Linear Regression: From Intuition to Mathematics

Nipun Batra and the teaching staff

IIT Gandhinagar

July 30, 2025

Outline

- 1. Introduction and Motivation
- 2. Mathematical Framework
- 3. Matrix Representation
- 4. Practice and Review

Fundamental assumption: Many relationships can be approximated as linear

Height-Weight Example

weight_i
$$\approx \theta_0 + \theta_1 \cdot \text{height}_i$$

Fundamental assumption: Many relationships can be approximated as linear

Height-Weight Example

weight_i
$$\approx \theta_0 + \theta_1 \cdot \text{height}_i$$

Fundamental assumption: Many relationships can be approximated as linear

Height-Weight Example

weight_i
$$\approx \theta_0 + \theta_1 \cdot \text{height}_i$$

Key questions:

How do we find the best line?

Fundamental assumption: Many relationships can be approximated as linear

Height-Weight Example

weight_i
$$\approx \theta_0 + \theta_1 \cdot \text{height}_i$$

Key questions:

- How do we find the best line?
- What makes one line better than another?

Fundamental assumption: Many relationships can be approximated as linear

Height-Weight Example

weight_i
$$\approx \theta_0 + \theta_1 \cdot \text{height}_i$$

Key questions:

- · How do we find the best line?
- What makes one line better than another?
- How do we extend to multiple variables?

Pop Quiz: Linear Relationships

Quick Quiz 1

Which of these is NOT a good candidate for linear regression?

a) Predicting house price from square footage

Answer: c) Classification problems need different approaches than regression!

Pop Quiz: Linear Relationships

Quick Quiz 1

Which of these is NOT a good candidate for linear regression?

- a) Predicting house price from square footage
- b) Predicting salary from years of experience

Answer: c) Classification problems need different approaches than regression!

Pop Quiz: Linear Relationships

Quick Quiz 1

Which of these is NOT a good candidate for linear regression?

- a) Predicting house price from square footage
- b) Predicting salary from years of experience
- c) Classifying emails as spam or not spam

Answer: c) Classification problems need different approaches than regression!

General Form

$$\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}_{n\times d}\boldsymbol{\theta}_{d\times 1}$$

General Form

$$\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}_{n\times d}\boldsymbol{\theta}_{d\times 1}$$

General Form

$$\hat{\mathbf{y}}_{\mathsf{n}\times 1} = \mathbf{X}_{\mathsf{n}\times \mathsf{d}}\boldsymbol{\theta}_{\mathsf{d}\times 1}$$

Component breakdown:

• ŷ: Predicted outputs (what we want to predict)

General Form

$$\hat{\mathbf{y}}_{\mathsf{n}\times 1} = \mathbf{X}_{\mathsf{n}\times \mathsf{d}}\boldsymbol{\theta}_{\mathsf{d}\times 1}$$

Component breakdown:

- ŷ: Predicted outputs (what we want to predict)
- X: Feature matrix (our input data)

General Form

$$\hat{\mathbf{y}}_{\mathsf{n}\times 1} = \mathbf{X}_{\mathsf{n}\times \mathsf{d}}\boldsymbol{\theta}_{\mathsf{d}\times 1}$$

Component breakdown:

- ŷ: Predicted outputs (what we want to predict)
- X: Feature matrix (our input data)
- θ: Parameters to learn

General Form

$$\hat{\mathbf{y}}_{\mathsf{n}\times 1} = \mathbf{X}_{\mathsf{n}\times \mathsf{d}}\boldsymbol{\theta}_{\mathsf{d}\times 1}$$

Component breakdown:

- ŷ: Predicted outputs (what we want to predict)
- X: Feature matrix (our input data)
- θ: Parameters to learn

General Form

$$\hat{\mathbf{y}}_{\mathsf{n}\times 1} = \mathbf{X}_{\mathsf{n}\times \mathsf{d}}\boldsymbol{\theta}_{\mathsf{d}\times 1}$$

Component breakdown:

- ŷ: Predicted outputs (what we want to predict)
- X: Feature matrix (our input data)
- θ : Parameters to learn

