Advanced Studies in Pure Mathematics 5X, 20XX Probabilistic Approach to Geometry pp. 1–10

Infinitesimal Bishop-Gromov condition for Alexandrov spaces

Kazuhiro Kuwae and Takashi Shioya

Abstract.

We prove the infinitesimal version of Bishop-Gromov volume comparison condition for Alexandrov spaces.

§1. Introduction

We first present the definition of the infinitesimal Bishop-Gromov volume comparison condition for Alexandrov spaces.

For a real number κ , we set

$$s_{\kappa}(r) := \begin{cases} \sin(\sqrt{\kappa}r)/\sqrt{\kappa} & \text{if } \kappa > 0, \\ r & \text{if } \kappa = 0, \\ \sinh(\sqrt{|\kappa|}r)/\sqrt{|\kappa|} & \text{if } \kappa < 0. \end{cases}$$

The function s_{κ} is the solution of the Jacobi equation $s''_{\kappa}(r) + \kappa s_{\kappa}(r) = 0$ with initial condition $s_{\kappa}(0) = 0$, $s'_{\kappa}(0) = 1$.

Let M be an Alexandrov space and set $r_p(x) := d(p, x)$ for $p, x \in M$, where d is the distance function. For $p \in M$ and $0 < t \le 1$, we define a subset $W_{p,t} \subset M$ and a map $\Phi_{p,t} : W_{p,t} \to M$ as follows. We first set $\Phi_{p,t}(p) := p \in W_{p,t}$. A point $x \not\in p$ belongs to $W_{p,t}$ if and only if there exists $y \in M$ such that $x \in py$ and $r_p(x) : r_p(y) = t : 1$, where py is a minimal geodesic from p to y. Since a geodesic does not branch on an Alexandrov space, for a given point $x \in W_{p,t}$ such a point y is unique and we set $\Phi_{p,t}(x) := y$. The triangle comparison condition implies the

Received January 15, 2009.

Revised 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C20, 53C21, 53C23. Key words and phrases. Ricci curvature, Bishop-Gromov inequality.

The authors are partially supported by a Grant-in-Aid for Scientific Research No. 19540220 and 20540058 from the Japan Society for the Promotion of Science.

local Lipschitz continuity of the map $\Phi_{p,t}: W_{p,t} \to M$. We call $\Phi_{p,t}$ the radial expansion map.

Let μ be a positive Radon measure with full support in M, and $n \geq 1$ a real number.

Infinitesimal Bishop-Gromov Condition $BG(\kappa, n)$ for μ : For any $p \in M$ and $t \in (0, 1]$, we have

$$d(\Phi_{p,t*}\mu)(x) \ge \frac{t \, s_{\kappa}(t \, r_p(x))^{n-1}}{s_{\kappa}(r_p(x))^{n-1}} d\mu(x)$$

for any $x \in M$ such that $r_p(x) < \pi/\sqrt{\kappa}$ if $\kappa > 0$, where $\Phi_{p,t*}\mu$ is the push-forward by $\Phi_{p,t}$ of μ .

For an n-dimensional complete Riemannian manifold, the Riemannian volume measure satisfies $\mathrm{BG}(\kappa,n)$ if and only if the Ricci curvature satisfies $\mathrm{Ric} \geq (n-1)\kappa$ (see Theorem 3.2 of [10] for the 'only if' part). We see some studies on similar (or same) conditions to $\mathrm{BG}(\kappa,n)$ in [2, 18, 6, 7, 15, 10, 21] etc. $\mathrm{BG}(\kappa,n)$ is sometimes called the Measure Contraction Property and is weaker than the curvature-dimension (or lower n-Ricci curvature) condition, $\mathrm{CD}((n-1)\kappa,n)$, introduced by Sturm [19, 20] and Lott-Villani [9] in terms of mass transportation. For a measure on an Alexandrov space, $\mathrm{BG}(\kappa,n)$ is equivalent to the $((n-1)\kappa,n)$ -MCP introduced by Ohta [10]. In our paper [5, 8], we prove a splitting theorem under $\mathrm{BG}(0,N)$. For a survey of geometric analysis on Alexandrov spaces, we refer to [17]

The purpose of this paper is to prove the following

Theorem 1.1. Let M be an n-dimensional Alexandrov space of curvature $\geq \kappa$. Then, the n-dimensional Hausdorff measure \mathcal{H}^n on M satisfies the infinitesimal Bishop-Gromov condition $BG(\kappa, n)$.

