CTT009 Lưu trữ dữ liệu

Nội dung

- Nhắc lại
- □ Biểu diễn thông tin
 - □ Văn bản, số, hình ảnh, âm thanh
- Lưu trữ số nguyên
- Lưu trữ phân số

Nhắc lại

- □ Chuỗi bits
- Phép toán Boolean
- □ Flip-flop
- ☐ Ô nhớ và địa chỉ
- Volatile memory
- Non-volatile memory

BIỂU DIỄN THÔNG TIN

- Từng ký tự được biểu diễn bởi 1 chuỗi các bits duy nhất
 - ☐ Chữ cái, dấu chấm câu, ...
- □ Tiêu chuẩn mã hóa
 - ASCII
 - ISO
 - Unicode

- ASCII American Standard Code for Information Interchange
 - Sử dụng tổ hợp 7 bits để biểu diễn các ký tự được sử dụng trong văn bản tiếng Anh
 - 0 ~ 31 & 127: mã điều khiển thiết bị
 - 32 ~ 126: mã ký hiệu thông thường
 - (A..Z, a..z, 0..9, ?!...)
 - Ví dụ
 - A:65 B:66 ...
 - **a**:97 b:98 ...

☐ Chữ "Hello" trong ASCII

Nguồn: Computer Science - An Overview, 12e

- - ☐ Tổ chức ISO phát triển nhiều mở rộng cho bảng mã ASCII, sử dụng tổ hợp 8 bits
 - 128 ~ 255 : mã ký hiệu mở rộng (α, β, γ, ...)
 - Mỗi mở rộng là một nhóm ngôn ngữ chính
 - ISO Latin-1 (ISO 8859-1)
- Unicode
 - Sử dụng tổ hợp 16 bits để biểu diễn các ký tự được sử dụng trong các ngôn ngữ trên toàn thế giới (UTF-8, UTF-16)

Biểu diễn giá trị số

- Ký hiệu nhị phân
 - □ Sử dụng các bits để biểu diễn một số trong hệ cơ số 2
- Hạn chế của biểu diễn số trong máy tính
 - □ Tràn số trên (overflow)
 - Xãy ra khi biểu diễn 1 số quá lớn
 - □ Tràn số dưới (underflow)
 - Xãy ra khi biểu diễn 1 số quá nhỏ
 - □ Cắt bỏ (truncation)
 - Xãy ra khi không thể biểu diễn chính xác một giá trị một số nằm giữa 2 cách biểu diễn)

Biểu diễn hình ảnh

- ☐ Kỹ thuật bit map
 - □ Điểm ảnh (pixel : picture element)
 - □ Điểm ảnh được mã hóa
 - RGB
 - Cường độ sáng (luminance) và độ đậm/nhạt của màu (chrominance)
- ☐ Kỹ thuật vector
 - □ Cấu trúc hình học (đường kẻ, đường cong...)
 - Có thể thay đổi kích thước (phóng to, thu nhỏ) mà không bị biến dạng
 - TrueType và PostScript

Biểu diễn âm thanh

1.5

2.0

- ☐ Kỹ thuật lấy mẫu (sampling)
 - Lấy biên độ của sóng âm thanh ở các khoảng thời gian đều đặn và lưu trữ các loạt giá trị này
 - □ Tỷ lệ mẫu
 - Điện thoại : 8,000 mẫu/giây
 - Nhạc : 44,100 mẫu/giây
 - Độ trung thực cao, 16 bits/mẫu
 - Nhạc nổi (stereo), 32 bits/mẫu

Nguồn: Computer Science - An Overview, 12e

Biểu diễn âm thanh

- MIDI Musical Instrument Digital Interface
 - Mã hóa dụng cụ nào đang chơi nốt nhạc nào trong khoảng thời gian nào
 - □ Ví dụ
 - Kèn clarinet chơi nốt rê (note D) trong 2 giây
 - Được mã hóa bởi 3 bytes

LƯU TRỮ SỐ NGUYÊN

Giới thiệu

- Giá trị số được biểu diễn bởi ký hiệu nhị phân
- Ngoài ra còn có
 - □ Ký hiệu số bù 2 (two's complement)
 - □ Ký hiệu số vượt quá (excess)

□ Bit trái nhất ~ bit dấu

□ 1 : âm

□ 0 : dương

□ Ví dụ

 $(4) \quad 0100 \implies 1011 \implies 1100 \quad (-4)$

a. Using patterns of length three

Bit	Value
pattern	represented
011	3
010	2
001	1
000	0
111	-1
110	-2
101	-3
100	-4

Nguồn: Computer Science - An Overview, 12e

b. Using patterns of length four

Bit pattern	Value represented
0111	7
0110	6
0101	5
0100	4
0011	3
0010	2
0001	1
0000	0
1111	-1
1110	-2
1101	-3
1100	-4
1011	-5
1010	-6
1001	-7
1000	-8
1000	- U

- Mối liên hệ giữa hai số có cùng độ lớn
 - Chuỗi bits giống nhau từ phải qua trái cho đến khi gặp bit 1 đầu tiên
 - Phần chuỗi còn lại của số này là chuỗi đối của số kia
 - Chuỗi đảo bits từ 0 sang 1, từ 1 sang 0

Nguồn: Computer Science - An Overview, 12e

Ký hiệu số bù 2 - Phép cộng

Quiz

- □ Nếu dùng 4 bits để lưu số không dấu
 - ☐ Ta lưu được các số nào?

- □ Nếu dùng 4 bits để lưu số có dấu
 - ☐ Ta lưu được các số nào?

