cases

haiml76

July 2025

Denote  $p^{\min} := p^{\min\{0, v_2 + v_{11}\}}$ Denote  $\rho := (1 - p^{-1})$ 

# 1 Case 1

$$\begin{aligned} v_3 > v_1 \ge v_4 > v_2 \ge 0 \\ \Rightarrow v_{11} \ge -v_2 - v_1 \\ \Rightarrow \alpha := \min\{v_2, v_2 + v_{11} + v_1\} = \begin{cases} v_2, & v_{11} \ge -v_1 \\ v_2 - 1, v_2 - 2, \dots, & v_{11} < -v_1 \end{cases} \\ \text{For } v_{11} \ge -v_2, \text{ we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = p^{v_2}(1 + v_2 \rho). \\ \text{For } -v_1 \le v_{11} \le -v_2 - 1, \text{ we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = \sum_{-v_1}^{-v_2 - 1} p^{v_2} \rho(1 + v_2 \rho) = p^{v_2}(v_1 - v_2) \rho + p^{v_2} v_2(v_1 - v_2) \rho^2. \\ \text{For } -v_2 - v_1 \le v_{11} \le -v_1 - 1, \text{ we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = \sum_{-v_2 - v_1}^{-v_1 - 1} p^{v_2} \rho(1 + \alpha \rho) = \sum_{i=1}^{v_2} p^{v_2} \rho(1 + (v_2 - i)\rho) = p^{v_2} v_2 \rho + p^{v_2} v_2^2 \rho^2 - p^{v_2} \binom{v_2 + 1}{2} \rho^2. \\ \text{So we have } \sum_{v_{11} \ge -v_2 - v_1} = p^{v_2}(1 + v_2 \rho + (v_1 - v_2)\rho + v_2(v_1 - v_2)\rho^2 + v_2\rho + v_2^2 \rho^2 - \frac{(v_2 + 1)v_2}{2} \rho^2). \text{ We compute the differences between } v_1, v_2, v_3, v_4, \\ v_3 > v_1 \ge v_4 > v_2 \ge 0 \end{aligned}$$

Thus, we substitute  $v_1 \to a+b+c$ ,  $v_2 \to a$ ,  $v_3 \to a+b+c+d$ ,  $v_4 \to a+b$ , and compute series with the new variables as indices, where  $a, c \ge 0$  and  $b, d \ge 1$ .

## 2 Case 2

$$\begin{array}{l} v_1 \geq v_3 \geq 0 \\ v_1 \geq v_4 > v_2 \geq 0 \\ \Rightarrow v_{11} \geq -v_2 - v_3 \\ \Rightarrow \alpha := \min\{v_2, v_2 + v_{11} + v_1\} = \begin{cases} v_2, & v_{11} \geq -v_1 \\ v_2 - 1, v_2 - 2, \dots, & v_{11} < -v_1 \end{cases} \\ \text{We have two sub cases.} \end{array}$$

### 2.1Sub case 2.1

$$-v_2 - v_3 \ge -v_1 \Rightarrow v_1 \ge v_2 + v_3$$

Here there is no phase transition, because the phase transition occurs at  $-v_1 - 1 < -v_2 - v_3 \le v_{11}$ 

For  $v_{11} \ge -v_2$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = p^{v_2}(1 + v_2\rho)$ . For  $-v_2 - v_3 \le v_{11} \le -v_2 - 1$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = \sum_{-v_2 - v_3}^{-v_2 - 1} p^{v_2}\rho(1 + v_2\rho)$  $v_2\rho) = p^{v_2}v_3\rho(1+v_2\rho) = p^{v_2}v_3\rho + p^{v_2}v_3v_2\rho^2.$ 

So we have  $\sum_{v_{11} \ge -v_2 - v_3} = p^{v_2} (1 + v_2 \rho + v_3 \rho + v_2 v_3 \rho^2)$ .

We compute the differences between  $v_1, v_2, v_3, v_4$ , we have several arrangements,

1. 
$$v_1 \stackrel{d}{\geq} v_2 + v_3 \stackrel{a}{\geq} v_3 \stackrel{c}{\geq} v_4 \stackrel{b}{>} v_2 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \rightarrow 2a + b + c + d$ ,  $v_2 \rightarrow a$ ,  $v_3 \rightarrow a + b + c$ ,  $v_4 \rightarrow a$ a+b, and compute series with the new variables as indices, where a,c,d>0 and b > 1.

2. 
$$v_1 \stackrel{d}{\geq} v_2 + v_3 \stackrel{c}{\geq} v_4 \stackrel{b}{>} v_3 \stackrel{a}{>} v_2 \stackrel{e}{\geq} 0$$

But 
$$v_2 + v_3 - c - b = v_3 \Rightarrow v_2 = v_2 + v_3 - v_3 = b + c$$

Thus, we substitute  $v_1 \rightarrow a + 2b + 2c + d$ ,  $v_2 \rightarrow b + c$ ,  $v_3 \rightarrow a + b + c$ ,  $v_4 \rightarrow a + 2b + c$ , and compute series with the new variables as indices, where  $c, d \ge 0$  and  $a, b \ge 1$ .

3. 
$$v_1 \stackrel{d}{\geq} v_2 + v_3 \stackrel{c}{\geq} v_4 \stackrel{b}{>} v_2 \stackrel{a}{\geq} v_3 \stackrel{e}{\geq} 0$$

But 
$$v_2 + v_3 - c - b = v_2 \Rightarrow v_3 = v_2 + v_3 - v_2 = b + c$$

Thus, we substitute  $v_1 \rightarrow a + 2b + 2c + d$ ,  $v_2 \rightarrow a + b + c$ ,  $v_3 \rightarrow b + c$ ,  $v_4 \rightarrow a + 2b + c$ , and compute series with the new variables as indices, where  $a, c, d \ge 0$  and  $b \ge 1$ .

4. 
$$v_1 \stackrel{d}{\geq} v_4 \stackrel{c}{>} v_2 + v_3 \stackrel{a}{\geq} v_2 \stackrel{b}{\geq} v_3 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \rightarrow 2a+b+c+d$ ,  $v_2 \rightarrow a+b$ ,  $v_3 \rightarrow a$ ,  $v_4 \rightarrow a$ 2a + b + c, and compute series with the new variables as indices, where  $a, b, d \ge 0$  and  $c \ge 1$ .

