Segmentation d'images par la méthode des level-set

Olivier Bernard

Lyon, 15 mars 2013

<u>Livres</u>

- **★** James Sethian (1996): Level Set & Fast Marching Methods, Cambridge
- ★ Stan Osher & Ronald Fedkiw (2002): Level Set Methods and Dynamics Implicit Surfaces, Springer
- ★ Stan Osher & Nikos Paragios (2003): Geometric Level Set in Imaging Vision and Graphics, Springer

Journaux

- ★ M. Kass, A. Witkin and D. Terzopoulos, "Snakes: Active contour models", International Journal of Computer Vision (1988)
- ★ S. Zhu and A. Yuille, "Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence (1996)
- ★ V. Caselles, R. Kimmel and G. Sapiro, "Geodesic Active Contours", International Journal of Computer Vision (1997)
- ★ T. Chan and L. Vese, "Active Contours without Edges", IEEE Transactions on Image Processing (2001)
- ★ G. Aubert et. al., "Image Segmentation Using Active Contours: Calculus Of Variations Or Shape Gradients", SIAM (2003)

Journaux

- ★ S. Lankton and A. Tannenbaum, "Localizing region-based active contours", IEEE Transaction on Image Processing (2008)
- ★ C. Li, C.-Y. Kao, J.C. Gore, and Z. Ding, "Minimization of regionscalable fitting energy for image segmentation", IEEE Transaction on Image Processing (2008)
- ★ Y. Shi and W.C. Karl, " A real-time algorithm for the approximation of level-set based curve evolution", IEEE Transaction on Image Processing (2008)
- ★ O. Bernard, D. Friboulet, P. Thevenaz, and M. Unser, "Variational B-Spline Level-Set: A Linear Filtering Approach for Fast Deformable Model Evolution", IEEE Transaction on Image Processing (2009)

Liens vers les documents de cours

★ www.creatis.insa-lyon.fr/~bernard/courses.html

www.creatis.insa-lyon.fr/~bernard/creaseg/

fichiers et codes sources matlab

Pourquoi a-t-on besoin de segmenter des images ?

Définition

La segmentation correspond à une étape de détection d'un objet dans une scène

Quels sont les besoins d'outils de segmentation ?

INDUSTRIE

- détection d'usure de pièces
- étude de la dégradation d'objets
- décodage de code barre

Quels sont les besoins d'outils de segmentation ?

INDUSTRIE

- Détection / suivi d'objets

Quels sont les besoins d'outils de segmentation ?

INDUSTRIE - multimédia

- appareils photos numériques
- téléphones portables
- jeux vidéo

Quels sont les besoins d'outils de segmentation ?

INDUSTRIE - multimédia

- appareils photos numériques
- téléphones portables
- jeux vidéo

Quels sont les besoins d'outils de segmentation ?

IMAGERIE MEDICALE

- localisation de tumeurs cancéreuses
- détection et suivi de régions myocardiques
- détection de fibres cardiaques
- localisation de zones d'activité cérébrale

Quels sont les besoins d'outils de segmentation ?

IMAGERIE MEDICALE

- modélisation de structures en mouvement

valve aortique

<u>lien</u>

Quels sont les besoins d'outils de segmentation ?

IMAGERIE MEDICALE

- détection et mesures

Mesure automatique du crane d'un fœtus

Quels sont les besoins d'outils de segmentation ?

IMAGERIE MEDICALE

- suivi

Suivi du muscle myocardique en imagerie Ultrasonore lien

L'outil de segmentation de base: *le seuillage*

PRINCIPE DU SEUILLAGE

- ★ l'image est composée de pixels de différentes intensités
- ★ segmentation par seuillage : sélection d'une ou plusieurs zones de l'image ayant une même bande d'intensité
- ★ Il est possible de définir plusieurs seuils pour sélectionner plusieurs bandes

L'outil de segmentation de base: le seuillage

ILLUSTRATION

- ★ représentation d'une image en 3D
- ★ on associe à chaque valeur de pixel une hauteur

Image CT d'un cœur de chien avec agent de contraste

Représentation de l'image par élévation

L'outil de segmentation de base: le seuillage

CHOIX DU SEUIL

histogramme de l'image est un bon outil pour le choix du seuil

L'outil de segmentation de base: le seuillage

CHOIX DU SEUIL

histogramme de l'image est un bon outil pour le choix du seuil

L'outil de segmentation de base: le seuillage

LIMITES

★ un simple seuillage ne permet pas d'obtenir une région géométriquement connexe

Image échocardiographique

Segmentation de référence

255

Qu'est ce qu'un bon outil de segmentation?

- il n'existe pas une méthode de segmentation de référence
- spécification d'une technique de segmentation à une problématique donnée

MAIS

on recherche des outils de segmentation suffisamment génériques pour être adaptés à différents problèmes

GENERIQUE?

- **★** Exploitation de l'information image ex: gradient, statistique, texture
- **★** Insertion de contraintes a priori ex: forme, mouvement, changement de topologie

Les grandes familles d'outil de segmentation

Les grandes familles d'outil de segmentation

Plan

Plan

- 1 Les contours actifs
 - définition / propriétés

- 2 La méthode des level-set
 - Présentation générale
 - Contexte mathématique
 - Outil de segmentation

- 3 Application: segmentation d'images échographiques
 - problématique
 - intégration de contraintes de forme et statistique
 - schéma évolutif

Plan

- 1 Les contours actifs
 - définition / propriétés

- 2 La méthode des level-set
 - Présentation générale
 - Contexte mathématique
 - Outil de segmentation

- 3 Application: segmentation d'images échographiques
 - problématique
 - intégration de contraintes de forme et statistique
 - schéma évolutif

Définition / propriétés

Définition

Evolution d'une courbe / surface (2D / 3D) dans une image dont l'état final défini les contours de l'objet détecté

Exemple

Comment faire évoluer le contour actif?

- Modélisation mathématique du problème de segmentation
 - 1 choix de la représentation du contour actif
 - 2 conception d'une fonction énergie dont le minimum correspond aux contours de l'objet à segmenter
 - 3 équation d'évolution du contour dérivation de la fonction d'énergie suivant le contour actif
 - 4 implémentation de l'équation d'évolution

Comment faire évoluer le contour actif?

