

- سريعا أو لحظيا إذا كان تطور الجملة يصل إلى حالته النهائية $t(ms, \mu s)$ مباشرة عند التلامس بين المتفاعلات.
- بطيئًا إذا كان تطور الجملة يدوم عدة ثواني إلى عدة دقائق.
- لا متناهي البطء. إذا كان التطور يدوم عدة أيام أو عدة أشهرأو عدة أعوام أو عدة قرون.

سرعة التفاعل

$$V_A = \frac{dn}{dt} = \frac{n - n_0}{t}$$
 . A سرعة تشكل النوع •

$$V_{A_m} = \frac{\Delta n}{\Delta t} = \frac{n_2 - n_I}{t_2 - t_I}$$
 السرعة المتوسطة لتشكل النوع \bullet

$$V = \frac{1}{v} \frac{dx}{dt} = \frac{1}{v} \frac{(x - x_0)}{t}$$

$$V = \frac{1}{v} \frac{dx}{dt} = \frac{1}{v} \frac{(x-x_0)}{t}$$
 $V_A = \frac{d[A]}{dt} = \frac{[A]-[A_0]}{t}$

$V = \frac{dx}{dt}$ Usian o

t تمثل بيانيا ميل الماس للمنحنى عند اللحظة حيث x يمثل تقدم التفاعل

$$V_D = -\frac{dn_D}{dt}$$
 D و سرعة اختفاء النوع

Dالسرعة الحجمية لاختفاء

$$V_A = -\frac{d[D]}{dt} = -\frac{[D] - [D_0]}{t} = -\frac{1}{V} \frac{dx}{dt}$$

ا زمن نصف التفاعل 👢

يمثل زمن نصف التفاعل $t_{1/2}$ المدة الضرورية لبلوغ التفاعل نصف تقدمه النهائي x_{max} أو x_{max} ين بمقارنة سرعة تفاعلين كيميائيين $\frac{x_{max}}{2}$

■ العوامل الحركية

يكون تطور الجملة أسرع كلما:

- $\theta \uparrow \Rightarrow v \uparrow$ كانت درجة الحرارة أكبر. \blacksquare
- كانت التراكيز الابتدائية للمتفاعلات أكبر.
 - كان الوسيط مناسبا.
- تكون الوسائط متجانسة أو غير متجانسة أو إنزيمية

التفسير المجهري

يكون الاصطدام فعالا إذا كانت طاقة الأفراد كافية وكان توجهها مناسبا.

■ تأثير درجة الحرارة

عدد الاصطدامات الفعالة بين أفراد المتفاعلات في وحدة الزمن وفي وحدة الحجم يتزايد مع ارتفاع درجة الحرارة وهذا يعني أن سرعة التفاعل تتزايد كلما ارتفعت درجة الحرارة.

■ تأثير التراكيز الابتدائية للمتفاعلات

كلما تزايد التكيز المولي الابتدائي لنوع متفاعل فإن عدد الأفراد في وحدة الحجم يتزايد (عدد الاصطدامات الفعالة يتزايد) فيكون التفاعل أسرع، لكن هذا العدد يتناقص مع الزمن بحيث تتناقص سرعة التفاعل لتؤول إلى الصفر عند النهاية.

أهمية الوسيط

تعتبر الأنزيمات وسائط هامة في البيوكيمياء، فهي جزيئات عملاقة ذات بنية معقدة كالبروتينات.

La trempe

تعبر كيميائيا عن عملية التبريد والتمديد للمحلول حتى يتسنى لنا توقيف التفاعل و حساب سرعته.

متابعة تطور جملة كيميائية

يسمح التقدم x لتفاعل كيميائي (مقدرا بـ mol) بمتابعة تطور التحول الكيميائي. خلال تفاعل تام، التقدم الأعظمى يوافق الاختفاء الكلى للمتفاعل المحد.

