ĐỀ CƯƠNG ÔN TẬP PPT KỲ 1 NĂM 2021-2022

Chương 2.

Dạng 2.1. Sử dụng phương pháp chia đôi tìm khoảng con chứa nghiệm của phương trình $f(x) = 2\sqrt{x} - 4 = 0$ trên [3; 6] với 1 lần lặp.

Cở sở:

$$x_1 = 3$$
; $x_2 = 6$; $f(x_1)$. $f(x_2) < 0 \rightarrow f(x) = 0$ có nghiệm trên $[x_1; x_3]$.

Đặt
$$x_3 = (x_1 + x_2)/2$$
. Nghiệm nằm ở đâu? $[x_1; x_3]$ hay là $[x_3; x_2]$

Tính $f(x_1).f(x_3)$:

Nếu $f(x_1).f(x_3) < 0 \rightarrow$ khoảng chứa nghiệm $[x_1; x_3].$

Nếu $f(x_1).f(x_3) > 0 \rightarrow$ khoảng chứa nghiệm $[x_3; x_2].$

ĐA.

Vòng lặp	x1	x2	x3=(x1+x2)/2	f(x1)	f(x3)	f(x1)*f(x3)
1	3	6	4.5	-0.5359	0.24	-0.13
Khoảng chứa nghiệm	3	4.5				

Dạng 2.2. Sử dụng phương pháp tìm kiếm gia tăng với tìm kiếm $\Delta = 4$ để tìm khoảng con lớn hơn a = -4 chứa nghiệm của phương trình $f(x) = x^3 - 10 = 0$.

Cơ sở:

$$x_1 = a = -4$$
; $x_2 = x_1 + \Delta = 0$. Tính $f(x_1)$. $f(x_2)$:

Nếu $f(x_1).f(x_2) < 0 \rightarrow$ khoảng chứa nghiệm $[x_1; x_2] = [-4; 0].$

Nếu
$$f(x_1).f(x_2) < 0 \rightarrow \text{Lặp } x_1 \coloneqq x_2 = 0; x_2 \coloneqq x_1 + \Delta = 0 + 4 = 4.$$

Tính $f(x_1).f(x_2)$:

Nếu $f(x_1)$. $f(x_2) < 0 \rightarrow$ khoảng chứa nghiệm $[x_1; x_2] = [0; 4]$.

Nếu
$$f(x_1)$$
. $f(x_2) < 0 \rightarrow \text{Lặp tiếp}$.

ĐA.

Vòng lặp	x1	x2 = x1 +Delta	f(x1)	f(x2)	f(x1)*f(x2)
1	-4	0	- 74.00	10.00	740.00
Khoảng chứa nghiệm	0	4	10.00	54.00	-540.00

Chương 3.

Dạng 3.1. Sử dụng phương pháp phân rã Gauss giải hệ phương trình $\mathbf{A}x = \mathbf{b}$, với

				_	
	4	2	3		1
$\mathbf{A} =$	0	1	2	b =	2
	0	1	3		2

Cơ sở:

Pha khử: Đưa về dạng tam giác trên

4	2	3	1
0	1	2	2
0	0	1	0

Pha giải

x1	x2	x3
-0.75	2	0

ĐA.

4	2	3	1
0	1	2	2
0	0	1	(

x1	x2	x 3
-0.75	2	0

Dạng 3.2. Giải hệ phương trình Ax = b biết A = L. U. L, U, b cho bởi:

	1	0	0		1	2	1		2
$\mathbf{L} =$	1	1	0	U =	0	1	2	b =	2
	3	1	1		0	0	1		3

Cơ sở:

$$A. x = b \Leftrightarrow L. U. x = b$$

Đặt
$$U.x = y \rightarrow A.x = b \leftrightarrow \begin{cases} Ly = b \\ Ux = y \end{cases}$$

Bước 1.

$$\mathbf{L}.\mathbf{y} = \mathbf{b} \qquad \mathbf{y} = \boxed{2} \boxed{0} \boxed{-3}$$

Bước 2.

$$U.x = y$$
 $x = \begin{bmatrix} -7 & 6 & -3 \end{bmatrix}$

 $\mathbf{L}.\mathbf{y} = \mathbf{b} \quad \mathbf{y} = \begin{bmatrix} 2 & 0 & -3 \end{bmatrix}$

 $\mathbf{U}.\mathbf{x} = \mathbf{y} \quad \mathbf{x} = \begin{bmatrix} -7 & 6 & -3 \end{bmatrix}$

Chương 4.

