Problem Set 1

1. (#1 in 2.1) Prove **Theorem 2.1.3 (ii)** (DeMorgan's law): If X is any set and $\{A_{\lambda}|\lambda\in\Lambda\}$ is any indexed collection of sets, then $X\setminus\bigcap_{\lambda\in\Lambda}A_{\lambda}=\bigcup_{\lambda\in\Lambda}(X\setminus A_{\lambda})$.

Let X be a set and $\{A_{\lambda}|\lambda\in\Lambda\}$ be an indexed collection of sets. First consider the case $\bigcup_{\lambda\in\Lambda}(X\backslash A_{\lambda})=\emptyset$. Then $X\backslash A_{\lambda}=\emptyset$ for every $\lambda\in\Lambda$. So, $A_{\lambda}=X$ for all $\lambda\in\Lambda$. Hence $\bigcap_{\lambda\in\Lambda}A_{\lambda}=X$, and thus $X\backslash\bigcap_{\lambda\in\Lambda}A_{\lambda}=\emptyset$, preserving equality. So, assume that $X\backslash\bigcap_{\lambda\in\Lambda}A_{\lambda}\neq\emptyset$. Now, let $x\in X\backslash\bigcap_{\lambda\in\Lambda}A_{\lambda}$. Then, $x\in X$, but $x\notin\bigcap_{\lambda\in\Lambda}A_{\lambda}$. So, by definition of intersection, $x\notin A_{\lambda}$ for at least one $\lambda\in\Lambda$. So, for some $\lambda\in\Lambda$, we have that $x\in X\backslash A_{\lambda}$. Hence $x\in\bigcup_{\lambda\in\Lambda}(X\backslash A_{\lambda})$. Conversely, assume that $x\in\bigcup_{\lambda\in\Lambda}(X\backslash A_{\lambda})$. So, for some $\lambda\in\Lambda$ and $x\notin A_{\lambda}$ for at least one $\lambda\in\Lambda$. Therefore $x\in X$ but $x\notin\bigcap_{\lambda\in\Lambda}A_{\lambda}$. Thus $x\in X\backslash\bigcap_{\lambda\in\Lambda}A_{\lambda}$ and therefore $X\backslash\bigcap_{\lambda\in\Lambda}A_{\lambda}=\bigcup_{\lambda\in\Lambda}(X\backslash A_{\lambda})$ as desired.

2. (#3 in 2.1) Consider the subset D of \mathbb{R}^2 defined by $D = \{(x,y)|x \leq y^2\}$. Is this set a Cartesian product of two subsets of \mathbb{R} ? Explain.

D is not a cartesian product. Assume by way of contradiction that D is a cartesian product. Well, we can see that the points (1,1) and (0,0) are elements of D. Since we assume that D is a cartesian product, we would then have the points $(0,1), (1,0) \in D$. However, $1 \nleq 0^2 = 0$ which is a contradiction. Therefore, D is not a cartesian product.

3. (#3 in 2.2) Prove or disprove the following: For $B \subseteq Y$ and $f: X \to Y$, $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$.

Prove: Let B, X, and Y be sets, $B \subseteq Y$, and $f: X \to Y$ be a function. First assume that $B = \emptyset$. Then $Y \setminus B = Y$. So, $f^{-1}(Y \setminus B) = f^{-1}(Y) = X = X \setminus f^{-1}(B)$. So, assume that $B \neq \emptyset$ Let $x \in f^{-1}(Y \setminus B)$. Then, we have that $f(x) \in Y \setminus B$. So, by definition, $f(x) \in Y$ and $f(x) \notin B$. Again by definition, $x \in X$ but $x \notin f^{-1}(B)$. Therefore $x \in X \setminus f^{-1}(B)$ and $f^{-1}(Y \setminus B) \subseteq X \setminus f^{-1}(B)$. On the other hand, assume $x \in X \setminus f^{-1}(B)$. Well, we have then that $x \in X$ and $x \notin f^{-1}(B)$. So, by definition, $f(x) \in Y$, but also $f(x) \notin B$ Thus, $f(x) \in Y \setminus B$ and so $x \in f^{-1}(Y \setminus B)$. Therefore $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$ as desired.

