

GUARDA AVANTI

Big Data, nuove competenze per nuove professioni

(Progetto rivolto a laureati in tutte le aree disciplinari, co-finanziato dal Fondo Sociale Europeo Plus 2021-2027 Regione Emilia-Romagna)

Programma della lezione

- Bias e Variance
- Decision tree
- Random Forest
- Gradient Boosting

Esempio: vogliamo prevedere il peso dei ratti, data l'altezza

Primo step: Dividere il dataset in training e test set

Secondo step: applico modelli di machine learning

The first machine learning algorithm that we will use is Linear Regression (aka "Least Squares"). Height Weight

Bias

- Bias = incapacità di un modello di catturare la vera relazione tra le variabili
- Esempio: regressione lineare ha un alto bias
- Quando si ha un alto bias, significa che c'è underfitting

Secondo step: applico modelli di machine learning

Another machine learning method might fit a **Squiggly Line** to the **training set**...

Paragoniamo i risultati dei due modelli nel training set

Paragoniamo i risultati dei due modelli nel testing set

Variance

- Variance = differenza di performance del modello in training e test set
 - Alta varianza significa che il modello ha una buona performance nel training set, ma le prestazioni sono scarse in nuovi dati
 - Quando si ha un'alta variabilità, significa che c'è overfitting

Bias-Variance trade-off

- Bias = eccessiva semplificazione del modello
- Variance = differenza di performance del modello in training e test set
- L'ideale sarebbe avere un modello con basso bias e bassa variabilità

- Possono essere applicati a problemi di regressione e classicazione
- Ci sono due tipi di alberi decisionali:
 - Classification tree
 - Regression tree

Terminologia per i Decision Tree

- Nodo padre
- Nodo interno
- Nodo foglia

Regression tree: vogliamo prevedere il salario

- Il modello apprende una sequenza di domande if then dove ciascuna domanda coinvolge:
 - Feature
 - Punto di divisione

Risultati

- Queste domande permettono di segmentare lo spazio in 3 regioni:
 - R1: Years<4.5
 - o R2: Years>=4.5 e Hits<117.5
 - R3: Years>=4.5 e
 Hits>=117.5

Fase di training del decision tree

- 1) Divido lo spazio del predittore in un numero finito di regioni
 - Esempio: R1,R2 e R3
- Per ogni osservazione che cade in una delle regioni, ottengo la stessa previsione, che è la media dei valori delle variabili risposte di training in R

Regression Tree

- L'output finale è quantitativo
- Come ottengo la previsione per un'osservazione del test set?
 - Calcolo la media delle variabili risposta di training nella regione a cui l'osservazione del test set appartiene
- L'obiettivo è trovare le regioni che minimizzano il RSS

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2,$$

Classification tree

- L'output finale è qualitativo
- Come ottengo la previsione per un'osservazione del test set?
 - Calcolo la moda delle variabili risposta di training nella regione a cui l'osservazione del test set appartiene

Classification tree - Gini impurity

L'obiettivo è trovare le regioni che minimizzano il Gini impurity

- Misura per quantificare impurità/grado di disordine del nodo
- Se è pari a 0, il nodo è puro
 - Le osservazioni del nodo appartengono a un'unica classe
- Se è vicino a 1, il nodo è impuro
 - Le osservazioni del nodo appartengono a più classi

$$Gini = 1 - \sum_{i=1}^{C} (p_i)^2$$

Vantaggi e Svantaggi

- Facile da spiegare, usare e interpretare
- Si può mostrare il grafico e può essere interpretato anche da una persona senza conoscenze tecniche
- Veloce da allenare
- Ma ... non sono allo stesso livello in termini di accuratezza
 - Non sono flessibili quando bisogna classificare nuovi campioni

Random Forest

Combina un insieme di alberi decisionali e aggrega i risultati ottenuti da ogni albero (media per la regressione, moda per la classificazione)

Step 1 - Creare un boostraped dataset

- Seleziono in modo casuale dei campioni dal dataset originale
- La dimensione del boostraped dataset è la stessa del dataset originale

Original Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
No	No	No	125	No
Yes	Yes	Yes	180	Yes
Yes	Yes	No	210	No
Yes	No	Yes	167	Yes

Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

Step 2 - Creo un albero decisionale usando il boostraped dataset

- Considero un sottoinsieme di variabili in ogni passo
- Seleziono una variabile in modo casuale

Good Circ.

Bootstrapped Dataset

Chest Pain	Good Blood Circ.	Blocked Arteries	Weight	Heart Disease
Yes	Yes	Yes	180	Yes
No	No	No	125	No
Yes	No	Yes	167	Yes
Yes	No	Yes	167	Yes

Ripeto lo **Step 1** e **Step 2** per gli altri alberi: creo il **bootstraped dataset** e costruisco un albero che considera un sottoinsieme di variabili

Vantaggi

- È più efficiente di un singolo albero decisionale
- Riduce la variabilità, e quindi riduce l'overfitting
- Utilizzare un insieme di alberi decisionale rende il modello più robusto

Gradient Boosting

- Perché questo nome?
 - Gradient perché utilizza il gradiente dell'errore di perdita per minimizzare il suo valore
 - Boosting perché è una tecnica ensemble che combina più modelli deboli per creare un modello forte

Gradient Boosting

- Perché questo nome?
 - Gradient perché utilizza il gradiente dell'errore di perdita per minimizzare il suo valore
 - Boosting perché è una tecnica ensemble che combina più modelli deboli per creare un modello forte
 - A differenza del random forest, i modelli sono allenati in sequenza

Step 1 - Inizia con un modello base che fa previsioni

Formula un'ipotesi iniziale per i pesi di tutti i campioni (71.2), che sarà pari alla media del peso all'inizio

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

2.1 Errori = (Observed weights - Predicted Weight) = (Observed weights - 71.2)

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

Errori = (Observed weights - Predicted Weight) = (88 - 71.2)

			Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

2.2) Si allena il secondo albero a prevedere i residui, invece che i pesi

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

2.3) Sostituiamo i residui con la media dei residui di quello specifico nodo foglia

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

2.4) Combino il peso medio con il secondo albero decisionale per fare la **previsione del peso**

Average Weight
71.2

Height<1.6

Color not Blue
-14.7

4.8

3.8

16.8

Height	Favorite	Gender	Weight
(m)	Color		(kg)
1.6	Blue	Male	88

per fare la **previsione del peso** dai dati di training

2.4) Combino il peso medio con il secondo albero decisionale per fare la

2.5) Calcolo gli errori (o residui)

Step 3: Costruiamo un terzo albero che si basa sugli errori del secondo albero

- Lo alleniamo per fare la previsione degli errori
- Calcoliamo i pesi previsti
- Calcoliamo i residui, che sono la differenza tra pesi osservati e pesi previsti

Step 3: Costruiamo un terzo albero

Vantaggi

- Previsioni molto accurate
- Flessibile
- Ma ... è più lento da addestrare, complicato da ottimizzare avendo tanti iperparametri e tende a overfittare
 - ma si può controllare limitando la profondità degli alberi, il numero di alberi, il learning

Curiosità: Differenza tra parametro e iperparametro

Parametro

- Variabile di configurazione interna al modello
- appreso automaticamente dal modello durante il training
- Esempi: pesi all'interno dell'albero decisionale sono parametri

Iperparametro

- Variabile di configurazione esterna al modello
 - Il cui valore non può essere stimato dal modello!
- Viene impostato prima dell'addestramento del modello
- Esempi: il learning rate, numero di alberi, profondità massima dell'albero, numero minimo di campioni necessari per dividere un nodo