

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Naval Research Laboratory

Washington, DC 20375-5000

NRL Report 9047

Incomplete Lipschitz-Hankel Integrals of Bessel Functions

ALLEN R. MILLER

Computer-Aided Design/Computer-Aided Manufacturing Engineering Services Division

May 26, 1987

AD-A182 378

ECURITY CLASSIFICATION OF THIS PAGE	A	182	3	28
		<u> </u>		

	REPORT DOCUM	MENTATION I	PAGE			
REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16 RESTRICTIVE MARKINGS				
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT				
Approved for public release, distribution unlin			inlimited.			
4 PERFORMING ORGANIZATION REPORT NUMBER	R(S)	5 MONITORING C	RGANIZATION R	PORT NUMBER(S	3)	
NRL Report 9047						
6a NAME OF PERFORMING ORGANIZATION	6b OFFICE SYMBOL (If applicable)	78 NAME OF MONITORING ORGANIZATION				
Naval Research Laboratory	Code 2303					
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit)	r, State, and ZIP (Code)		
Washington, DC 20375-5000					ľ	
8a NAME OF FUNDING / SPONSORING	85 OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT IDE	NTIFICATION NU	MBER	
ORGANIZATION Naval Research Laboratory	(If applicable) Code 2303	3. PROCONEMENT INSTRUMENT IDENTIFICATION NOMBER				
8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF F	UNDING NUMBER	s		
Washington, DC 20375-5000		PROGRAM PROJECT TASK WORK UNIT NO NO ACCESS ON NO				
11 TITLE (Include Security Classification)				L		
Incomplete Lipschitz-Hankel Integrals	s of Bessel Functions					
12 PERSONAL AUTHOR(S) Miller, Allen R.						
13a TYPE OF REPORT 13b TIME C FROM	OVERED 7/86 TO 1/87	14 DATE OF REPOR	RT (Year, Month, 1 7 May 26		COUNT 2	
16 SUPPLEMENTARY NOTATION						
17 COSATI CODES	18 SUBJECT TERMS (ontinue on reverse	if necessary and	identify by bloc	k number)	
FIELD GROUP SUB-GROUP	Integrals of Bes					
	Hypergeometric	tric functions				
19 ABSTRACT (Continue on reverse if necessary						
Various representations for inco terms of Kampé de Fériet double						
employed have been given in some ca		ctions. Reducti	on formulas i	or the double	series	
, , , , , , , , , , , , , , , , , , , ,						
	•					
	·					
(1) OSTRIR ON AVAILABETY OF ABOUTANTS	RRT DISERS	21 ABSTRACT SEC UNCLASSI		ATION		
A SAME BOOK OF HIS NOW A	<u> </u>	226 TELEPHONE (A	nclude Area Code	224 OFFICE SY	MBOL	
Allen R. Miller DO FORM 1473 - across 83.44	PRied from may be used un	(202) 767-2	215	Code 23	()3	

PARTY RESERVED BY SAME TO SERVED

Redition may be used untileaha A cother editions are los dete

CONTENTS

INTRODUCTION	1
REPRESENTATIONS FOR $J_{\epsilon_{\mu,\nu}}^{\pm}(a,z), J_{\epsilon_{\mu,\nu}}^{\pm}(a,z), J_{s_{\mu,\nu}}^{\pm}(a,z)$	2
REDUCTION FORMULAS FOR L, N, Q	6
SUMMARY	8
DEFEDENCES	0

Acces	sion For	
NTIS	GRA&I	
DTIC TAB		
Unannounced 🔲		
Justification		
	ibution/	_
Availability Codes		
Dist	Avail and/or Special	
AI		

INCOMPLETE LIPSCHITZ-HANKEL INTEGRALS OF BESSEL FUNCTIONS

INTRODUCTION

The general incomplete Lipschitz-Hankel Integral of Bessel Functions of the first kind is defined by

$$J_{e_{\mu,\nu}}(a,z) \equiv \int_0^z e^{at} t^{\mu} J_{\nu}(t) dt \tag{1}$$

Here the symbol e denotes the presence of the exponential function, and μ , ν may be complex numbers. Analogously, we may define integrals that contain the functions $\sin(at)$ and $\cos(at)$ in place of $\exp(at)$:

$$J_{s_{\mu,\nu}}(a,z) \equiv \int_0^z \sin(at) t^{\mu} J_{\nu}(t) dt$$
 (2)

$$J_{c_{\mu,\nu}}(a,z) \equiv \int_0^z \cos(at) t^{\mu} J_{\nu}(t) dt$$
 (3)

