Розділ III. Математична логіка

Основи математичної логіки закладено в працях англійського математика Джорджа Буля (1815-1864). Це такі праці, як "Математичний аналіз логіки" (1847) і "Закони мислення" (1854), де він уперше виклав алгебру логіки — алгебру Буля. Її формули застосовні незалежно від того, що мати на увазі під літерами, які вживаються в алгебрі. В алгебрі Буля літери позначають висловлювання, а всі правила звичайної алгебри залишаються без зміни. Оскільки всі наші міркування складаються з висловлювань та думок, булева алгебра є логікою, через що вона дістала назву алгебри логіки.

Дж. Буль запропонував у формулах літерами позначати не числа, а висловлювання і показав, що можна так вибирати дії додавання та множення, щоб формули звичайної алгебри залишалися без зміни. В алгебрі логіки висловлювання розглядаються не за їхнім змістом або значенням, а тільки відносно того, істинні вони чи хибні. Приймається, що кожне висловлювання може бути тільки істинним або хибним.

Тема 9. Булеві функції

Визначення булевої алгебри було дано в темі 8. Оскільки довільні гратки можна розглядати як алгебру з двома операціями, булеві гратки, в якій кожний елемент має єдине доповнення, можна розглядати як булеву алгебру з трьома операціями. Ми розглядаємо мінімальну булеву алгебру, яка містить два елементи: 0 – хибність, 1 – істинність. Операції граток (об'єднання, перетин та доповнення) мають інші назви і розглядаються як алгебраїчні операції. Всі властивості булевих граток, звісно, зберігаються.

9.1. Основні поняття та способи задання булевих функцій

Булеві функції належать до класу двозначних однорідних функцій. Це найпростіший і водночає найважливіший клас однорідних функцій, що використовуються для опису скінченних автоматів та ЕОМ. Останні, у свою чергу, призначаються для опрацювання дискретної інформації. Як модель засобів опрацювання застосовується поняття автомата.

I хоча символи 0 та 1 – елементи булевої алгебри – ε абстрактними, зручніше розглядати булеву алгебру як таку, що оперу ε висловлюваннями. Образно кажучи, висловлення – це деяке твердження, про яке можна сказати, що воно ε істинним або хибним. Наприклад, "Київ – столиця України", "Земля – третя планета від Сонця" – істинні висловлювання, "Квадрат ма ε п'ять сторін" – хибне, а висловлювання "На вулиці сонячна погода" може бути хибним або істинним залежно від додаткових відомостей.

Будемо розглядати функції $f(x_1, ..., x_n)$, аргументи яких визначено на множині $E_2 = \{0, 1\}$, такі, що $f(x_1, ..., x_n) \in E_2$, коли $x_i \in E_2$, i = 1..n. Тобто $f: E_2^n \to E_2$.

Означення 9.1. Функції $f: E_2^n \to E_2$, де $E_2 = \{0, 1\}$, називаються функціями алгебри логіки або булевими функціями. Множину булевих функцій від n змінних будемо позначати $P_n: P_n = \{f \mid f: E_2^n \to E_2\}$.

Логічними (булевими) змінними в булевій алгебрі називаються величини, які незалежно від їхньої конкретної суті можуть набувати лише двох значень.

Означення 9.2. Сукупність значень аргументів функції є кортежем або набором.

Функція, що залежить від n аргументів, називається n-місною і ϵ повністю визначеною, якщо задано її значення для всіх наборів (кортежів) значень аргументів.

Наприклад, для булевої функції f(x, y, z) сукупність значень x=1, y=0, z=1 записується як набір 101.

Існує три способи задання булевої функції: вербальний (або словесний), аналітичний і табличний. Аналітичне задання функції – опис її аналітичним виразом (формулою).

Наприклад, $f_1(x, y, z) = x \wedge (y \vee z)$. Одним із поширених способів задання булевої функції є її задання за допомогою таблиці відповідності (істинності).

У табл. 9.1 наведено приклад задання булевої функції від двох змінних. Перші два стовпці містять значення аргументів, а третій — значення функції при відповідних значеннях аргументів. Рядки містять всі можливі кортежі для двох булевих змінних.

\boldsymbol{x}	у	f(x, y)
0	0	0
0	1	1
1	0	1
1	1	1

Табл. 9.1. Приклад задання функції за допомогою таблиці істинності.

