

PCT/CA

03/01708

05 DECEMBER 2003 05.12.03



Office de la propriété  
intellectuelle  
du Canada

Un organisme  
d'Industrie Canada

Canadian  
Intellectual Property  
Office

An Agency of  
Industry Canada

*Bureau canadien  
des brevets*  
Certification

La présente atteste que les documents  
ci-joints, dont la liste figure ci-dessous,  
sont des copies authentiques des docu-  
ments déposés au Bureau des brevets.

*Canadian Patent  
Office*  
Certification

This is to certify that the documents  
attached hereto and identified below are  
true copies of the documents on file in  
the Patent Office.

Specification and Drawings, as originally filed, with Application for Patent Serial No:  
2,411,132, on November 5, 2002, by **RAILPOWER TECHNOLOGIES CORP.**,  
assignee of Frank Wegner Donnelly, for "Direct Turbogenerator".

**PRIORITY DOCUMENT**  
SUBMITTED OR TRANSMITTED IN  
COMPLIANCE WITH  
RULE 17.1(a) OR (b)

|       |             |
|-------|-------------|
| REC'D | 29 DEC 2003 |
| WIPO  | PCT         |

*L. Higinbotham*  
Agent certificateur/Certifying Officer

December 5, 2003

Date

**Canada**

(CIPO 68)  
04-09-02

OPIC  CIPO

BEST AVAILABLE COPY

## **Direct Turbogenerator**

### **Abstract of the Disclosure**

5 A transformerless direct turbogenerator for generating electricity is provided. Since the induction alternator comprises multiple parallel windings, it allows elimination of the need for a transformer.

## Direct Turbogenerator

### Technical Field

5 [0001] The invention relates to the field of power turbines used for power generation, and more particularly turbogenerators for generating electricity which use a cycloconverter.

### Background

10 [0002] Gas turbines, either derived from aeroplane or industrial applications have been used and are being increasingly used to generate electrical power. Previously gas turbine power generation systems have used synchronous generators. In such systems, the gas turbine is connected to a gearbox to reduce the speed and 15 then attached to a synchronous alternator. In recent times it has also been known to attach a high-speed alternator to produce rectified DC current and then produce usable AC by attaching an inverter.

20 [0003] The use of synchronous generators with a gas turbine to generate electric power has some disadvantages in that to maintain a constant frequency of the output either the speed of the generator must be kept constant or a frequency changer is required to convert the synchronous generator signal to an output signal with a precisely regulated frequency. It has been known to use an induction generator in place of a synchronous generator, with a signal handling circuit such as a frequency 25 changer or cycloconverter to provide an output signal having a desired frequency and amplitude. See United States Patent no. 3832625 Gyugi. Cycloconverters are used to convert AC power at a fixed frequency to AC power at a lower frequency. In such systems a transformer is generally required between the cycloconverter and the alternator or between the cycloconverter and the output. Such an arrangement 30 requires a larger volume for the generator, and greater cost.

[0004] There is therefore a need for a transformerless turbogenerator.

### Summary of Invention

35 [0005] This invention provides a new type of turbogenerator that is more direct and thus more efficient with a lower capital cost. The direct cycloconverter also

- 2 -

eliminates the need for a gearbox but has the added advantage of avoiding the need for a DC link.

[0006] The present invention therefore provides a turbogenerator having:

- 5 a) a high speed turbine prime mover,
- b) an induction alternator,
- 10 c) an excitation system for the induction alternator comprising a plurality of static capacitors and switches,
- d) a cycloconverter connected to the induction alternator, and
- 15 e) a control circuit to control the excitation system and cycloconverter.

Brief Description of Drawings

[0007] In drawings which illustrate a preferred embodiment of the invention:

- 20 Fig. 1 is a simplified schematic drawing of the direct turbogenerator of the invention connected to a utility power grid; and
- 25 Fig. 2 is a circuit diagram illustrating a preferred form of transformerless cycloconverter for use with the invention.

Description

[0008] Throughout the following description, specific details are set forth in order to provide a more thorough understanding of the invention. However, the invention may be practiced without these particulars. In other instances, well known elements have not been shown or described in detail to avoid unnecessarily obscuring the invention. Accordingly, the specification and drawings are to be regarded in an illustrative, rather than a restrictive, sense.

[0009] With reference to Fig. 1, the basic direct turbogenerator of the invention is designated as 10 with an adaptation 12 for connection to a utility power system. The direct turbogenerator 10 includes a power turbine 14, an induction alternator 16, exciter 18, cycloconverter 20 and control 22. It may also have an auxiliary 5 source of AC power 24 for starting the gas turbine (not shown).

