NASA CR-172,538

NASA Contractor Report 172538

ICASE REPORT NO. 85-8

NASA-CR-172538 19850012419

ICASE

THE EIGENVALUES OF THE PSEUDOSPECTRAL FOURIER APPROXIMATION TO THE OPERATOR $\sin(2x) \frac{\partial}{\partial x}$

Hillel Tal-Ezer

Contract No. NAS1-17070

February 1985

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

Langley Research Center Hampton, Virginia 23665 LIBRARY GOPY

ELENA 1835

LANGLEY RESEARCH CEMTER LIERARY, NASA HAMPTON, VIRGINIA

THE EIGENVALUES OF THE PSEUDOSPECTRAL FOURIER

APPROXIMATION TO THE OPERATOR $\sin(2x) \frac{\partial}{\partial x}$

Hillel Tal-Ezer

School of Mathematical Sciences, Tel-Aviv University

Abstract

In this note we show that the eigenvalues Z_i of the pseudospectral Fourier approximation to the operator $\sin(2x) \frac{\partial}{\partial x}$ satisfy

$$R_e Z_i = \pm 1$$
 or $R_e Z_i = 0$.

Whereas this does not prove stability for the Fourier method, applied to the hyperbolic equation

$$U_t = \sin(2x)U_x - \pi < x < \pi;$$

it indicates that the growth in time of the numerical solution is essentially the same as that of the solution to the differential equation.

To be submitted for publication in Mathematics of Computation.

N85-20729#

Research was supported in part by the National Aeronautics and Space Administration under NASA Contract No. NASI-17070 while the author was in residence at the Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23665.

1. Introduction

Let us consider the problem

$$U_t - GU = 0$$
 $0 \le x \le 2\pi$
 $U(x,0) = U^0(x)$ (1.1)

where

$$G = a(x)\frac{\partial}{\partial x} . (1.2)$$

In the Fourier pseudospectral (collocation) method, we seek a trigonometric polynomial of degree N , \mathbf{U}_{N} , that satisfies

$$(U_N)_t - G_N U_N = 0$$

 $U_N(x,0) = U_N^0(x)$ (1.3)

where

$$G_N = P_N G$$
;

 P_N is the pseudospectral projection operator [5]. It is known [2] that when a(x) does not change sign in the interval, the semidiscrete solution of (1.3) is stable. When a(x) changes sign in the interval, the situation is much more complicated. Gottlieb, Orszag and Turkel [1] have proved stability for the case where a(x) is of the form

$$a(x) = \alpha \sin(x) + \beta \cos(x) + \gamma. \tag{1.4}$$

In [4], Tadmor argues that this stability proof results from the special form of a(x) in (1.4) and cannot be extended. In the next section we prove a theorem related to the problem of stability of (1.1) where a(x) is a second degree trigonometric polynomial.

2. The Theorem and Its Proof

Theorem: Considering (1.1), (1.2), where $a(x) = \sin(2x)$, then the eigenvalues λ_i^N of G_N satisfy

$$R_e \lambda_i^N = -1$$
 or $R_e \lambda_i^N = 0$ or $R_e \lambda_i^N = 1$. (2.1)

Proof:

The projected subspace $\,V_{N}\,\,$ that results from using the operator $\,^{P}_{N}\,\,$ is spanned by the following $\,^{2N}\,\,$ basis functions

$$V_{N} = S_{p}\{1,\cos(x),...,\cos(Nx),\sin(x),...,\sin(N-1)x\}\}$$
 (N even) (2.2)

Define the following four subspaces of V_{N}

$$W_{1} = S_{p}\{\cos(x), \cos(3x), ..., \cos((N-1)x)\}$$

$$W_{2} = S_{p}\{\sin(x), \sin(3x), ..., \sin((N-1)x)\}$$

$$W_{3} = S_{p}\{\sin(2x, \sin(4x), ..., \sin((N-2)x)\}$$

$$W_{4} = S_{p}\{1, \cos(2x), ..., \cos(Nx)\}.$$
(2.3)

It is easily verified that

$$V_{N} = W_{1} \oplus W_{2} \oplus W_{3} \oplus W_{4}$$
 (2.4)

and each W_i is invariant of G_N ; therefore we can discuss separately the four matrices which represent G_N in each one of the subspaces W_i .

Define now

$$B_{i}^{M} = [G_{N}]_{w_{i}}$$
 $1 \le i \le 4$ $(M = \frac{N}{2});$ (2.5)

then by using elementary trigonometric relations we get that $B_{\dot{\mathbf{i}}}^{\dot{\mathbf{M}}}$ are tridiagonal matrices whose elements are:

let A by any tridiagonal matrix:

$$A = \begin{pmatrix} a_1 & c_1 \\ b_2 & a_2 & c_2 \\ & \cdot & \cdot & \cdot \\ & & b_{n-1} & a_{n-1} & c_{n-1} \\ & & b_n & a_n \end{pmatrix}$$
 (2.6)

and let A_k by the submatrix

$$A_{k} = \begin{pmatrix} a_{1} & c_{1} & & & & & \\ b_{2} & a_{2} & c_{2} & & & & \\ & & \cdot & \cdot & \cdot & & \\ & & & b_{k-1} & a_{k-1} & c_{k-1} \\ & & & & b_{k} & a_{k} \end{pmatrix} . \tag{2.7}$$

Upon defining

$$q_{\nu}(A) = \det A_{\nu} \tag{2.8}$$

it is easily verified that

$$q_{k+1}(A) = a_{k+1} q_k(A) - b_{k+1} c_k q_{k-1}(A)$$
 (2.9)

and

$$q_n(A) = \det A.$$

In the following we treat each one of the matrices B_{i}^{M} , i = 1,2,3,4 separately.

<u>Lemma 1</u>: The matrix B_1^M has one zero eigenvalue, and all its other eigenvalues λ_i satisfy $R_e \lambda_i = 1$.

Proof: For any M define

$$C_{M} = 2B_{1}^{M} - \lambda I .$$

The characteristic polynomial of $2B_1^{M}$ is given by

$$Q_{M}(\lambda) = \det C_{M}$$
 (2.10)

and using (2.8)

$$Q_{M}(\lambda) = Q_{M}(C_{M}).$$

We define now the following family of polynomials (in the variable λ)

$$P_0 = 1$$
 $P_1 = -(\lambda + 1)$ (2.11) $P_{k+1} = -\lambda P_k + (4k^2 - 1) P_{k-1}$ $1 \le k \le \infty$.

Note that from (2.9) and the structure of $\ C_{M}$

$$P_{k} = q_{k}(C_{M}) \qquad 2 \leq k \leq M;$$
 (2.12)

however (2.12) is not true for k = M; rather we have

$$Q_{M}(\lambda) = (2M - 1 - \lambda) P_{M-1} + (4(M-1)^{2} - 1) P_{M-2}$$
 2 < M . (2.13)

From (2.11) we get

$$Q_{M}(\lambda) = (2M - 1) P_{M-1} + P_{M}$$
 2 < M. (2.14)

Using (2.14) and (2.13) results in

$$Q_{M+1}(\lambda) = -\lambda P_M + (2M+1) Q_M$$
 2 < M. (2.15)

Finally we solve (2.15) for P_M in terms of $Q_M(\lambda)$, $Q_{M+1}(\lambda)$ and substitute the result in (2.14). We thus get the polynomials $Q_M(\lambda)$, $M \geqslant 2$ that satisfy the following recursion formula

$$Q_{2}(\lambda) = \lambda(\lambda-2)$$
; $Q_{3}(\lambda) = -\lambda(\lambda^{2}-4\lambda + 13)$

$$Q_{M+1}(\lambda) = (2-\lambda) Q_{M}(\lambda) + (2M-1)^{2} Q_{M-1}(\lambda)$$
(2.16)

It is easy to verify now that $\lambda=0$ is an eigenvalue of $2B_1^M$. In fact $\lambda=0$ is a root of $Q_2(\lambda)$ and $Q_3(\lambda)$ and therefore of any $Q_M(\lambda)$. We define now

$$x = i(2 - \lambda)$$
 (a) (2.17)

and

$$R_{\mathbf{M}}(\mathbf{x}) = \frac{1}{\lambda} Q_{\mathbf{M}}(\lambda) \cdot (i)^{M-1}$$
 (b)

to get

$$R_2 = -x$$
; $R_3 = x^2 - 9$

and

$$R_{M+1} = x R_M - (2M-1)^2 R_{M-1}$$
 $M \ge 3$. (2.18)

The relation (2.18) defines $R_M(x)$ as a family of orthogonal polynomials on the real axis. Therefore, for every M the roots of $R_M(x)$ are real, which implies by (2.17)(a) that $2 - \lambda$ are imaginary. Therefore, the eigenvalues of the matrices $2B_1^M$ for any M have real part equal to 2. This completes the proof of Lemma 1.

<u>Lemma 2</u>: For any M the matrix B_2^M has one zero eigenvalue and the real part of the others is -1.

Proof: The proof is an immediate result of the fact that in view of (2.9)

$$q_k(-B_2^M - \lambda I)$$

satisfy the same recurrence formula as $q_k(B_1^M - \lambda I)$.

Lemma 3: The eigenvalues of B_3^M are purely imaginary.

Proof: Define the matrix

$$D = \begin{pmatrix} 1/\sqrt{2} & & & \\ & 1/\sqrt{4} & & & \\ & & \cdot & & \\ & & & \cdot & \\ & & & 1/\sqrt{N-2} & \end{pmatrix} .$$

Then it is clear that

$$D^{-1}$$
 B_3^M D

is a skew symmetric matrix, and therefore its eigenvalues are purely imaginary. The same is of course true for $\ B_3^M.$

Lemma 4: The eigenvalues of B_4^M are purely imaginary.

<u>Proof</u>: From the definition of B_3^M and B_4^M it follows that if P_k is characteristic polynomial of $(B_3^M)_{k\times k}$ then $\lambda^2 P_k$ is the characteristic polynomial of $(B_4^M)_{(k+2)\times (k+2)}$. Thus the eigenvalues of B_4^M are purely imaginary.

The proof of Lemma 4 concludes the proof of the theorem.

References

- [1] D. Gottlieb, S. Orszag, E. Turkel, Stability of pseudospectral and finite difference methods for variable coefficient problems,

 Math. Comp., Vol. 37, No. 156, (1981), pp. 293-305.
- [2] D. Gottlieb, S. Orszag, Numerical Analysis of Spectral Methods; Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM Publisher, Philadelphia, PA 1977.
- [3] E. Issacson, H.B. Keller, Analysis of Numerical Methods, John Wiley and Sons, Inc., New York. (1966).
- [4] E. Tadmor, Finite-difference, spectral and Galerkin methods for time-dependent problems, ICASE Report No. 83-22, NASA CR-172149, 1983.
- [5] R.G. Voigt, D. Gottlieb, M.Y. Hussaini, Spectral Methods for Partial Differential Equations, Proceedings of a Symposium. August 16-18, 1983, SIAM, Philadelphia, PA, 1984.

		_				
1. Report No. NASA CR-172538 ICASE Report No. 85-8	2. Government Acces	sion No.	3. Re	ipient's Catalog No.		
4. Title and Subtitle			,	cort Date		
The Eigenvalues of the	rier		ruary 1985			
The Eigenvalues of the Pseudospectral Fourier Approximation to the Operator $\sin(2x) \frac{\partial}{\partial x}$				forming Organization Code		
7. Author(s)			8. Per	forming Organization Report No.		
Hillel Tal-Ezer			8	5-8		
			10. Wo	k Unit No.		
9. Performing Organization Name and Addre	ss A1d-a-bd-a-a-dC		ļ			
and Engineering	Institute for Computer Applications in Sci			stract or Grant No.		
Mail Stop 132C, NASA Lar	iter	N	AS1-17070			
Hampton, VA 23665	1			e of Report and Period Covered		
12. Sponsoring Agency Name and Address			c	Contractor Report		
National Aeronautics and	d Space Administra	tion	<u> </u>	nsoring Agency Code		
Washington, D.C. 20546	•		5	05-31-83-01		
15. Supplementary Notes						
Langley Technical Monit	or: J. C. South,	Jr.				
Final Report						
16. Abstract		<u> </u>				
In this note we sh		-		dospectral Fourier		
approximation to the ope	erator $\sin(2x) \frac{\partial}{\partial x}$	- satisfy	7			
	$R_{e} Z_{i} = \pm 1$	or R _e Z	-i = 0.			
	0 1	Č	-			
Whereas this does not p	rove stability for	the Four	rier method, a	pplied to the		
hyperbolic equation	,		•	• •		
hyperbolic equation	11		- / / -			
	t si	x	- π < x < π	j		
it indicates that the g	rowth in time of t	the numer	ical solution	is essentially the		
same as that of the sol	ution to the diffe	erential (equation.			
		·····		<u></u>		
17. Key Words (Suggested by Author(s))		l .	ion Statement			
pseudospectral	64 – N	umerical Analy	vsis			
stability Fourier						
variable coefficients	Unclassified - Unlimited					
19. Security Classif Jof this report)	20. Security Classif for this	page)	21. No. of Pages	22. Price		
Unclassified	OUCTASSILTED		11	A02		