The Task of Text Classification by Naïve Bayes Algorithm

Positive or negative movie review?

unbelievably disappointing

 Full of zany characters and richly applied satire, and some great plot twists

this is the greatest screwball comedy ever filmed

 It was pathetic. The worst part about it was the boxing scenes.

Text Classification: definition

- Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$
- Output: a predicted class $c \in C$

Classification Methods: Supervised Machine Learning

- Input:
 - a document d
 - a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$
 - A training set of m hand-labeled documents $(d_1, c_1), \dots, (d_m, c_m)$
- Output:
 - a learned classifier $y:d \rightarrow c$

Classification Methods: Supervised Machine Learning

- Any kind of classifier
 - Naïve Bayes
 - Logistic regression
 - Support-vector machines
 - k-Nearest Neighbors

• ...

Naïve Bayes Intuition

- Simple ("naïve") classification method based on Bayes rule
- Relies on very simple representation of document
 - Bag of words

The bag of words representation

γ(

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet.

The bag of words representation

γ(

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet.

The bag of words representation: using a subset of words

The bag of words representation

Bayes' Rule Applied to Documents and Classes

For a document d and a class c

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

Naïve Bayes Classifier (I)

$$c_{MAP} = \operatorname*{argmax}_{c \in C} P(c \mid d)$$

MAP is "maximum a posteriori" = most likely class

$$= \underset{c \in C}{\operatorname{argmax}} \frac{P(d \mid c)P(c)}{P(d)}$$

Bayes Rule

$$= \operatorname*{argmax} P(d \mid c) P(c)$$

Dropping the denominator

Naïve Bayes Classifier (II)

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(d \mid c) P(c)$$

$$= \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

Document d represented as features x1..xn

Multinomial Naïve Bayes Independence Assumptions

$$P(x_1, x_2, \dots, x_n \mid c)$$

- Bag of Words assumption: Assume position doesn't matter
- Conditional Independence: Assume the feature probabilities $P(x_i | c_i)$ are independent given the class c.

$$P(x_1,\ldots,x_n\mid c) = P(x_1\mid c) \bullet P(x_2\mid c) \bullet P(x_3\mid c) \bullet \ldots \bullet P(x_n\mid c)$$

Multinomial Naïve Bayes Classifier

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

$$c_{NB} = \underset{c \in C}{\operatorname{argmax}} P(c_j) \prod_{x \in X} P(x \mid c)$$

Applying Multinomial Naive Bayes Classifiers to Text Classification

positions ← all word positions in test document

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

Learning the Multinomial Naïve Bayes Model

- First attempt: maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}}$$

$$\hat{P}(w_i | c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$

 $\hat{P}(c_j) = \frac{doccount(C = c_j)}{N_{doc}}$ For the document prior P(c) we ask what percentage of the documents in our training set are in each class Let N_c be the number of documents in our training data with class c and N_c be the total number of document in our training set are in each class c. N_{doc} be the total number of documents.

Parameter estimation

$$\hat{P}(w_i | c_j) = \frac{count(w_i, c_j)}{\sum_{w \in V} count(w, c_j)}$$
 fraction of times word w_i appears among all words in documents of topic c_j

- Create mega-document for topic j by concatenating all docs in this topic
 - Use frequency of w in mega-document

Problem with Maximum Likelihood

 What if we have seen no training documents with the word fantastic and classified in the topic positive (thumbs-up)?

$$\hat{P}(\text{"fantastic" | positive}) = \frac{count(\text{"fantastic", positive})}{\sum_{w \in V} count(w, \text{positive})} = 0$$

 Zero probabilities cannot be conditioned away, no matter the other evidence!

$$c_{MAP} = \operatorname{argmax}_{c} \hat{P}(c) \prod_{i} \hat{P}(x_{i} \mid c)$$

Laplace (add-1) smoothing for Naïve Bayes

$$\hat{P}(w_i \mid c) = \frac{count(w_i, c) + 1}{\sum_{w \in V} (count(w, c)) + 1}$$

$$= \frac{count(w_i, c) + 1}{\left(\sum_{w \in V} count(w, c)\right) + |V|}$$

Multinomial Naïve Bayes: Learning

- From training corpus, extract *Vocabulary*

$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

- Calculate $P(c_j)$ terms

 Calculate $P(w_k \mid c_j)$ terms

 For each c_i in C do

 Text $_j \leftarrow$ single doc containing all $docs_j$
 - $docs_j \leftarrow \text{all docs with class} = c_i$ For each word w_k in Vocabulary

$$P(c_{j}) \leftarrow \frac{|docs|}{|total \# documents|}$$

$$P(w_{k} | c_{j}) \leftarrow \frac{n_{k} + \alpha}{|total \# documents|}$$

$$P(w_{k} | c_{j}) \leftarrow \frac{n_{k} + \alpha}{n + \alpha |Vocabulary|}$$

$$\hat{P}(c) = \frac{N_c}{N}$$

$$\hat{P}(w \mid c) = \frac{count(w, c) + 1}{count(c) + |V|}$$

	Doc	Words	Class
Training	1	Chinese Beijing Chinese	С
	2	Chinese Chinese Shanghai	С
	3	Chinese Macao	С
	4	Tokyo Japan Chinese	j
Test	5	Chinese Chinese Tokyo Japan	?

Priors:

$$P(c) = \frac{3}{4} \frac{1}{4}$$

$$P(j) = \frac{3}{4} \frac{1}{4}$$

Conditional Probabilities:

P(Chinese | c) =
$$(5+1) / (8+6) = 6/14 = 3/7$$

P(Tokyo | c) = $(0+1) / (8+6) = 1/14$
P(Japan | c) = $(0+1) / (8+6) = 1/14$
P(Chinese | j) = $(1+1) / (3+6) = 2/9$
P(Tokyo | j) = $(1+1) / (3+6) = 2/9$
P(Japan | j) = $(1+1) / (3+6) = 2/9$

Choosing a class:

$$P(c \mid d5) \propto 3/4 * (3/7)^3 * 1/14 * 1/14 \approx 0.0003$$

$$P(j|d5) \propto 1/4 * (2/9)^3 * 2/9 * 2/9 \approx 0.0001$$