DASC 550: Applied Deep Learning Discussions (10%)

Homeworks (30%) => 3 homeworks -> Grading: /projects -> lectures: Fridays => mathematical details Serturdays /Sundays => implementantes? Tupyter Motebooks — numpy see scipy kns numpy semborn scipy knsorflow pondes skleern. most plats, b -> Hybrid (SNA 104 and Zeom)

office: ENG 118

mehmetgenen@ku.edi.tr

Supervised Leerning -> regression L) classification
L) multi-output repression
L) multi-label classification when $X = \frac{1}{2} \left(x_i, y_i \right) \frac{3}{2} = 1$ $\frac{1}{2} \left(x_i, y_i \right) \frac{3}{2} = 1$ $\frac{1}{2} \left(x_i, y_i \right) \frac{3}{2} = 1$ when $\frac{1}{2} \left(x_i, y_i \right) \frac{3}{2} = 1$ output Dolumns 10 lumn (teget) rows () X | BNX1 rows y ERNX1

Ch4sificatro 7 $\chi = \{(x_i, y_i)\}^{\chi}$ yi E \geq 1,2,--,K3 3 = (1) edg 1000 11223 1000 mutually exclusive 150 ftmax octs rentin label matrix not mutually Multilahel Classification exclusive. Y SEL Picture,

8 (0x 2 do 3 l/20 do 8 do 3 l/20 (2) (1/2) A of ormels: 10 => # of classes = 2 = 1024 t Reprission 2- { (xi, yi)} in xiter yi ER Multoutput Repression You -> USD/TRY -> EVR/TRY USOKRY EURITRY

30 fps
40 f Jake points.
60 fps
NXHXINXT

X EIR

D = HXWXT

Vector to Real Valued $\mathbb{R}^{\mathbb{D}} \to \mathbb{R}$ Matrix 6 RD -> 20,13 IR -> {1,2,--, k} Tenser to Dequerce 5 the (movie) (theather hour s (fw) he move (end) wastched Sequence-to-Reel Velued Problems ->

Vector-to-Scavence problems Image-to-Text (Image Captioning)
Two bids are playing soccer on the freld. while sur is sedling, two happy kids one playing to gether.
$P1 \longrightarrow P1-51$ $P2-51$ $P2-52$ $P2-53$ $P_{N+1} \longrightarrow P_{N+1}$

Monthe matriel Foundations ANNS(Artificial Neural Networks) Ez=threshok of rode: neuron is a chuated W1 other mise neuron is Machiel

W151+W252+W153+W454+W050>0

Linear Regnessson Model g= w1. Xi1 +w2. Xi2 + ---+ WOXED 4 W2 +WPX1D 40 = wo + w 1 × 11 + QW, 4 72/ 92 = wo + wy x21+ +WD X2D $(\mathbf{x}_{\mathsf{D}})$ (y_2) X4 yn = wo + w1 XN1 +WD XND Y11 XID W X2D X21 W Use-bias YN1 90 (W D Nx (D+1) LNXD (D+1)X1 1 X W

octuates finction Abstract model. Hustract ville between the Les cribe hat we have the hourshill y & J

(yi-ýi)2 $(y-\hat{y})^{T}.(y-\hat{y})$ given $(y-\chi.w)^T$ $(y-\chi w) \leftarrow f(w)$ minimize

(y-x.w)'.(y-x.w)minimire f(w) minimite h (w) 2 g(w).h(w) (y-X.w)+-X'(y-xw)(A.B) - B. A

$$(x^{T}.x) \times^{T}.y = (x^{T}.x)(x^{T}.x)w$$
 $(x^{T}.x) \times^{T}.y = (x^{T}.x)(x^{T}.x)w$
 $(x^{T}.x) \times^{T}.y = (x^{T}.x)(x^{T}.x)(x^{T}.x)$
 $(x^{T}.x) \times^{T}.y = (x^{T}.x)(x^{T}.x)(x^{T}.x)$

if
$$\sigma(\cdot)$$
 is unit actuation $\sigma(x)=x$

$$Z = X.W_1$$
 $\hat{y} = \hat{z}.w_2$

$$\frac{1}{3} = \frac{1}{1} \frac{$$

$$y = \sigma(x.w_1)$$
. w_2

 $\hat{y} = X.w$ $\hat{y} = \sigma(X.W_1).w_2$ minsmire $(y-\hat{y})'$. $(y-\hat{y})$ Minimi te $(y-\sigma(\chi.w_1).w_2)\cdot(y-\sigma(\chi.w_1).w_2)$ There is no closed-form solution.

Lineer Classification 15; gmoid. 1texp(-a) g / X.w ý = o(X, w)

Classification. WZ a luays $= (1)(\times .W_1)$ $\hat{y} = (\hat{z})(\hat{z}, w_2)$ $\hat{y} = \sigma_2 \left(\sigma_1 \left(X. w_1 \right) . w_2 \right)$ 7 sppmo; d, tonh, leak y leak y Rell. Rell.

Problem Act at the entput layer Unit actuation. Repression Sognoid. Brery Class. Seftmax Multiclass Cless. -> multiple signoids Multiple Unit. actu. Multhel Class. Multiortput negres.

1055 (y/g) -> for honory classification most frequently used loss is

mary coss entropy

brang coss entropy

legaliable

distributed Rils. maximize legaliable

il ménimire - log(likelihood.) 1055 (y , y) = - \(\int \) (Ayi log (yi) \(\frac{\text{B1}}{1-yi} \) \(\frac{\text{C9}}{1-yi} \) controf + = 98 % (A=1)

(ahro 0 + - = 2 % B=49)

(ahro 0 + - = 2 % B=49)

