SQL EDA

June 7, 2024

```
[1]: ##Assignment: Exploratory Data Analysis with SQL
     install.packages("RSQLite")
     library("RSQLite")
    Updating HTML index of packages in '.Library'
    Making 'packages.html' ... done
[2]: library(RJDBC)
    Loading required package: DBI
    Loading required package: rJava
[3]: install.packages("RODBC")
     library(RODBC)
    Updating HTML index of packages in '.Library'
    Making 'packages.html' ... done
[4]: #Enter the values for you database connection
     dsn_driver = "com.ibm.db2.jcc.DB2Driver"
     dsn_database = "bludb"
                                        # e.g. "bludb"
     dsn_hostname = "<54a2f15b-5c0f-46df-8954-.databases.appdomain.cloud>"
                                                                                 # e.g.⊔
      →replace <yourhostname> with your hostname
     dsn port = ""
                                   # e.g. "3273"
     dsn_protocol = "TCPIP"
                                        # i.e. "TCPIP"
     dsn_uid = "\langle zjh17769\rangle"
                                           # e.g. replace <username> with your userid
     dsn_pwd = "<zcwd4+8gbq9bm5k4>"
                                                 # e.g. replace <password> with your_
      \hookrightarrow password
     dsn_security <- "ssl"</pre>
[5]: cc <- JDBC("com.ibm.db2.jcc.DB2Driver", "/home/jupyterlab/.rlang/db2jcc-db2jcc4.
     jdbc_path <- paste("DRIVER=",dsn_driver,</pre>
                        ";DATABASE=",dsn_database,
                        "; HOSTNAME=", dsn_hostname,
                        ";PORT=",dsn_port,
                        ";PROTOCOL=",dsn_protocol,
                        ";UID=",dsn_uid,
```

```
";PWD=",dsn_pwd,
                        "; SECURITY=", dsn_security,
                          sep="")
[6]: #Connect to the database
     conn <- dbConnect(RSQLite::SQLite(), "seoul_bike_sharing.sqlite")</pre>
[7]: attributes(conn)
    $ptr
    <pointer: 0x5637c41174d0>
    $dbname
    [1] "seoul_bike_sharing.sqlite"
    $loadable.extensions
    [1] TRUE
    $flags
    [1] 70
    $vfs
    [1] ""
    $ref
    <environment: 0x5637c109d370>
    $bigint
    [1] "integer64"
    $extended_types
    [1] FALSE
    $class
    [1] "SQLiteConnection"
    attr(,"package")
    [1] "RSQLite"
[8]: conn.info <- dbGetInfo(conn)
     print(conn.info["db.version"])
     print(conn.info["dbname"] )
    $db.version
    [1] "3.41.2"
    $dbname
```

```
[9]: dbDataType(RSQLite::SQLite(), 1)
      dbDataType(RSQLite::SQLite(), 1L)
      dbDataType(RSQLite::SQLite(), "1")
      dbDataType(RSQLite::SQLite(), TRUE)
      dbDataType(RSQLite::SQLite(), list(raw(1)))
      sapply(datasets::quakes, dbDataType, dbObj = RSQLite::SQLite())
     'REAL'
     'INTEGER'
     'TEXT'
     'INTEGER'
     'BLOB'
                        'REAL' depth 'INTEGER' mag 'REAL' stations
                                                                            'INTEGER'
     lat
          'REAL' long
[10]: df1 <- dbExecute(conn,</pre>
                          "CREATE TABLE SEOUL_BIKE_SHARING (
                                             DATE NOT NULL,
                                             RENTED_BIKE_COUNT NOT NULL,
                                             HOUR NOT NULL,
                                             TEMPRETURE FLOAT(6),
                                             HUMIDITY NOT NULL,
                                             WIND_SPEED FLOAT(6),
                                             VISIBILITY NOT NULL,
                                            PRESSURE INTEGER NOT NULL,
                                            DEW POINT TEMPRETURE FLOAT(6),
                                             SOLAR RADATION FLOAT(6),
                                             SEASON INTEGER VARCHAR(20) NOT NULL,
                                            HOLIDAY INTEGER VARCHAR(20) NOT NULL,
                                            FUNCTION_DAY INTEGER VARCHAR(20) NOT NULL
                                             )",
                          errors=FALSE
          if (df1 == -1){
              cat ("An error has occurred.\n")
              msg <- odbcGetErrMsg(conn)</pre>
              print (msg)
          } else {
              cat ("Table was created successfully.\n")
```

Table was created successfully.