To assure convergence of these integrals, it is necessary that $Re(1 + \mu + \nu) > 0$. When $\mu = \nu$ we shall write, for example,

$$J_{e_{\mu,\mu}}(a,z) \equiv J_{e_{\mu}}(a,z) \tag{4}$$

We shall also define integrals of modified Bessel functions $I_r(t)$ or other cylindrical functions C(t) by simply replacing J by I or C in the above definitions. In addition, we define $J^+ \equiv J$, $J^- \equiv I$.

In Ref. 1 it is shown for the Bessel function of imaginary argument or MacDonald function K_0 that

$$K_{e_0}(a, z) = z K_0(z) A(a, z) + z^2 K_1(z) B(a, z)$$

where

$$A(a,z) \equiv L[\frac{1}{2},1;\frac{1}{2},\frac{3}{2};\frac{a^2z^2}{4},\frac{z^2}{4}] + \frac{az}{2}Q[1,1,1;1,2,\frac{3}{2};\frac{a^2z^2}{4},\frac{z^2}{4}]$$

$$B(a,z) \equiv L\left[\frac{1}{2}, 1; \frac{3}{2}, \frac{3}{2}; \frac{a^2z^2}{4}, \frac{z^2}{4}\right] + \frac{az}{4}Q\left[1, 1, 1; 2, 2, \frac{3}{2}; \frac{a^2z^2}{4}, \frac{z^2}{4}\right]$$

Manuscript approved February 3, 1987

Here L and Q are Kampé de Fériet double hypergeometric functions (defined below) of order three and four respectively. These functions are therefore non-Gaussian. Only members of the class of double Gaussian series of order two that consists of 34 distinct convergent forms have been given names $\{2, p. 54\}$. These 34 forms are sometimes referred to as Horn's list.

In this report we shall show that the functions L and Q may also be employed to give representations for Eqs. 1-4 for I and J. To this end we recall the definitions of the Kampé de Fériet functions L and Q:

$$Q[\alpha, \beta, \gamma; \mu, \nu, \lambda; x, y] \equiv F \frac{0:2;1}{2:1;0} \begin{bmatrix} -:\alpha, \beta; \gamma; \\ \mu, \nu: \gamma; -; x, y \end{bmatrix}$$

$$L[\alpha, \beta; \gamma, \delta; x, y] \equiv Q[\alpha, \lambda, \beta; \gamma, \delta, \lambda; x, y] \qquad |x| < \infty, |y| < \infty$$

We shall also introduce the third order function

$$N\{\alpha; \beta, \gamma, \delta; x, y\} \equiv F \begin{cases} 1:0;0 \\ 1:1;1 \end{cases} \begin{bmatrix} \alpha : -; -; \\ \beta : \gamma; \delta; x, y \end{bmatrix} \qquad |x| < \infty, |y| < \infty$$

REPRESENTATIONS FOR $J_{e_{\mu,\nu}}^{\pm}(a,z), J_{e_{\mu,\nu}}^{\pm}(a,z), J_{s_{\mu,\nu}}^{\pm}(a,z)$

Since

$$J_{\nu}^{\pm}(t) = \frac{(t/2)^{\nu}}{\Gamma(1+\nu)} \,_{0}F_{1}[-; 1+\nu; \mp t^{2}/4]$$

we easily find that

$$e^{at} t^{\mu} J_{\nu}^{\pm}(t) = \frac{1}{2^{\nu} \Gamma(1+\nu)} \sum_{n=0}^{\infty} \frac{a^{n}}{n!} \sum_{m=0}^{\infty} \frac{(\mp 1)^{m} t^{\mu+\nu+2m+n}}{2^{2m} (1+\nu)_{m} m!}$$

Now assuming that $Re(1 + \mu + \nu) > 0$ we obtain, on integrating term by term with respect to t.

$$J_{e_{\mu\nu}}^{z}(a,z) = \frac{z^{1+\mu+\nu}}{2^{\nu}\Gamma(1+\nu)} \sum_{m=0}^{\infty} \frac{(az)^{n}}{n!} \frac{(\mp z^{2}/4)^{m}}{m!} \frac{1}{(1+\nu)_{m}(1+\mu+\nu+2m+n)}$$
 (5)

