Newton-Raphson Method

- Assumptions
- Interpretation
- Examples
- Convergence Analysis

Newton-Raphson Method

(Also known as Newton's Method)

Given an initial guess of the root x_0 , Newton-Raphson method uses information about the function and its derivative at that point to find a better guess of the root.

Assumptions:

- f(x) is continuous and the first derivative is known
- An initial guess x_0 such that $f'(x_0) \neq 0$ is given

Newton Raphson Method

- Graphical Depiction -

If the initial guess at the root is x_i , then a tangent to the function of x_i that is $f'(x_i)$ is extrapolated down to the x-axis to provide an estimate of the root at x_{i+1} .

Derivation of Newton's Method

Given: x_i an initial guess of the root of f(x) = 0

Question: How do we obtain a better estimate x_{i+1} ?

Taylor Theorem: $f(x+h) \approx f(x) + f'(x)h$

Find h such that f(x+h) = 0.

$$\Rightarrow h \approx -\frac{f(x)}{f'(x)}$$

Newton – Raphson Formula

A new guess of the root: $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$

Find a zero of the function $f(x) = x^3 - 2x^2 + x - 3$, $x_0 = 4$

$$f'(x) = 3x^2 - 4x + 1$$

Iteration 1:
$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 4 - \frac{33}{33} = 3$$

Iteration 2:
$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 3 - \frac{9}{16} = 2.4375$$

Iteration 3:
$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 2.4375 - \frac{2.0369}{9.0742} = 2.2130$$

 $lue{}$ Find the root of $f(x) = x^3 - 2x^2 + x - 3$

□ 1st Step: Find the derivative

$$f'(x) = 3x^2 - 4x + 1$$

□ 2^{nd} Step: Check $f'(x_0) \neq 0$

$$f(4) = 4^3 - 2(4)^2 + 4 - 3 = 64 - 32 + 4 - 3 = 33$$

 $lue{}$ Find the root of $f(x) = x^3 - 2x^2 + x - 3$

■ **3rd Step**: Use the formula to find better guess

$$x_{n+1}=x_n-rac{f(x_n)}{f'(x_n)}$$

$$f(x) = x^3 - 2x^2 + x - 3$$

$$f'(x) = 3x^2 - 4x + 1$$

Iteration 1:

$$f(4) = 4^3 - 2(4)^2 + 4 - 3 = 64 - 32 + 4 - 3 = 33$$

 $f'(4) = 3(4)^2 - 4(4) + 1 = 48 - 16 + 1 = 33$

$$x_1 = 4 - rac{33}{33} = 4 - 1 = 3$$

$$f(x) = x^3 - 2x^2 + x - 3$$

$$f'(x) = 3x^2 - 4x + 1$$

■ Iteration 2:

$$f(3) = 27 - 18 + 3 - 3 = 9$$

$$f'(3) = 27 - 12 + 1 = 16$$

$$x_2 = 3 - \frac{9}{16} = 3 - 0.5625 = 2.4375$$

$$f(x) = x^3 - 2x^2 + x - 3$$
 $f'(x) = 3x^2 - 4x + 1$

■ Iteration 3:

$$egin{aligned} f(2.4375) &= (2.4375)^3 - 2(2.4375)^2 + 2.4375 - 3 pprox 14.488 - 11.877 + \ 2.4375 - 3 pprox 2.048 \ f'(2.4375) &= 3(2.4375)^2 - 4(2.4375) + 1 pprox 17.82 - 9.75 + 1 = 9.07 \ & x_3 = 2.4375 - rac{2.048}{9.07} pprox 2.4375 - 0.2258 = 2.2117 \end{aligned}$$

$$f(x) = x^3 - 2x^2 + x - 3$$

$$f'(x) = 3x^2 - 4x + 1$$

■ Iteration 4:

$$f(2.2117) pprox (10.82) - (9.78) + 2.2117 - 3 pprox 0.253$$

$$f'(2.2117) pprox 14.67 - 8.85 + 1 pprox 6.82$$

$$x_4 = 2.2117 - rac{0.253}{6.82} pprox 2.2117 - 0.0371 = 2.1746$$

Continue...

k (Iteration)	X _k	f(x _k)	f'(x _k)	X _{k+1}	$ \mathbf{x}_{k+1} - \mathbf{x}_{k} $
0	4	33	33	3	1
1	3	9	16	2.4375	0.5625
2	2.4375	2.0369	9.0742	2.2130	0.2245
3	2.2130	0.2564	6.8404	2.1756	0.0384
4	2.1756	0.0065	6.4969	2.1746	0.0010

Convergence Analysis

Theorem:

Let f(x), f'(x) and f''(x) be continuous at $x \approx r$ where f(r) = 0. If $f'(r) \neq 0$ then there exists $\delta > 0$

such that
$$|x_0-r| \le \delta \Rightarrow \frac{|x_{k+1}-r|}{|x_k-r|^2} \le C$$

$$C = \frac{1}{2} \frac{\max_{|x_0-r| \le \delta} |f''(x)|}{\min_{|x_0-r| \le \delta} |f'(x)|}$$

Convergence Analysis

Remarks

When the guess is close enough to a simple root of the function then Newton's method is guaranteed to converge quadratically.

Quadratic convergence means that the number of correct digits is nearly doubled at each iteration.

- If the initial guess of the root is far from the root the method may not converge.
- Newton's method converges linearly near multiple zeros { f(r) = f'(r) =0 }. In such a case, modified algorithms can be used to regain the quadratic convergence.

- Runaway -

The estimates of the root is going away from the root.

- Flat Spot -

The value of f'(x) is zero, the algorithm fails.

If f'(x) is very small then x_1 will be very far from x_0 .