[1] "seoul_bike_sharing.sqlite"

```
[11]: df2 <- dbExecute(conn,</pre>
                           "CREATE TABLE CITIES_WEATHER_FORECAST (
                                               CITY INTEGER VARCHAR(20) NOT NULL,
                                               WEATHER INTEGER VARCHAR(20) NOT NULL,
                                               VISIBILTY NOT NULL,
                                               TEMP FLOAT(6),
                                               TEMP_MIN FLOAT(6),
                                               TEMP_MIX FLOAT(6),
                                               PRESSURE INTEGER VARCHAR(20) NOT NULL,
                                               HUMIDITY INTEGER VARCHAR(20) NOT NULL,
                                               WIND SPEED FLOAT(6),
                                               WID_DEG INTEGER VARCHAR(20) NOT NULL,
                                               FORECAST_DATETIME NOT NULL
                                              )",
                           errors=FALSE
                           )
          if (df1 == -1){
              cat ("An error has occurred.\n")
              msg <- odbcGetErrMsg(conn)</pre>
              print (msg)
          } else {
              cat ("Table was created successfully.\n")
```

Table was created successfully.

```
[12]: df3 <- dbExecute(conn,
                           "CREATE TABLE BIKE_SHARING_SYSTEM (
                                              CITY INTEGER VARCHAR(20) NOT NULL,
                                              WEATHER INTEGER VARCHAR(20) NOT NULL,
                                              VISIBILTY NOT NULL,
                                              TEMP FLOAT(6),
                                              TEMP_MIN FLOAT(6),
                                              TEMP_MIX FLOAT(6),
                                              PRESSURE INTEGER VARCHAR(20) NOT NULL,
                                              HUMIDITY INTEGER VARCHAR(20) NOT NULL,
                                              WIND_SPEED FLOAT(6),
                                              WIND_DEG INTEGER VARCHAR(20) NOT NULL,
                                              FORECAST_DATETIME NOT NULL
                                             )",
                           errors=FALSE
          if (df1 == -1){
              cat ("An error has occurred.\n")
              msg <- odbcGetErrMsg(conn)</pre>
```

```
print (msg)
} else {
   cat ("Table was created successfully.\n")
}
```

Table was created successfully.

```
[13]: df4 <- dbExecute(conn,
                           "CREATE TABLE WORLD_CITIES (
                                             CITY INTEGER VARCHAR(20) NOT NULL,
                                             CITY_ASCII INTEGER VARCHAR(20) NOT NULL,
                                             LAT FLOAT(6),
                                             LING FLOAT(6),
                                             COUNTRY INTEGER VARCHAR(20) NOT NULL,
                                             ISO2 VARCHAR(20) NOT NULL,
                                             ISO3 VARCHAR(20) NOT NULL,
                                             ADMIN_NAME VARCHAR(20) NOT NULL,
                                             CAPITAL VARCHAR(20) NOT NULL,
                                             POPULATION NOT NULL,
                                             ID NOT NULL
                                             )",
                           errors=FALSE
                           )
          if (df1 == -1){
              cat ("An error has occurred.\n")
              msg <- odbcGetErrMsg(conn)</pre>
              print (msg)
          } else {
              cat ("Table was created successfully.\n")
          }
```

Table was created successfully.

```
[14]: #check list of tables in the present db.
dbListTables(conn)
```

1. 'BIKE_SHARING_SYSTEM' 2. 'CITIES_WEATHER_FORECAST' 3. 'SEOUL_BIKE_SHARING' 4. 'WORLD_CITIES'

```
[16]: df1 <- read.csv('seoul_bike_sharing.csv')
    df2 <- read.csv('cities_weather_forecast.csv')
    df3 <- read.csv('bike_sharing_systems.csv')
    df4 <- read.csv('world_cities.csv')
    head(df1)
    head(df2)
    head(df3)
    head(df4)</pre>
```

