Mathematics 3: Algebra

Workshop 3

Fields as vector spaces

The aim of this workshop is to work with some fields as vector spaces, particularly over the 3-element field \mathbb{F}_3 .

- (1) (a) Let F be a field. Prove that if a polynomial $P(x) \in F[x]$ is of degree 2 or 3 and P(x) = 0 has no root in F, then P(x) is irreducible over F.
 - (b) Find all irreducible monic (i.e., leading coefficient 1) quadratic polynomials over \mathbb{F}_3 .
 - (c) Give an example of a quartic polynomial P(x) over \mathbb{F}_3 that is reducible but P(x) = 0 has no roots in \mathbb{F}_3 .
 - (d) (Back to F) Suppose that $P(x) \in F[x]$ and that $P(\alpha) = 0$. Let $k \in \mathbb{Z}$. Write down polynomials $P_{-}(x)$ and $P_{k}(x) \in F[x]$ of the same degree as P and such that $P_{-}(-\alpha) = 0$ and $P_{k}(\alpha + k) = 0$.
 - (e) (Back to \mathbb{F}_3 !) Let α be a root of $x^2 + 1 = 0$, and F_1 be the field $\mathbb{F}_3[\alpha]$. Write down a basis for F_1 , considered as a vector space over \mathbb{F}_3 . Write out the elements of F_1 explicitly.
 - (f) For which elements α' of F_1 do 1 and α' form a basis for F_1 over \mathbb{F}_3 ?
 - (g) Show that all the polynomials you found in (b) above have a root in F_1 .
 - (h) Deduce that if you repeat the construction in (e) above with a different quadratic polynomial irreducible over \mathbb{F}_3 (instead of $x^2 + 1$), you get the same field F_1 .
 - (a) A reducible polynomial of degree two must be a product of linear factors, and so have a root in F. So if it has no root in F, it must be irreducible.

A reducible polynomial of degree three must be eith a product of 3 linear factors, or a product of a linear factor and a quadratic factor. In each case it has a root in F. So if it has no root in F, it must be irreducible.

- (b) There are three: x^2+1 , x^2+2x+2 and x^2+x+2 .
- (c) $(x^2+1)^2$.
- (d) Define $P_{-}(x) = P(-x)$. Then $P_{-}(-\alpha) = P(-(-\alpha)) = P(\alpha) = 0$.
- Define $P_k(x) = P(x-k)$. Then $P_k(\alpha+k) = P((\alpha+k)-k) = P(\alpha)=0$.
- (e) $1, \alpha$ is a basis. Elements of F_1 are $0, 1, -1, 0 + \alpha, 1 + \alpha, -1 + \alpha, 0 \alpha, 1 \alpha, -1 \alpha$.
 - (f) $1, \alpha'$ are a basis for F_1 for α' any element of F_1 except 0, 1 or -1

(g) Now $x^2+2x+2=(x+1)^2+1$, so has $\alpha-1$ (= $\alpha+2$) as a root. Its other root is $-\alpha-1$.

Also $x^2+x+2=(x+2)^2+1$, so it has $\alpha+1$ as a root. Other root is $-\alpha+1$.

Since x^2+1 has a root α in F_1 , all three polynomials have a root in F_1 .

- (h) You will again get a 9-element field, but because the roots of all polynomials lie in F_1 , the field you get will be a 9-element subfield of F_1 , and so the whole of F_1 .
- (2) (a) Counting the number of irreducible monic quadratic polynomials over \mathbb{F}_p , p a prime.

Criticise and correct the following argument:

- "For a polynomial $x^2 + ax + b$ over \mathbb{F}_p , there are p choices for each of a and b, and so p^2 such polynomials in total. If the polynomial is reducible, it factorises as $(x \alpha)(x \alpha')$ say, where α and α' are also in \mathbb{F}_p . Again there are p choices for each of α and α' , but their order is unimportant, so the number of unordered pairs α, α' is $\binom{p}{2} = p(p-1)/2$. Hence the number of reducible polynomials is p(p-1)/2, and so the number of irreducible polynomials $x^2 + ax + b$ is $p^2 p(p-1)/2 = p(p+1)/2$."
- (b) Check your corrected result from (a) for p = 3 (see 1(b) above) and p = 2.
- (a) There are indeed p^2 polynomials in total. But $\binom{p}{2} = p(p-1)/2$ counts only the unordered pairs α, α' where $\alpha \neq \alpha'$. We must also allow the possibility that $\alpha = \alpha'$, giving p more reducible polynomials $(x-\alpha)^2$. So the total number of reducible polynomials is p(p-1)/2+p=p(p+1)/2, and so the number of irreducible polynomials x^2+ax+b is $p^2-p(p+1)/2=p(p-1)/2$.

[For those who did Discrete Maths: we're actually counting the number of two-element multisubsets α,α' of $\{0,1,2,\ldots,p-1\}$ here. This gives p(p+1)/2 directly for the number of reducible polynomials.]

(b) Indeed, for p=3, we have p(p-1)/2=3, as in Q 1(b). For p=2 we have p(p-1)/2=1, and x^2+x+1 is indeed the unique irreducible quadratic polynomial over \mathbb{F}_2 .