1. Шпорцы к экзу по диффурам by Rexhaif

новные свойства автономных систем. Положения равновесия.

Автономные системы: Сиситема обыкновенных ДУ называется автономной, когда переменная t явно не входит в систему. $\dot{x} = \frac{dx}{dt} = f(x)$; (1). Иначе, в координатном виде: $\frac{dx_i}{dt} = f_i(x_1, \dots, x_n), i = \overline{1, n}.$ Свойства автономных систем: 1. Если

 $x = \varphi(t)$ - решение системы (1), то $\forall C : x =$

 $\varphi(t+C)$ - тоже решение системы. Док-во: $\frac{d\varphi(t+C)}{dt} = \frac{d\varphi(t+C)}{d(t+C)} = f(\varphi(t+C)).$ 2. Две фазовые траектории либо не имеют общих точек, либо совпадают. Док-во: Пусть ρ_1, ρ_2 - фазовые траектории. Им отвечает интервал решения $x = \varphi(t), \dots, x = 0$ $\psi(x)$. И пусть $\varphi(t_1) = x_0 = \psi(t_2)$ (есть общая точка). Рассмотрим вектор-функцию $x = \psi(t + (t_2 - t_1)) = X(t)$. В силу св-ва (1) это тоже решение, притом: $X(t_1) = \varphi(t_1) \Rightarrow$ $X(t) = \varphi(t) \Rightarrow \varphi(t) = \psi(t + (t_2 - t_1))$, т.е кривые совпадают.

3. Фазовая траектория, отличная от точки, есть гладкая кривая. Док-во: Пусть $X^0 =$ $arphi(t_0)=rac{darphi(t_0)}{dt}$. Этот вектор - касательная и в каждой точке он не равен нулю. ЧТД. Положение равновесия: Точка $a \in \mathbb{R}^4$ на-

зывается точкой равновесия авт. системы, если $f(a) = 0(\dot{x}(a) = 0).$

1.2. Классификация фазовых траекторий автономных систем.

Всякая фазовая траектория принадлежит к одному из трех типов(классов): 1. Гладкая кривая без самопересечений. 2. Замкнутая гладкая кривая (цикл). 3. Точка.

Теорема: Если фаз. траектория решения $x = \varphi(t)$ есть гладская замкн. кривая, то это решение есть периодическая ф-я t с пе-

риодом T > 0. NEED SOME PROOFS FOR 1.5. Производная в силу систе-THAT SHIT, BUT I'M TOO LAZY.

1.1. Автономные системы. Ос- 1.3. Групповые свойства решений автономной системы уравнений.

Пусть $x(t,x^0)|_{t=0} = x^0$ - решение системы (1), т.е $x^0 \neq 0$ - нач. условие для системы (1). Тогда $x(t_1+t_2,x^0)=x(t_2;x(t_1,x^0))=$ $x(t_1, x(t_2, x^0)).$ **Док-во**: Пусть вект. функции: $\varphi_1(t) =$ $x(t, x(t_1, x^0)); \varphi_2(t) = x(t + t_1, x^0)$ - это решение для системы 1. При t = 0: $\varphi_1(0) = x(t_1, x^0); \varphi_2(0) = x(t_1, x^0).$ T.e $\varphi_1(0) = \varphi_2(0)$. В силу теор. о единственности $\varphi_1(t) = \varphi_2(t) \forall t$. Отсюда следует оба уравнения из условия. Из предыдущег оследует: $x(-t, x(t, x^0)) = x_0$.

1.4. Структура решений автономной системы в окрестности неособой точки.

Дано: $\frac{dx}{dt} = f(x)$ в нек-й окрестности точки V точки a; $f(a) \neq 0$. Фазовые траектории в окрестности V будут кривыми и гладкой заменой переменных их можно сделать прямыми.

