CMP 334 (2/27/19)

Quiz 2 (truth tables, formulas, circuits)

Signed binary arithmetic (review)

Ripple-carry adders

ALU building block circuits: Inverters, decoders, multiplexers

Condition flags and comparisons

Comparisons and conditional branches

TOY assembly language

 $HW 7 (W \leftarrow X + Y + Z)$

Relative conditional branch op: bc

а	b	С	f	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

a	b	С	f	
0	0	0	0	abc
0	0	1	0	abc
0	1	0	0	abc
0	1	1	1	abc
1	0	0	1	abc
1	0	1	0	abc
1	1	0	0	abc
1	1	1	1	abc

	f	C	b	а
abc	0	0	0	0
abc	0	1	0	0
abc	0	0	1	0
abc	1	1	1	0
abc	1	0	0	1
abc	0	1	0	1
abc	0	0	1	1
abc	1	1	1	1

$$\mathbf{f} = \overline{abc} + \overline{abc} + abc$$

а	b	С	f	
0	0	0	0	abc
0	0	1	0	abc
0	1	0	0	abc
0	1	1	1	abc
1	0	0	1	abc
1	0	1	0	abc
1	1	0	0	abc
1	1	1	1	abc

$$\mathbf{f} = \overline{abc} + a\overline{bc} + abc$$

$\mathbf{n}_{_3}$	\mathbf{n}_{2}	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$	
	0	0	0	
0 0 0 0 0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	0	0	
0 0 1 1	1	1	1	
1	0	0	0	
1	0	0	0	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1		0	1	
1 1	1	1	0	
1	1	1	1	

$\mathbf{n}_{_3}$	\mathbf{n}_{2}	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$	n
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	В
1	1	0	0	С
1	1	0	1	C D
1	1	1	0	E
1	1	1	1	F

n ₃	$\mathbf{n}_{_{2}}$	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$	n	n//5
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	2	0
0	0	1	1	3	0
0	1	0	0	4	0
0	1	0	1	5	1
0	1	1	0	6	1
0	1	1	1	7	1
1	0	0	0	8	1
1	0	0	1	9	1
1	0	1	0	Α	2
1	0	1	1	В	2
1	1	0	0	С	2
1	1	0	1	D	2
1	1	1	0	Ε	2
1	1	1	1	F	3

$\mathbf{n}_{_3}$	\mathbf{n}_{2}	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$	n	n//5	n %5
0	0	0	0	0	0	0
0	0	0	1	1	0	1
0	0	1	0	2	0	2
0	0	1	1	3	0	3
0	1	0	0	4	0	4
0	1	0	1	5	1	0
0	1	1	0	6	1	1
0	1	1	1	7	1	2
1	0	0	0	8	1	3
1	0	0	1	9	1	4
1	0	1	0	Α	2	0
1	0	1	1	В	2	1
1	1	0	0	C	2	2
1	1	0	1	D	2	3
1	1	1	0	E	2	4
1	1	1	1	F	3	0

n ₃	$\mathbf{n}_{_{2}}$	n ₁	\mathbf{n}_{0}	n	n//5	n %5	n%5=4
0	0	0	0	0	0	0	0
0	0	0	1	1	0	1	0
0	0	1	0	2	0	2	0
0	0	1	1	3	0	3	0
0	1	0	0	4	0	4	1
0	1	0	1	5	1	0	0
0	1	1	0	6	1	1	0
0	1	1	1	7	1	2	0
1	0	0	0	8	1	3	0
1	0	0	1	9	1	4	1
1	0	1	0	A	2	0	0
1	0	1	1	В	2	1	0
1	1	0	0	С	2	2	0
1	1	0	1	D	2	3	0
1	1	1	0	Ε	2	4	1
1	1	1	1	F	3	0	0

n_3	$\mathbf{n}_{_{2}}$	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$	n	n//5	n %5	n% 5=4	
0	0	0	0	0	0	0	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
0	0	0	1	1	0	1	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$
0	0	1	0	2	0	2	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
0	0	1	1	3	0	3	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
0	1	0	0	4	0	4	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
0	1	0	1	5	1	0	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$
0	1	1	0	6	1	1	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
0	1	1	1	7	1	2	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	0	0	0	8	1	3	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{\overline{n}}_{1}\mathbf{\overline{n}}_{0}$
1	0	0	1	9	1	4	1	$\mathbf{n}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$
1	0	1	0	A	2	0	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	0	1	1	В	2	1	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	1	0	0	С	2	2	0	$\mathbf{n}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
1	1	0	1	D	2	3	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	1	1	0	Ε	2	4	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
1	1	1	1	F	3	0	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$