For simple linear regression:

• θ_0 - Bias/Intercept: Where line crosses y-axis

General Form

$$\hat{\mathbf{y}}_{\mathsf{n}\times 1} = \mathbf{X}_{\mathsf{n}\times \mathsf{d}}\boldsymbol{\theta}_{\mathsf{d}\times 1}$$

Component breakdown:

- ŷ: Predicted outputs (what we want to predict)
- X: Feature matrix (our input data)
- θ: Parameters to learn

For simple linear regression:

- θ_0 Bias/Intercept: Where line crosses y-axis
- θ_1 **Slope**: How much y changes per unit x

Real-world problems often involve multiple features

IITGN Water Demand Prediction

Goal: Predict daily water consumption

Real-world problems often involve multiple features

IITGN Water Demand Prediction

Goal: Predict daily water consumption

Real-world problems often involve multiple features

IITGN Water Demand Prediction

Goal: Predict daily water consumption **Features:**

Number of occupants on campus

Real-world problems often involve multiple features

IITGN Water Demand Prediction

Goal: Predict daily water consumption **Features:**

- Number of occupants on campus
- Average temperature

Real-world problems often involve multiple features

IITGN Water Demand Prediction

Goal: Predict daily water consumption **Features:**

- Number of occupants on campus
- Average temperature
- Day of week, season, etc.

Real-world problems often involve multiple features

IITGN Water Demand Prediction

Goal: Predict daily water consumption **Features:**

- Number of occupants on campus
- Average temperature
- Day of week, season, etc.

Real-world problems often involve multiple features

IITGN Water Demand Prediction

Goal: Predict daily water consumption **Features:**

- Number of occupants on campus
- Average temperature
- · Day of week, season, etc.

Linear model:

Demand = $\theta_0 + \theta_1 \times \text{occupants} + \theta_2 \times \text{temperature}$

Real-world problems often involve multiple features

IITGN Water Demand Prediction

Goal: Predict daily water consumption **Features:**

- Number of occupants on campus
- Average temperature
- · Day of week, season, etc.

Linear model:

Demand = $\theta_0 + \theta_1 \times \text{occupants} + \theta_2 \times \text{temperature}$

General Form

$$\mathbf{V} = \theta_0 + \theta_1 \mathbf{X}_1 + \theta_2 \mathbf{X}_2 + \ldots + \theta_d \mathbf{X}_d$$

Pop Quiz: Multiple Regression

Quick Quiz 2

In the water demand model: Demand = $100 + 2 \times$ occupants + $3 \times$ temperature, if occupants = 50 and temperature = 25°C, what is the predicted demand?

a) 175 units

Answer: b) 100 + 2(50) + 3(25) = 100 + 100 + 75 = 275

units

Pop Quiz: Multiple Regression

Quick Quiz 2

In the water demand model: Demand = $100 + 2 \times$ occupants + $3 \times$ temperature, if occupants = 50 and temperature = 25°C, what is the predicted demand?

- a) 175 units
- b) 275 units

Answer: b) 100 + 2(50) + 3(25) = 100 + 100 + 75 = 275 units

Pop Quiz: Multiple Regression

Quick Quiz 2

In the water demand model: Demand = $100 + 2 \times$ occupants + $3 \times$ temperature, if occupants = 50 and temperature = 25°C, what is the predicted demand?

- a) 175 units
- b) 275 units
- c) 375 units

Answer: b) 100 + 2(50) + 3(25) = 100 + 100 + 75 = 275 units

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & X_{1,1} & X_{1,2} & \dots & X_{1,M} \\ 1 & X_{2,1} & X_{2,2} & \dots & X_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & X_{N,1} & X_{N,2} & \dots & X_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

Compact Notation

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta}$$

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

Compact Notation

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta}$$

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix}_{N \times 1} = \begin{bmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,M} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,M} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,M} \end{bmatrix}_{N \times (M+1)} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_M \end{bmatrix}_{(M+1) \times 1}$$