Теорема о выпрямлении: пусть $f(a) \neq 0$. Тогда в малой окрестности точки a систему (1) путем гладкой замены переменных можно привести к виду: (2) $\frac{dy_1}{dt} = 0$; $\frac{dy_2}{dt} =$ $0; \ldots; \frac{dy_n}{dt} = 1$. Траектории для (2) - прямые линии: $y_1 = C_1; \dots; y_n = t + C_n$. **Док-во**: Т.к $f(a) \neq 0$ - без огр. общн. говорим, что : $f_n(a) \neq 0$. Пров. гиперплоск. $P: x_n = a_n$. Её точки имеют вид: (ξ, a_n) . Пусть: $x = \varphi(t, \xi)$ - решение (1), такое, что $\varphi(0,\xi) = (\xi,a_n)$ - нач. точка лежит на P. Формула: $x = \varphi(t, \xi)$ - и дает искомую замену. Обознач. $y_1 = \xi_1; \dots; y_n = t$. В новых переменных траектории будут прямыми линиями, т.к из опред. решения имеем, что ξ_1, \ldots, ξ_{n-1} лежат вдоль траектории $x=\varphi(t,\xi^0)$ и её уравн. в перем. y им. вид: $y_1 = \xi_1^0; \dots; y_n = t.$

мы. Геометрическая интерпретация.

Дано : $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x},t)$ (1). Пусть в области $G \subset \mathbb{R}^{n+1}$ ф-я \vec{f} непр. дифф. по всем ар-**Конструкция** : Рассм. произв. ф-ю u =

 (t, \vec{x}) . Пусть $\vec{x} = \vec{\varphi}(t)$ - решение сист. (1) \Rightarrow Вдоль реш. системы имеем $u(t, \vec{\varphi}(t)) =$ $\mathbb{W}(t)$. Дифференцируем $\mathbb{W}(t)$ по t: $\frac{d\mathbb{W}}{dt}$ $(\frac{\partial u(x,\vec{t})}{\partial t} + \sum_{j=1}^n \frac{\partial u(t,\vec{x})}{\partial x_j} \cdot \frac{dx_j}{dt})|_{\vec{x} = \vec{\varphi}(t)} = \frac{\partial u(t,\vec{x})}{\partial t} +$ $\sum_{j=1}^{n} \frac{\partial u(t,\vec{x})}{\partial x_{j}} \cdot f_{j}(t,\vec{x})|_{\vec{x}=\vec{\varphi}(t)}$ (2). Полученное в (2) выражение - производной ф-ии u в силу системы (1). Обозн. \dot{u} или $\frac{du}{dt}$

Геом. интерпретация : Пусть u(x) - гладкая и $\nabla u(x) \neq 0$ в уч. обл. $D. \Rightarrow$ ур-е u(x) = 0 опр. гладкую поверхность S, а вектор $\nabla u(x)$ ортогонален к S в точке х и направлен в сторону возр. ф-ии u(x). Если $\dot{u}(x) < 0$, то участок ф-ии f(x) образует прямой или тупой угол с вектором $\nabla u(x)$.

1.6. Первые интегралы. Теорема о первых интегралах. Независимые интегралы.

Определение: Φ -я u(x) называется первым интегралом автономной системы (1) если она постоянна вдоль каждой траектории этой системы.

того, чтобы ф-я u(x) была перв. интег. системы (1) необх. и достаточно, чтобы она удовл. соотн в области $D \colon \sum_{j=1}^n \frac{\partial u(x)}{\partial x_j}$. $f_i(x) = 0 \ (\#)$ Док-во (1) : Пусть u(x) - непр. интегрируемо в обл. $D. x = \varphi(t)$ - решение системы (1) \Rightarrow $\mathbb{W}(t) = u(\varphi(t))$ - постоянна $\forall t \Rightarrow \dot{u}(x) = 0$ в D. Обратно: Пусть # - в области $D \Rightarrow$ пусть $x = \varphi(t)$ - решение для $(1) \Rightarrow \frac{d}{dt}u(\varphi(t)) = \sum_{j=1}^{n} \frac{\partial u(x)}{\partial x_j} f_j(x)|_{x=\varphi(t)} = 0$ $\Rightarrow u(\varphi(t))$ - не зависит от $t \Rightarrow$ - явл. первым интегралом. ЧТД. (2) Теорема о независимых интегра-

лы : Пусть т. a не есть положение рав-

гралов $u_1(x), \ldots, u_{n-1}(x)$ и любой иной первый интеграл выражается через них. Док-во (2) : Пусть окр. a дост. мала $\Rightarrow \exists$ окр. V точки y = 0 и гладкая обратимая замена $x = \varphi(y)$ приводящая систему к виду $\frac{dy_1}{dt} = 0; \dots; \frac{dy_n}{dt} = 1$. Полученная система имеет n-1 незав. первых интегралов $u_1(y) = y_1; \dots; u_{n-1}(y) = y_{n-1}$ и всякий иной первый интеграл выражается че-

новесия. Тогда в её некоторой окрестности

 $\exists n-1$ независимых интегралов первых инте-

1.7. Устойчивость положения равновесия по Ляпунову. Асимптотическая устойчивость.

