Projeções de Reticulados Gerais

Eleonesio Strey

05 de Dezembro de 2014

1 Definições e resultados preliminares

Sejam $\mathfrak{m} \leq \mathfrak{n}$ vetores linearmente independentes $g_1,...,g_{\mathfrak{m}} \in \mathbb{R}^{\mathfrak{n}}$. Um reticulado $\Lambda \in \mathbb{R}^{\mathfrak{n}}$ com base $\{g_1,...,g_{\mathfrak{m}}\}$ é o conjunto formado por todas as combinações lineares inteiras de g_i , $i=1,...,\mathfrak{m}$, isto é,

$$\Lambda = \{\alpha_1 g_1 + \cdots + \alpha_m g_m; \alpha_1, ..., \alpha_m \in \mathbb{Z}\}.$$

O conjunto $\{g_1,...,g_m\}$ é denominado uma base de Λ . A matriz G cujas linhas são os vetores $g_1,...,g_m$ é chamada de matriz geradora de Λ . A matriz $A = GG^t$ é chamada de matriz de Gram de Λ e o número det $\Lambda = \det GG^t$ é dito determinante ou discriminante de Λ . Duas matrizes G e \hat{G} geram o mesmo reticulado se existir uma matriz unimodular U tal que $G = U\hat{G}$. Um reticulado tem um número infinito de bases, mas o valor de det Λ é invariante sob mudança de base. Dizemos que um conjunto de vetores $\{v_1,...,v_k\} \subset \Lambda$ é primitivo se existirem vetores $\{v_{k+1},...,v_m\} \subset \Lambda$ tais que $\{v_1,...,v_k,v_{k+1},...,v_m\}$ é uma base de Λ . Se $v_i = a_iG$, $a_i \in \mathbb{Z}^m$, então uma condição necessária e suficiente para que um conjunto de vetores seja primitivo é que o mdc dos menores $k \times k$ da matriz $[a_1^t \ a_2^t \ ... \ a_k^t]$ sejam iguais a ± 1 .

Sejam G_1 e G_2 matrizes geradoras dos reticulados Λ_1 e Λ_2 respectivamente. Dizemos que os reticulados são equivalentes se, e somente se, a seguinte relação é satisfeita $G_1 = cUG_2Q$, onde $c \in \mathbb{R}$, c > 0, Q é uma matriz ortogonal $m \times m$ e U é uma matriz unimodular (determinante igual a ± 1 com entradas inteiras).

Definimos o reticulado dual de $\Lambda = \Lambda(\mathsf{G})$ da seguinte forma

$$\Lambda^* = \{ x \in \operatorname{span}(G); \langle x, y \rangle \in \mathbb{Z}, \forall y \in \Lambda \},$$

onde $\text{span}(G) = \{xG; x \in \mathbb{R}^m\}$. Se G é uma matriz geradora de Λ , então $(GG^t)^{-1}G$ é uma matriz geradora de Λ^* e det $\Lambda = (\det \Lambda^*)^{-1}$.

Dado $\epsilon > 0$, dizemos que Λ_1 está na ϵ -vizinhança de Λ_2 (com respeito à matriz de Gram A_1 para Λ_1) quando existe uma matriz de Gram A_2 para Λ_2 tal que $\|A_1 - A_2\| \le \epsilon$. Dizemos também que uma sequência de reticulados Λ_ω ($\omega = 1, 2, ...$) converge para Λ , a menos de equivalência, se dado $\epsilon > 0$ arbtrário, existe ω_0 tal que $c_\omega \Lambda_\omega$ está na ϵ -vizinhança de Λ para algum fator de escala c_ω (possivelmente dependendo de ω) sempre que $\omega > \omega_0$. Escrevemos, simplesmente, $\Lambda_\omega \to \Lambda$ para indicar que Λ_ω converge para Λ .

Observação 1.1. Se $\Lambda_{\omega} \to \Lambda$, então $\Lambda_{\omega}^* \to \Lambda^*$. Com efeito, seja A_{ω} uma sequência de matrizes de Gram para Λ_{ω} tal que $c_{\omega}A_{\omega} \to A$. Como A_{ω} é não singular, temos que a sua inversa existe, e vale que $(1/c_{\omega})A_{\omega}^{-1} \to A^{-1}$, ou seja, $\Lambda_{\omega}^* \to \Lambda^*$.

