Symmetric Group

Set Sn := Set of all bijections from $= \{f: \{1,\ldots,n\} \longrightarrow \{1,2,\ldots,n\} \text{ s.t.}$ f is a bijection } composition as binary operation GROUP

Exomples.

$$i$$
: 1 \longrightarrow 1

 $7: 1 \longrightarrow 2$

Note that $z^2 = i^\circ$ 7 = 2

53: Group of permytations of {1,2,3}.

$$9_2:\{1,2,3\}\longrightarrow\{1,2,3\}$$

$$\left\{
\left(
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}
\right)$$

$$5_{3} = \begin{cases} 123 & 13^{2} & 213 & 231 & 312 & 321 \\ 9_{1}, 9_{2}, 9_{3}, 9_{5}, 9_{5} & 9_{6} \end{cases}$$
 R:

Symmetries of a square:

We have only two choices for 2.

3 1-> } gets fixed by the 4 1-> } previous choice

Similarly

Aut
$$(4) = 8$$

(4) = 8

(4) = 8

(4) = 8

Symmetries of squeres are

G =
$$\langle R, f \text{ such that } R = Id, f = Id \rangle$$

two elements generating and $R = F R^{-1}$
Dihedral Group of order 8.

Dan: Dihedral Group

Set of symmetries of regular n-gon.

Fix n >, 3.

taking a regular n-gon back to itself, with the operation being composition.

D

THEOREM.

 $|D_{2n}| = 2n$

order of Dihedral group is 2n.

Proof.

broof.

regular n-gon

$$x_1$$
 x_2
 x_3
 x_3
 x_3
 x_4
 x_4
 x_4
 x_5
 x_5

$$f: \{1,2,...,n\} \longrightarrow \{1,2,...,n\}$$

$$x_1 \longmapsto f(x_1) \qquad \underline{n \text{ choices}}$$

$$x_2 \longmapsto f(x_2) \qquad \underline{2 \text{ choices}}$$

$$All \text{ other's get fixed.}$$

"Think of distance-preserving graph automorphism of n-gon" $|D_{2n}| \leqslant 2n.$

Step 2. We will show that $|D_{2n}| = 2n$.

(a) Rotations.

$$f: \{1,2,..,n\} \rightarrow \{1,2,..,n\}$$
 Geometrically rotation
$$i \longmapsto i+1 \pmod{n} \quad \text{by } \frac{2K\pi}{n} ; K=0,1,..,n$$

$$i=1,2,..,n$$

(b). Reflections:

(ose(i). n is odd

Reflection across the line connecting each vertex to the mid-point of the opposite side. for example,

n reflections, one for each vertex.

Cose(ii). n is even

There is a reflection across
the line connecting each pair
of opposite vertices

the line connecting mid-point of opposite sides

n reflections

Total: $\frac{n}{2} + \frac{n}{2} = n$ reflections

Note. Each of these are different reflections because each one fixes different vertices.

Controdiction as f is not a rotation.