5. 
$$v_1 \stackrel{d}{\geq} v_4 \stackrel{c}{>} v_2 + v_3 \stackrel{a}{\geq} v_3 \stackrel{b}{>} v_2 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \rightarrow 2a + b + c + d$ ,  $v_2 \rightarrow a$ ,  $v_3 \rightarrow a + b$ ,  $v_4 \rightarrow a$ 2a + b + c, and compute series with the new variables as indices, where  $a, d \geq 0$  and  $b, c \geq 1$ .

#### 2.2Sub case 2.2

$$-v_2 - v_3 < -v_1 \Rightarrow v_1 < v_2 + v_3$$
  
For  $v_{11} > -v_2$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = p^{v_2}(1 + v_2\rho)$ .

For  $-v_1 \le v_{11} \le -v_2 - 1$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = \sum_{v=1}^{v_2-1} p^{v_2} \rho(1 + \alpha \rho)\mu(a_{11}) =$  $v_2\rho) = p^{v_2}(v_1 - v_2)\rho(1 + v_2\rho) = p^{v_2}(v_1 - v_2)\rho + p^{v_2}(v_1 - v_2)v_2\rho^2.$ 

 $v_2\rho) = p^{v_2}(v_1 - v_2)\rho(1 + v_2\rho) = p^{v_2}(v_1 - v_2)\rho + p^{v_2}(v_1 - v_2)v_2\rho^2.$ For  $-v_2 - v_3 \le v_{11} \le -v_1 - 1$ , we have  $p^{\min}(1 + \alpha\rho)\mu(a_{11}) = \sum_{-v_2 - v_3}^{-v_1 - 1} p^{v_2}\rho(1 + \alpha\rho) = \sum_{i=1}^{v_2 + v_3 - v_1} p^{v_2}\rho(1 + (v_2 - i)\rho) = p^{v_2}(v_2 + v_3 - v_1)\rho + p^{v_2}(v_2 + v_3 - v_1)v_2\rho^2 - p^{v_2}\binom{v_2 + v_3 - v_1 + 1}{2}\rho^2.$ So we have  $\sum_{v_{11} \ge -v_2 - v_3} = p^{v_2}(1 + v_2\rho + (v_1 - v_2)\rho + (v_1 - v_2)v_2\rho^2 + (v_2 + v_3 - v_1)\rho + (v_2 + v_3 - v_1)v_2\rho^2 - \frac{(v_2 + v_3 - v_1 + 1)(v_2 + v_3 - v_1)}{2}\rho^2).$  We compute the differences between  $v_1 = v_2$  are the parameter  $v_1 = v_2$  and  $v_2 = v_3$  are the parameter  $v_3 = v_3$ .

between  $v_1, v_2, v_3, v_4$ , we have several arrangements,

1. 
$$v_2 + v_3 \stackrel{d}{>} v_1 \stackrel{c}{\geq} v_3 \stackrel{b}{\geq} v_4 \stackrel{a}{>} v_2 \stackrel{e}{\geq} 0$$

But  $v_2 + v_3 - d - c = v_3 \Rightarrow v_2 = c + d$ 

Thus, we substitute  $v_1 \to a+b+2c+d$ ,  $v_2 \to c+d$ ,  $v_3 \to a+b+c+d$ ,  $v_4 \rightarrow a + c + d$ , and compute series with the new variables as indices, where b, c > 0 and a, d > 1.

2. 
$$v_2 + v_3 \stackrel{d}{>} v_1 \stackrel{c}{\geq} v_4 \stackrel{b}{>} v_3 \stackrel{a}{>} v_2 \stackrel{e}{\geq} 0$$

But  $v_2 + v_3 - d - c - b = v_3 \Rightarrow v_2 = v_2 + v_3 - v_3 = b + c + d$ 

Thus, we substitute  $v_1 \rightarrow a + 2b + 2c + d$ ,  $v_2 \rightarrow b + c + d$ ,  $v_3 \rightarrow a + b + c + d$ ,  $v_4 \rightarrow a + 2b + c + d$ , and compute series with the new variables as indices, where  $c \geq 0$  and  $a, b, d \geq 1$ .

3. 
$$v_2 + v_3 \stackrel{d}{>} v_1 \stackrel{c}{\geq} v_4 \stackrel{b}{>} v_2 \stackrel{a}{\geq} v_3 \stackrel{e}{\geq} 0$$

But  $v_2 + v_3 - d - c - b = v_2 \Rightarrow v_3 = v_2 + v_3 - v_2 = b + c + d$ 

Thus, we substitute  $v_1 \rightarrow a+2b+2c+d$ ,  $v_2 \rightarrow a+b+c+d$ ,  $v_3 \rightarrow$ b+c+d,  $v_4 \to a+2b+c+d$ , and compute series with the new variables as indices, where  $a, c \ge 0$  and  $b, d \ge 1$ .

### 3 Case 3

$$v_3 > v_1 \ge 0$$

$$v_4 > v_1 \ge 0$$

$$v_4 > v_2 \ge 0$$

$$\Rightarrow v_{11} \ge -v_2 - v_1$$

$$\Rightarrow \alpha := \min\{v_2, v_2 + v_{11} + v_4\} = \begin{cases} v_2, & v_{11} \ge -v_4 \\ v_2 - 1, v_2 - 2, \dots, & v_{11} < -v_4 \end{cases}$$

We have two sub cases

#### 3.1 Sub case 3.1

$$-v_2 - v_1 \ge -v_4 \Rightarrow v_2 + v_1 \le v_4$$

There is no phase transition here, since  $v_{11} \ge -v_2 - v_1 \ge -v_4$ For  $v_{11} \ge -v_2$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = p^{v_2}(1 + v_2\rho)$ .

For  $-v_2-v_1 \le v_{11} \le -v_2-1$ , we have  $p^{\min}(1+\alpha\rho)\mu(a_{11}) = \sum_{-v_2-v_1}^{-v_2-1} p^{v_2}\rho(1+v_2\rho) = p^{v_2}v_1\rho + p^{v_2}v_1v_2\rho^2$ .