Substituting

$$\frac{1}{1+\mu+\nu+2m+n} = \frac{1}{1+\mu+\nu} \frac{\left(\frac{1+\mu+\nu}{2}\right)_m}{\left(\frac{3+\mu+\nu}{2}\right)_m} \frac{(1+\mu+\nu+2m)_n}{(2+\mu+\nu+2m)_n}$$

into Eq. 5 then gives

$$J_{e_{\mu,\nu}}^{\pm}(a,z) = \frac{z^{1+\mu+\nu}}{2^{\nu}(1+\mu+\nu) \Gamma(1+\nu)} \sum_{m=0}^{\infty} \frac{\left(\frac{1+\mu+\nu}{2}\right)_{m}}{\left(\frac{3+\mu+\nu}{2}\right)_{m}(1+\nu)_{m}} \frac{(\mp z^{2}/4)^{m}}{m!}$$

$$\cdot {}_{1}F_{1}[1 + \mu + \nu + 2m; 2 + \mu + \nu + 2m; az]$$
 (6)

Now using Kummer's first theorem

$$_{1}F_{1}[a; c; z] = e^{z} _{1}F_{1}[c - a; c; -z]$$

we obtain from Eq. 6

$$J_{e_{\mu,\nu}}^{\pm}(a,z) = \frac{z^{1+\mu+\nu}e^{az}}{2^{\nu}(1+\mu+\nu)\Gamma(1+\nu)} \sum_{m=0}^{\infty} \frac{\left(\frac{1+\mu+\nu}{2}\right)_{m}}{\left(\frac{3+\mu+\nu}{2}\right)_{m}(1+\nu)_{m}} \frac{(\mp z^{2}/4)^{m}}{m!}$$

$$r_1F_1$$
 [1; 2 + μ + ν + 2 m ; -az] (7)

Since

$$\frac{1}{(2+\mu+\nu+2m)_n} = \frac{2^{2m} \left(\frac{2+\mu+\nu}{2}\right)_m \left(\frac{3+\mu+\nu}{2}\right)_m}{(2+\mu+\nu)_{2m+n}}$$

we obtain from Eq. 7

$$J_{e_{\mu,\nu}}^{z}(a,z) = \frac{z^{1+\mu+\nu} e^{az}}{2^{\nu}(1+\mu+\nu)\Gamma(1+\nu)} \sum_{m,n=0}^{\infty} \frac{(\mp z^2)^m}{m!} \frac{(-az)^n}{n!}$$

$$\frac{(1)_n \left(\frac{1+\mu+\nu}{2}\right)_m \left(\frac{2+\mu+\nu}{2}\right)_m}{(1+\nu)_m (2+\mu+\nu)_{2m+n}}$$
(8)

Finally, noting that for any α

$$(2 + \alpha)_{2m+2n} = 2^{2m} 2^{2n} \left[\frac{2 + \alpha}{2} \right]_{m+n} \left[\frac{3 + \alpha}{2} \right]_{m+n}$$

$$(2+\alpha)_{2m+2n+1} = (2+\alpha)2^{2m}2^{2n} \left(\frac{3+\alpha}{2}\right)_{m+n} \left(\frac{4+\alpha}{2}\right)_{m+n}$$

we obtain from Eq. 8 and the definition of Q given earlier

$$J_{e_{\mu,\nu}}^{\pm}(a,z) = \frac{z^{1+\mu+\nu} e^{az}}{2^{\nu}(1+\mu+\nu)\Gamma(1+\nu)}$$

$$\left\{Q\left[\frac{1+\mu+\nu}{2}, \frac{2+\mu+\nu}{2}, 1; \frac{2+\mu+\nu}{2}, \frac{3+\mu+\nu}{2}, 1+\nu; \frac{\mp z^{2}}{4}, \frac{a^{2}z^{2}}{4}\right]\right\}$$

$$-\frac{az}{2+\mu+\nu} Q\left[\frac{1+\mu+\nu}{2}, \frac{2+\mu+\nu}{2}, 1; \frac{3+\mu+\nu}{2}, \frac{4+\mu+\nu}{2}, 1+\nu; \frac{\mp z^{2}}{4}, \frac{a^{2}z^{2}}{4}\right]$$

