Pattern Recognition (CS-669)

Assignment 1

Bayes Classifier

Suryavanshi Virendrasingh (B16037)
Abhishek Pal (B15203)
Nemani Sri Hari (B15224)
Group - 13
September 16, 2018

1	Objective
2	Procedure
3	Formulae/Definition of Terms
4	Observations
	4.1 Case 1 - $\Sigma = \sigma^2 I$
	4.1.1 Linear Data
	4.1.2 Non-Linear Data
	4.1.3 Real World Data
	4.1.4 Inference
	4.2 Case 2 - $\Sigma_i = \Sigma$
	4.2.1 Linear Data
	4.2.2 Non-Linear Data
	4.2.3 Real World Data
	4.2.4 Inference
	4.3 Case 3 - Σ_i is a diagonal matrix
	4.3.1 Linear Data
	4.3.2 Non-Linear Data
	4.3.3 Real World Data
	4.3.4 Inference
	4.4 Case 4 - Σ_i is Unique
	4.4.1 Linear Data
	4.4.2 Non-Linear Data
	4.4.3 Real World Data
	4.4.4 Inference
5	Conclusion

1 Objective

- 1. To build a Bayes Classifier and classify the following datasets -
 - 2D Dataset 1 (Artificial)
 - Linearly Separable Dataset
 - Non Linearly Separable Dataset
 - 2D Dataset 2 (Real World)
- 2. Plot Decision Region for all pairs of classes.
- 3. Contour Region Plots for all pairs of classes.
- 4. Calculate Accuracy, Precision, mean recall, F-measure and Confusion Matrix.

2 Procedure

- 1.) Data for each class is partitioned into 75% for training and 25% for testing.
- 2.) The data set for each class is assumed to come from Gaussian distribution.
- 3.) In Case-1 ($\Sigma = \sigma^2 I$), mean of the covariance matrix for each class was calculated and it's off-diagonal terms were assumed to be 0 for further calculations.
- 4.) In Case-2 ($\Sigma_i = \Sigma$ for every class), mean of the covariance matrix for each class was calculated for further calculations.
- 5.) In Case-3 (Σ_i is a diagonal matrix), the covariance matrix for each class was different and it's off-diagonal terms were assumed to be 0 for further calculations.
- 6.) In Case-4 (Σ_i is unique), no assumptions were made for further calculations.

- 7.) Based on assumptions, the discriminant function $(g_i(x))$ was calculated for each class and decision region and Contour was plotted.
- 8.) The remaining 25% data was tested for each case and analysis was made.

3 Formulae/Definition of Terms

Confusion Matrix is defined as the matrix of the actual class vs predicted class.

Confusion Matrix

	Actual C1	Actual C2	Actual C3
Predicted C1	Actual C1 & Predicted C1	Actual C2 & Predicted C1	Actual C3 & Predicted C1
Predicted C2	Actual C1 & Predicted C2	Actual C2 & Predicted C2	Actual C3 & Predicted C2
Predicted C3	Actual C1 & Predicted C3	Actual C2 & Predicted C3	Actual C3 & Predicted C3

Classification Accuracy = (Number of samples correctly classified/Total number of samples)*100 = ((TP+TN)/(TP+TN+FP+FN)) * 100

Precision for one class = Number of true and predicted class 1 cases/Number of predicted class 1 cases = TP/(TP +FP)

Mean precision = (precision 1+precision 2+ precision 3)/3

Recall for one class = number of true and predicted class 1 cases/Number of true class 1 cases = TP/(TP+FN)

Mean recall = (recall 1+recall 2+recall 3)/3

F-measure for one class = (precision * recall)/((precision + recall)/2)

Mean F-measure = (F-measure 1+F-measure 2+ F-measure 3)/3

4 Observations

4.1 Case 1 - $\Sigma = \sigma^2 I$

4.1.1 Linear Data

Class 1 vs Class 2

Accuracy = 100%

Confusion Matrix				
Actual/ Predicted	Class 1	Class 2		
Class 1	125	0		
Class 2	0	125		

	Class 1	Class 2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

dass2

20

25

dass1

Class 2 vs Class 3

Accuracy = 100%

Confusion Matrix				
Actual/ Predicted	Class 2	Class 3		
Class 2	125	0		
Class 3	0	125		

<u>Analysis</u>				
Class 2 Class 3				
Precision	1.000	1.000		
Recall	1.000	1.000		
F-measure	1.000	1.000		

Class 1 vs Class 3

Accuracy = 99.6%

Confusion Matrix				
Actual/ Predicted	Class 1	Class 3		
Class 1	124	0		
Class 3	0	125		

Analysis Class 1 Class 3			
Precision	1.000	99.206	
Recall	0.992	1.000	
F-measure	0.995	0.996	

