Discrete-time Survival Analysis using Latent Variables Part 2

Presented by Katherine E. Masyn, Ph.D.* kmasyn@ucla.edu

ED231E, UCLA May 10 & 12, 2004

^{*}Postdoctoral fellow with Johns Hopkins SPH, Department of Mental Health Supported by NIMH Grant T32-MH018834

Multivariate event histories

- Recurrent events (multiple spells)
 Same outcome that may occur more than once
- Competing risksMore than one possible outcome
- Parallel process
 Multiple event processes occurring at the same time with event-specific risk status

Recurrent events example

Multiple spells example

Recurrent events example

High frequency

Competing risks example

Full-time classroom teacher

Leave teaching, stay in education

Leave teaching, leave education

Parallel processes example

Low-frequency recurrent event process features

- Individuals are only at-risk for one event at a time
- Individuals may not be at-risk for event m until after the occurrence of m-1
- Event times correlated within individuals
- Event-specific baseline hazard probabilities and covariate effects

	0	1	2	3	4	5	6
Е		0	0	1,2	0	3	0
Ε		0	0	0	1	0	0
Е		0	0	0	0	0	0

Gap time

	0	1	2	3	4	5	6
$E_{R_1^{\circ}}$		0	0	1	•	•	•
$E_{R_{2}^{\circ}}$	1	•	•	•	•	•	
$E_{R_{3}^{\circ}}$	0	0	1	•	•		
$E_{R_{1}^{\circ}}$		0	0	0	1	•	•
$E_{R_{2}^{\circ}}$	0	0	0				
$E_{R_3^{\circ}}$	•			•	•		
E _R °		0	0	0	0	0	0
$E_{R_{2}^{\circ}}$	•	Digital Selection	•	·	·	•	
$E_{R_3^{\circ}}$				•	•	(•)	

RIA example in gap time

Violence recur.out

First episode by % days drinking

Est. Survival Probabilities by Drinking

Third episode by pre-tx violence

Est. Survival Probabilities by Pre-Tx Violence

Third episode by 2nd event time

Est. Survival Probabilities by 2nd Event Timing

Competing risks event process features

- Individuals are at-risk for more than one event at a time provided they have not experienced any event
- Individuals cease to be at-risk for any event once at least one event has occurred
- Event times correlated within individuals
- Event-specific baseline hazard probabilities and covariate effects

Alternate conceptions of competing risks

- There are two processes at work: one that governs whether any event occurs and one that governs the type of event, conditional on the occurrence of some event.
- 2) There is a series of event processes (one for each event) that are running simultaneously—the occurrence of one type of event *censors* the other processes.

Teacher first departure from the classroom

- 1) One processes that governs whether and when individuals leave full-time classroom teaching and one processes that governs whether, when they leave, they stay working in the field of education or not.
- 2) One process that governs whether and when the individuals leave full-time classroom teaching for another job in education and one process that governs whether and when the individuals leave full-time classroom teaching for another job outside education.

Model 1

i	e_1	e_2	e_3	e_4	e_5	Type
1	0	0	0	0	0	•
2	0	1	•	•	•	1
3	0	0	0	1	•	2

UTEC example for Model 1

Teacher cr m1.out

Hazard for leaving teaching by gender and race

Model 2

	1	2	3	4	5
$E_{R_{a}^{\bullet}}$	0	0	0	0	0
$E_{R_{\mathfrak{b}}^{\bullet}}$	0	0	0	0	0
$E_{R_{a}^{\bullet}}$	0	1	•	•	•
$E_{R_{\mathfrak{b}}^{\bullet}}$	0	0	•	•	•
$E_{R_{a}^{\bullet}}$	0	0	0	0	•
$E_{R_{\mathfrak{b}}^{\bullet}}$	0	0	0	1	•

UTEC example for Model 2

Teacher cr m2.out

Hazards for leaving teaching

Hazard for leaving teaching, staying in education

Hazard for leaving teaching, leaving education

Survival for full-time teaching by gender and race

Unobserved heterogeneity

Often referred to as frailty in the continuous-time survival literature, this involves the idea that there may be variability in individuals' underlying (baseline) risk for an event that is not directly measurable, i.e., some individuals are more "prone" to an event than others.

Ignoring unobserved heterogeneity

- Baseline hazard probabilities biased downward
- Time-independent covariate effects underestimated
- Spurious time-dependent effects for observed variables

Issues in modeling unobserved heterogeneity

logit
$$h_i(j) = -\tau_j + \beta_j x_i + \kappa_j z_{ij} + \varepsilon_i$$

- Identification
- Model specification
- Sensitivity to parametric misspecification*
- Goodness-of-fit

^{*}Not as much of an issue for discrete-time as for continuous-time

Approaches to modeling unobserved heterogeneity

Parametric: Assume some underlying parametric distribution for ε and maximize the likelihood (requires numerical integration now available in Version 3 for Normal distribution).

Nonparametric: Use a finite mixture model, i.e., latent classes, to nonparametrically approximate the distribution of ε.

Examples w/ frailty

Teacher re.out

Teacher 2c.out

2-class survival for full-time teaching

Multivariate event models

- The methods for incorporating individual variability or frailty in the single event models can also be used to account for event times correlated within individual in multivariate models.
- Alternatively, it is possible to reformulate these models as multilevel models with event times nested within individuals.

Extensions

- Continuous latent variable predictor of survival measured by other manifest variables, e.g., multiple survey items as measures of stress predicting time-to-event.
- Categorical latent variable predictor of survival measured by other manifest variables, e.g., clinical diagnostic criteria as measures of psychological profiles predicting time-to-event.

- Adjacent event processes
- Adjacent event and growth processes: event process followed by growth process; growth process followed by event process
- Concurrent survival processes
- Concurrent survival and growth processes