2 Projeções de Reticulados Gerais

Seja V uma matriz de ordem $k \times n$, k < n, de posto completo. Denotamos por $span(V)^{\perp}$ o complemento ortogonal do espaço vetorial gerado pelas linhas de V, isto é,

$$\operatorname{span}(V)^{\perp} = \{ x \in \mathbb{R}^n; \langle x, y \rangle = 0 \ \forall y \in \operatorname{span}(V) \}$$

Todo vetor $x \in \mathbb{R}^n$ pode ser escrito de forma única como $x = \nu + \nu^{\perp}$, onde $\nu \in \text{span}(V)$ e $\nu^{\perp} \in \text{span}(V)^{\perp}$. Dado $x \in \mathbb{R}^n$, definimos a projeção ortogonal de x em $\text{span}(V)^{\perp}$ pondo $P_{\nu^{\perp}}(x) = \nu^{\perp}$. Daí, segue que $P_{\nu^{\perp}}(x) = xP$, onde $P = I_n - V^t(VV^t)^{-1}V$. De fato, para cada $x \in \mathbb{R}^n$, existem vetores $u \in \mathbb{R}^k$ e $\nu^{\perp} \in \text{span}(V)^{\perp}$ tais que $x = uV + \nu^{\perp}$ e logo

$$xP = (uV + v^{\perp})P = uV(I_n - V^t(VV^t)^{-1}V) + v^{\perp}(I_n - V^t(VV^t)^{-1}V) = 0 + v^{\perp} = P_{v^{\perp}}(x).$$

Lema 2.1. Seja V uma matriz de ordem $k \times n$ cujas linhas formam um conjunto primitivo de vetores de um reticulado $\Lambda \subset \mathbb{R}^n$. Valem as sequintes propriedades

(i) O conjunto $P_{v^{\perp}}(\Lambda)$ é um reticulado.

$${\it (ii) \ O \ discriminante \ de \ P_{\nu^{\perp}}(\Lambda) \ \acute{e} \ dado \ por \ {\rm det} \ P_{V^{\perp}}(\Lambda) = \frac{\det \Lambda}{\det(VV^t)}}.$$

Demonstração. (i) Como as linhas de V são um conjunto primitivo, existe uma matriz \tilde{V} de ordem $(n-k) \times n$ e posto completo tal que

$$\hat{V} = \begin{bmatrix} V \\ \tilde{V} \end{bmatrix}$$

é uma matriz geradora de Λ e qualquer elemento $x \in \Lambda$ pode ser escrito como $x = u\hat{V}$, $u \in \mathbb{Z}^n$. Projetando $x \in \Lambda$ em $span(V)^{\perp}$, temos

$$xP = u \hat{V} P = u \left[\begin{array}{c} 0 \\ \tilde{V} P \end{array} \right].$$

Logo as linhas de $\tilde{V}P$ formam um conjunto cujas combinações inteiras geram $P_{v^{\perp}}(\Lambda)$. Para concluir a demonstração, resta mostrar que $\tilde{V}P$ tem posto completo. Com efeito, observe que as linhas de $\tilde{V}P$ são LI, uma vez que

$$x\tilde{V}P=0 \implies x\tilde{V} \in \text{span}(V) \implies x\tilde{V}=yV \text{ para algum } y \in \mathbb{Z}^k \implies x=y=0 \text{ pois as linhas de } \hat{V} \text{ são LI.}$$

(ii) Da demonstração de (i), temos que \hat{V} é uma matriz geradora para Λ . Daí segue que

$$\begin{split} \det \Lambda &= \det \hat{V} \hat{V}^t = \det \left[\begin{array}{cc} VV^t & V\tilde{V}^t \\ \tilde{V}V^t & \tilde{V}^t\tilde{V}^t \end{array} \right] = \det \left[\begin{array}{cc} VV^t & V\tilde{V}^t \\ 0 & \tilde{V}^t\tilde{V}^t - \tilde{V}V^t(VV^t)^{-1}V\tilde{V}^t \end{array} \right] \\ &= \det (VV^t) \det (\tilde{V}^t\tilde{V}^t - \tilde{V}V^t(VV^t)^{-1}V\tilde{V}^t) = \det (VV^t) \det (\tilde{V}^t\tilde{V}^t) = \det (VV^t) \det ($$

Observação 2.2. $P_{v^{\perp}}(\Lambda)$ nem sempre é um reticulado (ver página 57 de [2]).

