FAKULTA MECHATRONIKY, INFORMATIKY A MEZIOBOROVÝCH STUDIÍ <u>TUL</u>

Nelineární rovnice SEM2 - LS 2023/2024

Pavel Exner, Petr Rálek NTI, FM TUL

pavel.exner@tul.cz, petr.ralek@tul.cz

[edit: 14. dubna 2024]

Numerické řešení nelineárních rovnic

Rovnici

$$f(x) = 0$$
 nebo $g(x) = x$.

umíme řešit analyticky pouze pro speciální případy f nebo g (lineární, kvadratická funkce apod.).

- Je-li f, resp. g obecná nelineární funkce, pak neexistuje univerzální postup k nalezení řešení x̄.
- Budeme předpokládat, že funkce f a g jsou spojité, případně, že mají spojité derivace do určitého řádu.
- Budeme hledat iterační metody, které naleznou přibližné řešení $x_k pprox ar{x}$.

Princip iteračních metod

Iterační metody pro řešení nelineárních rovnic generují posloupnost čísel $\{x_k\}$, $k=0,1,2,\ldots$ Obvykle je třeba zvolit počáteční aproximaci x_0 .

Definition

Nechť $\{x_k\}$ je posloupnost čísel generovaná numerickou metodou pro řešení nelineární rovnice typu f(x)=0 nebo g(x)=x a nechť \bar{x} je přesné řešení této rovnice. Řekneme, že daná metoda je konvergentní, pokud $\lim_{k\to\infty}x_k=\bar{x}$.

Ukončovací kritérium:

$$\left| \frac{x_k - x_{k-1}}{x_{k-1}} \right| < \varepsilon$$
, nebo $|f(x_k)| < \varepsilon$

Metoda prostých iterací l

Metoda prostých iterací předpokládá tvar rovnice g(x)=x. Generuje se posloupnost hodnot opakovaným dosazováním do iterační funkce g.

Algoritmus:

- 1 Zvolíme $x_0 \in (a, b)$, $\varepsilon > 0$ a M > 0.
- **2** Pro $k = 0, 1, 2, \dots, M$:
 - spočteme $x_{k+1} := g(x_k)$.
 - Pokud $|x_k x_{k-1}| < \varepsilon$, výpočet ukončíme.

Konvergence metody závisí jak na vlastnostech funkce g tak na volbě počáteční aproximace. Následující věta zaručuje existenci a jednoznačnost tzv. **pevného bodu**.

Metoda prostých iterací II

Věta

Nechť $g:[a,b] \to [a,b]$ je spojitá funkce na intervalu [a,b]. Pak g má na tomto intervalu pevný bod ξ , tj. $g(\xi)=\xi$. Pokud navíc existuje $q\in[0,1)$ takové, že

$$|g(x) - g(y)| \le q|x - y| \quad \forall x, y \in [a, b], \tag{1}$$

pak g má na [a,b] právě jeden pevný bod. Pro libovolné $x_0 \in [a,b]$ posloupnost $\{x_k\}$, $x_k := g(x_{k-1})$ konverguje k pevnému bodu ξ a platí:

$$|x_k - \xi| \le q^k |x_0 - \xi|.$$

Poznámka: Nerovnost (1) (nazývá se také Lipschitzova podmínka) je splněna například tehdy, když g má na intervalu [a,b] derivaci a platí $|g'(x)| \leq q < 1 \ \forall x \in [a,b]$.

Metoda prostých iterací III

Metoda bisekce (půlení intervalu) I

Metoda bisekce vychází z následujícího teoretického výsledku:

Věta (Bolzanova)

Nechť funkce $f:[a,b]\to\mathbb{R}$ je spojitá na intervalu [a,b] a nechť f nabývá v koncových bodech intervalu hodnot s opačnými znaménky, tj. f(a)f(b)<0.

Potom uvnitř tohoto intervalu existuje alespoň jeden bod \bar{x} takový, že $f(\bar{x}) = 0$.

V případě, že první derivace funkce f má na tomto intervalu konstantní znaménko, pak se zde nachází právě jeden takový bod.

Metoda bisekce (půlení intervalu) II

Algoritmus:

- ① Zvolíme a, b tak, aby f(a)f(b) < 0, $\varepsilon > 0$ a M > 0.
- **2** Pro $k = 0, 1, 2, \dots, M$:
 - $x_k := \frac{1}{2}(a+b)$
 - Pokuđ $|f(x_k)| < \varepsilon$, pak výpočet skončí.
 - Jinak položíme:

$$a:=x_k$$
 je-li znaménko $f(x_k)$ stejné jako $f(a)$, tj. $f(x_k)f(a)>0$, nebo $b:=x_k$ je-li znaménko $f(x_k)$ stejné jako $f(b)$, tj. $f(x_k)f(b)>0$).

