Licenciatura em Engenharia Informática

Métodos Estatísticos

Ficha de Trabalho 3 Estatística Descritiva

- A ficha de trabalho foi resolvida recorrendo ao software R: ver script ficha de trabalho 3.
- 1. (a) -

(b) Tabela de frequências:

i	x_i	n_i	f_i
1	aluno	12	$\frac{12}{80} = 0.15$
2	analista de dados	16	$\frac{16}{80} = 0.20$
3	engenheiro	32	$\frac{32}{80} = 0.40$
4	professor	20	$\frac{20}{80} = 0.25$
		n = 80	1

Representação gráfica:

Medidas:

como os dados são qualitativos, a única medida possível de calcular é a moda $\bmod a = \operatorname{engenheiro}$

2. (a) Variável Género

como os dados são qualitativos, a única medida possível de calcular é a moda

$$moda = Masculino$$

Variável Idade

como os dados são quantitativos, é possível calcular todas as medidas

i. medidas de localização central:

$$\label{eq:moda} \begin{split} \text{moda} &= 18 \text{ anos} \\ \text{m\'edia} &= \bar{x} = 24.3126 \text{ anos} \\ \text{mediana} &= \widetilde{x} = \mathbf{Q}_2 = Q_{0.50} = 22.7779 \text{ anos} \end{split}$$

ii. quartis:

$$1^o$$
quartil = $Q_{0.25}$ = 19.9462 anos 2^o quartil = $Q_{0.50}$ = mediana = \widetilde{x} = 22.7779 anos 3^o quartil = $Q_{0.75}$ = 26 anos

iii.
$$D_9 = Q_{0.90} = 33.2268$$
 anos

iv.
$$P_3 = Q_{0.03} = 17.0385$$
 anos

v. extremos:

$$m$$
ínimo = 14 anos m áximo = 61 anos

vi. medidas de dispersão absoluta:

Amplitude Total = 47 anos
Amplitude Interquartil = AIQ = 6.0538 anos
variância =
$$s^2 = 40.2713$$
 anos²
desvio padrão = $s = 6.346$ anos

vii. medida de dispersão relativa:

coeficiente de variação = CV =
$$\frac{6.346}{24.3126} \times 100 = 26.1016\%$$

viii.
$$b_1 = 1.5269$$

Variável Altura

como os dados são quantitativos, é possível calcular todas as medidas

2

i. medidas de localização central:

$$\begin{aligned} &\text{moda} = 1.70 \text{ metros} \\ &\text{média} = \bar{x} = 1.7017 \text{ metros} \\ &\text{mediana} = \widetilde{x} = \mathbf{Q}_2 = Q_{0.50} = 1.7005 \text{ metros} \end{aligned}$$

ii. quartis:

$$1^{o}$$
quartil = $Q_{0.25} = 1.63$ metros
 2^{o} quartil = $Q_{0.50}$ = mediana = $\widetilde{x} = 1.7005$ metros
 3^{o} quartil = $Q_{0.75} = 1.7685$ metros

iii.
$$D_9 = Q_{0.90} = 1.8238$$
 metros

iv.
$$P_3 = Q_{0.03} = 1.5299$$
 metros

v. extremos:

$$m$$
ínimo = 1.45 metros m áximo = 1.98 metros

vi. medidas de dispersão absoluta:

Amplitude Total = 0.53 metros
Amplitude Interquartil = AIQ = 0.1385 metros
variância =
$$s^2 = 0.0087$$
 metros²
desvio padrão = $s = 0.0933$ metros

vii. medida de dispersão relativa:

coeficiente de variação = CV =
$$\frac{0.0933}{1.7017} \times 100 = 5.4831\%$$

viii.
$$b_1 = -0.0128$$

Variável Peso

como os dados são quantitativos, é possível calcular todas as medidas

• medidas de localização central:

$$\begin{aligned} &\text{moda} = 80 \text{ kg} \\ &\text{média} = \bar{x} = 86.5861 \text{ kg} \\ &\text{mediana} = \widetilde{x} = \mathbf{Q}_2 = Q_{0.50} = 83 \text{ kg} \end{aligned}$$

