For what follows, we're going to consider the set of real numbers to be the universe of discourse.

Convex Sets¹

A **convex combination** is a linear combination of points where all coefficients are non-negative and sum to one.

Consider points (possibly vectors) \mathbf{x} , \mathbf{y} , and \mathbf{z} . A general convex combination, which can be denoted \mathbf{w} , is

$$\mathbf{w} = k_1 \mathbf{x} + k_2 \mathbf{y} + k_3 \mathbf{z}$$

where $k_1 + k_2 + k_3 = 1$ and $k_i \ge 0, i = 1, 2, 3$.

The convex combination we are going to use most is:

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y}$$
 $\alpha \in [0, 1]$

Think of it like a weighted average between two points (or vectors), where α determines the weight. The convex combinations made by all possible values of α will be a line between the two points.

 $A \subseteq \mathbb{R}^n$ is a **convex set** iff $\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in A \quad \forall \ \mathbf{x}, \mathbf{y} \in A, \alpha \in [0, 1]$

A Convex Set

A Non-Convex Set

¹Prepared by Sarah Robinson

If A and B are both convex sets in \mathbb{R}^n , then $A \cap B$ is a convex set.

Intersection: $A \cap B$

Is $A \cup B$ a convex set?

The **convex hull** of set $B \subseteq \mathbb{R}^n$ is the smallest convex set containing B (the set of all convex combinations of points in B).

The Convex Hull

Example: A two-player prisoners' dilemma from game theory and the convex hull of the payoff profiles:

$$\begin{array}{c|cc}
C & D \\
C & (3,3) & (1,4) \\
D & (4,1) & (1,1)
\end{array}$$

Example: Consider set S:

$$S = \{x \mid x \in \mathbb{R} \land -1 \le x \le 1\}$$

Show that S is a convex set.

• $A \subseteq \mathbb{R}^n$ is a **convex set** iff $\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in A \ \forall \ \mathbf{x}, \mathbf{y} \in A, \alpha \in [0, 1]$

To Show:

Proof:

CLOSED SETS

A set $A \subseteq \mathbb{R}^n$ is **closed** iff for every sequence $\{\mathbf{x}_n\}_{n=1}^{\infty}$ such that $\mathbf{x}_n \in A$ for all n and $\mathbf{x}_n \to \mathbf{x}$, it is also the case that $\mathbf{x} \in A$

• \approx set A also includes its boundaries

A set is an **open set** if and only if its complement is a closed set.

The following sets in \mathbb{R}^n are open sets:

- The empty set \emptyset
- The entire space \mathbb{R}^n
- The union of any number of open sets
- The intersection of any finite number of open sets

The following sets in \mathbb{R}^n are closed sets:

- The empty set \emptyset
- The entire space \mathbb{R}^n
- The union of any finite number of closed sets
- The intersection of any number of closed sets

We could also define open sets using the notion of an epsilon-neighborhood (a ball with radius ε). A set A is open if and only if for all $\mathbf{x} \in A$, there exists some $\varepsilon > 0$ such that the ε -ball centered at \mathbf{x} is contained in A.

For any point in an open set, we can always draw a tiny circle around the point that lies entirely within the set. I bring up this definition because ε -balls will come up in other contexts.

Example: Consider set S:

$$S = \{(x, y) \mid (x, y) \in \mathbb{R}^2 \land x^2 + y^2 \le 1\}$$

Show that S is closed.

- $A \subseteq \mathbb{R}^n$ is **closed** iff for every sequence $\{\mathbf{x}_n\}_{n=1}^{\infty}$ such that $\mathbf{x}_n \in A$ for all n and $\mathbf{x}_n \to \mathbf{x}$, it is also the case that $\mathbf{x} \in A$
- Theorem 1: If $a_n \to a$ and $b_n \to b$, then $a_n + b_n \to a + b$ and $a_n b_n \to ab$
- Theorem 2: If $a_n \to a$, then $a_n \le b$ for all n implies $a \le b$.

To Show:

Proof:

BOUNDED SETS

A set $A \subseteq \mathbb{R}^n$ is **bounded** if and only if there exists an M and a point $\mathbf{x} \in \mathbb{R}^n$ such that the M-ball centered at \mathbf{x} contains all of A.

A Bounded (Closed) Set

A Non-Bounded (Open) Set

To prove a set in $A \subseteq \mathbb{R}^n$ is bounded:

- \bullet Pick a radius M
- Let $\mathbf{x} \in A$
- Show that $-M \le x_i \le M \ \forall i = 1, \dots, n$
- (This is for an M-ball centered at zero. You could also define a center point \mathbf{c} and show that $c_i M \leq x_i \leq c_i + M \ \forall i = 1, \ldots, n$)

A set $A \subseteq \mathbb{R}^n$ is **compact** if and only if it is closed and bounded.

Example: Consider set S:

$$S = \{(x, y) \mid (x, y) \in \mathbb{R}^2 \land x^2 + y^2 \le 1\}$$

Show that S is bounded.

To prove a set in $A \subseteq \mathbb{R}^n$ is bounded:

- ullet Pick a radius M
- Let $\mathbf{x} \in A$
- Show that $-M \le x_i \le M \ \forall i = 1, \dots, n$

To Show:

Proof: