

What is an image?

Common image formats:

- 1 sample (8 bits per pixel) grayscale
- 3 samples (24 bits per pixel) RGB
- 4 samples (32 bits per pixel) RGB and alpha channel (opacity)

7

Image Processing Operations

Neighbourhood: use data from adjacent pixels to modify a pixel value

Global: use statistics on the whole image to process pixel values

Point: each pixel is processed independently of all others

Geometric: pixels are modified according to the structural content

Temporal: individual frames of a sequence are considered i.e., inter-frame (MPEG)

Image Processing Operations

Neighbourhood: use data from adjacent pixels to modify a pixel value

Global: use statistics on the whole image to process pixel values

Point: each pixel is processed independently of all others

Geometric: pixels are modified according to the structural content

Temporals individual frames of a sequence are considered i.e., inter-frame (MPEG)

9

10

Important because...

Provides context for individual pixels

Neighbourhood relations determine image
features

Typical neighbourhood operations:

Noise reduction

Filtering

Edge detection & enhancement

11

Pixel Connectivity

Establishes the boundary of objects and regions

Group together in the same region by assuming pixels having same intensity (colour)

Segmentation – all pixels belonging to an object have an intensity value > some threshold

Idea is to determine if two pixels are adjacent

14

Global Measures

Reflect pixel distribution information

Basis of image compression methods i.e., JPEG

Low probability of a pixel value = fewer bits (often zero) being assigned

Higher probability of a value = more bits

Measures include *mean* and *variance* – based on

image statistics

19

Image Statistics – Mean

Measure of image brightness

$$\overline{x} = \frac{1}{N} \sum_{k=0}^{N-1} p_k$$

where N is the total number of pixels p

x =

 $\bar{x} = 163$

Image Statistics – Variance

Reflects how much pixel values vary from the mean

Standard deviation σ or **variance** σ^2 used:

$$\sigma^{2} = \frac{1}{N} \sum_{k=0}^{N-1} p_{k}^{2} - \overline{x}^{2}$$

Larger σ^2 means greater contrast (variance) –

but can mean higher noise

21

Prof Laurence Dooley

Histogram Equalisation

It is *trial & error* to determine if image benefits
Flat histogram not always desirable as human visual system is non-linear

HE can be applied to just part of an image Even if histogram is uneven, HE is still a powerful image enhancement technique

30

Prof Laurence Dooley

Colour Image Histograms

Separate histograms for R, G and B

Wean: 95.72 Level:
Std Dev: 52.09 Count:
Percentile:
Pixels: 181000

40

Prof Laurence Dooley 20

Usually a 3D histogram is created with **R**, **G** & **B** axes