4. MULTIVARIATE LINEAR REGERESSION:

Multiple features (variables).

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)				
	×2	×3	*4	9				
2104	5	1	45	460 7				
-> 1416	3	2	40	232 / M= 47				
1534	3	2	30	315				
852	2	1	36	178				
Notation:	⋆	1	1	$\frac{1}{2} \left(\frac{1}{2} \right) = \left[\frac{3}{2} \right] \left(\frac{3}{2} \right) = \left[\frac{3}{2}$				
$\rightarrow n = nu$	<u>~</u> ≥ ∈							
$\longrightarrow x^{(i)} = \inf$	e. (2) [40]							
$\Rightarrow x_j^{(i)}$ = value of feature \underline{j} in \underline{i}^{th} training example. \checkmark $\underbrace{3} = 2$								

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define
$$x_0 = 1$$
. $(x_0) = 1$. $(x_0) =$

Multivariate linear regression.

X = features vector or design vector

 Θ^T = transpose of Θ

Θ = parameter vector

m =the number of training examples

n =the number of features

$$h_{ heta}(x) = \left[eta_0 \qquad heta_1 \qquad \dots \qquad eta_n \,
ight] \left[egin{array}{c} x_0 \ x_1 \ dots \ x_n \end{array}
ight] = heta^T x$$

In order to develop intuition about this function, we can think about θ_0 as the basic price of a house, θ_1 as the price per square meter, θ_2 as the price per floor, etc. x_1 will be the number of square meters in the house, x_2 the number of floors, etc.

Cost function:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\{$$
 \rightarrow $\theta_j := \theta_j - \alpha$ $\theta_j := \theta_j - \alpha$ (simultaneously update for every $j = 0, \dots, n$)

➤ In linear regression with ONE VARIABLES: n=1

→ thus n+1 = 2 → for
$$\Theta_0$$
 and Θ_1

For **multiple variables**: n > 1**7** New algorithm $(n \ge 1)$: Repeat { (simultaneously update $heta_j$ for $j=0,\ldots,n$) $\underline{\theta_0} := \theta_0 - \alpha \frac{1}{m} \sum_{i=1} (h_\theta(x^{(i)})$ $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$ $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$

Feature Scaling

Idea: Make sure features are on a similar scale.

➤ Used when all input var. have different range of allowed values. This makes optimizing slower. Its tedious to find the local minima.

Example: if diff ranges are used the contours are quite steep type

E.g.
$$x_1$$
 = size (0-2000 feet²) \leftarrow
 x_2 = number of bedrooms (1-5) \leftarrow

 θ will descend quickly on small ranges and slowly on large ranges, and so will oscillate inefficiently down to the optimum when the variables are very uneven.

To solve this: we can change scaling of x_1 and x_2

This will make the contours more **balanced**.

This is done to bring approximate values of all x_i near a same range.

$$-1 \le x_i \le 1$$

-1 and 1 are not necessary for all x_i ...we can work with nearly equal ranges, like -3 to 3, etc... **comparable ranges**

> We can **speed up gradient descent** by having each of our input values in roughly the same range.

Ranges that would work:

Ranges that won't work: if ranges are too larger or too smaller than $\pm\,1$

NOTE: $x_0 = 1$ always. Its scaling is not changed.

- > There are two ways to change the ranges of x:
 - Feature scaling
 - Mean normalization

Feature Scaling

Get every feature into approximately a $(-1 \le x_i \le 1)$ range.

$$\Rightarrow x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$\Rightarrow x_2 = \frac{\text{number of bedrooms}}{5}$$

$$0 \le \times_{i} \le (6 \le 7) = 1$$

Feature scaling involves dividing the input values by the range (i.e. the *maximum value minus the minimum value*) of the input variable, resulting in a new range of just 1.

Mean normalization

Replace $\underline{x_i}$ with $\underline{x_i - \mu_i}$ to make features have approximately zero mean (Do not apply to $\overline{x_0 = 1}$).

E.g.
$$x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5}$$

For x1 : average size = 1000

Range = 2000 = upper limit – lower limit

For x2 : average size = 2

Range = 5

 \triangleright In mean normalization we try to bring x_i in approx. range:

$$[-0.5 \le x_1 \le 0.5] -0.5 \le x_2 \le 0.5$$

$$x_i := rac{x_i - \mu_i}{s_i}$$

Where μ_i is the **average** of all the values for feature (i) and s_i is the range of values (max - min), or s_i is the standard deviation.

Note that dividing by the range, or dividing by the **standard deviation**, give different results

PRICTICAL TIPS: for grad desc.

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly:

The goal is to minimize J

Plot **J vs no of iterations**, (not J vs Θ): J should decrease after every iteration. In this curve, $J(\Theta)$ is the vertical height of that point.

After a time, the **curve flattens** – denoting the convergence has occurred.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

If $J(\theta)$ ever increases, then you probably need to decrease α .

Making sure gradient descent is working correctly.

- For sufficiently small α , $J(\theta)$ should decrease on every iteration. \leq
- But if lpha is too small, gradient descent can be slow to converge.

All these are wrong curves for $J(\Theta)$ vs iterations. Solution: use smaller values of α .

But not **too small** α as it **slows** the **convergence**. And not too large either: as it may not converge.

