AD-A286 566

HIGH RESOLUTION BOTTOM CHARACTERIZATION

4 MAY 1993

D. MIKLOVIC

CLEARED FOR CREATER IN THE

CONTRACT NO.: MDA972-91-C-0063

ARS-235-021-B

94 1128 060

Areté Associates

P.O. BOX 8050, LA JOLLA, CALIFORNIA 92038

ADVANCED PROCESSING FOR BOTTOM CHARACTERIZATION

Goal: Identify and quantify dominant scattering mechanisms in bottom limited environments.

Approach

- Produce precision high resolution scattering maps using broadband nearfield sparse array technology
- Identify classes of scattering by acoustic color

 Simultaneously measure bottom characteristics using broadband probe-pulse forward scattering

technology.

BOTTOM CLUTTER HYPOTHESIS TESTING

ROUGHNESS INHOMEGENETTY	HODULATION	OUTCROPPING	SUB-BOTTOM MMOMOGENETTY	GAS
 -k⁴S(k) broadband blue spectrum left-right symmetry 	• 6 ⁴ stope dependence • asymmetric	red-blue-red spetial color pattern	red spectrum related to depth	narrow band low frequency shadow zone

WASPS

Areté's Wideband Acoustic Scattering Processor System

Incorporates advanced processing and imaging technology into a unique and important tool for low and mid-frequency applications.

Features

- Full spectrum capability without nested arrays
- Very high resolution in 3D (range, cross-range, depth)
- Precision imaging of acoustic scene
- Acoustic color classification

Viability

- Can exploit any array configuration
- Concepts validated on Navy and ARPA systems
- Computational requirements within capability of emerging small, low-cost multiprocessor systems.

WASPS UNIQUE TECHNOLOGY

Technique	Effect	Utility
	- Maximum temporal resolution	- LFA multipath estimation
	Coll exects in expenses	
		. Liedheuch Diversity
BEAMFORMING	- Uses all signal energy	- Maximal SNR for impulsive
(< 200 % BANDWIDTH)		sources
	· Significantly increase angular	- Classification based on 2D
SPARSE ARRAYS	resolution	structure
	- Not restricted to 3/2 sensor	Conventional arrays can be
	spacing	pesn
		· Increased AG for nested
		configuration
	- Full array gain and resolution	· Use in short range (5·10 nmi)
NEAR FIELD FOCUSING	at any range	shallow water applications
		· Acoustic microscope (< 1 nmi)
	 Increases temporal resolution 	· LFA multipath classification with
EXPLOSIVE WAVEFORM	to the inverse bandwidth	explosives
DECONVOLUTION		
	Localizes array position	- Full gam without elaborate
ARRAY AUTO-COHERING		measurement systems
		- Left-right resolution
	Natural presentation of	Rapid operator assimilation of data
HIGH RESOLUTION	acoustic scene	
	. Presents relative fractions	· Tamet and anymomental
SPECTRAL COLOR	content of scatterers	classification
SEGMENTATION		
	- Determine contact depth	· Classification and localization
ESTIMATION		without matched held replica
	Near real time throughput	- Small, low cost processor systems
MULTIPROCESSOR ARCHITECTURE AND		
HARDWARE		

Theoretical 3 dB Resolution Cell: CST MFA

Beampattem:

$$|\mathbf{b}(\theta, \sigma)|^{2}$$

$$\left|\int \mathbf{b}(\theta,\omega)\mathbf{e}^{\omega}d\omega\right|^{2}$$

$$\frac{\lambda}{L} = 0.93 \text{ deg.}$$

$$\sqrt{2\frac{c}{|\Delta\omega|}} = 0.27 \text{ deg.}$$

$$\frac{1}{N^2} = -42 \text{ dB}$$

$$\frac{1}{N^2} = -42 \text{ dB}$$

Simulated Results For The CST MFA Receiver

THEORETICAL EFFECTS OF PROCESSING TECHNIQUES ON SPATIAL RESOLUTION OF CLUTTER

SUS Deconvolution

SUBR STO/CST4/geta 14AugSt

Effect of SUS Deconvolution

COMPARISON OF ACHIEVED VS THEORETICAL ANGULAR RESOLUTION (U)