Note that we claimed this theorem in Lemma 6.1 of [6], but the proof in [6] is insufficient. The theorem also completes the proof of Proposition 2.8 of [10].

For the proof of the theorem, we have the delicate problem that the topological boundary of the domain $W_{p,t}$ of the radial expansion $\Phi_{p,t}$ is not necessarily of \mathcal{H}^n -measure zero. In fact, we have an example of an Alexandrov space such that the cut-locus at a point is dense (see Remark 2.2), in which case the boundary of $W_{p,t}$ has positive \mathcal{H}^n -measure. This never happens for Riemannian manifolds. To solve this problem, we need some delicate discussion using the approximate differential of $\Phi_{p,t}$.

Acknowledgment. The authors would like to thank Professor Shinichi Ohta for his comments.

§2. Preliminaries

2.1. Alexandrov spaces

In this paper, we mean by an Alexandrov space a complete locally compact geodesic space of curvature bounded below locally and of finite Hausdorff dimension. We refer to [1,12,4] for the basics for the geometry and analysis on Alexandrov spaces. Let M be an Alexandrov space of Hausdorff dimension n. Then, n coincides with the covering dimension of M which is a nonnegative integer. Take any point $p \in M$ and fix it. Denote by $\Sigma_p M$ the space of directions at p, and by $K_p M$ the tangent cone at p. $\Sigma_p M$ is an (n-1)-dimensional compact Alexandrov space of curvature ≥ 1 and $K_p M$ an n-dimensional Alexandrov space of curvature ≥ 0 .

Definition 2.1 (Singular Point, δ -Singular Point). A point $p \in M$ is called a *singular point of* M if $\Sigma_p M$ is not isometric to the unit sphere S^{n-1} . For $\delta > 0$, we say that a point $p \in M$ is δ -singular if $\mathcal{H}^{n-1}(\Sigma_p M) \leq \operatorname{vol}(S^{n-1}) - \delta$. Let us denote the set of singular points of M by S_M and the set of δ -singular points of M by S_δ .

We have $S_M = \bigcup_{\delta>0} S_{\delta}$. Since the map $M \ni p \mapsto \mathcal{H}^n(\Sigma_p M)$ is lower semi-continuous, the set S_{δ} of δ -singular points in M is a closed set.

Lemma 2.1 ([14]). Let γ be a minimal geodesic joining two points p and q in M. Then, the space of directions, $\Sigma_x M$, at all interior points of γ , $x \in \gamma \setminus \{p,q\}$, are isometric to each other. In particular, any minimal geodesic joining two non-singular (resp. non- δ -singular) points is contained in the set of non-singular (resp. non- δ -singular) points (for any $\delta > 0$).

The following shows the existence of differentiable and Riemannian structure on M.

Theorem 2.1. For an n-dimensional Alexandrov space M, we have the following:

- (1) There exists a number $\delta_n > 0$ depending only on n such that $M^* := M \setminus S_{\delta_n}$ is a manifold ([1]) and has a natural C^{∞} differentiable structure ([4]).
- (2) The Hausdorff dimension of S_M is $\leq n-1$ ([1, 12]).
- (3) We have a unique continuous Riemannian metric g on $M \setminus S_M \subset M^*$ such that the distance function induced from g coincides with the original one of M ([12]). The tangent space at

each point in $M \setminus S_M$ is isometrically identified with the tangent cone ([12]). The volume measure on M^* induced from g coincides with the n-dimensional Hausdorff measure \mathcal{H}^n ([12]).