Устойчивость по Ляпунову: Положение

равновесия a называется устойчивым по Ля-1. $\exists \delta_0 > 0$, такое, что если $|x^0 - a| < \delta_0$, то решение $x(t, x_0)$ - существует и единств. при $0 < t < \infty$. 2. $\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) > 0$, такое, что если

 $|x^0 - a| \le \delta$, то $|x(t, x^0) - a| \le \varepsilon$, при всех $0 < t < \infty$

Асимптотическая устойчивость: Положение равновесия а назыв. асимптотически устойчивым, если оно устойчиво по Ляпунову и если $\lim_{t\to+\infty} x(t,x^0) = a$, при достаточно малом $|x^0 - a|$. (1) Теорема опервых интегралах : Для

Проще: Если точку сдвинуть из положения равновесия, то она будет стремиться туда вернуться.

1.8. Линейные автономные системы. Структура общего решения в случае различных корней. Случай вещественной матрицы.

(1) Вид :
$$\begin{cases} \frac{dy_1}{dt} = a_{11}y_1 + \ldots + a_{1n}y_n \\ \ldots \\ \frac{dy_n}{dt} = a_{n1}y_1 + \ldots + a_{nn}y_n \end{cases}$$

Собственные значения : Вектор $e \neq 0$ на-

случае - матрицы из a_{ij}), если $Ae = \lambda e$. Притом λ - назыв. собств. значением матрицы и $det(A-\lambda E)=0$. Если собственные значения матрицы A различны, то существует невырожд. матрица T, приводящая матрицу A к диагональному виду.

Случай различных корней : Пусть $\lambda_1, \ldots, \lambda_n$ - собств. значения матрицы $A \Rightarrow$ всякое решение уравнения $\frac{dy}{dt} = A\dot{x}$ имеет вид: $x(t) = C_1 e^{\lambda_1 t} \vec{e}_1 + \ldots + C_n e^{\lambda_n t} \vec{e}_n$, где \vec{e}_i - собств. вектор матрицы A.

Случай вещественной матрицы: Пусть A - вещ. λ - вещ. e - собств. вектор. $\Rightarrow \vec{\lambda}$ собств. знач. с собств. вектором \vec{e} . Док-во: $Ae = \lambda e \Rightarrow \vec{A}\vec{e} = \vec{\lambda}\vec{e}; \vec{A} = A \Rightarrow A\vec{e} = \vec{\lambda}\vec{e}.$ ЧТД. Если λ - вещ. собств. знач. \Rightarrow собств. вектор тоже веществ. и решение берем как $x = e^{\lambda t} \vec{e}$.

1.9. Анализ плоской фазовой системы. Разбор различных случаев. Вещественные корни.

Дано : $\begin{cases} \dot{x}_1 = a_{11}x_1 + \dots \\ \dot{x}_1 = a_{21}x_1 + \dots \end{cases}$, λ_1, λ_2 - собств

Корни вещественны, различны, не нулевые: $\Rightarrow x(t) = C_1 e^{\lambda_1 t} \vec{e}_1 + C_2 e^{\lambda_2 t} \vec{e}_2$. \vec{e}_i - базис на плоскости. Пусть ξ_1, ξ_2 - коорд. вектора x в базисе \vec{e}_1, \vec{e}_2 . $\xi_1 = C_1 e^{\lambda_1 t}; \xi_2 = C_2 e^{\lambda_2 t}$. $\lambda_1 < 0, \lambda_2 < 0$: Узел. При $C_1 = C_2 = 0$ точка покоя (0, 0). Траектории направлены

рии направлены из центра. $\lambda_1 > 0, \lambda_2 < 0$: Седло. Траектории образуют гиперболы во всех четвертях. В нижних четвертях направлены вниз, в верхних -

вверх.