 $\sqrt{2} \frac{c}{L \lambda \omega}$ (degrees)

BROADBAND SPARSE ARRAY ECONOMY

Bandwidth: 100 - 1600 Hz

DI : 12 dB

Classical Nested Octave Design

← 120 m →	Band	Sensor Spacing
•••••	100 - 200 Hz	$\Delta x = 7.5 \text{ m}$
**********	200 - 400 Hz	$\Delta x = 3.8 \text{ m}$
	400 - 800 Hz	$\Delta x = 1.9 \text{ m}$
	800 -1600 Hz	$\Delta x = .9 \text{ m}$

Number of Sensors: 41

Broadband Sparse Array Design

Band Sensor Spacing

100 -1600 Hz $\Delta x = 7.5 \text{ m}$

Number of Sensors: 17

COMPARISON OF NARROWBAND AND BROADBAND BEAMPATTERNS

13 Element Array Cut @ 100 Hz

CW @ 100 Hz

CW @ 300 Hz

100 - 1500 Hz @ t = 0

<u>ပ</u>

	10)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	(g)	<u>(a)</u>	(<u>O</u>
3 dB Beamwidth	6.5 deg	Ambiguous	1.4 dea
Sidelobe Level	-22 dB	-22 dB	-22 dB

CST7 Surface Reverberation 14 m/s Wind, Sea State 5

Tue Apr 13 13:38:16 1993

~debbie/edair/s12b04rv.ps

CST-7 PHASE 3 RUN 21A

RUN TRACK

DARPA ACT 1 CONFIGURATION

DARPA ACT1 TEST WIDEBAND SCATTERING 30-400HZ

DARPA ACT1 TEST WIDEBAND SCATTERING 30-400HZ

FULL SPECTRUM FOR CLASSIFICATION

Potential contacts should have distinguishing spectral characteristics

Scattering Process	Characteristic
sub-bottom features	low frequency
bottom interface	reflects bottom correlation scale
biologics	Rayleigh scattering and swim bladder resonance
near-surface bubbles	reflects plume details
data glitches	"white noise"
targets	reflects complex elastic structure

TWO-SIDED BROADBAND IMAGING

UNDOA on Left, False Alarm on Right

Wed Oct 28 08:07:25 1992

Shot: mr1h6

21

plot2.pe

Figure 4 Two scattering events with similar spatial structure which can be classified using their spectral content. Data from ARPAs ACT I Gulf of Mexico Test.

--

EXAMPLE OF LEFT-RIGHT AMBIGUITY RESOLUTION WITH WASPS

Active: 100 - 400 Hz

Array Asymmetry

Two-Sided Beampattern

Left-Right Resolution of Clutter Event at 26 km

peak intensity for 7 monostatic shots

Volume Feature and Associated

EXAMPLE OF DEPTH CLASSIFICATION BROADBAND LFA

Bottom Feature and Associated Multipaths From CST5

PREDICTED MULTIPATH FOR A CONTACT AT (3050m, 1450m), CST 5

MEASURED MULTIPATH FOR A CONTACT AT (3050m, 1450m), CST 5

CURRENT AND PENDING ARETÉ DATA BASES

Current Data Base

Experiment	Sponsor	Location	Water Depths (m)	Frequencies (Hz)	Comments	Sensor
CST-5	ONR/AEAS	Mediterranean Sea	1000-2000	100-1500	Bottom Features	Horizontal towed array
CST-7	ONR/AEAS	Gulf of Alaska	2000	100-1500	Suface and volume features	Horizontal towed array
CST-7	DARPA	Washington Coast	150-500	100-1500	Bottom Features	Horizontal towed array
Broadband Transmission	Martin Marietta	Santa Cruz Range	300-800	500-5500	Bottom and surface reflection	Vertical array
Dolphin Target	ONR, Martin Marietta	San Diego Coast	100-3800	100-6000	Bottom loss, backscattering and features	vertical array
ACT-1	DARPA	Gulf of Mexico	50-400	50-2000	Long-range bottom interaction	Bottom horizontal and vertical arrays

Pending Data Base

Experiment	Sponsor	Location	Water Depths (m)	Frequencies (Hz)	Comments	Sensor
CST-7	DARPA	Washington Coast	150-2000	100-1500		SQR-19 towed array