Dạng 4.1. Sử dụng phương pháp Lagrange tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	0	2	3

Cơ sở:

$$l_1(x) = \frac{x - x_2}{x_1 - x_2} \cdot \frac{x - x_3}{x_1 - x_3}$$

$$l_2(x) = \frac{x - x_1}{x_2 - x_1} \cdot \frac{x - x_3}{x_2 - x_3}$$

$$l_3(x) = \frac{x - x_2}{x_3 - x_2} \cdot \frac{x - x_1}{x_3 - x_1}$$

$$P_2(x) = y_1 \cdot l_1(x) + y_2 \cdot l_2(x) + y_3 \cdot l_3(x)$$

ĐA.

$$\begin{split} I_1(x) &= \frac{x-1}{0-1} \cdot \frac{x-2}{0-2} \\ I_2(x) &= \frac{x}{1} \cdot \frac{x-2}{1-2} \\ I_3(x) &= \frac{x}{2} \cdot \frac{x-1}{2-1} \\ P_2(x) &= 0 \cdot \frac{x-1}{0-1} \cdot \frac{x-2}{0-2} + 2 \cdot \frac{x}{1} \cdot \frac{x-2}{1-2} + 3 \cdot \frac{x}{2} \cdot \frac{x-1}{2-1} \end{split}$$

Dạng 4.2. Sử dụng phương pháp Newton tìm đa thức nội suy đi qua các điểm dữ liệu

x_i	0	1	2
y_i	-1	2	4

Cơ sở

$$P_{N}(x) = a_{1} + a_{2}(x - x_{1}) + a_{3}(x - x_{1})(x - x_{2})$$

$$P_{N}(x) = a_{1} + a_{2}(x - 0) + a_{3}(x - 0)(x - 1)$$

$$\nabla y_{2} = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} = \frac{2 - (-1)}{1 - 0} = 3; \nabla y_{3} = \frac{y_{3} - y_{1}}{x_{3} - x_{1}} = \frac{4 - (-1)}{2 - 0} = \frac{5}{2}$$

$$\nabla^{2} y_{3} = \frac{\nabla y_{3} - \nabla y_{2}}{x_{3} - x_{2}} = \frac{\frac{5}{2} - 3}{2 - 1} = -0.5$$

$$\rightarrow a_{1} = -1; a_{2} = 3; a_{3} = -0.5$$

$$\rightarrow P_N(x) = -1 + 3(x - 0) + (-0.5)(x - 0)(x - 1)$$

Thực hành tính.

i	<i>x_i</i>	y_i	∇y_i	$\nabla^2 y_i$
1	0	-1		
2	1	2	$\frac{2 - (-1)}{1 - 0} = 3$	
3	2	4	$\frac{4 - (-1)}{2 - 0} = \frac{5}{2}$	$\frac{\frac{5}{2} - 3}{2 - 1} = -0.5$

$$\rightarrow a_1 = -1; a_2 = 3; a_3 = -0.5$$

$$\rightarrow P_N(x) = -1 + 3(x - 0) + (-0.5)(x - 0)(x - 1)$$

ĐA.

