南京大学数学课程试卷

2021/2022 学年 第一 学期 考试形式 闭卷 课程名称 概率论与数理统计

考试时间_2022.1.4	系别	商学院等(20级)	学号	姓名	
---------------	----	-----------	----	----	--

题号	— 48	二 10	三 12	四10	五 10	六10	合计
得分		V. H					

 $\Phi(3) = 0.9987; \sqrt{2\pi} \approx 2.5066; \Phi(1) = 0.8413; \Phi(1.645) = 0.95; t_{0.025}(15) = 2.1315;$ $\chi_{0.05}^2(15) = 24.996;$ $\Phi(1.5) = 0.9332; t_{0.05}(15) = 1.7531; \chi^2_{0.025}(15) = 27.488$

- -. (6分×8=48分)
- 1. 己知 P(A) = 1/4, $P(B \mid A) = 1/3$, $P(A \mid B) = 1/2$, 求 $P(A \cup B)$ $P(AB) = P(B|A) \times P(A) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}{4} =$ P(B) = P(AB)/P(AIB) = + 21

 $P(A \cup B) = P(A) + P(B) - P(AB) = 1/3 2$ 2. 在房间里有 10 个人,分别佩戴 1 号到 10 号的号码牌,任选 3 人记录他们的号码 (1) 求最小号码为 5 的概率; (2) 求最大号码为 5 的概率。

1)
$$\frac{C_5^2}{C_{10}^2} = \frac{1}{12}$$
 2) $\frac{C_4^2}{C_{10}^3} = \frac{1}{20}$

Y)的概率密度为 $p(x, y) = \begin{cases} 2, & x, y \ge 0, x + y \le 1; \\ 0, & x \ne 0 \end{cases}$ 其他 (x, y) = 0 (x, y) = 0 (x, y) = 03. 设二维随机变量(X,Y)的概率密度为

求分布函数F(x, y)。

② X≥1, y≥1, f(x,y)=1

- (3) X≥1,0<y<1 Ht, f(x,y) = ∫, ∫, 2 dudv=2y-y², | f(x,y) = ∫, ∫, 2 dudv

@ ege, Fy(y)=P{Y = y} = P{ex = y} = P{x = lny} = fx (lny)4 ② e < y < e $f_{y}(y) = f(x < y) = f(x <$

$$f_{y}(y) = \begin{cases} \frac{1}{2} & e^{-y/2}, y > 0; \text{ x ($\delta 6 a$ a$ a$ o = x (x) $\delta 2$ + 2 $Xa + $Y = 0$ a $\delta 2$ $\delta 4$ $\delta 4$ $\delta 6$ $\delta 2$ $\delta 4$ $\delta 6$ $\d$$

6. 设总体 X 的均值为 μ ,方差为 σ^2 , X_1 , ..., X_n 为来自该总体的简单随机样本,证明:

$$E(\overline{X}) = \mu, D(\overline{X}) = \frac{\sigma^2}{n}, \quad \cancel{\Xi} + \overrightarrow{\nabla}, \quad \overrightarrow{X} = \frac{1}{n} \sum_{i=1}^n X_i.$$

$$E(\overline{X}) = E(\overrightarrow{\Lambda}_{i=1}^n X_i) = \frac{1}{n} \sum_{i=1}^n E(X_i) = \mu.$$

$$P(\overline{X}) = P(\overrightarrow{\Lambda}_{i=1}^n X_i) = \frac{1}{n^2} \sum_{i=1}^n D(X_i) = \frac{6^2}{n}.$$