В загальному випадку для довільного n таблицю істинності можна представити в наступному вигляді.

x_1	•••	x_{n-1}	χ_n	$f(x_1, \ldots, x_{n-1}, x_n)$
0	•••	0	0	f(0,,0,0)
0	•••	0	1	f(0,,0,1)
0		1	0	f(0,,1,0)
• • •				
1		1	1	f(1,,1,1)

Табл. 9.2. Загальний вигляд таблиці істинності.

Множину наборів у таблиці істинності прийнято записувати у лексикографічному порядку, так що кожний набір являє двійкове число. Відповідне йому десяткове число будемо називати **номером** набору (кортежу). Так, номер набору 101 дорівнює 5, номер набору 110-6.

<u>Лема 9.1.</u> Кількість наборів булевої функції $f(x_1,...,x_n)$ від n змінних дорівнює 2^n . Кількість булевих функцій від n змінних дорівнює 2^{2^n} .

Доведення. Дійсно, множина всіх наборів булевої функції від n змінних утворена декартовим добутком $\{0,1\}^n$, потужність якого дорівнює 2^n . Множина всіх булевих функцій від n змінних є множина відображень $\{0,1\}^n \to \{0,1\}$, потужність якого дорівнює 2^{2^n} .

Таким чином, булева функція від двох змінних повністю визначена, якщо задано її значення в кожному із чотирьох можливих наборів ($2^2 = 4$); булева функція трьох аргументів – в кожному з восьми наборів ($2^3 = 8$). Кількість різних можливих булевих функцій від двох аргументів дорівнює 16, від трьох – 256.

Функції двох змінних відіграють важливу роль, тому що з них може бути побудована будь-яка булева функція.

9.2. Булеві функції однієї змінної

Загальна таблиця істинності для булевих функцій однієї змінної має вигляд табл. 9.3.

х	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
0	1	0	1	0
1	1	0	0	1

Табл. 9.3. Булеві функції однієї змінної

Тут функції $f_1(x)$ та $f_2(x)$ є функціями-константами: $f_1(x)$ — абсолютно істинна (константа одиниці); $f_2(x)$ — абсолютно хибна (константа нуля). $f_3(x)$ — логічне заперечення або НЕ, інверсія x (читається як "не x", зображується \bar{x}), це єдина нетривіальна функція; $f_4(x)$ — змінна x (повторює значення змінної x і тому збігається x нею).

9.3. Булеві функції двох змінних

	Змінна х	0	0	1	1
	Змінна у	0	1	0	1
Позначення	Назва				
$f_1 = 0$	Константа нуль	0	0	0	0
$f_2 = x \& y = x \land y$	Кон'юнкція	0	0	0	1
$f_3 = x y$	Інверсія імплікації	0	0	1	0
$f_4 = x$	Повторення х	0	0	1	1
$f_5 = x \leftarrow y$	Інверсія оберненої імплікації	0	1	0	0
$f_6 = y$	Повторення у	0	1	0	1
$f_7 = x \oplus y$	Сума за модулем 2	0	1	1	0
$f_8 = x \lor y = x + y$	Диз'юнкція	0	1	1	1
$f_9 = x \downarrow y$	Стрілка Пірса-Вебба	1	0	0	0
$f_{10} = x \equiv y = x \sim y$	Еквівалентність	1	0	0	1
$f_{11} = \overline{y} = \neg y$	Інверсія у	1	0	1	0
$f_{12} = x \leftarrow y$	Обернена імплікація	1	0	1	1
$f_{13} = \overline{x} = \neg x$	Інверсія х	1	1	0	0
$f_{14} = x \rightarrow y$	Імплікація	1	1	0	1
$f_{15} = x \mid y$	Штрих Шеффера	1	1	1	0
$f_{16} = 1$	Константа одиниця	1	1	1	1

В табл. 9.4 наведено всі функції від двох змінних f(x, y) з назвами.

Табл. 9.4. Булеві функції двох змінних

Як вже зазначалось, булевих функцій від двох змінних 16, з яких шість є константами або функціями одного аргументу: $f_1=0, f_4=x, f_6=y, f_{11}=\overline{y}, f_{13}=\overline{x}, f_{16}=1$. Інші 10 функцій залежать від двох змінних і мають свої загальноприйняті позначення та назви.

Функція $f_2 = x \wedge y$ — кон'юнкція (логічне множення) істинна тоді, коли x і y істинні. Кон'юнкцію називають також функцією **I**.

Функція $f_8 = x \lor y$ — диз'юнкція (логічне додавання) істинна тоді, коли істинними є або x, або y, або обидві змінні. Кон'юнкцію називають також функцією **AБO**.

