Technische Universität Berlin

Master Arbeit

Grapheneinbettungen und Optimierung

Autor: Betreuer und Erstgutachter: Jonas Neukamm Prof. Dr. Stefan Felsner

Matrikelnummer: Zweitgutachter: 324283 Dr. Frank Lutz

Masterarbeit zur Prüfung zum Master of Science an der

> Technische Universität Berlin Institut für Mathematik

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten Quellen und Hilfsmittel angefertigt habe.

Ionas Neukamm			

Zusammenfassung

To Do

Inhaltsverzeichnis

1 Grundlagen

Wir werden uns in dieser Arbeit hauptsächlich mit einfachen planeren Graphen beschäftigen, also solchen die keine Mehrfachkanten und Schleifen besitzen und für die kreuzungsfreie Zeichnungen, beziehungsweise Einbettungen, in der Ebene existieren. Sei G=(V,E) ein Graph bestehend aus der Menge der Knoten V und Kanten $E\subseteq (V\times V)$. Eine Kante (u,v) verbindet die beiden Knoten u und v. Ein Pfad von u nach v ist eine Folge von Kanten, die u und v verbindet. Mit dem Grad deg(v) eines Knoten meinen wir die Anzahl der adjazenten Kanten.

Einen planaren Graphen zusammen mit einer möglichen kreuzungsfreien Einbettung in der Ebene bezeichnen wir als planen Graphen. Für einen planen Graphen können wir, zusätzlich zu den Knoten und Kanten, auch die Menge der Gebiete (engl. faces) F betrachten, die durch die Kanten und Knoten begrenzten Regionen in der Ebene, wobei wird das unbeschränkte als das äussere Gebiet bezeichnen. Für die weiteren Betrachtungen macht es oft Sinn drei Knoten $\{a_1, a_2, a_3\}$ die das äusseren Gebiet berühren gesondert zu betrachten. Wir nennen sie die Aufhängungen von G und bezeichnen G als aufgehängten Graphen.

Planare Graphen haben, durch die Existenz kreuzungsfreier Einbettungen, in gewissem Sinne besonders schöne Zeichnungen und so ist einer der Fragen mit der sich schon viele Mathematiker auseinander gesetzt haben und auf die wir auch in dieser Arbeit eingehen wollen: "How to draw a Graph?"[?]

Wir werden bei Einbettungen mit wenigen Einschränkungen beginnen. Bei einer topologischen Zeichnung eines planaren Graphen werden die Kanten als Kurven dargestellt die sich nur in den Knoten treffen. In den Fünfzigern wurde unter anderem von István Fáry gezeigt, dass für jeden planaren Graphen und für jede Wahl eines äusseren Gebietes eine geradlinige und kreuzungsfreie Einbettung existiert [?].

Definition 1.1 (intern zusammenhängend). Ein Graph G ist zusammenhängend falls für alle Knoten u, v ein Pfad von u nach v exisitert. G ist k-zusammenhängend, falls er nach der Entfernung von k-1 beliebigen Knoten weiterhin zusammanhängend ist. Sei G plan mit den Aufhängungen $\{a_1, a_2, a_3\}$, weiter sei a_{∞} ein zusätzlicher Knoten eingefügt im äusseren Gebiet. Dann ist G intern k-zusammenhängend, falls $G = (V, E \cup \{(a_1, a_{\infty}), (a_2, a_{\infty}), (a_3, a_{\infty})\})$ k-zusammenhängend ist.

In den Siebzigern betrachtete William Thomas Tutte die Unterklasse der 3-zusammen hängenden planaren Graphen und zeigte, dass für diese nicht nur geradlinige, sondern sogar konvexe Zeichnungen existieren, bei denen alle Gebiete, inklusive dem Äusseren, konvexe Polygone umranden [?].

Abbildung 1.1: Planarer Graph mit einer topologischen, einer geradlinigen und einer konvexen Zeichnung.

1.1 Geradlinige Dreiecks Darstellungen (SLTRs)

Ausgehend von den konvexen Einbettungen nach Tutte, kann man sich die Frage stellen unter welchen Vorraussetzungen wir einen planaren Graphen so zeichnen können, dass alle Gebiete Dreiecke umranden. Bei der Formalisierung dieser Darstellung und ersten Feststellungen halten wir uns an Nieke Aerts und Stefan Felsner [?, ?].

Definition 1.2 (SLTR). Eine Zeichnung eines planen Graphen G wird geradlinige Dreiecks Darstellung, im weiteren kurz SLTR (für die englische Bezeichnung staight line triangle representation), genannt falls gilt:

- S1 Alle Kanten sind Segmente von Geraden.
- S2 Alle Gebiete, inklusive dem Äusseren, sind nicht degenerierte Dreiecke.

Abbildung 1.2: Links einer der beiden 3-zusammenhängenden Graphen auf acht Knoten ohne SLTR und rechts ein Graph mit einer möglichen SLTR.

Um die Problemstellung greifbarer zu machen werden wir plane Graphen zusammen mit den Aufhängungen $\{a_1, a_2, a_3\}$ betrachten, wobei $\{a_1, a_2, a_3\}$ hier die designierten Ecken des äusseren Gebietes einer möglichen SLTR sind. Einen Graphen zusammen mit einem äusseren Gebiet bzw. festen Aufhängungen zu betrachten, macht auch in sofern Sinn, als dass planare Graphen existieren, von denen manche Einbettungen SLTRs zulassen, andere jedoch nicht, so wie in Abbildung 1.3 zu sehen.

Proposition 1.3. [?, Proposition 1.2] Sei G ein planer Graph mit den Aufhängungen $\{a_1, a_2, a_3\}$ als äussere Ecken einer SLTR. Weiter gebe es keine inneren Knoten v mit deg(v) < 3. Dann ist G intern-3-zusammenhängend.

Bemerkung. Für innere Knoten von Grad 2 in einer SLTR müssen beide angrenzenden Winkel gerade sein. Somit können wir diese Knoten durch eine gerade Kante

zwischen ihren Nachbarn ersetzen und den resultierenden Graphen betrachten. Wir werden somit von nun an nur intern-3-zusammenhängende Graphen mit Aufhängungen betrachten, da alle anderen Graphen, die eine SLTR zulassen, auf diese reduziert werden können.

Abbildung 1.3: Der kleinste 3-zusammenhängende kombinatorische Graph mit einer Wahl der Aufhängungen die eine SLTR zulässt und einer Auswahl ohne SLTR.

Zu den Fragen, welche notwendigen und hinreichenden Bedingungen es für die Existenz von SLTRs gibt und welche algorithmischen Ansätze es bei der Suche nach einer spezifischen Darstellung gibt haben Aerts und Felsner in [?], [?] und [?] schon einige Antworten geliefert, mit denen wir uns in den nächsten beidem Kapiteln beschäftigen werden. Zuerst müssen aber in diesem Kapitel noch ein paar notwendige Konzepte eingeführt werden.

1.2 Schnyder Woods

Schnyder Wälder, im weiteren Schnyder Woods, wurden zuerst von Walter Schnyder zur Betrachtung der Ordnungs-Dimension planarer Graphen, als eine Färbung und Orientierung auf den inneren Kanten einer Triangulierung, betrachtet [?]. In einem weiteren Resultat dienten sie zur Erlangung einer planaren Einbettung auf einem $(n-2) \times (n-2)$ Gitter [?]. Im Folgenden wollen wir die Verallgemeinerung auf 3-zusammenhängende plane Graphen durch Felsner [?] und die zu ihnen in Bijektion stehenden Schnyder Labelings einführen und werden uns dabei an [?] orientieren.

Für den Rest dieses Kapitels meinen wir mit G, wenn nicht weiter spezifiziert, einen 3-zusammenhängenden planen Graphen mit Aufhängungen $\{a_1, a_2, a_3\}$.

Definition 1.4 (Schnyder Woods). Ein Schnyder Wood ist eine Orientierung und Beschriftung der Kanten von G mit den Labeln 1, 2 und 3^1 , unter Berücksichtigung der folgenden Regeln:

¹Alternativ wird hier auch anschaulicher von rot, grün und blau als Platzhalter für 1, 2 und 3 gesprochen. Es wird davon ausgegangen, dass die Label zyklisch sortiert sind, sodass i + 1 und i - 1 immer definiert sind.

- W1 Jede Kante ist entweder un- oder bigerichtet. Falls sie bigerichtet ist haben beide Richtungen unterschiedliche Label.
- W2 An jeder Aufhängung a_i existiert eine nach aussen gerichtete Kante ohne Endpunkt mit Label i.
- W3 Jeder Knoten v hat hat Ausgangsgrad eins zu jedem Label. Um v existieren im Uhrzeigersinn eine Auskante mit Label 1, null oder mehr eingehende Kanten mit Label 3, eine Auskante mit Label 2, null oder mehr eingehende Kanten mit Label 1, eine Auskante mit Label 2 und null oder mehr eingehende Kanten mit Label 2.
- W4 Es existiert kein inneres Gebiet mit gerichteten Zykel in einer Farbe als Rand.

Analog zu den Schnyder Woods, kann man Schnyder Labelings definieren, die zu diesen in Bijektion stehen.

Definition 1.5 (Schnyder Labeling). Ein Schnyder Labeling ist eine Beschriftung der Winkel von G mit den Labeln 1, 2 und 3 unter Berücksichtigung der folgenden Regeln:

- L1 Um jedes innere Gebiet bilden die Label im Uhrzeigersinn nichtleere Intervalle von 1en, 2en und 3en. Am äusseren Gebiet gilt dies gegen den Uhrzeigersinn.
- L2 Um jeden inneren Knoten bilden die Label im Uhrzeigersinn nichtleere Intervalle von 1en, 2en und 3en.
- L3 An Aufhängung a_i haben äusseren Winkel die Label i-1 und i+1 im Uhrzeigersinn mit der halben Auskante dazwischen und die inneren Winkel das Label i.

In Abbildung 1.4 wird eine Verbindung zwischen Schnyder Woods und Schnyder Labelings illustriert. Aus L1 und L2 folgt, dass es nur die beiden Kanten Typen aus der Abbildung geben kann. Wenn wir uns auf 3-zusammenhängende planare Graphen

Abbildung 1.4: Bijektion zwischen Schnyder Wood auf der rechten und Schnyder Labeling auf der linken Seite.

