RIGOL

用户手册

DG4000 系列 函数/任意波形发生器

2014年03月

RIGOL Technologies, Inc.

保证和声明

版权

© 2011 北京普源精电科技有限公司版权所有。

商标信息

RIGOL 是北京普源精电科技有限公司的注册商标。

文档编号

UGB04007-1110

声明

- 本公司产品受已获准及尚在审批的中华人民共和国专利的保护。
- 本公司保留改变规格及价格的权利。
- 本手册提供的信息取代以往出版的所有资料。
- 对于本手册可能包含的错误,或因手册所提供的信息及演绎的功能,以及因使 用本手册而导致的任何偶然或继发的损失,**RIGOL** 概不负责。
- 未经 **RIGOL** 事先书面许可不得影印复制或改编本手册的任何部分。

产品认证

RIGOL 认证本产品符合中国国家产品标准和行业产品标准及 ISO9001:2008 标准和 ISO14001:2004 标准,并进一步认证本产品符合其它国际标准组织成员的相关标准。

联系我们

如您在使用此产品或本手册的过程中有任何问题或需求,可与 RIGOL 联系:

电子邮箱: service@rigol.com

网址: www.rigol.com

DG4000 用户手册

安全要求

一般安全概要

了解下列安全性预防措施,以避免受伤,并防止损坏本产品或与本产品连接的任何 产品。为避免可能的危险,请务必按照规定使用本产品。

使用正确的电源线。

只允许使用所在国家认可的本产品专用电源线。

将产品接地。

本产品通过电源电缆的保护接地线接地。为避免电击,在连接本产品的任何输入或输出端子之前,请确保本产品电源电缆的接地端子与保护接地端可靠连接。

正确连接探头。

如果使用探头,探头地线与地电势相同,请勿将地线连接至高电压。

查看所有终端额定值。

为避免起火和过大电流的冲击,请查看产品上所有的额定值和标记说明,请在连接产品前查阅产品手册以了解额定值的详细信息。

使用合适的讨压保护。

确保没有过电压(如由雷电造成的电压)到达该产品。否则操作人员可能有遭受电击的危险。

请勿开盖操作。

请勿在仪器机箱打开时运行本产品。

请勿将异物插入风扇的排风口。

请勿将异物插入风扇的排风口以免损坏仪器。

使用合适的保险丝。

只允许使用本产品指定规格的保险丝。

 II
 DG4000 用户手册

避免电路外露。

电源接通后,请勿接触外露的接头和元件。

怀疑产品出故障时, 请勿进行操作。

如果您怀疑本产品出现故障,请联络**RIGOL**授权的维修人员进行检测。任何维护、调整或零件更换必须由**RIGOL**授权的维修人员执行。

保持适当的通风。

通风不良会引起仪器温度升高,进而引起仪器损坏。使用时应保持良好的通风,定期检查通风口和风扇。

请勿在潮湿环境下操作。

为避免仪器内部电路短路或发生电击的危险,请勿在潮湿环境下操作仪器。

请勿在易燃易爆的环境下操作。

为避免仪器损坏或人身伤害,请勿在易燃易爆的环境下操作仪器。

请保持产品表面的清洁和干燥。

为避免灰尘或空气中的水分影响仪器性能,请保持产品表面的清洁和干燥。

防静电保护。

静电会造成仪器损坏,应尽可能在防静电区进行测试。在连接电缆到仪器前,应将 其内外导体短暂接地以释放静电。

正确使用电池。

如果仪器提供电池,严禁将电池暴露于高温或火中。要让儿童远离电池。不正确地 更换电池可能造成爆炸(警告:锂离子电池)。必须使用 **RIGOL** 指定的电池。

注意搬运安全。

为避免仪器在搬运过程中滑落,造成仪器面板上的按键、旋钮或接口等部件损坏,请注意搬运安全。

DG4000 用户手册 III

安全术语和符号

本手册中的术语。以下术语可能出现在本手册中:

警告

警告性声明指出可能会危害操作人员生命安全的条件和行为。

注意

注意性声明指出可能导致本产品损坏或数据丢失的条件和行为。

产品上的术语。以下术语可能出现在产品上:

危险 表示您如果进行此操作可能会立即对您造成危害。

警告 表示您如果进行此操作可能会对您造成潜在的危害。

注意 表示您如果进行此操作可能会对本产品或连接到本产品的其他设备造成损坏。

产品上的符号。以下符号可能出现在产品上:

高电压

安全警告

保护性接地端

壳体接地端

测量接地端

保养与清洁

保养

请勿将仪器放置在长时间受到日照的地方。

清洁

请根据使用情况经常对仪器进行清洁。方法如下:

- 1. 断开电源。
- 2. 用潮湿但不滴水的软布(可使用柔和的清洁剂或清水)擦试仪器外部的浮尘。 清洁带有液晶显示屏的仪器时,请注意不要划伤 LCD 保护屏。

注意

请勿使任何腐蚀性的液体沾到仪器上,以免损坏仪器。

警告

重新通电之前,请确认仪器已经干透,避免因水分造成电气短路甚至人身伤害。

DG4000 用户手册 V

环境注意事项

以下符号表明本产品符合 WEEE Directive 2002/96/EC 所制定的要求。

设备回收

本产品中包含的某些物质可能会对环境或人体健康有害,为避免将有害物质释放到 环境中或危害人体健康,建议采用适当的方法回收本产品,以确保大部分材料可正 确地重复使用或回收。有关处理或回收的信息,请与当地权威机构联系。

VI DG4000 用户手册

DG4000 系列函数/任意波形发生器简介

DG4000 系列集函数发生器、任意波形发生器、脉冲发生器、谐波发生器、模拟/数字调制器、频率计等功能于一身,是一款经济型、高性能、多功能的双通道函数/任意波发生器。该系列的所有型号均具有 2 个功能完全相同的通道。通道间相位可调。

主要特色:

- 采用 DDS 直接数字合成技术,可生成稳定、精确、纯净和低失真的输出信号
- 7 英寸 16M 真彩 TFT 液晶显示屏,同时显示双通道的波形参数和图形
- 160MHz、100MHz、60MHz(对于正弦)三种最大输出频率,500MSa/s 采样率,14bits 垂直分辨率
- 可精确调节双通道的相位
- 可输出多达 150 种波形/函数:正弦波、方波、锯齿波、脉冲波、噪声、Sinc、指数上升、指数下降、心电图、高斯、半正矢、洛仑兹、双音频、谐波、视频信号、雷达信号和 DC 电压等
- 可编辑 16kpts 的任意波形,支持任意波逐点输出
- 脉冲信号的上升沿时间和下降沿时间可单独调节
- 可输出具有指定次数和幅度的谐波,最高可输出 16 次谐波
- 支持在基本波形上叠加高斯噪声
- 丰富的调制类型: AM、FM、PM、ASK、FSK、PSK、BPSK、QPSK、3FSK、4FSK、OSK 和 PWM
- 支持频率扫描和脉冲串输出
- 双通道可分别或同时:内部/外部调制、内部/外部/手动触发
- 双通道可分别或同时:输出同步信号
- 支持单独或同时打开频率耦合、相位耦合和幅度耦合
- 提供 7digits/s,200MHz 频率计,可测量外部输入信号的频率、周期、占空比、 正脉宽和负脉宽等参数,并提供测量结果的统计功能
- 支持通道间的波形复制和状态复制功能
- 可存储和读取 10 个任意波形数据文件和 10 个仪器状态文件,可读取 U 盘中已存储的 Csv 和 Txt 格式文件
- 丰富的标准配置接口: USB Host, USB Device, LAN
- 丰富的输入/输出:波形输出,同步信号输出,调制源输入,10MHz 时钟源输入/输出,触发输入/输出
- 支持 FAT 格式的 U 盘存储
- 支持 10/100M 以太网,使用户通过 Web 远程控制仪器

DG4000 用户手册 VII

RIGOL

- 符合 LXI-C 类仪器标准(1.2 版本)
- 提供中英文内置帮助和输入法
- 配置功能强大的 PC 上位机波形编辑软件
- 提供防盗锁孔

VIII DG4000 用户手册

文档概述

文档的主要内容

第1章 快速入门

本章介绍仪器的前后面板、用户界面、参数设置方法以及首次使用仪器的注意事项。

第2章 输出基本波形

介绍如何输出正弦波、方波等基本波形。

第3章 输出任意波

介绍如何输出仪器内建和用户自定义的任意波形。

第4章 输出谐波

介绍如何输出指定次数的谐波。

第5章 输出已调制波形

介绍如何输出已调制波形,如 AM、FSK、PWM 等。

第6章 输出扫频波形

介绍如何输出扫频波形。

第7章 输出脉冲串

介绍如何输出脉冲串。

第8章 频率计

介绍频率计功能及其参数设置方法。

第9章 存储与调用

介绍如何存储和调用波形数据或仪器状态设置等。

第10章 辅助功能与系统设置

介绍仪器的一些辅助功能与系统设置。

第11章 远程控制

介绍如何通过远程方式控制仪器。

第12章 故障处理

介绍仪器在使用过程中可能出现的故障及其处理方法,以及可能出现的提示消息。

第 13 章 技术参数

列举仪器的性能指标和一般技术规格。

DG4000 用户手册 IX

第 14 章 附录

提供选件和附件信息,以及其他注意事项。

文档中的格式约定

1. 按键:

本手册中通常用"文本框+文字(加粗)"表示前面板上的一个功能键。例如: Sine

2. 菜单:

本手册中通常用带底纹并加粗的文字表示一个菜单。例如:频率

3. 连接器

本手册中通常用"方括号+文字(加粗)"表示前面板或后面板上的一个连接器。例如: [Sync]

4. 操作步骤:

本手册中通常用一个箭头 "→"表示下一步操作。例如: Sine → 频率 表示按下前面板上的 Sine 功能键后再按 频率 菜单软键。

文档中的内容约定

DG4000 系列涵盖以下型号的函数/任意波形发生器。本手册的说明以 DG4162 为例。

型号	通道	通道 最高输出频率	
DG4062	2	60MHz	500MSa/s
DG4102	2	100MHz	500MSa/s
DG4162	2	160MHz	500MSa/s

X DG4000 用户手册

目录

保证和声明	
安全要求 一般安全概要 安全术语和符号	II
保养与清洁	
环境注意事项	
DG4000 系列函数/任意波形发生器简介	VII
文档概述	IX
第 1 章 快速入门	1-1
一般性检查	
调整支撑脚	
外观尺寸	
前面板	1-6
后面板	
连接电源	1-15
更换保险丝	1-16
用户界面	1-17
参数设置方法	1-20
数字键盘	1-20
方向键和旋钮	1-21
使用内置帮助系统	1-22
使用防盗锁	1-23
使用机架	1-24
部件清单	1-24
安装工具	1-25
安装空间	1-26
安装步骤	1-28
第 2 章 输出基本波形	2-1
选择通道	2-2
选择基本波形	2-3
设置频率	2-4

设置幅度	2-5
设置 DC 偏移电压	2-6
设置起始相位	2-7
同相位	2-8
设置占空比	2-9
设置对称性	2-10
设置脉冲参数	2-11
脉宽/占空比	2-11
上升/下降边沿时间	2-12
延时	2-12
恢复延时	2-13
启用通道输出	2-15
输出基本波形实例	2-16
第 3 章 输出任意波	3-1
启用任意波功能	
逐点输出模式	
选择任意波	3-3
内建波形	
已存波形	3-8
易失波形	3-8
创建任意波	3-9
实例: 点编辑	3-11
实例: 块编辑	3-13
编辑任意波	3-15
第 4 章 输出谐波	4-1
谐波功能概述	4-2
设置基波参数	4-2
设置谐波次数	4-3
选择谐波类型	
设置谐波幅度	4-4
设置谐波相位	4-4
第5章 输出已调制波形	5-1
幅度调制(AM)	5-2
选择 AM 调制	5-2
选择载波波形	
设置载波频率	5-2

745 724 AEI 491 742	
选择调制源	
设置调制波频率	
设置调制深度	
频率调制 (FM)	
选择 FM 调制	
选择载波波形	
设置载波频率	
选择调制源	
设置调制波频率	5-6
设置频率偏移	5-7
相位调制(PM)	5-8
选择 PM 调制	5-8
选择载波波形	5-8
设置载波频率	5-8
选择调制源	5-9
设置调制波频率	5-9
设置相位偏差	5-10
幅移键控(ASK)	5-11
选择 ASK 调制	5-11
选择载波波形	5-11
设置载波幅度	5-11
选择调制源	5-12
设置 ASK 速率	5-12
设置调制幅度	5-13
设置调制极性	5-13
频移键控(FSK)	5-14
选择 FSK 调制	5-14
选择载波波形	5-14
设置载波频率	5-14
选择调制源	
设置 FSK 速率	
设置跳频频率	
设置调制极性	
相移键控(PSK)	
选择 PSK 调制	
选择载波波形	
沿署栽油相份	5 17 5 ₋ 17

选择调制源	5-17
设置 PSK 速率	5-18
设置 PSK 相位	5-18
设置调制极性	5-19
二相相移键控(BPSK)	5-20
选择 BPSK 调制	5-20
选择载波波形	5-20
设置载波相位	5-20
选择调制源	5-20
设置 BPSK 速率	5-21
设置 BPSK 相位	5-21
四相相移键控(QPSK)	5-22
选择 QPSK 调制	5-22
选择载波波形	5-22
设置载波相位	5-22
选择调制源	5-22
设置 QPSK 速率	5-23
设置 QPSK 相位	5-23
三进制频移键控(3FSK)	5-24
选择 3FSK 调制	5-24
选择载波波形	5-24
设置载波频率	5-24
调制源	5-25
设置键控频率	5-25
设置跳频频率	5-25
四进制频移键控(4FSK)	5-26
选择 4FSK 调制	5-26
选择载波波形	5-26
设置载波频率	5-26
调制源	5-27
设置键控频率	5-27
设置跳频频率	5-27
振荡键控(OSK)	5-28
选择 OSK 调制	5-28
选择载波波形	5-28
设置载波频率	5-29
选择调制源	5-29

	设置键控频率5	-29
	设置振荡周期5	-29
	脉宽调制(PWM)5	-30
	选择 PWM 调制5	-30
	选择载波波形5	-30
	设置脉宽/占空比5	-30
	选择调制源5	-30
	设置调制波频率5	-31
	设置宽度/占空比偏差5	-31
第 6	章 输出扫频波形	6-1
	开启扫频功能	6-2
	起始频率和终止频率	6-2
	中心频率和频率跨度	6-3
	扫频方式	6-4
	线性扫频	6-4
	对数扫频	6-5
	步进扫频	6-6
	扫频时间	6-7
	返回时间	6-7
	标记频率	6-7
	起始保持	6-8
	终止保持	6-8
	扫频触发源	6-9
	触发输出边沿6	-10
第7	章 输出脉冲串	7-1
	开启脉冲串功能	7-2
	脉冲串类型	7-2
	N 循环脉冲串	7-2
	无限脉冲串	7-3
	门控脉冲串	7-4
	脉冲串相位	7-5
	脉冲串周期	7-6
	极性	7-6
	脉冲串延时	7-6
	脉冲串触发源	7-7
	仙岩 输虫边沿	7_Q

第8	3 章	频率计	8-1
	启用频率	<u>``</u>	8-2
	设置频率	<u>t</u>	8-3
	统计功能	<u></u>	8-5
第9	9 章	存储与调用	9-1
	存储系统	.	9-2
	文件类型	<u> </u>	9-3
	浏览器类	型	9-4
	文件操作	<u> </u>	9-5
	保存	<u> </u>	9-5
	读取	<u> </u>	9-7
	复制	J	9-7
	粘贴	i	9-8
	删除	<u> </u>	9-8
	新建	!文件夹	9-8
第1	10章	辅助功能与系统设置	10-1
	概述		10-2
	通道设置	1	10-3
	同步	;	10-3
	同步	- 极性	10-4
	输出	极性	10-4
	阻抗	ī设置	10-5
	噪声	·开关	10-6
	噪声	ī比例	10-6
	使用外部	3功率放大器(选件)	10-7
	配置远程	接口	10-11
	设置	¹ 网络参数	10-11
	选择	^E USB 设备类型	10-14
		1	
	数字	² 格式	10-15
	语言		10-16
	开机	.配置	10-16
	电源	受置	10-16
	亮度		10-16
	蜂鸣	3器	10-17
	屏保	I	10-17

时	·钟源	10-17
系	统信息	10-18
打印		10-19
检测校	准	10-20
耦合		10-21
	制	
用户自	定义波形键	10-24
还原预	设配置	10-26
第 11 章	远程控制	11_1
	制概述	
	制方法	
	户自编程	
使	E用 PC 软件	11-7
第 12 章	故障处理	12-1
第 13 章	技术参数	13-1
第 14 章	附录	14-1
附录A	: 附件和选件	14-1
附录 B	: 功率放大器技术参数	14-2
附录C		
→ → 1		_

第1章 快速入门

本章介绍仪器的前后面板、用户界面、参数设置方法以及首次使用仪器的注意事项。

本章内容如下:

- 一般性检查
- 调整支撑脚
- 外观尺寸
- 前面板
- 后面板
- 连接电源
- 更换保险丝
- 用户界面
- 参数设置方法
- 使用内置帮助系统
- 使用防盗锁
- 使用机架

一般性检查

1. 检查运输包装

如运输包装已损坏,请保留被损坏的包装或防震材料,直到货物经过完全检查且 仪器通过电性和机械测试。

因运输造成仪器损坏,由发货方和承运方联系赔偿事宜。**RIGOL**公司恕不进行免费维修或更换。

2. 检查整机

若存在机械损坏或缺失,或者仪器未通过电性和机械测试,请联系您的 **RIGOL** 经销商。

3. 检查随机附件

请根据装箱单检查随机附件,如有损坏或缺失,请联系您的RIGOL经销商。

1-2 DG4000 用户手册

调整支撑脚

DG4000 允许用户在使用仪器时打开支撑脚以作为支架使仪器向上倾斜,便于操作和观察(如图 1-1 所示)。在不使用仪器时,用户可以合上支撑脚以方便放置或搬运(如图 1-2 所示)。

图 1-1 打开支撑脚

图 1-2 合上支撑脚

外观尺寸

DG4000 的外观与尺寸如图 1-3、图 1-4 所示。单位为 mm。

1-4 DG4000 用户手册

DG4000 用户手册 1-5

前面板

DG4000 前面板布局如下图所示。

图 1-5 DG4000 前面板

1. 电源键

用于开启或关闭信号发生器。当该电源键关闭时,信号发生器处于待机模式。 只有拔下后面板的电源线,信号发生器才会处于断电状态。

您可以启用或禁用该按键自身的功能。启用时,仪器上电后,需要手动按下该按键启动仪器;禁用时,仪器上电后自动启动。

2. USB Host

支持 FAT 格式的 U 盘。读取 U 盘中的波形或状态文件,或将当前的仪器状态和编辑的波形数据存储到 U 盘中,也可以将当前屏幕显示的内容以指定的图片格式(.Bmp 或.Jpeq)保存到 U 盘。

3. 菜单软键

与其左侧菜单一一对应,按下任一软键激活对应的菜单。

 1-6
 DG4000 用户手册

4. 菜单翻页

打开当前菜单的上一页或下一页。

5. CH1 输出端

BNC 连接器,标称输出阻抗为 50Ω。

当 Output1 打开时(背灯变亮),该连接器以 CH1 当前配置输出波形。

6. CH1 同步输出端

BNC 连接器,标称输出阻抗为 50Ω。

当 CH1 打开同步时,该连接器输出与 CH1 当前配置相匹配的同步信号(参考"**同** 步"一节的介绍)。

7. CH2 输出端

BNC 连接器,标称输出阻抗为 50Ω。

当 Output2 打开时(背灯变亮),该连接器以 CH2 当前配置输出波形。

8. CH2 同步输出端

BNC 连接器,标称输出阻抗为 50Ω。

当 CH2 打开同步时,该连接器输出与 CH2 当前配置相匹配的同步信号(参考"**同** 步"一节的介绍)。

9. 通道控制区

CH1: 选择通道 CH1。选择后,背灯变亮,用户可以设置 CH1 的波形、参数和配置。

CH2: 选择通道 CH2。选择后,背灯变亮,用户可以设置 CH2 的波形、参数和配置。

Trigger1: CH1 手动触发按键,在扫频或脉冲串模式下,用于手动触发 CH1 产生一次扫频或脉冲串输出(仅当 Output1 打开时)。

Trigger2: CH2 手动触发按键,在扫频或脉冲串模式下,用于手动触发 CH2 产生一次扫频或脉冲串输出(仅当 Output2 打开时)。

Output1: 开启或关闭 CH1 的输出。

Output2: 开启或关闭 CH2 的输出。

CH1≠CH2: 执行通道复制功能(参考"通道复制"一节的介绍)。

10. 频率计

按下 **Counter** 按键,开启或关闭频率计功能。频率计功能开启时,**Counter** 按键背灯变亮,左侧指示灯闪烁。若屏幕当前处于频率计界面,再次按下该键关闭频率计功能;若屏幕当前处于非频率计界面,再次按下该键切换到频率计界面(参考"**频率计**"一节的介绍)。

11.数字键盘

用于输入参数,包括数字键 0 至 9、小数点"."、符号键"+/-"、按键"Enter"、"Cancel"和"Del"。注意,要输入一个负数,需在输入数值前输入一个符号"-"。此外小数点"."还可以用于快速切换单位,符号键"+/-"用于切换大小写(关于如何使用数字键盘输入参数,请参考"参数设置方法"一节的介绍)。

12. 旋钮

在参数设置时,用于增大(顺时针)或减小(逆时针)当前突出显示的数值。 在存储或读取文件时,用于选择文件保存的位置或用于选择需要读取的文件。 在输入文件名时,用于切换软键盘中的字符。

在定义 User 按键快捷波形时,用于选择内置波形。

13. 方向键

在使用旋钮和方向键设置参数时,用于切换数值的位。 在文件名输入时,用于移动光标的位置。

14.波形选择区

Sine——正弦波

提供频率从 1µHz 至 160MHz 的正弦波输出。

- 选中该功能时,按键背灯将变亮。
- 可以改变正弦波的"频率/周期"、"幅度/高电平"、"偏移/低电平"和"起始相位"。

Square——方波

提供频率从 1µHz 至 50MHz 并具有可变占空比的方波输出。

- 选中该功能时,按键背灯将变亮。
- 可以改变方波的"频率/周期"、"幅度/高电平"、"偏移/低电平"、"占空比" 和"起始相位"。

1-8 DG4000 用户手册

Ramp——锯齿波

提供频率从 1µHz 至 4MHz 并具有可变对称性的锯齿波输出。

- 选中该功能时,按键背灯将变亮。
- 可以改变锯齿波的"频率/周期"、"幅度/高电平"、"偏移/低电平"、"对称性"和"起始相位"。

Pulse——脉冲波

提供频率从 1µHz 至 40MHz 并具有可变脉冲宽度和边沿时间的脉冲波输出。

- 选中该功能时,按键背灯将变亮。
- 可以改变脉冲波的"频率/周期"、"幅度/高电平"、"偏移/低电平"、"脉宽/ 占空比"、"上升沿"、"下降沿"和"延迟"。

Noise——噪声

提供带宽为 120MHz 的高斯噪声输出。

- 选中该功能时,按键背灯将变亮。
- 可以改变噪声的"幅度/高电平"和"偏移/低电平"。

Arb——任意波

提供频率从 1µHz 至 40MHz 的任意波输出。

- 支持逐点输出模式。
- 可输出内建 150 种波形: 直流、Sinc、指数上升、指数下降、心电图、高斯、半正矢、洛仑兹、脉冲和双音频等。也可以输出 U 盘中存储的任意波形。
- 还可以输出用户在线编辑(16kpts)或通过 PC 软件编辑后下载到仪器中的任意波。
- 选中该功能时,按键背灯将变亮。
- 可改变任意波的"频率/周期"、"幅度/高电平"、"偏移/低电平"和"起始相位"。

Harmonic——谐波

提供频率从 1µHz 至 80MHz 的谐波输出。

- 可输出最高 16 次谐波。
- 可以设置谐波的"谐波次数"、"谐波类型"、"谐波幅度"和"谐波相位"。

User──用户自定义波形键

用户可以将该按键定义为最常用的内建波形或已存波形的快捷键(**Utility** → **用户键**),此后便可以在任意操作界面,按下该键快速打开所需的内建波形并设

置其参数。

15. 模式选择区

Mod——调制

可输出经过调制的波形,提供多种模拟调制和数字调制方式,可产生 AM、FM、PM、ASK、FSK、PSK、BPSK、QPSK、3FSK、4FSK、OSK 和 PWM 调制信号。

● 支持"内部"和"外部"调制源。

Sweep——扫频

可产生"正弦波"、"方波"、"锯齿波"和"任意波(DC除外)"的扫频信号。

- 支持"线性"、"对数"和"步进"3种扫频方式。
- 支持"内部"、"外部"和"手动"3种触发源。
- 提供"标记"功能。
- 选中该功能时,按键背灯将变亮。

Burst——脉冲串

可产生"正弦波"、"方波"、"锯齿波"、"脉冲波"和"任意波(DC 除外)"的脉冲串输出。

- 支持"N循环"、"无限"和"门控"3种脉冲串模式。
- "噪声"也可用于产生门控脉冲串。
- 支持"内部"、"外部"和"手动"3种触发源。
- 选中该功能时,按键背灯将变亮。