7. 设总体 $X\sim N(\mu,\sigma^2)$, σ^2 已知, X_1,\cdots,X_n 为来自该总体的简单随机样本,求均值 μ 的置信水平 为 $1-\alpha$ 的置信下限,即 $P(\mu \geq \mu(X_1,\cdots,X_n))=1-\alpha(Z_\alpha$ 表示标准正态分布的上 α 分位数)。

$$P\{\mu \geq \bar{x} - \frac{6}{\sqrt{n}} Z_{\alpha}\} = 1 - \alpha$$

$$\therefore \mu = \bar{x} - \frac{6}{\sqrt{n}} Z_{\alpha}$$

8. 设 X_1,X_2 是来自总体 $^{X\sim N(1,2)}$ 的一个样本, Y_1,Y_2,Y_3,Y_4 是来自总体 $^{Y\sim N(1,4)}$ 的一个样本,且两样 本相互独立。它们的样本均值分别记为X和Y,样本方差分别记为 S_1^2 和 S_2^2 。求 $\frac{2(X-Y)}{\sqrt{S_1^2+\frac{3}{2}S_2^2}}$

分布(如有自由度请指出)。
$$\overline{Y} \sim N(1,1) \Rightarrow \overline{X} - 1 \sim N(0,1) \\
\overline{Y} \sim N(1,1) \Rightarrow \overline{Y} - 1 \sim N(0,1) \\
\overline{X} - \overline{Y} \sim N(0,2) \\
\overline{X} = \overline{Y} \sim N(0,2) \\$$

$$S$$
、ちられる。
第二页(共四页) $=>\frac{2(\bar{x}-\bar{y})}{\sqrt{s+\bar{z}-\bar{y}}} \sim t(4)$

第二页(共四页)

(10 分) 甲和乙进行接力跑步游戏,两人跑步时长 X_i 服从参数为 7 的指数分布(i=1,2),且相互 独立。甲先开始跑步,当甲停止跑步时,乙开始跑步。求两人跑步总时长 \mathbf{Y} 的概率密度 $\mathbf{f}_{r}(y)$ 及 期望E(Y),方差D(Y)。

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$
其他.

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$$

$$f(x,y) = \begin{cases} 1, & |y| < x, 0 < x < 1, 0 < x$$

四. (10 分) 计算器在进行加法时将每个数舍入最靠近它的整数,设所有的误差相互 (-0.5,0.5)上的均匀分布, 求: (1) 若将 1200 个数相加, 误差总和的绝对值超过 15 的概率。(2) 最多多少个数相加使得误差总和的绝对值小于 10 的概率不小于 0.9。

五. (10 分) 设总体X的概率密度为 $p(x) = \begin{cases} \theta \cdot e^{\theta} \cdot x^{-(\theta+1)} & x > e \\ 0 & x \le e \end{cases}$, 其中 $\theta > 1$ 为未知参数,设

 $X_1, X_2, ..., X_n$ 是来自X的样本,分别用矩估计法和极大似然估计法求 θ 的估计量。

$$\begin{array}{lll}
\mathbb{D} & & & & & & \\
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

 $\frac{2}{\ln L(0)} = \ln \ln O + \ln O - (O + 1) \frac{2}{\ln N} \ln N$ $\frac{2}{\ln L(0)} = \frac{N}{N} + \ln O - \frac{1}{N} \ln N$ $\frac{1}{\ln N} = \frac{N}{N} + \frac{N$

取16个零件测量直径,得到 x_1, x_2, \dots, x_{16} .已知 $\bar{x} = \frac{1}{16} \sum_{i=1}^{16} x_i = 99$, $S^2 = \frac{1}{15} \sum_{i=1}^{16} (x_i - \bar{x})^2 = 8$,取显著水

平 $\alpha = 0.05$,(1)检验直径的均值是否合格;(2)检验直径的方差是否合格(提示:设 H_1 为 $\sigma^2 > 4$)。

1)
$$H_0: \mu = \mu_0 = 100$$

 $H_1: \mu \neq \mu_0 = 100$
 $T = \frac{\bar{\chi} - \mu_0}{s/m}$ 2

2) Ho:
$$6^2 \le 6^2 = 4$$
H1: $6^2 > 6^2 = 4$

$$N = \frac{(4-1)5^2}{6^2} = \frac{15\times8}{4} = 30$$

$$\chi^{2} \ge \chi_{0.05}^{2}(15) = 24.996$$
 2

為人拒絕似 第四页(共四页)

F

样

的