Від диз'юнкції потрібно відрізняти функцію $f_7 = x \oplus y$, яка називається додаванням за модулем 2 (диз'юнктивна сума або нерівнозначність) і є істинною, коли істинні або x, або y окремо.

Наприклад, маємо два висловлювання: "Завтра буде холодна погода", "Завтра піде сніг". Диз'юнкція цих висловлювань — нове висловлення "Завтра буде холодна погода або піде сніг". З'єднувальний сполучник, що утворив нове висловлення — ABO. Кон'юнкція утворюється таким чином: "Завтра буде холодна погода і піде сніг" — за допомогою сполучника I.

Функція Шеффера (штрих Шеффера) — $f_{15} = x \mid y$, є хибною тільки тоді, коли x і y є істинними. Німецький математик Д. Шеффер на основі цієї функції створив алгебру, названу алгеброю Шеффера.

Функція стрілка Пірса-Вебба — це функція $f_9 = x \downarrow y$, що є істинною тільки тоді, коли x і y є хибними. Математики Ч. Пірс та Д. Вебб, які незалежно один від одного вивчали властивості цієї функції, створили алгебру, названу алгеброю Пірса-Вебба.

Імплікація — це функція $f_{14}=x{\longrightarrow}y$, яка є хибною тоді й тільки тоді, коли x є істинним, а y- хибним.

9.4. Булевий простір

Часто для спрощення запису булевої функції замість повного переліку змінних наборів використовують двійкові значення наборів, для яких функція набуває одиничних значень. Наприклад, запис

$$f(x_1, x_2, x_3) = \bigvee_{1}^{3} F(1,4,7)$$

означає, що функція набуває одиничних значень на наборах 1, 4 і 7. Таку форму запису називають числовою (табл. 9.5).

x_2	x_3	$f(x_1,x_2,x_3)$
0	0	0
0	1	1
1	0	0
1	1	0
0	0	1
0	1	0
1	0	0
1	1	1
	$ \begin{array}{c} x_2 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	0 0 0 1 1 0 1 1 0 0 0 1

Табл. 9.5.

<u>Означення 9.3.</u> **Булевим простором** називається множина всіх наборів булевих векторів: $M = \{X\}$.

Поставимо у взаємно однозначну відповідність елементам $x_1, x_2, ..., x_n$ множини X двійкові змінні, що позначаються тими самим літерами $x_1, x_2, ..., x_n$, але набувають значень із множини $\{0,1\}$, а у відповідність елементам булевого простору M поставимо набори (кортежі) змінних, вважаючи, що змінна x_i набуває значення 1 в деякому кортежі, якщо елемент x_i множини X належить відповідному простору M і набуває значення 0 в іншому випадку.

Таким чином, упорядковану сукупність двійкових змінних $x_1, x_2, ..., x_n$ можна розглядати як деякий змінний вектор $X = (x_1, x_2, ..., x_n)$, що набуває значення з множини M усіх сталих n-компонентних булевих векторів. Сукупність значень вектора X, на яких булева функція набуває значення 1, позначимо через M^1 , а сукупність значень, на яких функція перетворюється на 0, - через M^0 . Очевидно, $M^1 \cup M^0 = M$ (для повністю визначеної булевої функції).

Безпосередній перелік цих векторів можна здійснити за допомогою булевої матриці, кожний рядок якої задає один з елементів множини M^1 . Наприклад, функція $f(x_1,x_2,x_3,x_4) = \bigvee_1^3 F(3,6,10)$ набуває значення 1 на трьох кортежах. Булева матриця має вигляд

$$||M^{1} \in X|| = \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{vmatrix}.$$

9.5. Властивості функцій алгебри логіки

<u>Означення 9.4.</u> Функція $f(x_1, x_2, ..., x_n)$ **суттєво залежить** від змінної x_i , якщо існує такий набір значень $a_1, ..., a_{i-1}, a_{i+1}, ..., a_n$, що

$$f(a_1,...,a_{i-1},0,a_{i+1},...,a_n) \neq f(a_1,...,a_{i-1},1,a_{i+1},...,a_n).$$

В цьому випадку змінна x_i називається **суттєвою** змінною, інакше x_i називають **несуттєвою** (фіктивною) змінною.

Наприклад, нехай булеві функції $f_1(x_1, x_2)$ та $f_2(x_1, x_2)$ задані таблицею істинності:

x_1	x_2	$f_1(x_1,x_2)$	$f_2(x_1,x_2)$
0	0	0	1
0	1	0	1
1	0	1	0
1	1	1	0

Для цих функцій змінна x_1 – суттєва, а x_2 – несуттєва.