On letting $\mu = \nu$ in Eq. 9 we have

$$J_{e_{\mu}}^{\pm}(a,z) = \frac{z(z^{2}/2)^{\mu} e^{az}}{(1+2\mu)\Gamma(1+\mu)}$$

$$\cdot \left\{ L\left[\frac{1}{2} + \mu, 1; 1 + \mu, \frac{3}{2} + \mu; \frac{\mp z^{2}}{4}, \frac{a^{2}z^{2}}{4}\right] - \frac{az}{2(1+\mu)} L\left[\frac{1}{2} + \mu, 1; \frac{3}{2} + \mu, 2 + \mu; \frac{\mp z^{2}}{4}, \frac{a^{2}z^{2}}{4}\right] \right\}$$

In addition we may use Eq. 5 and the definition of N to obtain

$$J_{e_{\mu,\nu}}^{\pm}(a,z) = \frac{z^{1+\mu+\nu}}{2^{\nu}\Gamma(1+\nu)}$$

$$\cdot \left\{ \frac{1}{1+\mu+\nu} N\left[\frac{1+\mu+\nu}{2}; \frac{3+\mu+\nu}{2}, 1+\nu, \frac{1}{2}; \frac{\mp z^{2}}{4}, \frac{a^{2}z^{2}}{4}\right] + \frac{az}{2+\mu+\nu} N\left[\frac{2+\mu+\nu}{2}; \frac{4+\mu+\nu}{2}, 1+\nu, \frac{3}{2}; \frac{\mp z^{2}}{4}, \frac{a^{2}z^{2}}{4}\right] \right\}$$

$$(10)$$

For brevity we shall define the following parameter lists ∇_j :

$$\nabla_{1} \equiv \frac{1 + \mu + \nu}{2}, \frac{2 + \mu + \nu}{2}, 1; \frac{2 + \mu + \nu}{2}, \frac{3 + \mu + \nu}{2}, 1 + \nu$$

$$\nabla_{2} \equiv \frac{1 + \mu + \nu}{2}, \frac{2 + \mu + \nu}{2}, 1; \frac{3 + \mu + \nu}{2}, \frac{4 + \mu + \nu}{2}, 1 + \nu$$

$$\nabla_{3} \equiv \frac{1 + \mu + \nu}{2}; \frac{3 + \mu + \nu}{2}, 1 + \nu, \frac{1}{2}$$

$$\nabla_{4} \equiv \frac{2 + \mu + \nu}{2}; \frac{4 + \mu + \nu}{2}, 1 + \nu, \frac{3}{2}$$

$$\nabla_{5} \equiv 1 + \mu + \nu, \frac{1}{2} + \nu; 2 + \mu + \nu, 1 + 2\nu$$

We may then obtain from Eqs. 9 and 10

$$J_{c_{\mu,\nu}}^{\pm}(a,z) = \frac{z^{1+\mu+\nu}}{2^{\nu}(1+\mu+\nu)\Gamma(1+\nu)} \left\{ \cos(az) \ Q[\nabla_1; \frac{\mp z^2}{4}, \frac{-a^2z^2}{4}] \right\}$$

$$+ \frac{az}{2+\mu+\nu} \sin(az) \ Q[\nabla_2; \frac{\mp z^2}{4}, \frac{-a^2z^2}{4}] \right\}$$

$$= \frac{z^{1+\mu+\nu}}{2^{\nu}(1+\mu+\nu)\Gamma(1+\nu)} \ N[\nabla_3; \frac{\mp z^2}{4}, \frac{-a^2z^2}{4}]$$

$$J_{c_{\mu,\nu}}^{\pm}(a,z) = \frac{z^{1+\mu+\nu}}{2^{\nu}(1+\mu+\nu)\Gamma(1+\nu)} \left\{ \sin(az) \ Q[\nabla_1; \frac{\mp z^2}{4}, \frac{-a^2z^2}{4}] \right\}$$
(11)

$$-\frac{az}{2 + \mu + \nu} \cos(az) Q[\nabla_2; \frac{\pm z^2}{4}, \frac{-a^2 z^2}{4}]$$

$$= \frac{az^{2 + \mu + \nu}}{2^{\nu}(2 + \mu + \nu)\Gamma(1 + \nu)} N[\nabla_4; \frac{\pm z^2}{4}, \frac{-a^2 z^2}{4}]$$