Remark 2.1. In [4] we construct a C^{∞} structure only on $M \setminus B(S_{\delta_n}, \epsilon)$, where $B(A, \epsilon)$ denotes the ϵ -neighborhood of A. However this is independent of ϵ and extends to M^* . The C^{∞} structure is a refinement of the structures of [12, 11, 13] and is compatible with the DC structure of [13].

Note that the metric g is defined only on $M^* \setminus S_M$ and does not continuously extend to any other point of M.

Definition 2.2 (Cut-locus). Let $p \in M$ be a point. We say that a point $x \in M$ is a *cut point of* p if no minimal geodesic from p contains x as an interior point. Here we agree that p is a cut point of p. The set of cut points of p is called the *cut-locus of* p and denoted by Cut_p .

Note that Cut_p is not necessarily a closed set. For the $W_{p,t}$ defined in §1, it follows that $\bigcup_{0 < t < 1} W_{p,t} = X \setminus \operatorname{Cut}_p$. The cut-locus Cut_p is a Borel subset and satisfies $\mathcal{H}^n(\operatorname{Cut}_p) = 0$ (Proposition 3.1 of [12]).

Remark 2.2. There is an example of a 2-dimensional Alexandrov space M such that S_M is dense in M (see [12]). For such an example, Cut_p for any $p \in M$ is also dense in M.

2.2. Approximate differential

Definition 2.3 (Density; cf. 2.9.12 in [3]). Let X be a metric space with a Borel measure μ . A subset $A \subset X$ has density zero at a point $x \in X$ if

$$\lim_{r \to 0} \frac{\mu(B(x,r) \cap A)}{\mu(B(x,r))} = 0.$$

Definition 2.4 (Approximate Differential; cf. 3.1.2 in [3]). Let $A \subset \mathbb{R}^m$ be a subset and $f: A \to \mathbb{R}^n$ a map. A linear map $L: \mathbb{R}^m \to \mathbb{R}^n$ is called the approximate differential of f at a point $x \in A$ if the approximate limit of

$$\frac{|f(y) - f(x) - L(y - x)|}{|y - x|}$$

is equal to zero as $y \to x$, i.e., for any $\delta > 0$, the set

$$\left\{ y \in A \setminus \{x\} \mid \frac{|f(y) - f(x) - L(y - x)|}{|y - x|} \ge \delta \right\}$$

has density zero at x, where we consider the Lebesgue (or equivalently m-dimensional Hausdorff) measure on \mathbb{R}^m to measure the density. We

say that f is approximately differentiable at a point $x \in A$ if the approximate differential of f at x exists. Denote by 'ap df_x ' the approximate differential of f at x. It is unique at each approximate differentiable point.

Let M and N be two differentiable manifolds and let $A \subset M$. We give a map $f: A \to N$ and a point $x \in A$. Take two charts (U, φ) and (V, ψ) around x and f(x) respectively. The map f is said to be approximately differentiable at x if $\psi \circ f \circ \varphi^{-1}$ is approximately differentiable at $\varphi(x)$. If f is approximately differentiable at x, then the approximate differential 'ap df_x ' of f at x is defined by

$$\operatorname{ap} df_x := (d\psi_{f(x)})^{-1} \circ \operatorname{ap} d(\psi \circ f \circ \varphi^{-1})_{\varphi(x)} \circ d\varphi_x : T_x M \to T_{f(x)} N.$$

The approximate differentiability of f at x and ap df_x are both independent of (U, φ) and (V, ψ) .

