

十六进制

计算机网络

3.7 MAC地址、IP地址以及ARP协议

MAC地址

IP地址

ARP协议

- 当多个主机连接在同一个广播信道上,要想实现两个主机之间的通信,则每个主机都必须有一个唯一的标识,即一个数据链路层地址;
- 在每个主机发送的帧中必须携带标识发送主机和接收主机的地址。由于这类地址是用于媒体接入控制MAC(Media Access Control),因此 这类地址被称为MAC地址;
 - □ MAC地址一般被固化在网卡(网络适配器)的电可擦可编程只读存储器EEPROM中,因此MAC地址也被称为硬件地址;
 - □ MAC地址有时也被称为物理地址。请注意:这并不意味着MAC地址属于网络体系结构中的物理层!
- 一般情况下,用户主机会包含两个网络适配器:有线局域网适配器(有线网卡)和无线局域网适配器 (无线网卡)。每个网络适配器都有一个全球唯一的MAC地址。而交换机和路由器往往拥有更多的网络 接口,所以会拥有更多的MAC地址。综上所述,严格来说,MAC地址是对网络上各接口的唯一标识, 而不是对网络上各设备的唯一标识。

扩展的唯一标识符EUI (EUI-48)

	组织唯一标识符OUI (由IEEE的注册管理机构分配)						网络接口标识符 (由获得OUI的厂商自行随意分配)					-
96-	字节	第二	字节	96.3	字节	第四	字节	第五	字节	無六	字节	3
b7 b6 b6 b4	63 62 61 60	b7 b6 b6 b4	62 h2 h1 h0	b7 b6 b5 b4	62 h2 h1 h0	b7 b6 b5 b4	h2 h2 h1 h0	b7 b6 b5 b4	h2 h2 h1 h0	b7 b6 b5 b4	h2 h2 h1 h0	
х	х	X	х	х	х	X	Х	х	X	х	х	

第一字节的 b1位	第一字节的 b0位	MAC地址类型	地址数量 占比	总地址数量	
	0	全球管理 继接地址 厂商生产网络设备(网卡,交换机、路由等)时間化	1/4		
0	1	全球管理 多模性址 标准网络投条用支持的多模性址,用于特定功能		2 ⁸⁴ =281,474,976,710,656	
4	. 0	本始管理 单摄地址 由网络管理员分配。葡萄网络接口的全球管理单摄地址	1/4	(二百八十多万亿)	
1	1	本的智慧 多摄的社 (图0 对象的企业) (3 数据广播的企业) (4 数据广播的企业) (4 数据广播的企业) (5 数据广播的 (5 数据行用的 (5) 数据行用的 (1/4		

其他表示法:XX:XX:XX:XX:XX:XX:XX

XXXXXXXXXXXXX

RIND: 00:0C:CF:93:8C:92

3.7 MAC地址、IP地址以及ARP协议

MAC地址

IP地址

ARP协议

■ IP地址是因特网(Internet)上的主机和路由器所使用的地址,用于标识两部分信息:

□ 网络编号: 标识因特网上数以百万计的网络

] 主机编号: 标识同一网络上不同主机 (或路由器各接口)

3.7 MAC地址、IP地址以及ARP协议

MAC地址

IP地址

ARP协议

■ IP地址是因特网(Internet)上的主机和路由器所使用的地址,用于标识两部分信息:

□ 网络编号: 标识因特网上数以百万计的网络

□ 主机编号: 标识同一网络上不同主机 (或路由器各接口)

3.7 MAC地址、IP地址以及ARP协议

MAC地址

IP地址

ARP协议

■ IP地址是因特网(Internet)上的主机和路由器所使用的地址,用于标识两部分信息:

□ 网络编号: 标识因特网上数以百万计的网络

□ 主机编号: 标识同一网络上不同主机 (或路由器各接口)

3.7 MAC地址、IP地址以及ARP协议

MAC地址

IP地址

ARP协议

■ IP地址是因特网(Internet)上的主机和路由器所使用的地址,用于标识两部分信息:

□ 网络编号: 标识因特网上数以百万计的网络

□ 主机编号: 标识同一网络上不同主机 (或路由器各接口)

3.7 MAC地址、IP地址以及ARP协议

MAC地址

IP地址

ARP协议

- IP地址是因特网(Internet)上的主机和路由器所使用的地址,用于标识两部分信息:
 - □ 网络编号: 标识因特网上数以百万计的网络
 - □ 主机编号: 标识同一网络上不同主机 (或路由器各接口)
- 很显然,之前介绍的MAC地址不具备区分不同网络的功能。
 - □ 如果只是一个单独的网络,不接入因特网,可以只使用MAC地址(这不是一般用户的应用方式)。
 - □ 如果主机所在的网络要接入因特网,则IP地址和 MAC地址都需要使用。