зыв. собств. вектором матрицы A(в нашем 1.10. Анализ плоской фазовой 1.12. Теорема системы. Разбор различных случаев. Комплексные корни.

> Оба корня чисто мнимые : Центр. $\xi_1 = \rho_0 cos(\beta t + \psi); \xi_2 = \rho_0 sin(\beta t + \psi), \rho_0 =$ $2\sqrt{a^2+b^2}$. Фазовые траектории - эллипсы, направление зависит от знака $\beta:\beta>0$ против часовой. $\alpha < 0$: Устойчивый фокус. ξ_1 $\rho_0 e^{\alpha t} \cos(\beta t + \psi); \xi_2 = \rho_0 e^{\alpha t} \sin(\beta t + \psi).$ Траектории - спирали, закручивающиеся в центр, направление зависит от знака β . $\alpha > 0$: Неустойчивый фокус. Спираль раскручивается.

1.11. Функции Ляпунова. Лемма об оценке квадратичной формы.

Положительно и отрицательно определенные ф-ии: Пусть есть $x \in \mathbb{R}^4$, $V(a) \in$ C(V). Ф-я V(x) называется положительно определенной в области V, если есть т. a, такая что в её окрестности $V(x) > 0 \forall x \in U(a)$ и V(a) = 0. И отрицательн определенной

Функция Ляпунова : Положительно определенная в окр. точки a функция V(x)называется ф-ей Ляпунова системы $\dot{x} =$ f(x) (1), если $\dot{V}(x) \leq 0, \forall x \in V. \ \dot{V}(x)$ производная в силу системы (1). $\dot{V}(x) =$ $\sum_{i} \frac{\partial V}{\partial x_i} f_j(x) \leq 0.$

Лемма о квадр. форме : Если A - веществ. симм. матрица (n x n) $\Rightarrow \forall x \in \mathbb{R}^4$ верно: $\alpha |x|^2 \leq |(Ax,x)| \leq \beta |x|^2$, где $\alpha =$ $min(A); \beta = max(A).$

Док-во : Приведем A к диаг. виду с помощью орт. преобразования матрицей T, т.е $\lambda_1>0, \lambda_2>0$: Устойчивый узел. Траекто- $T^{-1}AT=\mathcal{L}$ - диаг. матрица с элементами $\lambda_1, \ldots, \lambda_n$. Сделаем замену $x = TY \Rightarrow$ в силу ортогональности (Ax, x) = (ATY, TY) = $(T^{-1}ATY, y) = (T^{-1}ATY, Y) = (\mathcal{L}Y, Y) =$ $\sum_{i=1}^{n} \lambda_{i} y_{i}$, так что $\alpha |x|^{2} = |(Ax, x)| = \beta |x|^{2}$. Т.к ортогон. преобр. сохраняет длину вектора то |x| = |y|. Лемма доказана.

Ляпунова устойчивости.

Теорема : Если в некоторой окрестности V

полож. равнов. а существует ф-я Ляпунова

Док-во : Пусть a=0. Выберем $\varepsilon>0$, такой, что шар $K_{\varepsilon}: |x| < \varepsilon$ лежит в окрестности V точки a. Пусть S_{ε} - сфера, $|x|=\varepsilon$ - гран. шара K_{ε} . S_{ε} - замкнутое, огр. мн-во. Ф-я V(x) - непрерывн. и V(x) > 0 на $S_{\varepsilon} \Rightarrow$ $min_{x \in S_{\varepsilon}} V(x) = k > 0$. Paccm. III ap $K_{\delta} : |x| \leq$ δ , содержащийся в V. Т.к V(0) = 0, то $\delta > 0$ можно выбрать настолько малым, что бы выполнялось неравенство $V(x) < k, x \in K_{\delta}$. в силу непр. ф-ии V(x). Покажем, что если $|x^0| \le \delta$, то $|x(t,x^0)| \le \varepsilon$ при $0 \le t \le \infty$. Тем самым теорема будет доказана. Т.к $\dot{V}(x) < 0$ в V и $V(x^0) < k$, то V(x) < k при t > 0 вдоль фазовой траектории $x = x(t, x^0) \Rightarrow$ фазовая траектория начинается в шаре K_{δ} и не может пересечь границы шара $K_{\varepsilon} \Rightarrow V(x) \geq k$ на S_{ε} и V(x) < k на траектории. ЧТД.

