ナッシュ均衡の計算

尾山 大輔

2023年4月24日

ナッシュ均衡の計算アルゴリズム

- Support enumeration
- Vertex enumeration
- Lemke-Howson
- **•** ...

- ▶ von Stengel, B. (2007). "Equilibrium Computation for Two-Player Games in Strategic and Extensive Form," Chapter 3, Algorithmic Game Theory.
- ▶ (一般的にナッシュ均衡の計算は難しい問題 (2 人ゲームでも). サイズの大きなゲームのナッシュ均衡を計算するのは現実的でない。)

混合戦略ナッシュ均衡 (2人ゲームのケース)

純粋戦略 $s_1 \in S_1$, $s_2 \in S_2$, 混合戦略 $\sigma_1 \in \Delta(S_1)$, $\sigma_2 \in \Delta(S_2)$ に対して

$$u_1(s_1, \sigma_2) = \sum_{s_2 \in S_2} \sigma_2(s_2) u_1(s_1, s_2), \quad u_2(\sigma_1, s_2) = \sum_{s_1 \in S_1} \sigma_1(s_1) u_2(s_1, s_2)$$

と書くことにする.

1. (σ_1^*,σ_2^*) がナッシュ均衡であるとは、すべての $\sigma_1\in\Delta(S_1)$ 、 $\sigma_2\in\Delta(S_2)$ に対して

$$\sum_{s_1 \in S_1} \sigma_1^*(s_1) u_1(s_1, \sigma_2^*) \ge \sum_{s_1 \in S_1} \sigma_1(s_1) u_1(s_1, \sigma_2^*)$$

$$\sum_{s_2 \in S_2} \sigma_2^*(s_2) u_2(\sigma_1^*, s_2) \ge \sum_{s_2 \in S_2} \sigma_2(s_2) u_2(\sigma_1^*, s_2)$$

が成り立つことである.

2. (σ_1^*, σ_2^*) がナッシュ均衡であるであるための必要十分条件は,

$$u_1(s_1, \sigma_2^*) = \max_{s_1' \in S_1} u_1(s_1', \sigma_2^*)$$
 (すべての $s_1 \in \operatorname{supp}(\sigma_1^*)$ に対して) $u_2(\sigma_1^*, s_2) = \max_{s_2' \in S_2} u_2(\sigma_1^*, s_2')$ (すべての $s_2 \in \operatorname{supp}(\sigma_2^*)$ に対して)

が成り立つことである.

ただし,

- \blacktriangleright supp $(\sigma_1) = \{s_1 \in S_1 \mid \sigma_1(s_1) > 0\} \cdots \sigma_1$ のサポート (support)
- ▶ $supp(\sigma_2) = \{s_2 \in S_2 \mid \sigma_2(s_2) > 0\} \cdots \sigma_2$ のサポート (support)
- $3. (\sigma_1^*, \sigma_2^*)$ がナッシュ均衡であるであるための必要十分条件は,

$$\operatorname{supp}(\sigma_1^*) \subset br_1(\sigma_2^*), \quad \operatorname{supp}(\sigma_2^*) \subset br_2(\sigma_1^*)$$

が成り立つことである.

ただし,

- $br_1(\sigma_2) = \{s_1 \in S_1 \mid u_1(s_1, \sigma_2) \ge u_1(s_1', \sigma_2) \ \forall \ s_1' \in S_1\}$
- $br_2(\sigma_2) = \{ s_2 \in S_2 \mid u_2(\sigma_1, s_2) \ge u_1(\sigma_1, s_2') \ \forall \ s_2' \in S_2 \}$

Support Enumeration アルゴリズム (2人ゲームのケース)

何の工夫もないアルゴリズム

- ▶ 入力 非退化な2人有限戦略ゲーム
- ▶ 出力 入力されたゲームのすべての (混合戦略) ナッシュ均衡

非退化な (nondegenerate) ゲーム

▶ 2 人ゲームが非退化であるとは、プレイヤー 1 と 2 のどんな混合戦略 $\sigma_1 \in \Delta(S_1), \, \sigma_2 \in \Delta(S_2)$ に対しても

$$|br_2(\sigma_1)| \le |\operatorname{supp}(\sigma_1)|$$

 $|br_1(\sigma_2)| \le |\operatorname{supp}(\sigma_2)|$

が成り立つことである.