注意, 当仪器工作在远程模式时, 该键用于返回本地模式。

16. 返回上一级菜单

该按键用于返回上一级菜单。

17. 快捷键/辅助功能键

Print 打印功能键

执行打印功能,将屏幕以图片形式保存到U盘。

Edit 编辑波形快捷键

该键是"**Arb** → **编辑波形**"的快捷键,用于快速打开任意波编辑界面。

Preset ——恢复预设值

用于将仪器状态恢复到出厂默认值或用户自定义状态(请参考"**还原预设配置**"一节的介绍)。

1-10 DG4000 用户手册

Utility——辅助功能与系统设置

用于设置辅助功能参数和系统参数。 选中该功能时,按键背灯将变亮。

Store——存储功能键

可存储/调用仪器状态或者用户编辑的任意波数据。

- 支持常规文件操作。
- 内置一个非易失性存储器 (C盘),并可外接一个U盘(D盘)。
- 选中该功能时,按键背灯将变亮。

Help——帮助

要获得任何前面板按键或菜单软键的上下文帮助信息,按下该键将其点亮后,再按下你所需要获得帮助的按键。

18.LCD

800×480 TFT 彩色液晶显示器,显示当前功能的菜单和参数设置、系统状态以及提示消息等内容。

注意

通道输出端设有过压保护功能,满足下列条件之一则产生过压保护。

- 仪器幅度设置大于 4Vpp, 输入电压大于±11.25V (±0.1V), 频率小于 10kHz。
- 仪器幅度设置小于等于 4Vpp, 输入电压大于±4.5V (±0.1V), 频率小于 10kHz。
- 产生过压保护时, 仪器屏幕显示提示消息"过载保护, 输出关闭!"。

后面板

DG4000 的后面板布局如下图所示。

图 1-6 DG4000 后面板

1. AC 电源输入

本信号发生器支持的交流电源规格为: 100-240V, 45-440Hz。 电源保险丝: 250V, T2A。

2. LAN

通过该接口将信号发生器连接至局域网中,进行远程控制。本信号发生器符合 LXI-C 类仪器标准,可与其他标准设备快速搭建测试系统,轻松实现系统集成。

3. 防盗锁孔

使用防盗锁 (请用户自行购买) 可将仪器锁定在固定位置。

4. USB Device

通过该接口可连接 PC,通过上位机软件对信号发生器进行控制。

1-12 DG4000 用户手册

5. 10MHz 输入/输出端(10MHz In/Out)

BNC 母头连接器,标称阻抗为 50Ω ,其功能由仪器使用的时钟类型决定。DG4000可以使用内部时钟或外部时钟(参考"**时钟源**"一节的介绍)。

- 若仪器使用内部时钟源,该连接器(用作 10MHz Out)可输出由仪器内部 晶振产生的 10MHz 时钟信号。
- 若仪器使用外部时钟源,该连接器(用作 10MHz In)接收一个来自外部的 10MHz 时钟信号。
- 该连接器通常用于在多台仪器之间建立同步(参考"**同步**"一节的介绍)。

6. CH1 外调制/触发输入端(CH1: Mod/FSK/Trig)

BNC 母头连接器, 标称阻抗为 50Ω, 其功能由 CH1 当前的工作模式决定。

• Mod:

若 CH1 开启 AM、FM、PM、PWM 或 OSK 且使用外部调制源,该连接器接收一个来自外部的调制信号。

• FSK:

若 CH1 开启 ASK、FSK 或 PSK) 且使用外部调制源,该连接器接收一个来自外部的调制信号(可设置该信号的极性)。

• Trig In:

若 CH1 开启扫频或脉冲串功能且使用外部触发源,该连接器接收一个来自外部的触发信号(可设置该信号的极性)。

Trig Out:

若 CH1 开启扫频或脉冲串功能且使用内部或手动触发源,该连接器输出具有指定边沿的触发信号。

7. CH2 外调制/触发输入端(CH2: Mod/FSK/Trig)

BNC 母头连接器,标称阻抗为 50Ω,其功能由 CH2 当前的工作模式决定。

• Mod:

若 CH2 开启 AM、FM、PM、PWM 或 OSK 且使用外部调制源,该连接器接收一个来自外部的调制信号。

• FSK:

若 CH2 开启 ASK、FSK 或 PSK 且使用外部调制源,该连接器接收一个来自外部的调制信号(可设置该信号的极性)。

• Trig In:

若 CH2 开启扫频或脉冲串功能且使用外部触发源,该连接器接收一个来自外部的触发信号(可设置该信号的极性)。

Trig Out:

若 CH2 开启扫频或脉冲串功能且使用内部或手动触发源,该连接器输出具

有指定边沿的触发信号。

8. 外部信号输入端(Counter)

BNC 母头连接器, 标称阻抗为 50Ω, 用于接收频率计测量的外部信号。

1-14 DG4000 用户手册

连接电源

DG4000 支持的交流电源规格为: 100-240V, 45-440Hz。请使用附件提供的电源线将仪器连接至交流电源中(如图 1-7 所示),此时,信号发生器已处于通电状态,前面板左下角的电源键呈呼吸状态。

图 1-7 连接电源

注意

如需更换电源保险丝,请将仪器返厂,由 **RIGOL** 授权的维修人员进行更换。

更换保险丝

如需更换保险丝,请使用仪器指定规格的保险丝,按如下步骤更换:

- 1. 关闭仪器,断开电源,拔去电源线;
- 2. 使用小一字螺丝刀撬出保险丝座;
- 3. 取出保险丝座:
- 4. 更换指定规格的保险丝;
- 5. 重新安装保险丝座。

图 1-8 更换保险丝

警告

为避免电击,更换保险丝之前,请确保仪器已关闭并且已断开与电源的连接,且确保更换的保险丝规格符合要求。

1-16 DG4000 用户手册

用户界面

DG4000 用户界面同时显示两个通道的参数和波形。下图所示为 CH1 和 CH2 均选择 正弦波时的界面。基于当前功能的不同,界面显示的内容会有所不同。

图 1-9 用户界面

1. 当前功能

显示当前已选中功能的名称。例如: "Sine"表示当前选中"正弦波"功能, "ArbEdit"表示当前选中"任意波编辑"功能。

2. 状态栏

基于当前的配置,状态栏将显示如下的指示符。

以 仪器正确连接至局域网,点亮该标识。

仪器工作于远程模式时,点亮该标识。

仪器检测到 U 盘时,点亮该标识。

3. 通道状态

CH1 和 CH2 的显示区域,指示当前通道的选择状态和开关状态(ON/OFF)。

当前已选中通道的显示区域高亮显示; 当前已打开通道的开关状态为 "ON"。

注意:

"选中"通道不同于"打开"通道。"选中 CH1"表示用户可以配置 CH1 的参数,此时 CH1 背灯变亮;"打开 CH1"表示 CH1 以当前配置输出波形,此时 Output1 背灯变亮。

4. 通道配置

显示各通道当前的输出配置,包括输出阻抗的类型、工作模式、调制或触发源的类型。

● 输出阻抗

高阻:显示"HighZ"

负载:显示负载电阻值,默认为"50Ω"。

● 工作模式

调制:显示"Mod"

扫频:显示 "Sweep"

脉冲串:显示"Burst"

● 调制类型/触发源

内部调制或内部触发源:显示"Internal"

外部调制或外部触发源:显示 "External"

手动触发源: 显示 "Manual"

5. 频率

显示各通道当前波形的频率。按相应的 **频率** 菜单后,通过数字键盘或旋钮改变该参数。当前可设置的参数会突出显示,数字上方的亮点表示光标处于当前位。

6. 幅度

显示各通道当前波形的幅度。按相应的 **幅度** 菜单后,通过数字键盘或旋钮改变该参数。当前可设置的参数会突出显示,数字上方的亮点表示光标处于当前位。

7. 偏移

显示各通道当前波形的直流偏移。按相应的 偏移 菜单后,通过数字键盘或旋钮改变该参数。当前可设置的参数会突出显示,数字上方的亮点表示光标处于当前位。

1-18 DG4000 用户手册

8. 相位

显示各通道当前波形的相位。按相应的 **起始相位** 菜单后,通过数字键盘或旋钮改变该参数。当前可设置的参数会突出显示,数字上方的亮点表示光标处于 当前位。

9. 波形

显示各通道当前选择的波形。

10. 频率计

仅在开启频率计功能时存在。显示频率计当前的测量状态,包括简要和详细两种显示模式。

- 简要:仅显示频率值、周期值和测量次数。
- 详细:显示当前频率计的配置、5 种测量值(频率、周期、占空比、正脉 宽和负脉宽)和测量次数。

11.菜单

显示当前已选中功能对应的操作菜单。例如:图中显示"正弦波"功能菜单。

12. 菜单页码

显示当前菜单的页数和页码,如"1 of 1"或"1 of 2"。

参数设置方法

参数设置可通过数字键盘或旋钮和方向键完成。

数字键盘

数字键盘由以下几部分组成:

● 数字键

数字键 0~9 用于直接输入所需的参数 值。

● 小数点

按下该键, 当前光标处插入一个小数点"."。

● 符号键

符号键 "+/-" 用于改变参数的符号。首次按下该键,参数符号为 "-",再次按下该键,符号切换为 "+"。

注意,在编辑文件名时时,符号键用于切换大小写。

● Enter 键

用户输入参数过程中,按下该键将结束参数输入,并为参数添加默认的单位值。

Cancel 键

- (1) 参数输入过程中,按下该键将清除活动功能区的输入,同时退出参数输入 状态。
- (2) 关闭活动功能区显示。

● Del 键

- (1) 参数输入过程中, 按下该键将删除光标左边的字符。
- (2) 在编辑文件名时,按下该键删除已输入的字符信息。

1-20 DG4000 用户手册

方向键和旋钮

方向键功能包括:

1. 在参数输入时,方向键用于移动光标以选择当前编辑的位。

2. 在编辑文件名时,方向键用于移动光标的位置。

旋钮功能包括:

在参数可编辑状态,旋转旋钮将以指定 步进增大(顺时针)或减小(逆时针) 参数。

- 在编辑文件名时,旋钮用于选中软键盘中不同的字符。
- 在 Arb → 选择波形 → 内建波形 中和 Utility → 用户键 中,旋钮用于选中不同的任意波。
- 在存储与调用功能中,旋钮用于选择文件保存的位置或用于选择需要读取的文件。

使用内置帮助系统

要获得任何前面板按键或菜单软键的帮助信息,首先按下 Help 键将其点亮,然后再按下你所需要获得帮助的按键。

连续按两次Help键打开如下常用帮助信息。

- 1. 查看显示的最后一条信息
- 2. 查看远程命令错误队列
- 3. 获得任意键的帮助
- 4. 基本波形输出
- 5. 任意波形输出
- 6. 调制波形输出
- 7. 扫频输出
- 8. 突发输出
- 9. 存储管理
- 10. 同步多台仪器
- 11.与 DS 无缝互联
- 12.RIGOL 技术支持

1-22 DG4000 用户手册

使用防盗锁

使用防盜锁(选件)可将本仪器锁在固定位置。如下图所示,将锁对准仪器上的锁 孔插入,顺时针转动钥匙以锁定仪器,然后拔出钥匙。

图 1-10 防盗锁孔

使用机架

本仪器可安装到19英寸标准机柜内。

部件清单

DG4000 机架(如图 1-11 所示)的部件清单如下表所示。其中,"标号"一栏与图 1-12、图 1-13 对应。

表 1-1 机架部件清单

标号	名称	数量	零件编号	描述
1-1	前面板	1	RM-DG4-01	
1-2	底板	1	RM-DG4-02	
1-3	左侧板	1	RM-DG4-03	
1-4	右侧板	1	RM-DG4-04	
1-5	压脚	2	RM-DG4-05	
1-6	固定件	2	RM-DG4-06	
2-1	M4 螺钉	18	RM-SCREW-01	M4 x 6 十一字切沟盘头机械牙螺钉
2-2	M6 螺钉	4	RM-SCREW-02	M6 x 20 十一字切沟盘头机械牙螺钉
2-3	M6 螺母	4	RM-SCREW-03	M6 x 4 带定位锁片机械牙方螺母

安装工具

推荐使用 PH2 号头十字改锥。

安装空间

本机架安装到机柜内须满足如下要求:

- 机柜必须为 19 英寸标准机柜。
- 机柜至少有 4U 的空间(177.8 mm)。
- 机柜内深度至少 180 mm。

仪器上架后的尺寸如下图所示:

1-26 DG4000 用户手册

安装步骤

仅授权人员方可执行安装操作,不正确的操作可能导致仪器损坏或者不能正确安装 到机架内。

1. 安装左右侧板:左右侧板的卡位对准底板的豁口后插入底板,用 4 颗 M4 螺钉将其固定。

2. 安装机架前面板:将前面板用 6 颗 M4 螺钉固定在上一步装好的框架上。

1-28 DG4000 用户手册

3. 固定仪器脚部:用两个压脚将仪器紧扣在底板上,用 4 颗 M4 螺钉将其固定。

4. 固定仪器上部:将两个固定件压紧仪器上部,用 4 颗 M4 螺钉固定。

5. 装入机柜: 用 4 颗 M6 螺钉和 4 颗 M6 方螺母将固定好仪器的机架安装在 19 英 寸标准机柜内。

6. 安装后注意:机架占 4U 高度,箭头所指的孔为机架的安装孔,注意对准安装。

第 2 章 输出基本波形 RIGOL

第2章 输出基本波形

DG4000 系列函数/任意波形发生器可从单通道或同时从双通道输出基本波形,包括正弦波、方波、锯齿波、脉冲和噪声。开机时,仪器默认输出一个频率为 1kHz,幅度为 5Vpp 的正弦波。本章介绍如何配置仪器输出各类基本波形。

本章内容如下:

- 选择通道
- 选择基本波形
- 设置频率
- 设置幅度
- 设置 DC 偏移电压
- 设置起始相位
- 同相位
- 设置占空比
- 设置对称性
- 设置脉冲参数
- 启用通道输出
- 输出基本波形实例

RIGOL 第 2 章 输出基本波形

选择通道

用户可以配置 DG4000 从单通道或同时从双通道输出基本波形。配置波形参数之前,请选择所需的通道。开机时,仪器默认选中 CH1。

按下前面板 **CH1** 或 **CH2** 按键,用户界面中对应的通道区域变亮。此时,您可以配置所选通道的波形和参数。

注意, CH1 与 CH2 不可同时被选中。您可以首先选中 CH1, 完成波形和参数的配置后, 再选中 CH2 进行配置。

2-2 DG4000 用户手册

第 2 章 输出基本波形 RIGOL

选择基本波形

DG4000 可输出 5 种基本波形,包括正弦波、方波、锯齿波、脉冲和噪声。开机时,仪器默认选中正弦波。

1. 正弦波

按下前面板 **Sine** 按键选择正弦波,按键背灯变亮。此时,用户界面右侧显示 "Sine"及正弦波的参数设置菜单。

2. 方波

按下前面板 **Square** 按键选择方波,按键背灯变亮。此时,用户界面右侧显示"Square"及方波的参数设置菜单。

3. 锯齿波

按下前面板 **Ramp** 按键选择锯齿波,按键背灯变亮。此时,用户界面右侧显示"Ramp"及锯齿波的参数设置菜单。

4. 脉冲

按下前面板 **Pulse** 按键选择脉冲,按键背灯变亮。此时,用户界面右侧显示 "Pulse"及脉冲的参数设置菜单。

5. 噪声

按下前面板 **Noise** 按键选择噪声,按键背灯变亮。此时,用户界面右侧显示 "Noise" 及噪声的参数设置菜单。

RIGOL 第2章 输出基本波形

设置频率

频率是基本波形最重要的参数之一。基于不同的型号和不同的波形,频率的可设置范围不同,请参考"**技术参数**"中"频率特性"的说明。默认值为 1kHz。

屏幕显示的频率为默认值或之前设置的频率。当仪器功能改变时,若该频率在新功能下有效,则仪器依然使用该频率;若该频率在新功能下无效,仪器则弹出提示消息,并自动将频率设置为新功能的频率上限值。

按 频率/周期 软键使"频率"突出显示。此时,使用数字键盘或方向键和旋钮输入频率的数值,然后在弹出的单位菜单中选择所需的单位。

- 频率数值的输入方法请参考"**参数设置方法**"中的介绍。
- 可选的频率单位有: MHz、kHz、Hz、mHz 和 μHz。
- 再次按下此软键将切换至周期设置,此时"周期"突出显示。
- 可选的周期单位有: sec、msec、µsec 和 nsec。

2-4 DG4000 用户手册

第 2 章 输出基本波形 RIGOL

设置幅度

幅度的可设置范围受"阻抗"和"频率/周期"设置的限制,请参考"**技术参数**"中"输出特性"的说明。默认值为 5Vpp。

屏幕显示的幅度为默认值或之前设置的幅度。当仪器配置改变时(如频率),若该幅度有效,则仪器依然使用该幅度。若该幅度无效,仪器则弹出提示消息,并自动将幅度设置为新配置的幅度上限值。您也可以使用"高电平"或"低电平"设置幅度。

按 **幅度/高电平** 软键使"幅度"突出显示。此时,使用数字键盘或方向键和旋钮 输入幅度的数值,然后在弹出的单位菜单中选择所需的单位。

- 幅度数值的输入方法请参考"**参数设置方法**"中的介绍。
- 可选的幅度单位有: Vpp、mVpp、Vrms、mVrms 和 dBm (高阻时无效)。
- 再次按下此软键将切换至高电平设置,此时"高电平"突出显示。
- 可选的高电平单位有: V 和 mV。

单位切换

幅度单位 Vpp 表示信号峰峰值的单位, Vrms 表示信号有效值的单位。仪器默认使用 Vpp。您可以从前面板快速切换当前幅度的单位。

对于不同的波形, Vpp 与 Vrms 之间的关系不同。以正弦波为例, 二者之间的关系由下图所示。

根据上图,可以推导出 Vpp 与 Vrms 之间换算关系满足如下关系式:

$$Vpp = 2\sqrt{2}Vrms$$

例如,将 2Vpp 转换成以 Vrms 为单位对应的值,按数字键盘中的 . 键,选择 Vrms 菜单,则对于正弦波,转换后的值为 707.2mVrms。

RIGOL 第2章 输出基本波形

设置DC偏移电压

直流偏移电压的可设置范围受"阻抗"和"幅度/高电平"设置的限制,请参考"**技术参数**"中"输出特性"的说明。默认值为 **0V**_{DC}。

屏幕显示的 DC 偏移电压为默认值或之前设置的偏移。当仪器配置改变时(如阻抗),若该偏移有效,则仪器依然使用该偏移。若该偏移无效,仪器则弹出提示消息,并自动将偏移设置为新配置的偏移上限值。

按 **偏移/低电平** 软键使"偏移"突出显示。此时,使用数字键盘或方向键和旋钮输入偏移的数值,然后在弹出的单位菜单中选择所需的单位。

- 偏移数值的输入方法请参考"**参数设置方法**"中的介绍。
- 可选的直流偏移电压单位有: V_{DC} 和 mV_{DC}。
- 再次按下此软键将切换至低电平设置,此时"低电平"突出显示。
- 可选的低电平单位有: V 和 mV。

2-6 DG4000 用户手册

第2章 输出基本波形 RIGOL

设置起始相位

起始相位的可设置范围为 0°至 360°。默认值为 0°。

屏幕显示的起始相位为默认值或之前设置的相位。改变仪器功能时,新功能依然使 用该相位。

按 **起始相位** 软键使其突出显示。此时,使用数字键盘或方向键和旋钮输入相位的数值,然后在弹出的单位菜单中选择单位"°"。相位数值的输入方法请参考"**参数** 设置方法"中的介绍。

RIGOL 第2章 输出基本波形

同相位

DG4000 系列双通道函数/任意波形发生器提供同相位功能。按下该键后,仪器将重新配置两个通道,使其按照设定的频率和相位输出。

对于同频率或频率呈倍数关系的两个信号,通过该操作可以使其相位对齐。假定 CH1 输出 1kHz,5Vpp,0°的正弦波,CH2 输出 1kHz,5Vpp,180°的正弦波。用示波器采集两个通道的波形,并使其稳定显示,切换信号发生器中的输出开关,可以发现示波器上显示的两个波形相位差不再是180°。此时,按下信号发生器的**同相位**软键,示波器中的波形将呈180°相位差显示,而不需人为调整信号源中的初始相位。

图 2-1 同相位前

图 2-2 同相位后

注意: 两个通道中任一通道处于调制模式时,同相位 菜单置灰禁用。

2-8 DG4000 用户手册

第2章 输出基本波形 RIGOL

设置占空比

占空比定义为,方波波形高电平持续的时间所占周期的百分比,如下图所示。该参数仅在选中方波时有效。

占空比的可设置范围受"频率/周期"设置的限制,请参考"**技术参数**"中"信号特性"的说明。默认值为50%。

按 **占空比** 软键使其突出显示。此时,使用数字键盘或方向键和旋钮输入数值,然后在弹出的单位菜单中选择单位"%"。数值的输入方法请参考"参数设置方法"中的介绍。

RIGOL 第 2 章 输出基本波形

设置对称性

对称性定义为,锯齿波波形处于上升期间所占周期的百分比,如下图所示。该参数仅在选中锯齿波时有效。

对称性的可设置范围为0%至100%。默认值为50%。

按 对称性 软键使其突出显示。此时,使用数字键盘或方向键和旋钮输入数值,然后在弹出的单位菜单中选择单位"%"。数值的输入方法请参考"参数设置方法"中的介绍。

2-10 DG4000 用户手册

第 2 章 输出基本波形 RIGOL

设置脉冲参数

欲输出脉冲波,除了配置前面介绍的基本参数(如频率、幅度、DC 偏移电压、起始相位、高电平、低电平和同相位)之外,您还需设置"脉宽/占空比"、"上升沿""下降沿"、"延迟"和"恢复脉冲延时"等参数。

脉宽/占空比

脉宽定义为,从脉冲上升沿幅度的 50%阈值处到下一个下降沿幅度的 50%阈值处 之间的时间间隔,如上图所示。

脉宽的可设置范围受"最小脉冲宽度"和"脉冲周期"的限制(关于"最小脉冲宽度"和"脉冲周期"的范围,请参考"技术参数"中"信号特性"的说明)。默认值为500µs。

- 脉宽 ≥ 最小脉冲宽度
- 脉宽 ≤ 脉冲周期 2 × 最小脉冲宽度

脉冲占空比定义为,脉宽占脉冲周期的百分比。

脉冲占空比与脉宽相关联,修改其中一个参数将自动修改另一个参数。脉冲占空比 受"**最小脉冲宽度**"和"**脉冲周期**"的限制。

- 脉冲占空比 ≥ 100 × 最小脉冲宽度 ÷ 脉冲周期
- 脉冲占空比 ≤ 100 × (1 2 × 最小脉冲宽度 ÷ 脉冲周期)

按 **脉宽/占空比** 软键使"脉宽"突出显示。此时,使用数字键盘或方向键和旋钮输入数值,然后在弹出的单位菜单中选择所需的单位。

- 数值的输入方法请参考"**参数设置方法**"中的介绍。
- 可选的脉宽单位有: sec、msec、usec 和 nsec。
- 再次按下此软键可切换至占空比的设置(此时已自动设为 20%)。

上升/下降边沿时间

上升边沿时间定义为,脉冲幅度从 10%阈值上升至 90%阈值所持续的时间;下降 边沿时间定义为,脉冲幅度从 90%阈值下降至 10%阈值所持续的时间,如上图所示。

上升/下降边沿时间的可设置范围受当前指定的脉宽限制,如下式所示。当所设置的数值超出限定值,DG4000 自动调整边沿时间以适应指定的脉宽。

上升/下降边沿时间 ≤ 0.625 × 脉宽

按 上升沿 软键或 下降沿 软键,使用数字键盘或方向键和旋钮输入数值,然后在 弹出的单位菜单中选择所需的单位。

- 数值的输入方法请参考"**参数设置方法**"中的介绍。
- 可选的脉宽单位有: sec、msec、µsec 和 nsec。
- 上升边沿时间和下降边沿时间相互独立,允许用户单独设置。

延时

延时定义为通道输出相对于另一通道输出的延迟时间。延时的可设置范围为 0s 至脉冲周期。默认值为 0s。

2-12 DG4000 用户手册

第 2 章 输出基本波形 RIGOL

按 延时 软键使其突出显示。此时,使用数字键盘或方向键和旋钮输入数值,然后在弹出的单位菜单中选择所需的单位。

- 数值的输入方法请参考 "**参数设置方法**"中的介绍。
- 可选的延时单位有: sec、msec、µsec 和 nsec。

恢复延时

按 **Pulse**,使用菜单翻页键 **Y** 打开第 2/2 页菜单,按 **恢复延时** 软键,信号发生器将"对齐"两个通道之间的延时。假定 CH1 与 CH2 输出参数相同的脉冲波。用示波器采集两个通道的波形,并使其稳定显示,切换信号发生器中的输出开关,可以发现示波器上显示的两个波形存在一定的延时。此时,按下信号发生器的 **恢复延时** 软键,示波器中的波形将呈无延时显示。

