Matt Isaac A01515095 Biostatistics Homework 3 – Due Monday, 26 Feb

- 1. Address the research questions below.
 - a. Are physicians detecting depression any differently than surveys? (For this question, ignore how physicians detected depression, and assume each physician assessed each patient for depression.)
 - i. Two-way table of category counts:

Table of SurveyDep by PhysicianDep					
SurveyDep	P	PhysicianDep			
Frequency Row Pct	1 2 Tota				
1	9 14.06	55 85.94	64		
2	0.00	47 100.00	47		
Total	9	102	111		

- ii. Name of the appropriate test: Two-sample Binomial Test
- iii. Null and alternative hypothesis:

 H_0 : $p_{physician} = p_{survey}$ H_A : $p_{physican} \neq p_{survey}$

iv. P-value from the test: 0.0073

Statistic	DF	Value	Prob
Chi-Square	1	7.1926	0.0073

- v. Conclusion in context of research: Since the p-value is < 0.05, we reject H_0 . This implies that there is a significant difference between the physicians detecting depression and the survey detecting depression.
- b. Are there differences between the survey-based rates of depression (SurveyDep) in the seven different diagnostic groups?
 - i. Two-way table of category counts:

Table of Cardiac_dx by SurveyDep				
Cardiac_dx	SurveyDep			
Frequency Col Pct	1	Total		
1	19 29.69	18 38.30	37	
2	15 23.44	5 10.64	20	
3	14 21.88	13 27.66	27	
4	5 7.81	4 8.51	9	
5	6 9.38	1 2.13	7	
6	3 4.69	4 8.51	7	
7	2 3.13	2 4.26	4	
Total	64	47	111	

- ii. Name of the appropriate test: Chi-square General Association test (Could also use Row Mean Scores Differ test they will be equivalent).
- iii. Null and alternative hypothesis:

H₀: There is no association between Cardiac_dx group and survey-based rates of depression.

H_A: The distribution over Survey-based rates of depression differs between the different levels of Cardiac_dx. (i.e. some association/dependence exists).

iv. P-value from the test: 0.3821 (as seen in table below)

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)					
Statistic	Alternative Hypothesis	DF	Value	Prob	
1	Nonzero Correlation	1	0.0046	0.9459	
2	Row Mean Scores Differ	6	6.3788	0.3821	
3	General Association	6	6.3788	0.3821	

v. Conclusion in context of research: Since our p-value is > 0.05, we fail to reject H_0 . We do not have reason to believe that there is a linear

association between Cardiac_dx group and the survey-based rates of depression.

- c. Are there differences between the survey-based rates of depression in male and female patients?
 - i. Two-way table of category counts:

2. Table of Gender by SurveyDep				
Gender		SurveyDep)	
Frequency Row Pct	1	2	Total	
1	34 55.74	27 44.26	61	
2	30 60.00	20 40.00	50	
Total	64	47	111	

- i. Name of the appropriate test: 2-sample Binomial test
- ii. Null and alternative hypothesis:

 H_0 : $p_{male} = p_{female}$

 H_A : $p_{male} \neq p_{female}$

iii. P-value from the test: 0.6511 (see table below)

Statistic	DF	Value	Prob
Chi-Square	1	0.2045	0.6511

- iv. Conclusion in context of research: Since our p-value is > 0.05, we fail to reject H_0 . That is, we have no evidence that depression rates are dependent on gender.
- d. Are there differences between the survey-based rates of depression in patients who are married, single, widowed, or divorced?
 - i. Two-way table of category counts:

Table of MaritalStatus by SurveyDep				
MaritalStatus	SurveyDep			
Frequency Col Pct	1	2	Total	
1	40 62.50	36 76.60	76	
2	4 6.25	1 2.13	5	
3	12 18.75	9 19.15	21	
4	8 12.50	1 2.13	9	
Total	64	47	111	

- ii. Name of the appropriate test: Chi-square Row Mean Scores Differ test (assuming MaritalStatus to be nominal and the 2-category Survey-based depression variable to be ordinal).
- iii. Null and alternative hypothesis:

H₀: There is no association between marital status and survey-based rates of depression.

