I. Simplify. Show the work that leads to your answer.

1.
$$\frac{3x^2 + 10x + 8}{6x^2 + 17x + 10}$$

$$2. \qquad \frac{x^3 - 8}{x - 2}$$

3.
$$\frac{5-x}{x^2-25}$$

4.
$$\frac{2x^2 + x - 12}{x^2 - 16}$$

II. Complete the following identities.

$$1. \qquad \sin^2 x + \cos^2 x = \underline{\hspace{1cm}}$$

2.
$$1 + \tan^2 x =$$

3.
$$\cot^2 x + 1 =$$

4.
$$\cos 2x =$$

5.
$$\sin 2x =$$
 _____ or ____ or ____

$$1. \qquad \frac{1}{x+h} - \frac{1}{x}$$

$$2. \qquad \frac{\frac{2}{x^2}}{\frac{10}{x^5}}$$

$$3. \qquad \frac{\frac{1}{3+x} - \frac{1}{3}}{x}$$

4.
$$\frac{2x}{x^2 - 6x + 9} - \frac{1}{x + 1} - \frac{8}{x^2 - 2x - 3}$$

IV. Solve for z.

1.
$$4x + 10yz = 0$$

2.
$$y^2 + 3yz - 8z - 4x = 0$$

$$f(x) = \{(3,5), (2,4), (1,7)\}$$

V. If
$$g(x) = \sqrt{x-3} \\ h(x) = \{(3,2), (4,3), (1,6)\} \\ k(x) = x^2 + 5$$

determine each of the following:

1.
$$(f+h)(1) =$$

2.
$$(k-g)(5) =$$

3.
$$(f \circ h)(3) =$$

4.
$$(g \circ k)(3) =$$

5.
$$f^{-1}(x) =$$

6.
$$k^{-1}(x) =$$

$$7. \qquad \frac{1}{f(x)} = \underline{\hspace{1cm}}$$

8.
$$(kg)(x) =$$

V. Miscellaneous: Follow the directions for each problem.

1. Expand
$$(x+y)^3$$

2. Simplify
$$x^{\frac{3}{2}} \left(x + x^{\frac{5}{2}} - x^2 \right)$$

3. Evaluate
$$f(x+h)$$
 if $f(x)=x^2-2x$

VI. Simplify.

$$1. \qquad \frac{\sqrt{x}}{x}$$

2.
$$e^{\ln x}$$

3.
$$e^{(1+\ln x)}$$

5.
$$\ln e^7$$

6.
$$\log_3\left(\frac{1}{3}\right)$$

7.
$$\log_{-2} 8$$

8.
$$ln\frac{1}{2}$$

9.
$$e^{3 \ln x}$$

10.
$$\frac{4xy^{-2}}{12x^{-\frac{1}{3}}y^{-5}}$$

11.
$$27^{\frac{2}{3}}$$

12.
$$\left(5a^{\frac{2}{3}}\right)^{\frac{3}{2}}$$

13.
$$\left(4a^{\frac{5}{3}}\right)^{\frac{3}{2}}$$

- VII. Using the point slope form $y y_1 = m(x x_1)$, write an equation for each line.
 - 1. with slope of -2, containing the point (3,4)
 - 2. containing the points (1,-3) and (-5,2)

3. with slope 0, containing the point (4,2)

4. perpendicular to the line in problem #1, containing the point (3,4)

VIII. Given the vectors
$$\vec{v} = -2\vec{i} + 5\vec{j}$$
 and $\vec{w} = 3\vec{i} + 4\vec{j}$, determine

1. $\frac{1}{2}\vec{v}$

2.

length of \overrightarrow{w} 3.

4. the unit vector for v

- IX. Without a calculator (as for the entire packet), determine the value of each expression.
 - 1. $\sin 0$

- 2. $\sin \frac{\pi}{2}$
- 3. $\sin \frac{3\pi}{4}$

- 4. $\cos \pi$
- 5. $\cos \frac{7\pi}{6}$
- 6. $\cos \frac{\pi}{3}$

- 7. $\tan \frac{7\pi}{4}$
- 8. $\tan \frac{\pi}{6}$
- 9. $\tan \frac{2\pi}{3}$

- 10. $\cos\left(Sin^{-1}\frac{1}{2}\right)$ 11. $Sin^{-1}\left(\sin\frac{7\pi}{6}\right)$ 15. $\sin\left(Arc\tan\frac{-3}{4}\right)$

X. For each function, determine the domain and range.

1. $f(x) = \sqrt{x-4}$

2. $g(x) = \sqrt{x^2 - 4}$

Domain: _____

Domain: _____

Range:

Range:

3. $h(x) = \sqrt{4-x^2}$

4. $k(x) = \sqrt{x^2 + 44}$

Domain: _____

Domain: _____

Range: _____

Range: _____

XI. Determine the coordinates of all points of intersection of:

1. $y = x^2 + 3x - 4$ and y = 5x + 11 2.

2. $y = \cos x$ and $y = \sin x$ In the first quadrant

XII. Solve all equations below for x, where x is a real number.

1. $x^2 + 3x - 4 = 14$

 $2. \qquad \frac{x^4 - 1}{x^3} = 0$

3. $(x-5)^2 - 9 = 0$

4. $2x^2 + 5x = 8$

5.
$$x^2 - 2x - 15 < 0$$

$$6. \qquad \frac{x-3}{x-1} \le \frac{4}{x+8}$$

7.
$$12x^2 = 3x$$

8.
$$\sin 2x = \cos x$$

9.
$$|x-3| < 7$$

10.
$$(x+1)^2(x-2)+(x+1)(x-2)^2=0$$

11.
$$27^{2x} = 9^{x-3}$$

12.
$$\log x + \log(x-3) = 1$$

XIII. Graph each equation. Give its domain and range. Scale all graphs by one unless a scale is provided.

1. $y = \sin x$

 $2. y = \csc x$

Domain: _____

Domain: _____

Range:

Range:

 $3. y = \cos x$

4. $y = \sec x$

Domain:

Domain: _____

Range: _____

Range:

5.
$$y = \tan x$$

 $6. y = \cot x$

Domain: _____

Domain:

Range: _____

Range: _____

$$7. y = \sqrt{x}$$

 $8. y = \sqrt[3]{x}$

Domain: _____

Domain: _____

Range:

Range:

9.
$$y = |x+3|-2$$

10. $y = e^x$

Domain: _____

Domain: _____

Range:

Range:

11.
$$y = \ln x$$

12. $x^2 + y^2 = 25$

Domain:

Domain: _____

Range: _____

Range:

$$13. \qquad y = \frac{1}{x}$$

Domain: _____

Domain: _____

Range:

Range:

Solve for *x* and *y* in the triangles below.

1.

2.

XV. Find the area of the figures below.

1.

3.

4.

XVI. Find the volume of the solids below.

1.

2.

3.