图 2-3 恢复延时前

RIGOL 第 2 章 输出基本波形

图 2-4 恢复延时后

注意: 在两个通道中, 任一通道处于调制模式时, 对应的 恢复延时 菜单置灰禁用。

2-14 DG4000 用户手册

第 2 章 输出基本波形 RIGOL

启用通道输出

完成已选波形的参数设置之后,您需要开启通道以输出波形。

注意,开启通道之前,您还可以使用 Utility 功能键下的通道设置菜单(CH1 设置 或 CH2 设置)设置与该通道输出相关的参数,如阻抗、极性等,请参考"通道设置"一节的介绍。

按下前面板 Output1 按键或/和 Output2 按键,按键背灯变亮,仪器从前面板 [Output1] 或/和 [Output2] 连接器输出已配置的波形。

输出基本波形实例

本节配置信号发生器从 CH1 输出一个脉冲波形, 频率为 1.5MHz, 幅度为 500mVpp, DC 偏移为 5mV_{DC}, 脉宽为 200ns, 上升沿时间为 75ns, 下降沿时间为 100ns, 延时为 5ns。

- 1. 按前面板 **CH1** 按键,背灯变亮,选中 CH1。
- 2. 按前面板 Pulse 按键,背灯变亮,选中 Pulse 波形。
- 3. 按 **频率/周期** 软键使"频率"突出显示,数字上方的亮点表示光标处于当前位(见下图)。使用数字键盘或方向键和旋钮输入频率的数值"1.5"。在弹出的菜单选择所需的单位"MHz"。

图 2-5 设置波形参数

- 4. 按 **幅度/高电平** 软键使"幅度"突出显示,数字上方的亮点表示光标处于当前位。使用数字键盘或方向键和旋钮输入幅度的数值"500"。在弹出的菜单选择所需的单位"mVpp"。
- 5. 按 **偏移/低电平** 软键使"偏移"突出显示,数字上方的亮点表示光标处于当前位。使用数字键盘或方向键和旋钮输入偏移的数值"5"。在弹出的菜单选择所需的单位"mV_{DC}"。

第2章 输出基本波形 RIGOL

6. 按 **脉宽/占空比** 软键使"脉宽"突出显示,数字上方的亮点表示光标处于当前位。使用数字键盘或方向键和旋钮输入数值"200"。在弹出的菜单选择单位"nsec"。此时,脉冲占空比随之改变。

- 7. 按**上升沿**软键使"上升沿"突出显示,数字上方的亮点表示光标处于当前位。使用数字键盘或方向键和旋钮输入数值"75"。在弹出的菜单选择单位"nsec"。按**下降沿**软键使"下降沿"突出显示,数字上方的亮点表示光标处于当前位。使用数字键盘或方向键和旋钮输入数值"100"。在弹出的菜单选择单位"nsec"。
- 8. 按 **延时** 软键使其突出显示,数字上方的亮点表示光标处于当前位。使用数字 键盘或方向键和旋钮输入数值 "5"。在弹出的菜单选择单位 "nsec"。
- 9. 按前面板 **Output1** 按键打开 CH1 的输出。此时,CH1 输出具有指定参数的 波形。将 CH1 输出端连接到示波器可以观察到如下图所示波形。

图 2-6 输出脉冲波形

第3章 输出任意波 RIGOL

第3章 输出任意波

DG4000 内建任意波形多达 150 种,存储在仪器内部非易失性存储区,并且,允许用户存储 10 个自定义任意波形至非易失性存储区,1 个自定义任意波形至易失性存储区。用户还可以将自定义任意波形存储至外部存储区(如 U 盘)。用户自定义波形可以包含 1 (DC 电压)至 16384 (16k) 个数据点,即 1pts 至 16kpts。

DG4000 可从单通道或同时从双通道输出仪器内建和用户自定义的任意波形。本章介绍如何配置仪器输出任意波形。

本章内容如下:

- 启用任意波功能
- 逐点输出模式
- 选择任意波
- 创建任意波
- 编辑任意波

RIGOL 第3章 输出任意波

启用任意波功能

- 按 Arb 键启用任意波功能, 仪器打开任意波操作菜单。
- 1. 频率/周期:设置输出任意波的"频率/周期"。
- 2. 幅度/高电平: 设置任意波输出的"幅度/高电平"。
- 3. 偏移/低电平: 设置任意波输出的"偏移/低电平"。
- 4. 起始相位:设置任意波输出的"起始相位"。
- 5. 同相位:参考"同相位"中的介绍。
- 6. 逐点输出: 启用任意波逐点输出模式。
- 7. 选择波形: 选择仪器内部或外部存储器中的任意波。
- 8. **创建波形:** 用户可自定义 16kpts 的任意波。
- 9. 编辑波形:编辑已存储的任意波。

请参考"**输出基本波形**"配置通道的参数和输出。本章将对"逐点输出"、"选择波形"、"创建波形"和"编辑波形"进行重点说明。

提示

用户还可以按前面板 **User** 键快速设置任意波的参数,包括频率/周期、幅度/高电平、偏移/低电平、起始相位和同相位。此时,对应通道的输出波形为 **Utility →** 用户键 下定义的波形(参考"用户自定义波形键"一节的介绍)。

3-2 DG4000 用户手册

第3章 输出任意波 RIGOL

逐点输出模式

DG4000 支持逐点输出任意波形。按 **Arb** 键打开任意波设置菜单,按 **逐点输出** 软 键打开任意波的逐点输出模式。

逐点输出模式下,信号发生器自动根据波形长度(16,384)和采样率计算输出信号的频率(30.517578125kHz)。信号发生器固定以该频率逐个输出波形点。逐点输出模式可以防止重要的波形点丢失。

选择任意波

DG4000 允许用户选择仪器内部或外部存储器中的任意波形进行输出。按 **Arb** 键,使用菜单翻页键 ▼ 打开第 2/2 页菜单,按 **选择波形** 软键选择仪器"内建波形"、"已存波形"或"易失波形"输出。

内建波形

选择 DG4000 内建的 150 多种任意波形,如下表所示。按 **内建波形** ,选择一个类别("常用"、"工程"、"分段调制"、"生物电"、"医疗"、"标准"、"数学"、"三角函数"、"反三角"或"窗函数"),界面显示对应的波形,旋转旋钮选择所需的波形,使用菜单翻页键 ▼ 打开第 2/2 页菜单,按 **选择** ,选中指定的波形。

表 3-1 内建波形表

名称	说明
常用	
DC	直流电压
AbsSine	正弦绝对值
AbsSineHalf	半正弦绝对值
AmpALT	增益振荡曲线
AttALT	衰减振荡曲线
GaussPulse	高斯脉冲
NegRamp	倒三角
NPulse	负脉冲

RIGOL 第3章 输出任意波

PPulse	正脉冲		
SineTra	Sine-Tra 波形		
SineVer	Sine-Ver 波形		
StairDn	阶梯下降		
StairUD	阶梯上升/下降		
StairUp	阶梯上升		
Trapezia	梯形		
工程			
BandLimited	带限信号		
BlaseiWave	爆破震动"时间-振速"曲线		
Butterworth	巴特沃斯滤波器		
Chebyshev1	I型切比雪夫滤波器		
Chebyshev2	II型切比雪夫滤波器		
Combin	组合函数		
CPulse	C-Pulse 信号		
CWPulse	CW 脉冲信号		
DampedOsc	阻尼振荡"时间-位移"曲线		
DualTone	双音频信号		
Gamma	Gamma 信号		
GateVibar	闸门自激振荡信号		
LFMPulse	线性调频脉冲信号		
MCNoise	机械施工噪声		
Discharge	镍氢电池放电曲线		
Pahcur	直流无刷电机电流波形		
Quake	地震波		
Radar	雷达信号		
Ripple	电源纹波		
RoundHalf	半球波		
RoundsPM	RoundsPM 波形		
StepResp	阶跃响应信号		
SwingOsc	秋千振荡动能-时间曲线		
TV	电视信号		
Voice	语音信号		
分段调制			
AM	正弦分段调幅波		
FM	正弦分段调频波		

第3章 输出任意波 RIGOL

PFM	脉冲分段调频波
PM	正弦分段调相波
PWM	脉宽分段调频波
生物电	
Cardiac	心电信号
EOG	眼电图
EEG	脑电图
EMG	肌电图
Pulseilogram	常人脉搏曲线
ResSpeed	常人呼气流速曲线
医疗	
LFPulse	低频脉冲电疗波形
Tens1	神经电刺激疗法波形 1
Tens2	神经电刺激疗法波形 2
Tens3	神经电刺激疗法波形 3
标准	
Ignition	汽车内燃机点火波形
ISO16750-2 SP	具有振荡的汽车启动剖面图
ISO16750-2 VR	重新设置时,汽车的工作电压剖面图
ISO7637-2 TP1	由于切断电源导致的汽车瞬变现象
ISO7637-2 TP2A	由于配线中的电感导致的汽车瞬变现象
ISO7637-2 TP2B	由于启动转换关闭导致的汽车瞬变现象
ISO7637-2 TP3A	由于转换导致的汽车瞬变现象
ISO7637-2 TP3B	由于转换导致的汽车瞬变现象
ISO7637-2 TP4	启动过程中的汽车工作剖面图
ISO7637-2 TP5A	由于切断电池电源导致的汽车瞬变现象
ISO7637-2 TP5B	由于切断电池电源导致的汽车瞬变现象
SCR	SCR 烧结温度发布图
Surge	浪涌信号
数学	
Airy	Airy 函数
Besselj	第Ⅰ类贝塞尔函数
Bessely	第Ⅱ 类贝塞尔函数
Cauchy	柯西分布
Cubic	立方函数
Dirichlet	狄利克雷函数

RIGOL 第3章 输出任意波

Erf	误差函数
Erfc	补余误差函数
ErfcInv	反补余误差函数
ErfInv	反误差函数
ExpFall	指数下降函数
ExpRise	指数上上函数
Gauss	高斯分布,或称正态分布
HaverSine	半正矢函数
Laguerre	四次拉盖尔多项式
Laplace	拉普拉斯分布
Legend	五次勒让德多项式
Log	以10为底的对数函数
LogNormal	对数正态分布
Lorentz	洛伦兹函数
Maxwell	麦克斯韦分布
Rayleigh	瑞利分布
Versiera	箕舌线
Weibull	韦伯分布
ARB_X2	平方函数
三角函数	
CosH	双曲余弦
CosInt	余弦积分
Cot	余切函数
CotHCon	凹陷的双曲余切
CotHPro	凸起的双曲余切
CscCon	凹陷的余割
CscPro	凸起的余割
CscHCon	凹陷的双曲余割
CscHPro	凸起的双曲余割
RecipCon	凹陷的倒数
RecipPro	凸起的倒数
SecCon	凹陷的正割
SecPro	凸起的正割
SecH	双曲正割
Sinc	Sinc 函数
SinH	双曲正弦

第3章 输出任意波 RIGOL

SinInt	正弦积分	
Sqrt	平方根函数	
Tan	正切函数	
TanH	双曲正切	
反三角		
ACos	反余弦函数	
ACosH	反双曲余弦函数	
ACotCon	凹陷的反余切函数	
ACotPro	凸起的反余切函数	
ACotHCon	凹陷的反双曲余切函数	
ACotHPro	凸起的反双曲余切函数	
ACscCon	凹陷的反余割函数	
ACscPro	凸起的反余割函数	
ACscHCon	凹陷的反双曲余割函数	
ACscHPro	凸起的反双曲余割函数	
ASecCon	凹陷的反正割函数	
ASecPro	凸起的反正割函数	
ASecH	反双曲正割函数	
ASin	反正弦函数	
ASinH	反双曲正弦函数	
ATan	反正切函数	
ATanH	反双曲正切函数	
窗函数		
Bartlett	巴特利特窗	
BarthannWin	修正的巴特利特窗	
Blackman	布莱克曼窗	
BlackmanH	BlackmanH 窗	
BohmanWin	BohmanWin 窗	
Boxcar	矩形窗	
ChebWin	切比雪夫窗	
FlattopWin	平顶窗	
Hamming	汉明窗	
Hanning	汉宁窗	
Kaiser	凯塞窗	
NuttallWin	最小四项布莱克曼-哈里斯窗	
ParzenWin	Parzen 窗	

RIGOL 第3章 输出任意波

TaylorWin	Taylaor 窗	
Triang	三角窗,也称 Fejer 窗	
TukeyWin	Tukey 窗	

已存波形

选择内部非易失存储器(C 盘)或外部存储器(D 盘)中的波形。按下该软键后将打开存储与调用界面,同时前面板的 **Store** 键灯变亮。此时,请选择并读取所需的任意波文件,具体请参考"**存储与调用**"一章中的介绍。读取完毕后,当前易失性存储空间中的数据将改变,此时请按 **Arb** 键回到任意波设置界面。

易失波形

选择当前易失性存储空间中的波形数据。注意,如果当前易失性存储空间中没有数据,则该菜单不可用。此时,您可以选择"**内建波形**"或"**已存波形**"中的一个波形,或者通过"**创建波形**"来填充易失性存储空间。

选择"易失波形"后,用户还可以使用 **编辑波形** 菜单编辑易失波形。新的波形数据将覆盖易失性存储器中的原有数据。您也可以将其保存到非易失性存储器中。

注意,只有在按下 **Output1** 或/和 **Output2** ,按键背灯变亮之后,仪器才会从对应的输出端输出指定的任意波。

3-8 DG4000 用户手册

第 3 章 输出任意波 RIGOL

创建任意波

按 **Arb** 键,使用菜单翻页键 ▼ 打开第 2/2 页菜单,然后按 **创建波形** 软键打开任意波创建菜单。

1. 循环周期

按下该菜单软键后,可通过数字键盘或方向键和旋钮设置新波形的循环周期。循环周期即编辑的波形的边界时间值,可设置范围为 25.0ns 至 1Ms。

注意,在波形中,最后一个可定义点的时间值必须小于指定的循环周期。

2. 电平上限

按下该菜单软键后,可通过数字键盘或方向键和旋钮设置新波形的电平上限。电平上限即编辑波形时可以设置的最大电压。电平上限必须大于当前指定的"电平下限"目小于或等于+5V(50Ω)。

3. 电平下限

按下该菜单软键后,可通过数字键盘或方向键和旋钮设置新波形的电平下限。 电平下限即编辑波形时可以设置的最小电压。电平下限必须大于或等于-5V (50Ω)且小于当前指定的"电平上限"。

4. 初始化点数

当创建新波形时,波形编辑器最初会自动建立一个具有两个点的波形。默认情况下,点 1 固定在 0s 处,点 2 固定在循环周期的一半处,并且两个点的电平值都等于"电平下限"。按下该菜单软键后,可通过数字键盘或方向键和旋钮设置新波形的初始化点数。DG4000 允许用户创建 1 至 16384 (16K) 点的任意波形。设定初始化点数之后,如有需要,仪器允许用户"插入"或"删除"点。

5. 插值

按下该菜单软键启用或禁用在波形的定义点之间的插值方式。

- **插值关闭:** 波形编辑器将在两点之间保持恒定的电压电平并建立一个阶梯 状的波形。
- 线性插值:波形编辑器会用一条直线将两个定义的点连接起来。

6. 点编辑

通过为每个波形点指定时间和电压值来定义波形。按下该菜单软键进入"点编

RIGOL 第3章 输出任意波

辑"界面。

● **点数:**设置所需编辑点的 ID。默认编辑点 ID 为 1,用户可以通过数字键盘或方向键和旋钮修改该参数。

- **时间:** 设置当前点在一个周期中的时间。该设置受前一个编辑点和后一个编辑点时间的限制。注意,点 1 的时间固定在 0s。
- **电压:** 设置当前点的电压,单位为 mV 或 V。可设置的电压范围受"电平上限"和"电平下限"的限制。注意,波形编辑器会自动地将波形的最后一个点的电压设置为点 1 的电压,以保证波形的连续性。
- 插入:在当前编辑点和下一编辑点的中点位置插入一个新的波形点。
- **删除:** 从波形中删除当前点,并将剩余点使用当前插值方式连接起来。注意,不能删除点 1。

7. 块编辑

通过编辑起始点和终止点的时间值和电压值,并通过线性插值自动设置中间各点来定义波形。按 插值 软键选择"线性插值"后,再按下该菜单软键进入"块编辑"界面。注意,当 插值 软键未选择"线性插值"时,该菜单置灰禁用。

- **X1:**设置块起始点的 ID (即块起始点的时间位置)。**X1** 应小于或等于 **X2**, 且小于初始化点数。
- **Y1:** 设置块起始点的电压,单位为 mV 或 V。可设置的电压范围受"电平上限"和"电平下限"的限制。
- **X2**:设置块终止点的 ID (即块终止点的时间位置)。X2 应小于或等于初始 化点数,且大于或等于 X1。
- **Y2:** 设置块终止点的电压值,单位为 mV 或 V。可设置的电压范围受"电平上限"和"电平下限"的限制。
- 执行:按照当前的设置自动编辑起始点和终止点之间的各个点。
- **删除:** 从波形中删除 X1 与 X2 之间的可编辑点,并用插值方式连接起始和 终止点。注意,不能删除点 1。

8. 保存

当前创建的波形默认存储在易失性存储空间中。如果创建波形之前该空间已存在波形数据,则当前创建的波形将其覆盖。您可以将创建的波形存储到仪器内部非易失性存储器(C盘)或外部存储器(D盘)中。按下 保存 软键进入文件保存界面即可将创建的波形保存(参考"存储与调用"一章)。

3-10 DG4000 用户手册

第 3 章 输出任意波 RIGOL

提示

用户还可以使用 PC 软件编辑任意波形,通过以下两种方式保存到仪器内部或外部存储器中:

◆ 使用 SCPI 命令(具体请参考本产品的《编程手册》)。

:TRACe:DAC VOLATILE, <binary_block_data>

◆ 通过文件管理系统将 U 盘 (仪器中识别为"D 盘")中的波形文件转存到仪器本地存储器 (C 盘)中。

实例: 点编辑

下面用实例介绍如何使用"点编辑"的方式创建满足如下条件的任意波。

参数	值
循环周期	12µs
电平上限	4V
电平下限	-2V
插值	线性插值
点 1	Os, OV
点 2	4μs, 4V
点 3	8µs, 0V
点 4	10μs, -2V

操作步骤:

- 1. 按 **Arb** 键并使用菜单翻页键 ▼ 打开第 2/2 页菜单,然后按 **创建波形 → 循 环周期**,使用数字键盘输入"12",并在弹出的菜单中选择单位"µs"。
- 2. 按 电平上限 软键,使用数字键盘输入"4",并在弹出的菜单中选择单位"V"。
- 3. 按 电平下限 软键,使用数字键盘输入"-2",并在弹出的菜单中选择单位"V"。

RIGOL 第3章 输出任意波

4. 按 **初始化点数** 软键,使用数字键盘输入"4"后按 **确定**。注意,此时出现一条-2 V 的电平线。

- 5. 按 插值 软键选择"线性插值"。
- 6. 按 点编辑 进入"点编辑"界面。
 - 1) 按 **点数** 软键,开始定义第一个点(时间默认为 0)。直接按 **电压** 软键, 使用数字键盘输入"0",并在弹出的菜单中选择单位"V"。
 - 2) 再次按 **点数** 软键,使用数字键盘或旋钮选择点 2,然后分别按 **时间** 和 电 压 软键,输入 4us, 4 V。
 - 3) 参考步骤 2)输入上表中的点 3 和 4。
 - **4)** 编辑完所有点后,按 **确认** 软键返回上一级菜单。此时按 **保存** 软键进入 文件保存界面(参考"**存储与调用**"),保存已编辑的任意波。
- 7. 观察已编辑的任意波。

说明:如上图所示,波形编辑器总是从点 1 开始连接至波形的最后一个点的电压电平,以创建一个连续波形。

3-12 DG4000 用户手册

第3章 输出任意波 RIGOL

实例: 块编辑

下面用实例介绍如何使用"块编辑"的方式创建满足如下条件的任意波。

参数	值
循环周期	12µs
电平上限	4V
电平下限	-2V
插值	线性插值
起点	2, 4V
终点	4, -2V

操作步骤:

- 1. 按 **Arb** 键并使用菜单翻页键 ▼ 打开第 2/2 页菜单,然后按 **创建波形 → 循环周期**,使用数字键盘输入"12",并在弹出的菜单中选择单位"µs"。
- 2. 按 **电平上限** 软键,使用数字键盘输入"4",并在弹出的菜单中选择单位"V"。
- 3. 按 **电平下限** 软键,使用数字键盘输入"-2",并在弹出的菜单中选择单位"V"。
- **4.** 按 **初始化点数** 软键,使用数字键盘输入 "4" 后按 **确定**。注意,此时出现一 条-2 V 的电平线。
- 5. 按 插值 软键选择"线性插值"。
- **6**. 按 **块编辑** 进入"块编辑"界面。
 - 1) 按 X1 软键,使用数字键盘输入"2",再按 Y1 软键,输入"4",并在弹出的菜单中选择单位"V"。用同样方法设置 X2 和 Y2。
 - 2) 按 **执行** 软键应用步骤 1)的设置。波形编辑器会自动用直线将起始点(点 2,电平为 4 V)连接至终止点(点 4,电平为-2 V)处,以及自动生成点 1 和点 3 创建连续波形。
 - 3) 编辑完所有点后,按 🧰 键返回上一级菜单。此时按 保存 软键进入文

RIGOL 第3章 输出任意波

件保存界面(参考"存储与调用"),保存已编辑的任意波。

7. 观察已编辑的任意波。

说明:如上图所示,波形编辑器在起始点(点2)和终止点(点4)按当前插值方式插入数值后会自动生成点1和点3,以创建一个连续波形。

3-14 DG4000 用户手册

第 3 章 输出任意波 RIGOL

编辑任意波

用户可以选择存储在内部非易失性存储器或外部存储器中的任意波形进行编辑。

按 **Arb** 键并使用菜单翻页键 ▼ 打开第 2/2 页菜单, 然后按 **编辑波形** 软键打开 任意波编辑菜单。您也可以按前面板 **Edit** 键快速打开该界面。

该菜单仅比 **创建波形** 菜单多了"选择波形"一项,其他菜单功能和操作方法请参考**创建任意波**中的介绍。按 **编辑波形 → 选择波形**,选择需要编辑的波形。

1. 编辑内建波形

选择内建波形中任一种并编辑后,您可以重新保存已编辑的波形,所选择的内建波形不会被覆盖。

2. 编辑已存波形

选择内部非易失存储器(C盘),或者外部存储器(D盘)中的波形并编辑后,您可以覆盖或重新保存所选择的波形。

第 4 章 输出谐波 RIGOL

第4章 输出谐波

DG4000 可作为一款谐波发生器,输出具有指定次数、幅度和相位的谐波,通常应用于谐波检测设备或谐波滤波设备的测试中。本章介绍如何配置仪器使之输出谐波。

本章内容如下:

- 谐波功能概述
- 设置基波参数
- 设置谐波次数
- 选择谐波类型
- 设置谐波幅度
- 设置谐波相位

RIGOL 第 4 章 输出谐波

谐波功能概述

由傅立叶变换理论可知,时域波形是一系列正弦波的叠加,用如下等式表示:

$$f(t) = A_1 \sin(2\pi f_1 t + \varphi_1) + A_2 \sin(2\pi f_2 t + \varphi_2) + A_3 \sin(2\pi f_3 t + \varphi_3) + \dots$$

通常,频率为 f_1 的分量称为基波, f_1 为基波频率, A_1 为基波幅度, φ_1 为基波相位。此外的各分量的频率通常为基波频率的整数倍,称为谐波。频率为基波频率的奇数倍的分量称为奇次谐波,频率为基波频率的偶数倍的分量称为偶次谐波。

DG4000 最高可输出 16 次谐波。选择 CH1 或 CH2 后,按前面板 Harmonic 按键进入谐波设置菜单。您可以设置基波的各参数,选择输出谐波的类型,指定输出谐波的最高次数以及各次谐波的幅度和相位。

谐波参数设置完成后,按下 **Output1** 或/和 **Output2** ,按键背灯变亮,仪器从对应的输出端输出具有指定参数的谐波。

设置基波参数

DG4000 允许用户设置基波的频率、周期、幅度、DC 偏移电压、高电平、低电平、起始相位等参数,同时支持同相位操作。请参考"输出基本波形"一章的介绍设置上述基波参数。

4-2 DG4000 用户手册

第 4 章 输出谐波 RIGOL

设置谐波次数

DG4000 可输出的最高谐波次数不可高于该设定值。

进入谐波设置菜单,按 **谐波次数** 软键,此时,屏幕上"次数"突出显示,使用数字键盘或方向键和旋钮输入相应的数值。谐波次数的可设置范围受仪器最大输出频率和当前的基波频率限制。

