Berechnenbarkeit und Komplexität

Ubung 3 Abgabe: 14.11.2017

Adrian C. Hinrichs, Matr. Nr. 367129 Georg Dorndorf, Matr. Nr. 366511

# 1	# 2	# 3	Σ
1 /5	3 /5	5 /5	11

Aufgabe 1

Zu zeigen: $L_{\text{self}} = \{\langle M \rangle | M \text{ akzeptiert nicht } \langle M \rangle \}$

Beweis: Wir beweisen die Unentscheidbarkeit indem wir die Sprache auf die Form der Diagonalsprache bringen welche nach VL nicht entscheidbar ist.

Sei die Matrix A wie folgt gegeben

$$(A_i) = \begin{cases} 1 & \text{, falls } \langle M_i \rangle \in L_{\text{self}} \\ 0, & \text{, sonst} \end{cases} \text{ der rechten feile } \text{ ju gar nicht-mehr auf...}$$

Dann ist die Diagonalsprache D, die L_{self} entscheidet gegeben durch

gegeben durch Eine Sprache kann heine andere entscheidem...
$$D=\{i\in\mathbb{N}|A_{i,i}=1\}$$
 Warum nur Indites in D ?

Wir nehmen an, dass D entscheidbar ist um einen Widerspruch herbeizuführen. Dann gibt es eine TM M_i , die D entscheidet. Nun treten aber folgende zwei Widersprüche auf:

 $w_i \in D \overset{M_i \text{entsch}.D}{\Rightarrow} M_i$ akzeptiert $w_i \overset{Def.D}{\Rightarrow} w_i \notin D$

Hierist jetzt w; EN sodan und Mi alet. nicht < Mi>...

 $w_i \not\in D \overset{M_i \text{entsch}.D}{\Rightarrow} M_i$ akzeptiert nicht $w_i \overset{Def.D}{\Rightarrow} w_i \in D$

Also ist L_{self} nicht entscheidbar. Karn euren sinsatz nicht nachvollziehen. Ich denke ihr babt Indites von Then Qui mit desen Wodierung verwechselt. Noch 1/5

Aufgabe 2

Zu zeigen: Die Menge $\mathbb{N}^* := \bigcup_{n \in \mathbb{N}} \mathbb{N}^n$ ist abzählbar

Beweis: Zeige zunächst per vollständiger Induktion, dass die Menge \mathbb{N}^n für alle $n \in \mathbb{N}$ abzählbar unendlich ist.

(IA) $n = 1 : \mathbb{N}^1$ ist abzählbar (trivialfall) $n=2:\mathbb{N}^2$ mit dem Cantorschen Diagonalverfahren existiert eine bijektive Abbildung $C_2: \mathbb{N}^2 \to \mathbb{N}, \mathbb{N}^2$ ist also abzählbar unendlich.

(IV) Gelte die Behauptung für ein beliebiges, aber festes $n \in \mathbb{N}$

(IS) $n \mapsto n+1$:

$$\begin{split} |\mathbb{N}^{n+1}| &= |\mathbb{N}^n \times \mathbb{N}| \\ &\stackrel{\text{(IV)}}{=} |\mathbb{N} \times \mathbb{N}| \\ &= |\mathbb{N}^2| \\ &\stackrel{\text{Cantor}}{=} |\mathbb{N}| \end{split}$$

Also ist

$$\begin{aligned} |\mathbb{N}^*| &= \left| \bigcup_{n \in \mathbb{N}} \mathbb{N}^n \right| = \left| \bigcup_{n \in \mathbb{N}} \mathbb{N} \right|, \, \mathrm{da} \ |\mathbb{N}^n| = |\mathbb{N}| \, \forall \, n \in \mathbb{N} \end{aligned}$$

$$= \left| \bigcup_{n \in \mathbb{N}} \mathbb{N} \times n \right|$$

$$= |\mathbb{N} \times \mathbb{N}|$$

$$\overset{\mathrm{Cantor}}{=} |\mathbb{N}|$$

Also ist N^* abzählbar unenedlich.

