A Homotopy method for motion planning

M.-A. Belabbas Electrical and Computer Engineering Department Coordinated Science Lab University of Illinois, Urbana-Champaign

Motion planning can mean a lot of things to a lot of people

- Changing, unknown environment
- Goal: find controls to reach final destination
- High-level control: send 'move to (x,y)' commands, algorithmic solutions

Addresses the difficult problem of planning with non-holonomic dynamics

$$\dot{x} = \sum_{i} u_{i} f_{i}(x)$$

$$\dot{x} = \sqrt{\frac{1}{\varepsilon}} \cos(\frac{t}{\varepsilon}) f_{1}(x) + \sqrt{\frac{1}{\varepsilon}} \sin(\frac{t}{\varepsilon}) f_{2}(x) \Leftrightarrow \dot{x} = [f_{1}, f_{2}](x)$$

- Goal: find controls to follow target trajectory.
- Provides: Analytic solutions

Motion planning = find controls to drive you to a desired destination

New method for motion planning for nonlinear systems

in: out:

- 1. Description of environment
- 2. Description of dynamics
- 3. Desired final location/state

Controls that send you to destination

- Handles holonomic, nonholonomic, obstacle constraints
- Provides an algorithm, and strong guarantees of convergence
- Yields natural motions

Goal: move unicycle from (0,0,0) to (0,1,0)

Initial trajectory

With obstacles

- Warning: homotopies always take place in configuration space and are differentiable
- We show a projection onto 2D workspace

Outline of the presentation

- 1. Introduction and motivation
- 2. Presentation of the method
- 3. Complexity, drift and bounded controls
- 4. Case study: wheeled vehicles
- 5. Sketch of proof of convergence

Three steps of the method

1. The constraints: think local

When at a point in configuration space, what are good directions to follow?

2. Homotopy

Transform an initial path to one that meets constraints

3. Extract controls

Think local!

• From a local perspective: 2 types of constraints

Hard constraints

 Holonomic/non-holonomic: motion in some direction not allowed

Mathematically, create a matrix

$$F_c(x) = \begin{pmatrix} | & | & \cdots & | \\ f_1 & f_2 & \cdots & f_p \\ | & | & \cdots & | \end{pmatrix}$$

where the columns span the forbidden motion

Soft constraints

 Obstacle: unless exactly at boundary, no restriction on motion

Mathematically, described by "barrier" function *r*(*x*)

$$\mathcal{O} = \{ x \in Q \mid r(x) \ge 0 \}$$

Naive approach: minimize integral cost of forbidden directions

- Let p(t) be a trajectory in configuration space joining initial to desired final states
- How much is the trajectory using constrained motions at x?

• Motion at x=p(t) is given by

$$\dot{p}(t)$$

· Constrained motions are

$$F_c(x)$$

• Proximity to obstacle is given by

$$\left| \frac{1}{\varepsilon + r(x)} \right|$$
, where ε is a tolerance parameter

The quantity
$$\|F_c^\top(x)\dot{p}(t)\|^2 \left|\frac{1}{\varepsilon m_{\rm e}}\right|^2 \text{how much "bad}$$
 directions" are used at $p(t)$

Naive approach: minimize cost of forbidden directions

• We assign the cost J to a path p(t):

$$J(p) := \int_0^{t_f} \|F_c^{\mathsf{T}}(p(t))\dot{p}(t)\|^2 \left| \frac{1}{\varepsilon + r(p(t))} \right|^2 dt$$

• Derive the gradient flow for this functional, in path space

Converges to a discontinuous path in general

The fix: ``regularization''

- Discontinuous curve ⇔ large derivative
- → Penalize the norm of the derivative

minimize
$$E_k(p) := J(p) + \frac{1}{k} \int_0^{t_f} ||\dot{p}||^2 dt$$

- The good: minima are continuous
- The bad: when k<∞, we are not solving our original problem
- The ugly: we can try to solve for k large and hope to have p close to minima of J, but we
 know that for k=∞, we converge to a discontinuous p.

Theorem: Let $p_k(t)$ be a minimizer of E_k . Then $\lim_{k\to\infty} p_k(t)$ is continuous.

