LARGEST SMITH NUMBER

MARLON TRIFUNOVIC

ABSTRACT. We find large Smith numbers by explicitly calculating digit sums through several methods relying on computer programs. This paper explicitly constructs a Smith number with 59,421,998,357 digits, exceeding previous record of 32,066,910 digits.

Contents

1.	Introduction	1
2.	Notation and Basic Facts	1
3.	An update on Costello 2002	1
4.	Best by adding coefficients	3
5.	Best by overlapping coefficients	4
References		4

1. Introduction

A Smith number is defined by A. Wilanksy as "a composite number the sum of whose digits is the sum of all digits of all its prime factors" [5].

2. NOTATION AND BASIC FACTS

The following notation and basic facts are taken from Patrick Costello [3]. For any positive integer n, let S(n) denote the sum of the digits of n. For any positive integer n, let $S_p(n)$ denote the sum of digits of the prime factorization of n. For example, S(12) = 1 + 2 = 3 and $S_p(12) = S_p(2 \cdot 2 \cdot 3) = 2 + 2 + 3 = 7$.

3. An update on Costello 2002

Patrick Costello was able to construct a 32,066,910 digit Smith number by using the known prime repunit R_{1031} and Chris Caldwell's large palindromic prime $M=10^{28572}+8\cdot 10^{14286}+1$. I will briefly go through the similar steps as Costello with more recently verified primes to construct a new largest Smith number.

Firstly, two facts are necessary

Fact 1 (Lewis [??]). If you multiply $9R_n$ by any natural number less than $9R_n$, then the digit sum is 9n, i.e., $S(M \cdot 9R_n) = 9M = S(9R_n)$ when $M < 9R_n$.

Fact 2 (Wayland, Oltikar [??]). If $S(u) > S_p(u)$ and $S(u) = S_p(u) \pmod{7}$, then $10^k \cdot u$ is a Smith number, where $k = \frac{S(u) - S_p(u)}{7}$.

Date: July 2, 2022.

Chris Caldwell's list of large proven primes[?] lists the prime $M = 3 \cdot 10^{665829} + 1$. It additionally lists the large prime repunit R_{49081} discovered and proven by Paul Underwood[??]. Notice that M is not palindromic and requires different method for bounding coefficients than Costello's 2002 paper.

For a power t, the term M^t can be represented as a sum of coefficients multiplied by powers of 10^{665829} .

$$M^t = \sum_{k=0}^{t} c_k 10^{665829k}, \quad c_{t,k} = {t \choose k} 3^k$$

When t is fixed, I will drop the t for ease of notation: $c_k = c_{t,k}$.

Theorem 3.1. Fix t > 0 and let $k(t) = \lceil \frac{3t-1}{4} \rceil$, then $c_k \le c_{k(t)}$ for $0 \le k \le t$.

Proof. Define the ratio of coefficients $b_k = \frac{c_{k+1}}{c_k}$, then

$$b_k = \frac{c_{k+1}}{c_k}$$

$$= \frac{\binom{t}{k+1}3^{k+1}}{\binom{t}{k}3^k}$$

$$= \frac{3\frac{1}{(k+1)!(t-(k+1))!}}{\frac{1}{k!(t-k)!}}$$

$$b_k = \frac{3(t-k)}{k+1}$$

Notice that the b_k ratios are decreasing with $b_{t-1} < 1 < b_0$. Then $k(t) = \lceil \frac{3t-1}{4} \rceil$ is the minimal integer so that $b_{k(t)} \le 1$. Since these b_k are ratios of c_k , $c_{k(t)}$ is the largest coefficient.

Theorem 3.2. Fix $t \le 81525$ and suppose $N = 9R_{49081}M^t$, then for all $0 \le k \le t$, $c_{t,k} < 9R_{49081}$ and $9R_{49081}c_{t,k} < 10^{665829}$.

Proof. Fix t, k as in the theorem, then by Theorem 3.1,

$$c_{t,k} \le c_{t,k(t)}$$
$$= \binom{t}{k(t)} 3^{k(t)}$$

Define that last line as f(t), which is an increasing function. By explicit calculation,

$$f(t) < f(81525) < 9R_{49081} < f(81526)$$

Since $(9R_{49081})^2 < 10^{665829}$, then $9R_{49081}c_{t,k} < 10^{665829}$ as well.