Abbildung 1.5: Ein Schnyder Wood und das zugehörige Schnyder Labeling.

beschränken, dann ist die dargestellte Abbildung nach [?, Theorem 2.3] eine Bijektion.

Als nächstes werden wir uns mit Resultaten im Bezug auf Einbettungen befassen und hier kurz, das face-counting [?] erläutern. Betrachten wir G zusammen mit einem Schnyder Wood T_1, T_2, T_3 . Nach [?, Korollar 2.5] handelt es sich bei den T_i um gerichtete Bäume mit Wurzeln in a_i . Von jedem Knoten v aus existierten also eindeutige Pfade $P_i(v)$ zu den Aufhängungen a_i . Die Pfade von v zu den Aufhängungen treffen sich nach [?, Lemma 2.4] nur in v. Somit können wir zu jedem Knoten v die von den Pfaden $P_{i-i}(v)$ und $P_{i+1}(v)$ und dem äusseren Gebiet begrenzte Region R_i betrachten. Durch das Zählen der Gebiete in den Regionen zu v lässt sich nun eine konvexe Zeichnung von G erzeugen.

Hierzu ordnet man jedem Knoten v seien Gebiets Vektor (v_1, v_2, v_3) zu, wobei v_i die Anzahl der inneren Gebiete in $R_i(v)$ beschreibt. Nun gilt für jeden Knoten $v_1 + v_2 + v_3 = |F| - 1$. Seien $\alpha_1 = (0, 1), \alpha_2 = (1, 0)$ und $\alpha_3 = (0, 0)$ die äusseren Ecken unserer Zeichnung, dann erhalten wir die Position der inneren Knoten durch die Funktion

$$\mu: v \to v_1\alpha_1 + v_2\alpha_2 + v_3\alpha_3.$$

Nach [?, Theorem 2.7] ist die mit diesen Koordinaten erzeugte Zeichnung planar und konvex und passt auf ein $(|F|-1) \times (|F|-1)$ -Gitter. Sie hat noch eine weitere schöne Eigenschaft:

W5 Die Knoten eines inneren Gebietes werden auf die Seiten eines Dreiecks mit den Seiten $c_i(\alpha_{i-1} - \alpha_{i+1})$ mit passenden Konstanten c_i . Im inneren dieses Dreiecks befinden sich keine Knoten und die Winkel des Gebietes auf der Seite $c_i(\alpha_{i-1} - \alpha_{i+1})$ haben Label i im Schnyder Labeling.

Abbildung 1.6: Eine Schnyder Wood und die durch face counting erhaltene Einbettung. Die eingefärbten Gebiete sind die Regionen die den Gebietsvektor (v_1, v_2, v_3) ergeben. In der Mitte ist W5 illustriert.

1.3 α -Orientierungen

Für unseren Algorithmus in Kapitel 3 führen wir eine weitere zu Schnyder-Woods und Labelings in Bijektion stehende Struktur auf Graphen ein und halten uns dabei an [?].

Sei G = (V, E) ein ungerichteter Graph und $\alpha : V \mapsto \mathbb{N}$ eine Funktion auf G. Eine $\alpha - Orientierung$ ist eine Orientierung der Kanten von G, sodass der Ausgrad eines jeden Knoten $\alpha(v)$ entspricht. Somit gilt

$$outdeg(v) = \alpha(v).$$

Wir betrachten den Primal-Dual Graphen $G+G^*$ eines planen Graphen G. Hier ist G^* der schwache duale Graph zusammen mit einer Halbkante ins äussere Gebiet von jeder inzidenten Kante aus. Die Menge der Knoten von $G+G^*$ besteht aus Knoten-Knoten, Kanten-Knoten und Gebiets-Knoten, mit Kanten in $G+G^*$, sowohl zwischen inzidenten Kanten und Knoten, als auch Kanten und Gebieten in G. Somit ist $G+G^*$ bipartit. Falls wir einen Knoten f_{∞} für das äussere Gebiet einsetzten und die Halbkanten verlängern sprechen wir vom Abschluss von $G+G^*$. Wir bezeichnen diesen mit \tilde{G} . Das folgende Theorem gibt uns eine Bijetion zwischen Schnyder Woods auf G und einer bestimmten α -Orientierung auf \tilde{G} , die wir α_s nennen.

Theorem 1.6. Sei G ein planer Graph mit Aufhängungen $\{a_1, a_2, a_3\}$, dann sind die folgenden Strukturen in Bijektion:

- Die Schnyder Wälder auf G.
- Die Schnyder Wälder auf dem (schwachen) dualen Graphen G*.
- Die α_s -Orientierungen des Abschlusses von $G + G^*$ mit $\alpha_s(v) = \alpha_s(f) = 3$ für jeden Knoten- und Gebiets-Knoten, $\alpha_s(e) = 1$ für jeden Kanten-Knoten und $\alpha_s(f_{\infty}) = 0$.

Abbildung 1.7: Der Primal-Duale Graph $K_4 + K_4^*$ mit einer $\alpha_s - Orientiertung$ und dem zugehörigen Schnyder Wood auf K_4 .

1.4 Flüsse auf Graphen

Wir werden in Kapitel 3 einen gerichteten Graphen \mathcal{N} konstruieren um auf diesem einen maximalen Fluss zu finden. Wir beschäftigen uns allgemein also mit der folgenden Problematik.

Definition 1.7 (Gerichtetes-Multi-Fluss-Problem). Sei D = (V, E) ein gerichteter Graph, im Weiteren auch Netzwerk genannt, mit den Kapaziäten $c: E \mapsto \mathbb{R}_+$, Paaren von ausgezeichneten Knoten $\{(s_1, t_1), ..., (s_n, t_n)\}$ und positiven Bedarfen $\{d_1, ..., d_n\}$, dann ist $\varphi = (\varphi_1, ..., \varphi_n)$ ein zulässiger Fluss, falls

F1
$$\forall (u, v) \in E : \sum_{i=1}^{n} \varphi_i(u, v) \le c(u, v)$$

F2
$$\forall u \neq s_i, t_i : \sum_{w \in V} \varphi_i(u, w) - \sum_{w \in V} \varphi_i(w, u)$$

F3
$$\forall s_i : \sum_{w \in V} \varphi_i(s_i, w) - \sum_{w \in V} \varphi_i(w, s_i) = d_i$$

F4
$$\forall t_i : \sum_{w \in V} \varphi_i(w, s_i) - \sum_{w \in V} \varphi_i(s_i, w) = d_i$$

Wir wollen hier noch ein paar bekannte Resultate für den Fall n=1 festhalten, die wir später nutzen werden.

Theorem 1.8 (Max-Flow Min-Cut). φ ist ein maximale Fluss in \mathcal{N} , genau dann, wenn für mindestens einen Schnitt $\mathcal{S} \subset E$ gilt $c(\mathcal{S}) = |\varphi|$. Die Kapazität eines minimalen Schnittes entspricht dem maximalen Fluss.

Theorem 1.9 (Ganzzahliger Fluss). Sei \mathcal{N} ein Netzwerk mit einer Quelle und einer Senke und alle Kapazitäten seien ganzzahlig, dann existiert auch ein maximaler Fluss φ , sodass der Fluss auf allen Kanten ganzzahlig ist. Es gilt also $|\varphi(e)| \in \mathcal{N}$ für alle $e \in E$.

Bemerkung. Im Fall n=1 und Kapazitäten $c: E \mapsto \mathbb{N}$ impliziert die Existenz eines zulässigen Flusses also Existenz einer ganzzahligen Lösung, sowohl für gerichtete als auch ungerichtete Graphen, und diese lässt sich in polynomineller Zeit bestimmen. Für n=2 und ungerichtete Graphen gilt dies nach [?] ebenfalls. Für uns im Folgenden interessant wäre jedoch, wie wir sehen werden, der Fall n=2 für gerichtete Graphen. Leider ist hier im Allgemeinen die Lösung nur über Lineare Programmierung möglich und befindet sich somit in \mathcal{NP} .

2 Hauptteil

Sei G ein planer intern 3-zusammenhängender Graph mit Aufhängungen $\{a_1, a_2, a_3\}$. Nehmen wir für einen Moment an, dass wir schon ein SLTR für G gefunden haben, dann hat jeder Knoten v in maximal einem inzidenten Gebiet f einen flachen Winkel, den wir mit (f, v) bezeichnen, und liegt auf einer Geraden. Jedes Gebiet f hat genau drei Ecken, also |f|-3 flache Winkel. Dies liefert im Umkehrschluss eine notwendige Bedingung für die Existent einer SLTR, indem wir einen Teil der inneren Knoten den Gebieten zuordnen.

Definition 2.1 (FAA). Sei G = (V, E, F) ein planer Graph, dann ist eine Flache Winkel Zuordnung, im weiteren (nach dem englischen *flat-angle-assignment*) mit FAA bezeichnet, ein Matching zwischen Knoten und Gebieten, sodass:

- F1 Jedem Gebiet f sind genau |f| 3 Knoten zugeordnet.
- F2 Jeder Knoten v ist höchstens einem Gebiet zugeordnet.

Für den Fall, dass Aufhängungen gegeben sind fordern wir zusätzlich:

F3 Die inzidenten Knoten des äusseren Gebietes, die keine Aufhängungen sind, müssen dem äusseren Gebiet zugeordnet werden.

Abbildung 2.1: Ein planer Graph mit einer SLTR und einem FAA, dass keine SLTR induziert. Die Pfeile stellen hier die Zuweisung der Knoten zu den inneren Gebieten da.

Ein planer Graph kann also nur dann eine SLTR besitzen, falls mindestens ein FAA existiert, jedoch liefert nicht jedes FAA sofort eine SLTR. Um hinreichende Bedingungen für SLTRs zu erhalten werden wir uns in den nächsten beiden Abschnitten mit zwei Ansätzen nach Aerts und Felsner beschäftigen. Der erste Ansatz aus [?] liefert ein System aus harmonischen Gleichungen dessen Lösung eine SLTR liefert. In Teilen darauf basierend, stellt der zweite Ansatz aus [?] einen Zusammenhang zwischen Schnyder Woods und FAAs her und die Existenz passender Paare impliziert wieder die Existenz von SLTRs.