- 范围: **2**至 **仪器最大输出频率÷基波频率**,且为整数。
- 最大值为 16。

选择谐波类型

DG4000 可输出偶次谐波、奇次谐波、全部次数谐波或用户自定义次数谐波。进入谐波设置菜单,按 **谐波类型** 软键选择所需的谐波类型。

1. 偶次谐波

按下该软键, 仪器输出基波和偶次谐波。

2. 奇次谐波

按下该软键, 仪器输出基波和奇次谐波。

3. 顺序谐波

按下该软键, 仪器按顺序输出基波和各次谐波。

4. 自定义

按下该软键,用户可自定义输出谐波的次数,最高次数为 16。

使用 16 位二进制数据分别代表 16 次谐波的输出状态, 1 表示打开相应次谐波的输出, 0 表示关闭相应次谐波的输出。用户只需使用数字键盘修改各数据位的数值即可(注意,最左侧的位表示基波,固定为 X,不允许修改)。例如:将16 位数据设置为 X001 0000 0000 0001,表示输出 4 和 16 次谐波。

注意,谐波的实际输出受当前指定的"谐波次数"限制。

RIGOL 第 4 章 输出谐波

设置谐波幅度

进入谐波设置菜单,按 谐波幅度 软键可以设置各次谐波的幅度。

- 1. 谐波序号: 按下该软键选择待设置谐波的序号。
- **2. 谐波幅度:**按下该软键设置选中次谐波的幅度。使用数字键盘或方向键和旋钮输入幅度的数值,然后在弹出的单位菜单中选择所需的单位。
 - 幅度数值的输入方法请参考"**参数设置方法**"中的介绍。
 - 可选的幅度单位有: Vpp、mVpp、Vrms、mVrms 和 dBm (高阻时无效)。

设置谐波相位

进入谐波设置菜单,按 谐波相位 软键可以设置各次谐波的相位。

- 1. 谐波序号: 按下该软键选择待设置谐波的序号。
- **2. 谐波相位:**按下该软键设置选中次谐波的相位。使用数字键盘或方向键和旋钮输入相位的数值,然后在弹出的单位菜单中选择单位"°"。相位数值的输入方法请参考"参数设置方法"中的介绍。

4-4 DG4000 用户手册

第5章 输出已调制波形

DG4000 支持的调制方式包括 AM、FM、PM、ASK、FSK、3FSK、4FSK、PSK、BPSK、QPSK、PWM 和 OSK。DG4000 可从单通道或同时从双通道输出已调制波形。已调制波形由载波和调制波构成。载波可以是正弦波、方波、锯齿波、任意波(DC 除外)或脉冲(仅 PWM)。调制波可以来自内部调制源或外部调制源。

本章内容如下:

- 幅度调制(AM)
- 频率调制 (FM)
- 相位调制 (PM)
- 幅移键控(ASK)
- 频移键控(FSK)
- 相移键控(PSK)
- 二相相移键控(BPSK)
- 四相相移键控(QPSK)
- 三进制频移键控(3FSK)
- 四进制频移键控(4FSK)
- 振荡键控(OSK)
- 脉宽调制(PWM)

幅度调制 (AM)

已调制波形通常由载波和调制波组成。对于幅度调制(Amplitude Modulation, AM),载波的幅度随调制波的瞬时电压变化。

选择AM调制

按 **Mod** → **调制类型** → **AM** 启用 **AM** 功能。

- 启用 Mod 时, Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 AM 后,信号发生器将以当前设置的载波和调制波输出 AM 波形。

选择载波波形

AM 载波波形可以是正弦波、方波、锯齿波或任意波(DC 除外),默认为正弦波。

- 按前面板的 Sine、Square、Ramp 或 Arb → 选择波形 (或 User 键,预 定义的波形不可为 DC)选择所需的载波波形。
- 脉冲、噪声和 DC 不能作为载波。

设置载波频率

不同的载波波形,载波频率的可设置范围不同,如下表所示。对于所有载波,默认值为 1 kHz。

载波波形	频率范围
正弦波	1μHz 至 160MHz
方波	1μHz 至 50MHz
锯齿波	1μHz 至 4MHz
任意波	1μHz 至 40MHz

选择载波波形后,按 **频率/周期** 软键使"频率"突出显示,此时通过数字键盘或 方向键和旋钮输入所需的频率值。

5-2 DG4000 用户手册

选择调制源

DG4000 可以接受来自内部或外部调制源的调制波形。按 **Mod** → **信号源** 选择"内部"或"外部"调制源。

1. 内部源

选择"内部"调制源后,按 **调制波形** 软键,可选择 Sine、Square、Triangle、UpRamp、DnRamp、Noise 或 Arb 作为调制源。默认为 Sine。

- Square: 占空比为 50%。
- Triangle: 对称性为 50%。
- UpRamp: 对称性为 100%。
- DnRamp:对称性为 0%。
- Arb: 选择任意波形作为调制波形时,信号发生器自动通过抽点的方式将任意波长度限制为 2kpts。

注意, Noise 可以作为调制波, 但不能作为载波。

2. 外部源

选择"外部"调制源后,**调制波形** 菜单置灰禁用。信号发生器接受从后面板 **[Mod/FSK/Trig]** 连接器输入的外部调制信号。此时,AM 调制幅度受该连接 器上的±2.5V 信号电平控制。

设置调制波频率

选择"内部"调制源后,按 调幅频率 软键,可设置调制波的频率。

- 使用数字键盘或方向键和旋钮输入所需的频率值。
- 调制频率范围为 2mHz 至 50kHz, 默认为 100Hz。

注意,选择"外部"调制源时,该菜单置灰禁用。

设置调制深度

调制深度表示幅度变化的程度,以百分比表示。AM 调制深度的可设置范围为 0%至 120%。按 调制深度 软键可设置 AM 调制深度。

- 在0%调制时,输出幅度为指定值的一半。
- 在100%调制时,输出幅度等于指定值。
- 在大于 100%调制时, 仪器的输出幅度不会超过 10Vpp (负载为 50Ω)。

选择"外部"调制源时,仪器的输出幅度还受后面板 [Mod/FSK/Trig] 连接器上的±2.5V 信号电平控制,例如,将调制深度设置为 100%,则在调制信号为+2.5V 时输出为最大振幅,在调制信号为-2.5V 时输出为最小振幅。

频率调制 (FM)

已调制波形通常由载波和调制波组成。对于频率调制(Frequency Modulation, FM),载波的频率随调制波的瞬时电压变化。

选择FM调制

接 $Mod \rightarrow 调制类型 \rightarrow FM$ 启用 FM 功能。

- 启用 Mod 时, Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 FM 后,信号发生器将以当前设置的载波和调制波输出 FM 波形。

选择载波波形

FM 载波波形可以是正弦波、方波、锯齿波或任意波(DC 除外),默认为正弦波。

- 按前面板的 Sine、Square、Ramp 或 Arb → 选择波形 (或 User 键,预 定义的波形不可为 DC)选择所需的载波波形。
- 脉冲、噪声和 DC 不能作为载波。

设置载波频率

不同的载波波形,载波频率的可设置范围不同,如下表所示。对于所有载波,默认值为 1kHz。

载波波形	频率范围
正弦波	1μHz 至 160MHz
方波	1μHz 至 50MHz
锯齿波	1μHz 至 4MHz
任意波	1μHz 至 40MHz

选择载波波形后,按 **频率/周期** 软键使"频率"突出显示,此时通过数字键盘或 方向键和旋钮输入所需的频率值。

选择调制源

DG4000 可以接受来自内部或外部调制源的调制波形。按 **Mod** → **信号源** 选择"内部"或"外部"调制源。

1. 内部源

选择"内部"调制源后,按 **调制波形** 软键,可选择 Sine、Square、Triangle、UpRamp、DnRamp、Noise 或 Arb 作为调制源。默认为 Sine。

- Square: 占空比为 50%。
- Triangle: 对称性为 50%。
- UpRamp: 对称性为 100%。
- DnRamp:对称性为 0%。
- Arb: 选择当前任意波形作为调制波形时,信号发生器自动通过抽点的方式 将任意波长度限制为 2kpts。

注意, Noise 可以作为调制波, 但不能作为载波。

2. 外部源

选择"外部"调制源后,**调制波形** 菜单置灰禁用。信号发生器接受从后面板 **[Mod/FSK/Trig]** 连接器输入的外调制信号。此时,"**频率偏移**"由该连接器 上的±2.5V 信号电平控制。

设置调制波频率

选择"内部"调制源后,按 调制频率 软键,可设置调制波的频率。

- 使用数字键盘或旋钮输入所需的频率值。
- 调制频率范围为 2mHz 至 50kHz, 默认为 100Hz。

注意,选择"外部"调制源时,该菜单置灰禁用。

5-6 DG4000 用户手册

设置频率偏移

频率偏移,指调制波形的频率相对于载波频率的偏差。按 **频率偏移** 软键,可设置 FM 频率偏差。

- 频率偏差必须小于或等于载波频率。
- 频率偏差与载波频率之和必须小于或等于当前载波频率上限与 1kHz 之和。

选择"外部"调制源时,频率偏移受后面板 [Mod/FSK/Trig] 连接器上的±2.5V 信号电平控制。正信号电平对应频率增加,负信号电平对应于频率降低,较低的电平产生较少的偏移。例如,将频率偏移设置为 1kHz,则+2.5V 信号电平对应于频率增加 1kHz,-2.5V 信号电平对应于频率降低 1kHz。

相位调制 (PM)

已调制波形通常由载波和调制波形组成。对于相位调制(Phase Modulation, PM),载波的相位随调制波形的瞬时电压变化。

选择PM调制

接 **Mod** → **调制类型** → **PM** 启用 **PM** 功能。

- 启用 Mod 时, Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 PM 后,信号发生器将以当前设置的载波和调制波输出 PM 波形。

选择载波波形

PM 载波波形可以是正弦波、方波、锯齿波或任意波,默认为正弦波。

- 按前面板的 **Sine**、**Square**、**Ramp** 或 **Arb** → **选择波形** (或 **User** 键,预 定义的波形不可为 DC)选择所需的载波波形。
- 脉冲、噪声和 DC 不能作为载波。

设置载波频率

不同的载波波形,载波频率的可设置范围不同,如下表所示。对于所有载波,默认值为 1kHz。

载波波形	频率范围
正弦波	1μHz 至 160MHz
方波	1μHz 至 50MHz
锯齿波	1μHz 至 4MHz
任意波	1μHz 至 40MHz

选择载波波形后,按 **频率/周期** 软键使"频率"突出显示,此时通过数字键盘或 旋钮输入所需的频率值。

5-8 DG4000 用户手册

选择调制源

DG4000 可以接受来自内部或外部调制源的调制波形。按 **Mod** → **信号源** 选择"内部"或"外部"调制源。

1. 内部源

选择"内部"调制源后,按 <mark>调制波形</mark> 软键,可选择 Sine、Square、Triangle、UpRamp、DnRamp、Noise 或 Arb 作为调制源。默认为 Sine。

- Square: 占空比为 50%。
- Triangle: 对称性为 50%。
- UpRamp: 对称性为 100%。
- DnRamp:对称性为 0%。
- Arb: 选择当前任意波形作为调制波形时,信号发生器自动通过抽点的方式 将任意波长度限制为 2kpts。

注意, Noise 可以作为调制波, 但不能作为载波。

2. 外部源

选择"外部"调制源后,**调制波形** 菜单置灰禁用。信号发生器接受从后面板 **[Mod/FSK/Trig]** 连接器(如下图)输入的外调制信号。此时,"相位偏差"由该连接器上的±2.5V 信号电平控制。

设置调制波频率

选择"内部"调制源后,按调相频率软键,可设置调制波的频率。

- 使用数字键盘或旋钮输入所需的频率值。
- 调制频率范围为 2mHz 至 50kHz, 默认为 100Hz。

注意,选择"外部"调制源时,该菜单置灰禁用。

设置相位偏差

相位偏差指调制波形的相位相对于载波相位的变化。按 相位偏差 软键,可设置 PM 相位偏差。

- 使用数字键盘或方向键和旋钮输入所需的相位值。
- 相位偏移的设置范围为 0° 至 360°。

选择"外部"调制源时,相位偏差由后面板 [Mod/FSK/Trig] 连接器上的±2.5V 信号电平控制。例如,将相位偏差设置为 180°,则+2.5V 信号电平对应于相位改变 180°。较低的外部信号电平产生较少的偏差。

幅移键控(ASK)

使用 ASK(Amplitude Shift Keying)调制时,您可以配置信号发生器在两个预置幅度("载波幅度"和"调制幅度")间"移动"其输出幅度。该输出以何种频率(ASK 速率)在这两个预置幅度间移动,由仪器内部或后面板 [Mod/FSK/Trig] 连接器上的信号电平决定。

选择ASK调制

接 **Mod → 调制类型 → ASK** 启用 ASK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 ASK 后,信号发生器将以当前设置的载波和调制波输出 ASK 波形。

选择载波波形

ASK 载波波形可以是正弦波、方波、锯齿波或任意波(DC 除外), 默认为正弦波。

- 按前面板的 **Sine**、**Square**、**Ramp** 或 **Arb** → **选择波形** (或 **User** 键,预 定义的波形不可为 DC)选择所需的载波波形。
- 脉冲、噪声和 DC 不能作为载波。

设置载波幅度

选择载波波形后,按 **幅度/高电平** 软键使"幅度"突出显示,此时通过数字键盘或旋钮输入所需的幅度。幅度范围受**阻抗和频率/周期**限制。请参考"技术参数"中"输出特性"的相关说明。

选择调制源

按 Mod → 信号源 选择"内部"或"外部"调制源。

1. 内部源

选择"内部"调制源,即选择占空比为50%的方波为调制波形。此时,输出幅度在"载波幅度"和"调制幅度"之间"移动"的频率由"ASK频率"决定。

2. 外部源

选择"外部"调制源时,信号发生器接受从后面板 [Mod/FSK/Trig] 连接器输入的外调制信号。

注意,[Mod/FSK/Trig] 连接器从外部控制 ASK 调制和控制 AM/FM/PM 调制时不同。在 ASK 调制中,[Mod/FSK/Trig] 连接器具有可调的边沿极性。

设置ASK速率

选择"内部"调制源后,按 **ASK 速率** 软键,可设置输出幅度在"载波幅度"和"调制幅度"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

注意,选择"外部"调制源时,该菜单置灰禁用。

设置调制幅度

按 调制幅度 软键,可设置调制幅度。

- 使用数字键盘或方向键和旋钮输入所需的幅度值。
- 幅度范围(高阻)为0至10V,默认为2V。

设置调制极性

按 极性 软键,选择由调制波的"正极性"或"负极性"控制幅度输出。

内部调制时,设定极性为"正极性",则在调制波为逻辑高电平时输出载波幅度和调制幅度的较大者,逻辑低电平时输出载波幅度和调制幅度的较小者。极性为"负极性"时,情况相反。

外部调制时,设定极性为"正极性",则在输入逻辑高电平时输出载波幅度和调制幅度的较大者,在输入逻辑低电平时输出载波幅度和调制幅度的较小者。极性为"负极性"时,情况相反。

频移键控(FSK)

使用 FSK(Frequency Shift Keying)调制时,您可以配置信号发生器在两个预置频率("载波频率"和"跳频频率")间"移动"其输出频率。该输出以何种频率(FSK 速率)在这两个预置频率间移动,由仪器内部或后面板 [Mod/FSK/Trig] 连接器上的信号电平决定。

选择FSK调制

按 **Mod** → 调制类型 → **FSK** 启用 FSK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 FSK 后,信号发生器将以当前设置的载波和调制波输出 FSK 波形。

选择载波波形

FSK 载波波形可以是正弦波、方波、锯齿波或任意波(DC 除外),默认为正弦波。

- 按前面板的 **Sine**、**Square**、**Ramp** 或 **Arb** → **选择波形** (或 **User** 键,预 定义的波形不可为 DC)选择所需的载波波形。
- 脉冲、噪声和 DC 不能作为载波。

设置载波频率

不同的载波波形,载波频率的可设置范围不同,如下表所示。对于所有载波,默认值为 1kHz。

载波波形	频率范围
正弦波	1μHz 至 160MHz
方波	1μHz 至 50MHz
锯齿波	1μHz 至 4MHz
任意波	1μHz 至 40MHz

5-14 DG4000 用户手册

选择载波波形后,按 **频率/周期** 软键使"频率"突出显示,此时通过数字键盘或 旋钮输入所需的频率值。

选择调制源

按 **Mod** → 信号源 选择"内部"或"外部"调制源。

1. 内部源

选择"内部"调制源,即选择占空比为50%的方波。此时,输出频率在"载波频率"和"跳频频率"之间"移动"的频率由"FSK频率"决定。

2. 外部源

选择"外部"调制源时,信号发生器接受从后面板 [Mod/FSK/Trig] 连接器输入的外调制信号。

注意, [Mod/FSK/Trig] 连接器从外部控制 FSK 调制和控制 AM/FM/PM 调制时不同。在 FSK 调制中, [Mod/FSK/Trig] 连接器具有可调的边沿极性。

设置FSK速率

选择"内部"调制源后,按 **FSK 速率** 软键,可设置输出频率在"载波频率"和"跳频频率"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

注意,选择"外部"调制源时,该菜单置灰禁用。

设置跳频频率

跳频频率 ("跳跃"频率),即调制波的频率。跳频频率的范围取决于当前所选的载波波形。按 **跳频** 软键使其突出显示后,此时通过数字键盘或旋钮输入所需的频率值。

正弦波: 1µHz 至 160MHz
 方 波: 1µHz 至 50MHz
 锯齿波: 1µHz 至 4MHz
 任意波: 1µHz 至 40MHz

设置调制极性

按 极性 软键,选择由调制波的"正极性"或"负极性"控制频率输出。

内部调制时,设定极性为"正极性",则在调制波幅度为逻辑低电平时输出载波频率,逻辑高电平时输出跳频频率。极性为"负极性"时,情况相反。

外部调制时,设定极性为"正极性",则在输入逻辑低电平时输出载波频率,在输入逻辑高电平时输出跳频频率。极性为"负极性"时,情况相反。

相移键控(PSK)

使用 PSK (Phase Shift Keying)调制时,您可以配置信号发生器在两个预置相位("载波相位"和"调制相位")间"移动"其输出相位。该输出以何种频率(PSK 速率)在这两个预置相位间移动,由仪器内部或后面板 [Mod/FSK/Trig] 连接器上的信号电平决定。

选择PSK调制

接 **Mod → 调制类型 → PSK** 启用 PSK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 PSK 后,信号发生器将以当前设置的载波和调制波输出 PSK 波形。

选择载波波形

PSK 载波波形可以是正弦波、方波、锯齿波或任意波(DC 除外), 默认为正弦波。

- 按前面板的 **Sine**、**Square**、**Ramp** 或 **Arb** → **选择波形** (或 **User** 键,预 定义的波形不可为 DC)选择所需的载波波形。
- 脉冲、噪声和 DC 不能作为载波。

设置载波相位

选择载波波形后,按 **起始相位** 软键使其突出显示,此时通过数字键盘或旋钮输入 所需的相位。相位设置范围为 0°至 360°, 默认为 0°。

选择调制源

按 **Mod** → **信号源** 选择"内部"或"外部"调制源。

1. 内部源

选择"内部"调制源,即选择占空比为 50%的方波。此时,输出相位在"载波相位"和"调制相位"之间"移动"的频率由"PSK 频率"决定。

2. 外部源

选择"外部"调制源时,信号发生器接受从后面板 [Mod/FSK/Trig] 连接器 (如下图) 输入的外调制信号。

注意, [Mod/FSK/Trig] 连接器从外部控制 PSK 调制和控制 AM/FM/PM 调制时不同。在 PSK 调制中, [Mod/FSK/Trig] 连接器具有可调的边沿极性。

设置PSK速率

选择"内部"调制源后,按 **PSK 速率** 软键,可设置输出相位在"载波相位"和"调制相位"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

注意,选择"外部"调制源时,该菜单置灰禁用。

设置PSK相位

PSK 相位即调制波的相位。按 PSK 相位 软键,可设置调制相位。

- 使用数字键盘或方向键和旋钮输入所需的相位值。
- 相位范围为 0° 至 360°, 默认为 180°。

设置调制极性

按 极性 软键,选择由调制波的"正极性"或"负极性"控制相位输出。

内部调制时,设定极性为"正极性",则在调制波为逻辑低电平时输出载波相位,逻辑高电平时输出调制相位。极性为"负极性"时,情况相反。

外部调制时,设定极性为"正极性",则在输入逻辑低电平时输出载波相位,在输入逻辑高电平时输出调制相位。极性为"负极性"时,情况相反。

二相相移键控(BPSK)

使用 BPSK (Binary Phase Shift Keying)调制时,您可以配置信号发生器在两个预置相位("载波相位"和"调制相位")间"移动"其输出相位。该输出以何种频率(BPSK 速率)在这两个预置相位间移动,由仪器内部信号电平决定。

选择BPSK调制

按 **Mod** → 调制类型 → **BPSK** 启用 BPSK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 BPSK 后,信号发生器将以当前设置的载波和调制波输出 BPSK 波形。

选择载波波形

BPSK 载波波形可以是正弦波、方波、锯齿波或任意波(DC 除外),默认为正弦波。

- 按前面板的 Sine、Square、Ramp 或 Arb → 选择波形 (或 User 键,预 定义的波形不可为 DC)选择所需的载波波形。
- 脉冲、噪声和 DC 不能作为载波。

设置载波相位

选择载波波形后,按 **起始相位** 软键使其突出显示,此时通过数字键盘或方向键和 旋钮输入所需的相位。相位设置范围为 0° 至 360°, 默认为 0°。

选择调制源

BPSK 使用内部调制源,按 **数据源** 软键,可选择 PN15 码、PN21 码、01 码或 10 码作为调制源。默认为 PN15 码。

5-20 DG4000 用户手册

说明:

PN序列(Pseudo-noise Sequence,伪随机噪声序列)是一种周期性的二进制序列。它既有类似随机噪声的一些统计特性,又可以重复产生和处理。最常用的PN 序列是m 序列,通常由带线性反馈的移位寄存器产生。序列周期通常与线性反馈逻辑和各寄存器的初始状态有关。由n 级移位寄存器产生的m 序列,其周期为2ⁿ-1。下图所示为一个4级反馈移位寄存器,反馈逻辑为a3⊕a2。对于PN15码和PN21码,15和21为移位寄存器的级数。

设置BPSK速率

BPSK 使用内部调制源,按 **速率** 软键,可设置输出相位在"载波相位"和"调制相位"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

设置BPSK相位

BPSK 相位即调制波的相位。按 相位 软键,可设置调制相位。

- 使用数字键盘或方向键和旋钮输入所需的相位值。
- 相位范围为 0° 至 360°, 默认为 180°。

DG4000 用户手册 5-21

四相相移键控(QPSK)

使用 QPSK(Quadrature Phase Shift Keying)调制时,您可以配置信号发生器在四个预置相位("载波相位"和3个"调制相位")间"移动"其输出相位。该输出以何种频率(QPSK 速率)在这四个预置相位间移动,由仪器内部信号电平决定。

选择QPSK调制

接 Mod → 调制类型 → QPSK 启用 QPSK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 QPSK 后,信号发生器将以当前设置的载波和调制波输出 QPSK 波形。

选择载波波形

QPSK 载波波形可以是正弦波、方波、锯齿波或任意波(DC 除外),默认为正弦波。

- 按前面板的 Sine、Square、Ramp 或 Arb → 选择波形 (或 User 键,预 定义的波形不可为 DC)选择所需的载波波形。
- 脉冲波(基本波)、噪声和 DC 不能作为载波。

设置载波相位

选择载波波形后,按 **起始相位** 软键使其突出显示,此时通过数字键盘或方向键和旋钮输入所需的相位。相位设置范围为 0°至 360°,默认为 0°。

选择调制源

QPSK 使用内部调制源,按 **数据源** 软键,可选择 PN15 码或 PN21 码作为调制源。 默认为 PN15 码。

5-22 DG4000 用户手册

设置QPSK速率

QPSK 使用内部调制源,按 速率 软键,可设置输出相位在"载波相位"和"调制相位"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

设置QPSK相位

QPSK 相位即调制波的相位。按 相位 1 ,相位 2 和相位 3 软键,分别设置调制相位。

- 使用数字键盘或方向键和旋钮输入所需的相位值。
- 相位范围为 0° 至 360°。 **相位 1** ,**相位 2** 和**相位 3** 的默认值分别为 45°, 135° 和 225°。

DG4000 用户手册 5-23

三进制频移键控(3FSK)

使用 3FSK(3 Frequency Shift Keying)调制时,您可以配置信号发生器在三个预置频率("载波频率"和 2 个"跳频频率")间"移动"其输出频率。该输出以何种频率(键控频率)在这两个预置频率间移动,由仪器内部信号电平决定。

