## ME 233 Spring 2010 Solution to Midterm #2

## Problem 1

1. (a)

$$G_w(z) = \frac{2(z+3.5)}{(z-1)(z+2)}$$

$$G_w(z^{-1})G_w(z) = -7\frac{z(z+3.5)(z+\frac{1}{3.5})}{(z-1)^2(z+2)(z+0.5)}$$

Because  $G_w(z^{-1})G_w(z)$  has a negative gain, we use positive feedback rules for the root locus plot, as shown in Figure 1.



Figure 1: Root locus of closed loop Kalman filter poles and their reciprocals as W is varied

(b) Let  $L = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix}$ , then the closed loop system has

$$\det(zI - A + LC) = \det\begin{bmatrix} z - 1 + l_1 & -1 \\ l_2 & z + 2 \end{bmatrix}$$
$$= z^2 + (l_1 + 1)z + 2(l_1 + 1) + l_2$$

Compare the the coefficients with the ones of  $C(q^{-1})$ , we get

$$\begin{cases} l_1 + 1 = 0.25 \\ l_2 + 2l_1 - 2 = -0.035 \end{cases} \Rightarrow \begin{cases} l_1 = -0.75 \\ l_2 = 3.465 \end{cases} \Rightarrow L = \begin{bmatrix} -0.75 \\ 3.465 \end{bmatrix}$$

Thus,

$$F = A^{-1}L = \begin{bmatrix} 1 & 0.5 \\ 0 & -0.5 \end{bmatrix} \begin{bmatrix} -0.75 \\ 3.465 \end{bmatrix} = \begin{bmatrix} 0.9825 \\ -1.7325 \end{bmatrix}$$

$$\varepsilon = CMC^{T} + V = m_{11} + 1 = 56 \Rightarrow m_{11} = 55$$

$$\hat{x}_1(k) = \hat{x}_1^o(k) + f_1 \epsilon(k) = \hat{x}_1^o(k) + f_1 \left( \tilde{x}_1^o(k) + v(k) \right) 
\Rightarrow \tilde{x}_1(k) = (1 - f_1) \tilde{x}_1^o(k) - f_1 v(k) 
\Rightarrow z_{11} = (1 - f_1)^2 m_{11} + f_1^2 = 0.9821$$

## 2. (a)

$$G(z) = \frac{z}{(z-1)(z+2)}$$

$$G(z^{-1})G(z) = -0.5 \frac{z^2}{(z-1)^2(z+2)(z+0.5)}$$

Because  $G(z^{-1})G(z)$  has a negative gain, we use positive feedback rules for the root locus plot, as shown in Figure 2.



Figure 2: Root locus of closed loop LQ control poles and their reciprocals as  $\rho$  is varied

(b) From the previous part, we know the closed-loop poles go to  $\{0, 0\}$  as  $\rho \to 0$ . Let  $K_o = \begin{bmatrix} k_1 & k_2 \end{bmatrix}$ , then the closed loop system has

$$\det(zI - A + BK_o) = \det \begin{bmatrix} z - 1 + k_1 & -1 + k_2 \\ -2k_1 & z + 2 - 2k_2 \end{bmatrix}$$

In order to make the two closed-loop poles be the origin, it is clear that we must have

$$\begin{cases} k_1 = 1 \\ k_2 = 1 \end{cases} \Rightarrow K_o = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

3. (a) As  $\rho \to 0$ , the LQR Riccati equation becomes:

$$A^T P_o A - P_o + C^T C - \alpha K_o^T K_o = 0$$
 with  $\alpha = B^T P_o B$ 

From the previous part, we know  $K_o = \begin{bmatrix} 1 & 1 \end{bmatrix}$ . In addition, Let  $P_o = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix}$ .

Thus,

$$\begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix} - \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - \alpha \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 0 & P_{11} - 3P_{12} \\ P_{11} - 3P_{12} & P_{11} - 4P_{12} + 3P_{22} \end{bmatrix} + \begin{bmatrix} 1 - \alpha & -\alpha \\ -\alpha & -\alpha \end{bmatrix} = 0$$

Obviously,  $\alpha = 1$ . As a result, we have:

$$\begin{cases} P_{11} - 3P_{12} = \alpha = 1 \\ P_{11} - 4P_{12} + 3P_{22} = \alpha = 1 \\ P_{11} - 4P_{12} + 4P_{22} = \alpha = 1 \end{cases} \Rightarrow P_o = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