Compact Notation

$$\hat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta}$$

Key insight: Column of 1's in X allows us to include the intercept term θ_0 !

$$\mathbf{Y} = \mathbf{X}\mathbf{\theta} + \mathbf{\epsilon}$$

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}$$

To Learn: θ

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\epsilon}$$

To Learn: θ

Objective: minimize $\epsilon_1^2 + \epsilon_2^2 + \cdots + \epsilon_N^2$

Objective: Minimize $\epsilon^{T}\epsilon$

The above table represents the data after transformation Now, we can write $\hat{s}=f(t,t^2)$

The above table represents the data after transformation Now, we can write $\hat{s}=f(t,t^2)$ Other transformations: $\log(x), x_1 \times x_2$

A linear combination of $\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_i$ is of the following form

A linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_i$ is of the following form

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \cdots + \alpha_i \mathbf{v}_i$$

where $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_i \in \mathbb{R}$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

$$\{\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \dots, v_i .

$$\{\alpha_1 \mathbf{V}_1 + \alpha_2 \mathbf{V}_2 + \dots + \alpha_i \mathbf{V}_i \mid \alpha_1, \alpha_2, \dots, \alpha_i \in \mathbb{R}\}$$

It is the set of all vectors that can be generated by linear combinations of v_1, v_2, \dots, v_i .

If we stack the vectors v_1, v_2, \ldots, v_i as columns of a matrix V, then the span of v_1, v_2, \ldots, v_i is given as $V\alpha$ where $\alpha \in \mathbb{R}^l$

Can we obtain a point (x, y) s.t. x = 3y?

Can we obtain a point (x, y) s.t. x = 3y? No Can we obtain a point (x, y) s.t. x = 3y? No Span of the above set is along the line y = 2x

The span is the plane z = x or $x_3 = x_1$

This condition arises when the $|X^TX| = 0$.

$$X = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{1}$$

This condition arises when the $|X^TX| = 0$.

$$X = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 4 \\ 1 & 3 & 6 \end{bmatrix} \tag{1}$$

The matrix X is not full rank.

 $P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * \textit{Wind speed} + \theta_3 * \textit{Wind Direction}$

 $P = \theta_0 + \theta_1 * \# Vehicles + \theta_1 * \textit{Wind speed} + \theta_3 * \textit{Wind Direction}$ But, wind direction is a categorical variable.

 $P = \theta_0 + \theta_1$ *#Vehicles + θ_1 * Wind speed + θ_3 * Wind Direction

But, wind direction is a categorical variable. It is denoted as follows {N:0, E:1, W:2, S:3 }

 $P = \theta_0 + \theta_1$ *#Vehicles + θ_1 * Wind speed + θ_3 * Wind Direction

But, wind direction is a categorical variable. It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding?

 $P = \theta_0 + \theta_1$ *#Vehicles + θ_1 * Wind speed + θ_3 * Wind Direction

But, wind direction is a categorical variable. It is denoted as follows {N:0, E:1, W:2, S:3 }

Can we use the direct encoding? Then this implies that S>W>E>N

The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity.

The N-1 variable encoding is better because the N variable encoding can cause multi-collinearity. Is it S = 1 - (Is it N + Is it W + Is it E)

W and S are related by one bit.

W and S are related by one bit. This introduces dependencies between them, and this can cause confusion in classifiers.

Encoding

Encoding

Is Female	height
1	•••
1	•••
1	•••
0	•••
0	•••

Is Female	height
1	5
1	5.2
1	5.4
0	5.8
0	6

height	
5	-
5.2	
5.4	
5.8	
6	
+ θ_1 * (Is	Female) + ϵ_i
	5 5.2 5.4 5.8 6

Is Female	height	
1	5	
1	5.2	
1	5.4	
0	5.8	
0	6	
$height_i = \theta_0$	+ θ ₁ * (Is	Female) + ϵ_i
We get θ_0 =	5.9 and	$\theta_1 = -0.7$