So we have  $\sum_{v_{11} \geq -v_2 - v_1} p^{\min}(1 + \alpha \rho) \mu(a_{11}) = p^{v_2}(1 + v_2 \rho + v_1 \rho + v_1 v_2 \rho^2)$ . We have several arrangements,

1. 
$$v_4 \stackrel{d}{\geq} v_1 + v_2 \stackrel{c}{\geq} v_3 \stackrel{b}{>} v_2 \stackrel{a}{>} v_1 \stackrel{e}{\geq} 0$$

But 
$$v_1 + v_2 - c - b = v_2 \Rightarrow v_1 = v_1 + v_2 - v_2 = b + c$$

Thus, we substitute  $v_1 \to b+c$ ,  $v_2 \to a+b+c$ ,  $v_3 \to a+2b+c$ ,  $v_4 \to a+2b+2c+d$ , and compute series with the new variables as indices, where  $c, d \ge 0$  and  $a, b \ge 1$ .

2. 
$$v_4 \stackrel{d}{\geq} v_1 + v_2 \stackrel{a}{\geq} v_2 \stackrel{c}{\geq} v_3 \stackrel{b}{>} v_1 \stackrel{a}{\geq} 0$$

We substitute  $v_1 \to a$ ,  $v_2 \to a+b+c$ ,  $v_3 \to a+b$ ,  $v_4 \to 2a+b+c+d$ , and compute series with the new variables as indices, where  $a, c, d \ge 0$  and  $b \ge 1$ .

3. 
$$v_4 \stackrel{d}{\geq} v_1 + v_2 \stackrel{c}{\geq} v_3 \stackrel{b}{>} v_1 \stackrel{a}{\geq} v_2 \stackrel{e}{\geq} 0$$

But 
$$v_1 + v_2 - c - b = v_1 \Rightarrow v_2 = v_1 + v_2 - v_1 = b + c$$

We substitute  $v_1 \to a+b+c$ ,  $v_2 \to b+c$ ,  $v_3 \to a+2b+c$ ,  $v_4 \to a+2b+2c+d$ , and compute series with the new variables as indices, where  $a, c, d \ge 0$  and b > 1.

4. 
$$v_4 \stackrel{d}{>} v_3 \stackrel{c}{\geq} v_1 + v_2 \stackrel{a}{\geq} v_1 \stackrel{b}{\geq} v_2 \stackrel{a}{\geq} 0$$

We substitute  $v_1 \to a+b, \ v_2 \to a, \ v_3 \to 2a+b+c, \ v_4 \to 2a+b+c+d,$  and compute series with the new variables as indices, where  $a,b,c \geq 0$  and  $d \geq 1$ .

5. 
$$v_3 \stackrel{d}{\geq} v_4 \stackrel{c}{>} v_1 + v_2 \stackrel{a}{\geq} v_2 \stackrel{b}{>} v_1 \stackrel{a}{\geq} 0$$

We substitute  $v_1 \to a$ ,  $v_2 \to a+b$ ,  $v_3 \to 2a+b+c+d$ ,  $v_4 \to 2a+b+c$ , and compute series with the new variables as indices, where  $a, d \ge 0$  and b, c > 1.

6. 
$$v_3 \stackrel{d}{\geq} v_4 \stackrel{c}{>} v_1 + v_2 \stackrel{a}{\geq} v_1 \stackrel{b}{\geq} v_2 \stackrel{a}{\geq} 0$$

We substitute  $v_1 \to a+b, v_2 \to a, v_3 \to 2a+b+c+d, v_4 \to 2a+b+c$ , and compute series with the new variables as indices, where  $a, b, d \geq 0$  and c > 1.

### 3.2 Sub case 3.2

$$-v_2 - v_1 < -v_4 \Rightarrow v_2 + v_1 > v_4$$

For 
$$v_{11} \ge -v_2$$
, we have  $p^{\min}(1+\alpha\rho)\mu(a_{11}) = p^{v_2}(1+v_2\rho)$ .

For 
$$v_{11} \ge v_2$$
, we have  $p = (1 + \alpha \rho)\mu(a_{11}) = p = (1 + v_2\rho)$ .  
For  $-v_4 \le v_{11} \le -v_2 - 1$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = \sum_{-v_4}^{-v_2-1} p^{v_2}\rho(1 + v_2\rho) = p^{v_2}(v_4 - v_2)\rho + p^{v_2}(v_4 - v_2)v_2\rho^2$ .

For  $-v_2-v_1 \leq v_{11} \leq -v_4-1$ , we have  $p^{\min}(1+\alpha\rho)\mu(a_{11}) = \sum_{-v_2-v_1}^{-v_4-1} p^{v_2}\rho(1+v_2\rho) = \sum_{i=1}^{v_1+v_2-v_4} p^{v_2}\rho(1+(v_2-i)\rho) = p^{v_2}(v_1+v_2-v_4)\rho+p^{v_2}(v_1+v_2-v_4)v_2\rho^2-p^{v_2}\binom{v_1+v_2-v_4+1}{2}\rho^2.$  So we have  $\sum_{v_{11}\geq -v_2-v_1} p^{\min}(1+\alpha\rho)\mu(a_{11}) = p^{v_2}(1+v_2\rho+(v_4-v_2)\rho+(v_4-v_2)v_2\rho^2+(v_1+v_2-v_4)\rho+(v_1+v_2-v_4)v_2\rho^2-\frac{(v_1+v_2-v_4+1)(v_1+v_2-v_4)}{2}\rho^2)$  We have several arrangements,

1. 
$$v_1 + v_2 \stackrel{d}{>} v_4 \stackrel{c}{>} v_3 \stackrel{b}{>} v_2 \stackrel{a}{>} v_1 \stackrel{e}{\geq} 0$$
  
But  $v_1 + v_2 - d - c - b = v_2 \Rightarrow v_1 = v_1 + v_2 - v_2 = b + c + d$   
Thus, we substitute  $v_1 \rightarrow b + c + d$ ,  $v_2 \rightarrow a + b + c + d$ ,  $v_3 \rightarrow a + 2b \rightarrow c + d$ 

Thus, we substitute  $v_1 \to b+c+d$ ,  $v_2 \to a+b+c+d$ ,  $v_3 \to a+2b+c+d$ ,  $v_4 \to a+2b+2c+d$ , and compute series with the new variables as indices, where  $a,b,c,d \geq 1$ 

