Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 10 Martie 2012

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a VII-a
Problema 1. Se consideră numere naturale impare $a_1, a_2, \ldots, a_{2012}$. Demonstrați că numărul $A = \sqrt{a_1^2 + a_2^2 + \cdots + a_{2012}^2 - 1}$ este irațional.
Soluție. Numărul A este rațional dacă și numai dacă numărul $a_1^2 + a_2^2 + \cdots + a_{2012}^2 - 1$ este pătrat perfect.
Pătratul unui număr impar este de forma $4k+1$, cu $k \in \mathbb{N}$.
Suma $a_1^2 + a_2^2 + \cdots + a_{2012}^2$ este un multiplu de 4, deoarece 4 2012
Atunci $a_1^2 + a_2^2 + \dots + a_{2012}^2 - 1$ este un număr impar de forma $4k + 3$, deci nu e pătrat perfect.
2p
Problema 2. Se consideră numerele reale strict pozitive a , b şi c cu proprietatea că $a^2 + ab + ac - bc = 0$. a) Arătați că dacă două dintre numerele a , b şi c sunt egale, atunci cel puțin unul dintre cele trei numere este irațional. b) Arătați că există o infinitate de triplete de numere naturale nenule (m, n, p) cu proprietatea că $m^2 + mn + mp - np = 0$.
Soluție. a) Observăm că relația este simetrică în b și c , deci avem două cazuri: $a=b$ sau $b=c$. Dacă $a=b$ relația devine $2a^2=0$, fals.
Dacă $b=c$, atunci $a^2+2ab=b^2$, de unde $(a+b)^2=2b^2$. Rezultă $a+b=b\sqrt{2}$, deci $a=b(\sqrt{2}-1)$. Dacă b este iraţional, el satisface cerinţa. Dacă b este raţional, atunci a este iraţional şi cerinţa este îndeplinită.
b) Căutam triplete de forma (m, mu, mv) , cu m, u, v numere naturale nenule. Relația se scrie $1+u+v-uv=0$ sau $(u-1)(v-1)=2$.
Luăm $u=2,\ v=3$ și obținem tripletele $(m,2m,3m),\ m\in\mathbb{N}^*,$ care verifică cerința.

......1p

punctele $M,N\in(BC)$, $Q\in(AB)$ și $P\in(AC)$ astfel încât $MNPQ$ este dreptunghi. Demonstrați că centrul dreptunghiului $MNPQ$ coincide cu centrul de greutate al triunghiului ABC dacă și numai dacă $AB=AC=3AP$.
Soluție. Fie D mijlocul laturii BC și fie G centrul dreptunghiului $MNPQ$. Din ipoteză rezultă că punctele A, G, D sunt coliniare și $AG = 2 \cdot GD$.
Paralela din E la BC intersectează segmentele AB , QM , PN şi AC în punctele E , R , S şi F , respectiv. Atunci $GE=GF$ şi $GR=GS$, de unde rezultă $ER=SF$.
Triunghiurile QRE şi PSF sunt congruente – cazul L.U.L. Obţinem $\angle QER = \angle PFS$, de unde $\angle ABC = \angle ACB$ şi $AB = AC$.
Pe de altă parte, cum G este mijlocul lui PM , segmentul GF este linie mijlocie în triungiul PMC , deci $PF = FC$.
Din teorema lui Thales, obţinem $\frac{CF}{FA}=\frac{DG}{GA}=\frac{1}{2}$, prin urmare $AP=PF=FC$, deci $AB=AC=3AP$.
Problema 4. Se consideră pătratul $ABCD$ și punctul E pe latura AB . Dreapta DE intersectează dreapta BC în punctul F , iar dreapta CE intersectează dreapta AF în punctul G . Demonstrați că dreptele BG și DF sunt perpendiculare.
AB . Dreapta DE intersectează dreapta BC în punctul F , iar dreapta CE intersectează dreapta AF în punctul G . Demonstrați că dreptele BG și DF sunt perpendiculare. Soluție. Notăm $AB = a$, $AE = x$ și fie $P \in (BC)$ astfel încât $BP = x$. Din congruența triunghiurilor ADE și ABP rezultă că $AP \perp DF$.
AB . Dreapta DE intersectează dreapta BC în punctul F , iar dreapta CE intersectează dreapta AF în punctul G . Demonstrați că dreptele BG și DF sunt perpendiculare. Soluție. Notăm $AB = a$, $AE = x$ și fie $P \in (BC)$ astfel încât $BP = x$. Din congruența triunghiurilor ADE și ABP rezultă că $AP \perp DF$. Triunghiurile AED și BEF sunt asemenea, deci $\frac{AE}{BE} = \frac{AD}{BF}$, de unde
AB . Dreapta DE intersectează dreapta BC în punctul F , iar dreapta CE intersectează dreapta AF în punctul G . Demonstrați că dreptele BG și DF sunt perpendiculare. Soluție. Notăm $AB = a$, $AE = x$ și fie $P \in (BC)$ astfel încât $BP = x$. Din congruența triunghiurilor ADE și ABP rezultă că $AP \perp DF$
AB . Dreapta DE intersectează dreapta BC în punctul F , iar dreapta CE intersectează dreapta AF în punctul G . Demonstrați că dreptele BG și DF sunt perpendiculare. Soluție. Notăm $AB = a$, $AE = x$ și fie $P \in (BC)$ astfel încât $BP = x$. Din congruența triunghiurilor ADE și ABP rezultă că $AP \perp DF$
AB . Dreapta DE intersectează dreapta BC în punctul F , iar dreapta CE intersectează dreapta AF în punctul G . Demonstrați că dreptele BG și DF sunt perpendiculare. Soluție. Notăm $AB = a$, $AE = x$ și fie $P \in (BC)$ astfel încât $BP = x$. Din congruența triunghiurilor ADE și ABP rezultă că $AP \perp DF$. Triunghiurile AED și BEF sunt asemenea, deci $\frac{AE}{BE} = \frac{AD}{BF}$, de unde $BF = \frac{a(a-x)}{x}$. Aplicând teorema lui Menelaus în triunghiul ABF cu transversala G —