Aula 10: Convergência da série de Fourier. Série de Fourier com período arbitrário

10.1 Convergência pontual de uma série de Fourier

Teorema 10.1. (Teorema da convergência pontual de uma série de Fourier)

Seja $f: (-\pi, \pi) \to \mathbb{R}$ uma função contínua por partes, isto é, existem $-\pi = x_0 < x_1 < x_2 < \cdots < x_p = \pi$ tais que f e f' são contínuas e limitadas em (x_{i-1}, x_i) , onde $i = 1, 2, \ldots, p$ e, nos pontos x_i , os limites laterais são finitos. Então, a série de Fourier de f(x), S(x) satisfaz S(x) = f(x) em (x_{i-1}, x_i) . Em $x = x_i$, temos

$$S(x_i) = \frac{\lim_{x \to x_i^+} f(x) + \lim_{x \to x_i^-} f(x)}{2}.$$

10.2 Série de Fourier definida em intervalos arbitrários

Definimos, na aula anterior, a série de Fourier para uma função definida no intervalo $(-\pi, \pi)$, porém é possível definir a série de Fourier para uma função definida no intervalo arbitrário $(-\ell, \ell)$.

Teorema 10.2. (Série de Fourier em intervalos arbitrários)

A série de Fourier de uma função f definida no intervalo $(-\ell,\ell)$ é dada por

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos\left(\frac{k\pi}{\ell}x\right) + b_k \sin\left(\frac{k\pi}{\ell}x\right) \right]$$
 (10.1)

onde

$$a_0 = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \mathrm{d}x, \tag{10.2}$$

$$a_k = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \cos\left(\frac{k\pi}{\ell}x\right) dx,$$
 (10.3)

$$b_k = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \operatorname{sen}\left(\frac{k\pi}{\ell}x\right) dx.$$
 (10.4)

A série de Fourier converge para f(x) em (x_{i-1}, x_i) , isto é,

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos\left(\frac{k\pi}{\ell}x\right) + b_k \sin\left(\frac{k\pi}{\ell}x\right) \right].$$

Em x_i (pontos de descontinuidade), a série de Fourier converge para

$$S(x_i) = \frac{\lim_{x \to x_i^+} f(x) + \lim_{x \to x_i^-} f(x)}{2}.$$

10.3 Séries de Fourier em senos e cossenos

Teorema 10.3. (Série de Fourier em senos e cossenos)

(a) Seja f(x) uma função ímpar, definida no intervalo $(-\ell, \ell)$, então a série de Fourier S(x) é uma série em senos

$$S(x) = \sum_{k=1}^{\infty} b_k \operatorname{sen}\left(\frac{k\pi}{\ell}x\right),\tag{10.5}$$

onde

$$b_k = \frac{2}{\ell} \int_0^\ell f(x) \operatorname{sen}\left(\frac{k\pi}{\ell}x\right) dx.$$

(b) Seja f(x) uma função par, definida no intervalo $(-\ell, \ell)$, então a série de Fourier S(x) é uma série em cossenos

$$S(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{k\pi}{\ell}x\right),\tag{10.6}$$

 \Diamond

onde

$$a_0 = \frac{2}{\ell} \int_0^{\ell} f(x) dx,$$

$$a_k = \frac{2}{\ell} \int_0^{\ell} f(x) \cos\left(\frac{k\pi}{\ell}x\right) dx.$$

Exemplo 10.1 Seja f(x) uma função definida por

$$f(x) = \begin{cases} -n, & \text{se } -\pi < x < 0, \\ n, & \text{se } 0 < x < \pi, \end{cases}$$

onde $n \in \mathbb{R}$. Obtenha a série de Fourier para f(x) e desenhe seu gráfico.

Resolução: O gráfico de f(x) é

Figura 10.1: f(x), $-\pi < x < \pi$.

