                |       |

| 0700, C070E | ldB            |       |        |         |           |        |        |        |        |        |        |                 |                            |                                    |                                                |                                                          |                                                                    |                                                                    |                                                                          |                                                                                   |                                                                                            |                                                                                                      |
|-------------|----------------|-------|--------|---------|-----------|--------|--------|--------|--------|--------|--------|-----------------|----------------------------|------------------------------------|------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Beam No.    | ر<br>ھ         |       | 0.0138 | 0.00564 | 0.00653   | 0.0106 | 0.0297 | 0.0335 |        | 0.0478 | 0.0478 | 0.0297          | 0.0297<br>0.1747<br>0.1654 | 0.0297<br>0.1747<br>0.1654         | 0.0478<br>0.0297<br>0.1747<br>0.1654<br>0.3303 | 0.0478<br>0.0297<br>0.1747<br>0.1654<br>0.3303<br>0.3023 | 0.0478<br>0.0297<br>0.1747<br>0.1654<br>0.3303<br>0.3023<br>0.2909 | 0.0478<br>0.0297<br>0.1654<br>0.3303<br>0.3023<br>0.2909<br>0.2353 | 0.0478<br>0.0297<br>0.1654<br>0.3303<br>0.3023<br>0.2909<br>0.2353       | 0.0478<br>0.0297<br>0.1554<br>0.3303<br>0.3023<br>0.2909<br>0.2353<br>0.2174      | 0.0478 0.0297 0.1654 0.3303 0.3023 0.2909 0.2353 0.2174 0.1613                             | 0.0478 0.0297 0.1747 0.1654 0.3303 0.2909 0.2353 0.2174 0.1138 0.1138                                |
|             | Δ£             |       | 8.0    | 9.0     | 20.0      | 52.0   | 17.0   | 52.0   | 0 7.0  | (1.47) | 17.0   | 17.0            | 17.0<br>248.0<br>433.0     | 17.0<br>248.0<br>433.0<br>128.9    | 17.0<br>248.0<br>433.0<br>128.0                | 17.0<br>248.0<br>433.0<br>128.9<br>103.0                 | 17.0<br>248.0<br>433.0<br>128.9<br>103.0<br>257.0                  | 17.0<br>248.0<br>433.0<br>128.9<br>103.0<br>257.0<br>391.0         | 17.0<br>248.0<br>433.0<br>128.0<br>103.0<br>257.0<br>391.0<br>593.0      | 17.0<br>248.0<br>433.0<br>128.9<br>103.0<br>257.0<br>391.0<br>50.0                | 17.0<br>248.0<br>433.0<br>128.9<br>103.0<br>257.0<br>391.0<br>50.0                         | 17.0<br>248.0<br>433.0<br>128.0<br>103.0<br>257.0<br>391.0<br>591.0<br>591.0                         |
|             | f <sub>R</sub> |       | 586.0  | 1600.0  | 3074.0    | 4926.0 | 581.0  | 1578.0 | 2799.  |        | 581    | 581.0           | 581.c<br>1585.0<br>2898.0  | 581.5<br>1585.0<br>2898.0          | 581.5<br>1585.0<br>2898.0<br>417.0             | 581.5<br>1585.0<br>2898.0<br>417.0                       | 581.5<br>1585.0<br>2898.0<br>417.0<br>1969.0                       | 581.5<br>1585.0<br>2898.0<br>417.0<br>1069.0<br>1957.6             | 581.5<br>1585.0<br>2898.0<br>417.0<br>1069.0<br>1957.0<br>340.0          | 581.5<br>1585.0<br>2898.0<br>417.0<br>1069.0<br>1957.0<br>340.0                   | 581.5<br>1585.0<br>2898.0<br>417.0<br>1069.0<br>1957.0<br>340.0<br>883.0                   | 581.5<br>1585.0<br>2898.0<br>417.0<br>1069.0<br>1957.0<br>340.0<br>883.0<br>1663.0                   |
|             | f.             |       | 578.0  | 1591.0  | 3054.0    | 4874.0 | 564.0  | 1526.0 | 4575.0 |        | 564.0  | 564.0           | 564.0<br>1337.0<br>2465.0  | 564.0<br>1337.0<br>2465.0<br>377.0 | 564.0<br>1337.0<br>2465.0<br>377.0             | 564.0<br>1337.0<br>2465.0<br>377.0<br>314.0              | 564.0<br>1337.0<br>2465.0<br>377.0<br>314.0<br>812.0               | 564.0<br>1337.0<br>2465.0<br>377.0<br>314.0<br>812.0<br>1566.0     | 564.0<br>1337.0<br>2465.0<br>377.0<br>314.0<br>812.0<br>1566.0<br>2520.0 | 564.0<br>1337.0<br>2465.0<br>377.0<br>314.0<br>812.0<br>1566.0<br>2520.0<br>290.0 | 564.0<br>1337.0<br>2465.0<br>377.0<br>314.0<br>812.0<br>1566.0<br>2520.0<br>290.0<br>789.0 | 564.0<br>1337.0<br>2465.0<br>377.0<br>314.0<br>812.0<br>1566.0<br>2520.0<br>2520.0<br>290.0<br>789.0 |
|             | H <sub>Z</sub> |       | 284.3  | 783.0   | 1535.0    | 2173.0 | 283.1  | 780.0  | 2503.0 |        | 283.1  | 283.1           | 283.1<br>777.1<br>1524.0   | 283.1<br>777.1<br>1524.0<br>281.1  | 283.1<br>777.1<br>1524.0<br>281.1<br>280.0     | 283.1<br>777.1<br>1524.0<br>281.1<br>280.0               | 283.1<br>777.1<br>1524.0<br>281.1<br>280.0<br>771.3                |                                                                    | 283.1<br>777.1<br>1524.0<br>281.1<br>280.0<br>771.3<br>1513.0<br>2475.0  | 283.1<br>777.1<br>1524.0<br>281.1<br>280.0<br>771.3<br>1513.0<br>2475.0<br>2775.1 | 283.1<br>777.1<br>1524.0<br>281.1<br>220.0<br>771.3<br>1513.0<br>2475.0<br>270.1<br>768:8  | 283.1<br>777.1<br>1524.0<br>281.1<br>220.0<br>771.3<br>1513.0<br>2475.0<br>279.1<br>768:8<br>1508.0  |
| ,           | A1<br>D        |       | 531.0  | 1596.3  | 3064.0    | 4900.0 | 572.0  | 1552.0 | 4692.0 |        | 542.6  | 542.6<br>1441.0 | 542.0<br>1441.0<br>2653.0  | 542.6<br>1441.0<br>2653.0<br>441.0 | 542.6<br>1441.0<br>2653.0<br>441.0<br>356.0    | 542.0<br>1441.0<br>2653.0<br>441.0<br>356.0              | 542.0<br>1441.0<br>2653.0<br>441.0<br>356.0<br>920.0               | 542.0<br>1441.0<br>2653.0<br>441.0<br>356.0<br>1707.0              | 542.0<br>1441.0<br>2653.0<br>441.0<br>356.0<br>920.0<br>1707.0<br>2782.0 | 542.6<br>1441.0<br>2653.0<br>441.0<br>356.0<br>920.0<br>1707.0<br>2782.0<br>214.0 | 542.0<br>1441.0<br>2653.0<br>441.0<br>356.0<br>1707.0<br>2782.0<br>214.0<br>831.0          | 542.0<br>1441.0<br>2653.0<br>441.0<br>356.0<br>920.0<br>1707.0<br>2782.0<br>214.0<br>831.0           |
|             |                | Hode  | 2      | 6       | 4         | 2.5    | 52     | ^`     | 5      |        | 2      | 3 2             | 3 8                        | 2 & 4 0                            | 2 6 4 2 2                                      | 2 6 4 2 2 6                                              | 2 6 4 2 2 6 4                                                      | 2 6 4 2 2 6 7 6                                                    | 2 6 4 2 7 6 4 5 7                                                        | 2 6 4 2 2 6 4 6 7 6                                                               | 2 6 4 2 7 6 4                                                                              | 2 6 4 2 2 6 4 5 7 6 4 5                                                                              |
| í           | Г <del>и</del> | Temp. | -53    |         | ئن -<br>ئ | -53    | -25    | 25     | -25    | _      | ⊃      | 0               | 0 0                        | 0 0 25                             | 0 0 25 20                                      | 25 20 50                                                 | 25 20 20 20 20                                                     | 25<br>50<br>50<br>50<br>50                                         | 25<br>25<br>50<br>50<br>50<br>50<br>75                                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                             | 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20                                               | 25 25 25 25 25 25 25 25 25 25 25 25 25 2                                                             |