- Modélisation mathématique du problème de segmentation
 - 1 choix de la représentation du contour actif
 - 2 conception d'une fonction énergie dont le minimum correspond aux contours de l'objet à segmenter
 - 3 équation d'évolution du contour dérivation de la fonction d'énergie suivant le contour actif
 - 4 implémentation de l'équation d'évolution

1 – choix de la représentation du contour actif

Il en existe plusieurs dont :

- ★ modèle de snake [Kass-Witkin-Terzopoulos-1987]
- ★ modèle géodésique [Caselles-Kimmel-Sapiro-1997]

Exemple

- modèle contour actif géodésique
- ▶ soit $\Gamma(q,\tau):[0,1]\times[0,\infty[\to R^2]$
- $m \Omega_{\it in}$, $\Omega_{\it out}$ région intérieure et extérieure à Γ

Comment faire évoluer le contour actif?

- Modélisation mathématique du problème de segmentation
 - 1 choix de la représentation du contour actif
 - 2 conception d'une fonction énergie dont le minimum correspond aux contours de l'objet à segmenter
 - 3 équation d'évolution du contour dérivation de la fonction d'énergie suivant le contour actif
 - 4 implémentation de l'équation d'évolution

2 – conception d'un critère d'énergie

Qu'est ce qu'un critère d'énergie?

- Fonction positive
- Fonction dérivable
- Fonction dont le minimum délimite les contours de l'objet à segmenter
- Le minimum correspond généralement à f=0

2 – conception d'un critère d'énergie

Fonction dont le minimum délimite les contours de l'objet à segmenter

Illustration: étude 1D

 $E(P)\;$: critère d'énergie fonction de la position P

2 – conception d'un critère d'énergie

Fonction dont le minimum délimite les contours de l'objet à segmenter

Illustration: étude 1D

 $E(P)\;$: critère d'énergie fonction de la position P

2 – conception d'un critère d'énergie

Fonction dont le minimum délimite les contours de l'objet à segmenter

Illustration: étude 1D

 $E(P)\;$: critère d'énergie fonction de la position P

2 – conception d'un critère d'énergie

Fonction dont le minimum délimite les contours de l'objet à segmenter

Illustration: étude 1D

 $E(P)\;$: critère d'énergie fonction de la position P

2 – conception d'un critère d'énergie

Fonction dont le minimum délimite les contours de l'objet à segmenter

Illustration: étude 1D

 $E(P)\;$: critère d'énergie fonction de la position P

2 – conception d'un critère d'énergie

Fonction dont le minimum délimite les contours de l'objet à segmenter

Illustration: étude 1D

 $E(P)\;$: critère d'énergie fonction de la position P

Intensité pixel

2 – conception d'un critère d'énergie

Fonction dont le minimum délimite les contours de l'objet à segmenter

Illustration: étude 1D

 $E(P)\;$: critère d'énergie fonction de la position P

Intensité pixel

2 – conception d'un critère d'énergie

Fonction dont le minimum délimite les contours de l'objet à segmenter

Illustration: étude 1D

 $E(P)\;$: critère d'énergie fonction de la position P

Intensité pixel

2 – conception d'un critère d'énergie

- Il existe différents critères d'énergie dont
 - ★ modèle de snake [Kass-Witkin-Terzopoulos-1987]
 - ★ modèle géodésique [Caselles-Kimmel-Sapiro-1997]
- Exemple
 - ★ modèle géodésique
 - * critère d'énergie:

$$E(\Gamma) = \int_0^1 g(I(\Gamma(q,\tau))) |\Gamma'(q,\tau)| dq$$

avec
$$\begin{cases} \textit{I:image trait\'ee} \\ \textit{g:} R^2 \rightarrow \textit{R: fonction de pond\'eration d\'ecroissante} \end{cases}$$

2 – conception d'un critère d'énergie

Illustration du critère géodésique $E(\Gamma) = \int_0^1 g(I(\Gamma(q,\tau))) |\Gamma'(q,\tau)| dq$

- ullet $g(\cdot) = 1$ (pas d'attache aux données)
- $E(\Gamma) = \int_0^1 \left| \Gamma'(q, \tau) \right| dq = \int_0^1 ds$
- minimisation de la longueur du contour

2 – conception d'un critère d'énergie

Illustration du critère géodésique $E(\Gamma) = \int_0^1 g(I(\Gamma(q,\tau))) |\Gamma'(q,\tau)| dq$

- $ightharpoonup g(\cdot) \neq 1$
- ightharpoonup pondération de longueur d'arc de cercle par $g(\cdot)$
- l'algorithme converge pour des points du contour où g=0 avec une régularisation intrinsèque du contour

<u>lien</u>

Comment faire évoluer le contour actif?

- Modélisation mathématique du problème de segmentation
 - 1 choix de la représentation du contour actif
 - 2 conception d'une fonction énergie dont le minimum correspond aux contours de l'objet à segmenter
 - 3 équation d'évolution du contour dérivation de la fonction d'énergie suivant le contour actif
 - 4 implémentation de l'équation d'évolution

3 – équation d'évolution du contour actif

But

- Trouver un état de
$$\Gamma$$
 qui vérifie $\frac{\partial E}{\partial \Gamma} = 0$

- Dérivée du critère d'énergie suivant une fonction

- Permet d'obtenir une équation d'évolution $\frac{\partial \Gamma}{\partial au}$

3 – équation d'évolution du contour actif

Trois outils mathématiques sont généralement utilisés

- ★ dérivée d'Euler / Lagrange [Chan-Vese-2001]
- ★ dérivée de Gâteaux / Fréchet [Caselles-Kimmel-Sapiro-1997]
- ★ dérivée de forme [Aubert et.al.-2003]

Exemple

- modèle géodésique
- dérivée de Gâteaux

$$avec \begin{cases} V : fonction vitesse \\ \mathcal{K} : courbure \ du \\ contour \ actif \end{cases}$$

$$rac{\partial \Gamma(au)}{\partial au} = V(au) \, ec{N}$$
 avec $V = g \cdot \kappa - \left(ec{
abla} g \cdot ec{N}
ight)$

terme de terme d'attache lissage aux données

Comment faire évoluer le contour actif?