(b)

$$J_o^o = z_{11} + V + F^T P_o F \varepsilon = z_{11} + 1 + f_1^2 \varepsilon$$
  
= 56.0393

## Problem 2

In this problem, we define

$$A(q^{-1}) := 1 + 0.9q^{-1},$$
  $B(q^{-1}) := 0.5(1 + q^{-1}),$   $g := 1$ 

so that the plant dynamics are described by

$$A(q^{-1})y(k) = q^{-g} [B(q^{-1})u(k) + d].$$

Here, we have denoted the relative degree of the dynamics from u(k) to y(k) as g to avoid confusion with the constant disturbance, d. Note that this system has zeros at q = -1. Obviously, we can not have zero-pole cancelation. Thus, we define

$$B^{s}(q^{-1}) := 1,$$
  $B^{u}(q^{-1}) := 0.5(1 + q^{-1}).$ 

Now we need to specify  $A'_c(q^{-1})$ . We are given that the closed loop poles of the feedback system (in terms of q) should only include one pole at q = 0.5. This means that

$$A_c'(q^{-1}) = 1 - 0.5q^{-1}$$

because any other choice would create poles that are not at the origin (in terms of q). Finally, we note that the constant disturbance, d, is annihilated by the polynomial

$$A_d(q^{-1}) = 1 + q^{-2}$$
.

The first step in designing the controller is designing the feedback loop to achieve pole placement and disturbance rejection. This is done by choosing the feedback control law

$$R'(q^{-1})A_d(q^{-1})B^s(q^{-1})u(k) = r(k) - S(q^{-1})y(k)$$
(1)

where  $R'(q^{-1})$  and  $S(q^{-1})$  solve the Diophantine equation

$$A_c'(q^{-1}) = A(q^{-1})A_d(q^{-1})R'(q^{-1}) + q^{-g}B^u(q^{-1})S(q^{-1}).$$
(2)

Since the order of  $R'(q^{-1})$  is  $n_u + g - 1$  where  $n_u$  is the order of  $B^u(q^{-1})$ , we see that  $R'(q^{-1})$  should have the form

$$R'(q^{-1}) = 1 + r_1 q^{-1}$$
.

Since the order of  $A'_c(q^{-1})$  is 1 and the order of  $A(q^{-1})A_d(q^{-1})R'(q^{-1})$  is 4, the order of  $q^{-g}B^u(q^{-1})S(q^{-1})$  is larger of these two which is 4 in this case. This implies that the order of  $S(q^{-1})$  is 2, which in turn implies that  $S(q^{-1})$  has the form

$$S(q^{-1}) = s_0 + s_1 q^{-1} + s_2 q^{-2}$$
.

Thus, Eq. (2) can be written

$$1 - 0.5q^{-1} = (1 + q^{-2})(1 + 0.9q^{-1})(1 + r_1q^{-1}) + 0.5(q^{-1} + q^{-2})(s_0 + s_1q^{-1} + s_2q^{-2})$$
  
= 1 + q^{-1}(0.9 + r\_1 + 0.5s\_0) + q^{-2}(1 + 0.9r\_1 + 0.5s\_0 + 0.5s\_1) + q^{-3}(0.9 + r\_1 + 0.5s\_1 + 0.5s\_2)  
+ q^{-4}(0.9r\_1 + 0.5s\_2).

Equating coefficients gives

$$\begin{bmatrix} 1 & 0.5 & 0 & 0 \\ 0.9 & 0.5 & 0.5 & 0 \\ 1 & 0 & 0.5 & 0.5 \\ 0.9 & 0 & 0 & 0.5 \end{bmatrix} \begin{bmatrix} r_1 \\ s_0 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} -1.4 \\ -1 \\ -0.9 \\ -0.9 \end{bmatrix}.$$

In this problem, it was not necessary to actually solve this system of equations; it was only necessary to find this system of linear equations. This system of equations determines  $R'(q^{-1})$  and  $S(q^{-1})$  which in turn determines the feedback control law in Eq. (1).

Now, we need to find the feedforward control law which guarantees zero-phase tracking of  $y_d(k)$ . To do this, we choose the feedforward control law

$$r(k) = q^g A'_c(q^{-1}) \frac{B^u(q)}{[B^u(1)]^2} y_d(k)$$
  
= 0.5q<sup>2</sup>(1 + 0.5q<sup>-1</sup> + 0.5q<sup>-2</sup>)y<sub>d</sub>(k).

As desired, we only need to know  $y_d(k)$  two steps in advance.