3.7 MAC地址、IP地址以及ARP协议

MAC地址 IP地址 ARP协议

从网络体系结构看IP地址与MAC地址

5	应用层
4	运输层
3	网络层
2	数据链路层
0	物理层

3.7 MAC地址、IP地址以及ARP协议

MAC地址 IP地址 ARP协议

数据包转发过程中IP地址与MAC地址的变化情况

3.7 MAC地址、IP地址以及ARP协议

MAC地址 IP地址 ARP协议

数据包转发过程中IP地址与MAC地址的变化情况

3.7 MAC地址、IP地址以及ARP协议

MAC地址 IP地址 ARP协议

数据包转发过程中IP地址与MAC地址的变化情况

应用层

运输层

网络层

链路层

物理层

网络层

链路层

物理层

网络层

链路层

物理层

应用层

运输层

网络层

链路层

物理层

3.7 MAC地址、IP地址以及ARP协议

MAC地址 IP地址 ARP协议 数据包转发过程中IP地址与MAC地址的变化情况 R2 R1 2.3 IP1 IP3 IP4 IP5 IP6 MAC1 MAC3 MAC4 MAC5 MAC6 MAC2 应用层 应用层 IP1---> IP2 运输层 运输层 网络层 IP数据报 网络层 网络层 网络层 链路层 链路层 链路层 链路层 帧 物理层 物理层 物理层 物理层 MAC1---> MAC3

3.7 MAC地址、IP地址以及ARP协议

MAC地址 IP地址 ARP协议 数据包转发过程中IP地址与MAC地址的变化情况 R2 2.3 IP4 IP1 IP3 IP6 IP2 MAC1 MAC3 MAC4 MAC5 MAC6 MAC₂ 应用层 应用层 IP1---> IP2 IP1---> IP2 运输层 运输层 网络层 IP数据报 网络层 IP数据报 网络层 网络层 链路层 链路层 链路层 链路层 帧 帧 物理层 物理层 物理层 物理层 MAC4---> MAC5 MAC1---> MAC3

3.7 MAC地址、IP地址以及ARP协议

3.7 MAC地址、IP地址以及ARP协议

MAC地址 IP地址 ARP协议

数据包转发过程中IP地址与MAC地址的变化情况

- 数据包转发过程中源IP地址和目的IP地址保持不变;
- 数据包转发过程中源MAC地址和目的MAC地址逐个链路(或逐个网络)改变。

3.7 MAC地址、IP地址以及ARP协议

MAC地址

IP地址

ARP协议

数据包转发过程中IP地址与MAC地址的变化情况

H1知道应该把数据包传给R1, 由R1帮其把数据包转发出去。

H1知道R1相应接口的IP地址为IP3.

但不知道其对应的MAC地址是什么!

R1知道应该把数据包转发给R2,

R1知道R2相应接口的IP地址为IP5。

但不知道其对应的MAC地址是什么!

R2知道应该把数据包传给H2,

目前先权且这么认为。

在网络层这一章再详细介绍!

R2知道H2的IP地址为IP2,

但不知道其对应的MAC地址是什么!

3.7 MAC地址、IP地址以及ARP协议

MAC地址

IP地址

ARP协议

数据包转发过程中IP地址与MAC地址的变化情况

H1知道应该把数据包传给R1, 由R1帮其把数据包转发出去。 R1知道应该把数据包转发给R2,

R2知道应该把数据包传给H2,

H1知道R1相应接口的IP地址为IP3。

R1知道R2相应接口的IP地址为IP5,

R2知道H2的IP地址为IP2,

但不知道其对应的MAC地址是什么!

但不知道其对应的MAC地址是什么!

但不知道其对应的MAC地址是什么!

3.7 MAC地址、IP地址以及ARP协议

MAC地址

IP地址

ARP协议

- IP地址是因特网(Internet)上的主机和路由器所使用的地址,用于标识两部分信息:
- □ 网络编号: 标识因特网上数以百万计的网络
- □ 主机编号: 标识同一网络上不同主机 (或路由器)
- 很显然, 之前介绍的MAC地址不具备区分不同网络的功能。
 - □ 如果只是一个单独的网络,不接入因特网,可以只使用MAC地址(这不是一般用户的应用方式)
 - □ 如果主机所在的网络要接入因特网,则IP地址和MAC地址都需要使用。
- 数据包转发过程中IP地址与MAC地址的变化情况:
 - □ 源IP地址和目的IP地址保持不变;
 - □ 源MAC地址和目的MAC地址逐个链路(或逐个网络)改变。

3.7 MAC地址、IP地址以及ARP协议

MAC地址

IP地址

ARP协议

- IP地址是因特网 (Internet) 上的主机和路由器所使用的地址,用于标识两部分信息:
 - □ 网络编号: 标识因特网上数以百万计的网络
 - □ 主机编号: 标识同一网络上不同主机 (或路由器)
- 很显然,之前介绍的MAC地址不具备区分不同网络的功能。
 - □ 如果只是一个单独的网络,不接入因特网,可以只使用MAC地址(这不是一般用户的应用方式)
 - □ 如果主机所在的网络要接入因特网,则IP地址和MAC地址都需要使用。
- 数据包转发过程中IP地址与MAC地址的变化情况:
 - □ 源IP地址和目的IP地址保持不变;
 - □ 源MAC地址和目的MAC地址逐个链路(或逐个网络)改变。