1.13. Теорема Ляпунова асимптотической устойчивости.

Теорема : Пусть в нек. окр. V положения равн. a сущ. ф-я Ляпунова V(x) такая что V(x) - отриц. опр. в $V \Rightarrow$ полож. равн. aасимпт. устойчиво.

Док-во : Выберем шары $K_{\varepsilon}, K_{\delta}$ как в пред. теор. По Ляпунову если $|x^0| \leq \delta \Rightarrow$ $|x(t,x^0)| < \varepsilon$ при t > 0. Рассм. ф-ю W(t) = $V(x(t,x^0))$ при t > 0. Т.к $\dot{V}(x) < 0 \Rightarrow \phi$ я W(t) невозраст. $\Rightarrow \exists \lim_{t\to\infty} W(t) = A$. При этом $A \geq 0$ поскольку $V(x) \geq 0$. Если $A=0\Rightarrow \lim_{t\to\infty}x(t,x^0)=0$ т.к V(x)>0при $x \neq 0$. V(0) = 0 след. теорема доказана. Для случая A > 0 доказать через противоречие.

об 1.14. Теорема Четаева о неустойчивости.

 $extbf{Teopema}$: Пусть a - пол. равн. V - окр-ть пол. равн. V_1 - область в V и V_1 имеет т.a своей границей. Тогда если в V_1 $\begin{cases} V(x) > 0 \\ \dot{V}(x) > 0 \end{cases}$ V(x) - то это положение устойчиво по Ляи V(x) = 0 в тех. гран. точках области V_1 , которые лежат внутри области $V \Rightarrow$ положение равновесия x = a неустойчиво. Док-во : Пусть $x^0 \in V$, ρ - фаз. траект. выходящая из $x^0 \Rightarrow \rho = x(t, x^0)$. Покажем, что траектория ρ не может пересечь часть границы области V_1 , которая лежит в V. Рассм. ф-ю V(x) вдоль ρ . $W(t) = V(x(t, x^0))$. Т.к W(0) > 0; $W'(t) = \dot{V}(x) > 0$. Пока ρ содерж. в V_1 , то W(t) > 0, пока ρ содерж. в V_1 и не может пересечь часть границы V_1 , на которой $V(x) = 0 \Rightarrow$ траектория должна покинуть V_1 , т.к V_1 содержит точки, сколь угодно близкие к $a \Rightarrow$ это положение равновесия неустойчиво. ЧТД.

> 1.15. Теорема о устойчивости положения равновесия линейной системы.

Дано: система (1) $\frac{dx}{dt} = Ax, A \leftrightarrow [n \times n]$ Теорема: Положение равн. системы (1) асимптотически устойчиво 👄 веществ. части всех собств. значений матрицы A - отрицательные.

Док-во : Пусть $\lambda_1, \ldots, \lambda_n$ - собств. знач. и $Re\lambda_i \leq -\alpha < 0 \forall j = \overline{1,n}$. Пост. фю ляпунова V(x). Пусть $\exists \varepsilon > 0 : B_{\varepsilon} =$ $(b_{ij}): |b_{ij}| \leq \varepsilon$. Подставим это и x = T(y)в (1): $\frac{dy}{dt} = (\mathcal{L} + B_{\varepsilon})y$ (2). Ф-ю Ляпунова возьмем в виде: $V(x) = \sum_{i=1}^{n} |y_i|^2 =$ (y, \vec{y}) . Эта ф-я положительно определена в любой окр. y=0. Имеем: $\dot{V}(x)=$ $\frac{d}{dt}(y,\vec{y}) = (\frac{dy}{dt},\vec{y}) + (y,\frac{d\vec{y}}{dt}) = ((\mathcal{L} + \vec{\mathcal{L}})y,\vec{y}) +$ $[(B_{\varepsilon}y,\vec{y})+(y,\vec{B_{\varepsilon}}\vec{y})]$. Первое из слагаемых равн: $\sum_{i=1}^{n} (\lambda_i + \vec{\lambda_i}) |y_i|^2 = 2 \sum_{i=1}^{n} Re \lambda_i |y_i|^2 \le$ $-2\alpha\sum |y_i|^2$, т.к $Re\lambda_i \leq -\alpha$. Далее, т.к $|b_{ij}| \leq \varepsilon \Rightarrow |(B_{\varepsilon}y, \vec{y})| \leq \sum |b_{jk}| \cdot |y_j| \cdot |y_k| \leq$ $\varepsilon \sum |y_j| \cdot |y_k| = \sum (\sum |y_i|^2) = n\varepsilon \sum |y_j|^2,$ т.к $(\sum |y_i|)^2 \le n \sum |\overline{y_i}|^2$. Такая же оценка для второго слагаемого $\Rightarrow \dot{V}(x) \le -2(\alpha - 1.17. \ \mathbf{Устойчивость}$ $n\varepsilon$) $\sum |y_i|^2 = -2(\alpha - n\varepsilon)V(x)$. Выберем ε : $0 < \varepsilon < \frac{a}{r} \Rightarrow \dot{V}(x)$ - отрицательно определена ⇒ положение равновесия асимпт. устойчиво. ЧТД.