 $(|X| \cdots 有限集合 <math>X$ の要素の数)

▶ 非退化なゲームにおいては、どんなナッシュ均衡 (σ_1^*, σ_2^*) に対しても

$$|\operatorname{supp}(\sigma_1^*)| = |\operatorname{supp}(\sigma_2^*)|$$

が成り立つ.

 $|\operatorname{supp}(\sigma_1^*)| \le |\operatorname{br}_1(\sigma_2^*)| \le |\operatorname{supp}(\sigma_2^*)| \le |\operatorname{br}_2(\sigma_1^*)| \le |\operatorname{supp}(\sigma_1^*)|$

Support Enumeration アルゴリズム (2 人ゲームのケース)

 $S_1 = \{1, \ldots, \ell\}, S_2 = \{1, \ldots, m\}$ とする.

混合戦略をそれぞれ $x=(x_1,\ldots,x_\ell)$, $y=(y_1,\ldots,y_m)$ と書くことにする.

- ト 各 $k=1,\ldots,\min\{\ell,m\}$ と、|I|=|J|=k なる純粋戦略の部分集合の組 $I\subset S_1,\,J\subset S_2$ に対して、
 - 1. 2 組の連立線形方程式 (それぞれ (k+1) 変数 (k+1) 本)

$$\sum_{j\in J}u_1(i,j)y_j=u \ (\mbox{すべての} \ i\in I \ \mbox{に対して}), \quad \sum_{j\in J}y_j=1$$

$$\sum_{i\in I}u_2(i,j)x_i=v \ (\mbox{すべての} \ j\in J \ \mbox{に対して}), \quad \sum_{i\in I}x_i=1$$

を解く.

2. それぞれの解に対して,

 $y_j>0$ (すべての $j\in J$ に対して), $x_i>0$ (すべての $i\in I$ に対して) が成り立つかチェックする.

3. それぞれの解に対して,

$$u \geq \sum_{j \in J} u_1(i,j) y_j \ (\mbox{すべての} \ i \notin I \ \mbox{に対して})$$

$$v \geq \sum_{i \in I} u_2(i,j) x_i \ (\mbox{すべての} \ j \notin J \ \mbox{に対して})$$

が成り立つかチェックする.

	1	2
1	3, 3	3, 2
2	2, 2	5, 6
3	0,3	6, 1

ト サポートのサイズ k=1 \cdots 純粋戦略 (x,y)=((1,0,0),(1,0)) がナッシュ均衡

	1	2
1	3,3	3, 2
2	2, 2	5,6
3	0,3	6, 1

- ▶ サポートのサイズ k=2
 - (i) $\{1,2\} \subset S_1$, $\{1,2\} \subset S_2$
 - 1. $3y_1+3y_2=u$, $2y_1+5y_2=u$, $y_1+y_2=1$ を解くと, $y_1=\frac{2}{3}>0,\ y_2=\frac{1}{3}>0,\ u=3>(戦略 3 の期待利得)=2$
 - 2. $3x_1 + 2x_2 = v$, $2x_1 + 6x_2 = v$, $x_1 + x_2 = 1$ を解くと, $x_1 = \frac{4}{5} > 0$, $x_2 = \frac{1}{5} > 0$, $v = \frac{14}{5}$

$$\therefore (x,y) = ((\frac{4}{5},\frac{1}{5},0),(\frac{2}{3},\frac{1}{3}))$$
 はナッシュ均衡

