Aprendizaje automático 2

Introducción a Redes Neuronales (1)

- Neurona biológica
 - Sinapsis, neurotransmisores
 - Despolarización, activación todo/nada
 - Propagación del impulso
 - Refuerzo de las sinapsis (aprendizaje!)

- Modelo de neurona
 - Entradas x
 - Pesos w
 - Integración de impulsos
 - Despolarización

- Modelo de neurona
 - Entradas *x*
 - Pesos w
 - Integración de impulsos
 - Despolarización

- Modelo de neurona
 - Entradas x
 - Pesos w
 - Integración de impulsos
 - Despolarización

- Perceptrón simple
 - Entradas x
 - Pesos w
 - o Integración de impulsos: producto interno y umbral $\Rightarrow y = \phi(v u) = \phi\left(\sum_{i=1}^{N} w_i x_i u\right)$
 - Entrada extendida $\Rightarrow x_0 = -1, w_0 = u$ $y = \phi\left(\sum_{i=0}^N w_i x_i\right) = \phi\left(\langle \mathbf{w}, \mathbf{x} \rangle\right)$
 - \circ Despolarización: función de activación $\phi(z)$

$$\operatorname{sgn}(z) = \begin{cases} -1 & \operatorname{si} z < 0 \\ +1 & \operatorname{si} z \ge 0 \end{cases}$$

Funciones de activación

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

 $w_1x_1 + w_2x_2 = 0$

Perceptrón simple con 2 entradas

 $y = \operatorname{sgn}(w_1 x_1 + w_2 x_2)$

$$w_1x_1 + w_2x_2 > 0$$
?

Bibliografía

- S. Haykin, "Neural Networks and Learning Machines". Pearson, 2009. [Link]
- P. Viñuela, I. León, "Redes neuronales artificiales. Un enfoque práctico". Pearson, 2004. [Link]

