11. Statistics: distributions and spread LING 471

Learning outcomes

- Describe a bar plot and a histogram
- Describe probability density
- Describe the Gaussian/normal distribution
- Write code that evaluates the probability density of a Gaussian distribution
- Write code that finds the mean and standard deviation from data
- Implement a linear discriminant analysis classifier by calculating conditional probability with Gaussian distributions

Probability mass, density, and distributions

Bar plots

- Last week, we talked about frequency of occurrence and relative frequency
- We can visualize category frequencies with bar plots
- Either raw or relative frequency can be visualized
- When using relative frequency, we are approximating a probability mass function

Histograms

- We can also visualize the frequency of non-categorical data with a histogram
- Must first create discrete bins (basically, numerical categories)
- When using relative frequencies, we are approximating the probability density function

Probability mass vs. density

- Probability mass is for categorical outcomes
 - Part of speech, coin flips, rolling dice, etc.
- Probability density is for continuous outcomes
 - Word/review length (sort of),
 word/utterance duration, height, etc.
- Notice the different spacing between bars for bar plots and histograms

Probability distributions

- Recall that we said the probabilities of mutually exclusive events need to sum to 1
- •For a particular sample space, we need to **distribute** those probabilities (or relative frequencies)
 - I.e., make a probability distribution
- Not all possible distributions will distribute the probability evenly or uniformly
 - See: bar plots and histograms on previous slides!

Notes on probability distributions

- Centuries ago, mathematicians noticed similar shapes kept appearing when analyzing data
- •These commonly occurring shapes were named and formalized
 - Examples: uniform, Gaussian/normal (named for Gauss),
 Bernoulli/binomial (named for Bernoulli)
- However, not all distributions resemble known functions
 - We will often approximate them with known functions, though

Continuous variables and distributions

Continuous random variables

- Some random variables are continuous
 - Bascially, your values should theoretically be able to "reach" infinity or have infinite possible values (even if you can't realistically observe some of them)
 - E.g., age: 25.31415 years old
 - E.g., a word could, theoretically, have infinite letters
 - And number of letters is a proxy for how long it takes to say a word
 - Contrast with a discrete variable like a coin flip (either H or T, no in between, no infinite possible values)

Probability density functions (PDFs)

- A continuous random variable has a probability density
- Area under curve must sum to 1
- Each specific point is a density, not a probability!
 - Probability requires calculating the area under a region (integrating)
- Most common PDF use for continuous variables is normal/Gaussian distribution

Probability density function

The normal/Gaussian distribution

- A lot of data in the world is normally distributed
 - Or can reasonably be approximated as such
- Has two parameters
- 1. Mean (signified μ or m)
 - Indicates where the middle of the distribution is; most typical/likely value
- 2. Standard deviation (signified σ or s)
 - Indicates how much spread or variation there is in the distribution

Normal distribution notes

- Greek letters used for population, Roman letters for sample
- Sometimes, variance (var) is used instead of standard deviation

$$\circ var = \sigma^2$$

- Etymology of "normal"
 - Gauss used it to refer to orthogonality (right angles); we might talk
 a bit about this next week
 - Today, "normal distribution" doesn't really break down into "normal" + "distribution"
 - Rather, "normal" is used as a label (with no other meaning)

Language data and the Gaussian distribution

- Is language data reasonably normal?
 - ∘ It depends...
- Some of it is!
 - See pitch plot here
- Some of it isn't!
 - See frequency data

Probability density of frequency counts in *Ulysses*

Clearly not Gaussian...

Normal distribution features

- Mean is calculated as the average of all possible outcomes
- Mean is most likely value
- About 67% of data is within 1 standard deviation from the mean
- About 95% of data is within 2 standard deviations from the mean

How to calculate Gaussian probability density

$$\circ pdf(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\pi-\mu}{\sigma}\right)^2}$$

- If you write a function to do this, you'll want to split this up a bit
 - Usually, you want to use someone else's code to do this...

Applying Gaussians to language data (phonetics)

- Let's try applying Gaussian distributions to some language data
- We're going to try to classify certain acoustic measurements as belonging to one vowel or another
- To do this, we are going to manually implement a linear discriminant analysis classifier
 - This will probably feel overwhelming and dense
 - We are going to work slowly!