	1	2
1	3,3	3, 2
2	2, 2	5,6
3	0,3	6, 1

▶ サポートのサイズ k=2

(ii)
$$\{2,3\} \subset S_1$$
, $\{1,2\} \subset S_2$

1.
$$2y_1+5y_2=u$$
, $0y_1+6y_2=u$, $y_1+y_2=1$ を解くと,
$$y_1=\frac{1}{3}>0,\ y_2=\frac{2}{3}>0,\ u=4>(戦略 1 の期待利得)=3$$

2.
$$2x_2 + 3x_3 = v$$
, $6x_2 + 1x_3 = v$, $x_2 + x_3 = 1$ を解くと, $x_2 = \frac{1}{3} > 0$, $x_3 = \frac{2}{3} > 0$, $v = \frac{8}{3}$

$$\therefore (x,y) = ((0,\frac{1}{3},\frac{2}{3}),(\frac{1}{3},\frac{2}{3}))$$
 はナッシュ均衡

9

	1	2
1	3, 3	3, 2
2	2, 2	5,6
3	0,3	6, 1

 \blacktriangleright サポートのサイズ k=2

(iii)
$$\{1,3\} \subset S_1$$
, $\{1,2\} \subset S_2$

- 1. $3y_1+3y_2=u$, $0y_1+6y_2=u$, $y_1+y_2=1$ を解くと, $y_1=\frac{1}{2}>0,\ y_2=\frac{1}{2}>0,\ u=3<(戦略 2 の期待利得)=\frac{7}{2}$
- 2. $3x_1+3x_3=v, 2x_1+1x_3=v, x_1+x_3=1$ を解くと, $x_1=2>0, \ x_3=-1<0, \ v=3$
- :. このケースのナッシュ均衡は存在しない

QuantEcon.py による数値計算

現時点で quantecon.game_theory に実装されているアルゴリズム

▶ 2 人ゲーム

- ▶ support_enumeration (ナッシュ均衡をすべて求める; 10 数戦略程度)
- ▶ vertex_enumeration (ナッシュ均衡をすべて求める; 10 数戦略程度)
- ▶ lemke_howson (ナッシュ均衡を 1 つ求める; 数 100 戦略程度)

▶ 多人数ゲーム

- ▶ mclennan_tourky (ナッシュ均衡を 1 つ求める; 少数プレイヤー少数戦略)
- ▶ Contribution 大歓迎!

GameTheory.jl (Julia) にも挑戦してみよう

- ▶ 2 人ゲーム
 - ▶ support_enumeration (ナッシュ均衡をすべて求める; 10 数戦略程度)
 - (vertex_enumeration)
 - ▶ lrs_nash (ナッシュ均衡をすべて求める; 10 数戦略程度)

有理数による厳密計算ができる

- 多人数ゲーム
 - ▶ hc_solve (ナッシュ均衡をすべて求める; 少数プレイヤー少数戦略)
- ► Contribution 大歓迎!

3人以上のケース

プレイヤー 1,2,3 の混合戦略をそれぞれ x,y,z とする.

|I|=|J|=|H|=k なる純粋戦略の部分集合の組 $I\subset S_1,\,J\subset S_2,\,H\subset S_3$ に対して、無差別条件は

$$\begin{split} &\sum_{j\in J}\sum_{h\in H}u_1(i,j,k)y_jz_k=u\text{ (すべての }i\in I\text{ に対して)}, \quad \sum_{i\in I}x_i=1\\ &\sum_{h\in H}\sum_{i\in I}u_2(i,j,k)z_kx_i=v\text{ (すべての }j\in J\text{ に対して)}, \quad \sum_{j\in J}y_j=1\\ &\sum_{i\in I}\sum_{j\in J}u_3(i,j,k)x_iy_j=w\text{ (すべての }h\in H\text{ に対して)}, \quad \sum_{h\in H}z_h=1 \end{split}$$

 \cdots (k+1) imes 3 本 (k+1) imes 3 変数の 2 次多項式方程式

- ▶ 多項式方程式ソルバーが必要
 - ▶ GameTheory.jl の hc_solve は HomotopyContinuation.jl を利用