Is Female	height	
1	5	
1	5.2	
1	5.4	
0	5.8	
0	6	
$height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$		
We get $\theta_0 = 5.9$ and $\theta_1 = -0.7$		

We get
$$\theta_0$$
 = 5.9 and θ_1 = -0.7 θ_0 = Avg height of Male = 5.9

Is Female	height	
1	5	-
1	5.2	
1	5.4	
0	5.8	
0	6	
$height_i = \theta_0$	+ θ_1 * (Is	Female) + ϵ_i

We get θ_0 = 5.9 and θ_1 = -0.7 θ_0 = Avg height of Male = 5.9 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

Is Female	height	-
1	5	
1	5.2	
1	5.4	
0	5.8	
0	6	
$height_i = \theta_0$	+ θ_1 * (Is	Female) + ϵ_i

We get θ_0 = 5.9 and θ_1 = -0.7 θ_0 = Avg height of Male = 5.9

 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

 θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9

Is Female	height	
1	5	
1	5.2	
1	5.4	
0	5.8	
0	6	
l:l-+ 0	. 0 4/1- 5	_

 $height_i = \theta_0 + \theta_1 * (Is Female) + \epsilon_i$

We get $\theta_0 = 5.9$ and $\theta_1 = -0.7$

 θ_0 = Avg height of Male = 5.9

 $\theta_0 + \theta_1$ is chosen based (equal to) on 5, 5.2, 5.4 (for three records).

 θ_1 is chosen based on 5-5.9, 5.2-5.9, 5.4-5.9 θ_1 = Avg. female height (5+5.2+5.4)/3 - Avg. male height (5.9)

$$x_i = \left\{ egin{array}{ll} 1 & ext{if } i ext{ th person is female} \\ -1 & ext{if } i ext{ th person is male} \end{array}
ight.$$

$$\begin{aligned} \mathbf{x}_i &= \left\{ \begin{array}{ll} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{array} \right. \\ \mathbf{y}_i &= \theta_0 + \theta_1 \mathbf{x}_i + \epsilon_i = \left\{ \begin{array}{ll} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{array} \right. \end{aligned}$$

$$\begin{aligned} \mathbf{X}_i &= \left\{ \begin{array}{ll} 1 & \text{if } i \text{ th person is female} \\ -1 & \text{if } i \text{ th person is male} \end{array} \right. \\ \mathbf{y}_i &= \theta_0 + \theta_1 \mathbf{X}_i + \epsilon_i = \left\{ \begin{array}{ll} \theta_0 + \theta_1 + \epsilon_i & \text{if } i \text{ th person is female} \\ \theta_0 - \theta_1 + \epsilon_i & \text{if } i \text{ th person is male.} \end{array} \right. \\ \text{Now, } \theta_0 \text{ can be interpreted as average person height. } \theta_1 \\ \text{as the amount that female height is above average and male height is below average.} \end{aligned}$$

When does the normal equation have a unique solution?

When does the normal equation have a unique solution?

When does the normal equation have a unique solution? How do polynomial features help with non-linear relationships? When does the normal equation have a unique solution? How do polynomial features help with non-linear relationships? When does the normal equation have a unique solution?

How do polynomial features help with non-linear relationships?

What are the assumptions behind linear regression?

· Biased coefficient estimates

- Biased coefficient estimates
- · Invalid confidence intervals

- Biased coefficient estimates
- · Invalid confidence intervals

- · Biased coefficient estimates
- Invalid confidence intervals
- Poor prediction performance

 Linear Model: Assumes linear relationship between features and target

 Linear Model: Assumes linear relationship between features and target

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix
- Feature Engineering: Basis expansion enables non-linear modeling

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix
- Feature Engineering: Basis expansion enables non-linear modeling

- Linear Model: Assumes linear relationship between features and target
- Least Squares: Minimizes sum of squared residuals
- Normal Equation: Closed-form solution when $\mathbf{X}^{\top}\mathbf{X}$ is invertible
- Geometric View: Projection onto column space of design matrix
- Feature Engineering: Basis expansion enables non-linear modeling
- Foundation: Building block for more complex models