选择 3FSK调制

接 **Mod** → **调制类型** → **3FSK** 启用 3FSK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 3FSK 后,信号发生器将以当前设置的载波和调制波输出 3FSK 波形。

选择载波波形

3FSK 载波波形可以是正弦波、方波、锯齿波或任意波(DC 除外),默认为正弦波。

- 按前面板的 Sine、Square、Ramp 或 Arb → 选择波形 (或 User 键,预 定义的波形不可为 DC)选择所需的载波波形。
- 脉冲波(基本波)、噪声和 DC 不能作为载波。

设置载波频率

不同的载波波形,载波频率的可设置范围不同,如下表所示。对于所有载波,默认值为 1kHz。

载波波形	频率范围
正弦波	1μHz 至 160MHz
方波	1μHz 至 50MHz
锯齿波	1μHz 至 4MHz
任意波	1μHz 至 40MHz

选择载波波形后,按 **频率/周期** 软键使"频率"突出显示,此时通过数字键盘或 旋钮输入所需的频率值。

5-24 DG4000 用户手册

调制源

3FSK 使用内部调制源,调制波形为 Sine。

设置键控频率

3FSK 使用内部调制源,按 **键控频率** 软键,可设置输出频率在"载波频率"和 2 个"跳频频率"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

设置跳频频率

跳频频率("跳跃"频率),即调制波的频率。跳频频率的范围取决于当前所选的载波波形。按 **跳频 1** 和 **跳频 2** 软键使其突出显示后,此时通过数字键盘或方向键和旋钮分别输入所需的频率值。

- 正弦波: 1µHz 至 160MHz
- 方 波: 1µHz 至 50MHz
- 锯齿波: 1µHz 至 4MHz
- 任意波: 1µHz 至 40MHz

DG4000 用户手册 5-25

四进制频移键控(4FSK)

使用 4FSK(4 Frequency Shift Keying)调制时,您可以配置信号发生器在四个预置频率("载波频率"和3个"跳频频率")间"移动"其输出频率。该输出以何种频率(键控频率)在这四个预置频率间移动,由仪器内部信号电平决定。

选择 4FSK调制

按 **Mod** → 调制类型 → 4FSK 启用 4FSK 功能。

- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 4FSK 后,信号发生器将以当前设置的载波和调制波输出 4FSK 波形。

选择载波波形

4FSK 载波波形可以是正弦波、方波、锯齿波或任意波(DC 除外),默认为正弦波。

- 按前面板的 Sine、Square、Ramp 或 Arb → 选择波形 (或 User 键,预 定义的波形不可为 DC)选择所需的载波波形。
- 脉冲波(基本波)、噪声和 DC 不能作为载波。

设置载波频率

不同的载波波形,载波频率的可设置范围不同,如下表所示。对于所有载波,默认值为 1kHz。

载波波形	频率范围
正弦波	1μHz 至 160MHz
方波	1μHz 至 50MHz
锯齿波	1μHz 至 4MHz
任意波	1μHz 至 40MHz

选择载波波形后,按 **频率/周期** 软键使"频率"突出显示,此时通过数字键盘或 旋钮输入所需的频率值。

5-26 DG4000 用户手册

调制源

4FSK 使用内部调制源,调制波形为 Sine。

设置键控频率

4FSK 使用内部调制源,按 **键控频率** 软键,可设置输出频率在"载波频率"和 3 个"跳频频率"之间"移动"的频率。

- 使用数字键盘或方向键和旋钮输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 100Hz。

设置跳频频率

跳频频率("跳跃"频率),即调制波的频率。跳频频率的范围取决于当前所选的载波波形。按 **跳频 1** ,**跳频 2** 和**跳频 3** 软键使其突出显示后,此时通过数字键盘或旋钮分别输入所需的频率值。

- 正弦波: 1µHz 至 160MHz
- 方 波: 1µHz 至 50MHz
- 锯齿波: 1µHz 至 4MHz
- 任意波: 1µHz 至 40MHz

DG4000 用户手册 5-27

振荡键控(OSK)

使用 OSK(Oscillation Shift Keying)调制时,您可以配置信号发生器输出一个间歇振荡的正弦信号,如下图所示(载波频率为 100Hz,键控频率为 10kHz)。内部晶振的起振和停振,由内部或后面板[Mod/FSK/Trig] 连接器上的信号电平控制。内部晶振起振时,仪器开始输出载波波形:内部晶振停振时,仪器停止输出。

图 5-1 OSK 已调波形

选择OSK调制

接 **Mod** → 调制类型 → **OSK** 启用 **OSK** 功能。

- 当前未选中 **Sine** 功能键时,**调制类型** 中 OSK 不可选。
- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 OSK 后,信号发生器将以当前设置的载波和调制波输出 OSK 波形。

选择载波波形

OSK 载波波形只可以是正弦波,按前面板的 Sine 键。

设置载波频率

选择载波波形后,按 **频率/周期** 软键使"频率"突出显示,此时通过数字键盘或旋钮输入所需的频率值。可设置范围为 1μHz 至 160MHz。

选择调制源

按 Mod → 信号源 选择"内部"或"外部"调制源。

1. 内部源

选择"内部"调制源,即选择占空比为50%的方波。此时,输出信号的间歇时间与振荡时间由"键控频率"决定。

2. 外部源

选择"外部"调制源时,信号发生器接受从后面板 [Mod/FSK/Trig] 连接器输入的外调制信号。

设置键控频率

选择"内部"调制源之后,按键控频率软键,可设置键控频率。

- 使用数字键盘或方向键和旋钮输入所需的频率值。
- 频率范围为 2mHz 至 1MHz, 默认为 1kHz。

设置振荡周期

振荡周期,即内部晶振的振荡周期。按 **振荡时间** 软键使其突出显示后,此时通过数字键盘或方向键和旋钮分别输入所需的周期值,可设置范围为 8ns 至 499.750us。

DG4000 用户手册 5-29

脉宽调制 (PWM)

PWM(Pulse Width Modulation)的已调制波形由载波和调制波形组成。载波的脉 宽随调制波形的瞬时电压而变化。

选择PWM调制

PWM 只可用于调制脉冲波。欲选择 PWM 调制类型,需先选中前面板的 **Pulse** 功能键,然后按 **Mod** 启用 PWM 功能。

- 当前未选中 Pulse 功能键时,调制类型 中 PWM 不可选。
- 当前 **Mod** 已启用,但调制类型不是 PWM 时,启用 **Pulse** 功能键后,调制类型自动变为 PWM 。
- 启用 Mod 时,Sweep 或 Burst 功能将自动关闭(如果当前已打开)。
- 启用 PWM 后,信号发生器将以当前设置的载波和调制波输出 PWM 波形。

选择载波波形

如前所述,PWM的载波波形只可以是脉冲波。欲选择脉冲波,按前面板的 Pulse 键。

设置脉宽/占空比

选择载波波形后,按 **脉宽/占空比** 软键使"脉宽"或"占空比"突出显示,此时通过数字键盘或旋钮输入所需的值。

选择调制源

按 **Mod** → 信号源 选择"内部"或"外部"调制源。

1. 内部源

选择"内部"调制源后,按 **调制波形** 软键,可选择 Sine、Square、Triangle、UpRamp、DnRamp、Noise 或 Arb 作为调制源。默认为 Sine。

● Square: 占空比为 50%。

- Triangle: 对称性为 50%。
- UpRamp:对称性为 100%。
- DnRamp:对称性为 0%。
- Arb: 选择当前任意波形作为调制波形时,信号发生器自动通过抽点的方式 将任意波长度限制为 2kpts。

注意, Noise 可以作为调制波, 但不能作为载波。

2. 外部源

选择"外部"调制源后,**调制波形** 菜单置灰禁用。信号发生器接受从后面板 **[Mod/FSK/Trig]** 连接器输入的外调制信号。此时,"**宽度偏差**"(或"占空比偏差")由该连接器上的±2.5V 信号电平控制。

设置调制波频率

选择"内部"调制源后,按调制频率软键,可设置调制波的频率。

- 使用数字键盘或方向键和旋钮输入所需的频率值。
- 调制频率范围为 2mHz 至 50kHz, 默认为 100Hz。

注意,选择"外部"调制源时,该菜单置灰禁用。

设置宽度/占空比偏差

按 **宽度偏差**(或"占空比偏差")软键,使用数字键盘或方向键和旋钮输入所需的值。

● 宽度偏差表示已调波形相对于原始脉冲波形的脉冲宽度的变化(以秒表示)。 脉宽偏差范围: 0s 至 500ks。

宽度偏差不能超过当前的脉冲宽度。

宽度偏差受到最小脉冲宽度和当前边沿时间设置的限制。

● 占空比偏差表示已调波形相对于原始脉冲波形的占空比的变化(以%表示)。 占空比偏差范围: 0%至 50%。

占空比偏差不能超过当前的脉冲的占空比。

占空比偏差受到最小占空比和当前边沿时间的限制。

选择"外部"调制源时,宽度偏差(或占空比偏差)由后面板 [Mod/FSK/Trig] 连接器上的±2.5V 信号电平控制。例如,将宽度偏差设置为 10s,则+2.5V 信号电平对应于宽度改变 10s。

DG4000 用户手册 5-31

第 6 章 输出扫频波形 RIGOL

第6章 输出扫频波形

DG4000 可从单通道或同时从双通道输出扫频波形。在扫频模式下,信号发生器在指定的扫描时间内从起始频率到终止频率变化输出。DG4000 支持线性、对数和步进三种扫频方式;允许用户设定"标记"频率;允许用户设置起始保持、终止保持和返回时间;支持内部、外部或手动触发源;对于正弦波、方波、锯齿波和任意波(DC除外),均可以产生扫频输出。

本章内容如下:

- 开启扫频功能
- 起始频率和终止频率
- 中心频率和频率跨度
- 扫频方式
- 扫频时间
- 返回时间
- 标记频率
- 起始保持
- 终止保持
- 扫频触发源
- 触发输出边沿

DG4000 用户手册 6-1

开启扫频功能

按前面板的 **Sweep** 键启用扫频功能后(背灯变亮),**Mod** 或 **Burst** 功能将自动关闭(如果当前已打开)。此时,信号发生器将按照当前的配置从相应的通道(如果当前已打开)输出扫频波形。您也可以重新设置扫频的功能菜单,详见下文的介绍。

起始频率和终止频率

起始频率和终止频率是频率扫描的频率上限和下限。信号发生器总是从起始频率扫频到终止频率,然后又回到起始频率。

- 当起始频率 < 终止频率,信号发生器从低频向高频扫描。
- 当起始频率 > 终止频率,信号发生器从高频向低频扫描。
- 当起始频率 = 终止频率,信号发生器以固定频率输出。

启用扫频模式后,按 **起始频率/中心频率** 软键使"起始频率"突出显示。注意,此时 **终止频率/频率跨度** 软键中的"终止频率"也突出显示。使用数字键盘或方向键和旋钮输入所需的频率值。默认情况下,起始频率为 100Hz,终止频率为 1kHz。不同扫频波形对应的起始和终止频率范围不同。

- 正弦波: 1µHz 至 160MHz
- 方 波: 1µHz 至 50MHz
- 锯齿波: 1µHz 至 4MHz
- 任意波: 1µHz 至 40MHz

修改"起始频率"或"终止频率"后,信号发生器将重新从指定的"起始频率"开始扫频输出。

6-2 DG4000 用户手册

第 6 章 输出扫频波形 RIGOL

中心频率和频率跨度

您也可以通过中心频率和频率跨度设定频率扫描的边界。

- 中心频率=(|起始频率 + 终止频率|)/2
- 频率跨度= 终止频率 起始频率

启用扫频模式后,按 **起始频率/中心频率** 软键使"中心频率"突出显示。此时 **终止频率/频率跨度** 软键中的"频率跨度"也突出显示。使用数字键盘或方向键和旋钮输入所需的频率值。默认情况下,中心频率为 550Hz,频率跨度为 900Hz。不同扫频波形对应的中心频率和频率跨度范围不同,且中心频率与频率跨度相互影响。

定义当前选中波形的最小频率为 F_{\min} ,最大频率为 F_{\max} , $F_m = (F_{\min} + F_{\max})/2$ 。

• 中心频率的可设置范围为 $F_{\min} \subseteq F_{\max}$,不同波形的参数分别如下:

正弦波: 1μHz 至 160MHz 方 波: 1μHz 至 50MHz 锯齿波: 1μHz 至 4MHz 任意波: 1μHz 至 40MHz

● 频率跨度的范围受中心频率影响:

中心频率< F_m 时,频率跨度的范围为±2×(中心频率- F_{min});

中心频率≥ F_{m} 时,频率跨度的范围为±2×(F_{max} -中心频率)。

以正弦波为例, F_{\min} 为 1 μ Hz, F_{\max} 为 160MHz, F_{\min} 约为 80MHz。

若中心频率为 550Hz,则频率跨度的可设置范围为 $\pm 2 \times (550Hz-1\mu Hz) = \pm 1.099999998kHz$; 若中心频率为 155MHz,则频率跨度的可设置范围为 $\pm 2 \times (160MHz-155MHz) = \pm 10MHz$ 。

修改"中心频率"或"频率跨度"后,信号发生器将重新从指定的"起始频率"开始扫频输出。

提示

大范围扫频时,输出信号的幅度特性可能会有变化。

DG4000 用户手册 6-3

扫频方式

DG4000 提供线性、对数和步进三种扫频方式,默认为线性扫频。

线性扫频

在线性扫频方式下,输出信号的频率以线性方式变化,即以"每秒若干赫兹"的方式改变输出频率,该变化由"起始频率"、"终止频率"和"扫频时间"控制。

启用 **Sweep** 功能键后,按 **扫频类型** 软键选择 "线性"。在屏幕的波形上,可以 看到一条直线,表明输出频率以线性方式变化。

图 6-1 线性扫频

6-4 DG4000 用户手册

第 6 章 输出扫频波形 RIGOL

对数扫频

在对数扫频方式下,仪器输出信号的频率以对数方式变化,即以"每秒倍频程"或"每秒十倍"的方式改变输出频率,该变化由"起始频率"、"终止频率"和"扫频时间"控制。

启用对数扫频时,用户可以设置以下几个参数:起始频率 F_{start} ,终止频率 F_{stop} 和扫频时间 T_{sweep} 。对数扫频的函数原型为 $F_{current}=P^T$,参数 P 和 T 可用以上参数表示。其中,t 为从扫频开始所经历的时间,范围在 0 至 T_{sweep} 之间, $F_{current}$ 为当前输出的瞬时频率。

$$P = 10^{\lg(F_{stop}/F_{start})/T_{sweep}}$$
$$T = t + \lg(F_{start})/\lg(P)$$

启用 **Sweep** 功能键后,按 **扫频类型** 软键选择"对数"。在屏幕的波形上,可以看到一条指数函数的曲线,表明输出频率以对数方式变化。

图 6-2 对数扫频

DG4000 用户手册 6-5

步进扫频

在步进扫频方式下,仪器输出信号的频率从"起始频率"到"终止频率"之间以阶梯式"步进",输出信号在每个频点上停留的时间长短由"扫频时间"和"步进数"控制。

启用 **Sweep** 功能键后,按 **扫频类型** 软键选择"步进"。在屏幕的波形上,可以看到一条阶梯波,表明输出频率以阶梯式"步进"。此时,按菜单翻页键 ▼打开第 2/2 页菜单,按 步进数 软键,使用数字键盘或旋钮设置步进数,默认值为 2,可设置范围为 2 至 2048。注意,"线性"和"对数"扫频类型模式下,步进数 菜单置灰禁用。

图 6-3 步进扫频

6-6 DG4000 用户手册

第 6 章 输出扫频波形 RIGOL

扫频时间

启用 **Sweep** 功能键后,按 **扫频时间** 软键,使用数字键盘或旋钮修改扫频时间,默认为 1s,可设置范围为 1ms 至 300s。修改扫频时间后,信号发生器将重新从指定的"起始频率"开始扫频输出。

返回时间

返回时间是指信号发生器从"起始频率"扫描到"终止频率"并且经过"终止保持"时间后,输出信号从"终止频率"复位至"起始频率"的时间。

启用 **Sweep** 功能键后,按 **返回时间** 软键,使用数字键盘或旋钮修改返回时间,默认 0s,可设置范围为 0s 至 300s。

修改返回时间后,信号发生器将重新从指定的"起始频率"开始扫频输出。

标记频率

前面板中与通道对应的 [Sync] 连接器上的同步信号,总是在每次扫描的开始处由低电平变高电平。如果您禁用"标记"功能,同步信号将在扫描周期的中点位置变为低电平。如果您启用"标记"功能,同步信号将在输出频率达到指定的标记频率时,变为低电平。

启用 **Sweep** 功能键后,按 **标记频率** 软键选择"打开",如下图所示,使用数字键盘或旋钮可以修改标记频率。该频率默认为 550Hz,可设置范围受"起始频率"和"终止频率"限制。

修改标记频率后,信号发生器将重新从指定的"起始频率"开始扫频输出。

注意,步进扫频方式时,该菜单置灰禁用。

DG4000 用户手册 6-7

RIGOL 第6章 输出扫频波形

图 6-4 标记频率

起始保持

起始保持是指扫频开始后,输出信号保持以"起始频率"输出的时间。起始保持时间结束后,信号发生器将按当前的扫频类型改变频率继续输出。

启用 **Sweep** 功能键后,使用菜单翻页键 ▼ 打开 2/2 页菜单,按 **起始保持** 软键,使用数字键盘或旋钮修改起始保持时间,默认为 0s,可设置范围为 0s 至 300s。

修改起始保持时间后,信号发生器将重新从指定的"起始频率"开始扫频输出。

终止保持

终止保持是指信号发生器从"起始频率"扫描到"终止频率"后,输出信号继续保

6-8 DG4000 用户手册

第6章 输出扫频波形 RIGOL

持"终止频率"输出的时间。

启用 **Sweep** 功能键后,使用菜单翻页键 ▼ 打开 2/2 页菜单,按 **终止保持** 软键,使用数字键盘或旋钮修改终止保持时间,默认为 0s,可设置范围为 0s 至 300s。

修改终止保持时间后,信号发生器将重新从指定的"起始频率"开始扫频输出。

扫频触发源

扫频的触发源可以是内部源、外部源或手动源。信号发生器在接受到一个触发信号时,产生一次扫描输出,然后等待下一个触发信号。

启用 Sweep 功能键后,使用菜单翻页键 ▼ 打开 2/2 页菜单,按 **信号源** 软键,选择"内部"、"外部"或"手动"。默认为"内部"。

1. 内部触发

内部触发时,信号发生器输出连续的扫频波形。触发周期由指定的扫频时间、返回时间、起始保持和终止保持时间决定。

2. 外部触发

外部触发时,信号发生器接受从后面板 [Mod/FSK/Trig] 连接器输入的触发信号,每次接收到一个具有指定极性的 TTL 脉冲时,就启动一次扫频。欲指定 TTL 脉冲的极性,按 **触发输入** 软键选择 "上升沿"或 "下降沿",默认为 "上升沿"。

注意,在"内部触发"和"手动触发"时,对应位置为 **触发输出**。后面板 [Mod/FSK/Trig] 连接器用作触发信号输出端。

DG4000 用户手册 6-9

RIGOL 第6章 输出扫频波形

3. 手动触发

手动触发时,每按一次前面板的 **Trigger1** 或 **Trigger2** 键立即在相应通道启动一次扫频。

触发输出边沿

扫频模式下,当触发源为"内部"或"手动"时,信号发生器将从后面板 [Mod/FSK/Trig] 连接器输出一个具有指定边沿的 TTL 兼容信号。

- 内部触发时,信号发生器在扫频开始时从 [Mod/FSK/Trig] 连接器输出一个 占空比为 50%的方波。触发周期取决于指定的扫频时间、返回时间、起始保持 和终止保持。
- 手动触发时,信号发生器在扫频开始时从 [Mod/FSK/Trig] 连接器输出一个 脉冲宽度大于 1μs 的脉冲。
- 外部触发时,[Mod/FSK/Trig] 连接器作为外部触发信号的输入端,没有触发输出。

"内部"或"手动"触发时,按 **触发输出** 软键可以设置触发输出信号的边沿,默 认为"关闭"。

- 关闭:禁用触发输出信号。
- 上升沿:选择在上升沿输出触发信号。
- 下降沿:选择在下降沿输出触发信号。

6-10 DG4000 用户手册

第 7 章 输出脉冲串 RIGOL

第7章 输出脉冲串

DG4000 可从单通道或同时从双通道输出具有指定循环数目的波形(称为脉冲串,Burst)。DG4000 支持由内部、手动或外部触发源控制脉冲串输出;支持三种脉冲串类型,包括 N 循环、无限和门控。信号发生器可以使用正弦波、方波、锯齿波、脉冲、噪声(仅适用于门控脉冲串)或任意波(DC 除外)生成脉冲串。

本章内容如下:

- 开启脉冲串功能
- 脉冲串类型
- 脉冲串相位
- 脉冲串周期
- 极性
- 脉冲串延时
- 脉冲串触发源
- 触发输出边沿

DG4000 用户手册 7-1

RIGOL 第7章 输出脉冲串

开启脉冲串功能

按前面板的 **Burst** 键启用脉冲串功能后(背灯变亮),**Mod** 或 **Sweep** 功能将自动关闭(如果当前已打开)。此时,信号发生器将按照当前的配置从相应的通道(如果当前已打开)输出脉冲串波形。您也可以重新设置脉冲串的功能菜单,详见下文的介绍。

脉冲串类型

DG4000 可输出 N 循环、无限和门控三种类型的脉冲串,默认类型为 N 循环。

表	7-1	脉冲串类型、	触源和波形的关系

脉冲串类型	触发信号源	载波波形
N循环	内部/外部/手动	正弦、方波、锯齿波、脉冲、任意波(DC 除外)
无限	外部/手动	正弦、方波、锯齿波、脉冲、任意波(DC 除外)
门控	外部	正弦、方波、锯齿波、脉冲、噪声、任意波(DC
		除外)

N循环脉冲串

N 循环脉冲串模式下,信号发生器在接收到触发信号时,输出具有特定循环数目的 波形。支持 N 循环脉冲串的波形函数有正弦波、方波、锯齿波、脉冲波和任意波 (DC 除外)。

对于 N 循环脉冲串,可以使用"内部"、"外部"或"手动"触发源触发输出。此外您还可以设置"起始相位"、"脉冲周期"(内部触发)、"延时"、"触发输入"(外部触发)和"触发输出"(内部触发和手动触发)参数。

启用 **Burst** 功能后,按 **循环类型** 软键选择 "N 循环"。屏幕中,"循环数"参数突出显示,处于可编辑状态,此时使用数字键盘或旋钮可改变循环次数,默认为 1,可设置范围为 1 至 1 000 000 (外部触发或手动)或 1 至 500 000 (内部触发)。

7-2 DG4000 用户手册

第 7 章 输出脉冲串 RIGOL

图 7-1 N 循环脉冲串

无限脉冲串

无限脉冲串相当于将波形循环次数设为无限大,信号发生器在接收到触发信号时,输出连续的波形。支持无限脉冲串的波形函数有正弦波、方波、锯齿波、脉冲波和任意波(DC 除外)。

对于无限脉冲串,需要使用"外部"或"手动"触发源触发输出。此外您还可以设置"起始相位"、"延时"、"触发输入"(外部触发)和"触发输出"(手动触发)参数。

启用 **Burst** 功能后,按 **循环类型** 软键选择"无限",仪器自动将触发源设置为"手动"。屏幕显示一个无限循环的脉冲串示意图。

DG4000 用户手册 7-3

RIGOL 第7章 输出脉冲串

图 7-2 无限脉冲串

门控脉冲串

门控脉冲串模式下,信号发生器根据后面板 [Mod/FSK/Trig] 连接器上输入的外部信号电平控制波形输出。支持门控脉冲串的波形函数有正弦波、方波、锯齿波、脉冲波、噪声和任意波(DC 除外)。

信号发生器在门控信号为"真"时,输出一个连续波形,在门控信号为"假"时,首先完成当前的波形周期,然后停止,同时保持在所选波形的起始脉冲串相位对应的电压电平上。对于噪声波形,在门控信号变为"假"时立即停止输出。

对于门控脉冲串,只能使用"外部"触发源触发输出。此外您还可以设置"**起始相 位**"。

启用 Burst 功能后,按 循环类型 软键选择 "门控"。然后按 极性 软键设定门控

7-4 DG4000 用户手册

第 7 章 输出脉冲串 RIGOL

极性为"正极性"(或"负极性")。脉冲串在门控信号为"正"时才有波形输出。

图 7-3 门控脉冲串

脉冲串相位

脉冲串相位定义为,脉冲串起始点的相位。

启用 **Burst** 功能后,按 **起始相位** 软键,使用数字键盘或旋钮输入所需的相位,默认为 0°,可设置范围为 0°至 360°。

- 对于正弦波、方波、锯齿波, 0°是波形正向通过 0V (或 DC 偏移值)的点。
- 对于任意波形,0°是第一个波形点。
- 对于脉冲波和噪声波,**起始相位**设置无效。

