PCT/EP03/04036 **WO** 03/089479

- 66 -

What is claimed is:

1. A method of curing

a composition comprising

- at least one free-radical-polymerisable compound or (a)
- at least one compound that, under the action of an acid, is able to enter into a (b) polymerisation, polycondensation or polyaddition reaction, or
- at least one compound that, under the action of a base, is able to enter into a polymer-(c) isation, polycondensation or polyaddition reaction, or

a mixture of components (a) and (b), or

a mixture of components (a) and (c); and

at least one photolatent compound that is activatable by plasma discharge; (d) wherein

the composition is applied to a three-dimensional substrate and the curing is carried out in a plasma discharge chamber.

2. A method of curing

a composition comprising

- at least one free-radical-polymerisable compound or
- at least one compound that, under the action of an acid, is able to enter into a (b) polymerisation, polycondensation or polyaddition reaction, or
- at least one compound that, under the action of a base, is able to enter into a polymerisation, polycondensation or polyaddition reaction, or

a mixture of components (a) and (b), or

a mixture of components (a) and (c);

- at least one photolatent compound that is activatable by plasma discharge; and
- at least one light stabiliser compound or UV absorber compound;

wherein

the curing is carried out in a plasma discharge chamber.

3. A method according to either claim 1 or claim 2, wherein component (d) in the composition is a free-radical photoinitiator, a photolatent acid or a photolatent base.

- 4. A method according to either claim 1 or claim 2, wherein component (d) in the composition is at least one compound selected from the group of benzophenones, benzophenone derivatives, acetophenone, acetophenone derivatives, halomethylbenzophenones, halomethylarylsulfones, dialkoxyacetophenones, anthracene, anthracene derivatives, thioxanthone, thioxanthone derivatives, 3-ketocoumarin, 3-ketocoumarin derivatives, anthraquinone, anthraquinone derivatives, α-hydroxy- or α-amino-acetophenone derivatives, α-sulfonylacetophenone derivatives, 4-aroyl-1,3-dioxolanes, benzoin alkyl ethers and benzilketals, phenyl glyoxalates and derivatives thereof, dimeric phenyl glyoxalates, peresters, monoacylphosphine oxides, bisacylphosphine oxides, trisacylphosphine oxides, halomethyltriazines, titanocenes, borate compounds, O-acyloxime compounds, camphorquinone derivatives, iodonium salts, sulfonium salts, iron aryl complexes, oximesulfonic acid esters and photolatent amines.
- 5. A method according to either claim 1 or claim 2, wherein component (d) in the composition is at least one compound of formula I, II, III or/and IV

$$R_{4a}$$
 $C - C - R_{2}$ (I), wherein

 R_1 is C_1 - C_{12} alkyl or C_1 - C_{12} alkoxy;

 R_2 is phenyl, OR_5 or NR_7R_8 ;

 R_3 has one of the definitions given for R_1 or is C_3 - C_{12} alkenyl, phenyl- C_1 - C_6 alkyl or C_1 - C_6 alkylphenyl- C_1 - C_6 alkyl;

or R₁ and R₃, together with the carbon atom to which they are bonded, form a cyclohexyl ring;

 R_2 being phenyl when R_1 and R_3 are both alkoxy;

 R_4 and R_{4a} are each independently of the other hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} hydroxyalkyl,

OR₅, SR₆, NR₇R₈, halogen,
$$H_3C$$
 CH_3 C

$$-R_9$$
 $\stackrel{O}{=}$ $\stackrel{R_1}{\stackrel{\circ}{c}}$ or a monovalent linear or branched siloxane radical;

n is a number from 1 to 10;

 R_5 and R_6 are each independently of the other hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} alkenyl, phenyl, benzyl, Si(CH₃)₃ or $-[C_aH_{2a}X]_b^-R_{10}$;

R₇ and R₈ are each independently of the other hydrogen, C₁-C₁₂alkyl or C₂-C₅hydroxyalkyl, or R₇ and R₈, together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O atoms or a NR₁₁ group;

a and b are each independently of the other a number from 1 to 12;

X is S, O or NR₁₁;

$$\mathbf{R}_{10}$$
 is hydrogen, \mathbf{C}_1 - \mathbf{C}_{12} alkyl or \mathbf{C}_1 - \mathbf{C}_2 = \mathbf{C}_1 - \mathbf

