WHAT IS CLAIMED IS:

1. A compound represented by the Formula:

$$R_1$$
 R_2
 A
 OR^p
 OR_4
 OR_4

5

wherein

A is selected from the group consisting of:

10

- (1) -CHO or a protected aldehyde;
- (2) -CN;

- (3) -CH=N-NR₅R₆, wherein R₅ and R₆ are each independently selected from the group consisting of:
 - (a) hydrogen,

15

(b) C₁-C₆-alkyl, optionally substituted with one or more substituents selected from the group consisting of halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic,

(c) C₂-C₆-alkenyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic,

20

(d) C₂-C₆-alkynyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic, and

25

(e) R₅ and R₆ taken together with the nitrogen atom to which they are connected form a 3- to 7-membered ring which may optionally contain one or more heterofunctions selected from the group consisting of: -O-, -NH-, -N(C₁-C₆alkyl)-, -N(aryl)-, -N(heteroaryl)-, -S-, -S(O)- and $-S(O)_2$ -;

- (4) -CH=N-OR₅, wherein R_5 is as previously defined;
- (5) $-CH_2X$, wherein X is selected from the group consisting of:

30

(a) hydroxy or protected hydroxy;

- (b) halogen;
- (c) -NR₅R₆, wherein R₅ and R₆ are as previously defined;
- (d) -NR₅C(O)-R₇, where R₅ is as previously defined and R₇ is selected from the group consisting of:
- 5

- i. hydrogen;
- ii. C₁-C₆-alkyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic;
- iii. C₂-C₆-alkenyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic;
- iv. C₂-C₆-alkynyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic;

- v. aryl;
- vi. substituted aryl;
- vii. heterocyclic; and
- viii. substituted heterocyclic;
- (e) $-NR_5C(O)-NR_6R_7$, where R_5 , R_6 , and R_7 are as previously defined;
- 20
- (f) $-NR_5-NR_6R_7$, where R_5 , R_6 and R_7 are as previously defined;
- (g) $-NR_5-NR_6C(O)-R_7$, where R_5 , R_6 and R_7 are as previously defined;
- (h) $-S(O)_n-R_8$, where R_8 is selected from the group consisting of: aryl, substituted aryl, heterocyclic and substituted heterocyclic, where n = 0, 1 or 2;
- 25
- (i) $-S(O)_n$ -(C₁-C₆-alkyl), optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic, where n is as previously defined;
- (j) -S(O)_n-(C₂-C₆-alkenyl), optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic, where n is as previously defined;
- (k) $-S(O)_n$ -(C_2 - C_6 -alkynyl), optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl,

heterocyclic and substituted heterocyclic, where n is as previously defined; and

- (1) -O-M-Y, where M is:
 - i. absent,

5

- ii. -C(O)-,
- iii. $-C(O)N(R_5)$ -, where R_5 is as previously defined,
- iv. C_1 - C_6 -alkyl- $N(R_5)$ -Y, where R_5 is as previously defined,
- v. C_2 - C_6 -alkenyl- $N(R_5)$ -Y, where R_5 and Y are as previously defined, or
- vi. C₂-C₆-alkynyl-N(R₅)-Y, where R₅ and Y are as previously defined,

- 10
- and Y is:
- i. hydrogen,
- C₁-C₆-alkyl, optionally substituted with one or more substituents selected from the group consisting of halogen, -OR₅, aryl, substituted aryl, heterocyclic and substituted heterocyclic, where R₅ is as previously defined,

15

iii. C₂-C₆-alkenyl, optionally substituted with one or more substituents selected from the group consisting of halogen, -OR₅, aryl, substituted aryl, heterocyclic and substituted hetreocyclic, where R₅ is as previously defined,

20

- iv. C₂-C₆-alkynyl, optionally substituted with one or more substituents selected from the group consisting of halogen, -OR₅, aryl, substituted aryl, heterocyclic and substituted heterocyclic, where R₅ is as previously defined,
- v. aryl,