Note que, f é impar, temos então uma série de Fourier em senos, logo $a_k=0$ para $k=0,1,2,\ldots$ Vamos calcular os coeficientes b_k :

$$b_k = \frac{2}{\pi} \int_0^{\pi} n \operatorname{sen}(kx) dx = \frac{2n}{\pi} \left[-\frac{\cos(kx)}{k} \right]_0^{\pi}$$

$$= \frac{-2n}{k\pi} [\cos(k\pi) - 1] = -\frac{2n}{k\pi} [(-1)^k - 1]$$

$$= -\frac{2n}{k\pi} \begin{cases} 0, & \text{se } k \text{ \'e par,} \\ -2, & \text{se } k \text{ \'e impar,} \end{cases}$$

$$= \begin{cases} 0, & \text{se } k \text{ \'e par,} \\ \frac{4n}{k\pi}, & \text{se } k \text{ \'e impar.} \end{cases}$$

A série de Fourier para f(x) é

$$S(x) = \sum_{k=1}^{\infty} \frac{4n}{\pi(2k-1)} \operatorname{sen}[(2k-1)x] = \frac{4n}{\pi} \sum_{k=1}^{\infty} \frac{\operatorname{sen}[(2k-1)x]}{(2k-1)}.$$

A série de Fourier possui descontinuidades em $0, \pm \pi, \pm 2\pi, \dots$ Nestes pontos f converge para

$$\frac{\lim_{x\to 0^+} f(x) + \lim_{x\to 0^-}}{2} = \frac{n-n}{2} = 0.$$

O gráfico para a série de Fourier é

Figura 10.2: S(x) é 2π -periódica.

Exemplo 10.2 Seja f(x) a função definida por

$$f(x) = \begin{cases} -1, & \text{se} & -2 < x < 0, \\ 2, & \text{se} & 0 < x < 2 \end{cases}$$

- (a) Determine a série de Fourier para f(x) e esboce seu gráfico no intervalo [-6,6].
- (b) Se S(x) denota a série de Fourier obtida no item (a), determine o valor de S(0) e S(7).

Resolução: (a) O gráfico de f(x) é

Figura 10.3: f(x), -2 < x < 2.

Como f(x) não é par nem ímpar, devemos calcular a_0, a_k e b_k , isto é,

$$a_0 = \frac{1}{2} \int_{-2}^{2} f(x) \, \mathrm{d}x = \frac{1}{2} \left\{ -\int_{-2}^{0} \mathrm{d}x + 2\int_{0}^{2} \mathrm{d}x \right\} = \frac{1}{2} \left\{ -\left[x\right]_{-2}^{0} + 2\left[x\right]_{0}^{2} \right\} = \frac{1}{2} \left[-2 + 4 \right] = 1.$$

$$a_{k} = \frac{1}{2} \left\{ -\int_{-2}^{0} \cos\left(\frac{k\pi}{2}x\right) dx + 2\int_{0}^{2} \cos\left(\frac{k\pi}{2}x\right) dx \right\}$$

$$= \frac{1}{2} \left\{ -\frac{2}{k\pi} \left[\sin\left(\frac{k\pi}{2}x\right) \right]_{-2}^{0} + 2 \cdot \frac{2}{k\pi} \left[\sin\left(\frac{k\pi}{2}x\right) \right]_{0}^{2} \right\}$$

$$= -\frac{1}{k\pi} \left[\sin(0) - \sin(-k\pi) \right] + \frac{2}{k\pi} \left[\sin(k\pi) - \sin(0) \right] = 0.$$

$$b_{k} = \frac{1}{2} \left\{ -\int_{-2}^{0} \operatorname{sen}\left(\frac{k\pi}{2}x\right) dx + 2\int_{0}^{2} \operatorname{sen}\left(\frac{k\pi}{2}x\right) dx \right\}$$

$$= \frac{1}{2} \left\{ \frac{2}{k\pi} \left[\cos\left(\frac{k\pi}{2}x\right) \right]_{-2}^{0} - 2 \cdot \frac{2}{k\pi} \left[\cos\left(\frac{k\pi}{2}x\right) \right]_{0}^{2} \right\}$$

$$= \frac{1}{k\pi} \left[\cos(0) - \underbrace{\cos(-k\pi)}_{\cos(k\pi)} \right] - \frac{2}{k\pi} \left[\cos(k\pi) - \cos(0) \right]$$

$$= \frac{1}{k\pi} \left[1 - (-1)^{k} \right] - \frac{2}{k\pi} \left[(-1)^{k} - 1 \right]$$

$$= \frac{1}{k\pi} \left[1 - (-1)^{k} \right] + \frac{2}{k\pi} \left[1 - (-1)^{k} \right]$$

$$= \frac{3}{k\pi} \left[1 - (-1)^{k} \right] = \frac{3}{k\pi} \left\{ 0 \quad \text{se} \quad k \text{ \'e par} \\ 2 \quad \text{se} \quad k \text{ \'e impar} \right\} = \begin{cases} 0 \quad \text{se} \quad k \text{ \'e par} \\ \frac{6}{k\pi} \quad \text{se} \quad k \text{ \'e impar} \end{cases}$$

