

Mixers Frequency Conversion and Applications

Ralph J. Pasquinelli

Simple Diode Detector

a) Diode demodulator for AM b)input and output waveforms

Simple Diode Mixer

a) Basic Diode Mixer b)equivalent circuit

Frequency Conversion

Let the LO and IF be represented by

$$v_{LO}(t) = \cos 2\pi f_{LO} t$$

$$v_{IF}(t) = \cos 2\pi f_{IF} t$$

the mixer multiplies the two

$$v_{RF}(t) = Kv_{LO}(t)v_{IF}(t) = K\cos 2\pi f_{LO}t\cos 2\pi f_{IF}t$$

$$v_{RF} = \frac{K}{2} [\cos 2\pi (f_{LO} - f_{IF}))t + \cos 2\pi (f_{LO} + f_{IF})t]$$
 UP-Conversion

Likewise

$$v_{IF} = \frac{K}{2} [\cos 2\pi (f_{RF} - f_{LO})t + \cos 2\pi (f_{RF} + f_{LO})t]$$
 Down-Conversion

Frequency Conversion

(a)

(b)

Frequency Conversion. a) Up-conversion b) Down Conversion

Multiplying or Mixing

R. J. Pasquinelli

Single Balanced Mixer

Schematic of Single Balanced Mixer

Advantages: Simple circuit

Disadvantage: no isolation between IF and RF ports

Currents in Single Balanced Mixer

Fermilab Double Balanced Mixer (DBM)

Advantage: good isolation between all ports

Conversion Loss

Conversion Loss is the measure of efficiency of frequency translation, i.e. the factor K mentioned previously expressed in dB

Mixers operate at various power levels ranging mostly between +7 and +23 dBm on the LO port Pads on Ports insure good match

Linearity & 1dB Compression

Linearity is the specification of how closely the input to output translation follows a slope of 1 1 dB compression is point where conversion loss becomes 1 dB greater than a linear response

R. J. Pasquinelli

3rd Order Intercept

When 2 signals at the mixer input generate third order products $(2f_1-f_2)$ or $(2f_2-f_1)$

3rd Order Intercept

Measurement setup for third order products $(2f_1-f_2)$ or $(2f_2-f_1)$

Fermilab Isolation measurement of DBM

50 Ohm Termination

pad on generator insures good match

DBM as phase detector

Measurement setup for phase detector and DC offset

Fermilab DBM as current controlled attenuator

Measurement setup for current controlled attenuator