25

- vi. substituted aryl,
- vii. heterocyclic, or
- viii. substituted heterocyclic; and
- (6) heterocyclic or substituted heterocyclic;

B is selected from the group consisting of:

- 30
- (1) -CHO or a protected aldehyde;

___/

- (2) -CN;
- (3) -CH=N-NR₅R₆, wherein R₅ and R₆ are as previously defined;
- (4) -CH=N-OR₅, wherein R₅ is as previously defined;
- (5) -CH₂Z, wherein Z is selected from the group consisting of:

- a. halogen;
- b. $-NR_5C(O)-R_7$, where R_5 and R_7 are as previously defined;
- c. $-NR_5C(O)-NR_6R_7$, where R_5 , R_6 , and R_7 are as previously defined;
- d. -NR₅-NR₆R₇, where R₅, R₆ and R₇ are as previously defined;
- e. -NR₅-NR₆C(O)-R₇, where R₅, R₆ and R₇ are as previously defined;
- f. $-S(O)_n-R_8$, where R_8 and n are as previously defined;
- g. -S(O)_n-(C₁-C₆-alkyl), optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic, where n is as previously defined;
- h. -S(O)_n-(C₂-C₆-alkenyl), optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic, where n is as previously defined;
- i. -S(O)_n-(C₂-C₆-alkynyl), optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic and substituted heterocyclic, where n is as previously defined; and
- j. -NR₉R₁₀, where R₉ and R₁₀ are each independently selected from the group consisting of:
 - i. hydrogen;
 - ii. C₁-C₆-alkyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, -O-R₅ and -NR₅R6, where R₅ and R₆ are as previously defined;
 - iii. C₂-C₆-alkenyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -O-R₅ and -NR₅R₆, where R₅ and R₆ are as previously defined;
 - iv. C₂-C₆-alkynyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, O-R₅ and NR₅R₆, where R₅ and R₆ are as previously defined; and
 - v. -W-R₁₁, where W is selected from the group consisting of:
 - 1. –C(O)-;
 - 2. –C(O)O-;

5

15

20

25

		3. $-C(S)$ -;
		4. –C(S)-S-;
		5. –C(S)-O-;
		6. $-C(S)-NR_5$, where R_5 is as previously defined;
5		7. $-C(O)NR_5$, where R_5 is as previously defined;
		8. $-C(=NR_5)-O$ -, where R_5 is as previously defined; and
		9. $-C(=NR_5)-NR_6$, where R_5 and R_6 are as previously defined, and
		where R ₁₁ is selected from the group consisting of:
		a. hydrogen;
10		b. C ₁ -C ₆ -alkyl, optionally substituted with one or more
		substituents selected from the group consisting of: halogen,
		aryl, substituted aryl, heterocyclic and substituted
		heterocyclic;
		c. C ₂ -C ₆ -alkenyl, optionally substituted with one or more
15		substituents selected from the group consisting of: halogen,
		aryl, substituted aryl, heterocyclic and substituted
		heterocyclic;
		d. C ₂ -C ₆ -alkynyl, optionally substituted with one or more
		substituents selected from the group consisting of: halogen,
20		aryl, substituted aryl, heterocyclic and substituted
		heterocyclic;
	vi.	$R_{\rm 9}$ and $R_{\rm 10}$ taken together with the nitrogen atom they are attached to
		represent the carbon or hetero atoms necessary to form a heterocyclic
		or substituted heterocyclic moiety; and
25	vii.	R_9 and R_{10} , taken together with the nitrogen atom they are attached to
		form a 4 to 8 membered ring which contains one or more W moieties
		and optionally may contain one or more heteromoieties selected from
		the group consisting of $-O$ -, $-S$ -, $-S(O)_2$ - and $-NR_5$ -, where W and R_5
		are as previously defined;
30	R_1 and R_2 are each independently selected from the group consisting of:	
	(1) hydroge	n;
	(2) hydroxy	;
	(3) protected	d hydroxy;

