1. Etudier la suite de fonctions (f_n) définie par

$$f_n(x) = \frac{nx^2 e^{-nx}}{1 - e^{-x^2}}$$

2. Soit $f_n:[0,1]\to\mathbb{R}$ définie par

$$f(x) = n^2 x (1 - nx)$$
 si $x \in [0, 1/n]$ et $f(x) = 0$ sinon

- a) Etudier la limite simple de la suite (f_n) .
- b) Calculer

$$\int_0^1 f_n(t) \, \mathrm{d}t$$

Y a-t-il convergence uniforme de la suite de fonction (f_n) ?

- c) Etudier la convergence uniforme sur [a, 1] avec a > 0.
- **3.** Pour $x \in [0, \pi/2]$, on pose $f_n(x) = n \sin x \cos^n x$.
 - a) Déterminer la limite simple de la suite de fonctions (f_n) .
 - b) Calculer $I_n = \int_0^{\pi/2} f_n(x) dx$. La suite (f_n) converge-t-elle uniformément?
 - c) Justifier qu'il y a convergence uniforme sur tout segment inclus dans $[0, \pi/2]$.
- **4.** Soit $f_n: \mathbb{R} \to \mathbb{R}$ définie par

$$f_n(x) = \sqrt{x^2 + 1/n}$$

Montrer que chaque f_n est \mathcal{C}^1 et que la suite (f_n) converge uniformément sur \mathbb{R} vers une fonction f qui n'est pas de classe \mathcal{C}^1 .

5. Soit $f_n: \mathbb{R} \to \mathbb{R}$ définie par

$$f_n(x) = \frac{1}{n}\sin(nx)$$

Montrer que chaque f_n est \mathcal{C}^1 et que la suite (f_n) converge uniformément sur \mathbb{R} vers une fonction f. Étudier la suite de fonction (f'_n) sur \mathbb{R} .

- **6.** Soient (f_n) et (g_n) deux suites de fonctions convergeant uniformément vers des fonctions f et g supposées bornées. Montrer que (f_ng_n) converge uniformément vers fg.
- 7. Soient (f_n) une suite de fonctions convergeant uniformément vers une fonction f et g une fonction uniformément continue. Montrer que $(g \circ f_n)$ converge uniformément.
- 8. Montrer que la limite uniforme d'une suite de fonctions uniformément continues est elle-même uniformément continue.
- **9.** Soit $f_n : [0,1] \to \mathbb{R}$ continue. On suppose que (f_n) converge uniformément sur [0,1[. Montrer que la suite (f_n) convergence uniformément sur [0,1].
- **10.** a) Montrer que la suite de fonctions $f_n(x) = x(1 + n^{\alpha}e^{-nx})$ définies sur \mathbb{R}^+ pour $\alpha \in \mathbb{R}$ et $n \in \mathbb{N}^*$ converge simplement vers une fonction f à déterminer.
 - b) Déterminer les valeurs de α pour lesquelles il y a convergence uniforme.
 - c) Calculer

$$\lim_{n \to +\infty} \int_0^1 x(1 + \sqrt{n}e^{-nx}) dx$$

11. On pose, pour $x \geq 0$,

$$f_p(x) = \frac{1}{(1+x)^{1+1/p}}$$

Etudier la convergence simple puis uniforme de la suite de fonctions $(f_p)_{p\in\mathbb{N}^*}$.

12. Etudier la convergence simple, uniforme sur $]0,+\infty[$ de la suite de fonctions (f_n) définies par

$$f_n(x) = \frac{\sin(nx)}{n\sqrt{x}}$$

13. * On définit (f_n) suite de fonctions de [0,1] vers \mathbb{R} par

$$f_0(x) = 1 \text{ et } \forall n \in \mathbb{N}, \ f_{n+1}(x) = 1 + \int_0^x f_n(t - t^2) dt$$

- (a) Justifier que cette suite est bien définie.
- (b) Montrer que pour tout $x \in [0, 1]$,

$$0 \le f_{n+1}(x) - f_n(x) \le \frac{x^{n+1}}{(n+1)!}$$

- (c) En déduire que pour tout $x \in [0,1]$, la suite numérique $(f_n(x))$ converge.
- (d) En utilisant encore ce qui précède, montrer que pour $n, p \in \mathbb{N}$

$$||f_{n+p} - f_n||_{\infty} \le \sum_{k=n+1}^{+\infty} \frac{1}{k!}$$

(e) Etablir que (f_n) converge uniformément vers une fonction f non nulle vérifiant

$$f'(x) = f(x - x^2)$$

- **14.** * On pose $f_0(t) = 0$, $f_{n+1}(t) = \sqrt{t + f_n(t)}$, pour $t \ge 0$.
 - (a) Pour t fixé, justifier que la suite récurrente $u_n = f_n(t)$ converge. (on pourra étudier une fonction auxiliaire.)
 - (b) Déterminer la limite simple, f des fonctions f_n .
 - (c) Y a-t-il convergence uniforme sur \mathbb{R} ?
 - (d) Démontrer que : $\forall t > 0$, $|f_{n+1}(t) f(t)| \le \frac{|f_n(t) f(t)|}{2f_{n+1}(t)}$.
 - (e) En déduire que la suite (f_n) converge uniformément sur tout intervalle $[a, +\infty[$, avec a > 0 (remarquer que $f_n f$ est bornée pour $n \ge 1$).
- **15.** * (f(nx), f(x/n))

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue, non identiquement nulle, telle que f(0) = 0 et $f(x) \xrightarrow[x \to +\infty]{} 0$.

On pose $f_n(x) = f(nx)$ et $g_n(x) = f\left(\frac{x}{n}\right)$.

- (a) Donner un exemple de fonction f.
- (b) Montrer que f_n et g_n convergent simplement vers la fonction nulle, et que la convergence n'est pas uniforme sur \mathbb{R}^+ .
- (c) Si $\int_{t=0}^{+\infty} f(t) dt$ converge, chercher $\lim_{n\to\infty} \int_{t=0}^{+\infty} f_n(t) dt$ et $\lim_{n\to\infty} \int_{t=0}^{+\infty} g_n(t) dt$.
- **16.** * On note E l'ensemble des fonctions $f:[0,1]\to\mathbb{R}^+$ continues.

On pose
$$\Phi(f)(x) = \int_0^x \sqrt{f(t)} dt$$
, pour toute $f \in E$.

On pose $f_0 = 1$ puis $f_{n+1} = \Phi(f_n)$ pour tout $n \in \mathbb{N}$.

- (a) Etudier la suite (f_n) .
- (b) Soit $f = \lim(f_n)$. Trouvez une équation différentielle dont f est solution.

Y a-t-il unicité de la solution nulle en 0?