To choose α , try

$$\dots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.03, 1, \dots$$

DEFINING NEW FEATURES:

Housing prices prediction

$$h_{\theta}(x) = \theta_{0} + \theta_{1} \times frontage + \theta_{2} \times depth$$

Area

 $\times = frontage \times depth$
 $h_{\theta}(x) = \theta_{0} + \theta_{1} \times frontage + \theta_{2} \times depth$

POLYNOMIAL REGRESSION: Non-linear hypothesis

Polynomial regression

- → We can use different hypothesis equations for a single dataset. Whichever best fits logically.
 - → For a multivariate: we can convert all features into functions of each other:

We can **combine** multiple features into one. For example, we can combine x_1 and x_2 into a new feature x_3 by taking $x_1 \cdot x_2$.

Choice of features: We can convert our linear hypothesis into a non-linear one

For example, if our hypothesis function is $h_{ heta}(x)= heta_0+ heta_1x_1$ then we can create additional features based on x_1 , to get the quadratic function

$$h_ heta(x)= heta_0+ heta_1x_1+ heta_2x_1^2$$
 or the cubic function $h_ heta(x)= heta_0+ heta_1x_1+ heta_2x_1^2+ heta_3x_1^3$

Size (x)
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

$$= \theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$$

$$\Rightarrow x_1 = (size)$$

$$\Rightarrow x_2 = (size)^2$$

$$\Rightarrow x_3 = (size)^3$$
Size: (-1660
$$Size: (-1660)$$

$$Size: (-1660)$$

$$Size: (-1660)$$

$$Size: (-1660)$$

IMPORTANT: if you choose your features this way then feature scaling becomes very important.

eg. if x_1 has range 1 - 1000 then range of x_1^2 becomes 1 - 1000000 and that of x_1^3 becomes 1 - 1000000000

Thus, we find the **best fitting curve** for $h(\Theta)$.

Computing Parameters Analytically:

Up until now, we are using gradient descent Algorithm.. but now we will use new Algo: **NORMAL EQUATIONS**

 \Rightarrow NORMAL EQUATIONS: method to solve for Θ analytically... unlike grad desc, no need to iterate to minimize the J(Θ).. its minimized directly in one go.

Intuition: for a **single parameter** Θ:

Intuition: If 1D $(\theta \in \mathbb{R})$

$$J(\theta) = a\theta^2 + b\theta + c$$

$$\frac{\partial}{\partial \phi} J(\phi) = \dots \quad \stackrel{\text{Set}}{=} O$$
Solve for Θ

For multiple parameters:

 Θ is a set of m Θ 's.

 \Rightarrow For every $\Theta_i \Rightarrow$ we set partial derivative of J wrt to $\Theta_i == 0$

- Then we find Θ corresponding to that eqn
- This is done for each Θ

$$\underbrace{\frac{\theta \in \mathbb{R}^{n+1}}{J(\theta_0, \theta_1, \dots, \theta_m)}} = \underbrace{\frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2}_{i=1}$$

$$\underbrace{\frac{\partial}{\partial \theta_j} J(\theta)}_{i=1} = \cdots \stackrel{\text{Set}}{=} 0 \quad \text{(for every } j)$$

Solve for $\theta_0, \theta_1, \dots, \theta_n$

Examples: m = 4.

	J	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)		
	x_0	x_1	x_2	x_3	x_4	y		
	1	2104	5		45	460	٦	
	1	1416	3	2	40	232		
	1	1534	3	2	30	315		
	1	852	2	1	_36	178		
$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$ $M \times (n+1)$								

m = number of example datas

n = no of features in input

n + 1 => we give an extra feature **x0=1** to every example.

$$\theta = (X^T X)^{-1} X^T y$$

⇒To construct the X matrix from x_i vectors:

 Transpose them and fill into the X matrix, Such that the x's belonging to a single example.. comes in row

$$\underline{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}} \in \mathbb{R}^{n+1}$$

$$(\text{design} \\ \text{Mothan})$$

$$(\text{design} \\ \text{Mothan})$$

E.g. If
$$\underline{x^{(i)}} = \begin{bmatrix} 1 & \chi_1^{(i)} \\ \chi_1^{(i)} \end{bmatrix} \times z = \begin{bmatrix} 1 & \chi_1^{(i)} \\ 1 & \chi_1^{(2)} \\ \vdots & \ddots & \vdots \\ \chi_{1}^{(m)} \end{bmatrix} = \begin{bmatrix} y_1^{(i)} \\ y_2^{(i)} \end{bmatrix}$$

In above example: for all m training sets there are only 2 features x0 and x1.

X' = transpose of X

 $O(kn^2)$

⇒ Feature scaling is not required in Normal Equations method(algo)..Unlike in gradient desc => in which its req

WHEN TO USE GRAD DESC v/s NORMAL EQN:

m training examples, n features.

O (n^3) , need to calculate inverse of X^TX

When no. of features is small (upto 10^5) => use normal eqns.

As for large value of n=> X' * X will be a n x n matrix: and we have to find its inverse:

Inverse is of complexity $O(n^3)$ => thus for large no. of input features, grad desc is better way to converge to minima.

NON INVERTIBILITY PROBLEM IN NORMAL EQN METHOD:

Sometimes X' * X is not inventible (singular/degenerate)..:

REASONS:

Redundant features – two columns or rows are proportional in the X' * X matrix. (i.e. they are linearly dependent)

⇒**SOLUTION**: delete one of the dependent features.

Too many features – the number of features is too large as compares to no of examples... (m << n)

⇒ **SOLUTION**: delete some features or Use **REGULARIZATION TECHNIQUE**.

\$OCTAVE: pinv(X' * X) * X' * y

- \Rightarrow this would still give the right value of Θ . (Even if X' * X is non invertible).
- ⇒pinv() is pseudo inverse
- ⇒inv() is just inverse