1.16. Устойчивость по линейному приближению. Теорема об устойчивости по лин. прибл.

Дано: $\frac{dx}{dt} = f(x)$ (1). a - положение равновесия. f(a) = 0. $a \in V$; $f \in C^2(V)$. Разложим f(x) по ф. тейлора: f(x) = f'(a)(x-a) + g(x), где f'(a) - якобиан в т.а. Кроме того $|g(x)| \le$ $C|x-a|^2$. Отбрасыв. g(x) получим лин. систему (2) $\frac{dy}{dt} = Ay; y = x - a; A = f'(a).$

Теорема: Пусть $f(x) \in C^2(V), V = U(a)$. Если веществ. части всех собств. значений f'(a) - отрицательны, то положение aасимпт. устойчиво. Кроме того: $|x(t, x^0)|$ – $a| \le Ce^{-\alpha t}|x^0 - a|; 0 \le t < \infty.$

Док-во : $a = 0 \Rightarrow \frac{dx}{dt} = A(x) + g(x); |g(x)| \le$ $C_1|x|^2$. Для док-ва построим полож. опр. в окр т.a ф-ю Ляпунова. Пусть $x = Ty \Rightarrow$ $\frac{dy}{dt} = (\mathcal{L} + B_{\varepsilon})y + h(y)$, где $h(y) = T^{-1}g(Ty)$. Φ -ю Ляпунова возьмем в виде V(x) = $\sum |y_i|^2 = (y, \vec{y})$. Аналогично пред. теор. $\dot{V}(x) = \left[((\mathcal{L} + B_{\varepsilon})y, \vec{y}) + (y, (\vec{\mathcal{V}} + \vec{B}_{\varepsilon})\vec{y}) \right] +$ $[(h(y), \vec{y}) + (y, h(\vec{y}))] + A_1 + A_2$. A_1 - произв. в силу системы $\frac{dy}{dt} = (\mathcal{L} + B_{\varepsilon})y \Rightarrow$ справедлива оценка из пред. теор: $A_1 \leq \rho |x|^2$. $|A_2| \le 2|y||h(y)| \le C_3|x|^2$. Таким образом $V(x) \leq -|x|^2 \cdot (\rho - C_3|x|)$. Выберем окр. $W \subset$ V, такую что $|x| < \frac{\rho}{2C_2}$, тогда $\dot{V}(x) \leq -\frac{\rho}{2}|x|^2$ \Rightarrow ф-я V(x) отриц. опред. в W и след. положение а асимпт. устойчиво. ЧТД.

ных решений автономных систем. Устойчивость нулевых решений неавтономных систем.

Дано: Система (1) $\frac{dx}{dt} = f(t,x); f \in C^2(\sigma),$ считаем что f(t,0) = 0, $t \ge 0 \Rightarrow$ система имеет решение X(t) = 0. Для неавтономных систем формулировки те же, что и для автономных.