Univerzální, robustní metoda. Nevýhodou velmi pomalá konvergence.

Často se používá pro určení vhodného počátečního odhadu x_0 , načež navazuje některá z pokročilejších metod.

Metoda bisekce (půlení intervalu) III

Newtonova metoda (metoda tečen) I

- Určena pro rovnici f(x) = 0.
- Spočívá v nahrazení funkce f tečnou.

Rovnice tečny v bodě x_k je

$$y = f(x_k) + f'(x_k)(x - x_k).$$

Definujeme-li x_{k+1} jako x-ovou souřadnici průsečíku tečny s osou x, dostaneme

$$0 = f(x_k) + f'(x_k)(x_{k+1} - x_k),$$

a po úpravě

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Newtonova metoda (metoda tečen) II

Algoritmus:

- 1 Zvolíme $x_0 \in (a, b)$, $\varepsilon > 0$ a M > 0.
- **2** Pro k = 0, 1, 2, ..., M:
 - spočteme $x_{k+1} := x_k \frac{f(x_k)}{f'(x_k)}$.
 - Pokud $|f(x_k)| < \varepsilon$, výpočet ukončíme.

Newtonova metoda není obecně konvergentní. Platí však následující tvrzení.

Věta

Nechť f je dvakrát spojitě diferencovatelná funkce na intervalu (a,b) a $\bar{x} \in (a,b)$ je kořen f, tj. $f(\bar{x}) = 0$. Pokud navíc $f'(\bar{x}) \neq 0$, pak existuje $\delta > 0$ takové, že Newtonova metoda konverguje pro libovolné $x_0 \in (\bar{x} - \delta, \bar{x} + \delta)$.

Z věty vyplývá, že metoda konverguje pro dostatečně blízkou počáteční aproximaci. Poloměr intervalu konvergence δ závisí na vlastnostech funkce f.

Příklad - porovnání metod I

Řešme rovnici

$$x - \sin x = \frac{1}{2}, \ x \in [0, 4].$$

Úlohu můžeme zapsat ve tvaru

$$f(x) := x - \sin x - \frac{1}{2} = 0$$
 nebo $g(x) := \frac{1}{2} + \sin x = x$.

Nejprve ověřme předpoklady pro použití prezentovaných metod!

Příklad - porovnání metod II

- **[Bisekce]** Funkce f je spojitá na intervalu [0,4], $f(0) = -\frac{1}{2} < 0$, $f(4) = 3.5 \sin(4) > 0$, kořen rovnice leží na intervalu (0,4).
- **[Newtonova metoda]** Funkce f je dvakrát spojitě diferencovatelná na intervalu (0,4), její derivace je nenulová: $f(x)=1-\cos x>0$. Konvergovat tedy bude i Newtonova, pokud zvolíme vhodnou počáteční aproximaci.
- [Metoda prostých iterací] Funkce g nesplňuje podmínku pro existenci pevného bodu na celém intervalu [0,4]. Omezíme-li se však na interval [0.5,2.5], pak pro x z tohoto intervalu je $|g'(x)| = |\cos x| < \cos(0.5) < 1$ a $g(x) \in [0.5,2.5]$.

Příklad - porovnání metod III

k	а	b	x_k		k	x_k	k	x_k
0	0	4	2		0	4	0	4
1	0	2	1		1	-0.256802	1	1.425804
2	1	2	1 .5		2	0.246011	2	1 .500266
3	1	1.5	1 .25		3	0.743537	3	1.49730 5
4	1.25	1.5	1 .375		4	1 .176896	4	1.497300
5	1.375	1.5	1 .4375		5	1.4 23419	5	1.497300
6	1.4375	1.5	1.4 6875		6	1.4 89160	6	1.497300
7	1.46875	1.5	1.4 84375		7	1.49 6670	7	1.497300
(a) Půlení intervalu			(b) Prosté iterace		(c) Newton		

Srovnání rychlosti konvergence. Tučně jsou uvedeny platné číslice výsledku \bar{x} .