• quartis:

$$1^{o}$$
quartil = $Q_{0.25} = 65.4239$ kg
 2^{o} quartil = $Q_{0.50}$ = mediana = $\widetilde{x} = 83$ kg
 3^{o} quartil = $Q_{0.75} = 107.4827$ kg

•
$$D_9 = Q_{0.90} = 120.9215 \text{ kg}$$

•
$$P_3 = Q_{0.03} = 44.2601 \text{ kg}$$

• extremos:

$$m$$
ínimo = 39 kg m áximo = 173 kg

• medidas de dispersão absoluta:

Amplitude Total = 134 kg
Amplitude Interquartil = AIQ = 42.0587 kg
variância =
$$s^2 = 685.9775$$
 kg²
desvio padrão = $s = 26.1912$ kg

• medida de dispersão relativa:

coeficiente de variação =
$$CV = \frac{26.1912}{86.5861} \times 100 = 30.2487\%$$

• $b_1 = 0.255$

Variável FAVC

como os dados são qualitativos, a única medida possível de calcular é a moda

$$moda = 1 = Sim$$

Variável FCVC

como os dados são qualitativos, a única medida possível de calcular é a moda

$$moda = 2 = As vezes$$

Variável NCP

como os dados são quantitativos, é possível calcular todas as medidas

• medidas de localização central:

$$\begin{aligned} & \text{moda} = 3 \text{ refeições principais} \\ & \text{média} = \bar{x} = 2.6878 \text{ refeições principais} \\ & \text{mediana} = \widetilde{x} = \mathbf{Q}_2 = Q_{0.50} = 3 \text{ refeições principais} \end{aligned}$$

• quartis:

$$1^{o}$$
quartil = $Q_1 = Q_{0.25} = 3$ refeições principais
$$2^{o}$$
quartil = $Q_{0.50} = \text{mediana} = \widetilde{x} = 3$ refeições principais
$$3^{o}$$
quartil = $Q_{0.75} = 3$ refeições principais

4

- $D_9 = Q_{0.90} = 3$ refeições principais
- $P_3 = Q_{0.03} = 1$ refeição principal

• extremos:

• medidas de dispersão absoluta:

Amplitude Total = 3 refeições principais
Amplitude Interquartil = AIQ = 0 refeições principais
variância =
$$s^2 = 0.6556$$
 refeições principais
desvio padrão = $s = 0.8097$ refeições principais

• medida de dispersão relativa:

coeficiente de variação = CV =
$$\frac{0.8097}{2.6878} \times 100 = 30.124\%$$

•
$$b_1 = Q_{0.90} = -1.0667$$

Variável CAEC

como os dados são qualitativos, a única medida possível de calcular é a moda

$$moda = S = As vezes$$

Variável Fumar

como os dados são qualitativos, a única medida possível de calcular é a moda

$$moda = 0 = N\tilde{a}o$$

Variável CH2O

como os dados são qualitativos, a única medida possível de calcular é a moda

$$moda = 2 = entre 1 e 2 litros$$

Variável FAF

como os dados são qualitativos, a única medida possível de calcular é a moda

$$moda = 1 = 1 \text{ ou } 2 \text{ dias}$$

Variável CALC

como os dados são qualitativos, a única medida possível de calcular é a moda

$$moda = S = As vezes$$

Variável MTRANS

como os dados são qualitativos, a única medida possível de calcular é a moda

- (b) O diagrama de extremos e quartis só pode ser calculado para as variáveis quantitativas:
 - i. sem indicação de outliers

ii. com indicação de outliers a partir dos moderados

iii. com indicação de outliers a partir dos severos

Diagrama de extremos e quartis

(c) Variável Idade

- i. Como moda < mediana < média, os dados aparentam distribuir-se de forma assimétrica positva.
- ii. Como $b_1 > 0$, os dados aparentam distribuir-se de forma assimétrica positva.