| 070F  |
|-------|
| 070D, |
| No.   |
| Beam  |

| 14B         |       |        |        |        |        |        |        |        |        |        |         |        |        |        |        |        |  |  |  |
|-------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--|--|--|
| د<br>ھ      |       | 0.1940 | 0.0790 | 0.0649 | 0.0787 | 0.0538 | 0.0375 | 0.0289 | 0.0453 | 0.0342 | 0.0222  | 0.0167 | 0.0317 | 0.0268 | 0.0860 | 0.0116 |  |  |  |
| Δ£          |       | 86.0   | 125.0  | 167.0  | 23.0   | 42.0   | 58.0   | 73.0   | 13.0   | 27.0   | 34.0    | 42.0   | 9.0    | 21.0   | 137.0  | 29.0   |  |  |  |
| 표           |       | 873.0  | 1651.0 | 2669.0 | 305.0  | 822.0  | 1580.0 | 2573.0 | 295.0  | 305.0  | 1554.0  | 2538.0 | 289.0  | 795.0  | 1663.0 | 2517.0 |  |  |  |
| $f_{\rm L}$ |       | 787.0  | 1526.0 | 2502.0 | 282.0  | 0.622  | 1522.0 | 2500.0 | 282.0  | 778.0  | 1520.0  | 2496.0 | 280.0  | 774.0  | 1515.0 | 2488.0 |  |  |  |
| fn          |       | 768.8  | 1508.0 | 2467.0 | 277.9  | 765.4  | 1501.0 | 2456.0 | 277.2  | 763.5  | 1.497.0 | 2450.0 | 276.0  | 760.1  | 1491.0 | 2439.0 |  |  |  |
| f c         |       | 827.0  | 1588.0 | 2579.0 | 293.0  | 800.0  | 1548.0 | 2531.0 | 287.0  | 791.0  | 1535.0  | 2519.0 | 284.0  | 784.0  | 1526.0 | 2502.0 |  |  |  |
|             | Hode  | C`     | 4      | 5      | 2      | 3      | 4      | 5      | 2      | 3      | 4       | 5      | Ci     | 3      | 5      | 20     |  |  |  |
| o<br>(14    | Temp. | 7.5    | 7.5    | 7.5    | 103    | 103    | 103    | 103    | 125    | 125    | 125     | 125    | 150    | 150    | 150    | 150    |  |  |  |