2.1 SLTRs durch harmonische Funktionen

Wir werden die Beweise zu den in diesem Abschnitt aufgestellten Präpositionen und Theoremen übergehen. Der interessierte Leser sei, sofern nicht anders angegeben auf [?] verwiesen. Zum Einstieg formulieren wir eine weitere Definition um dann eine Beobachtung zu SLTRs festzuhalten.

Definition 2.2 (Begrenzende Zykel und kombinatorisch konvexe Ecken). Sei G ein planer Graph mit Aufhängungen $\{a_1, a_2, a_3\}$ und einem FAA ϕ von G. Sei H ein zusammenhängender Teilgraph von G und $\gamma = \gamma(H)$ der H umrandende Weg in G, also die Kanten und Knoten des äusseren Gebiets von H, wobei hier Knoten und Kanten mehrfach vorkommen können. Wir werden so erhaltene γ als begrenzende Zykel bezeichnen. $int(\gamma)$ sei die Menge aller Knoten, Kanten und Gebiete aus G die im inneren von γ oder auf γ liegen. Einen Knoten v aus γ bezeichnen wir als kombinatorisch konvexe Ecke von γ im Bezug auf ϕ , falls gilt:

 $E1 \ v$ ist eine Aufhängung, oder

E2 v ist nicht durch ϕ zugeordnet und es existiert eine Kante e = (v, w) mit $e \notin int(\gamma)$, oder

E3 v ist einem Gebiet f zugeordnet, $f \notin int(\gamma)$ und es existiert eine Kante e = (v, w), sodass $e \notin int(\gamma)$.

Abbildung 2.2: Auf der linken Seite zwei Beispiele für begrenzende Zykel und rechts für kombinatorisch konvexe Ecken mit und ohne zugewiesenem Knoten.

Es lässt sich für SLTRs leicht sehen, dass für jeden begrenzenden Zykel γ , der nicht von einem Pfad induziert wird, gilt, dass er mindestens drei kombinatorisch konvexe Ecken besitzt. Die folgende Präposition nach [?, Prop 2.2, Prop 2.4] verallgemeinert diese Beobachtung.

Proposition 2.3. Sei G ein planer Graph der eine SLTR Γ zulässt. Sei weiter ϕ das von Γ induzierte FAA und H ein zusammenhängender Teilgraph von G. Falls v eine geometrisch konvexe Ecke in Γ ist, dann ist v auch eine kombinatorisch konvexe Ecke hinsichtlich ϕ . Somit gilt:

E4 Jeder begrenzende Zykel γ , der nicht von einem Pfad induziert wird, hat hinsichtlich ϕ mindestens drei kombinatorisch konvexe Ecken.

Proposition 2.3 liefert also eine notwendige Bedingung damit ein FAA von einer SLTR induziert sein kann. Dies ist sogar eine hinreichende Bedingung wie im Verlauf des Abschnittes in Theorem 2.10 gezeigt werden wird. Wir nennen ein FAA das E4 erfüllt im Weiteren Gutes-FAA oder kurz GFAA. Aerts und Felsner zeigen, dass ein Gutes-FAA eine Kontaktfamilie von Pseudosegmenten induziert die dehnbar ist und sich somit geradlinig darstellen lässt.

Definition 2.4 (Kontaktfamilie von Pseudosegmenten). Eine Kontaktfamilie von Pseudosegmenten ist eine Familie $\Sigma = \{c_i\}_i$ von einfachen Kurven

$$c_i: [0,1] \to \mathbb{R}^2$$
, mit $c_i(0) \neq c_i(1)$,

sodass alle Kurven c_i, c_j mit $i \neq j$ maximal einen gemeinsamen Punkt haben. Dieser Punkt muss dann ein Endpunkt von mindestens einer der Kurven sein.

Ein GFAA ϕ liefert eine Relation ρ auf den Kanten von G. Zwei Kanten (v,w) und (v,u), beide adjazent zu f, stehen genau dann in Relation, falls $\phi(v)=f$, wenn also (v,w) und (v,u) auf der selben Seite von f in der SLTR liegen. Der transitive Abschluss dieser Relation liefert eine Äquivalenzrelation ρ . Die Aquivalenzklassen von ρ bilden eine Kontaktfamilie von Pseudosegmenten. Nennen wir die Äquivalenzklassen von ρ Kurven, dann gilt nach F2, dass jeder Knoten nur im inneren von einer Kurve liegt und sich die Kurven nicht kreuzen. Weiter hat jede Kurve unterschiedliche Anfangsund Endpunkte und kann sich nicht selbst berühren, da dann der resultierende begrenzende Zykel γ nur eine beziehungsweise zwei kombinatorisch konvexe Ecken hätte, was ein Widerspruch zu E4 wäre. Analog können zwei Kurven nicht ihre Anfangs- und Endpunkte teilen. Für eine von einem FAA ϕ induzierte Kontaktfamilie schreiben wir auch Σ_{ϕ} .

Abbildung 2.3: Die Kanten von G als Kontaktfamilie von Pseudosegmenten induziert durch die Äquivalenzrelation. In rot und grün die beiden Äquivalenzklassen bzw. Kurven, die mehr als eine Kante beinhalten.

Definition 2.5. Sei Σ ein Kontaktfamilie von Pseudosegmenten und $S \subseteq \Sigma$. Wir nennen einen Punkt $p \in S$ einen freien Punkt, falls er die folgenden Bedingungen erfüllt.

- p ist ein Endpunkt eines Pseudosegmentes aus S.
- p liegt nicht im Inneren eines Pseudosegmentes aus S.

- p liegt am äusseren Rand von S.
- p ist entweder eine Aufhängung von G, oder berührt ein Pseudosegment, welches nicht zu S gehört.

Lemma 2.6. [?, Lemma 2.8] Sei ϕ ein Gutes-FAA auf einem planen und intern 3-zusammenhängenden Graphen. Dann gilt:

E5 Jede Teilmenge $S \subseteq \Sigma_{\phi}$ mit $|S| \ge 2$ hat mindestens 3 freie Punkte.

Betrachten wir also einen planen, intern 3-zusammenhängenden Graphen G mit Aufhängungen $\{a_1, a_2, a_3\}$ und einem GFAA ϕ . Wenn wir die von ϕ induzierte Kontaktfamilie Σ_{ϕ} mit geradlinigen Segmenten darstellen können, dann haben wir eine zu ϕ passende SLTR für G gefunden. Für den Fall, dass eine solche Darstellung $f: G \to \mathbb{R}^2$ existiert, können wir für die Koordinaten der Segmente und somit auch der Knoten v von G, oder genauer für deren Positionen in der Einbettung f(v), Gleichungen aufstellen, die diese erfüllen müssen. Das resultierende Gleichungssystem beinhaltet harmonische Funktionen, über die wir einen kurzen Überblick geben.

2.1.1 Harmonische Funktionen auf planaren Graphen

Die Theorie zu (diskreten) harmonischen Funktionen auf planaren Graphen und ihre Anwendung werden in [?] ausführlich behandelt. Es handelt sich um eine Diskretisierung von allgemeinen harmonischen Funktionen, also glatten Funktionen $f:G\subseteq\mathbb{R}^n\to\mathbb{R}$, mit $\Delta f=0$. Für diese Funktionen gilt, dass der Funktionswert an einem Punkt x, dem Durchschnitt der Funktionswerte auf einem Ball um x entspricht. Dies führt zu der folgenden Definition.

Definition 2.7 (Harmonische Funktionen). Sei G = (V, E) ein planarer zusammenhängender Graph und $S \subseteq V$. Eine Funktion $g: V \to \mathbb{R}$ nennen wir am Knoten $v \in V$ harmonisch, falls gilt:

H1
$$\frac{1}{deg(v)} \sum_{u \in N(v)} (g(u) - g(v)) = 0 \quad \forall v \in V \setminus S$$

Wir können H1 durch das hinzufügen einer nichtnegativen Gewichtsfunktion $\lambda: E \to \mathbb{R}_+$ verallgemeinern. Es gilt $\lambda((v, w)) = \lambda_{vw}$.

H2
$$\frac{1}{deg(v)} \sum_{u \in N(v)} \lambda_{uv}(g(u) - g(v)) = 0 \quad \forall v \in V \setminus S$$

Ein Knoten für den g nicht harmonisch ist nennt man Pol.

Theorem 2.8. [?, Theorem 3.1.2] Für jede nichtleere Teilmenge $S \subseteq V$ und jede Funktion $g_S: S \to \mathbb{R}$ existiert genau eine Funktion $g: V \to \mathbb{R}$, die f_S auf V fortsetzt, sodass g in jedem Knoten $v \in V \setminus S$ harmonisch ist. Wir nennen sie die harmonische Fortsetzung.

Ein bekanntes Resultat, dass sich in Form harmonischer Funktionen darstellen lässt, ist Tuttes rubber-band-representation aus [?], die konvexe Zeichnungen für planare Graphen liefert. Man stelle sich einen planaren Graphen vor bei dem jede Kante durch ein idealisiertes Gummiband¹ ersetzt wird. Nun wählen wir ein äusseres Gebiet und fixieren die dieses Gebiet umrandenden Knoten $S \subseteq V$ in zyklischer Reihenfolge und in gleichen Abständen auf einem Kreis. Dies gibt uns $f_S: S \to \mathbb{R}^2$. Das resultierende Gleichgewicht auf den restlichen Knoten, dass genau dann entsteht, wenn H1 erfüllt ist, entspricht der harmonischen Fortsetzung von f_S auf V, wobei f(v) genau der Position von v in der resultierenden Einbettung entspricht und S die Menge der Pole von f ist. Wir können die Kanten zusätzlich noch mit nicht negativen Gewichten λ_{vw} versehen um die Einbettung zu verändern. Das folgende Theorem ist das Hauptresultat aus [?].

Theorem 2.9. Sei G ein planarer Graph, dann ist eine Gummiband-Representation (rubber-band-representation) von G eine planare Einbettung in der Ebene.