Variável Altura

- i. Como moda \approx mediana \approx média, os dados aparentam distribuir-se de forma simétrica.
- ii. Como $b_1 \approx 0$, os dados aparentam distribuir-se de forma simétrica.

<u>Variável Peso</u>

- i. Como moda < mediana < média, os dados aparentam distribuir-se de forma assimétrica positva.
- ii. Como $b_1 > 0$, os dados aparentam distribuir-se de forma assimétrica positva.

Variável NCP

- i. Como moda = mediana > média, os dados aparentam distribuir-se com uma ligeira assimetria negativa, não parecendo afastar-se muito da simetria.
- ii. Como $b_1 < 0$, os dados aparentam distribuir-se de forma assimétrica negativa.

(d) Feito no R.

(e) Em relação à idade, o género masculino apresenta as medidas de localização (excepto a moda) ligeiramente superiores e as medidas de dispersão (exceto AIQ) ligeiramente inferiores do que o género feminino. Em relação à altura, o género masculino apresenta as medidas de localização superiores e as medidas de dispersão ligeiramente inferiores do que o género feminino. Em relação ao peso, o género masculino apresenta as medidas de localização superiores e as medidas de dispersão inferiores do que o género feminino. Em relação à variável "Se come habitualmente vegetais nas refeições", no género feminino a maioria respondeu "As

vezes". Em relação à variável "Com que frequência pratica atividade física por semana", no género feminino a maioria respondeu "não pratica" enquanto no género masculino a maioria respondeu "1 ou 2 dias". Nas restantes variáveis não há diferenças.

- (f) i. Classe modal =]20, 26] anos pois é a classe com a maior frequência absoluta Classe dos quartis
 - Classe do $1.^{0}$ quartil = Classe do $Q_{0.25} = [14, 20]$ anos pois é a classe onde se encontra a primeira frequência relativa acumulada que ultrapassa 0.25
 - Classe do $2.^{0}$ quartil = Classe do $Q_{0.50}$ =]20,26] anos pois é a classe onde se encontra a primeira frequência relativa acumulada que ultrapassa 0.50
 - Classe do $3.^{\circ}$ quartil = Classe do $Q_{0.75}$ =]20, 26] anos pois é a classe onde se encontra a primeira frequência relativa acumulada que ultrapassa 0.75
 - ii. Classe modal =]1.6, 1.8] metros
 pois é a classe com a maior frequência absoluta
 Classe dos quartis
 - Classe do $1.^{0}$ quartil = Classe do $Q_{0.25}$ =]1.6, 1.8] metros pois é a classe onde se encontra a primeira frequência relativa acumulada que ultrapassa 0.25
 - Classe do $2.^{0}$ quartil = Classe do $Q_{0.50}$ =]1.6, 1.8] metros pois é a classe onde se encontra a primeira frequência relativa acumulada que ultrapassa 0.50
 - Classe do $3.^{\circ}$ quartil = Classe do $Q_{0.75}$ =]1.6, 1.8] metros pois é a classe onde se encontra a primeira frequência relativa acumulada que ultrapassa 0.75
 - iii. Classe modal = [77.3, 96.4] kg pois é a classe com a maior frequência absoluta Classe dos quartis
 - Classe do $1.^{0}$ quartil = Classe do $Q_{0.25} = [58.1, 77.3]$ kg pois é a classe onde se encontra a primeira frequência relativa acumulada que ultrapassa 0.25
 - Classe do $2.^{0}$ quartil = Classe do $Q_{0.50} = [77.3, 96.4]$ kg pois é a classe onde se encontra a primeira frequência relativa acumulada que ultrapassa 0.50
 - Classe do $3.^{\circ}$ quartil = Classe do $Q_{0.75} = [96.4, 116]$ kg pois é a classe onde se encontra a primeira frequência relativa acumulada que ultrapassa 0.75