Quick Questions

- The microscopic origin (微观成因) of the **stress vector** at point B inside the material:
 - Intermolecular / interatomic forces between the left and right part
- What is the unit of stress vector?
- meaning of τ_{xy} , τ_{yz} , σ_x
- Can stress vectors of different planes through a point be added up?

The stress vector at point B depends on the orientation of the plane it acts on.

We now prove:

Given the stress vectors on the x and y planes, stress vectors on any plane can be determined.

Uniform state of stress (均匀应力分布):

- The state of stress in a body is the same at all points
- Stress vectors still depend on the orientation of the plane on which they act
- Consider a 2D (XOY plane) case
 - Given stress vectors on X and Y planes: σ_x , σ_y , and τ_{xy} , τ_{yx} ,
 - we first demonstrate that $\tau_{xy} = \tau_{yx}$,
 - reciprocity of shear stress (剪应力互等定理)

Take moments (力矩) about the lower left corner of the rectangle, we have

$$(\sigma_x b)(b/2) - (\sigma_x b)(b/2) + (\sigma_y a)(a/2) - (\sigma_y a)(a/2) - (\tau_{xy} b)a + (\tau_{yx} a)b = 0$$

$$\rightarrow \tau_{xy} = \tau_{yx}$$

- Given stress vectors on x and y planes: σ_x , σ_y , and τ_{xy} , τ_{yx} on the right,
- we now calculate $\sigma_{x'}$, $\sigma_{y'}$, and $\tau_{x'y'}$, $\tau_{y'x'}$ at an arbitrary new coordinate x'oy'
- We first calculate stress on an arbitrary plane x'
 - $-\alpha$, the angle from x to x',
 - positive for counterclockwise direction

Consider the free body above, the stress vector on the x' plane $p=(p_x, p_y) = (\sigma_{x'}, \tau_{x'y'})$ can be determined by force balance:

$$\sum F_x = 0 \implies p_x = \sigma_x \cos \alpha + \tau_{xy} \sin \alpha$$

Similarly, $p_{v} = \sigma_{v} \sin \alpha + \tau_{xv} \cos \alpha$

Normal stress on the x' plane is $\sigma_{x'} = p_x \cos \alpha + p_y \sin \alpha$ $= \sigma_x \cos^2 \alpha + \sigma_y \sin^2 \alpha + 2\tau_{xy} \sin \alpha \cos \alpha$

Shear stress on the x' plane is $\tau_{x'y'} = p_y \cos \alpha - p_x \sin \alpha$

$$= (\sigma_y - \sigma_x) \sin \alpha \cos \alpha + \tau_{xy} (\cos^2 \alpha - \sin^2 \alpha)$$

Normal stress on the y' plane is derived by substituting $\alpha+\pi/2$ for α

$$\sigma_{y'} = \sigma_x \sin^2 \alpha + \sigma_y \cos^2 \alpha - 2\tau_{xy} \sin \alpha \cos \alpha$$

Transformation of stress equations (应力变换方程)

$$\begin{cases} \sigma_{x'} = \sigma_x \cos^2 \alpha + \sigma_y \sin^2 \alpha + 2\tau_{xy} \sin \alpha \cos \alpha \\ \sigma_{y'} = \sigma_x \sin^2 \alpha + \sigma_y \cos^2 \alpha - 2\tau_{xy} \sin \alpha \cos \alpha \\ \tau_{x'y'} = (\sigma_y - \sigma_x) \sin \alpha \cos \alpha + \tau_{xy} (\cos^2 \alpha - \sin^2 \alpha) \end{cases}$$

For two mutually orthogonal planes x and y:

- There are only three independent stress components
 - σ_x , σ_y , and $\tau_{xy} = \tau_{yx}$
- Stress on any plane can be determined (the state of stress is completely determined)