Kommen wir nun zurück zu unserer Problemstellung. Nehmen wir für den Moment an, dass wir eine Darstellung gefunden haben. Wir haben also eine geradlinige Einbettung f der von ϕ induzierten Segmente. Dann gilt für jeden Knoten v im inneren eines Segmentes, also für jeden zugewiesenen Knoten, dass er auf einer Gerade zwischen seinen beiden benachbarten Knoten u, w auf dem Segment liegen muss. Diese Eigenschaft liefert

$$f(v) = \lambda_v f(u) + (1 - \lambda_v) f(w), \text{ mit } \lambda_v \in (0, 1).$$
 (2.1)

Für die nicht zugewiesenen Knoten aus G muss in einer SLTR gelten, dass sie sich in der konvexen Hülle ihrer Nachbarn befinden. Wir bilden einen (gewichteten) Schwerpunkt und erhalten

$$f(v) = \sum_{u \in N(v)} \lambda_{uv} f(u), \text{ mit } \sum_{u \in N(v)} \lambda_{uv} = 1 \text{ und } \lambda_{uv} \ge 0.$$
 (2.2)

Somit erfüllt die so gegebene Funktion $f: V \to \mathbb{R}^2$ mit einem passend gewählten λ wegen (2.1) und (2.2) in beiden Komponenten H2. Es handelt sich somit bei f_1 und f_2 um harmonische Funktionen, mit den Polen $\{a_1, a_2, a_3\}$. Nach Theorem 2.8, existiert für jede den Beschränkungen entsprechende Wahl von λ jeweils genau eine Funktion f_1, f_2 , welche die Gleichungen erfüllen.

Dies führt uns zum Hauptresultat aus [?, Theorem 2.10]:

Theorem 2.10. Sei G ein intern 3-zusammenhängender, planarer Graph und Σ eine Familie von Pseudosegmenten, induziert von einem FAA, sodass jede Teilfamilie $S \subset \Sigma$ entweder mindestens drei freie Punkte hat, oder maximal ein Element enthält. Die eindeutige Lösung des aus Σ folgenden Gleichungssystems ist eine SLTR.

Bemerkung. Dies bedeutet, dass die weiter oben in Lemma 2.6 festgehaltene notwendige Bedingung auch eine hinreichende ist. Falls wir schon ein Gutes-FAA gefunden

 $^{^1\}mathrm{Die}$ Gummibänder müssen das Hook'sche Gesetzt erfüllen, sodass eine Streckung auf Länge lgenau Kraft lbenötigt.

haben, dann können wir mit Hilfe des obrigen Ansatzes auch eine Einbettung in der Ebene erhalten, jedoch gibt es Graphen mit polynominell vielen FAA und es dauert polynominell lange um E4 zu überprüfen. Wir erlangen also auf diesem Weg keinen Algorithmus in \mathcal{P} .

Aerts und Felsner werfen am Ende des Papers die Frage nach einer guten Wahl von λ auf, und wie dies die resultierenden Einbettungen beeinflussen kann. Mit diesem Thema, wollen wir uns am Ende des nächsten Kapitels kurz beschäftigen.

2.2 Ecken kompatible Paare

In diesem Abschnitt werden wir uns mit einer zweiten Charakterisierung von SLTRs auf planaren Graphen nach [?] beschäftigen, die eine Verbindung zwischen Schnyder Woods und FAAs herstellt und so zu einer hinreichenden Bedingung für SLTRs führt. Wir beginnen wieder mit der Definition dieses Zusammenhanges.

Definition 2.11 (Ecken Kompatibilität). Ein Paar (σ, ϕ) aus einem Schnyder Labeling σ und einem FAA ϕ nenne wir *Ecken kompatibel*, falls:

- C1 Das Schnyder Labeling σ und das FAA ϕ nutzen die selben Aufhängungen.
- C2 In jedem inneren Gebiet haben die drei Ecken aus ϕ genau drei unterschiedliche Label in σ .

TODO

Theorem 2.12. Sei G ein planer, intern-3-zusammenhängender Graph mit Aufhängungen. G besitzt eine SLTR, genau dann wenn ein Ecken kompatibles Paar (σ, ϕ) aus einem Schnyder Labeling σ und einem FAA ϕ existiert.

TODO

3 Algorithmen zur Erkennung von SLTRs

Im vorherigen Kapitel wurden Kriterien für die Existenz einer SLTR erarbeitet, die allerdings nicht sofort einen Algorithmus, sowohl zur Frage nach der Existenz, als auch zum Erlangen einer spezifischen SLTR liefern. Diesem Thema wollen wir uns nun in diesem Kapitel zuwenden und dafür zum Einstieg einen von Aerts und Felsner in [?] erarbeiteten Algorithmus betrachten.

3.1 SLTRs via Zwei-Fluss

Wir betrachten im folgenden gerichtete Graphen. Das Ziel ist es, für einen gegebenen Graphen sowohl einen Schnyder Wood als auch ein FAA jeweils als Lösung eines Fluss-Problems zu erhalten und diese beiden dann in einem Zwei-Fluss-Problem zu kombinieren, sodass eine Lösung ein Ecken-Kompatibles-Paar gibt und wir somit eine SLTR erhalten. Wir beschäftigen uns also den in Definition 1.7 eingeführten Gerichteten-Multi-Fluss-Problemen.

3.1.1 Schnyder-Wood-Fluss

Um einen Schnyder Wood als Fluss-Problem zu kodieren nutzen wir die in Abschnitt 1.3 eingeführten α_s -Orientierungen auf dem Abschluss von $G+G^*$. Fusy zeigt in [?] im Zuge der Untersuchung spezifischer α -Funktionen, dass sich α_s -Orientierungen von $G+G^*$ in linearer Zeit berechnen lassen, sodass wir auch einen Schnyder Wood auf G in linearer Zeit erhalten.

Machen wir uns also an die Konstruktion eines Netzwerks \mathcal{N}_S mit einer Quelle und Senke, sodass eine zulässige Lösung φ_S einer α_s – Orientierung von \tilde{G} entspricht, und somit auch einen Schnyder Wald auf G liefert. Besonderes Augenmerk ist hier auf die Möglichkeit einer späteren Kombination mit einem FAA Fluss gelegt, um ein Kombiniertes Netzwerk zu erstellen, und nicht unbedingt auf Effizienz.

Wie oben schon erwähnt ist \tilde{G} bipartit, Kanten-Knoten haben Grad 4, Knoten-Knoten Grad deg(v) und Gebiets-Knoten Grad |f|. Für eine α_s -Orientierung muss jeder Kanten-Knoten Ausgrad 1, jeder Knoten-Knoten Eingrad deg(v)-3 und jeder Gebiets-Knoten Eingrad |f|-3 haben. Die Kanten-Knoten am äusseren Gebiet sind in \tilde{G} immer nach aussen orientiert. Somit müssen wir nur die inneren Kanten-Kanten E_{in} betrachten.

Sei \mathcal{N}_S ein Netzwerk mit jeweils einer Quelle s und Senke t, Kanten von der Quelle zu jedem $e \in E_{in}$ mit Kapazität 1, Kanten von den Kanten-Knoten e zu inzidenten Knoten-Knoten v und (inneren) Gebiets-Knoten $f \in F_{in}$ in G ebenfalls mit Kapazität

Abbildung 3.1: Der Schnyder Wood Fluss durch eine innere Kante (v, w).

1, Kanten von $f \in F_{in}$ zur Senke mit Kapazitäten |f| - 3, Kanten von den (inneren) Knoten-Knoten $v \in V_{in} = V \setminus \{a_1, a_2, a_3\}$ zur Senke mit Kapazitäten deg(v) - 3 und Kanten von den Aufhängungen a_i zur Senke mit Kapazitäten $deg(a_i) - 2$. Die letzte Kapazität resultiert aus dem Fakt, dass die Halbkante in $G + G^*$ von a_i aus immer nach aussen orientiert ist und wir somit nur noch zwei andere Kanten nach aussen orientieren müssen.

Der Bedarf des Netzwerkes entspricht der Anzahl der inneren Kanten von G. Sei nun φ_S eine zulässige ganzzahlige Lösung, dann hat jeder Kanten-Knoten e Ausgrad 1. Der Fluss φ_S entlang einer Auskante von $e \in E_{in}$ in \mathcal{N}_S entspricht dann genau der hin zu e orientierten Kante einer α_s -Orientierung auf $G + G^*$. Die Knoten-Knoten und Gebiets-Knoten haben deg(v) - 3 bzw. |f| - 3 von φ_S genutzte Auskanten und somit entspricht hier eine leere Kante in \mathcal{N}_S einer von v bzw. f weg orientierten Kante bezüglich α_s . Ein zulässiger ganzzahliger Fluss φ_S kodiert also eine α_s -Orientierung auf $G + G^*$. Somit existiert genau dann ein Schnyder Wald auf G, wenn eine ganzzahlige Lösung φ_S für \mathcal{N}_S existiert.

3.1.2 FAA-Fluss

Um ein FAA für einen planaren Graphen G zu erhalten müssen wir jedem Gebiet $f \in F$ genau drei Ecken und |f|-3 flache Winkel zuordnen und jeder Knoten darf maximal einem Gebiet zugeordnet werden, also in diesem flach sein. Falls eine Einbettung und die Aufhängungen $\{a_1, a_2, a_3\}$ gegeben sind, müssen wir jedem inneren Gebiet $f \in F_{in}$ drei Ecken und |f|-3 flache Winkel zuweisen und jeder innere Knoten $v \in V_{in}$ darf maximal einem Gebiet zugeordnet werden. Wir konstruieren ein Netzwerk für den zweiten Fall, dass sich leicht verallgemeinern lässt.

Sei also wieder \mathcal{N}_F ein Netzwerk mit einer Quelle und Senke, einem Knoten für jeden inneren Winkel (f,v), mit $v\in V$ und $f\in F_{in}$, Knoten für alle inneren Gebiete f und alle inneren Knoten v. Von der Quelle existiert eine Kante mit Kapazität 1 zu jedem inneren Winkel (f,v), von jedem inneren Winkel (f,v) jeweils eine Kante zu f und zu v mit Kapazität 1, von jedem inneren Gebiet f eine Kante mit Kapazität 3 zur Senke und zuletzt noch eine Kante von jedem inneren Knoten v zur Senke mit Kapazität 1. Der Bedarf des Netzwerks ist $\sum_{f\in F_{in}} |f|$ und entspricht der Anzahl der inneren Winkel von G.

Sei φ_F ein zulässiger ganzzahliger Fluss, dann entspricht Fluss auf einer Kante ((f, v), f) einer Ecke (eines möglichen GFAAs) von f und Fluss auf ((f, v), u) der

Abbildung 3.2: Der FAA-Fluss durch einen Winkel (f, v).