- Cycle -

The algorithm cycles between two values x_0 and x_1

Lectures 10

Secant Method

- Secant Method
- Examples
- Convergence Analysis

Newton's Method (Review)

Assumptions: f(x), f'(x), x_0 are available, $f'(x_0) \neq 0$

Newton's Method new estimate:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Problem:

 $f'(x_i)$ is not available,

or difficult to obtain analytically.

Secant Method

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

if x_i and x_{i-1} are two initial points:

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{(x_i - x_{i-1})}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{\frac{f(x_i) - f(x_{i-1})}{(x_i - x_{i-1})}} = x_i - f(x_i) \frac{(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}$$

$$(x_i - x_{i-1})$$

CISE301_Topic2

Secant Method

Assumptions:

Two initial points x_i and x_{i-1}

such that
$$f(x_i) \neq f(x_{i-1})$$

New estimate (Secant Method):

$$x_{i+1} = x_i - f(x_i) \frac{(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}$$

Secant Method

$$f(x) = x^{2} - 2x + 0.5$$

$$x_{0} = 0$$

$$x_{1} = 1$$

$$x_{i+1} = x_{i} - f(x_{i}) \frac{(x_{i} - x_{i-1})}{f(x_{i}) - f(x_{i-1})}$$

Secant Method - Flowchart

24

Modified Secant Method

In this modified Secant method, only one initial guess is needed:

$$f'(x_i) \approx \frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i}$$

$$x_{i+1} = x_i - \frac{f(x_i)}{\frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i}} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)}$$

Problem : How to select δ ?

If not selected properly, the method may diverge.

Find the roots of:

$$f(x) = x^5 + x^3 + 3$$

Initial points

$$x_0 = -1$$
 and $x_1 = -1.1$

with error < 0.001

x(i)	f(x(i))	x(i+1)	x(i+1)-x(i)
-1.0000	1.0000	-1.1000	0.1000
-1.1000	0.0585	-1.1062	0. 0062
-1.1062	0.0102	-1.1052	0.0009
-1.1052	0.0001	-1.1052	0.0000

Convergence Analysis

■ The rate of convergence of the Secant method is super linear:

$$\frac{\left|x_{i+1} - r\right|}{\left|x_{i} - r\right|^{\alpha}} \le C, \qquad \alpha \approx 1.62$$

r:root $x_i:$ estimate of the root at the ith iteration.

■ It is better than Bisection method but not as good as Newton's method.

Lectures 11

Comparison of Root Finding Methods

- Advantages/disadvantages
- Examples

Summary

Method	Pros	Cons
Bisection	 Easy, Reliable, Convergent One function evaluation per iteration No knowledge of derivative is needed 	SlowNeeds an interval [a,b] containing the root, i.e., f(a)f(b)<0
Newton	Fast (if near the root)Two function evaluations per iteration	 May diverge Needs derivative and an initial guess x₀ such that f'(x₀) is nonzero
Secant	 Fast (slower than Newton) One function evaluation per iteration No knowledge of derivative is needed 	- May diverge - Needs two initial points guess x ₀ , x ₁ such that f(x ₀)- f(x ₁) is nonzero

CISE301_Topic2

Use Secant method to find the root of:

$$f(x) = x^6 - x - 1$$

Two initial points $x_0 = 1$ and $x_1 = 1.5$

$$x_{i+1} = x_i - f(x_i) \frac{(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}$$

Solution

k	X _k	f(x _k)	
0	1.0000	-1.0000	
1	1.5000	8.8906	
2	1.0506	-0.7062	
3	1.0836	-0.4645	
4	1.1472	0.1321	
5	1.1331	-0.0165	
6	1.1347	-0.0005	

Use Newton's Method to find a root of:

$$f(x) = x^3 - x - 1$$

Use the initial point: $x_0 = 1$.

Stop after three iterations, or

if
$$|x_{k+1} - x_k| < 0.001$$
, or

if
$$|f(x_k)| < 0.0001$$
.

Five Iterations of the Solution

k	x_k	$f(x_k)$	$f'(x_k)$	ERROR
0	1.0000	-1.0000	2.0000	
1	1.5000	0.8750	5.7500	0.1522
2	1.3478	0.1007	4.4499	0.0226
3	1.3252	0.0021	4.2685	0.0005
4	1.3247	0.0000	4.2646	0.0000
5	1.3247	0.0000	4.2646	0.0000

Use Newton's Method to find a root of:

$$f(x) = e^{-x} - x$$

Use the initial point: $x_0 = 1$.

Stop after three iterations, or

if
$$|x_{k+1} - x_k| < 0.001$$
, or

if
$$|f(x_k)| < 0.0001$$
.

Use Newton's Method to find a root of:

$$f(x) = e^{-x} - x,$$
 $f'(x) = -e^{-x} - 1$

\mathcal{X}_k	$f(x_k)$	$f'(x_k)$	$\frac{f(x_k)}{f'(x_k)}$
1.0000	-0.6321	-1.3679	0.4621
0.5379	0.0461	-1.5840	-0.0291
0.5670	0.0002	-1.5672	-0.0002
0.5671	0.0000	-1.5671	-0.0000

Estimates of the root of: $x-\cos(x)=0$.

0.60000000000000

0.74401731944598

0.73909047688624

0.73908513322147

0.73908513321516

Initial guess

1 correct digit

4 correct digits

10 correct digits

14 correct digits

In estimating the root of: x-cos(x)=0, to get more than 13 correct digits:

- \Box 4 iterations of Newton (x₀=0.8)
- 43 iterations of Bisection method (initial interval [0.6, 0.8])
- 5 iterations of Secant method $(x_0=0.6, x_1=0.8)$