Madhavi Shantharam, LCP CSCI 577A Team #4 – FieldProgress Web Application

COST ESTIMATION – LCP VERSION

(1) Cost Estimation

The following conditions were used to estimate the cost of our system

- 1. This project has no budget for our development efforts.
- 2. The duration of the project is 12 weeks
- 3. There are seven developers contributing 4hrs/week i.e., a total of 336 hr.
- 4. There are three modules in this system.
 - a. Input module
 - b. Turf cutting module
 - c. Visualization module
 - d. Testing framework

The core functionality of the application being the turf cutting module to be implemented using Python and be integrated with mapbox/deck.gl for visualization.

The following is module listed in the system and its estimated size with Source Lines of Code (SLOC)

Module lists and SLOC of each module

No.	Module Name	Brief Description	SLOC
1	Input module	Provide an interface for the users to input	500
		voter and volunteer information	
2	Turf cutting module	Clustering of voter data within the given	1000
		precincts	
3	Output module	Provide an interface for the users to view	300
	(Visualization)	the cut turfs visually in a map-based view	
4	Testing framework	Build a testing framework for validating	1200
	(internal use)	the system for its effectiveness both	
		module wise and integration with each	
		other	

COCOMOII Scale Drivers

Scale Driver	Value	Rationale		
PREC	HIGH	The development team has considerable familiarity with this type		
		of tool. System implementation involves usage of several		
		available algorithms and tools		
FLEX	NOMINAL	The system needs to considerably conform to pre-established		
		requirement from the client and external interface specifications,		
		e.g. GIS. It should finally be plugged into the existing Field		
		Progress's stack. However, the clients have given enough		
		flexibility in choosing the technologies to be used for		
		implementation of algorithm		
RESL	HIGH	All critical risk items, schedule and internal milestones are		
		identified. However, there is some uncertainty in compatibility o		
		COTS products with each other		
TEAM	HIGH	Each stakeholder has considerable consistency of objectives and		
		willingness to accommodate others' objectives. Although the		
		team consists of stakeholders both on and off site, good		
		collaboration has been achieved via video conferencing and		
		emails		
PMAT	NOMINAL	The development team follows ICSM guidelines, and is under		
		the guidance of course staff		

COCOMOII Cost Drivers

Input Module cost driver rationale

Cost Driver	Value	Rationale		
RELY	HIGH	Turf cutting and Visualization modules depend on this module.		
		The effect of software failure is high, as without input other		
		modules cannot function		
DATA	NOMINAL	Input to the system includes thousands of entries of voter data		
		consisting of latitudes, longitudes and precincts and volunteer		
		information like no. of volunteers, availability, capability etc.		
		Approx. 500 SLOC to provide an interface to take in this input		
		data		
DOCU	NOMINAL	Because the development process follows ICSM, the document		
		for life-cycle needs is normal.		
CPLX	NOMINAL	Simple UI component which takes in user input		
RUSE	LOW	Interface to take the input is specific to the application being		
		designed. May not be reused		
TIME	NOMINAL	System should be able to take in user data in a considerable time		

NOMINAL	Should have the capability to store the provided input as it in turn	
	serves as an input to the algorithm	
HIGH	Voter information is critical to the project. Hence needs to be	
	stored appropriately	
HIGH	Development team could communicate and co-operate with each	
	other very well	
HIGH	Development team has shown themselves to be capable of	
	analyzing, designing and implementing the feature	
NOMINAL	Not quite risky as it is a 12-week project and team members are	
	committed to course guidelines	
NOMINAL	Development team has relevant professional/academic	
	experience in building software applications	
NOMINAL	Input interface may be provided as an executable or web	
	application. Development team has the required skills to build	
	such an interface	
LOW	Team members have experience in building user interfaces	
NOMINAL	Team uses various project management tools like GitHub for	
	maintaining repos, Jira for tracking the tasks and defects and MS	
	Project for project planning	
HIGH	Team consists of 6 on-campus and 1 off-campus student. Team	
	collaboration has never been a problem as the team is proficient	
	in using tools for video conferencing and exchanging emails for	
	communication	
NOMINAL	The schedule is fixed for 12 weeks in Fall semester	
	HIGH HIGH HIGH NOMINAL NOMINAL NOMINAL LOW NOMINAL HIGH	

