Cryptographie : le système RSA

Aurélien Blais, Nicolas Iung February 14, 2019

1 Principe du chiffrement RSA

1.1 Question 1

1.1.1 Montre que cd = 1 + k(p-1)(q-1)

En utilisant le théorème de Bezout au+bv=1On pose

$$a = c$$

$$u = d$$

$$b = \varphi(n)$$

$$v = -k$$

$$cd + -k\varphi(n) = 1$$

$$cd = 1 + k\varphi(n)$$
Or $\varphi(n) = (p-1)(q-1)$

$$cd = 1 + k(p-1)(q-1)$$

1.2 Question 2

1.2.1 Déduire que $cd \equiv 1 \pmod{\varphi(n)}$

On sait que

$$a \equiv b \pmod{c}$$

$$\iff a = b + kc$$

On peut donc en déduire que

$$cd = 1 + k(p-1)(q-1)$$
$$cd = 1 + k\varphi(n)$$
$$cd \equiv 1 \pmod{\varphi(n)}$$

1.2.2 Conclure que si c et $\varphi(n)$ premiers entre eux, il existe toujours un entier d inverse de c modulo $\varphi(n)$

On a $cd \equiv 1 \pmod{\varphi(n)}$ Or on dit que a est l'inverse de $b \equiv \pmod{n}$ Si et seulement si $ab \equiv 1 \pmod{n}$ On a donc d inverse de $c \pmod{\varphi(n)}$

1.3 Question 3

1.3.1 Montrer que M est premier avec p et avec q

M est un entier qui représente le message coder. On montrera que M est premier avec p et qu'il est aussi avec q. Sachant que p et q sont des nombres premiers.

Pour cela on admet que 1 et p divise q ou 1 et q divise p. Alors respectivement M est premier avec p et q. Car M est un message codé en un entier inférieur à n avec n = p * q.

1.4 Question 4

1.4.1 Déduire que $M^{p-1} \equiv 1 \mod (p)$

Notons que p est un nombre premier. D'après le théorème de Fermat, Si M n'est pas divisible par p alors $M^{p-1} \equiv 1 \mod (p)$.

Or M et p sont premier entre eux. Donc le théorème de Fermat s'applique et $M^{p-1}\equiv 1 \mod (p)$

1.4.2 Déduire que $M^{q-1} \equiv 1 \mod (q)$

Notons que pq est un nombre premier. D'après le théorème de Fermat, Si M n'est pas divisible par p alors $M^{q-1} \equiv 1 \mod (p)$.

Or M et q sont premier entre eux. Donc le théorème de Fermat s'applique et $M^{q-1} \equiv 1 \mod (p)$

1.5 Question 5

1.5.1 Déduire que $M^{cd} \equiv M \mod (p)$

Rappelons que :

$$cd = 1 + k(p-1)(q-1)$$
 (1)

En appliquant cela à M:

$$M^{cd} = M^{1+k(p-1)(q-1)} = M * (M^{p-1})^{k(q-1)} \equiv M \mod (p)$$
 (2)

Donc p divise $M^{cd} - M$

1.5.2 Déduire que $M^{cd} \equiv M \mod (q)$

De même que pour $M^{cd} \equiv M \mod (p), M^{cd} \equiv M \mod (q)$ c'est à dire que que q divise $M^{cd} - M$

1.6 Question 6

1.6.1 Déduire que $M^{cd} - M$ est un multiple de n

p et q sont premier entre eux, pq = n divise $M^{cd} - M$. Donc $M^{cd} \equiv M \mod (n)$

2 Premier exemple

2.1 Question 1

2.1.1 Calculer
$$n_1 = p_1 q_1$$
 et $\varphi(n_1) = (p_1 - 1)(q_1 - 1)$ avec $p_1 = 7307$ et $q_1 = 5923$

$$n_1 = p_1 q_1$$

 $n_1 = 7307 * 5923$
 $n_1 = 43279361$

$$\varphi(n_1) = (p_1 - 1)(q_1 - 1)$$

$$\varphi(n_1) = (7307 - 1)(5923 - 1)$$

$$\varphi(n_1) = 43266132$$

2.2 Question 2

2.2.1 Choisir un entier c_1 premier avec $\varphi(n_1)$ tel que $c_1 < \varphi(n_1)$

On sait que 2 nombres sont premiers entre eux si leur PGCD est égal à 1 On pose donc $c_1=5$

Par la Méthode d'Euclide

$$43266132 = 8653226 * 5 + 2$$
$$5 = 2 * 2 + 1$$
$$2 = 2 * 1 + 0$$

Le PGCD est égal au dernier reste non nul soit 1.

Le PGCD étant égal à 1, $c_1 = 5$ et $\varphi(n_1) = 43266132$ sont premiers entre eux et $c_1 < \varphi(n_1)$.