§3. Proof of Theorem 1.1

Let M be an Alexandrov space of curvature $\geq \kappa$. We first investigate the exponential map on M. Denote by o_p the vertex of the tangent cone K_pM at a point $p \in M$. We denote by $U_p \subset K_pM$ the inside of the tangential cut-locus of p, i.e., $v \in U_p$ if and only if there is a minimal geodesic $\gamma:[0,a] \to M$ from p with a>1 such that $\gamma'(0)=v$, where $\gamma'(t)$ denotes the element of $K_{\gamma(t)}M$ tangent to $\gamma|_{[t,t+\epsilon)}, \ \epsilon>0$, and whose distance from $o_{\gamma(t)} \in K_{\gamma(t)}M$ is equal to the speed of parameter of γ . Note that U_p is not necessarily an open set. Since the exponential map $\exp_p|_{U_p}:U_p\to M\setminus \operatorname{Cut}_p$ is a homeomorphism and since $W_{p,t}\cap \bar{B}(p,r)$ is compact for any $0< t \leq 1$ and r>0, the set

$$U_p = \bigcup_{0 < t \le 1, r > 0} (\exp_p |_{U_p})^{-1} (W_{p,t} \cap \bar{B}(p,r))$$

is a Borel subset of K_pM .

Denote by $\Theta(t|a,b,...)$ a function of t,a,b,... such that $\Theta(t|a,b,...) \to 0$ as $t \to 0$ for any fixed a,b,... We use $\Theta(t|a,b,...)$ as Landau symbols.

Lemma 3.1. For any $p \in M$, r > 0, and for any \mathcal{H}^n -measurable subset $A \subset B(o_p, r) \subset K_pM$, we have

(1)
$$|\mathcal{H}^n(\exp_p(A \cap U_p)) - \mathcal{H}^n(A)| \le \Theta(r|p,n) r^n,$$

(2)
$$\mathcal{H}^n(B(o_p, r) \setminus U_p) \le \Theta(r|p, n) r^n.$$

Note that $\Theta(r|p,n)$ here is independent of A.

Proof. Let $p \in M$ and r > 0. By the triangle comparison condition, $\exp_p : U_p \cap B(o_p, r) \to M$ is Lipschitz continuous with Lipschitz constant $1 + \Theta(r|p)$. Therefore, for any \mathcal{H}^n -measurable $A \subset B(o_p, r)$,

$$\mathcal{H}^{n}(A) \ge (1 - \Theta(r|p, n)) \mathcal{H}^{n}(\exp_{p}(A \cap U_{p})),$$

$$\mathcal{H}^{n}(B(o_{p}, r) \setminus A) \ge (1 - \Theta(r|p, n)) \mathcal{H}^{n}(B(p, r) \setminus \exp_{p}(A \cap U_{p})).$$

According to Lemma 3.2 of [16], we have

$$\lim_{\rho \to 0} \frac{\mathcal{H}^n(B(p,\rho))}{\rho^n} = \mathcal{H}^n(B(o_p,1)) = \frac{\mathcal{H}^n(B(o_p,r))}{r^n}.$$

Combining those three formulas we have the lemma.

Let $p \in M$ and $0 < t \le 1$. We restrict the domain of the radial expansion map $\Phi_{p,t}: W_{p,t} \to M$ to the subset

$$W'_{p,t} := W_{p,t} \setminus (\Phi_{p,t}^{-1}(\operatorname{Cut}_p) \cup S_{\delta_n}),$$

where S_{δ_n} is as in Theorem 2.1.

Lemma 3.2. We have $\Phi_{p,t}(W'_{p,t}) = M \setminus (\operatorname{Cut}_p \cup S_{\delta_n})$ and the map $\Phi_{p,t}|_{W'_{p,t}}: W'_{p,t} \to M \setminus (\operatorname{Cut}_p \cup S_{\delta_n})$ is bijective. In particular, the sets $W'_{p,t}$ and $\Phi_{p,t}(W'_{p,t})$ are both contained in the C^{∞} manifold $M^* = M \setminus S_{\delta_n}$ without boundary.