Turf-cutting Module cost driver rationale

Cost Driver	Value	Rationale		
RELY	HIGH	Failing to cut turfs automatically is quite risky. Although the user		
		can cut turfs manually in case of system failure, the main aim of		
		this project is to provide an algorithm to cut turfs automatically.		
		So, providing a reliable algorithm is quite important		
DATA	NOMINAL	Input to the system includes thousands of entries of voter data		
		consisting of latitudes, longitudes and precincts and volunteer		
		information like no. of volunteers, availability, capability etc.		
		Approx. 1000 SLOC to process the input and cut turfs		
DOCU	NOMINAL	Because the development process follows ICSM, the document		
		for life-cycle needs is normal.		
CPLX	HIGH	This involves implementation of extended k-means algorithm.		
		Extended because client specifications like volunteer availability,		
		terrain, walkability and certain others needs to be considered		
RUSE	HIGH	Algorithm should be designed in such a way that it could be		
		plugged into Field Progress' existing stack		
TIME	NOMINAL	Algorithm should be designed such that the execution time is		
		short		

STOR	NOMINAL	Should be able to process and transform the data into required	
DIVOI	NOMBIA	format A	
PVOL	NOMINAL	\mathcal{E} \mathcal{I}	
		algorithm, it may not be too dependent on the underlying	
		platform	
ACAP	HIGH	Development team could communicate and co-operate with each	
		other very well	
PCAP	HIGH	Development team has shown themselves to be capable of	
		analyzing, designing and implementing the feature	
PCON	NOMINAL	Not quite risky as it is a 12-week project and team members are	
		committed to course guidelines	
APEX	NOMINAL	Development team has relevant professional/academic	
		experience in building software applications	
LTEX	NOMINAL	Development team has prior experience of building applications	
		in Python	
PLEX	LOW	Development team has considerable experience working on	
		PostGIS and Postgres technologies	
TOOL	NOMINAL	Team uses various project management tools like GitHub for	
		maintaining repos, Jira for tracking the tasks and defects and MS	
		Project for project planning	
SITE	HIGH	Team consists of 6 on-campus and 1 off-campus student. Team	
		collaboration has never been a problem as the team is proficient	
		in using tools for video conferencing and exchanging emails for	
		communication	
SCED	NOMINAL	The schedule is fixed for 12 weeks in Fall semester	

Visualization Module cost driver rationale

Cost Driver	Value	Rationale	
RELY	NOMINAL	Visualization is important as it provides the user to view the	
		output of the algorithm i.e. turf cutting in a map view. Plan is to	
		plugin the data into visualization tools like mapbox/deck.gl	
DATA	NOMINAL	Around 300 SLOC for integration with above mentioned tools	
DOCU	NOMINAL	Because the development process follows ICSM, the document	
		for life-cycle needs is normal.	
CPLX	HIGH	Quite complex to integrate with visualization tools/libraries	
RUSE	LOW	Required for verification during development cycle. May or may	
		not be required after integrating with actual output module	
TIME	NOMINAL	As we are using existing libraries, execution time will be less	
STOR	NOMINAL	No additional storage is required	
PVOL	HIGH	Browser upgrades could be a possible risk	
ACAP	HIGH	Development team could communicate and co-operate with each	
		other very well	
PCAP	HIGH	Development team has shown themselves to be capable of	
		analyzing, designing and implementing the feature	