- Modélisation mathématique du problème de segmentation
 - 1 choix de la représentation du contour actif
 - 2 conception d'une fonction énergie dont le minimum correspond aux contours de l'objet à segmenter
 - 3 équation d'évolution du contour dérivation de la fonction d'énergie suivant le contour actif
 - 4 implémentation de l'équation d'évolution

4 – implémentation de l'équation d'évolution

Exemple pour un contour représenté par un ensemble de points

► Calcul de $\frac{\partial \Gamma}{\partial \tau} = V \vec{N}$ en chaque point du contour

4 – implémentation de l'équation d'évolution

Exemple pour un contour représenté par un ensemble de points

Algorithme et implémentation

$$\bigstar \quad \Gamma^i = [p_1^i \quad \cdots \quad p_k^i \quad \cdots \quad p_N^i]^T$$

★ Discrétisation en temps et espace

$$rac{\Gamma^{i+1}-\Gamma^i}{\Delta au}=ec{V}^i\cdotec{N}$$
 avec $V^i=[ec{V}_1^i \quad \cdots \quad ec{V}_k^i \quad \cdots \quad ec{V}_N^i]^T$

$$\star \quad \Gamma^{i+1} = \Gamma^i + \Delta \tau \cdot \vec{V}^i \cdot \vec{N}$$

4 – implémentation de l'équation d'évolution

Exemple pour un contour représenté par un ensemble de points

- Difficulté à aller détecter les coins
- Gestion de l'apparition de nouveaux points délicate

Initialisation

évolution

résultat

4 – implémentation de l'équation d'évolution

Exemple pour un contour représenté par un ensemble de points

- Phénomène de glissement du contour à convergence
- Passage 2D -> 3D compliqué

<u>lien</u>

La méthode des level-set

Méthode qui possède les propriétés suivantes

- Aucune difficulté à aller détecter les coins grâce à un cadre de travail eulérien
- Aucun phénomène de glissement du contour à convergence
- Passage 2D -> ND immédiat
- Gestion intrinsèque du changement de topologie du contour au cours de l'évolution

Fin de la première partie

Plan

- 1 Les contours actifs
 - définition / propriétés

- 2 La méthode des level-set
 - Présentation générale
 - Contexte mathématique
 - Outil de segmentation

- 3 Application: segmentation d'images échographiques
 - problématique
 - intégration de contraintes de forme et statistique
 - schéma évolutif

Présentation générale

Arbre généalogique des level-set

Arbre généalogique des level-set

Arbre généalogique des level-set

La méthode des level-set

- Représentation implicite correspond aux level-set
- Illustration de segmentation par level-set

Légende

fonction implicite ϕ

niveau zéro $\, \phi_{\!\scriptscriptstyle 0} = \Gamma \,$

image traitée

Propriété particulière

gestion intrinsèque de changement de topologie

Contexte mathématique

Modélisation mathématique du problème de segmentation

- 1 choix de la représentation du contour actif
- 2 conception d'une fonction énergie dont le minimum correspond aux contours de l'objet à segmenter
- 3 équation d'évolution du contour dérivation de la fonction d'énergie suivant le contour actif
- 4 implémentation de l'équation d'évolution

Choix de la représentation du contour actif

- $lackbox \Omega$: sous ensemble ouvert borné de l'espace R^d
- $ightharpoonup I: \Omega \rightarrow R$: image de dimension d
- $ightharpoonup \Gamma \in \mathbb{R}^d$: contour / surface / interface qui évolue
- ϕ : fonction *Lipschitzienne* continue ayant comme niveau zéro Γ définie par :

$$\begin{cases} \phi(\vec{x}) > 0 & (resp. < 0), \quad \forall \vec{x} \in \Omega_{in} \\ \phi(\vec{x}) < 0 & (resp. > 0), \quad \forall \vec{x} \in \Omega_{out} \\ \phi(\vec{x}) = 0, \quad \forall \vec{x} \in \Gamma \end{cases}$$

avec $\Omega_{in} \& \Omega_{out}$ régions intérieure et extérieure à Γ

Choix de la représentation du contour actif

Exemple

Image 2D à segmenter: en blanc l'objet, en gris le fond et en noir le contour initial

Modèle de représentation du contour actif: le courbe rouge correspond au contour initial sur l'image de gauche

Modélisation mathématique du problème de segmentation

- 1 choix de la représentation du contour actif
- 2 conception d'une fonction énergie dont le minimum correspond aux contours de l'objet à segmenter
- 3 équation d'évolution du contour dérivation de la fonction d'énergie suivant le contour actif
- 4 implémentation de l'équation d'évolution

2 – conception d'un critère d'énergie

Il existe de nombreux critères d'énergie

Critère d'énergie de type contour

★ Méthode de Caselles: approche géodésique

Critère d'énergie de type région

- ★ Méthode de Chan & Vese: approche régions similaires
- ★ Méthode de Yezzi: approche régions différentes
- ★ Méthode de Lankton: approche régions inhomogènes

La méthode de Caselles

Approche géodésique

Contour actif géodésique

[Caselles-Kimmel-Sapiro-1997]

Fil conducteur

Faire converger le contour (niveau zéro) vers des zones de l'image à forts gradients

► Energie
$$\Longrightarrow E_{CAS}(\Gamma) = \int_0^1 g\left(I(\Gamma(q,\tau))\right) \left|\Gamma'(q,\tau)\right| dq$$

$$\Longrightarrow E_{CAS}(\phi) = \int_\Omega g\left(I(\vec{x})\right) \left\|\nabla\phi(\vec{x})\right\| \delta(\phi(\vec{x})) d\vec{x}$$

► Astuce: le terme $\|\nabla\phi(\vec{x})\| \, \delta(\phi(\vec{x}))$ permet de mesurer la longueur du niveau zéro

La méthode de Chan & Vese

Approche des régions similaires

Méthode de Chan & Vese

[Chan-Vese-2001]

► Fil conducteur

Faire converger le contour vers des régions homogènes suivant les niveaux de gris

Energie à minimiser

$$E_{CV}(\phi, \mu_{in}, \mu_{out}) = \int_{\Omega} \left\{ (I(\vec{x}) - \mu_{in})^2 H(\phi(\vec{x})) + (I(\vec{x}) - \mu_{out})^2 H(-\phi(\vec{x})) \right\} d\vec{x}$$

► Astuce: $H(r) = \begin{cases} 1 & pour \ r \ge 0 \\ 0 & pour \ r < 0 \end{cases}$

Méthode de Chan & Vese

[Chan-Vese-2001]

Illustration

 $E_{CV} = 1.47e + 07$

 $E_{CV} = 1.21e + 07$

$$E_{CV} = 1.58e + 07$$

 $E_{CV} = 1.17e + 06$

La méthode de Yezzi

Approche des régions différentes

Méthode de Yezzi

[Yezzi-2001]

Fil conducteur

Faire converger le contour vers des régions homogènes suivant les niveaux de gris mais de moyennes différentes