EXPERIMENTAL CODE : 15
HATERIAL :15D 113
DATA SOURCES
MANUFACTURER : NONE
AFNE :SANDUICH BEAR

|   | COMPLEX MOD. | 4.03626E     | 5.590216    | 7.2659eE   | 1.04354E   | 1.87725E                                  |           | 3.05775E    | 5.623375 | 1.15296E    | 41884                                 | 74500E       | 3.325655  | 3.223368  |          | 1.152251  | 363586      | 1.63503E    | 5.336e3E              | 2.156758 | 3.116618                                         | 国民の名から、6      | 2,558335+06      | L0+URGOSO         | C0+383335   |             | 2 - 22 DOMES - 5 | 3 d d d d d d d d d d d d d d d d d d d | (5) + 10 (10) (10) (10) (10) (10) (10) (10) ( | )<br>+ 1<br>3)<br>- 1<br>- 1<br>- 1<br>- 1 |             | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 40+ 305500-0 | 2.33233E+86 | 1.635325+36 |
|---|--------------|--------------|-------------|------------|------------|-------------------------------------------|-----------|-------------|----------|-------------|---------------------------------------|--------------|-----------|-----------|----------|-----------|-------------|-------------|-----------------------|----------|--------------------------------------------------|---------------|------------------|-------------------|-------------|-------------|------------------|-----------------------------------------|-----------------------------------------------|--------------------------------------------|-------------|------------------------------------------|--------------|-------------|-------------|
|   | BEAM FREG.   |              |             |            |            |                                           |           |             |          |             |                                       | 2450.8       |           |           |          |           |             |             |                       |          | 9.55€                                            | 7.            | 281.1            | <br><br><br>      | 1.7.1       | 5.624.3     | က (<br>တ)<br>(ပ) | 60                                      | 3.                                            | 8                                          | É           |                                          | ייי<br>מאיי  | ښ.<br>سا    | 77.3        |
|   | COMPOSITE    | . 1940       | 9420        | .9649      | .0787      | . 8538                                    | 569.      | . 0289      | . 9453   | .8342       | . 6222                                | .6167        | . 2317    | . 6258    | . e : 38 | . 6:16    | .ie13       | (A) (1)     | (0)<br>(0)<br>(3)     | 6160     | (1)<br>(1)<br>(2)<br>(1)                         | 0.6983        | 3383             | 546               | ा<br>प      | # IA W      |                  | 27.35                                   | 80.4.                                         | ଟେନ୍ଦ୍ର :                                  | 50.45       | 36.35                                    | . 1443       | 5553        | 6965.       |
|   | BEAT MOD.    | . 12032E • 1 | 3.1263EE+10 | . 06189E+1 | .15649E+1  | .89278E                                   | .69740E+1 | 3.03465E+18 | .18941E  | 3.07744E+10 | . 98991E                              | 3. 81984E+10 | .152936   | .05012E   | .85627E  | .95278E   | 3.284165+12 | 3.140658+13 | 5 1 4 2 E 9 2 E 4 2 S | 35. 336  | 7 1 + 13 × 17 × 10 × 10 × 10 × 10 × 10 × 10 × 10 |               | \$ 1 - 35 GO . S | 6.1434852000      | 3.18605E+12 | 31133935-15 | 3.7236+12        | 3.31.835+13                             | 7.345425-12                                   | . 536636                                   | 3.259315+18 | 355315,                                  | 3.264:65-18  | 3.147135-12 | 3.140558+12 |
|   | MODE         | . [-         | <b>+</b>    | Ŋ.         | 'n         | 'n                                        | ÷         | 5.          | က်       | 'n          | 4                                     | 'n           | က်        | ٠,        | 4        |           |             |             | . 4                   | ŭ        | <br>                                             |               | (1)              | 'n                | ر.          | 4.          |                  | m                                       | ir.                                           | m.                                         | ,           | Ŗ,                                       | n i          | 4           | ų           |
|   | FREG.        | 827.0        | 0000        | 2575.0     | 293.0      | 866.6                                     | 1548.8    | 2531.0      | 287.0    | 6.167       | 5.25                                  | 2519.8       | 28.4      | 784.6     | 50.00    | 2500      | 3           | 6.00        | 0.00                  |          |                                                  | ( ) (C)       | 54               | (4)<br>(1)<br>(1) | 4.4         | 5653.2      | 5.57.5           | 3.55S:                                  | 581.8                                         | 1536.0                                     | 3354.8      | 4586.9                                   | 327 3        | 1767.8      | 6.6∃8       |
|   |              | DE 6         |             |            |            |                                           |           |             |          |             |                                       |              |           |           |          |           |             |             |                       |          |                                                  |               |                  |                   |             |             | 77               | T                                       | 8                                             | Υ,                                         | 1           | 7                                        | 23.3         | •           |             |
|   | LOSS TE      | F PC 1 UK    | 7000        | 7386       | 7716       | A. C. C. C. C. C. C. C. C. C. C. C. C. C. | 5695      | 4467        | 4        | 4694        | ייייייייייייייייייייייייייייייייייייי | 100          | 10        | 4947      | 0.00     |           |             |             | 1011                  |          | 700                                              | 10 C          | ינ<br>טור<br>טור | ) (-              | 1.19        | (A)         |                  | 6.00 es                                 | .6551                                         | .2158                                      | 35€         | 0523                                     | 3225         | . 4444      | 1.2845      |
| , | Mobutus      | ď            | S N         | g          | 2          | 3                                         | 36        | Š           | 9        | 'n          | 3                                     | 207305000    | 469945+34 | 264719001 | 1010101  | 201010101 | , v         | 20.35.36.   | 200                   | , 0      | 9 6                                              | 70.10.10.10.1 | 30-306/68        | 10 - 10 T C C C   | 6           | 375000      | .23544E-67       | 127836+67                               | . 36288E+87                                   | .75E46E+0E                                 | 89.1.1      | . 22.515+03                              | 35           | 90          | 9           |
|   | Ş.           | •            | ٦,          | טר         | <b>۳</b> ۲ | ľ                                         | οu        | D١          | - a      | 00          | n (                                   | <u>.</u>     | • 0       | ) c       | 7 4      | 7 0       | ) U         | יים         | . ;;                  | n (      | າ ()<br>- ()                                     | י<br>הנ       | 11)<br>11)       | ۱۲<br>۱۰          | ì           | i<br>j Č.   | ויי<br>עריי      | in)                                     | (III)                                         | i (h                                       | دوم<br>۱۲۲۱ | Pi                                       | ייי          | i (m        | (°)         |



## Polymeric Material Characterization Test

|                                                                                                                                                                                                                                                            | Test No. 79-5                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Beam Nos. 060C and 060D                                                                                                                                                                                                                                    | Date 6/79                                                                   |
| Damping Material 3M ISD 113 (Modified)                                                                                                                                                                                                                     |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |
| Material Thickness 0.0127 cm Material                                                                                                                                                                                                                      | Density <u>0.965</u> g/cc                                                   |
| Beam Thickness 0.1524 cm. Beam Dens                                                                                                                                                                                                                        |                                                                             |
| Beam Length <u>17.78</u> cm                                                                                                                                                                                                                                |                                                                             |
| Temperature Test Range: Between -45.6                                                                                                                                                                                                                      | °C and 65.6 °C                                                              |
| Frequency Test Range: Between 10 Hz                                                                                                                                                                                                                        | and 10 KHz                                                                  |
| Loss Factor n <sub>D</sub> :                                                                                                                                                                                                                               |                                                                             |
| Peak 100 Hz to 1.5 Temperature                                                                                                                                                                                                                             | -7.0 °c                                                                     |
| 1000 Hz TD 1.5 Temperature                                                                                                                                                                                                                                 |                                                                             |
| Range 100 Hz $\frac{D}{-31.7}$ °C $\frac{-6.7}{}$ °C                                                                                                                                                                                                       |                                                                             |
| 1000 Hz -12.2 °C -1.1 °C                                                                                                                                                                                                                                   |                                                                             |
| LOG(M)=LOG(ML)+(2LOG(MROM/NL))/(1+(FROM TO FROM MROM N A1 A2 A3 10.0 7.5000E+03 5.5000E+06 .3 A+(LOG(FR)-LOG(FROL))/C LOG(ETA)=LOG(ETAFROL)+((SL+SH)A+(SL-SH TO ETAFROL 5L SH FR B1 B2 B3 B 10.0 1.500 .300500 3.50 LOG(FR)=LOG(F)-12(T-T0)/(525/1.8+T-T0) | 04<br>85 8.0000E+04<br>)(1-SQRT(1+ASR2)))C/2<br>OL C<br>4 B5<br>00E+03 .300 |
| Remarks:                                                                                                                                                                                                                                                   |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |
|                                                                                                                                                                                                                                                            |                                                                             |