DG4000 用户手册 7-5

RIGOL 第7章 输出脉冲串

脉冲串周期

脉冲串周期仅适用于内部触发 N 循环脉冲串模式,定义为从一个脉冲串开始到下一个脉冲串开始的时间。

- 脉冲串周期≥ 1µs + 波形周期 × 脉冲串个数。此处,波形周期为脉冲串函数 (正弦波、方波等)的周期。
- 如果设置的脉冲串周期过小,信号发生器将自动增加该周期以允许指定数量的循环输出。

启用 **Burst** 功能后,按 **循环类型** \rightarrow "N 循环" \rightarrow **信号源** \rightarrow "内部" \rightarrow **脉冲周期**,使用数字键盘或旋钮输入所需的周期,默认为 10ms,可设置范围为 $2\mu s$ 至 500s。

极性

极性仅适用于门控脉冲串模式。仪器在后面板 [Mod/FSK/Trig] 连接器上的门控信号为"高电平"或"低电平"时输出脉冲串。

启用 **Burst** 功能后,按 **循环类型 →** "门控" → **极性**,选择"正极性"或"负极性",默认为"正极性"。

脉冲串延时

脉冲串延时仅适用于 N 循环和无限脉冲串模式,是指信号发生器从接受到触发信号到开始输出 N 循环(或无限)脉冲串之间的时间。

启用 **Burst** 功能后,按 **循环类型** → "N 循环"或"无限",使用菜单翻页键 ▼打 开第 2/2 页菜单,按 **延时**,使用数字键盘或旋钮输入所需的延时。延迟时间大于等于 0s,小于等于 85s,默认值为 0s。

7-6 DG4000 用户手册

第 7 章 输出脉冲串 RIGOL

脉冲串触发源

脉冲串的触发源可以是内部源、外部源或手动源。信号发生器在接收到一个触发信号时,产生一次脉冲串输出,然后等待下一个触发信号。

启用 **Burst** 功能后,按 **信号源** 软键,选择"内部"、"外部"或"手动"。默认为"内部"。

1. 内部触发

内部触发时,信号发生器仅可输出 N 循环脉冲串,输出的脉冲串频率由"脉冲串周期"决定。

2. 外部触发

外部触发时,信号发生器可输出 N 循环、无限或门控脉冲串。信号发生器接受 从后面板 [Mod/FSK/Trig] 连接器输入的触发信号,每次接收到一个具有指 定极性的 TTL 脉冲时,就启动一次脉冲串输出。欲指定 TTL 脉冲的极性,按 触 发输入 软键选择 "上升沿"或"下降沿",默认为"上升沿"。

注意,在"内部触发"和"手动触发"时,对应位置为 **触发输出**。后面板 **[Mod/FSK/Trig]** 连接器用作触发信号输出端。

3. 手动触发

手动触发时,信号发生器可输出无限或门控脉冲串。每按一次前面板的 **Trigger1** 或 **Trigger2** 键立即在对应通道启动一次脉冲串输出(如果当前已打开)。如果对应的通道没有开启,触发将被忽略。

DG4000 用户手册 7-7

RIGOL 第7章 输出脉冲串

触发输出边沿

脉冲串模式下,当触发源为"内部"或"手动"时,信号发生器将从后面板 [Mod/FSK/Trig] 连接器输出一个具有指定边沿的 TTL 兼容信号。

- 内部触发时,信号发生器在脉冲串开始时从 [Mod/FSK/Trig] 连接器输出一个占空比可变(与载波周期和循环数有关)的方波。触发周期与指定的脉冲串周期相等。
- 手动触发时,信号发生器在脉冲串开始时从 [Mod/FSK/Trig] 连接器输出一个脉冲宽度大于 1µs 的脉冲。
- 外部触发时,[Mod/FSK/Trig] 连接器作为外部触发信号的输入端,没有触发输出。

"内部"或"手动"触发时,按 **触发输出** 软键可以指定触发输出信号的边沿,默 认为"关闭"。

- 关闭:禁用触发输出信号。
- 上升沿:选择在上升沿输出触发信号。
- 下降沿:选择在下降沿输出触发信号。

7-8 DG4000 用户手册

第 8 章 频率计 RIGOL

第8章 频率计

DG4000 提供 7digits/s 频率计功能。该功能可以测量外部输入信号的频率、周期、占空比、正脉宽及负脉宽等参数,并支持对测量结果的统计。统计功能开启时,仪器自动计算测量值的最大值、最小值、平均值和标准差,并且可以以"数字"和"动态曲线"两种形式显示测量值的变化趋势。双通道输出可与频率计测量同时工作。

本章内容如下:

- 启用频率计
- 设置频率计
- 统计功能

DG4000 用户手册 8-1

RIGOL 第8章 频率计

启用频率计

按前面板的 **Counter** 按键,背灯变亮,打开频率计功能,同时进入频率计设置界面,如下图所示。

若当前频率计已打开,且屏幕处于频率计界面,则再次按下 Counter 按键则关闭 频率计功能;若当前频率计已打开,且屏幕处于非频率计界面,则再次按下 Counter 键则跳转到频率计显示界面。

图 8-1 频率计参数设置界面

注意, 频率计功能打开时, CH2 的同步输出将会关闭。

8-2 DG4000 用户手册

第8章 频率计 RIGOL

设置频率计

您需要为频率计配置合适的测量参数。

1. 灵敏度

设置测量系统的触发灵敏度,默认为50%,可设置范围为0%至100%。

按 **灵敏度** 软键,使用数字键盘输入所需的数值,在弹出的单位菜单中选择 "%"。

2. 触发电平

设置测量系统的触发电平。当输入信号达到指定的触发电平时,系统触发并获取测量读数。默认值为 OV,可设置范围为-2.5V 至 2.5V。

按 **触发电平** 软键,使用数字键盘输入所需的数值,在弹出的单位菜单中选择 所需的单位 (V 或 mV)。

3. 输入阻抗

设置输入阻抗为"50Ω"或"高阻"。默认为"高阻"。

4. 耦合

设置输入信号的耦合方式为 "AC"或 "DC"。默认为 "AC"。

5. 衰减

设置输入信号的衰减系数为"X1"或"X10"。

6. 高频抑制

在测量低频信号时,高频抑制可用于滤除高频成分,提高测量精确度。

按 高频抑制 软键开启或关闭高频抑制功能。

注意,在测量频率小于 1kHz 的低频信号时,打开高频抑制,以滤除高频噪声干扰,在测量频率大于 1kHz 的高频信号时,关闭高频抑制。

7. 闸门时间

按 **闸门时间** 软键,选择测量系统的闸门时间。默认为"1ms"。

DG4000 用户手册 8-3

RIGOL 第8章 频率计

闸门 1	1ms
闸门 2	10ms
闸门 3	100ms
闸门 4	1s
闸门 5	10s
闸门 6	>10s

8. 选择被测参数

按 测量 软键,选择频率计测量的参数类型。频率计可以测量如下参数:频率、周期、占空比、正脉宽和负脉宽。默认为"频率"。

9. 统计功能

按 统计功能 软键开启或关闭频率计的统计功能,详细介绍请参考"统计功能"一节。

10. 自动

按下该菜单软键, 仪器自动设置频率计参数。

频率计参数设置完毕后,系统以预设参数测量外部输入信号。

8-4 DG4000 用户手册

第8章 频率计 RIGOL

统计功能

统计功能开启时,仪器自动计算测量值的最大值、最小值、平均值和标准差,并且可以以"数字"和"动态曲线"两种形式显示测量值的变化趋势。

1. 开启统计功能

按 统计功能 → 统计状态 软键开启或关闭统计功能。默认为"关闭"。

2. 选择显示形式

统计功能开启后,按 **显示形式** 软键可选择统计结果的显示形式为"数字"或"动态曲线"。如图 8-2、图 8-3 所示。

图 8-2 统计结果数字显示界面

图 8-3 统计结果动态曲线显示界面

DG4000 用户手册 8-5

RIGOL 第8章 频率计

3. 清除统计结果

按 清除 软键, 信号源清除当前的统计结果。

8-6 DG4000 用户手册

第9章 存储与调用 RIGOL

第9章 存储与调用

DG4000 可以将仪器当前的状态、用户编辑的任意波形数据存储到内部或外部存储器,并支持用户在需要时调用。

本章内容如下:

- 存储系统
- 文件类型
- 浏览器类型
- 文件操作

DG4000 用户手册 9-1

RIGOL 第9章 存储与调用

存储系统

DG4000 可以将仪器当前的状态或用户编辑的任意波形数据存储的内部或外部存储器中,并允许用户在需要时对其进行调用。

DG4000 提供一个内部非易失存储器和一个外部存储器。内部存储器为"C盘",外部存储器为"D盘"。

- C盘: 提供 10 个状态文件存储位置(STATE 1 至 STATE 10) 和 10 个任意波形文件存储位置(ARB 1 至 ARB 10)。用户可以保存仪器状态、任意波形文件(由用户创建或通过远程命令下载)至 C 盘,还可以将 U 盘中的文件复制到 C 盘中。
- D盘: 当前面板 USB Host 接口检测到 U 盘时可用。

按前面板的 **Store** 键启用存储和调用功能,按键背灯变亮,打开如下图所示的存储和调用界面。

图 9-1 存储与调用界面

注意,DG4000 只能识别文件名为中文字符、英文字符、数字和下划线的文件。如果您使用其它字符来命名文件或文件夹,在存储和调用界面中可能无法正常显示。

9-2 DG4000 用户手册

第9章 存储与调用 RIGOL

文件类型

按 **Store** → 文件类型,选择所需的文件类型。可选的文件类型包括:状态文件、任意波形(Arb)文件、Txt 文件、Csv 文件和所有文件。

1. 状态文件

将仪器的工作状态以 "*.RSF"格式存储在内部或外部存储器中。内部存储器最多可存储 10 个仪器状态。已存储的 10 个仪器状态对应于 Utility → 预设值 中的 "自定义 1" 至 "自定义 10" (参考 "还原预设配置")。

存储的状态文件包含:两通道选定的波形、频率、振幅、DC 偏移、占空比、对称性、相位以及使用的调制、扫频、突发参数和频率计参数。

2. Arb 文件

将用户自定义的任意波形以"*.RAF"格式存储在内部或外部存储器中。内部存储器最多可存储 10 个任意波形文件。

3. Txt 文件

读取外部存储器内 Txt 格式的数据文件,将文件内每行数字(不可超过 64 字符) 作为任意波的一个点并进行归一化从而形成一个任意波。该任意波存储在易失 性存储器中。读取完成后,仪器自动进入任意波功能界面。

注意: 当 浏览器 选择"目录"时,该菜单置灰禁用。

4. Csv 文件

读取外部存储器内 Csv 格式的数据文件。读取完成后,仪器自动进入任意波功能界面。已读取的任意波存储在易失性存储器中。

注意,当 浏览器 选择"目录"时,该菜单置灰禁用。

5. 所有文件

显示当前选中目录下的所有文件和文件夹。选择该菜单时,保存操作不可用。

DG4000 用户手册 9-3

RIGOL 第 9 章 存储与调用

浏览器类型

按 **Store** → 浏览器,切换 "目录"或"文件"。然后使用旋钮选择需要的目录或文件。

● 目录:选择该类型后,使用旋钮可以在 C、D (插入 U 盘时)盘之间切换。

● 文件:选择该类型后,使用旋钮可以在当前目录下切换文件或文件夹。

9-4 DG4000 用户手册

第9章 存储与调用 RIGOL

文件操作

浏览器类型选择"文件"后,用户可以对文件执行一系列的操作,包括:保存、读取、复制、粘贴、删除和新建。

保存

1. 选择文件类型

请按"**文件类型**"中的介绍选择需要保存的文件类型。注意,如果当前 **文件 类型** 为"所有文件",则不能进行保存操作。

2. 打开文件名输入界面

在存储和调用功能界面,将 **浏览器** 设置为"文件"后,按 **保存** 进入文件名输入界面,如下图所示。

图 9-2 文件名输入界面(英文)

DG4000 用户手册 9-5

RIGOL 第9章 存储与调用

3. 输入文件名

按 输入类型 软键,选择"中文"或"英语"输入类型。文件或文件夹名称长度限制为 27 个字符。

● 英文输入(含数字输入): 按数字键盘上的 **+/-** 软键切换大小写。

使用旋钮在"虚拟软键盘"中选择所需的字符,然后按 **选择** 软键选中该字符,选中的字符将显示在"文件名输入区"。用同样方法输入文件名所需的所有字符。您也可以按 **删除** 软键删除"文件名输入区"中当前光标处的字符。

● 中文输入:

按数字键盘上的 +/- 软键切换到小写状态。

图 9-3 文件名输入界面(中文)

使用旋钮在"虚拟软键盘"中选择所需的字符,然后按 选择 软键选中该字符,选中的字符将显示在"拼音输入区"。输入完一个汉字的拼音后,使用数字键盘选择"汉字显示区"中的所需汉字的数字编号(若当前没有所需的汉字,可以使用方向键翻页查找),选中的汉字将显示在"文件名输入区"。用同样方法输入文件名所需的所有汉字。您也可以按 删除 软

9-6 DG4000 用户手册

第9章 存储与调用 RIGOL

键, 先删除"拼音输入区"中的字符, 后删除"文件名输入区"中光标处的汉字。

4. 保存文件

在文件名输入界面完成文件名输入后,按 **保存** 软键,信号发生器将以指定的 文件名和文件类型将文件保存到当前选中的目录下,并在保存成功后给出相应 的提示消息。

读取

1. 选择文件类型

请按"**文件类型**"中的介绍选择需要读取的文件类型。注意,如果当前**文件类型** 为"所有文件",则将要读取的是当前选中的文件。

2. 选择需要读取的文件

将 浏览器 设置为"目录",使用旋钮选择需要读取的文件所在的目录,然后 将 浏览器 设置为"文件",再使用旋钮选择需要读取的文件。

3. 读取文件

按 读取 软键,信号发生器将读取当前选中的文件,并在读取成功后给出相应的提示消息。

复制

1. 选择需要复制的文件

将 浏览器 设置为"目录",使用旋钮选择需要复制的文件所在的目录,然后 将 浏览器 设置为"文件",再使用旋钮选择需要复制的文件。

2. 复制文件

按 复制 软键,信号发生器将复制当前选中的文件。

DG4000 用户手册 9-7

RIGOL 第9章 存储与调用

粘贴

1. 复制一个文件

请按"复制一个文件"中的介绍复制一个文件。

2. 选择粘贴的目的地

将 浏览器 设置为"目录",使用旋钮选择需要粘贴的目的地所在的目录。

3. 粘贴文件

按 **粘贴** 软键,信号发生器将已复制的文件粘贴到当前光标处在的目录下,粘贴完毕后将给出相应的提示信息。

删除

1. 选择需要删除的文件或文件夹

将 浏览器 设置为"目录",使用旋钮选择需要删除的文件或文件夹所在的目录,然后将 浏览器 设置为"文件",再使用旋钮选择需要删除的文件或文件夹。

2. 删除文件或文件夹

按 删除 软键,信号发生器将删除当前选中的文件或文件夹(空文件夹)。

新建文件夹

DG4000 允许用户在外部存储器(U盘)内新建文件夹。请首先插入U盘并保证U盘已被识别。

1. 选择存储器

在存储和调用功能界面,将 浏览器 菜单设置为"目录",然后使用旋钮选择"D盘"。

9-8 DG4000 用户手册

第9章 存储与调用 RIGOL

2. 新建路径

再将 浏览器 菜单设置为"文件",然后使用菜单翻页键 ▼ 打开第 2/2 页菜单,按 新建路径 进入文件夹名称输入界面(同图 9-2 或图 9-3)。 注意:选择"C盘"时,该菜单不可用。

3. 输入文件夹名称

请按"保存"中的介绍,输入新文件夹的名称。

4. 保存文件夹

在文件夹名称输入界面完成文件名输入后,按 **保存** 软键,信号发生器将在当前目录下新建一个空的文件夹。

DG4000 用户手册 9-9

第10章 辅助功能与系统设置

DG4000 允许用户配置双通道输出参数、配置远程接口、设置系统参数。

本章内容如下:

- 概述
- 通道设置
- 使用外部功率放大器(选件)
- 配置远程接口
- 系统设置
- 打印
- 检测校准
- 耦合
- 通道复制
- 用户自定义波形键
- 还原预设配置

概述

按前面板的 **Utility** 键,打开下图所示的操作界面。该界面显示当前的通道输出配置、通道耦合配置和系统参数。

图 10-1 Utility 界面

- 1. **CH1 设置**:配置 CH1 的输出参数。
- 2. CH2 设置: 配置 CH2 的输出参数。
- 3. PA 设置: 配置外部功率放大器的参数,仅连接外部功率放大器时可用。
- 4. 接口设置: 设置远程接口参数。
- 5. 系统设置:设置系统相关的参数。
- 6. 打印设置:设置屏幕打印相关的参数。
- 7. 检测校准: 手动校准 DG4000。
- 8. 耦合设置:设置通道耦合参数。
- 9. 通道复制:设置通道复制参数。
- 10. 用户键: 定义常用的内建波形的快捷键。
- 11. 预设值: 将系统恢复到出厂默认状态或用户预设状态。

通道设置

DG4000 的 CH2 与 CH1 的功能和设置方法完全相同,本节以 CH1 为例介绍通道设置方法。

同步

DG4000 可以从单通道或同时从双通道输出基本波形(噪声除外)、任意波形(DC除外)、谐波、扫频波形、脉冲串波形、已调制波形的同步信号。该信号从前面板 [Sync] 连接器输出。

1. 同步开关

启用或禁用 [Sync] 连接器上的同步信号。按 Utility → CH1 设置 → 同步, 选择 "打开"或 "关闭"同步信号输出。默认情况为 "打开",即将同步信号发送到 [Sync] 连接器。在关闭同步信号时,[Sync] 连接器上的输出电平是逻辑低电平。

2. 各种波形的同步信号

- 对于正弦波、方波、锯齿波和脉冲波,同步信号是占空比为 50%的方波。 在波形输出为正时,相对于 0V 电压(或者 DC 偏移值),同步信号为 TTL 高电平。在波形输出为负时,相对于 0V 电压(或者 DC 偏移值),同步信 号为 TTL 低电平。
- 对于任意波形,同步信号是占空比可变的方波。在输出波形幅度达到一定 值时,同步信号为 TTL 高电平。
- 对于谐波,同步信号以谐波次数为参考,是占空比可变的方波。在输出波 形幅度为正时,同步信号为 TTL 高电平。
- 对于 AM、FM、PM、PWM,内部调制时,同步信号以调制频率为参考,同步信号是占空比为 50%的方波。在调制波形前半周期,同步信号为 TTL 高电平。外部调制时,无同步信号输出。
- 对于 ASK、FSK、PSK、BPSK、QPSK、3FSK、4FSK,同步信号以键控频率 为参考,同步信号是占空比为 50%的方波。对于 ASK、FSK、PSK,外部 调制时,无同步信号输出。
- 对于 OSK, 同步信号以键控频率为参考, 同步信号是占空比为 50%的方波。 内部晶振起振时, 同步信号是 TTL 高电平。外部调制时, 无同步信号输出。

- 对于关闭"标记"的频率扫描,同步信号是占空比为 50%的方波。在扫描 开始时,同步信号为 TTL 高电平,在扫描中点变成低电平。同步波形的频 率与指定的扫描时间、返回时间、起始保持和终止保持时间对应。对于打 开"标记"的频率扫描,在扫描开始时,同步信号为 TTL 高电平,在标记 频率处变为低电平。
- 对于N循环脉冲串,在脉冲串开始时,同步信号是TTL高电平。在指定循环数结束处,同步信号为TTL低电平(如果波形具有一个相关的起始相位,则可能不是零交叉点)。对于一个无限计数脉冲串,其同步信号与连续波形的同步信号相同。
- 对于外部门控脉冲串,同步信号遵循其门控信号。注意,该信号直到最后 一个周期结束才会变为 TTL 低电平(如果该波形有一个相关起始相位,则 可能不是零交叉点)。

同步极性

设置前面板 [Sync] 连接器上的同步信号为正常输出或者反相输出。

接 Utility → CH1 设置 → 同步极性,选择 "正极性"或"负极性"。

- 正极性:输出正常同步信号。
- 负极性:输出反相同步信号。

注意,在波形反相时,与波形相关的同步信号并不反相。

输出极性

设置**[Output1]** 连接器上的信号为常规输出或者反相输出。波形反相是相对于偏移电压进行反相。

接 Utility → CH1 设置 → 输出,选择"常规"或"反相"。默认为"常规"。常规模式下,循环的前半周期波形为正,反相模式下,循环的前半周期波形为负。

波形反相后,下列情况需注意:

- 任何偏移电压都不变。
- 在图形模式下观察到的波形不反相。
- 与波形相关的同步信号也不反相。

阻抗设置

阻抗设置适用于输出振幅和 DC 偏移电压。对于前面板 [Output1] 连接器,DG4000 都有一个 50Ω 的固定串联输出阻抗。如果实际负载与指定的值不同,则显示的电压电平将不匹配被测部件的电压电平。要确保正确的电压电平,必须保证负载阻抗设置与实际负载匹配。

接 Utility \rightarrow CH1 设置 \rightarrow 阻抗,选择"高阻"或"负载"。默认为"高阻"。选择"负载"时,可以使用数字键盘设置具体阻抗值。默认为 50Ω,可设置范围为 1Ω至 10kΩ。阻抗设置将显示在屏幕上,如下图所示,CH1 的阻抗设置为具体阻抗值"50Ω",CH2 的阻抗设置为"HighZ"(高阻)。

修改阻抗设置后,信号发生器将自动调整输出振幅和偏移电压。例如,当前振幅为 "5Vpp",此时将输出阻抗从 "50Ω" 改为 "高阻",屏幕显示的振幅将增加一倍, 为 "10Vpp"。反之,如果将输出阻抗从 "高阻" 改为 "50Ω",则振幅下降一半, 为 2.5Vpp。注意,参数修改后仅显示发生改变,信号发生器的实际输出并不改变。

噪声开关

DG4000 支持在其输出信号上叠加一个高斯噪声, 称为噪声叠加功能。叠加了噪声的信号可用于测试仪器的抗噪声性能。

接 Utility → CH1 设置 → 噪声开关,用户可以打开或关闭噪声叠加功能。默认为 "关闭"。当 Mod, Sweep 或 Burst 开启时,该菜单置灰禁用。

噪声比例

设置叠加在其输出信号上的噪声的幅度占信号幅度的百分比。

按 Utility → CH1 设置 → 噪声比例,使用数字键盘输入所需的数值,在单位菜单中选择单位"%"即可。可设置范围为 0%至 50%,默认值为 10.0%。注意,当噪声叠加功能关闭时,噪声比例 菜单置灰禁用。

使用外部功率放大器 (选件)

DG4000 可以连接外部功率放大器,并配置功率放大器的参数,将信号放大后再输出。欲使用外部功率放大器,请安装 PA1011 选件。

PA1011 是 **RIGOL** 公司 DG 系列函数/任意波形发生器的一款选配附件。它的全功率带宽高达 1MHz,输出摆率大于 80V/μs。它既可以和 DG 全系列产品连接从而快速地搭建测试平台,又可以作为单独的功率放大器配合其它的信号发生器使用。

PA1011 主要特色:

- 通过 USB 接口和 **RIGOL** DG 系列信号发生器或 PC 通讯,操作灵活,简单。
- 通过 **RIGOL** DG 系列信号发生器或 PC 软件,用户可以灵活的设置放大器的增益(X1 或 X10)、极性(同相或反相)、输出偏移和输出开关。
- 具有 50kΩ 的高输入阻抗。
- 完整的输出保护电路(输出过流保护、内部温度异常保护),确保仪器稳定、可 靠、安全的工作。
- 体积小巧,便于携带,使用方便。

前面板:

状态指示灯

Power: 红灯亮,表示电源连接成功。 Output: 绿灯亮,表示输出开关已打开。 Link: 黄灯亮,表示 USB 连接成功。

注意

仪器输入阻抗 Zi=50kΩ。电压增益为 X1 时输入电压范围为: -10V~+10V; 电压增益为 X10 时输入电压范围为: -1.25V~+1.25V, 超出此范围的输入可能损坏仪器或发生危险。

注意

仪器输出阻抗 $Zo < 2\Omega$ 。输出电压范围为 $-12V \sim +12V$ 。实际输出电压可以达到 $\pm 12.5V$,但波形的总谐波失真会增加。

后面板:

注意

请勿使用其它输出类型的适配器给 PA1011 供电, 否则会造成仪器性能下降或永久性损坏。

注意

在操作 PA1011 时,请确认没有遮挡物遮住 PA1011 侧面的通风孔和后面板的风扇散热孔,以免影响其正常工作。

PA1011 附件:

名称	数量	说明	
电源线	1	将交流电连接至电源适配器中。	
电源适配器	1	输出 12V, 4A 的信号。	
USB 数据线	1	连接 PA1011 与 DG4000。	
BNC 电缆	1	连接 PA1011 与 DG4000。	
光盘	1	提供 PA1011 的 PC 软件安装程序。	

