Computer Networks

Obsah

- <u>Data Transfers</u>
 - <u>Data Transmission Processes</u>
 - Broadband Transmission
 - Baseband Transmission

Data Transfers

We can classify transfers using several criteria:

• According to the Direction of the Communication

- Simplex signal can flow in only one direction;
- Half duplex communication is possible in both directions, but only one direction at a time;
- Full duplex allows communication in both directions simultaneously.

According to the Multiple of Units in Communication

- Parallel multiple bits transmitted in parallel;
- Serial data are transmitted bit-by-bit, mostly used in computer networks;
 - Asynchronous Serial Communication data are transmitted character by character, both sides
 maintain their own clocks; before transmission of every single character, the phase of a receiver
 clock is synchronized; the parity bit at the end of each character helps to detect transmission
 errors:
 - Synchronous Serial Communication data are transmitted in frames containing header, payload and frame checksum delimited by flags in a transmitted bit stream. If there are no data to transmit, the transmitter transmits just the empty frames.

According to the means of Transmission

- Baseband utilizes the full bandwidth of the medium; the signal can include frequencies that are very near zero
- Broadband uses a specific part of the utilizable bandwidth of the medium, multiple communications may share the medium at the same time

Data Transmission Processes

The transmitted data are represented by changes of a suitable physical quantity, i.e. a
The signal travels along the medium (either guided or wireless). Transmitter encodes the signal
ation to transfer via medium to use demodulation and decoding on the receiver side. Via
rough the medium, we care about several media characteristics - attenuation (decreasing the

amplitude of signal), crosstalk, velocity of the signal propagation or return loss. Media characteristics are often frequency-dependent.

Harmonic Decomposition of Signal

Sine-wave signal contains just the single frequency, any other periodic signal may be treated as a sum of the sine-wave signals of various frequencies (decomposing signal into the **harmonic components**). Using Fourier series we use discrete decomposition with first n components and create the **frequency spectrum of the signal** and asses the media characteristics with the signal.

Broadband Transmission

The signal have to be shifted to a frequency band suitable for transmission over a particular medium using the **modulation**. Using sine-wave equation $s(t) = A \cdot \sin(\omega t + \phi)$ we define amplitude, frequency and phase modulation.

- **Phase-Shift Keying** (PSK) if we have 2^n possible phase changes, we may encode n bits using one signal change. The number of possible signal change options is limited by capability of the receiver to differentiate between them;
- **Quadrature Amplitude Modulation** (QAM, QAM64) combines together the amplitude and PSK modulation.

Modulation Rate is a number of changes of a signal during a time interval, measured in bauds [Bd]. **Transfer rate** is a number of bits transferred during a time interval, measured in bits per seconds [bps]. The transfer rate can be higher than the modulation rate, as we may represent multiple bits by a single signal change.

Baseband Transmission

The encoded bit stream is transmitted in the original frequency band. We need an another mechanism of the phase synchronization between transmitter and receiver using **data encoding** – we need to ensure enough changes of the signal.

- **Non Return to Zero Encoding (NRZ)** 0s and 1s are encoded directly by a low and high signal levels during the whole bit interval.
- Line code http://en.wikipedia.org/wiki/Line code
- **Manchester** 1 is expressed by a low-to-high transition at the middle of the period, a 0 by a high-to-low transition; used in 10Mbps Ethernet
- **Differential Manchester** 0 is expressed as a signal change at the beginning of a period, 1 is an unchanged value
- **Return Zero (RZ)** three signal levels, the first half of the bit interval encodes the bit value (+1 represents 1, -1 represents 0), the signal always goes to 0 in the second half of the bit interval.
- Non Return to Zero Inverted (NRZI) two signal levels, change of the signal encodes binary 1
- Alternate Mark Inversion (AMI) 3 signal levels, binary 0 represented as 0, binary 1 alternates +1 and -1, violation of polarity marks a significant event in the data stream.

- **HDB3** modification of AMI, inserts 1 after 3 consecutive 0s, the inserted 1 is identified by violation of polarity alternation rule, used on PCM E1-E3 links
- **Code Mark Inversion (CMI)** transfers AMI/HDB3 over optical lines, the one of the original 3 signal levels is encoded as a combination of two bits