- (4) -OC(O)-C₁-C₁₂-alkyl, optionally substituted with one or more substituents selected from the group consisting of halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, O-R5 and NR₅R₆ where R₅ and R₆ are as previously defined;
- 5 (5) -O-R5, where R_5 is as previously defined;
 - (6) halogen;
 - (7) -NR₅R₆, where R₅ and R₆ are as previously defined; and
 - (8) R_1 and R_2 taken together are = 0;

 R_3 is selected from the group consisting of:

10 (1) hydrogen;

15

20

25

- (2) a hydroxy protecting group;
- (3) -C(O)-C₁-C₁₂-alkyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -OR₅ and -NR₅R₆, where R₅ and R₆ are as previously defined;
- (4) C₁-C₆-alkyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -OR₅ and -NR₅R₆, where R₅ and R₆ are as previously defined;
- (5) C₂-C₆-alkenyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -OR₅ and -NR₅R₆, where R₅ and R₆ are as previously defined; and
- (6) C₂-C₆-alkynyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -OR₅ and -NR₅R₆, where R₅ and R₆ are as previously defined;

 R_4 is -M-Y, where M and Y are as previously defined; and R^p is hydrogen or a hydroxy protecting group.

- 2. A compound according to Claim 1 where R₃ is selected from the group consisting of:
 - (1) C₁-C₆-alkyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -O-R₅ and -NR₅R₆, where R₅ and R₆ are as defined in Claim 1;

- (2) C₂-C₆-alkenyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -O-R₅ and -NR₅R6, where R₅ and R₆ are as previously defined; and
- (3) C₂-C₆-alkynyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -O-R₅ and -NR₅R₆, where R₅ and R₆ are as previously defined.
- 3. A compound according to Claim 2, where R_1 and R_2 taken together are = O.
 - 4. A compound according to Claim 3, where R₄ is hydrogen.
- 5. A compound according to Claim 1, where R₄ is selected from the group consisting of:
 - (1) C₁-C₆-alkyl, optionally substituted with one or more substituents selected from the group consisting of: halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -O-R₅ and -NR₅R₆, where R₅ and R₆ are as defined in Claim 1;
 - (2) C₂-C₆-alkenyl, optionally substituted with one or more substituents selected from the group consisting of halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -O-R₅ and -NR₅R6, where R₅ and R₆ are as previously defined; and
 - (3) C₂-C₆-alkynyl, optionally substituted with one or more substituents selected from the group consisting of halogen, aryl, substituted aryl, heterocyclic, substituted heterocyclic, -O-R₅ and -NR₅R₆, where R₅ and R₆ are as previously defined.
 - 6. A compound according to Claim 5, where R_1 and R_2 taken together are = 0.
- 7. A compound according to Claim 6, where R₃ is hydrogen.