Energie à maximiser

$$E_{YEZ}(\phi, \mu_{in}, \mu_{out}) = \int_{\Omega} (\mu_{in} - \mu_{out})^2 d\vec{x}$$

Méthode de Yezzi

[Yezzi-2001]

Illustration

E = 9.56e + 07

E = 3.67e + 06

E = 2.65e + 07

E = 1.11e + 08

La méthode de Lankton

Approche des régions inhomogènes

Méthode de Lankton

[Lankton-2009]

Fil conducteur

Faire converger le contour vers des régions localement homogènes suivant les niveaux de gris

Energie à minimiser

$$E_{LAN}(\phi, \mu_{in}, \mu_{out}) = \int_{\Omega} \delta(\phi(\vec{x})) \int_{\Omega} B(\vec{x}, \vec{y}) F(\phi) d\vec{y} d\vec{x}$$

avec
$$\begin{cases} F(\vec{x}, \vec{y}) = (I(\vec{y}) - \mu_{in}(\vec{x}))^2 H(\phi(\vec{y})) + (I(\vec{y}) - \mu_{out}(\vec{x}))^2 H(-\phi(\vec{y})) \\ B(\vec{x}, \vec{y}) = \begin{cases} 1 & pour \|\vec{x} - \vec{y}\| \le r \\ 0 & pour \|\vec{x} - \vec{y}\| > r \end{cases} \end{cases}$$

Méthode de Lankton

[Lankton-2009]

Illustration

$$E(\phi, \mu_{in}, \mu_{out}) = \int_{\Omega} \delta(\phi(\vec{x})) \int_{\Omega} B(\vec{x}, \vec{y}) F(\phi) d\vec{y} d\vec{x}$$

permet de sélection uniquement les pixels appartenant au contour

Méthode de Lankton

[Lankton-2009]

Illustration

$$E(\phi, \mu_{in}, \mu_{out}) = \int_{\Omega} \delta(\phi(\vec{x})) \int_{\Omega} B(\vec{x}, \vec{y}) F(\phi) d\vec{y} d\vec{x}$$

permet de calculer l'attache aux données à l'intérieur d'un voisinage centré en chaque point appartenant au contour

Modélisation mathématique du problème de segmentation

- 1 choix de la représentation du contour actif
- 2 conception d'une fonction énergie dont le minimum correspond aux contours de l'objet à segmenter
- 3 équation d'évolution du contour dérivation de la fonction d'énergie suivant le contour actif
- 4 implémentation de l'équation d'évolution

3 – équation d'évolution du contour actif

Trois outils mathématiques sont généralement utilisés

- ★ dérivée d'Euler / Lagrange [Chan-Vese-2001]
- ★ dérivée de Gâteaux / Fréchet [Caselles-Kimmel-Sapiro-1997]
- ★ dérivée de forme [Aubert et.al.-2003]

3 – équation d'évolution du contour actif

- ▶ <u>Idée de base</u>: exprimer la variation de ϕ qui permet de minimiser le critère d'énergie le plus rapidement possible ?
- Equation d'évolution: on en déduit l'équation d'évolution du level-set

$$\frac{\partial \phi}{\partial \tau} = -\nabla_{\phi} E$$

Difficulté: comment calculer/exprimer la variation du critère d'énergie E par rapport à ϕ ?

$$\nabla_{\phi}E=?$$

- 3 équation d'évolution du contour actif
 - Dérivée d'Euler Lagrange
 - Soit Ω une région définie dans l'espace euclidien \mathbb{R}^n (dans notre cas Ω correspond au support de l'image)
 - Soit la fonction $E(\phi)$ définie sur Ω de la façon suivante:

$$E(\phi) = \int_{\Omega} F\left(x, y, \phi, \frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}\right) dxdy$$

- 3 équation d'évolution du contour actif
 - Dérivée d'Euler Lagrange
 - Dans ce contexte, la dérivée d'Euler Lagrange permet de calculer $\nabla_{\phi}E$ grâce à l'expression suivante:

$$\nabla_{\phi} E = \frac{\partial F}{\partial \phi} - \frac{\partial F}{\partial p} - \frac{\partial F}{\partial q}$$

avec
$$p = \frac{\partial \phi}{\partial x}$$
 et $q = \frac{\partial \phi}{\partial y}$

3 – équation d'évolution du contour actif

$$E_{CV}(\phi, \mu_{in}, \mu_{out}) = \int_{\Omega} \left\{ (I(\vec{x}) - \mu_{in})^2 H(\phi(\vec{x})) + (I(\vec{x}) - \mu_{out})^2 H(-\phi(\vec{x})) \right\} d\vec{x}$$

$$\nabla_{\phi} E_{CV} = \left\{ (I(\vec{x}) - \mu_{in})^2 - (I(\vec{x}) - \mu_{out})^2 \right\} \delta(\phi(\vec{x}))$$

3 – équation d'évolution du contour actif

$$E_{YEZ}(\phi, \mu_{in}, \mu_{out}) = -\frac{1}{2} \int_{\Omega} (\mu_{in}(\phi) - \mu_{out}(\phi))^2 d\vec{x}$$

$$\mu_{in}(\phi) = \frac{\int_{\Omega} I(\vec{x}) \cdot H(\phi(\vec{x})) \, d\vec{x}}{\int_{\Omega} H(\phi(\vec{x})) \, d\vec{x}} = \frac{N(\phi)}{D(\phi)}$$

$$\frac{\partial \mu_{in}(\phi)}{\partial \phi} = \frac{\frac{\partial N(\phi)}{\partial \phi} \cdot \int_{\Omega} H(\phi(\vec{x})) \, d\vec{x} - \frac{\partial D(\phi)}{\partial \phi} \cdot \int_{\Omega} I(\vec{x}) \cdot H(\phi(\vec{x})) \, d\vec{x}}{\left(\int_{\Omega} H(\phi(\vec{x})) \, d\vec{x}\right)^{2}}$$

3 – équation d'évolution du contour actif

$$E_{YEZ}(\phi, \mu_{in}, \mu_{out}) = -\frac{1}{2} \int_{\Omega} (\mu_{in}(\phi) - \mu_{out}(\phi))^2 d\vec{x}$$