| 060C, 060D | 1dB     |      |        |         |         |         |         |        |          |         |        |          |         |          |         |        |            |                  |          | ×       |        |           |           |               |
|------------|---------|------|--------|---------|---------|---------|---------|--------|----------|---------|--------|----------|---------|----------|---------|--------|------------|------------------|----------|---------|--------|-----------|-----------|---------------|
| Beam No.   | e<br>E  |      | 0.0056 | 0.0079  | 0.0114  |         | 510.    | 0.0413 | 0.0456   | 0.0535  | 0.1486 | 0.1572   | 0.1852  | 0.3426   | 0.3729  | 0.3662 | 0.4222     | 0.2928           | 0.3325   | 0.3564  | 0.2281 | 0.2077    | 0.1939    |               |
|            | Δ£      |      | 2.90   | 11.00   | 30 30   | 00.00   | 56.70   | 20.50  | 61.10    | 136.10  | 68.20  | 191.00   | 425.60  | 134.10   | 372.10  | 128.00 | 385.90     | 92.10            | 271.40   | 531.80  | 66.10  | 155.70    | 249.20    |               |
|            | fR      |      | 515.00 | ılσ     | . 1     | .1      | 4334.50 | 510.60 | 1.369.90 | 2608.10 | 499.80 | 1307.40  | 2453.50 | 467.10   | 1167.70 | 427.20 | 1066.70    | 370.50           | 942.30   | 1597.30 | 326.00 | 827.20    | 1534.20   |               |
|            | f.      |      | 512 10 | 1388 50 | 00.0001 | 2652.20 | 4277.80 | 490.10 | 1308.80  | 2472.10 | 431.60 | 1116.40  | 2027.90 |          | 795.60  | 299.20 | 680.80     |                  | 670.90   | 1326.80 | 259    | 17        | • 1       | 1 2 2 2 2 4 1 |
|            | f<br>n  |      | 17 190 | `.  ^   | 0 8 9   | 1348.66 | 2234.43 | 246.89 | 686.38   | 1343.83 | 246.00 | 683.60   | 1337 78 |          | 682 06  | 7      | ;   ~<br>~ | 244 25           | 0 0      | • 1 •   |        | ין<br>דור | 1 22 1 10 |               |
|            | Å,      |      |        | 513.    | 1394.40 | 2668.00 | 4309.10 | 496.30 | 340.80   | 547     | 458.   | <u>ر</u> | ٠١      | 05 100   | •       |        |            | ;<br>;<br>;<br>; | *   ·    | 010     | 36     |           | ` •       | .)            |
|            |         | 1000 | e coci | 2       | m       | 4       | ιΩ      | 2      | ٠        | 4       | ,      | 7        | 1       | <b>3</b> | 7       | 7 (    | 7          |                  | 7        | η.      | 4 (    | -1 (      |           | 7             |
|            | ە<br>بى | - 1  | .] -   |         | -51     | -51     | -51     | -26    | 2.6      | 3.5     | 07-    |          |         |          |         |        |            | b7               | ر<br>ا د |         | χ .    | 50        | 20        | 11)<br>(0)    |