$\mathbf{n}_{_3}$	\mathbf{n}_{2}	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$	n	n//5	n %5	n%5=4	$\mathbf{f} = \overline{\mathbf{n}}_{3} \mathbf{n}_{2} \overline{\mathbf{n}}_{1} \overline{\mathbf{n}}_{0} + \mathbf{n}_{3} \overline{\mathbf{n}}_{2} \overline{\mathbf{n}}_{1} \mathbf{n}_{0} + \mathbf{n}_{3} \mathbf{n}_{2} \mathbf{n}_{1} \overline{\mathbf{n}}_{0}$
0	0	0	0	0	0	0	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
0	0	0	1	1	0	1	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$
0	0	1	0	2	0	2	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
0	0	1	1	3	0	3	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
0	1	0	0	4	0	4	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
0	1	0	1	5	1	0	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$
0	1	1	0	6	1	1	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
0	1	1	1	7	1	2	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	0	0	0	8	1	3	0	$\mathbf{n}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
1	0	0	1	9	1	4	1	$\mathbf{n}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$
1	0	1	0	Α	2	0	0	$\mathbf{n}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
1	0	1	1	В	2	1	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	1	0	0	С	2	2	0	$\mathbf{n}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
1	1	0	1	D	2	3	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$
1	1	1	0	Ε	2	4	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
1	1	1	1	F	3	0	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$

$\mathbf{n}_{_3}$	\mathbf{n}_{2}	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$	n	n//5	n %5	n%5=4	
0	0	0	0	0	0	0	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
0	0	0	1	1	0	1	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$
0	0	1	0	2	0	2	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
0	0	1	1	3	0	3	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
0	1	0	0	4	0	4	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
0	1	0	1	5	1	0	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$
0	1	1	0	6	1	1	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
0	1	1	1	7	1	2	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	0	0	0	8	1	3	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	0	0	1	9	1	4	1	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$
1	0	1	0	A	2	0	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	0	1	1	В	2	1	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	1	0	0	С	2	2	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	1	0	1	D	2	3	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	1	1	0	Ε	2	4	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{\overline{n}}_{0}$
1	1	1	1	F	3	0	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$

 $f = \overline{n}_3 n_2 \overline{n}_1 \overline{n}_0 + n_3 \overline{n}_2 \overline{n}_1 n_0 + n_3 n_2 n_1 \overline{n}_0$

$\mathbf{n}_{_3}$	\mathbf{n}_{2}	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

\mathbf{n}_3	\mathbf{n}_{2}	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$	
0	0	0	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
0	0	0	1	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$
0	0	1	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
0	0	1	1	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
0	1	0	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$
0	1	0	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$
0	1	1	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
0	1	1	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	0	0	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{\overline{n}}_{1}\mathbf{\overline{n}}_{0}$
1	0	0	1	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$
1	0	1	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{n}_{1}\mathbf{\overline{n}}_{0}$
1	0	1	1	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$
1	1	0	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{\overline{n}}_{1}\mathbf{\overline{n}}_{0}$
1	1	0	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$
1	1	1	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$
1	1	1	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$

$\mathbf{n}_{_{3}}$	\mathbf{n}_{2}	n ₁	$\mathbf{n}_{\scriptscriptstyle{0}}$		n
0	0	0	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$	0
0	0	0	1	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$	1
0	0	1	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$	2
0	0	1	1	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	3
0	1	0	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$	4
0	1	0	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$	5
0	1	1	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$	6
0	1	1	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	7
1	0	0	0	$\mathbf{n}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$	8
1	0	0	1	$\mathbf{n}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$	9
1	0	1	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{n}_{1}\mathbf{\overline{n}}_{0}$	A
1	0	1	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	В
1	1	0	0	$\mathbf{n}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$	С
1	1	0	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$	D
1	1	1	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{\overline{n}}_{0}$	Ε
1	1	1	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	F

