Solution Notes

(a) B is the base of the arithmetic.

p is the precision, i.e. the number of digits of base B in the Significand, including the hidden bit.

emin, emax are the minimum, maximum values of the exponent e, where a normalised number is represented as

± 1. d, dz ... dp-1 x /3° hillabie

There are 2046 values of e plus $e_{min}-1$, $e_{max}+1$ which are used for special purposes. This requires 11 lits for the exponent. The sign requires 1 lit and the significand (p-1=)52 lits, making (64 lits=)8 bytes in total. [5 marks]

- (b) The hidden bit is the most significant bit of the significand and can be deduced from the exponent, so need not be stored.

 It is I for normalised numbers, and O for denormal numbers.

 (2 marks)
- (C) If x^* denotes the floating point representation of x,

 Em is the smallest positive number such that $(1+E_m)^*>1$ For IEEE Double Precision $E_m = 2^{-(p-1)} = 2^{-52}$.

 [3 marks]
- (d) For computing f'(x), we take $h = \sqrt{\epsilon_n} = 2^{-26}$, and expect an absolute error of $h = 2^{-26}$. For computing f''(x), we take $h = \sqrt{2^{-26}} = 2^{-13}$, and expect an absolute error of $h = 2^{-13}$. [4 marks]
- (e) Assume $\beta = 2$. We require f''(x) to be computed with an absolute accuracy of $10^{-3} \cong 2^{-10}$. This implies that f'(x) needs to be computed to an accuracy of 2^{-20} and that f(x) needs to be stored with an accuracy of 2^{-40} . Therefore we require $E_m = 2^{-(p-1)} = 2^{-40}$ so p = 41. Taking account of the hidden bit, 40 his are required for the significand, with 1 hit for the sign, leaving 7 hits for the exponent. The exponent can therefore take only 128 values, including $e_{min} = 1$, $e_{max} = 1$. So $e_{min} = -62$, $e_{max} = 63$. [6 marks]