		DATE	RENTE	D_B	BIKE_CO	UNT H	OUR	TEMPE	RATUR	E HUI	MIDITY	
		<fct $>$	<int $>$			<:	int>	<dbl></dbl>		<int< td=""><td colspan="2"><int$>$</td></int<>	<int $>$	
-	1	01/12/2	017 254			0		-5.2		37		
A data.frame: 6×14	$2 \mid$	01/12/2	017 204			1		-5.5		38		
A data. Hame. 0 × 14	3	01/12/2	017 173			2		-6.0		39		
	4	01/12/2	017 107			3		-6.2		40		
	5	01/12/2	017 - 78			4		-6.0		36		
	6	01/12/2	017 100			5		-6.4		37		
		CITY	WEATHER	VIS	SIBILITY	TEMP	TEM	IP MIN	TEMP	MAX	PRES	
		<fct $>$	<fct></fct>	<in< td=""><td>.t></td><td><dbl></dbl></td><td><db < td=""><td>l></td><td><dbl$>$</td><td></td><td><int></int></td></db <></td></in<>	.t>	<dbl></dbl>	<db < td=""><td>l></td><td><dbl$>$</td><td></td><td><int></int></td></db <>	l>	<dbl $>$		<int></int>	
_	1	Seoul	Clear	100	00	12.32	10.91		12.32		1015	
A 1 + C	$_2$	Seoul	Clear	100	00	11.48	9.81		11.48		1016	
A data.frame: 6×12	3	Seoul	Clouds	100	00	9.99	8.82		9.99		1015	
	4	Seoul	Clouds	100	00	7.87	7.87		7.87		1014	
	5	Seoul	Clouds	100	00	10.09	10.09)	10.09		1014	
	6	Seoul	Rain	100	00	9.74	9.74		9.74		1014	
		COUNT	CRY CITY			SYSTE	EM	BICYC	CLES			
		<fct></fct>	<fct></fct>			<fct></fct>		<int></int>	,225			
_	1	Albania				NA		200				
	$_{2}$	Argentin		za		NA		40				
A data.frame: 6×4	3	Argentin			, Santa Fe	Biciuda	ad	80				
	$_{4}$	Argentin			·	Serttel						
	5	Argentin				NA		480				
	6	Australi				PBSC	& 8D	676				
A data.frame: 6×11		CITY	CITY_AS	SCII	LAT	LNG	CO	UNTRY	ISO2	ISO3	ADM	
		<fct></fct>	<fct></fct>	, 011	<dbl></dbl>	<dbl></dbl>	<fc< td=""><td></td><td><fct></fct></td><td><fct></fct></td><td><fct></fct></td></fc<>		<fct></fct>	<fct></fct>	<fct></fct>	
	1	Tokyo	Tokyo		35.6897	139.6922			JP	JPN	Tōkyō	
	$_2$	Jakarta	Jakarta		-6.2146	106.8451	-	onesia	ID	IDN	Jakar	
	3	Delhi	Delhi		28.6600	77.2300	Ind		IN	IND	Delhi	
	$_{4}$	Mumbai			18.9667	72.8333	Ind		IN	IND	Mahā	
	5	Manila	Manila		14.5958	120.9772		lippines	PH	PHL	Manil	
	$\begin{vmatrix} 6 \end{vmatrix}$	Shangha			31.1667	121.4667			CN	CHN	Shang	
dhWriteTable(conn	11.6	מבטוו די	VE QUADINOU	4 £ ·	1 01107117	i + a-TDIII	, her	dor - TE	oue)			

```
[17]: dbWriteTable(conn, "SEOUL_BIKE_SHARING", df1, overwrite=TRUE, header = TRUE)
dbWriteTable(conn, "CITIES_WEATHER_FORECAST", df2, overwrite=TRUE, header = 
TRUE)
dbWriteTable(conn, "BIKE_SHARING_SYSTEM", df3, overwrite=TRUE, header = TRUE)
dbWriteTable(conn, "WORLD_CITIES", df4, overwrite=TRUE, header = TRUE)
```

```
COUNT(DATE)
     A data.frame: 1 \times 1 <int>
                         8465
[19]: #Task 2 - Operational Hours Determine how many hours had non-zero rented bike
      dbGetQuery(conn, 'SELECT COUNT(HOUR) COUNT_HOUR
      FROM SEOUL_BIKE_SHARING
      WHERE RENTED BIKE COUNT != 0')
                         COUNT_HOUR
     A data.frame: 1 \times 1 <int>
                         8465
[20]: #Task 3 - Weather Outlook Query the the weather forecast for Seoul over the
       →next 3 hours
      dbGetQuery(conn,'SELECT *
      FROM CITIES_WEATHER_FORECAST
      ORDER BY FORECAST_DATETIME
      LIMIT 1')
                         CITY
                                 WEATHER VISIBILITY TEMP
                                                                   TEMP_MIN TEMP_MAX PRESSUE
     A data.frame: 1 \times 12 < chr> < chr>
                                              \langle int \rangle
                                                           <dbl>
                                                                   <dbl>
                                                                                 <dbl>
                         Seoul
                                 Clear
                                              10000
                                                           12.32
                                                                   10.91
                                                                                 12.32
[21]: #Task 4 - Seasons Find which seasons are included in the seoul bike sharing
       \hookrightarrow dataset
      dbGetQuery(conn, 'SELECT DISTINCT SEASONS
      FROM SEOUL_BIKE_SHARING')
                         SEASONS
                         <chr>
                         Winter
     A data.frame: 4 \times 1
                         Spring
                         Summer
                         Autumn
[22]: #Task 5 - Date Range Find the first and last dates in the Seoul Bike Sharing
       \rightarrow dataset
      dbGetQuery(conn, 'SELECT MAX(DATE) FIRST_DATE,
              MIN(DATE) LAST_DATE
      FROM SEOUL_BIKE_SHARING')
                         FIRST DATE LAST DATE
     A data.frame: 1 \times 2 <chr>
                                        <chr>
```