A série de Fourier possui descontinuidades em $x=0,\pm 2,\pm 4,\pm 6,\ldots$ Nestes pontos, a série converge para

$$S(0) = \frac{1}{2} \left[\lim_{x \to 0^{-}} f(x) + \lim_{x \to 0^{+}} f(x) \right] = \frac{1}{2} [-1 + 2] = \frac{1}{2}.$$

Portanto, a série de Fourier para f(x) é dada por

$$S(x) = \frac{1}{2} + \frac{6}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2k-1)} \operatorname{sen} \left[\frac{(2k-1)\pi}{2} x \right].$$

O gráfico para S(x) é

Figura 10.4: Série de Fourier para f(x)

(b) Já calculamos no item (a), S(0). Note que, f é contínua em x = 7, então S(7) = f(7) = -1 (observe o gráfico da série de Fourier).

- Obtenha a série de Fourier para as funções dadas e desenhe o seu gráfico (gráfico da série obtida):
 - (a) f(x) = x, -2 < x < 2,

(b)
$$f(x) = \begin{cases} -1, & \text{se } -\pi < x < 0, \\ 1, & \text{se } 0 < x < \pi, \end{cases}$$

(c)
$$f(x) = \begin{cases} 1, & \text{se } -2 < x < -1, \\ 0, & \text{se } -1 < x < 1, \\ 1, & \text{se } 1 < x < 2, \end{cases}$$

(d)
$$f(x) = |x|, -\pi < x < \pi$$

(e)
$$f(x) = x, -\pi < x < \pi,$$

(f)
$$f(x) = x^2$$
, $-1 < x < 1$,

(g)
$$f(x) = x|x|, -1 < x < 1,$$

(h)
$$f(x) = \pi^2 - x^2$$
, $-\pi < x < \pi$,

(i)
$$f(x) = x^3, -\pi < x < \pi,$$

(j)
$$f(x) = \begin{cases} x - 1, & \text{se } -\pi < x < 0, \\ x + 1, & \text{se } 1 \le x < \pi, \end{cases}$$

(k)
$$f(x) = \begin{cases} x+1, & \text{se } -1 < x < -0, \\ x-1, & \text{se } 0 \le x < 1, \end{cases}$$

(1)
$$f(x) = |\sin x|, \quad -\pi < x < \pi,$$

Respostas:

1. (a)
$$S(x) = \frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \operatorname{sen}\left(\frac{k\pi}{2}x\right),$$

(b)
$$S(x) = \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1 - (-1)^k}{k} \operatorname{sen}(kx),$$

(c)
$$S(x) = \frac{1}{2} - \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} \operatorname{sen}\left(\frac{k\pi}{2}\right) \cos\left(\frac{k\pi}{2}x\right)$$
,

(d)
$$S(x) = \frac{\pi}{2} + \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{[(-1)^k - 1]}{k^2} \cos(kx),$$

(e)
$$S(x) = 2\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \operatorname{sen}(kx),$$

(f)
$$S(x) = \frac{1}{3} + \frac{4}{\pi^2} \sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \cos(k\pi x),$$

(g)
$$S(x) = \sum_{k=1}^{\infty} \left[\frac{2(-1)^{k+1}}{k\pi} + \frac{4}{(k\pi)^3} [(-1)^k - 1] \right] \operatorname{sen}(k\pi x),$$

(h)
$$S(x) = \frac{2\pi^2}{3} + 4\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} \cos(kx),$$

(i)
$$S(x) = \sum_{k=1}^{\infty} \left[\frac{2\pi^2}{k} (-1)^{k+1} + \frac{12}{k^3} (-1)^k \right] \operatorname{sen}(kx),$$

(j)
$$S(x) = \sum_{k=1}^{\infty} \left[\frac{2(-1)^{k+1}}{k\pi} (\pi + 1) + \frac{2}{k\pi} \right] \operatorname{sen}(kx),$$

(k)
$$S(x) = -\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\sin(k\pi x)}{k}$$
,

(1)
$$S(x) = \frac{2}{\pi} + \frac{2}{\pi} \sum_{k=1}^{\infty} \left[\frac{1 + (-1)^k}{(1 - k^2)} \right] \cos(kx),$$