And from these equations we obtain on letting $\mu = \nu$

$$J_{c_{\mu}}^{\pm}(a,z) = \frac{z^{1+2\mu}}{2^{\mu}(1+2\mu)\Gamma(1+\mu)} \left\{ \cos(az) L\left[\frac{1}{2} + \mu, 1; 1 + \mu, \frac{3}{2} + \mu; \frac{\mp z^{2}}{4}, \frac{-a^{2}z^{2}}{4}\right] \right.$$

$$\left. + \frac{az}{2(1+\mu)} \sin(az) L\left[\frac{1}{2} + \mu, 1; \frac{3}{2} + \mu, 2 + \mu; \frac{\mp z^{2}}{4}, \frac{-a^{2}z^{2}}{4}\right] \right\}$$

$$= \frac{z^{1+2\mu}}{2^{\mu}(1+2\mu)\Gamma(1+\mu)} N\left[\frac{1}{2} + \mu; \frac{3}{2} + \mu, 1 + \mu, \frac{1}{2}; \frac{\mp z^{2}}{4}, \frac{-a^{2}z^{2}}{4}\right]$$

$$J_{s_{\mu}}^{\pm}(a,z) = \frac{z^{1+2\mu}}{2^{\mu}(1+2\mu)\Gamma(1+\mu)} \left\{ \sin(az) L\left[\frac{1}{2} + \mu, 1; 1 + \mu, \frac{3}{2} + \mu; \frac{\mp z^{2}}{4}, \frac{-a^{2}z^{2}}{4}\right] \right.$$

$$\left. - \frac{az}{2(1+\mu)} \cos(az) L\left[\frac{1}{2} + \mu, 1; \frac{3}{2} + \mu, 2 + \mu; \frac{\mp z^{2}}{4}, \frac{-a^{2}z^{2}}{4}\right] \right\}$$

$$= \frac{az^{2(1+\mu)}}{2^{1+\mu}(1+\mu)\Gamma(1+\mu)} N\left[1 + \mu; 2 + \mu, 1 + \mu, \frac{3}{2}; \frac{\mp z^{2}}{4}, \frac{-a^{2}z^{2}}{4}\right]$$

Finally, noting that $I_{\nu}(z)$ may be represented by

$$I_{\nu}(z) = \frac{(z/2)^{\nu}}{\Gamma(1+\nu)} e^{\pm z} {}_{1}F_{1} \left[\frac{1}{2} + \nu; 1 + 2\nu; \mp 2z\right]$$

we readily obtain

$$I_{e_{\mu,\nu}}(a,z) = \frac{z^{1+\mu+\nu}}{2^{\nu}(1+\mu+\nu)\Gamma(1+\nu)} F \stackrel{1:1;0}{1:1;0} \left[\begin{array}{ccc} 1+\mu+\nu : & 1/2+\nu ; & -; \\ 2+\mu+\nu : & 1+2\nu ; & -; \end{array} \right] \pm 2z, (\Box \mp 1)z$$
 (13)

REDUCTION FORMULAS FOR L, N, Q

In some instances $J_{e_{\mu,\nu}}^{\pm}(a,z)$ may be expressed in terms of generalized hypergeometric functions provided that we know a reduction formula for one of L, N, or Q. By using Ref. 3, p. 55, Eqs. 19, 20, and 21 respectively we find

$$N[\alpha;\beta,\gamma,\gamma;x,-x]={}_{2}F_{5}\left[\frac{\alpha}{2},\frac{\alpha+1}{2};\frac{\beta}{2},\frac{\beta+1}{2},\gamma,\frac{\gamma}{2},\frac{\gamma+1}{2};\frac{-x^{2}}{4}\right]$$

$$L[\alpha, \beta; \gamma, \delta; x, x] = {}_{1}F_{2}[\alpha + \beta; \gamma, \delta; x]$$

$$L[\alpha, \alpha; \gamma, \delta; x, -x] = {}_{1}F_{4}[\alpha; \frac{\gamma}{2}, \frac{\gamma+1}{2}, \frac{\delta}{2}, \frac{\delta+1}{2}; \frac{x^{2}}{16}]$$

