Конспект Лекции 9: Асимптотические методы теории нелинейных колебаний

Введение

Лекция посвящена асимптотическим методам в теории нелинейных колебаний, которые применяются, когда точные аналитические решения уравнений движения найти невозможно. Основное внимание уделяется методам разложения по малому параметру.

Осциллятор с квадратичной нелинейностью

Рассматривается уравнение движения осциллятора с квадратичной нелинейностью:

$$\ddot{x} + \omega_0^2 x + \alpha x^2 = 0$$

Путем введения безразмерных переменных и параметра $\varepsilon = \alpha A/\omega_0^2$, уравнение преобразуется к виду:

$$\ddot{x} + x + \varepsilon x^2 = 0$$

Для случая слабой нелиней ности ($\varepsilon\ll 1$) решение ищется в виде ряда по степеням $\varepsilon.$

Метод разложения по малому параметру

Решение представляется в виде:

$$x(t) = x_1(t) + \varepsilon x_2(t) + \varepsilon^2 x_3(t) + \dots$$

Подстановка этого ряда в уравнение движения приводит к системе уравнений для каждого порядка ε . Решение для x_1 соответствует гармоническому осциллятору, а для x_2 учитывает влияние нелинейности.

Осциллятор Дуффинга

Рассматривается осциллятор с кубической нелинейностью:

$$\ddot{x} + \omega_0^2 x + \beta x^3 = 0$$

Аналогично предыдущему случаю, уравнение преобразуется и решается методом разложения по малому параметру. Однако, в этом случае возникает резонанс, который приводит к секулярному росту амплитуды.

Метод Линштедта-Пуанкаре

Для устранения секулярных членов и учета неизохронности, вводится новая временная переменная $\tau=\omega t$. Частота ω также раскладывается в ряд по ε . Это позволяет получить решение, которое остается корректным на больших временах.

Заключение

Методы, рассмотренные в лекции, позволяют находить приближенные решения для нелинейных осцилляторов, учитывая слабую нелинейность. Метод Линштедта-Пуанкаре особенно полезен для устранения секулярных членов и учета зависимости частоты от амплитуды.