The stress state at a point is usually expressed as:

$$\mathbf{\sigma} = \begin{bmatrix} \sigma_{x} & \tau_{xy} \\ \tau_{yx} & \sigma_{y} \end{bmatrix}$$

or for 3D:

$$egin{array}{cccc} oldsymbol{\sigma}_x & oldsymbol{ au}_{xy} & oldsymbol{ au}_{xz} \ oldsymbol{\sigma} = & oldsymbol{ au}_{yx} & oldsymbol{\sigma}_y & oldsymbol{ au}_{yz} \end{bmatrix} \ oldsymbol{ au}_{zx} & oldsymbol{ au}_{zy} & oldsymbol{\sigma}_z \end{array}$$

Transformation of stress equations (应力变换方程)

$$\begin{cases} \sigma_{x'} = \sigma_x \cos^2 \alpha + \sigma_y \sin^2 \alpha + 2\tau_{xy} \sin \alpha \cos \alpha \\ \sigma_{y'} = \sigma_x \sin^2 \alpha + \sigma_y \cos^2 \alpha - 2\tau_{xy} \sin \alpha \cos \alpha \\ \tau_{x'y'} = (\sigma_y - \sigma_x) \sin \alpha \cos \alpha + \tau_{xy} (\cos^2 \alpha - \sin^2 \alpha) \end{cases}$$

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$

$$\sin^2 \alpha = \frac{1}{2}(1 - \cos 2\alpha)$$

$$\cos^2 \alpha = \frac{1}{2}(1 + \cos 2\alpha)$$

$$\begin{cases} \sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha + \tau_{xy} \sin 2\alpha \\ \sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha - \tau_{xy} \sin 2\alpha \\ \tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha \end{cases}$$

Questions:

- Body force must vanish in a uniform state of stress, right or wrong
- How do σ_x , σ_y , and τ_{xy} , τ_{yx} vary with z for 2D XOY plane cases?
- Prove that the sum of normal stresses on any two orthogonal planes is a constant

$$\sigma_{x'} + \sigma_{y'} = \sigma_x + \sigma_y$$

Stress transformation equations

$$\begin{cases} \sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha + \tau_{xy} \sin 2\alpha \\ \sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha - \tau_{xy} \sin 2\alpha \\ \tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha \end{cases}$$

We now determine the orientation of the planes of extreme (maximum and minimum) normal stress

Differentiate $\sigma_{x'}$ with respect to α and the derivative is zero:

$$d\sigma_{x'}/d\alpha = -(\sigma_x - \sigma_y)\sin 2\alpha + 2\tau_{xy}\cos 2\alpha = 0$$

$$\Rightarrow \tan 2\alpha = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} (\alpha \in [0, \pi]) \quad \text{not } \alpha \in [0, 2\pi]$$

Stress transformation equations

$$\begin{cases} \sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha + \tau_{xy} \sin 2\alpha \\ \sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha - \tau_{xy} \sin 2\alpha \\ \tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha \end{cases}$$

$$\tan 2\alpha = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} (\alpha \in [0, \pi])$$
 orientation of the plane of extreme normal stress

- Check shear stress on these planes
 - Principal planes: the planes on which shear stress vanish.
 - principal stresses: the normal stress on principal planes
- The principal planes are perpendicular to each other

Maximum and minimum principal stresses.

$$\sigma_1 = \sigma_{\text{max}}, \ \sigma_2 = \sigma_{\text{min}}, \quad \text{(by convention, } \sigma_1 > \sigma_2\text{)}$$

$$\tan 2\alpha = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} \left(\alpha \in [0, \pi] \right)$$

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha + \tau_{xy} \sin 2\alpha$$

$$\sin 2\alpha = \pm \frac{2\tau_{xy}}{\sqrt{4\tau_{xy}^2 + (\sigma_x - \sigma_y)^2}}$$

$$\cos 2\alpha = \pm \frac{\sigma_x - \sigma_y}{\sqrt{4\tau_{xy}^2 + (\sigma_x - \sigma_y)^2}}$$

Signs assigned for $sin2\alpha$ and cos2α are either both positive or both negative.