Proof. Let us first prove $\Phi_{p,t}(W'_{p,t}) \subset M \setminus (\operatorname{Cut}_p \cup S_{\delta_n})$. It is clear that $\Phi_{p,t}(W'_{p,t}) \subset M \setminus \operatorname{Cut}_p$. To prove $\Phi_{p,t}(W'_{p,t}) \subset M \setminus S_{\delta_n}$, we take any point $x \in W'_{p,t}$. Since $\Phi_{p,t}(x)$ is not a cut point of p and by Lemma 2.1, $\Phi_{p,t}(x)$ is not δ_n -singular. Therefore, $\Phi_{p,t}(W'_{p,t}) \subset M \setminus (\operatorname{Cut}_p \cup S_{\delta_n})$.

Let us next prove $\Phi_{p,t}(W'_{p,t}) \supset M \setminus (\operatorname{Cut}_p \cup S_{\delta_n})$. Take any point $y \in M \setminus (\operatorname{Cut}_p \cup S_{\delta_n})$ and join p to y by a minimal geodesic $\gamma : [0,1] \to M$. Then, $\Phi_{p,t}(\gamma(t)) = y$. Since $y \notin \operatorname{Cut}_p$, the geodesic γ is unique and so $\Phi_{p,t}|_{W'_{p,t}}$ is injective. By Lemma 2.1, $\gamma(t) = (\Phi_{p,t}|_{W'_{p,t}})^{-1}(y)$ is not δ_n -singular and belongs to $W'_{p,t}$. This completes the proof.

By the local Lipschitz continuity of $\Phi_{p,t}$ and by 3.1.8 of [3], $\Phi_{p,t}|_{W'_{p,t}}$ is approximately differentiable \mathcal{H}^n -a.e. on $W'_{p,t}$. The following lemma is essential for the proof of Theorem 1.1.

Lemma 3.3. Let $p \in M$ and 0 < t < 1. Then, the approximate Jacobian determinant of $\Phi_{p,t}|_{W'_{n,t}}$ satisfies that

$$|\det \operatorname{ap} d(\Phi_{p,t}|_{W'_{p,t}})_x| \le \frac{s_{\kappa}(r_p(x)/t)^{n-1}}{t \, s_{\kappa}(r_p(x))^{n-1}}$$

for any approximately differentiable point $x \in W'_{p,t} \setminus S_M$ of $\Phi_{p,t}|_{W'_{p,t}}$.

Proof. Let $x \in W'_{p,t} \setminus S_M$ be an approximately differentiable point of $\Phi_{p,t}|_{W'_{p,t}}$ and let $\epsilon > 0$ be a small number. Note that K_xM and $K_{\Phi_{p,t}(x)}M$ are both isometric to \mathbb{R}^n and identified with the tangent spaces. We take two charts (U,φ) and (V,ψ) of $M \setminus S_{\delta_n}$ around x and $\Phi_{p,t}(x)$ respectively such that $||\varphi(y) - \varphi(z)|/d(y,z) - 1| < \epsilon$ for any different $y,z \in U$ and ψ satisfies the same inequality on V. In particular, every eigenvalue of the differentials $d\varphi_x : K_xM \to \mathbb{R}^n$ and $d\psi_{\Phi_{p,t}(x)} : K_{\Phi_{p,t}(x)}M \to \mathbb{R}^n$ is between $1 - \epsilon$ and $1 + \epsilon$. Put

$$\bar{\Phi} := \psi \circ \Phi_{p,t}|_{W'_{p,t}} \circ \varphi^{-1} : \varphi(W'_{p,t} \cap U) \to \psi(V),$$

$$\bar{x} := \varphi(x), \qquad L := \operatorname{ap} d\bar{\Phi}_{\bar{x}} : \mathbb{R}^n \to \mathbb{R}^n.$$