Linear discriminant analysis (LDA) classification

- Uses a mix of probability density and frequency counts to estimate conditional probabilities of the different categories
 - Quantifying the probability of a data point X being in a particular category k
- Remember from last week? (I didn't...)

$$\circ P(Y = k|X) = \frac{P(X \cap Y)}{P(X)}$$

- \circ note $P(X \cap Y)$ is an alternative for our $P(X \ and \ Y)$
- We're going to do some hand-waving and just say

$$\circ P(X \cap Y) = P(X|Y = k) * P(Y = k)$$

• Where P(X|Y=k) is the **density** from the Gaussian distribution, and P(Y=k) is the **relative frequency** of the different classes

Full LDA classification formula/algorithm

- 1. Assume we have *K* categories
- 2. Estimate means for each category
- 3. Estimate the standard deviations for each category, and then take the mean of those values
- 4. For each data point *X*
 - a) For each category *k* in our *K* categories:
 - i. Calculate P(Y = k | X) for k
 - b) Compare each calculate probability
 - c) Classify X as belonging to the highest probability category

$\operatorname{Full} P(Y = k|X)$

FORMULA

$$P(Y = k|X)$$

$$= \frac{P(X|Y = k) * P(Y = k)}{\sum_{l} P(X|Y = l) * P(Y = l)}$$

NOTES

- •The normal distribution appears twice: once in the numerator, and once in the denominator
- In the denominator, we are just taking a weighted average of the different densities
 - I promise this will be simple once we implement it!

The data we are working with

- We will be working with acoustic measurements from vowels
- Speakers are adult males
- Modeling first resonant frequency of [i] (as in heed) and [I] (as in hid)
 - Correlates with how high or low your tongue is in the mouth
 - Y-axis doesn't mean anything here
- Need to choose where to draw a vertical line to best separate the vowels

Programming activity part 1: Implementing the numerator

- We are going to start with the top part of the fraction
- Do everything marked with "TODO_1"
- 1. Install the scipy and numpy package in PyCharm
- 2. Download the skeleton and txt file from the class GitHub
- 3. Fill in first todo
 - a) Use <u>numpy.mean</u> and <u>numpy.std</u> to calculate means and standard deviations
 - i. Make sure to use give the argument "ddof=1" to numpy.std
 - b) Use <u>scipy.stats.norm.pdf</u> to calculate the Gaussian PDF
 - c) The classes are evenly distributed, and we only have two classes, so anything like P(Y=k) or P(Y=I) is 0.5

Programming activity part 2: Implementing the denominator

- Now, we're going to implement the denominator
- This is marked with "TODO_2"
- You might be able to make use of your numerator function if you recognize an equivalence...
- •Uncomment the "test_denom()" line to test your implementation

Programming activity part 3: Implementing the fraction and LDA

- Finish implementing the program
- This is marked with "TODO_3"
- •Uncomment "test_lda()" to test your implementation
- When ready, uncomment "accuracy()" to see how your classifier performs
 - It should be 0.9
- Uncomment the rest of the code to determine where we should draw our separator line

Where to draw our separating line? 386.03 Hz

Zooming out: What did we just do?

- •We calculated means and standard deviations
- We computed conditional probabilities
 - Based on Gaussian distributions from the means and standard deviations
- •We used the conditional probabilities to classify vowel data
 - Answering, "what is the probability that the vowel is [i] if the measurement is X?" and "what is the probability that the vowel is [I]...?"

Zooming further out

- This was practice working on a specific kind of programming
- Technical implementation from a specification (math formula) even if you may not know entirely what everything is doing
 - This can be very hard!
 - But also not that uncommon when you are beginning to learn something
 - Often helps to decompose the problem into parts (as was done here)

Where are Gaussian distributions useful? And LDA?

- Gaussian distributions are everywhere... Many common statistical methods take advantage of them in some form
- Many continuous linguistic phenomena can be modeled with Gaussian distributions (and sometimes they're modeled well!)
 - Acoustic measurements, semantic vectors, psycholinguistic and neurolinguistic data, sociolinguistic variables like age, etc.
- LDA can be used any time you want to classify something
 - Not always the best choice...
 - Also commonly used to reduce a large number of variables to a smaller number of variables

Reminders

- Assignment 3 due on 5/10
- Meeting in Miller Hall 301 (MLR 301) on 5/10 and 5/12