▶ On calcule $\frac{\partial N(\phi)}{\partial \phi}$ et $\frac{\partial D(\phi)}{\partial \phi}$ par Euler-Lagrange

$$\frac{\partial \mu_{in}(\phi)}{\partial \phi} = \frac{I \cdot \delta(\phi) \cdot \int_{\Omega} H(\phi(\vec{x})) \, d\vec{x} - \delta(\phi) \cdot \mu_{in}(\phi) \cdot \int_{\Omega} H(\phi(\vec{x})) \, d\vec{x}}{\left(\int_{\Omega} H(\phi(\vec{x})) \, d\vec{x}\right)^{2}}$$

$$\frac{\partial \mu_{in}(\phi)}{\partial \phi} = \frac{I \cdot \delta(\phi) - \mu_{in}(\phi) \cdot \delta(\phi)}{\int_{\Omega} H(\phi(\vec{x})) \, d\vec{x}} = \left(\frac{I - \mu_{in}(\phi)}{A_{in}(\phi)}\right) \cdot \delta(\phi)$$

3 – équation d'évolution du contour actif

$$E_{YEZ}(\phi, \mu_{in}, \mu_{out}) = -\frac{1}{2} \int_{\Omega} (\mu_{in} - \mu_{out})^2 d\vec{x}$$

$$\frac{\partial F}{\partial \phi} = \left(\mu_{out}(\phi) - \mu_{in}(\phi)\right) \cdot \left(\frac{I - \mu_{in}(\phi)}{A_{in}(\phi)} + \frac{I - \mu_{out}(\phi)}{A_{out}(\phi)}\right) \cdot \delta(\phi)$$

3 – équation d'évolution du contour actif

$$E_{LAN}(\phi, \mu_{in}, \mu_{out}) = \int_{\Omega} \delta(\phi(\vec{x})) \int_{\Omega} B(\vec{x}, \vec{y}) F(\phi) d\vec{y} d\vec{x}$$

...

3 – équation d'évolution du contour actif

$$E_{CAS}(\phi) = \int_{\Omega} g(\vec{x}) \|\nabla \phi(\vec{x})\| \, \delta(\phi(\vec{x})) \, d\vec{x}$$

...

où κ correspond à la courbure de la fonction ϕ

Modélisation mathématique du problème de segmentation

- 1 choix de la représentation du contour actif
- 2 conception d'une fonction énergie dont le minimum correspond aux contours de l'objet à segmenter
- 3 équation d'évolution du contour dérivation de la fonction d'énergie suivant le contour actif
- 4 implémentation de l'équation d'évolution

Implémentation de l'équation d'évolution

Comment implémenter l'équation d'évolution ?

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = V(x,\tau) \cdot \left\| \vec{\nabla} \phi(x,\tau) \right\|$$

Motivation

équation d'évolution = équation aux dérivées partielles

Choix

implémentation par méthode des différences finies optimisée

Optimisée?

approche "*Upwind* " essentiellement *non-oscillatoire* obtenue à partir de la solution numérique des *lois de conservation* et des équations d'*Hamilton-Jacobi*

Implémentation de l'équation d'évolution

Comment implémenter l'équation d'évolution ?

Exemple d'implémentation de différences finies

- **★** Image I
- **\star** Comment calculer $\frac{\partial I(p_0)}{\partial x} = ?$

Image I en niveau de gris

Implémentation de l'équation d'évolution

Comment implémenter l'équation d'évolution ?

Exemple d'implémentation de différences finies

- **★** Image I
- **★** Comment calculer $\frac{\partial I(p_0)}{\partial x} = ?$

$$(I_{P1}-I_{P0})/\Delta x$$

Implémentation de l'équation d'évolution

Comment implémenter l'équation d'évolution ?

Exemple d'implémentation de différences finies

- \star Image I
- ★ Comment calculer $\frac{\partial I(p_0)}{\partial x} = ?$

Dérivée arrière opérateur D

$$(I_{P0}-I_{P-1})/\Delta x$$

Implémentation de l'équation d'évolution

Comment implémenter l'équation d'évolution ?

Exemple d'implémentation de différences finies

- \star Image I
- **★** Comment calculer $\frac{\partial I(p_0)}{\partial x} = ?$

Dérivée centrée opérateur D⁰

$$(I_{P1}-I_{P-1})/(2\Delta x)$$

Implémentation de l'équation d'évolution

Comment implémenter l'équation d'évolution ?

Opérateurs utilisés

$$\begin{array}{ll} D_x^+\phi = \left(\phi(x+\Delta x) - \phi(x)\right)/\Delta x & \text{- dérivée première avant} \\ D_x^-\phi = \left(\phi(x) - \phi(x-\Delta x)\right)/\Delta x & \text{- dérivée première après} \\ D_x^0\phi = \left(\phi(x+\Delta x) - \phi(x-\Delta x)\right)/\left(2\Delta x\right) & \text{- dérivée première centrée} \\ D_{xx}\phi = \left(\phi(x+\Delta x) - 2\phi(x) + \phi(x-\Delta x)\right)/\Delta x^2 & \text{- dérivée seconde} \\ D_{xy}\phi = \left[\phi(x+\Delta x,y+\Delta y) + \phi(x-\Delta x,y-\Delta y)\right] & \text{- dérivée seconde croisée} \\ -\phi(x+\Delta x,y-\Delta y) - \phi(x-\Delta x,y+\Delta y)\right]/\left(4\Delta x\Delta y\right) \\ (\alpha)^+ = \max(\alpha,0) \\ (\alpha)^- = \min(\alpha,0) \end{array}$$

Implémentation de l'équation d'évolution

Comment implémenter l'équation d'évolution ?

Forme générale développée

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = V(\vec{x}, \tau) \cdot \left\| \vec{\nabla} \phi(\vec{x}, \tau) \right\|$$

$$\frac{\partial \phi}{\partial \tau} = \vec{A} \cdot \vec{\nabla} \phi - P \left\| \vec{\nabla} \phi \right\| - C \left\| \vec{\nabla} \phi \right\| \kappa$$

où \vec{A} est un champ vectoriel, P et C sont deux champs scalaires

Implémentation de l'équation d'évolution

Implémentation numérique

$$\frac{\partial \phi}{\partial \tau} = \vec{A} \cdot \vec{\nabla} \phi - P \left\| \vec{\nabla} \phi \right\| - C \left\| \vec{\nabla} \phi \right\| \kappa$$

$$\overrightarrow{A} \cdot \overrightarrow{\nabla} \phi = (A_x)^+ D_x^- \phi + (A_x)^- D_x^+ \phi + (A_y)^+ D_y^- \phi + (A_y)^- D_y^+ \phi$$

$$\star C \| \vec{\nabla} \phi \| \kappa = C \frac{D_{xx}^{0} \phi (D_{y}^{0} \phi)^{2} - 2D_{x}^{0} \phi D_{y}^{0} \phi D_{xy}^{0} \phi + D_{yy}^{0} \phi (D_{x}^{0} \phi)^{2}}{\left((D_{x}^{0} \phi)^{2} + (D_{y}^{0} \phi)^{2} \right)^{1/2}}$$