2. 
$$v_1+v_2 \stackrel{d}{>} v_4 \stackrel{c}{>} v_2 \stackrel{b}{\geq} v_3 \stackrel{a}{>} v_1 \stackrel{e}{\geq} 0$$
  
But  $v_1+v_2-d-c=v_2 \Rightarrow v_1=v_1+v_2-v_2=c+d$   
Thus, we substitute  $v_1 \rightarrow c+d, \ v_2 \rightarrow a+b+c+d, \ v_3 \rightarrow a+c+d, \ v_4 \rightarrow a+b+2c+d, \ \text{and compute series with the new variables as indices,}$  where  $b \geq 0$  and  $a,c,d \geq 1$ 

3. 
$$v_1+v_2 \stackrel{d}{>} v_4 \stackrel{c}{>} v_3 \stackrel{b}{>} v_1 \stackrel{a}{\geq} v_2 \stackrel{e}{\geq} 0$$
  
But  $v_1+v_2-d-c-b=v_1 \Rightarrow v_2=v_1+v_2-v_1=b+c+d$   
Thus, we substitute  $v_1 \rightarrow a+b+c+d, v_2 \rightarrow b+c+d, v_3 \rightarrow a+2b+c+d, v_4 \rightarrow a+2b+2c+d,$  and compute series with the new variables as indices, where  $a \geq 0$  and  $b,c,d \geq 1$ 

4. 
$$v_1 + v_2 \stackrel{d}{>} v_3 \stackrel{c}{\geq} v_4 \stackrel{b}{>} v_2 \stackrel{a}{>} v_1 \stackrel{e}{\geq} 0$$
  
But  $v_1 + v_2 - d - c - b = v_2 \Rightarrow v_1 = v_1 + v_2 - v_2 = b + c + d$   
Thus, we substitute  $v_1 \rightarrow b + c + d$ ,  $v_2 \rightarrow a + b + c + d$ ,  $v_3 \rightarrow a + 2b + 2c + d$ ,  $v_4 \rightarrow a + 2b + c + d$ , and compute series with the new variables as indices, where  $c > 0$  and  $a, b, d > 1$ 

5. 
$$v_1 + v_2 \stackrel{d}{>} v_3 \stackrel{c}{\geq} v_4 \stackrel{b}{>} v_1 \stackrel{a}{\geq} v_2 \stackrel{e}{\geq} 0$$
  
But  $v_1 + v_2 - d - c - b = v_1 \Rightarrow v_2 = v_1 + v_2 - v_1 = b + c + d$   
Thus, we substitute  $v_1 \rightarrow a + b + c + d$ ,  $v_2 \rightarrow b + c + d$ ,  $v_3 \rightarrow a + 2b + 2c + d$ ,  $v_4 \rightarrow a + 2b + c + d$ , and compute series with the new variables as indices, where  $a, c \geq 0$  and  $b, d \geq 1$ 

6. 
$$v_3 \stackrel{d}{\geq} v_1 + v_2 \stackrel{c}{>} v_4 \stackrel{b}{>} v_2 \stackrel{a}{>} v_1 \stackrel{e}{\geq} 0$$
  
But  $v_1 + v_2 - c - b = v_2 \Rightarrow v_1 = v_1 + v_2 - v_2 = b + c$   
Thus, we substitute  $v_1 \rightarrow b + c$ ,  $v_2 \rightarrow a + b + c$ ,  $v_3 \rightarrow a + 2b + 2c + d$ ,  $v_4 \rightarrow a + 2b + c$ , and compute series with the new variables as indices, where  $d \geq 0$  and  $a, b, c \geq 1$ 

7. 
$$v_3 \stackrel{d}{\geq} v_1 + v_2 \stackrel{c}{>} v_4 \stackrel{b}{>} v_1 \stackrel{a}{\geq} v_2 \stackrel{e}{\geq} 0$$

But 
$$v_1 + v_2 - c - b = v_1 \Rightarrow v_2 = v_1 + v_2 - v_1 = b + c$$

Thus, we substitute  $v_1 \to a+b+c$ ,  $v_2 \to b+c$ ,  $v_3 \to a+2b+2c+d$ ,  $v_4 \to a+2b+c$ , and compute series with the new variables as indices, where  $a, d \geq 0$  and  $b, c \geq 1$ 

## 4 Case 4

$$v_4 > v_1 \ge v_3 \ge 0$$

$$v_4 > v_2 \ge 0$$

$$\Rightarrow v_{11} \ge -v_2 - v_3$$

$$\Rightarrow \alpha := \min\{v_2, v_2 + v_{11} + v_4\} = \begin{cases} v_2, & v_{11} \ge -v_4 \\ v_2 - 1, v_2 - 2, \dots, & v_{11} < -v_4 \end{cases}$$

We have two sub cases

### 4.1 Sub case 4.1

$$-v_2 - v_3 \ge -v_4 \Rightarrow v_2 + v_3 \le v_4$$

There is no phase transition here, since  $v_{11} \ge -v_2 - v_3 \ge -v_4$ 

For  $v_{11} \ge -v_2$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = p^{v_2}(1 + v_2\rho)$ .

For  $-v_2-v_3 \le v_{11} \le -v_2-1$ , we have  $p^{\min}(1+\alpha\rho)\mu(a_{11}) = \sum_{-v_2-v_3}^{-v_2-1} p^{v_2}\rho(1+\alpha\rho)\mu(a_{11}) = \sum_{-v_2-v_3}^{-v_2-1} p^{v_2-1} p^{v_2}\rho(1+\alpha\rho)\mu(a_{11}) = \sum_{-v_2-v_3}^{-v_2-1} p^{v_2-1} p^{v_2-1}$ 

 $(v_2\rho) = p^{v_2}v_3\rho(1+v_2\rho) = p^{v_2}v_3\rho + p^{v_2}v_2v_3\rho^2.$ 

So we have  $\sum_{v_{11} \geq -v_2 - v_3} p^{\min}(1 + \alpha \rho) \mu(a_{11}) = p^{v_2}(1 + v_2 \rho + v_3 \rho + v_2 v_3 \rho^2)$ . We have several arrangements,

1. 
$$v_4 \stackrel{d}{\geq} v_2 + v_3 \stackrel{c}{\geq} v_1 \stackrel{b}{\geq} v_3 \stackrel{a}{>} v_2 \stackrel{e}{\geq} 0$$

