Calculus Review Questions.

- 1. Find dy/dx given $x^2y xy^2 + x = 0$
- 2. Given $x^3y + xy^3 = 2$ find dy/dx at the point (1,1).
- 3. Find the equation of the tangent and normal lines to $y = x^3 2x^2 + 4$ at the point (2,4).
- 4. Show in the space below that $f(x) = 4x^3 + x 3 = 0$ has exactly one real solution (you only need to show the existence of one real solution you do not have to find the value). Hint: sketch a graph of the function at look at the slope. Use a fact about the slope to demonstrate the result.
- 5 a) Use the fact that $y = e^{2\pi i y}$ to rewrite 2^x in exponential form.
- b) Use your answer to (a) to differentiate 2^x.
- 6 a) Use the chain rule to write dz/dt where z = f(x(t), y(t))
- b) Use the expression from part (a) to find dz/dt given $z = \ln(x^2 + y^2)$; $x(t) = e^{-t}$ and $y(t) = e^{t}$
- 7. Find the relative extrema (max and min) for the function $f(x) = -7x^2 + 126x 23$.
 - a) Write the First Order Condition
 - b) Write the solution(s) to the First Order Condition
 - c) Use the second order conditions to classify the critical values as relative maxima, relative minima or neither.
- 8. Solve each of the following equations for x in terms of y:
 - a) lnx = ln3 + lny
 - b) lnx = 3y
- 9. Find the derivatives of
 - a) e^{3x+1}
 - b) x^2e^x
 - c) 2n(x-10)
- 10. For each of the following find $\partial f/\partial x$ and $\partial f/\partial x$
 - a) $f(x,y) = x^2 + 3xy + y^2$
 - b) f(x,y) = 1nx + 21ny
 - c) $f(x,y) = e^{xy}$
- 11. Solve the following constrained optimization problem:

max
$$lnx + 2lny$$
 subject to $x + y = 60$