| 0090     |            |      |         |              | Т      |         | - T     | <del>-</del> -T |        | <sub>T</sub> | <del></del> - |          |        |         |         |        |        | <del></del> |             | <u> </u> | <br> |
|----------|------------|------|---------|--------------|--------|---------|---------|-----------------|--------|--------------|---------------|----------|--------|---------|---------|--------|--------|-------------|-------------|----------|------|
| 90       |            |      |         |              |        |         |         |                 |        | Ì            |               | İ        | Ì      | İ       |         | ļ      |        |             |             |          | -    |
|          | 1dB        |      |         |              | l      | 1       | į       |                 |        |              |               | ļ        |        |         |         |        |        |             |             |          |      |
| 060C,    |            |      |         | j            | i      |         |         |                 |        |              |               | İ        |        | ì       |         |        |        |             |             |          |      |
| 1        |            |      | -       | -            |        |         |         |                 |        |              |               | $\dashv$ |        |         |         |        |        |             |             |          |      |
| Beam No. |            |      | او      | 4            |        |         | 8       | 8               | 4      | 4            |               | 7        | 80     | vc.     | 2       | 7      |        |             | _           |          |      |
| H.       | <u>ເ</u>   |      | 0.2096  | 0.1284       | 0.0931 | 0.0691  | 0.0588  | 0.0688          | 0.0444 | 0.0314       | 0.0258        | 0.0422   | 0.0253 | 0.0186  | 0.0152  | 0.0257 | 0.0151 | 0.0109      | 0.0088      |          |      |
| Bea      |            |      | 0       | 0            | 0      | 0       | 0       | 0.0             | 0.0    | 0:0          | 0             | 0.0      | 0:     | 0       | 0       | 0      | 0      | 0           | 0           |          |      |
|          |            | П    |         |              |        |         |         |                 |        |              |               |          |        |         | }       | Ì      |        |             |             |          |      |
|          |            |      | 20      | 80           | 5.70   | 09      | 9.0     | 40              | 09     | 2.30         | 50            | 50       | 60     | 80      | 09      | 6.30   | 0.20   | .40         | 40          |          |      |
|          | Δ£         |      | 487.    | 33.80        | 65.    | 94.60   | 132.90  | 17.40           | 30.60  | 42.          | 57.50         | 10.50    | 17.60  | 24.80   | 33.60   | 9      | 10.    | 14.         | 19.         |          |      |
|          |            | Ц    | 4       |              |        |         |         |                 |        |              |               |          |        |         |         |        |        |             |             |          | <br> |
|          |            |      | C       |              | C      | 0       | 0       |                 | 0      | c            | _             | c        |        | 0       |         | 6      | 6      | c           |             |          |      |
|          | f<br>R     |      | 1.7     | 282.20       | 739.80 | 5.0     | 3.6     | 261.90          | 704.60 | 9.6          | 5.0           | 253.80   | 690.70 | 5.8     | 1.9     | 248.40 | 1.10   | 9.1         | 3.40        |          |      |
|          | 44         |      | 2474.70 | 283          | 730    | 1416.00 | 2318.60 | 26.             | 70,    | 1366.60      | 2252.00       | 25       | 69     | 1346.80 | 2224.90 | 248    | 681    | 1331.60     | 2203        |          |      |
|          |            |      |         |              |        |         |         | _               |        |              |               |          |        |         |         |        |        |             |             | _        |      |
|          |            |      | 5.0     | 40           | 1.0    | 4.0     | 70      | 50              | 00     | 00.          | 650           | 30       | 10     | 00      | 30      | 10     | 06     | 20          | 0.0         |          |      |
|          | $f_{ m L}$ |      | 1987.50 | 248.40       | 674.10 | 1321.40 | 2185.70 | 244.50          | 674.00 | 1324.        | 2194.50       | 243.30   | 673.10 | 1322.00 | 2191.30 | 242.10 | 670.90 | 1317.20     | 2184.00     |          |      |
|          |            |      | 19      | 2            | 9      | 13      | 21      | 2               | 9      | 13           | 21            | 2        | 9      | 13      | 21      | 2      | 9      | 13          | 21          |          |      |
|          |            | Γ    |         |              |        |         |         |                 |        |              |               |          |        |         |         |        |        |             |             |          |      |
|          | ~          |      | .46     | . <u>1</u> 4 | .20    | . 2.7   | 47      | .15             | .73    | .04          | . 4.7         | .27      | .57    | . 20    | 48      | . 39   | 10     | . 58        | 48          |          |      |
|          | f<br>n     |      | 2198    | 243.14       | 676.20 | ,       | 2189.47 | 242.15          | 673    | 1319         | 2182          | 251      | 671.57 | 1314.20 | 2175.48 | 240.39 | 669.10 | 1310.58     | 2168        |          |      |
|          |            |      | 2.]     |              |        | 1       | 2.1     | ( 4             | •      |              | 2]            | .,       |        | H       | 2.1     |        | 9      | 1           | [2]         |          | <br> |
|          |            |      | 30      | .30          | 5.80   | 9.60    | 9.40    | 2.90            | 09.6   | 6.20         | 5.50          | 8.60     | 1.70   | 4.30    | 8.90    | 4.90   | 5.90   | 3.90        | 4.00        |          |      |
|          | υ          |      | 24      | 63.          | 05.    | 9       | 59.     | 52.             | 89.    | 4            | 25.           | 48.      | 81.    | (4)     | 08.     | 44.    | 75.    | 23.         | <b>.</b> 56 |          |      |
|          | 44         |      | 23      | 2            | 7      | 13      | 22      | 2               | 9      | 13           | 22            | 2        | 9      | 13      | 22      | 2      | 9      | 13          | 21          |          |      |
|          |            | G    |         |              |        | =       | ==      | -               | _      |              |               |          |        |         |         |        |        |             |             |          | <br> |
|          |            | Node | 5       | 7            | ω.     | 4       | 5       | 2               | ~      | 4            | 5             | 2        | 3      | 4       | 2       | 7      | C)     | .4          | ις          |          |      |
|          |            |      |         | 2            |        |         |         |                 |        |              | <u> </u>      |          |        |         |         | ~      |        |             |             |          | <br> |
|          | o<br>त्र   | Temp | 50      | 3.           | 75     | 7.4     | 74      | 102             | 102    | 102          | 102           | 124      | 124    | 124     | 124     | 153    | 152    | 152         | 152         |          |      |



Polymeric Material Characterization Test

|                                                                                                                                                                                                                                                                       | Test         | No.          | 78-2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|------|
| Beam Nos. Not and Recorded                                                                                                                                                                                                                                            |              |              | 3/78 |
| Damping Material 3M ISD 830                                                                                                                                                                                                                                           |              |              |      |
|                                                                                                                                                                                                                                                                       |              |              |      |
| Material Thickness 0.152 cm Material Density                                                                                                                                                                                                                          |              | 65 g.        | /cc  |
| Beam Thickness 0.1524 cm Beam Density 2.                                                                                                                                                                                                                              |              |              |      |
| Beam Length 17.78 cm                                                                                                                                                                                                                                                  |              |              |      |
| Temperature Test Range: Between _59.4 °C and                                                                                                                                                                                                                          | 40.          | ور<br>م      |      |
| Frequency Test Range: Between 10 Hz and                                                                                                                                                                                                                               | <u> 10 F</u> | Hz           |      |
| Loss Factor n <sub>D</sub> :                                                                                                                                                                                                                                          |              |              |      |
| Peak 100 Hz $\eta_{ m D} = \frac{1.6}{1.6}$ Temperature $\frac{-61.1}{1.6}$                                                                                                                                                                                           | د. د         |              |      |
| 1000 Hz n <sub>D</sub> 1.6 Temperature -33.33                                                                                                                                                                                                                         |              |              |      |
| Range 100 Hz <u>-(2,2 °c -48.33 °c</u>                                                                                                                                                                                                                                | -            |              |      |
| 1000 Hz -42.78 °C -17.78 °C                                                                                                                                                                                                                                           |              |              |      |
|                                                                                                                                                                                                                                                                       |              |              |      |
| T0 FROM MROM N ML A1 A2 A3 A4 -15.0 1.2000E+04 2.0000E+07 .500 4.0000E+0 A+(LOG(FR)-LOG(FROL))/C LOG(ETA)*LOG(ETAFROL)+((SL+SH)A+(SL-SH)(1-SQRT(1+A) T0 ETAFROL SL SH FROL C B1 B2 B3 B4 B5 -15.0 1.660 .450900 8.0000E+03 .50 LOG(FR)*LOG(F)-12(T-70)/(525/1.8+T-T0) | 3((15#a      | /2           |      |
| Remarks: <u>Heat soak – ten minutes at 350°F (18</u>                                                                                                                                                                                                                  | <u>2^c).</u> |              |      |
|                                                                                                                                                                                                                                                                       |              |              |      |
|                                                                                                                                                                                                                                                                       |              |              |      |
|                                                                                                                                                                                                                                                                       |              |              |      |
|                                                                                                                                                                                                                                                                       |              | <del>.</del> |      |
|                                                                                                                                                                                                                                                                       |              |              |      |
|                                                                                                                                                                                                                                                                       |              |              |      |
|                                                                                                                                                                                                                                                                       |              |              |      |
|                                                                                                                                                                                                                                                                       |              |              |      |
|                                                                                                                                                                                                                                                                       |              |              |      |
|                                                                                                                                                                                                                                                                       |              |              |      |