25

8. A compound as defined in Claim 1 which is selected from the group consisting of: Compound of Formula I: A = -CHO, B = -CH₂-N(CH₃)₂, R₁ and R₂ taken together are = O, R₃ = H, R₄ = H and R^p = H;

```
Compound of Formula I: A = -CHO, B = -CH<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>2</sub>Phenyl, R<sub>1</sub> and R<sub>2</sub>
               taken together are = O, R_3 = H, R_4 = H and R^p = H;
               Compound of Formula I: A = -CHO, B = -CH<sub>2</sub>-N(CH<sub>3</sub>)-CH<sub>2</sub>CH<sub>2</sub>Phenyl, <math>R_1 and R_2
               taken together are = O, R_3 = H, R_4 = H and R^p = H;
 5
               Compound of Formula I: A = -CHO, B = -CH<sub>2</sub>-NH-CH<sub>2</sub>CH<sub>2</sub>-(2-pyridyl) R<sub>1</sub> and R<sub>2</sub>
               taken together are = O, R_3 = H, R_4 = H and R^p = H:
               Compound of Formula I: A = -CHO, B = -CH_2-4-morpholyl, R_1 and R_2 taken
               together are = O, R_3 = H, R_4 = H and R^p = H;
               Compound of Formula I: A = -CHO, B = -CH<sub>2</sub>-1-imidazolyl, R<sub>1</sub> and R<sub>2</sub> taken
10
               together are = O, R_3 = H, R_4 = H and R^p = H;
               Compound of Formula I: A = -CHO, B = -CH<sub>2</sub>-N(CH<sub>3</sub>)<sub>2</sub>, R<sub>1</sub> and R<sub>2</sub> taken together
               are = O, R_3 = H, R_4 = CH_2CHCH-(3-quinolyl) and R^p = H;
               Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
               O, R_3 = H, R_4 = CH_2CC-(3-quinolyl) and R^p = H;
               Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
15
               O, R_3 = H, R_4 = CH_2CHCH-(3-quinolyl) and R^p = H;
               Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
               O, R_3 = H, R_4 = CH_2CH_2CH_2-(3-quinolyl) and R^p = H;
               Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
20
              O, R_3 = H, R_4 = CH_2CC-(5-pyrimidyl) and R^p = H;
               Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CHCH-(5-pyrimidyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CH_2CH_2-(5-pyrimidyl) and R^p = H;
25
              Compound of Formula I: A = CHO, B = morpholyl, R<sub>1</sub> and R<sub>2</sub> taken together are =
              O, R_3 = H, R_4 = CH_2CCCH_2-(phenyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CHCHCH_2-(phenyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CH_2CH_2-(phenyl) and R^p = H;
30
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CCCH_2-(4-fluorophenyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CHCHCH_2-(4-fluorophenyl) and R^p = H;
```

```
Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CH_2CH_2CH_2-(4-fluorophenyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CCCH_2-(3-quinolyl) and R^p = H;
 5
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CHCHCH_2-(3-quinolyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CH_2CH_2CH_2-(3-quinolyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
10
              O, R_3 = H, R_4 = CH_2CC-(2-pyridyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CHCH-(2-pyridyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R<sub>1</sub> and R<sub>2</sub> taken together are =
              O, R_3 = H, R_4 = CH_2CH_2CH_2-(2-pyridyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
15
              O, R_3 = H, R_4 = CH_2CC-(3-pyridyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
              O, R_3 = H, R_4 = CH_2CHCH-(3-pyridyl) and R^p = H;
              Compound of Formula I: A = CHO, B = morpholyl, R_1 and R_2 taken together are =
20
              O, R_3 = H, R_4 = CH_2CH_2CH_2-(3-pyridyl) and R^p = H;
              Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R_1 and R_2 taken together are = O,
              R_3 = H, R_4 = CH_2CC-(3-quinolyl) and R^p = H;
              Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R_1 and R_2 taken together are = O,
              R_3 = H, R_4 = CH_2CHCH-(3-quinolyl) and R^p = H;
25
              Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R_1 and R_2 taken together are = O,
              R_3 = H, R_4 = CH_2CH_2-(3-quinolyl) and R^p = H;
              Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R<sub>1</sub> and R<sub>2</sub> taken together are = O,
              R_3 = H, R_4 = CH_2CC-(5-pyrimidyl) and R^p = H;
              Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R<sub>1</sub> and R<sub>2</sub> taken together are = O,
30
              R_3 = H, R_4 = CH_2CHCH-(5-pyrimidyl) and R^p = H;
              Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R<sub>1</sub> and R<sub>2</sub> taken together are = O,
             R_3 = H, R_4 = CH_2CH_2CH_2-(5-pyrimidyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CH_2F, R_1 and R_2 taken together are = O,
             R_3 = H, R_4 = CH_2CCCH_2-(phenyl) and R^p = H;
```

```
Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R<sub>1</sub> and R<sub>2</sub> taken together are = O,
               R_3 = H, R_4 = CH_2CHCHCH_2-(phenyl) and R^p = H;
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R<sub>1</sub> and R<sub>2</sub> taken together are = O.
               R_3 = H, R_4 = CH_2CH_2CH_2CH_2-(phenyl) and R^p = H;
 5
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R_1 and R_2 taken together are = O,
               R_3 = H, R_4 = CH_2CCCH_2-(4-fluorophenyl) and R^p = H;
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R_1 and R_2 taken together are = O.
               R_3 = H, R_4 = CH_2CHCHCH_2-(4-fluorophenyl) and R^p = H;
               Compound of Formula I: A = CHO, B = CH_2F, R_1 and R_2 taken together are = O,
10
               R_3 = H, R_4 = CH_2CH_2CH_2CH_2-(4-fluorophenyl) and R^p = H;
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R_1 and R_2 taken together are = O.
               R_3 = H, R_4 = CH_2CCCH_2-(3-quinolyl) and R^p = H;
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R_1 and R_2 taken together are = O,
               R_3 = H, R_4 = CH_2CHCHCH_2-(3-quinolyl) and R^p = H;
15
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R<sub>1</sub> and R<sub>2</sub> taken together are = O,
               R_3 = H, R_4 = CH_2CH_2CH_2CH_2-(3-quinolyl) and R^p = H;
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R<sub>1</sub> and R<sub>2</sub> taken together are = O,
               R_3 = H, R_4 = CH_2CC-(2-pyridyl) and R^p = H;
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R<sub>1</sub> and R<sub>2</sub> taken together are = O,
20
               R_3 = H, R_4 = CH_2CHCH-(2-pyridyl) and R^p = H;
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R<sub>1</sub> and R<sub>2</sub> taken together are = O,
               R_3 = H, R_4 = CH_2CH_2CH_2-(2-pyridyl) and R^p = H:
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R<sub>1</sub> and R<sub>2</sub> taken together are = O,
              R_3 = H, R_4 = CH_2CC-(3-pyridyl) and R^p = H;
               Compound of Formula I: A = CHO, B = CH_2F, R_1 and R_2 taken together are = O,
25
              R_3 = H, R_4 = CH_2CHCH-(3-pyridyl) and R^p = H;
               Compound of Formula I: A = CHO, B = CH<sub>2</sub>F, R_1 and R_2 taken together are = O,
              R_3 = H, R_4 = CH_2CH_2-(3-pyridyl) and R^p = H:
               Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
30
              H, R_4 = CH_2CC-(3-quinolyl) and R^p = H;
              Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 = O
              H, R_4 = CH_2CHCH-(3-quinolyl) and R^p = H;
              Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
              H, R_4 = CH_2CH_2-(3-quinolyl) and R^p = H;
```

```
Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CC_{-}(5-pyrimidyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CHCH-(5-pyrimidyl) and R^p = H;
 5
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CH_2CH_2-(5-pyrimidyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CCCH_2-(phenyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
10
             H, R_4 = CH_2CHCHCH_2-(phenyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CH_2CH_2CH_2-(phenyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CCCH_2-(4-fluorophenyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 = O
15
             H, R_4 = CH_2CHCHCH_2-(4-fluorophenyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CH_2CH_2CH_2-(4-fluorophenyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
20
             H, R_4 = CH_2CCCH_2-(3-quinolyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CHCHCH_2-(3-quinolyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 = O
             H, R_4 = CH_2CH_2CH_2-(3-quinolyl) and R^p = H;
25
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CC-(2-pyridyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CHCH-(2-pyridyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
30
             H, R_4 = CH_2CH_2-(2-pyridyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 =
             H, R_4 = CH_2CC - (3-pyridyl) and R^p = H;
             Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, R_3 = O
             H, R_4 = CH_2CHCH-(3-pyridyl) and R^p = H; and
```