But 
$$v_2 + v_3 - c - b = v_3 \Rightarrow v_2 = v_2 + v_3 - v_3 = b + c$$

Thus, we substitute  $v_1 \to a+2b+c$ ,  $v_2 \to b+c$ ,  $v_3 \to a+b+c$ ,  $v_4 \to a+2b+2c+d$ , and compute series with the new variables as indices, where  $b,c,d \geq 0$  and  $a \geq 1$ 

2. 
$$v_4 \stackrel{d}{\geq} v_2 + v_3 \stackrel{c}{\geq} v_1 \stackrel{b}{\geq} v_2 \stackrel{a}{\geq} v_3 \stackrel{e}{\geq} 0$$

But 
$$v_2 + v_3 - c - b = v_2 \Rightarrow v_3 = v_2 + v_3 - v_2 = b + c$$

Thus, we substitute  $v_1 \to a+2b+c, \ v_2 \to a+b+c, \ v_3 \to b+c, \ v_4 \to a+2b+2c+d$ , and compute series with the new variables as indices, where  $a,b,c,d \geq 0$ .

3. 
$$v_4 \stackrel{d}{\geq} v_2 + v_3 \stackrel{a}{\geq} v_2 \stackrel{c}{>} v_1 \stackrel{b}{\geq} v_3 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \to a+b, v_2 \to a+b+c, v_3 \to a, v_4 \to 2a+b+c+d$ , and compute series with the new variables as indices, where  $a, b, d \ge 0$  and  $c \ge 1$ .

4. 
$$v_4 > v_1 \stackrel{c}{\geq} v_2 + v_3 \stackrel{a}{\geq} v_2 \stackrel{b}{\geq} v_3 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \to 2a+b+c$ ,  $v_2 \to a+b$ ,  $v_3 \to a$ ,  $v_4 \to 2a+b+c+d$ , and compute series with the new variables as indices, where  $a, b, c \ge 0$  and  $d \le 1$ .

5. 
$$v_4 \stackrel{d}{>} v_1 \stackrel{c}{\geq} v_2 + v_3 \stackrel{a}{\geq} v_3 \stackrel{b}{>} v_2 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \to 2a+b+c$ ,  $v_2 \to a$ ,  $v_3 \to a+b$ ,  $v_4 \to 2a+b+c+d$ , and compute series with the new variables as indices, where  $a, c \ge 0$  and  $b, d \ge 1$ .

## 4.2 Sub case 4.2

$$\begin{aligned} -v_2 - v_3 &< -v_4 \Rightarrow v_2 + v_3 > v_4 \\ & \text{For } v_{11} \geq -v_2, \text{ we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = p^{v_2}(1 + v_2 \rho). \\ & \text{For } -v_4 \leq v_{11} \leq -v_2 - 1, \text{ we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = \sum_{-v_4}^{-v_2 - 1} p^{v_2} \rho(1 + v_2 \rho) = p^{v_2}(v_4 - v_2) \rho + p^{v_2}v_2(v_4 - v_2) \rho^2. \\ & \text{For } -v_2 - v_3 \leq v_{11} \leq -v_4 - 1, \text{ we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = \sum_{-v_2 - v_3}^{-v_4 - 1} p^{v_2} \rho(1 + \alpha \rho) = \sum_{i=1}^{v_2 + v_3 - v_4} p^{v_2} \rho(1 + (v_2 - i)\rho) = p^{v_2}(v_2 + v_3 - v_4) \rho + (v_2 + v_3 - v_4) v_2 \rho^2 - \binom{(v_2 + v_3 - v_4 + 1)}{2} \rho^2. \\ & \text{So we have } \sum_{v_{11} > -v_2 - v_3} p^{\min}(1 + \alpha \rho) \mu(a_{11}) = p^{v_2}(1 + v_2 \rho + (v_4 - v_2)) \rho + \binom{(v_2 + v_3 - v_4 + 1)}{2} \rho^2. \end{aligned}$$

So we have  $\sum_{v_{11} \geq -v_2 - v_3} p^{\min}(1 + \alpha \rho) \mu(a_{11}) = p^{v_2} (1 + v_2 \rho + (v_4 - v_2)) \rho + v_2 (v_4 - v_2) \rho^2 + (v_2 + v_3 - v_4) \rho + (v_2 + v_3 - v_4) v_2 \rho^2 - \frac{(v_2 + v_3 - v_4 + 1)(v_2 + v_3 - v_4)}{2} \rho^2).$ We have so well a represents

We have several arrangements,

1. 
$$v_2 + v_3 \stackrel{d}{>} v_4 \stackrel{c}{>} v_1 \stackrel{b}{\geq} v_2 \stackrel{a}{\geq} v_3 \stackrel{e}{\geq} 0$$

But 
$$v_2 + v_3 - d - c - b = v_2 \Rightarrow v_3 = v_2 + v_3 - v_2 = b + c + d$$

Thus, we substitute  $v_1 \to a+2b+c+d$ ,  $v_2 \to a+b+c+d$ ,  $v_3 \to b+c+d$ ,  $v_4 \to a+2b+2c+d$ , and compute series with the new variables as indices, where  $a,b \geq 0$  and  $c,d \geq 1$ 

2. 
$$v_2 + v_3 \stackrel{d}{>} v_4 \stackrel{c}{>} v_1 \stackrel{b}{\geq} v_3 \stackrel{a}{>} v_2 \stackrel{e}{\geq} 0$$

But 
$$v_2 + v_3 - d - c - b = v_3 \Rightarrow v_2 = v_2 + v_3 - v_3 = b + c + d$$

Thus, we substitute  $v_1 \to a+2b+c+d$ ,  $v_2 \to b+c+d$ ,  $v_3 \to a+b+c+d$ ,  $v_4 \to a+2b+2c+d$ , and compute series with the new variables as indices, where  $b \geq 0$  and  $a, c, d \geq 1$ 

3. 
$$v_2 + v_3 \stackrel{d}{>} v_4 \stackrel{c}{>} v_2 \stackrel{b}{>} v_1 \stackrel{a}{\geq} v_3 \stackrel{e}{\geq} 0$$

