Consumer Search and Price Competition in the Digital Market

How are firms impacted by the consumer search behavior? A case study of search strategies in U.S. online book retailing

Motivation

Global ecommerce sales from 2014 to 2021 (in billion U.S. dollars)

Traditional vs. Online shopping

Top Ecommerce companies: (by revenue)

- 1. Amazon United States
- 2. Jingdong China
- 3. Alibaba China
- 4. Ebay United States
- 5. Rakuten Japan
- 6. B2W Brazil
- 7. Zalando Germany
- 8. Groupon United States

Previous Literature

- Estimation of consumer choice with search costs
 - Hong and Shum (2006)
 - Moraga-Gonz·lez and Wildenbeest (2006)
 - Honka (2014)
- Equilibrium online shopping model
 - Morgan (2001)
- Search theory to study online markets
 - Dinerstein, Einav, Levin, and Sundaresan (2017)

Contribution & Data

Applying real-world dataset

ComScore Web Behavior Database

- Updated: November 2018
- Access through WRDS
- A sample of US internet users' internet browsing behavior, purchases, and demographics.

Column Name	Data Type	Description
machine_id	bigint	unique machine identifier
site_session_id	unsigned bigint	unique identifier for user's browsing session on a site
prod_category_id	int	unique identifier for category of product purchased
prod_name	varchar(500)	name of product purchased
prod_qty	int	number of product purchased
prod_totprice	numeric(12,2)	total price of product
basket_tot	numeric(12,2)	total price of all products purchased
event_date	varchar(8)	yyyymmdd
event_time	varchar(8)	hh:mm:ss (UTC)
domain_id	unsigned bigint	unique identifier for domain where product purchased

Contribution & Data (Continued)

• Applying real-world dataset

ComScore Web Behavior Database

- Updated: November 2018
- Access through WRDS
- A sample of US internet users' internet browsing behavior, purchases, and demographics.

Column Name	Data Type	Description
machine_id	bigint	unique machine identifier
site_session_id	unsigned bigint	unique identifier for user's browsing session on a site
prod_category_id	int	unique identifier for category of product purchased
prod_name	varchar(500)	name of product purchased
prod_qty	int	number of product purchased
prod_totprice	numeric(12,2)	total price of product
basket_tot	numeric(12,2)	total price of all products purchased
event_date	varchar(8)	yyyymmdd
event_time	varchar(8)	hh:mm:ss (UTC)
domain_id	unsigned bigint	unique identifier for domain where product purchased

Theoretical model 1/2: Simultaneous Search

- Stigler's (1961)
- Assuming the consumer believes that each store's price is an i.i.d from distribution F(p) with density f (p) and a consumer will determine the optimal number of stores k in her sample by minimizing the sum of the expected price and total search cost:

$$k(c) = \arg\min_{k} \int_{p}^{\overline{p}} k \cdot p(1 - F(p))^{k-1} f(p) dp + k \cdot c.$$

Theoretical model 2/2: Sequential Search

• Weitzman (1979): optimal search solution

Given prices $p = (p_1, ..., p_n)$ and prior values $v = (v_1, ..., v_n)$, the (representative) consumer's optimal search strategy is as follows:

for each i, let
$$z_i^*$$
 be the value such that $s_i = \int_{z_i^*}^{z_i} (1 - G_i(z_i)) dz_i$.

- (i) Search order: the consumer visits the sellers in the descending order of $v_i + z_i^* p_i$.
- (ii) Stopping: let N be the set of sellers the consumer has visited so far. She stops, and takes the best available option by the point, if and only if

$$\max \left\{ u_0, \max_{i \in N} v_i + z_i - p_i \right\} > \max_{j \notin N} v_j + z_j^* - p_j.$$

Method

Empirical Implications of Search Models

- Recall behavior
- Price dependence
- Product differentiation
- Utility function
- Search cost elasticity

How are companies affected by different customers' search method?

- Effect on market share
- Effect on customer base
- Pricing strategies

Method (Continued)

Empirical Implications of Search Models

- Recall behavior
- Price dependence
- Product differentiation
- Utility function
- Search cost elasticity

How are companies affected by different customers' search method?

- Effect on market share
- Effect on customer base
- Pricing strategies

Computational tools & Analysis

- Hypothesis testing
- Discrete choice model
- Comparative statics
- PCA and factor analysis