Todo reticulado de posto completo é equivalente a um reticulado gerado por uma matriz triangular superior. Com efeito, seja Λ um reticulado gerado por uma matriz $G \in \mathbb{R}^{n \times n}$ de posto completo. Escrevendo

$$G = \left[\begin{array}{c} g_1 \\ \vdots \\ g_n \end{array} \right]$$

e aplicando o processo de Gram-Schmidt no conjunto $\{g_n,g_{n-1},...,g_1\}$ (que é linearmente independente, pois G tem posto completo), obtemos um conjunto de vetores $\{q_n,q_{n-1},...,q_1\}$ dois a dois ortonormais tais que

$$\begin{split} g_n \in span\{q_n\} \\ g_{n-1} \in span\{q_n,q_{n-1}\} \\ & \vdots \\ g_1 \in span\{q_n,q_{n-1},...,q_1\}. \end{split}$$

Daí segue que existem números reais r_{ij} , $1 \le i \le j \le n$, tais que

$$G = \left[\begin{array}{c} g_1 \\ \vdots \\ g_n \end{array} \right] = \left[\begin{array}{ccc} r_{11} & \cdots & r_{1n} \\ & \ddots & \vdots \\ & & r_{nn} \end{array} \right] \left[\begin{array}{c} q_1 \\ \vdots \\ q_n \end{array} \right].$$

Logo G=RQ, onde $R\in\mathbb{R}^{n\times n}$ é uma matriz triangular superior e $Q\in\mathbb{R}^{n\times n}$ é uma matriz ortogonal. Isto mostra que os reticulados gerados por G e R são equivalentes. Portanto podemos assumir, sem perda de generalidade, que Λ possui matriz geradora G triangular superior e, por conveniência, escreveremos a matriz G da seguinte forma:

$$G = \begin{bmatrix} G_1 & G_2 \\ 0 & G_3 \end{bmatrix}, \tag{1}$$

onde G_1 e G_3 são matrizes quadradas triangulares superiores de ordem $k \times k$ e $(n-k) \times (n-k)$, respectivamente.

Agora, considerando $A=[I~~\hat{A}]\in\mathbb{Z}^{k\times n},~V=AG=[G_1~~\hat{V}]~(\log \hat{V}=G_2+\hat{A}G_3)~e~M=[-G_3^{-t}\hat{V}^tG_1^{-t}~~G_3^{-t}]$ temos o seguinte lema:

Lema 2.3. Considere as matrizes G, V e M descritas acima. Se $\Lambda = \Lambda(G)$ e $P_{V^{\perp}}(\Lambda)$ é a projeção de Λ sobre $span(V)^{\perp}$, então

$$\Lambda(M) = \Lambda^* \cap \operatorname{span}(V)^{\perp} = P_{V^{\perp}}(\Lambda)^*.$$

Demonstração. Primeiramente vamos provar a inclusão $\Lambda(M) \subseteq \Lambda^* \cap \text{span}(V)^{\perp}$. Seja $x \in \Lambda(M)$, isto é, x = uM para algum $u \in \mathbb{Z}^{n-k}$. Observe que

$$xV^t = uMV^t = u\big[-G_3^{-t}\hat{V}^tG_1^{-t} \ G_3^{-t} \big] \left[\begin{array}{c} G_1^t \\ \hat{V}^t \end{array} \right] = u\big[-G_3^{-t}\hat{V}^tG_1^{-t}G_1 + G_3^{-t}\hat{V}^t \big] = u\big[0\big] = 0.$$

Logo $x \in \text{span}(V)^{\perp}$. Observe também que para qualquer $y \in \Lambda$, isto é, $y=\omega G$ com $\omega \in \mathbb{Z}^n$, temos

$$\langle x,y\rangle = yx^t = \omega GM^tu^t = \omega \left[\begin{array}{cc} G_1 & G_2 \\ 0 & G_3 \end{array} \right] \left[\begin{array}{cc} -G_1^{-1}\hat{V}G_3^{-1} \\ G_3^{-1} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{V}G_3^{-1} + G_2G_3^{-1} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\ I_{n-k} \end{array} \right]u^t = \omega \left[\begin{array}{cc} -\hat{A} \\$$

Como todas as entradas das matrizes ω , $\begin{bmatrix} -\hat{A}^t & I_{n-k} \end{bmatrix}^t$ e \mathfrak{u}^t são inteiras, segue que $\langle x,y \rangle \in \mathbb{Z}$. Logo $x \in \Lambda^*$. Isto finaliza a prova da inclusão.