H_A: Mean scores differ among different marital status groups.

iv. P-value from the test: 0.1474 (see table below)

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)					
Statistic	Alternative Hypothesis	DF	Value	Prob	
1	Nonzero Correlation	1	2.9304	0.0869	
2	Row Mean Scores Differ	3	5.3580	0.1474	
3	General Association	3	5.3580	0.1474	

- v. Conclusion in context of research: Since our p-value is greater than 0.05, we fail to reject H_0 . We have no evidence that there is any association between marital status and survey-based rates of depression.
- e. Are there differences between the survey-based rates of depression in patients that had a prior cardiac history versus those with a new diagnosis?
 - i. Two-way table of category counts:

Table of PriorCardHx by SurveyDep				
PriorCardHx	SurveyDep			
Frequency Row Pct	1 2 Tot			
1	41 62.12	25 37.88	66	
2	23 51.11	22 48.89	45	
Total	64	47	111	

ii. Name of the appropriate test: 2-sample Binomial test

iii. Null and alternative hypothesis:

 H_0 : $p_{PriorCardHx} = p_{NoPriorCardHx}$

Ha: pPriorCardHx ≠ pNoPriorCardHx

iv. P-value from the test: 0.2491

Statistic	DF	Value	Prob
Chi-Square	1	1.3286	0.2491

v. Conclusion in context of research: We fail to reject H_0 because our p-value is > 0.05. This indicates that we have found evidence that Depression diagnosis from the survey is independent of PriorCardHx.

vi.

- 2. In class (Handout #7) we discussed how the two-sample binomial test statistic Z and the chi-square test statistic $\chi 2$ for testing independence in a two-by-two table are related. Clearly demonstrate this relationship in general ($Z^2 = \chi^2$), using the generic category counts a, b, c, and d as in the following table:
 - b. Report the test statistic Z (in terms of category counts a, b, c, and d only).

	Response 1	Response 2	
Group 1	а	b	a + b
	(or X ₁)	$(or X_1 - n_1)$	(or n_1)
Group 2	С	d	c + d
	(or X ₂)	$(or X_2 - n_2)$	(or n ₂)

From handout 7,

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{Var(\hat{p}_1 - \hat{p}_2)}}$$

Let $p_i = P\{Response = 1 \text{ in } group i\}$, estimated by $\widehat{p_i} = \frac{X_i}{n_i}$

Also, from handout 7, $\sqrt{Var(\hat{p}_1 - \hat{p}_2)} = p(1 - p) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)$

where p is estimated by

$$\hat{p} = \frac{X_1 + X_2}{n_1 + n_2} = \frac{a + c}{a + b + c + d}$$

Thus,

$$Z = \frac{\frac{a}{a+b} - \frac{c}{c+d}}{\sqrt{\left(\frac{a+c}{a+b+c+d}\right)\left(1 - \frac{a+c}{a+b+c+d}\right)\left(\left(\frac{1}{a+b}\right) + \left(\frac{1}{c+d}\right)\right)}}$$

c. Report the test statistic $\chi 2$ (in terms of category counts a, b, c, and d only).

$$\chi 2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Where $E_i = \frac{(row \, total)(column \, total)}{table \, total}$.

Thus.

$$\chi^{2} = \left(\frac{\left(a - \frac{(a+b)(a+c)}{a+b+c+d}\right)^{2}}{\frac{(a+b)(a+c)}{a+b+c+d}}\right) + \left(\frac{\left(b - \frac{(a+b)(b+d)}{a+b+c+d}\right)^{2}}{\frac{(a+b)(b+d)}{a+b+c+d}}\right) + \left(\frac{\left(c - \frac{(c+d)(a+c)}{a+b+c+d}\right)^{2}}{\frac{(c+d)(a+c)}{a+b+c+d}}\right) + \left(\frac{\left(d - \frac{(c+d)(b+d)}{a+b+c+d}\right)^{2}}{\frac{(c+d)(b+d)}{a+b+c+d}}\right) + \left(\frac{\left(d - \frac{(c+d)(b+d)}{a+b+c+d}\right)^{2}}{\frac{(c+d)(b+d)}{a+b+c+d}}\right)$$

d. Show that $Z^2 = \chi^2$.

The Maple code on the page below shows the equality of Z^2 and χ^2 .

