	Date: No.
Assignment 4	
	CHANJUNG KIM
1. a) Yt = 2+0.5 Tt+ +04 Tt-2 + Ut	
_ 5 .	where B is backward shift operator
=> Tt - 0.5BTe -0.4B2Te = 2+ Ut	Mine 1 13 Machina (1 311) C operator
$(1-0.5B-0.4B^2)$ $Y_t = 2 + Ut$	
L, characteristic equation.	
•	
$1-0.5B-0.4B^2=0$	
Using quadratic formula	
B = -5 ± \[185	2 432
8	
since $(\frac{5}{8})^2 + (\frac{105}{8})^2 > 1$, the nots	of the characteristic
equation he outside of the unit circle	
. It is stationary.	
b) When It is stationary, E(Ft) is identical	al Con all values for
'	•
: E(Yz) = E(2) + 0.5E(Yz1) + 0.4E	(1+2) + E(UC)
=> M = 2+0.5M+0.4M+0	
M=20	
C) /t = 2+ 0.5 /c-1 + 0.4 /t-2 + Ut	
(X) /t-k/t = 2/t-K + 05/t-K/t-1 + 0	0.4 Tt-k Tt-1 + Tt-k lt
If we take unconditional expectation on	both sides noting that
$E(T_{t-k}) = Y(k) + \mu^2$ for any k, then	
$Y(k) + \mu^2 = 2\mu + 0.5(f(k-1) + \mu^2)$	+0.4(1(K-2)+12)
To the province austin 11 = 2 + 0.51	1+0.44. So
In the previous question, $M = 2 + 0.5 \mu$ $\mu^2 = 2\mu + 0.5 \mu + 0.4 \mu^2$	
M - 21. 10. 11. 10. 11.	

	Y(k) = 0.5 V(k-1) + 0.4 V(k-2)
	th sides by t(0) will give us comelation.
pck	0.5p(k-1) + 0.4p(k-2)
Here, pco.	1 = 1 and $p(j) = p(-j)$.
per	= 0.50(0) + 0.40(1).
i. pl	1) = 5
p(2)	$= 6.5\rho(1) + 0.4\rho(0)$
	$(2) = \frac{49}{60}$
by a cons For exampl Here, pla respective	In the equation above, autocorrelations of higher lags wined by summation of two previous autocorrelations multiplier ant (0.5 and 0.4 in this question) respectively. e, $\rho(5) = 0.5 \rho(4) + 0.4 \rho(3)$. and $\rho(3)$ can be expressed using $\rho(3)$, $\rho(2)$ and $\rho(2)$, $\rho(3)$. y. In this way, the airtocorrelation of any higher lag
can be c	alculated by summing up $\rho(1)$ and $\rho(2)$ after multiplying to each ρ .
Therefore,	autocorrelations of higher lags have linear relationship first two autocorrelations.

a) By adding the covariance of AR(1) and MA(1), we can get the covariance of ARMA(1,1).

 $C(Y_{t}, Y_{t-1}) = \lambda V(Y_{t-k}) + \alpha Cu^{2}$ $C(Y_{t}, Y_{t-k}) = \lambda^{k}V(Y_{t-k})$ where k > 1

If $1\lambda 1 < 1$, ARMA(1,1) process is covariance - stationary with constant variance $6^{\frac{1}{4}} \left(1 + \frac{(\lambda + \alpha)^{\frac{1}{4}}}{1 - \lambda^{\frac{1}{4}}} \right)$

Therefore, ACF of ARMA(1,1) when k = 1 is

 $\lambda \times O^{2}u\left(1+\frac{(\lambda+\alpha)^{2}}{1-\lambda^{2}}\right) + \alpha Ou^{2}$

 $= \frac{\int_{\alpha}^{2} \left(1 + \frac{(\lambda + \alpha)^{2}}{1 - \lambda^{2}}\right)}{1 - \lambda^{2}}$

 $= \lambda + (1-\lambda^2) \alpha$ $= 1 + 2\lambda \alpha + \alpha^2$

= (1+ 4) () () () () () ()

When kz , ACF of ARMA(1,1) TS

 $\int_{0}^{k} \left(1 + \frac{(\lambda + \alpha)^{2}}{1 - \lambda^{2}} \right)$

 $G_{u}^{2}\left(1+\frac{(\lambda+\alpha)^{2}}{1-\lambda^{2}}\right)$

	Date:	No
b) ACF of ARMA(1,1) when k=1		
D) ACF of ARMACI, 1) When K=1		
2.4		
$\Rightarrow (1+\alpha\lambda)(\lambda+\alpha)$		
$1+2\lambda x+x^2$		
[+ 2/X+ (X		
when $\lambda = -\alpha$ ACF becomes 0.		
7.00		
	51	
	•	