Iowa State University Aerospace Engineering

AER E 322 Lab 5 Beam Deflection and Analysis

Matthew Mehrtens, Peter Mikolitis, and Natsuki Oda March 16, 2023

Contents

1	Introduction	2
2	Objectives	2
3	Hypothesis	2
4	Work Assignments	2
5	Materials	3
6	Apparatus	3
7	Procedures	4
8	Data	4
9	Analysis	4
10	Conclusion	9

Section 4 Group 2 Matthew Mehrtens, Peter Mikolitis, and Natsuki Oda March 16, 2023

Spring 2023

- 1. Introduction
- 2. Objectives

AER E 322

- 3. Hypothesis
- 4. Work Assignments

Refer to Table 1 for the distribution of work during this lab.

Table 1: Work assignments for AER E 322 Lab < lab number >.

Task	Matthew	Peter	Natsuki		
Lab Work					
Date Recording					
Exp. Setup					
Exp. Work					
Exp. Clean-Up					
Post Lab					
Report					
Introduction					
Objectives					
Hypothesis					
Materials					
Apparatus					
Procedures					
Data					
Analysis					
Conclusion					
Editing					

Section 4 Group 2 Matthew Mehrtens, Peter Mikolitis, and Natsuki Oda March 16, 2023

AER E 322 March 16, 2023 **Spring 2023**

5. Materials

6. Apparatus

Figure 1: The beam configuration for experiments 1–3.

Figure 2: The beam configuration for experiment 4.

Section 4 Group 2

Matthew Mehrtens, Peter Mikolitis, and Natsuki Oda March 16, 2023

AER E 322

Spring 2023

Figure 3: The beam configuration for experiment 5.

7. Procedures

8. Data

9. Analysis

To derive the following deflection expressions, we are given the following equations of superposition for a cantilever beam:

$$0 \le x \le L_1 : y = -\frac{wx^2}{6EI}(3L_1 - x) \tag{1}$$

$$L_1 \le x \le L : y = -\frac{wL_1^2}{6EI}(3x - L_1)$$
(2)

$$L_1 = L : y = -\frac{wx^2}{6EI}(3L - x) \tag{3}$$

where L is the length of the beam, E is the elastic modulus of the beam material, I is the beam moment of inertia, w is the applied load, L_1 is the distance from the fixed end of the beam to the applied load, and x is the point about which deflection is measured. Note that Equation 2 is invalid for $L_1 = L$.

The configuration for test four, shown in Figure 2, consists of a beam fixed at one end with a roller support on the other end. A load is being applied at $\frac{1}{3}$ the length, measured from the fixed end. To calculate the deflection at $\frac{2}{3}$ the length, i.e., $x = \frac{2}{3}L$, we are given the following

Section 4 Group 2

Matthew Mehrtens, Peter Mikolitis, and Natsuki Oda

AER E 322

March 16, 2023

Spring 2023

equation:

$$\nu = -\frac{w}{EI} \frac{23}{4374} L^3 \tag{4}$$

where w is the applied load, E is the elastic modulus, I is the moment of inertia, L is the length of the beam, and ν is the deflection of the beam at $x = \frac{2}{3}L$.

To derive this expression, we first note that the beam configuration is indeterminate. The roller support is redundant and can be replaced by a vertical applied load of magnitude, R_y . The beam is now effectively a cantilevered beam with two applied loads. Deflection at a point x can be calculated by summing the deflection at x from each of the applied loads.

The deflection due to the applied load at $x = \frac{1}{3}L$, ν_w , can be derived from Equation 2.

$$\nu_w(x) = -\frac{wL_1^2}{6EI}(3x - L_1)$$

$$= -\frac{w\frac{1}{9}L^2}{6EI}(3x - \frac{1}{3}L)$$

$$= -\frac{wL^2}{162EI}(9x - L)$$

This expression is true for all $x \in [\frac{1}{3}L, L]$.

The deflection due to the redundant reaction force at x = L, ν_{R_y} , can be derived from Equation 3.

$$\nu_{R_y}(x) = -\frac{wx^2}{6EI}(3L - x)$$
$$= -\frac{R_y x^2}{6EI}(3L - x)$$

This expression is true for all $x \in [0, L]$.

