Zadanie 21 z "Około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej (i jedno czy dwa trudne)"

Łukasz Klasiński

20 marca 2020

Zadanie 21.

Udowodnij, że jeśli dla pewnego języka L istnieje rozpoznający go NDFA, to istnieje również NDFA rozpoznający język $L^R = \{w : w^R \in L\}$

Rozwiązanie.

Weźmy NDFA $N = \langle \Sigma, Q, q_0, F, \delta \rangle$, który akceptuje język L.

Stworzymy NDFA $N' = \langle \Sigma, Q', p_0, F', \delta' \rangle$ rozpoznający język L^R , przekształcając automat N w następujący sposób:

- 1. Odwracamy wszystkie krawędzie w diagramie przejść N
- 2. Ustalamy jedyny stan akceptujący N' na stan początkowy N
- 3. Stan p_0 tworzymy łącząc go z ε -przejściami do stanów z F

Intuicyjnie - automat który akceptuje odwrotne słowo, jest tym samym automatem co automat, który akceptuje nieodwrócone słowo, ale z zamienionymi przejściami między stanami.

Po wykonaniu tych operacji, otrzymujemy:

$$Q' = Q \cup \{p_0\}$$

$$F' = q_0$$

$$\delta' = \{\langle q_i, a, q_j \rangle : \delta(q_j, a, q_i)\} \cup \{\langle p_0, \varepsilon, q \rangle : q \in F\}$$

Do udowodnienia że taki język rzeczywiście rozpoznaje L^R , skorzystamy z następującego lematu:

Lemat 1.

$$\hat{\delta}(q_i, w, q_j) = \hat{\delta}'(q_j, w^R, q_i)$$

D-d lematu 1.

Dowodzimy indukcyjnie po długości słowa w:

• Podstawa indukcji:

Weźmy dowolne słowo w takie, że $|w| \le 1$. Wtedy w = a dla $a \in \Sigma$. Po wstawieniu do tezy otrzymamy:

$$\hat{\delta}(q_i, w, q_j) = \delta(q_i, a, q_j) = \delta'(q_j, a^R, q_i) = \hat{\delta}'(q_j, w^R, q_i)$$

• Krok:

Załóżmy, że dla słów k takich, że |k| < |w| twierdzenie zachodzi. Pokażemy, że dla w też jest prawdziwe.

Niech w = ak, gdzie $a \in \Sigma$. Otrzymujemy zatem:

$$\hat{\delta}(q_i, w, q_j) = \hat{\delta}(q_i, ak, q_j) \Leftrightarrow \exists q_k \in Q : \delta(q_i, a, q_k) \land \hat{\delta}(q_k, k, q_j)$$

$$zza_i^{1,ind}.$$

$$\exists q_k \in Q : \hat{\delta}'(q_i, k^R, q_k) \land \delta'(q_k, a, q_i) \Leftrightarrow \hat{\delta}'(q_i, k^R a, q_i) = \hat{\delta}(q_i, w^R, q_i)$$

D-d, że automat N' rozpoznaje język L^R

Wystarczy pokazać, że $w \in L(N) \Leftrightarrow w^R \in L(N')$

(⇒)

Weźmy dowolne słowo $w \in L(N)$. Wówczas zachodzi $\hat{\delta}(q_0, w, q_f)$, gdzie $q_f \in F$. Z lematu 1 możemy to przekształcić na $\hat{\delta}'(q_f, w^R, q_0)$. Ponadto z konstrukcji języka N' wiemy, że zachodzi $\delta'(p_0, \varepsilon, q_f)$, stąd otrzymujemy $\hat{\delta}(p_0, w^R, q_0)$. Ponieważ $q_0 \in F'$, to słowo w^R jest akceptowane przez automat N', czyli $w^R \in L(N')$

(⇐)

Weźmy dowolne słowo $w \in L(N')$. Wówczas zachodzi $\hat{\delta}'(p_0, w, p_f)$, gdzie $p_f \in F'$ ale ponieważ automat ma tylko jeden stan akceptujący q_0 to otrzymamy $\hat{\delta}'(p_0, w, q_0)$. Wiemy, że p_0 przechodzi ε przejściami do stanów z F, zatem prawdziwe są relacje $\delta'(p_0, \varepsilon, q_k)$ i $\delta'(q_k, w, q_0)$, gdzie $q_k \in F$. Z lematu 1 otrzymujemy $delta(q_0, w^R, q_k)$. Ponieważ $q_k \in F$, to słowo w^R jest akceptowane przez automat N, zatem $w^R \in L(N)$