For simplicity we set $D := \operatorname{ap} d(\Phi_{p,t}|_{W'_{p,t}})_x : K_x M \to K_{\Phi_{p,t}(x)} M$. Then,

$$D = (d\psi_{\Phi_{p,t}(x)})^{-1} \circ L \circ d\varphi_x.$$

By the definition of the approximate differential, for any r>0 with $B(x,r)\subset U$, the set of $\bar{y}\in B(\bar{x},r)$ satisfying

$$|\bar{\Phi}(\bar{y}) - \bar{\Phi}(\bar{x}) - L(\bar{y} - \bar{x})| \ge \epsilon |\bar{x} - \bar{y}|$$

has \mathcal{H}^n -measure $\leq \Theta(r|\bar{\Phi},\bar{x}) \mathcal{H}^n(B(\bar{x},r))$, where $B(\bar{x},r)$ is a Euclidean metric ball. Take any $u \in \Sigma_x M$ and fix it. Let r > 0 be any number. We set

$$C(u, r, \epsilon) := \{ v \in B(o_x, r) \setminus \{o_x\} \subset K_x M \mid \angle(u, v) < \epsilon \}.$$

It follows from Lemma 3.1(1) that

$$\mathcal{H}^{n}(\varphi(\exp_{x}(C(u,r/2,\epsilon)\cap U_{x})))$$

$$\geq (1-\epsilon)^{n} \mathcal{H}^{n}(\exp_{x}(C(u,r/2,\epsilon)\cap U_{x}))$$

$$\geq (1-\epsilon)^{n} (\mathcal{H}^{n}(C(u,1/2,\epsilon)) - \Theta(r|x,n)) r^{n}.$$

Since $\mathcal{H}^n(C(u,1/2,\epsilon))$ is positive, we have

$$\lim_{r\to 0} \frac{\mathcal{H}^n(\varphi(\exp_x(C(u,r/2,\epsilon)\cap U_x)))}{\mathcal{H}^n(B(\bar{x},r))} > 0.$$

Note that $\varphi(\exp_x(C(u,r/2,\epsilon)\cap U_x))$ is contained in $B(\bar{x},r)$ because ϵ is small enough. Therefore, supposing $r\ll \epsilon$, there is a point $\bar{y}\in B(\bar{x},r)$ such that

$$\bar{y} \in \varphi(\exp_x(C(u, r/2, \epsilon) \cap U_x)),$$

 $|\bar{\Phi}(\bar{y}) - \bar{\Phi}(\bar{x}) - L(\bar{y} - \bar{x})| < \epsilon d(\bar{x}, \bar{y}).$

Setting $y := \varphi^{-1}(\bar{y})$ and $v_{xy} := (\exp_x |_{U_x})^{-1}(y)$, we have $\angle(u, v_{xy}) < \epsilon$. For simplicity we write $a \le (1 + \Theta(\epsilon | p, t, x)) b + \Theta(\epsilon | p, t, x)$ by $a \le b$. Note that since $r \ll \epsilon$, all $\Theta(r | \cdots)$ become $\Theta(\epsilon | \cdots)$. Since $|v_{xy}| = d(x, y)$ and $|d\varphi_x(v_{xy}) - (\bar{y} - \bar{x})| \le \Theta(\epsilon | x) d(x, y)$ (cf. Lemma 3.6(2) of [12]), we have

$$|D(u)| \lesssim |D(v_{xy}/|v_{xy}|)| \lesssim \frac{|L(\bar{y} - \bar{x})|}{d(x,y)}$$
$$\lesssim \frac{|\bar{\Phi}(\bar{y}) - \bar{\Phi}(\bar{x})|}{d(x,y)} \lesssim \frac{d(\Phi_{p,t}(x), \Phi_{p,t}(y))}{d(x,y)}.$$