Class 1 vs Class 2 vs class 3

Accuracy = 99.73%

Confusion Matrix					
Actual/ Predict ed	Class 1	Class 2	Class 3		
Class 1	124	0	0		
Class 2	0	125	0		
Class 3	0	0	125		

<u>Analysis</u>				
	Class 1	Class 2	Class 3	
Precision	1.000	1.000	0.992	
Recall	0.992	1.000	1.000	
F-measure	0.995	1.000	0.996	

4.1.2 Non-Linear Data

Class 1 vs Class 2

Accuracy = 55.67%

Confusion Matrix					
Actual/ Predicted	Class 1	Class 2			
Class 1	188	138			
Class 2	151	175			

<u>Analysis</u>				
Class 1 Class 2				
0.554	0.559			
0.576	0.536			
0.565	0.547			
	Class 1 0.554 0.576			

4.1.3 Real World Data

Class 1 vs Class 2

Accuracy = 100%

Confusion Matrix			
Actual/ Class 1 Class 2 Predicted			
Class 1	622	0	
Class 2	0	597	

<u>Analysis</u>			
	Class 1 Class 2		
Precision	1.000	1.000	
Recall	1.000	1.000	
F-measure	1.000	1.000	

Class 2 vs Class 3

Accuracy = 86.92%

Confusion Matrix			
Actual/ Class 2 Class 3 Predicted			
Class 2	557	40	
Class 3	113	460	

<u>Analysis</u>			
	Class 2 Class 3		
Precision	0.831	0.920	
Recall	0.932	0.802	
F-measure	0.879	0.857	

Class 1 vs Class 3

Accuracy = 99.74%

Confusion Matrix			
Actual/ Class 1 Class 3 Predicted			
Class 1	622	0	
Class 3	3	570	

<u>Analysis</u>		
Class 1	Class 3	
99.520	1.000	
1.000	99.476	
99.759	99.737	
	Class 1 99.520 1.000	

Class 1 vs Class 2 vs class 3

Accuracy = 99.832%

Confusion Matrix			
	Class 1	Class 2	Class 3
Actual/ Predict ed			
Class 1	622	0	0
Class 2	0	557	40
Class 3	3	113	457

	Class 1	Class 2	Class 3
Precision	0.995	0.831	0.919
Recall	1	0.932	0.797
F-measure	0.997	0.879	0.854

4.1.4 Inference

- 1. In this case we assume that our features are statistically independent which is why we consider all the classes have same covariance matrix which is diagonal.
- 2. We get the covariance matrix by taking average of all the diagonal elements of all classes. $\Sigma_i = \sigma^2 I$
- 3. This method works best when the data is linearly separable.
- 4. The decision boundary formed will be perpendicular to the line joining the means and will pass through the point on the line joining the mean. The point of intersection will be nearer to the class with more prior. In our case here as the prior is equal the decision boundary passes through the midpoint of means.
- 5. This can be inferred from the first and third case where data is almost linearly separable the accuracy is 100% and in the second case where data is not linearly separable the accuracy is 55.7%.

4.2 Case 2 - $\Sigma_i = \Sigma$

4.2.1 Linear Data

Class 1 vs Class 2

Accuracy = 100%

Confusion Matrix			
Actual/ Class 1 Class 2 Predicted			
Class 1	125	0	
Class 2	0	125	

<u>Analysis</u>			
	Class 1 Class 2		
Precision	1.000	1.000	
Recall	1.000	1.000	
F-measure	1.000	1.000	

Class 2 vs class 3

Accuracy = 100%

Confusion Matrix			
Actual/ Predicted			
Class 2	125	0	
Class 3	0	125	

<u>Analysis</u>		
	Class 2 Class 3	
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Class 1 vs Class3

Accuracy = 99.60%

Confusion Matrix			
Actual/ Predicted	Class 1	Class 3	
Class 1	124	1	
Class 3	0	125	

	Class 1	Class 3
Precision	1.000	0.992
Recall	0.992	1.000
F-measure	0.995	0.996

Class 1 vs Class 2 vs class 3

Accuracy = 99.73%

<u>Confusion Matrix</u>				
Actual/ Predict ed	Class 1	Class 2	Class 3	
Class 1	124	0	0	
Class 2	0	125	0	
Class 3	0	0	125	

<u>Analysis</u>			
	Class Class Class 2		Class 3
Precision	1.000	1.000	0.992
Recall	0.992	1.000	1.000
F-measure	0.995	1.000	0.996

4.2.2 Non-Linear Data

Class 1 vs Class 2

Accuracy = 55.67%

Confusion Matrix			
Actual/ Predicted	Class 1	Class 2	
Class 1	188	138	
Class 2	151	175	

<u>Analysis</u>			
	Class 1 Class 2		
Precision	0.554	0.559	
Recall	0.576	0.536	
F-measure	0.565	0.547	
	•		