\mathbf{n}_3	\mathbf{n}_{2}	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$		n
0	0	0	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$	0
0	0	0	1	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$	1
0	0	1	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$	2
0	0	1	1	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	3
0	1	0	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$	4
0	1	0	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$	5
0	1	1	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$	6
0	1	1	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	7
1	0	0	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{\overline{n}}_{1}\mathbf{\overline{n}}_{0}$	8
1	0	0	1	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$	9
1	0	1	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{n}_{1}\mathbf{\overline{n}}_{0}$	A
1	0	1	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	В
1	1	0	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{\overline{n}}_{1}\mathbf{\overline{n}}_{0}$	С
1	1	0	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$	D
1	1	1	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{\overline{n}}_{0}$	E
1	1	1	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	F

$$\mathbf{n} = \mathbf{n}_3 \cdot 2^3 + \mathbf{n}_2 \cdot 2^2 + \mathbf{n}_1 \cdot 2^1 + \mathbf{n}_0 \cdot 2^0$$

n_3	n ₂	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$		n	S
0	0	0	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$	0	0
0	0	0	1	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$	1	1
0	0	1	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$	2	2
0	0	1	1	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	3	3
0	1	0	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$	4	4
0	1	0	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$	5	5
0	1	1	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$	6	6
0	1	1	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	7	7
1	0	0	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{\overline{n}}_{1}\mathbf{\overline{n}}_{0}$	8	-8
1	0	0	1	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$	9	-7
1	0	1	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{n}_{1}\mathbf{\overline{n}}_{0}$	A	-6
1	0	1	1	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	В	-5
1	1	0	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{\overline{n}}_{1}\mathbf{\overline{n}}_{0}$	С	-4
1	1	0	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$	D	-3
1	1	1	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{\overline{n}}_{0}$	E	-2
1	1	1	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	F	-1

$$n = n_3 \cdot 2^3 + n_2 \cdot 2^2 + n_1 \cdot 2^1 + n_0 \cdot 2^0$$

\mathbf{n}_3	n ₂	n ₁	$\mathbf{n}_{\scriptscriptstyle 0}$		n	S
0	0	0	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$	0	0
0	0	0	1	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$	1	1
0	0	1	0	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$	2	2
0	0	1	1	$\overline{\mathbf{n}}_{3}\overline{\mathbf{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	3	3
0	1	0	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\overline{\mathbf{n}}_{0}$	4	4
0	1	0	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\overline{\mathbf{n}}_{1}\mathbf{n}_{0}$	5	5
0	1	1	0	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\overline{\mathbf{n}}_{0}$	6	6
0	1	1	1	$\overline{\mathbf{n}}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	7	7
1	0	0	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{\overline{n}}_{1}\mathbf{\overline{n}}_{0}$	8	-8
1	0	0	1	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$	9	-7
1	0	1	0	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{n}_{1}\mathbf{\overline{n}}_{0}$	A	-6
1	0	1	1	$\mathbf{n}_{3}\mathbf{\overline{n}}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	В	-5
1	1	0	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{\overline{n}}_{1}\mathbf{\overline{n}}_{0}$	С	-4
1	1	0	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{\overline{n}}_{1}\mathbf{n}_{0}$	D	-3
1	1	1	0	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{\overline{n}}_{0}$	Ε	-2
1	1	1	1	$\mathbf{n}_{3}\mathbf{n}_{2}\mathbf{n}_{1}\mathbf{n}_{0}$	F	-1

$$\mathbf{n} = \mathbf{n}_3 \cdot 2^3 + \mathbf{n}_2 \cdot 2^2 + \mathbf{n}_1 \cdot 2^1 + \mathbf{n}_0 \cdot 2^0$$

$$\mathbf{s} = -\mathbf{n}_3 \cdot 2^3 + \mathbf{n}_2 \cdot 2^2 + \mathbf{n}_1 \cdot 2^1 + \mathbf{n}_0 \cdot 2^0$$

HW 8: Two's Complement Circuit

Use the four step *Combinational Circuit Design Process* presented in class to design circuits that take a 3-bit unsigned binary integer **X** as input and produces as output a 3-bit unsigned binary integer **Y** that is the two's complement of **X**.

$$Y = 2^3 - X = \overline{X} + 1$$

Do not minimize the circuits for **Y** as a part of this assignments.