Test No. 78-2 eam No. Not Recorded

|                           |        | T       | 1       | 7       |         |         |         |        |        |        |        | T      | T      |        | Τ      |        |        | 1       | T       |        | T       |
|---------------------------|--------|---------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|---------|
| 143                       |        |         |         |         |         |         |         |        |        |        |        |        |        |        |        |        | ×      | :   ×   | :   ×   |        |         |
| e<br>S                    |        | 0.00381 | 0.00206 | 0.00432 | 0.00497 | 0.00665 | 0.00790 | 0.0116 | 0.0125 | 0.0206 | 0.0245 | 0.0251 | 0.0310 | 0.1807 | 0.1726 | 0.2511 | 0.2480 | 0.3137  | 0.2758  | 0.2219 | 0.3441  |
| Δ£                        |        | 2.00    | 3.00    | 12.00   | 22.00   | 44.00   | 70.00   | 6.00   | 8.00   | 56.00  | 105.00 | 161.00 | 264.00 | 85.00  | 226.00 | 590.00 | 922.05 | 1755.64 | 1960.10 | 76.00  | 12.00   |
| fR                        |        | 526.0   | 1458.0  | 2784.0  | 4443.0  | 6642.0  | 8895.0  | 522.0  | 1445.0 | 2745.0 | 4347.0 | 6502.0 | 8657.0 | 524.0  | 1451.0 | 2719.0 | 3948.0 | 6209.0  | 7686.0  |        |         |
| $\mathbf{f}_{\mathbf{L}}$ |        | 524.0   | 1455.0  | 2772.0  | 4421.0  | 6598.0  |         | 516.0  | 1427.0 | 2689.0 | 4242.0 | 6341.0 |        | 439.0  | 1225.0 | 2129.0 | 3479.0 | 5316.0  | 6689.0  | 313.0  | 803.0   |
| ᄩ                         |        | 243.6   | 683.3   | 1336.7  | 2204.4  | 3282.8  | 4586.6  | 243.0  | 711.4  | 1363.7 | 2201.0 | 3278.6 | 4581.6 | 242.4  | 690.2  | 1331.0 | 2196.2 | 3272.6  | 4573.7  | 241.7  | 678.1   |
| <sup>μ</sup> ο            |        | 525.0   | 1457.0  | 2779.0  | 4431.0  | 6621.0  | 0.0988  | 519.0  | 1436.0 | 2718.0 | 4294.0 | 6416.0 | 8525.0 | 478.0  | 1329.0 | 2423.0 | 3719.0 | 5596.0  | 7107.0  | 351.0  | 929.0   |
| ľ                         | .: oce | CI      | ~       | 4       | 5       | 9       | (-      | 2      | ~      | 4      | 5      | 9      |        | 2      |        | .5     |        | υ       | 1.      | 2      | <br>(n) |
| ,<br>(r                   | remo.  | -75     | -75     | -75     | -75     | -75     | -75     | -55    | -55    | -55    | -55    | -55    | -55    | -29    | -29    | 5.71   | -29    | -53     |         | • ;    | 7       |

Page 1 of

Test No. 78-2 am No. Not Recorded

| Recorded     | ldB               |       | ×      | ×      | ×       | ×       |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|--------------|-------------------|-------|--------|--------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Beam No. Not | e<br>S            |       | 0.3680 | 0.3561 | 0.4242  | 0.3857  | 0.1443 | 0.1593 | 0.1109 | 0.0842 | 0.0813 | 0.0726 | 0.1005 | 0.0848 | 0.0546 | 0.0371 | 0.0319 | 0.0313 | 0.0748 | 0.0563 | 0.0333 | 0.0222 |
| m            | Δ£                |       | 613.39 | 910.26 | 1684.86 | 2042.67 | 43.00  | 123.00 | 158.00 | 194.00 | 280.00 | 344.00 | 28.00  | 62.00  | 75.00  | 83.00  | 107.00 | 145.00 | 26.00  | 36.00  | 45.00  | 49.00  |
|              | fR                |       | 1831.0 | 2785.0 | 4395.0  | 5774.0  | 324.0  | 845.0  | 1515.0 | 2405.0 | 3607.0 | 4923.0 | 294.0  | 764.0  | 1414.0 | 2282.0 | 3420.0 | 4711.0 | 279.0  | 732.0  | 1374.0 | 2236.0 |
|              | $^{\rm f}_{ m L}$ |       | 1519.0 | 2322.0 | 3538.0  | 4735.0  | 281.0  | 722.0  | 1357.0 | 2211.0 | 3327.0 | 4579.0 | 266.0  | 702.0  | 1339.0 | 2199.0 | 3313.0 | 4566.0 | 259.0  | 692.0  | 1329.0 | 2187.0 |
|              | f R               |       | 1327.4 | 2191.0 | 3266.1  | 4565.7  | 240.7  | 675.5  | 1322.7 | 2184.0 | 3257.7 | 4553.6 | 230.8  | 673.0  | 1318.7 | 2177.6 | 3249.7 | 4542.4 | 239.0  | 670.6  | 1314.2 | 2171.0 |
|              | 44<br>O           |       | 1667.0 | 2556.0 | 3972.0  | 5296.0  | 301.0  | 782.0  | 1434.0 | 2311.0 | 3454.0 | 4750.0 | 280.0  | 734.0  | 1376.0 | 2241.0 | 3357.0 | 4640.0 | 268.0  | 712.0  | 1353.0 | 2212.0 |
|              |                   | ::oce | 4      | 2      | 9       | 7       | 2      | 3      | 4      | 10     | ٤      | 7      | 2      | 2      | 4      | ເວ     | i      | 7      | 2      | 8      | 4      | 5      |
|              | (14<br>0          | Temp. | -4     | 4-     | 1 4     | 1       | 2.5    | 25     | 25     | 25     | 25     | 25     | 50     | 5.0    | 50     | 50     | 0 5    | 000    | 7.3    | 7.3    | 1.3    | 7.3    |

