Công thức cơ học lượng tử + vật lí nguyên tử (Vật Lí 2,3)

Cơ học lượng tử

Bước sóng de Broglie	$\lambda = \frac{h}{p}$
Động lượng của vi hạt	$p = \frac{h}{\lambda} = \text{m.v., n\'eu hạt chuyển động với vận}$ tốc gần vận tốc ánh sáng thì có động lượng
	m_{o}
TOP -	$p = \frac{0}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}.v$
Hệ thức bất định Heisenberg	Với vị trí và động lượng: Δx.Δp = h
	Với năng lượng và thời gian duy trì năng lượng: ΔE.Δt = h

Vật Lí 2 & 3 – Đức Huy

Vật lí nguyên tử

Năng lượng của electron trong nguyên tử Hydro	$E_n = \frac{-Rh}{n^2} = \frac{-13,6e}{n^2}$, năng lượng của
	electron trong nguyên tử Hydro chỉ phụ
	thuộc vào số lượng tử chính (n)
Năng lượng của electrong trong nguyên tử kim loại kiềm	$E_{nl} = \frac{-Rh}{\left(n + \Delta l\right)^2} = \frac{-13,6e}{\left(n + \Delta l\right)^2}, \text{ trong $d\'{o}$ Δl là s\'{o}}$
	bổ chính Rydberg, phụ thuộc vào l.
Moment động lượng orbital của electron	$L = \sqrt{l.(l+1)} \hbar$
Hình chiếu của moment động lượng	$L_z = m.\hbar$
orbital của electrong lên phương z	
Số lượng tử toàn phần của electron khi	$j = 1 \pm 1/2$
tính đến spin	

Trạng thái của electron được mô tả bởi hàm sóng:

n: số lượng tử chính n = 1, 2, 3, ...

l: số lượng tử orbital l = 0, 1, 2, ... (n-1)

m: số lượng tử từ m = $0, \pm 1, \pm 2, \pm 3,... \pm l$

ngoài ra nếu tính đến spin thì có thêm số lượng tử spin m_s = $\pm 1/2$ hoặc số lượng tử toàn phần j = $l\pm 1/2$

=> số lượng tử chính là n thì tổng số trạng thái của electron là n^2 nếu không tính đến spin và $2n^2$ nếu tính đến spin

Quy tắc lựa chọn chuyển mức năng lượng:

- Nếu không xét đến spin, chuyển mức năng lượng phải thoả mãn $\Delta l = \pm 1$
- Nếu xét đến spin, chuyển mức năng lượng phải thoả mãn $\Delta l = \pm 1$ và $\Delta j = 0$ hoặc ± 1