QED

Aufgabe 3

Aufgabe 3.a

Sei die gegebene Turingmaschine M gegeben durch $M = (Q_M, \Sigma, \Gamma, \square, q_{M0}, \bar{q}_M, \delta_M,)$. Unsere neue Turingmaschine M_w^* ist nun für jedes Wort $w \in \Sigma^* = \{0, 1\}^*$ gegeben durch:

$$M_w^* = (Q, \Sigma, \Gamma, \square, q_0, \bar{q}_M, \delta)$$

$$Q = \{q_0, \dots, q_{|w|}\} \cup \{q_{|w|}, \dots, q_{2|w|}\} \stackrel{.}{\cup} Q_M$$
$$\delta : (Q\{\bar{q}_M) \times \Gamma \to Q \times \Gamma \times \{R, L, N\}$$

Abgabe: 14.11.2017

Gegeben durch:

 $\delta((q,\sigma)) = \delta_M((q,\sigma)) \text{ wenn } q \in Q_M \setminus \{\bar{q}_M\},$

 $\delta((q_i, \sigma)) = (q_{i+1}, w_{i+1}, R)$ wenn $q \notin Q_M$ und i < |w|,

 $\delta((q_i, \sigma)) = (q_{i+1}, \sigma, L)$ wenn $q \notin Q_M$ und $|w| \le i < 2|w|$,

 $\delta((q_i, \sigma)) = (q_{M0}, \sigma, N)$ wenn $q \notin Q_M$ und i = 2|w|.

Für das zurüdelaufen an den Anfermag von wreicht ein Zusteind aus aber ok.

Wobei w_j mit $0 < j \le |w|$ das jte Zeichen des Wortes 3/3w ist.

Aufgabe 3.b

Seien ein Wort w, und zwei Turing Maschinen M und M_w^* wie in Augabenteil a gegeben.

Eine Mehrband-Turingmaschine N, welche für eine Eingabe $\langle M \rangle w$ die Gödelnummer von M_w^* berechnet könnte wie folgt Arbeiten:

- 1. Übernehme die Eingabe von Band 1 auf Band 2, lösche dabei Band 1. Füge nach $\langle M \rangle$ exakt eine leere Zelle als Trennzeichen ein.
- 2. Laufe auf Band 2 zum Beginn von w (hinter dem zweiten vorkommen von drei aufeinander folgenden Einsen)
- 3. Schreibe auf Band 1 drei Einsen
- 4. Gib die Übergänge zwischen den in Aufgabenteil als q_0 bis $q_{|w|}$ bezeichneten Zustände durch wiederholtes Traversieren von w auf Band 1 aus. Kodiere dabei den Übergang von q₀ als 0 und die Zustände q_i als 0^{i+2} für i > 0.
- 5. Gib die Übergänge zwischen den in Aufgabenteil als $q_{|w|}$ bis $q_{2|w|}$ bezeichneten Zustände durch wiederholtes Traversieren von w auf Band 1 aus. Kodiere dabei den Zustand q_i als 0^{i+2} . Beende jeden Übergang durch zwei Einsen.
- 6. Laufe auf Band 2 zum Beginn von $\langle M \rangle$.
- 7. Lösche die führenden drei Einsen auf Band 1.
- 8. Ubertrage die Übergänge von M auf Band 2 zu Band 1, lösche dabei jeden schon verarbeiteten Übergang von Band 2. Schreibe für jeden, ausser den durch 00 kodierten, Übergang von $\langle M \rangle$ genau 2|w| nullen mehr. Beende jeden Übergang durch zwei Einsen.
- 9. Schreibe drei Einsen und terminiere.

Wobei ein Ausgegebener Übergang $\delta((q_i, w)) =$ (q_j, v, m) die Form $\langle q_i \rangle 1 \langle w \rangle 1 \langle q_j \rangle 1 \langle v \rangle 1 \langle m \rangle$ hat. Hierbei bezeichnet (·) die Kodierung von ·, wenn nicht anders angegben wie in der Vorlesung.

Sehr schon

2