1. 有 5 个进程 P1, P2, P3, P4, P5, 它们的到达时间和服务时间分别为 P1(0,30), P2(10,60), P3(20,40), P4(30,50), P5(50,30), 忽略 I/O以及其他时间开销,若分别采用最短进程优先算法、非抢占式多级反馈队列调度算法(进程最初进入第1 级,执行完一个时间片后进入第 2 级,以此类推,第 i 级队列的时间片为 10*i)。请计算各进程的完成时间、周转时间、平均周转时间(四舍五入,保留一位小数),在答题纸上列表作答

进程	到达时间	服务时间
P1	0	30
P2	10	60
P3	20	40
P4	30	50
P5	50	30

调度算法	进程	P1	P2	Р3	P4	P5	
	完成时间	30	210	70	150	100	
最短进程优先	周转时间	30	200	50	120	50	
	平均周转时间			90		150	
	完成时间	60	180	190	210	150	
非抢占式多级反馈队列	周转时间	60	170	170	180	100	
	平均周转时间			136			

非抢占式多级反馈队列计算方式:

解析:到达时间不一样

非抢占式多级反馈算法: 第一级队列时间片是 10 * 1 = 10; 第二级队列时间片是 10 * 2 = 20; 第三级是 10 * 3 = 30

也就是一级队列只能执行10个时间单位,二级队列只能执行20个时间单位....

1. **P1(0 时刻到达)**,**第 1 级执行 10(0 - 10)**, **剩余30 - 10 = 20(40 - 60)** 进**行第 2 级**,完成,**完成时间 = 60**,检查第一级队列,P5 到达,调度P5,然后检查第二级队列,调度 P2

- 2. **P2(10 时刻到达),第 1 级执行 10(10 20)**, 剩余60 10 = 50(70 90) 进行第 2 级, 剩余60 - 10 - 20 = 30(150 - 180)进行第 3 级, 完成, 完成 时间180
- 3. **P3(20 时刻到达),第 1 级执行 10(20 30)**, 剩余40 10 = 30(90 110) 进行第 2 级, 剩余40 10 20 = 10(180-190)进行第 3 级,完成,完成时间190
- 4. P4(30 时刻到达),第 1 级执行 10(30 40),剩余50 10 = 40(110 130)进行第 2 级,剩余50 10 20 = 20(190 210)进行第 3 级,完成,完成时间210
- 5. **P5(50 时刻到达),第 1 级执行 10(60-70)**, 剩余30 10 = 20(130 150) 进行第 2 级,完成,**完成时间150**

重点: 当时间来到 40 时刻时, P5 还未到, 第1级队列为空, 去执行第 2 级队列

2. 有 5 个进程 P1、P2、P3、P4和 P5,它们在 0 时刻同时依次进入就绪队列,其执行时间和优先数(优先数小的进程优先级高)

	执行时	优先		FCFS		最高优先级		
	的 即	数	开始时 间	完成时 间	周转时 间	开始时 间	完成时 间	周转时 间
P1	5	3	0	5	5	10	15	15
P2	7	2	5	12	12	3	10	10
Р3	3	1	12	15	15	0	3	3
P4	8	4	15	23	23	15	23	23
P5	10	5	23	33	33	23	33	33

- 1. 计算先来先服务算法(FCFS)下各进程的周转时间和平均周转时间 (5 + 12 + 15 + 23 + 33) / 5 = 17.6
- 计算最高优先级算法下各进程的周转时间和平均周转时间
 (15 + 10 + 3 + 23 + 33) / 5 = 16.8
- 3. 单 CPU 的多道批处理环境下,有四个进程 P1、P2、P3、P4, 到达系统的时刻 t 和运行时间如题表 36 所示,忽略进程切换等其他开销

	题 36 表		
进程	到达时刻 t	运行时间	
P1	0	6	
P2	1	2	
P3	1	4	
P4	3	2	

- 1. 0时刻只有 p1 到达所以运行 p1, 运行 1 个时间单位
 - 1. 1 时刻 p2、p3 到达,因为是 抢占式 ,p2 的运行时间最短优先运行 p2,运行两个时间单位
 - 2. 3 时刻 p2 运行完成,p2 的周转时间是 3 1 = 2 , 并且 p4 到达,p1 运行时间剩余 5 个时间单位,p3 运行时间 4 个时间单位,p4 运行时间 2 个时间单位由于是抢占式运行 p4
 - 3. 3~5 时刻, p4 运行完成, 5 3 = 2
 - 4. 5 时刻, p1 剩余 5 个时间单位, p3 剩余 4 个时间单位, 所以运行 p3, 9 1 = 8
 - 5. 9时刻,运行p1 14 0 = 14
 - 6. 平均周转时间(2+2+8+14)/4=6.5
- 2. 若 t = 2 时,对该 4 个进程开始进行调度,采用最短作业优先调度算法,最先选中运行的进程是哪一个?该进程的带权周转时间是多少(四舍五入,保留两位小数)

在 t=2 的时候,CPU 开始调度,也就是在 t=2 以前所有进程处于就绪状态,虽然p1、p2、p3 到达,但是 P1、P2、P3 不会执行,P4 没有到达,在 2 时刻只能运行 P1、P2、P3 中的一个,采用最短作业优先调度是非抢占式的,P2 的运行时间最短所以最先运行 p2

带权周转时间 = 周转时间 / 运行时间

p2 的完成时间是 t + 2 = 4

周转时间 = 完成时间 - 到达时间

4 - 1 = 3

3/2 = 1.5