Compound of Formula I: A = CHO, B = CN, R_1 and R_2 taken together are = O, $R_3 = H$, $R_4 = CH_2CH_2CH_2-(3-pyridyl)$ and $R^p = H$.

- 9. A pharmaceutical composition for treating bacterial infections comprising a therapeutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt, ester or prodrug thereof in combination with a pharmaceutically acceptable carrier.
- 10. A method for treating bacterial infections comprising administering to an animal
 10 in need of such treatment a pharmaceutical composition comprising a pharmaceutically effective amount of a compound of Claim 1 or a pharmaceutically acceptable salt, ester or prodrug thereof.
- 11. A process for preparing a compound represented by Formula I as defined in Claim
 15 1 comprising:
 - (a) reacting a compound represented by the formula:

wherein R^P₂ is a hydroxy protecting group, with:

- i. an acetalating agent at a pH between 1 to 4 in an alcoholic solvent; and
- ii. treating with a silylating agent, optionally with the addition of a catalyst in an aprotic solvent at a temperature between 0°C to 50°C for 1 to 48 hours to provide a compound represented by the Formula:

20

5

wherein R_{1}^{P} , R_{2}^{P} , R_{3}^{P} and R_{4}^{P} are hydroxy protecting groups, and R' and R'' are each C_1 - C_6 -alkyl or when taken together are - CH_2CH_2 - or - CH_2CH_2 -;

(b) treating the compound from step (a) with an acid in an organic solvent at a temperature between 0°C and 50°C for 1 − 24 hours to provide a compound represented by the formula:

wherein RP1, RP2, RP3, R' and R" are as previously defined;

(c) reacting the compound from step (b) with an alkylating agent represented by the formula R₄X, wherein X is a halogen or sulphonyl group and R₄ is as defined in Claim 1, in the presence of a base in an aprotic solvent at a temperature between -20°C to 60°C optionally in the presence of water and a phase transfer catalyst, and then treating with an acid in an organic solvent at a temperature between room temperature to 100°C for 1 to 48 hours to provide a compound represented by the formula:

5

10

wherein R^P₂, R^P₃, R₄, R' and R" are as previously defined;

(d) treating the compound from step (c) with triphenylphosphine and a halogenating agent or with a sulfonic anhydride or sulfonyl chloride in an aprotic organic solvent at a temperature between -78°C and 50°C for 30 minutes to 48 hours, optionally in the presence of an amine base and a catalyst, to provide a compound represented by the formula:

where L is selected from the group consisting of chlorine, bromine, iodine, mesylate and tosylate and R_{2}^{P} , R_{3}^{P} , R_{4} , R' and R'' are as previously defined; and

- (e) treating the compound from step (d) with an amine of the formula NHR₅R₆, wherein R₅ and R₆ are as defined in Claim 1, at a temperature from 0°C to 100°C for 1 to 24 hours, optionally deprotecting the product by:
 - i. treating with an aqueous acid in an organic solvent at a temperature from 0°C to 100°C for 1 to 24 hours; and
 - stirring in methanol at a temperature between room temperature and reflux temperature for 4 to 24 hours;

to provide a compound represented by Formula I wherein A is -CHO, B is - CH_2 -NR₅R₆, R₁ and R₂ together are O, R₃ is H, R^p is H, and R₄ is as defined in Claim 1.

10

5

15

20

- 12. A process for preparing a compound represented by Formula I, as defined in Claim 1 comprising:
 - (a) reacting a compound represented by the Formula:

where Ac is -COCH₃, in an aprotic organic solvent with a sulfonic anhydride or sulphonyl halide in the presence of an amine base, optionally with a catalyst, between 0°C and room temperature for 30 minutes to two hours and treating the resulting product with sodium iodide, at a temperature between 0°C to 100°C for 1 to 24 hours, to provide a compound represented by the formula:

10

where Ac is as previously defined; and

(b) treating the compound from step (a) with an amine of the formula $NHR_5R_6, where \ R_5 \ and \ R_6 \ are \ as \ defined in \ Claim \ 1, \ at \ a \ temperature$ from 0°C to 100°C for 1 to 24 hours, optionally deprotecting the product by:

15

i. treating with an aqueous acid in an organic solvent at a temperature from 0°C to 100°C for 1 to 24 hours; and

20

ii. stirring in methanol at a temperature between room temperature and reflux temperature;

to provide a compound represented by Formula I where A is -CHO, B is - CH_2 -NR₅R₆, R₁ and R₂ taken together are O, R₃ is H, R^P is H, and R₄ is H.