2.3 Question 3

2.3.1 Déterminer d_1 inverse modulaire de c_1 modulo $\varphi(n_1)$

3 Fonctions de base

3.1 Question 1

3.1.1 Implémenter exponentiation Modulaire(x, k, n)

3.2 Question 2

3.2.1 Implémenter euclideEtendu(a, b)

```
\begin{array}{l} \textbf{def self}.\, euclide\_etendu\,(a,\ b)\\ r,\ u,\ v,\ r2\,,\ u2\,,\ v2\,,\ q=a,\ 1,\ 0,\ b,\ 0,\ 1,\ 0\\ \textbf{while}\,(r2\,>\,0)\ \textbf{do}\\ q=r/r2\\ r,\ u,\ v,\ r2\,,\ u2\,,\ v2\,=\,r2\,,\ u2\,,\ v2\,,\ r-q*r2\,,\ u-q*u2\,,\ v-q*v2\\ \textbf{end}\\ \left\{pgcd\colon\, r,\ u\colon\, u,\ v\colon\, v\right\}\\ \textbf{end}\\ \end{array}
```

La fonction retourne un Hash, c'est à dire ensemble clé \Rightarrow valeur Tel que $\{pgcd: valeur, u: valeur, v: valeur\}$

3.3 Question 3

3.3.1 Implémenter inverseModulaire(a, N)

La méthode retourne l'inverse modulaire de (a, N) et se base sur la définition fournie ici :

https://fr.wikipedia.org/wiki/Inverse_modulaire#Algorithme_d'Euclide_ %C3%A9tendu

Si a et N ne sont pas premiers entre eux, la méthode lève une exception.

```
def self.inverse_modulaire(a, n)
  val = euclide_etendu a, n
  raise Exception.new("Can't_find_value_for_a: _#{a}_and_n: _#{n}") unless val|
  val[:u] % n
end
```

3.4 Question 4

3.4.1 Implémenter generationExposants(p, q)

On déclare $\varphi=(p-1)*(q-1)$ comme vu précédemment dans l'énoncé. On déclare ensuite c=2, afin de ne pas obtenir c=1, qui est premier avec l'ensemble des entiers.

Pour obtenir c, on l'incrémente tant que $PGCD(c,\varphi)$ n'est pas égal à 1. Enfin, on retourne un Hash contenant la valeur de c et de d tel que $d=inverseModulaire(c,\varphi)$

```
def self.generation_exposants(p, q)
  phi = (p - 1) * (q - 1)
  c = 2
  while c < phi
    break if c.gcd(phi) == 1
    c += 1
  end
  {c: c, d: inverse_modulaire(c, phi)}
end</pre>
```

3.5 Question 5

3.5.1 Implémenter chiffrement(m, n, c)

On sait d'après l'énoncé que $m_2 \equiv m^c \mod (n)$. L'algorithme renvoie donc cette valeur, qui est l'exponentiation modulaire.

3.5.2 Implémenter dechiffrement(m, n, d)

On sait d'après l'énoncé que $m \equiv m_2^c \mod (n)$. L'algorithme renvoie donc cette valeur, qui est l'exponentiation modulaire.

```
\begin{array}{c} \textbf{def self}.\, dechiffrement\,(m,\ n\,,\ d\,) \\ exponentiation\_modulaire\ m,\ d\,,\ n \\ \textbf{end} \end{array}
```

4 Chiffrement de messages textes

4.1 A vous de jouer

4.1.1 Ré-implémentation de la méthode StringToInteger en Ruby

```
def self.string_to_integer(message)
  message = message.upcase.split(//)
  value = 0

message.each_with_index do | char, i |
    value = value + (ALPHABET.length ** (message.length - 1 - i)) * ALPHABET.
  end
  value
end
```

La méthode est une copie de celle fournie en Java, l'alphabet est lui aussi repris à l'identique.

```
ALPHABET = %w(. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z). freeze
```

4.1.2 Ré-implémentation de la méthode IntegerToString en Ruby

```
def self.integer_to_string(number)
  quotient = number / ALPHABET.length
  remainder = number % ALPHABET.length
  message = "#{ALPHABET[remainder]}"

while quotient > ALPHABET.length
  remainder = quotient % ALPHABET.length
  quotient = quotient / ALPHABET.length
  message += ALPHABET[remainder]
  end

(message + ALPHABET[quotient]).reverse
end
```

La méthode est une copie de celle fournie en Java.

Exception faite que l'on construit le mot à l'envers, et qu'il est donc inversé avant d'être renvoyé.

4.1.3 Implémentation de la méthode Decodage(message, n, c)

```
def self.decode(message, n, c)
  prime_div = n.prime_division
  p = prime_div[0][0]
  q = prime_div[1][0]

d = RSA.inverse_modulaire(c, (p - 1) * (q - 1))
  message = RSA.string_to_integer message

RSA.integer_to_string RSA.dechiffrement message, n, d
end
```

On commence par déterminer p et q, pour cela on utilise la méthode $prime_division$ qui renvoie les facteurs premiers d'un nombre donné.

On peut ainsi calculer $\varphi(n)$ et donc déterminer d en utilisant la méthode $inverse_modulaire(c, \varphi(n))$. Il ne reste plus qu'a déchiffrer le message, en utilisant la fonction dechiffrement(message, n, d)

4.1.4 Déchiffrer les valeurs données

On execute notre méthode decode(message, n, c) avec les valeurs fournies.

Les valeurs trouvées correspondent bien a des ouvertures d'échecs.