Outil de segmentation

Outil de segmentation

Quelle fonction implicite choisir ?
Fonction implicite = fonction distance signée

Motivation

Bonnes propriétés numériques : $\|\vec{\nabla}\phi\| = 1$

Définition

$$\phi(\vec{x}) = \begin{cases} -dist(\vec{x}, \Gamma) & pour \vec{x} \in \Omega_{in} \\ 0 & pour \vec{x} \in \Gamma \\ +dist(\vec{x}, \Gamma) & pour \vec{x} \in \Omega_{out} \end{cases}$$

Outil de segmentation

Schéma d'évolution

Illustration: étude 1D

Création d'une fonction implicite à partir de l'initialisation 1D

Outil de segmentation

Schéma d'évolution

Illustration: étude 1D

Calcul de $\partial \phi/\partial \tau$ en chaque point de fonction implicite

Outil de segmentation

Schéma d'évolution

Illustration: étude 1D

Mise à jour de la fonction implicite

Outil de segmentation

Schéma d'évolution

Illustration: étude 1D

Mise à jour de la fonction implicite

Outil de segmentation

Schéma d'évolution

Illustration: étude 1D

Calcul de $\partial \phi/\partial \tau$ en chaque point de fonction implicite

Outil de segmentation

Schéma d'évolution

Illustration: étude 1D

Mise à jour de la fonction implicite

Outil de segmentation

- Optimisation Problèmes
 - Propriétés de fonction distance signée non conservées
 - Apparition de fronts raides ($\|\phi\|\gg 1$)

Outil de segmentation

- Optimisation Solutions
 - Réinitialisation périodique de la fonction implicite en tant que fonction distance signée

Stratégie mise en place au cours de l'évolution du level-set

Outil de segmentation

- Optimisation Solutions
 - Réinitialisation périodique de la fonction implicite en tant que fonction distance signée

Stratégie mise en place au cours de l'évolution du level-set

Outil de segmentation

Schéma d'évolution Illustration: étude 2D

Outil de segmentation

Optimisation

Problèmes

- Méthode très coûteuse en temps de calcul

Un problème 2D est résolu en 3D !!!

Outil de segmentation

- Optimisation Solutions
- Application de l'équation d'évolution du level-set uniquement dans une bande étroite autour du niveau zéro

Stratégie mise en place: évolution uniquement dans une bande étroite

Résumé des méthodes classiques

Contour actif géodésique

[Caselles-Kimmel-Sapiro-1997]

Modèle géodésique

- fonction distance signée
- réinitialisation à chaque itération
- évolution sur une bande étroite

$$\frac{\partial \phi(\tau)}{\partial \tau} = \left(g \cdot \kappa - \vec{\nabla} g \cdot \frac{\vec{\nabla} \phi}{\left\| \vec{\nabla} \phi \right\|} \right) \cdot \left\| \vec{\nabla} \phi \right\|$$

$$g(I) = (\max(I) - \min(I)) \cdot \frac{1}{1 + e^{\frac{\|\vec{\nabla}(Gauss*I)\| - 2}{0.3}}} + \min(I)$$

<u>lien</u>

Contour actif géodésique

[Caselles-Kimmel-Sapiro-1997]

Modèle géodésique

- fonction distance signée
- réinitialisation à chaque itération
- évolution sur une bande étroite

$$\frac{\partial \phi(\tau)}{\partial \tau} = \left(g \cdot \kappa - \vec{\nabla} g \cdot \frac{\vec{\nabla} \phi}{\left\| \vec{\nabla} \phi \right\|} \right) \cdot \left\| \vec{\nabla} \phi \right\|$$

$$g(I(\vec{x})) = \frac{1}{1 + \left\|\vec{\nabla}(G_{\sigma} * I(\vec{x}))\right\|^{2}}$$

Méthode de Chan & Vese

[Chan-Vese-2001]

Modèle intensités constantes par morceaux

- fonction distance signée
- réinitialisation à chaque itération
- évolution en bande étroite

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = \left[-(I(\vec{x}) - \mu_{in})^2 + (I(\vec{x}) - \mu_{out})^2 + \lambda \kappa \right] \cdot \delta_{\varepsilon}(\phi(\vec{x}))$$

 $\delta_{\varepsilon}(\cdot)$: fonction Dirac régularisé

Méthode de Yezzi

[Yezzi-2001]

Modèle intensités différentes par morceaux

- fonction distance signée
- réinitialisation à chaque itération
- évolution en bande étroite

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = \left(\mu_{in} - \mu_{out}\right) \left(\frac{I(\vec{x}) - \mu_{in}}{A_{in}} + \frac{I(\vec{x}) - \mu_{out}}{A_{out}}\right) + \lambda \kappa \cdot \delta_{\varepsilon}(\phi(\vec{x}))$$

 $\delta_{\varepsilon}(\cdot)$: fonction Dirac régularisé

Méthode de Lankton

[Lankton-2009]

Modèle régions inhomogènes

- fonction distance signée
- réinitialisation à chaque itération
- évolution en bande étroite

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = \left(\int_{\Omega} B(\vec{x}, \vec{y}) \, \delta(\phi(\vec{y})) \cdot \right.$$
$$\nabla_{\phi} F(\phi(\vec{y})) \, d\vec{y} \, \left. \right) \delta_{\varepsilon}(\phi(\vec{x}))$$

 $\delta_{\varepsilon}(\cdot)$: fonction Dirac régularisé

Programmation sous l'environnement Matlab

Programmation sous l'environnement Matlab

Equation d'évolution de Chan & Vese

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = \left[(I(\vec{x}) - \mu_{in})^2 - (I(\vec{x}) - \mu_{out})^2 + \lambda \kappa \right] \cdot \delta_{\varepsilon}(\phi(\vec{x}))$$

- Schéma évolutif
 - 1. Mise à jour des moyennes intérieure et extérieure

$$\mu_{in} = \frac{\int_{\Omega} I(\vec{x}) \cdot H(\phi(\vec{x})) d\vec{x}}{\int_{\Omega} H(\phi(\vec{x})) d\vec{x}}$$

$$\mu_{out} = \frac{\int_{\Omega} I(\vec{x}) \cdot H(-\phi(\vec{x})) d\vec{x}}{\int_{\Omega} H(-\phi(\vec{x})) d\vec{x}}$$