التقدم	المتفاعلات		النواذج		
		$aA + bB \rightarrow cC + dD$			
الحالة الابتدائية	0	$n_1(A)$	$n_2(B)$	0	0
الحالة الانتقالية	x	$n_I(A)$ -ax	$n_2(A)$ - bx	cx	dx
الحالة النهائية		$n_1(A)$ - ax_{max}	$n_2(A)$ - bx_{max}	CX _{max}	dx_{max}

أهم المعادلات المتفاعلات الكيميائية (السريعة والبطيئة والبطيئة جدا)

■ التحولات السريعة (محلول برمنغنات البوتاسيوم) مع كبريتات الحديدي الثنائي:

 MnO_{4}^{-} (aq) + $8H^{+}$ (aq) + $5e^{-}$ = Mn^{2+} (aq) + $4H_{2}O$ (MnO_{4}^{-}/Mn^{2+}) معادلة الإرجاع $5 \times (Fe^{2+}_{(aq)} = Fe^{3+}_{(aq)} + 1e^{-})$ (Fe^{3+}/Fe^{2+}) معادلة الأكسدة

 $MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5Fe_{(aq)}^{2+} = Mn_{(aq)}^{2+} + 5Fe_{(aq)}^{3+} + 4H_{2}O$ المعادلة الإجمالية

التحولات البطيئة

 $S_2O_8^{2-}$ معادلة الإرجاع: بيرروكسود بكبرتات الصوديوم الصوديوم ($S_2O_8^{2-}/SO_4^{2-}$) معادلة الإرجاع: بيرروكسود بكبرتات الصوديوم $2I^{-}_{(aq)}=2I_{(aq)}+2e^{-}$ $(I_{2(aq)}/I^{-}_{(aq)})$ عادلة الأكسدة: $2I^{-}_{(aq)} + S_2 O_8^{2-}_{(aq)} = I_2 + 2SO_4^{2-}_{(aq)}$ المعادلة الإجمالية:

 $MnO_{4\ (aq)}^{-} + 4H^{+}_{\ (aq)} + 3e^{-} = MnO_{2(s)} + 2H_{2}O_{(l)}$ التحول الكيميائي البطيء جذا $2H_2O_{(l)} = O_{2(g)} + 4H^+ + 4e^ 4MnO_{4\ (aq)}^{-}+4H^{+}_{\ (aq)}=4MnO_{2(s)}+3O_{2(g)}+2H_{2}O_{(l)}$: معادلة التفاعل المندمج

$$H_2O_{2\,(aq)}+2H^+_{\,\,(aq)}+2e^-=2H_2O_{\,\,(l)}:$$
معادلة الماء الأوكسجيني $H_2O_{2\,(aq)}=O_{2(g)}+2H^+_{\,\,(aq)}+2e^-$

معادلة إرجاع بكرومات البوتاسيوم إلى شاردة كروم:

$$Cr_2O_7^{2-}$$
(aq) +14H⁺ + 6e⁻ = 2Cr³⁺(aq) + 7 H₂O

■ الثنائية (مرجع/ مؤكسد)

تفاعل الأكسدة والإرجاع هو تفاعل يحدث بين المؤكسد للثنائية والمرجع لثنائية أخرى ويتم فيه انتقال الإلكترونات من المرجع إلى المؤكسد.

$$(Red_1 \to Ox_1 + n_1 e^-) \times n_2$$

$$(Ox_2 + n_2 e^- \to Red_2) \times n_1$$

$$n_2 Red_1 + n_1 Ox_2 \to n_2 Ox_1 + n_1 Red_2$$

■ متابعة تحول كيميائي عن طريق المعايرة.

- معايرة نوع كيميائي في محلول مائي هو تعيين تركيزه المولي في هذا المحلول.
- في عملية المعايرة وعند التكافؤ، المتفاعل المعاير والمتفاعل المعاير يتفاعلان
 كليا.

معادلة التفاعل الكيميائي المنمذج للمعايرة

$$I_{2(aq)} + 2S_2O_3^{2-} = 2I_{(aq)}^{-} + S_4O_6^{2-}$$

	$I_{2(aq)}$ -	$+ 2S_2O_3^{2-} =$	= 21 (aq.	$+ S_4 O_6^{2-}$ (aq)
الحالة الابتدائية	$n_0(I_2)$	$n_0 \left(S_2 O_3^{2-} \right)$	0	0
الحالة الانتقالية	n_{θ} - x	$n_0 - 2x$	2x	x
حالة التوازن	$n_0 - x_e$	$n_0 - 2x_e$	$2x_e$	x_e

تعیین التقدم
$$X$$
 إنطلاقا من عدد مولات المتفاعلات أو النواتج

$$\left\{egin{array}{ll} n_0 \ (S_2O_3^{2 ext{-}}) - 2x_e = 0 \ & : \ \end{array}
ight.$$
عند التكافؤ

$$x_e = \frac{n_0 (S_2 O_3^{2-})}{2} = n_0 (I_2)$$

$$n_0 (I_2) = \frac{n_0 (S_2 O_3^{2-})}{2} = \frac{C_3 V_e}{2}$$