Extra credit: minimize the circuits for Y.

```
...0100000000
                       = 2^N
 ...0011111111
                       = 2^{N} - 1
...0010000000
                         2<sup>N-1</sup>
...0001111111
                       = 2^{N-1} - 1
...0000000101
...000000100
...000000011
                 = 3 = 2^2 - 1
                                      Signed Integers
...000000010
                   2 = 2^{1}
...000000001
                 = 1 = 2^0 = 2^1 -
                 = 0 = 2^{0}
...000000000
. . . 1111111111
   111111110
                 = -3 = -2^{1} - 1
   1111111101
   11111111100 = -4 = -2^2
                 = -5 = -2^2 - 1
   1111111011
   1110000000
                      = -2^{N-1}
                      =-2^{N-1}-1
   1101111111
   1100000000
                       = -2^{N}
   1011111111
                       = -2^{N}
```

Unsigned Integers

N-Bit Integers

(N = 8)

Additive Inverse

THEROEM:

If X and Y are signed integers then

$$X - Y = X + \overline{Y} + 1$$

Corollary:

$$-Y = \overline{Y} + 1$$

$$-.0101 = .0101 + 1 = .1010 + 1 = .1011$$
 $-.0001 = .0001 + 1 = .1110 + 1 = .1111$
 $-.0000 = .0000 + 1 = .1111 + 1 = .0000$
 $-.1111 = .1111 + 1 = .0000 + 1 = .0001$
 $-.1011 = .1011 + 1 = .0100 + 1 = .0101$

n-bit Binary Numbers

Unsigned:
$$b_{n-1}b_{n-2} \dots b_1 b_0$$
 $(b_i = 0 \text{ or } b_i = 1)$ value: $b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + \dots + b_12^1 + b_02^0$ range: $[0 \dots 2^n - 1]$ n-bit sum: $\mathbf{A} \stackrel{\leftarrow}{+} \mathbf{B} = \mathbf{A} + \mathbf{B} - \mathbf{c} \cdot \mathbf{2}^n$ n-bit diff: $\mathbf{A} \stackrel{\leftarrow}{-} \mathbf{B} \equiv \mathbf{A} \stackrel{\leftarrow}{+} (\mathbf{2}^n - \mathbf{B}) = \mathbf{A} \stackrel{\leftarrow}{+} \overline{\mathbf{B}} + 1 = \mathbf{A} - \mathbf{B} + \mathbf{2}^n - \mathbf{c} \cdot \mathbf{2}^n$ Signed: $b_{n-1}b_{n-2} \dots b_1 b_0$ $(b_i = 0 \text{ or } b_i = 1)$

Signed:
$$b_{n-1}b_{n-2} ... b_1 b_0$$
 $(b_i = 0 \text{ or } b_i = 1)$
Value: $-b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + ... + b_12^1 + b_02^0$

Range: $[-2^{n-1} .. 2^{n-1}-1]$

n-bit sum: A + B = A + B iff v=0

n-bit diff: A - B = A - B iff v=0

Condition Flags

3-Bit Signed Binary Integers

```
00000011
00000010
0000<mark>001</mark>
00000000
```

8 supported values: -4 .. 3

Sign: high bit: 0 positive, 1 negative

Not closed under addition incorrect results: -8 .. -5, 4 .. 6

Not closed under subtraction incorrect results: -7 .. -5, 4 .. 7

```
Correct: X + Y = Z, X + Y = Z

X + Y, X + Y always correct. Why?

Incorrect: X + Y = Z, X + Y = Z

X - Y = Z, X - Y = Z
```

Honesty Criteria

The n-bit result **r** of a binary operation on n-bit values **a** and **b** is **honest** (**deceptive**) if it is **the** same as (**different** from) the whole number result of the same operation on the same values.

