- Quando as variáveis só podem assumir valor 0 ou 1
- Exemplo

Existem 5 possíveis locais para o estabelecimento de depósitos, para o atendimento de 9 clientes. A possibilidade de atendimento aos clientes de cada depósito é mostrada na figura; o custo de estabelecer os depósitos para cada local, bem como o faturamento mensal esperado são mostrados na tabela. Dado que o orçamento é de 150, o objetivo é maximizar o retorno, satisfazendo todos os clientes sem estourar o orçamento. Formule o problema.

(C) CLIENTES

D DEPÓSITOS

LOCAL	CUSTO	FATURAMENTO
1	20	40
2	30	40
3	30	50
4	40	60
5	50	70

Variáveis:

- x_j binário = 1 construir depósito no local j = 0 não construir depósito no local j

Objetivo: maximizar o retorno

- max
$$z = (40-20)x_1 + (40-30)x_2 + (50-30)x_3 + (60-40)x_4 + (70-50)x_5$$

 $z = 20x_1 + 10x_2 + 20x_3 + 20x_4 + 20x_5$

Restrições:

- orçamento disponível
- todos os clientes devem ser atendidos

Restrições:

$$20x_1 + 30x_2 + 30x_3 + 40x_4 + 50x_5 \le 150$$

 $x_1 + x_2 \ge 1$ (cliente 1)
 $x_1 + x_2 + x_3 \ge 1$ (cliente 2)
 $x_3 + x_4 \ge 1$ (cliente 3)
 $x_4 \ge 1$ (cliente 4)
 $x_2 + x_5 \ge 1$ (cliente 5)
 $x_3 + x_4 + x_5 \ge 1$ (cliente 6)
 $x_4 + x_5 \ge 1$ (cliente 7)
 $x_5 \ge 1$ (clientes 8 e 9)

Ordenando a FO em ordem decrescente de coeficiente:

$$\max z = 20x_1 + 20x_3 + 20x_4 + 20x_5 + 10x_2$$

Acertando as restrições

$$20x_1 + 30x_3 + 40x_4 + 50x_5 + 30x_2 \le 150$$

$$-x_1 - x_2 \le -1$$

$$-x_1 - x_3 - x_2 \le -1$$

$$-x_3 - x_4 \le -1$$

$$-x_4 \le -1$$

$$-x_{5} - x_{2} \leq -1$$

$$-x_3 - x_4 - x_5 \le -1$$

$$-x_4 - x_5 \le -1$$

$$-x_5 \le -1$$

Renomeando as variáveis para maior conveniência:

$$y_1 = x_1$$

$$y_2 = x_3$$

$$y_3 = x_4$$

$$y_4 = x_5$$

$$y_5 = x_2$$

Teremos então:

$$\max z = 20y_1 + 20y_2 + 20y_3 + 20y_4 + 10y_5$$

Acertando as restrições

$$20y_1 + 30y_2 + 40y_3 + 50y_4 + 30y_5 \le 150$$

$$-y_1 - y_5 \le -1$$

$$-y_1 - y_2 - y_5 \le -1$$

$$-y_{2} - y_{3} \le -1$$

-
$$y_3$$
 ≤ -1

$$-y_4 - y_5 \le -1$$

$$-y_2 - y_3 - y_4 \le -1$$

$$-y_3 - y_4 \le -1$$

$$-y_4 \le -1$$

k	\mathcal{Y}_{j}	$\sum_{j=1}^k c_j y_j$	$\sum_{j=k+1}^{n} c_j$	$Z_{\it est}$	$\sum_{j=1}^{k} a_{ij} y_j$	$b_j - \sum_{j=k+1}^n min(0, aij), \forall i$	OK1	OK2	Z*
0									- ∝
1	1	20	70	90	(20,-1,-1, 0, 0, 0, 0, 0, 0)	(150, 0, 1, 1, 0, 1, 2, 1, 0)	ok	ok	

k	y_j	$\sum_{j=1}^k c_j y_j$	$\sum_{j=k+1}^{n} c_j$	$Z_{\it est}$	$\sum_{j=1}^{k} a_{ij} y_j$	$b_j - \sum_{j=k+1}^n min(0, aij), \forall i$	OK1	OK2	Z*
0									- ∝
1	1	20	70	90	(20,-1,-1, 0, 0, 0, 0, 0, 0)	(150, 0, 1, 1, 0, 1, 2, 1, 0)	ok	ok	
2	1,1	40	50	90	(50,-1,-2,-1, 0, 0,-1, 0, 0)	(150, 0, 0, 0, 0, 1, 1, 1, 0)	ok	ok	

k	\mathcal{Y}_{j}	$\sum_{j=1}^k c_j y_j$	$\sum_{j=k+1}^{n} c_j$	$Z_{\it est}$	$\sum_{j=1}^{k} a_{ij} y_j$	$b_{j} - \sum_{j=k+1}^{n} min(0, aij), \forall i$	OK1	OK2	Z*
0				_					- ∝
1	1	20	70	90	(20,-1,-1, 0, 0, 0, 0, 0, 0)	(150, 0, 1, 1, 0, 1, 2, 1, 0)	ok	ok	
2	1,1	40	50	90	(50,-1,-2,-1, 0, 0,-1, 0, 0)	(150, 0, 0, 0, 0, 1, 1, 1, 0)	ok	ok	
3	1,1,1	60	30	90	(90,-1,-2,-2,-1, 0,-2,-1, 0)	(150, 0, 0, -1, -1, 1, 0, 0, 0)	ok	ok	