a1 = -1

a2 = 3

a3 = -0.5

$$P_N(x) = -1 + 3(x) - 0.5(x)(x - 1)$$

Dạng 4.3. Tính phương trình hồi quy tuyến tính qua các điểm dữ liệu

x_i	-1	1	3
y_i	0	1	4

Cơ sở

Hàm HQTT có dạng

$$f(x) = a + bx \rightarrow f(x_i) = a + bx_i$$

thoả mãn

$$S(a,b) = \sum_{i=1}^{3} (y_i - f(x_i))^2 = \sum_{i=1}^{3} (y_i - a - bx_i)^2 \to min$$

(a, b) là nghiệm của hệ PT

$$\begin{cases} S_a' = 0 \\ S_b' = 0 \end{cases} \rightarrow b = \frac{\sum y_i(x_i - \bar{x})}{\sum x_i(x_i - \bar{x})}; a = \bar{y} - \bar{x}.b \end{cases}$$
với $\bar{x} = \frac{\sum x_i}{n} = \frac{x_1 + x_2 + x_3}{3} = \frac{(-1) + 1 + 3}{3} = 1; \bar{y} = \frac{\sum y_i}{n} = \frac{y_1 + y_2 + y_3}{3} = \frac{0 + 1 + 4}{3} = \frac{5}{3}$

$$\sum y_i(x_i - \bar{x}) = y_1(x_1 - \bar{x}) + y_2(x_2 - \bar{x}) + y_3(x_3 - \bar{x})$$

$$\sum y_i(x_i - \bar{x}) = 0((-1) - 1) + 1.(1 - 1) + 4(3 - 1) = 8$$

$$\sum x_i(x_i - \bar{x}) = x_1(x_1 - \bar{x}) + x_2(x_2 - \bar{x}) + x_3(x_3 - \bar{x})$$

$$\Sigma x_i(x_i - \bar{x}) = (-1)((-1) - 1) + 1.(1 - 1) + 3(3 - 1) = 8$$
$$b = \frac{8}{8} = 1; a = \frac{5}{3} - 1.1 = \frac{2}{3} \rightarrow f(x) = \frac{2}{3} + 1.x$$

Thực hành tính.

	<i>x_i</i>	y_i	$x_i - \bar{x}$	$x_i(x_i-\bar{x})$	$y_i(x_i-\bar{x})$
	-1	0	-2	2	0
	1	1	0	0	0
	3	4	2	6	8
Totals	3	5		8	8
	$\bar{x} = \frac{3}{3} = 1$	$\bar{y} = \frac{5}{3}$		$b = \frac{8}{8} = 1$	$a = \frac{5}{3} - 1.1$

ĐA.

$$f(x) = 0.67 + 1x$$

Chương 5.

Dạng 5.1. Cho hàm y = f(x) được biểu diễn dưới dạng các điểm dữ liệu trong bảng sau. Hãy xấp xỉ f'(3); f'(4) bằng phương pháp sai phân trung tâm bậc một.

	0	1	2	3	4	5	6
x_i							
	-10	-12	-8	8	42	100	188
y_i							

Cơ sở:

$$2hf'(x) = (-1).f(x-h) + 0.f(x) + 1.f(x+h) + 0(h^3)$$

$$f'(x) = \frac{-f(x-h) + f(x+h)}{2h} + 0(h^2)$$

$$h = 1 \to f'(3) \approx \frac{-f(3-1) + f(3+1)}{2.1} = \frac{-f(2) + f(4)}{2} = \frac{-(-8) + 42}{2}$$

$$= 25.$$

$$h = 1 \rightarrow f'(4) \approx$$

ĐA.

25	46

Dạng 5.2. Cho hàm y = f(x) được biểu diễn dưới dạng các điểm dữ liệu trong bảng sau. Hãy xấp xỉ f'(0); f'(1) bằng phương pháp sai phân tiến bậc hai.

x_i	0	1	2	3	4	5	6
y_i	2	0	-6	2	66	252	650

Cơ sở.

$$2hf'(x) = (-3).f(x) + 4.f(x+h) + (-1).f(x+2h) + 0(h^3)$$
$$f'(x) = \frac{(-3).f(x) + 4.f(x+h) + (-1).f(x+2h)}{2h} + 0(h^2)$$

ĐA.