- (n-bit) unsigned subtraction is *honest* iff (c = 1) Carry flag is set
- (n-bit) signed addition is *honest* iff (v = 0) a and b have different signs or a, b, and r have same sign
- (n-bit) signed subtraction is *honest* iff (v = 0)

 a and b have different signs or a, b, and r have same sign

HW 9: Signed Binary Arithmetic

For each of the <X, Y> pairs in the table below:

- a) Convert X and Y → binary
- b) Compute X+Y (the 8-bit sum)
- c) Compute Y (the 2's complement of Y)
- d) Compute $X-Y \equiv X+Y$ (the 8-bit difference)
- e) Indicate the signs of X, Y, X+Y, Y, and X-Y
- f) Convert X+Y, Y, and X-Y→ hexadecimal
- g) Indicate condition flag (z, n, c, v) values for X+Y, X-Y
- h) Is X+Y honest? is X-Y honest?

Where $\langle X, Y \rangle =$

- 1) <0x4F, 0x6D> 2) <0xB3, 0x17>
- 3) $<0\times A3$, $0\times 95>$ 4) $<0\times 6E$, $0\times 3A>$

Signed Arithmetic: X1 i)

X	Y	X + Y	~Y	X – Y
0x8C	0 x 6 F			
10001100	01101111	10001100 01101111 0 0 0 0 1 1 0 0 011111011	01101111 10010000 0000001 10010001	10001100 10010001 00001001
		0xFB	0x91	0x1D
		zncv		zncv
		(s) honest (u) honest		(s) deceptive (u) honest

Signed Arithmetic: X2 i)

X	Y	X + Y	~Y	X – Y
0x54	0 xF 3			
01010100	11110011	01010100 11110011 1 1 1 0 0 0 0 101000111	11110011 00001100 0000001 00001101	01010100 00001101 0 0 1 1 1 0 0 01100001
		0x47	0x0D	0x61
		zncv		zncv
		(s) honest (u) deceptive		(s) honest (u) deceptive

Signed Arithmetic: X3 i)

X	Y	X + Y	~Y	X – Y
0 x 9 E	0xCC			
10011110	11001100	10011110 11001100 1 0 0 1 1 1 0 0 101101010	11001100 00110011 00000001 00110100	10011110 00110100 0 1 1 1 1 0 0 011010010
		0x6A	0x34	0xD2
		zncv		zncv
		(s) honest (u) deceptive		(s) honest (u) deceptive

Full Adder Black Box

Sum 3 1-bit inputs to give a 2-bit output

Full Adder Truth Table

Full Adder Truth Table

#	a b c	C'	S
0	000	0	0
1	001	0	1
2	010	0	1
3	011	1	0
4	100	0	1
5	101	1	0
6	110	1	0
7	111	1	1

Full Adder Boolean Formulas

#	a b c	C'	C'	S	S	
0	000	0		0		$s = \overline{abc} + \overline{abc} + \overline{abc}$
1	001	0		1	abc	abc
2		0		1	abc	$c' = \overline{abc} + \overline{abc} + \overline{abc} - \overline{abc}$
3	0 1 1	1				abc
4	100	0		1	abc	
5	101	1	abc	0		
6	110	1	abc	0		
7	111	1	abc	1	abc	

Full Adder Boolean Formulas

#	a b c	C	6	$s = \overline{abc} + \overline{abc} + \overline{abc} +$
T	abc	C	3	
0	000	0	0	abc
1	001	0	1	a' - ba + aa + ab
2	010	0	1	c' = bc + ac + ab
3	011	1	0	
4	100	0	1	
5	101	1	0	
6	110	1	0	
7	111	1	1	

$$s = abc + \overline{abc} + \overline{abc} + a\overline{bc}$$

 $c' = ab + ac + bc$

Full Adder Circuit

A Full Adder built of Half Adders

Half Adder Circuit

Half Adder Circuit

Full Adder built of Half Adders

64-bit Word Adder

4-bit Word Adder

	1	1	1	0
+	0	1	1	1
		1	0	0
			0	1

1	1	1	0
0	1	1	1
1	1	0	0
	1	0	1

Full Adder Circuit

4-bit Subtraction