连接 DG4000 与 PA1011:

成功连接功率放大器后,按 Utility → PA 设置, 打开功率放大器参数设置界面。

1. 开关

按下该键后,可以"打开"或"关闭"外部功率放大器。打开时,PA将输入信号进行功率放大并输出,关闭时,PA无输出。

2. 增益

按下该键后,选择在功率放大器输出端信号放大的增益为"X1"或"X10","X1"表示无增益输出,"X10"表示将信号放大 10 倍后输出。

3. 输出

按下该键后,选择在功率放大器的输出端信号是"常规"还是"反相"输出。

4. 偏置

按下该键后,可以"打开"或"关闭"在功率放大器输出端的输出偏移量。选择"打开"时,可以使用数字键盘或旋钮设置偏移值,可设置范围为-12V至12V,默认为0V。

5. 存储

按下该键后,可以将功率放大器当前的工作状态存储到其内部存储器中。下次 "打开"功率放大器时,它将自动调用上次保存的工作状态。

提示

欲了解 PA1011 的技术参数,请参考附录 B。

配置远程接口

DG4000 标配 USB 和 LAN 接口,并支持用户配置用于远程通信的接口参数。

按 **Utility** → **接口设置**,打开接口设置菜单,设置用于远程通信的 LAN 接口参数,或选择 USB 接口连接的设备类型

设置网络参数

按 Utility → 接口设置 → 局域网,打开下图所示的局域网参数配置界面。您可以查看网络状态,配置网络参数。

图 10-3 LAN 设置界面

网络状态

信号发生器会根据当前网络的连接状态给出不同的提示:

- 网络已连接:表示网络连接正常。
- 网络已断开:表示没有连接网络或网络连接失败。

MAC 地址

MAC(Media Access Control)地址,也称为硬件地址,用于定义网络设备的位置。对于一台信号发生器,MAC 地址总是唯一的。为仪器分配 IP 地址时,总是通过 MAC 地址来识别仪器。MAC 地址(48 位,即 6 个字节)通常以十六进制表示,如:00-14-0E-42-12-CF。

VISA 描述符

VISA(Virtual Instrument Software Architecture)是美国国家仪器 NI(Natinal Instrument)公司开发的一种用来与各种仪器总线进行通信的高级应用编程接口,它以相同的方法与仪器通信而不考虑仪器的接口类型(GPIB、USB、LAN/以太网或者 RS232)。希望与之建立通信的 GPIB、USB、LAN/以太网或者 RS232 仪器,称为"资源"。

VISA 描述符指资源名称,描述了 VISA 资源的准确名称与位置。如当前使用 LAN 接口与仪器通信, VISA 描述符显示:TCPIPO::172.16.2.13::INSTR。

IP 配置模式

IP 地址配置模式可以是动态配置(DHCP)、自动配置或手动配置,如果当前网络连接已断开则"IP 配置模式:"后无显示。不同的 IP 配置模式下,IP 地址等网络参数的配置方式不同。

1. DHCP

- 该模式下,由当前网络中的 DHCP 服务器向信号发生器分配 IP 地址等网络 参数。
- 按 **动态配置** 软键,选择"打开"或"关闭"可以打开或关闭 DHCP 配置模式。

2. 自动配置

- 该模式下,信号发生器根据当前网络配置自动获取从 169.254.0.1 到 169.254.255.254 的 IP 地址和子网掩码 255.255.0.0。
- 按 **自动配置** 软键,选择"打开"或"关闭"可以打开或关闭自动 IP 配置模式。欲启用该模式,需将 **动态配置** 设为"关闭"。

3. 手动配置

- 该模式下,由用户自定义信号发生器的 IP 地址等网络参数。
- 按 **手动配置** 软键,选择"打开"或"关闭"可以打开或关闭手动 IP 配置模式。欲启用该模式,需将 **动态配置** 和 **自动配置** 设为"关闭"。
- IP 地址的格式为 nnn.nnn.nnn, 第一个 nnn 的范围为 0 至 223(127 除外), 其他三个 nnn 的范围为 0 至 255。建议向您的网络管理员咨询一个可用的 IP 地址。
- 按 **IP 地址** 软键,使用数字键盘和方向键输入所需的 **IP** 地址。该设置将保存在非易失性存储器中,下次开机时,如果 **动态配置** 和**自动配置** 设置为"关闭",信号发生器将自动加载所设的 **IP** 地址。

提示

- 三种 IP 配置模式均设为"打开"时,参数配置的优先级从高到低依次为"动态配置"、"自动配置"、"手动配置"。
- 三种 IP 配置模式不能同时设为"关闭"。

设置子网掩码

手动配置模式下, 可以手动设置子网掩码。

- 子网掩码的格式为 nnn.nnn.nnn, 其中 nnn 的范围为 0 至 255。建议向您的网络管理员咨询一个可用的子网掩码。
- 按 **子网掩码** 软键,使用数字键盘和方向键输入所需的子网掩码。该设置保存在非易失性存储器中,下次开机时,如果 **动态配置** 和 **自动配置** 设置为 "关闭",信号发生器将自动加载所设的子网掩码。

设置默认网关

手动配置模式下,可以手动设置默认网关。

- 默认网关的格式为 nnn.nnn.nnn, 第一个 nnn 的范围为 0 至 223(127 除外), 其他三个 nnn 的范围为 0 至 255。建议向您的网络管理员咨询一个可用的网关地址。
- 按 **默认网关** 软键,使用数字键盘和方向键输入所需的网关地址。该设置保存在非易失性存储器中,下次开机时,如果 **动态配置** 和 **自动配置** 设置为 "关闭",信号发生器将自动加载所设的网关地址。

设置 DNS 服务器

手动配置模式下, 可以手动设置域名服务器的地址。

- 域名服务器的地址格式为 nnn.nnn.nnn,第一个 nnn 的范围为 0 至 223(127 除外),其他三个 nnn 的范围为 0 至 255。建议向您的网络管理员咨询一个可用的地址。
- 按 **域名服务器** 软键,使用数字键盘和方向键输入所需的地址。该设置保存在非易失性存储器中,下次开机时,如果 **动态配置** 和 **自动配置**设置为"关闭",信号发生器将自动加载所设的服务器地址。

默认设置

按 **默认设置** 软键,将弹出提示消息"恢复网络设置到 LXI 预设值",按 **确定** 将网络参数恢复到默认值。默认情况下,启用动态配置和自动配置,禁用手动配置。

当前设置

按 **当前设置** 软键,可以查看当前仪器的 MAC 地址、当前网络参数及网络状态信息。

确认设置

按 确认 软键, 使当前设置的网络参数生效。

选择USB设备类型

DG4000 在其后面板提供一个 USB Device 接口。该接口可以连接计算机以实现远程控制或连接 PictBridge 打印机以打印屏幕显示的内容。

按Utility → 接口设置 → USB 设备:

- 选择"计算机": 用户可以使用 PC 软件编辑任意波形下载至信号发生器内部存储器,还可以使用 SCPI 命令编程控制信号发生器。
- 选择"打印机": 选择打印机后,按 Utility → 打印设置→ 打印路径 选择"打印机"。用户可以按 Print 键打印当前界面显示的内容。

系统设置

数字格式

您可以设置数字参数中的小数点和千位分隔符在屏幕中的显示格式,该设置保存在非易失性存储器中。按 **Utility > System > 数字格式**,进入数字显示格式设置界面。

- 小数点:可设置为点号"."或逗号","。默认为"."。
- 分隔符:可设置为 "打开"、"关闭"或"空格"。默认为"打开"。

数字显示格式共有6种组合,如下图所示:

频率	1.000,000,000 kHz	点号 + 打开(逗号)
频率	1.000 000 000 kHz	点号 + 空格
频率	1.000000000 kHz	 点号 + 关闭
频率	1,000.000.000 kHz	逗号 + 打开(点号)
频率	1,000 000 000 kHz	逗号 + 空格
频率	1,000000000 kHz	逗号 + 关闭

注意: 小数点和分隔符不能同时为点号或逗号。

语言

目前,DG4000 支持简体中文和英文两种系统语言,包括中英文菜单、帮助信息、提示信息、界面的显示以及中英文输入法。

接 $Utility \rightarrow System \rightarrow Language$,选择所需的语言类型。该设置保存在非易失性存储器中,不受"恢复出厂值"的影响。

开机配置

选择通电时将要使用的仪器配置为"默认值"或"上次值"。默认为"默认值"。

- 上次值:包括所有的系统参数,除输出配置,时钟源。
- 默认值:出厂默认值。个别参数(如:语言)除外。

按 Utility → System → 开机设置,选择所需的配置类型。该设置保存在非易失性存储器中,不受"恢复出厂值"的影响。

电源设置

选择通电时的开机方式为"自动"或"手动"。默认为"自动"。

- 自动:上电后,仪器自动开机。
- 手动:上电后,按下前面板电源开关,仪器开机。

按 Utility → System → 电源设置,选择所需的类型。

亮度

按 **Utility** → **System** → **亮度** ,使用数字键盘或方向键和旋钮设置信号发生器屏幕的显示亮度,可设置范围为 1%至 100%。该设置保存在非易失性存储器中,不受"恢复出厂值"的影响。

蜂鸣器

DG4000 内部蜂鸣器开启时, 当前面板或者远程操作产生错误时会发出提示声音。

按 **Utility** → **System** → **蜂鸣器**,选择"打开"或"关闭"。默认选择"打开"。 当前选择保存在非易失性存储器中,不受"恢复出厂值"的影响。

屏保

启用或禁用屏幕保护模式。

按 Utility → System → 屏保,选择"打开"或"关闭"。默认选择"打开"。当前选择保存在非易失性存储器中,不受"恢复出厂值"的影响。

时钟源

DG4000 提供内部 10MHz 的时钟源, 也接受从后面板 [10MHz In/Out] 输入的外部时钟源, 还可以从 [10MHz In/Out] 连接器输出时钟源, 供其他设备使用。

按 Utility → System → 时钟源,选择"内部"或"外部"。默认选择"内部"。若选择"外部",系统将检测后面板 [10MHz In/Out] 连接器是否有有效的外部时钟信号输入。若没有检测到有效的时钟源,则弹出提示消息"系统没有检测到有效的外部时钟!",并将时钟源切换成"内部"。

您可以通过时钟源的设置使两台仪器或多台仪器之间同步。两台仪器同步时,不能使用"同相位"功能。"同相位"功能只适用于调整同一台仪器的两个输出通道之间的相位关系,不能改变两台仪器之间的输出通道的相位关系。当然,您可以通过改变每个输出通道的"起始相位"来改变两台仪器之间的相位关系。

两台仪器或多台仪器之间的同步方法:

● 两台仪器的同步: 将仪器A(时钟源为"内部时钟")的 [10MHz In/Out] 连接到仪器B(时钟源

为"外部时钟")的 [10MHz In/Out], 然后将两台仪器设置相同的输出频率,即可实现两台仪器的同步。

- 多台仪器的同步(方法一): 将仪器A(时钟源为"内部时钟")的 [10MHz In/Out] 连接至仪器B(时钟源 为"外部时钟")的 [10MHz In/Out] ,然后将仪器B的 [10MHz In/Out] 连 接至仪器C(时钟源为"外部时钟")的 [10MHz In/Out] ,依次类推,最后 将每台仪器设置相同的输出频率,即可实现多台仪器的同步。
- 多台仪器的同步(方法二): 将一台仪器(时钟源为"内部时钟")的 10MHz 时钟源分成多路,然后分别连接至多台仪器(时钟源为"外部时钟")的 [10MHz In/Out],最后将每台仪器设置相同的输出频率,即可实现多台仪器的同步。

系统信息

接 Utility → System → **系统信息**,在系统信息界面可以看到当前仪器的型号、序列号、软件、FPGA、硬件和键盘版本号。

打印

用户可以将屏幕显示的内容以图片形式存储到外部 U 盘或通过 PictBridge 打印机打印。按 Utility → 打印设置, 打开打印设置界面。

1. 使用 PictBridge 打印机打印屏幕

首先请连接 PictBridge 打印机。使用 USB 数据线将信号发生器的 USB Device 接口连接到打印机的 USB Host 接口(如下图)。

接 Utility → 接口设置 → USB 设备,将设备类型设置为"打印机"。接 Utility → 打印设置→ 打印路径 选择"打印机"。然后按下 PictBridge 软键进入打印设置菜单:

- **打印份数**:按下该软键后,使用旋钮输入需要打印的份数。可设置范围为 1 至 1000。
- 色彩:按下该软键后,设置图像的颜色为"灰度"或"彩色"。
- 反相:按下该软键后,选择"打开"或"关闭"反相打印。

2. 将屏幕存储到 U 盘

首先请连接 U 盘。连接成功后,屏幕状态栏会显示 图标,同时屏幕上弹出相应的提示消息。

接 $Utility \rightarrow 打印设置 \rightarrow 打印路径$,选择 "U 盘",然后按下 图片格式 软键 选择以 "Bmp"或 "Jpeq"格式存储屏幕图片。

3. 执行打印

按下前面板 **Print** 键,系统将按照预设的配置通过 PictBridge 打印机打印屏幕或将屏幕以图片形式存储到 U 盘。

注意: 若信号发生器没有连接 PictBridge 打印机且没有检测到 U 盘, 打印操作 将失败并弹出提示消息 "Pictbridge 设备未连接"或"没有检测到 U 盘, 打印功能无效"。

检测校准

按前面板的 **Utility**,使用菜单翻页键 **☑** 选择 2/2 页菜单,按 **检测校准**,打开 检测校准界面,输入正确的校准密码后,可手动校准 DG4000。

1. 安全密码

按下该键后, 使用旋钮和方向键输入正确的校准密码。

2. 安全

该菜单默认为"打开",只有输入正确的校准密码后,才显示"关闭"。

3. 手动校准

输入正确的校准密码后,该菜单有效。您可以参考本产品校准手册手动校准 DG4000。

4. 默认值

按下该软键后,将校准值恢复为出厂时的默认值。

注意: **RIGOL** 不推荐用户自行手动校准,如您有校准需求,请与 **RIGOL** 客服部或者当地经销商联系。

耦合

DG4000 支持频率、相位和幅度的单独耦合和同时耦合。耦合打开后,设定 CH1 或 CH2 中的一个通道为"基准"通道,并设定两个通道的频率差、相位差或幅度差,则当改变基准通道的频率、相位或幅度时,另一通道的频率、相位或幅度将自动调整,并总是与基准通道保持指定的频率差、相位差或幅度差。

按前面板的 **Utility**,使用菜单翻页键 **▼** 选择 2/2 页菜单,按 **耦合** 软键,进入通道耦合设置界面。

1. 设置耦合基准

按 **耦合基准** 软键,可以选择 "CH1"或 "CH2"为耦合的基准源。此处选择 "CH2"。

注意,打开耦合功能时,不允许更改耦合基准,该菜单置灰禁用。

2. 打开耦合功能

按 耦合 软键,可以"打开"或"关闭"耦合功能。默认为"关闭"。

按 **频率耦合** 软键,可以选择"打开"或"关闭"频率耦合。打开频率耦合后,使用数字键盘输入所需的频率差。此处设置为"100Hz"。

按 相位耦合 软键,可以选择"打开"或"关闭"相位耦合。打开相位耦合后,使用数字键盘输入所需的相位差。此处设置为"10°"。

按 **幅度耦合** 软键,可以选择"打开"或"关闭"幅度耦合。打开幅度耦合后,使用数字键盘输入所需的幅度差。此处设置为"1Vpp"。

CH1 与 CH2 的参数关系应为:

$$F_{CH1} = F_{CH2} + 100Hz$$
 $P_{CH1} = P_{CH2} + 10^{\circ}$ $A_{CH1} = A_{CH2} + 1Vpp$

在耦合基准源的频率、相位和幅度左侧会各自显示一个绿色"*"标记。如下图所示,它表明当前处于频率、相位和幅度同时耦合状态。将 CH2 的频率、相位和幅度改为 100Hz、0°和 1Vpp 时,CH1 的参数将自动调整为 200Hz、10°和 2Vpp。

图 10-4 通道耦合

要点说明:

- 耦合功能仅在两通道均为基本波(正弦、方波、锯齿波或任意波)模式时有效, 但任意波为"DC"时无效。
- 如果基准通道的频率、相位或幅度加上所设定的差值超过非基准通道的频率、 相位或幅度上限,信号发生器将自动调整非基准通道的频率、相位或幅度以避 免参数超限。
- 非基准源的通道的频率、相位或幅度不可以直接修改。
- 修改基准源通道的相位,非基准源通道的相位(界面上所显示的相位)将随之 变化,此时,无需执行 **同相位** 操作就能使两通道真正同相位。
- 通道耦合与通道复制功能互斥,打开通道耦合时,若执行通道复制操作(按前面板 CH1=CH2 按键),将弹出提示消息"耦合情况下不允许修改非机准通道的耦合参数!"

通道复制

DG4000 支持两个通道间的状态或波形复制功能,即将其中一个通道的状态(参数和输出配置)或任意波形参数复制到另一个通道,或交换两个通道的状态。

按前面板的 Utility → 通道复制,即可设置通道复制相关参数。该设置不受恢复出 厂值操作的影响。

1. 复制类型

按前面板的 Utility → 通道复制 → 复制类型,选择通道复制的内容为"状态"或"波形"。

- 状态:包括通道的波形(易失波形除外)和波形参数(频率、幅度等)、功能(调制、扫频、脉冲串等)、输出配置(同步、阻抗、极性等)。
- 波形: 指任意波数据(不包括波形的参数),仅在两个通道都选择任意波时 有效。

2. 复制方向

按前面板的 Utility → 通道复制→ 复制方向,选择通道复制的方向为 "CH1->CH2"、"CH2->CH1"或"交换"(仅在复制类型为"状态"时可用,交换两个通道的状态)。

之后,在任意界面下,只要按前面板 CH1+CH2 按键,即可执行复制操作。

注意:

通道耦合与通道复制功能互斥,打开通道耦合功能时,不允许执行通道复制操作(按前面板 CH1+CH2 按键)。

用户自定义波形键

DG4000 前面板上的 **User** 键为用户提供了一个快捷方式。您可以将该快捷键定义成所需的内建波形或已存波形,在任何操作界面下,只要按下该快捷键,即可立即调出所需的波形,并设置该波形的参数。

欲修改该快捷键所调用的波形,按 Utility → 用户键,打开下图所示的快捷波形定义界面。使用旋钮在该界面上选择所需的波形(如 "AbsSine")后,按 ▼ 键打开第 2/2 页菜单,按 选择 软键。

注意: 欲将 User 键定义为已存波形的快捷键,按 Utility → 用户键,按 ▼ 键 打开第 2/2 页菜单,按 已存波形 软键选择所需的文件。已存波形 软键仅当当前 仪器已存储 "*.RAF"格式文件时可用。

图 10-5 波形定义界面

之后,在任何界面下按 **User** 键,对应的通道(如果当前已打开)将输出 AbsSine 信号,您还可以更改 AbsSine 信号的参数。

图 10-6 按 **User** 键快速编辑波形参数

还原预设配置

将系统恢复到出厂默认状态或用户预设状态。

- 出厂默认状态:参数值如下表所示。注意,带"*"的项目不受恢复出厂值操作的影响。
- 用户预设状态:对应于用户存储在内部存储器的10个状态文件。

按 **Utility** → **预设值** ,选择"默认值"或"自定义 1"至"自定义 10"。之后,在任意状态下,按下前面板 **Preset** 按键,仪器切换到指定的状态。注意,在选中"自定义 1"至"自定义 10"之前,请确保对应的存储位置已存有有效的状态文件。

表 10-1 出厂默认值

参数	出厂默认值	
通道参数		
当前载波	Sine	
输出阻抗	高阻	
同步输出	开	
同步极性	正	
输出极性	常规	
噪声开关	关	
噪声比例	10%	
耦合开关	关	
耦合基准	CH1	
相位差	0°	
频率差	0μHz	
幅度差	0Vpp	
基本波		
频率	1kHz	
幅度	5Vpp	
幅度单位	Vpp	
偏移	OV DC	
起始相位	0°	
方波占空比	50%	
锯齿波对称性	50%	

脉冲占空比	50%
脉冲宽度	500μs
脉冲上升沿	1.9531µs
脉冲下降沿	1.9531µs
)4X(1.7001µ0
任意波	
内建任意波	Sinc
逐点输出	关
	·
谐波	
谐波次数	2
谐波类型	偶次谐波
谐波幅度	1.264,7Vpp
谐波相位	0°
AM 调制	
调制源	内部
调制波	正弦波
调幅频率	100Hz
调制深度	100%
FM 调制	
调制源	内部
调制波	正弦波
调频频率	100Hz
频率偏差	1kHz
PM 调制	
调制源	内部
调制波	正弦波
调相频率	100Hz
相位偏差	90°
PWM 调制	
调制源	内部
调制波	脉冲

调制频率	100Hz	
宽度偏差	200µs	
占空比偏差	20%	
ASK 调制		
调制源	内部	
ASK 速率	100Hz	
调制幅度	2Vpp	
ASK 极性	正	
FSK 调制		
调制源	内部	
FSK 速率	100Hz	
跳频	10kHz	
FSK 极性	正	
PSK 调制		
调制源	内部	
PSK 速率	100Hz	
PSK 相位	180°	
PSK 极性	正	
BPSK 调制		
速率	100Hz	
相位	180°	
调制波形	Sine	
QPSK 调制		
速率	100Hz	
相位 1	45°	
相位 2	135°	
相位 3	225°	
调制波形	Sine	
3FSK 调制		
键控频率	100Hz	

跳频 1	100Hz
跳频 2	100Hz
4FSK 调制	
键控频率	100Hz
跳频 1	100Hz
跳频 2	100Hz
跳频 3	100Hz
	·
OSK 调制	
调制源	内部
速率	1kHz
震荡时间	100μs
扫频	
扫频类型	线性
步进数	2
扫频时间	1s
起始保持	Os
终止保持	Os
返回时间	0s
起始频率	100Hz
终止频率	1kHz
中心频率	550Hz
频率跨度	900Hz
标记频率	关闭
触发源	内部
触发输出	关闭
触发输入	上升沿
脉冲串	
脉冲串模式	N循环
循环数	1
起始相位	0°
延迟	0s
门控极性	正

触发源	内部		
触发输出	关闭		
触发输入	上升沿		
脉冲周期	10ms		
系统参数			
DHCP	打开		
自动 IP	打开		
手动 IP	关闭		
蜂鸣器	打开		
开机设置	默认值		
屏幕保护	打开		
时钟源	内部		
小数点	点号		
分隔符	逗号		
亮度*	取决于出厂时的设置		
语言*	取决于出厂时的设置		
打印路径	U盘		
图片格式	Bmp		
频率计			
灵敏度	50%		
触发电平	OV		
输入阻抗	高阻		
耦合	AC		
衰减	×1		
高频抑制	关闭		
闸门时间	1ms		
测量项	频率		
统计功能	关闭		
显示形式	数字		

第11章 远程控制

用户可以通过远程接口控制 DG4000 系列函数/任意波形发生器。本章给出远程控制 仪器的基本信息和方法。

本章内容如下:

- 远程控制概述
- 远程控制方法

RIGOL 第 11 章 远程控制

远程控制概述

DG4000 支持通过标配的 USB 或 LAN 接口与计算机进行通信从而实现远程控制。远程控制基于 SCPI 命令集(Standard Commands for Programmable Instruments,用于可编程仪器的标准命令集)实现。DG4000 支持 SCPI 1999.1 版。

当仪器工作在远程模式时,用户界面点亮 S 图标,前面板按键被锁定。此时,您可以通过按 Burst 键返回本地操作模式。

11-2 DG4000 用户手册

远程控制方法

基于 SCPI 命令远程控制 DG4000 主要包括如下两种方式:

- 1. 用户自编程控制 DG4000
- 2. 使用 PC 软件控制 DG4000

用户自编程

您可以基于 NI-VISA (National Instrument – Virtual Instrument Software Architecture) 库使用 SCPI 命令编程控制 DG4000。

1. 安装 NI-VISA 库

您需要在计算机上安装 NI 公司的 VISA 库(可到 NI 公司网站: http://www.ni.com/visa/下载)。

NI-VISA 是美国国家仪器有限公司根据 VISA 标准编写的应用程序接口。您可以使用 NI-VISA 通过 USB 等仪器总线实现信号发生器与 PC 的通信。VISA 定义了一套软件命令,用户无需了解接口总线如何工作,就可以对仪器进行控制。具体细节可参考 NI-VISA 的帮助。

2. 建立仪器与 PC 的通信

您需要建立信号源与计算机之间的通信。

● 选择 USB 接口:使用 USB 数据线连接信号源与计算机,此时,计算机会 弹出"硬件更新向导",您只需按照向导的提示安装驱动"USB Test and Measurement Device"即可。

步骤如下:

- 1) 选择"从列表或指定位置安装(高级)";
- 2) 点击"下一步":

RIGOL 第 11 章 远程控制

- 3) 选择"不要搜索。我要自己选择要安装的驱动程序";
- 4) 点击"下一步";

- 5) 选择 "USB Test and Measurement Device";
- 6) 点击"下一步";

7) 安装过程结束后,点击"完成"。

RIGOL 第 11 章 远程控制

● 选择 LAN 接口:将您的信号源连接至计算机所在的局域网,并按照"**设置** 网络参数"一节的说明设置正确的网络参数。

3. 编程

接下来,您只需选择熟悉的软件开发工具进行编程即可。供选择的开发工具包括 Visual C++ 6.0,Visual Basic 6.0 和 LabVIEW 8.6 等。有关 DG4000 的 SCPI 命令和编程方法的详细介绍请参考 **DG4000 编程手册**。

11-6 DG4000 用户手册

使用PC软件

您可以直接使用 PC 软件发送 SCPI 命令远程控制 DG4000。DG4000 支持的软件包括:

- **RIGOL** 提供的通用 PC 软件 **Ultra Sigma**
- NI (National Instrument Corporation) 公司的软件 Measurement & Automation Explore
- Agilent (Agilent Technologies, Inc.) 公司的软件 Agilent IO Libraries Suite

本节详细介绍如何使用 **Ultra Sigma** 通过 USB 和 LAN 接口发送命令控制 DG4000。 在获取 **Ultra Sigma** 软件之后,请参考对应的帮助文档正确安装软件及所需组件。

1. 通过 USB 控制仪器

1) 连接设备

使用 USB 数据线将信号发生器(使用后面板 USB Device 接口)连接到您的 PC 中。

2) 安装 USB 驱动

本信号发生器为 USBTMC 设备,将仪器与 PC 正确连接并且开机后, PC 将弹出硬件更新向导对话框,请按照向导的提示安装"USB Test and Measurement Device"驱动程序(参考"用户自编程"中的安装步骤)。

3) 搜索设备资源

打开 **Ultra Sigma**,软件将自动搜索当前连接到 PC 上的信号发生器资源,您也可以点击 **USB-TMC** 进行搜索,搜索过程中软件的状态栏如下图所示:

4) 查看设备资源

搜索到的资源将出现在"RIGOL Online Resource"目录下,并且显示仪器的型号和 VISA 描述符,如:

DG4162 (USB0::0x1AB1::0x04B0::DG41620000::INSTR).