Zuweisung eines Knoten zu f, also einem flachen Winkel in einem GFAA. Zur Vereinfachung sprechen wir im Weitern auch von Ecken- respektive Zuweisungs-Fluss. Somit wird jeder innere Winkel entweder dem Gebiet zugewiesen oder als Ecke ausgezeichnet und es kann nur jeweils ein Winkel an jedem inneren Knoten zugewiesen werden. φ_F respektiert also die Bedingungen aus Definition 2.1 und es existieren nur dann FAAs auf G, falls mindestens eine ganzzahlige Lösung für \mathcal{N}_F existiert. Eine spezifische Lösung φ_F entspricht genau einem FAA auf G.

Bemerkung. Das oben konstruierte Netzwerk zur Bestimmung von FAAs lässt sich auch als Zwei-Fluss Problem konstruieren, wenn wir für Ecken- und Zuweisungs-Fluss getrennte Quellen und Senken einführen. Der Bedarf des Ecken-Flusses ist dann $3|F_{in}|$ und der Bedarf des Zuweisung-Flusses $\sum_{f \in F_{in}} |f| - 3$.

Eine zulässige ganzzahlige Lösung $\varphi_F = (\varphi_{F_2}, \varphi_{F_3})$ entspricht dann wieder einem FAA auf G, da aus der Ganzzahligkeit folgt, dass ein Winkel entweder von φ_{F_2} oder φ_{F_3} genutzt wird und somit eine Definition 2.1 respektierende Beschriftung der Winkel vorliegt.

Bemerkung. Nach [?] lässt sich für Graphen mit wenigen Schnyder Woods ein Algorithmus erstellen indem wir einen bipartiten Karo erstellen und ein einseitiges perfektes Matching auf diesem finden. TODO

3.1.3 Ein Zwei-Fluss Netzwerk zur Erkennung von SLTRs

Im Verlauf des Kapitels haben wir nun sowohl für Schnyder Woods als auch für FAAs ein Netzwerk betrachtet, für das eine ganzzahlige Lösung einen Schnyder Wood bzw. ein FAA für einen planen Graphen G liefert. Wir wollen jetzt eine Kombination aus beiden erstellen die ein Ecken kompatibles Paar (σ, ϕ) aus einem Schnyder Labeling σ und einem FAA ϕ kodiert.

Es folgt die Konstruktion eines Netzwerkes, wir bezeichnen es mit \mathcal{N}_G , welches diesen Wunsch erfüllt, für das eine ganzzahlige Lösung ein Ecken kompatibles Paar kodiert und somit nach Theorem 2.12 eine SLTR für G existiert. Leider handelt es sich hierbei um ein 2-Fluss-Netzwerk, aber darauf wollen wir später genauer eingehen.

Wie oben in Abschnitt 3.1.2 erwähnt lässt sich ein FAA auch mit einem Zwei-Fluss kodieren und wir können Ecken- und Zuweisungs-Fluss mit den passenden Bedarfen

getrennt betrachten. Wir müssen jetzt diese drei Flüsse, also Schnyder-, Ecken- und Zuweisungs-Fluss in einem Netzwerk kombinieren. In [?] ergeben Schnyder- und Ecken-Fluss zusammen Fluss von Typ 1 und der Zuweisungs-Fluss Typ 2. Wir wollen hier analog ein Netzwerk konstruieren in dem wir FAA und Schnyder-Wood Fluss nicht trennen. Der Verständlichkeit halber werden wir Pfade, die in einer Lösung von einem der drei Flussarten genutzt werden, Schnyder-Pfad, Ecken-Pfad und Zuweisungs-Pfad nennen.

Bei der Kombination der beiden oben konstruierten Netzwerke \mathcal{N}_S und \mathcal{N}_F zu \mathcal{N}_G müssen wir die Ecken Kompatibilität gewährleisten. K1 zu erfüllen, also die Nutzung der gleichen Aufhängungen von σ und ϕ , ist kein Problem. Allerdings müssen wir für K2 das Netzwerk etwas komplizierter machen. Betrachten wir als Basis $\mathcal{N}_S \cup \mathcal{N}_F$ und fürs erste nur ein inneres Gebiet f, dann sehen wir, dass es |f| - 3 Schnyder-Fluss aufnimmt, aber |f| Einkanten in \mathcal{N}_S hat, es sind also genau die drei nötigen Kanten für den Ecken-Fluss aus \mathcal{N}_F übrig. Wir müssen gewährleisten, dass jede Ecke im Schnyder Labeling ein anderes Label hat. Betrachten wir also den von φ_S induzierten Schnyder Wood auf G^* . Nach [?] können wir diesen aus der α_S -Orientierung ablesen.

Abbildung 3.3: a) Eine α_s -Orientierung um eine innere Kante von G. b) Teile der korrespondierenden Schnyder Woods auf G und G^* . c) Die induzierten Label, die für G und G^* gleich sind.

Es gilt außerdem, wie in Abbildung 3.3 skizziert, dass die Label der Ecke eines Gebietes in G und das ihr in $G+G^*$ gegenüberliegenden Label der Ecke eines Gebiets um einen Knoten in G^* gleich sind. Für eine zu v in G^* hin orientierte Kante folgt aus der Bijektion zwischen Schnyder Labelings und Schnyder Woods aus Abschnitt 1.2, dass die Label links und rechts am Ende dieser Kante gleich sind. Somit sind auch die Label in G gleich und wir können die folgende Eigenschaft festhalten.

A1 Die Label, des von α_s induzierten Schnyder Wood auf G, sind zwischen zwei aufeinander folgenden zu f orientierten Kanten gleich.

Da es genau drei zu f orientierte Kanten gibt müssen wir also dafür sorgen, dass für jedes Paar dieser Kanten eine Ecke zwischen ihnen liegt, da so die drei Ecken unterschiedliche Label haben und wir K2 erfüllen. Um dies zu erlangen implementieren wir eine zyklische Struktur um jedes innere Gebiet, wie in Abbildung ?? skizziert.

Abbildung 3.4: Eine Skizze des kombinierten Netzwerkes auf einem inneren Gebiet mit |f| = 4. Beispielhaft sind Schnyder-Fluss (rot), Ecken-Fluss (blau) und Zuweisungs-Fluss (grün) eingezeichnet.

Betrachten wir zuerst den Schnyder-Fluss. Dieser wird Fluss von Typ 1, also von Quelle 1 zu Senke 1 sein. Für einen Schnyder-Pfad der durch einen Knoten v führt hat sich nichts geändert. Der in der Skizze eingezeichnete Schnyder-Pfad der durch f führt passiert davor einen extra Knoten, wir nennen ihn kleines Quadrat der gewährleisten soll, dass von Seite des Gebietes aus entweder ein Schnyder-Pfad oder ein Ecken-Pfad in f mündet. Zuletzt fügen wir wie oben von jedem inneren Gebiet eine Kante mit Kapazität |f|-3 zu Senke 1 ein. Somit kodiert hier eine ganzzahlige Lösung weiterhin einen Schnyder Wood auf G.

Kommen wir nun zum FAA-Fluss, also Fluss von Typ 2. Von Quelle 2 geht genau wie in Abbildung 3.2 eine Kante zu jedem inneren Winkel (f,v). Ein Zuweisungs-Pfad verlässt diesen Winkel über einen zusätzlich zu v eingefügten Dummy-Knoten v^* . Von jedem v^* geht eine Kante mit Kapazität 1 zu einer Dummy-Senke und von dieser eine Kante mit Kapazität $\sum_{f \in F_{in}} |f| - 3$ zu Senke 2, wie in Abbildung 3.5 illustriert.

Die Dummy-Knoten sorgen dafür, dass jeder Knoten im FAA nur einmal zugewiesen werden kann, ohne in Konflikt mit dem Schnyder-Fluss zu kommen, und die eingeschobene Dummy-Senke beschränkt die Anzahl der zugewiesenen Knoten, genau wie im zuvor konstruierten FAA-Fluss, auf $\sum_{f \in F_{in}} |f| - 3$. Es bleibt der Ecken-Fluss. Hier betritt der Pfad wieder durch einen Winkel das Gebiet f und muss es über ein ungenutztes kleines Quadrat verlassen. Die zweite und dritte Kante in jedem Winkeldreieck gewährleisten, dass nicht immer das nächste kleine Quadrat genutzt werden

Abbildung 3.5: Der Zuweisungsfluss durch die Winkel, Dummy-Knoten und die zusätzliche Kante vor Senke 2. Die Kante rechts hat Kapazität $\sum_{f \in F_{in}} |f| - 3$ und alle anderen Kapazität 1.

muss. Falls dies von Schnyder-Fluss besetzt ist und der nächste Winkel zugewiesen wird, dann kann ein Ecken-Pfad den nächsten Winkel passieren. Weiter sorgt die erste Kante, die von sowohl Schnyder-, als auch Winkel-Pfaden genutzt werden kann für eine eindeutige Beschriftung (als Ecke oder nicht) im Falle einer ganzzahligen Lösung. Wie oben existieren auch hier Kanten von jedem inneren Gebiet zu Senke 2 mit Kapazität drei.

Betrachten wir die Bedarfe der beiden Flüsse von Typ 1 und Typ 2, φ_1 bzw. φ_2 . Beide entsprechen jeweils den Bedarfen der oben konstruierten \mathcal{N}_S und \mathcal{N}_F , da nur so, mit den gleichen Argumenten wie zuvor, ein Schnyder Wood und ein FAA kodiert werden können. Jedes Gebiet benötigt genau drei Ecken und |f|-3 zugewiesene Knoten und der je ein Schnyder-Pfad führt durch jede innere Kante, $|E_{in}|$. Hier seien wieder E_{in} die inneren Kanten und F_{in} die inneren Gebiete von G. Es gilt also:

- $d_1 = \operatorname{Bedarf}(\varphi_1) = \operatorname{Bedarf}(\varphi_S) = |E_{in}|$
- $d_2 = \operatorname{Bedarf}(\varphi_2) = \operatorname{Bedarf}(\varphi_F) = \sum_{f \in F_{in}} (|f| 3) + 3|F_{in}| = \sum_{f \in F_{in}} |f|$

Bevor wir in Theorem ?? zeigen, dass eine ganzzahlige Lösung $\varphi = (\varphi_1, \varphi_2)$ auch wirklich ein Ecken kompatibles Paar kodiert wollen wir noch ein Paar weitere Beobachtungen festhalten. Nehmen wir also an wir haben eine ganzzahlige Lösung φ gefunden, dann gilt für diese:

- A2 Jede äussere Kante in einem Winkel-Dreieck ist ausgelastet, sie wird entweder von einem Ecken- oder Zuweisungspfad genutzt.
- A3 Jede Kante von einem kleinen Quadrat zu einem inneren Gebiet f ist ausgelastet, sie wird entweder von einem Schnyder- oder Ecken-Pfad genutzt.
- A4 Ein inneres Gebiet f mit |f| = 3 kann nicht von Zuweisungs- bzw. Schnyder-Pfaden genutzt werden.