Tóm lại

Lưu trữ số nguyên

	8 bits	16 bits	32 bits	64 bits
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

- UMax: giá trị lớn nhất của số không dấu
- □ TMax: giá trị lớn nhất của số có dấu
- □ TMin: giá trị nhỏ nhất của số có dấu

Bù 2

Bit	Value
pattern	represented
011	3
010	2
001	1
000	0
111	-1
110	-2
101	-3
100	-4

Vượt quá

Bit pattern	Value represented
111	3
110	2
101	1
100	0
011	-1
010	-2
001	-3
000	-4

Bù 2

Bit	Value
pattern	represented
0111 0110 0101 0100 0011 0000 0001 0000 1111 1110 1101 1101 1010 1011 1000	7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8

Vượt quá

Bit pattern	Value represented
1111	7
1110	6
1101	5
1100	4
1011	3
1010	2
1001	1
1000	0
0111	-1
0110	-2
0101	-3
0100	-4
0011	-5
0010	-6
0001	-7
0000	-8

Nguồn: Computer Science -An Overview, 12e

Thập phân

Binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Vượt quá

Bit	Value
pattern	represented
1111 1110 1101 1100 1011 1010 1001 1000 0111	7 6 5 4 3 2 1 0
0110	-2
0101	-3
0100	-4
0011	-5
0010	-6
0001	-7
0000	-8

Nguồn: Computer Science -An Overview, 12e

- ☐ Giả sử cố định chiều dài chuỗi bits là 4
 - □ 0000 ở hệ 10, biểu diễn giá trị 0
 - □ 0000 ở hệ vượt quá, biểu diễn giá trị -8
 - □ 1100 ở hệ 10, biểu diễn giá trị 12
 - □ 1100 ở vượt quá, biểu diễn giá trị 4
 - □ Vượt quá 8 (2⁴⁻¹)

- ☐ Giả sử cố định chiều dài chuỗi bits là 5
- ☐ Vượt quá là bao nhiêu?
- ☐ Tổng quát
 - Ký hiệu vượt quá 2^{N-1}
 - ☐ Ký hiệu vượt quá N-bit
 - □ Với N là chiều dài chuỗi bits

LƯU TRỮ PHÂN SỐ

Giới thiệu

- Phân số không chỉ lưu chuỗi bits mà còn lưu vị trí của *radix point*
 - Ký hiệu dùng để tách phần nguyên (bên trái) và phần phân số (bên phải) của 1 số
- Ký hiệu dấu chấm động (floating-point)

Dấu chấm động

- ☐ Giả sử có 8 bits
 - □ Bit trái nhất là *bit dấu* (sign bit)
 - 0 (dương) và 1 (âm)
 - □ 3 bits tiếp theo là *phần mũ* (exponent)
 - □ 4 bits sau cùng là *phần định trị* (mantissa)

Nguồn: Computer Science - An Overview, 12e

Ví dụ 1

- □ Chuỗi bits 01101011
 - □ Bit dấu: 0
 - □ Phần mũ: 110
 - □ Phần định trị: 1011
 - .1011
 - 110 = 2 (hệ vượt quá 3-bit)
 - \square 10.11 = 2 $\frac{3}{4}$
 - $201101011 = 2\frac{3}{4}$

Ví dụ 2

- Chuỗi bits 00111100
 - □ Bit dấu: 0
 - □ Phần mũ: 011
 - □ Phần định trị: 1100
 - .1100
 - □ 011 = -1 (hệ vượt quá 3-bit)
 - \square .01100 = 3/8
 - **111100 = 3/8**

Ví dụ 3

- Mã hóa 1½
 - □ Chuyển sang hệ nhị phân: 1.001
 - □ Phần định trị: _ _ _ _ 1 0 0 1
 - Từ trái sang phải, bắt đầu với bit 1 trái nhất
 - □ Radix point: từ .1001 thành 1.001 → +1
 - □ Phần mũ: +1 = 101 (hệ vượt quá 3-bit)
 - □ Bit dấu: 0
 - 1½ = 01011001

Lỗi cắt bỏ

Nguồn: Computer Science - An Overview, 12e

Để biểu diễn chính xác

Chính xác đơn : 32 bits

Chính xác kép : 64 bits

Chính xác mở rộng : 80 bits (Intel only)

Chính xác đơn 32-bit

☐ Chuẩn IEEE-754

$$N = (-1)^S \times 1.F \times 2^E - 127$$

□ S : bit dấu

F: fractional part

☐ E : exponent part

 \square 127 = 2^{8-1} (vượt quá 8-bit)

Chính xác đơn 32-bit

- Ví dụ

```
Sign bit S = 0 \Rightarrow positive number
E = 1000 0000B = 128D
Fraction is 1.11B (with an implicit leading 1) = 1 + 1×2^-1 + 1×2^-2 = 1.75D

The number is +1.75 × 2^(128-127) = +3.5D
```


Chính xác đơn 32-bit

- Ví dụ

```
Sign bit S = 1 \Rightarrow \text{negative number} E = 0111 \ 1110 \text{B} = 126 \text{D} Fraction is 1.1B (with an implicit leading 1) = 1 + 2^-1 = 1.5D
```


TÓM TẮT

Bài giảng hôm nay

- □ Biểu diễn thông tin
 - Ý tưởng làm sao máy tính lưu được văn bản, số, hình ảnh, âm thanh
 - ☐ Tên gọi của các kỹ thuật
- Lưu trữ số nguyên
- Lưu trữ phân số

Bài giảng tuần tới

- □ Lưu trữ dữ liệu (chapter 1)
 - □ Nén dữ liệu
 - □ Lỗi giao tiếp
 - □ Hệ thống tập tin