Now suppose $N=9R_{49081}M^t$ for a power $t\leq 81525$. We know each coefficient $c_k<9R_{49081}$ and $9R_{49081}c_k<10^{665829}$. The latter constraint means the digit sum of N is the sum of the digit sums of $9R_{49081}c_k$. The first constraint allows us to apply fact 1 to prove the digit sum of $9R_{49081}c_k$ is $9\cdot 49081$. Since k varies from $0\leq k\leq t$, then

$$S(N) = (t+1) \cdot 9 \cdot 49081$$

The prime factorization of N is simply $3 \cdot 3 \cdot R_{49081} \cdot M^t$. Keeping in mind S(M) = 4, then

$$S_p(N) = 3 + 3 + 49081 + 4t$$

Note that $S(N) > S_p(N)$ and

$$S(N) - S_p(N) = (t+1) \cdot 9 \cdot 49081 - (3+3+49081+4t)$$

$$= 441725t + 392642$$

$$= 4t+5 \pmod{7}$$

$$= 4(t+3) \pmod{7}$$

Fix t=81519, then $t\equiv 4\pmod 7$ and $t\leq 81525$. By above, $S(N)-S_p(N)\equiv 0\pmod 7$. Calculate k

$$k = \frac{S(N) - S_p(N)}{7} = \frac{441725t + 392642}{7} = 5144196131$$

then Fact 2 to proves 10^kN is a Smith number. The explicit description for this Smith number is

$$10^{k}N = (3 \cdot 10^{665829} + 1)^{t} \cdot 9R_{49081} \cdot 10^{k}$$
$$= (3 \cdot 10^{665829} + 1)^{81519} \cdot (10^{49081} - 1) \cdot 10^{5144196131}$$

This Smith number has 59,421,998,358 digits.

4. Best by adding coefficients

The previous section relied on **Fact 1** to greatly simplify calculation of the coefficient digit sums. This caused the coefficient t=81519 to be limited by the size of a provably-prime repunit R_{49081} . With modern processor performances, it is possible to explicitly calculate each coefficient and the resulting digit sum without relying on multiplying by a repunit. For selecting a power t of M^t while planning to explicitly calculate each $S(c_{t,k})$, we only need to worry about two constraints. Firstly, $S(M^t) - S_p(M^t)$ needs to be divisible by 7 to apply **Fact 2**. Secondly, t will need to be small enough that $c_{t,k(t)} < 10^{665829}$ so that the coefficients can be separated in the digit representation.

After a somewhat quick search for a bound on the second constraint, I found that fixing $t_0=1105923$ yields

$$c_{t_0,k(t_0)} = 8.5967... \cdot 10^{665828}$$
$$c_{t_0+1,k(t_0+1)} = 3.4387... \cdot 10^{665829}$$

As long as $t \leq t_0$, then the second constraint is satisfied. Since we are not relying on **Fact1**, the digit sum of M^t is much less predictable. Therefor, finding a $t \leq t_0$ so that $S(M^t) - S_p(M^t) = 0 \pmod{7}$ simply involves checking $t_0, t_0 - 1, t_0 - 2, \ldots$ until one of these values happen to satisfy the congruence.

By a lucky $\frac{1}{7}$ chance, it turns out $S(M^{t_0}) - S_p(M^t) = 0 \pmod{7}$. This took 4-ish hours to calculate.

$$S(M^{t_0}) =$$

$$S_p(M^{t_0}) = (3+1) \cdot 1105923 = 4423692$$

$$S(M^{t_0}) - S_p(M^t) = XXX$$

Let $k = \frac{XXX}{7}$, then finally let $N = M^{t_0} 10^k$. N is a Smith number with explicit form

$$N = (3 \cdot 10^{665829} + 1)^{1105923} \cdot 10^{XXX/7}$$

5. Best by overlapping coefficients

References

- [1] Amin Witno, Another Simple Construction of Smith Numbers, Missouri Journal of Mathematical Sciences 22 (2010), no. 2, 97 101, DOI 10.35834/mjms/1312233139.
- [2] Patrick Costello, Smith Numbers From Primes with Small Digits, Missouri Journal of Mathematical Sciences 27 (2015), no. 1, 10 15, DOI 10.35834/mjms/1449161363.
- [3] Patrick Costello, A new largest Smith number, The Fibonacci Quarterly 40 (2002).
- [4] Kathy Sharon Lewis, Smith numbers: an infinite subset of N, Eastern Kentucky University, 1994.
- [5] A. Wilansky, $Smith\ Numbers$, The Two-Year College Mathematics Journal 13 (1982), no. 1, 21-21, DOI 10.1080/00494925.1982.11972573.