Wir wollen diese Beobachtungen kurz begründen. Für jede mögliche ganzzahlige Lösung φ gilt

$$|\varphi| = |\varphi_1| + |\varphi_2| = |E_{in}| + \sum_{f \in F_{in}} |f|.$$

Da es genau $\sum_{f \in F_{in}} |f|$ innere Winkel gibt und der FAA-Fluss \mathcal{N}_G nur durch diese betreten kann ergibt sich A2. A3 wird aus Gleichung ?? weiter unten folgen. Durch ein inneres Gebiet f müssen drei Ecken-Pfade führen und im Fall |f| = 3 führt dies zu A4, da kein Platz in den Winkeln für Zuweisungs-Pfade und keine freien kleinen Quadrate für Schnyder-Pfade existieren.

Theorem 3.1. Sei G ein intern-3-zusammenhängender Graph mit gegebenen Aufhängungen $\{a_1, a_2, a_3\}$, dann existiert eine SLTR von G, genau dann wenn ein ganzzahliger zulässiger Fluss $\varphi = (\varphi_1, \varphi_2)$ auf \mathcal{N}_G existiert.

Beweis: Sei G ein intern-3-zusammenhängender Graph mit Aufhängungen $\{a_1, a_2, a_3\}$ und $\varphi = (\varphi_1, \varphi_2)$ sei ein ganzzahliger machbarer Fluss auf \mathcal{N}_G . In einem ersten Schritt extrahieren wir einen Schnyder-Wood σ und ein FAA ϕ um dann zu zeigen, dass sie ein Ecken kompatibles Paar bilden. Für einen machbaren Fluss müssen die Bedarfe erfüllt werden. Es gilt somit $|\varphi_1| = |E_{in}|$ und $|\varphi_2| = \sum_{f \in F_{in}} |f|$.

$$|\varphi_{1}| + |\varphi_{2}| = \sum_{f \in F_{in}} (|f| - 3) + 3|F_{in}| + |E_{in}|$$

$$= \sum_{f \in F_{in}} (|f| - 3) + 2|E| - |V| - 1 + 2|F| - |f_{aus}|$$

$$= \sum_{f \in F_{in}} (|f| - 3) + \sum_{v \in V} (deg(v) - 3) + 2|V| + 2|F| - 1 - |f_{aus}|$$

$$= \sum_{f \in F_{in}} (|f| - 3) + \sum_{v \in V} (deg(v) - 3) + 2|E| + 3 - |f_{aus}|$$

$$= \sum_{f \in F_{in}} (|f| - 3) + \sum_{v \in V} (deg(v) - 3) + 3 + \sum_{f \in F_{in}} (|f| - 3) + 3|F_{in}|$$
Dummy-Senke zu Kapazität Senke 2 von Kanten von den Quadraten Senke 2 den Knoten.

Die beiden Terme in der rechten unteren Klammer entsprechen den Kapazitäten von den inneren Gebieten zu Senke 1 und Senke 2. Somit sind alle Kanten zu den Senken ausgelastet und die Kanten von den kleinen Quadraten zu den inneren Gebieten sind ebenfalls ausgelastet. Diese sind die einzigen Kanten in \mathcal{N}_G die sowohl von φ_1 als auch φ_2 genutzt werden können. Kapazität eins und Ganzzahligkeit von φ impliziert somit A3.

Beginnen wir mit φ_1 um einen Schnyder Wood, oder genauer eine α_s -Orientierung, zu erhalten. $|\varphi_1| = |E_{in}|$, somit führt durch jede innere Kante ein Schnyder-Pfad und dieser gibt uns die nach aussen gerichtete Kante in α_s . Es bleibt zu zeigen, dass für jedes innere Gebiet und jeden Knoten die Bedingungen aus Theorem 3.3 für eine α_s eingehalten werden. Da alle Kanten von den Knoten zu Senke 1 ausgelastet sind folgt, dass durch jeden inneren Knoten v genau deg(v) - 3 Schnyder-Pfade führen. Somit ergeben die leeren Einkanten von v in \mathcal{N}_G die drei Auskanten für α_s . Für eine Aufhängung a_i folgt analog, dass die beiden ungenutzten Einkanten, zusammen mit

der Halbkante ins äußere Gebiet, die Bedingungen der α_s -Orientierung erfüllen. Es bleibt zu zeigen, dass durch jedes innere Gebiet |f|-3 Schnyder-Pfade führen. Der restliche Schnyder-Fluss $|E_{in}|-\sum_{v\in V}(deg(v)-3)$ muss durch die inneren Gebiete führen und aus der ersten und letzten Zeile von Gleichung ?? folgt

$$|E_{in}| - \sum_{v \in V} (deg(v) - 3) = \sum_{f \in F_{in}} (|f| - 3).$$

Somit führen |f|-3 Schnyder-Pfade durch jedes innere Gebiet und wir können die α_s -Orientierung vervollständigen und erhalten einen Schnyder Wood auf G.

Betrachten wir nun φ_2 . Nach A4 sind alle äusseren Kanten in den Winkeln ausgelastet. Falls diese nun in jedem inneren Gebiet von drei Ecken-Pfaden und |f|-3 Zuweisungs-Pfaden genutzt werden können wir ein FAA extrahieren. Da alle Kanten zu Senke 2 ausgelastet sind führen $\sum_{f \in F_{in}} (|f|-3)$ Pfade durch die Dummy-Senke. Somit werden auch $\sum_{f \in F_{in}} (|f|-3)$ Knoten inneren Gebieten zugewiesen. Indem wir die Pfade zurückverfolgen und sehen aus welchem Gebiet der Zuweisungs-Pfad einen Dummy-Knoten betritt, können wir diese Informationen auslesen. Es bleibt zu zeigen, dass jedem Gebiet genau |f|-3 Knoten zugewiesen werden, dies gilt, genau dann wenn durch jedes Gebiet drei Ecken-Pfade laufen. Da die Kanten von den inneren Gebieten zu Senke 2 ausgelastet sind muss dies allerdings gelten. Wir können also aus φ_2 ein FAA für G extrahieren.

Nun müssen wir zeigen, dass σ und ϕ ein Ecken kompatibles Paar ergeben. C1, dass beide die gleichen Aufhängungen nutzen folgt sofort aus der Konstruktion von \mathcal{N}_G . Es bleibt C2.

Betrachten wir ein Teilnetzwerk (wie in Abbildung 3.4) um ein inneres Gebiet f. Die drei Ecken-Pfade können keine der |f|-3 kleinen Quadrate nutzen die schon von Schnyder-Fluss okkupiert werden. Die drei übrigen kleinen Quadrate nennen wir $verf\ddot{u}gbar$. Ausgehend von f folgen wir den Ecken-Pfaden rückwärts zu den verfügbaren kleinen Quadraten. Wenn wir das Quadrat verlassen gelangen wir zur dritten Kante eines Winkeldreiecks (entgegen dem Uhrzeigersinn). Nun verlassen wir das Gebiet entweder über diesen Winkel oder bewegen uns weiter (entgegen dem Uhrzeigersinn) zum nächsten Winkeldreieck. Doch wir werden zeigen, dass dies nur dann geschieht wenn das kleine Quadrat zwischen diesen nicht $verf\ddot{u}gbar$ ist. Also betritt zwischen zwei $verf\ddot{u}gbaren$ kleinen Quadraten ein Ecken-Pfad das Gebiet und die Winkel haben nach A1 unterschiedliche Label.

Behauptung 1 Seien Q_1, Q_2 und Q_3 , im Uhrzeigersinn, die drei verfügbaren kleinen Quadrate um ein inneres Gebiet f. Dann existiert ein Ecken-Pfad, welcher das Netzwerk über Q_i verlässt, und dieser betritt es in einem Winkel zwischen, im Uhrzeigersinn, Q_{i-1} und Q_i .

Angenommen dies ist nicht der Fall und nehmen wir ohne Beschränkung der Allgemeinheit an, dass der Ecken-Pfad p das Gebiet durch Q_3 verlässt. Dann liegt

der Winkel über den p das Gebiet betritt nicht zwischen Q_2 und Q_3 . Angenommen er liegt zwischen Q_1 und Q_2 . Betrachte das letzte Winkeldreck vor Q_2 . Nach unserer Annahme ist die innere Kante dieses Dreiecks von p ausgelastet. Somit kann kein Ecken-Fluss zu Q_2 gelangen und wir erhalten einen Widerspruch zu, da alle kleinen Quadrate entweder von Ecken- oder von Schnyder-Fluss genutzt werden müssen. Mir dem gleichen Argument kann p das Gebiet zwischen Q_3 und Q_1 betreten. Somit stimmt Behauptung ??.

Behauptung 2 Alle Winkel zwischen zwei aufeinander folgenden verfügbaren kleinen Quadraten, haben die selben Label im Schnyder Labeling σ .

Diese Behauptung folgt aus der in Abbildung 3.3 illustrierten Bijektion zwischen der α_S Orientierung und den Schnyder Labelings auf G und G^* . Die Winkel links und rechts von einem kleinen Quadrat, dass von einem Schnyder-Pfad genutzt wird, haben das gleiche Label in σ , da diese den Einkanten in α_s entsprechen. Die Auskanten entsprechen den verfügbaren kleinen Quadraten, und hier ändern sich die Label.

Diese beiden Behauptungen zusammen zeigen, dass jede Ecke aus ϕ ein anderes Label in σ hat. Somit handelt es sich um ein Ecken Kompatibles Paar (σ, ϕ) .