4.2.3 Real World Data

Class 1 vs Class 2

Accuracy = 100%

<u>Confusion Matrix</u>			
Actual/ Predicted	Class 1	Class 2	
Class 1	622	0	
Class 2	0	597	

	Class 1	Class 2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Class 2 vs class 3

Accuracy = 88.37%

Actual/ Predicted	Class 2	Class 3
Class 2	572	25
Class 3	111	462

	Class 2	Class 3
Precision	0.837	0.948
Recall	0.958	0.806
F-measure	0.893	0.871

Class 1 vs class 3

Accuracy = 99.74%

Actual/ Predicted	Class 1	Class 3
Class 1	622	0
Class 3	3	570

	Class 1	Class 3
Precision	0.995	1.000
Recall	1.000	0.994
F-measure	0.997	0.997

Class 1 vs Class 2 vs class 3

Accuracy = 99.83%

Actual/ Predict ed	Class 1	Class 2	Class 3
Class 1	622	0	0
Class 2	0	572	25
Class 3	3	111	459

	Class 1	Class 2	Class 3
Precision	0.995	0.837	0.948
Recall	1.000	0.958	0.801
F-measure	0.997	0.893	0.868

4.2.4 Inference

- 1. In this case we consider all the classes have same covariance matrix which is arbitrary but not diagonal.
- 2. We get the covariance matrix by taking average of all the covariance matrix elements of all classes. Σ = summation of covariance matrices/total no of classes.
- 3. This method works best when the data is linearly separable.
- 4. The decision boundary formed will not be perpendicular but inclined to the line joining the means (angle basing on the inverse of covariance matrix) and will pass through the point on the line joining the mean. The point of intersection will be nearer to the class with more prior. In our case here as the prior is equal the decision boundary passes through the midpoint of means.
- 5. This can be inferred from the first and third case where data is almost linearly separable the accuracy is 100% and in the second case where data is not linearly separable the accuracy is 55.7% which are almost similar to the case 1.

4.3 Case 3 – Σ_i is a diagonal matrix

4.3.1 Linear Data

Class 1 vs Class 2

Accuracy = 100%

Actual/ Predicted	Class 1	Class 2
Class 1	125	0
Class 2	0	125

<u>Analysis</u>			
	Class 1 Class 2		
Precision	1.000	1.000	
Recall	1.000	1.000	
F-measure	1.000	1.000	

Class 2 vs class 3

Accuracy = 100%

<u>Confusion Matrix</u>				
Actual/ Predicted	Class 2	Class 3		
Class 2	125	0		
Class 3	0	125		

	Class 2	Class 3
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Class 1 vs Class 3

Accuracy = 100%

<u>Confusion Matrix</u>				
Actual/ Predicted	Class 1	Class 3		
Class 1	125	0		
Class 3	0	125		

<u>Analysis</u>		
	Class 1	Class 3
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Class 1 vs Class 2 vs class 3

Accuracy = 100%

Confusion Matrix				
Actual/ Predict ed	Class 1	Class 2	Class 3	
Class 1	125	0	0	
Class 2	0	125	0	
Class 3	0	0	125	

	Class 1 Class 2 C		Class 3
Precision	1.000	1.000	1.000
Recall	1.000	1.000	1.000
F-measure	1.000	1.000	1.000

4.3.2 Non-Linear Data

Class 1 vs Class 2

Accuracy = 55.21%

<u>Cor</u>	<u>ıfusion Matrix</u>	
Actual/ Predicted	Class 1	Class 2
Class 1	180	146
Class 2	144	182

	Class 1	Class 2
Precision	0.555	0.554
Recall	0.552	0.558
F-measure	0.553	0.556

4.3.3 Real World Data

Class 1 vs Class 2

Accuracy = 99.83%

Actual/ Predicted	Class 1	Class 2
Class 1	622	0
Class 2	0	572

	Class 1	Class 2
Precision	0.995	0.837
Recall	1.000	0.958
F-measure	0.997	0.893

Class 2 vs class 3

Accuracy = 88.37%

Confusion Matrix			
Actual/ Predicted	Class 2	Class 3	
Class 2	572	25	
Class 3	111	462	

	Class 2 Class 3	
Precision	0.837	0.948
Recall	0.958	0.806
F-measure	0.893	0.871

Class 1 vs Class 3

Accuracy = 99.74%

Confusion Matrix			
Actual/ Predicted	Class 1	Class 3	
Class 1	622	0	
Class 3	3	570	

	Class 1 Class 3	
Precision	0.995	1.000
Recall	1.000	0.994
F-measure	0.997	0.997

Class 1 vs Class 2 vs class 3

Accuracy = 99.83%

Confusion Matrix			
Actual/ Predict ed	Class 1	Class 2	Class 3
Class 1	622	0	0
Class 2	0	572	25
Class 3	3	111	459