>
$$Z := \frac{\left(\frac{a}{a+b} - \frac{c}{c+d}\right)}{\sqrt{\left(\frac{(a+c)}{a+b+c+d}\right) \cdot \left(1 - \frac{(a+c)}{a+b+c+d}\right) \cdot \left(\frac{1}{a+b} + \frac{1}{c+d}\right)}}}{\frac{a}{a+b} - \frac{c}{c+d}}$$
 $Z := \frac{\frac{a}{a+b} - \frac{c}{c+d}}{\sqrt{\frac{(a+c)\left(1 - \frac{a+c}{a+b+c+d}\right)\left(\frac{1}{a+b} + \frac{1}{c+d}\right)}}}{\sqrt{\frac{(a+c)\left(1 - \frac{a+c}{a+b+c+d}\right)\left(\frac{1}{a+b} + \frac{1}{c+d}\right)}{a+b+c+d}}}$

> $X2 := \frac{\left(a - \left(\frac{(a+b) \cdot (a+c)}{(a+b+c+d)}\right)\right)^2}{\frac{(a+b) \cdot (a+c)}{(a+b+c+d)}} + \frac{\left(b - \left(\frac{(a+b) \cdot (b+d)}{(a+b+c+d)}\right)\right)^2}{\frac{(a+b) \cdot (b+d)}{(a+b+c+d)}}}$

+ $\frac{\left(c - \left(\frac{(c+d) \cdot (a+c)}{(a+b+c+d)}\right)\right)^2}{\frac{(c+d) \cdot (a+c)}{(a+b+c+d)}} + \frac{\left(d - \left(\frac{(c+d) \cdot (b+d)}{(a+b+c+d)}\right)\right)^2}{\frac{(c+d) \cdot (b+d)}{(a+b+c+d)}}}$

$$(2)$$
 $X2 := \frac{\left(a - \frac{(a+b)(a+c)}{a+b+c+d}\right)^2(a+b+c+d)}{(a+b)(a+c)}$

+ $\frac{\left(b - \frac{(a+b)(b+d)}{a+b+c+d}\right)^2(a+b+c+d)}{(a+b)(b+d)}}$

+ $\frac{\left(c - \frac{(c+d)(a+c)}{a+b+c+d}\right)^2(a+b+c+d)}{(c+d)(a+c)}}$

+ $\frac{\left(d - \frac{(c+d)(a+c)}{a+b+c+d}\right)^2(a+b+c+d)}{(c+d)(a+c)}}$

> $ximplify(Z^2)$

$$ximplify(Z^2)$$

$$ximplify(Z^2)$$

$$ximplify(Z^2)$$

$$ximplify(Z^2)$$

$$ximplify(Z^2)$$

$$ximplify(Z^2)$$

$$ximplify(Z^2)$$

$$ximplify(Z^2)$$

$$ximplify(Z^2)$$

```
Appendix: SAS code
/* Generated Code (IMPORT) */
/* Source File: depression.csv */
/* Source Path: /home/mattisaac0/BioStatistics */
/* Code generated on: 2/21/18, 9:42 PM */
%web_drop_table(WORK.depression);
FILENAME REFFILE '/home/mattisaac0/BioStatistics/depression.csv';
PROC IMPORT DATAFILE=REFFILE
       DBMS=CSV
       OUT=WORK.depression;
       GETNAMES=YES;
RUN;
* proc print data = depression;
%web_open_table(WORK.depression);
proc print data = depression;
run;
/* Code for problem 1(a)*/
* Frequency Table;
proc freq data = depression;
tables SurveyDep * PhysicianDep / chisq nopercent nocol;
run;
/* Code for problem 1(b)*/
proc freq data = depression;
tables Cardiac_dx * SurveyDep / chisq nopercent norow cmh;
run;
/* Code for problem 1(c)*/
proc freq data = depression;
tables gender * SurveyDep / chisq nopercent nocol;
run;
/* Code for problem 1(d)*/
proc freq data = depression;
tables MaritalStatus * SurveyDep / chisq nopercent norow cmh;
run;
/* Code for problem 1(e)*/
proc freq data = depression;
tables PriorCardHx * SurveyDep / chisq nopercent nocol;
run;
```