Wir haben die Rückrichtung gezeigt. Nehmen wir also an, dass eine SLTR für G existiert. Wir müssen nun einen zulässigen ganzzahligen Fluss $\varphi = (\varphi_1, \varphi_2)$ auf \mathcal{N}_G konstruieren, der die SLTR kodiert. Nach Theorem 2.12 existiert ein Ecken kompatibles Paar (σ, ϕ) aus einem Schnyder Labeling σ und einem FAA ϕ , das zu diesem SLTR passt. Betrachte die zu σ gehörige α_s -Orientierung.

Wir beginnen mit einem leeren, wie oben konstruierten Netzwerk \mathcal{N}_G und waren nun Schritt für Schritt einen zulässigen Fluss φ konstruieren.

Zuerst fügen wir für jeden zugewiesenen Winkel einen Pfad von Quelle 2, über die äussere Kante des Winkeldreiecks, den zugehörigen Dummy-Knoten und die Dummy-Senke hin zu Senke 2 ein. Es kommen somit $\sum_{f \in F_{in}} |f| - 3$ Einheiten Fluss hinzu und die Kante von der Dummy-Senke zu Senke 2 wird ausgelastet.

Als nächsten fügen wir den, die α_s -Orientierung kodierenden Fluss, hinzu. Zuerst von Quelle 1 zu jeder inneren Kante e, dann von den inneren Kanten entweder über ein kleines Quadrat in ein angrenzendes Gebiet, oder zu einem benachbarten Knoten, je nachdem, wohin die Auskante von e in α_s zeigt. Zuletzt saturieren wir die Kanten von den inneren Knoten und inneren Gebieten zu Senke 1.

Zuletzt müssen wir den Ecken-Fluss einfügen. Ein Ecken-Pfad p entspringt in Quelle 1, nutzt das zugehörige Winkeldreieck (diese sind noch frei) und verlässt über das im Uhrzeigersinn nächste verfügbare kleine Quadrat, das Gebiet wieder.

Es sind alle Kanten hin zu den Senken ausgelastet. Ebenso kann man sehen, dass an keiner Kante die Kapazität überschritten wird. Somit haben wir einen zulässigen ganzzahligen Fluss, der eine SLTR kodiert, konstruiert, was den Beweis abschließt.

4 Das Programm

Wir wollen nun auf eine Implementierung des Algorithmus aus dem vorherigen Abschnitt eingehen. Der Code wurde in SageMath [?] geschrieben und ist auf Anfrage erhältlich. Das Multi-Fluss-Problem auf \mathcal{N}_G zu gegebenen Bedarfen (d_1, d_2) wird hier, mithilfe des in Sage enthaltenen Solvers Glpk [?] für Lineare Programmierung gelöst, welches ein Paar von Flussgraphen (φ_1, φ_2) ausgibt.

Algorithm 1: An algorithm to detect and return a Good-FAA for a plane, internally-3-connected and suspended Graph G.

```
1 Good-FAA (G, f_{aus}, sus);
   Input : G, a planar, internally-3-connected Graph, f_{aus}, the outer face and
                 sus = \{a_1, a_2, a_3\} the suspensions.
    Output: A Good-FAA for G if possible
 2 if G_{sus} has FAA then
         Initialize \mathcal{N}_G;
 3
         (d_1, d_2) \longleftarrow \text{Demands for } \mathcal{N}_G ;
 4
         \varphi = (\varphi_1, \varphi_2) \longleftarrow \text{Multicomodity-Flow}(\mathcal{N}_G) ;
 6
        if |\varphi_1| = d_1 and |\varphi_2| = d_2 then
             \phi \longleftarrow \text{Good-FAA from } \varphi_2 ;
 7
             return: \phi
 8
 9
        end
10 end
```

Wir können ein Gutes-FAA ϕ aus φ_2 extrahieren indem wir die Zuweisungs-Pfade durch die Dummy-Senke zurück verfolgen. Wir betreten jeden passierten Dummy-Knoten v^* aus einem Winkel (f, v). Diese Winkel ergeben die Zuweisungen ϕ .

Die Kontrolle, ob für G ein FAA existiert ist optional, lässt sich jedoch, zum Beispiel wie zuvor über ein 1-Fluss-Problem, in polynomineller Zeit bestimmen. Somit spart sie im Falle, der nicht Existenz eines FAA Zeit.

4.1 Visualisierung

Nehmen wir an, wir haben für einen Graphen G ein Gutes-FAA ϕ erhalten. Es um eine SLTR zu erhalten müssen wir eine zu ϕ passende Einbettung von G finden. Wir werden den in Abschnitt 2.1 erörterten Ansatz nutzen um eine SLTR von G zu erhalten.

Wir wollen nun eine Einbettung $f:V\to\mathbb{R}^2$ von G, ähnlich der Gummibad-Repräsentation, berechnen die ϕ respektiert. Sei $S\subseteq V$ die Menge der Knoten von f_{aus} . Abschnitt 2.1 gelten die folgenden Gleichungen für nicht zugewiesene (1) und zugewiesene (2) Knoten.

$$f(v) = \lambda_v f(u) + (1 - \lambda_v) f(w), \text{ mit } \lambda_v \in (0, 1)$$

$$f(v) = \sum_{u \in N(v)} \lambda_{uv} f(u), \text{ mit } \sum_{u \in N(v)} \lambda_{uv} = 1 \text{ und } \lambda_{uv} > 0$$

Um zu einer gegebenen Gewichtsfunktion λ eine Lösung zu finden können wir diese Gleichungen, nach der Ergänzung von Gleichungen für die Aufhängungen, zusammenfassen.

$$M_{\lambda}(\vec{v_y}, \vec{v_x}) = \begin{pmatrix} f(S)_x & f(S)_y \\ 0 & 0 \end{pmatrix}, \text{ mit } (M_{\lambda})_{vw} = \begin{cases} -\lambda_{vw} & \text{falls } (v, v) \in E \\ \sum_{q \in N(v)} \lambda_{qv} & \text{falls } v = w \\ 0 & \text{sonst} \end{cases}$$

Wenn wir nun die Pseudo-Inverse berechnen erhalten wir die Lösung

$$f(V) = M_{\lambda}^{-1} \left(\begin{smallmatrix} f(S)_x & f(S)_y \\ 0 & 0 \end{smallmatrix} \right).$$

Wir wollen nun, inspiriert von den iterativen Tutte Einbettungen aus [?], diese Rechnung mehrmals durchführen.

Setzten wir im ersten Durchlauf $\lambda=1$ erhalten wir eine Gummiband-Repräsentation die ϕ respektiert. Wir wollen nun anhand dieser Einbettung λ verändern um, Iteration für Iteration, eine ßchönere Einbettung zu erhalten. Halten wir drei Punkte fest, die wir intuitiv, in absteigender Reihenfolge, als Bewertungsmaßstab für eine ßchöne Einbettung berücksichtigen.

- Alle inneren Gebiete haben eine ähnliche Größe.
- Es existieren keine zu langen oder kurzen Kanten.
- Es existieren keine Ecken mit zu kleinen oder großen Winkeln.

TODO

4.2 Statistische Betrachtung

Für eine statistische Betrachtung der Häufigkeit von Graphen mit SLTRs haben wir den Algorithmus für pseudo-zufällige Graphen laufen lassen. Hier wäre eine gleichmäßige Wahl von 3-zusammenhängenden Graphen besser. Ein uniformer Algorithmus zur zufälligen Erstellung 3-zusammenhängender planarer Graphen lässt sich zum Beispiel nach einem Ansatz von Fusy aus [?] erstellen, da hier, als Teilschritt der Erstellung eines uniformen Samplers für planare Graphen, auch 3-zusammenhängende planare

Abbildung 4.1: Anwendung des Programms auf pseudo-zufällige, planare, 3-zusammenhängende Graphen, mit gegebenen Aufhängungen. Jeder Punkt entspricht einem Graphen mit SLTR (blau), nur mit FAA (rot) und ohne FAA (grün).

Graphen erzeugt werden, und dies ebenfalls mit bleichverteilter Wahrscheinlichkeit. Die Implementierung ist jedoch, Aufgrund der Auswertung von Erzeugendenfunktionen, nicht trivial und wir haben uns somit auf pseudo-zufällig erzeugte Graphen beschränkt.

In Abbildung ?? sind die Ergebnisse für Graphen von vier bis TODO Knoten dargestellt, mit jeweils TODO Graphen für jede Knotenzahl. Wir übergeben dem Programm einen Graphen mit Aufhängungen $\{a_1, a_2, a_3\}$, was im falle 3-zusammenhängender planer Graphen mit mehr als drei Knoten ein äusseres Gebiet induziert. Ein Punkt in der Abbildung entspricht einem Graphen und die Farben stehen für ein SLTR (blau), nur ein FAA (rot) oder einen Graphen mit keinem von beiden (grün).

5 Nicht ganzzahlige Flüsse

Wie in Kapitel 3 erwähnt, impliziert eine nicht ganzzahlige Lösung für ein Multi-Fluss-Problem auf einem gerichteten Graphen mit $n \geq 2$ Paaren von Quellen und Senken, im Allgemeinen nicht die Existenz einer ganzzahligen Lösung. Die Ergebnisse aus Kapitel ??, lassen jedoch die Möglichkeit offen, dass das man in unserem Fall die folgende Aussage beweisen kann.

Vermutung 1 Sei $\tilde{\varphi}$ ein nicht ganzzahliger zulässiger Fluss auf \mathcal{N}_G , dann existiert auch eine ganzzahlige Lösung φ und wir können in konstanter Zeit ein Gutes-FAA aus $\tilde{\varphi}_2$ extrahieren, ohne eine ganzzahlige Lösung zu berechnen.

Wenn wir nicht darauf bestehen, dass unsere Lösung ganzzahlig ist, dann lässt sich eine Lösung nach TODO durch lineare Programmierung in polynomineller Zeit finden und das Entscheidungsproblem, ob ein Graph eine SLTR hat läge so in \mathcal{P} .

