Cortical Origin of Frontal Asymmetry for Major Depressive Disorder

Dietta Laura Chihade

Outline

- Introduction
- Methods
 - Data Collection
 - Analysis
- Results
 - EEG, MEG, MEG Cortical Space
- Discussion

MDD is Common and Poorly treated

- 'Depression' refers to a spectrum of disturbances in mood that last for several weeks
- Lifetime prevalence about 12%
- Elevated mortality and comorbidity rate
- Current treatments are insufficient

Source: World Health Organization, Mental Health Gap Action Programme, 2014

HAM-D Psychometric

THE HAMILTON RATING SCALE FOR DEPRESSION

(to be administered by a health care professional)

Patient's Name

Date of Assessment

To rate the severity of depression in patients who are already diagnosed as depressed, administer this questionnaire. The higher the score, the more severe the depression.

For each item, write the correct number on the line next to the item. (Only one response per item)

- DEPRESSED MOOD (Sadness, hopeless, helpless, worthless)
- 0= Absent
 - 1= These feeling states indicated only on questioning
 - 2= These feeling states spontaneously reported verbally
 - 3= Communicates feeling states non-verbally—i.e., through facial expression, posture, voice, and tendency to weep
 - 4= Patient reports VIRTUALLY ONLY these feeling states in his spontaneous verbal and nonverbal communication.
 - 2. FEELINGS OF GUILT
 - 0= Absent
 - I = Self reproach, feels he has let people down
 - 2= Ideas of guilt or rumination over past errors or sinful deeds
 - 3= Present illness is a punishment. Delusions of guilt
 - 4= Hears accusatory or denunciatory voices and/or experiences threatening visual hallucinations

Source: Strik J, et al. Psychosomatics. 2001; 42:423–428

Biomarkers are potential objective diagnostic and prognostic tools

- Biomarkers offer 'biological cues'
- Existing Biomarkers
 - Pathophysiological
 - Electrophysiological
 - Problems with existing biomarkers
 - Lack validity
 - Unrealistic for clinical setting

Source: Pajer *et. al*, *Translational Psychiatry*. 2012 **2**, e101; doi: 10.1038/tp.2012.26

Electrophysiological measures are potential biomarkers

Frequency Domain EEG demonstrates Frontal Asymmetry

Positron Emission Tomography findings of Frontal Asymmetry

- PET allows noninvasive, quantitative measures; reliable with respect to source localization
- ◆ Glucose Metabolic
 Rates and Cerebral Blood
 Flow in LEFT dorsal lateral prefrontal cortex (DLPFC)
 = ♠ Severity of
 Depression

Baxter et. al Arch Gen Psychiatry-Vol 46, March 1989

Functional neuroimaging methods and their temporal and spatial resolution.

Source: A Meyer-Lindenberg *Nature* **468**, 194-202 (2010)

MEG and EEG Differ in Their Orientation Sensitivity

- MEG only detects currents tangential relative to the volume conductor model
- EEG detects both tangential and radial currents
- Therefore:
 - 1) MEG signal maxima are detected over their neuronal generators
 - 2) The relation between EEG scalp electrodes and the underlying neuronal generators is complex

MEG

EEG

Source: http://www.allgpsy.unizh.ch/graduate/mat/180102/Lecture1.pdf

EEG picks up tangentially and radially oriented currents equally.

Currents oriented perfectly radial to the skull are missed in MEG. But there is very little signal that is so perfectly radial.

Source: http://www.allgpsy.unizh.ch/graduate/mat/180102/Lecture1.pdf

Cortical Space

Source: François Tadel and Sylvain Baillet, McConnell Brain Imaging Centre, *Visualizations of brain activity estimated from MEG/EEG scalp recordings*.

Aims

• *Aim 1*: Is there a relationship between cortex neurophysiological characteristics measured with EEG/MEG and the severity/progression of MDD

• Aim 2: Better understand the cortical origin of frontal asymmetry for MDD patients using EEG/MEG data

Hypotheses

- *Hypothesis 1 A/B*: EEG/MEG and Cortical Space results differ between the MDD patient and the healthy control and with clinical improvement.
- Hypothesis 2 A: EEG/MEG frontal asymmetry is generated in the frontal cortex, specifically in the superior, middle, and/or inferior frontal sulcus

Outline

- Introduction
- Methods
 - Data Collection
 - Analysis
- Results
 - EEG, MEG, MEG Cortical Space
- Discussion

Data Collection

- MGH Depression and Clinical Research Program (DCRP)
 - EEG/MEG visit 1, EEG/MEG visit 2, and MRI visit
 - MDD subjects given FDA approved escitalopram (SSRI) for 8 weeks