13. A process for preparing a compound represented by the formula:

5

wherein R is aryl, substituted aryl, heteroaryl, or substituted heteroaryl, R_2^P and R_3^P are each independently hydrogen or a hydroxy protecting group and R_5 and R_6 are as defined in Claim 1, comprising:

(a) reacting a compound represented by the formula:

10

wherein R^P₁, R^P₂ and R^P₃ are hydroxy protecting groups, and R' and R" are each C₁-C₆-alkyl or when taken together are -CH₂CH₂- or -CH₂CH₂-, with a propargyl halide and optionally reducing the product with a borane or stannane reagent to give a vinyl borane or vinyl stannane derivative represented by the formula:

wherein M is hydrogen, $B(OH)_2$ or $SnBu_3$ and R^P_{1} , R^P_{2} , R^P_{3} , R' and R'' are as previously defined;

(b) reacting the compound from step (a) with a compound represented by the formula R-X wherein R is aryl, substituted aryl, heteroaryl, or substituted heteroaryl and X is a halide or triflate, in the presence of a palladium catalyst to give a compound represented by the formula:

wherein R, R, R, R, R, R, and R, are as previously defined; and

(c) treating the compound from step (b) with an organic acid in an organic solvent at a temperature between room temperature to 100°C for 1-48 hours to provide a compound represented by the formula:

wherein R, R^p₂, R^P₃, R' and R" are as previously defined;

(d) treating the compound from step (c) with triphenylphosphine and a halogenating agent or with a sulfonic anhydride or sulfonyl chloride in an aprotic organic solvent at a temperature between -78°C to 50°C for 30 minutes to 48 hours, optionally in the presence of an amine base and a catalyst, to provide a compound represented by the formula:

10

5

where L is chlorine, bromine, iodine, mesylate or tosylate and R_{2}^{P} , R_{3}^{P} , R, R' and R'' are as previously defined; and

- (e) treating the compound from step (d) with an amine of the formula NHR₅R₆, where R₅ and R₆ are as defined in Claim 1, at a temperature from 0°C to 100°C for 1 to 24 hours, optionally deprotecting the product by:
 - i. treating with an aqueous acid in an organic solvent at a temperature from 0°C to 100°C for 1 to 24 hours; and
 - ii. stirring in methanol at a temperature between room temperature and reflux temperature for 4 to 24 hours;

to provide a compound represented by the formula:

wherein R^p_2 , R^p_3 , R, R_5 and R_6 are as previously defined.

14. A process for preparing a compound represented by the formula:

5

10

wherein R is aryl, substituted aryl, heteroaryl, or substituted heteroaryl, R_2^p , and R_3^p are each independently hydrogen or a hydroxy protecting group, and R_5 and R_6 are as defined in Claim 1, comprising:

(a) reacting a compound represented by the formula:

5

wherein R_2^P and R_3^P are hydroxy protecting groups, and R' and R" are each C_1 - C_6 -alkyl or when taken together are - CH_2CH_2 - or - CH_2CH_2 - and R_5 and R_6 are as defined in Claim 1, with a tert-butyl allyl carbonate or an aryl tert-butyl allyl carbonate in the presence of a palladium catalyst to provide a compound represented by the formula:

10

wherein Z is hydrogen or R and where R, R_5 , R_6 , R_2^P , R_3^P , R' and R" are as previously defined;

15

(b) when Z is hydrogen, reacting the compound from step (a) with a compound represented by the formula R-X where R is aryl, substituted aryl, heteroaryl, or substituted heteroaryl and X is a halide or triflate, in the presence of a palladium catalyst to provide a compound represented by the formula:

wherein R, R₅, R₆, R^P₂, R^P₃, R' and R" are as previously defined, optionally deprotecting the compound from step (a) or (b) by:

- i. treating with an aqueous acid in an organic solvent at a temperature from 0°C to 100°C for 1 to 24 hours; and
- ii. stirring in methanol at a temperature between room temperature and reflux temperature for 24 hours;

to provide a compound represented by the formula:

where R, R₅, R₆, R^P₂, and R^P₃ are as previously defined.