 R_{11} is hydrogen, phenyl, phenyl- C_1 - C_4 alkyl, C_1 - C_{12} alkyl or C_2 - C_5 hydroxyalkyl; and R_{12} , R_{13} and R_{14} are each independently of the others hydrogen or methyl;

$$R_{19}$$
 R_{17}
 C
 C
 R_{16}
 R_{18}
 R_{18}
 R_{18}
 R_{18}
 R_{19}
 $R_$

 R_{15} and R_{16} are each independently of the other C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy; phenyl which is unsubstituted or substituted by one or more OR_{22} , SR_{23} , $NR_{24}R_{25}$, C_1 - C_{12} alkyl or halogen

substituents; or R₁₅ and R₁₆ are biphenylyl, naphthyl, phenyl-C₁-C₄alkyl or

$$R_{18}$$
 R_{19} ;

 R_{17} and R_{18} are each independently of the other C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, CF_3 or halogen; R_{19} , R_{20} and R_{21} are each independently of the others hydrogen, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, CF_3 or halogen;

R₂₂, R₂₃, R₂₄ and R₂₅ are each independently of the others hydrogen, C₁-C₁₂alkyl, C₂-C₁₂-alkenyl, C₃-C₈cycloalkyl, phenyl, benzyl, or C₂-C₂₀alkyl which is interrupted by O atoms and is unsubstituted or substituted by OH or/and SH; or R₂₄ and R₂₅, together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O or S atoms or an NR₂₆ group; and

R₂₆ is hydrogen, phenyl, phenyl-C₁-C₄alkyl, C₁-C₁₂alkoxy, C₁-C₁₂alkyl or C₁-C₁₂hydroxyalkyl;

$$R_{28}$$
 R_{30} R_{31} (III), wherein

 R_{27} , R_{28} , R_{29} , R_{30} , R_{31} and R_{32} are each independently of the others hydrogen, C_1 - C_4 alkyl, phenyl, naphthyl, -OR₃₅, -SR₃₅, -(CO)O(C₁-C₄alkyl), halogen, NR₃₃R₃₄ or a monovalent linear or branched siloxane radical, or R_{29} and R_{30} , each in the o-position to the carbonyl group, together form a S atom; and

 R_{33} and R_{34} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_2 - C_6 hydroxyalkyl, or R_{33} and R_{34} , together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O atoms or a NR_{11} group; and

 R_{35} is C_1 - C_{12} alkyl, C_2 - C_6 hydroxyalkyl or phenyl;

$$R_{38}$$
 R_{39}
 R_{40}
 R_{39}
 R_{40}
 R_{36}
 R_{36}

 R_{36} , R_{37} , R_{38} , R_{39} and R_{40} are each independently of the others hydrogen, C_1 - C_{12} alkyl unsubstituted or substituted by OH, C_1 - C_4 alkoxy, phenyl, naphthyl, halogen, CN and/or by -OCOR₄₁, or C_2 - C_{12} alkyl which is interrupted by one or more O atoms, or R_{36} , R_{37} , R_{38} , R_{39}

and R₄₀ are OR₄₂, SR₄₃, NR₄₄R₄₅, halogen, a monovalent linear or branched siloxane radical, or phenyl unsubstituted or substituted by one or two C₁-C₄alkyl or/and one or two C₁-C₄alkoxy substituents, it being possible for the substituents OR₄₂, SR₄₃, NR₄₄R₄₅ to form 5- or 6-membered rings by way of the radicals R₄₂, R₄₃, R₄₄ and/or R₄₅ with further substituents on the phenyl ring or with one of the carbon atoms of the phenyl ring;

 R_{41} is C_1 - C_8 alkyl, or phenyl unsubstituted or substituted by from one to three C_1 - C_4 alkyl and/or one to three C_1 - C_4 alkoxy substituents;

 R_{42} and R_{43} are each independently of the other hydrogen, C_1 - C_{12} alkyl unsubstituted or substituted by OH, C_1 - C_4 alkoxy, phenyl, phenoxy or/and by -OCOR₄₁, or C_2 - C_{12} alkyl which is interrupted by one or more O atoms, or R_{42} and R_{43} are phenyl unsubstituted or substituted by C_1 - C_4 alkoxy, phenyl or/and by C_1 - C_4 alkyl, or R_{42} and R_{43} are C_3 - C_6 alkenyl, cyclopentyl, cyclohexyl or naphthyl;

R₄₄ and R₄₅ are each independently of the other hydrogen, C₁-C₁₂alkyl unsubstituted or substituted by OH, C₁-C₄alkoxy or/and by phenyl, or C₂-C₁₂alkyl which is interrupted by one or more O atoms, or R₄₄ and R₄₅ are phenyl, -COR₄₁ or SO₂R₄₆, or R₄₄ and R₄₅, together with the nitrogen atom to which they are bonded, form a 5-, 6- or 7-membered ring, which may also be interrupted by -O- or -NR₄₇-;