Riemannian geometry naturally appears when dealing with localized constraints

Observations: 1. we can always find a G so that the functional E can be expressed as

$$E(p) := J(p) + \frac{1}{k} \int_0^{t_f} ||\dot{p}||^2 dt \longrightarrow E(p) = \int_0^{t_f} \dot{p}^{\mathsf{T}} G(p(t)) \dot{p} dt$$

2. This is the energy functional, whose minimizers are geodesics for the metric associated with G!

Admissible paths ← geodesics for "good metric"

The method in three steps redux

1. Localize the constraints

→Encode in a positive definite matrix

2. Homotopy

Transform an initial path which does *not* meet the constraints to one that meets constraints

Becomes a Geometric Heat Flow (GHF)

3. Extract controls

Encoding the constraints in an inner product

Set
$$F_f(x) \longleftarrow F_c^{\perp}(x)$$
 and $F(x) = \begin{pmatrix} | & | \\ F_c & F_f \\ | & | \end{pmatrix}$ F is square and invertible.

- Denote by p the number of columns of
- Set $b(x) := \left| \frac{1}{\varepsilon + r(x)} \right|$
- Define the family of inner products (metrics)

$$G_{k}(x) := F(x) \begin{pmatrix} k & 0 & \cdots & & & 0 \\ 0 & k & 0 & \cdots & & & 0 \\ \vdots & & \ddots & & & \vdots \\ 0 & \cdots & & b(x) & & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & \cdots & & b(x) \end{pmatrix} F^{T}(x)$$

 $F_c(x)$

The method in three steps redux

1. Localize the constraints

When at a point in configuration space, what are good directions to follow?

Add regularization for complementary directions

→Riemannian inner product

2. Homotopy

Transform an initial path which does *not* meet the constraints to one that meets constraints

Becomes a Geometric Heat Flow (GHF)

3. Extract controls

Why use homotopy of paths?

Homotopic paths have similar "macroscopic" characteristics

- +: if you need to insure properties of paths
 Integrate prior knowledge into initial trajectory
- 2. -: if you want to optimize global properties.

 Need preprocessing to find optimal homotopy class

Homotopy through geometric heat flow

- In our problem, we are given 1. Fixed initial and final states
 - 2. An initial path between these states that avoid obstacles, but does not meet constraints necessarily.
- Goal: minimize length for G(x) amongst differentiable paths joining these states

Large body of research in the area, under the name of curve shortening flows or Geometric heat flows

[Angenent, Huisken, Grayson, Altschuler, Abresch, Langer (between 1986-1991)]

Homotopy

$$v(s,t): [0,\infty] \times [0,t_f] \to Q \text{ with } v(s,0) = x_0, v(s,t_f) = x_1$$

Curve shortening: move in direction of inner normal

$$\frac{\partial v(s,t)}{\partial s} = "\dot{v}" = \kappa N$$

$$\frac{\partial}{\partial s}v_i(s,t) = \frac{\partial^2}{\partial t^2}v_i(s,t) + \sum_{j,k} \Gamma^i_{jk} \frac{\partial v_j}{\partial t} \frac{\partial v_k}{\partial t}$$

This is the geometric heat flow we solve

Where, we recall the Christoffels symbols

$$\Gamma_{jk}^{i}(x) := \frac{1}{2} \sum_{l=1}^{n} G_{il}^{-1} \left(\frac{\partial G_{lj}}{\partial x_{k}} + \frac{\partial G_{lk}}{\partial x_{j}} - \frac{\partial G_{jk}}{\partial x_{l}} \right)$$

The method in three steps redux

1. Localize the constraints

When at a point in configuration space, what are good directions to follow?

Add regularization for complementary directions

→Riemannian inner product

2. Homotopy

Transform an initial path which does *not* meet the constraints to one that meets constraints

Becomes a Geometric Heat Flow (GHF)

3. Extract controls

Extract controls and convergence guarantee

$$\dot{x} = \sum_{i=1}^{l} \mu_i b_i(x)$$

$$\dot{x} = \sum_{i=1}^{l} \mu_i b_i(x)$$

$$\dot{x} = \sum_{i=1}^{l} \mu_i b_i(x)$$

• Let *B(x)* be the matrix with columns

Let $p_{k,s}(t)$ be the solution using our method with integration time s and metric $G_k(x)$

Note that
$$\lim_{s \to \infty} p_{k,s}(t) = \arg \min \int_0^{t_f} \dot{p}^{\mathsf{T}} G_k \dot{p} dt$$

Set
$$\bar{u}_{k,s}(t) = B^{\dagger} F_f F_f^{\dagger} \dot{p}_{k,s}(t)$$
 $\dot{x}_{s,k}^*(t) = \sum_{i=1}^p \bar{u}_{i,s,k} b_i(x^*)$

Under some assumptions (controllability), the following hold

Theorem: We have $\lim_{s,k\to\infty} p_{s,k}(t)$ is continuous

Theorem [Consistency]: We have $\lim_{s,k\to\infty} x_{s,k}^*(t) = \lim_{s,k\to\infty} p_{s,k}(t)$