<u>Означення 9.5.</u> Функції f_1 та f_2 називаються рівними, якщо функцію f_2 можна одержати з f_1 додаванням і/або вилученням фіктивних аргументів.

Можна вважати, що коли задано функцію f_1 , то задано також функцію f_2 .

Існують два типи функцій, які не мають суттєвих змінних:

- функція, тотожна 0 (константа 0);
- функція, тотожна 1 (константа 1).

Константи 1 і 0 можна розглядати як функції порожньої множини змінних.

<u>Означення 9.6.</u> Булева функція $f(x_1, x_2, ..., x_n)$ називається **симетричною відносно змінних** $x_1, ..., x_k$, якщо для будь-якої підстановки

$$\begin{pmatrix} 1 & 2 & \dots & k \\ x_1 & x_2 & \dots & x_k \end{pmatrix}$$

стверджується рівність:

$$f(x_1,...,x_k,x_{k+1},...,x_n) = f(X_{j_1},...,X_{j_k},x_{k+1},...,x_n).$$

Функції, тотожно рівні константам 1 та 0, ϵ симетричними відносно будь-якої сукупності змінних.

9.6. Реалізація булевих функцій формулами

Як і в елементарній алгебрі, в алгебрі логіки, виходячи з елементарних функцій, можна будувати формули. Назвемо P множину всіх функцій.

Означення 9.7. Нехай L — деяка (не обов'язково скінченна) підмножина функцій з P, L $\subset P$ (базис). Кожна функція $f(x_1,x_2,...,x_n)$ з L (f ∈ L) називається формулою. Нехай також $A_1,...,A_n$ — вирази, що ϵ або формулами, або символами змінних. Тоді вираз $f(A_1,...,A_n)$ також називається формулою.

<u>Означення 9.8.</u> Усяке висловлювання, що ϵ складеним із деяких початкових висловлювань за допомогою 14 логічних операцій з 16, крім 0 та 1, також називається формулою алгебри логіки.

При утворені (побудові) формул використовуються знаки (символи) трьох категорій:

- символи змінних: x, y, a, b, c,...;
- символи логічних операцій: \land , \lor , \rightarrow , \oplus , \neg ;
- пари символів (), [], { }.

Приклади формул. Нехай L — множина елементарних функцій. Такі вирази ϵ формулами:

- $\{[(x_1 \land x_2) \oplus x_1] \lor x_2\};$
- $\bullet \quad [\neg x_1 \land (x_1 \lor x_3)];$
- $= \overline{\{x_1 \vee [(x_2 \to x_3) \wedge (x_3 \to x_2)]\}},$

а ці вирази не є формулами:

- $(a \lor (x \land y))$
- \blacksquare \vee $x \wedge y$.

На практиці дужки розділяють на внутрішні та зовнішні. Формула $F = A \wedge B$ без дужок не є формулою. Проте для скорочення запису зовнішні дужки часто пропускають, і тому цей вираз означає формулу.

<u>Означення 9.9.</u> Нехай F – довільна формула. Тоді формули, що використовувались для її побудови, називаються **підформулами** формули F.

Нехай формула F є формулою для множини функцій { $f_1(x_1,x_2,...,x_n)$, $f_2(x_1,x_2,...,x_n)$,..., $f_s(x_1,x_2,...,x_n)$ }. Розглянемо множину функцій { $g_1(x_1,x_2,...,x_n)$, $g_2(x_1,x_2,...,x_n)$,..., $g_s(x_1,x_2,...,x_n)$ }, де функція g_i має ті самі змінні, тобто залежить від тих самих змінних, що і функція f_i , i=1..s.

Розглянемо формулу Fg, що отримується з F заміною $(f_1,...,f_s)$ на $(g_1,...,g_s)$. У цьому випадку формула Fg має ту саму структуру, що й формула F.

Означення 9.10. Якщо формула $F(x_1, x_2, ..., x_n)$ описує функцію $f(x_1, x_2, ..., x_n)$, тобто формула F є формулою для змінних $x_1, x_2, ..., x_n$, де $f \in L$, то кажуть, що формулі $F(x_1, x_2, ..., x_n)$ відповідає функція $f(x_1, x_2, ..., x_n)$, або формулі F зіставлена функція f. Якщо функція f відповідає формулі F, то кажуть також, що формула F реалізує функцію f.

Якщо функція $f(x_1, x_2,..., x_n)$, що реалізується формулою $F(x_1, x_2,..., x_n)$, має несуттєву змінну x_i , то змінну x_i можна вилучити, замінивши функцію f рівною їй функцією f', а формулу F — формулою F', яка випливає з F завдяки ототожненню змінної x_i з будь-якою із змінних, що залишилися. Очевидно, формула F' є формулою, що реалізує функцію f'.