We are going to estimate the last formula. Denote by $M^2(\kappa)$ a complete simply connected 2-dimensional space form of curvature κ . We take three points $\tilde{p}, \tilde{x}, \tilde{y} \in M^2(\kappa)$ such that $d(\tilde{p}, \tilde{x}) = d(p, x), \ d(\tilde{p}, \tilde{y}) = d(p, y)$, and $d(\tilde{x}, \tilde{y}) = d(x, y)$. The triangle comparison condition tells that $d(\Phi_{p,t}(x), \Phi_{p,t}(y)) \leq d(\Phi_{\tilde{p},t}(\tilde{x}), \Phi_{\tilde{p},t}(\tilde{y}))$, where $\Phi_{\tilde{p},t}$ is the radial expansion on $M^2(\kappa)$. Since $d(\tilde{x}, \tilde{y}) = d(x, y) < r \ll \epsilon$, we have

$$\frac{d(\Phi_{\tilde{p},t}(\tilde{x}),\Phi_{\tilde{p},t}(\tilde{y}))}{d(\tilde{x},\tilde{y})} \lesssim |d(\Phi_{\tilde{p},t})_{\tilde{x}}(v_{\tilde{x}\tilde{y}}/|v_{\tilde{x}\tilde{y}}|)|.$$

Let $\tilde{\gamma}$ be the minimal geodesic from \tilde{p} passing through \tilde{x} . We denote by $\tilde{\theta}$ the angle between $v_{\tilde{x}\tilde{y}}$ and $\tilde{\gamma}'(t_{\tilde{x}})$, where $t_{\tilde{x}}$ is taken in such a way that $\tilde{\gamma}(t_{\tilde{x}}) = \tilde{x}$. Set

$$\lambda(\xi) := \sqrt{\frac{1}{t^2}\cos^2\xi + \frac{s_\kappa(r_p(x)/t)^2}{s_\kappa(r_p(x))^2}\sin^2\xi}, \qquad \xi \in \mathbb{R}$$

A calculation using Jacobi fields yields $|d(\Phi_{\tilde{p},t})_{\tilde{x}}(v_{\tilde{x}\tilde{y}}/|v_{\tilde{x}\tilde{y}}|)| = \lambda(\tilde{\theta})$. Combining the above estimates, we have

$$|D(u)| \lesssim \lambda(\tilde{\theta}).$$

Let γ be the minimal geodesic from p passing through x and let t_x be a number such that $\gamma(t_x) = x$. Denote by θ the angle between v_{xy} and $\gamma'(t_x)$ and by θ_u the angle between u and $\gamma'(t_x)$. It follows from $\angle(u, v_{xy}) < \epsilon$ that $|\theta - \theta_u| < \epsilon$. By 5.6 of [1] we have $|\theta - \tilde{\theta}| \leq \Theta(r|p, t, x) \leq \Theta(\epsilon|p, t, x)$. Therefore we have $|D(u)| \lesssim \lambda(\theta_u)$. Taking the limit as $\epsilon \to 0$ yields that

$$|D(u)| < \lambda(\theta_u)$$

for any $u \in \Sigma_x M$, which together with Hadamard's inequality implies

$$|\det D| \le \lambda(0) \lambda(\pi/2)^{n-1} = \frac{s_{\kappa}(r_p(x)/t)^{n-1}}{t \, s_{\kappa}(r_p(x))^{n-1}}.$$

This completes the proof of Lemma 3.3.

Proof of Theorem 1.1. For the proof, it suffices to prove that

(3.1)
$$\int_{W_{p,t}} f \circ \Phi_{p,t}(x) d\mathcal{H}^n(x) \ge \int_M f(y) \frac{t \, s_{\kappa} (t \, r_p(y))^{n-1}}{s_{\kappa} (r_p(y))^{n-1}} d\mathcal{H}^n(y)$$

for any \mathcal{H}^n -measurable function $f:M\to [0,+\infty)$ with compact support. Since $\Phi_{p,t}|_{W'_{p,t}}:W'_{p,t}\to M\setminus (\operatorname{Cut}_p\cup S_{\delta_n})$ is bijective, the area formula (cf. 3.2.20 of [3]) implies that