Metoda sečen

Newtonova metoda ve svém algoritmu potřebuje derivaci funkce f. Může se ovšem stát, že výpočet derivace je obtížný nebo časově náročný. V tom případě je vhodné derivaci nahradit diferencí, což je myšlenkou metody sečen:

$$f(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}.$$

Na rozdíl od Newtonovy metody je potřeba na začátku zvolit dvě hodnoty: x_0 a x_1 .

- 1 Zvolíme $x_0, x_1 \in (a, b)$, $\varepsilon > 0$ a M > 0.
- **2** Pro k = 1, 2, ..., M:
 - spočteme $x_{k+1} := x_k f(x_k) \frac{x_k x_{k-1}}{f(x_k) f(x_{k-1})}$.
 - Pokud $|f(x_k)| < \varepsilon$, výpočet ukončíme.

Konvergence metody sečen je zaručena za stejných podmínek jako platí pro Newtonovu metodu.

Newtonova-Raphsonova metoda I

Newtonovu metodu lze zobecnit také pro řešení **soustav nelineárních rovnic** ve tvaru

$$f(x) = 0.$$

Předpokládejme, že $f: \mathbb{R}^n \to \mathbb{R}^m$, tedy máme soustavu m rovnic pro n neznámých. Taylorův rozvoj funkce f dává vztah

$$f(x) \approx f(x_k) + J(x_k)(x - x_k),$$

kde

$$m{J}(m{x}_k) = egin{pmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{pmatrix} (m{x}_k)$$

je tzv. Jacobiova matice funkce f.

Newtonova-Raphsonova metoda II

Výsledný vztah pro tzv. Newtonovu-Raphsonovu metodu je

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \left[\mathbf{J}(\mathbf{x}_k) \right]^\dagger \mathbf{f}(\mathbf{x}_k),$$

kde symbol A^{\dagger} značí pseudoinverzi matice A.

Prakticky se ovšem místo výpočtu pseudoinverze řeší soustava lineárních rovnic:

$$J(\mathbf{x}_k)\mathbf{r}_k = f(\mathbf{x}_k), \quad \mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{r}_k.$$

Pokud je Jacobiova matice obdélníková nebo singulární, hledá se r_k ve smyslu nejmenších čtverců.

Příklad 1 - Herronova metoda pro výpočet \sqrt{y}

Kde se vzal vzorec
$$x_k = \frac{1}{2} \left(x_{k-1} + \frac{y}{x_{k-1}} \right)$$
 ?

Příklad 1 - Herronova metoda pro výpočet \sqrt{y}

Kde se vzal vzorec
$$x_k = \frac{1}{2} \left(x_{k-1} + \frac{y}{x_{k-1}} \right)$$
 ?

Newtonova metoda pro řešení rovnice

$$f(x) = x^2 - y = 0.$$

Příklad 1 - Herronova metoda pro výpočet \sqrt{y}

Kde se vzal vzorec
$$x_k = \frac{1}{2} \left(x_{k-1} + \frac{y}{x_{k-1}} \right)$$
 ?

Newtonova metoda pro řešení rovnice

$$f(x) = x^2 - y = 0.$$

k	x_k	$ x_k-\sqrt{2} $
0	1.0	0.41
1	1.5	8.58E-2
2	1.416666	2.45E-3
3	1.414215	2.12E-6
4	1.414213	1.59E-12
5	1.414213	0
	() 9	2 0

$$y(x) = x^2 - 2$$

Příklad 1 - srovnání metod pro výpočet \sqrt{y}

Výpočet $\sqrt{2}$.

Příklad 2 - citlivost na počáteční odhad

Funkce

$$f(x) = x^3 - 2x^2 - 11x + 12 = 0$$

je polynom s celočíselnými kořeny -3, 1, 4.

Newtonova metoda je v tomto případě velmi citlivá na počáteční odhad.

x_0	x_n
2.3528 527	4
2.3528 4172	-3
2.3528 3735	4
2.35283632 <mark>7</mark>	-3
2.35283632 <mark>3</mark>	1

Příklad 3 - zacyklení Newtonovy metody

Řešme Newtonovou metodou rovnici

$$f(x) = x^3 - 2x + 2 = 0$$

a zvolme počáteční odhad $x_0 = 0$.

Generovaná posloupnost x_k vypadá následovně:

$$0, 1, 0, 1, 0, 1, \dots$$

Příklad 3 - zacyklení Newtonovy metody

Řešme Newtonovou metodou rovnici

$$f(x) = x^3 - 2x + 2 = 0$$

a zvolme počáteční odhad $x_0 = 0$.

Generovaná posloupnost x_k vypadá následovně:

$$0, 1, 0, 1, 0, 1, \dots$$