Знаючи таблиці істинності для функцій базису, можна побудувати таблицю істинності тієї функції, яку реалізує дана формула.

Наприклад, $F_1 = (x_1 \wedge x_2) \vee ((x_1 \wedge \overline{x_2}) \vee (\overline{x_1} \wedge x_2))$.

				= =		
x_1	x_2	$x_1 \wedge \overline{x_2}$	$\overline{x_1} \wedge x_2$	$(x_1 \wedge \overline{x_2}) \vee (\overline{x_1} \wedge x_2)$	$x_1 \wedge x_2$	\overline{F}_1
0	0	0	0	0	0	0
0	1	0	1	1	0	1
1	0	1	0	1	0	1
1	1	0	0	0	1	1

Таким чином, формула F_1 реалізує диз'юнкцію. Розглянемо іншу формулу , $F_2 = (x_1 \wedge x_2) \to x_1$.

x_1	x_2	$x_1 \wedge x_2$	F_2
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

Таким чином, формула F_2 реалізує константу 1.

При складанні логічного висловлювання із простих використовується принцип суперпозиції, тобто підстановка у функцію замість її аргументу інших функцій. Замість будьякої змінної використовується як власне незалежна змінна, аргумент, так і змінна, що є функцією інших змінних. Цей принцип є правильним також у звичайній алгебрі. За допомогою принципу суперпозиції з двомісних булевих функцій можна побудувати будь-яку булеву функцію.

Принцип суперпозиції дає змогу на основі трьох основних елементарних функцій (заперечення, кон'юнкція та диз'юнкція) здобути складне логічне висловлювання, що описує функціонування цифрових систем й автоматів.

При перетворенні формул використовуються такі операції підстановки змінних і безповторної підстановки функцій:

• операція підстановки змінних

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x_{i1} & x_{i2} & \dots & x_{in} \end{pmatrix}$$

що дає змогу виконати підстановку змінних у функцію $f(x_1, x_2,..., x_n)$ та здобути в результаті функцію $f(x_{i1}, x_{i2},..., x_{in})$. Очевидно, підстановка змінних включає їх перейменування, перестановку й ототожнення;

• операція безповторної підстановки функцій дає можливість будувати вирази $f(A_1, ..., A_n)$, де A_i – або формула, або змінна, причому хоча б одне з A відмінне від змінної, а множини змінних, що входять в A_i й A_i не перетинаються $(i \neq j)$.

Очевидно, кожна формула може бути здобута з функцій, що належать їх множині, застосуванням спочатку операції безповторної підстановки функції, а потім операції підстановки змінних. Уведена мова формул зручна для запису функцій алгебри логіки, які описують різні умови для висловлювань.

9.7. Рівносильні формули

<u>Означення 9.11.</u> Формули F_1 та F_2 називаються **рівносильними**, якщо при будь-яких значеннях змінних x_1, \ldots, x_n , що входять у ці формули, вони набувають однакових значень.

Наприклад:

- \blacksquare x рівносильне x;
- $x \lor x$ рівносильне x;
- $(x \lor y) \land x$ рівносильне x.

Між поняттям рівносильності й еквівалентності існує зв'язок: формули F_1 та F_2 – рівносильні тоді і тільки тоді, коли формула ($F_1 \sim F_2$) набуває значення істини.

При визначенні рівносильності формул не обов'язково передбачати, що вони містять одні й ті самі значення змінних.

Приклади важливих рівносильних формул:

приклади важливих рівносил	івних формул.
 x∨x=x, 	$x \land x = x;$
• $x \lor y = y \lor x$,	$x \land y = y \land x;$
• $x \lor (y \lor z) = (x \lor y) \lor z$,	$x \land (y \land z) = (x \land y) \land z$
• $(x \land y) \lor x = x$,	$(x \lor y) \land x = x;$
• $x \lor (y \land c) = (x \land y) \lor (x \land c)$,	$x \land (y \lor c) = (x \lor y) \land (x \lor c)$
• <i>x</i> ∨1=1,	$x \wedge 1 = x;$
 x∧0=0, 	$x \lor 0 = x;$
= •	
$\bullet \overline{(x \wedge y)} = \overline{x} \vee \overline{y} \;,$	$\overline{(x\vee y)}=\overline{x}\wedge\overline{y}\;;$
• $x \vee \overline{x} = 1$,	$x \wedge \overline{x} = 0.$