<int>

1015

01/01/2018

31/12/2017

```
[23]: #Task 6 - Subquery - 'all-time high' determine which date and hour had the most
       ⇔bike rentals
      dbGetQuery(conn, "SELECT MAX(DATE) ,
                              MAX (HOUR)
      FROM SEOUL_BIKE_SHARING ")
                        MAX(DATE) MAX(HOUR)
                                      <int>
     A data.frame: 1 \times 2 <chr>
                        31/12/2017
[24]: #Task 7 - Hourly popularity and temperature by season determine the average
      →hourly temperature and
      #the average number of bike rentals per hour over each season. List the top ten
       ⇔results by average
      #bike count.
      dbGetQuery(conn,'SELECT SEASONS,
              HOUR,
              AVG(TEMPERATURE) AVG_TEMP,
              AVG(RENTED_BIKE_COUNT) AVG_RENTED_BIKE_COUNT
      FROM SEOUL_BIKE_SHARING
      GROUP BY SEASONS, HOUR
      ORDER BY AVG_RENTED_BIKE_COUNT DESC
      LIMIT 10')
                         SEASONS HOUR AVG_TEMP AVG_RENTED_BIKE_COUNT
                         <chr>
                                    \langle int \rangle
                                             <dbl>
                                                          <dbl>
                         Summer
                                                          2135.141
                                    18
                                             29.38791
                         Autumn
                                    18
                                            16.03185
                                                          1983.333
                         Summer
                                    19
                                            28.27378
                                                          1889.250
                         Summer
                                    20
                                            27.06630
                                                          1801.924
     A data.frame: 10 \times 4
                         Summer
                                    21
                                            26.27826
                                                          1754.065
                         Spring
                                    18
                                            15.97222
                                                          1689.311
                         Summer
                                    22
                                            25.69891
                                                          1567.870
                                    17
                         Autumn
                                            17.27778
                                                          1562.877
```

```
[25]: #Task 8 - Rental Seasonality Find the average hourly bike count during each

→ season

dbGetQuery(conn,'SELECT SEASONS,

HOUR,

AVG(RENTED_BIKE_COUNT) AVG_BIKE_COUNT,

MIN(RENTED_BIKE_COUNT) MIN_BIKE_COUNT,

MAX(RENTED_BIKE_COUNT) MAX_BIKE_COUNT

FROM SEOUL_BIKE_SHARING

GROUP BY HOUR, SEASONS

LIMIT 10')
```