Theorem: For all $\varepsilon > 0$, there exists s_m, k_m so that for all $s \ge s_m, k \ge k_m, \|x_{s,k}^*(t_f) - \bar{x}(t_f)\| < \varepsilon$

Outline of the presentation

- 1. Introduction and motivation
- 2. Presentation of the method
- 3. Complexity, drift and bounded controls
- 4. Case study: wheeled vehicles
- 5. Sketch of proof of convergence

On complexity

- Computationally intensive part: numerical solution of the GHF
- Good news: this is a parabolic PDE. Fast, parallel algorithm exist.
- It is of much lower complexity than solving the Hamilton-Jacobi-Bellman (HJB) equation

Hamilton-Jacobi-Bellman

$$-\frac{\partial V(t,x)}{\partial t} = -\min_{u} \left[\frac{\partial V}{\partial x} f(x,u) + c(x,u) \right]$$

- Complexity: dimension of domain of V increases linearly in dimension of Q
 - 1 equation with domain scaling with number of dimensions of Q
 - complexity is exponential in dimension of domain
- + : Provides feedback control
- : Feedback control may not exist, no clean stopping rule

Geometric Heat Flow

$$-\frac{\partial V(t,x)}{\partial t} = -\min_{u} \left[\frac{\partial V}{\partial x} f(x,u) + c(x,u) \right] \qquad \frac{\partial}{\partial s} v_{i}(s,t) = \frac{\partial^{2}}{\partial t^{2}} v_{i}(s,t) + \sum_{j,k} \Gamma_{jk}^{i} \frac{\partial v_{j}}{\partial t} \frac{\partial v_{k}}{\partial t}$$

- Complexity: domain is (s,t): always twodimensional.
 - Number of PDEs increases with dimension of Q
 - complexity increases polynomially in dimension
- Provides open loop control

Systems with drift and constrained controls

$$\dot{x} = f_d(x) + \sum_i u_i b_i(x)$$

 $u \in \mathcal{U}$ a set of admissible controls

- Deciding controllability for systems with drift is far more complex
- From local point of view: set of allowable motions is not a vector space, but an affine space
- We use instead the functional:

$$\tilde{E}(p) := \int_0^{t_f} (\dot{p}^{\mathsf{T}} - f_{drift}) G(p(t)) (\dot{p} - f_{drift}) dt$$

Constraints on the controls are handled via obstacles and added state variables

$$\dot{x} = u_1 f_1 + u_2 f_2$$

$$\dot{x} = u_1 f_1 + u_2 f_2$$

$$\dot{z}_1 = u_1$$

$$and obstacle $z_1 \ge 0$$$

Systems with drift and constrained controls

Legged robot 2D planning // parallel legs

Configuration space: position and orientation (x,y,θ)

Inputs: ground reaction force ux uy

Massless: inputs to legs joint torque: $\ au = J^T \left[egin{array}{c} u_x \ u_y \end{array}
ight]$

Goal:

find a trajectory for x, y, θ , ux, uy with given initial and final condition.

Constraints:

- Kinematics constraints at joints
- Input constraints: friction cone

Systems with drift and positivity constraints

To implement the constraints, modify the system: add the control as states

$$X = egin{bmatrix} x & y & heta & \dot{x} & \dot{y} & \dot{ heta} & egin{bmatrix} u_x & u_y \end{bmatrix}^T$$

Update the dynamics

Set obstacles on the control states to implement the friction cone

Systems with drift and positive constraints

Transfer body from (-.25,.8,0) to (.25,.8,0)

Transfer body from (-.5,.8,0) to (.5,.8,0)

Allowed time: 1.5 sec

Outline of the presentation

- 1. Introduction and motivation
- 2. Presentation of the method
- 3. Complexity, drift and bounded controls
- 4. Case study: wheeled vehicles
- 5. Sketch of proof of convergence

Case study: car maneuvers

Model

Initial trajectories: 180 turn

Initial trajectories: street turn

Wide street

Narrow street

1. Narrower street

1. Bounding turning angle

1. Smaller turning angle

1. Even smaller turning angle

1.90 degree turn

1. bounded turning angle

Car maneuvers: parking lot

This is obtained using fixed waypoints

Outline of the presentation

- 1. Introduction and motivation
- 2. Presentation of the method
- 3. Complexity, drift and bounded controls
- 4. Case study: wheeled vehicles
- 5. Sketch of proof of convergence

Theoretical guarantee

Set $\Delta = \text{span}\{f_{\text{holon}}\} \cap \text{span}\{f_{\text{hombolon}}\}$.