(3.2)
$$\int_{W'_{p,t}} F \circ \Phi_{p,t}(x) | \det \operatorname{ap} d(\Phi_{p,t}|_{W'_{p,t}})_x | d\mathcal{H}^n(x)$$
$$= \int_{M \setminus (\operatorname{Cut}_p \cup S_{\delta_n})} F(y) d\mathcal{H}^n(y)$$

for any $\mathcal{H}^n\text{-measurable}$ function $F:M\to [\,0,+\infty\,)$ with compact support. We set

$$F(y) := f(y) \frac{t \, s_{\kappa}(t \, r_p(y))^{n-1}}{s_{\kappa}(r_p(y))^{n-1}}, \quad y \in M \setminus \operatorname{Cut}_p,$$

in (3.2). Then, since $\mathcal{H}^n(\operatorname{Cut}_p) = \mathcal{H}^n(S_{\delta_n}) = 0$ and by Lemma 3.3, we obtain (3.1). This completes the proof of the theorem.

References

- [1] Yu. Burago, M. Gromov, and G. Perel'man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), no. 2(284), 3–51, 222, translation in Russian Math. Surveys 47 (1992), no. 2, 1–58.
- [2] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406– 480.
- [3] H. Federer, Geometric measure theory, Springer, Berlin, 1969.
- [4] K. Kuwae, Y. Machigashira, and T. Shioya, Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces, Math. Z. 238 (2001), no. 2, 269– 316.
- [5] K. Kuwae and T. Shioya, A topological splitting theorem for weighted Alexandrov spaces, preprint.
- [6] _____, On generalized measure contraction property and energy functionals over Lipschitz maps, Potential Anal. 15 (2001), no. 1-2, 105–121, ICPA98 (Hammamet).

- [7] _____, Sobolev and Dirichlet spaces over maps between metric spaces, J. Reine Angew. Math. **555** (2003), 39–75.
- [8] ______, Laplacian comparison for Alexandrov spaces, preprint, 2007.
- [9] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, to appear in Ann. Math., 2006.
- [10] S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv. 82 (2007), no. 4, 805–828.
- [11] Y. Otsu, Almost everywhere existence of second differentiable structure of Alexandrov spaces, preprint.
- [12] Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom. 39 (1994), no. 3, 629–658.
- [13] G. Perelman, DC-structure on Alexandrov space, preprint.
- [14] A. Petrunin, Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal. 8 (1998), no. 1, 123–148.
- [15] A. Ranjbar-Motlagh, Poincaré inequality for abstract spaces, Bull. Austral. Math. Soc. 71 (2005), no. 2, 193–204.
- [16] T. Shioya, Mass of rays in Alexandrov spaces of nonnegative curvature, Comment. Math. Helv. 69 (1994), no. 2, 208–228.
- [17] _____, Geometric analysis on Alexandrov spaces, to appear in Sugaku Expositions.
- [18] K.-T. Sturm, Diffusion processes and heat kernels on metric spaces, Ann. Probab. 26 (1998), no. 1, 1–55.
- [19] _____, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65–131.
- [20] _____, On the geometry of metric measure spaces. II, Acta Math. 196 (2006), no. 1, 133–177.
- [21] M. Watanabe, Local cut points and metric measure spaces with Ricci curvature bounded below, Pacific J. Math. 233 (2007), no. 1, 229–256.

Kazuhiro Kuwae

Department of Mathematics and Engineering Graduate School of Science and Technology Kumamoto University Kumamoto, 860-8555, JAPAN E-mail address: kuwae@gpo.kumamoto-u.ac.jp

Takashi Shioya

Mathematical Institute

Tohoku University

Sendai 980-8578, JAPAN

Email address shipperson the

 $E\text{-}mail\ address{:}\ \mathtt{shioya@math.tohoku.ac.jp}$