To calculate the deflection at $x = \frac{2}{3}L$, we first need to determine the value of R_y . We know from Figure 2, at x = L there is a roller support, and therefore, $\nu(x) = 0$ at x = L. We apply

Section 4 Group 2

Matthew Mehrtens, Peter Mikolitis, and Natsuki Oda

AER E 322

March 16, 2023

Spring 2023

this boundary condition below to find R_y .

$$\begin{split} \nu(L) &= \nu_w(L) + \nu_{R_y}(L) = 0 \\ 0 &= -\frac{wL^2}{162EI}(9L - L) - \frac{R_yL^2}{6EI}(3L - L) \\ 0 &= -\frac{4wL^3}{81EI} - \frac{R_yL^3}{3EI} \\ R_y &= -\frac{4w}{27} \end{split}$$

Substituting in the derived expression for R_y into the earlier equation for ν_{R_y} , we find that

$$\nu_{R_y}(x) = \frac{2wx^2}{81EI}(3L - x)$$

Now that we have expressions for both ν_w and ν_{R_y} in terms of w, we can find the derive an equation for the deflection of the beam at $x = \frac{2}{3}L$ in terms of w, E, I, and L.

$$\nu\left(\frac{2}{3}L\right) = \nu_w\left(\frac{2}{3}L\right) + \nu_{R_y}\left(\frac{2}{3}L\right)$$

$$= -\frac{wL^2}{162EI}\left(9\left(\frac{2}{3}L\right) - L\right) + \frac{2w\left(\frac{2}{3}L\right)^2}{81EI}\left(3L - \left(\frac{2}{3}L\right)\right)$$

$$= -\frac{5wL^3}{162EI} + \frac{56wL^3}{2187EI}$$

$$= \frac{wL^3}{EI}\left(-\frac{5}{162} + \frac{56}{2187}\right)$$

$$= -\frac{23wL^3}{4374EI}$$

As expected, this equation matches the given expression in Equation 4. Calculating the theoretical deflection is then trivial. We know $w = (1000\,\mathrm{g})(\frac{1\,\mathrm{kg}}{1000\,\mathrm{g}})(9.81\,\frac{\mathrm{m}}{\mathrm{s}^2}) = 9.81\,\mathrm{N},\,L = 0.90\,\mathrm{m},\,E = 68.9\times10^9\,\mathrm{Pa},\,\mathrm{and}\,I = \frac{1}{12}(12.8\,\mathrm{mm})(6.4\,\mathrm{mm})^3(\frac{1\,\mathrm{m}}{1000\,\mathrm{mm}})^4 = 2.796\times10^{-10}\,\mathrm{m}^4.$ Plugging these values into Equation 4, we find that

$$\begin{split} \nu\left(\frac{2}{3}L\right) &= -\frac{23(9.81\,\mathrm{N})(0.90\,\mathrm{m})^3}{4374(68.9\times10^9\,\mathrm{Pa})(2.796\times10^{-10}\,\mathrm{m}^4)} \\ &= -1.952\,\mathrm{mm} \text{ or } 1.952\,\mathrm{mm} \downarrow \end{split}$$

Section 4 Group 2
Matthew Mehrtens, Peter Mikolitis, and Natsuki Oda
March 16, 2023

AER E 322

Spring 2023

The configuration for test five, shown in Figure 3, consists of a beam fixed at one end with a roller support at $\frac{2}{3}$ the length. A load is being applied at $\frac{1}{3}$ the length and at the end, measured from the fixed end. To calculate the deflection at the free end of the beam, *i.e.*, x = L, we are given the following equation:

$$\nu = -\frac{L^3}{EI} \left(\frac{5w_2}{162} - \frac{w_1}{216} \right) \tag{5}$$

where w_1 is the applied load at $x = \frac{1}{3}L$, w_2 is the applied load at x = L, E is the elastic modulus, I is the moment of inertia, L is the length of the beam, and ν is the deflection of the beam at x = L.

To derive this expression, we first note that the beam configuration is indeterminate. The roller support is redundant and can be replaced by a vertical applied load of magnitude, R_y . The beam is now effectively a cantilevered beam with three applied loads. Deflection at a point x can be calculated by summing the deflection at x from each of the applied loads.

The deflection due to the applied load at $x = \frac{1}{3}$, ν_{w_1} , can be derived from Equation 2.

$$\nu_{w_1}(x) = -\frac{wL_1^2}{6EI}(3x - L_1)$$

$$= -\frac{w_1\frac{1}{9}L^2}{6EI}(3x - \frac{1}{3}L)$$

$$= \frac{w_1L^2}{162EI}(9x - L)$$

This expression is true for all $x \in [\frac{1}{3}L, L]$.

The deflection due to the redundant reaction force at $x = \frac{2}{3}L$, ν_{R_y} , can be derived from Equation 2.

$$\nu_{R_y}(x) = -\frac{wL_1^2}{6EI}(3x - L_1)$$

$$= -\frac{R_y \frac{4}{9}L^2}{6EI}(3x - \frac{2}{3}L)$$

$$= -\frac{2R_y L^2}{81EI}(9x - 2L)$$

This expression is true for all $x \in [\frac{2}{3}L, L]$.