EEG/MEG Frequency Domain Analysis

Source: Allen et. al, 2004

Fieldtrip MATLAB Toolbox

Introduction

- Multi-taper
 - https://www.youtube.com/watch? v=vwPpSglPJTE

MNE Python Script

#Import Modules

import numpy as np #for computing PSDs import mne # for generating PSDs plots import matplotlib.pyplot as plt # for plotting PSDs

#Import Functions

from mne import io, read_proj, read_selection

from mne.time frequency import compute raw psd

from mne.minimum norm import read inverse operator, compute source psd

Load Data

Input from preprocessed raw.fif files

raw_fname='/space/tmsh/1/users/dietta/Wyss_MDD/EEG_MEG/W113/131028/raw_maxf/W113HS2_EO6_SSSmctreocg8_raw.fif*

raw=io.Raw('/')space/tmsh/1/users/dietta/Wyss MDD/EEG MEG/W113/131028/raw maxf/W113HS2 EO6 SSSmctreocg8 raw.fif

Set Analysis Parameters

Pxx, freqs = plt.psd

Computation of Bipolar Montage sensitive to left-right axis

(raw_df[ch_names_diff[i][0]] - raw_df[ch_names_diff[i][1]]

Set Analysis Parameters for FFT

NFFT=1004 # number of point in the buffer # (fmax-= 504) (Nyquist frequency would ½ (sampling rate)

Fs=1004 # sampling frequency (data points per second)

Frequency resolution is 1 Hz bins

Nooverlap = 0 # no overlap between windows

Plot PSDs

plt.plot(freqs[freqs <= 100], 10*np.log10(Pxx list[0][freqs <= 100]), c='r') # compute and plot LH PSD

plt.plot(freqs[freqs <= 100], 10*np.log10(Pxx_list[1][freqs <= 100]), c='b') # compute and plot RH PSD

Frontal Asymmetry

• Frontal Asymmetry
Model: EEG detects less
left hemispheric activity
relative to the right
within the frontal lobe

Source: http://neuroinf.blogspot.com/2014/07/eeg-data-analysis-of-audio-induced-fear.html

Frontal Alpha Asymmetry Scores

- (more positive) scores indicate relatively greater left frontal activity
- (more negative) scores indicate relatively greater right frontal activity
- FAA = (LH) (RH)

MDD SFS	LH	RH			
Frequency (Hz)	Power Values (dB/Hz)				
8	-53.10	-48.14			
9	-53.11	-48.14			
10	-53.86	-49.44			
11	-54.30	-51.07			
12	-54 68	-5.99			
AVG	-53.98	-52.45			
Frontal Asymmetry	-1.:	53			

Outline

- Introduction
- Methods
 - Data Collection
 - Preprocessing
 - Analysis
- Results
 - EEG, MEG, MEG Cortical Space
- Discussion

EEG Channels

Source: Figure 5

MDD EEG PSD plots

Source: Figure 6

EEG Sensor Results

EEG Bipo	lar					
Frequency		MDD V1	MDD V2	Control V1	Control V2	
Band	MDD V1 MDD V2 Control V1 Control V2					
ALPHA (8-13Hz)	Frontal Asymmetry	-1.0	1.21	4.94	6.69	
	Medial					
	Frontal Asymmetry	-0.86	1.19	5.25	1.31	

Source: Table 3

MEG Helmet

RESULTS CORTICAL SPACE

Cortical Labels

Source: Figure 5

MEG Cortical Space Results Superior Frontal Sulcus

Source: Figure 8

Summary

		MDDV1		MDD V2		HCV1		HCV2	
		LH	RH	LH	RH	LH	RH	LH	RH
EEG Sensor	Lateral	/		1	-	1	\	1	
	Medial	/		1		-	\	1	\
MEG Source	IFS	\		/	/	1	\	1	\
	MFS	-		1	\		/		\
	SFS		-		/	1	\		/

Source: Table 6

Outline

- Introduction
- Methods
 - Data Collection
 - Preprocessing
 - Analysis
- Results
 - EEG, MEG, MEG Cortical Space
- Discussion

Discussion

- Frontal Alpha Asymmetry exists for MDD patient
- For MDD, FA changes after treatment
- Superior Frontal Sulcus shows evidence of FA
- Supports FA for biomarker in MDD
- Extensions: need more subjects!
- More exploratory questions to be answered
 - Trait versus State
 - Sensitivity and Specificity

Future Directions

- More data
- Better Methods
- Better theoretical interpretations of FA

Thank You!!

Titipat Achakulvisut, MSc Intern at Allen Institute https://github.com/titipata

Mohammad Azar, PhD Scientist at Google DeepMind MIT-AI Article

