北京邮电大学 2023 届本科毕业设计(论文)中期进展情况检查表

学院	计算机学院(国家示范 性软件学院)		专业	智能科学与技术		
学生姓名	张梓靖	学号	2019211379	班级	2019211315	
指导教师姓名	王纯	所在单位	计算机学院 (国家示范性 软件学院)	职称	高级工程师	
设计(论文)题目	(中文) 一种基于工作量的 Serverless 计算自动伸缩算法的设计与实现					
	(英文) Design and Implementation of Workload-based Auto-scaling Algorithm for					
	Serverless Computing					

主要内容:

简要而言:

- 1. 目前已经实现了使用 SA、AR、ARIMA 和 SARIMA 方法进行预测。
- 2. 已经能够将预测算法对接到 OpenFaaS 等环境中使用。
- 3. 可以继续尝试基于 CNN 的机器学习方法。

下面是详细内容。

首先,我们来看已经实现的预测算法,其中包括了四种不同的方法: SA、AR、ARIMA和 SARIMA。SA 就是简单平均,我们用它作为一种 Baseline,从而确保我们的预测算法没有纰漏,因为一般情况下效果应该优于简单平均。AR(Autoregressive)方法则是一种基于时间序列的预测算法,通过分析历史数据来预测未来的趋势。ARIMA(Autoregressive Integrated Moving Average)和 SARIMA(Seasonal ARIMA)方法是基于 AR 方法的扩展,增加了对数据的差分和季节性特征的处理,以更准确地预测未来的趋势。这些算法在各种领域都得到了广泛应用,例如经济预测、天气预报、股票预测等。也同样适用于我们的 OpenFaas 等环境。

其次,我们已经能够将这些预测算法对接到 OpenFaaS 等环境中使用。OpenFaaS 是一种轻量级、可扩展的 Serverless 平台,可以让开发者更轻松地创建和部署函数。

在前面的进展报告中,我们提到了已经能够将预测算法对接到 OpenFaaS 等环境中使用。这种部署方式是将预测算法封装成函数,然后通过 API 调用来使用它们。尽管这种方式具有高度的灵活性和可扩展性,但是它与具体的 FaaS 平台耦合在一起,限制了部署的灵活性和可移植性。为了解决这个问题,我们将预测算法封装为单独的服务,与具体的 FaaS 平台解耦。这种服务化的部署方式可以让预测算法在不同的平台上使用,并且具有更好的可移植性和可扩展性。

具体来说,我们可以使用 Docker 等容器技术将预测算法封装为服务,然后通过 Kubernetes 等容器编排工具来部署和管理这些服务。这种部署方式可以让我们更 好地控制计算资源,同时也具有更好的可伸缩性和容错性。此外,我们还可以使用 Istio 等服务网格技术来管理不同服务之间的通信和流量控制,从而更好地保证服 务的可用性和稳定性。

为了进一步提高部署的灵活性和可扩展性,我们还可以通过 FaaS 框架提供的外部接口控制伸缩。比如说,OpenFaaS 提供了 Function Label ,我们可以通过打标签的方式控制 Function 的基础配置,例如最小副本数。这样来根据实际负载情况自动调整服务的实例数量。这种方式可以让我们更好地响应负载变化,同时也可以降低成本和资源浪费。

是否符合任务书要求进度 是

尚需完成的任	我们可以继续尝试基于 RNN 的机器学习方法。这类算法广泛应用于图像处理、自然语言处理等领域。与传统的时间序列预测算法相比,RNN 具有更强的自适应性和非线性特征提取能力。 我们还需要对代码进行重构,以便更好地部署。							
务	- 是否	上否可以按期完成设计(论文) 是☑ 否 □						
	<i>X</i> -1	1. 没有公开的长期(大于一年)精确(粒度小于一分钟)的 Serverless 实际运行情况数据集 2. 也没有条件在生产环境接触到这样的数据集。 3. 还应该对比更多的算法,选择其中最为适合的。						
存在问题和解决办法	存在问题							
	拟采取的办法	 使用同类数据(进行模拟 降低预测的精度,更关注全局的趋势性,而短期的快速扩容交给简单 阈值方法。 						
指导师签		日期 2023年4月14日						
检组及意	至小子分	评分: 23 (总分: 25) 通过						