$$\sigma_{\text{max}} = \sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\sigma_{\text{max}} = \sigma_1 = \frac{\sigma_x + \sigma_y}{2} + \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \qquad \sigma_{\text{min}} = \sigma_2 = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

$$\tan 2\alpha = \frac{2\tau_{xy}}{\sigma_x - \sigma_y} (\alpha \in [0, \pi])$$

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha + \tau_{xy} \sin 2\alpha \qquad \alpha \in [0, \pi]$$

We now determine which α corresponds to the maximum principal stress

The extent of 2α for $\sigma_{max} = \sigma_1$ depends on the sign of τ_{xv} and $(\sigma_x - \sigma_v)$

$$0 < 2\alpha < \pi/2$$
, if $\tau_{xy} > 0$ and $(\sigma_x - \sigma_y) > 0$
 $\pi/2 < 2\alpha < \pi$, if $\tau_{xy} > 0$ and $(\sigma_x - \sigma_y) < 0$
 $\pi < 2\alpha < (3/2)\pi$, if $\tau_{xy} < 0$ and $(\sigma_x - \sigma_y) < 0$
 $(3/2)\pi < 2\alpha < 2\pi$, if $\tau_{xy} < 0$ and $(\sigma_x - \sigma_y) > 0$

 α : the angle between the x axis and the direction of σ_1

We now determine the plane of max shear stress:

$$\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha$$

$$d\tau_{x'y'}/d\alpha = -(\sigma_x - \sigma_y)\cos 2\alpha - 2\tau_{xy}\sin 2\alpha = 0$$

$$\implies \tan 2\alpha = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}} \quad \alpha \in [0, \pi]$$

maximum shear stress is

$$\tau_{x'y'\max} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

- The shear stresses reach the maximum on two perpendicular planes
 - ➤ The principal plane is 45° apart from the plane having max shear stresses
 - Normal stresses on the maximum shear stress planes are equal
 - Maximum shear stress are equal on these two planes
 - If α<π/2 is taken for x' plane, the negative sign in the maximum shear stress formula is chosen if $\sigma_x > \sigma_y$ and the positive sign if $\sigma_y > \sigma_x$.

Classroom exercise

(1) Assume $\sigma_1 = 5$ MPa, $\sigma_2 = 1$ MPa, $\alpha = 30^{\circ}$, calculate the normal and shear stresses on the fracture plane
(2) Is the fracture slip left-lateral or right-lateral?

Given σ_x , σ_y , and τ_{xy} , τ_{yx} ,

Prove that p_{v} and $\sigma_{x'}$ can be expressed as:

$$p_{y} = \sigma_{y} \sin \alpha + \tau_{xy} \cos \alpha$$

$$\sigma_{x'} = p_x \cos \alpha + p_y \sin \alpha$$

$$= \sigma_x \cos^2 \alpha + \sigma_y \sin^2 \alpha + 2\tau_{xy} \sin \alpha \cos \alpha$$

Review

 State of stress on a point is fully depicted in 2D by stress vectors on two planes:

$$\mathbf{\sigma} = \begin{bmatrix} \sigma_x & \tau_{xy} \\ \tau_{yx} & \sigma_y \end{bmatrix}$$

- moment equilibrium
 - $\tau_{yx} = \tau_{xy}$
- force equilibrium
 - stress transformation equations (应力 变换方程)

$$\begin{cases} \sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha + \tau_{xy} \sin 2\alpha \\ \sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\alpha - \tau_{xy} \sin 2\alpha \\ \tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\alpha + \tau_{xy} \cos 2\alpha \end{cases}$$

principal stress and principal plane

- Principal planes: shear stress vanishes on these planes
- Two perpendicular principal planes corresponding to $\sigma_1 = \sigma_{max}$ and $\sigma_2 = \sigma_{min}$, respectively.

Maximum shear stress

- Maximum shear stress planes are
 45° apart from the two principal planes.
- Normal stresses on the maximum shear stress planes are equal