But 
$$v_2 + v_3 - d - c = v_2 \Rightarrow v_3 = v_2 + v_3 - v_2 = c + d$$

Thus, we substitute  $v_1 \to a+c+d$ ,  $v_2 \to a+b+c+d$ ,  $v_3 \to c+d$ ,  $v_4 \to a+b+2c+d$ , and compute series with the new variables as indices, where  $a \ge 0$  and  $b, c, d \ge 1$ 

# 5 Case 5

$$v_{2} \geq v_{4} > v_{1} > v_{3} \geq 0$$

$$\Rightarrow v_{11} \geq -v_{2} - v_{3}$$

$$\Rightarrow \alpha := \min\{v_{4}, v_{2} + v_{11} + v_{4}\} = \begin{cases} v_{4}, & v_{11} \geq -v_{2} \\ v_{4} - 1, v_{4} - 2, \dots, & v_{11} < -v_{2} \end{cases}$$
For  $v_{11} \geq -v_{2}$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = p^{v_{2}}(1 + v_{4}\rho)$ .
For  $-v_{2} - v_{3} \leq v_{11} \leq -v_{2} - 1$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = \sum_{-v_{2} - v_{3}}^{-v_{2} - 1} p^{v_{2}}\rho(1 + \alpha \rho) = \sum_{i=1}^{v_{3}} p^{v_{2}}\rho(1 + (v_{4} - i)\rho) = p^{v_{2}}(v_{3}\rho + v_{3}v_{4}\rho^{2} - \binom{v_{3} + 1}{2}\rho^{2})$ .
So we have  $\sum_{v_{11} \geq -v_{2} - v_{3}} p^{\min}(1 + \alpha \rho)\mu(a_{11}) = p^{v_{2}}(1 + v_{4}\rho + v_{3}\rho + v_{3}v_{4}\rho^{2} - \binom{(v_{3} + 1)v_{3}}{2}\rho^{2})$ .
$$v_{2} \geq v_{4} > v_{1} \geq v_{3} \geq 0$$
Thus, we substitute  $v_{1} \Rightarrow a + b, v_{2} \Rightarrow a + b + c + d, v_{2} \Rightarrow a, v_{4} \Rightarrow a + b + c$ 

Thus, we substitute  $v_1 \to a+b$ ,  $v_2 \to a+b+c+d$ ,  $v_3 \to a$ ,  $v_4 \to a+b+c$ , and compute series with the new variables as indices, where  $a, b, d \ge 0$  and  $c \ge 1$ 

## 6 Case 6

$$\begin{split} v_2 &\geq v_4 > v_1 \geq 0 \\ v_3 &> v_1 \geq 0 \\ &\Rightarrow v_{11} \geq -v_2 - v_1 \\ &\Rightarrow \alpha := \min\{v_4, v_2 + v_{11} + v_4\} = \begin{cases} v_4, & v_{11} \geq -v_2 \\ v_4 - 1, v_4 - 2, \dots, & v_{11} < -v_2 \end{cases} \\ &\text{For } v_{11} \geq -v_2, \text{ we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = p^{v_2}(1 + v_4 \rho). \\ &\text{For } -v_2 - v_1 \leq v_{11} \leq -v_2 - 1, \text{ we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = \sum_{-v_2 - v_1}^{-v_2 - 1} p^{v_2} \rho(1 + \alpha \rho) = \sum_{i=1}^{v_1} p^{v_2} \rho(1 + (v_4 - i)\rho) = p^{v_2}(v_1 \rho + v_1 v_4 \rho^2 - \binom{v_1 + 1}{2} \rho^2). \\ &\text{So we have } \sum_{v_{11} \geq -v_2 - v_1} p^{\min}(1 + \alpha \rho) \mu(a_{11}) = p^{v_2}(1 + v_4 \rho + v_1 \rho + v_1 v_4 \rho^2 - \binom{(v_1 + 1)v_1}{2} \rho^2). \end{split}$$

We have several arrangements,

1. 
$$v_2 \stackrel{d}{\geq} v_4 \stackrel{c}{>} v_3 \stackrel{b}{>} v_1 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \to a$ ,  $v_2 \to a+b+c+d$ ,  $v_3 \to a+b$ ,  $v_4 \to a+b+c$ , and compute series with the new variables as indices, where  $a, d \geq 0$  and  $b, c \geq 1$ 

2. 
$$v_2 \stackrel{d}{\geq} v_3 \stackrel{c}{\geq} v_4 \stackrel{b}{>} v_1 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \to a$ ,  $v_2 \to a+b+c+d$ ,  $v_3 \to a+b+c$ ,  $v_4 \to a+b$ , and compute series with the new variables as indices, where  $a, c, d \ge 0$  and b > 1

3. 
$$v_3 \stackrel{d}{>} v_2 \stackrel{c}{\geq} v_4 \stackrel{b}{>} v_1 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \rightarrow a$ ,  $v_2 \rightarrow a+b+c$ ,  $v_3 \rightarrow a+b+c+d$ ,  $v_4 \rightarrow$ a+b, and compute series with the new variables as indices, where  $a,c\geq 0$ and  $b, d \geq 1$ 

## Case 7

$$v_2 \ge v_4 \ge 0$$
$$v_3 > v_1 \ge v_4 \ge$$

$$v_3 > v_1 \ge v_4 \ge 0$$
  
$$\Rightarrow v_{11} \ge -v_2 - v_1$$

$$\Rightarrow \alpha := \min\{v_4, v_2 + v_{11} + v_1\} = \begin{cases} v_4, & v_{11} \ge v_4 - v_1 - v_2 \\ v_4 - 1, v_4 - 2, \dots, & v_{11} < v_4 - v_1 - v_2 \end{cases}$$

There are no two sub cases here, because the phase transition occurs at  $v_{11} = v_4 - v_1 - v_2 \ge -v_2 - v_1$ 

For  $v_{11} \ge -v_2$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = p^{v_2}(1 + v_4\rho)$ .