30.07691

15.06346

1526.293

1515.568

Summer

Autumn

17

19

	SEASONS	HOUR	AVG_BIKE_COUNT	MIN_BIKE_COUNT	MAX_BIKE_C
A data.frame: 10×5	<chr $>$	<int $>$	<dbl></dbl>	<int $>$	<int $>$
	Autumn	0	709.4375	119	1336
	Spring	0	481.0889	22	1089
	Summer	0	899.0652	26	1394
	Winter	0	165.1778	42	342
	Autumn	1	552.5000	144	1001
	Spring	1	363.9444	23	837
	Summer	1	698.7717	28	1088
	Winter	1	159.0556	43	337
	Autumn	2	377.4750	55	785
	Spring	2	252.9667	9	590
#Task 9 - Weather	Seasonalit	y Consid	ler the weather over	each season. Onu	

```
[26]:
      →average, what were the
      #TEMPERATURE, HUMIDITY, WIND SPEED, VISIBILITY, DEW POINT TEMPERATURE, __
       \hookrightarrow SOLAR_RADIATION,
      #RAINFALL, and SNOWFALL per season?
      dbGetQuery(conn,'SELECT SEASONS,
              AVG(TEMPERATURE) AVG_TEMP,
              AVG(HUMIDITY) AVG HUMIDITY,
              AVG(WIND_SPEED) AVG_WIND_SPEED,
              AVG(VISIBILITY) AVG_VISIBILITY,
              AVG(DEW_POINT_TEMPERATURE) AVG_DEW_POINT_TEMP,
              AVG(SOLAR_RADIATION) AVG_SOLAR_RADIATION,
              AVG(RAINFALL) AVG_RAINFALL,
              AVG(SNOWFALL) AVG_SNOWFALL,
              AVG(RENTED_BIKE_COUNT) AVG_RENTED_BIKE_COUNT
      FROM SEOUL_BIKE_SHARING
      GROUP BY SEASONS
      ORDER BY AVG_RENTED_BIKE_COUNT')
```

	SEASONS	AVG_TEMP	AVG_HUMIDITY	AVG_WIND_SPEED	AVG_VISIBIL
A data.frame: 4×10^{-1}	<chr $>$	<dbl></dbl>	<dbl $>$	<dbl></dbl>	<dbl></dbl>
	Winter	-2.540463	49.74491	1.922685	1445.987
	Spring	13.021685	58.75833	1.857778	1240.912
	Autumn	13.821580	59.04491	1.492101	1558.174
	Summer	26.587711	64.98143	1.609420	1501.745

```
[27]: #Task 10 - Total Bike Count and City Info for Seoul Use an implicit join across⊔

the WORLD_CITIES

#and the BIKE_SHARING_SYSTEMS tables to determine the total number of bikes⊔

avaiable in Seoul,

#plus the following city information about Seoul: CITY, COUNTRY, LAT, LON,□

POPULATION, in a single view

dbGetQuery(conn, "SELECT CITY_ASCII, BS.COUNTRY, LAT, LNG, POPULATION, BICYCLES⊔

NUM_BICYCLES
```

```
FROM WORLD_CITIES WC, BIKE_SHARING_SYSTEM BS
WHERE WC.CITY_ASCII = BS.CITY
AND
CITY_ASCII = 'Seoul';")
```

```
CITY ASCII COUNTRY
                                          LAT
                                                  LNG
                                                         POPULATION NUM BICYCLES
A data.frame: 1 \times 6 < chr>
                              <chr>
                                          <dbl>
                                                  <dbl>
                                                         <dbl>
                                                                        <int>
                                          37.5833
                 Seoul
                              South Korea
                                                  127
                                                          21794000
                                                                        20000
```

```
[28]: #Task 11 - Find all city names and coordinates with comparable bike scale to
       ⇔Seoul's bike sharing system
      #Find all cities with total bike counts between 15000 and 20000. Return the
      ⇔city and country names,
      #plus the coordinates (LAT, LNG), population, and number of bicycles for each
       \hookrightarrow city.
      dbGetQuery(conn, "SELECT CITY_ASCII, BS.COUNTRY, LAT, LNG, POPULATION, L
       →CAST(BICYCLES AS BIGINT)
      FROM WORLD_CITIES WC, BIKE_SHARING_SYSTEM BS
      WHERE WC.CITY_ASCII = BS.CITY
      AND
      BS.BICYCLES LIKE '15__' OR
      BS.BICYCLES LIKE '16__' OR
      BS.BICYCLES LIKE '17__' OR
      BS.BICYCLES LIKE '18__' OR
      BS.BICYCLES LIKE '19__' OR
      BS.BICYCLES = '20000';")
```