R₄₆ is C₁-C₁₂alkyl, phenyl or 4-methylphenyl;

 R_{47} is hydrogen, C_1 - C_8 alkyl unsubstituted or substituted by OH or by C_1 - C_4 alkoxy, or is phenyl unsubstituted or substituted by OH, C_1 - C_4 alkyl or by C_1 - C_4 alkoxy;

Y is
$$-Y_1$$
 o $-C$ $-C$ $+C_{4alkyl}$ or R_{3a} $+C_{1}$ - C_{20} alkyl, phenyl, naphthyl, phenyl- C_1 - C_4 alkyl or

a monovalent linear or branched siloxane radical;

 Y_1 is C_1 - C_{12} alkylene, C_4 - C_8 alkenylene, C_4 - C_8 alkynylene, cyclohexylene, C_4 - C_{40} alkylene interrupted by one or more -O-, -S- or -NR₄₈-, or is phenylene or Y_1 is a group

; or a divalent linear or branched siloxane radical;

Y₂ has the same definitions as Y₁ with the exception of the formula

-CH₂CH(OH)CH₂O-Y₂-OCH₂CH(OH)CH₂-;

 \mathbf{R}_{48} is hydrogen, C_1 - C_{12} alkyl or phenyl; and

R₄₉ is hydrogen, CH₂OH or C₁-C₄alkyl.

- 6. A method according to claim 4, wherein component (d) in the composition is at least one compound of formula I or/and II, especially a mixture of a compound of formula I and a compound of formula II.
- 7. A method according to either claim 1 or claim 2, wherein component (d) in the composition is at least one compound of formula V, VI, VII or/and VIIa

$$R_{50}$$
 Z^{-} (V), wherein

 R_{50} and R_{51} are each independently of the other hydrogen, C_1 - C_{20} alkyl, C_1 - C_{20} alkoxy, OH-substituted C_1 - C_{20} alkoxy, halogen, C_2 - C_{12} alkenyl, cycloalkyl, especially methyl, isopropyl or isobutyl; and

$$R_{52} - S_{-} + R_{54} - Z_{-}$$
 (VI), wherein

 \mathbf{R}_{52} , \mathbf{R}_{53} and \mathbf{R}_{54} are each independently of the others unsubstituted phenyl, or phenyl sub-

Z is as defined above;

$$R_{55}$$
 C=N-O-R₅₇ (VII), or R_{55} C=N-O-R₅₇ (VIIa), wherein

$$R_{55}$$
 is $\begin{bmatrix} O \\ II \\ C \end{bmatrix}_q R_{58}$, (CO)O-C₁-C₄alkyl, CN or C₁-C₁₂haloalkyl;

$$R_{56}$$
 has one of the definitions given for R_{55} or is $-C_{CH_2} = C_{S_5} = C_{R_{55}} = C_{S_5} = C_{S_5}$

R₅₇ is C₁-C₁₈alkylsulfonyl, C₁-C₁₀haloalkylsulfonyl, camphorylsulfonyl, phenyl-C₁-C₃alkylsulfonyl, C₃-C₃₀cycloalkylsulfonyl, phenylsulfonyl, naphthylsulfonyl, anthracylsulfonyl or phenanthrylsulfonyl, the groups cycloalkyl, phenyl, naphthyl, anthracyl and phenanthryl of the radicals C₃-C₃₀cycloalkylsulfonyl, phenyl-C₁-C₃alkylsulfonyl, phenylsulfonyl, naphthylsulfonyl, anthracylsulfonyl and phenanthrylsulfonyl being unsubstituted or substituted by one or more halogen, C₁-C₄haloalkyl, CN, NO₂, C₁-C₁₆alkyl, phenyl, C₁-C₄alkylthio, C₁-C₄alkoxy, phenoxy, C₁-C₄alkyl-O(CO)-, C₁-C₄alkyl-(CO)O-, R₆₇OSO₂- and/or -NR₆₀R₆₁ substituents; or

 X_1 , X_2 and X_3 are each independently of the others O or S;

q is 0 or 2; and

R₅₈ is C₁-C₁₂alkyl, cyclohexyl, camphoryl, unsubstituted phenyl, or phenyl substituted by one or more halogen, C₁-C₁₂alkyl, OR₅₉, SR₅₉ or NR₆₀R₆₁ substituents;

 R_{59} is C_1 - C_{12} alkyl, phenyl, phenyl- C_1 - C_4 alkyl or C_1 - C_{12} hydroxyalkyl;