For  $v_{11} \ge -v_2$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = p^{-2}(1 + v_4\rho)$ . For  $v_4 - v_1 - v_2 \le v_{11} \le -v_2 - 1$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = \sum_{v_4 - v_1 - v_2}^{-v_2 - 1} p^{v_2} \rho(1 + v_4\rho)$ .  $v_4\rho) = \sum_{i=1}^{v_1-v_4} p^{v_2} \rho(1+v_4\rho) = p^{v_2}(v_1-v_4)\rho(1+v_4\rho) = p^{v_2}(v_1-v_4)\rho + p^{v_2}(v_$ 

For  $-v_1 - v_2 \le v_{11} \le v_4 - v_1 - v_2 - 1$ , we have  $p^{\min}(1 + \alpha \rho)\mu(a_{11}) = \sum_{v_1 - v_1 - v_2}^{v_4 - v_1 - v_2 - 1} p^{v_2} \rho(1 + \alpha \rho) = \sum_{i=1}^{v_4} p^{v_2} \rho(1 + (v_4 - i)\rho) = p^{v_2} v_4 \rho + p^{v_2} v_4^2 \rho^2 - p^{v_2} {v_4 + 1 \choose 2} \rho^2$ . So we have  $v_{11} \ge -v_2 - v_1$ , we have  $p^{\min}\mu(a_{11}) = p^{v_2}(1 + v_4 \rho + (v_4 - v_1)\rho + v_4 \rho^2)$ 

 $(v_4 - v_1)v_4\rho^2 + v_4\rho + v_4^2\rho^2 - \frac{v_4(v_4 - 1)}{2}\rho^2)$ 

We have several arrangements

1. 
$$v_2 \stackrel{d}{\geq} v_3 \stackrel{c}{>} v_1 \stackrel{b}{\geq} v_4 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \rightarrow a+b, v_2 \rightarrow a+b+c+d, v_3 \rightarrow a+b+c$ ,  $v_4 \rightarrow a$ , and compute series with the new variables as indices, where  $a, b, d \ge 0$  and  $c \ge 1$ 

2. 
$$v_3 \stackrel{d}{>} v_2 \stackrel{c}{>} v_1 \stackrel{b}{>} v_4 \stackrel{a}{>} 0$$

Thus, we substitute  $v_1 \rightarrow a+b, v_2 \rightarrow a+b+c, v_3 \rightarrow a+b+c+d$ ,  $v_4 \rightarrow a$ , and compute series with the new variables as indices, where a, b > 0 and c, d > 1

3. 
$$v_3 \stackrel{d}{>} v_1 \stackrel{c}{\geq} v_2 \stackrel{b}{\geq} v_4 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \rightarrow a+b+c$ ,  $v_2 \rightarrow a+b$ ,  $v_3 \rightarrow a+b+c+d$ ,  $v_4 \rightarrow a$ , and compute series with the new variables as indices, where  $a, b, c \geq 0$  and  $d \geq 1$ 

#### Case 8 8

$$v_2 \ge v_4 \ge 0$$

$$\begin{split} & v_1 \geq v_4 \geq 0 \\ & v_1 \geq v_3 \geq 0 \\ & \Rightarrow v_{11} \geq -v_2 - v_3 \\ & \Rightarrow \alpha := \min\{v_4, v_2 + v_{11} + v_1\} = \begin{cases} v_4, & v_{11} \geq v_4 - v_1 - v_2 \\ v_4 - 1, v_4 - 2, \dots, & v_{11} < v_4 - v_1 - v_2 \end{cases} \end{split}$$

# 8.1 Sub case 8.1

There are two sub cases here

$$\begin{array}{l} -v_2-v_3 \geq v_4-v_1-v_2 \Rightarrow -v_3 \geq v_4-v_1 \Rightarrow v_1 \geq v_3+v_4 \\ \text{For } v_{11} \geq -v_2, \text{ we have } p^{\min}(1+\alpha\rho)\mu(a_{11}) = p^{v_2}(1+v_4\rho). \\ \text{For } -v_2-v_3 \leq v_{11} \leq -v_2-1, \text{ we have } p^{\min}(1+\alpha\rho)\mu(a_{11}) = \sum_{-v_2-v_3}^{-v_2-1} p^{v_2}\rho(1+v_4\rho) = \sum_{i=1}^{v_3} p^{v_2}\rho(1+v_4\rho) = p^{v_2}(v_3\rho+v_3v_4\rho^2). \\ \text{So we have } \sum_{v_{11}\geq -v_2-v_3} p^{\min}(1+\alpha\rho)\mu(a_{11}) = p^{v_2}(1+v_4\rho+v_3\rho+v_3v_4\rho^2). \\ \text{We have several arrangements,} \end{array}$$

1. 
$$v_1 \stackrel{d}{\geq} v_2 + v_3 \stackrel{e}{\geq} v_3 \stackrel{c}{>} v_2 \stackrel{b}{\geq} v_4 \stackrel{a}{\geq} 0$$
  
But  $e = v_2 + v_3 - v_3 = v_2 = a + b$ .

Thus, we substitute  $v_1 \to 2a + 2b + c + d$ ,  $v_2 \to a + b$ ,  $v_3 \to a + b + c$ ,  $v_4 \to a$ , and compute series with the new variables as indices, where  $a, b, d \ge 0$  and  $c \ge 1$ 

2. 
$$v_1 \stackrel{d}{\geq} v_2 + v_3 \stackrel{e}{\geq} v_2 \stackrel{c}{\geq} v_3 \stackrel{b}{\geq} v_4 \stackrel{a}{\geq} 0$$
  
But  $e = v_2 + v_3 - v_2 = v_3 = a + b$ .

Thus, we substitute  $v_1 \to 2a + 2b + c + d$ ,  $v_2 \to a + b + c$ ,  $v_3 \to a + b$ ,  $v_4 \to a$ , and compute series with the new variables as indices, where  $a, b, c, d \ge 0$ .