	<cnr></cnr>	<cnr></cnr>	<100>	<101>	<001>	<mt></mt>
	Tokyo	China	35.6897	139.6922	37977000	1600
	Tokyo	China	35.6897	139.6922	37977000	20000
	Tokyo	China	35.6897	139.6922	37977000	20000
	Tokyo	China	35.6897	139.6922	37977000	20000
	Tokyo	China	35.6897	139.6922	37977000	20000
	Tokyo	Denmark	35.6897	139.6922	37977000	1860
	Tokyo	France	35.6897	139.6922	37977000	1750
	Tokyo	France	35.6897	139.6922	37977000	1852
	Tokyo	Kazakhstan	35.6897	139.6922	37977000	1700
	Tokyo	South Korea	35.6897	139.6922	37977000	20000
	Tokyo	Taiwan	35.6897	139.6922	37977000	1695
	Tokyo	United States	35.6897	139.6922	37977000	1833
	Tokyo	United States	35.6897	139.6922	37977000	1800
	Jakarta	China	-6.2146	106.8451	34540000	1600
	Jakarta	China	-6.2146	106.8451	34540000	20000
	Jakarta	China	-6.2146	106.8451	34540000	20000
	Jakarta	China	-6.2146	106.8451	34540000	20000
	Jakarta	China	-6.2146	106.8451	34540000	20000
	Jakarta	Denmark	-6.2146	106.8451	34540000	1860
	Jakarta	France	-6.2146	106.8451	34540000	1750
	Jakarta	France	-6.2146	106.8451	34540000	1852
	Jakarta	Kazakhstan	-6.2146	106.8451	34540000	1700
	Jakarta	South Korea	-6.2146	106.8451	34540000	20000
	Jakarta	Taiwan	-6.2146	106.8451	34540000	1695
	Jakarta	United States	-6.2146	106.8451	34540000	1833
	Jakarta	United States	-6.2146	106.8451	34540000	1800
	Delhi	China	28.6600	77.2300	29617000	1600
	Delhi	China	28.6600	77.2300	29617000	20000
	Delhi	China	28.6600	77.2300	29617000	20000
A data.frame: 345414×6	Delhi	China	28.6600	77.2300	29617000	20000
ri data.frame. 949414 × 0	Demi	Cillia	20.0000	11.2000	25011000	20000
	Cheremoshna	South Korea	51.3894	30.0989	0	20000
	Cheremoshna	Taiwan	51.3894	30.0989	0	1695
	Cheremoshna	United States	51.3894	30.0989	0	1833
	Cheremoshna	United States	51.3894	30.0989	0	1800
	Ambarchik	China	69.6510	162.3336	0	1600
	Ambarchik	China	69.6510	162.3336	0	20000
	Ambarchik	China	69.6510	162.3336	0	20000
	Ambarchik	China	69.6510	162.3336	0	20000
	Ambarchik	China	69.6510	162.3336	0	20000
	Ambarchik	Denmark	69.6510	162.3336	0	1860
	Ambarchik	France	69.6510	162.3336	0	1750
	Ambarchik	France	69.6510	162.3336	0	1852
	Ambarchik	Kazakhstan	69.6510	162.3336	0	1700
	Ambarchik	South Korea	69.6510	162.3336	0	20000
	Ambarchik	Taiwan	69.6510	162.3336	0	1695
	Ambarchik	United States	69.6510	162.3336	0	1833
	Ambarchik		69.6510	162.3336	0	1800
	Nordvik	United States China	74.0165	102.5350 111.5100	0	1600
	Nordvik	China	74.0105 74.0165	111.5100 111.5100	0	20000
	Nordvik	China	74.0105 74.0165	111.5100 111.5100	0	20000
	INUIUVIK	Omna	74.0103	111.0100	U	∠ 0000

CITY_ASCII COUNTRY

<chr>

<chr>

LAT

<dbl>

LNG

<dbl>

<dbl>

POPULATION CAST(BICYC

<int>

[29]: close(conn)

Error in UseMethod("close"): no applicable method for 'close' applied to an object of class "c('SQLiteConnection', 'DBIConnection', 'DBIObject')"

Traceback:

1. close(conn)

[]: