Ashwin Balakrishna

Email: abalakrishna@gmail.com, Website, Google Scholar

BACKGROUND I am excited about algorithms for data-driven decision making. I am currently a Research Scientist at Google Deepmind working on building foundation models for general purpose robotic manipulation. I am particularly interested in bridging vision and language foundation models with decision-making algorithms which can actively interact with users and improve based on experience.

WORK	Google DeepMind, Senior Research Scientist	2024 - Present
EXPERIENCE	Toyota Research Institute, Research Scientist	2023 - 2024
	Nuro, Research Scientist	2022 - 2023
	Toyota Research Institute, Research Intern	2021
	SpaceX, Software Engineering Intern (Avionics)	2017

EDUCATION

Aug 2018 - May 2022 UC Berkeley, Berkeley, CA Ph.D. in Computer Science GPA: 3.97/4.00

Thesis: Scalable Supervision for Safe and Efficient Online Robot Learning

California Institute of Technology, Pasadena, CA Sep 2014 - Jun 2018 Bachelor of Science in Electrical Engineering GPA: 3.97/4.00

SELECTED

Moo Jin Kim*, Karl Pertsch*, Siddharth Karamcheti*, Ted Xiao, Ashwin Balakr-PUBLICATIONS ishna, Suraj Nair et al. OpenVLA: An Open-Source Vision-Language-Action Model. Preprint 2024.

> Alexander Khazatsky*, Karl Pertsch*, Suraj Nair, Ashwin Balakrishna, et al. DROID: A Large-Scale In-The-Wild Robot Manipulation Dataset. Preprint 2024.

> Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa Sadigh. Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models. Preprint 2024.

> Albert Wilcox, Ashwin Balakrishna, Jules Dedieu, Wyame Benslimane, et al. Monte Carlo Augmented Actor-Critic for Sparse Reward Deep Reinforcement Learning from Suboptimal Demonstrations. Conference on Neural Information Processing Systems (NeurIPS) 2022.

> Brijen Thananjeyan*, Ashwin Balakrishna*, Suraj Nair, Michael Luo, Krishnan Srinivasan, et al. Recovery RL: Safe Reinforcement Learning with Learned Recovery Zones. Robotics and Automation Letters (RA-L) and International Conference on Robotics and Automation (ICRA) 2021.

AWARDS & **HONORS**

Qualcomm Innovation Fellowship Finalist	2021
Timothy B. Campbell Innovation Award (Berkeley EECS)	2020-2021
Apple AI/ML PhD Fellowship Nomination (Berkeley EECS)	2020
National Science Foundation Graduate Research Fellowship	2018-2021

^{* =} equal contribution