Using Ref. 2, p. 28. Eqs. 33 and 34 respectively we find

$$N[\alpha; \beta, \gamma, \delta; x, x] = {}_{3}F_{4}[\alpha, \frac{\gamma + \delta - 1}{2}, \frac{\gamma + \delta}{2}; \beta, \gamma, \delta, \gamma + \delta - 1; 4x]$$
 (14)

$$Q\left[\frac{-1/2+\nu}{2},\,\frac{1/2+\nu}{2},\,1;\,\alpha,\,\beta,\,1+\nu;\,x,\,x\right]={}_{2}F_{3}\left[\frac{3+2\nu}{4},\,\frac{5+2\nu}{4};\,\alpha,\,\beta,\,1+\nu;\,x\right]$$

Employing Eqs. 9 and 13, we easily deduce

$$Q[\nabla_1; \frac{z^2}{4}, \frac{z^2}{4}] = \frac{1}{2} \{e^z {}_2F_2[\nabla_5; -2z] + e^{-z} {}_2F_2[\nabla_5; 2z]\}$$

$$Q[\nabla_2; \frac{z^2}{4}, \frac{z^2}{4}] = \frac{2 + \mu + \nu}{2z} \left\{ e^z \,_2 F_2[\nabla_5; -2z] - e^{-z} \,_2 F_2[\nabla_5; 2z] \right\}$$

And finally, using Eqs. 11 and 12 we find

$$Q[\nabla_1; \frac{-z^2}{4}, \frac{-z^2}{4}] = \cos z \ N[\nabla_3; \frac{-z^2}{4}, \frac{-z^2}{4}]$$

$$+\frac{1+\mu+\nu}{2+\mu+\nu}z\sin z N[\nabla_4;\frac{-z^2}{4},\frac{-z^2}{4}]$$

$$Q[\nabla_2; \frac{-z^2}{4}, \frac{-z^2}{4}] = (2 + \mu + \nu) \frac{\sin z}{z} N[\nabla_3; \frac{-z^2}{4}, \frac{-z^2}{4}]$$

$$-(1 + \mu + \nu) \cos z \ N[\nabla_4; \frac{-z^2}{4}, \frac{-z^2}{4}]$$

Replacing z by iz in these equations then gives

$$Q[\nabla_1; \frac{z^2}{4}, \frac{z^2}{4}] = \cosh z \ N[\nabla_3; \frac{z^2}{4}, \frac{z^2}{4}] - \frac{1 + \mu + \nu}{2 + \mu + \nu} \ z \ \sinh z \ N[\nabla_4; \frac{z^2}{4}, \frac{z^2}{4}]$$

$$Q[\nabla_2; \frac{z^2}{4}, \frac{z^2}{4}] = (2 + \mu + \nu) \frac{\sinh z}{z} N[\nabla_3; \frac{z^2}{4}, \frac{z^2}{4}] - (1 + \mu + \nu) \cosh z N[\nabla_4; \frac{z^2}{4}, \frac{z^2}{4}]$$

where, on using Eq. 14,

$$N[\nabla_3; \frac{z^2}{4}, \frac{z^2}{4}] = {}_3F_4[\frac{1+\mu+\nu}{2}, \frac{1/2+\nu}{2}, \frac{3/2+\nu}{2}; \frac{3+\mu+\nu}{2}, \frac{1}{2}+\nu, 1+\nu, \frac{1}{2}; z^2]$$

$$N[\nabla_4; \frac{z^2}{4}, \frac{z^2}{4}] = {}_3F_4[\frac{2+\mu+\nu}{2}, \frac{3/2+\nu}{2}, \frac{5/2+\nu}{2}; \frac{4+\mu+\nu}{2}, \frac{3}{2}+\nu, 1+\nu, \frac{3}{2}; z^2]$$

SUMMARY

Various representations for incomplete Lipschitz-Hankel integrals of Bessel functions have been given in terms of Kampé de Fériet double hypergeometric functions. Reduction formulas for the double series employed have been given in some cases.

REFERENCES

- 1. A.R. Miller, "An Incomplete Lipschitz-Hankel Integral of K_0 , Part II," NRL Report 9001, Feb. 1987.
- 2. H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, 1985.
- 3. H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, Halsted Press, 1984.

SSS 23