PCON	NOMINAL	Not quite risky as it is a 12-week project and team members are		
		committed to course guidelines		
APEX	NOMINAL	Development team has relevant professional/academic		
		experience in building software applications		
LTEX	NOMINAL	Development team has prior experience of building applications		
		in Python		
PLEX	LOW	Development team has considerable experience working on the		
		visualization tools/libraries mentioned above		
TOOL	NOMINAL	Team uses various project management tools like GitHub for		
		maintaining repos, Jira for tracking the tasks and defects and MS		
		Project for project planning		
SITE	HIGH	Team consists of 6 on-campus and 1 off-campus student. Team		
		collaboration has never been a problem as the team is proficient		
		in using tools for video conferencing and exchanging emails for		
		communication		
SCED	NOMINAL	The schedule is fixed for 12 weeks in Fall semester		

Testing Framework Module cost driver rationale

Cost Driver	Value	Rationale	
RELY	HIGH	Testing is a fairly important component as it defines the quality	
		of the product. Testing framework must be good enough to catch	
		any bugs and ensure that the product is working as expected	
DATA	HIGH	Requires good amount of test data to test all modules of the	
		product individually and integration between them.	
		Around 1200 SLOC including both unit and integration test cases	
DOCU	NOMINAL	Because the development process follows ICSM, the document	
		for life-cycle needs is normal.	
CPLX	HIGH	Unit tests to verify working of each module separately and	
		integration with one another to test the end to end functionality	
RUSE	NOMINAL	Could be reused/extended by maintainer if there comes a need to	
		verify any issues or test any additional functionality	
TIME	NOMINAL	Doesn't take much time for test execution	
STOR	NOMINAL	No additional storage is required	
PVOL	NOMINAL	Test scripts are not too dependent on the underlying platform	
ACAP	HIGH	Development team could communicate and co-operate with each	
		other very well	
PCAP	HIGH	Development team has shown themselves to be capable of	
		analyzing, designing and implementing the feature	
PCON	NOMINAL		
		committed to course guidelines	
APEX	NOMINAL	Development team has relevant professional/academic	
		experience in building software applications	
LTEX	NOMINAL	Development team has prior experience of building and verifying	
		applications in Python	

PLEX	LOW	Development team has considerable experience working on	
		testing frameworks	
TOOL	NOMINAL	Team uses various project management tools like GitHub for	
		maintaining repos, Jira for tracking the tasks and defects and MS	
		Project for project planning	
SITE	HIGH	Team consists of 6 on-campus and 1 off-campus student. Team	
		collaboration has never been a problem as the team is proficient	
		in using tools for video conferencing and exchanging emails for	
		communication	
SCED	NOMINAL	The schedule is fixed for 12 weeks in Fall semester	

COCOMO Estimation Result

COCOMO II Analysis Interpretation

We are on a 12-week schedule which drives the development of a set of core capabilities and the above estimates show the effort required for the project.

According to COCOMO II estimates for CSCI 577 for a 12-week schedule, one team member effort=1.67 COCOMO II person months. The pessimistic effort from the COCOMO estimation above is 12.3, so the total team members needed for this project = 12.3/1.67 = 7.36

Since there is only a fractional difference (7.36 - 7 = 0.36) between the actual number of people in the team and the pessimistic effort estimation above, we would be able to finish the project in time.

(2) <u>Differences rationale</u>

We had few differences in driver ratings between the versions of cost estimation provided by LCP and V&V.

Driver	LCP	V&V	Reasoning	Resolution
PVOL for	HIGH	NOMINAL	LCP thinks it is	Upon
Input module			HIGH because input	discussion,
			data is critical for	V&V agreed
			the product	to the
			functionality and it	rationale
			needs to be securely	provided by
			stored. Any	LCP
			upgrades/changes to	
			the database/server	
			may cause loss of	
			data	
TOOL in all	LOW	NOMINAL	V&V thinks that	Upon
modules			team needs to have	discussion,
			good knowledge in	LCP agreed to
			using the tools used	the rationale
			for project	provided by
			management	V&V