- 15. A process for preparing a compound represented by Formula I, as defined in Claim 1, comprising:
 - (a) reacting a compound represented by the formula:

where B and R₄ are as defined in Claim 1, R^P₂ and R^P₃ are each independently hydroxy protecting groups, and R' and R" are each C₁-C₆-alkyl or when taken together are -CH₂CH₂- or -CH₂CH₂-, with tetrabutyl ammonium fluoride or hydrofluoric acid to provide a compound represented by the formula:

wherein B, R₄, R^p₂, R and R are as previously defined,

(b) reacting the compound from step (a) with an alkylating agent in the presence of a base in an aprotic solvent at a temperature between −20°C and 60°C to provide a compound of the formula:

wherein R_3 is as defined in Claim 1 and B, R_4 , $R^P_{\ 2}$, R' and R" are as previously defined,

optionally deprotecting the compound from step (b) by:

- i. treating with an aqueous acid in an organic solvent at a temperature between 0°C and 100°C for 1 to 24 hours; and
- ii. stirring in methanol at a temperature between room temperature and reflux temperature;

to provide a compound represented by Formula I wherein A is -CHO, R_1 and R_2 taken together are = O , B, R_3 and R_4 are as defined in Claim 1 and R_P is hydrogen.

10

5

15

- 16. A process for preparing a compound represented by Formula I, as defined in Claim 1, comprising:
 - (a) reacting a compound represented by the formula:

wherein B and R_4 are as defined in Claim 1, R_2^P is a hydroxy protecting group, and R' and R" are each C_1 - C_6 -alkyl or when taken together are - CH_2CH_2 - or - CH_2CH_2 -, with a propargyl halide and optionally reducing the product with a borane or stannane reagent to give a vinyl borane or vinyl stannane derivative represented by the Formula:

10

wherein M is hydrogen, $B(OH)_2$ or $SnBu_3$ and B, R_4 , $R^P_{\ 2}$, R' and R" are as previously defined;

15

(b) reacting the compound from step (a) with a compound represented by the formula R-X where R is aryl, substituted aryl, heteroaryl, or substituted heteroaryl, and X is a halide or triflate, in the presence of a palladium catalyst to give a compound represented by the formula:

wherein B, R, R₄, R^P₂, R' and R" are as previously defined, optionally deprotecting the compound from step (b) by:

- i. treating with an aqueous acid in an organic solvent at a temperature between 0°C and 100°C for 1 to 24 hours; and
- ii. stirring in methanol at a temperature between room temperature and reflux temperature;

to provide a compound represented by Formula I wherein A is -CHO, R_1 and R_2 taken together are O, R_3 is -CH₂CHCH-R or -CH₂C \equiv C-R, R is as previously defined, B and R_4 are as defined in Claim 1, and R^p is hydrogen.

- A process for preparing a compound represented by Formula I, as defined in Claim 1 comprising
 - (a) reacting a compound represented by the formula:

wherein B and R_4 are as defined in Claim 1, R_2^P is a hydroxy protecting group, and R' and R" are each C_1 - C_6 -alkyl or when taken together are - CH_2CH_2 - or - CH_2CH_2 -, with an allyl halide to give a compound represented by the formula:

5

10

wherein B, R₄, R^P₂, R' and R" are as previously defined;

(b) reacting the compound from step (a) with a vinyl-R derivative, where R is aryl, substituted aryl, hetroaryl or substituted heteroaryl, using a ruthenium catalyst, to provide a compound represented by the formula:

wherein B, R, R₄, R^P₂, R' and R" are as previously defined, optionally deprotecting the compound from step (b) by:

- i. treating with an aqueous acid in an organic solvent at a temperature between 0°C and 100°C for 1 to 24 hours; and
- ii. stirring in methanol at a temperature between room temperature and reflux temperature;

to provide a compound represented by Formula I wherein A is -CHO, R_1 and R_2 taken together are O, R_3 is -CH₂CHCH-R, R is as previously defined, B and R_4 are as defined in Claim 1, and R^P is hydrogen.

10

5