3. 
$$v_1 \stackrel{d}{\geq} v_2 + v_3 \stackrel{a}{\geq} v_2 \stackrel{c}{\geq} v_4 \stackrel{b}{>} v_3 \stackrel{a}{\geq} 0$$

Thus, we substitute  $v_1 \to 2a+b+c+d$ ,  $v_2 \to a+b+c$ ,  $v_3 \to a$ ,  $v_4 \to a+b$ , and compute series with the new variables as indices, where  $a, c, d \ge 0$  and b > 1

### 8.2 Sub case 8.2

$$\begin{split} -v_2 - v_3 &< v_4 - v_1 - v_2 \Rightarrow -v_3 < v_4 - v_1 \Rightarrow v_1 < v_3 + v_4 \\ &\text{For } v_{11} \geq -v_2 \text{, we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = p^{v_2}(1 + v_4 \rho). \\ &\text{For } v_4 - v_1 - v_2 \leq v_{11} \leq -v_2 - 1 \text{, we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = \sum_{v_4 - v_1 - v_2}^{-v_2 - 1} p^{v_2} \rho(1 + v_4 \rho) = p^{v_2}((v_1 - v_4)\rho + (v_1 - v_4)v_4 \rho^2). \\ &\text{For } -v_2 - v_3 \leq v_{11} \leq v_4 - v_1 - v_2 - 1 \text{, we have } p^{\min}(1 + \alpha \rho) \mu(a_{11}) = \sum_{v_4 - v_1 - v_2 - 1}^{v_4 - v_1 - v_2 - 1} p^{v_2} \rho(1 + \alpha \rho) = \sum_{i=1}^{v_3 + v_4 - v_1} p^{v_2} \rho(1 + (v_4 - i))\rho) = p^{v_2}((v_3 + v_4 - v_1)\rho + (v_3 + v_4 - v_1)v_4\rho^2 - \binom{v_3 + v_4 - v_1 + v_4 - v_1}{2}\rho^2). \end{split}$$

So we have  $\sum_{v_{11} \geq -v_2-v_3} \rho(1+\alpha\rho) = p^{v_2} (1+v_4\rho + (v_1-v_4)\rho + (v_1-v_4)v_4\rho^2 + (v_3+v_4-v_1)\rho + (v_3+v_4-v_1)v_4\rho^2 - \frac{(v_3+v_4-v_1+1)(v_3+v_4-v_1)}{2}\rho^2 ).$ 

We have several arrangements,

1. 
$$v_3 + v_4 \stackrel{d}{>} v_1 \stackrel{c}{\geq} v_3 \stackrel{b}{>} v_2 \stackrel{a}{\geq} v_4 \stackrel{e}{\geq} 0$$

But 
$$v_3 + v_4 - d - c = v_3 \Rightarrow v_4 = c + d$$
.

Thus, we substitute  $v_1 \to a+b+2c+d$ ,  $v_2 \to a+c+d$ ,  $v_3 \to a+b+c+d$ ,  $v_4 \to c+d$ , and compute series with the new variables as indices, where  $a,c \geq 0$  and  $b,d \geq 1$ 

2. 
$$v_3 + v_4 \stackrel{d}{>} v_1 \stackrel{c}{\geq} v_2 \stackrel{b}{\geq} v_3 \stackrel{a}{\geq} v_4 \stackrel{e}{\geq} 0$$

But 
$$v_3 + v_4 - d - c - b = v_3 \Rightarrow v_4 = b + c + d$$
.

Thus, we substitute  $v_1 \to a + 2b + 2c + d$ ,  $v_2 \to a + 2b + c + d$ ,  $v_3 \to a + b + c + d$ ,  $v_4 \to b + c + d$ , and compute series with the new variables as indices, where  $a, b, c \ge 0$  and  $d \ge 1$ .

3. 
$$v_3 + v_4 \stackrel{d}{>} v_1 \stackrel{c}{\geq} v_2 \stackrel{b}{\geq} v_4 \stackrel{a}{>} v_3 \stackrel{e}{\geq} 0$$

But 
$$v_3 + v_4 - d - c - b = v_4 \Rightarrow v_3 = b + c + d$$
.

Thus, we substitute  $v_1 \to a+2b+2c+d$ ,  $v_2 \to a+2b+c+d$ ,  $v_3 \to b+c+d$ ,  $v_4 \to a+b+c+d$ , and compute series with the new variables as indices, where  $b,c \geq 0$  and  $a,d \geq 1$ 

4. 
$$v_3 + v_4 \stackrel{d}{\geq} v_2 \stackrel{c}{>} v_1 \stackrel{b}{\geq} v_4 \stackrel{a}{>} v_3 \stackrel{e}{\geq} 0$$

But 
$$v_3 + v_4 - d - c - b = v_4 \Rightarrow v_3 = b + c + d$$
.

Thus, we substitute  $v_1 \to a+2b+c+d$ ,  $v_2 \to a+2b+2c+d$ ,  $v_3 \to b+c+d$ ,  $v_4 \to a+b+c+d$ , and compute series with the new variables as indices, where  $b,d \geq 0$  and  $a,c \geq 1$ 

5. 
$$v_3 + v_4 \stackrel{d}{\geq} v_2 \stackrel{c}{>} v_1 \stackrel{b}{\geq} v_3 \stackrel{a}{\geq} v_4 \stackrel{e}{\geq} 0$$

But 
$$v_3 + v_4 - d - c - b = v_3 \Rightarrow v_4 = b + c + d$$
.

Thus, we substitute  $v_1 \to a+2b+c+d$ ,  $v_2 \to a+2b+2c+d$ ,  $v_3 \to a+b+c+d$ ,  $v_4 \to b+c+d$ , and compute series with the new variables as indices, where  $a,b,d \geq 0$  and  $c \geq 1$ 

6. 
$$v_2 \stackrel{d}{\geq} v_3 + v_4 \stackrel{c}{>} v_1 \stackrel{b}{\geq} v_4 \stackrel{a}{>} v_3 \stackrel{e}{\geq} 0$$

But 
$$v_3 + v_4 - c - b = v_4 \Rightarrow v_3 = b + c$$
.

Thus, we substitute  $v_1 \to a+2b+c$ ,  $v_2 \to a+2b+2c+d$ ,  $v_3 \to b+c$ ,  $v_4 \to a+b+c$ , and compute series with the new variables as indices, where  $b, d \geq 0$  and  $a, c \geq 1$ 

7. 
$$v_2 \stackrel{d}{\geq} v_3 + v_4 \stackrel{c}{>} v_1 \stackrel{b}{\geq} v_3 \stackrel{a}{\geq} v_4 \stackrel{e}{\geq} 0$$

But  $v_3 + v_4 - c - b = v_3 \Rightarrow v_4 = b + c$ .

Thus, we substitute  $v_1 \to a+2b+c, v_2 \to a+2b+2c+d, v_3 \to a+b+c, v_4 \to b+c$ , and compute series with the new variables as indices, where  $a,b,d \geq 0$  and  $c \geq 1$ 

## @@@CHECKED@@@