k	y_j	$\sum_{j=1}^k c_j y_j$	$\sum_{j=k+1}^{n} c_j$	$Z_{\it est}$	$\sum_{j=1}^{k} a_{ij} y_j$	$b_j - \sum_{j=k+1}^n min(0, aij), \forall i$	OK1	OK2	Z*
0									- ∝
1	1	20	70	90	(20,-1,-1, 0, 0, 0, 0, 0, 0)	(150, 0, 1, 1, 0, 1, 2, 1, 0)	ok	ok	
2	1,1	40	50	90	(50,-1,-2,-1, 0, 0,-1, 0, 0)	(150, 0, 0, 0, 0, 1, 1, 1, 0)	ok	ok	
3	1,1,1	60	30	90	(90,-1,-2,-2,-1, 0,-2,-1, 0)	(150, 0, 0,-1,-1, 1, 0, 0, 0)	ok	ok	
4	1,1,1,1	80	10	90	(140,-1,-2,-2,-1,-1,-3,-2,-1)	(150, 0, 0,-1,-1, 0,-1,-1,-1)	ok	ok	

k	y_j	$\sum_{j=1}^k c_j y_j$	$\sum_{j=k+1}^{n} c_j$	$Z_{\it est}$	$\sum_{j=1}^{k} a_{ij} y_j$	$b_j - \sum_{j=k+1}^n min(0, aij), \forall i$	OK1	OK2	Z*
0									- ∝
1	1	20	70	90	(20,-1,-1, 0, 0, 0, 0, 0, 0)	(150, 0, 1, 1, 0, 1, 2, 1, 0)	ok	ok	
2	1,1	40	50	90	(50,-1,-2,-1, 0, 0,-1, 0, 0)	(150, 0, 0, 0, 0, 1, 1, 1, 0)	ok	ok	
3	1,1,1	60	30	90	(90,-1,-2,-2,-1, 0,-2,-1, 0)	(150, 0, 0, -1, -1, 1, 0, 0, 0)	ok	ok	
4	1,1,1,1	80	10	90	(140,-1,-2,-2,-1,-1,-3,-2,-1)	(150, 0, 0,-1,-1, 0,-1,-1,-1)	ok	ok	
5	1,1,1,1,1	90	0	90	(170,	(150,	ok	nao	

k	\mathcal{Y}_{j}	$\sum_{j=1}^k c_j y_j$	$\sum_{j=k+1}^{n} c_j$	$Z_{\it est}$	$\sum_{j=1}^{k} a_{ij} y_j$	$b_j - \sum_{j=k+1}^n min(0, aij), \forall i$	OK1	OK2	Z*
0									- ∝
1	1	20	70	90	(20,-1,-1, 0, 0, 0, 0, 0, 0)	(150, 0, 1, 1, 0, 1, 2, 1, 0)	ok	ok	
2	1,1	40	50	90	(50,-1,-2,-1, 0, 0,-1, 0, 0)	(150, 0, 0, 0, 0, 1, 1, 1, 0)	ok	ok	
3	1,1,1	60	30	90	(90,-1,-2,-2,-1, 0,-2,-1, 0)	(150, 0, 0,-1,-1, 1, 0, 0, 0)	ok	ok	
4	1,1,1,1	80	10	90	(140,-1,-2,-2,-1,-1,-3,-2,-1)	(150, 0, 0, -1, -1, 0, -1, -1, -1)	ok	ok	
5	1,1,1,1,1	90	0	90	(170,	(150,	ok	nao	
5	1,1,1,1,0	80	0	80	(140,-1,-2,-2,-1,-1,-3,-2,-1)	(150,-1,-1,-1,-1,-1,-1,-1)	ok	ok	80

k	\mathcal{Y}_{j}	$\sum_{j=1}^k c_j y_j$	$\sum_{j=k+1}^{n} c_j$	$Z_{\it est}$	$\sum_{j=1}^{k} a_{ij} y_j$	$b_j - \sum_{j=k+1}^n min(0,aij), \forall i$	OK1	OK2	Z^*
0									- ∝
1	1	20	70	90	(20,-1,-1, 0, 0, 0, 0, 0, 0)	(150, 0, 1, 1, 0, 1, 2, 1, 0)	ok	ok	
2	1,1	40	50	90	(50,-1,-2,-1, 0, 0,-1, 0, 0)	(150, 0, 0, 0, 0, 1, 1, 1, 0)	ok	ok	
3	1,1,1	60	30	90	(90,-1,-2,-2,-1, 0,-2,-1, 0)	(150, 0, 0, -1, -1, 1, 0, 0, 0)	ok	ok	
4	1,1,1,1	80	10	90	(140,-1,-2,-2,-1,-1,-3,-2,-1)	(150, 0, 0,-1,-1, 0,-1,-1,-1)	ok	ok	
5	1,1,1,1,1	90	0	90	(170,	(150,	ok	nao	
5	1,1,1,1,0	80	0	80	(140,-1,-2,-2,-1,-1,-3,-2,-1)	(150,-1,-1,-1,-1,-1,-1,-1)	ok	ok	80
4	1,1,1,0	60	10	70			Não		
3	1,1,0	40	30	70			Não		
2	1,0	20	50	70			Não		
1	0,	0	70	70			Não		

Resposta:

$$x_1 = y_1 = 1$$

$$x_2 = y_5 = 0$$

$$x_3 = y_2 = 1$$

$$x_4 = y_3 = 1$$

$$x_5 = y_2 = 1$$

$$z = 80$$