2. Évolution de ϕ à partir de l'équation principale

Programmation sous l'environnement Matlab

```
% fonction principale
function [seg] = creaseg chanvese(I,init mask,max its,lambda)
    %-- Create a signed distance map (SDF) from mask
    init mask = init mask<=0;</pre>
    phi = mask2phi(init mask); %-- personal function
    for its=1:max its
        %-- get the curve's narrow band
        idx = find(phi \le 1.2 \& phi \ge -1.2);
        %-- compute interior and exterior mean values
        [u,v] = computeMeanValues(I,phi); %-- personal function
        %-- force from image information
        F = (I(idx)-u).^2-(I(idx)-v).^2;
        %-- force from curvature penalty
        curvature = get curvature(phi,idx); %-- personal function
        %-- gradient descent to minimize energy
        dphidt = F./max(abs(F)) + lambda*curvature;
        %-- maintain the CFL condition
        dt = .45/(max(abs(dphidt))+eps);
        %-- evolve the curve
        phi(idx) = phi(idx) + dt.*dphidt;
        %-- Keep SDF smooth
        phi = sussman(phi, .5); %-- personal function
    end
```

Programmation sous l'environnement Matlab

```
%-- Create a signed distance map (SDF) from mask
function [phi] = mask2phi(init_mask)

phi = bwdist(init_mask)-bwdist(1-init_mask)+im2double(init_mask)-.5;
```

```
% compute inside and outside mean values
function [u,v] = computeMeanValues(I,phi)

upts = find(phi<=0); %-- interior points
vpts = find(phi>0); %-- exterior points
u = sum(I(upts))/(length(upts)+eps); %-- interior mean
v = sum(I(vpts))/(length(vpts)+eps); %-- exterior mean
```

Fin de la deuxième partie

Plan

- 1 Les contours actifs
 - définition / propriétés
 - les différentes représentations des contours actifs
- 2 La méthode des level-set
 - Présentation générale
 - Contexte mathématique
 - Outil de segmentation

- 3 Application: segmentation d'images échographiques
 - problématique
 - intégration de contraintes de forme et statistique
 - schéma évolutif

Problématique

Contexte

Maladies cardiovasculaires cause majeure de mortalité dans les pays industrialisés

Intérêt de l'échographie

- ► Temps réel, fréquence d'acquisition élevée (25-70 images par seconde)
- Non-invasive, pas de préparation du patient
- ► Faible coût, équipement peu encombrant

Applications cliniques

- Besoin d'outil de segmentation automatique ou semi-automatique de séquences cardiaques

problème difficile et encore ouvert

[Cootes et al. 1988]

[Boukerroui et al. 2001]

[Chen et al. 2002]

[Sarti et al. 2005]

[Unser et al. 2005]

[Comaniciu et al. 2005]

Données

Parasternale grand axe

Données

Parasternale grand axe

Image ultrasonore

Données

Parasternale petit axe

Données

Parasternale petit axe

Image ultrasonore

Difficultés

- Frontières pas précises
- Phénomène de speckle

- Variation de topologie
- Atténuation

Choix: Level-Set

- ★ information image statistique de l'image
- ★ contraintes a priori
 - modèle statistique
 - modèle de forme

Fil conducteur

Segmentation d'une image échocardiographique en vue parasternale petit axe

Segmentation de référence

Intégration de contraintes statistiques

Critère d'énergie

Contrainte statistique

Contrainte sur la distribution des intensités de niveaux de gris

image simulée

histogramme

Contrainte statistique

Critère d'énergie : fonction maximum de vraisemblance [Zhu-Yuille-1996]

Idée

Séparer deux régions modélisées par une distribution a priori p_{img} ayant des valeurs de paramètres χ différentes

Contrainte statistique

Critère d'énergie : fonction maximum de vraisemblance

$$J_{ML}(\phi, \chi_{in}, \chi_{out}) = \int_{\Omega} -\log p_{img} (I(\vec{x})/\chi_{in}) \cdot H_{\varepsilon}(\phi(\vec{x})) d\vec{x} +$$

$$\int_{\Omega} -\log p_{img} (I(\vec{x})/\chi_{out}) \cdot H_{\varepsilon}(-\phi(\vec{x})) d\vec{x}$$

avec p_{img} : distribution a priori

 χ : paramètres de la distribution

Contrainte statistique : exemple gaussien

$$J_{ML} = 1782$$

$$\mu_{in} = 140$$

$$\mu_{out}=150$$

$$\mu_{in} = 140$$
 $\sigma^2_{in} = 10.2$

$$\mu_{out} = 156$$

$$\sigma^2_{out} = 22$$

Contrainte statistique : exemple gaussien

$J_{ML} = 1763$	$\mu_{in}=150$	$\mu_{out}=170$
	$\sigma^2_{in}=20$	$\sigma^2_{out}=20$

Contrainte statistique : exemple gaussien

$J_{ML} = 1782$	$\mu_{in}=146$	$\mu_{out}=157$
	$\sigma^2_{in}=18$	$\sigma^2_{out}=22.2$

Contrainte statistique : exemple gaussien

$$J_{ML} = 1620$$
 $\mu_{in} = 140$ $\mu_{out} = 170$ $\sigma^2_{in} = 10$ $\sigma^2_{out} = 20$

Contrainte statistique: exemple gaussien

Equation d'évolution

$$\frac{\partial \phi}{\partial \tau} = V \cdot \delta_{\varepsilon}(\phi)$$
 avec $V = -\log \left(\frac{p_{gauss}(I(\vec{x})/\mu_{in})}{p_{gauss}(I(\vec{x})/\mu_{out})} \right)$

Contrainte statistique

Quelle distribution a priori utiliser pour caractériser la statistique des images échocardiographiques ?