Agora, vamos mostrar que $\Lambda^* \cap \text{span}(V)^{\perp} \subseteq P_{V^{\perp}}(\Lambda)^*$. Seja $x \in \Lambda^* \cap \text{span}(V)^{\perp}$ e seja P a projeção sobre $\text{span}(V)^{\perp}$. Cada elemento em $P_{V^{\perp}}(\Lambda)$ é da forma $\mathfrak{u}P$ com $\mathfrak{u} \in \Lambda$. Daí, temos

$$\langle x, uP \rangle = uPx^t = uP^tx^t = u(xP)^t = ux^t \in \mathbb{Z},$$

uma vez que $\operatorname{span}(V)^{\perp}$, $u \in \Lambda$ e $x \in \Lambda^*$. Até agora, temos $\Lambda(M) \subseteq \Lambda^* \cap \operatorname{span}(V)^{\perp} \subseteq P_{V^{\perp}}(\Lambda)^*$.

Para mostrar que essas inclusões são de fato igualdades, basta mostrar que $\Lambda(M)$ e $P_{V^{\perp}}(\Lambda)^*$ possuem o mesmo determinante. Com efeito,

$$\begin{split} \det \Lambda(M) &= \det M M^t = \det [-G_3^{-t} \hat{V}^t G_1^{-t} \ G_3^{-t}] \left[\begin{array}{c} -G_1^{-1} \hat{V} G_3^{-1} \\ G_3^{-1} \end{array} \right] \\ &= \det (G_3^{-t} \hat{V}^t G_1^{-t} G_1^{-1} \hat{V} G_3^{-1} + G_3^{-t} G_3^{-1}) \\ &= \det (G_3^{-t} G_3^{-1}) \det (\hat{V}^t G_1^{-t} G_1^{-1} \hat{V} + I) \\ &= \det (G_3^{-t} G_3^{-1}) \det (G_1^{-1} \hat{V} \hat{V}^t G_1^{-t} + I) \\ &= \det (G_3^{-t} G_3^{-1}) \det (G_1^{-t} G_1^{-1}) \det (\hat{V} \hat{V}^t + G_1 G_1^t) \\ &= \frac{\det (\hat{V} \hat{V}^t + G_1 G_1^t)}{\det (G_3 G_3^t) \det (G_1 G_1^t)} = \frac{\det (VV^t)}{\det (\Lambda)}. \end{split}$$

Teorema 2.4. . Sejam Λ_1 e Λ_2 reticulados de posto n e n-k, respectivamente. Existe uma sequência de matrizes V_{ω} cujas linhas formam um conjunto primitivo de vetores de Λ_1 tal que $P_{V_{\omega}^{\perp}}(\Lambda_1) \to \Lambda_2$, quando $\omega \to \infty$

Demonstração. Basta construir sequências de duais de projeções de Λ_1 que convergem, a menos de equivalência, para o dual de Λ_2 (ver observação 1.1). Com efeito, considere uma representação de Λ_2 , cujo dual possui uma matriz geradora L* triangular inferior de ordem $(n-k)\times(n-k)$. Seja Λ_1 o reticulado com matriz geradora na forma (1). Considere a matriz

$$\overline{L}^* = [L^* \ 0],$$

onde 0 é de ordem $(n-k) \times k$. Consideramos também uma outra decomposição de \overline{L}^* , da forma

$$\overline{L}^* = [\overline{L}_1^* \ \overline{L}_2^*],$$

onde \overline{L}_1^* e \overline{L}_2^* possuem ordem $(n-k) \times k$ e $(n-k) \times (n-k)$, respectivamente. Observe que \overline{L}^* e \overline{L}_1^* possuem o mesmo número de linhas, n-k, correspondente ao posto do reticulado Λ_2 . Para cada $\omega \in \mathbb{N} \setminus \{0\}$, definimos as seguintes matrizes

$$\begin{split} &H_{\omega} = \left\lfloor \omega \overline{L}_2^* G_3^t \right\rfloor + I_{n-k}, \\ &(L_{\omega}^*)_1 = \left(\left\lfloor \omega \overline{L}_1^* G_1^t + H_{\omega} G_3^{-t} G_2^t \right\rfloor - H_{\omega} G_3^{-t} G_2^t \right) G_1^{-t}, \\ &(L_{\omega}^*)_2 = H_{\omega} G_3^{-t} \ \mathrm{e} \end{split}$$

$$\mathsf{L}_{\omega}^* = \big[(\mathsf{L}_{\omega}^*)_1 \ (\mathsf{L}_{\omega}^*)_2 \big].$$

Seja a sequência $\Lambda_{\omega}^* = \Lambda(L_{\omega}^*)$. No que segue, provaremos:

- (i) Λ_{ω}^* é equivalente a $P_{V_{\omega}^{\perp}}(\Lambda_1)^*$ para alguma matriz V_{ω} cujas linhas são um conjunto primitivo de Λ_1 .
- (ii) Λ_{ω}^* converge, a menos de equivalência, para Λ_2^* .

