

Innovatrix

Samarpan Biswas	3 rd Semester	E.E.
Shraman Roy	3 rd Semester	E.E.
Sneha Das	3 rd Semester	E.E.
Tanushree Saha Roy	3 rd Semester	E.E.
Abinash Polley	3 rd Semester	E.E.

ESTABLISHING AN IOT SOIL-MONITORING NETWORK

PRECISION AGRICULTURE WITH MOISTURE AND NUTRIENT SENSORS

OVERVIEW OF IOT SOIL MONITORING

- REAL-TIME DATA COLLECTION FROM SOIL SENSORS
- IMPROVES CROP YIELD AND RESOURCE EFFICIENCY
 - SUPPORTS PRECISION AGRICULTURE PRACTICES
 - ENABLES REMOTE MONITORING AND CONTROL

KEY COMPONENTS OF THE SYSTEM

- SOIL MOISTURE AND NUTRIENT SENSORS
- MICROCONTROLLER (E.G., ARDUINO, ESP32)
- COMMUNICATION PROTOCOLS (LORA, WI-FI, ZIGBEE)
 - POWER SUPPLY (SOLAR, BATTERY)
 - CLOUD PLATFORM FOR DATA STORAGE
 - DASHBOARD FOR VISUALIZATION AND ALERTS

CIRCUIT DIAGRAM

Flowchart

```
[Start]
    [ Initialize (Serial, DHT, Relay) ]
       [ Read Soil Sensors 1 & 2 ]
        [ Convert to Moisture % ]
       [ Read Temp & Humidity ]
< Moisture1 < 30 OR Moisture2 < 30 ? >
        \longrightarrow Yes \rightarrow [ Turn Pump ON ]
< Moisture1 > 90 AND Moisture2 > 90 ? >
        \longrightarrow Yes \rightarrow [ Turn Pump OFF ]
          - No \rightarrow [ Keep Pump State ]
     [ Send Data to Serial Monitor ]
                 [Wait 2s]
              [ Repeat Loop ]
```

Simulation

HTTPS://WOKWI.COM/PROJECTS/440833601525655553

Technology Stack

Hardware

- ESP32 Board
- Soil Moisture Sensors (×2)
- DHT22 Temperature & Humidity Sensor
- Relay Module (for pump control)
- Water Pump
- Power Supply (5V/12V as per pump)
- Jumper Wires & Breadboard

Software

- Arduino IDE with ESP32 boards installed.
- Libraries:
 - DHT.h (for DHT22)
 - · WiFi.h
 - HTTPClient.h

DATA ANALYTICS AND DECISION SUPPORT

- ANALYZE SOIL DATA TRENDS OVER TIME
- GENERATE ACTIONABLE INSIGHTS FOR IRRIGATION AND FERTILIZATION
 - INTEGRATE WITH WEATHER FORECASTS
- SUPPORT DECISION-MAKING WITH PREDICTIVE MODELS

IMPLEMENTATION STEPS

- IDENTIFY MONITORING OBJECTIVES
- SELECT APPROPRIATE SENSORS AND HARDWARE
 - DESIGN SYSTEM ARCHITECTURE
- DEVELOP DATA COLLECTION AND TRANSMISSION LOGIC
 - SET UP CLOUD STORAGE AND DASHBOARD
 - TEST AND CALIBRATE SENSORS
 - DEPLOY AND MONITOR

BENEFITS OF IOT SOIL MONITORING

- OPTIMIZED IRRIGATION AND FERTILIZATION
 - REDUCED RESOURCE WASTAGE
 - IMPROVED CROP HEALTH AND YIELD
 - REAL-TIME ALERTS AND REMOTE ACCESS
 - DATA-DRIVEN AGRICULTURAL PRACTICES

FURTHER READING RESOURCES

- PRECISION AGRICULTURE JOURNAL
- IEEE IOT IN AGRICULTURE PUBLICATIONS
 - FAO REPORTS ON SMART FARMING
- BOOKS: 'INTERNET OF THINGS FOR AGRICULTURE'
 - ONLINE COURSES ON IOT AND SMART FARMING