Um die Argumentation einfacher zu gestalten, werden wir unser 2-Fluss Problem, wenn es sinnvoll ist, als 3-Fluss Problem mit einer Lösung $\varphi = (\varphi_s, \varphi_e, \varphi_z)$ behandeln. Wir erstellen also \mathcal{N}_G^* , wie zuvor \mathcal{N}_G , nur mit drei Quellen und Senken und weisen Schnyder-, Zuweisungs- und Ecken-Fluss eigene Typen zu. Man kann leicht sehen, dass Theorem ?? in angepasster Form hier ebenfalls gilt und ein zulässiger Fluss $(\varphi_s, \varphi_e, \varphi_z)$ auf \mathcal{N}_G^* genau dann existiert, wenn auch ein zulässiger Fluss (φ_1, φ_2) auf \mathcal{N}_G existiert. Die Hinrichtung ist klar. Nehmen wir an (φ_1, φ_2) ist eine ganzzahlige Lösung. Nach Beobachtung A2 gilt, dass die äusseren Kanten eines Winkel-Dreiecks entweder von einem Ecken- oder einem Zuweisungs-Pfad genutzt werden. Diese Kanten sind, zusammen mit den Kanten von Quelle 2 zu den Winkeldreiecken, die einzigen in \mathcal{N}_G die von beiden Flüssen genutzt werden. Wir können also φ_2 in $|\varphi_2|$ ganzzahlige Pfade aufteilen und jeden Pfad entweder φ_e oder φ_z zuweisen, je nachdem ob er über die Dummy-Senke führt. Insbesondere folgt mit der gleichen Argumentation:

O1 Jede beliebige Kombination von φ_s, φ_e und φ_z zu zwei Flüssen, führt zu einem zu unserem Ansatz analogen Netzwerk \mathcal{N} .

Betrachten wir zunächst den zweiten Teil von Vermutung ??.

Lemma 5.1. Sei $\tilde{\varphi}$ ein nicht ganzzahliger zulässiger Fluss auf \mathcal{N}_G und sei W die Menge der vom Zuweisungsfluss φ_z genutzten inneren Winkel von G. Dann entspricht jede Teilmenge $W_F \subseteq W$ mit $|W_F| = \sum_{f \in F_{in}} (|f| - 3)$ in der jeder Knoten höchstens einmal vorkommt einem FAA von G.

Beweis: Da φ ein zulässiger Fluss ist, muss gelten $|\varphi_z| = \sum_{f \in F_{in}} (|f| - 3)$, somit folgt $|W| \ge \sum_{f \in F_{in}} (|f| - 3)$. Seien P_z die Pfade die zusammen φ_z ergeben, dann gilt

 $|\varphi_z(p)| \in (0,1)$ für $p \in P_z$, wobei $|\varphi_z(p)|$ die Menge des Zuweisungsflusses entlang p beschreibt, und $|P_z| \ge \sum_{f \in F_{in}} (|f| - 3)$.

Sei ϕ die Menge der zugewiesenen Winkel (f_{aus}, v) im äusseren Gebiet. Fügen wir nun einen beliebigen Winkel $(f, v) \in W$, zu ϕ hinzu, löschen alle Winkel W_v aus W die v enthalten und alle Pfade P_v aus P die durch v^* laufen. Dann gilt $|\varphi_z(P_v)| \leq 1$ und somit $|\varphi_z(P \setminus P_v)| \geq (\sum_{f \in F_{in}} (|f| - 3)) - 1$. Für $W \setminus W_v$ folgt ebenfalls $|W \setminus W_v| \geq (\sum_{f \in F_{in}} (|f| - 3)) - 1$, da an jedem anderen von φ_z genutzten v^* noch mindestens ein Winkel aus $W \setminus W_v$ liegt. Wir können diesen Schritt somit insgesamt $\sum_{f \in F_{in}} (|f| - 3)$ mal durchführen und jeder Knoten ist nur in einem Winkel aus ϕ enthalten. Das so konstruierte ϕ ist also ein FAA.

Wenn wir zeigen können, dass die so erhaltenen ϕ Gute-FAAs sind, folgt Vermutung ??, da die Existenz eines Guten-FAAs ϕ nach Theorem ?? auch die Existenz eines ganzzahligen zulässigen Flusses φ für \mathcal{N}_G impliziert.

Nehmen wir an wir haben einen Graphen G gefunden für den nur eine nicht ganzzahlige Lösung existiert. Sei $\tilde{\varphi}$ dieser nicht ganzzahlige zulässige Fluss auf \mathcal{N}_G , und ϕ ein wie in Lemma ?? aus $\tilde{\varphi}$ konstruiertes FAA für G. Sei $\overline{\varphi_z}$ ein Zuweisungs-Fluss der dieses FAA auf \mathcal{N}_G kodiert. Betrachte nun $\overline{\mathcal{N}_G}$, ein Teilnetzwerk von \mathcal{N}_G , aus welchem alle Kanten, die von $\overline{\varphi_z}$ genutzt werden gelöscht wurden. Wir wollen nun analysieren unter welchen Bedingungen eine ganzzahlige Lösung (φ_s, φ_e) auf $\overline{\mathcal{N}_G}$ existiert.

Nach der in O1 festgehaltenen Beobachtung können wir, wie in [?], φ_s und φ_e zusammenfassen und als φ_1 betrachten. Nach Theorem 1.9 impliziert eine nicht ganzzahlige auch eine ganzzahlige Lösung $\varphi_1 = \varphi_s + \varphi_e$. Und eine solche Lösung ist nach Max-Flow Min-Cut maximal, genau dann, wenn ein minimaler Schnitt mit der entsprechenden Kapazität existiert. Da keine ganzzahlige Lösung existiert, kann es also keinen minimalen Schnitt $\mathcal{S} \subset E$ in $\overline{\mathcal{N}_G}$ geben, mit $c(\mathcal{S}) = |\tilde{\varphi}_s + \tilde{\varphi}_e| = |E_{in}| + 3|F_{in}|$, da wir sonst zu einem Widerspruch gelangen.

Bevor wir fortfahren wollen wir ein paar Kantentypen aus \mathcal{N}_G benennen, und einige Beobachtungen zu ihnen festhalten.

- E_{\triangle} = Die äusseren Kanten in den Winkeldreiecken.
- $E_{\nabla} = \text{Die inneren Kanten in den Winkeldreiecken.}$
- $F_{\square} =$ Die Kanten von den kleinen Quadraten zu inneren Gebieten f.
- V_* = Die Kanten von den Knoten-Knoten zu Senke 1.
- $E_* = \text{Die Kanten von Quelle 1 zu den Kanten-Knoten.}$

Wenn wir nur von den Kanten aus E_{\triangle} , die in $\overline{\mathcal{N}_G}$ übrig sind, sprechen, schreiben wir $\overline{E_{\triangle}}$. Für die, zu diesen korrespondierenden Kanten im inneren dieser Winkeldreiecke, schreiben wir $\overline{E_{\triangledown}}$. Sei e_d die Kante von der Dummy-Senke zu Senke 2, dann sind sowohl $\mathcal{S}_1 = E_{\triangle} \cup E_*$, als auch $\mathcal{S}_2 = F_{\square} \cup V_* \cup \{e_d\}$ minimale Schnitte in \mathcal{N}_G .

Sei E_z die Menge der Kanten, die wir aus \mathcal{N}_G entfernen. Dann folgt $|\mathcal{S}_1 \cap E_z| = |E_{\triangle} \cap E_z| = |\varphi_z|$ und somit ist $\overline{\mathcal{S}_1} = \mathcal{S}_1 \backslash E_z = \overline{E_{\triangle}} \cup E_*$ ein Schnitt in $\overline{\mathcal{N}_G}$. Für die Kapazität dieses Schnittes können wir folgern

$$c(\overline{S_1}) = c(\overline{E_\triangle}) + c(E_*) = c(E_\triangle) - |\varphi_z| + c(E_*) = 3|F_{in}| + |E_{in}|.$$

Falls es sich hierbei um einen minimalen Schnitt handelt, dann würde dies bedeuten, dass eine ganzzahlige Lösung für $\overline{\mathcal{N}_G}$ existiert, mit deren Hilfe wir, zusammen mit φ_z , eine ganzzahlige zulässige Lösung für \mathcal{N}_G konstruieren könnten, was wiederum ein Widerspruch zu unserer Annahme wäre. Es muss also einen kleineren Schnitt \mathcal{S}_{min} , mit $|\mathcal{S}_{min}| < |\overline{\mathcal{S}_1}|$, geben.

Behauptung 3 Der minimale Schnitt S_{min} in N_G muss aus jeder der Mengen $\overline{E_{\triangle}}$, F_{\square} , V_* und E_* mindestens eine, aber nicht alle Kanten dieser Menge beinhalten.

Angenommen TODO

Literaturverzeichnis

- [AF13a] Nieke Aerts and Stefan Felsner, Henneberg steps for triangle representations, The Seventh European Conference on Combinatorics, Graph Theory and Applications, Springer, 2013, pp. 503–509.
- [AF13b] ______, Straight line triangle representations, International Symposium on Graph Drawing, Springer, 2013, pp. 119–130.
- [AF15] _____, Straight line triangle representations via schnyder labelings, J. Graph Algorithms Appl. 19 (2015), no. 1, 467–505.
- [Fár48] István Fáry, On straight-line representation of planar graphs, Acta Sci. Math. 11 (1948), 229–233.
- [Fel01] Stefan Felsner, Convex drawings of planar graphs and the order dimension of 3-polytopes, Order 18 (2001), no. 1, pp. 19–37.
- [Fel04] _____, Lattice structures from planar graphs, the electronic journal of combinatorics 11 (2004), no. 1, 15.
- [Fel12] _____, Geometric graphs and arrangements: some chapters from combinatorial geometry, Springer Science & Business Media, 2012.
- [Fus07] Éric Fusy, Combinatoire des cartes planaires et applications algorithmiques, Ph.D. thesis, Citeseer, 2007.
- [Glp12] Gnu Linear Programming Kit (Version 8.3), 2012, http://www.gnu.org/software/glpk/.
- [Hu63] T Chiang Hu, Multi-commodity network flows, Operations research 11 (1963), no. 3, 344–360.
- [LV99] László Lovász and Katalin Vesztergombi, Geometric representations of graphs, Paul Erdos and his Mathematics (1999).
- [S⁺18] W. A. Stein et al., Sage Mathematics Software (Version 8.3), The Sage Development Team, 2018, http://www.sagemath.org.
- [Sch89] Walter Schnyder, *Planar graphs and poset dimension*, Order **5** (1989), no. 4, pp. 323–343.
- [Sch90] _____, Embedding planar graphs on the grid, pp. 138–148.

Literatur verzeichn is

[Tut63] William Thomas Tutte, *How to draw a graph*, Proceedings of the London Mathematical Society **3** (1963), no. 1, 743–767.