Acquire Valued Customers

predict repeat buyers

Mudassir Syed

Project

➤ Predict Repeat Customer

- Businesses run discounts on select items to increase sales and make the customers repeat their purchase.
- Data used in this project is of customers transactions, history and offers.
- Original data comprises of almost 350 million rows of completely anonymized transactional data from over 300,000 shoppers.
- This project deals with a subset of original data.

➤ Outcome from this Project

- Provide insights into shopping patterns of customers.
- Predict the repeat buyers based on different features.

Clients

- ➤ Subscription Businesses
 - Companies with Business Model revolving around Subscriptions/renewals
 - Companies interested in building customer base

➤ Grocery Stores

- Which products when offered discount sell more
- Help convert customers to repeat buyers
- Retain existing customers

Data Acquisition

- ➤ Retrieved dataset from https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
- This data comprises anonymized fields with transactions for 1 year along with Offer and Offer History information.
- ➤ Acquired dataset is reduced to manageable size for EDA and Model building.

Dataset Exploration

- 16000 Customer records
- 1.6 GB (transactions)
- 875 KB (history)
- 1.8KB (offers)

```
In [329]: offers.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 37 entries, 0 to 36
Data columns (total 6 columns):
offer
              37 non-null int64
category
              37 non-null int64
quantity
              37 non-null int64
              37 non-null int64
company
offervalue
              37 non-null float64
              37 non-null int64
brand
dtypes: float64(1), int64(5)
memory usage: 1.8 KB
```

```
In [334]: trans.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 17359709 entries, 0 to 17359708
          Data columns (total 12 columns):
          index
                               int64
                               int64
          id
          chain
                               int64
                               int64
          dept
                               int64
          category
          company
                               int64
          brand
                               int64
                               object
          date
                               float64
          productsize
          productmeasure
                               object
                               int64
          purchasequantity
          purchaseamount
                               float64
          dtypes: float64(2), int64(8), object(2)
          memory usage: 1.6+ GB
In [330]: hist.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 16000 entries, 0 to 15999
Data columns (total 7 columns):
               16000 non-null int64
chain
               16000 non-null int64
offer
               16000 non-null int64
               16000 non-null int64
market
               16000 non-null int64
repeattrips
               16000 non-null object
repeater
offerdate
               16000 non-null object
dtypes: int64(5), object(2)
memory usage: 875.1+ KB
```

id

Data Dictionary

transactions

```
id - A unique id representing a customer chain - An integer representing a store chain dept - An aggregate grouping of the Category (e.g. water) category - The product category (e.g. sparkling water) company - An id of the company that sells the item brand - An id of the brand to which the item belongs date - The date of purchase productsize - The amount of the product purchase (e.g. 16 oz of water) productmeasure - The units of the product purchase (e.g. ounces) purchasequantity - The number of units purchased purchaseamount - The dollar amount of the purchase
```

Data Dictionary

offers

offer - A unique id representing an offer category - The product category (e.g. sparkling water) quantity - The number of units one must purchase to get the discount company - An id of the company that sells the item offervalue - The dollar value of the offer brand - An id of the brand to which the item belongs

history

id - A unique id representing a customer chain - An integer representing a store chain offer - An id representing a certain offer market - An id representing a geographical region repeattrips - The number of times the customer made a repeat purchase repeater - A boolean, equal to repeattrips > 0 offerdate - The date a customer received the offer

Data Aggregation & Feature Selection

➤ Merge Offers and History data with OfferId into Hist_Offer

➤ Category, Company, Offer and Brand are correlated to target variable 'repeater'

➤ Chain and Market have little correlation to target variable

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Percent Customer Types

➤ 27 % of Customers repeat purchase when Offered discount coupon

> Returntrip count for each category

Most Offered Categories

➤ Category 3203 was offered to 27 % Customers

➤ More than 4000 customers were Offered coupon 1197502

➤ Top 25 highly transacted Categories which could have impact on prediction

Data Aggregation

> Aggregate purchase amount and quantity of transactions data for each customer.

➤ Merge aggregated transactions and Hist_Offer.

```
1 trans_hist_offer.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 16000 entries, 0 to 15999
Data columns (total 10 columns):
                            16000 non-null int64
id
offer
                            16000 non-null int64
                            16000 non-null int64
repeater
                            16000 non-null int64
repeattrips
                            16000 non-null int64
company
                            16000 non-null int64
category
                            16000 non-null int64
brand
                            16000 non-null float64
purchaseamount
purchasequantity
                            16000 non-null int64
total transactions count
                            16000 non-null int64
dtypes: float64(1), int64(9)
memory usage: 2.0 MB
```


purchaseamount, purchasequantity and total_transaction_count is found correlated to repeattrips

Feature Extraction

- offer repeater repeattrips company category brand
- offervalue offeredmonth quantity
- purchaseamount purchasequantity
- purchaseamount_avg purchaseamount_category_avg
- > total_transactions_count
- total_purcahse_company_count total_purcahse_category_count total_purcahse_brand_count

- > [1,3,9,12]_month_total_purchase_amt
- category_purchased_count_[30,90,180,270]days category_purchased_amt_[30,90,180,270]days category_purchased_qty_[30,90,180,270]days
- company_purchased_count_[30,90,180,270]days company_purchased_amt_[30,90,180,270]days company_purchased_qty_[30,90,180,270]days
- brand_purchased_count_[30,90,180,270]days brand_purchased_amt_[30,90,180,270]days brand_purchased_qty_[30,90,180,270]days
- purchased_company_category_brand_count purchased_company_category_count

Model Evaluation & Selection

> Evaluated below 3 Classification Models

	Logistic Regression	Decision Tree	Random Forest
AUC Score	0.54	0.50	0.61

- ➤ Its evident from above metrics, that logistic regression is not the best model for this project
- > Random Forest have produced better results for n_estimators = 20

Model Evaluation & Selection

Recommendations to Clients

- > Factors Influencing customers to repeat purchases
 - Category, Company, Brand of the offered product
 - Purchase History of Category, Company, Brand
- > Recommendations to Companies
 - Offers are effective way of improving sales and retaining customers
 - Choose right Offer for products of Category, Company, Brand

Thank You.