[0010] Power turbine 14, shown schematically in Fig. 1 on shaft 24 and having power shaft 26, is part of a gas turbine engine, the remaining parts, primarily the compressor and combustor, not being shown. The gas turbine of which power 10 turbine 14 is a part will preferably be a micro-turbine, mini-turbine, or small gas turbine, having a power output in the general range of 25 kilowatts to 20 megawatts. Any type of gas turbine engine, whether simple cycle, recuperated or intercooled 15 and recuperated may be used. The power turbine may be connected by shaft 24 to the compressor, as in a single spool gas turbine engine, or it may be on a separate shaft from the compressor, as in a double spool gas turbine engine. If a single spool gas turbine is used, an auxiliary AC power source may be provided in connection with the cycloconverter 20 to crank the shaft 26 to start the gas turbine.

[0011] Induction alternator 16 is coupled to power turbine 14 either directly by 20 shaft 26 or through a gearbox (not shown). It is excited by exciter 18 which is a plurality of static capacitors and switches. Exciter 18 is controlled by controller 22, which may be for example a Programmable Logic Controller.

[0012] Where the turbogenerator is to be interfaced to a utility power system 36, 25 filters 30 can be connected to the output. These may be smoothing reactor or LC filters. Interface switches 32 may also be connected, controlled by controller 22, to isolate the circuit from the utility grid in the event of outage surges, ground faults and the like. The output power is connected to AC Bus 34, to utility power 36 or both AC Bus 34 and utility power 36..

[0013] Figure 2 is a circuit diagram illustrating the preferred circuit of the 30 invention. Induction alternator 16 has three individual phase windings 41, 43, 45. Excitation is provided by a plurality of capacitors 45 and switches 47 arrayed around the stator 40. The switch capacitor arrangement around the induction 35 alternator stator 40 provides the necessary reactive power for the excitation of the alternator as well as a means of counteracting the effects of phase control current

from the naturally commutated cycloconverter. This is an improvement over the past approaches where naturally commutated cycloconverters were connected to a synchronous alternator that supplied current with significant displacement from their internally produced voltages. This results in lower losses, higher efficiency and  
5 desired sizing and capital costs are achieved with this approach. Since the induction alternator comprises multiple parallel windings it allows elimination of the transformer

10 [0014] Cycloconverter 20 comprises a plurality of switches 50, preferably six. These may be silicon controlled rectifiers. Where an independent alternating current power source 28 back feeds the cycloconverter, it can be used to start the prime mover using the induction alternator.

15 [0015] The present invention therefore provides a turbogenerator having:  
a) a high speed turbine prime mover,  
20 b) an induction alternator,  
c) an excitation system for the induction alternator comprising a plurality of static capacitors and switches,  
d) a cycloconverter connected to the induction alternator, and  
25 e) a control circuit to control the excitation system and cycloconverter.

Preferably the cycloconverter is naturally commutated.

30 [0016] As will be apparent from the foregoing, this invention has uses for both the production of electrical power at commercial power frequencies and driving of motors in applications such locomotives, ships and other vehicle applications.

35 [0017] As will be apparent to those skilled in the art in the light of the foregoing disclosure, many alterations and modifications are possible in the practice of this invention without departing from the spirit or scope thereof. Accordingly, the scope

- 5 -

of the invention is to be construed in accordance with the substance defined by the following claims.

- 6 -

WHAT IS CLAIMED IS:

1. A turbogenerator comprising:
  - 5 a) a high speed turbine prime mover;
  - b) an induction alternator;
  - c) an excitation system for said induction alternator comprising a plurality of static capacitors and switches;
  - 10 d) a cycloconverter connected to said induction alternator, and
  - e) a control circuit to control said excitation system and cycloconverter
- 15 2. The turbogenerator of claim 1 wherein said induction alternator comprises multiple parallel windings allowing elimination of the transformer.
3. The turbogenerator of claim 1 further comprising an independent 20 alternating current power source back in circuit with said cycloconverter to permit starting of the prime mover using the induction alternator.
4. The turbogenerator of claim 1 wherein said cycloconverter is naturally commutated.

25

BASIC DIRECT TURBOGENERATOR  
/0 }

UTILITY POWER APPLICATION  
/2 }



FIG. 1

2/2



**This Page is Inserted by IFW Indexing and Scanning  
Operations and is not part of the Official Record**

**BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

**BLACK BORDERS**

**IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**

**FADED TEXT OR DRAWING**

**BLURRED OR ILLEGIBLE TEXT OR DRAWING**

**SKEWED/SLANTED IMAGES**

**COLOR OR BLACK AND WHITE PHOTOGRAPHS**

**GRAY SCALE DOCUMENTS**

**LINES OR MARKS ON ORIGINAL DOCUMENT**

**REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**

**OTHER:** \_\_\_\_\_

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.**