Section 4 Group 2

Matthew Mehrtens, Peter Mikolitis, and Natsuki Oda

AER E 322

March 16, 2023

Spring 2023

The deflection due to the applied load at x = L, ν_{w_2} , can be derived from Equation 3.

$$\nu_{w_2}(x) = -\frac{wx^2}{6EI}(3L - x)$$
$$= -\frac{w_2^2}{x}6EI(3L - x)$$

This expression is for all $x \in [0, L]$.

To calculate the deflection at x = L, we first need to determine the value of R_y . We know from Figure 3), at $x = \frac{2}{3}L$ there is a roller support, and therefore, $\nu(x) = 0$ at $x = \frac{2}{3}L$. We apply this boundary condition below to find R_y .

$$\nu(\frac{2}{3}L = \nu_{w_1}(\frac{2}{3}L) + \nu_{R_y}(\frac{2}{3}L) + \nu_{w_2}(\frac{2}{3}L) = 0$$

$$0 = -\frac{w_1L^2}{162EI}(9(\frac{2}{3}L) - L) - \frac{2R_yL^2}{81EI}(9(\frac{2}{3}L) - 2L) - \frac{w_2\frac{4}{9}L^2}{6EI}(3L - (\frac{2}{3}L))$$

$$0 = -\frac{5w_1}{162} - \frac{8R_y}{81} - \frac{14w_2}{81}$$

$$R_y = -\frac{5}{16}(w_1 + \frac{28w_2}{5})$$

Now that we have expressions for the deflection due to all the forces, we can derive an equation for the deflection of the beam at x = L using the method of superposition.

$$\begin{split} \nu(L) &= \nu_{w_1}(L) + \nu_{R_y}(L) + \nu_{w_2}(L) \\ &= -\frac{w_1 L^2}{162EI} (9L - L) - \frac{2\left(-\frac{5}{16}\left[w_1 + \frac{28w_2}{5}\right]\right)L^2}{81EI} (9L - 2L) - \frac{w_2 L^2}{6EI} (3L - L) \\ &= -\frac{4w_1 L^3}{81EI} + \frac{35\left(w_1 + \frac{28w_2}{5}\right)L^3}{648EI} - \frac{w_2 L^3}{3EI} \\ &= -\frac{L^3}{EI} \left[\frac{4w_1}{81} - \frac{35w_1}{648} - \frac{49w_2}{162} + \frac{w_2}{3}\right] \\ &= -\frac{L^3}{EI} \left(\frac{5w_2}{162} - \frac{w_1}{216}\right) \end{split}$$

As expected, this equation matches the given expression in Equation 5. Calculating the theoretical deflection is then trivial. We know $w_1 = (2500 \,\mathrm{g}) (\frac{1 \,\mathrm{kg}}{1000 \,\mathrm{g}}) (9.81 \,\frac{\mathrm{m}}{\mathrm{s}^2}) = 24.53 \,\mathrm{N},$

Section 4 Group 2 Matthew Mehrtens, Peter Mikolitis, and Natsuki Oda March 16, 2023

AER E 322 March 16, 2023 **Spring 2023**

 $w_2 = (200 \,\mathrm{g})(\frac{1 \,\mathrm{kg}}{1000 \,\mathrm{g}})(9.81 \,\frac{\mathrm{m}}{\mathrm{s}^2}) = 19.62 \,\mathrm{N}, \ L = 0.90 \,\mathrm{m}, \ E = 68.9 \times 10^9 \,\mathrm{Pa}, \ \mathrm{and} \ I = \frac{1}{12}(12.8 \,\mathrm{mm}) \cdot (6.4 \,\mathrm{mm})^3(\frac{1 \,\mathrm{m}}{1000 \,\mathrm{mm}})^4 = 2.796 \times 10^{-10} \,\mathrm{m}^4.$ Plugging these values into Equation 5, we find that

$$\nu(L) = -\frac{0.90\,\mathrm{m}}{(68.9 \times 10^9\,\mathrm{Pa})(2.796 \times 10^{-10}\,\mathrm{m}^4)} \left(\frac{5(19.62\,\mathrm{N})}{162} - \frac{24.53\,\mathrm{N}}{216}\right)$$
$$= 2.005\,\mathrm{mm}\,\,\mathrm{or}\,\,2.005\,\mathrm{mm}\,\uparrow$$

10. Conclusion