0 -13

Dạng 5.3. Cho hàm y = f(x) được biểu diễn dưới dạng các điểm dữ liệu trong bảng sau. Hãy xấp xỉ f'(3); f'(4) bằng phương pháp sai phân lùi bậc hai.

$ x_i 0 1 2 3 4 5 $

$$y_i$$
 2 0 -6 2 66 252 650

Cơ sở:

$$2hf'(x) = 1.f(x - 2h) + (-4).f(x - h) + 3.f(x) + 0(h^3)$$
$$f'(x) = \frac{1.f(x - 2h) + (-4).f(x - h) + 3.f(x)}{2h} + 0(h^2)$$

ĐA.

Dạng 5.4. Cho hàm y = f(x) được biểu diễn dưới dạng các điểm dữ liệu trong bảng sau. Hãy xấp xỉ f''(2); f''(3) bằng phương pháp sai phân trung tâm.

x_i	0	1	2	3	4	5	6
y_i	2	0	-6	2	66	252	650

Cơ sở

$$h^{2}f''(x) = 1.f(x-h) + (-2).f(x+h) + 1.f(x+h) + 0(h^{4})$$
$$f''(x) = \frac{1.f(x-h) + (-2).f(x+h) + 1.f(x+h)}{h^{2}} + 0(h^{2})$$

ĐA.

Dạng 5.5. Cho hàm y = f(x) được biểu diễn dưới dạng các điểm dữ liệu trong bảng sau. Hãy xấp xỉ f''(0); f''(1) bằng phương pháp sai phân tiến.

x_i	0	1	2	3	4	5	6
$\overline{y_i}$	2	0	-6	2	66	252	650

Cơ sở

$$h^2 f''(x) = 2. f(x) + (-5). f(x+h) + 4. f(x+2h) + (-1). f(x+3h) + 0(h^4)$$

$$f''(x) = \frac{2.f(x) + (-5).f(x+h) + 4.f(x+2h) + (-1).f(x+3h)}{h^2} + 0(h^2)$$

ĐA.

Dạng 5.6. Cho hàm y = f(x) được biểu diễn dưới dạng các điểm dữ liệu trong bảng sau. Hãy xấp xỉ f''(3); f''(4) bằng phương pháp sai phân lùi.

x_i	0	1	2	3	4	5	6
y_i	2	0	-6	2	66	252	650

Cơ sở

$$h^{2}f''(x) = (-1).f(x - 3h) + 4.f(x - 2h) + (-5).f(x - h) + 2.f(x) + 0(h^{4})$$

$$f''(x) = \frac{(-1).f(x-3h) + 4.f(x-2h) + (-5).f(x-h) + 2.f(x)}{h^2} + 0(h^2)$$

ĐA.

Dạng 5.7. Cho hàm y = f(x) được biểu diễn dưới dạng các điểm dữ liệu trong bảng sau. Hãy xấp xỉ $\int_a^b f(x)dx$ bằng phương pháp hình thang kết hợp, với a = 0; b = 5.

x_i	0	1	2	3	4	5	6
y_i	2	0	-6	2	66	252	650

Cơ sở

$$\int_{a}^{b} f(x)dx \approx I = (f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)) \cdot \frac{h}{2}$$

ĐA.

189

Dạng 5.8. Cho hàm y = f(x) được biểu diễn dưới dạng các điểm dữ liệu trong bảng sau. Hãy xấp xỉ $\int_a^b f(x)dx$ bằng phương pháp Simpson, với a = 0; b = 4.

x_i	0	1	2	3	4	5	6
y_i	2	0	-6	2	66	252	650

Cơ sở

$$\int_{a}^{b} f(x)dx \approx I$$

$$= (f(x_1) + 4f(x_2) + 2f(x_3) + 4f(x_4) + \dots + 4f(x_{n-1}) + f(x_n)) \cdot \frac{h}{3}$$

ĐA.

32