Sequence

Time Limit: 2s

Supervin has a sequence of integers A of length N. The i-th number of A is indicated by A_i . He wants to find the maximum value of I possible such that there exists another sequence k_1 , k_2 , k_3 , ..., k_l where $1 \le k_1 \le k_2 \le ... \le k_l \le n$ and $|A_{k_i} - A_{k_{i+1}}| = 1$ for every $1 \le i < l$.

Help him!

Format Input

First line is an integer T ($1 \le T \le 30$), the number of cases.

For each testcases, there will be an integer N ($1 \le N \le 50~000$) representing the length of sequence A.

The next line will consist of N integers. The i-th number is the value of A_i (-1 000 000 000 $\leq A_i \leq$ 1 000 000 000).

Format Output

For each case, output "Case #X: Y" (without quotes) in a line where X is the case number (starts from 1) and Y is the maximum value of I possible as explained in the problem statement.

Sample Input

```
2
4
1 2 1 3
5
5 5 5 5
```

Sample Output

```
Case #1: 3
Case #2: 1
```

Explanation

For the first sample, the possible sequence k is {1, 2, 4}.