Para provar a primeira afirmação, observamos que, como L^* e G_3^t são matrizes triangulares inferiores e as entradas da diagonal de L_2^* são nulas, H_ω é uma matriz triangular inferior com todos os elementos da diagonal iguais a 1. Logo H_ω é unimodular, assim como H_ω^{-1} . Portanto, para cada $\omega \in \mathbb{N} \setminus \{0\}$, Λ_ω^* é também gerado pela matriz $H_\omega^{-1}L_\omega^*$. Desenvolvendo o produto matricial, temos

$$\begin{split} H_{\omega}^{-1}L_{\omega}^* &= \begin{bmatrix} H_{\omega}^{-1}(L_{\omega}^*)_1 & G_3^{-t} \end{bmatrix} \\ &= \begin{bmatrix} (H_{\omega}^{-1} \left\lfloor \omega \overline{L}_1^* G_1^t + H_{\omega} G_3^{-t} G_2^t \right\rfloor - G_3^{-t} G_2^t) G_1^{-t} & G_3^{-t} \end{bmatrix} \\ &= \begin{bmatrix} -\hat{A}^t G_1^{-t} - G_3^{-t} G_2^t G_1^{-t} & G_3^{-t} \end{bmatrix} \\ &= \begin{bmatrix} -G_3^{-t} \hat{V}^t G_1^{-t} & G_3^{-t} \end{bmatrix}, \end{split}$$

onde $\hat{A}^t = -H_\omega^{-1} \left[\omega \overline{L}_1^* G_1^t + H_\omega G_3^{-t} G_2^t \right]$ é uma matriz inteira de ordem $(n-k) \times k$ e $\hat{V}^t = G_2^t + G_3^t \hat{A}^t$. Comparando estes resultados com o lema 2.3 concluímos (i) com V_ω dado por

$$V_{\omega} = \begin{bmatrix} G_1 & G_2 - \left(H_{\omega}^{-1} \left\lfloor \omega \overline{L}_1^* G_1^t + H_{\omega} G_3^{-t} G_2^t \right\rfloor \right)^t G_3 \end{bmatrix}.$$

Para demonstrar (ii), começamos com as seguintes desigualdades simples sobre a operação chão

$$\begin{split} &\frac{1}{\omega} \bigg(\left[\omega \overline{L}_1^* G_1^t + H_\omega G_3^{-t} G_2^t \right] - H_\omega G_3^{-t} G_2^t \bigg)_{ij} \geqslant (L_1^* G_1^t)_{ij} - \frac{1}{\omega} \\ &\frac{1}{\omega} \bigg(\left[\omega \overline{L}_1^* G_1^t + H_\omega G_3^{-t} G_2^t \right] - H_\omega G_3^{-t} G_2^t \bigg)_{ij} \leqslant (L_1^* G_1^t)_{ij} \end{split}$$

Daí, obtemos

$$\frac{1}{\omega} \bigg(\left\lfloor \omega \overline{L}_1^* G_1^t + H_\omega G_3^{-t} G_2^t \right\rfloor \bigg)_{ii} \longrightarrow (L_1^* G_1^t)_{ij} \text{ quando } \omega \longrightarrow \infty,$$

e portanto $(L_{\omega}^*)_1/\omega \to \overline{L}_1^*$. Analogamente, é possível provar que $(L_{\omega}^*)_2/\omega \to \overline{L}_2^*$. Dessa maneira,

$$\frac{L_\omega^*}{\omega} \longrightarrow [L^* \ 0] \quad \Longrightarrow \quad \frac{L_\omega^* L_\omega^{* \ t}}{w^2} \longrightarrow L^* L^{*t} \ \mathrm{quando} \ \omega \longrightarrow \infty.$$

Concluindo a demonstração.

Referências

- [1] A. Campello, J. Strapasson, S.I.R. Costa, On projections of arbitrary lattices. 2013.
- [2] A. Campello, Reticulados, Projeções e Aplicações à Teoria da Informação. 2014.