Bayesian Methods of Machine Learning. Project Presentation. Super-Samples from Kernel Herding

Georgii Novikov

October 2020

Super-Samples from Kernel Herding

Weakly chaotic, non-linear dynamical system

$$\begin{split} x_{t+1} &= \underset{x \in \mathcal{X}}{\text{arg max}} \langle w_t, \phi(x) \rangle \\ w_{t+1} &= w_t + \mathbb{E}_{x \sim p} [\phi(x)] - \phi(x_{t+1}) \\ x_t &\in \mathbb{R}^n, \phi : \mathbb{R}^n \to \mathbb{R}^m \end{split} \tag{1}$$

Under some conditions, it is a greedy minimization of

$$\varepsilon_{\mathrm{T}}^2 = \left\| \mu_{\mathrm{p}} - \frac{1}{\mathrm{T}} \sum_{t=1}^{\mathrm{T}} \phi(\mathbf{x}_t) \right\|^2$$
, where $\mu_{\mathrm{p}} = \mathbb{E}_{\mathbf{x} \sim \mathrm{p}} \phi(\mathbf{x})$ (2)

Theoretical Guarantees

Theorem

 x_t in (1) is optimal on each step \Rightarrow error in (2) decreases at a rate $\mathcal{O}(T^{-1})$.

Advantage

- 1. I.i.d samples have rate $\mathcal{O}(T^{-\frac{1}{2}})$
- 2. MCMC converges even slower then $\mathcal{O}(T^{-\frac{1}{2}})$ (due to positive correlations)

Kernel Trick

We want to replace $\phi(x)$ with $k(x, x') = \langle \phi(x), \phi(x') \rangle$:

- 1. Define $w_0 = \mu := \mathbb{E}_{x \sim p}[\phi(x)]$
- 2.

$$\begin{split} & x_{t+1} = \underset{x \in \mathcal{X}}{\text{arg max}} \langle w_t, \phi(x) \rangle \\ & = \underset{x \in \mathcal{X}}{\text{arg max}} \langle w_0 + T \operatorname{\mathbb{E}}_{x' \sim p} [\phi(x')] - \sum_{t=1}^T \phi(x_t), \phi(x) \rangle \\ & = \underset{x \in \mathcal{X}}{\text{arg max}} (T+1) \operatorname{\mathbb{E}}_{x' \sim p} k(x,x') - \sum_{t=1}^T k(x,x_t) \end{split}$$

Interpretation

$$\begin{split} \varepsilon_{\mathrm{T}}^2 &= \left\| \mu_{\mathrm{p}} - \frac{1}{\mathrm{T}} \sum_{\mathrm{t}=1}^{\mathrm{T}} \phi(\mathbf{x}_{\mathrm{t}}) \right\|_{\mathcal{H}}^2 \\ &= \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim \mathrm{p}} \, \mathbf{k}(\mathbf{x}, \mathbf{x}') - \frac{2}{\mathrm{T}} \sum_{\mathrm{i}=1}^{\mathrm{T}} \mathbb{E}_{\mathbf{x} \sim \mathrm{p}} \, \mathbf{k}(\mathbf{x}, \mathbf{x}_{\mathrm{t}}) + \frac{1}{\mathrm{T}^2} \sum_{\mathrm{t}, \mathrm{t}'=1}^{\mathrm{T}} \mathbf{k}(\mathbf{x}, \mathbf{x}') \end{split}$$

This is a measure between distribution p and empirical distribution $\hat{p}_T(x) = \sum_{t=1}^T \delta(x, x_t)$. And we still have a rate of convergence $\mathcal{O}(T^{-1})!$

Expiriment 0. Toy dataset

Mixture of 20 2D Gaussians:

Expiriment 1. Empirical Matching

- 1. p(x) = mixture of 10 5D Gaussians
- 2. $\mathcal{D} = 10^5$ i.i.d samples
- 3. Gaussian kernel k (with $\sigma = 10$)
- 4. Herding vs random samples on 4 functions of interest:
 - 4.1 $\phi(x) = x^i, i \in 1, 2, 3$
 - $4.2 \ \phi(x) = \sin(x)$

Expiriment 1. Empirical Matching. Results

Expiriment 2. Approximating the Bayesian Posterior

- ▶ UCI spambase: 57 features. 4601 samples (3000 for train and 1601 for test).
- ▶ Whiten with PCA.
- ▶ Sample 10⁷ logistic regression parameters from the poster distribution with gaussian prior with Metropolis-Hasting and subsample to 10⁵ to reduce the autocorrelation.
- ▶ Whiten parameters with PCA.
- ► Herd super samples.
- ► Compare with metric

$$RMSE(S_T, D) = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{1}{T} \sum_{t=1}^{T} p(y_n | x_n, \theta_t) - \frac{1}{|D|} \sum_{d=1}^{|D|} p(y_n | x_n, \theta_d) \right]$$

Expiriment 2. Approximating the Bayesian Posterior. Result

Problems

Dependence on the parameters of Gaussian kernel is not clear.