Устойчивость решений авт. систем : Дана система (2) $\frac{dx}{dt} = g(x)$. Сделаем подстановку $x(t) = \varphi(t) + y(t) \Rightarrow \frac{dy}{dt} = g(\varphi(t) + y(y))$ - (3). Решение $\varphi(t)$ системы (2) назыв. устойчивым по Ляпунову (асимпт.) если таковым является нулевое решение y(t) = 0 для системы (3).

1.18. Функции Ляпунова для неавтономных систем. Теорема Ляпунова об устойчивости по линейному приближению для неавтономных систем.

Ф-ии Ляпунова для неавтономных си**стем** : Ф-я V(t,x) называется ф-ей Ляпунова для неавтоновной системы (1) если: 1) Эта ф-я определена и непр. дифф. при $x \in \mathbb{R}, t > 0.$ 2) V(t,0) = 0 при t > 0.3) $\exists W(x)$ б положительно определенная в области Σ , такая что V(t,x) > W(x) при всех $x \in \Sigma, t \ge 0.$ 4) $\dot{V}(t, x) \le 0 \forall x \in \Sigma, t \ge 0.$

Теорема : Рассм. систему: $\frac{dx}{dt} = Ax +$ f(t,x) (1). Пусть A - матрица, веществ. ча-

произволь- сти собств. значений которой отрицательны. f(t,x) - непр. дифф. при $|x| < p_1, t \ge 0$ и $f(t,x) = o(|x|), |x| \rightarrow 0$. Тогда нулевое решение системы (1) асимпт. устойчиво и справ. оценка: $|x(t)| \leq C|x(0)|e^{\alpha t}, t \geq 0$, где $\alpha > 0, C > 0$ если |x(0)| дост. мало. ДАНО БЕЗ ДОКАЗАТЕЛЬСТВА.

> 1.19. Классификация дифференциальных уравнений с частными производными первого порядка. Связь первых интегралов и линейных уравнений в частных производных первого порядка. Характеристики для линейных систем. Теорема об общем решении линейного однородного уравнения в частных производных первого порядка. Примеры.

> Классификация - Линейные уравнения: Ур-е называется линейным если неизв. ф-я u(x) и $\frac{du}{dx_i}$ входят линейно. Общий вид: $\sum_{j=1}^{n} u_j(x) \frac{du}{dx_j} + b(x)u = f(x)$ (1).

> Классификация - Квазилинейные : Уре называется квазилинейным если частные $\frac{du}{dx}$ пр-е входят линейно. Общий вид: $\sum_{j=1}^{n} a_j(x, u) \frac{du}{dx_j} = b(x, u).$

Связь первых интегралов и линейных $u(x) = F(u_1(x), ..., u_n(x))$. уравнений: Рассм. систему (a): $\frac{dx}{dt} = f(x)$. По теор. первых интегралов - гладкая ф-я $u(x_1,\ldots,x_n)$ тогда и только тогда являет-

ся первым интегралом системы (a), когда uудовл. ур-ю с частн. производными первого порядка $\sum_{j=1}^{n} f_j(x) \frac{du}{dx_i} = 0$ (b).

Теорема об общем решении : Пусть Vдост. малая окрестность точки $a \Rightarrow в$ обл. V всякое решение ур-я (b) имеет вид u(x) = $F(u_1(x), \dots, u_{n-1}(x))$, где $u_i(x)$ - незав. первые интегралы, а F - произвольная гладк.

Характеристики для лин. систем : Система (а) назыв. характеристической для (b). Фазовые траектории для (a) назыв. характеристиками для (b). Пример: $y\frac{dz}{dx}$ $x\frac{dz}{dy}=0$. Ур-е характеристик - $\frac{dx}{y}=\frac{dy}{-x}=$ $dt \Rightarrow$ характеристика - окружность $x^2 + y^2 =$

1.20. Квазилинейные уравнения в частных производных первого порядка. Характеристическая система для таких уравнений. Общий вид решения квазилинейных уравнений.

Дано ур-е $\sum_{j=1}^{n} a_j(x, u) \frac{du}{dx_j}$ (1).характеристическая система: $\int \frac{dx_1}{dt} = a_1(x, u); \dots; \frac{dx_n}{dt} = a_n(x, u)$ $\frac{du}{dt} = b(x, u)$

Общий вид решения : Гладкая ф-я п независисмых первых интегралов u_i :