<u>Analysis</u>			
	Class 1 Class 2		Class 3
Precision	0.998	0.924	0.922
Recall	1.000	0.958	0.801
F-measure	0.997	0.893	0.868

4.3.4 Inference

- 1. In this case we assume that our features are statistically independent which is why we consider all the classes matrices which are diagonal but are different for different classes.
- 2. We get the covariance matrix by making non diagonal elements of original covariance matrices zero for all classes.
- 3. This method works well for both linearly and nonlinearly separable data.
- 4. The decision boundary formed will be a curve of degree two whose shape can be predicted by observing the covariance matrices, that is the decision boundary curve will have concave surface towards the class having maximum variance in that direction and convex towards the other one.
- 5. This can be inferred from the first and third case where data is almost linearly separable the accuracy is 100% and in the second case where data is not linearly separable the accuracy is 55.21%.

4.4 Case 4 - Σ_i is Unique

4.4.1 Linear Data

Class 1 vs Class 2

Accuracy = 99.83%

Actual/ Predicted	Class 1	Class 2
Class 1	622	0
Class 2	0	572

	Class 1 Class 2	
Precision	0.995	0.837
Recall	1.000	0.958
F-measure	0.997	0.893

Class 2 vs Class 3

Accuracy = 100%

Confusion Matrix			
Actual/ Predicted	Class 2	Class 3	
Class 2	125	0	
Class 3	0	125	

	Class 2 Class 3		
Precision	1.000	1.000	
Recall	1.000	1.000	
F-measure	1.000	1.000	

Class 1 vs Class 3

Accuracy = 100%

Confusion Matrix			
Actual/ Predicted	Class 1	Class 3	
Class 1	125	0	
Class 3	0	125	

	Class 1	Class 3
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Class 1 vs Class 2 vs Class 3

Accuracy = 100%

Confusion Matrix			
Actual/ Predict ed	Class 1	Class 2	Class 3
Class 1	125	0	0
Class 2	0	125	0
Class 3	0	0	125

	Class 1	Class 2	Class 3
Precision	1.000	1.000	1.000
Recall	1.000	1.000	1.000
F-measure	1.000	1.000	1.000

4.4.2 Non-Linear Data

Class 1 vs Class 2

Accuracy = 55.52%

Confusion Matrix			
Actual/ Predicted	Class 1	Class 2	
Class 1	181	145	
Class 2	145	181	

	Class 1	Class 2
Precision	0.555	0.555
Recall	0.555	0.555
F-measure	0.555	0.555

5

10

15

20

dass2

____ dass1

4.4.3 Real World Data

Class 1 vs Class 2

Accuracy = 100%

Confusion Matrix			
Actual/ Predicted	Class 1	Class 2	
Class 1	622	0	
Class 2	0	597	

	Class 1	Class 2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Class 2 vs Class 3

Accuracy = 89.14%

Confusion Matrix			
Actual/ Predicted	Class 2	Class 3	
Class 2	558	39	
Class 3	88	485	

	Class 2	Class 3
Precision	0.863	0.925
Recall	0.934	.846
F-measure	0.897	0.884

Class 1 vs Class 3

Accuracy = 99.74%

Actual/ Predicted	Class 1	Class 3
Class 1	621	1
Class 3	2	571

	Class 1	Class 3
Precision	0.996	0.998
Recall	0.998	0.996
F-measure	0.997	0.997

Class 1 vs Class 2 vs Class 3

Accuracy = 99.83%

Confusion Matrix					
Actual/ Predict ed	Class 1	Class 2	Class 3		
Class 1	621	0	0		
Class 2	0	558	39		
Class 3	2	88	483		

	Class 1	Class 2	Class 3
Precision	0.996	0.863	0.923
Recall	0.998	0.934	0.842
F-measure	0.997	0.897	0.881

4.4.4 Inference

- 1. In this case we consider original covariance matrices of all different classes.
- 2. This method works well for both linearly and nonlinearly separable data.
- 3. The decision boundary formed will be a curve of degree two whose shape can be predicted by observing the covariance matrices, that is the decision boundary curve will have concave surface towards the class having maximum variance in that direction and convex towards the other one.
- 4. This can be inferred from the first and third case where data is almost linearly separable the accuracy is 100% and in the second case where data is not linearly separable the accuracy is 55.52%.

5 Conclusion

- Bayes classifier works well for the linearly separable data which can be observed from first three classes of data. It also does well in the real world data where the data is not overlapping.
- But it fails in the non linearly separable case with accuracy as low as 55%. This can be
 observed from classes that data points are arranged in concentric spirals where the data is
 non linearly separable.
- Bayes classifier can give the decision boundary of degree two at the maximum. As the spiral data requires higher degree boundary curve it gives very poor accuracy in bayes classifier.