Page 2 of

Test No. 78-2 Beam No. Not Recorded

| Not Recorded | 1dB            |       |        |        |        |        |        |        |        |  |  |  |  |  |   |  |
|--------------|----------------|-------|--------|--------|--------|--------|--------|--------|--------|--|--|--|--|--|---|--|
| Beam No. N   | s<br>s         |       | 0.0229 | 0.0655 | 0.0416 | 0.0210 | 0.0142 | 0.0135 | 0.0105 |  |  |  |  |  |   |  |
|              | ΔĒ             |       | 76.00  | 17.00  | 29.00  | 28.00  | 31.00  | 44.00  | 48.00  |  |  |  |  |  |   |  |
|              | f <sub>R</sub> |       | 3359.0 | 269.0  | 712.0  | 1347.0 | 2206.0 | 3291.0 | 4578.0 |  |  |  |  |  | ! |  |
|              | ᆈ              |       |        | 252.0  | 683.0  | 1319.0 | 2175.0 | 3247.0 | 4530.0 |  |  |  |  |  |   |  |
|              | f<br>n         |       | 3238.1 | 237.7  | 667.1  | 1309.2 | 2161.0 | 3229.1 | 4514.4 |  |  |  |  |  |   |  |
|              | f,             |       | 3321.0 | 260.0  | 0.769  | 1332.0 | 2196.0 | 3268.0 | 4554.0 |  |  |  |  |  |   |  |
|              |                | ::oge | 9      | 2      | 3      | 4      | 2      | 9      | ۲,     |  |  |  |  |  |   |  |
|              | [4<br>0        | Cue;  | 7.3    | 105    | 105    | 105    | 105    | 105    | 105    |  |  |  |  |  |   |  |

1.674PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661PLEX ADD. 1.661P  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and  $\frac{1}{2}$  and FRECH HZ BEAR  $\begin{array}{c} \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNTS} \\ \text{ACCOUNT$ 00MP0 ·ŋᢋᢊ᠙ᢆᢊᡅᢋᡅᡊᢆᠸᡢᡅᠽᡎᡎᢣᡎᡅᡢᡎᢋ᠊ᡅᢋᡎᢋᡳᡎᢣᡢᡎᢣᡎᡎᢣᡎᠩᢇᡅᠩᠩᠩᢣᠩᠣᢋ  $\frac{1}{1} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}{1}} \sqrt{\frac{1}}} \sqrt{\frac{1}}} \sqrt{\frac{1}}} \sqrt{\frac{1}} \sqrt{\frac{1}}} \sqrt{\frac{1}} \sqrt{\frac{1}}} \sqrt{\frac{1}}} \sqrt{\frac{1}} \sqrt{\frac{1}}} \sqrt{\frac{$ EXPERIMENTAL CODE : 23
MATERIAL : ISD 839
DATA SCURCES
MANUFACTURER : NONE
AFML : SANDWICH BLOCK
CTHER : NONE® JERESE ADMENIA PROPRESSON - TO MENDE SERVICE PROPRESSON ADMENDED PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPRESSON ADMENIA PROPR

. ) 4



## Polymeric Material Characterization Test

|                                                                                                                                                            | lest NO/9-6               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Beam Nos. 080E and 080G                                                                                                                                    | Date <u>8/79</u>          |
| Damping Material Enjay Butyl 268                                                                                                                           |                           |
|                                                                                                                                                            |                           |
| Material Thickness 0.0381 cm Material                                                                                                                      | Density 1.187 a/ac        |
| Beam Thickness 0.2032 cm Beam Dens                                                                                                                         | <del></del>               |
| Beam Length 17.78 cm                                                                                                                                       | 4,00                      |
| Temperature Test Range: Between -45.6                                                                                                                      | ec and 65.6 ec            |
| Frequency Test Range: Between 10 Hz                                                                                                                        |                           |
| Loss Factor rg:                                                                                                                                            |                           |
| Peak 100 Hz no 1.7 Temperature                                                                                                                             | -20.6 60                  |
| 5                                                                                                                                                          | _                         |
| Range 100 Hz $\frac{1.7}{-37.2}$ Temperature $\frac{1.7}{-37.2}$ °C $\frac{-6.7}{-6.7}$ °C                                                                 |                           |
|                                                                                                                                                            |                           |
| 1000 Hz <u>-17.8</u> °C <u>15.6</u> °C                                                                                                                     |                           |
| LOG(ETA)*LOG(FR())/2( LOG(ETA)*LOG(ETAFROL)+((SL+SH)A+(SL-SF TØ ETAFROL SL SH FR BJ B2 B3 E 10.0 1.700 .560510 2.80 LOG(FR)*LOG(F)-12(T-T0)/(525/1.8+T-T0) |                           |
| Remarks: Loctite 404 was the only adhe                                                                                                                     | esive found that adequate |
| adhered the material to the beam.                                                                                                                          |                           |
|                                                                                                                                                            |                           |
|                                                                                                                                                            |                           |
|                                                                                                                                                            |                           |
|                                                                                                                                                            |                           |
|                                                                                                                                                            |                           |
|                                                                                                                                                            |                           |
|                                                                                                                                                            |                           |
|                                                                                                                                                            |                           |
|                                                                                                                                                            |                           |
|                                                                                                                                                            |                           |