Distribution de Rayleigh

$$p_{ray}(I, \sigma^2) = \frac{I}{\sigma^2} \exp\left(\frac{-I^2}{2\sigma^2}\right)$$

- approximation acceptable des statistiques réelles
- expression simple
- estimation robuste des paramètres

Contrainte statistique

Distribution de Rayleigh

Parasternale petit axe

Fil conducteur

Segmentation d'une image échocardiographique en vue parasternale petit axe

Parasternale petit axe

Segmentation de référence

Contrainte statistique

$$\frac{\partial \phi}{\partial \tau} = \left(-\log \left(\frac{p_{ray}(I(\vec{x})/\mu_{in})}{p_{ray}(I(\vec{x})/\mu_{out})} \right) + \lambda \kappa \right) \cdot \delta_{\varepsilon}(\phi)$$

Initialisation

Convergence

Intégration de contraintes statistiques

Localisation du critère d'énergie

Contrainte statistique

Statistique non-homogène le long du muscle myocardique

Contrainte statistique

- Adaptation du formalisme proposé par Lankton
 - Localisation des termes statistiques

$$E_{data}(\phi) = \int_{\Omega} \delta(\phi(\vec{x})) \int_{\Omega} -B(\vec{x}, \vec{y}) \cdot \log \left(\frac{p_{ray}(I(\vec{y})/\mu_{in}(\vec{x}))}{p_{ray}(I(\vec{y})/\mu_{out}(\vec{x}))} \right) d\vec{y} d\vec{x} + \lambda \oint_{\partial\Omega} ds$$

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = \left[\int_{\Omega} B(\vec{x}, \vec{y}) \cdot \delta(\phi(\vec{y})) \left\{ -\log P_{ray}(I(\vec{y}) / \mu_{in}(\vec{x})) + \log P_{ray}(I(\vec{y}) / \mu_{out}(\vec{x})) \right\} d\vec{y} + \lambda \kappa \right] \cdot \delta(\phi(\vec{x}))$$

Fil conducteur

Segmentation d'une image échocardiographique en vue parasternale petit axe

Parasternale petit axe

Segmentation de référence

Contrainte statistique

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = \left[\int_{\Omega} B(\vec{x}, \vec{y}) \cdot \delta(\phi(\vec{y})) \left\{ -\log P_{ray}(I(\vec{y}) / \mu_{in}(\vec{x})) + \log P_{ray}(I(\vec{y}) / \mu_{out}(\vec{x})) \right\} d\vec{y} + \lambda \kappa \right] \cdot \delta(\phi(\vec{x}))$$

Initialisation

Convergence

Intégration de contraintes de forme

Contrainte de forme

ldée : Les formes à segmenter ont des propriétés elliptiques

Parasternale grand axe

Parasternale petit axe

Apicale 4 cavités

Contrainte de forme

Insertion d'une contrainte de forme elliptique

Création d'un fonctionnelle d'énergie dont le minimum correspond au contour de la forme recherchée

Contrainte de forme

Insertion d'une contrainte de forme elliptique

Utiliser une mesure de comparaison entre l'aire intérieure du level-set et l'ellipse associée la plus probable

Critère retenu

$$Aire(A \cup B - 2(A \cap B))$$

Correspond à la surface noire dans l'exemple proposé

Contrainte de forme

Formulation implicite de la contrainte de forme

$$Aire(A) = \int H(\phi(\vec{x}))d\vec{x}$$

$$Aire(A) = \int H(\phi(\vec{x}))d\vec{x}$$
 $Aire(B) = \int H(\phi^*(\vec{x}))d\vec{x}$

$$Aire(A \cup B) = \int_{\Omega} (H(\phi(\vec{x})) + H(\phi^*(\vec{x}))) d\vec{x}$$

$$Aire(A \cap B) = \int_{\Omega} (H(\phi(\vec{x})) \cdot H(\phi^*(\vec{x}))) d\vec{x}$$

Contrainte de forme

Formulation implicite de la contrainte de forme

$$E_s(\phi) = Aire(A \cup B - 2(A \cap B))$$

$$E_s(\phi) == \int_{\Omega} H(\phi(\vec{x})) + H(\phi^*(\vec{x})) - 2H(\phi(\vec{x})) \cdot H(\phi^*(\vec{x})) d\vec{x}$$

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = (1 - 2H(\phi^*(\vec{x})) \cdot \delta(\phi(\vec{x}))$$

Contrainte de forme

Formulation implicite de la contrainte de forme

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = (1 - 2H(\phi^*(\vec{x})) \cdot \delta(\phi(\vec{x}))$$

- Schéma évolutif
 - 1. Évolution de ϕ sous contrainte de proximité à ϕ^* calculé précédemment
 - 2. Mise à jour de ϕ^* : méthode des moindres carrés appliquées aux points du contour actif ϕ obtenu à l'étape 1

Contrainte de forme

Illustration

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = \left[(1 - 2H(\phi^*(\vec{x})) + (I(\vec{x}) - \mu_{in})^2 - (I(\vec{x}) - \mu_{out})^2 + \lambda \kappa \right] \cdot \delta(\phi(\vec{x}))$$

Contrainte de forme

Illustration

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = \left[(1 - 2H(\phi^*(\vec{x})) + (I(\vec{x}) - \mu_{in})^2 - (I(\vec{x}) - \mu_{out})^2 + \lambda \kappa \right] \cdot \delta(\phi(\vec{x}))$$

Fil conducteur

Segmentation d'une image échocardiographique en vue parasternale petit axe

Parasternale petit axe

Segmentation de référence

Contrainte statistique

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = \left[\int_{\Omega} B(\vec{x}, \vec{y}) \cdot \delta(\phi(\vec{y})) \left\{ -\log P_{ray}(I(\vec{y}) / \mu_{in}(\vec{x})) + \log P_{ray}(I(\vec{y}) / \mu_{out}(\vec{x})) \right\} d\vec{y} + \alpha \left(1 - 2H(\phi^*(\vec{x})) + \lambda \kappa \right] \cdot \delta(\phi(\vec{x})) \right]$$

Initialisation

Convergence

Contrainte statistique

$$\frac{\partial \phi(\vec{x}, \tau)}{\partial \tau} = \left[\int_{\Omega} B(\vec{x}, \vec{y}) \cdot \delta(\phi(\vec{y})) \left\{ -\log P_{ray}(I(\vec{y}) / \mu_{in}(\vec{x})) + \log P_{ray}(I(\vec{y}) / \mu_{out}(\vec{x})) \right\} d\vec{y} \right.$$
$$\left. + \alpha \left(1 - 2H(\phi^*(\vec{x})) + \lambda \kappa \right] \cdot \delta(\phi(\vec{x}))$$

Initialisation

Convergence

Contrainte statistique

Segmentation de référence

Segmentation obtenue

Compléments de résultats

Contrainte statistique

Contrainte statistique

Initialisation

Schéma évolutif

- Résultat de segmentation sur une séquence
 - Résultat obtenu à l'instant *i* sert d'initialisation à l'instant *i*+1

<u>lien</u>

Fin de la troisième partie