 R_{60} and R_{61} are each independently of the other hydrogen, C_1 - C_4 alkyl, C_2 - C_6 hydroxyalkyl, or R_{60} and R_{61} , together with the N atom to which they are bonded, form a 5- or 6-membered ring, which may also contain O atoms or an NR_{62} group;

 R_{62} is hydrogen, phenyl, phenyl- C_1 - C_4 alkyl, C_1 - C_{12} alkyl or C_2 - C_5 hydroxyalkyl;

 R_{63} , R_{64} , R_{65} and R_{66} are each independently of the others C_1 - C_6 alkyl, C_1 - C_6 haloalkyl; or phenyl unsubstituted or substituted by C_1 - C_4 alkyl or by halogen; and

R₆₇ is hydrogen, C₁-C₄alkyl, phenyl or tolyl.

8. A method according to either claim 1 or claim 2, wherein component (d) in the composition is at least one compound of formula VIII

$$R_{68}$$
 R_{69} R_{70} (VIII), wherein

r is 0 or 1;

X₄ is CH₂ or O;

R₆₈ and R₆₉ are each independently of the other hydrogen or C₁-C₂₀alkyl; and

 R_{70} is unsubstituted or C_1 - C_{12} alkyl- or C_1 - C_{12} alkoxy-substituted phenyl, naphthyl or biphenylyl.

- 9. A method according to either claim 1 or claim 2, wherein the composition comprises, in addition to the photolatent component (d), other additives (h), sensitiser compounds (f) or/and dyes or pigments (g).
- 10. A method according to claim 1, wherein the composition comprises at least one light stabiliser or/and at least one UV absorber compound.
- 11. A method according to either claim 1 or claim 2, wherein the composition is a surface coating.

- 74 -
- 12. A method according to either claim 1 or claim 2, wherein the composition is a printing ink.
- 13. A method according to either claim 1 or claim 2, wherein the composition comprises as polymerisable component solely free-radical-polymerisable compounds (a).
- 14. A method according to claim 13, wherein the free-radical-polymerisable compound comprises at least one mono-, di-, tri- or tetra-functional acrylate monomer and/or at least one mono-, di-, tri- or tetra-functional acrylate-functional oligomer.
- 15. A method according to either claim 1 or claim 2, wherein the composition comprises as polymerisable component solely cationically polymerisable or crosslinkable compounds (b).
- 16. A method according to either claim 1 or claim 2, wherein the composition comprises as polymerisable component a mixture of at least one free-radical-polymerisable compound (a) and at least one cationically polymerisable compound (b).
- 17. A coated substrate which is coated on at least one surface by means of the method according to either claim 1 or claim 2.
- 18. A coating obtainable by a method according to either claim 1 or claim 2.
- 19. A method of curing
- a composition comprising
 - (1) a combination of at least one electron acceptor compound, especially a maleimide compound, and at least one electron donor compound, especially a vinyl ether compound; and
- (2) optionally at least one free-radical-polymerisable compound (a), wherein the curing is carried out in a plasma discharge chamber.
- 20. A method of curing a composition comprising

- (a) at least one free-radical-polymerisable component having at least one ethylenically unsaturated double bond, the free-radical-polymerisable component optionally additionally being functionalised with OH, NH₂, COOH, epoxy or NCO groups; and
- (a1) at least one polyacrylate or/and polyester polyol in combination with melamine or with a melamine derivative, or in combination with a blocked or non-blocked polyisocyanate; or
- (a2) at least one carboxyl-, anhydride- or amino-functional polyester or/and at least one carboxyl-, anhydride- or amino-functional polyacrylate in combination with an epoxy-functional polyester or polyacrylate; or
- (a3) a mixture of (a1) and (a2);
- (d) at least one photolatent compound that is activatable by plasma discharge; wherein

the curing of the composition is carried out in a plasma discharge chamber and, optionally, thermal pre- or after-treatment is carried out.

- 21. A method of producing mouldings from composite materials, wherein a support is impregnated with a composition comprising
- (a) at least one free-radical-polymerisable compound or
- (b) at least one compound that, under the action of an acid, is able to enter into a polymerisation, polycondensation or polyaddition reaction, or
- (c) at least one compound that, under the action of a base, is able to enter into a polymerisation, polycondensation or polyaddition reaction, or

a mixture of components (a) and (b), or a mixture of components (a) and (c); and

(d) at least one photolatent compound that is activatable by plasma discharge; and is introduced into a mould;

wherein the curing is carried out in a plasma discharge chamber and, optionally, thermal aftertreatment is carried out.