Atividade 4: Controle de Saída Digital com PWM no ESP32 no Simulador Wokwi

Objetivo:

Desenvolver uma dispositivo para controlar 4 LEDs e um buzzer piezoelétrico utilizando o PWM (driver LEDC) do ESP32.

Esta atividade será realizada no simulador Wokwi e deve utilizar a ESP-IDF como framework de desenvolvimento.

Material Necessário:

- Conta no Wokwi (https://wokwi.com/)
- Conhecimento básico de ESP-IDF
- O ESP32 como microcontrolador
- 4 LEDs
- 4 resistores limitadores de corrente
- 1 buzzer piezoelétrico

Passos para a Atividade:

1. Diagrama em Blocos

Elabore o diagrama em blocos representando:

- EESP32-S3: microcontrolador responsável pelo acionamento das saídas PWM.
- LED1, LED2, LED3 e LED4: atuadores luminosos controlados por PWM.
- Buzzer: atuador sonoro controlado por PWM.

2. Esquemático:

Desenhe o circuito esquemático, incluindo:

- 4 LEDs conectados a GPIOs configuradas como saída PWM, cada um em série com seu resistor.
- Buzzer conectado a outra GPIO configurada como saída PWM.
- Alimentação de 3,3 V fornecida pelo ESP32.

3. Configuração do Ambiente de Simulação:

Crie o circuito no Wokwi:

- Acesse o simulador Wokwi e crie um novo projeto.
- Adicione o ESP32-S3 ao projeto.
- Adicione 4 LEDs e seus resistores.
- Adicione o buzzer piezoelétrico.
- Faça as conexões nas GPIOs configuradas para PWM.

4. Desenvolvimento do Código:

Implemente em C com ESP-IDF utilizando o driver LEDC:

- Configure 5 canais PWM (LEDC), um para cada LED e um para o buzzer.
- Configure frequência e resolução:
 - LEDs \rightarrow 1 kHz (brilho suave).
 - Buzzer → frequência variável (500 Hz a 2 kHz).
- Crie funções para:
 - Alterar duty cycle dos LEDs (0% a 100%).
 - Alterar frequência do buzzer (sons diferentes).

Lógica do Programa:

- Fase 1: Fading Sincronizado dos LEDs
 - \circ Todos os LEDs variam o brilho de $0\% \rightarrow 100\% \rightarrow 0\%$ em ciclos.
- Fase 2: Fading Sequencial dos LEDs
 - LED1 faz o ciclo \rightarrow LED2 \rightarrow LED3 \rightarrow LED4, depois retorna.
- Fase 3: Teste Sonoro com o Buzzer
 - o O buzzer emite tons que variam de 500 Hz a 2000 Hz.
 - \circ Frequência sobe gradualmente (500 \rightarrow 2000 Hz) e depois desce.

Observações Importantes

- Todos os LEDs devem iniciar apagados.
- LEDs iniciam apagados (duty = 0%).
- Frequência inicial do buzzer: 1000 Hz.
- O tempo de atualização deve ser configurável via #define (por exemplo: #define DELAY_MS 500).
- A lógica deve estar organizada em funções para facilitar a manutenção do código.
- Utilizar o driver LEDC.