4. (#5 in 2.2) Prove **Theorem 2.2.5**: For $A \subseteq X$ and $f: X \to Y$ any function, we have $A \subseteq f^{-1}(f(A))$. If, in addition, f is one-to-one, then $A = f^{-1}(f(A))$.

Let $A \subseteq X$ and $f: X \to Y$ be any function. Assume $x \in A$. Then f(x) = y for some $y \in Y$. So by definition of image, we have that $f(x) \in f(A)$. Then by definition of inverse image, we have that $x \in f^{-1}(f(A))$, and so $A \subseteq f^{-1}(f(A))$ as desired. Now, assume that f is injective. Also, let $x \in f^{-1}(f(A))$. So, $f(x) \in f(A)$. Therefore, by definition, there is an $a \in A$ such that f(x) = f(a). Now, since f is one-to-one, we have that x = a. Hence $x \in A$. So, by the preivious proof, we have that $A = f^{-1}(f(A))$ as was to be done.

- 5. (#8 a, b in 2.2) Let $f: X \to Y$ and $g: Y \to Z$ be any functions.
 - (a) Prove that if f is one-to-one and g is one-to-one, then $g \circ f : X \to Z$ is one-to-one. Is the converse true? Let f and g be one-to-one functions as given above with X,Y, and Z as sets. Now, assume that $g(f(x_1)) = g(f(x_2))$ for some $x_1, x_2 \in X$. Since g is injective, $f(x_1) = f(x_2)$. Also, since f is injective, $x_1 = x_2$ and thus $g \circ f : X \to Z$ is injective as desired. The converse is not true however. Consider $f : \mathbb{R} \to [0, \infty)$ and $g : [0, \infty) \to [0, \infty)$ given by $f(x) = x^2$ and $g(x) = \sqrt{x}$. Clearly g(f(x)) = x is one-to-one, but f(x) is not.
 - (b) If g is onto and f is onto, then is $g \circ f$ always onto? Is the converse true? Let f and g be as given with sets X, Y, and Z. Assume that f and g are onto. Now, let $z \in Z$. Since g is onto, there exists $y \in Y$ such that g(y) = z. Now, since f is onto, there exists $x \in X$ such that f(x) = y. Thus, there exists $x \in X$ such that g(f(x)) = z and so $g \circ f : X \to Z$ is onto as desired. The converse is not always true. Consider $f : [0, \infty) \to \mathbb{R}$ and $g : \mathbb{R} \to [0, \infty)$ defined by $f(x) = \sqrt[3]{x}$ and $g(x) = x^2$. So clearly $g(f(x)) = x^{\frac{2}{3}}$ is onto, but f is not.
- 6. (#3 in 2.5) Verify that the set $\{1, 4, 7, 10, \ldots\}$ is infinite, by Definition 2.5.2.

Let $A = \{1, 4, 7, 10, \ldots\}$. Define $B = \{4, 7, 10, 13, \ldots\} \subset A$. Also define $f : A \to B$ by f(x) = x + 3. Now, assume that $f(x_1) = f(x_2)$. So, $x_1 + 3 = x_2 + 3$, whence $x_1 = x_2$. Hence f is injective. Now $g \in Y$ such that g = x + 3 for some $g \in X$. Therefore, g = g + 3. So, g = g + 3 for some $g \in X$. Therefore, g = g + 3 for some $g \in X$. Therefore, g = g + 3 for some $g \in X$. Therefore, g = g + 3 for some $g \in X$. Therefore, g = g + 3 for some $g \in X$. Therefore, g = g + 3 for some $g \in X$. Therefore, g = g + 3 for some $g \in X$. Therefore, g = g + 3 for some $g \in X$. Therefore, g = g + 3 for some g = g + 3 for so

7. Prove that if $B \subseteq A$ and B is infinite, then A is infinite. Conclude that every subset of a finite set is finite.

Let A and B be sets, and $B \subseteq A$. Let B be infinite. Assume first that B = A. Then clearly A is infinite. So, assume that $B \subset A$. Now, since B is infinite, there exists an injective function $f: \mathbb{N} \to B$. So for any $x \in \mathbb{N}$, $f(x) \in B$. Now consider the function $g: B \to A$ defined by g(x) = x since $B \subset A$. Now, let $x_1, x_2 \in B$ and assume that $g(x_1) = g(x_2)$. Then $x_1 = x_2$ and so g(x) is injective. So, by above we have that $(g \circ f): \mathbb{N} \to A$ is injective. Since we have an injective function from \mathbb{N} to A, we have that A is infinite by definition. Still letting $B \subseteq A$, we have that if A is finite, then B is also finite by the contrapositive of the above proven statement.

8. Prove that the union of a finite collection of finite sets is finite.

Let $X = \{A_1, \ldots, A_n\}$ where A_i is a finite set for all $1 \leq i \leq n$. Assume first that $\bigcup_{i=1}^n A_i = \emptyset$. So, $A_i = \emptyset$ for all $0 \leq i \leq n$, and $\bigcup_{i=1}^n A_i$ is finite. So, assume that not all A_i are empty. Since $B \cup \emptyset = B$ for any set B, define $Y = \{A_1, \ldots, A_m\}$ where A_i is a finite nonempty set for all $0 \leq i \leq m$. Now consider m = 1. Then clearly $\bigcup_{i=1}^1 A_i = A_1$ which is finite by assumption. Next consider m = 2, so $\bigcup_{i=1}^2 A_i = A_1 \cup A_2$. Assume first that $A_1 \cap A_2 = \emptyset$. Now, since A_1 and A_2 are finite, there exist bijections $f: A_1 \to \{1, \ldots, k\}$ and $g: A_2 \to \{1, \ldots, l\}$ for some $k, l \in \mathbb{N}$. Define $\tilde{f}: A_1 \cup A_2 \to \{1, \ldots, k+l\}$ by

$$f(a) = \begin{cases} f(a) & \text{if } a \in A_1\\ g(a) + k & \text{if } a \in A_2 \end{cases}$$

Now, suppose $\tilde{f}(a_1) = \tilde{f}(a_2)$ for some $a_1, a_2 \in A_1 \cup A_2$. Then, either $f(a_1) = f(a_2)$ or $g(a_1) + k = g(a_2) + k$. In either case, we have that $a_1 = a_2$ since both f and g are bijective. Now, let $y \in \{1, \ldots, k+l\}$. again, since f and g are bijective, there exists $x \in A_1 \cup A_2$ such that f(x) = y. So, \tilde{f} is a bijection, and $A_1 \cup A_2$ is finite. Now, assume that $A_1 \cap A_2 \neq \emptyset$. Now, $A_1 \cup A_2 = (A_1 \setminus A_2) \cup A_2$, and $(A_1 \setminus A_2) \cap A_2 = \emptyset$. Now since $(A_1 \setminus A_2) \subset A_1$, $(A_1 \setminus A_2)$ is finite, and so $(A_1 \setminus A_2) \cup A_2$ is the union of 2 disjoint finite sets. Thus, the union of 2 finite sets is finte regardless of them being disjoint or not. Then take m = 3. So, $\bigcup_{i=1}^3 A_i = A_1 \cup A_2 \cup A_3$ is finite as it can be given as $(A_1 \cup A_2) \cup A_3$ which is the union of 2 finite sets. Continuing in this manner, we have that $\bigcup_{i=1}^m A_i = A_1 \cup \cdots \cup A_m$ is finite as desired.

9. Prove that the product of a finite collection of finite sets is finite. (Hint: First prove that the product of two finite sets is finite by writing the product $A \times B$ as a finite union.)

Let A and B be finite nonempty sets. Then B is equivalent to $\{1,\ldots,n\}$ for some

 $n \in \mathbb{N}$. That is, there is a bijection $g:\{1,\ldots,n\} \to B$ defined by $g(i)=b_i$. So, each $b_i \in B$ is the image of an element of $\{1,\ldots,n\}$ for $1 \leq i \leq n$. Now, take $A \times B$. We may write $A \times B = \bigcup_{a \in A} \{a\} \times B$. Then $(\bigcup_{a \in A} \{a\}) \times B = \bigcup_{a \in A} \{(a,b_i)|b_i \in B,1 \leq i \leq n\}$ for some $n \in \mathbb{N}$. Now, fix $a \in A$ and define $f:\{(a,b_i)|b_i \in B,1 \leq i \leq n\} \to \{1,\ldots,n\}$ by $f((a,b_i))=i$. Suppose $f((a,b_s))=f((a,b_t))$ for some $b_s,b_t \in B$. Then, s=t by the definition of the function, and since B is equivalent to $\{1,\ldots,n\}$ with equivalence $g,b_s=b_t$, so f is injective. Let $g \in \{1,\ldots,n\}$. Since g is equivalent to $\{1,\ldots,n\}$ with equivalence g there exists $g \in B$ such that g(g)=g. Therefore, there exists $g \in B$ such that g(g)=g. Therefore, there exists $g \in B$ such that g(g)=g and so g is onto. Hence, g is bijective, so we have that g(g)=g and so g is finite. Then, by problem g above, we have g and g are finite sets g and g and g are finite. Hence, the product of two finite sets is finite. Now consider finite sets g and g and g and g are finite, g and g are finite, g and g are finite. So, since g and g are finite, g and g are finite. So, since g and g are finite, g and g are finite. So, since g and g are finite, g and g are finite. So, since g and g are finite, g and g are finite. So, since g and g are finite. g and g are finite. So, since g and g are finite. g and g are finite. So, since g and g are finite. So, since g and g are finite. g and g are finite.

10. (#11 in 2.5) Prove that if Card(A) = n for any $n \in \mathbb{N}$, then $Card(\mathcal{P}(A)) = 2^n$.

First let $A = \emptyset$. Then $\operatorname{Card}(A) = 0$. So, $\mathcal{P}(A) = \{\emptyset\}$ and $\operatorname{Card}(\mathcal{P}(A)) = 1 = 2^0$. So, now assume that $\operatorname{Card}(A) = n$ and that $\operatorname{Card}(\mathcal{P}(A)) = 2^n$ for some $n \geq 0$. Define $A = \{a_1, \ldots, a_n\}$. Now take $A \cup \{a_{n+1}\}$. Then we see that $A \cap \{a_{n+1}\} = \emptyset$. So, $\operatorname{Card}(A \cup \{a_{n+1}\}) = \operatorname{Card}(A) + \operatorname{Card}(\{a_{n+1}\}) - \operatorname{Card}(A \cap \{a_{n+1}\} = \emptyset) = n+1-0 = n+1$. Now, $\mathcal{P}(A \cup \{a_{n+1}\}) = \mathcal{P}(A) \cup X$ where $X = \{B \cup \{a_{n+1}\} \mid B \in \mathcal{P}(A)\}$. Define the function $f: X \to \mathcal{P}(A)$ by f(C) = B where $C = B \cup \{a_{n+1}\}$. Now, take $C_1, C_2 \in X$ where $C_1 = B_1 \cup \{a_{n+1}\}$ and $C_2 = B_2 \cup \{a_{n+1}\}$ and assume that $f(C_1) = f(C_2)$. Then $B_1 \cup \{a_{n+1}\} = B_2 \cup \{a_{n+1}\}$, and hence $C_1 = C_2$. So, f is injective. Now, take $B \in \mathcal{P}(A)$ and consider $C = B \cup \{a_{n+1}\}$. Then f(C) = B and we have that f is also onto. Then f is bijective and so $\operatorname{Card}(X) = \operatorname{Card}(\mathcal{P}(A))$ Now, $\operatorname{Card}(\mathcal{P}(A \cup \{a_{n+1}\})) = \operatorname{Card}(\mathcal{P}(A)) + \operatorname{Card}(X)$ and by the induction hypothesis, $\operatorname{Card}(\mathcal{P}(A)) = 2^n$. So, clearly $\operatorname{Card}(\mathcal{P}(A)) = \operatorname{Card}(X) = 2^n$ since there are still 2^n elements in X. Hence $\operatorname{Card}(\mathcal{P}(A \cup \{a_{n+1}\})) = 2^n + 2^n = 2^{n+1}$. Thus, we have that if $\operatorname{Card}(A) = n$, then $\operatorname{Card}(\mathcal{P}(A)) = 2^n$.