RIGOL 第 11 章 远程控制

5) 通讯测试

右击资源名

"DG4162 (USB0::0x1AB1::0x04B0::DG41620000::INSTR)", 选择"SCPI Control Panel", 打开远程命令控制面板,即可通过该面板发送命令和读取数据。

2. 通过 LAN 控制仪器

1) 连接设备

使用网线将信号发生器连接到您的局域网中。

2) 配置网络参数

根据"配置远程接口"一节的说明设置信号发生器的网络参数。

3) 搜索设备资源

打开 Ultra Sigma,点击 LAN ,在弹出窗口点击 Search ,Ultra Sigma 将搜索连接到局域网上的信号发生器资源。搜索到的仪器资源显示在右侧资源框中。选中所需资源点击 CK 完成添加。如下图所示:

4) 查看设备资源

搜索到的资源将出现在"RIGOL Online Resource"目录下,并且显示仪器的型号和 VISA 描述符,如:DG4162 (TCPIP::172.16.3.16::INSTR)。

RIGOL 第 11 章 远程控制

5) 通讯测试

右击资源名 "DG4162 (TCPIP::172.16.3.16::INSTR)" 选择 "SCPI Control Panel", 打开远程命令控制面板,即可通过该面板发送命令和读取数据。

11-10 DG4000 用户手册

6) 加载 LXI 网页

本信号发生器符合 LXI-C 类仪器标准,通过 **Ultra Sigma**(右击仪器资源 名,选择 LXI-Web)可以加载 LXI 网页(如下图所示)。网页上显示仪器的 各种重要信息,包括仪器型号、制造商、序列号、说明、MAC 地址和 IP 地址等。

提示:

您也可以通过在计算机浏览器的地址栏输入信号发生器的 IP 地址加载 LXI 网页。

第 12 章 故障处理 **RIGOL**

第12章 故障处理

下面列举了 DG4000 在使用过程中可能出现的故障及排查方法。当您遇到这些故障时,请按照相应的步骤进行处理,如不能处理,请与 **RIGOL** 公司联系,同时请提供您机器的设备信息(获取方法: Utility → System → 系统信息)。

1. 如果按下电源开关信号发生器仍然黑屏,没有任何显示:

- (1) 检查电源接头是否接好。
- (2) 检查电源开关是否按实。
- (3) 做完上述检查后,重新启动仪器。
- (4) 如果仍然无法正常使用本产品,请与 **RIGOL** 联络。

2. 设置正确但无波形输出:

- (1) 检查 BNC 电缆是否正常接在通道输出端口上([Output1] 或 [Output2])。
- (2) 检查 BNC 线是否能够正常工作。
- (3) 检查 Output 或 Output2 键是否打开。
- (4) 做完上述检查后,将 开机设置 设为"上次值",然后重新启动仪器。
- (5) 如果仍然无法正常使用本产品,请与 RIGOL 联络。

3. U 盘设备不能被识别:

- (1) 检查 U 盘设备是否可以正常工作。
- (2) 确认使用的为 Flash 型 U 盘设备,本仪器不支持硬盘型 U 盘设备。
- (3) 重新启动仪器后,再插入U盘设备进行检查。
- (4) 如果仍然无法正常使用 U 盘, 请与 **RIGOL** 联络。

第 13 章 技术参数 **RIGOL**

第13章 技术参数

除非另有说明,所有技术规格在以下两个条件成立时均能得到保证。

- 信号发生器处于校准周期内并执行过自校准。
- 信号发生器在规定的操作温度(18℃ 至 28℃)下连续运行 30 分钟以上。除标有"典型"字样的规格以外,所用规格都有保证。

型号	DG4162	DG4102	DG4062	
通道	2	2	2	
最高频率	160MHz	100MHz	60MHz	
采样率	500MSa/s			
波形				
标准波形	正弦波、方波、锯齿波、脉	(冲波、噪声、谐波		
任意波	Sinc、指数上升、指数下降	、心电图、高斯、半正矢、	洛仑兹、双音频、DC 电压	
	等共计 150 种			
频率特性				
正弦波	1µHz 至 160MHz	1μHz 至 100MHz	1µHz 至 60MHz	
方波	1µHz 至 50MHz	1μHz 至 40MHz	1µHz 至 25MHz	
锯齿波	1µHz 至 4MHz	1μHz 至 3MHz	1µHz 至 1MHz	
脉冲波	1µHz 至 40MHz	1μHz 至 25MHz	1µHz 至 15MHz	
谐波	1µHz 至 80MHz	1µHz 至 50MHz	1µHz 至 30MHz	
噪声(-3dB)	120MHz 带宽	80MHz 带宽	60MHz 带宽	
任意波	1µHz 至 40MHz	1μHz 至 25MHz	1µHz 至 15MHz	
分辨率	1µHz			
准确度	±2ppm,18℃至 28℃			
正弦波频谱纯度				
谐波失真	典型 (OdBm)			
	DC-1MHz: <-60dBc			
	1MHz-10MHz: <-55dE	3c		
	10MHz-100MHz: <-50dBc			
	100MHz-160MHz: <-40dBc			
总谐波失真	<0.1% (10Hz-20kHz, 0dB	m)		

RIGOL 第 13 章 技术参数

寄生信号	典型 (OdBm)				
(非谐波)	≤10MHz <-65dBc				
	>10MHz <-65dBc+6dB/倍频程				
相位噪声	典型(0dBm,10kHz 偏移)				
THE AV	10MHz: ≤-115dBc/Hz				
信号特性					
上升/下降	典型值(1Vpp)	典型值(1Vpp)	典型值(1Vpp)		
时间	<8ns	<10ns	<12ns		
过冲	典型值(100KHz,1Vpp)				
	<3%				
占空比	≤10MHz: 20.0%	至 80.0%			
	10MHz-40MHz: 40.0%3	£ 60.0%			
	>40MHz: 50.0%	(固定)			
不对称性	周期的 1%+5ns				
抖动 (rms)	典型值(1MHz,1Vpp,50Ω)				
	≤5MHz 2ppm+500ps				
	> 5MHz 500ps				
锯齿波					
线性度	≤峰值输出的 1%(典型值)	,1kHz,1VPP,对称性 1009	%)		
对称性	0%至 100%				
脉冲波					
周期	25ns 至 1000000s	40ns 至 1000000 s	66.7ns 至 1000000s		
脉宽	≥10ns	≥12ns	≥18ns		
上升/下降	≥5ns	≥7ns	≥11ns		
沿					
过冲	典型值(1Vpp)				
	<3%				
抖动 (rms)	典型值(1Vpp)				
	≤5MHz 2ppm+500ps				
	>5MHz 500ps				
任意波	T				
波形长度	16k 点				
垂直分辨率	14bits				
采样率	500MSa/s				

第 13 章 技术参数 RIGOL

	II. wil the case				
最小上升/	典型值(1Vpp) -				
下降时间		<5ns			
抖动(rms)	典型值(1Vpp)				
	≤5MHz 2ppm+500ps				
	> 5MHz 500ps				
插值方式	关闭、线性				
编辑方式	点编辑、块编辑				
谐波输出	T				
谐波次数	≤16 次				
谐波类型	偶次谐波、奇次谐波、顺序	谐波、自定义			
谐波幅度	各次谐波幅度均可设置				
谐波相位	各次谐波相位均可设置				
输出特性					
振幅 (以 50:	Ω 端接)				
范围	≤20MHz:	≤20MHz:	≤20MHz:		
	1mVpp 至 10Vpp	1mVpp 至 10Vpp	1mVpp 至 10Vpp		
	≤70MHz:	≤70MHz:	≤60MHz:		
	1mVpp 至 5Vpp	1mVpp 至 5Vpp	1mVpp 至 5Vpp		
	≤120MHz:	≤100MHz:			
	1mVpp 至 2.5Vpp	1mVpp 至 2.5Vpp			
	≤160MHz:				
	1mVpp 至 1Vpp				
准确度	典型(1kHz 正弦,0V 偏移	,>10mVpp,自动)			
	±设置值的 1% ±2mVpp				
平坦度	典型	典型	典型		
(相对于	≤10MHz: ±0.1dB	≤10MHz: ±0.1dB	≤10MHz: ±0.1dB		
1kHz 正弦	≤60MHz: ±0.2dB	≤60MHz: ±0.2dB	≤60MHz: ±0.2dB		
波,	≤100MHz: ±0.4dB	≤100MHz: ±0.4dB			
500mVpp,	≤160MHz: ±0.8dB				
50Ω)					
单位	Vpp、Vrms、dBm				
分辨率	1mV 或 3 位				
偏移(以 50	偏移(以 50Ω 端接)				
范围	i围 ±5Vpk ac + dc				
准确度	± (设置值的 1% + 5mV + 振幅的 0.5%)				
波形输出	1				

RIGOL 第 13 章 技术参数

输出阻抗	50Ω (典型)
保护	短路保护,过载自动禁用波形输出
调制特性	
调制类型	AM、FM、PM、ASK、FSK、PSK、BPSK、QPSK、3FSK、4FSK、OSK、PWM
AM	
载波	正弦波,方波,锯齿波,任意波(DC除外)
调制源	内部/外部
调制波	正弦波,方波,锯齿波,噪声,任意波
调制深度	0% 至 120%
调制频率	2mHz~50kHz
FM	
载波	正弦波,方波,锯齿波,任意波(DC除外)
调制源	内部/外部
调制波	正弦波, 方波, 锯齿波, 噪声, 任意波
调制频率	2mHz~50kHz
PM	
载波	正弦波,方波,锯齿波,任意波(DC除外)
调制源	内部/外部
调制波	正弦波,方波,锯齿波,噪声,任意波
相偏	0°至 360°
调制频率	2mHz~50kHz
ASK	
载波	正弦波,方波,锯齿波,任意波(DC除外)
调制源	内部/外部
调制波	50%占空比的方波
键控频率	2mHz~1MHz
FSK	
载波	正弦波,方波,锯齿波,任意波(DC 除外)
调制源	内部/外部
调制波	50%占空比的方波
键控频率	2mHz~1MHz
3FSK	
载波	正弦波,方波,锯齿波,任意波(DC除外)
调制源	内部
调制波	50%占空比的方波

第 13 章 技术参数 RIGOL

键控频率	2mHz~1MHz
4FSK	
载波	正弦波,方波,锯齿波,任意波(DC 除外)
调制源	内部
调制波	50%占空比的方波
键控频率	2mHz~1MHz
PSK	
载波	正弦波,方波,锯齿波,任意波(DC除外)
调制源	内部/外部
调制波	50%占空比的方波
键控频率	2mHz~1MHz
BPSK	
载波	正弦波,方波,锯齿波,任意波(DC 除外)
调制源	内部
调制波	正弦波,方波,锯齿波,噪声,任意波(2 mHz 至 50 kHz)
键控频率	2mHz~1MHz
QPSK	
载波	正弦波,方波,锯齿波,任意波(DC 除外)
调制源	内部
调制波	正弦波,方波,锯齿波,噪声,任意波(2 mHz 至 50 kHz)
键控频率	2mHz~1MHz
OSK	
载波	正弦波
调制源	内部/外部
震荡时间	8ns∼499.75µs
键控频率	2mHz~1MHz
PWM	
载波	脉冲波
调制源	内部/外部
调制波	正弦波,方波,锯齿波,噪声,任意波
宽度偏差	脉冲宽度的 0%至 100%
调制频率	2mHz~50kHz
外调输入	
最大输入 范围	±2.5V
输入带宽	5MHz

RIGOL 第 13 章 技术参数

输入阻抗	1kΩ			
脉冲串特性				
载波	正弦波,方波,锯齿波,脉	淬波,噪声,任意波(DC 除	除外)	
载波频率	2mHz 至 100MHz	2mHz 至 100MHz	2ml	Hz 至 60MHz
脉冲计数	1至1000000或无限			
起始/停止	0°至 360°			
相位				
内部周期	2μ s 至 500s			
门控源	外部触发			
触发源	内部、外部、手动			
触发延迟	Ons 至 85s			
扫频特性				
载波	正弦波,方波,锯齿波,任	意波(DC 除外)		
类型	线性、对数、步进			
方向	上/下			
起始/停止	1μHz 至 160MHz	1μHz 至 100MHz	1µ⊦	Iz 至 60MHz
频率				
扫描时间	1ms 至 300s			
保持/返回	0ms 至 300s			
时间				
触发源	内部、外部、手动			
标记	同步信号的下降沿(可编程	!)		
频率计				
测量功能	频率、周期、正/负脉冲宽度	度、占空比		
频率分辨率	7位/秒(闸门时间=1s)			
测频范围	1μHz-200MHz			
周期测量	测量范围 5ns~16 天		5ns~16 天	
	电压范围和	中灵敏度(非调制信号)		
	直流偏移范围	±1.5VDC		
DC 耦合 1μHz~100MHz		50mVRMS~±2.5Vac+dc		
	100MHz∼200MHz	100mVRMS~±2.5Vac+c	dc	输入衰减关闭
AC 細 △	1µHz∼100MHz	50mVRMS~±2.5Vpp		
AC 耦合	100MHz∼200MHz	100mVRMS∼±2.5Vpp		

第13章 技术参数 **RIGOL**

	脉	冲宽度和占空比测量		
频率与幅度 范围	1µHz∼25MHz	50mVRMS~±2.5Vac+dc		
B > 1 - 2 - 2-	最小脉宽	≥20ns	DC 耦合	
脉冲宽度	脉宽分辨率	2ns	输入衰减关闭	
با بنیا	测量范围	00/ 1000/		
占空比	(显示)	0%~100%		
		输入特性		
输入信号范		±7Vac+dc(衰减器关闭) 输入阻抗= 1 MΩ	
制八信 5 犯 围	破坏电压	±70Vac+dc(衰减器打开	制入阻弧—11422	
[<u>1</u> 2]		5Vrms	输入阻抗=50Ω	
	输入衰减	打开: 10 倍衰减	减; 关闭: 不衰减	
输入调节 —	输入阻抗	50Ω	1ΜΩ	
机八叶口	耦合方式	AC	DC	
	高频抑制	打开:输入带宽=250KHz;关闭:输入带宽=225MHz		
输入触发	触发电平范围	-2.5V∼+2.5V		
和八加五人	触发灵敏度范围	0%(140mV 迟滞电压) ^	~100%(2mV 迟滞电压)	
	GateTime1	1ms		
	GateTime2	10ms		
闸门时间 —	GateTime3	100ms		
1,11,14,114,1	GateTime4	1s		
	GateTime5	10s		
	GateTime6	>10s		
编程时间				
配置时间(典型	!)			
	USB2.0	LAN		
函数改变	500ms	510ms		
频率改变	50ms	50ms	50ms	
IE: 4= =1 : →=				

	USB2.0	LAN
函数改变	500ms	510ms
频率改变	50ms	50ms
振幅改变	300ms	310ms
选择用户任意波	500ms	510ms

触发特性

触发输入

America May		
电平	TTL-兼容	
斜率	上升或下降(可选)	

13-7 DG4000 用户手册

脉冲宽度	> 50ns
反应时间	対频: <100ns (典型)
汉巡时间	行例: < 100hs (典型) 脉冲串: <300ns (典型)
<u>ል</u> ተ ላን የ ል ነገ	
触发输出	TTI *****
电平	TTL-兼容
脉冲宽度	> 60ns (典型)
最大频率	1MHz
参考时钟	
相位偏移	
范围	0°至 360°
分辨率	0.03°
外部参考输入	
锁定范围	10MHz ± 50Hz
电平	250mVpp 至 5Vpp
锁定时间	< 2s
输入阻抗(典型值)	1kΩ,交流耦合
内部参考输出	
频率	10MHz ± 50Hz
电平	3.3Vpp
输出阻抗(典型值)	50Ω,交流耦合
同步输出	
电平	TTL-兼容
阻抗	50Ω,标称值
一般技术规格	
电源	
电源电压	100-240V,45-440Hz
功耗	小于 50W
保险丝	250V, T2A
显示	
类型	7寸TFT LCD
分辨率	800 水平 × RGB × 480 垂直分辨率
色彩	16M 色
环境	

第 13 章 技术参数 RIGOL

温度范围	操作: 10℃至 40℃			
	非操作: -20℃至 60℃			
冷却方法	风扇强制冷却			
湿度范围	小于 35℃: ≤90%相对湿度			
	35℃至 40℃:≤60%相对湿度			
海拔高度	操作: 3000 米以下			
	非操作: 15000 米以下			
机械规格	机械规格			
尺寸(宽×高×深)	313mm×160.7mm×116.7mm			
重量	不含包装: 3.2 kg 含包装: 4.5 kg			
接口				
USB Host, USB Dev	USB Host, USB Device, LAN			
IP 防护				
IP2X				
校准周期				
建议校准间隔为一年				

第 14 章 附录 RIGOL

第14章 附录

附录A: 附件和选件

	描述	订货号
	DG4162(160 MHz,双通道)	DG4162
型号	DG4102(100 MHz,双通道)	DG4102
	DG4062(60 MHz,双通道)	DG4062
	一根符合所在国标准的电源线	-
标配附件	一根 USB 数据线	CB-USB
	一根 BNC 电缆(1 米)	CB-BNC-BNC-1
	一本《快速指南》	-
	一张资源光盘(含用户手册和应用软件)	-
	一份产品保修卡	-
选购附件	40dB衰减器	ATT-40dB
大百分割工工	机架安装套件	RMK-DG-4

注意: 所有附件和选件,请向当地的RIGOL办事处订购。

RIGOL 第 14 章 附录

附录B: 功率放大器技术参数

除非另有说明, 所有指标在下述两个条件下均能满足:

- 仪器必须在规定的操作温度下连续运行30分钟以上。
- 除标有"典型"字样的规格以外,所用规格都有保证。

P: 0 th 1	
信号输入	
输入阻抗	50kΩ
内置偏压(输出端等	±12V
效)	
外部输入	±10Vmax(增益: X1)
	±1.25Vmax(增益: X10)
放大器指标	
运行模式	恒定电压
増益	10V/1V、10V/10V 二档切换 (直流增益误差: <5%)
极性切换	同相/反向
正弦输出功率有效值	10W(典型值,输入 Sine, 100kHz, X10)
$(RL=7.5\Omega)$	
输出电压	12.5Vpeak (输入 Sine, 100kHz)
输出电流	1.65Apeak (输入 Sine, 100kHz)
输出阻抗	<2Ω
全功率带宽	DC~1MHz ^[1]
输出摆率	≥80V/µs(典型值) ^[2]
过冲	<7%
偏压指标	
偏置电压增益误差	5%±100mV
其他	
电源	DC 12V±5%, 4Apeak
输出保护	输出过流保护、内部温度异常保护
操作温度	0°C~+35°C ^[3]
尺寸(宽×高×深)	142.2mm×48.1mm×215.4mm
净量	850g±20g

第 14 章 附录 RIGOL

注^[1]: 全功率带宽指的是放大器能够产生具有最大可能幅度的无失真交流输出时的最大频率。

全功率带宽
$$FPB = \frac{SR}{2\pi V_{\text{max}}}$$

SR: Slew Rate (输出摆率)

Vmax: 放大器能够输出的最大无失真幅度

注^[2]:输出摆率定义:给放大器输入一个大的阶跃信号,发现其信号输出斜率会在某处饱和成为一个固定常数,这个常数称为放大器的 Slew Rate。

注^[3]: 以上指标均为 25℃时的指标, PA1011 工作时的环境温度范围为 0℃~+35℃, 当环境温度大于 35℃时建议用户降低输出功率和 PA1011 的工作频率。

RIGOL 第 14 章 附录

附录C: 保修概要

北京普源精电科技有限公司及其授权生产的苏州普源精电科技有限公司(RIGOL Technologies, Inc.)承诺其生产仪器的主机和附件,在产品保修期内无任何材料和工艺缺陷。

在保修期内,若产品被证明有缺陷,**RIGOL** 将为用户免费维修或更换。详细保修 条例请参见 **RIGOL** 官方网站或产品保修卡的说明。欲获得维修服务或保修说明全 文,请与 **RIGOL** 维修中心或各地办事处联系。

除本概要或其他适用的保修卡所提供的保证以外,**RIGOL** 公司不提供其他任何明示或暗示的保证,包括但不局限于对产品可交易性和特殊用途适用性之任何暗示保证。在任何情况下,**RIGOL** 公司对间接的,特殊的或继起的损失不承担任何责任。

14-4 DG4000 用户手册

索引
RIGOL

索引

3FSK 5-2	4 对数扫频	6-5
4FSK 5-2	6 用户自定义波形	键10-24
AC 电源输入1-1.		1-17
AM 5-:	2 电源键	1-6
ASK 5-1	1 创建任意波	3-9
BPSK 5-20	0 同步极性	10-4
DHCP10-1.	2 同步输出	10-3
DNS 服务器10-1-	4 同相位	2-8
FM 5-	5 后面板	1-12
FSK 5-1	4 延时	2-12
MAC 地址 10-1.	2 扫频	6-2
N 循环7-:	2 扫频时间	6-7
OSK 5-2	图 扫频触发源	6-9
PictBridge 10-1	9 网络状态	10-11
PM5-	8 自动 IP	10-12
PSK 5-1	7 块编辑	3-10
PWM 5-3	1 时钟源	10-17
QPSK 5-2	2 步进扫频	6-6
USB Device 1-1.	2 返回时间	6-7
USB Host1-	6 远程控制	11-2
VISA 描述符 10-1.	2 阻抗设置	10-5
上升沿2-1	2 易失波形	3-8
下降沿2-1	2 直流偏移	2-6
子网掩码10-1	3 线性扫频	6-4
门控脉冲串7	4 线性插值	3-9
中心频率6-	8 终止保持	6-8
内建波形3-	3 终止频率	6-2
手动 IP 10-1.	2 保存文件	9-5
支撑脚1-	3 前面板	1-6
无限脉冲串7-	3 恢复延时	2-13
占空比2-	9 标记频率	6-7
占空比偏差 5-3.	2 点编辑	3-9
外部功率放大器10-	7 相位偏差	5-10
对称性2-1	0 相位耦合	10-21

RIGOL

脉冲串	7-2	谐波次数4	-3
脉冲串延时	7-6	谐波相位4	-4
脉冲串极性	7-6	谐波类型4	-3
脉冲串周期	7-6	谐波幅度4	-4
脉冲串相位	7-5	幅度2	-5
脉宽	. 2-11	幅度耦合10-2	21
宽度偏差	. 5-32	编辑任意波3-1	15
振荡周期	. 5-29	输出极性10	-4
读取文件	9-7	频率2	-4
调制极性	. 5-13	频率计8	-1
调制深度	5-4	频率偏移5	-7
起始保持	6-8	频率跨度6	-3
起始相位		频率耦合10-2	21
起始频率	6-2	耦合10-2	21
逐点输出	3-3	耦合基准10-2	21
通道复制	10-23	噪声开关10	-6
检测校准	10-20	噪声比例10	-6
粘贴		噪声叠加10	
谐波	4-1	默认网关10-1	13