Definition: Constraints are satisfiable if the distribution Δ satisfies the LARC.

Theorem

Assume that the constraints are satisfiable and all functions/vector fields are smooth. Then our method provides controls $\bar{u}(t)$ so that the solution $x^*(t)$ of $\dot{x} = \sum_i \bar{u}_i f_i$ has the properties:

- it satisfies the holonomic and non-holonomic constraints.
- For ε > 0, ∃k > 0 such that ||x*(1) x₁|| < ε and all obstacles are avoided.

Theoretical guarantee

The trajectory x^* is so that $||x^*(1) - x_1|| \ge 0$ as $k \ge \infty$.

- Set F_f so that span{F_f} = Δ and F_c to be the orthogonal complement of F_f.
- Set p(t) := lim_{s→∞} v(s, t): solution to the PDE (3).
- Define z(t) := Proj_Δ p(t).
- We can set \(\bar{u}\) s.t. \(z(t) = F_f(p)\bar{u}\).
- Because Δ ⊆ span{f_i}, there exists ū(t) so that

$$z(t) = \sum_{j} \bar{u}_{i} f_{i}(\rho).$$

- → By construction, x*(t) meets both holonomic and non-holonomic constraints.
- We can express

$$\dot{p} = F_f(p)\ddot{u} + F_c(p)u_c$$

Consider the energy of p:

$$E(p) = \int_{0}^{1} \dot{p}(t)^{T} G(p(t)) \dot{p}(t) dt$$

$$= \int_{0}^{1} |F_{\ell}(p)^{T} \ddot{u}(t)|^{2} + k|F_{c}(p)^{T} u_{c}(t)|^{2} dt$$

- By Chow-Rashevski, an admissible trajectory ending at x₁ exists. Denote
 it by p̄. Notice that E(p̄) is independent of k because F_c[⊤]p̄ = 0

 → E(p̄) is a finite constant.
- The solution of the PDE minimizes E(·), hence

$$\int_{0}^{1} |F_{f}(p)^{\top} \tilde{u}(t)|^{2} + k |F_{c}(p)^{\top} u_{c}(t)|^{2} dt = E(p) \leq E(\bar{p})$$

Without loss of generality with F_f, F_c are normalized, we have

$$\int_{0}^{1} |\tilde{u}(t)|^{2} + k|u_{c}(t)|^{2} dt \leq E(\bar{p}),$$

which leads to the two inequalities:

$$\int_{0}^{1} |\tilde{u}(t)|^{2} dt \leq E(\bar{p}),$$

$$\int_{0}^{1} |u_{c}(t)|^{2} dt \leq \frac{E(\bar{p})}{k}$$

Define the error e(t) := p(t) - x*(t). It satisfies

$$e(0) = 0$$
, $\dot{e}(t) = (F_f(p) - F_f(x^*))\tilde{u}(t) + F_c(p)u_c(t)$

 We can show that F_f is Lipschitz with constant L in the domain of interest. Applying Cauchy-Schwartz inequality and Grönwall's lemma,

$$|e(t)|^2 = |\int_0^t (F_\ell(p) - F_e(x^*))\tilde{u}(\tau) + F_e(p)u_e(\tau)d\tau|^2$$

 $\leq 2t \int_0^t L^2 |\tilde{u}(\tau)|^2 |e(\tau)|^2 d\tau + 2t \int_0^t |u_e(\tau)|^2 d\tau$
 $\Rightarrow |e(t)|^2 \leq 2t \int_0^1 |u_e(\tau)|^2 d\tau \exp \left(2tL^2 \int_0^1 |\tilde{u}(\tau)|^2 d\tau\right)$

Plugin the two inequalities from previous slide,

$$|e(t)| \le \sqrt{\frac{2tE(\bar{p})}{k}}e^{tL^2E(\bar{p})}$$

In particular, |x*(1) - x₁| = |e(1)| ≤ √(2E(b))/k e^{L²E(b)} → 0 as k → ∞, meaning we get arbitrarily close to x₁ by taking k sufficiently large.

Summary and outlook

- 1. New method for motion planning for nonlinear systems
- 2. Handles holonomic/non-holonomic and obstacle constraints
- 3. Provides natural motions
- 4. Can plan motion for multi-vehicles systems
- 5. Theoretical guarantees of convergence are provided

- 1. Streamline encoding of constraints
- 2. Parallelize GHF solver
- 3. Investigate regularity properties of solutions
- 4. Ensemble control and harmonic surfaces

Yinai Fan

Shenyu Liu