| 148            |       |        |         |         |        |         |         |        |         | ×       |          | ×      |         | ×       |        |         |         |           |        |         | ×       |
|----------------|-------|--------|---------|---------|--------|---------|---------|--------|---------|---------|----------|--------|---------|---------|--------|---------|---------|-----------|--------|---------|---------|
| e<br>s         |       | 0.0069 | 0.0082  | 0.0125  | 0.0566 | 0.0802  | 0.0855  | 0.1373 | 0.1822  | 0.2485  | 0.3534   | 0.3416 | 0.3808  | 0.3636  | 0.4510 | 0.4570  | 0.4058  | 0.4603    | 0.3287 | 0.3489  | 0.3197  |
| ٥£             |       | 5.10   | 16.60   | 48.20   | 40.70  | 156.20  | 315.70  | 92.40  | 322.60  | 812.10  | 207.20   | 200.30 | 564.80  | 539.30  | 230.50 | 617.00  | 185.00  | 538,70    | 136.20 | 371.20  | 628.90  |
| $f_{ m R}$     |       | 745.00 | 2025.90 | 3887.60 | 74].30 | 2021.30 | 3841.60 | 722.90 | 1921.20 | 3455.00 | 694.50   | 635.70 | 1746.60 | 1614.80 | 659.50 | 1624.60 | 566.40  | 1408.90   | 493.00 | 1250.30 | 2107.50 |
| f<br>L         |       | 739.90 | 2009.30 | 3839.40 | 700.60 | 1865.10 | 3525.90 | 630.50 | 1598.60 | 3041.90 | 487.30   | 534.80 | 1181.80 | 1340.50 | 429.00 | 1007.60 | 381.40  | 870.20    | 356.80 | 879.10  | 1787.60 |
| fn             |       | 331.17 | 922.99  | 1801.44 | 329.85 | 919.28  | 1795,39 | 328.53 | 916.82  | 1789.35 | 327.43   |        | 913.73  |         | 326.98 | 98.119  | 326.10  | 910.03    | 325.66 | 908.80  | 1774.84 |
| f <sub>C</sub> |       | 742.40 | 2017.50 | 3864.70 | 718.40 | 1947.90 | 3690.50 | 672.90 | 1770.50 | 3267.70 | 586.30   | 586.30 | 1483.00 | 1483.00 | 511.10 | 1350.10 | 455.90  | 1170.40   | 414.40 | 1063.90 | 1966.90 |
|                | Node  | 2      | 3       | £,      | 2      | ~       | 4       | 2      | ~       | 4       | 2        | c.,    | ~       | m       | 5      | m       | C1      | cc,       | د ،    | · ·     | ব       |
| بيا<br>ه       | Tenn. | Ī      | -51     | -50     | -24    | -24     | -2.4    | С      | c       | С       | ić<br>či | C C    | i0 63   | 25      | 35     | 3.5     | €<br>•7 | с.<br>• т | Û      | 62      | 6.2     |

ot

Page

222

| 030G  |  |
|-------|--|
| 080E, |  |
| No.   |  |
| Веаш  |  |

| 080E, 030G | 143        |       | ×       |        |         | ×       |         |        |        |         |         |         |         |        |        |         |         |         |         |        |        |         |
|------------|------------|-------|---------|--------|---------|---------|---------|--------|--------|---------|---------|---------|---------|--------|--------|---------|---------|---------|---------|--------|--------|---------|
| Beam No.   | د<br>م     |       | 0.3049  | 0.2552 | 0.2354  | 0.1948  | 0.1946  | 0.1434 | 0.1109 | 0.0861  | 0.0744  | 0.0794  | 0.0637  | 0.0732 | 0.0534 | 0.0419  | 0.0364  | 0.0092  | 0.0286  | 0.0475 | 0.0319 | 0.0230  |
|            | 97         |       | 961.80  | 98.90  | 236.30  | 369.60  | 602.60  | 51.20  | 104.90 | 157.00  | 222.20  | 350.40  | 396.70  | 25.10  | 49.40  | 75.00   | 107.40  | 41.90   | 174.17  | 16.00  | 29.10  | 40.80   |
|            | н<br>¤     |       | 3365.90 | 442.60 | 1121.30 | 1987.50 | 3320.80 | 384.20 | 998.50 | 1900.00 | 3093.70 | 4530.40 | 6467.30 | 355.60 | 947.00 | 1827.50 | 2996.90 | 4587.80 | 6211.60 | 345.01 | 926.50 | 1793.10 |
|            | τ.<br>Γ    |       | 2876.70 | 343.70 | 885.00  | 1799.50 | 2718.80 | 333.00 | 893.60 | 1743.00 | 2871.50 | 4180.00 | 6070.60 | 330.50 | 897.60 | 1752.50 | 2889.50 | 4545.90 | 6036.90 | 329.60 | 897.43 | 1752.30 |
|            | f c        |       | 2929.95 | 324.78 | 906.95  | 1771.21 | 2923.95 | 323.46 | 903.24 | 1764.56 | 2911.96 | 4332.10 | 6046.35 | 322.14 | 91.006 | 1757.91 | 2897.97 | 4314.19 | 6021.35 | 320.81 | 899.07 | 1750.66 |
|            | <b>₩</b> ° |       | 3154.30 | 387.60 | 1003.80 | 1857.50 | 3092.60 | 356.90 | 946.10 | 1824.00 | 2989.20 | 4414.50 | 6229.00 | 342.90 | 924.20 | 1790.30 | 2948.60 | 4572.80 | 6103.20 | 336.70 | 911.50 | 1772.70 |
|            |            | Node  | 5       | 2      | 3       | 4       | 5       | 2      | 3      | 4       | ž       | 9       | 7       | 2      | 3      | 4       | 5       | 9       | Į -     | 2      | 3      | 4       |
|            | ٥<br>لم    | Temp. | 62      | 7.4    | 7.4     | 7.4     | 7.4     | 100    | 100    | 100     | 100     | 66      | 66      | 124    | 124    | 124     | 124     | 123     | 123     | 149    | 1.0    | 149     |

| 0800     |          |       |         |         |         | <br> | <br> | <br> | <br> | <br> |  | <br>- | $\neg$ | $\neg$ |               |
|----------|----------|-------|---------|---------|---------|------|------|------|------|------|--|-------|--------|--------|---------------|
| 080E, 08 | 1dB      |       |         |         |         |      |      |      |      |      |  |       |        |        | ۳<br>ننا<br>د |
| Beam No. | s<br>L   |       | 0.0232  | 0.0158  | 0.0148  |      |      |      |      |      |  |       |        |        | Даке 3        |
|          | δ£       |       | 67.70   | 68.70   | 89.60   |      |      |      |      |      |  |       |        |        |               |
|          | f<br>R   |       | 2953.50 | 4379.20 | 6110.50 |      |      |      |      |      |  |       |        |        |               |
|          | f.<br>L  |       | 2885.80 |         | 6020.90 |      |      |      |      |      |  |       |        |        |               |
|          | f<br>u   |       | 2885.98 |         | 5996.32 |      |      |      |      |      |  |       |        |        |               |
|          | ų o      |       | 2918.30 | 10      | 6058.10 |      |      |      |      |      |  |       |        |        |               |
|          |          | Mode  | 5       | 9       | 7       |      |      |      |      |      |  |       |        |        |               |
|          | <b>্</b> | Temp. |         | 148     | 148     |      |      |      |      |      |  |       |        |        |               |

SEA EXPERIMENTAL MATERIAL : BU  